

激 光 SLAM 前 端

Least-Squares Rigid Motion Using SVD

An ICP variant using a point-to-line metric

NICP: Dense Normal Based Point Cloud Registration

张涵 2020.06.28

基于优化方法

Catalogue

I. I	СР	P1
II. P	PL-ICP	Р6
III. N	NICP	Р8
IV.	MLS-ICP	P12
V	 高斯牛顿优化	P14
VI. N	NDT 	P17
VII.	Other methods	P19

I ICP Iterative Closest Point

1 Problem statement

- 算法的输入:参考点云和目标点云,停止迭代的标准
- 算法的输出:转换矩阵
- 假设待配准的两帧点云,分别为

$$\mathcal{P} = \{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\} \hspace{0.5cm} \mathcal{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$$

目标函数(最小二乘)

$$\begin{array}{l}
(R, \mathbf{t}) = \underset{R \in SO(d), \mathbf{t} \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^{n} |w_i| |(R\mathbf{p}_i + \mathbf{t}) - \mathbf{q}_i||^2 \\
\Rightarrow \quad \text{每对点云的权重} \\
w_i > 0
\end{array}$$

2 Computing the translation

- ho 简化成关于F的函数 $igg(F(\mathbf{t})igg) = \sum_{i=1}^n w_i \|(R\mathbf{p}_i + \mathbf{t}) \mathbf{q}_i\|^2$
- ▶ 代入整理得T

$$\mathbf{t} = \bar{\mathbf{q}} - R\bar{\mathbf{p}}$$

► 固定R,求解T 0 = $\frac{\partial F}{\partial \mathbf{t}} = \sum_{i=1}^{n} 2w_i (R\mathbf{p}_i + \mathbf{t} - \mathbf{q}_i)$ = $2\mathbf{t} \left(\sum_{i=1}^{n} w_i \right) + 2R \left(\sum_{i=1}^{n} w_i \mathbf{p}_i \right) - 2\sum_{i=1}^{n} w_i \mathbf{q}_i$

$$= 2\mathbf{t} \left(\sum_{i=1}^{n} w_i \right) + 2R \left(\sum_{i=1}^{n} \underbrace{w_i \mathbf{p}_i} \right) - 2 \sum_{i=1}^{n} \underbrace{w_i \mathbf{q}_i} \right) \qquad \sum_{i=1}^{n} w_i \left\| (R\mathbf{p}_i + \mathbf{t}) - \mathbf{q}_i \right\|^2 = \sum_{i=1}^{n} w_i \left\| R \underbrace{(\mathbf{p}_i - \bar{\mathbf{p}})} - \underbrace{(\mathbf{q}_i - \bar{\mathbf{q}})} \right\|^2$$

点云质心
$$\overline{\mathbf{p}} = \frac{\sum_{i=1}^n w_i \mathbf{p}_i}{\sum_{i=1}^n w_i} \qquad \overline{\mathbf{q}} = \frac{\sum_{i=1}^n w_i \mathbf{q}_i}{\sum_{i=1}^n w_i}$$

▶ 旋转矩阵R可以表示为:

平移
$$R = \underset{R \in SO(d)}{\operatorname{argmin}} \sum_{i=1}^{n} w_i \| R\mathbf{x}_i - \mathbf{y}_i \|^2$$

3 Computing the rotation

◆ 简化表达式: $||R\mathbf{x}_i - \mathbf{v}_i||^2$

$$= (R\mathbf{x}_i - \mathbf{y}_i)^{\mathsf{T}} (R\mathbf{x}_i - \mathbf{y}_i) = (\mathbf{x}_i^{\mathsf{T}} R^{\mathsf{T}} - \mathbf{y}_i^{\mathsf{T}}) (R\mathbf{x}_i - \mathbf{y}_i)$$

$$= \mathbf{x}_i^\mathsf{T} R^\mathsf{T} R \mathbf{x}_i - \mathbf{y}_i^\mathsf{T} R \mathbf{x}_i - \mathbf{x}_i^\mathsf{T} R^\mathsf{T} \mathbf{y}_i + \mathbf{y}_i^\mathsf{T} \mathbf{y}_i$$

$$= \mathbf{x}_i^\mathsf{T} \mathbf{x}_i - \mathbf{y}_i^\mathsf{T} R \mathbf{x}_i - \mathbf{x}_i^\mathsf{T} R^\mathsf{T} \mathbf{y}_i + \mathbf{y}_i^\mathsf{T} \mathbf{y}_i$$

