1. Тестовая задача для двух частиц (с нулевой начальной скоростью)

Размер расчетной области L = LL = 500 м Количество узлов на расчетной области LL M = 256

 \Box по времени dt=1 с

СКО скорости частиц $V_e = 0 \text{ m/c}$

 $V_i = 0 \text{ m/c}$

* Скачок на графике x(t) обусловлен периодическими граничными условиями. Как только одна из частиц вылетает за пределы расчетной области, такая же частица влетает с другой стороны.

2. Задача для 10000 частиц каждого сорта

Размер расчетной области L = LL = 50000 м

Количество узлов на расчетной области LL M = 256

 \Box ar по времени dt = 1 c

СКО скорости частиц $V_e = 60 \text{ m/c}$ $V_i = 30 \text{ m/c}$

Mассы частиц $m_e = m_i$ on = 1

Амплитудный параметр ϕ -ии распределения eps = 0.5 Частотный параметр ϕ -ии распределения I = 0.5

Начальное распределение положений и скоростей частиц для сорта е:

Начальное распределение положений и скоростей частиц для сорта ion:

Распределение V(x) через t = 2c:

Распределение V(x) через t = 10c:

Распределение V(x) через t = 30c:

Распределение положений и скоростей частиц для сорта е через t = 30c:

Распределение положений и скоростей частиц для сорта ion через t = 30c:

Изменение кинетической энергии системы во времени:

