Energiewende

kaspersky

Herausforderung für die Cybersicherheit

Stephan Gerling Senior Security Researcher im ICS CERT

Das Netz

Aktuelle Cyberrisiken für erneuerbare Energie

Windkraft

- Ausbau Infrastruktur
- Einspeisemanagement

oops

ERNEUERBARE ENERGIEN

Massive Störung der Satellitenverbindung: Enercon meldet fast 6000 betroffene Windanlagen

Der Störfall bei einem Satellitenanbieter weckt Sorgen vor einem Hackerangriff. Betroffen sind Anlagen mit einer Gesamtleistung von elf Gigawatt.

Lanské Holdini, Lers-Merten Nagel, Michael Verfünden, Kathrin Witsch

28.02.2022 * Update: 78.02.2022 - 17:05 Utr * Kommunismon * 43 s.

Stromausfall im zentralen Teil der Niederlande verursachte Rekordschäden an der Eisenbahninfrastruktur

3 September 2032 O 38

rom ausgefallen. Weil Straßen gesperrt und der

Elektromobilität

- Ladesäulen Infrastruktur
- Lastmanagement
- Abrechnungssysteme

"Laden muß so einfach werden wie Tanken"

- Massiver Ausbau der Ladesäulen Infrastruktur nötig

Cybersicherheit der Ladesäule selbst ist oft ein Problem

Problem:

Kommunikation zwischen der Ladesäule und dem Betreiber erfolgt unverschlüsselt

Version 2.0.1 (März 2020) enthält erste Security Implementierungen

Version 1.6 wird immer noch als mindest Standard gefordert

Kein Zwang zur Umrüstung bestehender Anlagen

- Speichersysteme
- Wechselrichter
- Monitoring / remote Management
- Einspeisemanagement

Herausforderung Erneuerbare Energien

Speichersysteme

- Oft unzureichend geschützt
- Standard Passwörter
- Remote Management
- Unverschlüsselte Protokolle

Solar Wechselrichter

- Oft unzureichend geschützt
- Standard Passwörter
- "Hardcoded" Passwörter
- Remote Management
- Unverschlüsselte Protokolle

query

TOTAL RESULTS

1,360,082

_	
United States	279,000
Japan	136,285
Germany	72,557
France	69,658

(shodan.hq query)

New Service: Keep tr

100.24.107.71

ec2-100-24-107-71.compute-1.am zonaws.com

Amazon Data Services NoVa

United States, Ashburn

honeypot

54.219.202.104

ec2-54-219-202-104.us-west-1.com pute amazonaws.com

Amazon.com, Inc.

United States, San Jose

honeypot

Der Klassiker

#1 Problem - Hardcoded credentials

query

Verwundbare Systeme Online

result from last year

TOTAL RESULTS

21,724

TOP COUNTRIES

W	
Portugal	7,719
Germany	4,657
Greece	2,436
France	883
Belgium	768

More...

result from today

TOTAL RESULTS

16,721

TOP COUNTRIES

W.	
Portugal	4,740
Germany	3,666
Greece	2,185
France	696
United States	677
More	

Etwas Magie auf die Ergebnisse

- Keine kleine PV Anlagen (1 kWP -30 kWP)
- Weg mit den "honeypots"!
- + nur die dicken Fische! (1 MW 5 MW)

#total ~2570

~ 7200 MW Weltweit

Ergebniss nur für Europa ~ 2800 MW

Positiv:

- Meldung der Sicherheitslücke an den Hersteller
- Patch wurde rasch bereitgestellt
- Zusätzlich Meldung an das BSI

Ergebniss:

Zahl der angreifbaren Anlagen geht immer weiter zurück.

Welche Auswirkung hätte es haben können?

