

Plano de Ensino para o Ano Letivo de 2020

	IDE	NTIFICAÇÃO		
Disciplina:				Código da Disciplina:
Mecânica dos Fluidos I				EMC611
Course:				
Fluid Mechanics I				
Materia:				
Mecánica de los Fluidos I				
Periodicidade: Anual	Carga horária total:	80	Carga horária sem	anal: 00 - 00 - 02
Curso/Habilitação/Ênfase:	·	•	Série:	Período:
Engenharia Mecânica			3	Diurno
Engenharia Mecânica			3	Noturno
Engenharia Mecânica			3	Noturno
Professor Responsável:		Titulação - Graduação		Pós-Graduação
Antonio Luiz Pacifico	Engenheiro Mecânico		Doutor	
Professores:	Titulação - Graduação		Pós-Graduação	
Antonio Luiz Pacifico	Engenheiro Mecânico		Doutor	
Joseph Youssif Saab Junior		Engenheiro Mecânico		Doutor

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

CONHECIMENTOS

- 1. Dar ao aluno uma base sólida em Mecânica dos Fluidos, o que terá continuidade com a disciplina Mecânica dos Fluidos II, de modo que ele possa desenvolver-se nas disciplinas tecnológicas e aplicadas da Engenharia, em particular da Engenharia Mecânica;
- 2. Permitir que o aluno utilize os conhecimentos de matemática, física e desenho adquiridos no período fundamental, na solução de problemas aplicados à Mecânica dos Fluidos;
- 3. Ser capaz de avaliar os impactos ambientais e sociais de seus futuros projetos;
- 4. Ser capaz de projetar, executar e analisar resultados de experimentos.

HABILIDADES

- 1. Ter visão física, matemática e espacial na análise de problemas de Engenharia;
- 2. Utilizar a base obtida no curso como pré-requisito na solução de problemas nas disciplinas subsequentes que utilizam conceitos de Mecânica dos Fluidos;
- 3. Aplicar o conceito de volumes de controle no projeto e análise de sistemas fluido-mecânicos;
- 4. Desenvolver cálculos a partir das equações gerais de conservação da massa, energia e quantidade de movimento;
- 5. Adquirir habilidade para integração transversal da Mecânica dos Fluidos às áreas correlatas e afins em Engenharia.

ATITUDES

1. Ser receptivo a obtenção de novos conhecimentos, atuando em classe de forma

2020-EMC611 página 1 de 10

consciente com relação ao aprendizado;

- 2. Alimentar um comportamento ético em classe e fora dela, mantendo uma relação de respeito e constante aprendizado junto aos professores e aos colegas;
- 3. Ter consciência de necessidade de dedicação à Escola e que os estudos e o aprendizado são continuados e devem ser sempre atualizados;
- 4. Incorporar o conceito de simulação numérica de sistemas e processos que envolvam os conhecimentos de Mecânica dos Fluidos;
- 5. Ter visão sistêmica e interdisciplinar na solução de problemas técnicos;
- 6. Ter percepção do conjunto e capacidade de síntese.

EMENTA

Noções e propriedades básicas de Mecânica dos Fluidos; análise dimensional, modelagem e semelhança; estática dos fluidos; equações da conservação da massa, quantidade de movimento e da energia para volumes de controle; escoamentos viscosos internos em condutos forçados.

SYLLABUS

Introduction to Fluid Mechanics; dimensional analysis and similarity; fluid statics; mass, momentum and energy equations: Control Volume analysis; viscous flow in ducts.

TEMARIO

Introducción a la Mecánica de Fluidos; análisis dimensional y similitud; estática de los fluidos; ecuaciones de masa, momento y energía: análisis de volumen de control; flujo viscoso en conductos.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Sala de aula invertida
- Project Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas acompanhadas de aulas de exercícios, de laboratório e de desenvolvimento de projeto com a participação dos alunos.

Como preparação às aulas será utilizado o conceito de aula invertida onde, com antecedência, o aluno tem como responsabilidade o estudo prévio do conteúdo a ser abordado na próxima aula expositiva. Para tanto o professor, mediante o uso do ambiente Moodle Rooms, disponibilizará material a ser estudado bem como apontará páginas específicas do livro texto da disciplina a serem lidas pelos alunos.

Como infraestrutura para o desenvolvimento do curso, além das ferramentas tradicionais de ensino, são utilizados equipamento multimídia para projeção de material didático, incluindo filmes, software etc. O curso de Mecânica dos Fluidos demanda intensa visualização dos fenômenos para melhor compreensão. Assim, dada a escassez de tempo, muitos fenômenos serão apresentados mediante a exposição de filmes acompanhados de discussões fenomenológicas em sala de aula.

