SEMESTER 5

ELECTRICAL AND ELECTRONICS ENGINEERING

SEMESTER S5 POWER GENERATION, TRANSMISSION AND PROTECTION

Course Code	PCEET501	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET302	Course Type	Theory

Course Objectives:

- 1. To deliver fundamental concepts in power system components.
- 2. To deliver basic idea of power generation, transmission and protection.
- 3. To introduce new topics to students like energy storage systems and deregulated systems.

Module No.	Syllabus Description	Contact Hours
	Generation from renewable and non-renewable sources –	
	Hydro, thermal, nuclear- (block schematic details, environmental and	
	ethical factors, advantages, disadvantages)	11
	Solar and wind - (block schematic details, environmental factors,	11
1	regulations, advantages, disadvantages)	
	Energy storage systems as alternative energy sources - BESS, CESS,	
	thermal SS	
	Load curve - Load duration curve, Load factor, diversity factor, demand	
	factor, Plant capacity factor, plant use factor - Numerical Problems	
	Power Transmission System - (Electrical Model)- Line parameters -	
	resistance - inductance and capacitance (Derivation of three phase double	
	circuit)	11
2	Transmission line modelling - classifications (concept only) - transmission	
	line as two port network – derivation and calculation of ABCD parameters	
	(derivation and numerical problems)	

	Skin Effect & Ferranti Effect – Corona (qualitative study only) – Surge	
	Impedance Loading	
	Insulators – string efficiency – grading (numerical problems	
	Introduction to EHVAC and HVDC: Principle, advantages/disadvantages	
	Underground cables - ratings - classification - Capacitance of cables -	
	grading – 2 types	
	AC Distribution systems - connection schemes - radial and ring main	11
3	systems – single phase only (numerical problems)	
	Method of power factor improvement using capacitors (numerical	
	problems)	
	Tariff - different types	
	Introduction to energy markets (regulated and deregulated systems)	
	Need for protection- Types of protection schemes – primary and back-up	
	Protective relays –	
	Basics of typical electromechanical relay – induction type only	
	Static (block diagrams of o/c and instantaneous o/c relays)	
	Microprocessor (block diagram and flow chart of o/c relay)	
4	Fundamentals of Numerical relay	11
4	Principles of overcurrent, directional, distance and differential	
	Circuit breakers – operating principle – arc phenomenon – arc extinction	
	- principle & methods - Important terms in arc extinction	
	Problems of circuit interruption – capacitive current chopping – ratings of	
	CBs Circuit breaker classification based on medium of arc extinction -	
	SF6 & VCB Introduction to GIS	

Note: Visit to a nearby substation, identify the components and prepare a report.

Additional topics:

- 1) Calculation of Sag and tension in transmission lines
- 2) Introduction to Machine Learning in Power System Protection Insulation co-ordination
- 3) Overview of Communication: PLCC Fibre Optic Introduction to IEC61850

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub 	60
(8x3 =24marks)	divisions. $(4x9 = 36 \text{ marks})$	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Learn different types of power generating systems and schedule generation appropriate for given area.	К3
CO2	Evaluate the electrical performance of any transmission line.	К3
CO3	Compute various physical characteristics of overhead and underground transmission systems.	К3
CO4	Demonstrate the working of relays and switch gear for protection schemes.	К2
CO5	Design a simple ac electrical distribution system as per the standards.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3			2					3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Electrical Power Systems	Wadhwa C. L.	New Age International	8 th edition 2023			
2	Principles of Power System	V. K. Mehta and Rohit Mehta	S. Chand	4 th edition reprint 2020			
3	Power System Protection and Switchgear	Badri Ramand D.N.Viswakarma	Tata McGraw Hill	2 nd edition, 2011			
4	Non-conventional energy sources	B. H. Khan	Tata McGraw Hill	3 rd edition, 2017			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering and Chemical Thermodynamics	Milo D. Koretsky	Wiley	2 nd Edn, 2012			
2	Chemical and Process Thermodynamics	Kyle B.G.	Pearson	3 rd Edn, 2015			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/103/103/103103144/				
2	https://archive.nptel.ac.in/courses/103/103/103103144/				
3	https://archive.nptel.ac.in/courses/103/103/103103144/				
4	https://archive.nptel.ac.in/courses/103/103/103103144/				

SEMESTER S5

ELECTROMAGNETIC THEORY

Course Code	PCEET502	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GBMAT201	Course Type	Theory

Course Objectives:

1. To familiarize the students with the fundamentals of electrostatics, magnetostatics, time-varying fields and electromagnetic waves.

Module No.	Syllabus Description			
	Mathematical Preliminaries : Rectangular, Cylindrical and			
	Spherical Coordinate Systems - Representation of Point, Unit vector,			
	Vector, Constant surfaces, Transformation of points, unit vectors and			
	vectors among the three coordinate systems - Transformation			
	matrices, Del operator - Representation in the three coordinate			
	systems, Gradient of scalar field - Physical meaning of gradient,			
1	Divergence of a vector field - Physical significance of divergence -			
	Divergence Theorem -, Curl of a vector field - Physical significance	11		
	of curl - Stoke's Theorem			
	Electrostatic Fields: Coulomb's Law, Electric Field Intensity, Force			
	and Field due to system of charges, Gauss's Law - integral form,			
	Electric Flux Density, Field due to line of charge, surface and volume			
	charge distributions.			
	Electrostatic Fields in material media: Gauss's law - point form,			
	Electric potential, Relation between E and V, Field due to electric			
2	dipole, Energy density in static electric fields, Conduction and	11		
	Convection Current, Ohm's law in point form, Resistance,	11		

Capacitance of parallel plate capacitor, Coaxial and Spherical	
capacitors, Continuity equation, Boundary conditions, Poisson's and	
Laplace's Equations (solution not required)	
Magnetostatics: Biot Savart's Law, Ampere's Circuital Law in	
integral and point form, Magnetic field due to infinite line current,	
infinite sheet of current, Coaxial cable, Non conservativeness of	
magnetic field, Magnetic scalar potential, Magnetic vector potential.	
Magnetostatics in Material Media: Force on a charged particle due	
to a magnetic field, Force between two current carrying conductors,	
Magnetic Torque and Moment, Magnetization in materials, Magnetic	
boundary conditions, Inductance, Energy stored in magnetostatic	10
fields.	10
Electromagnetic Induction and Maxwell- Heaviside Equations:	
Faraday's law, Transformer emf and Motional emf, Displacement	
Current, Maxwell-Heaviside equations.	
Electromagnetic Waves: Time varying potentials, Waves in general,	
Electromagnetic waves, Wave propagation in lossy dielectrics, Plane	
waves in free space, conductors, skin effect, Power, Poynting	10
theorem, Reflection of plane wave at normal incidence.	
Transmission Lines: Transmission line equations, Characteristic	
impedance, Input impedance, Standing wave ratio.	
Numerical procedures for solving Laplace's and Poisson's equation, Method of images, Force on magnetic materials, Magnetic levitation, Wireless power transfer, Microstrip lines	
	capacitors, Continuity equation, Boundary conditions, Poisson's and Laplace's Equations (solution not required) Magnetostatics: Biot Savart's Law, Ampere's Circuital Law in integral and point form, Magnetic field due to infinite line current, infinite sheet of current, Coaxial cable, Non conservativeness of magnetic field, Magnetic scalar potential, Magnetic vector potential. Magnetostatics in Material Media: Force on a charged particle due to a magnetic field, Force between two current carrying conductors, Magnetic Torque and Moment, Magnetization in materials, Magnetic boundary conditions, Inductance, Energy stored in magnetostatic fields. Electromagnetic Induction and Maxwell- Heaviside Equations: Faraday's law, Transformer emf and Motional emf, Displacement Current, Maxwell-Heaviside equations. Electromagnetic Waves: Time varying potentials, Waves in general, Electromagnetic waves, Wave propagation in lossy dielectrics, Plane waves in free space, conductors, skin effect, Power, Poynting theorem, Reflection of plane wave at normal incidence. Transmission Lines: Transmission line equations, Characteristic impedance, Input impedance, Standing wave ratio. Numerical procedures for solving Laplace's and Poisson's equation, Method of images, Force on magnetic materials, Magnetic levitation,

