Magistrala CAN

Czym jest CAN?

- Controller Area Network
 - ✓ Opracowany przez Robert Bosch GmbH w 1980 do zastosowań motoryzacyjnych
 - ✓ Asynchroniczna magistrala szeregowa
 - ✓ Prosta linia róznicowa
 - ✓ BRAK ADRESOWANIA WĘZŁÓW
 - Identyfikator ramki określa zawartość (i priorytet)
 - Najniższy numer identyfikatora -> najwyższy priorytet
 - ✓ Arbitraż bezstratny CSMA z detekcją kolizji
 - ✓ Multi-master / Broadcasting
 - ✓ Detekcja i obsługa błędów

Dlaczego CAN?

- Dojrzałość
 - ✓ CAN protocol znany od 16 lat
 - ✓ Liczne produkty i narzędzia CAN dostępne na rynku
- Sprzętowa implementacja protokołu
 - ✓ Połączenie obsługi błędów i tolerowanie uszkodzeń przy zapewnieniu dużej prędkości (do 1Mb/s)
- Proste medium transmisyjne
 - ✓ Standardowo skrętka (ale na jednym przewodzie też działa)
 - ✓ Inne media: światłowód lub łącze radiowe
- Doskonałe wykrywanie błędów
 - ✓ CRC
- Tolerancja uszkodzeń
 - ✓ Wbudowane funkcje wykluczające uszkodzony węzeł
- Najcześciej wykorzystywany protokół w motoryzacji i przemyśle

ISO-OSI Reference Model

ISO-OSI Reference Model (2)

Przykładowe warstwy aplikacyjne CAN (Applications Layers)

- CAL (CAN Application Layer)
- CANopen
- PCAL
- DeviceNetTM
- SDSTM (Smart Distributed System)
- CAN KingdomTM

Pining of a 9-Pin D-Sub connector, recommended by CiA Draft Standard 102 V2.0

DC Characteristics

		Bus Cable			
Bus Length	Length- Related Resistance	Bus-Line Cross-Section	Termination Resistance		
0 40 m	70 mΩ/m	0.25 mm ² 0.34 mm ² AWG23, AWG22	124 Ω (1%)	1 Mbit/s at 40 m	
40 300 m	<60 mΩ/m	0.34 mm ² 0.6 mm ² AWG22, AWG20	127 Ω (1%)	500 Kbit/s at 100 m	
300 600 m	<40 mΩ/m	0.5 mm ² 0.6 mm ² AWG20	150 Ω το 300 Ω	100 Kbit/s at 500 m	
600 m 1 km	<26 mΩ/m	0.75 mm ² 0.8 mm ² AWG 18	150 Ω το 300 Ω	50 Kbit/s at 1k m	

CAN Bus-line Cross-Sections

Length	32 nodes	64 nodes	100 nodes
100 m	0,25 mm ²	0,25 mm ²	0,25 mm ²
250 m	0,34 mm ²	0,50 mm ²	0,50 mm ²
500 m	0,75 mm ²	0,75 mm ²	1,00 mm ²

Wire resistance Rw < 21 Ω (32 nodes), < 18,5 Ω (64 nodes), 16 Ω (100 nodes),

ISO 11898-2 Network Setup

ISO 11898-2 Node

Nominal Bus Levels

Electromagnetic Interference

MCP2551 CAN Bus Transceiver

Bit-Stuffing Rule

Signal Propagation

$$t_{propagation} = 2 (t_{cable} + t_{controller} + t_{optocoupler} + t_{transceiver})$$

Data-Rate/Bus-Length Ratio

Practical Bus Length

Bit Rate	Bus Length	Nominal Bit-Time	
1 Mbit/s	30 m	1 μs	
800 kbit/s	50 m	1,25 μs	
500 kbit/s	100 m	2 μs	
250 kbit/s	250 m	4 μ s	
125 kbit/s	500 m	8 μ s	
62,5 kbit/s	1000 m	20 μs	
20 kbit/s	2500 m	50 μs	
10 kbit/s	5000 m	100 μs	

Nominal Bit Time

- Odwrotność bit rate -> nominal bit time.
- Składa się z 4 faz.

