Решение Андеррайтера

Быстрое одобрение, сбор данных, которых не было в витрине

Цель

- Основая цель: улучшить модель.
- Для этого нужно:
- - рассмотреть данные, которых нет в витрине
- - выбрать наиболее эффективные
- - убедиться на лучше модели, что данные улучшают точность
- - обновить синтетическую модель с учетом новых данных

Входные данные

Заявки в диапазоне дат: 2020-01-01 по 2022-02-13

Витрина MART_NORMA_AUTO: х строк, х столбцов.

Одобрено 30367

- Отмена 54615
- Отмена+Одобрено 84982

Будем рассматривать

- общее количество крдитов (?_count_acc_total)
- количество кредитов без типа "Кредитная карта" (?_count_acc_without_credit_cards)
- количество кредитов типа "Кредитная карта" (?_count_acc_credit_cards)
- количество кредитов для типа Ипотека и Автокредит (? _count_acc_ipoteka_and_autocreds)
- количество кредитов для типа Ипотека (?_count_acc_ipoteka)
- количество кредитов для типа Автокредит (?_count_acc_autocreds)

Для кредитных историй:

- НБКИ (nbki)
- OKБ(okb)
- Эквифакс(equifax)
- Консолидированная кредитная история(all)

Важность признаков для XGBoost и RandomForest

Важность признаков сумма XGBoost и RandomForest

В итоге оставлены наиболее влиятельные поля

- okb_count_acc_total
- okb_count_acc_without_credit_cards
- nbki_count_acc_without_credit_cards
- all_count_acc_ipoteka

Как мы видим общее количество от ОКБ оказалось наиболее достоверным.

Рассмотрение кредитов без Кредитных карт может быть полезным.

Наличие ипотечных кредитов тоже может быть фактором.

А связка Ипотека+Автокредиты — себя не оправдала для количественной оценки.

Лучшая модель «ДО»

Лучшая модель «ПОСЛЕ»

- Под голубой линией увеличилась площадь на 1-2%
- На 1% увеличилось количество одобренных.
 На пол процента увеличилась точность.

Возмем просрочку для:

- Оплата без просрочек
- Просрочка от 1 до 7 дней включает в себя Просрочка от 1 до 5 дней
- Просрочка от 1 до 29 дней
- Просрочка от 8 до 29 дней
- Просрочка от 30 до 59 дней
- Просрочка от 60 до 89 дней
- Просрочка от 90 до 119 дней
- Просрочка более 120 дней

- Проделаем это для
- - кредитов без Кредитных карт и для кредитов по Кредитным картам
 - ипотека и автокредиты
- - ипотека
- - автокредиты

У нас получилось 18*4 новых полей для проверки. Значения берутся как отношение просрочек к количеству выплат.

Важность признаков для XGBoost и RandomForest

Важность признаков сумма XGBoost и RandomForest

Отмечаем

- nbki_acc_payAsAgreed_without_cc
- all_acc_payAsAgreed_without_cc
- nbki_acc_payAsAgreed
- all_acc_payAsAgreed
 - НБКИ показал себя значительно лучше чем ОКБ. Отношение вовремя оплаченны выплат ко всем выплатам ожидаемо показало хороший результат.(Нужно проверить что нет ошибки)
- Количество выплат без Кредитных карт показало себя лучше чем общее количество выплат без просречки.

Статистика по просрочкам два

Возмем

- - количество активный счетов
- - кличество активных с суммой больше 50 тыс.
- - кличество активных с суммой меньше= 50 тыс.
- - кличество закрытых с суммой больше 50 тыс.
- - кличество закрытых с суммой меньше= 50 тыс.
- - средний процент просрочек с 1до29 дней для закрытых
- - средний процент просрочек от 29-до 120 дней для закрытых

- Проделаем это для
- - НБКИ (nbki)
- - ОКБ(okb)
- - Эквифакс(equifax)
- - Консолидированная кредитная история(all)

А так же, возмем

- - НБКИ процент PayAsAgreed с суммой больше 50 тыс.
- - НБКИ процент PayAsAgreed с суммой меньше 50 тыс.
- - консолидировання PayAsAgreed с суммой больше 50 тыс.
- - консолидировання PayAsAgreed с суммой меньше= 50 тыс.
- У нас получилось 7*4+4 = 32 новых поля

Статистика по просрочкам два

- Используя аналогичные шаги как в пунктах выше, выбираем следующие поля:
- - кличество закрытых с суммой больше 50 тыс.
- - кличество закрытых с суммой меньше= 50 тыс.
- - средний процент просрочек от 29-до 120 дней для закрытых

Дополнительные поля

Возьмем и распарсим скоринги:

- Проверка организации-работодателя на наличие в списке ликвидированных(0prov): status_code, status_type, status_groupid, status_isActing, status_groupName, companyType, okfs_code, includeInList, change_history, legalAddresses
- - Эквифакс 4Score: scor
- - AFS НБКИ: rules count
- OKB National hunter: 'MA_SMT', 'MA_RAD',
 'MA_AS', 'LCL_MA', 'MULT_M', 'MA_PAS', 'MA_EMP',
 'MA_SPE', 'MA_MS_', 'MA_REF', 'MA_MTE',
 'MA_SPA', 'MA_MS', 'MA_SAM', 'MA_AS_', 'MA_SWT'
- - НБКИ Биометрия: matchImages, matchResults, match_max, match_avg

Рассметривая корреляцию полей и их важность убираем коррелирующие с низкой важностью:

- - Oprov_status_groupid
- ex4scor_scoring
- nbki_biom_resp_match_max
- Oprov_status_isActing
- -0prov_status_groupName_Действующе e
- nbki_biom_resp_matchResults
- okbnh MA SPE

Дополнительные поля частотный анализ

- отрицательное влияение:
- Oprov_okfs_code: при значении 54 (14,1)
- okbnh_MA_MTE при значении 1 (257,44)
- okbnh_MA_MS 1 (18,4)
- - nbki_biom_resp_matchImages больше девяти(~500, ~100)

Шаги фильтрации полей — 100->50

Переходим от 100 к 50 признакам:

- 1 Проведен поиск лучшей модели
- 2 Была определена важность
- 3 Затем проведена серия эекспериментов по определению оптимельного количества столбцов выбирая самые важные

- 4 Удалены 7 самых коррелирующих переменных.
- 5 Проверено, что точность улучшилась
- 6 Снова проведен поиск лучшей модели
- 7 Проверено отсутствие коррелирующих и найдена важность признаков

Важность 50 признков

Важность признаков сумма XGBoost и RandomForest

Лучшая модель на тестовой выборке

- Accuracy: 0.691234
- AUC: 0.733127
- Precision: 0.674832
- Recall: 0.206910
- Одобренных:0.106039

21 / 21