Electronic Devices

Sheet #6

1- For the circuits shown, draw the equivalent AC circuit model. Denote on your schematic the values of $r\pi$ and ro . (β = 100, VA = 100 V)

2- For the circuits shown, draw the equivalent AC circuit model. Denote on your schematic the values of $r\pi$ and ro . (β = 100, VA = 100 V)

3- For the circuits shown, draw the equivalent AC circuit model. Denote on your schematic the values of $r\pi$ and ro . (β = 100, VA = 100 V)

4- For the circuits shown, draw the equivalent AC circuit model. Denote on your schematic the values of $r\pi$ and ro. ($\beta = 100$, VA = 100 V)

5- Determine the small-signal voltage gain, input resistance, and output resistance of the circuit shown. Assume the transistor parameters are: β =100, VBE(on) =0.7V, and VA=100V

6- For the common-emitter amplifier shown, let $V_{CC} = 15$ V, $R_1 = 27k\Omega$, $R_2 = 15$ kΩ, $R_E = 2.4$ kΩ, and $R_C = 3.9$ kΩ. The transistor has $\beta = 100$. Calculatethe dc bias current I_C . If the amplifier operates between a source for which $R_{sig} = 2$ kΩ and a load of 2 kΩ, replace the transistor with its hybrid- π model, and find the values of R_{in} , R_o , A_{vo} , A_v and the overall voltage gain G_v (v_o/v_{sig}).

7- For the common-emitter amplifier with an Emitter resistance shown. Find the equations of R_{in} , R_o , A_{vo} , A_v and the overall voltage gain G_v (v_o/v_{sig}).

8- For the circuit shown, draw a complete small-signal equivalent circuit (use α = 0.99). Your circuit should show the values of all components, including the model parameters. What is theinput resistance R_{in} ? Calculate the voltage gain (v_o/v_{sig}) .

- 9- The amplifier consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, R_{in2} , constitutes the load resistance of the first stage.
 - (a) For $V_{CC} = 9$ V, $R_1 = 100$ k Ω , $R_2 = 47$ k Ω , $R_E = 3.9$ k Ω , $R_C = 6.8$ k Ω , and β = 100, determine the dc collector current and dc collector voltage of each transistor.
 - (b) Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components.

