# Analysis of Time Series

# Chapter 7: Introduction to time series analysis in the frequency domain

### Edward L. Ionides

### Contents

| 1 | Frequency components                                               |
|---|--------------------------------------------------------------------|
|   | 1.1 Eigenvalues and eigenvectors of a stationary covariance matrix |
| 2 | The Fourier transform                                              |
|   | 2.1 A normal approximation                                         |
| 3 | The periodogram to estimate the spectral density                   |
| 4 | Frequency domain data analysis                                     |
|   | 4.1 Smoothing the periodogram                                      |
|   | 4.2 Tapering before calculating the periodogram                    |
|   | 4.3 Fitting an AR model to estimate the spectrum                   |

### 1 Frequency components

### Frequency components of a time series

- 1. A time series dataset (like any other sequence of numbers) can be written as a sum of sine and cosine functions with varying frequencies.
- 2. This is called the **Fourier representation** or **Fourier transform** of the data.
- 3. The coefficients corresponding to the sine and cosine at each frequency are called **frequency components** of the data.
- 4. Looking at which frequencies have large and small components can help to identify appropriate models.
- 5. Looking at the frequency components present in our models can help to assess whether they are doing a good job of describing our data.

### 1.1 Eigenvalues and eigenvectors of a stationary covariance matrix

### What is the spectrum of a time series model?

• We begin by reviewing eigenvectors and eigenvalues of covariance matrices. This eigen decomposition also arises elsewhere in statistics, e.g. principle component analysis.

- A univariate time series model is a vector-valued random variable  $Y_{1:N}$  which we suppose has a covariance matrix V which is an  $N \times N$  matrix with entries  $V_{mn} = \text{Cov}(Y_m, Y_n)$ .
- V is a non-negative definite symmetric matrix, and therefore has N non-negative eigenvalues  $\lambda_1, \ldots, \lambda_N$  with corresponding eigenvectors  $u_1, \ldots, u_N$  such that

$$Vu_n = \lambda_n u_n. \tag{1}$$

• A basic property of these eigenvectors is that they are orthogonal, i.e.,

$$u_m^{\mathrm{T}} u_n = 0 \text{ if } m \neq n. \tag{2}$$

- We may work with **normalized** eigenvectors that are scaled such that  $u_n^{\mathsf{T}} u_n = 1$ .
- ullet We can also check that the components of Y in the directions of different eigenvectors are uncorrelated.
- Since  $Cov(AY, BY) = ACov(Y, Y)B^{T}$ , we have

$$Cov(u_m^{\mathsf{T}} Y, u_n^{\mathsf{T}} Y) = u_m^{\mathsf{T}} Cov(Y, Y) u_n$$

$$= u_m^{\mathsf{T}} V u_n$$

$$= \lambda_n u_m^{\mathsf{T}} u_n$$

$$= \begin{cases} \lambda_n & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

For the last equality, we have supposed that the eigenvectors are normalized.

- $\bullet$  If we knew V, we could convert the model to a representation where the observable random variables are uncorrelated.
- Transforming the data into its components in the directions of the eigenvectors of the model allows us to use an uncorrelated model. In the Gaussian case, we have independence.

### Eigenvectors for the covariance matrix of an AR(1) model with N=100 and $\phi=0.8$

```
N <- 100; phi <- 0.8; sigma <- 1
V <- matrix(NA,N,N)
for(m in 1:N) for(n in 1:N) V[m,n]<-sigma^2*phi^abs(m-n)/(1-phi^2)
V_eigen <- eigen(V,symmetric=TRUE)
matplot(V_eigen$vectors[,1:5],type="l")
matplot(V_eigen$vectors[,6:9],type="l")</pre>
```





### Eigenvalues for the covariance matrix of an AR(1) model with N=100 and $\phi=0.8$

- We see that the eigenvectors, plotted as functions of time, look like sine wave oscillations.
- The eigenvalues are

```
round(V_eigen$values[1:9],2)
[1] 24.59 23.44 21.73 19.70 17.57 15.51 13.61 11.91 10.42
```

- We see that the eigenvalues are decreasing. For this model, the components of  $Y_{1:N}$  with highest variance correspond to long-period oscillations.
- Are the sinusoidal eigenvectors a special feature of this particular time series model, or something more general?

