МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Параллельные алгоритмы»

Тема: Параллельное умножение матриц.

Студент гр. 9304		Попов Д.С.
Преподаватель		Сергеева Е.И.
	Санкт-Петербург	

2022

Цель работы.

Реализовать параллельный алгоритм и алгоритм «быстрого» умножения матриц.

Задание.

- 4.1 Реализовать параллельный алгоритм умножения матриц. Исследовать масштабируемость выполненной реализации.
- 4.2 Реализовать параллельный алгоритм "быстрого" умножения матриц (Штрассена или его модификации).
 - Проверить, что результаты вычислений реализаций 4.1 и 4.2 совпадают.
 - Сравнить производительность с реализацией 4.1 на больших размерностях данных (порядка $10^4 10^6$).

Выполнение работы.

Класс Matrix представляет из себя двойной вектор для хранения данных, размер стороны, а также перегруженные операторы +, -, * и ==.

Для параллельного алгоритма умножения матриц была реализована функция *matrixMultiplication*, которая принимает два указателя на класс матрицы Matrix. Каждому потоку достается определенная область, в которой необходимо провести умножение и отобразить результат на результирующую матрицу.

Алгоритм «быстрого» умножения представлен функцией matrixStrassenMultiplication, которому на вход так же подается два указателя матриц. Для реализации алгоритма Штрассена были реализованы лямбды, которые «собирают» и «разбивают» матрицу из/на 4 подматрицы, а также рекурсивная лямбда, задача которой производить разбиение и подсчет до тех пор, пока подматрицы не станут размером 64, ибо дальнейшее разбиение не целесообразно.

Для наглядности также была реализовано однопоточное умножение.

Сравнение производительности параллельного и «быстрого» алгоритмов.

Для параллельного умножения матриц было использовано 8 потоков, а в реализации Штрассена 7.

В таблице 1 представлено время выполнения для каждого алгоритма, при разных размерах матрицы:

Размер	Однопоточная,	Параллельная,	Штрассен,
матрицы	MC.	MC.	MC.
104	47	41	14
10 ⁵	105	94	26
10^6	5780	2791	2791

Таблица 1 – Зависимость времени выполнения от размера матриц

Выводы.

В ходе выполнения лабораторной работы была реализована программа на языке программировании C++ для умножения матриц. Было произведено сравнение и установлено, что алгоритм Штрассе показывает наилучший результат.