

Big Mart Sales Prediction

Online 🛗

26-05-2016 12:01 AM to 31-08-2020 11:59 PM

31 DAYS F 29

1 6 s HOURS

2 37243
Registered

Prizes

Problem

Registered

ENDS IN

About

Problem Statement

Solution Checker

My Submissions

Leaderboard

Discuss

Sales Prediction for Big Mart Outlets

The data scientists at BigMart have collected 2013 sales data for 1559 products across 10 stores in different cities. Also, certain attributes of each product and store have been defined. The aim is to build a predictive model and predict the sales of each product at a particular outlet.

Using this model, BigMart will try to understand the properties of products and outlets which play a key role in increasing sales.

Please note that the data may have missing values as some stores might not report all the data due to technical glitches. Hence, it will be required to treat them accordingly.

Data Dictionary

We have train (8523) and test (5681) data set, train data set has both input and output variable(s). You need to predict the sales for test data set.

Train file: CSV containing the item outlet information with sales value

Variable	Description				
Item_Identifier	Unique product ID				
Item_Weight	Weight of product				
Item_Fat_Content	Whether the product is low fat or not				
	The % of total display area of all products in a store allocated to the particular				
Item_Visibility	product				
Item_Type	The category to which the product belongs				
Item_MRP	Maximum Retail Price (list price) of the product				
Outlet_Identifier	Unique store ID				
Outlet_Establishment_Year	The year in which store was established				
Outlet_Size	The size of the store in terms of ground area covered				
Outlet_Location_Type	The type of city in which the store is located				
Outlet_Type	Whether the outlet is just a grocery store or some sort of supermarket				
	Sales of the product in the particular store. This is the outcome variable to be				
Item_Outlet_Sales	predicted.				

Test file: CSV containing item outlet combinations for which sales need to be forecasted

Variable	Description
ltom Idontifior	I bigue product ID

item_identinei	Unique product in		
Item_Weight	Weight of product		
Item_Fat_Content	Whether the product is low fat or not		
	The % of total display area of all products in a store allocated to the particular		
Item_Visibility	product		
Item_Type	The category to which the product belongs		
Item_MRP	Maximum Retail Price (list price) of the product		
Outlet_Identifier	Unique store ID		
Outlet_Establishment_Year	The year in which store was established		
Outlet_Size	The size of the store in terms of ground area covered		
Outlet_Location_Type	et_Location_Type The type of city in which the store is located		
Outlet_Type	Whether the outlet is just a grocery store or some sort of supermarket		

Submission file format

Variable	Description
Item_Identifier	Unique product ID
Outlet_Identifier	Unique store ID
Item Outlet Sales	Sales of the product in the particular store. This is the outcome variable to be predicted.

How to Make a Submission?

Evaluation Metric

Your model performance will be evaluated on the basis of your prediction of the sales for the test data (test.csv), which contains similar datapoints as train except for the sales to be predicted. Your submission needs to be in the format as shown in sample submission.

We at our end, have the actual sales for the test dataset, against which your predictions will be evaluated. We will use the **Root Mean Square Error** value to judge your response.

Public and Private Split

Test file is further divided into Public (25%) and Private (75%)

- Your initial responses will be checked and scored on the Public data.
- The final rankings would be based on your private score which will be published once the competition is over.

Guidelines for Final Submission

Please ensure that your final submission includes the following:

How to Set Final Submission?

edback 📵

Data

	Analytics Vidhya	Data Scientists	Companies	Visit us
	About Us	Blog	Post Jobs	f in 🖸
	Our Team	Hackathon	Trainings	
	Careers	Discussions	Hiring Hackathons	y
Download App	Contact us	Apply Jobs	Advertising	

© Copyright 2013-2020 Analytics Vidhya.

Privacy Policy Terms of Use Refund Policy