1 Introdução

5 Págs

O mercado da aviação tem passado por uma mudança nos preceitos de desenvolvimento de sistemas que vão desde a utilização de novas tecnologias embarcadas até a mudança na concepção de operação da aeronave. A elevação no preço do combustível e o aumento na participação deste fator nos custos operacionais fazem com que a eficiência energética, a relação entre energia utilizada para transportar passageiros por quilômetro e às baixas emissões de gases do efeito estufa sejam itens cruciais para tornar uma aeronave competitiva no mercado de aviação [1]. Para atender a esses requisitos de mercado no que tange a eficiência, uma série de fatores vem sendo alvo de estudos para melhorar a consumo de combustível. Pode-se enumerar alguns destes fatores como: melhor eficiência aerodinâmica; otimização estrutural; maior eficiência do motor; melhor aproveitamento no uso de energia pelos sistemas [1]. Essa tendência vem ocorrendo de maneira natural como evolução do mercado pela demanda de aeronaves mais eficientes e competitivas. Nesse contexto há o conceito de More Electric Aircraft (MEA) e, como o próprio nome diz, essa concepção baseia-se em aeronaves cuja filosofia de projeto contempla o uso abundante de sistemas alimentados eletricamente com o objetivo de aumentar a eficiência e confiabilidade [2].

As aeronaves comumente possuem sistemas hidráulicos, pneumáticos e elétricos que passam a receber suas potências diretamente do eixo do motor da aeronave. Essa transferência de energia dá-se por caixas de engrenagens que condicionam a velocidade e o torque do eixo de modo a impulsionar bombas hidráulicas e geradores elétricos. Ainda há o sistema pneumático que possui como fonte de energia o sangramento de ar comprimido do motor [3]. Tais sistemas são imprescindíveis para o funcionamento operacional da aeronave, visto que equipamentos que provém a aeronavegabilidade e o conforto de cabine utilizam de tais sistemas. Essa diretriz de projeto a qual contempla a utilização destes sistemas é comumente utilizada nas aeronaves comerciais e militares de modo geral.

O conceito de *MEA* não é exatamente novo, esse tema vem sendo estudado por décadas e a ideia de contemplar uma aeronave com a substituição de sistemas que necessitam de energia do motor por àqueles movidos por eletricidade está bem estabelecido [4]. Devido à falta de tecnologias de condicionamento de energia elétrica para utilização na indústria aeroespacial, seja pela baixa capacidade potência, seja pelo volume e peso excessivos, os conceitos de utilização abundante do sistema elétrico está sendo objeto de estudos para quando as tecnologias de conversão e geração de alta capacidade estiverem melhor estabelecidas. Desse modo, os sistemas hidráulicos e pneumáticos continuam sendo

utilizados de maneira convencional [4, 3]. Contudo, o desenvolvimento de novas tecnologias nas áreas de eletrônica de potência, como semicondutores que suportam tensões e correntes mais elevadas; e na área de geração de energia elétrica, como geradores com maior eficiência, com maiores capacidades e densidade de energia por peso específico, vem tornando possível a implementação de sistemas elétricos que substituem parcialmente ou totalmente os sistemas hidráulicos ou pneumáticos. Isso pode ser visto nos mais recentes desenvolvimentos de aeronaves, como por exemplo o Boeing 787, onde a redução da emissão de CO₂ é 20% menor se comparado com o Boeing 767 [5]. O ganho não se dá apenas na redução do consumo de combustível e emissão de gases pela queima de combustíveis fósseis, mas há também a redução de peso e volume de sistemas, aumento de segurança, melhora na confiabilidade e manutenabilidade [2, 3, 5].

1.1 Contribuições

colocar mais coisa na introdução a respeito do filtro e tal

1.2 Organização do Trabalho

2 Qualidade de Energia em Aeronaves

um texto breve aqui

2.1 Tendência de Aumento da Capacidade de Geração Elétrica em Aeronaves

Seguindo a tendência de aumentar a quantidade de sistemas elétricos para melhorar a eficiência em aeronaves, a geração desse tipo de energia teve de acompanhar a demanda de carga de modo a suprir o aumento vertiginoso de potência elétrica requerida. Com o avanço tecnológico nas áreas de geração e distribuição, o aumento de demanda de potência pode ser atendido pelo sistema elétrico, e ainda, seguindo os requisitos impostos pelo projeto quanto ao peso, confiabilidade e eficiência. Com esse aumento na capacidade de geração e distribuição, cada vez mais os sistemas vêm sendo substituídos por sistema elétricos cujas funções substituem o emprego dos sistemas hidráulicos e pneumáticos. Segundo [6], o aumento da capacidade de geração de energia aumentará significativamente com o a troca de sistemas que possuem equivalentes movidos pela energia elétrica. Esse aumento está acontecendo no cenário atual no mercado de aviação e esta tendência pode ser vista na Figura 1. Ainda, elencando os dados da capacidade de geração segundo o critério da data de lançamento das aeronaves, pode-se notar que a capacidade de geração ao longo do tempo vem crescendo exponencialmente, como é demonstrado na Figura 2.

FIGURA 1 – Aumento capacidade de geração de aeronaves [6]

Nesse contexto, futuro da aviação segue uma tendência de utilizar uma gama ainda

FIGURA 2 – Aumento da capacidade de geração ao longo dos anos

maior de sistemas dependentes de energia elétrica. Isso reflete em um menor gasto de energia necessária por passageio por quilometro voado e a tendência futura é que todos os sistemas da aeronave seja inteiramente elétricos [5], como mostra a Figura 3. A intensa utilização de energia elétrica não é feita nas aeronaves atuais pelo simples fato de ainda não haver um desenvolvimento tecnológico suficientemente avançado que propicie tal substituição. Limitações nas áreas de armazenamento de energia, engenharia de materiais, eletrônica de potência, entre outros, fazem com que as aeronaves sejam projetadas com a utilização de sistemas que dependam de arquiteturas convencionais.

O aumento de carga que vem ocorrendo em aeronaves trouxe a necessidade de adequar as tecnologias de geração e distribuição de energia elétrica. Nos primórdios da aviação a geração elétrica era baseada basicamente em geradores de corrente contínua, a qual era utilizado para suprir os poucos sistemas que demandavam de potência elétrica. O aumento da carga ao longo do tempo trouxe a necessidade de aumentar a capacidade de geração, a qual foi suprida pela implementação do geradores de corrente alternada na aviação [7]. Hoje o tipo de geração comumente encontrado na aviação, principalmente na civil, é do tipo 115 VAC, com frequência constante em 400 Hz. Entretanto, o eixo do motor da aeronave de onde extrai-se a potência para movimentar o gerador possuí alta variação na velocidade angular ao longo das fases de operação de voo. Nesse contexto é necessário o condicionamento da velocidade angular do eixo do motor de modo a ser compatível com a geração em frequência constante. Com isso, o gerador é conectado ao motor da aeronave através de um *Constant Speed Device (CSD)*. Esse dispositivo é constituído por uma caixa de engrenagens que converte a velocidade do eixo do gerador em uma velocidade angular constante, necessária para a geração em frequência constante [8]. A utilização desse tipo de

FIGURA 3 – Tendência futura para o mercado de aviação [5]

sistema trás a limitação quanto à capacidade de geração, visto que o sistema do CSD é um equipamento mecânico a qual reduz a capacidade de geração, a confiabilidade, ao passo que aumenta o peso, o volume e a manutenção. Com a necessidade de aumentar a capacidade do sistema, uma opção pode ser dada pela geração em frequência variável. Nesse sistema o gerador é diretamente acoplado ao eixo do motor de modo a eliminar a necessidade de CSD. Nesse tipo de geração a tensão limita-se a 115 VAC com a frequência variando entre 350-800 Hz [8]. Porém nem todas as cargas são compatíveis com tensão variando em frequência. Para estes casos é necessário a conversão da tensão para níveis compatíveis em frequência constante. Essa conversão é dada através de inversores estáticos conectados à rede, a qual trazem aumento no peso, volume e diminuem a confiabilidade dos sistemas. Portanto a escolha de um sistema entre frequência variável e fixa para implementar em um sistema aeronáutico vem da deliberação entre as vantagens e desvantagens que esta trás. Cabe lembrar que nos projetos mais modernos a implementação de geração em frequência variável é uma realidade, vide as aeronaves Airbus A380 e Boeing 787, a qual operam em VF [7].

2.2 Aumento de Cargas Não Lineares na Rede Elétrica de Aeronaves

A evolução tecnológica no desenvolvimento dos sistemas aeronáuticos vem trazendo a necessidade de aumentar a capacidade de geração e distribuição elétrica para suprir a

crescente demanda de cargas. Nos primórdios da aviação, os sistemas aeronáuticos eram constituídos de cargas majoritariamente lineares que demandavam pouca potência, tais como equipamentos cuja estrutura era constituída por elementos resistivos ou indutivos. Tais cargas resumiam-se a principalmente à aquecedores resistivos, lâmpadas incandescentes, motores elétricos, fans e rádios de baixa potência [9]. Com a evolução tecnológica na área de eletrônica e semicondutores, houve uma grande mudança também nos sistemas embarcados aeronáuticos, de modo que a introdução de equipamentos eletrônicos foi largamente implementada para complementar ou substituir os sistemas que antes não demandavam consumo elétrico. Em aeronaves modernas houve a introdução de sistemas aviônicos quase que totalmente eletrônicos, com grandes displays digitais, radares e rádios mais potentes. Ainda existe a introdução de computadores de controle de voo, TRUs, sistemas de entretenimento em voo, iluminação baseada em LEDs, atuadores eletroidráulicos, motores elétricos controlados por drivers e, mais recentemente, substituição do sistema pneumático baseado em sangramento de ar do motor por compressores elétricos controlados eletronicamente. A implementação de tais equipamentos trouxe, entre outros fatores, o desfio de alimentá-los com tensão DC [9]. O condicionamento de tensão elétrica entre AC para DC introduz no sistema os conversores estáticos, que são compostos por semicondutores chaveados de modo que estes demandem correntes pulsadas e não lineares da rede elétrica. Esse aumento na utilização de conversores estáticos intensificou a degradação da qualidade de energia dos sistemas elétricos, como será explicado na seção 2.2.2, de modo que ações para garantir a manutenção da qualidade de energia é necessária para o bom funcionamento dos sistemas aeronáuticos embarcados.

2.2.1 Linearidade em Sistemas Elétricos

Por definição, a linearidade de um sistema advém da relação apresentada entre tensão e corrente existente nos terminais da uma carga. Em um sistema composto por elementos como indutores, capacitores e resistores, a relação entre tensão e corrente apresenta uma correspondência linear, ou seja, pode ser descrita por equações integro-diferenciais com fatores constantes [10]. Em suma, um sistema linear alimentado com tensão senoidal apresenta corrente também senoidal, porém com amplitude e fase distintas à tensão. Um exemplo de um sistema linear é mostrado na Figura 4, onde a Figura 4a é a representação de um circuito alimentando uma carga constituída de resistores, capacitores e indutores, e a Figura 4b é a forma de onda da tensão e corrente supridos pela fonte. Já em circuitos quando a relação entre corrente e tensão não é descrita por uma equação linear, tem-se que a carga é considerada não linear. Nesse tipo de sistema a corrente requerida pela carga é dada por uma função não senoidal, mesmo quando a tensão de alimentação proveniente da fonte é senoidal pura [10]. Esse tipo de circuito é geralmente advindo de cargas

com a presença de semicondutores que são operados no condicionamento de energia de um sistema. A Figura 5 apresenta um sistema não linear, onde a Figura 5a representa um circuito constituído de uma fonte senoidal alimentando uma retificador de tensão, e a Figura 5b é mostrado a tensão e corrente provida pela fonte, onde esta última é dada por pulsos periódicos, diferentemente de uma forma de onda senoidal.

FIGURA 4 – Circuito com carga linear com as respectivas formas de onda

FIGURA 5 – Circuito com carga não linear com as respectivas formas de onda

A presença de cargas não lineares na rede tem como consequência a queda na qualidade de energia no sistema de distribuição elétrica. A explanação dos efeitos negativos provenientes com a presença das cargas não lineares em redes elétricas será abordada na seção 2.2.2.

2.2.2 Problemas Causados por Cargas Não Lineares na Rede

Para entender os problemas causados por cargas não lineares conectados à rede, primeiro é necessário entender o funcionamento de sistemas elétricos reais. Os circuitos elétricos compostos por elementos ideais possuem um modelo matemático estabelecido e são fundamentais para descrever as características da resposta do circuito. Entretanto, esses elementos isolados não são factíveis devido a sua natureza ideal. Porém, para a análise dos circuitos elétricos reais através de modelos matemáticos, emprega-se a representação do funcionamento destes por elementos ideais [11]. Existem modelos mais simplificados para análises mais abrangentes ao passo que existem modelos mais complexos para análises mais específicas. A escolha dessa complexidade depende do grau de destreza que o circuito real necessita ser representado para a análise.

Os modelos reais do sistema de geração e transmissão podem ser concebidos a partir da utilização de elementos ideais e a análise matemática é então obtida para descrever a resposta desse sistema. Para o estudo descrito nesse trabalho, a concepção dos circuitos pode ser realizada utilizando o teorema de Thévenin. Segundo este teorema, qualquer par de terminais contidos em um circuito realizado com elementos lineares podem ser substituídos por uma fonte de tensão V_{th} em série com uma impedância Z_{th} [12]. Isto é valido tanto para sistema monofásicos como para sistema multifásicos, levando em conta o estudo de cada fase em separado. Apesar do sistema de geração de uma aeronave ser complexa, para efeito didático e sem perda de generalidade, pode-se considerar que este sistema é tido por elementos lineares, assim, para esse estudo, pode-se modelá-la como uma fonte de tensão senoidal acoplada a uma impedância. A interpretação dessa impedância cabe ao fato de que o gerador possui reatância indutiva em seus enrolamentos e resistências nos fios que o compõe. De forma análoga, a linha de transmissão a qual leva a energia do gerador para a carga pode ser modelada da mesma maneira. Por esta ser ausente de fonte de energia, seu equivalente Thévenin é tido apenas como uma impedância composta pelas reatâncias e as resistências da linha de transmissão. A Figura 6a mostra o equivalente Thévenin de um gerador típico, enquanto que a Figura 6b mostra o equivalente de uma linha de transmissão qualquer.

Com isso em mente, pode-se modelar um sistema composto por cargas acopladas a um barramento alimentado por um gerador em uma linha de transmissão. Considerando a Figura 7, existe um barramento com ponto de conexão em comum (PCC) com N cargas acopladas cujas correntes demandadas são denominadas $i_1, i_2, \ldots i_N$. A tensão no PCC é dada por V_B e é essa a tensão de alimentação no ponto de conexão das cargas. Ainda, a conexão do barramento com gerador é feita via uma linha de transmissão, e existem não idealidades como resistências e reatâncias indutivas. Aplicando o teorema de Thévenin para modelar o gerador e a linha de transmissão, tem -se que a impedância

- (a) Equivalente Thévenin de um gerador
- (b) Equivalente Thévenin de uma linha de transmissão

FIGURA 6 – Equivalentes Thévenin

 Z_{th} é composta pela composição das resistências e impedâncias de cada elemento. Para o gerador e linha de transmissão, as resistências e impedâncias são dadas por R_G , L_G e R_L , L_L , respectivamente. Já a fonte de alimentação V_S é considerada senoidal, como encontrada comumente em sistemas de geração AC

FIGURA 7 – Circuito real monofásico

Analisando o circuito da Figura 7 e utilizando as leis de Kirchoff, tem-se que corrente provida pela fonte é dada segundo a equação 2.1.

$$i_S = i_1 + i_2 + \dots + i_N$$
 (2.1)

Ainda de acordo com a lei de Ohm generalizada, as quedas de tensões nas impedâncias Z_G e Z_L , as quais advém da composição das reatâncias e resistências do gerador e da linha de transmissão são dadas por V_G e V_L , as quais são definidas segundo as equações 2.2 e 2.3.

$$V_G = Z_G \cdot i_S \tag{2.2}$$

$$V_L = Z_L \cdot i_S \tag{2.3}$$

Para definir-se o nível de tensão que é obtido no barramento no PCC, deve-se aplicar a lei de Kirchoff, a qual define-se V_B segundo a equação 2.4.

$$V_B = V_S - (V_G + V_L) = V_S - (Z_G + Z_L) \cdot i_S \tag{2.4}$$

Segundo a equação 2.4, o valor de tensão no barramento é dependente da corrente proveniente da fonte de tensão i_S , a qual, segundo a equação 2.1, é definida pela composição de correntes requeridas pelas cargas conectadas no PCC. Desse modo, pelo fato da existência das não idealidades intrínsecas dos elementos do circuito, há um vínculo entre a tensão disponível no barramento com as correntes exigida pelas cargas.

Para uma primeira análise, considerando as cargas 1, 2, ..., N caracterizadas por elementos lineares, as quedas de tensões V_G e V_L são definidas por funções senoidais e o valor observado em V_B é tido como senoidal com atenuação e defasagem se comparada com a tensão V_S . Esse tipo de problema pode ser recorrente em alguns sistemas com altas cargas lineares conectadas, todavia este problema pode ser facilmente contornado aumentando o valor de V_S até que V_B atinja um valor especificado. Esse processo é comumente realizado de maneira automática pela introdução de uma malha de controle simples a qual controla o valor da tensão na saída do gerador de modo a suprir um nível de tensão específico no barramento.

A implementação de cargas não lineares conectados à rede exige uma abordagem diferente, sendo que essa consideração pode ter dois efeitos peculiares: primeiramente em um sistema onde as impedâncias de linhas e do gerador podem ser desconsideradas, a ondulação distorcida da corrente traz influências sobre onde esta passa, como transformadores, condutores e fusíveis [13], todavia esta condição não afetaria a tensão do barramento V_B . Agora, considerando os efeitos das não idealidades da linha de transmissão e do gerador, a equação 2.4 possui todas as variáveis diferentes de zero e consequentemente a tensão do barramento V_B é afetada em função da forma de onda de i_S . Isto posto, é introduzida na tensão do barramento a distorção harmônica, a qual é definida por componentes senoidais com a frequência igual a um múltiplo da frequência fundamental (f_0) da forma de onda da tensão V_B [14]. Desse modo, há uma distorção na tensão do barramento cuja forma de onda não apresenta mais um formato senoidal, onde muitas vezes é requerida para alimentar determinadas cargas. A correção do fator de potência nesse caso é feita por uma abordagem diferente se comparado com o caso em que cargas lineares são conectadas ao barramento. Para esse caso a correção do fator de potência pode ser feita utilizando filtros casados com as frequências harmônicas ou filtros ativos dispostos na rede [15].

Para exemplificar o problema posto, considera-se um sistema como descrito pela Figura 7, e que a composição das correntes das cargas necessita uma corrente do gerador i_S cuja forma é definida segundo a Figura 8.

FIGURA 8 – Corrente do gerador para o barramento

Segundo a lei de Ohm generalizada, as quedas de tensão nas reatâncias e resistências do gerador e da linha de transmissão são estabelecidas segundo as equações 2.2 e 2.3, e aplicando a corrente i_S da Figura 8 tem-se que a forma de onda da tensão $V_G + V_L$ é representada pela Figura 9.

FIGURA 9 – Queda de tensão em $V_G + V_L$

Como descrito anteriormente, a tensão no barramento pode ser sumarizada pela expressão 2.4 a qual é dependente dos valores encontrados na forma de onda definidas pela Figura 9. Seguindo essas expressões, tem-se que a forma de onda encontrada no barramento, para este exemplo, é dada pela Figura 10, onde pode-se observar que a tensão no barramento é periódica não senoidal.

O aspecto senoidal na tensão do barramento é perdido, mas o valor da frequência fundamental é mantido. Aplicando a série de Fourier em V_B , é observado o aparecimento

FIGURA 10 – Tensão V_B comparativamente à tensão V_S

das harmônicas nas frequências múltiplas de f_0 . Para o exemplo descrito anteriormente, a série de Fourier de V_B é representada na Figura 11.

