

cuda-binary-utilities Release 12.1

NVIDIA

Contents

ı	what is	a CUDA Binary?	3
2	2 Differen	nces between cuobjdump and nvdisasm	5
3	3 Comma	nd Option Types and Notation	7
4		Imp Isageommand-line Options	
5		m Isage	
6	6.1 M 6.2 V 6.3 Tu 6.4 A	tion Set Reference Maxwell and Pascal Instruction Set olta Instruction Set uring Instruction Set mpere and Ada Instruction Set	29 34 40
	7.2 C 7.3 Li	sage	56 56
8		sage	
9	9.2 0	lotice	62

CUDA Binary Utilities

The application notes for cuobjdump, nvdisasm, cu++filt, and nvprune.

This document introduces cuobjdump, nvdisasm, cu++filt and nvprune, four CUDA binary tools for Linux (x86, ARM and P9), Windows, Mac OS and Android.

Contents 1

2 Contents

Chapter 1. What is a CUDA Binary?

A CUDA binary (also referred to as cubin) file is an ELF-formatted file which consists of CUDA executable code sections as well as other sections containing symbols, relocators, debug info, etc. By default, the CUDA compiler driver nvcc embeds cubin files into the host executable file. But they can also be generated separately by using the "-cubin" option of nvcc. cubin files are loaded at run time by the CUDA driver API.

Note: For more details on cubin files or the CUDA compilation trajectory, refer to NVIDIA CUDA Compiler Driver NVCC.

Chapter 2. Differences between cuobjdump and nvdisasm

CUDA provides two binary utilities for examining and disassembling cubin files and host executables: cuobjdump and nvdisasm. Basically, cuobjdump accepts both cubin files and host binaries while nvdisasm only accepts cubin files; but nvdisasm provides richer output options.

Here's a quick comparison of the two tools:

Table 1: Table 1. Comparison of cuobjdump and nvdisasm

	cuobjdump	nvdisasm
Disassemble cubin	Yes	Yes
Extract ptx and extract and disassemble cubin from the following input files: Host binaries Executables Object files Static libraries External fatbinary files	Yes	No
Control flow analysis and output	No	Yes
Advanced display options	No	Yes

cuda-binary-utilities, Release 12.1		

Chapter 3. Command Option Types and Notation

This section of the document provides common details about the command line options for the following tools:

- cuobjdump
- ▶ nvdisasm
- nvprune

Each command-line option has a long name and a short name, which are interchangeable with each other. These two variants are distinguished by the number of hyphens that must precede the option name, i.e. long names must be preceded by two hyphens and short names must be preceded by a single hyphen. For example, -I is the short name of --include-path. Long options are intended for use in build scripts, where size of the option is less important than descriptive value and short options are intended for interactive use.

The tools mentioned above recognize three types of command options: boolean options, single value options and list options.

Boolean options do not have an argument, they are either specified on a command line or not. Single value options must be specified at most once and list options may be repeated. Examples of each of these option types are, respectively:

```
Boolean option : nvdisams --print-raw <file>
Single value : nvdisasm --binary SM70 <file>
List options : cuobjdump --function "foo,bar,foobar" <file>
```

Single value options and list options must have arguments, which must follow the name of the option by either one or more spaces or an equals character. When a one-character short name such as -I, -1, and -L is used, the value of the option may also immediately follow the option itself without being seperated by spaces or an equal character. The individual values of list options may be separated by commas in a single instance of the option or the option may be repeated, or any combination of these two cases.

Hence, for the two sample options mentioned above that may take values, the following notations are legal:

```
-o file
-o=file
-Idir1,dir2 -I=dir3 -I dir4,dir5
```

For options taking a single value, if specified multiple times, the rightmost value in the command line will be considered for that option. In the below example, test.bin binary will be disassembled

assuming SM75 as the architecture.

For options taking a list of values, if specified multiple times, the values get appended to the list. If there are duplicate values specified, they are ignored. In the below example, functions foo and bar are considered as valid values for option --function and the duplicate value foo is ignored.

```
cuobjdump --function "foo" --function "bar" --function "foo" -sass test.cubin
```

Chapter 4. cuobjdump

cuobjdump extracts information from CUDA binary files (both standalone and those embedded in host binaries) and presents them in human readable format. The output of cuobjdump includes CUDA assembly code for each kernel, CUDA ELF section headers, string tables, relocators and other CUDA specific sections. It also extracts embedded ptx text from host binaries.

For a list of CUDA assembly instruction set of each GPU architecture, see Instruction Set Reference.

4.1. Usage

cuobjdump accepts a single input file each time it's run. The basic usage is as following:

```
cuobjdump [options] <file>
```

To disassemble a standalone cubin or cubins embedded in a host executable and show CUDA assembly of the kernels, use the following command:

```
cuobjdump -sass <input file>
```

To dump cuda elf sections in human readable format from a cubin file, use the following command:

```
cuobjdump -elf <cubin file>
```

To extract ptx text from a host binary, use the following command:

```
cuobjdump -ptx <host binary>
```

Here's a sample output of cuobjdump:

```
/*0000*/
              IMAD.MOV.U32 R1, RZ, RZ, c[0x0][0x28] ; /* 0x00000a00ff017624 */
                                                      /* 0x000fd000078e00ff */
/*0010*/ @!PT SHFL.IDX PT, RZ, RZ, RZ, RZ;
                                                       /* 0x000000fffffff389 */
                                                      /* 0x000fe200000e00ff */
              IMAD.MOV.U32 R2, RZ, RZ, c[0x0][0x160]; /* 0x00005800ff027624 */
/*0020*/
                                                       /* 0x000fe200078e00ff */
/*0030*/
              MOV R3, c[0x0][0x164];
                                                       /* 0x0000590000037a02 */
                                                       /* 0x000fe20000000f00 */
/*0040*/
              IMAD.MOV.U32 R4, RZ, RZ, c[0x0][0x168] ; /* 0x00005a00ff047624 */
                                                       /* 0x000fe200078e00ff */
/*0050*/
              MOV R5, c[0x0][0x16c];
                                                       /* 0x00005b0000057a02 */
                                                       /* 0x000fcc0000000f00 */
/*0060*/
              LDG.E.SYS R2, [R2];
                                                       /* 0x0000000002027381 */
                                                       /* 0x000ea800001ee900 */
/*0070*/
              LDG.E.SYS R5, [R4];
                                                      /* 0x0000000004057381 */
                                                       /* 0x000ea200001ee900 */
              IMAD.MOV.U32 R6, RZ, RZ, c[0x0][0x170]; /* 0x00005c00ff067624 */
/*080*/
                                                       /* 0x000fe200078e00ff */
/*0090*/
              MOV R7, c[0x0][0x174];
                                                       /* 0x00005d0000077a02 */
                                                       /* 0x000fe40000000f00 */
/*00a0*/
              IADD3 R9, R2, R5, RZ;
                                                       /* 0x0000000502097210 */
                                                       /* 0x004fd00007ffe0ff */
/*00b0*/
              STG.E.SYS [R6], R9;
                                                       /* 0x0000000906007386 */
                                                      /* 0x000fe2000010e900 */
/*00c0*/
              EXIT ;
                                                       /* 0x00000000000794d */
                                                       /* 0x000fea0003800000 */
/*00d0*/
              BRA 0xd0;
                                                       /* 0xfffffff000007947 */
                                                       /* 0x000fc0000383ffff */
/*00e0*/
              NOP;
                                                       /* 0x000000000007918 */
                                                       /* 0x000fc000000000000 */
/*00f0*/
              NOP;
                                                       /* 0x0000000000007918 */
                                                       /* 0x000fc000000000000 */
```

```
Fatbin ptx code:
==========
arch = sm_70
code version = [7,0]
producer = cuda
host = linux
compile_size = 64bit
compressed
identifier = add.cu
.version 7.0
.target sm_70
.address_size 64
.visible .entry _Z3addPiS_S_(
.param .u64 _Z3addPiS_S__param_0,
.param .u64 _Z3addPiS_S__param_1,
.param .u64 _Z3addPiS_S__param_2
.reg .s32 %r<4>;
.reg .s64 %rd<7>;
```

```
ld.param.u64 %rd1, [_Z3addPiS_S__param_0];
ld.param.u64 %rd2, [_Z3addPiS_S__param_1];
ld.param.u64 %rd3, [_Z3addPiS_S__param_2];
cvta.to.global.u64 %rd4, %rd3;
cvta.to.global.u64 %rd5, %rd2;
cvta.to.global.u64 %rd6, %rd1;
ld.global.u32 %r1, [%rd6];
ld.global.u32 %r2, [%rd5];
add.s32 %r3, %r2, %r1;
st.global.u32 [%rd4], %r3;
ret;
}
```

As shown in the output, the a.out host binary contains cubin and ptx code for sm_70.

To list cubin files in the host binary use -lelf option:

```
$ cuobjdump a.out -lelf
ELF file 1: add_new.sm_70.cubin
ELF file 2: add_new.sm_75.cubin
ELF file 3: add_old.sm_70.cubin
ELF file 4: add_old.sm_75.cubin
```

To extract all the cubins as files from the host binary use -xelf all option:

```
$ cuobjdump a.out -xelf all
Extracting ELF file 1: add_new.sm_70.cubin
Extracting ELF file 2: add_new.sm_75.cubin
Extracting ELF file 3: add_old.sm_70.cubin
Extracting ELF file 4: add_old.sm_75.cubin
```

To extract the cubin named add_new.sm_70.cubin:

```
$ cuobjdump a.out -xelf add_new.sm_70.cubin
Extracting ELF file 1: add_new.sm_70.cubin
```

To extract only the cubins containing **_old** in their names:

```
$ cuobjdump a.out -xelf _old
Extracting ELF file 1: add_old.sm_70.cubin
Extracting ELF file 2: add_old.sm_75.cubin
```

You can pass any substring to -xelf and -xptx options. Only the files having the substring in the name will be extracted from the input binary.

To dump common and per function resource usage information:

4.1. Usage

(continues on next page)

11

```
REG:38 STACK:8 SHARED:4 LOCAL:0 CONSTANT[0]:532 TEXTURE:8 SURFACE:7 SAMPLER:0 Function mytexsampler_func:
REG:42 STACK:0 SHARED:0 LOCAL:0 CONSTANT[0]:472 TEXTURE:4 SURFACE:0 SAMPLER:1
```

Note that value for REG, TEXTURE, SURFACE and SAMPLER denotes the count and for other resources it denotes no. of byte(s) used.

4.2. Command-line Options

Table 2 contains supported command-line options of cuobjdump, along with a description of what each option does. Each option has a long name and a short name, which can be used interchangeably.

Table 1: Table 2. cuobjdump Command-line Options

Table 1: Table 2. cuobjdump Command-line Options		
Option (long)	Op- tion (shor	Description t)
all-fatbin	-all	Dump all fatbin sections. By default will only dump contents of executable fatbin (if exists), else relocatable fatbin if no executable fatbin.
dump-elf	-elf	Dump ELF Object sections.
dump-elf-sy	mbcodm	៦០៤ន np ELF symbol names.
dump-ptx	-ptx	Dump PTX for all listed device functions.
dump-sass	-sas	sDump CUDA assembly for a single cubin file or all cubin files embedded in the binary.
dump-resour	cereus	all sage resource usage for each ELF. Useful in getting all the resource usage information at one place.
extract-elf <partial file name>,.</partial 	-xel	fExtract ELF file(s) name containing <partial file="" name=""> and save as file(s). Use all to extract all files. To get the list of ELF files use -lelf option. Works with host executable/object/library and external fatbin. All dump and list options are ignored with this option.</partial>
extract-ptx <partial file name>,.</partial 	-xpt	xExtract PTX file(s) name containing <partial file="" name=""> and save as file(s). Use all to extract all files. To get the list of PTX files use -lptx option. Works with host executable/object/library and external fatbin. All dump and list options are ignored with this option.</partial>
extract-tex <partial file name>,.</partial 	t-xte	xExtract text binary encoding file(s) name containing <partial file="" name=""> and save as file(s). Use 'all' to extract all files. To get the list of text binary encoding use -ltext option. All 'dump' and 'list' options are ignored with this option.</partial>
function <function name>,</function 	-fun	Specify names of device functions whose fat binary structures must be dumped.
function-in <function index>,</function 	dekin	depecify symbol table index of the function whose fat binary structures must be dumped.
gpu-archite <gpu archi-<br="">tecture name></gpu>	ctaurœ	hSpecify GPU Architecture for which information should be dumped. Allowed values for this option: sm_50, sm_52, sm_53, sm_60, sm_61, sm_62, sm_70, sm_72, sm_75, sm_80, sm_86, sm_87, sm_89, sm_90, sm_90a.
help	-h	Print this help information on this tool.
list-elf	-lel	fList all the ELF files available in the fatbin. Works with host executable/object/library and external fatbin. All other options are ignored with this flag. This can be used to select particular ELF with -xelf option later.
list-ptx	-lpt	xList all the PTX files available in the fatbin. Works with host executable/object/library and external fatbin. All other options are ignored with this flag. This can be used to select particular PTX with -xptx option later.
list-text		xtist all the text binary function names available in the fatbin. All other options are ignored with the flag. This can be used to select particular function with -xtext option later.
options-fil 4.2 Command-li	e-opt ne Op	finclude command line options from specified file. tions
sort-functi	onssor	tSort functions when dumping sass.

