CS 6041 Theory of Computation

Decidability

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Revisit: Turing-recognizable and Turing-decidable

- Turing-recognizable: A=L(M)
 - x∈A, M accept x
 - x∉A, M reject x or loop

- Turing-decidable: A=L(M)
 - \circ x \in A, M accept x
 - o x∉A, M reject x

Halt no matter what is the input

Turing-recognizable ≠ Turing-decidable

Revisit: The output of Turing Machine

Accept
 Reject
 Halt -> Decidable
 Recognizable

= Never Halt

Loop

How to prove a language is decidable

- Create a Turing machine M
 - For each $x \in L$, M either accept or reject x

If such a TM exists, language L is decidable

Decidable problems concerning regular languages

Acceptance problem for DFAs

- whether a DFA accepts a string
- 2. Acceptance problem for NFAs
 - whether a NFA accepts a string
- 3. Regular expression decidability
 - Whether a regular expression generates a string
- 4. Emptiness testing for DFAs
 - Whether a DFA is empty
- 5. Equivalence of DFAs
 - Whether two DFAs recognize the same language

1. Acceptance problem for DFAs

whether a particular DFA accepts a given string

Language

- $A_{DFA} = \{(B, w) \mid B \text{ is a DFA that accepts input string } w\}$
- o DFA B accept w \Leftrightarrow <B, w> ∈ A_{DFA}

THEOREM 4.1

A_{DFA} is a decidable language.

Proof idea:

design a M to decide $A_{DFA} = \{\langle B, w \rangle | B \text{ is a DFA that accepts input string w} \}$

M simulates B on input w

THEOREM 4.1 proof

input

• Proof:

design a M to decide A_{DFA}

How to simulate B?

M = "On input (B, w), where B is a DFA and w is a string:

- (1) Simulate B on input w.
- (2) If the simulation ends in an accept state of B, accept.

If it ends in a nonaccepting state of B, reject."

THEOREM 4.1 proof (details)

input

• Proof:

TM M first check the input format <B, w>
If w is not string or B is not $(Q, \Sigma, \delta, q_0, F)$, reject

M carries out the simulation

- (1) M keeps track of B's current state and B's current position in the input w by writing this information down on its tape
- (2) The states and position are updated according to the specified transition function $\boldsymbol{\delta}$
- (3) When M finishes processing the last symbol of w, M accepts the input if B is in an accepting state; M rejects the input if B is in a nonaccepting state.

1. Acceptance problem for DFAs

- A_{DFA} is a decidable language.
- A_{DFA} = {(B, w) | B is a DFA that accepts input string w}

• For the following DFA M, $\langle M, 0100 \rangle \in A_{DFA}$

True

• For the following DFA M, $\langle M, 011 \rangle \in A_{DFA}$

False

• For the following DFA M, $\langle M, \varepsilon \rangle \in A_{DFA}$

False

2. Acceptance problem for NFAs

Acceptance problem for NFAs

 whether a particular non-deterministic finite automaton accepts a given string

Language

- $A_{NFA} = \{\langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w\}$
- ∘ NFA B accept w \Leftrightarrow <B, w> \in A_{NFA}

Theorem 4.2

A_{NFA} is a decidable language.

Proof idea:

First, transform NFA B into an equivalent DFA C

Then use TM N to simulate C on input w

THEOREM 4.2 proof

• Proof:

design a N to decide A_{NFA}

N ="On input $\langle B, w \rangle$, where B is a NFA and w is a string:

(1) Transform NFA B into an equivalent DFA C

(2) Execute TM M on input <C, w>

(3) If C accepts, accept; otherwise, reject

3. Regular expression decidability

- Regular expression decidability
 - whether a regular expression generates a given string

- Language
 - $A_{REX} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$

Theorem 4.3

A_{REX} is a decidable language.

• Proof :

The following TM P decides A_{REX} .

