Less is More: Recursive Reasoning with Tiny Networks

Alexia Jolicoeur-Martineau Samsung SAIL Montréal arXiv:2510.04871

TL; DR

- A single tiny network recursively refines its latent reasoning state to improve answers step by step—achieving strong generalization through thinking depth rather than network depth.
- Why recursion helps so much remains to be explained (overfitting?).
- A supervised learning method rather than generative model.

Contents

- Background
- Deep Equilibrium Model
- Hierarchical Reasoning Model
- Tiny Recursive Model

System 1 & System 2 Thinking

- Two different modes of cognitive processing
- System 1 is fast, automatic, intuitive, and emotional.
 effortlessly and quickly,
 guides our daily decisions, judgments, and impressions.
 eg. Feed-forward Neural Network, Transformer?
- System 2 is slow, deliberate, and analytical.

 It is activated when we need to perform complex computations.

 eg. expert-level coding, competitive math, and PhD-level science questions.

 LLM: Not Turing-complete, hard to do algorithmic reasoning.

LLM + ...

From Next-Token Prediction to Reasoning

- Traditional next-token prediction model: $p(x_t|\mathbf{x}_{< t}) \leftarrow \text{No explicit reasoning}$
- Reasoning: devising and executing complex goal oriented action sequences
 - The Chain of Thought (CoT) asks model to "think step by step".
 - The Test-Time Compute (TTC) lets model "think more" before answering.

The reasoning abilities in LLMs are typically developed through **alignment**, including

- supervised fine-tuning (SFT),
- reinforcement learning (RL).

Motivation - Beyond Layer Stacking

 Deep neural networks (like Transformers) rely on stacking layers for better performance.

$$z^{i} = f_{\theta}^{i-1}(z^{i-1}, \tilde{x}), \text{ where } i = 1, 2, \dots, L$$

But increasing depth → vanishing gradients, huge memory cost, slow inference.

$$f_{\theta}^{i} = f_{\theta}, \ \forall i$$

Q: If the same transformation is applied at each layer of a deep network, what
is the limit of this process?

Mathematical Formulation

• Instead of explicitly computing multiple layers, a DEQ finds a fixed point:

$$z^* = f_{\theta}(z^*, \tilde{x})$$

- Here, z^* is the representation **at equilibrium**, meaning applying further does not change z^* .
- Unlike a conventional network where the output is the activations from the L^{th} layer, the output of a DEQ is the equilibrium point itself.

Finding the Equilibrium: Root-Finding Methods

- Fixed-Point Iteration: $z^{t+1} = f_{\theta}(z^t, \tilde{x})$ Slow!
- Broyden's Method (Quasi-Newton)

$$g_{\theta}(z, \tilde{x}) := f_{\theta}(z, \tilde{x}) - z \to 0$$
$$z^{t+1} = z^t - J_a^{-1} g(z^t)$$

Any root-find method is fine.

Training DEQs with Implicit Differentiation

- Unlike traditional deep networks that require storing activations for backpropagation, DEQs train using implicit differentiation.
- Loss function: $\mathcal{L} = \mathcal{L}(z^*, y)$ $\frac{d\mathcal{L}}{d\theta} = \frac{\partial \mathcal{L}}{\partial z^*} \frac{dz^*}{d\theta}$

$$rac{d\mathcal{L}}{d heta} = rac{\partial \mathcal{L}}{\partial z^*} rac{dz^*}{d heta}$$

• Implicit Function Theorem $g_{\theta}(z, \tilde{x}) \coloneqq f_{\theta}(z, \tilde{x}) - z$

$$g_{\theta}(z, \tilde{x}) := f_{\theta}(z, \tilde{x}) - z$$

$$\frac{dg}{d\theta} = \frac{\partial f}{\partial \theta} + \frac{\partial f}{\partial z} \frac{dz^*}{d\theta} - \frac{dz^*}{d\theta} = 0$$

$$(I - J_f) \frac{dz^*}{d\theta} = \frac{\partial f}{\partial \theta}$$

Hierarchical Reasoning Model Motivation

Reasoning: devising and executing complex goal oriented action sequences

Inspiration from the brain: signals at different frequencies + recurrence

Gap in previous work:

- CoT suffer from brittle task decomposition, high data and compute requirements
- (Transformers don't scale well)

