Ring Detection and Pose Estimation

Project by:
Bivek Panthi
Naomi Mukuhi
Uriel Pauline Jimenez Palmos

Objectives

- 1. Generate a detector for BlueROV that can:
 - 1.1. Detect red rings under water
 - 1.2. Estimate the distance and angle of the ring with respect with the BlueROV
- 2. The detector works in real time.

Demo first!

Link to the Video!

Algorithm

YOLO v5

Github : https://github.com/ultralytics/yolov5

License for modification: https://github.com/ultralytics/yolov5/blob/master/LICENSE

Training

Training images : 36

Cross-Validation: 3

Epocs : 278

Precision : 0.98

Note:

- We added additional white noise in the training set to make the model stronger.
- The model is overfitting, but can be solved with a larger training data set.

Training Results

Distance Estimation

Distance from Camera

Case I (If bounding-box's height in pixel is known at a known distance):

Focal length = (known_pixel_height * known_distance) / known_height

Distance = (known_height * focal_length) / pixel_height_now

Case II (If no prior information):

Assumption : When the object is at distance zero, either bbox's height or width is equal

to the whole frame's height or width.

Distance = frame_size / max{pixel_height_now, pixel_width_now}

Distance from Center of image frame

Euclidean distance

Angle Estimation

Theta = arccos(bbox width / Ring's original height)

Assumption: The height of the Ring does not change

This estimation technique only does a rough estimation of the angle, so can be less accurate at some positions. The estimation accuracy can be improved using stereo vision.

Demo for Real Time streaming

Thank You!