Examen d'Analyse I - Durée : 1h30 minutes.

Les calculatrices et les documents ne sont pas autorisés. (Barême donné à titre indicatif.)

Exercice 1 (Série ACV - 2 points)

Soit $\sum_{n\geq 1} u_n$ une suite absolument convergente. Montrez qu'elle converge.

Note : vous pouvez utiliser le théorème de comparaison pour les séries à termes positifs sans le démontrer.

Exercice 2 (Nature de séries - 3,5 points)

Déterminer la nature des série suivantes (vous pouvez utiliser les théorèmes et règles du cours directement) :

1.
$$\sum_{n>1} \frac{1}{n^{\alpha}}, \ \alpha \in \mathbb{R}.$$

2.
$$\sum_{n>2} \frac{(-1)^n}{n + (-1)^n}.$$

$$3. \sum_{n>1} \left(\frac{1}{n}\right)^{\cos(n\pi)+2}.$$

Exercice 3 (Limites et nature d'une série - 3 points)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\left(\frac{n+\alpha}{n+\beta}\right)^n$ où $(\alpha,\beta)\in\mathbb{R}^2,\ \alpha\neq\beta$.

- 1. Déterminer $\lim_{n\to+\infty} u_n$.
- 2. Déterminer à quelles conditions sur α et β la série $\sum_{n\in\mathbb{N}}u_n$ converge.
- 3. Déterminer à quelles conditions la série $\sum_{n\in\mathbb{N}}\left(\frac{n+\alpha}{n+\beta}\right)^{n^2}$ converge.

Exercice 4 (Majoration d'un reste - 1,5 points)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \left(\frac{1}{n}\right)^n$.

- 1. Déterminez la nature de cette série.
- 2. Montrez que pour $k \ge 10$, on a $u_k \le \frac{1}{10^k}$.
- 3. En déduire une majoration de $R_n = \sum_{k=n+1}^{\infty} u_k$