Санкт-Петербургский государственный университет

Факультет прикладной математики-процессов управления Кафедра компьютерного моделирования и многопоточных систем

Лабораторная работа по дисциплине «Алгоритмы и структуры данных»

«Разработка и реализация алгоритма роевого интеллекта для решения задач глобальной оптимизации»

Выполнил:

Зайнуллин Мансур Альбертович

Группа: 23.Б16-пу

Руководитель:

Дик Александр Генадьевич ассистент кафедры компьютерного моделирования и многопоточных систем

Оглавление

1	Цел	ь работы	3		
2	Описание алгоритма				
	2.1	Основные компоненты алгоритма	4		
	2.2	Цель алгоритма	5		
3	Опи	исание схемы пошагового выполнения алгоритма и блок-			
	cxen	ИЫ	6		
	3.1	Пошаговое описание алгоритма	6		
	3.2	Блок-схемы	8		
4	Формализация задачи				
	4.1	Спецификация программы	11		
5	Лис	тининг	13		
6	Кон	трольный пример и результаты тестирования	20		
	6.1	Описание контрольного примера	20		
	6.2	Установка и настройка окружения	20		
	6.3	Запуск программы и выполнение задач	20		
	6.4	Результаты тестирования программы	20		
	6.5	Заключение	21		
7	Анализ и улучшение алгоритма				
	7.1	Улучшение алгоритма	22		
	7.2	Результаты тестирования программы	22		
	7.3	Анализ результатов	23		
8	Сравнение ГА с алгоритмом роевого интеллекта				
	8.1	Результаты тестирования программы	24		
	8.2	Точность	24		
	8.3	Скорость сходимости	25		
	8.4	Вычислительная сложность	25		
	8.5	Устойчивость к локальным минимумам	25		

9	Выв	воды по работе	27
	8.7	Заключение	 26
	8.6	Простота реализации	 26

1 Цель работы

Цель работы — исследование особенностей алгоритмов роевого интеллекта для решения задач глобальной оптимизации и сравнение с генетическим алгоритмом.

2 Описание алгоритма

Алгоритм роя частиц (Particle Swarm Optimization, PSO) — это метод оптимизации, вдохновлённый коллективным поведением в природе, таким как стаи птиц или рои насекомых. Он используется для поиска оптимальных решений в многомерных пространствах.

2.1 Основные компоненты алгоритма

1. Инициализация:

- Каждая частица в рое представляет потенциальное решение задачи.
- Частицы инициализируются случайными позициями и скоростями в пределах допустимого пространства поиска.

2. Обновление скорости:

- Скорость каждой частицы обновляется на основе трёх компонентов:
 - Инерционная составляющая: сохраняет текущую траекторию частицы, помогая ей двигаться в том же направлении.
 - Когнитивная составляющая: направляет частицу к её лучшей найденной позиции, стимулируя индивидуальное исследование.
 - Социальная составляющая: направляет частицу к лучшей позиции, найденной всем роем, способствуя коллективному обучению.
- Формула обновления скорости:

$$v_i(t+1) = w \cdot v_i(t) + c_1 \cdot r_1 \cdot (p_i - x_i(t)) + c_2 \cdot r_2 \cdot (g - x_i(t))$$

где:

- *w* коэффициент инерции;
- $-c_1$ и c_2 коэффициенты когнитивного и социального влияния;
- r_1 и r_2 случайные числа в интервале [0, 1];
- p_i лучшая позиция частицы;
- g лучшая позиция роя.

3. Обновление позиции:

• Позиция частицы обновляется на основе её текущей скорости:

$$x_i(t+1) = x_i(t) + v_i(t+1)$$

4. Ограничение скорости:

• Для предотвращения слишком больших изменений, скорость часто ограничивается максимальным значением $V_{\rm max}$.

5. Оценка и обновление:

- Каждая частица оценивается с помощью функции приспособленности.
- Обновляются лучшие личные и глобальные позиции.

2.2 Цель алгоритма

Алгоритм роя частиц стремится найти глобальный минимум (или максимум) целевой функции, эффективно исследуя пространство решений и избегая локальных минимумов.

3 Описание схемы пошагового выполнения алгоритма и блок-схемы

3.1 Пошаговое описание алгоритма

Алгоритм роя частиц (PSO) выполняется следующим образом:

1. Инициализация:

• Каждая частица получает случайную начальную позицию и скорость в пределах заданного пространства поиска.

2. Обновление скорости:

• Скорость каждой частицы обновляется с учётом инерционной, когнитивной и социальной составляющих:

$$v_i(t+1) = w \cdot v_i(t) + c_1 \cdot r_1 \cdot (p_i - x_i(t)) + c_2 \cdot r_2 \cdot (g - x_i(t))$$

3. Ограничение скорости:

• Применяется ограничение на максимальную скорость, чтобы предотвратить слишком большие изменения в позициях частиц.

4. Обновление позиции:

• Позиция каждой частицы обновляется на основе её текущей скорости:

$$x_i(t+1) = x_i(t) + v_i(t+1)$$

5. Оценка и обновление:

- Оценивается приспособленность текущих позиций частиц.
- Обновляются лучшие личные и глобальные позиции.

6. Проверка условий завершения:

• Алгоритм проверяет, достигнуто ли заданное число итераций или приемлемый уровень точности.

3.2 Блок-схемы

Рис. 2 Бл θ к-схема 2

Рис. 3 Блок-схема 3

4 Формализация задачи

Алгоритм роя частиц (Particle Swarm Optimization, PSO) использует следующие основные формулы для обновления скоростей и позиций частиц в пространстве поиска:

Обновление скорости:

$$v_i(t+1) = w \cdot v_i(t) + c_1 \cdot r_1 \cdot (p_i - x_i(t)) + c_2 \cdot r_2 \cdot (q - x_i(t))$$

где:

- w коэффициент инерции;
- c_1 и c_2 когнитивный и социальный коэффициенты;
- r_1 и r_2 случайные числа в интервале [0, 1];
- p_i лучшая позиция частицы;
- g лучшая позиция роя.

Ограничение скорости:

$$v_{ij}(t+1) = egin{cases} v_{ij}(t+1), & ext{ecли } v_{ij}(t+1) \leq V_{ ext{max},j}, \ V_{ ext{max},j}, & ext{ecли } v_{ij}(t+1) > V_{ ext{max},j}. \end{cases}$$

Обновление позиции:

$$x_i(t+1) = x_i(t) + v_i(t+1)$$

Эти формулы описывают, как частицы перемещаются в пространстве поиска, стремясь найти оптимальное решение.

4.1 Спецификация программы

Table 1: Спецификация функций программы

Имя функции	Тип возвращаемого значения	Описание функции
init	None	Инициализация частицы с заданными границами и максимальной скоростью.
objective_function	float	Вычисляет значение целевой функции для заданных координат x и y .
update_velocity	None	Обновляет скорость частицы на основе инерционной, когнитивной и социальной составляющих.
optimize	None	Основной цикл оптимизации, обновляющий позиции и скорости частиц.
update_plot	None	Обновляет графическое отображение текущих позиций частиц.
update_best_result	None	Обновляет отображение лучших найденных позиций и значений функции.
create_widgets	None	Создает и размещает виджеты интерфейса пользователя.
start_optimization	None	Запускает процесс оптимизации, инициализируя частицы и параметры.
stop_optimization	None	Останавливает процесс оптимизации.
reset_optimization	None	Сбрасывает состояние алгоритма и графика для начала новой оптимизации.

