北京邮电大学 2022—2023 学年第二学期

《离散数学》期末考试试题 (A卷)

考	一、学生参加考试须带学生证或学院证明,未带者不准进入考场。学生必须按照监考教													
试	师指定座位就坐。													
注	二、书本、参考资料、书包等物品一律放到考场指定位置。													
意	三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考场违纪或													
事	作弊行为者,按相应规定严肃处理。													
项	四、学生必须将答题内容做在试题答卷上,做在草稿纸上一律无效。 													
考试	호#LW.W. # \ \								2022 /7 (日 1 (日 . 00 00 10 00					
课程	离散数学					考试时间		2023 年 6 月 16 日 08:00-10:00						
题号	_	二	三	四	五.	六	七	八	九	十	总分			
满分														
得分														
阅卷														
教师														

1. One choice questions

[20 marks, 2 marks for each]

1) Which of the following comp	ound proposition is a	tautology (永真式)?
--------------------------------	-----------------------	------------------

- A. $(q \rightarrow p) \rightarrow (p \rightarrow q)$
- B. $(\neg p \lor q) \lor (\neg (p \to q) \land q)$
- C. $(q \rightarrow p) \lor (p \rightarrow q)$
- D. $(p \lor q) \land \neg (p \land q)$
- 2) Assume that $\exists x \forall y P(x, y)$ is false and that the domain of discourse is nonempty, which of the following statement must also be false?
- A. $\forall x \forall y P(x, y)$
- B. $\forall x \exists y P(x, y)$
- C. $\exists x \exists y \ P(x, y)$
- D. $\exists x \forall y P(y, x)$
- 3) Which of the following sets is uncountable? _____
- A. N (the set of natural numbers)
- B. Z (the set of integers)
- C. R (the set of real numbers)
- D. Q (the set of rational numbers)

4) Select a theta notation for the number of times the statement x = x + 1 is executed in the following algorithm .

$$i = n$$
while $(i \ge 1)$ {
 for $j = 1$ to n
 $x = x + 1$
 $i = \lfloor i/2 \rfloor$
}

- A. $\Theta(\log n)$,
- B. $\Theta(n)$,
- C. $\Theta(n \log n)$
- D. $\Theta(n^2)$

5) Suppose that R and S are transitive (传递) relations on a set A, then which of the following relations must be transitive?

- A. $R \cup S$
- B. $R \cap S$
- $C. R \circ S$
- D. $S \circ R$

6) Which of the given relations is not an equivalence relation (等价关系) on the set $\{1, 2, 3, 4, 5\}$?_____

A. $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (3, 1)\}$

B. $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 5), (5, 1), (3, 5), (5, 3), (1, 3), (3, 1)\}$

C. $\{(x, y) | 3 \text{ divides } x + y\}$

D. $\{(x, y) \mid x \text{ and } y \text{ are both even } \text{ or } x \text{ and } y \text{ are both odd}\}$

7) Suppose that a candy shop has 5 different kinds of candies, then how many different ways can 6 candies be chosen?_____

- A. 200
- B. 210
- C.253
- D.462

8) Which of the following graphs is a strongly connected graph?

A.

a b c

В.

C.

D.

9) Which group of the following graphs is isomorphic (同构的)? _____

A.

B.

C.

D.

10) Consider the graph coloring problem, the chromatic number of the following graph is_____.

A. 3

B. 4

C.5

D.6

第3页,共8页

2. Fill in the blanks

[20 marks, 2 marks for each]

- 1) A tree with *n* vertices has _____edges.
- 2) Assuming that *p* and *r* are false and that *q* and *s* are true, then truth value of the following proposition is_____.

$$(s \to (p \land \neg r)) \land ((p \to (r \lor q)) \land s)$$

3) Let the domain of discourse (论域) be R, then the truth value of the following statement is _____.

$$\exists x ((x > 1) \to (x^2 > x))$$

- 4) Let R_1 and R_2 be the relations on $\{1, 2, 3, 4\}$ given by $R_1 = \{(1, 1), (1, 2), (3, 4), (4, 2)\}$ and $R_2 = \{(1, 1), (2, 1), (3, 1), (4, 4), (2, 2)\}$, then $R_1 \circ R_2 = \{(1, 1), (2, 1), (3, 1), (4, 4), (2, 2)\}$.
- 5) A full *m*-ary tree with *n* vertices has _____internal vertices (中间节点).
- 6) List the order of the nodes of the following tree in which the vertices are processed by preorder traversal (前序遍历) ______.

- 7) Given an expression with postfix (后缀) form *ABC**CDE+/-*, then its prefix (前缀) form is ______.
- 8) How many paths of length 4 from the vertex *d* to the vertex *e* are there in the following graph?_____.

第4页,共8页

9) Give a Hamilton circuit (哈密尔顿回路) for the following graph______.

- 10) Let G be the grammar with the vocabulary $V = \{S, A, a, b\}$, a set of terminals $T = \{a, b\}$, starting symbol S, and productions $P = \{S \rightarrow aA, S \rightarrow b, A \rightarrow aa\}$. Then, the language generated by G is L(G) =______.
- 3. Show that $(\neg p \land (p \lor q)) \rightarrow q$ is a tautology.

[8 marks]

4. Suppose that R_1 and R_2 are equivalence relations on a set A, prove that $R_1 \cap R_2$ is also an equivalence relation on the set A.

[8 marks]

5. Prove that $\sum_{i=n}^{2n-1}(2i+1)=3n^2$, for all positive integers n.

[8 marks]

6. Consider the floor plan of a three-room structure that is shown as follows. Each room is connected to every room that it shares a wall with and to the outside along each wall. Is it possible to begin in a room or outside and take a walk that goes through each door exactly once (经过所有的门 仅一次的通路)? If it is possible, give such a path.

[8 marks]

7. Firstly, draw the state diagram of the following finite-state machine $M = (I, O, S, f, g, \sigma_{\theta})$, where $I = \{a, b, c\}$, $O = \{0, 1\}$, $S = \{\sigma_{\theta}, \sigma_{1}, \sigma_{2}\}$, then write the output string for the given input string *aabbcc*.

		f			g	
\mathcal{S} \mathcal{I}	а	b	С	а	b	с
σ_0 σ_1 σ_2	$egin{array}{c} \sigma_0 \ \sigma_1 \ \sigma_2 \end{array}$	$\sigma_1 \ \sigma_1 \ \sigma_1$	$\sigma_2 \ \sigma_0 \ \sigma_0$	0 1 1	1 1 0	0 1 0

[8 marks]

8. Solve the recurrence relation $c_n = 6c_{n-1} - 8c_{n-2}$ with the initial conditions $c_0 = 1$ and $c_1 = 0$.

[10 marks]

9. For the Turing machine T defined by the five-tuples $(s_0, 0, s_0, 0, R)$, $(s_0, 1, s_1, 0, R)$, $(s_1, 0, s_1, 1, R)$, $(s_1, 1, s_2, 1, L)$, $(s_1, B, s_1, 1, L)$, find the final tape when T runs on the following tape, beginning in the initial position (the first nonzero entry from the left).

 В	В	0	0	0	1	В	0	В	В	

[10 marks]