EBU5405 3D Graphics Programming Tools

Introduction

Dr. Marie-Luce Bourguet (marie-luce.bourguet@qmul.ac.uk)

EBU5405

1

Today's agenda

- 3D graphics:
 - 3D basics
 - 3D rendering pipeline
 - Application examples
- Introduction to EBU5405

EBU5405

3D Graphics

<u>3D graphics programming</u> is the subject concerned with how <u>2D images</u> can be generated from abstract descriptions of <u>3D objects</u>.

3D computer graphics are graphics that use a three-dimensional representation of geometric data that is stored in the computer for the purposes of performing calculations and rendering 2D images.

EBU5405

3

3D Graphics

EBU5405

3D Graphics

EBU5405

5

3D Graphics

EBU5405

3D Graphics

Queen Mary

EBU5405

7

Modelling

The generation of abstract descriptions of 3D objects is called geometric modelling.

Rendering

The generation of 2D images from 3D models is called rendering.

Queen Mary

9

EBU5405

Rendering: Lighting

By simulating the interaction between light and matter (lighting) the object surfaces can be realistically coloured (shading).

EBU5405

Queen Mary

Rendering: Texture

EBU5405

11

Queen Mary University of London

Rendering: Viewing

Rendering: Viewing

Rendering: Viewing

EBU5405

2D versus 3D : spot the differences!

EBU5405

Queen Mary
University of London

15

This is a cube ... really?

EBU5405

Queen Mary
University of London

Modelling Transformation (rotation)

17

Lighting and Shading

EBU5405

Queen Mary
University of London

Perspective Projection

EBU5405

19

Perspective = Distortion

EBU5405

Queen Mary
University of London

2D versus 3D : spot the differences!

21

Rendering

Rendering a 3D scene needs the representation of a number of objects:

- The 3D objects of the 3D scene, characterised by:
 - Their geometry
 - Their respective postions
 - Their material sed for shading calculations)
- A camera (a viewer), characterised by:
 - Its position
 - Its lens (used for ojection calculations)
- A light source, characterised by:
 - Its position
 - Its geometry
 - Its colour

Queen Mary

EBU5405

The 3D basics

- · 3D Computer graphics
 - generating 2D images of a 3D world represented in a computer
- Modelling
 - Representing 3D objects
 - (shape) creating & representing the geometry of objects in the 3D world
- Rendering
 - Constructing 2D images from 3D models
 - (light, perspective) generating 2D images of the objects
- Imaging
 - Representing 2D images
- Animation
 - Simulating changes over time
 - · (movement) describing how objects change in time

EBU5405

23

Today's agenda

- · 3D graphics:
 - 3D basics
 - 3D rendering pipeline
 - Application examples
- Introduction to EBU5405

EBU5405

Pipeline architecture

- Graphics rendering is like a manufacturing assembly line with each stage adding something to the previous one.
- Within a pipeline architecture, all stages are working in parallel.
- Because of this pipeline architecture, today's graphics processing units (GPUs) perform billions of calculations per second. They are increasingly designed with more memory and more stages, so that more data can be worked on at the same time.

EBU5405

<u>Va</u> Queen Mary University of London

25

Pipeline architecture

EBU5405

Queen Mary
University of London

Pipeline architecture

EBU5405

Queen Mary University of London

27

The 3D Rendering Pipeline

The 3D rendering pipeline

Today's agenda

- 3D graphics:
 - 3D basics
 - 3D rendering pipeline
 - Application examples
- Introduction to EBU5405

EBU5405

Queen Mary
University of London

Entertainment

Final Fantasy (Square, USA

EBU5405

33

Entertainment

Minions (Universal Pictures)

EBU5405

Entertainment

Square: Final Fantasy

Queen Mary
University of London

EBU5405

35

Medical Visualisation

MIT: Image-Guided Surgery Project

Queen Mary
University of London

EBU5405

Scientific visualization

Airflow around a Harrier Jet (NASA Ames)

EBU5405

37

Computer Aided Design (CAD)

EBU5405

Queen Mary
University of London

Training

Designing Effective Step-By-Step Assembly Instructions (Maneesh Agrawala et. al)

EBU5405

39

Education

Outside In (Geometry Center, University of Minnesota)

EBU5405

Flight Simulator

EBU5405

Queen Mary
University of London

41

Everyday use

EBU5405

Queen Mary University of London

Today's agenda

- 3D graphics:
 - 3D basics
 - 3D rendering pipeline
 - Application examples
- Introduction to EBU5405

EBU5405

Queen Mary
University of London

43

Course Aims and objectives

- To understand the basic transformations and rendering techniques for the creation of 3D graphics
- Ability to implement computer generated animations
- Ability to implement 3D virtual environments using OpenGL

EBU5405

Queen Mary

Content Overview: week 1 3D geometric primitives INTRODUCTION Modelling Transformation 3D basics 3D rendering pipeline Lighting Application examples Viewing Transformation 3D COMPUTER GRAPHICS SOFTWARE Projection Transformation INTRODUCTION TO OPENGL (2D) Clipping Scan Conversion **Image** 🛂 Queen Mary EBU5405 45

Assessment

Final exam: 75% of the final mark

Coursework: 25% of the final mark

- Individual coursework
- Labs support the coursework (8 sessions)
- Programming in C and OpenGL

EBU5405

Queen Mary

49

Labs

- · Two-hour sessions with Teaching Assistants
- · 8 labs in total
 - · lab1 (OpenGL practice)
 - · lab2 (OpenGL practice)
 - · lab3 (OpenGL practice)
 - · lab4 (modelling)
 - · lab5 (transformations and animation)
 - · lab6 (lighting)
 - · lab7 (materials)
 - lab8 (end of coursework ...) → submission due

NOTE: Lab exercises and Coursework are linked

EBU5405

Resources

Recommended book :

Interactive Computer Graphics - A Top-Down Approach with OpenGL, by Edward Angel (Fifth Edition)
Addison-Wesley 2009 - ISBN 0-321-54943-0

- Web
 - http://www.opengl.org/ Documentation, tutorials, source code
 - $-\ \underline{http://www.cs.uccs.edu/\sim\!semwal/indexGLTutorial.html}\ OpenGL\ tutorial$

EBU5405

