明細書

球状複合組成物および球状複合組成物の製造方法 技術分野

[0001] 本発明は、球状複合組成物および球状複合組成物の製造方法に関する。詳しくは、 従来の技術では効率的な製造が困難であった、不飽和ビニル単位からなる樹脂と磁 性材料からなる、球形化率が高い球状複合組成物および、樹脂が分散している水性 媒体中に磁性材料を添加・分散後、噴霧乾燥法による造粒にて得られる球状複合組 成物の製造方法に関する。

背景技術

- [0002] 水性媒体中で重合した樹脂は、特公昭42-22684号公報に記載されているように固形化するのが一般的である。また、樹脂と磁性材料からなる球状の複合組成物を得る方法としては、樹脂と磁性材料を溶融混練し、粉砕、分級後、球形化処理するのが一般的であるが、複数の製造工程が必要であることと、得られる組成物の平均粒径の分布が広く、生産性の面から必ずしも満足できるものではない。特にアクリロニトリルを主成分とするような樹脂においては、非常に成形時の熱的安定性が悪いため、磁性材料との溶融混練を行うと熱劣化による品質低下が問題となる。また、溶融時の粘度が高い樹脂においては、磁性材料との溶融混練時に成形機に負荷が生じ、生産できない、もしくは生産性を悪化させてしまう。
- [0003] また、特開平9-185184号公報に記載されているような樹脂中に磁性材料を分散させる製造方法があるが、溶液重合であるため分子量を制御する幅が狭く、溶媒の種類によって単量体の種類が制限されてしまう。また、溶媒を用いることによる環境面への負荷等の問題もある。

特許文献1:特公昭42-22684号公報

特許文献2:特開平9-185184号公報

発明の開示

発明が解決しようとする課題

[0004] 本発明の目的は、上記のような問題を解決しようとするものであって、不飽和ビニル

単位を含む樹脂と磁性材料からなる球状複合材料に関し、複数の製造工程を必要とすることなく簡素かつ生産性の良い製造方法によって作られる球状複合組成物、および球状複合組成物の製造方法を提供することにある。つまり、樹脂が分散している水性媒体中に、磁性材料を添加・分散後、噴霧乾燥法を用いることにより造粒して得られる、球状複合組成物を提供することであり、かつ球状複合組成物の製造方法を提供することにある。

課題を解決するための手段

- [0005] 本発明者らは、かかる問題点を解決するために鋭意検討した結果、特定の平均粒子 径の樹脂が分散している水性媒体に対し、特定の大きさの磁性材料を添加・分散後 、特定の噴霧条件で噴霧乾燥を行うことで樹脂と磁性材料を結合させて造粒すること により、特定の粒子径の範囲にて球形化率の高い球状複合組成物が得られることを 見出して本発明を完成した。
- [0006] すなわち、第一の発明は、(A-1)ガラス転移温度が50~150℃および(A-2)質量 平均分子量が10000~1000000である不飽和ビニル単位からなる樹脂100質量 部に対し、(B)二次元投影した際の最長長さが0.01~50μmである磁性材料5~1 000質量部を添加してなる球状複合組成物であって、平均粒子径が1~100μm、かつ球形化率が0.7~1であることを特徴とする球状複合組成物についてである。
- [0007] また第二の発明は、(A-1) 平均粒子径0.01~1 μm、(A-2) ガラス転移温度が50~150℃および(A-3) 質量平均分子量が10000~1000000である不飽和ビニル単位からなる水性媒体中に分散している樹脂100質量部に対し、(B) 二次元投影した際の最長長さが0.01~50 μmである磁性材料5~1000質量部を添加・分散後、噴霧乾燥法による造粒にて得られる球状複合組成物であって、平均粒子径が1~100 μm、かつ球形化率が0.7~1であることを特徴とする球状複合組成物の製造方法についてである。
- [0008] 本製造法の特徴は、樹脂が分散している水性媒体に、磁性材料を添加・分散後に噴霧乾燥法により乾燥と造粒を同時に行う点にある。そのため、製造方法が非常に簡素、かつ生産性が良好であり、また得られる球状複合組成物は球形化率が高い。 発明の効果

[0009] 本発明の球状複合組成物は、球形化率が高く、樹脂磁石、電波吸収材料、磁気シールド材料、電子写真プロセスの現像機内で使用する現像剤およびトナーキャリアなど様々な用途で好適に使用できるものであり、また、本発明の球状複合組成物の製造方法は、従来の技術では効率的な製造が困難であった、樹脂と磁性材料からなる球形化率の高い球状複合組成物を製造することができ、工業的に極めて価値のある製造方法である。

発明を実施するための最良の形態

- [0010] 以下、本発明について詳細に説明する。
- [0011] [樹脂]

