

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience part of the document or any information contained therein may be disclosed to any third part

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration From Bayer CropScience; or

From other applicants once the period of datasprotection has expired. evaluation of unpublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based outless.

Version history

	Data points containing amendments or additions¹ and brief description at applicants adopt a similar approach to showing revisions are only to the properties of the propertie	
Date	Data points containing amendments or additions ¹ and	Document identifier and
	brief description	version number
t is successful th	opt applicants adopt a similar approach to Waying ravising ap	d varian Mataru A autli A in (
i is suggested ti	112 Chapter 4 Hays to revise an Assessment Penert	d version assoring as outlined in
11100/10160/20	ors enapter 4 from to revise an Assessment Report	
	(, 6°,5°,4′	
		\(\text{\text{\$\pi}}\) \(\pi\)
		, ² 7
		4
		W
_		
		~
a		
~~~		
. 1		
, W		
~		
_(		
Z.		
a F		
	R.	
r P		
	at applicants adopt a similar approach to showing revisions and old Chapter 4 How to revise an Assessment Report	
	nat applicants adopt a similar approach to Mowing revisions are only a similar	

### **Table of Contents** ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION **CP 10** PRODUCT. Effects on birds and other terrestrial vertebrates ..... CP 10.1 Effects on birds CP 10.1.1 CP 10.1.1.1 Higher tier data on birds CP 10.1.1.2 Effects on terrestrial vertebrate other than birds. CP 10.1.2 CP 10.1.2.1 CP 10.1.2.2 CP 10.1.3 Effects on aquatic organisms. CP 10.2 Acute toxicity to fish aquatic investebrates, or offects on aquatic algae and CP 10.2.1 macrophytes 34 Additional long-term and chronic toxicity studies on fish, aquatic invertebrates CP 10.2.2 and sediment dwelling organisms. 43 Further testing on aquatic organisms. CP 10.2.3 Effects on arthropods. CP 10.3 Effects on bees 43 Acute toxicity to bees 43 CP 10.3.1 CP 10.3.1.1 CP 10.3.1.1.1 Acute oral toxicity to bees 50 CP 10.3.1.2 CP 10.3.1.4 CP 10.3.15 Field tests with honeybees 53 CP 1021.6 CP 10.3.2 CP 10.3.2.1 Extended laboratory testing, aged residue studies with non-target arthropods 59 CP 10.3.2.2 CP 10.3.2.3© CP 10.3.24 CP 10.3.2.5 CP 10.4 Earthworks 2 2 5 CP 10.4.1 CP 10.4.1.1 CP 10.4.1.2 Earthworms field studies 65 Effects of non-target foil meso- and macrofauna (other than earthworms)..... 66 CP 10.4.2 CP 10.4.2.1 Species Tevel sesting 67 CP 10.4.2.2 Higher tier esting 72 CP 10/.5 CP 10.6 CP 10.6 CP 10.6.2 CP 10.6.3



**Document MCP: Section 10 Ecotoxicological studies** 



### ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION **CP 10 PRODUCT**

### Use pattern considered in this risk assessment

**Table10-1: Intended application pattern** 

CP 10	•	COLOGICA		S ON THE PLANT PROTECTION
Use pattern o	considered in	this risk as	sessment	A ST. S
<b>Table10- 1:</b>	Intended appl	lication pattern	1	
Стор	Timing of application (range)	Number of applications	Application interval [days]	Maximum Maximum application rate, label rate individual treatment (ranges) [L/hat] [g/ha] [g/ha] [Jodosuffuron Mefenpay-
			Q	methyl-sodium diethyl
Winter wheat	BBCH 13-32	1	0 - Q	0.1 0 100 30 0
Winter barley	BBCH 20-32	1		7.5 22.6

To 6° 44	ue for risk assessment  of the residue for risk assessment  Compound Code  Lodow for restauration	
Definition of the residu	ue for risk assessment	
Justification for the residu	e definition for risk massessment is a	rovided in MOA SeQ7 Point 7.4.1 and
MCA See 6 Point 6.7.1	Se destation for risk descess their ist	provided in M&A Sec. 7, Point 7.4.1 and
WCA Sec. 0, 1 omt 0.7.1.		
Table 10-2: Definition	of the residue for risk assessment	
Compartment	Compound Code  Iodosuffuror methyl sodium  AE-1075736  AE F145741	novided in McA Sec. 7, Point 7.4.1 and
<u> </u>	Iodospifurous methyl sodium	
-   \$ . o	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	4 SAE F145741 47	
	O OAE F\$45740 O	
Soil	AE 00021667  AE 00021667  AE 00021667  AE 00001197  AE 00001197	
	/ ** AMOT 161798	
	AMOF 161 / 78  BOS-CW81253	
	AE 0600119 % AE 050594b) O	A Transfer of the Control of the Con
J	* AED059410 O	9
Soil Groundwater	some as Soil	
	Jodosultaron-methyl-sodium	
	AE 50/15/36/	
	AP\$17143,74A	
	AE 1143 40 A	
	AE 0.0021000 AE 0.161738	
	BCS-CW&P53	
Surface Water	E 0000119	
	AE 0000119 AE F959411	
	\$	
	AE 0034855	
A D A	AE 1234964	
	AE F159737	
	AE F154781	
Surface Water  Air  Plant	Iodosulfuron-methyl-sodium	
Plant	Iodosulfuron-methyl-sodium	

### **CP 10.1** Effects on birds and other terrestrial vertebrates

The risk assessment has been performed according to "European Food Safety Authority; Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA" (EFSA Journat, 2009)
7(12):1438. doi:10.2903/j.efsa.2009.1438).

CP 10.1.1 Effects on birds

Table CP 10.1.1-1 Endpoints used in risk assessment

Test substance		species/origin		Endpoint	\$° 54	Reference 4
Iodosulfuron- methyl-sodium	Acute risk assessment  Long-term risk assessment	Lowest LD ₅₀ O from Bobwhite quail, Matherd duck, Japanese Quail Quail Quail Company Lowest O NO(A)EL from Bobwhite quail	Y LD	2000	g as/kg bw	M-181/334-01-1 KQA 8.1.131 /02 M-1424-50-01-1 KCA-8.1.1.1-03 M-1407-01-1 KCA-8.1.1.1 /01 M-242537-01-1 KCA 8.1.1.3 /04

## Toxicity of the formulation

Iodosulfuron-methor-sodium is of low acute oral toxicity to Bobwhite quait. Mallard duck and Japanese quail with LD, values in excess of 2000 mg a.s./kg bw

With regard to animal welface reason, acute oral studies with formulations are routinely not conducted for birds, but only with the active ingredients, if toxic substances are nontoxic to birds. From the LD50 data of the active ingredients the toxically of the formulation can be reliably be predicted.

Taking into consideration that the LD₅₀ of all ingredients of the formulation are non-toxic (LD₅₀ of (1991, amended 1994); M-129750-02-1), it is mefenpyr-diethyl 2000 mg a.s. Ag bw; & safe to assume that the product as also pon-toxic to birds. Therefore it is justified to waive the acute test with the formulation in birds

Relevant general avian focal species for Tier 1 risk assessment Table CP 49.1.1- 2:

				Shortcu	ıt value
Crop	Scenario	Generic foeal species	Representative species	For long- term RA based on RUD _m	For acute RA based on RUD ₉₀
Cereals	Sarly (shoots) Sautumn-winter BBCM-10	Large herbivorous bird "goose"	Pink-foot goose (Anser brachyrhynchus)	16.2	30.5
Cereals	BBCH 16 29	Small omnivorous bird "lark"	Woodlark ( <i>Lullula</i> arborea)	10.9	24.0
Cereals	BBCH 30 – 39	Small omnivorous bird "lark"	Woodlark ( <i>Lullula</i> arborea)	5.4	12.0

**BOLD:** Species considered in risk assessment (only worst case for each species)

### ACUTE DIETARY RISK ASSESSMENT

Table CP 10.1.1-3 Tier 1 acute DDD and TER calculation for birds

		DDD			LD50		4		
Crop	Generic focal species	Appl. rate [kg/ha🏷	SV90	MAF90	DBD	LD ₅₀ [mg/kg bw]	TERA	<b>Figger</b>	
	Iodosulfuron-methyl-sodium								
Cereals	Large herbivorous bird "goose" <pink-foot goose=""></pink-foot>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30.5	¥ 1 . €	0.3	<b>2</b> 000	≥ 6557¢	10,0	
Cereals	Small omnivorous bird "lark" <woodlark< td=""><td>7 ,</td><td>240</td><td></td><td>0.2</td><td>≥ 2000</td><td>≥ 8333</td><td>~Q0</td></woodlark<>	7 ,	240		0.2	≥ 2000	≥ 8333	~Q0	

### Acute risk assessment for birds drinking contaminated water from pools in leaf whork

As the formulated product is applied of winter cereals, no pools in Peaf axils where an acute exposure possibly might occur are to be expected.

The acute risk from water in puddles formed on the soil surface of a field when a (beavy) ramfall event follows the application of a pesticide to a crop or bare soil is covered by the long term risk assessment under Point 10.1.2 of this dossign.

### LONG-TERM REPRODUCTIVE RISK ASSESSMENT

Table CP 10.1.1-4 Tier Flong term DOD and TER carculation for bords

Crop	Generic focal species		DDD S SV MAL	f _{twa}	D D	NO(A)EL	TER _{LT}	Trigger	
	S S S S S S S S S S S S S S S S S S S								
Cereals	Earge herbivorous bird goose  Pink foot goose		16.2	"	0.1	≥ 78	≥ 909	5	
Cereals	Small omerworous hird Wark"		10.9	0.53	0.1	≥ 78	≥ 1350	5	

### Long-term risk assessment for birds drinking contaminated water in puddles

Two scenarios were dentified as relevant for assessing the risk of pesticides via drinking water to birds and mammals:

- Leaf scenario, only relevant for birds possibly drinking water from puddles in leaf whorls after application of a pesticide to a crop and subsequent rainfall or irrigation. This scenario is only relevant for acute exposure.
  - As the formulated product is applied on cereals, no pools in leaf axils where an acute exposure possibly might occur are to be expected.
- Puddle scenario. Birds and mammals taking water from puddles formed on the soil surface of a field when a (heavy) rainfall event follows the application of a pesticide to a crop or bare soil. This scenario is relevant for acute and long-term exposure.



An "escape clause" recommended in the EFSA Guidance Document for Birds and Mammals (2009) allows for screening the need for a quantitative risk assessment by a comparison between the application rate and the toxicity of the respective substance. This escape clause specifies that "due to the characteristics of the exposure scenario in connection with the standard assumptions for water uptake by animals ..., no specific calculations of exposure and TER are necessary when the ratio of effective application rate (= application rate x MAF) (in the pha) to relevant endpoint (in mg/kg bw/d) does not exceed 50 in the case of less sorptive substances (Koc < 500 L/kg) or 3000 in the case of more sorptive substances (Koc  $\geq$  500 L/kg)." \( \)

Table CP 10.1.1-5 Evaluation of potential concern for exposure of birds drinking water rescape

Crop	Koc [L/kg]	rate * M&F	NO(A)EL hang as/ kg bw/d)	(Application ra MAF) / NO(A)	ate 🛪 🧎 📉	e" Constusion
Iodosulfuron-met	hyl-sodium		~ ~			
Cereals, 1 x 10 g a.s./ha ¹⁾	50.8	(No * 1.40)	Ø≥ 78 Ø		\$250	No concern

¹⁾ Use in winter wheat covering the use in winter barles with an application rate of 1 \$ 7.5 g as/ha

### RISK ASSESSMENT OF SECONDARY POISONING

Substances with a high bioaccumulation potential could theoretically bear a risk of secondary poisoning for birds if feeding on contaminated prey like fish or earthworths. For organic chemicals, a log  $P_{\rm OW} > 3$  is used to frigger an in-depth evaluation of the potential for bioaccumulation.

As the log Vow of the active substance odosulfuron-methyl sodium and its metabolites is below the trigger (3), no evaluation of secondary poisoning of needed (see Sec. 2, CA2.7)).

### CP 10.1.1.1 Acute oval toxicity

Acute oral studies with formulations are routinely not conducted for birds, but only with the active ingredients. From the LDs data of the active ingredients the toxicity of the formulation can be reliably be predicted.

Taking into consideration that the  $D_{50}$  of all ingredients of the formulation are non-toxic, it is safe to assume that the product is also non-toxic to birds. Therefore it is justified to waive the acute test with the formulation in birds.

## CP 10.1.12 Higher Ger data on Firds

Since in Soulfaron-methyl-sodium is of low toxicity to birds, no higher tier data are needed.

¹ EFSA (2009): Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA, p. 66

### **CP 10.1.2** Effects on terrestrial vertebrates other than birds

Table CP 10.1.2-1 Endpoints used in risk assessment

Test substance		species/origin		Endpoint 🙎	Reference
Iodosulfuron-	Acute risk assessment	Rat	LD ₅₀	2678 mg as/kg bv	v M-1©2162-67-1 KGA 5.2.1701
methyl-sodium	Long-term risk assessment	Rat	NOAEC ≡ NOÆL	500 spm	, 1998 M-183825-0\$1 /d© KÇA5.6.1 02

¹⁾ Mean of male and female

### Toxicity of the formulated product

Iodosulfuron-methyl-sodium showed low toxicity to small mampals, as  $D_{50}$  of the active substance for rats was 2678 mg/kg bw.

The acute oral toxicity of the formulated product was determined in study on rates

Table CP 10.1.2- 2 Toxicity of Jodosulfuron-methyl-sodium + Meferpyr-dicthyl QD 400 (190 + 300 g/L) to mammals

Test species	Test design Ecotoxicological endpoint  Reference
Rat	acute, oral $LD_{50} \gg 2000$ , mg/product/kg bw $C038943$ $C038943$ $M-226076 01-1$ $CP 7 17 1/01$

The study results show a fow acute oral toxicity of the formulated product with a study endpoint ≥5000 mg/kg by which reflects the low toxicity of the active substance. As the risk assessment based on the active substance revealed TER values above the respective triggers demonstrating a safe use (see Point 10.1.2 of this dossier Table P 10.1.2-4 and Table CP 10.1.2-5), also on a safe use of the formulation can be conducted.

**Table CP 10.1.2-3:** Relevant mammalian generic species for Tier 1 risk assessment

				Shortcu	t value 4
Crop	Scenario	Generic focal species	Representative species	Cor long- term RA based on RUD _m	F@r acute RAS based on ROD ₉₀
Cereals	BBCH 10-19	Small insectivorous mammating "shrew"	Common shrew (Sorex armieus)	<b>4.2</b>	7.6
Cereals	BBCH ≥ 20	Small insectivorous marymal "shrew"	Common shrew (Sore Qaraneus)	01.9 Q	
Cereals	Early (shoots)	Large herbivorous nammal "lagomorph"	Råbbit Kryctðlagus Deunjedlus) D	22,3	\$\frac{1}{2} \text{12} \text{12}
Cereals	BBCH 10-29	Small herbivorous mammal,	Wood mouse (Apodemus Sylvatícus) .	7.80	17.2
Cereals	BBCH 30-39	Small mniverous mernmal "mouse"	Woo@mouse (Apodemys) Sylvaticus)	\$\tag{3.9}\$\tag{7}\$	8.6

BOLD: Species considered in risk assessment (only worst core for each

### ACUTE DIETARY RISK ASSESSMENT

Tier 1 agute DDD and TER calculation for mammals **Table CP 10.1.2-4** 

		V /		<u>O)                                    </u>		
Crop	Generic focal species  Appl rate [kg/ha]  Todosoffuror methybsodium		DD **	LD ₅₀ [mg/kg bw]	TERA	Trigger
	O O Iodos Mfurog methy sodium					
Cereals	Small insectivorous mamifold "shirew" 7.6		0.1	2678	35 237	10
Cereals	Small insectivorous mammal "shrew"  Common shrew  Rabbit  Small omnivorous mammal "lagomorot"  Rabbit  Small omnivorous mammal "nouse"  17.2	n .	0.4	2678	6361	10
Cereals	Small omnivorous maternal "no use" 17.2	(	0.2	2678	15 570	10
	Targe herbivorous manimal "lagomorph"  Rabbit  Small omnivorous manimal "nouse"  Vood mouse  17.2					

### LONG-TERM REPRODUCTIVE ASSESSMENT

Table CP 10.1.2-5 Tier 1 long-term DDD and TER calculation for mammals

							(( ))	$\alpha$	, <u> </u>
		DDD					XØ(A)EL	4	, Z
Crop	Generic focal species	Appl. rate [kg/ha]	SVm	MAFm	f _{twa}	DDD	[mg/kg bw/d]	TÆRLT	Trigger
	Iodo	sulfuron-me	thyl	dium		W			, Ø
Cereals	Small insectivorous mammal "shrew" <common shrew=""></common>	46	<b>4</b> .2			0.02	≥ <b>5</b> 0	2500	\$ 5 W
Cereals	Large herbivorous mammal "lagomorph" <rabbit></rabbit>	0.01	22.3	1.0	≫ 0.5 <b>%</b> ≫	© 12 V 12	50		
Cereals	Small omnivorous mammal "mouse" <wood mouse=""></wood>		7.8 ₀			0,004	50	'≥ 12 <b>5</b> 0	7 5 <u>C</u> , °

### Long-term risk assessment for mampals drinking contaminated water

The puddle scenario is relevant for the long-term risk weeksment.

Table CP 10.1.2-6 Evaluation of potential concern for exposure of mammals drinking water

Crop	Koc L/kgy	rate x M&F	NO(A)EL  @g as/  kg bw/d)	J(Appneation×	tio	Escape Clause" No concern if ratio	Conclusion
Iodosulfuron-m	ethyl-sodin	m 🤝 🗸			L Q		
Cereals, 1 x 10 g a.s./ha	50.8	10 * 1.64	€ 50 S		):2 S	≤ 50	No concern

¹⁾ Use in winter wheat overing the use in winter barley with an application rate of 1 x 7.5 g as/ha

### RISK ASSESSMENT OF SECONDARY POISONING

Substances with a high bioaccurrulation potential could theoretically bear a risk of secondary poisoning for mammabal feeding or contaminated prey like fish or earthworms. For organic chemicals, a log Pow 3 is used to trigger an indepth evaluation of the potential for bioaccumulation.

As the  $\log P_{ow}$  of the active substance iodosoffuron methyl-sodium and its metabolites is below the trigger (<3), no evaluation of secondary poisoning is needed (see Sec.2, CA2.7)

## CP 10.1.2.1 Acute oral wxicits to mammals

Refer to KCP 7.1.1 01: The Endpoint is  $LD_{50} \ge 5000 \text{ mg/kg}$ .

### CP 10.1.2.2 Higher tier data on mammals

Since iodosulfuron-methyl-sodium is of low toxicity in mammals, no higher tier data are needed.

### Effects on other terrestrial vertebrate wildlife (reptiles and amphibians) **CP 10.1.3**

Not required according to 1107/2009. Since iodosulfuron-methyl-sodium is of law toxicity in bods and laboratory rodents, no risk for reptiles and amphibians is to be expected.

### **CP 10.2** Effects on aquatic organisms

Risk assessment for aquatic organisms

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment has been performed according to Guidance Document on Advatic Ecotoxicology

The risk assessment for the risk assessment has been performed according to Guidance Document on Advatacy (Section 1998). in the context of the Directive 91/414/EEC" (Sanco 3268/2001 re 4 (final) 17 (Sctober 2002). The "Guidance on tiered risk assessment for plant/Protection products for aquatic organisms in edge-of-field surface waters" (FESA Panel on Plant/Protection 2.8. of-field surface waters" (EFSA Panel on Plant Protection Products and their Residues, 2013, EFSA Journal 2013;11(7):3290, 268 pp. doi:10.2903 j.efsa 2013.2290) has been considered where appropriate.

Ecotoxicological endpoints used in risk assessment

Table CP 10.2-1 Endpoints of the formulation used in risk assessment

Table CP 10.2- 1 Endpoints of the formulation used in risk assessment

Test organism	Study tope	Test Juration	LC/C50 [ng/L]	OOEC Qmg/La	References
Acute toxicity to fish	<b>V</b> ' &		L & Y		,
Oncorhynchus mykiss (rainbow trout)	staric renewal	96 h		1.30 0	, 2004 C040810 M-229600-01-1 KCP 10.2.1 /01
Acute toxicity to aquati				(C) (O) n	
Daphnia magna (water flea)	static renewal	48,0		4.0	, 2004 C040690 M-229361-01-1 KCP 10.2.1 /02
Effects on algal growth				Y	
Pseudokirchneriella subcapitata (green alga)	growth inhibition	72 h	E 650: 6.71	< 0.1	, 2004 C040808 M-229597-01-1 KCP 10.2.1 /03
Effects on aquatic mac	ophytes 🗞		~ · · · · · · · · · · · · · · · · · · ·		
Lemna gibba (duck weed)	growth	7d 7	E ₁ C ₀₀ (frond#): 0.0084	0.00123	, 2004 C040808 M-229602-01-1 KCP 10.2.1 /04
Pseudokirchneriella subcapitata (green alga)  Effects on aquatic mac (duck weet)			ž		

Table CP 10.2- 2 Endpoints of iodosulfuron-methyl-sodium and metabolites used in risk assessment

Test organism	Test system	Test	Endpoint [mg/L]	Reference
		duration		
Iodosulfuron-methyl-so	dium 		U U	
Fish, acute			<u>_</u>	, 1998
Oncorhynchus mykiss				M-143096-01-1
Lepomis macrochirus				KCA \$ 2.1 /01
Cyprinodon variegates			Q	, 1998
	Acute, static	96 h	L\$\(\delta_0\) > 100	M5143095Q01-1 6 %
		ن ا	A Q' & °	KCA 8.2.1 /02 0
		200 C	ř	& , <b>20</b> 00
		(n		M-238449-02-1
		<b>&amp;</b>		KCA 8.2.1 /03
Invertebrate, acute		4 @		1998 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Daphnia magna	Acute, static	√ 748 h ≫	ECSW A	M-143098-0€1
				K & 8.2 4.1 /01
Mysidopsis bahia	Acute, static	9 <b>6</b> h	4UC 50 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000 O
	ر آ			M-238447-0261
		102 . 3		, KC <b>A</b> S.2.4,2√01
Fish, chronic	I	28d		.& 1998
Oncorhynchus mykiss	Juvenil@	28d	FOEC 19	<b>M</b> -143 <b>9</b> 7-01-1
	growth			KCA 8.2.2.1 /01
Invertebrate, chronic	co. O	S Q		. 1998
Daphnia magna	Static	21	OEC 10	143099-01-1
*	renewal			CA 8.2.5.1 /01
Algae, chronic		w .\$		, 1998
Pseudokirchneriella	Growth	96.h	E650 0.152	M-143094-01-1
subcapitata	(m)hibition			KCA 8.2.6.1 /01
Aquatic plant of Tonic	Growth	1.0° X		
Lemna gibba	inhibition,	🥍 7 d 🌡 🗳 🖔	E _r C ₂₀ 00.001,08	2012
, Ø	mimicking	4 2		, 2013 M 460504 01 1
	exposore of	<i>Q</i> ************************************	G C S 0200600	M-469584-01-1
, O	outd@r "	6∞weeks C	E _r C ₅₀ 0000609	KCA 8.2.7 /07
~^^	statidy ~	" O 1 1 1	NOEC 7.0004	
Macrophytes	Growth	6 weeks	NOEC → 0.00027	, 2011
in outdoor ponds,	inhibition +			, 2011 M-407716-01-1
9 macrophytes	recovery	2 (a) + 5.5 (b)	NOE€ 0.00072	KCA 8.2.7 /06
	is a very	weeks	Ö	KCA 0.2.7 /00
Aquatic plants				
(probabilistic risk	Y Q . *	42 d	HC5	
assessment: outdoor	Growth	<b>©</b> 42 d≥	(from 0.000385	KCA 8.2.7 /06
data from 9 macrophyte	in the state of th		ErC50 01 9	KCA 8.2.7 /07
species plus 6-week			species)	
Lenna)		L Qʻ		
AE F0757360*		<u> </u>		
Algae, chromc		¥		,&
Pseudoki@hneriHa"	Growth	72 h / 96 h	$E_r C_{50}$ >0.56	, 1998
subcapitata 2 A	inhibition	, = ==, , , , ,	1 - 50	M-181569-01-1
				KCA 8.2.6.1 /03
Aquatic plant, chronic	Frowth			& <b></b> , 1998
Lemna Aba	inhibition,	7 d	$E_rC_{50}$ 0.000511	M-182336-01-1
	static			KCA 8.2.7 /03



Test organism	Test system	Test duration	Endpoin	t [mg/L]		Reference
AE F145741		<u> </u>			<u> </u>	
Algae, chronic Pseudokirchnerilla subcapitata	Growth inhibition	72 h	E _r C ₅₀	10.9	Ô	M-470687-01-1 KCA 8.2.61/04
Aquatic plant, chronic Lemna gibba	Growth inhibition, static	7 d	E _r Cs	3.84	4	M-460128-001 KQ 8.2.7 70
AE F145740					۰	
Algae, chronic Pseudokirchnerilla subcapitata	growth inhibition	72 h	E _r C ₅₀			M-465388-0 1 K-4 8.2.6 1/05
Aquatic plant, chronic Lemna gibba	Growth inhibition, static	J d v	E _r C ₅₀ ©	>10, T		, 2043 M-46221-014 KGA 8.2.7/11
AE 0002166		W W	4 N %	Y , O		
Algae, chronic Pseudokirchnerilla subcapitata	growth inhibition	72 h	E _r C ₅₀			M-470669-01-1 K.C.A. 8.2.6.¥ /06
Aquatic plant, chronic Lemna gibba	Growth inhibition, static	O G	E _r C ₅₀	0,023		M-205481-01-1 KÇA⊗8.2.7 /12
AE F161778	`~\\	Q Q	4 4	*	S	Š
Algae, chronic  Pseudokirchnerilla subcapitata	growth growth inhibition	72 h	E _r C _x		. * * * * * * * * * * * * * * * * * * *	M-468872-01-1 KCA 8.2.6.1 /07
Aquatic plant, chronic Lemna gibba	Growth inhibition, state	To the second se	E _r C ₅₀	0.0281	Ž	, 2001 M-197639-01-1 KCA 8.2.7 /13
BCS-CW8\$253		1 2	8	), (N)	ı.	
Algae, chronic  Pseudokirchnerilla  subcapitata	growth inhibition	72 h . C	$E_{rC_{50}}$			, 2013 M-465389-01-1 KCA 8.2.6.1 /08
Aquatic plant, chronic Lemna gibba	Growth Sinhibition, State	7,4	E _r C ₅₀	>10		, 2013 M-462125-01-1 KCA 8.2.7/14
AE 0000119	stato	Q Q			J	
Algae, chronic  Pseudokorchnerilla subcapjtata	growth inhibition	72 kg 96 h	E _r C ₅₀	>100		&, 2002 M-205698-01-1 KCA 8.2.6.1 /09
Aquatic plant, chronic Lemna gibba	Growth y inhibition, @ station	(C) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	E _r C ₅₀	>100		, 2002 M-210320-01-1 KCA 8.2.7 /15
AE F059411		<b>W</b>	T			
Invertebrate acute  Daphnia dagna	Acuto static	<b>♀</b> 48 h	EC ₅₀	>100		et al., 1998 M-181330-01-1 KCA 8.2.4.1 /02
Algae, chronie Pseudokirennerilla subcapiola	Growth inhibition	72 h / 96 h	E _r C ₅₀	>100		, & ; 1998 M-181379-01-1
						KCA 8.2.6.1 /02

Test organism	Test system	Test duration	Endpoint [mg/L]	Reference
Aquatic plant, chronic Lemna gibba	Growth inhibition, static	7 d	E _r C ₅₀ >100	M-203638-014 KCA 8.2.7 / 16 M-1811 77-01-1 KCA 8.2.7 / 18
AE 0014966				
Algae, chronic Pseudokirchnerilla subcapitata	Growth inhibition	72 h / 96 h	E _r C ₅₀ 47.5	& 2002 M-203681-01-1 KCA 8.2.6.1 10
Aquatic plant, chronic Lemna gibba	Growth inhibition, static	7 D	(C ₅₀ ) 0.575	, 2002 186853-01-15 KCA \$\tilde{0}2.7 / 120
AE 0034855			A & X	
Algae, chronic Pseudokirchnerilla subcapitata	Growth inhibition	72 h 96 h	E _r C ₅₀ >10	& 2002 VI-210@4-01-1 KCA\$.2.6.1, VI
Aquatic plant, chronic Lemna gibba	Growth inhibition, static	~ 7.60°	C ₅₀ >100	, 2002 2210348-01-1 KCA 80.7/18
AE 1234964				
Fish, acute Oncorhynchus mykiss	Acute Static	9671	\$\tilde{V}_{C_{50}} \tilde{V}_{S_{50}} \tilde{V}_{S_5} \tilde{V}_{S_5	&, 2006 & -278097-01-1
Invertebrate, acute Daphnia magna	Scute, static	\$\frac{1}{2} 48^{\text{hy}}	\$\tag{\text{\$\infty}} \tag{\text{\$\infty}} \te	&, 2006 M-278971-01-1 KCA 8.2.4.1 /03
Algae, chronico Pseudokirchnerilla subcapitatu	growth inhibition	72 h	E. 50 >100 ×	&, 2006 M-293396-01-1 KCA 8.2.6.1 /12
Aquatic Mant, chronic Lemna gibba	Growth inhibition static	7 d 7	E _r C ₅₀ 2700	, 2006 M-281240-01-1 KCA 8.2.7 /19
Fish, acute Oncorhynchis mykiss	Acote, static	96 h	LC > 100	& , 2006 M-278099-01-1 KCA 8.2.1 /05
Invertebrate, acute  Daphnia magna	Acute, staffe	48 h . 9	EC ₅₀ >100	& , 2006 M-278973-01-1 KCA 8.2.4.1 /04
Algae, chronic Pseudokirchnersta subcapitata	Growth inhibition	h Q	E _r C ₅₀ >100	& , 2006 M-281243-01-1 KCA 8.2.6.1 /13
Aquatic plant, chronic  Lemna gibba  AE F 5478 7	Orowth Inhibition, state	7 d	E _r C ₅₀ >100	, 2006 M-281250-01-1 KCA 8.2.7 /20
Algae, chronic Pseudokoʻchneriella subcapitata	Growth	72 h	E _r C ₅₀ >10	, 2013 M-476160-01-1 KCA 8.2.6.1 /14



Test organism	Test system	Test duration	Endpoint [mg/L]	Reference	
Aquatic plant, chronic Lemna gibba	Growth inhibition, static	7 d	E _r C ₅₀ >10	, 2019 M-470494-014 KCA 8.2.7,21	٥

For most metabolites measured endpoints are available only for the most sensitive species of the parent compound, algae and *Lemna*. In accordance to the enidance in section 6.6 and section 6.7 of the Aquatic guidance document (Sanco 3268/2001) in the risk assessment for daphnia and fish sas a worst case – it is assumed that the toxicity is 10 times higher (i.e. the indpoint 10 times lower) than that of the parent compound iodosulfuron-methyl-sodium.

Remark on the 7-day Lemna endpoint (see also the statement by KCA 8.2.7/05)

Two Lemna-studies have been conducted with iodosulfuron-methyl-sodium a.i (see Toble CPo10.2-2). The first one is a 14-day study conducted in 1997 by according to EPA Guideline 122-2. In this study(, KCA 8.2.7/01) only frond number was determined on days 2, 5 7, 9, 15 and 18 A second endpoint like frond dry weight or frond area, which is mandatory according to ECD 221 (2006), has not been determined. Moreover, inhibition percentages were calculated by using the absolute frond counts in the treatments compared to the control, whole nowadays 07-day ErC50 based on growth rate inhibition is used for risk assessments.

The second study (2013, KCA 82.7/07) was performed according to the currently valid guideline OECD 221 (2006) measuring two endpoints, from number and frond area. This study can be considered as fully valid study without respectives. This 6-week study was designed to mimic the exposure of an outdoor-poind study and to obtain 6-week effect data for Leona – a species that could not be kept in outdoor-poinds. Beside the 6-week endpoints, effect data were calculated on a weekly basis. The endpoints obtained from the first 7-day period can be used for tier-1 risk assessments. The NOEC determined by Christ & Ruff was 12 µg/Is in the new Leona-study 7-day ErC10-figures were 0.449 and 0.501 µg/L for frond counts and frond area respectively.

The new *Lemna* study (2003; M-69584-01-1 CCA 8.2.7/07) shall replace the old study mentioned above for the following reasons:

- 1. In the new study two endpoints, frond number and frond area, where measured.
- 2. The new study has been conducted on the currently valid guideline OECD 221 (2006).
- 3. The growth rate related endpoints have been used already in the past but a lot of regulators were using the biomass related values because they are lower. Nevertheless the scientific community in Europe was already convinced since a long time that the focus should be on the growth rate related endpoints. This is as well reflected in the current versions of the OECD guidelines for algae and Lanna. To these guidelines it is stated that the growth rate related endpoints are preferred. Within a risk assessment sensitivities of different plant species are compared. As their growth, the test durations and the test designs are different a comparison of sensitivities only makes sense when growth rate related endpoints are used.
- The fact, that the NOEC from the old study is very close to the 7day ErC10-figures from the new study indicates, that the test organisms were of equal sensitivity.

Overall, it can be concluded that the new fully valid and according to current state of the science performed 7-day *Lemna*-study supersedes the old 14-day Lemna study, based on frond counts solely.

Consequently, the EU-agreed endpoint of 0.83  $\mu$ g/L, based on frond counts shall be replaced by the <u>new 7-day E_rC₅₀ of 1.08  $\mu$ g/L based on growth rate.</u>

### Predicted Environmental Concentrations used in risk assessment

### Formulated product:

For the formulated product PEC values can only be calculated for drift exposure. The formulants are assumed to be rapidly degraded in soil, and the only of posure route that is considered relevant for the entry of the formulated product into surface water is via spray drift from the related fields. Run-off and drainage entry of the formulants can be excluded therefore, experimental endpoints from the product are to be compared with the drift exposure PECs of the product. These are calculated in a simple tier 1 approach, considering standard drift rates and a standard water body, which is 30 cm deep and without riparian vegetation.

Table CP 10.2-3: Initial maximum PEC, walves of the formulation, considering spray drift after one application as only route of entry relevant for the product.

Compound	Scenario Desit rate Winter wheat, Winter barley,	
	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	small static ditch,	
IMS+MPR OD 400	**Cine edge of the 2.77 % **	
(100+300)	y treated field   (I/O buffer) >   (I/O buffer)	
, d	water depth (1) m	

PEC derived from calculation of entry in standard dirch via spray drift (water body of 30 cm depth), according to BBA (2006)², taking into account the relative density of the product (1.144 g/mL). **Bold** values were used for risk assessment

### Active ingredient and metabolities

Table CP 10.2- 4: Initial max DECs values of iodosulfuron methyl-sodium and metabolites – FOCUS Step 2 (KCP 9.2.5-01, 02: Fables CP 9.2.5-10 to 14)

Compound	Q FOCUS Scenario	Winter cereals,	Winter cereals,
		1 x 10 g/ha	1 x 7.5 g/ha
4		PCcsw, max	PEC _{sw, max}
		μg/L]	[µg/L]
Iodosulfuron-methyl	STEP 1	3.214	2.411
sodium	STEP 2 – North Single	<b>389</b>	0.214
Sourcin	STAP 2 - South Single	0.327	0.183
@ \	STEP 14 0	2.136	1.602
AE F0757\$6 🚨	STEP - North Single	0.745	0.383
	STEP 2 – South Single	0.604	0.313
AEG 14574	SAJEP 1	0.222	0.166
AFO 14574	STEP 2 North Single	0.070	0.037
	STEP 2 – South Single	0.057	0.030

² D., (2006) Bekanntmachung über die Abtrifteckwerte, die bei der Prüfung und Zulassung von Pflanzenschutzmitteln herangezogen werden, http://www.jki.bund.de/de/startseite/institute/anwendungstechnik/abdrifteckwerte.html



			Winter cereals,  1 x 7.5 g/ha  PECs max  [µg/L]  0.206  0.054  0.045  0.388  0.078  0.065  0.233  0.046  0.037  0.044  0.0540  0.0540  0.0540  0.001  0.001
Compound	FOCUS Scenario	Winter cereals,	Winter cereals,
•		1 x 10 g/ha	1 x 7.5 g/ha
		PECsw, max	PECsw; max
		[µg/L]	[µgQL]
	STEP 1	0.274	0.206
AE F145740	STEP 2 – North Single	0.104	0.054
	STEP 2 – South Single	0.085	0.045
	STEP 1	0.578	0.388
AE 0002166	STEP 2 – North Single	0,147	0.078
	STEP 2 – South Single	©0.121	√ 0.065© °
	STEP 1	0.324	© 0.2 <del>6</del> 3
AE F161778	STEP 2 – North Single	© 0.091	0.046
	STEP 2 – South Single	Sy.0,2,3	√ √0.037
	STEP 1	$\mathcal{L}_{n} = 0.12(p)$	0.546
BCS-CW81253	STEP 2 – North Single		0,124 0
	STEP 2 – South Single	~ A) 199 ~	€ 0100 €
	STEP 1	9 0.002 9 (	0.001
AE F154781	STEP 2 – North Single	© 0.00Q	O.000 O
	STEP 2 - South Single	0.002	
	STEP 1	© 333 S	r♥
AE F059411	STEP 2 - Worth Single	0.1250	y 0.06€
	STEP 2 South Single	0.101	© 0.052 °
1 T 001 1066	STEP 1	0.010	* 0,007 ©
AE 0014966	STEP 2 – North Single	© 0.010 ° °	0.007
	STEP 2 South Single	0.010	0.065
AE 0000110	STEP OF	v 027/	ا الله الله الله الله الله الله الله ال
AE 0000119	STEP 2 – North Signed	<b>0.061</b>	0.032
	STOP 2 - South Single	20.050 20.007	0.027
AE 0034855	STEPQ - North Single	0.007	0.005 0.005
AE 00346373	STEP 2 – North Single	© 007	© 0.005
~~~~	STEP 2 — South Single STEP 1	0.002	0.003
AE 234964	STEP 2 North Single	0.003	0.002
1 1/2 1/07	STEP 2 - South Single	Q.003 A	0.002
		0.003	0.002
AE F159737	STEP 2 North Single	0.003	0.002
Q) .	STEP 2 - South Single	0.003	0.002

