

# Facultad de Ingeniería y Ciencias Agropecuarias Ingeniería en Sonido y Acústica IES500-1 / Acústica Arquitectónica

Período 2017-2

#### 1. Identificación

Número de sesiones: 64

Número total de horas de aprendizaje: 160= 64 presenciales +96 trabajo autónomo

Créditos - malla actual: 6

Profesor: María Bertomeu Rodríguez

Correo electrónico del docente (Udlanet): m.bertomeu@udlanet.ec

Coordinador: Christiam Santiago Garzón Pico

Campus: Granados

Pre-requisito: IES400 Co-requisito:

Paralelo: 1

Tipo de asignatura:

| Optativa    |   |
|-------------|---|
| Obligatoria | Χ |
| Práctica    |   |

### Organización curricular:

| Unidad 1: Formación Básica      |   |
|---------------------------------|---|
| Unidad 2: Formación Profesional | Χ |
| Unidad 3: Titulación            |   |

### Campo de formación:

|                         | Campo de formación    |                                                       |                                                   |                             |
|-------------------------|-----------------------|-------------------------------------------------------|---------------------------------------------------|-----------------------------|
| Fundamentos<br>teóricos | Praxis<br>profesional | Epistemología y<br>metodología de la<br>investigación | Integración de<br>saberes, contextos y<br>cultura | Comunicación y<br>lenguajes |
|                         |                       |                                                       | Х                                                 |                             |

### 2. Descripción del curso

La Acústica Arquitectónica estudia la influencia de los diferentes elementos arquitectónicos sobre la transmisión del sonido. Abarca tres grandes temas: Aislamiento Acústico, Acondicionamiento Acústico y Acústica urbanística. Así pues se plantean en esta materia las bases de los métodos utilizados para su estudio.

### 3. Objetivo del curso

Reconocer y aplicar los métodos utilizados para el estudio de recintos y todos sus parámetros. También discriminar los conceptos fundamentales de acondicionamiento y aislamiento acústico. Y por último sentar las bases para las asignaturas futuras.



### 4. Resultados de aprendizaje deseados al finalizar el curso

| Resultados de aprendizaje (RdA)                                                                                                                                        | RdA perfil de egreso de carrera                                                                                              | Nivel de desarrollo<br>(carrera)               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Analiza las teorías de estudio de los recintos, saber aplicar las expresiones y conocer sus limitaciones para mejorar las condiciones acústicas de un espacio cerrado. | RDA3: Diseña con criterio soluciones de acondicionamiento y aislamiento acústico para todo tipo de espacios arquitectónicos. | Inicial ( X ) 3<br>Medio ( X )1,2<br>Final ( ) |
| 2. Interpreta el significado físico de los coeficientes de absorción y aplicarlos para adecuar el tiempo de reverberación de un local a un determinado uso.            |                                                                                                                              |                                                |
| 3. Reconoce los parámetros de calidad acústica de salas, comprendiendo su sentido físico en la evaluación de las condiciones de los recintos.                          |                                                                                                                              |                                                |

#### 5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

| Reporte de progreso 1<br>Sub componentes             | 35% |
|------------------------------------------------------|-----|
| Reporte de progreso 2<br>Sub componentes             | 35% |
| Evaluación final<br>Sub componentes (si los hubiese) | 30% |

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.



### 6. Metodología del curso y de mecanismos de evaluación.

Las metodologías y mecanismos de evaluación deben explicarse en los siguientes escenarios de aprendizaje:

#### 6.1. Escenario de aprendizaje presencial.

El escenario presencial contará con clases magistrales, en las clases también se realizarán ejercicios prácticos y debates sobre casos reales. Cuando sea pertinente se harán lecturas técnicas y visionado de imágenes y vídeos relacionados con el tema.

Además se hará hincapié en trabajo en equipo con exposiciones para reforzar la expresión oral específica.

Cuando el tema lo amerite, se realizarán prácticas relacionadas en los laboratorios o salidas de campo.