第1の発明は、特定の不飽和ビニル単位と磁性材料からなる球形化率の高い球状複合組成物であり、第2の発明である、水性媒体中に分散した樹脂に対し、磁性材料を添加・分散後に噴霧乾燥法により造粒する製造方法で効率的に得ることができる。

- [0012] 本発明における樹脂は、水性媒体中で重合を行うか、製造後の粉体を水性媒体中に分散させても良いが、 $0.01 \sim 1~\mu$ mの平均粒子径の樹脂製造を考慮すると、乳化重合や懸濁重合などの水性媒体中での重合が生産性の面で適しており、より好ましくは乳化重合である。水性媒体中に分散した樹脂の平均粒子径は小さい方が磁性材料の分散には適しているが、 $0.01~\mu$ m未満の平均粒子径で水性媒体中に分散した樹脂を製造することは非常に困難であり、現実的な範囲として $0.01~\mu$ m以上である。また、平均粒子径が大きすぎると均一な分散が困難なため $1~\mu$ m以下が好ましい。かかる点より水性媒体中に分散された樹脂の平均粒子径は $0.01 \sim 1~\mu$ mであり、好ましくは $0.1 \sim 0.5~\mu$ mである。
- [0013] 上記樹脂は、不飽和ビニル単位から構成され、1種類の不飽和ビニル単位からなる 単独重合体でもよく、または2種類以上の不飽和ビニル単位からなる共重合体でもよ い。また、不飽和ビニル単位の種類としては、不飽和ニトリル単位、(メタ)アクリル酸 アルキルエステル単位、芳香族ビニル単位等が挙げられる。
- [0014] 不飽和ニトリル単位の単量体種としては、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル等が挙げられ、また、(メタ)アクリル酸アルキルエステル単位の単量体種としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プ

ロピル、(メタ)アクリル酸ブチル等、芳香族ビニル単位の単量体種としては、スチレン、αーメチルスチレン、ビニルトルエン、ビニルキシレン等が挙げられる。また、その他の共重合可能な不飽和ビニル単位の単量体種としては、ビニルエーテル、ビニルエステル、αーオレフィン等が挙げられ、ビニルエステルとしては、酢酸ビニル、プロピオンビニル、酪酸ビニル等、ビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、メチルイソプロペニルエーテル、エチルイソプロペニルエーテル、エチルイソプロペニルエーテル、エチルー1ーブテン、2ーメチルー1ーベンテン、2ーメチルー1ーベーファン、2ーメチルー1ーベーファン、2ープロピルー1ーブラン等が挙げられる。

- [0015] 上記の不飽和ビニル単位の単量体種の内、好ましくはアクリロニトリル単位、メタクリロニトリル単位、(メタ)アクリル酸メチル単位、(メタ)アクリル酸エチル単位、(メタ)アクリル酸プロピル単位、(メタ)アクリル酸ブチル単位、スチレン単位、αーメチルスチレン単位、ビニルトルエン単位であり、樹脂中に30~100質量%、好ましくは50~100質量%含むことが好ましい。尚、本発明において、(メタ)アクリル酸アルキルエステルとは、アクリル酸アルキルエステルまたはメタアクリル酸アルキルエステルを意味する。
- [0016] 上記樹脂のガラス転移温度は、50℃以上であれば噴霧乾燥法による造粒時に噴霧部でのツマリや回収時の凝集が発生することなく生産が可能であり、噴霧乾燥法による造粒を考慮すると、50℃~150℃、好ましくは50℃~110℃である。
- [0017] また、上記樹脂の質量平均分子量は、噴霧乾燥法による造粒を考慮すると特定範囲である必要がある。質量平均分子量が10000以上であればガラス転移温度が低くなりすぎないため、噴霧部でのツマリや回収時の凝集が発生することなく生産が可能となる。質量平均分子量が1000000以下であれば、造粒時の熱風により樹脂が溶融するため磁性材料と良好に結合し、球形化率の高い複合組成物を得ることができる。かかる点を考慮すると、質量平均分子量は、10000~1000000であり、好ましくは20000~300000である。

[0018] [磁性材料]

本発明で用いる磁性材料の種類としては、Nd-Fe-B系、Sm-Co系などの希土類

焼結タイプ、Ba系、Sr系、La-Co置換系などのフェライト焼結タイプ、Mn-Zn系、Ni-Zn系などのソフトフェライトタイプ、その他として、Al-Ni-Co系、Fe-Mn系、Fe-Cr-Co系、Sm-Fe-N系などが挙げられる。また、磁性材料の形状には特に制限はなく、丸型、リング型、角型、セグメント型などの形状が適用できる。

