«Моделирование»

Преподаватель: АЛИЕВ Тауфик Измайлович, доктор технических наук, профессор

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники

5. СЕТЕВЫЕ МОДЕЛИ ДИСКРЕТНЫХ СИСТЕМ

- 1. Классификация сетевых моделей
- 2. Параметры сетевых моделей
- 3. Характеристики сетевых моделей
- 4. Эквивалентные и толерантные преобразования сетевых моделей
- 5. Расчет коэффициентов передач и интенсивностей потоков заявок в узлах РСеМО
- 6. Расчет характеристик разомкнутых СеМО
- 7. Пример расчета характеристик разомкнутых СеМО
- 8. Алгоритм расчета характеристик замкнутых СеМО
- 9. Пример расчета характеристик замкнутых СеМО
- 10. Марковская модель замкнутой СеМО
- 11. Свойства СеМО
- 12. GPSS-модель двухузловой разомкнутой CeMO
- 13. GPSS-модель многоузловой разомкнутой CeMO
- 14. GPSS-модель замкнутой CeMO

Литература

для самостоятельной подготовки

1. Алиев Т.И. Моделирование дискретных систем. – СПб: СПбГУ ИТМО, 2009. – 363 с.

```
(раздел 3 «Математические модели дискретных систем», параграфы 3.2 и 3.4; раздел 4 «Аналитическое моделирование», параграфы 4.4 и 4.5; раздел 6 «Имитационное моделирование», параграф 6.7) <a href="https://books.ifmo.ru/book/445/osnovy_modelirovaniya_diskretnyh_sistem.htm">https://books.ifmo.ru/book/445/osnovy_modelirovaniya_diskretnyh_sistem.htm</a>
```

2. Алиев Т.И., Муравьева-Витковская Л.А., Соснин В.В. Моделирование: задачи, задания, тесты. Учебное пособие. - СПб.: НИУ ИТМО, 2011. – 197 с.

(раздел 1 *параграф 1.3*; раздел 2 *параграф* 2.3; раздел 4 *параграфы 4.4*, 4.5, 4.6) https://books.ifmo.ru/book/686/modelirovanie:_zadachi,_zadaniya,_testy.htm

Классификация сетевых моделей

Параметры сетевых моделей

(однородные экспоненциальные СеМО)

- *количество узлов* в сети: *n*;
- количество приборов в узлах сети: $K_1,...,K_n$;
- матрица вероятностей передач:

$$\mathbf{P} = [p_{ij} | i, j = 0, 1, ..., n]$$

где p_{ij} - вероятность передачи заявки из узла i

в узел
$$j$$
: $\sum_{i=0}^{n} p_{ij} = 1$ $(i = 0, n)$;

• интенсивность λ_0 источника заявок,

поступающих в РСеМО, или

число заявок M, циркулирующих в **3СеМО**;

• средние *длительности обслуживания* заявок в узлах сети: b_1, \dots, b_n .

M=const

Характеристики сетевых моделей

Два класса характеристик:

- узловые, описывающие эффективность функционирования узлов (СМО);
- сетевые, описывающие функционирование СеМО в целом.

Сетевые характеристики:

• среднее число заявок, ожидающих обслуживания, и среднее число заявок,

находящихся в сети:

$$L = \sum_{i=1}^{n} l_i ;$$

• средние времена ожидания и пребывания заявок в сети:

$$W = \sum_{i=1}^{n} \alpha_i w_i ;$$

$$U = \sum_{i=1}^{n} \alpha_i u_i$$

• производительность замкнутой СеМО:

$$\lambda_0 = \lambda_i / \alpha_i$$
 $(i = 1, \dots, n);$ $\lambda_0 = M / U$

$$\alpha_i (i = 1, ..., n) = ?$$

Расчет коэффициентов передач и интенсивностей потоков заявок в узлах РСеМО

$$\lambda_j = \sum_{i=0}^n p_{ij} \lambda_i \quad (j = 0, 1, ..., n)$$

$$\lambda_j = \alpha_j \lambda_0 \quad (j = \overline{1, n})$$

$$\alpha_j = \sum_{i=0}^n p_{ij}\alpha_i \quad (j = 0, 1, \dots, n)$$

Эквивалентные и толерантные преобразования сетевых моделей

Расчет характеристик разомкнутых СеМО

Условие отсутствия перегрузок:
$$\rho_j = \frac{\lambda_j b_j}{K_j} = \frac{\alpha_j \lambda_0 b_j}{K_j} < 1$$
 \longrightarrow $\lambda_0 < \min\left(\frac{K_1}{\alpha_1 b_1}, \frac{K_2}{\alpha_2 b_2}, ..., \frac{K_n}{\alpha_n b_n}\right)$

