Deep Augmentation for image and activity recognition

By Abdullah Hamdi

outline

- Brief history (CNN, ImageNet, activity recognition)
- Brief history (DeconvNets, GAN, applications)
- My previous work on activity generation
- Recent GAN papers:
- Generating Images with Perceptual Similarity Metrics based on Deep Networks(NIPS'16)
- Adversarially Tuned Scene Generation (CVPR'17)
- Generating Videos with Scene Dynamics (NIPS'16)
- What's next?

Image classification (old days)

- Hand crafted features
- Bag of words

Image classification (new era)

- Deep CNNs
 - AlexNet
 - VGG

Image classification (now)

- GoogleNet
- ResNet

Image classification (now)

- Large labeledDatasets
 - ImageNet
 - COCO (Microsoft!)

Man in the middle in yellow Man in the middle Front middle yellow guy

Man with hand up Man with scarf holding bar Man with plaid scarf

Activity (now)

- Sliding window
- Optical flow
- LSTMs
- Temporal detection
- C3D

Figure 1. **2D** and **3D** convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results in another volume, preserving temporal information of the input signal.

Video datasets

- Sports 1M
- UCF 101
- ActivityNet
- cityscape
- Charades

Fig. 1. Comparison of actions in the Charades dataset and on YouTube: *Readi book, Opening a refrigerator, Drinking from a cup.* YouTube returns entertaining often atypical videos, while *Charades* contains typical everyday videos.

Image & Video Datasets

- Large-scale labeling is laborious
- Biased (usually augmentation is needed)
- Pixel-wise labeling is almost impossible
- Non-balanced classes occurances
- Abundant unlabeled online data !!

CG 4 CV

- Using Game Engines to generate data and use it to train NNs
- Works well only as augmentation (Domain Shift problem!)
- Still biased!
- PHAV: NIPS'16 : http://adas.cvc.uab.es/phav/

Figure 3: A rendered image sample together with corresponding pixel-level annotations.

outline

- ☐ Brief history (CNN, ImageNet, activity recognition)
- Brief history (DeconvNets, GAN, applications)
- My previous work on activity generation
- Recent GAN papers:
- Generating Images with Perceptual Similarity Metrics based on Deep Networks(NIPS'16)
- Adversarially Tuned Scene Generation (CVPR'17)
- Generating Videos with Scene Dynamics (NIPS'16)
- What's next?

Deconvolution Neural Networks

Deep Generative Adversarial Network

(1)

Using Adversarial Loss have shown promising results (GAN)

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

GAN applications

"GAN is the most important development of deep learning in C.V. after CNN " By Abdullah Hamdi

Super resolution

Style transfer

http://bamos.github.io/2016/08/09/deep-completion/

outline

- Brief history (CNN , ImageNet, activity recognition)
- Brief history (DeconvNets , GAN, applications)
- My previous work on activity generation
- Recent GAN papers:
- Generating Images with Perceptual Similarity Metrics based on Deep Networks(NIPS'16)
- Adversarially Tuned Scene Generation (CVPR'17)
- Generating Videos with Scene Dynamics (NIPS'16)
- What's next?

outline

- Brief history (CNN , ImageNet, activity recognition)
- Brief history (DeconvNets, GAN, applications)
- My previous work on activity generation
- Recent GAN papers:
- Generating Images with Perceptual Similarity Metrics based on Deep Networks(NIPS'16)
- Adversarially Tuned Scene Generation (CVPR'17)
- Generating Videos with Scene Dynamics (NIPS'16)
- What's next?

Figure 1: Reconstructions from AlexNet FC6 with different components of the loss.

Type	fc	fc	fc	reshape	uconv	conv	uconv	conv	uconv	conv	uconv	uconv	uconv
InSize	-	-	-	1	4	8	8	16	16	32	32	64	128
OutCh	4096	4096	4096	256	256	512	256	256	128	128	64	32	3
Kernel	_	_	_	_	4	3	4	3	4	3	4	4	4
Stride	_	_	_	_	$\uparrow 2$	1	$\uparrow 2$	1	$\uparrow 2$	1	$\uparrow 2$	$\uparrow 2$	$\uparrow 2$

Table 1: Generator architecture for inverting layer FC6 of AlexNet.

