INFORMATIONSTHEORIE

Part 1. Kompression

1. Elemente im Übertragungssystem

- Quelle/Senke
- Quellencodierung
- Chiffrierung
- Kanalcodierung
- Modulation digitale Quellen-Modulator Kanal-Chiffriere Quelle Encoder Encode andere Benutzer (Multiple Access) analoger Interferenz Kanal Rauschen De-chiffriere digitale Quellen-Kanal-Rx Senke Decoder Decoder Demodul.

Part 2. Entropie

2. Diskrete Informationsquellen

Symboldauer	T
Symbolrate	R = 1/T
Quellensymbol (Zufallsvariable)	X[n]
Alphabet	$A = \{x_1, x_2, \dots, x_M\}$
Wahrscheinlichkeit	$P(X = x_m) = P_X(x_m), m = 1, \dots, M$
Wahrscheinlichkeitsverteilung von X	$\sum_{m=1}^{M} P_X(x_m) = 1$

2.0.1. gedächtnislose Quellen.

- $\bullet\,$ DMS (Discrete Memoryless Source), Die Symbole X[n] sind unabhängig und haben identische Wahrscheinlichkeitsverteilung.
- BMS (Binary Memoryless Source), Die unabhängigen Symbole X[n] sind 2-wertig, d.h. $P_X(x_1) = p$ und $P_X(x_2) = 1 p$.
- BSS (Binary Symmetric Source), Die unabhängigen Symbole X[n] sind 2-wertig und es gilt: $P_X(x_1) = 0.5$ und $P_X(x_2) = 0.5$.

1

2

3. Informationsgehalt

Der Informationsgehalt eines Ereignisses $X=x_m$ ist wie folgt definiert:

$$I_x(x_m) = \log_2\left(\frac{1}{P_X(x_m)}\right)$$
 [bit]

Für Ereignisse von 2 (oder mehreren) Zufallsvariablen X und Y gilt sinngemäss:

$$I_x(x_m) = \log_2\left(\frac{1}{P_{XY}(x_i, y_k)}\right) [\text{bit}]$$

Für 2 unabhängige Symbole X und Y gilt:

$$I_{XY}(x_i, y_k) = I_X(x_i) + I_Y(y_k)$$

4. Redundanz

Differenz zwischen maximaler und mittlerer Entropie. Redundanz (M ist die Anzahl Symbole des Alphabets) Entropie ist maximal $log_2(M)$, wenn X-Werte gleichverteilt. Möglichst wenig Redundanz am Ausgang des Quellencoders.

$$R = log_2(M) - H(x)$$

5. Entropie

Datenübertragung: die maximale (verlustlose) Kompression = Entropie

$$H(X) = \sum_{i=1}^{M} P_x(x_i) \cdot \log_2 \left(\frac{1}{P_X(x_i)}\right) [\text{bit}]$$

5.1. Binäre Entropiekurve.

Part 3. Kompression

6. Huffman Code

Abhängig von der Quellenstatistik

Algorithmus.

- (1) Symbole nach Wahrscheinlichkeiten ordnen und Knoten eines Baums zuweisen
- (2) Zwei Symbole mit kleinster Wahrscheinlichkeit in neuem Symbol zusammenfassen, neuer Knoten hat Summe der Wahrscheinlichkeiten
- (3) Erneutes Reduzieren des Wahrscheinlichkeitsfeldes gem. Schritt 1
- (4) Schritte 2 und 3 wiederholen bis 2 Symbole bzw. Knoten übrig
- (5) Von der Wurzel aus bei jeder Verzweigung nach oben eine "0" und nach unten eine "1" eintragen (auch umgekehrt möglich) //Konstruktion Codebuch

Codewort	X	P_{X}	
0	Α	1/2	• 0
100	В	1/8	Wurzel 1
101	С	1/8	1/2
110	D	1/8	•0
111	Ε	1/8	1/4 1

R = Warscheinlichkeit * Codelänge (bsp. 1 * 1/8 + (3 * 1/8) * 4 = 2)

7. Lempel-Ziv-Codierung

Unabhänging von der Quellenstatistik

7.1. Algorithmus.

- (1) Eindeutige Unterteilung der Symbolfolge Strings variabler Länge, Unterscheidung nur in 1 Bit
- $(2)\,$ Encoding eines Strings: [Position des Präfix, neues Bit]