Broadcast Communication

Remote Request

Multiple Bus Access

Typy ramek (messages) CAN

- Data frame
- Remote frame
- Error frame
- Overload frame

Ramka danych (Data Frame)

• Ramka danych zawiera 7 pól: start-of-frame, arbitration, control, data, CRC, ACK, and end-of-frame.

Arbitration field

Standard Frame Format

Extended Frame Format

- Identyfikator standardowy współgra z base ID w rozszerzonym formacie.
- Bit RTR jest żądaniem zdalnym transmisji i musi być 0 (dominant) w ramce danych.
- Bit SRR jest odpowiednikiem RTR i musi być recesywny.
- Pole IDE rozróżnia czy identyfikator jest rozszerzony i powinien być recesywny w ramce ext

Bus Arbitration Method

Node 3 wins arbitration and transmits his data.

CAN Data Frame

Control Field

Data/CRC

RTR	IDE/r1	r0	DLC	3 DLC2	DLC1	DLC0
		No. of Data	Data Length Code (DLC)			
	E	Bytes	DLC3	DLC2	DLC1	DLC0
		0	d	d	d	d
		1	d	d	d	r
		2	d	d	r	d
		3	d	d	r	r
		4	d	r	d	d
		5	d	r	d	r
		6	d	r	r	d
		7	d	r	r	r
		8	r	d/r	d/r	d/r

CRC Field

- Zawiera 16-bitową sumę CRC i CRC delimiter.
- CRC delimiter to pojedyńczy bit recessive.

Pole ACK

- Składa się z dwu bitów
- Pierwszy bit to acknowledgement bit.
 - Nadawany jako recesywny przez transmitter, ale wymuszany jako dominant jeśli odbiorca potwierdza data frame.
- Drugi bit to ACK delimiter recesywny.

Ramka Remote

- Wysyła ją węzeł aby spowodowac wysłanie przez inne węzły określonej informacji
- Ma 6 pól
 - Identyczne jak w ramce danych z wyjątkiem bitu
 RTR bit który jest recessive.

Ramka błędu (Error Frame)

- Składa się z dwu pól.
 - Pierwsze jest superpozycją flag błędów z róznych węzłów.
 - Drugie to error delimiter.
- Error flag może być active-error flag lub passive-error flag.
 - Active error flag składa się z 6 kolejnych bitów dominujących.
 - Passive error flag składa się z 6 kolejnych bitów recesywnych.
- Error delimiter to 8 bitów recesywnych.

Overload Frame

- Składa się z: overload flag i overload delimiter
- 3 przyczyny transmisji overload frame:
 - Wewnętrzne uwarunkowania odbiornika wymagają opóźnienia kolejnej ramki data frame lub remote frame.
 - Przynajmniej jeden węzeł wykrywa bit dominujący podczas intermission.
 - Wezeł CAN wykrywa dominant bit w 8 (ostatnim) bicie pól error delimiter lub overload delimiter.
- Overload flag -> 6 dominant bits.
- Overload delimiter -> 8 recessive bits.

Errors

- Rodzaje błędów.
 - Bit error (nadawca sprawdza czy to co nadaje jest na magistrali, jeśli nie stwierdza błąd z wyjątkiem pola arbitrażu i ACK;
 - Stuff error 6 (lub więcej) bitów recesywnych/dominujących pojawia się w ramce
 - CRC error niezgodność sumy w polu CRC i obliczonej przez odbiorcę
 - Frame error niezgodność kształtu ramki
 - Acknowledgement error brak potwierdzeniaw polu ACK

Error Signaling

- Węzeł który stwierdza błąd sygnalizuje go wysyłając error flag
 - An error-active node will transmit an active-error flag.
 - An error-passive node will transmit a passive-error flag.

Fault Confinement

- CAN Node Error States:
 - Error Active: Normal state, node can send all frames (error frames included)
 - ✓ Error passive: Node can send all frames excluding error frames
 - ✓ Bus off: Node is isolated from bus
- Internal Counters: TEC & REC
 - ✓ TEC: Transmit Error Counter
 - ✓ REC: Receive Error Counter

Liczniki TEC i REC pozwalają wyłączać wadliwe węzły

Stand-Alone CAN Controller

Integrated CAN Controller

Single-Chip CAN Node

Microcontroller

CAN Controller Architecture

Dual-CAN Architectures

