Exercise 5

Task 1

1.1

a) It is entailed.

\overline{A}	B	$\neg A \wedge \neg B$	$\neg A \wedge \neg B \implies \neg B$
$\overline{\mathbf{F}}$	F	Τ	T
\mathbf{F}	${\rm T}$	\mathbf{F}	${ m T}$
Τ	\mathbf{F}	\mathbf{F}	${ m T}$
Τ	\mathbf{T}	\mathbf{F}	${ m T}$

b) It is not entailed.

\overline{A}	B	$\neg A \vee \neg B$	$\neg A \vee \neg B \implies \neg B$
$\overline{\mathbf{F}}$	F	Τ	${ m T}$
F	${\rm T}$	${ m T}$	\mathbf{F}
Τ	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{T}	${\rm T}$	\mathbf{F}	${ m T}$

c) It is not entailed.

\overline{A}	В	$\neg A \wedge \neg B$	$\neg A \land \neg B \implies A \lor B$
F	F	Τ	F
\mathbf{F}	${\rm T}$	\mathbf{F}	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$
Τ	\mathbf{T}	\mathbf{F}	${ m T}$

d) It is not entailed.

\overline{A}	B	$A \implies B$	$A \iff B$	$(A \Longrightarrow B) \Longrightarrow (A \Longleftrightarrow B)$
\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	${ m T}$
\mathbf{F}	\mathbf{T}	${ m T}$	\mathbf{F}	${f F}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$
${ m T}$	${ m T}$	${ m T}$	${ m T}$	${f T}$

e) It is entailed.

						-
						$((A \Longrightarrow B)$
						$\iff C$
				$(A \Longrightarrow B)$		\Longrightarrow
A	B	C	$A \implies B$	$\iff C$	$A \vee \neg B \vee C$	$(A \vee \neg B \vee C)$
F	F	F	${f T}$	F	T	${f T}$
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$
\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$
${ m T}$	F	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$
${ m T}$	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
${f T}$	${ m T}$	${ m T}$	${f T}$	T	\mathbf{T}	${ m T}$

f) It is satisfiable for $A \wedge \neg B$

				$(\neg A \Longrightarrow \neg B) \\ \land (A \land \neg B)$
A	B	$\neg A \implies \neg B$	$A \wedge \neg B$	$\wedge (A \wedge \neg B)$
F	\mathbf{F}	${ m T}$	F	F
\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}
${ m T}$	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$
${ m T}$	${ m T}$	${ m T}$	F	F

g) It is not satisfiable

A	В	$\neg A \iff \neg B$	$A \wedge \neg B$	$(\neg A \Longleftrightarrow \neg B) \\ \land (A \land \neg B)$
F F	F T	T F	F F	F F
${ m T}$	${ m F}$	${ m F}$	$rac{ ext{T}}{ ext{F}}$	$^{ m F}$

1.2

a) I assume it means the packet you can send. In that case, the vocabulary is:

$$(0|1){8}$$

i.e 0 or 1 exactly 8 times.

b) For sensor S_2 and S_3 , I assume a high value is equal to a True value. C_1 : $\neg S_2 \wedge \neg S_3$ C_2 : $\neg S_1 \wedge S_2$ C_3 : S_3

c) For each tank, this would be the truth table.

$\overline{S_1}$	S_2	S_3	$\neg S_2 \wedge \neg S_3$	$\neg S_1 \wedge S_2$
F	F	F	${ m T}$	F
F	F	${\rm T}$	\mathbf{F}	F
\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$
\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$
\mathbf{T}	\mathbf{F}	F	${ m T}$	\mathbf{F}
\mathbf{T}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}
Τ	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
Τ	${ m T}$	${ m T}$	\mathbf{F}	F

d) If we receive the packet 01000110, we first analyze the last 5 bits of the packet, which in shortend form is $110_2 = 6_{10}$, i.e the tank with id 6. For the 3 first bits, we place the values in the truth table. In this case, 010 is mapped to row 3 of the truth table. We then see that C_2 is evaluated to true (i.e for the current KB, we can entail C_2). The system then closes the gate.

