Métodos de evaluación en clasificación binaria

En **clasificación binaria** (cuando quieres clasificar ejemplos en dos categorías, como *positivo* vs *negativo*), hay **métodos de evaluación** específicos que miden qué tan bien trabaja el modelo. Los más importantes son:

1. Accuracy (Exactitud)

- **Definición**: Porcentaje de predicciones correctas sobre el total de ejemplos.
- Fórmula:

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

• **Problema:** No es fiable si hay clases desbalanceadas (por ejemplo, 95% negativos).

2. Precision (Precisión)

- Definición: De todas las veces que el modelo predijo positivo, ¿cuántas veces acertó?
- Fórmula: $Precision = \frac{TP}{TP + FP}$
- **Importancia**: Alta precisión es crucial cuando **el costo de un falso positivo es alto**. Ejemplos:
 - En sistemas de detección de spam marcar como spam un correo importante.
 - En detección de fraudes bancarios bloquearle la tarjeta a un cliente honesto.
 - En sistemas de reconocimiento facial en seguridad identificar erróneamente a una persona como sospechosa.

3. Recall (Sensibilidad o Exhaustividad)

- **Definición**: De todos los ejemplos *positivos* reales, ¿cuántos encontró el modelo?
- Fórmula: $\operatorname{Recall} = \frac{TP}{TP + FN}$
- **Importancia**: Alta recall es crucial cuando **es muy costoso perder un positivo**. Ejemplos:
 - En detección de fraudes financieros no detectar a un verdadero fraude.
 - En seguridad informática (detección de malware o intrusiones) no detectar un ataque real.
 - En sistemas de alerta temprana (por ejemplo, incendios forestales, tsunamis, fallas de maquinaria crítica) no emitir una alerta cuando realmente había peligro.

4. F1-Score

• **Definición**: Media armónica entre precisión y recall.

• Fórmula:
$$F1 = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

• Importancia: Útil si quieres un balance entre precisión y recall.

5. ROC Curve y AUC (Área bajo la curva)

- **ROC Curve**: Muestra la relación entre la tasa de verdaderos positivos (TPR) y la tasa de falsos positivos (FPR) a diferentes umbrales de decisión.
- AUC: Área bajo esa curva.
 - 1 = modelo perfecto
 - 0.5 = modelo al azar
 - < 0.5 = peor que azar

6. Matriz de Confusión

• **Descripción**: Una tabla que resume los resultados de las predicciones:

Predicho Positivo Predicho Negativo

Real Positivo TP FN Real Negativo FP TN

• Permite ver exactamente dónde falla el modelo.

7. Otros más avanzados:

- PR Curve (Precision-Recall Curve): Más útil que ROC cuando las clases están muy desbalanceadas.
- Balanced Accuracy: Promedio de recall entre las clases.
- Matthews Correlation Coefficient (MCC): Medida robusta incluso en clases muy desbalanceadas.

¿Qué es una Curva ROC?

La curva ROC (Receiver Operating Characteristic) **muestra** cómo cambian los errores del modelo cuando **ajustas el umbral** de decisión.

En vez de fijar un umbral fijo (por ejemplo, 0.5 para decidir si algo es positivo o negativo), la curva ROC **explora todos los umbrales posibles** (desde 0 a 1) y **grafica**:

- **Eje Y**: **TPR** (*True Positive Rate*) → qué tan bien captas los positivos reales.
- **Eje X**: **FPR** (*False Positive Rate*) → cuántos negativos reales estás confundiendo como positivos.

¿Qué es TPR? (True Positive Rate)

- También llamado Recall o Sensibilidad.
- Mide el **porcentaje de positivos reales que detectas** correctamente.

• Fórmula:
$$TPR = rac{TP}{TP + FN}$$

Interpretación:

Un TPR alto significa que casi todos los positivos verdaderos están siendo capturados.

¿Qué es FPR? (False Positive Rate)

 Mide el porcentaje de negativos reales que el modelo clasifica erróneamente como positivos.

• Fórmula:
$$FPR = rac{FP}{FP + TN}$$

Interpretación:

Un FPR bajo significa que **casi ningún negativo** está siendo confundido como positivo.

