Estimation de paramètres dans les modèles joints paramétriques en étendant le code du package saemix en R

Emmanuelle Comets 12 (emmanuelle.comets@inserm.fr)

Alexandra Lavalley-Morelle, France Mentré, Jimmy Mullaert ¹

¹Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France ²Université de Rennes, Inserm, EHESP, Irset - UMRS, 1085, F-35000 Rennes, France

Journées R, Vannes

12-14 juin 2024

Plan

- Introduction
- 2 Le package saemix Modèles et méthodes Pharmacocinétique de la théophylline Toenail infection
- Extension aux modèles joints
- Conclusion

Overview

•0

- Introduction
- Extension aux modèles joints

Modèles non-linéaires à effets mixtes pour les données longitudinales

- Données longitudinales recueillies dans de nombreuses études
 - o études pharmacocinétiques et pharmacodynamiques dans le développement de médicaments
 - o courbes de croissance, évolution des systèmes en agronomie
 - o imagerie médicale, surveillance géographique,...
- Modélisation utile pour :
 - o quantifier des phénomènes (évolution moyenne, variabilité)
 - o faire de l'inférence (sélection de modèles, test d'hypothèses)
 - o prédire (diagnostic, prise de décision)
- Utilisation de modèles à effets mixtes pour prendre en compte la nature hiérarchique des données
- Quelques uns des outils disponibles mettant en œuvre ces approches
 - o logiciels commerciaux: NONMEM ¹, Monolix ²
 - \circ approches Bayésiennes: Stan 3 , appelé par r
stan en R, BUGS 4 , JAGS, appelé par rjags en R 5
 - $\,\circ\,$ packages R nlme 6 dans R-base, saemix 7 8 étendu aux modèles pour données discrètes 9

```
<sup>1</sup>Beal et al. (1989-2022)
```

F Comets

^{2&}lt;sub>Lavielle</sub> (2014)

³Carpenter et al. (2017) *Journal of Statistical Software*

⁴Lunn et al. (2012)

⁵Plummer, Stukalov, and Denwood (2023)

⁶Pinheiro and Bates (2000)

⁷Comets, Lavenu, and Lavielle (2011) 20th meeting of the Population Approach Group in Europe, Athens, Greece

⁸Comets, Lavenu, and Lavielle (2017) Journal of Statistical Software

⁹ Karimi, Lavielle, and Moulines (2020) Computational Statistics & Data Analysis

Overview

- Introduction
- Le package saemix Modèles et méthodes Pharmacocinétique de la théophylline Toenail infection
- Extension aux modèles joints
- Conclusion

Méthodes mises en œuvre dans saemix

$$y_{ij} \sim \mathcal{D}(x_{ij}, \psi_i, \sigma) , 1 \le i \le N , 1 \le j \le n_i$$

$$\psi_i = h^{-1}(\mu, \beta, c_i, \eta_i), \eta_i \sim_{i,i,d} \mathcal{N}(0, \Omega)$$
(1)

- \Rightarrow Estimation par maximum de vraisemblance des paramètres de population : $\theta = \{\mu, \beta, \Omega, \sigma\}$
 - Algorithme SAEM ¹⁰
 - o variante de l'algorithme EM (itératif)
 - étape E : simulation des paramètres individuels par un algorithme de Metropolis-Hastings et approximation stochastique de la vraisemblance conditionnelle
 - o étape M : maximisation
 - Estimation de l'incertitude sur les paramètres estimés
 - o matrice d'information de Fisher (FIM), le plus usuellement calculée par linéarisation du modèle
 - o autres approches : bootstrap, sampling-importance resampling (SIR)
 - Estimation de la vraisemblance
 - o différentes méthodes (linéarisation, importance sampling, quadrature)
 - Estimation des paramètres individuels
 - o moyenne (et déviation standard) des distributions conditionnelles
 - Evaluation du modèle : graphes diagnostiques (package npde ¹¹)

