In [1]:	The goal of this assignment is to make a machine learning algorithm from scratch. I chose to do this on the ID3 algorithm as we have covered this in the lectures and I understand the underlying concepts of the algorithm. 1. Import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set(rc = {'figure.figsize': (18, 7)}) # Sets plot aspect ratio import random # Sets the seed used later and picks random rows for test_train_split from pprint import pprint # Used to plot the tree import itertools # Improve efficiency of code from IPython.display import Image # Input of my tree drawingf import six import sys
In [2]:	<pre>names = ['calorific_value','nitrogen',</pre>
In [4]: In [5]:	<pre>df = pd.read_table("C://Users/oisin/Documents/ML A2/beer.txt",</pre>
Out[5]: In [6]:	beer_id very large turbidity alcohol sugars bitterness colour degree_of_fermentation style 93 41.721239 0.503276 2.628182 4.015385 16.73 10.452789 13.44 55.337143 ale 103 42.429204 0.525512 1.776364 4.092308 16.72 10.999526 12.24 58.380000 ale 178 45.880531 0.443233 2.628182 4.276923 16.68 13.456368 10.92 58.382857 ale 166 45.305310 0.471668 1.806364 4.126154 18.84 9.202737 10.92 58.525714 ale 44 38.977876 0.392846 2.272727 4.015385 16.77 9.457895 10.56 58.900000 ale
Out[6]:	False Perfect! Can continue without having to do any more preprocessing. If there were nulls here depending on how many, I'd have removed them completely or taken the mean of the values and used that to populate the nulls 3. Designing the tree 3.1 Train-Test Split Function So if we have out df, we want to randomly select a certain number of rows which will be our test df. We want to randomly pick out a number from our index for df. Here we want 33% test and 67% train. So $154 - (154 * 0.33) = 51$ giving us our test data size for this
In [7]:	 dataset. I know the function then doesn't cater for proportions so I can add a statement to say if the number given to that argument is a float then multiply the float by the number of samples in the dataframe and round it to the nearest whole number! That way you can pass either a number of rows you want as the test size or a proportion. How to design this function: Easiest thing I can think of is to get the index values, take a random sample of them equal to the test data size we want and return 2 new dataframes: test and train. Test will just be the index locations where the random samples are and the train dataset will be everything else. Easiest to keep it as close to sklearn as possible because that's what I know def test_train_split(df, test_size = 0.33): # Like I said above convert proportions to numeric based on df passed in
	<pre>if type(test_size) == float: test_size = round(test_size * len(df)) # Put the index values into a list index_values = list(df.index.values) # Pick out our random sample of test data from index_values test_index_values = random.sample(index_values, test_size) # Make a new dataframe test that contains the df values at the randomly selected indexes test = df.loc[test_index_values] # Make a new dataframe train that contains everything not used by test train = df.drop(test_index_values) # Pull back our two new dataframes return train, test</pre>
<pre>In [8]: In [9]:</pre>	<pre>random.seed(2) train, test = test_train_split(df) # Test to see if the function worked properly based on the calculation I have performed above print(len(train)) print(len(test)) 103 51 Function performs as expected # Finally I want to store my dataframe in df_array too to be able to use numpy methods on it when needed df_array = df.values</pre>
Out[10]:	<pre>array([[41.72123894, 0.503275756, 2.6281818180000003,, 13.44,</pre>
In [11]:	<pre># Pick out the target variable - style target = df_array[:, -1] # How many unique classes appear in the target column? How many of each are there? classes, classes_n = np.unique(target, return_counts = True) # Which class occurs most often in the given array index = classes_n.argmax()</pre>
<pre>In [12]: Out[12]:</pre>	'lager' 3.2: All splits of the data
In [13]:	This function takes all the unique values from our feature columns, create a split down the middle between each consecutive point and return these splits into a dictionary where the keys are the column indexes and the values are all the splits that are possible for the points in that column. def all_splits(df_array): potential_splits = {} # Initialize empty dict to store keys and values later # How many columns do we have? Shape tells us (rows,columns), and we only want columns so save that _ , n_columns = df_array.shape # For each column we want to create an entry in our empty potential_splits dict for col_index in range(n_columns - 1): # -1 because we don't want our target column in there # Initialize an empty list to append the potential splits to potential_splits[col_index] = list() # The idea in ID3 is to get all the values between two points as the potential splits values = df array[:, col index]
	<pre># We only need unique values from the column unique_values = np.unique(values) # Iterate over unique values array and take (n+1 + n) / 2 to get all the values that lie between the for i in range(len(unique_values)): if i != 0: # No value before 0th to add # v_k = value at k v_k = unique_values[i] # v_j = value at j (j = k - 1) v_j = unique_values[i - 1] # Get the midpoints between k and j potential_split = (v_k + v_j) / 2 # append the split values to the value compnenent of our list potential_splits[col_index].append(potential_split)</pre> # Return now a dict with key as the column index and value as the list of midpoint values for that column.
