

Trial Examination 2021

Year 12 Mathematics Extension 2

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- For questions in Section II, show relevant mathematical reasoning and/or calculations

Total Marks: 100

Section I - 10 marks (pages 2-5)

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 6-13)

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2021 HSC Year 12 Mathematics Extension 2 examination.

SECTION I

10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 Let a = 3i - 4j + k and b = -i + 2j - 3k.

Which of the following is equal to 2a - b?

A.
$$7i - 10j - k$$

B.
$$7i - 10j + 5k$$

C.
$$5i - 10j + 5k$$

D.
$$5i - 10j - k$$

2 Let $z = \frac{\sqrt{3} - i}{1 + i}$.

What is the modulus and argument of z?

A.
$$\frac{1}{\sqrt{2}}$$
 and $-\frac{5\pi}{12}$

B.
$$\frac{1}{\sqrt{2}}$$
 and $-\frac{\pi}{12}$

C.
$$\sqrt{2}$$
 and $-\frac{5\pi}{12}$

D.
$$\sqrt{2}$$
 and $-\frac{\pi}{12}$

3 What is the Cartesian equation of the line $r = \begin{pmatrix} -5 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -3 \end{pmatrix}$?

A.
$$2y + 3x = -3$$

B.
$$2x - 3y = -8$$

C.
$$3y + 2x = 8$$

D.
$$3x - 2y = 28$$

In the complex plane, a circle C has diameter AB, where the points A and B represent the complex numbers 1-5i and 3-i respectively.

What is the equation of *C*?

A.
$$|z-2+3i| = 2\sqrt{5}$$

B.
$$|z-2+3i| = \sqrt{5}$$

C.
$$|z+2-3i| = 2\sqrt{5}$$

D.
$$|z + 2 - 3i| = \sqrt{5}$$

A particle moves in a straight line with simple harmonic motion about a centre O. The period of the motion is π seconds. When the particle is 0.50 metres from O, its speed is 2.40 m/s. What is the particle's maximum speed?

6 Which of the following expressions is equal to $\int \frac{8x+1}{x^2+9} dx?$

A.
$$8\ln(x^2+9)+3\tan^{-1}\frac{x}{3}+c$$

B.
$$8\ln(x^2+9)+\frac{1}{3}\tan^{-1}\frac{x}{3}+c$$

C.
$$4\ln(x^2+9)+3\tan^{-1}\frac{x}{3}+c$$

D.
$$4\ln(x^2+9)+\frac{1}{3}\tan^{-1}\frac{x}{3}+c$$

Given that x and y are natural numbers, which of the following is a FALSE statement?

A.
$$\forall x \exists y (x - y = 0)$$

B.
$$\forall x \exists y (3x - y = 0)$$

C.
$$\forall x \exists y (x - 3y = 0)$$

D.
$$\exists x \exists y (x + y = 8)$$

8 Consider the statement, where p and q are odd primes and r and s are positive non-primes.

'For all odd primes p < q there exists positive non-primes r < s such that $p^2 + q^2 = r^2 + s^2$.'

Which of the following is the negation of the statement?

- A. For all odd primes p < q there exists positive non-primes r < s such that $p^2 + q^2 = r^2 + s^2$.
- B. For all odd primes p < q and for all positive non-primes r < s, $p^2 + q^2 \ne r^2 + s^2$.
- C. There exists odd primes p < q such that for all positive non-primes r < s, $p^2 + q^2 = r^2 + s^2$.
- D. There exists odd primes p < q such that for all positive non-primes r < s, $p^2 + q^2 \ne r^2 + s^2$.
- 9 Consider the Argand diagram, where z = a + ib.

Which of the following pairs of points in the complex plane could represent the square roots of z?

- A. A and D
- B. B and C
- C. B and E
- D. C and E

A particle moves in a straight line such that its acceleration a is given by a=vx, where v is the particle's velocity, x is the particle's position and v, x > 0.Which of the following diagrams best shows the relationship between v and x?

A.

R

C.

D.

SECTION II

90 marks

Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

- (a) The quadratic equation $z^2 + pz + q = 0$, where p and q are real, has a root $\sqrt{5} i$. 2 Find the values of p and q.
- (b) Use integration by parts to evaluate $\int_0^1 \sin^{-1} x dx$.
- (c) A particle moves in a straight line. At time t seconds, its displacement from a fixed origin is x metres and its velocity is v m/s. The acceleration of the particle is given by $\ddot{x} = x + 3$. At t = 0, the particle is at the origin and moving with velocity 3 m/s.
 - (i) Show that v = x + 3.
 - (ii) Find an expression for x, the displacement of the particle, in terms of t.
- (d) Consider the vectors $\underline{a} = \underline{i} \underline{j} \underline{k}$, $\underline{b} = 2\underline{i} + 3\underline{j} \underline{k}$ and $\underline{c} = 4\underline{i} \underline{j} + 5\underline{k}$, where \underline{b} is perpendicular to \underline{c} . Let $\hat{u} = x\underline{i} + y\underline{j} + z\underline{k}$, where x > 0, be a unit vector perpendicular to both \underline{b} and \underline{c} . Find \hat{u} and hence show that $\underline{a}, \underline{b}$ and \underline{c} are mutually perpendicular.

(e) Consider
$$z = \frac{2}{1 - e^{2i\theta}}$$
.
Show that $z = 1 + i \cot \theta$.

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) A particle is undergoing simple harmonic motion about a fixed origin with period $\frac{\pi}{3}$ seconds. Initially, the particle is at rest 4 metres to the right of the origin. Find the first TWO times when the particle's speed is half its maximum speed.
- (b) Two particles, A and B, have masses 5m kg and km kg respectively, where k < 5. The particles are connected by a light, inextensible string that passes over a smooth light fixed pulley. The system is held at rest with the string taut, the hanging parts of the string are vertical and A and B are at the same height above a horizontal floor as shown.

The system is released from rest and particle A descends with acceleration $\frac{g}{4}$ m/s².

- (i) Show that the tension in the string as particle A descends is $\frac{15mg}{4}$ newtons.
- (ii) Find the value of k.
- (iii) After descending for 1 second, particle *A* impacts the floor and is immediately brought to rest. In its subsequent motion, particle *B* does not reach the pulley.

 Show that the greatest height reached by particle *B* above the floor is $\frac{9g}{32}$ metres.
- (c) A subset of the complex plane is described by the relation $\left|z \left(2\sqrt{2} + 2\sqrt{2}i\right)\right| \le 2$.
 - (i) Draw a sketch of this relation.
 - (ii) Given that z is a complex number that satisfies the relation, find the minimum and maximum values of |z|.
 - (iii) Given that z is a complex number that satisfies the relation, find the minimum and maximum values of Arg z.

2

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the statement, where *x* is an integer.

'If $x^2 - 6x + 5$ is even, then x is odd.'

(i) Write down the contrapositive of the statement.

1

(ii) Prove the statement by proving the contrapositive.

2

(b) Let \overrightarrow{OACB} be a parallelogram with $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$. M is a point on OA such that $|\overrightarrow{OM}| = \frac{1}{5}|\overrightarrow{OA}|$. P is a point on MB such that $|\overrightarrow{MP}| = \frac{1}{6}|\overrightarrow{MB}|$, as shown in the diagram.

- (i) Show that *P* lies on *OC*.
- (ii) State the ratio of lengths *OP* : *PC*.
- (c) (i) Show that, for any integer n, $e^{in\theta} + e^{-in\theta} = 2\cos n\theta$.
 - (ii) By expanding $\left(e^{i\theta} + e^{-i\theta}\right)^5$, show that $\cos^5 \theta = \frac{1}{16} \left(\cos 5\theta + 5\cos 3\theta + 10\cos \theta\right)$.
 - (iii) Hence, or otherwise, find $\int_0^{\frac{\pi}{2}} \cos^5 \theta d\theta$.
 - (iv) Using the result of part (ii), solve the equation $\cos 5\theta + 5\cos 3\theta + 9\cos \theta = 0$ for $0 \le \theta \le \pi$.

Question 14 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Prove that $\frac{a+b}{2} \ge \sqrt{ab}$ for all positive real numbers a and b.
 - (ii) Prove that $(a+b)(b+c)(c+a) \ge 8abc$ for all positive real numbers a, b and c.
 - (iii) Suppose that x, y and z are the sides of a triangle. Using the result from part (ii), deduce that $xyz \ge (y+z-x)(z+x-y)(x+y-z)$.
- (b) Prove by contradiction that $\sin \theta + \cos \theta \ge 1$ for $0 \le \theta \le \frac{\pi}{2}$.
- (c) A particle is projected from a fixed origin, as shown in the diagram. The forces acting on the particle are its weight and air resistance. Its initial horizontal component of velocity is v_1 and its subsequent horizontal velocity \dot{x} is modelled by $\frac{d\dot{x}}{dt} = -k\dot{x}$. The particle's displacement is measured in metres and time is measured in seconds.

(i) Show that the particle's horizontal displacement, x, from the origin is given by $x = \frac{v_1}{k} \left(1 - e^{-kt} \right).$

The particle's initial vertical component of velocity is v_2 and its subsequent vertical velocity \dot{y} is modelled by $\frac{d\dot{y}}{dt} = -k\dot{y} - g$, where g is the acceleration due to gravity.

(ii) Show that the particle's vertical displacement, y, from the origin is given by $y = \frac{kv_2 + g}{t^2} \left(1 - e^{-kt} \right) - \frac{g}{k}t.$

Question 14 continues on page 10

Question 14 (continued)

- (iii) Show that the Cartesian equation of the particle's path of flight is given by $y = \left(\frac{kv_2 + g}{kv_1}\right)x + \frac{g}{k^2}\ln\left(1 \frac{kx}{v_1}\right).$
- (iv) In the case $v_1 = v_2 = 10$, k = 0.1 and g = 9.8, determine whether the particle will pass over a wall of height 4 metres at a horizontal distance of 6 metres from the origin.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) The line l_1 has vector equation $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}$ and the line l_2 has vector equation

$$\underline{r} = \begin{pmatrix} 4 \\ -2 \\ 9 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}.$$

- (i) Show that l_1 and l_2 do NOT intersect.
- (ii) Show that the distance d between a point on l_1 and a point on l_2 is given by $d = \sqrt{\left(3\lambda_2 4\lambda_1 5\right)^2 + \left(\lambda_1 1\right)^2 + 36}.$
- (iii) Hence, determine the minimum distance between l_1 and l_2 .
- (iv) Find the coordinates of the points on the two lines that are the minimum distance apart. 1
- (b) A particle is projected from the origin on a horizontal plane with initial velocity v m/s at an angle θ to the horizontal. The position vector $\mathbf{r}(t)$ of the particle is given by

$$r(t) = \begin{pmatrix} vt\cos\theta \\ vt\sin\theta - \frac{1}{2}gt^2 \end{pmatrix}, \text{ where } g \text{ is the acceleration due to gravity. (Do NOT prove this.)}$$

(i) Show that the Cartesian equation of the path of flight is given by $y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}$.

Question 15 continues on page 12

2

Question 15 (continued)

(ii) The particle just passes over two walls at points A and B. The two walls are at horizontal distance d_1 and d_2 metres from the point of projection and are of heights d_2 and d_1 metres respectively, as shown in the diagram.

Show that $\theta = \tan^{-1} \left(\frac{{d_1}^2 + {d_1}{d_2} + {d_2}^2}{{d_1}{d_2}} \right)$. You may use the result $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.

End of Question 15

4

Question 16 (15 marks) Use a SEPARATE writing booklet.

- (a) Prove by mathematical induction that a convex polygon with n vertices has $\frac{1}{2}n(n-3)$ diagonals for $n \ge 4$.
- (b) Let $t = \tan \frac{x}{2}$.

(i) Show that
$$\frac{dx}{dt} = \frac{2}{1+t^2}$$
.

(ii) Show that
$$\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}} = \sin x.$$

(iii) Hence, show that
$$\int_0^{\frac{\pi}{2}} \frac{1}{1+k\sin x} dx = \frac{2}{\sqrt{1-k^2}} \tan^{-1} \sqrt{\frac{1-k}{1+k}}$$
, where $0 < k < 1$.

Let
$$I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^n x}{2 + \sin x} dx$$
, where $n = 0, 1, 2, ...$

(iv) Show that
$$I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$$
.

(v) Hence, or otherwise, find the value of I_2 . Give your answer in the form $m\pi + 1$, where m is irrational.

End of paper

MATHEMATICS ADVANCED MATHEMATICS EXTENSION 1 MATHEMATICS EXTENSION 2 REFERENCE SHEET

Measurement

Length

$$l = \frac{\theta}{360} \times 2\pi r$$

Area

$$A = \frac{\theta}{360} \times \pi r^2$$

$$A = \frac{h}{2}(a+b)$$

Surface area

$$A = 2\pi r^2 + 2\pi rh$$

$$A = 4\pi r^2$$

Volume

$$V = \frac{1}{3}Ah$$

$$V = \frac{4}{3}\pi r^3$$

Functions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$ax^3 + bx^2 + cx + d = 0$$
:

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

$$(x-h)^2 + (y-k)^2 = r^2$$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right] = \frac{n}{2} (a+l)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, r \neq 1$$

$$S = \frac{a}{1 - r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_a a^x = x = a^{\log_a x}$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$
$$a^x = e^{x \ln a}$$

Trigonometric Functions

$$\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$$

$$A = \frac{1}{2}ab \sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$l = r\theta$$

$$A = \frac{1}{2}r^{2}\theta$$

$$1$$

$$1$$

$$60^{\circ}$$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \cos A \neq 0$$

$$\csc A = \frac{1}{\sin A}, \sin A \neq 0$$

$$\cot A = \frac{\cos A}{\sin A}, \sin A \neq 0$$

$$\cos^2 x + \sin^2 x = 1$$

Compound angles

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1+t^2}$

$$\cos A = \frac{1-t^2}{1+t^2}$$

$$\tan A = \frac{2t}{1-t^2}$$

$$\cos A \cos B = \frac{1}{2} [\cos(A-B) + \cos(A+B)]$$

$$\sin A \sin B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$$

$$\cos A \sin B = \frac{1}{2} [\sin(A+B) - \sin(A-B)]$$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$
An outlier is a score less than $Q_1 - 1.5 \times IQR$ or more than $Q_3 - 1.5 \times IQR$

Normal distribution

- approximately 68% of scores have *z*-scores between –1 and 1
- approximately 95% of scores have *z*-scores between –2 and 2
- approximately 99.7% of scores have *z*-scores between –3 and 3

$$E(X) = \mu$$

$$Var(X) = E \left[(X - \mu)^2 \right] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le r) = \int_{a}^{r} f(x)dx$$
$$P(a < X < b) = \int_{a}^{b} f(x)dx$$

Binomial distribution

$$P(X = r) = {}^{n}C_{r}p^{r}(1-p)^{n-r}$$

$$X \sim \text{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^{x}(1-p)^{n-x}, x = 0, 1, ..., n$$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

 $\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$

 $\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$

Differential Calculus

Function

Derivative

$$y = f(x)^n$$

$$\frac{dy}{dx} = nf'(x) [f(x)]^{n-1}$$

$$y = uv$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$y = g(u)$$
 where $u = f(x)$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$y = \frac{u}{v}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\int f'(x)\cos f(x)dx = \sin f(x) + c$$

$$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$$

$$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$$

$$y = \sin f(x)$$

$$\frac{dy}{dx} = f'(x)\cos f(x)$$

$$y = \cos f(x)$$

$$\frac{dy}{dx} = -f'(x)\sin f(x)$$

$$y = \tan f(x)$$

$$\frac{dy}{dx} = f'(x)\sec^2 f(x)$$

$$y = e^{f(x)}$$

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

$$y = \ln f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$$

$$v = a^{f(x)}$$

$$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$$

$$y = \log_a f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{(\ln a) f(x)}$$

$$y = \sin^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$$

$$y = \cos^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \begin{cases} \int_a^b f(x) dx \\ \approx \frac{b - a}{2n} \begin{cases} f(x) dx \end{cases} \end{cases}$$

$$y = \tan^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 + [f(x)]^2}}$$

Integral Calculus

Derivative
$$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$$

$$\int f'(x)[f(x)]^n dx = \frac{1}{n+1}[f(x)]^{n+1} + c$$
where $n \neq -1$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\int f'(x)\sin f(x)dx = -\cos f(x) + c$$

$$\int f'(x)\cos f(x)dx = \sin f(x) + c$$

$$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$$

$$\frac{dy}{dx} = f'(x)\cos f(x)$$

$$\frac{dy}{dx} = -f'(x)\sin f(x)$$

$$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$$

$$\frac{dy}{dx} = f'(x)\sec^2 f(x) \qquad \int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

$$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$$

$$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$$

$$\frac{dy}{dx} = (\ln a) f'(x) a^{f(x)}$$

$$\frac{dy}{dx} = \frac{f'(x)}{(\ln a) f(x)}$$

$$\int \frac{f'(x)}{a^2 - [f(x)]^2} dx = \frac{1}{a} \tan^{-1} \frac{f(x)}{a} + c$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \begin{cases}
\int_a^b f(x)dx \\
\approx \frac{b - a}{2n} \left\{ f(a) + f(b) + 2[f(x_1) + \dots + f(x_{n-1})] \right\} \\
\text{where } a = x_0 \text{ and } b = x_n
\end{cases}$$

Combinatorics

$$^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {^nC_r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^n = x^n + \binom{n}{1} x^{n-1} a + \dots + \binom{n}{r} x^{n-r} a^r + \dots + a^n$$

Vectors

$$\left| \underline{u} \right| = \left| x\underline{i} + x\underline{j} \right| = \sqrt{x^2 + y^2}$$

$$\underline{u} \cdot \underline{v} = |\underline{u}| |\underline{v}| \cos \theta = x_1 x_2 + y_1 y_2,$$

where
$$u = x_1 i + y_1 j$$

and
$$v = x_2 i + y_2 j$$

$$r = a + \lambda b$$

Complex Numbers

$$z = a + ib = r(\cos\theta + i\sin\theta)$$
$$= re^{i\theta}$$

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$$

$$= r^n e^{in\theta}$$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

$$x = a\cos(nt + \alpha) + c$$

$$x = a\sin(nt + \alpha) + c$$

$$\ddot{x} = -n^2(x - c)$$

Trial Examination 2021

HSC Year 12 Mathematics Extension 2

Solutions and marking guidelines

SECTION I

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 1 B 2a - b = 2(3i - 4j + k) - (-i + 2j - 3k) $= 6i - 8j + 2k + i - 2j + 3k$ $= 7i - 10j + 5k$	MEX-V1 Further Work with Vectors MEX12-3 Bands E2-E3
Question 2 C $z = \frac{\sqrt{3} - i}{1 + i}$ $ z = \frac{\sqrt{(\sqrt{3})^2 + (-1)^2}}{\sqrt{1^2 + (-1)^2}}$ $= \frac{2}{\sqrt{2}}$ $= \sqrt{2}$ $\arg\left(\frac{\sqrt{3} - i}{1 + i}\right) = \arg\left(\sqrt{3} - i\right) - \arg\left(1 + i\right)$ $= -\frac{\pi}{6} - \frac{\pi}{4}$ $= -\frac{5\pi}{12}$	MEX-N1 Introduction to Complex Numbers MEX12-4 Bands E2-E3
Question 3 A The parametric equations are $x = -5 + 2\lambda$ and $y = 6 - 3\lambda$. $x = -5 + 2\lambda \Rightarrow \lambda = \frac{x+5}{2}$ Substituting $\lambda = \frac{x+5}{2}$ into $y = 6 - 3\lambda$ gives $y = 6 - 3\left(\frac{x+5}{2}\right)$. Multiply all terms by 2: $2y = 12 - 3(x+5)$ $2y = 12 - 3x - 15$ Rearranging gives $2y + 3x = -3$.	MEX-V1 Further Work with Vectors MEX12-3 Bands E2-E3

Answer and explanation	Syllabus content, outcomes and targeted performance bands
Question 4 B	MEX-N2 Using Complex Numbers
The centre of C is the midpoint of AB , which is given by	MEX12–4 Bands E2–E3
$\frac{1 - 5i + 3 - i}{2} = 2 - 3i.$	
$AB = \sqrt{(3-1)^2 + (-1+5)^2}$	
$=\sqrt{2^2+4^2}$	
$=\sqrt{20}$	
$=2\sqrt{5}$	
So the radius of C is $\sqrt{5}$.	
The equation of C is	
$ z - (2 - 3i) = \sqrt{5}$, and so $ z - 2 + 3i = \sqrt{5}$.	
Question 5 B	MEX-M1 Applications of Calculus to
$\frac{2\pi}{n} = \pi \Longrightarrow n = 2$	Mechanics MEX12-6 Bands E3-E4
Using $v^2 = n^2 (a^2 - x^2)$ with $v = 2.40$, $n = 2$ and $x = 0.50$:	
$2.40^2 = 4\left(a^2 - 0.50^2\right)$	
$a^2 = \frac{2.40^2}{4} + 0.50^2$	
$a = \sqrt{1.69}$	
=1.3(m)	
Let the maximum speed be v_{max} , which occurs at the centre	
of motion (where $\ddot{x} = 0$).	
Using $v_{\text{max}} = na$ with $n = 2$ and $a = 1.30$:	
$v_{\text{max}} = 2 \times 1.30$	
= 2.60 (m/s)	
Question 6 D	MEX-C1 Further Integration
$\int \frac{8x+1}{x^2+9} dx = 4 \int \frac{2x}{x^2+9} dx + \int \frac{1}{x^2+9} dx$	MEX12–5 Bands E2–E3
$=4\ln(x^2+9)+\frac{1}{3}\tan^{-1}\frac{x}{3}+c$	

Answer and explanation	Syllabus content, outcomes and targeted performance bands	
Question 7 C C is correct. When $x = 1$, $y = \frac{1}{3}$, which is not a natural number, and so this counterexample demonstrates that C is a false statement. A is incorrect. For all x there exists a y such that $x - y = 0$. Consider $y = x$. B is incorrect. For all x there exists a y such that $3x - y = 0$. Consider $y = 3x$.	MEX-P1 The Nature of Proof MEX12-2 Bands E3-E4	
D is incorrect. For example, $x = 2$ and $y = 6$.		
Question 8 D D is correct. In a negation of the statement, the phrases 'for all' and 'there exists' must be interchanged, and '=' must change to ' \neq '. The negation of the given statement will therefore be: 'There exists odd primes $p < q$ such that for all positive non-primes $r < s$, $p^2 + q^2 \neq r^2 + s^2$ '. A , B and C are incorrect. These options do not show an accurate negation of the statement.	MEX-V1 The Nature of Proof MEX12-2 Bands E3-E4	
Question 9 D D is correct. Let the square roots of z bo z, and z	MEX–N1 Introduction to Complex Numbers	
D is correct. Let the square roots of z be z_1 and z_2 . $z = r\left(\cos\theta + i\sin\theta\right) \text{ and so } \sqrt{z} = \pm\sqrt{r}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right).$ Hence, $z_1 = \sqrt{r}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right)$ and $z_2 = -\sqrt{r}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right).$ If z_1 has coordinates (x_1, y_1) , then z_2 has coordinates $(-x_1, -y_1)$, where $x_1 = \sqrt{r}\cos\frac{\theta}{2}$ and $y_1 = \sqrt{r}\sin\frac{\theta}{2}$. Points C and E satisfy this condition. A , B and C are incorrect. These options do not satisfy the above condition.	MEX12-4 Bands E3-E4	

Answer and explanation	Syllabus content, outcomes and targeted performance bands	
Question 10 A	MEX–M1 Applications of Calculus to Mechanics	
A is correct. As $a = vx$ and $v \frac{dv}{dx} = a$, we have $\frac{dv}{dx} = x$. Thus, $\int \frac{dv}{dx} dx = \int x dx$ and so $v = \frac{x^2}{2} + c$. The graph of v against	MEX12–6 Bands E3–E4	
x must be a parabola. B , C and D are incorrect. These options		
do not show a parabola as required.		

SECTION II

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Question 11	
(a) The other root is $\sqrt{5} + i$. The sum of roots is $(\sqrt{5} - i) + (\sqrt{5} - i)$. The product of roots is $(\sqrt{5} - i)(\sqrt{5} - i)$. So, $p = -2\sqrt{5}$ and $q = 6$.	• Gives the correct solution2
(b) Integration by parts takes the form $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx.$ Let $u = \sin^{-1} x$ and $\frac{dv}{dx} = 1$. So, $\frac{du}{dx} = \frac{1}{\sqrt{1 - x^2}}$ and $v = x$. $\int_0^1 \sin^{-1} x dx = \left[x \sin^{-1} x\right]_0^1 - \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx$ $= \left(\frac{\pi}{2} - 0\right) + \frac{1}{2} \int_0^1 \frac{-2}{\sqrt{1 - x^2}} dx$ $= \frac{\pi}{2} + \frac{1}{2} \left[2\sqrt{1 - x^2}\right]_0^1$ $= \frac{\pi}{2} + (0 - 1)$ $= \frac{\pi}{2} - 1$	MEX-C1 Further Integration MEX12-5 Bands E2-E3 • Gives the correct solution 3 • Correctly applies integration by parts OR equivalent merit 2 • Correctly identifies the two functions to be used in integration by parts OR equivalent merit

Syllabus content, outcomes, targeted performance bands and marking guide

(i) $\ddot{x} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$ (c) = x + 3 with t = 0, x = 0 and v = 3 $\frac{1}{2}v^2 = \int (x+3)dx$ $v^2 = 2\left(\frac{x^2}{2} + 3x\right) + c$

MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E3

Gives the correct solution 2

 $=x^2 + 6x + c$

Attempts to use $\frac{d}{dx} \left(\frac{1}{2} v^2 \right)$ to find an expression for v^2

Applying the initial condition x = 0 and v = 3 gives c = 9.

$$v^{2} = x^{2} + 6x + 9$$
$$= (x+3)^{2}$$
$$v = \pm (x+3)$$

As v = 3 when t = 0, v = x + 3 (taking the positive root as v > 0).

(ii) $v = \frac{dx}{dt} = x + 3 \text{ with } t = 0, x = 0$ $\frac{dt}{dx} = \frac{1}{x+3}$ $\Rightarrow t = \int \frac{1}{x+3} dx$ $t = \ln(x+3) + d$ $e^{t-d} = x + 3$ $x = Ae^{t} - 3$, where $A = e^{-d}$

MEX-M1 Applications of Calculus to Mechanics

Attempts to integrate

Bands E2-E3 MEX12-6

Gives the correct solution 2

Applying the condition t = 0, x = 0 gives A = 3. So $x = 3e^t - 3$.

Note: The value of the constant can be

determined immediately after integrating.

a correct expression for $\frac{dt}{dx}$ OR equivalent merit 1

Syllabus content, outcomes, targeted performance bands and marking guide

(d) Given $\hat{u} = x\underline{i} + y\underline{j} + z\underline{k}$, form three equations involving

MEX-V1 Further Work with Vectors MEX12-3 Bands E2-E3

x, y and z.

• Gives the correct solution 3

$$\underline{b} \cdot \hat{\underline{u}} = 0 \Longrightarrow 2x + 3y - z = 0 \tag{1}$$

• Finds
$$\hat{u} = \frac{1}{\sqrt{3}} \left(i - j - k \right) \dots 2$$

$$c \cdot \hat{u} = 0 \Longrightarrow 4x - y + 5z = 0 \tag{2}$$

$$|\hat{u}| = 1 \Rightarrow x^2 + y^2 + z^2 = 1$$
 (3)

For example, $2 \times (1) - (2)$ gives y = z.

Substituting z = y into (1) and solving gives x = -y.

Substituting y = z and x = -y into (3) and solving

$$3x^2 = 1$$
 for x gives $x = \frac{1}{\sqrt{3}}$ since $x > 0$.

So,
$$y = -\frac{1}{\sqrt{3}}$$
 and $z = -\frac{1}{\sqrt{3}}$.

Hence,
$$\hat{u} = \frac{1}{\sqrt{3}} (i - j - k)$$
.

As $a = \sqrt{3} \hat{u}$, a is perpendicular to both b and c.

Hence, a, b and c are mutually perpendicular.

Syllabus content, outcomes, targeted performance bands and marking guide

(e) **Method 1:**

$$\frac{1 - e^{2i\theta}}{1 - e^{2i\theta}} = (1 - \cos 2\theta) - i \sin 2\theta.$$

$$\frac{2}{1 - e^{2i\theta}} = \frac{2((1 - \cos 2\theta) + i \sin 2\theta)}{(1 - \cos 2\theta)^2 + \sin^2 2\theta}$$

$$= \frac{2((1 - \cos 2\theta) + i \sin 2\theta)}{2(1 - \cos 2\theta)}$$

$$= \sin^2 2\theta + \cos^2 2\theta = 1$$

$$= 1 + \frac{i \sin 2\theta}{1 - \cos 2\theta}$$

$$= 1 + \frac{2i \sin \theta \cos \theta}{1 - (1 - 2\sin^2 \theta)}$$
(use of double-angle formula)
$$= 1 + \frac{i \cos \theta}{\sin \theta}$$

So $z = 1 + i \cot \theta$.

Method 2:

$$\frac{2}{1 - e^{2i\theta}} = \frac{2}{e^{i\theta} \left(e^{-i\theta} - e^{i\theta} \right)}$$

$$= \frac{2e^{-i\theta}}{e^{-i\theta} - e^{i\theta}}$$

$$= \frac{2\left(\cos\theta - i\sin\theta\right)}{\left(\cos\theta - i\sin\theta\right) - \left(\cos\theta + i\sin\theta\right)}$$

$$= \frac{2\left(\cos\theta - i\sin\theta\right)}{-2i\sin\theta}$$

$$= 1 - \frac{1}{i}\cot\theta$$

$$= 1 + i\cot\theta$$

MEX-N2 Using Complex Numbers MEX12-4 Bands E2-E4

- Gives the correct solution 3
- Uses $\sin^2 2\theta + \cos^2 2\theta = 1$ and appropriate double-angle formulae OR equivalent merit....2

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide	
Que	estion 12		
(a)	The equation of motion has the form $x = a\cos nt$. $a = 4$ and $\frac{2\pi}{n} = \frac{\pi}{3}$, so $n = 6$. $x = 4\cos 6t$ and so $v = -24\sin 6t$. The maximum speed is 24 m/s and so half the maximum speed is 12 m/s.	MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E4 Gives the correct solution	
	Find the first two values of t such that $12 = 24 \sin 6t$. $\sin 6t = \frac{1}{2}$ $6t = \frac{\pi}{6}, \frac{5\pi}{6}$ So, $t = \frac{\pi}{36}, \frac{5\pi}{36}$.	• Finds $a = 4$ and $n = 6 \dots 1$	
(b)	(i) The equation of motion for particle A is: $5mg - T = \frac{5mg}{4}$ $T = 5mg - \frac{5mg}{4}$ $= \frac{15mg}{4} \text{ (newtons)}$	MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E4 • Gives the correct solution	
	(ii) The equation of motion for particle <i>B</i> is: $T - kmg = \frac{kmg}{4}$ $\frac{15mg}{4} = kmg + \frac{kmg}{4}$ $\frac{15mg}{4} = \frac{5kmg}{4}$ Therefore, $k = 3$.	MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E4 • Gives the correct solution	

(iii) Firstly consider the descending motion

of particle *A*:

$$\ddot{x} = \frac{g}{4}$$

$$\dot{x} = \frac{gt}{4} + c_1$$

When $t = 0, \dot{x} = 0$ and so $c_1 = 0$.

Hence,
$$\dot{x} = \frac{gt}{4}$$
.

When $t = 1, \dot{x} = \frac{g}{4}$ and so particle *A* impacts

the floor at $\frac{g}{4}$ m/s.

$$x = \frac{gt^2}{8} + c_2$$

When t = 0, x = 0 and so $c_2 = 0$.

Hence,
$$x = \frac{gt^2}{8}$$
.

When $t = 1, x = \frac{g}{8}$ and so particle A descends

 $\frac{g}{8}$ metres before impacting the floor.

Let s_1 be the initial height of particle A above

the floor.

So,
$$s_1 = \frac{g}{g}$$
 (m).

Let *h* be the greatest height reached by particle

B above the floor.

 $h = 2s_1 + s_2$, where s_2 is the distance particle

B travels under gravity.

(continues on page 12)

Syllabus content, outcomes, targeted performance bands and marking guide

MEX–M1 Applications of Calculus to Mechanics

MEX12-6

Bands E3-E4

- Gives the correct solution 3

Syllabus content, outcomes, targeted performance bands and marking guide

(iii) (continued)

Now consider the ascending motion of particle B

under gravity:

$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -g$$

$$\frac{1}{2}v^2 = -gx + d$$

When
$$x = 0$$
, $v = \frac{g}{4}$ and so $d = \frac{g^2}{32}$.

So,
$$\frac{1}{2}v^2 = -gx + \frac{g^2}{32}$$
.

When
$$v = 0, x = s_2$$
 and so $s_2 = \frac{g}{32}$ (m).

Substituting
$$s_1 = \frac{g}{8}$$
 and $s_2 = \frac{g}{32}$ into

$$h = 2s_1 + s_2$$
 gives:

$$h = 2\left(\frac{g}{8}\right) + \frac{g}{32}$$
$$= \frac{9g}{32}$$

So, the greatest height reached by particle

$$B$$
 is $\frac{9g}{32}$ m.

MEX-N2 Using Complex Numbers MEX12-4 Bands E2-E3

• Correctly sketches the relation 1

Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(ii) Let d be the distance from O to the centre of the circle C . $d = \sqrt{(2\sqrt{2})^2 + (2\sqrt{2})^2}$ $= 4$ The radius of the circle is 2. So, the minimum value of $ z $ is $4-2=2$ and the maximum value of $ z $ is $4+2=6$.	MEX-N2 Using Complex Numbers MEX12-4 Bands E2-E3 • Finds the minimum AND maximum value of $ z $

performance bands and marking guide MEX-N2 Using Complex Numbers

Syllabus content, outcomes, targeted

OC makes an angle of $\frac{\pi}{4}$ with the x-axis.

MEX12-4 Bands E3-E4 Finds the minimum AND

Either:

$$\sin \angle COT = \frac{2}{4}$$

$$= \frac{1}{2}$$

$$\Rightarrow \angle COT = \frac{\pi}{6}$$

maximum value of Arg $z \dots 1$

Or:

Form a right-angled triangle with *OC*, the radius of the circle, and T, the point of tangency to the circle.

$$OT = \sqrt{4^2 - 2^2}$$

$$= 2\sqrt{3}$$

$$\tan \angle COT = \frac{2}{2\sqrt{3}}$$

$$= \frac{1}{\sqrt{3}}$$

$$\Rightarrow \angle COT = \frac{\pi}{6}$$

So, the minimum value of Arg z is $\frac{\pi}{4} - \frac{\pi}{6} = \frac{\pi}{12}$. By similar considerations, the maximum value of Arg z is $\frac{\pi}{4} + \frac{\pi}{6} = \frac{5\pi}{12}$.

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
Que	stion 1	13	
(a)	(i)	If x is even, then $x^2 - 6x + 5$ is odd.	MEX-P1 The Nature of Proof MEX12-2 Bands E2-E3 • Gives the correct contrapositive 1
	(ii)	Suppose that x is even. Let $x = 2k$ for integer k . Substituting $x = 2k$ into $x^2 - 6x + 5$ gives $(2k)^2 - 6(2k) + 5$. $(2k)^2 - 6(2k) + 5 = 4k^2 - 12k + 5$ $= 2(2k^2 - 6k + 2) + 1$ Therefore, $x^2 - 6x + 5 = 2b + 1$, where b is the integer $2k^2 - 6k + 2$. Hence, $x^2 - 6x + 5$ is odd and the statement is proven by proving the contrapositive.	MEX-P1 The Nature of Proof MEX12-2 Bands E2-E3 • Proves the contrapositive2 • Substitutes $x = 2k$ into $x^2 - 6x + 5$ AND attempts to express it in the form $2b + 1$ 1

TEN_Y12_MExt2_SB_2021

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	(i)	Let \overrightarrow{OP} be the point of intersection of	MEX-V1 Further Work with Vectors MEX12-3 Bands E2-E4
		\overrightarrow{OC} and \overrightarrow{MB} .	• Gives the correct solution 3
		$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ $= \underline{a} + \underline{b}$ The equation of line OC is $\underline{r} = \lambda(\underline{a} + \underline{b})$. The equation of line MB is $\underline{r} = \overrightarrow{OM} + \mu(\overrightarrow{OB} - \overrightarrow{OM}).$ $\underline{r} = \frac{1}{5}\underline{a} + \mu\left(-\frac{1}{5}\underline{a} + \underline{b}\right)$ Equating: $\lambda\underline{a} + \lambda\underline{b} = \frac{1}{5}\underline{a} - \frac{\mu}{5}\underline{a} + \mu\underline{b}$ $\lambda = \frac{1-\mu}{5} \text{ and } \lambda = \mu \Rightarrow \lambda = \frac{1}{6}$ The point of intersection is $\overrightarrow{OP} = \frac{1}{6}(\underline{a} + \underline{b})$. So, $\overrightarrow{OP} = \frac{1}{6}\overrightarrow{OC}$ and P is a common point of OC and MB .	• Equates equations of lines OC and MB . AND • Attempts to solve. OR • Attempts to write \overrightarrow{OP} as a multiple of $\overrightarrow{OC} = \underline{a} + \underline{b}$. OR • Equivalent merit
		Hence, <i>P</i> lies on <i>OC</i> .	
	(ii)	$\overrightarrow{OP} = \frac{1}{6}\overrightarrow{OC}$ $OP : PC = 1:5$	MEX-V1 Further Work with Vectors MEX12-3 Bands E2-E4 Gives the correct solution
(c)	(i)	$e^{in\theta} + e^{-in\theta} = (\cos n\theta + i\sin n\theta) + (\cos n\theta - i\sin n\theta)$ $= 2\cos n\theta$	MEX-N2 Using Complex Numbers MEX12-4 Bands E2-E3 • Gives the correct solution

Syllabus content, outcomes, targeted performance bands and marking guide

(ii)
$$\left(e^{i\theta} + e^{-i\theta}\right)^5 = e^{5i\theta} + 5\left(e^{4i\theta}\right)\left(e^{-i\theta}\right)$$

$$+ 10\left(e^{3i\theta}\right)\left(e^{-2i\theta}\right)$$

$$+ 10\left(e^{2i\theta}\right)\left(e^{-3i\theta}\right)$$

$$+ 5\left(e^{i\theta}\right)\left(e^{-4i\theta}\right) + e^{-5i\theta}$$

$$= \left(e^{5i\theta} + e^{-5i\theta}\right) + 5\left(e^{3i\theta} + e^{-3i\theta}\right)$$

$$+ 10\left(e^{i\theta} + e^{-i\theta}\right)$$

$$= 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$$

$$Also, \left(e^{i\theta} + e^{-i\theta}\right)^5 = 2^5\cos^5\theta.$$

$$So, \cos^5\theta = \frac{1}{16}\left(\cos 5\theta + 5\cos 3\theta + 10\cos \theta\right).$$

MEX-N2 Using Complex Numbers MEX12-4 Bands E2-E4

- Gives the correct solution 3
- Obtains $(e^{i\theta} + e^{-i\theta})^5 = 32\cos^5\theta$ OR attempts to use binomial theorem OR equivalent merit 1

(iii) Method 1:

$$\int_{0}^{\frac{\pi}{2}} \cos^{5}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \frac{1}{16} (\cos 5\theta + 5\cos 3\theta) + 10\cos \theta) d\theta$$

$$= \frac{1}{16} \left[\frac{1}{5} \sin 5\theta + \frac{5}{3} \sin 3\theta + 10\sin \theta \right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{1}{16} \left(\frac{1}{5} \sin \frac{5\pi}{2} + \frac{5}{3} \sin \frac{3\pi}{2} + 10\sin \frac{\pi}{2} - (0 + 0 + 0) \right)$$

$$= \frac{1}{16} \left(\frac{1}{5} - \frac{5}{3} + 10 \right)$$

$$= \frac{8}{15}$$

Note: Consequential on answer to Question 13 part (c)(ii).

Method 2:

$$\int_0^{\frac{\pi}{2}} \cos^5 \theta d\theta = \int_0^{\frac{\pi}{2}} \left(\cos^2 \theta\right)^2 \cos \theta d\theta$$
$$= \int_0^{\frac{\pi}{2}} \left(1 - \sin^2 \theta\right)^2 \cos \theta d\theta$$

Let $u = \sin \theta$ and so $\frac{du}{d\theta} = \cos \theta$.

When $\theta = 0, u = 0$ and when $\theta = \frac{\pi}{2}, u = 1$.

$$\int_{0}^{1} (1 - u^{2})^{2} du = \int_{0}^{1} (1 - 2u^{2} + u^{4}) du$$

$$= \left[u - \frac{2}{3}u^{3} + \frac{1}{5}u^{5} \right]_{0}^{1}$$

$$= \left(1 - \frac{2}{3} + \frac{1}{5} \right) - (0 - 0 + 0)$$

$$= \frac{8}{15}$$

Syllabus content, outcomes, targeted performance bands and marking guide

MEX-N2 Using Complex Numbers MEX12-7 Bands E2-E4

- Gives the correct solution 2

Syllabus content, outcomes, targeted performance bands and marking guide

(iv) $16\cos^5\theta = \cos 5\theta + 5\cos 3\theta + 10\cos \theta$ $16\cos^5\theta - \cos\theta = \cos 5\theta + 5\cos 3\theta + 9\cos \theta$ Hence, to solve the given equation we solve the equation $16\cos^5\theta - \cos\theta = 0.$

$$\cos \theta = 0, \pm \frac{1}{2}$$

$$\cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2} \text{ and } \cos \theta = \pm \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}, \frac{2\pi}{3}$$

$$\theta = \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}$$

MEX-N2 Using Complex Numbers MEX12-7 Bands E2-E4

- Gives the correct solution 2

Question 14

(a) (i) **Method 1:**

Since squares cannot be negative,

$$\left(\sqrt{a}-\sqrt{b}\right)^2 \ge 0.$$

Expanding the LHS gives:

$$a - 2\sqrt{ab} + b \ge 0$$
$$a + b \ge 2\sqrt{ab}$$

So
$$\frac{a+b}{2} \ge \sqrt{ab}$$
.

Method 2:

Consider:

$$\frac{a+b}{2} - \sqrt{ab} = \frac{1}{2} \left(a+b - 2\sqrt{ab} \right)$$
$$= \frac{1}{2} \left(\left(\sqrt{a} \right)^2 + \left(\sqrt{b} \right)^2 - 2\sqrt{ab} \right)$$
$$= \frac{1}{2} \left(\sqrt{a} - \sqrt{b} \right)^2$$
$$\ge 0$$

So
$$\frac{a+b}{2} \ge \sqrt{ab}$$
.

MEX-P1 The Nature of Proof MEX12-2 Bands E2-E3

• Gives the correct solution 1

Syllabus content, outcomes, targeted performance bands and marking guide

(ii) From the AM–GM inequality:

$$\frac{a+b}{2} \ge \sqrt{ab}, \frac{b+c}{2} \ge \sqrt{bc}$$
 and $\frac{c+a}{2} \ge \sqrt{ca}$.

Multiply together:

$$\left(\frac{a+b}{2}\right)\left(\frac{b+c}{2}\right)\left(\frac{c+a}{2}\right) \ge \left(\sqrt{ab}\right)\left(\sqrt{bc}\right)\left(\sqrt{ca}\right)$$

$$\frac{1}{8}(a+b)(b+c)(c+a) \ge \left(\sqrt{a^2b^2c^2}\right)$$

So, $(a+b)(b+c)(c+a) \ge 8abc$.

MEX-P1 The Nature of Proof MEX12-2 Bands E2-E3

• Gives the correct solution 1

(iii) Let a+b=z, b+c=x and c+a=y. $a = \frac{y+z-x}{2}$, $b = \frac{z+x-y}{2}$ and $c = \frac{x+y-z}{2}$.

Using the result $(a+b)(b+c)(c+a) \ge 8abc$ with the above substitutions:

$$zxy \ge 8 \left(\frac{y+z-x}{2}\right) \left(\frac{z+x-y}{2}\right) \left(\frac{x+y-z}{2}\right)$$
So, $xyz \ge (y+z-x)(z+x-y)(x+y-z)$.

MEX-P1 The Nature of Proof MEX12-2 Bands E3-E4

- Gives the correct solution 2
- Correctly uses the result $(a+b)(b+c)(c+a) \ge 8abc \dots 1$

(b) Assume there exists an $x \in \left[0, \frac{\pi}{2}\right]$ for which $\sin \theta + \cos \theta < 1$.

Since $x \in \left[0, \frac{\pi}{2}\right]$, neither $\sin \theta$ nor $\cos \theta$ is negative,

so $0 \le \sin \theta + \cos \theta < 1$.

$$0^2 \le \left(\sin\theta + \cos\theta\right)^2 < 1^2$$

$$0^2 \le \sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta < 1^2$$

As $\sin^2 \theta + \cos^2 \theta = 1$, this becomes

 $0 \le 1 + 2\sin\theta\cos\theta < 1$.

So, $1 + 2\sin\theta\cos\theta < 1$. Hence, $2\sin\theta\cos\theta < 0$.

This contradicts the fact that neither $\sin \theta$ nor $\cos \theta$ is negative.

So, $\sin \theta + \cos \theta \ge 1$ for $0 \le \theta \le \frac{\pi}{2}$.

MEX–P1 The Nature of Proof MEX12–2 Bands E3–E4

- Gives the correct solution 3
- Assumes there exists

an
$$x \in \left[0, \frac{\pi}{2}\right]$$
 for which

 $\sin\theta + \cos\theta < 1$ OR

Syllabus content, outcomes, targeted Sample answer performance bands and marking guide MEX-M1 Applications of Calculus $\frac{d\dot{x}}{dt} = -k\dot{x}$ (i) (c) to Mechanics MEX12-6 Bands E2-E4 Separating variables gives: Gives the correct solution2 $\int \frac{1}{\dot{x}} d\dot{x} = -k \int dt$ Correctly separates variables, $\ln \dot{x} = -kt + c_1$ attempts to integrate to find \dot{x} as a function of t and $\dot{x} = A e^{-kt}$, where $A = e^{c_1}$ evaluates the constant OR When t = 0, $\dot{x} = v_1$ and so $A = v_1$. $\dot{x} = v_1 e^{-kt}$ $x = \int v_1 e^{-kt} dt$ $=-\frac{v_1}{k}e^{-kt}+d_1$ When t = 0, x = 0 and so $d_1 = \frac{v_1}{k}$. So, $x = \frac{v_1}{k} (1 - e^{-kt})$.

$\frac{d\dot{y}}{dt} = -k\dot{y} - g$

Separating variables gives:

$$\int \frac{1}{\dot{y} + \frac{g}{k}} d\dot{y} = -k \int dt$$

$$\ln\left(\dot{y} + \frac{g}{k}\right) = -kt + c_2$$

$$\dot{y} + \frac{g}{k} = Be^{-kt}, \text{ where } B = e^{c_2}$$

When $t = 0, \dot{y} = v_2$ and so $B = v_2 + \frac{g}{k}$.

$$\begin{split} \dot{y} &= \left(v_2 + \frac{g}{k}\right) e^{-kt} - \frac{g}{k} \\ y &= \int \left(\left(v_2 + \frac{g}{k}\right) e^{-kt} - \frac{g}{k}\right) dt \\ &= -\frac{1}{k} \left(v_2 + \frac{g}{k}\right) e^{-kt} - \frac{g}{k} t + d_2 \end{split}$$

When t = 0, y = 0 and so $d_2 = \frac{1}{k} \left(v_2 + \frac{g}{k} \right)$.

$$y = -\frac{1}{k} \left(v_2 + \frac{g}{k} \right) e^{-kt} - \frac{g}{k} t + \frac{1}{k} \left(v_2 + \frac{g}{k} \right)$$
$$= \frac{1}{k} \left(v_2 + \frac{g}{k} \right) \left(1 - e^{-kt} \right) - \frac{g}{k} t$$

So,
$$y = \frac{kv_2 + g}{k^2} (1 - e^{-kt}) - \frac{g}{k}t$$
.

Syllabus content, outcomes, targeted performance bands and marking guide

MEX-M1 Applications of Calculus to Mechanics

MEX12-6

Bands E2-E4

- Gives the correct solution 3

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
	(iii)	Rearranging $x = \frac{v_1}{k} (1 - e^{-kt})$ gives:	MEX-M1 Applications of Calculus to Mechanics MEX12-6 Bands E2-E4
		$1 - e^{-kt} = \frac{kx}{v_1}$	• Gives the correct solution 2 • Attempts to solve
		Solving for <i>t</i> gives:	$x = \frac{v_1}{k} \left(1 - e^{-kt} \right) \text{ for } t \dots \dots$
		$t = -\frac{1}{k} \ln \left(1 - \frac{kx}{v_1} \right)$	
		Substituting $t = -\frac{1}{k} \ln \left(1 - \frac{kx}{v_1} \right)$ into y gives:	
		$y = \frac{kv_2 + g}{k^2} \left(1 - \left(1 - \frac{kx}{v_1} \right) \right) + \frac{g}{k^2} \ln \left(1 - \frac{kx}{v_1} \right)$	
		So, $y = \left(\frac{kv_2 + g}{kv_1}\right)x + \frac{g}{k^2}\ln\left(1 - \frac{kx}{v_1}\right)$.	
	(iv)	Substituting $x = 6, v_1 = v_2 = 10, k = 0.1 \text{ and } g = 9.8 \text{ into}$ $y \text{ gives:}$ $y = 4.1621 \text{ (m)}$	MEX-M1 Applications of Calculus to Mechanics MEX12-7 Bands E2-E3 • Gives the correct solution
		Hence, the particle will clear the wall.	
Que (a)	stion 1 (i)	Equating components: $1+2\lambda_1=4+\lambda_2 \qquad (1)$ $2\lambda_1=-2+2\lambda_2 (2)$ $2-3\lambda_1=9-2\lambda_2 (3)$ $(1)-(2) \text{ gives:}$ $1=6-\lambda_2 \Rightarrow \lambda_2=5$ Substituting $\lambda_2=5$ into (1) and solving gives: $1+2\lambda_1=9 \Rightarrow \lambda_1=4$ Substituting $\lambda_1=4$ and $\lambda_2=5$ into (3) gives: $-10 \neq -1$ Since the equations are inconsistent, the lines	MEX-V1 Further Work with Vectors MEX12-3 Bands E2-E3 • Gives the correct solution
		l_1 and l_2 do not intersect.	

(ii) $d = \sqrt{\frac{\left(3 - 2\lambda_1 + \lambda_2\right)^2 + \left(-2 - 2\lambda_1 + 2\lambda_2\right)^2}{+\left(7 + 3\lambda_1 - 2\lambda_2\right)^2}}$ $= \sqrt{\frac{17\lambda_1^2 + 9\lambda_2^2 - 24\lambda_1\lambda_2 + 38\lambda_1}{-30\lambda_2 + 62}}$ $= \sqrt{\frac{\left(9\lambda_2^2 - 24\lambda_1\lambda_2 + 16\lambda_1^2 + 40\lambda_1 - 30\lambda_2 + 25\right) + \left(\lambda_1^2 - 2\lambda_1 + 1\right) + 36}{9\lambda_2^2 - 24\lambda_1\lambda_2 + 16\lambda_1^2 + 40\lambda_1 - 30\lambda_2 + 25}}$

Note: The result

 $= \left(3\lambda_2 - 4\lambda_1 - 5\right)^2$

$$a^{2} + b^{2} + c^{2} = (a+b+c)^{2} - 2(ab+ac+bc)$$

can be used where $a = 3 - 2\lambda_{1} + \lambda_{2}$,
 $b = -2 - 2\lambda_{1} + 2\lambda_{2}$ and $c = 7 + 3\lambda_{1} - 2\lambda_{2}$.

So $d = \sqrt{(3\lambda_2 - 4\lambda_1 - 5)^2 + (\lambda_1 - 1)^2 + 36}$.

 $= (3\lambda_2)^2 - 2(3\lambda_2)(4\lambda_1 + 5) + (4\lambda_1 + 5)^2$

Syllabus content, outcomes, targeted performance bands and marking guide

MEX-V1 Further Work with Vectors MEX12-3 Bands E2-E4

- Gives the correct solution 4

- Finds a correct expression for d in terms of λ_1 and λ_2 1

(iii) $(3\lambda_2 - 4\lambda_1 - 5)^2 \ge 0$ and $(\lambda_1 - 1)^2 \ge 0$ for all λ_1, λ_2 .

The minimum value of d is obtained by setting $3\lambda_2 - 4\lambda_1 - 5 = 0$ and $\lambda_1 - 1 = 0$.

$$\lambda_1 - 1 = 0$$

$$\lambda_1 = 1$$

$$3\lambda_2 - 4 \times 1 - 5 = 0$$

$$3\lambda_2 = 9$$

$$\lambda_2 = 3$$

So, the minimum value of d is 6.

MEX-V1 Further Work with Vectors MEX12-3 Bands E3-E4

• Gives the correct solution 1

Syllabus content, outcomes, targeted Sample answer performance bands and marking guide MEX-V1 Further Work with Vectors (iv) When $\lambda_1 = 1$, $r = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}$ and so the MEX12-3 Bands E2-E3 Gives the correct solution 1 corresponding point is (3, 2, -1). When $\lambda_2 = 3$, $r = \begin{pmatrix} 4 \\ -2 \\ 9 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ and so the corresponding point is (7, 4, 3). The points that are the minimum distance apart are (3, 2, -1) and (7, 4, 3). (b) The parametric equations are: MEX-M1 Applications of Calculus (i) to Mechanics $x = vt \cos \theta$ MEX12-6 Bands E2–E3 $y = vt\sin\theta - \frac{1}{2}gt^2 \quad (2)$ Gives the correct solution 2 Attempts to eliminate *t* From (1), $t = \frac{x}{v \cos \theta}$. Substituting $t = \frac{x}{v \cos \theta}$ into (2) gives: $y = \frac{vx\sin\theta}{v\cos\theta} - \frac{1}{2}g\left(\frac{x^2}{v^2\cos^2\theta}\right)$ So, $y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}$.

(ii) $y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}$ (1)

Substituting $x = d_1$ and $y = d_2$ into (1) gives:

$$d_2 = d_1 \tan \theta - \frac{g d_1^2}{2v^2 \cos^2 \theta}$$
 (2)

Substituting $x = d_2$ and $y = d_1$ into (1) gives:

$$d_1 = d_2 \tan \theta - \frac{g d_2^2}{2v^2 \cos^2 \theta}$$
 (3)

Rearranging (2) and (3) gives:

$$\frac{gd_1^2}{2v^2\cos^2\theta} = d_1\tan\theta - d_2 \quad (4)$$

$$\frac{g{d_2}^2}{2v^2\cos^2\theta} = d_2\tan\theta - d_1 \quad (5)$$

Multiplying (4) by d_2^2 , multiplying (5) by d_1^2

and equating the RHSs gives:

$$(d_1 \tan \theta - d_2)d_2^2 = (d_2 \tan \theta - d_1)d_1^2$$

Expanding gives:

$$d_1 d_2^2 \tan \theta - d_2^3 = d_1^2 d_2 \tan \theta - d_1^3$$
$$\left(d_1 d_2^2 - d_1^2 d_2\right) \tan \theta = d_2^3 - d_1^3$$

(continues on page 27)

Syllabus content, outcomes, targeted performance bands and marking guide

MEX–M1 Applications of Calculus to Mechanics

MEX12-6

Bands E3-E4

- Gives the correct solution 4
- Factorises $d_2^3 d_1^3 \dots 3$

Sample answer Syllabus content, outcomes, targeted performance bands and marking guide (ii) (continued) Factorising the LHS and applying the result $a^3 - b^3 = (a - b)(a^2 + ab + b^2) \text{ to the}$ RHS gives: $d_1d_2(d_2 - d_1)\tan\theta = (d_2 - d_1)(d_2^2 + d_1d_2 + d_1^2)$ Dividing by $d_1d_2(d_2 - d_1)(\neq 0)$ gives: $\tan\theta = \frac{d_1^2 + d_1d_2 + d_2^2}{d_1d_2}$ So, $\theta = \tan^{-1}\left(\frac{d_1^2 + d_1d_2 + d_2^2}{d_1d_2}\right)$.

Syllabus content, outcomes, targeted Sample answer performance bands and marking guide **Question 16** MEX-P2 Further Proof by Mathematical Let P(n) be the given proposition. (a) Induction MEX12-2, 12-8 Bands E2-E4 Consider P(4): Gives the correct solution 4 If n = 4, the polygon is a quadrilateral, which has Determines that there two diagonals. are $\frac{1}{2}k(k-3)+(k-2)+1$ Also, for n = 4, $\frac{1}{2}n(n-3) = \frac{1}{2}(4)(1) = 2$. So, P(4) is true. Assumes true for n = kSuppose P(n) is true for n = k. and attempts to prove true for $n = k + 1 \dots 2$ A convex polygon with k vertices has $\frac{1}{2}k(k-3)$ Establishes the diagonals for $k \ge 4$. initial case $(n = 4) \dots 1$ It is required to show that P(k+1) is true. That is, a convex polygon with (k + 1) vertices has $\frac{1}{2}(k+1)((k+1)-3)=\frac{1}{2}(k+1)(k-2)$ diagonals. When another vertex is added, we have $\frac{1}{2}k(k-3)$ existing diagonals + (k-2) extra diagonals (formed from the added vertex to all other vertices except the two adjacent vertices) + 1 diagonal (formerly a side of the polygon that is now a diagonal). Hence, we have $\frac{1}{2}k(k-3)+(k-2)+1$ diagonals. $\frac{1}{2}k(k-3)+(k-2)+1=\frac{1}{2}(k(k-3)+2k-2)$ $=\frac{1}{2}(k^2-k-2)$ $=\frac{1}{2}(k+1)(k-2)$

Hence, P(k+1) is true.

So, P(n) is true for (all integers) $n \ge 4$ by induction.

		Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(b)	(i)	Method 1:	MEX-C1 Further Integration
		L 1	MEX12–5 Bands E2–E3
		$t = \tan\frac{x}{2} \Rightarrow \frac{dt}{dx} = \frac{1}{2}\sec^2\frac{x}{2}$	• Gives the correct solution 1
		The identity $\sec^2 \frac{x}{2} = 1 + \tan^2 \frac{x}{2}$. $t = \tan \frac{x}{2}$ gives	
		$\frac{dt}{dx} = \frac{1}{2} \left(1 + t^2 \right).$	
		So, $\frac{dx}{dt} = \frac{2}{1+t^2}.$	
		Method 2:	
		$t = \tan\frac{x}{2} \Rightarrow x = 2\tan^{-1}t$	
		So, $\frac{dx}{dt} = \frac{2}{1+t^2}.$	

Syllabus content, outcomes, targeted performance bands and marking guide

(ii) Method 1 (starting on the LHS):

LHS =
$$\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$

$$= \frac{2 \tan \frac{x}{2}}{\sec^2 \frac{x}{2}}$$

$$= \frac{2 \sin \frac{x}{2} \cos^2 \frac{x}{2}}{\cos \frac{x}{2}}$$

$$= 2 \sin \frac{x}{2} \cos \frac{x}{2}$$

$$= \sin x$$

$$= \text{RHS}$$

Method 2 (starting on the RHS):

RHS =
$$\sin x$$

= $2\sin\frac{x}{2}\cos\frac{x}{2}$
= $2\left(\frac{t}{\sqrt{1+t^2}}\right)\left(\frac{1}{\sqrt{1+t^2}}\right)$
= $\frac{2t}{1+t^2}$

As
$$t = \tan \frac{x}{2}$$
, $\frac{2t}{1+t^2} = \frac{2\tan \frac{x}{2}}{1+\tan^2 \frac{x}{2}} = LHS$.

MEX-C1 Further Integration MEX12-5 Bands E2-E4

• Gives the correct solution 1

(iii) When $x = \frac{\pi}{2}$, t = 1 and when x = 0, t = 0.

$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1+k\sin x} dx = \int_{0}^{1} \frac{\frac{2}{1+t^{2}}}{1+\frac{2kt}{1+t^{2}}} dt$$

$$= \int_{0}^{1} \frac{2}{t^{2}+2kt+1} dt$$

$$= \int_{0}^{1} \frac{2}{\left(1-k^{2}\right)+\left(k+t\right)^{2}} dt$$

$$= \frac{2}{\sqrt{1-k^{2}}} \left[\tan^{-1} \left(\frac{k+t}{\sqrt{1-k^{2}}}\right) \right]_{0}^{1}$$

$$= \frac{2}{\sqrt{1-k^{2}}} \left(\tan^{-1} \left(\frac{k+t}{\sqrt{1-k^{2}}}\right) \right)$$

$$-\tan^{-1} \left(\frac{k}{\sqrt{1-k^{2}}}\right)$$

 $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

(continues on page 32)

 $\Rightarrow A - B = \tan^{-1} \left(\frac{\tan A - \tan B}{1 + \tan A \tan B} \right):$

Syllabus content, outcomes, targeted performance bands and marking guide

MEX-C1 Further Integration
MEX12-5
Bands E3-E4

- Gives the correct solution 4
- Applies

$$A - B = \tan^{-1} \left(\frac{\tan A - \tan B}{1 + \tan A \tan B} \right) \dots 3$$

Syllabus content, outcomes, targeted performance bands and marking guide

(iii) (continued)

$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1+k\sin x} dx = \frac{2}{\sqrt{1-k^2}}$$

$$\times \tan^{-1} \left(\frac{\frac{k+1-k}{\sqrt{1-k^2}}}{1+\frac{k(k+1)}{1-k^2}} \right)$$

$$= \frac{2}{\sqrt{1-k^2}}$$

$$\times \tan^{-1} \left(\frac{\sqrt{1-k^2}}{1-k^2+k+k^2} \right)$$

$$= \frac{2}{\sqrt{1-k^2}}$$

$$\times \tan^{-1} \left(\frac{\sqrt{1-k}\sqrt{1+k}}{1+k} \right)$$
So,
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1+k\sin x} = \frac{2}{\sqrt{1-k^2}} \tan^{-1} \sqrt{\frac{1-k}{1+k}}.$$

MEX-C1 Further Integration

(iv) $I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^{n+1} x}{2 + \sin x} dx + 2 \int_0^{\frac{\pi}{2}} \frac{\sin^n x}{2 + \sin x} dx$ $= \int_0^{\frac{\pi}{2}} \frac{\sin^{n+1} x + 2\sin^n x}{2 + \sin x} dx$ $= \int_0^{\frac{\pi}{2}} \frac{\sin^n x (\sin x + 2)}{2 + \sin x} dx$ So, $I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx.$

• Gives the correct solution 1

Bands E2-E4

MEX12-5

(v) Using $I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$ with n = 0

gives:

gives.

$$I_{1} + 2I_{0} = \int_{0}^{\frac{\pi}{2}} 1 dx$$

$$= \frac{\pi}{2}$$

$$I_{0} = \int_{0}^{\frac{\pi}{2}} \frac{1}{2 + \sin x} dx$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \frac{1}{2} \sin x} dx$$

$$= \frac{1}{2} \frac{2}{\sqrt{1 - \left(\frac{1}{2}\right)^2}} \tan^{-1} \sqrt{\frac{1 - \frac{1}{2}}{1 + \frac{1}{2}}}$$

(using result from part (b)(iii) with
$$k = \frac{1}{2}$$
)

$$= \frac{2}{\sqrt{3}} \tan^{-1} \frac{1}{\sqrt{3}}$$
So, $I_0 = \frac{\pi}{3\sqrt{3}}$.

Using
$$I_1 = \frac{\pi}{2} - 2I_0$$
 with $I_0 = \frac{\pi}{3\sqrt{3}}$ gives

$$I_1 = \frac{\pi}{2} - 2\left(\frac{\pi}{3\sqrt{3}}\right).$$

(continues on page 34)

Syllabus content, outcomes, targeted performance bands and marking guide

MEX-C1 Further Integration
MEX12-5
Bands E2-E4

- Gives the correct solution 4
- Correctly uses

$$I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$$

with n = 1 OR equivalent merit 3

	Sample answer	Syllabus content, outcomes, targeted performance bands and marking guide
(v)	(continued)	
1	Using $I_{n+1} + 2I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$ with $n = 1$	
1	gives:	
	$I_2 + 2I_1 = \int_0^{\frac{\pi}{2}} \sin x dx$	
	$I_2 = -\left[\cos x\right]_0^{\frac{\pi}{2}} - 2I_1$	
	$=-(0-1)-2\left(\frac{\pi}{2}-2\left(\frac{\pi}{3\sqrt{3}}\right)\right)$	
\$	So, $I_2 = \pi \left(\frac{4\sqrt{3}}{9} - 1 \right) + 1$.	