Task 2

2.1

a)
$$A \lor (B \land C \land \neg D) \equiv (A \lor B) \land (A \lor C) \land (A \lor \neg D)$$

b)
$$\neg (A \Longrightarrow \neg B) \land \neg (C \Longrightarrow \neg D) \\
\equiv \neg (\neg A \lor \neg B) \land \neg (\neg C \lor \neg D) \\
\equiv (A \land B) \land (C \land D) \\
\equiv A \land B \land C \land D$$

c)
$$\neg ((A \Longrightarrow B) \land (C \Longrightarrow D))$$

$$\equiv \neg ((\neg A \lor B) \land (\neg C \lor D))$$

$$\equiv \neg (\neg A \lor B) \lor \neg (\neg C \lor D)$$

$$\equiv (A \land \neg B) \lor (C \land \neg D)$$

$$\equiv ((A \land \neg B) \lor C) \land ((A \land \neg B) \lor \neg D)$$

$$\equiv (A \lor C) \land (\neg B \lor C) \land (A \lor \neg D) \land (\neg B \lor \neg D)$$

d)
$$(A \wedge B) \vee (C \Longrightarrow D)$$

$$\equiv (A \wedge B) \vee (\neg C \vee D)$$

$$\equiv (A \vee \neg C \vee D) \wedge (B \vee \neg C \vee D)$$

e)
$$A \iff (B \implies \neg C)$$

$$\equiv (A \implies (B \implies \neg C)) \land ((B \implies \neg C) \implies A)$$

$$\equiv (\neg A \lor \neg B \lor \neg C) \land (\neg B \lor \neg C \lor A)$$

$$\equiv (\neg A \lor \neg B \lor \neg C) \land (A \lor \neg B \lor \neg C)$$

2.2

Building the knowledge base: S is true if it's sunny. H is true if it's warm. R is true if it's raining. E is true if I will enjoy. B is true if I pick up berries. W is true if I'm wet.

This gives the knowledge:

$$R_1: (S \wedge H) \implies E \equiv \neg S \vee \neg H \vee E$$

$$R_2: (H \wedge \neg R) \implies B \equiv \neg H \vee R \vee B$$

$$R_3: R \implies \neg B \equiv \neg R \vee \neg B$$

$$R_4: R \implies W \equiv \neg R \vee W$$

$$R_5: H$$

$$R_6: R$$

$$R_7: S$$

a) Using R_3 and R_6 we create the unit resolution rule:

$$\frac{\neg R \vee \neg B, \qquad R}{\neg B}$$

which means that R_8 : $\neg B$ can be added to the knowledge base. We then know that Q_1 will be true.

b) Using R_1 and R_7 , we can resolve by doing the following:

$$\frac{\neg S \vee \neg H \vee E, \qquad S}{\neg H \vee E}$$

So $R_9: \neg H \lor E$ is added to the knowledge base. Then using R_9 and R_5 , we get the resolution rule:

$$\frac{\neg H \vee E, \qquad H}{E}$$

So we can also add R_{10} : E to the KB. This means that also Q_2 is proven.

c) Using R_4 and R_6 we get the resolution rule:

$$\frac{\neg R \vee W, \qquad R}{W}$$

We add R_{11} to the KB, and we have therefore proven Q_3 .

Task 3

3.1

- a) $Occupation(Emily, Lawyer) \lor Occupation(Emily, Doctor)$
- b) $Occupation(Joe, Actor) \land \exists x \ Occupation(Joe, x) \implies x \neq Actor$
- c) $\forall x \ Occupation(x, Surgeon) \implies Occupation(x, Doctor)$
- d) $\neg \exists x \ Customer(Joe, x) \implies Occupation(x, Lawyer)$
- e) $\exists x \ Boss(x, Emily) \implies Occupation(x, Lawyer)$
- f) $\exists x \forall y \ Occupation(x, Lawyer) \land (Customer(y, x) \implies Occupation(y, Doctor))$
- g) $\forall x \; \exists y \; Occupation(x, Surgeon) \implies (Customer(y, x) \land Occupation(y, Lawyer))$

3.2

- a) $Divisible(x, y) : \exists z \ (z < x) \land (x = y * z)$
- b) Even(x) : Divisible(x, 2)
- c) $Odd(x) : \neg Divisible(x, 2)$
- d) $Odd(x) : Even(x) \implies Odd(x+1)$
- e) $Prime(x) : \forall y \ Divisible(x, y) \implies y = x$
- f) $\exists !xPrime(x) \land Even(x)$
- g) $\forall x \exists k \ (x = \prod_{i=0}^k p_i) \implies \forall i \ Prime(p_i)$

Task 4

First we define some predicates and constants:

Identifies(x,y) - a user x is a member of the y fandom. Likes(x,y) - a user x likes the group y. LikesGenre(x,y) - a user x likes the genre y Sone, Reveluvs, Blinks are fandoms. GG, RV, BP, CH, HE, DJH, SEO, TAE are groups. Dance, Ballads, Drama, Electro are genres.

