universität freiburg

What you needa know about Yoneda

Emma Bach (she/her) Seminar on Functional Programming and Logic, Summer Semester 2025

► A common sentiment in many cultures is the idea that things are defined by how they interact with their surroundings.

¹Quoted as a proverb in *Don Quixote*

- ▶ A common sentiment in many cultures is the idea that things are defined by how they interact with their surroundings.
- ▶ "Tell me your company, and I will tell you what you are." 1

¹Quoted as a proverb in *Don Quixote*

- ▶ A common sentiment in many cultures is the idea that things are defined by how they interact with their surroundings.
- "Tell me your company, and I will tell you what you are." 1
- ► The Yoneda lemma is the result of applying this way of thinking to mathematical objects in category theory.

¹Quoted as a proverb in *Don Quixote*

- ▶ A common sentiment in many cultures is the idea that things are defined by how they interact with their surroundings.
- "Tell me your company, and I will tell you what you are." 1
- ► The Yoneda lemma is the result of applying this way of thinking to mathematical objects in category theory.
- As a result, a category $\mathbb C$ is often best understood by instead studying functors from that category into $\mathbb S et$.

¹Quoted as a proverb in Don Quixote

► A category C consists of:

- ightharpoonup A category $\mathbb C$ consists of:
 - ▶ a collection $|\mathbb{C}|$ of *objects*;

- ightharpoonup A *category* $\mathbb C$ consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B, if this is a set we call it a homset;

- ightharpoonup A *category* $\mathbb C$ consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of *morphisms* from A to B, if this is a set we call it a *homset*;
 - ▶ for all $A \in |\mathbb{C}|$, an *identity morphism* $id_A \in \mathbb{C}(A, A)$;

- ightharpoonup A category $\mathbb C$ consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of *morphisms* from A to B, if this is a set we call it a *homset*;
 - ▶ for all $A \in |\mathbb{C}|$, an *identity morphism* $id_A \in \mathbb{C}(A, A)$;
 - ▶ for each pair of morphisms $g \in \mathbb{C}(B, C)$, $f \in \mathbb{C}(A, B)$, a morphism $g \circ f \in \mathbb{C}(A, C)$, such that composition is associative.

- ightharpoonup A category $\mathbb C$ consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B, if this is a set we call it a homset;
 - ▶ for all $A \in |\mathbb{C}|$, an *identity morphism* $id_A \in \mathbb{C}(A, A)$;
 - ▶ for each pair of morphisms $g \in \mathbb{C}(B, C)$, $f \in \mathbb{C}(A, B)$, a morphism $g \circ f \in \mathbb{C}(A, C)$, such that composition is associative.
- ▶ For every category \mathbb{C} , the *opposite category* \mathbb{C}^{op} is a category.

- ightharpoonup A *category* \mathbb{C} consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B, if this is a set we call it a homset;
 - ▶ for all $A \in |\mathbb{C}|$, an *identity morphism* $id_A \in \mathbb{C}(A, A)$;
 - ▶ for each pair of morphisms $g \in \mathbb{C}(B, C)$, $f \in \mathbb{C}(A, B)$, a morphism $g \circ f \in \mathbb{C}(A, C)$, such that composition is associative.
- ▶ For every category \mathbb{C} , the *opposite category* \mathbb{C}^{op} is a category.
- For every pair of categories \mathbb{C} , \mathbb{D} , the *product category* $\mathbb{C} \times \mathbb{D}$ is a category.

