# Math for ML Notes

**Ahmed Yasser** 

September 2025

# Chapter 2

#### 2.6.2 Rank

# Definition (Rank)

The number of **linearly independent** columns of a matrix  $A \in \mathbb{R}^{m \times n}$  equals the number of **linearly independent** rows of A and is called the **rank** of A, and is denoted by  $\operatorname{rk}(A)$ 

# Remark (Matrix Rank Properties)

- Rank equality: For any matrix A, the column rank equals the row rank:  $rk(A) = rk(A^{\top})$
- Column space (image/range): The columns of  $A \in \mathbb{R}^{m \times n}$  span a subspace  $U \subseteq \mathbb{R}^m$  with  $\dim(U) = \operatorname{rk}(A)$ . A basis for U can be found using Gaussian elimination to identify pivot columns.
- **Row space**: The rows of  $A \in \mathbb{R}^{m \times n}$  span a subspace  $W \subseteq \mathbb{R}^n$  with  $\dim(W) = \operatorname{rk}(A)$ . A basis for W can be found by applying Gaussian elimination to  $A^{\top}$ .
- **Invertibility condition**: For square matrices  $A \in \mathbb{R}^{n \times n}$ , A is regular (invertible) if and only if rk(A) = n.
- **Linear system solvability**: For  $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$ , the system Ax = b can be solved if and only if rk(A) = rk(A|b), where A|b is the augmented matrix.
- Null space (kernel): For  $A \in \mathbb{R}^{m \times n}$ , the solution space of Ax = 0 has dimension n rk(A). This subspace is called the kernel or null space.
- **Full rank**: A matrix  $A \in \mathbb{R}^{m \times n}$  has full rank when  $\text{rk}(A) = \min(m, n)$ , meaning its rank equals the maximum possible rank for its dimensions.
- Rank deficient: A matrix that does not have full rank is called rank deficient.

# 2.7 Linear Mappings

#### Definition (Linear Mapping)

For vector spaces V and W, a mapping  $\Phi: V \to W$  is called a **linear mapping (or linear transformation/vector space homomorphism)** if

$$\Phi(x + y) = \Phi(x) + \Phi(y)$$
  
 $\Phi(\lambda x) = \lambda \Phi(x)$ 

# $\forall x, y \in V \text{ and } \lambda \in \mathbb{R}$

#### Remark

Consider a mapping  $\Phi: \mathcal{V} \to \mathcal{W}$ , where  $\mathcal{V}$  and  $\mathcal{W}$  can be arbitrary sets. Then  $\Phi$  is called:

- **Injective (one-to-one)** if  $\forall x, y \in \mathcal{V} : \Phi(x) = \Phi(y) \Longrightarrow x = y$  i.e. there is no two different elements in  $\mathcal{V}$  that map to the same element in  $\mathcal{W}$ .
- Surjective (onto) if  $\Phi(\mathcal{V}) = \mathcal{W}$  i.e. every element in  $\mathcal{W}$  can be reached from  $\mathcal{V}$  using  $\Phi$ .
- Bijective if  $\Phi$  is both injective and surjective.

#### Remark

A bijective mapping  $\Phi: \mathcal{V} \to \mathcal{W}$  is reversible: there exists a mapping  $\Psi: \mathcal{W} \to \mathcal{V}$  such that  $\Psi \circ \Phi(x) = x$  and  $\Phi \circ \Psi(y) = y$ . This mapping  $\Psi$  is the **inverse** of  $\Phi$ , denoted  $\Phi^{-1}$ .

# Remark Special cases of linear mappings between vector spaces

- **Isomorphism**:  $\Phi: V \to W$  linear and bijective (maps between different spaces, reversible)
- **Endomorphism**:  $\Phi: V \to V$  linear (maps a space to itself)
- **Automorphism**:  $\Phi: V \to V$  linear and bijective (maps a space to itself, reversible)
- **Identity mapping**:  $id_V: V \to V, x \mapsto x$  (leaves every vector unchanged)

#### Remark

Finite dimensional vector spaces V and W are **isomorphic** if and only if  $\dim(V) = \dim(W)$ 

#### Remark

Consider vector spaces V, W, X. Then:

- If  $\Phi: V \to W$  and  $\Psi: W \to X$  are **linear** then  $\Psi \circ \Phi: V \to X$  is **linear**.
- If  $\Phi: V \to W$  is an **isomorphism** then  $\Phi^{-1}: W \to V$  is an **isomorphism**.
- If  $\Phi: V \to W$  and  $\Psi: V \to W$  are **linear** then  $\Phi + \Psi: V \to W$  and  $\lambda \Phi: V \to W, \lambda \in \mathbb{R}$  are **linear**.

# 2.7.1 Matrix Representation of Linear Mappings

# Remark (Notaion)

- $B = \{b_1, ..., b_n\}$  is an **unordered** basis
- $B = (b_1, ..., b_n)$  is an **ordered** basis
- $B = \begin{bmatrix} b_1 & ... & b_n \end{bmatrix}$  is a **matrix** whose columns are the vectors  $b_1, ..., b_n$

# Definition (Coordinates)

Consider a vector space V and an **ordered** basis  $B = (b_1, ..., b_n)$  of V. For any vector  $x \in V$  we obtain a **unique** representation (linear combination)

$$\pmb{x} = \alpha_1 b_1 + \ldots + \alpha_n b_n$$

of x with respect to B. Then  $\alpha_1, ..., \alpha_n$  are the coordinates of x with respect to B, and the vector

$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n$$

is the coordinate vector/coordinate representation of x with respect to the ordered basis B.

#### Remark

A basis effectively defines a coordinate system and any basis of the vector space defines a valid coordinate system. The coordinates of a vector may be different between different basis.

#### Remark

For an *n*-dimensional vector space V and an ordered basis B of V, the mapping  $\Phi: \mathbb{R}^n \to V, \Phi(e_i) = b_i, \ i = 1, ..., n$ , is **linear** and **bijective** (since V and  $\mathbb{R}^n$  are of the same dimension), where  $(e_i, ..., e_n)$  is the **standard basis** of  $\mathbb{R}^n$ .

# Definition (Transformation Matrix)

Consider vector spaces V and W with corresponding **ordered** bases  $B = (\boldsymbol{b_1},...,\boldsymbol{b_n})$  and  $C = (\boldsymbol{c_1},...,\boldsymbol{c_m})$ . Also condier a **linear mapping**  $\Phi: V \to W$ . For  $j \in \{i,...,n\}$ 

$$\Phi(\boldsymbol{b_j}) = \alpha_{1j}\boldsymbol{c_1} + \alpha_{2j}\boldsymbol{c_2} + ... + \alpha_{mj}\boldsymbol{c_j} = \sum_{i=1}^{m} \alpha_{ij}\boldsymbol{c_i}$$

is the unique representaion (linear combination) of  $\Phi(b_j)$  with respect to the C. Then we call the  $m \times n$  matrix  $A_{\Phi}$ , whose elements are given by

$$A_{\Phi(i,j)} = \alpha_{ij},$$

The transformation matrix of  $\Phi$  with respect to the ordered bases B of V and C of W.

#### Remark

From the definition of the transformation matrix we can see that the coordinates of  $\Phi(b_j)$  with respect to the ordered basis C of W are the j-th column of  $A_{\Phi}$ 

# Corollary

Consider finite dimensional vector spaces V, W with ordered basis B, C and a linear mapping  $\Phi: V \to W$  with transformation matrix  $\mathbf{A}_{\Phi}$ . If  $\hat{\mathbf{x}}$  is the **coordinate vector** of  $\mathbf{x} \in V$  with respect to B and  $\hat{\mathbf{y}}$  is the **coordinate vector** of  $\mathbf{y} = \Phi(\mathbf{x}) \in W$  with respect to C, then

$$\hat{y} = A_{\Phi} \hat{x}$$
.

This means that the transformation matrix can be used to map coordinates with respect to an ordered basis in V to coordinates with respect to an ordered basis in W.

# 2.7.2 Basis Change

# Theorem (Basis Change)

Let  $\Phi: V \to W$  be a linear mapping between vector spaces with ordered bases

$$B = (\boldsymbol{b}_1, ..., \boldsymbol{b}_n)$$
 and  $\tilde{B} = (\tilde{\boldsymbol{b}}_1, ..., \tilde{\boldsymbol{b}}_n)$ 

of V, and

$$C = (\boldsymbol{c}_1, ..., \boldsymbol{c}_m) \quad \text{and} \quad \tilde{C} = (\tilde{\boldsymbol{c}}_1, ..., \tilde{\boldsymbol{c}}_m)$$

of W.

If  $A_{\Phi}$  is the transformation matrix of  $\Phi$  with respect to bases B and C, then the transformation matrix  $\tilde{A}_{\Phi}$  with respect to bases  $\tilde{B}$  and  $\tilde{C}$  is given by:

$$ilde{m{A}}_{\Phi} = m{T}^{-1} m{A}_{\Phi} m{S}$$

where:

- $S \in \mathbb{R}^{n \times n}$  is the transformation matrix of  $\mathrm{Id}_V$  that maps coordinates with respect to B onto coordinates with respect to B in V
- $T \in \mathbb{R}^{m \times m}$  is the transformation matrix of  $\mathrm{Id}_W$  that maps coordinates with respect to  $\tilde{C}$  onto coordinates with respect to C in W

## Definition (Equivalence)

Two matrices A and  $\tilde{A} \in \mathbb{R}^{m \times n}$  are **equivalent** if there exists **regular** matrices  $S \in \mathbb{R}^{n \times n}$  and  $T \in \mathbb{R}^{m \times m}$ , such that  $\tilde{A} = T^{-1}AS$ 

in other words, two matrices A and  $\tilde{A}$  are **equivalent** if they represent the **same linear** transformation  $\Phi: V \to W$ .

# Definition (Similarity)

Two matrices A and  $\tilde{A} \in \mathbb{R}^{n \times n}$  are **similar** if there exists a **regular** matrix  $S \in \mathbb{R}^{n \times n}$ , such that  $\tilde{A} = S^{-1}AS$ 

in other words, two matrices A and  $\tilde{A}$  are **similar** if they represent the **same linear transformation**  $\Phi: V \to V$ .

#### Remark

**Similar** matrices are always **equivalent**. However, **equivalent** matrices are not necessary **similar**.

## Remark

The composition of two linear transformations,  $\Phi: V \to W$  and  $\Psi: W \to X$ , results in another linear transformation  $\Psi \circ \Phi: V \to X$ . The matrix representing this combined transformation,  $A_{\Psi \circ \Phi}$ , is the product of the individual transformation matrices:  $A_{\Psi \circ \Phi} = A_{\Psi} A_{\Phi}$ .

# Definition (Kernel (Null Space))

For a linear transformation  $\Phi: V \to W$ , the **kernel** is the set of all vectors  $v \in V$  that are mapped to the zero vector of W.

$$\ker(\Phi) \coloneqq \Phi^{-1}(\mathbf{0}_W) = \{ \boldsymbol{v} \in V \mid \Phi(\boldsymbol{v}) = \mathbf{0}_W \}$$

# Definition (Image (Range))

For a linear transformation  $\Phi: V \to W$ , the **image** is the set of all vectors  $\mathbf{w} \in W$  that can be "reached" by the transformation from some vector in V.

$$\operatorname{Im}(\Phi) \coloneqq \Phi(V) = \{ \boldsymbol{w} \in W \mid \exists \boldsymbol{v} \in V, \Phi(\boldsymbol{v}) = \boldsymbol{w} \}$$

Intuitively, the **kernel** is the set of vector  $v \in V$  that  $\Phi$  maps onto the zero vector  $\mathbf{0}_W \in W$ . The **image** is the set of all vectors  $w \in W$  that can be *reached* by  $\Phi$  from any vector in V.

#### Remark

For  $\Phi: V \to W$ , we call V the **domain** and W the **codomain** 

The kernel is the set of vectors  $v \in V$  that  $\Phi$  maps onto the neutral element  $\mathbf{0}_W \in W$ 

#### Remark

Consider a linear mapping  $\Phi: V \to W$ , where V and W are vector spaces:

- It always holds that  $\Phi(\mathbf{0}_V) = \mathbf{0}_W$ , therefore,  $\mathbf{0}_V \in \ker(\Phi)$ . In particular, the null spaces is never empty.
- $\operatorname{Im}(\Phi) \subseteq W$  is a **subspace** of W, and  $\ker(\Phi) \subseteq V$  is a **subspace** of V.

Theorem (Rank-Nullity Theorem or Fundamental Theorem of Linear Mappings)

For vector spaces V and W and linear mapping  $\Phi: V \to W$  it holds that

$$\dim(\ker(\Phi)) + \dim(\operatorname{Im}(\Phi)) = \dim(V)$$

Remark (Direct Consequences of the Rank-Nullity Theorem)

- If  $\dim(\operatorname{im}(\Phi)) < \dim(V)$ , then the  $\ker(\Phi)$  is **non-trivial**, i.e., the kernel contains more than  $\mathbf{0}_V$  and  $\dim(\ker(\Phi)) \geq 1$
- If  $A_{\Phi}$  is the transformation matrix of  $\Phi$  with respect to an ordered basis and  $\dim(\operatorname{Im}(\Phi)) < \dim(V)$ , then the SLE  $A_{\Phi}x = 0$  has **infinitely many solutions**.

# 2.8.1 Affine Subspaces

Definition (Affine Subspace)

let V be a vector space,  $x_0 \in V$  and  $U \subseteq V$  a subspace. Then the subset

$$\begin{split} L &= \boldsymbol{x_0} + U \coloneqq \{\boldsymbol{x_0} + \boldsymbol{u} : \boldsymbol{u} \in \boldsymbol{U}\} \\ &= \{\boldsymbol{v} \in \boldsymbol{V} \mid \exists \boldsymbol{u} \in \boldsymbol{U} : \boldsymbol{v} = \boldsymbol{x_0} + \boldsymbol{u}\} \subseteq \boldsymbol{V} \end{split}$$

is called **affine subspace** or **linear manifold** of V. U is called **direction** or **direction space**, and  $x_0$  is called **support point**.

#### Remark

The definition of an affine subspace excludes  $\mathbf{0}$  if  $\mathbf{x_0} \notin U$ . Therefore, an affine subspace is not a **linear** subspace (vector subspace) of V for  $\mathbf{x_0} \notin U$ .

#### Remark

Consider two affine subspaces  $L = x_0 + U$  and  $\tilde{L} = \tilde{x}_0 + \tilde{U}$  of a vector space V. Then,  $L \subseteq \tilde{L}$  if and only if  $U \subseteq \tilde{U}$  and  $x_0 \in \tilde{L}$ 

#### Remark

Affine subspaces are often described by parameters: Consider a k-dimensional affine space  $L = x_0 + U$  of V. if  $(b_1, ..., b_k)$  is an ordered basis of U, then every element  $x \in L$  can be uniquely written as

$$\boldsymbol{x} = \boldsymbol{x_0} + \lambda_1 \boldsymbol{b_1} + \dots + \lambda_k \boldsymbol{b_k}$$

where  $\lambda_1, ..., \lambda_k \in \mathbb{R}$ . The representation is called the **parametric equation** of L with **directional vectors**  $b_1, ..., b_k$  and **parameters**  $\lambda_1, ..., \lambda_k$ .

#### Remark

In  $\mathbb{R}^n$ , the (n-1)-dimensional affine subspaces are called **hyperplanes**, and the corresponding parametric equation is:

$$oldsymbol{y} = oldsymbol{x}_0 + \sum_{i=1}^{n-1} \lambda_i oldsymbol{b}_i$$

where  $b_1,...,b_{n-1}$  form a basis of an (n-1)-dimensional subspace U of  $\mathbb{R}^n$ .

This means that a hyperplane is defined by:

- A support point  $x_0$
- (n-1) linearly independent vectors  $b_1,...,b_{n-1}$  that span the **direction space**

#### **Examples:**

- In  $\mathbb{R}^2$ , a line is a hyperplane
- In  $\mathbb{R}^3$ , a plane is a hyperplane

## Remark (Inhomogeneous systems of linear equations and affine subspaces)

For  $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$ , the solution of the system of linear equations Ax = b is either the **empty set** or an **affine subspace** of  $\mathbb{R}^n$  of dimension n - rk(A).

In  $\mathbb{R}^n$ , every k-dimensional affine subspace is the solution of an inhomogeneous system of linear equations  $\mathbf{A}\mathbf{x} = \mathbf{b}$ , where  $\mathbf{A} \in \mathbb{R}^{m \times n}$ ,  $\mathbf{b} \in \mathbb{R}^m$  and  $\mathrm{rk}(\mathbf{A}) = n - k$ .

**Note:** Recall that for homogeneous equation systems Ax = 0 the solution was a vector subspace, which we can also think of as a special affine space with support point  $x_0 = 0$ .

# 2.8.2 Affine Mappings

Definition (Affine Mapping)

For two vector spaces V, W, a linear mapping  $\Phi: V \to W$  and  $\boldsymbol{a} \in W$ , the mapping

$$\phi: V \to W$$
$$x \mapsto a + \Phi(x)$$

is an **affine mapping** from V to W. The vector a is called the **translation vector** of  $\phi$ 

#### Remark

- Every affine mapping  $\phi: V \to W$  is also the composition of a linear mapping  $\Phi: V \to W$  and a translation  $\tau: W \to W$  in W, such that  $\phi = \tau \circ \Phi$ . The mappings  $\Phi$  and  $\tau$  are **uniquely determined**.
- The composition  $\phi \circ \phi$  of affine mappings  $\phi : V \to W$ ,  $\phi : W \to X$  is **affine**.
- If  $\phi$  is bijective, affine mappings keep the geometric structure invariant. They then also preserve the dimension and parallelism.