其中 \mathbf{x}_i^T R^T \mathbf{y}_i $1 \times d$ $d \times d$ $d \times 1$

标量合并

$$||R\mathbf{x}_i - \mathbf{y}_i||^2 = \mathbf{x}_i^\mathsf{T} \mathbf{x}_i - 2\mathbf{y}_i^\mathsf{T} R\mathbf{x}_i + \mathbf{y}_i^\mathsf{T} \mathbf{y}_i$$

◆ 最小化上式

◆ 简化表达式:
$$\|R\mathbf{x}_i - \mathbf{y}_i\|^2$$

$$= (R\mathbf{x}_i - \mathbf{y}_i)^\mathsf{T}(R\mathbf{x}_i - \mathbf{y}_i) = (\mathbf{x}_i^\mathsf{T}R^\mathsf{T} - \mathbf{y}_i^\mathsf{T})(R\mathbf{x}_i - \mathbf{y}_i)$$
$$= \mathbf{x}_i^\mathsf{T}R^\mathsf{T}R\mathbf{x}_i - \mathbf{y}_i^\mathsf{T}R\mathbf{x}_i - \mathbf{x}_i^\mathsf{T}R^\mathsf{T}\mathbf{y}_i + \mathbf{y}_i^\mathsf{T}\mathbf{y}_i$$
$$= \mathbf{x}_i^\mathsf{T}R^\mathsf{T}R\mathbf{x}_i - \mathbf{y}_i^\mathsf{T}R\mathbf{x}_i - \mathbf{x}_i^\mathsf{T}R^\mathsf{T}\mathbf{y}_i + \mathbf{y}_i^\mathsf{T}\mathbf{y}_i$$
$$= \mathbf{x}_i^\mathsf{T}R^\mathsf{T}R\mathbf{x}_i - \mathbf{y}_i^\mathsf{T}R\mathbf{x}_i - \mathbf{y}_i^\mathsf{T}R\mathbf{y}_i - \mathbf{y}_i^\mathsf{T}R$$

$$= \underset{R \in SO(d)}{\operatorname{argmin}} \left(-2 \sum_{i=1}^{n} w_i \mathbf{y}_i^{\mathsf{T}} R \mathbf{x}_i \right)$$

$$\begin{bmatrix} w_1 & & & & \\ & w_2 & & & \\ & & \ddots & & \\ & & & w_n \end{bmatrix} \begin{bmatrix} -\mathbf{y}_1^\mathsf{T} - \\ -\mathbf{y}_2^\mathsf{T} - \\ \vdots \\ -\mathbf{y}_n^\mathsf{T} - \end{bmatrix} \begin{bmatrix} & & & \\ & & \end{bmatrix} \begin{bmatrix} | & | & & & \\ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ | & | & & & \end{bmatrix} =$$

$$\begin{vmatrix} -w_1\mathbf{y}_1^\mathsf{T} - \\ -w_2\mathbf{y}_2^\mathsf{T} - \\ \vdots \\ -w_n\mathbf{y}_n^\mathsf{T} - \end{vmatrix} \begin{bmatrix} | & | & | \\ R\mathbf{x}_1 & R\mathbf{x}_2 & \dots & R\mathbf{x}_n \\ | & | & | & | \end{vmatrix} = \begin{bmatrix} w_1\mathbf{y}_1^\mathsf{T}R\mathbf{x}_1 & & * \\ & w_2\mathbf{y}_2^\mathsf{T}R\mathbf{x}_2 & & \\ & & \ddots & \\ * & & & w_n\mathbf{y}_n^\mathsf{T}R\mathbf{x}_n \end{vmatrix} \begin{vmatrix} w_1\mathbf{y}_1^\mathsf{T}R\mathbf{x}_1 & & * \\ & & & \ddots & \\ & & & & & w_n\mathbf{y}_n^\mathsf{T}R\mathbf{x}_n \end{vmatrix}$$

