Generative Artificial Intelligence

Module Two: Generative and Discriminative ML

Discriminative AI

- Traditional ML and Deep Learning are discriminative
- That means that they are trained on data to do one of two things
- Make decisions
 - Classify data into categories (or make predictions)
 - The model discriminates between possible choices
 - Often used to re-engineer a logical process that was once used but is no longer available
 - Or to emulate the result of a process that cannot be represented logically
 - Eg. Replicate a banker's successful "gut feeling" for credit risk
 - Often experts make good decisions but they can't describe what they do so we emulate it with machine learning
 - But we need to select the features of parameters to use to make the decision

Discriminative AI

- Find relationships among data data points
 - Clustering data find data that is near to each other using some measure of nearness
 - We have to determine which features will result in a useful clustering
 - The clustering is often a basis for making decisions

Discriminative Probability Models

Traditional ML produce probability distributions

- However they lack context
- Probability of classification is taken as a measure of certainty but this is limited to the probability distribution produces on the basis of the training data
- It doesn't take into account the center of mass of the probability distribution in context
- A data point may be in one class based on the model but be quite different from the other members of the class (ie. the classification is spurious)
- We might catch this mistake if we understood the probability distribution of the whole space across all the features.

Example

- Chairs might be classified in a distribution of furniture features based on appearance, size, the presence of a seat and other factors
- A hologram of chair would be misclassified as a chair because it differs on other features

Discriminative Probability Models

- In the image below the X would be classified as blue
 - But it is distant from both of the centers of mass of classifications
 - This fact should increase the uncertainty of classifying it as blue

Regression

- The blue dots are measurements
 - There appears to be a linear relation among the points
 - If it were an exact linear relationship, no need for ML
 - The line is our model that predicts the y value given an an x value
- ML regression algorithm is intended to find which line that is the best fit to the data
 - What "best fit" means will be defined later

Correlation

Correlation describes an association between variables

- When one variable changes, so does the other
- Correlation is a an observed relationship between variables
- When variables change together, they are said to exhibit "co-variance"
- Co-variance does **not** imply any underlying relationship between the variables

Correlation is strictly observational

- The ML regressor-predictor hypothesis is a description of the relationship between variables that co-vary
- Our co-variant ML model has predictive value and but has no explanatory power
- We may have no idea why our variables are co-variant, but we can still measure the relationship

Causation

- Implies a cause and effect relationship
 - Changes in the independent variable *always* produce changes in the dependent variable
 - Causation always implies correlation
 - There may be a proposed explanation as to what the causation mechanism is
- We cannot infer causation from correlation
 - The variables may both be influenced by a confounding third variable
 - Heat stroke and ice cream sales may be correlated
 - But they are both affected independently by the outdoor temperature
 - Temperature affects both ice cream sales and the number of cases of heat stroke independently
 - To assume ice cream sales cause heat stroke is not a valid hypothesis
 - Also called a Type I error or a false positive or failing to reject the null hypothesis

Type I and II Errors

Spurious Correlations

Feature Engineering

- Features or parameters are the properties of our data points
- Feature engineering is selecting and modifying features
 - There are potentially an infinite number of features
 - In ML we have to select only a few to build a model on
- We can also think of each possible feature as a clustering of the data points
 - The problem of feature extraction and selection is a significant one
 - It directly impacts the usability and reality of the model we create
- If we have a large enough training set and enough features
 - We have probability distributions for all the features over data that closely resembles the population from which it is drawn

Generative Al

- Assuming we have a large enough training set and enough features
 - Each data point maps to a very large feature vector, maybe billions of features
 - Assume the data points have labels
 - Then we can generate a new data point from a set of features that are similar to other data points with that label

Synthetic data

- The use of GAI to create new data points that are similar to existing data points, x-rays of cancer tumors for example, is called synthetic data
- Very useful for training models when not enough training data exists

People that Don't Exist

 GAI can produce faces of people that don't exist by generating them from the model

Generative Al

This allows for predictive capabilities

- Given enough data in an input structure (often a sequence like a string of word) it allows for prediction of what comes next
- This can also be used to generate text string or other sequences

Transformational capabilities

- Given two different types of data (images of faces and paintings by Picasso) it is possible to create a new data point with features common to both
- "Your selfie as if it was painted by Picasso"
- Create a photo of George Washington drinking wine

