Quiz 4

Review Related Lesson

×

6/9 points earned (66%)

You haven't passed yet. You need at least 80% to pass. Review the material and try again! You have 3 attempts every 8 hours.

1/1 points

1.

A pharmaceutical company is interested in testing a potential blood pressure lowering medication. Their first examination considers only subjects that received the medication at baseline then two weeks later. The data are as follows (SBP in mmHg)

Subject	Baseline	Week 2
1	140	132
2	138	135
3	150	151
4	148	146
5	135	130

Consider testing the hypothesis that there was a mean reduction in blood pressure? Give the P-value for the associated two sided T test.

(Hint, consider that the observations are paired.)

- 0.10
- 0.05
- 0.043
- 0.087

Correct Response

 $H_0:\mu_d=0$ versus $H_0:\mu_d
eq 0$ where μ_d is the mean difference between followup and baseline.

```
1 bl <- c(140, 138, 150, 148, 135)
2 fu <- c(132, 135, 151, 146, 130)
3 t.test(fu, bl, alternative = "two.sided", paired = TRUE)</pre>
```

```
1 Paired t-test
2 data: fu and bl
3 t = -2.262, df = 4, p-value = 0.08652
4 alternative hypothesis: true difference in means is not equal to 0
5 95 percent confidence interval:
6 -7.5739 0.7739
7 sample estimates:
8 mean of the differences
9 -3.4
```

Note the equivalence with this

```
1 t.test(fu - bl, alternative = "two.sided")
```

```
1 One Sample t-test
2 data: fu - bl
3 t = -2.262, df = 4, p-value = 0.08652
4 alternative hypothesis: true mean is not equal to 0
5 95 percent confidence interval:
6 -7.5739 0.7739
7 sample estimates:
8 mean of x
9 -3.4
```

Note the difference if the test were one sided

```
1 -t.test(fu, bl, alternative = "less", paired = TRUE)
```

```
Paired t-test

data: fu and bl

t = -2.262, df = 4, p-value = 0.04326

alternative hypothesis: true difference in means is less than 0

ps percent confidence interval:-Inf -0.1951

sample estimates:

mean of the differences

-3.4
```


1/1 points

2.

A sample of 9 men yielded a sample average brain volume of 1,100cc and a standard deviation of 30cc. What is the complete set of values of μ_0 that a test of $H_0: \mu=\mu_0$ would fail to reject the null hypothesis in a two sided 5% Students t-test?

- O 1081 to 1119
- O 1080 to 1120
- O 1031 to 1169
- O 1077 to 1123

Correct Response

This is the 95% student's T confidence interval.

```
1 1100 + c(-1, 1) * qt(0.975, 8) * 30/sqrt(9)
```

```
1 [1] 1077 1123
```

Potential incorrect answers

```
1 1100 + c(-1, 1) * qnorm(0.975) * 30/sqrt(9)
```

```
1 [1] 1080 1120
```

```
1 1100 + c(-1, 1) * qt(0.95, 8) * 30/sqrt(9)

1 [1] 1081 1119

1 1100 + c(-1, 1) * qt(0.975, 8) * 30

1 [1] 1031 1169
```


0 / 1 points

3.

Researchers conducted a blind taste test of Coke versus Pepsi. Each of four people was asked which of two blinded drinks given in random order that they preferred. The data was such that 3 of the 4 people chose Coke. Assuming that this sample is representative, report a P-value for a test of the hypothesis that Coke is preferred to Pepsi using a one sided exact test.

0.62

Incorrect Response

- 0.31
- 0.10
- 0.005

1/1 points

4.

Infection rates at a hospital above 1 infection per 100 person days at risk are believed to be too high and are used as a benchmark. A hospital that had previously been above the benchmark recently had 10 infections over the last 1,787 person days at risk. About what is the one sided P-value for the relevant test of whether the hospital is *below* the standard?

0.03

Correct Response

 $H_0: \lambda = 0.01$ versus $H_a: \lambda < 0.01$. X=11 , t=1,787 and assume $X \sim_{H_0} Poisson(0.01 imes t)$

- 1 ppois(10, lambda = 0.01 * 1787)
- 1 ## [1] 0.03237
- 0.22

U	0.11
0	0.52
••	0 /
X	poi
5. Suppo BMIs) averag kg/m2 creatm and pla a two s	were se diffor for the sent great acebo
0	Less
0	Less
Inco	rrect F
0	Less

/ 1 ints

at 18 obese subjects were randomized, 9 each, to a new diet pill and a placebo. Subjects' body mass indices measured at a baseline and again after having received the treatment or placebo for four weeks. The erence from follow-up to the baseline (followup - baseline) was -3 kg/m2 for the treated group and 1 k ne placebo group. The corresponding standard deviations of the differences was 1.5 kg/m2 for the roup and 1.8 kg/m2 for the placebo group. Does the change in BMI appear to differ between the treated groups? Assuming normality of the underlying data and a common population variance, give a pvalue for

than 0.10 but larger than 0.05

than 0.05, but larger than 0.01

Response

than 0.01

Larger than 0.10

0/1 points

Brain volumes for 9 men yielded a 90% confidence interval of 1,077 cc to 1,123 cc. Would you reject in a two sided 5% hypothesis test of

 $H_0: \mu = 1,078$?

It's impossible to tell.

Where does Brian come up with these questions?

Yes you would reject.

Incorrect Response

No you wouldn't reject.

1/1 points

7.

Researchers would like to conduct a study of 100 healthy adults to detect a four year mean brain volume loss of $.01~mm^3$. Assume that the standard deviation of four year volume loss in this population is $.04~mm^3$. About what would be the power of the study for a 5% one sided test versus a null hypothesis of no volume loss?

0.60

0.70

0.80

Correct Response

The hypothesis is $H_0:\mu_\Delta=0$ versus $H_a:\mu_\Delta>0$ where μ_Δ is volume loss (change defined as Baseline Four Weeks). The test statistics is $10\,\frac{\bar{X}_\Delta}{.04}$ which is rejected if it is larger than $Z_{.95}=1.645$.

We want to calculate

$$Pigg(rac{ar{X}_{\Delta}}{\sigma_{\Delta}/10}>1.645\mid \mu_{\Delta}=.01igg)=Pigg(rac{ar{X}_{\Delta}-.01}{.004}>1.645-rac{.01}{.004}\mid \mu_{\Delta}=.01igg)=P(Z>-.855)=.80$$

Or note that $ar{X}_\Delta$ is N(.01,.004) under the alternative and we want the $P(ar{X}_\Delta>1.645*.004)$ under H_a .

1 pnorm(1.645 * 0.004, mean = 0.01, sd = 0.004, lower.tail = FALSE)

1 [1] 0.8037

1/1 points

8.

Researchers would like to conduct a study of n healthy adults to detect a four year mean brain volume loss of $.01~mm^3$. Assume that the standard deviation of four year volume loss in this population is $.04~mm^3$. About what would be the value of n needed for 90% power of type one error rate of 5% one sided test versus a null hypothesis of no volume loss?

140

Correct Response

The hypothesis is $H_0: \mu_\Delta=0$ versus $H_a: \mu_\Delta>0$ where μ_Δ is volume loss (change defined as Baseline Four Weeks). The test statistics is $\frac{\bar{X}_\Delta}{.04/\sqrt{n}}$ which is rejected if it is larger than $Z_{.95}=1.645$.

We want to calculate

$$P\bigg(\frac{\bar{X}_{\Delta}}{\sigma_{\Delta}/\sqrt{n}} > 1.645 \mid \mu_{\Delta} = .01\bigg) = P\bigg(\frac{\bar{X}_{\Delta} - .01}{.04/\sqrt{n}} > 1.645 - \frac{.01}{.04/\sqrt{n}} \mid \mu_{\Delta} = .01\bigg) = P(Z > 1.645 - \sqrt{n}/4) = .90$$

So we need $1.645 - \sqrt{n} \, / 4 = Z_{.10} = -1.282$ and thus

$$n = (4*(1.645+1.282))^2$$
.

1 ceiling((4 * (qnorm(0.95) - qnorm(0.1)))^2)

	Quiz 4 Coursera			
1	[1] 138			
0	120 180			
~	1/1 points			
9. As you	increase the type one error rate, $lpha$, what happens to power?			
0	It's impossible to tell given the information in the problem.			
0	You will get larger power.			
	ect Response ou require less evidence to reject, i.e. your $lpha$ rate goes up, you will have larger power.			
0	You will get smaller power.			
0	No, for real, where does Brian come up with these problems?			

