

I. Multiple Choice Questions (Type-I)

- **1.** Which of the following conditions favours the existence of a substance in the solid state?
 - (i) High temperature
 - (ii) Low temperature
 - (iii) High thermal energy
 - (iv) Weak cohesive forces
- **2.** Which of the following is **not** a characteristic of a crystalline solid?
 - (i) Definite and characteristic heat of fusion.
 - (ii) Isotropic nature.
 - (iii) A regular periodically repeated pattern of arrangement of constituent particles in the entire crystal.
 - (iv) A true solid
- **3.** Which of the following is an amorphous solid?
 - (i) Graphite (C)
 - (ii) Quartz glass (SiO₂)
 - (iii) Chrome alum
 - (iv) Silicon carbide (SiC)
- **4.** Which of the following arrangements shows schematic alignment of magnetic moments of antiferromagnetic substances?

	(iii)		$) \bigoplus$						
	(iv)	$ \uparrow \downarrow $			$\uparrow) (\downarrow$				
5.	Wh	ich of the fol	lowing i	is true abo	out the	value (of refracti	ve index o	f quartz glass?
	(i)	Same in a	all direc	etions					-
	(ii)	Different	in diffe	rent direc	tions				
	(iii)	Cannot b	e meas	ured					
	(iv)	Always z	ero						
6.	Wh	ich of the fo	llowing	statemei	nt is n c	t true	about a	morphous	s solids?
	(i)	On heatii	ng they	may beco	ome cry	/stallii	ne at cert	ain tempe	erature.
	(ii)	They may	becon	ne crystal	line on	keepi	ng for lo	ng time.	
	(iii)	Amorpho	us soli	ds can be	moule	ded by	heating.		
	(iv)	They are	anisotr	opic in na	ature.				
7.	The	sharp melt	ing poi	nt of crys	talline	solids	is due to)	
	(i)			gement of crystal lat		ituent	particles	s observe	d over a short
	(ii)	_		gement o crystal lat		ituen	t particle	s observe	ed over a long
	(iii)	same arra	angeme	ent of cons	stituen	t part	icles in di	fferent di	rections.
	(iv)	different	arrange	ement of c	constitu	ıent p	articles ii	n different	directions.
8.	Iodi	ine molecul	es are l	neld in the	e crysta	als lat	tice by		_·
	(i)	london fo	rces						
	(ii)	dipole-di	pole int	eractions	3				
	(iii)	covalent l	bonds						
	(iv)	coulombi	c force	s					
9.	Wh	ich of the fo	llowing	jis a netw	vork so	lid?			
	(i)	SO ₂ (Solid	1)						
	(ii)	I_2							
	(iii)	Diamond							
	(iv)	H ₂ O (Ice)							
10.	Wh	ich of the fo	llowing	solids is	not an	electi	ical cond	luctor?	
	(A)	Mg (s)	(B) T	iO (s)		(C) I ₂	(s)	(D) H	₂ O (s)
	(i)	(A) only							
	(ii)	(B) Only							
	(iii)	(C) and (I))						
	(iv)	(B), (C) ar	nd (D)						
Exemplar F	roble	ems, Chemi	stry 2	2					

11.	Whi	ch of the following is not the characteristic of ionic solids?
	(i)	Very low value of electrical conductivity in the molten state.
	(ii)	Brittle nature.
	(iii)	Very strong forces of interactions.
	(iv)	Anisotropic nature.
12.	Graj	ohite is a good conductor of electricity due to the presence of
	(i)	lone pair of electrons
	(ii)	free valence electrons
	(iii)	cations
	(iv)	anions
13.		ch of the following oxides behaves as conductor or insulator depending n temperature?
	(i)	TiO
	(ii)	SiO ₂
	(iii)	TiO_3
	(iv)	MgO
14.	Whi	ch of the following oxides shows electrical properties like metals?
	(i)	SiO_2
	(ii)	MgO
	(iii)	SO ₂ (s)
	(iv)	CrO_2
15.	The	lattice site in a pure crystal cannot be occupied by
	(i)	molecule
	(ii)	ion
	(iii)	electron
	(iv)	atom
16.	Graj	phite cannot be classified as
	(i)	conducting solid
	(ii)	network solid
	(iii)	covalent solid
	(iv)	ionic solid
17.	Cati	ons are present in the interstitial sites in
	(i)	Frenkel defect
	(ii)	Schottky defect
	(iii)	Vacancy defect
	(iv)	Metal deficiency defect
		3 Solid State

