

CAS Datenanalyse Modul Regressionsanalyse

Kapitel 2: Variablenauswahl

Prof. Dr. Raúl Gimeno FRM,CAIA, PRM

Inhalt

- Auslassen relevanter Variablen
- ✓ Verwendung irrelevanter Variablen
- Adjustiertes Bestimmtheitsmass

Variablenauswahl

Zusammenhang zwischen Lohn und seinen Bestimmungsgrössen. Drei konkurrierende Regressionsmodelle:

Modell 1: $y_i = \beta_1 + \beta_2 x_{2i} + u'_i$

Modell 2: $y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i$ (korrektes Modell)

Modell 3: $y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + u_i^*$

 y_i : Höhe des Lohnes x_2 : Ausbildungszeit

 x_3 : Alter des Mitarbeiters x_4 : Firmenzugehörigkeit

Berner Fachhochschule | CAS Datenanalyse | Regressionsanalyse | Prof. Raul Gimeno

3

Schätzergebnisse

Mod	Variable	Koeff	se()	t-Wert	p-Wert
1	Konstante	1354.7	94.2	14.377	0.001
	Ausbildung	89.3	19.8	4.505	0.001
2	Konstante	1027.8	164.5	6.249	0.001
	Ausbildung	62.6	21.2	2.953	0.009
	Alter	10.6	4.6	2.317	0.033
3	Konstante	1000.5	225.7	4.432	0.001
	Ausbildung	62.4	21.8	2.859	0.011
	Alter	12.4	10.7	1.159	0.263
	Firmenzuge.	-2.6	14.3	-0.183	0.857

- Parameter β_2 (Ausbildung) und β_3 (Alter): positives Vorzeichen
- Parameter β_4 (Firmenzugehörigkeit): negatives Vorzeichen
- H_0 : $\beta_4 = 0$ kann auf Signifikanzniveau von 5% nicht abgelehnt werden.

Bestimmtheitsmass und Venn-Diagramme

Einfachregression (1)

$y_t = \beta_1 + \beta_2 x_{2t} + u_t'$

A a D S_W

$$R^2 = \frac{b}{a+b}$$

Zweifachregression (2)

 $y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + u_t$

- Oberer Kreis: Variation der endogenen Variable $\rightarrow S_{yy} = \sum_{i=1}^{N} (y_i \overline{y})^2$ • Untere Kreise: Variation der exogenen Variablen
- Überschneidungsfläche: Entsprechende Variablen korrelieren miteinander
- Je höher die Korrelation zwischen zwei Variablen, desto grösser die Überschneidungsfläche.
- S_{yy} : Variation von y, die auf die exogenen Variablen zurückzuführen ist
 - (1) Fläche b
- (2) Fläche B+C+D
- See: unerklärte Variation (Störeinflüsse)
 - (1) Fläche a
- (2) Fläche A

Berner Fachhochschule | CAS Datenanalyse | Regressionsanalyse | Prof. Raul Gimeno

5

Wirkungszusammenhang

Regressions modell: $y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + u_t$

B: Variable Ausbildung zuordnen

Ausbildungszeit S₂₂

E F G Alter
x₃

- Einflussfläche C: keine eindeutige Zuordnung
- Falls vollständig dem Alter (x_3) zurechnen $\rightarrow b_3$ überschätzt
- Falls vollständig der Ausbildung (x_2) zurechnen $\rightarrow b_2$ überschätzt
- Modell 1: $y_i = \beta_1 + \beta_2 x_{2i} + u_i'$ berücksichtigt fälschlicherweise die relevante Variable x_3 Alter nicht \rightarrow Kreis S_{33} wird nicht wahrgenommen \rightarrow b_2 überschätzt

Auswirkungen auf den Erwartungswert der Störgrösse

- Modell 1: $y_i = \beta_i + \beta_2 x_{2i} + u'_i$ unvollständiges Modell
- Ausgelassene relevante Variable: Alter (x3)
- Störgrösse u'→Einfluss der wahren Störgrösse u
 Einfluss der ausgelassenen Variable x₃

$$\mathbf{u}_{i}' = \beta_{3}\mathbf{x}_{3i} + \mathbf{u}_{i}$$
 $\mathbf{E}(\mathbf{u}_{i}') = \mathbf{E}(\beta_{3}\mathbf{x}_{3i} + \mathbf{u}_{i}) = \beta_{3}\mathbf{x}_{3i} + 0 \neq 0$

