MTH5105 Differential and Integral Analysis 2009-2010

Solutions 5

1 Exercise for Feedback/Assessment

- 1) Let $f(x) = \exp(-1/\sqrt{x})$, $g(x) = \cos(\pi x/2)$, and $P = \{1, 4, 9, 16\}$.
 - (a) Find the upper and lower sums U(f, P) and L(f, P) of f for the partition P. Use these sums to give bounds for $\int_1^{16} f(x) dx$. [10 marks]
 - (b) Find the upper and lower sums U(g,P) and L(g,P) of g for the partition P. Use these sums to give bounds for $\int_1^{16} g(x) dx$. [10 marks]

Solution:

(a) Recall that $I_i = [x_i - x_{i-1}]$, $\Delta x_i = x_i - x_{i-1}$, $M_i = \sup_{x \in I_i} f(x)$, and $m_i = \inf_{x \in I_i} f(x)$. We have

$$I_1 = [1, 4]$$
, $\Delta_1 = 3$, $M_1 = \exp(-1/2)$, $m_1 = \exp(-1/1)$, $I_2 = [4, 9]$, $\Delta_2 = 5$, $M_2 = \exp(-1/3)$, $m_2 = \exp(-1/2)$, $I_3 = [9, 16]$, $\Delta_3 = 7$, $M_3 = \exp(-1/4)$, $m_3 = \exp(-1/3)$.

[4 marks]

Therefore

$$U(f,P) = \sum_{i=1}^{3} M_i \Delta x_i = 3 \exp(-1/2) + 5 \exp(-1/3) + 7 \exp(-1/4) ,$$

$$L(f,P) = \sum_{i=1}^{3} m_i \Delta x_i = 3 \exp(-1) + 5 \exp(-1/2) + 7 \exp(-1/3) .$$

[4 marks]

Hence we have

$$3\exp(-1) + 5\exp(-1/2) + 7\exp(-1/3) \le \int_1^{16} f(x) dx \le 3\exp(-1/2) + 5\exp(-1/3) + 7\exp(-1/4) .$$

[2 marks]

(In fact, the integral evaluates to about 10.17, while the lower and upper sums are approximately 9.15 and 10.85.)

(b) We have now

$$M_1 = 1$$
, $m_1 = -1$, $M_2 = 1$, $m_2 = -1$, $M_3 = 1$, $m_3 = -1$.

Therefore

$$U(g, P) = 3 \cdot 1 + 5 \cdot 1 + 7 \cdot 1$$
, $L(g, P) = 3 \cdot (-1) + 5 \cdot (-1) + 7 \cdot (-1)$.

[4 marks]

Hence we have

$$-15 \le \int_1^{16} g(x) \, dx \le 15 \; .$$

[2 marks]

(In fact, the integral evaluates to $-2/\pi \approx -0.637$.)

2 Extra Exercises

2) Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}.$$

- (a) Given a partition P of [-1,1], what is L(f,P)? What is $\int_{x-1}^{1} f(x) dx$?
- (b) For fixed $\epsilon > 0$, find a partition P of [-1, 1] such that $U(f, P) < \epsilon$. What is $\int_{-1}^{*1} f(x) dx$?
- (c) Is f integrable on [-1,1]? If so, what is its integral?

Solution:

- (a) Given a partition P of [-1,1], the function f has infimum 0 in any subinterval. Therefore L(f,P)=0 for any partition P. Hence $\int_{*-1}^{1} f(x) dx = 0$.
- (b) For $0<\delta<1$, choose $P=\{-1,-\delta,\delta,1\}$. On the intervals $[-1,-\delta]$ and $[\delta,1]$ the function f has maximum value 0. On the interval $[-\delta,\delta]$ it has maximum value 1. Therefore

$$U(f,P) = ((-\delta)-(-1))\cdot 0 + (\delta-(-\delta))\cdot 1 + (1-\delta)\cdot 0 = 2\delta\;,$$

and if we choose $\delta < \epsilon/2$, we have $U(f, P) < \epsilon$.

Hence $\int_{-1}^{*1} f(x) dx \le 0$. Using (a), we have

$$0 = \int_{*-1}^{1} f(x) dx \le \int_{-1}^{*1} f(x) dx \le 0,$$

so that $\int_{*-1}^{1} f(x) \, dx = 0$.

(c) As

$$\int_{-1}^{*1} f(x) \, dx = \int_{-1}^{*1} f(x) \, dx = 0 \; ,$$

f is integrable and $\int_{-1}^{1} f(x) dx = 0$.

- 3) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Consider the equidistant partitions P_n of [0,1] into n subintervals.
 - (a) Find $U(f, P_n)$. What can you say about $\int_0^{*1} f(x) dx$?
 - (b) Find $L(f, P_n)$. What can you say about $\int_{*0}^{1} f(x) dx$?
 - (c) Is f integrable on [0,1]? If so, what is its integral?

[Hint: $\sum_{j=1}^{n} j^2 = \frac{1}{6}n(n+1)(2n+1)$.]

Solution:

We have

$$P_n = \{0/n, 1/n, \dots, n/n\}$$

or $x_i = i/n$ for $i = 0, \ldots, n$. Thus, $I_i = [(i-1)/n, i/n]$ and $\Delta x_i = 1/n$.

(a) We have $M_i = (i/n)^2$ and thus

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} \left(\frac{i}{n}\right)^2 \left(\frac{1}{n}\right)$$
$$= \frac{1}{n^3} \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6n^3} = \frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}.$$

Hence, $\int_0^{*1} f(x) dx \le 1/3$.

(b) Similarly we have $m_i = ((i-1)/n)^2$ and thus

$$L(f,P) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} \left(\frac{i-1}{n}\right)^2 \left(\frac{1}{n}\right)$$
$$= \frac{1}{n^3} \sum_{i=1}^{n} (i-1)^2 = \frac{(n-1)n(2n-1)}{6n^3} = \frac{1}{3} - \frac{1}{2n} + \frac{1}{6n^2}.$$

Hence, $\int_{*0}^{1} f(x) dx \ge 1/3$.

(c) Combining these we see that $\int_0^1 x^2 dx$ exists and equals 1/3.