A Caratheodory Extension for Signed Measures

Contents

1. Introduction

2. The Original Caratheodory Extension

- 2.1 The Caratheodory Extension Defined Using Outer-Measures
- 2.2 Applying the Definitions to Premeasures
- 2.3 The Caratheodory Extension Defined Using σ -Finite Inner-Measures

3. Inner and Outer Single Dimension Signed Measures

- 3.1 Some Properties of the Hahn-Banach Decomposition
- 3.2 Single Dimension Signed Premeasures and the Inner Hahn-Banach Decomposition
- 3.3 The Caratheodory Extension for \mathbb{R} -valued Premeasures
- 3.4 The Caratheodory Extension for C-valued Premeasures
- 3.5 Outer Single Dimension Signed Measures

4. The Caratheodory Extension for Vector-Valued Measures

- 4.1 Definitions and Properties of Vector-Valued Measures
- 4.2 Vector-Valued Premeasure Definition and Examples
- 4.3 The Caratheodory Extension in the Vector Valued Case

5. Conclusion

1 Introduction

%WRITE INTRODUCTION IN NEXT DRAFT

2 The Original Caratheodory Extension

2.1 The Caratheodory Extension Defined Using Outer-Measures

Definition 2.1.1. Given a nonempty set X, we define an **outer measure** $\mu^* : \mathcal{P}(X) \to [0, +\infty]$ as a function that satisfies the following properties:

(i) (Null Empty Set) $\mu^*(\emptyset) = 0$.

(ii) (Countable Subadditivity) If $\{E_n\}_{n\in\mathbb{N}}\subset \mathcal{P}(X)$ is a collection of disjoint subsets, then

$$\mu_*\left(\bigcup_{n\in\mathbb{N}}E_n\right)\leq \sum_{n=1}^\infty \mu_*(E_n).$$

%Folland page 28 definition of outer-measure

Examples 2.1.2.

%Folland page 29 1.10 proposition

%TALK ABOUT INDUCED OUTTER MEASURE FROM MEASURE AND THE FACT THAT AS A RESULT, A MEASURE HAS COUNTABLE SUBADDITIVITY

(i)

%TALK ABOUT HOW THIS IS A MORE GENERAL CASE OF PART (I) (ii) Given $\mathcal{E} \subset \mathcal{P}(X)$ with \varnothing , $X \in \mathcal{E}$, a function $\rho: \mathcal{E} \to [0, +\infty]$ such that $\rho(\varnothing) = 0$, we define the **induced outer measure** ρ^* on ρ to be the function $\mathcal{P}(X) \to [0, +\infty]$ defined by

$$\rho^*(F) := \inf \left\{ \sum_{n=1}^{\infty} \rho(E_n) : \{E_n\}_{n \in \mathbb{N}} \subset \mathcal{E}, \ \bigcup_{n \in \mathbb{N}} E_n \supset F \right\} \quad (2.1.1)$$

We find this is an outer measure since

$$\varnothing \in \mathcal{E} \Longrightarrow E_n := \varnothing$$
, for all $n \in \mathbb{N}$ gives us $\{E_n\}_{n \in \mathbb{N}} \supset \varnothing$ such that $\sum_{n=1}^{\infty} \rho(E_n) = 0$, $\Longrightarrow \rho^*(\varnothing) \le \sum_{n=1}^{\infty} \rho(\varnothing) = 0$, $\Longrightarrow \rho^*(\varnothing) = 0$.

and given $\{F_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(X)$, we find that

$$\rho^* \left(\bigcup_{n \in \mathbb{N}} F_n \right) = \inf \left\{ \sum_{m=1}^{\infty} \rho(E_m) : \{E_m\}_{m \in \mathbb{N}} \subset \mathcal{E}, \ \bigcup_{m \in \mathbb{N}} E_m \supset \bigcup_{n \in \mathbb{N}} F_n \right\}$$

$$\leq \inf \left\{ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \rho(E_{n,m}) : \{E_{n,m}\}_{m \in \mathbb{N}} \subset \mathcal{E}, \ \bigcup_{m \in \mathbb{N}} E_{n,m} \supset F_n \text{ for every } n \in \mathbb{N} \right\}$$

$$\leq \sum_{n=1}^{\infty} \inf \left\{ \sum_{m=1}^{\infty} \rho(E_{n,m}) : \{E_{n,m}\}_{m \in \mathbb{N}} \subset \mathcal{E}, \bigcup_{m \in \mathbb{N}} E_{n,m} \supset F_n \right\}$$

$$= \sum_{n=1}^{\infty} \rho^*(F_n),$$

hence we have countable subadditivity.

%FIND MORE EXAMPLES (INCLUDING LEBESGUE EXAMPLE)

Definition 2.1.3. (The Caratheodory Criterion for Outer Measures) Given an outer measure μ^* on X, we state that $F \subset X$ satisfies the Caratheodory Criterion with respect to μ^* (or equivalently state that F is μ^* -measurable) if for every $E \subset X$, we have

$$\mu^*(E) = \mu^*(E \cap F) + \mu^*(E \cap F^c), \text{ for all } E \subset X. \quad (2.1.2)$$

%Folland page 29 1.10 proposition

%ALSO STATE EQUIVALENT CONDITION TO THE CARTHEODORY CRITERION FOR OUTER MEASURES

%SHOW THAT THE CARTHEODORY CRITERION IS NONEMPTY, CLOSED UNDER COMPLEMENTS, FINITE UNIONS, AND SATISFIES THE DISJOINT FINITE ADDITIVITY PROPERTY

Theorem 2.1.4. (The Original Caratheodory's Theorem) Given an outer measure μ^* on X, and the collection M of all subsets of X satisfying the Cartheodory Criterion (i.e. condition (2.2.2)), we find μ^* is a σ -algebra, and $\mu: M \to [0, +\infty]$ defined by $\mu:=\mu^*|M$ is a complete measure.

%Folland page 29 1.11 Theorem

%FINISH THIS PROOF

Proof. To begin, we show M is a σ -algebra. First, note that for every $E \subset X$, we have

$$\mu^*(E) = 0 + \mu^*(E) = \mu^*(E \cap \varnothing) + \mu^*(E \cap \varnothing^c),$$

hence $\emptyset \in \mathcal{M} \Longrightarrow \mathcal{M} \neq \emptyset$. Next, observe that if $F \in \mathcal{M}$, then for all $E \subset X$, we have

$$\mu^*(E) = \mu^*(E \cap F) + \mu^*(E \cap F^c) = \mu^*(E \cap F^c) + \mu^*(E \cap F^{cc}),$$

which shows $F^c \in \mathcal{M}$. Finally, suppose $\{F_n\}_{n \in \mathbb{N}} \subset \mathcal{M}$. Then by countable subadditivity, we have

$$\mu^*(E) \le \mu^* \left(E \cap \left(\bigcup_{n=1}^{\infty} F_n \right) \right) + \mu^* \left(E \cap \left(\bigcup_{n=1}^{\infty} F_n \right)^c \right),$$

and to show that $\bigcup_{n=1}^{\infty} F_n \in M$, it remains to show that

$$\mu^* \left(E \cap \left(\bigcup_{n=1}^{\infty} F_n \right) \right) + \mu^* \left(E \cap \left(\bigcup_{n=1}^{\infty} F_n \right)^c \right) \leq \mu^*(E).$$

%DIVIDE IT INTO TWO CASES WITH INFINITY AND FINITE

Observe that for all $E \subset X$ and $N \ge 1$, we have

%MOVE THIS OVER TO THE FIRST ARGUMENT

$$\mu^{*}(E) = \mu^{*}(E \cap F_{1}) + \mu^{*}\left(E \cap F_{1}^{c}\right)$$

$$= \mu^{*}(E \cap F_{1}) + \mu^{*}\left(\left(E \cap F_{1}^{c}\right) \cap F_{2}\right) + \mu^{*}\left(\left(E \cap F_{1}^{c}\right) \cap F_{2}^{c}\right)$$

$$= \mu^{*}((E \cap (F_{1} \cup F_{2})) \cap F_{1}) + \mu^{*}\left((E \cap (F_{1} \cup F_{2})) \cap F_{1}^{c}\right) + \mu^{*}\left(E \cap F_{1}^{c} \cap F_{2}^{c}\right)$$

$$= \mu^{*}(E \cap (F_{1} \cup F_{2})) + \mu^{*}\left(E \cap F_{1}^{c} \cap F_{2}^{c}\right)$$

$$= \mu^{*}(E \cap (F_{1} \cup F_{2})) + \mu^{*}\left(\left(E \cap F_{1}^{c} \cap F_{2}^{c}\right) \cap F_{3}\right) + \mu^{*}\left(\left(E \cap F_{1}^{c} \cap F_{2}^{c}\right) \cap F_{3}^{c}\right)$$

$$= \mu^{*}\left(E \cap \left(\bigcup_{n=1}^{3} F_{n}\right)\right) \cap \left(\bigcup_{n=1}^{2} F_{n}\right) + \mu^{*}\left(\left(E \cap \bigcup_{n=1}^{3} F_{n}\right) \cap \left(\bigcup_{n=1}^{2} F_{n}\right)\right) + \mu^{*}\left(E \cap \bigcap_{n=1}^{3} F_{n}^{c}\right)$$

$$= \mu^{*}\left(E \cap \left(\bigcup_{n=1}^{3} F_{n}\right)\right) + \mu^{*}\left(E \cap \left(\bigcap_{n=1}^{3} F_{n}^{c}\right)\right)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$= \mu^{*}\left(E \cap \left(\bigcup_{n=1}^{N} F_{n}\right)\right) + \mu^{*}\left(E \cap \left(\bigcap_{n=1}^{N} F_{n}^{c}\right)\right),$$

and moreover for all $N_0 \ge 1$ and for all $E \subset X$, we have

$$\begin{split} \mu^* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) &= \mu^* \left(\left[E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right] \cap F_1 \right) + \mu^* \left(\left[E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right] \cap F_1^c \right) \\ &= \mu^* (E \cap F_1) + \mu^* \left(E \cap \left[\bigcup_{n=1}^{N_0} F_n \setminus F_1^c \right] \right) \\ &= \mu^* (E \cap F_1) + \mu^* \left(E \cap \left[\bigcup_{n=1}^{N_0} F_n \setminus F_1^c \right] \cap F_2 \right) + \mu^* \left(E \cap \left[\bigcup_{n=1}^{N_0} F_n \setminus F_1 \right] \cap F_2^c \right) \\ &= \mu^* \left(E \cap \left[F_1 \setminus \left(\bigcup_{n=1}^{0} F_n \right) \right] \right) + \mu^* \left(E \cap \left[F_2 \setminus \left(\bigcup_{n=1}^{1} F_n \right) \right] \right) + \mu^* \left(E \cap \left[\bigcup_{n=1}^{N_0} F_n \setminus \left(\bigcup_{n=1}^{2} F_n \right) \right] \right) \\ &= \mu^* \left(E \cap \left[F_1 \setminus \left(\bigcup_{n=1}^{0} F_n \right) \right] \right) + \mu^* \left(E \cap \left[F_2 \setminus \left(\bigcup_{n=1}^{1} F_n \right) \right] \right) \\ &+ \mu^* \left(E \cap \left[\bigcap_{n=1}^{N_0} F_n \setminus \left(\bigcup_{n=1}^{2} F_n \right) \right] \right) \cap F_3^c \right) \\ &= \mu^* \left(E \cap \left[F_1 \setminus \left(\bigcup_{n=1}^{0} F_n \right) \right] \right) + \mu^* \left(E \cap \left[F_2 \setminus \left(\bigcup_{n=1}^{1} F_n \right) \right] \right) \\ &+ \mu^* \left(E \cap \left[F_3 \setminus \left(\bigcup_{n=1}^{2} F_n \right) \right] \right) + \mu^* \left(E \cap \left[F_2 \setminus \left(\bigcup_{n=1}^{1} F_n \right) \right] \right) \\ &: : : \\ &= \sum_{N=1}^{N_0-1} \left[\mu^* \left(E \cap \left[F_N \setminus \left(\bigcup_{n=1}^{N-1} F_n \right) \right] \right) \right] + \mu^* \left(E \cap \left[F_{N_0} \setminus \left(\bigcup_{n=1}^{N_0-1} F_n \right) \right] \right) \\ &= \sum_{N=1}^{N_0} \mu^* \left(E \cap \left[F_N \setminus \left(\bigcup_{n=1}^{N-1} F_n \right) \right] \right) \right], \end{split}$$

hence by monotonicity we have

$$\sum_{N=1}^{N_0} \mu^* \left(E \cap \left[F_N \setminus \left(\bigcup_{n=1}^{N-1} F_n \right) \right] \right) = \mu^* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) \le \mu^* \left(E \cap \left(\bigcup_{n=1}^{\infty} F_n \right) \right).$$