In [14]: In [15]:	<pre>all_splits_vals = all_splits(train.values)</pre>
Out[15]:	Text(0, 0.5, 'Calorific Value') Midpoint Separation Lines: Calorific Value vs. Nitrogen Example - Horizontal 46 44 Begar 42
In [16]:	# Same as cell above but now with vertical splits g = sns.scatterplot(data = train, x = "nitrogen", y = 'calorific_value', hue = 'style')
Out[16]:	<pre>g.legend(loc='center left', bbox_to_anchor = (0.9, 0.5), ncol = 1) plt.vlines(x = all_splits_vals[1], ymin = 36, ymax = 46) #plt.hlines(y = potential_splits[0], xmin = 0, xmax = 1) plt.title("Midpoint Separation Lines: Calorific Value vs. Nitrogen Example - Vertical") plt.xlabel("Nitrogen") plt.ylabel("Calorific Value")</pre> Text(0, 0.5, 'Calorific Value') Midpoint Separation Lines: Calorific Value vs. Nitrogen Example - Vertical 46 46 47 48 48 49 40 40 40 40 40 40 40 41 41 41 42 44 48 49 40 40 40 40 40 40 40 40 40 40 40 40 40
	ale lager stout
	Note above in both plots here how each line is the midpoint of the previous two lines. This is the basis of the best split function I define later down the line where we choose the style of beer based upon the splits 3.3: Entropy In order to evaluate how the best splits will be chosen, the algorithm needs to be able to see the entropy values of the parameters passed in order to decide which has the lowest entropy and therefore highest information gain. Entropy is defined as: $Ent(s) = \sum_{i=1}^{n} -p_i log_2 p_i$
In [17]:	$p_i=$ proportion of class i in the dataset $i=$ each individual class present in the dataset. Here i would be ale, lager and beer and the proportion of each would be the number of each in the dataset divided by the total number of classes in the dataset $i=$ So below my $i=$ value is $i=$ df_array. Again I only want to use numpy to do this as I'm working with a numpy array now.
