Estructura de Computadores

Tema 4 Aritmética en coma flotante

Índice

Introducción

Medida del rendimiento

La norma IEEE y su implementación en el MIPS

- Formato, valores especiales, redondeo
- Visión del programador: banco de registros y movimiento de datos
- Juego de instrucciones de coma flotante

Operadores de coma flotante

- Operador de cambio de signo
- Operadores de conversión de tipo
- Operador de multiplicación

Bibliografía

- D.L. Patterson, J. L. Hennessy: Estructura y diseño de computadores
 - Ed. Reverté, 2000: volumen 1, capítulo 4
 - Ed. Reverté, 2011, traducción de la 4ª edición en inglés: cap. 3
- W. Stallings: Organización y Arquitectura de Computadores (7a ed.) Prentice Hall, capítulo 9
- David Goldberg: Computer Arithmetic
 - Apéndice H de J. L. Hennessy, D. L. Patterson: Computer Architecture, a Quantitative Approach, 3a edició
 - Disponible en castellano en la 1^a edición en McGraw-Hill
- David Goldberg: What every computer scientist should know about floating-point arithmetic
 - PDF (accesible en muchos sitios de la web)

La aritmética de coma flotante

- Sirve para cálculos definidos sobre reales (float y double en alto nivel)Puede que no esté directamente soportada por la ALU.
 - no es esencial para el funcionamento de la CPU
 - puede ser emulada mediante instrucciones de enteros
- Evolución
 - Hasta 1985 (aprox) los operadores de CF iban dentro de un chip opcional que se colocaba al lado de la CPU
 - Desde 1985 en adelante, las CPU de propósito general incluyen operadores de CF dentro de su UAL
 - Desde 1990, los adaptadores de vídeo incluyen una GPU (Graphics Processing Unit) con un número creciente de operadores de CF

La medida de prestaciones en coma flotante

- El número de operaciones de coma flotante por segundo (FLOPS, prefijos M=10⁶, G=10⁹, T=10¹²) es una medida de prestaciones utilizada en dos contextos:
- En el diseño de operadores de CF es el número máximo de operaciones por segundo. Viene determinada por el tiempo de operación de cada circuito.
- En las comparativas entre computadores o entre aceleradores gráficos: es el número de operaciones de CF que ejecuta el dispositivo por segundo.
 - Depende del número y características de los operadores incluídos y del uso que se hace de ellos.
 - **Productividad punta** de un computador o de un acelerador gráfico: suma de las productividades de los operadores de CF incluídos. Suele ser imposible de alcanzar en el uso corriente.

Productividades punta

Procesador Intel Core2 Duo @2GHz 16 GFLOPS

Procesador Intel Core i7 965 XE 70 GFLOPS

GPU ATI Radeon HD4890 2.4 TFLOPS

K Computer (Japón, junio 2011) 10 PFLOPS

La norma IEEE 754 y su implementación en el MIPS

Representación del conjunto R (reales positivos y negativos)

- El conjunto R es un conjunto denso: entre dos números reales cualesquiera hay infinitos números reales
- La representación del computador es limitada i no siempre es exacta
 - Con 32 bits se pueden obtener 2³² palabras diferentes. Por tanto, como máximo se pueden representar 2³² valores del conjunto R
- Hay números reales que tienen representación exacta otros que no, como los números con parte decimal periódica
- ¿Cómo codificar un número real en una palabra de bits?
 - Aplicando un formato arbitrario, como el IEEE 754, estructurado en tres campos de bits para el signo, el exponente y la parte significativa (mantisa)
- El formato impone más restricciones a la representación: habrá algunas palabras de bits con una significación matemática especial, como el valor infinito o el cero

- Representación del conjunto R (reales positivos y negativos)
 - En el computador interesa aumentar
 - La cantidad de números representados (densidad)
 - El rango de la representación
 - Estos dos aspectos dependen de los campos de la parte significativa (mantisa) y del exponente del formato

