Public Key Cryptography

Lecture 7

The ElGamal Public Key Cryptosystem and Finite Fields

Index

- 1 The ElGamal Public Key Cryptosystem
 - The ElGamal cryptosystem (basic version)
 - The ElGamal cryptosystem (generalized version)
- 2 Finite Fields
 - Polynomials
 - Irreducibility and factorization
 - Congruences
 - Cyclic groups
 - Galois fields
 - Construction of finite fields

The ElGamal Public Key Cryptosystem

- ElGamal (1985)
- Based on the following problems, solvable only by exponential-time algorithms:

Discrete Logarithm Problem (DLP)

Let (G, \cdot) be a finite cyclic group with n elements, having a generator g and let $y \in G$. Determine a power x $(0 \le x \le n-1)$ such that $y = g^x$ (we formally write $x = log_g y$).

Diffie-Hellman Problem (DHP)

Let (G, \cdot) be a finite cyclic group with n elements, having a generator g and let $g^a, g^b \in G$ for some $a, b \in \{0, \dots, n-1\}$. Determine g^{ab} .

Conjecture

DLP and DHP are computationally equivalent.

The ElGamal cryptosystem (basic version)

1. Key generation. Alice creates a public key and a private key.

- 1.1. Generates a large random prime p and a generator g of (\mathbb{Z}_p^*,\cdot) .
- 1.2. Selects a random integer a $(1 \le a \le p 2)$.
- 1.3. Computes $g^a \mod p$.
- 1.4. Alice's public key is (p, g, g^a) ; her private key is a.

2. Encryption. Bob sends an encrypted message to Alice.

- 2.1. Gets Alice's public key (p, g, g^a) .
- 2.2. Represents the message as a number m between 0 and p-1.
- 2.3. Selects a random integer k $(1 \le k \le p-2)$.
- 2.4. Computes $\alpha = g^k \mod p$ and $\beta = m \cdot (g^a)^k \mod p$.
- 2.5. Sends the ciphertext $c = (\alpha, \beta)$ to Alice.

3. Decryption. Alice decrypts the message from Bob.

3.1. Uses the private key a to get the message $m = \alpha^{-a}\beta \mod p$.

The ElGamal cryptosystem (generalized version)

1. Key generation. Alice creates a public key and a private key.

- 1.1. Selects an appropriate cyclic group (G, \cdot) of order n with a generator g.
- 1.2. Selects a random integer a $(1 \le a \le n-1)$.
- 1.3. Computes g^a in the group G.
- 1.4. Alice's public key is (g, g^a) together with a description of how to multiply elements in G; her private key is a.

2. Encryption. Bob sends an encrypted message to Alice.

- 2.1. Gets Alice's public key (g, g^a) .
- 2.2. Represents the message as an element m of the group G.
- 2.3. Selects a random integer k ($1 \le k \le n-1$).
- 2.4. Computes $\alpha = g^k$ and $\beta = m \cdot (g^a)^k$ in the group G.
- 2.5. Sends the ciphertext $c = (\alpha, \beta)$ to Alice.

The ElGamal cryptosystem (generalized version) (cont.)

- 3. Decryption. Alice decrypts the message from Bob.
- 3.1. Uses the private key a to get the message $m=\alpha^{-a}\beta$ in the group G.

Theorem

The ElGamal algorithm is correct.

Proof. We have
$$\alpha^{-a} \cdot \beta = g^{-ak} m \cdot (g^a)^k = m$$
.

Remarks.

- The difficulty of the Discrete Logarithm Problem (Diffie-Hellman Problem) does not depend on the generator.
- Interesting for cryptography: $G = F_q^*$ for some finite field F_q with q elements ($q = p^m$ and p prime).
- GNU Privacy Guard, PGP

The ElGamal Cryptosystem - example

Example.

Key generation.

Alice selects the prime p=2357 and a generator g=2 of the group $(\mathbb{Z}_{2357}^*,\cdot)$.

Then she chooses $a=1751 \le p-2$ and computes $g^a \mod p = 2^{1751} \mod 2357 = 1185$. Alice's private key is 1751; her public key is (2357, 2, 1185).

Encryption.

To encrypt the message m=2035, Bob selects a random $k=1520 \le p-2$ and computes $\alpha=g^k \mod p=2^{1520} \mod 2357=1430$ and $\beta=m\cdot(g^a)^k \mod p=2035\cdot 1185^{1520} \mod 2357=697$. Then he sends the message $(\alpha,\beta)=(1430,697)$ to Alice.

Decryption.

To decrypt, Alice computes $m = \alpha^{-a}\beta \mod p = \alpha^{p-1-a}\beta \mod p = 1430^{605} \cdot 697 \mod 2357 = 2035$.