In [18]: Out[18]:	<pre># np.unique pulls back all unique entries but I only want the counts _, n = np.unique(target, return_counts = True) # As described above getting proportions as p_i p_i = n / n.sum() # Finally pull back the entropy of the dataset entropy = sum(-p_i * np.log2(p_i)) return entropy</pre>
In [19]:	3.4: Split Data Now I want to split my data into above and below certain thresholds. This is how the tree will interpret where to store certain things. The idea of splitting the data is that we split the data based on two factors: the split column and split value. Here they are simply hardcoded to show but the function can be used by taking the total entropy into accounnt! def split_data(df_array, col, val): # Take the column we wish to split on like we did with the col_vals = df_array[:, col] # Simple split to make a new array with the values that don't meet the threshold set (are lower) n = df array[col vals <= val]
In [20]: In [21]: In [22]:	<pre>col = 1 val = 0.5 n, m = split_data(df_array, col, val)</pre>
Out[22]:	plt.xlim(0, 1) plt.title("Split Function - Below Threshold Test") plt.xlabel("Nitrogen") plt.ylabel("Calorific Value") Text(0, 0.5, 'Calorific Value') Split Function - Below Threshold Test 50.0 47.5 45.0
	42.5 40.0 37.5 35.0 30.0 0.0 0.2 0.4 Nitrogen 0.6 0.8 1.0
<pre>In [23]: Out[23]:</pre>	<pre># Conversion back to dataframe for plotting plotting_df_above = pd.DataFrame(m, columns = df.columns) sns.scatterplot(data = plotting_df_above, x = "nitrogen", y = 'calorific_value') plt.vlines(x = val, ymin = 30, ymax = 50) plt.xlim(0, 1) plt.title("Split Function - Below Threshold Test") plt.xlabel("Nitrogen") plt.ylabel("Calorific Value")</pre> Text(0, 0.5, 'Calorific Value') Split Function - Below Threshold Test
	47.5 45.0 42.5 40.0 37.5 35.0
	32.5 30.0 0.0 0.2 0.4 Nitrogen Works as expected 3.5: Total Entropy of dataframe The total entropy of a dataframe is defined as:
In [24]:	<pre># How many data points have we got overall between all points below and above our split value dp = len(n) + len(m) # Proportion of points below split p_n = len(n) / dp</pre>
In [25]: Out[25]:	1.3640452890363013 3.7: Deciding on the best split point
In [26]:	<pre># This is struggled with for a week, but finally found that setting a really high value to set, we itera # For this data it only needs to be a value of 1 to work but setting it to say 10,000,000 will make it w arb_entropy = 10000000 # For a column in all potential split columns (every feature column and not the target column) for col in split: # For all values of the splits across all features for val in split[col]: # define n and m using the split function defined before n, m = split_data(df_array, col = col, val = val)</pre>
In [27]:	<pre># Get the total entropy using df_entropy defined before calculated_entropy = df_entropy(n, m) # If the total entropy is less than or equal to the value defined at the start: if calculated_entropy <= arb_entropy: # Set the value at the start equal to our calculated entropy value arb_entropy = calculated_entropy # set the best split as the column with this lowest entropy value best_split_column = col # set the best split as the value from the column with this lowest entropy value best_split_value = val return best_split_column, best_split_value # Does the function work as expected? best split decision(df array, all splits vals)</pre>
Out[27]: In [28]:	Works as expected 3.6: Purity The final function I need to define is the purity of a given value. This is how the decision tree decides it can actually end the recursion otherwise it would go on forever. If a datapoint now only has one possible classification it can belong to, we return a simple boolean. def single_class_check(df_array): # Get our target column - style
	<pre>target = df_array[:, -1] # Get all the possible classes in the column classes = np.unique(target) # If we have only one possible class value we return True else False. This is the basis for recursion if len(classes) == 1: return True else: return False 4. Decision Tree Algorithm The decision tree algorithm all comes together here. Encompassing all of the functions defined before, we take a dataframe (training data), set a type of counting argument to say when the recursion should stop (which is when a data point is pure and only has one possible classification as determined by the tree), and set a maximum number of recursions it should take</pre>
