## 2024 秋季学期 大学物理 x(2) 模拟测试

| <b>命题人:问天讲师团</b><br>一、填空题   | 审题人:                                  | 问天讲师团      | 测试时长:                                                       | 120 分钟                 |
|-----------------------------|---------------------------------------|------------|-------------------------------------------------------------|------------------------|
| 1.一定量的理想气体贮于某一              | 容器中,温度                                | 为 T,气体分子的  | 的质量为 m。根据理                                                  | 想气体分子                  |
| 模型和统计假设,分子速度在               | <b>x</b> 方向的分                         | 量的下列平均值    | $\overline{v_x} = \overline{v_x^2} =$                       | 0                      |
| 2.三个容器内分别贮有 1 mol           |                                       |            |                                                             |                        |
| 的理想气体)。若它们的温度都              |                                       |            |                                                             |                        |
| 氢: ΔE = ; 氨: ΔE =           |                                       |            |                                                             | ΔΕ,                    |
| 3.在单缝夫琅禾费衍射实验中,             |                                       |            |                                                             | :                      |
| (选填变大/变小)                   | , , , , , , , , , , , , , , , , , , , |            |                                                             | · °                    |
| 4.波长 λ = 550 nm(1 nm = 10   | −9 m) 的单色                             | 光垂直入射于光    | 栅常数 d=2×10-4                                                | cm 的平面                 |
| 衍射光栅上,可能观察到的光               | 谱线的最大级                                | 及次为。       |                                                             |                        |
| 5. 一束自然光从空气投射到玻             | 璃表面上(空                                | 区气折射率为 1), | 当折射角为 30°                                                   | 时,反射光                  |
| 是完全偏振光,则此玻璃板的               | 折射率等于_                                | О          |                                                             |                        |
| 6. 在迈克耳孙干涉仪的一支光             | 路上,垂直于                                | 广光路放入折射率   | 为 n、厚度为 h 的                                                 | 透明介质薄                  |
| 膜,与未放入此薄膜时相比较               | ,两光束光程                                | 差的改变量为     | 。(假设其作                                                      | 也光路不变)                 |
| 7. 已知一单色光照射在钠表面             |                                       | 子的最大动能是    | 1.2eV,而钠的红限波                                                | 长是 540nm,              |
| 那么入射光的波长是                   |                                       |            |                                                             |                        |
| 8. 由氢原子理论知,当大量氢             |                                       | _          |                                                             | 抻波长的光。                 |
| 9. 粒子在一维无限深势阱中运             | 动,其波函数                                |            | $\left( \frac{a\pi x}{a} \right), \left( 0 < x < a \right)$ |                        |
| 若粒子处于 n=1 状态,在0至 a          | a/4 区间发现                              | 该粒子的概率为_   | o                                                           |                        |
| 10. 用能量为 12. 6eV 的电子去       |                                       |            |                                                             |                        |
| 光谱线的波长分别为、                  |                                       | 。(里德堡      | と常量 R <sub>H</sub> =1.097×10                                | $^{-7} \text{ m}^{-1}$ |
| 二、推导与证明                     |                                       |            |                                                             |                        |
|                             | $a - Aa^{-ax^2}$                      |            | 量,将此式代入一维                                                   |                        |
| 11.谐振子的基态波函数为 4             | , – Ae                                | 式中 A,a 为常量 | 量,将此式代入一维                                                   | 谐振子的薛                  |
| 定谔方程,试根据所得出的式               | 子在 x 为任何                              | 值时均成立的条件   | 牛证明谐振子的零点                                                   | 能为以下表                  |
| 达式: $E_0 = \frac{1}{2}h\nu$ |                                       |            |                                                             |                        |
|                             |                                       |            |                                                             |                        |
| 三、计算题                       |                                       |            |                                                             |                        |
| 12.3 mol 温度为 To = 273 K     |                                       |            |                                                             |                        |
| 体加 热,使其末态的压强刚如              |                                       |            |                                                             |                        |
| 试画出此过程 的 $p - V$ 图,         | 开求这种气体                                | 体的比热容比 γ   | 值。(晋迠气体常量                                                   | R = 8.31  J            |

/mo1/K)

13. 如图所示,abcda 为 1 mol 单原子分子理想气体的循环过程,求:(1)气体循环一次,在吸热过程中从外界共吸收的热量(只考虑净吸热的分段);(2)气体循环一次对外做的净功;(3)求  $T_aT_c$  - $T_bT_{do}$ 。



14. 如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙  $e_0$ 。现用波长为  $\lambda$  的单色光垂直照射,已知平凸透镜的曲率半径为 R,求反射光形成的牛顿环的各暗环半径。



15. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长, $\lambda_1$ = 400 nm, $\lambda_2$ = 760 nm。已知单缝宽度  $a=1.0\times 10^{-2}$  cm,透镜焦距 f=50 cm。求两种光第一级衍射明纹中心之间的距离。(2)若用光栅常数  $d=1.0\times 10^{-3}$  cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离。

16. 一東光是自然光和线偏振光的混合光,让它垂直通过一偏振片。若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的 5 倍,那么入射光束中自然光与线偏振光的光强比值是多少?

17. 设一维运动的粒子处在

 $\psi(x) = Axe^{-\lambda x} \quad (x \ge 0)$ 

ψ(x) = 0 ( x < 0 ) 的状态, 其中 λ > 0 。

试求: (1) 归一化因子 A;

- (2) 粒子坐标的概率密度分布;
- (3) 在何处找到粒子的概率最大;
- (4) x 和 x<sup>2</sup> 的平均值。

18. (1) 4 个量子数取值的不同组合表示不同的量子态,当 n = 2 时,包括几个量子态? (2) 写出磷 (P) 的电子排布,并求每个电子的轨道角动量。

四、设计与应用

19.设计一个光学实验,测量人头发丝的直径。