Bold values were used for rise assessment

Table CP 10.2- 5: Initial maximum PEC_{sw} values of iodosulfuron-methyl-sodium and metabolite FOCUS Step 3, using <u>laboratory</u> and <u>field</u> soil degradation data (KCP 9.2.5/03, 04; Tables CP 9.2.5-15 to 18)

		Laboratory s	oil DT50	AField so	il DT50
FOCUS Scenario STEP 3		sulfuron- yl-sodium	AE F075736	Iodosulfuron- methyl-sodium	AE F075736
	Entry route*	PEC _{sw, max} [μg/L]	PECsw, max [µg/L]	PECsw, max D [μg/L]	PFCsw.mar [µg/Li]
Winter cereals, 1 x 10 g/h	a				
D1 (ditch)	S	0.064	0.051 🦠	0.06%	©0.020 ©
D1 (stream)	S	0.055	Ø.034	Q.955 D	0.014
D2 (ditch)	D	0.143 🔘 "	© 0.787 6	©0.247 0 /	(<u>04</u> 39 .
D2 (stream)	D	0.992 -	© 2.495 Q	0.162 C	Ø.288
D3 (ditch)	S	Ø 063 . ~	0.004	\$ 10,063 \$\times\$	<0.001
D4 (pond)	S	Q0.002 ⁴	\$\tag{2}\tag{2}\tag{2}\tag{2}	0.002 (°	0.002
D4 (stream)	S	0.030	9.014 y	0.050	3 0.001
D5 (pond)	S	Ø 002 Ø	0.005	QQ0002 Q	0.001
D5 (stream)		~ 0.050	Ø 0.003	0.050	<0.001
D6 (ditch)	, *\$ <i>§</i>	0.063	§ № 004 §	0,063	0.002
R1 (pond)	S_{1}	Ø 002	€ 0.001	0002 V	0.001
R1 (stream)	\$	\$\tilde{0.042}\$	\$\tag{0.00}\$ \(\&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.0450	0.013
R3 (stream)	®R ~	y 0.1 3 3	\$ \$0.042	O 0.159	0.021
R4 (stream)	R_{\sim}	£0.088	0.040	Ç © 111	0.020
Winter cereals, x 7.5 g/h	ıa 🦠	4			
D1 (ditch)	$\mathcal{L}_{\mathcal{O}}^{\mathbf{S}}$	0.048	0.038	© 0.048	0.015
D1 (stream)	S	041	0.025	0.041	0.010
D2 (dite)	. Š	€ 0.097	\$ 0.589 O	0.169	0.328
D2 (stream)	Ď Š	0.064	¥ 49.370 Å	0.113	0.217
D3 (ditch)	S	Ø.048 ₂ Ø	0.00	0.048	< 0.001
D4 (pond)	, S	© 0.000	\$ 0.016	0.002	0.001
D4 (stream) 🛇 💍	OS N	y 9 03 8	₹ % 0.010	0.038	< 0.001
D5 (pond)	SSP SSP	7 9.002	0.004	0.002	< 0.001
D5 (stream)		0.033	0.002	0.037	< 0.001
D6 (dutch)	S.O		0.003	0.048	0.002
R1 (pond)	ŞÜ	0.002	0.001	0.002	0.001
R1 (stream)		© 0.03Q	0.019	0.033	0.010
R3 (stream)	R .	02/00	0.032	0.119	0.016
R4 (stream)	1)) 🐪	0.066	0.030	0.083	0.015

^{*} Letters D, D, and R correspond to the dominant entry path – spray drift, drainage, and runoff

ACUTE RISK ASSESSMENT FOR AQUATIC ORGANISMS

Table CP 10.2- 6: TER_A calculations based on drift entry for the formulation and on FOCUS step 20 for iodosulfuron-methyl-sodium and metabolites

Compound	Species	Endpoint [μg/L]	PECsw,max [μg/L	TERA	Trigger
Winter cereals, 1 x 10	g a.s./ha	Ö		, L	
IMS + MPR OD 400	Fish, acute	LC ₅₀ 7750	J .06	7,91 %	7 100
(100+300)	Invertebrate, acute	EC ₅₀ 8\$00	O1.06	\$30 Q	190 (
,	Fish, acute	LC_{50} 1000		257 069	ĈĬ00 €
sodium	Invertebrate, acute	EC_{50} $> 100 0$		♥> 25®069	2 100°
AE F075736	Fish, acute	LC 10 00		>03 423	400
	Invertebrate, acute	EQ ₀		© 13 423	△ 100 .
AE F145741	Fish, acute	$A_{r}C_{50}$ > $A_{r}C_{0}$	0 9.070	× > 142 ⁹ 857 ₄	1000
AL 1143/41	Invertebrate, acute	EC50 210 00		> 142 857	1900
AE F145740	Fish, acute	$L\mathfrak{C}_{50} \gg 10.60$	0.104	\$ 96 pg 4	² 900
ΑΕ Γ143/40	Invertebrate, ague	$EC_{50} > 1000$		> 96,154 🕢	? 100
AT 0000166	Fish, acute	LC & 2 70 00	Ø 20.14Z	≥68 027°	100
AE 0002166	Invertebrato, acute	LC \$\times 10 00 \\ EC_{50} \times 10 \$\times 00 \\ \times 10 \$\times 10 \$\times 10 \\ \times 10 \$\tim	0 0.147	© 68 Ø27	100
	Fish, acute &	LC_{50} > 10	0 0,091	> 1,09 890	100
AE F161778	Invertebrate, acute	EC 2 10 00	- 7	₹¥09 890	100
	Fish, acute Q	100 ₅₀ > 10,00		\$\frac{3}{40} 161	100
BCS-CW81253	Invertebrate, acute _ @	EC_{50} > 19/00		Y .	100
	Fish Scute	LC ₅₀ \$10 00		> 163 934	100
AE 0000119	Invertebrate, acute	\mathbb{C}_{50} > 1000		> 163 934	100
	Fish, acute	LC_{50} $> LC_{00}$		> 80 000	100
AE F059411	Invertebrate acute	E 100 Q		> 800 000	100
	Fish, acute	LC_{50} > 1000		> 1 000 000	100
AE 0014966	Invertebrate, goute	EC_{50} ≈ 1000	8 9	> 1 000 000	100
AE 0034855	Fish acute	LCG 91000		> 1 428 571	100
AE 0034855	Invertebrate, acute	$\mathbb{B}C_{50} > 1000$	<i>)</i>	> 1 428 571	100
		1.0°			
AE 1234964	Fish, aoute	LC ₅₀ > 100 0		> 33 333 333	100
	Invertebrate acute	EC 9 100 0		> 33 333 333	100
AE F159737	Fish, acute	C_{50} $>$ $>$ 1000		> 33 333 333	100
₹	Invertebrate, aoûte 0	EC_{50} > 100 0		> 33 333 333	100
AE F154781	FishØacute O	$L\mathbb{Q}_0^{\checkmark} > 10~00$	0 0.002	> 5 000 000	100
112 1 10 1,01	Invertebode, acute	$C_{50} > 10 \ 00$	0 0.002	> 5 000 000	100
AE F159737 AE F154781					

(Continued: TERA calculations based on drift entry for the formulation and on FOCUS Step 2 for iodosulfuron-methyl-sodium and metabolites)

Compound	Species	End _] [µg	•	PECsw,max [µg/L]	TERA	Trigger
Winter cereals, 1 x 7.	5 g a.s./ha			A	Ő	
IMS + MPR OD 400	Fish, acute	LC ₅₀ 7	750°/ ₂₀	0.79	9 810	×100 ×
(100+300)	Invertebrate, acute	EC ₅₀ 8.	300	6 .79	10,506	7 100
Iodosulfuron-methyl-	Fish, acute	LC ₅₀	100 000	√0.214	≥¥67 29 ©	600
sodium	Invertebrate, acute	EC ₅₀	100 000	Ŷ 0. 2 }4	\$≈ 467 £ 90	0100
AE E075727	Fish, acute	LC ₅₀ >	10 000	×0,383	> 26 110 <	1.06
AE F075736	Invertebrate, acute	ECW &	210 000°	£0.383	£26 110°	Ĭvo
AE E145741	Fish, acute	LC_{50} $\langle V \rangle$	10,000	0.037	² > 270 2 770	€100 L°
AE F145741	Invertebrate, acute 🔏	EC ₅₀ >	10000	Ø,037 o S	> 270 270 4	100
AE E145740	Fish, acute		10 000	0.054	\$\text{785 185}	A00
AE F145740	Invertebrate, acut	EC50 . ~ >	10,000	0.054	> 185 9 85	<u>ش</u> 100
AE 0002166	Fish, acute	LC_{50}	10 000	Øñ78 €i	> 128 205	100
AE 0002166	Invertebrat@acute 4	E Ø	10 000	0.078	©128 2 05	100
AE E161770	Fish, acute		10 000	0.046	> 217@91	100
AE F161778	Invertebrate, acute	EC ₅₀ >	1000	~0.046 ~	> 2907 391	100
BCS-CW81253	Fish, acute	LCO	′10 0 00 ′ ″	0.124	×80 645	100
BCS-CW81255	Invertebrare, acute	EC ₅₀ >	10 900	0(424)	> 80 645	100
AE 0000110	Fish, acute	LC ₅₀	DO 000 _©	0.032	> 312 500	100
AE 0000119	Invertebrate, acute	EC%	10 000	0.032	> 312 500	100
AE F059411	Figh, acute V	O C 50 C >	19,000	0.064	> 156 250	100
AE F059411	Invertebrate, acute	EC30y >	\$00 000°	√J.064	> 1 562 500	100
A.E. 001.408	Fish acute T	LC50 >	10,000	0.007	> 1 428 571	100
AE 0014966	Invertebrate, acute	EC50 & O >	10 000 S	0.007	> 1 428 571	100
AE 0024055	Fish, avute 💸 🔌	LC 🐉 🍃	¥0 000	0.005	> 2 000 000	100
AE 0034855	Invertebrate acute	EC50 >	10 000	0.005	> 2 000 000	100
AE 12240(4 @		LC_{50} O >	100 000	0.002	> 50 000 000	100
AE 1234964	Invertebrate acute	EC,	2 00 000	0.002	> 50 000 000	100
A E E150507	Fish, acute	ECO	100 000	0.002	> 50 000 000	100
AE F159@5/	Invertebrate, acute	EC _{5Q} >	100 000	0.002	> 50 000 000	100
A E D 5 4 7 0 1	Fish Quite V	LCO >	10 000	0.001	> 10 000 000	100
AE F154/81	Invertebrate, acute	LCG > LC 50 >	10 000	0.001	> 10 000 000	100
	Invertebrate acute Fish, acute Fish acute Invertebrate, acute Invertebrate, acute	*				

CHRONIC RISK ASSESSMENT FOR AQUATIC ORGANISMS

TERL Calculations Based on drift entry for the formulation and on FOGE	odosulfuron-methyl-sodium + mefenpyr-diethyl OD 400 (100+300 g/L)								
Winter cereals, 1 x 10 g a.s./ha Security Secur	CHRONIC RISK ASSESSMENT FOR AQUATIC ORGANISMS Table CP 10.2-7: TERLT calculations based on drift entry for the formulation and on FOGUS								
Winter cereals, 1 x 10 g a.s./ha Security Secur	Step 2 for iodosulfuron-methyl-sodium and metabolites								
Minter cereals, 1 x 10 g a.s./ha Capter algae, chronic E.C.50 E.C.50 Capter algae, chronic E.C.50 E.	Compound	Species		A' W	TERL	Trigger.			
Aquatic plants, chronic E.C. 3.8.4 1.66 7.92 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.000000 10.0000000000	Winter cereals, 1 x 10	0 g a.s./ha		W .	D ~				
Aquatic plants, chronic E.C. 3.8.4 1.66 7.92 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.000000 10.0000000000	IMS + MPR OD 400	Green algae, chronic	E _r C ₅₀ 6Q10	© 1.06	% 330				
Fish, chronic NOEC 10 000 \$3.89 \$2.5 \text{ No7 } 10 00 \$1.0 \text{ NOEC } 10 000 \$2.889 \$2.5 \text{ No7 } 10 00 \$1.0 \text{ NOEC } 10 000 \$1.0 \text{ NOEC }		Aquatic plants, chronic	E _r C ₅₀ \$8.4	1,06		010			
Invertebrate, chronic NOEC 1000 10389 3707 10 10 10 10 10 10 10			// / / / / / / / / / / / / / / / / / /	· (2)		2 1Q V			
According Green algae, chronic ErCs 152 0.285 391 10 0 0	Iodosulfuron-methyl-	·							
Aquatic plants, chronic E,C ₅₀ 1.08 9.389 2.77 10			$E_r \mathcal{C}_{50} \ll 152$	0.389	W. V	△ 10 °			
AE F145741 AE F145740 AE F14			E _r C ₅₀ 1.08 2			100			
AE F145740 AE F145741 AE F145741 AE F145741 AE F145740 AE F14			NOEC \$300 C		×2 //	¥ 0			
AE F145740 AE F145741 AE F145741 AE F145740 AE F14			NOEC 21 000		~ Y .	10			
AE F145741 AE F145741 AE F145741 AE F145741 AE F145741 AE F145740 AE F14	AE F075736		É _r C ₅₀ 560		W. W.	\$ 10			
AE F145741 Fish, chronic NOEC 1 000 0 070 14 286 10		- 40	E ₁ C\$ (\$\frac{1}{2}\)	£0.745					
AE F145741 Invertebrate, chronic NOEC 1 000 0.070 14.286 10 Green algae, chronic E.C. 3 840 0.070 54 857 10 Aquatic plants, chronic NOEC 1 000 0.104 9 615 10 Invertebrate, chronic E.C. > 10 000 0.104 9 615 10 Invertebrate, chronic E.C. > 10 000 0.104 > 96 154 10 Aquatic plants, chronic E.C. > 10 000 0.104 > 96 154 10 Aquatic plants, chronic E.C. > 10 000 0.104 > 96 154 10 Aquatic plants, chronic E.C. > 10 000 0.147 6 803 10 Invertebrate, chronic E.C. > 10 000 0.147 6 803 10 Green algae, chronic E.C. > 10 000 0.147 6 803 10 Aquatic plants, chronic E.C. > 10 000 0.147 156 10 Aquatic plants, chronic E.C. > 10 000 0.091 10 989 10 Aquatic plants, chronic E.C. > 10 000 0.091 10 989 10 Aquatic plants, chronic E.C. > 10 000 0.091 309 10 Aquatic plants, chronic E.C. > 28.1 0.091 309 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10			NOEC 01 000 0), <u> </u>	14 286	10			
AE F145740 Activatic plants, chronic		Invertebrate, chronic	NOE 1 900	~ ~// ^	14,286	10			
Acuatic plants, chronic EC ₅₀ 3 840 0.070 54 857 10 Fish, chronic Encoder NOEC 1000 0.104 9 615 10 Invertebrate chronic E ₁ C ₅₀ 20 000 0.104 9 615 10 Aquatic plants, chronic E ₁ C ₅₀ 20 000 0.104 29 615 10 Aquatic plants, chronic E ₁ C ₅₀ 20 000 0.104 29 6154 10 Aquatic plants, chronic E ₁ C ₅₀ 20 000 0.147 6 803 10 Invertebrate, chronic E ₁ C ₅₀ 23 0.147 6 8027 10 Aquatic plants, chronic E ₂ C ₅₀ 23 0.147 156 10 Aquatic plants, chronic E ₂ C ₅₀ 23 0.147 156 10 Invertebrate chronic NOEC 1000 0.091 10 989 10 Aquatic plants, chronic E ₂ C ₅₀ 10 000 0.091 10 989 10 Aquatic plants, chronic E ₂ C ₅₀ 28.1 0.091 309 10 Aquatic plants, chronic E ₂ C ₅₀ 28.1 0.091 309 10 Aquatic plants, chronic E ₂ C ₅₀ 28.1 0.091 309 10 Invertebrate chronic NOEC 1000 0.249 4 016 10				7		10			
AE F145740 AE F14					A V	10			
AE F145740 Invertebrate, chronic NOEC 7000 70.104 9615 10 Aquatic plants, chronic E _r C ₅₀ > 10 000 70.104 > 96 154 10 Aquatic plants, chronic E _r C ₅₀ > 40 000 70.104 > 96 154 10 AE 0002166 Fisk chronic NOEC 1000 70.147 6 803 10 Invertebrate, chronic E _r C ₅₀ 23 70.147 156 10 Aquatic plants, chronic E _r C ₅₀ 23 70.147 156 10 Aquatic plants, chronic NOEC 1000 70.991 10 989 10 April 10 10 10 10 10 10 10 10 10 Aquatic plants, chronic E _r C ₅₀ 28.1 70.091 309 10 Aquatic plants, chronic E _r C ₅₀ 28.1 70.091 309 10 Aquatic plants, chronic NOEC 1000 70.249 4 016 10 Invertebrate chronic 1000 70.249 4 016				***	7	10			
Aquatic plants, chronic E _r C ₅₀ > 0 000 0 0 0.104 > 96 154 10 Fish chronic NOEC 1000 0 0.147 6 803 10 Invertebrate, chronic NOEC 1000 0 0.147 6 803 10 Greenfalgae, chronic E _r C ₅₀ 23 0.147 156 10 Aquatic plants, chronic E _r C ₅₀ 23 0.147 156 10 Fish, chronic NOEC 1000 0.091 10 989 10 Invertebrate, chronic E _r C ₅₀ 10 000 0.091 10 989 10 Aquatic plants, chronic E _r C ₅₀ 28.1 0.091 309 10 Aquatic plants, chronic E _r C ₅₀ 28.1 0.091 309 10 Invertebrate chronic NOEC 1000 0.249 4 016 10				_	9 615	10			
Aquatic plants, chronic E _r C ₅₀ > 10 000	AE F145740		EC ₅₀ > 10 000	1		10			
AE 0002166 Fish chronic NOEC 1000 0.147 6 803 10 Invertebrate, chronic NOEC 1 000 0.147 6 803 10 Aquatic plants, chronic E ₁ C ₅₀ 23 0.147 156 10 April Action C NOEC 1 000 0.091 10 989 10 Invertebrate, chronic E ₂ C ₅₀ 28.1 0.091 309 10 Aquatic plants, chronic E ₂ C ₅₀ 28.1 0.091 309 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic 1 0 0 0 0 0 0 0 0 0 0 0 Invertebrate chronic 1 0 0 0 0 0 0 0 0 0 0 0 0 Invertebrate chronic 1 0 0 0 0 0			ErC50 > 10 000 0						
AE 0002166 Invertebrate, chronic NOEC 1 000 0.147 6 803 10 Greenfalgae, chronic E _r C ₅₀ 23 0.147 156 10 Aquatic plants, chronic NOEC 1 000 0.091 10 989 10 Invertebrate, chronic E _r C ₅₀ 20 00 0.091 10 989 10 Green algae, chronic E _r C ₅₀ 10 000 0.091 309 10 Aquatic plants, chronic E _r C ₅₀ 28.1 0.091 309 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		* 	NOTEC 1000 @ .	***					
AE 0002166 Greenalgae, chronic E ₁ C ₅₀ 23 0.147 > 68 027 10 Aquatic places, chronic E ₂ C ₅₀ 23 0.147 156 10 Fish, chronic NOEC 1000 0.091 10 989 10 finvertebrate, chronic E ₂ C ₅₀ 10 000 0.091 > 109 890 10 Aquatic plants, chronic E ₂ C ₅₀ 10 000 0.091 > 109 890 10 Aquatic plants, chronic E ₂ C ₅₀ 28.1 0.091 309 10 Fish, chronic NOEC 1000 0.249 4 016 10 Invertebrate chronic NOEC 1000 0.249 4 016 10				1					
Activatic plants, chronic EC50 23 0.147 156 10 Fish, chronic NOEC 1000 0.091 10 989 10 Invertebrate, chronic EC50 1000 0.091 10 989 10 Acquatic plants, chronic EC50 10 000 0.091 > 109 890 10 Acquatic plants, chronic EC50 28.1 0.091 309 10 Fish, chronic NOEC 1000 0.249 4 016 10 Invertebrate chronic NOEC 1000 0.249 4 016 10	AE 0002¥66								
AE F161778 AE F161778 AE F161778 AE F161778 AF Invertebrate, chronic F ₁ C ₅₀ F1000 0.091 10 989 10 Aguatic plants, chronic F ₁ C ₅₀ F28.1 0.091 309 10 AF Invertebrate chronic NOEC 1000 0.249 4 016 10 Invertebrate chronic NOEC 1000 0.249 4 016 10		Aquatic plases, chronic							
AE F161778 Invertebrate		Fish, chronic	NOEC 1 000			10			
Green algae chronic E C ₅₀ 10 000 0.091 > 109 890 10 Aquatic plants, chronic E C ₅₀ 28.1 0.091 309 10 Fish, chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10	AF F1 (1)	Invertebrate, chronic							
Aquatic plants, chronic E _r C ₅₀ 28.1 0.091 309 10 Fish Fish Pronic NOEC 1000 0.249 4 016 10 Invertebrate chronic NOEC 1000 0.249 4 016 10	AE F161778								
Fish, chronic NOEC 1 000 0.249 4 016 10 Invertebrate chronic NOEC 1 000 0.249 4 016 10									
Invertebrate chronic NOEC 1 000 0.249 4 016 10	, K								
BCS-CW81253 Green algae, chronic $E_rC_{50} > 10\ 000$ 0.249 $> 40\ 161$ 10 Aquate plants, chronic $E_rC_{50} > 10\ 000$ 0.249 $> 40\ 161$ 10 NOEC 1.000 0.061 16.393 10		Invertebrate chronic							
Aquate plants, chrone E _r C ₅₀ > 10 000 0.249 > 40 161 10	BCS-CW81253 💇 🖺	Green aleae, chronic							
NOFC 1 000 0 061 16 303 10		Aquati plants, chron	*						
		Fish, chronic	NOEC 1 000	0.061	16 393	10			
Inverteboate, chronic NOEC 1 000 0.061 16 393 10		Invertebrate, chronic							
AE 0000/119 Green algae, chronic $E_rC_{50} > 100000$ 0.061 > 1639344 10	AE 0000119 🗪	Green algae, chronic							
Aquatic plants, chronic $E_rC_{50} > 100\ 000$ $0.061 > 1\ 639\ 344$ 10		Aquatic plants, chronic							

