Caratteristica di un campo

Considero $\phi: \mathbb{Z} \to \mathbb{K}$ con $\phi(1) = 1$. Notismo the Ker ϕ è un'ideale $d: \mathbb{Z}$, ed è quindi principale (i.e. Ker $\phi = (d)$).

d=0 → K > Imm Φ = Z . I with K contiene anche gl: inversi d:

Imm \$\phi\$, \$\ins \text{comunque} \text{ infinite} \ e

s: pone \text{char K = 0.}

 $d \neq 0 \rightarrow d$ dev'essere primo, altriment: sia d = ab, $\phi(a)$, $\phi(b) \neq 0 \Rightarrow \phi(ab) = \phi(d) = 0$, impossibile perché k e' un campo, quindi un domninio, $\phi(a) = 0$. Allora sia d = p primo. $\phi(a) = 0$ $\phi(a) = 0$

- OSS. Notiamo che IK è uno spazio uelloriale su $\mathbb{Z}p$. Sia $U \in \mathbb{K}$, vale che $\underbrace{U + \cdots + U}_{p \text{ volte}} = \underbrace{\left(\underbrace{1 + \cdots + 1}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(1) + \cdots + 4(1)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p \text{ volte}}\right)}_{p \text{ volte}} U = \underbrace{\left(\underbrace{4(2) + \cdots + 4(2)}_{p$
- oss. Esistouo campi di caratteristica prima infiniti.
- es. $Z_p(x) = \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in Z_p[x], g(x) \neq 0 \right\}$ ha infinitive element, ma caratteristica p.

Omomorfismo di Frobenius di campi di caratt. p

char K

F: K - K, a - a OHOHORFISHO DI FROBENIUS

- OSS. F e' iniettivo perché ker F e' ideale di un campo, ossia o
 e' (0) o K stesso.
 impossibile
- Teorema $Y: E \rightarrow E$ omemorfisms con E campo $\Rightarrow Fix_{\psi} = \{re \in E \mid \psi(r) = re \}$ è soltocampo di E.
- Def. Sia F campo e sia $f(x) \in F(x)$ un polinamio non nullo.

 Una estensione finita E d: $F(FCE, [E:F] < \infty)$ si dice

 CAMPO DI SPEZZAMENTO SU F Se:
 - (i) in E[X] f(X) 5: faltorizza come prodotto d: pd:upm: d: grado I (i.e. ha tutte le radici)
 - (ii) agni sollocampo proprio di E[X] contenente F uon ammette almeno una radice di f(X) (i.e. E[X] e' minimale).
- OSS. Se f(x) ammette già tutte le radici in F[x], il suo campo di spezzamento è F stesso.

NOTA [F: K] viene anche chiamalo GRADO.

- Prop. K campo, sia $f(x) \in K[x]$ di grado n non nullo. Se $E \in \mathcal{E}$ un campo di sp. di f(x) su K, $E:K] \leq m!$
- OSS. I camp: d: spezzamento non sono generalmente unici, benché siano isomorfi.
- es. $Q(\sqrt[3]{2}, w) \in Q(\sqrt[3]{2}, w^2)$ some entramb: camp: d: Spezzamento d: $\chi^3 - 2$ su Q. Infatt: $Q(\sqrt[3]{2}, w) \cong Q(\sqrt[3]{2}, w^2)$.

Consequente di Frobenius

Sia L campo finito, allora char L = p. $[L:\mathbb{Z}p] = m \in \mathbb{N}$. Allora $|L| = p^m$ (infatti $L = Span(l_1, ..., l_m)$).

Consider $L^* = L \setminus \{0\}$, per Lagrange se $g \in L^*$, $g^{|L^*|} = 1 \Rightarrow$ $\Rightarrow g^{|L^*|+1} = g \Rightarrow g^{|m|} = g$. Inoltre $O^{p^m} = 0$.

Ossia tutt: gl. element: d: L some tutte le radic: d: $\chi^{p^m} - \chi$, ossia L e' un campo di sp. di $\chi^{p^m} - \chi$ su L.

Teorema Dato p primo e m?1, IL campo con po elementi.

Considero R un campo di spezzamento di $x^{p^m}-x$ su \mathbb{Z}_p , $\mathcal{F}^m: R \to R$, $\pi \to \pi^{p^m} \in F: x_{\mathcal{F}^m}$.

GI; element: di $F:x_{F^m}$ sono esattamente le radici di $x^{P^m}-x$. Tali radici sono distinte per il criterio della derivata: $p^m x^{P^m-1}-1 = -1$ non ha fattori in comune con $x^{P^m}-x$ che siano non invertibili.

Quind: $x^{p^n} - x$ ha p^m radic: in $F: x_{p^m}$; essendo p^m : I massimo di radici che può avere, si conclude che $|F: x_{p^m}| = p^m$, ossia è il campo ricercato.

Ø

OSS. Poiché $Fix_{Fm} \subset R$ contiene ogni radice di $x^{p^m} - x$, si conclude anche che $Fix_{Fm} = R$.