Algebraic Structures (08)

- 7.1 Algebraic structures with one binary operation: semigroup, monoids and groups
- 7.2 Cyclic groups, Normal subgroups
- 7.3 Hamming Code , Minimum Distance
- 7.4 Group codes ,encoding-decoding techniques
- 7.5 Parity check Matrix , Maximum Likelihood

Algebraic systems

■ N = $\{1,2,3,4,....\infty\}$ = Set of all natural numbers.

$$Z = \{ 0, \pm 1, \pm 2, \pm 3, \pm 4, \dots, \infty \} = Set of all integers.$$

Q = Set of all rational numbers, R = Set of all real numbers.

Binary Operation: The binary operator * is said to be a binary operation
 (closed operation) on a non empty set A, if

 $a * b \in A$ for all $a, b \in A$ (Closure property).

Ex: The set N is closed with respect to addition and multiplication

but not w.r.t subtraction and division.

Algebraic System: A set 'A' with one or more binary(closed) operations defined on it is called an algebraic system.

Ex: (N, +), (Z, +, -), $(R, +, \cdot, -)$ are algebraic systems.

Properties

- Commutative: Let * be a binary operation on a set A.
 - The operation * is said to be commutative in A if
 - a * b= b * a for all a, b in A
- **Associativity:** Let * be a binary operation on a set A.

The operation * is said to be associative in A if

$$(a * b) * c = a * (b * c)$$
 for all a, b, c in A

(Addition, Subtraction)

- Idempotent: Let * be a binary operation on a set A.
 - The operation * is said to be idempotent in A if
 - a * a = a
- Identity: For an algebraic system (A, *), an element 'e' in A is said to be an identity element of A if
 - a*e=e*a=a for all $a \in A$.
- Inverse: Let (A, *) be an algebraic system with identity 'e'. Let a be an element in A. An element b is said to be inverse of A if

Semi group

- **Semi Group:** An algebraic system (A, *) is said to be a semi group if
 - 1. * is closed operation on A.
 - 2. * is an associative operation, for all a, b, c in A.
- \blacksquare Ex. (N, +) is a semi group.
- Ex. (N, .) is a semi group.
- \blacksquare Ex. (N,) is not a semi group.
- Monoid: An algebraic system (A, *) is said to be a monoid if the following conditions are satisfied.
 - 1) * is a closed operation in A.
 - 2) * is an associative operation in A.
 - 3) There is an identity in A.

Monoid

- Ex. Show that the set 'N' is a monoid with respect to multiplication.
- <u>Solution</u>: Here, N = {1,2,3,4,.....}
 - 1. <u>Closure property</u>: We know that product of two natural numbers is again a natural number.
 - i.e., a.b = b.a for all a,b \in N
 - ... Multiplication is a closed operation.
 - 2. Associativity: Multiplication of natural numbers is associative.

i.e., (a.b).c = a.(b.c) for all a,b,c
$$\in$$
 N

3. <u>Identity</u>: We have, $1 \in \mathbb{N}$ such that

$$a.1 = 1.a = a$$
 for all $a \in N$.

... Identity element exists, and 1 is the identity element.

Hence, N is a monoid with respect to multiplication.

Subsemigroup & submonoid- "Self read"

Subsemigroup: Let (S, *) be a semigroup and let T be a subset of S.

If T is closed under operation *, then (T, *) is called a subsemigroup of (S, *).

Ex: (N, .) is semigroup and T is set of multiples of positive integer m then (T,.) is a sub semigroup.

Submonoid : Let (S, *) be a monoid with identity e, and let T be a non-empty subset of S. If T is closed under the operation * and $e \in T$, then (T, *) is called a submonoid of (S, *).

Group

- Group: An algebraic system (G, *) is said to be a group if the following conditions are satisfied.
 - 1) * is a closed operation.
 - 2) * is an associative operation.
 - 3) There is an identity in G.
 - 4) Every element in G has inverse in G.
- Abelian group (Commutative group): A group (G, *) is said to be abelian (or commutative) if a * b = b * a for all a, b belongs to G.

Algebraic systems

Theorems –"Self Study"

- In a Group (G, *) the following properties hold good
- 1. Identity element is unique.
- 2. Inverse of an element is unique.
- 3. Cancellation laws hold good

```
a * b = a * c \implies b = c (left cancellation law)

a * c = b * c \implies a = b (Right cancellation law)
```

- 4. $(a * b)^{-1} = b^{-1} * a^{-1}$
- In a group, the identity element is its own inverse.
- Order of a group: The number of elements in a group is called order of the group.
- Finite group: If the order of a group G is finite, then G is called a finite group.

