Statisztikus fizika A gyakorlat 2020. tavaszi félév 2. zh 2019.05.12.

Név:	
Neptun kód	

Két órátok van, hogy megoldjátok a dolgozatot, valamint befényképezzétek és a tárgy e-mail címére (statfizgyak@gmail.com) elküldjétek. Minden feladat új oldalon kezdődjön! Most kivételesen nem muszáj egybefűzni és átkonvertálni pdf-be, azonban ilyenkor a képfájloknak a nevében legyen benne, hogy melyik feladathoz tartoznak! Legkésőbb 18:00-kor meg kell érkeznie a postaládába, innentől percenként -1 pont.

Sima fehér papírra írjatok! Minden beadott lap jobb felső sarkában legyen feltűntetve a név és a Neptun kód! Az oldalak legyenek számozva, és kék vagy fekete tollal írjatok! Csak azt fogadom el, amit el tudok olvasni.

Zh-n az órai jegyzetet lehet használni, és az ott fellépő összefüggéseket is, amennyiben pontosan hivatkoztok rá. Névvel ellátott formuláknál elég a nevet megadni pl Stirling-formula, ekvipartíció tétel, Gauss-integrál stb. Minden számolást írjatok ki részletesen pl bonyolultabb integrálásnál, hogy milyen változócsere volt.

Egyéb segédeszköz, illetve egymással kommunikálás csalásnak minősül, és azonnali bukást, valamint fegyelmi eljárást von maga után.

Beugró

A beugró részt nyugodtan lehet az első feladat elé írni, nem kell új lapra. Elég egy szavas vagy képletes választ írni. Az 5 kérdésből 4-nek hibátlannak kell lennie.

- 1. Mik az entrópiának a természetes változói?
- 2. A nagykanonikus termodinamikai potenciálból hogyan lehet kiszámolni az entrópiát?
- 3. Mennyi a foton kémiai potenciálja alacsony hőmérsékleten?
- 4. Adjuk meg egy nemkölcsönható fermionokból álló rendszer i-edik egyrészecske állapotának várható betöltöttségét adott hőmérséklet és kémiai potenciál mellett!
- 5. Mennyi az ammónia (NH₃) forgási szabadsági fokainak száma?

Feladatok

- 1. Vezessük le a 4 dimenzióban mozgó, $\varepsilon = a|\mathbf{p}|^{5/2}$ diszperziós relációval rendelkező, 3/2-es spinű részecskékből álló, ideális kvantumgáz egyrészecske állapotsűrűségét! Adott térfogat és részecskeszám mellett mekkora hőmérsékleten nulla ennek a gáznak a kémiai potenciálja? (4 pont)
- 2. Adjuk meg a szén-tetraklorid (CCl₄) magas hőmérsékletű, állandó térfogaton vett moláris hőkapacitását (mólhőjét). (4 pont)
- 3. Klaszter sorfejtésben (magas hőmérsékletű sorfejtés) adjuk meg a

gráf járulékát a konfigurációs állapotösszegben (Q(T, V, N)), amennyiben a párkölcsönhatás

$$\Phi(\mathbf{r}, \mathbf{r}') = \frac{\alpha}{|\mathbf{r} - \mathbf{r}'|^6}.$$
 (1)

Ne feledkezzünk meg a multiplicitásról sem!

4. Egy klasszikus rendszer koordinátafüggésének eloszlását az

$$f(x;a) = Ca^{-x} \qquad | \qquad x \in \mathbb{R}^+$$

próbafüggvénnyel közelítjük, ahol a a variációs paraméter. Tudjuk, hogy ezzel a próbafüggvénnyel a potenciális energia várhatóértéke:

$$V(a) \equiv \langle V \rangle_a := \int_0^\infty \mathrm{d}x V(x) f(x; a) = \frac{A}{\ln(a)}$$

Adjuk meg C-t, mint a függvénye! A statisztikus fizika variációs elvének segítségével határozzuk meg a legjobb a értéket! (4 pont)

5. (Bónusz kérdés) Egy futóversenyen veszel részt, ahol megelőzöd a másodikat. Hányadik vagy most a versenyen? (1 pont)

Hasznos formulák

Bose/Fermi-függvény

$$F_{\mp}(s,\alpha) = \frac{1}{\Gamma(s)} \int_0^\infty dx \frac{x^{s-1}}{e^{x+\alpha} \mp 1}$$
$$F_{\mp}(s,\alpha) = \pm \sum_{n=1}^\infty (\pm 1)^n \frac{e^{-n\alpha}}{n^s}$$

Gamma-függvény

$$\begin{split} \Gamma(s) &= \int_0^\infty \mathrm{d}x \ x^{s-1} e^{-x} \\ \Gamma(s+1) &= s \Gamma(s) \\ \Gamma(1/2) &= \sqrt{\pi} \\ \Gamma(n) &= (n-1)! \qquad n \in \mathbb{N} \end{split}$$

Egy d dimenziós gömb térfogata

$$V_d(R) = \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2}+1)} R^d$$

Egy d dimenziós gömb felülete

$$S_d(R) = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})} R^{d-1}$$

Veszeli Máté