### Internal Energy

• Internal energy is due to the molecular motion at the microscopic level (read chapter 21).

#### monatomic



Degrees of freedom

Monatomic: 3 Diatomic: 5

Each degree of freedom:

$$KE = \frac{1}{2}nRT$$

Equipartition of Energy

#### diatomic



$$U = \frac{3}{2}nRT \quad monatomic \ gas$$
$$\Delta U = nC_V \Delta T$$

$$\Delta U = \frac{3}{2} nR\Delta T \quad monatomic \ gases$$

$$\Delta U = \frac{5}{2} nR\Delta T \quad diatomic \ gases$$

$$C_V = \frac{3}{2}R$$
 For monatomic gases

$$C_V = \frac{5}{2}R$$
 For diatomic gases

### Internal Energy

- Internal energy is due to the molecular motion at the microscopic level (read chapter 21).
- For any ideal gas, the internal energy (U) depends only on its temperature, not on its pressure or volume.

$$\Delta U = \frac{3}{2} nR\Delta T \quad monatomic \ gases$$
 
$$\Delta U = \frac{5}{2} nR\Delta T \quad diatomic \ gases$$

• The change in internal energy  $(\Delta U)$  is the same for all ideal-gas processes that have the same  $\Delta T$ .

$$\Delta U = nC_V \Delta T$$

$$C_V = \frac{3}{2}R \text{ For monatomic gases}$$

$$C_V = \frac{5}{2}R \text{ For diatomic gases}$$

A monatomic gas of volume 100 cm<sup>3</sup> is initially at 100°C and a pressure of 1 atm, it follows the processes shown.

- a) During process A, how much heat is needed to double its pressure at a constant volume?
- b) During process B, how much heat is needed to double its volume at a constant pressure?



Process A and B involve the same change in temperature, but why Q is different?

A: 
$$\Delta U = Q + W = Q_A = nC_V \Delta T$$

B: 
$$\Delta U = Q + W = Q_B - P\Delta V = nC_V\Delta T$$
 
$$Q_B = nC_V\Delta T + P\Delta V$$

A monatomic gas of volume 100 cm<sup>3</sup> is initially at 100°C and a pressure of 1 atm, it follows the processes shown.

- a) During process A, how much heat is needed to double its pressure at a constant volume?
- b) During process B, how much heat is needed to double its volume at a constant pressure?

A: 
$$\Delta U = Q + W = Q_A = nC_V \Delta T = \frac{3}{2}nR\Delta T \qquad \text{gases}$$
 
$$C_V = \frac{3}{2}R$$
 B: 
$$\Delta U = Q + W = Q_B - P\Delta V = nC_V \Delta T$$

For monatomic

B: 
$$\Delta U = Q + W = Q_B - P\Delta V = nC_V \Delta T$$
$$Q_B = \Delta U + P\Delta V = nC_V \Delta T + P\Delta V$$

Constant-volume process 
$$Q_B = nC_V \Delta T + P\Delta V = n\frac{3}{2}R\Delta T + nR\Delta T$$
 
$$Q_B = n\frac{5}{2}R\Delta T = nC_P \Delta T \qquad C_P = \frac{5}{2}R$$
 For monatomic gases

 $T_i$  isothérm

# Specific Heats for Ideal-Gases

• The *heat* required to cause a specified temperature change depends on the process by which the gas changes states.

Temperature change at constant volume

$$Q = nC_V \Delta T$$

 $C_V$  Molar specific heat at constant *volume* 

Temperature change at constant pressure

$$Q = nC_P \Delta T$$

 $C_P$  Molar specific heat at constant **Pressure** 

$$C_P = C_V + R$$



### Molar Specific Heats of Gases

#### monatomic



Degrees of freedom

Monatomic: 3 Diatomic: 5

Each degree of freedom:

$$KE = \frac{1}{2} nRT$$

**Equipartition of Energy** 

#### diatomic



$$C_P = C_V + R$$

$$C_V = \frac{3}{2}R$$
 monatomic ideal-gases

monatomic

$$C_V = \frac{5}{2}R$$

diatomic ideal-gases

$$\gamma = \frac{C_P}{C_V}$$

specific heat ratio

### Molar Specific Heats of Gases

**TABLE 17.4** Molar specific heats of gases (J/mol K)

|        | ,          |            |                     |
|--------|------------|------------|---------------------|
| Gas    | $C_{ m P}$ | $C_{ m V}$ | $C_{ m P}-C_{ m V}$ |
| Monato | omic Gases |            |                     |
| He     | 20.8       | 12.5       | 8.3                 |
| Ne     | 20.8       | 12.5       | 8.3                 |
| Ar     | 20.8       | 12.5       | 8.3                 |
| Diatom | ic Gases   |            |                     |
| $H_2$  | 28.7       | 20.4       | 8.3                 |
| $N_2$  | 29.1       | 20.8       | 8.3                 |
| $O_2$  | 29.2       | 20.9       | 8.3                 |
|        |            |            |                     |

$$C_P = C_V + R$$

$$C_V = \frac{3}{2}R$$
 monatomic ideal-gases

$$C_V = \frac{5}{2}R$$
 diatomic ideal-gases

$$\gamma = \frac{C_P}{C_V}$$

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

### Summary – Heat and Internal Energy

#### Temperature change at constant volume

$$Q = nC_V \Delta T$$

 $C_V$  Molar specific heat at constant *volume* 

#### Temperature change at constant pressure

$$Q = nC_P \Delta T$$

 $C_P$  Molar specific heat at constant **Pressure** 

$$C_P = C_V + R$$

$$PV = nRT$$

$$C_V = \frac{3}{2}R$$
 monatomic gases

$$C_V = \frac{5}{2}R$$
 diatomic gases

$$\Delta U = nC_V \Delta T$$

$$\Delta U = Q + W$$

You need to raise the temperature of a gas by 10°C. To use the least amount of heat energy, should you heat the gas at constant pressure or at constant volume?

- 1. Constant pressure.
- 2. Constant volume.
- 3. The same.
- 4. Can not tell from the given information.

Which of the following statement is true about the idealgas isothermal process from A to B?

1. 
$$\Delta U > 0$$
,  $W_{\text{on gas}} = 0$ ,  $Q > 0$ 

2. 
$$\Delta U > 0$$
,  $W_{\text{on gas}} > 0$ ,  $Q = 0$ 

3. 
$$\Delta U = 0$$
,  $W_{\text{on gas}} > 0$ ,  $Q < 0$ 

4. 
$$\Delta U = 0$$
,  $W_{\text{on gas}} < 0$ ,  $Q > 0$ 

5. 
$$\Delta U < 0$$
,  $W_{\text{on gas}} = 0$ ,  $Q < 0$ 

6. 
$$\Delta U < 0$$
,  $W_{\text{on gas}} < 0$ ,  $Q = 0$ 

7. None of the above



Which of the following statement is true about the ideal gas process A to D?

1. 
$$\Delta U > 0$$
,  $W_{\text{on gas}} = 0$ ,  $Q > 0$ 

2. 
$$\Delta U > 0$$
,  $W_{\text{on gas}} > 0$ ,  $Q = 0$ 

3. 
$$\Delta U = 0$$
,  $W_{\text{on gas}} > 0$ ,  $Q < 0$ 

4. 
$$\Delta U = 0$$
,  $W_{\text{on gas}} < 0$ ,  $Q > 0$ 

5. 
$$\Delta U < 0$$
,  $W_{\text{on gas}} = 0$ ,  $Q < 0$ 

6. 
$$\Delta U < 0$$
,  $W_{\text{on gas}} < 0$ ,  $Q = 0$ 

7. None of the above



Which of the following statement is true about the ideal gas process D to B?

1. 
$$\Delta U > 0$$
,  $W_{\text{on gas}} = 0$ ,  $Q > 0$ 

2. 
$$\Delta U > 0$$
,  $W_{\text{on gas}} > 0$ ,  $Q = 0$ 

3. 
$$\Delta U = 0$$
,  $W_{\text{on gas}} > 0$ ,  $Q < 0$ 

4. 
$$\Delta U = 0$$
,  $W_{\text{on gas}} < 0$ ,  $Q > 0$ 

5. 
$$\Delta U < 0$$
,  $W_{\text{on gas}} = 0$ ,  $Q < 0$ 

6. 
$$\Delta U > 0$$
,  $W_{\text{on gas}} < 0$ ,  $Q > 0$ 

7. None of the above



#### Adiabatic Process

- An adiabatic process
  - A process in which no heat energy is transferred between the system and environment.
  - $-Q=0 \rightarrow \Delta U=W$
  - Warning: This does not mean  $\Delta T=0$ .
  - Well insulated or happens very quickly





