

Recipe Ingredients Inform Cuisine of Origin

Collins Metto¹, Christopher Criscitiello², Lili Cai³, Mingyu Song³

Princeton University, Department of ¹ Computer Science, ² Mathematics, ³ Neuroscience

Matching

Cuisine

Korean

Brazilian

Mexican

Moroccan

Indian

Cajun_creole

ABSTRACT

- Can recipe ingredients inform their cuisine of origin, and if so, which ingredients are most predictive? Can unsupervised learning pick up latent cuisines?
- The "What's Cooking" dataset has 39.5k recipes from 20 cuisines. Each recipe has 1 to 65 ingredients from 6714 possible ingredients.
- * The Kaggle 2015 challenge: use supervised learning to classify these 20 cuisines. We aim to reproduce their leaderboard results within reason. We achieved their baseline result of .77 accuracy.
- * We extend the challenge by using unsupervised learning to look at ingredient relationships, cuisine relationships, and if natural clusters emerge based on recipe ingredients. We find key relationships within and across ingredients and cuisines. Topic models were able to recover latent cuisines.

DATA EXPLORATION AND PREPROCESSING

Raw Datase	et				Prepr	ocesseo	d Dataset		
# Recipes	39,774	A	6714 ingredients	В	6714 ingredients	C	6714 ingredients	E	6734 features
# Cuisines	20]		ines	Ingredient frequency		
# Ingredients	6,714					cuisir	on cuisines		
# Ingredients/cuisine	1 to 65	recipes		recipes		20		recipes	BOW 6714
cuisine id 0 greek 10259 [romaine lettuce, b	ingredients black olives, grape tomatoes	74 reci	вош	74 reci	TF-IDF on BOW	D	6714 ingredients	74	ingredients+ One Hot Encoding
	nd pepper, salt, tomatoes, g	3977		3977		cuisines		397	20 cuisines
2 filipino 20130 [eggs, pepper, sal	lt, mayonaise, cooking oil, g	(7)				cuis	TF-IDF on cuisines		
3 indian 22213 [w	ater, vegetable oil, wheat, salt]					20			
4 indian 13162 [black pepper, sh	allots, cornflour, cayenne pe]]			

