Parabolic cylinders

EXAMPLE 1 Sketch the graph of the surface $z = x^2$.

y=x2-0 principle axis z Z=y2-0 principle axis x

Cylinders.

EXAMPLE 2 Identify and sketch the surfaces.

$$x^{2} + y^{2} = 1$$

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid y	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

EXAMPLE 3 Use traces to sketch the quadric surface with equation

$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$

EXAMPLE 5 Sketch the surface $z = y^2 - x^2$.

EXAMPLE 6 Sketch the surface $\frac{x^2}{4} + y^2 - \frac{z^2}{4} = 1$.

EXAMPLE 7 Identify and sketch the surface $4x^2 - y^2 + 2z^2 + 4 = 0$.

EXAMPLE 8 Classify the quadric surface $x^2 + 2z^2 - 6x - y + 10 = 0$.