Print version information on this tool.

--version

Chapter 5. nvdisasm

nvdisasm extracts information from standalone cubin files and presents them in human readable format. The output of nvdisasm includes CUDA assembly code for each kernel, listing of ELF data sections and other CUDA specific sections. Output style and options are controlled through nvdisasm command-line options. nvdisasm also does control flow analysis to annotate jump/branch targets and makes the output easier to read.

Note: nvdisasm requires complete relocation information to do control flow analysis. If this information is missing from the CUDA binary, either use the nvdisasm option -ndf to turn off control flow analysis, or use the ptxas and nvlink option -preserve-relocs to re-generate the cubin file.

For a list of CUDA assembly instruction set of each GPU architecture, see Instruction Set Reference.

5.1. Usage

nvdisasm accepts a single input file each time it's run. The basic usage is as following:

```
nvdisasm [options] <input cubin file>
```

Here's a sample output of nvdisasm:

```
.headerflags
                   @"EF_CUDA_TEXMODE_UNIFIED EF_CUDA_64BIT_ADDRESS EF_CUDA_SM70
                    EF_CUDA_VIRTUAL_SM(EF_CUDA_SM70)"
                  @"ET_EXEC"
   .elftype
//---- .nv.info
                  .nv.info,"",@"SHT_CUDA_INFO"
   .section
   .align 4
. . . . . .
              ----- .text._Z9acos_main10acosParams ------
   .section .text._Z9acos_main10acosParams,"ax",@progbits
   .sectioninfo
                  @"SHI_REGISTERS=14"
   .align 128
                  _Z9acos_main10acosParams
       .global
                   _Z9acos_main10acosParams,@function
       .type
                   _Z9acos_main10acosParams,(.L_21 - _Z9acos_main10acosParams)
       .size
                   _Z9acos_main10acosParams,@"STO_CUDA_ENTRY STV_DEFAULT"
       .other
_Z9acos_main10acosParams:
```

```
.text._Z9acos_main10acosParams:
       /*0000*/
                              MOV R1, c[0x0][0x28];
       /*0010*/
                              NOP:
       /*0020*/
                              S2R R0, SR_CTAID.X;
       /*0030*/
                              S2R R3, SR_TID.X;
                              IMAD R0, R0, c[0x0][0x0], R3;
       /*0040*/
       /*0050*/
                              ISETP.GE.AND P0, PT, R0, c[0x0][0x170], PT;
       /*0060*/
                          @P0 EXIT :
.L_1:
       /*0070*/
                              MOV R11, 0x4;
       /*0800*/
                              IMAD.WIDE R2, R0, R11, c[0x0][0x160];
       /*0090*/
                              LDG.E.SYS R2, [R2];
       /*00a0*/
                              MOV R7, 0x3d53f941;
       /*00b0*/
                              FADD.FTZ R4, |R2|.reuse, -RZ;
       /*00c0*/
                              FSETP.GT.FTZ.AND P0, PT, |R2|.reuse, 0.5699, PT;
       /*00d0*/
                              FSETP.GEU.FTZ.AND P1, PT, R2, RZ, PT;
       /*00e0*/
                              FADD.FTZ R5, -R4, 1
                              IMAD.WIDE R2, R0, R11, c[0x0][0x168] ;
       /*00f0*/
       /*0100*/
                               FMUL.FTZ R5, R5, 0.5;
       /*0110*/
                          @P0 MUFU.SQRT R4, R5
       /*0120*/
                              MOV R5, c[0x0][0x0];
       /*0130*/
                              IMAD R0, R5, c[0x0][0xc], R0;
                              FMUL.FTZ R6, R4, R4;
       /*0140*/
       /*0150*/
                              FFMA.FTZ R7, R6, R7, 0.018166976049542427063;
                              FFMA.FTZ R7, R6, R7, 0.046756859868764877319
       /*0160*/
       /*0170*/
                              FFMA.FTZ R7, R6, R7, 0.074846573173999786377;
       /*0180*/
                              FFMA.FTZ R7, R6, R7, 0.16667014360427856445;
                              FMUL.FTZ R7, R6, R7;
       /*0190*/
       /*01a0*/
                              FFMA.FTZ R7, R4, R7, R4;
                              FADD.FTZ R9, R7, R7;
       /*01b0*/
       /*01c0*/
                         @!P0 FADD.FTZ R9, -R7, 1.5707963705062866211;
                              ISETP.GE.AND P0, PT, R0, c[0x0][0x170], PT;
       /*01d0*/
                         @!P1 FADD.FTZ R9, -R9, 3.1415927410125732422;
       /*01e0*/
       /*01f0*/
                              STG.E.SYS [R2], R9;
                         @!P0 BRA `(.L_1) ;
       /*0200*/
       /*0210*/
                              EXIT:
.L_2:
                               BRA `(.L_2);
       /*0220*/
.L_21:
```

To get the control flow graph of a kernel, use the following:

```
nvdisasm -cfg <input cubin file>
```

nvdisasm is capable of generating control flow of CUDA assembly in the format of DOT graph description language. The output of the control flow from nvdisasm can be directly imported to a DOT graph visualization tool such as Graphviz.

Here's how you can generate a PNG image (cfg.png) of the control flow of the above cubin (a.cubin) with nvdisasm and Graphviz:

```
nvdisasm -cfg a.cubin | dot -ocfg.png -Tpng
```

Here's the generated graph:

To generate a PNG image (bbcfg.png) of the basic block control flow of the above cubin (a.cubin) with nvdisasm and Graphviz:

Fig. 1: Control Flow Graph

5.1. Usage 17

```
nvdisasm -bbcfg a.cubin | dot -obbcfg.png -Tpng
```

Here's the generated graph:

nvdisasm is capable of showing the register (general and predicate) liveness range information. For each line of CUDA assembly, nvdisasm displays whether a given device register was assigned, accessed, live or re-assigned. It also shows the total number of registers used. This is useful if the user is interested in the life range of any particular register, or register usage in general.

Here's a sample output (output is pruned for brevity):

```
// |
                                                                GPR
                                                                            | PRED |
                                                      //
                                                      //
                                                              000000000011
                                                            # 012345678901 | # 01
    .global acos
                                                      // |
    .type acos,@function
                                                      //
    .size acos, (.L_21 - acos)
                                                      //
    .other acos,@"STO_CUDA_ENTRY STV_DEFAULT"
                                                      // |
acos:
                                                      // |
.text.acos:
                                                      // |
    MOV R1, c[0x0][0x28];
                                                      // |
                                                            1
   NOP;
                                                      // |
                                                            1
                                                            2 ^:
   S2R R0, SR_CTAID.X;
                                                      // |
    S2R R3, SR_TID.X;
                                                      // |
                                                            3 :: ^
    IMAD R0, R0, c[0x0][0x0], R3;
                                                      // |
                                                            3 x: v
    ISETP.GE.AND P0, PT, R0, c[0x0][0x170], PT;
                                                            2 v:
                                                                             1 ^
                                                      // |
@P0 EXIT ;
                                                            2 ::
                                                      // [
                                                                             1 v
                                                      // |
                                                            2 ::
.L_1:
    MOV R11, 0x4;
                                                            3 ::
                                                      // |
    IMAD.WIDE R2, R0, R11, c[0x0][0x160];
                                                            5 v:^^
                                                      // |
                                                            4 ::^
    LDG.E.SYS R2, [R2];
                                                      // |
    MOV R7, 0x3d53f941;
                                                      // |
    FADD.FTZ R4, |R2|.reuse, -RZ;
                                                      // |
                                                            6 ::v ^
    FSETP.GT.FTZ.AND P0, PT, |R2|.reuse, 0.5699, PT; // |
                                                            6 ::v : :
                                                                             1 ^
    FSETP.GEU.FTZ.AND P1, PT, R2, RZ, PT;
                                                      // |
                                                            6 ::v :
                                                                             2:^
                                                            6 :: v<sup>^</sup> :
    FADD.FTZ R5, -R4, 1;
                                                      // |
                                                                             2 ::
    IMAD.WIDE R2, R0, R11, c[0x0][0x168];
                                                            8 v:^^:: :
                                                      //
                                                                             2 ::
    FMUL.FTZ R5, R5, 0.5;
                                                            5 ::
                                                                  :x:
                                                                           | 2 ::
@P0 MUFU.SQRT R4, R5;
                                                            5 ::
                                                                  ^v :
                                                                           | 2 v:
                                                      //
                                                            5 ::
                                                                  :^:
    MOV R5, c[0x0][0x0];
                                                      // [
                                                                            1 2 ::
                                                            5 x:
    IMAD R0, R5, c[0x0][0xc], R0;
                                                      // |
                                                                 :v :
                                                                            | 2 ::
    FMUL.FTZ R6, R4, R4;
                                                            5 :: v ^:
                                                                            | 2 ::
                                                      // |
    FFMA.FTZ R7, R6, R7, 0.018166976049542427063;
                                                            5 :: : vx
                                                                            | 2 ::
                                                      // |
     FFMA.FTZ R7, R6, R7, 0.046756859868764877319;
                                                            5 :: : vx
                                                                            | 2 ::
                                                      // |
     FFMA.FTZ R7, R6, R7, 0.074846573173999786377;
                                                      // |
                                                            5 :: : vx
                                                                            | 2 :: |
     FFMA.FTZ R7, R6, R7, 0.16667014360427856445 ;
                                                            5 :: : vx
                                                                            | 2 :: |
                                                      // |
    FMUL.FTZ R7, R6, R7;
                                                      // [
                                                            5 ::
                                                                 : vx
                                                                            | 2 ::
                                                                            | 2 ::
    FFMA.FTZ R7, R4, R7, R4;
                                                      // |
                                                            4 ::
                                                                  V X
                                                                     ٧ ^
                                                      // |
                                                            4 ::
    FADD.FTZ R9, R7, R7;
                                                                            | 2 ::
                                                                     ٧ ^
@!P0 FADD.FTZ R9, -R7, 1.5707963705062866211 ;
                                                      // |
                                                            4 ::
                                                                            | 2 v:
     ISETP.GE.AND P0, PT, R0, c[0x0][0x170], PT;
                                                      // |
                                                            3 v:
                                                                            1 2 ^:
@!P1 FADD.FTZ R9, -R9, 3.1415927410125732422 ;
                                                            3 ::
                                                                             2 :v
                                                      // |
                                                                       Х
     STG.E.SYS [R2], R9;
                                                            3 ::
                                                      // |
                                                                             1:
@!P0 BRA `(.L_1);
                                                            2 ::
                                                                            | 1 v
                                                      // |
```

```
.global_Z9acos_main10acosParams
.type_Z9acos_main10acosParams,@function
.size_Z9acos_main10acosParams, (.L_21 - _Z9acos_main10acosParams)
.other_Z9acos_main10acosParams,<no object>
_Z9acos_main10acosParams:
.text._Z9acos_main10acosParams:
 MOV R1, c[0x0][0x28];
  @!PT SHFL.IDX PT, RZ, RZ, RZ, RZ;
  S2R RO, SR_CTAID.X ;
  S2R R3, SR_TID.X ;
  IMAD R0, R0, c[0x0][0x0], R3;
  ISETP.GE.AND PO, PT, RO, c[0x0][0x170], PT;
@PO EXIT ;
      .L_1:
        MOV R11, 0x4;
        IMAD.WIDE R2, R0, R11, c[0x0][0x160];
        LDG.E.SYS R2, [R2] ;
        MOV R7, 0x3d53f941;
        FADD.FTZ R4, |R2|.reuse, -RZ;
        FSETP.GT.FTZ.AND PO, PT, |R2|.reuse, 0.5699, PT;
        FSETP.GEU.FTZ.AND P1, PT, R2, RZ, PT;
        FADD.FTZ R5, -R4, 1;
        IMAD.WIDE R2, R0, R11, c[0x0][0x168];
        FMUL.FTZ R5, R5, 0.5;
        @PO MUFU.SQRT R4, R5 ;
        MOV R5, c[0x0][0x0];
        IMAD RO, R5, c[0x0][0xc], R0;
        FMUL.FTZ R6, R4, R4;
        FFMA.FTZ R7, R6, R7, 0.018166976049542427063;
        FFMA.FTZ R7, R6, R7, 0.046756859868764877319;
        FFMA.FTZ R7, R6, R7, 0.074846573173999786377;
        FFMA.FTZ R7, R6, R7, 0.16667014360427856445;
        FMUL.FTZ R7, R6, R7;
        FFMA.FTZ R7, R4, R7, R4;
        FADD.FTZ R9, R7, R7;
        @!PO FADD.FTZ R9, -R7, 1.5707963705062866211 ;
        ISETP.GE.AND PO, PT, RO, c[0x0][0x170], PT;
        @!P1 FADD.FTZ R9, -R9, 3.1415927410125732422 ;
        STG.E.SYS [R2], R9;
      @!PO BRA `(.L_1) ;
                             EXIT ;
```

```
// | 1 :
    EXIT ;
.L_2:
                                                 // +....+
    BRA `(.L_2);
                                                 // |
.L_21:
                                                 // +----
                                                 // Legend:
                                                              : Register
→assignment
                                                 //
                                                              : Register usage
                                                 //
                                                              : Register usage
→and reassignment
                                                 //
                                                              : Register in use
                                                 //
                                                       <space> : Register not
⇒in use
                                                 //
                                                               : Number of
→occupied registers
```

nvdisasm is capable of showing line number information of the CUDA source file which can be useful for debugging.

