E-Commerce & Warehouse Intelligence Platform (EWIP)

Hernandez, Jan Cedric M.

University of the Philippines Diliman

Department of Industrial Engineering and Operations Research

IE 272: Data Engineering

Table of Contents

Lis	t o	f Figures	4
Lis	t o	f Tables	5
I.	I	ntroduction / Background	6
II.	Е	Business Case	6
III.		Business Questions	7
IV.		Project Timeline	8
V.	F	Proposed System Architecture	9
a	а.	High Level System Architecture	9
k	٥.	Data Marts	9
C	.	Data Layers	10
e	€.	Data Model	16
f	•	ETL Process	19
٤	5.	Metadata Documentation	20
VI.		Physical Design of Your Data Engineering Solution	22
a	a.	Architectural Overview and Implementation Details	22
k) .	SQL Scripts for Implementations	23
i.		Importing libraries	23
i	i.	Extracting from Source Table	23
i	ii.	Compare New and Changed Data with the Master Table	24
i	v.	Insert into Extract Tables	24
ι	/ .	Clean X Table and Insert Into Error Table	25
ν	∕i.	Process Clean Data and Insert Into C Table	26
ν	∕ii.	Update Master Table (M Table)	26
ι	⁄iii.	. Initiate Transform Processes	28
i.	х.	Select Data from T Table and Insert to I and U Table	29
λ	۲.	Insert I Table into D Table	30
λ	αi.	Insert U Table Data (Type 2) into D Table	30
λ	αij.	Update Indicators to Current in D Table	31
c	.	Proposed Data Warehouse Design	32
VII.		Reports Generation	35
VIII		Project Management	42
IX.		Conclusion	42

Χ.	References	42
XI.	Appendices	43
a.	ERD for LPMS	43
b.	ERD for UMS	43
c.	ERD for OMS	44
d.	ERD for WMS	45
e.	Relational Model for LPMS	46
f.	Relational Model for UMS	47
g.	Relational Model for OMS	48
h.	Relational Model for WMS	49

List of Figures

Figure 1. E-Commerce Market Volume Outlook and Forecast	7
Figure 2. System Architecture Design for the EWIP Project	9
Figure 3. Sample Data Model for Each Type of Fact Table	16
Figure 4. Data Models for Data Warehouse Tables Also Included in Marketplace Data Mart	17
Figure 5. Data Models for Data Warehouse Tables Also Included in Warehouse Data Mart	18
Figure 6. ETL Process for Dim Tables	.19
Figure 7. ETL Process for Fact Tables (Detail, Summary, Snapshot)	.20
Figure 8. Fact Tables and Their Attributes Under Marketplace Data Mart	.33
Figure 9. Dim Tables and Their Attributes Under Marketplace Data Mart	.34
Figure 10. Fact Tables and Their Attributes Under Warehouse Data Mart	35
Figure 11. Dim Tables and Their Attributes Under Warehouse Data Mart	35
Figure 12. Sample Power BI Dashboard for Platform Performance Reporting	39

List of Tables

Table 1. High-Level View of the Project's Major Phases and Key Activities	8
Table 2. Proposed Table Designs for the Data Warehouse	10
Table 3. High-Level Source-to-Target (S2T) Map for the Proposed Data Warehouse Design	11
Table 4. Sample Detailed Source-to-Target (S2T) Map for the 3 Data Warehouse Table	13
Table 5. Sample Documentation for the fact_platform_peformance_summary table	21
Table 6. Proposed architecture and implementation of the EWIP system	22
Table 7. Complete List of Tables in the Proposed Data Warehouse and Data Marts	32
Table 8. Gantt Chart for the EWIP Implementation	40

I. Introduction / Background

In the past, the emergence of e-commerce giants like Alibaba and JD.com can be attributed to the 2003 SARS outbreak while the significant increase in shareholder value of American Express and Starbucks during the 2008–2009 global financial crisis is related to their strategy shifting towards digital operating model (Candelon et al., 2020). During the COVID-19 pandemic, there was another surge in the e-commerce industry. This caused travel restrictions and health concerns, prompting a significant shift towards online shopping and digital transactions. E-commerce is still expected to flourish in the market with the growing accessibility to the internet and mobile phones together with several digitalization initiatives reaching rural communities (Fabri & Valverde Márquez, 2020, Dragomirov, 2020).

E-commerce encompasses business transactions done electronically between or among organizations and between organizations and individuals either locally or globally. In the context of the Philippines, Shopee and Lazada are the most locally known e-commerce companies, along with other competitors such as TikTok Shop, Carousell, and E-bay. These companies provide a platform, usually through mobile apps and websites, where several consumers can buy various products from different sellers in the digital space. This approach also enables digital marketplaces to operate at any time of the day as the systems are designed to work without human support (Fabri & Valverde Márquez, 2020).

In a small to medium-scale company, operations can be initiated with four key information systems. First, the Order Management System (OMS) records all order transactions and relevant data about items, sellers, buyers, vouchers, and fulfillment. Second, the Listing & Promotion Management System (LPMS) captures details about shop listings and promotional strategies, including items and vouchers related to orders. Third, since every order transaction involves both buyers and sellers, a User Management System (UMS) is essential for storing user-related data. Finally, any e-commerce operation involving warehousing activities requires a Warehouse Management System (WMS) to manage inbound and outbound orders, staff attendance, and inventory operations.

This paper discusses the construction of a functional data warehouse to integrate data from these four information systems (IS). By applying dimensional modeling to the relational models of these systems, the data warehouse enables efficient data processing and storage.

II. Business Case

Based on a market volume forecast by Statista (2024), the e-commerce market has shown an increasing trend over the past three years and is projected to grow threefold by 2030. This growth is expected to result in a significant surge in the number of transactions for e-commerce businesses, leading to an exponential increase in data volume, variety, and complexity. If the current databases used by e-commerce businesses are not designed to handle this scale, the data systems may struggle with querying historical data, resulting in inefficiencies.

Figure 1. E-Commerce Market Volume Outlook and Forecast (Statista, 2024)

Without a data warehouse, data users must query various normalized tables containing raw data from information systems and manually perform logic calculations for different metrics. This approach leads to slow query performance, higher resource utilization, and an increased risk of metric logic misalignment across functional teams. Given the high volume, variety, and complexity of data in e-commerce operations, it is essential for businesses to have a functional and efficient data warehouse. A data warehouse provides an integrated data processing system, standardizes metric definitions through single source-of-truth tables, and enables efficient and accurate data reporting to support data-driven decision-making and enhance operational efficiency.

III. Business Questions

The data warehouse primarily aimed to output various dimensions and fact tables for streamlined data reporting. The data warehousing solution aimed to answer the following questions:

- 1) What are the monthly historical platform performance and month-on-month (MoM) growth in terms of average daily order (ADO), average daily gross merchandise value (ADGMV), average active buyers, average active shops, and average order-to-delivery (OTD) time?
- 2) What are the top item categories for monthly ADO and ADGMV? Which item categories have the highest month-on-month ADO and ADGMV growth?
- 3) What are the top-performing shop categories in terms of monthly ADO and ADGMV? What shop categories contribute to more than 10% of the platform ADGMV?
- 4) What is the monthly historical performance and MoM growth of the overall warehouse and each warehouse in terms of ADO, average daily item (ADI) count, productivity rate, and idle rate?
- 5) Who are the warehouse staff who have last 30-day productivity less than 90% of the average rate of the top 10 staff?

IV. Project Timeline

The project implementation is divided into 6 phases targeted to be finished after 10 weeks as outlined in Table 1. The first phase is the requirement analysis phase to check stakeholder identification and business requirements before completing the final project charter. This is targeted to be performed in 2 weeks. Next would be the data modeling phase to design and revise the proposed data models with stakeholder alignment for 1 week. Third, the ETL implementation phase will be completed in 2 weeks with corresponding testing and validation for another 2 weeks. Lastly, around 2 weeks is allotted for the user acceptance test phase where the users will be requested to provide feedback that will need any revision before the final phase of deployment and cascade for the turnover and closing of the project for the project's final week.

Table 1. High-Level View of the Project's Major Phases and Key Activities

Week	Phase	Tasks
		Identify key stakeholders
	Requirement	Gathering stakeholder and business requirements
1	Analysis	Source system analysis (architecture, data, data type)
	741013	Completing project charter
		Initial stakeholder alignment
		Designing dim tables
3	Data Modeling	Designing fact tables
"	Data Modelling	Designing summary and snapshot fact tables
		Stakeholder alignment
		ETL for the dim tables
4-5	ETL	ETL for the fact tables
4-3	Implementation	ETL for the summary fact tables
		Stakeholder alignment on logic
		Initial testing (low-volume data)
6-7	Testing and	Possible debugging
0-7	Validation	Volume testing (high-volume)
		Possible debugging and optimization
	UAT and	Production testing for selected users
8-9	Revisions	Feedback alignment
	TICVISIONS	Actions for feedback
	Denloyment	Process and technical documentation
10	Deployment and Cascade	DW Cascade to all users
		Closing the project

A detailed Gantt chart is also presented in the project management portion of the paper.

V. Proposed System Architecture

a. High Level System Architecture

Figure 2. System Architecture Design for the EWIP Project

Figure 2 shows the proposed system architecture showing the flow of data from the source systems up to the output. Source data will be fetched from Postgres databases and flat file ingestion. The ETL process will be performed via dbt tasks orchestrated by Airflow before storing in the Google Cloud-based data warehouse. The two (2) data marts will be populated from the data warehouse by selecting only the relevant data per business domain. The data can be consumed by Power BI for visualization, Google BigQuery for ad hoc queries, and GSheet for tabular reporting. Further details are provided in the next sections.

b. Data Marts

In the proposed system, there will be 2 data marts that serve as specialized subsets of the data warehouse for each business domain. The first one is the marketplace data mart (MDM) which contains almost all data that can be browsed in the e-commerce application. It includes data regarding orders, users, items, parcels, vouchers, and fulfillment. The other is the warehouse data mart (WDM) which involves data in the warehouse fulfillment operations such as data related to purchase orders, outbound orders, staff performance, warehouse tasks, and storage.