F Comets

¹⁰ Kuhn and Lavielle (2005) Computational Statistics and Data Analysis

¹¹Comets and Mentré (May 2021) AAPS Journal

Exemple de données continues: la PK de la théophylline

Données: concentrations de théophylline

12 sujets ayant reçu 1 dose de théophylline 10 mesures en 24 heures

Exemple de données continues: la PK de la théophylline

Données: concentrations de théophylline

Modéle pharmacocinétique

 k_a : constante d'absorption; V: volume de distribution

Equation d'un modèle à un compartiment avec absorption d'ordre 1

$$C(t, k_a, V, Cl) = \frac{D_i k_{ai}}{V_i (k_{ai} - k_{ei})} \left(e^{-k_{ai} t_{ij}} - e^{-k_{ei} t_{ij}} \right)$$

où D_i : dose reçue par le sujet i et $k_e = \frac{CL}{V}$ où CL: clairance de la molécule

Données continues : décomposition en un modèle structurel f et un modèle d'erreur résiduelle a

$$\begin{aligned} y_{ij} &= f(x_{ij}, \psi_i) + g(x_{ij}, \psi_i, \sigma) \epsilon_{ij} , 1 \leq i \leq N , 1 \leq j \leq n \\ \psi_i &= h^{-1}(\mu, \beta, c_i, \eta_i), \quad \eta_i \sim_{i.i.d.} \mathcal{N}(O, \Omega) \\ \epsilon_{ij} &\sim_{i.i.d.} \mathcal{N}(O, Id_{n_i}) \end{aligned}$$
 (2)

Définition du modèle en saemix

- modèle structurel défini préalablement par une fonction nommée
- modèle statistique défini via saemixModel()

000000000

Modèle structurel

- 3 arguments pré-définis
- renvoie : vecteur des prédictions du modèle f en chaque observation

```
Parameter table (dataframe
model1cpt<-function(psi id xidep) {
                                                              N*par)
   dose<-xidep[,1]
   tim<-xidep[,2]
   ka<-psi[id,1]
                                                              Vector connecting the lines
   V<-psi[id,2]
                                                                                                       by
                                                              in xidep to the lines in psi
   CL<-psi[id.3]
   Ire-CI /V
   ypred<-dose*ka/(V*(ka-k))*(exp(-k*tim)-exp(-ka*tim))</pre>
                                                              Predictors (dataframe
   return(yprea)
                                                              nobs*npar)
                                  Model equations
```

12-14 juin 2024

Created saemix

Modèle statistique

• paramètres du modèle et CI

```
Nb of parameters: 3
     parameter names: ka V CL
     ......
    Parameter Distribution Estimated
[1.] ka
                           Estimated
              log-normal
[2.] V
              log-normal
                           Estimated
[3.] CL
              log-normal
                          Estimated
 Variance-covariance matrix:
  ka V CL
  1 0 0
   0 1 1
CI. 0 1 1
 Error model: combined , initial values: a.1=1 b.1=1
 Covariate model:
    ka V CL
[1.] 0 0 1
[2] 0 0 0
   Initial values
             ka V
                      CT.
Pop.CondInit 1.0 20 0.50
Cov.CondInit 0.1 0 -0.01
```

Modèle statistique

 modèle de variabilité inter-individuelle (IIV) : distribution

```
Nb of parameters: 3
      parameter names: ka V CL
     distribution:
    Parameter Distribution Estimated
[1, ka
              log-normal
                          Estimated
[2, V
              log-normal
                          Estimated
[3, CL
              log-normal
                          Estimated
   ka V CL
ka 100
   0 1 1
                 Options in saemix: 0=normal.
CL 0 1 1
                 1=log-normal, 2=probit,
                 3=1 og i t
```