Ex. Show that, the set of all integers is a group with respect to **addition**.

■ Solution: Let Z = set of all integers.

Let a, b, c are any three elements of Z.

1. **Closure property**: We know that, Sum of two integers is again an integer.

i.e.,
$$a + b \in Z$$
 for all $a,b \in Z$

2. Associativity: We know that addition of integers is associative.

i.e.,
$$(a+b)+c = a+(b+c)$$
 for all $a,b,c \in Z$.

3. <u>Identity</u>: We have $0 \in Z$ and a + 0 = a for all $a \in Z$.

.: Identity element exists, and '0' is the identity element.

.

Contd.,

4. <u>Inverse</u>: To each $a \in Z$, we have $-a \in Z$ such that

$$a + (-a) = 0$$

Each element in Z has an inverse

■ 5. **Commutativity:** We know that addition of integers is commutative.

i.e.,
$$a + b = b + a$$
 for all $a,b \in Z$.

Hence, (Z, +) is an abelian group.

Ex. Show that set of all non zero real numbers is a group with respect to multiplication .("Self Study")

- Solution: Let R^* = set of all non zero real numbers. Let a, b, c are any three elements of R^* .
- 1. <u>Closure property</u>: We know that, product of two nonzero real numbers is again a nonzero real number.

i.e., $a \cdot b \in R^*$ for all $a,b \in R^*$.

2. <u>Associativity</u>: We know that multiplication of real numbers is associative.

i.e., (a.b).c = a.(b.c) for all a,b,c $\in R^*$.

- 3. Identity: We have $1 \in R^*$ and a 1 = a for all $a \in R^*$.
 - ... Identity element exists, and '1' is the identity element.
- 4. <u>Inverse</u>: To each $a \in R^*$, we have $1/a \in R^*$ such that $a \cdot (1/a) = 1$ i.e., Each element in R^* has an inverse.

Contd.,

5.<u>Commutativity</u>: We know that multiplication of real numbers is commutative.

```
i.e., a.b = b.a for all a,b \in R^*.
```

Hence, (R*, .) is an abelian group.

- **Ex:** Show that set of all real numbers 'R' is not a group with respect to multiplication.
- Solution: We have $0 \in R$.

The multiplicative inverse of 0 does not exist.

Hence. R is not a group.

MODULO SYSTEMS

Addition modulo m $(+_m)$

let m be a positive integer. For any two positive integers a and b

$$a +_m b = a + b$$
 if $a + b < m$

$$a +_m b = r$$
 if $a + b \ge m$ where r is the remainder obtained by dividing (a+b) with m.

Ex
$$14 +_6 8 = 22 \% 6 = 4$$

Ex
$$14 +_6 8 = 22 \% 6 = 4$$
 ; Ex $9 +_{12} 3 = 12 \% 12 = 0$

Multiplication modulo $p (x_p)$

let p be a positive integer. For any two positive integers a and b

$$a \times_{p} b = ab$$
 if $ab < p$

$$a \times_p b = r$$
 if $a b \ge p$ where r is the remainder obtained by dividing (ab) with p.

Ex.
$$3 \times_5 4 = 2$$
 , $5 \times_5 4 = 0$, $2 \times_5 2 = 4$

Ex.The set $G = \{0,1,2,3,4,5\}$ is a group with respect to addition modulo 6.

Solution: The composition table of G is

+ ₆	0	1	2	3	4	5	
0	0	1	2	3	4	5	
1	1	2	3	4	5	0	
2	2	3	4	5	0	1	
3	3	4	5	0	1	2	
4	4	5	0	1	2	3	
5	5	0	1	2	3	4	

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under $+_6$.

Contd.,

2. Associativity: The binary operation $+_6$ is associative in G.

for ex.
$$(2 +_6 3) +_6 4 = 5 +_6 4 = 3$$
 and $2 +_6 (3 +_6 4) = 2 +_6 1 = 3$

- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 0 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 0, 1, 2, 3, 4, 5 are 0, 5, 4, 3, 2, 1 respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation $+_6$ is commutative.

Hence, $(G, +_6)$ is an abelian group.

Ex.The set $G = \{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7.

