Elektroni	k 1							
n ₀	Konzentration negativer Ladungs	sträger (Elektronen)	μ	Ladungsträger-Beweglichkeit				
p ₀	Konzentration positiver Ladungsträger (Löcher)				Effektive Zustandsdichte vom Leitungsband			
n _i	Gleichgewichtkonzentration, Ladungsträgerdichte, Intrinsic-Zahl				Effektive Zustandsdichte vom Valenzband			
W _G	ΔE zwischen Valenz und Leitungsband → Bandabstand				Konzentration der ionisierten Donatoren			
Wc	Leitband-Kante				Konzentration der ionisierten Akzeptoren			
W _V	Valenzband-Kante				Konzentration der Elektronen im n-Halbleiter			
W _F	Fermi-Niveau (Fermi-Kante)				Konzentration der Löcher in n-Halbleiter			
W _D	Energie-Niveau der Störterme				Konzentration der Elektronen im p-Halbleiter			
W _s	Sperrschichtweite				Konzentration der Löcher im p-Halbleiter			
W _{vac}	Vakuumenergie		p _{p0} κ	Leitfähigkeit	iii p riai	oreree!		
W _M	Austrittsarbeit			<u>-</u>	Sperrspannung			
T _j	Sperrschichttemperatur		U _R		Diffusionspannung			
Tu	Umgebungstemperatur			·	Anliegende äußere Spannung			
u ₁	primärseitige Klemmenspa	nnung des Trafos	U U _T		Temperaturspannung			
u ₂₀	sekundärseitige Leerlaufsp		Is	Sperrsättigungsstrom				
u ₂₀	sekundärseitige Klemmenspannung des Trafos			Übersetzungsverhältnis				
R _{iT}	Ersatzwiderstand für Wicklungswiderstand			obersetzungsternatuns				
Elektroni								
G ₀	Kanalleitwert		U _{QM}		Maximale Ausgangsspannung			
-U _p	Sättigungsgrenze "pinch-off"-Spannung		U _{Ref}		Referenzspannung			
I _{DSS}	Sättigungsstrom	ii Spainiarig	Okei	Referenzaparmang				
I _{Dsat}	Kanalstrom							
Dsat	Kanastrom							
Konstant	en .				Dräfiv	-Tabelle		
k		Bolzman-Konstante	k -	$= 1.38 \cdot 10^{-23} Ws/K$	10 ²⁴	Yotta	Υ	
е		Elementarladung		1,6 · 10 ⁻¹⁹ As	10 ²¹	Zetta	Z	
K		Kelvin		+273,15 = K	10 ¹⁸	Exa	E	
		Temperaturdurchbruch		•	10 ¹⁵	Peta	Р	
U _{BE}		Basis-Emitter-Spng.		-2 mV/K 0,7V		Tera	T	
W _G		,		v 2eV= 1,12· 1,6 · 10 ⁻¹⁹ Ws	10 ¹²	Giga	G	
VVG		Dei Siliziuiii (SUU N)	1,1	ZCV - 1,1Z 1,U 1U VVS	10 ⁶	Mega	M	
					10 ³	Kilo	k	
					10 ²	Hekto	h	
					10 ⁻	Deka	da	
					10 ⁰	Deka	ua	
					10°	Dozi	٦	
					10 ⁻²	Dezi	d	
					10-2	Zenti Milli	C	
					10 ⁻⁶		m	
					10 ⁻⁹	Mikro	μ	
11					10 ⁻⁹	Nano	n	
Umrechnungshilfen			00	. 272.45		Piko	р	
K Crad / Rad Umroshnung		Kelvin		+273,15 = K	10-15	Femto	f	
Grad / Rad Umrechnung		ملا		$2\pi = \alpha / 360^{\circ}$	10 ⁻¹⁸	Atto	a -	
Von normal in dezibel Von dezibel in normal		dB		· log10(x)	10 ⁻²¹	Zepto	Z	
von dezibe	ei in normai		10′	^(x/20)	10 ⁻²⁴	Yokto	Υ	

