Orders, generators

Andres Buritica Monroy

1 Introduction

Let p be a prime and n be a positive integer throughout.

Recall that \mathbb{Z}_n denotes the integers mod n, and \mathbb{Z}_n^* denotes the subset of \mathbb{Z}_n containing the invertible elements.

The order of an element a of \mathbb{Z}_n^* , denoted $\operatorname{ord}_n(a)$, is the smallest positive integer m such that $a^m \equiv 1 \pmod{n}$.

If $\operatorname{ord}_n(a) = |\mathbb{Z}_n^*| = \varphi(n)$, then a is said to be a generator mod n.

There is always a generator mod p; we prove this in section 3, but assume it for now.

2 Exercises

- $a^k \equiv 1 \pmod{n} \iff \operatorname{ord}_n(a) \mid k$.
- $\operatorname{ord}_n(a) \mid \varphi(n)$.
- If $q \mid 2^p 1$, then q > p.
- Every prime factor of $2^{2^n} + 1$ is congruent to 1 mod 2^{n+1} .
- If g is a generator mod n, then the least residues of $\{g^1, g^2, \dots, g^{\varphi(n)}\}$ are \mathbb{Z}_n^* .
- If g is a generator mod n, and $\varphi(n) = 2k$, then

$$g^k \equiv -1 \pmod{n}$$
.

- There are either 0 or $\varphi(\varphi(n))$ generators mod n.
- If $a \mid \varphi(n)$ and there exists a generator mod n, then there are $\varphi(a)$ residues $x \mod n$ such that $\operatorname{ord}_n(x) = a$.
- If there exists a generator mod n, then the product of the elements of \mathbb{Z}_n^* is $-1 \mod n$.
- For any positive integer n ,

$$\sum_{i=1}^{p-1} i^n \equiv 0 \pmod{p}.$$

• Assume there exists a generator mod n. An element $x \in \mathbb{Z}_n^*$ can be written as y^k for $y \in \mathbb{Z}_n^*$ iff $\operatorname{ord}_p(x) \gcd(\varphi(n), k) \mid \varphi(n)$.

3 Existence of generators

Let p be an odd prime.

- There exists a generator mod p.
- There exists a generator mod p^k for any positive integer k.
- There exists a generator mod $2p^k$ for any positive integer k.
- There exists a generator mod 2^k iff $k \leq 2$.
- If n = xy, where x and y are coprime and larger than 2, then there does not exist a generator mod n.

4 Problems

- 1. Let p > 10 be a prime. Prove that there are positive integers m, n with m + n < p such that p divides $5^m 7^n 1$.
- 2. Find all positive integers n such that $n \mid 2^n 1$.
- 3. Prove that if $\sigma(n) = 2n + 1$, then n is a perfect square.
- 4. Let p be a prime. Find all nonempty sets S of residues mod p such that if the least residues of a and b are not in S, then

$$\prod_{i \in S} (a - i) \equiv \prod_{i \in S} (b - i) \pmod{p}.$$

- 5. Let p be an odd prime and r an odd natural number. Show that pr+1 does not divide p^p-1 .
- 6. Let p be an odd prime and let m and n be natural numbers not divisible by p. Prove that if there is some integer s such that $p \mid m^{2^s} + n^{2^s}$, then $p \equiv 1 \pmod{2^{s+1}}$.
- 7. Find all positive integers n such that $n \mid 2^{n-1} + 1$.
- 8. Find all positive integers n that satisfy the following property: for all positive integers m, relatively prime to n, we have $2n^2$ divides $m^n 1$.
- 9. Find all primes p, q, r such that $p \mid q^r + 1, q \mid r^p + 1, r \mid p^q 1$.

5 Homework

- 1. Prove that for all positive integers a>1 and n we have $n\mid \varphi(a^n-1).$
- 2. Assume that g is a generator mod p such that $p \mid g^2 g 1$.
 - (a) Prove that g-1 is a generator mod p.
 - (b) Prove that if $p \equiv 3 \pmod 4$, then g-2 is also a generator mod p.
- 3. Let p and q be primes. Prove that there is an integer x such that $(x+1)^p \equiv x^p \pmod q$ if and only if $q \equiv 1 \pmod p$.