# Operačné systémy Súborové systémy

Ing. Martin Vojtko, PhD.

STU NOCIA

2024/2025



- Súborový systém
  - Súbor
  - Adresáre
- 2 Implementácia
  - Súbory
  - Adresáre
  - Zdieľané súbory
- Manažment
  - Diskový priestor
  - Zálohovanie
  - Zlepšenie odozvy
- Príklady FS
  - MS-DOS
  - UNIX
- 5 Zhrnutie





- Hlavná pamäť má obmedzenú veľkosť.
- Procesy majú svoj vyhradený adresný priestor.
  - Tu sa môžu dočasne ukladať dáta ako výsledky spracovaní.
  - Po skončení procesu sú neuložené dáta stratené.
  - Adresný priestor procesu nie je vhodné úložisko dát.
- Viac inštancií programu potrebuje pracovať s rovnakými dátami.
- Musíme mať možnosť uložiť obrovské množstvo dát.
- Oáta musia prežiť smrť procesu.
- Oáta sú prístupné viacerým procesom súčasne.
- Súčasné disky nám toto umožňujú pomocou operácií Read/Write Block.





Súborový systém

OOOOOOOO

# Súborový systém

### File (Súbor)

je abstrakcia OS, ktorá umožňuje prácu s dátami používateľa bez nutnosti bližšie poznať zariadenie na, ktorom sú dáta uložené. Súbor je vlastne štruktúra, ktorá obsahuje informácie o blokoch disku, ktoré mu patria.

### Directory (Adresár)

je vo všeobecnosti špeciálny súbor, ktorý obsahuje informáciu o všetkých súboroch a iných adresároch, ktoré sú pod nim vedené.

### File System (Súborový systém)

je štruktúra adresárov s uloženými súbormi. Z pohľadu OS je File System abstrakciou so všeobecne známym API skrývajúcim zložitý HW.





### Súbor - meno

- Plní dôležitú úlohu pri identifikovaní.
- Väčšina OS umožňuje použiť:
  - písmená abecedy,
  - čísla
  - špeciálne znaky.
- Každý OS definuje znaky, ktoré nemôžu byť súčasťou mena súboru.
- Niektoré OS nerozlišujú medzi malými a veľkými písmenami abecedy.
- Bežné použitie ASCII, utf-8 alebo unicode.
- Niektoré OS identifikujú aj typ súboru príponou.
  - v UNIX sa prípona považuje za súčasť názvu súboru.
  - Windows berie ohľad pri práci so súborom aj na príponu.





Súborový systém

- Sekvencia Byte-ov. (a)
  - OS nediktuje čo je obsahom súboru.
  - Vybraná aplikácia parsuje obsah.
  - Prístup WINDOWS, UNIX...
- Sekvencia záznamov. (b)
  - Záznam fixnej dĺžky definuje minimálnu jednotku súboru.
  - V časoch 80 znakových riadkov bol súbor bežne definovaný ako séria 80 znakových riadkov.
- Strom. (c)
  - Namiesto záznamov uložených jeden za druhým sú uložené v strome.
  - Každý záznam má svoj kľúč.



### Súbor - štruktúra

Súborový systém







# Súbor - druhy súborov

- Regulárne súbory
  - ASCII súbory čitateľné tak ako sú. Umožňujú jednoduché spracovanie.
  - Binárne súbory obsah zobraziteľný len s aplikáciou, určenou na čítanie daného súboru.
- Adresáre
- Špeciálne súbory
  - Znakové súbory modelovanie znakových zariadení (tlačiareň, terminál)
  - Blokové súbory modelovanie blokových zariadení (disk)



# Súbor - atribúty

| Attribute          | Meaning                                               |  |  |
|--------------------|-------------------------------------------------------|--|--|
| Protection         | Who can access the file and in what way               |  |  |
| Password           | Password needed to access the file                    |  |  |
| Creator            | ID of the person who created the file                 |  |  |
| Owner              | Current owner                                         |  |  |
| Read-only flag     | 0 for read/write; 1 for read only                     |  |  |
| Hidden flag        | 0 for normal; 1 for do not display in listings        |  |  |
| System flag        | 0 for normal files; 1 for system file                 |  |  |
| Archive flag       | 0 for has been backed up; 1 for needs to be backed up |  |  |
| ASCII/binary flag  | 0 for ASCII file; 1 for binary file                   |  |  |
| Random access flag | 0 for sequential access only; 1 for random access     |  |  |

 $^1$ ďalšie príklady nájdete v MOS od Tanenbauma



1

# Súbor - operácie/systémové volania

- Create() a Delete()
- Open() a Close()
- Read(), Write(), Append() a Seek()
- GetAttributes() a SetAttributes()
- Rename()

### Adresáre

- Jedno-úrovňové systémy
  - FS má jeden root v ktorom sú uložené všetky súbory.
  - Jednoduchá správa adresárov :)
- Hierarchické systémy
  - FS obsahuje množstvo adresárov tvoriacich štruktúru.
  - Komplexná správa FS. Prívetivejšia štruktúra dát používateľov.





