Chapter 10: Circles - Class 10 Maths

★ Key Concepts

- 1. A **circle** is the set of all points in a plane that are at a **fixed distance (radius)** from a fixed point (center).
- 2. **Chord** a line segment joining any two points on the circle.
- 3. **Secant** a line that intersects the circle in **two** points.
- 4. Tangent a line that touches the circle at only one point.

📏 Tangent to a Circle

- A tangent is a special case of a secant where both endpoints of the chord coincide.
- The **point of contact** is the only common point between the tangent and the circle.

@ Important Theorems

Theorem 10.1:

The tangent to a circle is perpendicular to the radius at the point of contact.

If O is the center, P is point of contact, and XY is the tangent, then $\mathbf{OP} \perp \mathbf{XY}$

Theorem 10.2:

The lengths of tangents drawn from an external point to a circle are equal.

If tangents PA and PB are drawn from a point P to a circle with centre O, then:

PA = PB

How Many Tangents Can You Draw?

Position of the point	No. of tangents
Inside the circle	0
On the circle	1
Outside the circle	2

- The line through the radius and the point of contact is called the **normal**.
- Tangents drawn at the ends of a diameter are always parallel.
- A line perpendicular to a tangent at the point of contact passes through the centre.

🔢 Formula to Find Tangent Length

If a point lies outside the circle:

Length of tangent = √(Distance² from centre - Radius²)

Important Examples (Quick View)

- Two tangents drawn from a point are equal.
- Tangents at endpoints of a chord bisect it if they touch an inner circle.
- Angle between tangents from external point = 2 × angle between radius and tangent.
- In a quadrilateral circumscribing a circle: AB + CD = AD + BC

Previous Year Exam Focus

Type of Question	Frequency
Prove tangent is ⊥ to radius	****
Equal length tangents from external point	****
Quadrilateral with circle (AB + CD = AD + BC)	***
Use Pythagoras to find tangent length	***
Tangents from diameter or parallel tangents	***

Summary

- 1. **Tangent** touches the circle at one point.
- 2. Tangent is always **perpendicular to the radius** at the point of contact.
- 3. From a point outside a circle, exactly two equal tangents can be drawn.