Modèle statistique

• modèle d'IIV : structure de covariance

```
Nb of parameters: 3
parameter names: ka V CL
distribution:
Parameter Distribution Estimated
[1,] ka log-normal Estimated
[2,] V log-normal Estimated
Variance-covariance matrix:
ka V CL
ka 1 0 0
V 0 1 1
CL 0 1 1
```

ka V CL Pop.CondInit 1.0 20 0.50 Cov.CondInit 0.1 0 -0.01

Définition du modèle en saemix

Modèle statistique

modèle de covariables

```
Nb of parameters: 3
     parameter names: ka V CL
     distribution:
    Parameter Distribution Estimated
[1.] ka
              log-normal
                           Estimated
[2,] V
              log-normal
                           Estimated
[3.] CL
              log-normal
                           Estimated
 Variance-covariance matrix:
  ka V CI.
  1 0 0
   0 1 1
CI. 0 1 1
 Error model: combined , initial values: a.1=1 b.1=1
 Covariate model:
    ka V CL
[1.] 0 0 1
[2,] 0 0 0
    Initial values
```

Cov.CondInit 0.1 0 -0.01

Définition du modèle en saemix

Modèle statistique

• modèle d'erreur résiduelle

```
Nb of parameters: 3
     parameter names: ka V CL
     distribution:
    Parameter Distribution Estimated
[1.] ka
              log-normal
                           Estimated
[2,] V
              log-normal
                           Estimated
[3.] CL
              log-normal
                           Estimated
 Variance-covariance matrix:
  ka V CI.
ka 1 0 0
   0 1 1
CI__0_1_1
 Error model: combined . initial values: a.1=1 b.1=1
 COVATIALE MODEL:
     ka V CL
[1.]
     0 0 1
     0 0 0
    Initial values
             ka V
Pop.CondInit 1.0 20 0.50
```

The following SaemixData object was successfully created:

Définition de l'objet données

Données structurées

- défini via saemixData()
- prédicteurs dans le même ordre que la fonction modèle

Grouping variable (Subject)

Saemix.dataK-saemixData(name.data=theo.saemix.header=TRUE, sep=" ",na=NA, name.croup=c("La") name.predictors=c("Dose", "Time"), name.response=c("Concentration"), name.covariates=c("weight", "Sex"), units=list(x="hr",y="mg/L",covariates=c("kg","-")), name.X="Time")

Outcome (Y variable)

Object of class SaemixData
longitudinal data for use with the SAEM algorithm

A variable for graphs: Ime (hr)
covariates: Weight (kg), Sex (-)
reference class for covariates Sex : 0

Predictors (X variable)

Ajustement

saemix.fit<-saemix(saemix.model,saemix.data,saemix.options)</pre>

12-14 juin 2024

BIC = 363.3712

Quelques graphes diagnostiques 12

Quelques graphes diagnostiques 12

Exemple de données discrètes

Dataset Toenail (package prLogistic de R)

Essai clinique randomisé comparant 2 traitements pour une infection fongique de l'ongle ¹³ 294 patients avec des mesures à 7 visites (n=1908) Diminution de la proportion de patients infectés au cours du temps

¹³ De Backer et al. (1998) Journal of the American Academy of Dermatology

Exemple de données discrètes

Dataset Toenail (package prLogistic de R)

Régression logistique pour P(Y = 1) (Y=1 infection sévère ou modérée, O pour légère ou nulle), avec effet traitement sur la pente

$$\begin{split} \text{logit}(P(y_{ij}=1)) &= \theta_{1,i} + (\theta_2 + \beta \mathbbm{1}_{trt\text{-}B})t_{ij} \\ \theta_1 &\sim N(\mu_1,\omega_1^2) \end{split} \tag{2}$$

Définition du modèle pour données discrètes

- même structure pour la fonction modèle
- renvoie : log-vraisemblance en chaque observation

