Generating Functions for solving recurrences

Ricky Ting

Nanjing University

April 9,2018

- Definition: What's a generating function?
- 2 A simple example
- 3 Steps for solving recurrences
- 4 Algebraic operations on generating functions
- Expanding generating functions
- 6 References

- Definition: What's a generating function?
- 2 A simple example
- 3 Steps for solving recurrences
- 4 Algebraic operations on generating functions
- Expanding generating functions
- 6 References

Generating function

In mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a power series, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series –From wiki

Generating function

In mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a power series, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series –From wiki

Visually, (we only talk about OGF)

For a sequence $\{a_0, a_1, ..., a_n, ...\}$, we generate a function G(x) with $G(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n + ...$, namely $G(x) = \sum_{k=0}^{\infty} a_k x^k$

Visually, (we only talk about OGF)

For a sequence $\{a_0, a_1, ..., a_n, ...\}$, we generate a function G(x) with $G(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n + ...$, namely $G(x) = \sum_{k=0}^{\infty} a_k x^k$

Note: Here x is only a formal variable, without assuming any value.

Visually, (we only talk about OGF)

For a sequence $\{a_0, a_1, ..., a_n, ...\}$, we generate a function G(x) with $G(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n + ...$, namely $G(x) = \sum_{k=0}^{\infty} a_k x^k$

Note: Here x is only a formal variable, without assuming any value.

Comments

the most useful but most difficult to understand method (for counting) –Stanley

- Definition: What's a generating function?
- 2 A simple example
- 3 Steps for solving recurrences
- 4 Algebraic operations on generating functions
- Expanding generating functions
- 6 References

We wish to enumerate all subsets of an *n*-set.

We wish to enumerate all subsets of an **n**-set.

 x^0 or x^1 . Use '+' denote "OR", and use multiplication to denote "AND", the choices of subsets of the **n**-set are expressed as

We wish to enumerate all subsets of an **n**-set.

 x^0 or x^1 . Use '+' denote "OR", and use multiplication to denote "AND", the choices of subsets of the **n**-set are expressed as

$$\underbrace{(x^0 + x^1)(x^0 + x^1) \cdots (x^0 + x^1)}_{\text{n elements}} = (x^0 + x^1)^n$$

We wish to enumerate all subsets of an n-set. x^0 or x^1 . Use '+' denote "OR", and use multiplication to denote "AND", the choices of subsets of the n-set are expressed as

$$\underbrace{(x^0 + x^1)(x^0 + x^1) \cdots (x^0 + x^1)}_{\text{n elements}} = (x^0 + x^1)^n$$

We can note that the coefficient of $\mathbf{x}^{\mathbf{k}}$ is the number of \mathbf{k} -subsets of a n-element set. (Why?)

Fibonacci numbers

We know that

$$F_n = \begin{cases} F_{n-1} + F_{n-2} & \text{if } n \ge 2\\ 1 & \text{if } n = 1\\ 0 & \text{if } n = 0 \end{cases}$$

Fibonacci numbers

We know that

$$F_n = \begin{cases} F_{n-1} + F_{n-2} & \text{if } n \ge 2\\ 1 & \text{if } n = 1\\ 0 & \text{if } n = 0 \end{cases}$$

Details on blackboard.

We generate a function G(x) from the sequence of Fibonacci numbers, namely $G(x) = \sum_{n \ge 0} F_n x^n$.

Fibonacci numbers

We know that

$$F_n = \begin{cases} F_{n-1} + F_{n-2} & \text{if } n \ge 2\\ 1 & \text{if } n = 1\\ 0 & \text{if } n = 0 \end{cases}$$

Details on blackboard.

We generate a function G(x) from the sequence of Fibonacci numbers, namely $G(x) = \sum_{n \ge 0} F_n x^n$.

Base on homework, we deduce this: $G(x) = \frac{x}{1-x-x^2}$ and the value of F_n is the coefficient of x^n in the Taylor series for this formular.

- Definition: What's a generating function?
- 2 A simple example
- 3 Steps for solving recurrences
- 4 Algebraic operations on generating functions
- Expanding generating functions
- 6 References

Give a recursion that computes a_n . In the case of Fibonacci sequence: $a_n = a_{n-1} + a_{n-2}$

- Give a recursion that computes a_n . In the case of Fibonacci sequence: $a_n = a_{n-1} + a_{n-2}$
- 2 Mutiply both sides of the equation by x^n and sum over all n. This gives the generating function:

$$G(x) = \sum_{n \ge 0} a_n x^n = \sum (a_{n-1} + a_{n-2}) x^n$$

•

And manipulate the right hand side of the equation so that it becomes some other expression involving G(x).

$$G(x) = x + (x + x^2)G(x)$$

.