(Continued: TER_{LT} calculations based on drift entry for the formulation and on FOCUS Step 2 for iodosulfuron-methyl-sodium and metabolites)

Compound	Species	Endpoint [μg/L]	PEC _{sw,max} μg/L]	TERLT	《Trigger》
	Fish, chronic	NOEC 1 000	0.125	8 000 0	
AE F059411	Invertebrate, chronic	NOEC 1000	0.125	8 000	×10 &
AE 1039411	Green algae, chronic	$E_r C_{50} > 100000$	0.125	> 800 000 %	
	Aquatic plants, chronic	E_rC_{50} $=$ 100000	$\sqrt[6]{0.125}$	>800 00 Q	30 %
	Fish, chronic	NOEC 🐴 000	0.640	√100 % 00	10
AE 0014966	Invertebrate, chronic	NOE® 1 000	~0.010 _~	1,0 0 ,000 🔏	
AE 0014900	Green algae, chronic	E _r C ₅₀ \$7 500	0.010	4750 000	, °Y0
	Aquatic plants, chronic	E _r C ₅₀ 575	0.000	^{40°} 57 50 0	€ 10 €°
	Fish, chronic	NOEC 1000	A 007 6	142 857	10
AE 0034855	Invertebrate, chroni	NOVEC \$\varP000 \sqrt{\sqrt{\sqrt{\pi}}}	0.007	A2 85	610
AE 0034633		$E_{r}C_{50}$ $< > 109,000$	A VV	\$15 5 7 \$\div 428	<u>~</u> 10
	Aquatic plants chronic	E_rC_{50} $> 100 000$	9.007	> 15 \$71 428	J 10
	Fish, chronic &	NØEC \$000	0.00	©33 323 °	10
AE 1234964	Invertebrate, chronic	NOEC 1 000	000003	333 Q 3	10
AE 1234904	Green algae, chronic	$E_r C_5 $ > 100 000	~ 0.003 ~ °	> 33@33 333	10
	Aquatic plants, chronic	E 100 000	0.003	×33 333 333	10
	Fish, chronic	NOEC 1 000	% 003 %	³ 333 333	10
AE F159737	Invertebrate, Pronic	NOE® 1.0000	0.003	333 333	10
AE F139/3/	Green algae, chronic	ErC/50 > 100 600	0.00	> 33 333 333	10
	Aquatic plants, chronic	ErC50 > 190 000	0.003	> 33 333 333	10
20	Fish, čhronic	NOEC 1-900 O	£0.002	200 000	10
AE E154799	Invertebrate, chropie	NOEC 1 000 ~	0.002	200 000	10
AE F154781	Green algoe, chronic	E _r C ₅₀ > 10 000	0.002	> 5 000 000	10
Ş	Aquathe plants chronic	E _r C	0.002	> 5 000 000	10
Winter cereals, 1 7.					
IMS + MPR OX 400	Green algae, chronic (E _r C ₅₀ O 671 O	0.79	8 494	10
(100+300)	Aquatic plants/chronic	E _r C 80	0.79	10.63	10
	Fish, chronic	№ ØEC, ≪10 000	0.214	46 729	10
	Invertebrate, chronic	NOE© 10 000	0.214	46 729	10
sodizin/		E _r © 152	0.214	710	10
<i>"</i>	. "0" "	EC ₅₀ 1.08	0.214	5.05	10
~	Aish, chaonic	MOEC 1 000	0.383	2 611	10
A E POZGZO	Invertebrate chronic	NOEC 1 000	0.383	2 611	10
AE F075736	Green algae, chronic	E_rC_{50} 560	0.383	1 462	10
	Aquatic plants, chronic	E_rC_{50} 0.511	0.383	1.33	10

(Continued: TER_{LT} calculations based on drift entry for the formulation and on FOCUS Step 2 for iodosulfuron-methyl-sodium and metabolites)

Compound	Species	Endpoint [μg/L]	PEC _{sw,max} [μg/L]		Trigger
	Fish, chronic	NOEC 1 000	0.037	27 027	S SO _ (
AE F145741	Invertebrate, chronic	NOEC 1 000%	0.037	27 027	~~~~10 ~~~~
AL 1143/41	Green algae, chronic	E_rC_{50} 10 900	6.037	29 4 ,395 🙎	
	Aquatic plants, chronic	E_rC_{50} 3840	$\mathcal{L}^{0}_{0.037}$	Jø3 784Q) OO (
	Fish, chronic	NOEC 🐴 000	0.054	18 549	10 🛴
AE F145740	Invertebrate, chronic	NOE® 1 000	×0.054	18/519	7 10
AE 1 143/40	Green algae, chronic	E _r 210 000	€0.05¥	₹85 185 ⁹	, "YO
	Aquatic plants, chronic	$E_rC_{50} \gg 10$	0.054	¹⁰⁵ 185 18 5	\$\times 10 \(\infty \) °
	Fish, chronic	NOEC 1000 S	A 078	12,821	10
AE 0002166	Invertebrate, chroni	NOFC \$\phi000.\foots	0.078	§2 821 ×	5 10
AE 0002100		$E_{i}C_{50}$, $C > 10000$	0.078	ॐ 12 8© 05	<u>6</u> 10
	Aquatic plants chronic	E_rC_{50} 23	9.078 °C	29 5 , X	ى [*] 10
	Fish, chronic	NONEC A 000 0	0.046	Q1 739	10
AE F161778	Invertebrate, chronic	NOEC 1 000 Q	0 0 046	21 7399	10
AE F101//6	Green algae, chronic	$E_r C_5 $ > 1000	~©.046°~	> 2907 391	10
	Aquaric plants, chronic	E. 8.1 \$	0.046	611	10
	Fish, chronic	NOEC 1 000	% 124 }	× 8 065	10
BCS-CW81253	Invertebrate, pronic	NOE® 1.0000 @	0.124	8 065	10
BCS-CW61233	Green algae, chronic	ErC/50 > 10 000	0.124	> 80 645	10
	Aquatic plants, chronic	ECC50 > 19,000	0.124	> 80 645	10
	Fish, čhronic	NOTE 1500	£0.032	31 250	10
AE 0000 T	Invertebrate, chron	NOEC 21 000 ~ ~	0.032	31 250	10
AE 00004179	Green alsoe, chronic	ErC50 > 100 000	0.032	> 3 125 000	10
\$	Aquathe plants chronic	E _r C 2400 000	0.032	> 3 125 000	10
Į į	Fish chronic	NOEC 1 000_	0.064	15 625	10
AE F059411		NOECO 1 000	0.064	15 625	10
AE 1039411	Green algae, chronico	E _r Ç	0.064	> 1 562 500	10
	Aquatic plants, charnic	F ₁ C ₅₀ \$\sqrt{100 000}\$	0.064	> 1 562 500	10
	Esh, chronic	NOĘ © 1 000	0.007	142 857	10
AE 0014966		N OC 1 000	0.007	142 857	10
	Green algae, chropic	EC ₅₀ 47 500	0.007	6 785 714	10
	Aquatic lants chronic	E_rC_{50} 575	0.007	82 143	10
	Fish Thronic	NOEC 1 000	0.005	200 000	10
AE 002405	Invertebrate, chronic	NOEC 1 000	0.005	200 000	10
AE UUSAGUS S	Green algae, chronic	$E_rC_{50} > 109\ 000$	0.005	> 21 800 000	10
AE 0034855	Aquatic plants, chronic	$E_rC_{50} > 100\ 000$	0.005	> 21 800 000	10

(Continued: TERLT calculations based on drift entry for the formulation and on FOCUS Step 2 for iodosulfuron-methyl-sodium and metabolites)

Compound	Species	Endpoint [µg/L]	PEC _{sw,max} [μg/L] ②	TERLT	Trigger
	Fish, chronic	NOEC 1 000	0.002	500 000	
AE 1234964	Invertebrate, chronic	NOEC 1 000	0.002	500 000	10
AE 1234904	Green algae, chronic	$E_r C_{50} > 100000$	0.002	> 50 9 0 000	
	Aquatic plants, chronic	E _r C ₅₀ 100 000	$\sqrt[6]{0.002}$	> 50/000 000	Jo «
	Fish, chronic	NOEC 🐴 000	0.002	500 00 00 €	10
AE F159737	Invertebrate, chronic	NOE® 1 000	×0.002 _∞	500 000 ×	10
AE F139/3/	Green algae, chronic	E _r \$6 \$100 000	C 0.002	> 50 000 000	A
	Aquatic plants, chronic	$E_rC_{50} > 100000$	0.002	>50 0 00 ×000	\$ 10 % °
	Fish, chronic	NOEC 1,000 >	A 001	1 000 000 4	
AE F154781	Invertebrate, chroni	NOVEC _ \$\tilde{V}000 \tilde{}	0.0Ql	J \$000 0 00	6 10
AE F134/61	Green algae, chronic	$E_{A}C_{50}$, $<> 10.000$	0:001	€10 0 0 €⁄000	<u>ش</u> 10
	84.0 46	E _r C ₅₀ > 10 000	9.001	> 10:000 000	10

Bold values: trigger is not met and further refinement is required

Refined risk assessment for the formulated product

For the drift entry of the formulated product to higher tier exposure calculations are available. FOCUS surface water calculations can only be performed for active substance(s).

PEC_{sw} calculations der 1 as well as FQCUS surface water are based on the scenario of immediate equal distribution of the office substance in the water body. Under these conditions – instant and equal dilution in a big water volume it can be assumed that the properties of the formulants will no longer influence the behaviour of the active substance(s). The same scenario is also reflected in laboratory tests on aquatic plants, where the test item is equally distributed in the test solution before test organisms are put in the system and where the formulation actitionally decomposes over the test period of a 7-day static test.

Iodosulfuron-methyl-sodium is the only active substance in the representative formulation IMS + MPR OD 400 (100+300) which contains 100 g Todost furon-methyl-sodium /L corresponding to 8.7 % w/w. Given the well-known exceptional toxicity of sulfonyl urea herbicides to aquatic plants, especially to Lemna gibba, it is justified to consider that the toxicity of the formulated product originates from the iodosulfuron methyl-sodium content only.

This is confirmed when the toxicity of the formulated product and technical iodosulfuron-methyl-sodium are compared (both) endroints determined in 7-day static tests, with proven stability of the active substance iodosulforon-methyl-sodium)

The Lemna- E_rC_0 of this product of C_0 4 μ g C_0 1 is clearly within the expected biological variance to the endpoint obtained for the active ingredient ($E_rC_{50} = 1.08 \, \mu$ g a.s./L).

As obviously the toxicity to aquatic plants is driven by the active ingredient iodosulfuron-methyl-sodium the risk assessment can safely be performed for the active substance only. Thus, the risk assessment for the formulated product is covered by the refined risk assessment for the active substance iodosulfuron-methyl-sodium.

Table CP 10.2- 8: TERLT calculations based on FOCUS Step 3 (laboratory soil DT50)

Table CP 10.2-8: TER _{LT} calculations based on FOCUS Step 3 (laboratory soil D1 ₅₀)					
Species	Endpoint [µg/L]	PEC _{sw,max} [μg/L]	FOCUS scenario	TERLT	Togger
Iodosulfuron-methyl-sod			(D	
<u> </u>	, , , , , , , , , , , , , , , , , , , ,	0.064	D1 (ditch)	16.9	
		0.055 🖔	D1 (streatin)	19.6	_ ~ ~ W
		0.143	D2 (dQch)	736	9 10
		00092	D2 (stream)	∂11.7 Q	10 0
		0.063	D3 (ditab)	o [™] 17. ½	10
		0.002	D4 (pond)	540.0	
		0 0 0 0 0 0 0 0	D4 (stream)	\$21.6	₄ 10
Aquatic plants, chronic	E _r C ₅₀ 1.08	6.002	D5 (pond)	5400	200
		0.050	D5 (stream) O	2 J,.6	100
		Q.963	De ditch	Ø17.1	99
		\$0.002 \$	R(1 (poted)	\$ 540	<i>₯</i> 10
		0.042	R1 (stream)	' 25 .7 %	10
		g 33 ©	R30 stream	% ⁰ 8.1 ‰	10
	als@1 x 10@ha	0.088	184 (stream)	12.3	10
AE F075736, winter cere	als@1 x 10@ha				
AQuatic Fants, chronic		6 051	D1 (ditch)	7 0.02	10
Ş		0.034	Ol (stream)	15.0	10
	4 , 8 , 7	0.787	D2 (ditch)	0.6	10
		0×495 ×	DZ (stream)	1.0	10
		≈0.00 %	Ď3 (ditch)	127.8	10
. Q		0.021	D4*(pond)	24.3	10
Aquatic Ants chronic	ECA OSI .	0.014	D4 (stream)	36.5	10
riquario piunis, em ome		0.005	D5 (pond)	102.2	10
J.		0.003	D5 (stream)	170.3	10
Q		0.004	D6 (ditch)	127.8	10
		0.001	R1 (pond)	511.0	10
4		0.025	R1 (stream)	20.4	10
		0.042	R3 (stream)	12.2	10
		0.040	R4 (stream)	12.8	10
Iodosulfuron-methyl-sod	ium, winter cereals, 1 x	₹.5 g/ha	T		T
Iodosulfuron-methyl-sod		0.048	D1 (ditch)	22.5	10
		0.041	D1 (stream)	26.3	10
		0.097	D2 (ditch)	11.1	10
		0.064	D2 (stream)	16.9	10
Aquatic plants Aronic	EC_{50} 1.08	0.048	D3 (ditch)	22.5	10
		0.002	D4 (pond)	540.0	10
		0.038	D4 (stream)	28.4	10
			D5 (pond)	540.0	10
		0.037	D5 (stream)	29.2	10

Species	Endpoint [µg/L]	PEC _{sw,max} [μg/L]	FOCUS scenario	TER _{LT}	Trigger
		0.047	D6 (ditch)	23.0	©10 10
		0.002	R1 (pond)	540.0	1000
		0.031	R1 (stream)	34.8	~10 °
		0.100	R3 (stream)	10.	10
		0.066	R4 (stream)	16,4	9' 10W
AE F075736, winter cerea	ıls, 1 x 7.5 g/ha		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ŏ Q	
		038	DV (ditch)°	13.4	40 L
		© 0.025	D1 (stream)	20,4	J 100
	<u> </u>	1/ U~3609 .//.	D2 (ditch)	~0.9	Ϊď
	.1	370	(stream)	1.4	\$10 K
		~ 0.Q 03 /	Ď3 (ditch) 💍	b° 170.2	10
	E _r C ₅₀ QS11 7	0.016	D4Qpond	\$1.9 \$1.9 \$51,\$\$	₫®.
Aquatic plants, chronic	ErC ₅₀	, Ø.010, S	Do (stream)	\$ 51, 1	<u>ش</u> 10
Aquatic plants, emonic	L _r C ₅₀ Ag ₃ 11 ⁴ 0 ⁴	0.004	D5 (pond)	127.8	() 10
		0,002 ₀	D5 stream	Q55.5 ₆	10
		0.003	Ø6 (dit@n)	170.9	10
		© 0.00P	R1 (pond)	5 f 2.0	10
		. (7)	R1 (stream)	26.9	10
		0.034.8	(stream)	7 16.0	10
		* W 0 0 0 0 0 0	R4 (stream)	17.3	10

^{*} Refinement using a drift rate of 0.57 % (5 m buffer) for arable crops (see Formulated product, Table CP 10.2-3)

Bold values: trigger is not met and further refinement's required

Table CP 10.2-9: TERO calculations based on FOCUS Step O (field soil DT50)

Species Endpoint [µg/b]	PEGw,max [µg/L] O x 100/ha	FOCUS scenario	TER _{LT}	Trigger
Iodosulfuron-methyl-odium winter ereals 1	x 100g/ha 🕜			
	0,065	D1 (ditch)	16.6	10
	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	D1 (stream)	19.6	10
	0.247	D2 (ditch)	4.4	10
Iodosulfuron-methyl-sodium, wintercereals 1	0.162	D2 (stream)	6.7	10
	0.063	D3 (ditch)	17.1	10
Aquatic plants, chronic C ₁ C ₅₀ 1.08	0.002	D4 (pond)	540	10
Aquatic plants, chronic r_{c}^{2} r_{c}	0.050	D4 (stream)	21.6	10
Aquatic plants, chronic F ₁ C ₅₀ , 1.08	0.002	D5 (pond)	540	10
	0.050	D5 (stream)	21.6	10
	0.063	D6 (ditch)	17.1	10
	0.002	R1 (pond)	540	10
Aquatic plants, chronic FrC ₅₀ , 1.08	0.045	R1 (stream)	24	10
	0.159	R3 (stream)	6.8	10

Species	Endpoint [µg/L]	PEC _{sw,max} [μg/L]	FOCUS scenario	TER _{LT}	Trigger
		0.111	R4 (stream)	9.7	Ø10 6
AE F075736, winter cere	als, 1 x 10 g/ha		Ĉ	*	
		0.020	D1 (ditch)	25.6	300
		0.014	D1 (strefim)	36.5	0, 0,
		0.439	D2 (ditch)	₽ ?	7 190
		0,288	D2 (stream)	1.8 Q	10 0
		₹ 0.001	D3 (ditch)	514	10 1
		0.002	D4 (pond)	256	
Aquatic plants, chronic	E_rC_{50} 0.511	9 ,901 🔊	D4 (stream)	₹511 ×	
Aquatic plants, emonic	E _r C ₅₀ 0.311	≈0.001°	95 (pood)	514	10 %
		<0.001	D5 (stream)	511 ⁴	10
		J Ø002 🎺	DO (ditch)	\$\times 256 \times \tag{2}	6 10
		, \$100.0°\$,	R1 (poud)	\$ 5 <u>1</u> \$	<u>ش</u> 10
		0.013	R1 (Fream)	39 .3 • 1	<i>)</i> 10
		Q 021 0	Ra (stream)	© 24.3 ₄	10
	ium, winter cereals, 1 x	0.020	RA (stream)	25.©″	10
Iodosulfuron-methyl-sod	ium, winter cereals, 1 x	Ø5 g/ha [®]		, Q	
	ing, winger cerears, 1 x	048	DÎ (ditck)	22.5°	10
		0.041	1 (stream)	y 26.3	10
		0.009	D2 (ditch)	6.4	10
		30:113 S	D2 (stream)	9.6	10
		∑ ⁷ 0.0 4 8,	D3 (ditch)	22.5	10
		0,002	D4(pond)	540	10
Aquatics Stants chronic		0.038	(stream)	28.4	10
Aquatic plants, enrollic		0.002	D5 (pond)	540	10
\$		0,037 /	D5 (stream)	29.2	10
		0.048	D6 (ditch)	22.5	10
		O 0.002	R1 (pond)	540	10
.4		0,033	R1 (stream)	32.7	10
		. < 0.119	R3 (stream)	9.07	10
		©″ 0.083	R4 (stream)	13.0	10
AEÆ075736, winter cere	als, 1 x 7,5 g/ha 💍 🦠	7	,		
Aquatic plants, chronic Aquatic plants, chronic Aquatic plants, chronic Aquatic plants, chronic		0.015	D1 (ditch)	34.1	10
		0.010	D1 (stream)	51.1	10
		0.328	D2 (ditch)	1.6	10
		0.217	D2 (stream)	2.4	10
Aquatic plants chronic	$E_{r} \mathcal{E}_{50} = 0.511$	< 0.001	D3 (ditch)	511	10
		0.001	D4 (pond)	511	10
× × O		< 0.001	D4 (stream)	511	10
\bigcirc		< 0.001	D5 (pond)	511	10
		< 0.001	D5 (stream)	511	10

Species	Endpoint [µg/L]	PEC _{sw,max} [μg/L]	FOCUS scenario	TER _{LT}	Trigger
		0.002	D6 (ditch)	2 56	@10 A
		0.001	R1 (pond)	511	1.00
		0.010	R1 (stream)	51.1	
		0.016	R3 (stream)	31.9	~~~10 ~~
		0.01\$	R4 (stream)	39.1	100

Bold values: trigger is not met and further refinement is regirired

The following scenarios do not pass the risk assessment at step 3 (base on DT) of field dissipation studies) and require a refined risk assessment:

Iodosulfuron-methyl-sodium:

D2 (ditch and stream), R3 (stream) and R44stream) for 1 & 10 g & s./ha

D2 (ditch and stream) and R3 (stream) for 1 x 7.5 g a.s. ha.

AE F075736: D2 (ditch and stream) for 1 x 10 g a.s. tha and x x 7.5 g a.s. tha

REFINED CHRONIC RISK ASŠESSMENT FOR AQUATIC PLANTS

In addition to the tier 1 test with Lemna gibba, resulting on the ErC₅₀ et 1.08 µg a.s. It two further macrophyte studies have been conducted with fodosulfuron-methyl sodium technical and the formulation iodosulfuron-methyl-sodium WO 50, respectively.

- In the macrophyte pond study (1990) 11; M-407716-010, KCA 8.2.7 /06), ten different macrophyte species were exposed to iodosulfuron-methyl-sodium applied as WG 50 formulation under outdoor conditions. This formulation was created for the only purpose to ensure the full solubility of the test substance in the application solutions. The study was to deliver an appropriate number of endpoints for at HC₅ calculation. The study included two different exposure regimes:
 - 1) Constant exposure over 6 weeks with natural degradation of the compound in the ponds; this part was conducted in an ECx design and can be regarded as representative for a static water body. The discipation of the parent substance over a six week period was quantified by analytical measurements. In parallel to the decrease of the parent substance iodosulfuronmethyl-sodium, the increase of the metabolite AE F075736 was measured (see Figure 10.2-1). The 6-week entroints derived from the outdoor macrophyte growth inhibition study are based on initial measured concentrations of iodosulfuron-methyl-sodium.
 - 2) 2-day peak exposure (two peak concontrations 0.27 and 0.72 μg a.s./L, initial measured) with subsequent replacement of the test solutions with untreated dilution water in the ponds. This second regime aimed at mimicking short runoff or drift peaks in flowing water bodies and their effects on macrophytes.
- Since Lenna could not be tested in the outdoor-ponds due to the low nutrient levels in the pond water, and since the parallel Lemna test with enriched pond water was considered less reliable due to strong algae infestation, Lemna was tested under sterile conditions in the laboratory (2013; M-469584-01-1, KCA 8.2.7 /07). As the concentration of iodosulfuron-methyl-sodium in the water column of the outdoor-ponds decreased by about 50% within four weeks after the application, laboratory tests were set in that way that the concentration of the test substances

mimicked the decrease of iodosulfuron-methyl-sodium and the simultaneous increase of AE F075736 over time.

Figure 10.2-1: Dissipation of odosulfuronmethy sodium and formation of its main metabolite AE F075736 on the bonds of the outdoor macrophyte growth inhibition study (2014). Data points are mean % nominal values per day from all treatment levels.

The exposure pattern described in the tested ponds including the relation of iodosulfuron-methyl-sodium to AE F075736 is representative e.g. for drift entry of iodosulfuron-methyl-sodium in static water bodies. In this case, where only the parent compound enters the water body, so that exposure to AE F075736 occurs only due to degradation the parent, the toxicity of AE F075736 is covered with the endpoint of the parent compound. A separate risk assessment for AE F075736 is not deemed necessary. However, if AE F075736 enters the water body independently from parent, e.g. via to runoff and drainage after formation in the soil, a separate risk assessment based on an own endpoint has to be performed.

Probabilistic risk assessment: SSD and MC5 calculation for iodosulfuron-methyl-sodium

The refined risk assessment for jodosulfuron-methyl-sodium is mainly based on the results of the multispecies outdoor pond study (\$\frac{1}{2011}\$, M-407716-01-1, KCA 8.2.7 /06) and the associated 6-weeks laboratory broassay with *\frac{1}{2010}\$ and \$\frac{1}{2010}\$ (\$\frac{1}{2010}\$ 2013, M-469584-01-1, KCA 8.2.7 /07). The data of the two studies have been used to generate a species sensitivity distribution (SSD) and calculate an HCa

Although the pulltispecies outdoor pond study had been started with ten species, *Glyceria maxima* was removed from the gody on exposure day 29 due to generally poor health in all treated and control ponds. The evaluation was done with the remaining nine species. For more information on the study and further endpoints, see study the summary in document M, point CA 8.2.7.