2020-EMC611 página 2 de 10

Atividades experimentais e computacionais complementares, que serão oferecidas em menor número, são desenvolvidas em laboratório didático dedicado ao curso.

O ambiente Moodle Rooms será utilizado para: disponibilizar materiais didáticos extras aos alunos; submissão de relatórios (trabalhos); comunicar os alunos sobre avisos importantes da disciplina, entre outros.

Durante o curso será desenvolvido com os alunos um projeto transdisciplinar da área de Energia e Fluidos, envolvendo as disciplinas Mecânica dos Fluidos, Sistemas Térmicos, Transferência de Calor e Máquinas de Fluxo.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Em se tratando de uma disciplina de Ciência de Engenharia, os conhecimentos prévios necessários para o acompanhamento devem estar contemplados nas disciplinas do curso básico (fundamental), que contemplam, particularmente, os seguintes tópicos:

- Geometria e Visão Espacial;
- Física;
- Mecânica Geral;
- Cálculo Diferencial e Integral.

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina Mecânica dos Fluidos I, juntamente com a disciplina Mecânica dos Fluidos II, a ser ministrada aos alunos do quarto ano, são disciplinas de Ciência de Engenharia, que têm a função primordial de estabelecer uma ponte entre as disciplinas do Fundamental, onde se ensina o cálculo, a física, a mecânica, a geometria etc, e as disciplinas aplicadas da Engenharia, em particular da Engenharia Mecânica, que utilizam os conceitos de Mecânica dos Fluidos.

O conhecimento e domínio dos conceitos básicos de Mecânica dos Fluidos é fundamental para o entendimentos de novas áreas do conhecimento tais como Biotecnologia, Ciências Espaciais, Fusão Nuclear, geração e busca de novas alternativas energéticas.

BIBLIOGRAFIA

Bibliografia Básica:

FOX, Robert W; McDONALD, Alan T; PRITCHARD, Philip J. Introdução à mecânica dos fluidos. Trad. de Ricardo Nicolau Nassar Koury e Geraldo Campolinha França. 6. ed. Rio de Janeiro: LTC, 2006. 798 p. ISBN 8521614683.

MUNSON, Bruce R; YOUNG, Donald F; OKIISHI, Theodore H. Fundamentos da mecânica dos fluidos. trad. da 4. ed. americana por Euryale de Jesus Zerbini. São Paulo, SP: Edgard Blücher, 2008. 571 p. ISBN 8521203438.

WHITE, Frank M. Mecânica dos fluidos. 4. ed. Rio de Janeiro, RJ: McGraw-Hill, 2002. 570 p. ISBN 85-86804-24-X.

WHITE, Frank M. Mecânica dos fluidos. 8. ed. São Paulo: AMGH, 2018. 848 p. ISBN 9788580556063.

2020-EMC611 página 3 de 10

Bibliografia Complementar:

COELHO, João Carlos Martins. ENERGIA E FLUIDOS - VOLUME 2: MECÂNICA DOS FLUIDOS. 1ª ed. Editora Edgard Blucher. S. Paulo, 2016, 394 p.

Coleção de filmes didáticos do MIT/USA e Encyclopedia Britannica Educational Corporation.

FOX, Robert W; McDONALD, Alan T. Introdução à mecânica dos fluidos. Tradução de Alexandre Matos de Souza Melo. 4. ed. Rio de Janeiro, RJ: Guanabara Dois, 1995. 662 p. ISBN 85-216-1078-5.

Liggett, J.A. & Caghey, D.A. Fluid Mechanics - Interactive Text. CD ROM - ASCE/Press, 1999.

MUNSON, Bruce R; YOUNG, Donald F; OKIISHI, Theodore H. Fundamentos da mecânica dos fluidos. trad. da 4. ed. americana por Euryale de Jesus Zerbini. São Paulo, SP: Edgard Blücher, 2008. 571 p. CD-ROM. ISBN 8521203438.

MUNSON, Bruce R; YOUNG, Donald F; OKIISHI, Theodore. Uma introdução concisa à mecânica dos fluidos. trad. da 2. ed. americana por Euryale de Jesus Zerbini. São Paulo, SP: Edgard Blücher, 2005. 372 p. ISBN 8521203608.

MUNSON, Bruce R; YOUNG, Donald F; OKIISHI, Theodore. Uma introdução concisa à mecânica dos fluidos. trad. da 2. ed. americana por Euryale de Jesus Zerbini. São Paulo, SP: Edgard Blücher, 2005. 372 p. CD-ROM. ISBN 8521203608.

SHAMES, Irving Herman. Mechanics of fluids. 3. ed. New York: McGraw-Hill, 1992. 858 p. (McGraw-Hill Series in Mechanical).

