The Characteristic Equation

Geometric Algorithms Lecture 18

Introduction

Recap Problem

$$\begin{bmatrix} 5 & 2 & 3 & 0 \\ -1 & 2 & -3 & 1 \\ 2 & 4 & 10 & 0 \\ 1 & 2 & 3 & 5 \end{bmatrix}$$

Determine the dimension of the eigenspace of A for the eigenvalue 4.

(try not to do any row reductions)

Answer: 2

Objectives

- 1. Briefly recap eigenvalues and eigenvectors.
- 2. Get a primer on determinants.
- 3. Determine how to find eigenvalues (not just verify them).

Keyword

```
eigenvectors
eigenvalues
eigenspaces
eigenbases
determinant
characteristic equation
polynomial roots
triangular matrices
multiplicity
```

Recap

Recall: Eigenvalues/vectors

A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an **eigenvector and eigenvalue** for a $n \times n$ matrix A if

$$A\mathbf{v} = \lambda \mathbf{v}$$

Recall: Eigenvalues/vectors

A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an **eigenvector and eigenvalue** for a $n \times n$ matrix λ if

$$A\mathbf{v} = \lambda \mathbf{v}$$

Recall: Eigenvalues/vectors

A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an **eigenvector and eigenvalue** for a $n \times n$ matrix λ if

$$A\mathbf{v} = \lambda \mathbf{v}$$

 ${\bf v}$ is "just scaled" by A, not rotated

Recall: The Picture

Question. Determine if \mathbf{v} is an eigenvector of A and determine the corresponding eigenvalues.

Question. Determine if \mathbf{v} is an eigenvector of A and determine the corresponding eigenvalues.

Solution. Easy. Work out the matrix-vector multiplication.

Question. Determine if \mathbf{v} is an eigenvector of A and determine the corresponding eigenvalues.

Solution. Easy. Work out the matrix-vector multiplication. Example.

$$\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 13 \\ 9 \end{bmatrix}$$

Question. Find an eigenvector of A whose corresponding eigenvalue is λ .

Question. Find an eigenvector of A whose corresponding eigenvalue is λ .

Solution. Find a nontrivial solution to

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

Question. Find an eigenvector of A whose corresponding eigenvalue is λ .

Solution. Find a nontrivial solution to

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

If we don't need the vector we can just show that $A - \lambda I$ is **not** invertible (by IMT).

Question. Find a basis for the eigenspace of A corresponding to λ .

Question. Find a basis for the eigenspace of A corresponding to λ .

Solution. Find a basis for $Nul(A - \lambda I)$.

Question. Find a basis for the eigenspace of A corresponding to λ .

Solution. Find a basis for $Nul(A - \lambda I)$.

(we did this for our recap problem)

Finding Eigenvalues

Finding Eigenvalues

Question. Determine the eigenvalues of A, along with their associated eigenspaces.

Finding Eigenvalues

Question. Determine the eigenvalues of A, along with their associated eigenspaces.

Solution (Idea). Can we somehow "solve for λ " in the equation

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

Determinants

An Aside: Determinants are Mysterious

Determinants are strangely polarizing

Some people love them, some people hate them

We'll only scratch the surface...

A determinant is a <u>number</u> associated with a matrix.

A determinant is a <u>number</u> associated with a matrix.

Notation. We will write det(A) for the determinant of A.

A determinant is a <u>number</u> associated with a matrix.

Notation. We will write det(A) for the determinant of A.

In broad strokes, it's a big sum of products of entries of A_{ullet}

A Scary-Looking Definition (we won't use)

$$\det(A) = \sum_{\sigma \in S_n} (-1)^{\operatorname{sgn}(\sigma)} A_{1\sigma(1)} A_{2\sigma(2)} \dots A_{n\sigma(n)}$$

We can think of this function as a procedure:

A Scary-Looking Definition (we won't use)

$$\det(A) = \sum_{\sigma \in S_n} (-1)^{\operatorname{sgn}(\sigma)} A_{1\sigma(1)} A_{2\sigma(2)} \dots A_{n\sigma(n)}$$

We can think of this function as a procedure:

```
1 FUNCTION det(A):
2   total = 0
3   FOR all matrix B we can get by swapping a bunch of rows of A:
4   s = 1 IF (# of swaps necessary) is even ELSE -1
5   total += s * (product of the diagonal entries of B)
6   RETURN total
```

The Determinant of 2 × 2 Matrices

$$\det \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

The Determinant of 2 × 2 Matrices

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow^0 \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$(-1)^0 ad$$