[0019] 磁性材料の大きさは小さい方が分散には適しているが、小さくなりすぎると取り扱いが困難になるため、最終的な組成物の平均粒子径および球形化率を考慮し、二次元投影した際の最長長さは、0.01~50 μ mであることが好ましく、更に好ましくは0.1~10 μ mである。また、磁性材料の添加量は、樹脂100質量部に対して5~1000質量部、好ましくは10~800質量部である。

[0020] [球状複合樹脂の製造]

樹脂が分散している水性媒体への磁性材料の添加・分散方法については、特に制限はなく、磁性材料添加後に撹拌羽根にて分散する方法、ホモジナーザーにて分散する方法など一般的な方法が適用できる。水性媒体中の樹脂と磁性材料の合計濃度は、10~85質量%であることが好ましく、さらに好ましくは20~80質量%である。上記合計濃度が10質量%以上であれば、濃度が薄くならないため生産効率を低下させることがなく、また、上記合計濃度が85質量%以下であれば、分散液の粘度が高くなりすぎないため、噴霧装置までの送液が困難になることや、噴霧部でのツマリを防ぐことができる。

- [0021] また、本発明の球状複合組成物の製造では、水性媒体とともに分散剤を用いることができる。分散剤としては、アニオン系界面活性剤が好ましく、さらにアルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルスルホコハク酸塩、脂肪酸塩から選ばれた少なくとも1種のアニオン系界面活性剤を含むことが好ましい。また、分散剤の使用量は、単量体100質量部に対し、0.1~10質量部、好ましくは、0.1~5質量部である。
- [0022] 本発明の球状複合組成物の製造方法では、樹脂が分散している水性媒体中に、 上記方法で磁性材料を添加・分散後、噴霧乾燥法にて造粒を行う。噴霧乾燥法の噴 霧方式に特に制限はなく、ノズル式、ディスク式などで可能である。具体的にはノズ ル式の場合は加圧ノズル式、加圧2流体ノズル式、2流体ノズル式、4流体ノズル式を

用いることができ、ディスク式の場合はピン型ディスク式、ベーン型ディスク式、ケスナ 一型ディスク式などを用いることができる。これらのうち、生産時のロングラン性、粒子 径分布を考慮すると、加圧ノズル式、2流体ノズル式、ピン型ディスク式、ベーン型デ ィスク式が好ましい。 捕集方式についても特に制限はなく、1点捕集方式、2点捕集 方式などが適用できる。また、加熱源についても特に制限はなく、電気式、ガス式、 蒸気式などが適用でき、熱風接触方式も並流式、向流式、並向流式が適用できる。 ノズル式の場合の噴霧圧力、ディスク式の場合のディスク回転数は、使用する樹脂や 分散液の種類・濃度、噴霧乾燥後の球状複合組成物の水分含有率を考慮し、得ら れる球状複合組成物の平均粒子径が1~100 μm、かつ球形化率0.7~1、好まし くは平均粒子径5〜70μm、かつ球形化率0. 75〜1になるように調節する。 ディスク 式を用いる場合のディスク回転数は3000rpm以上であれば噴霧される液滴が大きく なりすぎないため、球状複合組成物の平均粒子径が大きくなりすぎないと同時に十 分に乾燥できる。また、ディスク回転数が50000rpm以下であれば噴霧される液滴 が小さくなりすぎないため、球状複合組成物の平均粒子径は小さくなりすぎない。か かる点を考慮すると、ディスク回転数は3000〜50000rpmが好ましく、5000〜200 00rpmが更に好ましい。噴霧乾燥法による造粒においては、平均粒子径が1μm未 満の球状複合組成物を製造することは困難であると同時に、平均粒子径が1μm以 上であれば、球状複合粒子が小さくなりすぎないため取り扱いが容易である。また平 均粒子径が100μm以下であれば、配合する磁性材料の大きさにもよるが、噴霧乾 燥後に球状複合粒子を髙収率で得ることが可能となり、得られる複合組成物の球形 化率も高く保つことができる。

[0023] また、噴霧乾燥と同時に造粒する際の生産性を考慮すると、特定範囲の乾燥条件が必要となる。噴霧乾燥装置内の熱風の入口温度が100℃以上であれば、乾燥中に水分が蒸発するとともに、樹脂が溶融して造粒可能であり、[樹脂のガラス転移温度+150℃]以下であれば噴霧部での樹脂の凝集や固化によるツマリ等を起こさず連続運転することができる。さらに、噴霧乾燥装置内の熱風の出口温度が40℃以上であれば十分に乾燥、造粒が可能であり、[樹脂のガラス転移温度+50℃]以下であれば乾燥室への樹脂の付着等を防ぐことができ、連続運転が可能である。かかる

点を考慮すると、噴霧乾燥と同時に造粒する際の、噴霧乾燥装置内の熱風の入口温度が100℃~[樹脂のガラス転移温度+150℃]、かつ噴霧乾燥装置内の熱風の出口温度が40℃~[樹脂のガラス転移温度+50℃]であり、好ましくは、噴霧乾燥装置内の熱風の入口温度が100℃~[樹脂のガラス転移温度+100℃]、かつ噴霧乾燥装置内の熱風の出口温度が50℃~[樹脂のガラス転移温度+20℃]である。上記方法により得られる組成物は、球形化率の高い球状複合組成物である。

[0024] [樹脂磁石]

上記のような本発明の球形化率の高い球状複合組成物は、樹脂磁石として用いることができる。粉体のまま用いたり、粉体塗料として用いたり、水や溶剤に分散し塗布剤として用いたり、成型加工後に成形物として用いるなど、様々な方法で用いることができる。また、該樹脂磁石は、モーター、発電機、回転制御装置、マグネットロール、スプーカー、電磁ブザー、磁気治療機、センサ、マグネットチャックなどで好適に用いることができる。

[0025] 「電波吸収材料]

上記のような本発明の球形化率の高い球状複合組成物は、電磁波吸収材料として 用いることができる。粉体のまま用いたり、粉体塗料として用いたり、水や溶剤に分散 し塗布剤として用いたり、成型加工後に成形物として用いるなど、様々な方法で用い ることができる。また、該電波吸収材料は、電波暗室の内壁材、放送波の反射による 受信障害防止材、電波反射によるレーダーゴーズト防止材などで好適に用いること ができる。

[0026] [磁気シールド材料]

上記のような本発明の球形化率の高い球状複合組成物は、磁気シールド材料として 用いることができる。粉体のまま用いたり、粉体塗料として用いたり、水や溶剤に分散 し塗布剤として用いたり、成型加工後に成形物として用いるなど、様々な方法で用い ることができる。また、該磁気シールド材料は、電気・電子機器用の内部磁気シール ド材、モニターや磁気カードの保護シールド材、シールドルーム用途などで好適に用 いることができる。

[0027] [電子写真プロセスの現像機内で使用する磁性トナー材料]

上記のような本発明の球形化率の高い球状複合組成物は、1成分または2成分電子 写真用の磁性トナー材料として用いることができる。磁性トナーとして用いる場合には 、更に荷電調節剤、表面処理剤、カーボンブラック、着色剤、ワックスなどを内部また は表面に添加しても良い。

[0028] [電子写真プロセスの現像機内で使用するトナーキャリア材料]

上記のような本発明の球形化率の高い球状複合組成物は、トナーと混合して2成分電子写真用現像剤として用いることができる。トナーキャリアとして用いる場合は、未処理で用いることもできるし、表面処理や熱処理などを行った後に用いることもできる。トナーは結着樹脂中に着色剤を分散させたものであり、トナーの含有量は特に問わない。現像に使用して消費された場合には、適宜追加してもよい。通常、トナーの含有量は、キャリア用の球状複合生成物100質量部に対し、10~100000質量部程度である。

実施例

- [0029] 以下、実施例および比較例を示して本発明について、さらに詳細を説明する。本発明はその要をこえない限り、これら例に何ら制限されるものではない。なお、実施例、比較例中の「部」および「%」はいずれも質量基準を意味する。また、実施例および比較例に記した分析および測定は以下の方法に従って行った。
- [0030] (1)樹脂組成(質量%)

炭素、水素および窒素の含有組成を元素分析〔(株)柳本製作所製、CHN CORD ER、型式:MT-2〕にて測定し、この操作を3回繰り返して平均し、樹脂組成を求めた。

(2)水性媒体中の樹脂の平均粒子径(μm)

マルバーン社製粒径測定装置HPPSにて測定した。尚、平均粒子径は動的光散乱 法を用いた体積基準の値である。

(3)樹脂のガラス転移温度(℃)

示差走査熱量計「PERKIN-ELMER製、形式:DSC-7」を用いて、窒素雰囲気下

で150℃まで昇温し、その温度で3分間放置した後、降温速度10℃/minで室温まで冷却した試料を、昇温速度5℃/minで測定した際にガラス転移温度以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの間の最大傾斜を示す接線との交点の温度をガラス転移温度とした。

[0031] (4)樹脂の質量平均分子量

単分散ポリスチレン標準試料を標準として用いたゲルパーミエーションクロマトグラフィ(以下、GPCという)により測定した。

[測定装置及び条件]

GPC:ウォーターズ(株)製、型式:150-C

カラム:昭和電工(株)製、型式:Shodex AD-80M/S×2本

溶媒:N, N-ジメチルホルムアミド(含リチウムブロミド0.1質量%)

流量:0.8ml/min

カラム温度:60℃

試料濃度:0.1質量%

注入量:200 μ1

検出器:屈折率検出型。

(5)磁性材料の最長長さ(μm)