5 Листининг

```
import tkinter as tk
from tkinter import messagebox
import threading
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
class Particle:
   def init (self, bounds, vmax):
       self.position = np.array([np.random.uniform(low, high) for low,
          → high in bounds])
       self.velocity = np.random.uniform(-vmax, vmax, len(bounds))
       self.best position = self.position.copy()
       self.best_fitness = float('inf')
def objective_function(x, y):
   return 8 * (x ** 2) + 4 * x * y + 5 * (y ** 2)
def update velocity(particle, global best position, w, c1, c2, vmax,
   → use_velocity_clamping):
   r1 = np.random.rand(len(particle.position))
   r2 = np.random.rand(len(particle.position))
   cognitive = c1 * r1 * (particle.best_position - particle.position)
   social = c2 * r2 * (global_best_position - particle.position)
   particle.velocity = w * particle.velocity + cognitive + social
   if use_velocity_clamping:
       particle.velocity = np.clip(particle.velocity, -vmax, vmax)
class PSOApp:
   def __init__(self, master):
       self.master = master
       self.master.title("
       self.master.configure(bg='#FFFACD')
       self.is_running = False
       self.should reset = False
```

```
self.create widgets()
   self.particles = []
   self.global best position = None
   self.global_best_fitness = float('inf')
   self.bounds = []
def create_widgets(self):
   param_frame = tk.Frame(self.master, bg='#FFFACD')
   param_frame.pack(side=tk.TOP, fill=tk.X, padx=10, pady=10)
   tk.Label(param_frame, text="
                                        :", bg='#FFFACD').grid(row=0,
      → column=0, sticky=tk.W)
   self.population_size_entry = tk.Entry(param_frame)
   self.population size entry.insert(0, "30")
   self.population size entry.grid(row=0, column=1)
   tk.Label(param_frame, text="
                                           (W) : "
      → bg='#FFFACD').grid(row=1, column=0, sticky=tk.W)
   self.w entry = tk.Entry(param_frame)
   self.w entry.insert(0, "0.5")
   self.w entry.grid(row=1, column=1)
   tk.Label(param_frame, text="
                                             (c1):",
      → bg='#FFFACD').grid(row=2, column=0, sticky=tk.W)
   self.c1 entry = tk.Entry(param frame)
   self.c1 entry.insert(0, "1.0")
   self.c1_entry.grid(row=2, column=1)
   tk.Label(param_frame, text="
                                            (c2):",
      → bg='#FFFACD').grid(row=3, column=0, sticky=tk.W)
   self.c2 entry = tk.Entry(param frame)
   self.c2 entry.insert(0, "1.0")
   self.c2_entry.grid(row=3, column=1)
   tk.Label(param frame, text="
                                            (vmax):",
      → bg='#FFFACD').grid(row=4, column=0, sticky=tk.W)
   self.vmax entry = tk.Entry(param frame)
   self.vmax_entry.insert(0, "2.0")
   self.vmax_entry.grid(row=4, column=1)
```

```
tk.Label(param_frame, text="X Min:", bg='#FFFACD').grid(row=5,
   → column=0, sticky=tk.W)
self.x min entry = tk.Entry(param frame)
self.x min entry.insert(0, "-10")
self.x_min_entry.grid(row=5, column=1)
tk.Label(param_frame, text="X Max:", bg='#FFFACD').grid(row=5,
   → column=2, sticky=tk.W)
self.x max entry = tk.Entry(param frame)
self.x max entry.insert(0, "10")
self.x_max_entry.grid(row=5, column=3)
tk.Label(param_frame, text="Y Min:", bg='#FFFACD').grid(row=6,
   → column=0, sticky=tk.W)
self.y min entry = tk.Entry(param frame)
self.y min entry.insert(0, "-10")
self.y_min_entry.grid(row=6, column=1)
tk.Label(param frame, text="Y Max:", bg='#FFFACD').grid(row=6,
   → column=2, sticky=tk.W)
self.y max entry = tk.Entry(param frame)
self.y max entry.insert(0, "10")
self.y_max_entry.grid(row=6, column=3)
#
self.velocity_clamping_var = tk.BooleanVar(value=True)
self.velocity_clamping_check = tk.Checkbutton(param_frame,
                       ", variable=self.velocity clamping var,
   → text="

    bg='#FFFACD')

self.velocity clamping check.grid(row=7, column=0, columnspan=2,
   → sticky=tk.W)
button_frame = tk.Frame(self.master, bg='#FFFACD')
button frame.pack(side=tk.TOP, pady=10)
self.start button = tk.Button(button frame, text=" ",
   → command=self.start_optimization)
self.start_button.pack(side=tk.LEFT, padx=5)
```

```
self.stop_button = tk.Button(button_frame, text=" ",

→ command=self.stop_optimization)

   self.stop_button.pack(side=tk.LEFT, padx=5)
   self.reset button = tk.Button(button frame, text="

