Défis en Intelligence Artificielle

Défi 3 : L'IA pour l'analyse et la prévision de séries temporelles (II/III)

Souhaib Ben Taieb

University of Mons

December 15, 2022

Overview

Last week recap

Statistical forecasting methods

AR, MA and ARIMA models Model estimation, validation and selection (S)ARIMA models Auto arima

Al forecasting models

Last week recap

Statistical forecasting methods

Al forecasting models

Last week recap

Course organization

Introduction to time series forecasting

Concepts and tools for time series data

Time series patterns

Time series plots

The autocorrelation function

Stationarity

Transformations

Time series decomposition

Methods and tools for time series forecasting

Overview of forecasting methods

Challenges in training Al models for forecasting

Some simple forecasting methods

Residual diagnostics

Evaluating forecast accuracy

Overview of forecasting methods

- ► Simple forecasting methods
 - ► Often used as (naive) baselines
- ► Statistical/time series models
 - Good performance for many real-world applications
 - ► Often used as (stronger) baselines for AI models
- ► AI/Machine learning methods
 - ► Time series forecasting can be reduced to a regression problem
 - ► Use any AI learning algorithm for regression
 - Specific Al architectures for sequential data

Last week recap

Statistical forecasting methods

AR, MA and ARIMA models Model estimation, validation and selection (S)ARIMA models Auto.arima

Al forecasting models

Last week recap

Statistical forecasting methods

AR, MA and ARIMA models

Model estimation, validation and selection
(S)ARIMA models

Auto.arima

Al forecasting models

Autoregressive (AR) models

An autoregressive (AR) model of order p can be written as

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t,$$

where ε_t is white noise.

This is like a **multiple regression** but with **lagged values** of y_t as predictors./inputs.

Some **constraints** on the values of the coefficients are required to obtain a **stationary** model.

AR(1) example

AR(2) example

Moving Average (MA) models

A moving average (MA) model order p can be written as

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q},$$

where ε_t is white noise.

Rather than using past values of the forecast variable in a regression, an MA model uses **past forecast errors** in a regression-like model.

Some **constraints** on the values of the coefficients are required to obtain a **stationary** model.

MA(1) example

MA(2) example

Autoregressive Moving Average (ARMA) models

An **autoregressive moving average** (ARMA) model of order p and q can be written as

$$y_{t} = c + \phi_{1}y_{t-1} + \phi_{2}y_{t-2} + \dots + \phi_{p}y_{t-p}$$

$$+ \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t},$$

$$(2)$$

where ε_t is white noise.

- ▶ Predictors include both lagged values and lagged errors.
- ► Conditions on coefficients are required to ensure **stationarity**.

Last week recap

Statistical forecasting methods

AR, MA and ARIMA models

Model estimation, validation and selection
(S)ARIMA models

Auto,arima

Al forecasting models

Maximum Likelihood Estimation (model fitting)

▶ If the model order is given (i.e. *p* and *q*), we need to **estimate** the parameters

$$c, \phi_1, \phi_2, \ldots, \phi_p, \theta_1, \theta_2, \ldots, \theta_q$$

- ► Maximum Likelihood Estimation (MLE) finds the values of the parameters which **maximise the probability** of obtaining the data that we have observed.
- ► MLE maximizes the likelihood function:

$$L = L(c, \phi_1, \phi_2, \dots, \phi_p, \theta_1, \theta_2, \dots, \theta_q; y_1, y_2, \dots, y_T).$$

► For ARMA models, MLE is similar to least squares estimation.

Information criteria (model validation and selection)

- ► For classical time series models, **model validation** is performed using **information criteria**, which are **asymptotically** equivalent to some form of (time-series) cross-validation.
- ► For ARMA models, the **Akaike's Information Criterion (AIC)** can be written as

$$AIC = AIC(p, q; y_1, y_2, \dots, y_T) = -2\log(L) + 2(p + q + k + 1),$$

where

- L is the likelihood of the data
- \blacktriangleright k=1 if $c \neq 0$ and k=0 if c=0
- ▶ the last term is the number of parameters in the model (including σ^2 , the variance of the residuals)

Information criteria (model validation and selection)

► The corrected AIC (AICc) can be written as

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

► The Bayesian Information Criterion (BIC) can be written as

$$BIC = AIC + [log(T) - 2](p + q + k + 1).$$

► Good models are obtained by **minimising** the AIC, AICc or BIC.

Last week recap

Statistical forecasting methods

AR, MA and ARIMA models
Model estimation, validation and selection
(S)ARIMA models
Auto arima

Al forecasting models

Autoregressive Integrated Moving Average (ARIMA) models

If we combine differencing with autoregression and a moving average model, we obtain a non-seasonal ARIMA (AutoRegressive Integrated Moving Average) model:

$$y'_{t} = c + \phi_{1}y'_{t-1} + \dots + \phi_{p}y'_{t-p} + \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t},$$

where $y_t^{'}$ is the differenced series (one or multiple differences).