Intuición visual:

- **Punto (0,1)** en la curva ROC = **modelo perfecto**: 0% falsos positivos, 100% verdaderos positivos.
- **Diagonal 45°** (de (0,0) a (1,1)) = **modelo al azar**: tan bueno como tirar una moneda.
- Área bajo la curva (AUC ROC) mide la calidad general del modelo.
 - Más cerca de 1 = mejor modelo.

Observa cómo la curva se forma **evaluando distintos umbrales** de decisión sobre las predicciones de probabilidad.

- La línea punteada representa un modelo aleatorio (sin poder de discriminación).
- Nuestra curva real está **por encima** de esa línea, indicando que el modelo es **mejor que el** azar.

Aquí puedes ver cómo **cambian el TPR y el FPR** a medida que variamos el **umbral de decisión** del modelo:

Evolución De TPR Y FPR Según El Umbral

		Threshold	True Positive Rate (TPR)	False Positive Rate (FPR)	
	1	1.9	0.0	0.0	
	2	0.9	0.2	0.0	
	3	0.7	0.8	0.0	
	4	0.4	0.8	0.2	
	5	0.35	1.0	0.2	
	6	0.05	1.0	1.0	

Cuando bajamos el umbral (es decir, somos más permisivos para decir "positivo"), sube el TPR pero también sube el FPR.

En una gráfica ROC:

- Cada punto de la curva corresponde a un umbral diferente.
- Los umbrales no se dibujan explícitamente en la gráfica.
- Lo que ves es cómo el modelo se comporta (en términos de TPR y FPR) a medida que el umbral varía de 1 a 0.
- Cuando el umbral es **muy alto** (por ejemplo, 0.9):
 - Solo predices como "positivo" los casos de altísima probabilidad.
 - TPR es bajo (detectas pocos positivos) y FPR es muy bajo.
- Cuando el umbral es **bajo** (por ejemplo, 0.3):
 - Aceptas muchas predicciones como positivas.
 - TPR es alto (detectas casi todos los positivos), pero también el FPR sube.

Así, **al cambiar el umbral**, se traza la curva moviéndote de la esquina inferior izquierda (0,0) hacia la esquina superior derecha (1,1).

¿Cómo elegir el umbral óptimo?

Depende mucho de **qué te importa más** en tu problema:

1. Si quieres más precisión (menos falsos positivos):

- **Meta**: Cada vez que el modelo diga "positivo", quieres que casi siempre acierte.
- · Acción:
 - **Sube el umbral** (por ejemplo, de 0.5 a 0.7 o 0.8).
 - Así solo etiquetas como positivos los casos con alta confianza.
- Cuándo aplicarlo: Cuando un falso positivo es muy costoso (ej., bloquear tarjetas sin razón).

2. Si quieres más recall (menos falsos negativos):

- Meta: Capturar todos los verdaderos positivos, aunque cometas más errores.
- · Acción:
 - **Baja el umbral** (por ejemplo, de 0.5 a 0.3 o 0.2).
 - Así predices más casos como positivos.
- **Cuándo aplicarlo**: Cuando perder un positivo es muy costoso (ej., no detectar un fraude real).

3. Si quieres un balance entre precisión y recall:

- **Meta**: Buen equilibrio entre no cometer muchos errores y no perder positivos.
- · Acción:
 - Busca el umbral que **maximice el F1-score**.
 - El F1-score es la media armónica de precisión y recall.
- · Método:
 - Puedes calcular el F1-score para distintos umbrales y elegir el máximo.

4. Método gráfico simple para elegir umbral óptimo (ROC):

- Busca el punto más cercano a la esquina superior izquierda (0,1).
- Ese es el punto donde tienes **máximo TPR** y **mínimo FPR** al mismo tiempo.

Esto a veces se llama "maximizar la sensibilidad y especificidad conjunta".

Resumen rápido:

Objetivo	Acción sobre umbral	Qué se optimiza
Minimizar falsos positivos	Subir el umbral	Mayor precisión
Minimizar falsos negativos	Bajar el umbral	Mayor recall
Balancear ambos	Maximizar F1-score	Equilibrio entre precision y recall

Objetivo

Acción sobre umbral

Qué se optimiza

Mejor compromiso ROC **Punto más cercano a (0,1)** Buen TPR y bajo FPR