Figure 2: Schematic of our model. Black solid lines denote the forward pass. Dashed lines with arrows on both ends are the losses. Thin dashed lines denote the flow of gradients.

$$\mathcal{L} = \lambda_{feat} \, \mathcal{L}_{feat} + \lambda_{adv} \, \mathcal{L}_{adv} + \lambda_{img} \, \mathcal{L}_{img}.$$

$$\mathcal{L}_{feat} = \sum_{i} ||C(G_{\theta}(\mathbf{y}_i)) - C(\mathbf{x}_i)||_2^2.$$
 (2)

$$\mathcal{L}_{discr} = -\sum_{i} \log(D_{\varphi}(\mathbf{x}_{i})) + \log(1 - D_{\varphi}(G_{\theta}(\mathbf{y}_{i}))), \tag{3}$$

$$\mathcal{L}_{img} = \sum_{i} ||G_{\theta}(\mathbf{y}_i) - \mathbf{x}_i||_2^2.$$
 (5)

$$\mathcal{L}_{adv} = -\sum_{i} \log D_{\varphi}(G_{\theta}(\mathbf{y}_{i})). \tag{4}$$

Figure 3: Representative reconstructions from higher layers of AlexNet. General characteristics of images are preserved very well. In some cases (simple objects, landscapes) reconstructions are nearly perfect even from FC8. In the leftmost column the network generates dog images from FC7 and FC8.

Figure 4: AlexNet inversion: comparison with Dosovitskiy and Brox [26] and Mahendran and Vedaldi [21]. Our results are significantly better, even our failure cases (second image).

Figure 6: Reconstructions from FC6 with different comparators. The number indicates the layer from which features were taken.

Figure 7: Interpolation between images by interpolating between their FC6 features.

- "For quantitative evaluation we compute the normalized Euclidean error ||a - b||/N. The normalization coefficient N is the average of Euclidean distances between all pairs of different samples from the test set."
- 0% -> exactly the inverse
- 100% -> similar to random image

	CONV5	FC6	FC7	FC8
M & V [21]	71/19	80/19	82/16	84/09
D & B [26]	35/-	51/-	56/-	58/-
Our image loss	-/-	46/79	-/-	-/-
AlexNet CONV5	43/37	55/48	61/45	63/29
VideoNet CONV5	-/-	51/57	-/-	-/-

Table 2: Normalized inversion error (in %) when reconstructing from different layers of AlexNet with different methods. First in each pair – error in the image space, second – in the feature space.

outline

- Brief history (CNN , ImageNet, activity recognition)
- Brief history (DeconvNets , GAN, applications)
- My previous work on activity generation
- Recent GAN papers:
- Generating Images with Perceptual Similarity Metrics based on Deep Networks(NIPS'16)
- Adversarially Tuned Scene Generation (CVPR'17)
- Generating Videos with Scene Dynamics (NIPS'16)
- What's next?

(e) A few samples from CityScapes data

(h) A few samples of $V_{cityscapes}$ sampled from the model after tuning

Figure 2: Graphical representation of the scene generative model and illustration of 3D CAD object models used in this work.

Figure 1: Flow chart of adversarial tuning

Figure 4: Qualitative comparison of training sets, both simulated and real, and their statistics before and after tuning the generative model (Best viewed in color).

Table 1: Quantitative analysis of the performance of DeepLab models with different training-testing combinations. Notation: CS and CV refers to real CityScapes and CamVid datasets respectively, and prefix 'V' represents simulated sets.

Training set	Validation	global	vehicle	pedestrian	building	vegetation	road	ground	sky
		Model	Tuned to C	CityScapes dat	а				
V_init	CS_val	49.86	48	53	63	51	47	34	53
V_cityscapes	CS_val	52.14 (+2.28)	56	47	65	57	53	31	56
CS_train	CS_val	67.71	59	57	73	64	69	64	88
V_cityscapes	CV_val	50.28 (+0.43)	51	50	55	48	49	49	50
CS_train	CV_val	54.42	47	43	55	69	46	51	70
Model Tuned to CamVid Data									
V_init	CV_val	46.42	53	38	54	35	43	39	63
V_camvid	CV_val	49.85 (+3.42)	57	34	63	37	48	44	66
CV_train	CV_val	67.42	77	34	65	54	98	45	99
V_camvid	CS_val	39.85 (-6.57)	35	41	44	44	32	40	43
CV_train	CS_val	54.28	46	43	55	69	46	51	70
		1	Data augm	entations					
V_init+10%CS	CS_val	67.42	60	66	52	67	74	72	81
V_cityscapes + 10%CS	CS_val	70.01 (+2.57)	68	60	59	68	77	69	89
V_init+10%CV	CV_val	68.85	51	61	71	67	65	77	90
V_camvid+10%CV	CV_val	70.57 (+1.71)	63	57	76	73	67	74	84

outline

- Brief history (CNN , ImageNet, activity recognition)
- Brief history (DeconvNets , GAN, applications)
- My previous work on activity generation
- Recent GAN papers:
- Generating Images with Perceptual Similarity Metrics based on Deep Networks(NIPS'16)
- Adversarially Tuned Scene Generation (CVPR'17)
- Generating Videos with Scene Dynamics (NIPS'16)
- What's next?