To get the line-info of a kernel, use the following:

```
nvdisasm -g <input cubin file>
```

Here's a sample output of a kernel using nvdisasm -g command:

```
//----..text._Z6kernali
                       .text._Z6kernali,"ax",@progbits
        .section
                       @"SHI_REGISTERS=24"
        .sectioninfo
       .align 128
                       _Z6kernali
       .global
                       _Z6kernali,@function
       .type
       .size
                       _Z6kernali,(.L_4 - _Z6kernali)
                       _Z6kernali,@"STO_CUDA_ENTRY STV_DEFAULT"
       .other
_Z6kernali:
.text._Z6kernali:
       /*0000*/
                                  MOV R1, c[0x0][0x28];
       /*0010*/
                                  NOP;
   //## File "/home/user/cuda/sample/sample.cu", line 25
       /*0020*/
                                  MOV R0, 0x160;
                                  LDC R0, c[0x0][R0];
       /*0030*/
        /*0040*/
                                  MOV R0, R0;
        /*0050*/
                                  MOV R2, R0 ;
    //## File "/home/user/cuda/sample/sample.cu", line 26
       /*0060*/
                                  MOV R4, R2;
                                  MOV R20, 32@lo((_Z6kernali + .L_1@srel));
        /*0070*/
                                  MOV R21, 32@hi((_Z6kernali + .L_1@srel));
        /*0080*/
                                  CALL.ABS.NOINC `(_Z3fooi) ;
       /*0090*/
.L_1:
       /*00a0*/
                                  MOV R0, R4;
       /*00b0*/
                                  MOV R4, R2 ;
        /*00c0*/
                                  MOV R2, R0;
       /*00d0*/
                                  MOV R20, 32@lo((_Z6kernali + .L_2@srel));
                                  MOV R21, 32@hi((_Z6kernali + .L_2@srel));
       /*00e0*/
                                  CALL.ABS.NOINC `(_Z3bari) ;
       /*00f0*/
.L_2:
       /*0100*/
                                  MOV R4, R4;
        /*0110*/
                                  IADD3 R4, R2, R4, RZ;
```

```
MOV R2, 32@lo(arr);
        /*0120*/
        /*0130*/
                                   MOV R3, 32@hi(arr);
        /*0140*/
                                   MOV R2, R2;
        /*0150*/
                                   MOV R3, R3;
                                   ST.E.SYS [R2], R4;
        /*0160*/
    //## File "/home/user/cuda/sample/sample.cu", line 27
        /*0170*/
                                   ERRBAR ;
        /*0180*/
                                   EXIT:
.L_3:
        /*0190*/
                                   BRA `(.L_3);
.L_4:
```

nvdisasm is capable of showing line number information with additional function inlining info (if any). In absence of any function inlining the output is same as the one with nvdisasm -g command.

Here's a sample output of a kernel using nvdisasm -gi command:

```
//----.text._Z6kernali
   .section .text._Z6kernali,"ax",@progbits
    .sectioninfo @"SHI_REGISTERS=16"
    .align 128
                       _Z6kernali
        .global
                       _Z6kernali,@function
        .type
                       _Z6kernali,(.L_18 - _Z6kernali)
       .size
       .other
                       _Z6kernali,@"STO_CUDA_ENTRY STV_DEFAULT"
_Z6kernali:
.text._Z6kernali:
                                  IMAD.MOV.U32 R1, RZ, RZ, c[0x0][0x28] ;
        /*0000*/
    //## File "/home/user/cuda/inline.cu", line 17 inlined at "/home/user/cuda/inline.
⇒cu", line 23
    //## File "/home/user/cuda/inline.cu", line 23
       /*0010*/
                                  UMOV UR4, 32@lo(arr);
        /*0020*/
                                  UMOV UR5, 32@hi(arr);
                                  IMAD.U32 R2, RZ, RZ, UR4;
       /*0030*/
                                  MOV R3, UR5;
       /*0040*/
                                  ULDC.64 UR4, c[0x0][0x118];
       /*0050*/
   //## File "/home/user/cuda/inline.cu", line 10 inlined at "/home/user/cuda/inline.
→cu", line 17
   //## File "/home/user/cuda/inline.cu", line 17 inlined at "/home/user/cuda/inline.
→cu", line 23
   //## File "/home/user/cuda/inline.cu", line 23
       /*0060*/
                                  LDG.E R4, [R2.64];
                                  LDG.E R5, [R2.64+0x4];
       /*0070*/
   //## File "/home/user/cuda/inline.cu", line 17 inlined at "/home/user/cuda/inline.
⇒cu", line 23
   //## File "/home/user/cuda/inline.cu", line 23
       /*0800*/
                                  LDG.E R0, [R2.64+0x8];
    //## File "/home/user/cuda/inline.cu", line 23
       /*0090*/
                                  UMOV UR6, 32@lo(ans);
       /*00a0*/
                                  UMOV UR7, 32@hi(ans);
   //## File "/home/user/cuda/inline.cu", line 10 inlined at "/home/user/cuda/inline.
→cu", line 17
    //## File "/home/user/cuda/inline.cu", line 17 inlined at "/home/user/cuda/inline.
→cu", line 23
   //## File "/home/user/cuda/inline.cu", line 23
                                  IADD3 R7, R4, c[0x0][0x160], RZ ;
    //## File "/home/user/cuda/inline.cu", line 23
                                                                     (continues on next page)
```

5.1. Usage 21

```
IMAD.U32 R4, RZ, RZ, UR6;
       /*00c0*/
   //## File "/home/user/cuda/inline.cu", line 10 inlined at "/home/user/cuda/inline.
→cu", line 17
   //## File "/home/user/cuda/inline.cu", line 17 inlined at "/home/user/cuda/inline.
→cu", line 23
   //## File "/home/user/cuda/inline.cu", line 23
       /*00d0*/
                                   IADD3 R9, R5, c[0x0][0x160], RZ ;
   //## File "/home/user/cuda/inline.cu", line 23
       /*00e0*/
                                  MOV R5, UR7;
   //## File "/home/user/cuda/inline.cu", line 10 inlined at "/home/user/cuda/inline.
⇒cu", line 17
   //## File "/home/user/cuda/inline.cu", line 17 inlined at "/home/user/cuda/inline.
→cu", line 23
   //## File "/home/user/cuda/inline.cu", line 23
       /*00f0*/
                                   IADD3 R11, R0.reuse, c[0x0][0x160], RZ ;
   //## File "/home/user/cuda/inline.cu", line 17 inlined at "/home/user/cuda/inline.
→cu", line 23
   //## File "/home/user/cuda/inline.cu", line 23
                                   IMAD.IADD R13, R0, 0x1, R7;
   //## File "/home/user/cuda/inline.cu", line 10 inlined at "/home/user/cuda/inline.
→cu", line 17
   //## File "/home/user/cuda/inline.cu", line 17 inlined at "/home/user/cuda/inline.
⇒cu", line 23
   //## File "/home/user/cuda/inline.cu", line 23
       /*0110*/
                                   STG.E [R2.64+0x4], R9;
       /*0120*/
                                   STG.E [R2.64], R7;
       /*0130*/
                                   STG.E [R2.64+0x8], R11;
   //## File "/home/user/cuda/inline.cu", line 23
                                   STG.E [R4.64], R13;
       /*0140*/
   //## File "/home/user/cuda/inline.cu", line 24
       /*0150*/
                                  EXIT ;
.L_3:
       /*0160*/
                                   BRA (.L_3);
.L_18:
```

5.2. Command-line Options

Table 3 contains the supported command-line options of nvdisasm, along with a description of what each option does. Each option has a long name and a short name, which can be used interchangeably.

Table 1: Table 3. nvdisasm Command-line Options

	Table 1: Table 3. nvdisasm Command-line Options		
Option (long)	Op- tion (shor	Description rt)	
hase-add	rebas	eSpecify the logical base address of the image to disassemble. This option is	
<value></value>	1 6 6 6 3	only valid when disassembling a raw instruction binary (see optionbinary), and is ignored when disassembling an Elf file. Default value: 0.	
binary <smxy></smxy>	-b	When this option is specified, the input file is assumed to contain a raw instruction binary, that is, a sequence of binary instruction encodings as they occur in instruction memory. The value of this option must be the asserted architecture of the raw binary. Allowed values for this option: SM50, SM52, SM53, SM60, SM61, SM62, SM70, SM72, SM75, SM80, SM86, SM87, SM89, SM90, SM90a.	
cuda-fun <symbol index>,</symbol 	cŧfan	-Resteict the output to the CUDA functions represented by symbols with the given indices. The CUDA function for a given symbol is the enclosing section. This only restricts executable sections; all other sections will still be printed.	
help	-h	Print this help information on this tool.	
life-ran	ge lmo	dEhis option implies optionprint-life-ranges, and determines how register live range info should be printed. count: Not at all, leaving only the # column (number of live registers); wide: Columns spaced out for readability (default); narrow: A one-character column for each register, economizing on table width Allowed values for this option: count, narrow, wide.	
no-dataf	lewdf	Disable dataflow analyzer after disassembly. Dataflow analysis is normally enabled to perform branch stack analysis and annotate all instructions that jump via the GPU branch stack with inferred branch target labels. However, it may occasionally fail when certain restrictions on the input nvelf/cubin are not met.	
no-vliw	-nov	10 mnventional mode; disassemble paired instructions in normal syntax, instead of VLIW syntax.	
options- <file>,</file>	fidpt	finclude command line options from specified file.	
output-c	on tf g	1Whleowspoercalipled output the control flow graph, where each node is a hyperblock, in a format consumable by graphviz tools (such as dot).	
output-c	on bbo	Trá/filæowspæcáfped wiithutblaszi.codullok/ks w graph, where each node is a basicblock, in a format consumable by graphviz tools (such as dot).	
print-co	dec	Only print code sections.	
print-in	sŧpeɗ	Ms webs period field, print instruction offsets in the control flow graph. This should be used along with the option –output-control-flow-graph or –output-control-flow-graph-with-basic-blocks.	
print-in	sŧhe¤	t \Monenesspacedfi.ed , print the encoding bytes after each disassembled operation.	
print-li	fepita	ngeist register life range information in a trailing column in the produced disassembly.	
print-li	negin	fannotate disassembly with source line information obtained from .debug_line section, if present.	
-		faniotated is assembly with source line information obtained from .debug_line section along with function inlining info, if present.	
5.2. Comman print-li	negph negph	Tenpurate disassembly with source line information obtained from .nv_debug_line_sass section, if present.	

--print-raw-raw Print the disassembly without any attempt to beautify it.

Chapter 6. Instruction Set Reference

This is an instruction set reference for NVIDIA® GPU architectures Kepler, Maxwell, Pascal, Volta, Turing and Ampere.

6.1. Maxwell and Pascal Instruction Set

The Maxwell (Compute Capability 5.x) and the Pascal (Compute Capability 6.x) architectures have the following instruction set format:

```
(instruction) (destination) (source1), (source2) ...
```

Valid destination and source locations include:

- ► RX for registers
- > SRX for special system-controlled registers
- ▶ PX for condition registers
- ▶ c[X][Y] for constant memory

Table 4 lists valid instructions for the Maxwell and Pascal GPUs.

Table 1: Table 4. Maxwell and Pascal Instruction Set

Opcode	Description
Floating Point Instructions	
FADD	FP32 Add
FCHK	Single Precision FP Divide Range Check
FCMP	FP32 Compare to Zero and Select Source
FFMA	FP32 Fused Multiply and Add
FMNMX	FP32 Minimum/Maximum
FMUL	FP32 Multiply
FSET	FP32 Compare And Set
FSETP	FP32 Compare And Set Predicate

Table 1 – continued from previous page

Opcode	Description
FSWZADD	FP32 Add used for FSWZ emulation
MUFU	Multi Function Operation
RRO	Range Reduction Operator FP
DADD	FP64 Add
DFMA	FP64 Fused Mutiply Add
DMNMX	FP64 Minimum/Maximum
DMUL	FP64 Multiply
DSET	FP64 Compare And Set
DSETP	FP64 Compare And Set Predicate
HADD2	FP16 Add
HFMA2	FP16 Fused Mutiply Add
HMUL2	FP16 Multiply
HSET2	FP16 Compare And Set
HSETP2	FP16 Compare And Set Predicate
Integer Instructions	
BFE	Bit Field Extract
BFI	Bit Field Insert
FLO	Find Leading One
IADD	Integer Addition
IADD3	3-input Integer Addition
ICMP	Integer Compare to Zero and Select Source
IMAD	Integer Multiply And Add
IMADSP	Extracted Integer Multiply And Add.
IMNMX	Integer Minimum/Maximum
IMUL	Integer Multiply
ISCADD	Scaled Integer Addition
ISET	Integer Compare And Set
ISETP	Integer Compare And Set Predicate
LEA	Compute Effective Address
LOP	Logic Operation
LOP3	3-input Logic Operation

Table 1 – continued from previous page

Opcode	Description
SHF	Funnel Shift
SHL	Shift Left
SHR	Shift Right
XMAD	Integer Short Multiply Add
Conversion Instructions	
F2F	Floating Point To Floating Point Conversion
F2I	Floating Point To Integer Conversion
12F	Integer To Floating Point Conversion
121	Integer To Integer Conversion
Movement Instructions	
MOV	Move
PRMT	Permute Register Pair
SEL	Select Source with Predicate
SHFL	Warp Wide Register Shuffle
Predicate/CC Instructions	
CSET	Test Condition Code And Set
CSETP	Test Condition Code and Set Predicate
PSET	Combine Predicates and Set
PSETP	Combine Predicates and Set Predicate
P2R	Move Predicate Register To Register
R2P	Move Register To Predicate/CC Register
Texture Instructions	
TEX	Texture Fetch
TLD	Texture Load
TLD4	Texture Load 4
TXQ	Texture Query
TEXS	Texture Fetch with scalar/non-vec4 source/destinations
TLD4S	Texture Load 4 with scalar/non-vec4 source/destinations
TLDS	Texture Load with scalar/non-vec4 source/destinations
Compute Load/Store Instructions	
LD	Load from generic Memory
LDC	Load Constant

Table 1 – continued from previous page

Opcode	Description
LDG	Load from Global Memory
LDL	Load within Local Memory Window
LDS	Local within Shared Memory Window
ST	Store to generic Memory
STG	Store to global Memory
STL	Store within Local or Shared Window
STS	Store within Local or Shared Window
ATOM	Atomic Operation on generic Memory
ATOMS	Atomic Operation on Shared Memory
RED	Reduction Operation on generic Memory
CCTL	Cache Control
CCTLL	Cache Control
MEMBAR	Memory Barrier
CCTLT	Texture Cache Control
Surface Memory Instructions	
SUATOM	Atomic Op on Surface Memory
SULD	Surface Load
SURED	Reduction Op on Surface Memory
SUST	Surface Store
Control Instructions	
BRA	Relative Branch
BRX	Relative Branch Indirect
JMP	Absolute Jump
JMX	Absolute Jump Indirect
SSY	Set Synchronization Point
SYNC	Converge threads after conditional branch
CAL	Relative Call
JCAL	Absolute Call
PRET	Pre-Return From Subroutine
RET	Return From Subroutine
BRK	Break
PBK	Pre-Break

Table 1 - continued from previous page

Opcode	Description
CONT	Continue
PCNT	Pre-continue
EXIT	Exit Program
PEXIT	Pre-Exit
BPT	BreakPoint/Trap
Miscellaneous Instructions	
NOP	No Operation
CS2R	Move Special Register to Register
S2R	Move Special Register to Register
B2R	Move Barrier To Register
BAR	Barrier Synchronization
R2B	Move Register to Barrier
VOTE	Vote Across SIMD Thread Group

6.2. Volta Instruction Set

The Volta architecture (Compute Capability 7.x) has the following instruction set format:

```
(instruction) (destination) (source1), (source2) ...
```

Valid destination and source locations include:

- ► RX for registers
- ▶ SRX for special system-controlled registers
- > PX for predicate registers
- ▶ c[X][Y] for constant memory

Table 5 lists valid instructions for the Volta GPUs.

Table 2: Table 5. Volta Instruction Set

Opcode	Description
Floating Point Instructions	
FADD	FP32 Add
FADD32I	FP32 Add
FCHK	Floating-point Range Check

Table 2 – continued from previous page

Opcode	Description
FFMA32I	FP32 Fused Multiply and Add
FFMA	FP32 Fused Multiply and Add
FMNMX	FP32 Minimum/Maximum
FMUL	FP32 Multiply
FMUL32I	FP32 Multiply
FSEL	Floating Point Select
FSET	FP32 Compare And Set
FSETP	FP32 Compare And Set Predicate
FSWZADD	FP32 Swizzle Add
MUFU	FP32 Multi Function Operation
HADD2	FP16 Add
HADD2_32I	FP16 Add
HFMA2	FP16 Fused Mutiply Add
HFMA2_32I	FP16 Fused Mutiply Add
НММА	Matrix Multiply and Accumulate
HMUL2	FP16 Multiply
HMUL2_32I	FP16 Multiply
HSET2	FP16 Compare And Set
HSETP2	FP16 Compare And Set Predicate
DADD	FP64 Add
DFMA	FP64 Fused Mutiply Add
DMUL	FP64 Multiply
DSETP	FP64 Compare And Set Predicate
Integer Instructions	
BMSK	Bitfield Mask
BREV	Bit Reverse
FLO	Find Leading One
IABS	Integer Absolute Value
IADD	Integer Addition
IADD3	3-input Integer Addition
IADD32I	Integer Addition
IDP	Integer Dot Product and Accumulate

Table 2 – continued from previous page

Opcode	Description
IDP4A	Integer Dot Product and Accumulate
IMAD	Integer Multiply And Add
IMMA	Integer Matrix Multiply and Accumulate
IMNMX	Integer Minimum/Maximum
IMUL	Integer Multiply
IMUL32I	Integer Multiply
ISCADD	Scaled Integer Addition
ISCADD32I	Scaled Integer Addition
ISETP	Integer Compare And Set Predicate
LEA	LOAD Effective Address
LOP	Logic Operation
LOP3	Logic Operation
LOP32I	Logic Operation
POPC	Population count
SHF	Funnel Shift
SHL	Shift Left
SHR	Shift Right
VABSDIFF	Absolute Difference
VABSDIFF4	Absolute Difference
Conversion Instructions	
F2F	Floating Point To Floating Point Conversion
F2I	Floating Point To Integer Conversion
I2F	Integer To Floating Point Conversion
121	Integer To Integer Conversion
I2IP	Integer To Integer Conversion and Packing
FRND	Round To Integer
Movement Instructions	
MOV	Move
MOV32I	Move
PRMT	Permute Register Pair
SEL	Select Source with Predicate
SGXT	Sign Extend

Table 2 – continued from previous page

Opcode	Description
SHFL	Warp Wide Register Shuffle
Predicate Instructions	
PLOP3	Predicate Logic Operation
PSETP	Combine Predicates and Set Predicate
P2R	Move Predicate Register To Register
R2P	Move Register To Predicate Register
Load/Store Instructions	
LD	Load from generic Memory
LDC	Load Constant
LDG	Load from Global Memory
LDL	Load within Local Memory Window
LDS	Load within Shared Memory Window
ST	Store to Generic Memory
STG	Store to Global Memory
STL	Store within Local or Shared Window
STS	Store within Local or Shared Window
MATCH	Match Register Values Across Thread Group
QSPC	Query Space
ATOM	Atomic Operation on Generic Memory
ATOMS	Atomic Operation on Shared Memory
ATOMG	Atomic Operation on Global Memory
RED	Reduction Operation on Generic Memory
CCTL	Cache Control
CCTLL	Cache Control
ERRBAR	Error Barrier
MEMBAR	Memory Barrier
CCTLT	Texture Cache Control
Texture Instructions	
TEX	Texture Fetch
TLD	Texture Load
TLD4	Texture Load 4
TMML	Texture MipMap Level

Table 2 – continued from previous page

Opcode	Description
TXD	Texture Fetch With Derivatives
TXQ	Texture Query
Surface Instructions	
SUATOM	Atomic Op on Surface Memory
SULD	Surface Load
SURED	Reduction Op on Surface Memory
SUST	Surface Store
Control Instructions	
BMOV	Move Convergence Barrier State
BPT	BreakPoint/Trap
BRA	Relative Branch
BREAK	Break out of the Specified Convergence Barrier
BRX	Relative Branch Indirect
BSSY	Barrier Set Convergence Synchronization Point
BSYNC	Synchronize Threads on a Convergence Barrier
CALL	Call Function
EXIT	Exit Program
JMP	Absolute Jump
JMX	Absolute Jump Indirect
KILL	Kill Thread
NANOSLEEP	Suspend Execution
RET	Return From Subroutine
RPCMOV	PC Register Move
RTT	Return From Trap
WARPSYNC	Synchronize Threads in Warp
YIELD	Yield Control
Miscellaneous Instructions	
B2R	Move Barrier To Register
BAR	Barrier Synchronization
CS2R	Move Special Register to Register
DEPBAR	Dependency Barrier
GETLMEMBASE	Get Local Memory Base Address

Table 2 – continued from previous page

Opcode	Description
LEPC	Load Effective PC
NOP	No Operation
PMTRIG	Performance Monitor Trigger
R2B	Move Register to Barrier
S2R	Move Special Register to Register
SETCTAID	Set CTA ID
SETLMEMBASE	Set Local Memory Base Address
VOTE	Vote Across SIMD Thread Group

6.3. Turing Instruction Set

The Turing architecture (Compute Capability 7.3 and 7.5) have the following instruction set format:

(instruction) (destination) (source1), (source2) ...

Valid destination and source locations include:

- > RX for registers
- ▶ URX for uniform registers
- ▶ SRX for special system-controlled registers
- > PX for predicate registers
- ▶ c[X][Y] for constant memory

Table 6 lists valid instructions for the Turing GPUs.

Table 3: Table 6. Turing Instruction Set

Opcode	Description
Floating Point Instructions	
FADD	FP32 Add
FADD32I	FP32 Add
FCHK	Floating-point Range Check
FFMA32I	FP32 Fused Multiply and Add
FFMA	FP32 Fused Multiply and Add
FMNMX	FP32 Minimum/Maximum
FMUL	FP32 Multiply

Table 3 – continued from previous page

Opcode	Description
FMUL32I	FP32 Multiply
FSEL	Floating Point Select
FSET	FP32 Compare And Set
FSETP	FP32 Compare And Set Predicate
FSWZADD	FP32 Swizzle Add
MUFU	FP32 Multi Function Operation
HADD2	FP16 Add
HADD2_32I	FP16 Add
HFMA2	FP16 Fused Mutiply Add
HFMA2_32I	FP16 Fused Mutiply Add
НММА	Matrix Multiply and Accumulate
HMUL2	FP16 Multiply
HMUL2_32I	FP16 Multiply
HSET2	FP16 Compare And Set
HSETP2	FP16 Compare And Set Predicate
DADD	FP64 Add
DFMA	FP64 Fused Mutiply Add
DMUL	FP64 Multiply
DSETP	FP64 Compare And Set Predicate
Integer Instructions	
ВММА	Bit Matrix Multiply and Accumulate
BMSK	Bitfield Mask
BREV	Bit Reverse
FLO	Find Leading One
IABS	Integer Absolute Value
IADD	Integer Addition
IADD3	3-input Integer Addition
IADD32I	Integer Addition
IDP	Integer Dot Product and Accumulate
IDP4A	Integer Dot Product and Accumulate
IMAD	Integer Multiply And Add
IMMA	Integer Matrix Multiply and Accumulate

Table 3 – continued from previous page

Opcode	Description
IMNMX	Integer Minimum/Maximum
IMUL	Integer Multiply
IMUL32I	Integer Multiply
ISCADD	Scaled Integer Addition
ISCADD32I	Scaled Integer Addition
ISETP	Integer Compare And Set Predicate
LEA	LOAD Effective Address
LOP	Logic Operation
LOP3	Logic Operation
LOP32I	Logic Operation
POPC	Population count
SHF	Funnel Shift
SHL	Shift Left
SHR	Shift Right
VABSDIFF	Absolute Difference
VABSDIFF4	Absolute Difference
Conversion Instructions	
F2F	Floating Point To Floating Point Conversion
F2I	Floating Point To Integer Conversion
I2F	Integer To Floating Point Conversion
121	Integer To Integer Conversion
I2IP	Integer To Integer Conversion and Packing
FRND	Round To Integer
Movement Instructions	
MOV	Move
MOV32I	Move
MOVM	Move Matrix with Transposition or Expansion
PRMT	Permute Register Pair
SEL	Select Source with Predicate
SGXT	Sign Extend
SHFL	Warp Wide Register Shuffle
Predicate Instructions	