- ▶ We call it an ARIMA(p, d, q) model where
 - ightharpoonup p is the order of the autoregressive part;
 - ► *d* is the degree of first differencing involved;
 - ightharpoonup q is the order of the moving average part.
- Many particular cases:
 - \blacktriangleright White noise model: ARIMA(0,0,0) with no constant
 - ightharpoonup Random walk model: ARIMA(0,1,0) with no constant
 - ightharpoonup AR(p): ARIMA(p, 0, 0)
 - ightharpoonup MA(q): ARIMA(0, 0, q)

Seasonal ARIMA (SARIMA) models

where m is the number of observations in each season.

Last week recap

Statistical forecasting methods

AR, MA and ARIMA models
Model estimation, validation and selection
(S)ARIMA models

Auto.arima

Al forecasting models

Software

pmdarima.arima.auto_arima

pmdarima.auto_arima(y, X=None, start_p=2, d=None, start_q=2, max_p=5, max_d=2, max_q=5, start_P=1, D=None, start_Q=1, max_P=2, max_D=1, max_Q=2, max_order=5, m=1, seasonal=True, stationary=False, information_criterion='aic', alpha=0.05, test='kpss', seasonal_test='ocsb', stepwise=True, n_jobs=1, start_params=None, trend=None, method='lbfgs', maxiter=50, offset_test_args=None, seasonal_test_args=None, suppress_warnings=True, error_action='trace', trace=False, random=False, random_state=None, n_fits=10, return_valid_fits=False, out_of_sample_size=0, scoring='mse', scoring_args=None, with_intercept='auto', sarimax_kwargs=None, **fit_args) [source] [source]

- ▶ https://alkaline-ml.com/pmdarima/modules/classes.html
- https://alkaline-ml.com/pmdarima/modules/generated/ pmdarima.arima.AutoARIMA.html#pmdarima.arima.AutoARIMA
- ▶ https://alkaline-ml.com/pmdarima/tips_and_tricks.html

Software

		SAR	[MAX Resul	ts			
===== Dep. Variab	ole:		y No.	Observations:	:	1000	
Model:	SAI	RIMAX(2, 0,	2) Log	Likelihood		-1398.466	
Date:			AIC			2806.931	
Time:			BIC			2831.470	
Sample:			0 HQIC			2816.258	
		- 10	900				
Covariance	Type:	(opg				
	coef	std err	z	P> z	[0.025	0.975]	
 ar.L1	0.7012	0.075	9.383	0.000	0.555	0.848	
ar.L2	-0.2353	0.060	-3.910	0.000	-0.353	-0.117	
ma.L1	0.6982	0.072	9.724	0.000	0.557	0.839	
ma.L2	0.3858	0.051	7.513	0.000	0.285	0.486	
sigma2	0.9578	0.042	22.699	0.000	0.875	1.041	
======= Ljung-Box (L1) (Q):		0.00	 Jarque-Bera	(JB):		==== 3.8
Prob(Q):		0.99	Prob(JB):			0.1	
Heteroskedasticity (H):		0.89	Skew:			0.1	
Prob(H) (two-sided):		0.28	Kurtosis:			3.0	

Reference

https://otexts.com/fpp3

Last week recap

Statistical forecasting methods

Al forecasting models

Last week recap

Statistical forecasting methods

AR, MA and ARIMA models
Model estimation, validation and selection
(S)ARIMA models
Auto.arima

Al forecasting models

Challenges in training AI forecasting models (recap)

Time-series (cross-)validation
Some multi-step forecasting strategies
(Deep) Neural Networks

Challenges in training AI models for forecasting

- ► (Statistically) dependent data
 - ► (naive) shuffling can destroy the temporal dependence structure
 - ► Time-series training/test split needed
- ► Non-stationarity
 - ► Validity of the training/test split?
 - ► Transformations to stabilize mean and variance
- ► Specific patterns: seasonality, trend, cycle, etc
 - ► Can the model capture these patterns?
- ► Arrow of time: use past observations to predict future values
- ► Multi-step ahead forecasting, i.e. sequential predictions

Last week recap

Statistical forecasting methods

AR, MA and ARIMA models Model estimation, validation and selection (S)ARIMA models Auto.arima

Al forecasting models

Time-series cross-validation

Time-series cross-validation

$$\underbrace{y_1, y_2, y_3, y_4, y_5, y_6}_{Training}, \underbrace{y_7, y_8, y_9, y_{10}}_{Validation}$$

- \triangleright $y_1, y_2, y_3, y_4, y_5, y_6 \longrightarrow y_7$
- $> y_1, y_2, y_3, y_4, y_5, y_6, y_7 \longrightarrow y_8$
- $y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8 \longrightarrow y_9$
- \triangleright $y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9 <math>\longrightarrow$ y_{10}

Also called the rolling-origin approach.

