Patent

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, $-CF_3$, -OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$;

or a pharmaceutically acceptable salt thereof.

REMARKS

Claims 1-20 are pending. Claims 10-15 have been allowed, claims 1, 5-7 and 20 have been rejected, and claims 1-9 and 16-20 have been objected to. Claims 1-2 and 4-6 have been amended to place the claims in condition for allowance, or in better condition for appeal; entry of these amendments is respectfully requested. Reconsideration of the application in view of the amendments and remarks contained herein is respectfully requested.

The Examiner has repeated the requirement to elect a species and has stated that the claims will be "examined to the extent they read on R5 is L3 and M3 is (phenyl(CH2)nCOOH." Applicants assume that the Examiner means to refer to compounds in which R_5 is $-L_3-M_3$, and in which M_3 is $phenyl(CH_2)_nCOOH$ wherein the phenyl ring is optionally substituted with a reasonable group of substitutents. Applicants have amended claims 1-2 and 4-6 so that all the claims are limited in this respect. Applicants reserve the right to file divisional applications directed to the subject matter deleted from the claims by these amendments.

Claims 1, 5-7, and 20 have been rejected under 35 U.S.C. § 102(b) as being anticipated by Archer (3,189,617). The Examiner has indicated that when R₃ is OH and L¹ is a bond the claimed compound is the enol form of the ketone in reference example D2. Applicants traverse this rejection for the reasons set forth below.

In the claims as amended herein, R_3 cannot be OH, due to the proviso in the definition of M^1 . Therefore, the claims do not cover the enol form of the ketone of Archer. The cited art does not teach or suggest the claimed compounds. For these reasons, Applicants respectfully request withdrawal of this rejection.

Claims 1-9 and 16-20 are objected to as being directed to "a misjoinder of inventions as recited above." Applicants traverse this objection. The claims are limited in scope in

Patent

accordance with the restriction required by the Examiner, as discussed above. Therefore, there is no basis for the present objection and Applicants respectfully request the withdrawal thereof.

Applicants respectfully request the allowance of all of claims 1-20, and prompt advancement of the case to issue. No fee is believed to be due herewith, but should a fee be due it should be charged to Deposit Acct. No. 01-1425.

Joseph M. Mazzarese

Reg. No. 32,803

Wyeth Patent Law Department Five Giralda Farms Madison, NJ 07940-0874 Tel. No. (973) 683-2150

Docket No: GI005324 P1
Patent

Version With Markings To Show Changes Made

1 (Twice Amended). A compound of the formulae:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_5
 R_4
 R_4
 R_5
 R_4
 R_5
 R_7
 R_7
 R_7
 R_8
 R_8
 R_8

wherein:

 R_1 and $R_{1'}$ are independently selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, -S-C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, -CN, -NO₂, -NH₂, -HN(C₁-C₆), -N(C₁-C₆)₂, phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH;

or a moiety of the formulae:

$$R_7$$
 R_7
 R_7

 R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -C(O)CH₃, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH;

 R_7 is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃, C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂,

Docket No: GI005324 P1
Patent

pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, $(CH_2)_n$ phenyl, phenyl,-O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, - $(CH_2)_n$ -phenyl-O-phenyl, - $(CH_2)_n$ -phenyl- $(CH_2)_n$ -phenyl- $(CH_2)_n$ -phenyl- $(CH_2)_n$ -phenyl- $(CH_2)_n$ -phenyl)₂, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NH₂, -NO₂, -CF₃, CO₂H, or -OH;

 R_2 is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆ alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

 R_3 is selected from H, -CF₃, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl, -C₃-C₁₀ cycloalkyl, -CHO, halogen, (CH₂)_nC(O)NH₂ or a moiety of the formula – L¹-M¹:

L¹ indicates a linking or bridging group of the formulae - $(CH_2)_n$ -, -S-, -O-, -C(O)-, - $(CH_2)_n$ -C(O)-, - $(CH_2)_n$ -C(O)-(CH₂)_n-, - $(CH_2)_n$ -, or - $(CH_2)_n$ -S- $(CH_2)_n$ -, C(O)C(O)X, - $(CH_2)_n$ -N-(CH₂)_n-;

M¹ is selected from the group consisting of:

- a) H, [the group of] C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, phenyl [or] and benzyl, the cycloalkyl, phenyl [or] and benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, NO_2 , - NH_2 , -CN, [or] and - CF_3 , with the proviso that M^1 cannot be H when L^1 is -O-; [or]
- b) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; [or]
- c) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; [or] <u>and</u>