Table 3 – continued from previous page

Opcode	Description
PLOP3	Predicate Logic Operation
PSETP	Combine Predicates and Set Predicate
P2R	Move Predicate Register To Register
R2P	Move Register To Predicate Register
Load/Store Instructions	
LD	Load from generic Memory
LDC	Load Constant
LDG	Load from Global Memory
LDL	Load within Local Memory Window
LDS	Load within Shared Memory Window
LDSM	Load Matrix from Shared Memory with Element Size Expansion
ST	Store to Generic Memory
STG	Store to Global Memory
STL	Store within Local or Shared Window
STS	Store within Local or Shared Window
MATCH	Match Register Values Across Thread Group
QSPC	Query Space
ATOM	Atomic Operation on Generic Memory
ATOMS	Atomic Operation on Shared Memory
ATOMG	Atomic Operation on Global Memory
RED	Reduction Operation on Generic Memory
CCTL	Cache Control
CCTLL	Cache Control
ERRBAR	Error Barrier
MEMBAR	Memory Barrier
CCTLT	Texture Cache Control
Uniform Datapath Instructions	
R2UR	Move from Vector Register to a Uniform Register
S2UR	Move Special Register to Uniform Register
UBMSK	Uniform Bitfield Mask
UBREV	Uniform Bit Reverse
UCLEA	Load Effective Address for a Constant

Table 3 – continued from previous page

Opcode	Description
UFLO	Uniform Find Leading One
UIADD3	Uniform Integer Addition
UIADD3.64	Uniform Integer Addition
UIMAD	Uniform Integer Multiplication
UISETP	Integer Compare and Set Uniform Predicate
ULDC	Load from Constant Memory into a Uniform Register
ULEA	Uniform Load Effective Address
ULOP	Logic Operation
ULOP3	Logic Operation
ULOP32I	Logic Operation
UMOV	Uniform Move
UP2UR	Uniform Predicate to Uniform Register
UPLOP3	Uniform Predicate Logic Operation
UPOPC	Uniform Population Count
UPRMT	Uniform Byte Permute
UPSETP	Uniform Predicate Logic Operation
UR2UP	Uniform Register to Uniform Predicate
USEL	Uniform Select
USGXT	Uniform Sign Extend
USHF	Uniform Funnel Shift
USHL	Uniform Left Shift
USHR	Uniform Right Shift
VOTEU	Voting across SIMD Thread Group with Results in Uniform Destination
Texture Instructions	
TEX	Texture Fetch
TLD	Texture Load
TLD4	Texture Load 4
TMML	Texture MipMap Level
TXD	Texture Fetch With Derivatives
TXQ	Texture Query
Surface Instructions	

Table 3 – continued from previous page

Opcode	Description
SULD	Surface Load
SURED	Reduction Op on Surface Memory
SUST	Surface Store
Control Instructions	
BMOV	Move Convergence Barrier State
BPT	BreakPoint/Trap
BRA	Relative Branch
BREAK	Break out of the Specified Convergence Barrier
BRX	Relative Branch Indirect
BRXU	Relative Branch with Uniform Register Based Offset
BSSY	Barrier Set Convergence Synchronization Point
BSYNC	Synchronize Threads on a Convergence Barrier
CALL	Call Function
EXIT	Exit Program
JMP	Absolute Jump
JMX	Absolute Jump Indirect
JMXU	Absolute Jump with Uniform Register Based Offset
KILL	Kill Thread
NANOSLEEP	Suspend Execution
RET	Return From Subroutine
RPCMOV	PC Register Move
RTT	Return From Trap
WARPSYNC	Synchronize Threads in Warp
YIELD	Yield Control
Miscellaneous Instructions	
B2R	Move Barrier To Register
BAR	Barrier Synchronization
CS2R	Move Special Register to Register
DEPBAR	Dependency Barrier
GETLMEMBASE	Get Local Memory Base Address
LEPC	Load Effective PC
NOP	No Operation

Table 3 – continued from previous page

Opcode	Description
PMTRIG	Performance Monitor Trigger
R2B	Move Register to Barrier
S2R	Move Special Register to Register
SETCTAID	Set CTA ID
SETLMEMBASE	Set Local Memory Base Address
VOTE	Vote Across SIMD Thread Group

6.4. Ampere and Ada Instruction Set

The Ampere and Ada architectures (Compute Capability 8.0 and 8.6) have the following instruction set format:

```
(instruction) (destination) (source1), (source2) ...
```

Valid destination and source locations include:

- ► RX for registers
- ▶ URX for uniform registers
- ▶ SRX for special system-controlled registers
- ▶ PX for predicate registers
- ▶ UPX for uniform predicate registers
- ▶ c[X][Y] for constant memory

Table 7 lists valid instructions for the Ampere and Ada GPUs.

Table 4: Table 7. Ampere and Ada Instruction Set

Opcode	Description
Floating Point Instructions	
FADD	FP32 Add
FADD32I	FP32 Add
FCHK	Floating-point Range Check
FFMA32I	FP32 Fused Multiply and Add
FFMA	FP32 Fused Multiply and Add
FMNMX	FP32 Minimum/Maximum
FMUL	FP32 Multiply
FMUL32I	FP32 Multiply

Table 4 – continued from previous page

Opcode	Description
FSEL	Floating Point Select
FSET	FP32 Compare And Set
FSETP	FP32 Compare And Set Predicate
FSWZADD	FP32 Swizzle Add
MUFU	FP32 Multi Function Operation
HADD2	FP16 Add
HADD2_32I	FP16 Add
HFMA2	FP16 Fused Mutiply Add
HFMA2_32I	FP16 Fused Mutiply Add
НММА	Matrix Multiply and Accumulate
HMNMX2	FP16 Minimum / Maximum
HMUL2	FP16 Multiply
HMUL2_32I	FP16 Multiply
HSET2	FP16 Compare And Set
HSETP2	FP16 Compare And Set Predicate
DADD	FP64 Add
DFMA	FP64 Fused Mutiply Add
DMMA	Matrix Multiply and Accumulate
DMUL	FP64 Multiply
DSETP	FP64 Compare And Set Predicate
Integer Instructions	
ВММА	Bit Matrix Multiply and Accumulate
BMSK	Bitfield Mask
BREV	Bit Reverse
FLO	Find Leading One
IABS	Integer Absolute Value
IADD	Integer Addition
IADD3	3-input Integer Addition
IADD32I	Integer Addition
IDP	Integer Dot Product and Accumulate
IDP4A	Integer Dot Product and Accumulate
IMAD	Integer Multiply And Add

Table 4 – continued from previous page

Opcode	Description
IMMA	Integer Matrix Multiply and Accumulate
IMNMX	Integer Minimum/Maximum
IMUL	Integer Multiply
IMUL32I	Integer Multiply
ISCADD	Scaled Integer Addition
ISCADD32I	Scaled Integer Addition
ISETP	Integer Compare And Set Predicate
LEA	LOAD Effective Address
LOP	Logic Operation
LOP3	Logic Operation
LOP32I	Logic Operation
POPC	Population count
SHF	Funnel Shift
SHL	Shift Left
SHR	Shift Right
VABSDIFF	Absolute Difference
VABSDIFF4	Absolute Difference
Conversion Instructions	
F2F	Floating Point To Floating Point Conversion
F2I	Floating Point To Integer Conversion
12F	Integer To Floating Point Conversion
121	Integer To Integer Conversion
I2IP	Integer To Integer Conversion and Packing
I2FP	Integer to FP32 Convert and Pack
F2IP	FP32 Down-Convert to Integer and Pack
FRND	Round To Integer
Movement Instructions	
MOV	Move
MOV32I	Move
MOVM	Move Matrix with Transposition or Expansion
PRMT	Permute Register Pair
	i e e e e e e e e e e e e e e e e e e e

Table 4 – continued from previous page

Opcode	Description
SGXT	Sign Extend
SHFL	Warp Wide Register Shuffle
Predicate Instructions	
PLOP3	Predicate Logic Operation
PSETP	Combine Predicates and Set Predicate
P2R	Move Predicate Register To Register
R2P	Move Register To Predicate Register
Load/Store Instructions	
LD	Load from generic Memory
LDC	Load Constant
LDG	Load from Global Memory
LDGDEPBAR	Global Load Dependency Barrier
LDGSTS	Asynchronous Global to Shared Memcopy
LDL	Load within Local Memory Window
LDS	Load within Shared Memory Window
LDSM	Load Matrix from Shared Memory with Element Size Expansion
ST	Store to Generic Memory
STG	Store to Global Memory
STL	Store within Local or Shared Window
STS	Store within Local or Shared Window
MATCH	Match Register Values Across Thread Group
QSPC	Query Space
ATOM	Atomic Operation on Generic Memory
ATOMS	Atomic Operation on Shared Memory
ATOMG	Atomic Operation on Global Memory
RED	Reduction Operation on Generic Memory
CCTL	Cache Control
CCTLL	Cache Control
ERRBAR	Error Barrier
MEMBAR	Memory Barrier
CCTLT	Texture Cache Control
Uniform Datapath Instructions	

Table 4 – continued from previous page

Opcode	Description
R2UR	Move from Vector Register to a Uniform Register
REDUX	Reduction of a Vector Register into a Uniform Register
S2UR	Move Special Register to Uniform Register
UBMSK	Uniform Bitfield Mask
UBREV	Uniform Bit Reverse
UCLEA	Load Effective Address for a Constant
UF2FP	Uniform FP32 Down-convert and Pack
UFLO	Uniform Find Leading One
UIADD3	Uniform Integer Addition
UIADD3.64	Uniform Integer Addition
UIMAD	Uniform Integer Multiplication
UISETP	Integer Compare and Set Uniform Predicate
ULDC	Load from Constant Memory into a Uniform Register
ULEA	Uniform Load Effective Address
ULOP	Logic Operation
ULOP3	Logic Operation
ULOP32I	Logic Operation
UMOV	Uniform Move
UP2UR	Uniform Predicate to Uniform Register
UPLOP3	Uniform Predicate Logic Operation
UPOPC	Uniform Population Count
UPRMT	Uniform Byte Permute
UPSETP	Uniform Predicate Logic Operation
UR2UP	Uniform Register to Uniform Predicate
USEL	Uniform Select
USGXT	Uniform Sign Extend
USHF	Uniform Funnel Shift
USHL	Uniform Left Shift
USHR	Uniform Right Shift
VOTEU	Voting across SIMD Thread Group with Results in Uniform Destination
Texture Instructions	
TEX	Texture Fetch

Table 4 – continued from previous page

Opcode	Description
TLD	Texture Load
TLD4	Texture Load 4
TMML	Texture MipMap Level
TXD	Texture Fetch With Derivatives
TXQ	Texture Query
Surface Instructions	
SUATOM	Atomic Op on Surface Memory
SULD	Surface Load
SURED	Reduction Op on Surface Memory
SUST	Surface Store
Control Instructions	
BMOV	Move Convergence Barrier State
BPT	BreakPoint/Trap
BRA	Relative Branch
BREAK	Break out of the Specified Convergence Barrier
BRX	Relative Branch Indirect
BRXU	Relative Branch with Uniform Register Based Offset
BSSY	Barrier Set Convergence Synchronization Point
BSYNC	Synchronize Threads on a Convergence Barrier
CALL	Call Function
EXIT	Exit Program
JMP	Absolute Jump
JMX	Absolute Jump Indirect
JMXU	Absolute Jump with Uniform Register Based Offset
KILL	Kill Thread
NANOSLEEP	Suspend Execution
RET	Return From Subroutine
RPCMOV	PC Register Move
WARPSYNC	Synchronize Threads in Warp
YIELD	Yield Control
Miscellaneous Instructions	
B2R	Move Barrier To Register

Table 4 – continued from previous page

Opcode	Description
BAR	Barrier Synchronization
CS2R	Move Special Register to Register
DEPBAR	Dependency Barrier
GETLMEMBASE	Get Local Memory Base Address
LEPC	Load Effective PC
NOP	No Operation
PMTRIG	Performance Monitor Trigger
S2R	Move Special Register to Register
SETCTAID	Set CTA ID
SETLMEMBASE	Set Local Memory Base Address
VOTE	Vote Across SIMD Thread Group

6.5. Hopper Instruction Set

The Hopper architecture (Compute Capability 9.0) has the following instruction set format:

```
(instruction) (destination) (source1), (source2) ...
```

Valid destination and source locations include:

- > RX for registers
- ▶ URX for uniform registers
- ▶ SRX for special system-controlled registers
- ▶ PX for predicate registers
- ▶ UPX for uniform predicate registers
- ▶ c[X][Y] for constant memory
- ▶ desc[URX][RY] for memory descriptors

Table 8 lists valid instructions for the Hopper GPUs.

