Билет 64

Вычисление высших производных обратной функции с помощью дифференциалов.

Теорема

y = f(x)

g — функция, обратная к f, x = g(y)

$$(\forall n \ge 2) \ d^n y = \left(R_n(y) + f'(x)g^{(n)}(y) \right) dy^n \tag{1}$$

Причём $R_n(y)$ зависит только от производных g порядка < n и производных f порядка $\le n$

Доказательство

g — обратная к $f \Rightarrow y = f(x) = f(g(y))$

Индукция: P(n) — верность формулы (1) для n

1. P(2)

$$d^{2}y = d(dy) = d(f'(x)g'(y)dy) = \left[f^{(2)}(x)(g'(y))^{2} + f'(x)g^{(2)}(y)\right]dy^{2} \qquad R_{2}(y) = f^{(2)}(x)(g'(y))^{2}$$

2. $P(n) \Rightarrow P(n+1)$

$$d^{n+1}y = d(d^ny) = d\left[R_n(y) + f'(x)g^{(n)}(y)\right]dy^n = \left[R'_n(y) + f''(x)g'(y)g^{(n)}(y) + f'(x)g^{(n+1)}(y)\right]dy^{n+1}$$

Определим $R_{n+1}(y)$:

$$R_{n+1}(y) := R'_n(y) + f''(x)g'(y)g^{(n)}(y)$$

Заметим, что $R_{n+1}(y)$ зависит только от производных g порядка < n+1 и производных f порядка $\le n+1$

Тогда получаем:

$$d^{n+1}y = \left(R_{n+1}(y) + f'(x)g^{(n+1)}(y)\right)dy^{n+1} \Rightarrow P(n+1) \square.$$

Алгоритм вычисления высших производных обратной функции

 $\Im a \partial a a$: найти $g^{(n)}(y)$

1. Вычислим $d^{(m)}y$ для $m=\overline{1,n}$ и приведём их к форме (1) y — независимая переменная \Rightarrow ($\forall m\geq 2$) $d^my=0$, тогда для $m\geq 2$

$$R_m(y) + f'(x)g^{(m)}(y) = 0 \Rightarrow g^{(m)}(y) = \frac{-R_m(y)}{f'(g(y))}$$
(2)

2. Вычислим g'(y) по формуле $g'(y)=\frac{1}{f'(g(y))},$ а $g^{(m)}(y)$ для $m=\overline{2,n}$ по формуле (2) Для каждого из этих шагов необходимы только производные g до порядка m-1 и производные f до порядка m