### The eigenvectors for a long stationary time series model

- Suppose  $\{Y_n, -\infty < n < \infty\}$  has a stationary autocovariance function  $\gamma_h$ .
- We write  $\Gamma$  for the infinite matrix with entries

$$\Gamma_{m,n} = \gamma_{m-n}$$
 for all integers  $m$  and  $n$ . (3)

• An infinite eigenvector is a sequence  $u = \{u_n, -\infty < n < \infty\}$  with corresponding eigenvalue  $\lambda$  such that

$$\Gamma u = \lambda u,\tag{4}$$

or, writing out the matrix multiplication explicitly,

$$\sum_{n=-\infty}^{\infty} \Gamma_{m,n} u_n = \lambda u_m \quad \text{for all } m.$$
 (5)

• We look for a sinusoidal solution,  $u_n = e^{i\omega n}$ .

$$\sum_{n=-\infty}^{\infty} \Gamma_{m,n} u_n = \sum_{n=-\infty}^{\infty} \gamma_{m-n} u_n$$

$$= \sum_{h=-\infty}^{\infty} \gamma_h u_{m-h} \text{ setting } h = m-n$$

$$= \sum_{h=-\infty}^{\infty} \gamma_h e^{i\omega(m-h)}$$

$$= e^{i\omega m} \sum_{h=-\infty}^{\infty} \gamma_h e^{-i\omega h}$$

$$= u_m \lambda(\omega) \text{ for } \lambda(\omega) = \sum_{h=-\infty}^{\infty} \gamma_h e^{-i\omega h}$$

Question 7.1. Why does this calculation show that  $u_n(\omega) = e^{i\omega n}$  is an eigenvector for  $\Gamma$  for any choice of  $\omega$ .

• The corresponding eigenvalue function,

$$\lambda(\omega) = \sum_{h=-\infty}^{\infty} \gamma_h e^{-i\omega h},\tag{6}$$

is called the spectral density function. It is the Fourier transform of  $\gamma_h$  at frequency  $\omega$ .

• An integral version of (6) is used in applied math and engineering:

$$\lambda(\omega) = \int_{-\infty}^{\infty} \gamma(x)e^{-i\omega x} dx. \tag{7}$$

We obtain (6) from (7) when  $\gamma(x)$  is a function with point mass  $\gamma_h$  at integer value x = h.

- We can add a factor of  $2\pi$  in the exponent of (7) to change units of frequency from radians per unit time to cycles per unit time.
- It was convenient to do this calculation with complex exponentials. However, writing

$$e^{i\omega n} = \cos(\omega n) + i\sin(\omega n),\tag{8}$$

and noting that  $\gamma_h$  is real, we see that the real and imaginary parts of  $\lambda(\omega) = \sum_{h=-\infty}^{\infty} \gamma_h e^{-i\omega h}$  give us two real eigenvectors,  $\cos(\omega n)$  and  $\sin(\omega n)$ .

**Question 7.2.** Review: how would you demonstrate the correctness of the identity  $e^{i\omega} = \cos(\omega) + i\sin(\omega)$ .

- Assuming that this computation for an infinite sum represents a limit of increasing dimension for finite matrices, we have found that the eigenvectors for any long, stationary time series model are approximately sinusoidal.
- For the finite time series situation, we only expect N eigenvectors for a time series of length N. We have one eigenvector for  $\omega = 0$ , two eigenvectors corresponding to sine and cosine functions with frequency

$$\omega_n = 2\pi n/N$$
, for  $0 < n < N/2$ , (9)

and, if N is even, a final eigenvector with frequency

$$\omega_{(N/2)} = \pi. \tag{10}$$

- These sine and cosine vectors are the Fourier basis.
- The time series  $y_{1:N}^*$  is the **time domain** representation of the data. Transforming to the Fourier basis gives the **frequency domain** representation.

