

Facultad de Ciencias

Departamento de Matemáticas

eherrera@javeriana.edu.co

ANÁLISIS NUMÉRICO TRABAJO FINAL

Estudiante 1 Camilo Hernández Guerrero.

Estudiante 2: Carlos Eduardo Escobar Triana.

Estudiante 3: David Santiago Suárez Barragán.

Cada grupo debe entregar este documento con los resultados y las implementaciones (R o Python) en archivos anexos, al correo herrera.eddy@gmail.com y DEBEN SUBIR AL REPOSITORIO LA SOLUCIÓN Y LA IMPLEMENTACIÓN EN LA CARPETA TRABAJO FINAL INDICANDO EL ENLACE DE LOS REPOSITORIOS DE CADA ESTUDIANTE

TIEMPO LÍMITE 9:30 am HORA LOCAL DEL 19 DE NOVIEMBRE DEL 2021

La estimación de la propagación de la pandemia por **Covid-19** en la ciudad de *Santa Marta* (Colombia) se hace a partir del modelo SIR con parámetros y condiciones iniciales dadas. El modelo SIR, aplicado en varios tipos de pandemias, objetiva estimar el número de individuos susceptibles a infectarse (S), el número de individuos infectados capaces de infectar (I) y el número de individuos recuperados (que se curaron o fallecieron) (R).

El número de individuos susceptibles a infectarse (dS) en el tiempo de observación (dt), viene dado por la **ecuación 1**: $\frac{dS}{dt} = -\beta C \frac{S}{N}$ con Donde β es la tasa temporal de probabilidad de un sujeto de llegar a infectarse, C es el número de contactos del sujeto, 1/N es la probabilidad de que algún contacto esté infectado, N es el universo de individuos y S el número total de individuos susceptibles de infectarse.

El número de individuos infectados dI en el tiempo de observación dt se expresa mediante la **ecuación 2**: $\frac{dI}{dt} = \beta C \frac{S}{N} - \frac{dR}{dt}$. Donde dR dt es la cantidad de personas que en el tiempo de observación se están recuperando. Como en el tiempo de observación, es posible que algunos de los individuos se hayan recuperado, por lo que estos dejarán de pertenecer al grupo I para engrosar el grupo R, lo que se traduce en una sustracción a la cantidad de infectados.

El número de recuperados dR en el tiempo de observación se puede modelar, de manera simple, mediante la **ecuación 3**: $\frac{dR}{dt} = \gamma I$. Donde γ es la tasa temporal de recuperación de un sujeto infectado, o sea, γ dt es la probabilidad de recuperación, en el tiempo dt, de un sujeto que estaba infectado

Solucionar el sistema de ecuaciones utilizando el método de rk con paso variable (h), las condiciones iniciales se establecieron en I (0) =100/N, S (0) =N-I(0), R (0) =0 y N=450000, en consonancia con los datos reportados por el Instituto Nacional de Salud (INS) de Colombia para el periodo entre el 20 de marzo y el 20 de mayo de 2020. Los parámetros del modelo

Facultad de Ciencias

Departamento de Matemáticas

eherrera@javeriana.edu.co

son β =0,06, C=4 y γ =0,021, fueron ajustados numéricamente hasta que los casos (infectados más recuperados) estimados se aproximaron con error <0.05 de los casos reportados.

Tabla de solución del mes de marzo 20 - marzo 30

2. Con base en la solución anterior, realice una gráfica de la proyección del porcentaje de susceptibles, infectados y recuperados de un año de pandemia

Como se puede observar en la imagen los casos de infectados comienzan a incrementar desde el día 60, y alcanza su punto máximo de contagios hacia el día 234, donde se llegó a registrar un máximo de 28,26% de contagios del total de la población y al esta haber sido superada por la tasa de personas recuperadas frente a las personas susceptibles a la enfermedad empieza a descender la cantidad de infectados. Se sabe que este gráfico es correcto, pues la mayoría de gráficos en modelos SIR tienen el mismo comportamiento y tiene sentido, pues en la realidad, como hemos podido evidenciar con la pandemia, los infectados van en aumento hasta alcanzar un pico y de ahí en adelante esa cantidad de infectados disminuye, por lo que hay un comportamiento opuesto en los recuperados, quienes a largo plazo tenderán a aumentar.

 Determine la cantidad máxima aproximada de infectados en relación con la población total y en qué fecha aproximadamente se espera esto y compare esta solución con la solución exacta (analítica).

Cantidad máxima aproximada de infectados = 127188.

Fecha aproximada: Día 234.

4. Determine el porcentaje de la población que llegaría a infectarse y el porcentaje de recuperación y compare esta solución con la solución exacta (analítica)

Porcentaje de infectados: 28,26399%. Porcentaje de recuperados: 84.6594%.

5. Se dice que una situación epidémica controlada será cuando: $\frac{\gamma}{\beta C} > \frac{S}{N}$ determine en que instantes del tiempo la situación está controlada si el número de contactos del sujeto va aumentando de [2-20] de cinco en cinco.

SOLUCION

6. El número básico de reproducción $R_0 = \frac{\beta}{\gamma}$ es un indicador relevante en salud pública porque expresa la potencia de contagio. Encuentre la solución para cuando $\beta = \gamma$ como para cuando $\beta > \gamma$ e interprete la solución a la luz de los valores de R_0 para los casos (asigne valores a los parámetros).

SOLUCION

7. El número efectivo de reproducción $R_e(t)=\frac{\beta CS(t)}{\gamma N}$ se define como la cantidad de individuos susceptibles que pueden llegar a ser infectados por un individuo en un momento específico cuando toda la población no es susceptible. Con base en la solución numérica de S(t) interpole, estime el valor total para los primeros 90 días y grafique $R_e(t)$ para los primeros 90 días

Facultad de Ciencias

Departamento de Matemáticas

eherrera@javeriana.edu.co

8. Encuentre la solución del sistema de ecuaciones (iniciales) y las mismas condiciones iniciales para $R_e(t) = secuencia[1.5-3] con pasos de 0.5$; grafique e interprete la solución

SOLUCION Y GRAFICA

9. Simular el progreso de la pandemia en Santa Marta (para el periodo entre el 20 de marzo y el 30 de mayo de 2020) suponiendo un margen de error al inicio de la pandemia tal que el número de infectados y recuperados en ese momento fuera I (0) =14, R (0) =0 y considere esta solución exacta.

10. Con base de la solución aproximada (ejercicio 1), determine los errores para cuando $R_e(t)=1.001; 1.5; 1.9; 2.5;$ el error relativo en los primeros 10 días, el error absoluto medio (EAM) y la estabilidad numérica de la solución asumiendo que la solución exacta (ejercicio 9)

•	SusceptibleReal [‡]	SusceptibleAprox +	ErrorRelativoS [‡]	ErrorAbsolutoS [‡]	InfectadosReal [‡]	InfectadosAprox [‡]	ErrorRelativol [‡]	ErrorAbsolutol [‡]	RecuperadosReal [‡]	RecuperadosAprox [‡]	ErrorRelativoR [‡]	ErrorAbsolutoR
1	1.0000000	0.9997778	0	0.0002222222	1.400000e+01	0.0002222222	0	13.99978	0.000000e+00	0.000000e+00	NaN	0
2	0.9997642	0.9997642	0	0.0000000000	2.310569e-04	0.0002310569	0	0.00000	4.758829e-06	4.758829e-06	0	0
3	0.9997501	0.9997501	0	0.0000000000	2.402427e-04	0.0002402427	0	0.00000	9.706848e-06	9.706848e-06	0	0
4	0.9997354	0.9997354	0	0.0000000000	2.497934e-04	0.0002497934	0	0.00000	1.485158e-05	1.485158e-05	0	0
5	0.9997201	0.9997201	0	0.0000000000	2.597236e-04	0.0002597236	0	0.00000	2.020083e-05	2.020083e-05	0	0
6	0.9997042	0.9997042	0	0.0000000000	2.700482e-04	0.0002700482	0	0.00000	2.576273e-05	2.576273e-05	0	0
7	0.9996877	0.9996877	0	0.0000000000	2.807830e-04	0.0002807830	0	0.00000	3.154572e-05	3.154572e-05	0	0
8	0.9996705	0.9996705	0	0.0000000000	2.919443e-04	0.0002919443	0	0.00000	3.755860e-05	3.755860e-05	0	0
9	0.9996526	0.9996526	0	0.0000000000	3.035489e-04	0.0003035489	0	0.00000	4.381049e-05	4.381049e-05	0	0
10	0.9996341	0.9996341	0	0.0000000000	3.156144e-04	0.0003156144	0	0.00000	5.031088e-05	5.031088e-05	0	0