Kapitel DB:II

II. Konzeptueller Datenbankentwurf

- Entwurfsprozess
- Datenbankmodelle
- □ Einführung in das Entity-Relationship-Modell
- ER-Konzepte und ihre Semantik
- Charakterisierung von Beziehungstypen
- □ Weitere ER-Konzepte
- □ Konsolidierung, Sichtenintegration
- □ Konzeptuelle Modellierung mit UML

ANSI/SPARC-Schema-Architektur

"Usually, a representational [= implementational, logical] data model is used to describe the conceptual schema when a database system is implemented. This implementation conceptual schema is often based on a conceptual schema design in a high-level data model."

[p.37 Elmasri/Navathe 2015]

Bemerkungen zu [p.30 Elmasri/Navathe 2010]:

- Aussage 1: In einem Datenbanksystem wird das konzeptuelle Schema oft durch ein implementierungsnahes Datenmodell wie dem relationalen Datenmodell beschrieben.
- Aussage 2: Im Entwurfsprozess entsteht dieses implementierungsnahe Datenmodell auf Grundlage eines semantisch reicheren Modells wie dem ER-Modell oder UML.
- Idealerweise sollte eine Datenbankbeschreibung jedoch direkt auf dem semantisch reicheren Modell beruhen, ohne dass eine (manuelle) Transformation in ein implementierungsnahes Datenmodell erfolgen muss.

ANSI/SPARC-Schema-Architektur: Entwurfspraxis

high-level data model (semantisch reichhaltig)

ANSI/SPARC-Schema-Architektur: Entwurfspraxis

ANSI/SPARC-Schema-Architektur: Entwurfspraxis

ANSI/SPARC-Schema-Architektur: Entwurfspraxis

DB:II-7 Konzeptueller Datenbankentwurf ©STEIN 2021

Zentrale Anforderung an den Entwurfsprozess ist die Informationserhaltung:

- → Erhaltung der Fakten
- → Erhaltung der Beziehungen zwischen den Fakten

Weitere, zum Teil informelle Gütekriterien:

- Redundanzfreiheit
- Vollständigkeit bzgl. der Anforderungsanalyse
- Konsistenz der Beschreibung
- Ausdrucksstärke und Verständlichkeit des benutzten Formalismus
- formale Semantik
- Lesbarkeit der Dokumente
- Unterstützung von Erweiterbarkeit, Modularisierung, Wiederverwendbarkeit, Werkzeugeinsatz

- Die Informationserhaltung bezieht sich auf die Transformation der Modelle ausgehend von der Anforderungsanalyse hin zur Implementierung:
 - 1. Die Erhaltung der Fakten fordert, dass alle gewünschten Eigenschaften der Objekte des Weltausschnitts auf jeder Abstraktionsstufe vorhanden sind.
 - 2. Die Erhaltung der Beziehungen fordert, dass alle gewünschten Regeln und Einschränkungen (Constraints) des Weltausschnitts auf jeder Abstraktionsstufe abbildbar sind.

Phasenmodell des Datenbankentwurfs

Phasenmodell des Datenbankentwurfs

Phasenmodell des Datenbankentwurfs

- □ Verschiedene Phasen dieses Modells lassen sich weiter aufschlüsseln. Beispielsweise gliedern [Heuer/Saake 2018] den konzeptuellen Entwurf noch in einen Sichtenentwurf, eine Sichtenanalyse und eine Sichtenintegration.
- Sollen die Daten auf mehreren Rechnern *verteilt* vorliegen, muss Art und Weise der verteilten Speicherung festgelegt werden. Dies geschieht im sogenannten Verteilungsentwurf, einer Entwurfsphase zwischen konzeptuellem und logischen Entwurf.

Phasenmodell: Anforderungsanalyse

Ziel:

Sammlung des Informationsbedarfs in den verschiedenen Abteilungen bzw. Benutzergruppen.

Ergebnis:

 informelle Beschreibung des Problems bzw. der Aufgabenstellung (User Stories, Use-Cases, Texte, tabellarische Aufstellungen, Formblätter, Maskenentwürfe, etc.)

[Use-Case-Diagramm: uml-diagrams.org, Wikipedia]

□ Trennen der Informationen über Daten (Datenanalyse) von den Informationen über Funktionen (Funktionsanalyse)

☐ Im klassischen Datenbankentwurf wird nur die Datenanalyse einschließlich ihrer Folgeschritte behandelt; die Funktionsanalyse wird weitgehend ignoriert. Mittelfristig wird sich eine integrierte objektorientierte Betrachtung von Daten und Funktionen durchsetzen.