Domain Transfer

Converting depictions of historical people to photographs

Generative Al

- We pointed out earlier that generative AI required three things to happen
 - Access to enough data to build really big models on petabytes of data and billions of features
 - Enough compute power to train the models
 - A theoretical approach that enables us to build the models
- The rest of this module will focus on the theory that enables generative AI
 - GAI builds on Neural Networks
 - Nns build on traditional ML
 - Details on specific traditional ML techniques are provided in the ancillary materials

Artificial Neural Networks (ANN)

- ANNs are at the core of Deep Learning
 - Powerful, scalable and can solve complex problems like classifying billions of images (Google Images)
- ANNs were inspired by neurons in human brain
 - Original theoretical formulation was in the 1940s
 - First working models in the 1960s
 - Very limited in power and could not simulate actual neurons
- But early work provided an architectural model for ML
 - No longer intended to simulate human neurons

History of ANN

- 1943: McCulloch Pitts Neural model
- 1962: Frank Rosenblatt invented the Perceptron:
- 1969: Marvin Minsky's paper killed interest in ANNs.
 - He demonstrated the ANNs can't solve a simple XOR problem
- 1970s: No work on ANNs first Al winter
- 1980s: Some revival in ANNs (new models + training techniques)
- 1986: Rumelhart introduce the backpropagation training algorithm.
- 1990s: Second AI winter (Methods like SVMs were producing better results)
 - Limited by processing power
- 2010s: Huge revival in AI after some promising results

Prototype Neuron Architecture

The Perceptron Model

- Basic architectural model for a neural net
 - Simplest type of a Feed Forward neural network
- Efficient classifier on linearly separable data
 - Linearly separable means a hyperplane can be drawn that totally divides the data into the label classes
 - Stochastic classifiers perform better on non-linearly separable data

The Perceptron Model

The Perceptron Model

- For each input x_i is assigned a weight w_i
 - The net input function produces a single computation from all the inputs
 - The activation function maps the computation to a category
 - Activation functions are often a step function

$$y_k = arphi \left(\sum_{j=0}^m w_{kj} x_j
ight)$$

The Perceptron Algorithm

- An arbitrary set of weights is selected
 - The error of for each input is calculated and the weights adjusted if the point is miss-classified
 - This process is repeated a number of times
 - Eventually the weights will converge to an optimal solution
 - But only for linearly separable data

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}.$$

Intuitive Analogy

- A dev team is hiring a new programmer based on
 - Code inspections of previous work
 - Evaluation of previous performance reviews
 - Results of an in person performance test
- The hiring decision is a classifier based on some weighted combination of these three inputs
 - But each of these inputs is a the result of a weighted evaluation of raw data
 - Some performance reviews are weighted higher than others for example
 - Some previous work is weighted differently depending on the programming language

Feed Forward Neural Networks

- Also known as Multi-Layer Perceptrons (MLP) or Deep Feedforward Neural Networks (DFNN)
- Feedforward Network Design
 - There are multiple layers
 - Each layer has many neurons (previously called perceptrons)
 - Each neuron is connected to neurons on previous layer
 - Information flows through ONE-WAY (no feedback loop)
 - Composed of: Input, Output and Middle (Hidden) layers
 - Nets with more than one hidden layer are called deep neural nets

Feed Forward Neural Networks

Hidden Layers

- Hidden Layers allow us to solve the "XOR" and related problems by creating a nonlinear decision boundary
- How Many hidden layers?
 - Many nonlinear problems solvable with one hidden layer
 - Multiple hidden layers allow for more complex decision boundaries
- One Hidden Layer can be enough
 - It has been proven that any function can be represented by a sufficiently large neural network with one hidden layer
 - Training that network may be difficult
 - Modern training methods mean that more than one layer is required in many cases.
- Each layer can be thought of as a step in solving the problem
 - Although we don't know what is being done at each step, at least in general
 - That is being decided by the NN when it is being trained

Trivial XOR Example

How Hidden Layers Work

- In the XOR example we had two linear classifies in the hidden layer
 - Each of the classifiers solved part of the classification problem
 - The hidden layer produced two classifier results
- The final step produced a classifier which was a linear combination of the two classifier results from the hidden layer
- In deep learning, each hidden layer takes the outputs of classifiers from the previous layer and produces a combination of those inputs
 - This can be thought of as a linear combination of linear combinations of the original inputs

