1 Lezione del 04-03-25

Avevamo ricavato la formula per la **risposta libera** di un sistema. Introduciamo quindi la parte di soluzione legata alla **risposta forzata** del sistema, cioe' quella legata al termine Bu nell'equazione differenziale:

$$x' = Ax + Bu$$

da cui:

$$x(t) = x_l + x_v = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau) d\tau$$

dove la risposta libera e' data dal primo termine:

$$x_l = e^{At}x_0$$

e la risposta forzata e' data dall'integrale di convoluzione:

$$x_v = \int_0^t e^{A(t-\tau)} Bu(\tau) \, d\tau$$

1.1 Caratterizzazione delle variabili di stato

Vediamo nel dettaglio come si ricavano le variabili di stato x'. Riprendiamo la forma generale del sistema a variabili di stato. In sostanza avremo una forma differenziale implicita per l'ingresso e l'uscita:

$$F(y(t),...,y^{(n)}(t),u(t),...,u^{(p)}(t),t) = 0$$

da cui possiamo ricavare la derivata di grado massimo dell'uscita:

$$y^{n}(t) = \hat{F}(y(t), ..., y^{n-1}(t), u(t), ..., u^{p}(t), t)$$

Quello che vorremo fare e' ricondurci alla forma in variabili di stato:

$$\begin{cases} x' = Ax + Bu \\ y = Cx + Du \end{cases}$$

a cui siamo abituati.

Il passaggio era quindi quello di riportarci a:

$$x'(t) = \begin{pmatrix} x'_1(t) \\ \dots \\ x'_n(t) \end{pmatrix} = \begin{pmatrix} f_1(t) \\ \dots \\ f_n(t) \end{pmatrix}$$

e date x e f lineari dire:

$$x'(t) = Ax + Bu$$

e:

$$x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} y \\ \dots \\ y^{(n-1)} \end{pmatrix}$$

A questo punto la derivata di x sara', assunto p=0 (quindi non ci sono derivate dell'ingresso):

$$x' = \begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix} = \begin{pmatrix} x_2 \\ \dots \\ x_n \\ \hat{F}\left((y, \dots, y^{n-1}), u, t\right) \end{pmatrix} = \begin{pmatrix} x_2 \\ \dots \\ x_n \\ \hat{F}(x, u, t) \end{pmatrix} = \overline{f}(x, u, t)$$

che nel caso lineare si riconduce a:

$$\begin{cases} x' = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ \hline -\alpha_0 & \dots & \dots & \dots & -\alpha_{n-1} \end{pmatrix} x + \begin{pmatrix} 0 \\ \dots \\ 0 \\ \beta_0 \end{pmatrix} u, \quad p = 0$$

$$y = \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix} u$$

potrebbe essere $\beta_0 = 1, nonsonosicuro$

riporta matrici A, B, C, D in forma esplicita

Notiamo che questo processo non e' dissimile a quello adottato ad esempio nello studio dei sistemi meccanici, dove le derivate successive della posizione facevano da variabili di stato (solitamente posizione e velocita'), una di queste variabili faceva da valore di uscita (solitamente la posizione), e la derivata della variabile di stato di ordine piu' alto (solitamente l'accelerazione) era l'unica derivata della variabile di stato che introduceva nuove informazioni nel sistema.

1.2 Dipendenza dalle derivate della variabile di ingresso

Abbiamo posto finora p = 0, quindi nessuna derivata della variabili di ingresso. Vediamo il caso in cui includiamo tali derivate.

1.2.1 Caso p < n

Vediamo innanzitutto il caso in cui il termine di grado massimo delle variabili di stato dipende dalle derivate della variabile di ingresso, cioe' 0 e:

$$y^{(n)} = \sum_{i=0}^{n-1} -\alpha_i y^{(i)}(t) + \sum_{j=0}^{p} \beta_j u^{(j)}(t)$$

In questo caso la situazione si complica, e ci conviene sfruttare il **principio di so-vrapposizione**. Definiamo l'equazione ausiliaria in z:

$$z^{(n)}(t) = \sum_{i=0}^{n-1} -\alpha_i z^{(i)}(t) + u(t)$$

che rappresenta la risposta del sistema al solo ingresso u(t) (senza derivate superiori). Vediamo che questa e' la forma che siamo stati abituati a risolvere finora.

