

R. R. Varshamov, G. M. Tenengol'ts, Code Correcting Single Asymmetric Errors, *Avtomat. i Telemekh.*, 1965, Volume 26, Issue 2, 288–292

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 86.48.7.223 January 16, 2023, 23:48:38



1965

УДК 621.391.154

# КОД, ИСПРАВЛЯЮЩИЙ ОДИНОЧНЫЕ НЕСИММЕТРИЧЕСКИЕ ОШИБКИ

Р. Р. ВАРШАМОВ, Г. М. ТЕНЕНГОЛЬЦ

(Москва)

Рассматривается бинарный корректирующий код, исправляющий одиночные несимметрические ошибки.

#### Ввеление

В технике связи представляет интерес исследование несимметрических систем кодирования, т. е. систем с несимметрическим каналом. Несимметрическим называется канал с неодинаковыми вероятностями повреждений различных элементарных посылок (импульсов). В бинарном случае, например, это означает, что вероятность перехода символа «1» в «0» в кодовом слове при прохождении его по каналу существенно меньше вероятности перехода «0» в «1» или наоборот. В такой ситуации обычно пренебрегают наименьшими вероятностями и пытаются защитить рабочие сигналы только от некоторых частичных ошибок, имеющих в данном случае наибольшую вероятность.

Отсюда возникает вопрос построения корректирующих кодов, способных исправлять любые r>0 случайные и независимые несимметрические ошибки.

Задача построения такого кода [1] эквивалентна следующей математической задаче:

Выделить из  $G_n$ , n-мерного векторного пространства над полем G вычетов по модулю 2, максимальное (в смысле количества элементов) подмножество K, любая различная пара векторов которого удовлетворяла бы условию

$$\rho(x,y) = |x-y| + ||x| - |y|| \ge 2r + 1, \tag{1}$$

где 
$$|x| = \sum_{i=1}^n x_i$$
 — норма (вес) вектора  $x$ .

Как легко заметить, условие (1) слабее требования, предъявляемого к рабочим сигналам корректирующего кода, исправляющего то же количество *г* случайных и независимых симметрических ошибок, а именно:

$$|x - y| \geqslant 2r + 1. \tag{2}$$

Поэтому априори можно было бы предполагать, что максимально возможная скорость передачи сообщения системы с несимметрическим каналом, вообще говоря, должна быть больше скорости передачи соответствующей ей системы с симметрическим каналом.

Однако, как показано в [1], в случае линейного кодирования несимметрический код не имеет ожидаемых преимуществ и почти всегда идентичен симметрическому. (Здесь и в дальнейшем при сравнении кодов основные их параметры, такие, как длина сигнала n и число исправляемых ошибок r, в обоих случаях подразумеваются одинаковыми).

В настоящей статье рассмотрен несимметрический код (вообще говоря, нелинейный), исправляющий одиночные ошибки, мощность (число сигналов) которого больше мощности соответствующего максимального симметрического кода, а также известного в литературе несимметрического кода Фреймана — Кима.

## 1. Корректирующий код, исправляющий одиночные несимметрические ошибки

Пусть требуется построить код с исправлением несимметрических одиночных ошибок при заданной длине кодовых слов п.

Рассмотрим сравнение

$$W = \sum_{i=1}^{n} i\alpha_i \equiv a \pmod{n+1}, \tag{3}$$

где  $a_i$  — двоичные числа, a — произвольное целое, удовлетворяющее соотношению  $0 \le a < n+1$ .

Код, исправляющий одиночные несимметрические ошибки, представляется множеством  $K_a$  всевозможных бинарных последовательностей вида  $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ , где  $\alpha_1, \alpha_2, \ldots, \alpha_n$  — решение сравнения (3). Например, в случае n = 8 одним из решений (3) при a = 0 будет:

$$\alpha = (1, 0, 0, 1, 1, 0, 0, 1),$$

так как  $1 + 4 + 5 + 8 \equiv 0 \pmod{9}$ .

Соответственно кодовое слово имеет вид: 10011001.

Построение кода рассмотрим на одном частном примере.