The Grid

Interconnected Network of continental Europe (entso-e) https://www.entsoe.eu/data/map/downloads/

50 hertz

Netzfrequenz von 50 Hz als Regelbasis

Picture: (https://www.swissgrid.ch/de/home/operation/regulation/grid-stability.html)

Primär Regelenergie

3 Giga Watt Regelenergie Varianz > +- 10mHz

Im Bereich von +- 200mHz

>50.2Hz = 3 Giga Watt komplett vom Netz

<49.8Hz = komplett Einspeisung der 3 Giga Watt

Utility frequency: 49.977 Hz

Phase angle to 50.0 Hz: 98°

Date and time (UTC): 09.09.2021 09:30:35

Picture source: (https://www.mainsfrequency.com/index.htm)

50,20

50,18 50,16

50.14

50,12 50,10 50,08

50,06

50,04 50,02

50,00 49,98 49,96

49,94 49.92

49.90

49,88 49,86

49,84

49,82

49,80

50 hertz

Netzfrequenz level

Frequenz	Aktion	Last	Aktivierung	50,14
51,5 Hz	lle erneuerbaren Energien vom Netz 100%		Automatisch	50,10 50,08
50,2 Hz	Einspeiseregelung erneuerbare Energien	Automatisch	50,06	
50,1 Hz 50,0 Hz 49,9 Hz	keine Maßnahmen Baseline keine Maßnahmen			50,02
49,8 Hz	aktivieren der Standby Energie		Manuel/ Automatisch	49,96 49,96 49,94
49,2 Hz 49,0 Hz 48,8 Hz	Aktivierung Pumpspeicher usw. Lastabwurf LEVEL 1, 10-15 % Lastabwurf LEVEL 2, 10-15 %	ca. 12,5 % ca. 25,0 %	Automatisch Automatisch Automatisch	49,92 49,90
48,6 Hz 48,4 Hz	Lastabwurf LEVEL 3, 10-15 % Lastabwurf LEVEL 4, 10-15 %	ca. 37,5 % ca. 50,0 %	Automatisch Automatisch	49,08 49,86
47,5 Hz	alle Stromerzeugungsanlagen vom Netz		Automatisch	49 84 49 82
				49,80 1

Mains frequency

50,18

50,16

Lastabwurf

Wärmepumpen 27

Temporäre Reduzierung des Strombezugs

Bundesnetzagentur: Netzbetreiber sollen Strombezug von Wärmepumpen und Ladestationen drosseln können

Bei der Behörde läuft zurzeit ein Festlegungsverfahren zur Integration von steuerbaren Verbrauchseinrichtungen und steuerbaren Netzanschlüssen nach Paragraf 14a Energiewirtschaftsgesetz. Dem Eckpunktepapier zufolge sollen Verteilnetzbetreiber ab 2024 die Möglichkeit bekommen, bei Wärmepumpen und Kälteanlagen, Ladeeinrichtungen und Batteriespeichern steuernd einzugreifen, um Stromausfälle wegen Überlastungen örtlicher Leitungen zu vermeiden. Konsultationsbeiträge zu dem Festlegungsverfahren sind noch bis zum 27. Januar möglich.

Über einen Schaltkontakt eines Rundsteuerempfängers dürfen maximal 30 Ladeschütze oder Hilfsrelais geschaltet werden, deren Spulen-Nennleistung maximal je 7 VA betragen darf. Wird diese Anzahl überschritten, sind die Maßnahmen mit dem NB abzustimmen.

Wärmepumpen

- Wärmepumpen in monovalent (Raumwärmebedarf wird allein durch die Wärmepumpe gedeckt ggf. inkl. der integrierten elektrischen Zusatzheizung) oder bivalent-parallel (zu einer nichtelektrischen Raumheizung) betriebenen Anlagen (Standard).
- Die Elektrizitätsversorgung der Wärmepumpen kann bis zu sechs Stunden täglich, dabei nicht länger als zwei Stunden zusammenhängend unterbrochen werden.
- Wärmepumpen in bivalent-alternativ betriebenen Anlagen (Raumwärmebedarf wird während der Unterbrechungszeiten durch eine nichtelektrische Raumheizung gedeckt)
 - Die Elektrizitätsversorgung der Wärmepumpen kann bis zu 960 Stunden je Jahr unterbrochen werden.

