Seat No.: _			
Subi	iect C	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (NEW) - EXAMINATION – SUMMER 2018 Code:2150703 Date:04/05/2018	
Subj Time Instru	e:02: ctions: 1. Att 2. Ma	Name: Analysis and Design of Algorithms 30 PM to 05:00 PM Total Marks: 70 tempt all questions. ake suitable assumptions wherever necessary. gures to the right indicate full marks.	
Q.1	(a)	Define Algorithm. Discuss key characteristics of algorithm.	03
	(b)	Prove or disprove that $f(n) = 1 + 2 + 3 + \dots + n \in \Theta(n^2)$.	04
	(c)	Which are the basic steps of counting sort? Write counting sort algorithm. Derive its time complexity in worst case.	07
Q.2	(a)	What are the advantages of dynamic programming method over devide-&-conquer method?	03
	(b)	Solve following recurrence using recursion tree method: $T(n) = 3T(n/3) + n^3$.	04
	(c)	Write standard(conventional) algorithm and Strassen's algorithm for matrix multiplication problem. What is the recurrence for Strassen's algorithm? Solve it using master method to derive time complexity of Strassen's algorithm.	07
		OR	
	(c)	Discuss best case, average case and worst case time complexity of quick sort.	07
Q.3	(a)	Justify with example that shortest path problem satisfies the principle of optimality.	03
	(b)	Which are the three basic steps of the development of the dynamic programming algorithm? Mention any two examples of dynamic programming that we are using in real life.	04
	(c)	Solve the following making change problem using dynamic programming method: Amount = Rs. 7 and Denominations: (Rs. 1, Rs. 2 and Rs. 4)	07
		OR	
Q.3	(a)	Justify with example that longest path problem does not satisfy the principle of optimality.	03
	(b)	Discuss general characteristics of greedy method. Mention any two examples of greedy method that we are using in real life.	04

(c) Solve all pair shortest path problem for the following graph using Floyd's **07** algorithm.

- Q.4 (a) What are the disadvantages of greedy method over dynamic programming 03 method?
 - (b) What is DFS? Explain with example. Show the ordering of vertices produced by Topological-sort for the following graph.

(c) Solve the following Knapsack Problem using greedy method. Number of items = 5, knapsack capacity W = 100, weight vector = $\{50, 40, 30, 20, 10\}$ and profit vector = $\{1, 2, 3, 4, 5\}$.

OR

Q.4 (a) Write an algorithm for Huffman code.

03

04

- **(b)** What is an approximation algorithm? Explain performance ratio for approximation algorithm.
- (c) Explain use of branch and bound technique for solving assignment problem. 07
- Q.5 (a) Write Naive string-matching algorithm. Explain notations used in the 03 algorithm.
 - (b) Explain polynomial-time reduction algorithm. 04
 - (c) Working modulo q=11. How many spurious hits does the Rabin-Karp matcher encounter in the text T=3141592653589793 when looking for the pattern P=26?

Q.5	(a)	Which are the three major concepts used to show that a problem is an NP-	03
	(b)	Complete problem? Explain breadth first search with example.	04
	(c)	Find minimum spanning tree for the following undirected weighted graph using Kruskal's algorithm.	07