Data marts are part of the architecture due to their several advantages. First, it allows - intuitive distinction of group of tables to allow self-service analytics and ease of use. Since each

domain has its own set of metrics and reporting needs, the division of data per domain offers clarity and relevance for the stakeholders. It also contributes to query performance optimization since the data relevant to the business domain are the only ones included which reduces the amount of data to be processed and speeds up queries. Third, it also helps in the data governance side to allow easier table-level or mart-level access control. Lastly, it supports scalability as new data marts can easily be built for other specific business domains or any business operation expansion.

c. Data Layers

In the proposed design of the data warehouse and data marts, there are 4 types of tables according to the stakeholder's needs: dim, detail fact, summary fact, and snapshot fact tables as described in Table 2.

Table Type	Frequency	Data	Sample Tables					
		Mart						
Dim Tables	20	MDM	buyer, seller, item, date, time, location, shipping					
		WDM	warehouse, staff, supplier					
Detail Fact Tables	8	MDM	order, order item, parcel					
		WDM	outbound task, outbound order					
Summary Fact	5	MDM	performance of platform, seller, and SKU					
Tables		WDM	staff productivity, warehouse performance					
Snapshot Fact	3	MDM	historical parcel status					
Tables		WDM	staff attendance, storage					

Table 2. Proposed Table Designs for the Data Warehouse

In the data warehouse, there are several dim tables per entity such as order, item, warehouse, time, date, buyer, and seller. For the fact tables, there are 3 types of tables generated. First are detailed fact tables which contain information on a transactional level. Available granularities include levels of order, parcel, order item, outbound task, outbound order, inbound task, and inbound order stock-keeping unit(SKU). Based on the data of the detail fact tables, summary fact tables were made readily for management-level report data to have standardized logic calculation and single sources of truth for the business' key metrics (SSOT). These tables contain the historical performance of the platform, sellers, items, warehouse, and staff. Lastly, there are also snapshot fact tables. These tables are designed for historical tracking including historical parcel status, staff attendance, and storage history.

d. Source Systems

For the case study, there are four information systems (IS) catering to the whole operation of the e-commerce platform. First, there is the order management system (OMS) which contains order transaction and order-related data such as order ID, order items, and fulfillment status. Second, there is a user management system (UMS) that stores all user-related data whether they act as buyer, seller, or admin. This also includes the preferred pickup locations for sellers, and payment options, and delivery details for the buyers which are all configured in the e-commerce application. There is also a listings & promotion management system (LPMS) where sellers register their listings and promotional vouchers. Lastly, data will also be sourced from the warehouse management system

(WMS) for all warehouse data including inbound, outbound, and fulfillment operation data. For this case study, the current OLTP databases of the business are hosted in the PostgreSQL Cloud. In addition, some data will also be sourced from flat-file ingestion for warehouse-specific data necessary for profiling the dim_warehouse table.

The entity relationship diagram and relational model designs of the 4 databases can be browsed in the appendix. These were transformed into dimensional models wherein the high-level source-to-target (S2T) mapping can be browsed in Table 3. For the current design, most data warehouse tables get data from a single table from the OLTP database while others get data from 2-5 source tables. The data warehouse the dim_location table gets from 5 source tables to serve as a complete mapping of all location-related data from all available data sources. Sample detailed S2T maps for fact_order_detail, dim_warehouse, and fact_platform_peformance_summary were also provided in Table 4.

Table 3. High-Level Source-to-Target (S2T) Map for the Proposed Data Warehouse Design

			Target	
Row	System Source	Source Table	Data Mart	Target Table
1	OMS	order	MDM	dim_order
2	OMS	order	MDM	dim_order_parcel
3	OMS	fulfillment	MDM	dim_parcel_status
4	WMS	outbound_order	MDM	dim_parcel_status
5			MDM	dim_time
6			MDM	dim_date
7	OMS	courier	MDM	dim_shipping
8	OMS	fulfillment	MDM	dim_operator
9	OMS	courier	MDM	dim_operator
10	OMS	fulfillment	MDM	dim_location
11	UMS	delivery_detail	MDM	dim_location
12	UMS	pickup_location	MDM	dim_location
13	UMS	user	MDM	dim_location
14	Flat File Ingestion	wh_information_ingestion	MDM	dim_location
15	UMS	payment_option	MDM	dim_payment
16	LPMS	item	MDM	dim_item
17	LPMS	listing	MDM	dim_item
18	UMS	seller	MDM	dim_item
19	UMS	seller	MDM	dim_seller
20	UMS	user	MDM	dim_seller
21	UMS	user	MDM	dim_buyer
22	LPMS	voucher	MDM	dim_voucher
23	LPMS	voucher_redemption	MDM	dim_voucher_mix
24	LPMS	voucher	MDM	dim_voucher_mix
25	OMS	order	MDM	fact_order_detail
26	OMS	item	MDM	fact_order_detail
27	WMS	outbound_order	MDM	fact_order_detail

28	LPMS	voucher_redemption	MDM	fact_order_detail
29	OMS	order	MDM	fact_parcel_detail
30	OMS	item	MDM	fact_parcel_detail
31	WMS	outbound_order	MDM	fact_parcel_detail
32	OMS	fulfillment	MDM	fact_parcel_detail
33	OMS	order	MDM	fact_order_item_detail
34	OMS	item	MDM	fact_order_item_detail
35	WMS	outbound_task	MDM	fact_order_item_detail
36	OMS	fulfillment	MDM	fact_parcel_status_snapshot
37	MDM	fact_order_detail	MDM	fact_platform_performance_summary
38	MDM	fact_order_item_detail	MDM	fact_sku_performance_summary
39	MDM	fact_order_detail	MDM	fact_seller_performance_summary
40	Flat File Ingestion	wh_information_ingestion	WDM	dim_warehouse
41	WMS	outbound_task	WDM	dim_task
42	WMS	inbound_task	WDM	dim_task
43	WMS	staff	WDM	dim_staff
44	WMS	supplier	WDM	dim_supplier
45	WMS	storage	WDM	dim_storage
46	WMS	inbound_order	WDM	dim_purchase_order_asn
47	WMS	purchase_order	WDM	dim_purchase_order_asn
48	WMS	outbound_task	WDM	fact_outbound_task_detail
49	WMS	outbound_order	WDM	fact_outbound_sku_detail
50	WMS	outbound_task	WDM	fact_outbound_sku_detail
51	WMS	outbound_order	WDM	fact_outbound_order_detail
52	WMS	inbound_task	WDM	fact_inbound_task_detail
53	WMS	inbound_order	WDM	fact_inbound_sku_detail
54	WMS	purchase_order	WDM	fact_inbound_sku_detail
55	WMS	storage	WDM	fact_storage_inventory_snapshot
56	WMS	attendance	WDM	fact_attendance_snapshot
57	WDM	fact_attendance_snapshot	WDM	fact_staff_prod_summary
58	WDM	outbound_task	WDM	fact_staff_prod_summary
59	WDM	inbound_task	WDM	fact_staff_prod_summary
60	WDM	outbound_order	WDM	fact_warehouse_summary
61	WDM	outbound_task	WDM	fact_warehouse_summary
62	WDM	fact_staff_prod_summary	WDM	fact_warehouse_summary

Note: OMS – order management system, WMS – warehouse management system, UMS – user management system, LPMS – listings and promotions management system, MDM – marketplace data mart, WDM – warehouse data mar

Table 4. Sample Detailed Source-to-Target (S2T) Map for the 3 Data Warehouse Table