### 6.2 Escenario de aprendizaje virtual.

El trabajo virtual consistirá en un complemento al trabajo autónomo, donde el docente ayudará con lecturas y vídeos relacionados con la materia. También será la plataforma para entrega de tareas, siempre con la rúbrica disponible.

### 6.3 Escenario de aprendizaje autónomo.

El trabajo autónomo está orientado al desarrollo de las capacidades profesionales y académicas del estudiante. En el cual se espera dedicación y pensamiento crítico siguiendo las directrices de la rúbrica. Serán trabajos individuales y/o en grupo que conlleven investigación y/o diseños propios.

|            | Porcentaje<br>(%) | Puntuación |
|------------|-------------------|------------|
| Trabajos   | 15                | 4.3        |
| Examen     | 20                | 5.7        |
| PROGRESO 1 | 35                | 10         |

|            | Porcentaje (%) | Puntuación |
|------------|----------------|------------|
| Trabajos   | 15             | 4.3        |
| Examen     | 20             | 5.7        |
| PROGRESO 2 | 35             | 10         |

|                  | Porcentaje (%) | Puntuación |
|------------------|----------------|------------|
| Trabajos         | 15             | 5          |
| Examen           | 15             | 5          |
| EVALUACIÓN FINAL | 30             | 10         |



\*El proyecto integrador es susceptible a cambio de progreso según convenga al seguimiento de la clase.

\*Si en un progreso hay más de un trabajo, se socializará cuál es el principal y ocupará un 75% de la nota destinada a trabajo.

# 7. Temas y subtemas del curso

| RdA                                       | Temas                         | Subtemas                     |
|-------------------------------------------|-------------------------------|------------------------------|
| 1. Analiza las teorías de estudio de los  | 1. Introducción a la Acústica | 1.1 Definiciones básicas y   |
| recintos, saber aplicar las expresiones y | Arquitectónica                | ámbitos de la acústica       |
| conocer sus limitaciones para mejorar     |                               | arquitectónica.              |
| las condiciones acústicas de un espacio   |                               | 1.2 La cadena de             |
| cerrado.                                  |                               | comunicación.                |
|                                           |                               | 1.3 Teorías para el estudio  |
|                                           |                               | del campo sonoro en el       |
|                                           |                               | interior de recintos.        |
|                                           |                               | 1.4 Clasificación general de |
|                                           |                               | los recintos.                |
| 1. Analiza las teorías de                 | 2. Teoría estadística         | 2.1 Introducción             |
| estudio de los recintos,                  |                               | 2.2 Modelo de campo          |
| saber aplicar las expresiones             |                               | difuso.                      |
| y conocer sus limitaciones                |                               | 2.3 Tiempo de                |
| para mejorar las condiciones              |                               | reverberación. Fórmula       |
| acústicas de un espacio                   |                               | Sabine.                      |
| cerrado.                                  |                               | 2.4 Locales más              |
|                                           |                               | absorbentes. Fórmula de      |
|                                           |                               | Eyring.                      |
|                                           |                               | 2.5 Efecto de la absorción   |
|                                           |                               | del aire.                    |
|                                           |                               | 2.6 Consideraciones sobre    |
|                                           |                               | el concepto del tiempo de    |
|                                           |                               | reverberación.               |
|                                           |                               | 2.7 Campo acústico           |
|                                           |                               | estacionario en un recinto   |
|                                           |                               | cerrado. Campo directo y     |
|                                           |                               | reverberado. Radio crítico.  |
| 1. Analiza las teorías de estudio de los  | 3. Teoría geométrica          | 3.1 Fundamentos y            |
| recintos, saber aplicar las expresiones y |                               | limitaciones                 |
| conocer sus limitaciones para mejorar     |                               | 3.2 Focalizaciones.          |
| las condiciones acústicas de un espacio   |                               | 3.3 Método fuente-imagen     |
| cerrado.                                  |                               | 3.3.1 Estudio del eco.       |
|                                           |                               | 3.3.2 Diseño y control de    |
|                                           |                               | superficies                  |
|                                           |                               | 3.4 Diseño para un buen      |
|                                           |                               | sonido directo.              |
|                                           |                               | 3.5 Diseño para aprovechar   |
|                                           | 1                             | el sonido reflejado.         |
| 1. Analiza las teorías de                 | 4.Teoría ondulatoria          | 4.1 Introducción             |
| estudio de los recintos,                  |                               | 4.2 El campo sonoro en el    |
| saber aplicar las expresiones             |                               | interior de un               |
| y conocer sus limitaciones                |                               | paralelepípedo               |
| para mejorar las condiciones              |                               | 4.3 Densidad de modos        |



