Package 'artemis'

December 30, 2015

Type Package

Title A package that complements Kallisto for quick, informative *seq analysis

Version 0.9.34

Date 2015-12-22

Author Tim Triche, Jr., Anthony Colombo, Harold Pimentel

Imports biomaRt, edgeR, erccdashboard, pathview, parallel, SummarizedExperiment, BiocGenerics, Rsamtools, RUVSeq, TxDbLite, tools, limma, rhdf5, matrixStats, GenomicRanges, GenomicFeatures, Matrix, KEGGREST, ggplot2

Suggests roxygen2, knitr, artemisData, jsonlite, qusage, Biobase, GenomeInfoDb, graphite, beeswarm,

VignetteBuilder knitr

Maintainer Tim Triche, Jr. <tim.triche@gmail.com>

Description Artemis was the hunting companion of Kallisto. This package wraps various aspects of workflow automation (assembling transcriptomes, hashing indices after they have been built, checking versions, and generally avoiding annoyance factors) useful in the day-to-day operation of a transcriptome aligner or pseudoaligner. Tools for data extraction and (progressive) annotation of combined or individual transcriptomes, quality control and normalization (ERCC control plots and RUVSeq normalization), interpretation (gene-level, transcript-level, pathway- and network-level output), guidelines for validation (sample size estimation by simulation), and interactions with cloud computing services such as BaseSpace are loosely coupled within the default package workflow. Please be aware that, while Artemis is licensed under the GPL, Kallisto itself is free FOR NON-COMMERCIAL USAGE ONLY. For-profit use of Kallisto requires a licensing agreement executed with the Regents of the University of California. Kallisto is not included within this package; Artemis assumes it is in the user's PATH. Artemis' component parts are not restricted in this fashion (although we cannot guarantee that all [pseudo]aligners will

necessarily work as well as Kallisto in end-to-end pipelines), and most downstream analyses can proceed from any SummarizedExperiment. Artemis' annotation functions, in particular, can greatly ease data integration, as when comparing in-house results to those of major genome and transcriptome sequencing projects such as TCGA and ICGC. Sample size estimates and pathway analyses are similarly decoupled from the underlying source of transcript abundance estimates.

License GPL (>= 2) **RoxygenNote** 5.0.1

Index

2

R topics documented:

temis-package	. 3
notateFeatures	. 3
llapseBundles	. 4
llapseTpm	. 5
llapseTranscripts	. 6
ccAnalysis	. 6
RCC_annotated	
tractIndexName	. 7
tchAppSession	
tchKallisto	. 8
Bundles	. 9
Transcripts	
rmatResults	. 10
neWiseAnalysis	
tKallistoVersion	
gcImport	
dexKallisto	
allistoExperiment	
allistoExperiment-class	
ergeKallisto	. 16
irFastqFiles	
thwayPlot	
aGGFrame	
aPlot	
mapSymbols	
kmToTpm	
nKallisto	
veArtemisPlots	
EtoKE	. 22
pop	
anscriptWiseAnalysis	. 24

25

artemis-package 3

artemis-package

various utility functions for fast, informative RNAseq analysis

Description

utility functions for Artemis (hunting companion of Kallisto)

Details

Forthcoming; see references for some background.

Author(s)

Tim Triche, Jr. <tim.triche@gmail.com>

References

```
Kallisto: http://arxiv.org/abs/1505.02710 limma/voom: http://genomebiology.com/2014/15/2/R29 ssizeRNA: http://bioinformatics.oxfordjournals.org/content/23/6/739 ReactomePA: http://www.bioconductor.org/packages/ReactomePA
```

Examples

```
## a single Kallisto run with bootstraps
h5 <- system.file("extdata", "abundance.h5", package="artemis", mustWork=T)
results <- fetchKallisto(h5)
ri <- system.file("extdata", "run_info.json", package="artemis", mustWork=T)
runinfo <- fetchRunInfo(ri)
## an experiment with multiple replicates per condition</pre>
```

annotateFeatures

annotate features (genes or transcripts) against (say) EnsemblDb this is becoming the default dispatcher for almost all annotation

Description

annotate features (genes or transcripts) against (say) EnsemblDb this is becoming the default dispatcher for almost all annotation