### 2 The Fourier transform

Frequency components and the Fourier transform

• The **frequency components** of  $Y_{1:N}$  are the components in the directions of these eigenvectors. Equivalently, we could say they are the representation of  $Y_{1:N}$  in the Fourier basis. Specifically, we write

$$C_n = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} Y_k \cos(\omega_n k) \text{ for } 0 \le n \le N/2,$$

$$S_n = \frac{1}{\sqrt{N}} \sum_{k=1}^N Y_k \sin(\omega_n k) \text{ for } 1 \le n \le N/2.$$

• Similarly, the **frequency components** of data  $y_{1:N}^*$  are

$$c_n = \frac{1}{\sqrt{N}} \sum_{k=1}^N y_k^* \cos(\omega_n k) \text{ for } 0 \le n \le N/2,$$

$$s_n = \frac{1}{\sqrt{N}} \sum_{k=1}^N y_k^* \sin(\omega_n k) \text{ for } 1 \le n \le N/2.$$

• The frequency components of the data are often written as real and imaginary parts of the **discrete** Fourier transform,

$$d_n = \frac{1}{\sqrt{N}} \sum_{k=1}^N y_k^* e^{2\pi i n/N}$$
$$= c_n + i s_n$$

- Here, we have introduced a normalizing constant of  $1/\sqrt{N}$ . There are various choices about signs and factors of  $2\pi$ ,  $\sqrt{2\pi}$  and  $\sqrt{N}$  that can—and are—made in the definition of the Fourier transform in various situations.
- One should try to be consistent, and also be careful: the fft command in R, for example, does not include this constant.
- fft is an implementation of the fast Fourier transform algorithm, which enables computation of all the frequency components with order  $N \log(N)$  computation. At first consideration, computing the frequency components appears to require a matrix multiplication involving order  $N^3$  additions and multiplications. When  $N = 10^5$  or  $N = 10^6$  this difference becomes important!
- The first frequency component,  $C_0$ , is something of a special case, since it has mean  $\mu = \mathbb{E}[Y_n]$  whereas the other components have mean zero.
- In practice, we subtract a mean before computing the periodogram, which is equivalent to removing the frequency component for frequency zero.
- The frequency components  $(C_{0:N/2}, S_{1:N/2})$  are asymptotically uncorrelated. They are constructed as a sum of a large number of terms, with the usual  $1/\sqrt{N}$  scaling for a central limit theorem. So, it may not be surprising that a central limit theorem applies, giving asymptotic justification for the following normal approximation.
- Moving to the frequency domain (i.e., transforming the data to its frequency components) has **decorrelated** the data. Statistical techniques based on assumptions of independence are appropriate when applied to frequency components.

### 2.1 A normal approximation

### Normal approximation for the frequency components

•  $(C_{1:N/2}, S_{1:N/2})$  are approximately independent, mean zero, Normal random variables with

$$Var(C_n) = Var(S_n) \approx 1/2\lambda(\omega_n).$$
 (11)

•  $C_0/\sqrt{N}$  is approximately Normal, mean  $\mu$ , independent of  $(C_{1:N/2}, S_{1:N/2})$ , with

$$Var(C_0/\sqrt{N}) \approx \lambda(0)/N. \tag{12}$$

• It follows from the normal approximation that, for  $1 \le n \le N/2$ ,

$$C_n^2 + S_n^2 \approx \lambda(\omega_n) \frac{\chi_2^2}{2},\tag{13}$$

where  $\chi^2_2$  is a chi-squared random variable on two degrees of freedom.

• Taking logs, we have

$$\log\left(C_n^2 + S_n^2\right) \approx \log \lambda(\omega_n) + \log(\chi_2^2/2). \tag{14}$$

### 3 The periodogram to estimate the spectral density

• These results motivate consideration of the **periodogram**,

$$I_n = c_n^2 + s_n^2 = |d_n|^2 (15)$$

as an estimator of the spectral density.

- $\log I_n$  can be modeled as an estimator of the log spectral density with independent, identically distributed errors.
- We see from the normal approximation that a signal-plus-white-noise model is appropriate for estimating the log spectral density using the log periodogram.

### Interpreting the spectral density as a power spectrum

- The power of a wave is proportional to the square of its amplitude.
- The spectral density gives the mean square amplitude of the components at each frequency, and therefore gives the expected power.
- The spectral density function can therefore be called the **power spectrum**.

**Question 7.3**. compute the spectrum of an AR(1) model.

Question 7.4. compute the spectrum of the MA(q) moving mean,

$$Y_n = \frac{1}{q+1} \sum_{k=0}^{q} \epsilon_{n-k}, \tag{16}$$

where  $\{\epsilon_n\}$  is white noise with variance  $\sigma^2$ .

