Program Progress

Paul Mendoza

March 8, 2016

Presented at Research Meeting

Paul Mendoza March 8, 2016 Program Progress 1 / 10

Paul Mendoza March 8, 2016 Program Progress 2 / 10

Cross-section calculations

$$\sigma = \frac{\int \sigma(E)\phi(E)dE}{\int \phi(E)dE}$$

$$\begin{split} \phi(E) = & C_1 \cdot \frac{E}{E_0^2} \cdot exp\left(-\frac{E}{E_0}\right) \qquad E < E_{max,th} \\ = & \frac{C_2}{E} \qquad \qquad E_{max,th} < E < E_{max,epi} \\ = & C_3 \cdot \frac{\sqrt{\frac{E}{E_f}}}{E_f} \cdot exp\left(-\frac{E}{E_f}\right) \qquad E > E_{max,epi} \\ & \qquad \qquad C_1 = \frac{E_0^2}{E_{max,th}^2} e^{E_{max,th}/E_0} \\ & \qquad \qquad C_2 = 1 \\ & \qquad \qquad C_3 = \frac{E_f}{E_{max,epi}} \cdot e^{\frac{E_{max,epi}}{E_f}} \frac{1}{\sqrt{\frac{E_{max,epi}}{E_f}}} \end{split}$$

 $E_{max,th}=0.50~{
m eV},~E_{max,epi}=1E5~{
m eV},~\theta_{th}=0.09~{
m eV}$ (764 K), $\theta_{fis}=1.35E6~{
m eV}$

Paul Mendoza March 8, 2016 Program Progress

3 / 10

$$\chi = C_4 e^{-\frac{E}{a}} \sinh\left(\sqrt{bE}\right)$$

Paul Mendoza March 8, 2016 Program Progress 4 / 10

Paul Mendoza March 8, 2016 Program Progress 5 / 10

One Group Cross Section Comparison

Isotope ^{Rxn}	ENDF VII	ORIGEN2	Ratio
239 Pu $^{\gamma}$	6.544e+01	6.909E+01	1.06
240 Pu $^{\gamma}$	1.521e + 02	2.228E+02	1.46
241 Pu $^{\gamma}$	4.518e + 01	4.202E+01	0.93
$^{235}U^\gamma$	9.387e + 00	1.068E + 01	1.14
$^{238}U^\gamma$	4.098e + 00	8.872E-01	0.22
²³⁹ Pu ^f	1.179e + 02	1.211E+02	1.03
²⁴⁰ Pu ^f	9.609e-01	5.787E-01	0.60
²⁴¹ Pu ^f	1.253e + 02	1.259E + 02	1.01
²³⁵ ∪ ^f	4.621e+01	4.752E+01	1.03
²³⁸ U ^f	2.091e-01	9.281E-02	0.44

 Paul Mendoza
 March 8, 2016
 Program Progress
 6 / 10

ORIGEN2 Model

$$\frac{552.8~{\rm g}^{~137}{\rm Cs}}{Mt} \cdot \frac{6.022E23~{\rm atoms}}{137~{\rm g}^{~137}{\rm Cs}} \cdot \frac{Fission}{0.06~{\rm atoms}} \cdot \frac{200~{\rm MeV}}{Fission} \cdot \frac{1.602E-19~{\rm MJ}}{1~{\rm MeV}} \cdot \frac{1~{\rm day}}{86400~{\rm s}} = 15,018~\frac{{\rm MWd}}{Mt}$$

Paul Mendoza March 8, 2016 Program Progress 7 / 10

From ORIGEN 2.2 calculation

$$\phi = \frac{6.242 \cdot 10^{18} \cdot P}{\sum_{i} \chi_{i}^{f} \sigma_{i}^{f} R_{i}}$$

 ϕ =instantaneous neutron flux

P=power (MW)

 χ_i^f =amount

 σ_i^f = microscopic fission cross section for nuclide *i*

 R_i =recoverable energy per fission for nuclide i (MeV/fission)

$$R_i \text{MeV/Fission} = 1.29927 \times 10^{-3} (Z^2 A^{0.5}) + 33.12$$

Paul Mendoza March 8, 2016 Program Progress 8 / 10

Paul Mendoza March 8, 2016 Program Progress

9 / 10

Next Week

All the x-sections

Paul Mendoza March 8, 2016 Program Progress 10 / 10