Cuisine	# Recipes	Top 5-10 Ingredients based on BOW	Top 5-10 Signature Ingredients based on TF-IDF on cuisines (Representation D)	Mean# Ing/Recip
Italian	7838	salt, olive oil, garlic cloves, grated parmesan cheese, garlic, ground black pepper	lasagna noodles, ricotta cheese, prosciutto, marinara sauce, fresh parmesan cheese	9.9
Mexican	6438	salt, onions, ground cumin, garlic, olive oil, chili powder, jalapeno chilies, avocado	refried beans, enchilada sauce, corn tortillas, tomatillos, salsa	10.9
Southern US	4320	salt, butter, all-purpose flour, sugar, large eggs, baking powder, buttermilk	grits, collard greens, buttermilk, bourbon whiskey, yellow corn meal	9.6
Indian	3003	salt, onions, garam masala, water, ground, turmeric, garlic, cumin seed, ground	garam masala, curry leaves, paneer, ghee, coriander powder, cumin seed	12.7
Chinese	2673	soy sauce, sesame oil, salt, corn starch, sugar, garlic, water, green onions	Shaoxing wine, oyster sauce, sesame oil, hoisin sauce, dark soy sauce	11.9
French	2646	salt, sugar, all-purpose flour, unsalted butter, olive oil, butter, water, large eggs	gruyere cheese, grated Gruyre cheese, chopped fresh thyme, fresh tarragon	9.8
Cajun Creole	1546	salt, onions, garlic, green bell pepper, butter, olive oil, cayenne pepper, cajun	cajun seasoning, andouille sausage, creole seasoning, file powder, crawfish	12.6
Thai	1539	fish sauce, garlic, salt, coconut milk, vegetable oil, soy sauce, sugar, water	fish sauce, Thai red curry paste, red curry paste, kaffir lime leaves, beansprouts	12.5
Japanese	1423	soy sauce, salt, mirin, sugar, water, sake, rice vinegar, vegetable oil, scallions	mirin, sake, dashi, nori, konbu, sushi rice, dried bonito flakes	9.7
Greek	1175	Salt, olive oil, dried oregano, garlic cloves, feta cheese crumbles	feta cheese crumbles, dried oregano, greek seasoning, pitted kalamata olives	10.2
Spanish	989	salt, olive oil, garlic cloves, extra-virgin, olive oil, onions, water, tomatoes	saffron threads, chorizo sausage, spanish chorizo, serrano ham, manchego cheese	10.4
Korean	830	soy sauce, sesame oil, garlic, green onions, sugar, salt, water, sesame seeds	Gochujang base, kimchi, sesame oil, gochugaru, toasted sesame seeds	11.3
Vietnamese	825	fish sauce, sugar, salt, garlic, water, carrots, soy sauce, shallots, garlic cloves	fish sauce, beansprouts, rice paper, rice noodles, thai basil	12.7
Moroccan	821	salt, olive oil, ground cumin, onions, garlic cloves, ground cinnamon, water	couscous, ras el hanout, preserved lemon, saffron threads	12.9
British	804	salt, all-purpose flour, butter, milk, eggs, unsalted butter, sugar, onions	stilton cheese, suet, beef drippings, stilton, golden syrup	9.7
Filipino	755	salt, garlic, onions, water, soy sauce, pepper, oil, sugar, carrots, black pepper	fish sauce, calamansi juice, lumpia wrappers, calamansi, lumpia skins	10.0
Irish	667	salt, all-purpose flour, butter, onions, potatoes, sugar, baking soda, baking powder	Irish whiskey, Guinness Beer, irish cream liqueur, corned beef, irish bacon	9.2
Jamaican	526	salt, onions, water, garlic, ground allspice, pepper, scallions, dried thyme, black	scotch bonnet chile, jamaican jerk season, ackee, callaloo, jerk seasoning	12.2
Russian	489	salt, sugar, onions, all-purpose flour, sour cream, eggs, water, butter	sauerkraut, buckwheat flour, pierogi, dill, fresh dill, farmer cheese	10.2
Brazilian	467	salt, onions, olive oil, lime, water, garlic cloves, garlic, cachaca, sugar, tomatoes	cachaca, aai, manioc flour, palm oil, chocolate sprinkles	9.5

CLASSIFIERS USED

Supervised Learning

Model	Parameters	Input Data	Rationale
Logistic Regression	C=1, L2-penalty	A, A' reduced features	Known for multiclass, high features
Random Forest	N_estimators=100, depth=20, 100	A	Known for multiclass, high features
Gradient Boost	N_estimators=200, depth=20	A	Known for multiclass, high features

Unsupervised Learning

ensupervisea Learning					
Model	Parameters	Input Data	Rationale		
KMeans	n_components = 2, 3	A	Ingredient clustering		
SVD	n_components = 2, 3	A	Ingredient clustering		
Market Basket	min_support=.01, .005	A, E	Relationship btwn ingredients and cuisine		
LDA	n_components = 2,6,15	A, B	Latent cuisines		
BMF	$n_{components} = 2,6,15$	A	Latent cuisines		
PCA	n_components = 2	В	Latent cuisines, distance btwn cuisines		
Hierarchical clustering	method='complete'	D	Correlation (distance) btwn cuisines		

ACKNOWLEDGEMENTS

We thank Barbara Engelhardt and the COS424 AI staff for a fantastic class, feedback and comments.