求解

$$\underset{R \in SO(d)}{\operatorname{argmin}} \left(-2 \sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{\mathsf{T}} R \mathbf{x}_{i} \right) = \underset{R \in SO(d)}{\operatorname{argmax}} \sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{\mathsf{T}} R \mathbf{x}_{i}$$

$$\sum_{i=1}^{n} w_{i} \mathbf{y}_{i}^{\mathsf{T}} R \mathbf{x}_{i} = \operatorname{tr} \left(W Y^{\mathsf{T}} R X \right)$$

根据矩阵的迹 $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

$$\operatorname{tr}\left(\underline{\underline{WY}}^{\mathsf{T}}RX\right) = \operatorname{tr}\left((\underline{\underline{WY}}^{\mathsf{T}})(RX)\right) = \operatorname{tr}\left(RX\underline{\underline{WY}}^{\mathsf{T}}\right)$$

SVD分解
$$S = XWY^{\mathsf{T}}$$
 $S = U\Sigma V^{\mathsf{T}}$

$$\operatorname{tr}\left(RXWY^{\mathsf{T}}\right) = \operatorname{tr}\left(RS\right) = \operatorname{tr}\left(RU\underline{\Sigma V^{\mathsf{T}}}\right) = \operatorname{tr}\left(\underline{\Sigma V^{\mathsf{T}}}RU\right)$$

正交阵 $M = V^{\mathsf{T}}RU$

正交阵元素性质

$$1 = \mathbf{m}_{j}^{\mathsf{T}} \mathbf{m}_{j} = \sum_{i=1}^{d} m_{ij}^{2} \implies m_{ij}^{2} \le 1 \implies |m_{ij}| \le 1$$

求下列矩阵迹的最大值 $tr(\Sigma M)$

$$= \begin{pmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & \sigma_d \end{pmatrix} \begin{pmatrix} m_{11} & m_{12} & \dots & m_{1d} \\ m_{21} & m_{22} & \dots & m_{2d} \\ \vdots & \vdots & \vdots & \vdots \\ m_{d1} & m_{d2} & \dots & m_{dd} \end{pmatrix} = \sum_{i=1}^d \sigma_i m_{ii} \le \sum_{i=1}^d \sigma_i$$

R的解 $I = M = V^{\mathsf{T}}RU \Rightarrow V = RU \Rightarrow R = VU^{\mathsf{T}}$

✓ ICP的解:

$$\mathbf{t} = \bar{\mathbf{q}} - R\bar{\mathbf{p}}$$

$$I = M = V^\mathsf{T} R U \ \Rightarrow \ V = R U \ \Rightarrow \ R = V U^\mathsf{T}$$

$$R = V \begin{pmatrix} 1 & & & \\ & 1 & & \\ & \ddots & & \\ & & 1 & \\ & & \det(VU^{\mathsf{T}}) \end{pmatrix} U^{\mathsf{T}}$$

- ✓ ICP算法的缺点
 - ① 迭代效果很大程度依赖初值

③ 一阶收敛,收敛速度慢

② 收敛到局部最小值

④ 离群点以及噪声

✓ 算法流程:

I PL-ICP Point-Line Iterative Closest Point

II Point-to-Line ICP

 \boldsymbol{q}_{k+1}

向量

法向量

PL-ICP思想:

- 利用激光点的离散性 a)
- 更关注激光点中隐藏的曲面 b)
- 采用分段线性曲面拟合 c)
- d) 通过定义激光点到曲面距离

PL-ICP特点:

- a) 二阶收敛
- b) 有限步内收敛
- 比ICP更接近真实曲面 C)

目标函数:

 $\min_{oldsymbol{q}_{k+1}} \sum ig(oldsymbol{n}_i^{^{\mathrm{T}}} ig[oldsymbol{p}_i \oplus oldsymbol{q}_{k+1} - \Pi ig\{ \mathcal{S}^{\mathrm{ref}}, oldsymbol{p}_i \oplus oldsymbol{q}_k ig\} ig]ig)^2$ K时刻激光点在参考曲面 投影的欧式距离