It follows that we take $N_0 \to +\infty$ and find that for any $E \subset X$, we find by countable subadditivity that

$$\sum_{N=1}^{\infty} \mu^{*} \left[E \cap \left[F_{N} \setminus \left(\bigcup_{n=1}^{N-1} F_{n} \right) \right] \right] \leq \mu^{*} \left[E \cap \left(\bigcup_{n=1}^{\infty} F_{n} \right) \right]$$

$$\implies \lim_{N_{0} \to +\infty} \sum_{N=N_{0}+1}^{\infty} \mu^{*} \left[E \cap \left[F_{N} \setminus \left(\bigcup_{n=1}^{N-1} F_{n} \right) \right] \right] = 0.$$

$$\implies \mu^{*} \left[E \cap \left(\bigcup_{n=1}^{\infty} F_{n} \right) \right] = \mu^{*} \left[\bigcup_{N=1}^{\infty} \left[E \cap \left[F_{N} \setminus \left(\bigcup_{n=1}^{N-1} F_{n} \right) \right] \right] \right]$$

$$\leq \sum_{N=1}^{\infty} \mu^{*} \left[E \cap \left[F_{N} \setminus \left(\bigcup_{n=1}^{N-1} F_{n} \right) \right] \right]$$

$$= \lim_{N_{0} \to +\infty} \left[\sum_{N=1}^{N_{0}} \mu^{*} \left[E \cap \left[F_{N} \setminus \left(\bigcup_{n=1}^{N-1} F_{n} \right) \right] \right] + \sum_{N=N_{0}+1}^{\infty} \mu^{*} \left[E \cap \left[F_{N} \setminus \left(\bigcup_{n=1}^{N-1} F_{n} \right) \right] \right] \right]$$

$$= \lim_{N_{0} \to +\infty} \mu^{*} \left[E \cap \left(\bigcup_{n=1}^{N_{0}} F_{n} \right) \right],$$

and we conclude that

$$\mu^* \left(E \cap \left(\bigcup_{n=1}^{\infty} F_n \right) \right) + \mu^* \left(E \cap \left(\bigcup_{n=1}^{\infty} F_n \right)^c \right) \le \lim_{N_0 \to +\infty} \left[\mu^* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) + \mu^* \left(E \cap \left(\bigcap_{n=1}^{\infty} F_n^c \right) \right) \right]$$

$$= \lim_{N_0 \to +\infty} \left[\mu^* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) + \mu^* \left(E \cap \left(\bigcap_{n=1}^{N_0} F_n^c \right) \right) \right]$$

$$= \lim_{N_0 \to +\infty} \left[\mu^* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) + \mu^* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right)^c \right) \right]$$

$$= \lim_{N_0 \to +\infty} \left[\mu^*(E) \right]$$

$$= \mu^*(E).$$

Next, we want to show that $\mu := \mu^* | \mathcal{M}$ is a complete measure. First, observe that $\mu(\emptyset) = \mu^*(\emptyset) = 0$ by definition and for disjoint additivity, we find for disjoint $\{F_n\}_{n \in \mathbb{N}} \subset \mathcal{M}$, we have

$$\mu^*\left(\bigcup_{n=1}^{\infty}F_n\right)\leq \sum_{n=1}^{\infty}\mu^*(F_n),$$

by countable subadditivity, and by finite disjoint subadditivity and monotonicity we have

$$\sum_{n=1}^{N_0} \mu^*(F_n) = \mu^* \left(\bigcup_{n=1}^{N_0} F_n \right) \le \mu^* \left(\bigcup_{n=1}^{\infty} F_n \right) \Longrightarrow \sum_{n=1}^{\infty} \mu^*(F_n) \le \mu^* \left(\bigcup_{n=1}^{\infty} F_n \right).$$

Finally, to show completeness of the measure, given $N \in M$ such that $\mu^*(N) = 0$ and $S \subset N$, we find that given $E \subset X$, we by find countable subadditivity that

$$\mu^*(E) \le \mu^*(E \cap S) + \mu(E \cap S^c),$$

and since $E \cap S \subset S \subset N$ and $E \cap S^c \subset E$, we find by monotonicity that

$$\mu^*(E \cap S) + \mu^*(E \cap S^c) \le \mu^*(N) + \mu^*(E) = \mu^*(E) \Longrightarrow S \in \mathcal{M}. \square$$

2.2 Applying the Definition to Premeasures

Definition 2.2.1. Given an **algebra** $\mathcal{A} \subset \mathcal{P}(X)$ we define a premeasure to be a function $\mu_0 : \mathcal{A} \to [0, +\infty]$ such that

(i)
$$\mu_0(\emptyset) = 0$$
.

(ii) Given a countable family $\mathcal{F}\subset\mathcal{A}$ of pairwise disjoint sets such that $\ \cup\ \mathcal{F}\in\mathcal{A}$, we have

$$\mu_0(\cup\mathcal{F})=\sum_{F\in\mathcal{F}}\mu_0(F).$$

%Folland page 30 definition of premeasure

Definition 2.2.2.

- (i) We state that an outer measure $(\mu_0)^*$ (as defined in **Definition 2.1.1**) is σ -finite if there exists a sequence $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(X)$ such that $X=\bigcup_{n\in\mathbb{N}}E_n$ and $(\mu_0)^*(E_n)<+\infty$, for each $n\in\mathbb{N}$.
- (ii) We state that a premeasure μ_0 (as defined in **Definition 2.2.1**) is σ -finite if there exists a sequence $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{R}$ of sets such that $X=\bigcup_{n\in\mathbb{N}}E_n$ and $\mu_0(E_n)<+\infty$, for each $n\in\mathbb{N}$. %define σ -finite premeasure

%MAKE NOTE ABOUT HOW THIS WAS NOT MENTIONED IN FOLLAND

Proposition 2.2.3. Suppose μ_0 is a premeasure $(\mu_0)^*$ is the induced outer measure on μ_0 , as defined in (2.1.1) and in **Examples 2.1.2** (i). Then the following are equivalent:

- (i) μ_0 is σ -finite (as a premeasure).
- (ii) The measure $\mu := (\mu_0)^* | \mathcal{M}$ defined (and proved to be a measure) in **Theorem 2.1.4** is σ -finite.
- (iii) $(\mu_0)^*$ is σ -finite (as an outer measure).

%show that these definitions of σ -finite are equivalent %PROVE IT

Theorem 2.2.4. (Caratheodory Extension for the Induced Outer-Measure) Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, $\mathcal{M} := \sigma(\mathcal{A})$, and μ_0 is a premeasure on \mathcal{A} . Then there exists a measure μ on \mathcal{M} that extends μ_0 , namely, $\mu = \mu^* | \mathcal{M}$.

Moreover, if ν is another measure that extends μ_0 , then $\nu(E) \leq \mu(E)$ for all $E \in \mathcal{M}$, with equality when $\mu(E) < +\infty$. If μ_0 is σ -finite, then μ is the unique extension of μ_0 to a

measure on M.

%Folland page 31 1.14 Theorem

%FINISH THIS PROOF

Proof. First, note that for all $A \in \mathcal{A}$, we have

$$\mu(A) = \mu_0(A),$$

since by definition we have $\mu(A) = \mu^*(A) \le \mu_0(A)$ and for all $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{A}$ such that $\bigcup A_n \supset A$, we have by countable subadditivity and monotonicity

n∈N

$$\sum_{n=1}^{\infty} \mu_0(A_n) = \sum_{n=1}^{\infty} \mu^*(A_n) \ge \mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \ge \mu^*(A) = \mu(A),$$

giving us $\mu(A) \ge \mu_0(A)$.

%POSSIBLY OUTSOURCE THIS AS A PROPERTY OF OUTER-MEASURE

Next, we find that M satisfies the Caratheodory Criterion, since M is the intersection of all σ -algebras containing \mathcal{A} and we showed using **Theorem 2.1.4** that the set of all subsets of X satisfying the Caratheodory Criterion is a σ -algebra.

Note that given any other ν extending μ_0 , we have

$$\nu(A) = \mu_0(A) = \mu(A)$$
, for all $A \in \mathcal{A}$, (2.2.1)

and it follows that for any $E \in \mathcal{M}$ and $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{R}$ such that $\bigcup_{n \in \mathbb{N}} A_n \supset E$, we have by countable subadditivity of the induced outer measure ν^* on ν , we have

$$\nu(E) = \nu^*(E) \le \sum_{n=1}^{\infty} \nu^*(A_n) = \sum_{n=1}^{\infty} \nu(A_n) = \sum_{n=1}^{\infty} \mu_0(A) = \sum_{n=1}^{\infty} \mu(A_n),$$

hence we have

$$\nu(E) \le \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) : \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{F}_{\mathbf{k}} \text{ and } \bigcup_{n \in \mathbb{N}} A_n \supset E \right\} = \mu^*(E) = \mu(E). \quad (2.2.2)$$

%INSTEAD USE LEMMA 3.3.3 AND DELETE THIS PART OF PROOF

Suppose $\mu(E) < +\infty$. Since we can choose a sequence $\{A_{j,n}\}_{n\in\mathbb{N}} \subset \mathcal{A}$ such that

$$\sum_{n=1}^{\infty} \mu(A_{j,n}) \searrow \mu(E) \text{ as } j \to +\infty,$$

note that since we have

$$\mu(E) \le \mu\left(\bigcup_{n \in \mathbb{N}} A_{j,n}\right) \le \sum_{n=1}^{\infty} \mu(A_{j,n}), \text{ for all } j \ge 1,$$

we have

$$\lim_{j \to +\infty} \mu \left(\bigcup_{n \in \mathbb{N}} A_{j,n} \right) = \inf_{j \ge 1} \mu \left(\bigcup_{n \in \mathbb{N}} A_{j,n} \right) = \mu(E),$$

and to show $\nu(E) = \mu(E)$, it remains to show that

$$\lim_{j \to +\infty} \left| \mu \left(\bigcup_{n \in \mathbb{N}} A_{j,n} \right) - \nu(E) \right| = 0. \quad (2.2.3)$$

Since for each $j \geq 1$, we have $\bigcup_{n=1}^N A_{j,n} \in \mathcal{A}$ and $\bigcup_{n=1}^N A_{j,n} \nearrow \bigcup_{n \in \mathbb{N}} A_{j,n}$ we find by (2.2.1) that

$$\nu\left(\bigcup_{n\in\mathbb{N}}A_{j,n}\right)=\lim_{N\to+\infty}\nu\left(\bigcup_{n=1}^NA_{j,n}\right)=\lim_{N\to+\infty}\mu\left(\bigcup_{n=1}^NA_{j,n}\right)=\mu\left(\bigcup_{n\in\mathbb{N}}A_{j,n}\right),$$

hence we have

$$\lim_{j \to +\infty} \nu \left(\bigcup_{n \in \mathbb{N}} A_{j,n} \right) = \lim_{j \to +\infty} \mu \left(\bigcup_{n \in \mathbb{N}} A_{j,n} \right) = \mu(E) < +\infty$$

$$\implies \nu \left(\bigcup_{n \in \mathbb{N}} A_{j,n} \right) < +\infty, \text{ e.v., for } j \ge 1,$$

$$\implies \nu(E) \le \inf_{j \ge 1} \nu \left(\bigcup_{n \in \mathbb{N}} A_{j,n} \right) < +\infty,$$

and we conclude by (2.2.2) that

$$\lim_{j \to +\infty} \left| \mu \left(\bigcup_{n \in \mathbb{N}} A_{j,n} \right) - \nu(E) \right| = \lim_{j \to +\infty} \left(\nu \left(\bigcup_{n \in \mathbb{N}} A_{j,n} \right) - \nu(E) \right)$$

$$\leq \lim_{j \to +\infty} \left(\mu \left(\bigcup_{n \in \mathbb{N}} A_{j,n} \right) - \mu(E) \right)$$

$$= 0,$$

which shows (2.2.3).