A functor $F:\mathbb{C}\to\mathbb{D}$ is a structure-preserving map between two categories:

A functor $F:\mathbb{C}\to\mathbb{D}$ is a structure-preserving map between two categories:

▶ F maps an object $A \in |\mathbb{C}|$ to an object $F(A) \in |\mathbb{D}|$

A functor $F: \mathbb{C} \to \mathbb{D}$ is a structure-preserving map between two categories:

- ▶ F maps an object $A \in |\mathbb{C}|$ to an object $F(A) \in |\mathbb{D}|$
- ► F maps a morphism $f \in \mathbb{C}(A, B)$ to a morphism $F(f) \in \mathbb{D}(F(A), F(B))$

A functor $F: \mathbb{C} \to \mathbb{D}$ is a structure-preserving map between two categories:

- ▶ F maps an object $A \in |\mathbb{C}|$ to an object $F(A) \in |\mathbb{D}|$
- ► F maps a morphism $f \in \mathbb{C}(A, B)$ to a morphism $F(f) \in \mathbb{D}(F(A), F(B))$
- $ightharpoonup F(id_A) = id_{F(A)}$

A functor $F: \mathbb{C} \to \mathbb{D}$ is a structure-preserving map between two categories:

- ▶ F maps an object $A \in |\mathbb{C}|$ to an object $F(A) \in |\mathbb{D}|$
- ► F maps a morphism $f \in \mathbb{C}(A, B)$ to a morphism $F(f) \in \mathbb{D}(F(A), F(B))$
- $ightharpoonup F(id_A) = id_{F(A)}$
- $ightharpoonup F(g \circ f) = F(g) \circ F(f)$

A functor $F:\mathbb{C}\to\mathbb{D}$ is a structure-preserving map between two categories:

- ▶ F maps an object $A \in |\mathbb{C}|$ to an object $F(A) \in |\mathbb{D}|$
- ▶ F maps a morphism $f \in \mathbb{C}(A, B)$ to a morphism $F(f) \in \mathbb{D}(F(A), F(B))$
- $ightharpoonup F(id_A) = id_{F(A)}$
- $ightharpoonup F(g \circ f) = F(g) \circ F(f)$

Functors from a category into itself are known as *endofunctors*.

$$A \xrightarrow{f} B$$

$$F(A) \xrightarrow{F(f)} F(B)$$

► Structure-preserving maps between functors.

$$\begin{array}{ccc}
F(A) & \xrightarrow{F(f)} & F(B) \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
G(A) & & G(B)
\end{array}$$

- ► Structure-preserving maps between functors.
 - ▶ Let F, G : \mathbb{C} \to \mathbb{D} be functors.

- Structure-preserving maps between functors.
 - ▶ Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors.
 - A natural transformation ϕ is an *indexed family of* morphisms for every object $A \in |\mathbb{C}|$, ϕ_A is a morphism from F(A) to G(A).

- Structure-preserving maps between functors.
 - ▶ Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors.
 - A natural transformation ϕ is an indexed family of morphisms for every object $A \in |\mathbb{C}|$, ϕ_A is a morphism from F(A) to G(A).
 - ► These morphisms satisfy the *naturality condition*:

$$\forall f \in \mathbb{C}(A,B) : \phi_B \circ F(f) = G(f) \circ \phi_A$$

Exercise 1 : Order Categories

- a) Let \leq be a reflexive, transitive order (a *preorder*) on a set M. Show that if we define objects by $|\mathbb{P}re(M, \leq)| = M$ and morphisms by $\exists ! f_{x \leq y} \in \mathbb{P}re(x, y) \Leftrightarrow x \leq y$, then $\mathbb{P}re(M, \leq)$ forms a category.
- b) Let $F : \mathbb{M} \to \mathbb{M}$ be an endofunctor on \mathbb{M} . Show that F defines a monotonic function $M \to M$, i.e. $\forall x, y : x \le y \implies F(x) \le F(y)$.
- c) Let $F, G: M \to M$ be monotonic functions. Let ϕ be a natural transformation $F \to G$. Show that $\forall x \in M : F(x) \leq G(x)$.

Exercise 1 : Order Categories, Solution a)

- ► ≤ is reflexive, so we have $\forall x : x \le x \implies \exists id_{x \le x} \in \mathbb{P}re(x, x).$
- ▶ Because of transitivity, for every pair of morphisms $f_{x \le y}$ and $g_{y \le z}$, we have a composed morphism $(g \circ f)_{x \le z}$.
- Since our morphisms are just witnesses of an ordering, they dont care about the order of function application, so composition is associative.

