Lab Exp Name: Verification of superposition Theorem for DC Circuit

Lab Report No: $\mathbf{03}$. Date of Submission: 04 - 07 - 22

Course Title: Introduction to Electrical Circuit Lab

Course Teacher: **DR.MD. HASAN IMAM** Section: **M**

Semester: Summer 2021-22 Group No: 01.

No	Name	ID	Contribution
1	NOKIBUL ARFIN SIAM	21-44793-1	Calculation
2	MD EMAMUL AREFIN ISLAM	22-46608-1	Circuit drawing & Data table
3	RIDDHO, MD SOHANUR ROHAMAN	22-46800-1	Discussion
4	HOSSAIN, TAZDIK	21-45116-2	Measurement
5	TAREQ JAMIL SARKAR	22-46619-1	Measurement
6	NASIMUL ISLAM SAKIB	21-45465-3	Typing & doing in MS word

circuit-diagram:

Fig-2 for +15V & +10V

Fig-3 for -10V & +15V

Fig-4 for +10V & -15V

Data Table

\mathbf{E}_1	\mathbf{E}_2	I_{R2}	I _{R2E1}	I_{R2E2}
+10V	+15V	2.19mA	0.86mA	1.30mA
+15V	+10V	2.19mA	1.30mA	0.86mA
-10V	+15V	0.41mA	-0.86mA	1.30mA
+10V	-15V	0.41mA	0.86mA	-1.30mA

Calculation

for +10V & +15V

 $R1 = 2.13 \text{ k}\Omega$

 $R2 = 4.56 \text{ k}\Omega$

 $R3 = 2.13 \text{ k}\Omega$

For, $E_1=10v$

$$R_t = R_1 + R_2 || \; R_3 = 2.13 + 4.56 || 2.13 = 3.58$$

$$I = V / R_T = 10/3.58 = 2.79 \text{ mA}$$

$$I_{R2E1} = \frac{R_3 \times I}{R_3 + R_2} = \frac{2.13 \times 2.79}{2..13 + 4.56} = 0.87 \text{ mA} \text{ [Experimental current is, } I_{R2E2} = 0.86 \text{ mA]}$$

For, $E_1=15v$

$$R_t = R_3 + R_1 || \; R_2 \!\! = 2.13 + 2.13 || 4.56 = 3.58$$

$$I = V / R_T = 15/3.58 = 4.19 \text{ mA}$$

$$I_{R2E2} = \frac{R_1 \times I}{R_1 + R_2} = \frac{2.13 \times 4.19}{2..13 + 4.56} = 1.33 \text{ mA} \text{ [Experimental current is, } I_{R2E2} = 1.33 \text{ mA]}$$

Total

 $I_{R2} = I_{R2E1} + I_{R2E2} = 0.87 + 1.33 = 2.20$ [Experimental current is, $I_{R2} = 2.19$ mA]

for +15V & +10V

For, $E_1=15v$

$$R_t = R_1 + R_2 || R_3 = 2.13 + 4.56 || 2.13 = 3.58$$

$$I = V / R_T = 15/3.58 = 4.19 \text{ mA}$$

$$I_{R2E1} = \frac{R_3 \times I}{R_3 + R_2} = \frac{2.13 \times 4.19}{2..13 + 4.56} = 1.33 \text{ mA} \text{ [Experimental current is, } I_{R2E1} = 1.30 \text{ mA]}$$

For, $E_2=10v$

$$R_t = R_3 + R_1 || R_2 = 2.13 + 2.13 || 4.56 = 3.58$$

$$I = V / R_T = 10/3.58 = 2.79 \text{ mA}$$

$$I_{R2E1} = \frac{R_1 \times I}{R_1 + R_2} = \frac{2.13 \times 2.79}{2..13 + 4.56} = 0.87 \text{ mA [Experimental current is, } I_{R2E2} = 0.86 \text{ mA]}$$