It then follows from the fact that $\mu(E) < + \infty \Longrightarrow \nu(E) = \mu(E)$ that if μ_0 is σ -finite, then we can choose $\{A_n\}_{n\in\mathbb{N}} \subset \mathcal{F}$ such that $A_n \nearrow X$ and $\mu(A) < + \infty$, and we conclude uniqueness of μ from the fact that for all $E \in \mathcal{M}$, we find that since $E \cap A_n \nearrow E$, we have

$$\mu(E \cap A_n) \le \mu(A_n) < + \infty \Longrightarrow \nu(E \cap A_n) = \mu(E \cap A_n), \text{ for all } n \in \mathbb{N},$$
$$\Longrightarrow \nu(E) = \lim_{n \to +\infty} \nu(E \cap A_n) = \lim_{n \to +\infty} \mu(E \cap A_n) = \mu(A). \quad \Box$$

2.3 The Caratheodory Extension Defined Using Inner-Measures

Definition 2.3.1. Given a nonempty set X, we define an **inner measure** on $\mu_* : \mathcal{P}(X) \to [0, +\infty]$ as a function that satisfies the following properties:

- (i) (Null Empty Set) $\mu_*(\emptyset) = 0$.
- (ii) (Disjoint Superadditivity) If $\{E_n\}_{n\in\mathbb{N}}\subset \mathcal{P}(X)$ is a collection of disjoint subsets, then

$$\mu_*\left(\bigcup_{n\in\mathbb{N}}E_n\right)\geq \sum_{n=1}^\infty \mu_*(E_n).$$

(iii)

%POSSIBLY MENTION THE MONOTONIC PROPERTY, THE LIMIT PROPERTIES, \SIGMA-FINITE PROPERTY, AND/OR SHOW THAT THESE PROPERTIES ARE IMPLIED BY THE PRIOR PROPERTIES IN LEMMA 2.3.2

Examples 2.3.3.

(i) Given a premeasure $\mu_0 : \mathcal{A} \to [0, +\infty]$, we define the **induced inner measure** $(\mu_0)_*$ on μ_0 to be the function $\mathcal{P}(X) \to [0, +\infty]$ defined by

$$(\mu_0)_*(E) := \sup \{ \mu_0(A) : A \in \mathcal{A}, A \subset E \}.$$
 (2.3.1)

We find this is an inner measure since

$$A \subset \varnothing \Longrightarrow A = \varnothing \Longrightarrow \mu_0(A) = 0$$
 for all $A \subset \varnothing \Longrightarrow (\mu_0)_*(\varnothing) = 0$,

and for disjoint $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(X)$, we find that

$$\sum_{n=1}^{\infty} (\mu_0)_*(E_n) = \sup \left\{ \sum_{n=1}^{\infty} \mu_0(A_n) : \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{A}, A_n \subset E_n \text{ for all } n \in \mathbb{N} \right\},$$

so it suffices to show that given $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$ such that $A_n\subset E_n$, for all $n\in\mathbb{N}$, we have

$$\sum_{n=1}^{\infty} \mu_0(A_n) \le (\mu_0)_* \left(\bigcup_{n \in \mathbb{N}} E_n \right).$$

Given $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$ such that $A_n\subset E_n$, for all $n\in\mathbb{N}$, note that $\{A_n\}_{n\in\mathbb{N}}$ is disjoint. For every $N\geq 1$, we find $\bigcup_{n=1}^N A_n\in\mathcal{A}$, and $\bigcup_{n=1}^N A_n\subset\bigcup_{n\in\mathbb{N}} E_n$, so we have

$$\sum_{n=1}^N \mu_0(A_n) = \mu_0 \left(\bigcup_{n=1}^N A_n \right) \le (\mu_0)_* \left(\bigcup_{n \in \mathbb{N}} E_n \right),$$

hence

$$\sum_{n=1}^{\infty} \mu_0(A_n) = \sup_{N \ge 1} \left\{ \sum_{n=1}^{N} \mu_0(A_n) \right\} \le (\mu_0)_* \left(\bigcup_{n \in \mathbb{N}} E_n \right).$$

Definition 2.3.4. (The Caratheodory Criterion for Inner Measures) Given an inner measure μ_* on X, we state that $F \subset X$ satisfies the **Caratheodory Criterion** with respect to μ_* (or equivalently state that F is μ_* -measurable) if for every $E \subset X$, we have

$$\mu_*(E) = \mu_*(E \cap F) + \mu_*(E \cap F^c)$$
, for all $E \subset X$. (2.3.2)

%MAKE REMARKS AND BETTER ORGANIZE THESE DERIVATIONS Note that given $F \subset X$ since disjoint superadditivity automatically gives us

$$\mu_*(E) \ge \mu_*(E \cap F) + \mu_*(E \cap F^c)$$
, for all $E \subset X$,

we find the Cartheodory criterion for inner measures is equivalent to showing that

$$\mu_*(E) \le \mu_*(E \cap F) + \mu_*(E \cap F^c)$$
, for all $E \subset X$. (2.3.3)

Moreover, we find that given disjoint $\{F_1, \ldots, F_{N_0}\}$ satisfying Cartheodory's Criterion, we find by repeated use of (2.3.2), we find for all $E \subset X$ that

$$\mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) = \mu_* \left(\left[E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right] \cap F_1 \right) + \mu_* \left(\left[E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right] \cap F_1^c \right)$$

$$= \mu_* (E \cap F_1) + \mu_* \left(E \cap \left(\bigcup_{n=2}^{N_0} F_n \right) \right)$$

$$= \mu_* (E \cap F_1) + \mu_* \left(\left[E \cap \left(\bigcup_{n=2}^{N_0} F_n \right) \right] \cap F_2 \right) + \mu_* \left(\left[E \cap \left(\bigcup_{n=2}^{N_0} F_n \right) \right] \cap F_2^c \right)$$

$$= \mu_* (E \cap F_1) + \mu_* (E \cap F_2) + \mu_* \left(E \cap \left(\bigcup_{n=3}^{N_0} F_n \right) \right)$$

$$\vdots
= \sum_{n=1}^{N_0 - 1} \mu_*(E \cap F_n) + \mu_* \left(E \cap \left(\bigcup_{n=N_0}^{N_0} F_n \right) \right)
= \sum_{n=1}^{N_0 - 1} \mu_*(E \cap F_n) + \mu_*(E \cap F_{N_0})
= \sum_{n=1}^{N_0 - 1} \mu_*(E \cap F_{N_0}),$$

and it follows that for arbitrary (not necessarily disjoint) $\{F_1, \ldots, F_{N_0}\}$ satisfying Cartheodory's Criterion, we find that

$$\left\{F_1 \setminus \left(\bigcup_{n=1}^0 F_n\right), F_2 \setminus \left(\bigcup_{n=1}^1 F_n\right), \dots, F_{N_0} \setminus \left(\bigcup_{n=1}^{N_0-1} F_n\right)\right\},\,$$

forms a disjoint partition of $\bigcup_{n=1}^{N_0} F_n$, hence

$$\begin{split} &\mu_{*}(E) = \mu_{*}(E \cap F_{1}) + \mu_{*}\left(E \cap F_{1}^{c}\right) \\ &= \mu_{*}(E \cap F_{1}) + \mu_{*}\left(\left[E \cap F_{1}^{c}\right] \cap F_{2}\right) + \mu_{*}\left(\left[E \cap F_{1}^{c}\right] \cap F_{2}^{c}\right) \\ &= \mu_{*}(E \cap F_{1}) + \mu_{*}\left(E \cap \left[(F_{1} \cup F_{2}) \setminus F_{1}\right]\right) + \mu_{*}\left(E \cap \left(F_{1}^{c} \cap F_{2}^{c}\right)\right) \\ &= \mu_{*}(E \cap F_{1}) + \mu_{*}(E \cap (F_{2} \setminus F_{1})) + \mu_{*}\left(\left[E \cap \left(F_{1}^{c} \cap F_{2}^{c}\right)\right] \cap F_{3}\right) + \mu_{*}\left(\left[E \cap \left(F_{1}^{c} \cap F_{2}^{c}\right)\right] \cap F_{3}^{c}\right) \\ &= \mu_{*}\left(E \cap \left[F_{1} \setminus \left(\bigcup_{n=1}^{0} F_{n}\right)\right]\right) + \mu_{*}\left(E \cap \left[F_{2} \setminus \left(\bigcup_{n=1}^{1} F_{n}\right)\right]\right) + \mu_{*}\left(E \cap \left[F_{3} \setminus \left(\bigcup_{n=1}^{2} F_{n}\right)\right]\right) \\ &+ \mu_{*}\left(E \cap \left(\bigcap_{n=1}^{3} F_{1}^{c}\right)\right) \\ &\vdots \\ &= \sum_{N=1}^{N_{0}} \left[\mu_{*}\left(E \cap \left[F_{N} \setminus \left(\bigcup_{n=1}^{N-1} F_{n}\right)\right]\right) + \mu_{*}\left(E \cap \left(\bigcap_{n=1}^{N_{0}} F_{n}^{c}\right)\right) \end{split}$$

$$= \sum_{N=1}^{N_0} \left[\mu_* \left(E \cap \left[F_N \setminus \left(\bigcup_{n=1}^{N-1} F_n \right) \right] \right) \right] + \mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right)^c \right)$$

$$= \mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) + \mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right)^c \right).$$

%SHOW COUNTEREXAMPLE OF FAILURE WITHOUT INNER-MEASURE σ -FINITE CONDITION

Theorem 2.3.5. (A Caratheodory Theorem for Inner Measures) Given a σ -finite inner measure μ_* on X, and the collection M of all subsets of X satisfying the Cartheodory Criterion (i.e. condition (2.2.2)), we find μ_* is a σ -algebra, and $\mu: M \to [0, +\infty]$ defined by $\mu:=\mu_*|M$ is a complete measure.