a) Our KB is the following (note x is the universally quantifiable variable):

```
R_1: Identifies(x, Sone) \iff Likes(x, GG)
   \equiv (\neg Identifies(x, Sone) \lor Likes(x, GG)) \land (\neg Likes(x, GG) \lor Identifies(x, Sone))
 R_2: Identifies(x, Reveluvs) \iff Likes(x, RV)
   \equiv (\neg Identifies(x, Reveluvs) \lor Likes(x, RV)) \land (\neg Likes(x, RV) \lor Identifies(x, Reveluvs))
 R_3: Identifies(x, Blinks) \iff Likes(x, BP)
   \equiv (\neg Identifies(x, Blinks) \lor Likes(x, BP)) \land (\neg Likes(x, BP) \lor Identifies(x, Blinks))
 R_4: Identifies(x, Reveluvs) \implies LikesGenre(x, Ballads)
   \equiv \neg Identifies(x, Reveluvs) \lor LikesGenre(x, Ballads)
R_5: Identifies(x, Blinks) \implies LikesGenre(x, Dance)
   \equiv \neg Identifies(x, Blinks) \lor LikesGenre(x, Dance)
 R_6: (LikesGenre(x, Dance) \land LikesGenre(x, Ballads)) \implies Likes(x, CH)
   \equiv \neg LikesGenre(x, Dance) \lor \neg LikesGenre(x, Ballads) \lor Likes(x, CH)
 R_7: (LikesGenre(x, Drama) \land LikesGenre(x, Ballads)) \implies Likes(x, HE)
   \equiv \neg LikesGenre(x, Drama) \lor \neg LikesGenre(x, Ballads) \lor Likes(x, HE)
R_8: (Identifies(x, Sone) \land LikesGenre(x, Electro)) \implies Likes(x, DJH)
   \equiv \neg Identifies(x, Sone) \lor \neg LikesGenre(x, Electro) \lor Likes(x, DJH)
 R_9: (Identifies(x, Sone) \land LikesGenre(x, Dance)) \implies Likes(x, SEO)
   \equiv \neg Identifies(x, Sone) \lor \neg LikesGenre(x, Dance) \lor Likes(x, SEO)
R_{10}: (Identifies(x, Sone) \land LikesGenre(x, Ballads)) \implies Likes(x, TAE)
   \equiv \neg Identifies(x, Sone) \lor \neg LikesGenre(x, Ballads) \lor Likes(x, TAE)
```

b) We add the rules to the KB: R_{11} : $Identifies(u_1, Reveluvs)$ and R_{12} : $Likes(u_1, GG)$. We can then use R_4 to get the resolution rule (and by substituting $\theta = \{x/u_1\}$):

$$\frac{\neg Identifies(u_1, Reveluvs) \lor LikesGenre(u_1, Ballads)}{LikesGenre(u_1, Ballads)} \qquad \underbrace{Identifies(u_1, Reveluvs)}_{}$$

 $R_{13}: LikesGenre(u_1, Ballads)$

We then use part of R_1 to prove the user also identifies as a Sone

$$\frac{\neg Likes(u_1, GG) \lor Identifies(u_1, Sone)}{Identifies(u_1, Sone)} \qquad Likes(u_1, GG)$$

 $R_{14}: Identifies(u_1, Sone)$

We then use R_{10} :

$$\frac{\neg Identifies(u_1, Sone) \lor \neg LikesGenre(u_1, Ballads) \lor Likes(u_1, TAE) \qquad Identifies(u_1, Sone)}{Likes(u_1, TAE) \lor \neg LikesGenre(u_1, Ballads)} \\ \frac{\neg LikesGenre(u_1, Ballads) \lor Likes(u_1, TAE) \qquad LikesGenre(u_1, Ballads)}{Likes(u_1, TAE)} \\ R_{15}: \ Likes(u_1, TAE)$$

According to resolution, TAE will be a good recommendation.

c) Using R_7 :

$$\frac{\neg LikesGenre(u_1, Drama) \lor \neg LikesGenre(u_1, Ballads) \lor Likes(u_1, HE)}{\neg LikesGenre(u_1, Drama) \lor Likes(u_1, HE)} \qquad LikesGenre(u_1, Ballads)$$

There is no complementary literal for $\neg LikesGenre(u_1, Drama)$, i.e we don't know if u_1 likes Drama, nor can we infer it. We therefore are unable to prove that HE will be a good recommendation. Consequentially, HE will not be a good recommendation.

d) We know u_2 is a Sone, Reveluv and Blink, which from R_1, R_2 and R_3 we can infer that u_2 likes GG, RV and BP. From R_4 and R_5 , we can infer that u_2 likes Ballads and Dance. So the system should recommend these genres. From R_6 , we infer that CH is a good recommendation. Then, we can also infer from R_{10} that they also will like TAE. To summarize, the system will recommend Ballads and Dance as the genres, and CH and TAE as the groups.