Fonction supplémentaire pour simuler sous le modèle

- non requise pour l'estimation
- utilisée pour les diagnostics
- renvoie : simulations sous le modèle

```
binary.model<-function(psi,id,xidep) {</pre>
  tim<-xidep[,1]
                                           Need to pass observed outcome as a
  y < -xidep[,2]
                                           predictor for this model to compute the
                                           corresponding probability
  inter<-psi[id.1]
  slope<-psi[id,2]
                                    Equation for the logit
  logit<-inter+slope*tim
                                                                simulBinary<-function(psi,id,xidep) {</pre>
  pevent <-exp(logit)/(1+exp(logit))
                                                                  tim<-xidep[,1]
  logpdf <-rep(0,length(tim))
                                                                  v < -xidep[,2]
  P.obs = (y==0)*(1-pevent)+(y==1)*pevent
                                                                  inter <- psi[id, 1]
  logpdf <- log(P.obs)</pre>
                                                                  slope<-psi[id,2]
  return(logpdf)
                                                                  logit<-inter+slope*tim
                                                                  pevent<-1/(1+exp(-logit))
                                                                  vsim<-rbinom(length(tim).size=1, prob=pevent</pre>
                           Simulation with a binomial distribution
                                                                  return(vsim)
```

Définition du modèle statistique

• changement du type de modèle

Résultats

Calcul des SE en modèle discret

- approches bootstrap ¹³
- ici deux approches utilisées 14

binary.fit<-saemix(saemix.model,saemix.data,saemix.options)</pre> summary(binary.fit)

No difference between treatments

Parameter	saemix	Case bootstrap		Conditional bootstrap	
	Estimate	Mean (SD)	CI	Mean (SD)	CI
θ_1	-1.71	-1.74 (0.360	[-2.44, -1.08]	-1.53 (0.31)	[-2.20, -0.98]
θ_2	-0.39	-0.40 (0.073)	[-0.56, -0.28]	-0.40 (0.044)	[-0.49, -0.32]
$\beta_{treatment,\theta_2}$	-0.15	-0.16(0.13)	[-0.44, 0.066]	-0.15(0.07)	[-0.29, -0.02]
ω_a^2	16.11	17.06 (4.50)	[10.36, 28.23]	14.83 (2.82)	[10.01, 21.50]

binary.fit <- simulateDiscreteSaemix(binary.fit, nsim=nsim)</pre>

discreteVPC(binary.fit, outcome="binary", which.cov="treatment")

VPC stratified by treatment

Overview

- 3 Extension aux modèles joints

Extension du code dans le package saemix

- Package actuel
 - o modèles pour différents types de réponses (continues, discrètes, survie)
 - o une seule réponse prise en charge
 - o calcul de la FIM linéarisée inadaptée aux modèles non gaussiens
- Cas d'étude ¹⁵
 - modèle joint multivarié développé pour relier l'évolution de biomarqueurs à la mortalité chez des patients hospitalisés pour la Covid-19
 - sélection des biomarqueurs dans Monolix ¹⁶
 - o évènements décès et sortie d'hôpital modélisés comme des risques compétitifs

Objectifs 17

- étendre le code du package aux modèles multi-réponses
- mettre en œuvre un calcul de la FIM par une approximation stochastique ¹⁸
- évaluer les performances du code modifié

F Comets

¹⁵ Lavallev-Morelle et al. (2023) Biom J

¹⁶ Lavielle (2014)

¹⁷ Lavallev-Morelle et al. (2024) Comput Progs Meth Biomed

¹⁸ Delattre and Kuhn (2023) HAL sciences

Changements pour l'utilisateur

Extension de l'objet saemixData

Colonne spécifiant à quelle réponse correspond une observation

> Argument name.vtvpe pour spécifier la colonne attribuant les types de réponses

```
saemix.data<-saemixData(name.data=data_joint, name.group=c("id"),</pre>
                        name.predictors=c("time", "obs"),
                        name.response="obs" name.ytype = "ytype")
```