^{* -} Detailed mathematical treatment of Gradient, Divergence and Curl has been taught in Second Semester Mathematics in Vector Calculus. Hence an overview with electromagnetic theory perspective is sufficient. However, a couple of remedial classes may be provided to lateral entry students to cover the basics of Differentiation, Integration and Vector Calculus

Demonstrations for coordinate systems and gradient, divergence and curl may be done using mathematical sketching softwares like GeoGebra, Geometer's sketchpad etc.

Demonstration of fields, integrals and derivatives can be done using high end softwares like Scilab/Matlab / Octave and low end softwares like maxima.

Assignments can be software based wherever possible.

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination- 1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply vector calculus in Electricity and Magnetism.	К3
CO2	Compute electric and magnetic fields in different media	К3
СОЗ	Deduce the Maxwell-Heaviside Equations from the basic laws of electricity and magnetism	К3
CO4	Predict the production of electromagnetic waves with electric and magnetic fields	K4
CO5	Demonstrate the propagation of electromagnetic excitations in transmission lines	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			2	3						2
CO2	3	3			2	3						2
CO3	3	3			2	3						2
CO4	3	3			2	3						2
CO5	3	3			2	3						2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Elements of Electromagnetics	Mathew N O Sadiku	Oxford University Press	7th Edition, 2018
2	Engineering Electromagnetics	William H Hayt Jr, John A Buck	Tata McGraw Hill	9th Edition, 2018

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Introduction to Electrodynamics	David J Griffiths	Cambridge University Press	4th Edition, 2017
2	Electromagnetics	John D Kraus, Keith R Carver	Tata McGraw Hill	2nd Edition, 1981

	Books for Further Reading							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Div, Curl, Grad and All That	H M Schey	W W Norton and Company	Fourth Edition 2005				
2	Basic Laws of Electromagnetism	I E Irodov	Mir Publishers	1983				
3	Lectures on Physics, Volume II	Righard P Feynman	Narosa	2005				

SEMESTER S5

SIGNALS AND SYSTEMS

Course Code	PCEET503	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Mathematics for Electrical Science	Course Type	Theory

Course Objectives:

- 1. To introduce time domain and frequency domain representation of continuous and discrete time signals and perform various mathematical operations
- 2. To introduce various types of signals and systems
- **3.** To introduce time domain and frequency domain representation of continuous and discrete time systems.
- 4. To familiarize mathematical modelling of dynamic systems and analyze it's stability

Module No.	Syllabus Description	Contact Hours
No. 1	Introduction to Signals and Systems: Elementary Signals, Classification and representation of continuous time and discrete time signals, Signal operations. (3 hours) Concept of system: Continuous time and discrete time systems; Properties of systems: Time invariance, Linearity, Causality, Systems with and without memory, Stability. (3 hours) Convolution Integral and sum. (2 hours) Impulse and step response. (1 hour)	Hours 9

	Frequency domain characterization of Signals and Systems:	
	Fourier transform: Existence - Properties of Continuous time Fourier transform; Concept of Frequency response; Significance of Fourier transform and difference from Fourier series. (3 hours)	
	Review of Laplace Transforms.	
2	Characterization of LTI systems: Differential equation representation of continuous time LTI systems. Transfer function representation of differential equation in Laplace domain. (2 hours)	9
	Modeling of LTI systems: Electrical, translational and rotational mechanical systems, DC servo-motor; Force voltage, Force current analogy. (4 hours)	
	Sampled Data Systems and Z-Transform:	
	Sampling process - Impulse train sampling-sampling theorem- Aliasing effect. (2 hour)	
	Zero-order and First-order hold circuits - Signal reconstruction. (2 hours)	
3	<i>Z-Transform:</i> Region of convergence- Properties of Z-Transform Inverse Z-Transform. Pulse transfer function. Difference equations representation using Z-transform and it's solution using inverse Z-Transform. (3 hours)	10
	Impulse and step response of discrete-time systems. (3 hours)	
	Dynamic System Representation and Stability:	
4	Open loop and closed loop systems. Effect of feedback in systems. Block diagram representation - block diagram reduction. Signal flow graph - Mason's gain formula. (5 hours)	8
	Type and Order of the systems - Pole-Zero representation of systems. Characteristic equation. Routh stability criterion. (3 hours)	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination- 1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks)	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To represent continuous and discrete time signals in time domain and perform various mathematical operations	К2
CO2	To represent continuous time signals and systems in frequency domain	К3
CO3	To represent discrete time signals and systems in Z-domain.	К3
CO4	To analyse the stability of continuous time dynamical systems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3			3	2
CO2	3	3	2	2	2	3	3	3			3	2
CO3	3	3	2	2	2	3	3	3			3	2
CO4	3	3	2	2	2	3	3	3			3	2
CO5												

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Signals and Systems	Simon Haykin, Barry Van Veen	Wiley	2nd Edition, 2007					
2	Discrete Time Control Systems	Katsuhiko Ogata	Pearson	2nd Edition, 2006					
3	Control Systems Engineering	Norman S. Nise	Wiley	5th Edition, 2009					

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Signals and Systems	Oppenheim A.V., Willsky A.S. & Nawab S.H.	Prentice Hall	2nd Edition, 2015						
2	Modern Control Systems	Dorf R. C., Bishop R. H	Pearson Education India	12th Edition, 2013						
3	Digital Signal Processing Principles	John G. Proakis& Dimitris G.Manolakis	Prentice Hall	4th Edition, 2007						

SEMESTER S5
MICROPROCESSORS AND EMBEDDED SYSTEMS

Course Code	PBEET504	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBEET304, PBEET404, GBEST204	Course Type	Theory

Course Objectives:

1. This course aims to design and implement Embedded Systems using latest microprocessors / Microcontroller based boards.