Usage

```
annotateFeatures(kexp, level = c(NA, "gene", "transcript"),
  what = c("KallistoExperiment", "GRanges"), ...)
```

4 collapseBundles

Arguments

kexp a kexp

level at what level has the data been summarized? (guess)
what what data structure shall we return (KallistoExperiment)

Value

a GRanges or a KallistoExperiment, depending on 'what'

collapseBundles Collapse bundles of transcripts, discard any that represent pointless

tests, and optionally prune any whose joined bundle IDs tend to choke downstream packages for e.g. pathway- or network-based enrichment analysis. Note that this function may or may not be optimal for your RNAseq experiment. Please refer to 'Details' for some thought exer-

cises about the nature of 'genes'.

Description

Collapse bundles of transcripts, discard any that represent pointless tests, and optionally prune any whose joined bundle IDs tend to choke downstream packages for e.g. pathway- or network-based enrichment analysis. Note that this function may or may not be optimal for your RNAseq experiment. Please refer to 'Details' for some thought exercises about the nature of 'genes'.

Usage

```
collapseBundles(kexp, bundleID = "gene_id", read.cutoff = 1,
    discardjoined = TRUE)
```

Arguments

kexp A KallistoExperiment (or something very much like it)
bundleID The column (in mcols(features(kexp))) of the bundle IDs
read.cutoff Discard transcripts and bundles with < this many counts
discardjoined Discard bundles with IDs "joined" by a ";"? (TRUE)

Details

This function sums the estimated counts for each transcript within a bundle of transcripts (where "bundle" is a user-defined identifier, often but not always a 'gene', sometimes a biotype or a class of repeat elements). The default approach is to discard all rows where the maximum count is less than the specified read.cutoff. Since the default cutoff is 1, this means discarding transcripts (and bundles) that were not be detected in any sample. (Filtering tends to increase statistical power at a given false-positive rate per Bourgon et al, 2010, http://www.pnas.org/content/107/21/9546.long)

collapseTpm 5

Value

a matrix of summarized counts per sample bundle

See Also

collapseTranscripts

collapseTpm	Collapse bundles of transcripts, discard any with (default) < ITPM/bundle, and optionally prune any whose joined bundle IDs tend
	to choke downstream packages for e.g. pathway- or network-based enrichment analysis. Note that this function may or may not be opti-
	mal for your RNAseq experiment. Please refer to 'Details' for some
	thought exercises about the nature of 'genes'.

Description

Collapse bundles of transcripts, discard any with (default) < 1TPM/bundle, and optionally prune any whose joined bundle IDs tend to choke downstream packages for e.g. pathway- or network-based enrichment analysis. Note that this function may or may not be optimal for your RNAseq experiment. Please refer to 'Details' for some thought exercises about the nature of 'genes'.

Usage

```
collapseTpm(kexp, bundleID = "gene_id", minTPM = 0.01,
  discardjoined = TRUE, tx_biotype = NULL, gene_biotype = NULL,
  biotype_class = NULL, ...)
```

Arguments

kexp	A KallistoExperiment (or something very much like it)
bundleID	The column (in mcols(features(kexp))) of the bundle IDs
minTPM	Discard transcripts/bundles with < this many TPMs (0.01)
discardjoined	Discard bundles with IDs "joined" by a ";"? (TRUE)
tx_biotype	Restrict to a specific mcols(kexp)\$tx_biotype? (NULL)
gene_biotype	Restrict to a specific mcols(kexp)\$gene_biotype? (NULL)
biotype_class	Restrict to a specific mcols(kexp)\$biotype_class? (No)

Details

This function sums transcripts per million (TPM) of each transcript within bundle of transcripts ("bundle" being a user-defined identifier, often but not always a 'gene', sometimes a biotype or a class of repeat elements).

The default approach is to discard all rows where the maximum TPM is less than the specified cutoff. Since the default cutoff is 1TPM, this means discarding bundles where the total transcripts per million estimate is < 1. (Filtering tends to increase statistical power at a given false-positive rate per Bourgon et al, 2010, http://www.pnas.org/content/107/21/9546.long)

6 erccAnalysis

Value

a matrix of TPMs by bundle for each sample

collapseTranscripts

Collapse transcripts, discarding any with low reads (point-less to test them) Filtering usually increases statistical power for given false-positive rate; see Bourgon et al, 2010, http://www.pnas.org/content/107/21/9546.long.