- Annahme A5 verletzt: E(u) = 0
- Konsequenz für Punktschätzer: $b_2' = b_2 + b_3 \frac{S_{23}}{S_{22}}$
- b₂ und b₃: Punktschätzer auf Basis des korrekten Modells 2

$$E(b_2') = E\left(b_2 + b_3 \frac{S_{23}}{S_{22}}\right) = \beta_2 + \beta_3 \frac{S_{23}}{S_{22}}$$

• Schätzer b'₂ ist verzerrt \rightarrow Verzerrungsterm = $\beta_3(S_{23}/S_{22})$

Berner Fachhochschule | CAS Datenanalyse | Regressionsanalyse | Prof. Raul Gimeno

7

Scheinbarer Einfluss

- Regression x_3 Alter auf exogene Variable x_2 : $x_3 = b_1 + b_2 x_2 + u$
- Einfachregression: Schätzer $b_2 = S_{23}/S_{22}$
- Quotient S23/S22 quantifiziert Einfluss der Ausbildung auf das Alter
- Scheinbarer Einfluss der Ausbildung auf Höhe des Lohnes (keine Kausalität)
- · Variablen Ausbildung und Alter sind positiv korreliert
- $S_{23} > 0 \rightarrow S_{23}/S_{22} > 0$
- Verzerrungsterm: $\beta_3 \frac{S_{23}}{S_{22}}$ indirekter scheinbarer Einfluss der Ausbildung auf die Lohnhöhe
- Lohnbeispiel: $\frac{S_{23}}{S_{22}} = \frac{448.9}{178.2} = 2.52$
- Modelle 1: $b_2' = b_2 + b_3 \frac{S_{23}}{S_{22}} = 62.6 + 10.6 \cdot 2.52 = 89.3$

Bestimmtheitsmass und Venn-Diagramme

Einfachregression (1)

Zweifachregression (2)

Korrektes Modell 2:

- Summe der Residuenquadrate: $S_{ee} = \sum_{i=1}^{N} (e_i \overline{e})^2 = \sum_{i=1}^{N} e_i^2 = 957'698$
- Unverzerrte geschätzte Störgrössenvarianz: $s_e^2 = \frac{S_{ee}}{N-3} = 56'335$

Unvollständiges Modell 1:

Summe der Residuenquadrate: $S_{e'e'} = \sum_{i=1}^{N} (e'_i - \overline{e}')^2 = \sum_{i=1}^{N} e'_i^2 = 1'260'028$

Unverzerrte geschätzte Störgrössenvarianz: $s_{e'}^2 = \frac{S_{e'e'}}{N-2} = 70'001$

Berner Fachhochschule | CAS Datenanalyse | Regressionsanalyse | Prof. Raul Gimeno

9

Auswirkungen

Konsequenzen für Intervallschätzer des unvollständigen Modells 1

- Intervallschätzer für b_2 (Ausbildung): $\left[b_2' t_{c,\alpha/2,df} \cdot se(b_2'), b_2' + t_{c,\alpha/2,df} \cdot se(b_2')\right]$ Verzerrtes Intervall:
- Zentrum \mathbf{b}_2' liegt bei wiederholten Stichproben im Mittel nicht auf den wahren Wert b₂.
- Zu grosse Breite wegen se(b'₂)

Das Auslassen relevanter Variablen führt zu:

- verzerrten Punktschätzern
- verzerrten Intervallschätzern
- wertlosen Hypothesentests

Verwendung irrelevanter Variablen

• Wenn die Variable x_4 (Firmenzugehörigkeit) irrelevant ist, dann $\beta_4 = 0$

$$u_i^* = u_i - \beta_4 x_{4i}$$

$$E(u_i^*) = E(u_i) = 0$$

Konsequenzen für die Punktschätzer

- Unverzerrte Schätzer: $E(\beta_i^*) = \beta_i$ i = 1, 2, 3, 4
- Höhere Varianz der Schätzer: β_i^* i = 1,2,3,4
- Nicht effiziente Schätzer

Die Aufnahme irrelevanter Variablen führt zu:

- · unverzerrten, aber ineffizienten Punktschätzern
- · unverzerrten, aber ineffizienten Intervallschätzern
- verwendbaren, aber unscharfen Hypothesentests

Die Konsequenzen sind weit weniger gravierend als beim Auslassen relevanter Variablen.