Der Feldeffekttransistor (FET):

J oder Sperrschicht-FET

n-Kanal-FET: Kanalleitwert für
$$U_{DS} \rightarrow 0$$
 $G_0 = \kappa \cdot \frac{A}{1} = e \cdot n_D \cdot \mu_n \cdot \frac{b \cdot d}{1}$ $G_0 = \kappa \cdot \frac{A}{1} = e \cdot n_D \cdot \mu_n \cdot \frac{b \cdot d}{1}$

maximaler Sättigungsstrom:

$$I_{DSS} = \frac{G_0 \cdot (-U_p)}{3}$$

Sättigungsstrom:
$$I_{Dsat} \approx I_{DSS} \cdot \left(1 - \frac{U_{GS}}{U_p}\right)^2$$

Abschnürspannung:

$$U_{DSsat} = U_{GS} - U_p$$

FET als Analogschalter

$$|u_{GS}| \ge |U_p| \qquad UND \qquad |u_{GD}| \ge |U_p|$$

$$u_{GS} = 0$$
 ODER $u_{GD} = 0$

Arbeitspunkt-Einstellung: Stabilität steigt von links nach rechts (AP → U_{GS} und I_D)

Wechselspannungsverstärker:

Eingangswiderstand: $R_{ein} \sim = R_G$

Leerlauf-Spannungsverstärkung:

$$N_{U0} = -S \cdot (r_{ds} // R_D)$$

 $V_{U0} = -S \cdot (r_{ds} /\!/ R_D)$ $V_U = -S \cdot (r_{ds} /\!/ R_D /\!/ R_L)$ Leistungsverstärkung: $V_P = V_U \cdot V_I$

Eingangsleitwert: $y_{11} = 1/r_{gs} \approx 0$

$$y_{11} = 1/r_{gs} \approx 0$$

 $V_{U0} = \frac{u_{q0}}{= \frac{-S \cdot u_{gs} \cdot (r_{ds} // R_D)}{}}$

Vorwärtssteilheit: $y_{21} = S = \frac{i_d}{u_{gs}}$

Rückwirkungsleitwert:
$$y_{12} \approx 0$$
Vorwärtssteilheit: $y_{21} = S = \frac{i_d}{u}$

 $= \frac{1}{d(u_{GS})} \Big|_{u_{DS}=konst}$

in [S] linker Graph (m an AP in Kennlinie

Ausgangsleitwert: $y_{22} = \frac{1}{r_{ds}} = \frac{i_d}{u_{ds}}$ $d(i_D)$

in [S] rechter Graph m an AP in Kennlinie

IG-FET / MOS-FET:

Selbstsperrend:

n-Kanal-FET

p-Kanal-FET

Selbstleitend:

n-Kanal-FET

p-Kanal-FET

Komperator: Mitkopplung durch zurückführen des Ausgangssignal auf den nicht invertierenden Eingang

$$u_{I} < U_{Ref}$$
 (d.h. $u_{ID} > 0$) $\rightarrow u_{Q} = U_{QM^{+}} \approx +U_{S}$
 $u_{I} > U_{Ref}$ (d.h. $u_{ID} < 0$) $\rightarrow u_{Q} = U_{QM^{-}} \approx -U_{S}$

Wenn U_{ID} = 0V durchlaufen wird, schaltet am Ausgang

Schmitt-Trigger: Mittkopplung auf den nicht invertierenden Eingang

Schaltbedingung: wenn
$$u_{\text{ID}}$$
 = 0 $u_{\text{In}} = u_{\text{Ip}} = \pm U_{QM} \cdot \frac{R_1}{R_1 + R_2} + U_{\text{ref}} \cdot \frac{R_2}{R_1 + R_2}$ das Gleiche aufgedröselt

Schaltspannungswerte:

 $\mathbf{U}_{\mathrm{Sl}} = (\mathbf{U}_{\mathrm{QM+}} \cdot \mathbf{R}_1 + \mathbf{U}_{\mathrm{ref}} \cdot \mathbf{R}_2) \cdot \frac{1}{\mathbf{R}_1 + \mathbf{R}_2}$ $\mathbf{U}_{S2} = (\mathbf{U}_{\mathrm{QM}-} \cdot \mathbf{R}_1 + \mathbf{U}_{\mathrm{ref}} \cdot \mathbf{R}_2) \cdot \frac{1}{\mathbf{R}_1 + \mathbf{R}_2}$

(für steigendes Eingangssignal u fallendes Ausgangssignal uQ)

(für fallendes Eingangssignal uI; steigendes Ausgangssignal uQ)

(U_S ist u_I sozusagen)

Bei U_{ref} und u_I Wechsel:

$$U_{S1} = U_{ref} \cdot \frac{R_1 + R_2}{R_2} - U_{Qm} \cdot \frac{R_1}{R_2}$$
$$U_{S2} = U_{ref} \cdot \frac{R_1 + R_2}{R_2} + U_{Qm} \cdot \frac{R_1}{R_2}$$

Hysterese: Schmitt-trigger in Abhängigkeit von zwei unterschiedlichen Ausgangsspannungswerten zwei unterschiedliche Schaltschellen

Invertierender Verstärker: Gegenkopplung durch zurückführen des Ausgangssignal auf invertierenden Eingang

$$U_Q \approx -U_I \cdot \frac{R_F}{R_1}$$

$$\text{Ausgangsspannung: } \boxed{U_Q \approx -U_I \cdot \frac{R_F}{R_I}} \quad \text{Verstärkung: } \boxed{V_{UF} = \frac{U_Q}{U_I} \approx -\frac{R_F}{R_I}}$$

Ausgangsspannung: $U_Q = U_{In} + I_F \cdot R_F$ Wichtig: $U_{In} = U_{Ip}$

$$U_O = U_{In} + I_{E} \cdot R_E$$

U_{ID} = 0V ungefähr, solange dies mit dem möglichen Ausgangsspannungswerten möglich ist

Nicht-invertierender Verstärker: Gegenkopplung durch zurückführen des Ausgangssignal auf invertierenden Eingang

Ausgangsspannung:
$$U_Q \approx U_I \cdot (1 + \frac{R_F}{R_1})$$
 Verstärkung: $V_{UF} = \frac{U_Q}{U_I} \approx 1 + \frac{R_F}{R_1}$

$$V_{\rm UF} = \frac{\rm U_{\rm Q}}{\rm U_{\rm I}} \approx 1 + \frac{\rm R_{\rm F}}{\rm R_{\rm I}}$$

Wenn $R_1 \to \infty$ oder $R_F = 0$ gilt: Verstärkung: $V_{\mathrm{UF}} \approx 1 + \frac{0}{\infty} = 1$

$$V_{\rm UF} \approx 1 + \frac{0}{\infty} = 1$$

U_{ID} = 0V ungefähr, solange dies mit dem möglichen Ausgangsspannungswerten möglich ist

Addition (mit Inversion):

Ausgangsspannung:
$$U_Q \approx -(U_1 \cdot \frac{R_F}{R_1} + U_2 \cdot \frac{R_F}{R_2} + U_3 \cdot \frac{R_F}{R_3})$$

Wenn
$$R_1 = R_2 = R_3 = R_I$$
 Ausgangsspannung: $U_Q \approx -(U_1 + U_2 + U_3) \cdot \frac{R_F}{R_I}$

$$U_Q \approx -(U_1 + U_2 + U_3) \cdot \frac{R_F}{R_I}$$

Verstärkung:
$$V_{UF} \approx -\frac{R_F}{R_I}$$

Ausgangsspannung:
$$U_Q \approx (U_2 \cdot \frac{R_1 + R_3}{R_2 + R_4} \cdot \frac{R_4}{R_1} - U_1 \cdot \frac{R_3}{R_1})$$

