# 國立虎尾科技大學協同產品設計實習期末 Final 投籃機



### 第四組

### 組員:

41223118 呂汶哲, 41223122 李詮聖, 4122313 曹祐豪 41223134 陳冠杰, 41223136 陳學儒, 41223158 廖尉博 中華名國 112 年 6 月 12 日

## 目錄

| 壹 | ` |               | 摘   | 要 | •••• | •••• | • • • • • | • • • • • | ••••      | •••• | ••••       | ••• | ••••    | ••••  | ••••      | •••• | • • • • • | • • • • • | ••••      | •••• | • • • • • | •••• | 1  |
|---|---|---------------|-----|---|------|------|-----------|-----------|-----------|------|------------|-----|---------|-------|-----------|------|-----------|-----------|-----------|------|-----------|------|----|
| 貳 | ` |               | 研   | 究 | 動    | 機.   | •••••     | • • • • • | ••••      | •••• | ••••       |     |         | ••••  | • • • • • | •••• | • • • • • | • • • • • | ••••      | •••• | •••••     | •••• | 1  |
| 參 | ` |               | 主   | 題 | 與    | 課    | 程之        | 之相        | 目關        | 說    | 已明         | ]   | • • • • | • • • |           | •••  | • • • •   | • • • • • | ••••      | •••• | •••••     |      | 2  |
| 肆 | ` |               | 研   | 究 | 方    | 法    |           | • • • • • | • • • • • | •••• | ••••       | ••• | ••••    | ••••  | ••••      | •••• | • • • • • | • • • • • | ••••      | •••• | • • • • • | •••• | 3  |
|   |   | _             | - 、 | 砑 | 字究   | 流    | .程.       |           | • • • • • | •••• | ••••       | ••• | ••••    | ••••  | ••••      | •••• | • • • • • | ••••      | ••••      | •••• | •••••     | •••• | .3 |
|   |   | =             | - ` | 實 | 作    | 設    | 備         | 與非        | 勿品        | 己、   | <b>、</b> 木 | 才   | 料達      | 異)    | 用         | •••• | • • • • • | • • • • • | • • • • • | •••• | •••••     | •••• | 4  |
|   |   | Ξ             | . ` | 框 | 脲    | 文    | 獻         | 探言        | 寸         | •••• | ••••       | ••• | ••••    | ••••  | ••••      | •••• | •••••     | ••••      | ••••      |      | •••••     | •••• | .4 |
|   |   | 匹             | 1 ` | 機 | 統械   | 設    | :計.       | •••••     | • • • • • |      | ••••       | ••• | ••••    | ••••  | ••••      | •••• | ••••      | ••••      | ••••      |      | •••••     | •••• | 4  |
|   |   | $\mathcal{B}$ | _ ` | 製 | 作    | 及    | 組         | 裝         | ••••      | •••• | ••••       | ••• | ••••    | ••••  | ••••      | •••• | ••••      | ••••      | ••••      | •••• | •••••     |      | 5  |
| 伍 | ` |               | 研   | 究 | 結    | 果    | •••••     | • • • • • | ••••      | •••• | ••••       |     | ••••    | ••••  | ••••      | •••• | •••••     | • • • • • | ••••      | •••• | •••••     | •••• | 10 |
| 陸 | ` |               | 討   | 論 | •••• | •••• | • • • • • | • • • • • | ••••      | •••• | ••••       |     | ••••    | ••••  | ••••      | •••• | •••••     | • • • • • | ••••      | •••• | •••••     | •••• | 11 |
| 漆 | ` |               | 結   | 論 | •••• | •••• | • • • • • | • • • • • | ••••      | •••• | ••••       |     | ••••    | ••••  | ••••      | •••• | ••••      | • • • • • | ••••      | •••• | • • • • • | •••• | 11 |
| 捌 | , |               | 參   | 考 | 資    | 料    |           |           |           |      |            |     |         |       |           |      | • • • • • | • • • • • |           |      |           |      | 11 |

