-80x

Лекция 1. Организация функционирования распределённых вычислительных систем

Перышкова Евгения Николаевна

к.т.н. доцент Кафедры вычислительных систем Сибирский государственный университет телекоммуникаций и информатики e-mail: e.peryshkova@gmail.com

О курсе «Архитектура вычислительных систем»

- Лекции каждую неделю
- Лабораторные работы 4 работы
- Контрольная работа
- Итоговая аттестация: зачет

Условия получения зачета:

- Оценка посещаемости и успеваемости
- Сдача лабораторных работ в срок
- Сдача контрольной работы на удовлетворительно

АКТУАЛЬНОСТЬ

- Вычислительная система (BC) совокупность множества элементарных машин (ЭМ) и коммуникационной сети, связывающих их
- Архитектурные свойства современных ВС [1]:
 - мультиархитектура вычислительных узлов
 - иерархическая организация коммуникационной среды
 - большемасштабность

Две элементарные машины системы IBM BlueGene/Q Sequoia

РЕЖИМЫ ФУНКЦИОНИРОВАНИЯ ВС

Мультипрограммные режимы функционирования ВС

Организация одновременного решения множества задач на ресурсах ВС

Режим обслуживания потока задач

Формирование (суб) оптимальных подсистем элементарных машин для параллельных задач

- Техника теории игр, стохастическое программирование (Хорошевский, 1973), (Юдин, 1974), (Ермольев, 1976)
- Алгоритмы на графах (Корнеев, Монахов, 1985), (Livingston, 2002)

Режим обработки набора задач

Построение расписаний решения параллельных задач (task scheduling)

- Точные методы: перебор, метод ветвей и границ
- Сведение к задаче упаковки объектов в контейнеры: 1DBPP, 2DSPP
- Алгоритмы локального поиска: генетические, имитация отжиг, поиск с запретами, роевые алгоритмы

РЕЖИМ ОБРАБОТКИ ЗАДАЧ С НЕФИКСИРОВАННЫМИ ПАРАМЕТРАМИ

Задача с фиксированными параметрами (rigid)

(1 вариант подсистемы ЭМ):

 $t_{I}\begin{bmatrix} \mathbf{1} \\ \mathbf{r}_{I} \\ p_{1} = (2, 10) \end{bmatrix}$

Задача с нефиксированными параметрами (moldable)

(3 варианта подсистем ЭМ):

Преимущества поддержки в системах управления ресурсами параллельных задач с нефиксированными параметрами:

- Сокращение суммарного времени решения задач
- Выполнение технико-экономических ограничений
 - □ Восстановление вычислительного процесса на допустимой подсистеме меньшего ранга
 - □ Лицензионные ограничения программ на размеры подсистемы

Актуальным является создание алгоритмов обработки наборов задач с нефиксированными параметрами

ПЛАНИРОВАНИЕ РЕШЕНИЯ ПАРАЛЛЕЛЬНЫХ ЗАДАЧ С НЕФИКСИРОВАННЫМИ ПАРАМЕТРАМИ

ОБРАБОТКА НАБОРА ЗАДАЧ С ФИКСИРОВАННЫМИ ПАРАМЕТРАМИ

- Задан набор из m задач с фиксированными (rigid) рангами r_i и временем t_i решения
- **Требуется** построить расписание решения на BC из *n* ЭМ задач набора определить для каждой задачи подсистему ЭМ и момент запуска параллельных ветвей на ней
- Для обработки наборов задач с фиксированными параметрами разработаны эффективные методы и алгоритмы:
 - □ Сведение к задачи одномерной упаковки 1DBPP (В.Г. Хорошевский, 1967), (Поспелов, 1972)
 - □ Сведение к задаче двухмерной упаковки 2DSPP (Coffman, 1980)
 - Стохастические алгоритмы локального поиска (Мухачева, 2001)
 - □ Метод ветвей и границ (Сидельников, 2006)
 - □ Детерминированные алгоритмы с гарантированной оценкой точности (Ntene, 2009)
 - □ Алгоритмы решения задачи календарного планирования (Гимади, 2001), (Кочетов, 2000)