Time-series cross-validation - Example with lag p=3

	У		
y_{t-2}	y_{t-1}	Уt	y_{t+1}
<i>y</i> 1	У2	<i>y</i> 3	<i>y</i> 4
У2	У3	<i>y</i> 4	<i>y</i> 5
<i>y</i> 3	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> 6
<i>y</i> ₄	<i>y</i> ₅	<i>y</i> 6	<i>y</i> 7

	У		
<i>y</i> _{t−2}	y_{t-1}	Уt	y_{t+1}
<i>y</i> 1	У2	<i>y</i> 3	<i>y</i> 4
У2	У3	<i>y</i> ₄	<i>y</i> ₅
<i>У</i> 3	<i>y</i> ₄	<i>y</i> ₅	У6
<i>y</i> 4	<i>y</i> ₅	<i>y</i> 6	У7
<i>y</i> ₅	<i>y</i> 6	<i>y</i> 7	<i>y</i> 8
У6	<i>У</i> 7	<i>y</i> ₈	<i>y</i> 9

	Χ			
y_{t-2}	y_{t-1}	Уt	y_{t+1}	
<i>y</i> 1	У2	<i>y</i> 3	<i>y</i> 4	
У2	У3	<i>y</i> ₄	<i>y</i> ₅	
У3	<i>y</i> ₄	<i>y</i> ₅	У6	
<i>y</i> 4	<i>y</i> 5	<i>y</i> 6	<i>y</i> 7	
<i>y</i> ₅	У6	<i>y</i> 7	<i>y</i> 8	
	Χ			
y_{t-2}	y_{t-1}	Уt	y_{t+1}	
У1	У2	<i>У</i> 3	<i>y</i> ₄	
У2	У3	1/4	1.4	
J 4	93	<i>y</i> 4	<i>y</i> ₅	
<i>y</i> 3	<i>y</i> ₄	<i>y</i> ₄ <i>y</i> ₅	<i>y</i> 5 <i>y</i> 6	
У3	<i>y</i> 4	<i>y</i> ₅	У6	
<i>y</i> ₃ <i>y</i> ₄	<i>у</i> 4 <i>У</i> 5	<i>y</i> ₅ <i>y</i> ₆	У6 У7	

32 / 41

The validation set approach

$$\underbrace{y_1, y_2, y_3, y_4, y_5, y_6}_{Training}, \underbrace{y_7, y_8, y_9, y_{10}}_{Validation}$$

$$y_1, y_2, y_3, y_4, y_5, y_6 \longrightarrow y_7$$
 $\longrightarrow y_8$
 $\longrightarrow y_9$
 $\longrightarrow y_{10}$

	Χ				
y_{t-2}	<i>y</i> t−1	Уt	y_{t+1}		
<i>y</i> 1	У2	<i>y</i> 3	<i>y</i> 4		
У2	У3	<i>y</i> 4	<i>y</i> ₅		
<i>У</i> 3	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆		
<i>y</i> 4	<i>y</i> ₅	У6	<i>y</i> 7		
<i>y</i> ₅	<i>y</i> 6	<i>y</i> 7	<i>y</i> 8		
У6	<i>y</i> ₇	<i>y</i> ₈	<i>y</i> 9		
У7	<i>y</i> ₈	<i>y</i> 9	<i>y</i> ₁₀		

Last week recap

Statistical forecasting methods

AR, MA and ARIMA models
Model estimation, validation and selection
(S)ARIMA models
Auto.arima

Al forecasting models

Multi-step forecasting - recursive strategy (H = 3)

$$y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10} \rightarrow \hat{y}_{11}, \hat{y}_{12}, \hat{y}_{13}$$

	У		
y_{t-2}	y_{t-1}	Уt	y_{t+1}
<i>y</i> ₁	У2	<i>У</i> 3	<i>y</i> ₄
<i>y</i> ₂	У3	<i>y</i> ₄	<i>y</i> ₅
<i>У</i> 3	<i>y</i> ₄	<i>y</i> ₅	У6
<i>y</i> 4	<i>y</i> ₅	<i>y</i> 6	<i>y</i> ₇
<i>y</i> ₅	<i>y</i> 6	<i>y</i> 7	<i>y</i> 8
<i>y</i> 6	<i>y</i> 7	<i>y</i> 8	<i>y</i> 9
<i>y</i> 7	<i>y</i> 8	<i>y</i> 9	<i>y</i> 10
<i>y</i> 8	<i>y</i> 9	<i>y</i> 10	ŷ ₁₁
<i>y</i> 9	<i>y</i> 10	\hat{y}_{11}	ŷ ₁₂
<i>y</i> 10	ŷ ₁₁	ŷ ₁₂	ŷ ₁₃

This is the strategy used by classical statistical time series models (e.g. ARIMA).