電子顕微鏡にて撮影した写真を用いて、20個の磁性材料の最長長さを測定し平均値を求めた。

(6) 造粒時の生産性

噴霧乾燥装置による造粒を連続で2時間行い、造粒終了後、噴霧乾燥装置内にほとんど付着が見られず、かつ噴霧部のディスク内にも固化物が発生していない場合には〇、造粒終了後に噴霧乾燥装置内に付着が多く見られたり、噴霧部のディスク内に固化物が発生している場合は△、造粒中に、噴霧部のディスク内に固化物が多量に発生することにより30分以上運転できない場合は×とした。

[0032] (7) 球状複合組成物の平均粒子径(μm)

マイクロトラック社製MT3000EXを用い、乾式方法にて測定した。尚、平均粒子径は体積基準の値である。

(8) 球形化率測定

電子顕微鏡にて撮影した写真を用いて、20個の球状複合組成物の(最大直径-最小直径)を測定し平均値を求めた、次に(6)の平均粒子径の値を用い、[平均粒子径-(二次元投影した際の最長径と最短径の差)]/平均粒子径、の計算式にて求めた

[0033] [樹脂の製造]

[製造例1]

ステンレス製重合反応器に初期添加分の原料として、アクリロニトリル15部、アクリル酸メチル5部、ジオクチルスルホコハク酸ナトリウム0.407部、水150部を仕込み、撹拌下、窒素雰囲気下において、60℃に昇温し、そのまま30分間撹拌後、重合開始剤として過硫酸カリウム0.08部を含む水溶液を添加して重合を開始した。

- [0034] 次いで、リン酸を添加してpHを3±0.3に調節し、連続添加分の原料として、アクリロニトリル60部、アクリル酸メチル20部、ペンタエリスリトールテトラキス(βーメルカプトプロピオネート)1.6部、ジオクチルスルホコハク酸ナトリウム1.627部、水85部を6時間かけて連続的に添加しながら、60℃で重合を継続した。
- [0035] この添加の間、重合開始時から5時間まではリン酸も連続的に添加して、6時間まで重合系のpHを3±0.3に保って重合を行った。重合開始から8時間経過後、冷却し、樹脂[A-1]を得た。この樹脂について、前記方法で樹脂組成、水性媒体中の樹脂の平均粒子径、ガラス転移温度、質量平均分子量を測定したところ以下の通りであった。

<測定結果>

樹脂組成:アクリロニトリル75%、アクリル酸メチル25%

水性媒体中の樹脂の平均粒子径:0.22 μ m

ガラス転移温度:85℃

質量平均分子量:120000

[0036] [製造例2]

製造例1で、ペンタエリスリトールテトラキス(β-メルカプトプロピオネート)を0.8部用いたこと以外は、製造例1と同様にして重合を行い、以下の測定結果を有する樹脂[A-2]を得た。

<測定結果>

樹脂組成:アクリロニトリル75%、アクリル酸メチル25%

水性媒体中の樹脂の平均粒子径:0.23 μ m

ガラス転移温度:86℃

質量平均分子量:220000

[0037] [製造例3]

製造例1で、ペンタエリスリトールテトラキス(β-メルカプトプロピオネート)を4部用いたこと以外は、製造例1と同様にして重合を行い、以下の測定結果を有する樹脂[A-3]を得た。

<測定結果>

樹脂組成:アクリロニトリル75%、アクリル酸メチル25%

水性媒体中の樹脂の平均粒子径:0.20 μ m

ガラス転移温度:81℃

質量平均分子量:30000

[0038] [製造例4]

原料の初期添加分と連続添加分において、組成を以下のように変更し、製造例1と同様にして重合を行い、以下の測定結果を有する樹脂[A-4]を得た。

<初期添加分>

アクリロニトリル10部、メタクリル酸メチル10部

<連続添加分>

アクリロニトリル40部、メタクリル酸メチル40部

<測定結果>

樹脂組成:アクリロニトリル50%、メタクリル酸メチル50%

水性媒体中の樹脂の平均粒子径:0.22 μ m

ガラス転移温度:93℃

質量平均分子量:130000

[0039] [製造例5]

原料の初期添加分と連続添加分において、組成を以下のように変更し、製造例1と同様にして重合を行い、以下の測定結果を有する樹脂[A-5]を得た。

<初期添加分>

アクリロニトリル10部、スチレン10部

<連続添加分>

アクリロニトリル40部、スチレン40部

<測定結果>

樹脂組成:アクリロニトリル50%、スチレン50%

水性媒体中の樹脂の平均粒子径:0.24 μ m

ガラス転移温度:95℃

質量平均分子量:140000

[0040] [製造例6]

