Sprawozdanie – Laboratoria 2.

Jakub Kogut

26 października 2025

1 Zadanie 1.

Zadanie 1. przedstawia problem transportowy, gdzie celem jest minimalizacja kosztów przewozu towarów producentów (supplyers) do odbiorców (demand).

1.1 Opis modelu

Mamy dane:

- Zbiór dostawców paliwa (firmy paliwowe supply) $S = \{1, 2, ..., m\}$, gdzie m to liczba dostawców.
- Zbiór odbiorców paliwa (lotniska demand) $D = \{1, 2, ..., n\}$, gdzie n to liczba odbiorców.
- $s_i \geq 0$ ilość paliwa dostępna u dostawcy $i \in S$.
- $d_j \ge 0$ ilość paliwa wymagana przez odbiorcę $j \in D$.
- $c_{ij} \ge 0$ koszt transportu jednostki paliwa od dostawcy $i \in S$ do odbiorcy $j \in D$.

1.1.1 Definicje zmiennych decyzyjnych

Zmiennymi decyzyjnymi są:

• x_{ij} – ilość paliwa transportowana od dostawcy $i \in S$ do odbiorcy $j \in D$. Problem można zwizualizować grafem:

Dostawcy
$$I = \{1, ..., 3\}$$
 Odbiorcy $J = \{1, ..., 4\}$

1.1.2 Funkcja celu

Celem jest minimalizacja całkowitych kosztów transportu paliwa, co można zapisać jako:

$$\min \sum_{i \in S} \sum_{j \in D} c_{ij} x_{ij}$$

Lista 2. 2 ZADANIE 2.

1.1.3 Ograniczenia

Ograniczenia, które musi spełniać model to:

• podaż dla każdego dostawcy $i \in S$ nie może przekroczyć jego możliwości produkcyjnych:

$$\sum_{i \in D} x_{ij} \le s_i$$

• popyt dla każdego odbiorcy $j \in D$ musi być w pełni zaspokojony:

$$\sum_{i \in S} x_{ij} = d_j$$

• zmienne decyzyjne nie mogą być ujemne:

$$x_{ij} \ge 0, \quad \forall i \in S, j \in D$$

 aby egzemplarz problemu był możliwy do rozwiązania, całkowita podaż musi być mniejsza bądź równa całkowitemu popytowi:

$$\sum_{i \in S} s_i \ge \sum_{j \in D} d_j$$

1.2 Opis rozwiązywanych egzemplarzy

Kod rozwiązujący egzemplarze znajduje się w pliku kody/transport.jl. W pliku należy podać dane:

- wektor podaży s,
- wektor popytu d.
- macierz kosztów transportu C,

Dla danych podanych w zadaniu mamy zadane 4 lotniska (odbiorców) i 3 firmy paliwowe (dostawców). Ilości paliwa są podane w galonach, a koszty transportu w dolarach za galon:

- s = [275000, 550000, 660000],
- d = [110000, 220000, 330000, 440000],

$$\bullet \ C = \begin{bmatrix} 10 & 10 & 9 & 11 \\ 7 & 11 & 12 & 13 \\ 8 & 14 & 4 & 9 \end{bmatrix}$$

otrzymujemy następujące rozwiązanie:

$$X = \begin{bmatrix} 0 & 165000 & 0 & 110000 \\ 110000 & 55000 & 0 & 0 \\ 0 & 0 & 330000 & 330000 \end{bmatrix}$$

gdzie $X = [x_{ij}]$ to macierz ilości paliwa transportowanego od dostawców do odbiorców.

1.3 Wnioski

- Całkowity, minimalny koszt transportu wynosi 8 525 000.
- Tak, każda firma paliwowa wysyła paliwo do więcej niż jednego lotniska:

$$\sum_{j} x_{1j} > 0, \quad \sum_{j} x_{2j} > 0, \quad \sum_{j} x_{3j} > 0$$

• Nie, nie każda firma paliwowa wysyła całkowicie swoją potencjalną produkcję paliwa:

$$\sum_{j} x_{1j} = 275000 = s_1, \quad \sum_{j} x_{2j} = 165000 < s_2, \quad \sum_{j} x_{3j} = 660000 = s_3$$

2 Zadanie 2.