Organización de Computadoras

Clase 11

Temas de Clase

- Almacenamiento óptico.
- Monitores.
- Impresoras.

RAID

- Redundant Array of Independent/Inexpensive Disks
- > 7 niveles propuestos (0 a 6)
- No es una jerarquía
- Conjunto de discos físicos vistos como una sola unidad lógica por el S.O.
- Datos distribuidos en los discos físicos
- Puede usarse capacidad redundante para almacenar información de paridad

RAID 0

- No protegedatos, separa.
- > 2 Discos mín.
- Capacidad
 - 4 de 40GB = 160GB
 - 1 de 40GB y 3 de 60GB = 160GB

- Redundancia
- > 2 Discos mín.
- Capacidad
 - 2 de 40GB = 40GB
 - 1 de 40GB y1 de 60GB =40GB

- Separa
- > Paridad

Capacidad
3 de 80GB
= 160GB

- Separa
- Paridad repartida

Capacidad 3 de 80GB = 160GB

RAID 6

- Separa
- Paridaddoble

Capacidad

4 de 80GB

= 160GB

RAID 0-1

- Separa
- Redundancia
- 4 Discos mínimo

- Capacidad
 - 4 de 40GB = 80GB
 - 1 de 40GB y 3 de 60GB = 80GB

- Basado en CD para audio.
- Policarbonato revestido con capa altamente reflectiva, usualmente aluminio.
- Datos almacenados como 'pits'.
- Lectura por laser reflejado.

Velocidades en CD-ROM

- Audio
- Velocidad lineal constante: 1,2 m/seg
 - 1 Pista en espiral (cerca de 5,6 km de largo)
 - Resultarían 4666 segundos = 77,4 minutos
- Velocidad angular variable: 200 a 530 rpm
- Velocidad de reproducción: 75 sectores/1 segundo
- Otras velocidades se expresan como múltiplo: 24X
 - Representa la máxima velocidad que puede alcanzar

Formato CD-ROM

00	FF x 10	00	Min	Seg	Sector	Modo	Datos	Layered ECC	
	12 bytes Sincron.		4 bytes Identif.			5	2048 bytes	288bytes	
2352 bytes									

- Modo 0= campo Datos en blanco
- Modo 1= 2048 bytes en Datos + corrección de error
- Modo 2= 2336 bytes de datos

Capacidad de un CD-ROM

$$2 \frac{KB}{sec} \times 75 \frac{sec}{seg} \times 60 \frac{seg}{min} \times 74 min =$$

$$= 666000 \text{ KB} \approx 650 \text{ MB}$$

Acceso al CD-ROM

- Dificultoso
- Mover cabeza lectora a una posición cercana
- Establecer la velocidad correcta
- Leer la identificación (dirección)
- Ajustar a la posición requerida

CD-ROM en corte

CD-ROM pros y contras

- Gran capacidad (?)
- Fácil para producción en masa
- Removible
- Robusto
- Caro en pequeñas corridas
- Lento
- Solo lectura

Otros Ópticos

- CD-Recordable
 - WORM
 - Compatible

- > CD-RW
 - Borrable
 - Compatible
 - Costo en disminución

- Digital Video Disk
 - dispositivo para films
 - Sólo películas

- Digital Versatile Disk
 - dispositivo para computadoras
 - Puede leer disco de computadora y disco de video

DVD - Tecnología

Simple lado, simple capa (4,7GB)

- Multi-capa
- Capacidad muy alta
- Toda una película
 - compresión MPEG
- Estandarizado (?)

Simple lado, doble capa (8,5GB)

Doble lado, doble capa (17GB)

Comparando CD - DVD

Specification	CD	DVD
Track Pitch	1600 nanometers	740 nanometers
Minimum Pit Length (single-layer DVD)	830 nanometers	400 nanometers
Minimum Pit Length (double-layer DVD)	830 nanometers	440 nanometers

Diferencia entre Blu-ray y DVD

Parameters

Storage capacity

Laser wavelength

Numerical aperture (NA)

Disc diameter

Disc thickness

Protection layer

Hard coating

Track pitch

Data transfer rate (data)

Data transfer rate (video/audio)

Video resolution (max)

Video bit rate (max)

Video codecs

Audio codecs

Interactivity

Blu-ray

25GB (single-layer)

50GB (dual-layer)

405nm (blue laser)

0.85

120mm

1.2mm

0.1mm

Yes

 $0.32 \mu m$

36.0Mbps (1x)

54.0Mbps (1.5x)

1920×1080 (1080p)

40.0Mbps

MPEG-2

MPEG-4 AVC, SMPTE VC-1

Linear PCM, Dolby Digital

Dolby Digital Plus , Dolby TrueHD

DTS Digital, Surround, DTS-HD

BD-J

DVD

4.7GB (single-layer)

8.5GB (dual-layer)

650nm (red laser)

0.60

120mm

1.2mm

0.6mm

No

 $0.74 \mu m$

11.08Mbps (1x)

10.08Mbps (<1x)

720×480/720×576 (480i/576i)

9.8Mbps

MPEG-2

_

Linear PCM , Dolby Digital

DTS Digital, Surround

-

DVD-Video

Cinta Magnética

- Acceso en Serie
- Lento
- Muy económica
- Backup y archivo

MODEM (MOdulador, DEModulador)

- Convierte señales '0' y '1' en tonos de audio.
 - Sistema telefónico responde entre 50 y 3500 Hz.
- Tasa Bits/seg (bps) es el número de bits enviados por segundo.
- Tasa Baudio (baud rate) es el número de cambios de señal por segundo (por J. Baudot).
 - Máxima tasa baudio para el sistema telefónico es 2400.