FIGURA 11 – Transformada de Fourier da tensão V_B

Com o equacionamento e o exemplo descrito anteriormente fica claro que os efeitos de cargas não lineares possuem grande influência na qualidade de energia de um sistema elétrico. Entende-se que a qualidade de energia é degradada pela injeção de harmônicas nas tensões do sistema, visto que sua presença distorce a forma de onda a qual podem trazer efeitos indesejáveis em equipamentos conectados na rede.

2.3 Efeitos da Distorção Harmônica em Equipamentos

Para que um equipamento elétrico execute as funções desejadas e tenha seu funcionamento adequado, as tensões no ponto de entrada de energia devem ser conforme as especificações requeridas pelo fabricante do equipamento. Deve ser lembrado que, em geral, os dispositivos elétricos com alimentação CA são projetados e desenvolvidos admitindo-se operação sob condições de tensão senoidal pura [15]. Nos dispositivos aeronáuticos alimentados eletricamente admite-se operação com certa variação nos níveis de tensão, frequência e conteúdo harmônico. Entretanto tais variações são limitadas segundo normas aeronáuticas, a qual o sistema elétrico da aeronave deve cumprir de modo à garantir o correto funcionamento dos equipamentos nele conectados. Para o caso em estudo, onde a tensão é CA, a alimentação deve entregar as tensões limitadas de maneira bem definida para atender a certos critérios de qualidade, de modo a garantir o bom funcionamento e não danificar os sistemas conectados à rede.

Com a inserção de cargas não lineares na rede, surgem distorções na forma de onda da tensão que refletem na qualidade de energia do sistema. Para o caso de aeronaves e, aplicando a série de Fourier na ondulação da tensão, espera-se que haja apenas uma componente senoidal em 400 Hz, porém, devido às cargas não lineares conectados à rede, há o aparecimento de componentes em frequências múltiplas de 400 Hz. A presença de harmônicas no sistema elétrico distorce a forma de onda senoidal tornando-a disforme, a qual altera seus níveis de tensão. Essa inserção de harmônicas em diferentes frequências e magnitudes causam efeitos adversos em equipamentos elétricos e no modo em que estes operam. A seguir, utilizando das referências [15] e [13], serão elencados os principais efeitos da distorção harmônica em equipamentos tipicamente afetados do sistema elétrico de uma aeronave.

Os equipamentos eletrônicos consistem desde importantes cargas, como computadores, controladores, drivers e aviônicos, as quais estão diretamente relacionados com a aeronavegabilidade da aeronave, à sistemas menos impactantes na segurança, como os sistemas de entretenimento de bordo. Sendo assim, o correto funcionamento destes equipamentos é de fundamental importância para a segurança operacional de uma aeronave. Nesse contexto, os efeitos da distorção harmônica em equipamentos podem ser de fator determinante à segurança devido às consequências negativas que estes possam apresentar.

Um dos efeitos da distorção harmônica em equipamentos eletrônicos é o mau funcionamento devido à operação baseada na detecção da passagem por zero da tensão de alimentação, ou ainda, baseado em outros aspectos da forma de onda da tensão de entrada. Muitos equipamentos eletrônicos possuem semicondutores que operam por comutação suave pela técnica de zero voltage switching (ZVS) [16], onde a comutação ocorre

no cruzamento da tensão de entrada por zero. Isto se deve basicamente para reduzir interferência eletromagnética e corrente de *inrush* [17]. Com os múltiplos cruzamentos da tensão em zero devido à distorção da forma de onda, o período de comutação acaba sendo alterado, trazendo uma operação errônea do equipamento.

Equipamentos eletrônicos geralmente necessitam de fontes de energia DC como alimentação principal, exigindo assim conversores AC-DC na entrada do equipamento. A operação desses conversores utiliza o valor de pico da tensão senoidal da rede para manter os capacitores do conversor de entrada carregados para fornecer níveis de tensão estáveis. Dependendo do grau de distorção harmônica na rede, as tensões de pico podem ser maiores ou menores que o valor nominal, tornando esses conversores inefetivos quanto à manutenção de tensão DC especificada. Muitos equipamentos eletrônicos, como computadores, são sensíveis quanto a variação da tensão de entrada e necessitam de níveis estáveis e bem definidos para operar de maneira apropriada, sendo que a presença de harmônicos na rede pode trazer problemas no funcionamento destes equipamentos. Para contornar esse tipo de problema poderia ser incluindo um sistema de realimentação com fontes chaveadas controladas, porém este equipamento possui limitação quanto a rápida variação de tensão que pode vir a ocorrer com a baixa qualidade de energia do sistema

As comutações de chaves semicondutoras de potência produzem distorções com rápida variação de tensão na rede, a qual produzem componentes de alta frequência. Tais distorções são denominadas notches e são representadas na Figura 12. Primeiramente, dependendo da intensidade de incidência dos notches podem ocorrer cruzamentos da tensão por zero que acarretariam em problemas já descritos anteriormente. Ainda, por apresentar componentes de alta frequência, a presença destes distúrbios emana radiação eletromagnética pelos condutores que são captados pela cablagem de outros sistemas. Sua presença na rede elétrica pode causar interferência em equipamentos eletrônicos digitais que, porventura, podem induzir bits errôneos nestes equipamentos.

FIGURA 12 – Presença de notch na ondulação de tensão [18]

As maquinas rotativas estão presente em diversos sistemas de uma aeronave e as criticidades associadas ao seu funcionamento podem ser baseadas desde funções sem efeito direto na segurança operacional à funções cujas falhas podem ser catastróficas. Para este

último caso, cita-se como exemplo os comandos de voo de aeronaves mais modernas, onde motores elétricos são utilizados juntamente com o sistema hidráulico. Deste modo, as maquinas rotativas necessitam operar satisfatoriamente para proporcionar a segurança exigida na operação da aeronave.

A operação de uma máquina rotativa alimentada por uma tensão distorcida não senoidal pode trazer sobreaquecimento, torque pulsante, desgaste dos mancais e ruído.

As perdas em um motor elétrico estão diretamente relacionadas com a frequência da tensão em sua entrada. Como a forma de onda distorcida é dada pela composição da fundamental com componentes de alta frequência, tem-se que estas atuam de maneira a sobreaquecer os elementos do motor, como o núcleo ferromagnético e os fios que compõem os rolamentos. Esse aumento na temperatura pode trazer diversos problemas, sendo o principal a diminuição significante da vida útil da máquina, ocasionando o mau funcionamento antes do tempo esperado. Isso traz consequências na operação da aeronave como o aumento da manutenção ou até a falhas durante o voo.

Os torques pulsantes que surgem com a distorção harmônica causam o desgaste dos mancais da máquina, assim como a fadiga dos componentes associados ao funcionamento do motor. Tais problemas são diretamente ligados à vida útil da máquina, como já foram descritos anteriormente.

Muitos motores são controlados por circuitos eletrônicos de potência. Tais controladores, além de aumentar os níveis de distorção da rede, possuem seu funcionamento degradado pelas harmônicas presentes no sistema. Por serem circuitos eletrônicos, os efeitos nestes dispositivos já foram descritos anteriormente em equipamentos eletrônicos. Ainda, com a utilização destes tipos de controladores, seria esperado que a tensão de saída de controle fosse regulada para a correta operação das máquinas rotativas nelas conectadas. Entretanto a tensão de alimentação na entrada destes controladores pode interferir nas tensões de controle da saída, ocasionando problemas mesmo com a presença de tais controladores.

Os transformadores são elementos bastante difundidos nos sistemas elétricos de aeronaves, principalmente naquelas onde a tensão de geração é do tipo AC. Seu uso varia desde retificadores, onde existe um pré condicionamento dos níveis de tensão para valores propícios antes da conversão para níveis DC, à medidores de telemetria e sistemas de proteção. Com isso, o bom funcionamento destes elementos é de grande importância na segurança operacional de aeronaves visto que seu mau funcionamento pode causar a falha na alimentação de equipamentos eletrônicos ou tornar ineficiente a detecção de distúrbios indesejados que agiriam no sistema de proteção do sistema elétrico.

Os principais efeitos das componentes harmônicas nos transformadores são dados pela elevação da temperatura e, consequentemente, aumento da taxa de falha e diminuição

da vida útil do transformador.

Analogamente às máquinas rotativas, os transformadores sofrem com os efeitos das componentes de alta frequência de tensão cujo reflexo dá-se pelo aumento das perdas do núcleo ferromagnéticos e condutores. Existe ainda a influência sobre os valores das impedâncias de magnetização e dispersão em função das componentes de frequência da tensão de entrada do transformador, a qual pode ocasionar a diminuição da eficiência devido ao fluxo de dispersão. Os efeitos das não idealidades no núcleo ferromagnético são divididos em dois tipos: perdas por histerese e perdas por corrente parasita. Em ambos os casos o efeito é diretamente relacionado com a frequência da tensão de entrada, sendo que com o aumento das componentes de frequência existe a elevação nas perdas no núcleo [19]. Já os problemas causados pelos componentes de alta frequência de corrente são o aumento da temperatura nos condutores pelo efeito pelicular e de proximidade. A decorrência desses efeitos é o incremento das perdas no transformador, a qual faz com que este eventualmente opere com elevadas temperaturas e haja uma piora na taxa de falha do transformador.

Os relés são amplamente utilizados em sistemas de proteção de circuitos elétricos. Os comandos de comutação de um relé são feitos pelos controladores do sistema a qual comanda a abertura ou fechamento do dispositivo de acordo com os limites de corrente que atravessa um ramo do circuito. Por ser um equipamento atuante na segurança dos circuitos elétricos de uma aeronave, seu funcionamento deve estar livre de erros e funcionamentos inadvertidos.

De forma geral, o comportamento do relé só é interferido por componentes harmônicas para ramos cuja corrente de falha apresentam um valor baixo. Neste caso, tem-se que o principal efeito das componentes harmônicas em relés é o funcionamento inadvertido de comutação, ou seja, pode haver casos em que o relé deixa de atuar quando comandado ou atue quando não há comando algum. Ainda, outro fator a ser considerado é que esse comportamento é algo imprevisível e independente de fabricante. Uma mesma fabricante pode apresentar relés de mesmo modelo que apresentam comportamento diferentes em condições de distorção harmônica.

Existem outros efeitos negativos quanto à correta operação de circuitos elétricos sob condições de distorção harmônica. Este problema possui profundos estudos nas áreas de geração e distribuição de energia e em sistemas elétricos industriais. Contudo para o estudo em questão, foram listadas apenas as mais significantes quando se refere à segurança operacional de aeronaves.

2.4 Métodos de Correção de Fator de Potência

O fator de potência é um parâmetro de circuitos elétricos cuja definição é dada pela a relação entre a potência ativa e a potência aparente consumidas por um dispositivo ou equipamento, independentemente das formas que as ondas de tensão e corrente apresentem [20]. O valor deste parâmetro é usado tanto em circuitos lineares quanto nos não lineares e o conhecimento de seu valor é de grande importância para determinação da eficiência do uso de energia. Para o caso em que cargas não lineares estão sendo alimentado por uma fonte de tensão senoidal, o fator de potência é dado como um indicador para determinar a qualidade de energia do sistema, visto que seu cálculo leva em conta as amplitudes das componentes harmônicas presentes no sistema. Sendo assim, quanto mais próximo da unidade o fator de potência estiver melhor será qualidade de energia do sistema.

Existem métodos bem concebidos na literatura com relação às metodologias para mitigar o problema das distorções harmônicas em sistemas elétricos. Em um sistema de geração senoidal pura, a fonte de distorção nas tensões dá-se pela presença de cargas não lineares na rede elétrica, como descrito nas seções 2.2.1 e 2.2.2, e o método para mitigar o problema da distorção nos níveis de tensão é dado pela inclusão de filtros nas linhas do sistema. A inserção dos filtros na rede elétrica é para casos gerais onde a origem das distorções harmônicas vão desde retificadores a equipamentos eletrônicos interferindo na qualidade de energia. Dentre as cargas que mais influenciam na geração de componentes harmônicas, os retificadores são os que mais afetam a qualidade de energia. Isto deve-se principalmente à necessidade de equipamentos eletrônicos serem alimentados por tensão contínua, o que torna abundante a presença de retificadores em sistemas elétricos. Deste modo o foco do estudo dos métodos de atenuação de harmônicas não se dá apenas no estudo de filtros, mas também no estudo de retificadores cuja operação apresenta alto fator de potência.

2.4.1 Sistemas Passivos

A caracterização de um sistema passivo dá-se pela ausência de uma fonte dedicada de energia para o correto funcionamento de um circuito ou a inexistência de um controle ativo para o mecanismo de comutação ou condicionamento de dispositivos semicondutores, como transistores ou amplificadores operacionais [21]. Para essa classe de dispositivos destacam-se os filtros passivos lineares e os retificadores de alto fator de potência sem a presença de comutadores controlados.

2.4.1.1 Filtros Passivos

Filtros passivos são circuitos dotados de componentes elétricos passivos lineares, como indutores, capacitores e resistores, concebidos com objetivo de obter uma função de transferência cujo comportamento típico é atenuar componentes de frequências senoidais específicas. Os filtros são basicamente compostos por impedâncias interligadas e o comportamento destes circuitos depende do valor e da disposição dos elementos lineares envolvidos [22, 15]. A implementação de filtros passivos em uma rede de sistemas elétrico dá-se pelo arranjo dos elementos lineares de forma a criar impedâncias que são realizadas em série e/ou paralelo de modo a criar passagem de alta e/ou baixa impedância para um sinal qualquer. De maneira generalista, a Figura 13 mostra um sistema de filtragem passiva em uma rede trifásica, juntamente com a presença de uma carga não linear.

FIGURA 13 – Esquema de um filtro passivo genérico

Conceitualmente, pode-se considerar a concepção de filtros ideais e reais. De maneira simplificada, os filtros ideais são tais que em determinadas frequências a atenuação de um sinal é nula e em outras é infinita, ou seja, as amplitudes dos componentes do espectro não se alteram em determinadas frequências, mas em outras são levadas a zero, respectivamente. Tais filtros não são realizáveis e na pratica são utilizados filtros reais. Esses filtros não possuem uma atenuação infinita, e a diminuição das respectivas amplitudes em função da frequência é dada segundo a ordem do filtro. De maneira geral, a ordem do filtro é dada de acordo com o número de elementos armazenadores de energia concebidos no circuito. Assim, para que o filtro real tenha o mesmo comportamento que o ideal haveria de ter ordem infinita, o que o torna inconcebível.

Por definição, a frequência de corte (f_c) dos filtros reais é definida sendo a frequência onde a potência do sinal de saída é igual a metade da potência do sinal de entrada, ainda, esta definição pode ser estendida como a frequência a qual a razão dos sinais de entrada e saída é igual $1/\sqrt{2}$, ou ainda, a frequência onde a atenuação do sinal é igual a 3 decibéis.

As principais topologias de filtros passivos podem ser divididas em 4 tipos, Passa

Baixa, Passa Alta, Passa Faixa e Rejeita Faixa.

A concepção de um filtro passa baixa cria caminhos de alta impedância entre a entrada e saída do sistema para frequências mais elevadas que f_c [15]. Desse modo, comparativamente ao sinal da entrada, a saída possui a mesma característica de amplitude e potência para frequências menores que f_c , mas atenuam componentes do espectro cujo valor é maior que a frequência de corte, ou seja, para $f > f_c$. Ainda, deve-se ter em mente que, no regime de corte, quanto maior o valor da frequência das componentes que compõem o sinal, maior a redução em suas amplitudes [22]. A resposta em módulo do sistema de um filtro passa baixa pode ser visto na Figura 14.

FIGURA 14 – Resposta em frequência de um filtro passa baixa

Analogamente ao filtro passa baixa, os sistemas com a topologia passa alta possuem caminhos de alta impedância para componentes de baixa frequência que são aplicadas na entrada do sistema [15]. Desse modo, a saída possui um espectro com a predominância de componentes de alta frequência. Como ocorre nos filtros passa baixa, a frequência que delimita a atenuação é denominada frequência de corte, e componentes com valores mais elevados possuem ganho unitário, ou seja, não são alterados pelo sistema [22]. O espectro típico de um filtro passa alto pode ser visualizado na Figura 15.

FIGURA 15 – Resposta em frequência de um filtro passa alta

Os filtros passa faixa são caracterizados por circuitos cuja resposta apresenta a passagem de sinais com frequências situadas numa faixa intermediária no espectro, atenuando as amplitudes dos sinais que estão fora desse intervalo. A frequências que delimitam esta faixa são denominadas frequência de corte inferior (f_L) e frequência de corte superior (f_H) [22]. Desse modo, o comportamento do sistema caracteriza-se pela atenuação de componentes que possui frequência abaixo de f_L e acima de f_H . Outra característica fundamental dos filtros passa faixa é a largura de banda definida pelo intervalo onde o sinal não é atenuado. Em termos numéricos, esse valor é definido por $f_H - f_L$. Ainda existe a frequência central f_0 ou frequência de ressonância, a qual é a média geométrica entre a frequência de corte inferior f_L e a frequência de corte superior f_H da banda de passagem, ou seja, $f_0 = \sqrt{f_L \cdot f_H}$. O módulo da resposta em frequência típica de um filtro passa faixa é mostrada na Figura 16.

FIGURA 16 – Resposta em frequência de um filtro passa faixa

Ao contrário do filtro passa faixa, este tipo de filtro é definido por atenuar componentes cujas frequências estão contidas em um determinado intervalo, enquanto as amplitudes das componentes fora deste não são alteradas. Analogamente ao passa faixa, existe a frequência de corte inferior e superior definidas por f_L e f_H , respectivamente [22]. As componentes com valores de frequência menores que f_L e maiores que f_H são mantidas iguais ao sinal de entrada, ao passo que os componentes contidos dentro do intervalo $f_L - f_H$ possuem as amplitudes atenuadas. O espectro de frequência desse tipo de filtro pode ser visto na Figura 17.

Na questão de aumentar a qualidade de energia de sistemas elétricos, tem-se que a utilização de filtros passa baixa é mais adequada para o problema, pois são os componentes harmônicos de frequência mais elevada que a fundamental que acabam por degradar a qualidade de energia do sistema elétrico.

FIGURA 17 – Resposta em frequência de um filtro rejeita faixa

2.4.1.2 Retificadores Multipulso

Retificadores multipulso são dispositivos condicionadores de energia elétrica que convertem tensões CA para CC, cuja principal característica é o fato de operar com alto fator de potência. Neste tipo de circuito o retificador é concebido utilizando uma filosofia semelhante a um retificador comum com pontes de diodo, porém o arranjo dos semicondutores junto com autotransformadores faz com que a corrente requerida da fonte possua uma forma quase senoidal. Outra particularidade desse conversor é a ausência de controle externo sobre os semicondutores, sendo que a comutação no retificador ocorre nos diodos e seu funcionamento depende apenas das tensões e correntes aplicadas sobre seus terminais.

Os retificadores são comumente encontrados com as topologias dos circuitos partindo de 12 para arranjos de mais pulsos, como 18, 24, 30, ou ainda maiores valores para aumentar a qualidade de energia com relação ao THD [23]. O princípio de operação desse tipo de conversor é realizado pelo arranjo do autotransformador juntamente com os diodos. Os autotransformadores são realizados de tal forma que criam-se formas de ondas específicas e defasadas com a entrada de modo que são aplicadas tensões nos terminais dos diodos para sua operação em condução ou bloqueio. A operação de comutação dos diodos decorre na retificação das formas de onda de maneira que requerem pulsos de corrente extraídos da fonte. A composição dos pulsos de corrente ocorridos nos diodos visto pelo lado da entrada do conversor é dada de forma quase senoidal. Existem inúmera maneiras de conceber um conversor multipulso, porém de maneira simplificada e genérica os elementos essenciais são concebidos e arranjados como mostrado na Figura 18. Ainda, o aumento do número de pulsos do conversor aumenta a qualidade de energia, entretanto eleva a complexidade dos elementos magnéticos do mesmo. Nas figuras 19 e 20 são mostrados típicos retificadores de 12 e 18 pulsos, respectivamente, com suas específicas formas de onda. Nessas figuras fica evidente a melhora na forma da corrente senoidal do retificador

de 18 pulsos com relação ao de 12 [23].

