

MATHEMATICS FOR STATISTICS

©Florian Kauffeldt

Contents

1	Preliminaries	2
2	Sets	3
3	Combinatorics	11
4	Calculus	12
5	Vectors and Matrices	18
6	Solutions to the Exercises	25
Α	Appendix	27

1 Preliminaries

This document summarizes fundamental mathematical concepts for statistics. The concepts discussed in this document correspond to a German high school level in mathematics. For further details on the concepts, the reader is referred to standard textbooks such as Sydsaeter and Hammond (2016): "Essential mathematics for economic analysis."

Section 1 to Section 4 is necessary for statistics 1, Section 5 for statistics 2. In the following, *italics* indicate definitions.

1.1 Number Sets and Relations

We distinguish the following number sets:

Table 1: Number Sets

Name	Notation	Meaning
Natural Numbers	N	$\{1,2,3,\dots\}$
Integers	\mathbb{Z}	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
Rational Numbers	Q	$\{\frac{q}{r} \text{ for which holds: } q, r \in \mathbb{Z}\}$
Real Numbers	\mathbb{R}	Rational numbers plus irrational numbers like $\sqrt{2}, \pi$

Remark. \mathbb{N} is a subset of \mathbb{Z} , \mathbb{Z} is a subset of \mathbb{Q} , and \mathbb{Q} is a subset of \mathbb{R} .

Two real numbers, a and b, may have the following relationships:

Table 2: Number Relations

Relation	Meaning
$\begin{vmatrix} a > b \\ a < b \end{vmatrix}$	a is greater than b a is smaller than b
$a \ge b$	a is greater than or equal to b
$a \leq b$	a is smaller than or equal to b
a = b	a is equal to b . Meaning: $a \le b$ and $a \ge b$
$a \neq b$	a and b are unequal. Meaning: $a > b$ or $a < b$

1.2 Sums and Products of numbers

The sum of n numbers a_1, \ldots, a_n is denoted by:

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \ldots + a_{n-1} + a_n.$$

If $E = \{a_1, \dots, a_n\}$, we may write their sum as $\sum_{a \in E} a$. For instance, the sum of all real numbers is $\sum_{a \in \mathbb{R}} a$.

The product of n numbers a_1, \ldots, a_n is denoted by:

$$\prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdot \ldots \cdot a_{n-1} \cdot a_n.$$

If $E = \{a_1, \ldots, a_n\}$, we may write their product as $\prod_{a \in E} a$. For instance, the product of all real numbers is $\prod_{a \in \mathbb{R}} a$.

Numbers and Percent. We convert a number from decimal to percent by multiplying it by 100 and adding a percent sign. For instance:

$$0.1 = 0.1 \cdot 100\% = 10\%$$

2 Sets

2.1 Definition and Notation

Definition (Set). A set is a well-defined and unordered collection of distinct objects.

"Distinct" means that a set does not contain one and the same object several times: each object of a set is different from any other object of the set. Members of a set S are called elements of S. If s is an element of S, we write: $s \in S$. A set is called *finite* if it has finitely many elements, otherwise it is called *infinite*.

Example. The following are sets:

Figure 1: Examples of Sets

©Florian Kauffeldt

Notation (Finite Sets). A finite set is usually denoted by a list of its elements, separated by commas, and surrounded by set brackets.

Example. The sets above are denoted by {Martina,Saskia,Peter} and {\(\hat{\infty}\), \(\infty\), \(\preceq\).

Notation. (infinite sets). An infinite set is usually denoted by the elements of a larger set and a condition that these elements must meet: elements: condition, where ":" means "for which holds".

Example. The set of all numbers greater than or equal to 5 is denoted by: $\{x \in \mathbb{R} : x \geq 5\}$, which translates into all real numbers x for which holds x is greater than or equal to 5.

Figure 2: All real numbers greater/equal 5

Example. We can also define a set with the help of a function. Let $f(x) = x^2$, then $\{x \in \mathbb{R} : f(x) = 4\} = \{-2, 2\}$.

Figure 3: Set $\{-2, 2\}$

Definition (Interval). An interval is a set of real numbers that contains all real numbers lying between two numbers a < b of the set.

Notation. Intervals are denoted in the following way:

- (i) Closed intervals: $[a, b] = \{x \in \mathbb{R} : a < x < b\}$
- (ii) Open intervals: $(a, b) = \{x \in \mathbb{R} : a < x < b\}$
- (iii) Half-open intervals: $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$

Example.

Figure 4: Closed Interval

2.2 Set Operations

Let E, F be sets and S be the universe of all objects of interest (the set containing all objects of interest). The following are the basic set operations:

(i) **Subsets and Supersets.** E is a subset of F (notation: $E \subseteq F$, $E \subset F$) or, equivalently, F is a superset of E if E is contained in F:

For all $x: x \in E$ implies $x \in F$.