Solution: The composition table of G is

× ₇	1	2	3	4	5	6	
1	1	2				6	
2	2	4		1		5	
3				5		4	
4	4	1	5	2	6	3	
5	5	3	1				
6	6	5	4	3	2	1	

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under \times_7 .

2. Associativity: The binary operation \times_7 is associative in G.

for ex.
$$(2 \times_7 3) \times_7 4 = 6 \times_7 4 = 3$$
 and $2 \times_7 (3 \times_7 4) = 2 \times_7 5 = 3$

- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 1 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 1, 2, 3, 4. 5, 6 are 1, 4, 5, 2, 5, 6 respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation \times_7 is commutative.

Hence, (G, \times_7) is an abelian group.

Normal Subgroup

A subgroup is called a **normal subgroup** if for any $a \in G$, aH = Ha.

Note 1:

aH = Ha does not necessarily mean that a * h = h * a for every h \in H. It only means that a * h_i = hj * a for some h_i, hj \in H.

Note2:

Every subgroup of an abelian group is normal.

Hg = gH, for all $g \in G$, if and only if H is a normal subgroup of G.

Let $H=\{[0]_6, [3]_6\}$, Find left and right cosets in group Z_6 is it a normal subgroup

• It is abelian group, $a +_6 b = b +_6 a$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Left coset(Right is fixed) of H, $a H = \{ a * h \mid h \in H \}$

$$0 H = \{ 0 +_6 0, 0 +_6 3 \} = \{ 0, 3 \}$$

$$1 H = \{ 1 +_6 0, 1 +_6 3 \} = \{ 1, 4 \}$$

$$2 H = \{ 2 +_6 0, 2 +_6 3 \} = \{ 2, 5 \}$$

$$3 H = \{ 3 +_6 0, 3 +_6 3 \} = \{ 3, 0 \}$$

$$4 H = \{ 4 +_6 0, 4 +_6 3 \} = \{ 4, 1 \}$$

$$5 H = \{ 5 +_6 0, 5 +_6 3 \} = \{ 5, 2 \}$$

Given

$$H=\{[0]_6, [3]_6\}$$
 w.k.t \rightarrow a +₆ b = b +₆ a

Right coset(Left is fixed) of H, H a={h * a | h
$$\in$$
 H}
H 0 = {0 +₆ 0, 3+₆ 0} = {0,3}
H 1 = {0 +₆ 1, 3+₆ 1} = {
H 2 = {0 +₆ 2, 3+₆ 2} = {
H 3 = {0 +₆ 3, 3+₆ 3} = {
H 4 = {0 +₆ 4, 3+₆ 4} = {
H 5 = {0 +₆ 5, 3+₆ 5} = {

H0,H1,H2,H3,H4,H5=0H,1H,2H,3H,4H,5H

Hamming distance

The Hamming distance d(x, y) between two words x, y is the weight $|x \oplus y|$ of $x \oplus y$, (bits in which they differ)

```
Eg. d(00111, 11001) = 4
```

Find the distance between x and y

```
x= 110110 ; y=000101
```

$$x = 001100$$
; $y = 010110$

$$x = 0100100$$
; $y = 0011010$

Theorems

- The minimum weight of all non zero words in a group code is equal to its minimum distance
- A code can detect all combinations of k or fewer iff the minimum distance between any two code words is at least k +
 1
- A code can correct all combinations of k or fewer errors iff the minimum distance between any two code words is at least 2 k
 + 1

 Consider the (2,4) encoding function, how many errors will 'e' detect (k+1)?

$$e(00)=0000$$

Soln: Find the Hamming distance between all pairs

Since 2 > = k+1

k<=1,Will detect 1 or fewer errors

 Consider the encoding function B²→B⁶ defined as follows

How many errors can it correct and detect?

Error detection 3>=k+1; k <= 2 or fewer errors

Error correction $3 \ge 2k+1; k \le 1$ or fewer errors

Group Codes- "Self Read"

An (m,n) encoding function e: $B^m \rightarrow B^n$ is called

a group code if e (B m) = {e(b)|b \in B m }=Ran

(e) is a subgroup of Bⁿ

Subgroup if:

Identity element of B^n is in NIf x and y belong to N, then $x \oplus y \in N$ If x is in N, then its inverse in N

Consider the encoding function B²→B⁵ defined as follows

is a group code

Soln: Let N={ 00000 , 10101, 01110, 11011 } be set of code words

\oplus	00000	01110	10101	11011
00000	00000	01110	10101	11011
01110	01110	00000	11011	10101
10101	10101	11011	00000	01110
11011	11011	10101	01110	00000

a ⊕ b ∈ N which is closed operation, associative, identity, inverse

- **1.** Closed operation: For any $a,b \in N$, $a \oplus b \in N$, So N is closed under \oplus operation
- 2. Identity element of B⁵ i.e 00000 also belongs to N

```
00000 \oplus 00000 = 00000 \oplus 00000
```

01110
$$\oplus$$
 00000= 00000 \oplus 01110

10101
$$\oplus$$
 00000 = 00000 \oplus 10101

11011
$$\oplus$$
 00000= 00000 \oplus 11011

3.

