Санкт-Петербургский политехнический университет имени Петра Великого

Физико-механический институт Высшая школа прикладной математики и физики

Отчет по курсовой работе по дисциплине "Интервальный анализ"

Тема: Субдифференциальный метод Ньютона

Выполнил:

Студент: Байрамов Самир Группа: 5030102/00201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание

1	Постановка задачи	2
2	Теория 2.1 Введение	2
3	2.2 Алгоритм субдифференциального метода Ньютона	<i>3</i>
•	3.1	4
	3.2.1 Коррекция вектора правой части	6
4	3.2.3 Уменьшение колебаний	8

1 Постановка задачи

1. Задана ИСЛАУ x = Cx + d, где

$$C = \begin{pmatrix} [12, 16] & [2, 3] \\ [2, 3] & [26, 30] \end{pmatrix}, \quad d = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

Необходимо найти решение данной системы интервальных линейных уравнений с помощью субдифференциального метода Ньютона.

2. Задана ИСЛАУ Ax = b, где

$$\mathbf{A} = \begin{pmatrix} \begin{bmatrix} 3,4 \end{bmatrix} & \begin{bmatrix} 5,6 \end{bmatrix} \\ \begin{bmatrix} -1,1 \end{bmatrix} & -3,1 \end{bmatrix}, \quad \mathbf{b} = \begin{pmatrix} \begin{bmatrix} -3,4 \end{bmatrix} \\ \begin{bmatrix} -1,2 \end{bmatrix} \end{pmatrix}$$

Субдифференциальный метод Ньютона порождает осциллирующую последовательность:

$$\boldsymbol{x}^{k} = \begin{pmatrix} [-0.3333, 1] \\ [-0.3333, 0] \end{pmatrix}, \quad \boldsymbol{x}^{k+1} = \begin{pmatrix} [0, 0.5] \\ [-0.5, 0.3333] \end{pmatrix}$$

Начальное приближение:

$$oldsymbol{x^0} = \left(egin{array}{c} [0,1] \\ [0,1] \end{array}
ight)$$

Необходимо исследовать возможность коррекции задачи для достижения разрешимости: коррекция правой части и матрицы при исходной правой части.

2 Теория

2.1 Введение

Мы имеем уравнение, заданное в рекуррентном виде,

$$x = Cx + d$$
, $C = (I \ominus A^c)$, $d = b^c$,

и мы можем записать равносильное ему в \mathbb{RR} :

$$Cx \ominus x + d = 0.$$

Для расширения наших возможностей при нахождении формального решения мы перейдем из нелинейного пространства \mathbb{KR}^n в некое линейное пространство U, построив биективное отображение, называемое вложением:

$$\iota: \mathbb{KR}^n \to U$$

причем для каждого отображения $\phi: \mathbb{K}^n \to \mathbb{K}\mathbb{R}^n$ существует лишь единственное индуцированное отображение

$$\iota \circ \phi \circ \iota^{-1} : U \to U$$

где «о» служит для обозначения композиции отображений.

Тесная связь свойств отображений ϕ и $\iota \circ \phi \circ \iota^{-1}$ позволит нам заменить исходную задачу решения уравнения в \mathbb{KR}

$$f(x) = 0, \quad f: x \mapsto Cx \ominus x + d$$

на задачу решения индуцированного уравнения в U:

$$\mathcal{F}(y) = \iota(0),$$

$$\mathcal{F} = \iota \circ \mathbf{f} \circ \iota^{-1} : U \to U,$$

$$\mathcal{F}(y) = \iota \left(\mathbf{C} \iota^{-1}(y) \ominus \iota^{-1}(y) + \mathbf{d} \right),$$

и однозначно восстановить формальное интервальное решение \boldsymbol{x}^* по y^* из соотношения $\boldsymbol{x}^* = \iota^{-1} \left(y^* \right)$.

