Discretizing **Continuous Variables**

Seminar Maschinelles Lernen

Darius Gasiorek

07. Dezember 2005

Inhalt

- Einleitung
 - Naive Bayes
 - Naive Bayes und Diskretisierung
- Diskretisierungsmethoden
 - unsupervised
 - supervised
- Evaluation

Einführung

- nominale vs. numerische Attributwerte
 - nominale Attribute haben eine festgelegte Wertemenge (z.B. Bundesland)
 - numerische Attribute haben keine explizit festgelegte Wertemenge (z.B. Größe, Einkommen)
- Naive Bayes klassifiziert in der Regel besser, wenn numerische Attribute diskretisiert werden
- im Folgenden
 - kurze Beschreibung von Naive Bayes
 - Motivation f
 ür Diskretisierung
 - Vorstellung verschiedener Methoden
 - Vergleich der Methoden im Hinblick auf Naive Bayes

Naive Bayes

- Jede Instanz besteht aus
 - Vektor von Attributwerten x <x1, x2, ..., xk>
 - Klasse c
- Klassifizierung erfolgt durch
 - Berechnung der Wahrscheinlichkeit für jede Klasse anhand der relativen Häufigkeiten der Trainingsdaten für jeden Wert der Attribute
 - Vorhersagen der Klasse mit der höchsten Wahrscheinlichkeit

Naive Bayes

$$p(C = c \mid X = x) = \frac{p(C = c)p(X = x \mid C = c)}{p(X = x)}$$

p(X = x) unabhängig von der Klasse

Aufgrund der Unabhägigkeitsannahme gilt

$$p(X = x | C = c) = \prod p(X_i = x_i | C = c)$$

Naive Bayes und Diskretisierung

- •Bei numerischen Attributen ist eine unendliche Anzahl von Werten möglich
 - nur wenige oder gar keine Trainingsinstanzen mit entsprechendem Wert vorhanden
 - $p(X_i = x_i \mid C = c)$ nimmt dann sehr kleine Werte an
 - falls keine Trainingsinstanzen mit entsprechenden Werten vorhanden, sind die Wahrscheinlichkeiten für alle Klassen gleich
 - → Keine Entscheidung durch Naive Bayes möglich
- → Diskretisieren
 - -Zusammenfassen einzelner Werte zu einem Intervall
 - -Behandlung der Intervalle als nominale Werte X_i

Naive Bayes und Diskretisierung

$$p(X_i = x_i \mid C = c) \approx p(a < X_i \le b \mid C = c)$$
$$\approx p(X_i^* = x_i^* \mid C = c)$$

- Durch die Annäherung der Wahrscheinlichkeit entsteht jedoch ein Informationsverlust (Bias) der einzelnen Trainingsinstanzen
- Aber: bessere Naive Bayes Ergebnisse nach Diskretisierung

Diskretisierungsmethoden

Equal Width Discretization (EWD)

EWD ist unsupervised

- Gegeben n Trainingsinstanzen
 - $v_{\rm min}$ kleinster Wert eines Attributs
 - $v_{
 m max}$ größter Wert eines Attributs
- Aufteilung der Werte in k Intervalle
 - Intervallbreite $w = (v_{\text{max}} v_{\text{min}})/k$
 - k ist ein vom User festzulegender Parameter

Equal Frequency Discretization (EFD)

EFD ist ebenfalls unsupervised

• Gegeben *n* Trainingsinstanzen

- Aufteilung in k Intervalle
 - annähernd gleiche Anzahl an Trainingsinstanzen in jedem Intervall
 - also n / k Instanzen
 - k ist vom User festzulegen

EWD und EFD

- unsupervised Methoden
- →relativ hoher Informationsverlust, da keine Berücksichtigung der Klasse
- Keine Berücksichtigung des Trade-Offs zwischen Bias und Varianz
- Nachteil ist die fehlende Robustheit
 - Ausreißer nach oben oder unten ziehen die Intervalle auseinander
- Dennoch
 - oft genutzt
 - relativ gute Ergebnisse mit Naive Bayes

Fuzzy Discretization (FD)

- Idee: ähnliche Werte sollten ähnlichen Einfluss auf die Wahrscheinlichkeiten der Intervalle haben
- Ausgangsbasis ist Diskretisierung in k Intervalle mittels EWD
- Klassenwahrscheinlichkeiten der Intervalle werden nicht nur aus den Instanzen im Intervall, sondern aus allen Trainingsinstanzen berechnet
- Annahme
 - "Einfluss" einer Instanz auf die Wahrscheinlichkeit ist normalverteilt
 - mit Erwartungswert v
 - Standardabweichung σ ("fuzziness-Parameter")

Fuzzy Discretization (FD)

 Einfluss einer Trainingsinstanz j auf Intervall i

$$P(v, \sigma, i) = \int_{a_i}^{b_i} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-v}{\sigma}\right)^2} dx$$

Klassenwahrscheinlichkeit des Intervalls

$$\frac{\sum_{j=1}^{n_c} P(v_j, \boldsymbol{\sigma}, i)}{n}$$

Entropy Minimization Discretization (EMD)

