CSCI203 Algorithms and Data Structures

Hashing

Lecturer: Dr. Xueqiao Liu

Room 3.117

Email: xueqiao@uow.edu.au

Direct Access vs Hash Table

Hash Table

Direct Access Table

22/08/2024

Hash method works something like...

Convert a String key into an integer that will be in the range of 0 through the maximum capacity-1

Assume the array capacity is 9997

Hashing

Hashing

Example: use ASCII code

Mia		M	77	i	105	а	97		279	4
Tim		Т	84	i	105	m	109		298	1
Bea		В	66	е	101	а	97		264	0
Zoe		Z	90	0	111	е	101		302	5
Jan		J	74	а	97	n	110		281	6
Ada		Α	65	d	100	а	97		262	9
Leo		L	76	е	101	0	111		288	2
Sam		S	83	а	97	m	109		289	3
Lou		L	76	О	111	u	117		304	7
Max		M	77	а	97	X	120		294	8
Ted		T	84	е	101	d	100		285	10
Bea	Tim	Leo	Sam	Mia	Zoe	Jan	Lou	Max	Ada	Ted
0	1	2	3	4	5	6	7	8	9	10

Hashing

- Each item has a unique key.
- Use a large array called a Hash Table.
- Use a Hash Function.

Operations

- Initialize
 - all locations in Hash Table are empty.
- Insert
- Search
- Delete

Hash Function

- Maps keys to positions in the Hash Table.
- Be easy to calculate.
- Use all of the key.
- Spread the keys uniformly.

Hashing

- Ideally, if we have n keys with associated values, we would like $m \in \Theta(n)$.
 - m = 2n, m = 3n.
- This presents a problem:
 - Although m>n, the number of keys we are storing, it is far smaller that the number of possible keys.
 - There will always be circumstances where $key_1 \neq key_2$ but $h(key_1) = h(key_2)$.
 - This leads to a collision:
 - Two different keys with the same hash value;
 - Two different keys with the same location in the table.
 - How do we fix this?

Hashing with Chaining

m number of slots in T

- We call *h* s hash function
- $h: U \to \{0,1,\ldots,m-1\}$, so that h(k) is a legal slot number in T.
- We say that k hashes to slot h(k).
- Collision
 - When two or more keys hash to the same slot

Chaining

Uses a Linked List at each position in the Hash Table.

Chaining

Insert with Chaining

- Apply hash function to get a position in the array.
- Insert key into the Linked List at this position in the array.

Insert with Chaining

```
module InsertChaining(item)
{
    posHash = hash(key of item)
    insert (hashTable[posHash], item);
}
```


Search with Chaining

- Apply hash function to get a position in the array.
- Search the Linked List at this position in the array.

Search with Chaining

```
/* module returns NULL if not found, or the address of the
   node if found */
module SearchChaining(item){
  posHash = hash(key of item)
  Node* found:
  found = searchList (hashTable[posHash], item);
  return found:
                          Aho
                      Standish
                                            Knuth
                    Sedgewick
```

Delete with Chaining

- Apply hash function to get a position in the array.
- Delete the node in the Linked List at this position in the array.

Delete with Chaining

```
/* module uses the Linked list delete function to delete an item
*inside that list, it does nothing if that item isn't there. */
module DeleteChaining(item){
   posHash = hash(key of item)
   deleteList (hashTable[posHash], item);
}
```


Advantages of Chaining

- Insertions and Deletions are easy and quick.
- Allows more records to be stored.
- Naturally resizable, allows a varying number of records to be stored.

