P1 Chapter 8: Binomial Expansion

Coefficient Formula

In the expansion of $(a+b)^n$ the general term is given by $\binom{n}{r}a^{n-r}b^r$

Expression	Power of x in term wanted.	Term in expansion
$(a+x)^{10}$	3	?
$(2x-1)^{75}$	50	?
$(3-x)^{12}$	7	?
$(3x+4)^{16}$	3	?

In the expansion of $(a+b)^n$ the general term is given by $\binom{n}{r}a^{n-r}b^r$

Expression	Power of x in term wanted.	Term in expansion
$(a+x)^{10}$	3	$\binom{10}{3}a^7x^3$ Note: The two powers add up to 10.
$(2x-1)^{75}$	50	$\binom{75}{50}(-1)^{25}(2x)^{50}$
$(3-x)^{12}$	7	$\binom{12}{7}(3)^5(-x)^7$
$(3x+4)^{16}$	3	$\binom{16}{3}(4)^{13}(3x)^3$

The coefficient of x^4 in the expansion of $(1 + qx)^{10}$ is 3360. Find the possible value(s) of the constant q.

Term is:

?
Therefore:

?

The coefficient of x^4 in the expansion of $(1 + qx)^{10}$ is 3360. Find the possible value(s) of the constant q.

Term is:

$$\binom{10}{4} (1^6) (qx)^4 = 210q^4x^4$$

Therefore:

$$210q^4 = 3360$$
 $q^4 = 16$
 $q = \pm 2$

Test Your Understanding

In the expansion of $(1 + ax)^{10}$, where a is a non-zero constant the coefficient of x^3 is double the coefficient of x^2 . Find the value of a.

Ç

Test Your Understanding

In the expansion of $(1 + ax)^{10}$, where a is a non-zero constant the coefficient of x^3 is double the coefficient of x^2 . Find the value of a.

x² term:
$$\binom{10}{2} (1^8)(ax)^2 = 45a^2x^2$$
x³ term:
$$\binom{10}{3} (1^7)(ax)^3 = 120a^3x^3$$

$$\therefore 120a^3 = 2(45a^2)$$

$$120a^3 = 90a^2$$

$$4a^3 - 3a^2 = 0$$

$$a^2(4a - 3) = 0$$

$$a = 0 \text{ or } a = \frac{3}{4}$$
But a is non-zero, so $a = \frac{3}{4}$

Exercise 8.4

Pearson Pure Mathematics Year 1/AS Pages 64

Extension

- [MAT 2014 1G] Let n be a positive integer. The coefficient of x^3y^5 in the expansion of $(1 + xy + y^2)^n$ equals:
 - A) n

[STEP I 2013 Q6] By considering the coefficient of x^r in the series for $(1+x)(1+x)^n$, or otherwise, obtain the following relation between binomial coefficients:

$$\binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r}$$

Exercise 8.4

Pearson Pure Mathematics Year 1/AS Pages 64

Extension

- [MAT 2014 1G] Let n be a positive integer. The coefficient of x^3y^5 in the expansion of $(1 + xy + y^2)^n$ equals:
 - A) n
 - B) 2^{n}
 - c) $\binom{n}{3}\binom{n}{5}$
 - D) $4\binom{n}{4}$
 - E) $\binom{n}{8}$

Try to imagine n brackets written out. To get x^3y^5 , we must have chosen xy from 3 brackets, y^2 from one and 1 from the remaining brackets. That's $\binom{n}{3}$ choices for the xy term, and n-3 choices for the y^2 term.

Using the definition of the choose function, you can show that $4\binom{n}{4}=(n-3)\binom{n}{3}$

[STEP I 2013 Q6] By considering the coefficient of x^r in the series for $(1+x)(1+x)^n$, or otherwise, obtain the following relation between binomial coefficients:

$$\binom{n}{r}+\binom{n}{r-1}=\binom{n+1}{r}$$
 Noting that $(1+x)(1+x)^n=(1+x)^{n+1}$, the x^r term is $\binom{n+1}{r}x^r$.

But the x^r term could be obtained either by 1 in the first bracket multiplied by x^r term in the second, giving $1 \times \binom{n}{r} x^r$, or the x in the first bracket multiplied by the x^{r-1} term in the second, $x \times \binom{n}{r-1} x^{r-1} = \binom{n}{r-1} x^r$. Thus comparing coefficients:

$$\binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r}$$

Homework Exercise

Find the coefficient of x^3 in the binomial expansion of:

a
$$(3+x)^5$$

b
$$(1 + 2x)^5$$

c
$$(1-x)^6$$

d
$$(3x + 2)^5$$

$$e (1+x)^{10}$$

$$f (3-2x)^6$$

$$g(1+x)^{20}$$

$$h (4-3x)^7$$

i
$$(1-\frac{1}{2}x)^6$$

j
$$(3 + \frac{1}{2}x)^7$$

$$k \left(2 - \frac{1}{2}x\right)^8$$

g
$$(1+x)^{20}$$
 h $(4-3x)^7$ **k** $(2-\frac{1}{2}x)^8$ **l** $(5+\frac{1}{4}x)^5$

(4 marks)

The coefficient of x^2 in the expansion of $(2 + ax)^6$ is 60. Find two possible values of the constant a.

Problem-solving

a = 2, b = ax, n = 6. Use brackets when you substitute ax.

- The coefficient of x^3 in the expansion of $(3 + bx)^5$ is -720. Find the value of the constant b.
- The coefficient of x^3 in the expansion of $(2 + x)(3 ax)^4$ is 30. Find two possible values of the constant a.
- When $(1-2x)^p$ is expanded, the coefficient of x^2 is 40. Given that p>0, use this information to find:
 - a the value of the constant p

(6 marks)

b the coefficient of x

(1 mark)

c the coefficient of x^3

(2 marks)

Problem-solving

You will need to use the definition of $\binom{n}{r}$ to find an expression for $\binom{p}{2}$.

- **6** a Find the first three terms, in ascending powers of x, of the binomial expansion of $(5 + px)^{30}$, where p is a non-zero constant. (2 marks)
 - **b** Given that in this expansion the coefficient of x^2 is 29 times the coefficient of x work out the value of p.

Homework Exercise

- 7 **a** Find the first four terms, in ascending powers of x, of the binomial expansion of $(1 + qx)^{10}$, where q is a non-zero constant.
 - **b** Given that in the expansion of $(1 + qx)^{10}$ the coefficient of x^3 is 108 times the coefficient of x, work out the value of q. (4 marks)

(2 marks)

- 8 a Find the first three terms, in ascending powers of x of the binomial expansion of $(1 + px)^{11}$, where p is a constant. (2 marks)
 - **b** The first 3 terms in the same expansion are 1, 77x and qx^2 , where q is a constant. Find the value of p and the value of q. (4 marks)
- 9 a Write down the first three terms, in ascending powers of x, of the binomial expansion of $(1 + px)^{15}$, where p is a non-zero constant. (2 marks)
 - **b** Given that, in the expansion of $(1 + px)^{15}$, the coefficient of x is (-q) and the coefficient of x^2 is 5q, find the value of p and the value of q. (4 marks)
- 10 In the binomial expansion of $(1 + x)^{30}$, the coefficients of x^9 and x^{10} are p and q respectively. Find the value of $\frac{q}{p}$. (4 marks)

Challenge

Find the coefficient of x^4 in the binomial expansion of: **a** $(3-2x^2)^9$ **b** $\left(\frac{5}{x}+x^2\right)^8$

Homework Exercise

```
      1
      a
      90
      b
      80
      c
      -20

      d
      1080
      e
      120
      f
      -4320

      g
      1140
      h
      -241 920
      i
      -2.5

      j
      354.375
      k
      -224
      l
      3.90625

2 a = \pm \frac{1}{2}
3 b = -2
        1, \frac{5 \pm \sqrt{105}}{8}
5 a p = 5 b -10 c -80
6 a 5^{30} + 5^{29} \times 30px + 5^{28} \times 435p^2x^2
       b p = 10
7 a 1 + 10qx + 45q^2x^2 + 120q^3x^3
       b q = \pm 3
8 a 1 + 11px + 55p^2x^2
       b p = 7, q = 2695
9 a 1 + 15px + 105p^2x^2
       b p = -\frac{5}{7}, q = 10\frac{5}{7}
10 \frac{q}{p} = 2.1
```

Challenge

- **a** 314 928 **b** 43 750