### 壹、摘要

本課程最終目的是完成投籃機,運用 Webots 進行模擬。本次課程主要分為四連桿機構、投籃機、七段顯示器、底座車子模擬。本報告從學期初發想、設計方案多選擇、在要如何呈現報告成果、以及不斷修正機構與程式測試等過程,將遇到許許多多的困難,並也都讓我們一一解決。除了運用課程上的知識,也蒐集許多專業資料,並逐步完成報告製作,最終達到我們的預期結果。

### 貳、 研究動機

因應現代電腦以及 AI 越來越進步,現代電腦配有網路 ipv6 能設定個人網路進行協同模擬。所以本課程主要核心是以組為單位進行模擬投籃,利用 Webots 來進行。未來如果能製作出實體來,將會是一個小型投籃玩具。

本報告是由指導教授的網站給的資訊並進行研磨鑽研結合 GPT 來製作,目標要完成定位投籃。

### 參、主題與課程之相關說明

### 一、作品簡介

#### 作品簡介

#### 【期末報告-投籃機】

本報告為了利用 AI 及協同以及模擬軟體來製作出投籃機,運用繪圖軟體畫出主零件及結構。並運用 Webots 下去模擬

#### 二、課程對應表

| 課程單元  | 作品內容對應                                                                       |
|-------|------------------------------------------------------------------------------|
| 四連桿機構 | 第四週開始做四連桿,主要是以兩種方式。<br>Webots內部產生零件以及運用 Solvespace 繪<br>製零件再匯入 Webots 來模擬作動。 |
| 投籃機   | 第七週開始要繪製投籃機,並組合 stl 再進行程式切割。所需要的 obj 檔最後運用 Webots 組裝再進行簡單投籃模擬。               |
| 七段顯示器 | 第十五週製作七段顯示器,主要分為學號後<br>三碼以及學號八碼製作。在這次的報告之中<br>需要以組員全學號進行模擬顯示。                |

車子底座

第十六週因教授的籃框底盤作動不協調, 所以研究出定點投籃機制,運用四分點下去進 行模擬及投籃進行。

#### 肆、研究方法

### 一、研究流程

### (一)流程

#### (二)問題探討

#### 二、實作設備與物品、材料選用

本專題研究討論後整理了以使用元件與材料表格。

| 項 | 品名                       | 型號與版本 | 數量 |
|---|--------------------------|-------|----|
| 1 | Solvespace (2D 繪圖<br>軟體) | -     | 1  |
| 2 | Solvespace (3D 繪圖<br>軟體) | -     | 1  |
| 3 | Webots(3D 模擬軟體)          | 2025a | 1  |
| 4 | Webots(3D 模擬軟體)          | 2023b | 1  |

#### 三、相關文獻探討

mde.tw網站,網站內有一到十八週的內容,裡面有老師以及各組學生的個人網站。裡面有程式檔案以及概念圖來輔助我們更知道哪裡可能出問題。

### 四、機械設計

(一)、人工計算點位和動作軌跡探討

### 五、製作及組裝

#### 伍、製作結果

我們先將兩部車子進行各自的移動,確定是否不會被影響,之後再進行點位的計算,當我按下某按鍵時,他就會準確移動到那個點位,並且設置好籃框所需的旋轉角度和返回起始點,在依點位計算投籃機到籃框的距離,並精準的投進籃框內。

#### 陸、反思

一開始把她想得太複雜,就一直更改程式,越後面錯誤越多,但我們直接重新將車子解開並且只要可以單獨運作個體,有基本架構之後後續的步驟就會上手許多,但現在還沒辦法準確投進籃框,因為那碰撞紅外線在籃框下中心,因沒有碰撞體積所以會直接穿過去,就會碰不到紅外線感測,所以還需要再將物體碰撞距離和投球速度再做更改。

柒、結論

### 捌、參考資料

- 1、課程網站。
  - (1)https://mdecd2025.github.io/hw-scrum-1/content/index.html
  - (2) https://mde.tw/cd2025/content/index.html
- 2、GPT 軟體上資訊