→ command=self.reset_optimization)
   self.reset_button.pack(side=tk.LEFT, padx=5)
   plot_frame = tk.Frame(self.master, bg='#FFFACD')
   plot_frame.pack(side=tk.TOP, fill=tk.BOTH, expand=True)
   self.figure = plt.Figure()
   self.ax = self.figure.add_subplot(1, 1, 1)
   self.canvas = FigureCanvasTkAgg(self.figure, master=plot_frame)
   self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH,
      → expand=True)
   result_frame = tk.Frame(self.master, bg='#FFFACD')
   result frame.pack(side=tk.TOP, fill=tk.X, padx=10, pady=10)
   tk.Label(result frame, text="
                                       :", bg='#FFFACD').grid(row=0,
      → column=0, sticky=tk.W)
   self.best_position_label = tk.Label(result_frame, text="",
      → bg='#FFFACD')
   self.best position label.grid(row=0, column=1, sticky=tk.W)
   tk.Label(result_frame, text="
      → bg='#FFFACD').grid(row=1, column=0, sticky=tk.W)
   self.best_fitness_label = tk.Label(result_frame, text="",
      → bg='#FFFACD')
   self.best fitness label.grid(row=1, column=1, sticky=tk.W)
def start_optimization(self):
   if not self.is_running:
       try:
          population_size = int(self.population_size_entry.get())
          w = float(self.w entry.get())
          c1 = float(self.c1_entry.get())
          c2 = float(self.c2_entry.get())
```

```
vmax = float(self.vmax entry.get())
          x_min = float(self.x_min_entry.get())
          x_max = float(self.x_max_entry.get())
          y_min = float(self.y_min_entry.get())
          y max = float(self.y max entry.get())
          self.bounds = [(x_min, x_max), (y_min, y_max)]
          if self.should_reset or not self.particles:
              self.particles = [Particle(self.bounds, vmax) for in
                 → range(population size)]
              self.global_best_position = None
              self.global_best_fitness = float('inf')
              self.should reset = False
          self.is running = True
          use_velocity_clamping = self.velocity_clamping_var.get()
          threading. Thread(target=self.optimize, args=(w, c1, c2,
              → vmax, use velocity clamping), daemon=True).start()
       except ValueError:
          messagebox.showerror(" ", "
                                                         .")
def stop_optimization(self):
   self.is_running = False
def reset_optimization(self):
   self.is_running = False
   self.should reset = True
   self.particles = []
   self.global best position = None
   self.global best fitness = float('inf')
   self.best position label.config(text="")
   self.best_fitness_label.config(text="")
   self.ax.clear()
   self.canvas.draw()
def optimize(self, w, c1, c2, vmax, use velocity clamping):
   while self.is_running:
       for particle in self.particles:
```

```
fitness = objective function(particle.position[0],
             → particle.position[1])
          if fitness < particle.best_fitness:</pre>
             particle.best fitness = fitness
              particle.best position = particle.position.copy()
          if fitness < self.global_best_fitness:</pre>
              self.global best fitness = fitness
              self.global_best_position = particle.position.copy()
      for particle in self.particles:
          update velocity(particle, self.global best position, w, c1,
             particle.position += particle.velocity
          for i in range(len(particle.position)):
              low, high = self.bounds[i]
             particle.position[i] = np.clip(particle.position[i], low,
                 → high)
      self.update plot()
       self.update_best_result()
      plt.pause(0.01)
def update plot(self):
   self.ax.clear()
   x_vals = [particle.position[0] for particle in self.particles]
   y_vals = [particle.position[1] for particle in self.particles]
   self.ax.scatter(x_vals, y_vals, c='blue', label='
                                                       ')
   if self.global best position is not None:
      self.ax.scatter(self.global best position[0],

    self.global_best_position[1], c='red', marker='*', s=200,
          → label='
   self.ax.set_xlabel('X')
   self.ax.set ylabel('Y')
   self.ax.legend()
   x_min, x_max = self.bounds[0]
   y_min, y_max = self.bounds[1]
   self.ax.set xlim(x min, x max)
   self.ax.set ylim(y min, y max)
   self.canvas.draw()
def update_best_result(self):
   if self.global_best_position is not None:
```

