# CSC 373 Winter 2020 Prof. Lytinen Representation of floating point numbers

Reading: Bryant and O'Hallaron, section 2.4

#### Motivation

- What is the difference between integer and floating point numbers?
- How does their representation affect their range (smallest and largest possible values)?
- When does one use int, and when double or float? What are the advantages/disadvantages of each?

#### **Example of floating point behavior**

```
#include <stdio.h>
int main() {
  double x = 1.2;
  printf("x = : %0.50f\n\n", x);
}

$ gcc -o test test.c ./test
x = 1.1999999999999995559107901499373838305473327636719
```

# **Binary floating point**

For our purposes, a binary floating point number is of the form  $(0|1)^+.(0|1)^* + (0|1)^+.(0|1)^+$  where

```
means or
```

- \* means zero or more
- + means one or more

Examples of binary floating point numbers:

```
1.
.1
10.1
```

11111.0000101

Not binary floating point:

# Meaning of a binary floating point number

- Each 1 represents a power of 2
- Each digit to the right of the '.' corresponds to a negative power of 2
  - The first digit to the right is 2<sup>-1</sup>, etc.
- Each digit to the left of '.' is a non-negative power of 2, starting with 20
- Simple examples

| Binary | Base 10 |
|--------|---------|
| 1000.0 | 8       |
| 0.1    | 0.5     |
| 0.01   | 0.25    |

• Example: 1001.101

$$2^{3} + 2^{0} + 2^{-1} + 2^{-3}$$
  
8 + 1 + .5 + .125 = 9.625

• **Exercise** What is 1011.011<sub>2</sub> in base 10?

Binary floating point 1 0 1 1 . 0 1 1 Each digit represents  $2^3$   $2^2$   $2^1$   $2^0$   $2^{-1}$   $2^{-2}$   $2^{-3}$ 

$$1011.011_2 = 11.375$$

#### Scientific notation

https://www.boundless.com/physics/textbooks/boundless-physics-textbook/the-basics-of-physics-1/significant-figures-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-201-and-order-of-magnitude-33/scientific-notation-and-order-of-magnitude-33/scientific-notation-and-order-of-magnitude-33/scientific-notation-and-order-of-magnitude-33/scientific-notation-and-order-of-magnitude-33/scientific-notation-and-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-order-o

6207/

For base 10:

(Coefficient) \* 10<sup>exponent</sup>

1 < coefficient < 10

(or -1 > coefficient > -10

for negative numbers)



Note that 0 must have a special value: 0 \* 100

#### **Binary scientific notation**

(Coefficient) \* 2<sup>e</sup>

e must be an integer  $1_2 \le \text{coefficient} < 10_2$  (  $1_{10} \le \text{coefficient} < 2_{10}$ )



Or for negative numbers:

$$-1_2 \ge$$
 coefficient  $> -10_2$ 

For our purposes, we will still write the exponent in base 10. Also, a special format is needed to represent 0

$$0 * 2^{0}$$

# Converting a binary floating point number into binary scientific notation

- The binary floating point number must be non-zero
- Adjust the location of the point so that it appears in the right place (i.e., just to the right of the leftmost 1)
- Adjust the value of the exponent (e) accordingly. If the point has been moved to the left, then e is a positive number. If it's been moved to the right, e is a negative number. If the point has not been moved, then e=0.

#### Examples:

```
111.01 = 1.1101 * 2^{2}

0.00101 = 1.01 * 2^{-3}

1.001 = 1.001 * 2^{0}
```

#### **Exercises**

| Binary Floating Point | Binary Scientific Notation |
|-----------------------|----------------------------|
| 1101.011              | 1.101011 * 2^3             |
| .01011                | 1.011 * 2-2                |
| -1010100              | -1.0101 * 2^6              |
| 101.01                | 1.0101 * 22                |
| 1                     | 1 * 2^0                    |

Note: 2s complement is not used in floating point numbers

#### **Exercises**

| Decimal Fractional | Binary Floating<br>Point | Binary Scientific<br>Notation |
|--------------------|--------------------------|-------------------------------|
| 1/4                | .01                      | 1.0 * 2-2                     |
| 1 7/16             | 1.0111                   | 1.0111 * 2^0                  |
| 3/8                | 0.011                    | 1.1 * 2^-2                    |
| 5/8                | .101                     | 1.01 * 2-1                    |
| -4 5/16            | -100.0101                | -1.00101 * 2^2                |
| 3 15/16            | 11.1111                  | 1.11111 * 2^1                 |
| -7                 | -1111                    | -1.111 * 2 <sup>3</sup>       |

Note: 2s complement is not used in floating point numbers

#### IEEE Floating Point Representation (Institute of Electrical and Electronics Engineers)

We modify our definition of binary floating point scientific notation slightly as follows:

$$(-1)^s * C * 2^E$$

**s** indicates whether number is negative or non-negative (1 = negative)

**C** is a binary floating point number; where  $1 \le C < 10_2$   $(1 \le C < 2_{10})$ .

Note the coefficient cannot be negative, because the sign is indicated by s.