$$\min_{w_G} \max_{w_D} \mathbb{E}_{x \sim p_x(x)} \left[\log D(x; w_D) \right] + \mathbb{E}_{z \sim p_z(z)} \left[\log \left(1 - D(G(z; w_G); w_D) \right) \right] \tag{1}$$

$$G_2(z) = m(z) \odot f(z) + (1 - m(z)) \odot b(z).$$

Generating Videos with Scene Dynamics, Carl Vondrick, Hamed Pirsiavash (NIPS'16)

- modeling scene dynamics is almost impossible by hand for prediction
- separate scene into background and object with two different pipelines .. in activity recognition many times the background is stationary

Figure 3: **Streams:** We visualize the background, foreground, and masks for beaches (left) and golf (right). The network generally learns to disentangle the foreground from the background.

Video generation

	Percentage of Trials						
"Which video is more realistic?"	Golf	Beach	Train	Baby	Mean		
Random Preference	50	50	50	50	50		
Prefer VGAN Two Stream over Autoencoder	88	83	87	71	82		
Prefer VGAN One Stream over Autoencoder	85	88	85	73	82		
Prefer VGAN Two Stream over VGAN One Stream	55	58	47	52	53		
Prefer VGAN Two Stream over Real	21	23	23	6	18		
Prefer VGAN One Stream over Real	17	21	19	8	16		
Prefer Autoencoder over Real	4	2	4	2	3		

Table 1: **Video Generation Preferences:** We show two videos to workers on Amazon Mechanical Turk, and ask them to choose which video is more realistic. The table shows the percentage of times that workers prefer one generations from one model over another. In all cases, workers tend to prefer video generative adversarial networks over an autoencoder. In most cases, workers show a slight preference for the two-stream model.

Activity recognition

Method	Accuracy
Chance	0.9%
STIP Features [36]	43.9%
Temporal Coherence [10]	45.4%
Shuffle and Learn [25]	50.2%
VGAN + Random Init	36.7%
VGAN + Logistic Reg	49.3%
VGAN + Fine Tune	52.1%
ImageNet Supervision [47]91.4%

(a) Accuracy with Unsupervised Methods

(b) Performance vs # Data

(c) Relative Gain vs # Data

Future prediction

Thank you!

^_^

Useful links

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, Manohar Paluri, Learning Spatiotemporal Features with 3D Convolutional Networks, <u>arXiv:1412.0767</u> [cs.CV]2015

Generative Adversarial Nets , Ian J. Goodfellow, Jean Pouget-Abadie , NIPS'14 https://arxiv.org/pdf/1406.2661.pdf

learning to generate chairs by CNN, Alexy Dovisky (CVPR15)

https://www.robots.ox.ac.uk/~vgg/rg/papers/Dosovitskiy Learning to Generate 2015 CVPR paper.pdf

Semantic Image Inpainting with Deep Generative Models , Raymond A. Yeh* , Chen Chen* , Teck Yian Lim (arxive'17) https://arxiv.org/pdf/1607.07539.pdf

Generating Images with Perceptual Similarity Metrics based on Deep Networks, Alexey Dosovitskiy and Thomas Brox(NIPS'16) . http://papers.nips.cc/paper/6158-generating-images-with-perceptual-similarity-metrics-based-on-deep-networks.pdf

Useful links (2)

Generating Images with Perceptual Similarity Metrics based on Deep Networks, Alexey Dosovitskiy and Thomas Brox(NIPS'16) . http://papers.nips.cc/paper/6158-generating-images-with-perceptual-similarity-metrics-based-on-deep-networks.pdf

Generating Videos with Scene Dynamics, Carl Vondrick, Hamed Pirsiavash (NIPS'16)

http://carlvondrick.com/tinyvideo/paper.pdf

Adversarially Tuned Scene Generation, VSR Veeravasarapu , Constantin Rothkopf , Ramesh Visvanathan (CVPR'17)

http://openaccess.thecvf.com/content_cvpr_2017/papers/Veeravasarapu_Adversarially_Tuned_Scene_C VPR_2017_paper.pdf