Memória

- Disciplina: Técnicas Digitais
- Aula Memória
- Bibliografia Básica:
 - Sistemas Digitais: Princípios e Aplicações, Ronald
 J. Tocci e Neal S. Widmer
 - Princípios Básicos de Arquitetura e Organização de Computadores – Linda Null e Julia Lobur

FIGURA 11-1 Um sistema de computador geralmente usa uma memória principal de alta velocidade e uma memória auxiliar externa mais lenta.

Sistemas Digitais: Princípios e Aplicações Ronald J. Tocci e Neal S. Widmer

Memória

- Armazena informações utilizadas pela CPU
 - Memória Principal ou Central
 - Rápida, custosa, limitada, temporária e volátil
 - Memória Auxiliar
 - Mais lenta, maior capacidade, teoricamente permanente e não volátil

Tipos de Memórias

- Memórias do tipo RAM Random-access memory
 - Voláteis a informação perde-se quando se deixa de fornecer energia eléctrica
 - Utilizadas para leitura e escrita da informação
- Memórias do tipo ROM Read-only memory
 - Não-voláteis a informação continua armazenada quando se deixa de fornecer energia eléctrica
 - Inicialmente utilizadas apenas para leitura da informação guardada
 - Atualmente existem memórias derivadas da ROM que são programáveis, algumas delas utilizadas tanto para leitura como para escrita

Representação de Dados na Memória

- Unidades de Armazenamento da Memória Principal e Auxiliar
 - BIT (Binary digiT)
 - BYTE 8 bits

- K, KB Quilobyte
 - Mil
 - 1024 (2¹⁰ bytes)
- M, MB Megabyte
 - Milhão
 - 1.048.576 (2²⁰ bytes)
- G, GB Gigabyte
 - Bilhão
 - 1.073.741.824 (2³⁰ bytes)
- T, TB Terabyte
 - Trilhão

Memória (word):

Terminologia

- Definição: In computing, a word is the natural unit of data used by a particular processor design.
- Palavra de memória

EXEMPLO 11-1A

Um certo chip de memória semicondutora é especificado como 2K × 8. Quantas palavras podem ser armazenadas neste chip? Qual é o tamanho da palavra? Quantos bits este chip pode armazenar no total?

Solução

$$2K = 2 \times 1.024 = 2.048$$
 palavras

Cada palavra tem 8 bits (um byte). O número total de bits, portanto, é

$$2.048 \times 8 = 16.384$$
 bits

FIGURA 11-2 Cada posição tem um endereço binário específico.

Endereços

000	Palavra 0
001	Palavra 1
010	Palavra 2
011	Palavra 3
100	Palavra 4
101	Palavra 5
110	Palavra 6
111	Palavra 7

EXEMPLO 11-1B

Qual das memórias armazena mais bits: uma memória de 5M × 8 ou uma memória que armazena 1M palavras com um tamanho de palavra de 16 bits?

EXEMPLO 11-1B

Qual das memórias armazena mais bits: uma memória de 5M × 8 ou uma memória que armazena 1M palavras com um tamanho de palavra de 16 bits?

Solução

$$5M \times 8 = 5 \times 1.048.576 \times 8 = 41.943.040$$
 bits $1M \times 16 = 1.048.576 \times 16 = 16.777.216$ bits

A memória de $5M \times 8$ armazena mais bits.

FIGURA 11-3 (a) Diagrama de uma memória de 32 X 4; (b) Configuração virtual das células de memória em 32 palavras de quatro bits.

Esta memória possui:

- 5 linhas de endereços (fios, barramento)
- 4 linhas de dados Tamanho da Word de 4 Bits

EXEMPLO 11-2

Descreva as condições de cada entrada e saída quando o conteúdo da posição cujo endereço é 00100 deve ser lido.

Solução

Entradas de endereço: 00100

Entradas de dados: xxxx (não utilizadas)

R/W: nível ALTO

HABILITAÇÃO DE MEMÓRIA (ME): ALTO

Saídas de dados: 0001

EXEMPLO 11-4

Uma determinada memória tem uma capacidade de 4K × 8.

- (a) Quantas linhas de entrada de dados e saída de dados ela tem?
- **(b)** Quantas linhas de endereço ela tem?
- (c) Qual é a sua capacidade em bytes?

Solução

- (a) Oito de cada, pois o tamanho da palavra é oito.
- (b) A memória armazena 4K = 4 × 1.024 = 4.096 palavras. Assim, existem 4.096 endereços de memória. Tendo em vista que 4.096 = 2¹², ela necessita de um código de endereço de 12 bits para especificar um entre 4.096 endereços.
- (c) Um byte tem oito bits. Esta memória tem uma capacidade de 4.096 bytes.

FIGURA 11-5 Três grupos de linhas (barramentos) conectando os CIs de memória principal na CPU.

Tipos de ROM

- ROM
 - Gravada durante a fabricação
 - Baixo custo para grandes volumes
- PROM (*Programmable* ROM)
 - Programável após a fabricação (uma vez)
 - EPROM (*Erasable* PROM)
 - Gravado e Apagado com ultravioleta
 - EEPROM (Electrically Erasable PROM)
 - Apagável Elétricamente

FIGURA 11-6 (a) Símbolo de uma ROM típica; (b) Tabela mostrando os dados binários de cada endereço; (c) A mesma tabela em hexa.

