<< 문제지를 프린트하여 풀이과정과 답을 작성한 후 제출하십시오. >>

0000 년 00 학기 00 고사		과	물리학 24장	학 과	학 년	감 독	
출 제	공동 출제	목		학 번		교수	
편 집	송 현 석	명	기출문제 문제지	성 명		확 인	
시험일시 0000. 00. 00			0		0	점 수	

[주의 사항] 1. 계산기는 사용할 수 없습니다.

2. 단위가 필요한 답에는 반드시 SI 체계로 단위를 표기하시오.

[2011년 2학기 기말고사 6번] - 예제 24.2, 연습문제 24.2, 24.3 참고

1. 이중 슬릿에 파장이 600nm 인 레이저 빛을 입사시켰더니 슬릿으로부터 2.0m 떨어진 스크린에 간섭무늬가 관찰되었다. 슬릿의 간격은 0.1mm 라고할 때, 간섭무늬에서 밝은 무늬 사이의 간격은 얼마인가?

 $(y_1 =)$

[2010년 2학기 기말고사 8번] - 예제 24.2, 연습문제 24.2, 24.3 참고

2. 영의 이중 슬릿 실험에서 슬릿 사이의 간격이 0.3mm 이고 슬릿과 스크린 사이의 거리가 1.2m일 때, 간섭무늬에서 어두운 선의 간격이 2.4mm 였다. 이 실험에서 사용된 빛의 파장은 몇 nm인가?

 $(\lambda =)$

[2012년 2학기 기말고사 7번] - 예제 24.3, 연습문제 24.6 참고

3. 아래 그림과 같이 A, B, C 세 가지의 박막 실험을 수행하였다. 박막의 아래 위는 모두 공기이고 빛은 박막에 수직으로 입사한다고 가정한다. t는 박막의 두께이고 λ는 박막 내에서 빛의 파장이다. 세 실험 중에서 보강 간섭의 무늬를 볼 수 있는 것을 모두 고르시오. (단, 박막의 굴절률은 1보다 크다.)

[2013년 2학기 기말고사 6번] - 예제 24.3, 연습문제 24.7, 24.8. 24.9 참고 [2010년 2학기 기말고사 7번]

4. 오른쪽 그림과 같이 실리콘 태양전지에는 표면에서 빛의 반사를 줄이기 위하여 산화규소와 같은 박막을 코팅한다. 이 태양전지에 파장이 $630 \, nm$ 인 빨간색 빛을 수직으로 입사시켰을 때 반사를 최소화하기 위한 박막의 최소 두께는 얼마인가? (단, 실리콘과 산화규소의 굴절률은 각각 $3.5 \, \Omega$ $1.5 \, Oll.$)

 $(t_{\exists : : :} =)$

[2014년 2학기 기말고사 7번] - 예제 24.3. 연습문제 24.7. 24.8. 24.9 참고

5. 굴절률이 각각 n_1 , n_2 , n_3 인 유전체들이 그림과 같이 놓여 있다. 이 때 유전체들의 굴절률의 크기가 $n_1 < n_2 > n_3$ 이라면, 반사된 두 빛이 상쇄간섭 조건을 만족하는 중간 박막의 가장 얇은 두께 t는 얼마인가? (단, 진공 중에서 빛의 파장은 λ 이고, 빛은 표면에 수직으로 입사한다고 가정한다.)

(tak =)

[2011년 2학기 기말고사 7번] - 예제 24.3, 연습문제 24.7, 24.8. 24.9 참고

6. 굴절률이 1.5 인 유리판 위에 굴절률이 1.3 이고 두께가 $250 \, nm$ 인 기름 막을 형성하였다. 이 기름 막에 수직으로 가시광을 입사시켰을 때 반사가 최대가 되는 빛의 파장은 몇 nm 인가? (단, 가시광의 파장 영역은 $400 \, 700 \, nm$ 이다.)

 $(\lambda =)$

[2008년 2학기 기말고사 5번] - 예제 24.3, 연습문제 24.7, 24.8. 24.9 참고

7. 공기 중에서 파장이 $\lambda = 520\,nm$ 인 빛이 박막(n=1.3)을 입힌 유리(n=1.5)에 수직으로 입사한다. 반사광들이 소멸간섭(무반사)을 일으키는 박막의 최소두께를 구하시오.