%Analogue of Folland page 29 1.11 Theorem for Inner-Measures

Proof. To begin, we show M is a σ -algebra. First, note that for every $E \subset X$, we have

$$\mu_*(E) = 0 + \mu_*(E) = \mu_*(E \cap \varnothing) + \mu_*(E \cap \varnothing^c),$$

hence $\emptyset \in \mathcal{M} \Longrightarrow \mathcal{M} \neq \emptyset$. Next, observe that if $F \in \mathcal{M}$, then for all $E \subset X$, we have

$$\mu_*(E) = \mu_*(E \cap F) + \mu_*(E \cap F^c) = \mu_*(E \cap F^c) + \mu_*(E \cap F^{cc}),$$

which shows $F^c \in M$. Finally, suppose $\{F_n\}_{n \in \mathbb{N}} \subset M$. Given $E \subset X$, first, note that for all $N_0 \geq 1$, we have

$$\mu_*(E) = \mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) + \mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right)^c \right),$$

hence

$$\mu_*(E) = \lim_{N_0 \to +\infty} [\mu_*(E)] = \lim_{N_0 \to +\infty} \left[\mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) + \mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right)^c \right) \right].$$

In the case where $\mu_*(E) < +\infty$, we find by Disjoint Superadditivity that

$$\mu_{*}(E) = \lim_{N_{0} \to +\infty} \left[\mu_{*} \left(E \cap \left(\bigcup_{n=1}^{N_{0}} F_{n} \right) \right) + \mu_{*} \left(E \cap \left(\bigcup_{n=1}^{N_{0}} F_{n} \right)^{c} \right) \right]$$

$$= \lim_{N_{0} \to +\infty} \sum_{N=1}^{N_{0}} \left[\mu_{*} \left(E \cap \left[F_{N} \setminus \left(\bigcup_{n=1}^{N-1} F_{n} \right) \right] \right) \right] + \lim_{N_{0} \to +\infty} \mu_{*} \left(\bigcap_{n=1}^{N_{0}} \left[E \cap F_{n}^{c} \right] \right) \right]$$

$$= \sum_{N=1}^{\infty} \left[\mu_{*} \left(E \cap \left[F_{N} \setminus \left(\bigcup_{n=1}^{N-1} F_{n} \right) \right] \right) \right] + \mu_{*} \left(\bigcap_{n=1}^{\infty} \left[E \cap F_{n}^{c} \right] \right)$$

$$\leq \mu_{*} \left(E \cap \left(\bigcup_{n=1}^{\infty} F_{n} \right) \right) + \mu_{*} \left(E \cap \left(\bigcup_{n=1}^{\infty} F_{n} \right)^{c} \right),$$

%COMPLETE THIS CASE USING σ -FINITE CONDITION

In the case where $\mu_*(E) = +\infty$, we find that

$$\lim_{N_0 \to +\infty} \left[\mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) + \mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right)^c \right) \right] = +\infty,$$

hence either

$$\lim_{N_0 \to +\infty} \sum_{N=1}^{N_0} \left[\mu_* \left(E \cap \left[F_N \setminus \left(\bigcup_{n=1}^{N-1} F_n \right) \right] \right) \right] = \lim_{N_0 \to +\infty} \mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right) \right) = +\infty \text{ or }$$

$$\lim_{N_0 \to +\infty} \mu_* \left(E \cap \left(\bigcup_{n=1}^{N_0} F_n \right)^c \right) = +\infty$$

$$\mu_{*}(E), \mu_{*}\left(E \cap \left(\bigcup_{n=1}^{\infty} F_{n}\right)\right) + \mu_{*}\left(E \cap \left(\bigcup_{n=1}^{N_{0}} F_{n}\right)^{c}\right) \geq \mu_{*}\left(E \cap \left(\bigcup_{n=1}^{\infty} F_{n}\right)\right) = + \infty$$

$$\Longrightarrow \mu_{*}(E) = + \infty = \mu_{*}\left(E \cap \left(\bigcup_{n=1}^{\infty} F_{n}\right)\right) + \mu_{*}\left(E \cap \left(\bigcup_{n=1}^{N_{0}} F_{n}\right)\right)^{c}.$$

In both cases, we have shown that condition (2.3.2) holds for $\bigcup_{n=1}^{\infty} F_n$, and $\bigcup_{n=1}^{\infty} F_n \in M$ immediately follows.

Next, we want to show that $\mu := \mu_* | \mathcal{M}$ is a complete measure. First, observe that $\mu(\emptyset) = \mu_*(\emptyset) = 0$ by definition and for disjoint additivity, we find for disjoint $\{F_n\}_{n \in \mathbb{N}} \subset \mathcal{M}$, in the case where

$$\mu_*\left(\bigcup_{n=1}^\infty F_n\right)<+\infty,$$

we have for all $N_0 \ge 1$, we find by finite disjoint additivity that

$$\mu\left(\bigcup_{n=1}^{\infty}F_n\right) = \mu_*\left(\bigcup_{n=1}^{\infty}F_n\right) = \sum_{n=1}^{N_0}\mu_*(F_n) + \mu_*\left(\bigcup_{n=N_0+1}^{\infty}F_n\right),$$

hence we have

%MENTION MONOTONIC PROPERTY USED TO JUSTIFY THIS

$$\mu\left(\bigcup_{n=1}^{\infty} F_{n}\right) = \lim_{N_{0} \to +\infty} \left[\sum_{n=1}^{N_{0}} \mu_{*}(F_{n}) + \mu_{*}\left(\bigcup_{n=N_{0}+1}^{\infty} F_{n}\right)\right]$$

$$= \lim_{N_{0} \to +\infty} \sum_{n=1}^{N_{0}} \mu_{*}(F_{n}) + \lim_{N_{0} \to +\infty} \mu_{*}\left(\bigcup_{n=N_{0}+1}^{\infty} F_{n}\right)$$

$$= \sum_{n=1}^{\infty} \mu_{*}(F_{n}) + \mu_{*}\left(\bigcap_{N_{0}=1}^{\infty} \left[\bigcup_{n=N_{0}+1}^{\infty} F_{n}\right]\right)$$

$$= \sum_{n=1}^{\infty} \mu_{*}(F_{n}) + \mu_{*}(\varnothing)$$

$$= \sum_{n=1}^{\infty} \mu(F_{n}).$$

In the case where

$$\mu_*\left(\bigcup_{n=1}^{\infty} F_n\right) = +\infty,$$

we find that %FINISH THIS ARGUMENT

Next, to show completeness of the measure, given $N \in M$ such that $\mu_*(N) = 0$ and $S \subset N$, we that for all $E \subset X$, we find by monotonicity that since $E \cap S \subset E \cap N \subset N$, we have

$$0 \le \mu_*(E \cap N), \mu_*(E \cap S) \le \mu_*(N) = 0 \Longrightarrow \mu_*(E \cap N) = \mu_*(E \cap S) = 0,$$

hence (2.2.3) is satisfied, and we conclude that $S \in \mathcal{M}$.

%SHOW THAT σ -FINITE CONDITION IS SATISFIED (OR COME UP WITH A COUNTEREXAMPLE WHERE IT'S NOT SATISFIED POSSIBLY USING SOME KIND OF WEIRD INNER SUM CONDITION)

%SHOW THAT σ -FINITENESS OF PREMEASURES IS EQUIVALENT TO σ -FINITENESS OF INDUCED INNER MEASURES

%TRY THIS EXAMPLE AND TRY TO SHOW THAT ONLY INFINITE AND MEASURE ZERO SETS SATISFY THE CRITERION, AND HENCE THE MEASURE FAILS TO BE σ -FINITE

$$\mu_*(A) := \sup \left\{ \int \phi dm : \phi \text{ is of the form } \sum_{k=1}^N a_k 1\!\!1_{I_k} \leq 1\!\!1_A \text{ for intervals } I_1, \ \dots, I_k \right\}$$

%WORK OUT THIS EXAMPLE DURING THE NEXT DRAFT

Theorem 2.3.6. (A Caratheodory Extension for the Induced Inner-Measure) Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, $\mathcal{M} := \sigma(\mathcal{A})$, and μ_0 is a σ -finite premeasure on \mathcal{A} . Then $\mu := \mu_* | \mathcal{M}$ defines a uniquely determined σ -finite measure that extends μ_0 .

%POSSIBLY FINISH THIS THEOREM HERE AND FIGURE OUT IF MORE NEEDS TO BE SAID

%Analogue of Folland page 31 1.14 Theorem for Inner-Measures

Proof. First, given $A \in \mathcal{A}$, we find for all $B \in \mathcal{A}$ such that $B \subset A$ we have by monotonicity

$$\mu_0(B) = \mu_*(B) \le \mu_*(A) = \mu_0(A) \Longrightarrow \mu_*(A) \le \mu_0(A).$$

It follows that since A itself is in \mathcal{A} and $A \subset A$, we have $\mu_*(A) \geq \mu_0(A)$, hence

$$\mu(A) = \mu_*(A) = \mu_0(A),$$

and we've shown $\mu_*|\mathcal{M}$ is an extension of μ_0 .

Next, we find that M satisfies the Caratheodory Criterion (for inner measures), since M is the intersection of all σ -algebras containing $\mathcal H$ and we showed using **Theorem 2.3.5** that the set M' of all subsets of X satisfying the Caratheodory Criterion is a σ -algebra and μ (and more generally $\mu_*|M'$) is a measure.

%ACTUALLY SHOW THAT ALL $\mathcal H$ SATISFIES THE CARATHEODORY CRITERION

Uniqueness follows immediately from **Theorem 2.2.4** and the fact that μ_0 is σ -finite, since in that situation μ must agree with the outer measure $(\mu_0)^*$ induced by μ_0 . \square

%MAKE COROLLARY ABOUT JORDAN DECOMPOSITION

3 Inner and Outer Single Dimension Signed Measures

3.1 Some Properties of the Jordan Decomposition

Assume that μ , ν are signed (\mathbb{R} -valued) measures on a nonempty σ -algebra $\mathcal{M} \subset \mathcal{P}(X)$.

Definition 3.1.1.

- (i) We state that μ is **positive** if $\mu(E) \geq 0$, for every $E \in \mathcal{M}$.
- (ii) We state that a set $E \in \mathcal{M}$ is a μ -null set if $\mu(E') = 0$ for every $E' \in \mathcal{M}$ such that $E' \subset E$.
- (iii) We state that two measures μ, ν on a σ -algebra M are **mutually singular** (and write $\mu \perp \nu$) if there exists disjoint sets $E, F \in M$ such that $E \cup F = X$ and E is μ -null and F is ν -null.

%DEFINE σ -FINITE IN SIGNED MEASURE SETTING AND MAKE REMARK ABOUT HOW FOLLAND DOESN'T CLARIFY THAT

Theorem 3.1.2. (Jordan Decomposition Theorem) Given a (signed \mathbb{R} -valued) measure μ , there exists two unique positive measures μ^+ , μ^- such that $\mu^+ \perp \mu^-$ and $\mu = \mu^+ - \mu^-$.

%TALK ABOUT HOW PROOF IS DONE IN FOLLAND BUT AN ALTERNATIVE PROOF WILL BE PROVIDED BY SHOWING THAT CARATHEODORY EXTENSION IS IN FACT A MORE GENERAL RESULT

Definition 3.1.3. Define the **total varation** $|\mu|$ of a (signed \mathbb{R} -valued measure) μ to be

$$|\mu| := \mu^+ + \mu^-.$$

Proposition 3.1.4. (Properties of the Jordan Decomposition) If μ^+ , μ^- are Jordan decompositions of $\mu := \mu^+ - \mu^-$, then:

(i) $E \in M$ is μ -null iff $|\mu|(E) = 0$

(ii)
$$\mu \perp \nu$$
 iff $|\mu| \perp \nu$ iff $\mu^+ \perp \nu$ and $\mu^- \perp \nu$.

