Серия 19. Лемма об уточнении показателя

Для простого p и целого n будем символом $ord_p(n)$ обозначать степень вхождения простого множителя p в разложение числа n на простые множители.

Лемма об уточнении показателя. Пусть а u b - различные целые числа, k - натуральное, p - простое, не являющееся делителем a, u пусть выполнено одно из условий 1 или 2. Тогда $ord_p(a^k - b^k) = opd_p(a - b) + ord_p(k)$. Условие 1: $p \neq 2$ u a - b делится на p. Условие 2: p = 2 u a - b делится на 4.

Следствие. Пусть k — нечетное, p — простое, a, b не делятся на p u a + b делится на p. Тогда $ord_p(a^k + b^k) = ord_p(a + b) + ord_p(k)$.

- **1.** Даны простое число p, натуральные k и s, различные целые a и b, такие, что a-b делится на p, причём a и b не делятся на p.
 - (а) Докажите, что $ord_p(a^p b^p) > ord_p(a b)$.
 - **(b)** Докажите, что $ord_p(a^s b^s) = ord_p(a b)$, если s не кратно p.
 - (**c**) Докажите, что $ord_p(a^k b^k) \ge ord_p(a b) + ord_p(k)$.
 - (d) Докажите, что если p > 2, то $ord_p(a^p b^p) = ord_p(a b) + 1$.
 - (е) Докажите лемму об уточнении показателя.
- 2. Найдите показатель числа
 - (a) 2017
 - **(b)** 2019

по модулю 2^{2017} .

- **3.** Сколькими нулями оканчивается число $4^{5^6} + 6^{5^4}$?
- **4.** Докажите, что показатель числа 2 по модулю 3^n равен $\varphi(3^n)$.
- **5.** Решите в натуральных числах уравнение $3^{x} = 2^{x}y + 1$.
- **6.** Пусть x, y, p, n, k натуральные числа, причем n нечетное, а p нечетное простое. Докажите, что если $x^n + y^n = p^k$, то n является степенью числа p.
- 7. (а) Докажите, что для любого натурального a > 2 найдется такое натуральное n, что $a^n 1$ делится на n^2 .
 - **(b)** Верно ли это утверждение для a = 2?
- 8. Найдите все натуральные n, для которых существуют такие натуральные числа x, y, k, что HOД(x, y) = 1, k > 1 и $3^n = x^k + y^k$.