

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA Segundo Semestre de 2018

Tarea 7

Teoría de Números - MAT 2225 Fecha de Entrega: 2018/10/11

> Integrantes del grupo: Nicholas Mc-Donnell, Camilo Sánchez Felipe Guzmán, Fernanda Cares

Problema 1 (4 pts). Calcule la solución fundamental de la ecuación de Pell $x^2 - dy^2 = 1$ para los siguientes valores de d:

- (I) (1 pt) d = 60
- (II) (2 pt) d = 61
- (III) (1 pt) d = 62

Solución problema 1:

(I) Escribiendo la tabla y usando un programa de python[1] para conseguir la fracción continua

a_s	P_s	Q_s	Diff
*	1	0	1
7	7	1	-11
1	8	1	4
2	23	3	-11
1	31	4	1
14	457	59	-11
1	488	63	4
2	1433	185	-11
1	1921	248	1

Podemos ver que (31,4) es solución, y es la fundamental por tabla.

(II) Usando lo mismo que en $\left(I\right)$

a_s	P_s	Q_s	Diff
*	1	0	1
7	7	1	-12
1	8	1	3
4	39	5	-4
3	125	16	9
1	164	21	-5
2	453	58	5
2	1070	137	-9
1	1523	195	4
3	5639	722	-3
4	24079	3083	12
1	29718	3805	-1
14	440131	56353	12
1	469849	60158	-3
4	2319527	296985	4
3	7428430	951113	-9
1	9747957	1248098	5
2	26924344	3447309	-5
2	63596645	8142716	9
1	90520989	11590025	-4
3	335159612	42912791	3
4	1431159437	183241189	-12
1	1766319049	226153980	1

Notamos que (1766319049, 226153980) es solución y por la tabla es la fundamental

(III) Usando lo mismo que en (I)

a_s	P_s	Q_s	Diff
*	1	0	1
7	7	1	-13
1	8	1	2
6	55	7	-13
1	63	8	1
14	937	119	-13
1	1000	127	2
6	6937	881	-13
1	7937	1008	1

Notamos que (63,8) es solución fundamental.

Problema 2 (2 pts. c/u). Sea d un entero positivo que no es un cuadrado. Sea $k \neq 0$ un entero. Considere la ecuación

$$x^2 - dy^2 = k \tag{1}$$

Dos soluciones enteras (a_1, b_1) y (a_2, b_2) de (1) son P-equivalentes si hay una solución entera $(s,t) \in \mathcal{P}_d(\mathbb{Z})$ de la ecuación de Pell $x^2 - dy^2 = 1$ que cumple $a_2 + b_2 \sqrt{d} = (s + t\sqrt{d})(a_1 + b_1 \sqrt{d})$.

- (I) Muestre que la P-equivalencia es una relación de equivalencia en el conjunto de las soluciones enteras de (1).
- (II) Muestre que la ecuación $x^2 5y^2 = 2$ no tiene soluciones enteras.
- (III) Muestre que si (1) tiene alguna solución entera (a,b), entonces tiene infinitas. Más precisamente, muestre que la clase de P-equivalencia de (a,b) en las soluciones enteras de (1) es exactamente

$$\{(p,q) \in \mathbb{Z}^2 : p + q\sqrt{d} = \left(s + \sqrt{d}t\right)\left(a + \sqrt{d}b\right) \text{ para algún } (s,t) \in \mathcal{P}_d\mathbb{Z}\}$$

y ese conjunto es infinito.

- (IV) Muestre que hay a lo más finitas clases de P-equivalencia entre las soluciones de (1).
- (V) Para la ecuación $x^2 5y^2 = 4$, muestre que existen soluciones que no son P-equivalentes entre ellas (es decir, hay más de una clase de P-equivalencia).

Solución problema 2:

1. Refleja: Notar que $(1,0) \in \mathcal{P}_d(\mathbb{Z})$, por lo que $\forall (a_1,b_1) \in Q$ tenemos que

$$a_1 + b_1\sqrt{d} = (1 + 0\sqrt{d})(a_1 + b_1\sqrt{d}).$$

Simétrica: Sean (a_1, b_1) y $(a_2, b_2) \in Q$, $(s, t) \in \mathcal{P}_d(\mathbb{Z})$, tal que

$$a_2 + b_2 \sqrt{d} = (s + t\sqrt{d})(a_1 + b_1 \sqrt{d}),$$

lo que pasa si y solo si

$$a_2 + b_2 \sqrt{d} \cdot \frac{1}{(s + t\sqrt{d})} = (a_1 + b_1 \sqrt{d})$$

Racionalizando $\frac{1}{(s+t\sqrt{d})}$ (y usando el hecho que (s,t) es solución), llegamos a que lo anterior pasa si y solo si

$$(a_2 + b_2\sqrt{d})(s - t\sqrt{d}) = (a_1 + b_1\sqrt{d}),$$

y claramente $(s, -t) \in \mathcal{P}_d(\mathbb{Z})$.

<u>Transitiva:</u> Sean $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in Q$ y $(s_1, t_1), (s_2, t_2) \in \mathcal{P}_d(\mathbb{Z})$, tal que $a_2 + b_2\sqrt{d} = (s_1 + t_1\sqrt{d})(a_1 + b_1\sqrt{d})$ y $a_3 + b_3\sqrt{d} = (s_2 + t_2\sqrt{d})(a_2 + b_2\sqrt{d})$. Esto dice que

$$a_3 + b_3 \sqrt{d} = (s_2 + t_2 \sqrt{d})(s_1 + t_1 \sqrt{d})(a_1 + b_1 \sqrt{d})$$
$$= (s_2 s_1 + dt_2 t_1 + (t_2 s_1 + s_2 t_1) \sqrt{d})(a_1 + b_1 \sqrt{d})$$

Veamos que $(s_2s_1 + dt_2t_1, t_2s_1 + s_2t_1) \in \mathcal{P}_d(\mathbb{Z})$

$$(s_2s_1 + dt_2t_1)^2 - d(t_2s_1 + s_2t_1)^2 = (s_2s_1)^2 + 2ds_1s_2t_1t_2 + (dt_2t_1)^2 - d(t_2s_1)^2 - 2ds_1s_2t_1t_2 - (s_2t_1)^2$$

$$= s_1(s_2^2 - dt_2^2) + dt_1^2(dt_2^2 - s_2^2)$$

$$= s_1^2 - dt_1^2 = 1$$

Por lo tanto, se tiene lo pedido.

2. Supongamos que tiene soluciones enteras. Sea (a, b) una solución. Luego,

$$a^2 - 5b^2 = 2.$$

Aplicando (mód 5) queda $a^2 \equiv 2 \pmod{5}$, pero 2 no es un cuadrado (mód 5), $\rightarrow \leftarrow$.

Problema 3 (3 pts.). Si sumamos los números enteros de 1 a 8 obtenemos

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36$$

que es un cuadrado. Muestre que hay infinitos enteros positivos N con esta propiedad, es decir que si sumamos 1+2+...+N obtenemos un cuadrado. Además, encuentre los primeros 5 valores de N que lo cumplen (N=1 y N=8 funcionan; faltan los siguientes tres).

Solución problema 3: Recordamos que la suma de los primeros n naturales tiene la siguiente formula:

$$\frac{n(n+1)}{2}$$

Nosotros que remos que esta expresión sea un cuadrado, y notamos que si escribimos n y n+1 de la siguiente forma tenemos que la expresión anterior es un cuadrado

$$n = 2t^2$$
 $(n+1) = s^2$

Juntando ambas cosas se consigue lo siguiente:

$$s^2 - 2t^2 = 1$$

Lo cuál es una ecuación de Pell, por el problema 2, sabemos que si la ecuación tiene una solución no trivial entonces tiene infinitas.

$$(3,2) \to 3^2 - 2 \cdot 2^2 = 1$$

Por lo que tenemos lo pedido. Vemos que n = 1, n = 8, n = 49, n = 288, y n = 1681 son las primeras cinco soluciones gracias al programa[1], donde cada n cumple lo pedido.

Problema 4 (3 pts). Si sumamos los enteros de 3 a 6 obtenemos $3 \cdot 6$:

$$3+4+5+6=18=3\cdot 6$$

Muestre que hay infinitos pares de enteros positivos A < B con la misma propiedad, es decir, que cumplen $A + (A + 1) + ...(B - 1) + B = A \cdot B$. Además, encuentre otros tres ejemplos.

Solución problema 4: El problema se puede reescribir de la siguiente forma:

$$a \cdot b = \frac{b(b+1)}{2} - \frac{a(a-1)}{2}$$

Donde hay que encontrar infinitos $(a,b) \in \mathbb{Z}^2$ con a < b, tal que sean solución. Por la última condición se puede ver lo siguiente b = a + c, con $c \in \mathbb{N}$, usando esto para reescribir la ecuación se tiene que

$$2a^2 - 2a = c^2 + c$$

Completando cuadrados y multiplicando por 4

$$(2c+1)^2 - 2(2a-1)^2 = -1$$

Luego recordamos el problema 2 y tomamos la siguiente solución $(a, c) = (1, 0) \rightarrow a = b = 1$, por lo que hay infinitas soluciones para la ecuación, lo que nos da infinitos a, b que cumplen lo pedido. Ahora tomamos $(3,3) \rightarrow a = 3, b = 6$, y $(20,15) \rightarrow a = 20, b = 35$.

Referencias

[1] Nicholas Mc-Donnell. Python program to calculate continued fractions, and format latex tables, 2018.