Polynomials

- K[X] denotes the ring of polynomials over a field K.
- The rings \mathbb{Z} and K[X] have some similar properties.

Definition

Let $f, g \in K[X]$, $f \neq 0$, $g \neq 0$. A polynomial $d \in K[X]$ is called a g.c.d. of f and g (denoted (f, g)) if:

- (1) d|f and d|g;
- (2) $d_1 \in K[X]$, $d_1|f$ and $d_1|g \Rightarrow d_1|d$;
- (3) d is monic (that is, its leading term coefficient is 1).

Condition (3) ensures the uniqueness of g.c.d.

Polynomials (cont.)

Division Algorithm

Let $f, g \in K[X]$ with $g \neq 0$. Then $\exists ! q, r \in K[X]$ such that f = gq + r, where deg(r) < deg(g).

(f,g) is computed by the Euclidean Algorithm.

Theorem (The Extended Euclidean Algorithm)

Let $f, g \in K[X]$. If d = (f, g), then $\exists u, v \in K[X]$: d = fu + gv. In particular,

$$(f,g) = 1 \Leftrightarrow \exists u, v \in K[X] : 1 = fu + gv \Leftrightarrow \exists f^{-1} \bmod g.$$

In this case, $f^{-1} \mod g = u$.

Irreducibility and factorization

Definition

An $f \in K[X]$ with $deg(f) \ge 1$ is called *irreducible* if it cannot be written as $f = g \cdot h$ for $g, h \in K[X]$ with $deg(g) \ge 1$, $deg(h) \ge 1$.

Theorem (Bézout)

Let $f \in K[X]$ and $a \in K$. Then $f(a) = 0 \Leftrightarrow X - a|f$. In particular, if $deg(f) \ge 2$ and f has a root in K, then f is reducible.

Example.

- $f \in \mathbb{C}[X]$ is irreducible $\Leftrightarrow deg(f) = 1$;
- $f \in \mathbb{R}[X]$ is irreducible $\Leftrightarrow deg(f) = 1$ or deg(f) = 2 with $\Delta < 0$.
- $f = X^2 + 2 \in \mathbb{Z}_3[X]$ is reducible, because f(1) = 0.
- $f = X^4 + 2X^2 + 1 = (X^2 + 1)^2$ is reducible in $\mathbb{Z}_3[X]$, but f has no root in \mathbb{Z}_3 .

Irreducibility and factorization (cont.)

Theorem

Let p be a prime and $k \in \mathbb{N}^*$. Then:

- (i) The product of all monic irreducible polynomials in $\mathbb{Z}_p[X]$ having the degree a divisor of k is equal to $X^{p^k} X$.
- (ii) If $f \in \mathbb{Z}_p[X]$ has degree m, then

$$f$$
 is irreducible $\Leftrightarrow (f, X^{p^i} - X) = 1, \quad \forall i \in \{1, \dots, \left[\frac{m}{2}\right]\}.$

Unique Factorization

 $\forall f \in K[X]$ has a unique (up to the order of factors) writing $f = a \cdot f_1 \cdot f_2 \cdot \ldots \cdot f_r$, for $a \in K$, $f_1, \ldots, f_r \in K[X]$ irreducible monic.

Congruences

Definition

Set $f \in K[X]$. Define on K[X] a relation:

$$g \equiv h \pmod{f} \Leftrightarrow f|g - h$$
.

Theorem

- (i) If $f \neq 0$, then $g \equiv h \pmod{f} \Leftrightarrow g, h$ give the same remainder when divided by f.
- (ii) " \equiv " is an equivalence relation on K[X] and K[X]/" \equiv " is a partition of K[X].

Denote this partition by K[X]/(f) and its elements by \widehat{g} , \widehat{h} or by $g \mod f$, $h \mod f$ etc.

Congruences (cont.)

Define $\forall \widehat{g}, \ \widehat{h} \in K[X]/(f)$,

$$\begin{cases} \widehat{g} + \widehat{h} = \widehat{g + h} \\ \widehat{g} \cdot \widehat{h} = \widehat{g \cdot h}. \end{cases}$$

Theorem

- (i) $(K[X]/(f), +, \cdot)$ is a commutative unitary ring.
- (ii) If deg(f) = n, then

$$K[X]/(f) = \{a_0 + a_1x + \cdots + a_{n-1}x^{n-1} \mid a_0, \ldots, a_{n-1} \in K\},\$$

where $x = \hat{X}$. Hence it is a vector space of dimension n over K, having the basis $(1, x, \dots, x^{n-1})$.

(iii) $f \in K[X]$ is irreducible $\Leftrightarrow (K[X]/(f), +, \cdot)$ is a field.

