

Winter Semester-2019 ~ 2020

Continuous Assessment Test - I

Programme Name & Branch: B.Tech

Course Name & Code: Applied Linear Algebra & MAT 3004

Slot: A1+TA1+TAA1

Exam Duration: 90 min

Maximum Marks: 50

Answer all the Questions		
6 11 .	Questions	
S.No.	/ · · · · · · · · · · · · · · · · · · ·	
1.	A. Consider the system of equations	
	$x_1 + 2x_2 + 3x_3 = b_1$	
	$x_1 + 2x_2 + 3x_3 = b_1$ $2x_1 + 5x_2 + 3x_3 = b_2$	
	$x_1+8x_3=b_3.$	
	a) What are the pivots?	
	b) List the free and basic variables for the above system.	[10]
	c) Under what conditions on b_1 , b_2 , b_3 , the above system of equations is consistent?	[10]
2. /	$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \end{bmatrix}$	
V	$A \det A = \begin{bmatrix} 0 & 4 & 3 \\ 0 & 0 & 1 \end{bmatrix}.$	
	a) Find elementary matrices E_1 , E_2 and E_3 such that $E_1E_2E_3A=I$	
	b) Write A as a product of elementary matrices.	[7]
	8. Find the LU decomposition of $A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 5 & 1 \\ 3 & 4 & 2 \end{bmatrix}$.	[8]
3.	Let $V = R^2$. Define an operation	-
	() () - (
	$(u,v) \oplus (x,y) = (u+x,0), \ \alpha \odot (x,y) = (\alpha x,\alpha y) \text{ for } (u,v),(x,y) \in V, \alpha \in R.$	
/	Under the operations \oplus and \odot , determine whether V forms vector space over R or not.	[5]
3	Prove that a vector x in a vector space V has a unique additive inverse.	[5]
	B. Let $S = \{(1,1,1,1), (1,-1,1,2), (1,1,-1,1)\} \subset \mathbb{R}^4$. Check whether the vector $(1,1,1,1)$	2,1)
	is in $L(S)$ or not.	[5]
5/	Let $W = \{(x, y, z, w) \in R^4 x + y - z + w = 0, x + y + z + w = 0\}.$	
	Prove that W forms a subspace of R^4 .	
	(b) Find the basis and dimension of W.	[10]