| acústicas de un espacio<br>cerrado.                                                                                                                         |                                                       | propios en un recinto<br>paralelepípedo.<br>4.4 Conclusiones de diseño.                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                             |                                                       | Diagrama de Bolt. 4.5 Ámbitos de aplicación de las tres teorías.                                                                                                                                                                                                                             |
| 2. Interpreta el significado físico de los coeficientes de absorción y aplicarlos para adecuar el tiempo de reverberación de un local a un determinado uso. | 5.La absorción para el control de<br>la reverberación | 5.1 Introducción y planteamiento del problema 5.2 Principio de funcionamiento de los principales materiales y dispositivos absorbentes. 5.3 Coeficiente de absorción. 5.4 Resonadores 5.5 Pasos a seguir en la intervención acústica                                                         |
| 3. Reconoce los parámetros de calidad acústica de salas, comprendiendo su sentido físico en la evaluación de las condiciones de los recintos.               | 6. Parámetros de la calidad<br>acústica de salas      | 6.1 Introducción 6.2 Introducción a la arqueoacústica. 6.3 Revisión histórica del diseño de salas de audición. 6.4 Juicios subjetivos y criterios objetivos en acústica de salas para palabra y música. 6.5 Repercusiones en el diseño de salas de audición. 6.6 Consideraciones del diseño. |

# 8. Planificación secuencial del curso

|     | Semana 1                                              |                                                                                                              |                                                                                                                 |                                                                                                  |                                   |
|-----|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|
| RdA | Tema                                                  | Sub tema                                                                                                     | Actividad/ estrategia de clase                                                                                  | Tarea/ trabajo<br>autónomo                                                                       | MdE/Producto/<br>fecha de entrega |
| #4  | 1.<br>Introducción a<br>la Acústica<br>Arquitectónica | 1.1 Definiciones básicas y ámbitos de la acústica arquitectónica. 1.2 La cadena de comunicación. 1.3 Teorías | (1) Dinámica de presentación. (1) Clases magistrales con soporte audiovisual. (1) Debate sobre la comunicación. | Lecturas Capítulo<br>5<br>Libro:<br>Acústica<br>arquitectónica y<br>urbanística (J.<br>Llinares) |                                   |



| para el estudio |
|-----------------|
| del campo       |
| sonoro en el    |
| interior de     |
| recintos.       |
| 1.4             |
| Clasificación   |
| general de los  |
| recintos.       |

