Math 547: Mathematical Foundations of Statistical Learning Theory Fall 2017

Instructor: Stas Minsker Scribe: Mose Wintner

32.1 Structural Signal Recovery from Linear Measurements

 $\lambda \in K \subseteq \mathbb{R}^p$ an unknown element of a known set; $\mathbb{X} \in \mathbb{R}^{n \times p}$ a matrix with iid $\mathcal{N}(0,1)$ entries. We observe $Y = \mathbb{X}\lambda \in \mathbb{R}^n$. We wish to recover λ in the situation when n < p ($n \ge p$ solved by pseudo-inverse).

Let L be the subspace of $z \in \mathbb{R}^p$ satisfying $\mathbb{X}z = Y$ and let $\hat{\lambda} \in K \cap L$ be arbitrary. Then $\left| \left| \hat{\lambda} - \lambda \right| \right|_2 \leq \operatorname{diam}(K \cap L)$.

Theorem 1. Let T be a bounded subset of \mathbb{R}^p . Let $\mathbb{X} \in \mathbb{R}^{n \times p}$ be a matrix with iid $\mathcal{N}(0,1)$ entries. Fix $\varepsilon \geq 0$ and define

$$T_{\varepsilon} = \{ z \in T : \frac{1}{n} ||\mathbb{X}z||_1 \le \varepsilon \}.$$

Then

$$\mathbb{E} \sup_{z \in T_{\varepsilon}} ||z||_2 \leq \sqrt{\frac{8\pi}{m}} \mathbb{E} \sup_{z \in T} |\langle g, z \rangle| + \sqrt{\frac{\pi}{2}} \varepsilon.$$

Corollary 1. When $\varepsilon = 0$, $T_{\varepsilon} = T \cap \ker \mathbb{X}$, so

$$\mathbb{E}\sup_{z\in T\cap\ker\mathbb{X}}||z||_2\leq \sqrt{\frac{8\pi}{m}}\mathbb{E}\sup_{z\in T}|\langle g,z\rangle|.$$

Since $\hat{\lambda} - \lambda \in \ker \mathbb{X}$, theorem implies that

$$\mathbb{E} \left| \left| \hat{\lambda} - \lambda \right| \right|_2 \le \sqrt{\frac{8\pi}{m}} \mathbb{E} \sup_{z \in K - K} \left| \langle g, z \rangle \right|$$

which is proportional to the Gaussian mean width of K.

Then note $z \mapsto \langle g, z \rangle$ is a Gaussian process when g is Gaussian.

Example 1. a) K a finite set.

$$\mathbb{E} \sup_{z \in K} \left| \left\langle g, z \right\rangle \right| \leq \max_{z \in K} \left| \left| z \right| \right|_2 \sqrt{2} \sqrt{\log 2 |K|}.$$

b) $K \subset L$ a subspace of \mathbb{R}^p of dimension d.

$$\mathbb{E}\sup_{z\in K} |\langle g, z\rangle| \le \operatorname{diam}(K)\sqrt{d/n}.$$

Proof of theorem: Note that $\frac{1}{n}\mathbb{X}z=\frac{1}{n}(\langle x_i,z\rangle)_i$. Suppose we can show

$$\mathbb{E}\sup_{z\in T}\left|\frac{1}{n}\sum_{i=1}^{n}|\langle x_i,z\rangle|-\sqrt{\frac{2}{\pi}}||z||_2\right|\leq \frac{4}{\sqrt{m}}\mathbb{E}\sup_{z\in T}|\langle g,z\rangle|,$$

where $\sqrt{2/\pi} ||z||_2 = \mathbb{E}|\langle x_j, z \rangle|$. If $T = T_{\varepsilon}$, then the first term is just $\frac{1}{n} ||\mathbb{X}z||_1 \leq \varepsilon$. Then

$$\mathbb{E}\sup_{z\in T_{\varepsilon}}||z||_{2}\leq \sqrt{\frac{\pi}{2}}\left(\varepsilon+\frac{4}{\sqrt{n}}\mathbb{E}\sup_{z\in T_{\varepsilon}}|\langle g,z\rangle|\right).$$

We can just ditch the ε To estimate the LHS which we'll call M, first apply the symmetrization inequality to get

$$M \le 2\mathbb{E} \sup_{z \in T} \left| \frac{1}{n} \sum_{j=1}^{n} \varepsilon_j |\langle x_j, z \rangle| \right|.$$

Then we use the contraction inequality with $\varphi(t) = |t|$ to get

$$M \leq 4\mathbb{E}\sup_{z \in T} \left| \frac{1}{n} \sum_{j=1}^{n} \langle \varepsilon_j x_j = x_j', z \rangle \right| = \frac{4}{\sqrt{n}} \mathbb{E}\sup_{z \in T} \left| \langle \sum_{j=1}^{n} \frac{1}{\sqrt{n}} x_j', z \rangle \right| = \frac{4}{\sqrt{n}} \mathbb{E}\sup_{z \in T} \left| \langle g, z \rangle \right|$$

since $\sum \frac{1}{\sqrt{n}} x'_j \sim \mathcal{N}(0, I_p)$.

Remark 1.

$$\begin{split} \mathbb{E}\sup_{z\in T}|\langle g,z\rangle| &= \mathbb{E}\sup_{z\in T}|\langle g,z-z_0\rangle| + \mathbb{E}|\langle g,z_0\rangle| \\ &= \mathbb{E}\sup_{z\in T}\langle g,z\rangle + \mathbb{E}|\langle g,z_0\rangle| \leq \mathbb{E}\sup_{z\in T}\langle g,z\rangle| \\ &\leq \mathbb{E}\sup_{z\in T}\langle g,z\rangle + \sqrt{\mathbb{E}\langle g,z_0\rangle^2}. \end{split}$$

Finally

$$\mathbb{E}\sup_{z\in T} |\langle g, z\rangle| \le \mathbb{E}\sup_{z\in T} \langle g, z\rangle + \inf_{z\in T} ||z_0||_2.$$

Assume that K is convex.