Module No.	Syllabus Description	Contact Hours			
	Introduction to microprocessors- Features and Architecture of 8085-				
	Registers of 8085 - Flags - 8085 Pin diagram- Pins, Signals and functions				
	- Assembly language programming- Basic Instruction set to write Simple				
1	programs - Arithmetic, Logical, Branching instructions, Opcodes, hand				
1	coding, Programs involving 8 and 16bit Addition, Subtraction, Memory	12			
	Reading and writing, Sorting – Addressing modes-Classification of				
	instructions.				
	Stack and Subroutines – CALL and RETURN instructions – Timing and				
	control - Machine cycles, instruction cycle and T states - fetch and				
2	execute cycles -Timing diagram for instructions- Delay subroutines -	10			
	Interrupts- Interrupt service Routines- Interfacing ADC and DAC	10			
	Introduction to Embedded Systems-Application domain, features and				
3	characteristics, Microprocessors and Micro controllers- Choice and	12			
	suitability for applications				

	Introduction to Arduino UNO(8bit)- Hardware fundamentals of						
	ATmega328Pmicrocontroller based Board. Arduino Architecture, Pin						
	diagram and functions of Pins- Overview of main features such as I/O						
	Ports, Timers, interrupts, PWM, ADC (Introduction only). Introduction						
	to Arduino IDE- Arduino Libraries, Steps for creating an Arduino						
	program- Arduino Sketch Structure and Flow- Setup and loop functions.						
	Programming in Embedded C. Data types- operators, conditional						
	statements- Loops, Arrays and functions- Built in functions in Arduino -						
	Program to blink an LED and its control., Interfacing LCD, Seven						
	Segment LED, switch Interface, Binary counter Working with LED						
	Controlled by Switch/ Potentiometer, Interfacing with Relays, Buzzer,						
	Working with Basic sensors and actuators using Arduino.						
	working with basic sensors and actuators using Ardumo.						
	ARM (Advanced RISC Machines) based Embedded System Design:						
	Classification of Microprocessors based on the word length, architecture						
	and Instruction Set- Reduced Instruction Set Computer (RISC) and						
	Complex Instruction Set Computer (CISC). Features and characteristics						
	Introduction to Arduino due(32bit)- micro controller board (based on						
4	the atmel sam3x arm cortex- m3 cpu)- Features, General Specifications	10					
	Overview, General architecture- Features OF Microcontroller,	10					
	INPUTS,OUTPUTS, Ratings, Functional Overview, Pinout-						
	familiarization of the ports of the board. Programming Basics- Arduino						
	IDE-Use of Timer, Interfacing of ADC and DAC -PWM implementation						
	- Introduction to Arduino Cloud Editor						

Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

Attendance Assignment/ Microproject Internal Examination- 1 (Written) Internal Examination- 2 (Written) 5 15 10 10 40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total			
•	2 Questions from each	•	Each question carries 9 marks.				
	module.	•	Two questions will be given from each module, out of				
•	Total of 8 Questions, each		which 1 question should be answered.				
	carrying 3 marks	•	Each question can have a maximum of 3 sub divisions.	60			
			(4x9 = 36 marks)				
	(8x3 = 24marks)						

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Describe the architecture of 8085 microprocessor and 8085 Assembly language programming.	K2					
CO2	Understand the need for interrupts, Subroutines, timing diagram of 8085 microprocessor and interfacing	К2					
CO3	Understand and gain the basic idea about the embedded system and selection of processors.	К2					
CO4	Able to gain working level knowledge about a Arduino Uno based system architecture and Arduino IDE	К2					
CO5	Write Programs using Embedded C and implement an application using Arduino UNO board.	К3					
CO6	Understand the RISC Architecture and Apply the knowledge for solving the real life problems using ARM - Arduino DUE board based embedded system.	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2	3	3	2	1						
CO3	3	2	2	2	2							
CO4	3	2										1
CO5	3	2	3	2	1	1						1
CO6	3	2	3	2	1	1						1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Fundamentals of <i>Microprocessor</i> and <i>Micro controllers</i>	Ram, B.DHANPAT	Rai Publications (P) LtdNew Delhi								
	and there comments	B.DIMIN III	Dia. New Beim	Sixth							
2	Microprocessor, Architecture, Programming and Applications	Ramesh Gaonkar	Penram International Publishing;	edition, 2014.							
3	Arduino Cookbook"	Michael Margolis,	O'Reilly Media, Inc.	1st Edition							
4	Microprocessor Theory and Application	Rafiquzzaman	PHI Learning	First Edition							

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Arduino-Based Embedded Systems	Rajesh Singh, Anita Gehlot,Bhupendra Singh, and Sushabhan Choudhury				
2	Arduino for beginners: Essential Skills Every Maker Needs"	John Baichtal	Person Education			
3	Arduino Made Simple	Ashwin Pajankar				
4	Embedded C, Pont	Michael J				
5	Programming Arduino Next Steps: Going Further with Sketches	Simon Monk				
6	Arduino: A Technical Reference by	J.M. Hughes	O'Reilly Media, Inc. ISBN: 9781491934494			
7	Arduino Workshop: A Hands-On Introduction with 65 Projects	John <i>Boxall</i>				
8	Exploring Arduino: Tools and Techniques for Engineering Wizardry	Jeremy Blum WILEY				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc20_ee42/preview						
2	https://onlinecourses.nptel.ac.in/noc20_ee42/preview						
3	https://onlinecourses.nptel.ac.in/noc20_ee42/preview https://www.arduino.cc/en/Tutorial/HomePage						
4	https://onlinecourses.nptel.ac.in/noc20_ee42/preview https://docs.arduino.cc/hardware/due/						

SEMESTER S5

ENERGY STORAGE SYSTEMS

Course Code	PEEET521	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To introduce the importance and application of energy storage systems.
- 2. To familiarize with different energy storage technologies.

Module No.	Syllabus Description	Contact Hours
	Need and role of energy storage systems in power system, General	
	considerations, Energy and power balance in a storage unit,	
	Mathematical model of storage system: modelling of power	9
	transformation system (PTS)-Central store (CS) and charge-discharge	
1	control system (CDCS), Econometric model of storage system.	
	Thermal energy: General considerations -Storage media- Containment-	
	Thermal energy storage in a power plant, Potential energy: Pumped	
	hydro-Compressed Air.	
	Kinetic energy: Mechanical- Flywheel, Power to Gas: Hydrogen-	
	Synthetic methane. Electro chemical energy: Batteries-Battery	
	parameters: C-rating- SoC - DoD -Specific Energy- Specific power	9
2	(numerical examples), Fuel cells, Electrostatic energy (Super	
	Capacitors), Electromagnetic energy (Superconducting Magnetic	
	Energy Storage), Comparative analysis, Environmental impacts of	
	different technologies.	