 $(\boldsymbol{p} \oplus (\boldsymbol{t}, \boldsymbol{\theta}) \triangleq \mathbf{R}(\boldsymbol{\theta}) \boldsymbol{p} + \boldsymbol{t})$

II Point-to-Line ICP

目标函数:

$$\min_{oldsymbol{q}_{k+1}} \sum_i ig(oldsymbol{n}_i^{\scriptscriptstyle ext{ iny T}} ig[oldsymbol{p}_i \oplus oldsymbol{q}_{k+1} - \Piig\{\mathcal{S}^{ ext{ref}}, oldsymbol{p}_i \oplus oldsymbol{q}_kig\}ig]ig)^2$$

将当前帧激光转换 到参考框架下

根据阈值, 在参考帧当 中选择最邻近的两个点

修剪去除异常点 (Trimmed ICP)

改写误差函数

求解位姿转换矩阵

$$oldsymbol{p}_i^w riangleq oldsymbol{p}_i \oplus oldsymbol{q}_k = \mathbf{R}(heta_k) \, oldsymbol{p}_i + oldsymbol{t}_k$$

$$\left\langle i, j_1^i, j_2^i \right\rangle$$

LTS(the least trimmed squares)

$$J(oldsymbol{q}_{k+1}, oldsymbol{C}_k) = \sum_i \left(oldsymbol{n}_i^{\scriptscriptstyle extsf{T}} \left[\mathbf{R}(heta_{k+1}) oldsymbol{p}_i \!+\! oldsymbol{t}_{k+1} - oldsymbol{p}_{j_1^i}
ight]
ight)^2$$

III NICP Normal Iterative Closest Point

Differently from ICP, NICP considers each point together with the **local features of the surface** (normal and curvature) and it takes advantage of the 3D structure around the points for the determination of the data association between two point clouds. Moreover, it is based on a least squares formulation of the alignment problem, that minimizes an augmented error metric depending not only on the point coordinates but also on these surface characteristics.

III Normal ICP-流程

 \triangleright 高斯拟合,计算以 \mathbf{p}_i 为中心,R为半径点集 \mathcal{V}_i 的均值与协方差(integral images)

$$\mu_i^s = \frac{1}{|\mathcal{V}_i|} \sum_{\mathbf{p}_j \in \mathcal{V}_i} \mathbf{p}_i \qquad \qquad \mathbf{\Sigma}_i^s = \frac{1}{|\mathcal{V}_i|} \sum_{\mathbf{p}_j \in \mathcal{V}_i} (\mathbf{p}_i - \mu_i)^T (\mathbf{p}_i - \mu_i)$$

法向量: 最小特征值对应的特征向量

III Normal ICP-点的剔除策略

- Either \mathbf{p}_i^c or \mathbf{p}_i^r do not have a well defined normal
- 最初是一个数学上的概念.和 ambiguous相对, 是指某一表达式 只有一种解释或取值唯一。

• The distance between the point in the current cloud and the reprojected point in the reference cloud is larger than a threshold

$$\|\mathbf{p}_i^{\mathrm{c}} - \mathbf{T} \oplus \mathbf{p}_i^{\mathrm{r}}\| > \epsilon_d$$

• The magnitude of the log ratio of the curvatures of the points is greater than a threshold

$$|\log \sigma_i^{\rm c} - \log \sigma_i^{\rm r}| > \epsilon_{\sigma}$$

• The angle between the normal of the current point and the reprojected normal of the reference point is greater than a threshold

$$\mathbf{n}_i^{\mathrm{c}} \cdot \mathbf{T} \oplus \mathbf{n}_j^{\mathrm{r}} < \epsilon_n$$

III Normal ICP-根据对应关系确定变换

$$ightarrow$$
 数学描述 $ilde{\mathbf{p}}' = \mathbf{T} \oplus ilde{\mathbf{p}} = \begin{pmatrix} \mathbf{R}\mathbf{p} + \mathbf{t} \\ \mathbf{R}\mathbf{n} \end{pmatrix}$ 对激光点旋转+平移 对法向量旋转

$$ightharpoonup$$
 误差函数 $\mathbf{e}_{ij}\left(\mathbf{T}
ight) = \left(\mathbf{ ilde{p}}_{i}^{\mathrm{c}} - \mathbf{T} \oplus \mathbf{ ilde{p}}_{j}^{\mathrm{r}}
ight)$