Patent

d) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, - $(CH_2)_n$ - C_3 - C_6 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, or the groups of:

a) $-(CH_2)_n$ -phenyl-O-phenyl, $-(CH_2)_n$ -phenyl-CH₂-phenyl, $-(CH_2)_n$ -O-phenyl-CH₂-phenyl, $-(CH_2)_n$ -phenyl-(O-CH₂-phenyl)₂, or a moiety of the formulae:

$$(CH_2)_n$$
, $(CH_2)_n$, $(CH_$

wherein n is independently selected in each appearance as an integer from 0 to 3, Y is C_3 - C_5 cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, - CF_3 , -OH, - C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O; or

b) a moiety of the formulae $-(CH_2)_n$ -A, $-(CH_2)_n$ -S-A, or $-(CH_2)_n$ -O-A, wherein A is the moiety:

$$D \xrightarrow{B} C$$

wherein

D is H, C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, or - CF_3 ;

Patent

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂; or

c) a moiety of the formulae:

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, -CF $_3$, -OH, -C $_1$ -C₆ alkyl, C₁-C₆ alkoxy, -NH₂, or -NO₂; or

a moiety of the formula -L2-M2, wherein: d)

L² indicates a linking or bridging group of the formulae -(CH₂)_n-, -S-, -O-,

Patent

 $-SO_2$ -, -C(O)-, $-(CH_2)_n$ --C(O)-, $-(CH_2)_n$ --C(O)-(CH_2)_n-, $-(CH_2)_n$ -O-(CH_2)_n-, or $-(CH_2)_n$ -S-(CH_2)_n-, -C(O)-C(O)X;

where X = O, N

 M^2 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, - NO_2 , - NH_2 , -CN, or - CF_3 ; or

- i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or
- ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; or
- iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;

n is an integer from 0 to 3;

 R_5 is [selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, (CH₂)_n-CH=CH-COOH, -(CH₂)_n-tetrazole, -CH₂-phenyl-C(O)-benzothiazole, or

Docket No: GI005324 P1
Patent

or] a moiety selected from the formulae -L3-M3[;]

wherein L³ is a bridging or linking moiety selected from a chemical bond, $-(CH_2)_n$ -, -S-, -O-, $-SO_2$ -, -C(O)-, $-(CH_2)_n$ --C(O)-, $-(CH_2)_n$ --C(O)-, $-(CH_2)_n$ -, $-(CH_2)_n$ -, -(

 \mbox{M}^3 is [selected from the group of -COOH, -(CH2)n-COOH, -(CH2)n-C(O)-COOH, tetrazole,

Patent

where R_8 , R_9 or R_{10} can be attached anywhere in the cyclic or bicyclic system,]

and n is an integer from 0 to 3;

[R₈, in each appearance, is independently selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;]

 R_9 is selected from H, halogen, -CF₃, -OH, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), or -N(C₁-C₆ alkyl)₂; n is an integer from 0 to 3;

Patent

or
$$R_8$$
 R_9 $CCH_2)_n$ R_8 R_9 $CCH_2)_n$ R_8 R_9 $CCH_2)_n$ R_8 R_9 $CCH_2)_n$ R_9

 R_{11} is selected from H, C_1 - C_6 lower alkyl, C_1 - C_6 cycloalkyl, -CF₃, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-COOH,

$$R_9$$
 $CH_2)_n$

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

Patent

n is an integer from 0 to 3;] or a pharmaceutically acceptable salt thereof.

2 (Twice Amended). A compound of Claim 1 wherein:

 R_1 and $R_{1'}$ are independently selected from H, halogen, $-CF_3$, -OH, $-C_1-C_{10}$ alkyl, $-S_1-C_{10}$ alkyl, $-C_1-C_{10}$ alkoxy, -CN, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, or -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, $-C_1-C_6$ alkyl, $-C_1-C_6$ alkoxy, $-NO_2$, $-NH_2$, -CN, $-CF_3$, or -OH;

M¹ is selected from: H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, phenyl [or] <u>and</u> benzyl, the cycloalkyl, phenyl [or] <u>and</u> benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, -NO₂, -NH₂, -CN, [or] <u>and</u> -CF₃, with the proviso that M¹ cannot be H when L¹ is -O-;

 R_4 is a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A, wherein A is the moiety:

wherein

D is H, C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, or - CF_3 ;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3 substituents selected from H, halogen, $-CF_3$, -OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$; or a pharmaceutically acceptable salt thereof.

4 (Twice Amended). A compound of Claim 1 wherein:

Patent

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, -(CH_2)_n- C_3 - C_6 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, or the groups of:

a) a moiety of the formulae - $(CH_2)_n$ -A, - $(CH_2)_n$ -S-A, or - $(CH_2)_n$ -O-A, wherein A is the moiety:

$$D \xrightarrow{B} C$$

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, $-CF_3$, -OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$; or

b) a moiety of the formula -L²-M², wherein L² and M² are as defined in claim 1;

[R₅ is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, (CH₂)_n-CH=CH-COOH, -(CH₂)_n-tetrazole, -CH₂-phenyl-C(O)-benzothiazole, or

or a moiety selected from the formulae $-L^3-M^3$ wherein L^3 and M^3 are as defined in claim 1;] or a pharmaceutically acceptable salt thereof.