3	Types of renewable energy sources: Wave - Wind - Tidal - Hydroelectric - Solar thermal technologies and Photovoltaics, Storage role in isolated power systems with renewable powersources, Storage role in an integrated power system with grid-connected renewablepowersources.	9
4	Smart grid, Smart micro grid, Smart house, Mobile storage system: Electric vehicles – Grid to Vehicle (G2V)-Vehicle to Grid (V2G), Management and control hierarchy of storage systems. Aggregating energy storage systems and distributed generation (Virtual Power Plant Energy Management with storage systems), Battery SCADA, Hybrid energy storage systems: configurations and applications.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Assignment/ Microproject Internal Examination- 1 (Written)		Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub divisions.	60
	(4x9 = 36 marks)	
(8x3 =24marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the role of energy storage in power systems.	К3
CO2	Classify thermal, kinetic and potential energy storage systems and their applications.	К3
CO3	Compare electrochemical, electrostatic and electromagnetic storage technologies.	К3
CO4	Illustrate energy storage technology in renewable energy integration.	К2
CO5	Summarise energy storage technology applications for smart grids.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1					1					
CO2	3	1					1					
CO3	3	1					1					
CO4	3	1					1					
CO5	3	1					1					

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Energy Storage for Power Systems	A.G.Ter- Gazarian	The Institution of Engineering and Technology (IET)Publication,UK,	Second Edition, 2011				
2	Energy Storage in Power Systems	Francisco Díaz- González, Andreas Sumper, Oriol Gomis- Bellmunt	Wiley Publication	2016.				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Electricity Energy Storage Technology Options: A White Paper Primer on Applications, Costs, and Benefits	D. Rastler	Electric Power Research Institute (USA)	Technical Update, December 2010			
2	The Role of Energy Storage with Renewable Electricity Generation	Paul Denholm, Erik Ela, Brendan Kirby and Michael Milligan	National Renewable Energy Laboratory (NREL)	January 2010			
3	Electrical energy management of virtual power plants in distribution networks with renewable energy resources and energy storage systems	P. Nezamabadi and G. B. Gharehpetian	IEEE Power Distribution Conferenc	2011			

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
	https://www.youtube.com/watch?v=o6Afp-						
1	MI_tQ&list=PLLy_2iUCG87AjWoOk0A3y4hpGQVTdtl6G&index=12 (NPTEL lecture						
	IIT Roorkee)						
2	https://www.youtube.com/watch?v=yar51GJVqgg (NPTEL lecture IIT Guwahati)						
3	https://www.youtube.com/watch?v=frWxC5KL8kE (NPTEL lecture IIT Guwahati)						
4	https://www.youtube.com/watch?v=AZIS_MCw8Qc (NPTEL lecture IIT Kanpur)						

SEMESTER S5

ELECTRIC VEHICLES

Course Code	PEEET522	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET303, PCEET304 PCEET403	Course Type	Theory

Course Objectives:

- 1. Familiarise the various characteristics of conventional vehicles and compare them with electric vehicles
- 2. Analyse the various drive train topologies for electric vehicles
- 3. Discuss the propulsion unit for electric vehicles
- 4. Analyse the various energy storage systems and energy management strategies
- 5. Selection of drive systems and study of various communication protocols for EV

Module No.	Syllabus Description	Contact Hours
	Conventional Vehicles: Basics of vehicle performance, Vehicle power	
	source characterization, Transmission characteristics (1hr).	
	Introduction to Electric Vehicles: History of electric vehicles,	
	Classification of electric vehicles. Overview of EV challenges. Overview of	
	EV technologies-motor drive technology, energy source technology,	
1	battery charging technology , vehicle-to-grid technology(2hr)	9
	Vehicle Dynamics & Load Forces: Mathematical models to describe	
	vehicle performance, vehicle load forces: aerodynamic drag,rolling	
	resistance, grading resistance, vehicle acceleration, Calculation of motor	
	power from traction torque, Numerical problems. (4 hrs)	

	Electric Drive-trains: Basic concept of electric traction, Introduction to	
	various electric drive-train topologies, Power flow control in electric drive-	
	train topologies, Fuel efficiency analysis.(2 hrs)	
	DC Drives:Motoring using a PM DC Machine - DC motor electric drive	
	using DC-DC converter - Generating/Braking using a PM DC Machine.	
	(3hrs)	
	PMSM Drives: Review of PMSM motor basics – Independent control of	
	orthogonal flux and torque (concept only)- Field Oriented Control (FOC) –	
2	Sensored and sensorless control (block diagram only). (4hrs)	9
	Sizing the drive system: Matching the electric machine and the Internal	
	Combustion Engine (ICE) ,Sizing the propulsion motor, Sizing the power	
	electronics-Switch technology selection, Ripple capacitor design,	
	Switching frequency and PWM. (2hrs)	
	Battery based energy storage systems: Types of battery-battery	
	parameters-units of battery energy storage - capacity rate, - cell voltage -	
	specific energy - cycle life - self-discharge- static battery equivalent circuit	
	model - series-parallel battery pack equivalent circuits.(3hrs)	
	Other storage topologies: Fuel Cell based energy storage systems-	
	Supercapacitors- Flywheel- Hybridization of different energy storage	
3	devices. (2 hrs)	9
	Sizing considerations of battery -Time and charge/discharge cycles -	
	Lifetime – Beginning of life (BOL) - End of life (EOL) - DOD - Efficiency	
	of Battery Pack - Determination of pack Voltage, range for EV -	
	Determination of Cell/Pack Voltage for a Given Output\Input Power.	
	Battery management system, Numerical problems.(4hrs)	
	Overview of Electric Vehicle Battery Chargers–Types of chargers-On-	
	board chargers, Off- board chargers, Wireless charger. Electric Vehicle	
4	Supply Equipment (EVSE) - Grid to EVSE to On-board chargers to battery	9
	pack power flow block schematic diagrams - V2G concept(3hrs)	,

Types of charging stations - AC Level 1 & 2, DC - Level 3 -Types of	
Connectors - CHAdeMO, CCS Type1 and 2, GB/T - PIN diagrams and	
differences (2hrs)	
Autonomous Vehicles: Levels of automation, significance, functional	
architecture-sensors, actuators, path planning& effects of automation in	
vehicles (2hrs)	
Vehicle Communication protocols: Need & requirements - Functions of	
Control Pilot (CP) and Proximity Pilot (PP) pins, Communication Protocols	
- CAN, LIN, FLEXRAY (Basics only)- Power line communication (PLC)	
in EV (2 hrs)	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject			Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total
•	2 Questions from each	•	Each question carries 9 marks.	
	module.	•	Two questions will be given from each module, out of	
•	Total of 8 Questions, each		which 1 question should be answered.	
	carrying 3 marks	•	• Each question can have a maximum of 3 sub divisions.	
			(4x9 = 36 marks)	
	(8x3 = 24 marks)			

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Familiarise the performance of conventional vehicles and electric vehicles	K2
CO2	Analyse the various drive train topologies for electric vehicles	К3
CO3	Discuss the propulsion unit for electric vehicles and selection of drive systems	К3
CO4	Analyse the various energy storage systems and energy management strategies	К3
CO5	Study of chargers, charging stations and various communication protocols for EV	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3		2									3
CO3	3		2									3
CO4	3		2									3
CO5	3											3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Rook		Name of the Publisher	Edition and Year			
1	Electric Vehicles Machines and Drives- Design, Analysis and Application	K. T. Chau	John Wiley	2015			
2	Propulsion Systems for Hybrid Vehicles	John M. Miller	The Institution of Engineering and Technology, London, United Kingdom	2010			
3	Hybrid Electric Vehicles – Principles and applications with practical perspectives	Chris Mi, M A Masrur, D W Gao	Wiley	2011			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Electric, Hybrid and Fuel Cell Vehicles: Fundamentals, Theory and Design	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay	CRC Press				
2	Permanent Magnet Synchronous and Brushless DC Motors Drives	R. Krishnan	CRC Press				
3	Electric and Hybrid Vehicles: Design Fundamentals	Iqbal Hussein	CRC Press	2003			

SEMESTER S5

DIGITAL SYSTEM DESIGN

Course Code	PEEET523	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)		Course Type	PE -Theory

Course Objectives:

- 1. To acquire knowledge about Asynchronous and clocked Synchronous sequential circuit design.
- 2. To detect the faults and hazards in digital circuit design
- 3. To design and implement digital circuits using VHDL.

