基于贝叶斯方法的火焰识别

傅长青 金正中

Fudan University

13307130300@fudan.edu.cn 13300180003@fudan.edu.cn

December 15, 2017

Overview

- Fire Generation Model
 - Assumptions
 - A Template for Fire Generation
 - Cellular Automaton Algorithm
- Pire Detection based on Bayes' Formula
 - Detection Scheme
- Markov Model Optimization
 - Assumption
 - Detection Scheme
- Outcome
- Outcome

- Fire Generation Model
- 2 Fire Detection based on Bayes' Formula
- Markov Model Optimization
- Outcome
- Outcome

Assumption 1

Fire is evidently brighter than ordinary objects. (not enough)

Assumption 1

Fire is evidently brighter than ordinary objects. (not enough)

Assumption 2

Fire is chaotic, randomly spread to its surrounding, i.e. each fire pixel is spread from its position to its neighborhood ball following uniform distribution.

A Template for Fire Generation

Figure: 火焰生成算法效果

Algorithm

算法 1 Flame generation Algorithm

```
procedure FLAME-GENERATOR(M_i)
                                                          \triangleright Input M_i, Output next
frameM_{i+1}
    M_{i+1} \leftarrow 0
    for i = 1 to n do
        for j = 1 to m do
            Choose (\xi_i(i, j), \xi_i(i, j)) randomly in N_b(0, 0)
             M_{i+1}(i, j) \leftarrow M_i(i + \xi_i(i, j), j + \xi_i(i, j))
        end for
    end for
    return M_{i+1}
end procedure
```

- Fire Generation Mode
- 2 Fire Detection based on Bayes' Formula
- Markov Model Optimization
- Outcome
- Outcome

Detection Scheme

- Fire Case
- Non-fire Case
- Overall Guess

Speculation error:

$$\mathbb{P}\left(I_t | I_t = M(x + \Delta x, y + \Delta y)\right)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(I_t - M(x + \Delta x, y + \Delta y))^2}{2\sigma^2}\right)$$

Detection Scheme

- Fire Case
- Non-fire Case
- Overall Guess

$$\begin{split} &= & \sum_{(\Delta x, \Delta y) \in \textit{N}_b(0,0)} \mathbb{P}(\textit{I}_t | \textit{I}_t = \textit{M}(x + \Delta x, \ y + \Delta y)) \\ & \mathbb{P}(\textit{I}_t = \textit{M}(x + \Delta x, \ y + \Delta y) | \text{Flame}) \\ &= & \frac{1}{|\textit{N}_b(0,0)|} \sum_{(\Delta x, \Delta y) \in \textit{N}_b(0,0)} \frac{1}{\sqrt{2\pi}\sigma} \exp{(-\frac{(\textit{I}_t' - \textit{M}(x + \Delta x, \ y + \Delta y))^2}{2\sigma^2})} \end{split}$$

where $|N_b(0,0)|$ is the number of blocks in a single neighborhood.

Detection Scheme

- Fire Case
- Non-fire Case
- Overall Guess

$$\begin{split} & \mathbb{P}(I_t'|\overline{\mathsf{Flame}}) \\ &= \mathbb{P}(I_t'|I_t = M(x + V_x, \ y + V_y))\mathbb{P}(I_t = M(x + V_x, \ y + V_y)|\overline{\mathsf{Flame}}) \\ &= \frac{1}{\sqrt{2\pi}\sigma} \exp\big(-\frac{(I_t' - M(x + V_x, \ y + V_y))^2}{2\sigma^2}\big) \end{split}$$

Detection Scheme

- Fire Case
- Non-fire Case
- Overall Guess

By Bayes' Formula,

$$\frac{\mathbb{P}(\mathsf{Flame}|\mathit{I}_t')}{\mathbb{P}(\mathsf{Flame}|\mathit{I}_t')} = \frac{\mathbb{P}(\mathit{I}_t'|\mathsf{Flame})\mathbb{P}(\mathsf{Flame})}{\mathbb{P}(\mathit{I}_t'|\mathsf{Flame})\mathbb{P}(\mathsf{Flame})}$$

 $\mathbb{P}(\mathsf{Flame}) := 0.01$ is set manually, according to empirical test.

- Fire Generation Model
- 2 Fire Detection based on Bayes' Formula
- Markov Model Optimization
- Outcome
- Outcome

Markov Model Optimization

In our previous discussion, only two adjacent frames are considered. In order to improve robustness of the algorithm, we may consider Markov Model as an optimization.

Recall:

Assumption 2

Fire is chaotic, randomly spread to its surrounding, i.e. each fire pixel is spread from its position to its neighborhood ball following uniform distribution.

Recall:

Assumption 2

Fire is chaotic, randomly spread to its surrounding, i.e. each fire pixel is spread from its position to its neighborhood ball following uniform distribution.

Assumption 2'(Markov Chain Property)

Each frame in a video containing fire only depends on its prior frame.

$$\begin{split} & \frac{\mathbb{P}(\mathsf{Flame}|I_n,I_{n-1},\ldots,I_1,I_0)}{\mathbb{P}(\mathsf{Flame}|I_n,I_{n-1},\ldots,I_1,I_0)} \\ & = \frac{\mathbb{P}(I_n,I_{n-1},\ldots,I_1|I_0,\mathsf{Flame})\mathbb{P}(I_0,\mathsf{Flame})}{\mathbb{P}(I_n,I_{n-1},\ldots,I_1|I_0,\overline{\mathsf{Flame}})\mathbb{P}(I_0,\overline{\mathsf{Flame}})} \\ & = \frac{\mathbb{P}(I_n|I_{n-1},\mathsf{Flame})\mathbb{P}(I_{n-1}|I_{n-2},\mathsf{Flame})\ldots\mathbb{P}(I_1|I_0,\mathsf{Flame})\mathbb{P}(\mathsf{Flame}|I_0)}{\mathbb{P}(I_n|I_{n-1},\overline{\mathsf{Flame}})\mathbb{P}(I_{n-1}|I_{n-2},\overline{\mathsf{Flame}})\ldots\mathbb{P}(I_1|I_0,\overline{\mathsf{Flame}})\mathbb{P}(\overline{\mathsf{Flame}}|I_0)} \end{split}$$

where $\mathbb{P}(\mathsf{Flame}|I_0)$ is estimated by brightness of I_0 (recall assumption 1). n=10 is used in actual algorithm.

- Fire Generation Mode
- 2 Fire Detection based on Bayes' Formula
- Markov Model Optimization
- 4 Outcome
- Outcome

Outcome

OpenCV, C++ open library.

Outcome

Figure: $\mathbb{P}(\mathsf{Flame})(n=10)$ vs video output

Application

Early alarm of fire-fighting equipment in basement, factory, theater, etc.

(Image from http://www.safor-tec.com)

Acknowledgement

Thanks for Mr Yang's advisory,

Thank Mr.Ye and Shanghai Saifu Fire-fighting equipment Co. Ltd.(上海赛复安防科技有限公司) for their support and video source,

Thanks for diligent work of relevant professors and students in the Science Innovation Center.

- Fire Generation Model
- 2 Fire Detection based on Bayes' Formula
- Markov Model Optimization
- 4 Outcome
- Outcome

Outcome |

OpenCV, C++ open library.

The End