Automatability of Coupled Evolution of Metamodels and Models in Practice

Markus Herrmannsdoerfer¹, Sebastian Benz², and Elmar Juergens¹ (Technische Universität München¹, BMW Car IT GmbH²)

11th International Conference on Model Driven Engineering Languages and Systems (MODELS) 3 October 2008 Toulouse, France

Metamodel

(Domain-Specific) Modeling Language

Metamodel

Model

Concrete syntax

(Domain-Specific) Modeling Language

Coupled Evolution of Metamodels and Models

Coupled Evolution of Metamodels and Models

Coupled Evolution of Metamodels and Models

Manual migration

- expensive
- error-prone
- ⇒ Tool support required

To which degree coupled evolution of metamodels and models can be automated in practice?

Approach

- Classification of coupled evolution operations w.r.t. potential of automation
- Application of the classification to two industrial metamodel histories

Classification – Automatability of Coupled Changes TITT

Classification – Automatability of Coupled Changes

Classification – Automatability of Coupled Changes TITT

Model-Specific Coupled Change

Example: Refinement of Action

Model-Specific Coupled Change

Example: Refinement of Action

Model-Specific Coupled Change

Example: Refinement of Action

Different names might denote the same kind of action in different models

Classification – Automatability of Coupled Changes TITT

Classification – Automatability of Coupled Changes

Metamodel-Specific Coupled Change

Example: Introduction of Event

Metamodel-Specific Coupled Change

Example: Introduction of Event

Metamodel-Specific Coupled Change

Example: Introduction of Event

Complex, non-recurring migration

Classification – Automatability of Coupled Changes TITT

Classification – Automatability of Coupled Changes

Metamodel-Independent Coupled Change

Example: Introduction of Region

Metamodel-Independent Coupled Change

Example: Introduction of Region

Metamodel-Independent Coupled Change

Example: Introduction of Region

Generalizable into an operation to extract a class

Classification – Automatability of Coupled Changes

Classification – Automatability of Coupled Changes

Study – Input

Industrial metamodels from BMW Car IT

- FLUID (FLexible User Interface Development): specification of Human Machine Interfaces
- *TAF-Gen* (Test Automation Framework Generator): specification of test models and test cases for Electronic Control Units

Study – Execution

- 1. Extraction of metamodel versions: from the revision control system
- 2. Comparison of subsequent metamodel versions: difference model consisting of primitive changes
- 3. Detection of coupled changes: combination of primitive changes based on model migration
- 4. Classification of coupled changes

Study – Result for FLUID

Study – Result for Taf-Gen

Study – Discussion

Study - Discussion

Study - Discussion

Study - Discussion

Threat

- 1. Extraction: Commit as indication for new metamodel version
 ⇒ Primitives combined only from one commit to the next
- 2. Comparison: Comparison of metamodel versions ambiguous
 ← Absence of unique identifiers, changes overwritten by others
- 3. Detection: Models not available for all metamodel versions
- 4. Classification: Differentiation between metamodel-specific and -independent coupled changes not 100% sharp

Mitigation

- 1. Primitive changes of other metamodel versions taken into account in case of missing information
- 2. Validation of primitive changes in close cooperation with the metamodel developers
- 3. Exhaustive questioning of the metamodel developers about the correctness of the derived migration
- 4. Conservative strategy: Classification rather metamodel-specific than metamodel-independent in case of uncertainty

Conclusion

Contributions

- Classification of coupled changes w.r.t. potential for automation
- Empirical study of two industrial metamodel histories

Result

- Metamodels change!
- Model migration necessary for many metamodel changes
- Huge potential for automation

Requirements for tool support

- Expressiveness: to cater for complex model migrations
- Reuse: to significantly reduce maintenance effort

Future Work

Further studies of metamodel histories

- Refinement of classification
- Different aspects of language evolution
- Open source metamodels (
 — Confidentiality of the presented metamodels)

Tool Support for Automated Coupled Evolution

- Classification of existing approaches according to requirements
- Approach fulfilling the requirements
- Performance of a case study to validate against requirements

Thank you very much for your attention!

- Questions?
- Criticism?
- Suggestions?

http://wwwbroy.in.tum.de/~herrmama/cope