РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

Практикум по математической статистике

Лабораторная работа №5

Тема: «Дискриминантный анализ»

Вариант 10

Выполнил

Студент: Феоктистов Владислав

Группа: НПМбд-01-19б

№ c/б: 1032192939

Преподаватель: Матюшенко Сергей Иванович

Цель работы: приобрести практические навыки применения дискриминантного анализа для решения конкретных задач с использованием статистического пакета SPSS.

Ход работы:

- 1. Изучил теоретические основы дискриминантного анализа, используя материалы учебного пособия.
- 2. Разобрал пример использования SPSS для реализации дискриминантного анализа.
- 3. Запустим программу SPSS и введем исходные данные по обучающей выборке.

	X1	X2	ХЗ	X4	X5	Х6	X7
1	1	27,6	7	140	4	46	
2	1	25,6	8	190	5	37	
3	1	32,8	8	170	6	43	
4	1	36,5	7	290	4	52	
5	1	26,5	6	200	3	44	
6	1	38,8	9	390	5	49	
7	1	24,4	6	150	3	53	
8	2	23,3	7	380	3	43	
9	1	32,3	6	180	2	49	
10	2	19,6	4	240	3	29	
11	1	38,0	7	190	5	45	
12	1	37,2	6	220	4	42	
13	2	21,9	4	270	2	43	
14	1	25,9	5	140	3	57	
15	2	19,9	3	110	4	55	
16	2	17,3	6	160	3	59	
17	2	19,4	4	150	2	56	
18	2	22,9	3	170	2	38	
19	2	26,5	6	240	4	34	
20	1	35,3	8	180	5	46	
21	2	20,4	4	180	2	46	
22	2	28,8	2	140	2	58	
23	2	29,8	9	500	2	37	
24	2	18,8	11	420	5	45	
25	4	33.3	n	270	A	EA	

Далее проделаем дискриминантный анализ.

После нажатия на кнопку «ОК» получаем следующий вывод:

Сводка результатов обработки наблюдений

Невзвешенные	наблюдения	N	Процент	
Валидные		30	100,0	
Исключенные	Пропущенные или лежащие вне диапазона коды группирующей переменной	0	0,	
	По крайней мере одна пропущенная дискриминантная переменная	0	0,	
	Оба групповых кода пропущены или лежат вне диапазона, и отсутствует по крайней мере одна дискриминантная переменная.	0	0,	
	Итого искл.	0	,0	
Всего набл.		30	100,0	

		і руп	повые статисти	31		
				Кол-во валидных (иск целиком)		
Вероятность		Среднее	Стд. отклонение	Невзвешенн ые	Взвешенные	
Низкая	История	2,000	,0000	9	9,000	
	Доход	20,444	3,0025	9	9,000	
	Срок	5,444	2,4552	9	9,000	
	Кредит	218,889	94,7951	9	9,000	
	Семья	3,111	1,0541	9	9,000	
	Возраст	44,778	12,0807	9	9,000	
Средняя	История	1,417	,5149	12	12,000	
	Доход	26,242	3,4670	12	12,000	
	Срок	5,333	2,0597	12	12,000	
	Кредит	211,667	76,3763	12	12,000	
	Семья	3,750	1,6026	12	12,000	
	Возраст	45,750	7,1748	12	12,000	
Высокая	История	1,111	,3333	9	9,000	
	Доход	34,089	4,2316	9	9,000	
	Срок	7,222	1,3944	9	9,000	
	Кредит	262,222	116,8094	9	9,000	
	Семья	3,778	1,2019	9	9,000	
	Возраст	47,889	6,1734	9	9,000	
Итого	История	1,500	,5085	30	30,000	
	Доход	26,857	6,4137	30	30,000	
	Срок	5,933	2,1324	30	30,000	
	Кредит	229,000	94,6263	30	30,000	
	Семья	3,567	1,3309	30	30,000	
	Возраст	46,100	8,4786	30	30,000	

Из данных таблицы «Критерий равенства групповых средних» следует, что переменные «Кредит» («Размер кредита»), «Семья» («Состав семьи заемщика»), «Возраст» («Возраст заемщика») незначимо различаются по группам, поскольку для них уровень значимости Знч. > 0.05, поэтому классификацию заемщиков целесообразно проводить по первым двум переменным: «История» («Брался ли кредит») и «Доход» («Среднемесячный доход семье заемщика»).