原料の初期添加分と連続添加分において、組成を以下のように変更し、製造例1と同様にして重合を行い、以下の測定結果を有する樹脂[A-6]を得た。

<初期添加分>

アクリロニトリル13部、アクリル酸ブチル7部

<連続添加分>

アクリロニトリル52部、アクリル酸ブチル28部

<測定結果>

樹脂組成:アクリロニトリル65%、アクリル酸ブチル35%

水性媒体中の樹脂の平均粒子径:0.22 μ m

ガラス転移温度:55℃

質量平均分子量:130000

[0041] [製造例7]

原料の初期添加分と連続添加分において、組成を以下のように変更し、製造例1と 同様にして重合を行い、以下の測定結果を有する樹脂[A-7]を得た。

<初期添加分>

アクリロニトリル20部

<連続添加分>

アクリロニトリル80部

<測定結果>

樹脂組成:アクリロニトリル100%

水性媒体中の樹脂の平均粒子径:0.20 μ m

ガラス転移温度:100℃

質量平均分子量:130000

[0042] [製造例8]

製造例1で、ペンタエリスリトールテトラキス(βーメルカプトプロピオネート)を0.2部用いたこと以外は、製造例1と同様にして重合を行い、以下の測定結果を有する樹脂[A-8]を得た。

<測定結果>

樹脂組成:アクリロニトリル75%、アクリル酸メチル25%

水性媒体中の樹脂の平均粒子径:0.27 μ m

ガラス転移温度:90℃

質量平均分子量:1200000

[0043] [製造例9]

原料の初期添加分と連続添加分において、組成を以下のように変更し、製造例1と同様にして重合を行い、以下の測定結果を有する樹脂[A-9]を得た。

<初期添加分>

アクリロニトリル10部、アクリル酸エチル10部

<連続添加分>

アクリロニトリル40部、アクリル酸エチル40部

<測定結果>

樹脂組成:アクリロニトリル50%、アクリル酸エチル50%

水性媒体中の樹脂の平均粒子径:0.23 μ m

ガラス転移温度:45℃

質量平均分子量:130000

[0044] [磁性材料]

本発明の実施例および比較例で使用した磁性材料の、種類および二次元投影した際の最長長さは以下である。

B-1:戸田工業製、FL-900(フェライト)、最長長さ1. 6μ m、B-2:戸田工業製、F H-800(フェライト)、最長長さ1. 4μ m、B-3:住友金属製、Wellmax P-10(Sm -Co系)、最大長さ5. 3μ m、B-4:西興産業製、Neo40(Nd-Fe-B系)、最大長さ4. 1μ m、B-5:西興産業製、SAN40(Al-Ni-Co系)、最大長さ8. 5μ m。

[0045] [実施例1〜実施例16]および[比較例1〜比較例8]

製造例1〜製造例9で得られた樹脂(A-1〜A-9)が分散している水性媒体に対し、磁性材料(B-1〜B-4)を[表1]〜[表3]に示した組成で添加し、30分間撹拌した後、大川原加工機製噴霧乾燥装置LT-8を用いて[表1]〜[表3]の条件にて噴霧乾燥法による造粒を行った。尚、噴霧形式はディスク式、捕集方式は2点捕集タイプを用いた。

[0046] [表1]

		实施例							
		1	2	3	4	5	6	7	8
組成	樹脂稙	A- 1	A-1	A-1	A-1	A-1	A-1	۸-1	A-1
	樹脂組成 (部)	100	100	100	100	100	100	100	100
	磁性材料種	B-1	B-2	B-3	B-4	B-5	B-1	B-1	B-1
	磁性材料組成 (部)	100	100	100	100	100	600	200	10
造粒条件	熱風の入口温度 (℃)	120	120	120	120	120	120	120	120
	熱風の出口温度 (℃)	65	65	65	65	65	65	65	65
	ディスク回転数 (rpm)	18000	18000	18000	18000	18000	18000	18000	18000
水性媒体中の樹脂と磁性材料 の合計機度(質量%)		46	46	16	46	46	75	56	32
造粒時の生産性		0	0	0	0	0	0	0	0
複合組成 物の特性	平均粒子径 (μm)	35	38	33	34	37	36	42	31
	球形化率	0. 85	0. 83	0. 88	0.84	0. 83	0. 81	0. 86	0. 85

[0047] [表2]

		実施例							
		9	10	11	12	13	14	1 5	16
組成	樹脂種	A-1	A-1	A-2	A-3	A-4	A-5	A-6	A-7
	樹脂組成 (部)	100	100	100	100	100	100	100	100
	磁性材料種	B-1							
	磁性材料組成 (部)	100	100	100	100	100	100	100	100
造粒条件	熱風の入口温度 (℃)	140	120	120	120	140	140	120	180
	熱風の出口温度 (℃)	65	75	65	65	70	70	55	70
	ディスク回転数 (rpm)	18000	18000	18000	18000	18000	18000	18000	18000
水性媒体中の樹脂と磁性材料 の合計濃度(質量%)		46	46	46	46	46	46	46	46
造粒時の生産性		0	0	0	0	0	0	0	0
複合組成 物の特性	平均粒子径 (μm)	35	36	37	33	35	36	32	33
	球形化率	0. 85	0. 83	0. 83	0.84	0. 81	0. 84	0. 88	0. 92