- Entstanden in Anlehnung an Top Down Induction of Decision Trees
- Idee: Bilden von möglichst gleichgroßen Intervallen mit der jeweils geringsten Entropie (dem größten Informationsgewinn)
- Ablauf
 - Zusammenfassen aller Werte zu einem Intervall
 - Rekursive Teilung eines Intervalls
 - Kandidaten für Trennpunkte sind die Mittelwerte zwischen jeweils zwei Attributwerten
 - Wahl des Schnittpunkts mit der kleinsten gewichteten Summe der Entropien der beiden neu entstandenen Intervalle
 - Rekursive Weiterteilung bis Abbruchkriterium erreicht

Iterative Discretization (ID)

- Diskretisierung durch "Ausprobieren"
- Ausgangsbasis
 - k Intervalle
 - z.B. mittels EWD erstellt
- In jeder Iteration
 - Verschmelzen zweier Intervalle oder Aufspalten eines Intervalls
 - Evaluierung des Lerners mittels Leave-One-Out Cross-Validation
- Diskretisierung mit der geringsten Fehlerrate wird gewählt

→sehr ineffizient!

Proportional k-Interval Discretization (PKID)

- Versuch, den Trade-Off zwischen Varianz und Bias der Diskretisierung zu berücksichtigen
- Varianz: Stabilität der Wahrscheinlichkeit eines Intervalls
- Bias: Informationsverlust einer Instanz durch die Diskretisierung
- Allgemein
 - je größer das Intervall, desto größer der Bias und desto kleiner die Varianz
 - je kleiner das Intervall, desto kleiner der Bias und desto größer die Varianz

Proportional k-Interval Discretization (PKID)

Sei

- n die Anzahl aller Trainingsinstanzen
- s die Anzahl der Instanzen in einem Intervall
- t die Anzahl der Intervalle

 \rightarrow PKID berechnet s und t so, dass gilt

$$s * t = n$$

$$s = t \approx \sqrt{n}$$

Weighted PKID (WPKID)

- Erkenntnis bei PKID
 - bei kleinen Datensets sind die Intervalle zu klein, und die Varianz ist daher relativ hoch
 - hier bringt eine Verbesserung der Varianz mehr als eine Verbesserung des Bias
- WPKID setzt ein Minimum für die Intervallgröße

$$s * t = n$$

$$s - m = t$$

$$m = 30$$

Überlegung:

Bei sehr großen Datensets Beschränkung nach oben?

WPKID - Rechenbeispiel

- sei n = 1800
- PKID würde ca. 42 Intervalle mit jeweils ca. 42 Instanzen erstellen
- WPKID berechnet

$$s * (s - 30) = 1800$$

 $s = 60$
 $t = 30$

- → also 30 Intervalle mit jeweils 60 Instanzen
- Die Erhöhung der Intervallgröße von 42 auf 60 Instanzen reduziert die Varianz

Lazy Discretization (LD)

- Diskretisierung wird für jede zu klassifizierende Testinstanz neu durchgeführt
 - keine Berechnung von Wahrscheinlichkeiten vor der Klassifizierung
 - daher "lazy"
- LD bildet nur ein Intervall, um den neuen Attributwert v
 - v bildet dabei den mittleren Wert des Intervalls
 - Größe des Intervalls wird mittels EFD mit k=10 ermittelt
- Problem
 - EFD mit k=10 nicht unbedingt die beste Wahl
 - lange Laufzeit

Non-Disjoint Discretization (NDD)

- Idee: Vorteile von LD und PKID kombinieren
 - Informationsverlust geringer, wenn Wert in der Mitte liegt
 - Trade-Off zwischen Bias und Varianz berücksichtigen
 - Wahrscheinlichkeiten vor der Klassifizierung berechnen

Ablauf

- Bilden von Intervallen nach PKID
- Unterteilen der Intervalle in jeweils drei gleich große Intervalle
- Zusammenfassen von jeweils drei kleinen Intervallen zu einem neuen Intervall

Non-Disjoint Discretization (NDD)

- Berechnen der Wahrscheinlichkeiten für alle sich überlappenden Intervalle
- Für jede Testinstanz wird jenes große Intervall gewählt, in dessen mittlerem kleinen Intervall der Wert *v* liegt
 - Ausnahme bilden Werte im ersten und letzten kleinen Intervall

Weighted Non-Disjoint Discretization (WNDD)

- Weiterentwicklung von NDD
- Basis bilden Intervalle nach WPKID nicht nach PKID
- Signifikant bessere Ergebnisse als die meisten anderen Methoden

Evaluierung

Evaluierung

- 35 Datensets
 - Unterschiedlich viele Trainingsinstanzen
 - Unterschiedliches Verhältnis von numerischen und nominalen Attributen
 - Unterschiedlich viele Klassen
- 3-fold Cross-Validation

Leider kein Test ohne Diskretisierung

					Fehlerrate (%)			
Datensatz	Größe	num.	nom.	Klassen	EWD	EFD	FD	PKID
Pittsburgh	106	3	8	3	12,9	12,1	10,5	13,0
Sonar	208	60	0	2	26,9	25,2	26,8	25,7
Vehicle	846	18	0	4	38,7	40,5	42,4	38,2
Annealing	898	6	32	6	3,5	2,3	3,9	2,2
Forest-Covertype	581012	10	44	7	32,4	32,9	32,2	31,7
Mittlerer Fehler					20,1	19,9	20,9	19,1

