DD2448 Foundations of Cryptography Lecture 5

Douglas Wikström KTH Royal Institute of Technology dog@kth.se

March 25, 2020

Second Pre-Image Resistance

Definition. A function $h: \{0,1\}^* \to \{0,1\}^*$ is said to be **second pre-image resistant** if for every polynomial time algorithm A and a random x

$$\Pr[A(x) = x' \land x' \neq x \land f(x') = f(x)] < \epsilon(n)$$

for a negligible function ϵ .

Note that A is given not only the output of f, but also the **input** x, but it must find a **second** pre-image.

Collision Resistance

Definition. Let $f = \{f_\alpha\}_\alpha$ be an ensemble of functions. The "function" f is said to be **collision resistant** if for every polynomial time algorithm A and randomly chosen α

$$\Pr[A(\alpha) = (x, x') \land x \neq x' \land f_{\alpha}(x') = f_{\alpha}(x)] < \epsilon(n)$$

for a negligible function ϵ .

Collision Resistance

Definition. Let $f=\{f_\alpha\}_\alpha$ be an ensemble of functions. The "function" f is said to be **collision resistant** if for every polynomial time algorithm A and randomly chosen α

$$\Pr[A(\alpha) = (x, x') \land x \neq x' \land f_{\alpha}(x') = f_{\alpha}(x)] < \epsilon(n)$$

for a negligible function ϵ .

An algorithm that gets a small "advice string" for each security parameter can easily hardcode a collision for a fixed function f, which explains the random index α .

▶ If a function is not second pre-image resistant, then it is not collision-resistant.

- ▶ If a function is not second pre-image resistant, then it is not collision-resistant.
 - 1. Pick random x.
 - 2. Request second pre-image $x' \neq x$ with f(x') = f(x).
 - 3. Output x' and x.

- ▶ If a function is not second pre-image resistant, then it is not collision-resistant.
 - 1. Pick random x.
 - 2. Request second pre-image $x' \neq x$ with f(x') = f(x).
 - 3. Output x' and x.
- ▶ If a function is not one-way, then it is not second pre-image resistant.

- ▶ If a function is not second pre-image resistant, then it is not collision-resistant.
 - 1. Pick random x.
 - 2. Request second pre-image $x' \neq x$ with f(x') = f(x).
 - 3. Output x' and x.
- ▶ If a function is not one-way, then it is not second pre-image resistant.
 - 1. Given random x, compute y = f(x).
 - 2. Request pre-image x' of y.
 - 3. Repeat until $x' \neq x$, and output x'.

Random Oracles

Random Oracle As Hash Function

A random oracle is simply a randomly chosen function with appropriate domain and range.

A random oracle is the **perfect** hash function. Every input is mapped **independently** and **uniformly** in the range.

Let us consider how a random oracle behaves with respect to our notions of security of hash functions.

Pre-Image of Random Oracle

We assume with little loss that an adversary always "knows" if it has found a pre-image, i.e., it queries the random oracle on its output.

Theorem. Let $H: X \to Y$ be a randomly chosen function and let $x \in X$ be randomly chosen. Then for every algorithm A making q oracle queries

$$\Pr[A^{H(\cdot)}(H(x)) = x' \wedge H(x) = H(x')] \le 1 - \left(1 - \frac{1}{|Y|}\right)^q$$
.

Pre-Image of Random Oracle

We assume with little loss that an adversary always "knows" if it has found a pre-image, i.e., it queries the random oracle on its output.

Theorem. Let $H: X \to Y$ be a randomly chosen function and let $x \in X$ be randomly chosen. Then for every algorithm A making q oracle queries

$$\Pr[A^{H(\cdot)}(H(x)) = x' \land H(x) = H(x')] \le 1 - \left(1 - \frac{1}{|Y|}\right)^q$$
.

Proof. Each query x' satisfies $H(x') \neq H(x)$ independently with probability $1 - \frac{1}{|Y|}$.

Second Pre-Image of Random Oracle

We assume with little loss that an adversary always "knows" if it has found a second pre-image, i.e., it queries the random oracle on the input and its output.

Theorem. Let $H: X \to Y$ be a randomly chosen function and let $x \in X$ be randomly chosen. Then for every such algorithm A making q oracle queries

$$\Pr[A^{H(\cdot)}(x) = x' \land x \neq x' \land H(x) = H(x')] \le 1 - \left(1 - \frac{1}{|Y|}\right)^{q-1}$$
.

Second Pre-Image of Random Oracle

We assume with little loss that an adversary always "knows" if it has found a second pre-image, i.e., it queries the random oracle on the input and its output.

Theorem. Let $H: X \to Y$ be a randomly chosen function and let $x \in X$ be randomly chosen. Then for every such algorithm A making q oracle queries

$$\Pr[A^{H(\cdot)}(x) = x' \land x \neq x' \land H(x) = H(x')] \le 1 - \left(1 - \frac{1}{|Y|}\right)^{q-1}$$
.

Proof. Same as pre-image case, except we must waste one query on the input value to get the target in Y.

Collision Resistance of Random Oracles

We assume with little loss that an adversary always "knows" if it has found a collision, i.e., it queries the random oracle on its outputs.

Theorem. Let $H: X \to Y$ be a randomly chosen function. Then for every such algorithm A making q oracle queries

$$\Pr[A^{H(\cdot)} = (x, x') \land x \neq x' \land H(x) = H(x')] \le 1 - \prod_{i=1}^{q-1} \left(1 - \frac{i}{|Y|}\right)$$
$$\le \frac{q(q-1)}{2|Y|}.$$

Collision Resistance of Random Oracles

We assume with little loss that an adversary always "knows" if it has found a collision, i.e., it queries the random oracle on its outputs.

Theorem. Let $H: X \to Y$ be a randomly chosen function. Then for every such algorithm A making q oracle queries

$$\Pr[A^{H(\cdot)} = (x, x') \land x \neq x' \land H(x) = H(x')] \le 1 - \prod_{i=1}^{q-1} \left(1 - \frac{i}{|Y|}\right)$$
$$\le \frac{q(q-1)}{2|Y|}.$$

Proof. $1 - \frac{i-1}{|Y|}$ bounds the probability that the *i*th query does not give a collision for any of the i-1 previous queries, conditioned on no previous collision.

Iterated Hash Functions

Merkle-Damgård (1/3)

Suppose that we are given a collision resistant hash function

$$f: \{0,1\}^{n+t} \to \{0,1\}^n$$
.

How can we construct a collision resistant hash function

$$h: \{0,1\}^* \to \{0,1\}^n$$

mapping any length inputs?

Merkle-Damgård (2/3)

Construction.

- 1. Let $x = (x_1, ..., x_k)$ with $|x_i| = t$ and $0 < |x_k| \le t$.
- 2. Let x_{k+1} be the total number of bits in x.
- 3. Pad x_k with zeros until it has length t.
- 4. $y_0 = 0^n$, $y_i = f(y_{i-1}, x_i)$ for i = 1, ..., k + 1.
- 5. Output y_{k+1}

Here the total number of bits is bounded by $2^t - 1$, but this can be relaxed.