CRYPTOGRAPHY HANDOUT 09

CONGRUENCES

1. Properties of Congruences

Theorem 1.1. Let a, b, c, n be integers with $n \neq 0$.

- 1. $a \equiv 0 \mod n$ if and only if $n \mid a$.
- 2. $a \equiv a \mod n$.
- 3. $a \equiv b \mod n$ if and only if $b \equiv a \mod n$.
- 4. If $a \equiv b$ and $b \equiv c \mod n$, then $a \equiv c \mod n$.

Write the proof for property 3, keeping in mind you must show the if and only if statement:

Theorem 1.2. Let a, b, c, d, n be integers with $n \neq 0$, and suppose $a \equiv b \mod n$ and $c \equiv d \mod n$. Then:

- $a + c \equiv b + d \pmod{n}$,
- $a c \equiv b d \pmod{n}$, and
- $ac \equiv bd \pmod{n}$.

Note. This basically tells us that we have addition, subtraction, and multiplication operations which behave the way we expect.

Example. Addition and Multiplication with \mathbb{Z}_5 :

+	0	1	2	3	4	×	0	1	2	3	4
0						0					
1						1					
2						2					
3						3					
4						4					

Example. Addition and Multiplication with \mathbb{Z}_4 :

+	0	1	2	3	×	0	1	2	3	
0					0					
1					1					
1					1					
2					2					
3					3					

Question: Do you notice any patterns or differences between \mathbb{Z}_5 and \mathbb{Z}_4 ?

2. Division and Inverses

Recall: This was a problem from Mission 2: the ciphertext GEZXDS was encrypted by a Hill cipher with a 2×2 matrix. The plaintext is solved. Find the encryption matrix M.

Problems:

Question: How do we know when we have a multiplicative inverse or not? (We'll figure it out.)

1. Go back to your \mathbb{Z}_5 and \mathbb{Z}_4 multiplication tables. Which elements have inverses?

2.	Compute the gcd of all of these elements with inverses with n in \mathbb{Z}_n .
3.	Form a conjecture about which elements have inverses. If you're not sure, write
	out the multiplication tables for \mathbb{Z}_6 and \mathbb{Z}_7 too, and do the same steps as above.
4.	Given what you have conjectured, which elements should have inverses in \mathbb{Z}_{20} ? Which elements do not have inverses?