(iii) For all $E \in \mathcal{M}$, we have

$$\mu^{+}(E) = \sup\{\mu(F) : F \in \mathcal{M}, F \subset E\},$$

$$\mu^{-}(E) = -\inf\{\mu(F) : F \in \mathcal{M}, F \subset E\},$$

$$|\mu|(E) = \sup\left\{\sum_{j=1}^{n} |\mu(E_{j})| : E_{1}, \dots, E_{n} \in \mathcal{M} \text{ are disjoint and } \bigcup_{j=1}^{n} E_{j} = E\right\}$$

$$= \sup\left\{\sum_{j=1}^{n} |\mu(E_{j})| : E_{1}, \dots, E_{n} \in \mathcal{M} \text{ are disjoint and } \bigcup_{j=1}^{n} E_{j} \subset E\right\}.$$

%PROVE THIS PROPOSITION IN NEXT DRAFT

%DISCUSS/EXPLORE CHANGE FROM
$$\bigcup_{j=1}^n E_j = E$$
 TO $\bigcup_{j=1}^n E_j \subset E$, AND JUSTIFY WHY THIS CHANGE IS A GOOD IDEA

%CITE HAHN BANACH DECOMPOSITION OF FOLLAND %STATE AND PROVE PROPERTIES GIVEN FOLLAND 3.1 EXERCISE 7 ON PAGE 88

3.2 Single Dimension Signed Premeasures and the Induced Jordan Decomposition

Defintion 3.2.1. Given an algebra (E, \mathcal{P}) , we define a **signed (** \mathbb{R} **-valued) premeasure** $\mu_0 : \mathcal{H} \to [-\infty, +\infty]$ to be a function such that

- (i) $\mu_0(\emptyset) = 0$.
- (ii) μ_0 assumes at most one of the values $\pm \infty$.
- (iii) given a countable family $\mathcal{F} \subset \mathcal{A}$ of pairwise disjoint sets, we have $\sum_{F \in \mathcal{F}} \mu_0(F)$ either converging absolutely or diverging to $\pm \infty$. Moreover, if $\cup \mathcal{F} \in \mathcal{A}$, we have

$$\mu_0(\cup\mathcal{F})=\sum_{F\in\mathcal{F}}\mu_0(F).$$

%SHOW THAT THIS DEFINITION AGREES WITH THE GENERAL DEFINITION OF PREMEASURES

%GIVE SOME EXAMPLES IN NEXT DRAFT
%IN PARTICULAR, GIVE FUNCTIONS OF BOUNDED VARIATION AND CADLAG
FUNCTIONS AS EXAMPLES

Definition 3.2.2. Let μ_0 be a (signed \mathbb{R} -valued) premeasure μ_0 .

(i) We define the **induced Jordan decomposition** $(\mu_0)^+$, $(\mu_0)^-$: $P(X) \to [0, +\infty]$ of μ_0 as so:

$$(\mu_0)^+(E) := \sup\{\mu_0(A) : A \in \mathcal{A}, A \subset E\},$$
 (3.2.1)
 $(\mu_0)^-(E) := -\inf\{\mu_0(A) : A \in \mathcal{A}, A \subset E\}.$

(ii) We define the **induced total variation** $|\mu_0|$ **of** μ_0 as so:

$$|\mu_0|(E) = \sup \left\{ \sum_{j=1}^N |\mu_0(A_j)| : A_1, \ \dots, A_N \in \mathcal{A} \text{ are disjoint and } \bigcup_{j=1}^N A_j \subset E \right\}.$$

Lemma 3.2.3.

%GIVE THE IMPORTANT PROPERTIES OF THE INNER JORDAN DECOMPOSITION %POSSIBLY DELETE THIS

Lemma 3.2.4. For every signed (\mathbb{R} -valued) premeasure μ_0 , we find that the induced Jordan decomposition $(\mu_0)^+$, $(\mu_0)^-$ and inner total variation $|\mu_0|$ are inner measures. %LEMMA ABOUT INNER JORDAN AND INNER TOTAL VARIATIONS BEING PREMEASURES

Proof. Note that since $\emptyset \in \mathcal{A}$, we have

$$(\mu_0)^+(\varnothing) = (\mu_0)^-(\varnothing) = |\mu_0|(\varnothing) = 0,$$
%SHOW THIS IN MORE DETAIL

and it remains to show that $(\mu_0)^+$, $(\mu_0)^-$, $|\mu_0|$ satisfy the properties of disjoint superadditivity. For disjoint $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(X)$, we find that

$$\begin{split} \sum_{n=1}^{\infty} (\mu_0)^+(E_n) &= \sup \left\{ \sum_{n=1}^{\infty} \mu_0(A_n) : \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{A}, A_n \subset E_n \text{ for all } n \in \mathbb{N} \right\}, \\ \sum_{n=1}^{\infty} (\mu_0)^-(E_n) &= -\inf \left\{ \sum_{n=1}^{\infty} \mu_0(A_n) : \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{A}, A_n \subset E_n \text{ for all } n \in \mathbb{N} \right\}, \\ \sum_{n=1}^{\infty} |\mu_0|(E) &= \sup \left\{ \sum_{n=1}^{\infty} \sum_{j=1}^{N_n} |\mu_0(A_{n,j})| : \{A_{n,1}, \ldots, A_{n,N_n}\}_{n \in \mathbb{N}} \subset \mathcal{A}, A_{n,1}, \ldots, A_{n,N_n} \text{ are disjoint,} \right. \\ \left. \bigcup_{j=1}^{N_n} A_{n,j} \subset E_n \text{ for all } n \in \mathbb{N} \right\}, \end{split}$$

so it suffices to show that:

(i) For all $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$ such that $A_n\subset E_n$, for all $n\in\mathbb{N}$, we have

$$\sum_{n=1}^{\infty} \mu_0(A_n) \le (\mu_0)^+ \left(\bigcup_{n \in \mathbb{N}} E_n\right),$$

$$-\sum_{n=1}^{\infty} \mu_0(A_n) \le (\mu_0)^- \left(\bigcup_{n \in \mathbb{N}} E_n\right).$$

(ii) For all $\{A_{n,1},\ldots,A_{n,N_n}\}_{n\in\mathbb{N}}\subset\mathcal{A}$ such that $\bigcup_{j=1}^{N_n}A_{n,j}\subset E_n$, for all $n\in\mathbb{N}$, we have

$$\sum_{n=1}^{\infty}\sum_{j=1}^{N_n}|\mu_0(A_{n,j})|\leq |\mu_0|\Biggl(\bigcup_{n\in\mathbb{N}}E_n\Biggr).$$

To show (i), given $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$ such that $A_n\subset E_n$, for all $n\in\mathbb{N}$, note that $\{A_n\}_{n\in\mathbb{N}}$ is disjoint. It follows that for every $N\geq 1$, we find $\bigcup_{n=1}^N A_n\in\mathcal{A}$, and $\bigcup_{n=1}^N A_n\subset\bigcup_{n\in\mathbb{N}} E_n$, so we have

$$\inf \left\{ \mu_0(A) : A \in \mathcal{A}, A \subset \bigcup_{n \in \mathbb{N}} E_n \right\} \leq \mu_0 \left(\bigcup_{n=1}^N A_n \right) = \sum_{n=1}^N \mu_0(A_n)$$

$$\leq \sup \left\{ \mu_0(A) : A \in \mathcal{A}, A \subset \bigcup_{n \in \mathbb{N}} E_n \right\},$$

$$\Longrightarrow \sum_{n=1}^N \mu_0(A_n) \leq (\mu_0)^+ \left(\bigcup_{n \in \mathbb{N}} E_n \right),$$

$$-\sum_{n=1}^N \mu_0(A_n) \leq \sup \left\{ -\mu_0(A) : A \in \mathcal{A}, A \subset \bigcup_{n \in \mathbb{N}} E_n \right\} = (\mu_0)^- \left(\bigcup_{n \in \mathbb{N}} E_n \right),$$

hence

$$\sum_{n=1}^{\infty} \mu_0(A_n) = \lim_{N \to +\infty} \sum_{n=1}^{N} \mu_0(A_n) \le (\mu_0)^+ \left(\bigcup_{n \in \mathbb{N}} E_n\right),$$

$$-\sum_{n=1}^{\infty} \mu_0(A_n) = \lim_{N \to +\infty} -\sum_{n=1}^{N} \mu_0(A_n) \le (\mu_0)^- \left(\bigcup_{n \in \mathbb{N}} E_n\right),$$

completing our verification that (i) holds.

To show (ii), given $\{A_{n,1}, \ldots, A_{n,N_n}\}_{n\in\mathbb{N}}\subset\mathcal{R}$ such that $A_{n,1}, \ldots, A_{n,N_n}$ are disjoint and

$$\bigcup_{j=1}^{N_n} A_{n,j} \subset E_n \text{, for all } n \in \mathbb{N} \text{, note that } \left\{ \bigcup_{j=1}^{N_n} A_{n,j} \right\}_{n \in \mathbb{N}} \text{ is disjoint. It follows that for every }$$

$$N \ge 1$$
, we find $\bigcup_{n=1}^N \bigcup_{j=1}^{N_n} A_{n,j} \subset \bigcup_{n \in \mathbb{N}} E_n$, and $\bigcup_{n=1}^N \{A_{n,1}, \ldots, A_{n,N_n}\}$ is a finite disjoint collection, so we have

$$\begin{split} \sum_{n=1}^N \sum_{j=1}^{N_n} |\mu_0(A_{n,j})| &\leq \sup \left\{ \sum_{j=1}^N |\mu_0(A_j)| : A_1, \ \dots, A_N \in \mathcal{R} \text{ are disjoint and } \bigcup_{j=1}^N A_j \subset \bigcup_{n \in \mathbb{N}} E_n \right\} \\ &= |\mu_0| \left(\bigcup_{j=1}^N E_j \right), \end{split}$$

hence we have

$$\sum_{n=1}^{\infty} \sum_{j=1}^{N_n} |\mu_0(A_{n,j})| = \sup_{N \ge 1} \left\{ \sum_{n=1}^{N} \sum_{j=1}^{N_n} |\mu_0(A_{n,j})| \right\} \le |\mu_0| \left(\bigcup_{n \in \mathbb{N}} E_n \right),$$

completing our verification that (ii) holds. □

%IN NEXT DRAFT DEFINE A COMPLEX-VALUED PREMEASURE AND ITS INNER JORDAN DECOMPOSITIONS AND INNER TOTAL VARIATION

3.3 The Caratheodory Extension for ${\mathbb R}$ -valued Premeasures

In this section, we assume that all premeasures are \mathbb{R} -valued signed premeasures.

Definition 3.3.1. (The Caratheodory Criterion for the Induced Jordan Decomposition) Given a premeasure μ_0 , we state that $F \subset X$ satisfies the Caratheodory criterion for the induced **Jordan decomposition** $(\mu_0)^+$, $(\mu_0)^-$ if it satisfies the Caratheodory criterion for both $(\mu_0)^+$ and $(\mu_0)^-$ as inner measures (see **Definition 2.3.4**), i.e., for every $E \subset X$, we have

$$(\mu_0)^+(E) = (\mu_0)^+(E \cap F) + (\mu_0)^+(E \cap F^c),$$

$$(\mu_0)^-(E) = (\mu_0)^-(E \cap F) + (\mu_0)^-(E \cap F^c),$$

or equivalently (2.3.3) holds for both $(\mu_0)^+$ and $(\mu_0)^-$.