Disadvantages of Chaining

- Uses more space.
- More complex to implement.
 - A linked list at every element in the array

Collision Frequency

- ▶ Birthdays or the von Mises paradox
 - There are 365 days in a normal year
 - □ Birthdays on the same day unlikely?
 - How many people do I need before "it's an even bet" (ie the probability is > 50%) that two have the same birthday?
 - View
 - o the days of the year as the slots in a hash table
 - the "birthday function" as mapping people to slots
 - Answering von Mises' question answers the question about the probability of collisions in a hash table

Distinct Birthdays

- Let Q(n) = probability that n people have distinct birthdays
- Q(1) = 1
- With two people, the 2nd has only 364 "free" birthdays $Q(2) = Q(1) * \frac{364}{365}$
- The 3rd has only 363, and so on:

$$Q(n) = Q(1) * \frac{364}{365} * \frac{363}{365} * ... * \frac{365-n+1}{365}$$

Coincident Birthdays

Probability of having two identical birthdays

$$P(n) = 1 - Q(n)$$

$$P(23) = 0.507$$

With 23 entries, table is only 23/365 = 6.3% full!

Hash Tables - Load factor

- Collisions are very probable!
- Table load factor

$$\alpha = \frac{n}{m}$$

n = number of items

m = number of slots

must be kept low

- Detailed analyses of the average chain length (or number of comparisons/search) are available
- Separate chaining
 - linked lists attached to each slot

gives best performance

but uses more space!

Hash Tables - General Design

- Choose the table size
 - Large tables reduce the probability of collisions!
 - Table size, m
 - n items
 - Collision probability $\alpha = n/m$
- Choose a table organisation
 - Does the collection keep growing?
 - Linked lists (..... but consider a tree!)
 - Size relatively static?
 - Overflow area or
 - Re-hash

Hash Tables - General Design

- Choose a hash function
 - A simple (and fast) one may well be fine ...
 - Read your text for some ideas!
- Check the hash function against your data
 - Fixed data
 - \circ Try various h, m until the maximum collision chain is acceptable
 - □ Known performance
 - Changing data
 - Choose some representative data
 - \circ Try various h, m until collision chain is OK
 - Usually predictable performance

Hashing Functions

- The following are simple approaches which often work reasonably well:
- The Division method:
 - $h(k) = k \mod m$
 - Good if m is prime and is not close to a power of 2 or a power of 10.
- The Multiplication method:
 - $h(k) = \lfloor m (kA \bmod 1) \rfloor$
 - A is a constant in the range 0 < A < 1
 - $kA \mod 1$ means the fractional part of kA, that is $kA \lfloor kA \rfloor$.
 - $m = 2^p$ for some integer p.

Hashing Functions...

- Universal Hashing:
 - $h(k) = (a \times k + b \mod p) \mod m$
 - p is a prime number, bigger than $\left|U\right|$, the number of all possible keys.
 - Yes, p is BIG!
 - a and b are random integers between 0 and p-1.
- This is an excellent hash function.
- ▶ The worst-case probability of two keys colliding is 1/m.
- This means that, even if a and b are poorly chosen, this hash function will always work well.
- The problems of finding a large prime and performing arithmetic on big integers will be left for now.

22/08/2024

Worst Case

- What if h(key) has the same value for all the keys in our set?
- Our hash table has just become a complicated way of storing a single linked list!
- Access to a given key: value pair is now O(n).
- So, should we give up on hashing?
 - No!
 - In practice this does not happen.

22/08/2024

Best Possible Layout

- All slots have the same number of keys
- Each chain has the same length $\frac{n}{m}$ (load factor)
- ▶ Operations on a dictionary are O(1 + n/m),

Picking up m

- lacktriangleright m is the number of slots in the dictionary, to be $\Theta(n)$, where n is the number of entries in the dictionary.
- Propertions on a dictionary are O(1 + n/m), so if n grows too large we get less and less efficient.
- The problem we face is that, often, we do not know how many records n we will need to store.
 - If m is too small, the dictionary becomes inefficient.
 - If m is too large, we waste storage (memory or disc).
- \blacktriangleright How do we get the right value for m?
- Let's say we want $m \geq n$ at all times.

22/08/2024

Lucky Guess?

- If we have no knowledge of the ultimate size of n, what can we do?
 - Guess.
 - Pick m based on an optimistic assessment of the likely size of n.
 - No idea?
 - Pick your favourite small number.
 - \circ m = 8, say.
 - Now what?
 - \circ What if n turns out to be greater than 8?
 - Make m bigger.
 - o How much bigger?