P = "On input $\langle R, w \rangle$, where R is a regular expression and w is a string:

- (1) Convert regular expression R to an equivalent NFA A.
- (2) Run TM N on input $\langle A, w \rangle$.
- (3) If N accepts, accept; if N rejects, reject."

Decidability for DFA/NFA/REX

- For decidability purposes, it is equivalent to present the Turing machine with
 - a DFA
 - a NFA
 - a regular expression

• For the following DFA M, $\langle M, 0100 \rangle \in A_{REX}$

True

4. Emptiness testing for DFA

Emptiness testing for DFA

 whether or not a DFA does not accept any strings at all (is empty or not)

Language

• $E_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$

Theorem 4.4

- How to test whether a DFA does not accept any strings?
 - Check all strings => impossible
- Think the opposite: DFA accepts one string
 - DFA accepts some string if and only if reaching an accept state from the start state by traveling along the arrows of the DFA is possible

Theorem 4.4 proof details

Proof idea:

T ="On input $\langle A \rangle$, where A is a DFA:

- (1) Mark the start state of A.
- (2) Repeat until no new states get marked:
- (3) Mark any state that has a transition coming into it from any state that is already marked.
- (4) If no accept state is marked, accept; otherwise, reject."

Because the number of states is limited

4. Emptiness testing for DFAs

- E_{DFA} is a decidable language.
- $E_{DFA} = \{\langle B \rangle \mid B \text{ is a DFA and } L(B) = \emptyset \}$

accept state in B is marked
=> M rejects

accept state in B is not marked
=> M accepts

• For the following DFA M, $\langle M \rangle \in E_{DFA}$

False

5. Equivalence of DFAs

- Equivalence of DFAs
 - whether two DFAs recognize the same language
- Language
 - $EQ_{DFA} = \{\langle A,B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$

EQ_{DFA} is a decidable language.

symmetric difference

If A and B are different

 EQ_{DFA} is a decidable language.

different

$$EQ_{DFA} = \{\langle A, B \rangle |$$
A and B are DFAs and L(A)=L(B) }.

$$E_{DFA} = \{\langle L(A) \oplus L(B) \rangle |$$

$$L(A) \oplus L(B) \text{ is a DFA}$$
and
$$L(L(A) \oplus L(B)) = \emptyset \}$$

Regular operations

	DFA/NFA	PDA	TM
Union	close	?	?
Concatenation	close	?	?
Star	close	?	?
Complement	close	?	?
Boolean operation	close	?	?

EQ_{DFA} is a decidable language.

Proof idea:

Regular language is closure on Boolean computation

Two language is the same if and only if their symmetric difference is empty

Whether a regular language is empty is decidable (theorem 4.4)

Theorem 4.5 proof

• Proof:

TM F = "On input $\langle A, B \rangle$,
where A and B are DFAs:

(1) Construct DFA C as:

$$L(C)=L(A)\oplus L(B)$$

- (2) Run TM T from Theorem 4.4 on input $\langle C \rangle$.
- (3) If T accepts, accept.

If T rejects, reject."

symmetric difference

Conclusion

- A_{DFA} is a decidable language.
 - Whether a DFA accepts a string
- A_{NFA} is a decidable language.
 - Whether a NFA accepts a string
- A_{RFX} is a decidable language.
 - Whether a regular expression generates a string
- E_{DFA} is a decidable language.
 - Whether a DFA is empty
- EQ_{DFA} is a decidable language.
 - Whether two DFAs recognize the same language

Decidable problems concerning CFL/CFGs

CFG generation decidability

Whether a CFG generates a particular string

Emptiness testing for CFGs

Whether a CFG is empty

3. Equivalence of CFGs

Whether two CFGs recognize the same language

4. CFL decidability

Whether a CFL is decidable

1. CFG generation decidability

- CFG generation
 - whether a CFG generates a particular string
- Language
 - $A_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG that generates string } w\}$

THEOREM 4.7

A_{CFG} is a decidable language.

Proof idea 1:

use G to go through all derivations to determine whether any is a derivation of w

THEOREM 4.7

A_{CFG} is a decidable language.

