第三章 物理层

- 3.1 物理层功能
- 3.2 物理层接口
- 3.3 传输介质
- 3.4 物理层网络互连

3.1 物理层功能

- 负责如何将<mark>计算机连接到通信媒体</mark>上(主要任务是 定义好计算机连接到通信媒体的<mark>接口特性</mark>)
- 数据传输的单位是比特(Bit)

物理层协议

- 四个特性:
 - <mark>机械</mark>特性:说明接口的插头尺寸、插头各管脚的 位置等
 - <mark>电气</mark>特性:说明传输线上出现的<mark>电压应在什么范</mark> 围
 - 功能特性: 说明某根传输线上出现的某一电平代表何种意义
 - <mark>规程</mark>特性: 说明对于<mark>不同的功能各种可能事件出现的先后顺序</mark>

3.2 传输介质

- <mark>信息</mark>最终要转变成<mark>信号</mark>才能传输。
- ■用于传输信号的介质分为:
 - 导向传输媒体(有线介质)
 - 非导向传输媒体 (无线介质)
- ■各种类型:
 - ■双绞线
 - ■同轴电缆
 - ■光纤
 - ■微波
 - ■红外
 - •••

物理层下面的传输媒体

电信领域使用的电磁波的频谱

V─very甚高频, U─ultra特高频, S─super超高频, E─extremely极高频, T─tremendously

3.2.1 双绞线

双绞线类型

- ■UTP非屏蔽双绞线
- ■屏蔽双绞线
 - STP
 - S/UTP
 - S/STP

conductor insulation pair sheath

conductor insulation pair pair shield sheath

S/UTP

conductor insulation pair cable shield sheath

连线标准

■ 在EIA/TIA布线标准中规定了双绞线的两种线序568A与568B

	568A		
Pair	Wire	Pin	
1	White/Blue	5	
	Blue	4	
2	White/Orange	3	
	Orange	6	
3	White/Green	1	
	Green	2	
4	White/Brown	7	
	Brown	8	

	568B		
Pair	Wire	Pin	
1	White/Blue	5	
	Blue	4	
2	White/Green	3	
	Green	6	
3	White/Orange	1	
	Orange	2	
4	White/Brown	7	
	Brown	8	

UTP插座

双绞线连接器

- ■8P8C,也称之为RJ45,是以太网使用双绞线连接时常用的连接器插头。
- 8P8C:
 - ■8个位置(Position)
 - ■8个触点(Contact)
- 在百兆以太网中,仅使用1、2、3、6四根线。
- 差分信号传输方式,减少电磁干扰,其中1、 2为TX(发送),3、6为RX(接收)。
- 在千兆以太网或者以太网供电中,全部的四对都被使用。

直连线与交叉线

- 直连线就是<mark>两端相同</mark>,同为EIA-568-A或者同为EIA-568-B
- 交叉线就是一端使用EIA-568-A,另一端使用EIA-568-B的连接方法。

Categories of UTP Cables

- EIA classifies UTP cables according to the quality:
 - Category 1 the lowest quality, only good for voice, mainly found in very old buildings, not recommended now
 - Category 2 good for voice and low data rates (up to 4Mbps for low-speed token ring networks)
 - Category 3 at least 3 twists per foot, for up to 10 Mbps (common in phone networks in residential buildings)
 - Category 4 up to 16 Mbps (mainly for token rings)
 - Category 5 (or 5e) up to 100 Mbps (common for networks targeted for high-speed data communications)
 - Category 6 more twists than Cat 5, up to 1 Gbps

3.2.2 同轴电缆

- ■用于<mark>总线网络</mark>的<mark>拓扑结构</mark>
- ■有两种类型:
 - 细缆(10Base2)
 - 粗缆(10Base5)

3.2.3 光纤

光纤工作原理

光纤的特点

- 优点: 抗干扰, 传输速率高、距离长
- ■缺点: 价格贵, 安装维护困难, 费用高
- 规格: 单模, 多模
- ■光缆组件
- ■光电转换设备

多模光纤与单模光纤

单模光纤的传播距离比多模光纤的传播距离远

光缆组件

<mark>光电转换</mark>设备

- ■设备必须与光纤匹配
 - ■传输:发光二极管(LED)或注入激光二极管(ILD)
 - ■接收:光敏元件或光敏二极管

Ethernet Cable Summary

Specification	Cable Type
10BaseT	Unshielded Twisted Pair
10Base2	Thin Coaxial
10Base5	Thick Coaxial
100BaseT	Unshielded Twisted Pair
100BaseFX	Fiber Optic
100BaseBX	Single mode Fiber
100BaseSX	Multimode Fiber
1000BaseT	Unshielded Twisted Pair
1000BaseFX	Fiber Optic
1000BaseBX	Single mode Fiber
1000BaseSX	Multimode Fiber

3.2.4 无线传输介质

- 无线传播的主要信号:
 - ■地面微波
 - ■卫星微波
 - ■红外线
- 无线传播的两种方法:
 - ■定向
 - ■全向

微波通信

■视距传播

■ 电离层反射

卫星通信

点对点通信线路

广播式通信线路

WLan组件

3.3 物理层接口

DTE与DCE

- DTE (数据终端设备, Data Terminal Equipment)是具有数据处理能力及发送和接收数据信息能力的设备。
- DCE (数据通信设备, Data Circuit-Terminating Equipment) 是能够通过 网络发送和接收模拟或数字 信号形式数据的设备。
- DTE一般不直接连接网络,它通过一台DCE通信, DTE和DCE的连接称为DTE—DCE接口。
- 在DTE—DCE接口上既有数据信息又有<mark>控制信息</mark>。
- 为了使各个计算机公司生产的DTE可以方便地和 DCE相连,就必须<mark>对DTE—DCE接口进行标准化</mark>, 这些标准就是我们通常所说的<mark>物理层协议</mark>。

3.3.1 EIA-232接口标准

■ EIA-232接口标准是由电子工业协会 (EIA)1962年制定的,早期称为RS-232标准

机械特性

- **DB25连接器**
- 数据-4, 控制-11, 定时-3, 其它-7
- 电缆长度不能超过25米

Male connector

Female connector

电气特性(1)

- ■数据以逻辑0、1的形式传输。
- 数据信号采用<mark>非归零电平编码(NRZ-L)</mark>
 - 0对应正电平,1对应负电平。电压-15~+15V

电气特性(2)

- ■控制信号的电气规范: 电压-15~+15V
 - ■正电平—开
 - 负电平—关

RS-232异步串行传输

■ 每个数据包含有<mark>7或8 bit数据位</mark>、 1bit起始位, 1bit停止位, 1bit校验位

功能特性

2-TxD、3-RxD、4-RTS、5-CTS、6-DSR、7-SG、8-CD、 20-DTR、22-RI

EIA-232引脚功能(1)

线路代号	连线号	信号方向	功能
AA	1		保护地。 连接设备外壳或者地表。
AB	<mark>7</mark>		信号地。所有的信号电平以它为参考电平。
ВА	2	DTE → DCE	发送数据(TD)。DTE在该线上传送数据给DCE。
BB	3	DCE → DTE	接收数据(RD)。DTE在该线上接收DCE传来的数据。
CA	<mark>4</mark>	DTE → DCE	请求发送(RTS)。DTE在发送数据之前使用该线路请求DCE的许可。
СВ	<mark>5</mark>	$DCE \rightarrow DTE$	清除待发送(CTS)。DCE使用该线路允许DTE发送数据。
CC	<mark>6</mark>	DCE → DTE	DCE准备好(DSR)。该线路上的信号表示DCE已经连上通信媒体,完成了操作准备。比如说,如果DCE是一台调制解调器,该线路就用来表示它是否在线。
CD	<mark>20</mark>	DTE → DCE	DTE准备好(DTR)。该线路上的信号表示DTE已经准备好进行发送和接收。他可用来给一台调制解调器发信号,告诉它什么时候连接通信信道。
CE	22	DCE → DTE	振铃指示。表示DCE从通信信道上收到一个振铃信号(比如调制解调器收到一个呼叫)。
CF	8	DCE → DTE	数据载波检测。表示DCE收到一个符合适当标准的载波信号。基本上,这表示DCE理解引入信号。

EIA-232引脚功能(2)

线路代号	连线号	信号方向	功能
CH/CI	23	DCE→DTE 或DTE→DCE	数据信号速率选择或指示。在DTE和DCE之间有两种信号速率可用时,该线路指明使用哪一种。
DA	<mark>24</mark>	DTE → DCE	DTE到DCE发送信号时钟。DCE用此时钟信号为信号的产生计时。
DB	15	DCE → DTE	DCE到DTE发送信号时钟。类似于DA,但这里是DCE为DTE的信号发送提供定时信号。
DD	<mark>17</mark>	DCE → DTE	DCE到DTE接收信号时钟。DCE为DTE的信号接收提供定时信号。
RL	21	$DTE \to DCE$	远程回送。用于测试,指示DCE返回传输信号。
LL	18	$DTE \to DCE$	本地回送。指示本地DCE返回传输信号。
SBA	14	$DTE \to DCE$	辅助信道发送数据。和BA一样,但它使用辅助信道。
SBB	16	$DCE \rightarrow DTE$	辅助信道接收数据。和BB一样,但它使用辅助信道。
SCA	19	$DTE \to DCE$	辅助信道请求发送。和CA一样,但它使用辅助信道。
SCB	13	DCE → DTE	辅助信道清除待发送。和CB一样,但它使用辅助信道。
SCF	12	DCE → DTE	辅助信道数据载波检测。和CF一样,但它使用辅助信道。
TM	25	$DCE \rightarrow DTE$	测试模式。表示DCE处于测试模式。

