Nome, cognome, matricola

Calcolatori Elettronici (12AGA) – esame del 18.7.2024

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Non è possibile consultare alcun tipo di materiale. Tempo: 15 minuti.

1	Qual è il numero minimo di flip flop nece				ш.			
2	Quale caratteristica è propria del il rit	ordo a l'or	en cono li	naarmanta nranarzian	nali al parallelis	mo	Α	\neg
_		ù lento del			ian ai paranens	illo	В	_
				ie seriale			С	-
		co modula		1	1. 4: !!	1:		
	è composto da moduli che generano un segnale di "generazione" ed uno di "propagazione"						D	
•								
3	Si consideri una cache con le seguenti car	ratteristich	e			8 bit	A	\Box
	• 256 linee da 16 byte					4 bit	В	_
	Meccanismo direct mapping.					20 bit	С	
	11 6	****		u 22 hit anal à la d	limanaiana dal	24 bit	D	
	Assumendo che gli indirizzi emessi dal processore siano su 32 bit, qual è la dimensione del campo tag associato a ogni linea?							
4	Dove è memorizzata la Interrupt Vector 7	Cabla in un	gigtoma (ranaral numaca?	Nalla mam	oria virtuale	Α	\neg
7	Dove e memorizzata la interrupt vector l	able III uii	Sistema §	general purpose:		della memoria RAM o	В	\dashv
					ROM			
All'interno della						della memoria RAM	C	
					All'interno	della memoria ROM	D	
5 Quali vantaggi presenta il meccanismo del DMA? Permette di ridurre i tempi di esec								
					nto da I/O verso memoria e viceversa			
				la complessità HW de			В	
		Rende più semplici le operazioni di gestione dell'interrupt					С	_
	Permette di semplificare il software di gestione dei trasferimenti da I/O verso memoria e viceversa						D	
			1/O vers	o memoria e vicevers.	a			
6	Parlando di memorie RAM, quale vantag	gio presen	ta l'archit	tettura a matrice rispet	tto È più veloc	e	Α	
	a quella a vettore?				В			
					È più facile	da progettare	С	
					È più resist	ente a possibili guasti	D	
								_
7	Perché le RAM dinamiche sono dotate un codice di protezione (basato su parita	à o		•			A	
	Hamming)?	Per ri		la probabilità che una radiazione provochi un comportamento				
			nella me		alla mamaria	possa essere preservato	С	_
			nitamente		ena memona	possa essere preservato		
				la vita utile del dispositivo			D	
8	In un processore MIPS, dove viene salvat	to l'indirizz	o di	Nel registro EPC del	CP0		Α	\neg
٦	ritorno nel momento in cui viene scatenata un'eccezione?						В	\dashv
				In un registro del pro	ocessore		С	\dashv
				In un'apposita cella di memoria			D	_
				in an apposita cena a	ii iiiciiioiiu		 	
9	Di che tipo è l'istruzione			Tipo R			A	
	sw \$t2, (\$t1)?			Tipo I			В	
				Tipo J			С	
				Tipo A			D	
J.				•				
10	Si divida il contenuto del registro \$t0	per 2 (as	sumendo	che contenga un				
	numero con segno), utilizzando un'istruzione di shift.							

Risposte corrette

1	2	3	4	5	6	7	8	9	10
9	A	С	С	A	В	В	A	В	

Domanda 10

sra \$t0, \$t0, 1

Nome	Nome, cognome, matricola					
	Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 45 minuti.					
C	Si consideri un circuito combinatorio avente 4 ingressi <i>a,b,c,d</i> e una uscita <i>o</i> in cui il valore è 1 se e solo se i 4 ingressi corrispondono a un numero senza segno minore di 10. Si assuma che il bit <i>a</i> sia il più significativo. Si richiede di Scrivere la tabella di verità Estrarre la funzione booleana corrispondente al circuito minimo Calcolare il numero di porte logiche necessarie per la sua realizzazione (utilizzando esclusivamente porte and, or e not) Calcolare il ritardo del circuito, assumendo che ogni porta abbia ritardo unitario.					

12	Si consideri un banco di memoria da 8 Kparole di 16 bit ciascuna, composto da moduli da 2Kparole da 8 bit ciascuno.					
	Si risponda alle seguenti domande:					
	 quanti moduli sono necessari per realizzare l'intero banco di memoria? chi pilota i segnali di indirizzo di ciascun modulo? 					
	3. chi pilota il segnale di enable di ciascun modulo?					
	4. chi pilota i segnali di dato di ciascun modulo?					

13	Si consideri il meccanismo della memoria virtuale: si descriva la sequenza di operazioni eseguite per trasformare ciascun indirizzo logico generato dal processore nel conseguente indirizzo fisico. Per ciascuna operazione, si specifichi quali sono i moduli hardware o i componenti software coinvolti. Si richiede inoltre di elencare i vantaggi derivanti dall'adozione del meccanismo della
	memoria virtuale.

14	Si illustrino le funzionalità offerte da un DMA Controller e si elenchino i passaggi attraverso i quali avviene un trasferimento in
	DMA, partendo dalla fase di programmazione.

Nome, Cognome, Matricola:

Esercizio di programmazione

sino a 12 punti – è possibile consultare solamente il foglio con l'instruction set MIPS - tempo: 60 minuti

Sia dato un vettore Vet[n] contenente n valori numerici interi e positivi, rappresentabili in un byte, risultato del campionamento di un segnale elettrico, ogni numero rappresenta il corrispondente valore in mV del segnale all'istante Tn.

Vengono dati due valori numerici, V1 e V2, con V2 > V1 > 0.

I parametri passati sono nell'ordine:

- Indirizzo del vettore Vet[]
- Numero elementi di Vet[]
- Valore V1
- Valore V2.

Si scriva una procedura vCalc che ritorni

- in \$v0 il numero totale di elementi del vettore che risultano compresi nell'intervallo [V1, V2], estremi compresi
- nello stack i seguenti valori:
 - o (SP) la posizione P1 del valore massimo fra tutti gli elementi del vettore
 - o 4(SP) la posizione P2 del valore massimo fra gli elementi del vettore escluso quello in posizione P1.

Esempio:

Vet	
i	mV
0	6
1	6 2 4 3
2	4
3	3
4	10
5	8
6	8 5 9
7	9
1 2 3 4 5 6 7 8	1
9	4

```
Range Output V1=4 V2=8 v0=5 (SP)=4 4(SP)=7
```

Di seguito un esempio di programma chiamante:

```
num elem = 10
range min = 4
range max = 8
            .data
vet: .byte 6, 2, 4, 3, 10, 8, 5, 9, 1, 4
val max1:.byte 0
val max2:.byte 0
      .text
      .globl main
      .ent main
main: subu $sp, $sp, 4
      sw $ra, ($sp)
      la $a0, vet
      li $a1, num elem
                               #numero elementi del vettore
      li $a2, range min
                               # valore V1
      li $a3, range max
                               # valore V2
      subu $sp, $sp, 8
                               # spazio per valori di ritorno
      jal vCalc
      [...]
      addiu $sp, $sp, 8
      lw $ra, ($sp)
      addiu $sp, $sp, 4
      jr $ra
.end main
```