Changements pour l'utilisateur

Définition de la fonction modèle

Renvoi des prédictions pour les données continues et de ℓ pour les données non gaussiennes

```
JMmodel <- function(psi.id.xidep) {
 vtvpe<-xidep$vtvpe # tupe of response (1: continuous, 2: event)
                                                                         vtype utilisé pour repérer les types de réponse
                                                                         (nassé automatiquement dans viden)
 b0 <- psi[id,1]
 b1 <- psi[id.2]
 h0 <- psi[id,3]
 alpha <- psi[id.4]
 ypred <- b0+b1*xidep$time # predictions for the longitudinal part
                                                                           sortie du modèle pour les 2 (ici) types de
 T<-xidep$time[ytype==2] # vector of times (survival response)
                                                                           réponse
 Ni <- length(T)
 ev = xidep$obs[ytype==2] # vector of observations (survival response)
 cens<-which(ev==0)
                           # with censored ones
                                                                           Ici même temps de censure pour tous les sujets
  ind <- which(ev==1)
                           # and event ones
  # Creating vectors of the same length of T to compute likelihood of the survival part
  #(so removing duplicates)
 b0b = b0[vtvpe==2] # to have vectors of the same length as T
 b1b = b1[ytype==2]
                                                                            Calcul des probabilités selon que l'évènement
 h0b = h0[ytype==2]
                                                                            est observé ou non
 alphab = alpha[vtvpe==2]
 haz <- h0b*exp(alphab*(b0b+b1b*T)) # instantaneous hazard
  # cumulative hazard (explicit expression in that case)
 H \leftarrow (h0b/(alphab*b1b))*exp((b0b+b1b*T)*alphab)-(h0b/(alphab*b1b))*exp(alphab*b0b)
 logpdf <- rep(0,Nj)
12-14 juin 2024
                                                                            Package saemix pour les MNLEM
```

Changements pour l'utilisateur

Définition du modèle statistique

- spécification du type de réponse
- un seul modèle d'erreur ici (code ad hoc)

dans l'extension, vecteur listant les types de réponses

Application au cas d'étude

- Association avec le risque de décès chez les patients hospitalisés: taux de neutrophiles augmenté, pH artériel bas et CRP élevée, ainsi qu'un score 4C élevé à l'admission
- Résultats similaires à ceux trouvés dans l'étude initiale ¹⁹

Parameter (unit)	Value	SE	RSE (%)
Longitudinal submodel			
Blood neutrophil counts			
μ_{0n} (10 ⁹ . L^{-1})	4.58	0.18	3.9
μ_{1n} (10 ⁹ .L ⁻¹ .d ⁻¹)	-0.15	0.0019	1.3
μ_{2n} (10 ⁹ .L ⁻¹ .d ⁻¹)	-0.17	0.012	6.9
μ_{an} (10 ⁹ .L ⁻¹)	7.1	0.97	13.7
$\omega_{0\pi}$ (10 ⁹ .L ⁻¹)	4.3	0.41	9.4
$\omega_{1n} (10^9.L^{-1}.d^{-1})$	0.011	0.0027	24.3
$\omega_{2a} (10^9.L^{-1}.d^{-1})$	0.003	0.0011	36.4
$\omega_{an} (10^9.L^{-1})$	0.55	0.19	35.7
σ_{bn}	0.32	0.003	0.9
arterial pH			
μ_{0p}	7.44	0.0042	0.06
$\mu_{1p}(d^{-1})$	0.001	0.00078	0.08
ω_{0e}	0.0015	0.00016	10.9
$\omega_{1p}(d^{-1})$	1.5×10^{-5}	4.5×10^{-6}	29.3
σ_{ap}	0.055	0.00031	0.6
C-reactive protein			
μ_{0c} (log(mg.L ⁻¹))	4.17	0.082	2.0
$\mu_{1c} (log(mg.L^{-1}).d^{-1})$	-0.14	0.011	7.4
$\omega_{0c} (log(mg.L^{-1}))$	0.85	0.10	12.1
$\omega_{1c} (log(mg.L^{-1}).d^{-1})$	0.014	0.0025	18.1
$\sigma_{ac} (log(mg.L^{-1}))$	0.72	0.0075	1.0
Survival submodel			
Death			
h_0	0.0003	0.79	2.7×10
$\alpha_{1n} (L.10^{-9})$	0.14	0.033	23.7
α_{1p}	-6.48	2.78	42.9
$\alpha_{1c} \left(-log(mg.L^{-1})\right)$	0.55	0.12	21.4
β_1	0.31	0.070	22.5
Discharge			
b	12.1	1.08	8.9

