УЕБ СИСТЕМА ЗА ИЗПЪЛНИМОСТ НА КОНТАКТНАТА ЛОГИКА ЗА СВЪРЗАНОСТ

Факултет по математика и информатика Кателра по математическа логика и приложенията й

Антон Дудов

Магистърска програма Логика и алгоритми СПЕЦ. ИНФОРМАТИКА Факултетен номер: 25691

Научен ръководител: проф. Тинко Тинчев

Контактна логика - синтаксис

- ullet Булеви променливи (изброимо множество ${\cal V}$)
- Булеви константи: 0 и 1
- Булеви операции:
 - ▶ □ Сечение

 - * Допълнение
- Булеви термове
- Логически връзки: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Логически константи: \top и \bot
- *Модални връзки*: \leq (част от) and C(контакт)
- Формули

Контактна логика - термове

Терм - индуктивна дефиниция

- Булева променлива
- Булева константа
- Ако a е терм, то a^* също е терм
- ullet Ако a и b са термове, то и $a \sqcap b$ и $a \sqcup b$ са също термове

Контактна логика - формули

Атомарни формули са от вида $a \le b$ and aCb, където a и b са термове.

Контактна логика - формули

Атомарни формули са от вида $a \le b$ and aCb, където a и b са термове.

Формула - индуктивна дефиниция

- Логическа константа
- Атомарна формула
- ullet Ако ϕ е формула, то $\neg \phi$ съшо е формула
- Ако ϕ и ψ са формули, то $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \Rightarrow \psi)$ and $(\phi \Leftrightarrow \psi)$ са също формули

Контактна логика - релационна семантика

 $\mathcal{F}=(\mathsf{W},\,\mathsf{R})$ е релационна система с $\mathsf{W}\neq\emptyset$ и $\mathsf{R}\subseteq\mathcal{W}^2$, реф. и сим.

Контактна логика - релационна семантика

 $\mathcal{F}=(\mathsf{W},\,\mathsf{R})$ е релационна система с $\mathsf{W}
eq\emptyset$ и $\mathsf{R}\subseteq \mathcal{W}^2$, реф. и сим.

Дефиниция (Оценка)

Оценка на булеви променливи в \mathcal{F} е всяка функция $\upsilon: \mathcal{V} \to \mathcal{P}(W)$. Разширяваме υ индуктивно за булевите термове:

- $v(0) = \emptyset$
- v(1) = W
- $v(a \sqcap b) = v(a) \cap v(b)$
- $v(a \sqcup b) = v(a) \cup v(b)$
- $v(a^*) = W \setminus v(a)$

Контактна логика - модел

Дефиниция (Модел)

 $\mathcal{M}=(\mathcal{F},v)$ се нарича **модел**.

Истиността на формула ϕ в \mathcal{M} ($\mathcal{M} \models \phi$) се дефинира индуктивно за всички формули както следва:

- $\mathcal{M} \models \top$
- \bullet $\mathcal{M} \not\models \bot$
- $\mathcal{M} \models a \leq b \leftrightarrow v(a) \subseteq v(b)$
- $\mathcal{M} \models aCb \leftrightarrow (\exists x \in v(a))(\exists y \in v(b))(xRy)$

Контактна логика - модел

Дефиниция (Модел)

- $\mathcal{M} \models \neg \phi \leftrightarrow \mathcal{M} \not\models \phi$
- $\mathcal{M} \models \phi \land \psi \leftrightarrow \mathcal{M} \models \phi$ и $\mathcal{M} \models \psi$
- $\mathcal{M} \models \phi \lor \psi \leftrightarrow \mathcal{M} \models \phi$ или $\mathcal{M} \models \psi$
- $\mathcal{M} \models \phi \Rightarrow \psi \leftrightarrow \mathcal{M} \not\models \phi$ или $\mathcal{M} \models \psi$
- $\mathcal{M} \models \phi \Leftrightarrow \psi \leftrightarrow (\mathcal{M} \models \phi \text{ и } \mathcal{M} \models \psi)$ или $(\mathcal{M} \not\models \phi \text{ и } \mathcal{M} \not\models \psi)$

Контактна логика - изпълнимост на формула

Дефиниция (Модел на формула)

Модел \mathcal{M} е **модел на формулата** ϕ , ако ϕ е *вярвна* в \mathcal{M} .