FIGURA 18 – Esquema genérico de um conversor multipulso

FIGURA 19 – Circuito típico de um retificador de 12 pulsos com sua respectiva corrente de entrada

(a) Circuito do retificador de 18 pulsos [23] (b) Forma de onda da corrente de entrada [23]

FIGURA 20 – Circuito típico de um retificador de 18 pulsos com sua respectiva corrente de entrada

Uma característica importante quanto à operação de retificadores multipulso é o fato de que a tensão na entrada do retificador pode ter sua frequência variável. Sendo assim, o fator de potência é elevado no sistema independente da frequência em seus terminais [24, 25]. Cabe lembrar, porém, que o desenvolvimento de um conversor multipulso

deve contemplar o fato deste operar em frequência variável desde a fase de projeto, para adequar a operação do autotransformador altamente dependente da frequência de operação.

2.4.2 Sistemas Ativos

Em sistemas ativos a manutenção do sistema elétrico é feita com a utilização de conversores operados com a implementação de interruptores estáticos com comutação controlada, cujo objetivo é diversificar as topologias e, dentro de certas faixas de operação, reduzir as perdas por condução quando comparados com circuitos comutados por diodos. Com isso, a flexibilidade de projeto é aumentada de modo que há uma maior diversificação de tipos de retificadores disponíveis. Além do mais, com o comando da comutação é possível haver uma melhor regulação da tensão na saída do sistema e, utilizando topologias apropriadas, um controle de corrente de entrada de modo a proporcionar um fator de potência em acordo com os requisitos de qualidade de energia do sistema. Dois dos principais tipos de sistemas ativos implementados para mitigar as harmônicas da rede são os conversores de alto fator de potência e os filtros ativos.

2.4.2.1 Conversores com Correção de Fator de Potência

A topologia de um conversor regulado com correção de fator de potência está inserida em retificadores com condicionamento de dois estágios. A operação desses retificadores tem em seu primeiro estágio a conversão AC-DC da tensão, seguido de um segundo estágio com a regulação dos níveis DC para valores bem definidos de tensão [26]. A Figura 21 mostra o esquema de um conversor de dois estágios. Usualmente o primeiro estágio é concebido pelo arranjo de uma ponte retificadora à diodo, como mostra a Figura 22. Esse tipo de retificador, por sua simplicidade, possui um baixo fator de potência com alta distorção de corrente na linha de entrada. Para contornar este problema, conversores AC-DC com correção de fator de potência são empregados no primeiro estágio de condicionamento, tendo o controle de distorção harmônica com a inserção de semicondutores com comutação controlada. O controle de fator de potência dá-se com a operação de comando dos comutadores de forma que a corrente de entrada do conversor rastreie a forma de onda da tensão da rede, proporcionando um alto FP. [26, 27].

Encontram-se inúmeras topologias de conversores com correção de fator de potência na literatura. O mais utilizado é o conversor com correção de fator de potência, ou *Power Factor Correction* (PFC) do tipo *boost*. Esse conversor é concebido pela ponte de diodos arranjados juntamente com interruptores comutados. Ainda, pela flexibilidade de possíveis arranjos dos semicondutores sob a ponte de diodos e pelas linhas de entrada e saída de

FIGURA 21 - Conversores AC-DC de dois estágios

FIGURA 22 – Retificador trifásico com ponte de diodos

energia, uma gama imensa de conversores do tipo PFC boost pode ser concebido. O conversor Prasad-Ziogas (Figura 23), possui uma topologia simples e apresenta um único interruptor controlado. Também para facilitar o entendimento, será explicado a operação em modo de condução descontínua. O princípio de funcionamento é dado pelo controle do interruptor S_1 que, quando em estado de condução, aplica a tensão da fonte sobre os indutores de entrada L_i , i = 1, 2, 3. Isso faz com que as correntes nos indutores cresçam de forma proporcional a tensão aplicada em seus terminais pela fonte de entrada. Quando o interruptor S_1 para de conduzir, as correntes dos indutores decaem à zero. Por ter a frequência de comutação muito maior que a frequência da rede, tem-se que a corrente de entrada apresenta uma forma modulada em amplitude de alta frequência, a qual pode ser facilmente filtrada com filtros passa-baixo [28, 29]. Sendo assim o circuito completo de um conversor com PFC é concebível com um filtro passa baixa aplicado na entrada do sistema. Todavia, por ter uma modulação em alta frequência, tem-se que o filtro possui frequência de corte alta e suas dimensões e peso são reduzidos. O diagrama completo de um sistema composto pelo filtro, retificador com PFC e o regulador é mostrado na Figura 24. Após a filtragem a corrente apresenta um formato senoidal e em fase com a tensão. Na prática o funcionamento desse conversor apresenta certa distorção harmônica e não suporta alta capacidade de potência, de modo que outras topologias hibridas com circuitos PFC boost e PFC buck sejam utilizadas, ou ainda, pelo controle individual do fator de potência de cada fase para aumentar a capacidade de condicionamento de energia e tornar o FP próximo da unidade [26].

Como resultado da operação do conversor Prasad-Ziogas, as formas de onda nos indutores de entrada são mostradas na Figura 25. Como mencionado, a forma de onda apresenta modulação em amplitude (Figura 25a), assim o espectro de frequência da corrente

A frase não esta clara

FIGURA 23 – Conversor com correção de fator de potência do tipo Prasad-Ziogas [29]

FIGURA 24 – Diagrama básico do conversor PFC

de entrada apresenta um pico na componente fundamental juntamente com harmônicas nas altas frequências. Com a implementação de filtros passa-baixo com a alta frequência de corte, são atenuadas as componentes de alta frequência, sobrando majoritariamente a fundamental. A corrente de linha resultante após a filtragem é mostrada na Figura 25b.

- (a) Corrente dos indutores de entrada sem filtragem
- (b) Corrente dos indutores de entrada com filtragem de 2^{0} ordem

FIGURA 25 – Corrente de entrada para o caso sem e com filtro na linha

2.4.2.2 Filtros Ativos

Filtros ativos podem ser classificados em dois tipos: os baseados em amplificadores operacionais e os baseados em conversores CC-CA. O princípio de funcionamento do primeiro tipo de filtro é igual em sistema passivo, onde a operação é dada pela atenuação

de determinadas componentes de frequência da rede. A diferença entre os filtros ativos com os passivos é que no primeiro há a presença de amplificadores operacionais, a qual necessitam de fontes externas para funcionar adequadamente. Esse tipo de filtragem é muito utilizado em sinais de baixa potência, sendo que para o escopo desse trabalho torna-se inviável dado o tipo de potência do sistema elétrico de aeronaves.

A filtragem baseada em conversores CC-AC tem por princípio a utilização de inversores controlados, visto que este tipo de conversor pode, teoricamente, recriar formas de tensão e corrente de qualquer configuração dada à uma referência definida [30]. O princípio dos filtros ativos é promover a qualidade de energia pela compensação das componentes harmônicas presentes nos sistemas quando há a conexão de cargas não lineares. Ainda, pode-se corrigir o fator de potência de deslocamento com a filtragem ativa. Os filtros ativos baseados em conversores CC-CA possuem topologias de tal forma a compensar a não linearidade da corrente da carga ou a distorção na forma de onda da tensão do barramento com a utilização de filtros shunt ou filtros série, respectivamente. O funcionamento do primeiro tipo de filtro é dado pela injeção de corrente na rede que, somado com a requerida pela carga, faz com que a corrente no barramento do gerador tenha forma de onda senoidal e em fase com a tensão. A consequência do uso desse filtro reflete tanto no fator de potência como também na distorção harmônica na forma de onda de tensão no barramento de geração [31], visto que não haverá quedas de tensão de forma distorcidas nas reatâncias dos geradores e linhas de transmissão, como descrito na seção 2.2.2. Um exemplo de funcionamento de um filtro shunt pode ser visto na Figura 26, onde é mostrado as formas de onda de corrente na carga e no filtro que, quando somadas, tem como produto a forma senoidal de corrente nas linhas de transmissão. Já o filtro série tem como objetivo a correção da distorção da tensão aplicada à carga com a inserção de fontes controladas de tensão na linha de alimentação. A compensação dá-se pela adição de componentes defasadas em 180° às harmônicas geradas pela distorção de corrente sobre as reatâncias das linhas. Para esse último filtro a forma de onda da corrente não é compensada, de modo que o fator de potência não é igual a unidade. Assim, tem-se que o filtro série é indicado apenas para assegurar a forma de onda senoidal de tensão nos terminais de alimentação da carga [31]. A Figura 27 mostra um filtro ativo série em um sistema. Nota-se que a tensão pelo lado do barramento de geração e distribuição é distorcida, porém com a adição das tensões V_{Ac} , V_{Bc} e V_{Cc} em suas respectivas linhas, as tensões na entrada da carga apresentam uma forma de onda senoidal pura. A utilização desse tipo de filtro é apenas indicada quando deseja-se preservar a integridade da qualidade de energia pelo lado da carga, visto que a carga ainda apresenta injeção corrente distorcida no sistema de modo a contribuir com a má qualidade de energia da rede.

Em um sistema elétrico genérico com a presença de cargas não lineares, pode-se garantir a qualidade de energia de todo o sistema com a correção da forma de onda da

FIGURA 26 – Filtro ativo do tipo shunt

FIGURA 27 – Filtro ativo do tipo série

corrente de todos os pontos de alimentação das cargas. Caso o sistema não possua essa característica para correção da qualidade de energia, mas seja desejado que uma nova carga não interfira no sistema e, além disso tenha uma forma de onda de tensão pura em seus terminais, pode-se utilizar a topologia híbrida, onde há a presença tanto do filtro shunt quanto série num mesmo ponto de alimentação. Com isso, tem-se que possíveis distorções da tensão são corrigidas pelo filtro série, e ainda, garante-se que esta carga não interfira no resto do sistema com relação a não linearidade de corrente por ela produzida.

2.5 Características de Dispositivos de Correção de Fator de Potência em Sistemas Elétricos de Aeronaves

Dada a importância da manutenção da qualidade de energia em um sistema elétrico genérico para o correto funcionamento dos equipamentos nele conectados, diversas topologias de circuitos podem ser inseridas nos sistemas de modo a garantir o fator de potência próximo a unidade. As topologias vão desde a implementação de filtros conectados na rede até a utilização de conversores com alto fator de potência, sendo que este último possui larga utilização e contribui na manutenção da qualidade de energia nas redes elétricas. Entretanto cada sistema elétrico possuí características distintas em que torna-se vantajoso a utilização de certos dispositivos para correção de fator de potência quando comparado à outras topologias. A escolha do sistema de correção de fator de potência depende de diversos fatores, que vão desde as características do sistema elétrico e seu contexto de instalação, quanto às particularidades de cada tipo de sistema. Dentre as diversas características desejáveis destacam-se a simplicidade, robustez, peso, custo, confiabilidade, eficiência e etc.. Cada topologia apresenta vantagens e desvantagens frente aos requisitos do sistema elétrico a ser utilizado, e cabe ao projetista identificar as características desejadas para cada tipo de sistema e determinar qual a topologia com alto de fator de potência adéqua-se de melhor maneira à cumprir os requisitos.

O sistema elétrico de uma aeronave possui alta criticidade na segurança operacional. Com a tendência de aumento do uso de sistemas eletricamente energizado com o advento do MEA, a dependência do sistema elétrico e a criticidade na segurança tende a aumentar. Com isso, os sistemas elétricos de aeronaves possuem requisitos de modo a garantir sua integridade em voo, sendo que os equipamentos ligados nesse sistema necessitam ser robustos e confiáveis de modo que eventuais falhas não prejudiquem a segurança operacional. Dentre outras características desejáveis para um equipamento em uma aeronave, destaca o peso e volume para viabilizar o projeto economicamente. Isto deve-se principalmente à grande dependência entre o consumo de combustível com o peso da aeronave, além da dependência do volume com o espaço da cabine, influenciando na aerodinâmica e no arrasto. Por fim, os sistemas elétricos aeronáuticos alimentados com tensão alternada operam em 400 Hz para frequência fixa, e na faixa de 350 a 800 Hz em frequência variável. O projeto de sistemas de correção de fator de potência e conversores AC-DC devem considerar tais frequências na entrada de alimentação, visto que quando comparados com os sistemas comumente encontrados de 50-60 Hz as características dos sistemas nas frequências mais altas apresentam singularidades que devem ser consideradas e que podem determinar qual a tecnologia mais adequada no projeto. Ainda há a relevância sobre à frequência variável devido sua implementação em sistemas elétricos modernos, cuja capacidade de geração é mais elevada que geradores de frequência fixa. Os métodos

de filtragem para correção de fator de potência e retificação de tensão enunciados na seção 2.4 serão abordados com ênfase na utilização aeronáutica, de modo que suas principais características serão abordadas e a proposição da utilização de filtros ativos em aplicação aeronáutica será melhor elucidada.

Os filtros passivos por serem dispositivos que utilizam apenas elementos lineares como resistores, capacitores e reatores, tem sua implementação de maneira simples e com baixo custo, ao mesmo tempo que a manutenção desse dispositivo é facilitada devido a sua simplicidade. Ainda, este sistema possui flexibilidade quanto a sua implementação, sendo que este filtra as componentes de alta frequência da linha independentemente do tipo de carga conectada na rede. Ainda, a maturidade desse sistema é alta devido à larga utilização em sistemas elétricos industriais. Outra vantagem é que pode-se projetar tais filtros para compensar a potência reativa do sistema regulando o fator de potência de deslocamento [32]. Entretanto este tipo de topologia possuí grande volume e peso mesmo que operados na mitigação de harmônicas de sistemas à 400 Hz [33], o que os tornam um entrave em sua utilização em sistemas elétricos aeronáuticos. Outra restrição do uso de filtros casados passivos é o impedimento na utilização de sistemas com frequência variável [33, 34], sendo que esse tipo de geração é tendência futura em sistemas elétricos de aeronaves. A utilização de filtros com a topologia otimizada e mais complexa poderia ser utilizada para esse caso, porém isso iria contra o princípio da simplicidade da filtragem passiva [33].

Os conversores multipulso são dispositivos passivos e têm como principal característica o condicionamento de energia utilizando comutadores estáticos, sendo que o controle destes é desprovido de comando externo. Por este motivo, o projeto desta topologia apresenta uma complexidade reduzida em relação à ausência de controle dedicado aos semicondutores, ao passo que o sistema proporciona uma boa confiabilidade quanto à falha do conversor [24, 25]. Outra característica que o torna atraente na utilização no setor aeronáutico é a possibilidade de empregar esse retificador em sistemas de geração com frequência variável, apresentando baixos níveis de harmônicas na operação de 350 - 800 Hz [24, 25]. Por outro lado, existem desvantagens neste tipo de conversor, sendo que as mais afetam sua implementação no setor aeronáutico são o alto peso e volume. Isto deve-se principalmente pela utilização de autotransformadores que compõem-se de elementos magnéticos pesados e volumosos. Isto traz outra implicação que é a baixa densidade de energia com relação ao peso do conversor [32]. Entretanto, mesmo com estas características este conversor já é empregado em alguns equipamentos em sistemas elétricos aeronáuticos.

Os conversores com correção de fator de potência apresentam diversas topologias as quais podem ser empregadas para diminuir as harmônicas de corrente. Tais topologias apresentam um grande leque de opções que variam com a complexidade e densidade de

energia a ser condicionados na conversão de tensão elétrica. Primeiramente, tem-se que esta abordagem traz a necessidade de utilizar um filtro casado na linha para obtenção de corrente senoidal, como mostra a Figura 25, todavia tais filtros possuem tamanho reduzido devido à alta frequência de comutação do semicondutor controlado. No entanto estes filtros acabam por limitar a operação em frequência variável, visto que as componentes harmônicas variam no tempo, o que limita a utilização de filtros passa baixa na entrada do sistema. Como característica em uma topologia básica, estes conversores provêm boa robustez ao sistema devido a proteção quanto a limitação da corrente na carga, a qual protege o sistema elétrico contra curto circuito [24, 25]. Entretanto nesses circuitos há uma grande dissipação de energia nos semicondutores controlados fazendo com que o peso e o volume aumentem e, consequentemente, diminuem a densidade de energia [24, 25]. Existem topologias que contornam esse problema com a implementação de mais estágios de conversão [24, 25], porém este fato juntamente com a necessidade de regulador de tensão na saída do conversor aumenta a complexidade, resultando na diminuição da confiabilidade do equipamento [32].

Os filtros ativos baseados em conversores CC-CA possuem diversas características que viabilizam sua utilização em sistemas elétricos aeronáuticos. Como ocorre com os filtros passivos, existe a flexibilidade quanto a implementação de filtros ativos na rede, a qual independe o tipo de carga ou origem da distorção harmônica do sistema. Ainda, Dentre as vantagens destaca-se o fato de este conversor ter uma performance superior de filtragem, são menores e mais flexíveis que uma topologia de filtragem passiva [35]. Isto ocorre, principalmente, devido ao fato que este conversor condiciona apenas a potência reativa necessária para mitigação das harmônicas na rede. Deste modo, a sua densidade de potência é bastante elevada, ao passo que seu peso e volume é reduzido [32]. Ainda destaca-se a capacidade de utilização desse sistema em redes de frequência variável, como ocorre em aeronaves mais modernas. Outra característica é a capacidade de implementação de uma malha de controle para manutenção dos níveis de tensão na saída do conversor. A implementação de uma malha de controle pode ser até necessária dependendo da carga, visto que é requerido uma boa resposta dinâmica para suportar uma rápida variação de impedância [32], tornando-o robusto quanto a sensibilidade frente à variação da carga [36]. Dentre as características negativas quanto à utilização desse tipo de topologia na mitigação de harmônicas em sistemas aeronáuticos, tem-se a elevada complexidade se comparado à outras topologias, diminuindo a confiabilidade e elevando o custo. Além do mais, por possuir semicondutores controlados, este conversor apresenta perdas relativamente elevadas comparados à topologias de filtragem passiva [35].

Diante das características apresentadas sobre as topologias de sistemas de correção de fator de potência, seja por meios de filtragem das harmônicas, ou ainda pela característica intrínseca de retificadores com alto fator de potência, tem-se que na aplicação

aeronáutica o uso de filtros ativos são os mais promissores. Estudos mostram que o método de redução de harmônicas provida pelo sistema de filtragem ativa é a melhor topologia para ser utilizada em aeronaves [32]. Isto deve-se principalmente à sua flexibilidade, a qual pode-se implementar filtros ativos desde na linha de saída do gerador quanto em pontos de carga cujo fator de potência é baixo [37]. Outra característica que torna a filtragem ativa vantajosa é a alta eficiência e densidade de energia. Simulações mostram que, comparativamente à sistemas de filtragem passiva e conversores de alto fator de potência, os filtros ativos são os que apresentam melhor eficiência e densidade de energia [38]. Para aplicação aeronáutica essas características são essenciais para manter o baixo peso e volume dos sistemas embarcados. Ainda, a filtragem ativa oferece a capacidade de implementação para aplicações no sistema de distribuição de aeronaves mais modernas cuja geração é provida por frequência variável. Entretanto esta opção de apresenta alguns fatores que impedem que este seja amplamente utilizado nos sistemas elétricos aeronáuticos. Os principais fatores são a alta complexidade, que acaba por diminuir a confiabilidade do sistema, e as perdas nos dispositivos semicondutores. Entretanto o desenvolvimento de semicondutores que apresentam baixas perdas e alta vida útil, vem sendo progredido ao longo do tempo de maneira que a aplicação destas em sistemas que exigem alta confiabilidade podem ser aplicadas. Ainda, os controladores digitais dos semicondutores comutados estão evoluindo de modo que estes apresentem alta frequência de operação e maior velocidade de processamento. Deste modo, o desenvolvimento tecnológico na área de eletrônica de potência faz com que a robustez do sistema de filtragem ativa aumente de modo que seja interessante seu uso em sistemas elétricos aeronáuticos.

Em um sistema elétrico genérico com a presença de cargas não lineares, pode-se garantir a qualidade de energia de todo o sistema com a correção da forma de onda da corrente de todos os pontos de alimentação das cargas. Caso o sistema não possua essa característica para correção da qualidade de energia, mas seja desejado que uma nova carga não interfira no sistema e, além disso tenha uma forma de onda de tensão pura em seus terminais, pode-se utilizar a topologia híbrida, onde há a presença tanto do filtro shunt quanto série num mesmo ponto de alimentação. Com isso, tem-se que possíveis distorções da tensão são corrigidas pelo filtro série, e ainda, garante-se que esta carga não interfira no resto do sistema com relação a não linearidade de corrente por ela produzida.

3 Filtros Ativos para Sistemas Elétricos

3.1 Potência Ativa, Reativa e Fator de Potência

O entendimento de circuitos elétricos de potência necessita de conceitos matemático para a interpretação das grandezas físicas envolvidas. Várias teorias foram propostas e importantes trabalhos são reconhecidamente aceitos para detalhar de melhor maneira tanto casos específicos quanto generalistas no enfoque à relação de tensão e corrente de um circuito elétrico. Todo esse estudo deu origem à Teoria da Potência, a qual vem sendo estudada até os dias de hoje para o aprofundamento e elaboração de novos conceitos para explicar fenômenos de transferência de energia em circuitos elétricos [39].

A Teoria da Potência tem o intuito de avaliar a troca de energia entre fonte de potência elétrica e a carga sob o ponto de vista das características da tensão e corrente em seus terminais [40]. Esse estudo tem por finalidade aferir o fator de potência, o qual é um parâmetro intrínseco ao circuito e depende apenas das características da carga, independentemente da fonte.

Ainda na avaliação de troca de energia entre os elementos do circuito, o estudo da Teoria da Potência tem por finalidade prover informações a respeito da eficiência na troca de energia entre fontes e cargas. A eficiência na troca de potência em circuitos é avaliada segundo a corrente que circula pelo mesmo. Esse conceito afere a mínima corrente necessária para transferir uma quantidade de energia num determinado espaço de tempo dada uma tensão específica [40]. O fator de potência está intimamente ligado à eficiência na troca de energia, sendo que, em circuitos a qual seu valor é baixo, uma alta parcela da corrente é incapaz de gerar trabalho na saída do sistema. A consequência da presença de uma corrente excedente circulante é dada pela sobrecarga da fonte, aumento das perdas nos condutores e degradação da qualidade de energia, sendo esta última discutida na seção 2.2.2. Nessa seção é demostrada que a incidência de correntes com distorção harmônica eleva a potência extraída da fonte para uma determinada carga ativa do sistema e, com isso o fator de potência é degradado, fazendo com que seu valor seja diminuído. Por esta razão, será mostrado que para o caso onde o fator de potência é unitário tem-se que a há plena eficiência na troca de energia entre fontes e cargas.

Dentre as principais grandezas a serem estudadas na Teoria da Potência elenca-se a potência ativa e aparente. É conhecido que, na operação de um circuito elétrico, nem toda a corrente proveniente de uma fonte de tensão é convertida em trabalho por unidade de tempo. Nesse contexto aplica-se a definição de potência ativa, a qual é a corrente que

efetivamente é transferida de uma fonte para a carga de maneira a gerar trabalho na saída do sistema. Há também a potência aparente, que é definida como a potência que é gerada por uma fonte de energia e que circula pelo sistema na forma de corrente elétrica, sem ser convertida em trabalho na saída do sistema. Esse contexto pode-se estender para o entendimento para qualidade de energia de um sistema

Para o estudo a seguir sobre a definição de potência, é necessário antes ter conhecimento de alguns conceitos matemáticos. Dentre esses conceitos, tem-se a determinação de valores eficazes de funções. Dada uma função qualquer no domínio do tempo f(t), periódica cujo o período é dado por T, o seu valor eficaz recai segundo a norma Euclidiana, dado pela seguinte equação [39]:

$$F_{ef} = \sqrt{\frac{1}{T} \int_0^T f(t)^2 dt}$$
 (3.1)

3.1.1 Circuitos Senoidais Monofásicos

Dada uma função f(t) sinusoidal com a frequência angular ωt e amplitude cujo valor de pico é dado por F_p , tem-se que o valor eficaz de f(t) é dada segundo a equação:

$$F_{ef} = \sqrt{\frac{1}{T} \int_0^T [F_P \cos(\omega t + \phi)]^2 dt} = \frac{1}{\sqrt{2}} F_P$$
 (3.2)

Dessa forma, tem-se que o valor de pico de uma função sinusoidal é $\sqrt{2}$ vezes maior que o valor eficaz. Cabe enfatizar que a determinação desse valor é independente da frequência angular da função.

De forma a melhor entender os conceitos da Teoria da Potência, é exposto um exemplo de modo a evidenciar a base com os conceitos que serão apresentados no entendimento do problema da qualidade de energia. O sistema considerado é estabelecido da forma mais simples para o estudo da transferência de potência, ou seja, considera-se um sistema monofásico, com fonte de tensão sinusoidal, alimentando uma carga linear e operando em regime permanente. Tal sistema pode ser visto na Figura 28. Com essas características definidas, espera-se que a forma de onda da corrente também apresente uma forma sinusoidal, com amplitude e defasagem distintas em relação à tensão. Isso ocorre devido a carga ser linear, a qual é explicada detalhadamente na seção 2.2.1. Com isso, define-se as equações da tensão e corrente segundo as expressões 3.3 e 3.4, respectivamente.

$$v(t) = \sqrt{2} V \cos(\omega t) \tag{3.3}$$

FIGURA 28 – Circuito monofásico, linear e operando em regime permanente

$$i(t) = \sqrt{2} I \cos(\omega t - \phi) \tag{3.4}$$

A potência instantânea em um circuito monofásico é definida segundo a equação 3.5.

$$p(t) = v(t)i(t)$$

$$= 2 V \cos(\omega t) I \cos(\omega t - \phi)$$

$$= V I [\cos(\phi) + \cos(2\omega t - \phi)]$$

$$p(t) = V I \cos(\phi) [1 + \cos(2\omega t)] + V I \sin(\phi) \sin(2\omega t)$$
(3.5)

A equação 3.5 pode ser dividida em dois termos variantes no tempo: o primeiro é dado por

$$VI\cos(\phi)[1+\cos(2\omega t)] \tag{3.6}$$

E o segundo por:

$$VI\sin(\phi)\sin(2\omega t) \tag{3.7}$$

Por definição, a potência ativa é definida pelo valor médio da equação 3.6, ou seja, pela expressão 3.8. Já a potência reativa é definida pelo valor de pico da equação 3.7, ou também pela expressão 3.9.

$$P = VI\cos\phi \tag{3.8}$$

$$Q = VI\sin\phi \tag{3.9}$$

Uma rápida análise nas equações 3.6 e 3.7 trazem importantes considerações a respeito do modo de operação de um circuito monofásico, senoidal e linear. Primeiramente pode-se observar que a equação 3.6 é oscilatória e apresenta valores sempre positivos. A porção de potência ativa pode ser interpretada como a que proporciona o fluxo de energia proveniente da fonte para ser transformada em trabalho na carga. Essa consideração é válida para potência ativa visto que seu valor nunca é negativo. Ainda, por ser oscilatória, define-se como valor médio a transferência de potência da fonte para carga.

Por outro lado, a equação 3.7 apresenta um valor senoidal centrado em zero. Sua interpretação demonstra que a carga hora age como consumidora, hora age como fornecedora de potência. No caso em que a carga é linear esse efeito é causado pela inserção de elementos armazenadores de energia no circuito, como indutores e capacitores. A potência reativa é dada por não ser transformada em trabalho na saída do sistema, entretanto existe uma parcela da corrente que flui pelo circuito intrinsecamente ligado à esta potência.

As formas de onda que ilustram um caso específico dado por um sistema linear com tensão e correntes senoidais, com esta última defasada com relação à primeira, são mostradas na Figura 29. O gráfico superior apresenta a tensão, a corrente e a potência instantânea, que é obtida plea a multiplicação de v(t) por i(t). O gráfico inferior apresenta as formas de onda das expressões 3.6 e 3.7, além da potência instantânea. Aqui cabe observar também os valores de P e Q. Outra observação importante é o fato de a potência instantânea apresentar valores negativos em alguns intervalos de tempo. Durante esse intervalo tem-se que a carga está entregando potência para a fonte.

FIGURA 29 - Circuito real monofásico

Além da concepção dos conceitos estabelecidos anteriormente sobre as potências P

e Q existe outro parâmetro crucial no estabelecimento da Teoria da Potência de forma a integrar esses valores previamente estabelecidos. A concepção de potência aparente é dada como sendo a potência total fornecida pelo gerador e presente nas linhas de transmissão. De forma geral, tem-se que a definição de potência aparente é dada pela multiplicação dos valores eficazes da tensão e corrente, respectivamente, ou seja:

$$S = V I \tag{3.10}$$

Considerando agora o estudo específico onde o sistema é composto por uma fonte de tensão senoidal alimentando uma carga linear, pode-se ainda obter a expressão de potência aparente como sendo expressa através dos valores de P e Q. Analisando as equações 3.8 e 3.9 observa-se que estas estão defasadas em 90 graus. Com isso, pode-se obter o valor de potência aparente segundo a equação 3.11.

$$S = \sqrt{P^2 + Q^2} = \sqrt{(VI\cos\phi)^2 + (VI\sin\phi)^2} = VI$$
 (3.11)

Outra forma de obter o mesmo resultado é através da utilização de fasores para representar S em relação à P e Q. Definindo \dot{V} e \dot{I} como sendo os valores fasoriais da tensão e corrente de um sistema, tem-se que a potência aparente é escrita segundo a equação 3.12.

$$\mathbf{S} = \dot{V}\dot{I}^* = P + jQ = VI\cos\phi + jVI\sin\phi \tag{3.12}$$

O módulo **S** leva à mesma expressão definida em 3.11. Considerando o plano imaginário encontrado a partir da utilização das grandezas fasoriais, podem-se expressar graficamente as potências do circuito linear operando em regime permanente através do triângulo de cargas representadas no plano imaginário.

FIGURA 30 – Triangulo de potências

O fator de potência é um parâmetro utilizado como forma de quantificar a eficiência na transmissão de potência entre componentes geradoras e consumidoras de um sistema. O fator de potência representa a relação entre a potência que necessariamente é utilizada na transferência de energia em um determinado instante de tempo entre a fonte e a carga

com o total de potência que percorre o sistema. A expressão que define o fator de potência é apresentado na equação 3.13. Os possíveis valores de λ estão contidos entre 0 e 1, ou seja, $0 \le \lambda \le 1$. Isto ocorre visto que S é uma função de P, e a relação $S = \sqrt{P^2 + Q^2} \ge P$ é observada.

$$\lambda = \frac{P}{S} \tag{3.13}$$

Como forma de obter a plena eficiência na transmissão de potência, o fator de potência deve ser unitário, o que implica que Q=0. Dessa maneira garante-se que toda a energia da fonte geradora é transformada em trabalho na saída do sistema, ou ainda, a fonte enxerga a carga como sendo composta por resistências apenas.

3.1.2 Circuitos Não Sinusoidais Monofásicos

Inserido no estudo da Teoria da Potência, a presença de distorções harmônicas em circuitos elétricos introduz novas condições que promovem o aumento da potência aparente e, consequentemente, degrada o fator de potência. Os primeiros estudos sobre este tema foi desenvolvido no final do século XIX [39, 41] com a verificação da relação com distorção harmônica e potência aparente. Dentre os trabalhos conseguintes, a principal contribuição foi dada por Budeanu na década de 20 [42], a qual propôs tratar a Teoria da Potência de sistemas não senoidais através do domínio da frequência com a série de Fourier. A proposta de Budeanu foi abordar a corrente e a tensão através da série de Fourier, ou seja, considerando a tensão e corrente como uma série de funções sinusoidais com frequências e amplitude distintas. Essa consideração trouxe a definição de valor eficaz para uma forma de onda não senoidais de tensão e corrente segundo a equação 3.14 [39].

$$V = \sqrt{\sum_{h=1}^{\infty} V_h^2}; \qquad I = \sqrt{\sum_{h=1}^{\infty} I_h^2}$$
 (3.14)

Os parâmetros V_h e I_h denotam os valores eficazes das funções sinusoidais da hésima harmônica. O desenvolvimento do conceito de V e I da equação 3.14 com a definição de potência aparente da equação 3.10 traz a introdução de um novo parâmetro, denominada de potência harmônica ou de distorção, cuja variável é D. Como ocorre na equação 3.11, pode-se definir a potência aparente através dos valores P, Q com a introdução de D. Sendo assim, segundo Budeanu a potência aparente de uma função não senoidal é

definida segundo a equação 3.15 [39, 41].

$$S = \sqrt{P^2 + Q^2 + D^2} \tag{3.15}$$

Este conceito foi largamente aceito e utilizado ao longo de décadas, visto que traz uma maneira de explicar a lacuna do aumento da potência aparente em circuitos não senoidais com a introdução da potência de distorção D na definição do conceito de potência aparente [39]. Entretanto a teoria de Budeanu não é mais aceita de modo geral visto que existe várias deficiências nessa teoria [39, 41, 43]. Tais deficiências advém da proposta de Budeanu, a qual traz interpretações errôneas das definições de potência, além de que estas não possuem nenhum atributo da qual podem relacionar o fenômeno de potência em circuitos não senoidais. Na teoria de Budeanu para circuitos não senoidais, a diminuição da potência reativa não preserva o conceito da diminuição da perda da linha para uma mesma transferência de energia [39, 41]. Outra deficiência dessa teoria é que está não traz nenhuma informação útil necessária no desenvolvimento de métodos para compensar a distorção. Além disso, os valores encontrados na teoria de Budeanu não são suficientes para prover informações relacionadas à distorção harmônica [41, 43]. Por esses motivos, a teoria introduzida por Budeanu, apesar de ser utilizado por muitos engenheiros, foi excluído da norma IEEE 1459 em sua recente revisão de 2010 [39].

Outro estudo proposto na mesma época e de forma independente à Budeanu foi feito por Stanislaw Fryze. Este focou seu estudo na Teoria da Potência no domínio do tempo e, apesar de apresentar algumas limitações, é suficientemente completa para o entendimento da questão da potência para o desenvolvimento de uma proposta a qual utilizaria compensadores para tratar de componentes de corrente indesejadas nas linhas do sistema.

Segundo Fryze, em sinais periódicos e com forma de onda qualquer pode-se basear a Teoria da Totência fundamentalmente na decomposição da corrente provida pela fonte entre componente ativa e reativa [41]. Considerando um sistema cuja corrente entregue pela fonte é definida por i(t), pode-se decompor esta nas parcelas de $i_p(t)$ e $i_q(t)$, sendo a primeira a componente ativa e a segunda a componente reativa da corrente, ou seja:

$$i(t) = i_p(t) + i_q(t)$$
 (3.16)

Para definir a parcela da corrente ativa do sistema, é necessário primeiro entender o conceito de potência ativa para circuitos periódicos com forma de onda qualquer. O conceito de potência ativa do sistema com essas características é definido segundo o valor médio da potência instantânea, como mostra a equação 3.17, sendo que potência instantânea é definida pela multiplicação da tensão e corrente, representadas por v(t) e

i(t), respectivemente.

$$P = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{1}{T} \int_{0}^{T} v(t)i(t)dt$$
 (3.17)

A proposta de Fryze com a definição de corrente i(t) como a composição de componentes i_p e i_q foi a introdução de um conceito de condutância equivalente no sistema de modo a requerer apenas a parcela da corrente ativa i_p da fonte de tensão. A interpretação de tal condutância equivalente representa uma carga puramente resistiva, a qual para uma mesma tensão absorve a mesma potência ativa da carga realmente utilizada. A definição da corrente ativa, juntamente com a inclusão da condutância equivalente é dada a seguir [39]:

$$i_p(t) = \frac{P}{V^2}v(t); \qquad G_P = \frac{P}{V^2} \implies i_p(t) = G_P v(t)$$
 (3.18)

Utilizando equações 3.16 e 3.18 e realizando o produto interno entre as correntes ativas e reativas tem-se:

$$\langle i_{p}, i_{q} \rangle = \frac{1}{T} \int_{0}^{T} i_{p}(t) i_{q}(t) dt$$

$$= \frac{1}{T} \int_{0}^{T} i_{p}(t) [i(t) - i_{p}(t)] dt$$

$$= \frac{1}{T} \int_{0}^{T} \frac{P}{V^{2}} v(t) i(t) - \left(\frac{P}{V^{2}} v(t)\right)^{2} dt$$

$$\langle i_{p}, i_{q} \rangle = \frac{1}{T} \left[\frac{P}{V^{2}} \int_{0}^{T} v(t) i(t) dt - \frac{P^{2}}{V^{4}} \int_{0}^{T} v(t)^{2} dt\right] = 0$$
(3.19)

Isso leva a uma característica importante sobre a ortogonalidade apresentada entre i_p e i_q . Por serem ortogonais, a seguinte implicação é valida:

$$I^2 = I_p^2 + I_q^2 (3.20)$$

Ainda, Fryze definiu o valor da potência reativa como sendo o produto dos valores eficazes da tensão e da corrente reativa, ou seja, $Q = VI_q$. Com essa relação e pela propriedade da ortogonalidade entre $i_p(t)$ e $i_q(t)$, tem-se que a relação $S^2 = P^2 + Q^2$, tal qual apresentada na equação 3.11, é válida para a teoria de Fryze.

Com sua teoria, Fryze foi capaz de quantificar o total de energia não útil que percorre o sistema na forma de corrente reativa. Com isso foi possível à introdução da ideia de compensadores ativos, visto que se tem conhecimento da parcela da corrente a qual deve ser anulada [39]. Entretanto sua teoria possui algumas limitações quanto à

interpretação da corrente reativa, visto que não é possível classificar as características dos distúrbios presentes na corrente, além de que a definição de potência ativa proposto pela condutância equivalente não necessariamente é observada como de fato potência útil [41].

3.2 Potência Instantânea Utilizando a Teoria PQ em Circuitos Trifásicos

A potência instantânea utilizando a teoria P-Q é um conceito que utiliza de artifícios matemáticos para definir uma série de parâmetros presentes em circuitos elétricos trifásicos. A base da teoria consiste no estudo das tensões e correntes no domínio do tempo sem que haja restrição quanto ao balanceamento do sistema, à forma de onda e ainda podendo ser aplicada em regime transitório. Além disso, esta teoria pode ser utilizada tanto para circuitos trifásicos a três fios, quanto em circuitos a quatro fios com a presença de neutro. Uma das propostas concebida na utilização dessa teoria é a determinação das correntes circulantes do sistema as quais não transferem potências úteis à carga, fazendo desta uma poderosa ferramenta para ser utilizada no desenvolvimento de compensadores ativos para mitigar o efeito da circulação de potências não úteis do sistema. Com isso é possível conceber a eliminação de harmônicos, a compensação de reativos, ou mesmo a eliminação de desbalanços [44, 45].

Inicialmente tal teoria foi desenvolvida por Akagi [46], a qual definiu as tensões e correntes de um sistema trifásico como sendo valores instantâneos quantificados em espaços vetoriais ${\bf v}$ e ${\bf i}$, respectivamente. Porém, em seu desenvolvimento inicial foi proposto a transformação do espaço vetorial nas coordenadas abc, a qual é definida pelo sistema de referência estacionário cujas tensões e correntes são defasadas em 120° entre si, para as coordenadas $\alpha\beta0$, a qual o sistema de referência estacionário é dado ortogonalmente entre si [45]. Outra forma de tratar a definição de potência instantânea é trabalhando diretamente com o espaço vetorial nas coordenadas abc, sendo que as propriedades do sistema independem das coordenadas e são válidas tanto para o caso em que as definições são aplicadas em abc como em $\alpha\beta0$.