MODEM (2)

Amplitud Modulada

Frecuencia
Modulada

FaseModulada

MODEM (3)

Es posible enviar varios bits por baudio, señalando en frecuencias diferentes

Ejemplo

- enviar una de 4 señales diferentes, 2400 veces por segundo:
 - Las cuatro señales representan 00, 01, 01, o
 11, se puede enviar dos bits por baudio
 - tasa bps = tasa baudio x log₂(n)

"Smart" Modems

- A veces llamados "Hayes compatible"
- Computadora controla:
 - discado
 - establece la tasa de bit (bit rate)
 - programa contestador, re-discado, etc.
 - capaz de compresión de datos
- Modems son de 2400 baudios máximo
- Máximo bit rate, 57600 bps (56K)

Comunicación Asincrónica de Datos

No hay reloj común -- debe ser inferido de los datos

(Capa física: MARCA = -3 to -12 volts, ESPACIO = +3 to +12 VOLTS.)

Comunicaciones por modem

- Protocolo RS-232
 - Mayor uso en comunicaciones asincrónicas

Dispositivos de Entrada de Datos

- Teclado y Mouse
 - Tasas de entrada muy lentas
 - 10 caracteres de 8 bits por segundo en teclado
 - El mouse es más rápido: 1 cambio en los bits de la posición X e Y por milisegundo
 - Click de mouse: bit por 1/10 segundo
- El desafío del diseño de dispositivos de entrada de datos manual es reducir el número de partes móviles

Notas de Clase 11

Dispositivos de Salida de Datos

- Monitores de Video
 - Alfanuméricos
 - Gráficos

- > Impresoras
 - Impacto
 - Laser

Monitores de Video

- Color o blanco y negro
- Imágen trazada en pantalla de a línea por vez (raster)
- Puntos en pantalla (Pixel) se marcan con un haz de electrones
- El haz se desvía horizontal y verticalmente
- Se muestran 50/60 cuadros completos por segundo
- Resolución Vertical: número de líneas ≈500
- Resolución Horizontal: puntos por línea ≈700
- ► Puntos por segundo $\approx 60x500x700 \approx 21M$ puntos/s

Esquema de Monitor de Video

Dos tipos de Video: Terminal y Mapeado en memoria

- Monitor de video, memoria de visualización y teclado armados juntos para formar un Terminal.
- Monitor de video con memoria de visualización que está mapeada en memoria.
- > Terminales: usualmente orientados a caracter
 - conexión con ancho de banda pequeño (serie)
- Visualización con memoria de video mapeada permite mostrar imágenes y movimiento
 - conexión al bus de memoria permite cambios rápidos (ancho de banda grande)

Video Terminal

(a) Video display terminal

Video Mapeado en Memoria

(b) Memory mapped video

Memoria de visualización

- Monitores alfanuméricos
 - En memoria se almacenan sólo códigos de caracter
 - Los códigos de carácter se convierten en pixels por una ROM de caracteres
 - Por caracter se generan varios pixels sucesivos en varias líneas sucesivas
- Monitores gráficos (bit mapped)
 - Cada pixel es representado por bits en memoria
 - Los visualizadores B/N pueden usar un bit por pixel
 - En gama de grises/color requerirán varios bits por pixel

ROM de Caracteres

- Los bits de una línea son leídos serialmente
- Se accesa 9 veces a la misma posición horizontal

y sucesivas posiciones verticales

0001

(a) Character matrix (b) Character ROM

Controlador de Video

(alfanumérico)

Contadores cuentan

- los 7 puntos en un caracter,
 - los 80 caracteres a lo ancho de la pantalla,
- las 9 líneas en un caracter, y
- las 64 filas de caracteres desde arriba hacia abajo

Controlador de Video (True Color)

Impresoras de impacto

- Carácter formado
 - Margarita
 - Cinta
- Matriz de Puntos:
 - Arma los caracteres
 - Punzones manejados por solenoides
 - Punzón golpea una cinta entintada y marca el papel
 - Tantos punzones como alto de la matriz de caracteres
 - Baja resolución

Impresión con Matriz de Puntos

- Imprime una columna por vez
- Puede usar unaROM de caracteres
- La ROM se lee en paralelo por columna, en vez de serie por fila como en el video alfanumérico

- Página completa
- > 300 a 1200 puntos por pulgada (dpi)

Impresora Ink-jet

- Trasductor ultrasónico lanza pequeños chorros de tinta a los puntos correctos con la cabeza moviéndose sobre el papel
- Blanco/negro y Color
- Precio y resolución entre las anteriores

Tecnologías Ink Jet

BurbujaTérmica

Piezoeléctrica

mas información ...

Capítulos 7 a 11

Estructura de Computadores y Periféricos

R. Martinez Durá, J. Boluda Grau, J. Perez Solano Editorial Alfaomega, México ISBN 970-15-0690-1

Links de interés

- http://www.pctechguide.com/02Multimedia.htm
- http://www.pctechguide.com/02Input-Output.htm