Multi-step forecasting - direct strategy (H = 3)

 $y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10} \rightarrow \hat{y}_{11}, \hat{y}_{12}, \hat{y}_{13}$

	X				
<i>y</i> t−2	y_{t-1}	Уt	y_{t+1}		
<i>y</i> 1	<i>y</i> 2	У3	<i>y</i> 4		
<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅		
У3	<i>y</i> 4	<i>y</i> 5	<i>y</i> 6		
<i>y</i> 4	<i>y</i> ₅	<i>y</i> 6	<i>y</i> 7		
<i>y</i> 5	<i>y</i> 6	<i>y</i> 7	<i>y</i> 8		
У6	<i>y</i> ₇	<i>y</i> ₈	<i>y</i> 9		
У7	<i>y</i> 8	<i>y</i> 9	<i>y</i> 10		
<i>y</i> 8	<i>y</i> 9	<i>y</i> 10	ŷ ₁₁		

	X				
y_{t-2}	y_{t-1}	Уt	y_{t+2}		
<i>y</i> 1	У2	У3	<i>y</i> ₅		
У2	У3	<i>y</i> 4	<i>y</i> ₆		
У3	<i>y</i> 4	<i>y</i> ₅	<i>y</i> ₇		
<i>y</i> 4	<i>y</i> ₅	<i>y</i> 6	<i>y</i> 8		
<i>y</i> 5	У6	<i>y</i> 7	<i>y</i> 9		
<i>y</i> 6	У7	<i>y</i> 8	<i>y</i> 10		
<i>y</i> 8	<i>y</i> 9	<i>y</i> 10	ŷ ₁₂		

	Χ				
y_{t-2}	y_{t-1}	Уt	y_{t+3}		
<i>y</i> ₁	У2	<i>y</i> 3	<i>y</i> 6		
У2	У3	<i>y</i> 4	У7		
У3	<i>y</i> 4	<i>y</i> ₅	<i>y</i> 8		
<i>y</i> 4	<i>y</i> ₅	<i>y</i> 6	<i>y</i> 9		
<i>y</i> ₅	<i>y</i> ₆	<i>y</i> 7	<i>y</i> 10		
У8	<i>y</i> 9	<i>y</i> ₁₀	ŷ ₁₃		

Multi-step forecasting - multi-output strategy (H = 3)

$$y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10} \rightarrow \hat{y}_{11}, \hat{y}_{12}, \hat{y}_{13}$$

Χ				У	
<i>y</i> _{t−2}	y_{t-1}	Уt	y_{t+1}	y_{t+2}	y_{t+3}
<i>y</i> ₁	<i>y</i> ₂	<i>У</i> 3	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆
У2	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	<i>y</i> 6	<i>y</i> 7
<i>У</i> 3	<i>y</i> 4	<i>y</i> ₅	У6	<i>y</i> 7	<i>y</i> 8
<i>y</i> 4	<i>y</i> ₅	У6	<i>y</i> 7	<i>y</i> 8	<i>y</i> 9
<i>y</i> ₅	<i>y</i> ₆	У7	<i>y</i> ₈	<i>y</i> 9	<i>y</i> ₁₀
<i>y</i> 8	<i>y</i> 9	<i>y</i> 10	ŷ ₁₁	ŷ ₁₂	ŷ ₁₃

 \rightarrow The multi-output strategy requires a model that can deal with multiple outputs, e.g. neural networks.

Last week recap

Statistical forecasting methods

AR, MA and ARIMA models Model estimation, validation and selection (S)ARIMA models Auto.arima

Al forecasting models

Single output network

Multi-output network

Neural network hyperparameters

Hyperparameters are adjustable parameters that define the model architecture and govern the learning process. By contrast, other parameters (such as node weights) are derived via model training.

- ► Architecture
 - ► Types of layers, number of layers, layer order, number of neurons per layer, layer activations, etc.
- ▶ Optimization
 - ▶ Opitmizer, weight initialization, learning rate, batch size, number of epochs, stopping criterion, etc.
- ▶ Loss function
 - ► Loss function, form of regularization, etc.
- **...**

Hyperparameter tuning: search across various hyperparameter configurations and select the configuration that results in best (out-of-sample) performance