Дефиниция (Изпълнимост на формула)

Ако ϕ има модел \mathcal{M} , то ϕ е **изпълнима**.

Контактна логика

Нека а и в са термове. Ясно е, че:

- $\mathcal{M} \models a = b \leftrightarrow \upsilon(a) = \upsilon(b)$
- $\mathcal{M} \models a \leq b \leftrightarrow \mathcal{M} \models a \sqcap b^* = 0$ (нулев терм)
- $\mathcal{M} \models \neg (a \leq b) \leftrightarrow \mathcal{M} \models a \sqcap b^* \neq 0$ (ненулев терм)

Контактна логика - свойства на релацията

Нека а и в са термове.

•
$$\mathcal{M} \models a \neq 0 \leftrightarrow \mathcal{M} \models aCa$$

•
$$\mathcal{M} \models aCb \leftrightarrow \mathcal{M} \models bCa$$

Следват от рефлексивността и симетричността на R.

Контактната логика за свързаност

Лема

Релационната система е свързана точно тогава, когато за всяка оценка в нея следната формула е вярна

$$a \neq 0 \land a \neq 1 \rightarrow aCa^*$$

На тази формула ще ѝ казваме аксиома за свързаност.

$$\upsilon(a) \neq \emptyset \land \upsilon(a) \neq W \rightarrow (\exists x \in \upsilon(a))(\exists y \in W \setminus \upsilon(a))(xRy)$$

Релационната система $\mathcal{F} = (W, R)$ дефинира неориентиран граф G(W, R). W е множеството от върхове, а R е множеството от ребра.

Релационната система $\mathcal{F}=(W,R)$ дефинира неориентиран граф G(W,R). W е множеството от върхове, а R е множеството от ребра.

Дефиниция (Път в граф)

Нека G = (W, R) е граф. Път $\pi_G(x, y)$ е поредица от върхове (x, v_1, \ldots, v_k, y) , такива че $x, v_1, \ldots, v_k, y \in V$ и $xRv1, v_1Rv_2, \ldots, v_{k-1}Rv_k, v_kRy$.

Релационната система $\mathcal{F}=(W,R)$ дефинира неориентиран граф G(W,R). W е множеството от върхове, а R е множеството от ребра.

Дефиниция (Път в граф)

Нека G=(W,R) е граф. Π ът $\pi_G(x,y)$ е поредица от върхове (x,v_1,\ldots,v_k,y) , такива че $x,v_1,\ldots,v_k,y\in V$ и $xRv1,v_1Rv_2,\ldots,v_{k-1}Rv_k,v_kRy$.

Дефиниция (Свързан граф)

Нека G = (W, R) е неориентиран граф. G е **свързан**, ако има път между всеки два различни върха в W.

$$x, y \in W \to (x \neq y \implies \pi_G(x, y))$$

Свързаност

Теорема (Свързаност)

Нека $\mathcal{F} = (W, R)$ е релационна система и G = (W, R) е графът, дефиниран от нея.

аксиомата за свързаност е удовлетворена в $\mathcal{F}\Leftrightarrow G$ е свързан

Свързаност

Теорема (Свързаност)

Нека $\mathcal{F} = (W, R)$ е релационна система и G = (W, R) е графът, дефиниран от нея.

аксиомата за свързаност е удовлетворена в $\mathcal{F} \Leftrightarrow G$ е свързан

Дефиниция (Свързан модел)

Нека $\mathcal{F}=(W,R)$ е релационна система. Нека G=(W,R) е графът дефиниран от нея \mathcal{F} . Нека $\mathcal{M}=(\mathcal{F},\upsilon)$ е модел на β . \mathcal{M} е **свързан модел** на β , ако G е свързан граф.

Строене на модел

Формула
$$\phi o ДНФ o \beta$$

$$\beta = \bigwedge C(a, b) \land \bigwedge d = 0 \land \bigwedge \neg C(e, f) \land \bigwedge g \neq 0$$

Ако β има модел $\mathcal{M}=(\mathcal{F},\upsilon)=((W,R),\upsilon)$, то \mathcal{M} е и модел за формулата ϕ .