F Comets

¹⁹ Lavalley-Morelle et al. (2023) Biom J

Etude de simulation

- Scénarios
 - o 1 biomarqueur modélisé par un modèle linéaire (LMEM) ou non-linéaire (NLMEM, somme de 2 exponentielles)
 - o évènement unique (TTE) ou risques compétitifs (CR)

	Single event	2 competing risks
Linear mixed-effects model	LMEM – TTE	LMEM – CR
Nonlinear mixed-effects model	NLMEM – TTE	NLMEM – CR

- Protocole expérimental
 - o 200 jeux de données de 100 patients
 - o biomarqueurs mesurés tous les jours jusqu'à l'évènement (censure à J30)
- Métriques
 - o erreurs d'estimation sur les paramètres dans tous les scénarios
 - o erreurs standards comparées à l'erreur empirique

Résultats

Distribution of REE (top) and stochastic RSE versus empirical RSE (bottom) - JM LMEM-TTE and JM LMEM-CR

00000

- Empirical RSE
- Mean distribution of the stochastic RSE

Résultats

Distribution of REE (top) and stochastic RSE versus empirical RSE (bottom) - JM NLMEM-TTE and JM NLMEM-CR

- **Empirical RSE**
- Mean distribution of the stochastic RSE

Extension aux modèles join 00000

- Introduction
- 2 Le package saemix
- Extension aux modèles joints
- 4 Conclusion

Conclusion

Package saemix

- o outil efficace, simple d'utilisation et ouvert pour ajuster des NLMEM dans un contexte fréquentiste
- o diagnostics graphiques pour évaluer la convergence et l'adéquation du modèle
- o aide en ligne ("?") et guide d'utilisateur détaillé (prière de RTM) à télécharger sur le github

Extension de saemix aux modèles ioints

- o bonnes propriétés pour l'estimation des paramètres et le calcul des erreurs standards (dans un cas riche)
- o possibilité pour les utilisateurs de définir directement la vraisemblance du modèle
- o code ad hoc disponible sur le git pour utilisateurs avertis (et joueurs)
- o prochaines étapes
 - intégrer le code pour réponses multiples dans le package
 - développer des outils diagnostiques spécifiques
 - optimiser l'intégration numérique lorsque la vraisemblance complète n'a pas de forme explicite (temps de calculs longs)

Perspectives

- o beaucoup de développements encore à intégrer (LOQ, réponses multiples, IOV, HMM, ODE....)
- o améliorer la déclaration des réponses et la définition des modèles en utilisant un langage possédant une 'grammaire des modèles mixtes' 20

saemix est un package collaboratif

Join the fun on github: https://github.com/saemixdevelopment/saemixextension/tree/master!

²⁰Swat et al. (2015) Clinical Pharmacology and Therapeutics: Pharmacometrics & Systems Pharmacology

Plus de détails pour les curieux (aka un peu d'auto-promotion)

Journal of Statistical Software August 2017, Volume 80, Issue 3.

Journal de la Société Française de Statistique

Vol. 151 No. 1 (2010)

Model evaluation in nonlinear mixed effect models. with applications to pharmacokinetics

Titre: Evaluation des modèles non-linéaires à effets mixtes, avec une application en pharmacocinétique

Emmanuelle Comets 1, Karl Brendel 2 and France Mentré 1

Emmanuelle Comets INSERM CIC 1414 II Rennes-I INSERM. IAME. UMR 1137 U. Paris Diderot

Audrey Lavenu U. Rennes-I INSERM CIC 1414

Parameter Estimation in Nonlinear Mixed Effect

Models Using saemix, an R Implementation of the

SAEM Algorithm

Marc Lavielle INRIA Saclay, Popiy II Paris Sud

> Computer Methods and Programs in Biomedicine 247 (2024) 108095 Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

