Lecture 08

Chapter 3. Vector Spaces

- 3.4. Basis and Dimension
- 3.5. Changing of Basis

3.4 Basis and Dimension

The elements of a minimal spanning set form the basic building blocks for the whole vector space.

Basis of Vector Space

Definition 1. The vectors $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$ form a basis [基,基底] for a vector space V if and only if

- (i) $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ are linearly independent;
- (ii) $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ span V.

Example 1. In \mathbb{R}^3 , the vectors $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ form a basis of the

vector space \mathbb{R}^3 , which are called the **standard basis** [标准基] for \mathbb{R}^3 .

However, there are many bases for \mathbb{R}^3 . For example,

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ and } \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ are both bases for } \mathbf{R}^3.$$

Example 2. In $\mathbb{R}^{2\times 2}$, consider the set $\{E_{11}, E_{12}, E_{21}, E_{22}\}$, where

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

(i) If
$$c_1E_{11} + c_2E_{12} + c_3E_{21} + c_4E_{22} = 0$$
,

then $\begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$

so $c_1 = c_2 = c_3 = c_4 = 0$. $E_{11}, E_{12}, E_{21}, E_{22}$ are linearly independent.

(ii) If A is in $\mathbb{R}^{2\times 2}$, then

$$A = a_{11}E_{11} + a_{12}E_{12} + a_{21}E_{21} + a_{22}E_{22}.$$

Thus, E_{11} , E_{12} , E_{21} , E_{22} span $\mathbb{R}^{2\times 2}$ and hence form a basis for $\mathbb{R}^{2\times 2}$.

 $\{E_{11}, E_{12}, E_{21}, E_{22}\}$: Standard basis for $\mathbb{R}^{2\times 2}$

Example 3. In the vector space P_3 , the vector set $\{1, x, x^2\}$ is a basis, since all vectors in P_3 can be represented as a linear combination of them.

This basis is called the standard basis for P_3 .

Theorem 1. If $\{v_1, v_2, ..., v_n\}$ is a **spanning set** for a vector space V, then any collection of m vectors in V, where m > n, is linearly dependent.

Proof. Let $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}$ be m vectors in V where m > n.

• Since $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ span V, we have

$$\mathbf{u_i} = a_{i1}\mathbf{v_1} + a_{i2}\mathbf{v_2} + \dots + a_{in}\mathbf{v_n}$$
 for $i = 1, 2, \dots, m$.

• A linear combination $c_1\mathbf{u_1} + c_2\mathbf{u_2} + \cdots + c_m\mathbf{u_m}$ can be written in the form

$$c_1 \sum_{j=1}^n a_{1j} \mathbf{v_j} + c_2 \sum_{j=1}^n a_{2j} \mathbf{v_j} + \dots + c_m \sum_{j=1}^n a_{mj} \mathbf{v_j}.$$

Rearranging the terms, we have

Theorem 1. If $\{v_1, v_2, ..., v_n\}$ is a **spanning set** for a vector space V, then any collection of m vectors in V, where m > n, is linearly dependent.

Proof. (continue)
$$c_1 \mathbf{u_1} + c_2 \mathbf{u_2} + \dots + c_m \mathbf{u_m} = \sum_{i=1}^m \left[c_i \left(\sum_{j=1}^n a_{ij} \mathbf{v_j} \right) \right] = \sum_{j=1}^n \left(\sum_{i=1}^m a_{ij} c_i \right) \mathbf{v_j}.$$

Consider the system of equations

$$\sum_{i=1}^{m} a_{ij}c_i = 0, \qquad j = 1, 2, \dots, n,$$

where c_i , i=1,2,...,m are unknowns. This is a homogeneous system with more unknowns (m) than equations (n), then the system must have a nontrivial solution $(\hat{c}_1, \hat{c}_2, ..., \hat{c}_m)$. Then

$$\hat{c}_1 \mathbf{u}_1 + \hat{c}_2 \mathbf{u}_2 + \dots + \hat{c}_m \mathbf{u}_m = \sum_{j=1}^n 0 \mathbf{v}_j = \mathbf{0}.$$

Corollary 1. If $\{v_1, ..., v_n\}$ and $\{u_1, ..., u_m\}$ are both bases for a vector space V, then n = m.

Proof. By Theorem 1,

- since $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ span V and $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}$ are linearly independent, we have $m \leq n$;
- by the same reason, $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}$ span V, and $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ are linearly independent, so $n \leq m$.

Therefore, n = m.

Dimension of Vector Space

Definition 2. Let V be a vector space. If V has a basis consisting of n vectors, we say that V has **dimension** [维数] n, denoted by $\dim V = n$.

- -The subspace $\{0\}$ of V is said to have dimension 0;
- -V is said to be **finite-dimensional** [有限维] if there is a finite set of vectors that spans V; otherwise, we say that V is **infinite-dimensional** [无限维].

Example.

- \mathbb{R}^3 : standard basis $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$, dim $\mathbb{R}^3 = 3$.
- $\mathbf{R}^{2\times 2}$: standard basis $\{E_{11}, E_{12}, E_{21}, E_{22}\}$, dim $\mathbf{R}^{2\times 2}=4$.
- P_n : standard basis $\{1, x, ..., x^{n-1}\}$, dim $P_n = n$.

Example 4.

• Let $\mathbf{x} = (x_1, x_2, x_3)^T$ be a **nonzero** vector in \mathbf{R}^3 , then

$$Span\{x\} = \{\alpha x | \alpha \in \mathbf{R}\}\$$

is a one-dimensional vector space.

• If x and y are two linearly independent vectors in \mathbb{R}^3 , then

Span
$$\{x, y\} = \{\alpha x + \beta y | \alpha, \beta \in \mathbb{R}\}$$
 is a two-dimensional vector space.

• If x, y and z are linearly independent, then $\mathrm{Span}\{x,y,z\} = \{\alpha x + \beta y + \gamma z | \alpha,\beta,\gamma \in \mathbf{R}\}$ is just \mathbf{R}^3 .

Example 5. The vector space of all polynomials *P* is infinite-dimensional.

Proof. In fact, if P is finite-dimensional, say of dimension n, any set of n+1 vectors would be linearly dependent. However, we can prove that $1, x, x^2, ..., x^n$ are linearly independent. This means that P cannot be of dimension n. Since n is arbitrary, P must be infinite-dimensional.

Note: The same argument shows that the vector space C[a, b] is infinite-dimensional.

Theorem. If V is a vector space of dimension n > 0:

- (i) Any set of n linearly independent vectors span V;
- (ii) Any n vectors that span V are linearly independent.

Proof. (i) Suppose that $\mathbf{v_1}, \dots, \mathbf{v_n}$ are linearly independent and \mathbf{v} is any other vector in \mathbf{V} . Since \mathbf{V} has dimension \mathbf{n} , it has a basis consisting of \mathbf{n} vectors and these vectors span \mathbf{V} . Then $\mathbf{v_1}, \dots, \mathbf{v_n}, \mathbf{v}$ must be linearly dependent. Therefore, any $\mathbf{v} \in \mathbf{V}$ can be written in form of linear combination of $\mathbf{v_1}, \dots, \mathbf{v_n}$. This means that $\mathbf{v_1}, \dots, \mathbf{v_n}$ span \mathbf{V} .

Theorem. If V is a vector space of dimension n > 0:

- (i) Any set of n linearly independent vectors span V;
- (ii) Any n vectors that span V are linearly independent.

Proof. (ii) Suppose that $\mathbf{v_1}, \dots, \mathbf{v_n}$ span V. If $\mathbf{v_1}, \dots, \mathbf{v_n}$ are linearly dependent, then one of the $\mathbf{v_i}$'s, say $\mathbf{v_n}$, can be written as a linear combination of the others. It follows that $\mathbf{v_1}, \dots, \mathbf{v_{n-1}}$ will still span V and this means that the dimension of V must be smaller than n. This contradicts with dim V = n.

Example 6. Show that $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$ is a basis for \mathbb{R}^3 .

Proof. Since dim $\mathbb{R}^3 = 3$, it is enough to show that the three vectors are linearly independent. This follows since

$$\begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{vmatrix} = 2 \neq 0.$$

Theorem. If V is a vector space of dimension $n \ge 0$, then

- (i) No set of less than n vectors can span V.
- (ii) Any subset of less than n linearly independent vectors can be extended to form a basis for V.
- (iii) Any spanning set containing more than n vectors can be pared down to form a basis for V.

Note: This theorem can be easily proved and this is left to the reader.

Some Vector Spaces and their Standard Basis

- (1) \mathbf{R}^n : the set $\{\mathbf{e_1}, \mathbf{e_2}, ..., \mathbf{e_n}\}$.
- (2) $\mathbf{R}^{m \times n}$: the set $\{E_{ij} | i = 1, 2, ..., m; j = 1, 2, ..., n\}$, where E_{ij} is the $m \times n$ matrix with all zero entries except the (i, j)th entry.
- (3) P_n : the set $\{1, x, x^2, ..., x^{n-1}\}$.

3.5 Changing of basis

Coordinate of Vector

If $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ form a **basis** of a finite-dimensional vector space \mathbf{V} , then they are linearly independent and they span the whole space \mathbf{V} .

Any vector \mathbf{x} can be written **uniquely** as a linear combination of $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$

$$\mathbf{x} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n}.$$

By using this basis, we find a simple way to represent all vectors in the space V. (coordinate system [坐标系])

Definition 1. Suppose $E = \{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ is an **ordered basis** of vector space V. Then any vector \mathbf{x} in V can be **uniquely** represented as

$$\mathbf{x} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n}$$

where α_i , i = 1, 2, ..., n are scalars and are called **coordinates** [$\Psi \pi$] of the vector \mathbf{x} in \mathbf{V} with respect to the ordered basis E.

The vector $(\alpha_1, \alpha_2, ..., \alpha_n)_E^T$ is called **coordinate vector** [坐标 向量] of vector \mathbf{x} in \mathbf{V} with respect to basis E, denoted by $[\mathbf{x}]_E$.

$$\mathbf{x} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n} = (\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$
$$= (\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}) [\mathbf{x}]_E.$$

Example 1. Suppose $E = \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}, F = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$

are two vector sets of \mathbb{R}^3 . Show that E and F are both bases of \mathbb{R}^3 and find the coordinate vectors of $\mathbf{x} = (1,2,3)^T$ w.r.t. the ordered bases E and F.

Solution. E is the standard basis of \mathbb{R}^3 . To show that F forms a basis of \mathbb{R}^3 it is enough to show that the three vectors are linearly independent. This can be done by check

$$\begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 1 \neq 0.$$

Solution. (continue) $x = (1,2,3)^T$

• Suppose that $[x]_E = (x_1, x_2, x_3)^T$, then we have

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \mathbf{x} = x_1 \mathbf{e_1} + x_2 \mathbf{e_2} + x_3 \mathbf{e_3} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

which implies that $[x]_E = (1,2,3)^T$.

• Suppose that $[x]_F = (y_1, y_2, y_3)^T$, then we have

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \mathbf{x} = y_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + y_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + y_3 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} y_1 + y_2 \\ y_1 + y_2 + y_3 \\ y_1 + y_3 \end{pmatrix}$$

This leads to the linear system $y_1 + y_2 = 1$ $y_1 + y_2 + y_3 = 2$ $y_1 + y_2 = 3$

By solving the system, we obtain $[x]_F = (2, -1, 1)^T$.

Remark.

- The coordinate vectors of x w.r.t. different bases will be generally different from each other, so when we refer to a coordinate vector of a vector, we must **make sure** which basis is used.
- When $V = \mathbf{R}^n$ and $E = \{\mathbf{e_1}, \mathbf{e_2}, ..., \mathbf{e_n}\}$ is the standard basis, for any vector $x \in \mathbf{R}^n$ we have $[x]_E = x$.

Example 2. Show that

$$E = \{1, x, x^2\}$$
 and $F = \{1 + x, x(1 + x), x^2\}$ are both bases of P_3 . Find the coordinate vectors of polynomial $p(x) = (1 + x)^2$ w.r.t. the ordered bases E and F .

Solution. E is the standard basis of P_3 . To show F is a basis of P_3 , it is enough to show that the three polynomials in F are linearly independent. For this purpose, assume that

$$\alpha_1(1+x)+\alpha_2x(1+x)+\alpha_3x^2=0.$$

$$\alpha_1 = 0$$

$$\alpha_1+\alpha_2 = 0 \implies \alpha_1=\alpha_2=\alpha_3=0$$
 We then have
$$\alpha_1+\alpha_2 = 0$$

$$\alpha_2+\alpha_3=0$$

Thus the three vectors in the set F are linearly independent and F forms a basis of P_3 .

Solution. (continue) $p(x) = 1 + 2x + x^2$

• Suppose $[p(x)]_E = (c_1, c_2, c_3)^T$. Then $p(x) = c_1 \cdot 1 + c_2 \cdot x + c_3 \cdot x^2$

By comparing the coefficients, we see that $[p(x)]_E = (1,2,1)^T$.

• Assume that $[p(x)]_F = (a_1, a_2, a_3)^T$ and then $p(x) = a_1(1+x) + a_2x(1+x) + a_3x^2$ $1 + 2x + x^2 = a_1 + (a_1 + a_2)x + (a_2 + a_3)x^2.$

By comparing the coefficients, we see that

$$a_1 = 1$$
 $a_1 + a_2 = 2$
 $a_2 + a_3 = 1$

Therefore $[p(x)]_F = (1,1,0)^T$.

Changing of basis in R²

Method of changing basis [基变换]

E: the original basis of V

F: the new basis of V

Question: How does the coordinate vector of $x \in V$ change with the changing of basis?

- (1) Given $[x]_E$, find $[x]_F$;
- (2) Given $[x]_F$, find $[x]_E$.

Let
$$E = \{\mathbf{e_1}, \mathbf{e_2}\}, F = \{\mathbf{u_1} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \mathbf{u_2} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}\}$$
 be bases of \mathbf{R}^2 .

$$\mathbf{u_1} = 0\mathbf{e_1} + 2\mathbf{e_2},$$

$$\mathbf{u_2} = 3\mathbf{e_1} + 1\mathbf{e_2}.$$

If
$$[x]_F = (c_1, c_2)^T$$
, we have

$$\mathbf{x} = c_1 \mathbf{u_1} + c_2 \mathbf{u_2} = (0c_1 + 3c_2)\mathbf{e_1} + (2c_1 + 1c_2)\mathbf{e_2}$$

$$= (\mathbf{e_1}, \mathbf{e_2}) \begin{pmatrix} 0c_1 + 3c_2 \\ 2c_1 + 1c_2 \end{pmatrix} = (\mathbf{e_1}, \mathbf{e_2}) \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

Let

$$U = \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} = (\mathbf{u_1}, \mathbf{u_2}).$$

Then

$$[x]_E = U[x]_F.$$

transition matrix from F to E

Let
$$E = \{\mathbf{e_1}, \mathbf{e_2}\}, F = \{\mathbf{u_1} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \mathbf{u_2} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}\}$$
 be bases of \mathbf{R}^2 .

$$[\mathbf{x}]_E = U[\mathbf{x}]_F$$

- The matrix *U* is called the **transition matrix** [过渡矩阵] from the ordered basis *F* to the standard basis *E*.
- *U* is invertible, since each column of *U* is a vector of the basis *F*.
- If we know $[x]_E$ and the transition matrix from basis F to basis E is U, then $[x]_F = U^{-1}[x]_E.$

 U^{-1} is the transition matrix from standard basis E to basis F.

Exercise. Let $\mathbf{x} = (1,1)^T$. Find the coordinates of \mathbf{x} w.r.t. the basis F.

Let $\{u_1, u_2\}$, $\{v_1, v_2\}$ be two bases of \mathbb{R}^2 .

Compute the **transition matrix** from basis $\{u_1, u_2\}$ to $\{v_1, v_2\}$:

Step 1. Find the transition matrix U from basis $\{\mathbf{u_1}, \mathbf{u_2}\}$ to the standard basis $\{\mathbf{e_1}, \mathbf{e_2}\}$,

$$U=(\mathbf{u_1},\mathbf{u_2}).$$

Step 2. Find the transition matrix V from basis $\{\mathbf{v_1}, \mathbf{v_2}\}$ to the standard basis $\{\mathbf{e_1}, \mathbf{e_2}\}$,

$$V=(\mathbf{v_1},\mathbf{v_2}).$$

Step 3. The transition matrix S from basis $\{\mathbf{u_1}, \mathbf{u_2}\}$ to $\{\mathbf{v_1}, \mathbf{v_2}\}$ can be calculated by

$$S = V^{-1}U.$$

Let $\{u_1, u_2\}$, $\{v_1, v_2\}$ be two bases of \mathbb{R}^2 .

Example 3. Suppose

$$\mathbf{u_1} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
, $\mathbf{u_2} = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$, $\mathbf{v_1} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\mathbf{v_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Find the transition matrix corresponding to the change of basis from $\{u_1, u_2\}$ to $\{v_1, v_2\}$.

- **Solution.** The transition matrix from basis $\{\mathbf{u_1}, \mathbf{u_2}\}$ to the standard basis is $U = (\mathbf{u_1}, \mathbf{u_2}) = \begin{pmatrix} 5 & 7 \\ 2 & 3 \end{pmatrix}$.
 - The transition matrix from basis $\{\mathbf{v_1}, \mathbf{v_2}\}$ to the standard basis is $V = (\mathbf{v_1}, \mathbf{v_2}) = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$. $V^{-1} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$.
 - The transition matrix S from $\{\mathbf{u_1}, \mathbf{u_2}\}$ to $\{\mathbf{v_1}, \mathbf{v_2}\}$ is

$$S = V^{-1}U = \begin{pmatrix} 3 & 4 \\ -4 & -5 \end{pmatrix}.$$

Changing of basis in an n-dim. vector space

Case $V = \mathbb{R}^n$.

•
$$E = \{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}, F = \{\mathbf{u_1}, \mathbf{u_2}, ..., \mathbf{u_n}\}$$
: two bases of \mathbf{R}^n .

•
$$x \in \mathbb{R}^n$$

$$\mathbf{x} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n} = (\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

$$= (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)[x]_E$$

$$\mathbf{x} = \beta_1 \mathbf{u_1} + \beta_2 \mathbf{u_2} + \dots + \beta_n \mathbf{u_n} = (\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_n}) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$= (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)[x]_F.$$

Case $V = \mathbb{R}^n$.

- We have $(\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n})[x]_E = (\mathbf{u_1}, \mathbf{u_2}, ..., \mathbf{u_n})[x]_F$.
- Let $V = (\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n})$ and $U = (\mathbf{u_1}, \mathbf{u_2}, ..., \mathbf{u_n})$. Then U and V are both invertible matrices.
- If we denote $S = V^{-1}U$, then the relations between two coordinate vectors are

$$[x]_E = S[x]_F$$
 and $[x]_F = S^{-1}[x]_E$.

general n-dimensional vector space V

• $E = \{v_1, v_2, ..., v_n\}, F = \{u_1, u_2, ..., u_n\}$: two ordered bases of V.

$$\mathbf{u_j} = \sum_{i=1}^n a_{ij} \mathbf{v_i}, \qquad j = 1, 2, \dots, n.$$

•
$$x \in V$$
. $[x]_E = (\alpha_1, \alpha_2, ..., \alpha_n)^T, [x]_F = (\beta_1, \beta_2, ..., \beta_n)^T$

$$\mathbf{x} = \beta_1 \mathbf{u_1} + \beta_2 \mathbf{u_2} + \dots + \beta_n \mathbf{u_n}$$

$$= \beta_1 \sum_{i=1}^n a_{i1} \mathbf{v}_i + \beta_2 \sum_{i=1}^n a_{i2} \mathbf{v}_i + \dots + \beta_n \sum_{i=1}^n a_{in} \mathbf{v}_i$$

$$= \sum_{j=1}^n \beta_j \sum_{i=1}^n a_{ij} \mathbf{v_i} = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} \beta_j \right) \mathbf{v_i}.$$

$$\alpha_i$$

general *n*-dimensional vector space **V**

Compared with $\mathbf{x} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \cdots + \alpha_n \mathbf{v_n}$, we obtain

$$\alpha_i = \sum_{j=1}^n a_{ij} \beta_j.$$

This gives

$$[x]_E = U[x]_F$$

where $U = (a_{ij})$ is the transition matrix.

The matrix *U* is invertible.

Example. Suppose that in P_3 , we want to change from the ordered basis $\{1, x, x^2\}$ to the ordered basis $\{1, 2x, 4x^2 - 2\}$.

Solution. It is easier to find the transition matrix from $\{1,2x,4x^2-2\}$ to $\{1,x,x^2\}$, since

$$1 = 1 \cdot 1 + 0x + 0x^{2}$$
$$2x = 0 \cdot 1 + 2x + 0x^{2}$$
$$4x^{2} - 2 = -2 \cdot 1 + 0x + 4x^{2}.$$

The transition matrix is $S = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

Solution. (continue) The inverse of *S* will be the transition matrix from $\{1, x, x^2\}$ to $\{1, 2x, 4x^2 - 2\}$

$$S^{-1} = \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/4 \end{pmatrix}.$$

Given any $p(x) = a + bx + cx^2$ in P_3 , to find the coordinates of p(x) with respect to $\{1,2x,4x^2-2\}$, we simply multiply

$$\begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/4 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a + \frac{1}{2}c \\ \frac{1}{2}b \\ \frac{1}{4}c \end{pmatrix}.$$

Thus,
$$p(x) = \left(a + \frac{1}{2}c\right) \cdot 1 + \left(\frac{1}{2}b\right) \cdot 2x + \left(\frac{1}{4}c\right) \cdot (4x^2 - 2).$$

Review

- Basis and dimension
- Changing of basis

Preview

Row space and column space