Jacobian and Inverse Kinematics

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation

Professor Yu Xiang

The University of Texas at Dallas

Manipulator Jacobian

• Space Jacobian $\mathcal{V}_s = \left[\begin{array}{cccc} J_{s1} & J_{s2}(heta) & \cdots & J_{sn}(heta) \end{array} \right] \left| \begin{array}{c} heta_1 \\ \vdots \\ heta_n \end{array} \right| = J_s(heta)\dot{ heta}.$

$$J_{s1} = \mathcal{S}_1$$
 $J_{si}(\theta) = \operatorname{Ad}_{e^{[\mathcal{S}_1]\theta_1 \dots e^{[\mathcal{S}_{i-1}]\theta_{i-1}}}(\mathcal{S}_i)$ $i = 2, \dots, n_1$

Body Jacobian

$$\mathcal{V}_b = \begin{bmatrix} J_{b1}(\theta) & \cdots & J_{bn-1}(\theta) & J_{bn} \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \vdots \\ \dot{\theta}_n \end{bmatrix} = J_b(\theta)\dot{\theta}$$

$$J_{bn} = \mathcal{B}_n \quad J_{bi}(\theta) = \operatorname{Ad}_{e^{-[\mathcal{B}_n]\theta_n \dots e^{-[\mathcal{B}_{i+1}]\theta_{i+1}}}(\mathcal{B}_i) \qquad i = n-1, \dots, 1$$

Manipulator Jacobian

a spatial RRRP chain

$$J_s(\theta) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & L_1 s_1 & L_1 s_1 + L_2 s_{12} & 0 \\ 0 & -L_1 c_1 & -L_1 c_1 - L_2 c_{12} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$J_b(\theta) = [Ad_{T_{bs}}]J_s(\theta)$$

$$[Ad_T] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

Manipulator Jacobian

• Up to now, we represent the end-effector configuration by $\begin{tabular}{c} T = \left[egin{array}{cc} R & p \\ 0 & 1 \end{array} \right]$

$$\dot{T} = \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} \mathcal{V}_s \end{bmatrix} = \dot{T}T^{-1} \qquad \mathcal{V}_s = J_s(\theta)\dot{\theta} \\ [\mathcal{V}_b] = T^{-1}\dot{T} \qquad \mathcal{V}_b = J_b(\theta)\dot{\theta}$$

How to use twist?

For constant twist
$$T(t) = e^{[\mathcal{V}_s]t} \cdot T(0)$$
 $T(t) = T(0) \cdot e^{[\mathcal{V}_b]t}$

For non-constant twist (First-order integration)

$$T(k+1) = e^{[\mathcal{V}_s(k)]\Delta t} \cdot T(k)$$

$$T(k+1) = T(k) \cdot e^{[\mathcal{V}_b(k)]\Delta t}$$

Analytic Jacobian

- What if we want to use 6 variables for the end-effector configuration?
 - Translation x,y,z
 - Rotation: exponential coordinates $\; r = \hat{\omega} heta \;$

$$R(\theta) = e^{[\hat{\omega}]\theta} \qquad R(\theta) = I + \sin\theta[\hat{\omega}] + (1 - \cos\theta)[\hat{\omega}]^2$$

a minimum set of coordinates

$$q = \begin{bmatrix} r_x \\ r_y \\ r_z \\ x \\ y \\ z \end{bmatrix}$$

Analytic Jacobian

• Can we find the Jacobian for $\,\dot{q}=J_a(heta) heta$

$$\dot{q} = J_a(\theta)\dot{\theta}$$

$$q = \begin{vmatrix} r \\ x \end{vmatrix} \in \mathbb{R}^6$$

• Let's start with the body Jacobian $V_b = J_b(\theta)\dot{\theta}$

In space frame

$$\mathcal{V}_b = \left[egin{array}{c} \omega_b \ v_b \end{array}
ight] = J_b(heta)\dot{ heta} = \left[egin{array}{c} J_\omega(heta) \ J_v(heta) \end{array}
ight]\dot{ heta}$$
 Previously lectures $v_b = R^T\dot{p}$

$$\dot{x} = R_{sb}(\theta)v_b = R_{sb}(\theta)J_v(\theta)\dot{\theta}$$

$$\dot{r} = A^{-1}(r)\omega_b = A^{-1}(r)J_\omega(\theta)\dot{\theta}$$

 $\omega_b = A(r)\dot{r},$

 $A(r) = I - \frac{1 - \cos ||r||}{||r||^2} [r] + \frac{||r|| - \sin ||r||}{||r||^3} [r]^2$ Exercise 5.10 Lynch & Park

10/8/2025

Analytic Jacobian

$$\dot{q} = J_a(\theta)\dot{\theta}$$

• Can we find the Jacobian for
$$\ \dot{q}=J_a(\theta)\dot{\theta} \qquad q=\begin{bmatrix} r \\ x \end{bmatrix} \in \mathbb{R}^6$$

In space frame

$$\dot{r} = A^{-1}(r)\omega_b = A^{-1}(r)J_\omega(\theta)\dot{\theta}$$

$$\dot{x} = R_{sb}(\theta)v_b = R_{sb}(\theta)J_v(\theta)\dot{\theta}$$

$$\dot{q} = \begin{bmatrix} \dot{r} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} A^{-1}(r) & 0 \\ 0 & R_{sb} \end{bmatrix} \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$$

$$J_a(\theta) = \begin{bmatrix} A^{-1}(r) & 0 \\ 0 & R_{sb}(\theta) \end{bmatrix} \begin{bmatrix} J_{\omega}(\theta) \\ J_{v}(\theta) \end{bmatrix} = \begin{bmatrix} A^{-1}(r) & 0 \\ 0 & R_{sb}(\theta) \end{bmatrix} J_b(\theta)$$

Can we do $q(t)=q(0)+\dot{q}\,t$? No $R(t)=e^{[r(t)]}$

Inverse Kinematics

 Calculation of the joint coordinates given the position and orientation of its end-effector

End-effector transformation

$$T = \left[egin{array}{ccc} R & p \ 0 & 1 \end{array}
ight]$$
 Joint coordinates $heta$

Inverse Kinematics

ullet For a n degree-of-freedom open chain with forward kinematics T(heta) $\ heta \in \mathbb{R}^n$

- ullet Given a homogenous transformation $X\in SE(3)$
- Find solutions $\, heta\,$ such that $\,T(heta)\,=\,X\,$

Inverse Kinematics

IK can have multiple solutions

FK only has a single solution

• Find solutions θ such that

$$T(\theta) = X$$

Finding the roots of a nonlinear equation

Analytic Inverse Kinematics

- Forward kinematics $x = f(\theta)$ $f: \mathbb{R}^n \to \mathbb{R}^m$
- Desired end-effector coordinates x_d
- Objective function for the Newton-Raphson method

$$g(\theta) = x_d - f(\theta)$$

Goal

$$g(\theta_d) = x_d - f(\theta_d) = 0$$

• Initial guess θ^0

Newton-Raphson Method

Taylor expansion

$$x_d = f(\theta_d) = f(\theta^0) + \underbrace{\frac{\partial f}{\partial \theta}\Big|_{\theta^0}}_{J(\theta^0)} \underbrace{(\theta_d - \theta^0)}_{\Delta \theta} + \text{h.o.t.},$$

$$J(heta^0) \in \mathbb{R}^{m imes n}$$
 Jacobian

$$J(\theta^0)\Delta\theta = x_d - f(\theta^0)$$

Whe $J(heta^0)$ is square and invertible $\Delta heta = J^{-1}(heta^0) \left(x_d - f(heta^0)
ight)$

$$\theta^1 = \theta^0 + \Delta \theta$$

The gradient of a function represents both the direction and rate of the fastest increase of that function.

• When J is not invertible, use pseudoinverse J^{\dagger}

$$Jy=z$$
 $J\in\mathbb{R}^{m\times n},\,y\in\mathbb{R}^n,\,\mathrm{and}\,\,z\in\mathbb{R}^m$ $y^*=J^\dagger z$

$$J^{\dagger} = J^{\mathrm{T}}(JJ^{\mathrm{T}})^{-1}$$
 if J is fat, $n > m$ (called a right inverse since $JJ^{\dagger} = I$) $J^{\dagger} = (J^{\mathrm{T}}J)^{-1}J^{\mathrm{T}}$ if J is tall, $n < m$ (called a left inverse since $J^{\dagger}J = I$).

$$\Delta \theta = J^{\dagger}(\theta^0) \left(x_d - f(\theta^0) \right)$$

Newton-Raphson iterative algorithm for inverse kinematics

ullet Initialization: given $\,x_d \in \mathbb{R}^m\,$, initial guess $\, heta^0 \in \mathbb{R}^n\,$

• Set $e = x_d - f(\theta^i)$ While $||e|| > \epsilon$ for some small ϵ :

• Set
$$\theta^{i+1}=\theta^i+J^\dagger(\theta^i)e$$

• Increment i

15

- ullet How to achieve a desired end-effector configuration $T_{sd} \in SE(3)$
- Given current configuration $T_{sb}(\theta^i)$
- ullet We cannot simply compute error as $\ T_{sd} T_{sb}(heta^\imath)$
- Consider error $e=x_d-f(\theta^i)$ as a velocity vector $f(\theta_i)$

ullet Similarly, a body twist $\, \mathcal{V}_b \in \mathbb{R}^6 \,$ will cause a motion $\, T_{sb}(heta^i) \,$ to $\, T_{sd}$

10/8/2025 Yu Xiang 16

- ullet How to achieve a desired end-effector configuration $T_{sd} \in SE(3)$
- Current configuration $T_{sb}(\theta^i)$
- Desired configuration $T_{bd}(\theta^i) = T_{sb}^{-1}(\theta^i)T_{sd} = T_{bs}(\theta^i)T_{sd}$
- Body twist $[\mathcal{V}_b] = \log T_{bd}(\theta^i)$ Lynch & Park 3.3.3.2 Matrix Logarithm of Rigid-Body Motions
- Updating rule

Pseudoinverse of the body Jacobian

$$\theta^{i+1} = \theta^i + J_b^{\dagger}(\theta^i) \mathcal{V}_b$$

Inverse Velocity Kinematics

- $m{\cdot}$ Find the joint velocity $\dot{m{ heta}}$ to follow a desired end-effector trajectory $T_{sd}(t)$
- Method 1: uses inverse kinematics to compute $\; \theta_d(k\Delta t) \;$

Joint velocity
$$\dot{\theta} = \big(\theta_d(k\Delta t) - \theta((k-1)\Delta t)\big)/\Delta t$$
 interval
$$\big[(k-1)\Delta t, k\Delta t\big]$$

• Method 2: uses $J\dot{ heta}=\mathcal{V}_d$ $\dot{ heta}=J^\dagger(heta)\mathcal{V}_d$

$$[\mathcal{V}_d] = \log \left(T_{sd}((k-1)\Delta t)^{-1} T_{sd}(k\Delta t) \right)$$

10/8/2025 Yu Xiang 18

Numerical Inverse Kinematics

Goal

$$(x,y) = (0.366 \text{ m}, 1.366 \text{ m})$$

$$T_{sd} = \begin{bmatrix} -0.5 & -0.866 & 0 & 0.366 \\ 0.866 & -0.5 & 0 & 1.366 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A 2R robot

Numerical Inverse Kinematics

Forward kinematics

$$M = \left[egin{array}{cccc} 1 & 0 & 0 & 2 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight] \quad \mathcal{B}_1 = \left[egin{array}{c} 0 \ 0 \ 1 \ 0 \ 2 \ 0 \end{array}
ight] \qquad \mathcal{B}_2 = \left[egin{array}{c} 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \end{array}
ight]$$

$$T(\theta) = Me^{[\mathcal{B}]_1 \theta_1} e^{[\mathcal{B}]_2 \theta_2}$$

20

• Initial guess $\theta^0=(0,30^\circ)$

Numerical Inverse Kinematics

Compute body twist

$$T_{bd}(\theta^i) = T_{sb}^{-1}(\theta^i)T_{sd} = T_{bs}(\theta^i)T_{sd}$$
$$[\mathcal{V}_b] = \log T_{bd}(\theta^i)$$

- Compute body Jacobian $J_b(\theta) \in \mathbb{R}^{6 \times n}$ $J_{bi}(\theta) = \operatorname{Ad}_{e^{-[\mathcal{B}_n]\theta_n \dots e^{-[\mathcal{B}_{i+1}]\theta_{i+1}}}(\mathcal{B}_i)$
- Update $heta^{i+1} = heta^i + J_b^\dagger(heta^i) \mathcal{V}_b$

i	(θ_1,θ_2)	(x,y)	$\mathcal{V}_b = (\omega_{zb}, v_{xb}, v_{yb})$	$\ \omega_b\ $	$ v_b $
0	$(0.00, 30.00^{\circ})$	(1.866, 0.500)	(1.571, 0.498, 1.858)	1.571	1.924
1	$(34.23^{\circ}, 79.18^{\circ})$	(0.429, 1.480)	(0.115, -0.074, 0.108)	0.115	0.131
2	$(29.98^{\circ}, 90.22^{\circ})$	(0.363, 1.364)	(-0.004, 0.000, -0.004)	0.004	0.004
3	$(30.00^{\circ}, 90.00^{\circ})$	(0.366, 1.366)	(0.000, 0.000, 0.000)	0.000	0.000

$$\theta_d = (30^{\circ}, 90^{\circ})$$

Summary

Inverse kinematics

Newton-Raphson Method

Numerical Inverse Kinematics Algorithm

Inverse Velocity Kinematics

Further Reading

 Chapter 6 and Appendix D in Kevin M. Lynch and Frank C. Park.
 Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.