УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа Часть 2

Вариант 8

Студент Черныш Александр Владимирович P3109

Преподаватель Поляков Владимир Иванович

Задание

Построить комбинационную схему реализующую функцию C=A/B (C — 3 бита, A — 3 бита, и B — 2 бита, $B\neq 0$).

Таблица истинности

№	a_1	a_2	a_3	b_1	b_2	c_1	c_2	c_3
0	0	0	0	0	0	d	d	d
1	0	0	0	0	1	0	0	0
2	0	0	0	1	0	0	0	0
3	0	0	0	1	1	0	0	0
4	0	0	1	0	0	d	d	d
5	0	0	1	0	1	0	0	1
6	0	0	1	1	0	0	0	0
7	0	0	1	1	1	0	0	0
8	0	1	0	0	0	d	d	d
9	0	1	0	0	1	0	1	0
10	0	1	0	1	0	0	0	1
11	0	1	0	1	1	0	0	0
12	0	1	1	0	0	d	d	d
13	0	1	1	0	1	0	1	1
14	0	1	1	1	0	0	0	1
15	0	1	1	1	1	0	0	1
16	1	0	0	0	0	d	d	d
17	1	0	0	0	1	1	0	0
18	1	0	0	1	0	0	1	0
19	1	0	0	1	1	0	0	1
20	1	0	1	0	0	d	d	d
21	1	0	1	0	1	1	0	1
22	1	0	1	1	0	0	1	0
23	1	0	1	1	1	0	0	1
24	1	1	0	0	0	d	d	d
25	1	1	0	0	1	1	1	0
26	1	1	0	1	0	0	1	1
27	1	1	0	1	1	0	1	0
28	1	1	1	0	0	d	d	d
29	1	1	1	0	1	1	1	1
30	1	1	1	1	0	0	1	1
31	1	1	1	1	1	0	1	0

Минимизация булевых функций на картах Карно

b_1b_2									
	00	01	11	10					
	d	1							
	d	1							
	d	1							
	d	1							
	$a_1 = 1$								

$$c_1 = a_1 \, \overline{b_1} \quad (S_Q = 2)$$

$$c_2 = \left(a_1 \vee \overline{b_1}\right) \left(a_2 \vee \overline{b_2}\right) \quad (S_Q = 6)$$

$$c_3 = a_2\,\overline{b_2} \vee a_3\,\overline{b_1} \vee \overline{a_1}\,a_2\,a_3 \vee a_1\,\overline{a_2}\,b_1\,b_2 \quad (S_Q = 15)$$

Преобразование системы булевых функций

$$\begin{cases} c_1 = a_1 \, \overline{b_1} & (S_Q^{c_1} = 2) \\ c_2 = \left(a_1 \vee \overline{b_1} \right) \, \left(a_2 \vee \overline{b_2} \right) & (S_Q^{c_2} = 6) \\ c_3 = a_2 \, \overline{b_2} \vee a_3 \, \overline{b_1} \vee \overline{a_1} \, a_2 \, a_3 \vee a_1 \, \overline{a_2} \, b_1 \, b_2 & (S_Q^{c_3} = 15) \\ (S_Q = 23) & \end{cases}$$

Можно провести декомпозицию

вицию
$$\varphi_0 = \overline{a_2} \, b_2, \quad \overline{\varphi_0} = a_2 \vee \overline{b_2}$$

$$\begin{cases} \varphi_0 = \overline{a_2} \, b_2 & (S_Q^{\varphi_0} = 2) \\ c_1 = a_1 \, \overline{b_1} & (S_Q^{c_1} = 2) \\ c_2 = \left(a_1 \vee \overline{b_1}\right) \, \overline{\varphi_0} & (S_Q^{c_2} = 4) \\ c_3 = a_2 \, \overline{b_2} \vee a_3 \, \overline{b_1} \vee \overline{a_1} \, a_2 \, a_3 \vee \varphi_0 \, a_1 \, b_1 & (S_Q^{c_3} = 14) \\ (S_Q = 23) \end{cases}$$

Цена не изменилась, но задержка схемы увеличилась, поэтому декомпозиция нецелесообразна. Также можно провести раздельную факторизацию:

$$\begin{cases}
c_1 = a_1 \,\overline{b_1} & (S_Q^{c_1} = 2) \\
c_2 = (a_1 \vee \overline{b_1}) (a_2 \vee \overline{b_2}) & (S_Q^{c_2} = 6) \\
c_3 = a_2 \,\overline{b_2} \vee a_3 (\overline{b_1} \vee \overline{a_1} \, a_2) \vee a_1 \,\overline{a_2} \, b_1 \, b_2 & (S_Q^{c_3} = 15) \\
(S_Q = 23)
\end{cases}$$

Цена снова не изменилась, но задержка увеличилась. Исходная схема имеет наименьшую цену.

Синтез комбинационной схемы в булемов базисе

Будем анализировать схему на следующем наборе аргументов:

$$a_1 = 1$$
, $a_2 = 0$, $a_3 = 1$, $b_1 = 1$, $b_2 = 1$

Выходы схемы из таблицы истинности:

Цена схемы: $S_Q=23$. Задержка схемы: $T=2\tau$.