All endpoints listed in Table CP 10.2- 10 are based on initial concentrations of iodosulfuron-methy sodium at the start of the 6-week test period. The outdoor pond study yielded EC₅₀ values for the variable dry weight growth rate for all nine species, ranging from 0.54 μg a.s./LΦ > 61 μg a.ΦL The EC50 > 61 μg/L obtained for *Cabomba carolinea* has been omitted from the HC5-calculation. according to Aldenberg, T. & Jaworska, J.S. (2000)³.

As mentioned above the lowest endpoint from the 6-weeks Lemna bioassay is 0.609 μ g, a.s./L/ E_r C₅₀ ξ for frond number). This endpoint was added to the overall eight endpoints from the pond study. The complete data set used for generating the SSD is shown in the table low.

Refined species included in the SSD and there relevant EC value **Table CP 10.2-10:**

) (ove the lowest enupoint from the o-weeks Lemma	Uluassay is 0.009 μg a.s./L/γL ₁ Cs0(\$
r)	r). This endpoint was added to the overall eight end	lpoints from the pond stody. The
t	r). This endpoint was added to the overall eight end t used for generating the SSD is showly in the table.	Delow. So So So
0:	9: Refined species included in the SSD and the	r relegiant E 50 value,
	Species . Bindy	ogint [µg @s./L]
	Salvinia minima	0.540
	Lemna gibba (6 weeks)	0.009
	Elodea canadensis	
	Potamogeton pectifarus S S E.O.	
	Mentha aquatica S	
	Ceratophyllun demersum & ErG	6.20
	Myriophyllum heterophyllum	0 7 67
	Sagittaria latifolia & ErCs	7.90
	Nymphaea Tradorata EOS	
2		0.385

The HC₅ calculation is based on the method of Afrenberg & Japonska (2000)³. A median HC₅ of 0.385 μg a.s/L was calculated (co Table CP 102-10)

Refined aquatic rick assessment for iodosulfavon-methyl-sodium

For the refined risk assessment long-term exposure scenarios and peak exposure scenarios may be considered separately. In order to distinguish long term exposure from peak exposure the temporal patterns of PEC-figures (2014@M-477282-01-1, KCP 9.2.5 /04) were analysed. Run-off scenarios R3 and R4 show a dominant and very sharp peak that lasted less than 1 day. This primary seak may be followed or preceded by one or a few significantly smaller secondary peaks. These scenarios are considered as weak exposure scenarios in the refined risk assessment. Drainage scenarios D2 (Ortch and stream) show high exposure over a long time period, with many entry events and slow dissipation after the cutry. These scenarios are considered as long-term exposure scenarios in De refined risk assessment. @

For the tong-term exposure Genarios, the calculated HC₅ is compared to FOCUS Step 3 max. PEC_{sw} The results of these valculations are provided in Table CP 10.2-11. An assessment factor of 3

[,] J.S. (2000): Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicology and Environmental Safety, 46: 1-18.

should be applied in conjunction with the median HC_5 to derive the regulatory acceptable concentration.

Refined risk assessment for advatic macrophytes using refined endpoints for uron-methyl-sodium **Table CP 10.2-11:** iodosulfuron-methyl-sodium

Species	Endpoint [µg/L]	%	PEG;ŵ,max	FOCUS OF	TER N	Trigger
Iodosulfuron-methyl-sodi	um, winter cereals	1 x 1	Og/ha_ ©	Q 4 2	y 0'	
Aquatic plants, chronic	HC ₅ 0.385		0.162 ×	D2 (ditch) (stream)	2.4\$\text{\$\tilde{\text{\$\cup\$}}}	© 3
Aquatic plants, chronic	NOEC 0.72)) (Q	0.159	R3 (stream) R4 (stream)	26.5 °	3 3
Iodosulfuron-methyl-sodi	um, winter cereals	, 1 [®] 7	.5 g/na	Q .	8 K	
Aquatic plants, chronic	HC ₅ 0.385	Ţ	0.169	D2 (ditch) & D2 (stream)	2.3	3
Aquatic plants, chronic	NOEC 072	0	Ø.119 O	R3 (stream)	6.1	3

With the refined expoints the risk assessment for the oun-off scenarios R3 and R4 is passed for both

For scenarios 22 (ditch and gream) TER values are still below the relevant trigger value of 3. For these scenarios, also the risk assessment for AFF075736 is not passed (see Table CP 10.2-9). As D2 scenarios are driven by drainage entry mitigation measures such as buffer zones or drift reducing nozzles will not reduce the concentration of the compounds in the water body. Therefore, no further risk assessment based on FOCUS step 4 Palculations in presented.

In conclusion for all OCUS scenarios except of D2 (ditch and stream) the application of a-diethy sophytes. No mit iodosulfuron methyl-sodium + mefenpyr-diethyl OD400 at recommended application rates does not cause Arisk to aquatic macrophytes. No mitigation measures are needed.

CP 10.2.1 Acute toxicity to fish, aquatic invertebrates, or effects on aquatic algae and macrophytes

Report:	;2004;M-229600-01
Title:	Acute toxicity of iodosulfuron-methyl-sodium & mefenpyli-diethyl OD 100 + 300 to fish
	(Oncorhynchus mykiss) (product code: AE F115008 02 OD35 A202)
Report No:	C040810
Document No(s):	M-229600-01-1
Guidelines:	EU (=EEC): 92/69/EEC, C.1.; QCCD: 203; USCPA (=EPA): 02-1/SER EPA 340/9-82
	006, OPPTS 850.1075; Deviation not specified of of the state of the st
GLP/GEP:	yes Q Q Q Q

Executive summary:

The aim of the study was to determine the acute rexicity of the test item to Rambow trout (Oncorhynchus mykiss), expressed as 96 Y-LC3 for mortality.

Oncorhynchus mykiss (10 fish in each est level) west exposed in a static system over operiod of 96 hours to nominal concentrations of 4.56, 3.43, 6.25, 12.5 and 25,0 mg as titem. L against a water control.

Mortality and sublethal behavioural effects were used to determine the endpoints. Based on analytical findings the biological endpoints are reported as nominal figures. The 96-hour NOEC was determined to be 1.56 mg test item/L.

Material and Methods: &

Test item: Iodos fu furon methyl sodium & Metenpyt-diethyl OD 100 + 200; Product code: AE F115008 & OD 35 A202; Analysed content: Todos furon methyl sodium (AE F115008): 8.82%, Metenpyr-diethyl (AE F107892). 26.0%, Batch No.: AAIM01665; Analysis ref. code: AZ 11073; Development/product No.: 30 00353 § 7.

Rainbow trout (Oncorhynchus mykiss) were exposed for 96 h under static conditions to nominal concentrations of 3.56, 3.13, 6.25, 12.5, and 25.0 mg, test item / L against a control. The mean body wet weight of the fish at the beginning of the test was 1.4 ± 0.2 g (mean \pm SD), mean body total length was 5.3 ± 0.3 cm (mean \pm SD). The biomass loading was 0.35 g fish/L test medium. Each vessel (aquaria made of glass; $32 \times 36 \times 38$ cm/k·d×h) served as one replicate filled with 40 L. Reconstituted water was used for the test. It was prepared by adding salt stock solutions to demineralized water (conductivity < 0.2 µS/cm/to yield ionic concentrations according to ISO. The water was then aerated to reach the oxygen saturation wint.

Dissolved oxygen concentrations ranged from 95 to 100 % oxygen saturation, the pH values ranged from 6.9 to 79, the hardness ranged from 40 to 60 mg CaCO₃/L and the water temperature ranged from 12.1% to 12.4°C in all aquaria over the whole testing period. Iodosulfuron-methyl-sodium was analyzed in all 48st levels after 0 h, on day 2 and on day 4 of the exposure period.

Dates of experimental work: January 26, 2004 to March 11, 2004

Results:

The analytical findings for AE F115008 (iodosulfuron-methyl-sodium) reflect the expected nominal concentrations. Based on analytical determination of iodosulfuron-methyl-sodium (in water by LC MS/MS) mean measured values between 103 % and 105 % of nominal were found in all exposures levels over the whole testing period of 96 hours.

Given that the toxicity cannot be attributed to the active incredient but to the formulation as a whole the LC_{50} values have been calculated based on nominal test concentrations of the formulation only. Therefore all results are given as nominal values. There were neither any adverse offects for any mortality in the control group. There were behavioral observations on fish caused by the test item over the whole exposure period in all test levels ≥ 3.13 mg test item. L. At the test level with 3.13 mg test item. L fish showed the following symptoms after 96h remained for unusually long periods at the water surface; showed labored respiration.

Cumulative mortality was observed as follows (with a total number of 10 fish fested in each sest level):

Table CP 10.2.1-1: Cumulative mortality

			g - 600		28 //		· 18	4 📎	9.7	
Exposure time	41	1 🔏	× 24	h y	48	hy C		h 🔊	°, ≈ 36 i	h
Test level (mg	No. of	%	No of	%)/o	No. of		No of	0%	No. of	%
test item / L)	dead	dead	%dead	dead @	dead	dead	dead (dead	dead	dead
Control	0	~ 0	0	Q	_0 ′	L 0 %	§ 0 Ø	0	0	0
1.56	0 6	0 0		Ø '	0	0,%		4 9	0	0
3.13	0 🔊	0	8			0°		$\mathbb{Q}^{\infty}0$	0	0
6.25	Q		, 🕲 O 🤇		$\mathcal{Q}_{\mathbb{Q}}$		(1 ×	10	1	10
12.5		©20 _~) 10 ₀	100	\$40	900 C	104/	100	10	100
25.0	10	/ 100Ô	JØ.	100	~~~10 √	100	19	100	10	100

Conclusions:

Based on nominal concentrations, the 96 h - L $_{50}$ was calculated by probit analysis to be 7.75 mg test item / L $_{60}$ 1.95%: 6.43 $_{60}$ 9.33 $_{60}$

₹20 04;M-229361-01
Acute toxicity of Iodosulfuron methyl-sodium & Mefenpyr-diethyl OD 400 to the
water lea Daphnia magna Code: AE F115008 02 OD35 A202
C040690 ~ Q
M-22936)-01-10
ÉU (=ÇĚC); 92/69/EÉC, part C2; OECD: 202; USEPA (=EPA): OPPTS 850.1010,
subtrision E, §72 %; Deviation not specified
yeQ` , ~~~

Executive Summary

The aim of the study was to determine the influence of the test item on mobility of *Daphnia magna* over 48 pours in a static exposure, expressed as EC_{50} for immobilisation.

Young *Daphnia magna* (1st instars <24 hour old, 6 x 5 animals per concentration) were exposed in static system over a period of 48 hours to nominal concentrations of 2.0, 4.0, 8.0, 16.0 and 32.0 mg formulation/L without feeding. In addition an untreated dilution water control was tested.

After 24 and 48 hours, behaviour of the water fleas was visually evaluated by counting mobile daphnids. Additionally all possible signs on sublethal effects had to be recorded. Based on nominal concentrations of the mixed formulation, the EC₅₀ for immobilisation after 48 hours (24 hours) of static exposure was 8.3 mg formulation/L (11.8 mg formulation/L). Based on nominal concentrations of the mixed formulation, the EC₅₀ for immobilisation after 48 hours of static exposure was 8.3 mg formulation/L). The orresponding EC₅₀ for immobilisation after 24 hours of static exposure was 11.8 mg formulation/L (95% confidence limits 10.4 to 13.5 mg form./L). Statistical results confirm the observed NQFC of 4.0 mg formulation/k after 24 and 48 hours of exposure on a 5 % level of significance (significantly treatment related immobilisation at 8.0 mg formulation/L after 24 and 48 hours of exposure).

Materials and Methods:

Test item: Iodosulfuron-methyl-sodium & Mefenpyr-diethyl OD 400; Content 8.82 % w/w Iodosulfuron-methyl-sodium + 26.0 % www Metenpyr diethyl Product code AE F 15008 02 OD 35 A202; Specification: Batch AA M01665; BCS-Development No 30 00353917 Physical-density: 1.144 g/mL; Analysis ref. code: AZ 11073

Young Daphnia magna (unfed first instars, A how old, from laboratory stock breeding) were exposed in a static test system for 48 hours to normal concentrations of 2.0, 4.0, 8.0, 16.0 and 32.0 mg formulation/L without feeding. In addition an untreated didution water control was tested. Each vessel (glass beakers; 100 mL) served as one replicate filled with 50 mL unificial mineral medium M7 (similar to the M4 medium, Elendt 1990). Sax vessels (replicates), each provided with five daphnids, were used per treatment group and control (= 30 animals per study group). After 24 and 48 hours, behaviour of the water fleas was visually evaluated by counting mobile daphnids, defined as animals with swiftming movements (dight movements of attenue were not interpreted as swimming movement) within approximately 3 seconds after gentle agitation of the test vessel. Additionally all possible signs on sublethal effects had to be recorded and physical-chemical water parameters were assessed.

For analytical verification of the sest item concentrations and the control sample were taken at 0 and 48 hours High-performance liquid chromatography (HPLC) was used as analytical method.

An acute non-GLP toxicity test was performed on September 04, 2003 (prepared on September 04,

Dates of experimental work: December 01, 2003 – March 11, 2004

Results:

Study quality:

immobility was met. As the physical chemical measurements show, the composition of the test water corresponds to the nominal values, and the EC_{50} of the reference substant C_{50} required range. Thus, the study conditions and breeding quality met the required quality criteria.

The measured concentrations of a.s.-component iodosulfuron-methyl-sodium in the freshly prepared test solutions at test initiation ranged between 97% and 101% (prepared to the prepared to th nominal concentrations.

The measured concentrations of the aged test solutions at the end of the hours exposure period ranged between 95% to 102% (mean: 97%) of nominal, demonstrating stability in the test system. Given that the toxicity cannot be attributed to the active substance component but to the tested formulation as a whole, the EC₅₀ values have been calculated based on nominal sest concentrations only. Detailed analytical results are presented in the following table:

Analysed concentrations of iodosulfaron-methyl-sodium in est solutions **Table CP 10.2.1-2:**

Nomina concentr		of the fresh	ncentrations ly prepared tions	Analysed co	ncentrations ly prepared
mg form./L	μg a.s./L	μg Ø.s./L	% of pominal	μ g (3).s./L	∜‰f ∳ nominal ∜
Cont	trol 🍣	(0 < 4.9 ×)	₩~	\$\frac{9}{4.90}	\$ Q
2.0	J96 %	174 9	99%	√ 167°	95%
4.0	©353 S	√ 947 [©]	98 % B	9 47 8	% %
8.0	₉ 706	687, 🕏	₹ 97 %	674 _@	296 %
16.0	1410	~ 14 0 2 /	Ø 199 %	~ 13 60	96 %
32.0	2820 📈	·2837	1.01%	2874	102 %
	~ °	Mrean: 90 %	of nominat	Mean: 97 %	of nominal

Biological findings:
Observations on immobilisation are listed as follows:

Table CP 10.2.1-3: Toxicity to Daphnia magna (based on nominal concentrations)

Гable СР 10.2.1-3:	Toxic	ity to Daphnia magna	ı (bas	ed on nomi	nal c	oncentratio	ons)	
			1	mmobilise	d Da	phnids		'
Nominal Test Concer	ntration	Exposed Daphnids		24 h.		48 h.		
Mg form./L		(=100%)	n	%± SD	n	%±SD		
Control		30	0	, , 0	0_	Q , 0		
2.0		30	Ŷ	¥ 0	A,	0		
4.0		30		0	4 0			S.
8.0		30	4	13 ± 10	16%	93 ± 21		
16.0		30 📞	240		28	93 ≠ 10		j
32.0		30	39	F 00	3 0			
			<i>\(\text{O} \)</i>		Ž,	1 \$	0.	Ũ
Biological endpoints	derived:		' ^	y lo	Ž,			N N
from the results prese	ented abo	ove the following bio	ologi	cal endpoi	ests c	an be deriv	Ød: S	
Biological endpoints From the results prese					ď,	Ţ, Ĵ		
Table CP 10.2.1-4:	Statis	tical results of Probit	Anal	sis conduc	ted	or determin	nation of EC50 val	ues
Probit Analysis	Slope Fr	nortion 🗡 🗼 EC5	0	≪ Low	95 9 5	%cl	¹ Upper 33 % cl	
`	after Litc	Kfield & Mg ford	b./L	n mg	form		mg form./L	
after	William	van Var	allaz	- no	miñ	.Rv -″3∀	nominally	

Biological endpoints derived:

Statistical results of Probit Analysis conducted for determination of EC50 values **Table CP 10.2.1-4:**

Probit Analysis	Slope Fantion 🔌	EC ₅₀	Lower 95 % cl	Ppper 83 % cl
for data obtained	(after Litchfield &	ong forto./L	nfy form	mg form./L
after	Wiocoxon)©″	on metally	nominally	nominally
24 hours	[™] 1.41 5 1	1.8 0	10.4	3 13.5
48 hours	1.459	8.3	7.3 &	9.5

Conclusions:

Based on nominal concentrations of the mixed formulation lodos illfuron-methyl-sodium & Mefenpyrdiethyl OD 400, the EC₅₀ for immobilisation after 48 hours of static exposure was 8.3 mg formulation/L (95 % confidence limits 7.3 to 9.5 mg formulation/L).

The corresponding EQ for immobilisation after 20 hours of state exposure was 11.8 mg formulation/L (95 % confidence limits 10.4 to 13.5 mg form./b).

Statistical results confirm the observed NOEC of 4.0 mg formulation/L after 24 and 48 hours of exposure on a 5% level of significance (significantly treatment related immobilisation at 8.0 mg formulation/Pafter 24 and 8 hours of exposure

Report;	; 2004;M-229597-01
Title	Influence of odos Of uron sethyl-sodium & Mefenpyr-diethyl OD 100+300 on the growth
	of the green alga. Pseudokirchneriella subcapitata (formerly named Selenastrum
	r capric of nuturity & Q
Report No: Q'	C046808
Document No.	M_Q29597401-1 ~ Q
Guideline . O	OECD 01; Deviation not specified
GLP/GEP:	yes 💸

The aim of the study was to determine the toxicity of the test item to Pseudokirchneriella subcapitata, expressed as EC₅₀ for growth.

Cultures of *Pseudokirchneriella subcapitata* (green alga) with an initial cell density of 10 000 cells/mL per test concentration were exposed in a chronic multigeneration test for 3 days under tatic & test conditions to the nominal concentrations of 0.10, 0.31, 1.0, 3.1 and 10.0 mg/ormulation/J/In addition an untreated medium control was tested. (Potassium dichromate as positive control was tested once a year.)

24, 48 and 72 hour growth rates based on cell numbers were used to determine the endirents. Siven that the toxicity cannot be attributed to one of the active regredients but to the test material as a whole the calculations are based on nominal concentrations only. The (0-720) E_rC₅₀ is 6.71 mg formulation/L, the (0-72h) NOE_rC is < 0.1 mg formulation/L.

Materials and Methods:

Test material: Iodosulfuron-methyl-sodium & Mefeupyr-diethyl (20 100 300; Analysed content: AE. F115008: 8.82 % w/w and AE F107892: 26.0 % w/w; Batch No.: AAIM01665, Product code: AE F115008 02 OD35 A202; Physical-density: 1.144 g/m/, Certificate of Analysis: AZ 11073. Green alga (Pseudokirchneriella subcapitata) were exposed in a chronic multigeneration test for 3 days under static test conditions to the nontonal concentrations of 0.10 0.31, 1,0, 3.1 and 10,0 mg formulation/L. In addition a untreated medium control was tested. At lest intriation the cell density was 10 000 cells/mL per test concentration. Aliquoto each (50 g the untreated medium were filled into the 6 controls and of the treated medium into the 3 treatment vessels per treatment level. The pH values ranged from 7.9 to \$7 in the controls and the incubation temperature ranged from 23.0°C to 23.3°C (measured in an additional incubated plass vessel) over the whole period of testing. Concentrations of iodosulfuron-methyl-sodium were measured in all test levels on day 0 and day 3 of the exposure period

OD-measurements, pH-measurements, temperature measurements (hourly by the data logger) and morphological examination of cells were made on study days 0, 1, 2 and 3. Cell numbers were estimated photometracally.

Dates of experimental works

235 2004 Marco 16, 2004

Results:

The validity criterion of cell density increase > 16x determined for the present study in the control is fulfilled. A factor of 96.8 was

Analytical findings

Concentrations of iodosulturon methyl-sodium in the treatment levels found on day 0 were 82.6 to 108 % of nominal (average 162 %) on days recoveries of 77.1 to 107 % (average 99.0 %) of nominal were found. Given that the toxicity cannot be attributed to the active ingredient but to the test material as a whole, the aculations are based on nominal concentrations only. Detailed analytical results are presented in the following table:

Table CP 10.2.1-5: Comparison of nominal and analytically determined concentrations of iodosulfuron-methyl-sodium on Day 0 and Day 3

			^	•
Nominal concentration	Day 0		Day 3	
in mg formulation/L (µg Iodosulfuron-methyl-	Actual concentration		Actual concentration &	
sodium /L)	(μg Iodosulfuron-methyl sodium/L)	%	(ug Iodosulfuron-methyl) sodium)L)	. 8
,	Average	Ć	Average A	
Control	<0.882	Q,	0.882	-0
0.10 (8.82) A	7.98	%2 6%	0° ° 6.2° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0
В	6 5 9 6 5	*82.6 *		§'/ /.1
0.31 (27.3)	29.6	108	29.3	107
1.0 (88.2)	92.5	105		\$104
3.1 (273)	Q 292 Q . Y	100	292 2 O	107
10.0 (882)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	D 06	\$ \$ 880	99.8
Stock solution		, , (
100 (8820)	8 169 F C	92%	° 5° &	
*	Mean (without stock solution)	Ç 1 02		99.0

Biological findings

A static 72 h algal growth ten was conducted to determine the effects of the test substance on the growth of the green liga, *Rseudolog chneciella subcapitala*. Observations on growth rates are listed as follows:

Table CP 10,2.1-6: Test initiation with 10,000 cells/mil

Nominal concentration mg Cell number after	Average growth rate	% inhibition of average
72 indication of the control of the	$ \begin{array}{ccc} & \text{in } \mathcal{V}[1/d] \\ & (0 & \rightarrow 72 \text{ h}) \end{array} $	growth rate
control 3 0 × 968,000 C	1.529	
0.10 Q 843,000 Q	1.483	3.0
0.31 6 73,000	1.436	6.1
1.0	1.259	17.7
3.1 © 0°208,000 °	1.017	33.5
10.0	0.631	58.8

Growth rate values are preferred, because the validity criteria concerning the exponential algal growth are fulfilled within this test.

Conclusions:

The (0 \sim 72h) C_{50} for iodos a furon-methyl-sodium & Mefenpyr-diethyl OD 100+300 is 6.71 mg formulation (Cl \sim 6.5%: 580-7.91) and the (0 - 72h) NOE_rC is <0.1 mg formulation/L.

Report:	KCP 10.2.1 /04; , M.;2004;M-229602-03		
Title:	Iodosulfuron-methyl-sodium & mefenpyr-diethyl C	D 100 + 300 -	Influence on the growth
	of Lemna gibba G3 Code: AE F115008 02 OD35 A	202	
Report No:	C040811	Z.	
Document No(s):	M-229602-03-1	10,	
Guidelines:	OECD: 221;Deviation not specified		
GLP/GEP:	yes		

Executive summary:

The aim of the study was to determine the toxicity of the test item to *Lenna gibba* G3 as a representative aquatic macrophyte, expressed as \$\overline{C}_{50}\$ for 50 percent imbittion of growth rate.

3x12 fronds per test concentration were exposed in a chronic multigeneration test for 7 days under static test conditions to nominal concentrations of \$\overline{A}1\$, \$1.25\$, \$3.70011.1, \$\overline{A}3\$.3 and \$\ov

Material and Methods;

Test item: Iodosulfuron-methyl-sodom + mefennyf-diethyl OD 100+300; Product code: AE F115008 02 OD35 A202; active ingredients. AE F115008, content: 8.82 % w/w, AE F107892, content: 26.0 % w/w; Formulation-batch No.: AIMO 1665; Certificate of analysis AZ 11073.

3x12 fronds per test concentration were exposed in a chronic multigeneration test for 7 days under static test conditions to nominal concentrations of 0.41, 1.23, 3.70, 11.1, 33.3, and 100 μg formulation/Lagainst a control. The pH values ranged from 7.6 to 8.7 in all test levels and the incubation temperature ranged from 23.5 °C to 23.4 °C measured in an additional incubated glass vessel over the whole period of esting mean 23.3 °C. The incubator was illuminated with a light intensity of 7717 lux mean of total of 5 measurements on day 0: 6837, 7314, 8109, 8162, and 8162 lux). Recoveries of ΔΕ F1 5008 were measured in all freshly prepared test levels on day 0 and in all aged test levels on day 7 except the lowest test level.

Dates of experimental work:

November 26, 2003 to March 11, 2004

Results

Validity criteria

The following validity effection is met: the frond number in the controls increased by a factor of 10 corresponding to a doubling time (Td) of about 2.1 days (minimum requirement: Td = 2.5 days).

Analytical findings:

The quantities of AE F115008 found in all freshly prepared test levels on day 0 in reference to nominal concentrations ranged between 81 and 105 % (average 89 %). In 7 d-aged test levels there were analytical findings between 80 and 110 % (average 91 %) of nominal. The lowest test concentration of 0.41 ug formulation/L has not been analysed because this concentration was below the NOEC. Given that the toxicity cannot be attributed to only one of the active ingredients but to the test material as a whole, the calculations are based on nominal concentrations of the formulation only.

Table CP 10.2.1-7: Nominal and measured concentrations of AK 115008

		I B	a.U'		
Nominal concentration		4		, · · · · · · · · · · · · · · · · · · ·	
in μg formulation/L	Day	Detection 1 🗶	Detection	Mean D	% of nominal
(μg AE F130081/L)		Oʻ			s. A .
Control	0	< 0.0196	~ < 0.00 196 Q	0.0126	
Control	7	< 0.0 196	y ≤0.0196 _∞ ′	<i>≠</i> < 0. 6 96 √ ,	478
0.41 (0.036)	0	not determined	not determined		
0.41 (0.030)	7	not defermined	not determined &	0.115	@n' -
1.23 (0.11)	0	LO.117	04/14	0.115	© 105
1.23 (0.11)	7	Q"0.121	2 0.121 3	04\ ^Q 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	110
3.70 (0.33)	0	0.121	© 0.292 J	2 96 0	© 90
3.70 (0.33)	7 ~	© 0302 N	0.3 %	0.304 💚	O 92
11.1 (0.98)	0 %	& 0.797°	§ 9 √788 §	0.792	81
11.1 (0.98)	. D	O 0849	0.841	2 Q \$\frac{4}{2} \	86
33.3 (2.94)	% 0	<u> 2.55</u>	2.47	2 .51	85
1	7 2	?" ₄ 2.07 O	345	& 2.61~	89
100 (8.82)	0	7.39©	\$2.35	©″ 7.3∜v	84
100 (8.82)	47	7,05	7.02 0	C, 7,03	80

¹ lowest standard concentration used for determination

Biological findings:

Growth inhibition was observed as listed below.

Table CP 10.2.1-8: Frond counts, dry weight and percent inhibition of the average growth rate

(12 fronds correspond to 1.1 mg/dry weight at lest initiation

Test levels (µg	Final frond no.	ry weight of	% inl	nibition
formulation (L)	(day 7 magna) (Distin	ts (stary 7, 0	Average growth rate	Average growth rate for
	(day 7, means) mea	ms) [mg] 🗸	for frond no.	dry weight of plants
Control	7122 ₄ 7	3.1,~Q″	-	-
€ 0.41	√ 10€ √	12.2	5.5	3.1
1.23	108 0	1,207	5.0	1.3
3.70	D 92 2 2 2	5 0.9	12.3	7.3
11.1	23 4	5.7	71.5	33.3
33.3		4.8	82.6	40.7
		5.0	80.4	38.6

Conclusion

The inhibitory effect of the formulation to duckweed, *Lemna gibba* was determined as follows:

Table CP 10.2.1-9: The inhibitory effect of the formulation to Lemna gibba

	Average growth rate for fronds numbers (µg formulation/L)	Average growth rate for dry weights of plants (i.g formulation)
E _r C ₅₀ (Cl 95%)	8.4 (0.3 – 239)	© > 100
LOE _r C	3.70	<u>a</u> 11.1 \$ \$
NOE _r C	1.23	3.70 %

The LOE_tC determination is based on statistical data analysis.