Patrón de la representación de los números reales

- No hay valores representados muy cerca del cero
- Para un mismo valor de exponente los números representados están separados por la misma distancia
- Cuanto más grande es el exponente más distancia hay entre dos números representados consecutivos (la densidad de representación disminuye)

Cada grupo de valores tiene el mismo exponente y diferentes mantisas

Los valores cercanos al cero

- El formato IEEE 754 reserva un subconjunto de palabras de bits para representar números reales cerca del cero y que se interpretan de forma diferente del resto de valores (valores desnormalizados)
- No todas las unidades de coma flotante soportan este subconjunto de valores

Alcance de la norma

- La norma IEEE 754 (y su ampliación a la aritmética de punto fijo, IEEE 854) especifican:
 - <u>codificación</u>: cómo representar los números en diversos formatos (precisiones simple, doble y extendida, SP DP EP) y el tratamiento de casos particulares: NaN (Not a Number), ±∞ (infinity), 0 (zero)
 - unos modos de funcionamiento (p. ej, el método de <u>redondeo</u> aplicable durante los cálculos)
 - un conjunto de <u>operaciones</u> que se pueden implementar en el hardware o en forma de bibliotecas
 - el soporte que ha de dar el sistema de <u>excepciones</u> de los procesadores (para que se puedan diseñar buenas bibliotecas de cálculo numérico)

Representación

Símbolos: S es el signo, M la magnitud de la mantisa, E el exponente

Ε

Simple precisión (SP) 1

1 8 23

M (-1)^S • 1.M • 2^{E-127}

Doble precisión (DP)

1 11 52

(-1)^S • 1.M • 2^{E-1023}

Valores subnormales

• (SP y DP)

S 000..00 M ≠ 0

M

 $(-1)^{s} \cdot 0.M \cdot 2^{-126}$

 $(-1)^{S} \cdot 0.M \cdot 2^{-1022}$

Valores especiales (SP y DP)

±0 S 000...00 000...00

±∞ S 111...11 000...00

NaN x 111...11 M ≠ 0

Los valores especiales

- Son manipulados por las operaciones junto con los reales corrientes
- Cero e infinito:
 - se entienden como límites matemáticos; por eso

```
+\infty + +\infty = +\infty; -\infty + -\infty = -\infty; etc.

+\infty \times positivo = +\infty; +\infty \times negativo = -\infty; etc.

positivo I + 0 = +\infty; positivo I - 0 = -\infty; etc.
```

- atención a las comparaciones: +0 y -0 son iguales
- Not a Number.
 - propagación: cualquier operación donde un operando es NaN dará como resultado NaN
 - generación: NaN es el resultado de (+∞) + (-∞), ±0 x ±∞, ±0 / ±0, ±∞ / ±∞ y otras
 - una comparación (=, <, ≥, etc) entre NaN y otro número resulta siempre falsa

- La norma y los lenguajes de programación
 - Los valores especiales permiten tratar los incidentes del cálculo
 - El desbordamiento aritmético produce un resultado representable

```
float x = +0.0f;
float y = 1/x;
float z = Float.NEGATIVE_INFINITY;
float t = 1/z;
float u = x*z;
System.out.println("x = " + x);
System.out.println("1/x = " + y);
System.out.println("z = " + z);
System.out.println("1/z = " + 1/z);
System.out.println("1/z = " + 1/z);
System.out.println("x * z = " + u);
```

```
x = 0.0
1/x = Infinity
z = -Infinity
1/z = -0.0
x * z = NaN
```

El redondeo

- Situación frecuente: una operación genera una mantisa M de longitud más larga (p bits) que la prevista en el formato (m bits)
 - los m primeros bits de la mantisa M se llaman retenidos
- Posibilidades:
 - M es representable de forma exacta en el formato: los p—m bits no retenidos son 0 y se pueden eliminar: 010000 → 0100
 - M se encuentra entre dos valores representables M_ y M₊
 (M_<M<M₊) y hay que *redondear*: escoger uno de ellos como representación *inexacta* de M
- La norma admite cuatro modos de redondeo:
 - Hacia +∞
 - Hacia –∞
 - Hacia 0
 - Escoger el más próximo de los dos (este es el modo por omisión)

El redondeo hacia el más próximo (sesgado al par)

- La variante por omisión es "tie to even": en caso de que M equidiste de M_ y M₊ hay que escoger la mantisa representable par (o sea, la que acabe en 0)
- Ejemplo:

M	se elige	M resultante
010000	(exacta)	0100
010001	M_(más próxima)	0100
010010	M_(par)	0100
010011	M ₊ (más próxima)	0101
010100	(exacta)	0101
010101	M_(más próxima)	0101
010110	M ₊ (par)	0110
010111	M ₊ (más próxima)	0110
011000	(exacta)	0110

El banco de registros

- Hay 32 registros de 32 bits, \$f0,\$f1,...,\$f31 para tipo float
 - Se suelen utilizar los números pares \$f0,\$f2,...,\$f30
- Emparejables para formar 16 registros de 64 bits para tipo double
 - Si \$£0 "contiene" un double: \$£0 tiene la parte baja y \$£1 la parte alta (\$£1||\$£0)

Convenio de uso de los registros

Nombre del registro	Utilización
\$ f 0	Retorno de función (parte real)
\$f2	Retorno de función (parte imaginaria)
\$f4,\$f6,\$f8,\$f10	Registros temporales
\$f12,\$f14	Paso de parámetros a funciones
\$f16,\$f18	Registros temporales
\$f20,\$f22,\$f24,\$f26,\$f28,\$f30	Registros a preservar entre llamadas

Intercambio con la memoria y los registros de enteros

operación	instrucción	
lectura $\$ft \leftarrow Mem[X+\$rs]$ escritura $Mem[X+\$rs] \leftarrow \ft transferencia $\$fs \leftarrow \rt transferencia $\$rt \leftarrow \fs	<pre>lwc1 \$ft,X(\$rs) swc1 \$ft,X(\$rs) mtc1 \$rt,\$fs mfc1 \$rt,\$fs</pre>	fs i ft: registros de coma flotante rs i rt: són registros de enteros
data		

Las instrucciones de CF no admiten operandos inmediatos. Hay que ubicar las constantes en la memoria o construirlas en los registros de enteros

Conversión de formatos

Los registros de CF pueden contener:

<u>símbolo</u>	<u>tipo</u>
S	números en coma flotante en SP
D	(por parejas) números en coma flotante en DP
W	números enteros de 32 bits

- La instrucción cvt._._ fd,fs hace las conversiones posibles entre los tres tipos
 - Ejemplo: cvt.d.w \$f4,\$f7 hace la conversión del entero contenido en \$f7 a CF en doble precisión contenido en \$f4||\$f5
- En combinación con las instrucciones de transferencia con el banco de registros de enteros, se puede hacer aritmética con variables de tipos diversos

Instrucciones aritméticas básicas

- Hay dos versiones de cada operación: S (simple precisión) y D (doble precisión)
 - Ejemplo: add.s \$f0,\$f1,\$f2; add.d \$f2,\$f4,\$f6

operación	instrucción
suma	add fd,fs,ft
resta	<pre>sub fd,fs,ft</pre>
multiplicación	<pre>mul fd,fs,ft</pre>
división	div fd,fs,ft
comparación	c.cond fs,ft
copia	mov fd,fs
cambio de signo	neg fd,fs
valor absoluto	abs fd,fs

La comparación

- Las instrucciones de comparación escriben un bit implícito *FPc* que codifica cierto=1 y falso=0
- Este bit se encuentra en un registro de control del coprocesador y puede ser consultado por las instrucciones de salto
- Para cada tipo de datos, hay un conjunto de comparaciones codificables
- Las más importantes: (c.__.s fd,fs 0 c.__.d fd,fs)

fd>fs	fd=fs	fd <fs< th=""></fs<>
gt	eq	lt
le	neq	ge
fd≤fs	fd≠fs	fd≥fs

Control de flujo y aritmética de coma flotante

Hay dos instrucciones de bifurcación asociadas al bit FPc

```
bclt eti si (FPc == 1) bifurcar a eti bclf eti si (FPc == 0) bifurcar a eti
```

