Úplná Gaussova eliminace

Štěpán Tichý

20. října 2020

1 Analogie pro sloupce

Definice 1.1. V případě,že neuvažujeme matice jako soustavy LAR, můžeme zadefinovat obdobu ekvivalentních řádkových úprav a to pro sloupce. Ekvivalentní sloupcové úpravy jsou pak téže tři:

- 1. záměna dvou sloupců,
- 2. přičtení násobku jiného sloupce k vybranému sloupci,
- 3. násobení sloupce číslem $\alpha \neq 0$.

Lemma 1.2. Nechť $\mathbb{A} \in T^{n,m}$. Jestliže provedeme ekvivalentní sloupcovou úpravu, je výsledná matice rovna matici \mathbb{AM} , kde \mathbb{M} je čtvercová matice řádu \mathbf{m} , která vznikla z jednotkové matice \mathbb{I} stejnou sloupcovou úpravou.

Důkaz. Je třeba ověřit, že tvrzení je pravdivé pro všechny ekvivalentní sloupcové úpravy:

1. Záměna i-tého a j-tého sloupce.

$$\begin{pmatrix} a_{11} & \dots & a_{1i} & \dots & a_{1j} & \dots & a_{1m} \\ a_{21} & \dots & a_{2i} & \dots & a_{2j} & \dots & a_{2m} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{ni} & \dots & a_{nj} & \dots & a_{nm} \end{pmatrix} \cdot \begin{pmatrix} 1 & \dots & i & \dots & j & \dots & m \\ 1 & \dots & | & \dots & | & \dots & | & \dots & | \\ - & - & 0 & \dots & 1 & - & - & | & \vdots \\ - & - & 0 & \dots & 1 & - & - & | & \vdots \\ - & - & 1 & \dots & 0 & - & - & | & \vdots \\ - & - & 1 & \dots & 0 & - & - & | & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{ni} & \dots & a_{nm} \end{pmatrix}$$

2. Vynásobení sloupce nenulovým číslem α z T.

3. Přičtení α -násobku j-tého sloupce k i-tému.

$$\begin{pmatrix} a_{11} & \dots & a_{1i} & \dots & a_{1j} & \dots & a_{1m} \\ a_{21} & \dots & a_{2i} & \dots & a_{2j} & \dots & a_{2m} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{ni} & \dots & a_{nj} & \dots & a_{nm} \end{pmatrix} \cdot \begin{pmatrix} 1 & \dots & j & \dots & m \\ 1 & \dots & j & \dots & m \\ & \ddots & | & & & \\ - & -1 & - & - & - & - \\ & & | & \ddots & | & & \\ - & - & \alpha & -1 & - & - & \\ & & | & \ddots & | & & \\ - & - & \alpha & -1 & - & - & \\ & & | & \ddots & | & \\ & & & | & \ddots & \\ & & & | & \ddots & \\ & & & | & \dots & a_{ni} + \alpha a_{nj} & \dots & a_{nj} & \dots & a_{nm} \end{pmatrix}$$

Vlídný čtenář nahlédne, že podle pravidel maticového násobení všechny tři rovnosti platí.

Věta 1.3. (Ekvivalentní sloupcové úpravy a násobení maticí). Nechť $\mathbb{A} \in T^{n,m}$. Provedeme-li s \mathbb{A} konečný počet ekvivalentních sloupcových úprav, je výsledná matice rovna matici \mathbb{AM} , kde je \mathbb{M} čtvercová matice řádu m, která vznikla z jednotkové matice \mathbb{I} stejnými ekvivalentními sloupcovými úpravami provedenými ve stejném pořadí.

 $D\mathring{u}kaz$. Jestliže v \mathbb{A} provedeme k ekvivalentních sloupcových úprav (ESÚ), potom je podle lemmatu 1.2 výsledná matice rovna:

$$\mathbb{AM}_1\mathbb{M}_2\ldots\mathbb{M}_k$$

kde \mathbb{M}_i je matice vyniklá z jednotkové i-tou ESÚ. Označme $\mathbb{M} = \mathbb{M}_1 \mathbb{M}_2 \dots \mathbb{M}_k$. Pak $\mathbb{M} = \mathbb{M}_1 \mathbb{M}_2 \dots \mathbb{M}_k \mathbb{I}$ a podle lemmatu 1.2 vidíme, že \mathbb{M} vznikla z \mathbb{I} stejnými k ESÚ provedenými ve stejném pořadí.

Věta 1.4. (Úplná Gaussova eliminace). Nechť $\mathbb{M} \in T^{n,n}$, \mathbb{A} je regulární matice a $\mathbb{B} \in T^{m,n}$. Pak \mathbb{A} lze převést ekvivalentními sloupcovými úpravami na jednotkovou matici. Pokud převedeme rozšířenou matici $\left(\frac{\mathbb{A}}{\mathbb{B}}\right)$ ekvivalentními řádkovými úpravami do tvaru $\left(\frac{\mathbb{I}}{\mathbb{X}}\right)$, potom $\mathbb{X} = \mathbb{B}\mathbb{A}^{-1}$.

Symbolicky zapsáno:

$$\left(\frac{\mathbb{A}}{\mathbb{B}}\right) \sim \left(\frac{\mathbb{I}}{\mathbb{B}\mathbb{A}^{-1}}\right).$$

 $D\mathring{u}kaz$. Po převedení A pomocí ESÚ do horního stupňovitého tvaru má matice na diagonále díky regularitě pouze nenulová čísla. Když poté každý sloupec vydělíme odpovídajícím číslem, dostaneme na diagonále jedničky. A nad ní již jednoduše vyrobíme nuly - nejprve v druhém sloupci odečtením odpovídajícího násobku prvního sloupce, poté ve třetím sloupci odečtením vhodného násobku prvního a druhého řádku atd.

K důkazu druhé části věty si stačí uvědomit, že \mathbb{I} vznikla ESÚ z \mathbb{A} a že \mathbb{X} vznikla z \mathbb{B} stejnými úpravami provedenými ve stejném pořadí. Z věty 1.3 plyne existence matice \mathbb{M} takové, že $\mathbb{I} = \mathbb{A}\mathbb{M}$ a $\mathbb{X} = \mathbb{B}\mathbb{M}$. Z první rovnosti dostáváme $\mathbb{M} = \mathbb{A}^{-1}$ a z druhé rovnosti pak $\mathbb{X} = \mathbb{B}\mathbb{A}^{-1}$ což jsme chtěli dokázat.

Slovo "úplná" naznačuje, že na rozdíl od Gaussovy eliminace, kdy jsme matici pomocí ESÚ převedli do horního stupňovitého tvaru a zastavili se, v úplné Gaussově eliminaci z horního stupňovitého tvaru pokračujeme a vyrábíme nuly nad diagonálou, dokud nedostaneme jednotkovou matici.

Úplnou Gaussovu eliminaci můžeme používat k řešení následujících úloh"

- 1. Jsou dány matice $\mathbb A$ regulární a $\mathbb B$ vhodného rozměru. Najděte $\mathbb B \mathbb A^{-1}$.
- 2. Je dána regulární matice \mathbb{A} . Určete \mathbb{A}^{-1} . (Klademe \mathbb{B} rovno \mathbb{I} .)
- 3. Je dána regulární matice $\mathbb A$ a vektor $\vec b$ vhodného rozměru. Najděte $\mathbb A^{\text{-}1}\vec b,$ tj. řešte rovnici $\mathbb A\vec x=\vec b.$

