OmniXRI's Edge AI & TinyML 小學堂

歡迎加入 邊緣人俱樂部

【第11講】

案例實作一姿態估測

歐尼克斯實境互動工作室 (OmniXRI Studio) 許哲豪 (Jack Hsu)

簡報大綱

- ▶ 11.1. 姿態估測簡介
- ▶ 11.2. 姿態估測模型
- ▶ 11.3. 姿態估測評量
- ▶ 11.4. 姿態估測實作

本課程完全免費,請勿移作商業用途!

歡迎留言、訂閱、點讚、轉發,讓更多需要的朋友也能一起學習。

完整課程大綱: https://omnixri.blogspot.com/2024/02/omnixris-edge-ai-tinyml-0.html

課程直播清單: https://www.youtube.com/@omnixri1784/streams

姿態估測(Pose Estimation)

主要部位

- > 頭部
- > 注視點
- > 手部
- > 全身

估測方式

- ➤ 2D (照片、攝影機)
- ➤ 3D (深度攝影機)
- ▶ 2.5D(假3D,輸入2D,輸出3D,以平面估測立體深度)

姿態估測常見用途

常見用途

- > 人機互動
- > 運動分析
- > 組裝確認
- > 智慧零售
- > 智慧安防
- > 智慧教室
- > 安全駕駛
- **>** . . .

姿態估測(人體關鍵點)資料集

常見的2D關鍵點開放資料集

- ▶ 微軟COCO (17點)
- > CMU OpenPose (18/25點)
 - 人體骨架 (18/25點)
 - 臉部動作 (70點)
 - 手部動作 (22點)
- ➤ MPII (16點)
- ➤ Al Challenge (14點)
- > LSP (14點)
- > FLIC (9點)

姿態估測標註比較

資料來源:https://arxiv.org/abs/2204.07370

MS COCO 關鍵點資料集

Person_keypoints_val2017 範例 (JSON)

```
annotation{
   "keypoints": [x1,y1,v1,...],
   "num_keypoints": int, v=0 未標註, xy須為0
   "id": int, v=1 已標註但不可見
                       v=2 標註且可見
   "image_id": int,
   "category_id": int,
   "segmentation": RLE or [polygon],
   "area": float,
   "bbox": [x,y,width,height],
   "iscrowd": 0 or 1,
```

資料來源:https://cocodataset.org/#keypoints-2020, https://cocodataset.org/#keypoints-eval

MS COCO 關鍵點定義

Index	Key point
0	Nose
1	Left-eye
2	Right-eye
3	Left-ear
4	Right-ear
5	Left-shoulder
6	Right-shoulder
7	Left-elbow
8	Right-elbow
9	Left-wrist
10	Right-wrist
11	Left-hip
12	Right-hip
13	Left-knee
14	Right-knee
15	Left-ankle
16	Right-ankle

Categories字串

```
{
    "id": int,
    "name": str,
    "supercategory": str,
    "keypoints": [str],
    "skeleton": [edge]
}
```

關鍵點名稱 (17) 骨架連結

OpenPose 基本介紹

卡內基美濃大學(CMU) 2017年提出。

開源人體姿態專案,包含即時人體動作(2D/3D)、面部表情及手指運動偵測等。

支援Windows, Linux(Ubuntu), Mac OS。支援 CPU 及 GPU(CUDA, OpenCL)加速。

https://github.com/CMU-Perceptual-Computing-Lab/openpose

OpenPose

OpenPose 關鍵點定義

OpenPose

支援輸出格式:

- (a) 類COCO 18點
- (b) BODY 25點
- (c) 臉部70點
- (d)手部22點

姿態關鍵點轉換

MS COCO: (17點)

{0:鼻子, 1:左眼, 2:右眼, 3:左耳, 4:右耳, 5:左肩, 6:右肩, 7:左肘, 8:右肘, 9:左腕, 10:右腕, 11:左臀(腰), 12:右臀(腰), 13:左膝, 14:右膝, 15:左踝, 16:右踝}

CMU OpenPose: (18點)

{0:鼻子, 1:脖子, 2:右肩, 3:右肘, 4:右腕, 5:左肩, 6:左肘, 7:左腕, 8:右臀(腰), 9:右膝, 10:右踝, 11:左臀(腰), 12:左膝, 13:左踝, 14:左眼, 15:右眼, 16:左耳, 17:右耳}

人體姿態估測模型(OpenVINO OMZ)

Legacy Features\
Open Model Zoo\

Intel's Pre-Trained Model

Model Name ♣	Complexity (GFLOPs) 💠	Size (Mp) ♣	
human-pose-estimation-0001	15.435	4.099	OpenPose
human-pose-estimation-0005	5.9393	8.1504	ר
human-pose-estimation-0006	8.8720	8.1504	EfficientHRNet
human-pose-estimation-0007	14.3707	8.1504	J

https://docs.openvino.ai/2024/omz_models_group_intel.html#human-pose-estimation-models

	Implementation	OMZ Model Name		GFlops	mParams	
Model Name 💤	₽	₽	Accuracy 💠	♣	**	
human-pose-	PyTorch*	human-pose-	100.44437mm	18.998	5.074	
estimation-3d-0001		estimation-3d-0001	Li	ightwe	eight O	penPose
single-human-pose-	PyTorch*	single-human-pose-	69.0491%	60.125	33.165	
estimation-0001		estimation-0001	Convolu	utiona	I Pose	Machines
higher-hrnet-w32-	PyTorch*	higher-hrnet-w32-	64.64%	92.8364	28.6180	
human-pose- estimation		human-pose- estimation	Н	ligher	HRNet	

https://docs.openvino.ai/2024/omz_models_group_public.html#human-pose-estimation-models

Public Pre-Trained Model

人體姿態估測模型(OpenVINO Notebooks)

https://openvinotoolkit.github.io/openvino_notebooks/

YOLOv8 姿態估測模型及資料格式

Model	size (pixels)	mAP pose 50-95	mAP pose 50	Speed CPU ONNX (ms)	Speed A100 TensorRT (ms)	params (M)	FLOPs (B)
YOLOv8n-pose	640	50.4	80.1	131.8	1.18	3.3	9.2
YOLOv8s-pose	640	60.0	86.2	233.2	1.42	11.6	30.2
YOLOv8m-pose	640	65.0	88.8	456.3	2.00	26.4	81.0
YOLOv8l-pose	640	67.6	90.0	784.5	2.59	44.4	168.6
YOLOv8x-pose	640	69.2	90.2	1607.1	3.73	69.4	263.2
YOLOv8x-pose-p6	1280	71.6	91.2	4088.7	10.04	99.1	1066.4

Format with Dim = 2

<class-index> <x> <y> <width> <height> <px1> <py1> <px2> <py2> ... <pxn> <pyn>

Format with Dim = 3

<class-index> <x> <y> <width> <height> <px1> <p1-visibility> <px2> <py2> <p2-visibility> <pxn> <p

和 MS COCO Keypoints 定義類似

資料來源:<u>https://docs.ultralytics.com/tasks/pose/</u> <u>https://do</u>

https://docs.ultralytics.com/datasets/pose/

Yolov8 關鍵點定義

資料來源:https://chtseng.wordpress.com/2023/07/14/yolov8-pose-estimation/

和 MS COCO Keypoints 定義類似

Google MediPipe

2019/6 首次於CVPR 展示預覽版本 2023/4/3 起由 https://google.github.io/mediapipe/ 遷移至 https://developers.google.com/mediapipe

MediaPipe 主要特色

MediaPipe

免費及開源 支援CPU, GPU加速計算

多種解決方案

- 視覺
- 文字
- 聲音
- 生成式

多種開發框架

- Android
- iOS
- Python
- Web

Low-Code APIs

No-Code Studio

https://github.com/google/mediapipe

MediaPipe 解決方案

影像辨識

物件偵測

手勢辨識

人臉偵測

影像相似度

影像分割

交互式分割

手部特徵點

臉部特徵點

姿態特徵點

文字情緒

文字相似度

語系辨識

語音辨識

DEMO: https://mediapipe-studio.webapps.google.com/home

姿態估測指標

Object Keypoint Similarity (OKS) 關鍵點相似度 (COCO)

$$OKS_p = rac{\sum_i exp\{-d_{pi}^2/2S_p^2\sigma_i^2\}\delta(v_{pi}>0)}{\sum_i \delta(v_{pi}>0)}$$

Average Precision (AP) 平均精準度

(單人、多人)
$$AP = rac{\sum_p \delta(oks_p > T)}{\sum_p 1}$$

Mean Per Joint Position Error (MPJPE)

每個關節位置誤差。

$$E_{MPJPE}(f, \mathcal{S}) = \frac{1}{N_{\mathcal{S}}} \sum_{i=1}^{N_{\mathcal{S}}} \|m_{\mathbf{f}, \mathcal{S}}^{(f)}(i) - m_{\mathbf{gt}, \mathcal{S}}^{(f)}(i))\|_{2}$$

資料來源: http://vision.imar.ro/human3.6m/pami-h36m.pdf

實作範例1 — Yolov8 姿態估測 (OpenVINO Colab)

Convert and Optimize YOLOv8 keypoint detection model with OpenVINO

程式導讀:

- Prepare the PyTorch model.
- Download and prepare a dataset.
- Validate the original model.
- Convert the PyTorch model to OpenVINO IR.
- Validate the converted model.
- Prepare and run optimization pipeline.
- Compare performance of the FP32 and quantized models.
- Compare accuracy of the FP32 and quantized models.
- Live demo

https://colab.research.google.com/github/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/yolov8-optimization/yolov8-keypoint-detection.ipynb

實作範例2一手部特徵點偵測 (MediaPipe Colab)

Model name	Input shape	Quantization type
HandLandmarker (full)	192 x 192, 224 x 224	float 16

- 1. THUMB_CMC
- 2. THUMB_MCP
- 4. THUMB_TIP
- INDEX_FINGER_MCP
- 6. INDEX_FINGER_PIP
- 7. INDEX_FINGER_DIP
- 8. INDEX_FINGER_TIP
- 9. MIDDLE_FINGER_MCP
- 11. MIDDLE FINGER DIP
- 13. RING_FINGER_MCP
- 14. RING_FINGER_PIP
- 15. RING_FINGER_DIP

- 18. PINKY_PIP
- 20. PINKY_TIP

https://colab.research.google.com/github/googlesamples/mediapipe/blob/ main/examples/hand_landmarker/python/hand_landmarker.ipynb

實作範例3 —手勢辨識 (MediaPipe Colab)

Thumb Down (0.77)

Thumb Up (0.73)

Victory (0.91)

Pointing Up (0.82)

Model name	Input shape	Quantization type
HandGestureClassifier	192 x 192, 224 x 224	float 16

- 11. MIDDLE_FINGER_DIP 12. MIDDLE_FINGER_TIP 13. RING_FINGER_MCP 14. RING_FINGER_PIP 15. RING_FINGER_DIP 16. RING_FINGER_TIP 17. PINKY_MCP
 - 18. PINKY_PIP 19. PINKY_DIP 20. PINKY_TIP
- 10. MIDDLE_FINGER_PIP
- 0 Unrecognized gesture, label: Unknown
- 1 Closed fist, label: Closed_Fist
- 2 Open palm, label: Open_Palm
- Pointing up, label: Pointing_Up
- 4 Thumbs down, label: Thumb_Down
- Thumbs up, label: Thumb_Up
- Victory, label: Victory
- 7 Love, label: ILoveYou

https://colab.research.google.com/github/googlesamples/mediapipe/blob/ main/examples/gesture_recognizer/python/gesture_recognizer.ipynb

實作範例4 —姿態特徵點偵測 (MediaPipe Colab)

Model bundle	Input shape	Data type	Model Cards	Versions
Pose landmarker (lite)	Pose detector: 224 x 224 x 3 Pose landmarker: 256 x 256 x 3	float 16	info	Latest
Pose landmarker (Full)	Pose detector: 224 x 224 x 3 Pose landmarker: 256 x 256 x 3	float 16	info	Latest
Pose landmarker (Heavy)	Pose detector: 224 x 224 x 3 Pose landmarker: 256 x 256 x 3	float 16	info	Latest

	⊌ - nose
	<pre>1 - left eye (inner)</pre>
	<mark>2</mark> - left eye
	<pre>3 - left eye (outer)</pre>
	4 - right eye (inner)
	5 - right eye
20	6 - right eye (outer)
20	7 - left ear
Λ	<mark>8</mark> - right ear
	9 - mouth (left)
	10 - mouth (right)
18	11 - left shoulder
	12 - right shoulder
	13 - left elbow
	14 - right elbow
	15 - left wrist
	16 - right wrist
	17 - left pinky
	18 - right pinky
	19 - left index
	20 - right index
	21 - left thumb
	22 - right thumb
	23 - left hip
	<mark>24</mark> - right hip
	25 - left knee
	<mark>26 - ri</mark> ght knee
	27 - left ankle
	28 - right ankle
	29 - left heel
	30 - right heel
	31 - left foot index
	32 - right foot index

https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/ pose_landmarker/python/%5BMediaPipe_Python_Tasks%5D_Pose_Landmarker.ipynb

參考文獻

許哲豪·臺灣科技大學資訊工程系「人工智慧與邊緣運算實務」(2021~2023)

https://omnixri.blogspot.com/p/ntust-edge-ai.html

Haoming Chen etc., 2D Human Pose Estimation: A Survey

https://arxiv.org/abs/2204.07370

- Microsoft, COCO Keypoints Dataset https://cocodataset.org/#keypoints-2020
- OpenPose, Github https://github.com/CMU-Perceptual-Computing-Lab/openpose
- Ultralytics, Yolov8 Docs Pose Estimation
 - Overview: https://docs.ultralytics.com/tasks/pose/
 - Dataset: https://docs.ultralytics.com/datasets/pose/
- Google, MediaPipe
 - ➤ Home: https://developers.google.com/mediapipe
 - > Demo: https://mediapipe-studio.webapps.google.com/home
 - ➤ Github: https://github.com/google/mediapipe

延伸閱讀

CH.Tseng, YOLOV8 Pose Estimation

https://chtseng.wordpress.com/2023/07/14/yolov8-pose-estimation/

Roboflow, How to Train a Custom Ultralytics YOLOv8 Pose Estimation Model

https://blog.roboflow.com/train-a-custom-yolov8-pose-estimation-model/

- ➤ 許哲豪,【vMaker Edge AI專欄 #05】Google MediaPipe快速上手 浮空手勢也能用來當作簡報播放器
 - https://omnixri.blogspot.com/2023/05/vmaker-edge-ai-05google-mediapipe.html
 - https://github.com/OmniXRI/PPT_Gesture_Demo

歐尼克斯實境互動工作室 (OmniXRI Studio) 許哲豪 (Jack Hsu)

Facebook: Jack Omnixri

FB社團: Edge Al Taiwan邊緣智能交流區

電子信箱: omnixri@gmail.com

部落格: https://omnixri.blogspot.tw 開源: https://github.com/OmniXRI

YOUTUBE 直播: https://www.youtube.com/@omnixri1784/streams