- Combinadas con las instrucciones de comparación, permiten bifurcar con condiciones aritméticas complejas
- Cada condición permite dos implementaciones
 - Ejemplo en simple precisión: si (\$f0 > \$f2) bifurcar a eti

```
; mirar si $f0>$f2
        c.gt.s $f0,$f2
; saltar si afirmativo
        bclt eti
```

Operadores de coma flotante

Operadores de coma flotante

Operadores

- Toman como entrada uno o dos operandos en un formato de CF dado
- Su resultado es un valor en CF codificado según la norma
 - excepto los operandos de comparación
- Su diseño es complejo porque, además de realizar la operación definida, se han de ocupar de ciertos detalles:
 - Han de suministrar el resultado correctamente <u>normalizado</u> según la precisión con la que trabajan
 - Han de gestionar los valores especiales definidos en la norma
 - Si procede, han de redondear el resultado según el modo programado
 - Han de señalar las <u>excepciones</u> previstas por la norma
- Estudiaremos la estructura básica de algunos operadores y veremos, en casos seleccionados, cómo resuelven los detalles

Operadores de coma flotante

- Ejemplos de operadores
 - NEG.S i NEG.D (cambio de signo)
 - Estructura
 - CVT.D.S (conversión de simple a doble precisión)
 - Estructura básica
 - Detalle: tratamiento de los valores especiales
 - CVT.S.D (conversión de doble a simple precisión)
 - Estructura básica
 - Detalle: el redondeo
 - CVT.D.W (conversión de entero a CF doble precisión)

- Estructura básica
- Detalle: la normalización
- MULT.S i MULT.D (multiplicación)
 - Estructura básica
 - Detalle: la renormalización

Cambio de signo

Operador

- Dos versiones:
 - Simple precisión:
 - Entrada: S_A (1 bit), E_A (8 bits) y M_A (23 bits)
 - Salida: S_R (1 bit), E_R (8 bits) y M_R (23 bits)
 - Doble precisión:
 - Entrada: S_A (1 bit), E_A (11 bits) y M_A (52 bits)
 - Salida: S_R (1 bit), E_R (11 bits) y
 M_R (52 bits)
- Cambia el signo: S_R = not S_A
- Copia el exponente: $E_R = E_A$
- Copia la mantisa: $M_R = M_A$

Emulación del cambio de signo

```
float x = 1.0;
x = -x;
```

```
x: .float 1.0

lwc1 $f2, x  # $f2 <- x (1.0)

mfc1 $t0,$f2  # $t0 <- $f2

lui $t1, 0x8000 # $t1 <- 0x80000000

xor $t0, $t0, $t1 # $t0 <- -1.0

mtc1 $t0, $f2 # $f2 <- $t0

swc1 $f2, x # x <- $f2 (-1.0)</pre>
```

Conversión de simple a doble precisión (cvt.d.s)

Especificación del operador:

- Entrada: S_A (1 bit), E_A (8 bits) y M_A (23 bits)
- Salida: S_R (1 bit), E_R (11 bits) y M_R (52 bits)
- El signo no cambia: $S_R = S_A$
- Exponente: hay que cambiar de exceso 127 a exceso 1023
 - $E_R = E_A + 896$
- Mantisa: hay que añadir 52–23=29 ceros a la derecha
 - $M_R = M_A \parallel 00....0$
- Detalle del trato correcto de los valores especiales:

	E _A	S_R	E _R	M_R
zero y subnormal:	00000000 ₂	S _A	00000000000 ₂	M _A 000
±∞ y NaN:	1111111112	SA	1111111111 ₂	M _A 000
valores corrientes:	(otros valores)	S_A	E _A + 896	$M_A 000$

Conversión de simple a doble precisión (cvt.d.s)

- El operador básico
 - No trata los valores especiales

Conversión de simple a doble precisión (cvt.d.s)