ОБРАБОТКА НАБОРА ЗАДАЧ С НЕФИКСИРОВАННЫМИ ПАРАМЕТРАМИ

- Задан набор из m задач с $hetauremonth{purcuposanhumu}$ (moldable) рангами r_i и временем t_i решения
- **Требуется** построить расписание решения на BC из *n* ЭМ задач набора определить для каждой задачи подсистему ЭМ и момент запуска параллельных ветвей на ней
- Задача с нефиксированными параметрами (moldable job) представлена вектором p_i из q_i различных вариантов параметров задачи:

$$p_i = \left(p_i^1, p_i^2, \dots, p_i^{q_i}\right)$$

Задача с нефиксированными параметрами (q = 3)

- [1] Sabin, G. Moldable parallel job scheduling using job efficiency: an iterative approach, 2007.
- [2] Khandekar, R. Real-time scheduling to minimize machine busy times, 2010.
- [3] Huang, K-C. Online Scheduling of Moldable Jobs with Deadline, 2015.

ЗАДАЧА С НЕФИКСИРОВАННЫМИ ПАРАМЕТРАМИ

Современные технико-экономические ограничения:
 Некоторые параллельные задачи допускают реализацию только на подсистемах ЭМ с
определенным свойствами, например, с числом процессорных ядер равным степени числа два
Пицензии значительной части коммерческих пакетов параллельного моделирования
допускают их запуск только на фиксированных конфигурациях подсистем ЭМ
Отказы ресурсов в большемасштабных ВС и перспективных системах эксафлопсной
производительности требуют поддержки возможности восстановления вычислительного
процесса на допустимой подсистеме меньшего ранга

 Известные методы построения расписания решения задач не применимы для задач с нефиксированными параметрами, поэтому актуальным является создание новых алгоритмов формирования расписания решения задач с нефиксированными параметрами

ОБРАБОТКА НАБОРА ЗАДАЧ С НЕФИКСИРОВАННЫМИ ПАРАМЕТРАМИ

■ **Требуется** построить расписание *S* решения задач на BC

$$S = ((s_1, x_1, k_1), (s_2, x_2, k_2), \dots, (s_m, x_m, k_m))$$

- s_i время начала решения i-ой задачи на BC
- $x_i = (x_{i1}, x_{i2}, ..., x_{ir_i^{k_i}})$ подсистема ЭМ для выполнения ветвей программы, x_{ij} номер ЭМ для выполнения ветви j задачи i

$$T(S) = \max_{i \in J} \{s_i + t_i^{k_i}\} \to \min_{S \in \Omega}$$

при ограничениях:

$$\begin{split} \sum_{i \in J(t)} r_i^{k_i} &\leq n, \quad \forall t \in \mathbb{R}, \\ \prod_{i' \in J(t)} \prod_{i' \in J(t) \setminus \{i\}} (x_{ij} - x_{i'j'}), \quad \forall t \in \mathbb{R}, \qquad j = 1, 2, \dots, r_i^{k_i}, j' = 1, 2, \dots, r_{i'}^{k_{i'}}, \\ \frac{1}{m} \sum_{i=1}^m \frac{w_i^{k_i}}{\max\limits_{k=1, q_i} w_i^k} \geq w. \\ x_{ij} \in \mathcal{C}, \qquad i = 1, 2, \dots, m, \qquad j = 1, 2, \dots, r_i^{k_i}, \\ s_i \in \mathbb{R}, \qquad k_i \in \{1, 2, \dots, q_i\}, \qquad i = 1, 2, \dots, m. \end{split}$$

ПОСЛЕДОВАТЕЛЬНЫЙ ГЕНЕТИЧЕСКИЙ АЛГОРИТМ

Генетический алгоритм формирования расписания решения задач с нефиксированными параметрами

- **Шаг 1.** Создание популяции из *К* допустимых расписаний. Расписание формируется с помощью эвристических алгоритмов FFDH или BFDH
- **Шаг 2.** Получение новых особей путем «скрещивания» пары расписаний два расписания делятся на *G* частей и переставляются. Если особь не скрещивается, к ней применяется оператор мутации
- **Шаг 3.** Упорядочивание всей популяции по значению целевой функции T(S). В популяции остаются лучшие K особей (расписаний)
- **Шаг 4.** Если количество эволюционных циклов не достигло предельного значения V, то возврат к шагу 2
- **Шаг 5.** За итоговое решение принимается особь с экстремальным значением целевой функции T(S) в текущей популяции

Вычислительная сложность алгоритма равна:

$$T = O(K \cdot m + K \cdot T_{2DSPP} + V \cdot K \log K + V \cdot K),$$

где T_{2DSPP} – время работы алгоритмов упаковки,

K – размер популяции,

V – количество эволюционных циклов.