6 Контрольный пример и результаты тестирования

6.1 Описание контрольного примера

Целью контрольного примера является оценка эффективности алгоритма роя частиц. В тестировании использовался размер популяции 100, диапазон значений переменных от -10 до 10.

6.2 Установка и настройка окружения

Для выполнения тестирования необходимо установить **Python 3.9** и **Git**. Клонируйте репозиторий с помощью команды:

git clone https://github.com/MansurYa/labs-for-algorithms-and-data-st

Перейдите в директорию проекта:

cd labs-for-algorithms-and-data-structures/Lab4

Установите необходимые зависимости:

pip install -r requirements.txt

6.3 Запуск программы и выполнение задач

Запустите программу с помощью команды:

python3 main.py

Нажмите кнопку «Старт» для начала тестирования.

6.4 Результаты тестирования программы

Тестирование проводилось без ограничения скорости. Результаты представлены в таблице ниже:

Table 2: Результаты тестирования программы

Количество поколений	Количество вычислений целевой функции	Наилучшее решение	Значение в лучшей точке
5	150	(0.15, -0.34)	0.578
10	300	(-0.0129, 0.0564)	0.0143
20	600	(0.0014, -0.0017)	0.000021
40	1200	(0.0000, 0.0000)	0.000000

6.5 Заключение

Результаты тестирования показывают, что алгоритм роя частиц эффективно находит оптимальные решения, демонстрируя высокую точность при увеличении числа итераций.

7 Анализ и улучшение алгоритма

7.1 Улучшение алгоритма

1. Тонкая настройка параметров:

• Регулировка коэффициентов инерции и влияния позволяет достичь баланса между глобальным и локальным поиском, улучшая способность алгоритма находить глобальные оптимумы.

2. Адаптивное ограничение скорости:

• Введение динамического ограничения скорости, изменяющегося в зависимости от состояния роя, способствует более адаптивному поведению алгоритма.

3. Гибридизация и улучшение инициализации:

• Комбинирование PSO с другими методами и использование стратегий, таких как латинский гиперкуб, для начальной инициализации, делают алгоритм более универсальным.

7.2 Результаты тестирования программы

Тестирование проводилось с ограничением скорости = 2.0. Результаты представлены в таблице ниже:

Table 3: Результаты тестирования программы

Количество поколений	Количество вычислений целевой функции	Наилучшее решение	Значение в лучшей точке
5	150	(-0.14, 0.15)	0.18
10	300	(0.0009, 0.0313)	0.005
20	600	(0.0004, 0.0002)	0.000001
40	1200	(0.0000, 0.0000)	0.000000

7.3 Анализ результатов

1. Без ограничения скорости:

• Алгоритм демонстрирует быструю сходимость, но может быть нестабилен на начальных этапах. Это проявляется в высоких значениях функции при малом числе поколений. Например, при 5 поколениях значение функции составляет 0.578, что указывает на разброс частиц.

