Cut the Tree

Anna loves graph theory! She has an n-vertex tree, t, where each vertex u:

- Is indexed with a unique integer from 1 to n.
- Contains a data value, $data_u$.

Anna observes that *cutting* any edge, $u \leftrightarrow v$, in t results in the formation of two separate trees denoted by t_1 and t_2 . She also defines the following:

- The sum of a tree is the sum of the $data_u$ values for all vertices in the tree.
- The *difference* between two trees created by cutting edge $u \leftrightarrow v$ is denoted by $d_{u \leftrightarrow v} = |sum(t_1) sum(t_2)|$.

Given the definition of tree t, remove some edge $u \leftrightarrow v$ such that the value of $d_{u \leftrightarrow v}$ is minimal. Then print the value of the minimum possible $d_{u \leftrightarrow v}$ as your answer.

Note: The tree is *always* rooted at vertex **1**.

Input Format

The first line contains an integer, n, denoting the number of vertices in the tree.

The second line contains n space-separated integers where each integer u denotes the value of $data_u$. Each of the n-1 subsequent lines contains two space-separated integers, u and v, describing edge $u \leftrightarrow v$ in tree t.

Constraints

- $3 \le n \le 10^5$
- $1 \leq data_u \leq 1001$, where $1 \leq u \leq n$.

Output Format

A single line containing the minimum $d_{u\leftrightarrow v}$ possible for tree t.

Sample Input

```
6
100 200 100 500 100 600
1 2
2 3
2 5
4 5
5 6
```

Sample Output

400

Explanation

We can visualize the initial, uncut tree as:

There are n-1=5 edges we can cut:

- 1. Edge $1\leftrightarrow 2$ results in $d_{1\leftrightarrow 2}=1500-100=1400$
- 2. Edge $2\leftrightarrow 3$ results in $d_{2\leftrightarrow 3}=1500-100=1400$
- 3. Edge $2\leftrightarrow 5$ results in $d_{2\leftrightarrow 5}=1200-400=800$
- 4. Edge $4\leftrightarrow 5$ results in $d_{4\leftrightarrow 5}=1100-500=600$
- 5. Edge $5\leftrightarrow 6$ results in $d_{5\leftrightarrow 6}=1000-600=400$

We then print the minimum of 1400, 1400, 800, 600, and 400 as our answer, which is 400.