▼ Submitted by :

- Shivam (21CSU090)
- Ashutosh Gairola (21CSU183)
- Saransh Shukla (21CSU461)
- Vishal Tyagi (21CSU213)
- Nikhil Yadav (21CSU062)

Consumers are asked to rate a company both before and after viewing a video on the company twice a day for a week. The data are displayed in table below. Use an alpha of .05 to test to determine whether there is a significant increase in the ratings of the company after the one-week video treatment. Assume that differences in ratings are normally distributed in the population.

```
import numpy as np
from scipy import stats
import pandas as pd
import gdown
file_url = 'https://docs.google.com/uc?id=1VPOwYgABrqhwHNE8gE8AlhrIlxvu5Lyj'
gdown.download(file_url, 'file.xlsx', quiet=False)
df1 = pd.read_excel('file.xlsx',sheet_name = 'Video ratings',skiprows=13,usecols=['Subject', 'Before', 'After', 'Difference'], index_col= 'Su
df1
     Downloading...
     From: <a href="https://docs.google.com/uc?id=1VPOwYgABrqhwHNE8gE8AlhrIlxvu5Lyj">https://docs.google.com/uc?id=1VPOwYgABrqhwHNE8gE8AlhrIlxvu5Lyj</a>
     To: /content/file.xlsx
                    246k/246k [00:00<00:00, 80.0MB/s]
                 Before After Difference
      Subject
          1
                     32
                             39
                                            7
          2
                     11
                             15
                                           4
          3
                     21
                             35
                                           14
          4
                     17
                             13
                                           -4
                     30
                             41
                                           11
          6
                     38
                             39
                                            1
```

Task 1: Calculate the mean and standard deviation

22

8

```
df2=pd.DataFrame(columns=df1.columns)
df2.loc["Mean"]= df1.mean()
df2.loc["Std Dev"] = df1.std()
df2
```

14

7

	Before	After	Difference
Mean	23.285714	29.142857	5.857143
Std Dev	10 160615	12 116498	6 094494

Task 2: Determine the appropriate statistic to use

The appropriate statistic to use for this scenario would be a paired t-test, also known as a dependent t-test. This is because the data involves comparing ratings of the same individuals before and after a treatment (in this case, viewing a video on the company) over a period of time (one week), and the ratings are assumed to be normally distributed in the population.

A paired t-test is used when the same individuals are measured twice under different conditions, and it is ideal for situations where the data are paired or matched, such as pre-test and post-test measurements or repeated measures designs. In this case, the paired t-test would allow us to assess whether there is a statistically significant difference in the ratings of the company before and after the one-week video treatment. The

alpha level of 0.05 would be used as the significance level to determine whether the observed difference in ratings is statistically significant or due to chance.

Task 3: Calculate the 95% confidence intervals

```
lower, upper = stats.t.interval(confidence=0.95,df=6,loc=df1.mean(),scale=stats.sem(df1)) # stats.sem(df1) is equivalent to df1.std()/np.sqrt

df2.loc["Lower_95"]=lower
df2.loc["Upper_95"]=upper
df2
```

	Before	After	Difference
Mean	23.285714	29.142857	5.857143
Std Dev	10.160615	12.116498	6.094494
Lower_95	13.888713	17.936965	0.220676
Upper_95	32.682716	40.348749	11.493610

Task 4: Test if there is enough evidence to conclude that the ratings have increased significantly

Step 1: Define null and alternative hypotheses

The null hypothesis states that the mean of video rating are the same, μA equals μB . The alternative hypothesis states that the mean of video rating, μA is not equal to μB .

```
• H_0: \mu A - \mu B = 0 i.e \mu A = \mu B
• H_A: \mu A - \mu B \neq 0 i.e \mu A \neq \mu B
```

Step 2: Decide the significance level

Here we select $\alpha = 0.05$ and the population standard deviation is not known.

Step 3: Identify the test statistic

- We have two samples and we do not know the population standard deviation.
- · Sample sizes for samples are same.
- The sample is not a large sample, n < 30. So you use the t distribution and the test statistic for two sample unpaired test.

Step 4: Calculate the p - value and test statistic

This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values. This test assumes that the populations have identical variances.

```
t_stats , p_value = stats.ttest_rel(df1["Before"], df1["After"])
print("T - statistic is : ", t_stats)
print("P Value is : ", p_value)

T - statistic is : -2.542712059078773
P Value is : 0.04391998543533062
```

Step 5: Decide to reject or accept null hypothesis

▼ Optional Task : Calculate the 90% and 99% confidence intervals

Decide the significance level

Here we select $\alpha = 0.10$ and the population standard deviation is not known.

```
lower, upper = stats.t.interval(confidence=0.90,df=6,loc=df1.mean(),scale=df1.std()/np.sqrt(7))
df2.loc["Lower_90"] = lower
df2.loc["Upper_90"] = upper
```

Decide the significance level

Here we select $\alpha = 0.01$ and the population standard deviation is not known.

```
lower, upper = stats.t.interval(confidence=0.99,df=6,loc=df1.mean(),scale=df1.std()/np.sqrt(7))
df2.loc["Lower_99"] = lower
df2.loc["Upper_99"] = upper
```

df2

	Before	After	Difference
Mean	23.285714	29.142857	5.857143
Std Dev	10.160615	12.116498	6.094494
Lower_95	13.888713	17.936965	0.220676
Upper_95	32.682716	40.348749	11.493610
Lower_90	15.823219	20.243857	1.381023
Upper_90	30.748210	38.041857	10.333263
Lower_99	9.047888	12.164298	-2.682926
Upper_99	37.523541	46.121416	14.397212

×