Conexões duais

Fábio C. C. Meneghetti

IMECC — Unicamp

23 de julho de 2022

Variedades no espaço euclideano

- uma variedade de dimensão d em \mathbb{R}^n é um conjunto $M \subset \mathbb{R}^n$ tal que:
 - para todo $p \in M$.
 - existem U aberto de \mathbb{R}^n , V aberto de \mathbb{R}^k e
 - homeomorfismo $\varphi \colon U \cap M \to V$ (bijetora, contínua, e inversa contínua)
- ϕ é chamada carta e ϕ^{-1} , parametrização.
- uma coleção de cartas que cobre M é chamada atlas.

Conexões duais

Geometria diferencial •0000000000

Variedades diferenciáveis

- estamos interessados nas variedades diferenciáveis:
 - (versão ingênua) pedimos que ϕ seja difeomorfismo (diferenciável, inversa diferenciável)
 - (versão abstrata) pedimos um atlas seja diferenciável, isto é, $\varphi^{-1} \circ \psi$ diferenciável para quaisquer cartas φ, ψ .

exemplos:

Geometria diferencial 0000000000

- esfera $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x_1^2 + \dots + x_n^2 = 1\}$
- qualquer cônica ou quádrica não-degenerada vistos em G.A.
- gráficos de funcões diferenciáveis

Espaço tangente

Geometria diferencial 0000000000

- cada ponto $p \in M$ tem um espaço tangente T_pM (espaço vetorial de dimensão k)
- $v \in T_p M$ sse existe curva $\gamma : (-\varepsilon, \varepsilon) \to M$ tal que $\gamma(0) = p$ e $\gamma'(0) = v$
- a união disjunta $TM = \bigsqcup_{p \in M} T_p M$ é chamada **fibrado tangente**

Geometria diferencial 00000000000

- um campo vetorial (diferenciável) em M é uma seção (diferenciável) de vetores $X: M \to TM$ tal que $X_p := X(p) \in T_pM$ para todo p. A família de todos os campos vetoriais é $\mathfrak{X}(M)$
- campos canônicos: no domínio de cada carta $\varphi \colon U \cap M \to V$ temos uma base local de campos $\partial_1, \ldots, \partial_d$, onde $\partial_i := d\varphi^{-1}e_i$

Métrica riemanniana

Geometria diferencial

 uma métrica riemanniana é um produto interno em cada espaço tangente de M,

$$g_p(V, W) = \langle V, W \rangle_p, \quad V, W \in T_p M,$$

que é diferenciável, isto é, $\langle X_p, Y_p \rangle_p$ é diferenciável em p para quaisquer campos diferenciáveis X, Y.

- sendo produto interno, g precisa ser
 - simétrico ($\langle V, W \rangle = \langle W, V \rangle$),
 - positivo-definido ($\langle V, V \rangle \ge 0$ com = sse V = 0) e
 - bilinear $(\langle aV + W, Z \rangle = a \langle V, Z \rangle + \langle W, Z \rangle)$

Conexões duais

- um par (M,g) é chamado **variedade riemanniana**. Esses são os objetos de estudo da geometria riemannaiana
- o motivo é que, apenas definindo uma métrica, conseguimos estudar a geometria das variedades, em termos de:
 - linhas retas (geodésicas)
 - ângulos
 - curvatura
 - etc.
- localmente podemos representar uma métrica como uma matriz simétrica definida-positiva $g_{ij} = g(\partial_i, \partial_i)$ (para cada p)

Conexões afins

- é uma noção de derivada entre campos de vetores
- uma conexão afim é uma função $\nabla : \mathfrak{X}(M)^2 \to \mathfrak{X}(M)$, denotada $\nabla_X Y$, que satisfaz
 - $\nabla_{fX+Y}Z = f\nabla_XZ + \nabla_YZ$ (linear na 1^a entrada com funções como coeficientes)
 - $\nabla_X(fY) = X(f) \cdot Y + f \nabla_X Y$ (satisfaz a regra de Leibniz na 2^a entrada)
- **exemplo:** se $\pi_p : \mathbb{R}^n \to T_p M$ é a projeção ortogonal no espaço $T_p M$, então $\nabla_X Y(p) := \pi_p(dY_p \cdot X_p)$ é uma conexão em M.

イロト イ御ト イヨト イヨト 一耳

Teorema (Fundamental da geometria riemanniana)

Seja (M,g) variedade riemanniana. Então existe única conexão ∇^{LC} que é compatível com a métrica e livre de torcão.

- ela é chamada conexão de Levi-Civita
- compatível com a métrica: significa que

$$X\langle Y,Z\rangle = \langle \nabla_X Y,Z\rangle + \langle Y,\nabla_X Z\rangle.$$

- livre de torção: significa que o tensor torção $T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$ é constante igual a zero.
- para variedades no espaço euclideano, é a conexão mencionada no slide anterior

4 □ > 4 □ > 4 □ > 4 □ > □ ≥

 localmente, toda conexão afim pode ser descrita em termos dos coeficientes — símbolos de Christoffel: Γ^k_{ii} ou Γ_{ii,k}:

$$\nabla_{\partial_i}\partial_j = \sum_{k=1}^d \Gamma_{ij}^k \partial_k,$$

$$\Gamma_{ij,k} = \langle \nabla_{\partial_i} \partial_j, \partial_k \rangle$$

 diremos que a conexão é plana em um ponto p se existe um sistema de coordenadas em torno de p no qual os símbolos de Christoffel se anulam.

Geometria da informação

- uma variedade estatística é uma família $M = \left\{ p_{\theta} : \theta \in \Theta \subset \mathbb{R}^d \right\}$ de funções densidade de probabilidade $p_{\theta} \colon \mathbb{R}^m \to \mathbb{R}_+$, que formam uma variedade diferenciável parametrizada por $\theta \mapsto p_{\theta}$
- podemos adicionar a métrica riemanniana da informação de Fisher, dada pela matriz:

$$g_{ij}(\theta) = \mathsf{E}_{\theta} \left[\partial_i \ell_{\theta} \partial_j \ell_{\theta} \right],$$
 onde $\ell_{\theta}(x) = \mathsf{log} \, p_{\theta}(x) \, \mathsf{e} \, \mathsf{E}_{\theta}[f] = \int_{\mathbb{D}^m} f(x) p_{\theta}(x) \, \mathsf{d} x.$

ullet a conexão de Levi-Civita $abla^{LC}$ tem coeficientes

$$\Gamma_{ij,k}(\theta) = \mathsf{E}_{ heta} \left[\left(\partial_i \partial_j \ell_{ heta} + rac{1}{2} \partial_i \ell_{ heta} \partial_j \ell_{ heta} \right) \partial_k \ell_{ heta}
ight]$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > < 巨 > へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ へ ○ < つ

Conexões duais

Famílias exponenciais

• uma família exponencial é uma família de funções densidade de probabilidade $M = \{p_{\theta} : \theta \in \Theta\}$ da forma

$$p_{\theta}(x) = \exp\left(\sum_{i=1}^{d} \theta_i t_i(x) - \phi(\theta) + C(x)\right),$$

onde

- $x \in \mathbb{R}^m$, $\theta \in \Theta$ um aberto de \mathbb{R}^d
- $t_i : \mathbb{R}^m \to \mathbb{R}$ são funções chamadas *estatísticas suficientes*
- \bullet ϕ é diferenciável e (pode-se mostrar que é necessariamente) convexa
- C qualquer

イロト (例) (3) (4) (5) (5)

 se a família é exponencial, a métrica e os símbolos de Christoffel têm expressões simples:

$$g_{ij}(\theta) = \partial_i \partial_j \phi(\theta), \qquad \Gamma_{ij,k} = \frac{1}{2} \partial_i \partial_j \partial_k \phi(\theta).$$

• uma das propriedades centrais encontradas por Amari, é que existe uma outra conexão, chamada **conexão exponencial** ∇^{e} , onde toda família exponencial é plana!

$$\Gamma_{ij,k}^{e}(\theta) = \mathsf{E}_{\theta} \left[(\partial_{i}\partial_{j}\ell_{\theta})(\partial_{k}\ell_{\theta}) \right],$$

 $\Gamma_{ii}^{e} = 0$ numa família exponencial.

• outra família importante de distribuições são as famílias mistura, $\{p_n : \eta \in H\}$, dadas por

$$p_{\eta}(x) = C(x) + \sum_{i=1}^{d} \eta_i F_i(x),$$

onde

- C é suave com $\int C(x) dx = 1$.
- F_i são suaves, L.I., com $\int F_i(x) dx = 0$.
- **exemplo:** mistura de p_1, \ldots, p_{d+1} , dada por $p_{\eta}(x) = \eta_1 p_1(x) + \cdots + \eta_d p_d(x) + (1 \sum_i \eta_i) p_{d+1}(x)$, $H = \left\{ \eta \in [0, 1]^d : \sum_i \eta_i \leq 1 \right\}$

(□▶ ←御▶ ←差▶ ←差▶ −差 − 釣९@

 nesse caso a informação de Fisher é o hessiano negativo da informação de Shannon $H(p_n) = E_n[\ell_n]$:

$$g_{ij}(\eta) = -\partial_i \partial_j H(\eta)$$

• também existe uma **conexão mistura** ∇^{m} , na qual as famílias mistura são planas:

$$\Gamma^{\mathsf{m}}_{ij,k}(\eta) = \mathsf{E}_{\eta} \left[(\partial_i \partial_j \ell_{\theta} + \partial_i \ell_{\theta} \partial_j \ell_{\theta}) (\partial_k \ell_{\theta}) \right],$$

com $\Gamma_{ii,k}^{m} \equiv 0$ se a família é mistura.

Conexões duais

ullet voltando para a abstração, duas conexões $abla,
abla^*$ são ditas **duais** se

$$X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X^* Z \rangle.$$

• (g, ∇, ∇^*) é chamada **estrutura dualística** para M

Proposição (Propriedades)

- o dual é único
- $oldsymbol{3}$ se ambas são livres de torção, então $rac{1}{2}(
 abla+
 abla^*)=
 abla^{LC}$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

 ∇ é plana \iff ∇^* é plana.

- para qualquer variedade estatística, (∇^e, ∇^m) é um par de conexões duais com relação à métrica de Fisher.
- em particular, para famílias exponenciais e mistura, (g, ∇^e, ∇^m) é uma estrutura **dualmente plana**.
- isso sugere que existem
 - sistema de coordenadas η , $\nabla^{\rm m}$ -plano para uma família exponencial. De fato, $\eta={\rm grad}\,\phi(\theta)$
 - sistema de coordenadas θ , $\nabla^{\rm e}$ -plano para uma família mistura. De fato, $\theta = -\operatorname{grad} H(p_n)$

Bases duais

- se (M, g, ∇, ∇^*) é dualmente plana, então existem sistemas de coordenadas locais θ , η tais que
 - $\Gamma_{ii,k}(\theta) \equiv 0$,
 - $\Gamma_{ii,k}(\eta) \equiv 0$ e
 - se $\partial_i = \frac{\partial}{\partial \theta_i}$ e $\partial^j = \frac{\partial}{\partial n_i}$ então $\langle \partial_i, \partial^j \rangle = \delta_{ij}$ (as bases são duais)

Divergência de Kullback-Leibler

• é uma medida de divergência entre distribuições de probabilidade:

$$D_{\mathsf{KL}}(p\|q) \coloneqq \mathsf{E}_p\left[\log \frac{p}{q}\right]$$

- $D_{\mathsf{KL}}(p\|q) = 0 \iff p = q \text{ em quase todo ponto.}$
- é assimétrica, $D_{KL}(p||q) \neq D_{KL}(q||p)$
 - essa assimetria tem a ver com a dualidade (∇, ∇^*)

Geodésicas duais

- cada conexão ∇ define uma noção de geodésica: curvas γ tais que $\nabla_{\dot{\gamma}}\dot{\gamma}\equiv 0$
- assim, em uma variedade estatística temos 3 noções de geodésicas:
 - \bullet ∇^{LC} -geodésicas,
 - ∇^e-geodésicas,
 - ∇^{m} -geodésicas

Pitágoras

Teorema (Pitágoras generalizado)

Sejam $p,q,r\in M$, tais que as geodésicas γ_{pq} e γ_{qr}^* são ortogonais. Então

$$D_{KL}(p||q) + D_{KL}(q||r) = D_{KL}(p||r)$$

Projeção informacional

• sejam $S \subset M$ subvariedade, $p \in M$. A **projeção informacional** de pem S é o ponto $p^* \in S$ que minimiza $D_{KI}(p^*||p)$.

Teorema (Projeção)

Se S é ∇^m -geodésica, então a ∇^e -geodésica ligando p e p* é ortogonal a S.

Teorema (Esfera de KL)

Sejam $p \in M$ e $S_r = \{q \in M : D_{KL}(q||p) = r\}$. Então toda ∇^e -geodésica passando por p intersecta S_r ortogonalmente.

イロト イ御ト イヨト イヨト 一耳

Referências

- Geometria diferencial.
 - Manfredo P. do Carmo Geometria diferencial de curvas e superfícies
 - Manfredo P. do Carmo Geometria riemanniana
- Geometria da informação.
 - Amari, Nagaoka Methods of information geometry
 - Calin, Udriște Geometric modeling in probability and statistics
 - Nielsen Elementary introduction to information geometry