Критерий равенства групповых средних

	Лямбда Уилкса	F	ст.св1	ст.св2	Знч.
История	,507	13,106	2	27	,000
Доход	,291	32,831	2	27	,000
Срок	,838	2,619	2	27	,091
Кредит	,944	,796	2	27	,461
Семья	,948	,741	2	27	,486
Возраст	,978	,305	2	27	,740

Анализ матрицы коэффициентов в таблице «Объединенные внутригрупповые матрицы» свидетельствует об отсутствии мультиколлинеарности, поэтому коэффициенты корреляции малы.

Объединенные внутригрупповые матрицы

		История	Доход	Срок	Кредит	Семья	Возраст
Корреляция	История	1,000	-,455	-,141	,486	-,626	-,234
	Доход	-,455	1,000	,026	-,176	,621	,053
	Срок	-,141	,026	1,000	,583	,341	-,352
	Кредит	,486	-,176	,583	1,000	-,037	-,469
	Семья	-,626	,621	,341	-,037	1,000	,099
	Возраст	-,234	,053	-,352	-,469	,099	1,000

Данные таблицы «Собственные значения» показывают, что первая функция учитывает 95,2% дисперсии, а корреляция между исходными данными и данными, полученными по модели, высокая и составляет 0,929. Для второй функции эти значения намного меньше.

Собственные значения

Функция	Собственное значение	% объясненной дисперсии	Кумулятивны й %	Каноническа я корреляция
1	6,327ª	95,2	95,2	,929
2	,318ª	4,8	100,0	,491

 а. В анализе использовались первые 2 канонические дискриминантные функции.

Оценка значимости дискриминантных функций проводится по коэффициенту Уилкса (λ). Из данных таблицы «Лямбда Уилкса» видно, что для первой функции значимость Знч. < 0,001, следовательно, она позволяет значимо и надежно дискриминировать наблюдения. В то же время значимость второй функции составляет лишь 0,239. Поэтому в дальнейшем для классификации целесообразно использовать только первую дискриминантную функцию.

Лямбда Уилкса

Проверка функции(й)	Лямбда Уилкса	Хи-квадрат	CT.CB.	Знч.
от 1 до 2	,104	55,549	12	,000
2	,759	6,757	5	,239

Нормированные коэффициенты канонической дискриминантной функции

	Функция		
	1	2	
История	-,963	1,235	
Доход	1,039	,543	
Срок	,019	1,276	
Кредит	,807	-,837	
Семья	-1,177	-,310	
Возраст	,281	,383	

Структурная	матрица
-------------	---------

	Функция		
	1	2	
Доход	,620*	-,012	
Возраст	,059*	,036	
История	-,375	,507*	
Срок	,152	,388*	
Кредит	,080	,244	
Семья	,076	-,243*	

Объединенные внутригрупповые курригрупповые корреляции между дискриминантными переменными и нормированными каноническими дискриминантными теременными дискриминантными теременные упорядочены по абсолотной величине корреляций внутри функции.