Wörterbuch-Nr.	Input	Output
1	$0 \rightarrow \text{neuer String; neues Bit} = 0$	[0000 0]
2	$1 \rightarrow \text{neuer String; neues Bit} = 1$	[0000 1]
3	$00 \rightarrow 0$ gleich wie 1. String; neues Bit = 0	[0001 0]
4	001 -> 00 gleich wie 3. String; neues Bit = 1	[0011 1]
5	$10 \rightarrow 1$ gleich wie 2. String; neues Bit = 0	[0010 0]
6	$000 \rightarrow 00$ gleich wie 3. String; neues Bit = 0	[0011 0]
7	101 -> 10 gleich wie 5. String; neues Bit = 1	[0101 1]
8	$0000 \rightarrow 000$ gleich wie 6. String; neues Bit = 0	$[0110 \ 0]$
9	$01 \rightarrow 0$ gleich wie 1. String; neues Bit = 1	[0001 1]
10	$010 \rightarrow 01$ gleich wie 9. String; neues Bit = 0	[1001 0]
	•••	

8. LZ77

- (1) Erstes Symbol des Vorschau-Buffers im Such-Buffer suchen (a) rückwärts von rechts nach links
- (2) Token der längsten (letzten) Übereinstimmung ausgeben

4

- (a) Token = (Offset, Länge, nächstes Symbol)
- (b) Token-Länge: $\log_2(S+1) + \log_2(L+1) + 8$ typisch: 11 + 5 + 8 = 24 Bit
- (c) wenn keine Übereinstimmung: (0,0, nächstes Symbol)
- (3) 3. Schiebefenster um Länge +1 nach rechts verschieben

9. LZ78

10. LZW

- Initialisierung I=[]
 - (1) neues Symbol x zu String I hinzufügen => I = Ix setzen
 - (a) Ix im Wörterbuch verzeichnet? Wenn ja, dann zu step 1. sonst zu step 3.

(2) -

- (a) Output = Wörterbuch-Pointer von I
- (b) Neuer Wörterbucheintrag mit Phrase Ix
- (c) I = "x" setzen

Beispiel Encoding. Text: ABBABABAC

Anfangswörterbuch: 1 : A, 2 : B, 3 : C

Momentane Buchstaben	String I	verzeichnet	WB-Eintrag	Output
A	A	✓		
A	AB	×	4 : AB	1
В	В	✓		
В	BB	×	5 : BB	2
В	В	✓		
В	BA	×	6 : BA	2
A	A	✓		
AB	AB	✓		
AB	ABA	×	7 : ABA	4
A	A	✓		
AB	AB	✓		
ABA	ABA	✓		
ABA	ABAC	×	8 : ABAC	7
С	С	✓		
С	C,eof			3

Bsp Decoding (Lösung ist in String J).

68	68	82	99	77	65	82	256	82
D	Е	R		M	A	R		R

Input	String I	String J	WB
68	D		
69	D	Е	256: DE
82	E	R	257: ER
95	R	-	258: R_
77	-	M	259: _M
65	M	A	260: MA
82	A	R	261: AR
256	R	DE	262: RD
82	DE	R	263: DER

11. JPG

statt Redundanzreduktion vorallem Irrelevanzreduktion (Qualitätsverlust, häufig jedoch nicht bemerkbar)

RLE.

11.1. PN-Sequenzen. Pseude Noise Sequenzen

LSFR. Für (Pseudo-)Randomgenerator

$$a_0 = (a_{18} + a_5 + a_2 + a_1) modulo 2$$

- 11.1.1. Zufallseigenschaften der m-Sequenzen.
 - m-Sequenzen sind fast ausgeglichen in Bezug auf die Anzahl Einsen und Nullen
 - Die relative Häufigkeit von runs der Länge k beträgt $(1/2)^k$ für $k \le (n-1)$ und $1/2^{(k-1)}$ für k = n. Ein "run" ist das Aufeinanderfolgen mehrere Nullen oder Einsen. So weist zum Beispiel die Bitfolge ... 00110101000111001101... folgende runs auf: Run 1 kommt 6x vor, run 2 kommt 4x vor und run 3 kommt 2x vor.
 - \bullet Die m-Sequenz der Länge P und die zyklisch verschobene Kopie haben fast 50 % überein- stimmende Bits und 50 % verschiedene Bits

Beispiel.