CP 10.2.2

No additional long-term and chronic toxicity study on fish dwelling organisms was conducted.

CP 10.2.3

No further testing on aquatic organisms was conducted

Additional long-term and chronic toxicity studies on fish, aquatics invertebrates and sediment dwelling organisms on aquatic organisms go naquatic organisms go naquatic organisms go naquatic organisms go naquatic organisms is a conducted.

Further testing on aquatic organisms go naquatic organisms is a conducted.

Effects on arthropods.

Iffects on bees ical endpoints of lichey bee laboratory studies are provided in the active substantial and points of lichey bee laboratory studies are provided in the active substantial and points of lichey bee laboratory studies are provided in the active substantial and points of lichey bee laboratory studies are provided in the active substantial and points of lichey beet laboratory studies are provided in the active substantial and points of lichey beet laboratory studies are provided in the active substantial and points of lichey beet laboratory studies are provided in the active substantial and points of lichey lic CP 10.3.1 Effects on bees

The ecotoxicological endpoints of library bee laboratory studies are provided in the following tables. Details of the honey bee testing with the Series substance iodos afturen-methyl sodium are presented in MCA, Section 6. Point 8.3.1.

Test substance	Ecotoxicological endp	oint	Reference	/ Ô
Acute oral and contact	toxicity (laboratory) ii	n honey bees		Ž.
Iodosulfuron-methyl sodium, tech.	LD ₅₀ -oral, 48/72 h	LD ₅₀ > 80 μg a.s./bee	M-14182[-01-1 X KCA 8 0 1.1.1 X	, ,
Iodosulfuron-methyl sodium, tech.	LD ₅₀ -contact, 48/72 h	LD ₅₀ > 0.50 μg a.s./bee	M-Q1225-0√-1 Ø K\$\$\text{\$\exitex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\) L
Iodosulfuron-methyl sodium, tech.	LD ₅₀ -oral, 48 h LD ₅₀ -contact, 48 h	LD ₅₀ > 107.6 μg ωs./bee γ D ₅₀ > 100 μg/a.s./bee	M-430273-01-1 K&X 8.3 1,1 /01 5	Ş
Acute contact toxicity	(laboratory) in bumble	bees O Q A		Ý
Iodosulfuron-methyl sodium, tech.	LD ₅₀ -contact, 48	LD ₅₀ 2000 µg a.s./bee	2014, MA77331 01-1 0 KCA 824.1/02	Y
Chronic toxicity in adu	ılt honey beek (laborato	ory,		
Iodosulfuron-methyl sodium, tech.	10 d claronic adolt feeding study	LC ₅₀ >0/20 mg a.s./kg NOEC ≥ 120 mg a.s./kg	, 2044 M-4793@-01-1 RCA 8, 3.1.2 /01	
		LC ₅₀ 220 mg a.s./kg NOEC ≥ 120 mg a.s./kg		

Table CP 10.3.1-2: Honey bee toxicity data generated with formulated iodosulfuron-methyl sodium

	Honey bee toxicity of			
Test substance	Ecotoxicological end	lpoint	Reference	
Acute oral and contact	toxicity (laboratory)		· Ø	
Iodosulfuron-methyl sodium + mefenpyr- diethyl OD 400 (100 + 300)	LD ₅₀ -oral, 48 h LD ₅₀ -contact, 48 h	LD ₅₀ 180.98 µg product/bee LD ₅₀ 317.59 product/bee	, 2004 M-227129-01-r KCP 10-3.1.12	01 2
Bee brood feeding test				
Iodosulfuron-methyl sodium WG 10 (+Mefenpyr-diethyl WG 15)	al., 1992) & G	Slightly but statistically significantly increased termination rate eggs, young and old larvae identical (better) brood west development than in the control; brood index and brood compensation indice displayed a continuous increase indicating a successful development of the brood. No ecologically adverse effect on the survival of adult was and pupae, behaviour, colony strength and overally colony conditions by feeding honey bee colonies sugar satup at prodosylvaron methyl sodium concentration typically present in the spray tank (250 pm	7, 2007 M-465355-01, 1 KCAS.3.1.3-01	
Cage and tunnel sordie			V	
Iodosulfuror methyl sodium + mefenpyr-diethyl D 400 (100+300 g/L)	(according to OECD The forces exposure conditions) in Phaceta; application during the bloom and bits	No adverse effects of mortality, flight intensity, behaviour brood development (brood termination rate, brood index, compensation index) as well as on colony vitality at maximum application rate (0.1 product/ha)	, 2014 M-477913-01-1 KCA 8.3.1.3 /02	
	Sective kotoraging			

Risk assessment for bees

Hazard Quotients

An indication of hazard (Hazard Quotient or Q_H) can be derived according to the EPPO risk assessment scheme, by calculating the ratio between the application rate (expressed in ga.s./ha or in g product/ha) and the laboratory contact and oral LD_{50} (expressed in μg as./bee or in μg product/bee)

Q_H values can be calculated using data from the studies performed with the active substance and with the formulation. Q_H values higher than 50 indicate the need of higher tiered activities to clarify the actual risk to honey bees.

Hazard Quotient, oral:

Hazard Quotient, contact:

$$Q_{HC} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sha or@product/ha]}}}{Q_{HC}} = \frac{\text{maximum application fate } \text{[g a sh$$

The maximum label rate of Iodosulfoon-methyl sodium. Mefenpyr-diethyl QD 400 fron +300) is 0.1 L (100 mL) product/ha in winter wheat (BBCH 13-32). With the content of iodosulforon-methyl sodium and mefenpyr-diethyl within the formulation being 100 g iodosulforon-methyl sodium/L and 300 g mefenpyr-diethyl/L, respectively, this accounts to a maximum application rate of 10 g iodosulfuron-methyl sodium a.s./ha/Considering a realistic worst case density of 1.45 g/mL of Iodosulfuron-methyl sodium + Mefenpyr-diethyl OD 400, 100 mL product/ha corresponds to 115 g product/ha.

Test item Oral ID'50 Max application rate [μg as./bee] [g as./ha] [g as./ha]	QHO	Trigger	A-priori acceptable risk for adult bees
Max. application rate 10 g iodosulfuron as. / hayra 0.1 L lodosulfu which corresponds to 115 g product / ha	ron+Mefenp	yr-diethyl	OD 400 / ha,
Iodosulfuron-methol-sodium, tech.	< 0.1	50	yes
Iodosulfuron-methyl sodium + Mefenpyr-diethyl 20 400 (100 + 300 g/L)	0.6	50	yes

The hazard quotient for oral exposure is below the validated trigger value for higher tier testing (i.e. QHO < 50).

Table CP 10.3.1-4: Hazard quotients for bees – contact exposure

					6 📎	- 4
Test item	Contact LD ₅₀	Max. application rate	Hazard	Trigger		Œ
			quotient	Ş [*]	acceptable	
	[μg a.s./bee] /	[g a.s./ha] /	Ô	7	Yisk for	
	[µg product/bee]	[g product/ha]	Qно _₹		adult bees	2
Max. application rate =	10 g iodosulfuron a.s.	/ ha via 0.1 L Iodosulfu	ron+Mofen	yr-diethyl	OD 400 / has	Ĭ
which corresponds to 11	5 g product / ha	Ď				1
Iodosulfuron-methyl-sodium, tech.	> 100	\$10	O < 0.1	\$50 Z	yes o	
		-3° -0	<i>y</i> 0			4
Iodosulfuron-methyl sodium + Mefenpyr- diethyl OD 400 (100 +	317.59				Y YES	
300 g/L)				10° 1.		,

The hazard quotient for contact exposure is below the validated trigger value for higher tier testing (i.e. QHC < 50).

Further considerations for the risk assessment

In addition to acute laborators studies with solult honey bees, iod sulfuron-methyl sodium was further subjected to topical acute bymble bee testing. The study did not reveal sensitivity differences between honey bee and bumble bee foragers.

Moreover, iodosulfuron-methyl sorium was subjected to chronic laboratory testing with adult honey bees. This chronic study was designed as a limit test by exposing adult horsely bees for 10 consecutive days to a concentration of nominally 1/20 mg lodosulfuron-methy sodium per kg aqueous sugar solution (120 ppm). Thus, the nominal employed pest concentration exceeded the concentration of iodosulfuron-methyl sodium as usually present in the spray tank. No adverse lethal-, sub-lethal, behavioural or delayed offects were found by exposing adult honey bees for ten consecutive days exclusively to sugar solution, containing 150 ppin odosulfuron, methyl sodium (nominal).

In order to reveal whether iodesulfuron-methyl sodium poses a risk to immature honey bee life stages, a bee brood feeding study has been conducted by following the provisions/method of Oomen P.A., de Ruijter, A. & van der Steen, J. (OEPP/ERPO Belletin, 2:613-616 (1992)), which require, amongst other parameters to "...use formulated products only... products are fed at a concentration recommended for high volume use ... The hone of the broad feeding test is a worst-case screening test by feeding the honey bees directly in the hove with a treated sugar solution which contains the test substance at a concentration typically present in the spray tank (and as such at a very high concentration) and by investigating the development of eggs, young & old larvae by employing digital photo imaging technology

This particular study was conducted by mixing formulated iodosulfuron-methyl sodium via Iodosulfuron methyl sodium WG 10 (together with formulated mefenpyr-diethyl, as Mefenpyr-diethyl W&15), and the tested concentration corresponded to about the concentration of iodosulfuron-methyl sodium the spray tank of a high-volume use. The actual test concentration of iodosulfuronmethylsodium was 25 mg/L. The administration of 1 litre sugar solution per colony, containing 25 ppm iodosulfuron-methyl sodium, resulted in a slightly-moderately, but statistically significantly

increased termination rate of eggs, young and old larvae, however, there was concurrently an identical or even better brood nest development than in the control. The brood index and the brood compensation indices displayed a continuous increase, indicating a successful development of the brood. There were no ecologically adverse effects on the survival of adult been and pupae, behaviour, colony strength and overall colony conditions.

In order to clarify whether the observations in the honey see brood feeding study, conducted under worst-case exposure conditions, are relevant for actual use conditions of iodosulfuton-methyl socium, a higher tier semi-field honey bee brood study (according to the provisions of the OECD Guidance Document 75) was conducted under forced/confined exposure conditions, by applying the maximum rate (0.1 L) of Iodosulfuron-methyl sodium + mefenpyr-diethyl OD 400 (100+300 VL) under turnel conditions to the full flowering and highly be attractive surrogate from Phacelia Sanacetifolias The test was designed as a replicated tunned study to assess potential effects of jodosulfuron methyl sodium to honey bee colonies, including a very detailed assessment at broad development. Tunnels (20 m length x 5.5 m width x 2.5 m height) were setup on a ca. 75 m² plot of Phacelia (2 x 36 m²). Small bee colonies were introduced to the turinels 3 days before the approcation. One boney bee colony was used per tunnel. The test item water and a reference item was applied during boney bees actively foraging on the crop. The trial was carried out wising four turnels (i.e. replicates) for the test item treatment, the control and the reference iteratreatment (Insegar, 250 g/kg fenoxycarb) Prespectively. The confined exposure phase of the honey bees inside the treated crop was 4 days following the test item application. At the end of the 4th day after application, due to the herovcide crode of action of the test item, the Phacelia crop was no longer attractive to bees (fadest) and did not longer support the confined colonies. Thus, all bee colonies (e. the volonies from the test item, the water and the reference item group, respectively) were relocated after 4 complete days of confined exposure from their respective funnels and placed in an area with no main flowering, becoattractive crops. The test item was applied under optimum foraging conditions. After foliar (spray) application of the water (control), test item (lodosulfuron nethyl sodium + metenpyr-diethyl OD 400 (100+300 g/L)) and the reference tem (fenoxycorb), oprogenesis of a defined number of honey bee eggs was observed for each group and colory. Mortality of adult bees and pupae/larvae as well as foraging activity of the adult bees was also assessed. The condition of the colories was assessed in regular intervals until the end of the trial. Ontogenesis of the bees from egg to adult workers was observed for a period of 22 days (i.e. one complete hones bee brood cole). This was done one day before the application by taking out a brood comb and taking a digital picture of the brood comb. After saving the file on a computer 220 - 270 eggs per colony were marked at this first brood area fixing day BFD0 (BFD = Brood Area Fixing Day). For each subsequent brood assessment (BFDn), again, the respective comb was taken out of the hive and another dightal photo was taken in order to investigate the progress of the brood development until day 2 Ctollowing the application (BFD22 following BFD0). Statistical evaluation was done for mortality, foraging activity, colony strength and the brood termination rate using Shapir Wilk lest Check for normal distribution), Levene's test (check for homogeneity of variance) Student or Welch t- test (pairwise comparison.

No adverse effects on mortality of worker or pupae, foraging activity, behaviour, nectar- and pollen storage as well as or queen survival were observed. No effects on colony development, colony strength or bee brood were observed. Based on the results of this study, it can be concluded that Iodosulfo on-methyl sodium + mefenpyr-diethyl OD 400 (100+300 g/L) does not adversely affect honey bees and honey bee brood when applied at a rate of 0.1 L product/ha (corresponding to 10 g iodosulfuron-methyl sodium a.s./ha), during honey bees actively foraging on a bee-attractive,

flowering crop. The observed, characteristic brood effects of the reference item Insegar (a.s. fenoxycarb) in terms of typicality, time of occurrence and extent, showed that the prevailing test conditions allowed for a profound detection of effects on immature honey bee life stages.

Synopsis

Iodosulfuron-methyl sodium has a low acute toxicity to honey bees, with LD50 (oral and contact) above the highest tested dose level (oral: LD50 > 107.6 kg a.s./bee, contact: LD50 > 000 μg a.s./bee). The calculated Hazard Quotients for iodosulfuron-methyl sodium are well below the validated tregger value which would indicate the need for a refined risk assessment to adverse effects on honey bee mortality are to be expected. This conclusion is confirmed by the results of the bee brood feeding study as well as by the results of the semi-field study, which evered the maximum application rates of 10 g iodosulfuron-methyl sodium a.s./ha.

10 g iodosulfuron-methyl sodium a.s./ha.

The acute laboratory study conducted with humble bees revealed to sensitivity differences between honey bee and bumble bee foragers.

Regarding potential side effects of iodosulfutor methyl sodium on immature horey beedife stages, the conducted bee brood feeding study (Oomen et al. 1992) found slightly moderately, but statistically significantly increased termination cates of eggs, young and old larvae. Despite of this observation, there was concurrently an identical (better) broad nest development than in the control in addition, the brood index and brood compensation indices displayed a continuous increase, indicating a successful development of the brood; overall the study revealed no ecologically adverse effects on the survival of adult bees and pupae, behaviour, colony strength and overall colony conditions. Thus, when considering the severity of the exposure situation in this worst-case screening test in combination with the absence of effects on both, colony level parameters and also on the overall development of bee brood, it can be concluded everyor the basis of this worst-case screening study that the use of iodosulfuron-methyl sodium as a post-emergence (until early stem clongation) herbicide in cereals - a crop which poses for bees not a profitable feeding and foraging area for nectar and pollen - does not pose an unacceptable risk for adult honey bees immature honey bee life stages and honey bee colonies.

Nonetheress, in order to clarify whether the conclusions on the basis of lower tiered honey bee studies are correct, iodosubaron-methyl odium was subjected to confined semi-field testing (according to the provisions of OECD Guidance Document No. 75), by applying the maximum rate of Iodosulfuron-methyl sodium and methyl od 400 (100-900 g/L) to full-flowering *Phacelia* during honey bees actively foraging on the crop. This study design, although being conservative for an actual exposure situation of honey bees in careals, is from an apidological and apicultural point of view more realistic than an in-hir feeding of the test compound via a treated sugar solution, which contains the test substance at a concentration typically present in the spray tank (and as such at a very high concentration). The results of this higher tier semi-field study confirmed the conclusions made above on the basis of the outcome of the lower-tiered studies, as no adverse direct or delayed effects on mortality of worker bees of pupae, foraging activity, behaviour, nectar- and pollen storage, queen survival, colony are negligible conditions and by digitally following-up in a very detailed manner the fate of individually marked brood cells (digital photographic assessment) from egg stage until emergence.

Overall, it can be concluded that iodosulfuron-methyl sodium, when applied at the maximum application rate of 10 g a.s./ha in cereals, even during the flowering period of potentially bee-attractive

CP 10.3.1.1 Acute toxicity to bees

CP 10.3.1.1.1 Acute oral toxicity to bees

weeds inside the ce colonies.	ereal cropping area, does not pose an unacceptable risk to honey bees and honey bee
	eute toxicity to bees eute oral toxicity to bees
Report:	, , , , , , , , , , , , , , , , , , ,
Title:	Assessment of side effects of AE F115008 02 OD35 © 202 to the honey bee Apis melifera
	L., in the laboratory
Report No:	C039689
Document No:	M-227123-01-1
Guidelines:	OECD: 213, 214; Deviation and specified
GLP/GEP:	no A A A A A A

Executive summary:

The objective of this study was to determine the oral and confect toxicity of the test item AE F115008 02 OD35 A202 (= Iodosulfur@-methyl-sodium + Mefenpyr-diethyl OD 400 (100 + 300 g/L)) on the honey bee, Apis mellifera L, in a dose response test according to the QECD goldeline No. 213 and 214 (1998).

In the laboratory, the bees were exposed to the dose of 7006, 141,72, 283.45, 566.89 and 1133.79 µg product/bee (equivalent to 6.25, 125, 25.0, 50.0 and 1000 µg a.S./bee of the test item AE F115008 02 OD35 A202 by feeting and topical application. The nominal test levels of 70.86, 141.72, 283.45, 566.89 and 1133 9 μg productibee corresponded to an actual intake of \$\$.20, 162.84, 303.85, 485.29 and 864.02 µg product bee. Perfektion (active ingredient: dimethoate, nominal content: 400 g/L) was tested as a toxic standard. 5 replicates with 50 bees were used per treatment level. The number of dead bees in the individual test cages was recorded after 4 h, 24 k and 48 h. In case of symptoms of poisoning the behavioural differences between the Dees of the control group and those of the test item treatment were noted at each observation interval.

According to the results of this study it can be stated the oral LD₅₀/48h of AE F115008 02 OD35 A202 (=Iodosulfuron-methyl-sodoum +-Mefengyr-diethyl OD 400 (100 + 300 g/L)) is 180.98 μg product/bee and the contact LD50/48h of is \$7.59 mg product/ beg.

Material and Methods:

Test item: AE F115008 62 OD\$\$ A202; Batch Lot. No.: AAIM01665; GAB-code: 20031404; Purity: 1. AE F107892 (mefenpyr-dicthyl) 26.0% (w/w) (300 g/L nominal) 2. AE F115008 (iodosulfuronmethylsodium: 8,\$2% (www) (100 g/L pominal).

In the laborator, the bees were exposed to the doses of 70.86, 141.72, 283.45, 566.89 and 1133.79 µg product/bee requivalent to 6.25, 12.5, 25.0, 50.0 and 100.0 µg a.s./bee) of the test item AE F115008 02 ODS A202 by feeding and tropical application. Perfekthion (active ingredient: dimethoate, nominal contents 900 g/L) was tested as a toxic standard. In the oral toxicity test a 50 % (w/v) aqueous sucrose solution was used as control, in the contact toxicity test tap water was used for the control group. 5 replicates with 50 bees were used per treatment level.

For the oral toxicity test, the test item was dissolved in tap water and mixed with a defined amount of a 50 % aqueous sucrose solution such that the intended nominal dose which was calculated for the been a 50 % aqueous sucrose solution such that the intended nominal dose which was calculated for the been a 50 % aqueous sucrose solution such that the intended nominal dose which was calculated for the been a 50 % aqueous sucrose solution such that the intended nominal dose which was calculated for the been a 50 % aqueous sucrose solution such that the intended nominal dose which was calculated for the been a 50 % aqueous sucrose solution such that the intended nominal dose which was calculated for the been a 50 % and the was found in 20 μ L. The bees starved during a period of 2 hours prior to test start. 250 μ L of the test solution per bee was offered during a period of 6 hours. The amount of solution consumed (mean value of 10 bees) was determined by weighing the feeders before and after feeding. After the feeding period, the bees in the test cages were supplied ad libitum with a pure untreated 50 % aqueous sucross solution.

For the contact toxicity test, the test item was dissolved in tap water. After the bees had been anaesthetised with carbon dioxide they were treated individually bo topical application to the contral. thorax. 2 µL of test item or reference item solution were applied to the chorax of each Dee. A 2 µL @ droplet was chosen in deviation to the guideline recommendation of L \(\mu \)L since a higher volume. ensured a more reliable dispersion of the test from. After application the bees were returned to the test. cages and fed with a 50 % aqueous sucrose solution ad library.

The number of dead bees in the individual test cages was recorded after 4 h. Q4 h and 48 h. In case of symptoms of poisoning the behavioural differences between the bees of the control group and those of the test item treatment were noted at @ach observation interval.

The temperature varied between 20.5 and 26.0 °C. Relative air humidity varied between 45 and 75 %. The bees were maintained at dark during the test.

Dates of work:

January 27 2004 January 29, 2004

Results:

Validity criteria:

Validity criteria:

The results are considered to be valid. The mean mortality of the control in the oral and contact toxicity test was 10%. The 24h LD% of the reference item in the oral toxicity test was within the range of 0.10 to 0.35 ug a. W bee. The 24h LD of the reference item in the contact toxicity test was within the range of 0.10 to 0.30 ug a.s. bee.

In the oral toxicity, the naminal lest level of 1193.79 µg product/bee (100.0 µg a.s./bee) corresponded to an actual intake of \$64.02 pp product/bee 76.21 ag a. See). At this dose a mortality of 98.0 % (corrected montality 98.0 % was observed after 48 hours. The mortality in the reference item was determined to be 88.0 % (corrected mortality & 8 %) on the highest concentration at test termination.

Contact toxicity test at the dose of 113329 µg product/bee (100.0 µg a.s./bee) which was tested in the contact toxicity sest with AE R 1500 02 OF 35 A202 a mortality of 100.0 % (corrected mortality 100.0 %) was observed after 48 hours. The mortality in the reference item was determined to be 76.0 % (corrected mortality 75%%) in the highest concentration after 48 hours.

In the control group fed with 30 % (w/v) sugar solution a mortality of 2.0 % occurred after 48 hours as well of in the control group of the contact toxicity test. In both tests no behavioural differences were observed between the test item treated bees and the control bees during the entire test period.

Table CP 10.3.1.1.1-1: LD₅₀ values in the oral and contact toxicity test of AE F115008 02 OD35 A202

AE F1 1 5008 02 OD35 A202	LD ₅₀ /24h	LD ₅₀ /48h	
	[µg proc	duct/bee]	
Oral toxicity test	192.72	180.98	
Contact toxicity test	328.62	317.59	

Table CP 10.3.1.1.1- 2: LD₅₀ values in the oral and contact toxicity test of the reference item (dimethoate)

Perfekthion	LD ₀	24h 🌊	,	D ₅₀ /48h	Ŏ,
		[1]	a.s./bee]	, L	
Oral toxicity test	Ø 0.1		, Ø' ~~	\ 9 .14 _@	
Contact toxicity test	(0,2	0		0.19	

The effect of AE F115008 02 OD35 A202 = Iodosulfuror methyl-sodium + Mefenpyr-diethyl OD 400 (100 + 300 g/L)) after oral exposure on the wortainty of Apris methylera based of nominal figures are as follows:

24h LD₅₀ = 192.72 μg product/bee (\mathfrak{P} % copyridence limits 167.99 - 21994 μg product/bee) \mathfrak{P}

48h LD₅₀ = 180.98 µg product/bec 95% confidence limits 158.69 - 204.35 µg product/bec.

The effect of AE F115008 02 OD35 A202 (= Todosuftaron-methyl sodium) + Metenpyr diethyl OD 400 (100 + 300 g/L)) after contact exposure on the mortality of Apris medifera based on nominal figures are as follows:

24h LD₅₀ = 328.62 μg product/bee (95% confidence finits 2% δ.15 – 392.53 μg product/bee)

48h $LD_{50} = 317.59 \mu g$ productive (93% confidence limits 254.01 $\sim 380.34 \mu g$ product/bee)

Conclusions:

According to the results of this study it can be stated the oral LDS/48h of AE F115008 02 OD35 A202 (=Iodosulfuron-methyl-sodium + Mefenpyr-diethyl OD 400 (100 + 300 g/L)) is 180.98 µg product/bee and the contact LD₅₀/48h of is 347.59 µg product/ bee.

CP 10.3.1.1.2 Agute contact toxicity to bees

See point 10.2 1.1.1

CP 10.3 ... Chronic toxicity to bees

A 10 day chronic oral toxicity study was conducted with technical iodosulfuron-methyl sodium, the corresponding summary is filed under KCA, point 8.3.1.2/01.

CP 10.3.1. Effects on horsey becalevelopment and other honey bee life stages

A honey bee brood feeding study according to the provisions of Oomen *et al.* (2013; M-465335-01) as well as a serki-field brood tunnel study according to the provisions of the OECD Guidance Pocument 75 (2014; M-477913-01-1) have been conducted. These studies are sumparized under KCA 8.3.1.3 /01 and KCA 10.3.1.3 /02, respectively.

CP 10.3.1.4 Sub-lethal effects

There is no particular study design / test guideline to assess "sub-lethal effects" in honey bees. However, in each laboratory study as well as in any higher-tier study, sub-lethal effects, if occurring are described and reported.

CP 10.3.1.5 Cage and tunnel tests

A honey bee brood feeding study according to the provisions of Oomen et al. (2013; M2465335-01) as well as a semi-field brood tunnel study according to the provisions of the OECD Guidance Document 75 (2014; M277913-01-1) have been conducted. These studies are summarized under KCA 8.3.1.3 /01 and KCA 10.3 \(\)0.2 respectively.

CP 10.3.1.6 Field tests with honey bees

Not necessary considering the outcome of the risk assessment and the results of lower-tiered studies

CP 10.3.2 Effects on non-target arthropods other than bees

Toxicity tests on non-target arthropods were conducted with IMS + MPR OD 400 on the sensitive standard species *Typhlodromus pyri* and *Aphicius rhopalosiphi*. A summary of the results is provided in Table CP 10.3.2-1.

Table CP 10.3.2- 10 JOS + MPR OD 400: Ecotoxicological endpoints for arthropods other than bees

Test species \sim	Tested Formulation,	Ecotoxicological Endpoint	Reference
	story type exposure		Dossier-file-No.
, Q			
Aphidius	IMS +CMPR 1900 400	LR ₅₀ > 00 mp prod. ha	& , 2004
rhopalosiphi		Corr Mortality [%] Effect on	C039343
	Laboratory, glass plates	Reproduction [%]	M-226797-01-1
	Si./ mL 1840d./hax 1	29.2	KCA 8.3.2.1 /03
_ `	Ol.1 ml prod. Mar	27.6 ^A 0.6	KCP 10.3.2.1 /01
	33.3 rol prod ha	2.6^{A} 13.3	
	100% mL prod./ha 🔎	2.6 ^A 20.8 20.8 2.2 ^C 18.1	
	300.0 mL prod./hg		
Typhlodronus	IMS #MPR QD 400	LR ₅₀ 300 mL prod./ha	, 2004
pyri 🗸 "		Corr Mortality [%] Effect on	C039089
4	Laboratory, glass plates	Reproduction [%]	M-226371-01-1
ľ	√ 3.7 mL Stod./ha,	5.0 -11.5 ^B	KCA 8.3.2.2 /03
	41.1 mat prodetva	$\sum_{i=1}^{\nu}$ 11.7 5.1	KCP 10.3.2.1 /02
Į ŠO,	33.3 priL prod/ha	10.0 15.4	
		10.0 26.9	
	300.0 mL prod./ha	13.3	

A: A negative value indicates a lower mortality in the treatment than in the control.