Figure 5: Subset

Remark. $E \subset F$ excludes E = F, while $E \subseteq F$ allows for it.

(ii) **Set Difference.** The difference between E and F (notation: $E \setminus F$) is the set of all elements that are contained in E but not in F:

$$E \setminus F = \{ x \in S : x \in E \text{ and } x \notin F \}.$$

Figure 6: Set Difference

(iii) Complementary Set. The complement of E (notation: E^c) is the set that contains all elements that are not elements of E:

$$E^c = \{x \in S : x \notin E\} = S \setminus E.$$

Figure 7: Complementary Set

(iv) **Set Union.** The union of E and F (notation: $E \cup F$) is the set of all elements that are contained in E, or F, or both:

 $E \cup F = \{x \in S : x \in E \text{ and/or } x \in F\}.$

Figure 8: Set Union

Remark. A union of n sets, E_1, \ldots, E_n can be written as $\bigcup_{i=1}^n E_i = E_1 \cup \ldots \cup E_n$. If $\mathcal{E} = \{E_1, \ldots, E_n\}$, we can also write $\bigcup_{E \in \mathcal{E}} E$.

(v) **Set Intersection.** The intersection of E and F (notation: $E \cap F$) is the set of all elements that are simultaneously contained in E and F:

$$E \cap F = \{x \in S : x \in E \text{ and } x \in F\}.$$

©Florian Kauffeldt

Figure 9: Set Intersection

Remark. An intersection of n sets, E_1, \ldots, E_n can be written as $\bigcap_{i=1}^n E_i = E_1 \cap \ldots \cap E_n$. If $\mathcal{E} = \{E_1, \ldots, E_n\}$, we can also write $\bigcap_{E \in \mathcal{E}} E$.

(vi) Cartesian Product. The Cartesian product of two sets E and F (notation: $E \times F$) is the set of all ordered pairs (e, f) where $e \in E$ and $f \in F$:

$$E \times F = \{(e, f) : e \in E \text{ and } f \in F\}.$$

Figure 10: Cartesian Product

Remark. The Cartesian product of n sets, $E_1 \times ... \times E_n$ can be written as $\prod_{i=1}^n E_i$. If $\mathcal{E} = \{E_1, ..., E_n\}$, we can also write $\prod_{E \in \mathcal{E}} E$. Elements of a Cartesian product of dimension n are called n-tuples.

Definition (Empty Set). Let E be a set. The empty set \emptyset is a set that contains literally nothing: $\emptyset = E \setminus E = S \setminus S$.

Definition (Disjoint Sets). Two sets E and F are called *disjoint* if their intersection is empty: $E \cap F = \emptyset$.

©Florian Kauffeldt

2.3 Collection of Sets

A collection of sets is a set whose elements are sets. We denote collection of sets by script letters.

Definition (Power Set). The *power set* of a set S, $\mathcal{P}(S)$, is the set that contains all subsets of S: $\mathcal{P}(S) = \{E : E \subseteq S\}$.

Example. If $S = \{1, 2, 3\}$, then

$$\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, S\}.$$

Definition (Partition). A collection of sets \mathcal{T} is called partition of S if

- (i) The elements of \mathcal{T} are disjoint: $E \cap F = \emptyset$ for all $E, F \in \mathcal{T}$.
- (ii) The union of all elements of \mathcal{T} is $S: \bigcup_{E \in \mathcal{T}} E = S$.

Example. Let $S = \{1, 2, 3\}$. The finest partition of S is S itself. Another partition is, e.g.:

$$\mathcal{T} = \{\{1\}, \{2, 3\}\}.$$

Definition (σ -Algebra). Given a set S. A σ -algebra (also known as σ -field) \mathcal{A} on S is a collection of subsets of S, $\mathcal{A} \subseteq \mathcal{P}(S)$ that satisfies

- (i) $S \in \mathcal{A}$
- (ii) Closed under complementation. If E is in \mathcal{A} , then so is E^c .
- (iii) Closed under countable unions. If E, F are in A, then so is $E \cup F$.

Example. Let $S = \{1, 2, 3, 4\}$.

- The largest σ -algebra is the discrete σ -algebra: $\mathcal{P}(S)$
- The smallest σ -algebra is the minimal or trivial σ -algebra: $\{\emptyset, S\}$.
- Each σ -algebra of the form $\{\emptyset, E, E^c, S\}$ is called *simple* σ -algebra generated by E. For instance: $\{\emptyset, \{1\}, \{2, 3, 4\}, S\}$.
- The smallest σ -algebra that contains all the open subsets (open intervals) of \mathbb{R} is called *Borel* σ -*Algebra*.

Remarks.

- (i) In the statistical nomenclature, elements of S are called *simple events* and S is called *sample space*, elements of A are called *events* and A is the *event space*.
- (ii) A tuple (S, A) is called *measurable space*. A triple (S, A, P), where P is a measure, is called *measure space*. If P is a *probability measure* (satisfies the probability axioms), we call (S, A, P) a *probability space*. The formal definitions of these concepts are in Appendix A.1.

2.4 Exercises

- 2.4.1 Which of the following sets is finite?
 - a) [4, 8]
 - b) $\{3, 4, 10\}$
 - c) $\mathcal{P}(S)$ where $S = \{Cat, Dog\}$
 - d) N
- 2.4.2 Write down the set of all positive real numbers x that are less than 10 and where f(x) = 3 + 4x is greater than 2.
- 2.4.3 Write down the set below in set notation.

- 2.4.4 Write down the set of all Latin letters.
- 2.4.5 Let E = [10, 20]. Write down E^c .
- 2.4.6 Let $E = \{Apple, Pie\}$ and $F = \{Peter, Saskia, Francis\}$. Write down the union of E and F.
- 2.4.7 Let $E = \{x \in \mathbb{R} : x \leq 23\}$ and $F = \mathbb{R}_+ = \{x \in \mathbb{R} : x \geq 0\}$. Write down the intersection of E and F.
- 2.4.8 Let $E = \{Apple, 3, Monkey\}$ and $F = \{0, 3, 10\}$. Write down the set differences $E \setminus F$ and $F \setminus E$.
- 2.4.9 Which of the following sets are empty?
 - a) $\{HumanBeings\} \cap \{Animals\}$
 - b) $\{x \in \mathbb{R} : x < 0\} \cap \{x \in \mathbb{R} : x^2 = 0\}$
 - c) $\{x \in \mathbb{R} : x < 0\} \cup \{x \in \mathbb{R} : x^2 = 0\}$

d)
$$\{x \in \mathbb{R} : x^2 = 0\} \setminus \{0\}$$

- 2.4.10 Find the power sets of the sets $E = \{a, b, c\}$ and $F = \{\{2, 3\}, 6\}$.
- 2.4.11 Let $S = \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$. Write down 3 partitions of S.
- 2.4.12 Let $S=\{\boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot\}$. Which of the following are event spaces?
 - a) $\{\emptyset, S\}$
 - b) $\{\emptyset, \{\boxdot, \boxdot\}, \{\boxdot, \boxdot, \boxdot, \boxdot\}, S\}$
 - $\mathbf{c}) \ \ \{\varnothing, \boxdot, \blacksquare, \{\boxdot, \boxdot\}, \{\boxdot, \boxdot, \boxdot, \blacksquare\}, \{\boxdot, \boxdot, \blacksquare, \blacksquare\}, \{\boxdot, \boxdot, \blacksquare\}, S\}$
 - d) $\{\varnothing, \{\boxdot, \boxdot\}, \{\boxdot, \boxdot\}, \{\boxdot, \boxdot\}, S\}$
- 2.4.13 From 24 students in a class, 15 play volleyball, 15 handball and 10 basketball, 5 students play volleyball and basketball, 7 play handball and basketball, 3 play only handball and 4 practice all three sports. How many students only play basketball? How many students play volleyball and handball? How many students do not play any of the three sports?

3 Combinatorics

3.1 Basic Operations

Definition (Factorial). The factorial of a positive integer n, denoted by n!, is the product of all positive integers less than or equal to n:

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1 = \prod_{i=1}^{n} i.$$

Example. $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$.

Interpretation. There are n! different ways of arranging n distinct objects into a sequence, the permutations of those objects. Hence, there are, e.g., 24 possibilities to arrange 4 objects into a sequence.

Definition (Binomial Coefficient). Definition (binomial coefficient). The binomial coefficient $\binom{n}{x}$ (read: "n choose x") is defined as:

$$\binom{n}{x} = \frac{n!}{x! \cdot (n-x)!}.$$

Example. $\binom{6}{2} = \frac{6!}{2! \cdot 4!} = \frac{6 \cdot 5 \cdot 4!}{2! \cdot 4!} = 15.$

$$C(n,x) = \binom{n}{x}.$$

Definition (Variation). Every group of x elements chosen from a set of n elements in which the ordering of the chosen elements is $\underline{\text{important}}$ (i.e., groups \mathfrak{S} and \mathfrak{S} are not equivalent) is called a variation of the x-th order of n elements. The number of variations, V(n,x), without repetition is

$$V(n,x) = \binom{n}{x} \cdot x!.$$

Example. There are $C(6,2) = \binom{6}{2} = 15$ combinations for choosing 2 elements from a set of 6 elements and $C(6,2) = \binom{6}{2} \cdot 2! = 30$ variations.

3.2 Exercises

- 3.2.1 How many possibilities are there to arrange 6 objects into a sequence?
- 3.2.2 How many possibilities are there to choose 5 elements from 10 elements without order and repetition?
- 3.2.3 How many possibilities are there to choose 3 elements from 15 elements with order and without repetition?

4 Calculus

4.1 Functions

Definition (Function). A function f is a mapping that associates each element of a set A to a single element of a set B: $f: A \to B$. The set A is called domain and the set B is called target space of f.

Example. Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.

 ${\bf Figure~11:~Domain~and~Target~Space}$

Definition (Image). Given a function, $f:A\to B$. The *image* of a set $E\subseteq A$ under f is the set

$$f(E) = \{ f(s) : s \in E \}.$$

Definition (Preimage). Given a function, $f:A\to B$. The *Preimage* of a set $E\subseteq B$ under f is the set

$$f^{-1}(E) = \{ s \in A : f(s) \in E \}.$$

Definition (Range). The *range* of a function, $f:A\to B$ is the image of its domain:

$$range(f) = f(A)$$
.

Example. Let $f(x) = x^2$. The preimage of [4, 36] is: $[-6, -2] \cup [2, 6]$.

Figure 12: Image and Preimage

Functions of one variable are functions whose domain is one-dimensional. Functions of several variables have a multidimensional domain.

Example. The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is a function of one variable:

Figure 13: Graph of the function $f(x) = x^2$

Example. The function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = x^2 + y^2$ is a function of several variables:

Figure 14: Graph of the function $f(x,y) = x^2 + y^2$

4.2 Derivatives and Integrals

4.2.1 Derivatives

The derivative of a real-valued function with respect to one of its variables measures the sensitivity of the function to the changes in the direction of the variable.

Definition (Derivative). The *derivative* of a real-valued function of one variable is:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Example. Let
$$f(x) = x^2$$
, then $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} 2x + h = 2x$.

Graphically, a derivative represents the slope of the tangent line on the function at the point:

Figure 15: A derivative of the function $f(x) = x^2$

Computation Rules. One of the most prominent computation rules for derivatives is:

$$f(x) = x^b$$
 implies $f'(x) = b \cdot x^{b-1}$,

where b is a real number.

Further computation rules are

- (i) Chain Rule. $(f(g))' = f'(g) \cdot g'$
- (ii) Product Rule. $(f \cdot g)' = f' \cdot g + f \cdot g'$
- (iii) Quotient Rule. $(f/g)' = (f' \cdot g f \cdot g')/g^2$

Example. Let $f(x) = x^2$ and g(x) = 3 + 4x. Find the derivatives of the functions f(g), $f \cdot g$, and f/g:

$$-(f(g))' = f'(g) \cdot g' = 2(3+4x) \cdot 4 = 24+32x$$

$$-(f \cdot g)' = f' \cdot g + f \cdot g' = 2x \cdot (3+4x) + x^2 \cdot 4 = 12x^2 + 6x$$

$$-(f/g)' = (f' \cdot g - f \cdot g')/g^2 = \frac{2x \cdot (3+4x) - x^2 \cdot 4}{(3+4x)^2} = \frac{4x^2 + 6x}{(3+4x)^2}$$

Definition (Partial Derivative). A partial derivative refers to the derivative of a function of several variables with respect to one of its variables. The partial derivative of function f with respect to variable x is denoted by f_x or $\frac{\partial f}{\partial x}$.

Example. Let $f(x,y) = x^2 \cdot \sqrt{y}$. Function f has two partial derivatives: $f_x = 2x \cdot \sqrt{y}$ and $f_y = x^2 \cdot 1/2 \cdot y^{-1/2} = \frac{x^2}{2\sqrt{y}}$.

4.2.2 Integrals

The integral $\int_a^b f(x) dx$ of a function f(x) for a given interval [a, b] represents the area under the curve of f:

Figure 16: Integral

We calculate the integral of a function f by determining the antiderivative F of f:

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

4.3 Exercises

4.4.1 Find the derivatives of the following functions:

a)
$$f(x) = 2x^3 - 6x^2$$

b)
$$f(x) = \sqrt[6]{x^2}$$

c)
$$f(x) = -(x^3 - 3)^3$$

d)
$$f(x) = \frac{e^x}{x^2}$$

e)
$$f(x) = \frac{4}{\sqrt{x}} \cdot 3x^2$$

f)
$$f(x) = (2x^2 - 5x + 6)/(-x + 2)$$

g)
$$f(x) = a^x$$

4.4.2 Find the partial derivatives of the following functions:

a)
$$f(x,y) = x^3 - 3x^2y + xy^2 + 6y^3$$

b)
$$f(x,y) = \frac{x}{y} - \frac{y}{x}$$

c)
$$f(x,y) = e^{\frac{x}{y}}$$

d)
$$f(x,y) = \ln(x^2 + y^2)$$

4.4.3 Find the preimage of the set $E = \{1,3\}$ under the function $f(x) = \sqrt{x}$ and the preimage of the set F = [2,4] under the function $g(x) = 4x^2$.

5 Vectors and Matrices

5.1 Vectors

In general, a vector space (also called a linear space) is a set of objects equipped with a structure so that we may add the objects together and multiply ("scale") them by scalars (which are often real numbers).

We restrict our attention to Euclidean Vector Spaces:

Definition (Euclidean Vector Space). A *Euclidean vector space* is a quadruple $(\mathbb{R}^n, +, \cdot, \bullet)$ that consists of:

(i) A n-ary Cartesian product of the real numbers:

$$\mathbb{R}^n = \mathbb{R} \times \ldots \times \mathbb{R} = \{(x_1, \ldots, x_n) : x_1, \ldots, x_n \in \mathbb{R}\}.$$

(ii) An operation + (called *addition*) defined by

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n).$$

(iii) An operation \cdot (called *scalar multiplication*) defined by

$$a \cdot (x_1, \dots, x_n) = (a \cdot x_1, \dots, a \cdot x_n),$$

where $a \in \mathbb{R}$.

(iv) An operation • (called scalar product) defined by

$$(x_1, \ldots, x_n) \bullet (y_1, \ldots, y_n) = x_1 \cdot y_1 + \ldots + x_n \cdot y_n = \sum_{i=1}^n x_i \cdot y_i.$$

Definition (Vector). Elements of a Euclidean vector space $(\mathbb{R}^n, +, \cdot, \bullet)$ are called *vectors*.

Remark. Technically, elements of \mathbb{R}^n are called *n-tuples* or *points*. Vectors can be added, multiplied, and multiplied by numbers, points cannot. For the sake of simplicity, we will not distinguish between vectors and tuples.

A vector is an ordered list of numbers, represented in row or column form.

- row vector $(1 \times n \text{ vector})$: (x_1, \ldots, x_n)

- column vector
$$(n \times 1 \text{ vector})$$
: $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

Notation. To simplify notation, we denote both \cdot and \bullet by \cdot . Similarly, we denote both \mathbb{R}^n and $(\mathbb{R}^n, +, \cdot, \bullet)$ by \mathbb{R}^n . A vector is denoted by \mathbf{x} or \vec{x} or \vec{x} . **Example.**

Figure 17: A vector in \mathbb{R}^2

Figure 18: A vector in \mathbb{R}^3

Example. Let $\vec{x}_1 = (1, 2, 3)$ and $\vec{x}_2 = (4, 5, 6)$, then:

- Vector Addition:

$$\vec{x}_1 + \vec{x}_2 = (1+4, 2+5, 3+6) = (5, 7, 9)$$

- Vector Multiplication (Scalar Product):

$$\vec{x}_1 \cdot \vec{x}_2 = (1 \cdot 4) + (2 \cdot 5) + (3 \cdot 6) = 32$$

- Scalar Multiplication:

$$4 \cdot \vec{x}_1 = 4 \cdot (1, 2, 3) = (4 \cdot 1, 4 \cdot 2, 4 \cdot 3) = (4, 8, 12)$$

We can use vectors to describe systems of linear equations.

Example. The system:

$$3x_1 + 2x_2 = 1$$
$$2x_1 - 2x_2 = -2$$

can be written as:

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} \cdot x_1 + \begin{pmatrix} 2 \\ -2 \end{pmatrix} \cdot x_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

Definition (Linear Dependence). A sequence of vectors $\vec{x}_1, \ldots, \vec{x}_k$ is called *linearly dependent* if there exists real numbers a_1, \ldots, a_k , not all zero, such that:

$$a_1 \cdot \vec{x}_1 + \ldots + a_k \cdot \vec{x}_k = \vec{0},$$

where $\vec{0} = (0, \dots, 0)$.

If the vectors are linearly independent, then there exists at least one $a_i \neq 0$. Suppose $a_1 \neq 0$, then we may write \vec{x}_1 as a linear combination of the other vectors:

$$\vec{x}_1 = \frac{-a_2}{a_1} \vec{x}_2 + \ldots + \frac{-a_k}{a_1} \cdot \vec{x}_k.$$

Remark. If a sequence of vectors is not linearly dependent, then it is called *linearly independent*.

Example. Consider the vectors: $\vec{x}_1 = (1, 1), \vec{x}_2 = (-3, 2), \text{ and } \vec{x}_3 = (2, 4).$

First, check if \vec{x}_1 and \vec{x}_2 are linearly dependent: are there numbers a_1 and a_2 , not both zero, such that $a_1\vec{x}_1 + a_2\vec{x}_2 = \vec{0}$? Notice that this is a system of linear equations:

$$a_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + a_2 \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Solving this system w.r.t. (a_1, a_2) yields the unique solution $(a_1^*, a_2^*) = (0, 0) = \vec{0}$. Hence, the vectors \vec{x}_1 and \vec{x}_2 are linearly independent.

Now, check if all 3 vectors are linearly independent. This translates into the following system of linear equations:

$$a_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + a_2 \begin{pmatrix} -3 \\ 2 \end{pmatrix} + a_3 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Solving this system w.r.t. (a_1, a_2) yields the set of solutions $\{(a_1^*, a_2^*) = (\frac{-3a_3}{2}, \frac{a_3}{2}) : a_3 \in \mathbb{R}\}$, which contains non-zero solutions. For instance, for $a_3 = 1$, we have $(a_1^*, a_2^*) = (\frac{-3}{2}, \frac{1}{2})$. Hence, the 3 vectors are linearly dependent.

5.2 Matrices

5.2.1 Definition

Definition (Matrix). A *matrix* is a rectangular array or table of items, arranged in rows and columns.

Remark. Formally, a real-valued $m \times n$ matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ is a function that assigns a number $a_{ij} \in \mathbb{R}$ to each index pair $(i, j) \in \{1, \dots, m\} \times \{1, \dots, n\}$:

$$A: \{1,\ldots,m\} \times \{1,\ldots,n\} \to \mathbb{R}.$$

m rows
$$\begin{bmatrix} a_{11} & \dots & \dots & a_{1n} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{m1} & \dots & \dots & a_{mn} \end{bmatrix}$$

Figure 19: $m \times n$ matrix

Example.

$$A = \begin{pmatrix} 2 & 4 \\ 5 & 7 \end{pmatrix}$$

5.2.2 Matrix Operations

The following are the basic matrix operations:

(i) **Addition.** Let $A, B \in \mathbb{R}^{m \times n}$ be two matrices of the same size, then:

$$A + B = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

Example.

$$\begin{pmatrix} 2 & 4 \\ 5 & 7 \end{pmatrix} + \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 8 \\ 7 & 10 \end{pmatrix}$$

(ii) Scalar Multiplication. Let $A \in \mathbb{R}^{m \times n}$, then for $c \in \mathbb{R}$:

$$c \cdot A = \begin{pmatrix} c \cdot a_{11} & \dots & c \cdot a_{1n} \\ \vdots & \ddots & \vdots \\ c \cdot a_{m1} & \dots & c \cdot a_{mn} \end{pmatrix}$$

Example.

$$3 \cdot \begin{pmatrix} 2 & 4 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 6 & 12 \\ 15 & 21 \end{pmatrix}$$

(iii) **Matrix Multiplication.** We can multiply two matrices A and B if the number of columns of the left matrix equals the numbers of rows of the right matrix. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times l}$, then we multiply each row of A by the columns of B:

$$A \cdot B = \begin{pmatrix} a_{11} \cdot b_{11} + \dots + a_{1n} \cdot b_{n1} & \dots & a_{11} \cdot b_{1l} + \dots + a_{1n} \cdot b_{nl} \\ \vdots & \ddots & \vdots \\ a_{m1} \cdot b_{11} + \dots + a_{mn} \cdot b_{n1} & \dots & a_{m1} \cdot b_{1l} + \dots + a_{mn} \cdot b_{nl} \end{pmatrix}$$

Example.

$$\begin{pmatrix} 3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 4 & 0 \end{pmatrix}$$

Step 1:

$$\begin{pmatrix} 3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 + 2 \cdot 0 + 1 \cdot 4 & * \\ * & * \end{pmatrix} = \begin{pmatrix} 7 & * \\ * & * \end{pmatrix}$$

Step 2:

$$\begin{pmatrix} 3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 7 & 3 \cdot 2 + 2 \cdot 1 + 1 \cdot 0 \\ * & * \end{pmatrix} = \begin{pmatrix} 7 & 8 \\ * & * \end{pmatrix}$$

Step 3:

$$\begin{pmatrix} 3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 7 & 8 \\ 1 \cdot 1 + 0 \cdot 0 + 2 \cdot 4 & * \end{pmatrix} = \begin{pmatrix} 7 & 8 \\ 9 & * \end{pmatrix}$$

Step 4:

$$\begin{pmatrix} 3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 7 & 8 \\ 9 & 1 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 \end{pmatrix} = \begin{pmatrix} 7 & 8 \\ 9 & 2 \end{pmatrix}$$

(iv) **Transpose.** The transpose of a matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ is a matrix $A^T = (a_{ji}) \in \mathbb{R}^{n \times m}$. **Example.**

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix} \implies A^T = \begin{pmatrix} 3 & 1 \\ 2 & 0 \\ 1 & 2 \end{pmatrix}$$

(v) **Inverse.** We can only determine the inverse A^{-1} of a squared matrix $A \in \mathbb{R}^{n \times n}$. Furthermore, the matrix needs to be invertible.

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} = I.$$

The matrix I is called *identity matrix*.

Example.

The inverse of
$$=\begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix}$$
 is $A^{-1} = \begin{pmatrix} 2 & -0, 5 \\ -3 & 1 \end{pmatrix}$,

because:

$$A \cdot A^{-1} = \begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & -0, 5 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 4 - 3 & -1 + 1 \\ 12 - 12 & -3 + 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

We can use matrices to describe systems of linear equations.

Example. The system:

$$3x_1 + 2x_2 = 1$$
$$2x_1 - 2x_2 = -2$$

can be written as:

$$\begin{pmatrix} 3 & 2 \\ 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

5.3 Exercises

5.3.1 Compute the following:

a)
$$a + 4 \cdot \begin{pmatrix} 8 \\ 3 \\ 5 \end{pmatrix}$$

b) $\begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix} + \begin{pmatrix} 7 \\ 10 \\ 2 \end{pmatrix}$

c)
$$\begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 10 \\ 3 \end{pmatrix}$$

5.3.2 Write down the following system of linear equations by using vectors:

$$20x_1 - 20x_2 + 15x_3 = 1$$

$$20x_1 - 11x_2 + 18x_3 = -11$$

$$17x_1 - 8x_2 - 10x_3 = 0$$

5.3.3 Check if the following vectors are linearly independent.

a)
$$(9, -6)$$
 and $(-6, 1)$ and $(5, 10)$

b)
$$(9,7,4)$$
 and $(-3,5,0)$

c)
$$(6,8)$$
 and $(-3,5)$

d)
$$(2,1)$$
 and $(4,2)$

5.3.4 Compute the following:

a)
$$7 + 5 \cdot \begin{pmatrix} 2 & 0 & 10 \\ 10 & 1 & 10 \end{pmatrix}$$

b)
$$(3,8,3) \cdot \begin{pmatrix} 4 \\ 5 \\ 10 \end{pmatrix}$$

c)
$$(1, 10, 3) \cdot \begin{pmatrix} 4 & 1 \\ 7 & 2 \\ 4 & 1 \end{pmatrix}$$

d)
$$\begin{pmatrix} 6 & 1 & 2 \\ 3 & 2 & 9 \end{pmatrix} \cdot \begin{pmatrix} 8 & 3 \\ 8 & 4 \\ 10 & 6 \end{pmatrix}$$

5.3.5 Find the transpose of the matrix
$$A = \begin{pmatrix} 6 & 1 & 2 \\ 3 & 2 & 9 \end{pmatrix}$$
.

5.3.6 Write down the following system of linear equations in matrix form:

$$20x_1 - 20x_2 + 15x_3 = 1$$

$$20x_1 - 11x_2 + 18x_3 = -11$$

$$17x_1 - 8x_2 - 10x_3 = 0$$

6 Solutions to the Exercises

6.1 Section 2

- 2.4.1 b) and c)
- $2.4.2 \{x \in [0, 10] : f(x) > 2\}$
- 2.4.3 $\{(x,y): x \in [1,3], y \in [2,4]\} = [1,3] \times [2,4]$
- 2.4.4 { l:l is a Latin letter }
- $2.4.5 \ E^c = (-\infty, 10) \cup (20, \infty)$
- $2.4.6 \ E \cup F = \{Apple, Pie, Peter, Saskia, Francis\}$
- $2.4.7 \ E \cap F = [0, 23]$
- 2.4.8 $E \setminus F = \{Apple, Monkey\}$ and $F \setminus E = \{0, 10\}$
- 2.4.9 a), b), and d)
- 2.4.10 $\mathcal{P}(E) = \{\emptyset, a, b, c, \{a, b\}, \{a, c\}, \{b, c\}, E\} \text{ and } \mathcal{P}(F) = \{\emptyset, \{2, 3\}, 6, \{2, 3, 6\}, F\}.$
- $2.4.11 \ \mathcal{T}_1 = \big\{ \big\{ \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}} \big\}, \big\{ \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}} \big\} \big\}, \ \mathcal{T}_2 = \big\{ \big\{ \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}} \big\}, \big\{ \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}} \big\} \big\}, \ \mathcal{T}_3 = \big\{ \big\{ \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}}, \mathbf{\dot{\cdot}} \big\} \big\}$
- 2.4.12 a), b), and c)
- 2.4.13 2.4.13. 2 students only play basketball, 9 play volleyball and handball, furthermore 1 doesn't play any of the three sports.

6.2 Section 3

- 3.2.1 720
- 3.2.2 252
- 3.2.3 2730

6.3 Section 4

- 4.4.1 a) $f'(x) = 6x^2 12x$
 - b) $f'(x) = \frac{1}{2 \frac{6}{3} \sqrt{\pi^4}}$
 - c) $f'(x) = -9x^2(x^3 3)^2$
 - d) $f'(x) = \frac{(x-2)e^x}{x^3}$
 - e) $f'(x) = 18\sqrt{x}$
 - f) $f'(x) = \frac{-2x^2 + 8x 4}{(-x+2)^2}$

g)
$$f'(x) = a^x \cdot \ln(a)$$

4.4.2 a)
$$f_x(x,y) = 3x^2 - 6xy + y^2$$
 and $f_y(x,y) = -3x^2 + 2xy + 18y^2$

b)
$$f_x(x,y) = \frac{1}{y} - \frac{y}{x^2}$$
 and $f_y(x,y) = \frac{-x}{y^2} - \frac{-1}{x}$

c)
$$f_x(x,y) = \frac{1}{y}e^{x/y}$$
 and $f_y(x,y) = \frac{1}{x}e^{x/y}$

d)
$$f_x(x,y) = \frac{2x}{x^2+y^2}$$
 and $f_y(x,y) = \frac{2y}{x^2+y^2}$

4.4.3
$$f^{-1}(\{1,3\}) = \{1,9\}$$
 and $g^{-1}([2,4]) = [\sqrt{\frac{1}{2}},1]$

6.4 Section 5

5.3.1 a)
$$\begin{pmatrix} 32+a\\12+a\\20+a \end{pmatrix}$$

b)
$$\begin{pmatrix} 9 \\ 10 \\ 9 \end{pmatrix}$$

$$5.3.2 \quad \begin{pmatrix} 20\\20\\17 \end{pmatrix} x_1 + \begin{pmatrix} -20\\-11\\-8 \end{pmatrix} x_2 + \begin{pmatrix} 15\\18\\-10 \end{pmatrix} x_3 = \begin{pmatrix} 1\\-11\\0 \end{pmatrix}$$

- 5.3.3 a) Linearly dependent
 - b) Linearly independent
 - c) Linearly independent
 - d) Linearly dependent

5.3.4 a)
$$\begin{pmatrix} 17 & 7 & 57 \\ 57 & 12 & 57 \end{pmatrix}$$

- b) 82
- c) (86, 24)

d)
$$\begin{pmatrix} 76 & 34 \\ 130 & 71 \end{pmatrix}$$

$$5.3.5 \ A^T = \begin{pmatrix} 6 & 3 \\ 1 & 2 \\ 2 & 9 \end{pmatrix}$$

$$5.3.6 \begin{pmatrix} 20 & -20 & 15 \\ 20 & -11 & 18 \\ 17 & -8 & -10 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -11 \\ 0 \end{pmatrix}$$

A Appendix

For interested students only.

A.1 Measures (Section 2)

Definition (Measure). Given a measurable space (S, \mathcal{A}) . A measure is a function $P : \mathcal{A} \to \mathbb{R} \cup \infty$ that satisfies

- (i) Non-Negativity. For all $E \in \mathcal{A}$, $P(E) \geq 0$.
- (ii) Null Empty Set. $P(\emptyset) = 0$.
- (iii) Countable Additivity. For all countable collections $\{E_1, E_2, E_3, \dots\}$ of pairwise disjoint sets in \mathcal{A} ,

$$P(E_1 \cup E_2 \cup E_3 \cup \dots) = P(E_1) + P(E_2) + P(E_3) + \dots$$

Example. The following are measures:

– Lebesgue measure P_l on the Borel σ -algebra. For all intervals $[a,b] \in$ Borel,

$$P_l([a,b]) = b - a$$

- Counting measure P_c on (S, \mathcal{A}) . For all sets $E \in \mathcal{A}$,

$$P_c(E) = \begin{cases} \text{number of elements of } E & \text{, if E is finite} \\ \infty & \text{, else} \end{cases}$$

– Dirac measure $P_{d(s)}$ on (S, \mathcal{A}) . For a given $s \in S$ and all sets $E \in \mathcal{A}$,

$$P_{d(s)}(E) = \begin{cases} 1 & \text{, if } s \in E \\ 0 & \text{, else} \end{cases}$$

Definition (Probability Measure). A measure that satisfies P(S) = 1 (Normalization) is called *probability measure*.

A.2 Measurable Function (Section 4)

Definition (Measurable Function). Let (S, A) and (S', A') be measurable spaces. A function $f: S \to S'$ is called *measurable* if the preimage of every $E' \in A'$ under f is an element of A, formally:

$$f^{-1}(E') \in \mathcal{A}$$
 for all $E' \in \mathcal{A}'$.

Example.

Figure 20: Measurable Function

A.3 Invertible Matrix (Section 5)

Definition (Rank). The rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. This corresponds to the maximal number of linearly independent columns of A.

Remark. A $n \times n$ matrix has full rank if rank(A) = n.

Definition (Invertible). The following are equivalent:

- (i) $n \times n$ matrix A is invertible.
- (ii) A has full rank.
- (iii) The equation $A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$.
- (iv) The columns of A are linearly independent.