Chemical Equilibria (continued)

Solubility Product

Like chemicals in reactions, solids and gasses also exist in equilibrium with water phases

(ionization) AaBb (solid) = aA + bB

At equilibrium, $\frac{[A]^{2}[B]^{b}}{[A_{a}B_{b}]_{s}} = K_{sp}$

Typically Incorporated directly into Ksp.

Typically [A] [B] = Ksp

Ksp is called the solubility product (it is unique for each (species)

Gasses are explained using Henry's Law

Algo = KHPg

L portial pressure of the gas

KH is called the Henry's law constant. (it is unique for

each gas-liquid system)

each gas-liquid system)

Ky vailes with temperature and concentration of other materials (common-ion affect). Henry's law gives saturation values -Actual systems can be super- or sub- saturated

Carbonate System

The carbonate system is an important example of a gas-liquid, acid-base, liquid-solid equilibrium. It is important in environmental orgineering because

- · Buffers lakes and streams against pH changes from acidic inputs
- · Influences con accumulation in the atmosphere and may effect global climate
- · Plays role in Carbon cycling since photosynthesis (algue) and

other organisms obtain curbon for cell mass from corbonate Species

Open eurborate system-solid present Species present CO219) (02109) dissolved 102 carbonic acid Sicarbonate HCO3 corporate calcium ion linestone Ca CO3

To determine equilibrium behavior of the system all equilibria & charge neutrality equations cre constructed of solved simultaneously.

Henry's law relates lozing & lozing)

①
$$[Co_{2(ag)}] = K_{H} P_{co_{2}}$$
 $P_{co_{2}} \times 360 \cdot 10^{-6} atm$
 $K_{H}(e) = 0.033363$

$$\frac{(A)}{[CO_{2q}]} = K_m = 1.58.10^{-3}$$

It is very difficult to differentiate 102/103 they are lumped together as 4203* [H2 (03*] = [H2 (03] + [(024)] = [(024)](Km+1)

:. [H2 (03] = 1.00158 KH Pco2

So the gas-liquid equilibrium is conviently expressed

O*[H, 003] = 1.00158 KH Pco2 (e 25°C) = (1.00158)(0.033363)(360.10-6)M

Now acid-base equilibria

$$Q H_2 co_3^* = H^+ + H co_3^- K_1 = \frac{[H^+ I][H co_3^- I]}{[H_2 co_3^*]} = 4.47 \times 10^{-7} M$$

(3)
$$H co_3^- = H^+ + co_3^{2-}$$
 $K_2 = \frac{[H^+][co_3^{2-}]}{[Hco_3^-]} = 4.68 \times 10^{-11} M$

Now solid-liquid equilibria

Finally charge balance

peach mole of Co32 - can absorb 2 mole H+

 $(b)[H^{+}] + 2[(a^{2+}]] = [OH^{-}] + 2[(O_3^{2-}]] + [HCO_3^{-}]$ $\stackrel{\text{each mole } Ca^{2+}}{=} can absorb 2 mole of e^{-}$

Typically one is interested in speciation as a function of $pH(IH^{\dagger}I)$. Also the total carbonate concentration is usually of interest $C_{Total} = IH^2co_3^*I + IHco_3^-I + Ico_3^2I$

Depending on the book available thore are several ways to proceede with equilibrium eacculations

Will illustrate how to proceede using a calculator

Rewrite equilibria in terms of common reference ion [HT]

$$[Heo_3^{-}] = (4.47.10^{-7})(1.20297.10^{-5}) = 5.37726.10^{-12}$$

$$[H+]$$

$$[H+]$$

$$[C03^{2-}] = \frac{(4.68 \cdot 10^{-11})(5.37726 \cdot 10^{-12})}{[H^{+}]^{2}} = \frac{2.51656 \cdot 10^{-22}}{[H^{+}]^{2}}$$

$$\frac{[Ca^{2+}] = (4.57 - 10^{-9})}{[Co_3^{2-}]} = 1.81597 - 10^{13}[H^{+}]^{2}$$

$$[OH-] = \frac{1 \cdot 10^{-14}}{[H+]} = \frac{1 \cdot 10^{-14}}{[H+]}$$

Charge Balance

· [H+]+2[Ca2+] = [OH-]+2[CO32-]+[HCO3-]

$$\sum_{[H^{+}]+3.63195-10^{13}EH^{+}]^{2} = \frac{1-10^{-14}}{[H^{+}]} + \frac{5.03311-10^{-22}}{[H^{+}]^{2}} + \frac{537726-10^{-12}}{[H^{+}]}$$

