Foundation of Computer Science

Lecture 5 Rules of Inference

Outline

- Mathematical Argument
- Rules of Inference

Argument

 In mathematics, an argument is a sequence of propositions (called premises) followed by a proposition (called conclusion)

A valid argument is one that, if all its premises are true, then the conclusion is true.

Valid Argument Form

- By definition, if a valid argument form consists
 - premises: $p_1, p_2, ..., p_k$
 - -conclusion: q
 - then $(p_1 \land p_2 \land ... \land p_k) \rightarrow q$ is a tautology
- Ex: $((p \rightarrow q) \land p) \rightarrow q$ is a tautology
- Some simple valid argument forms, called rules of inference, are derived and can be used to construct complicated argument form

Valid Argument Form

Example:

```
"If it rains, I drive to school."

"It rains."

"I drive to school."

p \rightarrow q p

\therefore q
```

- This is called a valid argument form
- The argument is valid since ((p → q) ^ p) → q is a tautology.

1. Modus Ponens (method of affirming)
 premises: p, p → q
 conclusion: a

2. Modus Tollens (method of denying) premises: $\neg q$, $p \rightarrow q$

conclusion: ¬p

3. Hypothetical Syllogism

premises: $p \rightarrow q$, $q \rightarrow r$

conclusion: $p \rightarrow r$

4. Disjunctive Syllogism

premises: $\neg p, p \lor q$

conclusion: q

5. Addition premises: p

conclusion: p v q

6. Simplification premises:p ∧ q

conclusion: p

7. Conjunction premises: p, q

conclusion: p∧q

8. Resolution premises: $p \lor q$, copolusion:

$$q \vee r$$

Rule of Inference	Tautology	Name
$\frac{p}{p \to q}$ $\therefore \frac{q}{q}$	$[p \land (p \rightarrow q)] \rightarrow q$	Modus ponens
$ \begin{array}{c} $	$[\neg q \land (p \rightarrow q)] \rightarrow \neg p$	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$[(p \lor q) \land \neg p] \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \rightarrow (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
$ \begin{array}{c} p \\ \frac{q}{p \wedge q} \end{array} $	$[(p) \land (q)] \rightarrow (p \land q)$	Conjunction
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \therefore \overline{q \lor r} \end{array} $	$[(p \lor q) \land (\neg p \lor r)] \rightarrow (q \lor r)$	Resolution

Rules of Inference -Rules for Propositional Logic

6

Applying Rules of Inferences

- Example 1: It is known that
 - It is not sunny this afternoon, and it is colder than yesterday.
 - 2. We will go swimming only if it is sunny.
 - 3. If we do not go swimming, we will play basketball.
 - 4. If we play basketball, we will go home early.
- Canyou conclude "we will go homeearly"?

• To simplify the discussion, let

```
p := It is sunny this afternoon
```

q := It is colder than Yesterday r := We will go swimming

s := We will play basketball

t := We will go home early

We will give a valid argument with

premises: $\neg p \land r$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

conclusion: t

Step

1. $\neg p \land r$

$$2. \neg p$$

3.
$$r \rightarrow p$$

5.
$$\neg r \rightarrow s$$

6. s

7.
$$s \rightarrow t$$

8. t

Reason

Premise

Simplification using (1)

Premise

Modus Tollens using (2) and (3)

Premise

Modus Ponens using (4) and (5)

Premise

Modus Ponens using (6) and (7)

Applying Rules of Inferences

- Example 2: It is known that
 - 1. If you send me an email, then I will finish my program.
 - 2. If you do not send me an email, then I will go to sleep early.
 - 3. If I go to sleep early, I will wake up refreshed.
- Canyou conclude "If I do not finishmy program, then I will wake uprefreshed"?

- To simplify the discussion,
- let p := You send me an email
- q := I finish my program
- r := I go to sleep early
- s := I wake up refreshed
- We will give a valid argument with

premises:
$$p \rightarrow q$$
, $\neg p \rightarrow r$, $r \rightarrow s$ conclusion: $\neg q \rightarrow s$

Step

1.
$$p \rightarrow q$$

2.
$$\neg q \rightarrow \neg p$$

3.
$$\neg p \rightarrow r$$

4.
$$\neg q \rightarrow r$$

5.
$$r \rightarrow s$$

6.
$$\neg q \rightarrow s$$

Reason

Premise

Contrapositive of (1)

Premise

Hypothetical Syllogism by (2) and (3)

Premise

Hypothetical syllogism by (4) and (5)

Show that the hypotheses:

It is not sunny this afternoon and it is colder than yesterday. \neg s \land c We will go swimming only if it is sunny. $w \rightarrow s$ If we do not go swimming, then we will take a canoe trip. $\neg w \rightarrow t$ If we take a canoe trip, then we will be home by sunset. $t \rightarrow h$

lead to the conclusion:

We will be home by the sunset. h

Step Reason

8. h

```
1. ¬s ∧ c
                simplification
2. ¬s
3. w \rightarrow s
                hypothesis
              modus tollens of 2 and 3
4. ¬w
5. \neg w \rightarrow t
              hypothesis
               modus ponens of 4 and 5
6. t
                 hypothesis
7. t \rightarrow h
```

modus ponens of 6 and 7

hypothesis

Thank You