# Alternate way to represent negative integers

In Binary Scientific Notation, the exponent must be an integer (could be +, -, or 0)

We could use 2s complement but there is an alternative, which uses a *Bias*.

# Counting: 2s complements vs biased

In general, if we use n bits to represent an integer, then the **bias** is  $2^{n-1}-1$ . Example: 4 bits (bias = 7)

| Number | 2s compl | w/bias |
|--------|----------|--------|
| 7      | 0111     | 1110   |
| 6      | 0110     | 1101   |
| 5      | 0101     | 1100   |
| 4      | 0100     | 1011   |
| 3      | 0011     | 1010   |
| 2      | 0010     | 1001   |
| 1      | 0001     | 1000   |

| Number | 2s compl | w/bias |
|--------|----------|--------|
| 0      | 0000     | 0111   |
| -1     | 1111     | 1110   |
| -2     | 1110     | 1101   |
| -3     | 1101     | 1000   |
| -4     | 1100     | 0111   |
| -5     | 1101     | 0110   |
| -6     | 1110     | 0001   |

In biased form, we'll reserve 0000 and 1111 to have special meanings

# Counting: 8-bit 2s complements vs biased

In general, if we use n bits to represent an integer, then the **bias** is  $2^{n-1}-1$ . For 8-bit numbers, the bias is  $2^7-1$  (127)

| Number | 2s compl | w/bias |
|--------|----------|--------|
| 3      | 0x03     | 0x82   |
| 2      | 0x02     | 0x81   |
| 1      | 0x01     | 0x80   |
| 0      | 0x00     | 0x7f   |
| -1     | Oxff     | 0x7e   |
| -2     | 0xfe     | 0x7d   |
| -3     | 0xf2     | 0x7c   |

In biased form, we'll reserve 0x00 and 0xff to have special meanings

# **IEEE Encoding**

- Leftmost bit indicates sign
- Remaining bits are divided between exp and frac according to size of datatype
- exp = E + the bias, which depends on the data size (in bits)
- frac = C 1
- We can represent a range of large (positive) and small (negative) exponents; for 32-bit, the exponent is between 111111110<sub>2</sub> and 00000001<sub>2</sub> (11111111 and 00000000 have special meanings)

| Data type | # bits<br>in s | # bits in<br>exp | bias                    | # bits in frac |
|-----------|----------------|------------------|-------------------------|----------------|
| double    | 1              | 11               | 2 <sup>10</sup> -1      | 52             |
| float     | 1              | 8                | 2 <sup>7</sup> -1 (127) | 23             |

Represent ½ in IEEE 32-bit floating point

$$\frac{1}{2} = 0.1_2 = 1.0 * 2^{-1}$$

$$B = 1.0$$

$$sign = 0$$

$$frac = 1.0 - 1 = .0$$

$$exp = E + bias = -1 + 127 = 126$$

| S     | ехр      | frac                                    |
|-------|----------|-----------------------------------------|
| 0     | 01111110 | 000000000000000000000000000000000000000 |
| 1 bit | 8 bits   | 23 bits                                 |

Represent -2.25<sub>10</sub> in IEEE 32-bit floating point

$$-2.25_{10} = -10.01_2 = -1.001 * 2^1$$

$$C = -1.001$$

$$E = 1$$

$$sign = 1$$

$$frac = 1.001 - 1 = .001$$

$$exp = E + bias = 1 + 127 = 128$$

| S     | ехр      | frac                  |
|-------|----------|-----------------------|
| 1     | 10000000 | 001000000000000000000 |
| 1 bit | 8 bits   | 23 bits               |

Represent ½ in IEEE 64-bit floating point

$$\frac{1}{2} = 0.1_2 = 1.0 * 2^{-1}$$

$$C = 1.0$$

$$E = 0$$

$$sign = 0$$

$$frac = 1.0 - 1 = .0$$

$$exp = E - bias = -1 + 1023 = 1022 = 01111111110$$

| S     | ехр         | frac                                    |
|-------|-------------|-----------------------------------------|
| 0     | 01111111110 | 000000000000000000000000000000000000000 |
| 1 bit | 11 bits     | 52 bits                                 |

