BASIC RESULTS IN THE DEFORMATION THEORY OF GALOIS REPRESENTATIONS

DANIEL MILLER

Contents

1.	Group cohomology	1
2.	Galois representations associated to modular forms	2
3.	Specific representations	2
4.	Modular representations	2
5.	Deformation problems	3
6.	Commutative algebra	3
References		4

This is a review of useful results in the study of deformations of (mostly two-dimensional) representations of $\pi_1(\mathbf{Q}) = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. References to the literature will be given whenever possible.

1. Group Cohomology

1.1. **Inflation-restriction.** This is from [NSW08, 1.6.7]. Let $H \subset G$ be a closed normal subgroup of a profinite group. If A is a G-module, then there is a canonical exact sequence

$$0 \longrightarrow \operatorname{H}^1(G/H,A^H) \stackrel{\operatorname{inf}}{-\!\!\!-\!\!\!-\!\!\!-} \operatorname{H}^1(G,A) \stackrel{\operatorname{res}}{-\!\!\!\!-\!\!\!-\!\!\!-} \operatorname{H}^1(H,A)^{G/H}.$$

1.2. **Duality theorems for Galois cohomology.** Let l be a prime, X a connected noetherian scheme on which l is invertible. Let $\mathbf{Z}_l = \varprojlim \boldsymbol{\mu}_{l^n}$, considered as a smooth l-adic sheaf on X. For any l-adic sheaf F on X, put $F(n) = F \otimes_{\mathbf{Z}_l} \mathbf{Z}_l(1)^{\otimes n}$.

We call a p-adic field a nonarchimedean local field of characteristic zero with residue characteristic p.

Theorem 1.3 (Tate). Let k be a p-adic local field. Let M be a finite $\pi_1(k)$ -module. Then the cup-product induces an isomorphism

$$H^{\bullet}(k, M^{\vee}(1)) = H^{2-\bullet}(k, M)^{\vee}.$$

Let $\pi = \pi_1(k)$, and let M be a π -module. Suppose we want to compute $h^{\bullet}(M)$. It should be possible to compute $h^0(M)$ and $h^2(M) = h^0(M^{\vee}(1))$. We then use the Euler-Poincaré characteristic formula of Tate [NSW08, 7.3.1] to do this.

1.4. Tate-Shafarevich groups and sets of places. Let F be a number field, S a finite set of places of F. If M is a $G_{F,S}$ -module, put

$$\mathrm{III}^1_S(M) = \ker \left(\mathrm{H}^1(G_{F,S}, M) \to \bigoplus_{v \in S} \mathrm{H}^1(G_v, M) \right).$$

If $S \subset T$, then one can naturally identify $\mathrm{III}_S^1(M)$ with a subgroup of $\mathrm{III}_T^1(M)$. Indeed, there is a natural injection (inflation) $\mathrm{H}^1(G_{F,S},M) \to \mathrm{H}^1(G_{F,T},M)$ coming from the projection $G_{F,T} \twoheadrightarrow G_{F,S}$. The five-term inflation-restriction exact sequence [NSW08, 1.6.7] tells us that the image of the inflation map is the kernel of the restriction map $\mathrm{H}^1(G_{F,T},M) \to \mathrm{H}^1(H,M)$, where $H = \ker(G_{F,T} \to G_{F,S})$. The point is that $H = \langle I_v : v \in T \setminus S \rangle$. So if $c \in \mathrm{III}_T(M)$, then $c|_v = 0$ for all $v \in T \setminus S$, so certainly c is induced from an element of $\mathrm{H}^1(G_{F,S},M)$. What remains is the easy verification of $c \in \mathrm{III}_S(M)$. To be precise,

 $\coprod_{T}^{1}(M) \subset \operatorname{H}^{1}(G_{F,T}, M)$ is a subset of the image of $\coprod_{S}^{1}(M) \subset \operatorname{H}^{1}(G_{F,S}, M)$ under the (injective) inflation map.

2. Galois representations associated to modular forms

Let $N \ge 1$ be an integer and $\varepsilon : (\mathbf{Z}/N)^{\times} \to S^1$ a character. We write $S_0(N,\varepsilon)$ for the space of cusp forms for $\Gamma_1(N)$ with nebentypus ε . We call a form $f = \sum_{n \ge 0} a_n q^n$ in $S_0(N,\varepsilon)$ normalized if $a_0 = 1$.

Theorem 2.1. Let $N \ge 3$ and $k \ge 1$ be integers, l an odd prime. Let $f_0 \in S_0(N, \varepsilon)$ be a normalized eigenfunction for the Hecke operators $\{T_p : p \nmid N\}$. Let $K = K_f = \mathbf{Q}(a_n : n \ge 1)$. Then there is a continuous irreducible representation $\rho_{f,l} : \pi_1\left(\mathbf{Z}\begin{bmatrix} 1 \\ 1 \\ N \end{bmatrix}\right) \to \operatorname{GL}_2(K_{f,l})$ such that for each prime $p \nmid lN$,

$$\operatorname{tr} \rho_{f,l}(\operatorname{fr}_p) = a_p$$

 $\det \rho_{f,l}(\operatorname{fr}_p) = \varepsilon(p)p^{k-1}.$

This representation is unique up to isomorphism.

Proof. Do this!

3. Specific representations

Nice fact if ϕ , ψ are characters:

$$ad(\phi \oplus \psi) = \phi^{-1}\psi \oplus \phi\psi^{-1} \oplus 2.$$

In particular,

$$h^0(\operatorname{ad}(\phi \oplus 1)) = 2 + 2h^0(\phi)$$

3.1. Peu ramifiée and très ramifée extensions. The original source is [Ser87, 2.4.6]. Let $\bar{\rho}: G_{\mathbf{Q}_p} \to GL_2(\mathbf{F}_q)$ be an ordinary representation, i.e. $\bar{\rho}$ is the extension of an unramified character by an unramified twist of the cyclotomic character. Let $\mathbf{Q}_p^{\mathrm{ur}}(\bar{\rho})$ be the extension of $\mathbf{Q}_p^{\mathrm{ur}}$ with Galois group cut out by $\bar{\rho}(I)$, where $I \subset G_{\mathbf{Q}_p}$ is the inertia group. It has a subextension $\mathbf{Q}_p^{\mathrm{ur}}(\bar{\rho}|_P)$, where $P \subset I$ is wild inertia. Kummer theory tells us that

$$\mathbf{Q}_p^{\mathrm{ur}}(\bar{\rho}) = \mathbf{Q}_p^{\mathrm{ur}}(\bar{\rho}|_P)(\sqrt[p]{x_1}, \dots, \sqrt[p]{x_r}).$$

We say that $\bar{\rho}$ is peu ramifiée if $v_p(x_i) \equiv 0 \pmod{p}$ for each i, and $\bar{\rho}$ is très ramifiée otherwise.

In [Edi92, 8.2], we have an alternative definition. Consider the extension $\bar{\rho}$ as a finite étale group scheme V of \mathbf{F}_q -vector spaces over \mathbf{Q}_p . Then $\bar{\rho}$ is peu ramifiée if V can be extended to a finite flat group scheme over \mathbf{Z}_p , and très ramifiée otherwise.

3.2. Fundamental characters. The reference is [Tat97, 4.4]. Let $(\mathcal{O}, \mathfrak{m}, k)$ be a complete mixed-characteristic discrete valuation ring with perfect residue field. Then the projection $\mathcal{O} \to k$ admits a multiplicative section $\omega: k \to \mathcal{O}$. If k_0 is a field, then the induced map $k_0 \to \mathcal{O}$ coming from any embedding $k_0 \hookrightarrow k$ is called a fundamental character. The main example is when \mathcal{O} is the ring of integers in a finite extension of \mathbf{Q}_p and $k = \mathbf{F}_{p^f}$, in which case the fundamental characters $k^\times \to \mathcal{O}^\times$ form a \mathbf{Z}/f -torsor under $r \cdot \chi = \chi^{p^r}$. A better reference is [Ser72, 1.7].

4. Modular representations

4.1. **Hecke operators.** A good (concise) summary of the diamond operators, Atkin-Lehner involution, and Hecke operators is [MW84, ch.2 §5].

4.2. New parts of Jacobians. The following is from [Maz78, §2]. For $n \ge 1$, let $J_0(n)$ be the jacobian of the modular curve $X_0(n)$. If n = n'd, there is a "degeneracy map" $B_d: X_0(n) \to X_0(n')$ that sends a pair (E,C) consisting of an elliptic curve and $C \subset E[n]$ of order n to the pair (E/C[d],(C/C[d])[n']). There are induced maps $B_d^*: J_0(n') \to J_0(n)$. Let $J_0(n)_{\text{old}} \subset J_0(n)$ be the abelian subvariety generated by the images of the B_d for n' < n, and define $J_0(n)^{\text{new}}$ by the short exact sequence

$$0 \to J_0(n)_{\text{old}} \to J_0(n) \to J_0(n)^{\text{new}} \to 0.$$

By general theory, there is an isogeny $J_0(n) \sim J_0(n)_{\rm old} \times J_0(n)^{\rm new}$, thus an isomorphism of Galois representations

$$V_{\ell}J_0(n) \simeq V_{\ell}J_0(n)_{\text{old}} \oplus V_{\ell}J_0(n)^{\text{new}}.$$

There is an induced action of the Hecke algebra on $J_0(n)^{\text{new}}$.

4.3. Eisenstein ideal. This definition is from [Maz77, II.9]. Let $\mathbf{T} = \mathbf{T}_n$ be the Hecke algebra for $\Gamma_0(n)$. So T is generated as a Z-algebra by the Hecke operators T_l , $l \nmid n$. The Eisenstein ideal $\mathfrak{I} \subset \mathbf{T}$ is generated by the $T_l - (l+1)$ for $l \nmid n$, and 1+w. So if $f \in S_k$ is an eigenform annihilated by \mathfrak{I} , one has $a_p(f) = p+1$. This means $\rho_{f,l}$ should look like $\kappa_l \oplus 1$, where κ is the cyclotomic character.

5. Deformation problems

Let \mathcal{O} be a complete dvr with residue field k. Our deformation problems will be covariant functors on the category $C_{\mathcal{O}}$ of "test objects." These are local artinian \mathcal{O} -algebras A such that $\mathcal{O} \to A$ induces an isomorphism $k \xrightarrow{\sim} A/\mathfrak{m}_A$.

5.1. Minimal deformations. Here we follow [Kha03, §2.1]. Let k be a finite field of characteristic p and $\bar{\rho}: G_{\mathbf{Q},S} \to \mathrm{GL}_2(k)$ a continuous p-ordinary representation. One says a lift $\rho: G_{\mathbf{Q},S} \to \mathrm{GL}_2(A)$ is minimally ramified if for $v \in S \setminus p$,

$$\rho|_{I_v} \sim \begin{pmatrix} 1 & * \\ & 1 \end{pmatrix}.$$

(This doesn't seem to be the same as [KR03, p.180]. Find out what's wrong.)

5.2. New deformation rings. We follow [KR03, df.1]. Let $\bar{\rho}: G_{\mathbf{Q}} \to \mathrm{GL}_2(\mathbf{F}_q)$ be a continuous representation unramified outside S. Suppose $T \supset S$ is a finite set of primes such that $\bar{\rho}$ is nice for $T \setminus S$. Then $R_{\bar{\varrho}}^{T\text{-new}}$ represents minimally ramified deformations $\rho: G_{\mathbf{Q},S} \to \mathrm{GL}_2(A)$ such that for $v \in T \setminus S$, ρ_v is a twist of $\begin{pmatrix} \varepsilon & * \\ & 1 \end{pmatrix}$.

6. Commutative algebra

6.1. Weierstrass preparation theorem. This is from [Bou98, VII §3.8, pr.6]. Let \mathcal{O} be a complete discrete valuation ring with uniformizer π . Then any $f \in \mathcal{O}[X]$ can be written as

$$f = u\pi^m (X^n + a_{n-1}X^{n-1} + \dots + a_0),$$

where $u \in \mathcal{O}[X]^{\times}$ and the $a_i \in \langle \pi \rangle$. In particular, the only way the quotient $\mathcal{O}[X]/f$ can be flat over \mathcal{O} is for m = 0, in which case the quotient has finite \mathcal{O} -rank.

6.2. Specific presentations via small extensions. Fix a finite field k of characteristic p. Recall that a coefficient ring over k is a complete local noetherian W(k)-algebra with residue field k. If R is such a ring, write $\mathfrak{t}_R = \hom(\mathfrak{m}_R/\mathfrak{m}_R^2, k)$; this is a k-vector space. Recall that a small extension of coefficient rings over k is a surjection $R_1 \to R_0$ such that the kernel I is principle and annihilated by \mathfrak{m}_1 .

We are interested in measuring the complexity of presentations of coefficient rings. Write W(k)[x] $W(k)[x_1,\ldots,x_d]$. For a polynomial $f \in W(k)[x]$, put

$$v(f) = \min\{e : p^e \mid f\} + \sum_{i=1}^r \min\{n_i : x_i^{n_i} \mid f\}.$$

For a set $f = \{f_1, \ldots, f_r\} \subset W(k)[\![x]\!]$, the *complexity* of f, denoted v(f), is by definition $\min\{v(f_i)\}_{1 \leq i \leq r}$. Put $|n| = n_1 + \cdots + n_r$. Note that if $v(f) \geq e + |n|$, then we have a surjection

$$R(e, \boldsymbol{n}) = W(k)[\boldsymbol{x}]/\langle p^e, x_1^{n_1}, \dots, x_d^{n_d} \rangle \twoheadrightarrow R(\boldsymbol{f}) = W(k)[\boldsymbol{x}]/\langle f_1, \dots, f_r \rangle.$$

We introduce an operation $f\mapsto f^+$ on sets of relations. Put

$$\{f_1,\ldots,f_r\}^+=\{pf_1,x_1f_1,\ldots,x_df_1,\ldots,pf_r,x_1f_r,\ldots,x_df_r\}.$$

Note that $v(f^+) > v(f)$, and that the natural map $R(f^+) \twoheadrightarrow R(f)$ factors as

$$R(\mathbf{f}^{+}) \to R(pf_{1}, x_{1}f_{1}, \dots, x_{d}f_{1}, \dots, pf_{r-1}, x_{1}f_{r-1}, \dots, x_{d}f_{r-1}, f_{r})$$
 $\to R(pf_{1}, x_{1}f_{1}, \dots, x_{d}f_{1}, \dots, pf_{r-2}, x_{1}f_{r-2}, \dots, x_{d}f_{r-2}, f_{r-1}, f_{r})$
 $\to \cdots$
 $\to R(\mathbf{f}),$

in which each surjection is small.

Write $f^{+0} = \mathring{f}$, $f^{+(n+1)} = (f^{+n})^+$. Fix some f. Then for all (e, n) with $e + |n| \ge v(f)$, there exists some m such that $v(f^{+m}) \ge e + |n|$. This gives quotients

$$R(e, \boldsymbol{n}) \leftarrow R(\boldsymbol{f}^{+m}) \twoheadrightarrow R(\boldsymbol{f}).$$

The key facts here are:

- (1) The surjection $R(\mathbf{f}^{+m}) \rightarrow R(\mathbf{f})$ is a composite of small extensions.
- (2) Rings of the form R(e, n) surject onto any finite coefficient ring.

The latter fact holds because $W(k)[\![\boldsymbol{x}]\!] = \varprojlim R(e, \boldsymbol{n})$.

REFERENCES

- [Bou98] Nicolas Bourbaki. Commutative algebra. Chapters 1–7. Elements of Mathematics. Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English translation.
- [Edi92] Bas Edixhoven. The weight in Serre's conjectures on modular forms. Invent. Math., 109(3):563-594, 1992.
- [Kha03] Chandrashekhar Khare. On isomorphisms between deformation rings and Hecke rings. *Invent. Math.*, 154(2):199–222, 2003. With an appendix by Gebhard Böckle.
- [KR03] Chandrashekhar Khare and Ravi Ramakrishna. Finiteness of Selmer groups and deformation rings. Invent. Math., 154(1):179–198, 2003.
- [Maz77] Barry Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math., (47):33-186, 1977.
- [Maz78] Barry Mazur. Rational isogenies of prime degree. Invent. Math., 44(2):129-162, 1978. with an appendix by D. Goldfeld.
- [MW84] Barry Mazur and Andrew Wiles. Class fields of abelian extensions of Q. Invent. Math., 76(2):179–330, 1984.
- [NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, second edition, 2008.
- [Ser72] Jean-Pierre Serre. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. *Invent. Math.*, 15(4):259–331, 1972.
- [Ser87] Jean-Pierre Serre. Sur les représentations modulaires de degré 2 de $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$. Duke Math. J., 54(1):179–230, 1987.
- [Tat97] John Tate. Finite flat group schemes. In Modular forms and Fermat's last theorem (Boston, MA, 1995), pages 121–154. Springer, 1997.