误差函数
$$\mathbf{e}_{ij}\left(\mathbf{T}\right) = \left(\mathbf{\tilde{p}}_{i}^{\mathrm{c}} - \mathbf{T} \oplus \mathbf{\tilde{p}}_{j}^{\mathrm{r}}\right)$$
 $\sum_{\mathcal{C}} \mathbf{e}_{ij}\left(\mathbf{T}\right)^{T} \mathbf{\tilde{\Omega}}_{ij} \mathbf{e}_{ij}\left(\mathbf{T}\right)$ $\mathbf{\tilde{\Omega}}_{ij} = \left(\begin{array}{cc} \mathbf{\Omega}_{i}^{\mathrm{s}} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Omega}_{i}^{\mathrm{n}} \end{array}\right)$

$$m ag{Hessian}$$
 非线性最小二乘,LM方法求解 $({f H}+\lambda {f I}){f \Delta}{f T}={f b}$ Hessian $m \uparrow$ residual ${f H}=\sum {f J}_{ij}^T ilde{f \Omega}_{ij} {f J}_{ij}$ ${f b}=\sum {f J}_{ij}^T ilde{f \Omega}_{ij} {f e}_{ij}({f T})$

$$ightharpoonup$$
 不断迭代求解 $\mathbf{T} \leftarrow \mathbf{\Delta}\mathbf{T} \oplus \mathbf{T}$

IV IMLS ICP Implicit Moving Least ICP

IV IMLS ICP—scan to model

算法思想:

- 选点:选择具有代表性(结构化以及精确定义)的激光点来进行匹配...
- 曲面重建: 点云中隐藏着真实得曲面, 从参考帧点云中把曲面重建出来 b.
- 曲面重建的越准确, 对真实世界描述越准确, 匹配的精度更高

选点策略:

- 特征丰富的点
- 结构化的点-具备良好的曲率和法向量的定义
- 曲率越小的点越好
- 均衡选取激光点

$$ightharpoonup$$
 点到隐式曲面的距离: $I^{P_k}(x) = \frac{\sum_{p_i \in P_k} W_i(x)((x-p_i) \cdot \vec{n_i})}{\sum_{p_i \in P_k} W_j(x)}$ 曲面重建

- ightharpoonup 权重表达式: $W_i(x) = e^{-\|x-p_i\|^2/h^2}$ 搜索范围: B(x,r)
- \triangleright 位姿计算差值: $\sum_{x_j \in \tilde{S}_k} |I^{P_k}(Rx_j+t)|^2$
- \triangleright 定义投影点: $y_j = x_j I^{P_k}(x_j)\vec{n_j}$
- 位姿计算差值改写为:
 - $\longrightarrow \sum_{x_j \in \tilde{S_k}} |\vec{n_j} \cdot (Rx_j + t y_j)|^2$

V 高斯牛顿优化

V 高斯牛顿优化-hector SLAM

Hector SLAM

- > 对硬件要求高
- ▶ 利用高斯牛顿解决scan-matching问题
- ▶ 不需要里程计
- ▶ 没有回环
- ▶ 使用多分辨率地图

梯度下降方法	最速下降	牛顿法	高斯牛顿法	L-M方法	Dogleg
特点	计算速度慢; 收敛慢	收敛慢; 求解Hessian 矩阵复杂	用Jacobi矩阵相乘 代替Hessian矩阵 $J^TJ=H$	通过 λ 调整收敛速度 $J^TJ+\lambda I$	高斯牛顿 +最速下降

