Homework 06

Problem 1

Prove $e^{-i\omega t\hat{\sigma}_x} = \cos \omega tI - i\sin \omega t\hat{\sigma}_x$

Problem 2

Detuned Rabi flopping for a spin-1/2 particle with energy spacing ω_0 apply an oscillating magnetic with frequency $\omega_0 + \delta$, and Rabi rate Ω , so we have $H(t) = \hbar \frac{\omega_0}{2} \hat{\sigma}_z + \hbar \Omega \hat{\sigma}_x cos((\omega + \delta)t)$

- 1. Choose a proper transformation and apply rotating wave approximation to make H(t) time-independent, so that $H_{int} = -\hbar \frac{\delta}{2} \sigma_z + \hbar \frac{\Omega}{2} \sigma_x$
- 2. Solve for eigenvalue λ_+, λ_- and eigenstate $|\psi_+\rangle, |\psi_-\rangle$ for H_{int} in the basis of $\sigma_z \{|0\rangle, |1\rangle\}$
- 3. With $|\psi(t=0)\rangle = |\psi_0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ solve for the overlap between $|\psi_0\rangle$ and $|\psi(t)\rangle$, defined as $|\langle\psi_0|\psi(t)\rangle|^2$. Hint: use $|\psi(t)\rangle = e^{-\frac{i}{\hbar}Ht}|\psi(0)\rangle$, and $H = \lambda_+|\psi_+\rangle\langle\psi_+|+\lambda_-|\psi_-\rangle\langle\psi_-|$. We can assume Ω is real for simplicity.

Problem 3

Proof $Tr(\rho^2)=1$ correspond to $\rho=|\psi\rangle\langle\psi|,$ a pure state.