* Максимальная по абсолотной величине корреляций внутри объркительными и дискриминантными и дискриминантными и дискриминантными и

Формально по данным таблицы «Коэффициенты канонической дискриминантной функции» можно построить две дискриминантные функции:

$$D_1(X) = -4,286 - 2,566x_1 + 0,290x_2 + 0,009x_3 + 0,008x_4 - 0,876x_5 + 0,032x_6;$$

$$D_2(X) = -11,943 + 3,291x_1 + 0,151x_2 + 0,631x_3 - 0,009x_4 - 0,231x_5 + 0,044x_6;$$

Коэффициенты канонической дискриминантрой функции

	Функция		
	1	2	
История	-2,566	3,291	
Доход	,290	,151	
Срок	,009	,631	
Кредит	,008	-,009	
Семья	-,876	-,231	
Возраст	,032	,044	
(Константа)	-4,286	-11,943	

Ненормированные коэффициенты

Однако поскольку значимость второй функции более 0,001, ее для дискриминации использовать нецелесообразно.

Координаты центроидов по группам приведены в таблице «Функции в центроидах групп». Они используются для нанесения центроидов на карту восприятия.

Функции в центроидах групп

	Функция		
Вероятность	1	2	
Низкая	-2,873	,503	
Средняя	-,289	-,652	
Высокая	3,258	,366	

Ненормированные канонические дискриминантные функции вычислены в центроидах групп.

Зная координаты центроидов по группам и формулу дискриминантной функции $D_1(X)$, можно предсказать вероятность погашения кредита.

H4															
-4	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
1 2	№ вариант а	Брался ли кредит ранее ^{")} (Да -1, Нет-2)	Среднеме- сячный доход семьи заемщика,	Период погашения кредита, лет	Размер кредита, тыс. руб.		Возраст заемщик а, лет	D1(X)	Расстояние до 1	Расстояние до 2	Расстояние до 3	Предсказанная группа		1	D1(X) -2,873
3			тыс. руб.											2	-0,289
4	10	2	19,99	5	270	3	28	-3,15237						3	3,258
5	11	1	23,82	7	350	- 5	45	-0,0229							
6	12	1	16,64	3	320	4	42	-1,60144	1,271563097	1,312436903	4,859436903	1			

Классификационные статистики

Априорные вероятности для групп

она
на 0 ена.

		Наблюдения, использованные в анализе					
Вероятность	Априорные	Невзвешенн ые	Взвешенные				
Низкая	,300	9	9,000				
Средняя	,400	12	12,000				
Высокая	,300	9	9,000				
Итого	1,000	30	30,000				

Карта восприятий визуализирует разделение наблюдений функциями. Так, первая функция $D_1(X)$ делит наблюдения на две группы: 1, 2 и 2, 3, вторая функция $D_2(X)$ отделяет наблюдения 2 от всех остальных.

Поле графика разделено дискриминантными функциями на три области: в левой части находятся преимущественно наблюдения первой группы с низкой вероятностью своевременного погашения кредита; в правой части – третьей группы с высокой вероятностью и в нижней части – второй группы со средней вероятностью.

Символы, используемые в территориальной карте

Символ Грп. Метка

1 1 Низкая 2 2 Средняя 3 Высокая

Указывает центр группы

В таблице «Поточечные статистики» размещена информация о фактических ($Actual\ Group$) и предсказанных ($Predicted\ Group$) группах для каждого заемщика и соответствующие дискриминантные баллы ($Discriminant\ Scores$), полученные при подстановке значений переменных в уравнениях дискриминантных функций $D_1(X)$ и $D_2(X)$.