Phasenmodell: konzeptueller Entwurf

Ziel:

Formale, semantisch reichhaltige Beschreibung der Aufgabenstellung (der zu speichernden Daten) in einem abstrakten ("high-level") <u>Datenmodell</u>. Hierfür wird das Entity-Relationship-Modell am häufigsten eingesetzt.

Vorgehensweise:

- 1. Modellierung von Sichten (z.B. einer Abteilung oder Benutzergruppe)
- 2. Analyse der vorliegenden Sichten hinsichtlich von Konflikten:
 - □ Namenskonflikt: Homonyme, Synonyme
 - □ Typkonflikt: verschiedene Strukturen für das gleiche Konzept
 - □ Wertebereichskonflikt: keine Vereinheitlichung möglich
 - □ Bedingungskonflikt: verschiedene Sichten fordern eigene Integritätsbedingungen
 - Modellierungskonflikt: gleicher Sachverhalt ist unterschiedlich modelliert
- 3. Integration der Sichten in ein Gesamtschema bzw. ER-Diagramm

- □ Ein Homonym ist ein Begriff, der für mehrere Konzepte steht. Beispiel: Jaguar
- Synonyme sind verschiedene Begriffe für dasselbe Konzept. Beispiel: {Haus, Gebäude}
- □ Beispiel für einen Typkonflikt: eine Patientin hat aus Sicht der Krankenkasse andere Eigenschaften als aus Sicht einer Ärztin.
- □ Beispiele für einen Bedingungskonflikt: verschiedene Schlüssel wurden (von verschiedenen Benutzergruppen) für dieselbe Menge von Objekten vorgesehen.

Phasenmodell: Verteilungsentwurf

Ziel:

Festlegung von Art und Weise einer verteilten Speicherung.

Beispiel:

Kunde (KdNr, Name, Adresse, PLZ, Kontostand)

horizontale Verteilung:

vertikale Verteilung:

```
Kunde_adr(KdNr, Name, Adresse, PLZ)
Kunde_kto(KdNr, Kontostand)
```

Zusammenhang kann über das Attribut KdNr hergestellt werden.

Phasenmodell: logischer Entwurf

Ziel:

Umsetzung des konzeptuellen Entwurfs in das Datenmodell des Realisierungs-DBMS, zur Zeit meist das relationale Modell.

Vorgehensweise:

- 1. teilweise automatische Transformation des konzeptuellen Schemas, z.B. des Entity-Relationship-Modells in das relationale Modell
- 2. Verbesserung des relationalen Schemas anhand von Gütekriterien durch entsprechende Normalisierungsalgorithmen. Stichwort: Normalformen

Ergebnis:

Ein logisches (relationales) Datenbankschema, das Datenredundanzen "weitgehend" vermeidet und die Konsistenzbedingungen des Entity-Relationship-Modells "weitgehend" erhält.

Phasenmodell: physischer Entwurf

Ziel:

Effizienzsteigerung ohne die logische Struktur der Daten zu verändern.

Konzepte:

"Tuning" der Abbildung der Relationen auf den Sekundärspeicher:

- Definition von Indexstrukturen, die direkten (assoziativen) Zugriff auf alle Tupel einer Relation mit bestimmten Attributwerten erlauben.
- Clusteranalyse zur Gruppierung von Daten im Sekundärspeicher, so dass zusammen benötigte Daten auf denselben Seiten liegen. Typisch insbesondere bei objektorientierten DBMS.

Bemerkungen [Schuerr 2001]:

- Kritik an dieser Vorgehensweise aus Sicht der Softwaretechnik:
 - es handelt sich um das überholte Wasserfallmodell der Softwaretechnik
 - Rückgriffe von einer Phase zu vorgehenden Phasen fehlen
 - Testaktivitäten sind nicht explizit aufgeführt
 - eine Wartung mit Aktivitäten aus allen Phasen ist unstrukturiert
 - inkrementelle bzw. schrittweise Realisierung eines DBS wird nicht unterstützt
 - Modellierung von Funktionen bleibt nahezu unberücksichtigt
 - Verzahnung mit Entwicklung sonstiger Teile eines Informationssystems fehlen
- □ Alternative Vorgehensweise:
 - objektorientierter Entwurf für das gesamte Informationssystem
 - Abbildung von Klassendiagrammen (statt ER-Diagrammen) auf Relationen
 - Verwendung moderner(er) Vorgehensmodelle der Softwaretechnik

Definition 1 (Datenmodell)

Datenmodelle dienen zur Erfassung und Darstellung der Informationsstruktur für eine Anwendung oder einen Anwendungsbereich.

Definition 1 (Datenmodell)

Datenmodelle dienen zur Erfassung und Darstellung der Informationsstruktur für eine Anwendung oder einen Anwendungsbereich.

Beispiele:

- Typsysteme in Programmiersprachen
- Formalismen zur Wissensrepräsentation in Expertensystemen (Frames, Regeln, logische Formeln)
- Repräsentationsmodelle in Graphiksystemen (BRep, CSG)
- SPO-Tripel im Resource Description Framework des Semantic Web
- Datenbankmodelle in Datenbanksystemen
 (hierarchisches Modell, Relationenmodell, Entity-Relationship-Modell)

Datenbankmodell = Datenmodell für Datenbanksysteme

Definition 2 (Datenbankmodell, Datenbankschema [Heuer/Saake 2018])

Ein Datenbankmodell ist ein System von Konzepten zur Beschreibung von Datenbanken. Es legt Syntax und Semantik von Datenbankbeschreibungen für ein Datenbanksystem fest.

Eine konkrete Datenbankbeschreibung wird Datenbankschema genannt.

Definition 2 (Datenbankmodell, Datenbankschema [Heuer/Saake 2018])

Ein Datenbankmodell ist ein System von Konzepten zur Beschreibung von Datenbanken. Es legt Syntax und Semantik von Datenbankbeschreibungen für ein Datenbanksystem fest.

Eine konkrete Datenbankbeschreibung wird Datenbankschema genannt.

Gegenüberstellung mit Programmiersprachen:

Datenbank	Programmiersprache
Datenbankmodell Relation, Attribut,	Typsystem class, int, String,
Datenbankschema Kunde (KdNr, Name,)	<pre>Variablendeklaration class Kunde{int KdNr; String Name;}</pre>
Datenbank, DB (2305, "Meier",)	Werte 2305, "Meier"
Datenbankmanagementsystem DBMS	Entwicklungs- und Laufzeitumgebung
Datenbanksystem DBS = DB + DBMS	Programm zur Laufzeit

Historie

Datenbankschema

Das Datenbankschema einer Datenbank definiert für eine Anwendung:

1. statische Eigenschaften

- (a) identifizierbare Objekte (Basisdatentypen)
- (b) Beziehungen zwischen Objekten
- (c) Attribute von Objekten und Beziehungen

2. dynamische Eigenschaften

- (a) Operationen auf Daten
- (b) Abfolge und Koordination von Operationen

3. Integritätsbedingungen

- (a) an Objekte
- (b) an Operationen

- Beispiel für eine statische Eigenschaft: Sportlerinnen haben eine Nationalität.
- □ Beispiel für eine dynamische Eigenschaft: Ein Auto muss zugelassen werden, bevor man es fahren darf.
- Beispiel für eine Integritätsbedingung für Objekte: Studierende haben unterschiedliche Matrikelnummern. (Schlüsselbedingung)
- □ Beispiel für eine Integritätsbedingung für Operationen: Bei einer Gehaltsänderung darf das Gehalt nur steigen. (Übergangsbedingung)

DB:II-28 Konzeptueller Datenbankentwurf ©STEIN 2021

Datenbankzustand

Ein Datenbankzustand ist der zu einem Zeitpunkt t gültige bzw. gespeicherte Zustand aller Objekte und ihren Beziehungen und muss den im Datenbankschema festgelegten Strukturbeschreibungen gehorchen.

- □ Typischerweise ändert sich ein Datenbank*schema* selten; der Datenbank*zustand* ist Gegenstand laufender Modifikationen. Beispiel Flugbuchungssystem: Jede Reservierung entspricht einer Änderung des Datenbankzustands.
- □ Ein Datenbanksystem kann als kontinuierlich laufender Prozess aufgefasst werden, dessen jeweils aktueller Zustand *state* den Inhalt der Datenbank (Datenbasis) festlegt. Eine formale Definition der Semantik dieses Prozesses lässt sich durch eine lineare Folge von Zuständen modellieren, wobei die Zustandsübergänge den Änderungen der Datenbankinhalte entsprechen.