Description

Collapse transcripts, discarding any with low reads (pointless to test them) Filtering usually increases statistical power for given false-positive rate; see Bourgon et al, 2010, http://www.pnas.org/content/107/21/9546.long.

Usage

```
collapseTranscripts(kexp, read.cutoff = 1, ...)
```

Arguments

kexp A KallistoExperiment (or something very much like it)
read.cutoff Discard transcripts and/or bundles w/ < this many reads

Value

a matrix of filtered transcript counts

See Also

collapseBundles

erccAnalysis

QC plots of ERCC spike-in controls (FIXME: automate RUVSeq normalization?)

Description

QC plots of ERCC spike-in controls (FIXME: automate RUVSeq normalization?)

Usage

```
erccAnalysis(kexp, ...)
```

Arguments

kexp

something that behaves like a KallistoExperiment

ERCC_annotated 7

ERCC_annotated

ERCC spike-in control annotations

Description

Usage

```
data(ERCC_annotated)
```

Examples

```
data(ERCC_annotated)
split(rownames(ERCC_annotated), ERCC_annotated$subgroup)
split(ERCC_annotated$concentration.mix1 / ERCC_annotated$concentration.mix2, ERCC_annotated$subgroup)
```

extractIndexName

extract the transcriptome index used for a Kallisto hdf5 file

Description

extract the transcriptome index used for a Kallisto hdf5 file

Usage

```
extractIndexName(callinfo)
```

Arguments

callinfo

the Kallisto call string

Value

the index name

8 fetchKallisto

fetchAppSession

fetch app session variables from BaseSpace JSON

Description

fetch app session variables from BaseSpace JSON

Usage

```
fetchAppSession(jsonFile)
```

Arguments

jsonFile

character, the name and/or path to the JSON file

Value

list the appSession created from that JSON file

fetchKallisto

fetch one sample's worth of Kallisto estimates, perhaps with bootstraps

Description

fetch one sample's worth of Kallisto estimates, perhaps with bootstraps

Usage

```
fetchKallisto(sampleDir = ".", h5file = "abundance.h5",
  collapse = "_mergedWith_", ...)
```

Arguments

sampleDir character string: the path to h5/json files

h5file character string: the file to read

collapse string: collapsing string for indices ("_mergedWith_")

fitBundles 9

fi	†Ri	ınd	les
Ι.	LD	ariu	TCO

encapsulate limma/voom analysis for consistency with ebrowser()

Description

encapsulate limma/voom analysis for consistency with ebrowser()

Usage

```
fitBundles(kexp, design, bundleID = "gene_id", read.cutoff = 1, ...)
```

Arguments

kexp A KallistoExperiment design A model matrix

bundleID The ID to bundle on (default is gene_id)

read.cutoff Exclude bundles where the maximum count is < this

Value

A list with elements (design, voomed, fit)

fitTranscripts encapsulate limma/voom analysis and TMM normalization at tran-

script level FIXME: just farm it out to sleuth, e.g. as seen in ?artemis-

Data::withSleuth

Description

encapsulate limma/voom analysis and TMM normalization at transcript level FIXME: just farm it out to sleuth, e.g. as seen in ?artemisData::withSleuth

Usage

```
fitTranscripts(kexp, design, read.cutoff = 1, ...)
```

Arguments

kexp A KallistoExperiment design A model matrix

read.cutoff Exclude transcripts where the maximum count is < this

Value

A list with elements (design, voomed, fit)

10 geneWiseAnalysis

formatResults	downstream results from fitBundles tabulated into a single object
	showing genes and quantified limma fitted values.

Description

example:

Usage

formatResults(res)

Arguments

res

the output from geneWiseAnalysis

Details

```
library("artemisData") data("NS", package="artemisData") formatResults(geneWiseAnalysis(NS, exptData))
```

Value

a single merged object with gene names and limma quantified values for differential expression

geneWiseAnalysis

Downstream analysis of bundle-aggregated transcript abundance estimates.