TARGET						SOUR	CE						HISTORY				
Warehouse Table	Attribute Name	Definition	Sample Values	Target Data Type	Target Length	Null able	Source System	Source File/Table	Source Field/Column	Source Data Type	Source Length	Transformation Rule	Analytical or Detail	Run Frequen cy	Insert Into/Overwr ite	Change Frequency	History Strategy Type
fact_order_detail	order_key	Surrogate key to identify the order and also be used as a foreign key to identify order details	1,2,3	bigint	19	N	OMS, MDM	oms.order, mdm.dim_order	order_id, order_key	bigint, bigint	19, 19	order_key from oms.order join on mdm.dim_order using (order_id)	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	buyer_key	Foreign key linking to the dim_buyer table to identify order's buyer	1,2,3	int	10	N	OMS, MDM	oms.order, mdm.dim_buye	buyer_id, buyer_key	bigint, int	19, 10	buyer_key from oms.order join on mdm.dim_buyer using (buyer_id)	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	seller_key	Foreign key linking to the dim_seller table to identify the order's seller	1,2,3	int	10	N	OMS, MDM	oms.order, mdm.dim_selle r	seller_id, seller_key	bigint, int	19, 10	seller_key from oms.order join on mdm.dim_seller using (seller_id)	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	voucher_mix_ key	Foreign key linking to the dim_voucher_mix table to identify any voucher mix used in the order	1,2,3	bigint	19	Υ	OMS, LPMS, MDM	oms.order, lpms.voucher_r edemption, mdm.dim_vouc her_mix	order_id, voucher_id, voucher_mix_ke y	bigint, bigint, bigint	19, 19, 19	voucher_mix_key from oms.order join on lpms.voucher_redemption using (order_id) join on mdm.dim_voucher_ms using (voucher_id)	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	voucher_total _value	Total value of all used vouchers for the order	1.0000, 100.0000, 100000.0000	decimal	(10, 4)	Υ	OMS, LPMS	oms.order, lpms.voucher_r edemption	order_id, redeemed_amo unt	bigint, decimal	19, (10, 4)	sum(redeemed_amount) from oms.order join on lpms.voucher_redemption using (order_id)	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	payment_opti on_key	Foreign key linking to the dim_payment_option tableto identify payment method	1,2,3	bigint	19	N	OMS, MDM	oms.order, mdm.dim_selle r	payment_option _id, payment_option _key	bigint, bigint	19, 19	payment_option_key from oms.order join on mdm.dim_payment using (payment_option_id)	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	shipping_fee	Amount of total shipping fee cost paid by buyer	1.0000, 100.0000, 100000.0000	decimal	(10, 4)	N	OMS	oms.order	shipping_fee	decimal	(10, 4)	order from oms.order	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	gmv	Gross merchandise value which is the total value of the goods	1.0000, 100.0000, 100000.0000	decimal	(10, 4)	N	OMS	oms.order	gmv	decimal	(10, 4)	gmv from oms.order	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	order_create _date_key	Foreign key to the dim_date table to identify order's create date	1,2,3	bigint	19	N	OMS, MDM	oms.order, mdm.dim date	order_create_ti me, date_key	timestamp , bigint	_, 19	date_key from oms.order a join on mdm.dim_date b on date(a.order_create_time) = b.date	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	order_create _time_key	Foreign key to the dim_time table to identify order's create timestamp	1,2,3	bigint	19	N	OMS, MDM	oms.order, mdm.dim_time	order_create_ti me, time_key	timestamp , bigint	_, 19	time_key from oms.order a join on mdm.dim_time b on a.order_create_time = b.timestamp	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	unique_sku_ count	Number of distinct SKUs in the order	1,2,3	smallint	5	N	OMS	oms.item	sku_id	varchar	20	count(distint sku_id) from oms.item group by order id	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	total_sky_qty	Total quantity of items in the order	1,2,3	smallint	5	N	OMS	oms.item	qty	smallint	5	sum(qty) from oms.item group by order_id	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	wh_key	Foreign key linking to the dim_warehouse table to identify the assigned warehouse, if any	1,2,3	smallint	3	Υ	OMS, WMS, WDM	oms.order, wms.outbound _order, wdm.dim_ware house	wh_id, wh_key	smallint, smallint	3, 3	wh_key from oms.order left join wms.oubound_order using (order_id) left join wdm.dim_warehouse using (wh_id)	Detail	Daily	Insert Into	N/A	N/A
fact_order_detail	parcel_count	Number of parcels for the order	1,2,3	smallint	3	N	OMS	oms.order	parcel_id	bigint	19	count(parcel_id) from oms.order	Detail	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	date_key	Foreign key to the dim_date table, representing the relevant date for time-series metrics	1,2,3	bigint	19	N	MDM	mdm.fact_order _detail, mdm.dim_date	date_key	bigint	19	distinct date_key_ from mdm.fact_order_detail	Detail	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l1d_ado	Average daily orders for the last 1 day	1000000.1234, 10000000.1234, 10000000.1234	decimal	(12, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	order_key, date_key	bigint, bigint	19, 19	count(order_key)/1.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date = current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l7d_ado	Average daily orders for the last 7 days	1000000.1234, 10000000.1234, 10000000.1234	decimal	(12, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	order_key, date_key	bigint, bigint	19, 19	count(order_key)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '7 days' and current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l30d_ado	Average daily orders for the last 30 days	1000000.1234, 10000000.1234, 10000000.1234	decimal	(12, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	order_key, date_key	bigint, bigint	19, 19	count(order_key)/30.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '30 days' and current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l1d_adgmv	Average daily GMV for the last 1 day	10000000.1234, 100000000.1234, 100000000.1234	decimal	(15, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	gmv, date_key	decimal, bigint	(10, 4), 19	sum(gmv)/1.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date = current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l7d_adgmv	Average daily GMV for the last 7 days	10000000.1234, 100000000.1234, 100000000.1234	decimal	(15, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	gmv, date_key	decimal, bigint	(10, 4), 19	sum(gmv)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '7 days' and current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A

dim_warehouse	wh_postal_c ode	Postal code of the warehouse's location	123,456,782,468	smallint	4	N	Flat File Ingestion	wh_information _ingestion	wh_postal_code	smallint	4	wh_postal_code from wh_information_ingestion	Detail	Monthly	Insert Into	No	N/A
dim_warehouse	wh_brgy	Warehouse's barangay address	Wack-Wack, Alcadesma, Poblacion	varchar	30	N	Flat File Ingestion	wh_information _ingestion	wh_brgy	varchar	30	wh_brgy from wh_information_ingestion	Detail	Monthly	Insert Into	No	N/A
dim_warehouse	wh_city	Warehouse's city address	Mandaluyong, Bansud, Manila	varchar	30	N	Flat File Ingestion	wh_information _ingestion	wh_city	varchar	30	wh_city from wh_information_ingestion	Detail	Monthly	Insert Into	No	N/A
dim_warehouse	wh_region	Warehouse's geographic region address	Luzon, Visayas, Mindanao	varchar	30	N	Flat File Ingestion	wh_information _ingestion	wh_region	varchar	30	wh_region from wh_information_ingestion	Detail	Monthly	Insert Into	No	N/A
dim_warehouse	wh_name	Designated name of the warehouse	LUZ01, VIZ02, MIN03	varchar	5	N	Flat File Ingestion	wh_information _ingestion	wh_name	varchar	5	wh_name from wh_information_ingestion	Detail	Monthly	Insert Into	No	N/A
dim_warehouse	wh_id	Identification for warehouse (natural key)	1,2,3	smallint	3	N	WMS	wms.outbound _order	wh_id	smallint	3	distinct(wh_id) from wms.outbound_order	Detail	Monthly	Insert Into	No	N/A
dim_warehouse	wh_key	Foreign key linking to the dim_warehouse table to identify the assigned warehouse, if any	1,2,3	serial	3	N	N/A	N/A	N/A	N/A	N/A	system generated	N/A	N/A	N/A	N/A	N/A
fact_platform_pefor mance_summary	l30d_otd_tim e	Average on-time delivery time (in hours) for the last 30 days	1.0000, 10.1234, 99.9999	decimal	(6, 4)	N	мдм	mdm.fact_parc el_detail, mdm.dim_date	order_create_ti me_key, delivered_time_ key, date_key	bigint, bigint, bigint	19, 19, 19	(delivered_time_key - order_create_time_key)/(count(parcel_id) * 3600.0000) from mdm.fact_parcel_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where a.delivered_time_key is not null and b.date between current_date - interval '30 days' and current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l7d_otd_time	Average on-time delivery time (in hours) for the last 7 days	1.0000, 10.1234, 99.9999	decimal	(6, 4)	N	MDM	mdm.fact_parc el_detail, mdm.dim_date	order_create_ti me_key, delivered_time_ key, date_key	bigint, bigint, bigint	19, 19,	(delivered_time_key - order_create_time_key)/(count(parcel_id) * 3600.0000) from mdm.fact_parcel_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where a.delivered_time_key is not null and b.date between current_date - interval '7 days' and current_date - interval '1 day' (delivered_time_key -	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l1d_otd_time	Average on-time delivery time (in hours) for the last 1 day	1.0000, 10.1234, 99.9999	decimal	(6, 4)	N	мдм	mdm.fact_parc el_detail, mdm.dim_date	order_create_ti me_key, delivered_time_ key, date_key	bigint, bigint, bigint	19, 19, 19	(delivered_time_key - order_create_time_key)/(count(parcel_id) * 3600.0000) from mdm.fact_parcel_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where a.delivered_time_key is not null and b.date = current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l30d_avg_acti ve_shops	Average number of active shops per day in the last 30 days	1000000.1234, 10000000.1234, 10000000.1234	decimal	(12, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	seller_key, date_key	int, bigint	10, 19	count(distinct seller_key)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '30 days' and current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l7d_avg_activ e_shops	Average number of active shops per day in the last 7 days	1000000.1234, 10000000.1234, 10000000.1234	decimal	(12, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	seller_key, date_key	int, bigint	10, 19	count(distinct seller_key)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '7 days' and current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l1d_avg_activ e_shops	Average number of active shops per day in the last 1 day	1000000.1234, 10000000.1234, 10000000.1234	decimal	(12, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	seller_key, date_key	int, bigint	10, 19	count(distinct seller_key)/1.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date = current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l30d_avg_acti ve_buyers	Average number of active buyers per day in the last 30 days	1000000.1234, 1000000.1234, 10000000.1234	decimal	(12, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	buyer_key, date_key	int, bigint	10, 19	count(distinct buyer_key)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '30 days' and current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l7d_avg_activ e_buyers	Average number of active buyers per day in the last 7 days	1000000.1234, 1000000.1234, 10000000.1234	decimal	(12, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	buyer_key, date_key	int, bigint	10, 19	count(distinct buyer_key)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '7 days' and current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l1d_avg_activ e_buyers	Average number of active buyers per day in the last 1 day	1000000.1234, 1000000.1234, 10000000.1234	decimal	(12, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	buyer_key, date_key	int, bigint	10, 19	count(distinct buyer_key)/1.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date = current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A
fact_platform_pefor mance_summary	l30d_adgmv	Average daily GMV for the last 30 days	10000000.1234, 100000000.1234, 100000000.1234	decimal	(15, 4)	N	MDM	mdm.fact_order _detail, mdm.dim_date	gmv, date_key	decimal, bigint	(10, 4), 19	sum(gmv)/30.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '30 days' and current_date - interval '1 day'	Analytical	Daily	Insert Into	N/A	N/A

dim_warehouse	total_land_ar ea	Total land area of the warehouse in sq meters	1000000.1234, 10000000.1234, 10000000.1234	decimal	(12, 4)	N	Flat File Ingestion	wh_information _ingestion	total_land_area	decimal	(12, 4)	total_land_area from wh_information_ingestion	Detail	Monthly	Insert Into	Rarely	SCD Type 2
dim_warehouse	operating_ho urs	Operational warehouse of the warehouse	10:00 - 20:00, 12:00 - 22:30, 8:30 - 80:00	varchar	14	N	Flat File Ingestion	wh_information _ingestion	operating_hours	varchar	14	operating_hours from wh_information_ingestion	Detail	Monthly	Insert Into	Rarely	SCD Type 2
dim_warehouse	is_active	1 if active, 0 if not operational	1, 0	boolean		N	Flat File Ingestion	wh_information _ingestion	is_active	boolean		is_active from wh_information_ingestion	Detail	Monthly	Insert Into	Rarely	SCD Type 2

e. Data Model

For the data warehouse design, dimensional modelling was used utilizing star schema. This was chosen for its simplicity since query would only require 1-level of table join avoiding multi-level joins and promotes efficient ETL process due to clear separation of processing of the dim and fact tables. In addition, this will also result in relatively faster query performance due to less complex join. Sample data models with the corresponding table design are shown in Figure 3.

