Generalisation in theory and practice

Christos Dimitrakakis

September 29, 2025

Outline

Classification

The classifier as a decision rule

A decision rule $\pi(a|x)$ generates a decision $a \in [m]$. It is the conditional probability of a given x.

Classification

The classifier as a decision rule

A decision rule $\pi(a|x)$ generates a decision $a \in [m]$. It is the conditional probability of a given x.

Deterministic predictions given a model P(y|x)

Here, we pick the most likely class:

$$\pi(a|x_t) = \mathbb{I}\left\{a = \argmax_{y} P(y|x_t)\right\}$$

Classification

The classifier as a decision rule

A decision rule $\pi(a|x)$ generates a decision $a \in [m]$. It is the conditional probability of a given x.

Deterministic predictions given a model P(y|x)

Here, we pick the most likely class:

$$\pi(a|x_t) = \mathbb{I}\left\{a = \operatorname*{max}_{y} P(y|x_t)\right\}$$

Randomised predictions given a model P(y|x)

Here, we randomly select a class according to our model:

$$\pi(a|x_t) = P(y_t = a|x_t)$$

The accuracy of a single decision

$$U(a_t, y_t) = \mathbb{I}\left\{a_t = y_t\right\} = \begin{cases} 1, & \text{if } a_t = y_t \\ 0, & \text{otherwise} \end{cases}$$

The accuracy of a single decision

$$U(a_t, y_t) = \mathbb{I}\left\{a_t = y_t\right\} = \begin{cases} 1, & \text{if } a_t = y_t \\ 0, & \text{otherwise} \end{cases}$$

The accuracy on a dataset

Let $D = \{(x_t, y_t) : t \in [T]\}$ be a dataset. We can measure the accuracy:

$$U(\pi, D) \triangleq \frac{1}{T} \sum_{t=1}^{T} \pi(y_t | x_t)$$

The expected accuracy of a decision rule

The accuracy of a single decision

$$U(a_t, y_t) = \mathbb{I}\left\{a_t = y_t\right\} = egin{cases} 1, & ext{if } a_t = y_t \\ 0, & ext{otherwise} \end{cases}$$

The accuracy on a dataset

Let $D = \{(x_t, y_t) : t \in [T]\}$ be a dataset. We can measure the accuracy:

$$U(\pi, D) \triangleq \frac{1}{T} \sum_{t=1}^{T} \pi(y_t | x_t)$$

The expected accuracy of a decision rule

If $(x, y) \sim P$, the accuracy U of a rule π under P is the probability it predicts correctly

$$U(\pi, P) \triangleq \int_{\mathcal{X}} dP(x) \sum_{y=1}^{m} P(y|x) \pi(y|x)$$

Beyond classification: Generalised decision rules

Consider a spam application, where the e-mail client can decide between different action for emails. Different actions being best for each type of e-mail. The quality of each action can be captured through a utility function.

Utility of the spam decision problem

What utility function would you use for the spam detection problem?

Utility	Pass	Flag	Trash
Normal			
Spam			
Virus			

The utility function $U: \mathcal{Y} \times \mathcal{A} \to \mathbb{R}$

The utility function U(y, a) is a real-valued function so that, for a label y, we prefer taking action a to a' iff U(y, a) > U(y, a').

The optimal decision

- ▶ A model P(y|x) of class probabilities
- ightharpoonup A utility U(y, a) for each class and action combination

Expected utility

We can calculate the expected utility of any decision

$$\mathbb{E}[U|a,x] = \sum_{y} P(y|x,a)U(y,a) = \sum_{y} P(y|x)U(y,a)$$

Here the first equality follows from the definition of conditional expectation and P(y|x,a) = P(y|x) as the label does not depend on our actions.

The optimal decision

For any observation x, and P, we take the action maximising expected utility:

$$a^* = \arg\max_{a} \mathbb{E}_P[U|a,x]$$

This defines a function $\mathcal{X} \to \mathcal{A}$, which is the Bayes-optimal decision rule.

The optimal decision rule

- ightharpoonup A model P(y|x) of class probabilities
- ightharpoonup A utility U(y, a) for each class and action combination
- A decision rule $\pi(a|x)$ assigning probability to action a for every possible input x

Expected utility over a dataset.

