

迈普通信技术股份有限公司

技术培训中心

OSI参考模型定义了网络中设备所遵守的层次结构

- 分层结构的优点:
 - 开放的标准化接口
 - 多厂商兼容性
 - 易于理解、学习和更新协议标准
 - 实现模块化工程,降低了开发实现的复杂度
 - 便于故障排除

局域网与OSI参考模型

网络层		IP、IPX等网络层协议
数据链路层	LLC子层 	802.2 LLC/SNAP
	MAC子层 	802.3、802.4、802.5、802.11
物理层		同轴线缆、双绞线、光纤、 RJ-45、无线电波
OSI参考模型		局域网

迈普 建设中国人的安全网络

局域网互连

- 主机
- 网卡 (NIC)
- 互连线缆和设备
 - 早期: 同轴电缆
 - 中期: HUB、双绞线
 - 现代:交换机、双绞线、光纤

在局域网中,硬件地址又称为物理地址,或 MAC 地址。

- IEEE 的注册管理机构负责向厂家(迈普为00.01.7A)分配地址字段的前三个字节OUI(即高位 24 位)。
- 地址字段中的后三个字节(即低位 24 位)由厂家自行指派,称为扩展标识符EI,必须保证生产出的适配器没有重复地址。
- 一个地址块可以生成2²⁴个不同的地址。这种 48 位地址称为 MAC-48,它的通用名称是EUI-48。

对于网络层的IP数据包,数据链路层MAC帧是对其透明传输的。

- 网卡 (适配器) 从网络上每收到一个 MAC 帧就首先用硬件检查 MAC 帧中的目的 MAC 地址.
 - 如果是发往本站的帧则收下,然后再进行其他的处理。
 - 否则就将此帧丢弃,不再进行其他的处理。
- "发往本站的帧"包括以下三种帧:
 - 单播(unicast)帧 (一对一)
 - 广播(broadcast)帧 (一对全体)
 - 多播(multicast)帧 (一对多)

- 局域网的通信范围
 - 广播域:广播帧能到达的范围;
 - 局域网采用的是广播多路访问技术, 单播帧和组播帧都只能在广播域内通信;
- 主机网卡接收的数据帧
 - 目的MAC是自己的单播帧
 - ■广播帧
 - 加入组播组对应的组播帧

- 交换式局域网互联
 - 交换机每个接口都是一个冲突域,终端主机独占接口的全部带宽。
 - 交换机与交换机之间可通过光纤接口互连, 突破了距离的限制。
 - 星型拓扑具有良好的扩展性。

- 广播域和冲突域
 - 广播域是指广播帧(目的MAC: FFFF.FFF.FFF)能够到达的范围。一个交换机的所有接口都在同一广播域中。

人的安全网络

● 交换机MAC表学习

- 交换机数据帧转发
 - 单播帧

- 交换机数据帧转发
 - 未知单播帧、广播帧、组播帧 (未开二层组播协议)
 - ◆洪泛

- IP网络互连
 - 多种设备互连

路由器、交换机、主机等

■ 多种链路互连

以太网、PPP、FR等

- 全网统一使用IP协议
- 全网统一进行IP编制

- 大规模主机通信
 - 网络分段
 - ◆以大化小,分而治之

- 大规模主机通信
 - 全网互联
 - ◆设备互联,网络互通

Ehernet

主机地址

- IP网络编址
 - IP地址需求
 - ◆主机地址
 - ◆网关地址
 - ◆链路地址
 - ◆网络设备管理地址

网络设备 管理地址

- 路由器
 - 具有多个接口,用于连接多个IP子 网及多种链路,并实现其互联互通 的网络设备。
 - 工作在OSI第三层,其主要工作任 务是在网络中转发IP数据包。

- 路由表 (Routing Table)
 - 又称全局路由表,存储在路由器的 内存中,用于指示路由器如何将IP 数据包转发至正确目的地的信息表。

协议	目标网段/掩码	出接口	下一跳
С	192.168.1.0/30	S0/0	
С	192.168.1.4/30	S0/1	
С	192.168.10.0/24	F0/0	
S	192.168.18.0/24	S0/0	192.168.1.2
0	192.168.22.0/24	S0/1	192.168.1.6

● IP路由选路

● IP之上运行多种运用

- TCP/UDP
 - 在IP之上封装TCP/UDP, 通过端口号来区分应用

◆端口号: 16位 (0-65535)

- 源端口随机分配,大于1024的端口
- 目标端口使用知名端口

TCP端口号

协议	端口号	协议	端口号	协议	端口号
FTP	21	НТТР	80	SMTP	25
FT-data	20	HTTPS	443	POP3	110
Telnet	23	SQL	1433	Tacacs+	49
SSH	22	Oracel	1521	DNS	53

UDP端口号

协议	端口号	协议	端口号	协议	端口号
DHCP	67 68	Radius	1812 1813	WINS	42
TFTP	69	NTP	123	NETBIOS	137 138 139
SNMP	161 162	RIP	520	DNS	53

