12 通道自校正电容式触摸感应芯片 规格书

1.概述

XW12C 是 12 按键的电容式触摸感应芯片,可替代机械式轻触按键,实现一体式密封美观的外观。两线串口输出; AO 按键模拟电压输出供客户灵活选择应用。按键有效指示和 2.7KHz 的蜂鸣器输出,简化了外围电路 。 XW12C 芯片有 SOP24 与 SSOP_24(0.635)两种封装规格。

1.1应用

◆ 用于电视机、音响、显示器、玩具等家电和娱乐设备与工业控制设备

1.2 特点

- 极高的灵敏度,可穿透 13mm 的玻璃,感应到手指的触摸
- 超强的抗干扰和 ESD 能力,不加任何器件即可通过人体 8000v 试验
- 外围电路简单,最少只需一个 4.7nf 电容,芯片即可正常工作
- 外围寄生电容自动校正
- 多通道公用灵敏度电容
- 工作电压范围: 2.5~5.5V
- SOP24 环保封装

1.3 封装

1.4 管脚定义

NO	PADNAME	Descrption		NO	PADNAME	Descrption	
1	GND	电源地		24	VDD	正电源	
2	C1	内部平衡电容接口		23	BUZZ	蜂鸣器驱动输出,驱动频率 2.7 KHz	
3	CSEL	灵敏度调节电容 接口		22	SDA	I2C 数据输入输出	
4	PAD0	触摸按键(不用时悬空)		21	SCL	I2C 时钟输入	
5	PAD1			20	AO	模拟电压输出,无按键时 输出 VDD	
6	PAD2				19	ASEL	I2C 地址选择
7	PAD3				18	INT	按键有效输出 (开漏 OD 输出)
8	PAD4			17	NC	内部测试引脚(悬空)	
9	PAD5			16	NC	内部测试引脚(悬空)	
10	PAD6			15	PAD11		
11	PAD7			14	PAD10	触摸按键(不用时悬空)	
12	PAD8			13	PAD9		

1.5 典型应用

- 1. C1 是内部平衡电容,取值范围是 1nf~10nf 。建议使用 4.7nf 。
- 2. CSEL 是灵敏度设置电容,电容值最小 15pf,最大 100pF,电容的选取根据应用的环境,接触感应盘的大小折中考虑。

2.绝对最大值

参数	范围	单位
VDD 电压	-0.3~6.0	V
输入输出电压	-0.3~6.0	V
工作温度范围	-40~85	$^{\circ}$
存储温度范围	-55~150	$^{\circ}$
ESD, HUM	≥8000	V

3. 电气参数特性(无特殊说明, Ta=25℃, VDD=5V)

符号	参数描述	条件	最小值	典型值	最大值	单位
VDD	工作电压		2.5		5.5	٧
I_sleep	睡眠模式工作电流			90		uA
l l . l	工作电流	VDD=3.0V		0.8		mA
I_vdd		VDD=5.0V		1.6		mA
T_init	上电初始化时间			400		mS
CSEL	灵敏度电容		0		100	pF
C_in	芯片感应电容范围		0.2		200	pF
F_br	I2C 最大波特率			400		KBit/S
F_buzz	蜂鸣器驱动频率			2.7		KHz
I_source	蜂鸣器驱动源电流	VDD=5.0V		30		mA
I_sink	蜂鸣器驱动电流沉	VDD=5.0V	30	40		mA
Z_AO	模拟电压输出内阻		20	25	30	$\mathbf{k}\Omega$

4.功能描述

4.1 初始化

芯片上电复位后,只需约 400mS 就可以计算出环境参数和自动校正按键走线长度,按键 检测功能开始工作。

4.2 自动校正功能

芯片内置自动校正功能,芯片能够根据外部环境的变化,自动调整电容的大小,检测到按键时停止自动校正,进入按键判决过程,从检测到按键开始,经过大约 30~60 秒,芯片重新进入自动校正状态,意味着检测按键有效的时间为 30~60 秒,按键时间超过这个时间,按键无效,感应电容计入外部环境电容。

4.3 按键有效指示

芯片 INT 脚位为按键有效指示。 内部结构为 NMOS 开漏输出,任意按键按下时输出为低电平,无按键按下时为高阻。

4.4 模拟电压输出

芯片集成模拟电压输出电路,使用模拟电压输出时,使用单键有效输出。当多按键同时

按下时 AO 口按从 PAD0 到 PAD11 依次降低的优先级,响应最高级别的按键。 按键和电压的对应关系如表所示:

按键	模拟电压值
无按键	VDD
PAD0	2/16*VDD
PAD1	3/16*VDD
PAD2	4/16*VDD
PAD3	5/16*VDD
PAD4	6/16*VDD
PAD5	7/16*VDD
PAD6	8/16*VDD
PAD7	9/16*VDD
PAD8	10/16*VDD
PAD9	11/16*VDD
PAD10	12/16*VDD
PAD11	13/16*VDD

4.5 蜂鸣器驱动电路

芯片內部集成蜂鸣器驱动电路,输出 50ms 固定开关频率的方波,可以直接驱动蜂鸣器,省去外部方波信号产生电路和蜂鸣器驱动电路,降低系统的应用成本,简化系统设计,根据系统需要可以外接驱动电路加大驱动能力,适应更大功率的蜂鸣器。

4.6 I2C接口

XW12C 支持 I^2C 总线传输协议。 I^2C 是一种双向、两线通讯接口,分别是串行数据线 SDA 和串行时钟线 SCL。两根线都必须通过一个上拉电阻接到电源。XW12C 只支持读取操作。

总线上发送数据的器件被称作发送器,接收数据的器件被称作接收器。控制信息交换的器件被称作主器件,受主器件控制的器件则被称作从器件。主器件产生串行时钟 SCL,控制总线的访问状态、产生 START 和 STOP 条件。XW12C 芯片在总线中作为从器件工作。

只有当总线处于空闲状态时才可以启动数据传输。每次数据传输均开始于 START 条件,结束于 STOP 条件。信息以字节(8 位)为单位传输,第 9 位时由接收器产生应答。

4.6.1 起始和停止条件

数据和时钟线都为高则称总线处在空闲状态。当 SCL 为高电平时 SDA 的下降沿(高到低)叫做起始条件(START,简写为 S), SDA 的上升沿(低到高)则叫做停止条件(STOP,简写为 P)。

4.6.2 位传输

每个时钟脉冲传送一位数据。SCL 为高时 SDA 必须保持稳定,因为此时 SDA 的改变被认为是控制信号。位传输参见图

4.6.3 应答

总线上的接收器每接收到一个字节就产生一个应答,主器件必须产生一个对应的额外的时钟脉冲,见

接收器拉低 SDA 线表示应答,并在应答脉冲期间保持稳定的低电平。当主器件作接收器时,必须发出数据传输结束的信号给发送器,即它在最后一个字节之后的应答脉冲期间不会产生应答信号(不拉低 SDA)。这种情况下,发送器必须释放 SDA 线为高以便主器件产生停止条件。

4.6.4 器件寻址

在起始条件使能芯片读写操作后,主器件要求有 8 位的器件地址信息,由 7bit 芯片地址加 1bit READ 命令构成,具体数值见下表。XW12C 的地址由 ASEL 的电压决定,具体值见下表。

ASEL 电压	高电平	低电平	悬空
芯片地址 A[6:0]	44H	42H	40H
读命令 A[6:0]+R/W	89H	85H	81H

4.6.5 完整通信过程

下图是 XW12C 的一次完整读取数据的通信过程。主器件先发送一个开始信号,然后发送 8 位器件地址(7 位芯片地址+1 位读命令);当从器件给 1 位 "0"为应答信号后,主器件开始读取 16bit 的按键数据{按键数据(PAD0~PAD11)的按键数据,+4bit "1111"},随后主器件发送 1 位 "1"为无应答信号并紧接发送 1 个停止信号结束通信过程。当按键按下,相对应PAD 的数据为 0,例如 PAD7 被按下,则图中的 PAD7 读到的数据为低电平,否则为高电平。