We obtain the expected utility of the decision rule by marginalising over all actions

$$U(\pi, D) \triangleq \mathbb{E}[U|\pi, D] \stackrel{D=(x_t, y_t)_{t=1}^T}{=} \sum_{t=1}^T \mathbb{E}[U|\pi, x_t] = \sum_{t=1}^T \sum_{a \in \mathcal{A}} U(y_t, a)\pi(a|x_t)$$

Here the first equality follows from the definition of conditional expectation and P(y|x,a) = P(y|x) as the label does not depend on our actions.

Expected utility over P

We can marginalise over possible datasets D

$$U(\pi, P) \triangleq \mathbb{E}_{P}[U|\pi] = \int_{\mathcal{D}} dP(D)U(\pi, D) \stackrel{\text{i.i.d.}}{=} \int_{\mathcal{X}} dP(x) \sum_{\{x \in \mathcal{X}\}} P(y|x) \sum_{\{x \in \mathcal{X}\}} \pi(a|x)U(y|x) \sum_{\{x \in \mathcal{X}\}} \pi(a|x)U(y|x)$$

Taking into account the probability

- For classification, it makes sense to look at the probability of the labels.
- If we are not very confident about our prediction, this should be taken into account:
- Define P(y|x) to be our classifier's probability for label y, given features x. Then we can use two simple metrics:

Precision

The average probability of the actual class:

$$\sum_{t=1}^{T} P(y_t|x_t)/T$$

- ▶ If we always assign probability 1 to the correct label, this score is 1.
- ▶ If we always assign probability 1/m to all labels, the score is 1/m.

Negative Log-Loss

Here we assign look at the logarithm of the probability. This really penalises bad guesses.

$$\sum_{t=1}^{T} \ln P(y_t|x_t)/T$$

- ▶ If we always assign probability 1 to the correct label, this score is 0.
- ▶ If we assign probability 0 to even a single label, the score is $-\infty$.

from sklearn.metrics import log_loss
in scikitlearn implements log-loss (not negative)

Regression

The regressor as a deterministic decision rule

A decision rule π generates a decision $a \in \mathbb{R}^m$.

- For deterministic rules $\pi(x)$ is the prediction for x.
- Since we can almost never guess correctly, we need to define the quality of our predictions somehow, either as a utility $U(y_t, a_t)$ or a loss function $\ell(y_t, a_t)$.

Mean-Squared Error Loss on a Dataset

This is the squared difference in predicted versus actual values:

$$\frac{1}{T} \sum_{t=1}^{T} [y_t - \pi(x_t)]^2$$

Expected MSE

If $(x,y) \sim P$, the expected MSE of a deterministic decision rule $\pi: \mathcal{X} \to \mathbb{R}$ is

$$\int_{\mathcal{X}} \int_{\mathcal{Y}} dP(x,y)[y-\pi(x)]^2.$$

Probabilistic regression

The regressor as a stochastic decision rule

A decision rule π generates a decision $a \in \mathbb{R}^m$.

- For stochastic rules $\pi(a|x)$ defines a density over predictions.
- In this case it is natural to define $\pi(y_t, x_t)$ as our metric.

Likelihood on a Dataset

The mean-square error is simply the squared difference in predicted versus actual values:

$$\prod t = 1^T \pi(y_t|x_t)$$

We will later see a link between this metric, mean-square error and estimation.

Training and overfitting

Training data

- \triangleright $D = ((x_t, y_t) : t = 1, ..., T).$
- $ightharpoonup x_t \in \mathcal{X}, y_t \in \mathcal{Y}.$

Assumption: The data is generated i.i.d.

- ▶ $(x_t, y_t) \sim P$ for all t (identical)
- $ightharpoonup D \sim P^T$ (independent)

The optimal decision rule for P

$$\max_{\pi} U(\pi, P) = \max_{\pi} \int_{\mathcal{X} \times \mathcal{Y}} dP(x, y) \sum_{a} \pi(a|x) U(a, y)$$

The optimal decision rule for D

$$\max_{\pi} U(\pi, D) = \max_{\pi} \sum_{(x,y) \in D} \sum_{a} \pi(a|x)U(a,y)$$

Generalisation

The fundamental problem

- ▶ We want to maximise $U(\pi, P)$
- \blacktriangleright We can only measure $U(\pi, D)$
- ▶ We have a learning algorithm $\lambda : \to \Pi$
- ▶ If $\pi = \lambda(D)$, then we instead measure $U(\lambda(D), D)$.

