ECE411: Project Presentation

Huang, Jinghan & Ren, Yuhang

Office: 浙江大学国际校区一号书院3B19 & 2B17

Email address: jinghanhuang@zju.edu.cn

HP: 18161332576 & 13319259198

MP2: Overview

one-level, unified, 2-way set-associative cache

Specifications

- i. 8 lines per way with 8 words (32 bytes) per line
- ii. Write-back policy
- iii. LRU replacement policy
- iv. Read/Write hits take two clock cycles to complete
- v. 4 control states in cache controller

Components

- i. Control unit, which implements the state machine for cache.
- ii. 4B to 32B bus adapter, which selects 32-bit memory from 256 bits according to byte-enable signals.
- iii. Cache datapath, which consists of the following parts:
 - 1. Dirty array, valid array, tag array and data array.
 - 2. LRU array module
 - 3. MUXes

MP2: Cache Control – Mealy State Machine

State	Input	Next state	Signal	
IDLE	read write	HIT_DET	read_data = 1'b1;	
HIT_DET	hit && read	IDLE	cache_resp = 1'b1; update_lru = 1'b1;	
	hit && write IDLE		cache_resp = 1'b1; set_dirty = 1'b1; load_data = 1'b1; update_lru = 1'b1;	
	miss && dirty	STORE	clear_dirty = 1'b1; mem_write = 1'b1; read_data = 1'b1;	
	miss && ~dirty	LOAD	set_valid = 1'b1;	
STORE	mem_resp	LOAD	mem_read = 1'b1;	
	~mem_resp	STORE	mem_write = 1'b1;	
LOAD	mem_resp	IDLE	load_data = 1'b1; load_tag = 1'b1;	
	~mem_resp	LOAD	mem_read = 1'b1;	

Valid Arrays

Data Arrays

Tag Arrays

Dirty Arrays

```
genvar i;
generate begin: arrays
for (i = 0; i < num_ways; i++)
begin: array_loop
    assign tag_hit[i] = (tag == tags[i]);
    assign hits[i] = tag_hit[i] & valids[i];
   array #(s_index, 1) dirty_array
 (.clk,
 .read(1'b1),
     .load((set_dirty | clear_dirty) & ~LRU_array[i]),
 ····index,
 .datain(set_dirty),
   .dataout(dirtys[i])
    );-
```


LRU Array

```
if(LRU_array[0] == 1'b0) =
begin=
    dirty = dirtys[0]; =
    mem_wdata = datas[0]; =
    pmem_waddress = {tags[0], index, 5'b00000}; =
end=
else=
begin=
    dirty = dirtys[1]; =
    mem_wdata = datas[1]; =
    pmem_waddress = {tags[1], index, 5'b000000}; =
end=
```

```
if(load_data) begin=
case(set_dirty)=
1: begin=
mux_data = mem_wdata256;=
write_en[0] = mem_byte_enable256 & {32{hits[0]}};=
write_en[1] = mem_byte_enable256 & {32{hits[1]}};=
end=
0: begin=
mux_data = mem_rdata;=
write_en[0] = {32{1'b1}} & {32{~LRU_array[0]}};=
write_en[1] = {32{1'b1}} & {32{~LRU_array[1]}};=
end=
end=
endcase=
end=
```

MP2: Test Bench & Simulation Results

riscv_mp1test.s

```
riscv_mp1test.s
riscv_mp0test.s:
.section .text-
_start:
    lw x1, threshold \# X1 < -0 \times 80^{-1}
    srli x2, x2, 12-
    srli x3, x3, 12-
    addi x4, x3, 4 # X4 <= X3 + 2-
    bleu x4, x1, loop1 # Branch if last result
    andi x6, x3, 64 \# X6 \iff X3 + 64
    lw x8, good
```


MP2: Test Bench & Simulation Results

mp2_final.s


```
/mp2_tb/dut/cpu/datapath/regfile/data[5]-, /mp2_tb/dut/cpu/datapath/regfile/data[6]-, /mp2_tb/dut/cpu/datapath/regfile/data[7]-,
     delta-
23945000 +1
24005000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   00000190
24095000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   0d900d8f
24155000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   00000198
24245000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   600d600d
24305000 +1
                                              000001a0
                                                                                         52205220
                                                                                                                                   600d600d
24395000 +1
                                                                                         52205220
                                                                                                                                   600d600d
                                              baadbaad
24575000 +1
                                              baadbaad
                                                                                         00000180
                                                                                                                                   600d600d
24665000 +1
24725000 +1
                                              00000188
                                                                                         52205220
                                                                                                                                   600d600d
24815000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   600d600d
24875000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   00000190
24965000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   0d900d8f
25025000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   00000198
25115000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   600d600d
25175000 +1
                                              000001a0
                                                                                         52205220
                                                                                                                                   600d600d
25265000 +1
                                              baadbaad
                                                                                         52205220
                                                                                                                                   600d600d
25445000 +1
                                              baadbaad
                                                                                         00000180
                                                                                                                                   600d600d
25535000 +1
                                              baadbaad
                                                                                         52205220
                                                                                                                                   600d600d
25595000 +1
                                              00000188
                                                                                         52205220
                                                                                                                                   600d600d
25685000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   600d600d
25745000 +1
                                              600d600d
                                                                                         52205220
25835000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   0d900d8f
25895000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   00000198
25985000 +1
                                              600d600d
                                                                                         52205220
                                                                                                                                   600d600d
26135000 +1
```

MP2: Timing Analysis

Stratix IV EP4SGX530NF45C4ES

Slow 950mV 85C	83.56MHz
Slow 950mV 0C	86.33MHz

Slow 950mV 85C Model Fmax Summary				Slow 950mV 0C Model Fmax Summary					
•	< <filter>></filter>				< <filter>></filter>				
	Fmax	Restricted Fmax	Clock Name	Note		Fmax	Restricted Fmax	Clock Name	Note
1	83.56 MHz	83.56 MHz	clk		1	86.33 MHz	86.33 MHz	clk	

MP3: Pipeline Control

Five stage pipeline, passing instruction and pc etc. stage by stage. Generate control word in Decode Stage, and pass on.

MP3 Conflict Handling: Structural Hazard

Transparent register file: An instruction writes into a register in the first half cycle and another instruction can access the same register in the next half cycle.

One possible solution: Latch Registers

MP3 Conflict Handling: Structural Hazard

Use of two separate memories: IMEM and DMEM are implemented as two caches (More on this later)

MP3 Conflict Handling: Data Hazard

MP3 Conflict Handling: Control Hazard

MP3 Memory Hierarchy

- Split L1 Cache
- Arbiter
- Unified L2 Cache

MP3: Memory: D-cache and I-cache

MP3 Optimization: Eviction Write Buffer

MP3 Optimization: Eviction Write Buffer

Eviction Write Buffer

MP3 Optimization: Neural Branch Prediction

Perceptron Model

if
$$\operatorname{sign}(y_{out})
eq t$$
 or $|y_{out}| \le \theta$ then for $i \coloneqq 0$ to n do $w_i \coloneqq w_i + tx_i$ end for end if

Training Algorithm

Perceptron Predictor Block Diagram

MP3 Optimization: Neural Branch Prediction

History Length

Long history lengths can yield more accurate predictions. The best history lengths ranged from 12 to 62, depending on the hardware budget.

Representation of weights.

The weights for the perceptron predictor are signed integers.

Threshold

- The threshold is a parameter used to decide whether the predictor needs more training. The best threshold for a given history length h is always exactly $\theta = \lfloor 1.93h + 14 \rfloor$

MP3 Optimization: Hardware Prefetching - Stream Buffer