规程特性

数据通信设备

同步全双工。 描述232串行通信的规程, 数据终 通信网络 DTE **DCE DCE** DTE 端设备 保护地 1 步骤1:准备 步骤1:准备 信号地 DTE就绪 20 (20 20 20 步骤2:就绪 步骤2:就绪 DCE设备 6 6 6 就绪 载波 9 4 8 8 请求发送 4 (步骤3:建立 步骤3:建立 5 5 清除待发 4 载波 数据载 8 5 波检测 数据 2 3 2 3 (发送数据 步骤4: 步骤4: DTE到DCE发 24 17 送信号时钟 数据 数据传输 数据传输 3 2 3 接收数据 DCE到DTE接 17 24 24 收信号时钟 载波关 步骤5:清除^{请求发送} 4 8 步骤5:清除 5 清除待发 5 载波关 数据载 8 波检测

EIA-232子集

- 很多实际的DTE—DCE接口只用到9针的连接器,这是EIA-232标准接口的一个子集。由于大多数用户并不需要EIA-232标准接口的所有功能。例如:
 - 在异步串行通信中,不需要同步时钟信号线。只需要2、3、4、5、6、7、8、20和22号信号线, 共9针。计算机的串行口实际上就是EIA-232标准 接口的一个子集。

USB (Universal Serial Bus)

Connectors	USB 1.0 1996	USB 2.0 2001	USB 2.0 Revised	USB 3.0 2011	USB 3.1 & 3.2 2014 & 2017
Data rate	187.5 kB/s (Low Speed)	60 MB/s	60 MB/s	625 MB/s (SuperSpeed)	1.25 GB/s
	1.5 MB/s (<i>Full Speed</i>)				2.5 GB/s (SuperSpeed+

USB 2.0/3.0

■ USB 2.0:

- two wires for power (VBUS and GND)
- two for differential serial data signals.
- Mini and micro: GND connections moved from pin #4 to pin #5; pin #4 serves as an ID pin for the On-The-Go host/client identification.

■ USB 3.0:

- four wires: SSTx+, SSTx-, SSRx+ and SSRx-
- providing full-duplex data transfers

USB 2.0 pinout

Type-A and -B pinout									
Pin	Name	Wire color		Description					
1	V _{BUS}	Red or	Orange	+5 V					
2	D-	White or	Gold	Data-					
3	D+	Green	Data+						
4	GND	Black or	Blue	Ground					

差分信号(Differential signaling)

差分信号

数字用户线路

- DSL: Digital Subscriber Line
- ■常规电话线路本地局端的滤波器将带宽限制为4kHz。
- ■3类UTP的带宽远远大于4kHz,如果局端滤波器的限制策略为按需可调,则增加的带宽可用于宽带服务
- ■不同类型xDSL
 - ASDL:上行64k~1Mbps,下行1~8Mbps
 - VDSL:
 - HDSL:
 - SDSL:

ADSL接入模型

ATU-C: ADSL Transmission Unit - Central ATU-R: ADSL Transmission Unit - Remote

DSLAM: Digital Subscriber Line Access Multiplexer

离散多音调调制

- DMT: Discrete MultiTone modulation
- 将本地可用带宽(约1.1MHz)分成256个 4312.5Hz的独立信道
 - ■信道0: 传统电话
 - ■信道1~5: 保留
 - ■信道6~256: 1个上行控制,1个下行控制,其它 用于数据传输

常用的ADSL带宽分配

■ 一般情况: 80~90%的信道分配给下行, 10~20%分配给上行

Voice	4k	4k	4k	•••••	4k
Upstream	64k	256k	512k		1M
Downstream	512k	1M	2M	• • • • •	8M

3.4 物理层互联设备

- ■物理层的网络设备:中继器、集线器
- 中继器作用于信号的电气部分,重新产生信号,可以扩展局域网所覆盖的地理范围。
- 对网络的要求:
 - 所连接的<mark>局域网</mark>具有相同的物理层和媒体访问控制协议

用中继器连接局域网

使用中继器的问题

- ■性能
 - ■有更多的站点访问媒体,会导致更多的流量,从 而导致局域网性能的下降。
- ■安全性
 - 更多的站点访问同一媒体, 安全保障更加困难。