Hierarchical Reasoning Model Overview

- Paper: https://arxiv.org/abs/2506.21734
- Code: https://github.com/sapientinc/HRM
- Analysis blog: https://arcprize.org/blog/hrm-analysis
- Analysis code: https://github.com/arcprize/hierarchical-reasoning-model-analysis

Model Architecture

Hierarchical Reasoning Model - Methods

Iterative Refinement

- given a context + initial guess, refine towards equilibrium
- Outer loop +2 levels of inner loop
- Deep supervision (segment)

Model Architecture

Hierarchical Reasoning Model - Methods

 $\tilde{x} = f_I(x; \theta_I)$ $\hat{y} = f_O(z_H^{NT}; \theta_O)$

Low-level: *T* time-steps each cycle

$$z_L^i = f_L(z_L^{i-1}, z_H^{i-1}, \tilde{x}; \theta_L)$$

High-level: executed once per cycle for N cycle

$$z_H^i = \begin{cases} f_H(z_L^{i-1}, z_H^{i-1}, \tilde{x}; \theta_L) & \text{, if } i \equiv 0 \text{ (mod } T); \\ z_H^{i-1} & \text{, otherwise.} \end{cases}$$

def hrm(z, x, N=2, T=2):

zH, zL = z

 $x = input_embedding(x)$

 $zL = L_net(zL, zH, x)$

return (zH, zL), output_head(zH)

 $zH = H_net(zH, zL)$

Approximate gradient

Hierarchical Reasoning Model

$$L_{\text{ACT}}^m = \text{Loss}(\hat{y}^m, y) + \text{BinaryCrossEntropy}(\hat{Q}^m, \hat{G}^m)$$
.

$$(I - J_f) \frac{dz^*}{d\theta} = \frac{\partial f}{\partial \theta}$$

$$(I - J_f)^{-1} = I + J_f + J_f^2 + \cdots$$

$$\approx I$$

One-Step gradient approximation

$$\frac{\partial z_H^*}{\partial \theta_H} \approx \frac{\partial f_H}{\partial \theta_H}, \quad \frac{\partial z_H^*}{\partial \theta_L} \approx \frac{\partial f_H}{\partial z_L^*} \cdot \frac{\partial z_L^*}{\partial \theta_L}, \quad \frac{\partial z_H^*}{\partial \theta_I} \approx \frac{\partial f_H}{\partial z_L^*} \cdot \frac{\partial z_L^*}{\partial \theta_I} \cdot \qquad \frac{\partial z_L^*}{\partial \theta_L} \approx \frac{\partial f_L}{\partial \theta_L}, \quad \frac{\partial z_L^*}{\partial \theta_L} \approx \frac{\partial f_L}{\partial \theta_I}.$$

Adaptive computational time (ACT)

Hierarchical Reasoning Model - Methods

$$L_{\text{ACT}}^m = \text{Loss}(\hat{y}^m, y) + \text{BinaryCrossEntropy}(\hat{Q}^m, \hat{G}^m)$$
.

- Q-learning: Markov Decision Process (MDP)
- action = {halt, continue}, state = $\{z_H^m\}$
- Reward: halt \rightarrow 1 if predicts correct; else 0. continue \rightarrow 0.
- Q-value is predicted by a Q-head: $\hat{Q}^m = \sigma\left(\theta_Q^{\top} z_H^{mNT}\right) = \left(\hat{Q}_{\mathrm{halt}}^m, \hat{Q}_{\mathrm{continue}}^m\right)$
- According to Bellman Equation, the target Q-value function: $\hat{G}^m = \left(\hat{G}_{\mathrm{halt}}^m, \hat{G}_{\mathrm{continue}}^m\right)$

$$\hat{G}_{\text{halt}}^{m} = \mathbf{1}\{\hat{y}^{m} = y\}, \qquad \hat{G}_{\text{continue}}^{m} = \begin{cases} \hat{Q}_{\text{halt}}^{m+1}, & \text{if } m \geq N_{\text{max}}, \\ \max(\hat{Q}_{\text{halt}}^{m+1}, \hat{Q}_{\text{continue}}^{m+1}), & \text{otherwise.} \end{cases}$$

Method Summary

- Outer Refinement Loop: Propose solution and understand when you're done
 -> adaptive computation
- Inner Equilibrium Loop: 'hierarchical' refinement towards equilibrium
- Puzzle Embeddings: learn to associate a puzzle hash with a specific transformation

Benchmarks

Data Augmentation

- Inference
 - Make separate predictions for all augmented versions of a task
 - Use maximum outer refinement loops, no ACT
 - Use majority voting on pool of predictions

Performance Overview

- Arc v1
 - Public 41% pass@2
 - Semi-Private 32% pass@2

- Arc v2
 - Public 4% pass@2
 - Semi-Private 2% pass@2

Performance Overview

Why does it work?