If one makes a substitution;

let x = [H+] and rearrange the charge balance

 $\chi + 3.63195 - 10^{13} \chi^2 - 1.10^{-14} \chi^{-1} - 5.03311 - 10^{-22} \chi^{-2} - 5.37726 - 10^{-12} \chi^{-1} = 0$ The equation is in the form f(x) = 0 and can be solved using Newton's method:

$$\chi_{k+1} = \chi_{k} - \frac{f(\chi_{k})}{\frac{df}{dx}(\chi_{k})}$$

In this case we multiply f(x) by x^2 to obtain: $f(x) = \chi^3 + 3.63195 - 10^{13}\chi^4 - 1.10^{-14}\chi - 5.03311 - 10^{-22} - 5.37726 - 10^{-12}\chi = 0$ $df/d\chi = 3\chi^2 + 4(3.63195 - 10^{13})\chi^3 - 1.10^{-14} - 5.37726 - 10^{-12}$

An attached spreadsheet implements the solution (can also be done on a calculator)

	А	В	С	D	Е	F	
1	Newton's Meth	nod to find pH in	n Carbonate Sy	/stem			
2							
						x(k+1)=x(k)-f(x)/(df/dx))	
						(df/	
						/(x)	
)-(>	
		Ξ				() 	
		k(k)=[H+]		×		7	
3	표	κ(k)	<u>×</u>	df/dx	×	(k-	
4	5	1.00E-05	3.36E-07	1.34E-01	2.50E-06	7.50E-06	
5	5.124938737	7.50E-06	1.06E-07	5.67E-02	1.88E-06	5.62E-06	
6	5.249877473	5.62E-06	3.37E-08	2.39E-02	1.41E-06	4.22E-06	
7	5.37481621	4.22E-06	1.06E-08	1.01E-02	1.05E-06	3.16E-06	
8	5.499754947	3.16E-06	3.37E-09	4.26E-03	7.91E-07	2.37E-06	
9	5.624693683	2.37E-06	1.07E-09	1.80E-03	5.93E-07	1.78E-06	
10	5.749632419	1.78E-06	3.37E-10	7.58E-04	4.45E-07	1.33E-06	
11	5.874571153	1.33E-06	1.07E-10	3.20E-04	3.34E-07	1.00E-06	
12	5.999509883	1.00E-06	3.38E-11	1.35E-04	2.50E-07	7.51E-07	
13	6.124448603	7.51E-07	1.07E-11	5.69E-05	1.88E-07	5.63E-07	
14	6.2493873	5.63E-07	3.38E-12	2.40E-05	1.41E-07	4.22E-07	
15	6.374325941	4.22E-07	1.07E-12	1.01E-05	1.06E-07	3.17E-07	
16	6.49926445	3.17E-07	3.38E-13	4.27E-06	7.92E-08	2.38E-07	
17	6.624202642	2.38E-07	1.07E-13	1.80E-06	5.94E-08	1.78E-07	
18	6.749140085	1.78E-07	3.39E-14	7.61E-07	4.45E-08	1.34E-07	
19	6.87407575	1.34E-07	1.07E-14	3.21E-07	3.34E-08	1.00E-07	
20	6.999007198	1.00E-07	3.39E-15	1.35E-07	2.51E-08	7.52E-08	
21	7.123928644	7.52E-08	1.07E-15	5.71E-08	1.88E-08	5.64E-08	
22	7.248826372	5.64E-08	3.40E-16	2.41E-08	1.41E-08	4.23E-08	
23	7.373667856	4.23E-08	1.07E-16	1.02E-08	1.06E-08	3.17E-08	
24	7.498375999	3.17E-08	3.40E-17	4.30E-09	7.91E-09	2.38E-08	
25	7.622768256	2.38E-08	1.07E-17	1.82E-09	5.91E-09	1.79E-08	
26	7.746413709	1.79E-08	3.38E-18	7.70E-10	4.39E-09	1.35E-08	
27	7.868302846	1.35E-08	1.06E-18	3.29E-10	3.22E-09	1.03E-08	
28	7.986115112	1.03E-08	3.26E-19	1.43E-10	2.29E-09	8.04E-09	
29	8.094761601	8.04E-09	9.66E-20	6.45E-11	1.50E-09	6.54E-09	
30	8.1843412	6.54E-09	2.58E-20	3.23E-11	8.00E-10	5.74E-09	
31	8.241011508	5.74E-09	5.09E-21	2.01E-11	2.54E-10	5.49E-09	
32	8.260643781	5.49E-09	4.16E-22	1.68E-11	2.47E-11	5.46E-09	
33	8.262602401	5.46E-09	3.69E-24	1.65E-11	2.23E-13	5.46E-09	
34	8.262620155	5.46E-09	3.00E-28	1.65E-11	1.82E-17	5.46E-09	
35	8.262620156	5.46E-09	0.00E+00	1.65E-11	0.00E+00	5.46E-09	
36	8.262620156	5.46E-09	0.00E+00	1.65E-11	0.00E+00	5.46E-09	