Figure 3. Sample Data Model for Each Type of Fact Table

The complete list of data models for all fact tables of the proposed data warehouse design is also shown in Figures 4-5. Illustrated here are the dim tables that can be joined per fact table depending on the use case.

Figure 4. Data Models for Data Warehouse Tables Also Included in Marketplace Data Mart

Figure 5. Data Models for Data Warehouse Tables Also Included in Warehouse Data Mart

f. ETL Process

For the ETL process of the data warehouse tables, the two processes outlined in figures 6-7 for dim and fact tables, respectively, will be followed as adapted from Schmitz's (2014) methods.

For the extract part of the ETL process for dim tables, the data will be inserted into the staging table from the raw source tables. Each row will be then compared with the master table to choose rows for insertion or update (i.e., which are new data) to be inserted in the extract table. Depending if the data is clean or conformant to standards, they are either inserted into the error or changed table. Then, the master table will be updated to reflect the changes done for the specific data. All necessary transformation operations will be performed in the contents of the changed table according to each attribute before inserting it into the transform table. The content will then be compared to the final dim table to check if each row is for insertion or update and will be inserted into either the insert or update table. The content of these 2 tables will now be loaded into the final dim table by either inserting into or updating operations. Lastly, flag indicators can be updated, if any. There will be an audit table for each phase of the ETL process for tracking of operations done by each task. Data quality checks will also be incorporated into the ETL pipeline to monitor any unexpected data output and format.

Figure 6. ETL Process for Dim Tables

The ETL process for the 3 types of fact tables follows almost the same process. Data from the raw table and or ingestion are inserted into the staging table. Transformation operations are then performed if needed, and data are converted into the corresponding surrogate keys of the dim tables.

The processed data will be inserted into the transform table. Depending on whether the data is conformant or not with the business rules, they can either be inserted into the error table or insert table. All clean data will then be loaded into the snapshot fact or detail fact tables. For the summary fact tables which contain aggregated data, note that data sources are the detail fact tables wherein there will also be checkpoints on whether the summary transform data are conformant or not to the business standards. The same practice for audit tables and data quality checks will also be reinforced for the fact tables.

Figure 7. ETL Process for Fact Tables (Detail, Summary, Snapshot)

g. Metadata Documentation

Before the end of the project, it is expected that a comprehensive table documentation will be provided such as the sample document shown in Table 5 containing the data type, description, and logic per column of all tables in the data warehouse and data marts. This is to help the end-users find the table they need easily and to avoid data misinterpretation.

Table 5. Sample Documentation for the fact_platform_peformance_summary table

Data Mart	Table Name	Column	Data Type	Description	Logic
Marketplace	fact_platform_peformance_summary	date_key	bigint	Foreign key to the dim_date table, representing the relevant date for time-series metrics	distinct date_key_ from mdm.fact_order_detail
Marketplace	fact_platform_peformance_summary	l1d_ado	decimal(12,4)	Average daily orders for the last 1 day	count(order_key)/1.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date = current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l7d_ado	decimal(12,4)	Average daily orders for the last 7 days	count(order_key)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '7 days' and current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l30d_ado	decimal(12,4)	Average daily orders for the last 30 days	count(order_key)/30.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '30 days' and current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l1d_adgmv	decimal(12,4)	Average daily GMV for the last 1 day	sum(gmv)/1.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date = current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l7d_adgmv	decimal(12,4)	Average daily GMV for the last 7 days	sum(gmv)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '7 days' and current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l30d_adgmv	decimal(12,4)	Average daily GMV for the last 30 days	sum(gmv)/30.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '30 days' and current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l1d_avg_active_buyers	decimal(12,4)	Average number of active buyers per day in the last 1 day	count(distinct buyer_key)/1.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date = current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l7d_avg_active_buyers	decimal(12,4)	Average number of active buyers per day in the last 7 days	count(distinct buyer_key)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '7 days' and current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l30d_avg_active_buyers	decimal(12,4)	Average number of active buyers per day in the last 30 days	count(distinct buyer_key)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '30 days' and current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l1d_avg_active_shops	decimal(12,4)	Average number of active shops per day in the last 1 day	count(distinct seller_key)/1.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date = current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l7d_avg_active_shops	decimal(12,4)	Average number of active shops per day in the last 7 days	count(distinct seller_key)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '7 days' and current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l30d_avg_active_shops	decimal(12,4)	Average number of active shops per day in the last 30 days	count(distinct seller_key)/7.0000 from mdm.fact_order_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where b.date between current_date - interval '30 days' and current_date - interval '1 day'
Marketplace	fact_platform_peformance_summary	l1d_otd_time	decimal(12,4)	Average on-time delivery time (in hours) for the last 1 day	(delivered_time_key - order_create_time_key)/(count(parcel_id) * 3600.0000) from mdm.fact_parcel_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where a.delivered_time_key is not null and b.date = current_date - interval '1 day'
Warehouse	fact_platform_peformance_summary	l7d_otd_time	decimal(12,4)	Average on-time delivery time (in hours) for the last 7 days	(delivered_time_key - order_create_time_key)/(count(parcel_id) * 3600.0000) from mdm.fact_parcel_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where a.delivered_time_key is not null and b.date between current_date - interval '7 days' and current_date - interval '1 day'
Warehouse	fact_platform_peformance_summary	l30d_otd_time	decimal(12,4)	Average on-time delivery time (in hours) for the last 30 days	(delivered_time_key - order_create_time_key)/(count(parcel_id) * 3600.0000) from mdm.fact_parcel_detail a join mdm.dim_date b on a.order_create_date_key = b.date_key where a.delivered_time_key is not null and b.date between current_date - interval '30 days' and current_date - interval '1 day'

There is also the option to have a metadata data mart. One sample table can be around the historical workflow performance wherein the table records each task's start time, end time, peak memory consumption, total memory consumption, and failure status. Another table can be created to track table usage such as storage consumption per table, a list of users who queried from the table and have access to a table, and the last 7-day query count for each table. This can help in data governance in making sure that only allowed users can access sensitive data and can help point tables for optimization activities.

VI. Physical Design of Your Data Engineering Solution

a. Architectural Overview and Implementation Details

Table 6 presents the overview of the proposed architecture of the EWIP system. The platform will be mainly hosted in Google Cloud environments to serve as the centralized platform. This will be connected to PostgreSQL Cloud data sources via the Cloud Dataflow tool to perform daily batch ingestions. Apache Airflow will be used for the orchestration of dbt-based ETL tasks before the data warehouse tables are stored in Google BigQuery. Airflow was chosen as the orchestrator as an open-sourced and industry standard tool of choice also known for its comprehensive and high integrability features, while the dbt tool was preferred due to its SQL-based syntax and version control and built-in data quality checks capabilities. All tables will have partition date wherein daily added data will be stored in separate partitions to help in query optimization. End-user analytics can be performed in Power BI for visualizations, in Google BigQuery for ad hoc tasks, and in GSheet for reporting and basic operations.

Table 6. Proposed architecture and implementation of the EWIP system

Aspect	Remarks			
Infrastructure Details	- Platform hosted in Google Cloud environment as a centralized platform			
	- Allows parallel processing (for scalability) and integrability with other tools for			
	simplified architecture			
Data Cauraga	- 4 OLTP DB, 1 Flat File Ingestion			
Data Sources	- Daily batch ingestion from PostgreSQL Cloud to Google Cloud via Cloud Dataflow tool			
Storage Design	- Star schema design for DW			
	- Storage at Google BigQuery for the intermediate and final tables for the DW			
ETL Process	- Deploying dbt in Google Cloud for the data transformation			
and Pipelines	- Apache Airflow orchestration via Google Cloud Composer for job scheduling			
Optimization	- Implementation of partition columns by date in all tables			
Techniques	- Separation of tables into data marts			
	- Built-in data governance for user- and row-level access control and data masking in			
Security and	the Google Cloud environment			
Governance	- Data retention protocol for raw tables			
	- Utilize cost control features such as resource caps			
End-User	- Visualizations via Power BI for its intuitive UI and simplicity			
Analytics	- Ad hoc querying via Google BigQuery			
Allatytics	- GSheet for reporting and minimal analysis			

b. SQL Scripts for Implementations

In the following subsections, the sample ETL code for the dim_item table is shown. Currently, it is coded using Python and Pandas for demo purposes. Moving forward, dbt-based code will be used for the ETL tasks.