Risk assessment procedures

The risk assessment was performed according to the Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002) and to the Guidance Document on regulatory testing and risk assessment

B: A regative value in the control.

procedures for plant protection products with non-target arthropods (ESCORT 2, Candolfi et al. 2000⁴).

In-field hazard quotient (HQ) tier 1 risk assessment

The following equation was used to calculate the hazard quotient (HQ) for the in-field scenario

In field-HQ = max. single application rate * MAF / LR_{50}

Use pattern:

Please note that for the risk assessment on non-target arthropods, the worst-case application rate of 1 x 0.1 L product/ha in winter wheat has been taken into account. This use pattern is considered to cover also the single application in winter barrey as given in the intended use pattern for this product (1 x 0.075 L product/ha; see Table 10-1).

IMS + MPR OD 400 is intended to be applied once with an application rate of 0.10L product/has Therefore, the multiple application factor (MAF) was set at 1.0. Resulting HQ values are presented in the following table. The risk is considered acceptable if the calculated TQ is \$2.

Table CP 10.3.2-2: HQ for terrestrial non-target arthropods for the incfield scenario

Crop	Species	A A	ညှာ်l. rate product/ha] ့်	WIAF	LR_{50}	HQ	Trigger
		´¾ [m,L	produčť/ha] 🏖		[mCproduct/	ha K 🌂 🥱	•
Cereals	T. pyri		\$100 × V	\$	>300	\$\tag{\tag{8.3}}	2
Cereais	A. rhopa	ðsiphi 🗘 🖔	U)F W		\$ > 300 ×	<0.3	2

The in-field HQ values for Typhlodromus pyri and Aphidius rhopalosiphi are below the trigger of concern, indicating that no unacceptable risk is to be expected for non-target arthropods in the infield area from the use of IMS+ MPR OD 400 according to the proposed use pattern.

Off-field hazard oxiotient (HQ) ther 1 risk assessment

The following quation was used to calculate the hazard diotient (HQ) for the off-field scenario:

Off-field HQ = max single application rate. MAF* (drift factor/VDF)*correction factor / LR₅₀

MAF (multiple application) actor 1 (single application)

Drift factor = 0.0277 (90% percentile for 1 application in field crops, 1m distance; ESCORT 2)

VDF (vegetation distribution actor = 10 \@

⁴ Candolfi et a.: Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods; ESCORT 2 workshop (European Standard Characteristics Of Non-Target Arthropod Regulatory Testing), Wageningen, NL, March 21-23, 2000, SETAC Europe; SETAC publication August 2001

Correction factor = 10 (uncertainty factor for the extrapolation from indicator species to other off field non-target arthropods; default value for tier 1 risk assessment according to the Terrestrial Guidante Document)

The risk is considered acceptable if the calculated HQ is < 2.

HQ for terrestrial non-target arthropods for the off-field scenario **Table CP 10.3.2-3:**

Crop	Species	Appl. rate [mL product/ha]	MAF	Drift©			LR50 O \$\inf\{\product/ha]\\}		Prigger
Caracla	T. pyri	100	(§		10	10%	300	< 0.009	2
Cereals	A. rhopalosiphi				7 10	5 10 £	300	< 0.009	

The calculated HQ values are below the trigger of concern, indicating that no macceptable risk is to be expected for non-target arthropods in the off-fight area from the use of IMS MPROD 400 according to the proposed use pattern

Standard laboratory testing for non-target arthropods **CP 10.3.2.1**

Report:	; (200 4)M-22 6 797-0 p
Title:	ffects of AN 115008 02 0035 A202 on the paraswoid Aphidius rhopalosiphi in the
[] la	horatory, dose response test - O S L O
Report No:	Q39343\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	1-226797-010 40 50 50
Guidelines:	OBC: WPRS 2000; Deviation not specified
GLP/GEP; 9	

Executive Summary

The purpose of this study was to produce a concentration-response curve for mortality effects seen over 48 h of exposure Adult Aphidias rhop dosiph approximately 48 h old; 7 females and 3 males per replicate) were exposed on glass plates to application rates of 3.7, 11.1, 33.3, 100 and 300 ml product/ha diluted in 200 L de onized water/ha) and were compared to those of deionized water treated controls (200 L. Ja). Perfekthion (0,2 mL product/ha diluted in 200 L deionized water/ha) was used as reference treatment. The duration of the mortality part was 48 hours. The reproductive performance of the survivors was examined for another 24 hour period using females from the control and from those test item concentrations where corrected mortality was < 50.0 %.

Under laboratory conditions the LR could not be calculated. It is estimated to be higher than 300 mL product/ha/The reproductive capacity A. rhopalosiphi was not statistically significantly reduced up to 300 mp product/ha (the highest rate tested) compared to the control. All validity criteria according to the guideling were net.

Materials and Methods:

Test item. AE F115008 02 OD35 A202 (code for: IMS + MPR OD 400); active ingredients: AD F107892, content: 26.0 % w/w, AE F115008, content: 8.82 % w/w; Batch No. AAIM01665 Densit 1.144 g/mL; Certificate of Analysis Ref. Code: AZ 11073.

Under laboratory conditions approximately 48 h old adult aphidius rhop dosiphi (7 febrales and 3 males per replicate) were exposed to dried spray deposits of 3.7, 11.1 33.3, 100 and 300 m product/ha in 200 L deionised water/ha (corresponding to 0.0212, 0.0635, 0.190, 6.572 and 1.720) product/L) on glass surfaces (4 replicates per treatment group). Denonised water was used as a control treatment and Perfekthion (0.3 ml product/ha diluted in 200 L deionised water/ha, containing nominally 400 g dimethoate/L) as a reference (scattered). The duration of the mortality part was 48 hours. The reproductive performance of the survivors was examined for another 24 hour period using ° females from the control and from those test item concentrations where corrected mortality was < \emptyset .0 **%**.

2 gyaimethoate/L) 0.3 mL Toxic standard: Perfekthion (containing nominally analysed) 400 g (40) control: desionised water only in 200 L deionised water/ha (corresponding to \$\omega 5 \mu L \omega erfekt) onin/P; (200 L/ha).

Dates of work:

Results:

Table CP 10.3.2.1- 1

Validity criteria	Recommended	Obtained
Control mortality	Secommended Secom	Obtained 2.5 %
Control Production rate	5 muonimies per female	36 (mummies per female (mean value)
Controrseproduction rate	Sparasitoids producing Pero values	parasitoid producing zero values
Toxic standard mortality	\$50 %	100 %
All validity criteria for the	≤ 13 % 5 magnines per female Sparasitoids producing Pero values 50 % e study were met Therefore this study 1	dy is valid.

Table CP 10.3.2.1-2: Effects on mortality and parasitisation efficiency of *Aphidius rhopalosiphi*, laboratory testing-dose response test

					~ '0
Test item		AE	F115008 02 OD3	5 A202 (IMS + MPR	DD 400)
Test organism	Aphidius rhopalosiphi 🗳 💝 💝 🔭				
Exposure on			treate	d glass surfaces	
Treatment	Mortali 48	•	Corrected omertality after 48 h	Mummies per female ^b	Reduction of parasifisation of officiency relative to the control
	[%	6]		Q	[%]
Control	2.5		200° "	36.6 0 Q	\0' & _@'
3.7 mL product/ha	5.0	n.s.	2.6	©25.9 ng	29 .2 2
11.1 mL product/ha	0.0	n.s.	~ -2.6 %	36.3C ins.	0.6
33.3 mL product/ha	0.0	n.s.		310 n.s.	13.3 °
100 mL product/ha	0.0	n.s. 🎺	₹ % <u>-</u> 9.6 ×	28.9 <u>s</u> n.s.\$	20.8
300 mL product/ha	5.0	n.s.🍫	2.6	(O29.9 %) n.s.	2 18.1
0.3 mL Perfekthion/ha (Toxic reference)	100.0		100,0	n.a.O	
a n.s. = not significant, * =	significan	Fisher	Exact Test, $0 \rightarrow 0.0$	557 50 20	
^b n.s. = not significant; Dur	nnett-T e st	, α ,≕0 .05		Ŭ Q. O ?	9
n.a. = not assessed		. ">			″ O"

Conclusions:

Under laboratory conditions the LPS could not be calculated due to the low effects of AE F115008 02 OD35 A202 (IMS MPR OD 400). It is estimated to be higher than 300 mL product/ha.

The reproductive capacity of As rhopalosiphi was not statistically significantly reduced up to 300 mL product/ha (the highest rate tested) compared to the control.

Report	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Title:	Effects of AE F115008 02 QD35 A202 on the predatory mite Typhlodromus pyri in the
Description of	laboratory@dose.response@est
Report No:	\$\langle \tilde{Q} \frac{1}{2} 907 \tilde{Q} \frac{1}{2} \tilde{Q}
Document No: 2	9M-22071-04 9 0 0
Guidelines:	EUX EECX Blue nel et al (2000 Deviation not specified
GLP/GEP	yes of the second secon

Executive Summary

The purpose of this study was to produce a dose response curve for mortality effects seen after 7 days of exposure. Mites were exposed on glass plates to application rates of 3.7, 11.1, 33.3, 100 and 300 ml product/ha controls (200 L/ba). Petrekthion (10 mL product/ha diluted in 200 L deionized water/ha) was used as reference treatment. Assessment of the number of living, escaped and dead mites was conducted 2 and 7 days after application. For the reproduction assessment surviving mites from the control and from all test item groups displaying less than 50 % corrected mortality were sexed and the number of eggs per females was recorded at 4 assessment days within one week. Under worst case laboratory conditions the LR50 for Typhlodromus pyri was estimated to be > 300 mL product/ha in

200 L deionized water/ha. The reproduction of *Typhlodromus pyri* was not affected up to 300 ml product/ha in 200 L deionized water/ha. All validity criteria according to the guideline were met.

Materials and Methods:

Test item. AE F115008 02 OD35 A202 (code for IMS + MPR OD 400); active ingredients: AE F107892, content: 26.0 % w/w, AE F115008, content: 8.82% w/w; Batch No.: AAIM01665 Density 1.144 g/mL; Certificate of Analysis Ref. Code: AZ 11073.

Protonymphs (< 24 hours old) of *Typhlodromus pyth* (20 mites per replicate) were exposed to air dried spray deposits of 3.7, 11.1, 33.3, 100 and 300 mL product/ha in 200 L deionised water/ha (corresponding to 0.0212, 0.0635, 0.190, 0.572 and 1.52 g product/L) on glass plates (3 replicates per treatment group) under laboratory conditions. Deiotised water (200 L/ha) was used as a control treatment and Perfekthion (10 mL product/ha diluted in 200 L deionised water/ha, containing nominally 400 g dimethoate/L) as a reference treatment. Initial evaluation of the test item was conducted in a range finding test. Based on these results a main test was designed. Assessment of the number of living, escaped and dead inites was conducted 2 and 7 days after application. For the reproduction assessment surviving mites from the control and from all test term groups displaying less than 50 % corrected mortality were sweed and the number of eggs per females was recorded at 4 assessment days within one week. The toxic standard treatment caused 2 100 % corrected mortality.

Toxic standard: Perfekthion (containing nominally (gralyses) 400 g (401.2 g) directhoate/L): 10 mL in 200 L deionised water na (corresponding to 50 µL Perfekthionin L); control: groonised water only (200 L/ha).

Dates of work

December 02, 2003 – December 16, 2003

Results: 3

Table CP/10.3.2.1-3: Validity criteria

Validity criteria	Recommended	Obtained
Control mortality & & & & & & & & & & & & & & & & & & &	≤ 20 %	0 %
Control reproduction Number of eggs per female for the second week	> 4 eggs	7.8 eggs
Toxic standard mortality (control corrected) at the 7 after test initiation	> 50 % (preferably < 100 %)	100 %

All validity criteria for the study were met. Therefore this study is valid.

<u>Mortality</u>

There were so significant differences compared to the control up to 3.7 ml product/ha (Fisher Exact Test, a = 0.05). Significantly increased mortality to the control was observed at 11.1 mL up to and including 300 mL product/ha. The statistically significant differences occurring at these rates are not considered to be a test item effect, because mortality was below 20 % and is thus within the limit of the accepted range for the control mortality. The LR₅₀ value could not be calculated due to the low effects of the product for the tested rates. Therefore, the LR₅₀ was determined to be: LR₅₀ > 300 mL AE F115008 02 OD35 A202/ha, the highest rate tested in the study. No abnormal behaviour or conditions were observed with the surviving mites.

Reproduction

There were no significant differences compared to the control in all rates tested Bonferroni these (inhomog. Var.), a = 0.05).

Table CP 10.3.2.1-4: Effects on mortality and reproduction of *Typhlodromus pyri*, laboratory testing dose response test

		v 40 01 × 37 × 30
Test item	AF	F115008 02 OD35 A202 (DYS + MPR OD 400)
Test organism		JU Typhlodron o js pyri o July Die W
Exposure on		Dried spray deposits on spass plates of a
Treatment	Mortality ^a	Corrected Reproduction reproduction reproduction
	[%]	[%] C [cogs/female]
Control	0.0	
3.7 mL product/ha	5.0 n.s.	\$5.0 \$\frac{1}{2}\$ \text{8.7 } \text{9.5.} \text{2.5.} \text{2.5.}
11.1 mL product/ha	11.7	(4) 11 J 7.4 Suis. 6 5.1 0
33.3 mL product/ha	10.0	10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 mL product/ha	10.0 * *	
300 mL product/ha	13.3 * * *	2 13.3 6.9 9. 41.5
10 mL Perfekthion/ha	14907 574	n.a.
(Toxic reference)	W (
LR_{50}		② > 300 mL prod∞t/ha 🌂 👙

a n.s. = not significant, * = significant; Fisher Exact Test = 0.06

Conclusions:

Under worse case laboratory conditions the LR of ARF115008 02 CD35 A202 (IMS + MPR OD 400) on artificial substrate (glass) on Ephlodromus pyri was determined to be $LR_{50} > 300$ ml product ha in 200 L defonised water/ha. The reproduction of T_{pyri} was not affected up to 300 mL AE F115008 02 OD35 \times 202/ha in 200 L dejonised water/ha.

CP 10.3.2.2 Extended laboratory resting, aged residue studies with non-target arthropods

No extended laboratory testing, agod residue studies were deemed necessary.

CP 10.3.2.3 Semi-field studies with non-target arthropods

No semi field studies were deemed necessary.

CP 10.3.2.4 Field studies with non-target arthropods

No field studies were deemed necessary.

b n.s. = not significant; Ronferron t-Test (inholog. Var.), $\alpha = 0.05$

c negative value indicates increased reproduction compared to the control n.a. not applicable

CP 10.3.2.5 Other routes of exposure for non-target arthropods

No relevant exposure of non-target arthropods is expected by other routes of exposure than by contact.

The risk assessment procedure follows the requirements as given in the EU Regulation 107/2009 and the Guidance Document on Terrestrial Ecotoxicology.

Predicted environmental concentrations used in risk assessment

Predicted environmental concentrations in soil (PECs a) values were calculated for the active substance and its respective metabolites as described in detail in MCP Sec. (PO.1.3).

The maximum PECsoil values are summatised in the following table.

Table CP 10.4-1

Maximum PECsoil of the product INS + MPR OD 400 for the requirements as given in the EU Regulation 1107/2009 and the Guidance Document on Terrestrial Ecotoxicology.

Predicted environmental concentrations used in risk assessment.

Table CP 10.4-1

Maximum PECsoil of the product INS + MPR OD 400 for the requirements as given in the EU Regulation 1107/2009 and the Guidance Document on Terrestrial Ecotoxicology. product density: 1.144 g/mL

Use pattern		Winter reals, 1 × 10 g	cereals, 9 × 7.5 g a.s./ha
		£25% interception Smg/kg]	50% interception)
IMS + MPR OD 400	4		N 8 81
IMS + MPR OD 400	Z. 2	0.1144	0.0572

Bold values: worst case considered in visk assessment

Maximum PEC of jodosulforon-methyl-sociem and its metabolites for the uses **Table CP 10.4-2**

	97,
Use pattern Winter cereats, 1 × 10 g a. Sha	Winter cereals, 1 × 7.5 g a.s./ha
(25% interception)	(50% interception)
Use pattern Winter cereats, 1 × 10 g a.s. ha (25% interception) [mg/kg]	[mg/kg]
Lodocut Furon methyl sodium	0.005
AE F075736 \$\times \times \tim	0.003
AE F161778 AE F059411 AE F145740 AE F145741 AE F145741 AE F145741 AE F145741 AE F145741 AE F145741	< 0.001
AE F059411 AE F145740 O 0001	< 0.001
AE F145740	< 0.001
AE F145741	< 0.001
AE F145741 AE 0000019 BCS-CW81253	< 0.001
AE F059411 AE F145740 AE F145741 AE 000000 BCS-CW81253 AE 0002166	0.001
BCS-C 81253 AE 0002166 0.002	< 0.001
Bold values: worst case considered in risk assessment	
AE 0000019 BCS-CW81253 AE 0002166 Bold values: worst case considered in risk assessment	

PECsoil of metabolites AE F059411, AE 0000119 and BCS-CW81253 for the dises **Table CP 10.4-3:** assessed, taking the effect of accumulation into account (standard mixing depth of 5 cm)

Use Pattern	PECsoil	AE F059411 [mg/kg]	AE 0000119 [mg/kg]	BCS-CW&1253 (mg/kg)
Winter cereals	plateau	< 0.001	<0.001	6 9.001
1 × 10 g a.s./ha, 25% interception	total*	0.002	© <0.001 €	0.003
Winter cereals	plateau	<0.001	<0.09	© <0.001 ×
1 × 7.5 g a.s./ha, 50% interception	total*	<0.001	20 .001	0.0010

^{*} total = plateau (background concentration after multi-year yee) + max. PEC (see Table CP 1844

Bold values: worst case considered in risk assessment

CP 10.4.1 Earthworms

The summary of the toxicity of IMS MPR OD 400, iodosulfuron method-sodium and its soil metabolites to earthworms is provided in Tables 10.4.1-1-3. Details of the stadies with the active substance and the metabolites are presented in the document of, Point CASA.

Chronic toxicity of iodosulfuron methyl sodium to earthworms

Chronic toxicity of iodosulfuron methylesodium to earthworms

Endpoints used in risk assessment **Table CP 10.4.1-1**

Test substance	Test species, Test design	Endpoint V	Reference
	February (10%) peat in test soil), test item mixed into soil	NOEC > 100 mg prod kg dws	, 2013 M-465323-01-1 KCP 10.4.1.1 /01
Iodosultion- methyl-sodium	reproduction 56 d (10% pear in test soil), iest item inixed foto soil	NQEO 9.3 mg a.s./kg dws ¹⁾	& 2010 10P29RR M-397577-01-1 KCA 8.4.1 /02
AE F075736	reproduction, 56 d (10% pear in test soil), test item sprayed on soil	NOEC 20.216 mg/kg dws ²⁾	, 1998 CE98/092 M-182339-01-1 KCA 8.4.1 /01
AE M 45741	Eisenia fetida reproduction, 56 d (10% peat in test soil) test item mixed intersoil	SOEC ≥100 mg/kg dws	, 2013 82101022 M-457891-01-1 KCA 8.4.1 /03
AE F145740	toproduction, 56 d 10% peat in test soil), test sitem mixed into soil	NOEC ≥100 mg/kg dws	, 2013 82091022 M-457334-01-1 KCA 8.4.1 /04
A \$ 0002168	Escenia, fetida reproduction, 56 d (10% peat in test soil), test item mixed into soil	NOEC ≥100 mg/kg dws	, 2013 82111022 M-457338-01-1 KCA 8.4.1 /05

Test substance	Test species, Test design	Endpoint	Reference
BCS-CW81253	Eisenia fetida reproduction, 56 d (10% peat in test soil), test item mixed into soil	NOEC ≥100 mg/kg dws	13 10 48 09 3 M-462824 01-1 KCA 8 4 1 /06
AE 0000119	Eisenia fetida reproduction, 56 d (10% peat in test soil), test item mixed into soil	NOEC ≥100 mg/kg ws	2011 LRT-RG-R-104/11 MG04685-01-1 SCA 8-01/07
AE F059411	Eisenia fetida reproduction, 56 d, (5% peat in test soil)	NOFO 30 mg/kg/ws Q	(2019) LRT/RG-R-100/11 M-410936/201-1 &CA & 4.1 /08

¹⁾ corrected to an analysed purity of 93.0%

Based on the endpoints in the table abo

 $TER_{LT} = NOEC / PEC_{soil}$

The risk is considered acceptable if the FERLING

Table CP 10.4.1-2 TER calculations for earthworms

		~)		<i>0</i> z	
Compound, test design		Endpoint		TERLT	Trigger
400 reproduction	NOEC	\$100 mg prod./kg dws	% 0	<i>∮</i> ≥ 874	5
Iodosulfuron reproduction	NOEC &	9.2 mg/kg @ws &	0.00	930	5
AE F075736 reproduction	NGRC S	50.216 dag/kg dws	\$ 0.006	36	5
1 109.	NOEÔ	2000 mg/kg dws	<0.001	≥ 100 000	5
AE F145 40 reproduction	MOEC _	≥100/mg/kg/dws	< 0.001	≥ 100 000	5
reproduction	I 2 \ (//	100 mg/kg dx	0.002	≥ 50 000	5
BCS-CW81250, reproduction	MOEC	≥100 mg/kg dws	0.003	≥ 33 333	5
AE 0000149 reproduction	NOEC	S≥100 mg/kg dws	<0.001	≥ 100 000	5
AE F059411© reproduction	NOE	30 mg/kg dws	0.002	15 000	5

Conclusion: The TER_{LT} values are above the trigger, indicating no unacceptable risk for earthworms.

²⁾No observed effects at 10 g/ha and 50 g/ha; conversion from that to no as/kg ws with the following nes are colculated using the following equations: assumptions: calculated based on actual test rate, analysed purity of test substrate of 850 g wet weight with moisture content of 8.8% per test resse dws = dry weight soil

CP 10.4.1.1 Earthworms sub-lethal effects

Report:	; ;2013;M-4		
Title:	Iodosulfuron-methyl-sodium + mefenpyr-	diethyl OD 400 (100+300) G: Effects on
	survival, growth and reproduction of the	earthworm Eise <u>pi</u>	a fetida tested in artifical soil
Report No:	kra/Rg-R-151/13	₩ ,	
Document No:	M-465323-01-1	W.	
Guidelines:	EU Directive 91/414/EEC	Q	
	Regulation (EC) No. 1107/2009		
	US EPA OCSPP Not Applicable; none	Q'	
GLP/GEP:	yes	~ . Ø	~ \O' \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

Executive Summary:

The purpose of this study was to assess the offect of Iodosulfuron methyl-sodum + mefenper-diethyl OD 400 (100 + 300) G on survival, growth, and reproduction of the carthworm *Eisenia fetida* during an exposure in an artificial soil (10% to at content) with 5 different test concentrations. Adult *Eisenia fetida* (with clitellum and weight range 0.36 to 0.56 g, approximately 8 months old, 8 x 10 animals for the control group and 4 x 10 animals for each featment group) were exposed in artificial soil (with 10 % peat content) to an unfreated control and 6 the nominal concentrations of 10, 18, 32, 56 and 100 mg test item/kg/dry weight artificial soil. The test item was mixed into the soil. After 28 days the surviving animals and their weight alteration was determined. After additional 28 days the number of offspring was assessed. The test was performed according to the guideline ISO 11268-2 (1998) and the OECD Guideline 222 (2004). The NOEC and LOEC (based on reproduction) for this study were determined to be 56 mg and 100 mg test item/kg dry weight artificial soil, respectively.

Material and methods:

Test item Todosulfuron methyl sodium + metenpyr diethyl DD 400 (100 + 300) G; Sample description: TOX09930-00; Batch code: EFIT000452; Material Fo.: 06352286; Specification No.: 102000011563-06 Content 93.84 g iodosulfuron-methyl-sodium/L and 302.3 g metenpyr-diethyl/L; Density: 1.135 g/mL.

Adult Eisenia fetida (approx. 8 months old, 8 x \pm 0 animals for the control group and 4 x 10 animals per test concentration of the treatment group) were exposed in an artificial soil (with 10% peat content) to the nominal test concentrations of 10, 13, 32, 56 and 100 mg test item/kg dry weight artificial soil. The test item was mixed into the soil. After 28 days the number of surviving animals and their weight alteration was determined. They were then removed from the artificial soil. After further 28 days, the number of offspring was determined. The test was performed according to the guideline ISO 11268-201998) and the OECD Guideline 222 (2004). Mortality, weight change, feeding activity and reproduction rate were determined as endpoints. The artificial soil contained 69 % industrial quartz said, 20 % kaolin clay 10 % sphagnum peat, shredded, 1 % food, dried ground cow manure, and Calo 3 for the adjustment to pH to 6.0 \pm 0.5 according to OECD 222; the pH was 5.55 to 5.64 at experimental start and 6.3 to 6.48 at experimental end; the water content at experimental start was 33.08% to 34.49% (54.44% to 57.96% of the maximum water holding capacity) and at experimental end 33.0% to 35.00% (54.49% to 59.29% of the maximum water holding capacity); temperature was

within the range of 18°C to 22°C; the illumination was 16 h light: 8 h dark, light intensity was within the range of 400 to 800 lux.

Toxic standard (Carbendazim EC 360 G): 0 – 1.25 – 2.50 – 5.00 mg ab./kg soil d.w., control: untreated artificial soil moistened with deionised water, solvent control: none.

Dates of experimental work:

Validity Criteria:

Table CP 10.4.1.1- 1: Validity criteria

Validity criteria			Recommended	Obtained V
Mortality of the adults in the control			ò 10 %	~ ~0% ~
Rate of reproduction of juveniles (earthy	vorms per contr	wesselly		≈\$361.6 [©]
Coefficient of variance of reproduction	h the control		♥ \$ 3 0% \$	£ 6.5%

The validity criteria of the test according to the guideline were fulfilled.

In the most recent toxic standard reference test with the reference item Carbendazin EC 360 G (Study No.: Rg-R-Ref 19/12; Report No. kra-Rg-R-Ref 19/12; NON-GLP, performed from September 21 2012 to November 28, 2012), so mortality of the adult earthworms was observed 28 days after application. The change of body weight of the adolf earthworms of the est concentration of 5.0 mg a.s./kg dry weight soil was statistically significant reduced incomparison to the control. The number of juveniles per lest vessel of the two highest test concentrations of 2.50 and 5.00 mg a.s./kg dry weight artificial soil were statistically significant peduce in comparison to the control. EC₁₀, EC₂₀ and EC₅₀ for reproduction were calculated to be 3.96, 3.22 and 3.54 mg/s.s./kg dry weight artificial soil, respectively.

Mortality:

After 28 days of exposure no yearns died in the control group and no mortality was observed at any test item concentration. test item concentration.

Effect on prowth:

Statistically significant different values for the growth relative to the control were not observed. Therefore, based or biological and statistical significance:

NOEC related to growth. 100 mg test item of dry weight artificial soil LOEC related to growth: > 100 mg lest item kg dry weight artificial soil

Reproduction:

No statistically significant different values for the number of juveniles per test vessel relative to the control were beserved at the test concentrations of 10, 18, 32 and 56 mg test item/kg dry weight artificial son. Statistically significant different values for the number of juveniles per test vessel relative. The control were observed at the highest test concentration of 100 mg test item/kg dry weight artificial soil.

Therefore, based on biological and statistical significance:

NOEC related to reproduction: 56 mg test item/kg dry weight artificial soil LOEC related to reproduction: 100 mg test item/kg dry weight artificial soil

Table CP 10.4.1.1- 2: Effects on mortality and changes in body weight of the adults after an exposure period of 28 days and the number of offspring per test vessel after 56 days are shown in the following table (values in this table are rounded values).