ИССЛЕДОВАНИЕ ГЕНЕТИЧЕСКОГО АЛГОРИТМ А

- Алгоритм реализован на C++ в пакете MOJOS
- Проведено моделирование алгоритма на тестовых наборах задач для моделей ВС с числом ЭМ n = 1024, 4096, 16384, 65536 и количеством задач в наборе m = 1000, 2000 и 3000
- Показатели эффективности алгоритма:

$$\delta_1 = (T_{BFDH} - T)/T, \quad \delta_2 = (T_{FFDH} - T)/T,$$

$$\delta_3 = (T_{BFDH\ INIT} - T)/T, \quad \delta_4 = (T_{FFDH\ INIT} - T)/T$$

- T_{BFDH_INIT} значение целевой функции от начального решения, полученного алгоритмом BFDH
- T_{FFDH_INIT} значение целевой функции от начального решения, полученного алгоритмом FFDH
- T значение целевой функции от решения, полученного генетическим алгоритмом
- T_{BFDH} и T_{FFDH} значение целевой функции от решений, полученных алгоритмами BFDH и FFDH

Генетический алгоритм построения расписаний решения задач с нефиксированными параметрами обеспечивает сокращение суммарного времени выполнения задач в среднем на 45% относительно начальных решений, получаемых известными алгоритмами FFDH и BFDH

Зависимость математического ожидания и среднеквадратического отклонения от количества эволюционных циклов V

(n = 1024, m = 1000; K = 16, w = 75 %, P = 90 %, G = 2)

Зависимость времени работы алгоритма от количества эволюционных циклов V и числа m задач в наборе (1024 ЭМ)

DH Алгоритм FFDH

ПАРАЛЛЕЛЬНЫЕ ГЕНЕТИЧЕСКИЕ АЛГОРИТМЫ

Параллельные генетические алгоритмы формирования расписания решения задач с нефиксированными параметрами

Алгоритм на основе метода мультистарта

Алгоритм на основе декомпозиции набора задач

M – количество задач в наборе, p – количество процессов программы

- Алгоритмы реализованы на языке С в модели передачи сообщений МРІ
- Характеризуются линейной зависимостью ускорения от числа процессов

ИНТЕРГАЦИЯ В СИСТЕМУ УПРАВЛЕНИЯ РЕСУРСАМИ TORQUE И ПЛАНИРОВЩИК MAUI

- Выполнена интеграция пакета MOJOS с системой TORQUE и планировщик Maui
- Язык запросов расширен новой структурой для описания вектора допустимых подсистем ЭМ

- Эксперименты на вычислительном кластере: 18 узлов, сеть Gigabit Ethernet; наборы задач: m = 100, 200, 400 и 800
- Показатели эффективности:

$$\delta_1 = (T_T - T)/T, \quad \delta_2 = (T_M - T)/T,$$

$$\delta_3 = (T_{TQ} - T_Q)/T_Q, \quad \delta_4 = (T_{MQ} - T_Q)/T_Q$$

- T_T и T_{TQ} время решения задач и время ожидания задач в очереди, обеспечиваемое системой TORQUE
- T_M и T_{MQ} время решения задач и время ожидания задач в очереди, обеспечиваемое планировщиком Maui
- T и T_Q время решения задач и время ожидания задач в очереди, обеспечиваемое разработанными автором средствами

Количество	T_T , c	T_M , c	<i>T</i> , c	$M[\delta_1], \%$	$M[\delta_2], \%$
задач в наборе				141[0]], 70	
100	13403	12317	11188	19,80	10,09
200	50426	45171	43195	16,74	4,57
400	207528	202364	175033	18,57	15,61
800	836394	796453	713580	17,21	11,61