● 链路层封装

● 封装

• 解封装

- 地址解析需求
 - 将应用层地址解析成IP地址
 - ◆HTTP URL、e-mail、QQ号等应用层地址都需解析成IP地址。
 - 将IP地址解析成MAC地址 我想访问www.baidu.com, IP封装时需填入目标IP, 百度的IP是多少? Baide首度 几经周折,终于找到了百度的IP地址 192.168.1.10; 现在通过Ehernet将请 192.168.1.10 请求发给它,需要进行MAC封装, 192.168.1.10的MAC地址是多少? **Ehernet** MAC头 IP包头 TCP/UDP头

FCS

Data

- DNS
 - 提供域名解析服务
 - ◆将URL中的域名解析成IP地址

ARP

■ 将IP地址解析成MAC地址

PCB:

IP: 192.168.1.20/24 MAC: 0003.4700.000B

- 数据包在完成封装后,需要在网络中进行传输,才能到达目的地,所经过的设备如 何转发这些数据包?
 - 本网络中涉及到的设备包括:二层交换机、三层交换机、

- 二层交换机工作在数据链路层, 查找MAC表进行数据帧转发
- 查到进行根据端口进行单播转发
- 查不到进行洪泛
 - 洪泛广播帧、未知单播帧、未知组播帧

MAC	Interface
0001-23AB-000B	G2
0001-23AB-000D	G4

- 洪泛数据帧
- 交换机将数据帧发给除接收该数据帧端口外的其他所有端口

MAC	Interface
0001-23AB-000B	G2
0001-23AB-000D	G4

- MAC地址学习
- 当完成以上两次数据帧转发后, MAC地址表如下

MAC	Interface
0001-23AB-000A	G1
0001-23AB-000B	G2
0001-23AB-000C	G3
0001-23AB-000D	G4

- 三层交换机&路由器工作在网络层,在网络层转发数据包
- 具有多个接口
- 路由器接口形态丰富

	目标网络	路由	下一跳
	192.168.1.0/24	直连	N/A
三层交换机	192.168.2.0/24	直连	N/A
	10.0.0.0/30	直连	N/A
	0.0.0.0/0	静态	10.0.0.2

	目标网络	路由	下一跳
	10.0.0.0/30	直连	N/A
山口吹击毁	222.0.0.0/24	直连	N/A
出口路由器	192.168.1.0/24	静态	10.0.0.1
	192.168.2.0/24	静态	10.0.0.1
	0.0.0.0/0	静态	222.0.0.254

● 路由器查找路由表进行数据转发,找不到则丢弃报文

- PC1访问PC2分析
- 目标主机与源主机在同一IP地址网段,主机IP层认为目标主机与源主机在同一广播域中,直接进行MAC封装访问。

PC1:0001-23AB-000A 192.168.1.10

MAC头 IP头 TCP/UDP头 DATA FCS

PC2:0001-23AB-000B 192.168.1.20

PC1与PC2访问分析

- 同一网段,判断可以直接访问
- 動装MAC帧
- 查找ARP表 (如有则进行封装,如没有则进行ARP请求)
- 查找MAC表, 转发数据帧
- PC2收到数据帧

PC1:0001-23AB-000A 192.168.1.10

PC2:0001-23AB-000B 192.168.1.20

1
2

MAC头	IP头	TCP/UDP头	DATA	FCS
------	-----	----------	------	-----

目的MAC: ?	目的IP: 192.168.1.20
源MAC: 0001-23AB-000A	源IP:192.168.1.10

目的MAC: 0001-23AB-000B	目的IP: 192.168.1.20
源MAC: 0001-23AB-000A	源IP:192.168.1.10

MAC	Interface
0001-23AB-000A	G1
0001-23AB-000B	G2

- VLAN隔离了广播域
- 不能直接访问
- 在三层交换机设置网关, 经网关进行路由访问

• 封装数据包

目的MAC: ? 目的IP: 192.168.2.10

源MAC: 0001-23AB-000A 源IP: 192.168.1.10

③查找ARP表,未发现 ⑤收到ARP回应,存入ARP ①192.168.2.10与本机不在同 表,继续封装数据帧 192.168.1.254表项,发送 一网段,使用网关地址 ARP请求 192.168.1.254进行MAC封装 PC1:0001-23AB-000A 192.168.1.10 ④ARP回应 192.168.1.254/24 PC2:0001-23AB-000B 192.168.1.20 PC3:0001-23AB-000C 192.168.2.254/24 192.168.2.10 PC4:0001-23AB-000D 192.168.2.20

②封装

• 封装数据包

目的MAC: 0001-7A00-0001

|目的IP: 192.168.2.10

源MAC: 0001-23AB-000A

源IP: 192.168.1.10

⑥封装

迈普 建设中国人的安全网络