Student's Name:	
Teacher's Name:	

ALY*, PJR, ARP, SJB, PDJ, PCB JAI, JZT, LMD, BHC, ARM

Monday 7th March 2022 Period 1 or 2 Time Allowed: 55 minutes

YEAR 9 MATHEMATICS

5.3

ASSESSMENT 1

248 copies

Algebra Products and Factors

INSTRUCTIONS TO STUDENTS

- * Write ALL answers in the space provided.
- * ALL NECESSARY working for each question must be shown to gain full marks.
- * Marks may not be awarded for careless or badly arranged working.
- * DIAGRAMS ARE NOT TO SCALE
- * Write in blue or black pen
- * Board-approved, non-programmable calculators may be used.

TOTAL: [70 marks]

* * *

1. Simplify fully:

(a)
$$-6m + 3m - 5m$$

(b)
$$7ab - 2ab^2 - 5ba$$

(c)
$$4m \times (-3mn) \times 6n$$

$$(d) \qquad \frac{7pq^2}{21nqr} \qquad \qquad 2$$

2. Expand and simplify if possible:

(a)
$$-5(7-2x)$$

b)
$$(7a-5)(2a+2)$$
 2

(c) (3-m)(3+m)

2

Fully factorise:

(a) 9a + 12

1

(d) $(3h-8)^2$

2

(b) 8y(y-3) - 9(y-3)

2

(e) 10 - 5(2x - 7)

2

(c) $56a^2b - 63ab^2$

2

(d) $2a^2 + 5a - 6ab - 15b$

2

(e) $x^2 - 1$

1

(f) $x^2 + 11x + 30$

(f)
$$k^2 - 8k - 48$$

5. Simplify:

(a)
$$\frac{5y}{8} - \frac{3y}{8}$$

(g)
$$14x^2 - 19x - 3$$

(b)
$$\frac{7n}{8} + \frac{3n}{4}$$

(h)
$$3x^2 + 3x - 18$$

(c)
$$\frac{g}{5} \times \frac{15}{13g}$$

(d)
$$36xy \div \frac{6x^2}{y}$$

4. Explain why there is no factoristion for
$$x^2 + x + 23$$

The recurring decimal
$$0.58\dot{3}$$
 is equivalent to $\frac{7}{12}$. Show using algebra that this is true.

7. Consider the large **square** shown.

	а	b
а	A1=	A2=
b	A3=	A4=

- i. Give an expression for the length of each side of the larger (outside) square?
- Write an expression for the area of the larger square using your answer from i.
 Do not expand your answer.
- iii. On the diagram fill in the blanks with the areas of the smaller shapes labelled A1, A2, A3, A4.
- iv. Using information from parts i. iii., **explain why** $(a + b)^2 = a^2 + 2ab + b^2$. Make sure you **use words and algebra** in your answer.

2

3

8. Expand and simplify: $y^2 \left(\frac{3}{y} + 5y\right)^2$

9. Fully factorise and simplify:

(a)
$$2v^3 - 8v$$
 2

(b)
$$\frac{x^2-25}{4x-6} \div \frac{x^2-5x}{6x^2-7x-3}$$

(c)
$$\frac{7}{a^2+4a-5} - \frac{4}{a^2-8a+7}$$

10. In a right angled triangle, Pythagoras theorem allows us to find the length of the shorter side, using the formula $b^2 = c^2 - a^2$, where c is the hypotenuse.

i. In the right angled triangle below, use $b^2 = c^2 - a^2$ to find a simplified, fully factorised expression for b^2 .

ii. Find the simplest expression for b.

- 11. Fully factorise
- $-9x^2 + x^4 16 24x$

la.	-6m+3m-5m = -8m		$x^2-1=(x-1)(x+1)$ $x^2+11x+30$
Ь.	7ab-2ab ² -5ba	T .	=(x+5)(x+6)
	$= 2ab - 2ab^2$	f.	k2-8k-48
C.	4mx(-3mn)x6n		(k-12)(k+4)
	$=-72m^2n^2$	g.	$14x^2 - 197c - 3$
	$\frac{7\rho q^2}{21\rho qr} = \frac{qr}{3r}$		$= 4x^2 - 2 x + 2x - 3$ = $7x(2x - 3) + 1(2x - 3)$
	-5(7-2x)		=(2x-3)(7x+1)
	=-35+10sc	h.	$3x^2 + 3x - 18$
Ь.	(7a-5)(2a+2)		$=3(x^2+x-6)$
	$=14a^2+14a-10a-10$		=3(x+3)(x-2)
	$= 14a^2 + 4a - 10$	4.	There is no factorisation for x2+x+23 because
	$(3-m)(3+m)$ = $9-m^2$		the only factors of 23 are 1 and 23 and these
d.	$(3h-8)^2$		cannot be added to
	= (3h-8)(3h-8)	50	give 1.
	$=9h^2-24h-24h+64$	30(.	$\frac{5y}{8} - \frac{3y}{8} = \frac{2y}{8} = \frac{y}{4}$
	$= 9h^2 - 48h + 64$	6)	$\frac{7n}{8} + \frac{3n}{4}$
е.	10-5(2x-7) = $10-10x+35$		
	= 45-10×		$=\frac{7n}{8}+\frac{6n}{8}=\frac{13n}{8}$
3a.	9a+12 = 3(3a+4)	C.	$\frac{9}{5} \times \frac{15}{139} = \frac{3}{13}$
	8y(y-3)-9(y-3)		$\frac{5}{3} + \frac{139}{6x^2}$
	=(8y-9)(y-3)	Ol.	36 xy = 6x2
C ,	56a2b - 63ab2		$= \frac{36xy}{6x^2} \times \frac{9}{6x^2}$
	= 7ab (8a -9b)		$=\frac{6y^2}{7}$
	2a²+5a-6ab-15b =a(2a+5)-3b(2a+5)		$oldsymbol{ec{arkappa}}$.
	-(2a+5)(a-3b)		

2022 - SOLUTIONS Page 2 ASSESSMENT 1 Year 9 5.3

6. Let
$$x = 0.583333...$$
Let $100x = 58.3333...$
Let $1000x = 583.333...$
Let $1000x = 583.3333...$
Let $1000x = 583.333...$
Let $1000x = 583.333$