

Название:

И

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

льный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Синхронные одноступенчатые триггеры со статическим

(Подпись, дата)

(И.О. Фамилия)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 1

			
динамическим	управлением запис	ЬЮ	
Дисциплина: д	Архитектура ЭВМ		
Студент	ИУ7-44Б		И.Ю. Елгин
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А.Ю Попов

Цель работы — изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

1. Исследовать работу асинхронного RS-триггера с инверсными входами встатическом режиме.

Рис. 1 Схема асинхронного RS-триггера с инверсными входами.

S	R	Q_{t-1}	Q_t
0	0	0	X
0	0	1	X X
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Табл. 1 работа асинхронного RS триггера с инверсными входами в статическом режиме.

Комбинация S=R=0 запрещённая. При S=0, R=1 ячейка запоминает 1. При S=1, R=0 ячейка запоминает 0

При S=1, R=1 ничего не происходит в ячейке сохраняется предыдущее значение.

2. Исследовать работу синхронного RS-триггера в статическом режиме.

Синхронный RS-триггер имеет два входа управления (R и S) и один вход синхронизации C. При C=0 синхронный RS-триггер сохраняет предыдущее значение. При C=1 – работает как асинхронный RS- триггер.

Рис. 2 Схема синхронного RS-триггера.

S	R	C	Q_{t-1}	Q_t
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	X
1	1	1	1	X

Табл. 2 Работа синхронного RS-триггера в статическом режиме

Комбинация C=S=R=1 запрещённая. При S=1, R=0 и C=1 ячейка запоминает 1.При S=0, R=1 и C=1 ячейка запоминает 0.

При S=0, R=0 или C=0 ничего не происходит в ячейке сохраняется предыдущеезначение.

3. Исследовать работу синхронного D-триггера в статическом режиме.

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждымсинхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

Рис. 3 Схема синхронного D-триггера.

D	C	Q_{t-1}	Q_t
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Табл. 3 Работа синхронного D-триггера в статическом режиме.

При C=1 триггер запоминает состояние D, при C=0 в ячейке сохраняется предыдущее состояние.

4. Исследовать схему синхронного D-триггера с динамическим управлениемзаписью в статическом режиме.

Рис. 4 схема синхронного D-триггера с динамическим управлениемзаписью в статическом режиме.

D	$c_{\text{Изм}}$	Q_{t-1}	Q_t
0		Λ	Λ
0	0\0	0	0
0	0\0	1	1
0	1\0	0	0
0	1\0	1	1
0	0\1	0	0
0	0\1	1	0
0	1\1	0	0
0	1\1	1	1
1	0\0	0	0
1	0\0	1	1
1	1\0	0	0
1	1\0	1	1
1	0\1	0	1
1	0\1	1	1
1	1\1	0	0
1	1\1	1	1

Табл. 4 Работа синхронного D-триггера с динамическим управлением записью в статическом режиме.

Триггер запоминает состояние D, при переключение C с 0 на 1.

5. Исследовать схему синхронного DV-триггера с динамическимуправлением записью в динамическом режиме.

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации. Qt = DV + VQt - 1 = DVC + (V + C)Qt - 1

Рис. 5 Схема синхронного DV-триггера с динамическим управлением записью в динамическом режим.

Для добавления пина V используем элемент "И" на вход С.

Puc. 6 Работа синхронного DV-триггера с динамическим управлением записью в динамическом режиме в logical analyzer.

DV-триггер, при V=0 и если C не изменён с 0 на 1, сохраняет предыдущее внутреннее состояние, т.е. Qt=Qt-1. При изменение C с 0 на 1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D.

6. Исследовать работу DV-триггера, включенного по схеме TV-триггера.

Рис. 7 Схема DV-триггера, включенного по схеме TV-триггера.

Рис. 8 Работа DV-триггера, включенного по схеме TV-триггера logical analyzer.

TV триггер меняет своё состояние при подаче на T сигнала 1 и при разрешающем сигнале $V{=}1$.

Вывод: В ходе выполнения заданий работы мною изучены триггеры различных видов и их устройство; были получены навыки моделирования схем триггеров на основе ЛЭ и макросхем Multisim;