 $(t_{\underline{A}\underline{\dot{x}}} =)$

<뒷 면에 단답형 문제 더 있음.>

[2009년 2학기 기말고사 6번] - 연습문제 24.10 참고

8. 아래 그림과 같이 폭 $L=20\,mm$ 인 두 개의 유리판을 겹쳐 놓고 한쪽 끝에는 두 유리 사이에 지름 $d=0.050\,mm$ 인 머리카락을 끼워 놓았다. 파장이 $60\,nm$ 인 빛이 유리관에 수직으로 입사하면 윗면에 간섭에 의해 간섭무늬가 생긴다. 간섭무늬 사이의 간격을 구하여라.

(간격 =

[2008년 2학기 기말고사 6번] - 연습문제 24.13 참고

9. 오른쪽 그림은 단일 슬릿에 입사하는 파장이 λ인 평행광을 나타낸 것이다. 점 P에서 첫 번째 극소가 나타났다면 두 광의 경로차 YP-XP는 얼마인가?

(경로차 =)

[2007년 2학기 기말고사 7번] - 예제 24.4, 연습문제 24.12 참고

10. 폭이 a 인 단일슬릿에 파장이 λ 인 빛을 비출 때 첫 번째 어두운 무늬가 생기는 위치의 각도 θ 를 근사적으로 구하시오.

($\theta \approx$)

[주의 사항] 주관식 문제는 상세한 풀이과정이 없으면 영점처리 됩니다.

[2014년 2학기 기말고사 주관식 2번] - 예제 24.2 연습문제 24.14, 24.15 참고 [주관식 1] [12점]

다음은 영의 이중슬릿 실험이다. 아래의 물음들에 답하시오.

(1) \overline{XP} 와 \overline{YP} 경로 간의 경로차를 d와 θ 로 근사적으로 나타내시오. [3점]

(경로차 =)

(2) 이중슬릿을 통과하는 빛의 파장을 λ 라고 할 때, P점에서 보강간섭이 일어날 조건과 상쇄간섭이 일어날 조건을 각각 기술하시오. [6점]

(3) 각도 θ 가 매우 작을 때, $\sin\theta$ 나 $\tan\theta$ 는 근사적으로 θ 로 표현할 수 있다. 스크린의 중앙에서 첫 번째 밝은 무늬가 나오는 곳의 길이 y를 주어진 변수 R, λ , d를 이용하여 나타내시오. [3점]

 $(y_1 =)$

[2013년 2학기 기말고사 주관식 2번] - 예제 24.2 연습문제 24.14, 24.15 참고 [주관식 2] [10점]

슬릿 사이의 간격이 $0.12\,mm$ 인 이중슬릿이 있다. 이 이중슬릿에 파장이 λ 인 레이저 광을 입사시켰을 때, 슬릿에서 $2.0\,m$ 떨어진 곳에 있는 스크린에 그림과 같이 간섭무늬와 회절무늬가 함께 나타난다. 이때, 다음 질문들에 답하시오.

(1) 스크린의 간섭무늬에서 어두운 무늬 사이의 간격 Δy 가 $0.8\,cm$ 로 측정되었다면 사용한 레이저의 파장은 얼마인가? [5점]

 $(\lambda =)$

(2) 그림에서와 같이 중앙의 밝은 회절무늬 안에 9개의 밝은 간섭무늬가 존재하였다면, 슬릿의 폭은 얼마인가? [5점]

(a =

[2012년 2학기 기말고사 주관식 2번] - 예제 24.2 연습문제 24.14, 24.15 참고 [2009년 2학기 기말고사 주관식 1번] [주관식 3] [15점] 슬릿의 폭이 $0.02mm$ 이고 슬릿 사이의 간격이 $0.15mm$ 인 이중슬릿이 있다. 파장이 $600nm$ 인 빛을 이 이중슬릿에 입사시켰을 때, 슬릿에서 $2.0m$ 떨어진 곳에 있는 스크린에 간섭무늬와 회절무늬가 같이 나타난다. (1) 스크린의 간섭무늬에서 밝은 무늬 사이의 간격을 구하시오. [5점]	
($\Delta y = 1$) (2) 중앙의 밝은 회절무늬의 폭을 구하시오. $[5점]$	
(폭 =) (3) 중앙의 밝은 회절무늬 안에 있는 밝은 간섭무늬의 개수를 구하시오. [5점]	
(개)	
<수고하셨습니다.>	