Berner Fachhochschule | CAS Datenanalyse | Regressionsanalyse | Prof. Raul Gimeno

11

Bestimmtheitsmass

Bestimmtheitsmass:
$$R^2 = \frac{ESS}{TSS} = 1 - \frac{\sum e_i^2}{\sum (y_i - \overline{y})^2} = 1 - \frac{S_{ee}}{\sum (y_i - \overline{y})^2} = 1 - \frac{S_{ee}}{S_{yy}}$$

Sinnvolles Kriterium wenn drei Bedingungen erfüllt sind:

- 1. Die endogene Variable der Modelle ist identisch
- 2. Die Anzahl der exogenen Variablen ist identisch
- 3. Die Modelle besitzen einen Niveauparameter (Interzept)

Lohnbeispiel: Bedingung 2 nicht erfüllt $\rightarrow R^2$ nicht sinnvoll als Kriterium

 R^2 erhöht sich durch zusätzliche Parameter \rightarrow jede zusätzlich aufgenommene Variable verringert die Summe der Residuenquadrate S_{ee} , oftmals nur sehr geringfügig.

Modell	R ²	se(b ₁)	se(b ₂)	se(b ₃)	se(b ₄)
1	52.99	8.877	392.824		
2	64.27	164.473	21.19	4.576	
3	64.35	225.72	21.83	10.65	14.29

Adjustiertes Bestimmtheitsmass

Erweiterung eines Modells um einen Regressor: R² wird grösser Zunahme von R² bedeutet nicht notwendigerweise, dass der neue Regressor zur Erklärung von y beiträgt!

Adjustiertes Bestimmtheitsmass:
$$\overline{R}^2 = 1 - \frac{N-1}{N-k} \frac{S_{ee}}{S_{yy}}$$

Das Hinzufügen eines Regressors verkleinert den Quotienten RSS/TSS, vergrössert aber den Faktor (N-1)/(N-k). Mit wachsendem k wird der Faktor (N-1)/(N-k) grösser und kompensiert dafür, dass RSS tendenziell kleiner wird.

 \overline{R}^2 : Dient zum Vergleichen von konkurrierenden Regressionsmodellen mit unterschiedlicher Anzahl von exogenen Variablen

Zusammenhang: $\overline{R}^2 < R^2$

Bei grossem N ist (N-1)/(N-k) ≈ 1 und $R^2 \approx \overline{R}^2$

Berner Fachhochschule | CAS Datenanalyse | Regressionsanalyse | Prof. Raul Gimeno

13

Adjustiertes Bestimmtheitsmass

Adjustiertes Bestimmtheitsmass:
$$\overline{R}^2 = 1 - \frac{N-1}{N-k} \frac{S_{ee}}{S_{yy}}$$

 R^2 erhöht sich durch zusätzliche Parameter, aber $\overline{R}{}^2$ nicht

Modell	K	N-K	(N-1)/(N-K)	R ² (%)	R̄ ² (%)
1	2	18	1.055	52.99	50.38
2	3	17	1.117	64.27	60.06
3	4	16	1.187	64.35	57.66

 $R^2 > \overline{R}^2$

Zusammenhang:
$$\overline{R}^2 = 1 - (1 - R^2) \frac{N-1}{N-K}$$

Modell 2:
$$\overline{R}^2 = 1 - (1 - 0.6427) \frac{19}{17} = 0.6$$

Berner Fachhochschule | CAS Datenanalyse | Regressionsanalyse | Prof. Raul Gimeno

14