Homework 1

Due October 4, 2016

Exercise 1. For $\omega \in (0,1]$ let $s_n(\omega) = \sum_{k=1}^n r_k(\omega)$ where

 $r_k(\omega) := \begin{cases} 1 & \textit{if the k^{th} binary (non-terminating) digit of ω is 1} \\ -1 & \textit{if the k^{th} binary (non-terminating) digit of ω is 0} \end{cases}$

denotes the Rademacher maps defined in Lecture 1. Using just calculus show that

$$\int_0^1 e^{ts_n(\omega)} d\omega = \left(\frac{e^t + e^{-t}}{2}\right)^n \tag{1}$$

for each $t \in \mathbb{R}$. Hint: It may help to use the fact that s_n is constant over the dyadic intervals $\left\{\left(\frac{k-1}{2^n},\frac{k}{2^n}\right]: k \in \{0,1,2,\ldots,2^n\}\right\}$ and that the dyadic intervals are in one-to-one correspondence with $\{-1,1\}^n$

Exercise 2. Show that

$$P[|s_n/n| \ge \epsilon] \le 2e^{-n\epsilon^2/2}$$

for each $\epsilon > 0$.

Hint: Use (1) in conjunction with the inequality $(e^x + e^{-x})/2 \le \exp(x^2/2)$ which holds (why?) for all $x \in \mathbb{R}$.

Definition 1 (Semi-ring with unit). A collection of events $A \subset 2^{\Omega}$ is called a semi-ring with unit if

- 1. $\Omega \in \mathcal{A}$
- 2. $A, B \in \mathcal{A} \Longrightarrow A \cap B \in \mathcal{A}$
- 3. If $A \in \mathcal{A}$ then A^c is a finite disjoint union of \mathcal{A} -sets

Exercise 3. Suppose $A \subset 2^{\Omega}$ is a semi-ring with unit. Let \mathscr{D} denote the class of finite disjoint unions of A-sets. Show $f\langle A \rangle = \mathscr{D}$. Hint: first show \mathscr{D} is closed intersections, then complements.

Exercise 4. Show that $\mathcal{B}_0^{(0,1]}$, defined in the first section of the notes, is a field and coincides with $f\langle (a,b]: 0 \leq a \leq b \leq 1 \rangle$.

Exercise 5. Let $\Omega = \mathbb{R}$. Show that $f\langle (-\infty, a] : -\infty < a < \infty \rangle$ is the the set of finite (possibly empty) disjoint unions of intervals of the form $(-\infty, b]$, (a, ∞) and (a, b] for finite a < b. Hint: Modify the generators to get a semi-ring.

Exercise 6. Let $\Omega = \mathbb{R}$, $C = \{(-\infty, a] : a \in \mathbb{R}\}$ and $F = \sigma \langle C \rangle$. For any $x \in \mathbb{R}$, use good sets to show

$$A \in \mathcal{F} \Longrightarrow A + x \in \mathcal{F}$$

where $A + x := \{a + x : a \in A\}.$