### 4 Frequency domain data analysis

Michigan winters revisited: Frequency domain methods

```
y <- read.table(file="ann_arbor_weather.csv",header=TRUE)
head(y[,1:9],3)

Year Low High Hi_min Lo_max Avg_min Avg_max Mean Precip
1900 -7 50 36 12 18 34.7 26.3 1.06
1901 -7 48 37 20 17 31.8 24.4 1.45
1902 -4 41 27 11 15 30.4 22.7 0.60
```

- We have to deal with the NA measurement for 1955. A simple approach is to replace the NA by the mean.
- What other approaches can you think of for dealing with this missing observation?
- What are the strengths and weaknesses of these approaches?

```
low <- y$Low
low[is.na(low)] <- mean(low, na.rm=TRUE)</pre>
```

### 4.1 Smoothing the periodogram

# Unsmoothed periodogram



• To smooth, we use the default periodogram smoother in R

spectrum(low, spans=c(3,5,3), main="Smoothed periodogram",
 ylim=c(15,100))



Question 7.5. What is the default periodogram smoother in R?

Question 7.6. How should we use it?

### 4.2 Tapering before calculating the periodogram

More details on computing and smoothing the periodogram

- To see what R actually does to compute and smooth the periodogram, type ?spectrum.
- This will lead you to type ?spec.pgram.
- You will see that, by default, R removes a linear trend, fitted by least squares. This may often be a sensible thing to do. Why?
- You will see that R then multiplies the data by a quantity called a taper, computed by spec.taper.
- The taper smooths the ends of the time series and removes high-frequency artifacts arising from an abrupt start and end to the time series.
- Formally, from the perspective of the Fourier transform, the time series takes the value zero outside the observed time points 1: N. The sudden jump to and from zero at the start and end produces unwanted effects in the frequency domain.

The default taper in R smooths the first and last p = 0.1 fraction of the time points, by modifying the detrended data  $y_{1:N}^*$  to tapered version  $z_{1:N}$  defined by

$$z_n = \begin{cases} y_n^* (1 - \cos(\pi n/Np))/2 & \text{if } 1 \le n < Np \\ y_n^* & \text{if } Np \le n \le N(1-p) \\ y_n^* (1 - \cos(\pi [N+1-n]/Np))/2 & \text{if } N(1-p) < n \le N \end{cases}$$

```
plot(spec.taper(rep(1,100)),type="1",
  main="Default taper in R, for a time series of length 100")
abline(v=c(10,90),lty="dotted",col="red")
```

#### Default taper in R, for a time series of length 100



### 4.3 Fitting an AR model to estimate the spectrum

#### Spectral density estimation by fitting a model

Another standard way to estimate the spectrum is to fit an AR(p) model with p selected by AIC.

```
spectrum(low,method="ar",
  main="Spectrum estimated via AR model picked by AIC")
```

### Spectrum estimated via AR model picked by AIC



### Units of frequency

- It is always good practice to be explicit about the units of quantities. For frequency domain analysis there are different options for units of frequency.
- For a frequency component corresponding to  $\sin(2\pi\omega n)$  or  $\cos(2\pi\omega n)$ , we say that the frequency is  $\omega$  cycles per unit time.
- Suppose the time series consists of equally spaced observations, with  $t_n t_{n-1} = \Delta$  years. Then we say that the frequency is  $\omega/\Delta$  cycles per year.
- For a frequency component corresponding to  $\sin(\nu t)$  or  $\cos(\nu t)$ , we say that the frequency is  $\nu$  radians per unit time.

#### Units for the period

• The **period** of an oscillation is the time for one cycle. So, when frequency is measured in cycles per time, we have

$$period = \frac{1}{frequency}.$$
 (17)

Thus, for a frequency component corresponding to  $\sin(2\pi\omega n)$  or  $\cos(2\pi\omega n)$ , the period is  $1/\omega$  observation intervals.

• When the observation intervals have constant time length (years, seconds, etc) we usually use those units for the period.

### Further reading

• Sections 4.1 to 4.3 of Shumway and Stoffer (2017) cover similar topics to this chapter.

### License, acknowledgments, and links

- Licensed under the Creative Commons Attribution-NonCommercial license. 

  Please share and remix non-commercially, mentioning its origin.
- The materials builds on previous courses.
- Compiled on February 12, 2021 using R version 4.0.3.

#### Back to course homepage

# References

Shumway RH, Stoffer DS (2017). Time Series Analysis and its Applications: With R Examples. Springer. URL http://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf.