Homework 2 4 September 2023 Joaquin Salas Page 1 731000141 PHYS 216-510

Question 1

Given:

Mass = 2.25 ± 0.021 kg Radius = 0.180 ± 0.0030 m $\omega = 17.5 \pm 0.250$ rad/s L = 1/2MR² ω

Find:

The angular momentum L and its uncertainty.

Diagram:

Theory: Propagation of error formula

$$\delta f(x, y, \ldots) = \sqrt{\left(\frac{\partial f}{\partial x}\delta x\right)^2 + \left(\frac{\partial f}{\partial y}\delta y\right)^2}$$

Assumptions: Uncertainties in mass, radius, and angular velocity are independent.

Solution:

$$L = \sqrt{(0.5 \times 17.5 \times 0.021 \times 0.18^2)^2 + (2.25 \times 0.18 \times 17.5 \times 0.003^2)^2 + (0.5 \times 2.25 \times 0.25 \times 0.18^2)^2}$$

 $L = 0.64 \pm 0.02 \text{ kgm}^2/\text{s}$

Question 2

Given:

- a) $L = 0.75 \pm 0.011m$
- b) $T = 1.75 \pm 0.010s$

Find:

- a) What is the predicted value of T?
- b) Is a measured value of $T=1.75\pm0.010s$ is consistent with the theoretical prediction from part a.

Diagram:

Theory:

the period T of a simple pendulum is
$$T=2\pi\sqrt{\frac{L}{g}}$$

Assumptions:

We can assume we will need to get the L_{max} and L_{min} values to compare to the theoretical prediction.

Solution:

Compute max and min values of the lengths

$$L_{max} = (0.75 + 0.011)m = 0.761m$$

$$L_{min} = (0.75 - 0.011)m = 0.739m$$

$$T = 2\pi \sqrt{\frac{0.75}{9.81}} = 1.738$$
 ; $T_{maximum} = 2\pi \sqrt{\frac{0.761}{9.81}} = 1.751$; $T_{minimum} = 2\pi \sqrt{\frac{0.739}{9.81}} = 1.725$

$$T = 1.75 \pm 0.010s$$
 -> Max = 1.76, Min = 1.74

Since $1.725 \le T \le 1.751$, only the minimum value would fit here and the max value is not consistent.

Page 3 731000141 PHYS 216-510

Question 3

Given:

$$v1 = 3.54 \pm 0.10 \text{m/s}$$

 $v2 = 8.16 \pm 0.10 \text{m/s}$
 $t = 2.79 \pm 0.10 \text{ s}$
 $a = (v2-v1)/t$

Find:

- a) Acceleration and its uncertainty.
- b) Compare the measured acceleration with the predicted.

Diagram:

Theory: Propagation of error formula

$$\delta f(x, y, \dots) = \sqrt{\left(\frac{\partial f}{\partial x} \delta x\right)^2 + \left(\frac{\partial f}{\partial y} \delta y\right)^2}$$

Assumptions:

The uncertainties in v1, v2 and t are independent and random.

Solution:

$$a = \sqrt{(2.79^{-1} \times .1)^2 + (-2.79^{-1} \times .1)^2 + (-\left(\frac{8.16 - 3.54}{2.79^2}\right) \times .1)^2}$$

 $L = 1.656 \pm 0.08 \text{ m/s}^2$

Question 4

Given:

- $m1 = 102 \pm 1.0$ grams
- $-m2 = 86 \pm 0.90$ grams

Find:

- Equation for the uncertainty in the expected acceleration (δa)
- Calculate $a \pm \delta a$ using the given values

Theory:

- Formula for acceleration is:

$$\circ \quad a = \frac{g*(m1-m2)}{(m1+m2)}$$

- Formula for propagation of uncertainties:

$$\circ \frac{\delta a}{a} = \sqrt{\left(\left(\frac{\delta m1}{m1}\right)^2 + \left(\frac{\delta m2}{m2}\right)^2\right)}$$

Where:

- δa is uncertainty in the acceleration.
- $\delta m1$ is uncertainty in mass m1.
- $\delta m2$ is uncertainty in mass m2.

Assumptions: Masses m1 and m2 are independent measurements, there is no correlation between them.

Solution:

Solve for acceleration:

$$a = \frac{g*(m1-m2)}{(m1+m2)} \rightarrow a = \frac{9.81*(0.102-0.086)}{(0.102+0.086)} = 0.835 \text{ m/s}^2$$

Rearrange the propagation of uncertainties:

$$\delta a = \frac{g * (m1 - m2)}{(m1 + m2)} \times \sqrt{\left(\left(\frac{\delta m1}{m1}\right)^2 + \left(\frac{\delta m2}{m2}\right)^2\right)}$$

$$\delta a = 0.835 \times \sqrt{\left(\left(\frac{1.0}{102}\right)^2 + \left(\frac{0.90}{86}\right)^2\right)} = 0.014339 \times 0.83489 = 0.012$$

 $a \pm \delta a$ is approximately 0.835 \pm 0.012 m/s².

Page 5 731000141 PHYS 216-510

Question 5

Given:

$$H = 3.20 \pm 0.15$$

$$W=5.00\pm0.05$$

$$L = 4.25 \pm 0.13$$

Find:

a) The volume of the rectangular prism and its associated uncertainty.

Diagram:

Theory: Propagation of error formula

$$\delta f(x, y, \ldots) = \sqrt{\left(\frac{\partial f}{\partial x}\delta x\right)^2 + \left(\frac{\partial f}{\partial y}\delta y\right)^2}$$

Volume = Base x Height

Base = Length x Width

Assumptions:

Uncertainties in height, length, width are independent and random

	١.	B	~ S	2					, 1		<i>f</i>		and the												
100		0		7	_	- 0						_		1		_					-				
		15	=	-	-	-	-	-	0.	-		7		(4	.25	00	~+	0	, \',	SCI	n)				
		()	=		21.				+-								+5	.00	cn	*	0.	130	<u>m</u>)	
		5	1.	1	1.	1	D (m	2	I	0.	21	37	5	cm	7		7.	202						
	2	1	1					7								?									
	1.	11	1011	m	-	<	cn	2	F	10	2	12:	75	con	2)		12	.21	50	mt	0	.15	cm	\	
		11	=	10	2	- 2	7	1	-	08	40		+	2			75								
		V	~	1	8	m	3	+	3.	8-	71	Sci	13												
		T				4 1						-				1									
			V	=	6	8	cn	3	+	3	3.8	37	15	Cn	13	1	1					, .			
		_			- 8		-	-			-	-	-	-											