Extending the code in the open-source saemix package to fit joint models of longitudinal and time-to-event data

Alexandra Lavallev-Morelle a, France Mentré a,b, Emmanuelle Comets a,c,*,1, Jimmy Mullaert a,b,d,1

12-14 juin 2024 **F** Comets

Notations

Modèle hiérarchique

$$y_{ij} \sim \mathcal{D}(x_{ij}, \psi_i, \sigma) , 1 \le i \le N , 1 \le j \le n_i$$

$$\psi_i = h^{-1}(\mu, \beta, c_i, \eta_i), \eta_i \sim_{i.i.d.} \mathcal{N}(O, \Omega)$$
(3)

Paramètres de population : $\theta = \{\mu, \beta, \Omega, \sigma\}$

Dans le cadre de ce topo, paramètres estimés par maximisation de la vraisemblance (MLE), avec pour principaux algorithmes:

- algorithmes de minimisation (gradient, Hessien)
- variantes d'algorithmes EM

Log-vraisemblance (LL) obtenue en intégrant sur la distribution des paramètres individuels (inconnus)

$$LL(\theta|y) = \sum_{i=1}^{N} \log \left(p(y_i|\theta) \right) = \sum_{i=1}^{N} \log \left(\int p(y_i|\theta, \psi_i) p(\psi_i|\theta) d\psi_i \right) \tag{4}$$

L'algorithme SAEM²¹ ²²

Initialisation : $\theta = \theta_0$.

A l'itération H

- étape S (simulation) : tirer $\psi^{(k)}$ dans la distribution conditionnelle $p(\cdot|y;\theta_k)$ outilisation d'un algorithme de Metropolis-Hastings
- approximation stochastique de $Q_k(\theta)$ = $\mathbb{E}\left(\log p(y,\psi;\theta)|y,\theta_{k-1}\right)$ avec une suite de pas décroissants γ_k (> 0 tels que γ_1 = 1)

$$Q_k(\theta) = Q_{k-1}(\theta) + \gamma_k(\log p(y; \psi^{(k)}; \theta_k) - Q_{k-1}(\theta))$$

• Étape M : mettre à jour l'estimation de θ

$$\theta_k = \operatorname{Arg} \max_{\theta} Q_k(\theta)$$

mets 12-14 juin 2024 Package saemix pour les MNLEM

²¹ Delvon, Lavielle, and Moulines (1999) Annals of Statistics

²² Kuhn and Lavielle (2005) Computational Statistics and Data Analysis

Calcul de la vraisemblance

- Calcul effectué après la fin de l'algorithme
- Différentes méthodes mises en œuvre dans saemix
 - o linéarisation du modèle à l'ordre 1 (forme explicite pour LL)
 - o quadrature gaussienne
 - o échantillonnage préférentiel (importance sampling)
- Log-vraisemblance utilisée pour l'inférence
 - o comparaison de modèles emboîtés par le test du rapport de vraisemblance (LRT, Likelihood Ratio Test)
 - o comparaison de modèles selon des critères d'information comme l'AIC. le BIC et le BICc ²³

12-14 juin 2024 Package saemix pour les MNLEM

Estimation de l'incertitude sur les paramètres de population

- Estimateur du maximum de vraisemblance asymptotiquement distribué selon une loi normale
 - o borne inférieure de la variance d'estimation : inverse de la matrice d'information de Fisher (FIM)
 - ⇒ façon la plus usuelle de calculer l'incertitude
- Calcul de la FIM par linéarisation à l'ordre 1 du modèle en négligeant les corrélations d'estimation entre effets fixes et aléatoires
 - o approximation acceptable dans le cas de modèles à données continues
 - o méthode par défaut dans saemix
- Calcul sans linéarisation (non mises en œuvre dans saemix)
 - o méthode de Louis par simulation MC ²⁴
 - o calcul exact avec des intégrations numériques ou stochastiques ²⁵
- Approches bootstrap aussi mises en œuvre dans le package ²⁶
- Sampling Importance Resampling (SIR) ²⁷ aussi disponible dans la version github (en développement)