Table 5: Table 8. Hopper Instruction Set

Opcode	Description
Floating Point Instructions	
FADD	FP32 Add
FADD32I	FP32 Add

Table 5 – continued from previous page

FFMA321 FP32 Fused Multiply and Add FFMA FP32 Fused Multiply and Add FFMA FP32 Fused Multiply and Add FMNMX FP32 Multiply FMUL FP32 Multiply FMUL321 FP32 Multiply FSEL Floating Point Select FSET FP32 Compare And Set FSET FP32 Compare And Set FSETP FP32 Swizzle Add MUFU FP32 Multi Function Operation HADD2 FP16 Add HADD2 FP16 Add HADD2_321 FP16 Add HFMA2 FP16 Fused Mutiply Add HFMA2 FP16 Fused Mutiply Add HFMA2 FP16 Fused Mutiply Add HHMA Matrix Multiply and Accumulate HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA P664 Fused Mutiply and Accumulate DFMA P664 Fused Mutiply and Accumulate DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate DADD FP654 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	Opcode	Description
FFMA FP32 Fused Multiply and Add FMNMX FP32 Minimum/Maximum FMUL FP32 Multiply FMUL32I FP32 Multiply FSEL Floating Point Select FSET FP32 Compare And Set FSETP FP32 Compare And Set Predicate FSETP FP32 Compare And Set Predicate FSWZADD FP32 Swizzle Add MUFU FP32 Multi Function Operation HADD2 FP16 Add HADD2_32I FP16 Add HFMA2 FP16 Fused Multiply Add HFMA2 FP16 Fused Multiply Add HHMA Matrix Multiply and Accumulate HMMX2 FP16 Multiply HMUL2 FP16 Multiply HMUL2 FP16 Multiply HMUL2 FP16 Compare And Set HSET2 FP16 Add DFMA FP64 Fused Multiply Add DFMA FP64 Fused Multiply Add DFMA FP64 Fused Multiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	FCHK	Floating-point Range Check
FMNMX FP32 Minimum/Maximum FMUL FP32 Multiply FMUL321 FP32 Multiply FSEL Floating Point Select FSET FP32 Compare And Set FSETP FP33 Compare And Set FSETP FP34 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	FFMA32I	FP32 Fused Multiply and Add
FMUL FP32 Multiply FMUL32I FP32 Multiply FSEL Floating Point Select FSET FP32 Compare And Set FSETP FP32 Compare And Set Predicate FSWZADD FP32 Swizzle Add MUFU FP32 Multi Function Operation HADD2 FP16 Add HADD2_32I FP16 Add HFMA2 FP16 Fused Multiply Add HFMA2 FP16 Fused Multiply Add HHMMA Matrix Multiply and Accumulate HHMMX2 FP16 Multiply HMMUL2 FP16 Multiply HMUL2 FP16 Multiply HMUL2 FP16 Multiply HMUL2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Multiply Add DMMA Matrix Multiply and Accumulate HMUL FP64 Multiply DSETP FP64 Compare And Set Predicate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK BItfield Mask BREV Bit Reverse	FFMA	FP32 Fused Multiply and Add
FMUL32I FP32 Multiply FSEL Floating Point Select FSET FP32 Compare And Set FSETP FP32 Compare And Set Predicate FSWZADD FP32 Swizzle Add MUFU FP32 Multi Function Operation HADD2 FP16 Add HADD2_32I FP16 Add HFMA2 FP16 Fused Multiply Add HFMA2 FP16 Fused Multiply Add HMMA Matrix Multiply and Accumulate HMMA MATRIX Multiply Add HMMA FP16 Multiply HMUL2 FP16 Multiply HMUL2 FP16 Compare And Set HSET2 FP16 Compare And Set HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Multiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK BITfield Mask BREV Bit Reverse	FMNMX	FP32 Minimum/Maximum
FSEL Floating Point Select FSET FP32 Compare And Set FSETP FP32 Compare And Set Predicate FSWZADD FP32 Swizzle Add MUFU FP32 Multi Function Operation HADD2 FP16 Add HADD2_321 FP16 Add HFMA2 FP16 Fused Mutiply Add HFMA2 FP16 Fused Mutiply Add HFMA2_321 FP16 Fused Mutiply Add HMMA Matrix Multiply and Accumulate HMMX2 FP16 Multiply HMUL2 FP16 Multiply HMUL2 FP16 Multiply HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set HSETP2 FP16 Fused Mutiply Add DFMA FP64 Fused Mutiply Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	FMUL	FP32 Multiply
FSET FP32 Compare And Set FSETP FP32 Compare And Set Predicate FSWZADD FP32 Swizzle Add MUFU FP32 Multi Function Operation HADD2 FP16 Add HADD2_321 FP16 Add HFMA2 FP16 Fused Mutiply Add HFMA2_321 FP16 Fused Mutiply Add HFMA2_321 FP16 Fused Mutiply Add HMMA Matrix Multiply and Accumulate HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HMUL2_321 FP16 Compare And Set HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	FMUL32I	FP32 Multiply
FSETP FP32 Compare And Set Predicate FSWZADD FP32 Swizzle Add MUFU FP32 Multi Function Operation HADD2 FP16 Add HADD2_321 FP16 Add HFMA2 FP16 Fused Mutiply Add HFMA2_321 FP16 Fused Mutiply Add HFMA2_321 FP16 Fused Mutiply and Accumulate HMMA Matrix Multiply and Accumulate HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HMUL2_321 FP16 Compare And Set HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	FSEL	Floating Point Select
FSWZADD FP32 Swizzle Add MUFU FP32 Multi Function Operation HADD2 FP16 Add HADD2_32I FP16 Add HFMA2 FP16 Fused Mutiply Add HFMA2_32I FP16 Fused Mutiply Add HMMA Matrix Multiply and Accumulate HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Fused Mutiply FP64 Fused Mutiply Add DMMA DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bit Feverse	FSET	FP32 Compare And Set
MUFU FP32 Multi Function Operation HADD2 FP16 Add HADD2_32I FP16 Add HFMA2 FP16 Fused Mutiply Add HFMA2_32I FP16 Fused Mutiply Add HFMA2_32I FP16 Fused Mutiply Add HMMA Matrix Multiply and Accumulate HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HMUL2_32I FP16 Compare And Set HSET2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	FSETP	FP32 Compare And Set Predicate
HADD2 FP16 Add HADD2_32I FP16 Add HFMA2 FP16 Fused Mutiply Add HFMA2_32I FP16 Fused Mutiply Add HMMA Matrix Multiply and Accumulate HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HMUL2_32I FP16 Compare And Set HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	FSWZADD	FP32 Swizzle Add
HADD2_32I FP16 Add HFMA2 FP16 Fused Mutiply Add HFMA2_32I FP16 Fused Mutiply Add HMMA Matrix Multiply and Accumulate HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HMUL2_32I FP16 Compare And Set HSET2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	MUFU	FP32 Multi Function Operation
HFMA2 FP16 Fused Mutiply Add HFMA2_32I FP16 Fused Mutiply Add HMMA Matrix Multiply and Accumulate HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HMUL2_32I FP16 Multiply HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bit fleld Mask BREV Bit Reverse	HADD2	FP16 Add
HFMA2_32I FP16 Fused Mutiply Add HMMA Matrix Multiply and Accumulate HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HMUL2_32I FP16 Multiply HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	HADD2_32I	FP16 Add
HMMA Matrix Multiply and Accumulate HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HMUL2_32I FP16 Multiply HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	HFMA2	FP16 Fused Mutiply Add
HMNMX2 FP16 Minimum / Maximum HMUL2 FP16 Multiply HMUL2_32I FP16 Compare And Set HSET2 FP16 Compare And Set Predicate HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	HFMA2_32I	FP16 Fused Mutiply Add
HMUL2 FP16 Multiply HMUL2_32I FP16 Multiply HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	НММА	Matrix Multiply and Accumulate
HMUL2_32I FP16 Multiply HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	HMNMX2	FP16 Minimum / Maximum
HSET2 FP16 Compare And Set HSETP2 FP16 Compare And Set Predicate DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	HMUL2	FP16 Multiply
HSETP2 FP16 Compare And Set Predicate FP64 Add FP64 Fused Mutiply Add DMMA DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask Brev Bit Reverse	HMUL2_32I	FP16 Multiply
DADD FP64 Add DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	HSET2	FP16 Compare And Set
DFMA FP64 Fused Mutiply Add DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	HSETP2	FP16 Compare And Set Predicate
DMMA Matrix Multiply and Accumulate DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	DADD	FP64 Add
DMUL FP64 Multiply DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	DFMA	FP64 Fused Mutiply Add
DSETP FP64 Compare And Set Predicate Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	DMMA	Matrix Multiply and Accumulate
Integer Instructions BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	DMUL	FP64 Multiply
BMMA Bit Matrix Multiply and Accumulate BMSK Bitfield Mask BREV Bit Reverse	DSETP	FP64 Compare And Set Predicate
BMSK Bitfield Mask BREV Bit Reverse	Integer Instructions	
BREV Bit Reverse	ВММА	Bit Matrix Multiply and Accumulate
	BMSK	Bitfield Mask
Final Land Page Co.	BREV	Bit Reverse
FIND Leading One	FLO	Find Leading One
IABS Integer Absolute Value	IABS	Integer Absolute Value

Table 5 – continued from previous page

Table 5 – Continued from previous page		
Opcode	Description	
IADD	Integer Addition	
IADD3	3-input Integer Addition	
IADD32I	Integer Addition	
IDP	Integer Dot Product and Accumulate	
IDP4A	Integer Dot Product and Accumulate	
IMAD	Integer Multiply And Add	
IMMA	Integer Matrix Multiply and Accumulate	
IMNMX	Integer Minimum/Maximum	
IMUL	Integer Multiply	
IMUL32I	Integer Multiply	
ISCADD	Scaled Integer Addition	
ISCADD32I	Scaled Integer Addition	
ISETP	Integer Compare And Set Predicate	
LEA	LOAD Effective Address	
LOP	Logic Operation	
LOP3	Logic Operation	
LOP32I	Logic Operation	
POPC	Population count	
SHF	Funnel Shift	
SHL	Shift Left	
SHR	Shift Right	
VABSDIFF	Absolute Difference	
VABSDIFF4	Absolute Difference	
VHMNMX	SIMD FP16 3-Input Minimum / Maximum	
VIADD	SIMD Integer Addition	
VIADDMNMX	SIMD Integer Addition and Fused Min/Max Comparison	
VIMNMX	SIMD Integer Minimum / Maximum	
VIMNMX3	SIMD Integer 3-Input Minimum / Maximum	
Conversion Instructions		
F2F	Floating Point To Floating Point Conversion	
F2I	Floating Point To Integer Conversion	
12F	Integer To Floating Point Conversion	

Table 5 – continued from previous page

Opcode	Description
121	Integer To Integer Conversion
12IP	Integer To Integer Conversion and Packing
I2FP	Integer to FP32 Convert and Pack
F2IP	FP32 Down-Convert to Integer and Pack
FRND	Round To Integer
Movement Instructions	
MOV	Move
MOV32I	Move
MOVM	Move Matrix with Transposition or Expansion
PRMT	Permute Register Pair
SEL	Select Source with Predicate
SGXT	Sign Extend
SHFL	Warp Wide Register Shuffle
Predicate Instructions	
PLOP3	Predicate Logic Operation
PSETP	Combine Predicates and Set Predicate
P2R	Move Predicate Register To Register
R2P	Move Register To Predicate Register
Load/Store Instructions	
FENCE	Memory Visibility Guarantee for Shared or Global Memory
LD	Load from generic Memory
LDC	Load Constant
LDG	Load from Global Memory
LDGDEPBAR	Global Load Dependency Barrier
LDGMC	Reducing Load
LDGSTS	Asynchronous Global to Shared Memcopy
LDL	Load within Local Memory Window
LDS	Load within Shared Memory Window
LDSM	Load Matrix from Shared Memory with Element Size Expansion
STSM	Store Matrix to Shared Memory
ST	Store to Generic Memory
STG	Store to Global Memory

Table 5 – continued from previous page

Opcode	Description
STL	Store within Local or Shared Window
STS	Store within Local or Shared Window
STAS	Asynchronous Store to Distributed Shared Memory With Explicit Synchroniz
SYNCS	Sync Unit
MATCH	Match Register Values Across Thread Group
QSPC	Query Space
ATOM	Atomic Operation on Generic Memory
ATOMS	Atomic Operation on Shared Memory
ATOMG	Atomic Operation on Global Memory
REDAS	Asynchronous Reduction on Distributed Shared Memory With Explicit Synchronization
REDG	Reduction Operation on Generic Memory
CCTL	Cache Control
CCTLL	Cache Control
ERRBAR	Error Barrier
MEMBAR	Memory Barrier
CCTLT	Texture Cache Control
Uniform Datapath Instructions	
R2UR	Move from Vector Register to a Uniform Register
REDUX	Reduction of a Vector Register into a Uniform Register
S2UR	Move Special Register to Uniform Register
UBMSK	Uniform Bitfield Mask
UBREV	Uniform Bit Reverse
UCGABAR_ARV	CGA Barrier Synchronization
UCGABAR_WAIT	CGA Barrier Synchronization
UCLEA	Load Effective Address for a Constant
UF2FP	Uniform FP32 Down-convert and Pack
UFLO	Uniform Find Leading One
UIADD3	Uniform Integer Addition
UIADD3.64	Uniform Integer Addition
UIMAD	Uniform Integer Multiplication
UISETP	Integer Compare and Set Uniform Predicate