|     | Semana 1-4  |                  |                     |                    |                    |  |  |
|-----|-------------|------------------|---------------------|--------------------|--------------------|--|--|
| #   | Tema        | Sub tema         | Actividad/          | Tarea/             | MdE/Producto/      |  |  |
| RdA |             |                  | estrategia de clase | trabajo autónomo   | fecha de entrega   |  |  |
| 1   | 2. Teoría   | 2.1              | (1) Clases          | (3)Lectura         | Informe técnico de |  |  |
|     | estadística | Introducción     | magistrales         | normativa UNE-EN   | ensayo in situ.    |  |  |
|     |             | 2.2 Modelo de    |                     | ISO 3382           |                    |  |  |
|     |             | campo difuso.    | (1)Resolución       |                    |                    |  |  |
|     |             | 2.3 Tiempo de    | ejercicios          |                    |                    |  |  |
|     |             | reverberación.   |                     | (3)Ensayo tiempo   |                    |  |  |
|     |             | Fórmula Sabine.  | (1) Práctica        | de reverberación   |                    |  |  |
|     |             | 2.4 Locales más  | medición tiempo de  |                    |                    |  |  |
|     |             | absorbentes.     | reverberación.      | (3) Lecturas       |                    |  |  |
|     |             | Fórmula de       |                     | Capítulo 9         |                    |  |  |
|     |             | Eyring.          |                     | Libro:             |                    |  |  |
|     |             | 2.5 Efecto de la |                     | Acústica           |                    |  |  |
|     |             | absorción del    |                     | arquitectónica y   |                    |  |  |
|     |             | aire.            |                     | urbanística (J.    |                    |  |  |
|     |             | 2.6              |                     | Llinares)          |                    |  |  |
|     |             | Consideraciones  |                     |                    |                    |  |  |
|     |             | sobre el         |                     | (3) Lecturas       |                    |  |  |
|     |             | concepto del     |                     | Capítulo 2         |                    |  |  |
|     |             | tiempo de        |                     | Libro:             |                    |  |  |
|     |             | reverberación.   |                     | Acondicionamiento  |                    |  |  |
|     |             | 2.7 Campo        |                     | acústico (Recuero) |                    |  |  |
|     |             | acústico         |                     |                    |                    |  |  |
|     |             | estacionario en  |                     |                    |                    |  |  |
|     |             | un recinto       |                     |                    |                    |  |  |
|     |             | cerrado. Campo   |                     |                    |                    |  |  |
|     |             | directo y        |                     |                    |                    |  |  |
|     |             | reverberado.     |                     |                    |                    |  |  |
|     |             | Radio crítico.   |                     |                    |                    |  |  |

|          | Semana 5-6 |                            |                                 |                            |                                   |
|----------|------------|----------------------------|---------------------------------|----------------------------|-----------------------------------|
| #<br>RdA | Tema       | Sub tema                   | Actividad/<br>metodología/clase | Tarea/<br>trabajo autónomo | MdE/Producto/<br>fecha de entrega |
| 1        | 3. Teoría  | 3.1                        | (1)Clases                       | (3)Boletín                 |                                   |
|          | geométrica | Fundamentos y limitaciones | magistrales                     | ejercicios                 |                                   |
|          |            | 3.2                        | (1)Resolución                   | (3) Lecturas               |                                   |
|          |            | Focalizaciones.            | ejercicios                      | Capítulo 6                 |                                   |
|          |            | 3.3 Método                 |                                 | Libro:                     |                                   |
|          |            | fuente-imagen              | (1) Ejemplos                    | Acústica                   |                                   |
|          |            | 3.3.1 Estudio              | experimentales                  | arquitectónica y           |                                   |
|          |            | del eco.                   |                                 | urbanística (J.            |                                   |
|          |            | 3.3.2 Diseño y             |                                 | Llinares)                  |                                   |



| control de<br>superficies | (3) Lecturas     |
|---------------------------|------------------|
| 3.4 Diseño                | Capítulo 3       |
| para un buen              | Libro:           |
| sonido directo.           | Acondicionamient |
| 3.5 Diseño                | o acústico       |
| para                      | (Recuero)        |
| aprovechar el             |                  |
| sonido                    |                  |
| reflejado.                |                  |

|          | Semana 7-9              |                                                                                                                                                                                                                                   |                                                                                                          |                                                                                                                                                                                                   |                                   |  |
|----------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| #<br>RdA | Tema                    | Sub tema                                                                                                                                                                                                                          | Actividad/<br>metodología/clase                                                                          | Tarea/<br>trabajo autónomo                                                                                                                                                                        | MdE/Producto/<br>fecha de entrega |  |
| 1        | 4.Teoría<br>ondulatoria | 4.1 Introducción 4.2 El campo sonoro en el interior de un paralelepípedo 4.3 Densidad de modos propios en un recinto paralelepípedo. 4.4 Conclusiones de diseño. Diagrama de Bolt. 4.5 Ámbitos de aplicación de las tres teorías. | (1) Clases magistrales  (1) Resolución ejercicios  (1) Experimento I'm sitting in a room. (Alvin Lucier) | Informe experimento + cálculo matemático  (3) Lecturas Capítulo 7 Libro: Acústica arquitectónica y urbanística (J. Llinares)  (3) Lecturas Capítulo 4 Libro: Acondicionamiento acústico (Recuero) | Informe experimento.              |  |

