The Design and Analysis of Algorithms

Lecture 27 Randomized Algorithms II

Zhenbo Wang

Department of Mathematical Sciences, Tsinghua University

Content

Universal Hashing

Load Balancing

Dictionary Data Type

- Dictionary. Given a universe U of possible elements, maintain a subset S ⊆ U so that inserting, deleting, and searching in S is efficient.
- Dictionary interface.

create(): initialize a dictionary with $S = \emptyset$.

insert(u): add element $u \in U$ to S.

delete(u): delete u from S (if u is currently in S).

lookup(u): is u in S?

- Challenge. Universe U can be extremely large so defining an array of size |U| is infeasible.
- Applications. File systems, databases, Google, compilers, checksums P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

- Hash function. $h: U \rightarrow \{0, 1, \dots, n-1\}.$
- Hashing. Create an array H of size n. When processing element u, access array element H[h(u)].
- Collision. When h(u) = h(v) but $u \neq v$.

A collision is expected after $\Theta(\sqrt{n})$ random insertions (Birthday Problem).

Separate chaining: H[i] stores linked list of elements u with h(u) = i.

```
H[0] jocularly — seriously

H[1] null

H[2] suburban — untravelled — considerating

:

H[n-1] browsing
```


Hashing Performance

 Ideal hash function. Maps m elements uniformly at random to n hash slots.

Running time depends on length of chains.

Average length of chain = $\alpha = m/n$.

Choose $n \approx m \Rightarrow$ on average O(1) per insert, lookup, or delete.

- Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.
- Approach. Use randomization in the choice of h.

Universal Hashing

• Universal family of hash functions. [Carter-Wegman 1980s]

For any pair of elements $u, v \in U$, $Pr_{h \in H}[h(u) = h(v)] \le 1/n$.

Can select random *h* efficiently.

Can compute h(u) efficiently.

Ex.
$$U = \{a, b, c, d, e, f\}, n = 2.$$

	а	Ь	С	d	е	f
h ₁ (x)	0	1	0	1	0	1
h ₂ (x)	0	0	0	1	1	1
h ₃ (x)	0	0	1	0	1	1
h ₄ (x)	1	0	0	1	1	0

```
 \begin{aligned} H &= \{h_1, h_2\} \\ \Pr_{h \in H} \left[ h(a) = h(b) \right] &= 1/2 \\ \Pr_{h \in H} \left[ h(a) = h(c) \right] &= 1 \\ \Pr_{h \in H} \left[ h(a) = h(d) \right] &= 0 \end{aligned}  not universal
```

$$H = \{h_1, h_2, h_3, h_4\}$$

$$Pr_{h \in H} [h(a) = h(b)] = 1/2$$

$$Pr_{h \in H} [h(a) = h(c)] = 1/2$$

$$Pr_{h \in H} [h(a) = h(d)] = 1/2$$

$$Pr_{h \in H} [h(a) = h(e)] = 1/2$$

$$Pr_{h \in H} [h(a) = h(f)] = 0$$

universal

Universal Hashing: Analysis

- Proposition. Let H be a universal family of hash functions; let h∈ H be chosen uniformly at random from H; and let u∈ U.
 For any subset S⊆ U of size at most n, the expected number of items in S that collide with u is at most 1.
- Pf. For any element $s \in S$, define indicator random variable $X_s = 1$ if h(s) = h(u) and 0 otherwise.

Let *X* be a random variable counting the total number of collisions with *u*.

$$E_{h \in H}[X] = E[\sum_{s \in S} X_s] = \sum_{s \in S} \Pr[X_s = 1] \le \sum_{s \in S} \frac{1}{n} = |S| \frac{1}{n} \le 1. \square$$

Q. OK, but how do we design a universal class of hash functions?

Designing a Universal Family of Hash Functions

Theorem 1 (Chebyshev 1850)

There exists a prime between n and 2n.

