6/13/18

Today

- · Brief review
- · Grapking Sin(x) and cos(x) 76.5)
- · Transformations

Announcements

- · HW Lidue today
- · HW 2 due next Wed
- · (unit circle) handout
- · Sin(t) = sint
- · office hours
- · Defining/evaluating trig functions handout

Graphing SINX and COSX

y= sin x we'll fill this in

- First, recall that sinx has period 2TT => we can graph sinx on [0, 207], then it repeats
- · Find key points as a guide

$$> \sin(0) = 0$$
 $> \sin(2\pi) = 0$

$$\Rightarrow sin(\pi) = 0$$
 $\Rightarrow sin(\pi/2) = 1$
 $\Rightarrow sin(3\pi/2) = -1$

- . In between?
 - OAS we go from 0 to T/2 on unit circle
 y co-ord (sine) increases from
 0 to I

9 From 311/2 to 2TT

y co-ord increases

from -1 to 0

Then repeat, so:

· Very similar, but now care about x co-ord on unit circle (rather than y)

· Find skey points as a guide.

•In	be!	twee	en '
\bigcirc			

X co-ord (cosine) decreases from I to O

* From 1/2 to TT

* Co-ord decreases

from 0 to -1

from 0 to 1/2 on unit circle

3) From T to 3T1/2 X co-ord increases from -1 to 0

4) From 311/2 to 211, X co-ord increases from 0 to 1 1

Then repeat, so:

1 y = cosx

2 Then repeat, so:

$$y = A \sin(Bx - C) + D \int "variations" of what y = A \cos(Bx - C) + D \ we just did$$

Build From y= sinx

$$\left(\frac{3T}{2},-1\right) \sim 1\left(\frac{3T}{2},-3\right)$$

e.g.
$$y = \cos\left(\frac{1}{2}x - \frac{\pi}{4}\right)$$
call this of

So
$$y = \cos(\frac{1}{2}x^{-7/4})$$
 completes full period when

$$\Leftrightarrow \frac{\Pi}{2} \leq \chi \leq \frac{9\Pi}{2}$$

Deciod is $\frac{9\Pi}{2} - \frac{\Pi}{2}$

period is
$$\frac{9\pi}{2} - \frac{\pi}{2} = \frac{8\pi}{2} = 4\pi$$
.

$$> \cos(\frac{1}{2}(T_{|2}) - T_{|4}) = \cos(0) = 1$$

>
$$\cos(\frac{1}{2}(\frac{3\pi}{2}) - \frac{\pi}{4}) = \cos(\frac{\pi}{2}) = 0$$

In general

y= Asin (Bx -c) +D

(B>0) sin(-x)=-sin(x)

- · Amplitude is IAI (vertical stretch)
- · Period is 3# 3
- · Phase shift is B (horizontal shift)
- · Vertical shift is D
- · One full period on USBX-CSZTI

To graph Asin(Bx-c)+D (and cosine)

- 1) Graph SIN(BX-C)
 - · Solve OSBX-CS2TT
 - · Identify key points
- (2) Multiply all y-vals by A -> graph Asin (Bx-c)
- 3) Shift up/down by D.