Chinese Remainder Theorem

Chinese Remainder Theorem

Consider the system
$$\begin{cases} h \equiv g_1 \pmod{f_1} \\ \dots \\ h \equiv g_r \pmod{f_r} \end{cases}$$
 where $f_1, \dots, f_r \in K[X]$

are distinct irreducible monic polynomials and $g_1, \ldots, g_r \in K[X]$. Then the system has a unique solution modulo $f = f_1 f_2 \ldots f_r$, namely

$$h = \sum_{i=1}^r g_i F_i K_i,$$

where $F_i = \frac{f}{f_i}$ and $K_i = F_i^{-1} \mod f_i$, $i = 1, \dots, r$.

Similarities between the rings \mathbb{Z} and K[X]

- Both of them are integral domains.
- Every integer can be represented in the form $a_0 + a_1 \cdot 10 + \cdots + a_n \cdot 10^n$, whereas every polynomial can be represented in the form $a_0 + a_1X + \cdots + a_nX^n$.
- The Division Algorithm, the (Extended) Euclidean Algorithm, the Chinese Remainder Theorem and the Unique Factorization Theorem hold for both of them.
- By using congruences, we may construct

$$\mathbb{Z}/(n) = \{x \bmod n \mid x \in \mathbb{Z}\} \quad (n \in \mathbb{Z})$$

$$K[X]/(f) = \{g \bmod f \mid g \in K[X]\} \quad (f \in K[X]).$$

• $\mathbb{Z}/(n)$ is a field $\Leftrightarrow n$ is prime; K[X]/(f) is a field $\Leftrightarrow f$ is irreducible.

Cyclic groups

Definition

A group (G, \cdot) is called cyclic if there exists $x \in G$ such that $G = \langle x \rangle$, that is, $G = \{x^k \mid k \in \mathbb{Z}\}$. Here x is called a generator of G.

Examples.

- (a) $(\mathbb{Z}, +)$ is cyclic, since $\mathbb{Z} = <1>$.
- (b) $(\mathbb{Z}_n, +)$ is cyclic, since $\mathbb{Z}_n = <\widehat{1} >$.
- (c) The group (U_n,\cdot) of the *n*-th roots of unity is cyclic. Indeed, $U_n=\{z\in\mathbb{C}\mid z^n=1\}$ has *n* elements, namely

$$\varepsilon_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} = \left(\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}\right)^k = \varepsilon_1^k,$$

for $k = 0, 1, \ldots, n - 1$. Then $U_n = <\varepsilon_1>$.

A generator of U_n is called a *primitive root of unity*.

Cyclic groups (cont.)

Theorem

Let (G, \cdot) be a finite cyclic group with n elements generated by an element x. Then $G = \langle x \rangle = \{1, x, x^2, \dots, x^{n-1}\}$.

Theorem

Let (G, \cdot) be a cyclic group, $G = \langle x \rangle$, |G| = n and $k \in \mathbb{N}^*$. Then

$$G = \langle x^k \rangle \Leftrightarrow (n, k) = 1$$
.

Examples. (a) Consider the group (U_8, \cdot) of 8-th roots of unity. Then $U_8 = \{\varepsilon_0, \varepsilon_1, \dots, \varepsilon_7\}$, where

$$\varepsilon_k = (\varepsilon_1)^k = \left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right)^k, \quad k = 0, 1, \dots, 7.$$

Its generators are ε_1 , $\varepsilon_3 = \varepsilon_1^3$, $\varepsilon_5 = \varepsilon_1^5$ and $\varepsilon_7 = \varepsilon_1^7$. (b) Consider the group $(\mathbb{Z}_{12}, +)$. Its generators are $\widehat{1}$, $\widehat{5}$, $\widehat{7}$, $\widehat{11}$.

Generators of a finite cyclic group

Theorem

- Let (G, \cdot) be a finite cyclic group with n elements. Then:
- (i) There are $\varphi(n)$ (Euler's function) generators of G.
- (ii) The probability of a random element of G to be a generator is $\varphi(n)/n$, which is at least $1/(6 \log \log n)$.

Generator Algorithm

- Input: a finite cyclic group G with $n = p_1^{k_1} \dots p_r^{k_r}$ elements.
- Output: a generator g of G.
- Algorithm:
 - 1. Choose a random element g of G.
 - 2. For i=1 to r do $a:=g^{\frac{n}{p_i}}.$ If a=1 then go to Step 1.
 - 3. Output(g).

Galois fields

Theorem (Wedderburn)

Every finite division ring is commutative.