PCeMO (O3)

Эквивалентное преобразование

$$U = \sum_{i=1}^{n} \alpha_i u_i$$

Пример расчета характеристик разомкнутой СеМО

PCeMO (O3)

$$n=2$$
; $K_1=K_2=1$; $b_1=2$ c; $b_2=1$ c

$$\lambda_0 < \min\left(\frac{K_1}{\alpha_1 b_1}, \frac{K_2}{\alpha_2 b_2}, \dots, \frac{K_n}{\alpha_n b_n}\right)$$

$$\alpha_0 = 0.2\alpha_1$$

$$\alpha_2 = 0.8\alpha_1$$

$$\alpha_j = \sum_{i=0}^n p_{ij} \alpha_i \quad (j = 0, 1, ..., n)$$

$$\lambda_0 < \min(0,1; 0.25) \text{ c}^{-1}$$

$$\lambda_0 = 0.05 \text{ c}^{-1}; \quad \lambda_1 = \alpha_1 \lambda_0 = 0.25 \text{ c}^{-1}; \quad \lambda_2 = \alpha_2 \lambda_0 = 0.2 \text{ c}^{-1}$$

$$\rho_1 = \alpha_1 \lambda_0 b_1 = 0.5; \qquad \rho_2 = \alpha_2 \lambda_0 b_2 = 0.2$$

$$u_1 = \frac{b_1}{1 - \rho_1} = 4 \text{ c}; \qquad u_2 = \frac{b_2}{1 - \rho_2} = 1,25 \text{ c}$$

$$U = \alpha_1 u_1 + \alpha_2 u_2 = 5*4 + 4*1,25 = 25 \text{ c}$$

$$M = \lambda_0 U = 1,25$$

$$\lambda_0 = 0.09 \text{ c}^{-1}; \quad \lambda_1 = 0.45 \text{ c}^{-1}; \quad \lambda_2 = 0.36 \text{ c}^{-1}$$

$$\rho_1 = 0.9; \quad \rho_2 = 0.36$$

$$u_1$$
=20 c; u_2 =1,5625 c

$$U=5*20 + 4*1,5625 = 106,25c$$

 $M=\lambda_0 U=9,5625$

Алгоритм расчета характеристик замкнутых СеМО

$$\lambda_j = \sum_{i=0}^n p_{ij} \lambda_i \quad (i = 0, 1, \dots, n)$$

3CeMO (03)

M*=const

$$u_i(M) = b_i[1 + m_i(M - 1)]$$

$$U(M) = \sum_{i=1}^n \alpha_i u_i(M)$$

$$\lambda_0(M) = \frac{M}{U(M)}$$

$$m_i(M) = \alpha_i \lambda_0(M) u_i(M)$$

$$M = \sum_{i=1}^{n} m_i(M)$$

$$M=1, 2, ..., M*$$

$$i=1, 2, ..., n$$

*М** - заданноечисло заявок в3CeMO

Пример расчета характеристик замкнутой СеМО

3CeMO (03)

$$n=2$$
; $K_1=K_2=1$; $b_1=2$ c; $b_2=1$ c

 $u_i(M) = b_i[1 + m_i(M-1)]$

 $m_i(M) = \alpha_i \lambda_0(M) u_i(M)$

 $M^*=2$ (*M*=1, 2)

 $U(M) = \sum_{i=1}^{n} \alpha_i u_i(M)$

 $\lambda_0(M) = \frac{M}{U(M)}$

РСемо

 $\lambda_0 = 0.09 \text{ c}^{-1}$; U = 106.25 cM = 9,5625

$$\alpha_0 = 0.2\alpha_1$$

$$\alpha_2 = 0.8\alpha_1$$

$$\alpha_0 = 0.2\alpha_1$$
 $\alpha_2 = 0.8\alpha_1$
 $\alpha_0 = 1; \quad \alpha_1 = 5; \quad \alpha_2 = 4$