Определение. Биективные вложения $\iota: \mathbb{K}^n \to U$, которые

- сохраняют аддитивную алгебраическую структуру \mathbb{K}^n , m. e. такие, что $\iota(\boldsymbol{u}+\boldsymbol{v})=\iota(\boldsymbol{u})+\iota(\boldsymbol{v})$ для любых $\boldsymbol{u},\boldsymbol{v}\in\mathbb{K}^n$,
- сохраняют топологическую структуру \mathbb{K}^n , m. e. такие, что само отображение ι : $\mathbb{K}^n \to U$ и его обратное $\iota^{-1}: U \to \mathbb{R}^n$ непрерывны,

будем называть **погружениями интервального пространства** \mathbb{K}^n в линейное пространство U.

Определение свойств погружения позволяет сделать два важных вывода. Во-первых, оно однозначно задает линейное пространство: U должно быть евклидовым пространством \mathbb{R}^{2n} . Во-вторых, из определения погружения следует, что любые два погружения \mathbb{K}^n в \mathbb{R}^{2n} одинаковы с точностью до неособенного линейного преобразования \mathbb{R}^{2n} .

Определение. Погружение $sti: \mathbb{K}^n \to \mathbb{R}^{2n}$, которое действует по правилу

$$(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n) \mapsto (-\boldsymbol{x}_1, -\boldsymbol{x}_2, \dots, -\boldsymbol{x}_n, \overline{\boldsymbol{x}}_1, \overline{\boldsymbol{x}}_2, \dots, \overline{\boldsymbol{x}}_n)$$

т.е. такое, при котором взятые с противоположным знаком левые концы интервалов x_1, x_2, \ldots, x_n становятся первой, второй,..., n-ой компонентами точечного 2n-вектора, а правые концы x_1, x_2, \ldots, x_n становятся (n+1)-ой, ..., 2n-ой компонентами точечного 2n вектора соответственно, будем называть **стандартным погружением интервального пространства** \mathbb{K}^n в \mathbb{R}^{2n} .

2.2 Алгоритм субдифференциального метода Ньютона

Алгоритм субдифференциалъного метода Нъютона имеет следующий вид:

- 1. Выберем некоторое начальное приближение $x^{(0)} \in \mathbb{R}^{2n}$.
- 2. Если (k-1)-е приближение $x^{(k-1)} \in \mathbb{R}^{2n}, k=1,2,\ldots$, уже найдено, то вычисляем какой-нибудь субградиент $D^{(k-1)}$ отображения $\mathcal F$ в точке $x^{(k-1)}$ и полагаем

$$x^{(k)} \leftarrow x^{(k-1)} - \tau \left(D^{(k-1)}\right)^{-1} \mathcal{F}\left(x^{(k-1)}\right)$$

где $\tau \in [0,1]$ - релаксационный параметр.

3 Результаты

3.1

Поскольку все элементы матрицы C являются правильными интервалами, то в качестве начального приближения $x^{(0)}$ мы можем выбрать решение специальной $2n \times 2n$ -системы точечных уравнений:

$$(I - (\operatorname{mid} \mathbf{C})^{\sim}) x = \operatorname{sti}(\mathbf{d}).$$

Результаты, получаемые на каждой итерации субдифференциального метода Ньютона (для выбранного значения релаксационного параметра $\tau = 1$):

\overline{k}	$x^{(k)}$
0	$ \begin{pmatrix} [-0.1232, -0.1232] \\ [-0.1342, -0.1342] \end{pmatrix} $
1	$ \begin{pmatrix} [-0.1079, -0.1549] \\ [-0.1267, -0.1476] \end{pmatrix} $

Полученные результаты позволяют сделать два вывода.

- 1. Получение искомого корня интервального вектора $x^{(1)}$ уже на первой итерации свидетельствует о *высокой сходимости* субдифференциального метода Ньютона.
- 2. Можно заметить, что обе компоненты вектора-решения $x^{(1)}$ являются неправильными интервалами.

