

Ethan van Heerden, Karen Phung, Kevin Lee

OI INTRODUCTION

What problem are we trying to solve?

O3 MODEL EVALUATION

How do each of our models perform?

O2 METHODOLOGY

What classification methods can we use?

O4 CONCLUSIONS

Which model was best?

OI. INTRODUCTION

INTRODUCTION & DATASET

Feature	Type	Description
Age	Number	Toddlers (months), children, adolescent, and adults (year)
Gender	String	Male or Female
Ethnicity	String	List of common ethnicities in text format
Born with jaundice	Boolean (yes or no)	Whether the case was born with jaundice
Family member with PDD	Boolean (yes or no)	Whether any immediate family member has a PDD
Who is completing the test	String	Parent, self, caregiver, medical staff, clinician,etc.
Country of residence	String	List of countries in text format
Used the screening app before	Boolean (yes or no)	Whether the user has used a screening app
Screening method type	Integer (0,1,2,3)	The type of screening methods chosen based on age category (0 = toddler, 1 = child, 2 = adolescent, 3 = adult)
Language	String	(English, Arabic, Farsi, Mandarin, Urdu, Swahili, French, Spanish, Portuguese, Turkish)
Why_are_you_taken_the_screening	String	Use input textbox
Question 1 Answer	Binary (0, 1)	The answer code of the question based on the screening method used
Question 2 Answer	Binary (0, 1)	The answer code of the question based on the screening method used
Question 3 Answer	Binary (0, 1)	The answer code of the question based on the screening method used
Question 4 Answer	Binary (0, 1)	The answer code of the question based on the screening method used
Question 5 Answer	Binary (0, 1)	The answer code of the question based on the screening method used
Question 6 Answer	Binary (0, 1)	The answer code of the question based on the screening method used
Question 7 Answer	Binary (0, 1)	The answer code of the question based on the screening method used
Question 8 Answer	Binary (0, 1)	The answer code of the question based on the screening method used
Question 9 Answer	Binary (0, 1)	The answer code of the question based on the screening method used
Question 10 Answer	Binary (0, 1)	The answer code of the question based on the screening method used
Screening score	Integer	The final score obtained based on the scoring algorithm of the screening method used. This was computed in an automated manner
Class	String	ASD traits or No ASD traits (automatically assigned by the ASDTests app).

Thabtah F, Abdelhamid N, Peebles D. A machine learning autism classification based on logistic regression analysis. Health Inf Sci Syst. 2019 Jun 1;7(1):12. doi: 10.1007/s13755-019-0073-5. PMID: 31168365; PMCID: PMC6545188.

O2. METHODOLOGY

MODELING TECHNIQUES

- In terms of bias, the three models show varying degrees. Logistic Regression has the highest bias, followed by the Perceptron, and the Decision Tree has the lowest bias.
- Our choice of models were based on comparing their classification performance. We decided to choose Logistic Regression, Perceptron, and Decision Tree due to them being popular classification models.

DATA COMPLEXITY AND PREPROCESSING

The researcher's data contains a mixture of numerical, binary, and categorical values

NUMERICAL BINARY **CATEGORICAL** 12 features 2 features 5 features SimpleImputer to OneHotEncoder Custom deal with missing transformer to to transform each values convert "no" to 0 category into a StandardScaler to and "yes" to 1 scale everything one-hot numeric array

O3. MODEL EVALUATION

DECISION TREE

Tuned hyperparameters using recall as our scorer

OI Max Depth

- Controls the maximum allowed depth of the tree
- Best value: 1

02 MIN SAMPLES FOR SPLIT

- Controls the minimum number of samples required to split an internal node
- Best value: 2

03 MAX CONSIDERED FEATURES

- Controls the number of features to consider when looking for the best split
- Best value: 0

ACCURACY	0.646	
RECALL	0.669	
PRECISION	0.218	
FI-SCORE	0.326	

DECISION TREE RESULTS

PERCEPTRON

Tuned hyperparameters using recall as our scorer

OI Alpha

- The regularization term
- Best value: 0.0001

02 Max_iter

- The maximum number of passes over the training data.
- Best value: 500

O3 ETAO

- The initial learning rate
- Best value: 0.001

	1	
ACCURACY	0.799	
★ RECALL	0.139	
PRECISION	0.309	
FI-SCORE	0.131	

PERCEPTRON RESULTS

LOGISTIC REGRESSION

Tuned hyperparameters using recall as our scorer

OI C-VALUE

- The regularization strength
- Best value: 0.0336

O3 PENALTY

- The regularization type
- Best type: L1

02 Max_iter

- The maximum number of passes over the training data.
- Best value: 100

04 SOLVER

- The optimization algorithm
- Best algorithm: liblinear

ACCURACY	0.567	
★RECALL	0.690	
PRECISION	0.184	
FI-SCORE	0.290	

LOGISTIC REGRESSION RESULTS

O4. CONCLUSIONS

CONCLUSION

COMPARING THE DIFFERENT MODELS

- Logistic Regression Recall of 0.690
- Decision Tree Recall of 0.669
- **Territor** Recall of 0.139

POSSIBLE IMPROVEMENTS WITH EXISTING DATA

Use SVMs and the kernel trick

FUTURE WORK

- Add more data to fix imbalances (613 no vs. 91 yes)
- More features?
- Research the effects of age on autism
- Obtain data from children who have autism

THANK YOU

Any questions?