Description

Downstream analysis of bundle-aggregated transcript abundance estimates.

Usage

```
geneWiseAnalysis(kexp, design = NULL, how = c("cpm", "tpm"),
  p.cutoff = 0.05, fold.cutoff = 1, read.cutoff = 1,
  species = c("Homo.sapiens", "Mus.musculus"), fitOnly = FALSE, ...)
```

Arguments

kexp	a KallistoExperiment or SummarizedExperiment-like object
	1 1 2 1 60 1

design a design matrix with 2nd coefficient as one to test p.cutoff where to set the p-value cutoff for plots, etc. (0.05) fold.cutoff where to set the log2-FC cutoff for plots, etc. (1==2x) read.cutoff minimum read coverage (estimated) for a gene bundle

getKallistoVersion 11

species	which species? (Homo.sapiens; FIX: get from TxDbLite)
fitOnly	exit after fitting the EBayes linear model? (FALSE)
topheat	how many bundles to include in cluster heatmaps? (100)

Details

If no design matrix is found, the function will look in exptData(kexp)\$design. If that too is empty it fails.

Value

a list w/items design, voomed, fit, top, enriched, Figures, scaledExprs, clusts, species, features, ... (perhaps)

getKallistoVersion

get the running version of Kallisto in the default path (if there is one)

Description

get the running version of Kallisto in the default path (if there is one)

Usage

```
getKallistoVersion()
```

Value

a string (the version of Kallisto that was found)

icgcImport	import RNAseq data from ICGC (at least the way it comes from their
	DCC) right now, this means only accepting gene-level summaries;
	may change later.

Description

import RNAseq data from ICGC (at least the way it comes from their DCC) right now, this means only accepting gene-level summaries; may change later.

Usage

```
icgcImport(counts = NULL, filename = NULL, filepath = ".", transcriptome,
  level = c("gene", "transcript"), cols = c("submitted_sample_id",
    "gene_id", "raw_read_count"), ...)
```

12 indexKallisto

Arguments

counts A matrix of counts (else provide filename)

filename A filename to pull in (if counts == NULL)

filepath Where the above-specified file resides (".")

transcriptome what transcriptome these were derived from

level At what level shall features be annotated? (gene)

cols Which columns matter in the data? (see function code)

... Other stuff (such as covariates=covs and the like)

Value

KallistoExperiment with derived effective lengths

See Also

CountsAndFeaturesToKallistoExperiment

indexKallisto index transcriptome/transcriptomes

Description

index transcriptome/transcriptomes

Usage

```
indexKallisto(fastaFiles, fastaPath, fastaTxDbLite = TRUE,
  collapse = "_mergedWith_", kmer = 31, makeUnique = TRUE)
```

Arguments

fastaFiles a character string or vector of FASTA transcriptomes

fastaPath where to find the preceding FASTA files

fastaTxDbLite boolean: should we try to annotate new FASTAs? (yes) collapse string to name multi-FASTA indices ("_mergedWith_")

kmer integer, integer 3-31 of kmer size,default 31
makeUnique boolean, true will auto-correct existing dupes

KallistoExperiment 13

KallistoExperiment

Initializes a KallistoExperiment and performs some rudimentary checks. Many of the arguments CAN be NULL; determination of which is required is done at run-time. A KallistoExperiment must contain at least the est_counts and eff_length assays, because these are required for tpm estimates. HOWEVER, given raw counts along with informative lengths for each feature (row), we can deduce the effective length of each transcript or bundle from the total normalized count. Function SEtoKE(), which underlies as(SE, "KallistoExperiment"), does exactly that.

Description

Initializes a KallistoExperiment and performs some rudimentary checks. Many of the arguments CAN be NULL; determination of which is required is done at run-time. A KallistoExperiment must contain at least the est_counts and eff_length assays, because these are required for tpm estimates. HOWEVER, given raw counts along with informative lengths for each feature (row), we can deduce the effective length of each transcript or bundle from the total normalized count. Function SEtoKE(), which underlies as(SE, "KallistoExperiment"), does exactly that.

Usage

```
KallistoExperiment(est_counts = NULL, eff_length = NULL,
  transcriptomes = NULL, covariates = DataFrame(),
  features = GRangesList(), kallistoVersion = "", est_counts_mad = NULL,
   ...)
```

Arguments

est_counts matrix of estimated counts

eff_length matrix of effective transcript lengths

transcriptomes string or strings naming the target txomes

covariates the column metadata (covariates) for each sample

features the row-wise annotations for the object

kallistoVersion

version of Kallisto used to run the experiment

est_counts_mad matrix of count MADs summarizing bootstrap runs

See Also

SEtoKE

KallistoExperiment-class

A SummarizedExperiment subclass that stores multiple Kallisto runs

Description

FIXME: add RUVg-derived ERCC-calibrated normalization factors in metadata

Usage

```
## S4 method for signature 'KallistoExperiment'
counts(object)
## S4 method for signature 'KallistoExperiment'
covariates(object)
## S4 method for signature 'KallistoExperiment'
pData(object)
## S4 replacement method for signature 'KallistoExperiment'
covariates(object) <- value</pre>
## S4 replacement method for signature 'KallistoExperiment,DataFrame'
pData(object) <- value
## S4 method for signature 'KallistoExperiment'
features(object)
## S4 replacement method for signature 'KallistoExperiment'
features(object) <- value</pre>
## S4 method for signature 'KallistoExperiment'
eff_length(object)
## S4 method for signature 'KallistoExperiment'
tpm(object)
## S4 method for signature 'KallistoExperiment'
kallistoVersion(object)
## S4 method for signature 'KallistoExperiment'
transcriptomes(object)
## S4 method for signature 'KallistoExperiment'
transcriptsBy(x, by = "gene", ...)
## S4 method for signature 'KallistoExperiment'
```

```
mad(x)
## S4 method for signature 'ANY'
covariates(object)
## S4 replacement method for signature 'ANY'
covariates(object) <- value
## S4 method for signature 'SummarizedExperiment0'
features(object)
## S4 replacement method for signature 'RangedSummarizedExperiment'
features(object) <- value
## S4 replacement method for signature 'SummarizedExperiment0'
features(object) <- value</pre>
```

Arguments

object: something from which to retrieve covariates

object: something to which covariates should be assigned

value: the covariates to assign (usually a data.frame or DataFrame)

object: something from which features should be obtained object: something to which features should be assigned

value: the features to assign (usually a GRanges or GRangesList)

Value

the object, perhaps with updated covariates a GRanges or GRangesList of feature annotations the object, perhaps with updated feature annotations

Methods (by generic)

- counts: Retrieve the estimated count matrix from a KallistoExperiment.
- covariates: Retrieve the sample covariates from a KallistoExperiment.
- pData: Retrieve the sample covariates from a KallistoExperiment.
- covariates<-: Assign the sample covariates for a KallistoExperiment.
- pData<-: Convenience method for people used to ExpressionSet, to set per-sample data.
- features: Retrieve the per-row annotations for a KallistoExperiment.
- features<-: Assign per-row annotations to a KallistoExperiment.
- eff_length: Retrieve the matrix of effective transcript lengths from a KallistoExperiment

16 mergeKallisto

• tpm: Obtain tpm from the precomputed matrix (computed as shown in https://haroldpimentel.wordpress.com/2014/05/0 the-fpkm-a-review-rna-seq-expression-units/), specifically,

```
rate <- log(counts(object)) - log(eff_length(object));
tpm <- exp(rate - log(sum(exp(rate))) + log(1e6)) @import SummarizedExperiment</pre>
```

- kallistoVersion: Retrieve the version of Kallisto used for alignment from a KallistoExperiment
- transcriptomes: Retrieve the transcriptomes used for annotation from a KallistoExperiment
- transcriptsBy: Fetch transcripts for a gene, or all transcripts bundled by gene.
- mad: Fetch the matrix of MADs for estimated counts, if bootstraps were run.
- covariates:
- covariates<-:
- features:
- features<-:
- features<-:

Slots

transcriptomes Transcriptomes against which reads were pseudoaligned kallistoVersion The version of Kallisto used to pseudoalign the reads

mergeKallisto

Merge multiple Kallisto results, yielding a KallistoExperiment.