V 高斯牛顿优化-推导

$$ightarrow$$
 对于一个非线性最小二乘问题 $x = \arg\min_{x} rac{1}{2} \parallel f(x) \parallel^2$

$$ightharpoonup$$
 把 $f(x)$ 利用泰勒展开,取一阶线性项近似 $f(x+\Delta x)=f(x)+f'(x)\Delta x=f(x)+J(x)\Delta x$

$$ightharpoonup$$
 回代得: $\dfrac{1}{2} \parallel f(x + \Delta x) \parallel^2 = \dfrac{1}{2} \{ f(x)^T f(x) + 2 f(x)^T J(x) \Delta x + \Delta x^T J(x)^T J(x) \Delta x \}$

$$ightarrow$$
 对上式求导,令导数为0 $J(x)^TJ(x)\Delta x = -J(x)^Tf(x)$

$$\Leftrightarrow \qquad H = J^T J \quad B = -J^T f$$

▶ 问题转换为

$$H\Delta x=B$$

给定初值 进行k次迭代,计算 当x的增量小于设定阈值, 停止迭代,否则进行更新

不断循环前两步骤,直到满足 条件或者达到最大循环次数

Ⅴ 高斯牛顿优化

- 目标函数:将帧间匹配问题转换为求解极值 $E(T) = \arg\min_{r} \sum \left[1 M\left(S_{i}(T)\right)\right]^{2}$
- ightharpoonup Taylor展开,一阶近似 $1-M(S_i(T+\Delta T))=1-M(S_i(T))-\nabla M(S_i(T))\frac{\partial S_i(T)}{\partial T}\Delta T$ $E(T + \Delta T) = \arg\min_{T} \sum \left[1 - M\left(S_{i}(T)\right) - \nabla M\left(S_{i}(T)\right) \frac{\partial S_{i}(T)}{\partial T} \Delta T \right]^{2}$
- 展开,代入求解对 ΔT 的导数,并令其等于0 $\sum_{i=0}^{\lfloor \nabla M(S_i(T)) \rfloor} \left[1 M(S_i(T)) \right]^{i} \left[1 M(S_i(T)) \right]^{i}$

$$\sum \left[\nabla M(S_{i}(T))\frac{\partial S_{i}(T)}{\partial T}\right]^{T}\left[1-M(S_{i}(T))\right] = \sum \left[\nabla M(S_{i}(T))\frac{\partial S_{i}(T)}{\partial T}\right]^{T}\left[\nabla M(S_{i}(T))\frac{\partial S_{i}(T)}{\partial T}\right]^{T}\left[1-M(S_{i}(T))\frac{\partial S_{i}(T)}{\partial$$

$$\Delta T = H^{-1} \sum \left[\nabla M \left(S_i(T) \right) \frac{\partial S_i(T)}{\partial \Delta T} \right]^T \left[1 - M \left(S_i(T) \right) \right]$$

ightharpoonup 其中 $T = (T_x, T_y, T_\theta)$ $p_i = (p_{ix}, p_{iy})$ 表示第i个激光点的坐标

$$S_{i}(T) = \begin{bmatrix} \cos T_{\theta} & -\sin T_{\theta} & T_{x} \\ \sin T_{\theta} & \cos T_{\theta} & T_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{ix} \\ p_{iy} \\ 1 \end{bmatrix}$$
 展开
$$S_{i}(T) = \begin{bmatrix} \cos T_{\theta} * p_{ix} - \sin T_{\theta} * p_{iy} + T_{x} \\ \sin T_{\theta} * p_{ix} - \cos T_{\theta} * p_{iy} + T_{y} \\ 1 \end{bmatrix}$$
 录号
$$\frac{\partial S_{i}(T)}{\partial T} = \begin{bmatrix} 1 & 0 & -\sin T_{\theta} * p_{ix} - \cos T_{\theta} * p_{iy} \\ 0 & 1 & \cos T_{\theta} * p_{ix} - \sin T_{\theta} * p_{iy} \end{bmatrix}$$

同时 M对S的导数 采用拉格朗日双线性插值

VI Normal Distribution Transformation NDT正态分布变换

VI NDT正弦距离转换

否则继续步骤3-5

- ▶ 2D情况下为正方形,3D情况下为立方体
- ightarrow 计算概率分布函数PDF $p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- \triangleright 测量值 \vec{x} 的似然函数

$$p(ec{x}) = rac{1}{(2\pi)^{D/2}\sqrt{|\Sigma|}} \exp(-rac{(ec{x}-ec{\mu})^T\Sigma^{-1}(ec{x}-ec{\mu})}{2})$$