Spoiler alert

Voir la prochaine présentation pour plus de détails et des méthodes alternatives de calcul de l'incertitude

F Comets 12-14 juin 2024

²⁴Louis (1982) Journal of the Royal Statistical Society: Series B (Methodological)

²⁵ Riviere, Ueckert, and Mentré (May 2016) Biostatistics

Ueckert and Mentre (2017) Computational Statistics & Data Analysis

²⁶Efron (1979) Annals of Statistics

Thai et al. (2014) Journal of Pharmacokinetics and Pharmacodynamics

Comets et al. (2021) Pharmaceutical Research

²⁷Dosne et al. (2017) Journal of Pharmacokinetics and Pharmacodynamics

Estimation des paramètres individuels

- Paramètres individuels estimés comme le MAP ou la moyenne des distributions conditionnelles
- Utilisation des paramètres individuels
 - o graphes diagnostics
 - o prédictions individuelles (choix de doses,...)
 - o simulations
- Calcul des distributions conditionnelles
 - o échantillonnage par MH
 - estimation de l'incertitude par la déviation standard

Conditional distributions for ka, V and CL for the first three subjects in the theophylline example (100 samples)

Modèle joint

Predict the death of hospitalized patients for severe infectious diseases

End of the study Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 4 Death Discharge from hospital Censoring

Hospitals equipped with laboratory information systems that routinely gather results of biological analyses

Consecutive biological observations can be used in a joint model to provide individual dynamic predictions¹ of patient prognosis

Modèle pour les risques compétitifs

Risque instantané de décéder à l'hôpital :

$$h_1(t) = \lim_{\Delta t \to 0} \frac{P(t < T < t + \Delta t, \delta = 1 \lor E)}{\Delta t}$$

Approche cause-spécifique⁶

$$E = T > t$$

Approche sous-distribution7

$$E = \{T > t\} \cup \{T \le t \cap \delta = 2\}$$

- Patient toujours hospitalisés au temps t (= n'ayant pas fait d'évènement avant t)
- \otimes Patient sortis d'hospitalisation au temps t (= avant fait l'évènement 2 avant t)

Scénarios de simulation

LMEM - TTE

$$y_{ij} = m_l(\psi_i, t_{ij}) + \sigma \epsilon_{ij}$$
$$h_i(t, \psi_i; \theta) = h_0 \times \exp(\alpha \times m_l(\psi_i, t))$$

LMEM-CR

$$y_{ij} = m_i (\psi_i, t_{ij}) + \sigma \epsilon_{ij}$$

$$h_{i1}(t, \psi_i; \theta) = \frac{p_1 g_1 \exp(-g_1 \times t)}{1 - p_1 (1 - \exp(-g_1 \times t))} \exp(\alpha_1 \times m_i (\psi_i, t))$$

$$h_{i2}(t, \psi_i; \theta) = \frac{1}{b} \times \frac{(1 - F_1(\infty)) \exp(-t/b)}{1 - (1 - F_1(\infty))(1 - \exp(-t/b))}$$

NIMEM-TTE

$$y_{ij} = m_{nl}(\psi_i, t_{ij}) + \sigma \epsilon_{ij}$$

$$h_i(t, \psi_i; \theta) = h_0 \times \exp(\alpha \times m_{nl}(\psi_i, t))$$

NI MEM-CR

$$y_{ij} = m_{nl} \left(\psi_i, t_{ij} \right) + \sigma \epsilon_{ij}$$

$$h_{i1}(t, \psi_i; \theta) = \frac{p_1 g_1 \exp(-g_1 \times t)}{1 - p_1 (1 - \exp(-g_1 \times t))} \exp\left(\alpha_1 \times m_{nl} (\psi_i, t) \right)$$

$$h_{i2}(t, \psi_i; \theta) = \frac{1}{b} \times \frac{(1 - F_1(\infty)) \exp(-t/b)}{1 - (1 - F_1(\infty))(1 - \exp(-t/b))}$$