Generalisation

The fundamental problem

- ▶ We want to maximise $U(\pi, P)$
- We can only measure $U(\pi, D)$
- ▶ We have a learning algorithm $\lambda : \to \Pi$
- ▶ If $\pi = \lambda(D)$, then we instead measure $U(\lambda(D), D)$.

Training and testing

- ightharpoonup Split D in D_{train} , D_{test}
- ightharpoonup Obtain $\pi = \lambda(D_{\mathrm{train}})$
- ightharpoonup Calculate $U(\pi, D_{\text{test}})$
- $ightharpoonup \mathbb{E}_P[U(\pi, D_{\text{test}})] = U(\pi, P)$ for any fixed π (unbiased estimator)
- $ightharpoonup \mathbb{E}_P[U(\lambda(D_{\text{train}}), D_{\text{train}})] \geq U(\pi, P)$ (biased estimator)

kNN Classifier Accuracy on a single dataset

kNN Classifier Accuracy on a single dataset

kNN Classifier Accuracy on a single dataset

Expected kNN Classifier Accuracy

Expectation approximated over 100 datasets D sampled from P.

The Train/Validation/Test methodology

Main idea

Use each piece of data once to make decisions and measure

Training set

Use to decide low-level model parameters

Validation set

Use to decide between:

- ▶ different hyperparameters (e.g. *K* in nearest neighbours)
- model (e.g. neural networks versus kNN)

Test set

Use to measure the final quality of a model

Cross-validation (XV)

Idea

Use XV to select hyperparameters instead of a single train/valid test.

Methodology

- ▶ Split training set *D* in *k* different subsets
- ► At iteration *i*
- ▶ Use the *i*-th subset for validation
- ▶ Use all the remaining k-1 subsets for training
- Average results on validation sets

Cross-validation example: A mean estimate

Live coding in Python:

- ► Get a mean estimate
- ► Perform cross-validation

Hand-crafted

```
def xv shuffler(x, estimator, scoring, n folds):
        rng = np.random.default rng
        # shuffle data
        T = Ien(x)
        indices = np.arange(T)
        shuffle (indices)
        fold size = np.ceil(T / n folds)
        fold start = np.zeros(n folds)
        fold end = np.zeros(n folds)
        # create folds
        for k in range(n folds):
                fold start = k * fold size
                fold end = np.min((k+1) * fold size, T)
        # for each fold:
        # 1. Run estimator on k-1 folds
                                    ・
・ロト 4回ト 4 恵ト 4 恵ト - 恵 - 约Qで
```

Bootstrapping

- Express uncertainty by resampling the data.
- Repeat your calculations for each resample

BootstrapSample(D)

```
input Data D = (z_1, \ldots, z_T), of size T for t \in \{1, \ldots, T\} do

Select i uniformly in [T]

Add the i-th point to D_b

end for

return D_b
```

BootstrapEstimate(D, λ, N)

```
input Data D \in \mathcal{D}, algorithm \lambda : \mathcal{D} \to \Theta, N > 0 number of samples for n \in \{1, \dots, N\} do \theta_n = \lambda(\operatorname{BootstrapSample}(D)) end for return \{\theta_n : n \in [N]\}
```

The wrong way to do XV for subset selection

- 1. Screen the predictors: find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels.
- 2. Using just this subset of predictors, build a multivariate classifier.
- 3. Use cross-validation to estimate the unknown tuning parameters and to estimate the prediction error of the final model.

Is this a correct application of cross-validation?

Consider a scenario with N=50 samples in two equal-sized classes, and p=5000 quantitative predictors (standard Gaussian) that are independent of the class labels. The true (test) error rate of any classifier is 50%.