Количество	T_{TQ} , c	T_{MQ} , c	<i>T</i> , c	$M[\delta_3]$, %	$M[\delta_4]$, %
задач в наборе	1 2	£			
100	323	310	246	31,30	26,02
200	372	356	326	14,11	9,20
400	684	697	605	13,06	15,21
800	1324	1294	1200	10,33	7,83

В среднем применение разработанных средств для системы TORQUE на рассмотренных наборах позволяет сократить суммарное время решения зада на 24 % и на 21 % для планировщика Maui

АЛГОРИТМЫ ФОРМИРОВАНИЯ ПОДСИСТЕМ ЭЛЕМЕНТАРНЫХ МАШИНА

АЛГОРИТМЫ ФОРМИРОВАНИЯ ПОДСИСТЕМ ЭЛЕМЕНТАРНЫХ МАШИН

Заданы распределенная BC и количество M ветвей в параллельной программе.

Требуется сформировать подсистему, обеспечивающую эффективную реализацию коллективных схем межмашинных обменов.

Обозначения:

- l_{pq} кратчайшее расстояние между ЭМ p и q в структуре ВС.
- b_{pq} пропускная способность канала связи между ЭМ p и q.

Распределенная ВС N = 20, M = 5

ВС с однородной структурой сети

$$L(X) = \left(\prod_{p=1}^{n-1} \prod_{q=p+1}^{n} (x_p x_q (l_{pq} - 1) + 1) \right) \rightarrow \min_{(x_p)}$$

при ограничениях:

$$\sum_{p=1}^{n} x_{p} = M,$$

$$x_{p} \in \{0, 1\}, p = 1, 2, ..., n.$$

ВС с иерархической организацией

$$B(X) = \left(\prod_{p=1}^{n-1} \prod_{q=p+1}^{n} (x_p x_q (b_{pq} - 1) + 1) \right) \rightarrow \max_{(x_p)}$$

при ограничениях:

$$\sum_{p=1}^{n} x_{p} = M,$$

$$x_{p} \in \{0, 1\}, p = 1, 2, ..., n.$$

АЛГОРИТМЫ ФОРМИРОВАНИЯ ПОДСИСТЕМ ЭЛЕМЕНТАРНЫХ МАШИН

- Задан ранг *R* подсистемы ЭМ (количество необходимых процессорных ядер), конфигурация ВС на базе многопроцессорных узлов с общей памятью
- **Требуется** из K допустимых вариантов подсистем ранга R выбрать подсистему ЭМ, обеспечивающую минимум времени выполнения информационных обменов

Алгоритм формирования подсистем ЭМ, минимизирующий время реализации коллективных обменов типа «all-to-all» и учитывающий загруженность каналов связи, возникающую в следствии их конкурентного использования процессами параллельных программ

Формирование подсистемы ЭМ ранга 4

АНАЛИЗ КОНКУРЕНТНОГО ИСПОЛЬЗОВАНИЯ КАНАЛОВ СВЯЗИ

Метод формирования подсистем ЭМ: 1 этап

т, Мбайт	Коэффициент падения производительности $t(m, cf) / t(m, 1)$				
	<i>cf</i> = 1	cf = 2	<i>cf</i> = 3	cf = 4	
128	1	2,03	3,03	4,06	
64	1	2,00	3,04	4,06	
32	1	2,17	3,23	4,03	
16	1	2,17	3,43	3,80	
8	1	1,01	1,01	4,27	
4	1	0,86	0,82	0,96	

Время *t* передачи сообщения размером *m* байт при одновременном разделении канала связи *cf* процессами

0.16

0.14

0.12

0.10

Контроллер памяти NUMA-узла

Контроллер памяти SMP-узла

Внутрисистемная шина Intel QPI

Сетевой контролер InfiniBand

Сетевой к

Сетевой контролер Gigabit Ethernet

АНАЛИЗ КОНКУРЕНТНОГО ИСПОЛЬЗОВАНИЯ КАНАЛОВ СВЯЗИ

Метод формирования подсистем ЭМ: 2 этап

Шаг 1, размер блока 2:

- **Процесс 0**: отправляет и принимает сообщение процессу 0, принимает от процесса 1 и отправляет 3
- **Процесс 1**: отправляет и принимает сообщение процессу 1, принимает от процесса 2 и отправляет 0
- **Процесс 2**: отправляет и принимает сообщение процессу 2, принимает от процесса 3 и отправляет 1
- **Процесс 3**: отправляет и принимает сообщение процессу 3, принимает сообщение от 0 и отправляет 2

Шаг блочного алгоритма операции MPI_Alltoall

Сетевой адаптер первого узла разделяют 4 процесса

t(m, 4)

ЭВРИСТИЧЕСКИЙ АЛГОРИТМ ФОРМИРОВАНИЯ ПОДСИСТЕМ ЭМ

```
Входные данные: S - множество симметричных подсистем
Выходные данные: S - упорядоченное по возрастанию оценочного времени выполнения операции «all-to-all»
множество симметричных подсистем

function AllocateSusbsys (S)
    for each subsystem[i] in S do
        time[i] = EstimateOnSubsystem(i)
    end for
    SORT(S, CompareTime)
    return S
end function

Входные данные: subsystem - симметричная подсистема ЭМ, m - размер передаваемого сообщения
Выходные данные: totaltime - прогнозируемое время выполнения операции All-to-All
```

```
function ESTIMATEONSUBSYSTEM (subsystem, m)
  totaltime = 0
  for all steps of All-to-All do
    time = 0
    l = ESTIMATELAYER(step)
    cf = ESTIMATECONTENTIONFACTOR(step, l)
    time = t(l, m, cf)
    totaltime = totaltime + time
  end for
  return argmax {totaltime}
end function
```

ИССЛЕДОВАНИЕ АЛГОРИТМА ФОРМИРОВАНИЯ ПОДСИСТЕМ ЭМ

- Алгоритм реализован на языке С++
- Конфигурация BC: 6 NUMA-узлов (2 x Intel Quad Xeon E5620, RAM 24 GiB), InfiniBand QDR
- Программное обеспечение: GNU/Linux x86-64, MVAPICH 2.3

Требуемое количество процессов	Время выполнения операции All-to-all, с			
2	1 ВУ, 2 процессора	роцессор		
Система моделирования	0,00016 0,00033			
Реальный запуск	0,00044	0,00061		
Установленный порядок	1	2		
4	1 ВУ, 4 процессора	2 ВУ, 2 процессора	4 ВУ, 1 процессор	
Система моделирования	0,0019	0,0021	0,0018	
Реальный запуск	0,0031	0,0036	0,0029	
Установленный порядок	2	3	1	
8	1 ВУ, 8 процессоров	2 ВУ, 4 процессора	4 ВУ, 2 процессора	
Система моделирования	0,00384	0,19	0,0058	
Реальный запуск	0,00754	0,09	0,0076	
Установленный порядок	1	3	2	

На вычислительных кластерах с многопроцессорными NUMA-узлами и сетью связи стандарта InfiniBand алгоритм обеспечивает сокращение времени информационных обменов от 16% до 31% по сравнению с известным алгоритмом формирования подсистем FF (first fit)

МУЛЬТИКЛАСТЕРНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА

ИНСТРУМЕНТАРИЙ ПАРАЛЛЕЛЬНОГО МУЛЬТИПРОГРАММИРОВАНИЯ

- На основе созданных алгоритмов разработаны программные пакеты MOJOS обслуживания потоков параллельных задач с нефиксированными параметрами, программное расширение системы управления ресурсами TORQUE, программный пакет поддержки режима обслуживания потока задач с нефиксированными параметрами для планировщика Maui (в соавторстве), программные средства оценки времени реализации коммуникационных операции типа «all-to-all» (в соавторстве)
- Предложенные пакеты вошли в состав инструментария параллельного мультипрограммирования пространственно-распределенной мультикластерной ВС, созданной членами ведущей научной школы РФ (НШ-9505.2006.9, НШ-2121.2008.9, НШ-5176.2010.9, НШ-2175.2012.9, основатель чл.-корр. РАН В.Г. Хорошевский)

Спасибо за внимание!

Перышкова Евгения Николаевна

к.т.н. доцент Кафедры вычислительных систем Сибирский государственный университет телекоммуникаций и информатики e-mail: e.peryshkova@gmail.com