The Determinant of 2×2 Matrices

$$\det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow^1 \begin{bmatrix} c & d \\ a & b \end{bmatrix}$$
$$(-1)^1 cb$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \underbrace{aei} + bfg + cdh - ceg - bdi - afh$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \rightarrow^0 \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$(-1)^{0}aei$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \rightarrow^2 \begin{bmatrix} g & h & i \\ a & b & c \\ d & e & f \end{bmatrix}$$

$$(-1)^2 gbf$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \rightarrow^2 \begin{bmatrix} d & e & f \\ g & h & i \\ a & b & c \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \rightarrow^2 \begin{bmatrix} d & e & f \\ g & h & i \end{bmatrix}$$

$$(-1)^2 dhc$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \rightarrow^{1} \begin{bmatrix} g & h & i \\ d & e & f \\ a & b & c \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \rightarrow^{1} \begin{bmatrix} g & h & t \\ d & e & f \\ a & b & c \end{bmatrix}$$

$$(-1)^1 gec$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \rightarrow^1 \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix}$$

$$(-1)^1 dbi$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \rightarrow^{1} \begin{bmatrix} a & b & c \\ g & h & i \\ d & e & f \end{bmatrix}$$

$$(-1)^1$$
ahf

Another Perspective

abcd

Let's row reduce an arbitrary 2×2 matrix:

Another Perspective

Let's row reduce an arbitrary 3 x 3 matrix:

abcdefghi

Theorem. A matrix is invertible if and only if $det(A) \neq 0$.

Theorem. A matrix is invertible if and only if $det(A) \neq 0$.

So we can yet again extend the IMT:

Theorem. A matrix is invertible if and only if $det(A) \neq 0$.

So we can yet again extend the IMT:

- » A is invertible
- \Rightarrow det(A) \neq 0
- » 0 is not an eigenvalue

These must be all true or all false.

$$\det(A) = \frac{(-1)^s}{c} U_{11} U_{22} \dots U_{nn}$$

$$\det(A) = \frac{(-1)^s}{c} U_{11} U_{22} \dots U_{nn}$$

$$\det(A) = \frac{(-1)^s}{c} U_{11} U_{22} \dots U_{nn}$$

Defintion. The **determinant** of a matrix A is given by the above equation, where

• U is an echelon form of A

$$\det(A) = \frac{(-1)^s}{c} U_{11} U_{22} \dots U_{nn}$$

- U is an <u>echelon form</u> of A
- ullet s is the number of row $\underline{\mathsf{swaps}}$ used to get U

$$\det(A) = \frac{(-1)^s}{c} U_{11} U_{22} \dots U_{nn}$$

- U is an <u>echelon form</u> of A
- ullet s is the number of row $\underline{\mathsf{swaps}}$ used to get U
- ullet c is the <u>product of all scalings</u> used to get U

$$\det(A) = \frac{(-1)^{s} \text{ product of diagonal entries}}{U_{11}U_{22}...U_{nn}}$$

- U is an echelon form of A
- ullet is the number of row $\underline{\mathsf{swaps}}$ used to get U
- ullet c is the <u>product of all scalings</u> used to get U

$$\det(A) = \frac{(-1)^{S} \text{ product of diagonal entries}}{U_{11}U_{22}...U_{nn}}$$

$$C \text{ o if } A \text{ is not invertible}$$

- U is an <u>echelon form</u> of A
- ullet is the number of row $\underline{\mathsf{swaps}}$ used to get U
- ullet c is the <u>product of all scalings</u> used to get U

Example

 $\begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix}$

Let's find the determinant of this matrix:

Example (Again)

```
\begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix}
```

Let's find the determinant of this matrix again but with a different sequence of row operations:

The definition holds no matter which sequence of row operations you use.

Question. Determine the determinant of a matrix A.

Question. Determine the determinant of a matrix A. **Solution.**

Question. Determine the determinant of a matrix A. **Solution.**

1. Convert A to an echelon form U.

Question. Determine the determinant of a matrix A.

Solution.

- 1. Convert A to an echelon form U.
- 2. Keep track of the number of row swaps you used, call this s, and the product of all scalings, call this c

Question. Determine the determinant of a matrix A.

Solution.

- 1. Convert A to an echelon form U.
- 2. Keep track of the number of row swaps you used, call this s, and the product of all scalings, call this c
- 3. Determine the product of entries along the diagonal of U, call this P.

Question. Determine the determinant of a matrix A.

Solution.

- 1. Convert A to an echelon form U.
- 2. Keep track of the number of row swaps you used, call this s, and the product of all scalings, call this c
- 3. Determine the product of entries along the diagonal of U, call this P.
- 4. The determinant of A is $\frac{sP}{c}$.

The Shorter Version

Beyond small matrices, we'll often just use computers.

With NumPy:

numpy.linalg.det(A)

Properties of Determinants

Properties of Determinants (1)

$$det(AB) = det(A) det(B)$$

```
It follows that AB is invertible if and only if A and B are invertible
```

(we won't verify this)

Question

Use the fact that det(AB) = det(A) det(B) to give an expression for $det(A^{-1})$ in terms of det(A).

Hint. What is det(I)?

Answer: $1/\det(A)$

Properties of Determinants (2)

$$\det(A^T) = \det(A)$$

It follows that A^T is invertible if and only if A is invertible.

(we also won't verify this)

Question

If $A^{-1} = A^T$, then what are the possible values of det(A)?