Exercise 1: Order Categories, Solution b)

▶ By the definition of functors, F must take each morphism $f_{x \le y} \in \mathbb{P}re(x, y)$ to a morphism $F(f)_{F(x) \le F(y)} \in \mathbb{P}re(F(x), F(y))$.

Exercise 1: Order Categories, Solution c)

▶ By the definition of natural transformations, for every object x, ϕ_x is a morphism $F(x) \to G(x)$. If such a morphism exists, we have $F(x) \le G(x)$.

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathrm{map}(a) = \mathrm{map}(a) \circ r_A$$

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathrm{map}(a) = \mathrm{map}(a) \circ r_A$$

This is the free theorem we got for a parametrically polymorphic function $r: [X] \rightarrow [X]$ and an arbitrary function $a: A \rightarrow B$.

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathrm{map}(a) = \mathrm{map}(a) \circ r_A$$

- This is the free theorem we got for a parametrically polymorphic function $r: [X] \rightarrow [X]$ and an arbitrary function $a: A \rightarrow B$.
- \triangleright This free theorem is equivalent to the statement that r is a natural transformation.

► In general, assume we have:

- ▶ In general, assume we have:
 - two functors F and G,

- ▶ In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,

- ▶ In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ► an arbitrary function f : A -> B.

- ▶ In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ▶ an arbitrary function f : A → B.
- ▶ Then we get the following free theorem:

```
r . fmap f = fmap f . r
```

- ► In general, assume we have:
 - two functors F and G,
 - ightharpoonup a parametrically polymorphic function $r : F \times -> G \times$,
 - ► an arbitrary function f : A -> B.
- ▶ Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

► In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

- In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ▶ an arbitrary function f : A -> B.
- ▶ Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

So our free theorem is a proof that any parametrically polymorphic function r is a natural transformation!

Naturality from Polymorphism

- In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ▶ an arbitrary function f : A -> B.
- Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

- So our free theorem is a proof that any parametrically polymorphic function r is a natural transformation!
- It turns out that parametrically polymorphic functions correspond exactly to natural transformations between endofunctors $\mathbb{H}ask \to \mathbb{H}ask$.

▶ For any locally small category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.

- For any locally small category \mathbb{C} , a homs set of morphisms.

 We define a functor $\mathbb{C}(A,-):\mathbb{C}\to\mathbb{S}et$: ▶ For any locally small category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a

- For any locally small category \mathbb{C} , a home set of morphisms.

 We define a functor $\mathbb{C}(A,-):\mathbb{C}\to\mathbb{S}et$: ▶ For any locally small category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a
 - - $ightharpoonup \mathbb{C}(A,-)$ maps an object B to the homset $\mathbb{C}(A,B)$

- ▶ For any locally small category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a
- - $ightharpoonup \mathbb{C}(A,-)$ maps an object B to the homset $\mathbb{C}(A,B)$
 - A morphism $f: \mathbb{C}(B,C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$

- \triangleright For any locally small category \mathbb{C} , a homset $\mathbb{C}(A,B)$ is a
- - $ightharpoonup \mathbb{C}(A,-)$ maps an object B to the homset $\mathbb{C}(A,B)$
 - A morphism $f: \mathbb{C}(B,C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$
- ▶ Similarly, $\mathbb{C}(-,B)$ is a functor $\mathbb{C}^{op} \to \mathbb{S}et$:

- For any locally small category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an object B to the homset $\mathbb{C}(A,B)$
 - ▶ A morphism $f : \mathbb{C}(B, C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$
- ▶ Similarly, $\mathbb{C}(-,B)$ is a functor $\mathbb{C}^{op} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(-,B)$ maps an object A to the homset $\mathbb{C}(A,B)$

- \triangleright For any locally small category \mathbb{C} , a homset $\mathbb{C}(A,B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an object B to the homset $\mathbb{C}(A,B)$
 - A morphism $f: \mathbb{C}(B,C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$

Functor Categories

▶ For any \mathbb{C} , \mathbb{D} , the collection of functors $\mathbb{C} \to \mathbb{D}$ form a category.