M=1

1)
$$u_1(1) = b_1 = 2 c$$

 $u_2(1) = b_2 = 1 c$

2)
$$\underline{U(1)} = \alpha_1 u_1(1) + \alpha_2 u_2(1) = \underline{14 c}$$

3)
$$\underline{\lambda_0(1)} = 1/U(1) = 1/14 \approx 0.07 \text{ c}^{-1}$$

4)
$$m_1(1) = \alpha_1 \lambda_0(1) u_1(1) = 10/14$$

 $m_2(1) = \alpha_2 \lambda_0(1) u_2(1) = 4/14$

$$M = \sum_{i=1}^{n} m_i(M)$$

M=M*=2

1)
$$u_1(2) = 48/14 \text{ c}$$

 $u_2(2) = 18/14 \text{ c}$

2)
$$\underline{U(2)} = 156/7 \approx 22.3 \text{ c}$$

3)
$$\underline{\lambda_0(2)} = 7/78 \approx 0.09 \text{ c}^{-1}$$

4)
$$m_1(2) = 60/39$$

 $m_2(1) = 18/39$

Марковская модель замкнутой СеМО

3CeMO (03)

	0	1	2
0		1	
1	0,2		0,8
2		1	

n=2; $K_1=1$; $K_2=2$; $b_1=2$ c; $b_2=1$ c; M=3

Кодирование состояний: (М₁, М₂)

$$\mathbf{M_1} = \{0, 1, 2, 3\}$$
 $\mathbf{M_2} = \{0, 1, 2, 3\}$

$$\mathbf{E}_0$$
: (3, 0)
 \mathbf{E}_1 : (2, 1)
 \mathbf{E}_2 : (1, 2)
 \mathbf{E}_3 : (0, 3)

Характеристики ЗСеМО:

- загрузка узлов: $\rho_1 = p_0 + p_1 + p_2;$ $\rho_2 = 0.5 p_1 + p_2 + p_3;$
- ср. длины очередей: $l_1 = 2p_0 + p_1;$ $l_2 = p_3;$
- среднее число заявок в узлах СеМО:

$$m_1 = 3p_0 + 2p_1 + p_2;$$
 $m_2 = p_1 + 2p_2 + 3p_3;$

- производительность ЗСеМО: $\lambda_0 = \frac{\rho_1}{\alpha_1 b_1} = \frac{\rho_2}{\alpha_2 b_2}$
- ср. время ожидания в узлах: $w_1 = \frac{l_1}{\alpha_1 \lambda_0}; \quad w_2 = \frac{l_2}{\alpha_2 \lambda_0};$
- ср. время пребывания в узлах: $u_1 = \frac{m_1}{\alpha_1 \lambda_0}; \quad u_2 = \frac{m_2}{\alpha_2 \lambda_0};$
- нагрузка в узлах сети: $y_1 = \alpha_1 \lambda_0 b_1; \quad y_2 = \alpha_2 \lambda_0 b_2;$
- ср. число параллельно работающих узлов: $R = \rho_1 + \rho_2$;
- ср. число параллельно работающих приборов: $Y = y_1 + y_2$;
- суммарное число заявок во всех очередях: $L = l_1 + l_2$;
- суммарное (полное) время ожидания и пребывания заявок в CeMO:

$$W = \alpha_1 w_1 + \alpha_2 w_2; \qquad U = \alpha_1 u_1 + \alpha_2 u_2;$$

Свойства СеМО

Зависимости времени пребывания заявок в разомкнутой СеМО от интенсивности их поступления

«Узкое место»:

$$\rho_{\mathbf{y}} = \max\{\rho_1, \dots, \rho_n\} \xrightarrow{M \longrightarrow \infty} 1$$

Зависимости производительности и времени пребывания заявок в замкнутой CeMO от числа заявок

Пропускная способность СеМО:

$$\rho_{y} = \frac{\alpha_{y} \lambda_{0} b_{y}}{K_{y}} = 1 \quad \Longrightarrow \quad \left[\hat{\lambda}_{0} = \frac{K_{y}}{\alpha_{y} b_{y}} \right]$$

<u>Разгрузка «узкого места»:</u>

- увеличение числа приборов в узле;
- увеличение производительности узла;
- перераспределение нагрузки между узлами (например, файлы между НМД).

