On a scalable problem transformation method for multi-label learning

Dora Jambor Shopify Inc. dora.jambor@shopify.com

Peng Yu
Shopify Inc.
peng.yu@shopify.com

Abstract

Binary relevance is a simple approach to solve multi-label learning problems where an independent binary classifier is built per each label. A common challenge with this in real-world applications is that the label space can be very large, making it difficult to use binary relevance to larger scale problems. In this paper, we propose a scalable alternative to this, via transforming the multi-label problem into a single binary classification. We experiment with a few variations of our method and show that our method achieves higher precision than binary relevance and faster execution times on a top-K recommender system task.

9 1 Introduction

- A simple and performant approach commonly used in real-world multi-label learning applications is Binary Relevance (BR) [Tsoumakas and Katakis (2007)]. BR is a decomposition method that trains a single binary classifier for each label to classify input instances as relevant or irrelevant for the given
- 13 label.
- As the number of label sets grows exponentially with increases in the number of class labels, a key
- challenge in multi-label learning is scalability. In the BR framework, when training individual binary
- classifiers for each label sequentially prohibitively takes a long time, we might resort to parallelising
- our models across workers. However, this approach increases the I/O cost of reading the input data and transferring the data across the network. In this work, we propose a set of transformations which
- all dansferring the data across the network. In this work, we propose a set of dansformations which allows us to solve a multi-label learning problem by solving one binary classification problem. We
- 20 demonstrate the effectiveness of our proposed method via a real-world top-K recommendation task
- 21 and show that we are able to solve our problem much faster, and with higher precision.

22 Background and Methodology

- 23 As discussed by Tsoumakas et al. (2009), there are two main paradigms to solve multi-label problems:
- 24 (i) problem transformation, (ii) algorithm adaptation. The former transforms the learning task into
- one or more single-label classification tasks, whereas the latter extends specific learning algorithms
- 26 in order to handle multi-label data directly. Similar to BR, our proposed method is an instance of (i).
- 27 Formally, let $X \in \mathbb{R}^{m \times n}$ be a matrix of m instances where each instance is an n-dimensional feature
- vector, and let $Y \in \{0,1\}^{m \times k}$ be a matrix of m responses where each response if a k-dimensional
- 29 label vector.
- 30 Inspired by Kesler's construction [Nilsson (1965), Duda and Hart (1973)], an approach to extend
- learning algorithms for binary classification to the multiclass case [Har-Peled et al. (2003)], we
- $_{32}$ propose a set of transformations on X and Y to convert the multi-label problem into a single binary
- 33 classification problem. We also introduce a way to map the solutions of the binary classification
- problem back to the original multi-label setting. These transformations are defined as:

$$X' = diag(\underbrace{X, \dots, X}_{k})$$
 $Y' = \begin{bmatrix} Y_1 \\ \vdots \\ Y_k \end{bmatrix}$

- where Y_1, \dots, Y_k are $m \times 1$ -dimensional vectors corresponding to m responses for each label, i.e.
- 36 $Y = [Y_1 \cdots Y_k].$
- Using the transformed $X' \in \mathbb{R}^{mk \times nk}$ and $Y' \in \{0,1\}^{mk \times 1}$, we solve a single binary classification
- with X' as instances and Y' as responses. After obtaining $\widehat{Y'} = \begin{bmatrix} \widehat{Y'}_1 \\ \cdots \\ \widehat{Y'}_k \end{bmatrix}$, our estimates of Y', we
- assign $\widehat{Y} = [\widehat{Y}_1 \cdots \widehat{Y}_k]$ as the predicted label scores of the original multi-label problem.

40 3 Experiments and discussion

- We conduct our experiments on an internal dataset containing 705,093 users' app installations for
- the top 100 most popular apps 1 on Shopify App Store 2 . In this task, both X and Y are the binary
- 43 user-item matrix composed of each user's historical app installations. We then perform a three fold
- 44 time-series based split to obtain three pairs of train-test dataset. ³
- 45 We compare our method (termed DiagT) against BR as a baseline. We seek to answer if our approach
- 46 is amenable to the application of dimensionality reduction techniques due to the sparsity and large
- size of X' by investigating the performance of a few variations of DiagT, utilizing the hashing trick
- ⁴⁸ [Langford et al. (2007)] and random undersampling ⁴.
- 49 We show in Table 1 that DiagT and its variations obtain higher precisions in models DiagT, DiagT-
- 50 hb0.9, and DiagT-rus and have faster execution time compared to BR. Model DiagT-rus-hb0.9, which
- 51 employs both the hashing trick and undersampling suffers from a high bias. The hashing bucket ratio
- 52 0.9 is chosen after performing hyperparameter tuning.

53 4 Conclusion

We proposed a problem transformation method to solve multi-label learning via a single binary classification that is shown to have clear improvements in execution time and precision compared to the binary relevance method. In future work, we intend to perform a more extensive hyperparameter search, experiment with different dimensionality reduction techniques, and compare our method against other popular multi-label learning algorithms.

Table 1: Summary of experiments

models	# nnz	density (%)	speed (s)	p@1(%)	p@5 (%)	p@10 (%)
BR	2,594,150	5	216.4	17.9 ± 1.0	18.2 ± 1.4	20.2 ± 1.2
DiagT	273,942,306	0.05	172.3	21.7 ± 1.0	21.4 ± 1.6	23.6 ± 1.2
DiagT-hb0.9	259,377,381	0.056	175.6	20.3 ± 0.7	20.3 ± 0.6	22.4 ± 0.6
DiagT-rus-hb0.9	259,399,448	0.056	40.1	17.0 ± 1.0	17.7 ± 0.9	19.8 ± 0.8
DiagT-rus	256,820,916	0.197	13.86	22.6 ± 2.3	21.2 ± 1.05	23.3 ± 0.8

Bold entries are DiagT-based results that are better than BR.

Abbreviations: BR - binary relevance, DiagT - our proposed method, hb - hashing bucket ratio, rus - random under sampling, nnz - of nonzeros. Precision metrics are calculated using the three-fold evaluation with a 95% confidence interval.

¹Items in a recommendation task constitute as the label set in a multi-label learning problem setting. Top-K recommendations for every user is obtained by picking the top K label estimates per user.

²Shopify App Store: http://apps.shopify.com

³We performed the temporal split such that all user-item interactions in the training set were interactions that happened before interactions contained in the test set.

⁴https://imbalanced-learn.readthedocs.io

References

- Richard O Duda and Peter E Hart. 1973. Pattern classification and scene analysis. *A Wiley-Interscience Publication, New York: Wiley, 1973* (1973).
- Sariel Har-Peled, Dan Roth, and Dav Zimak. 2003. Constraint classification for multiclass classification and ranking. In *Advances in neural information processing systems*. 809–816.
- John Langford, Lihong Li, and Alex Strehl. 2007. Vowpal wabbit online learning project. (2007).
- Nils J Nilsson. 1965. Learning machines: foundations of trainable pattern-classifying systems.
 McGraw-Hill.
- 67 Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classification: An overview. *International Journal of Data Warehousing and Mining (IJDWM)* 3, 3 (2007), 1–13.
- 69 Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. 2009. Mining multi-label data. In
 70 Data mining and knowledge discovery handbook. Springer, 667–685.