Модални точки

Дефиниция (Модална точка)

Оценка на променливи \mathcal{E}_n за n булеви променливи е поредица от единици и нули както следва:

$$\mathcal{E}_n = \langle e_1, e_2, \dots, e_n \rangle$$
, where $e_1, \dots, e_n \in \{0, 1\}$

Модална точка е оценка на променливи \mathcal{E}_n

Модални точки

Дефиниция (W_n)

Множеството от всички модални точки за n променливи е W_n

$$W_n = \{ \langle e_1, e_2, \dots, e_n \rangle | e_1, \dots, e_n \in \{0, 1\} \}$$

$$|W_n|=2^n$$

Модални точки

Дефиниция (W_n)

Множеството от всички модални точки за n променливи е \mathcal{W}_n

$$W_n = \{ \langle e_1, e_2, \dots, e_n \rangle | e_1, \dots, e_n \in \{0, 1\} \}$$

$$|W_n| = 2^n$$

Дефиниция

 $(\mathcal{E}_n)^i$ е і-тия елемент в поредицата \mathcal{E}_n .

Оценка

Оценка $\upsilon: \mathcal{V} \to \mathcal{P}(W)$:

$$v(x_i) = \{ \mathcal{E} \mid \mathcal{E} \in W \text{ in } (\mathcal{E})^i = 1 \}, \ \ x_i \in \mathcal{V}$$

Дефинира се индуктивно за термове както следва:

- $v(0) = \emptyset$
- v(1) = W
- $\upsilon(a \sqcap b) = \upsilon(a) \cap \upsilon(b)$
- $v(a \sqcup b) = v(a) \cup v(b)$
- $v(a^*) = W \setminus v(a)$

Изпълнимост на атомарни формули

Лема (Изпълнимост на нулевите термове)

$$d = 0 \in \beta \to \upsilon(d) = \emptyset$$

Лема (Изпълнимост на ненулевите термове)

$$g \neq 0 \in \beta \rightarrow \upsilon(g) \neq \emptyset$$

Валидна модална точка

Дефиниция (Валидна модална точка)

 $\mathcal{E} \in W_n$ е валидна модална точка на eta, ако запазва изпълнимостта на нулевите термове и не-контактите

$$g = 0 \in \beta \to \mathcal{E} \notin v(g)$$

$$\neg C(e, f) \in \beta \to \mathcal{E} \notin (\upsilon(e) \cap \upsilon(f))$$

Валидна модална точка

Дефиниция (Валидна модална точка)

 $\mathcal{E} \in W_n$ е валидна модална точка на β , ако запазва изпълнимостта на нулевите термове и не-контактите

$$g = 0 \in \beta \to \mathcal{E} \notin \upsilon(g)$$

$$\neg C(e, f) \in \beta \to \mathcal{E} \notin (\upsilon(e) \cap \upsilon(f))$$

Дефиниция (W^{ν})

Множеството от всички валидни модални точки е $W^{
m v}$

$$W^{\mathsf{v}} = \{ \mathcal{E} \mid \mathcal{E} \in \mathcal{W}_n \text{ и } \mathcal{E} \text{ е валидна модална точка на } \beta \}$$

Валидна релация между точки

Дефиниция (Валидна релация)

Нека $x, y \in W^{\nu}$. Тогава $\langle x, y \rangle$ е **валидна релация** на β , ако запазва изпълнимостта на не-контактите в β .

$$\neg C(e,f) \in \beta \to \neg ((x \in \upsilon(e) \text{ и } y \in \upsilon(f)) \text{ или } (x \in \upsilon(f) \text{ и } y \in \upsilon(e)))$$

Валидна релация между точки

Дефиниция (Валидна релация)

Нека x, y $\in W^{\nu}$. Тогава $\langle x,y \rangle$ е **валидна релация** на β , ако запазва изпълнимостта на не-контактите в β .

$$\neg C(e,f) \in \beta \to \neg ((x \in \upsilon(e) \text{ и } y \in \upsilon(f)) \text{ или } (x \in \upsilon(f) \text{ и } y \in \upsilon(e)))$$

Дефиниция (R^{ν})

$$R^{\nu} = \{\langle x, y \rangle \mid x, y \in W^{\nu} \text{ и } \langle x, y \rangle \text{ е валидна релация на } \beta \}$$

Свързан модел

Стъпка

 $\mathcal{F}^{v} = (W^{v}, R^{v}), \mathcal{M}^{v} = (\mathcal{F}^{v}, v). \mathcal{M}^{v}$ е модел на β , ако контактите и ненулевите термове в β са удовлетворени. Ако \mathcal{M}^{v} не е модел, тогава β няма модел(нито свързан модел).