|          | Semana 10-12                                                |                                                                                                                                                                                                   |                                                                                          |                                              |                                                       |  |
|----------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|--|
| #<br>RdA | Tema                                                        | Sub tema                                                                                                                                                                                          | Actividad/<br>metodología/clase                                                          | Tarea/<br>trabajo<br>autónomo                | MdE/Producto/<br>fecha de entrega                     |  |
| 2        | 5.La absorción<br>para el control<br>de la<br>reverberación | 5.1 Introducción y planteamiento del problema 5.2 Principio de funcionamiento de los principales materiales y dispositivos absorbentes. 5.3 Coeficiente de absorción. 5.4 Resonadores 5.5 Pasos a | (1)Clases magistrales (1)Resolución ejercicios (1)Exposición (1) Práctica tubo de kundnt | (3)Investigación<br>materiales<br>acústicos. | Exposición/ Trabajo<br>investigación de<br>materiales |  |



| se  | guir en la |  |  |
|-----|------------|--|--|
| int | tervención |  |  |
| ac  | cústica    |  |  |

| #<br>RdA | Tema                                          | Sub tema                                                                                                                                                                                                                                                                         | Actividad/<br>metodología/clase                                                        | Tarea/<br>trabajo<br>autónomo                                      | MdE/Producto/<br>fecha de entrega                                     |
|----------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|
| 3        | 6. Parámetros de la calidad acústica de salas | 6.1 Introducción 6.2 Introducción a la arqueoacústica. 6.3 Revisión histórica del diseño de salas de audición. 6.4 Juicios subjetivos y criterios objetivos en acústica de salas para palabra y música. 6.5 Repercusiones en el diseño de salas de audición. 6.6 Consideraciones | (1)Clases magistrales (1)Resolución ejercicios (1)Exposición papers (1)Salida de campo | (3)Lectura<br>crítica de un<br>paper<br>relacionado<br>con el tema | Presentación informe<br>proyecto<br>integrador/Resonador<br>Helmholtz |

### 9. Normas y procedimientos para el aula

- Se tomará lista a los 10 minutos de que inicia la clase, y no se permitirá el ingreso a estudiantes que lleguen más tarde.
- Para utilizar los servicios básicos o tener la necesidad de salir un momento de clase no es necesario pedir permiso.
- El docente no tiene la potestad de justificar ninguna falta de alumnos. La universidad permite tener un cierto número de faltas por parte del estudiante que deberán ser usadas para emergencias (enfermedades, calamidad domésticas) y salidas de campo.

## 10. Referencias bibliográficas

# 10.1. Principales.

- Llinares, J., Llopis, A., Sancho, J. (1990) Acústica arquitectónica y urbanística.
- Recuero, M. (2001) Acondicionamiento acústico.
- Carrión Isbert, A (1998). Diseño acústico de espacios arquitectónicos.





### 10.2. Referencias complementarias.

- 1. Asociación Española de Normalización y Acreditación. (2008) UNE-EN ISO3382-2 Medición de parámetros acústicos en recintos; Parte 2: Tiempo de reverberación en recintos ordinarios. Madrid, España: AENOR
- 2. Long, M. (2005). Applications of Modern Acoustics : Architectural Acoustics
- 3. Kuttruff, H (1991) Room Acoustics. CRC Press

#### 11. Perfil del docente

Nombre de docente: María Bertomeu Rodríguez

Maestría en Gestión y Evaluación de la Contaminación Acústica (Universidad de Cádiz) Ingeniería técnica de telecomunicaciones, especialidad en Imagen y Sonido, intensificación

Acústica (Universidad Politécnica de Valencia)

Contacto: m.bertomeu@udlanet.ec
Teléfono: +593 (2) 398 1000 Ext: 2016