i. Importing libraries

```
# Importing libraries
import sqlite3
import pandas as pd
import numpy as np
import shutil
import os
from datetime import datetime
```

ii. Extracting from Source Table

```
# Establish connection to the source database
s1 = lpms conn.cursor()
lpms_conn.commit()
s2 = ums_conn.cursor()
ums_conn.commit()
# Establish connection to the DW database
c = ewip dw conn.cursor()
ewip dw conn.commit()
# Extract the data from the source database
# listing
s1.execute('SELECT * FROM listings')
listing = s1.fetchall()
# items
s1.execute('SELECT * FROM items')
items = s1.fetchall()
# sellers
s2.execute('SELECT * FROM sellers')
sellers = s2.fetchall()
# Convert each fetched data to pandas DataFrame
listing_df = pd.DataFrame(listing, columns=['listing_listing_id', 'listing_shop_id',
'model_id', 'model_name', 'model_description', 'category_lvl_1', 'category_lvl_2',
'create_time_listing', 'banned_time', 'banned_by','last_modified_time'])
items_df = pd.DataFrame(items, columns=['sku_id', 'items_shop_id', 'listing_id', 'model_id',
'item_id','item_description', 'stock_qty', 'weight', 'length', 'width', 'height', 'item_price', 'is_active', 'create_time', 'last_modified_time'])
sellers_df = pd.DataFrame(sellers, columns=['user_id', 'shop_id', 'shop_name',
'shop_category', 'shop_create_time', 'is_active_shop', 'last_modified_time', 'is_wh'])
# Merging the 3 DataFrames
staging = pd.merge(listing_df, items_df, on='model_id', how='inner')
staging = pd.merge(staging, sellers df, left on='listing shop id', right on='shop id',
how='inner')
# Insert data into S dim item
for index, row in staging.iterrows():
     c.execute('''
```

```
INSERT INTO S_dim_item (sku_id, shop_id, listing_id, model_name, model_description,
category_lvl_1, category_lvl_2, model_id, item_id, item_description, weight, length, width,
height, item_price, is_active, create_time, banned_time, last_modified_time, is_wh)
        tuple(row[['sku_id', 'shop_id', 'listing_id', 'model_name', 'model_description',
'category_lvl_1', 'category_lvl_2', 'model_id', 'item_id', 'item_description', 'weight', 'length', 'width', 'height', 'item_price', 'is_active', 'create_time', 'banned_time',
'last_modified_time', 'is_wh']]))
# Select all data from S dim item to verify insertion
c.execute('SELECT * FROM S dim item')
# Fetch all data from the cursor
rows = c.fetchall()
ewip_dw_conn.commit()
df_s_dim_item = pd.DataFrame(rows, columns=[desc[0] for desc in c.description])
df_s_dim_item.head()
             iii. Compare New and Changed Data with the Master Table
# New data from S dim item not present in M dim item
s table new data df = pd.read sql("""
    SELECT *
    FROM S dim item
    WHERE sku_id NOT IN (SELECT sku_id FROM M_dim_item)
    """, ewip_dw_conn)
# Changed data in S dim item compared to M dim item
s table changed data df = pd.read sql("""
    SELECT s.*
    FROM S dim item s
    INNER JOIN M dim item m
    ON s.sku id = m.sku id
    WHERE s.model name != m.model name
        OR s.model description != m.model description
        OR s.category lvl 1 != m.category lvl 1
        OR s.category lvl 2 != m.category lvl 2
        OR s.item_description != m.item_description
        OR s.weight != m.weight
        OR s.length != m.length
        OR s.width != m.width
        OR s.height != m.height
        OR s.item_price != m.item_price
        OR s.is_active != m.is_active
        OR s.banned_time != m.banned_time
        OR s.is wh != m.is wh
    """, ewip dw conn)
# Combine new and changed data
s_table_extract_df = pd.concat([s_table_new_data_df, s_table_changed_data_df],
ignore_index=True)
# Display the extracted data
s_table_extract_df.head()
```