Functor Categories

- ▶ For any \mathbb{C} , \mathbb{D} , the collection of functors $\mathbb{C} \to \mathbb{D}$ form a category.
- ▶ This category is known as a *functor category* and denoted $\mathbb{D}^{\mathbb{C}}$.

Functor Categories

- ▶ For any \mathbb{C} , \mathbb{D} , the collection of functors $\mathbb{C} \to \mathbb{D}$ form a category.
- ightharpoonup This category is known as a functor category and denoted $\mathbb{D}^{\mathbb{C}}$.
- ▶ A morphism $\phi \in \mathbb{D}^{\mathbb{C}}(F, G)$ is a natural transformation $F \to G$.

Formally, we want a bijective functor

 \blacktriangleright We call \mathcal{Y} the Yoneda embedding.

$$\mathcal{Y}:\mathbb{C}
ightarrow\mathbb{S}et^{\mathbb{C}}\ A\mapsto\mathbb{C}(A,-)$$

- \blacktriangleright We call \mathcal{Y} the Yoneda embedding.
- ▶ Given $f \in \mathbb{C}(A, B)$, $\mathcal{Y}(f)$ has to be a morphism between $\mathbb{C}(A, -)$ and $\mathbb{C}(B, -)$ in the functor category $\mathbb{S}et^{\mathbb{C}}$.

- \blacktriangleright We call \mathcal{Y} the Yoneda embedding.
- ▶ Given $f \in \mathbb{C}(A, B)$, $\mathcal{Y}(f)$ has to be a morphism between $\mathbb{C}(A, -)$ and $\mathbb{C}(B, -)$ in the functor category $\mathbb{S}et^{\mathbb{C}}$.
- $ightarrow \mathbb{C}(B,-)$ Therefore, $\mathcal{Y}(f)$ has to be a natural transformation between $\mathbb{C}(A,-)$ and $\mathbb{C}(B,-)$.

$$\mathcal{Y}:\mathbb{C} o\mathbb{S}et^\mathbb{C}\ A\mapsto\mathbb{C}(A,-)$$

- \blacktriangleright We call \mathcal{Y} the Yoneda embedding.
- ▶ Given $f \in \mathbb{C}(A, B)$, $\mathcal{Y}(f)$ has to be a morphism between $\mathbb{C}(A, -)$ and $\mathbb{C}(B, -)$ in the functor category $\mathbb{S}et^{\mathbb{C}}$.
- $\mathbb{C}(B,-)$ Therefore, $\mathcal{Y}(f)$ has to be a natural transformation between $\mathbb{C}(A,-)$ and $\mathbb{C}(B,-)$.
 - ▶ Is it actually possible to construct all of the necessary natural transformations?

lt turns out we can do even better!

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A,-)$ and $\underline{\text{any}}$ Functor $F:\mathbb{C}\to\mathbb{S}et$.

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A, -)$ and $\underline{\text{any}}$ Functor $F : \mathbb{C} \to \mathbb{S}et$.
- ▶ Specifically, the Yoneda lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A)$$

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A, -)$ and $\underline{\text{any}}$ Functor $F : \mathbb{C} \to \mathbb{S}et$.
- Specifically, the Yoneda lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A)$$

Furthermore, this isomorphism is a natural transformation.

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A, -)$ and $\underline{\text{any}}$ Functor $F : \mathbb{C} \to \mathbb{S}et$.
- Specifically, the Yoneda lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A)$$

- Furthermore, this isomorphism is a natural transformation.
- ▶ So we can construct the Yoneda embedding \mathcal{Y} from the set F(A).

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A, -)$ and $\underline{\text{any}}$ Functor $F : \mathbb{C} \to \mathbb{S}et$.
- Specifically, the Yoneda lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A)$$

- Furthermore, this isomorphism is a natural transformation.
- ▶ So we can construct the Yoneda embedding \mathcal{Y} from the set F(A).
- Vice versa, if we know all natural transformations $Nat(\mathbb{C}(A, -), F)$, we can construct the set F(A).