Proof idea 1:

use G to go through all derivations to determine whether any is a derivation of w,

If G generate w, the algorithm halts

If G does not generate w, the algorithm **never halts** (we might have infinite derivations)

This only prove A_{CFG} is a turing recognizable language!

THEOREM 4.7

A_{CFG} is a decidable language.

Proof idea 2:

Use Chomsky normal form, any derivation of length n string needs 2n-1 steps (our homework)

Change G into equivalent form in CNF

Check all derivations which lengths are equal to 2n-1

THEOREM 4.7 proof (details)

• Proof:

TM S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.

2. List all derivations with max{1, 2n − 1} steps, where n is the length of w;

3. If any of these derivations generate w, accept; if not, reject."

Example

• For the following CFG G, $\langle G, aa+a^* \rangle \in A_{CFG}$

$$S \rightarrow SS+ | SS* | a$$

True

• For the following CFG G, $\langle G, abab \rangle \in A_{CFG}$

$$S \rightarrow aSb \mid SS \mid \varepsilon$$

True

• For the following CFG G, $\langle G, aababb \rangle \in A_{CFG}$

$$S \rightarrow aSb \mid SS \mid \varepsilon$$

$$S \Rightarrow aSb$$

.... //follow by $S \Rightarrow abab$

 \Rightarrow aababb

True

2. Emptiness testing for CFG

Emptiness testing for CFG

 whether or not a CFG does not generate any strings (is empty or not)

Language

• $E_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$

E_{CFG} is a decidable language.

$$S \rightarrow ... \rightarrow ... \rightarrow 0123$$

Proof idea:

Test whether the start variable can generate a string of terminals

Test each variable whether that variable is capable of generating a string of terminals

Mark the variable if it can generate some string of terminals

Theorem 4.8 proof details

Proof idea:

R ="On input $\langle G \rangle$, where G is a CFG:

- (1) Mark all terminal symbols in G.
- (2) Repeat until no new variables get marked:
- (3) Mark any variable A where G has a rule $A \rightarrow U_1 U_2 \cdots U_k$ and each symbol U_1, \ldots, U_k has already been marked.
- (4) If the start variable is not marked, accept; otherwise, reject."

Example

Mark all terminal symbols in G.

(1) Grammar G:

$$S \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

(3) Grammar G:

$$S \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Repeat until no new variables get marke Mark any variable A where G has a rule $A \rightarrow U_1 U_2 \cdots U_k$ and each symbol U_1, \ldots, U_k has already been marked.

Start variable is marked, accept.

(2) Grammar G:

$$S \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

4) Grammar G:

$$S \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• For the following CFG G, $\langle G \rangle \in E_{CFG}$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times F \mid F$$

$$F \rightarrow (E) \mid a$$

False

3. Equivalence of CFGs

- Equivalence of CFGs
 - whether two CFGs generate the same language

- Language
 - $EQ_{CFG} = \{\langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$

 EQ_{CFG} is *not decidable*. Leave it in our homework in future.

4. CFL is a decidable lanaguge

Every CFL is decidable.

Every CFL is decidable.

• Proof:

Suppose A is CFL, G is CFG of A. Design a TM M_G that decides A.

```
M<sub>G</sub> = "On input w:
```

- (1) Run TM S on input $\langle G, w \rangle$.
- (2) If this machine accepts, accept; if it rejects, reject."

Operation on languages

	RL: DFA/NFA/RE	CFL: CFG/PDA	TM-decidable
Union	close	close	close
Concatenation	close	close	close
Intersection	close	not close	close
Star	close	close	close
Complement	close	not close	close
Boolean operation	close	/	close

Conclusion

- A_{CFG} is a decidable language.
 - Whether a CFG generates a particular string
- E_{CFG} is a decidable language.
 - Whether a CFG is empty
- EQ_{CFG} is not a decidable language.
 - Whether two CFGs recognize the same language
- CFL is a decidable language.
 - Whether a CFL is decidable