

QCON 全球软件开发大会 【北京站】2016

广告平台中用户画像和标注噪声处理的实践

飞维美地信息技术(北京)有限公司 童有军 yjtong@freewheel.tv

International Software Development Conference

主要内容

- ❖ 背景介绍
- ❖ 用户画像
- ❖ 标注噪声
- ❖ 系统架构

我们的业务

MRM

RPM

广告销售

- 库存预测
- 投放预测
- 广告预案管理
- 广告订单管理
- 销售流程管理

广告执行

- 广告创意管理
- 用户画像
- 受众定向
- 跨屏广告投放
- 广告投放优化

广告结算

- 广告测量
- 业务报表
- 广告结算
- 合作伙伴分成
- 商业智能分析

单日投放近10亿次广告,生成2TB广告投放数据

数字收视率测量流程

用户画像

挑战

缺少较好的标注来源

- 第三方按批次返回结果
- 其他的标注集质量低。例如: 在性别上,BlueKai的标注数据的准确率不足60%

如何用特征描述用户

• 对视频信息掌握的有限

生产标注

贝叶斯方法

□基本公式

$$Pr(c|u_i) \propto Pr(c|\{v\})$$

$$\propto Pr(\{v\}|c)Pr(c) \propto \prod_j^k Pr(v_j|c)Pr(c)$$

$$= \frac{\prod_j^k Pr(c|v_j)Pr(v_j)}{Pr(c)}Pr(c)$$

$$\propto \prod_j^k Pr(c|v_j)$$

u: 用户; v: 视频; c: 类别

[{jianh,hjzeng,etc}@microsoft.co m]

标注结果

□分类

If
$$\frac{\Pr(c1|u)}{\Pr(c2|u)} > 1$$
, then u is $c1$; else u is $c2$

□选择置信度高的部分(60%),作为初始标注集合

类别	男性	女性	年轻	年长
准确率	82%	80%	75%	82%

特征工程

Mountain View CA, US

Ubuntu 14.04

Chrome

2016-03-02

07:26 am: 1次观看 07:30 am: 1次观看

12:40 pm:1次观看

20:00 pm:1次观看

21:18 pm:1次观看

23:11 pm:1次观看 00:21 pm:1次观看

行为记录

静态特征

规则特征

□离散特征

特征	例子	来源	转化
地域	CA, US	IP	One-Hot
设备,操作系统,播放器(浏览器)	Apple, iOS, Chrome	User Agent	One-Hot

□连续特征

视频	划分
Short	时长 <= 5分钟
Middle	5分钟 <时长<=20分钟
Long	时长 > 20分钟

观看时间	划分
Early Morning	6 AM – 10 AM
Daytime	10 AM – 4 PM
Early Fringe	4 PM – 7 PM
Primetime	7 PM – 1 AM
Graveyard	1 AM – 6 AM

视频特征

- □基于视频描述文本的标签分类
 - □ 视频提供方会对一部分的视频提供标签信息
 - □ 例如: Animation, Business, Comedy, Entertainment, News, Sports...
 - □ 朴素贝叶斯构建特征
 - □ 分词后,根据term在正负样本中的分布来构造特征
 - Bigram
 - □ 基于Spark的逻辑回归
 - □ 1 vs 其他
- □ LDA
- □命名实体

[{sidaw,manning}@stanford.edu]

用户画像

准确性	贝叶斯方法 (覆盖60%)	随机森林 (覆盖100%)	
男性	82%	72%	
女性	80%	69%	
年轻	75%	66%	
年长	82%	71%	
问题	标注集的准确性依然不够,标 注集合中有大量噪声		

标注噪声

- □需要进一步消除噪音
 - □ 分类树的优势: 一层层的优化
 - □ 主要的消噪方法
 - □ Boosting
 - □ Bagging
 - ☐ Cross-Validation
 - □ 有放回的抽样
 - □ 半监督的方法
 - □ 模型性能的评测
 - □ 线下标注的纠正比率
 - □ 线上实际准确率

Boosting

- ☐ AdaBoost
 - □思路
 - □ 在Boost算法的训练过程中,噪声数据有得到更大的权重的趋势
 - □ 在多轮迭代后,获得高权重的数据更有可能为噪声
 - □结果

分类	纠正比率(剔除比率)	准确率
年轻	23%	80%
年长		81%

[{yoav, schapire}@research.att.com]

Bagging

[verbaeten,vanassche]

不同的Bagging

- □ CV-2的方法
 - □ 5折cross-validation,每个子集间相互独立
 - □ 放回抽样,每次随机抽取80%的数据进行训练
- □ 算法包的组成
 - □ 5-模型算法包: 1个决策树, 3个kNN(k=[1,3,5]), 1个逻辑回归
 - □ 9-模型算法包: 9个决策树
- □投票的策略
 - □ 一致性投票
 - □ 大多数投票

Bagging的比较

- □ 评测结果
 - □ 年龄维度

模型编号	CV2方法	算法包	投票 纠正			
			方法 	比率	年轻	年长
CV_5_C	5-fold	5-model	一致性	5.54%	NA	NA
Ba_5_C	Bagging	5-model	一致性	5.57%	NA	NA
Ba_5_M	Bagging	5-model	大多数	15.48%	80.78%	84.93%
CV_5_M	5-fold	5-model	大多数	16.03%	82%	85%
CV_9_M	5-fold	9-model	大多数	32.36%	85.96%	86.43%

消除噪声

	初始标注集		消除噪声后	
准确率	年轻 年长		年轻	年长
	75%	82%	85%	85%
覆盖面	60%		40)%
问题	Boosting和Bagging的消噪方法 都会损失数据,需要扩大召回			

扩大召回

□利用随机森林扩大召回

类别	年轻	年长	
准确率	71%	72%	
覆盖面	100%		

- □解决方案
 - □ 半监督学习
 - ☐ TSVM(Transductive Support Vector Machines)

TSVM

[Sindhwani, Keerthi]

标注噪声总结

□方法的演进

一些经验

- □需要注意的几点问题
 - □ 特征的问题
 - □ 模糊特征
 - □ 特征筛选的经验
 - □模型的选择
 - □ 抗噪模型
 - □ 离线参数的调试
 - □ 训练误差的提示

系统架构

未来的想法

关于FreeWheel

- ❖ 视频广告解决方案
 - 视频广告管理、投放、监测、预测、增值等业务
 - 支撑美国在线视频广告30%流量

FreeWheel

- 童有军
- Lead Engineer
- yjtong@freewheel.tv

THANKS!