			` <u>`</u>			
Test object		\		a Se tida	Ö .	
Test item	Control	4	IMS+MPK	ÖD 400 (1	00<+ 300) (\$	
mg test item/kg dry weight artificial soil			18	Ö 32 Ö	56	100
Mortality of adult earthworms [%] after 28 days	0 0					
Mean change of body weight of the adults from day 0 to day 28 [%] *	38.72	32.45 V	40,38	40.13	41.40 °	37.7
Standard Deviation	S 4.8%	\$34 £	3.25	9.68 3	3.80	2.49
Mean number of offspring per test vessel after 56 days **	3 61.6 %	368	\$359.8 K	365.8	351.3	324.3 **
Standard Deviation	256	\$\frac{1}{2}40.3 \tilde{\pi}	41.7	¥ 41.5.	3 ,4.6	39.4
Coefficient of variance (%)	\$\frac{1}{2} \text{ 6.5 }\tilde{\text{ 6.5 }	3 .9	11.6	11.3	9 4.2	12.1
% of control	Z Z	1010	\$9.5 L	100/1	97.1	89.7
	4 40			*\ @}	Reprod	duction
EC ₁₀ (mg test item/kg dry weight soil 1)				J	n.	d.
EC20 (100g test item/kg day weigh) soil	95% conf	ideoce limit			n.	d.
EC50 (mg test item g dry weight son 1)) (95% con	dencedimit	s)		n.	d.

^{*} no statistical significance compared to the control (Williams' Wultiple Sequential t-test, two-sided, $\alpha = 0.05$)

Conclusions:

Overall, based on the biological and statistical ignificance of the effects observed on growth and reproduction, it was concluded that the NOEC for this study is 56 mg test item/kg dry weight artificial soil. Thus, the overall LOEC was determined to be 100 mg test item/kg dry weight artificial soil.

CP 10,41.2 Earthworms field studies

Considering the findings coported above no further studies are required.

^{**} statistic@significance compared to the control (WiDams' Multiple Sequential t-test, one-sided smaller, $\alpha = 0.05$)

Probit analysis $\alpha = 0.05$

n. d. not tleterminded due to mathematical teasons of inappropriate data

CP 10.4.2 Effects on non-target soil meso- and macrofauna (other than earthworks)

A summary of the toxicity of IMS + MPR OD 400, Iodosulfuron-methyl-sodium and one soil metabolites to other soil non-target macro-organisms is provided in Table CP 0.4.2- 1. For details of the studies conducted with the active substance and metabolites, please refer to the M document point CA 8.4.2.1.

Table CP 10.4.2-1 Endpoints used in risk assessment

Test substance	Test species	Endpoint	J O -	Reference	
IMS + MPR OD 400	Hypoaspis aculeifer	NOEC 56 mg prod./kg dws	KCP	, 2011 1284-91-1 10-4, 2.1/01	
INIO - MI R OD 400	Folsomia candida	NOEC 2100 no prod./kg dws	, M-4 <u>1</u> K,CP	, 201 1 1346-07-1 10.4.2.1/02	Ŋ°.
Iodosulfuron-methyl-	Hypoaspis Ruleifer	NOEC 1000 mg a.s./kg dws		3 9012 3 390-01-1 8.4.2.1901	
sodium	Folomia candida (NOPC 316 mg a kg dw	((1))2	, 2012 8498-01-1 8.4.2.1/02	
AE F075736		NOEC > 10 mg/kg/dws	K CA	, 2013 6338-01-1 8.4.2.1/03	
	Folsontia candida	SOEC > ≥ 10 mg/kg dws		, 2013 4404-01-1 8.4.2.1/04	
AE F145741	Hopoaspi Saculeif for	NOEC > 100 mg/kg dws	I	, 2013 2732-01-1 8.4.2.1/05	
AE F145740	Hypraspisaculeifer	NOEC NO may kg dws		, 2013 9885-01-1 8.4.2.1/06	
AE 0002166	Hypoaspis aculeifer,	NOTEC \$100 mg/kg dws		0489-01-1 8.4.2.1/07	
BCS-CW81253	Hypouspis Wuleifer	NOÉC ≥ 100 mg/kg dws	M-45	, 2013 3497-01-1 8.4.2.1/08	
\$ \tag{\text{\text{\$\sigma}}}	Folsomia candida	NOEC ≥ 100 mg/kg dws		, 2013 2821-01-1 8.4.2.1/09	
AE F05941	Typoaspis acrifeifer	NOEC 100 mg/kg dws		, 2010 2258-01-1 8.4.2.1/10	
AE F059411	Folsomia candida	NOEC ≥ 100 mg/kg dws		, 2011 0027-01-1 8.4.2.1/11	
AE 0000119	Hypoaspis aculeifer	NOEC ≥ 100 mg/kg dws		, 2010 6844-01-1 8.4.2.1/12	
	Folsomia candida	NOEC \geq 100 mg/kg dws		, 2010	

Test substance	Test species	Endpoint	Reference
			M-384229-01-1
		Ŷ	KCA 8.4.2.1/49

dws = dry weight soil

Toxicity exposure ratios for non-target soil meso- and macrofauna (other than earthworms

Ecotoxicological endpoints and PEC_{soil} values used for TER calculations for soil non-target macro-organisms are summarised below. TER values were calculated using the equation.

TER = NOEC / PEC_{soil}

The risk is considered acceptable if the TER is >5.

Table CP 10.4.2- 2 TER calculations for other non-target will meso- and macrotaina

Compound	Species	\$	Endpoint T	PE Coil, max acu	TER O	Trigger
IMS + MPR OD	Hypoaspis aculeifer	ŊŒŒ	560mg product/kgodws	04944	490	5
400		*NOEC	≥ 100 product√kg dw		874	5
Iodosulfuron-	Hypoaspis aculeifely	NOE	≥ 1,690 mg _@ s./kg dws	0.01 %	≥ 100 000	5
methyl-sodium	Folsomia-çandida	NØEC	306 mg a.s./kg dws	O OF OTO	31 600	5
AE E075727	Hypoaspis acuteifer	ØNOEC €	≥ 10 mg/kg dws 🖔	0.006	≥ 167	5
AE F075736	Folsomia candida	NOE	≥ 10 mg/kg dws	◎ 0.00€/	≥ 167	5
AE F145741	H Poaspis aculeiter	NOEC .	≥ 100 mg/kg dw	Ç < QQ 01	≥ 100 000	5
AE F145740	Hypoaspis aculeifer §	NOEC	≱ 100√mg/kg dws	₩ 0.001	≥ 100 000	5
AE 0002166	Hyppaspis aculeifer	NOE	≥ 1000 mg a.s./kg dows	© 0.002	≥ 50 000	5
BCS-CW\\253	Hypoaspis aculeifer	NOEC	00 mg/kg dyg	0.003	≥ 33 333	5
BCS-CW81253	Folsonija canada		≥ 100 mg/kg/dws	0.003	≥ 33 333	5
AE E050411	Hypoaspis aculeife	NOEC	≥100 mg@kg dws√	0.002	≥ 50 000	5
AE F059411	Folsomia candida	NOEC,	₽100 mg/kg d⊗s	0.002	≥ 50 000	5
AE 0000119 @	Hypogspis açüleifer	NOEC	≥ 100 mg/kg Tws	< 0.001	≥ 100 000	5
AE 0000119	Folsomia_condida	NOEC	≥ 100 mga,s./kg dws	< 0.001	≥ 100 000	5

Conclusion: The TER values are above the rigger indicating no unacceptable risk for soil non-target macro-organisms, i excollembola and soil mite

CP 10.4.2.1 Species level testing

Report:		;2011;M-411284-01			
Title:	Iodosulfuron-methyl-sodium	n + mefenpyr-diethyl (OD 400 (100+30	0) G: Effects &	n the
	reproduction of the predator	ry mite Hypoaspis acul	eifer 🦠) ,
Report No:	11 10 48 064 S		Q	4	
Document No:	M-411284-01-1		10		
Guidelines:	OECD 226 (2008): Predate	ory mite (Hypoaspis (Geolaelaps) ac	uleiferDreprod	action
	test in soil;none	ĈA			
GLP/GEP:	yes		W'		

Executive Summary:

The purpose of this study was to determine potential effects of the test wem on the mortality and the reproductive output of the soil mite species Hyppoaspis aculeiter (CANESTRUM) as Fepresontative of soil micro-arthropods during a test period of A days

10 adult soil mites (females) per replicate or replicates for the control group and 4 replicates for each treatment group) were exposed to untreated control and to 56 900, 180, 320, 560 and 1000 mg test item/kg soil dry weight (d.w.). Two weeks after start of exposure, the number of Guvenilles and O surviving parental mites were determined. The test was performed in accordance with the OECD Guideline 226 (2008).

The EC₅₀ was determined to be \$\sqrt{65.5}\$ ing test frem/kg soil flw. The No-Observed-Effect-Concentration (NOEC) and the Lowest-Observed Effect-Concentration (LOEC) for mortality were determined to be 560 and 1900 motest item/kg will d.w., respectively. The No-Observed-Effect-Concentration (NOEC) and the Lowest-Observed-Effect-Concentration (KOEC) for reproduction were determined to be 56 and 100 prog test frem/kg soil dw., respectively.

Materials and MethodsC

Test item. Iodosulfuron-methyl-sodom + methyl-sodom TOX 09374-00, Batch ID: EFKP000788; Specification No.: 1020000 1563-05; Analysed active ingredients, 99.07 g/L indosulfuron-methyl-sodium (AE E1 5008), 301.7 g/L mefenpyr-diethyl (AE F107892, Density (200C): 1938 g/mL; Water solobility. dispersible.

10 adult soil mites (females) were exposed to 56 - 100 - 180 320 - 560 - 1000 mg test item/kg d.w. of soil containing 74.8 % quartz sand, 20 % kaolin clay, 5 % sphagnum peat and 0.2 % CaCO3, at 19.5 -20.9 °C and aphotoperiod Dight dark = 16 h : 8 h (604 lx) and were fed every 2 days with Tyrophagus putrescentiae (SCHIPANK), Mortality and reproduction were determined after 14 days.

Toxic standard (Dim thoat EC 400): 4.100 $\frac{7}{6.40} - 8.00 - 10.00$ mg a.s./kg soil d.w.; control: quartz sand, solvent control: none.

- May 23, 2011

Dates of works: April 29 2011

Results: Table 29 10 40 11

Validity Oiteria	Recommended	Obtained
Mean mortality of adult females	≤ 20 %	5.0 %
Mean number of juveniles per replicate	≥ 50	246.4

Coefficient of variation (mean number of juveniles per replicate)	≤ 30 %	17.6 %
---	--------	--------

All validity criteria for the study were met.

In a separate study (BioChem project No. R 11 10 48 003 S, dated March 29, 2011), the EC₅₀ (reproduction) of the reference item Dimethoate EC 400 was calculated to be 5.4 mg at 1 kg soll d.w. The results of the reference test demonstrate the sensitivity of the test stem.

Iodosulfuron-methyl-sodium + mefenpyr-diethyl OD 400 (100+300) G caused to statistically significant mortality (Fisher's Exact Binomial Test, p > 0.05) of adult frites up to a test concentration of 560 mg/kg soil dry weight at the end of the 44-day exposure period. At the tested concentration of 1000 mg test item/kg soil d.w. a statistically significant mortality of adult frites of 80.0% was observed (Fisher's Exact Binomial Test, p > 0.05)

In the control group a parental mortality of 5.0 % observed. The mortality in the test item treatment groups ranged between 0 and 80.0 %

The number of juveniles 14 days after having introduced the parental parter into the test vessels was on average 246.4 in the control and 261.0, 187.0, 192.3, 40.3, 370 and 00 at the test concentrations of 56, 100, 180, 320, 560 and 1000 mg test item/kg soil d.w. The test test concentration of 56 mg/kg soil dry weight. At the tested concentration of 190, 180, 320, 560 and 1000 mg test item/kg soil dry weight statistically significant reductions (William's steet, $p \ge 0.05$ of 58.5, 83.3, 85.0 and 100.0 % were observed, respectively

Table CP 10.4.2.1-2. Lifects on mortality and reproduction of Hyppaspis aculeifer

Test item	lodosulfuron methyl sodium + meser	npyr aiethyl OD 400 (100+300) G
Test object		enceye.
Exposure	Artificia	koil &
	Addit mortality	Reproduction
\	(mg test item/k	g soٍṅ́∕d.w.)
LOEC		100
EC ₁₀		66.2
EC ₂₀		90.7
LC50/E600		165.5
95 % confidence lin	mit 471,20779.8	129.3-210.9
NOTEC	<u> </u>	56

Table QP 10.4.2.1- 3 Effects on mortality and reproduction of Hypoaspis aculeifer

Endpoint 4 \ Q	Iodosul	furøn-metl	yl-sodium (mg met	+ mefenpyr abolite/kg s	r-diethyl O soil d.w.)	D 400 (100-	+300) G
Endpoint A \	control	56	100	180	320	560	1000
Mortality of soil mites after 14 days (%)	5.0	5.0	5.0	7.5	2.5	2.5	80.0*
Messo number of juveniles after 14 days	264.4	261.0	187.0*	102.3*	41.3*	37.0*	0.0*
E CV %	17.6	25.5	10.7	74.2	58.7	73.3	-
Reduction of reproduction (% to control)	-	-5.9	24.1	58.5	83.3	85.0	100.0

* statistically significant difference compared to control (Fisher's Exact Binomial Test for mortality, $p \le 0.05$)

Williams t-test for reproduction; $p \le 0.05$)

Calculations were done using non-rounded values

Percent reduction: $(1 - R_t / R_c) * 100 \%$

Rt = the reproduction observed in the treated group(s)

Rc = the reproduction observed in the control group

Negative values indicate a higher reproductive performance compared to control.

Conclusions:

In a 14-day Hypoaspis aculeifer reproduction study with Iodosulfation-methyl-sedium the methyl-sedium them. The methyl-sedium them methyl-sedium them methyl-sedium them. The methyl-sedium them methyl-sedium them methyl-sedium them methyl-sedium them. The methyl-sedium them methyl-sediu

Report:	; 2011; N-411246-01 ©
Title:	Iodosulfuron methyl sodium metempyr-diethyl QD 400 (100+300) G: Effects on the
	reproduction of the collembolans Folsomia candida
Report No:	J1 10 48-065 S
Document No:	M-411 M-6-01 4
Guidelines:	OECD 232(2009): OECD Guideline for gesting of chemicals No. 232 (adopted 7
Guidelines:	Sentember 1000 Collembolan reproduction test in sell ISO 11267 (1999). Soil
	anality - Inhibition of reproduction of Collembola (Polsomia candida) by soil
	pollutants; notice & S S S S
GLP/GEP:	yes S S S S

Executive Summary

The purpose of this study was to betermine potential effects of the test item on the reproductive output of the collembolans Folsomia candida as a representative of soil micro-arthropods during a test period of 28 days.

10 collembolans (9-12 days old) per replicate (& replicates for the control group and 4 replicates for each treatment group) were exposed to untreated control and to 5.6, 10, 18, 32, 56, 100 mg test item/kg soil dry weight. After 4 weeks the number of offspring (juveniles) and surviving parental collembolans were counted. The test was performed as a limit test in accordance with the OECD Guideline 232 (2009) and the International Standard ISO 11267 (1999).

The overall No-Observed-Effect-Concentration (NOEC) was determined to be \geq 100 mg test item/kg soil dry weight. The Lowest-Observed-Effect-Concentration (LOEC) was determined to be > 100 mg test item/kg soil dry weight. The validity criteria for the control group of the study were accomplished.

Materials and Methods:

Test item Godosulfuron-methyl-sodium + mefenpyr-diethyl OD 400 (100+300) G; Sample description: TOX 09374-00; Batch ID: EFKP000788; Specification No.: 102000011563-05; Analysed active ingredients: 8.71 % w/w, 99.07 g/L iodosulfuron-methyl-sodium (AE F115008), 26.5 % w/w, 301.7 g/L mefenpyr-diethyl (AE F107892); Density (20°C): 1.138 g/mL; Water solubility: dispersable.

10 Collembola (9-12 days old) were exposed to 5.6 - 10 - 18 - 32 - 56 - 100 mg test item/kg soil dry weight containing 74.7 % quartz sand, 20 % kaolin clay, 5 % sphagnum peat an 0.3 % CaCO

at 18.7 – 21.5 °C and a photoperiod: light: dark = 16 h: 8 h (710 lx) and were fed weekly with granulated dry yeast. Mortality and reproduction were determined after 28 days. Toxic standard: 44 – 67 – 100 – 150 – 225 mg boric acid g soil d.w.: Control: quarty and colvent control: none. Dates of work: May 02, 2011 – May 30 2011
granulated dry yeast. Mortality and reproduction were determined after 28 days. Toxic standard: 44 – 67 – 100 – 150 – 225 mg boric acid g soil d.w.: Sontrol: quartz and solvent
Toxic standard: 44 – 67 – 100 – 150 – 225 mg boric acid g soil d.w.: Sontrol: quartz sand solvent
Toxic standard: $44 - 67 - 100 - 150 - 225$ mg boric acid g soil d.w.; ontrol: quartz and solvent
control: none.
Detector of words May 02 2011 May 20 1911
Dates of work: May 02, 2011 – May 30, 2011
Results:
Dates of work: May 02, 2011 – May 30, 2011 Results:
Results: Table CP 10.4.2.1- 4: Validity criteria
Validity criteria (for the control group) Recommended Official Control group)
Mean adult mortality $0 \le 20 $ $5 \le 5.0 $
Mean number of juvenile per replicate
Coefficient of variation (mean number of twentiles per replicate) 230 % 51.5 %

The requirement of the ISO guideline concerning the precision of the country method (average error <10 %) was fulfilled, the determined overall error of counting amounted to 4.4 %

In a separate study $\mathring{\text{PioCkem}}$ project No. R 11 $\mathring{10}$ 48.004 S, $\mathring{\text{gated May}}$ 05.2011), the EC₅₀ (reproduction) of the reference item boric acid was calculated to be 107 mg a.s./kg soil dry weight. The results of the reference test demonstrate the sensitivity of the test system.

The test item caused 2.5 7.5, 25, 7.5, 60 and 2.5 % parents mortality at the test concentrations of 5.6, 10 \$\infty\$, 32, 56 and 00 mothest item/kg soil d. \$\infty\$, respectivel \$\oldsymbol{Q}\$. 5.0 % parental mortality was observed in the control.

No statistically significant effect (Fisher's Exact Binomial Test, p > 0.05) on parental mortality was found for any concentration tested. No effects on behaviour of the collembolans were observed during

The number of juvenile springtans counted for week after having introduced the parental collembodins into the test vessels was on average \$93 in the control and 850, 857, 971, 872, 940 and 866 at the test concentrations 5.6, 10, 18, 32, 56 and 100 mg test item/kg soil d.w., respectively. No statistically significant effects on the number of juveniles compared to the control group were found was found for any concentration tested

The no-observed-effect-concentration (NOEC) was determined to be ≥ 100 mg test item/kg dry weight.

Test item Test object Exposure	Iodosulfuron-methyl-sodium + mefenpyr-diethyl OD 400 (100+309) G Folsomia candida Artificial soil		
	Adult mortality	Reproduction	
	(mg test i	tem/kg soil 🖎.)	
LOEC	> 100	> 100	
LC ₁₀ / EC ₁₀	> 100	> f@0 & ~	
LC_{20}/EC_{20}	> 100	√100 ° √ √ √	
LC ₅₀ / EC ₅₀	> 100		
NOEC	≥ 100		

Effects on moreality and reproduction of Folsomia candidal **Table CP 10.4.2.1-6:**

Table CP 10.4.2	2.1-5: Effects or	on mortality and reproduction of <i>Folsomia candida</i>			
Test item	Iodosulfuron-methyl-sodi	lium + mefenpyr-diethyl OD 400 (100+300) G			
Test object Exposure		Folsomia candida Artificial soil			
1	Adult mortality	Reproduction A			
	(mg	ng test item/kg soil (Ow.)			
LOEC	> 100	> 1000			
LC ₁₀ / EC ₁₀	> 100	> 190 % 5 6			
LC_{20}/EC_{20}	> 100				
LC ₅₀ / EC ₅₀	> 100				
NOEC	≥ 100	on mortality and reproduction of Folsomia candida lium + mefenpyr-diethyl OD 400 (100+300) G Folsomia candida Artificial soil Reproduction Reproduction Production Pro			
Table CP 10.4.2	Table CP 10.4.2.1-6: Effects on mortality and reproduction of Folsomia gandide				
	Fudnoint				
	Enapoint S	Sontrol 5.6 10 18 32 56 100			
Mortality of pa	arental collembolans ofter 4 weeks (%)	5.0 2.5 7.5 2.5 0.0 2.5			
Mean number	Mean number of juvenites after weeks 893 850 857 6971 940 866				
	CV S	© 11.5\$ 15.8 13.4 5 15.9 10.5 10.1			
% Reprod	luction of reproduction pared to control	5 5 4 4 5 2 -5 3			

No statistically sonificate differences between the control and test item were calculated for mortality and reproduction (Fisher's Exact Binomial Test with Bonterroni Correction, Williams Multiple Sequential t-test)

Calculations were done using non-rounded alues

Percent reduction: (1 - R_t / R_c) * 100 %

 R_t = the coproduction observed in the treated group(s).

R_c = the reproduction observed in the control group &

Negative values indicate a higher reproductive performanc@compared to control.

Conclusions;

The test item Iodosulfuron-methol-sodium + metennol-diethyl OD 400 (100+300) G showed no statistically significantly adverse effects on adult mortality and reproduction of the collembolans Folsomia candida in artificial soil up to and including 100 mg test item/kg soil d.w.

Therefore, the overall No observed-Effect-Concentration (NOEC) was determined to be ≥ 100 mg test item/kg soil@l.w., and the Lowes Observed-Effect-Concentration (LOEC) was determined to be >

In view of the findings above, no higher tier testing is required.

CP 10.5 Effects on soil nitrogen transformation

The toxicity of iodosulfuron on soil non-target micro-organisms is summarised in Table CP 105-1. For details of the studies conducted with the active substance and metabolites, please refer to the document M, point CA 8.4.2.1.

Table CP 10.5-1: Effects on soil nitrogen transformation

1 able C1 10.3-1.	Elifetts on son	i inti ogen ti ansioi mation		
Test item	Test design	Ecotoxicological endpoint		Reference 4
N-transformation		A Q	y Y O S	
IMS + MPR OD 400	Study duration 28 d	no unacceptable ≥0.67 μL pood./h	na'y Ymg dws	2004 10-226312-01-12 XCP 10.5/01
Iodosulfuron- methyl-sodium	Study duration 28 d	00000	1 41 1	M-141782-01-1 ACA 8-5/01
AE F075736	Study assumably duration 28 d	Pno effect \$0.2 mg/kg	kg qws 10 v	SANCO 7593 V1/97- final from 14 Aug 2000
AE F145741	Study duration 28 d	wnacceptable 20.05% mg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg	vs vs	(2013) M-457273-01-1 KÇA 8.5/02
AE F145740	Study duration 28 d	ng war	\ll	(2013) M-457344-01-1 KCA 8.5/03
AE 0002166	Soudy duration 28	no @ \$\frac{\partial}{\partial} \text{unacceptable} \text{26053 mg/kg dy} \text{effects} \text{\partial} \text	NS Q	(2013) M-464391-01-1 KCA 8.5/04
AE F161778	Starsy duration 28 d	no © 20046 mg@g dy effects 20046 mg @g dy	vs© F	(2013) M-464817-01-1 KCA 8.5/05
BCS-C \$ 1253	Study duration 28 d	unacceptable ≥0.043 mg/kg dv effects 2	vs	(2013) M-459899-01-1 KCA 8.5/06
AE 0000119	Study Quration 28 d	Ginacceptable \$\geq 0.4 \text{bg/kg dws} \\ effects \q		(2010) M-395864-01-1 KCA 8.5/07
AE F059417	Study duration 22 d	inaccentable 20.204 mg/kg dv	vs	(2003) M-448838-01-1 KCA 8.5/08

dws = dry weight soil, a.s. = active substance prod. product

Risk assessment for soil nitrogen transformation

According to current regulatory requirements the risk is considered acceptable if the effect on nitrogen mineralisation at the recommended application rate of a compound/product is $\leq 25\%$ after 100 days.

In no case did deviations from the control exceed 25% 28 days after application, indicating low risk to soft micro-organisms.

¹⁾ Corrected to an analysed purity of \$7.4% Q

Report:	; ;2004;M-226312-01
Title:	Iodosulfuron-methyl-sodium & mefenpyr-diethyl OD 100 + 300 (AE F115008 @ D35)
	A202): Determination of effects on nitrogen transformation in wil
Report No:	C039050
Document No(s):	M-226312-01-1
Guidelines:	OECD: 216, (2000); Deviation not specified
GLP/GEP:	no (%) L L L L L L L L L L L L L L L L L L L

Executive Summary:

The objective of the experiment was to determine the influence of v.13 and 0.67 µL Influence methyl-sodium & Mefenpyr-diethyl OD 100+3000kg dry weight soil ou nitrogen transformation in an agricultural soil. The test was performed in accordance with OECD guideline No. 216, adopted 21st January 2000.

A silty sand soil was exposed for 28 d to concentrations of 0.13 and 0.67 μL test item/kg soft dry weight. Application rates were equivalent to 0.1 and 0.5 L test item/ha, which is equivalent to 1 and 5x recommended field rate, respectively. Lucerne-grass-green meal was added to the soft (5 g/kg dry weight soil) to stimulate nitrogen transformation. During the 28 day experiments, the recommended field rate of Iodosulfuron-methyl-sodium & Metenpyr diethyd OD 100+30000.1 Lest item/ha) and the 5-fold overdose of the test item caused a temporary stigntlation of the daily intrate rates at the time interval 0-7 and 7-14 days after treatment, respectively, in a silty sand soil amended with Lucernegrass-green meal. At the end of the experiment \$4-28 day interval), differences in the nitrate-N rates between the control soil samples and treated soil samples are < 25 % and meet the trigger values of above mentioned guideline for a terrorination of the stud

Material and methods:

Test item. Iodosulfuron & Mofenpy diethy OD 500+300; Analytical findings: AE F115008, 8.82 % w/w; AE F197892, 26.0 % w Development No.: 0309260; Batch No.: AAIM01665; Density: 1.144 g/mL.

A silty sand soil was exposed for 28 d to concentrations of 0.13 and 0.67 µL lodosulfuron-methylsodium & Mefengyr-diethyl OD 100+300/kg dry weight soff. Application rates were equivalent to 0.1 and 0.5 L lodosulfurgo methyl-sodium & Mefenpor-diethyl OD 100+300/ha, which is equivalent to 1x and 5x recommended field rate, respectively. Lacerne grass-green meal was added to the soil (5 g/kg dry weight soil) to stimulate nitrogen transformation. Sodium chloride was used as a reference standard in the experiments

November 06, 2003 – December 09, 2003 Dates of work:

In this study, the highest coefficient of variation (CV) between nitrate-N concentration in replicate control samples was 24% days after treatment). This difference of the recommended limit of ± 15 % as only found on day 7 and is not considered to be relevant for the validity of the study.

In the most recent non-GLP-test (LKC-N-Ref-01/03, C., 2003) with the reference tem Sodium chloride and the agricultural soil described above, 16 g NaCl/kg dry weight soil had distinct and long-term (> 28 days) influence on microbial mineralization of nitrogen.

Nitrogen transformation:

During the 28-day experiment, the recommended field rate of lodosulfuron-methyl-sodium & Mefenpyr-diethyl OD 100+300 and the 5-fold overdose of the test item caused a temporary stimulation of the daily nitrate rates at the time interval 0-7 and 7-14 days after treatment respectively in a silty sand soil amended with luceme-grass-green meal. At the ond of the experiment (14-28 day interval), differences in the nitrate-N rates between control soil samples and treated soil samples are 25 % and meet the trigger values of above mentioned guideline for a termination of the study.

Table CP 10.5-2: Effects on non-target soil morro-organisms

Test item	lodosulfuron & Mefenpyr diethy OD 190+300
Test object	Soft Microorganisms O Soft Microorganisms O Soft Microorganisms O Soft O Soft Microorganisms O Soft
Exposure	a salah daya daya daya daya daya daya daya da
μL test item/kg dry weight soil s	J 7 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L test item/hg 💸	
(equivalent) &	(recommended field rate) (5x recommended field rate)
Final Result aft@28 day	Difference to control < 25 % Difference to control < 25 %

Conclusions:

When used as recommended, Iodosulfuron-methyl-sodium & Meferipyr-diethyl OD 100+300 should not have an impact on introgen transformation in soils.