[0048] [表3]

		比較例							
_		1	2	3	4	5	6	7	8
組成	樹脂種	A-8	A-8	A-9	A-9	A-1	A-1	A-1	A-1
	樹脂組成(部)	100	100	100	100	100	100	100	100
	磁性材料穩	B-1	B-1	B∸1	B-1	B-1	B-1	B-1	B-2
	磁性材料組成 (部)	100	100	100	100	100	100	1500	1500
造粒条件	熱風の入口温度 (℃)	120	140	120	115	240	95	120	120
	熱風の出口温度 (℃)	65	65	65	65	150	60	65	65
	ディスク回転数 (rpm)	18000	18000	18000	18000	18000	18000	18000	1800
水性媒体中の樹脂と磁性材料 の合計濃度 (質量%)		46	46	46	46	46	46	87	87
造粒時の生産性		0	0	Δ	×	×	Δ	×	×
複合組成 物の特性	平均粒子径 (μm)	19	21	32		_	43	_	· —
	球形化率	0. 42	0. 51	0.81	_	_	0.83	-	-

[0049] [実施例の考察]

本発明の球状複合組成物(実施例1〜実施例16)は、いずれも生産性および製品物性(平均粒子径、球形化率)に優れている。

[0050] 一方、樹脂の質量平均分子量が1000000を超える場合(比較例1および比較例2)には、樹脂が溶融しづらいため生成した粉体が結着(樹脂の溶融による結合)しておらず球形化率が低くなってしまう。樹脂のガラス転移温度が50℃未満である場合(比較例3および比較例4)には、噴霧乾燥機の噴霧部のディスク内で樹脂が凝集、固化し、生産性が悪い。熱風の入口温度が[樹脂のガラス転移温度+150℃]を超える場合(比較例5)には、噴霧部のディスク内で樹脂が凝集、固化し、生産できない。噴霧乾燥機内の熱風の入口温度が100℃以下の場合(比較例6)には、噴霧乾燥機の乾燥室内で十分な乾燥がなされず樹脂が水分を多く含むため、乾燥室内に付着し生産性が悪い。また、磁性材料の添加量が樹脂100質量部に対して1000を越える場合(比較例7及び比較例8)には、生成した粉体が結着しておらず球形化率が低くなってしまう。

産業上の利用可能性

PCT/JP2004/013510

17

WO 2005/030868

[0051] 本発明の不飽和ビニル単位を含む樹脂と磁性材料からなる球形化率の高い球状複合材料は、樹脂磁石、電波吸収材料、磁気シールド材料、磁性トナー材料、トナーキャリア材料などの用途に良好に使用することができる。また、本発明の球状複合組成物の製造法は、複数の製造工程を必要とすることなく簡素かつ生産性が良く、工業的に極めて価値のある方法である。

請求の範囲

- [1] (A-1)ガラス転移温度が50~150℃および(A-2)質量平均分子量が10000~10 00000である不飽和ビニル単位からなる樹脂100質量部に対し、(B)二次元投影し た際の最長長さが0.01~50 µ mである磁性材料5~1000質量部を添加してなる 球状複合組成物であって、平均粒子径が1~100 µ m、かつ球形化率が0.7~1で あることを特徴とする球状複合組成物。
- [2] 不飽和ビニル単位からなる樹脂が、アクリロニトリル単位およびメタクリロニトリル単位 から選ばれた少なくとも1種の単量体単位30~100質量%を含むことを特徴とする請求項1記載の球状複合組成物。
- [3] 不飽和ビニル単位からなる樹脂が、(メタ)アクリル酸メチル単位、(メタ)アクリル酸エチル単位、(メタ)アクリル酸ブチル単位、スチレン単位、αーメチルスチレン単位、ビニルトルエン単位から選ばれた少なくとも1種の単量体単位30~100質量%を含むことを特徴とする請求項1記載の球状複合組成物。
- [4] (A-1) 平均粒径0.01~1 μ m、(A-2) ガラス転移温度が50~150℃および(A-3) 質量平均分子量が10000~1000000である不飽和ビニル単位からなる水性媒体中に分散している樹脂100質量部に対し、(B) 二次元投影した際の最長長さが0.0 1~50 μ mである磁性材料5~1000質量部を添加・分散後、噴霧乾燥法による造粒にて得られる球状複合組成物であって、平均粒子径が1~100 μ m、かつ球形化率が0.7~1であることを特徴とする球状複合組成物の製造方法。
- [5] 不飽和ビニル単位からなる樹脂が、アクリロニトリル単位およびメタクリロニトリル単位 から選ばれた少なくとも1種の単量体単位30~100質量%を含むことを特徴とする請求項4記載の球状複合組成物の製造方法。
- [6] 不飽和ビニル単位からなる樹脂が、(メタ)アクリル酸メチル単位、(メタ)アクリル酸エチル単位、(メタ)アクリル酸ブチル単位、スチレン単位、αーメチルスチレン単位、ビニルトルエン単位から選ばれた少なくとも1種の単量体単位30~100質量%を含むことを特徴とする請求項4記載の球状複合組成物の製造方法。
- [7] 噴霧乾燥法における噴霧乾燥装置内の熱風の入口温度が100℃〜[樹脂のガラス 転移温度+150℃]、かつ噴霧乾燥装置内の熱風の出口温度が40℃〜[樹脂のガ

