Continuous functions

Casey Blacker Math 300

- Formal writing: Whom
- Proofs with convergence
- 3 Definitions and examples
- Proofs with continuous functions
- 5 Convergence and continuity

Section 1

Formal writing: Whom

Possessive pronouns

```
subjective
                                 she
                           he
                                       they
                                                who
                    you
objective
                           him
                                 her
                                       them
                                               whom
             me
                    you
possessive
                           his
                                hers
                                       theirs
                                               whose
                   yours
```

Who or whom?

Who/Whom wrote the book? Who!

Who or whom?

Who/Whom did you call? Whom!

I will give the chalk to the student who/whom gives the presentation.

who!

The writer, who/whom I greatly admire, won the award.

whom!

The writer, who/whom won the award, is greatly admired.

who!

I will donate the book to whoever/whomever asks first.

whoever!

Who or whom?

Who/Whom did you elect? Whom!

Who or whom?

Who/Whom won the election? Who!

Section 2

Proofs with convergence

Definition

Let $(x_i)_i$ be a sequence in X and fix $x \in X$. We say that $(x_i)_i$ converges to x if

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \geq N : d(x_n, x) \leq \varepsilon.$$

In this case, we write $x_i \to x$ or $\lim_{i \to \infty} x_i = x$ and we say that x is the *limit* of $(x_i)_i$.

Definition

If the sequence $(x_i)_i$ does not converge to any point $x \in X$, then $(x_i)_i$ is said to *diverge*.

Proposition

If $(x_i)_i$ is a constant sequence with value $x \in X$, then $x_i \to x$.

Proof.

Let $\varepsilon > 0$. For all $n \ge 1$, we have $d(x_n, x) = 0 \le \varepsilon$.

Proposition

If $x_i \to x$ and $x_i \to y$, then x = y.

Proof.

Suppose not. Then there is an $N \in \mathbb{N}$ such that for all $n \geq N$,

$$d(x_n,x) \leq \frac{1}{3}d(x,y)$$
 and $d(x_n,y) \leq \frac{1}{3}d(x,y)$.

Consequently,

$$d(x,y) \leq d(x,x_n) + d(x_n,y) \leq \frac{2}{3}d(x,y).$$

This yields the desired contradition.

Example

Consider the sequence of functions $(f_i)_i$ given by

$$f_i(x) = \begin{cases} i - i^3 |x| & \text{if } |x| < \frac{1}{i^2} \\ 0 & \text{otherwise.} \end{cases}$$

Observe that $f_i \to 0$ with respect to the L^1 -metric, and that f_i diverges with respect to the L^{∞} -metric.

Section 3

Definitions and examples

Let (X, d_X) and (Y, d_Y) be metric spaces.

Definition

A function $f: X \to Y$ is *continuous* at $x \in X$ when

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall y \in X : d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \varepsilon.$$

Definition

We say that $f: X \to Y$ is *continuous* if it is continuous at every $x \in X$.

Proposition

If $f: X \to Y$ is the constant function with value $c_0 \in Y$, then f is continuous.

Verbose proof.

Fix $x \in X$ and let $\varepsilon > 0$. Put $\delta = 1$. Choose $y \in X$. Suppose that $d_X(x,y) < \delta$. It follows that $d_Y(f(x),f(y)) = 0 < \varepsilon$.

Concise proof.

Observe that
$$d_Y(f(x), f(y)) = 0 < \varepsilon$$
 for all $\varepsilon > 0$.

Casev Blacker

Proposition

The identity function $f: X \to X$ is continuous.

Proof.

Fix $x \in X$ and let $\varepsilon > 0$. Choose $y \in X$ such that $d_X(x,y) < \varepsilon$. It follows that $d_X(f(x), f(y)) < \varepsilon$.

Proposition

The function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases}$$

is discontinuous at 0.

Proof.

Let
$$\varepsilon=\frac{1}{2}.$$
 Fix $\delta>0$ and put $y=\frac{\delta}{2}.$ We have $|0-y|=\frac{\delta}{2}<\delta$ and $|f(0)-f(y)|=1>\varepsilon.$

Example

For each $x \in \mathbb{R}$, the *evaluation map*

$$\varepsilon_x: C_0(\mathbb{R}) \to \mathbb{R}$$

$$f \mapsto f(x)$$

is continuous with respect to the L^{∞} -metric and discontinuous with respect to the L^{1} -metric.

Section 4

Proofs with continuous functions

Proposition

If d_X is the discrete metric on X, then every function $f: X \to Y$ is continuous.

Proof.

Let $x \in X$ and fix $\varepsilon > 0$. If $y \in X$ with $d_X(x,y) < \frac{1}{2}$, then x = y and it follows that $d_Y(f(x), f(y)) = 0 < \varepsilon$.

Proposition

If $f: X \to Y$ is continous at $x \in X$, and if $g: Y \to Z$ is continuous at f(x), then $g \circ f: X \to Z$ is continuous at x.

Proof.

Fix $\varepsilon>0$. Choose $\delta'>0$ so that $d_Z\big(g(f(x)),g(z)\big)<\varepsilon$ whenever $d_Y(f(x),z)<\delta'$, and $\delta>0$ subject to the condition that $d_Y(f(x),f(y))<\delta'$ whenever $d_X(x,y)<\delta$. Observe that

$$d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \delta'$$
$$\implies d_Z((g \circ f)(x),(g \circ f)(y)) < \varepsilon.$$

Section 5

Convergence and continuity

Theorem

The function $f: X \to Y$ is continuous at $x \in X$ if and only if $x_i \to x$ implies $f(x_i) \to f(x)$ for all sequences $(x_i)_i \subseteq X$.

Proof.

 (\Longrightarrow) . Suppose that $x_i \to x$. Fix $\varepsilon > 0$, choose $\delta > 0$ so that $d_Y(f(x), f(y)) < \varepsilon$ whenever $d_X(x, y) < \delta$, and choose $N \in \mathbb{N}$ so that $d_X(x_i, x) < \delta$ whenever n > N. It follows that $d_Y(f(x_i), f(x)) < \varepsilon$ for all n > N. (\Longleftrightarrow) . Suppose not. Then there is an $\varepsilon > 0$ such that for all $\delta > 0$ there is a $y \in X$ with $d_X(x, y) < \delta$ and $d_Y(f(x), f(y)) \ge \varepsilon$. In particular, for every $N \in \mathbb{N}$ there is an $x_N \in X$ with $d_X(x, x_N) < \frac{1}{N}$ and $d_Y(f(x), f(x_N)) \ge \varepsilon$. It follows that $x_i \to x$ and $f(x_i) \not\to f(x)$. This yields the desired contradiction.