Unit 16: Theorems Related With Area

Overview

Theorem 16.1.1

Parallelograms on the same base and between the same parallel lines (or of the same altitude) are equal in area

Given

Two parallelograms ABCD and ABEF having the same base \overline{AB} between the same parallel lines \overline{AB} and \overline{DE}

To prove

Area of parallelogram ABCD=area of parallelogram ABEF

Proof

Prooi			
St	atements		Reasons
Area of (parallelogram	ABCD) =		
Area of (Quad. ABED)	+ Area of (ΔCBE)	(1)	[Area addition axiom]
/	علم	15 1	D
Area of (parallelogram			
= Area of (Quad. ABEI	$) + Area of (\Delta DAF)$	(2)	[Area addition axiom]
In Δ s CBE and DAF			
$m\overline{CB} = m\overline{DA}$			[opposite sides of a Parallelogram]
$m \overline{BE} = m \overline{AF}$			[opposite sides of a Parallelogram]
$m \angle CBE = m \angle DAF$			$\left[\because \overline{BC} \middle \overline{AD} , \overline{BE} \middle \overline{AF} \right]$
III Z CBE - III Z DAI			
$\Delta \text{ CBE } \cong \Delta \text{ DAF}$			[S.A.S Cong.axiom]
Area of (ΔCBE) = area of $(\Delta DAF)(3)$		[Cong. Area axiom]	
Hence area of (Parallelogram ABCD) = area of		From (1),(2) and (3)	
(parallelogram ABEF)		110111 (1),(2) and (3)	

Theorem 16.1.2

Parallelograms on equal bases and having the same (or equal) altitude area equal in area.

Given:

Parallelogram ABCD, EFGH are on equal base \overline{BC} , \overline{FG} having equal altitudes

To prove

Area of (Parallelogram ABCD)= area of (parallelogram EFGH)

Construction

Place the parallelogram ABCD and EFGH So that their equal bases \overline{BC} , \overline{FG} are in the straight line BCFG. Join \overline{BE} and \overline{CH}

Proof

Statements	Reasons
The give 11 ^{mg} ABCD and EFGH are between the same	
parallels	
Hence ADEH is a straight line \parallel to BC	Their altitudes are equal (given)
$\therefore \ m\overline{BC} = m\overline{FG} = m\overline{EH}$	
Now m $\overline{BC} = m\overline{EH}$ and they are	Given
$\therefore \overline{BE}$ and \overline{CH} are both equal and	EFGH is a parallelogram
Hence EBCH is a Parallelogram	
	A quadrilateral with two opposite
	side congruent and parallel is a parallelogram
Now $\ ^{gm}$ ABCD = $\ ^{gm}$ EBCH –(i)	Being on the same base \overline{BC} and between the same parallels
But $\ ^{gm}$ EBCH = $\ ^{gm}$ EFGH – (ii)	Being on the same base \overline{EH} and between the same parallels
Hence area gm (ABCD)= Area gm (EFGH)	From (i) and (ii)

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 2 OF 2]