GPSS-модель двухузловой разомкнутой CeMO

Uz_1 Tw_1 Tw_2 T_U	STORAGE QTABLE QTABLE TABLE	2; число приборов в узле 1 1,0,1,20; время ожидания в узле 1 2,50,50,20; время ожидания в узле 2 M1,150,150,20; время пребывания в сети ****	$\langle \langle 0 \rangle \rangle $ $\lambda_0 = 0,$	p_{10} $4 c^{-1}$ $K_1 =$	p_1	K_2	2
Met_1	GENERATE QUEUE	(Exponential(10,0,2500)) 1; регистрация момента поступления заяви	•	едь узла 1	0	1	2
	ENTER DEPART	Uz_1; попытка занять один из приборов узла	a I	0		1	
	ADVANCE	24,12		P= 1	0,01		0,99
	LEAVE	Uz_1; выход обслуженной заявки из узла 1		2		1	
	TRANSFER TABULATE TERMINATE	990,,Met_2; передача транзакта с вероятност_U 1; удаление из модели обслуженной заявки	стью 0,9	$b_1 =$		4±0,0. 2 c (E	
******	*******	****		0 2	0,0	20(1	27
Met_2	QUEUE SEIZE DEPART ADVANCE RELEASE	2; регистрация момента поступления заяви 2; попытка занять прибор узла 2 2 (Exponential(50,0,10)+Exponential(150,0,10)) 2; освобождение прибора и выход заявки из у	узла 2	едь узла 2			
*****	TRANSFER ************************************	,Met_1; безусловная передача транзакта в у	зел і	TRANSFI	<u>ER</u>	A,[B],C
	START	1000000; запуск модели		TRANSFI	ER	<u>,B</u>	

GPSS-модель двухузловой разомкнутой CeMO

GPSS-модель многоузловой разомкнутой CeMO

* Модуль	1: моделирование	процессов поступления и обслуживания заявок в узле 1 b_1	$= 10 \text{ c}$ $p_{12} = 0.1$
	GENERATE	(Exponential(10,0,100)) p_{10}	$0.6 P_{12} = 0.1$
Met_1	SEIZE	1	
	ADVANCE	$\lambda_0 = 0.01 \mathrm{c}^{-1}$	
	RELEASE	1	0.2
	TRANSFER	600,,Met_0; передача заявки с вероятностью 0,6 в узел «0»	$p_{13}=0,3$
	TRANSFER	.3,,Met_3; передача заявки с вероятностью 0,3 в узел 3	$b_3 = 30 \text{ c}$

* Модуль 2: моделирование процесса обслуживания заявок в узле 2

Met_2	SEIZE	2
	ADVANCE	20
	RELEASE	2

TRANSFER "Met_1; безусловная передача транзакта в узел 1

* Модуль 3: мод	делирование процесса	обслуживания заявок в	узле 3
-----------------	----------------------	-----------------------	--------

DICOOM	э. моослировани	е процесса оослуживания заявок в узле э
Met_3	SEIZE	3
	ADVANCE	30
	RELEASE	3
	TRANSFER	,Met_1; безусловная передача транзакта в узел 1
*****	*******	*******
Met_0	TERMINATE	1; удаление из модели обслуженной заявки

		0	1	2	3
	0		1		
P=	1	0,6		0,1	0,3
•	2		1		
	3		1		

h - 20c

$$\alpha_0 = 0.6\alpha_1$$
 $\alpha_2 = 0.1\alpha_1$
 $\alpha_3 = 0.3\alpha_1$
 $\alpha_1 = 1.667$
 $\alpha_2 = 0.167$
 $\alpha_3 = 0.501$

GPSS-модель многоузловой разомкнутой CeMO

 $\rho_2 > \rho_3$

???

 $\alpha_2 > \alpha_3$?

GPSS-модель многоузловой разомкнутой CeMO

* Модуль	ь 1: моделирование	процессов поступления и обслуживания заявок в узле 1 «0»	$p_{10} = 0.6$	p ₁₂ =0,1
	GENERATE	(Exponential(10,0,100))		
Met_1	SEIZE	1	p_1	2=0.3
	ADVANCE	10	1 1	3 /
	RELEASE	1		
	TRANSFER	600,,Met_0; <u>передача заявки с вероятн. 0,6 в узел «0»</u>	n	0,6
	TRANSFER	.3,,Met_3; передача заявки с вероятн. 0,3 в узел 3	J	I
	TRANSFER	750,,Met_3; передача заявки с вероятн. 0,75 в узел		
*****	*********	*****	\mathbf{y}_{0}	\mathbf{y}_{2}
* Модуль	2: моделирование	процесса обслуживания заявок в узле 2	0 0 2	2,
Met_2	SEIZE	2	0,3	
	ADVANCE	20	 	
	RELEASE	2	1 🖖 1	₩
	TRANSFER	,Met_1; безусловная передача транзакта в узел 1	\mathbf{y}_{3}	$\boldsymbol{\mathrm{y}}_{2}$
******	*******	*******	Норми	nobka.
* Модуль	3: моделирование	процесса обслуживания заявок в узле 3	порми	pobka.