Changing m

- \blacktriangleright When n becomes large, change m
- \blacktriangleright If we change m we have problems:
 - Our hash array is too small.
 - Our hashed keys will be wrong.
 - \circ They depend on the value of m.
- Does this mean that we have to recreate the hash table from scratch?
 - It sure does.
 - Isn't this a BAD THING™?

Growing(Resizing) a Hash Table

- \blacktriangleright What exactly has to happen if we change m?
 - Let's say the new table size is m'.
- \blacktriangleright We now need a new array with m' elements.
 - We also need to move all of the existing elements from the old table to the new one.
- \blacktriangleright Build a new hash function h'.
 - Remember, the hash function depends on m'.
- Insert the existing data into the new table.
 - This involves re-hashing every key.
- So, the first question is:
 - How much do we grow m?

22/08/2024

$$m' = ?$$

- Let's look at some options:
 - m' = m + 1.
 - What is the cost of n insertions?
 - \circ $\Theta(1)$ for the first m insertions.
 - \circ $\Theta(m')$ for each insertion after that.
 - Overall $\Theta(n^2)$

22/08/2024

m' = ?

- m' = 2m
 - $\Theta(1)$ for the first m insertions.
 - $\Theta(m)$ for the next insertion.
 - $\Theta(1)$ for the next m-1 insertions.
 - $\Theta(2m)$ for the next insertion.
 - $\Theta(1)$ for the next 2m-1 insertions.
- Overall $\Theta(n + (n/2) + (n/4) + \cdots) = \Theta(2n) = \Theta(n)$
- The cost of expanding the table gets spread over the extra elements we are making room for.
- This is known as Amortized cost.
- Note: an amortized cost of $\Theta(1)$ per operation does not mean that every operation has this cost.
 - Just that this is the average cost per operation.

Amortized Cost

- We say an operation has a cost of "T(k) Amortized" if k operations take a total of $k \times T(k)$ time.
- Table doubling takes $\Theta(n)$ operations for n insertions so the amortized cost is $\Theta(1)$.
- ightharpoonup This is, actually, a GOOD THINGTM.
- Note: we can use table doubling to implement any solution where we do not know the size of the data structure in advance and it grows in a "well behaved" way.
- Table doubling minimizes the cost associated with dynamic data structures.

Deletions

- What about deletions?
 - Each deletion is still $\Theta(1)$.
 - They simply increase the number of operations (insertions and deletions) we can perform between doublings.
- What if it's all deletions?
 - In this case the table becomes progressively less and less full.
 - Solution: Shrink the table.
- How, exactly?

Shrinking a Hash Table

- What should our strategy for reducing the size of the table be?
- How about "if n < m/2 make m' = m/2"?
- What if the next operation is an insertion?
 - Double the table size!
 - Then a deletion?
 - Halve the table!
 - Insertion?
 - Double...
- We now have $\Theta(n)$ operations for each change in the data.
- Instead use "if n < m/4 make m' = m/2".

Hashing With Chaining Considered Bad

- There is still one small issue with this method.
 - We have a hybrid data structure—an array of linked lists.
- A second approach uses just a simple array.
- Clearly, we still have a potential problem with collision
 - two keys which hash to the same value.
- We resolve this with a technique known as Open Addressing.

Open Addressing

- An Alternative to Chaining
- We wish to hash n items into an array with m slots.
- We may only store one item per slot.
- ightharpoonup Clearly, $m \geq n$.
- We insert an item into the table using an iterative technique known as probing.

Probing

This process works as follows: (for insertion)

```
Set hash function to starting value, h0 repeat

calculate probe = hash(key)

if table(probe) contains data then

go to the next hash function

else

store the item in table(probe)

fi

until we have stored the item
```

This means we must have a sequence of hash functions, h0, h1, h2 ...

... or a hash function which produces a sequence of values.

The Hash Function

- Our new hash function requires two arguments:
 - The key;
 - The iteration count.
- ightharpoonup Thus: probe = OpenHash(key, count)
- Here:
 - key is a valid element of U, the universe of keys;
 - count is a non-negative integer.
 - As usual, $0 \leq probe < m-1$.

The Hash Function...

- In addition, we want our hash function to have the following property:
- \blacktriangleright For any arbitrary key k the sequence of m probes:
 - h(k,0), h(k,1), h(k,2), ..., h(k,m-1);
- Must be a permutation of the integers:
 - 0, 1, 2, ..., m 1.
- This property guarantees that we must eventually find a vacant slot to insert the item into.
- Clearly, the sequence of probes must be different for different keys.
- We can see this with an example.

Example: Insertion with Open Addressing

Consider the following table:

THE PERSON	k	h(0,k)	h(1,k)	h(2,k)	h(3,k)	h(4,k)	h(5,k)	h(6,k)	h(7,k)	h(8,k)	h(9,k)
MUSSE	899	9	8	5	6	0	7	8	2	4	1
1000000	950	5	7	4	9	2	3	1	6	8	0
STATE OF THE PERSON NAMED IN	12	3	8	7	2	5	9	1	6	0	4
	367	7	1	2	3	4	5	6	8	9	0
	359	2	1	9	5	6	7	3	8	0	4
	980	4	7	1	8	9	3	0	5	2	6
1	229	0	8	2	7	1	6	3	9	4	5
AU .	598	8	6	3	5	0	7	9	1	4	2
N 1986	838	6	2	6	7	1	3	8	2	0	2
	549	9	8	4	6	7	5	0	1	2	3

Let us insert the keys into our hash table in order

Example: Insertion with Open Addressing...

	k	h(0,k)	h(1,k)	h(2,k)	h(3,k)	h(4,k)	h(5,k)	h(6,k)	h(7,k)	h(8,k)	h(9,k)
	899	9	8	5	6	0	7	8	2	4	1
	950	5	7	4	9	2	3	1	6	8	0
	12	3	8	7	2	5	9	1	6	0	4
\longrightarrow	367	7	1	2	3	4	5	6	8	9	0
\rightarrow	359	2	1	9	5	6	7	3	8	0	4
	980	3	7	1	8	9	4	0	5	2	6
\longrightarrow	229	0	8	2	7	1	6	3	9	4	5
\longrightarrow	598	8	6	3	5	0	7	9	1	4	2
	838	6	2	4	7	1	3	8	2	0	2
	549	9	8	4	6	7	5	0	1	2	3

0	1	2	3	4	5	6	7	8	9
229	980	359	12	549	950	838	367	598	899

Search with Open Addressing

The procedure used to search using open addressing is similar to insertion.

```
count=0
repeat
   probe=hash(key, count)
   if table(probe) == key then
        return item
   else
        count++
   fi
until table(probe) == empty or count == n
return not found
```

▶ This is pretty straightforward.

Deletion with Open Addressing

When we get to deletion we have a new problem.

```
count=0
repeat
   probe=hash(key, count)
   if table(probe) == key then
       delete item
       return
   else
       count++
   fi
until table(probe) == empty or count == n
return not found
```

How, exactly, do we delete the item?

Deletion...

- If we simply replace the item with our empty value we will have an issue:
 - What if the key we next search for is after the probe corresponding to the deleted key's location.
 - If, in our previous example, we delete 899, where h(899,0)=9, and then search for 549, where the sequence of hash values are 9, 8, 4...
 - We test D(9) and discover it has the value empty.
 - We conclude that 549 is not in the table.
 - Wrong! It is in D(4).
- > To fix this we need a second special value, deleted.

0	1	2	3	4	5	6	7	8	9
229	980	359	12	549	950	838	367	598	899

Deletion...

Our deletion process becomes:

```
count=0
repeat
   probe=hash(key, count)
   if table(probe) == key then
        table(probe) == deleted
        return
   else
        count++
   fi
until table(probe) == empty or count == n
return not found
```

> This fixes search but introduces a problem with insertion.

Insertion Revisited

We note that we can insert a new item into the dictionary in two circumstances:

```
D(i) == empty
D(i) == deleted
```

We modify our insert process as follows:

```
count=0
repeat
    probe=hash(key, count)
    if table(probe) == empty or table(probe) == deleted then
        store item in table(probe)
        return
    else
        count++
    fi
until count == n
return no room
```

Now we can insert into the first vacant slot, empty or deleted, that we find in the table.