Intuitive Analogy

- A dev team is hiring a new programmer based on
 - Code inspections of previous work
 - Evaluation of previous performance reviews
 - Results of an in person performance test
- The hiring decision is a classifier based on some weighted combination of these three inputs
 - But each of these inputs is a the result of a weighted evaluation of raw data
 - Some performance reviews are weighted higher than others for example
 - Some previous work is weighted differently depending on the programming language

Intuitive Analogy

- To represent this a neural net
 - The input layer has three neurons representing each of the three evaluation criteria
 - The hidden layer can be thought of as a set of judges, each of which is evaluating one input
 - Each judge is a classifier
 - There can be an arbitrary number of judges
 - The output layer is the hiring decision based on a weighted input of each judge's decision to produce final classification

The Neuron

- Each node can be represented as a linear combination inputs and an activation function
 - Training the network is choosing the optimal weights for all the layers though some sort of iterative process

The Neuron

 To get successful training, the activation functions are generally nonlinear

Example Handwritten Digit Recognition

- How to identify handwritten digits with a neural an intuitive explanation
 - We are just emulating a NN, not claiming this is exactly what an NN does

Example Handwritten Digit Recognition

- We assume each input is an image
 - Each pixel of the image represents one input
- The first layer can be thought of as identifying features
 - Does the image contain a horizontal line?
 - Does the image have a circle in it?
 - Think of each neuron identifying one feature
- The second layer then makes a decision based on the features
 - If we get a horizontal line in the upper part of the image and a vertical line attached at the right side then we probably have a seven... or maybe a one

Example Handwritten Digit Recognition

- Input layer sizing
 - Match input dimensions: 784 = 28 x 28 pixels
- Output layer sizing
 - One neuron per output class 10 (one for each digit; 0, 1, ..8,9)
- Hidden layer sizing is flexible

Possible NN Architecture

Several Different Possible NN Architectures

Caveat

- We don't really know what each layer is doing
 - This is not AI, this is ML
 - The neural network does not actually emulate how you recognize a handwritten digit
- The intuitive explanation we gave might be similar to what really happens
- But probably not

Sizing Neural Nets

- Input Layer
 - Size: Equal to Number of Input Dimensions plus bias term
- Hidden Layer(s)
 - Size depends on training sample, input features, outputs
- Output Layer
 - Regression: 1 single neuron (continuous output)
 - Binary Classification: 1 single neuron (binary output)
 - Multi-class Classification: 1 node per class label

Learning with Neural Nets

- So far, we have only looked at feed forward nets
 - For a given set of weights at each layer we get a prediction for each data point
 - But we also have a label for that point
 - So we can create a cost function in a number of standard ways
 - For example, the average of the sum of the squares of the difference between the prediction and label
- This now gives a cost function that can be minimized to find the best set of weights in the neural nets
 - We saw this before with gradient descent

Back Propagation Algorithm

- The back propagation algorithm can be intuitively explained in a two hidden layer neural net by:
 - Find the weights necessary for the inputs to the second layer to minimize the error on the output
 - This is our optimal set of weights for the second layer
 - We will use a loss function like gradient descent
 - Then go backwards and find the weights necessary for the inputs to the first layer that will produce the optimal inputs for the second layer
- We repeat this for all the layers we have in the neural net
 - This is a single training iteration
 - We do as many more iterations as necessary

Back Propagation Algorithm

Back Propagation Algorithm

- Once we have the amount we want to change each parameter by for each data point, we can use gradient descent to improve the net
- This can be incredibly computationally intensive
 - We will often use smaller batches of data to get approximations
 - This is stochastic gradient descent
 - It will also eventually converge like gradient descent
 - But each step may not be optimal

Convolutional Neural Nets (CNNs)

- Used in image processing
- Imagine a small patch being slid across the input image
 - This sliding is called convolving
 - Similar to a flashlight moving from the top left end progressively scanning the entire image
 - This patch is called the filter/kernel
 - The area under the filter is the receptive field
- The idea is to detect local features in a smaller section of the input space, section by section to eventually cover the entire image

Convolutional Neural Nets (CNNs)