	А	В	С	D	Е	F
1	Newton's Metho	od				
2						
						x(k+1)=x(k)-f(x)/(df/dx))
	ı -	×(k)=[H+]			X	k+1)=x(
3			<u> </u>			
4	=-LOG(B4)		=B4^3+33619500000000*B4^4-(0.0000000000001*B4)-(5.03311E-22)-(0.0000000000537726*B4)	=3*B4^2+4*33619500000000*B4^3-(0.000000000001)-(0.00000000000537726)	=C4/D4	=B4-C4/D4
	=-LOG(B5)	=F4 =F5	=B5^3+33619500000000*B5^4-(0.0000000000001*B5)-(5.03311E-22)-(0.00000000000537726*B5)	=3*B5^2+4*3361950000000*B5^3-(0.00000000001)-(0.00000000000537726)	=C5/D5	=B5-C5/D5
7	=-LOG(B6) =-LOG(B7)	_	=B6^3+33619500000000*B6^4-(0.00000000000001*B6)-(5.03311E-22)-(0.0000000000537726*B6) =B7^3+3361950000000*B7^4-(0.00000000000001*B7)-(5.03311E-22)-(0.0000000000537726*B7)	=3*B6^2+4*33619500000000*B6^3-(0.000000000001)-(0.00000000000537726) =3*B7^2+4*33619500000000*B7^3-(0.000000000001)-(0.0000000000537726)	=C6/D6 =C7/D7	=B6-C6/D6 =B7-C7/D7
8	=-LOG(B7) =-LOG(B8)	_		=3*B8^2+4*33619500000000*B8^3-(0.0000000000001)-(0.000000000000537726)	=C7/D7 =C8/D8	=B7-C7/D7 =B8-C8/D8
_	=-LOG(B6) =-LOG(B9)	_	=B8^3+33619500000000 B8^4-(0.0000000000001 B8)-(5.03311E-22)-(0.000000000000537726 B8)	=3*B9^2+4*33619500000000*B9^3-(0.0000000000001)-(0.000000000000537726)	=C6/D6 =C9/D9	=B9-C9/D9
	=-LOG(B9) =-LOG(B10)	_		=3*B10^2+4*33619500000000 B9*3*(0.000000000000001)*(0.0000000000037726)	=C9/D9 =C10/D10	=B10-C10/D10
	=-LOG(B10) =-LOG(B11)		=B11^3+33619500000000 B10-4-(0.0000000000001 B10)-(3.03311E-22)-(0.000000000000337726 B10)	=3*B11^2+4*33619500000000 B10*3-(0.000000000000)-(0.00000000000337726)	=C10/D10	=B10-C10/D10
	=-LOG(B11)		=B12^3+33619500000000 B11 4-(0.0000000000001 B11)-(5.03311E-22)-(0.000000000000337720 B11)	=3*B12^2+4*33619500000000*B12^3-(0.0000000000001)-(0.00000000000537726)	=C11/D11	=B12-C12/D12
	=-LOG(B12)		=B13^3+33619500000000*B13^4-(0.000000000000001*B13)-(5.03311E-22)-(0.00000000000537726*B13)	=3*B13^2+4*33619500000000*B13^3-(0.0000000000001)-(0.00000000000537726)		=B13-C13/D13
	=-LOG(B14)	_	=B14^3+33619500000000*B14^4-(0.0000000000001*B14)-(5.03311E-22)-(0.00000000000537726*B14)	=3*B14^2+4*33619500000000*B14^3-(0.000000000001)-(0.00000000000537726)		=B14-C14/D14