Table 5 – continued from previous page

ULDC Load from Constant Memory into a Uniform Register ULEA Uniform Load Effective Address ULEPC Uniform Load Effective PC ULOP Logic Operation ULOP3 Logic Operation ULOP321 Logic Operation UMOV Uniform Move UP2UR Uniform Move UP2UR Uniform Predicate to Uniform Register UPOP3 Uniform Predicate Logic Operation UPOPC Uniform Population Count UPRMT Uniform Predicate Logic Operation UPSETP Uniform Predicate Logic Operation USEL Uniform Predicate Logic Operation USEL Uniform Predicate Logic Operation USEL Uniform Register to Uniform Predicate USEL Uniform Register to Uniform Predicate USEL Uniform Register to Uniform Predicate USEL Uniform Sign Extend USHF Uniform Funct Shift USH Uniform Register to Uniform Predicate Registers USH Uniform Register to Uniform Predicate Registers USH Uniform Register to Uniform Predicate Logic Operatio	Opcode	Description
ULEPC Uniform Load Effective PC ULOP Logic Operation ULOP3 Logic Operation ULOP32I Logic Operation UMOV Uniform Move UP2UR Uniform Move UPLOP3 Uniform Predicate to Uniform Register UPLOP3 Uniform Predicate Logic Operation UPRMT Uniform Population Count UPSETP Uniform Predicate Logic Operation UR2UP Uniform Predicate Logic Operation UR2UP Uniform Register to Uniform Predicate USEL Uniform Select USER Uniform Select USAT Uniform Sign Extend USHF Uniform Funnel Shift USHR Uniform Funnel Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup WARPGROUPSET Set Warpgroup Synchroniz	ULDC	Load from Constant Memory into a Uniform Register
ULOP Logic Operation ULOP32I Logic Operation ULOP32II Logic Operation UMOV Uniform Move UP2UR Uniform Predicate to Uniform Register UPLOP3 Uniform Predicate Logic Operation UPOPC Uniform Population Count UPRMT Uniform Byte Permute UPSETP Uniform Predicate Logic Operation UR2UP Uniform Register to Uniform Predicate USEL Uniform Register to Uniform Predicate USETMAXREG Release, Deallocate and Allocate Registers USGXT Uniform Sign Extend USHF Uniform Funnel Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters	ULEA	Uniform Load Effective Address
ULOP3 Logic Operation ULOP32I Logic Operation UMOV Uniform Move UP2UR Uniform Predicate to Uniform Register UPLOP3 Uniform Predicate Logic Operation UPOPC Uniform Population Count UPRMT Uniform Byte Permute UPSETP Uniform Predicate Logic Operation UR2UP Uniform Register to Uniform Predicate USEL Uniform Select USETMAXREG Release, Deallocate and Allocate Registers USAT Uniform Funnel Shift USHF Uniform Funnel Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKPF UBLKPF<	ULEPC	Uniform Load Effective PC
ULOP32I Logic Operation UMOV Uniform Move UP2UR Uniform Predicate to Uniform Register UPLOP3 Uniform Predicate Logic Operation UPOPC Uniform Population Count UPRMT Uniform Byte Permute UPSETP Uniform Predicate Logic Operation UR2UP Uniform Register to Uniform Predicate USEL Uniform Select USEL Uniform Select USETMAXREG Release, Deallocate and Allocate Registers USHF Uniform Funnel Shift USHR Uniform Eight Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup UARPGROUP Warpgroup Synchronization Warpgroup Set Warpgroup Counters Tensor Memory Access Instructions BUBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	ULOP	Logic Operation
UMOV Uniform Move UP2UR Uniform Predicate to Uniform Register UPLOP3 Uniform Predicate Logic Operation UPOPC Uniform Population Count UPRMT Uniform Byte Permute UPSETP Uniform Predicate Logic Operation UR2UP Uniform Register to Uniform Predicate USEL Uniform Select USETMAXREG Release, Deallocate and Allocate Registers USGXT Uniform Sign Extend USHF Uniform Funnel Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup URAPGROUP Warpgroup Synchronization WarpGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	ULOP3	Logic Operation
UP2UR Uniform Predicate to Uniform Register UPLOP3 Uniform Predicate Logic Operation UPOPC Uniform Population Count UPRMT Uniform Byte Permute UPSETP Uniform Predicate Logic Operation UR2UP Uniform Register to Uniform Predicate USEL Uniform Select USETMAXREG Release, Deallocate and Allocate Registers USGXT Uniform Sign Extend USHF Uniform Funnel Shift USHR Uniform Right Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP WARPGROUP Warpgroup Synchronization Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions BULKCP Bulk Data Copy BULK Data Copy from Shared Memory with Reduction	ULOP32I	Logic Operation
UPLOP3 Uniform Predicate Logic Operation UPOPC Uniform Population Count UPRMT Uniform Byte Permute UPSETP Uniform Predicate Logic Operation UR2UP Uniform Register to Uniform Predicate USEL Uniform Select USETMAXREG Release, Deallocate and Allocate Registers USGXT Uniform Sign Extend USHF Uniform Funnel Shift USHR Uniform Left Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup UMARPGROUP Warpgroup Synchronization WARPGROUP Warpgroup Counters Tensor Memory Access Instructions BUIK Data Copy UBLKCP Bulk Data Copy BUIK Data Prefetch UBLKRED Bulk Data Copy from Shared Memory with Reduction	UMOV	Uniform Move
UPOPC Uniform Population Count UPRMT Uniform Byte Permute UPSETP Uniform Predicate Logic Operation UR2UP Uniform Register to Uniform Predicate USEL Uniform Select USETMAXREG Release, Deallocate and Allocate Registers USGXT Uniform Sign Extend USHF Uniform Left Shift USHL Uniform Right Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKPF Bulk Data Copy from Shared Memory with Reduction	UP2UR	Uniform Predicate to Uniform Register
UPRMT Uniform Byte Permute UPSETP Uniform Predicate Logic Operation UR2UP Uniform Register to Uniform Predicate USEL Uniform Select USETMAXREG Release, Deallocate and Allocate Registers USGXT Uniform Sign Extend USHF Uniform Funnel Shift USHL Uniform Right Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup GGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup UGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	UPLOP3	Uniform Predicate Logic Operation
UPSETP Uniform Predicate Logic Operation UR2UP Uniform Register to Uniform Predicate USEL Uniform Select USETMAXREG Release, Deallocate and Allocate Registers USGXT Uniform Sign Extend USHF Uniform Funnel Shift USHL Uniform Edit Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUP Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	UPOPC	Uniform Population Count
UR2UP Uniform Register to Uniform Predicate USEL Uniform Select USETMAXREG Release, Deallocate and Allocate Registers USGXT Uniform Sign Extend USHF Uniform Funnel Shift USHL Uniform Left Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUP Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	UPRMT	Uniform Byte Permute
USEL Uniform Select USETMAXREG Release, Deallocate and Allocate Registers USGXT Uniform Sign Extend USHF Uniform Funnel Shift USHL Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup GGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	UPSETP	Uniform Predicate Logic Operation
USETMAXREG Release, Deallocate and Allocate Registers USGXT Uniform Sign Extend USHF Uniform Funnel Shift USHL Uniform Left Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	UR2UP	Uniform Register to Uniform Predicate
USGXT USHF Uniform Sign Extend USHE Uniform Funnel Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	USEL	Uniform Select
USHF USHL Uniform Funnel Shift USHR Uniform Right Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	USETMAXREG	Release, Deallocate and Allocate Registers
USHL USHR Uniform Left Shift VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKPF Bulk Data Copy from Shared Memory with Reduction	USGXT	Uniform Sign Extend
USHR VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	USHF	Uniform Funnel Shift
VOTEU Voting across SIMD Thread Group with Results in Uniform Destination Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKPF Bulk Data Copy from Shared Memory with Reduction	USHL	Uniform Left Shift
Warpgroup Instructions BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKRED Bulk Data Copy from Shared Memory with Reduction	USHR	Uniform Right Shift
BGMMA Bit Matrix Multiply and Accumulate Across Warps HGMMA Matrix Multiply and Accumulate Across a Warpgroup IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKPF Bulk Data Copy from Shared Memory with Reduction	VOTEU	Voting across SIMD Thread Group with Results in Uniform Destination
HGMMA Matrix Multiply and Accumulate Across a Warpgroup Integer Matrix Multiply and Accumulate Across a Warpgroup QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKPF Bulk Data Prefetch UBLKRED Bulk Data Copy from Shared Memory with Reduction	Warpgroup Instructions	
IGMMA Integer Matrix Multiply and Accumulate Across a Warpgroup QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKPF Bulk Data Prefetch UBLKRED Bulk Data Copy from Shared Memory with Reduction	BGMMA	Bit Matrix Multiply and Accumulate Across Warps
QGMMA FP8 Matrix Multiply and Accumulate Across a Warpgroup WARPGROUP Warpgroup Synchronization WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKPF Bulk Data Prefetch UBLKRED Bulk Data Copy from Shared Memory with Reduction	HGMMA	Matrix Multiply and Accumulate Across a Warpgroup
WARPGROUP Warpgroup Synchronization Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKPF Bulk Data Prefetch UBLKRED Bulk Data Copy from Shared Memory with Reduction	IGMMA	Integer Matrix Multiply and Accumulate Across a Warpgroup
WARPGROUPSET Set Warpgroup Counters Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKPF Bulk Data Prefetch UBLKRED Bulk Data Copy from Shared Memory with Reduction	QGMMA	FP8 Matrix Multiply and Accumulate Across a Warpgroup
Tensor Memory Access Instructions UBLKCP Bulk Data Copy UBLKPF Bulk Data Prefetch UBLKRED Bulk Data Copy from Shared Memory with Reduction	WARPGROUP	Warpgroup Synchronization
UBLKCP Bulk Data Copy UBLKPF Bulk Data Prefetch UBLKRED Bulk Data Copy from Shared Memory with Reduction	WARPGROUPSET	Set Warpgroup Counters
UBLKPF Bulk Data Prefetch UBLKRED Bulk Data Copy from Shared Memory with Reduction	Tensor Memory Access Instructions	
UBLKRED Bulk Data Copy from Shared Memory with Reduction	UBLKCP	Bulk Data Copy
	UBLKPF	Bulk Data Prefetch
UTMACCTL TMA Cache Control	UBLKRED	Bulk Data Copy from Shared Memory with Reduction
	UTMACCTL	TMA Cache Control