iv. Insert into Extract Tables

Delete data inside the X table first, if any

```
delete_x_data = c.execute('DELETE FROM X_dim_item')
ewip_dw_conn.commit()
c.execute('SELECT * FROM X_dim_item')
c.fetchall()
# INSERT INTO X_Items from the Staging table (S_Table)
#Creating column list for insertion
cols = '","'.join([str(i) for i in s_table_extract_df.columns.tolist()])
#Insert records one by one INTO X_dim_item
for i, row in s_table_extract_df.iterrows():
   sql = f'INSERT INTO X dim item ("{cols}") VALUES ({",".join(["?"] * len(row))})'
   c.execute(sql, tuple(row))
ewip_dw_conn.commit()
# Check if inserted
c.execute("SELECT * FROM X_dim_item")
rows = c.fetchall()
df_x_dim_item = pd.DataFrame(rows, columns=[desc[0] for desc in c.description])
df_x_dim_item.head()
             v. Clean X Table and Insert Into Error Table
# Select rows with null values for non-nullable columns
x_table_null_violations = pd.read_sql("""
SELECT * FROM X_dim_item
WHERE sku_id IS NULL
   OR shop_id IS NULL
   OR listing_id IS NULL
   OR model_name IS NULL
   OR model_description IS NULL
   OR category_lvl_1 IS NULL
   OR model_id IS NULL
   OR item id IS NULL
   OR item description IS NULL
   OR item_price IS NULL
   OR is active IS NULL
   OR create_time IS NULL
   OR last_modified_time IS NULL
""", ewip_dw_conn)
x_table_null_violations['ErrorType'] = 'Null values in non-nullable columns'
# Select duplicated rows
x_table_duplicate_sku_df = pd.read_sql("""
SELECT * FROM X_dim_item
WHERE sku id IN (
   SELECT sku id FROM X dim item
   GROUP BY sku id
   HAVING COUNT(sku_id ) > 1
)""", ewip_dw_conn)
x_table_duplicate_sku_df['ErrorType'] = 'Duplicate Company Name'
# Combine errors into one dataframe
x_table_errors_df = pd.concat([x_table_null_violations, x_table_duplicate_sku_df])
# Cleaning
# Set Unknown blank is wh to 0
update xitems = c.execute("UPDATE X dim item SET is wh = 0 WHERE is wh IS NULL")
c.execute("SELECT * FROM X_dim_item")
c.fetchall()
# Other cleaning operations depending on the actual data
```

```
# Delete data inside E_dim_item first
delete_eitems = c.execute('DELETE FROM E_dim_item')
c.execute("SELECT * FROM E_dim_item")
c.fetchall()
# Creating column list for insertion
cols = '","'.join([str(i) for i in x_table_errors_df.columns.tolist()])
# Insert records one by one INTO E_dim_item
for i, row in x_table_errors_df.iterrows():
    sql = "INSERT INTO E_dim_item (sku_id, CompanyName, Phone, ErrorType) VALUES (" +
','.join(['?'] * len(row)) + ")"
    c.execute(sql, tuple(row))
ewip_dw_conn.commit()
# Check if inserted
c.execute("SELECT * FROM E_dim_item")
c.fetchall()
             vi. Process Clean Data and Insert Into C Table
#Select Clean Data
x_table_clean_data_df = pd.read_sql("""
SELECT *
FROM X_dim_item
WHERE sku_id NOT IN (SELECT sku_id FROM E_dim_item)
""", ewip_dw_conn)
#DELETE existing data in C table
delete_citems = c.execute('DELETE FROM C_dim_item')
c.execute("SELECT * FROM C_dim_item")
c.fetchall()
# Actual INSERT INTO C Table
# Creating column list for insertion
cols = '","'.join([str(i) for i in x_table_clean_data_df.columns.tolist()])
# Insert records one by one INTO C_dim_item
for i, row in x_table_clean_data_df.iterrows():
    sql = f'INSERT INTO C_dim_item ("{cols}") VALUES ({",".join(["?"] * len(row))})'
    c.execute(sql, tuple(row))
ewip_dw_conn.commit()
# Check if inserted
c.execute("SELECT * FROM C_dim_item")
rows = c.fetchall()
df_c_dim_item = pd.DataFrame(rows, columns=[desc[0] for desc in c.description])
df_c_dim_item.head()
            vii. Update Master Table (M Table)
# Select All NEW From C Tables
c_table_new_date_df = pd.read_sql("""
SELECT * FROM C_dim_item c
WHERE c.sku_id NOT IN
(SELECT m.sku_id FROM M_dim_item m)
""", ewip_dw_conn)
# Creating column list for insertion
cols = '","'.join([str(i) for i in c_table_new_date_df.columns.tolist()])
```

```
# Insert records one by one INTO M_dim_item
for i, row in c_table_new_date_df.iterrows():
    sql = f'INSERT INTO M_dim_item ("{cols}") VALUES ({",".join(["?"] * len(row))})'
    c.execute(sql, tuple(row))
ewip_dw_conn.commit()
# Check if inserted
c.execute("SELECT * FROM M_dim_item")
rows = c.fetchall()
df m dim item = pd.DataFrame(rows, columns=[desc[0] for desc in c.description])
df m dim item.head()
# Processing Changed Data and Update the master Data.
#Select ALL Changed from C Table
c_table_changed_data_df = pd.read sql("""
SELECT c.*
FROM C_dim_item AS c
JOIN M dim item AS m ON c.sku id = m.sku id
WHERE c.model name != m.model name
        OR c.model description != m.model description
        OR c.category lvl 1 != m.category lvl 1
        OR c.category_lvl_2 != m.category_lvl_2
        OR c.item description != m.item_description
        OR c.weight != m.weight
        OR c.length != m.length
        OR c.width != m.width
        OR c.height != m.height
        OR c.item_price != m.item_price
        OR c.is active != m.is active
        OR c.banned time != m.banned time
        OR c.is wh != m.is wh
""", ewip_dw_conn)
# Delete from M dim item Test where data has changed
delete updated data = c.execute("""
DELETE FROM M dim item
WHERE sku_id IN (
        SELECT c.sku id
        FROM C dim item AS c
        JOIN M dim item AS m ON c.sku id = m.sku id
        WHERE c.model name != m.model name
                OR c.model description != m.model description
                OR c.category lvl 1 != m.category lvl 1
                OR c.category lvl 2 != m.category lvl 2
                OR c.item description != m.item description
                OR c.weight != m.weight
                OR c.length != m.length
                OR c.width != m.width
                OR c.height != m.height
                OR c.item price != m.item price
                OR c.is active != m.is active
                OR c.banned time != m.banned time
                OR c.is wh != m.is wh
print("Deleted from M dim item which are updated:")
print(c table changed data df)
print(f"\n")
# Verify deletion
```

```
result = c.execute("""
        SELECT * FROM M_dim_item WHERE sku_id IN (
                SELECT c.sku_id
                FROM C_dim_item AS c
                JOIN M_dim_item AS m ON c.sku_id = m.sku_id
                WHERE c.model_name != m.model_name
                        OR c.model_description != m.model_description
                        OR c.category lvl 1 != m.category lvl 1
                        OR c.category_lvl_2 != m.category_lvl_2
                        OR c.item description != m.item description
                        OR c.weight != m.weight
                        OR c.length != m.length
                        OR c.width != m.width
                        OR c.height != m.height
                        OR c.item_price != m.item_price
                        OR c.is_active != m.is_active
                        OR c.banned_time != m.banned_time
                        OR c.is_wh != m.is_wh
        )
""").fetchall()
ewip dw conn.commit()
df m dim item = pd.DataFrame(result, columns=[desc[0] for desc in c.description])
df_m_dim_item.head()
# INSERT Clean Data INTO M Table with changed data
# Creating column list for insertion
cols = '","'.join([str(i) for i in c_table_changed_data_df.columns.tolist()])
# Insert records one by one INTO M_dim_item
for i, row in c_table_changed_data_df.iterrows():
    sql = 'INSERT INTO M_dim_item ("' + cols + '") VALUES (' + ','.join(['?'] * len(row)) +
    c.execute(sql, tuple(row))
ewip_dw_conn.commit()
# Check if inserted
c.execute("SELECT * FROM M_dim_item")
rows = c.fetchall()
df_m_dim_item = pd.DataFrame(rows, columns=[desc[0] for desc in c.description])
df_m_dim_item.head()
           viii. Initiate Transform Processes
# Select data from C and Transform to DW Format
# For this case, no needed transformation
c table data df = pd.read sql("""
   SELECT * FROM C dim item
""", ewip_dw_conn)
# INSERT INTO T Table
# DELETE existing data in T table
delete_titems = c.execute('DELETE FROM T_dim_item')
c.execute("SELECT * FROM T_dim_item")
c.fetchall()
# Actual INSERT C Table data into I Table
# Creating column list for insertion
cols = '","'.join([str(i) for i in c_table_data_df.columns.tolist()])
# Insert records one by one INTO T_dim_item
for i, row in c_table_data_df.iterrows():
```

```
sql = f'INSERT INTO T_dim_item ("{cols}") VALUES ({",".join(["?"] * len(row))})'
    c.execute(sql, tuple(row))
ewip_dw_conn.commit()
# Check if inserted
pd.read_sql("SELECT * FROM T_dim_item", ewip_dw_conn).head()
             ix. Select Data from T Table and Insert to I and U Table
# SELECT New data from the T Table
t_table_new_data_df = pd.read_sql("""
SELECT t.*
FROM t_dim_item t
LEFT JOIN dim_item d ON t.sku_id = d.sku_id
WHERE d.sku_id IS NULL
""", ewip_dw_conn)
t_table_new_data_df['is_latest_record'] = 1
# INSERT New Data INTO I Table
# DELETE existing data in I table
delete_i_dim_item= c.execute('DELETE FROM I_dim_item')
c.execute("SELECT * FROM I_dim_item")
c.fetchall()
# Creating column list for insertion
cols = '","'.join([str(i) for i in t_table_new_data_df.columns.tolist()])
# Insert records one by one INTO I_dim_item
for i, row in t_table_new_data_df.iterrows():
    sql = f'INSERT INTO I_dim_item ("{cols}") VALUES ({",".join(["?"] * len(row))})'
    c.execute(sql, tuple(row))
ewip_dw_conn.commit()
# Check if inserted
pd.read_sql("SELECT * FROM I_dim_item", ewip_dw_conn).head()
# INSERT Changed Data INTO U Table
#Select Changed from T
t_table_changed_data_df = pd.read_sql('''
SELECT t.*
FROM t_dim_item t
INNER JOIN dim_item d
ON t.sku id = d.sku id
WHERE (t.model name != d.model name
        OR t.model description != d.model description
        OR t.category lvl 1 != d.category lvl 1
        OR t.category lvl 2 != d.category lvl 2
        OR t.item_description != d.item_description
        OR t.weight != d.weight
        OR t.length != d.length
        OR t.width != d.width
        OR t.height != d.height
        OR t.item price != d.item price
        OR t.is_active != d.is_active
        OR t.banned time != d.banned time
        OR t.is wh != d.is wh)
   AND is latest record = 1
''', ewip_dw_conn)
t_table_changed_data_df['is_latest_record'] = 1
#Delete existing data from the U Table first
```

```
delete_uitems = c.execute('DELETE FROM U_dim_item')
c.execute("SELECT * FROM U_dim_item")
c.fetchall()
# Actual INSERT of Changed data into U table
#INSERT Changed Data INTO U
#Creating column list for insertion
cols = "','".join([str(i) for i in t_table_changed_data_df.columns.tolist()])
#Insert records one by one INTO U_dim_item
for i, row in t_table_changed_data_df.iterrows():
   sql = "INSERT INTO U_dim_item ('" + cols + "') VALUES (" + ','.join(['?'] * len(row)) +
   c.execute(sql, tuple(row))
ewip_dw_conn.commit()
# Check if inserted
pd.read_sql("SELECT * FROM U_dim_item", ewip_dw_conn)
             x. Insert I Table into D Table
# INSERT I INTO D Table
# Get Max Warehouse Key
maxkey = pd.read_sql('''SELECT COALESCE(MAX(sku_key), 0) as MAX FROM dim_item''',
ewip_dw_conn)
# Select Data to be INSERTED from I Table
i_table_data_df = pd.read_sql("SELECT * FROM I_dim_item", ewip_dw_conn)
# Identify the next set of ItemKey's to be assigned to the New Data from I Table
if not i_table_data_df.empty and not maxkey.empty:
   start_value = pd.to_numeric(maxkey.iloc[0]).values + 1
   i_table_data_df['sku_key'] = np.arange(start_value, start_value + len(i_table_data_df))
else:
   print("Either the data table or maxkey is empty. No operation performed.")
# Rearrange according to the D table format of columns
i_table_data_df = i_table_data_df[['sku_key', 'sku_id','shop_id', 'listing_id',
'model_name', 'model_description', 'category_lvl_1', 'category_lvl_2', 'model_id', 'item_id',
'item_description', 'weight', 'length', 'width', 'height', 'item_price', 'is_active',
'create_time', 'banned_time', 'last_modified_time', 'is_wh', 'is_latest_record']]
# Changing last modified time to current time
i table data df[['last modified time']] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
i_table_data_df.head()
# Now INSERT into D Table
# Creating column list for insertion
cols = '","'.join([str(i) for i in i_table_data_df.columns.tolist()])
# Insert records one by one INTO D_dim_item
for i, row in i_table_data_df.iterrows():
   sql = f'INSERT INTO dim_item ("{cols}") VALUES ({",".join(["?"] * len(row))})'
   c.execute(sql, tuple(row))
ewip_dw_conn.commit()
# Check if inserted
pd.read_sql("SELECT * FROM dim_item", ewip_dw_conn).head()
             xi. Insert U Table Data (Type 2) into D Table
# Get Max Warehouse Key
```

```
maxkey = pd.read_sql('''SELECT MAX(sku_key) as MAX FROM dim_item''', ewip_dw_conn)
# Select Data to be INSERTED from U Table
u_table_type2_data_df = pd.read_sql('''
    SELECT u.*
    FROM u_dim_item u
    INNER JOIN dim_item d
    ON u.sku id = d.sku id
    WHERE (u.model name != d.model name
            OR u.model description != d.model description
            OR u.category lvl 1 != d.category lvl 1
            OR u.category_lvl_2 != d.category_lvl_2
            OR u.item description != d.item description
            OR u.weight != d.weight
            OR u.length != d.length
            OR u.width != d.width
            OR u.height != d.height
            OR u.item price != d.item price
            OR u.is active != d.is active
            OR u.banned time != d.banned time
            OR u.is wh != d.is wh)
        AND d.is latest record = 1
''', ewip_dw_conn)
# Identify the next set of Item_Key's to be assigned to the New Data from U Table
u_table_type2_data_df['sku_key'] = np.arange(pd.to_numeric(maxkey.iloc[0].values) + 1,
                                                   pd.to numeric(maxkey.iloc[0].values) + 1 +
len(u table type2 data df))
# Rearrange according to the D table format of columns
u_table_type2_data_df = u_table_type2_data_df[['sku_key', 'sku_id','shop_id', 'listing_id',
'model_name', 'model_description', 'category_lvl_1', 'category_lvl_2', 'model_id', 'item_id',
'item_description', 'weight', 'length', 'width', 'height', 'item_price', 'is_active', 'create_time', 'banned_time', 'last_modified_time', 'is_wh', 'is_latest_record']]
# Changing last modified time to current time
u_table_type2_data_df[['last_modified_time']] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
u_table_type2_data_df.head()
# Now INSERT CHANGED data (Type 2) from U Table into D Table
# Creating column list for insertion
cols = '","'.join([str(i) for i in u_table_type2_data_df.columns.tolist()])
# Insert records from the U Table one by one INTO D dim item
for i, row in u table type2 data df.iterrows():
    sql = f'INSERT INTO dim item ("{cols}") VALUES ({",".join(["?"] * len(row))})'
    c.execute(sql, tuple(row))
ewip_dw_conn.commit()
# Check if inserted
pd.read sql("SELECT * FROM dim item", ewip dw conn).head()
             xii. Update Indicators to Current in D Table
# Update is latest record indicator in D Table
c.execute('''
UPDATE dim item
SET is latest record = 0
WHERE (sku_key, last_modified time) NOT IN (
    SELECT sku_key, MAX(last_modified_time)
    FROM dim item
```

```
GROUP BY sku_key
)
''')
ewip_dw_conn.commit()

pd.read_sql("SELECT * FROM dim_item", ewip_dw_conn).head()
```

c. Proposed Data Warehouse Design

The planned tables in the proposed data marts are listed in Table 7. Note that all tables in the data marts are also present in the data warehouse. The complete list of tables with their corresponding attributes can also be browsed in Figures 8-11.