	=-LOG(B15)	=F14	=B15^3+33619500000000*B15^4-(0.0000000000001*B15)-(5.03311E-22)-(0.00000000000537726*B15)	=3*B15^2+4*33619500000000*B15^3-(0.000000000001)-(0.00000000000537726)	=C15/D15	=B15-C15/D15
	=-LOG(B16)	=F15	=B16^3+33619500000000*B16^4-(0.000000000001*B16)-(5.03311E-22)-(0.00000000000537726*B16)	=3*B16^2+4*3361950000000*B16^3-(0.000000000001)-(0.00000000000537726)		=B16-C16/D16
	=-LOG(B17)	=F16	=B17^3+33619500000000*B17^4-(0.0000000000001*B17)-(5.03311E-22)-(0.0000000000537726*B17)	=3*B17^2+4*33619500000000*B17^3-(0.0000000000001)-(0.0000000000537726)		=B17-C17/D17
18	=-LOG(B18)		=B18^3+33619500000000*B18^4-(0.0000000000001*B18)-(5.03311E-22)-(0.0000000000537726*B18)	=3*B18^2+4*33619500000000*B18^3-(0.0000000000001)-(0.0000000000537726)	=C18/D18	=B18-C18/D18
19	=-LOG(B19)	=F18	=B19^3+33619500000000*B19^4-(0.0000000000001*B19)-(5.03311E-22)-(0.0000000000537726*B19)	=3*B19^2+4*33619500000000*B19^3-(0.000000000001)-(0.0000000000537726)	=C19/D19	=B19-C19/D19
20	=-LOG(B20)	=F19	=B20^3+33619500000000*B20^4-(0.0000000000001*B20)-(5.03311E-22)-(0.0000000000537726*B20)	=3*B20^2+4*33619500000000*B20^3-(0.000000000001)-(0.00000000000537726)	=C20/D20	=B20-C20/D20
21	=-LOG(B21)	=F20	=B21^3+33619500000000*B21^4-(0.0000000000001*B21)-(5.03311E-22)-(0.0000000000537726*B21)	=3*B21^2+4*33619500000000*B21^3-(0.0000000000001)-(0.0000000000537726)	=C21/D21	=B21-C21/D21
	=-LOG(B22)	=F21	=B22^3+33619500000000*B22^4-(0.0000000000001*B22)-(5.03311E-22)-(0.00000000000537726*B22)	=3*B22^2+4*33619500000000*B22^3-(0.0000000000001)-(0.0000000000537726)	=C22/D22	=B22-C22/D22
	=-LOG(B23)	=F22	=B23^3+33619500000000*B23^4-(0.0000000000001*B23)-(5.03311E-22)-(0.0000000000537726*B23)	=3*B23^2+4*33619500000000*B23^3-(0.0000000000001)-(0.0000000000537726)	=C23/D23	=B23-C23/D23
	=-LOG(B24)	=F23	=B24^3+33619500000000*B24^4-(0.00000000000001*B24)-(5.03311E-22)-(0.0000000000537726*B24)	=3*B24^2+4*33619500000000*B24^3-(0.0000000000001)-(0.0000000000537726)	=C24/D24	=B24-C24/D24
	=-LOG(B25)	=F24	=B25^3+33619500000000*B25^4-(0.0000000000001*B25)-(5.03311E-22)-(0.0000000000537726*B25)	=3*B25^2+4*33619500000000*B25^3-(0.000000000001)-(0.0000000000537726)	=C25/D25	=B25-C25/D25