Попробуем изменять элементы интервальных матрицы ${m C}$ и вектора ${m d}$ и посмотрим, как эти изменения отразятся на решении системы

Сначала будем изменять вектор d. В первую очередь увеличим радиус компоненты d_1 на 6. Тогда ИСЛАУ примет вид

$$x = \begin{pmatrix} [12, 16] & [2, 3] \\ [2, 3] & [26, 30] \end{pmatrix} x + \begin{pmatrix} [-4, 8] \\ 4 \end{pmatrix}$$

Решение достигается уже на третьей итерации:

\overline{k}	$x^{(k)}$
0	$\begin{pmatrix} [-0.5753, 0.3287] \\ [-0.0931, -0.1753] \end{pmatrix}$
1	$ \begin{bmatrix} [-0.0931, -0.1753] \\ [0.3004, -0.5203] \\ [-0.1690, -0.0975] \end{bmatrix} $
2	$\begin{bmatrix} \begin{bmatrix} 0.4089, -0.7084 \end{bmatrix} \\ \begin{bmatrix} -0.1661, -0.1033 \end{bmatrix} \end{bmatrix}$

Теперь вернемся к исходной компоненте d_1 , равной 2, и «расширим» компоненту вектора d_2 так же на 6:

$$x = \begin{pmatrix} [12, 16] & [2, 3] \\ [2, 3] & [26, 30] \end{pmatrix} x + \begin{pmatrix} 2 \\ [-2, 10] \end{pmatrix}$$

\overline{k}	$x^{(k)}$
0	$\begin{pmatrix} [-0.0821, -0.1643] \\ [-0.3561, 0.0876] \end{pmatrix}$
1	$\begin{bmatrix} [-0.1502, -0.0894] \\ [0.0845, -0.3386] \end{bmatrix}$
2	$ \begin{bmatrix} -0.1463, -0.1107 \\ [0.0975, -0.3911] \end{bmatrix} $

Тогда получаемый на третьей итерации субдифференциального метода Ньютона интервальный вектор-решение примет вид

Таким образом, увеличивая радиус компоненты d_1 , мы «превратили» компоненту вектора-решения x_2 в правильный интервал. И наоборот: «расширяя» компоненту d_2 , мы добились того, что компонента x_1 стала правильным интервалом. Аналогичного результата можно добиться путем поочередного увеличения радиусов элементов интервальной матрицы C.

Означает ли это, что если мы «расширим» обе компоненты вектора \boldsymbol{d} , вектор \boldsymbol{x} будет содержать только правильные интервальные компоненты?

Решением ИСЛАУ

$$x = \begin{pmatrix} [12, 16] & [2, 3] \\ [2, 3] & [26, 30] \end{pmatrix} x + \begin{pmatrix} [-4, 8] \\ [-2, 10] \end{pmatrix}$$

является интервальный вектор ${m x}$

\overline{k}	$x^{(k)}$
0	$ \begin{pmatrix} [-0.53424, 0.2876] \\ [-0.3150, 0.0465] \end{pmatrix} $
1	$ \begin{pmatrix} [0.2582, -0.4741] \\ [0.0422, -0.2957] \end{pmatrix} $
2	$ \begin{pmatrix} [0.3542, -0.6642] \\ [0.0516, -0.3468] \end{pmatrix} $

и обе его компоненты являются неправильными векторами.

Сравним последнее полученное нами решение \boldsymbol{x} ИСЛАУ с расширенным вектором \boldsymbol{d} с решением $\boldsymbol{x^{(1)}}$ исходной ИСЛАУ:

$$\boldsymbol{x^{(1)}} = \begin{pmatrix} [-0.1079, -0.1549] \\ [-0.1267, -0.1476] \end{pmatrix}$$

Поскольку к неправильному интервалу в полной интервальной арифметике Каухера неприменимо понятие «ширина», определим правильные проекции сравниваемых векторов:

$$pro \, \boldsymbol{x} = \begin{pmatrix} [-0.6642, 0.3542] \\ [-0.3468, 0.0516] \end{pmatrix}, \ pro \, \boldsymbol{x^{(1)}} = \begin{pmatrix} [-0.1549, -0.1079] \\ [-0.1476, -0.1267] \end{pmatrix}$$

Легко заметить, что радиусы элементов вектора pro x, относящегося к ИСЛАУ с расширенным вектором d, значительно больше радиусов элементов вектора $prox^{(1)}$, который является решением исходной ИСЛАУ с точечным вектором d.

3.2.1Коррекция вектора правой части.