- ラス転移温度+50℃]であることを特徴とする請求項4記載の球状複合組成物の製造方法。
- [8] 請求項1から請求項3のいずれかに記載の球状複合組成物からなることを特徴とする 樹脂磁石。
- [9] 請求項1から請求項3のいずれかに記載の球状複合組成物からなることを特徴とする 電波吸収材料。
- [10] 請求項1から請求項3のいずれかに記載の球状複合組成物からなることを特徴とする 磁気シールド材料。
- [11] 請求項1から請求項3のいずれかに記載の球状複合組成物からなることを特徴とする 現像機内で使用する磁性トナー材料。
- [12] 請求項1から請求項3のいずれかに記載の球状複合組成物からなることを特徴とする 電子写真プロセスの現像機内で使用するトナーキャリア材料。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/013510 CLASSIFICATION OF SUBJECT MATTER C08L57/00, C08K7/00, C08J3/12, G03G9/083, 9/107, H01B3/00, Int.Cl' H01F1/113, H05K9/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl7 C08L1/00-101/16, C08K3/00-13/08, C08J300-3/28, G03G9/00-9/18, H01B3/00, H01F1/09-1/117, H05K9/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* Y JP 5-295123 A (Japan Synthetic Rubber Co., 1-12 09 November, 1993 (09.11.93), Claims; Par. Nos. [0002] to [0006], [0011] to [0014]; examples (Family: none) Y JP 2001-329067 A (Mitsubishi Rayon Co., Ltd.), 1-12 27 November, 2001 (27.11.01), Claims; Par. Nos. [0009] to [0015]; examples & WO 2001/088021 A1 X Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive filing date step when the document is taken alone document-which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 28 December, 2004 (28.12.04) 10 December, 2004 (10.12.04) Authorized officer Name and mailing address of the ISA/

Telephone No.

Facsimile No.

Japanese Patent Office

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/013510

		101/012	.004/013510
C (Continuation).	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
Y	JP 2-225529 A (Kaneka Corp.), 07 September, 1990 (07.09.90), Claims; page 2, lower right column, lines to 20; page 3, lower left column, line 19 lower right column, line 5; examples & US 5378786 A1	3 2 9 to	1-12
Y	JP 9-63822 A (Sumitomo Metal Mining Co., 07 March, 1997 (07.03.97), Claims; full text (Family: none)	Ltd.),	1-12
		·	

A. 発明の風する分野の分類 (国際特許分類 (IPC)) Int. Cl' C08L57/00, C08K7/00, C08J3/12, G03G9/083, 9/107, H01B3/00, H01F1/113, H05K9/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' C08L1/00-101/16, C08K3/00-13/08, C08J300-3/28, G03G9/00-9/18, H01B3/00, H01F1/09-1/117, H05K9/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 Y. JP 5-295123 A (日本合成ゴム株式会社) 1 - 121993.11.09,特許請求の範囲、段落【0002】-【0006】, 【0011】-【0014】, 実施例 (ファミリーなし) Y JP 2001-329067 A (三菱レイヨン株式会社) 1 - 122001.11.27,特許請求の範囲、段落【0009】-【0015】, 実施例 & WO 2001/088021 A1

x C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

· ·		17 11 200	
C (続き).	関連すると認められる文献		
引用文献の カテゴリー*		所の表示	関連する・ 請求の範囲の番号
Y	JP 2-225529 A (鐘淵化学工業株式会社) 1990.09.07,特許請求の範囲、2頁右下欄2- 3頁左下欄19行-右下欄5行,実施例 & US 5378786 A1		1-12
Y	JP 9-63822 A (住友金属鉱山株式会社) 1997.03.07,特許請求の範囲,全文 (ファミリ		1-12
			. ·
			,
,			;
	·		
	•		