- *Modulus*. Choose a prime number $p \approx n$.
- Integer encoding. Identify each element $u \in U$ with a base-p integer of r digits: $x = (x_1, x_2, \dots, x_r)$.
- Hash function. Let A = set of all r-digit, base-p integers. For each $a = (a_1, a_2, \cdots, a_r)$ where $0 \le a_i < p$, define

$$h_a(x) = \sum_{i=1}^r a_i x_i \pmod{p}.$$

• Hash function family. $H = \{h_a : a \in A\}.$

Designing a Universal Family of Hash Functions

Theorem 2

 $H = \{h_a : a \in A\}$ is a universal family of hash functions.

Pf. Choose a prime number $p \approx n$.

Let $x = (x_1, \dots, x_r)$ and $y = (y_1, \dots, y_r)$ be two distinct elements of U.

Since $x \neq y$, there exists an integer j such that $x_j \neq y_j$.

We have
$$h_a(x) = h_a(y)$$
 iff $a_j(y_j - x_j) = \sum\limits_{i \neq j} a_i(x_i - y_i) \pmod{p}$.

Can assume a was chosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates $i \neq j$.

Since p is prime, $a_jz = m \pmod{p}$ has at most one solution among p possibilities.

Thus
$$\Pr[h_a(x) = h_a(y)] \le 1/n$$
. \square

Number Theory Fact

- Fact. Let p be prime, and let $z \neq 0 \pmod{p}$. Then $\alpha z = m \pmod{p}$ has at most one solution $0 \leq \alpha < p$.
 - Pf. Suppose α and β are two different solutions.

Then $(\alpha - \beta)z = 0 \pmod{p}$; hence $(\alpha - \beta)z$ is divisible by p.

Since $z \neq 0 \pmod{p}$, we know that z is not divisible by p; it follows that $(\alpha - \beta)$ is divisible by p.

This implies $\alpha = \beta$. \square

Chernoff Bounds

Theorem 3

Suppose X_1, \dots, X_n are independent 0-1 random variables. Let $X=X_1+\dots+X_n$. Then for any $\mu \geq E[X]$ and for any $\delta > 0$, we have

$$Pr[X > (1+\delta)\mu] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu};$$

for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$Pr[X < (1 - \delta)\mu] < e^{-\delta^2 \mu/2}.$$

Load Balancing

- Load balancing. System in which n jobs arrive in a stream and need to be processed immediately on n identical processors.
 Find an assignment that balances the workload across processors.
- Centralized controller. Each processor receives one job.
- Decentralized controller. Assign jobs to processors uniformly at random.

How likely is it that some processor is assigned "too many" jobs?

Load Balancing: Analysis

- Let X_i = number of jobs assigned to processor i.
- Let $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise.
- We have $E[Y_{ij}] = 1/n$.
- Thus, $X_i = \sum_i Y_{ij}$, and $\mu = E[X_i] = 1$.
- Applying Chernoff bounds with $\delta = c 1$ yields $\Pr[X_i > c] < \frac{e^{c-1}}{c^c}$.
- Let $\gamma(n)$ be number x such that $x^x = n$, and choose $c = e\gamma(n)$.

$$\Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c = \left(\frac{1}{\gamma(n)}\right)^{e\gamma(n)} = (\frac{1}{n})^e < \frac{1}{n^2}$$

• Union bound \Rightarrow with probability $\geq 1 - 1/n$ no processor receives more than $e\gamma(n) = \Theta(\log n/\log\log n)$ jobs.

BPP, RP and ZPP

- BPP. Decision problems solvable with probability $\geq 2/3$ in poly-time.
 - RP. Decision problems solvable with one-sided error in poly-time.

If the correct answer is no, always return no.

If the correct answer is yes, return yes with probability $\geq 1/2$.

- coRP. Complementary of RP.
 - ZPP. Decision problems solvable in *expected* poly-time.

BPP, RP and ZPP

Theorem 5

$$\begin{array}{ccc} & RP & \subseteq & BPP \\ & coRP & \subseteq & BPP \\ & ZPP = RP & \cap & coRP \end{array}$$

Theorem 6

 $P \subseteq ZPP \subseteq BPP, RP \subseteq NP.$

- Fundamental open questions. To what extent does randomization help?
- Does P = ZPP? Does ZPP = BPP? Does RP = NP? Does BPP = NP?

Homework

- Read Chapter 13 of the textbook.
- Exercise 9 & 18 in Chapter 13.

