Around permanent regime

(b) QP boundaries: transient from valve breaking

Experiment: - Init. equilibrium pore-pressure profile when 2 valves are closed, but valve nb1 is open (k_b = k_bg). Observe the propagating transient

- Observation: transient progresses from one valve to the other, to redistribute total dP on background segments and barriers. dP across remaining valve and overpressure are increased (closer to failure?) The increase is transient,
 - overpressure will progressively dissipate when fluid has crossed the low permeability barrier

Around permanent regime

(b) QP boundaries: transient from valve breaking

this is a gif, click on it to play

Experiment:

- Init. equilibrium pore-pressure profile when 2 valves are closed, but valve nb1 is open (k_b = k_bg).
- Observe the propagating transient

Observation:

- transient progresses from one valve to the other, to redistribute total dP on background segments and barriers.
- dP across remaining valve and overpressure are increased (closer to failure?)
- The increase is transient,
 overpressure will progressively
 dissipate when fluid has crossed the
 low permeability barrier

Around permanent regime

(b) QP boundaries: transient from valve breaking

↓ this is a gif, click on it to play

Experiment:

- Init. equilibrium pore-pressure profile when 2 valves are closed, but valve nb2 is open (k_b = k_bg).
- Observe the propagating transient

Observation:

- transient progresses from one valve to the other, to redistribute total dP on background segments and barriers.
- dP across remaining valve and overpressure are increased (closer to failure?)
- The increase is transient,
 overpressure will progressively
 dissipate when fluid has crossed the
 low permeability barrier