Für eine gute Gleichtaktunterdrückung: (präzise Widerstände, besser ein IC "INA")

$$R_1=R_2=R_I \text{ und } R_3=R_4=R_F$$

$$U_Q \approx (U_2 - U_1) \cdot \frac{R_F}{R_I}$$

Ausgangsspannung:
$$U_Q \approx (U_2 - U_1) \cdot \frac{R_F}{R_I}$$
 Verstärkung: $V = (U_2 - U_1) \cdot \left(\frac{R_3}{R_1}\right)$

UQ

Integration:

$$u_Q \approx -\frac{1}{R \cdot C} \cdot \int u_I \cdot dt$$

Sonderfall Sinus:

$$\text{Ausgangsspannung: } \boxed{u_Q \approx \frac{\hat{u}_I}{R \cdot \omega C} \cdot cos(\omega t)} \quad \text{Verstärkung: } \boxed{|V_{UF}| = \frac{\hat{u}_Q}{\hat{u}_I} \approx \frac{1}{\omega C \cdot R} = f(\omega)}$$

$$|V_{\rm UF}| = \frac{\hat{\mathbf{u}}_{\rm Q}}{\hat{\mathbf{u}}_{\rm T}} \approx \frac{1}{\omega \cdot \mathbf{C} \cdot \mathbf{R}} = \mathbf{f}(\omega)$$

Differentiation:

Ausgangsspannung:
$$u_Q \approx -R \cdot C \cdot \frac{d(u_I)}{dt}$$

$$u_Q = -\omega \cdot C \cdot R \cdot \hat{u}_I \cdot \cos(\omega t)$$
 Verstärkung

Ausgangsspannung:
$$|v_{UF}| = \frac{\hat{u}_Q}{\hat{u}_{\scriptscriptstyle I}} \approx \omega \cdot C \cdot R = f(\omega)$$

Tiefpass oder Verzögerungsglied 1. Ordnung: niedrige Frequenzen werden besser verstärkt

$$\text{Ausgangsspannung: } \boxed{ U_Q \approx U_I \cdot \frac{R_F}{R_1} \cdot \frac{1}{\sqrt{1 + \Omega^2}} } \quad \text{mit } \boxed{ \Omega = \frac{\omega}{\omega_g} } \qquad \omega_g = \frac{1}{R_F \cdot C_F} \boxed{ \text{in } \frac{1}{s} }$$

mit
$$\Omega=$$

$$\omega_{g} = -\frac{\omega}{\omega_{g}}$$

$$\left[in \frac{1}{s}\right]$$

$$\text{Verst\"{a}rkung WS:} \left| |V_{UF}(\omega)| = \frac{U_Q}{U_I} \approx \frac{R_F}{R_1} \cdot \frac{1}{\sqrt{1 + \Omega^2}} \right| \text{Verst\"{a}rkung GS:} \left| |V_{UF}(0)| \approx \frac{R_F}{R_1} \right|$$

$$\left| V_{\text{UF}}(0) \right| \approx \frac{R_F}{R_1}$$

Hochpass: hohe Frequenzen werden besser Verstärkt

$$\text{Ausgangsspannung: } \boxed{ \mathbf{U}_Q \approx \mathbf{U}_1 \cdot \frac{\mathbf{R}_F}{\mathbf{R}_1} \cdot \frac{1}{\sqrt{1 + (1/\Omega)^2}} } \text{ mit } \boxed{ \boldsymbol{\Omega} = \frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_g} } \boxed{ \boldsymbol{\omega}_g = \frac{1}{\mathbf{R}_1 \cdot \mathbf{C}_1} }$$

