Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Adiabatenexponent Protokoll:

Praktikant: Felix Kurtz

Kevin Lüdemann

E-Mail: felix.kurtz@stud.uni-goettingen.de

kevin.luedemann@stud.uni-goettingen.de

Betreuer: Martin Ochmann

Versuchsdatum: 16.06.2014

Testat:		

In halts verzeichn is

Inhaltsverzeichnis

1	Einleitung	3
2	Theorie	3
3	Durchführung	3
4		3 4 5
5	Diskussion	5
6	Anhang	5

1 Einleitung

2 Theorie

3 Durchführung

4 Auswertung

4.1 Rüchardt

Größe	Wert
Masse	m = 8.432 g
Durchmesser	d = 11.93 mm
Volumen	$V = 2225 \text{ cm}^3$
Luftdruck	$b = (1015.7 \pm 0.1) \text{ hPa}$
Dichte von Luft	$\rho_L = 1.2 \text{ kg/m}^3$
Erdbeschleunigung	$g = 9.81 \text{ m/s}^2$

Gas	Amplitude l [cm]
CO_2	19.5 ± 0.5
Argon	12.5 ± 0.5
Luft	17.5 ± 0.5

$$A = \pi \frac{d^2}{4}$$

$$m_{\text{eff}} = m + \rho_L \cdot A \cdot l \tag{1}$$

$$\sigma_{m_{\text{eff}}} = \rho_L \cdot A \cdot \sigma_l \tag{2}$$

$$p = b + m_{\text{eff}} \cdot \frac{g}{A} \tag{3}$$

$$p = b + m_{\text{eff}} \cdot \frac{g}{A}$$

$$\sigma_p = \sqrt{\sigma_b^2 + \sigma_{m_{\text{eff}}}^2 \cdot \left(\frac{g}{A}\right)^2}$$

$$= \sqrt{\sigma_b^2 + (\rho_L \cdot g)^2 \cdot \sigma_l^2}$$

$$(3)$$

$$(4)$$

$$(5)$$

$$= \sqrt{\sigma_b^2 + (\rho_L \cdot g)^2 \cdot \sigma_l^2} \tag{5}$$

Gas	$m_{\rm eff}$ [g]	p [hPa]
CO_2	8.4582 ± 0.0007	1023.12 ± 0.10
Argon	8.4488 ± 0.0007	1023.11 ± 0.10
Luft	8.4555 ± 0.0007	1023.12 ± 0.10

$$\kappa = \frac{64 \cdot m_{\text{eff}} \cdot V}{T^2 \cdot p \cdot d^4} \tag{6}$$

$$\sigma_{\kappa} = \frac{64 V}{T^3 d^4 p^2} \cdot \sqrt{(T m_{\text{eff}})^2 \cdot \sigma_p^2 + (T p)^2 \cdot \sigma_{m_{\text{eff}}}^2 + (2 m_{\text{eff}} p)^2 \cdot \sigma_T^2}$$
 (7)

$$f = \frac{2}{\kappa - 1} \tag{8}$$

$$f = \frac{2}{\kappa - 1}$$

$$\sigma_f = \frac{2 \cdot \sigma_{\kappa}}{(\kappa - 1)^2}$$
(8)

Gas	κ	f
CO_2	1.3037 ± 0.0005	6.585 ± 0.011
Argon	1.5944 ± 0.0010	3.365 ± 0.006
Luft	1.4051 ± 0.0008	4.937 ± 0.009

4.2 Clement-Desormes

$$\kappa = \frac{\Delta h_1}{\Delta h_1 - \Delta h_2} \tag{10}$$

$$\kappa = \frac{\Delta h_1}{\Delta h_1 - \Delta h_2}$$

$$\sigma_{\kappa} = \frac{1}{(\Delta h_1 - \Delta h_2)^2} \cdot \sqrt{\Delta h_1^2 \cdot \sigma_{\Delta h_2}^2 + \Delta h_2^2 \cdot \sigma_{\Delta h_1}^2}$$

$$\tag{10}$$

Öffnungszeit [s]	κ
0.1	1.205 ± 0.022
1.0	1.227 ± 0.022
5.0	1.177 ± 0.018

Tabelle 1: gewichtete Mittelwerte von κ für die verschiedenen Öffnungszeiten

4.3 Mittelwert für κ_{Luft} aus beiden Messungen

$$\kappa_{\text{Luft}} = 1.4042 \pm 0.0008$$
(12)

5 Diskussion

6 Anhang

Gas	Schwingungen	Periodendauer [ms]	κ
CO_2	1	663.9 ± 1.0	1.319 ± 0.004
	10	666.20 ± 0.17	1.3094 ± 0.0007
	20	667.7 ± 0.4	1.3034 ± 0.0007 1.3035 ± 0.0015
	50	670.5 ± 0.4	1.3035 ± 0.0015 1.2925 ± 0.0015
	100	672.0 ± 0.4	1.2870 ± 0.0014
Argon	1	601.6 ± 1.0	1.604 ± 0.005
	10	602.80 ± 0.25	1.5976 ± 0.0013
	20	604.07 ± 0.31	1.5909 ± 0.0016
	50	606.8 ± 1.1	1.577 ± 0.006
	100	615.0 ± 3.1	1.535 ± 0.016
Luft	1	639.3 ± 1.0	1.422 ± 0.005
	10	641.03 ± 0.29	1.4138 ± 0.0013
	20	642.5 ± 0.4	1.4073 ± 0.0016
	50	644.5 ± 0.5	1.3988 ± 0.0023
	100	646.4 ± 0.4	1.3906 ± 0.0016