Search Revisited

- Because empty and deleted are different, we do not have to modify our search procedure.
- The search will skip over deleted records because they do not match the key but will still terminate when it reaches an empty record.

Open Addressing Hash Functions

- One question remains.
- Can we find a function h(k, i) which is:
 - Easy to compute;
 - Produces a permutation of $\{0, 1, ..., m-1\}$ as i varies over $\{0, 1, ..., m-1\}$?

Let us examine two possible strategies.

Strategy I: Linear Probing

- In this approach we simply take a standard hash function, h(k) and compute the probe p(k,i) as follows:
 - $p(k,i) = (h(k) + i) \bmod m$
- In other words, we simply look at sequential entries in the dictionary starting at the entry corresponding to h(k).
 - This is certainly easy to compute.
 - It does satisfy the permutation.
- There are $\Theta(m)$ distinct probing sequences

Strategy I; Linear Probing

- Is it any good?
 - No! It produces sets of consecutive occupied slots.
 - Primary Clustering tendency to create long runs of filled slots near the hash position of keys
- The bigger the cluster, the more likely it is to be hit..
 - ...and it gets even bigger!

Strategy II: Double Hashing

- In this strategy we have two standard hash functions, $h_1(k)$ and $h_2(k)$.
- We compute p(k), our probe value as follows:
 - $p(k,i) = (h1(k) + i \times h2(k)) \mod m.$
- Do we still satisfy our requirements?
 - This is still easy to compute.
 - Do we always get a permutation?
 - No.
 - \circ Unless we are clever in how we define h_2 .

Choose h_2

- We need $h_2(k)$ to be relatively prime to m.
 - i.e. $h_2(k)$ and m must have no common factors except 1.
- This is easy in many cases.
- If we select m to be a power of 2; say $m=2^r$ then all we need is for $h_2(k)$ to always be an odd number.
- For example, if we have a standard hash function h'(k), we can create $h_2(k)$ as follows:
 - $h_2(k) = (2h'(k) + 1) \mod m$
- There are $\Theta(m^2)$ probing sequences
 - Each possible $(h_1(k), h_2(k))$ pair yields a distinct probe sequence

Table Doubling

- Once again, we need to expand the dictionary whenever it becomes too full.
- What does "too full" mean in this case?
- We define the occupancy of a table, α , to be the ratio of n, the number of entries to m, the number of slots.
 - $\alpha = n/m$
 - $0 < \alpha < 1$
- We can show that the average cost of an operation on a table with occupancy α is in $\Theta(1/(1-\alpha))$.
- In practice we want this value to be reasonably close to 1 so we double as soon as α exceeds 0.5 or thereabouts.
- ▶ This keeps operations between $\Theta(1)$ and $\Theta(2)$.

An Important Note on α

- When calculating the occupancy value, α , we must count slots with a value of deleted as containing data.
- This is because some operations, notably searching, treat deleted records as still containing data.
- Slots containing deleted may be removed in two ways:
 - Being overwritten with valid data as a result of an insert operation;
 - Being cleaned up when the table is expanded.
- If we did not count deleted records in calculating α we could have a notionally empty table in which every slot was deleted.
- Search (and delete) in this table would be $\Theta(m)$, not $\Theta(1)$, as we might expect.

Chaining vs. Open Addressing

- So, which is the better scheme?
- Open Addressing:
 - Uses less memory—no need for pointers;
 - Is faster—provided α is kept below 0.5;
 - Is a little harder to implement and understand.
 - Is clean—one data structure, the array.

Chaining:

- Uses more memory;
- Is faster—if we are not careful with open addressing.
- Is a little easier to implement and understand.
- Is a bit messy—arrays of linked lists.

Related References

- Introduction to the Design and Analysis of Algorithms, A. Levitin, 3rd Ed., Pearson 2011.
 - Chapters 7.3
- Introduction to Algorithms, T. H. Cormen, 3rd Ed, MIT Press 2009.
 - Chapters 11