Description

If no transcriptomes are specified (or the ones specified are not found), the resulting KallistoExperiment will have a rowData/rowRanges object which consists entirely of unannotated transcripts from chromosome "Unknown". If transcriptomes are specified and annotations for those transcriptomes are found, the transcripts described in the annotations will be fully annotated for transcript ID, gene ID, gene name, entrez ID, and transcript biotype, provided that these fields are supported in the annotation resources.

Usage

```
mergeKallisto(outputDirs = NULL, outputPath = ".", covariates = NULL,
annotate = FALSE, collapse = "_mergedWith_", parallel = TRUE, ...)
```

Arguments

```
outputDirs character: directories holding Kallisto results (NULL)
outputPath character: base path to the outputDirs (default is .)
covariates data.frame or DataFrame: per-sample covariates (NULL)
annotate boolean: automatically annotate the transcripts? (FALSE)
collapse string: collapsing string for indices ("_mergedWith_")
parallel boolean: try to run the merge in parallel? (TRUE)
```

pairFastqFiles 17

Details

FIXME: automatically determine which transcriptomes were used (in process!)

pairFastqFiles	figure out how a sample's runs can be properly paired (no SE support yet)
----------------	---

Description

figure out how a sample's runs can be properly paired (no SE support yet)

Usage

```
pairFastqFiles(path = ".", extension = "_*", readPrefix = "R")
```

Arguments

path	a character string specifying where the FASTQ files are
extension	what is the file extension? default is ".fastq.gz"
readPrefix	usually pairs are _R1_/_R2_, so this defaults to "R"

pathwayPlot	Use pathview to plot a pathway or pathways colored by gene-wise contrasts. The default is to plot the effect-size-signed, -log10(p.value) for each row.
	yer each rem

Description

Use pathview to plot a pathway or pathways colored by gene-wise contrasts. The default is to plot the effect-size-signed, -log10(p.value) for each row.

Usage

```
pathwayPlot(pathway, kexp = NULL, results = NULL, design = NULL,
  coef = 2, IDtype = "ENSEMBL", path = ".", addData = NULL,
  how = "signed", species = c("Homo sapiens", "Mus musculus"), ...)
```

18 pcaGGFrame

Arguments

pathway: which pathway (or keywords to find the appropriate pathway)
kexp: a KallistoExperiment (can be null, if results is OK)
results: cached results from running fitBundles to avoid rerunning it
design: a design matrix to compute contrasts within the experiment

design: a design matrix to compute contrasts within the experiment coef: which column in the design matrix to extract coefficients (2)

IDtype: type of identifier for gene/transcript annotations (ENSEMBL)

path: the working directory for downloaded/generated files (".")

species: species for pathway extraction (defaults to Homo sapiens)

addData: optional per-annotation DNA methylation or copy number data

how: how to display effects at each node? (signed -log10(p[j]))

...: additional arguments to be passed to pathview

Value

a list with the human-readable pathway name(s) and the plot file(s)

See Also

enrichmentAnalysis

EnrichmentBrowser

pathview

pcaGGFrame

plots pca of each kexp assay

Description

plots pca of each kexp assay

Usage

```
pcaGGFrame(kexpAssays, firstComponent = c("first", "second", "third",
  "fourth", "fifth", "sixth"), secondComponent = c("first", "second", "third",
  "fourth", "fifth", "sixth"), assayInterested = c("cpm", "tpm", "length",
  "mad"))
```

Arguments

```
kexpAssays, kallisto experiment assay
```

firstComponent , the principal component you wish to compare with second secondComponent,

the principal component you wish to compare with first component

assayInterested, the type of assay data, cpm, etc pcaPlot 19

Value

a data Frame of the selected principal components used to pass into pcaPlot, input attributes are under attributes(ggFrame) for each PC

pcaPlot

plots pca of each kexp assay

Description

plots pca of each kexp assay

Usage

```
pcaPlot(ggFrame)
```

Arguments

ggFrame,

a data frame of desired components to plot

Value

a pca plot of an cpm, tpm, length, or median abs. deviations

remapSymbols

update transcript-/gene-level annotations for a KallistoExperiment or matrix

Description

update transcript-/gene-level annotations for a KallistoExperiment or matrix

Usage

```
remapSymbols(x, what = c("transcript", "gene"))
```

Arguments

x the matrix or kexp

what "transcript" or "gene" level reannotation

Value

x, with updated \$gene_name or rownames

20 rpkmToTpm

rpkmToTpm

Converts RPKM or FPKM estimates to TPM. Per Colin Dewey,

Description

```
tpm[i, j] == (rpkm[i, j]/(sum(rpkm[i, ]))) * 1e6
```

Usage

```
rpkmToTpm(rpkm, ...)
.tpmBySample(rpkm)
```

Arguments

rpkm a matrix of RPKM or FPKM estimates
rpkm a vector of possibly-zero RPKM estimates

