

Considerations

- 1. Our understanding of the 2 types of data modelling approaches
- 2. Assumed needs and requirements of WHO
- 3. Current implementation of the relational and non-relational dataset
- 4. Nature of the data

Comparison of data modelling approaches (1)

Flexibility

- Rigidness of schemas
- Dealing with a change in data types requirements

Comparison of data modelling approaches (1)

Flexibility

- Rigidness of schemas
- Dealing with a change in data types requirements

Scalability

Vertical v.s. Horizontal scaling (and the cost involved)

Comparison of data modelling approaches (2)

Data storage footprint

Amount of data duplication

Comparison of data modelling approaches (2)

Data storage footprint

Amount of data duplication

Data Integrity

- ACID v.s. BASE
- Data integrity v.s. Data availability

Comparison of data modelling approaches (2)

Data storage footprint

Amount of data duplication

Data Integrity

- ACID v.s. BASE
- Data integrity v.s. Data availability

Suitability for Data Analysis

Type of data (Well structured v.s. Semi-structured)

Assumption about requirements of WHO

- Decision affects lives (millions of it!)
- Access to accurate and consistent data will be of utmost importance.

Recommendation and Justification (1)

Data model of choice: Relational table (SQL)

Cost-savings v.s. Human lives

Priority for human lives EXCEEDS cost-savings

Recommendation and Justification (1)

Data model of choice: **Relational table (SQL)**

Cost-savings v.s. Human lives

- Priority for human lives EXCEEDS cost-savings
- Do not require high data availability (unlike banking services)
 - More READ (a few times a day) than WRITE (once a day)
 - \circ Concurrency not an issue \rightarrow A simple DB instance should works too

Recommendation and Justification (1)

Data model of choice: Relational table (SQL)

Cost-savings v.s. Human lives

- Priority for human lives EXCEEDS cost-savings
- Do not require high data availability (unlike banking services)
 - More READ (a few times a day) than WRITE (once a day)
 - \circ Concurrency not an issue \rightarrow A simple DB instance should works too
- Savings are negligible since current dataset not in TBs
 - SQL might even be cheaper due to memory footprint!

Recommendation and Justification (2)

Data model of choice: Relational table (SQL)

Unlikely for data structure and requirements to change

COVID been around since Dec 2019 (2 years!)

Recommendation and Justification (2)

Data model of choice: Relational table (SQL)

Unlikely for data structure and requirements to change

COVID been around since Dec 2019 (2 years!)

Type of data

Data are mostly text and integers

Limitations

Table: covid19data

Columns:

iso_code text continent text location text date text total_cases text text new_cases new_cases_smoothed text total_deaths text new deaths text new_deaths_smoothed text total_cases_per_million text new_cases_per_million text new_cases_smoothed_per_million total_deaths_per_million text text new_deaths_per_million new_deaths_smoothed_per_million text text "Covid19data" are all in TEXT

Limitations

Table: covid19data

Columns:

iso code text continent text location text date text total cases text text new cases new_cases_smoothed text total deaths text new deaths text new deaths smoothed text total_cases_per_million text new_cases_per_million text new_cases_smoothed_per_million text total_deaths_per_million text new_deaths_per_million text new deaths smoothed per million text "Covid19data" are all in TEXT

Solution to ensure accuracy:

- Datacasting to correct type before performing queries <u>OR</u>
- Normalization and enforce data type