

Taller #3 - Funciones Continuas

Los siguientes ejercicios sirven de complemento a los temas estudiados en clase sobre las propiedades de las funciones continuas. Este es un trabajo estrictamente individual y debe ser entregado a más tardar el día lunes 25 de octubre a las 11:59pm.

1. Una función real de variable real se dice que es un polinomio de grado $n \in \mathbb{Z}_+$ si tiene la forma

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{k=0}^n a_k x^k,$$

donde se define $a_0x^0=a_0$ para todo $x\in\mathbb{R}$. Sea $d\in\mathbb{R}$ cualquiera, Q_n otra función polinómica de grado n y supongamos que $Q_n(d)\neq 0$. Demuestre, usando la definición $\varepsilon-\delta$, que la función racional P_n/Q_n es continua en d. (1.0)

- 2. Sean $f: A \subseteq \mathbb{R} \to \mathbb{R}$ y $g: B \subseteq \mathbb{R} \to \mathbb{R}$ funciones tales que $f(A) = \text{Rango}(f) \subseteq B$. Supongamos que $a \in A'$, $b = f(a) \in B'$, que f es continua en $x_0 = a$ y g es continua en $y_0 = b = f(a)$.
 - a) Usando la caracterización secuencial de la continuidad, demuestre que la función composición $h = g \circ f : A \to \mathbb{R}$ es continua en $x_0 = a$. (0.5)
 - b) Establezca y explique un ejemplo de una función f continua en $x_0 = a$ y una función g discontinua en $y_0 = f(a)$; pero que la composición $h = g \circ f$ sea continua en $x_0 = a$. (0.5)
- 3. Considere la función $f: \mathbb{R} \to \mathbb{R}$ cuya ley de asignación es

$$f(x) = \begin{cases} x^2, & x \in \mathbb{Q}, \\ -x^3, & x \in \mathbb{I}. \end{cases}$$

Demuestre que esta función es continua en c=0; pero que es discontinua en $d\neq 0$. (1.0)

4. Usando el Teorema de Localización de las Raíces, demuestre que la función

$$f(x) = e^x - x\sin(x)$$

con $x \in [-2, 1]$ tiene al menos una raíz $c \in (-2, 1)$. Use la sucesión de los "puntos medios" $\{p_k\}$ definida en la demostración de este teorema para hallar una aproximación p_{k_0} de c con un error menor que 10^{-3} . Explique como calcular el número de iteraciones necesarias para obtener tal aproximación y adjunte un código donde se obtenga tal aproximación. La salida debe ser la tabla:

$$k \mid a_k \mid b_k \mid p_k \mid f(a_k) \mid f(b_k) \mid f(p_k)$$

y la aproximación de la raíz c; así como el valor f(c).

5. Usando el método de la demostración del Teorema de Localización de Raíces (divide y vencerá), provea un algoritmo para aproximar el valor c donde la imagen de la función

$$f(x) = \ln(x) - x\cos(x)$$

con $x \in [1, 4]$ sea igual a 2. Explique y provea un código con salida una tabla de los resultados en cada iteración y la aproximación de c. Provea gráficos de la situación programada. (1.0)

(1.0)