The right way to do XV for feature selection

- 1. Divide the samples into K cross-validation folds (groups) at random.
- 2. For each fold $k = 1, 2, \ldots, K$
- Find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels, using all of the samples except those in fold k.
- 4. Using just this subset of predictors, build a multivariate classifier, using all of the samples except those in fold k.
- 5. Use the classifier to predict the class labels for the samples in fold k.

Lab

- scikitlearn KNN
- scikitlearn performance measures
- train/test/validate plot with increasing k
- XV plot with increasing k
- Scaling and other preprocessing
- ► Effect of outliers on preprocessing
- Optional: Bootstrap performance evaluation

Learning and generalisation

How well can decision rule perform?

Estimation theory view

- ▶ Bias: The expected difference between the estimated value and the unknown parameter
- Variance: The expected difference between the estimated value and the unknown parameter

Learning theory view

- Approximation ability: How well a class of rules can approximate the optimal one.
- Statistical error: How easy it is to choose the best rule in the class.

Unbiased estimators

Definition (Estimator)

An estimator is a function $f: \mathcal{D} \to \Theta$, where Θ is a set of parameters. For any given dataset $D \in \mathcal{D}$, it returns a single estimate $\hat{\theta} = f(D)$.

Definition (Unbiased estimator)

An estimator is unbiased if, for the distribution $P(D|\theta)$, we have

$$\mathbb{E}[f \mid \theta] = \sum_{D} f(D)P(D|\theta) = \theta.$$

Example (Sample mean estimator)

Consider $D=(x_1,\ldots,x_T)$ with $x_t\sim P$ being i.i.d samples with $\mathbb{E}[x_t]=\theta$. The sample mean estimator $f(D)=\sum_t x_t/T$ is unbiased, as :

$$\mathbb{E}[f] = \mathbb{E}\left[\sum_{t=1}^T x_t / T\right] = \frac{1}{T} \sum_{t=1}^T \mathbb{E}[x_t] = \frac{1}{T} \sum_{t=1}^T \theta = \theta.$$

Example of a biased and unbiased estimator: Training error

- $U(\pi, D)$ is the measured accuracy of a classifier π on D
- ▶ $U(\pi, P) = \mathbb{E}_{D \sim P}[U(\pi, D)]$ is the actual accuracy. So $U(\pi, D)$ is unbiased.
- $\lambda(D) = \arg \max_{\pi} U(\pi, D)$ is a learning algorithm picking the best classifier for a dataset D.
- ▶ Then $U(\lambda(D), D)$ is biased, as for any π'

$$\mathbb{E}_{D \sim P}[U(\lambda(D), D)] = \int dP(D)U(\lambda(D), D)$$
 (1)

$$= \int \! dP(D) \max_{\pi} U(\pi, D) \tag{2}$$

$$\geq \int \!\! dP(D)U(\pi',D) \tag{3}$$

$$=U(\pi',P) \tag{4}$$

i.e. the expected value of the training accuracy is higher than the accuracy of any classifier.

The bias/variance trade-off

- ▶ Dataset $D \sim P$.
- ▶ Predictor $f_D(x)$
- ▶ Target function $y = f(x) + \epsilon$
- $ightharpoonup \mathbb{E} \epsilon = 0$ zero-mean noise with variance $\sigma^2 = \mathbb{V}(\epsilon)$

MSE decomposition

$$\mathbb{E}[(f - f_D)^2] = \mathbb{V}(f_D) + \mathbb{B}(f_D)^2 + \sigma^2$$

Variance

How sensitive the estimator is to the data

$$\mathbb{V}(f_D) = \mathbb{E}[(f_D - \mathbb{E}(f_D))^2]$$

Bias

What is the expected deviation from the true function

$$\mathbb{B}(f_D) \triangleq \mathbb{E}[(f_D - f)]$$

Example: mean estimation

- ▶ Data $D = y_1, ..., y_T$ with $\mathbb{E}[y_t] = \mu$.
- ▶ Goal: estimate μ with some estimator f_D to minimise
- ► MSE: $\mathbb{E}[(y f_D)^2]$, the expected square difference between new samples our guess.