					Fehlerrate (%)			
Datensatz	Größe	num.	nom.	Klassen	LD	NDD	WPKID	WNDD
Pittsburgh	106	3	8	3	12,3	13,1	11,9	10,8
Sonar	208	60	0	2	27,3	26,9	23,7	22,8
Vehicle	846	18	0	4	38,7	38,5	38,2	38,8
Annealing	898	6	32	6	1,6	1,8	2,2	2,3
Forest-Covertype	581012	10	44	7		31,4	31,7	31,4
Mittlerer Fehler					18,6	19,1	18,7	18,2

Evaluation - WNDD

	EWD	EFD	FD	EMD	PKID	WPKID	LD	NDD
Win	8	3	9	4	4	8	11	11
Lose	26	31	25	28	25	22	19	18
Tie	1	1	1	3	6	5	4	6
Sign Test	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.10	0.13

					Fehlerrate (%)			
Datensatz	Größe	num.	nom.	Klassen	EWD	EFD	FD	PKID
Pittsburgh	106	3	8	3	12,9	12,1	10,5	13,0
Sonar	208	60	0	2	26,9	25,2	26,8	25,7
Vehicle	846	18	0	4	38,7	40,5	42,4	38,2
Annealing	898	6	32	6	3,5	2,3	3,9	2,2
Forest-Covertype	581012	10	44	7	32,4	32,9	32,2	31,7
Mittlerer Fehler					20,1	19,9	20,9	19,1

					Fehlerrate (%)			
Datensatz	Größe	num.	nom.	Klassen	LD	NDD	WPKID	WNDD
Pittsburgh	106	3	8	3	12,3	13,1	11,9	10,8
Sonar	208	60	0	2	27,3	26,9	23,7	22,8
Vehicle	846	18	0	4	38,7	38,5	38,2	38,8
Annealing	898	6	32	6	1,6	1,8	2,2	2,3
Forest-Covertype	581012	10	44	7		31,4	31,7	31,4
Mittlerer Fehler					18,6	19,1	18,7	18,2

					Fehlerrate (%)			
Datensatz	Größe	num.	nom.	Klassen	EWD	EFD	FD	PKID
Pittsburgh	106	3	8	3	12,9	12,1	10,5	13,0
Sonar	208	60	0	2	26,9	25,2	26,8	25,7
Vehicle	846	18	0	4	38,7	40,5	42,4	38,2
Annealing	898	6	32	6	3,5	2,3	3,9	2,2
Forest-Covertype	581012	10	44	7	32,4	32,9	32,2	31,7
Mittlerer Fehler					20,1	19,9	20,9	19,1

					Fehlerrate (%)			
Datensatz	Größe	num.	nom.	Klassen	LD	NDD	WPKID	WNDD
Pittsburgh	106	3	8	3	12,3	13,1	11,9	10,8
Sonar	208	60	0	2	27,3	26,9	23,7	22,8
Vehicle	846	18	0	4	38,7	38,5	38,2	38,8
Annealing	898	6	32	6	1,6	1,8	2,2	2,3
Forest-Covertype	581012	10	44	7		31,4	31,7	31,4
Mittlerer Fehler					18,6	19,1	18,7	18,2

					Fehlerrate (%)			
Datensatz	Größe	num.	nom.	Klassen	LD	NDD	WPKID	WNDD
Pittsburgh	106	3	8	3	12,3	13,1	11,9	10,8
Sonar	208	60	0	2	27,3	26,9	23,7	22,8
Vehicle	846	18	0	4	38,7	38,5	38,2	38,8
Annealing	898	6	32	6	1,6	1,8	2,2	2,3
Forest-Covertype	581012	10	44	7		31,4	31,7	31,4
Mittlerer Fehler					18,6	19,1	18,7	18,2

					Fehlerrate (%)			
Datensatz	Größe	num.	nom.	Klassen	LD	NDD	WPKID	WNDD
Pittsburgh	106	3	8	3	12,3	13,1	11,9	10,8
Sonar	208	60	0	2	27,3	26,9	23,7	22,8
Vehicle	846	18	0	4	38,7	38,5	38,2	38,8
Annealing	898	6	32	6	1,6	1,8	2,2	2,3
Forest-Covertype	581012	10	44	7		31,4	31,7	31,4
Mittlerer Fehler					18,6	19,1	18,7	18,2

Fazit

- Diskretisierung ist eine gute Möglichkeit, um mit numerischen Attributen umzugehen
- Alternativen zur Diskretisierung siehe n\u00e4chster Vortrag

- Kombination der einzelnen Ideen in neuen Verfahren möglich und sinnvoll
 - WNDD als Kombination sehr erfolgreich
 - Weitere Kombinations- / Verbesserungsmöglichkeiten (LD mit WPKID, FD mit WPKID etc.)

Vielen Dank für die Aufmerksamkeit!!!