Hierarchical Reasoning Model - Performance Drivers

- 1. Model architecture
- 2. Inner refinement loop
- 3. Outer refinement loop, with or without ACT
- 4. Data augmentation for HRM
- 5. Puzzle embeddings

Architecture?

Hierarchical Reasoning Model - Performance Drivers

Compare HRM with regular transformer

- Matched parameter count
- Same hyperparameters
- Less (forward) compute

• Findings:

- Regular, unoptimized transformer is within ~5%.
- No refinement -> matched
- More outer loop steps -> gap closes

Inner Loop?

Hierarchical Reasoning Model - Performance Drivers

Vary L and H cycles

Findings

- L1-H1 already achieves % of the performance.
- Scaling higher does not improve further
- #params remains the same, but compute scales with n_L*n_H.

Outer Loop + ACT?

Hierarchical Reasoning Model - Performance Drivers

Vary max outer loop steps

Findings

- Refinement makes a big difference.
- Refinement at training > refinement at inference
- Learned halting signal leads works (only at training)
- Refinement of predictions works!

Tiny Recursive Model

Overview

- Paper: https://arxiv.org/abs/2510.04871
- Code: https://github.com/SamsungSAILMontreal/TinyRecursiveModels

Motivations

Improvements in Hierarchical Reasoning Models

- Implicit Function Theorem with 1-step gradient approximation Although the residuals do generally reduce over time, a fixed point is unlikely to be reached when the theorem is actually applied.
- Twice the forward passes with Adaptive computational time (ACT)
- Why 'Hierarchical' interpretation? a bit forced...

Model Design

Tiny Recursive Model

$$z_L \leftarrow f_L(z_L + z_H + x)$$

•

$$z_L \leftarrow f_L(z_L + z_H + x)$$

$$z_H \leftarrow f_H(z_L + z_H)$$

- No hierarchy! No IFT! No gradient approximation!
- Forget the biological story.
 - z_H = the current embedded solution. \rightarrow Decoded via output head.
 - z_L = latent reasoning state, not directly a solution.
- Example: Sudoku
 - z_H matches the current solution;

5	2	6	7	9	4	8	3	1
3	9	1	2	6	8	4	7	5
4	8	7	3	1	5	2	9	6
1	6	8	5	3	2	7	4	9
9	3	5	4	7	6	1	8	2
7	4	2	9	8	1	15	6	3
8	7	3	1	5	9	6	2	4
2	5	9	6	4	7	3	1	8
6	1	4	8	5	3	9	5	7

Tokenized z_H (denoted y in TRM)

5		5	4	9	4		6	3
4		3	1			4	6	5
4	8	4		3		6	6	4
9		6	5	3		5	4	
	3	5	4	3		5	4	4
6		3		3	3	15	8	8
3	3	3	6	5		6	6	4
7	5		6		3	3	6	6
4	3	4	8		3	6	6	4

Tokenized z_L (denoted z in TRM)

Model Design Tiny Recursive Model

• Why 2 latent variables? a proposed solution $y(z_H)$, and a latent reasoning feature $z(z_L)$.

Table 2. TRM on Sudoku-Extreme comparing % Test accuracy when using more or less latent features

Method	# of features	Acc (%)
TRM y, z (Ours)	2	87.4
TRM multi-scale z	n + 1 = 7	77.6
TRM single z	1	71.9

Cross-entropy loss Reverse Embedding Add & Norm 4xAdd & Norm Self-Attention Prediction (y) Latent (z) Input (x) [Reasoning] [Question] [Answer] Step 1, 2, ..., n: Update z given x, y, z (Improve the latent z) Step n+1: Update y given y, z (Improve the prediction y) Applied N_{sup} = 16 times (trying to improve the prediction y)