Represent -2.5<sub>10</sub> in IEEE 32-bit and 64-bit floating point

$$-2.5_{10} = -10.1_2 = -1.01 * 2^1$$

$$C = -1.001$$

$$E = 1$$

$$sign = 1$$

frac = 
$$1.01 - 1 = .01$$

$$exp (32-bit) = E + bias = 1 + 127 = 128$$

$$exp = E - bias = 1 + 1023 = 1024$$

#### 32-bit

| S     | ехр      | Frac                                    |
|-------|----------|-----------------------------------------|
| 1     | 10000000 | 010000000000000000000000000000000000000 |
| 1 bit | 8 bits   | 23 bits                                 |

#### 64-bit

| S     | ехр        | frac    |
|-------|------------|---------|
| 1     | 1000000000 | 0100000 |
| 1 bit | 11 bits    | 54 bits |

## **Exercises**

#### Fill in the blanks.

| Decimal | Binary<br>Scientific<br>Notation | IEEE 32-bit         | IEEE 64-bit            |
|---------|----------------------------------|---------------------|------------------------|
| 4.5     | 1.001 * 22                       | 0x40900000          | 0x40120000000<br>00000 |
| -2.375  | -1.0011 * 2^1                    | 0xc0180000          |                        |
|         | -1.11 * 20                       |                     |                        |
|         |                                  | 0xbf000000          |                        |
|         |                                  |                     | 0x3ff40000000<br>0000  |
| -1.625  | -1.101 * 2^0                     | 1 01111111 10100000 | 0xbfd00000             |

## **Exercise solutions**

#### Fill in the blanks.

| Decimal | Binary<br>Scientific<br>Notation | IEEE 32-bit | IEEE 64-bit       |
|---------|----------------------------------|-------------|-------------------|
| 4.5     | 1.001 * 22                       | 0x40900000  | 0x401200000000000 |
| -2.25   |                                  |             |                   |
|         | -1.11 * 20                       |             |                   |
|         |                                  | 0xbf000000  |                   |
|         |                                  |             | 0x3ff400000000000 |

#### Code: print the bits of a 32-bit IEEE floating point (in hex)

```
void print_float(float *fptr) {
  printf("0x");
  void *vptr = (void *) fptr; // pointer to void is typeless
  int i;
  for (i=7; i>=0; i-=1) {
     // shift 4 bits at a time, because 4 bits = 1 hex digit
     int x = (*((int *) vptr) >> 4*i) & 15;
     printf("%x", x);
  }
  printf("\n");
}
```

#### Range of doubles

exp = 11111111110 - bias = 01111111111 E = 01111111111 = 1023 = 2^10-1

largest M is approximately 2 largest number = 2 \*2 <sup>1023</sup> = 2 <sup>1024</sup> =

Largest number is 1.797693134862315907729305190789 \* 10<sup>308</sup>

Smallest number is approximately 2<sup>-1023</sup>

= 1.1125369292536006915451163586662 \* 10<sup>-308</sup>

#### **Denormalized Values**

```
Condition: exp = 000...0
Value
    Exponent value E = -Bias + 1
    Significand value M = 0.xxx...x_2
        xxx...x: bits of frac
Cases
    exp = 000...0, frac = 000...0
        Represents value 0
        Note distinct values +0 and -0
    exp = 000...0, frac != 000...0
        Numbers very close to 0.0
```

 $2^{-126} * 2^{-52} = 2^{-178} = 2.6101217871994098106841176437026 * 10^{-54}$ 

#### Rounding

In base 10, not all numbers can be expressed in a finite decimal notation

The same is true for binary 1/5 = ???

Only numbers that are sums of integral powers of 2 (positive or negative) are exactly representable

Other numbers must be rounded

$$1/5 = 1/8 + 1/16 + 1/64 + 1/128 + \dots = 0.001100110011..._{2}$$

IEEE 32-bit representation:

 $0.001100110011... = 1.100110011... * 2^{-3}$ 

32-bit IEEE: Exp = 127 - 3 = 124 = 01111100 Frac = 100110011... 0x3e4ccccd

#### **Rounding Example**

```
int main() {
  float frac = .6i
 printf("%.20f\n", frac);
  int i;
 for (i=1; i<10000; i++) {
    frac += (3.+13./(float)i);
  for (i=1; i<10000; i++) {
    frac -= (3.+13./(float)i);
 printf("%.20f\n", frac);
[slytinen@cdmlinux ieee]$ ./round
0.60000002384185791016
1,44581007957458496094
```