					ПОПОЧЕЧНЫ	е статистики						
		Наивероятнейша			ая группа		Вторая вероятнейшая группа			Дискриминантные баллы		
		P(D>d G=g)										
	Номер наблюдения	Фактическая группа	Предсказанн ая группа	p	CT.CB	P(G=q D=d)	Квадрат расстояния Махалонобис а до центра	Группа	P(G=q D=d)	Квадрат расстояния Махалонобис а до центра	Функция 1	Функция
сходные	1	2	2	,721	2	,982	,655	3	,014	8,635	,371	-,1
	2	2	2	,779	2	,949	,500	1	,051	5,757	-,942	-,9
	3	2	2	,506	2	,973	1,361	3	,017	8,890	,276	,3
	4	3	3	,497	2	1,000	1,398	2	,000	22,681	4,412	,1
	5	2	2	,202	2	,883	3,200	3	,117	6,666	1,349	-1,3
	6	3	3	,235	2	1,000	2,896	2	,000	28,771	4,956	
	7	2	2	,655	2	,983	,845	3	,016	8,509	,608	-,8
	8	2	2	,515	2	,895	1,326	- 1	,104	5,046	-,627	
	9	3	3	,794	2	1,000	,462	2	,000	18,130	3,896	
	10	1	1	,147	2	,943	3,833	2	,057	10,012	-3,365	-1,3
	11	3	3	,890	2	,996	,232	2	,004	11,800	2,883	3,
	12	3	3	,759	2	,999	,552	2	,001	15,874	3,675	-,:
	13	2	2	,697	2	,874	,722	1	,126	4,012	-1,116	-,4
	14	3	2**	.365	2	.927	2,018	3	.073	6,518	1,092	-,
	15	1	1	,275	2	,999	2,585	2	,001	17,638	-4,424	
	16	1	1	,405	2	,999	1,810	2	,001	16,613	-3,720	1,
	17	1	1	.880	2	.950	,257	2	,050	6,730	-2,451	'
	18	2	1**	,433	2	,539	1,673	2	,461	2,558	-1,844	100
	19	1	1	,675	2	,892	,787	2	,108	5,593	-2,078	
	20	3	3	,397	2	,952	1,847	2	,048	8,404	2,072	1,
	21	1	1	,778	2	,847	,503	2	,153	4,502	-2,216	
	22	2	2	,182	2	,944	3,403	3	,030	9,720	,232	1,
	23	3	3	.447	2	,999	1,612	2	,001	15,605	2,957	1.
		1	8 1	3,5155				2	1.000		0.000000	1886
	24		1	,531	2	,997	1,265		,003	13,699	-3,257	1.
	25	3	3	,982	2	,999	,036	2	,001	14,788	3,376	
	26	2	2	,385	2	,598	1,907	1	,402	2,122	-1,587	1 5
	27	1	1	,539	2	,832	1,238	2	,168	5,007	-1,854	
	28	1	1	,761	2	,882	,547	2	,118	5,137	-2,495	-,
	29	2	2	,048	2	,999	6,064	1	,000	20,750	-,094	-3,
	30	2	2	,214	2	,999	3,083	1	,001	16,154	-,089	-2,
осс-проверенные	1	2	2	,554	6	,963	4,919	3	,031	11,239		
	2	2	2	,244	6	,866	7,923	1	,134	11,073		
	3	2	2	,074	6	,866	11,521	3	,111	15,058		
	4	3	3	,853	6	1,000	2,637	2	,000	23,888		
	5	2	2	,225	6	,631	8,188	3	,369	8,687		
	6	3	3	,178	6	1,000	8,921	2	,000	37,535		
	7	2	2	,277	6	,944	7,505	3	,055	12,606		
	8	2	2	,437	6	,783	5,878	1	,216	7,881		
	9	3	3	,459	6	1,000	5,686	2	,000	22,461		
	10	1	1	,047	6	,729	12,743	2	,271	15,297		
	11	3	3	,532	6	,990	5,093	2	,010	14,869		
	12	3	3	,805	6	,999	3,033	2	,001	17,355		
	13	2	2	,670	6	,794	4,046	1	,206	6,168		
	14	3	2***	,466	6	,999	5,627	1	,000	21,429		
	15	1	1	,212	6	,999	8,381	2	,001	23,699		
	16	1	1	,188	6	,999	8,755	2	,001	23,731		
	17	1	1	,690	6	,912	3,901	2	,088	9,146		
	18	2	1"	,529	6	,852	5,114	2	,148	9,190		
	19	1	1	,252	6	,702	7,820	2	,298	10,112		
	20	3	3	,243	6	,807	7,939	2	,193	11,378		
	21	1	1	,907	6	,796	2,129	2	,204	5,425		
	22	2	3**	,003	6	,600	19,944	2	,309	21,845		
			[.019	6	.993	15,112	2	.007	25,605		
		3				100000		2	,007	35.769		
	23	3	3 1	100000	8	QQA						
	23 24	1	1	,000	6	,994	25,041					
	23 24 25	1 3	1 3	,000 ,965	6	,999	1,419	2	,001	15,394		
	23 24 25 26	1 3 2	1 3 1**	,000 ,965 ,686	6 6	,999 ,592	1,419 3,929	2 2	,001 ,408	15,394 5,248		
	23 24 25 26 27	1 3 2 1	1 3 1 ^m 1	,000 ,965 ,686 ,675	6 6 6	,999 ,592 ,717	1,419 3,929 4,013	2 2 2	,001 ,408 ,283	15,394 5,248 6,446		
	23 24 25 26	1 3 2	1 3 1**	,000 ,965 ,686	6 6	,999 ,592	1,419 3,929	2 2	,001 ,408	15,394 5,248		