%MAKE REMARKS ABOUT OTHER WAYS TO FORMULATE THIS CRITERION IN NEXT DRAFT (IN PARTICULAR LOOK AT THE CARTHEODORY CRITEREON FOR $|\mu_0|$)

Theorem 3.3.2. (A Caratheodory Theorem for the Induced Jordan Decomposition) For every σ -finite premeasure μ_0 on an algebra \mathcal{R} , there exists a σ -algebra $\mathcal{M} \supset \mathcal{R}$ such that the induced Jordan decompositions $(\mu_0)^+$, $(\mu_0)^-$ and induced total variation $|\mu_0|$, restricted to \mathcal{M} all form the complete measures $\mu_+ := (\mu_0)^+ |\mathcal{M}|$, $\mu_- := (\mu_0)^- |\mathcal{M}|$, and $\mu_{tot} := |\mu_0| |\mathcal{M}|$.

%ADD FINISHING TOUCHES BY SHOWING COMPLETENESS

Proof. Let M be the set of all $F \subset X$ that satisfy both the Caratheodory criterion for the inner Jordan decomposition and the Caratheodory criterion of $|\mu_0|$ as an inner measure.

First, we shall show that $\mathcal{A} \subset \mathcal{M}$ by showing that given $A \in \mathcal{A}$, we find (2.3.3) holds for $(\mu_0)^+, (\mu_0)^-, |\mu_0|$. To show that (2.3.3) holds for $(\mu_0)^+, (\mu_0)^-$, we find that given $E \subset X$, we find that for all $A_0 \in \mathcal{A}$ such that $A_0 \subset E$, we have $A_0 \cap A$, $A_0 \cap A^c \in \mathcal{A}$, such that $A_0 \cap A \subset E \cap A$, $A_0 \cap A^c \subset E \cap A^c$, hence

$$\mu_0(A_0) = \mu_0(A_0 \cap A) + \mu_0(A_0 \cap A^c) \le (\mu_0)^+(E \cap A) + (\mu_0)^+(E \cap A^c),$$

$$\Longrightarrow (\mu_0)^+(E) \le (\mu_0)^+(E \cap A) + (\mu_0)^+(E \cap A^c),$$

$$\mu_{0}(A_{0}) = \mu_{0}(A_{0} \cap A) + \mu_{0}(A_{0} \cap A^{c})$$

$$\geq \inf\{\mu_{0}(A_{1}) : A_{1} \in \mathcal{A}, A_{1} \subset E \cap A\} + \inf\{\mu_{0}(A_{2}) : A_{2} \in \mathcal{A}, A_{2} \subset E \cap A^{c}\},$$

$$\Longrightarrow \inf\{\mu_{0}(A_{0}) : A_{0} \in \mathcal{A}, A_{0} \subset E\}$$

$$\geq \inf\{\mu_{0}(A_{1}) : A_{1} \in \mathcal{A}, A_{1} \subset E \cap A\} + \inf\{\mu_{0}(A_{2}) : A_{2} \in \mathcal{A}, A_{2} \subset E \cap A^{c}\},$$

$$\Longrightarrow (\mu_{0})^{-}(E) \leq (\mu_{0})^{-}(E \cap A) + (\mu_{0})^{-}(E \cap A^{c}).$$

To show that (2.3.3) holds for $|\mu_0|$, for all $E \subset X$, we find that for all disjoint

$$A_1, \ldots, A_N \in \mathcal{A}$$
 such that $\bigcup_{j=1}^N A_j \subset E$, we have disjoint collections

$$\{A_1\cap A,A_2\cap A,\ldots,A_N\cap A\}, \left\{A_1\cap A^c,A_2\cap A^c,\ldots,A_N\cap A^c\right\}\subset \mathcal{A},$$

such that

$$\bigcup_{j=1}^{N} [A_j \cap A] \subset E \cap A, \ \bigcup_{j=1}^{N} [A_j \cap A^c] \subset E \cap A^c,$$

hence we have

$$\sum_{j=1}^{N} |\mu_{0}(A_{j})| = \sum_{j=1}^{N} \left| \mu_{0}(A_{j} \cap A) + \mu_{0}(A_{j} \cap A^{c}) \right|$$

$$\leq \sum_{j=1}^{N} |\mu_{0}(A_{j} \cap A)| + \sum_{j=1}^{N} \left| \mu_{0}(A_{j} \cap A^{c}) \right|$$

$$\leq |\mu_{0}|(E \cap A) + |\mu_{0}|(E \cap A^{c}),$$

$$\implies |\mu_{0}|(E) \leq |\mu_{0}|(E \cap A) + |\mu_{0}|(E \cap A^{c}).$$

Next, take \mathcal{M}_+ , \mathcal{M}_- , $\mathcal{M}_{tot.}$ to each be the set of all $F \subset X$ that satisfy the Caratheodory criterion for $(\mu_0)^+$, $(\mu_0)^-$, $|\mu_0|$ as inner measures (see **Definition 2.3.4**), respectively. We find by **Theorem 2.3.5** that \mathcal{M}_+ , \mathcal{M}_- , $\mathcal{M}_{tot.}$ are all σ -algebras and that $(\mu_0)^+|\mathcal{M}_+$, $(\mu_0)^-|\mathcal{M}_-$, $|\mu_0|$ $|\mathcal{M}_{tot.}$ are measures. Then since

$$\mathcal{M} = \mathcal{M}_+ \cap \mathcal{M}_- \cap \mathcal{M}_{tot, \prime}$$

we find \mathcal{M} , as an intersection of σ -algebras, is itself a σ -algebra; so follows that the further restriction of $(\mu_0)^+$, $(\mu_0)^-$, $|\mu_0|$ to μ_+ , μ_- , $\mu_{tot.}$, respectively, are all measures; and it remains to show that μ_+ , μ_- , $\mu_{tot.}$ are all complete measures in \mathcal{M} . %FINISH PROOF BY SHOWING COMPLETENESS \square

Lemma 3.3.3. (Uniqueness of measures extending signed premeasure) For every σ -finite signed (\mathbb{R} -valued) premeasure μ_0 on an algebra \mathcal{A} , any (\mathbb{R} -valued) signed measure $\mu: \sigma(\mathcal{A}) \to [-\infty, +\infty]$ extending μ_0 (if it exists) is uniquely determined.

%SHOW IN REMARK THAT IF $\{E_n\}_{n\in\mathbb{N}}$ IS A \subset -INCREASING SEQUENCE, THEN

$$\mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\lim_{n\to+\infty}\mu(E_n),$$

AND IF $\{E_n\}_{n\in\mathbb{N}}$ IS A $\,\subset\,$ -DECREASING SEQUENCE SUCH THAT $|\mu(E_1)|<+\infty$, THEN

$$\mu\left(\bigcap_{n\in\mathbb{N}}E_n\right)=\lim_{n\to+\infty}\mu(E_n),$$

Proof. Let $\mu, \nu : \sigma(\mathcal{A}) \to \mathbb{R}$ be measures extending μ_0 . First, we shall prove this in the case where μ_0 is finite. Let \mathcal{M}_0 be the set of all $E \in \sigma(\mathcal{A})$ such that $\mu(E) = \nu(E)$, and note that it shall suffice by the *Monotone Class Lemma* to show that \mathcal{M}_0 is a monotone class containing \mathcal{A} , since we'd have $\sigma(\mathcal{A}) = \mathcal{M}_0$ (as a result of $\sigma(\mathcal{A}) \supset \mathcal{M}_0$ by construction and $\sigma(\mathcal{A}) \subset \mathcal{M}_0$ since $\sigma(\mathcal{A})$ is the smallest monotone class) and uniqueness would immediately follow.

First, observe that $\mathcal{A} \subset \mathcal{M}_0$ is immediate by μ, ν both extending μ_0 . Next, we want to show \mathcal{M}_0 is closed under monotone unions and intersections. Let $\{E_n\}_{n\in\mathbb{N}}\subset \mathcal{M}_0$ be a \subset -increasing sequence and $\{F_n\}_{n\in\mathbb{N}}\subset \mathcal{M}_0$ be a \subset -decreasing sequence and observe that since

$$\mu(E_n) = \nu(E_n)$$
 and $\mu(F_n) = \nu(F_n)$, for all $n \in \mathbb{N}$,

and

$$|\mu(F_1) + \mu(F_1^c)| = |\mu(X)| = |\mu_0(X)| < +\infty,$$

 $\implies |\mu(F_1)| = |\nu(F_1)| < +\infty,$

we find that

$$\mu\left(\bigcup_{n\in\mathbb{N}}E_n\right) = \lim_{n\to+\infty}\mu(E_n) = \lim_{n\to+\infty}\nu(E_n) = \nu\left(\bigcup_{n\in\mathbb{N}}E_n\right),$$

$$\mu\left(\bigcap_{n\in\mathbb{N}}F_n\right) = \lim_{n\to+\infty}\mu(F_n) = \lim_{n\to+\infty}\nu(F_n) = \nu\left(\bigcup_{n\in\mathbb{N}}F_n\right),$$

and our conclusion is reached.

Now we shall prove this lemma in the general case. Using σ -finiteness of μ_0 , choose a \subset -increasing sequence $\{X_n\}_{n\in\mathbb{N}}\subset \mathcal{A}$ such that $|\mu_0(X_n)|<+\infty$ and $X_n\nearrow X$ as $n\to+\infty$. Note that for all $n\in\mathbb{N}$, we find $\mu_{n,0}:\mathcal{A}\to[-\infty,+\infty]$ defined by $\mu_{n,0}:=\mu_0((-)\cap X_n)$ is a finite premeasure such that $\mu_n,\nu_n:\sigma(\mathcal{A})\to[-\infty,+\infty]$ defined by $\mu_n:=\mu((-)\cap X_n),\nu_n((-)\cap X_n)$ are finite measures that extend $\mu_{n,0}$, since for all $n\in\mathbb{N}$ we have

$$|\mu_n(X)| = |\mu(X \cap X_n)| = |\nu(X \cap X_n)| = |\nu_n(X)| = |\mu_{0,n}(X)| = |\mu_0(X \cap X_n)| = |\mu(X_n)| < +\infty,$$

and for all $A \in \mathcal{A}$, we have

$$\mu_n(A) = \mu(A \cap X_n) = \mu_0(A \cap X_n) = \mu_{0,n}(A) = \mu_0(A \cap X_n) = \nu(A \cap X_n) = \nu_n(A).$$

Then for every $E \in \sigma(\mathcal{A})$, noting that $\{E \cap X_n\}_{n \in \mathbb{N}}$ is a \subset -increasing sequence such that $E \cap X_n \nearrow E$, we have

$$\mu(E) = \lim_{n \to +\infty} \mu(E \cap X_n) = \lim_{n \to +\infty} \nu(E \cap X_n) = \nu(E). \ \Box$$

Theorem 3.3.4. (A Caratheodory Extension for the Induced Jordan Decomposition) Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, $\mathcal{M} := \sigma(\mathcal{A})$, and μ_0 is a σ -finite premeasure on \mathcal{A} . Define

$$\mu_+ := (\mu_0)^+ | \mathcal{M}, \ \mu_- := (\mu_0)^- | \mathcal{M}, \ \text{and} \ \mu_{tot.} := |\mu_0| | \mathcal{M}.$$

Then $\mu_+ \perp \mu_-$, and there exists a uniquely determined σ -finite measure on M that extends μ_0 defined by $\mu:=\mu_+-\mu_-$, with its Jordan decomposition uniquely determined by $\mu^+=\mu_+$ and $\mu^-=\mu_-$. Moreover, we have

$$\mu^{+} + \mu^{-} = |\mu| = \mu_{tot.} = \mu_{+} + \mu_{-}.$$
 (3.3.1)

Proof. First, we shall prove that μ_+ , μ_- forms a decomposition such that $\mu:=\mu_+-\mu_-$ extends μ_0 . To do this, we have two cases.

Case 1. Suppose $|\mu_0(X)| < +\infty$, i.e. we look at the case where μ_0 is finite. To prove that $\mu := \mu_+ - \mu_-$ extending μ_0 , it shall suffice to show that μ_0 satisfies the property

$$\mu_0(F) = \mu_+(F) - \mu_-(F)$$
, for every $F \in \mathcal{F}$.

Let $F \in \mathcal{A}$. Choose $\{A_n\}_{n \in \mathbb{N}}$, $\{B_n\}_{n \in \mathbb{N}} \subset \mathcal{A}$ such that

$$\bigcup_{n\in\mathbb{N}}A_n, \bigcup_{n\in\mathbb{N}}B_n\subset F, \text{ and}$$

$$0\leq \mu_0(A_n)\nearrow \mu_+(F),$$

$$0\leq -\mu_0(B_n)\nearrow \mu_-(F), \text{ as } n\to +\infty.$$

$$(3.3.2)$$

Note that since for each $n \ge 1$, we have

$$\mu_0(A_n) \le \mu_+(A_n), -\mu_0(B_n) \le \mu_-(B_n),$$

we find that

$$\mu_+(A_n) \nearrow \mu_+(F), \ \mu_-(B_n) \nearrow \mu_-(F), \ \text{as } n \to +\infty,$$

and it follows that

$$\lim_{n \to +\infty} \mu_{+}(F \setminus A_{n}) = \lim_{n \to +\infty} [\mu_{+}(F) - \mu_{+}(A_{n})] = \mu_{+}(F) - \mu_{+}(F) = 0,$$

$$\lim_{n \to +\infty} \mu_{-}(F \setminus B_{n}) = \lim_{n \to +\infty} [\mu_{-}(F) - \mu_{-}(B_{n})] = \mu_{-}(F) - \mu_{-}(F) = 0,$$

hence

$$\lim_{n \to +\infty} \mu_{+}(F \setminus (A_{n} \cup B_{n})) \leq \lim_{n \to +\infty} \mu_{+}(F \setminus A_{n}) = 0,$$

$$\lim_{n \to +\infty} \mu_{-}(F \setminus (A_{n} \cup B_{n})) \leq \lim_{n \to +\infty} \mu_{-}(F \setminus B_{n}) = 0.$$

Then we have

$$-\mu_{-}(F \setminus (A_n \cup B_n)) \le \mu_{0}(F \setminus (A_n \cup B_n)) \le \mu_{+}(F \setminus (A_n \cup B_n)), \text{ for all } n \ge 1,$$

$$\Longrightarrow \lim_{n \to +\infty} \mu_{0}(F \setminus (A_n \cup B_n)) = 0,$$

and it follows that

$$\mu_0(F) = \lim_{n \to +\infty} [\mu_0(A_n \cup B_n) + \mu_0(F \setminus (A_n \cup B_n))]$$

$$= \lim_{n \to +\infty} [\mu_0(A_n \cup B_n)];$$
(3.3.3)

$$\lim_{n \to +\infty} \mu_0 \Big(A_n \cap B_n^c \Big) = \lim_{n \to +\infty} [\mu_0 (A_n \cup B_n) - \mu_0 (B_n)]$$

$$= \lim_{n \to +\infty} [\mu_0 (A_n \cup B_n)] + \lim_{n \to +\infty} [-\mu_0 (B_n)]$$

$$= \mu_0 (F) + \mu_- (F);$$

$$\lim_{n \to +\infty} \mu_0 \Big(A_n^c \cap B_n \Big) = \lim_{n \to +\infty} [\mu_0 (A_n \cup B_n) - \mu_0 (A_n)]$$

$$= \lim_{n \to +\infty} [\mu_0(A_n \cup B_n)] - \lim_{n \to +\infty} [\mu_0(A_n)]$$

= $\mu_0(F) - \mu_+(F)$;

$$\lim_{n \to +\infty} \mu_0(A_n \triangle B_n) = \lim_{n \to +\infty} \left[\mu_0 \left(A_n \cap B_n^c \right) \right] + \lim_{n \to +\infty} \left[\mu_0 \left(A_n^c \cap B_n \right) \right]$$
$$= 2\mu_0(F) - \left[\mu_+(F) - \mu_-(F) \right];$$

$$\lim_{n \to +\infty} \mu_0(A_n \cap B_n) = \lim_{n \to +\infty} [\mu_0(A_n \cup B_n) - \mu_0(A_n \triangle B_n)]$$

$$= \lim_{n \to +\infty} [\mu_0(A_n \cup B_n)] - \lim_{n \to +\infty} [\mu_0(A_n \triangle B_n)]$$

$$= [\mu_+(F) - \mu_-(F)] - \mu_0(F).$$
(3.3.4)

Then by (3.3.2), (3.3.3), and (3.3.4), we conclude that

$$\mu_{0}(F) = \lim_{n \to +\infty} [\mu_{0}(A_{n} \cup B_{n})]$$

$$= \lim_{n \to +\infty} [\mu_{0}(A_{n})] + \lim_{n \to +\infty} [\mu_{0}(B_{n})] - 2 \lim_{n \to +\infty} [\mu_{0}(A_{n} \cap B_{n})]$$

$$= [\mu_{+}(F) - \mu_{-}(F)] - 2 \cdot ([\mu_{+}(F) - \mu_{-}(F)] - \mu_{0}(F))$$

$$= 2\mu_{0}(F) - [\mu_{+}(F) - \mu_{-}(F)],$$

$$\Longrightarrow \mu_0(F) = \mu_+(F) - \mu_-(F).$$

Next, to prove $\mu_+ \perp \mu_-$ (and more generally that μ_+ , μ_- is the Jordan decomposition of μ) that since

$$\mu_0(X) = \mu_+(X) - \mu_-(X), \quad (3.3.5)$$

and

$$|\mu_+(X) - \mu_-(X)| = |\mu_0(X)| < + \infty,$$

we find μ_+ , μ_- are finite. Next, choose a sequence $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{R}$ such that

$$\mu_{+}(X) \leq \mu_{0}(A_{n}) + 2^{-n}$$
, for all $n \in \mathbb{N}$, and (3.3.6) $\mu_{0}(A_{n}) \nearrow \mu_{+}(X)$ as $n \to +\infty$,

and note that since for all $n \in \mathbb{N}$, we have

$$\mu_0(A_n) = \mu_+(A_n) - \mu_-(A_n),$$
 (3.3.7)

$$0 \le \mu_0(A_n) \le \mu_+(A_n) \le \mu_+(X),$$

we find by (3.3.6) and (3.3.7) that

$$\lim_{n \to +\infty} \mu_+(A_n) = \lim_{n \to +\infty} \mu_0(A_n) = \mu_+(X),$$

$$\lim_{n\to+\infty}\mu_+\Big(A_n^c\Big)=\mu_+(X)-\lim_{n\to+\infty}[\mu_+(A_n)]=0.$$

Define

$$P := \limsup_{n} A_n = \bigcap_{N \in \mathbb{N}} \bigcup_{n \ge N} A_n, \quad (3.3.8)$$

$$N := P^c.$$

We want to show that P,N make up a Hahn Decomposition, i.e., noting that P,N partition X, it remains to show that N is μ_+ -null and P is μ_- -null. First, note that

$$N = \liminf_{n} A_n^c = \bigcup_{n \in \mathbb{N}} \bigcap_{n \ge N} A_n^c.$$

Then since μ_+ is finite, we have

$$\mu_{+}(N) = \sup_{N \in \mathbb{N}} \mu_{+} \left(\bigcap_{n \geq N} A_{n}^{c} \right) = \sup_{N \in \mathbb{N}} \left[\inf_{n \geq N} \mu_{+} \left(A_{N}^{c} \cap A_{N+1}^{c} \cap \cdots \cap A_{n}^{c} \right) \right]$$

$$\leq \sup_{N \in \mathbb{N}} \left[\inf_{n \geq N} \mu_{+} \left(A_{n}^{c} \right) \right] = \sup_{N \in \mathbb{N}} \left[\lim_{n \to +\infty} \mu_{+} \left(A_{n}^{c} \right) \right] = 0,$$

and hence N is μ_+ -null. Next, observe by (3.3.5), (3.3.6) and (3.3.7) we find that for all $n \in \mathbb{N}$, we have

$$\mu_{+}(X) \le \mu_{0}(A_{n}) + 2^{-n} \le \mu_{+}(A_{n}) + 2^{-n}$$

$$\implies \mu_{+}(X) - \mu_{0}(A_{n}) \le 2^{-n}$$

$$\mu_{+}(A_{n}^{c}) = \mu_{+}(X) - \mu_{+}(A_{n}) \le 2^{-n},$$

$$\Longrightarrow \mu_{-}(A_n) = \mu_{-}(X) - \mu_{-}(A_n^c)$$

$$= \mu_{-}(X) - \left[\mu_{+}(A_{n}^{c}) - \mu_{0}(A_{n}^{c})\right]$$

$$= \mu_{-}(X) - \mu_{+}(A_{n}^{c}) + \mu_{0}(X) - \mu_{0}(A_{n})$$

$$= \left[\mu_{+}(X) - \mu_{0}(A_{n})\right] - \mu_{+}(A_{n}^{c})$$

$$= O(2^{-n}),$$

$$\Longrightarrow \sum_{n=1}^{\infty} \mu_{-}(A_n) < + \infty,$$

and it immediately follows that we have $\mu_-(P)=0$ by applying (3.3.8) to the *First Borel-Cantelli Lemma*, and our conclusion that P is μ_- -null is reached, finishing *Case 1*.