- CNNs are a sequence of layers:
 - Input layer
 - Convolutional Layer
 - ReLU (Rectified Linear Unit) Activation
 - Pooling Layer
 - Fully Connected Layer(s)
- We usually have more than one sequence of layers

Convolutional Neural Nets (CNNs)

Recurrent Neural Nets (RNNs)

A problem with Feedforward Neural Networks

- Feedforward Neural Networks can model any relationship between input and output.
- However they can't keep/remember state
- The only state retained is weight values from training.
- They don't remember previous input!
- In Feedforward Networks, data flows one way, it has no state or memory
- RNNs have a 'loop back' mechanism to pass the current state to the next iteration

In many problems, like language processing

- What was processed before has an impact on what is being processed now
- For example, the meaning of a word in a sentence depends on the words preceding it

Recurrent Neural Nets (RNNs)

Long short-term memory

- An improvement on RNN
 - Has a memory cell in addition to neurons
 - Remembers what is important not just what it did last

Reaching the Limits

- All the NNs we have looked at so far have been supervised machine learning
 - This is the bottleneck in scaling up ML models
 - We have the compute power
 - We have the data thanks to big data
 - But the existing models did not scale
- Two significant problems
 - It becomes prohibitive to label data for training
 - Feature engineering become a major stumbling block

Self Supervised Learning

- An extension of unsupervised learning
- Similar to how people learn
- In self supervised learning
 - The model is not trained using external labels
 - The model generates labels and features from the data
 - These are then used to make predictions
 - How good the predictions are is based on recovery error rate or how well the model can predict patterns in the original data

SSL for Text

- Two strategies commonly used are
- MaskedLM
 - Some words are are masked out of an input sentence
 - The model is trained to predict the missing words and train the language model to predict these hidden words
 - Used in in techniques like word2vec
- Next Sentence Prediction
 - Model takes as input a pair of sentences and learns their relationship
 - Predicts if the second sentence comes after the first sentence for example

SSL for Text

SSL for Images

- Image inpainting
 - Various parts of an image are masked out
 - The model tries to reconstruct the missing pixels in context

SSL for Images

- Colorization
 - Tasked with coloring an image that has been greyscaled
 - Often captures important semantic information

SSL for Images

- Denoiseing
 - Model learns to recover an image from a corrupted or distorted version

Autoencoders

- Self supervised learning but focusing on features
- The encoder learns two things
 - A encoding function that maps a data point to an encoded representation
 - A decoder that reconstructs a data point from an encoded representation
- The objective is to learn an efficient feature representation
 - Learning takes place my minimizing the reconstruction loss or how different the reconstructed data is from the original data
- The reason for using an autoencoder is to understand only the deep correlations and relationships among the data
 - We do this by forcing dimensionality reduction to force the decoder to actually have to reconstruct the data
 - Otherwise, the trivial autoencoder would just return the original data point unmodified

Autoencoders

Uses a bottleneck layer

- Has a lower number of nodes and the number of nodes in the bottleneck layer also gives the dimension of the encoding of the input
- The representation from the bottleneck layer is called the latent space
- This forces the model to explore relationships among the features exploits the natural structure of the data
- However, it does require that relationships do exist, no encoding can be done if all the features are independent
- Can learn non-linear relationships
- Want it to be sensitive enough to minimize reconstruction loss but not to overfit the data
- We use back propagation to train the encoder

Autoencoders

Denoise Autoencoders

• Uses encoding and decoding to remove noise from an image

Standard Autoencoders

- The features in the latent space are discrete vectors
 - In the example below, the face image is reduced to six features
 - For applications like removing noise, the autoencoder looks at the features defined in the latent space and ignores the noise
 - The autoencoder is not sensitive to small variations in the input

- Standard autoencoders are not good at generating new data
 - They are prone to overfitting which limits the generation of novel data
- Variational encoders replace discrete values with probablility distributions

This changes how the latent features are stored

- Now the decoder samples from the probability distribution for each latent feature
 - Since the sampling is random the generated image is similar to the original but not the same as the original input image
 - The output is a novel generated data item that resembles the original

- To generate new images
 - We only use the decoder
 - Supply a random input representing representing something from the latency space
 - The NN of the decoder then constructs the image from the input
- Example Generate new handwritten digits
 - Define the autoencoder

Encoder architecture

Decoder Architecture

Supplying random inputs to the decoder produces these images

End Module