Image Source: Jolicoeur-Martineau, A. (2025). Less is More: Recursive Reasoning with Tiny Networks. arXiv:2510.04871.

```
def latent_recursion(x, y, z, n=6):
   for i in range(n): # latent reasoning
       z = net(x, y, z)
   y = net(y, z) # refine output answer
   return y, z
def deep_recursion(x, y, z, n=6, T=3):
   # recursing T-1 times to improve y and z (no gradients needed)
   with torch.no_grad():
       for j in range(T-1):
          y, z = latent_recursion(x, y, z, n)
   # recursing once to improve y and z
   y, z = latent_recursion(x, y, z, n)
   return (y.detach(), z.detach()), output_head(y), Q_head(y)
# Deep Supervision
for x_input, y_true in train_dataloader:
   y, z = y_init, z_init
   for step in range(N_supervision):
       x = input_embedding(x_input)
       (y, z), y_hat, q_hat = deep_recursion(x, y, z)
       loss = softmax_cross_entropy(y_hat, y_true)
       loss += binary_cross_entropy(q_hat, (y_hat == y_true))
       loss.backward()
       opt.step()
       opt.zero_grad()
       if q_hat > 0: # early-stopping
           break
```

Model Design Tiny Recursive Model

- Use single network
- Less is more: 2-layer-transformer
- No attention on Sudoku
- No ACT (Q learning)
- Iteration steps

Table 1. Ablation of TRM on Sudoku-Extreme comparing % Test accuracy, effective depth per supervision step $(T(n + 1)n_{layers})$, number of Forward Passes (NFP) per optimization step, and number of parameters

Method	Acc (%)	Depth	NFP	# Params
HRM	55.0	24	2	27M
TRM $(T = 3, n = 6)$	87.4	42	1	5M
w/ ACT	86.1	42	2	5M
w/ separate f_H , f_L	82.4	42	1	10M
no EMA	79.9	42	1	5M
w/4-layers, $n=3$	79.5	48	1	10M
w/self-attention	74.7	42	1	7M
w/T = 2, n = 2	73.7	12	1	5M
w/ 1-step gradient	56.5	42	1	5M

Table 3. % Test accuracy on Sudoku-Extreme dataset. HRM versus TRM matched at a similar effective depth per supervision step $(T(n+1)n_{layers})$

			RM	TRM		
		n = k, 4 layers		n=2k, 2 layers		
k	T	Depth	Acc (%)	Depth	Acc (%)	
1	1	9	46.4	7	63.2	
2	2	24	55.0	20	81.9	
3	3	48	61.6	42	87.4	
4	4	80	59.5	72	84.2	
6	3	84	62.3	78	OOM	
3	6	96	58.8	84	85.8	
6	6	168	57.5	156	OOM	

Performance Tiny Recursive Model

Table 4. % Test accuracy on Puzzle Benchmarks (Sudoku-Extreme and Maze-Hard)

Method	# Params	Sudoku	Maze				
Chain-of-thought, pretrained							
Deepseek R1	671B	0.0	0.0				
Claude 3.7 8K	?	0.0	0.0				
O3-mini-high	?	0.0	0.0				
Direct prediction, small-sample training							
Direct pred	27M	0.0	0.0				
HRM	27M	27M 55.0					
TRM-Att (Ours)	7M	74.7	85.3				
TRM-MLP (Ours)	$5M/19M^{1}$ 87.4		0.0				

Table 5. % Test accuracy on ARC-AGI Benchmarks (2 tries)

Method	# Params	ARC-1	ARC-2				
Chain-of-thought, pretrained							
Deepseek R1	671B	15.8	1.3				
Claude 3.7 16K	?	28.6	0.7				
o3-mini-high	?	34.5	3.0				
Gemini 2.5 Pro 32K	?	37.0	4.9				
Grok-4-thinking	1.7T	66.7	16.0				
Bespoke (Grok-4)	1.7T	79.6	29.4				
Direct prediction, small-sample training							
Direct pred	27M	21.0	0.0				
HRM	27M	40.3	5.0				
TRM-Att (Ours)	7M	44.6	7.8				
TRM-MLP (Ours)	19M	29.6	2.4				

SummaryTiny Recursive Model

- Compared with HRM
 - Simpler: no fixed-point theorem, no biological hierarchy, no extra halting pass.
 - Smaller: one shared network $\rightarrow \approx 1/4$ the parameters of HRM.
 - More robust: better generalization on four reasoning benchmarks.

Conclusion

- A single tiny network recursively refines its latent reasoning state to improve answers step by step—achieving strong generalization through thinking depth rather than network depth.
- Why recursion helps so much remains to be explained (overfitting?).
- A supervised learning method rather than generative model.

Thanks!