Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	27-10-2023
Team ID	Team-592660
Project Name	Detecting COVID-19 From Chest X-Rays Using Deep Learning Techniques
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task Create a development environment with the necessary tools and frameworks for the COVID-19 detection project.		Priority	Team Members
Sprint-1	Project Setup	USN-1			High	Hruthik
Sprint-1	Infrastructur e	USN-2	Plan the infrastructure for data storage, model training, and web interface deployment		Medium	Hruthik
Sprint-2	Data collection	USN-3	Gather a diverse dataset of chest X-rays containing COVID-19, pneumonia, bronchitis, and normal cases.	2	High	Phaneendra
Sprint-2	Data preprocessing	USN-4	Resize chest X-ray images to a consistent size. Normalize pixel values to a standard range.		High	Phaneendra
Sprint-3	Model Development	USN-5	Developing a deep learning model using CNNs to accurately detect COVID-19 from chest X-rays.	4	High	Hruthik
Sprint-4	Model Training	USN-6	Assess the model's performance using evaluation metrics. Ensure the model effectively distinguishes COVID-19 cases from other respiratory conditions.	5	High	Monaalika
Sprint-5	Model deployment &Integration	USN-7	Deploy the trained deep learning model as an API or web service. Create a user-friendly web interface for uploading chest X-ray images	2 medium		Phaneendra
Sprint-6	Model testing	USN-8	Tested the model on a separate dataset of chest X rays to evaluate its performance and accuracy	2	medium	Monaalika

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	3	3 Days	15 Oct 2023	18 Oct 2023	3	18 Oct 2023
Sprint-2	6	4 Days	18 Oct 2023	22 Oct 2023	6	22 Oct 2023
Sprint-3	4	4 Days	22 Oct 2023	26 Oct 2023	4	26 Oct 2023
Sprint-4	5	5 Days	26 Oct 2023	31 Oct 2023	1	27 Oct 2023
Sprint-5	2	6 Days	31 Oct 2023	6 Nov 2023	Yet to start	
Sprint-6	2	7 Days	6 Nov 2023	13 Nov 2023	Yet to start	
Total Sprints		29 Days				

Velocity:

Imagine we have a 29-days sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

AV= sprint duration / velocity AV= 29 / 20 = 1.45

Sprint-1: 3 user stories x 20 story points = 60, Sprint-2: 6 user stories x 20 story points = 120 Sprint-3: 4 user stories x 20 story points = 80, Sprint-4: 1 user story x 20 story points = 20 Total = 280

So, your average of completed story points is $280 \div 4 = 70$.

Burndown Chart:

For Sprint 1: Sprint burndown

BETA ? ~

3 points done, 0 points to go

For Sprint 2:

Sprint burndown

BETA ? ~

6 points done, 0 points to go

For Sprint 3:

Sprint burndown

BETA ?

4 points done, 0 points to go

For Sprint 4:

Remaining work
 Guideline

Board section:

We have completed sprint 1, 2 and 3. So we can see the remaining tasks on board.

Backlog section:

Timeline:

