

UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY IM. J. I J. ŚNIADECKICH W BYDGOSZCZY

WYDZIAŁ TELEKOMUNIKACJI, INFORMATYKI I ELEKTROTECHNIKI ZAKŁAD TECHNIKI CYFROWEJ

PROGRAMOWANIE APLIKACJI MOBILNYCH

LABORATORIUM V

KIERUNEK:

ŁUKASZ KRĘSKI

AUTORZY:

INFORMATYKA STOSOWANA

GRUPA: 4 SEMESTR: V

ROK AKADEMICKI: 2017/2018 TRYB STUDIÓW: STACJONARNE

```
6
      public class Midlet extends MIDlet {
 7
 1
   口
          public void startApp() {
9
             Display.getDisplay(this).setCurrent(new MyCanvas(this));
10
11
12
   口
1
          public void pauseApp() {
14
15
16
(1)
          public void destroyApp(boolean unconditional) {
18
19
20
21
 5
      public class MyCanvas extends Canvas implements CommandListener {
 6
         Midlet midlet;
 7
 8
         int xPos;
 9
         int yPos;
          int color1 = 127,
10
             color2 = 127,
11
             color3 = 127;
12
13
© 🖃
         protected void keyPressed(int keyCode) {
43
             switch (keyCode) {
44
                 case KEY NUM2:
45
                  yPos = yPos - 25;
0
                     color1 = 0;
47
48
                     color2 = 0;
49
                     color3 = 0;
50
                    break;
                  case KEY_NUM8:
51
                     yPos = yPos + 25;
color1 = 255;
52
53
                     color2 = 0;
54
55
                     color3 = 0;
56
                    break;
57
                  case KEY NUM4:
 58
                      xPos = xPos - 25;
 59
                      color1 = 0;
 60
 61
                      color2 = 255;
 62
                      color3 = 0;
 63
                      break;
 64
 65
                  case KEY_NUM6:
                     xPos = xPos + 25;
color1 = 0;
 66
 67
                      color2 = 0;
 68
 69
                      color3 = 255;
 70
                      break;
 71
 72
 73
              repaint();
 74
              serviceRepaints();
 75
76
```

```
public void commandAction(Command c, Displayable d) {
79
80
              switch (c.getCommandType()) {
81
                  case Command.EXIT:
82
83
                      midlet.destroyApp(false);
84
                      midlet.notifyDestroyed();
85
86
87
                      break;
88
89
90
91
```


Koniec

Zadanie 2

```
public class Midlet extends MIDlet {
③ □
         public void startApp() {
9
10
             MyCanvas canvas = new MyCanvas(this);
11
12
             Display.getDisplay(this).setCurrent(canvas);
13
             canvas.awake();
14
15
ⓐ 📮
         public void pauseApp() {
17
18
19
   口
1
          public void destroyApp(boolean unconditional) {
21
22
23
24
25
     public class MyCanvas extends Canvas implements CommandListener {
8
         Midlet midlet;
         Random random;
10
        int screenWidth;
11
12
        int screenHeight;
13
14
        int xPos;
         int yPos;
int xSpeed;
15
16
17
         int ySpeed;
18
         int[] color;
20
```

```
21 🖃
           public MyCanvas(Midlet _midlet) {
22
23
               midlet = _midlet;
24
               random = new Random();
25
26
               screenWidth = getWidth();
27
               screenHeight = getHeight();
28
29
               addCommand(new Command("Koniec", Command.EXIT, 0));
30
<u>Q.</u>
               setCommandListener(this);
32
33
               xPos = getWidth() / 2;
34
35
               yPos = getHeight() / 2;
36
               if (random.nextInt(2) == 0) {
37
                   xSpeed = -1;
38
39
                } else {
                  xSpeed = 1;
40
41
42
               if (random.nextInt(2) == 0) {
43
                  ySpeed = -1;
44
45
               } else {
                   ySpeed = 1;
46
47
48
               color = new int[]{0, 0, 255};
49
50
51
■ 🖵
         protected void paint(Graphics g) {
53
54
            g.setColor(0xffffff);
55
            g.fillRect(0, 0, screenWidth, screenHeight);
56
57
58
            g.setColor(color[0], color[1], color[2]);
59
60
            g.fillRect(xPos, yPos, 32, 32);
61
62
63
64 🖃
         private void setColor() {
65
66
             color[0] = random.nextInt(256);
67
             color[1] = random.nextInt(256);
68
             color[2] = random.nextInt(256);
69
70
```

```
71 🖃
          private void move() {
72
              xPos += xSpeed;
73
74
              yPos += ySpeed;
75
76
              if (yPos <= 0) {
77
                 ySpeed *= -1;
78
                 setColor();
79
80
81
              if (yPos >= (screenHeight - 32)) {
                 ySpeed *= -1;
82
83
                 setColor();
84
85
86
              if (xPos <= 0) {
                 xSpeed *= -1;
87
88
                 setColor();
89
90
91
                if (xPos >= (screenWidth - 32)) {
92
                    xSpeed *= -1;
93
                    setColor();
94
95
96
                repaint();
97
98
 99 🖃
           public void awake() {
100
101
               while(true) {
102
103
                    try {
 <u>Q.</u>
                       Thread.sleep(10);
105
                    } catch (InterruptedException ex) {
 Q.
                        ex.printStackTrace();
107
108
                   move();
109
110
111
☑ 🖃
           public void commandAction(Command c, Displayable d) {
113
               switch (c.getCommandType()) {
114
115
                   case Command. EXIT:
116
117
                       midlet.destroyApp(false);
118
                       midlet.notifyDestroyed();
119
120
                       break;
121
122
123
124
```


Rysunek 1. Przykładowy program w trakcie działania(nie można na statycznym obrazie zobrazować ruchu).

Wnioski.

Klasa Canvas jest klasą dziedziczącą, podobnie jak Form, po klasie Displayable. Udostępnia ona powierzchnię ekranu do dowolnych operacji graficznych. Nie dodajemy do niej komponentów, a wykonujemy niskopoziomowe operacje graficzne.

Sama klasa Canvas nie udostępnia żadnych możliwości graficznych. Zajmuje się tym klasa Graphics. Zadaniem klasy Canvas jest przenieść obraz z obiektu klasy Graphics na ekran

Klasy Canvas oraz Graphics zawarte są w pakiecie javax.microedition.lcdui, a więc ich użycie nie wymaga dokładania żadnych dodatkowych paczek.

Inaczej niż w przypadku formatek, nie tworzymy bezpośrednio obiektu klasy Canvas. Wyprowadzamy natomiast własną klasę dziedziczącą po niej. Wynika to z faktu, że Canvas deklaruje abstrakcyjną metodę paint.