	=-LOG(B26)	=F25	=B26^3+33619500000000*B26^4-(0.0000000000001*B26)-(5.03311E-22)-(0.0000000000537726*B26)	=3*B26^2+4*33619500000000*B26^3-(0.000000000001)-(0.0000000000537726)	=C26/D26	=B26-C26/D26
	=-LOG(B27)	=F26	=B27^3+33619500000000*B27^4-(0.00000000000001*B27)-(5.03311E-22)-(0.0000000000537726*B27)	=3*B27^2+4*33619500000000*B27^3-(0.000000000001)-(0.0000000000537726)	=C27/D27	=B27-C27/D27
	=-LOG(B28)		=B28^3+33619500000000*B28^4-(0.00000000000001*B28)-(5.03311E-22)-(0.0000000000537726*B28)	=3*B28^2+4*33619500000000*B28^3-(0.000000000001)-(0.0000000000537726)	=C28/D28	=B28-C28/D28
	=-LOG(B29)	=F28	=B29^3+33619500000000*B29^4-(0.0000000000001*B29)-(5.03311E-22)-(0.0000000000537726*B29)	=3*B29^2+4*33619500000000*B29^3-(0.000000000001)-(0.0000000000537726)	=C29/D29	=B29-C29/D29
	=-LOG(B30)	=F29	=B30^3+33619500000000*B30^4-(0.00000000000001*B30)-(5.03311E-22)-(0.0000000000537726*B30)	=3*B30^2+4*33619500000000*B30^3-(0.000000000001)-(0.0000000000537726)	=C30/D30	=B30-C30/D30
	=-LOG(B31)		=B31^3+33619500000000*B31^4-(0.0000000000001*B31)-(5.03311E-22)-(0.00000000000537726*B31)	=3*B31^2+4*33619500000000*B31^3-(0.000000000001)-(0.0000000000537726)	=C31/D31	=B31-C31/D31
	=-LOG(B32)			=3*B32^2+4*33619500000000*B32^3-(0.000000000001)-(0.0000000000537726)	=C32/D32	=B32-C32/D32
	=-LOG(B33)		=B33^3+33619500000000*B33^4-(0.00000000000001*B33)-(5.03311E-22)-(0.0000000000537726*B33)	=3*B33^2+4*33619500000000*B33^3-(0.000000000001)-(0.0000000000537726)	=C33/D33	=B33-C33/D33
	=-LOG(B34)	=F33	=B34^3+33619500000000*B34^4-(0.00000000000001*B34)-(5.03311E-22)-(0.0000000000537726*B34)	=3*B34^2+4*33619500000000*B34^3-(0.000000000001)-(0.0000000000537726)	=C34/D34	=B34-C34/D34
	=-LOG(B35)		=B35^3+33619500000000*B35^4-(0.00000000000001*B35)-(5.03311E-22)-(0.0000000000537726*B35)	=3*B35^2+4*33619500000000*B35^3-(0.000000000001)-(0.0000000000537726)	=C35/D35	=B35-C35/D35
36	=-LOG(B36)	=F35	=B36^3+33619500000000*B36^4-(0.000000000000001*B36)-(5.03311E-22)-(0.00000000000537726*B36)	=3*B36^2+4*33619500000000*B36^3-(0.0000000000001)-(0.0000000000537726)	=C36/D36	=B36-C36/D36