Для коррекции вектора правой части использовался следующий метод:

- 1. Вычисляется середина-вектор правой части b mid b.
- 2. Генерируется 4-мерная сетка для левых и правых радиусов для соответствующих компонент: $[0, \mathrm{rad}\,(\boldsymbol{b}_1)]^2 \times [0, \mathrm{rad}\,(\boldsymbol{b}_2)]^2$ с шагом дискретизации 0.1 .
- 3. В качестве метрики для оценки расстояния между новыми и исходными данными выбрана:

$$\rho(\boldsymbol{b}_{\text{new}}) = ||\operatorname{dist}(\boldsymbol{b}_{\text{new}}, \boldsymbol{b})||,$$

где $\operatorname{dist}(\boldsymbol{c},\boldsymbol{d})$ - покомпонентный максимум из разностей верхних и нижних границ интервалов c, d.

Ищется вектор $m{b}_{
m new}$: $\min
ho \left(m{b}_{
m new}
ight) \& \exists m{x_b} : m{Ax_b} = m{b}_{
m new}$. Эксперименты проводились для

Полученные результаты:
$$\boldsymbol{b}_{\mathrm{opt}} = \begin{pmatrix} [-2.5, 3.5] \\ [-1, 1.5] \end{pmatrix}$$
; решение: $\boldsymbol{x} = \begin{pmatrix} [-0.3333, 1.0] \\ [-0.3333, 0.0] \end{pmatrix}$.

Рис. 1: Решение и допусковое множество

Коррекция матрицы.

Производилась вариация радиусов матричных элементов с исходной правой частью,

и подбором были получены матрицы, для которых итерационный процесс сходится. В частности,
$$\mathbf{A'}_{\mathrm{opt}} = \begin{pmatrix} [3,4] & [5,6] \\ [-0.6,0.6] & [-3,1] \end{pmatrix}$$
, для которой достигается решение: $\mathbf{x} = \begin{pmatrix} [0.05,0.71] \\ [-0.52,0.19] \end{pmatrix}$.

Расширением \boldsymbol{a}_{21} на величины 0.1 влево и 0.4 вправо при дискретности шага 0.01 была найдена новая матрица, более близкая к исходной: $\boldsymbol{A}_{\mathrm{opt}} = \begin{pmatrix} [3,4][5,6] \\ [-0.75,1][-3,1] \end{pmatrix}$, решение $x = \begin{pmatrix} [0.15, 0.8] \\ [-0.4, 0.133] \end{pmatrix}$

Рис. 2: Решение и допусковое множество

3.2.3 Уменьшение колебаний

Приведём промежуточные варианты, для которых колебания решений есть, но меньше, чем для исходной системы:

1.
$$\boldsymbol{b} = \begin{pmatrix} [-2.7, 3.9] \\ [-1, 2] \end{pmatrix}$$
 Решение $\boldsymbol{x_k} = \begin{pmatrix} [-0.18, 0.35] \\ [0.18, -0.02] \end{pmatrix}$, $\boldsymbol{x_{k+1}} = \begin{pmatrix} [0.14, 0.5] \\ [-0.5, 0.33] \end{pmatrix}$

Рис. 3: Решение и допусковое множество

2.
$$\mathbf{b} = \begin{pmatrix} [-2.7, 3.9] \\ [-1, 1.7] \end{pmatrix}$$
,

Решение
$$\boldsymbol{x_k} = \begin{pmatrix} [0.15, 0.35] \\ [0.15, 0.02] \end{pmatrix}, \, \boldsymbol{x_{k+1}} = \begin{pmatrix} [0.3, 0.25] \\ [0.25, 0.02] \end{pmatrix}$$

$$\boldsymbol{Ax} = \boldsymbol{b}$$

Рис. 4: Решение и допусковое множество

0.00

0.25

0.50

0.75

1.00

4 Вывод

-0.6

-1.00

-0.75

-0.50

-0.25

- 1. Реализован субдифференциальный метод Ньютона на языке программирования Си.
- 2. Полученные результаты свидетельствует о высокой скорости сходимости субдифференциального метода Ньютона.
- 3. Варьируя ширину или, что равносильно, радиусы элементов интервальных матрицы C и вектора d, можно в достаточно широких пределах управлять решением ИСЛАУ вида x = Cx + d
- 4. Рассмотрен пример задачи, в которой есть сложности с нахождением устойчивого формального решения ИСЛАУ субдифференциальным методом Ньютона. Приведены способы получения решения: коррекция матрицы или правой части.