4.7 睡眠模式

为了降低芯片的待机功耗, SDA 为高电平并且 90S 内没有检测到按键, 芯片进入睡眠省电模式。按键的采样间隔时间变长, VDD 电流减小, 芯片功耗降低, 睡眠模式下, 一旦检测到按键, 芯片立即退出睡眠模式, 进入正常工作模式。

如果需要取消睡眠模式,让芯片长期处于工作状态,只需在 SDA 脚位,每 20s 的时间间隔以内,给芯片的 SDA 脚位灌入一个低电平信号,即可。

5 外围电路和注意事项

XW12C 的外围电路很简单,只需少量电容电阻元件. 1.5 是 XW12C 的典型应用电路。

5.1 内部平衡电容和灵敏度调节电容

C1 电容和 CSEL 电容建议采用精度 10%的 NPO 材质电容,在 PCB 板 layout 时,请将 C1 电容和 CESL 电容尽量贴近 IC 放置。

5.2 灵敏度电容和按键检测 PAD 大小以及介质材料与厚度选择

常用的介质有 玻璃、亚克力、塑料、陶瓷等,用户可以根据自己的实际使用情况选择合适的材料及厚度,按照材料的不同和 PCB 板的布局来决定按键 PAD 的大小和电容 CSEL 的值。隔离介质越厚,要求使用的 CSEL 电容越小(增大检测的灵敏度),同时要求适当加大按键检测 PAD 的面积。反之,隔离介质越薄,适当增大 CSEL 电容,增加系统的抗干扰能力,一般建议在 0 和 100pF 之间由小到大地选择合适的电容。

一般情况下,按键检测 PAD 面积可以在 3mm*3mm~30mm*30mm 之间,每个感应盘的面积保持相同,以确保灵敏度相同。电容传感器可以是任何形状的导体,建议使用直径大于10mm的圆形金属片或边长 10mm 的正方形金属片。常用的感应盘有 PCB 板上的铜箔、平顶圆柱弹簧、金属片和导电橡胶等。

5.3 VDD 电源电压注意事项

XW12C 测量的是电容的微小变化,要求电源的纹波和噪声要小,要注意避免由电源串入的外界强干扰。尤其是应用于高噪声环境时,必须能有效隔离外部干扰及电压突变,要求电源有较高稳定度,应尽量远离高压大电流的器件区域或者加屏蔽。如果电源文波幅度较大时,建议对电源做特别处理,比如增加滤波或采用 78L05 组成的稳压线路。在某些特定的应用场合,要尽可能的让触摸电路远离某些功能电路,比如收音机,RF等。

6.封装尺寸信息(SOP24L)

Complete	Di	Dimensions In Millimeters			
Symbol	MIN	ТҮР	MAX		
Α	2.36	2.54	2.64		
A1	0.1	0.2	0.3		
A2	2.26	2.3	2.35		
А3	0.97	1.02	1.07		
b	0.39		0.48		
b1	0.38	0.41	0.43		
С	0.25		0.31		
c1	0.24	0.25	0.26		
D	15.2	15.4	15.6		
E	10.1	10.3	10.5		
E1	7.4	7.5	7.6		
е	1.27BSC				
L	0.7		1		
L1	1.40BSC				
h	0.25		0.75		
θ	0		8°		

注: BSC: Basic Spacing between Centers(中心基本距离), IC 引脚之间的宽度。

封装尺寸图(SSOP-24)(0.635)

	Dimensi	ions In	Dimensions In Inches		
Symbol	Millin	meters			
	Min	Max	Min	Max	
A	1.25	1.55	0.049	0.061	
A1	0.05	0. 25	0.002	0.010	
В	0. 194	0.314	0.008	0.012	
С	0.15	0. 25	0.006	0.010	
D	8. 55	8.75	0.337	0. 344	
Е	3.80	4.00	0.015	0. 157	
е	0.635		0. 025		
Н	5. 70	6.30	0. 224	0. 248	
L	0.30	0.90	0.012	0.035	
θ	0°	7°	0°	7°	