The inverse function theorem for Banach spaces

Jordan Bell

jordan.bell@gmail.com

Department of Mathematics, University of Toronto

February 27, 2017

1 $\mathscr{L}(E;F)$ and GL(E;F)

Let E and F be Banach spaces. It is a fact that a linear map $f:E\to F$ is continuous if and only if 1

$$||f|| = \sup_{||x|| \le 1} ||f(x)|| < \infty.$$

Denote by

$$\mathcal{L}(E;F)$$

the set of continuous linear maps $E \to F$. It is a fact that $\mathcal{L}(E; F)$ is a Banach space.²

Let E,F,G be Banach spaces and let $f\in \mathscr{L}(E;F),g\in \mathscr{L}(F;G)$. One checks that $g\circ f\in \mathscr{L}(E;G)$ and

$$||g \circ f|| \le ||g|| \, ||f||$$
.

Let id_E be the identity map $id_E x = x$. We write

$$I = I_E = id_E$$
.

For $f, g \in \mathcal{L}(E; E)$, write

$$gf = g \circ f$$
.

 $\mathcal{L}(E;E)$ is a Banach algebra.

Let GL(E,F) be the set of those $f \in \mathscr{L}(E;F)$ for which there is some $g \in \mathscr{L}(F;E)$ such that $g \circ f = \mathrm{id}_E$ and $f \circ g = \mathrm{id}_F$. By the open mapping theorem, for $f \in \mathscr{L}(E;F)$, $f \in GL(E;F)$ if and only if f is a bijection.

We now define the **exponential map** on $\mathcal{L}(E;E)$.³

¹Henri Cartan, Differential Calculus, p. 13, Theorem 1.4.1.

²Henri Cartan, *Differential Calculus*, p. 14, Theorem 1.4.2.

³Henri Cartan, Differential Calculus, p. 19, Theorem 1.7.1.

Lemma 1. If $f \in \mathcal{L}(E; E)$, then $\sum_{k=0}^{n} \frac{1}{k!} f^k$ is a Cauchy sequence in $\mathcal{L}(E; E)$. Define

$$\exp f = \sum_{k=0}^{\infty} \frac{1}{k!} f^k.$$
$$\exp 0_E = \mathrm{id}_E.$$

If fg = gf then

$$\exp(f+g) = (\exp f)(\exp g).$$

In particular, $\exp f \in GL(E; E)$.

Proof.

$$\left\|\sum_{k=0}^n \frac{1}{k!} f^k - \sum_{k=m}^n \frac{1}{k!} f^k \right\| = \left\|\sum_{k=m+1}^n \frac{1}{k!} f^k \right\| \leq \sum_{k=m+1}^n \frac{1}{k!} \left\|f\right\|^k.$$

Because $e^{\|f\|} < \infty$, $\sum_{k=m+1}^{n} \frac{1}{k!} \|f\|^k \to 0$ as $m \to \infty$. Thus $\sum_{k=0}^{n} \frac{1}{k!} f^k$ is a Cauchy sequence in $\mathscr{L}(E;E)$. Then define $\exp f = \sum_{k=0}^{\infty} \frac{1}{k!} f^k \in \mathscr{L}(E;E)$. If fg = gf then applying the binomial theorem,

$$\sum_{k=0}^{\infty} \frac{1}{k!} (f+g)^k = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} f^j g^{k-j}$$

$$= \sum_{k=0}^{\infty} \sum_{j=0}^k \frac{1}{j!} f^j \frac{1}{(k-j)!} g^{k-j}$$

$$= \sum_{j=0}^{\infty} \sum_{k=j}^{\infty} \frac{1}{j!} f^j \frac{1}{(k-j)!} g^{k-j}$$

$$= \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{j!} f^j \frac{1}{k!} g^k$$

$$= \left(\sum_{j=0}^{\infty} \frac{1}{j!} f^j\right) \left(\sum_{k=0}^{\infty} \frac{1}{k!} g^k\right),$$

i.e.

$$\exp(f+g) = (\exp f)(\exp g).$$

Finally, f(-f) = (-f)f so $\exp(f - f) = (\exp f)(\exp(-f))$. But $\exp(f - f) = \exp 0_E = \operatorname{id}_E$, so $\exp f \in GL(E; E)$, and $(\exp f)^{-1} = \exp(-f)$.

Lemma 2. If $f \in \mathcal{L}(E; E)$ and ||f|| < 1 then $I - f \in GL(E; E)$, and

$$(I-f)^{-1} = \sum_{k=0}^{\infty} f^k.$$

Proof. Let $g_n = \sum_{k=0}^n f^k$. For n > m, $g_n - g_m = \sum_{k=m+1}^n f^k$ and hence

$$||g_n - g_m|| \le \sum_{k=m+1}^n ||f^k|| \le \sum_{k=m+1}^n ||f||^k$$
.

Because ||f|| < 1, the above inequality shows that g_n is a Cauchy sequence in $\mathcal{L}(E; E)$, hence there is some $g \in \mathcal{L}(E; E)$ such that $g_n \to g$. On the one hand,

$$g_n(I - f) = \sum_{k=0}^{n} f^k (I - f)$$

$$= \sum_{k=0}^{n} f^k - \sum_{k=0}^{n} f^{k+1}$$

$$= f^0 - f^{n+1}$$

$$= I - f^{n+1},$$

and because ||f|| < 1 this shows that $g_n(I - f) \to I$ as $n \to \infty$. On the other hand, because $g_n \to g$ we get $g_n(I - f) \to g(I - f)$. Therefore g(I - f) = I, which shows that $I - f \in GL(E; E)$ and

$$(I-f)^{-1} = g = \lim_{n \to \infty} g_n = \lim_{n \to \infty} \sum_{k=0}^n f^k = \sum_{k=0}^\infty f^k.$$

We now prove that GL(E;F) is open in $\mathscr{L}(E;F)$ and that $u\mapsto u^{-1}$ is continuous $GL(E;F)\to\mathscr{L}(F;E).^4$

Lemma 3. GL(E,F) is open in $\mathcal{L}(E,F)$.

If $GL(E;F) \neq \emptyset$ then $\phi: GL(E;F) \rightarrow \mathcal{L}(F;E)$ defined by $\phi(u) = u^{-1}$ is continuous.

Proof. If GL(E;F) is empty then it is open. Otherwise, take $u_0 \in GL(E;F)$. For $u \in \mathcal{L}(E;F)$, $u \in GL(E;F)$ if and only if $u_0^{-1} \circ u \in GL(E;E)$. Define $I_E - v = u_0^{-1}u$, i.e.

$$v = I_E - u_0^{-1}u = u_0^{-1}u_0 - u_0^{-1}u = u_0^{-1}(u_0 - u).$$

By Lemma 2, if ||v|| < 1 then $I_E - v \in GL(E; E)$. That is, if $||u_0^{-1}(u_0 - u)|| < 1$ then $u_0^{-1} \circ u \in GL(E; E)$ and then $u \in GL(E; F)$. But $||u_0^{-1}(u_0 - u)|| \le ||u_0^{-1}|| ||u_0 - u||$, so if $||u - u_0|| < ||u_0^{-1}||^{-1}$ then $u \in GL(E; F)$. This shows that GL(E; F) is open in $\mathscr{L}(E; F)$.

Let $u_0 \in GL(E; F)$. For $||u - u_0|| < ||u_0^{-1}||^{-1}$, let $v = I_E - u_0^{-1}u = u_0^{-1}(u_0 - u)$. Then $||v|| \le ||u_0^{-1}|| ||u - u_0|| < 1$, so by Lemma 2 we have $I_E - v \in GL(E; E)$.

⁴Henri Cartan, *Differential Calculus*, p. 20, Theorem 1.7.3.

That is, $u_0^{-1}u \in GL(E;E)$. Now, $u_0^{-1}u = I_E - v$, so $u_0^{-1} = (I_E - v)u^{-1}$ and then $u^{-1} = (I_E - v)^{-1}u_0^{-1}$. Hence

$$\phi(u) - \phi(u_0) = u^{-1} - u_0^{-1}$$

$$= (I_E - v)^{-1} u_0^{-1} - u_0^{-1}$$

$$= [(I_E - v)^{-1} - I_E] u_0^{-1}$$

$$= \left[\sum_{k=1}^{\infty} v^k\right] u_0^{-1},$$

so

$$\|\phi(u) - \phi(u_0)\| \le \left[\sum_{k=1}^{\infty} \|v\|^k\right] \|u_0^{-1}\|$$

$$= \|u_0^{-1}\| \frac{\|v\|}{1 - \|v\|}$$

$$= \|u_0^{-1}\| \frac{\|u_0^{-1}(u_0 - u)\|}{1 - \|u_0^{-1}(u_0 - u)\|}$$

$$\le \|u_0^{-1}\|^2 \frac{\|u - u_0\|}{1 - \|u_0^{-1}(u - u_0)\|}$$

$$\le \|u_0^{-1}\|^2 \frac{\|u - u_0\|}{1 - \|u_0^{-1}\| \|u - u_0\|}.$$

This shows that ϕ is continuous at u_0 .

Let E_1, \ldots, E_n and F be Banach spaces. Let

$$\mathcal{L}(E_1,\ldots,E_n;F)$$

be the set of continuous multilinear maps $E_1 \times \cdots \times E_n \to F$. It is a fact that a multilinear map $f: E_1 \times \cdots \times E_n \to F$ is continuous if and only if⁵

$$||f|| = \sup_{\|x_1\| \le 1, \dots, \|x_n\| \le 1} ||f(x_1, \dots, x_n)|| < \infty.$$

This is a norm with which $\mathcal{L}(E_1, \dots, E_n; F)$ is a Banach space.⁶

2 Differentiable functions

Let U be an open set in E and let $f_1, f_2 : U \to F$ be functions. We say that f_1 and f_2 are **tangential at** a if

$$m(r) = \sup_{\|x-a\| \le r} \|f_1(x) - f_2(x)\| = o(r).$$

⁵Henri Cartan, *Differential Calculus*, p. 22, Theorem 1.8.1.

⁶Henri Cartan, *Differential Calculus*, p. 23, Exercise 2.

For $a \in U$, we say that f is **differentiable at** a if there is some $L_a \in \mathcal{L}(E; F)$ such that⁷

$$f(x) - f(a) - L_a(x - a) = o(||x - a||), \quad x \to a.$$

Write

$$f'(a) = df(a) = L_a.$$

We say that f is differentiable if f is differentiable at each point in U. We say that $f: U \to F$ is C^1 if f is differentiable and $f': U \to \mathcal{L}(E; F)$ is continuous. We now state the **chain rule**.⁸

Theorem 4 (Chain rule). Let E, F, G be Banach spaces, let U be open in E, let V be open in F, and let $f: U \to F, g: V \to G$ be continuous. Suppose that $a \in U$, $f(a) \in V$, f is differentiable at $a \in U$, and g is differentiable at $f(a) \in V$. Then $g \circ f$ is differentiable at a and

$$(g \circ f)'(a) = g'(f(a)) \circ f'(a).$$

⁷Henri Cartan, *Differential Calculus*, pp. 24–26.

⁸Henri Cartan, Differential Calculus, p. 27, Theorem 2.2.1.