# Adresáre - cesta k súboru (Path name)

### absolútna cesta

je cesta k súboru od koreňa FS cez všetky adresáre, ktoré možno označiť za predchodcov súboru.

### pracovný adresár (working directory)

je aktuálny adresár, v ktorom sa používateľ alebo program nachádza. Tento adresár je súčasťou premenných prostredia.

### relatívna cesta

je cesta k súboru od pracovného adresára.

vo väčšine OS s hierarchickým FS existujú v každom adresári špeciálne adresáre definujúce alias pre aktuálny adresár "." a alias pre rodičovský adresár "..". V koreňovom adresári ".." referencuje samého seba.



# Adresáre - operácie/systémové volania

- CreateDir() a DeleteDir()
- OpenDir() a CloseDir()
- ReadDir()
- Link() a Unlink()
- Rename()

- Najjednoduchšia forma FS je strom.
- Ak chceme zamedziť duplikácií súborov je nutné aby bolo možné vo viacerých adresároch referencovať tie isté súbory.
- Z FS vznikne orientovaný acyklický graf.

### hard link

odkaz v adresári FS na súbor, ktorému zdvíham počet referencií. Pri mazaní takéhoto súboru musím zmazať všetky inštancie.

### soft/symbolic link

je súbor, ktorého obsahom je cesta k inému existujúcemu súboru. Ak zmažem symbolickú linku neovplyvňujeme referencovaný súbor. Ak zmažem súbor tak symbolická linka odkazuje na neexistujúci súbor.







- Bežné rozloženie disku:
  - MBR Master Boot Record sector 0 disku používaný na boot OS.
     Obsahuje zavádzací program.
  - Partície logické diskové jednotky, ktoré môžu obsahovať FS.
- Bežné rozloženie FS:
  - Bootblock je to čo sa snaží v partíciach prečítať zavádzač.
  - Superblock informácie o FS (magic number, počet blokov FS...)





# <u>Uloženie</u> súboru - Kontinuálny sled

- externá fragmentácia
- ideálne len na write-once úložiská CD/DVD





# Uloženie súboru - File Allocation Table (FAT)

- Bežne používaný FS (FAT-32).
- Celá FAT sa pri inicializácií FS načíta do hlavnej pamäte.



## Uloženie súboru - i-node

- index-node je štruktúra udržujúca informácie o blokoch súboru.
- v pamäti mám iba i-nody používaných súborov.





### Adresáre

- Adresár obsahuje záznam pre každý uložený súbor.
- Súbor reprezentujeme menom, atribútmi a zoznamom blokov.
- Meno súboru je uložené v štruktúre adresára.
- Atribúty a ukazovateľ na zoznam blokov môžeme:
  - uložiť priamo v štruktúre adresára. (a)
  - uložiť nepriamo referenciou na i-node. (b)

| games | attributes |  |  |  |  |
|-------|------------|--|--|--|--|
| mail  | attributes |  |  |  |  |
| news  | attributes |  |  |  |  |
| work  | attributes |  |  |  |  |
|       |            |  |  |  |  |
| (a)   |            |  |  |  |  |



- V minulosti bol názov súboru limitovaný na 8+3 resp. 14 znakov.
- Meno súboru bolo uložené v poli fixnej dĺžky.
- V súčasnosti môžu byť názvy súborov dlhšie (255).
- Meno súboru je uložené v poli variabilnej dĺžky:
  - ako súčasť záznamu súboru. (a)
  - na halde (heap) s odkazom na meno v zázname. (b)





### Adresáre - uloženie mien súborov

Entry for one file





- ako súčasť záznamu súboru (a)
  - záznamy rôznej veľkosti spôsobujú fragmentáciu.
  - prehľadávanie obsahu adresára je komplexný.
  - pravdepodobné množstvo page faults.
- na halde (heap) s odkazom na meno v zázname. (b)
  - záznamy majú rovnakú veľkosť, práca je jednoduchšia.
  - heap uložený na koniec adresného priestoru adresára.
  - prehľadávanie obsahu adresára vyžaduje prechádzanie zoznamom.
- uloženie položiek v hash tabuľke môže urýchliť prehľadávanie.



- FS umožňujú vytváranie tzv. liniek, ktoré redukujú duplikácie.
- Linky menia FS zo stromu na orientovaný acyklický graf.
- Hard linka
  - všetky inštancie záznamu o súbore sú rovnocenné a ukazujú na rovnaký i-node.
  - i-node udržuje ref. count (počet odkazov).
  - zmazanie v jednom adresári nesmie ovplyvniť stav v druhom.
  - ak zmažeme všetky inštancie záznamov môžeme zmazať aj súbor.
- Soft linka
  - existuje len jedna inštancia súboru v jednom adresári.
  - existuje viac špeciálnych súborov, ktoré obsahujú len cestu k originálnemu súboru.



# Zdieľané súbory





# Zdieľané súbory - hard link







- Pri práci s výpočtovým systémom môže kedykoľvek dôjsť k poruche.
- FS sa pri poruche môže dostať do nekonzistentného stavu.
  - Napr. zmazanie súboru obnáša:
    - zmazanie súboru z adresára.
    - uvoľnenie i-node.
    - uvoľnenie všetkých blokov disku.
- Bežný FS preto udržuje žurnál vykonaných operácií.
  - pred vykonaním operácie sa uloží záznam o všetkých krokoch operácie na disk.
  - vykoná sa operácia.
  - ak bola operácia úspešná zmaže sa záznam.
- Pri boote systému sa kontroluje, či je žurnál prázdny. Ak žurnál nie je prázdny, musí sa vykonať oprava.

- Existuje množstvo druhov FS.
- Ako sa dá zabezpečiť ich ko-existencia?
- Windows to vyriešil pomocou drive letter (C:, D:)
  - Výhoda je jednoduchosť implementácie.
  - každý FS má vlastný strom.
- Linux sa vydal cestou virtuálneho FS.
  - Existuje root FS do ktorého vieme pomocou "mount()" linkovať iné druhy FS.
  - Virtuálny FS definuje jednotné rozhranie, ktoré ostatné FS musia podporovať.
  - Virtual FS je definovaný ako POSIX štandard.
  - Používateľ ani len netuší, že pri prechádzaní stromu mení FS.



### Virtual FS





 Implementácia
 Manažment
 Príklady FS
 Zhrnutie

 00000000000000
 00000000000
 0000000
 000

### Virtual FS





Manažment •0000000000000



### Veľkosť bloku

- Veľké bloky:
  - súbory majú málo blokov redukuje sa čas prečítania súboru.
  - malé súbory spôsobujú plytvanie priestoru disku.
- Malé bloky:
  - súbory zaberajú množstvo blokov čas čítania súboru rastie (seek()).
  - malé súbory neplytvajú pamäť.
- Stanovenie veľkosti bloku závisí aj od určenia výpočtového systému.
  - dátové úložisko filmov (GB súbory)
  - archív dokumentov resp. faktúr (KB MB súbory)





### Veľkosť bloku - štúdia

Percento súborov menších ako veľkosť bloku vybranej veľkosti.

| Length | VU 1984 | VU 2005 | Web   |
|--------|---------|---------|-------|
| 1      | 1.79    | 1.38    | 6.67  |
| 2      | 1.88    | 1.53    | 7.67  |
| 4      | 2.01    | 1.65    | 8.33  |
| 8      | 2.31    | 1.80    | 11.30 |
| 16     | 3.32    | 2.15    | 11.46 |
| 32     | 5.13    | 3.15    | 12.33 |
| 64     | 8.71    | 4.98    | 26.10 |
| 128    | 14.73   | 8.03    | 28.49 |
| 256    | 23.09   | 13.29   | 32.10 |
| 512    | 34.44   | 20.62   | 39.94 |
| 1 KB   | 48.05   | 30.91   | 47.82 |
| 2 KB   | 60.87   | 46.09   | 59.44 |
| 4 KB   | 75.31   | 59.13   | 70.64 |
| 8 KB   | 84.97   | 69.96   | 79.69 |

| Length | VU 1984 | VU 2005 | Web    |
|--------|---------|---------|--------|
| 16 KB  | 92.53   | 78.92   | 86.79  |
| 32 KB  | 97.21   | 85.87   | 91.65  |
| 64 KB  | 99.18   | 90.84   | 94.80  |
| 128 KB | 99.84   | 93.73   | 96.93  |
| 256 KB | 99.96   | 96.12   | 98.48  |
| 512 KB | 100.00  | 97.73   | 98.99  |
| 1 MB   | 100.00  | 98.87   | 99.62  |
| 2 MB   | 100.00  | 99.44   | 99.80  |
| 4 MB   | 100.00  | 99.71   | 99.87  |
| 8 MB   | 100.00  | 99.86   | 99.94  |
| 16 MB  | 100.00  | 99.94   | 99.97  |
| 32 MB  | 100.00  | 99.97   | 99.99  |
| 64 MB  | 100.00  | 99.99   | 99.99  |
| 128 MB | 100.00  | 99.99   | 100.00 |





### Veľkosť bloku - štúdia

- Pri veľkosti bloku 4KB sa 70% súborov zmestí do jedného bloku.
- Na druhú stranu 93% blokov je obsadených 10% najväčších súborov (videá)
- Takže napriek tomu že 70% súborov plytvá pamäťou v globálnom pohľade maximálne 7% blokov nie je plných.
- veľkosť bloku určuje aj rýchlosť čítania súboru.

### Čas čítania bloku v HDD

majme  $t_s$  priemerný čas vyhľadania stopy,  $t_r$  čas jedného otočenia disku, k veľkosť bloku v B a s veľkosť stopy v B. Potom čas prečítania bloku bude:

$$t = t_s + \frac{t_r}{2} + \frac{k}{s}t_r$$



### Veľkosť bloku - štúdia

Rýchlosť čítania a utilizácia disku (1MB) pri súboroch veľkosti 4KB a rôznych veľkostiach blokov.







- Pravidelné odkladanie práce na disk zabezpečuje, že výstupy našich programov sa nestratia ak vypadne napájanie výpočtového systému.
- Ale ak sa niečo stane disku tak stratíme všetky dáta.
- Koľký z vás si robia zálohy?
  - Ak sa pokazí počítač tak jeho cena je niekoľko rádov nižšia ako cena dát uložených na ňom.
  - Na PC máte uložené svoje spomienky, dokumenty, heslá, virtuálnu menu...
- zálohovanie umožňuje obnovu dát:
  - po katastrofe (blesk, vytopenie, krádež, nepríčetný spolubývajúci...)
  - po katastrofe medzi stoličkou a klávesnicou (alkohol v krvi, ranný šialok čaju na klávesnici, hodina spánku mi stačí, materiály na OS už nebudem potrebovať...)





- Zálohovanie disku môže trvať veľmi dlho. Preto je dobré zálohovať iba to potrebné
  - Nainštalované programy vieme znova stiahnuť z CD/DVD/internetu.
  - Vlastné programy môžeme zálohovať na git repozitári
  - Nikdy nezálohujeme /dev adresár!!!!
- Je dobré udržiavať dôležité dáta na jednom mieste.



## Zálohovanie - stratégie zálohovania a obnova

- recycle bin
  - Windows zmazané súbory presúva do koša. Nie je to záloha ale ochrana.
- kompletné zálohovanie
  - Všetky adresáre, ktoré zálohujem skopírujem na iný disk.
  - Takéto zálohy sa robia na mesačnej báze.
- prírastkové zálohovanie
  - Zálohovací systém ukladá iba zmeny voči poslednej kompletnej zálohe.
  - Inkrementálne zálohy sa robia na dennej báze.
- Obnova býva zväčša veľmi zdĺhavá.
- Pri úplnej obnove sa najprv načíta posledná kompletná záloha FS.
- Následne sa postupne aplikujú všetky prírastkové zálohy.



#### Fyzické zálohy

- Ukladá sa fyzický obsah disku blok za blokom.
- Nezáleží na FS.
- Takýto zálohovací softvér je veľmi jednoduchý.
- Kopíruje sa všetko aj voľné bloky a poškodené bloky.
- Logické zálohy
  - Zálohovací algoritmus rozumie FS.
  - Pomalšie zálohovanie.
  - Jednoduché nastavenie granularity zálohovania.
  - Umožňuje inkrementálne zálohovanie.



- Počas života FS vznikne množstvo situácií, kedy dôjde k chybe.
- väčšina FS je vybavená kontrolným mechanizmom (fsck, sfc)
- Bloková konzistentnosť počíta sa počet referencií každého bloku.
- Súborová konzistentnosť počíta sa počet referencií súboru a porovnáva sa s počtom referencií v i-node.