2. С ограничением скорости:

• Ограничение скорости улучшает стабильность и точность, особенно на начальных этапах. Это позволяет избежать преждевременной сходимости и улучшает исследование пространства решений. Например, при 5 поколениях значение функции снижается до 0.18.

8 Сравнение ГА с алгоритмом роевого интеллекта

8.1 Результаты тестирования программы

Тестирование проводилось с ограничением скорости = 2.0. Результаты представлены в таблице ниже:

Количество Количество Наилучшее Значение В поколений вычислений лучшей точке решение целевой функции 5 600 6e-06 (-8.2e-04, -8.5e-04) 10 1100 (-2.6e-06, -1.9e-06) 0.00000020 2100 (-2.2e-10, -9.1e-9) 0.000000 40 4100 0.000000 (-2.2e-13, -9.1e-10)

Table 4: Результаты тестирования программы

8.2 Точность

PSO:

- С ограничением скорости: Достигает высокой точности, особенно при увеличении числа поколений. Например, при 40 поколениях значение функции достигает 0.000000.
- **Без ограничения скорости**: Может быть менее точным на начальных этапах, но также достигает высокой точности при увеличении числа поколений.

GA:

• Обеспечивает высокую точность благодаря генетическим операциям, особенно при большом числе поколений. Например, уже при 10 поколениях значение функции приближается к нулю.

8.3 Скорость сходимости

PSO:

• Быстро достигает приемлемых решений благодаря своей простой структуре и параллельной природе. Это особенно заметно при малом числе поколений.

GA:

• Медленнее из-за сложных операций, но может быть более эффективным в долгосрочной перспективе.

8.4 Вычислительная сложность

PSO:

• Менее ресурсоёмкий, так как не использует сложные генетические операции. Это позволяет ему быстрее обрабатывать данные.

GA:

• Более ресурсоёмкий из-за необходимости обработки больших популяций и сложных операций.

8.5 Устойчивость к локальным минимумам

PSO:

• Может застревать в локальных минимумах, особенно без ограничения скорости.

GA:

• Благодаря мутации и кроссоверу, лучше избегает локальных минимумов.

8.6 Простота реализации

PSO:

• Проще в реализации и настройке, требует меньше параметров.

GA:

• Сложнее из-за необходимости выбора и настройки различных операторов.

8.7 Заключение

- **PSO** подходит для задач, где важна быстрая сходимость и ограниченные вычислительные ресурсы. Он прост в реализации и эффективен в многомерных пространствах.
- **GA** более универсален и точен, особенно в задачах со сложными ландшафтами, но требует больше времени и ресурсов.

Выбор между PSO и GA зависит от конкретных требований задачи, доступных ресурсов и приоритетов. В некоторых случаях может быть полезно использовать гибридные подходы, комбинируя PSO и GA для достижения лучших результатов.

9 Выводы по работе

В ходе исследования были изучены и сравнены два алгоритма оптимизации: алгоритм роя частиц (PSO) и генетический алгоритм (GA).

- **Алгоритм роя частиц (PSO)** продемонстрировал быструю сходимость и высокую точность при правильной настройке параметров. Он оказался эффективным для задач, требующих быстрого получения результатов и ограниченных вычислительных ресурсов.
- Генетический алгоритм (GA) обеспечил устойчивость к локальным минимумам и высокую точность, но потребовал больше времени и ресурсов. Он подходит для сложных задач с высокими требованиями к точности.

Рекомендуется использовать PSO для задач, где важна скорость, а GA — для задач, требующих высокой точности и устойчивости. Эти выводы помогут в выборе подходящего алгоритма в зависимости от специфики задачи и доступных ресурсов.