Case 2. Suppose $|\mu_0(X)| = +\infty$, i.e., we look at the case where μ_0 is infinite. Choose disjoint $\{X_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$ such that $\bigcup_{n\in\mathbb{N}}X_n=X$, and note that $\mu_{n,0}:=\mu_0((-)\cap X_n)$ are finite premeasures. It follows by Case 1 that for all $n\in\mathbb{N}$, we find

$$\mu_{n,+} := (\mu_{n,0})^+ | \mathcal{M}, \ \mu_{n,-} := (\mu_{n,0})^- | \mathcal{M},$$

is such that $\mu_{n,+}$, $\mu_{n,-}$ form a uniquely determined Jordan Decomposition of

$$\mu_n := \mu_{n,+} - \mu_{n,-}$$
 (3.3.9)

extending $\mu_{n,0}$, i.e., we have

$$\mu_{n,0}(A) = \mu_{n,+}(A) - \mu_{n,-}(A)$$
, for all $A \in \mathcal{A}$. (3.3.10)

We shall start by proving the following claims:

Claim 1. For every $n \in \mathbb{N}$, we have

$$\mu_{n,+} = \mu_+((-) \cap X_n), \quad (3.3.11)$$

 $\mu_{n,-} = \mu_-((-) \cap X_n).$

Proof. Note that for every $n \in \mathbb{N}$, and $E \in \sigma(\mathcal{A})$, we find since

$$\mu_0(A \cap X_n) \in \{\mu_0(A \cap X_n) : A \in \mathcal{A}, A \subset E\} \iff A \in \mathcal{A}, A \subset E$$

$$\iff A' = A \cap X_n \in \mathcal{A}, A' \subset E \cap X_n \\ \iff \mu_0(A') \in \{\mu_0(A') : A' \in \mathcal{A}, A' \subset E \cap X_n\},$$

we have

$$\{\mu_0(A \cap X_n) : A \in \mathcal{A}, A \subset E\} = \{\mu_0(A') : A' \in \mathcal{A}, A' \subset E \cap X_n\},$$

and it follows that

$$\mu_{n,+}(E) = \sup\{\mu_{n,0}(A) : A \in \mathcal{A}, A \subset E\}$$

$$= \sup\{\mu_0(A \cap X_n) : A \in \mathcal{A}, A \subset E\}$$

$$= \sup\{\mu_0(A) : A \in \mathcal{A}, A \subset E \cap X_n\}$$

$$= \mu_+((-) \cap X_n),$$

$$\mu_{n,-}(E) = -\inf\{\mu_{n,0}(A) : A \in \mathcal{A}, A \subset E\}$$

$$= -\inf\{\mu_0(A \cap X_n) : A \in \mathcal{A}, A \subset E\}$$

$$= -\inf\{\mu_0(A) : A \in \mathcal{A}, A \subset E \cap X_n\}$$

$$= \mu_-((-) \cap X_n).$$

Claim 2. We have

$$\mu_{+} = \sum_{n=1}^{\infty} \mu_{n,+}, \mu_{-} = \sum_{n=1}^{\infty} \mu_{n,-}.$$
 (3.3.12)

Proof. Observe that for all $E \in \sigma(\mathcal{A})$, we find by (3.3.11) (proved by *Claim 1*), we have

$$\mu_{+}(E) = \sum_{n=1}^{\infty} \mu_{+}(E \cap X_{n}) = \sum_{n=1}^{\infty} \mu_{n,+}(E),$$

$$\mu_{-}(E) = \sum_{n=1}^{\infty} \mu_{-}(E \cap X_{n}) = \sum_{n=1}^{\infty} \mu_{n,+}(E). \quad \Box$$

Now, we shall proceed to prove the rest of the theorem in this case. To show that μ is an extension of μ_0 , observe by (3.3.10), (3.3.11) (proved in *Claim 1*), and (3.3.12) (proved in *Claim 2*) that for all $A \in \mathcal{F}$, we have

$$\mu_0(A) = \sum_{n=1}^{\infty} \mu_0(A \cap X_n) = \sum_{n=1}^{\infty} \mu_{n,0}(A) = \sum_{n=1}^{\infty} \left[\mu_{n,+}(A) - \mu_{n,-}(A) \right] = \sum_{n=1}^{\infty} \left[\mu_{n,+}(A) \right] - \sum_{n=1}^{\infty} \left[\mu_{n,-}(A) \right]$$

$$= \mu_{+}(A) - \mu_{-}(A) = \mu(A).$$

Next, we show that $\mu_+ \perp \mu_-$, showing that μ_+ , μ_- forms a Jordan Decomposition of μ . Since $\mu_{n,+} \perp \mu_{n,-}$, we can choose a Hahn-Decomposition P_n , N_n such that N_n is $\mu_{n,+}$ -null and P_n is $\mu_{n,-}$ -null. Set

$$P := \bigcup_{n \in \mathbb{N}} [P_n \cap X_n], N := \bigcup_{n \in \mathbb{N}} [N_n \cap X_n],$$

and note that for all $n \in \mathbb{N}$, we have

$$(P_n \cap X_n) \cup (N_n \cap X_n) = X_n \cap (P_n \cup N_n) = X_n \cap X = X_n,$$

$$(P_n \cap X_n) \cap (N_n \cap X_n) = X_n \cap (P_n \cap N_n) = \emptyset,$$

hence

$$P \cup N = \bigcup_{n \in \mathbb{N}} [(P_n \cap X_n) \cup (N_n \cap X_n)]$$

$$= \bigcup_{n \in \mathbb{N}} [(P_n \cup N_n) \cap X_n]$$

$$= \bigcup_{n \in \mathbb{N}} [X \cap X_n]$$

$$= \bigcup_{n \in \mathbb{N}} X_n$$

$$= X,$$

$$P \cap N = \bigcup_{m,n \in \mathbb{N}} [(P_m \cap X_m) \cap (N_n \cap X_n)]$$

$$= \bigcup_{m \neq n \in \mathbb{N}} [P_m \cap N_n \cap (X_m \cap X_n)] \cup \bigcup_{n \in \mathbb{N}} [X_n \cap (P_n \cap N_n)]$$

$$= \bigcup_{m \neq n \in \mathbb{N}} [P_m \cap N_n \cap \emptyset] \cup \bigcup_{n \in \mathbb{N}} [X_n \cap \emptyset]$$

$$= \emptyset,$$

and by (3.3.11) we have

$$\mu_{+}(N) = \sum_{n=1}^{\infty} \mu_{+}(N_n \cap X_n) = \sum_{n=1}^{\infty} \mu_{n,+}(N_n) = 0,$$

$$\mu_{-}(P) = \sum_{n=1}^{\infty} \mu_{+}(P_n \cap X_n) = \sum_{n=1}^{\infty} \mu_{n,+}(P_n) = 0,$$

and our conclusion that P, N form a Hahn-decomposition has been reached, finishing Case 2.

Next, to show uniqueness of μ extending μ_0 , as well as the Jordan Decomposition μ_- , μ_+ , note that **Lemma 3.3.3** shows that the extension μ of μ_0 (in this case where μ_0 is finite) is uniquely determined. Then given a Jordan Decomposition μ^+ , μ^- of μ , we choose a Hahn Decomposition P', N' of μ^+ , μ^- and observe that

$$\mu^+ = \mu((-) \cap P'), \ \mu^- = \mu((-) \cap N').$$
 (3.3.13)

Next, since for all $E \subset X$, we have

$$\{\mu_0(A): A \in \mathcal{F}, A \subset E\} \subset \{\mu(F): F \in \mathcal{M}, F \subset E\},\$$

by (3.2.1) and Proposition 3.1.4 (iii) that since

$$\mu_{+}(N') = (\mu_{0})^{+}(N') = \sup\{\mu_{0}(A) : A \in \mathcal{A}, A \subset N'\}$$

 $\leq \sup\{\mu(F) : F \in \sigma(\mathcal{A}), F \subset N'\} = \mu^{+}(N') = 0,$

$$\mu_{-}(P') = (\mu_{0})^{-}(P') = -\inf\{\mu_{0}(A) : A \in \mathcal{A}, A \subset E\}$$

$$\leq -\inf\{\mu(F) : F \in \sigma(\mathcal{A}), F \subset P'\} = \mu^{-}(P') = 0,$$

we conclude by (3.3.13) that for every $E \in \sigma(\mathcal{A})$, we have

$$\mu_{-}(E \cap P') \le \mu_{-}(P') = 0,$$

 $\mu_{+}(E \cap N') \le \mu_{+}(N') = 0,$

$$\implies \mu_+(E) = \mu_+(E \cap P') + \mu_+(E \cap N') = \mu_+(E \cap P') + 0 = \mu_+(E \cap P') + \mu_-(E \cap P') = \mu(E \cap P')$$
$$= \mu^+(E),$$

$$\mu_{-}(E) = \mu_{-}(E \cap P') + \mu_{-}(E \cap N') = 0 + \mu_{-}(E \cap N') = \mu_{+}(E \cap P') + \mu_{-}(E \cap P') = \mu(E \cap P')$$
$$= \mu^{-}(E),$$

and our conclusion is met.

Finally, show that (3.3.1) holds, note from showing that μ_+ , μ_- is in fact the Jordan Decomposition of μ , with P,N (as before) defined to be the Hahn decompomposition of μ_+ , μ_- , we have shown that $|\mu|=\mu_++\mu_-$, and it remains to show that $|\mu|=\mu_{tot.}$. First, observe by **Proposition 3.1.4** (iii) that for all $E\in\mathcal{M}$, we have

$$\mu_{tot.}(E) = \left\{ \sum_{j=1}^{N} |\mu_0(A_j)| : A_1, \dots, A_N \in \mathcal{A} \text{ are disjoint and } \bigcup_{j=1}^{N} A_j \subset E \right\}$$

$$\leq \sup \left\{ \sum_{j=1}^{n} |\mu(E_j)| : E_1, \dots, E_n \in \mathcal{M} \text{ are disjoint and } \bigcup_{j=1}^{n} E_j \subset E \right\}$$

$$= |\mu|(E),$$

so $|\mu| \leq \mu_{tot.}$. Next, we find that since P, N are disjoint, we have

$$\begin{split} &\{\mu_0(A_1) - \mu_0(A_2) : A_1, A_2 \in \mathcal{R}, A_1 \subset A \cap P, A_2 \subset E \cap N\} \\ &\subset \{|\mu_0(A_1)| + |\mu_0(A_2)| : A_1, A_2 \in \mathcal{R}, A_1 \subset A \cap P, A_2 \subset E \cap N\} \\ &\subset \left\{\sum_{j=1}^N |\mu_0(A_j)| : A_1, \ldots, A_N \in \mathcal{R} \text{ are disjoint and } \bigcup_{j=1}^N A_j \subset A\right\}, \end{split}$$

and since N is μ_+ -null and P is μ_- -null, find that for all $E \in \mathcal{M}$, we have

$$\begin{split} |\mu|(E) &= \mu_{+}(E) + \mu_{-}(E) \\ &= \mu_{+}(E \cap P) + \mu_{+}(E \cap N) + \mu_{-}(E \cap P) + \mu_{-}(E \cap N) \\ &= \mu_{+}(E \cap P) + \mu_{-}(E \cap N) \\ &= \sup\{\mu_{0}(A_{1}) - \mu_{0}(A_{2}) : A_{1}, A_{2} \in \mathcal{F}, A_{1} \subset A \cap P, A_{2} \subset E \cap N\} \\ &\leq \sup\{|\mu_{0}(A_{1})| + |\mu_{0}(A_{2})| : A_{1}, A_{2} \in \mathcal{F}, A_{1} \subset A \cap P, A_{2} \subset E \cap N\} \\ &\leq \sup\left\{\sum_{j=1}^{N} |\mu_{0}(A_{j})| : A_{1}, \dots, A_{N} \in \mathcal{F} \text{ are disjoint and } \bigcup_{j=1}^{N} A_{j} \subset E\right\} \\ &= \mu_{tot.}(E), \end{split}$$

showing that $|\mu| \geq \mu_{tot.}$, and our conclusion of $|\mu| = \mu_{tot.}$ is met. \Box

3.4 The Caratheodory Extension for \mathbb{C} -valued Premeasures

%SHOW THIS IN THE NEXT DRAFT
%SHOW THAT ONE CAN FORM AN ANALOGOUS EXTENSION FOR ℂ-VALUED
MEASURES

3.5 Single Dimension Outer Signed Measures

%SHOW THIS IN THE NEXT DRAFT
%CONSIDER MOVING THIS SECTION TO THE FIRST PART
%TALK ABOUT WHY YOU CAN'T DO SUCH AN EXTENSION WITH OUTER SIGNED
MEASURES

%FORMAT BELOW PARTS WHEN READY
%PUT LAST CHAPTER ON HOLD UNTIL THE NEXT DRAFT.

4. The Cartheodory Extension for Vector-Valued Measures

4.1 Definitions and Properties of Vector-Valued Measures

%START WRITING IN NEXT DRAFT

4.2 Vector-Valued Premeasure Definition and Examples

%START WRITING IN NEXT DRAFT

4.3 The Cartheodory Extension in the Vector Valued Case

%START WRITING IN NEXT DRAFT

5. Conclusion