Optimal estimate

To minimise the MSE, we use $f^* = \mu$. This gives us two ideas:

Empirical mean estimator:

- $\blacktriangleright f_D = \sum_{t=1}^T x_t / T.$
- $ightharpoonup \mathbb{V}(f_D) = \mathbb{E}[f_D \mu] = 1/\sqrt{T}$
- ▶ $\mathbb{B}(f_D) = 0$. (unbiased estimator)

Laplace mean estimator:

- $f_D = \sum_{t=1}^T (\lambda + x_t)/T.$
- $\blacktriangleright \mathbb{V}(f_D) = \mathbb{E}[f_D \mu] = \frac{1}{1 + \sqrt{T}}$
- \triangleright $\mathbb{B}(f_D) = O(1/T).$

A proof of the bias/variance trade-off

- ightharpoonup RV's $y_t \sim P$, $\mathbb{E}[y_t] = \mu$, $y_t = \mu + \epsilon_t$.
- ▶ Estimator f_D , $D = y_1, \dots, y_{t-1}$.

$$\mathbb{E}[(f_{D} - y_{t})^{2}] = \mathbb{E}[f_{D}^{2}] - 2 \mathbb{E}[f_{D}y_{t}] + \mathbb{E}[y_{t}^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}y_{t}] + \mathbb{E}[y_{t}^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}] \mathbb{E}[y_{t}] + \mathbb{E}[y_{t}^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}]\mu + \mathbb{E}[y_{t}^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}]\mu + \mathbb{E}[(\mu + \epsilon_{t})^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}]\mu + \mathbb{E}[\mu^{2} + 2\mu\epsilon_{t} + \epsilon_{t}^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}]\mu + \mu^{2} + \sigma^{2}$$

$$= \mathbb{V}[f_{D}] + (\mathbb{E}[f_{D}] - \mu)^{2} + \sigma^{2}$$

$$= \mathbb{V}(f_{D}) + \mathbb{B}(f_{D})^{2} + \sigma^{2}$$

Generalisation error

Regret decomposition

Let the optimal rule be $\pi^* \in \Pi$, the best approximate rule be $\hat{\pi}^* \in \Pi$ and our rule be $\hat{\pi} \in \hat{\Pi}$. We call the difference between the performance of π^* and $\hat{\pi}$ our regret:

$$\underbrace{U(\pi^*,P)-U(\hat{\pi},P)}_{\mathrm{regret}} = \underbrace{U(\pi^*,P)-U(\hat{\pi}^*,P)}_{\mathrm{approximation\ error}} + \underbrace{U(\hat{\pi}^*,P)-U(\hat{\pi},P)}_{\mathrm{estimation\ error}}$$

We can bound the regret by bounding each term separately.

- The approximation error tells us how expressive our class of rules is, i.e. how much we lose by looking at a restricted class $\hat{\Pi}$ of rules. It is similar to estimator bias.
- ► The statistical error tells us how well the empirical performance on *D* approximates the true performance. It is similar to estimator variance.
- As a rule of thumb, the larger our class, the better the possible approximation but the higher the statistical error.

Approximation error

- ▶ Our model limits us to a set of decision rules $\hat{\Pi} \subset \Pi$.
- ▶ The most we could do is find the best rule in $\hat{\Pi}$.
- ► This still leaves a gap:

$$\Delta \triangleq \max_{\pi \in \Pi} U(\pi, P) - \max_{\hat{\pi} \in \hat{\Pi}} U(\pi, P)$$

The gap can be characterised in some cases.

Example: ϵ -net on Lipschitz $U(\cdot, P)$.

- Assume $U(\pi, P)$ is a Lipschitz function of π for all P, i.e. $|U(\pi, P) U(\pi', P)| \le Ld(\pi, \pi')$ for some metric d.
- Let $\hat{\Pi}$ be an ϵ -net on Π , i.e. $\max_{\pi \in \Pi} \min_{\pi' \in \hat{\Pi}} d(\pi, \pi') = \epsilon$.
- ▶ Then $\Delta \leq L\epsilon$.

Estimation error

- First, let us bound $U(\hat{\pi}^*, P) U(\hat{\pi}, P)$ by making an assumption.
- Then, we can prove that our assumption holds with high probability.

