TABLE IV: Limits on the effective neutrino mass $\langle m_{\nu} \rangle$ (in eV) corresponding to different theoretical model calculations of nuclear matrix elements obtained for $T_{1/2}(0\nu\beta\beta) > 1.1 \cdot 10^{24}$ y in case of 100 Mo and $T_{1/2}(0\nu\beta\beta) > 3.6 \cdot 10^{23}$ y in case of 82 Se.

Nuclear matrix elements	s	^{100}Mo	^{82}Se
Shell model	[23]	-	< 2.43
QRPA	[24],[25]	< 0.58 - 0.75	< 1.12 - 1.38
QRPA	[26]	< 0.45 - 0.93	< 0.89 - 1.61
IBM-2	[27]	< 0.49 - 0.55	< 1.03 - 1.19
PHFB	[28]	< 0.70	

C. Search for double beta decay with Majoron emission

The $0\nu\chi^0\beta\beta$ decay requires the existence of a Majoron. It is a massless Goldstone boson that arises due to a global breakdown of (B-L) symmetry, where B and L are, respectively, the baryon and the lepton number. The Majoron, if it exists, could play a significant role in the history of the early Universe and in the evolution of stars. A 2β -decay model that involves the emission of two Majorons was proposed within supersymmetric theories and several other models of the Majoron were proposed in the 1990s (see review [29] and references therein). The possible two electrons energy spectra for different $0\nu\chi^0\beta\beta$ decay modes of 100 Mo are shown in Fig. 4. Here n is the spectral index, which defines the shape of the spectrum. For example, for an ordinary Majoron n = 1, for 2ν decay n = 5, in the case of a bulk Majoron n = 2 and for the process with two Majoron emission n = 3 or 7.

No evidence for $0\nu\chi^0\beta\beta$ decay was found for all seven isotopes. The limits for 100 Mo, 82 Se, 150 Nd and 96 Zr are presented in Table 5. In particular, strong limits on "ordinary" Majoron (spectral index 1) decay of 100 Mo ($T_{1/2} > 2.7 \cdot 10^{22}$ y) and 82 Se ($T_{1/2} > 1.5 \cdot 10^{22}$ y) have been obtained. Corresponding bounds on the Majoron-neutrino coupling constant are $< g_{ee} > < (0.35 - 0.85) \cdot 10^{-4}$ and $< (0.6 - 1.9) \cdot 10^{-4}$, respectively (using nuclear matrix elements from [23–28]).