Aula 3

Raciocínio Lógico

Prof. André Roberto Guerra

Conversa inicial

Organização da Aula 3

- Aula 3 Fórmulas proposicionais especiais
 - Proposições compostas
 - Tautologia
 - Contradição
 - Contingência
 - Propriedades semânticas

Proposições compostas

Interpretação de uma Fórmula

- É o valor lógico resultante do cálculo, considerando um conjunto de valores lógicos para as suas proposições
- Se a fórmula for representada por A, sua interpretação é dada por I[A]

- Seja a fórmula A(p,q,r): $p \land q \lor r$
- São possíveis, então, 2³ = 8 interpretações para esta fórmula I[A(V,V,V)] = V

I[A(V,V,F)] = V

I[A(V,F,V)] = V

I[A(V,F,F)] = F

I[A(F,V,V)] = V

I[A(F,V,F)] = F

I[A(F,F,V)] = V

I[A(F,F,F)] = F

$\textit{A}(\textit{p},\textit{q},\textit{r}) \colon \textit{p} \, \land \, \textit{q} \, \lor \, \textit{r}$ interpretações para esta fórmula

I[A(V,V,V)] = V I[A(V,V,F)] = V I[A(V,F,V)] = V I[A(V,F,F)] = FI[A(F,V,V)] = V

I[A(F,V,F)] = F

I[A(F,F,V)] = VI[A(F,F,F)] = F V V F V F V ν F ν ν F F V V F ٧ V F F V F F F F F F F

Tautologia

Tautologia

- Tautologia (ou fórmula válida)
- Uma fórmula A é uma tautologia, se, e somente se, para toda interpretação I, I[A] = V

■ Uma fórmula A é uma tautologia, (proposição tautológica/proposição logicamente verdadeira), se, e somente se, o único valor lógico resultante de sua interpretação é o verdadeiro, independentemente dos valores lógicos dos componentes da fórmula. I[A] = V

- Tautologia é toda proposição composta P(p,q,r,...) cujo valor lógico é sempre V (verdade), quaisquer que sejam os valores lógicos das proposições simples componentes p, q, r, etc.
- A proposição "~(p \(\sim \nu p\)" (princípio da não contradição) é tautologia

р	~p	<i>p</i> ∧ ~ <i>p</i>	~(p ∧ ~ p)
V	F	F	v
F	v	F	V

Portanto, uma proposição não pode ser simultaneamente verdadeira e falsa, isso é sempre verdadeiro ■ A proposição "p ∨ ~p" (princípio do terceiro excluído) é tautologia

р	~p	<i>p</i> ∨ ~ <i>p</i>
٧	F	V
F	V	V

Portanto, o conceito de que uma proposição ou é verdadeira ou é falsa é válido ■ A proposição P(p,q): $p \land q \lor \sim p \lor \sim q$ é uma tautologia, pois I[P] = V sempre

р	q	$p \wedge q \vee \sim p \vee \sim q$
p V	V	V VFVF
V	F	F FFVV
F	V	F VVVF
F	F	F VVVV

Contradição

Contradição

- Contradição (ou fórmula contraválida, ou insatisfazível, insatisfatível)
- Uma fórmula A é uma contradição, se, e somente se, para toda interpretação I,I[A] = F

Uma fórmula A é uma contradição, (proposição contraválida/proposição logicamente falsa), se, e somente se, o único valor lógico resultante de sua interpretação é o falso, independentemente dos valores lógicos dos componentes da fórmula. I[A] = F

Contradição é toda proposição composta P (p, q, r, etc.) cujo valor lógico é sempre F (falso), quaisquer que sejam os valores lógicos das proposições simples componentes p, q, r, etc.