Details

```
For nonzero rpkm, this becomes tpm[i, nonzero] == exp( log(rpkm[i, nonzero]) - log(sum(rpkm[i, nonzero])) + log(1e6)) and of course if RPKM == 0 then TPM == 0 as well.
```

Value

a matrix of TPM estimates

Functions

• .tpmBySample:

See Also

http://bioinformatics.oxfordjournals.org/content/26/4/493.full

runKallisto 21

runKallisto	run kallisto with fastq.gz files on a freshly generated or existing inde	2X

Description

run kallisto with fastq.gz files on a freshly generated or existing index

Usage

```
runKallisto(sampleDir, indexName = NULL, fastaPath = ".",
  fastaFiles = NULL, fastqPath = ".", outputPath = ".",
  bootstraps = 100, threads = 1, bias = TRUE, pseudobam = FALSE,
  singleEnd = FALSE, lengthMean = 150, lengthDev = 0.001,
  collapse = "_mergedWith_", extension = ".fastq.gz", ...)
```

Arguments

sampleDir	character, subdirectory for sample's FASTQ files
indexName	character or NULL, optional name of the index
fastaPath	character, where FASTA files are underneath (".")
fastaFiles	character vector of FASTA transcriptomes, or NULL
fastqPath	character, where sampleDir is located under (".")
outputPath	character, output in outputPath/sampleDir (".")
bootstraps	integer, how many bootstrap replicates to run? (100)
threads	integer, how many threads to use for bootstraps? (4)
bias	boolean, perform bias correction? (TRUE)
pseudobam	boolean, produce pseudoBAM output? (FALSE)
singleEnd	boolean, produce single end quantification, mean and std.dev required
lengthMean	integer, length mean used only for single end quantification
lengthDev	integer, length std used only for single end quantification
collapse	string to name multi-FASTA indices ("_mergedWith_")
extension	string, to pass the extension into pairFastqFiles()

22 SEtoKE

saveArtemisPlots

Saving plots in PDF format in a single output file

Description

Saving plots in PDF format in a single output file

Usage

```
saveArtemisPlots(res, outName)
```

Arguments

res An output from limma created by fitBundles

outName a string for saving the file

Value

returns a pdf in the working directory

SEtoKE

Convert a properly annotated SummarizedExperiment with 'counts', OR a matrix of counts and a GRanges of annotations for each count, to a KallistoExperiment (thereby providing tpm estimates on demand).

Description

Note that the code here is based upon Harold Pimentel's code, cf. https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/

Usage

```
SEtoKE(SE = NULL, counts = NULL, features = NULL, covariates = NULL,
    transcriptomes = NULL, fraglen = 200, ...)
SummarizedExperimentToKallistoExperiment(SE, transcriptomes)
CountsAndFeaturesToKallistoExperiment(counts, features, transcriptomes, ...)
```

SEtoKE 23

Arguments

SE a properly-annotated SummarizedExperiment

counts if SE is not supplied, a matrix of counts

features if SE is not supplied, GRanges with lengths

covariates optional data.frame or DataFrame if SE is not present transcriptomes mandatory string or strings naming the transcriptomes fraglen optional mean fragment length estimate for PE runs

Other stuff (arguments passed to KallistoExperiment)

SE SummarizedExperiment w/fully annotated rows (features)

transcriptomes mandatory string or strings naming the transcriptomes

counts matrix of transcript or bundle counts features GRanges of features with valid lengths

transcriptomes mandatory string or strings naming the transcriptomes

... Other stuff (such as covariates=covs and the like)

