

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Week 1: Review

Review of Circuit Elements

Review linear circuit components and properties

Lesson Objectives

- Review
 - Resistors, capacitors, inductors
 - i-v characteristics of these elements
 - Sources, nodes

Passive Elements

Resistor	Capacitor	Inductor
	i C + V -	— L + ∨ -
V = iR	$i = C \frac{dV}{dt}$	$V = L \frac{di}{dt}$

Series and Parallel Connections

	Series	Parallel
Resistors	$ \begin{array}{ccc} & & & \\ & & & \\ & & \\ R_1 & & \\ & & \\ R_2 & & \\ & & \\ R = R_1 + R_2 \end{array} $	$ \begin{array}{c c} R_1 & R_2 & R_3 \\ \hline R_1 & R_2 & R_3 \\ \hline \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \\ \hline \end{array} $
Inductors	$L_1 \qquad L_2 \qquad .$ $L = L_1 + L_2$	$L = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}}$
Capacitors	$C = \frac{C_1 C_2 C_3}{C_1 + \frac{1}{C_2} + \frac{1}{C_3}}$	C_1 C_2 C_3 C_3 C_4 C_5

Connections and Sources

Ground	<u>_</u>	Reference for 0 volts
Node	7	Voltage level the same everywhere on the node
Voltage Source	Independent	Dependent
Current Source	Independent	Dependent

Circuit Connections

Review of Kirchoff's Laws

Review of KVL and KCL

Lesson Objectives

- Review
 - Kirchhoff's Current Law (KCL)
 - Kirchhoff's Voltage Law (KVL)

Kirchhoff's Voltage Law (KVL)

The sum of voltages around any closed loop is zero.

KVL Quiz

KVL and Parallel Circuits

$$v_A - v_B = 0$$
$$v_A = v_B$$

KVL Example

Kirchhoff's Current Law (KCL)

$$\sum i_{entering} = \sum i_{leaving}$$

KCL and Series Circuits

$$i_A = i_B$$

KCL Example

Summary

- Introduced KVL and KCL
- Applied KVL to parallel elements
- Applied KCL to series elements
- Solved a simple circuit using Kirchhoff's Laws

Georgialnstitute of Technology

Review of Impedance

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering

Review of Impedance for Analyzing AC Circuits

Lesson Objectives

- Review
 - Impedances for steady-state sinusoidal inputs (AC)

Impedances

$$Z_R = R$$

In-phase

Frequency invariant

Current leads voltage

$$Z_L = j\omega L$$

Current lags voltage

Impedances in Series

Impedances in Parallel

$$Z_{\text{eq}} = \left[\frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}\right]^{-1}$$

$$Z_{\rm eq} = \left[\sum_i \frac{1}{Z_i}\right]^{-1}$$

Kirchhoff's Laws

$$\mathbb{I}_1 = \mathbb{I}_2 + \mathbb{I}_3$$

Series RC

Series RLC

Summary

- Introduced KVL and KCL
- Applied KVL to parallel elements
- Applied KCL to series elements
- Solved a simple circuit using Kirchhoff's Laws

Review of Transfer Functions

Professor and Associate Chair School of Electrical and Computer Engineering

Review of transfer functions for characterizing circuits

Lesson Objectives

- Review transfer functions
 - To characterize a circuit
 - To find frequency response curves

Transfer Function Two-Port Networks

$$\begin{aligned} H(\omega)V_i &= V_o \\ H(\omega)A_{in}\angle\theta_{in} &= A_{out}\angle\theta_{out} \\ A_{out} &= |H(\omega)|A_{in} \quad \theta_{out} = \angle H(\omega) + \theta_{in} \end{aligned}$$

Summary of Simple Circuits

Summary

- Defined transfer function for Two-Port Networks
 - Showed transfer functions of simple circuits

Review of Frequency Response Plots (Bode)

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering

Review of linear plots and Bode plots to show the frequency characteristics of signals and circuits

Lesson Objectives

Define the frequency response for a transfer function $H(\omega)$

Magnitude Plot: $|H(\omega)|$ vs ω Angle Plot: $\angle H(\omega)$ vs ω

Show linear plots and Bode plots

Frequency Response

Transfer Function

$$H(\omega) = \frac{1}{1 + RC\omega j}$$

$$|H(\omega)| = \frac{1}{\sqrt{1 + (RC\omega)^2}}$$

$$\angle H(\omega) = -a \tan(RC\omega)$$

$$\angle H(\omega) = -a \tan(RC\omega)$$

Circuit Response

Bode Plots

Linear Plot and Bode Plot

Bode Plot First-Order Characteristics

$$H(\omega) = \frac{1}{1 + j\omega RC}$$

$$|H(\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

$$\angle H(\omega) = -a \tan(\omega RC)$$

Bode Plot of RLC Circuit, Overdamped

$$\boldsymbol{H}(\omega) = \frac{1}{(1 - \boldsymbol{L}\boldsymbol{C}\omega^2) + \boldsymbol{R}\boldsymbol{C}\boldsymbol{j}\omega}$$

Bode Plot of RLC Circuit, Underdamped

Summary

- A frequency response is a plot of the transfer function versus frequency
- The frequency response can be used to determine the steady-state sinusoidal response of a circuit at different frequencies