t
$$\Omega = \frac{\omega}{\Omega}$$

$$\omega_{g} = \frac{1}{R_{1} \cdot C_{1}}$$

$$\mathsf{t} \quad \omega_{\mathrm{u}} = \frac{1}{\mathsf{R}_1 \cdot \mathsf{C}_1}$$

$$V_{UF}(\omega) = \frac{U_Q}{U_I} \approx \frac{R_F}{R_1} \cdot \left\{ 1 / \sqrt{\left[1 + \left(\frac{\omega}{\omega_o}\right)^2\right] \cdot \left[1 + \left(\frac{\omega_u}{\omega}\right)^2\right]} \right\} \quad \text{und} \quad V_{UF_{max}} \approx \frac{R_F}{R_1}$$

PI-Regler (Proportional-Integral-Regler):

$$\text{Ausgangsspannung:} \quad u_Q(t) \approx -\left\{u_I(t) \cdot \frac{R_F}{R_1} + \frac{1}{R_1 \cdot C_F} \cdot \int\limits_0^t u_I(t) \cdot dt\right\} + U_Q(0)$$

Fehler durch Eingangs-Offset-Spannung U₁0: Formel gilt für invertierend und nicht invertierende Verstärker Ist

Fehleranteil der Ausgangsspannung:
$$U_{Q_F} = -U_{I0} \cdot (1 + \frac{R_F}{R_1})$$

Folge: U_{ID} = U_{IO} ≠ 0,000V Diese wird dann verstärkt und verfälscht den Ausgang

Kompensation: OPV mit Kompensationsanschlüssen für Poti, Spannungen am Eingang addieren zur Ausgleichung

Fehler durch Eingangsströme (Bias-Ströme):

Fehleranteil der Ausgangsspannung: $\left|\mathbf{U}_{Q_F} = -\mathbf{I}_{In} \cdot \mathbf{R}_F\right|$

$$\mathbf{U}_{\mathbf{Q}_{\mathbf{F}}} = -\mathbf{I}_{\mathbf{I}\mathbf{n}} \cdot \mathbf{R}_{\mathbf{F}}$$

Kompensation: Mit R₊: $R_{+} = \frac{R_{1} \cdot R_{F}}{R_{1} + R_{F}}$

$$R_{+} = \frac{R_1 \cdot R_F}{R_1 + R_F}$$

Gleiche Eingangsströme verursachen dann keinen Fehler (UQF = 0V)

Kompensation ist nur bei gleich große Eingangsströme praktikabel!!!

Fehler durch Ungleich der Eingangsströme (Eingangs-Offsetstrom): I_{Ip} - I_{In} = $I_{I0} \neq 0$

:
$$I_{ID} - I_{ID} = I_{IO} \neq 0$$

$$(I_{I0} = Eingangs-Offsetstrom)$$

Fehleranteil der Ausgangsspannung: $U_{Q_F} = I_{I0} \cdot R_F$

$$U_{Q_F} = I_{I0} \cdot R_F$$

Kompensation: Vermeidung stark unterschiedlicher Betriebstemperaturen und durch Einsatz von Verstärkern mit geringen Offsetströmen möglich

Instrumentenverstärker:

Spannung am mittleren Widerstand: $U_{R2}=U_{A}$ - U_{B}

$$U_{R2} = U_A - U_B$$

$$V = G = 1 + \frac{2 \cdot R_1}{R_2}$$

Ausgangsspannung:
$$U_E = (U_B - U_A) \cdot (1 + \frac{2 \cdot R_1}{R_2})$$

Hoher Eingangswiderstand, niedriger Ausgangswiderstand,

und Verstärkung an einem einzigen R₂ einstellbar (Vorteile)

Präzisionsgleichrichter:

$$\begin{array}{ll} u_I \geq 0 & \quad \Rightarrow & \quad u_{Q1} = \text{-}u_I \\ \\ u_I \leq 0 & \quad \Rightarrow & \quad u_{Q1} = 0 \end{array}$$

