Modélisatin des éfforts entre solides en contact

Table des matières

1		seur des actions de contact
		Résultante des actions de contact
	1.2	Moment des actions de contact
2		s de Coulomb du frottement
	2.1	Vitesse de glissement est non nulle
	2.2	Vitesse de glissement est nulle
	2.3	Cône de frottement
3		ssance des actions de contact
	3.1	Expression de la puissance
	3.2	Cas où la puissance est nulle
4		dèle des liaisons parfaites
	4.1	Définitions
		Liaison glissière
	4.3	Liaison rotule parfaite
	4.4	Liaison pivot

1 Torseur des actions de contact

1.1 Résultante des actions de contact

La résultante des actions de contact $\overrightarrow{R}_{1\to 2}$ du solide (S_1) sur le solide (S_2) se décompose en

- $\overrightarrow{N}_{1\to 2}$: Composante normale de $\overrightarrow{R}_{1\to 2}$ où force de réaction de (S_2) sur (S_1)
- $\overrightarrow{T}_{1\to 2}$: composante tangentielle de $\overrightarrow{R}_{1\to 2}$ où force de frottement de (S_2) sur (S_1)

$$\overrightarrow{R}_{1\to 2} = \overrightarrow{N}_{1\to 2} + \overrightarrow{T}_{1\to 2}$$

la condition de contact

$$\overrightarrow{N}_{1\to 2}.\overrightarrow{n}_{1\to 2}\geqslant 0$$

 $\overrightarrow{n}_{1\to 2}$: vecteur unitaire normale au solide (S_1) au point I dirigée de (S_1) vers (S_2) le contact se rompt si si $\overrightarrow{N}_{1\to 2}$ s'annule

1.2 Moment des actions de contact

Pour le contact ponctuel en un point I, on prend le moment des actions de contact nul

$$\overrightarrow{\mathcal{M}}_I = \overrightarrow{0}$$

•Conclusion : les actions de contact forment un glisseur $\overrightarrow{R}_{1\to 2}$ appliqué au point de contact I

2 Lois de Coulomb du frottement

2.1 Vitesse de glissement est non nulle

Soient deux solides (S_1) et (S_2) en contact ponctuel Pour une vitesse de glissement $\overrightarrow{v}_g(S_2/S_1) \neq 0$ non nulle,la loi de coulomb du glissement stipule

$$\left| \left| \overrightarrow{T}_{1 \to 2} \right| \right| = f_c \left| \left| \overrightarrow{N}_{1 \to 2} \right| \right|$$

- f_c : coefficient de frottement cinétique (ou dynamique)
- f_c : est un nombre sans dimension
- f_c dépend de la nature et de l'état des surfaces en contact. Dans la plupart il est de l'ordre 0, 3 à 0, 7

2.2 Vitesse de glissement est nulle

 $\overrightarrow{v}_g(S_2/S_1) = \overrightarrow{0}$: les deux solides roulent sans glisser l'un sur l'autre,on dit qu'il y a adhérence entre les solides.

Dans ce cas ,la loi du Coulomb du non-glissement stipule

$$\left| \left| \overrightarrow{T}_{1 \to 2} \right| \right| \leqslant f_s \left| \left| \overrightarrow{N}_{1 \to 2} \right| \right|$$

- f_s : coefficient de frottement statique
- f_s : est un nombre sans dimension
- f_s dépend de la nature et de l'état des surfaces en contact
- •Approximation courante

$$f_c \approx f_s = f$$

2.3 Cône de frottement

•Définition : Il s'agit d'un cône de révolution autour de la normale $\overrightarrow{n}_{1\to 2}$ et dont le demi angle au sommet α est donné par :

$$\tan \alpha = f$$

- \bullet s'il y a glissement,
le vecteur $\overrightarrow{R}_{1\rightarrow 2}$ est sur une génératrice du cône
- \bullet s'il n' y a pas de glissement,
le vecteur $\overrightarrow{R}_{1\rightarrow 2}$ est à l'intérieur du cône

glissement

absence du glissement

3 Puissance des actions de contact

3.1 Expression de la puissance

- (S_2) subit une force de résultante $\overrightarrow{R}_{1\to 2}$ au point I, de vitesse $\overrightarrow{v}(I \in S_2)$ dans un référentiel d'étude (R)
- la puissance \mathcal{P}_2 de cette force sur (S_2) est

$$\mathcal{P}_2 = \overrightarrow{R}_{1 \to 2} . \overrightarrow{v} (I \in S_2)$$

- (S_1) subit une force de résultante $\overrightarrow{R}_{2\to 1}$ au point I, de vitesse $\overrightarrow{v}(I \in S_1)$ dans un référentiel d'étude (R)
- la puissance \mathcal{P}_1 de cette force sur (S_1) est

$$\mathcal{P}_1 = \overrightarrow{R}_{2 \to 1} . \overrightarrow{v} (I \in S_1)$$

