Задача 1.

Ниже приведена схема превращений соединений некоторого элемента X:

$$X_{5} \xrightarrow{KOH} X_{6} \xrightarrow{KOH} X_{7}$$

$$\downarrow H_{2}C_{2}O_{4} \\ H_{2}SO_{4} \\ X_{2} \xrightarrow{H_{2}O_{2}} X_{3}$$

$$\downarrow NaNO_{2} \\ H_{2}SO_{4} \\ X_{4}$$

Соединение	Массовая доля X ,			
X_1	56,02			
X_2	41,78			
X ₃	20,55			
X4	26,12			
X5	31,25			
X ₆	50,46			
X ₇	47,84			

Определите неизвестные вещества X_1 – X_7 и напишите уравнения приведённых реакций. Дополнительно известно, что вещество X_1 состоит из двух элементов, вещества X_2 – X_7 – из трёх, а формульные единицы веществ X_2 , X_3 , X_5 , X_6 содержат по одному атому элемента X.

Решение

Поскольку в схеме описываются реакции с кислотами и щелочами, логично предположить, что X_1 – оксид. Тогда на основе массовой доли элемента X находим, что X_1 – V_2O_5 . Состав остальных соединений также можно установить/подтвердить на основе массовых долей ванадия.

$\mathbf{X_1}$	X_2	X ₃	X_4	X_5	X_6	X 7
V_2O_5	NaVO ₃	$Na_3[V(O_2)_4]$	$V_2(SO_4)_3$	$VOSO_4$	VO(OH) ₂	$K_2V_4O_9$

Уравнения реакций:

$$V_2O_5 + 2NaOH = 2NaVO_3 + H_2O$$

$$NaVO_3 + 4H_2O_2 + 2NaOH = Na_3[V(O_2)_4] + 5H_2O$$

$$2NaVO_3 + 2NaNO_2 + 4H_2SO_4 = V_2(SO_4)_3 + 2NaNO_3 + Na_2SO_4 + 4H_2O_3$$

$$2NaVO_3 + H_2C_2O_4 + 3H_2SO_4 = 2VOSO_4 + 2CO_2 + Na_2SO_4 + 4H_2O_4$$

$$VOSO_4 + 2KOH = VO(OH)_2 + K_2SO_4$$

$$4VO(OH)_2 + 2KOH = K_2V_4O_9 + 5H_2O$$

Критерии оценивания

Формулы веществ X_1 – X_7 – **по 2 балла (всего 14 баллов)**

Уравнения реакций – **по 1 баллу (всего 6 баллов)** (за неуравненные реакции по 0.5 балла)

Итого 20 баллов