3.2.1 Transformação de Coordenadas

A teoria da potência instantânea PQ desenvolvida inicialmente por Akagi [46] emprega a transformação das coordenadas de um sistema com fases abc para coordenadas $\alpha\beta0$. O emprego dessa abordagem traz implicações de modo a poder introduzir sistemas trifásicos mais genéricos com a presença de sequência 0. Os resultados apresentados nessa abordagem apresentam as mesmas propriedades e interpretações de potência instantânea

nas coordenadas abc, ou seja, estas independem do sistema de coordenada a qual é aplicada a teoria [47].

3.2.1.1 Transformada de Clarke

A transformação de coordenadas das tensões instantâneas referenciadas no sistema abc para tensões instantâneas referenciadas no sistema $\alpha\beta0$ é feita através da aplicação da transformada de Clarke. Primeiramente considera-se que um sistema trifásico seja composto por tensões de fase v_a , v_b e v_c deslocadas em ângulo por 120° ($^{2\pi}/_{3}$) entre si. Desse modo, utilizando a equação 3.21 obtém-se as novas tensões instantâneas v_α e v_β , cujo ângulo de defasagem entre as tensões no eixo α e β é dado por 90°f ($^{\pi}/_{2}$).

$$\begin{bmatrix} v_0 \\ v_{\alpha} \\ v_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix}$$
(3.21)

Ainda, por apresentar uma matriz invertível, é possível transformar um sistema referenciado em coordenadas $\alpha\beta0$ para abc. Para a transformada inversa a relação a seguir é utilizada:

$$\begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & 1 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_0 \\ v_\alpha \\ v_\beta \end{bmatrix}$$
(3.22)

Do mesmo modo que ocorre nas tensões, a transformada de coordenada também pode ser feita para a corrente. Uma propriedade importante observada nessa transformação é que esta pode ser utilizada independentemente à forma da corrente, ou seja, esta pode conter conteúdo harmônico que a transformação ainda é válida. Sendo assim a equação 3.23 pode ser utilizada.

$$\begin{bmatrix} i_0 \\ i_{\alpha} \\ i_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}$$
(3.23)

Já a transformada inversa de coordenadas para a corrente é dada segundo a equação $3.24\,$

$$\begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & 1 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} i_0 \\ i_{\alpha} \\ i_{\beta} \end{bmatrix}$$
(3.24)

Um dos triunfos da transformada de Clarke é a separação das componentes de sequência zero das tensões e correntes (v_0 e i_0 respectivamente) expressas nas coordenadas abc, ou seja, os eixos α e β não carregam contribuições da sequência zero.

Para melhor visualizar a transformada de Clarke em um sistema trifásico balanceado, as figuras 31 e 32 mostram as tensões típicas de um sistema balanceado referenciado nas coordenadas abc e sua equivalente transformada nas coordenadas $\alpha\beta0$, respectivamente. Nessas figuras além das formas de onda em função do tempo, representadas pelas figuras 31a e 32a há ainda os equivalentes fasoriais estacionários representados pelas figuras 31b e 32b. Através da análise dessas figuras fica claro o modo que a transformada de Clarke muda a referência de um sistema trifásico com tensões v_a , v_b e v_c defasadas em 120° para um sistema cuja representação v_α e v_β estão defasadas em 90°.

FIGURA 31 – Sistema trifásico referenciado em coordenadas abc

3.2.2 Potência Instantânea em Coordenadas $\alpha\beta0$

As potências instantâneas p e q podem ser calculadas independentemente das coordenadas definidas para as tensões e correntes. Nessa seção serão apresentadas as definições

FIGURA 32 – Sistema trifásico referenciado em coordenadas $\alpha\beta0$

das potências considerando as coordenadas $\alpha\beta0$. Primeiramente, tratando as tensões v_{α} , v_{β} e v_{0} segundo o espaço vetorial definido por $\mathbf{v} = [v_{\alpha} \ v_{\beta} \ v_{0}]^{T}$ e, similarmente, definindo o espaço vetorial com as correntes i_{α} , i_{β} e i_{0} no vetor $\mathbf{i} = [i_{\alpha} \ i_{\beta} \ i_{0}]^{T}$, a potência instantânea ativa p pode ser definida segundo a equação 3.25.

$$p = \mathbf{v} \cdot \mathbf{i}$$

$$p = v_{\alpha} i_{\alpha} + v_{\beta} i_{\beta} + v_{0} i_{0}$$
(3.25)

Já a definição de potência reativa é descrita por um vetor composto pelos elementos q_{α} , q_{β} e q_0 na forma de $\mathbf{q} = [q_{\alpha} \ q_{\beta} \ q_0]^T$, a qual é definido segundo a expressão:

$$\mathbf{q} = \mathbf{v} \times \mathbf{i} \tag{3.26}$$

Ou seja, expandido a equação 3.26 define-se ${\bf q}$ como o vetor apresentado na expressão 3.27 a seguir.

$$\mathbf{q} = \begin{bmatrix} q_{\alpha} \\ q_{\beta} \\ q_{0} \end{bmatrix} = \begin{bmatrix} v_{\beta}i_{0} - v_{0}i_{\beta} \\ v_{0}i_{\alpha} - v_{\alpha}i_{0} \\ v_{\alpha}i_{\beta} - v_{\beta}i_{\alpha} \end{bmatrix}$$
(3.27)

A norma do vetor \mathbf{q} representa o valor total da potência instantânea conforme a expressão 3.28. Cabe lembrar os valores q_{α} , q_{β} e q_0 são variantes no tempo, fazendo com que o valor q seja uma função no tempo da mesma forma que p.

$$q = |\mathbf{q}| = \sqrt{q_{\alpha}^2 + q_{\beta}^2 + q_0^2} \tag{3.28}$$

Com a elucidação das potências instantâneas p e q, define-se certos parâmetros para o entendimento das propriedades e significados físicos de tais potências. Para tal, determina-se as correntes ativas e reativas instantâneas segundo as expressões 3.29 e 3.30, respectivamente.

$$\mathbf{i}_{\mathbf{p}} = \begin{bmatrix} i_{\alpha p} \\ i_{\beta p} \\ i_{0p} \end{bmatrix} \triangleq \frac{p}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$$
(3.29)

$$\mathbf{i}_{\mathbf{q}} = \begin{bmatrix} i_{\alpha q} \\ i_{\beta q} \\ i_{0q} \end{bmatrix} \triangleq \frac{\mathbf{q} \times \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$$
(3.30)

Além disso, as expressões 3.10 e 3.13 são válidas para os valores encontrados na teoria das potências instantâneas, ou seja, S = vi e $\lambda = p/s$. Conforme apresentado em [47], tais definições apresentam certos teoremas que demonstram algumas propriedades da teoria da potência instantânea.

A primeira propriedade importante advém da corrente \mathbf{i} que percorre o sistema trifásico nas coordenadas $\alpha\beta0$ como sendo a composição das correntes $\mathbf{i_p}$ e $\mathbf{i_q}$, ou seja, $\mathbf{i} \equiv \mathbf{i_p} + \mathbf{i_q}$. Tal demonstração dá-se pela expansão das expressões 3.29 e 3.30, a qual é mostrada pela equação 3.31.

$$\mathbf{i}_{\mathbf{p}} + \mathbf{i}_{\mathbf{q}} = \begin{bmatrix}
v_{\alpha} \left(\frac{v_{\alpha} i_{\alpha} + v_{\beta} i_{\beta} + v_{0} i_{0}}{v_{\alpha}^{2} + v_{\beta}^{2} + v_{0}^{2}} \right) \\
v_{\beta} \left(\frac{v_{\alpha} i_{\alpha} + v_{\beta} i_{\beta} + v_{0} i_{0}}{v_{\alpha}^{2} + v_{\beta}^{2} + v_{0}^{2}} \right) \\
v_{0} \left(\frac{v_{\alpha} i_{\alpha} + v_{\beta} i_{\beta} + v_{0} i_{0}}{v_{\alpha}^{2} + v_{\beta}^{2} + v_{0}^{2}} \right) \\
v_{0} \left(\frac{v_{\alpha} i_{\alpha} + v_{\beta} i_{\beta} + v_{0} i_{0}}{v_{\alpha}^{2} + v_{\beta}^{2} + v_{0}^{2}} \right) \end{bmatrix} + \begin{bmatrix}
\frac{v_{0}(v_{0} i_{\alpha} - v_{\alpha} i_{0}) - v_{\beta}(v_{\alpha} i_{\beta} - v_{\beta} i_{\alpha})}{v_{\alpha}^{2} + v_{\beta}^{2} + v_{0}^{2}} \\
\frac{v_{\alpha}(v_{\alpha} i_{\beta} - v_{\beta} i_{\alpha}) - v_{0}(v_{\beta} i_{0} - v_{0} i_{\beta})}{v_{\alpha}^{2} + v_{\beta}^{2} + v_{0}^{2}} \end{bmatrix} = \begin{bmatrix} i_{\alpha} \\ i_{\beta} \\ i_{0} \end{bmatrix} = \mathbf{i}$$
(3.31)

Outra importante propriedade é dada pelo paralelismo entre os vetores ${\bf v}$ e ${\bf i_p}$ em todo espaço vetorial, ou seja, ${\bf v}\times{\bf i_p}\equiv 0$. Para demonstrar essa propriedade a equação 3.32 pode ser analisada. Esse teorema tem um importante significado, a qual é a definição da corrente que se encarrega com a transferência da potência ativa instantânea entre subsistemas. Isto ocorre visto que a tensão e corrente instantâneas estão sob o mesmo eixo. Desta forma pode-se atribuir a dimensão de Watt (W) para a potência proveniente

do produto entre \mathbf{v} e $\mathbf{i}_{\mathbf{p}}$.

$$\mathbf{v} \times \mathbf{i_p} = \mathbf{v} \times \left(\frac{p}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}\right) = \mathbf{0} \tag{3.32}$$

Analogamente a propriedade explanada anteriormente, observa-se a ortogonalidade entre a tensão ${\bf v}$ e a corrente ${\bf i_q}$, ou seja, ${\bf v}\cdot{\bf i_q}\equiv 0$. A demonstração dessa propriedade pode ser analisada segundo a equação 3.33. Como explicado anteriormente, o produto entre as tensões e correntes reativas não proporcionam a transferência de potência entre a fonte e a carga. Desse modo a dimensão de tal potência não pode ser considerada W, VA ou VAr, sendo que os autores de tal teoria introduziram uma nova unidade: Volt-Ampere Imaginário (vai) [46].

$$\mathbf{v} \cdot \mathbf{i_q} = \mathbf{v} \cdot \left(\frac{\mathbf{q} \times \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right)$$

$$= \mathbf{v} \cdot \left(\frac{(\mathbf{v} \times \mathbf{i}) \times \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right)$$

$$= \mathbf{v} \cdot \left(\frac{-(\mathbf{i} \cdot \mathbf{v})\mathbf{v} + (\mathbf{v} \cdot \mathbf{v})\mathbf{i}}{\mathbf{v} \cdot \mathbf{v}}\right)$$

$$= \frac{-(\mathbf{i} \cdot \mathbf{v})(\mathbf{v} \cdot \mathbf{v}) + (\mathbf{v} \cdot \mathbf{v})(\mathbf{i} \cdot \mathbf{v})}{\mathbf{v} \cdot \mathbf{v}}$$

$$\mathbf{v} \cdot \mathbf{i_q} = 0$$
(3.33)

A observação apresentada na equação 3.32 e 3.33 trás uma implicação importante, na qual infere a ortogonalidade entre as correntes $\mathbf{i_p}$ e $\mathbf{i_q}$ no sistema, ou seja, $\mathbf{i_p} \cdot \mathbf{i_q} \equiv 0$. Deste modo, a seguinte relação pode ser obtida:

$$i^{2} = \mathbf{i} \cdot \mathbf{i} = (\mathbf{i}_{p} + \mathbf{i}_{q}) \cdot (\mathbf{i}_{p} + \mathbf{i}_{q})$$

$$= \mathbf{i}_{p} \cdot \mathbf{i}_{p} + \mathbf{i}_{q} \cdot \mathbf{i}_{q} + 2(\mathbf{i}_{p} \cdot \mathbf{i}_{q})$$

$$= i_{\alpha p}^{2} + i_{\beta p}^{2} + i_{0 p}^{2} + i_{\alpha q}^{2} + i_{\beta q}^{2} + i_{0 q}^{2}$$

$$i^{2} = i_{p}^{2} + i_{q}^{2}$$

$$(3.34)$$

Deste modo observa-se uma semelhança entre a teoria de potência PQ e a teoria apresentada por Fryze. Todavia deve ser lembrado que a demonstração anterior é válida para sistemas trifásicos com ou sem neutro, ao passo que a teoria de Fryze é utilizada para explicar os efeitos da potência em circuitos monofásicos.

3.2.3 Potência Instantânea em coordenadas abc

A teoria das potências instantâneas apresentada anteriormente é baseada em sistemas trifásicos cujas tensões abc têm suas coordenadas transformadas para a referência $\alpha\beta0$. Entretanto tal teoria não é limitada às coordenadas do sistema, sendo que a aplicação das definições e teoremas apresentadas anteriormente são válidas para o sistema trifásico baseado nas coordenadas abc. Deste modo a definição de tensão instantânea passa a compor o espaço vetorial na forma $\mathbf{v} = [v_a \ v_b \ v_c]^T$ onde as tensões $v_a, v_b \in v_c$ são as tensões das fases $v_a, v_b \in v_c$ de um sistema trifásico qualquer, respectivamente. O mesmo vale para a corrente $\mathbf{i} = [i_a \ i_b \ i_c]^T$, com as corrente $v_a, v_b \in v_c$ sendo as correntes nas linhas que compões as fases $v_a, v_b \in v_c$ respectivamente. Com isso as mesmas equações 3.25 e 3.26 já apresentadas podem ser aplicadas aqui, com a diferença que os valores dos vetores são referenciados nas coordenadas v_b . Sendo assim:

$$p = \mathbf{v_{abc}} \cdot \mathbf{i_{abc}}$$

$$p = v_a i_a + v_b i_b + v_c i_c$$
(3.35)

$$\mathbf{q_{abc}} = \begin{bmatrix} q_a \\ q_b \\ q_c \end{bmatrix} = \mathbf{v_{abc}} \times \mathbf{i_{abc}}$$
(3.36)

Independentemente das coordenadas utilizadas os valores instantâneos das potências ativa e reativa são idênticos em todo espaço de tempo. Dessa forma as relações $p = \mathbf{v_{abc}} \cdot \mathbf{i_{abc}} = \mathbf{v_{\alpha\beta0}} \cdot \mathbf{i_{\alpha\beta0}} = |\mathbf{q_{\alpha\beta0}}| = |\mathbf{q_{abc}}| = q_{abc}$ são válidas. Além disso, as definições e propriedades de correntes ativa e reativa instantâneas são validas para as coordenadas abc.

Fisicamente a interpretação das potências nas coordenadas abc é de mais fácil entendimento em comparação às coordenadas $\alpha\beta0$, visto que as denotações são válidas para cada fase propriamente dita, sem a utilização da transformação de coordenadas. Porém o emprego da transformada de Clarke é de grande valia em razão de que esta separa as tensões e correntes v_0 e i_0 dos eixos α e β , de modo que a realização das potências instantâneas nessa coordenada é mais conveniente em se tratando de circuitos com a presença de sequencia zero. Não somente em tais circuitos a transformada de Clarke é vantajosa, será visto mais a frente que a ausência de componentes de sequência zero simplifica o algebrismo pois as matrizes utilizadas têm suas dimensões diminuídas, o que torna a concepção de compensadores simplificada .

Verifiqu a frase

3.2.4 Teoria PQ em Sistemas Trifásicos a Três Fios

A teoria de potência instantânea apresentada anteriormente apresenta uma poderosa ferramenta para o estudo do comportamento de sistemas elétricos trifásicos genéricos. Esta teoria é baseada no domínio do tempo e pode ser aplicada em regime transitório ou permanente, em sistemas balanceados ou desbalanceados, trifásicos com ou sem a presença de neutro. A complexidade fica a cargo da abrangência das características presentes no sistema sob estudo. Para o caso específico de uso aeronáutico, certas particularidades nas características do sistema elétrico fazem com que a teoria de potência instantânea possa ser realizada com algumas simplificações sem perda de generalidade.

Dentre as principais características de um sistema aeronáutico, àquelas que proporcionam relevância no estudo da teoria da potência são:

- Sistemas balanceados
- Desconsideração do fio neutro

Os sistemas podem ser considerados balanceados visto que a geração de energia elétrica é proveniente de geradores que, por seus aspectos construtivos, possuem a geração de tensões senoidais balanceadas sem a presença de sequência negativa ou zero. Ainda, as normas aeronáuticas exigem que as cargas sejam distribuídas de maneira balanceada nas fases, de modo a não haver quedas de tensão nas fases evitando desbalancear as tensões do sistema trifásico no PCC.

Apesar da geração e distribuição elétrica em aeronaves com sistema trifásico ser baseada na presença do fio neutro, os equipamentos a qual a teoria da potência instantânea será implementada para realização da filtragem ativa são projetadas essencialmente a três fios ou com a desconsideração do neutro. Isto se deve ao fato de que as cargas trifásicas a qual apresentam não linearidades e, consequentemente, injeção de harmônicas no sistema são majoritariamente sem a presença do neutro. Para o caso em que o neutro faz-se presente a corrente nesta acaba por ser nula dado pelo equilíbrio das correntes nas linhas do circuito, cabendo a desconsideração deste na teoria da potência instantânea elucidada neste trabalho. As cargas trifásicas sem a presença de neutro são basicamente àquelas cuja entrada apresenta uma ponte de Graetz, como mostrado na Figura 33. Já as cargas não lineares com a conexão de neutro são baseadas na presença de transformadores cuja saída é conectada a uma ponte de elementos semicondutores. Para este último caso a corrente no neutro é nula e pode ser desconsiderada nos cálculos de potência instantânea. Um exemplo desta última carga é mostrada na Figura 34.

Com as simplificações propostas nessa seção, os valores instantâneos de v_o e i_o tem

FIGURA 33 – Retificador trifásico por ponte de Graetz

FIGURA 34 - Retificador trifásico com neutro

valores nulos. Utilizando as definições propostas nas equações 3.25 e 3.26 levando em conta os valores $v_o = 0$ e $i_o = 0$, as potências instantâneas p e q são definidas a seguir:

$$p = \mathbf{v} \cdot \mathbf{i} = v_{\alpha} i_{\alpha} + v_{\beta} i_{\beta} \tag{3.37}$$

$$\mathbf{q} = \mathbf{v} \times \mathbf{i} = \begin{bmatrix} q_{\alpha} \\ q_{\beta} \\ q_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ v_{\alpha} i_{\beta} - v_{\beta} i_{\alpha} \end{bmatrix}$$
(3.38)

Pela definição de potência instantânea reativa definida pela equação 3.28, o valor de q é denotado por:

$$q = |\mathbf{q}| = q_0 \tag{3.39}$$

As potências instantâneas definidas podem ser combinadas em uma matriz, como mostrado na equação 3.40. Nesta expressão estão presentes tanto a consideração da presença dos valores de corrente e tensão de sequência zero, como também os valores das

potências p e q com a implicação que traz com a exclusão de v_0 e i_0

$$\begin{bmatrix} p \\ q_{\alpha} \\ q_{\beta} \\ q_{0} \end{bmatrix} = \begin{bmatrix} v_{\alpha} & v_{\beta} & v_{0} \\ 0 & -v_{0} & v_{\beta} \\ v_{0} & 0 & -v_{\alpha} \\ -v_{\beta} & v_{\alpha} & 0 \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \\ i_{0} \end{bmatrix}; \qquad v_{0} = 0 \Longrightarrow \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} v_{\alpha} & v_{\beta} \\ -v_{\beta} & v_{\alpha} \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix}$$
(3.40)

Outra maneira de definir as potências instantâneas baseadas na exclusão das componentes de sequencia zero v_0 e i_0 é a partir da transformada fasorial das tensões e correntes nas coordenadas $\alpha\beta 0$. Sendo os valores das tensões nos eixos α e β defasados em 90^o , as tensões e correntes fasoriais podem ser definidos a seguir:

$$\mathbf{v} = v_{\alpha} + jv_{\beta} \tag{3.41}$$

$$\mathbf{i} = i_{\alpha} + ji_{\beta} \tag{3.42}$$

Pela definição de potência aparente no espaço vetorial dada por $\mathbf{s} = \mathbf{vi}^*$, onde (*) denota o valor conjugado, a potência aparente em termos das tensões e correntes nas coordenadas α e β é dado por:

$$\mathbf{s} = \mathbf{v}\mathbf{i}^* = (v_{\alpha} + jv_{\beta})(i_{\alpha} - ji_{\beta}) = (v_{\alpha}i_{\alpha} + v_{\beta}i_{\beta}) + j(v_{\beta}i_{\alpha} - v_{\alpha}i_{\beta})$$
(3.43)

Pela própria definição de potência, os valores presentes no eixo real são definidos como sendo a potência ativa ao passo que as potências no eixo imaginário são definidas como as potências reativas. Deste modo, através da equação 3.43 os valores ativos e reativos são definidos por $p = v_{\alpha}i_{\alpha} + v_{\beta}i_{\beta}$ e $q = v_{\beta}i_{\alpha} - v_{\alpha}i_{\beta}$, ou também na forma:

Nota-se uma inversão de sinal na potência instantânea reativa q entre a teoria originalmente apresentada por [46] e exposta na equação 3.40 com a teoria da potência apresentada na expressão 3.44. Ambas as teorias são válidas quanto a aplicabilidade e no design de compensadores ativos, entretanto, segundo [44], a teoria na equação 3.44 apresenta um significado melhor aceito dado o conceito convencional que correntes em atraso (indutivo) apresentam sinal corretamente definidos com a utilização da equação 3.44.

3.2.5 Significado Físico dos Parâmetros da Teoria PQ

As definições apresentadas anteriormente são suficientes para elucidar os conceitos físicos que as potências instantâneas p e q apresentam.

Como explicado anteriormente, o conceito de potência instantânea ativa advém do produto entre tensão e corrente as quais estão dispostos em eixos paralelos de um espaço vetorial, independentemente das coordenadas utilizadas. Deste modo, para um sistema trifásico com ou sem neutro, a potência ativa tem seu significado físico descrito pelo fluxo de energia por unidade de tempo entre dois subsistemas [44]. Cabe salientar que p é descrito como uma função no tempo, sendo que o valor em determinados instantes representam o fluxo de potência instantânea. Esta definição pode diferir com o conceito clássico da teoria de potência que utiliza de valores médios para determinar a transferência de potência entre dois subsistemas.

Analogamente à p, a potência reativa instantânea q é definida como o produto de tensões e correntes perpendiculares no espaço vetorial, deste modo sua contribuição no fluxo de energia por unidade de tempo entre dois subsistemas é descrito como nulo. Dessa forma, o significado físico que descreve a potência reativa instantânea q é o fluxo de energia por unidade de tempo que é trocado entre as fases do sistema sem que haja transferência entre subsistemas. Esta característica só é encontrada em sistemas trifásicos e não pode ser aplicado a circuitos monofásicos separadamente. A Figura 35 ilustra uma maneira de observar a presença das potências em um sistema trifásico qualquer. Em tal figura pode-se observar que em um determinado instante de tempo uma potência trifásica denominada $p_{3\phi} = p + p_0$ flui de um subsistema para outro, ao passo que a q esta contido na troca de potência entre as fases, sem contribuir para o fluxo de energia entre subsistemas. Mesmo assim, deve-se lembrar de que a presença de q faz com que as correntes de fase são acrescidas, como descrito anteriormente.

FIGURA 35 – Circulação das potências instantâneas em um sistemas trifásico [44]

Para o melhor entendimento, considera-se o exemplo a seguir realizado com a utilização do circuito da Figura 36. Esse sistema é composto por um circuito trifásico a

quatro fios alimentado uma carga de capacitores com capacitâncias C_1 , C_2 e C_3 .

FIGURA 36 – Circuito trifásico a quatro fios

Primeiramente, considerando que a carga seja equilibrada, ou seja, os capacitores apresentam mesmo valor de capacitância, as potências instantâneas p e q em função do tempo são apresentadas nas figuras 37a e 37b, respectivamente. Para este caso podese observar que a transferência de potência ativa entre a fonte e a carga é nula, visto que os capacitores são carregados e descarregados de tal modo que o total de energia trocada entre a fonte e a carga é nulo. Já a potência reativa não é nula visto que existe uma corrente equilibrada entre as fases e estas apresentam ortogonalmente dispostas às tensões.

FIGURA 37 – Potências instantâneas considerando $C_1 = C_2 = C_3$

O segundo exemplo utiliza o mesmo circuito, porém com um capacitor C_1 com valor diferente de C_2 e C_3 . Nesse caso o carregamento e descarregamento dos capacitores não serão balanceados, de modo a haver uma corrente instantânea nos terminais de C_1 diferentemente à C_2 e C_3 . Com isso um fluxo de potência ativa instantânea existe entre a fonte e a carga, de modo que em um semi-cilo a fonte fornece energia e no semi-ciclo subsequente ocorre o oposto. Isto pode ser observado na Figura 38a. Entretanto ainda

existem componentes de corrente dispostas perpendicularmente às tensões, havendo assim a presença de potência reativa q sendo trocada entre as fases.

FIGURA 38 – Potências instantâneas considerando $C_1 \neq C_2 = C_3$

3.3 Filtros Ativos

Filtros ativos são elementos inseridos em circuitos elétricos cujo objetivo é criar uma fonte que interaja com os parâmetros de tensão/corrente de modo a eliminar condições indesejadas no sistema. Os filtros ativos são divididos em três tipos: shunt, série e hibrido, e a aplicação de cada tipo de filtro é determinada por qual parâmetro do circuito desejase corrigir. Na seção 2.4.2.2 é apresentado o princípio de operação de cada tipo de filtro ativo, mostrando em quais situações estes podem ser aplicados.

Em se tratando de sistemas elétricos aeronáuticos, a escolha do tipo de filtro ativo é baseado nos parâmetros do sistema que se deseja adequar a fim de cumprir com as normas aeronáuticas e garantir o correto funcionamento dos equipamentos. Com isso a utilização dos três filtros tipo de filtragem pode ser escolhida visto que garantiriam a qualidade de energia na entrada dos equipamentos da aeronave. Entretanto deve-se analisar não apenas a viabilidade técnica, mas também econômica no que tange os sistemas.

Os filtros série são utilizados para a correção das harmônicas presentes na forma de onda da tensão na entrada de alimentação elétrica das cargas. Seu objetivo não proporciona a correção da forma de onda das correntes das linhas, de modo que as regiões do circuito que estão dispostas fora da atuação do filtro sofreriam com a má qualidade de energia. Com isso a utilização deste filtro poderia ser aplicada nos sistemas elétricos aeronáuticos com a ressalva de que todos os equipamentos presentes na rede necessitariam estar cobertos por filtros série. Esta solução, mesmo que plausível tecnicamente, não

apresentaria benefício econômico, visto que a complexidade, o custo e o peso dos sistemas aumentariam.

Os filtros shunt por sua vez são utilizados para a correção das distorções presentes na corrente dos sistemas. Deste modo, a implementação desse tipo de filtragem em cargas não lineares, cuja característica operacional apresenta a injeção de harmônicos por meio de queda de tensão nas impedâncias das linhas, seria suficiente para adequar a qualidade de energia do sistema elétrico. Esta característica traz grande vantagem devido ao fato de que nem todas as cargas são não lineares. Este peculiaridade faz com que seu uso seja adequado aos equipamentos do sistema elétrico aeronáutico devido à utilização da filtragem ativa do tipo shunt à apenas em equipamentos não lineares. Com isso, a qualidade de energia do sistema é mantida sem que haja abundância quanto a quantidade de equipamentos cobertos por filtros ativos. Tal circunstância faz com que a utilização deste tipo de filtragem apresente viabilidade econômica no mercado aeronáutico.

Os filtros ativos com topologia híbrida são concebidos pela junção da filtragem série e shunt. Deste modo a qualidade de energia nos pórticos dos equipamentos apresentam tensões e correntes senoidais, independentemente da carga. Apesar de esta característica ser vantajosa para sistemas aeronáuticos com relação à qualidade de energia, os problemas com sua utilização recaem nos mesmos que inviabilizam o uso de filtros série. Como a utilização de filtros shunt já é condição necessária para a manutenção da qualidade de energia, filtros híbridos não trás vantagens suficientes para sua implementação no setor aeronáutico.

Com este entendimento o sistema de filtragem ativa do tipo shunt é o mais adequado para a aplicação proposta neste trabalho. Deste modo, o foco apresentado será apenas relacionado à utilização deste tipo de filtragem devido sua relevância na aplicação aeronáutica. Ainda, como mostrado na seção 3.2.4, os sistemas aeronáuticos a qual cargas são relevantes quanto a aplicação de filtragem ativa dá-se em circuitos trifásicos a 3 fios, ou seja, sem a presença ou com a desconsideração neutro devido aos aspectos construtivos e operacionais.

3.3.1 Filtros Ativo Empregando a Teoria PQ

O emprego da teoria de potência instantânea para realização de filtragem ativa é feita através da aplicação das equações algébricas apresentadas anteriormente para a determinação das potências p e q, seguido do tratamento destes dados para posteriormente determinar as correntes que serão compensadas. Em seguida, tais valores instantâneos de corrente são aplicados como referência em conversores estáticos na utilização da filtragem ativa. A filtragem ativa utilizando a teoria PQ tem como característica a facilidade nos

cálculos dado que apenas expressões algébricas são realizadas, tem uma boa resposta dinâmica, podem ser aplicados a qualquer circuito trifásico balanceados ou desbalanceados, com ou sem a presença de harmônicas, e ainda em regime transitório ou permanente [48]. Na prática o funcionamento dos filtros ativos é limitado apenas pelas características dos conversores estáticos a qual realizam a injeção de corrente no sistema. Por possuírem uma resposta dinâmica não instantânea, o desempenho da filtragem é restringido pela dinâmica dos conversores estáticos. Para fins didáticos, primeiramente será considerado que as correntes provenientes do filtro ativo sejam adquiridas através de fontes de corrente controladas.

A teoria PQ possui como característica a determinação das potências instantâneas ativa e reativa de modo que estas carregam importantes atributos das formas de onda das tensões e correntes do sistema. A determinação das potências ativa e reativa como função das tensões e correntes nas coordenadas $\alpha\beta0$ é apresentado na equação 3.40. Nesta equação é mostrado tanto o cálculo das potências cujas componentes v_0 e i_o são não nulos quanto para o caso em que tais valores são nulos. O caminho inverso para a determinação das correntes i_{α} , i_{β} , e i_0 para um sistema a qual é conhecida as tensões e as potências instantâneas é determinada segundo a equação 3.45.

$$\begin{bmatrix} i_{\alpha} \\ i_{\beta} \\ i_{0} \end{bmatrix} = \frac{1}{v_{\alpha}^{2} + v_{\beta}^{2} + v_{0}^{2}} \begin{bmatrix} v_{\alpha} & 0 & v_{0} & -v_{\beta} \\ v_{\beta} & -v_{0} & 0 & v_{\alpha} \\ v_{0} & v_{\beta} & -v_{\alpha} & 0 \end{bmatrix} \begin{bmatrix} p \\ q_{\alpha} \\ q_{\beta} \\ q_{0} \end{bmatrix}$$
(3.45)

Para o caso onde as componentes de sequência zero são nulas, ou seja, eliminando as variáveis v_o e i_0 da equação, a expressão a qual representa os valores instantâneos das correntes nas coordenadas $\alpha\beta0$ a partir dos valores da tensão e potências p e q são apresentadas pela equação 3.46.

$$\begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = \frac{1}{v_{\alpha}^{2} + v_{\beta}^{2}} \begin{bmatrix} v_{\alpha} & v_{\beta} \\ v_{\beta} & -v_{\alpha} \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix}$$
(3.46)

Cabe lembrar que o sinal utilizado na expressão 3.46 é definido segundo a convenção utilizada na equação 3.44. Com a determinação das correntes nas coordenadas $\alpha\beta0$ podese utilizar a transformada inversa de Clarke (equação 3.24) para obter as correntes nas coordenadas abc.

Com as expressões apresentadas, a determinação das correntes i_{α} e i_{β} pode ser realizadas através das potências ativa e reativa e das tensões instantâneas. Ainda, podese estender a obtenção não apenas das correntes nas coordenadas $\alpha\beta0$ mas também em abc. O princípio da filtragem ativa através da utilização da teoria PQ é dado a partir

da obtenção de forma de onda das correntes a serem compensadas e utiliza-las como referência de entrada em compensadores de corrente, tal qual mostrado na Figura 39. A determinação das correntes de compensação é feita através da análise da composição das potências ativa e reativa instantânea de um sistema e, com isso, pode-se selecionar partes de p e q de modo a especificar as potências a serem compensadas p_c^* e q_c^* pelo filtro. As potências p_c^* e q_c^* são finalmente utilizadas na equação 3.46 de modo a consagrar as correntes a serem utilizadas como referência em um compensador de corrente. O diagrama completo do sistema do filtro ativo é mostrado na Figura 40.

FIGURA 39 – Compensador ativo [44]

FIGURA 40 – Diagrama com procedimentos de cálculo de um compensador [44]

3.3.1.1 Seleção de Potências Compensadas

O funcionamento de um circuito trifásico qualquer é realizado com o fluxo de potência instantânea p e q entre seus subsistemas e fases. Com os valores de p e q em um determinado instante de tempo, pode-se definir os valores das correntes nas fases do circuito, visto que as potências instantâneas são definidas como função de tais correntes. A determinação da referência para utilizar em um compensador é dada de maneira que este injete componentes de corrente cujo objetivo é anular partes das potências que são indesejadas no circuito. Esta compensação é realizada com a obtenção de formas de onda de corrente de modo a prover potências com valores simétricos às partes de p e q que deseja-se compensar.

De maneira geral, as potências instantâneas podem ser entendidas como sendo a composição de uma parcela constante e uma oscilatória. A parcela constante pode ser captada como a componente de frequência zero de uma forma de onda, sendo assim esta parcela apresenta valores médios diferentes de zero. A parte oscilatória é dada pela presença de valores positivos e negativos de modo que seu valo médio é nulo. Por conseguinte pode-se definir as potências p e q como a composição dos valores médios e oscilantes conforme a equação 3.47. Para fins de denotação \overline{p} e \overline{q} representam a parcela média, enquanto que \widetilde{p} e \widetilde{q} denominam a parte oscilante.

$$p = \overline{p} + \tilde{p}$$

$$q = \overline{q} + \tilde{q}$$
(3.47)

Como explicado na seção 3.2.5, a potência instantânea reativa é definida por não fornecer troca de energia em um determinado instante de tempo entre subsistemas, sendo que esta potência é estabelecida pela energia que flui entre as fases do circuito. Deste modo, a presença desta potência em um sistema apenas eleva os níveis de correntes de linhas, apresentando em determinadas situações componentes harmônicas que degradam a qualidade de energia. Além do mais, o fator de potência é degradado com a presença da potência reativa instantânea. Sendo $\lambda = p/s$, $\sqrt{p^2 + q^2} \ge p$ e $s = \sqrt{p^2 + q^2}$, tem-se que a relação 3.48 é valida. Desta maneira, para que o fator de potência λ apresente valores unitários, a potência reativa instantânea necessariamente deve ser zero para todo instante de tempo, ou seja, $q \equiv 0$.

$$\lambda = \frac{p}{\sqrt{p^2 + q^2}} \le 1\tag{3.48}$$

Cabe lembrar que o fator de potência definido por $\lambda = p/s$ é exposta pela relação das potências instantâneas, portanto este é definido pelo fator de potência em cada instante de tempo.

Os valores oscilatórios da potência ativa instantânea são estabelecidos pela troca de energia entre subsistemas, sendo que uma carga pode apresentar-se como consumidora e fornecedora de energia durante instantes específicos do tempo. Considerando os valores médios, como apresentados na equação 3.13, o fator de potência apresentaria atribuições diferentes comparativamente apresentada na equação 3.48, sendo que as componentes oscilantes da potência p elevariam os valores da potência aparente do sistema. Desse modo para obter o fator de potência unitário para a transmissão de energia entre subsistemas os valores oscilantes de p necessitam ser compensados. Dessa maneira a única potência vista pelo lado da carga em um sistema com compensadores seria a instantânea média ativa, ou a parcela \bar{p} da expressão $p = \bar{p} + \tilde{p}$.

Outras combinações de potências instantâneas a serem compensadas podem ser aplicadas em um compensador com o objetivo de adquirir funcionamentos distintos aos objetivos de elevar a qualidade de energia. Para isso o estudo do comportamento deve ser realizado de modo a definir as potências desejáveis a se ter no sistema. Todavia, como o objetivo deste trabalho é aumentar a qualidade de energia, apenas as potências q e \tilde{p} serão compensadas de modo a obter um sistema que atue como sendo composto por uma fonte entregando uma quantidade de energia constante para as cargas. Com este comportamento garante-se que as formas de onda da corrente são estabelecidas como sendo senoidais e em fase com as tensões de fase, de modo que a fonte enxergaria a carga como sendo composta por resistências puras e com o fator de potência unitário.

3.3.1.2 Concepção dos Filtros Ativos

O filtro ativo apresentado nesse trabalho tem por objetivo a compensação de parcelas das correntes do sistema as quais carregam intrinsecamente determinadas potências instantâneas. A concepção do filtro decorre da utilização das equações algébricas para determinar os valores p e q, seguido de métodos para processa-las e determinar qual parcela deseja-se compensar. Este processo leva a obtenção das correntes a serem compensadas facilmente, de modo que estas possam ser utilizadas como referência em inversores estáticos para a criação das correntes a serem injetadas no sistema.

A concepção de tais filtros é comumente realizada através da utilização pontes inversoras as quais são controladas via processadores de sinais, ou DSPs (Digital Signal Processor). Além do mais, são necessários sensores de tensão e corrente as quais alimentam as entradas analógicas dos DPSs para o tratamento de dados e determinação das referências a serem aplicadas nos controle do inversor. A geração dos sinais de corrente a serem aplicadas no sistema é realizada pela comutação controlada das chaves estáticas, onde o controle é feito via PWM, cuja concepção é dada pelo próprio DSP. O diagrama do filtro é mostrado na Figura 41.

FIGURA 41 – Filtro ativo com inversor estático [44]

Para o correto funcionamento do filtro, as potências a serem compensadas devem ser determinadas corretamente. Como observado na seção 3.3.1.1 o objetivo da concepção do filtro tratado neste trabalho visa compensar certas potências de modo que apenas a parcela composta pela potência média que flui entre fonte e carga seja mantida. Com isso as potências instantâneas reativa q e a parcela oscilante da ativa \tilde{p} devem ser neutralizadas. Uma maneira de separar as potências ativa média e oscilante é através da implementação de um filtro passa baixa. Com isso, o sinal na saída do filtro pode ser utilizado nos cálculos das correntes de compensação de modo que a saída do compensador apresente formas de onda que anulem a presença da potência oscilatória do sistema. Um importante fator a ser definido deve ser a frequência de corte do filtro passa baixa. Uma frequência baixa seria o ideal visto que \tilde{p} apresentaria todas as componentes a ser compensadas. Todavia a presença do filtro passa baixa altera a dinâmica do compensador, atribuindo um atraso na resposta do mesmo. Portanto, a escolha da frequência do filtro passa baixa deve ser de tal maneira à atender simultaneamente a dinâmica e a performance do compensador. O esquema dos passos de cálculo que um dispositivo deve realizar para determinar corretamente as correntes a serem compensada é mostrado na Figura 42. Cabe lembrar que tal concepção é apresentada considerando sistema ideal, de modo que a topologia do filtro real é ligeiramente diferente deste e será apresentada na seção ??

Para melhor elucidar a operação dos filtros ativos do tipo shunt, será considerado um sistema composto por uma fonte senoidal trifásica a três fios, alimentando uma carga não linear balanceada cuja corrente possui forma de onda distinta de uma senoide. Há também a presença de um compensador operando nos moldes da Figura 39, com os cálculos presentes na obtenção das correntes de referência em acordo com topologia mostrada na Figura 42. Como forma de facilitar a visualização, será apresentado apenas a tensão e corrente da fase a, a medida que as formas de onda das tensões e correntes das fases b

colocar a referencia correta

FIGURA 42 – Diagrama com procedimentos de cálculo de um compensador [44]

e c do sistemas não serão apresentadas. Entretanto cabe lembrar para efeito de cálculo das potências instantâneas todas as tensões e correntes presentes nas fases a, b e c são consideradas.

Primeiramente a Figura 43 mostra a forma de onda da tensão e corrente do sistema descrito anteriormente. Considerando que as três fases apresentam as mesmas característica de forma de onda com a particularidade de estarem defasadas em $\pm 120^{\circ}$ entre si, as potências instantâneas p e q vista pelo lado da carga podem ser vistas na Figura 44.

O filtro do exemplo possui sua operação iniciando em t_i e cessando em t_f . Na Figura 45 estão expostas as potências a serem compensadas durante o período de tempo a qual o filtro opera, ou seja, mostra as formas de onda de -q e $-\tilde{p}$.

Com o processamento das potências -q e $-\tilde{p}$ pelo filtro, a corrente de compensação i_{Ca} é obtida e mostrada na Figura 46. Como o filtro operará apenas entre t_i e t_f , a corrente de compensação é apresentada apenas entre este período.

Por fim, adicionando as correntes de compensação à corrente da carga i_{La} obtém-se a forma de onda apresentada na Figura 47. Ainda, expondo tal forma de onda juntamente com a tensão de linha v_a , verifica-se claramente que a tensão e a parte compensada da corrente estão em fase. Com isso, é obtido um fator de potência unitário e a fonte de tensão enxerga o subsistema composto pela carga e filtro como sendo resistências puras. A potência ativa e reativa entregue pela fonte denotada por p_S e q, respectivamente, é apresentada na Figura 48, onde pode ser visto que no período em que o filtro opera um fluxo de potência ativa constante e reativa nula é estabelecido.

FIGURA 43 – Tensão \boldsymbol{v}_a e corrente i_{La} na entrada da carga

FIGURA 44 – Potências instantâneas pe q

FIGURA 45 – Potências instantâneas a serem compensadas $-\tilde{p}$ e-q

FIGURA 46 – Corrente de referência i_{Ca}^{\ast} a ser aplicado no inversor

FIGURA 47 – Tensão \boldsymbol{v}_a e corrente filtrada i_{Sa} fornecida pela fonte

FIGURA48 – Potência entregue pela fonte

4 Simulação de Filtro Ativo Shunt Aplicado em um Sistema Elétrico Aeronáutico

40 Págs

Analisar se esse título está adequado

4.1 Características de Filtros Ativos em Sistemas Reais

4.1.1 Inversores Estáticos

Idealmente considera-se que filtros ativos são compostos por fontes de tensão/correntes controladas, a qual podem fornecer tensão/corrente de maneira a acompanhar uma dada referência. A concepção dessa fonte é realizada por meio de inversores estáticos, as quais são sistemas compostos por elementos semicondutores que, por meio de um controle de comutação de alta frequência, conseguem criar formas de onda/corrente para uma dada referência.

4.1.1.1 Tipo de Conversores

Na aplicação de um filtro ativo do tipo shunt a topologia do conversor pode ser resumida em dois tipos: Conversores baseados em fonte de tensão (VSC - Voltage-source Converter) e Conversores baseados em fonte de corrente (CSC - Currente-source Converter) [44]. Para ambos os casos, o arranjo dos interruptores é o mesmo, todavia a diferença recai no lado DC do conversor. Enquanto o VSC possui uma fonte de tensão disposta no lado DC, o CSC dispõe de uma fonte de corrente em tal posição. As figuras 49a e 49b mostram circuitos comumente empregados para sistemas VSC e CSC respectivamente.

Os interruptores representados nas figura 49a e 49b são realizadas por comutadores estáticos controlados, tal como MosFets, IGBTs, GTOs ou etc. Cada uma destas tecnologias possuem características distintas de modo que seu emprego depende do comportamento esperado para cada tipo de aplicações. Observa-se também a presença de diodos em antiparalelo aos semicondutores para o caso VSC. Estas estão presentes de maneira a criar um caminho de roda livre para permitir a passagem de corrente induzida por indutâncias intrínsecas das linhas de transmissão e dos filtros. A presença deste não

FIGURA 49 – Inversores de tensão e corrente

é aplicada em CSC, entretanto este tem presente diodos de bloqueio em série às chaves semicondutoras como forma proteção [49, 50]

4.1.1.2 Controle do PWM

Em ambos os casos o controle de tensão/corrente do lado AC é realizado por PMW. Este sinal é comumente gerado por um microcontrolador programado de maneira a operar a comutação dos semicondutores a fim de obter uma saída específica no lado AC. Exitem dois principais tipos de controle por PWM para o comando de conversores: o de frequência fixa e frequência varável. O primeiro tipo opera comparando um sinal de referência com um sinal periódico triangular com frequência fixa e de valor elevado para determinar a razão cíclica dos pulsos. Nesta operação a saída apresenta em seu especto de frequência uma componente fundamental de baixo valor seguido de componentes de alta frequência provenientes da onda triangular. Com isso, o emprego de filtros com frequência de corte elevada torna a saída composta apenas pela fundamental, que corresponde ao sinal de referência da entrada do comparador. Já a operação com frequência variável tem como principal característica o controle por histerese. Nesta operação o sinal de referência é envolto por uma banda de histerese que faz com que a operação da comutação dos semicondutores mantém o sinal de saída contido dentro desta banda. Para o melhor entendimento, a operação de controle por histerese é mostrado na Figura 50 [51].

A implementação de ambos os tipos VSC e CSC mostram-se adequadas para a aplicação em filtros ativos do tipo shunt. Todavia para o uso em sistemas aeronáuticos o conversor do tipo VSC apresenta maiores vantagens devido à maior eficiência, menor custo, menor tamanho e peso comparativamente ao CSC [44]. Já o controle PWM mais

FIGURA 50 – Controle por histerese [51]

adequado e comumente encontrado na aplicação deste tipo de filtro é feito por frequência variável por histerese. O controle PWM faz com que o VSC se comporte com o fonte de corrente pela comparação da saída do inversor com a referência advinda do controlador. O comportamento de fonte de corrente ocorre pela adição de indutores de acoplamento na saída do conversor, de modo que o controle dos semicondutores aplique pulsos de tensão advindas do capacitor do lado DC tornando a corrente crescente ou decrescente proporcionalmente à indutância e a tensão aplicada em seus terminais. Este sinal é medido e comparado com as bandas de histerese do sinal de referência, fazendo com que a operação dos semicondutores se estabeleçam de forma a manter o sinal de saída entorno à referência.

Como forma de obter uma resposta rápida às variações do sinal de referência, a aplicação de uma alta indutância impede que a saída do conversor acompanhe adequadamente a referência caso esta apresente alta $^{di}/dt$. Deste modo é desejável um valor de indutância com baixo valor na saída do conversor de modo a não limitar uma rápida variação de corrente no tempo. Todavia essa aplicação traz a implicação de tornar a corrente de saída ruidosa, trazendo o aparecimento de componentes de alta frequência nas tensões de fase do sistema. Para contornar esse problema, capacitâncias são aplicadas entre as fases como forma de de criar um caminho de baixa impedância para as componentes de alta frequência, filtrando o sinal ruidoso de alta variação no tempo. O valor dessa capacitância deve ser escolhido de maneira a atender a filtragem de corrente do conversor mas também não pode ser elevada o suficiente para aumentar a potência reativa do sistema e consequentemente diminuir o fator de potência.

O esquema do filtro com a implementação da indutância de acoplamento e das capacitâncias de filtragem de componentes de alta frequência da corrente é mostrado na Figura 51.

FIGURA 51 – Esquema do inversor com indutor de acoplamento e filtro capacitivo

4.1.1.3 Controle de Tensão no Lado DC

No capítulo ?? foi estudado extensivamente as propriedades e significados físicos das potências instantâneas em circuitos trifásicos. Uma importante consideração acerca da potência q é que está não contribui com a transferência de potência entre subsistemas de um circuito, sendo que esta é presente apenas sendo trocada entre as fases constituintes do sistema. Sendo assim, tem-se que tanto nos terminais da fonte, da carga e do filtro ativo o fluxo de potência reativa é nulo. A implicação que isso trás é a ausência, teoricamente, da necessidade de elementos armazenadores de energia presentes no filtro shunt. Todavia, há a necessidade de compensação da potência \tilde{p} realizada pelo filtro. Por esta apresentar-se como uma potência média, os elementos armazenadores de energia devem lidar apenas com essa parcela da potência. Sendo assim o dimensionamento do capacitor (indutor para o CSC) leva-se em consideração apenas a potência ativa oscilante [44, 47, 52].

Não confundir os elementos armazenadores de energia explanados anteriormente com os indutores de acoplamento e filtro capacitivo. Os elementos armazenadores de energia é o capacitor/indutor dispostos no lado DC do inversor.

Em se tratando de circuitos reais, os semicondutores, as linhas de transmissão e os componentes do filtro possuem resistências intrínsecas que causam a dissipação de potência ativa. Ainda existe perdas de comutação causadas pelas não idealidades de chaveamento dos elementos semicondutores. Essas perdas têm efeito na eficiência da capacidade de filtragem do compensador, visto que correspondem com a queda de tensão do capacitor dado ao valor médio de potência que este processa. Dessa maneira, existe a necessidade de controlar o fluxo de potência do filtro de modo a manter o capacitor devidamente carregado e operando com tensão específica. Para se ter essa realização, uma malha de controle é embutida no sistema do filtro de modo que a potência dissipada no filtro é determinada em função do valor da tensão do capacitor. Com isso é adicionado uma parcela de potência, denominada p_{loss} , que deve ser contabilizado no cálculo das correntes de referência de modo a manter a tensão no capacitor constante. Ainda, pelo fato de haver um atraso na resposta do compensador devido ao filtro passa baixa na separação de

 \tilde{p} da potência ativa p, esta malha de controle visa também compensar os efeitos que este atraso causa na tensão do capacitor. A Figura 52 mostra o esquemático do compensador com a presença da malha de controle como parte da operação do filtro ativo.

FIGURA 52 – Controle por histerese [44]

4.1.2 Controlador

O controlador empregado em um sistema de filtragem ativa é constituído pela unidade de processamento que opera os interruptores estáticos de maneira a propiciar a filtragem ativa das componentes harmônicas de corrente. Tais controladores são comumente formados por circuitos integrados programáveis que operam no domínio discreto. O tipo mais comum deste tipo de controlador é realizado por processador digital de sinais (DSP). Juntamente com os controladores são necessários sensores de tensão e corrente para alimentar a unidade de processamento com dados do sistema de maneira a utilizar os conceitos de potência instantânea para calcular as referências de corrente a serem aplicadas no inversor. Assim o comando por PWM dos semicondutores do inversor é realizado pelo DSP e a compensação das componentes harmônicas das correntes é eliminada.

4.1.2.1 Tipos de Controle

Em sistemas reais a concepção da filtragem ativa é proferida em redes cuja tensões não são necessariamente senoidais puras ou balanceadas. A base teórica apresentada na seção ?? é baseada na premissa em que o sistema é realizado sem que haja distorções de tensão ou desbalanceamento entre as fases. Os sistemas elétricos reais apresentam em

sua operação cargas que não contribuem de forma expressiva na distorção harmônica, sendo desnecessária a aplicação de filtros ativos para esses casos. Além disso, não há como garantir o balanceamento de tensão nas em todo espectro de operação do sistema. Apesar destes fatores não serem significativos em sistemas aeronáuticos, deve-se ter em mente que as distorções e desbalanceamentos estão presentes nas tensões e que estas devem estar dentro das normas aeronáuticas. A operação dos filtros ativos do tipo shunt é sensível às estes efeitos, fazendo com que algumas considerações devem ser aplicadas para contornar as enterpéries e garantir seu correto funcionamento. Segundo [44], a teoria pq mostra-se insuficiente para atender a filtragem de cargas não lineares em sistemas com tensões previamente distorcidas e, ao mesmo tempo, satisfazer as condições de otimalidade de filtragem. Essas condições são descritas por:

- Extrair apenas potência ativa constante da fonte de alimentação;
- Extrair uma corrente sinusoidal da fonte de alimentação;
- Extrair uma quantidade mínima de corrente eficaz que transportaria uma mesma potência para a carga com um mínimo de energia dissipada na rede.

Tais condições podem ser realizadas ao mesmo tempo em um sistema ideal sem que haja distorções na rede, porém esse caso não é realizável. Portanto, métodos distintos de filtros ativos do tipo shunt são propostos para atender pelo menos uma das condições de otimalidade.

O foco deste trabalho é exatamente a determinação de um filtro ativo para garantir a qualidade de energia em um sistema aeronáutico. Este quesito é realizado com a inserção de filtros ativos do tipo shunt para a conformação da corrente visando a ausência de distorção harmônica que traria efeitos nas tensões devido as quedas de tensão nas impedâncias da rede. O método apresentado na seção ?? visa extrair apenas potência ativa constante da fonte de alimentação. A aplicação deste método apenas é condição suficiente para criar correntes senoidais em sistemas cuja tensão mostra-se senoidal pura. A aplicação deste método em sistemas cuja tensão é distorcida apresenta correntes também distorcidas, de modo que a potência ativa constante seja estabelecida. Esse método pode apresentar-se instável dependendo dos níveis de distorção, visto que as correntes distorcidas necessária para conceber um fluxo de potência constante elevariam ainda mais a inserção de harmônicas nas formas de onda de tensão. Com isso, o método de filtragem a qual garante uma corrente sinusoidal nos terminais da carga é requerido para adequar a qualidade de energia e manter o sistema estável. Dessa maneira alguns incrementos devem ser inseridos na concepção dos filtros explanados na seção ?? para garantir a condição de corrente sinusoidal nos terminais da carga.

4.1.2.1.1 Método de Controle de Corrente Sinusoidal

O método de controle de corrente sinusoidal é dado pela filtragem ativa em que o compensador insere componentes de corrente nas linhas do sistema de modo a obter uma forma de onda das correntes na fonte de alimentação sendo senoidais e balanceada. Este método aplicado em sistema em que a tensão apresenta-se sendo distorcida não ostenta um fluxo de potência constante sendo drenado da fonte. Além do mais, atender as condições de absorver uma quantidade constante de potência ativa e garantir a corrente sendo sinusoidal em um sistema cuja tensão apresenta distorção harmônica não é realizável [44].

Para conseguir um fluxo de corrente sinusoidal e balanceada sendo extraída da fonte é necessário adequar o filtro ativo para que este compense todas as componentes harmônicas, bem como as componentes fundamentais que diferem da componente fundamental de sequência positiva \dot{I}_{+1} . Essa condição é realizada através da implementação de um detector de sequência positiva na entrada de tensão de um filtro ativo. O esquema do filtro ativo apresentado na seção 3.3.1.2 e demonstrado na figura 41 não é fundamentalmente modificado para o controle de corrente sinusoidal. A implementação deste método é realizado com a inserção do detector de sequência positiva na leitura das tensões advindas da fonte como mostra a Figura 53. Dessa maneira as tensões utilizadas no cálculo das correntes de referência do compensador são compostas apenas pela fundamental de sequência positiva da tensão.

FIGURA 53 – esquemacontrolsenoidal.png

4.1.2.1.2 Detector de Sequência Positiva

A operação do detector é realizada para encontrar a componente fundamental de sequência positiva das tensões advindas da fonte de alimentação de um sistema trifásico. Considerando as tensões v_{Sa} , v_{Sb} e v_{Sc} do sistema apresentadas pela composição da soma de componentes fundamentais e harmônicas de sequência positiva e negativa, ou seja, fazendo \dot{V}_{k+n} o fasor da n-ésima componente fundamental de sequência positiva e \dot{V}_{k+n}

o fasor da n-ésima componente fundamental de sequência negativa da fase k=a,b,c, tem-se:

$$\dot{V}_k = \sum_{n=1}^{\infty} \dot{V}_{k+n} + \dot{V}_{k-n} \qquad k = a, b, c$$
(4.1)

Já as tensões v'_a , v'_b e v'_c advindas do detector de sequência positiva são constituída apenas por \dot{V}_{k+1} . Estas por sua vez são utilizadas no cálculo das correntes de referência de um filtro ativo shunt como mostrado na Figura 42. As tensões v'_a , v'_b e v'_c na entrada do filtro são utilizadas no cálculo das potências instantâneas p e q, a qual serão utilizadas na determinação das parcelas de potências a serem compensadas, e também na determinação das correntes de referência nas coordenadas $\alpha\beta$, onde faz-se uso das potências $-\tilde{p}$ e $-q = -(\bar{q} + \tilde{q})$ previamente estabelecidas. Em termos de componentes simétricas e, dado que somente \dot{V}_{+1} é considerado nos cálculos das potências instantâneas, as potências \tilde{p} e \tilde{q} são relacionadas com a todas as harmônicas de sequência positiva e componentes de sequência negativas das correntes das linhas, sendo que apenas \dot{I}_{+1} produzem as parcelas \bar{p} e \bar{q} . Com isso, operando o filtro de modo a compensar as parcelas da potência \tilde{p} e \tilde{q} , as componentes harmônicas de sequência positiva e negativas diferentes de \dot{I}_{+1} são compensadas. Com isso a operação do filtro produz apenas as componentes fundamentais da corrente para cada fase individualmente e em fase com as componentes fundamentais das tensões do sistema [44].

A estrutura de um sistema de um detector de sequência positiva consiste em dois principais blocos. O primeiro representa um sistema de malha de captura de fase, ou Phase Locked Loop (PLL), e o segundo consiste na malha fundamental de determinação de v_a' , v_b' e v_c' com a utilização da teoria PQ.

Malha de Captura de Fase (PLL) Um sistema PLL opera rastreando continuamente a componente de sequência positiva e o angulo de fase das tensões um sistema trifásico. Seu funcionamento, quando corretamente projetado, proporciona bons resultados mesmo sob forte distorção harmônica e desbalanceamento [44].

A Figura 54 mostra o esquemático de um circuito PLL. Nesta figura são observados os pontos onde se obtém os valores da frequência angular da componente fundamental das tensões de entrada. As tensões v_{ab} e v_{cb} são referentes à diferença de potencial proporcionadas por $v_a - v_b$ e $v_c - v_b$, respectivamente. A operação ainda faz do uso de uma malha fechada onde são utilizadas i'_a e i'_c para determinar uma potência fictícia denotada por $p_{3\phi'}$.

Uma importante característica do PLL é a ausência de informação quanto à amplitude do sinal. Dessa maneira a saída deste sistema é integrada á Malha Principal para

esta
frase
está bem
ruim,
escrita
cansado
pacaraio

determinar todas as informações da fundamental de sequência positiva. Isso é realizado utilizando a informação provida pelo PLL em termos das correntes nas coordenadas $\alpha\beta$. Sendo assim, além da determinação da frequência angular ωat , estas variáveis são utilizadas pelos blocos $\sin(\omega t - \pi/2)$ e $-\cos(\omega t?\pi/2)$ na obtenção de i'_{α} e i'_{β} , respectivamente.

Malha Principal A Malha Principal consiste em um sistema onde se utiliza da teoria da potência instantânea PQ, juntamente com o sinal advindo do PLL, para a determinação das tensões v'_a , v'_b e v'_c providas apenas com informação de sequência positiva dos sinais de entrada. A arquitetura da malha fundamental é mostrada na Figura 55.