Per il principio di sovrapposizione, varra' allora che:

$$y(t) = \sum_{j=0}^{p} \beta_j z^{(j)}(t)$$

da cui il sistema finale:

$$\begin{cases} x' = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ \hline -\alpha_0 & \dots & \dots & \dots & -\alpha_{n-1} \end{pmatrix} x + \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \end{pmatrix} u \\ y = \begin{pmatrix} \beta_0 & \dots & \beta_p & 0 & \dots & 0 \end{pmatrix} x + \begin{pmatrix} 0 \end{pmatrix} u$$

$\textbf{1.2.2} \quad \textbf{Caso } \mathbf{p} = \mathbf{n}$

Vediamo quindi il caso p = n. riguarda

1.3 Rappresentazioni equivalenti

Vediamo che la scelta di variabili di stato non e' unica. Potremmo infatti avere:

$$\begin{cases} x' = Ax + Bu \\ y = Cx + Du \end{cases}$$

e definire una matrice $T \in \mathbb{R}^{n \times n}$ invertibile detta matrice del cambio di base tale che:

$$\hat{x} = Tx = \begin{cases} \hat{x}' = \hat{A}\hat{x} + \hat{B}u\\ \hat{y} = \hat{C}\hat{x} + \hat{D}u \end{cases}$$

Ricaviamo le matrici \hat{A} , \hat{B} , \hat{C} e \hat{D} come:

$$\hat{A} = TAT^{-1}, \quad \hat{B} = TB, \quad \hat{C} = CT^{-1}, \quad \hat{D} = D$$

scopri come e perche

1.4 Autovalori e modi

Avevamo dalla formula di Lagrange che per la risposta libera, cioe' la soluzione di $x'_l = Ax_l$, e':

$$x_l(t) = e^{A(t/t_0)} x_l(t_0)$$

posta una condizione iniziale a $t = t_0$.

Esistono 2 casi:

- A diagonalizzabile;
- A non diagonalizzabile.

Vediamo questi casi nel dettaglio.

1.4.1 A diagonalizzabile

Potremo ricavare una matrice di cambio di base *T* tale che *A* risulti diagonale, cioe':

$$A = T^{-1}A_DT$$
, $A_D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$

con A_D detta **matrice degli autovettori**, dove le entrate delle diagonali sono gli autovalori A.

In questo caso possiamo riscrivere lo stato sfruttando la serie di Taylor:

$$\hat{x}_l(t) = e^{A_D t} \hat{x}_{l0} = \sum_{k=0}^{\infty} \frac{(A_D t)^k}{k!} \hat{x}_{l0}$$

dove la forma diagonale di A_D ci permette di calcolare velocemente A_D^k :

$$A_D^k = \begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n^k \end{pmatrix}$$

da cui:

$$\hat{x}_l(t) = diag\{...\} \hat{x}_{l0} faituttiiconticini = diag\{e^{\lambda_1 t}, ..., e^{\lambda_n t}\} \hat{x}_{l0}$$

riportandoci nelle coordinate originali avremo:

$$x_l(t) = T^{-1}\hat{x}(t) = T^{-1}\operatorname{diag}\left\{e^{\lambda_1 t}, ..., e^{\lambda_n t}\right\}\hat{x}_{l0} = T^{-1}\operatorname{diag}\left\{e^{\lambda_1 t}, ..., e^{\lambda_n t}\right\}Tx_l(t_0)$$

Chiamiamo gli e^{λ_i} modi del sistema. La funzioni di uscita in assenza di derivate dell'ingresso sara' quindi data da una combinazione lineare dei *modi propri* del sistema:

$$y_l(t) = CT^{-1}\operatorname{diag}\left\{e^{\lambda_1 t}, ..., e^{\lambda_n t}\right\} Tx_l(t_0)$$

Notiamo che, come avevamo gia' osservato, sara' vero che $\lambda=\sigma+i\omega\in\mathbb{C}$, e quindi:

$$e^{\lambda t} = e^{\sigma t} \cos(\omega t + \phi)$$

dalla formula di Eulero.

Notiamo che i modi di un sistema rappresentano vari "comportamenti" naturali del sistema, che possono essere esponenziali, oscillatori o una loro combinazione sulla base del autovalore corrispondente λ_i .

Il comportamento complessivo del sistema sara' quindi dato da una qualche combinazione lineare di questi modi.

1.4.2 A non diagonalizzabile

Nel caso *A* non sia diagonalizzabile si puo' comunque trasformare nella cosiddetta forma di **Jordan**. Questa avra' una struttura quasi diagonale, con elementi di valore 1 sopra la diagonale penso?

In questo caso i modi assumeranno la forma:

$$t^{\eta-1}e^{\lambda_i}t$$

dove $t^{\eta-1}$ sara' un'intero compreso tra 1 e la massima dimensione dei *miniblocchi di Jordan* associati all'autovalore.