TF-IDF Supplementary

1 if t occurs in d and 0 otherwise number of words in d

 $\mathrm{idf}(t,D) = \log \frac{1}{|\{d \in D : t \in d\}|},$

 $tfidf(t, d, D) = tf(t, d) \cdot idf(t, D),$

t = termd = document

D = set of all documents

Feta cheese crumbles Greek Fish sauce Garam masala Indian Grated parmesan cheese Italian

SUPERVISED LEARNING: Features selected matches signature ingredients, most predictive

cuisines are dissimilar to others based on correlation analysis

Log Reg Accuracy: .77 Overall

- Used SVD to extract 1000 top features, accuracy: .77
- On original 6714 features, run time took too long
- Best performing cuisines: Brazilian, Mexican, followed by
- British, Indian, Irish • Could be due to large number of recipes + unique ingredients

Ingredient Clustering

Features Selected

Top Features

Gochujang base

Cachaca

Cajun seasoning

Coconut milk

Corn starch

Corn tortillas

Couscous

Cumin seed

SVD on BOW KMeans on BOW (informed by KMeans) partitions by common ingredients **Ingredients** Salt, onions Salt, onions, olive oil Salt, onions, olive oil, soy

Market Basket Analysis on BOW

Antecedents

Finds relationship btwn ingredients

| Consequents | Confidence

		_	
Onions, carrots, pepp	oer	Salt	1
Baking powder, whi sugar, eggs	te	All-purpose flour	.98
Baking pwder, whit sugar, all-purpose flo		Eggs	.94
Antecedents		Consequents	Lift
Active dry yeast	Warm water		39.1
Baking soda		Baking pwder, buttermilk, salt	29.2
Clove	С	innamon sticks	22.9
Garlic Powder		Onion powder	20.4
Salt		Dijon mustard	1.0
Olive oil		Garlic, water	1.0

Finds relationship btwn ingredients and cuisines (On BOW + Cuisine OHC)

Antecedents	Consequents	Confidence
Corn tortillas	Mexican	.98
salsa	Mexican	.95
Garam Masala	Indian	.93

Latent Cuisines

UNSUPERVISED LEARNING:

LDA on TF-IDF recovers Latent Cuisines

LDA on 1F-IDF recovers Latent	Cuisines
LDA (on dataset B) (n=6)	Latent Cuisine
Soy sauce, sesame oil, fish sauce, rice vinegar, scallions, green onions, sugar	Korean
Avocado, jalapeno chilies, fresh lime juice, chopped cilantro, purple onion, lime, white onion	Mexican
All-purpose flour, buttermilk, baking powder, milk, warm eggs, baking soda	Southern US
Ground cumin, curry powder, ground coriander, ground cinnamon, chickpeas, ground ginger, olive oil	Indian
extra-virgin olive oil, fresh lemon juice, olive oil, garlic cloves, purple onion, ground cumin, ground black pepper	Italian

BMF on BOW recovers both ingredients and cuisines

Sugar, all-purpose flour, large eggs, unsalted butter, butter, baking powder, milk	Southern US
Onions, garlic, tomatoes, ground cumin, chili powder, carrots, vegetable oil	Indian
Olive oil, garlic cloves, ground black better, kosher salt, extra-virgin olive oil, grated parmesan cheese, purple onion	Italian
water	-
Soy sauce, sesame oil, green onions, garlic, sugar, vegetable oil, scallions	Asian

PCA on TF-IDF recovers similarity btwn cuisines

Cuisines Correlations

Hierarchical Clustering on Cuisine TF-IDF finds correlated groups of cuisines

PCA on TF-IDF Ingredients matches HC correlation

CONCLUSIONS:

- Supervised and unsupervised learning extracts similar features, which match "top 10 signature ingredients" by cuisine
- Supervised learning performed best on cuisines that are most dissimilar to others based correlation analysis
- Latent topic models can extract cuisines
- KMeans partitions groups based on most common ingredients
- PCA on TF-IDF ingredients yields similar cuisine similarity as Hierarchical Clustering directly on TF-IDF cuisines

Questions for TAs/Prof:

- Do we need LL, BIC metrics for unsupervised learning, given findings are so different?
- Why does standardizing data make PCA results look weird? (bc of binary nature of data?) How to look at Market Basket Analysis to extract relevant information?
- mexican manaican rajun creole manaican 1.0 -0.5 0.0 0.5 1.0

Works Cited

- Kaggle "What's Cooking" Dataset. https://www.kaggle.com/c/whats-cooking/data
- 2. SciKit Learn Python Toolbox