Met 0 **TERMINATE**

SEIZE

ADVANCE

RELEASE TRANSFER 30

Met 3

1; удаление из модели обслуженной заявки

GPSS-модель многоузловой разомкнутой CeMO

Untitled Model 2.1.2		<u>Было</u>		LABEL	LOC	BLOCK TYPE	ENTRY COUNT (
LABEL	LOC	BLOCK TYPE	ENTRY COUNT	LADEL	1	GENERATE	1000000
	1	GENERATE	1000000	MET 1	2	SEIZE	1666051
MET_1	2	SEIZE	1665037	1121_1	3	ADVANCE	1666051
	3	ADVANCE	1665037		4	RELEASE	1666051
	4 5	RELEASE TRANSFER	1665037 1665037		5	TRANSFER	1666051
	6	TRANSFER	665037		6	TRANSFER	666051
MET 2	7	SEIZE	465642	MET_2	7	SEIZE	166475
_	8	ADVANCE	465642		8	ADVANCE	166475
	9	RELEASE	465642		9	RELEASE	166475
	10	TRANSFER	465642		10	TRANSFER	166475
MET_3	11	SEIZE	199395	MET_3	11	SEIZE	499576
	12	ADVANCE	199395		12	ADVANCE	499576
	13	RELEASE	199395		13	RELEASE	499576
	14	TRANSFER	199395	MET 0	15	TRANSFER	499576 1000000
MET_0	15	TERMINATE	1000 000	MET_0	15	TERMINATE	1000000
FACILITY	ENTRIES	UTIL. AVE.	TIME AVAIL. (FACILITY	ENTRIES	UTIL. AVE.	. TIME AVAIL. OF
1	166503		10.000 1	1	166605	0.167	10.000 1
2	465642	0.098	20.000 1	2	166475	N .	20.000 1
3	199395	0.060	30.000 1	3	499576	0.150	30.000 1
						\mathcal{C}	
FEC XN PRI	BDT	ASSEM (CURRENT NEXT	FEC XN PRI	BDT	ACCEM (TIDDENT NEVT
	100035564				100035564		
		200000		1000001	10033369	1.540 1000001	
666051		1664	.75	49957	76		$p_{10} = 0.6$ $p_{12} = 0.6$
$\frac{1000001}{1000001} \approx 1.666$	5 (1.667)	$\alpha_2 = \frac{100 \text{J}}{100 \text{G}}$	$\frac{1}{1000} \approx 0.166 (0.1)$	$67) \qquad \alpha_3 = \frac{49957}{10000}$	$\frac{\sigma}{1.0} \approx 0.50$	0(0.501)	
.000000	()	1000	000	10000	00		
						v «0»	\rightarrow
$\alpha_3 \approx 3\alpha_3$				$0,150/0,033 \approx$	1 E E o	1	$p_{13}=0,3$

GPSS-модель замкнутой CeMO

Uz_1 T_U ******	STORAGE TABLE *********	2; число приборов в узле 1 (0) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (3) (3) (3) (4) (4) (4) (4) (5) (5) (6) (7)	K	(2) (2) (2)
Met_1 Met_3	GENERATE MARK QUEUE ENTER	"10; формирование в нулевой момент времени десяти заявок ; отметка момента времени поступления заявки в сеть 1; регистрация момента поступления заявки в очередь узла 1 Uz_1; попытка занять один из приборов узла 1	0 1	2
	DEPART ADVANCE LEAVE TRANSFER TABULATE TRANSFER	Uz_1 .8,,Met_2; передача транзакта с вероятностью 0,8 в узел 2 Т_U Met_1: безусловная передача транзакта в узел 1	$b_1 = 15$ $b_2 = 20$	
**************************************	**************************************	2; регистрация момента поступления заявки в очередь узла 2 2; попытка занять прибор узла 2 2; регистрация момента покидания заявки очереди узла 2 (Exponential(50,0,20)) 2 ,Met_3; безусловная передача транзакта в узел 1	<i>U</i> =	, , ,
******	GENERATE TERMINATE	10000000; задание длительности моделирования 1; уменьшение счетчика завершения на 1		

M=**10**