# Direct Numeric Simulations: Turbulent Flows

### **Challenges in Turbulence**

Small scale structures require high resolution

Nonlinear term is relevant

Reynolds = Inertial / Viscous Forces = Captures Nonlinearity

$$\frac{\partial \vec{\boldsymbol{u}}}{\partial t} + \vec{\boldsymbol{u}} \cdot \nabla \vec{\boldsymbol{u}} = \dots + \frac{1}{Re} \nabla^2 \vec{\boldsymbol{u}}$$

#### **Approach**

Extremely simplified physics: 2D, Incompressible, periodic

BC, homogeneous

Solve in Fourier space

Use integration scheme to maximize  $\Delta t$ 

#### **Computational Problem**

Higher Re  $\rightarrow$  refined mesh  $\rightarrow$  smaller  $\Delta t \rightarrow$  Increased cost Turbulence is chaotic – many sims needed for reliable stats Even with simplified physics simulations take a week













# Direct Numeric Simulations: Turbulent Flows

## **Short term work**

Code Optimization
Parallel Programming
Post-process feedback to simulation
GPU Computing
Build cluster

### **Long term work**

Model additional physics 3D turbulence Heat transfer Complex geometry

```
for k = 1:Num_Vortices
    Update_Perimeter()
    Update_Properties()
    Verify_Structure()
end
```



Update  $\Delta t$ Update NEnd loop