Table 7. Complete List of Tables in the Proposed Data Warehouse and Data Marts

No.	Data Mart	Table Name	No.	Data Mart	Table Name
1	MDM	dim_buyer	19	MDM	fact_platform_performance_summary
2	MDM	dim_date	20	MDM	fact_seller_performance_summary
3	MDM	dim_item	21	MDM	fact_sku_performance_summary
4	MDM	dim_location	22	WDM	dim_purchase_order_asn
5	MDM	dim_operator	23	WDM	dim_staff
6	MDM	dim_order	24	WDM	dim_storage
7	MDM	dim_order_parcel	25	WDM	dim_supplier
8	MDM	dim_parcel_status	26	WDM	dim_task
9	MDM	dim_payment	27	WDM	dim_warehouse
10	MDM	dim_seller	28	WDM	fact_attendance_snapshot
11	MDM	dim_shipping	29	WDM	fact_inbound_sku_detail
12	MDM	dim_time	30	WDM	fact_inbound_task_detail
13	MDM	dim_voucher	31	WDM	fact_outbound_order_detail
14	MDM	dim_voucher_mix	32	WDM	fact_outbound_sku_detail
15	MDM	fact_order_detail	33	WDM	fact_outbound_task_detail
16	MDM	fact_order_item_detail	34	WDM	fact_staff_prod_summary
17	MDM	fact_parcel_detail	35	WDM	fact_storage_inventory_snapshot
18	MDM	fact_parcel_status_snapshot	36	WDM	fact_warehouse_summary

fact_order_detail

order_key
buyer_key
seller_key
voucher_mix_key
voucher_total_value
payment_option_key
shipping_fee
gmv
order_create_date_key
order_create_time_key
unique_sku_count
total_sku_qty
wh_key
parcel_count

fact_parcel_detail forder_key buyer_key seller_key shipping_channel_key parcel_status_key pickup_time_key cancel_time_key delivered_time_key ship_by_date_key order_create_date_key order_create_time_key shipping_fee unique_sku_count total_sku_count gmv wh_key

fact_order_item_detail

order_key
sku_key
sku_key
buyer_key
seller_key
qty
order_create_date_key
order_create_time_key
total_gmv
unit_gmv

wh_key

fact_parcel_status_snapshot

time_key,

forder_key

parcel_status_key

loc_key

operator_key

fact_platform_performance_summary date_key l1d_ado l7d_ado I30d_ado I1d_adgmv I7d_adgmv l30d_adgmv I1d_avg_active_buyers I7d_avg_active_buyers I30d_avg_active_buyers I1d_avg_active_shops I7d_avg_active_shops l30d_avg_active_shops I1d_otd_time I7d_otd_time I30d_otd_time

fact_sku_performance_summary

date_key
sku_id

I1d_ado
I7d_ado
I30d_ado
I90d_ado
I1d_adgmv
I7d_adgmv
I30d_adgmv

fact_seller_performance_summary

date_key
shop_id

l1d_ado
l7d_ado
l30d_ado
l90d_ado
l1d_adgmv
l7d_adgmv
l30d_adgmv
l90d_adgmv

Figure 8. Fact Tables and Their Attributes Under Marketplace Data Mart

dim_payment

payment option key

payment_option_id

user_id

checkout_id checkout id fe_status company name company name brav payment_channel_id channel_name be_status create_time postal_code warehouse_status is_current dim_time dim_date dim_seller dim_buyer dim_voucher dim_voucher_mix dim_item voucher_key voucher_mix_key sku_key buyer_key time_key date_key seller_key voucher id voucher ids sku_id user_id user_id voucher_codes shop_id voucher_code quarter shop_id user_birthdate voucher_type listing_id quarter vear user_birthdate present_address_region promotion id model name month shop_name present_address_city year promotion_description model description month day shop_category present_address_brgy promotion_start_time category_lvl_1 day_of_week shop_create_time promotion_end_time category_lvl_2 time day_type user_email account_create_time voucher_description model_id hour is_holiday user_contact_no user_email create_time item_id minute is_campaign_day is_active user_contact_no valid_start_time second is_salary_day last_modified_time is_active valid_end_time weight day_of_week last_modified_time is_platform_coverage length day_type is_shop_sponsored width is_holiday is_platform_sponsored height is_campaign_day item_price pcnt_min_spend is_active create_time pcnt_cap abs_min_spend last_modified_time abs cap is wh is_active

dim shipping

shipping channel key

shipping_channel_id

courier_id

dim_operator

operator key

courier_id

dim_location

loc key

city

dim_order

order key

parcel_id

dim order parcel

forder key

parcel_id

dim parcel status

parcel status key

logistics_status

Figure 9. Dim Tables and Their Attributes Under Marketplace Data Mart

Figure 10. Fact Tables and Their Attributes Under Warehouse Data Mart

Figure 11. Dim Tables and Their Attributes Under Warehouse Data Mart

VII. Reports Generation

The data warehouse was designed to accommodate the crucial questions needed by the senior management, operations, and business development team. For report generation, several fact tables with varying granularities depending on the need are available for ad hoc analysis and regular reports. The 5 priority business questions can be queried from the available summary fact tables as follows:

1) **PLATFORM PERFORMANCE.** What are the monthly historical platform performance and month-on-month (MoM) growth in terms of average daily order (ADO), average daily gross

merchandise value (ADGMV), average active buyers, average active shops, and average order-to-delivery (OTD) time?

```
WITH monthly platform metrics AS (
   SELECT
        strftime('%Y-%m', d.date) AS month,
        SUM(f."1d_ado") AS total_ado,
        SUM(f."1d_adgmv") AS total_adgmv,
        SUM(f."1d_avg_active_buyers") AS total_active_buyers,
        SUM(f."1d_avg_active_shops") AS total_active_shops,
        SUM(f."1d_otd_time") AS total_otd_time,
        strftime('%d', MAX(d.date)) AS days_in_month
   FROM fact_platform_performance_summary f
   JOIN dim date d ON f.date key = d.date key
   GROUP BY strftime('%Y-%m', d.date)
SELECT
   month,
   total_ado / days_in_month AS avg_daily_ado,
   total_adgmv / days_in_month AS avg_daily_adgmv,
   total_active_buyers / days_in_month AS avg_daily_active_buyers,
   total_active_shops / days_in_month AS avg_daily_active_shops,
   total_otd_time / days_in_month AS avg_daily_otd_time,
    (total_ado / days_in_month) - LAG(total_ado / days_in_month) OVER (ORDER BY month) AS
ado_growth,
    (total_adgmv / days_in_month) - LAG(total_adgmv / days_in_month) OVER (ORDER BY month)
AS adgmv_growth,
    (total active_buyers / days_in_month) - LAG(total_active_buyers / days_in_month) OVER
(ORDER BY month) AS active buyers growth,
    (total active shops / days in month) - LAG(total active shops / days in month) OVER
(ORDER BY month) AS active_shops_growth,
    (total_otd_time / days_in_month) - LAG(total_otd_time / days_in_month) OVER (ORDER BY
month) AS otd_growth
FROM monthly_platform_metrics
ORDER BY month;
```

2) **ITEMS PERFORMANCE.** What are the top item categories in terms of monthly ADO and ADGMV? Which item categories have the highest month-on-month ADO and ADGMV growth?

```
WITH monthly_category_metrics AS (
    SELECT
        strftime('%Y-%m', d.date) AS month,
        i.category_lvl_1 AS category,
        SUM(f."1d_ado") AS total_ado,
        SUM(f."1d_adgmv") AS total_adgmv,
        strftime('%d', MAX(d.date)) AS days in month
    FROM fact_sku_performance_summary f
    JOIN dim date d ON f.date key = d.date key
    JOIN dim item i ON f.sku id = i.sku id
    GROUP BY strftime('%Y-%m', d.date), i.category_lvl_1
category_rankings AS (
    SELECT
        month,
        category,
        total ado / days in month AS avg daily ado,
        total_adgmv / days_in_month AS avg_daily_adgmv,
```

```
RANK() OVER (PARTITION BY month ORDER BY total_ado / days_in_month DESC) AS
ado_rank,
        RANK() OVER (PARTITION BY month ORDER BY total_adgmv / days_in_month DESC) AS
adgmv_rank,
        (total_ado / days_in_month) - LAG(total_ado / days_in_month) OVER monthly_window AS
ado_growth,
        (total_adgmv / days_in_month) - LAG(total_adgmv / days_in_month) OVER monthly_window
AS adgmv_growth
    FROM monthly category metrics
    WINDOW monthly window AS (PARTITION BY category ORDER BY month)
SELECT *,
    RANK() OVER (PARTITION BY month ORDER BY ado_growth DESC) AS ado_growth_rank,
    RANK() OVER (PARTITION BY month ORDER BY adgmv_growth DESC) AS adgmv_growth_rank
FROM category rankings
WHERE ado_rank <= 10 OR adgmv_rank <= 10
ORDER BY month, ado_rank, adgmv_rank;
```

3) **SHOP PERFORMANCE.** What are the top-performing shop categories in terms of monthly ADO and ADGMV? What shop categories contribute to more than 10% of the platform ADGMV?

```
WITH monthly shop category metrics AS (
    SELECT
        strftime('%Y-%m', d.date) AS month,
        s.shop category,
        SUM(f."1d ado") AS total ado,
        SUM(f."1d_adgmv") AS total_adgmv,
        strftime('%d', MAX(d.date)) AS days_in_month
    FROM fact_seller_performance_summary f
    JOIN dim_date d ON f.date_key = d.date_key
    JOIN dim_seller s ON f.shop_id = s.shop_id
    GROUP BY strftime('%Y-%m', d.date) , s.shop_category
shop category contributions AS (
    SELECT
        month,
        shop category,
        total ado / days in month AS avg daily ado,
        total_adgmv / days_in_month AS avg_daily_adgmv,
        SUM(total_adgmv) OVER (PARTITION BY month) / days_in_month AS total_platform_adgmv,
        RANK() OVER (PARTITION BY month ORDER BY total_adgmv / days_in_month DESC) AS
    FROM monthly_shop_category_metrics
SELECT
    month,
    shop_category,
    avg daily ado,
    avg_daily_adgmv,
    (avg_daily_adgmv / total_platform_adgmv) * 100 AS adgmv_percentage
FROM shop_category_contributions
WHERE adgmv_rank <= 10 OR (avg_daily_adgmv / total_platform_adgmv) > 0.1
ORDER BY month, adgmv_rank;
```

4) **WAREHOUSE PERFORMANCE.** What is the monthly historical performance and MoM growth of the overall warehouse and each warehouse in terms of ADO, average daily item (ADI) count, productivity rate, and idle rate?

```
WITH monthly_warehouse_metrics AS (
    SELECT
        strftime('%Y-%m', d.date) AS month,
        w.wh_key,
        SUM(w."1d_ado") AS total_ado,
        SUM(w."1d_adi") AS total_adi,
        SUM(w."1d_prod_rate") AS total_prod_rate,
        SUM(w."1d idle rate") AS total idle rate,
        strftime('%d', MAX(d.date)) AS days_in_month
    FROM fact warehouse summary w
    JOIN dim date d ON w.date key = d.date key
    GROUP BY strftime('%Y-%m', d.date), w.wh_key
overall warehouse metrics AS (
    SELECT
        month,
        'Overall' AS wh_key,
        SUM(total_ado) AS total_ado,
        SUM(total_adi) AS total_adi,
        SUM(total_prod_rate) AS total_prod_rate,
        SUM(total idle rate) AS total idle rate,
        MAX(days in month) AS days in month
    FROM monthly_warehouse_metrics
    GROUP BY month
SELECT
    wh key,
    month,
    total ado / days in month AS avg daily ado,
    total adi / days in month AS avg daily adi,
    total prod rate / days in month AS avg daily prod rate,
    total idle rate / days in month AS avg daily idle rate,
    (total ado / days in month) - LAG(total ado / days in month) OVER (PARTITION BY wh key
ORDER BY month) AS ado growth,
    (total adi / days in month) - LAG(total adi / days in month) OVER (PARTITION BY wh key
ORDER BY month) AS adi_growth,
    (total_prod_rate / days_in_month) - LAG(total_prod_rate / days_in_month) OVER (PARTITION
BY wh_key ORDER BY month) AS prod_rate_growth,
    (total_idle_rate / days_in_month) - LAG(total_idle_rate / days_in_month) OVER (PARTITION
BY wh_key ORDER BY month) AS idle_rate_growth
FROM (
    SELECT * FROM monthly warehouse metrics
    UNION ALL
    SELECT * FROM overall warehouse metrics
) combined metrics
ORDER BY month, wh key;
```

5) **STAFF PERFORMANCE.** Who are the warehouse staff who have last 30-day productivity less than 90% of the average rate of the top 10 staff?

```
WHERE d.date >= DATE('now', '-30 days')
    GROUP BY s.staff_key
top_10_avg_productivity AS (
    SELECT
        AVG(avg_prod_rate) AS avg_top_10_productivity
    FROM (
        SELECT
            avg_prod_rate
        FROM staff_productivity
        ORDER BY avg prod rate DESC
        LIMIT 10
    ) top_10
)
SELECT
    sp.staff_key,
    sp.staff_email,
    sp.avg_prod_rate,
    t10.avg_top_10_productivity
FROM staff_productivity sp, top_10_avg_productivity t10
WHERE sp.avg_prod_rate < 0.9 * t10.avg_top_10_productivity</pre>
ORDER BY sp.avg prod rate;
```

In the proposed intelligence platform, there are 3 recommended ways to consume the data. It is highly recommended to utilize data visualization tools such as Power BI to show the data in easy-to-comprehend visualizations such as the sample dashboard presented in Figure 12. For other reporting use cases, outputs can also be generated in Google Sheets wherein other simple operations and modifications can be performed. Lastly, ad hoc queries can be performed in the Google BigQuery environment for special analysis and data pulls.

Figure 12. Sample Power BI Dashboard for Platform Performance Reporting

 Table 8. Gantt Chart for the EWIP Implementation

Legen d: On track Low risk Med risk High risk Unassigned

Project start 06/01/20
date: 25

Scrolling o

increment.				
Milestone description	Category	Progre ss	Start	Days
Requirement Analysis				
Identify key stakeholders	On Track	100%	06/01/20 25	1
Gathering stakeholder and business requirements	On Track	100%	06/01/20 25	2
Source system analysis (architecture, data, data type)	On Track	100%	08/01/20 25	7
Completing project charter	On Track	100%	15/01/20 25	2
Initial stakeholder alignment	Mileston e	100%	17/01/20 25	1
Data Modelling				
Designing dim tables	Low Risk	60%	20/01/20 25	3
Designing fact tables	Med Risk	50%	20/01/20 25	3
Designing summary and snapshot fact tables	High Risk	33%	23/01/20 25	1
Stakeholder alignment	Mileston e		24/01/20 25	1
ETL Implementation				
ETL for the dim tables	On Track		27/01/20 25	5
ETL for the fact tables	On Track		27/01/20 25	9
ETL for the summary fact tables	On Track		05/02/20 25	2

Ja	anuar	y																										Fel	bruar	У																							
6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2	2 2	2 3	2 4	2 5	2	2 7	2 8	2 9	3	3	1	2	3	4	5	6	7	8 9	1 0	1	1 2	1 3	1 4	1 5	1	1 7	1 8	1 9	2	2	2 2	2 3	2 4	2 5	2 6	2 7	2 8	1 2
~	1 Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	s	М	Т	w	Т	F	s s	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	т	w	Т	F	s s
										Г																																											
																		1																																			
																										L																											

Stakeholder alignment on logic	Mileston e	07/02/20 25	1
Testing and Validation			
Initial testing (low- volume data)	On Track	10/02/20 25	3
Possible debugging	On Track	10/02/20 25	5
Volume testing (high-volume)	On Track	17/02/20 25	3
Possible debugging and optimization	On Track	17/02/20 25	5
User Acceptance Test			
Production testing for selected users	On Track	24/02/20 25	5
Feedback alignment	On Track	03/03/20 25	
Actions for feedback	On Track	03/03/20 25	5
Deployment and Cascade			
Process and technical documentation	On Track	10/03/20 25	4
DW Cascade to all users	On Track	14/03/20 25	1
Closing the project	Mileston e	14/03/20 25	1

VIII. Project Management

Figure 8 shows Gannt chart for the project detailing each specific steps per major phase of the project. In this chart, each activity can be marked as 'On Track', 'Low Risk', 'Med Risk', or 'High Risk' to mark the status of each task. Note that the corresponding Excel file is highly configurable in cases where there are needed deadline push backs for any phase of the project.

IX. Conclusion

This case study proposes a data warehouse and analytical platform as a solution to enhance the performance of analytical data queries. This is particularly essential for e-commerce businesses that lack online analytical processing (OLAP) databases and rely on transactional databases for analytics and reporting. Data from four PostgreSQL-based information systems were transformed into dimensional models following a star schema. This resulted in 20 dimension tables, 8 detailed fact tables, 5 summary fact tables, and 3 snapshot fact tables which can be stored in the data warehouse, marketplace data mart, and warehouse data mart.

The proposed data warehouse solution offers centralized data storage and a querying platform via the Google Cloud environment, enabling standardized data reporting across various key metrics. Tools such as dbt for data transformations, Airflow for workflow orchestration, and Power Bl and Google Sheets for reporting can be integrated into the system to support end-to-end data engineering and reporting needs. This solution is specifically designed and optimized for analytical requirements, including historical analysis and business intelligence, providing a competitive advantage through data-driven decision-making.

X. References

- Candelon, F., Reichert, T., Duranton, S., Charme, R., Carlo, D., & De Bondt, M. (2020). *The Rise of The Al-Powered Company in the Postcrisis World*.
- Dragomirov, N. (2020). E-Commerce Platforms and Supply Chain Management Functionalities Study. *Economic Alternatives*, *26*(2), 250–261. https://doi.org/10.37075/EA.2020.2.04
- Fabri, L., & Valverde Márquez, I. (2020). Will e-commerce dominate physical store? *International Journal of Technology for Business*, *2*(1), 23–20. https://doi.org/10.5281/zenodo.3894442
- Statista. (2024). E-commerce market volume in Southeast Asia from 2022 to 2024, with forecasts to 2030, by country.
- Schmitz, M. (2014). High Performance Data Warehousing. UCI Irvine Data Warehousing Notes.

XI. Appendices

a. ERD for LPMS

b. ERD for UMS

c. ERD for OMS

d. ERD for WMS

e. Relational Model for LPMS

f. Relational Model for UMS

g. Relational Model for OMS

h. Relational Model for WMS

