Topic :- Superposition Theorem

Superposition Theorem

- The superposition theorem extends the use of Ohm's Law to circuits with multiple sources.
- **Definition**: The current through, or voltage across, an element in a linear bilateral network equal to the algebraic sum of the currents or voltages produced independently by each source.
- The Superposition theorem is very helpful in determining the voltage across an element or current through a branch when the circuit contains multiple number of voltage or current sources.

Superposition Theorem

- In order to apply the superposition theorem to a network, certain conditions must be met:
- 1. All the components must be <u>linear</u>, for e.g.- the current is proportional to the applied voltage (for resistors), flux linkage is proportional to current (in inductors), etc.
- 2. All the components must be <u>bilateral</u>, meaning that the current is the same amount for opposite polarities of the source voltage.
- 3. <u>Passive</u> components may be used. These are components such as resistors, capacitors, and inductors, that do not amplify or rectify.
- 4. <u>Active</u> components may not be used. Active components include transistors, semiconductor diodes, and electron tubes. Such components are never bilateral and seldom linear.

- > Circuits Containing Only Independent Sources
- Consider only one source to be active at a time.
- Remove all other IDEAL VOLTAGE SOURCES by SHORT CIRCUIT & all other IDEAL CURRENT SOURCES by OPEN CIRCUIT.

Voltage source is replaced by a Short Circuit

Current source is replaced by a Open Circuit

- If there are practical sources, replace them by the combination of ideal source and an internal resistances (as shown in figure).
- After that, short circuit the ideal voltage source & open circuit the ideal current source (as shown in figure).

Find the current flowing through R.

1.

Short Circuiting Voltage source V₂ & finding the current I₁

$$I_1 = \frac{V_1}{R}$$

Short Circuiting Voltage source V₁ & finding the current I₂

$$I_2 = -\frac{V_2}{R}$$

The net current is :-
$$I = I_1 + I_2 = \frac{V_1}{R} - \frac{V_2}{R}$$

Same answer is obtained by another method (shown below) which would turn out to be tedious when applied to bigger circuits as in next example....

$$V_R = V_1 - V_2$$
 (1), $I = \frac{V_R}{R} = \frac{V_1 - V_2}{R}$ (2), $I = \frac{V_1}{R} - \frac{V_2}{R}$ (3)

V₂ shorted

 $R_{EQ} = 106.7 \Omega$, $I_T = 0.141 A$ and $I_{R_3} = 0.094 A$

 $R_{EQ} = 29.09 \Omega$, $I_T = 0.447 A$ and $I_{R_3} = 0.406 A$

With V₂ shorted

 $R_{EQ} = 106.7 \ \Omega, \ I_T = 0.141 \ A \ and \ I_{R_3} = 0.094 \ A$

With V₁ shorted

 $R_{EQ} = 29.09 \ \Omega, \ I_T = 0.447 \ A \ and \ I_{R_3} = 0.406 \ A$

Adding the currents gives $I_{R_3} = 0.5 \text{ A}$

With 0.5 A flowing in R_3 , the voltage across R_3 must be 5 V (Ohm's Law). The voltage across R_1 must therefore be 10 volts (KVL) and the voltage across R_2 must be 8 volts (KVL). Solving for the currents in R_1 and R_2 will verify that the solution agrees with KCL.

$$I_{R_1} = 0.1 \text{ A} \text{ and } I_{R_2} = 0.4 \text{ A}$$

$$I_{R_3} = 0.1 \text{ A} + 0.4 \text{ A} = 0.5 \text{ A}$$

- Circuits Containing Independent as well as Dependent Sources
- Consider only one source to be active at a time.
- Remove all other IDEAL INDEPENDENT VOLTAGE SOURCES by SHORT CIRCUIT & all other IDEAL INDEPENDENTCURRENT SOURCES by OPEN CIRCUIT - as per the original procedure of superposition theorem
- BUT NEITHER SHORT CIRCUIT NOR OPEN CIRCUIT THE DEPENDENT SOURCE. LEAVE THEM INTACT AND AS THEY ARE

(a) Dependent Voltage Source

A voltage source whose parameters are controlled by voltage/current else

where in the system

(b) Dependent Current Source

A current source whose parameters are controlled by voltage/current else

where in the system

$$v = \beta ix$$
CDCS
(Current Dependent Current source)

Find io in the circuit shown below. The circuit involves a dependent source. The current may be obtained as by using superposition as:

i'₀ is current due to 4A current source

i"₀ is current due to 20V voltage source

$$\therefore i_0 = i_0' + i_0''$$

To obtain i₀we short circuit the 20V sources

For loop 1

$$i_1 = 4 A$$
.

For loop 2

$$3(i_2 - i_1) + 2i_2 - 5i_0 + 1(i_2 - i_3) = 0$$

For loop 3

$$5(i_3 - i_1) + 1(i_3 - i_2) + 5i_0' + 4i_3 = 0$$

$$i'_0 = i_1 - i_3$$

For solving
$$i_1$$
, i_2 , i_3 \Longrightarrow $i_0 = \frac{52}{17}$

To obtain i"₀, we open circuit the 4A sources

For loop 4

$$6i_4 - i_5 - 5i_0'' = 0$$

For loop 5

$$-\mathbf{i}_4 + 10\mathbf{i}_5 - 20 + 5\mathbf{i}_0'' = 0$$

$$i_0^{"}=-i_5$$

For solving i₄ and i₅

$$\mathbf{i}_{0}^{"} = -\frac{60}{17} \mathbf{A}$$

$$3\Omega \geqslant 1\Omega$$

$$5\Omega \geqslant 4\Omega$$

20 V

Therefore,
$$i_0 = i_0' + i_0''$$

= $\frac{52}{17} - \frac{60}{17}$
= $-\frac{8}{12} - \frac{8}{12} = \frac{8$

16

A LIMITATION :- Superposition is not applicable to **Power**

The superposition theorem does not apply to power calculations as the power is proportional to current squared or voltage squared. Consider the following:

$$I_T = I_1 + I_2$$

The power delivered to the circuits are

$$P_1 = I_1^2 R$$
, $P_2 = I_2^2 R$, and $P_T = I_T^2 R$
 $P_T = (I_1 + I_2)^2 R = I_1^2 R + I_2^2 R + 2I_1 I_2 R$
 $\neq P_1 + P_2 \neq I_1^2 R + I_2^2 R$

The total power must be determined using the total current not by superposition

THANK YOU