Samenvatting [G0Q57A] - Modellering en simulatie

Arne Van Den Kerchove 20 januari 2019

Inhoudsopgave

1 Modellen en simulaties			en simulaties	2
2	Numerieke lineaire algebra en toepassingen			
	2.1	QR-factorisatie		
		2.1.1	Gram-Schmidt orthogonalisatie	2
			QR-factorisatie met Givens-rotaties	
		2.1.3	QR-factorisatie met kolompivotering	;
	2.2	Kleins	te-Kwadratenbenadering	
			Oplossing met QR-ontbinding	

1 Modellen en simulaties

2 Numerieke lineaire algebra en toepassingen

2.1 QR-factorisatie

Definitie 1 De volle QR-factorisatie van de matrix A wordt gegeven door

$$A = QR$$

 $met \ q \ een \ m \times m \ orthogonale \ matrix \ en \ R \ een \ m \times n \ bovendriehoeksmatrix.$

2.1.1 Gram-Schmidt orthogonalisatie

Algorithm 1 Gram-Schmidt-algoritme

```
1: procedure QRGRAMSCHMIDT
2: for j = 1 to n do
3: v_j = a_j
4: for i = 1 to j - 1 do
5: r_{ij} = q_i^T a_j
6: v_j = v_j - r_{ij}q_i
7: r_{jj} = ||v_j||_2
8: q_j = v_j/r_{jj}
```

Complexiteit: $\mathcal{O}(2mn^2)$ Stabiliteit: niet stabiel

2.1.2 QR-factorisatie met Givens-rotaties

Definitie 2 Een Givens-rotatie is een $m \times m$ orthogonale matrix van de vorm

$$G_{ij} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$$

met

$$c^2 + s^2 = 1$$

Om een Givens-rotatie op te stellen die plaats (j,k) 0 maakt in matrix A, kies dan een element in dezelfde kolom (bv. het element boven (j,k)) op oplaats (i,k) en maak G_{ij} met

$$c = \frac{a_{ik}}{\sqrt{a_{ik}^2 + a_{jk}^2}} \text{ en } s = \frac{a_{jk}}{\sqrt{a_{ik}^2 + a_{jk}^2}}$$

Algorithm 2 Givens-rotatie-algoritme

```
1: procedure QRGIVENS
                    Q = 1
  3:
                    for j = 1 to n do
  4:
                             for i = m to j + 1 do
c = \frac{r_{i-1,j}}{\sqrt{r_{i-1,j}^2 + r_{i,j}^2}}
s = \frac{r_{i,j}}{\sqrt{r_{i-1,j}^2 + r_{i,j}^2}}
r_{i,j} = 0
  5:
  6:
  7:
                                       r_{i-1,j} = \sqrt{r_{i-1,j}^2 + r_{i,j}^2} for k = j + 1 to n do
  9:
10:
11:
                                                                            \begin{bmatrix} r_{i-1,k} \\ r_{ik} \end{bmatrix} = \begin{bmatrix} c & s \\ -s & s \end{bmatrix} \begin{bmatrix} r_{i-1,k} \\ r_{i,k} \end{bmatrix}
                                       for k = 1 to m do
12:
13:
                                                                \begin{bmatrix} q_{k,i-1} & q_{ki} \end{bmatrix} = \begin{bmatrix} q_{k,i-1} & q_{ki} \end{bmatrix} \begin{bmatrix} c & s \\ -s & s \end{bmatrix}
```

Complexiteit: $\mathcal{O}(3mn^2 - n^3)$

Stabiliteit: stabiel

2.1.3 QR-factorisatie met kolompivotering

Indien A niet van volle rang is, is het voor de stabiliteit beter om kolompivotering toe te passen. In stap j van het QR-algoritme met Givens-rotaties verwisselen we kolom j met de kolom p waarvan de 2-norm het grootst is.

Complexiteit: $\mathcal{O}(3mn^2 - n^3)$

Stabiliteit: stabieler voor rang-deficiënte matrices

2.2 Kleinste-Kwadratenbenadering

Om de coëfficiënten te bepalen wordt een Vandermondematrix A opgesteld. De te minimaliseren fout bij KK-benadering wordt gegeven door

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|_2 = \min_{x \in \mathbb{R}^n} \sqrt{\sum_{i=1}^m (b_i - \sum_{j=1}^n a_{i,j} x_j)^2}$$

met r = b - Ax de residuvector.

Dit probleem kan opgelost worden door x te bepalen in

$$A^T A x = A^T b$$

De Vandermondematrix A is slecht geconditioneerd. We zoeken dus andere manieren om het KK-probleem op te lossen.

2.2.1 Oplossing met QR-ontbinding

Indien de QR-factorisatie van A bekend is, kan deze gebruikt worden om een oplossing voor het KK-probleem te vinden:

$$\min_{x \in \mathbb{R}^n} \left\| b - Ax \right\|_2 = \min_{x \in \mathbb{R}^n} \left\| b - QRx \right\|_2 = \min_{x \in \mathbb{R}^n} \left\| Q^Tb - RAx \right\|_2$$

Aangezien vermenigvuldiging vooraan met een orthogonale matrix de norm behoudt.

De vector $Q^T b = c$ kan opgesplitst worden in de volgende componenten: $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$

met $c_1 \in \mathbb{R}^n$ en $c_2 \in \mathbb{R}^{m-n}$

Hieruit volgt:

$$\min_{x \in \mathbb{R}^n} \left\| b - Ax \right\|_2 = \min_{x \in \mathbb{R}^n} \left\| \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} - \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix} x \right\|_2$$

Volgens de stelling van Pythagoras geldt:

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|_2^2 = \min_{x \in \mathbb{R}^n} (\left\| c_1 - \hat{R}x \right\|_2^2 + \left\| c_2 \right\|_2^2)$$

De vector x met coëfficiënten met minimale fout kan dus ook bekomen worden als x de oplossing van $\hat{R}x=c_1$

Complexiteit: $\mathcal{O}(mn) + \mathcal{O}n^2$ indien QR-factorisatie bekend

Stabiliteit: stabiel indien A van volle rang