In [29]: In [30]:	<pre># Needs to be defined in the global namespace as it doesn't work unless it is here. col_labels = df.columns def DT(df, a = 0, num_recursions = 4): # If our counting argument starts off with no runs of DT: We convert the df to a numpy array if a == 0: df_array = df.values # Else we just leave it alone because it has already been converted before to a numpy array else: df_array = df # Now we need to check if the data point in the array passed in is pure OR we have reached the max numbe if (single_class_check(df_array)) or (a == num_recursions): # We use the classifier function to classify that datapoint and return that as our class.</pre>
	<pre>target_class = classifier(df_array) return target_class # If the data is not pure or we are still within the max number of recursions: else: # Append 1 to the recursion count a += 1 # Get the splits dictionary using the potential split function all_splits_vals = all_splits(df_array) # Now get the single value that qualifies for the best split based on max information gain split_col, split_val = best_split_decision(df_array, all_splits_vals) # Split this into a lower and upper bound n, m = split_data(df_array, split_col, split_val) # Put all the column labels into the dictionary cols = col_labels[split_col]</pre>
In [31]:	
	<pre>mytree = DT(train) pprint(mytree) {'bitterness <= 9.2874736845': [{'colour <= 11.1': ['stout',</pre>
<pre>In [32]: Out[32]:</pre>	Image("C://Users/oisin/Documents/ML A2/ML A2 Plots/decisiontreeob.png") bitterness
	Colour C=11.1 C=0.29 Y N Shout Cslow C=7.56 C=16.34
	Stout Rager Rager Rager
	5.1 Classification
<pre>In [33]: Out[33]:</pre>	<pre>case_rand = test.iloc[16] case_rand</pre>
In [34]:	<pre>colour</pre>
<pre>In [35]: Out[35]:</pre>	<pre>target_class = tree[branch][1] # If the data type of our target is a dictionary again, it means that we need to run the classifier agai if type(target_class) != dict: return target_class else: new_branch = target_class return classifier_test_cases(case, new_branch) # Does our sample get classified correctly? Yes! classifier_test_cases(case_rand, mytree) 'stout'</pre>
In [36]:	<pre># Apply the classifier to the test df, args needs to have an empty second inner arg due to tuple generat df["class_pred"] = df.apply(classifier_test_cases, axis = 1, args = (tree,)) # True False splitting df["class_pred_bool"] = df['class_pred'] == df['style'] # Round the accuracy and return the score for the test df supplied</pre>
<pre>In [37]: Out[37]: In [38]: Out[38]: In [39]:</pre>	<pre>accuracy = round(df['class_pred_bool'].mean(), 2) return accuracy accuracy(test, mytree) 0.9 accuracy(train, mytree) 1.0</pre>
<pre>In [39]: Out[39]:</pre>	calorific_value nitrogen turbidity alcohol sugars bitterness colour degree_of_fermentation style class_pred class_pred_bool 74 41.013274 0.441860 2.345455 4.264615 16.35 12.186053 12.12 63.747143 ale ale ale True 143 44.464602 0.363074 1.814545 4.147692 16.81 9.659053 12.48 67.898571 ale ale ale True 60 40.261062 0.609585 2.346364 4.421538 16.95 11.819000 10.32 67.557143 ale ale True 82 41.411504 0.194044 0.770000 3.510769 15.74 7.862579 13.20 68.728571 lager lager True 156 44.907080 0.475125 1.575455 4.049231 17.36 14.359789 12.36 73.432857 ale ale True
<pre>In [40]: In [41]: Out[41]:</pre>	<pre>y_actual = pd.Series(test['style'].values, name = 'Actual') y_prediction = pd.Series(test['class_pred'].values, name = 'Predicted') df_confusion = pd.crosstab(y_actual, y_prediction) df_confusion</pre>
Out[41]: In [42]:	Actual ale 14 0 2 lager 0 16 3 stout 0 0 16 So we have 14 ales, 3 lagers and 16 stouts correctly classified I can normalise it and show the proportions that were correct and incorrect too
In [42]: In [43]: Out[43]:	df_conf_norm