### Konzistentnosť FS - bloková

#### Block number

Block number



0 1 2 3 4 5 6 7 8 9 101112131415
1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 Blocks in use

(c) duplicate free block

#### Block number



#### Block number



(d) duplicate used block



## Zlepšenie odozvy FS

- Block cache:
  - Zmenšenie čítaní disku výrazne urýchli systém.
  - Často používané bloky disku môžeme udržiavať v hlavnej pamäti.
- Block read ahead:
  - Pri čítaní blokov súboru čítame okrem bloku k aj blok k+1.
  - aplikovateľné iba pre sekvenčné súbory.
- Disk-Arm Motion Reduction.
  - i-node FS vyžadujú čítanie minimálne dvoch blokov.
  - Ukladanie blokov súbora a i-node v rámci jedného cylindra.
  - Alebo ukladanie i-node blokov do stredných cylindrov disku.
- File Path caching:
  - Parsovanie cesty k súboru je zdĺhavý proces.
  - Už raz použité cesty a k nim prislúchajúce i-nodes môžeme čítať z cache.



## Zlepšenie odozvy FS - caching







## Zlepšenie odozvy FS - arm motion



Disk is divided into cylinder groups, each with its own i-nodes







Príklady FS

### **MS-DOS**

- Jednoduchý, úspešný, široko rozšírený.
- Používaný na menšie úložiská ako sú fotoaparáty, USB disky, vnorené systémy.
- Vychádza z neho aj FAT-32.
- Je používanejší ako NTFS.

- meno súboru maximálne 8+3 znaky.
- čas zmeny 5b s, 6b min, 5b h
- datum zmeny 5b d, 4b m, 7b -r (od 1980 do 2107)
- veľkosť súboru max 2GB
- maximálne 65K blokov toľko má záznamov FAT tabuľka.



## MS-DOS

- rôzne verzie FS existujú podľa veľkosti adresnej zbernice.
- FAT-12, FAT-16, FAT-32(28), exFAT
- FAT-32 už podporuje mená dlhé 255 znakov.

| Block size | FAT-12 | FAT-16  | FAT-32 |
|------------|--------|---------|--------|
| 0.5 KB     | 2 MB   |         |        |
| 1 KB       | 4 MB   |         |        |
| 2 KB       | 8 MB   | 128 MB  |        |
| 4 KB       | 16 MB  | 256 MB  | 1 TB   |
| 8 KB       |        | 512 MB  | 2 TB   |
| 16 KB      |        | 1024 MB | 2 TB   |
| 32 KB      |        | 2048 MB | 2 TB   |



### UNIX - V7

- meno súboru max 14 znakov. Zakázané znaky sú / a NUL
- i-node number max 65K súborov.
  - file-size, owner, group, protection, dir. ref. count.
  - creation, last access, modify time
  - voľné i-nodes sú udržované v zozname.



 Implementácia
 Manažment
 Príklady FS
 Zhrnutie

 000000000000000
 00000000000000
 0000000
 0000000000000000

### UNIX - V7 i-node







## UNIX - V7 /usr/ast/mbox

# Root directory

bin 4 7 dev 14 lib 9 etc 6 usr 8 tmp

Looking up usr yields i-node 6

#### I-node 6 is for /usr

Mode size times 132

> I-node 6 says that /usr is in block 132

#### Block 132 is /usr directory

| ancolory |  |  |
|----------|--|--|
| •        |  |  |
| ••       |  |  |
| dick     |  |  |
| erik     |  |  |
| jim      |  |  |
| ast      |  |  |
| bal      |  |  |
|          |  |  |

/usr/ast is i-node 26

#### I-node 26 is for /usr/ast

Mode size times 406

I-node 26

says that

/usr/ast is in

block 406

Block 406 is /usr/ast directory

00

| 26 | •      |
|----|--------|
| 6  | ••     |
| 64 | grants |
| 92 | books  |
| 60 | mbox   |
| 81 | minix  |
| 17 | src    |

/usr/ast/mbox is i-node 60



### **Zhrnutie**



- Bežne používané FS môžeme rozdeliť do troch kategórií
  - súborové systémy trvalých nosičov dát.
  - FAT súborové systémy používané najme vo vnorených systémoch.
  - i-node súborové systémy používané v serverových a PC aplikáciách.
- Krása súborových systémov je, že vás odbremeňujú od komplexnosti diskov.
- Je dôležité si chrániť vaše dáta
  - zálohujte na externý disk.
  - využite cloud služby overte si službu pred tým než jej zveríte vaše dáta.
  - používajte versioning nástroje ako je git.





## <u>Čo robiť do ďalšej prednášky</u>

• Prečítať kapitolu 5. z Tanenbauma.





Zhrnutie ○○●