Associative operation

$$01110 \oplus 10101 = 01110 \oplus 10101$$

4. Inverse a * b = b * a = e

Ex: $01110 \oplus 01110 = 01110 \oplus 01110 = 00000$

Show that (3,5)encoding function e: B³→B ⁶ defined as follows

PARITY CHECK MATRIX

Consider the parity check matrix given by H;

Determine the group code $e_H : B^2 \rightarrow B^5$

Soln:
$$B^2 = \{00,01,10,11\}$$

Then $e(00) = 00 x_1 x_2 x_3 = B^5$
 $x_1 = 0 .1 + 0.0 = 0$
 $x_2 = 0.1 + 0.1 = 0$
 $X_3 = 0.0 + 0.1 = 0$
 $e(00) = 00000$
Next $e(01) = 01 x_1 x_2 x_3 = B^5$
 $x_1 = 0 .1 + 1.0 = 0$
 $x_2 = 0.1 + 1.1 = 1$
 $x_3 = 0.0 + 1.1 = 1$
 $x_4 = 0.1 + 1.1 = 1$

```
Next e(10) = 10 x_1 x_2 x_3 = B^5
x_1 = 1.1 + 0.0 = 1
x_2 = 1.1 + 0.1 = 1
X_3 = 1.0 + 0.1 = 0
e (10) = 10110
Next e(11) = 11 x_1 x_2 x_3 = B^5
x_1 = 1.1 + 1.0 = 1
x_2 = 1.1 + 1.1 = 0
X_3 = 1.0 + 1.1 = 1
e (11) = 11101
e_{\perp}: B^2 \to B^5 is as above for e (00), e (01), e (10), e (11)
e(00) = 00000, e(01) = 01011, e(10) = 10110, e(11) = 11101
```

Problem 1

Consider the parity check matrix given by H;

Determine the group code $e_H : B^2 \rightarrow B^5$

$$e(00) = 00000$$

$$e(01) = 01011$$

$$e(00) = 10011$$

$$e(00) = 11000$$

Problem 2

Consider the parity check matrix given by H;

Determine the group code $e_H : B^3 \rightarrow B^6$

- e(000) = 000000
- e(001) = 001111
- e(010) = 010011
- e(011) = 011100
- e(100) = 100100
- e(101) = 101011
- e(110) = 110111
- e(111) = 111000

MAXIMUM LIKELIHOOD DECODING TECHNIQUE

Consider the encoding function $B^2 \rightarrow B^4$ defined as follows

$$e(00)=0000$$

Decode the foll words relative to MLD function,

(i) **0101** e(**01**) (ii) **1010** e(**10**)(iii) **1101** e(**11**)

Step 1: Construct Decoding Table(Taking various combinations of 4 bit numbers such as 0000[1],then making MSB as 1 thus we get 0001[2] then shift(R→L) to next bit as 1 we get 0010[3] ,etc. BUT before every next combination we need to check if its in the table already like 0100 [4] . As 0100 is already considered we move to 1000[5]accordingly we proceed for unique values till we decode all words in the question.

n.		0000	0110	1011	1101
	0000[1]	0000	0110	1011	1101
	0001[2]	0001	0111	1010	1100
	0010[3]	0010	0100 [4]	1001	1111
	1000[5]	1000	1110	0011	0101

Consider the encoding function B²→B ⁵ defined as follows

$$e(00)=00000$$

Decode the foll words relative to MLD function,

	e (00)	e (01)	e (10)	e (11)
	00000	01110	10101	11011
00000	00000	01110	10101	11011
0000 <u>1</u>	00001	01111	10100	11010
000 <u>1</u> 0	00010	01100	10111	11001
00 <u>1</u> 00	00100	01010	10001	11111
0 <u>1</u> 000	01000	00110	11101	10011
<u>1</u> 0000	10000	11110	00101	01011