Для исходных данных квадрат расстояния Махалонобиса вычисляется по канонической функции Для кросс-проверяемых данных квадрат расстояния Махалонобиса вычисляется по наблюдениям.

На рисунках с 1го по 3ий ниже отражено расположение заемщиков каждой из трех групп на плоскости двух дискриминантных функций $D_1(X)$ и $D_2(X)$. По этим графикам можно проводить детальный анализ вероятностей погашения кредита внутри каждой группы, судить о характере распределения заемщиков и оценивать степень их удаленности от соответствующего центроида.

Кроме того, на 4ом рисунке в той же системе координат приведен объединенный график распределения всех групп заемщиков вместе со своими центроидами; его можно использовать для проведения сравнительного визуального анализа характера взаимного расположения групп заемщиков банка с разными вероятностями погашения кредита. В левой части графика расположены заемщики с низкой вероятностью погашения кредита, в правой — с высокой, а в средней части — со средней вероятностью. Поскольку по результатам расчета вторая дискриминантная

Неправильно классифицированное наблюдени

а. Кросс-проверка проводится только для наблюдений в анализе. При кросс-проверке каждое наблюдение классифицируется функциями, выведенными по всем наблюдениям, за исключением его самого.

функция $D_2(X)$ оказалась незначима, то различия координат центроидов по этой оси незначительны. Этот факт подтверждается картой восприятия, которая была расположена выше.

Данные таблицы «Результаты классификации» свидетельствуют о том, что для 93,3% исходных и перекрестно-проверяемых 86,7% сгруппированных наблюдений классификация проведена корректно, высокая точность достигнута в каждой из групп, но в первой она максимальная – 100%, а в третьей несколько ниже – 88,9%.

Результаты классификации^{b,c}

			Предсказанна				
		Вероятность	Низкая	Средняя	Высокая	Итого	
Исходные	Частота	Низкая	9	0	0	9	
		Средняя	1	11	0	12	
		Высокая	0	1	8	9	
	%	Низкая	100,0	0,	0,	100,0	
		Средняя	8,3	91,7	,0	100,0	
		Высокая	,0	11,1	88,9	100,0	
Кросс-проверенныеа	Частота	Низкая	9	0	0	9	
		Средняя	2	9	1	12	
		Высокая	0	1	8	9	
	%	Низкая	100,0	,0	,0	100,0	
		Средняя	16,7	75,0	8,3	100,0	
		Высокая	,0	11,1	88,9	100,0	

а. Кросс-проверка проводится только для наблюдений в анализе. При кросс-проверке каждое наблюдение классифицируется функциями, выведенными по всем наблюдениям, за исключением его самого.

Вывод: приобрёл практические навыки применения дискриминантного анализа для решения конкретных задач с использованием статистического пакета SPSS.

 ^{93,3%} исходных сгруппированных наблюдений классифицировано правильно.

с. 86,7% перекрестно-проверяемых сгруппированных наблюдений классифицировано правильно.