SHAMES, Irving Herman. Mecânica dos fluidos. Tradução de Mauro O. C. Amorelli. São Paulo, SP/Brasília, DF: Edgard Blücher, INL, 1973. v. 2.

STREETER, Victor L. Mecânica dos fluidos. Trad. de Celso da Silva Muniz. São Paulo, SP: McGraw-Hill, 1974. 736 p.

ÇENGEL, Yunus A; CIMBALA, John M. Fluid mechanics: fundamentals and applications. Boston: McGraw-Hill Higher Education, 2006. 956 p. (McGraw-Hill Series in Mechanical Engineering). ISBN 0072472367.

ÇENGEL, Yunus A; CIMBALA, John M. Fluid mechanics: fundamentals and applications. Boston: McGraw-Hill Higher Education, 2006. DVD. (McGraw-Hill Series in Mechanical Engineering). ISBN 0072472383.

2020-EMC611 página 4 de 10

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 1,0$

Peso de $MP(k_{r})$: 7,0 Peso de $MT(k_{r})$: 3,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A disciplina é avaliada por meio de quatro provas anuais (mais duas substitutivas) e dois trabalhos a cada semestre. Os pesos podem ser consultados no item de "Avaliação" deste plano.

Especificamente, os trabalhos são compostos da seguinte forma.

Primeiro Semestre:

- T1: corresponde à média aritmética simples de todos os exercícios testes do primeiro semestre. Estes exercícios serão realizados em duplas durante o tempo de algumas das aulas ao longo do semestre;
- T2: corresponde à media aritmética simples de todos as atividades realizadas no primeiro semestre (relatórios de práticas laboratoriais e/ou computacionais).

Segundo Semestre:

- T3: corresponde à média aritmética simples de todos os exercícios testes do primeiro semestre. Estes exercícios serão realizados em duplas durante o tempo de algumas das aulas ao longo do semestre;
- T4: corresponde à media aritmética simples de todos as atividades realizadas no primeiro semestre (relatórios de práticas laboratoriais e/ou computacionais).

Finalmente, com relação ao trabalhos T1 e T3, ao final de cada semestre serão oferecidos exercícios substitutivos (apenas um oferecimento por semestre).

Alunos dependentes poderão solicitar a recuperação da notas dos quatro trabalhos (T1 a T4) do ano anterior. Porém fica vetado ao aluno dependente que já tenha solicitado essas notas em anos anteriores e continua na situação de dependência desta disciplina. Assim, tais notas podem ser reaproveitadas apenas uma vez. O professor deverá manter um controle de nomes e RA de todos os alunos dependentes que tenham solicitado esta recuperação de notas T1 a T4.

2020-EMC611 página 5 de 10

OUTRAS INFORMAÇÕES						
Durante o curso poderão ser acrescentados outros trabalhos de caráter						
computacional, seja para substituição de alguma atividade prática laboratorial						
ou acréscimo de atividades para composição das notas de trabalhos, respeitando						
sempre a quantidade de notas de trabalhos já especificadas no item "Informações						
Sobre Provas e Trabalhos" especificadas neste plano.						

2020-EMC611 página 6 de 10

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

Os softwares que são utilizados durante o curso são de código aberto, não necessitando de licenças para seu funcionamento.

- R (www.r-project.org) e Octave (www.gnu.org/software/octave): utilizados para introdução à modelagem de sistemas fluido mecânicos; exposição prática em aula de modelos e resultados; ferramentas para cálculos dos estudantes extra-aula na confecção de relatórios.
- Bibliotecas adicionais de propriedades físicas dos fluidos podem ser implementadas para ambos os softwares acima citados utilizando a CoolProp (www.coolprop.org/).