Endereço				Dados								
Palavra	A_3	A_2	A ₁	A ₀	D ₇	D_6	D ₅	D ₄	D_3	D ₂	D ₁	D ₀
0	0	0	0	0	1	1	0	1	1	1	1	0
1	0	0	0	1	0	0	1	1	1	0	1	0
2	0	0	1	0	1	0	0	0	0	1	0	1
3	0	0	1	1	1	0	1	0	1	1	1	1
4	0	1	0	0	0	0	0	1	1	0	0	1
5	0	1	0	1	0	1	1	1	1	0	1	1
6	0	1	1	0	0	0	0	0	0	0	0	0
7	0	1	1	1	1	1	1	0	1	1	0	1
8	1	0	0	0	0	0	1	1	1	1	0	0
9	1	0	0	1	1	1	1	1	1	1	1	1
10	1	0	1	0	1	0	1	1	1	0	0	0
11	1	0	1	1	1	1	0	0	0	1	1	1
12	1	1	0	0	0	0	1	0	0	1	1	1
13	1	1	0	1	0	1	1	0	1	0	1	0
14	1	1	1	0	1	1	0	1	0	0	1	0
15	1	1	1	1	0	1	0	1	1	0	1	1

	Dados					
Palavra	$A_3 A_2 A_1 A_0$	$D_7 D_0$				
0	0	DE				
1	1	3A				
2	2	85				
3	3	AF				
4	4	19				
5	5	7B				
6	6	00				
7	7	ED				
8	8	3C				
9	9	FF				
10	Α	B8				
11	В	C7				
12	С	27				
13	D	6A				
14	E	D2				
15	F	5B				

(b)

(c)

FIGURA 11-7 Arquitetura de uma Memória de 16×8 .

EXEMPLO 11-5

Qual o registrador que será habilitado pelo endereço 1101?

EXEMPLO 11-6

Que endereço irá habilitar o registrador 7?

- Firmware: armazenamento dos microprogramas de computador.
- Boot: programas que são executados após o computador ter sido ligado: inicialização do sistema, que transfere o sistema operacional armazenado em memória de massa para a memória principal.
- Conversores de dados: recebe um dado expresso em um tipo de código e produz uma saída em um outro tipo de código.

Tipos de RAM

- DRAM (*Dynamic* RAM)
 - Construída com capacitores
 - Carga dos capacitores deve ser renovada periodicamente (*refresh*)
 - Lenta
- SRAM (Static RAM)
 - Construída com transistores
 - Rápida e Cara
 - Embora volátil, só perde o conteúdo quando desligada

Estáticas – SRAM (Static RAM)

- Células de memória:
 - Latches | flip-flops
- Rápidas tempos de acesso baixos para leitura e para escrita
- Utilizadas tipicamente como memórias cache (associadas ao processador)
 - Cache memória muito rápida, tipicamente incluída no processador.

Dinâmicas – DRAM (*Dynamic* RAM)

- Células de memória:
 - Pares transistor-capacitor, que conseguem manter o nível lógico armazenado durante curtos espaços de tempo
 - Necessitam por isso de ciclos de refrescamento periódicos para reposição dos níveis lógicos nos capacitores
- Mais lentas que as SRAMs
- Maior capacidade de armazenamento a menor custo

- Acesso e capacidade de uma RAM
 - k linhas de endereço c/ n bits por endereço
 - 2^k endereços ou palavras
 - 1 palavra = n bits
 - Capacidade = 2^k palavras = $2^k \times n$ bits

FIGURA 11-19 Organização interna de uma RAM de 64 X 4.

FIGURA 11-25 Arranjo das células em uma RAM dinâmica de 16K X 1.

Multiplexação de Endereços

Motivação:

diminuir o numero de pinos de memórias;

FIGURA 11-28 (a) O

barramento de endereço da CPU acionando uma ROM ou uma RAM estática; (b) Os endereços da CPU acionam um multiplexador que é usado para multiplexar as linhas de endereço para a DRAM.

•MUX = 0 transmite o endereço.

 $A_8 - A_{15}$ da CPU para a DRAM. MUX = 1 transmite $A_0 - A_7$ da CPU para DRAM.

Expansão do Tamanho da Palavra e da Capacidade

- Organização da memória
 - É possível projetar memórias com maior capacidade associando vários blocos de memória.
 - Exemplo a partir de RAMs 64K x 8 projetar:
 - RAM 64K x 16
 - RAM 256K x 8

64K x 16 RAM

FIGURA 11-34 Combinando duas RAMs de 16 X 4 em um módulo de 16 X 8.

EXEMPLO 11-13

A 2125A é um CI de RAM estática que tem capacidade de 1K × 1, uma entrada de seleção ativa em BAIXO e entradas e saídas de dados separadas. Mostre como combinar diversos CIs 2125A para formar um módulo de 1K × 8.

Capítulo 11

Combinando dois chips de 16 X 4 para formar uma memória de 32 X 4.

Expansão da Capacidade

Capítulo 11

EXEMPLO 11-14

Deseja-se associar diversas PROMs de 2K × 8 para produzir uma capacidade total de 8K × 8. Quantos chips de PROM

FIGURA 11-37 Quatro PROMs de 2K X 8 organizadas para formar uma memória com capacidade total de 8K X 8.