O sinal advindo do PLL é dado por $i'_{\alpha} = \sin(\omega t)$ e $i'_{\beta} = -\cos(\omega t)$. Sendo estes desprovidos de informação quanto à amplitude das tensões de entrada, as utilizações destes valores no cálculo de potências instantâneas produzem p' e q', as quais não possuem magnitudes relevantes quanto à significados físicos, mas carregam consigo informação quanto à amplitude de \dot{V}_{+1} . Sendo assim, segundo [44] a componente fundamental \dot{V}_{+1} é a única que contribui no valor médio das potências auxiliares p' e q', ou seja, por \bar{p}' e \bar{q}' . Isso ocorre visto que apenas a componente da corrente auxiliara advinda do PLL, as quais são compostas por \dot{I}_{+1} , são utilizadas nos cálculos. Dessa maneira, o emprego de um filtro passa baixa para a extração dos valores médios de p' e q' é feito para obtenção de \bar{p}' e \bar{q}' , e utilizando a relação 3.39 encontra-se as componentes de fundamentais das tensões nas coordenadas $\alpha\beta$.

$$\begin{bmatrix} v_{\alpha}' \\ v_{\beta}' \end{bmatrix} = \frac{1}{i_{\alpha}^{\prime 2} + i_{\beta}^{\prime 2}} \begin{bmatrix} i_{\alpha}' & -i_{\beta}' \\ i_{\beta}' & i_{\alpha}' \end{bmatrix} \begin{bmatrix} \vec{p}' \\ \vec{q}' \end{bmatrix}$$
(4.2)

Sendo assim, os valores de v_a' , v_b' e v_c' são facilmente obtidos com a realização da transformada inversa de Clarke. A análise das figuras 56 e 57 retrata a eficácia do detector de sequencia positiva. Tais figuras apresentam somente as formas de onda referente a fase a, sendo que as outras fases defasadas em \pm 120° estão presentes nos cálculo mas eximidas das figuras para facilitar a visualização. A Figura 56 apresenta em vermelho a forma de

FIGURA 55 - [44]

onda da tensão v_a e, em preto, a saída do sistema v_a' . Já a Figura ?? exibe em vermelho a componente fundamental de sequencia positiva da fase a, ou \dot{V}_{a+1} , juntamente, em preto, a saída v_a' . Essas figuras deixa claro como que em poucos ciclos as tensões v_a' , v_b' e v_c' tornam-se suficientemente próximas das tensões de sequencia positiva dos sinais de entrada.

FIGURA 56 – Controle por histerese

FIGURA 57 – Controle por histerese

4.2 Simulação

4.2.1 Modelo do Sistema Elétrico

4.2.1.1 Sistema de Geração

cia do gerador

O sistema de geração aplicado na simulação visa representar de maneira suficientemente apropriada uma fonte de tensão comumente encontrada em sistemas elétricos aeronáuticos. Tal bloco é composto por uma máquina síncrona, cuja entrada mecânica é definida por um valor constante representado pela rotação do eixo proveniente do IDG, e os níveis de tensão é determinado por controle de campo de excitação. Esse último é obtido por uma GCU a qual opera juntamente com a maquina síncrona do gerador. Em sistema elétricos aeronáuticos reais a complexidade do bloco Gerador/GCU é complexa e envolve sistemas complementares para garantir sua confiabilidade. Entretanto, para a proposta de simulação apresentado nesse trabalho, o sistema proposto por [53] mostra-se adequado. Isto deve-se principalmente pela característica da saída do gerador apresentar tensão com certa frequência definida, com amplitude controlada e as não idealidades representadas pelas resistências e indutâncias nas linhas do gerador são modeladas.

Em ambiente Simulink tanto o bloco da máquina síncrona como o bloco de excitação de campo estão presentes. Sendo assim o sistema de geração utilizado no software é mostrado na Figura 58.

FIGURA 58 – Modelo do sistema de geração

Nessa ilustração o subconjunto superior é composto pelos elementos que modelam a GCU. O Excitation System é um bloco nativo do Simulink opera como descrito em [54]. Já os blocos auxiliares ao Excitation System estão presentes para condicionar o sinal adequadamente para seu correto funcionamento. A medição de tensão que alimenta o sinal de entrada da GCU deve ser proveniente do barramento de distribuição, visto que a tensão nominal de 115 V deve estar disponível no PCC e as não idealidades do sistema alteram os níveis de tensão nesse ponto em comparação à saída do gerador.

O subconjunto inferior compõe o Gerador. A máquina síncrona é também um bloco presente no Simulink e este opera conjuntamente com o bloco de excitação de campo para providenciar níveis de tensão adequados em seus terminais. Ainda, O modelo

da máquina síncrona deve contemplar as não idealidades inerentes do gerador que devem ser modeladas na concepção desse modelo, para isso em sua saída estão presentes as resistências e indutâncias conectadas em série com a linhas cujos valores são expostos na Tabela 1. Ainda existe uma resistência parasita no sistema com o intuito de evitar problemas numéricos na simulação. A presença deste elemento não influencia o sistema que será simulado.

Resistência $[\Omega]$	Indutância [mH]	Impedância $[\Omega]$
0,0404	0,09204	0,0404+j0,213

TABELA 1 – Impedância interna do Gerador

4.2.1.2 Sistema de Distribuição

O sistema de distribuição de uma aeronave é constituído pelos condutores que transferem a energia entre os subsistemas, além dos barramentos de distribuição e equipamentos de proteção do sistema elétrico. Contudo, nesse trabalho as proteções não estão no escopo da simulação, sendo que o modelo proposto será composto apenas pelas linhas de transmissão e um barramento a qual as cargas possam ser conectadas.

O ponto de conexão em comum está localizado na PDU (*Primary Distribution Unit*). Apenas um barramento será considerado e as cargas não lineares compostas pelos EHAs serão conetadas em paralelo a partir desse barramento. A Figura 59 apresenta o modelo implementado no Simulink para realização da simulação. Aqui pode-se observar as cargas compostas pelos EHAs sendo conectadas a partir da PDU. A alimentação da PDU é realizada diretamente pelo gerador através de uma linha de transmissão trifásica. Nessa unidade ainda existe um sensor de tensão que cede informação ao GCU para o controle de excitação de campo, a qual fornecer ao gerador o controle para que este apresente níveis de tensão adequadas para manter a tensão de fase no PCC sendo 115 V.

As não idealidades dos condutores são modeladas com a inserção de resistências e reatâncias indutivas conectadas em série nas linhas de transmissão do sistema. As capacitâncias entre os condutores e o plano de terra não são considerados devido sua insignificância frente a potência e o tamanho das cablagens. As bitolas dos fios e seus comprimentos estão adequadamente dimensionados para a corrente transmitida e o tamanho comumente encontrado em uma aeronave do porte do modelo, respectivamente. Sendo assim, os valores de impedância de cada seção do sistema trifásico é definido seguindo os parâmetros encontrados em [55]. A Tabela 2 expõe as definições do modelo quanto às cablagens utilizadas e suas impedâncias de cada seção.

Trocar a figura e colocar as impedâncias em série

FIGURA59 – Sistema de Distribuição

Seção	Bitola	Comprimento	Impedância (400 Hz) $[\Omega]$
GEN - PDU	AWG 0	10 m	0,0047 + j,0067
PDU - EHA 1	AWG 10	15 m	0,0540 + j0,0199
PDU - EHA 2	AWG 10	17,5 m	0,0630 + j0,0233
PDU - EHA 3	AWG 10	20 m	0,0720 + j0,0266

TABELA 2 — Impedâncias das linhas de distribuição

4.2.1.3 Atuador Eletrohidrostático

Texto aqui

FIGURA 60 - EHA

- 4.2.2 Modelo do Conversor
- 4.2.3 Resultados

Referências Bibliográficas

- [1] BABIKIAN, R.; LUKACHKO, S. P.; WAITZ, I. A. The historical fuel efficiency characteristics of regional aircraft from technological, operational, and cost perspectives. *Journal of Air Transport Management*, Elsevier, v. 8, n. 6, p. 389–400, 2002.
- [2] MOIR, I. More-electric aircraft-system considerations. In: *IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft*. Londres: IET, 1999.
- [3] ABDEL-HAFEZ, A.; FORSYTH, A. A review of more-electric aircraft. In: 13th International Conference on Aerospace Science & Aviation Technology (ASAT-13). Cairo: Military Technical College, 2009.
- [4] ABDEL-HAFEZ, A. Recent Advances in Aircraft Technology. Arábia Saudita: IN-TECH, 2012. Cap. Power Generation and Distribution System for a More Electric Aircraft-A Review.
- [5] KARIMI, K. J. Future Aircraft Power Systems Integration Challenges. [S.l.]: The Boeing Company, 2007.
- [6] SRIMOOLANATHAN, B. Aircraft Electrical Power Systems Charged with Opportunities. 2008. Acessado em 29/03/2015. Disponível em: https://www.frost.com/sublib/display-market-insight.do?id=150507057.
- [7] AVERY, C.; BURROW, S.; MELLOR, P. Electrical generation and distribution for the more electric aircraft. In: *Universities Power Engineering Conference*, 2007. UPEC 2007. 42nd International. [S.l.]: IEEE, 2007. p. 1007–1012.
- [8] ZHAO, X.; GUERRERO, J. M.; WU, X. Review of aircraft electric power systems and architectures. In: IEEE. Energy Conference (ENERGYCON), 2014 IEEE International. Dubrovnik, 2014. p. 949–953.
- [9] SINGER, C. et al. Aircraft electrical power systems and nonlinear dynamic loads. *SAE International Journal of Aerospace*, SAE International, v. 5, n. 2, p. 447–454, 2012.
- [10] EQUIPAMENTOS ELÉTRICOS E ELETRÔNICOS DE POTÊNCIA LTDA.

 Harmônicos em Instalações Elétricas. Acessado em 06/06/2016. Disponível em:

- http://www.engematec.com.br/site/downloads/harmonicos_em_instalacoes_eletricas.pdf.
- [11] CIDADE, G. Eletricidade e Eletrônica Aplicada à Biociências. Acessado em 25/04/2015. Disponível em: http://fisbio.biof.ufrj.br/restrito/bmb353/4_M_eletric/ele_ele/conc_bas/index.htm.
- [12] ALEXANDER, C. K.; SADIKU, M. N. O. Fundamentals of of Electric Circuits. 3. ed. [S.l.]: McGraw-Hill Higher Education, 2005.
- [13] WAGNER, V. et al. Effects of harmonics on equipment. IEEE Transactions on Power Delivery, IEEE, v. 8, n. 2, p. 672–680, 1993.
- [14] DECKMANN, S. M.; POMILIO, J. Α. Avaliação daQualidadeEnergiadaElétrica. 2010. Acessado 28/05/2015. Disponível emem: http://www.dsce.fee.unicamp.br/antenor/pdffiles/qualidade/b5.pdf.
- [15] KASSICK, E. V. Harmônicas em Sistemas Industriais de Baixa Tensão. Florianópolis, Abril 2010. Instituto de Eletrônica de Potência. Universidade Federal de Santa Catarina.
- [16] POMILIO, J. Α. Outras **Técnicas** deCo-Conversores com2014. 28/05/2015. Disponível mutação Suave.Acessado em: emhttp://www.dsce.fee.unicamp.br/ antenor/pdffiles/CAP5.pdf>.
- [17] MANOUSAKA, E. DC-DC Buck Converter with Inrush Current Limiter. Dissertação (Mestrado) — Faculty of Applied Sciences, Lorentzweg, 2013.
- [18] AUTOMATION, R. Eliminating VoltageNotching ontheDis-29/05/2015. tributionsAcessado Disponível System.em em: http://www.ab.com/support/abdrives/documentation/techpapers/notch.htm.
- [19] FITZGERALD, A.; KINGSLEY, C.; UMANS, S. Máquinas Elétricas Com Introdução à Eletrônica de Potência. 6. ed. [S.l.]: McGraw-Hill, 2006.
- [20] VICTORINO, A. Fator de Potência e Distorção Harmônica. 2011. Acessado em 18/06/2016. Disponível em: http://www.joinville.ifsc.edu.br/ aryvictorino/leituras_SIP_2011-1/sugest%c3%a3o%20de%20leitura%20da%20aula%2015%20-%20fator%20de%20pot%c3%aancia%20e%20distor%c3%a7%c3%a3o%20harm%c3%b4nica.doc>.

- [21] LACANETTE, K. A Basic Introduction to Filters: Active, Passive, and Switched-Capacitor. 1991. National Semiconductor. AN779.
- [22] MUSSOI, F. L.; ESPERANÇA, C. Resposta em frequência: Filtros passivos. 2. ed. Florianópolis, 2004. Centro Federal de Educação Tecnológica de Santa Catarina.
- [23] SINGH, B. et al. Multipulse ac–dc converters for improving power quality: a review. IEEE Transactions on Power Electronics, IEEE, v. 23, n. 1, p. 260–281, 2008.
- [24] GONG, G.; DROFENIK, U.; KOLAR, J. 12-pulse rectifier for more electric aircraft applications. In: IEEE. 2003 IEEE International Conference on Industrial Technology. Maribor, 2003. v. 2, p. 1096–1101.
- [25] GONG, G. et al. Comparative evaluation of three-phase high-power-factor ac-dc coverter concepts for application in future more electric aircraft. *IEEE Transactions on Industrial Electronics*, IEEE, v. 52, n. 3, p. 727–737, 2005.
- [26] KOLAR, J. W.; FRIEDLI, T. The essence of three-phase pfc rectifier systems. In: IEEE. 2011 IEEE 33rd International Telecommunications Energy Conference (INTE-LEC). Amsterdam, 2011. p. 1–27.
- [27] BARBOSA, P. M. Three-Phase Power Factor Correction Circuits for Low-Cost Distributed Power Systems. Tese (Doutorado) — Faculty of the Virginia Polytechnic Institute, Blacksburg, 2002.
- [28] NAIRUS, J. G. Three-Phase Boost Active Power Factor Correction for Diode Rectifiers. Ohio, 1996. AFRL Propulsion Directorate - Wright-Patterson Air Force Base.
- [29] TAKEUCHI, N. et al. A novel pfc circuit for three-phase utilizing a single switching device. In: IEEE. IEEE 30th International Telecommunications Energy Conference 2008. (INTELEC 2008). San Diego, 2008. p. 1–5.
- [30] POMILIO, J. A.; DECKMANN, S. M. Condicionamento de Energia Elétrica e Dispositivos FACTS. Campinas, 2009.
- [31] AFONSO, J. L.; GONÇALVES, H.; PINTO, J. Power Quality Issues. [S.1.]: INTECH Open Access Publisher, 2013.

- [32] ZHU, S.; MA, W. Methods of aircraft grid harmonic reduction: A review. Scholars Journal of Engineering and Technology (SJET), v. 2, p. 270–275, 2014.
- [33] BARRUEL, F.; SCHANEN, J.; RETIERE, N. Volumetric optimization of passive filter for power electronics input stage in the more electrical aircraft. In: IEEE. 2004. PESC 04. 2004 IEEE 35th Annual Power Electronics Specialists Conference. [S.l.], 2004. v. 1, p. 433–438.
- [34] CHEN, Z. et al. A research on cascade five-level aeronautical active power filter.
 In: IEEE. 2012 7th International Power Electronics and Motion Control Conference
 (IPEMC). [S.l.], 2012. v. 4, p. 2732–2737.
- [35] AKAGI, H. Modern active filters and traditional passive filters. Bulletin of the Polish Academy of Sciences, Technical Sciences, v. 54, n. 3, 2006.
- [36] CHEN, Z.; CHEN, M. A novel 400hz shunt active power filter for aircraft electrical power system. In: IEEE. 2012 7th International Power Electronics and Motion Control Conference (IPEMC). [S.l.], 2012. v. 4, p. 2838–2843.
- [37] CHEN, Z.; LUO, Y.; CHEN, M. Control and performance of a cascaded shunt active power filter for aircraft electric power system. *IEEE Transactions on Industrial electronics*, IEEE, v. 59, n. 9, p. 3614–3623, 2012.
- [38] KARATZAFERIS, J. et al. Comparison and evaluation of power factor correction topologies for industrial applications. *Energy and Power Engineering*, Scientific Research Publishing, v. 5, n. 6, 2013.
- [39] PAREDES, H. K. M. Eletrônica de Potência para Geração, Transmissão e Distribuição de Energia Elétrica: Tópicos em teorias de potência em condições não ideais de operação. Acessado em 24/06/2016. Disponível em: http://www.dsce.fee.unicamp.br/ antenor/pdffiles/it744/CAP6.pdf>.
- [40] STAUDT, V. Fryze-buchholz-depenbrock: A time-domain power theory. In: IEEE. 2008 International School on Nonsinusoidal Currents and Compensation. [S.1.], 2008. p. 1–12.

- [41] CZARNECKI, L. Budeanu and fryze: Two frameworks for interpreting power properties of circuits with nonsinusoidal voltages and currents. *Electrical Engineering*, Springer, v. 80, n. 6, p. 359–367, 1997.
- [42] BUDEANU, C. Puissances réactives et fictives. institut romain de i'energte. bucharest. Romania, 1927.
- [43] CZARNECKI, L. S. What is wrong with the budeanu concept of reactive and distortion power and why it should be abandoned. *IEEE Transactions on Instrumentation and measurement*, IEEE, v. 1001, n. 3, p. 834–837, 1987.
- [44] AKAGI, H.; WATANABE, E. H.; AREDES, M. Instantaneous Power Theory and Applications to Power Conditioning. [S.l.]: John Wiley & Sons, 2007.
- [45] WATANABE, E. H.; AREDES, M. Teoria de Potência Ativa e Reativa Instantânea e Aplicações - Filtros Ativos e FACTS -. UFRJ - Rio de Janeiro: Laboratório de Eletrônica de Potência.
- [46] AKAGI, H.; KANAZAWA, Y.; NABAE, A. Instantaneous reactive power compensators comprising switching devices without energy storage components. *IEEE Transac*tions on industry applications, IEEE, n. 3, p. 625–630, 1984.
- [47] PENG, F. Z.; LAI, J.-S. Generalized instantaneous reactive power theory for three-phase power systems. *IEEE Transactions on Instrumentation and Measurement*, IEEE, v. 45, n. 1, p. 293–297, 1996.
- [48] AFONSO, J. L.; COUTO, C.; MARTINS, J. S. Active filters with control based on the pq theory. *IEEE Industrial Electronics Society Newsletter*, IEEE, v. 47, n. 3, p. 5–10, 2000.
- [49] HABERBERGER, M.; FUCHS, F. W. Novel protection strategy for current interruptions in ight current source inverters. In: IEEE. 2004 IEEE 35th Annual Power Electronics Specialists Conference. PESC 04. [S.l.], 2004. v. 1, p. 558–564.
- [50] TRZYNADLOWSKI, A. M. Introduction to Modern Power Electronics. Third edition. New Jersey: John Wiley & Sons, 2015.

- [51] THEKKEVALAPPIL, S. N. Master Thesis, Hysteretic Pulse Width Modulation with Internally Generated Carrier for a Boost Dc-dc Converter. Gainesville: University of Florida, 2005.
- [52] WATANABE, E. H.; STEPHAN, R. M.; AREDES, M. New concepts of instantaneous active and reactive power in electrical systems with generic loads. *IEEE Transactions* on *Power Delivery*, IEEE, v. 8, n. 2, p. 697–703, 1993.
- [53] TREMBLAY, L.-A. D. O. Aircraft Electrical Power Generation and Distribution. Montreal: Ecole de Technologie Superieure. Acessado em 14/10/2016. Disponível em: https://www.mathworks.com/help/physmod/sps/examples/aircraft-electrical-power-generation-and-distribution.html>.
- [54] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 421.5-1992, August 1992.
- [55] EXNER, D.; SINGER, G. Impedance data for 400-cycle aircraft distribution systems.
 Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, IEEE, v. 71, n. 6, p. 410–419, 1953.