1. Forme générale : test d'hypothèses

Considérons un test d'hypothèse où $X \sim \text{Loi}(\theta)$. Un test d'hypothèses est une procédure basée sur un échantillon de données dans le but de rejeter ou ne pas rejeter l'hypothèse nulle. Normalement, on a que :

- Hypothèse nulle : $H_0: \theta = \theta_0$
- Contre-hypothèse :
 - 1. $H_1: \theta \neq \theta_0$ (bilatéral)
 - 2. $H_1: \theta > \theta_0$ (unilatéral à droite)
 - 3. $H_1: \theta < \theta_0$ (unilatéral à gauche)

Par exemple, soit le test d'hypothèses où $H_0: \mu = 5$ et $H_1: \mu \neq 5$.

2. Erreur de type I et de type II

	H_0 vraie	H_0 fausse
H_0 est rejetée	Erreur de type I (α)	$1 - \beta$
H_0 n'est pas rejetée	$1-\alpha$	Erreur de type II (β)

 $\alpha = P(H_0 \text{ rejet\'ee}|H_0 \text{ vraie}), \quad \beta = P(H_0 \text{ accept\'ee}|H_0 \text{ fausse})$

3. Test d'hypothèse sur une moyenne $(H_0: \mu = \mu_0)$

Supposons que σ est connue. La statistique de test est $z_0 = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$ et l'on rejette H_0 si $|z_0| > z_{\alpha/2}$. On a alors :

Hypothèses	valeur de β	valeur de n
$H_0: \mu = \mu_0$ contre $H_1: \mu < \mu_0$	$\beta(\mu) = \Phi\left(z_{\alpha} + \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right)$	$n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$
$H_0: \mu = \mu_0$ contre $H_1: \mu > \mu_0$	$\beta(\mu) = \Phi\left(z_{\alpha} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right)$	$n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$
$H_0: \mu = \mu_0$ $contre$ $H_1: \mu \neq \mu_0$	$\beta(\mu) = \Phi\left(z_{\alpha/2} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right) - \Phi\left(-z_{\alpha/2} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right)$	$n \approx \frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$

Supposons maintenant que σ est inconnue. Il s'agit d'un test t et la statistique de test est $t_0 = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$. On rejette l'hypothèse nulle si $|t_0| > t_{n-1;\alpha}$. β est alors déterminé en fonction de $d = \frac{|\mu - \mu_0|}{\sigma}$ (voir table VI, p.492-493).