II ример. Пусть, как и раньше, n=8. Полагая a=0, сравнение (3) можно будет записать в виде

$$\sum_{i=1}^{8} i\alpha_i \equiv 0 \qquad (\text{mod 9}),$$

все решения которого образуют код, содержащий 30 различных сигналов, имеющих вид:

| 00000000 | 00001110 | 11011100 |     |
|----------|----------|----------|-----|
| 10000001 | 11000011 | 01010111 |     |
| 01000010 | 10100101 | 00111011 |     |
| 00100100 | 10010110 | 11110001 |     |
| 00011000 | 10011001 | 11101010 | (T) |
| 11000100 | 01011010 | 10111101 | (I) |
| 10101000 | 01101001 | 01111110 |     |
| 01110000 | 01100110 | 11100111 |     |
| 00100011 | 00111100 | 11011011 |     |
| 00010101 | 10001111 | 11111111 |     |
|          |          |          |     |

## 2. Коррекция одиночной ошибки

Для определенности в дальнейшем будем предполагать, что вероятность перехода символа «1» в «0» существенно больше вероятности перехода «0» в «1», т. е. ошибками вида  $0 \to 1$  пренебрегаем. Это допущение несущественно и, как показано в [1], код, способный исправлять несимметрические ошибки вида  $1 \to 0$ , пригоден также и для коррекции ошибок вида  $0 \rightarrow 1$ .

Из дальнейшего будет видно, что номер позиции, в которой произошла ошибка в кодовом слове  $\alpha$ , определяется как наименьшее положительное решение сравнения:

$$-l \equiv W' - a * \pmod{n+1}. \tag{4}$$

Сказанное проиллюстрируем на примере.

Пусть передается один из возможных сигналов системы (I), а именно:  $\alpha=11101010$ . Однако в результате прохождения его по каналу он терпит искажение и воспринимается на приемном конце в виде:  $\alpha'=11001010$  (ошибка произошла на третьей позиции сигнала).

Согласно определению для кодового слова с справедливо соотношение

$$W \equiv 0 \pmod{9},$$

где W — «обобщенный вес» сигнала  $\alpha$ , определяемый формулой (3).

Между тем, в случае одиночной ошибки вида  $1 \to 0$  «обобщенный вес» искаженного сигнала  $\alpha'$  определится соотношением

$$W' = W - l$$

где l — номер позиции сигнала  $\alpha$ , в которой произошла ошибка. Поэтому

$$W = W' + l \equiv 0. \pmod{9}.$$
 $l \equiv -W' \pmod{9}.$ 

Откуда

В нашем случае

$$W' = \sum_{i=1}^{8} i\alpha_i = 1 + 2 + 5 + 7 = 15.$$

Следовательно,

$$l \equiv -15 \pmod{9}$$

или

$$l=3$$
.

Это означает, что ошибка произошла на третьей позиции (что в действительности имело место). Таким образом, исправленный сигнал имеет вид: 11101010.

### 3. Число кодовых слов

Общее число M(n) кодовых слов длиной n в наилучшем из предлагаемых кодов, как нетрудно показать, связано неравенством

$$M(n) \geqslant \frac{2^n}{n+1}. (5)$$

Поэтому при помощи несложного анализа можно установить, что максимальное число его сигналов во всяком случае не меньше общего числа сигналов  $M_1(n) = 2^{n+[-\log_2(n+1)]}$  кода Хэмминга с коррекцией одиночных симметрических ошибок. Функция [x] определена для любого вещественного x и является наибольшим целым, не превосходящим x.

В самом деле, этот факт непосредственно вытекает из очевидного неравенства

$$\frac{2^{n}}{n+1} \geqslant 2^{n+[-\log_{2}(n+1)]},$$

$$\frac{1}{n+1} \geqslant 2^{[-\log_{2}(n+1)]}$$
(6)

откуда

или, что то же самое,

$$2^{-[-\log_2(n+1)]} \geqslant n+1$$

Знак равенства (т. е.  $M(n) = M_1(n)$ ) имеет место лишь в случае  $n = 2^h - 1$ .

<sup>\*</sup> Легко заметить, что в случае ошибок вида  $0 \to 4$  правая часть выражения (4) берется со знаком минус.

Таким образом, установлено, что максимальное число сигналов в предлагаемом коде почти всегда больше общего количества сигналов в симметрическом коде Хэмминга и может совпадать с ним лишь при специальных значениях  $n=2^k-1$ .

# 4. Сравнение предложенного кода с несимметрическими корректирующими кодами

В настоящее время известен всего лишь один корректирующий код, исправляющий одиночные несимметрические ошибки. Этот код, предложенный Фрейманом и Кимом [2], образуется из кода Хэмминга, длина

кодового слова которого соответственно равна n-m, причем  $m=\left[\frac{n}{2}\right]$ .

Общее число кодовых слов длины n в коде Фреймана — Кима

$$M_2(n) = (h_{n-m} + 1)2^{m-1},$$

где  $h_p$  — число кодовых слов кода Хэмминга с длиной сигнала p.

Однако, как будет показано далее, мощность M'(n) наилучшего из предлагаемых нами кодов значительно больше мощности кода Фреймана — Кима. Для этой цели в первую очередь докажем следующее неравенство, справедливое для любого n > 6:

$$(2^{n-[n/2]+[-\log_2(n-[n/2]+1)]}+1) 2^{[n/2]-1} < \frac{2^n}{n+1}.$$
 (7)

В справедливости (7) при  $n=7\div 13$  убеждаемся непосредственным подсчетом (см. таблицу).

Число сигналов в коде, исправляющем одиночные ошибки

| n | Код Хэм-<br>минга<br><i>М</i> <sub>1</sub> ( <i>n</i> ) | Код Фрейма-<br>на—Кима<br>$M_2(n)$ | Предлагаемый<br>код <i>М'</i> (n) | n  | Код Хэм-<br><b>ми</b> нга<br><i>M</i> <sub>1</sub> ( <i>n</i> ) | Код Фрейма-<br>на—Кима<br>$M_2(n)$ | Предла <b>гае</b> мый<br>код <b>М'(</b> n) |
|---|---------------------------------------------------------|------------------------------------|-----------------------------------|----|-----------------------------------------------------------------|------------------------------------|--------------------------------------------|
| 3 | 2                                                       | 2                                  | 2                                 | 10 | 64                                                              | 80                                 | 94                                         |
| 4 | 2                                                       | 4                                  | 4                                 | 11 | 128                                                             | 144                                | 171                                        |
| 5 | 4                                                       | 6                                  | 6                                 | 12 | 256                                                             | 288                                | 316                                        |
| 6 | 8                                                       | 12                                 | 10                                | 13 | 512                                                             | 544                                | 586                                        |
| 7 | 16                                                      | 12                                 | 16                                | 14 | 1024                                                            | 1088                               | 1093                                       |
| 8 | 16                                                      | 24                                 | 30                                | 15 | 2048                                                            | 1088                               | 2048                                       |
| 9 | 32                                                      | 40                                 | 52                                | 16 | 2048                                                            | 2176                               | 3856                                       |

Остается показать справедливость его при  $n \geqslant 14$ . Преобразуем выражение (7) следующим образом:

$$2^{n-1+[-\log_2(n-[n/2]+1)]} + 2^{[n/2]-1} < \frac{2^n}{n+1},$$

откуда

$$2^{-1+[-\log_2(n-[n/2]+1)]} + 2^{[n/2]-n-1} < \frac{1}{n+1}$$

или

$$2^{[-\log_2(n/2+\varepsilon+1)]} + 2^{-n/2-\varepsilon} < \frac{2}{n+1},$$

где

$$\varepsilon = \frac{n}{2} - \left\lceil \frac{n}{2} \right\rceil \geqslant 0.$$

Далее имеем

$$2^{-\log_2(n/2+\varepsilon+1)-\log_2\varepsilon_1}+2^{-(n/2+\varepsilon)}<\frac{2}{n+1},$$

т. е.

$$2^{-\log_2(n/2+\varepsilon+1)\varepsilon_1}+2^{-(n/2+\varepsilon)}<\frac{2}{n+1},$$

что в свою очередь дает

$$\frac{1}{\left(\frac{n}{2}+\varepsilon+1\right)\varepsilon_1}+\frac{1}{2^{n/2+\varepsilon}}<\frac{2}{n+1}.$$
 (8)

Злесь

$$\log_2\epsilon_1 = \left[ -\log_2 \left( \frac{n}{2} + \epsilon + 1 \right) \right] + \log_2 \left( \frac{n}{2} + \epsilon + 1 \right) \geqslant 0, \quad \epsilon_1 \geqslant 1.$$

Напишем теперь неравенство более сильное, чем (8)

$$\frac{1}{\frac{n}{2}+1} + \frac{1}{2^{n/2}} < \frac{2}{n+1}$$
 (8a)

или

$$\frac{1}{2^{n/2}} < \frac{2}{(n+1)(n+2)}. (9)$$

Неравенство (9) имеет место при любом  $n \geqslant 14$ , откуда автоматически следует справедливость (8), а следовательно, и (7).

Приведенная выше таблица характеризует нижнюю оценку  $M'(n) \leqslant$  $\leqslant M(n)$  числа сигналов в наилучшем из предлагаемых кодов,  $M_2(n)$  в коде  $\Phi$ реймана — Кима и  $M_1(n)$  — в симметрическом коде Хэмминга.

> Поступила в редакцию 28 сентября 1963 г.

#### Цитированная литература

- 1. Вар шамов Р. Р. Некоторые особенности линейных кодов, корректирующих не-
- симметрические ошибки. Докл. АН СССР, т. 157, № 3, 1964.

  2. Kim W. H. and Freiman C. V. Single Error-Correcting Codes for Asymmetric Binary Channels. IRE Transactions on information theory, v. IT-5, No. 2, June, 1959.

### CODE CORRECTING SINGLE ASYMMETRIC ERRORS

R. R. VARSHAMOV, G. M. TENENGOL'TS

A binary correction code correcting single asymmetric errors is considered.