5 (Twice Amended). A compound of Claim 1 wherein:

Patent

R_{1'} is H;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, $-(CH_2)_n$ - C_3 - C_6 cycloalkyl, $-(CH_2)_n$ -S- $(CH_2)_n$ - C_3 - C_5 cycloalkyl, $-(CH_2)_n$ -O- $(CH_2)_n$ - C_3 - C_5 cycloalkyl, or a moiety of the formulae $-(CH_2)_n$ -A, $-(CH_2)_n$ -A, or $-(CH_2)_n$ -A, wherein A is the moiety:

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, $-CF_3$, -OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$;

[R₅ is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, (CH₂)_n-CH=CH-COOH, -(CH₂)_n-tetrazole, or

or a moiety selected from the formulae -L3-M3;

wherein L³ is a bridging or linking moiety selected from a chemical bond, $-(CH_2)_n$ -, $-SO_2$ -, -C(O)-, $-(CH_2)_n$ --C(O)-, $-(CH_2)_n$ -, $-(CH_2)_n$ -, $-(CH_2)_n$ -, $-(CH_2)_n$ -, $-(CH_2)_n$ -, $-(CH_2)_n$ -, $-(CH_2)_n$ -, or $-(CH_2)_n$ -CH=CH- $-(CH_2)_n$ -O-;

 M^3 is selected from the group of -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole,

$$R_{9}$$

$$R_{8}$$

$$R_{9}$$

$$R_{9}$$

where R_8 , R_9 can be attached anywhere in the cyclic or bicyclic system, n is an integer from 0 to 3;

 R_8 , in each appearance, is independently selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

 R_9 is selected from H, halogen, -CF₃, -OH, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), or -N(C₁-C₆ alkyl)₂; n is an integer from 0 to 3;

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

n is an integer from 0 to 3;] or a pharmaceutically acceptable salt thereof.

6 (Twice Amended). A compound of Claim 1 wherein:

Patent

 R_1 is selected from H, halogen, $-CF_3$, -OH, $-C_1-C_{10}$ alkyl, $-S-C_1-C_{10}$ alkyl, C_1-C_{10} alkoxy, -CN, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, -O-phenyl, -S-phenyl, benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, -CN, $-CF_3$, or -OH;

or R_1 and R_1 are independently a moiety of the formulae: or a moiety of the formulae:

R₆ and R₇ are as defined in claim 1;

 R_3 is selected from H, -CF₃, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl, -C₃-C₁₀ cycloalkyl, -CHO, halogen, (CH₂)_nC(O)NH₂ or a moiety of the formula – L¹-M¹:

 L^1 indicates a linking or bridging group of the formulae - $(CH_2)_n$ -, - $(CH_2)_n$ -C(O)-, - $(CH_2)_n$ -C(O)-(CH₂)_n-, - $(CH_2)_n$ -, or - $(CH_2)_n$ -, or - $(CH_2)_n$ -, C(O)C(O)X, - $(CH_2)_n$ -N-(CH₂)_n;

 M^1 is selected from H, the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, C_3 - C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, - NO_2 , - NH_2 , -CN, or - CF_3 ;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, -(CH_2)_n- C_3 - C_6 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, or a moiety of the formulae -(CH_2)_n-A, -(CH_2)_n-A, or -(CH_2)_n-A, wherein A is the moiety:

Patent

$$D \longrightarrow C$$

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, $-CF_3$, -OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$;

[R₅ is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, (CH₂)_n-CH=CH-COOH, -(CH₂)_n-tetrazole, or a moiety selected from the formulae $-L^3-M^3$; wherein L^3 is a bridging or linking moiety selected from a chemical bond, -(CH₂)_n-, -(CH₂)_n-C(O)-(CH₂)_n-, -(CH₂)_n-S-(CH₂)_n-, -(CH₂)_n-SO-(CH₂)_n-, -(CH₂)_n-SO₂-(CH₂)_n-, or -(CH₂)_n-CH=CH-(CH₂)_n-O-;

 ${\sf M}^3$ is selected from the group of -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole.

where R_8 , R_9 can be attached anywhere in the cyclic or bicyclic system, n is an integer from 0 to 3;

 R_8 , in each appearance, is independently selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

Patent

 R_9 is selected from H, halogen, -CF₃, -OH, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), or -N(C₁-C₆ alkyl)₂; n an integer from 0 to 3;

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R_5 , R_8 , R_9 , shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-(CH_2)_n-C(O)-NH_2$,

or a pharmaceutically acceptable salt thereof.

n is an integer from 0 to 3;]