Während der Unterbrechungszeiten darf der Raumwärmebedarf nur durch eine nichtelektrische Raumheizung gedeckt werden. Die aktuellen Unterbrechungszeiten erhalten Sie auf Anfrage. Load shedding

Wie funktioniert Lastabwurf "load shedding"

mittels "Rundsteuerempfänger"

- PLC (Power line communication)
- RF signals (TETRA, others)

Rundsteuertechnik 29

Frequenzen in Deutschland "Rundsteuertechnik"

•	Mainflingen,	129,1kHz	(DCF49)	100kW
•	Burg,	139kHz	(DCF39)	50kW
•	Lakihegy	135,6kHz	(HGA22)	100kW

Und viele weitere

Funkfrequenzen in DE für "Rundsteuertechnik"

Ort	Netzbetreiber	Vers Gebiet	Best.	Freq. [Hz]	Einspeiseebene [kV]	Impulsraster	Bemerkung
Aachen	ASEAG Energie GmbH		Θ	383,3	P20,P10		
Aachen	Finanzamt Aachen, Camp Eschweiler		Θ	200	_0.4		
Aachen	Finanzamt Aachen, de Gete		Θ	1350	P0.4		
Aachen	Finanzamt Aachen, Lager Brand		Θ	600	_0.4		
Aachen	Stadtwerke Aachen AG (STAWAG)		⊕	750	P10	Decabit	
Aalen	Stadtwerke Aalen		8	228	P20	Ricontic s	
Achern/Baden	Süwag Energie AG	Überlandwerk Achem	8	216,7	S20	Ricontic b	
Achim b. Bremen	Stadtwerke Achim AG		Θ	383,3	P20	Ricontic b	
Ahaus	Stadtwerke Ahaus GmbH		Θ	316,7	P10		
Albstadt	Albstadtwerke		\otimes	383,3	P20	Semagyr 50	
Albstadt	Elektrizitätswerk Ebingen Gebr. Haux GmbH & Co. KG		Θ	725	P20		
	Elektrizitätswerk Ehingen Gehr Haux						

Source: https://rundsteuerung.de/frequenzen/deutschland.html

RF signal

Ist TETRA Funk sicherer?

TETRA MANAGED SERVICES AGREEMENT FOR xxx xxxx GMBH

xxx relies on its _____ IP network, not only for critical communications but also for grid automation and remote meter reading.

It is therefore essential, that its communications platform is always 100 per cent operational, efficient, reliable and secure. xxx knew it could trust xxxxxxxx Solutions' TETRA network

(source: hxxps://www.somevendor.com/xxxxxxxxxxxxxpdf)

TETRA Rundsteuertechnik Analyse

Frequenz (Oberband)	MCC	MNC	LA	Air-Interface- Encryption	End-to-End- Encryption	Daten
426.6625 MHz	262	207	10085	nein	nein	IEC 60870-5-101
426.7125 MHz	262	207	10081	nein	nein	IEC 60870-5-101
427.2375 MHz	262	207	10080	nein	nein	IEC 60870-5-101
426.8875 MHz	262	168	4	nein	nein	IEC 60870-5-101

Yes → digital No → not encrypted

Übertragung der Signale Unverschlüsselt

```
20181221 15:43:26 FUNC:SDSDEC [CPTI:1 CalledSSI:9600005 CallingSSI:9600000 CallingEXT:0 UserData4: len:128 protoid:C0 (Teltronic) SDS-TL:[ MsgType:SDS-TRANSFER MSG_REF:164 TO_GROUP:1] DATA:[$H1080E6016716]] RX:1 20181221 15:43:26 FUNC:D-SDS DATA SSI:09600005 IDX:000 IDT:1 ENCR:0 RX:1
```

Wireshark IEC 60870-5-101 Protocol Dissector

Selbstbau eines TETRA Senders/Empfängers?

software:

https://github.com/osmocom/osmo-tetra

Hardware:

• SDR-Transceiver + amplifier < 300 €

"criminal Energie"

Was tun?

Was kann man tun?:

Grundfrage: Muss das "Device" Internet Access haben?

Sichere Kommunikationskanäle für Fernwartungund Diagnose

Authentifizierung und Verschlüsselung der Übertragung

Pflicht zum Update / Upgrade bei Sicherheitslücken

kaspersky