CS 427, Assignment 1

Cody Malick malickc@oregonstate.edu

January 20, 2017

1

We can find the value of k by xoring m and c

 $m \oplus c$:

 $110101100010110\\100111011011111$

010010111001001

Then, k = 010010111001001. We can use this info to then xor the value of m' with the value of k:

 $m' \oplus k$:

 $010010111001001\\001000000101111$

0110101111100110

Then our encrypted m', lets call it c' = 011010111100110

2

We can show that these two libraries are not interchangable by inspecting the distribution of each library:

 \mathcal{L}_1 has a probability distribution of $\{0,1\}^{\lambda} - 0^{\lambda}$

 \mathcal{L}_2 , on the other hand, has a probability distribution of $\{0,1\}^{\lambda}$

This makes it quite obvious that there is a difference between the two distributions. Specifically, that \mathcal{L}_2 can produce the key consisting of only 0's, while \mathcal{L}_1 cannot. While a key consisting of only zeroes isn't ideal, it is a difference in behavior which Eve can exploit. In an example case:

If calling program $F(string\ m)$ which calls VIEW(m), the adversary Eve can't choose which function, but she can choose the message m. Using function F:

```
F(string m) {
    result = VIEW(m);
    if m == result {
        return true;
    }
    return false;
}
```

```
When F calls VIEW(m) with \mathcal{L}_1:P(VIEW(m)) returning false = 1
When F calls VIEW(m) with \mathcal{L}_2:P(VIEW(m)) returning false = \frac{1}{2^{\lambda}}
```

In the case of \mathcal{L}_2 , it simply returns a random ciphertext $c \leftarrow \{0,1\}^{\lambda}$, while \mathcal{L}_1 returns an OTP encrypted ciphertext with a random key without the possibility of an all zero key. Because the probabilities differ, there is a case where Eve can find a difference in behavior, specifically that \mathcal{L}_1 cannot produce an all zero key.

3

We can show these two functions, \mathcal{L}_1 , \mathcal{L}_2 are interchangable by slowly changing bits of \mathcal{L}_1 to look like \mathcal{L}_2 . Our end goal is to show that \mathcal{L}_1 produces values are in the same range that \mathcal{L}_2 does.

First, it is important to note the probability distribution of each function. \mathcal{L}_1 takes in a base n integer, and outputs a random value $c \in \mathbb{Z}_n$. Given that integer input, \mathcal{L}_1 then generates a random key, adds the key to the integer input, and uses a modulus function to maintain the domain of \mathbb{Z}_n . Then the probability of a single output occurring in the function is $\frac{1}{n}$.

 \mathcal{L}_2 has identical input behavior, but different functionality inside the function. It simply returns a random ciphertext in the domain specified, \mathbb{Z}_n . The probability of a single result then, is $\frac{1}{n}$.

We can show these functions are equivilant by slowly changing one to look like the other:

1. First, we can add a line to \mathcal{L}_2 , setting $c = c \mod n$. This does not change the behavior of the library, as n is the size of the input domain, \mathbb{Z}_n . Our function now looks like this:

```
VIEW(M):

c < -- Z_n

c = c \% n

return c
```

2. Change initial c assignment to k to store initial key value in a seperate variable. This does not alter the functionality of the library as we are simply storing the random value in a different variable. Our function now looks like this:

```
VIEW(M): \\ k < -- Z_n \\ c := k \% n \\ return c
```

3. Lastly, we can then add x to k without consequence to the library as the modulus function maintains the domain of output. The randomness of output is also not changed as it simply offsets all possibilities by a constant amount. Offsetting a uniform distribution by a constant amount does not change the resulting value. Now our function looks like this:

```
VIEW(M): \\ k < -- Z_n \\ c := (x + k) \% n
return c
```

Our functions are now identical, then $\mathcal{L}_1 \equiv \mathcal{L}_2$, and therefore interchangable.