18.	Schottky defect is observed in crystals when	
	(i) some cations move from their lattice site to interstitial sites.	
	(ii) equal number of cations and anions are missing from the lattice.	
	(iii) some lattice sites are occupied by electrons.	
	(iv) some impurity is present in the lattice.	
19.	Which of the following is true about the charge acquired by p -typesemiconductors?	эe
	(i) positive	
	(ii) neutral	
	(iii) negative	
	(iv) depends on concentration of p impurity	
20.	To get <i>a n</i> -type semiconductor from silicon, it should be doped with substance with valence	a
	(i) 2	
	(ii) 1	
	(iii) 3	
	(iv) 5	
21.	The total number of tetrahedral voids in the face centred unit cell is	_·
	(i) 6	
	(ii) 8	
	(iii) 10	
	(iv) 12	
22.	Which of the following point defects are shown by AgBr(s) crystals?	
	(A) Schottky defect (B) Frenkel defect	
	(C) Metal excess defect (D) Metal deficiency defect	
	(i) (A) and (B)	
	(ii) (C) and (D)	
	(iii) (A) and (C)	
	(iv) (B) and (D)	
23.	In which pair most efficient packing is present?	
	(i) hcp and bcc	
	(ii) hcp and ccp	
	(iii) bcc and ccp	
	(iv) bcc and simple cubic cell	
24.	The percentage of empty space in a body centred cubic arrangement	is
	(i) 74	
Exemplar F	Problems, Chemistry 4	

25 .	Which of the following statement is not true about the hexagonal clos packing?						
	(i)	The coordination number is 12.					
	(ii)	It has 74% packing efficiency.					
	(iii)	Tetrahedral voids of the second layer are covered by the spheres of the third layer.					
	(iv)	In this arrangement spheres of the fourth layer are exactly aligned with those of the first layer.					
26.		which of the following structures coordination number for cations and nions in the packed structure will be same?					
	(i)	Cl^- ion form fcc lattice and Na^+ ions occupy all octahedral voids of the unit cell.					
	(ii)	Ca^{2+} ions form fcc lattice and F^- ions occupy all the eight tetrahedral voids of the unit cell.					
	(iii)	${ m O}^{2-}$ ions form fcc lattice and ${ m Na}^+$ ions occupy all the eight tetrahedral voids of the unit cell.					
	(iv)	S^2 - ions form fcc lattice and Zn^{2^+} ions go into alternate tetrahedral voids of the unit cell.					
27 .		at is the coordination number in a square close packed structure in two ensions?					
	(i)	2					
	(ii)	3					
	(iii)	4					
	(iv)	6					
28.	Whi	ch kind of defects are introduced by doping?					
	(i)	Dislocation defect					
	(ii)	Schottky defect					
	(iii)	Frenkel defects					
	(iv)	Electronic defects					
29.	Silic	on doped with electron-rich impurity forms					
	(i)	<i>p</i> -type semiconductor					
	(ii)	n-type semiconductor					
	(iii)	intrinsic semiconductor					
	(iv)	insulator					
		5 Solid Sta					

(ii)

(iii)

(iv) 26

68 32

	(i)	Paramagnetic substances are weakly attracted by magnetic field.
	(ii)	Ferromagnetic substances cannot be magnetised permanently.
	(iii)	The domains in antiferromagnetic substances are oppositely oriented with respect to each other.
	(iv)	Pairing of electrons cancels their magnetic moment in the diamagnetic substances.
31.	Whi	ch of the following is not true about the ionic solids?
	(i)	Bigger ions form the close packed structure.
	(ii)	Smaller ions occupy either the tetrahedral or the octahedral voids depending upon their size.
	(iii)	Occupation of all the voids is not necessary.
	(iv)	The fraction of octahedral or tetrahedral voids occupied depends upon the radii of the ions occupying the voids.
32 .		romagnetic substance becomes a permanent magnet when it is placed in agnetic field becuase
	(i)	all the domains get oriented in the direction of magnetic field.
	(ii)	all the domains get oriented in the direction opposite to the direction of magnetic field.
	(iii)	domains get oriented randomly.
	(iv)	domains are not affected by magnetic field.
33.	The	correct order of the packing efficiency in different types of unit cells is
	(i)	fcc < bcc < simple cubic
	(ii)	fcc > bcc > simple cubic
	(iii)	fcc < bcc > simple cubic
	(iv)	bcc < fcc > simple cubic
34.	Whi	ch of the following defects is also known as dislocation defect?
	(i)	Frenkel defect
	(ii)	Schottky defect
	(iii)	Non-stoichiometric defect
	(iv)	Simple interstitial defect
35.	In th	ne cubic close packing, the unit cell has
	(i)	4 tetrahedral voids each of which is shared by four adjacent unit cells.
	(ii)	4 tetrahedral voids within the unit cell.
	(iii)	8 tetrahedral voids each of the which is shared by four adjacent unit cells.
	(iv)	8 tetrahedral voids within the unit cells.

 $\textbf{30.} \quad \text{Which of the following statements is } \textbf{not} \; \text{true?}$

Exemplar Problems, Chemistry 6