Table 5 – continued from previous page

UTMACMDFLUSH Tensor Load from Global to Shared Memory UTMAPF Tensor Prefetch UTMAREDG Tensor Store from Shared to Global Memory with Reduction UTMARTOR Tensor Store from Shared to Global Memory with Reduction UTMASTIG Tensor Store from Shared to Global Memory with Reduction TEX TEXTURE INSTRUCTIONS TEX TEXTURE INSTRUCTIONS TEX TEXTURE LOAD TLD TEXTURE LOAD TLD TEXTURE LOAD TLD TEXTURE LOAD TEXTURE LOAD TEXTURE MIPMAP LEVEL TXD TEXTURE FETCH WITH DERIVATIVES TXQ TEXTURE GUARY SUATOM Atomic Op on Surface Memory SULATOM Surface LOAD SURED REDUCTIONS SUST Surface Store Control Instructions ACOBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BMOV Move Convergence Barrier State BMOV Move Convergence Barrier State BMOV Relative Branch BRA Relative Branch BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Resk the MCOLLECTIVE mask EXIT Exit Program	Opcode	Description
UTMAPF Tensor Prefetch UTMAREDG Tensor Store from Shared to Global Memory with Reduction UTMASTG Tensor Store from Shared to Global Memory Texture Instructions TEX Texture Fetch TLD Texture Load TLD4 Texture Load 4 TLD4 Texture Load 4 TXD Texture Query Surface Instructions SUATOM Atomic Op on Surface Memory SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions BPH Break Relative Branch BRA Relative Branch BRA Relative Branch Indirect BRX Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CAS Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE MARED Texture Fetch Tensor Store Global Memory Texture Fetch Texture Fetch Texture Fetch Texture Load 4 Texture	UTMACMDFLUSH	TMA Command Flush
UTIMASTG Tensor Store from Shared to Global Memory with Reduction TEX Texture Instructions TEX Texture Fetch TLD Texture Load TLD4 Texture Load 4 TMML Texture MipMap Level TXD Texture Fetch With Derivatives TXQ Texture Query Sufface Instructions SUATOM Atomic Op on Surface Memory SUST Surface Store Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch with Uniform Register Based Offset BRXU Relative Branch with Uniform Register Based Offset BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Mask	UTMALDG	Tensor Load from Global to Shared Memory
TEXTURE INSTRUCTIONS TEX TEX TEX TEX TEX TEX TEX TEXTURE LOAD TEXTURE LOAD TEXTURE LOAD TEXTURE LOAD TEXTURE LOAD TEXTURE MIPMAP LEVEL TXD TEXTURE MIPMAP LEVEL TXD TEXTURE FETCH WITH DERIVATIVES TXQ TEXTURE QUERY SURFACE INSTRUCTIONS SUATOM Atomic Op on Surface Memory SULD Surface LOAD SURED RED RED RED RED RED RED RED RED RED	UTMAPF	Tensor Prefetch
Texture Instructions TEX Texture Fetch TLD Texture Load TLD4 Texture Load 4 TMML Texture MipMap Level TXD Texture Fetch With Derivatives TXQ Texture Query Surface Instructions SUATOM Atomic Op on Surface Memory SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions BMOV Move Convergence Barrier State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE mask	UTMAREDG	Tensor Store from Shared to Global Memory with Reduction
TEX Texture Fetch TLD Texture Load TLD4 Texture Load 4 TMML Texture MipMap Level TXD Texture Fetch With Derivatives TXQ Texture Query Surface Instructions SUATOM Atomic Op on Surface Memory SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function ELECT Elect a Leader Thread ENDCOLLECTIVE mask	UTMASTG	Tensor Store from Shared to Global Memory
TLD Texture Load TLD4 Texture Load 4 TMML Texture MipMap Level TXD Texture Fetch With Derivatives TXQ Texture Query Surface Instructions SUATOM Atomic Op on Surface Memory SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions BMOV Move Convergence Barrier State BPT Break Point/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function ENDCOLLECTIVE Reset the MCOLLECTIVE mask	Texture Instructions	
TLD4 Texture Load 4 TMML Texture MipMap Level TXD Texture Fetch With Derivatives TXQ Texture Query Surface Instructions SUATOM Atomic Op on Surface Memory SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSYN Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset CONVERTINE CONVERTINE CONVERTINE CALL Reset the MCOLLECTIVE mask	TEX	Texture Fetch
TMML Texture MipMap Level TXD Texture Fetch With Derivatives TXQ Texture Query Surface Instructions SUATOM Atomic Op on Surface Memory SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset to Manual Atomic Atomic Accounts Advanced Accounts Account	TLD	Texture Load
TXD Texture Fetch With Derivatives TXQ Texture Query Surface Instructions SUATOM Atomic Op on Surface Memory SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE mask	TLD4	Texture Load 4
TXQ Texture Query Surface Instructions SUATOM Atomic Op on Surface Memory SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Mesk	TMML	Texture MipMap Level
Surface Instructions SUATOM Atomic Op on Surface Memory SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	TXD	Texture Fetch With Derivatives
SUATOM Atomic Op on Surface Memory SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset Memory Surface Memory Surface Memory Surface Load Reduction Op on Surface Memory Surface Load Reduct	TXQ	Texture Query
SULD Surface Load SURED Reduction Op on Surface Memory SUST Surface Store Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	Surface Instructions	
SURED SUST Surface Store Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	SUATOM	Atomic Op on Surface Memory
SUST Control Instructions ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	SULD	Surface Load
Control InstructionsWait for Bulk Release Status Warp StateBMOVMove Convergence Barrier StateBPTBreakPoint/TrapBRARelative BranchBREAKBreak out of the Specified Convergence BarrierBRXRelative Branch IndirectBRXURelative Branch with Uniform Register Based OffsetBSSYBarrier Set Convergence Synchronization PointBSYNCSynchronize Threads on a Convergence BarrierCALLCall FunctionCGAERRBARCGA Error BarrierELECTElect a Leader ThreadENDCOLLECTIVEReset the MCOLLECTIVE mask	SURED	Reduction Op on Surface Memory
ACQBULK Wait for Bulk Release Status Warp State BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	SUST	Surface Store
BMOV Move Convergence Barrier State BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	Control Instructions	
BPT BreakPoint/Trap BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	ACQBULK	Wait for Bulk Release Status Warp State
BRA Relative Branch BREAK Break out of the Specified Convergence Barrier BRX Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	BMOV	Move Convergence Barrier State
BREAK Break out of the Specified Convergence Barrier Relative Branch Indirect Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	BPT	BreakPoint/Trap
BRXU Relative Branch Indirect BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	BRA	Relative Branch
BRXU Relative Branch with Uniform Register Based Offset BSSY Barrier Set Convergence Synchronization Point BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	BREAK	Break out of the Specified Convergence Barrier
BSSY Barrier Set Convergence Synchronization Point Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	BRX	Relative Branch Indirect
BSYNC Synchronize Threads on a Convergence Barrier CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	BRXU	Relative Branch with Uniform Register Based Offset
CALL Call Function CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	BSSY	Barrier Set Convergence Synchronization Point
CGAERRBAR CGA Error Barrier ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	BSYNC	Synchronize Threads on a Convergence Barrier
ELECT Elect a Leader Thread ENDCOLLECTIVE Reset the MCOLLECTIVE mask	CALL	Call Function
ENDCOLLECTIVE Reset the MCOLLECTIVE mask	CGAERRBAR	CGA Error Barrier
	ELECT	Elect a Leader Thread
EXIT Exit Program	ENDCOLLECTIVE	Reset the MCOLLECTIVE mask
	EXIT	Exit Program

Table 5 – continued from previous page

Opcode	Description
JMP	Absolute Jump
JMX	Absolute Jump Indirect
JMXU	Absolute Jump with Uniform Register Based Offset
KILL	Kill Thread
NANOSLEEP	Suspend Execution
PREEXIT	Dependent Task Launch Hint
RET	Return From Subroutine
RPCMOV	PC Register Move
WARPSYNC	Synchronize Threads in Warp
YIELD	Yield Control
Miscellaneous Instructions	
B2R	Move Barrier To Register
BAR	Barrier Synchronization
CS2R	Move Special Register to Register
DEPBAR	Dependency Barrier
GETLMEMBASE	Get Local Memory Base Address
LEPC	Load Effective PC
NOP	No Operation
PMTRIG	Performance Monitor Trigger
S2R	Move Special Register to Register
SETCTAID	Set CTA ID
SETLMEMBASE	Set Local Memory Base Address
VOTE	Vote Across SIMT Thread Group

Chapter 7. cu++filt

cu++filt decodes (demangles) low-level identifiers that have been mangled by CUDA C++ into user readable names. For every input alphanumeric word, the output of cu++filt is either the demangled name if the name decodes to a CUDA C++ name, or the original name itself.

7.1. Usage

cu++filt accepts one or more alphanumeric words (consisting of letters, digits, underscores, dollars, or periods) and attepts to decipher them. The basic usage is as following:

```
cu++filt [options] <symbol(s)>
```

To demangle an entire file, like a binary, pipe the contents of the file to cu++filt, such as in the following command:

```
nm <input file> | cu++filt
```

To demangle function names without printing their parameter types, use the following command:

```
cu++filt -p <symbol(s)>
```

To skip a leading underscore from mangled symbols, use the following command:

```
cu++filt -_ <symbol(s)>
```

Here's a sample output of cu++filt:

```
$ cu++filt _Z1fIiEbl
bool f<int>(long)
```

As shown in the output, the symbol _Z1fIiEbl was successfully demangled.

To strip all types in the function signature and parameters, use the -p option:

```
$ cu++filt -p _Z1fIiEbl
f<int>
```

To skip a leading underscore from a mangled symbol, use the -_ option:

```
$ cu++filt -_ __Z1fIiEbl
bool f<int>(long)
```

To demangle an entire file, pipe the contents of the file to cu++filt:

```
$ nm test.sm_70.cubin | cu++filt
000000000000000 t hello(char *)
000000000000000 t hello(char *)::display()
00000000000000 T hello(int *)
```

Symbols that cannot be demangled are printed back to stdout as is:

```
$ cu++filt _ZD2
_ZD2
```

Multiple symbols can be demangled from the command line:

```
$ cu++filt _ZN6Scope15Func1Enez _Z3fooIiPFYneEiEvv _ZD2
Scope1::Func1(__int128, long double, ...)
void foo<int, __int128 (*)(long double), int>()
_ZD2
```

7.2. Command-line Options

Table 9 contains supported command-line options of cu++filt, along with a description of what each option does.

Table 1: Table 9. cu++filt Command-line Options

Op- tion	Description
	Strip underscore. On some systems, the CUDA compiler puts an underscore in front of every name. This option removes the initial underscore. Whether cu++filt removes the underscore by default is target dependent.
-р	When demangling the name of a function, do not display the types of the function's parameters.
-h	Print a summary of the options to cu++filt and exit.
-v	Print the version information of this tool.

7.3. Library Availability

cu++filt is also available as a static library (libcufilt) that can be linked against an existing project. The following interface describes it's usage:

```
char* __cu_demangle(const char *id, char *output_buffer, size_t *length, int *status)
```

This interface can be found in the file "nv_decode.h" located in the SDK.

Input Parameters

id Input mangled string.

output_buffer Pointer to where the demangled buffer will be stored. This memory must be allocated with malloc. If output-buffer is NULL, memory will be malloc'd to store the demangled name and returned through the function return value. If the output-buffer is too small, it is expanded using realloc.

length It is necessary to provide the size of the output buffer if the user is providing pre-allocated memory. This is needed by the demangler in case the size needs to be reallocated. If the length is non-null, the length of the demangled buffer is placed in length.

status *status is set to one of the following values:

- ▶ 0 The demangling operation succeeded
- ▶ -1 A memory allocation failure occurred
- -2 Not a valid mangled id
- > -3 An input validation failure has occurred (one or more arguments are invalid)

Return Value

A pointer to the start of the NUL-terminated demangled name, or NULL if the demangling fails. The caller is responsible for deallocating this memory using free.

Note: This function is thread-safe.

Example Usage

```
#include <stdio.h>
#include <stdlib.h>
#include "nv_decode.h"
int main()
 int
          status:
 const char *real_mangled_name="_ZN8clstmp01I5cls01E13clstmp01_mf01Ev";
 const char *fake_mangled_name="B@d_iDentiFier";
 char* realname = __cu_demangle(fake_mangled_name, 0, 0, &status);
 printf("fake_mangled_name:\t result => %s\t status => %d\n", realname, status);
 free(realname);
 size_t size = sizeof(char)*1000;
  realname = (char*)malloc(size);
  __cu_demangle(real_mangled_name, realname, &size, &status);
 printf("real_mangled_name:\t result => %s\t status => %d\n", realname, status);
 free(realname);
  return 0;
```

This prints:

```
fake_mangled_name: result => (null) status => -2
real_mangled_name: result => clstmp01<cls01>::clstmp01_mf01() status => 0
```

58 Chapter 7. cu++filt

Chapter 8. nvprune

nvprune prunes host object files and libraries to only contain device code for the specified targets.

8.1. Usage

nvprune accepts a single input file each time it's run, emitting a new output file. The basic usage is as following:

```
nvprune [options] -o <outfile> <infile>
```

The input file must be either a relocatable host object or static library (not a host executable), and the output file will be the same format.

Either the –arch or –generate-code option must be used to specify the target(s) to keep. All other device code is discarded from the file. The targets can be either a sm_NN arch (cubin) or compute_NN arch (ptx).

For example, the following will prune libcublas_static.a to only contain sm_70 cubin rather than all the targets which normally exist:

```
nvprune -arch sm_70 libcublas_static.a -o libcublas_static70.a
```

Note that this means that libcublas_static70.a will not run on any other architecture, so should only be used when you are building for a single architecture.

8.2. Command-line Options

Table 10 contains supported command-line options of nvprune, along with a description of what each option does. Each option has a long name and a short name, which can be used interchangeably.

Table 1: Table 10. nvprune Command-line Options

Option (long)	Option (short)	Description	
arch <gpu archi- tecture name>,</gpu 	-arch	Specify the name of the NVIDIA GPU architecture which will remain in the object or library.	
generate-	cogkenco	de his option is same format as nvcc –generate-code option, and provides a way to specify multiple architectures which should remain in the object or library. Only the 'code' values are used as targets to match. Allowed keywords for this option: 'arch','code'.	
no-relocatanderæ∏ண்ணாtakdepenb∮relocatable ELF.			
output-fileo		Specify name and location of the output file.	
help	-h	Print this help information on this tool.	
options-f <file>,</file>	i-læptf	Include command line options from specified file.	
version	-V	Print version information on this tool.	

60 Chapter 8. nvprune

Chapter 9. Notices

9.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or

services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

9.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

9.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

©2013-2023, NVIDIA Corporation & Affiliates. All rights reserved