DEVOIR SURVEILLÉ N°3

<i>i</i> :		Prénom :		Classe:
EXERCICE N°1	Je connais mon	cours		(5 points
1) Compléter :		(m)		
Soit a un réel s	strictement positif,	$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to a^x \end{cases}$		
• Si $a > 1$ alo	ors f est			
• si $a = 1$ alo	ors f est,			
• si 0 < a < 1	alors f est			
2) Donner le rés	sultat sous la forme	e d'une puissance (a^x):	
$1,3^{2,3} \times 1,3^{0,7} =$				
$\frac{5,2^{3,1}}{5,2^{1,7}} =$				
3,2				
$(4,37^{2,1})^3 =$				
2) D 1	, ,, ,	1 1	(1: \ 10^-4	, ,
		e des nombre suivants	(arrondie à 10^{-4}	près):
3) Donner la mo 0,5; 0,78; 1,3 et		e des nombre suivants	(arrondie à 10^{-4}	près):
0,5 ; 0,78 ; 1,3 et	t 1,78			près):
0,5 ; 0,78 ; 1,3 et	t 1,78 anoyen t correspond	ondant à ces cinq évolu	itions :	près):
0,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30	noyen t correspo		itions :	près):
O,5; O,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15	noyen t correspo	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 5 9	noyen t corresponds 5 %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 5 9	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):
O,5; 0,78; 1,3 et Calculer le taux n Une hausse de 30 Une hausse de 15 Une baisse de 59 Une hausse de 10	noyen t corresponds 5 % 0) %	ondant à ces cinq évolu	itions :	près):

Le nombre, en milliards, de SMS envoyés par les français peut être modélisé par la fonction :

$$S(t)=3,3(1,44)^t$$

- où t est le nombre d'années écoulées depuis 2005.
- 1) Calculer le nombre de SMS envoyés en 1 an.
- 2) Calculer $\frac{S(t+1)}{S(t)}$. En déduire le taux annuel d'augmentation du nombre SMS envoyés.
- 3) Répondre aux affirmations suivantes par vrai ou faux en justifiant.
- **3.a)** La barre des 200 milliards de SMS a été atteinte en 2019.
- **3.b)** Le taux d'augmentation en 10 ans est de 235 %.
- **3.c)** Le taux annuel moyen sur 10 ans est de 23,5 %.

EXERCICE N°3 (10 points)

Une dose d'un médicament est injectée dans le sang par piqûre intraveineuse. On suppose que le médicament se répartit instantanément dans le sang et que sa concentration initiale dans le sang est égale à $85\,mg\cdot L^{-1}$. On admet le corps élimine chaque heure 25 % du médicament. On considère la suite (C_n) où C_n désigne la concentration en $mg\cdot L^{-1}$ de médicament dans le sang n heures après l'injection avec n désignant un entier naturel.

On a ainsi $C_0 = 85 \ (mg \cdot L^{-1})$

- 1) Calculer C_1 et C_2 . Arrondir à 0,01. Interpréter ces deux résultats.
- 2) Montrer que la suite (C_n) est une suite géométrique dont on précisera la raison et le premier terme.
- 3) Pour calculer à chaque heure la concentration de médicament présente dans le sang, on utilise un tableur.

Quelle formule à recopier vers le bas, faut-il saisir dans la cellule B3 pour obtenir les premières valeurs de la suite (C_n) ?

- 4) Exprimer C_n en fonction de n.
- 5) En déduire la concentration de médicament dans le sang au bout de 14 heures. Arrondir à 0,01.

	А	В
1	n	Cn
2	0	85,00
3	1	
4	2	
5	3	35,86
6	4	26,89
7	5	20,17
8	6	15,13
9	7	11,35
10	8	8,51
11	9	6,38
12	10	4,79

Pour avoir des résultats plus précis, on admet que la concentration en $mg \cdot L^{-1}$ de médicament dans le sang t heures après l'injection peut être modélisée par la fonction G définie sur $\begin{bmatrix} 0 \\ \end{bmatrix}$ par :

$$G(t) = 85 \times 0,75^{t}$$

La courbe représentative de la fonction G est tracée ci-contre:

- 6) Par lecture graphique, avec la précision permise par le graphique, déterminer :
- **6.a)** La concentration de médicament présente dans le sang au bout de 4 heures et 30 minutes.
- **6.b)** Le temps à partir duquel la concentration de médicament dans le sang est inférieure à 50 % de la concentration initiale.
- 7) Déterminer, à l'aide de la calculatrice (ou par le calcul) une valeur approchée à 0,1 heure près du temps t_0 à partir duquel la concentration de médicament dans le sang est inférieure à 20% de la concentration initiale, puis exprimer cette valeur approchée en heures et minutes.