Klademe \mathbb{B} rovno \vec{b} a A transponujeme a aplikujeme úplnou Gaussovu eliminaci:

$$\left(\frac{\mathbb{A}^{T}}{\vec{b}}\right) \sim \left(\frac{\mathbb{I}}{\vec{b}\left(A^{\text{-}1}\right)^{T}}\right) \sim \left(\frac{\mathbb{I}}{\left(\left(\vec{b}\left(A^{\text{-}1}\right)^{T}\right)^{T}\right)^{T}}\right) \sim \left(\frac{\mathbb{I}}{\left(A^{\text{-}1}\left(\vec{b}\right)^{T}\right)^{T}}\right) \sim \left(\frac{\mathbb{I}}{\left(A^{\text{-}1}\vec{b}\right)^{T}}\right).$$

Kde využíváme pravidla transponování součinu a faktu, že matice dvakrát transponovaná je matice původní. V posledním kroku využíváme, vektor transponovaný je ten stejný, je na nás jak ho zapíšeme dle toho z jaké strany ho používáme k násobení. Výsledkem toho postupu je matice transponovaná k matici k nám hledané a tak stačí ji jenom ještě jednou transponovat.

4. Jsou dány matice A regulární a X vhodného rozměru. Spočtěte A⁻¹X. Zde aplikujeme úplnou Gaussovu eliminaci na transponované matice:

$$\left(\frac{\mathbb{A}^{T}}{\mathbb{X}^{T}}\right) \sim \left(\frac{I}{\mathbb{X}^{T}\left(\mathbb{A}^{T}\right)^{-1}}\right) \sim \left(\frac{I}{\left(\mathbb{A}^{-1}\mathbb{X}\right)^{T}}\right).$$

Tudíž transponováním výsledné dolní matice získáme $\mathbb{A}^{-1}\mathbb{X}$.

Příklad 1.5. Jsou dány matice

$$\mathbb{A} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}, \mathbb{B} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix}, \mathbb{X} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}$$

• BA⁻¹:

$$\begin{pmatrix} \underline{\mathbb{A}} \\ \underline{\mathbb{B}} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \\ \hline 2 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ \hline 0 & -1 & 1 \\ \hline 1 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline -1 & -1 & 1 \\ \hline 3 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1 \\ \hline \hline 3 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \text{ tedy } \quad \mathbb{B}\mathbb{A}^{-1} = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

 \bullet $\mathbb{A}^{-1}\mathbb{X}$

$$\begin{pmatrix}
\frac{\mathbb{A}^{T}}{\mathbb{X}^{T}}
\end{pmatrix} = \begin{pmatrix}
0 & 1 & -1 \\
0 & 0 & 1 \\
\frac{1}{2} & -1 & 0 \\
\hline
2 & 0 & -1 \\
1 & 1 & 1
\end{pmatrix}
\sim
\begin{pmatrix}
1 & -1 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1 \\
\hline
0 & -1 & 2 \\
1 & 1 & 1
\end{pmatrix}
\sim
\begin{pmatrix}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\hline
2 & 1 & 2 \\
2 & 3 & 1
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\hline
2 & 1 & 2 \\
2 & 3 & 1
\end{pmatrix}$$

$$tudíž \quad \mathbb{A}^{-1}\mathbb{X} = \begin{pmatrix}
2 & 2 \\
1 & 3 \\
2 & 1
\end{pmatrix}$$

 \bullet \mathbb{A}^{-1}

$$\left(\frac{\mathbb{A}}{\mathbb{I}}\right) = \begin{pmatrix} 0 & 0 & 1\\ 1 & 0 & -1\\ -1 & 1 & 0\\ \hline 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0\\ -1 & 1 & 0\\ \hline 0 & -1 & 1\\ \hline 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ -1 & 1 & 1\\ \hline 1 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ \hline 0 & 0 & 1\\ \hline 1 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}, \text{ proto } \mathbb{A}^{-1} = \begin{pmatrix} 1 & 1 & 0\\ 1 & 1 & 1\\ 1 & 0 & 0 \end{pmatrix}$$