Math 460

Homework 4

Trevor Klar

October 22, 2018

1. Show $f(x) = x^4 + x^3 + 1$ is irreducible over \mathbb{Q} , then answer the following:

PROOF f(x) is irreducible by the Rational Root Theorem, since the only possible roots in \mathbb{Q} are ± 1 , and neither is a root of f(x).

- (i) If u is a root of f(x) in an extension field of \mathbb{Q} , determine $[\mathbb{Q}(u):\mathbb{Q}]$ and give a \mathbb{Q} -basis for $\mathbb{Q}(u)$. **Answer** Since deg f(x) = 4, then $[\mathbb{Q}(u) : \mathbb{Q}] = 4$ and $1, u, u^2, u^3$ is a \mathbb{Q} -basis for $\mathbb{Q}(u)$.
- (ii) Express each of the following elements in terms of a basis (You should not have to solve for the scalars for these): u^{-1} , $(u^2)^{-1}$, $(u^3)^{-1}$. **Answer** $u^{-1} = -u^3 - u^2$, $(u^2)^{-1} = -u^2 - u$, $(u^3)^{-1} = -u - 1$.

(iii) Express $(1-u)^{-1}$ as a linear combination of the basis elements (You will have to solve for the scalars for this).

Answer Let's solve.

$$\begin{array}{lll} 1 & = & (1-u)(a+bu+cu^2+du^3) \\ & = & a+(b-a)u+(c-b)u^2+(d-c)u^3-du^4 \\ & = & a+(b-a)u+(c-b)u^2+(d-c)u^3+d(u^3+1) \\ & = & (a+d)+(b-a)u+(c-b)u^2+(2d-c)u^3, \end{array}$$

so a=b=c, thus a+d=1 and 2d=a, which gives $a=b=c=\frac{2}{3}, d=\frac{1}{3}$. Thus, $(1-u)^{-1}=\frac{2}{3}+\frac{2}{3}u+\frac{2}{3}u^2+\frac{1}{3}u^3$.

- 2. Determine whether the following polynomials are irreducible over the indicated fields. If irreducible, give a reason. If reducible, factor it into irreducible factors.
 - (i) $x^{10} + 2x + 6$, \mathbb{Q}

Answer Irreducible by Eisenstein's Criterion, since 2 divides 2 and 6 but not 1, and 2² does not divide 6.

(ii) $x^4 + 2, \mathbb{Z}_3$

Answer Reducible. Since 1 is a root and \mathbb{Z}_3 is a field, then by the Division Algorithm $x^4 + 2 =$ (x-1)q(x)+r(x), so r(1)=0 and x-1=x+2 is a factor. Synthetic division mod 3 will find the following factorization: $x^4 + 2 = (x+2)(x+1)(x^2+1)$

(iii) $x^4 + 3x^2 + 1, \mathbb{Q}$

Answer Irreducible since it is positive for all real x, so it has no roots. Further, the Rational Root test gives ± 1 as the only possible rational roots, and computation eliminates $(x \pm 1)$ as factors.

(iv) $x^5 + 5x^3 + 4$

Answer Using the linear substitution $\phi(p(x)) = p(x+1)$, we find that

$$\phi(x^5 + 5x^3 + 4) = x^5 + 5x^4 + 15x^3 + 25x^2 + 20x + 10,$$

and since 5 divides all but the leading coefficient and 25 does not divide the constant term, we have that $x^5 + 5x^3 + 4$ is irreducible by Eisenstein's Criterion.

1

(v) $x^4 + x^2 + 1$

Answer Irreducible. It has no roots, so it has no linear or 3rd degree factors. It is quadratic in form, and the quadratic formula shows that it factors as

$$\left(x^2 + \frac{1}{3} + \frac{\sqrt{3}}{2}i\right) \left(x^2 + \frac{1}{3} - \frac{\sqrt{3}}{2}i\right)$$

which can be further factored in the complex numbers, but the non-real complex numbers are closed under square roots. Thus, $x^4 + x^2 + 1$ can be factored as $(x - z_1)(x - z_2)(x - z_3)(x - z_4)$, where all z_i are non-real complex numbers.

(vi) $x^4 + 2x^2 + 3$, \mathbb{Z}_5

Answer Computation checks that 1 and 2 are not roots, and since the function is even, neither are 3 and 4. Though the polynomial is quadratic in form, it does not factor as $(ax^2 + b)(cx^2 + d)$, since no two elements of \mathbb{Z}_5 add to 2 and multiply to 3. If this polynomial does reduce, its factors as the product of two general quadratics, but I don't know how to calculate that.

One thing worth pointing out is that if we apply the linear substitution x = x + 1, we find that the polynomial becomes $x^4 + 4x^3 + 8x^2 + 8x + 6$, which is irreducible over \mathbb{Q} by Eisenstein's Criterion. I think that this implies that it is irreducible over \mathbb{Z}_5 as well, but I'm not sure.