2020-EMC611 página 7 de 10

2020-EMC611 página 8 de 10

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 L	20/02/20 - Apresentação da Disciplina. Noções fundamentais da	0
	Mecânicados Fluidos: conceito de fluido; Hipótese do meio	
	contínuo; noções detensão e pressão; massa, volume e peso	
	específicos.	
2 L	27/02/20 - Noções fundamentais da Mecânica dos Fluidos: equação	11% a 40%
	de estadopara gases ideais; compressibilidade dos Fluidos;	
	pressão de vapor ecavitação; tensão superficial e capilaridade.	
	Exercícios.	
3 L	05/03/20 - Noções fundamentais da Mecânica dos Fluidos:	1% a 10%
	viscosidade ereologia; e classificação dos movimentos dos	
	Fluidos. Exercícios.	
4 L	12/03/20 - Análise dimensional: dimensões; teorema de Buckingham	1% a 10%
	paratermos Pi. Exercícios.	
5 L	19/03/20 - Análise dimensional: principais grupos adimensionais	11% a 40%
	emMecânica dos Fluidos. Exercícios.	
6 L	26/03/20 - Análise dimensional: modelagem e semelhança.	1% a 10%
	Exercícios.	
7 L	02/04/20 - Não haverá aula: semana de provas (P1).	0
8 L	09/04/20 - Não haverá aula: dia não letivo.	0
9 L	16/04/20 - Estática dos Fluidos: conceito de pressão e	1% a 10%
	tensão; equação básica de estática dos fluidos.	
10 L	23/04/20 - Estática dos Fluidos: medição da pressão	11% a 40%
	(estática,atmosférica); Lei de Stevin; manometria; medidores de	
	pressãofundamentais. Exercícios.	
11 L	30/04/20 - Estática dos Fluidos: forças sobre superfícies	1% a 10%
	planassubmersas; empuxo. Exercícios.	
12 L	07/05/20 - Estática dos Fluidos. Exercícios. Análise Integral I:	1% a 10%
	Teorema do Transporte de Reynolds.	
13 L	14/05/20 - Análise Integral I: Conservação da Massa. Exercícios.	1% a 10%
14 L	21/05/20 - Análise Integral I: conservação da massa; noções de	11% a 40%
	movimentoe deformação de volumes de controle; conceito de vazão.	
	Exercícios.	
15 L	28/05/20 - Laboratório: Medição de pressão e vazão (T2).	41% a 60%
16 L	04/06/20 - Análise Integral I: conceito de fluxo; conceito de	1% a 10%
	velocidade média; massa e peso específicos médios numa seção.	
	Exercícios.	
17 L	11/06/20 - Não haverá aula: feriado.	0
18 L	18/06/20 - Não haverá aula: semana de provas (P2).	0
19 L	25/06/20 - Não haverá aula: semana de provas (P2).	0
20 L	06/08/20 - Não haverá aula: semana de provas (PS1).	0
21 L	13/08/20 - Análise Integral II: conservação da energia para um	1% a 10%
	sistema; trabalho e potência; formulação para volumes de controle	
	da conservaçãoda energia.	

2020-EMC611 página 9 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

22 L	20/08/20 - Análise Integral II: conceito de "perda" de energia;	11% a 40%
	balançode energia; fator de correção da energia Cinética.	
	Exercícios.	
23 L	27/08/20 - Análise Integral II: equação de Bernoulli. Exercícios.	1% a 10%
24 L	03/09/20 - Análise Integral II: equação da energia. Exercícios.	1% a 10%
25 L	10/09/20 - Análise Integral III: cons. da quantidade de movimento	1% a 10%
	paravolumes de controle inerciais; fator de correção do fluxo de	
	quantidade de movimento.	
26 L	17/09/20 - Análise Integral III: conservação da quantidade de	11% a 40%
	movimento.Exercícios.	
27 L	24/09/20 - Não haverá aula: semana de provas (P3).	0
28 L	01/10/20 - Análise Integral III: conservação da quantidade de	1% a 10%
	movimento; cons. da quant. de mov. para VC's dotados de	
	aceleração retilínea. Exercícios.	
29 L	08/10/20 - Análise Integral III: conservação da quantidade de	1% a 10%
	movimento. Exercícios. Esc. viscoso interno: conceito de vel.	
	média; esc. laminar em dutos. Perda de carga em esc. laminar em	
	dutos.	
30 L	15/10/20 - Escoamento viscoso interno: escoamento turbulento em	11% a 40%
	dutos; exp. de Reynolds; região de entrada. Exercícios.	
31 L	22/10/20 - Escoamento viscoso interno: perda de carga	1% a 10%
	distribuída.Exercícios.	
32 L	29/10/20 - Escoamento viscoso interno: perda de carga localizada.	1% a 10%
	Exercícios.	
33 L	05/11/20 - Laboratório: Perda de carga em tubulações. Exercícios	41% a 60%
34 L	12/11/20 - Escoamento viscoso interno: problemas fundamentais de	1% a 10%
	perda decarga em tubulações. Exercícios.	
35 L	19/11/20 - Não haverá aula: semana de provas (P4).	0
36 L	26/11/20 - Não haverá aula: semana de provas (P4).	0
37 L	03/12/20 - Plantão de dúvidas. Revisão P4.	0
38 L	10/12/20 - Plantão de dúvidas. Exercícios de revisão como estudo	0
	para PS2.	
	-	
39 L	17/12/20 - Não haverá aula: semana de provas (PS2).	0
39 L 40 L		0

2020-EMC611 página 10 de 10