Definition

Let $(K, +, \cdot)$ be a finite field. Then the *characteristic* of K, denoted by char(K), is defined as the smallest non-zero natural number such that

$$\underbrace{1+\cdots+1}_{n \text{ times}}=0.$$

Example. $char(\mathbb{Z}_p) = p \ (p \ \text{prime}).$

Theorem

Let K be a finite field. Then char(K) is a prime.

Galois fields (cont.)

Theorem

- (i) If K is a finite field, then $|K| = p^n$, with p prime and $n \in \mathbb{N}^*$.
- (ii) For every prime p and every $n \in \mathbb{N}^*$, there exists a unique (up to an isomorphism) field with p^n elements.

The unique field with p^n elements is denoted by F_{p^n} and is sometimes called the *Galois field* with p^n elements.

Example. The fields with less than 20 elements are: F_2 , F_3 , F_4 , F_5 , F_7 , F_8 , F_9 , F_{11} , F_{13} , F_{16} , F_{17} , F_{19} .

Theorem

Let F_q be a finite field, where $q = p^n$ for some prime p. Then:

- (i) $char(F_q) = p$.
- (ii) $(a+b)^p = a^p + b^p$, $\forall a, b \in F_q$.
- (iii) (F_q^*, \cdot) is a cyclic group and $a^q = a$, $\forall a \in F_q$.

Construction of finite fields

• If $f \in \mathbb{Z}_p[X]$ (p prime) is irreducible and deg(f) = n, then

$$\mathbb{Z}_p[X]/(f) = \{a_0 + a_1x + \dots + a_{n-1}x^{n-1} \mid a_0, \dots, a_{n-1} \in \mathbb{Z}_p\}$$
 is a field with p^n elements (where $x = \hat{X}$).

• The addition and the multiplication are done modulo f and the inverse of an element is computed by the Extended Euclidean Algorithm or by using $a^q = a$, $\forall a \in F_q^*$.

Theorem

 $\forall n \in \mathbb{N}^*$, $\forall p$ prime, $\exists f \in \mathbb{Z}_p[X]$ irreducible of degree n.

• Hence every finite field F_{p^n} can be seen as having the form $\mathbb{Z}_p[X]/(f)$, where $f \in \mathbb{Z}_p[X]$ is irreducible and has degree n.

Construction of finite fields - example

Example. Let us construct $F_8 = F_{2^3}$.

- Here p=2 and n=3, so that we need $f\in \mathbb{Z}_2[X]$ irreducible of degree 3.
- For instance, $X^3 + 1$ is reducible, because it has the root 1. Let us try

$$f=X^3+X+1\in\mathbb{Z}_2[X].$$

If f were reducible, then f would be the product of a polynomial of degree 2 and a polynomial of degree 1, hence it would have a root in \mathbb{Z}_2 . But f(0)=1 and f(1)=1. Hence f is irreducible.

Now we have

$$F_8 = \mathbb{Z}_2[X]/(f) = \{a_2x^2 + a_1x + a_0 \mid a_0, a_1, a_2 \in \mathbb{Z}_2\}$$

= \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}. (1)

This is called the *polynomial representation* of the field and is very convenient for addition and subtraction.

Construction of finite fields - example (cont.)

- We can use the following facts:
 - (i) Since we work modulo $f \in \mathbb{Z}_2[X]$, $x^3 + x + 1 = 0$.
 - (ii) Since $char(F_8) = 2$, a + a = 0, $\forall a \in F_8$.
 - (iii) (F_8^*, \cdot) is a cyclic group.
- Let us find a generator of the cyclic group (F_8^*, \cdot) . Let us compute the powers of the first non-trivial element, namely x. In algorithms we compute $x^3 \mod f = x+1$, $x^4 \mod f = x^2 + x$ etc. Here we use (i):

$$\begin{cases} x^3 = -x - 1 = x + 1 \\ x^4 = x^2 + x \\ x^5 = x^3 + x^2 = x^2 + x + 1 \\ x^6 = x^4 + x^3 = x^2 + x + x + 1 = x^2 + 1 \end{cases}$$

Since all are different, we have $F_8^* = \langle x \rangle$, hence

$$F_8 = \{0, 1, x, x^2, x^3, x^4, x^5, x^6\}.$$
 (2)

This form is called the *power representation* of the field and is very convenient for multiplying and dividing.

Discrete Logarithm Problem

- To determine the correspondence between the forms (1) and (2) of a finite field. In general, this is a difficult problem.
- Here we get the following table of discrete logarithms:

У	$\log_x y$
1	0
X	1
x + 1	3
x^2	2
$x^{2} + 1$	6
$x^{2} + x$	4
$x^2 + x + 1$	5

Selective Bibliography

A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, *Handbook of Applied Cryptography*, CRC Press, 1997. [http://www.cacr.math.uwaterloo.ca/hac]