- Tautologia é sempre verdadeira (V), a negação de uma tautologia é sempre falsa (F), uma contradição
- **■** Ex.: "p ∧ ~p"

р	~p	(p ∧ ~ p)
٧	F	F
F	٧	F

Portanto, dizer que uma proposição pode ser simultaneamente verdadeira e falsa é sempre falso ■ A proposição P(p,q): $(p \rightarrow q) \land p \land \sim q$ é uma contradição, pois I[P] = F sempre,

р	q	$(p \rightarrow q) \land p \land \sim q$
ν	V	V V F F
ν	F	FFFV
F	V	V FFF
F	F	V FFV

Contingência

Contingência

Uma fórmula A é uma contingência se, e somente se, os valores do conjunto resposta forem diferentes entre si

- Uma fórmula A é uma contingência, (proposição contingente/indeterminação) se, e somente se, entre os valores lógicos resultantes de sua interpretação existe pelo menos um falso e/ou verdadeiro
- Não é tautologia nem contradição
- Pelo menos uma I[A] = V e ao menos uma I[A] = F

■ Em outros termos, é toda proposição composta P (p, q, r, etc.) cujo valor lógico é alternadamente F (falso) e V (verdadeiro), quaisquer que sejam os valores lógicos das proposições simples componentes p, q, r, etc.

■ A proposição P(p,q): $(p \rightarrow q) \land q \lor p$ é uma contingência

р	q	$(p \rightarrow q) \land \sim q \lor p$
V	٧	V FF V
v	F	F F V V
F	V	VFFF
F	F	v v v v

Propriedades semânticas

Propriedades semânticas

- A semântica é o estudo da relação entre as expressões e o que elas representam (significado)
- Associada à atribuição de valores lógicos (V ou F), a fórmulas proposicionais, que podem ter significados na análise lógica
- Fórmulas proposicionais especiais: propriedades semânticas da fórmula proposicional P(p₁, p₂, ... p_n)
- Tautologia: qualquer interpretação é verdade, I[P] = V para qualquer combinação de valores lógicos para (p₁, p₂, ... p_n).
 É fórmula válida

■ Contradição: qualquer interpretação é falsa, I[P] = F para qualquer combinação de valores lógicos para $(p_1, p_2, ... p_n)$

Contingência: há interpretações verdadeiras e falsas na fórmula proposicional, I[P] = V para algumas combinações de valores lógicos para $(p_1, p_2, ... p_n)$, e I[P] = F para outras

Satisfazibilidade

- Uma fórmula é satisfazível (satisfatível) se existe ao menos uma interpretação que seja verdadeira, I[P] = V para ao menos uma combinação de valores lógicos para (p₁, p₂, ... p_n)
- Satisfazível é uma tautologia

Falseabilidade

- Uma fórmula é falsificável (insatisfazível ou insatisfatível) se ao menos uma interpretação é falsa, I[P] = F para ao menos uma combinação de valores lógicos para $(p_1, p_2, ... p_n)$
- Falsificável é uma contradição

Relações entre as propriedades semânticas

- Toda fórmula válida (tautologia) é satisfazível
- Toda fórmula contraditória (insatisfazível) é falsificável
- Uma fórmula não pode ser satisfazível e contraditória
- Uma fórmula não pode ser uma tautologia e falsificável

- Se A é uma tautologia, então ~A é contraditória
- Se A é contraditória, então ∼A é uma tautologia
- Se A é satisfazível, então ~A é falsificável, e vice-versa

- Há fórmulas que são tanto satisfazíveis quanto falsificáveis, isto é, são contingências (indeterminadas)
- Um dos desafios da computação é encontrar métodos (algoritmos) eficientes para decidir se uma fórmula é
 - Satisfazível falsificável
 - Contradição tautologia

Referências

- COPPIN, B. Inteligência artificial. Rio de Janeiro: LTC 2017.
- LUGER, G. F. Inteligência Artificial. 6. ed. São Paulo: Pearson, 2013.

- CASTANHEIRA, N. P.; LEITE A. E. Raciocínio lógico e lógica quantitativa. Curitiba: InterSaberes, 2017 (Série Desmistificando a Matemática, 6).
- ABAR, C. A. A. P. Noções de lógica matemática. São Paulo: Ed. PUC-SP, 2011.