- Give a recursion that computes a_n . In the case of Fibonacci sequence: $a_n = a_{n-1} + a_{n-2}$
- 2 Mutiply both sides of the equation by x^n and sum over all n. This gives the generating function:

$$G(x) = \sum_{n \ge 0} a_n x^n = \sum (a_{n-1} + a_{n-2}) x^n$$

.

And manipulate the right hand side of the equation so that it becomes some other expression involving G(x).

$$G(x) = x + (x + x^2)G(x)$$

. .

3 Solve the resulting equation to derive an explicit formula for G(x).

$$G(x) = \frac{x}{1 - x - x^2}$$

- Give a recursion that computes a_n . In the case of Fibonacci sequence: $a_n = a_{n-1} + a_{n-2}$
- 2 Mutiply both sides of the equation by x^n and sum over all n. This gives the generating function:

$$G(x) = \sum_{n \ge 0} a_n x^n = \sum (a_{n-1} + a_{n-2}) x^n$$

٠.

And manipulate the right hand side of the equation so that it becomes some other expression involving G(x).

$$G(x) = x + (x + x^2)G(x)$$

.

3 Solve the resulting equation to derive an explicit formula for G(x).

$$G(x) = \frac{x}{1 - x - x^2}$$

4 Expand G(x) into a power series and read off the coefficient

- Definition: What's a generating function?
- 2 A simple example
- 3 Steps for solving recurrences
- 4 Algebraic operations on generating functions
- **5** Expanding generating functions
- 6 References

Algebraic operations on generating function 🥦 🥼

Let
$$G(x) = \sum_{n \ge 0} g_n x^n$$
 and $F(x) = \sum_{n \ge 0} f_n x^n$

Algebraic operations on generating functions (

Let
$$G(x) = \sum_{n>0} g_n x^n$$
 and $F(x) = \sum_{n>0} f_n x^n$

■ shift:
$$x^k G(x) = \sum_{n \ge k} g_{n-k} x^n$$
, $(k \ge 0)$

Algebraic operations on generating functions

Let
$$G(x) = \sum_{n>0} g_n x^n$$
 and $F(x) = \sum_{n>0} f_n x^n$

- shift: $x^k G(x) = \sum_{n > k} g_{n-k} x^n$, $(k \ge 0)$
- addition: $F(x) + G(x) = \sum_{n>0} (f_n + g_n)x^n$

Algebraic operations on generating functions

Let
$$G(x) = \sum_{n>0} g_n x^n$$
 and $F(x) = \sum_{n>0} f_n x^n$

- shift: $x^k G(x) = \sum_{n \ge k} g_{n-k} x^n$, $(k \ge 0)$
- addition: $F(x) + G(x) = \sum_{n>0} (f_n + g_n)x^n$
- convolution: $F(x)G(x) = \sum_{n>0} \sum_{k=0}^{n} f_k g_{n-k} x^n$

Algebraic operations on generating functions

Let
$$G(x) = \sum_{n>0} g_n x^n$$
 and $F(x) = \sum_{n>0} f_n x^n$

- shift: $x^k G(x) = \sum_{n \ge k} g_{n-k} x^n$, $(k \ge 0)$
- addition: $F(x) + G(x) = \sum_{n>0} (f_n + g_n)x^n$
- convolution: $F(x)G(x) = \sum_{n>0} \sum_{k=0}^{n} f_k g_{n-k} x^n$
- differentiation: $G'(x) = \sum_{n>0} (n+1)g_{n+1}x^n$

- Definition: What's a generating function?
- 2 A simple example
- 3 Steps for solving recurrences
- 4 Algebraic operations on generating functions
- 5 Expanding generating functions
- 6 References

Expanding generating functions

■ Taylor expansion

Expanding generating functions

- Taylor expansion
- Geometric sequence $\frac{1}{1-x} = \sum_{n\geq 0} x^n$

Expanding generating functions

- Taylor expansion
- Geometric sequence $\frac{1}{1-x} = \sum_{n\geq 0} x^n$
- Binomial theorem(Newton's formular(generalized binomial theorem))

- Definition: What's a generating function?
- 2 A simple example
- 3 Steps for solving recurrences
- 4 Algebraic operations on generating functions
- Expanding generating functions
- 6 References

References

- 🔋 wiki 上关于 generating functions 的条目
- 尹一通老师的讲义