

INTRODUCTION TO MODELING

Matt Brems General Assembly, D.C.

AGENDA

1. Data Science Process & Modeling

2. Linear Regression

DATA SCIENCE PROCESS

- 1. Define problem.
- 2. Gather data.
- 3. Explore data.
- 4. Model with data.
- 5. Evaluate model.
- 6. Answer problem.

• Modeling is something that we naturally do.

- Modeling is something that we naturally do.
- A **model** is a simplification of reality.

- Modeling is something that we naturally do.
- A **model** is a simplification of reality.
 - How do we simplify?
 - Making assumptions about how things behave.
 - Taking into account only really important factors.

"Essentially, all models are wrong, but some are useful."

— George Box, 1987

Data Dictionary

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

WHY DO WE MODEL?

- Prediction
 - How long does it take me to get to work?
 - How much money is a 29-year-old DSI alum expected to make?
- Inference
 - What is the effect of sex on income?
 - How much more money can I be expected to make in a year?

MACHINE LEARNING ALGORITHMS

Data Science Problem Lo have access to Y (what I want to predict) discrete continuous

Unsupervised Learning
Lado not have access
to y

MACHINE LEARNING ALGORITHMS

TERMINOLOGY

- X: our data, the independent/explanatory variables we use to predict Y.
- **Y**: our data, the dependent variable we want to predict.
- $\widehat{\mathbf{Y}}$: our predicted values of \mathbf{Y} .

MODELING GOALS

1. Use observed values of X and Y to model relationship between them.

2. Build model that makes Y and \hat{Y} as close as possible.

3. Use observed values of X and existing model to make predictions \hat{Y} .