Подграф

Дефиниция (Подграф)

$$G'(W',R')\subseteq G(W,R)$$
, ako:

$$W' \subseteq W$$
 u $R' = \{\langle x, y \rangle \mid x, y \in W' \text{ u } xRy\}$

Подмодел

Лема (Подмодел)

 $\mathcal{F}=(W,R)$, $\mathcal{M}=(\mathcal{F},v)$. Нека $G'=(W',R')\subset G=(W,R)$. Тогава G' дефинира модел $\mathcal{M}' = ((W', R'), v')$, където:

- \bullet $\upsilon'(x) = \upsilon(x) \cap W'$, за всяка променлива x
- $v'(0) = \emptyset$
- v'(1) = W'
- $\upsilon'(a \sqcap b) = \upsilon'(a) \cap \upsilon'(b)$
- $\upsilon'(a \sqcup b) = \upsilon'(a) \cup \upsilon'(b)$
- $v'(a^*) = W' \setminus v'(a)$

Лема (Запазване удовлетворимостта на атомарните формули)

$$G^v=(W^v,R^v)$$
 е графът породен от \mathcal{F}^v . Нека $G=(W,R)\subseteq G^v$ и $\mathcal{M}=((W,R),v')$ е моделът дефиниран от G . Тогава:

ullet M запазва удовлетворимостта на контактите в eta, ако

$$C(a,b) \in \beta \to (\exists x \in v'(a))(\exists y \in v'(b))(xRy)$$

Лема (Запазване удовлетворимостта на атомарните формули)

$$G^v=(W^v,R^v)$$
 е графът породен от \mathcal{F}^v . Нека $G=(W,R)\subseteq G^v$ и $\mathcal{M}=((W,R),v')$ е моделът дефиниран от G . Тогава:

ullet M запазва удовлетворимостта на контактите в eta, ако

$$C(a,b) \in \beta \to (\exists x \in \upsilon'(a))(\exists y \in \upsilon'(b))(xRy)$$

ullet М запазва удовлетворимостта на ненулевите термове в eta, ако

$$g \neq 0 \in \beta \rightarrow \upsilon'(g) \neq \emptyset$$

Свързани компоненти - дефиниции

Дефиниция (Свързана компонента)

Нека G = (W, R) е граф. Нека $G' = (W', R') \subseteq G(W, R)$. Ако G' е свързан, то G' е свързана компонента на G.

Свързани компоненти - дефиниции

Дефиниция (Свързана компонента)

Нека G = (W, R) е граф. Нека $G' = (W', R') \subseteq G(W, R)$. Ако G' е свързан, то G' е свързана компонента на G.

Дефиниция (Максимална свързана компонента)

Нека G = (W, R) е граф. Нека G' = (W', R') е свързана компонента на G. G' е максимална свързана компонента на G, ако:

$$x \in W' \to \neg(\exists y \in W \setminus W')(xRy)$$
 и $x, y \in W' \to xRy \leftrightarrow xR'y$

Свързан модел

Стъпка

Нека \mathcal{M}^{v} е модел на β . Всички модели, дефинирани от свързаните компоненти на G^{v} , запазват удовлетворимостта на нулевите термове и не-контактите (не добавят точки, нито релации). Ако има свързана компонента, която запазва удовлетворимостта на контактите и ненулевите термове, то тя дефинира **свързан модел** на β . Достатъчно е да разгледаме само максималните свързани компоненти на G^{v} .

Имплементация

- Flex & Bison за строене на AST (Абстрактно синтактично дърво)
- Превръщане на AST формула във формула с удобни и ефективни операции свързани за табло метода и строенето на модела
- Пускане на табло метода за търсене на отворен клон
- Генериране на (свързан) модел
- Компилиране на библиотеката в WebAssembly
- Уеб приложение
- Тестове
- Автоматични билдове
- https://github.com/Anton94/modal_logic_formula_prover

Демо

Демо - http://logic.fmi.uni-sofia.bg/theses/Dudov_Stoev/

Благодаря за вниманието!

Въпроси?

Ф^М