Answer: ±1

Properties of Determinants (3)

Theorem. If A is triangular, then det(A) is the product of entries along the diagonal.

Verify:

Question

$$\begin{bmatrix}
 1 & 5 & -4 \\
 -1 & -5 & 5 \\
 -2 & -8 & 7
 \end{bmatrix}$$

Find the determinant of the above matrix.

Answer

Characteristic Equation

The determinant of a matrix A is an <u>arithmetic</u> <u>expression</u> written in terms of the entries of A.

The determinant of a matrix A is an <u>arithmetic</u> <u>expression</u> written in terms of the entries of A.

But a matrix may not have numbers as entries.

The determinant of a matrix A is an <u>arithmetic</u> <u>expression</u> written in terms of the entries of A.

But a matrix may not have numbers as entries.

We might think of the matrix $A - \lambda I$ has having polynomials as entries.

The determinant of a matrix A is an <u>arithmetic</u> <u>expression</u> written in terms of the entries of A.

But a matrix may not have numbers as entries.

We might think of the matrix $A - \lambda I$ has having polynomials as entries.

Then $det(A - \lambda I)$ is a polynomial.

A **root** of a polynomial p(x) is a value r such that p(r) = 0.

A root of a polynomial p(x) is a value r such that p(r) = 0.

(A polynomial may have many roots)

A root of a polynomial p(x) is a value r such that p(r) = 0.

(A polynomial may have many roots)

If r is a root of p(x), then it is possible to find a polynomial q(x) such that

$$p(x) = (x - r)q(x)$$

Definition. The **characteristic polynomial** of a matrix A is $det(A - \lambda I)$ viewed as a polynomial in the variable λ .

Definition. The **characteristic polynomial** of a matrix A is $det(A - \lambda I)$ viewed as a polynomial in the variable λ .

This is a polynomial with the eigenvalues of \boldsymbol{A} as roots.

Definition. The **characteristic polynomial** of a matrix A is $det(A - \lambda I)$ viewed as a polynomial in the variable λ .

This is a polynomial with the eigenvalues of \boldsymbol{A} as roots.

So we can "solve" for the eigenvalues in the equation

$$\det(A - \lambda I) = 0$$

Example: 2 x 2 Matrix*

1 1 0

Let's find the characteristic polynomial of this matrix:

Example: 2 × 2 Matrix*

1 1 1 0

Let's find the characteristic polynomial of this matrix:

An Aside: What is this matrix?

A Special Linear Dynamical System

$$\mathbf{v}_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{v}_k \qquad \mathbf{v}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Consider the system given by the above matrix. What does this system represent?:

Fibonacci Numbers

$$F_0 = 0$$

$$F_1 = 1$$

$$F_k = F_{k-1} + F_{k-2}$$
 define fib(n): curr, next \leftarrow 0, 1 repeat n times: curr, next \leftarrow next, curr + next return curr

The Fibonacci numbers are defined in terms of a recurrence relation.

They seem to crop-up in nature, engineering, etc.

Recall: The Fibonacci Matrix

The largest eigenvalue is the slope of this line

Golden Ratio

$$\varphi = \frac{1+\sqrt{5}}{2} \qquad \frac{F_{k+1}}{F_k} \to \varphi \quad \text{as} \quad k \to \infty$$

This is the largest eigenvalue of $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

To Come. The "long term behavior" is the Fibonacci sequence is defined by the golden ratio.

Example: Triangular matrix

```
\begin{bmatrix} 1 & -3 & 0 & 6 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 4 \end{bmatrix}
```

The characteristic polynomial of a triangular matrix comes pre-factored:

Question. Find all eigenvalues of the matrix A_{ullet}

Question. Find all eigenvalues of the matrix A. **Solution.** Find the roots of the characteristic polynomial of A.

Question. Find all eigenvalues of the matrix A. **Solution.** Find the roots of the characteristic polynomial of A.

In Reality. We'll mostly just use
 numpy.linalg.eig(A)

An Observation: Multiplicity

$$\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1}$$
 multiplicities

In the examples so far, we've seen a number appear as a root multiple times.

This is called the multiplicity of the root.

Is the multiplicity meaningful in this context?

Multiplicity and Dimension

Theorem. The dimension of the eigenspace of A for the eigenvalue λ is <u>at most</u> the multiplicity of λ in $\det(A - \lambda I)$.

The multiplicity is an upper bound on "how large" the eigenspace is.

Example

Let A be a 5×5 matrix with characteristic polynomial $(x-1)^3(x-3)(x+5)$.

- \gg What is rank(A)?
- » What is the minimum possible rank of A-I?

Application: Similar Matrices

Definition. Two square matrices A and B are **similar** if there is an invertible matrix P such that

$$A = P^{-1}BP$$

Application: Similar Matrices

Theorem. Similar matrices have the same eigenvalues.

Verify:

Summary

The determinant of a matrix is an arithmetic expression of its entries.

The characteristic polynomial is the determinant of $A - \lambda I$ viewed as a polynomial of λ , and it tells us what the eigenvalues of a matrix are.