Modu le No.	Syllabus Description					
1	Clocked Synchronous Networks, Analysis of Clocked Synchronous Sequential Networks (CSSN), Modelling of CSSN, State assignment and reduction, Design of CSSN.	10				
2	ASM Chart and its realization. Asynchronous Sequential Circuits, Analysis of Asynchronous Sequential Circuits (ASC), Flow table reduction, Races in ASC, State assignment problem and the transition table.	10				
3	Hazards – static and dynamic hazards in combinational networks, Essential Hazards, Design of Hazard free circuits, Data synchronizers, Mixed operating mode asynchronous circuits, Practical issues- clock skew and jitter, Synchronous and asynchronous inputs.	8				

	Faults: Fault table method – path sensitization method – Boolean difference method.	
4	VLSI Design flow: Design entry: Schematic, Data types and objects, different modelling styles in VHDL - Dataflow, Behavioural and Structural Modelling. VHDL constructs and codes for combinational and sequential circuits.	8

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyze asynchronous and clocked synchronous sequential circuits	К3
CO2	Design hazard-free digital circuits	К3
CO3	Identify faults in digital circuits	К3
CO4	Apply VHDL programming in digital system design	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	2	2	2								3
CO3	3	3	2		2							3
CO4	3	3	3	3	3							3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Digital Principles & Design	Donald G Givone	Tata McGraw Hill	1/e 2002		
2	Digital Design with an introduction to HDL, VHDL and Verilog	M.Morris Mano and Michel.D.Ciletti	Pearson education	6/e, 2018		
3	Digital Design	John F Wakerly	Pearson Education	4/e 2008		
4	Digital Logic Applications and Design	John M Yarbrough	Cengage India	1/e 2006		

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Digital Systems Testing and Testable Design	Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman	John Wiley & Sons Inc	
2	Logic Design Theory	N. N. Biswas	PHI	
3	Introduction to Digital Design Using Digilent FPGA Boards	Richard E. Haskell, Darrin M. Hanna	LBE Books- LLC	
4	Digital Circuits and Logic Design	Samuel C. Lee	PHI	
5	Digital System Design Using VHDL	R. Anand	Khanna Book Publishing Company	
6	Digital System Design using VHDL	Charles Roth	ТМН	

SEMESTER S5

SOFTWARE ENGINEERING

Course Code	PEEET524	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. Provides fundamental knowledge in the Software Development Process which covers Software Development, and Project Management concepts.
- 2. Enables the learners to apply state of the art industry practices in Software development.

Module No.	Syllabus Description	Contact Hours
	Introduction to Software Engineering: Introduction to Software	
	Engineering - Professional software development, Software engineering	
	ethics. Software process models - The waterfall model, Incremental	
	development. Process activities - Software specification, Software design	
	and implementation, Software validation, Software evolution. Coping with	
1	change - Prototyping, Incremental delivery, Boehm's Spiral Model. Agile	8
	software development - Agile methods, agile manifesto - values and	O
	principles. Agile development techniques, Agile Project Management.	
	Case studies : An insulin pump control system. Mentcare - a patient	
	information system for mental health care.	
	Requirement Analysis and Design: Functional and non-functional	
	requirements, Requirements engineering processes. Requirements	
	elicitation, Requirements validation, Requirements change, Traceability	
2	Matrix. Developing use cases, Software Requirements Specification	10
	Template, Personas, Scenarios, User stories, Feature identification.	10
	Design concepts - Design within the context of software engineering,	

	Design Process, Design concepts, Design Model. Architectural Design -	
	Software Architecture, Architectural Styles, Architectural considerations,	
	Architectural Design Component level design - What is a component?,	
	Designing Class-Based Components, Conducting Component level	
	design, Component level design for web-apps.	
	Implementation and Testing (12 hours)	
	Object-oriented design using the UML, Design patterns, Implementation	
	issues, Open-source development - Open-source licensing - GPL, LGPL,	
	BSD. Review Techniques - Cost impact of Software Defects, Code review	
	and statistical analysis. Informal Review, Formal Technical Reviews, Post-	
_	mortem evaluations. Software testing strategies - Unit Testing, Integration	12
3	Testing, Validation testing, System testing, Debugging, White box testing,	12
	Path testing, Control Structure testing, Black box testing, Testing	
	Documentation and Help facilities. Test automation, Test-driven	
	development, Security testing. Overview of DevOps and Code Management	
	- Code management, DevOps automation, CI/CD/CD. Software Evolution	
	- Evolution processes, Software maintenance.	
	Software Project Management: Software Project Management - Risk	
	management, Managing people, Teamwork. Project Planning, Software	
	pricing, Plan-driven development, Project scheduling, Agile planning.	
4	Estimation techniques, COCOMO cost modeling. Configuration	0
	management, Version management, System building, Change	8
	management, Release management, Agile software management -	
	SCRUM framework. Kanban methodology and lean approaches.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination- 1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total
•	2 Questions from each	•	Each question carries 9 marks.	
	module.	•	Two questions will be given from each module, out of	
•	Total of 8 Questions, each		which 1 question should be answered.	
	carrying 3 marks	•	Each question can have a maximum of 3 sub divisions.	60
			(4x9 = 36 marks)	
	(8x3 = 24marks)			

Course Outcomes (COs)

At the end of the course students should be able to:

Course Outcome		Bloom's Knowledge Level (KL)
CO1	Interpret software process models and core activities, including handling changes with techniques like prototyping and incremental delivery.	K2
CO2	Describe agile methods, including the Agile Manifesto and agile project management practices.	K2
CO3	Prepare Software Requirement Specification and Software Design for a given problem	К3
CO4	Interpret object-oriented design principles, design patterns, software testing methods (including unit testing, integration testing, and test automation), and open-source licensing models (such as GPL, LGPL, and BSD).	К2
CO5	Describe software review techniques, DevOps practices and code management principles, and software evolution processes and maintenance strategies.	K2
CO6	Make use of software project management concepts while planning, estimation, scheduling, tracking and change management of a project, with proper application of SCRUM, Kanban and Lean frameworks.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3						3				3
CO2	3	3										3
CO3	3	3	3							3		3
CO4	3	3	3									3
CO5	3	3							3			3
CO6	3	3							3		3	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Tex	at Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Software Engineering	Ian Sommerville	Pearson Education	Tenth edition, 2015
2	Software Engineering : A practitioner's approach	Roger S. Pressman	McGraw Hill publication	Eighth edition, 2014
3	Engineering Software Products: An Introduction to Modern Software Engineering	Ian Sommerville	Pearson Education	First Edition, 2020

