(3) Prove or disprove: If $\{a_n\}_{n=1}^{\infty}$ diverges to $-\infty$ then $\{-a_n\}_{n=1}^{\infty}$ diverges to $+\infty$.

Assume that $\{a_n\}_{n=1}^{\infty}$ diverges to $+\infty$.

To show that $\{a_n\}_{n=1}^{\infty}$ diverges to $+\infty$.

To show that $\{a_n\}_{n=1}^{\infty}$ diverges to $+\infty$.

There is some Neth s.t. for all n>N.

In IN, we have $-a_n < -M$. For such n, we have $-a_n < -M$. For such n, we have $a_n > M$. Thus, for the same $a_n > M$, we have $a_n > M$ for all a > N.

This means that $\{a_n\}_{n=1}^{\infty}$ imposes to $\{a_n\}_{n=1}^{\infty}$.