### **Adiabatic Process**

$$\Delta U = nC_V \Delta T$$

$$\Delta U = W + Q = W \implies W = nC_V \Delta T$$

$$dU = dW = -PdV = nC_V dT$$

$$PV = nRT \implies PdV + VdP = nRdT$$

$$PdV + VdP = nR(-\frac{PdV}{nC_V}) = (\frac{C_V - C_P}{C_V})PdV$$

$$\frac{dV}{V} + \frac{dP}{P} = (1 - \gamma)\frac{dV}{V} \qquad \gamma \frac{dV}{V} + \frac{dP}{P} = 0$$

$$ln V^{\gamma} + ln P = ln P V^{\gamma} = const.$$

$$PV^{\gamma} = const.$$
  $TV^{\gamma-1} = const.$ 

$$T_f V_f^{\gamma - 1} = T_i V_i^{\gamma - 1}$$

$$P_f V_f^{\ \gamma} = P_i V_i^{\gamma}$$

## Four Ideal-Gas Processes Summary

| Process           | Definition                             | Stays constant       | Work                                  | Heat                     |
|-------------------|----------------------------------------|----------------------|---------------------------------------|--------------------------|
| Isochoric         | $\Delta V = 0$                         | V and $p/T$          | W = 0                                 | $Q = nC_{V}\Delta T$     |
| Isobaric          | $\Delta p = 0$                         | p and $V/T$          | $W = -p\Delta V$                      | $Q = nC_{\rm P}\Delta T$ |
| Isothermal        | $\Delta T = 0$                         | T and $pV$           | $W = -nRT \ln{(V_{\rm f}/V_{\rm i})}$ | $\Delta E_{\rm th} = 0$  |
| Adiabatic         | Q = 0                                  | $pV^{\gamma}$        | $W = \Delta E_{\rm th}$               | Q = 0                    |
| All gas processes | First law $\Delta E_{\text{th}} = W +$ | $Q = nC_{V}\Delta T$ | Ideal-gas law $pV = nRT$              |                          |

**Quantitative example**. 0.005 mol of a diatomic ideal gas is brought from state (1)  $V_1$ = 100 cm<sup>3</sup> and  $P_1$ =1.0 atm to state (2)  $V_2$ =300 cm<sup>3</sup> and  $P_2$ =3.0 atm.

a) Draw a PV diagram for this process (assume it follows a straight line)

Find Q for this process 1-2.

Use 1 atm =  $1 \times 10^5$  Pa to simplify calculation.

The gas is then brought to state (3)  $V_3$ = 300 cm<sup>3</sup> and  $P_3$ =1.0 atm and then back to state (1).

- b) Complete the PV diagram for this whole cycle.
- c) Find W, Q and  $\Delta U$  for processes 2-3 and 3-1, and for the whole cycle.

**Quantitative example**. 0.005 mol of a diatomic ideal gas is brought from state (1)  $V_1$ = 100 cm<sup>3</sup> and  $P_1$ =1.0 atm to state (2)  $V_2$ =300 cm<sup>3</sup> and  $P_2$ =3.0 atm.

a) Draw a PV diagram for this process (assume it follows a straight line). Find Q for this process 1-2.

The gas is then brought to state (3)  $V_3 = 300 \text{ cm}^3$  and  $P_3 = 1.0$  atm and then back to state (1).

- b) Complete the PV diagram for this whole cycle.
- c) Find W, Q and  $\Delta U$  for processes 2-3 and 3-1, and for the whole cycle.

  Use 1 atm =  $1 \times 10^5$  Pa

to simplify calculation.

$$R = 8.31 \text{ J/mol} \cdot K \qquad R = 0.082 \frac{L \cdot \text{atm}}{\text{mol} \cdot K} \qquad \Delta U = nC_V \Delta T \qquad \Delta U = Q + W$$