Total

 $I_{R2} = I_{R2E1} + I_{R2E2} = 1.33 + 0.87 = 2.20$ [Experimental current is, $I_{R2} = 2.19$ mA]

for -10V & +15V

For, $E_1 = -10v$

$$R_t = R_1 + R_2 || \; R_3 \!\! = 2.13 + 4.56 || 2.13 = 3.58$$

$$I = V / R_T = -10/3.58 = 2.79 \text{ mA}$$

$$I_{R2E1} = \frac{R_3 \times I}{R_3 + R_2} = \frac{2.13 \times 2.79}{2..13 + 4.56} = -0.87 \text{ mA} \text{ [Experimental current is, } I_{R2E2} = -0.86 \text{ mA]}$$

For, $E_1=15v$

$$R_t = R_3 + R_1 || R_2 = 2.13 + 2.13 || 4.56 = 3.58$$

$$I = V / R_T = 15/3.58 = 4.19 \text{ mA}$$

$$I_{R2E2} = \frac{R_1 \times I}{R_1 + R_2} = \frac{2.13 \times 4.19}{2..13 + 4.56} = 1.33 \text{ mA} \text{ [Experimental current is, } I_{R2E2} = 1.30 \text{ mA]}$$

Total

 $I_{R2} = I_{R2E1} + I_{R2E2} = (-0.87) + 1.33 = 0.46$ [Experimental current is, $I_{R2} = 0.41$ mA]

for +10V & -15V

For, $E_1=10v$

$$R_t = R_1 + R_2 || \; R_3 = 2.13 + 4.56 || 2.13 = 3.58$$

$$I = V / R_T = 10/3.58 = 2.79 \text{ mA}$$

 $I_{R2E1} = \frac{R_3 \times I}{R_3 + R_2} = \frac{2.13 \times 2.79}{2..13 + 4.56} = 0.87 \text{ mA} \text{ [Experimental current is, } I_{R2E2} = 0.86 \text{ mA]}$

For, $E_1 = -15v$

$$R_t = R_3 + R_1 || R_2 = 2.13 + 2.13 || 4.56 = 3.58$$

$$I = V / R_T = -15/3.58 = -4.19 \text{ mA}$$

 $I_{R2E2} = \frac{R_1 \times I}{R_1 + R_2} = \frac{2.13 \times (-4.19)}{2..13 + 4.56} = -1.33 \text{ mA} \text{ [Experimental current is, } I_{R2E2} = -1.30 \text{ mA]}$

Total

 $I_{R2} = I_{R2E1} + I_{R2E2} = 0.87 + (-1.33) = 0.46$ [Experimental current is, $I_{R2} = 0.41$ mA]

Discussion & Conclusion:

- 1. Superposition theorem in a DC Circuit State that the current "the total current in any part of a linear circuit equals the algebraic sum of the currents produced by each source.
- 2. In fig-1 the voltage source are 10v & 15v, in fig-2 the voltage source are 15v & 10v, in fig-3 the voltage source are -10v & 15v, in fig-1 the voltage source are 10v & -15v.
- 3. The circuit was implemented carefully where necessary. While measuring current Digital multimeter was placed in series with the branch of the circuit where the current is to be measured, multimeter was in ammeter mode.
- 4. For calculate I_{R2E1} We need to sort E_2 . Then calculate the total resistance $(R_1 + R_2 || R_3)$. Then calculate the total current(I) for E_1 . After that using this formula $(\frac{R_3 \times I}{R_3 + R_2})$ we find I_{R2E1} . For calculate I_{R2E2} We need to sort E_1 . Then calculate the total resistance $(R_3 + R_1 || R_2)$. Then calculate the total current(I) for E_2 . After that using this formula $(\frac{R_1 \times I}{R_1 + R_2})$ we find I_{R2E2} . After add $I_{R2E1} + I_{R2E2}$ We found I_{R2} .
- 5. In this experiment, we saw that, the experimental value and the theoretical value has a small difference, it can be held for so many reasons- that can be the register we have used its value not exact as same as given value of register, wire's internal register.