• la puissance des actions de contact sur le système sur le système de deux solides

$$\mathcal{P} = \mathcal{P}_1 + \mathcal{P}_2 = \overrightarrow{R}_{1 \to 2} \cdot \overrightarrow{v} (I \in S_2) + \overrightarrow{R}_{2 \to 1} \cdot \overrightarrow{v} (I \in S_1)$$

- principe des actions réciproques : $\overrightarrow{R}_{1\rightarrow 2}=-\overrightarrow{R}_{2\rightarrow 1}$
- $\mathcal{P} = \overrightarrow{R}_{1 \to 2} \cdot \overrightarrow{v} (I \in S_2) \overrightarrow{R}_{1 \to 2} \cdot \overrightarrow{v} (I \in S_1) = \overrightarrow{R}_{1 \to 2} (\overrightarrow{v} (I \in S_2) \overrightarrow{v} (I \in S_1))$
- $\overrightarrow{v}_g(S_2/S_1) = \overrightarrow{v}(I \in S_2) \overrightarrow{v}(I \in S_1)$

$$\mathcal{P} = \overrightarrow{R}_{1\to 2}.\overrightarrow{v}_g(S_2/S_1)$$

• $\overrightarrow{v}_g(S_2/S_1)$: est dans le plan tangente (π) , donc $\overrightarrow{v}_g(S_2/S_1)$. $\overrightarrow{N}_{1\to 2}=0$

$$\mathcal{P} = \overrightarrow{T}_{1 \to 2} . \overrightarrow{v}_g(S_2/S_1)$$

- la puissance des forces de frottement est dissipative
- la puissance des actions de contact est indépendante du référentiel

3.2 Cas où la puissance est nulle

La puissance des actions de contact est nulle dans les deux cas :

- la vitesse de glissement est nulle $\overrightarrow{v}_g(S_2/S_1)=\overrightarrow{0}$,
les solides roulent l'un sur l'autre sans glisser
- la force des frottement est nulle $\overrightarrow{T}_{1\rightarrow 2} = \overrightarrow{0}$, mouvement sans frottements

Dans les deux cas, le système des deux solides peut être qualifié de conservatif s'il n'y a pas d'autre force non conservative

4 Modèle des liaisons parfaites

4.1 Définitions

- Liaison : Un solide est soumis à une liaison quand son nombre de dégrés de liberté est strictement inférieur à six.
- Liaison unilatérale : une liaison est est unilatérale si elle est susceptible de se rompre c'est-à-dire si un des deux solides peut se décoller. Dans le cas contraire la liaison est dite bilatérale.

4.2 Liaison glissière

la liaison glissière ne permet plus qu'un glissement du solide concerné. Le seule mouvement du solide (S_2) par rapport à (S_1) est le mouvement de translation rectiligne parallèlement à un axe lié à (S_1) .

4.3 Liaison rotule parfaite

- •Définition : On appelle liaison rotule une liaison permettant à un solide de tourner autour d'un point fixe O. La liaison rotule est parfaite si les forces de contacts sont réparties sur tous les points de la surface de contact.
 - \bullet (R): référentiel lié au support de la liaison
 - $\overrightarrow{\omega}$: vitesse de rotation de (s_2) dans (R)
 - les actions de liaison sur le solide sont de résultante et de moment en A $\{\overrightarrow{F}, \overrightarrow{\mathcal{M}}_A\}$
 - la puissance des actions de la liaison rotule sur le solide

$$\mathcal{P} = \overrightarrow{\mathcal{M}}_{O} \cdot \overrightarrow{\omega}$$

• pour une liaison rotule parfaite : $\mathcal{P} = 0 \Leftrightarrow \overrightarrow{\mathcal{M}}_A = \overrightarrow{0}$

Liaison pivot 4.4

- •Définition : On appelle liaison-pivot une liaison permettant à un solide de tourner autour d'un axe fixe (Δ) . La liaison pivot est parfaite si les forces de contact sont réparties sur toute la surface de contact.

 - le champ de vitesse est défin par $\{\overrightarrow{\omega}, \overrightarrow{v}_A = \overrightarrow{0}\}$ les actions de liaison sur le solide sont $\{\overrightarrow{F}, \overrightarrow{\mathcal{M}}_A\}$
 - la puissance des actions de liaison pivot sur le solide est

$$\mathcal{P} = \overrightarrow{\omega}.\overrightarrow{\mathcal{M}}_A$$

• pour une liaison pivot parfaite : $\mathcal{P} = 0 \Leftrightarrow \mathcal{M}_{Az} = 0$