Linear Feedback Shift Register (LFSR)

06 May 2014 09:58

m-Sequenz

primilives Polynom: (4,1,0) → Feedback-Polynom: x" + x" + 1

zugehörige Schallung:

Vorghen 1. und 4. Stelle XOR-en, links shiften und das XOR-te reclis einschleten

$$x^{4} x^{3} x^{2} x^{4} \text{ Vorber.} \oplus \text{ Vorber.} = newex \\ x^{4} x^{5} x^{2} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{4} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{5} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{5} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{5} x^{5} x^{5} x^{5} x^{5} \text{ Vorber.} = newex \\ x^{5} x^{5$$

→ Output: 11110101000

Überprüfen der Zufallseigenschaften (des Outputs):

2. Runlänge: kAnzahl Runs der Länge k: #

Formel: $P = \left(\frac{1}{2}\right)^k$ für $k \le (n-1)$ und $P = \left(\frac{1}{2}\right)^{k-1}$ für k = nTest: $\sum \# = 4 + 2 + 1 + 1 = 8$; muss gelten: P * 8 = #

Test: $\sum \# = 4 + 2 + 1 + 1 = 8$; muss gelten: P * 8 = #

k	#	P	Test	
		$(\frac{1}{2})^{1} = \frac{1}{2}$	8.1/2 = 4	V
2	2	(1/2)2: 1/4	8. 1/4 = 2	
3	1	\ (1/2) ³ = 1/8	8.1/8 1	
4	1	(1/2)4-1 = 1/8	8. 1/8 = [1]	

3	Output	111101011001000
•	Output um 1 nach rechts geshiftet	011110101100100
	XOR der zwei Sequenzen soll die gleiche Sequenz	100011110101100
	wieder ergeben aber geshiftet	

- 11.2. Binäre Block-Codes. N: Anzahl Bits in einem Wort nach dem Encoding i.e $[1,1,1,0,1,1] \rightarrow 6$ $K: 2^K = Anzahl Infoworte, i.e \{[1,1,1],[1,0,1]\} \rightarrow 2 oder Anzahl Bits in einem Wort vor dem Encoding$ Coderate $R = \frac{K}{N}$
- 11.2.1. Hamming-Gewicht $w_H(x)$. entspricht der Anzahl "1" im Codewort x
- 11.2.2. Hamming-Distanz $d_H(x_i, x_i)$. entspricht der Anzahl unterschiedlicher Positionen in x_i und x_i
- 11.2.3. Minimaldistanz d_{min} . $d_{min} = min_{ij}d_H(x_i, x_j) = min_{ij}w_H(x_i + x_j) = min_kw_H(x_k) = w_{min}(i \neq j)$ Für linearen (N,K) Block-Codes
- 11.2.4. Beispiel: (3,2)-Blockcode. Anzahl Informationsbits = K=2, Länge eines Codewortes = N=3 $2^K = 4$ Infoworte

 $\begin{array}{l} \text{Coderate} = R = \frac{K}{N} \\ A = \{[00], [01], [10], [11]\} \end{array}$

even Parity

 $C = \{[000], [101], [110], [011]\}$ (vorderstes Bit ist hier Paritybit)

- 11.2.5. Begriff, linearer (N,K) Block-Code C'. Falls die modulo-2 Summe zweier Codewörter wieder ein Codewort ergibt, dann ist der Block Code linear.
- 11.2.6. Begriff, linearer, zyklischer (N,K) Block-Code C'. Falls die zyklische Verschiebung eines Codeworts wieder ein Codewort ergibt, ist der Code ausser- dem zyklisch. Aufgrund dieser Eigenschaft sind die verschiedenen Codeworte sehr einfach mit Hilfe eines LFSR (Linear Feedback Shift Register) realisierbar.
- 11.2.7. Generator-Matrix. Für jeden linearen (N, K) Code gibt es eine $K \times N$ Generator-Matrix G

$$[x_0, \dots, x_{N-1}] = [u_0, \dots, u_{K-1}] \cdot G$$

Die Generator-Matrix hat die Form $G = [PI_K], I_K: K \times K$ -Einheitsmatrix

11.2.8. Parity-Check-Matrix. Jeder lineare (N,K) Code hat eine $(N-K)\times N$ Parity-Check-Matrix H

$$[x_0, \dots, x_{N-1}] \cdot H^T = [0, \dots, 0]$$

Wenn $G = [PI_K]$ in systematischer Form, dann $H = [I_{N-K}P^T]$

11.2.9. Syndrom.
$$\vec{s} = [s_0, \dots, s_{N-K-1}] = \vec{y} \cdot H^T = (\vec{x} + \vec{e}) \cdot H^T = \vec{e} \cdot H^T$$

Wobei \vec{e} der Fehler ist und \vec{y} das neue Codewort mit dem Fehler adiert (also ein potenziell falsches Wort, falls $\vec{e} \neq \vec{0}$

Das Syndrom ist nur vom Fehler abhängig. Falls keine Fehler übertragen wurden ist $\vec{s} = \vec{0}$.