CP 10.65 Effects on terrestrial non-target higher plants

Risk assessment for Terrestrial Non-Target Nigher Plants

The risk assessment is based on the "Guidance Document on Terrestrial Ecotoxicology", (SANCO/10329/2002 ev2 final, 2002). It is restricted to off-field situations, as non-target plants are non-crop plants located outside the treated area. Spray drift from the treated areas may lead to residues of a product in off-crop areas.

For herbicides and plant growth resulators, it is considered unprofitable to conduct tier 1 studies as it is inevitable that these will lead to tier 2 or door response studies in order to generate data suitable for deterministic or probabilistic fisk assessments, i.e. ER₅₀ values for 6-10 species, representing a broad range of plant species.

Seedling mergance and vegetative vigour studies have been conducted with the plant protection product with the product code AE F115008 02 OD35 A202, which contains the active substance iodoxalfuron (100 g/L) and the safener mefenpyr-dithyl (300 g/L) solved in an OD-formulation, following OECD testing guideline 208 (see Point 10.6.2).

Ecological endpoints

The endpoints from the tier 2 studies used for the risk assessment are summarised in following table.

Table CP 10.6-1: Survey of non-target plant tests performed with IMS + MPR OD 400

Number of species	Test method	Effects \$\int_{\infty}^{\infty}	Reference ,
tested (species)	Test substance Application rate		
Dicotyledoneae: 7	Tier 2 vegetative vigour	most sensitive	\$ 8 ,
(sugar beet, oilseed	IMS + MPR OD 400	species: sunflower	2004\$\frac{1}{2004}\$\
rape, radish, cucumber,	0 (control), 1.56, 3.13, 6.25, 12 \$\frac{1}{2}\$ 25 and 50		C0402604
sunflower, soybean,	mL prod./ha for corn and oats	2.43 mL prod/ha	
tomato)	0 (control), 0.39, 0.78, 1.56, 3.13, 6.25 and		KCP 10.6.2/0 /
Monocotyledoneae: 3 (onion, oat, corn)	12.5 mL prod./ha for cucumber and onion 0 (control), 0.1, 0.2, 0.3%, 0.78, 656 and		
(omon, oat, com)	3.13 mL prod./ha for sugar book, oilsood	4 8	e 4
	rape, radish, sunflower, soybean an Ctomato		
	with visually observations on Days 7, 14	AS	
	and 21, dry weight measurements on Day		
	21 & & & & & &		
Dicotyledoneae: 7	Tier 2 seedling emergence V	mos Sensitive	& ,
(sugar beet, oilseed	$IMS + MPQ OD 400$ \Rightarrow \Rightarrow	species: sagar bect;	2004%
rape, radish, cucumber,	0 (control), 1,56,3.13,625, 125, 25 and 50	Jowest LC50: O	© 042664
sunflower, soybean,	mL prod./ha with daily assessments of	3.62 mL prod./ha	1 233058-01-1
tomato)	germination until 68% emetgence of		KCP 10.6.2/02
Monocotyledoneae: 2	control seedlings and assessments of		
(oat, corn)	number of plants and mortality on Days 7		
	and 14 after thas time, measurement of dry		
Ž.	weight on Day 14 @ \$ 2		

Exposure

Effects on noiotarget plants are of concern in the off-field environment, where they may be exposed to spray drift. The amount of spray drift reaching off-crop habitats is calculated using the 90^{th} percentile estimates derived by the BBA (2000). From the spray drift predictions of Ganzelmeier & Rautmann (2000). For a single application to cereals 2.77% of the application rate was assumed to reach areas at the edge of the crop (0 meter buffer zone; worst-case scenario). For a 5 m buffer zone a drift rate of 0.57% is assumed. The highest single application rate of iodosulfuron-methyl-sodium + mefenpyr-diethyl OD 400 (100+300 g/L) is 0. L. product/ha

Deterministic Risk assessment

According to the Terrestrial Gridance Document the risk to non-target plants is evaluated by comparing the lowest ER₅₀ observed in the laboratory studies with the drift rates (PER_{off-field}) inclosing a safety factor of 5. In addition the usage of drift reducing nozzles is considered.

⁵ BBA (2000) Buddesanzeiger Jo52 (Official Gazette), Nr 100, S. 9879-9880 (25.05.2000) Bekanntmachung über die Abtriftsckwerte die bei der Prüfung und Zulassung von Pflanzenschutzmitteln herangezogen werden. Public domai

⁶ Ganzelmoer H., Rautmann D. (2000) Drift, drift-reducing sprayers and sprayer testing. Aspects of Applied Biology D, 2000, Pesticide Application. Public domain.

⁷ Anonymous (2002b). Guidance Document on terrestrial ecotoxicology under council directive 91/414/EEC. SANCO/10329/2002. 17 October 2002.

Table CP 10.6-2: Deterministic risk assessment for iodosulfuron-methyl-sodium + mefenpyr-die Wyl OD 400 (100+300 g/L) based on effects on seedling emergence

	arable field crops, one application, 100 mL product/ha; lowest ER ₅₀ = 5.62 pc product/ha							
Distance	Drift	PER		TI	ER ®			
[m]	(%)	no drift reduction [mL product/ha]	No drift reduction	50% drift	75% drift Freduction	90% Trift reduction		
1	2.77	2.77	2.03	4.06	8.12	20,30		
5	0.57	0.57	9.86	19.72	39.40	28.60		
10	0.29	0.29	19.38	。38.7@″	77,52	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

Table CP 10.6-3: Deterministic risk assessment for indosulfuron-methyl-sodium + mefenpar-OD 400 (100+300 g/L) based on effects on vegetative vigour

aı	rable field cr	ops, one appl	ication, 1000 mL pr	oduct/har/lowest l	$ER_{50} \neq 2.43 \text{ mW pro}$	odrict/ha O
Distance	Drift	PER		T	E ®	
[m]	(%)	no drift reduction [mL \$ product/ha\$	reduction	50% drift of reduction	35% drift reduction	90% drift reduction
1	2.77	2.77	© 0.88 3	V 156 (,	3.52	8.80
5	0.57	0.99	426	8.52 °	17.04	42.60
10	0.57 \$ 0.29	\$\text{9.29}	8.38	16.7 %	33,52	83.80

Probabilistic Rosk

In addition to the deterministic rick assessment the Terrestrial Guidance Document recommends the use of the HC5 (the consentration below which less than 5% of the species will be harmed above the EC50 level) which can be calculated from the data sets of ER50 growth inhibition levels. The EU guidance document for terrestrial ocotoxicology states \fill If the \fill ED \fill for less than 5 \fill of the species is below the highest predicted exposure level, the risk for terrestrial plants is assumed to be acceptable." Thus, the HC₅ itself (TER = 1) can be regarded to be protective.

The HC₅ was calculated according to

 $HC_5 = 10$ exp(avg-ks

avg = mean of log10 transformed E 50 values

std = standard deviation of log10 transformed EC₅₀ values ks = extrapolation factor

Table CP 10.6- 4: HC5-calculation for seedling-emergence with iodosulfuron-methyl-sodium + mefenpyr-diethyl OD 400 (100+300 g/L).

			, ON U
		mean of log10	extrapolation factor
		transformed EC50	for n=9
input values	LOG ₁₀	values	
19.55	1.2911	, **	
24.59	1.3908		
7.34	0.8657		
9.06	0.9571		
5.62	0.7497	1.0858	Q 1.7091 Q
5.69	0.7551		
6.35	0.8028		
12.29	<u></u> 4,0896®		
74.11	1.8699		
	19.55 24.59 7.34 9.06 5.62 5.69 6.35 12.29	19.55 1.2911 24.59 1.3908 7.34 0.8657 9.06 0.9571 5.62 0.7497 5.69 0.7551 6.35 0.8028 12.29 0.8960 74.11 1.8696	input values LOG ₁₀ transformed EC ₅₀ 19.55 1.2911 24.59 1.3908 7.34 0.8657 9.06 0.9571 5.62 0.7497 5.69 0.7551 6.35 0.8028 12.29 0.08960

The HC₅ calculation for the shoot dry weight-EC₃₀ values from the seeding energence study leads to HC₅ values of **2.799**. In case of the vegetative vigor study only three CR50-figures are available. The others are greater-than-figures. Thus, no HC5 could be calculated for vegetative good. The TER calculation is summarised in the following coles:

Table CP 10.6-5: Probabilistic risk assessment for iodosilfuron-methyl-sodium + mefenpyr-diethyl OD 400 (100+300 g/k) based on effects on seedling@mergence

	arable trelo	l crops, one or	pplication, 100 mL	product/hh/, HC	= 2.799 mL produ	ict/ha
Distance	Don'ft	PER.	(4) Y L		ER	
		redisction to	No drift.	30% difft reduction	75% drift reduction	90% drift reduction
1	2.77	2777 🐇	F.01 , 7	2.02	4.04	10.1
5	0.50 0.29	0.57	√° 4.91°°	O' 9,82	19.64	49.1
10	0.29	0.29	9:65	9.30	38.60	96.50

Since iodosulfuron-methyl sodium + merenpyr diethyl OD 400 (100+300 g/L) has stronger effects on the vegetative vigour of young plants than on the seedling emergence, the vegetative vigour data determine the risk assessment. From Tables 10.65-3 it becomes obvious, that a 5m buffer zone is sufficient to protect terrestrial non-targed plants if 50% drift reducing spraying equipment is used. With the use of 90% drift reducing nazzles to buffer zone is required.

Iodosulfuron methyl-sodism + mefenpyo-diethyl OD 400 (100+300 g/L) poses no unacceptable risk to terrestrial on-target plants in off-crop areas following the proposed uses.

CP 10.6.1 Summary of screening data

Report:	2	;M-229488-01		ST O
Title:	Soil mix crop screening tests C	ompounds used: A	AE F115008 🕬	35 A1 (iodos affuron 🔊
	mefenpyr-diethyl 100 + 300 g/l	, oil dispersion)	T	
Report No:	C040757		_1	
Document No:	M-229488-01-1			
Guidelines:	Deviation not specified			
GLP/GEP:	no	%	Q	

Objective

The test reported here was designed to determine the sensitivity of various crops AE F115008 02 OD35 A1 under standardised glasshouse conditions.

Material and Methods

EC10 values were calculated based on givisual damage and gi fresh weight reduction. The results are reported below as both in concentration of up formulated product per kg of soil dise rate 70 µg/kg) and with the corresponding dose rate in an formulated product per my (use ate 100 ml/has)

Findings

Cereal crops were the most insensitive although some phytotoxicity was recorded from the highest rates used. No statistically eignificant reduction in fresh weight was recorded at any dose on the cereal crops.

			· · · · · · · · · · · · · · · · · · ·	, <u> </u>	<i>a</i> .		×	•	<u> </u>	حالم			
$EC_{10} \overline{Va}$	EC ₁₀ Values (in μg/kg formulated product mixed in soil) for HUSSAR®OD based on % phyto ratings and fresh weight harvest at 21 DAT (Log dose w % effect linear regression)								d				
fresh we	eight ha	rvestat	21.LØXI(Lòg dos	e 🕪 % e	effect line	ar regre	(Sion)		<i>.</i>			
	НО	S©C	TRZ	^₹RZ &	ZEA	NOL 🆇	″BEA [≈]	PR C	HEAL	LIU	PHS	PIB	SIN
	RVS "		ØAS . ○	AWO	MA	MU	VÃ	NW	AN	UT	VN	ST	AL
%	40.6	40.2		2490	. 1	69	P .5	§8.9	1.6	6.8	27.8	26.5	6.8
Phyto	× 2	40.2	31.2	44:0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ø99			01.0	0.8	27.8	20.3	0.8
Fresh	27.8	52.0	Ø18.2 ×		666	on Ô	2.3	1 2 sl 0'	0.6	2.7			15.3
Wt.	"	_)) @ //		0.0	9.0	((1)	.4					
EC ₁₀ Va	ılues (in	ml/ha	formulate	ed p vodu	ich for	A L 115	Q68 02,	QD35 A	1 based	on % ph	yto ratin	gs and t	fresh
weight l	harvest	at 296D	AT#Log d	løse vs %	effect	Kwear reg	gression	₽'					
%	57.7	Ø\$7 1	01/12), 14 ()		000	10 🖗	12.6	2.2	9.7	39.5	37.6	9.7
Phyto	~) 7.1	144.50	34.1	N	9.0	10.7	12.0	2.3	9.1	39.3	37.0	9.1
Fresh	39 <u>,</u> 5	72 0	250	~Q"	4 .	Gos .	\mathbb{Z}_{2}	1.1	0.0			3.8	21.7
Wt.	O Y	73.8	\$3.0 \$			F2.0 &	_y 3.3	4.4	0.9			3.6	21.7
·	Ø,	all a		V	Ç	, '&0,							
Concl	lsion	Ü		~ @"	W'								
Diget	rong or	o moro	Capatitive	. Orith a	unflau.	of the r	most so	ncitivo	ono				
Dicot c	rops ai		Sensitive	Willis	MIIIOW	ers me i	nost se	nsitive	one.				
		\$.	1, , , , , ,		′ _ ^~	1							
				A.									
.5													
Æ, "	Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weight harvest at 24 DAT A og dose vs % effect intear regressions Weig												
(»Ō _v												
(

CP 10.6.2 Testing on non-target plants

Report:	,	; ;2004;	M-232956-01		
Title:	Iodosulfuron-methlyl so	dium and Mefenpyr-d	liethyl 100 + 300	g/L, oil based s	uspens@n
	concentrate (AE F11500	08 02 OD35 A202) Ef	fects on vegeta@ve	e vigour of ten's	species of
	non-target plants		4		S D
Report No:	C042604	<i></i> ť		,*** *;	
Document No:	M-232956-01-1		W		' <i>(</i>
Guidelines:	OECD: 208B (July 200	0, draft);Deviation r	not specified	,Ø 3	
GLP/GEP:	yes		4	Õ Q	

Executive summary:

The purpose of this specific study was to evaluate the effect of rodos in uron methyl sodium & Mefenpyr-diethyl 100 + 300 g/L, oil based suspension concentrate (AE F) 5008 92 OD35 A202) on the vegetative vigour of ten plant species representing a broad range of both dicotyledonous and monocotyledonous plant families.

A total of ten species were tested in this vegetative vigour test under glasshouse conditions including seven dicotyledonous and three monocotyledonous species representing eight different plant families. At the 2-4 leaf stage, plants were sprayed once with doses of AF F113008 02 OD35 A202 ranging from 50 mL product/ha down to 0.10 mL product/has here were five dose rates that differed with each species. For oats and confitness were 50, 25, 12.5, 6.25, 3.13 and 1.56 ml product/ha. For cucumber and onion these were 12%, 6.25 3.13 1.56, 0.78 and 0.39 m product/ha. For sugar beet, oilseed rape, radish, sunflower, soybean and tonato these were 3.13 1.56, 0.78, 0.39, 0.2 and 0.1 mL product/ha. Each pot (replicate) contained 5 plants and there were 40 plants treated (i.e. 8 replicates). Control pots were treated with decionized water. Plants were grown and maintained under glasshouse conditions with a temperature control set at 23 ± 5°C during day, and 18 ± 5°C at night. Visually observations were made on test day 7, 14 and 21. Assessments were made 21 days after application against the untreated controls statistical analysis of data was performed to obtain NOEC and EC₅₀ values for survival and biomass (shoot dry weight), using probit analysis with maximum likelihood regression.

Significant adverse effects were observed in all plant species tested, except onion. Based on the results of this study in which AE F1 15008 02 QD35 A202 was tested under glasshouse conditions the most sensitive species was sunflower with the lowest EC_{50} of 2.49 mL product/ha for shoot dry weight.

Material and Methods:

Test item Todosulfuron methyl Sodium & Morenpyr diethyl OD 100+300 (Code: AE F115008 02 OD35 A202); Batch/F. No.: AAIM01665 Contents of a.s.: 8.82 % w/w Iodosulfuron-methylsodium, 26.0% w/w Mefenpyr-diethyl; Certificate of analysis: AZ 11073.

Plants from ten species, corn Zea mays), cucumber (Cucumis sativus), oats (Avena sativa), oilseed rape (Brassica napus), onion (Allium certa), radish (Raphanus sativus), soybean (Glycine max), sugar beet (Befa vulgaris), surflower Helianthus annuus) and tomato (Lycopersicum esculentum) were sprayed with AD F115008 02 OD35 A202 at the 2-4 leaf stage. Solutions of the product and serial dilutions were sprayed with doses of the product ranging from the maximum use rate of 50 mL product/ha down to 0.10 ml product/ha using a laboratory track sprayer. The control was treated with deionized water. There were five dose rates that differed with each species. For oats and corn these were 50, 25, 12.5, 6.25, 3.13 and 1.56 ml product/ha. For cucumber and onion these were 12.5, 6.25, 3.13, 1.56, 0.78 and 0.39 ml product/ha. For sugar beet, oilseed rape, radish, sunflower, soybean and

tomato these were 3.13, 1.56, 0.78, 0.39, 0.2 and 0.1 mL product/ha. Plants were grown and maintained under glasshouse conditions with a temperature control set at 23 ± 5 °C during day, and 18 \approx \pm 5°C at night.

Visually observations were made on test days 7, 14 and 21. Assessments were made 21 days after application against the untreated controls. Statistical analysis of data was performed to obtain NOEC and EC₅₀ values for survival and biomass (shoot dry weight), using probat analysis with maximum likelihood regression.

Dates of experimental work: January 29, 2004 - February 26, 2004

Results:

Validity criteria:

This study can be considered valid as the variety criteria of 90% survival during the study period of the untreated controls and the absence of any phytotoxic symptoms was achieved for all species.

Table CP 10.6.2- 1: Validity criteria in the untreated control for the vegetative vigous test with iodosulfuron-methyl-sodium + metenpyl diethyl OD 400 (100+300 g/L)

		O'. *V.
Validity aritaria	Sprvival of untreated controls Phytotoxicity in un	treated comprols
Validity criteria	\$\infty >9Q\(\$\text{\$\ext{\$\text{\$\ext{\$\text{\$\exitt{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\exitt{\$\ext{\$\exitt{\$\ext{\$\exitt{\$\ext{\$\exitt{\$\exitt{\$\ext{\$\exitt{\$\ext{\$\exitt{\$\ext{\$\exitt{\$\exitt{\$\ext{\$\exitt{\$\ext{\$\exitt{\$\ext{\$\exitt{\$\ext{\$\exitt	^k
Corn		
Oat 🔬	\$\\ \tilde{0}\\ \t	~ \$\dot{\dot{\dot{\dot{\dot{\dot{\dot{
Onion Oilseed rape Radish	95 % \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4
Oilseed rape		
Radish 🔊 🛝	100%	
Sugar heet O	100,% J 3 5 7 %	
Cucumber 6		
Sunffewer		
Nomata (0 %	•
Soybean	0 %	·

Biological findings:

All species except onton showed the relevant phytotoxic symptoms within the dose rates tested visible as chlorosis, bleaching, necrosis and dearmation, delived growth, ramification and stunting.

The dose range chosen proved to be too low in most of the species. EC_x figures for mortality and/or biomass could only be obtained for oilseed rape, and ish and sunflower.

The table below summarises the NOEC and where determined the EC₂₅, EC₅₀ values for survival, the growth stages at the final assessment and the NOEC, and EC50 for shoot dry weight. Endpoints are expressed as not product/ha AF F1 15008 02 OD35 A202.

The effect of iodosulfuron-methyl-sodium + mefenpyr-diethyl OD 400 (100+ **Table CP 10.6.2-2:** g/L) on ten species

-							. <i></i>
Dlant anasias	Survival			Sł			
Plant species	NOEC	EC ₂₅	EC50	NOEC	EC ₂₅	EC ₅₀	*Remark
corn	50	> 50	> 50	50	> 504	> 50	2 2
Oats	50	> 50	> 50	<i>≥</i> ,50	> 50	> 50	, %1; 2 %
Onion	12.5	> 12.5	> 12.5	6.25	Ø 50	>50	1;20
Oilseed rape	3.13	> 3.13	> 3.13	ູ້0.78	₹3.49	<i>2</i> Ø∕.82 ≳	1;2,3
Radish	1.56	1.43	2.93	0.78	√ 1.28	4.92	
Sugar beet	3.13	> 3.13	> 3.13	3.13	√ > 3₀1³3	√ > 3.4 √ 3.4	1; 2
Cucumber	12.5	> 12.5	> 1205	12.5	\$\alpha \times 2.5 \times \times	√ >√19.5	Q 1; Q '
Sunflower	3.13	> 3.13	>3.13	° 0.78	1.17,0	2 2.43 ⋄	45°2
Tomato	3.13	> 3.13	©3.13 @	3 .43	> 3 $/$ 63	3.13	1; 2
soybean	3.13	> 3.13	> 3.13	3.13 Q	> 9.13	> 3 3	(%) 1; 2√y

remark 1: EC25 and EC50 > highest dose rate since no mortality or inhibition 25% was observed

remark 2: NOEC for survival set to the highest down rate since mortality was not down related remark 3: in case of shoot dry weight toxrat calculated (£C₂₅ and £C₅₀ figures of 3.49 and £0.82 ml@ product/ha, respectively. Since the \$\infty\$ \(\frac{1}{2} \) so level is far above the righest pose has to be treated with care.

Conclusions:

Significant adverse effects were observed in all plant species tested, except on on. Based on the results of this study in which iodosulfuron-methyl-sodium + inefenpyr-diethyl OD 400 (100+300 g/L) was tested under glasshouse conditions the most sensitive species was sunflower with the lowest EC50 of 2.43 mL product/ha for shoot dry weight. @

Report:	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				
Title:	1 Todosumurogymichi (1 Sociality & meganipyi-dichiyi 1890 + 300 g/i, on bascu suspension				
`~`	concentrate (AE \$\) 15008 02 OD35 A2029. Effects on seedling emergence of nine species				
	of non target plants O				
Report No:	C042664 & V V V V				
Document No:	M-233058-01-1				
Guidelines: Q GECD: 208A, (4 raft 2000); Deviation not specified					
GLP/GEP:	O'es O' O' O'				

Executive summary

The purpose of this specific study was to evaluate the effect of Iodosulfuron-methyl sodium & Metenpyr-diethyl 160 + 300 g/L fil based suspension concentrate (AE F115008 02 OD35 A202) on the seedling emergence of nine plant species representing a broad range of both dicotyledonous and monocotyledofous plant fantlies.

A total of nine species were tested in this seedling emergence test under glasshouse conditions including seven dicotyledonous and two monocotyledonous species representing seven different plant families. The seeds of the nine species were treated after sowing with the test item. Solutions of the product and serial divitions were sprayed with doses of the product ranging from 50 mL/ha down to 1.36 mL/ha. Each pot (replicate) contained 5 plants and there were 40 plants treated (i.e. 8 replicates). Control Pots were treated with de-ionized water. Plants were grown and maintained under glasshouse conditions with a temperature control set at $23 \pm 5^{\circ}$ C during day and $18 \pm 5^{\circ}$ C at night.

Assessments were made daily until 65% emengence of control seedlings, and 7 and 14 days after this time and evaluated against the untreated controls. Statistical analysis of data was performed to obtain NOEC, EC₂₅ and EC₅₀ values for emergence, survival and biomass (shoot dry weight), for the dinal assessment using probit analysis with maximum likelihood regression.

The most sensitive species was sugar beet with the lowest EC50 of 5.62 mL product/ha for shoot bry weight.

Material and Methods:

Test item: Iodosulfuron-methyl-sodium & Mefenpyr-diethyl OD 100+300 (Code: AE \$115008 02 OD35 A202), contents of a.s.: 8.82 % w/w Iodosulfuron-methyl sodium, 26.0 % w/w Mefenpyr-diethyl; Batch/Fl.-No.: AAIM01665; Certificate of analysis; XZ 11073.

Seeds of nine species; corn ($Zea\ mays$), oat ($Aveng\ sativa$), oilseed rape ($Brasica\ napus$) ratish ($Raphanus\ sativus$), sugar beet ($Beta\ vutgaris$), cucumber ($Cacumis\ sativus$), sunflower ($Heliantius\ annuus$), tomato ($Lycopersicum\ esculentum)$ and soobean ($Raphanus\ sativus$), sunflower ($Raphanus\ sativus$), s

Assessments were made daily until 65% emergence of control soldlings, and 7 and 14 days after this time and evaluated gainst the untreated controls. Statistical analysis of data was performed to obtain NOEC, EC25 and EC50 values for emergence, survival and biomass (shoot dry weight), for the final assessment using problemanlysis with maximum likelihood regression.

Dates of experimental work: 20,2004 - Way 21,02004

Results:

Validity criteria:

This study can be considered valid as the validity of iteria of 90% survival during the study period of the untreated controls and the absence of my playtotoxic symptoms was achieved for all species.

Table CE 10.6.2-3: Validity criteria in the untreated control for the vegetative vigour test with iodosulfuron methyl sodium + metonpyr-diethyl OD 400 (100+300 g/L)

	Emergence (O of sown)	Mortality (0/)
		Mortality (%)
Validity@riteria .	\$ 25 8%	< 10 %
Oat 🗸	100 %	0 %
a cut of	% J 75 70	0 %
Alseed Pape	² 95 %	0 %
Radish 4	100 %	0 %
Sugar beet	90 %	2.6 %
Sugar beec	90 %	2.8 %
Sunflower	90 %	2.9 %
Tomato	90 %	0 %
soybean	100 %	0 %

Biological findings:

All species showed the relevant phytotoxic symptoms visible as chlorosis, necrosis, leaf deformation and stunting.

Phytotoxicity due to iodosulfuron-methyl-sodium + mefenpyr-diethyl OD 400 (100+300 g/L) resulted in a suppression of growth leading to a reduction in growth as measured by growth stage of all species. Biomass was the most sensitive endpoint for all species.

The table below summarises the NOEC and where determined the EC₅₀ and EC₅₀ values for mergerice and survival, the growth stages at the final assessment and the NOEC EC₂₅ and EC₅₀ for shoot device weight. Endpoints are related to the product and given as mL product/ha.

Table CP 10.6.2- 4: The effect of iodosulfuron-methyl-sodium + metenpyr-methyl OD 409 100+300 g/L) on nine species.

				- (2)		<i>(</i> ()		O. 46	
Plant sp.	Emergence		;	Survival 3		Shoot dry weight @"			
	NOEC	EC ₂₅	EC ₅₀	NQEC	EC25	EC V	*NOEC	√ EC ₂₅	∠\$C50
corn	50	> 50	> 5,000	, & 50 ·	k ∫ > 50⁄√	~30 ~30	.∜3.13®	6Q*5	©19.55
Oat	50	> 50	> ©	≫ 50 , <	>,39	_ & 50_ \$	3.1	\$.77 b	
Oilseed rape	50	> 50	@°30	6.25	> 50	> 500	2	ॐ 4.41ॗ∜	7.34
Radish	50	> 50	[™] > 50,©	50 4	\$ 50 €	>,50	29.56	4.39	9.06
Sugar beet	50	> 50	> 50	50	> 5,0	\$ 50	1.560	282	5.62
Cucumber	50	> 50\(\sqrt{v} \)	© 30	ر 50 کرچ	> 50 > 50	L> 50	\ <i>G</i>	2.28	5.69
Sunflower	50	>50	Ø 50 ≈	y 5 <u>0</u> 0″	>50	> 500		© 0.62	6.35
Tomato	25	^1\ 9 .6 _∢	52.8 [©]	12.5	\$\frac{1}{2}32.9\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	58.7	× 1.56	4.22	12.29
soybean	50	() > 50. (v	^{>} > 50	©50 °€	> 50	\$ 50 _€	12,5	29.3	74.11

Conclusions:

Based on the results of this study in which the effect of iodosulfuson-methyl-sodium + mefenpyr-diethyl OD 400 (100-300 g/L) to seedling emergence and survival of fine plant species was tested under glass house conditions the most sensitive species was agar beet with the lowest EC₅₀ of 5.62 mL product/for for shoot dry weight.

CP 10.6.3 Extended laboratory studies on non-target plants

Considering the findings reported above no further studies are required

CP 10.64 Semi-field and field tests on non-target plants

Considering the findings reported above to further studies are required.

CP 10.7 Effects on other terrestrial organisms (flora and fauna)

Studies on effects on other terrestrial organisms are neither available nor required.

CP 10.8 Manitoring data

Reliable monitoring data on iodosulfuron-methyl-sodium are not available.