Lemma

Let $f,g:S\to\mathbb{R}$. If $\|f-g\|_\infty\leq\epsilon$ and $f(x)\geq f(z)$, while $g(y)\geq g(z)$, for all z, i.e. x,y maximise f,g respectively

$$f(x) - f(y) \le 2\epsilon$$
.

This holds as: $f(x) - f(y) \le g(x) + \epsilon - f(y) \le g(y) + \epsilon - f(y) \le 2\epsilon$.

Corollary

If $|U(\pi, P) - U(\pi, D)| \le \epsilon$ for all π then

$$U(\hat{\pi}^*, P) - U(\hat{\pi}, P) \le 2\epsilon$$

Let us now prove that, with high probability, $|U(\pi, P) - U(\pi, D)| \le \epsilon$.

Bounding the estimation error

For any fixed rule $\pi \in \Pi$ and utility function $U : \Pi \times \mathcal{X}^T \to [0, 1]$,

$$P^{T}(|U(\pi,D)-U(\pi,P)| \ge \epsilon) \le 2\exp(-2T\epsilon^{2}).$$

This is a direct application of Hoeffding's inequality¹. Taking the union bound over the set \hat{H} gives:

$$P^T(\exists \pi \in \hat{\Pi} : |U(\pi, D) - U(\pi, P)| \ge \epsilon) \le 2|\hat{\Pi}| \exp(-2T\epsilon^2).$$

Setting the right side equal to δ and re-arranging,

$$P^T\left(\max_{\pi\in\hat{\Pi}}|U(\pi,D)-U(\pi,P)|\geq\sqrt{\frac{\ln(2|\hat{\Pi}|/\delta)}{2T}}\right)\leq\delta.$$

Example: ϵ -net.

In a n dimensional space we require $|\hat{\Pi}| = O(\epsilon^{-n})$. This means that our statistical error is $O(\sqrt{n \ln(1/\epsilon \delta)/T})$.

The finite hypothesis algorithm

- ▶ Input: a finite set of rules $\hat{\Pi}$, data D, utility U
- ▶ Return $\hat{\pi} \in \arg\max_{\pi \in \hat{\Pi}} U(\pi, D)$.

Regret of the finite hypothesis algorithm.

With probability $1-\delta$

$$U(\hat{\pi}, P) \ge U(\hat{\pi}^*, P) - \sqrt{2 \ln(2|\hat{\Pi}|/\delta)/T}$$
 (5)

$$U(\pi^*, P) - U(\hat{\pi}, P) \le \Delta + \sqrt{2\ln(2|\hat{H}|/\delta)/T}$$
(6)

Examples

- ▶ ML estimation: $U(\beta, D) = P_{\beta}(D)$ is the data likelihood.
- Accuracy, etc: $U(\pi, D)$.

VC Dimension

Here we consider sets Π of deterministic rules $\pi: \mathcal{X} \to \{0,1\}$.

Shattering

If a $S \subset \mathcal{X}$ can with |S| = m, can be assigned any labelling y_1, \ldots, y_m by a $\pi \in \Pi$, then we say Π shatters S.

The VC dimension

This is the largest-size set S that Π can shatter.

Example: Perceptrons on \mathbb{R}^2

This class has VC dimension 3 on the plane.

Binary classification

Learning algorithm λ

- ▶ Takes data $D = \{(x_t, y_t)\}$ as input
- ▶ Generates deterministic decision rules $\pi: X \to \{0, 1\}$,

The loss of a rule π .

- ▶ Assume an existing concept class $\pi^* \in \Pi$
- ▶ Distribution $x_t \sim P$ is i.i.d. and $x_1, \ldots, x_T \sim P^T$.
- ▶ The loss under distribution *P* is

$$L(\pi) = P(\{x : \pi(x) \neq \pi^*(x)\})$$

Realisable PAC learner

▶ $\lambda : (\mathcal{X} \times \mathcal{Y})^* \to \Pi$ is (ϵ, δ) -PAC, if for any P and $\epsilon, \delta > 0$, and any concept $\pi^* \in \Pi$, there is T such that

$$P^{T}(\{D: L[\lambda(D)] > \epsilon\}) < \delta, \qquad D = (\{x_{t}, \pi^{*}(x_{t})\}), x_{t} \sim P.$$