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Kanban	David J.		2010						
1	Kanoan	Anderson	Blue Hole Press							
2	Agile Management for Software	David J.	Pearson	2003						
2	Engineering	Anderson	realson							
2	Software Project Management : A			1998						
3	unified framework	Walker Royce	Pearson Education							
4	Implementing Lean Software	Mary	Addison-Wesley	2006						
4	Development: From Concept to Cash	Poppendieck	Signature Series							

	Video Links (NPTEL, SWAYAM)							
Module No.	Link ID							
1	https://nptel.ac.in/courses/106105182							
2	https://nptel.ac.in/courses/106105182							
3	https://nptel.ac.in/courses/106105182							
4	https://nptel.ac.in/courses/106105218							

SEMESTER S5

DATA STRUCTURES

Course Code	PEEET526	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	UCEST105, GBEST204	Course Type	Theory

Course Objectives:

- 1. To impart a thorough understanding of linear data structures such as arrays, stacks, queues and linked lists and their applications.
- **2.** To impart a thorough understanding of non-linear data structures such as trees, graphs and their applications.
- **3.** To impart familiarity with various sorting, searching and hashing techniques and their performance comparison.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Basic Concepts of Data Structures: Algorithms, Performance Analysis, Space Complexity, Time Complexity, Asymptotic Notations Arrays: Linear Search and Binary Search, Stacks, Queues-Circular Queues, Priority Queues, Double Ended Queues, Evaluation of Expressions	11
2	Linked List: Self-Referential Structures, Dynamic Memory Allocation, Singly Linked List- Operations on Linked List. Doubly Linked List, Circular Linked List, Stacks and Queues using Linked List, Polynomial representation using Linked List	11

3	Trees and Graphs: Trees, Binary Trees-Tree Operations, Binary Tree Representation, Tree Traversals, Binary Search Trees- Binary Search Tree Operations Graphs, Representation of Graphs, Depth First Search and Breadth First Search on Graphs, Applications of Graphs	11
4	Sorting and Hashing: Sorting Techniques – Selection Sort, Insertion Sort, Quick Sort, Merge Sort and Heap Sort Hashing- Hashing Techniques, Collision Resolution, Overflow handling, Hashing functions – Mid square, Division, Folding, Digit Analysis	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject			Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total
•	2 Questions from each	•	Each question carries 9 marks.	
	module.	•	Two questions will be given from each module, out of	
•	Total of 8 Questions, each		which 1 question should be answered.	
	carrying 3 marks	•	Each question can have a maximum of 3 sub divisions.	60
			(4x9 = 36 marks)	
	(8x3 = 24 marks)			

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Compare performance of algorithms using asymptotic notations	K2
CO2	Solve real world problems efficiently using appropriate data structures like arrays, linked list, stacks and queues.	К3
CO3	Make use of nonlinear data structures like trees and graphs to design algorithms for various applications.	К3
CO4	Apply and compare various techniques for searching and sorting.	К3
CO5	Apply appropriate hash function to store and access a given dataset	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	-	1	-	-	-	-	-	-
CO2	3	2	3	1	-	1	-	-	-	-	-	-
CO3	3	2	3	1	-	1	-	-	-	-	-	-
CO4	2	2	3	1	-	1	-	-	-	-	-	-
CO5	3	2	2	1	-	1	-	-	-	-	-	-

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Fundamentals of Data Structures in C	Ellis Horowitz,SartajSahni and Susan Anderson-Freed	Universities Press							
2	Classic Data Structures	Samanta D	Prentice Hall India	2/e, 2009						

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Data Structures: A Pseudocode Approach with C	Richard F. Gilberg, Behrouz A. Forouzan	Cengage Learning	2/e, 2005		
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication	1983		
3	Introduction to Data Structures with Applications	Tremblay J. P. and P. G. Sorenson	Tata McGraw Hill	1995		
4	Advanced Data Structures	Peter Brass	Cambridge University Press	2008		
5	Theory and Problems of Data Structures	Lipschuts S.	Schaum's Series	1986		

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://nptel.ac.in/courses/106102064 https://youtu.be/zWg7U0OEAoE https://youtu.be/g1USSZVWDsY https://youtu.be/PGWZUgzDMYI				
2	https://nptel.ac.in/courses/106102064 https://youtu.be/PGWZUgzDMYI				
3	https://nptel.ac.in/courses/106102064 https://youtu.be/tORLeHHtazM https://youtu.be/eWeqqVpgNPg https://youtu.be/9zpSs845wf8				
4	https://youtu.be/KW0UvOW0XIo https://youtu.be/gtWw_8VvHjk				

SEMESTER S5

INTRODUCTION TO MACHINE LEARNING

Course Code	PEEET527	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST305, UCEST105	Course Type	PE - Theory

Course Objectives:

- 1. To equip students with overall understanding of the underlying mathematical and algorithmic concepts of machine learning.
- **2.** To understand and perform various data pre-processing and visualization in using various python libraries
- 3. To implement various machine learning algorithms using python.
- **4.** To evaluate and optimize machine learning models for diverse applications

SYLLABUS

Module No.	Syllabus Description		
	Mathematics for Machine Learning Association of two variables -		
	Discrete variables, Ordinal and Continuous variable, Probability calculus -		
1	Summary Statistics, probability distributions, Inductive statistics - Point	9	
	estimation, Interval estimation, Hypothesis Testing - Basic definitions, t-test,		
	F-test, ANOVA		
	Introduction to machine learning algorithms - supervised vs.		
	unsupervised learning, regression and classification, linear discriminant		
2	analysis, decision trees, random forests, and bagging. Unsupervised -	9	
	Principal Component Analysis, clustering algorithms, SVMs, re-sampling		
	methods: cross-validation and bootstrapping		
_	Introduction to python for ML - essential python libraries and ML		
3	functions (NumPy, pandas, Matplotlib, SciKit-Learn), working with data sets		

	- data cleaning and pre-processing functions, Data visualization- bar, scatter, histogram, heatmaps.	
4	ML algorithm implementation with python - Linear Regression Simple and multiple linear regression, Model evaluation metrics: MSE, RMSE, R², Classification Algorithms - Logistic regression, k-Nearest Neighbours (k-NN), Decision Trees, Model evaluation metrics: accuracy, precision, recall, F1-score, Support Vector Machines (SVM), Ensemble methods (Random Forest, Gradient Boosting), Clustering Algorithms -K-means clustering, Hierarchical clustering.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the relationships between different types of variables (discrete, ordinal, and continuous) using summary statistics and probability distributions, and perform hypothesis testing including t-tests and F-tests.	K2
CO2	Apply different supervised and unsupervised machine learning algorithms (such as regression, classification, clustering, and dimensionality reduction) and their appropriate applications in solving real-world problems.	К3
CO3	Apply essential Python libraries (NumPy, Pandas, Matplotlib) to clean, pre-process, and visualize data sets, preparing data for machine learning applications.	К3
CO4	Implement machine learning algorithms (such as linear regression, logistic regression, k-Nearest Neighbours, Decision Trees, SVM, Random Forest, Gradient Boosting, and clustering) in Python and evaluate their performance using relevant metrics.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3	2	2								2
CO3	3	3	2									2
CO4	3	3	2	3								2
CO5												

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Mathematics for Machine Learning	Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong	Cambridge University Press	1st Edition, 2020		
2	Pattern Recognition and Machine Learning	Christopher M. Bishop	Springer	1st Edition, 2006		
3	Python Data Science Handbook: Essential Tools for Working with Data	Jake Vander Plas	O'Reilly Media	1st Edition, 2016		
4	Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow	Aurélien Géron	O'Reilly Media	2nd Edition, 2019		
5	Introduction to Machine Learning with Python: A Guide for Data Scientists	Andreas C. Müller, Sarah Guido	O'Reilly Media	1st Edition, 2016		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
	The Elements of Statistical	Trevor Hastie, Robert		2nd		
1	Learning: Data Mining,	Tibshirani, Jerome	Springer	Edition,		
	Inference and Prediction	Friedman		2009		
2	Data Mining: Concepts and	Jiawei Han, Micheline	Managan Vayafmann	3rd Edition,		
2	Techniques	Kamber, Jian Pei	Morgan Kaufmann	2011		
	Python Machine Learning:					
3	Machine Learning and Deep	Sebastian Raschka,	Doolet Dublishing	3rd Edition,		
3	Learning with Python, scikit-	Vahid Mirjalili	Packt Publishing	2019		
	learn, and Tensor Flow 2					
4	Applied Predictive Modelling	Max Kuhn, Kjell Johnson	Springer	1st Edition, 2013		

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
Module - I	lule - I https://onlinecourses.nptel.ac.in/noc23_cs18/preview			
Module - II	https://onlinecourses.nptel.ac.in/noc23_cs18/preview			
Module - III	https://nptel.ac.in/courses/106105152			
Module - IV	https://nptel.ac.in/courses/106105152			

SEMESTER S5

COMPUTER NETWORK SYSTEMS

Course Code	PEEET528	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Theory

Course Objectives:

1. To familiarize various types of layers in OSI model.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction – Uses of computer networks, Network hardware, Network software - Protocol hierarchies – Design issues for the layers – Connection oriented versus connectionless service. Reference models – The OSI reference model, The TCP/IP reference model, Comparison of OSI and TCP/IP reference models. Physical Layer – Transmission media overview – Twisted pair and fiber	8
	optics. Performance indicators – Bandwidth, Throughput, Latency, Bandwidth–Delay product.	
2	Data link layer - Data link layer design issues, Error detection and correction, Sliding window protocols. Medium Access Control (MAC) sublayer, Channel allocation problem, Multiple access protocols – CSMA, Collision free protocols. Ethernet – Switched Ethernet, fast Ethernet and gigabit Ethernet. Wireless LANs - 802.11 – Architecture and protocol stack, Use of Bridges, Repeaters, Hubs, Switches, Routers and Gateways.	8
3	Network layer design issues. Routing algorithms - The Optimality Principle, Shortest path routing, Flooding, Distance Vector Routing, Link State Routing, Routing for mobile hosts. Congestion control algorithms — Approaches to congestion control (Details not required). Quality of Service (QoS) - Requirements, Techniques for achieving good QoS — Traffic shaping, Packet scheduling.	12

	IPv4 protocol, IP addresses, IPv6, Internet Control Protocols - Internet			
	Control Message Protocol (ICMP), Address Resolution Protocol (ARP),			
	Dynamic Host Configuration Protocol (DHCP). Open Shortest Path First			
	(OSPF) Protocol, Border Gateway Protocol (BGP), Internet multicasting.			
	Transport service – Services provided to the upper layers, Transport service			
	primitives. User Datagram Protocol (UDP) - Introduction, Remote			
	procedure call. ELECTRICAL AND ELECTRONICS Transmission			
	Control Protocol (TCP) - Introduction, TCP service model, TCP protocol,			
TCP segment header, Connection establishment & release. Application		8		
	Layer -Domain Name System (DNS) - overview of DNS name space and			
	Name servers, Electronic mail – Architecture and services- SMTP – IMAP			
	- POP3, World Wide Web (WWW) - Architectural overview, HTTP, File			
	Transfer Protocol (FTP).			

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination- 1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the computer networks, layered architecture, protocols and physical media used for setting up a network.	K2
CO2	Identify the role of Data link layer, role of the MAC sub layer and networking devices in Ethernets and wireless LANs	K2
CO3	Explain routing algorithms and congestion control algorithms and ways to achieve good quality of service, IP address classes, ICMP protocols and other external routing protocols.	K2
CO4	Explain the services provided by the transport layer and application layer.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											2
CO2	2	1										2
CO3	2	1										2
CO4	2											2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Computer Networks	Andrew S. Tanenbaum	Pearson Education India.	5 th edition
2	Data Communication and Networking	Behrouz A Forouzan	McGraw Hill Education	5 th edition

		Reference Books			
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Computer Networks – A Systems Approach	Larry L Peterson and Bruce S Dave	Morgan Kaufmann	5 th edition	
2	Computer Networking and the Internet	Fred Halsall		5 th edition	
3	Computer Networking: A Top- Down Approach	James F. Kurose, Keith W. Ross		6 th edition	
4	An Engineering Approach to Computer Networks	Keshav	Addison Wesley	1998	
5	TCP/IP Illustrated Volume 1,	W. Richard Stevens.	Addison-Wesley	2005	
6	Computer Networking with Internet Protocols,.	William Stallings	Prentice-Hall	2004	

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptel.ac.in/courses/106105183 https://nptel.ac.in/courses/106106091				
2	https://nptel.ac.in/courses/106105183 https://nptel.ac.in/courses/106106091				
3	https://nptel.ac.in/courses/106105183 https://nptel.ac.in/courses/106106091				
4	https://nptel.ac.in/courses/106105183 https://nptel.ac.in/courses/106106091				

SEMESTER: S5

AC MACHINES LAB

Course Code	PCEEL507	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET402	Course Type	Lab

Course Objectives:

1. Provide practical experience in operation and testing of synchronous and induction machines

Expt. No.	Experiments					
	PART A – INDUCTION MACHINES					
	Load test on a 3-phase squirrel-cage induction motor (CO1)					
	Objectives:					
1	a) Start the motor using star-delta starter / auto-transformer starter					
	b) Determine the performance characteristics					
	Load test on a 3-phase slip-ring induction motor (CO1)					
	Objectives:					
2	a) Start the motor using rotor resistance starter / auto-transformer starter					
	b) Determine the performance characteristics					
	No-load and blocked-rotor tests on a 3-phase squirrel-cage induction motor (CO1)					
	Objectives:					
3	a) Determine the equivalent circuit parameters					
	b) Predetermine its performance at rated speed from equivalent circuit					
	c) Predetermine its performance on full-load from circle diagram					
	No-load and blocked-rotor tests on 3-phase pole-changing induction motor (CO1)					
	Objectives:					
4	a) Conduct no-load and blocked-rotor tests in two different pole configurations					
	(example 4 pole and 8 pole)					
	b) Predetermine its performance on full-load from circle diagrams in both cases					

