Quiz 4 (Sections 1.6, 2.1, 2.2)

You will have 30 minutes to complete the quiz.

Name:

Student Number:

- Q1 For each of the following concepts, write their definitions (8 Points).
 - (a) Subspace.
 - (b) Basis.
 - (c) Rank.
 - (d) Nullity.
- Q2 For each of the following statements, provide a sufficient condition to prove and disprove the statement (10 Points).
 - (a) There exists a subspace $S \subseteq \mathbb{R}^n$ such that $\vec{0} \notin S$.
 - (b) Every subspace $S \subseteq \mathbb{R}^n$ is unbounded.
 - (c) Every subset of \mathbb{R}^n containing the zero vector is dependent.
 - (d) A $n \times n$ matrix A is invertible if and only if rank(A) = n
 - (e) There may be a non-zero matrix A such that rank(A) = 0.

Q1

- (a) A subspace $S \subseteq \mathbb{R}^n$ is a set of vectors which satisfies the following.
 - $-\vec{0} \in S$.
 - For any $\vec{x}, \vec{y} \in S$ it must be that $\vec{x} + \vec{y} \in S$.
 - For any $\vec{x} \in S$ and $k \in \mathbb{R}$ it must be that $k\vec{x} \in S$.
- (b) Let $S \subseteq \mathbb{R}^n$ be a subspace. A set $W = \{\vec{w}_1, ..., \vec{w}_n\}$ is a basis for the subspace S if it satisfies the following.
 - The set *W* is linearly independent.
 - The set *W* spans *S*.
- (c) The rank is defined for any matrix and is the number of pivot columns in the REF of said matrix.
- (d) The nullity is defined for any matrix and is the number of non-pivot columns in the REF of said matrix.

MAT188 – Winter 2025 Page 1 of 2

Q2

- (a) There exists a subspace $S \subseteq \mathbb{R}^n$ such that $\vec{0} \notin S$.
 - Prove To prove the claim, it is sufficient to produce an example. That is, we want to show that there exists a subspace of \mathbb{R}^n that does not contain the zero vector.
- Disprove To disprove the claim, it is sufficient to show that every subspace contains the zero vector. This can be done by using the definition of subsapce.
- (b) Every subspace $S \subseteq \mathbb{R}^n$ is unbounded.
 - Prove To prove this claim, it is sufficient to show that every subspace is unbounded.
- Disprove To disprove this claim, it is sufficient to produce a counterexample of a bounded subspace.
- (c) Every subset of \mathbb{R}^n containing the zero vector is dependent.
 - Prove To prove this claim, it is sufficient to show that any subset containing the zero vector must be dependent.
- Disprove To disprove the claim, it is sufficient to show that there exists a linearly independent subset containing the zero vector.
- (d) A $n \times n$ matrix A is invertible if and only if rank(A) = n.
 - Prove To prove this claim, we would need to show both implications (as we have an if and only if statement). Firstly, that if a $n \times n$ matrix is invertible, then it must have full rank. Secondly, that if a $n \times n$ matrix has full rank, then it must be invertible.
- Disprove To disprove this claim, there are two implications we must consider. Firstly, we may produce a counterexample of a matrix which is invertible, but does not have full rank. Secondly, we may produce a counterexample of a matrix with full rank, which is not invertible. It may be that only of the two conditions fails.
- (e) There may be a non-zero matrix A such that rank(A) = 0.
 - Prove To prove this claim, it is sufficient to produce an example.
- Disprove To disprove this claim, we may show that a matrix has rank zero if and only if it is the zero matrix (or more simply, we would need to show that for any non-zero matrix the rank is greater than 0).

MAT188 – Winter 2025 Page 2 of 2