Double neutron shield simulation study

CJ Barton

Motivation and setup

- On May 16th 2023, Natalia on behalf of Bernard presented the idea of a "double" solid neutron shield, with two nested shields, each having half of the standard thickness
- Potential parameters to adjust/vary for each shield:
 - Thickness
 - Material
 - Dimensions/amount of LAr between the two shields
- Setup chosen: 5 cm thickness (both), PMMA material, shields with inner diameters/heights of 3m (small shield) and 4m (large shield)
- 108 muons, compared with a 10 cm PMMA shield at 4m (1 shield)

Verifying the dimensions are correct

 WLGD's visualization isn't functional on my system, so I used some cuts on the output data to check the geometry by proxy

Results

High	Low	Average	Standard deviation of data set	Statistical uncertainty
413	302	358.9	0.099	0.0167
363	306	332.6	0.057	0.0173

2 shield average ⁷⁶Ge neutron capture rate is 7.3% lower than the 1 shield setup

The 1 shield setup seems to have a greater variance than the 2 shield setup

Radiogenic impact - heuristic estimate

Single ReEntrant Tube - Radius Scan

From Igor and Michele's presentation at the Fall 2022 collaboration meeting

Naively, by splitting the 10 cm shield into two 5 cm shields with 150 cm and 200 cm radius (300 cm and 400 cm height), the radiogenic contribution would be

(0.5 * contribution@150 cm) + (0.5*contribution@200cm)

However, the inner shield would likely moderate the outer shield contribution

So roughly, I would estimate the double shield radiogenic contribution to be half of the contribution of a 10 cm shield at 150 cm radius and 300 cm height