	OR				
	Load test on 3-phase pole-changing induction motor (CO1)				
	Objectives:				
	a) Conduct load tests in two different pole configurations (example 4 pole and 8				
	pole)				
	b) Determine the performance characteristics				
	Variation of starting torque with rotor resistance in 3-phase slip-ring induction				
	motor (CO1)				
_	Objectives:				
5	a) Plot the variation of starting torque against rotor resistance				
	b) Determine the external rotor resistance for which maximum starting torque is				
	obtained				
	Brake test on 1-phase induction motor (CO6)				
6	Objectives:				
	Plot the performance characteristics				
	No-load and blocked-rotor tests on 1-phase induction motor (CO6)				
7	Objectives:				
	a) Determine the equivalent circuit				
	b) Predetermine the efficiency on full-load from equivalent circuit				
	3-phase induction machine working as motor and generator (CO2)				
8	Objectives:				
8	Determine the performance of 3-phase induction machine working as motor and				
	generator				
	Speed control of 3-phase squirrel-cage induction motor using V/f technique (CO3)				
9	Objectives:				
	Perform the speed control of a 3-phase squirrel-cage induction motor by varying				
	supply voltage and frequency				
	PART B –SYNCHRONOUS MACHINES				
	Voltage regulation of 3-phase synchronous generator by EMF and MMF method				
	(CO4)				
10	Objectives:				
	a) Conduct OC and SC tests.				
	b) Predetermine the full-load voltage regulation at different power factors.				

	Voltage regulation of 3-phase synchronous generator by direct loading (CO4)
4.4	Objectives:
11	a) Determine the voltage regulation at full-load or half full-load at any power factor.
	b) Compare the voltage regulation with emf method.
	Voltage regulation of 3-phase synchronous generator by Potier method (CO4)
10	Objectives:
12	a) Conduct OC, SC and ZPFC tests.
	b) Predetermine the full-load voltage regulation at different power factors.
	V curves and Inverted V curves of synchronous machines (CO5)
	Objectives:
	a) Synchronise the 3-phase alternator using dark lamp or bright lamp method
13	b) Plot the V curves and inverted V curves of synchronous motor on no-load and
	half/full load.
	c) Plot the V curves and inverted V curves of synchronous generator on half/full
	load.
	Slip teston 3-phase salient-pole synchronous machines (CO4)
	Objectives:
	a) Determine direct-axis and quadrature-axis synchronous reactances
14	b) Predetermine the full-load voltage regulation at different power factors
	c) Predetermine the excitation and reluctance power with 120% excitation voltage
	and hence plot the power angle characteristics
NOTE: A	minimum of TWELVE experiments are mandatory out of the fourteen listed.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

	Preparation/Pre-Lab Work experiments, Viva and		
A 44 J	Timely	Internal	T-4-1
Attendance	completion of Lab Reports / Record	Examination	Total
	(Continuous Assessment)		
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyze the performance of 3-phase squirrel cage and slip ring induction motor at different loads.	К3
CO2	Analyze the performance of line excited induction machine working in motoring and generating modes	К3
CO3	Apply V/f control techniques for the speed control of 3-phase induction motors	К3
CO4	Determine the voltage regulation of 3-phase cylindrical rotor type and salient pole type synchronous generators	К3
CO5	Construct V and inverter V curves of synchronous machines at constant load.	К3
CO6	Compute the efficiency of single-phase induction motor at a specified load.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		2					3	2		3
CO2	3	2		2					3	2		3
CO3	3	2		2					3	2		3
CO4	3	2		2					3	2		3
CO5	3	2		2					3	2		3
CO6	3	2		2					3	2		3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Electrical Machinery	P.S. Bimbhra	Khanna Publishers	7 th edition 2021					
2	Electric Machines	D P Kothari & I J Nagrath	Tata McGraw Hill	5 th edition 2017					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session. Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S5
MICROPROCESSORS AND EMBEDDED SYSTEMS LAB

Course Code	PCEEL508	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. Achieve proficiency in 8051 microcontroller assembly language and embedded C programming.
- 2. Acquire practical experience with Arduino.

Expt. No.	Experiments
1	ALP programming for (a) Data transfer: Block data movement, exchanging data, sorting, finding largest element in an array. (b)Arithmetic operations: Addition, Subtraction, Multiplication and Division. Comparing square and cube of 16 bit numbers.
2	ALP programming for the implementation of counters: Hex up and down counters, BCD up/down counters.
3	(a)ALP programming for implementing Boolean and logical instructions: bit manipulation.(b)ALP programming for implementing conditional call and return instructions: Toggle the bits of port 1 by sending the values of 55H and AAH continuously, Factorial of a number.
4	ALP program for Generation of delay.
5	C program for stepper motor control.

6	C program for DC motor direction and speed control using PWM.
7	C program for alphanumerical LCD panel/keyboard interface.
8	C program for ADC interfacing.
9	Demo experiment using 8051 Microcontroller programming. ALP programming for implementation code conversion- BCD to ASCII, ASCII to BCD, ASCII to Decimal, Decimal to ASCII, Hexadecimal to Decimal and Decimal to Hexadecimal
10	a)Familiarization of Aurdino IDE. b)LED blinking with different ON/OFF delay timings with (i) inbuilt LED (ii) externally interfaced LED.
11	Arduino based voltage measurement of 12 V solar PV module /12 V battery and displaying the measured value using 12C LCD display
12	Demo experiments on Arduino / Raspberry Pi to upload /retrieve temperature and humidity data to thing speak cloud.
13	Arduino based DC current measurement using Hall effect current sensor displaying the value using 12C LCD module.
14	Directional control of the DC motor using Arduino.
15	Interfacing of the relay with Arduino.
16	Building intrusion detection system with Arduino and Ultrasonic sensor.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop and execute ALP programs for solving arithmetic and logical problems using microcontroller	К3
CO2	Develop embedded C programming using instruction sets of 8051	К3
CO3	Examine circuits for interfacing processor with various peripheral devices	K4
CO4	Design a microcontroller based system with the help of various interfacing devices	K6
CO5	Design an Arduino based system with the help of various interfacing devices	K6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	The 8051 microcontroller	Kenneth Ayala	Cengage Learning	The 8051 microcontroller				
2	Microprocessors and Microcontrollers	R. LylaB.Das	Pearson Education	Microprocessors and Microcontrollers				

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	The 8051 Microcontroller	I. ScottMacKenzie,Raphael CW.Phan						
2	The 8051 microcontroller and embedded systems	Muhammad Ali Mazidi	Pearson Education					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted