

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Lecture 1: Introduction

CS 422 vgurbani@iit.edu

Computer Science

- Determinism rules.
- Errors not tolerated.

Machine Learning

- Generalization is key.
- Errors part of the landscape.

Computer Science

- Determinism rules.
- Errors not tolerated.
- Algorithms do not learn.

Machine Learning

- Generalization is key.
- Errors part of the landscape.
- Algorithms learn (backprop).

Computer Science

- Determinism rules.
- Errors not tolerated.
- Algorithms do not learn.
- Program(Data) => Output. Program most important artifact.

Machine Learning

- Generalization is key.
- Errors part of the landscape.
- Algorithms learn (backprop).
- Data(Program) => Model => Ouput.
 Data most important artifact.

- The Machine Learning Problem: Generalizing to cases we have not seen before.
- But, can't we simply see all or most of the data?

- The Machine Learning Problem: Generalizing to cases we have not seen before.
- But, can't we simply see all or most of the data?
- Suppose: You have data that consists of 1,000 Boolean fields, and you have 1,000,000,000,000 records in a database.
- How much insight do these 1 trillion records represent?

- The Machine Learning Problem: Generalizing to cases we have not seen before.
- But, can't we simply see all or most of the data?
- Suppose: You have data that consists of 1,000 Boolean fields, and you have 1,000,000,000,000 records in a database.
- How much insight do these 1 trillion records represent?
- Theoretically, you will need 2e1000 records to represent all of your data!!
- The 1 trillions records are one "gazillionth*" of 1 percent of 2e1000!

* Gazillionth = 10e-285

Morals:

- Curse of dimensionality is real
- Generalization is how we deal with combinatorial explosion!

Resources

- Conferences in data mining and machine learning (nonexhaustive)
 - ACM KDD (Knowledge Discovery and Data Mining), http://www.kdd.org
 - ICML (International Conference on Machine Learning)
 - ACM CIKM (International Conference on Information and Knowledge Management)
 - SDM (SIAM International Conference on Data Mining)
- Journals (non-exhaustive)
 - IEEE Transactions on Pattern Analysis and Machine Intelligence
 - ACM Transactions on Knowledge Discovery from Data
 - IEEE Transactions on Knowledge and Data Engineering

Resources

- Useful general Internet resources on data mining and machine learning:
 - Kaggle (https://www.kaggle.com)
 - Kdnuggets (https://www.kdnuggets.com)
 - https://machinelearningmastery.com/

Resources

- R Tutorials
 - http://www.cookbook-r.com/
 - https://github.com/matloff/ fasteR
 - http://www.r-tutor.com/rintroduction
 - https://cran.r-project.org/doc/ manuals/R-intro.pdf
- R Programming Tutorial, Derek Banas https://www.youtube.com/watch? v=s3FozVfd7q4
- Recitation on R today by TA.
- There will be a short quiz on R soon!

- R Development Environment:
 - R https://www.r-project.org/
 - RStudio https://www.rstudio.com
 - RStudio Cloud https://rstudio.cloud/
 - R@Illinois Tech

Available on the Fusion cluster: https://linux1.cs.iit.edu:8787
Use your normal IIT login/password for authentication.)