Ausgangsspannung:

$$\mathbf{u}_{\mathrm{Q2}} = -\mathbf{n} \cdot (\mathbf{u}_{\mathrm{I}} + 2 \cdot \mathbf{u}_{\mathrm{Q1}}) = |\mathbf{n} \cdot \mathbf{u}_{\mathrm{I}}|$$

Frequenz beim OPV:

Transitfrequenz ist die Frequenz, bei der die Leerlaufverstärkung VU0 = 1

Es gilt: V_{U0} · f_{Betrieb} = konst. = (Verstärkungs Bandbreiten Produkt)

$$V_{U0} = rac{f_T}{f} \; \mathrm{mit} \; f_T$$
 = Transitfrequenz und f = die aktuelle Frequenz

Wichtige Formeln:

$$I \cdot \Delta t = C \cdot \Delta U$$

Verständnisfragen:

Vorteile Feldeffekt-Transistoren gegenüber Bipolar-Transistoren:

Kein 2. Durchbruch wegen Stromeinschnürung; geringe Schaltzeiten -> keine Speicherzeit, da keine Überschussladung, langsame Minoritätsträger-Prozesse entfallen; sehr hoher Eingangswiderstand durch das isolierte Gate

Schleifenverstärkung: Die Schleifenverstärkung V_S eines rückgekoppelten Operationsverstärkers gibt an, mit welchem Verstärkungsfaktor V_S und welcher Phasenlage φ_S ein ohne äußeres Eingangssignal entstehendes Differenzeingangssignal u_{ID} nach Verstärkung durch den Operationsverstärker und Rückkopplung über das Rückkopplungsnetzwerk auf den Differenzeingang zurückwirkt. Die Schleifenverstärkung ergibt sich aus dem Produkt aus der komplexen Leerlaufverstärkung V_{UO} des Operationsverstärkers und dem komplexen Rückkopplungsfaktor K des Rückkopplungsnetzwerks ($V_S = V_{UO} \cdot K$).

Frequenzgang eines OPVs: Operationsverstärker bestehen grundsätzlich aus mehreren Verstärkerstufen. Jede dieser Verstärkerstufen zeigt Tiefpassverhalten. Ein nicht frequenzkompensierter Operationsverstärker zeigt daher neben einer ersten oberen Grenzfrequenz mit anschließendem Verstärkungsabfall um 20 dB/Dekade weitere Eckfrequenzen mit darauffolgendem Verstärkungsabfall um 40 bzw. 60 dB/Dekade. Da jeder Tiefpass oberhalb seiner Grenzfrequenz zu einer Phasendrehung um -90° führt, treten beim Operationsverstärker mit steigender Frequenz nacheinander Phasendrehungen um -90°, -180° und -270° auf. Treten Phasendrehungen von -180° oder mehr bereits unterhalb der Transitfrequenz des Verstärkers (V_{UO}(fT) = 1) auf, so treten bei Gegenkopplung (gleichbedeutend mit einer weiteren Phasendrehung um -180°) Phasendrehungen um -360° und mehr auf. Damit wird aus einer Gegenkopplung eine Mitkopplung und der Verstärker zeigt selbst-erregte, unkontrollierte Schwingungen.

Frequenzgangkorrektur: Durch geeignete Beschaltungen wird der Frequenzgang von Operationsverstärker oder Rückkopplungsnetzwerk so korrigiert, dass die zweite Eckfrequenz erst oberhalb der Transitfrequenz auftritt. Damit treten zu Mitkopplungseffekten führende Phasendrehungen erst oberhalb der Transitfrequenz auf und führen nicht zum selbst erregten Schwingen.

Phasenreserve: Die Phasenreserve ist der Abstand der Phasendrehung des gegengekoppelten Verstärkers von dem Wert -360° bei der Transitfrequenz der Gesamtschaltung. Die Phasenreserve sollte mindestens 45° betragen.