Activité 3.3 – Conservation, précaution d'emploi et risques associés au produits oxydants

Objectifs de la séance :

> Comprendre les mesures de précaution à employer avec des produits oxydants.

Contexte : Les produits oxydants nécessitent de respecter strictement des règles de sécurités pour éviter des accidents et pour une efficacité optimale.

→ Comment utiliser un produit oxydant en toute sécurité?

Document 1 - Précautions d'emploi et toxicité

Il faut respecter plusieurs règles pour utiliser des antiseptiques et des désinfectants.

- Ils sont dangereux à fortes concentration et doivent donc être dilués.
- Il ne faut pas utiliser deux produits en même temps, leur action pourrait être inhibée.
- Il ne faut pas mélanger les antiseptiques ou les désinfectants avec autre chose que de l'eau.

Produit oxydant	Peroxyde d'hydrogène (eau oxygénée)	Eau de Javel	Solution de diiode			
Précautions et dangers	 Nocif par ingestion ou inhalation. Peut provoquer des brûlures de la peau, des lésions oculaires graves, des irritations des voies respiratoires. Peut provoquer un incendie ou une explosion. Corrosif si concentré. 	 Ne jamais ingérer. Peut provoquer des brûlures de la peau et des lésions oculaires graves. Ne pas mélanger avec des acides (dégage un gaz toxique). Très toxique pour les organismes aquatiques. 	 Ne pas ingérer ou avaler. Irritation de la peau. Peut impacter le fonctionnement de la thyroïde si utilisation répétée. 			
Stockage	Locaux ventilés, à l'abri de la lumière, des hautes températures, de tout combustible.	Locaux ventilés, à l'abri de tout rayonnement solaire et des hautes températures, à l'écart des acides et des matière organiques.	Locaux ventilés, à l'abri des hautes températures, à l'écart de produits susceptible de réagir avec du diiode.			
Conservation	15 jours après ouverture.	3 mois si concentrée, 6 à 12 mois diluée.	1 mois après ouverture.			

	1 -	Quels sont les précautions communes à ces trois produits oxydants?							
•	2 -	Indiquer les propriétés d'un local qui permettrait de stocker ces trois produits oxydants.							

Document 2 - Principes actifs courants

Les principes actifs des antiseptiques et désinfectants agissent par oxydation.

Principe actif	Couples Ox/red	Demi-équation d'oxydoréduction
Eau oxygénée	${ m H_2O_{2(aq)}}/{ m ~H_2O_{(l)}}$	${\rm H_2O_{2(aq)}} + {\rm 2H^+_{(aq)}} + {\rm 2e^-} = {\rm 2H_2O_{(l)}}$
Eau oxygenee	$\mathrm{O_{2(g)}/~H_2O_{2(aq)}}$	$O_{2(g)} + 2H^{+}_{(aq)} + 2e^{-} = H_2O_{2(aq)}$
Eau de Javel	$\mathrm{ClO^{(aq)}}/\mathrm{\ Cl^{(aq)}}$	$ClO^{-}_{(aq)} + 2H^{+}_{(aq)} + 2e^{-} = Cl^{-}_{(aq)} + H_2O_{(l)}$
Eau de Javei	$\mathrm{ClO^-}_{\mathrm{(aq)}}/\mathrm{\ Cl}_{\mathrm{2(g)}}$	$2\text{ClO}^{\text{(aq)}} + 4\text{H}^+_{\text{(aq)}} + 2\text{e}^- = \text{Cl}_{2(g)} + \text{H}_2\text{O}_{(l)}$
Diiode	$I_{2(aq)}/I^{-}_{(aq)}$	$I_{2(aq)} + 2e^- = 2I^{(aq)}$
Permanganate	${\rm MnO_{4~(aq)}^{-}}/{\rm ~Mn^{2+}}_{\rm (aq)}$	$MnO_{4 (aq)}^{-} + 8H_{(aq)}^{+} + 5e^{-} = Mn^{2+}_{(aq)} + 4H_{2}O_{(l)}$
de potassium		

Document 3 - Eau de Javel et produit acide : un mélange dangereux!

L'eau de Javel est une solution aqueuse basique d'hypoclorite de sodium (Na⁺, ClO⁻) et de chlorure de sodium (Na⁺, Cl⁻). Un produit acide contient des ions H⁺_(aq).

L'ion chlorure est un réducteur dans le couple $\operatorname{Cl}_{2(g)}/\operatorname{Cl}_{(aq)}$. La demi-équation d'oxydoréduction associée est $Cl_{2(g)} + 2e^- = 2Cl_{(aq)}^-$.

Le dichlore $Cl_{2(g)}$ est un gaz toxique, car le dichlore se combine avec l'eau présente dans les muqueuses pour former des acides qui attaquent les tissus.

3 — Établir l'équation de la réaction d'oxydoréduction entre les ions hypochlorites ClO- _(aq) et le
ions chlorures $\mathrm{Cl}^{-}_{(\mathrm{aq})}$.
4 - Pourquoi cette réaction ne peut avoir lieue que dans un milieu acide?
5 – Quel est le gaz toxique dégagé par la réaction?
Document 4 -

Judith s'est écorchée le genou et mélange de l'eau oxygénée avec du permanganate de potassium pour soigner sa plaie. Les couples O_{x}/Red sont $O_{2(g)}/H_{2}O_{2(aq)}et MnO_{4(aq)}/Mn^{2+}(aq)$. Au moment de l'application, le mélange devient incolore et forme une mousse.

Établin ssium. Ez			action e	ntre l'ea	u oxygé	née et le	e perman	ganate