计算由 x 组成的网格的均值与协方差

$$ec{\mu} = rac{1}{m} \sum_{m=1}^m ec{y_k} \hspace{0.5cm} \Sigma = rac{1}{m-1} \sum_{k=1}^m (ec{y_k} - ec{\mu}) (ec{y_k} - ec{\mu})^T$$

▶ 目标函数简化以及增加限制

$$\overline{p}(x) = c_1 exp(-rac{\overrightarrow{(x-\mu)}^Toldsymbol{\Sigma}^{-1}(x-\overrightarrow{\mu})}{2}) + c_2 p_0$$

VI NDT正弦距离转换

Original point cloud

NDT representation

Algorithm 2 Register scan \mathcal{X} to reference scan \mathcal{Y} using NDT.

$ndt(\mathcal{X}, \mathcal{Y}, \vec{p})$ 1: {Initialisation:} 2: allocate cell structure B 3: for all points $\vec{v}_b \in \mathcal{Y}$ do find the cell $b_i \in \mathcal{B}$ that contains \vec{v}_b store \vec{v}_b in b_i 6: end for 7: for all cells $b_i \in \mathcal{B}$ do $\mathcal{Y}' = \{\vec{y}_1', \dots, \vec{y}_m'\} \leftarrow \text{all points in } b_i$ $\vec{\mu}_i \leftarrow \frac{1}{n} \sum_{k=1}^m \vec{y}_k'$ 10: $\Sigma_i \leftarrow \frac{1}{m-1} \sum_{k=1}^{m} (\vec{y}_k' - \vec{\mu}) (\vec{y}_k' - \vec{\mu})^T$ 11: end for 12: {Registration:} while not converged do $H\Delta \vec{p} = -\vec{q}$ $score \leftarrow 0$ $\vec{g} \leftarrow 0$ $\vec{p} \leftarrow \vec{p} + \Delta \vec{p}$ $H \leftarrow 0$ for all points $\vec{x}_b \in \mathcal{X}$ do find the cell b_i that contains $T(\vec{p}, \vec{x}_b)$ 18: $score \leftarrow score + \tilde{p} \left(T(\vec{p}, \vec{x}_k) \right)$ (see Equation 6.9) 19: update \vec{g} (see Equation 6.12) 20: update H (see Equation 6.13) 21: end for 22. $score_i = -\exp(-\frac{(\mathbf{x}_i' - \mathbf{q}_i)^T \sum_{i=1}^{-1} \overline{(\mathbf{x}_i' - \mathbf{q}_i)}}{\mathbf{q}_i})$ solve $H\Delta \vec{p} = -\vec{g}$ $\vec{p} \leftarrow \vec{p} + \Delta \vec{p}$

25: end while

改进:

- cell size
- Iterative discretization
- Adaptive clustering
- Linked cells
- > Octree discretization
- > Trilinear interpolation

参考论文: The three-dimensional normal-distributions transform: an efficient representation for registration, surface analysis, and loop detection

V Other methods

- Iterative dual correspondences (IDC) algorithm--主要是采用极坐标代替笛卡尔坐标系进行最近点搜索
- Probabilistic iterative correspondence (PIC) method--考虑了噪声和初始位姿的不确定性
- Gaussian fields--采用高斯混合模型,类似NDT
- Conditional random fields (CRFs)--条件随机场
- Branch-and-bound strategy--分支定界法
- Registration using local geometric features--结合图像的局部特征进行匹配
- 结合深度学习

Thank you for your attention

什么是「SLAM研习社」?

- 计算机视觉life读者自发组织,专注于SLAM的开源学习组织
- 宗旨: SLAM技术从基础到应用, 懂原理会应用, 完全搞透彻, 不留死角
- 角色: 主讲、联络、宣传
- 报名: <u>simiter@126.com</u>
- 报名主讲/嘉宾不需要你是大牛,只要熟悉SLAM某个知识点即可
- SLAM研习社详细介绍、直播预告、视频回放链接
- https://github.com/electech6/LearnSLAM/blob/master/README.md
- QQ群: 1105241614