In [44]:	84.2% of lagers correct 100% of stouts correct 5.4 K-Fold Cross Validation The idea here is to run the test_train_split function 10 times, and then get 10 different trees based on each one. Finally we can get the accuracy of each tree and get the average across all runs def k_fold_cv_1 (df, test_size = 0.33): random.seed(2) # list comprehensions to get 10 new trees produced k_fold_splits = [test_train_split(df, test_size) for i in range(10)]
	<pre>k_fold_splits = [test_train_split(df, test_size) for i in range(10)] # Split up the results into training and testing k_train_list = [x[0] for x in k_fold_splits] k_test_list = [x[1] for x in k_fold_splits] a = [] # For a train df in the list, make a tree and append all trees to the empty list a for i in k_train_list: d = DT(i) a.append(d) 1 = [] # for an entry in the trees and test list, run an accuracy on them and return a list of scores for i, j in itertools.product(a, k_test_list): acc = accuracy(j, i) l.append(acc) # Return every 10th score as the above runs 100 times as each i runs 10 times on each j</pre>
	<pre>scores = 1[::10] # Return the scores list and then the average score return scores, f'Mean Score: {round((np.mean(scores)), 2)}' k_fold_cv_1(df) ([0.9, 0.94, 0.96, 0.96, 0.94, 0.94, 1.0, 0.98, 0.96, 1.0], 'Mean Score: 0.96') 5.5 Learning Curve I can do a plot of max_depth vs accuracy score to see where to plot ends up levelling off def learning_curve_my_algorithm(df, cases = 11):</pre>
[46]:	<pre>plt.figure(figsize=(20, 5)) random.seed(2) train, test = test_train_split(df) 1 = [] # Similar to cross validation above here we get our new trees and test accuracy on them again for case in range(cases): # For each tree we increase the number of recursions from 1 to 10 d = DT(test, num_recursions = case) l.append(d) # First result is a string not a dict because it only has one layer so remove it 1 = 1[1:] a = [] for dtree in 1: acc = accuracy(test, dtree)</pre>
In [47]:	<pre>a.append(acc) # Plot the accuracy values vs. maximum depth of the tree plt.plot(np.linspace(1, 10, 10), a, 'g-') plt.axvline(x = 4, c = 'r', alpha = 0.35) plt.title("Learning Curve") plt.xlabel("Maximum Depth of my Decision Tree") plt.ylabel("Accuracy Score") plt.xticks(np.arange(1, 11, step = 1))</pre>
	1.00
In [50'	The optimal number of recursions in my algorithm is 4 6. Comparison of my algorithm vs ID3 used in assignment 1: random. seed (2) train, test = test_train_split(df) test.columns Index(('calorific_value', 'nitrogen', 'turbidity', 'alcohol', 'sugars', 'bitterness', 'colour', 'degree_of_fermentation', 'style'),
In [51]: In [52]: In [53]:	The optimal number of recursions in my algorithm is 4 6. Comparison of my algorithm vs ID3 used in assignment 1: random.seed(2) train, test = test_train_split(df) test.columns Index(['calorific_value', 'nitrogen', 'turbidity', 'alcohol', 'sugars', 'bitterness', 'colour', 'degree_of_fermentation', 'style'], dtype='object') X_train = train_drop('style', axis = 1) X_train = train_train_to_numpy() y_train = train['style'] y_train = y_train.to_numpy()
In [51]: In [52]: In [53]: In [54]: In [55]:	The optimal number of recursions in my algorithm is 4 6. Comparison of my algorithm vs ID3 used in assignment 1: random.seed(2) train, test = test_train_split(df) test.columns Index("calorifite value", 'nitrogen', 'turbidity', 'alcobel', 'sugars', 'obtainess', 'calorifite value", 'alegree_of_fermentation', 'style'l, 'dtypes'object') X train = train.drop('style', exis = 1) X_train = x_train.to_numpy() Y_train = y_train.to_numpy() Y_test = test_drop('style', exis = 1) X_test = x_test.to_numpy() y_test = test_drop('style', exis = 1) X_test = x_test.to_numpy() Id3Satimator(max_depth = 4) elf.fit(X_train, y_train,check_input = True) Id3Satimator(max_depth = 4) feature_cols = ['calorific_value', 'nitrogen', 'turbidity', 'alcobel', 'sugars', 'luitteness', 'luitteness', 'luitteness', 'luitteness', 'calori', 'degree_of_fermentation'
In [51]: In [52]: In [53]: In [54]: In [55]: Out [55]: In [56]:	The optimal number of recursions in my algorithm is 4 6. Comparison of my algorithm vs ID3 used in assignment 1: **Each of the second of the

ML Assignment 2: Oisin Brannock