- Tratamiento de los valores especiales
 - Detalle del cálculo del exponente

Conversión de doble a simple precisión (cvt.s.d)

Estructura del operador

- El signo no cambia
- Exponente: hay que cambiar de 11 bits en exceso 1023 a 8 bits en exceso 127
 - puede darse desbordamiento
- Mantisa: hay que eliminar 29 bits por la derecha y redondear

El redondeo

Circuito para el redondeo al más próximo

Si R=0, truncar:

1.1001101

1.10011

Conversión de entero a doble precisión (cvt.d.w)

Filosofía del operador

- Si es positivo, un entero W de 32 bits se puede escribir como +0.Wx2³²
- Si es negativo, W se reescribe como –0.(–W) x2³²
- La mantisa W comienza por una serie de Z ceros $(0 \le Z \le 32)$
- Habrá que normalizar la mantisa desplazándola Z+1 posiciones hacia la izquierda (eliminando el bit entero) y restar Z+1 al exponente

Especificación

- Entrada del operador: W (32 bits)
- Salida del operador: SR (1 bit), ER (11 bits) y MR (52 bits)
- SR = Signo(W)
- MR = |W| << Z+1 (desplazamiento)</p>
 - Si W<0, hay que hacer W = -W
- ER = 1023 + 32 Z 1

Conversión de entero a doble precisión (cvt.d.w)

Esquema

- La normalización ha de contar el número Z de bits a cero por la izquierda (hasta el primer 1)
- Ha de desplazar la mantisa Z posiciones hacia la izquierda
 - Hay que representar el exponente 31 – Z
 - Sumando el exceso, tenemos
 E = 1023 + 31 Z
- Hay que completar la mantisa con ceros

La normalización

Circuito de normalización

- Un codificador prioritario (que codifica la entrada de menor índice con un 1) calcula Z
- Un barrel shifter desplaza la mantisa hacia la izquierda y elimina los ceros sobrantes
- Se descarta el bit implícito

Codificador prioritario

W ₃₁	W_{30}	W_2	₉ W ₂₈	 $W_1 W_0$	Z
1	Χ	Χ	Χ	 XX	00000
0	1	X	X	 XX	00001
0	0	1	X	 XX	00010
				 	 11111
U	U	U	U	 0 1	11111

La multiplicación (mul.s y mul.d)

Especificación

- Dos versiones: simple precisión y doble precisión
- Dos entradas (A y B):
 - S_A (1 bit), E_A (8/11 bits) y M_A (23/52 bits)
 - S_B (1 bit), E_B (8/11 bits) y M_B (23/52 bits)
- Salida: S_R (1 bit), E_R (8/11 bits) y M_R (23/52 bits)
- Cálculo del signo: S_R = S_A xor S_B
- Cálculo del exponente: hay que sumar y compensar el exceso
 - Simple precisión E_R = E_A + E_B 127
 - Doble precisión $E_R = E_A + E_B 1023$
- Cálculo de la mantisa:
 - Multiplicar 1.M_A x 1.M_B (considerando el bit implícito)
 - El multiplicador depende de la precisión: 24x24 bits o 53x53 bits
 - Habrá que renormalizar (quitando el bit implícito) y redondear la mantisa resultante dejándola en 23/52 bits

La multiplicación (mul.s)

Operador (SP)

- Dos sumadores para sumar los exponentes representados en exceso 127
- Multiplicador para las mantisas
 - Opera con el bit implícito añadido: 24x24 bits
- Habrá que renormalizar el resultado (ahora lo veremos) y quitar el bit implícito
 - Tal vez habrá que decrementar el exponente
- El resultado ocupará 47 bits y habrá que redondearlo a 23
 - Tal vez habrá que incrementar el exponente

La renormalización

Renormalización después de un producto

- Si la mantisa del producto comienza por 0:
 - Desplazar a la izquierda una posición
- Si comienza por 1:
 - Incrementar el exponente en 1
- En cualquier caso:
 - Eliminar el bit entero implícito