Details

FIXME: add bias correction to eff_lengths, or derive from TPM instead? FIXME: allow for metadata and per-sample metadata (i.e. MultiAssayExperiment) FIXME: add some sort of KallistoExperiment method to correct bias post-hoc

Value

- a KallistoExperiment
- a KallistoExperiment
- a KallistoExperiment

Functions

- SummarizedExperimentToKallistoExperiment:
- CountsAndFeaturesToKallistoExperiment:

See Also

KallistoExperiment

SEtoKE

SEtoKE

strpop

handy string splitting function that operates on basename(x)

Description

handy string splitting function that operates on basename(x)

Usage

```
strpop(x, y = "", z = NULL)
```

Arguments

- x a string
- y a split character (" ")
- z an element or elements to return (the last one)

Value

a string, possibly concatenated from multiple elements

transcriptWiseAnalysis

Analysis of raw transcript abundance estimates.

Description

Analysis of raw transcript abundance estimates.

Usage

```
transcriptWiseAnalysis(kexp, design, p.cutoff = 0.05, fold.cutoff = 1,
  coef = 2, tx_biotype = NULL, gene_biotype = NULL,
  biotype_class = NULL, ...)
```

Arguments

```
a KallistoExperiment or SummarizedExperiment-like object
kexp
design
                  a design matrix w/contrast or coefficient to test in col2
p.cutoff
                  where to set the p-value cutoff for plots, etc. (0.05)
                  where to set the log2-FC cutoff for plots, etc. (1 == 2x)
fold.cutoff
                  which column of the design matrix to test on (2nd)
coef
                  optionally restrict to one or more tx_biotype classes
tx_biotype
gene_biotype
                   optionally restrict to one or more gene_biotype classes
                  optionally restrict to one or more biotype_class ...es
biotype_class
```

Index

*Topic datasets	features<-,SummarizedExperiment0-method
*Topic package	(KallistoExperiment-class), 14
	fetchAppSession, 8
artemis-package, 3	fetchKallisto, 8
.tpmBySample(rpkmToTpm), 20	fitBundles, 9
	fitTranscripts, 9
annotateFeatures, 3	formatResults, 10
artemis (artemis-package), 3	manaWiasAnalusia 10
artemis-package, 3	geneWiseAnalysis, 10
	getKallistoVersion, 11
collapseBundles, 4	http://www.pncc.org/content/107/21/05/6 long
collapseTpm, 5	http://www.pnas.org/content/107/21/9546.long
collapseTranscripts, 6	4–6
counts,KallistoExperiment-method	ioralmont 11
(KallistoExperiment-class), 14	icgcImport, 11
CountsAndFeaturesToKallistoExperiment	indexKallisto, 12
(SEtoKE), 22	KallistoExperiment, 13
covariates, ANY-method	
(KallistoExperiment-class), 14	KallistoExperiment-class, 14
covariates, Kallisto Experiment-method	kallistoVersion, KallistoExperiment-method
(KallistoExperiment-class), 14	(KallistoExperiment-class), 14
covariates<-, ANY-method	mad, Kallisto Experiment-method
(KallistoExperiment-class), 14	(KallistoExperiment-class), 14
covariates<-,KallistoExperiment-method	
(KallistoExperiment-class), 14	mergeKallisto, 16
	pairFastqFiles, 17
eff_length,KallistoExperiment-method	pathwayPlot, 17
(KallistoExperiment-class), 14	pcaGGFrame, 18
ERCC_annotated, 7	pcaPlot, 19
erccAnalysis, 6	pData,KallistoExperiment-method
extractIndexName, 7	(KallistoExperiment-class), 14
	pData<-,KallistoExperiment,DataFrame-method
features,KallistoExperiment-method	(KallistoExperiment-class), 14
(KallistoExperiment-class), 14	(Fr. 1
features, SummarizedExperiment0-method	remapSymbols, 19
(KallistoExperiment-class), 14	rpkmToTpm, 20
<pre>features<-,KallistoExperiment-method</pre>	runKallisto, 21
(KallistoExperiment-class), 14	•
<pre>features<-,RangedSummarizedExperiment-method</pre>	saveArtemisPlots, 22
(KallistoExperiment-class), 14	SEtoKE, 22

26 INDEX