An alternate approach is to simply create a spreadsheet that computes each equilibrium speciation as a function of pH, then choose the pH that satisfies the charge balance.

This method is illustrated on the attached spreadsheet,

Other curbonate "systems"

pH of rainwater (open system - no solid present).

[H2 103*] = 1.00158 Ky Pco2 - Parbon source

[HCO3-] = K, [H2CO3*][H+]-1 equilibria

[co32-] = K2 [HCO3][H+]-1

[OH+] = Kn[H+]-1

[H+] = [OH-]+[HeO3-]+2[CO32-] } charge

Result after similar calculations is pH x 5.6

pH in aquiter (closed system - solid present)

Inhally water enters agrifer (limostere la CO3(s)) as rainwater in equilibrium with atmosphere.

In this case a mass balance is required to develop the equilibrium Water HCO3 OHCa2+ HCO3 CO2
50//d CaCO3(s)

Carbonate must some from dissolution of aquiter (400 andoing in rainwater is negligible), each la2+ in solution is matched with a 003^{2-} in solution. Once in solution the 003^{2-} engages in Various acid-base equilibria, but the Total Carbonate in solution must equal the Total Calcium in solution

	А	В	С	D	Е	F	G	Н	I	J
1	1.20297E-05									
2	5.37726E-12									
3	2.51656E-22									
4	1.81597E+13									
5										
6	3.63195E+13									
7	5.03311E-22									
8		Carbonate System with Solid Present								
9	[H+]	pН	[HCO3*]	[HCO3]	[CO3]	[Ca}	[OH]	Charge+	Charge-	∆charge
10	1.00E+00	0	1.20297E-05	5.38E-12	2.52E-22		1.00E-14	3.63E+13	5.39E-12	3.63E+13
11	1.00E-02	2	1.20297E-05	5.38E-10	2.52E-18	1.82E+09	1.00E-12	3.63E+09	5.39E-10	3.63E+09
12	1.00E-03	3	1.20297E-05	5.38E-09			1.00E-11	3.63E+07		3.63E+07
13	1.00E-04	4	1.20297E-05	5.38E-08	2.52E-14	1.82E+05	1.00E-10	3.63E+05	5.39E-08	3.63E+05
14	1.00E-05	5	1.20297E-05	5.38E-07	2.52E-12	1.82E+03	1.00E-09	3.63E+03		3.63E+03
15	1.00E-06	6	1.20297E-05	5.38E-06	2.52E-10		1.00E-08		5.39E-06	3.63E+01
16	1.00E-07	7	1.20297E-05	5.38E-05	2.52E-08	1.82E-01	1.00E-07	3.63E-01	5.39E-05	3.63E-01
17	1.00E-08	8	1.20297E-05	5.38E-04	2.52E-06	1.82E-03	1.00E-06	3.63E-03	5.44E-04	3.09E-03
18	8.00E-09	8.09691	1.20297E-05	6.72E-04	3.93E-06		1.25E-06			1.64E-03
19	6.00E-09	8.2218487	1.20297E-05	8.96E-04	6.99E-06	6.54E-04	1.67E-06	1.31E-03	9.12E-04	3.96E-04
20	5.00E-09	8.30103		1.08E-03	1.01E-05	4.54E-04			1.10E-03	-1.90E-04
21	5.50E-09	8.2596373	1.20297E-05	9.78E-04	8.32E-06	5.49E-04	1.82E-06	1.10E-03	9.96E-04	1.03E-04
22	5.41E-09	8.2668027	1.20297E-05	9.94E-04	8.60E-06		1.85E-06	1.06E-03	1.01E-03	5.00E-05
23	4.00E-09	8.39794	1.20297E-05	1.34E-03	1.57E-05	2.91E-04	2.50E-06	5.81E-04	1.38E-03	-7.97E-04
24	1.00E-10	10	1.20297E-05	5.38E-02	2.52E-02	1.82E-07	1.00E-04	3.63E-07	1.04E-01	-1.04E-01

Thus in the agenter we have $[H_2 to_3^*] = \underbrace{[H^+][H to_3^-]}_{K_1}$ $[H to_3^-] = \underbrace{[H^+][to_3^2]}_{K_2}$ earbonate equilibria

 $[Co_3^{2-1}] = \underbrace{K_{Sp}}_{[Ca^{2+1}]}$ $[CoH^{-1}] = K_w [H^{+1}]^{-1}$ $\begin{cases} water & dissociation \end{cases}$

[H+]+2[cq2+]=[OH-]+2[c032-]+[He03-] } charge balance

[cq2+] = [H2c03*] + [HC03-] + [C032-] } material balance

Using similar analyses as before one can write an equation in terms of [H+] and determine the resulting equilibrium pH.

In this case the result is pH x 9.9