Constructing the bijection

$$\begin{array}{ccc}
A & \xrightarrow{r} & B \\
C(A,A) & \xrightarrow{\mathbb{C}(A,f)=f \circ} & \mathbb{C}(A,B) \\
\downarrow & & \downarrow \\
F(A) & \xrightarrow{F(f)} & F(B)
\end{array}$$

Constructing the bijection

Application: Cayley's Theorem

▶ Every group (G, *, e) is isomorphic to a subgroup of the group of permutations of G.

Application: Cayley's Theorem

- Every group (G, *, e) is isomorphic to a subgroup of the group of permutations of G.
- Specifically:
 - One side of the bijection is constructed by sending $g \in G$ to the permutation which maps $f_g : x \mapsto g * x$
 - The other side sends a permutation f to the element f(e)

Application: Cayley's Theorem

- Every group (G, *, e) is isomorphic to a subgroup of the group of permutations of G.
- Specifically:
 - One side of the bijection is constructed by sending $g \in G$ to the permutation which maps $f_g : x \mapsto g * x$
 - The other side sends a permutation f to the element f(e)
- ▶ The Yoneda lemma is often viewed as a generalization of Cayley's theorem.

Use the Yoneda embedding to show that every monoid M is isomorphic to a monoid of functions $M \to M$.

Hint 1: The Yoneda embedding gives an isomorphism between objects and their homfunctors.

Hint 2: Two weeks ago we saw that every monoid M defines a category \mathbb{M} with a single object * and a morphism m for each element $m \in M$, where we define morphism composition to be the monoid operation.

► The Yoneda embedding is an isomorphism mapping each object to its homfunctor.

- ► The Yoneda embedding is an isomorphism mapping each object to its homfunctor.
- We only have one object *, and thus only one homfunctor $\mathbb{M}(*, -)$.

- ► The Yoneda embedding is an isomorphism mapping each object to its homfunctor.
- We only have one object *, and thus only one homfunctor M(*, −).
- ▶ Each element $m \in M$ is a morphism. By the definition of the homfunctor, this morphism is mapped to the set function

$$\mathbb{M}(*,m) = m \circ : M \to M$$

$$n \mapsto m \circ n$$

- ► The Yoneda embedding is an isomorphism mapping each object to its homfunctor.
- We only have one object *, and thus only one homfunctor M(*, −).
- ▶ Each element $m \in M$ is a morphism. By the definition of the homfunctor, this morphism is mapped to the set function

$$\mathbb{M}(*,m) = m \circ : M \to M$$

$$n \mapsto m \circ n$$

▶ Thus, the Yoneda embedding on M is an isomorphism between monoid objects and a set of functions $M \rightarrow M$. These functions form a monoid under composition.

Profunctor Optics

► In functional programming, an *optic* is generally a data structure including some "outer type" S and some "inner type" A.

Profunctor Optics

- ► In functional programming, an *optic* is generally a data structure including some "outer type" S and some "inner type" A.
- In general, this involves some sort of get function, which allows access to the inner value, and a set function, which changes the inner value.

Profunctor Optics

- ► In functional programming, an *optic* is generally a data structure including some "outer type" S and some "inner type" A.
- In general, this involves some sort of get function, which allows access to the inner value, and a set function, which changes the inner value.
- Profunctor optics are neat and flexible representations of optics as individual polymorphic function.

Profunctor Optics

- ► In functional programming, an *optic* is generally a data structure including some "outer type" S and some "inner type" A.
- In general, this involves some sort of get function, which allows access to the inner value, and a set function, which changes the inner value.
- Profunctor optics are neat and flexible representations of optics as individual polymorphic function.
- In particular, profunctor optics make composition of optics trivial.

Profunctor Optics

- ▶ In functional programming, an *optic* is generally a data structure including some "outer type" S and some "inner type" A.
- In general, this involves some sort of get function, which allows access to the inner value, and a set function, which changes the inner value.
- Profunctor optics are neat and flexible representations of optics as individual polymorphic function.
- In particular, profunctor optics make composition of optics trivial.
- ► Equivalence between optics and their profunctor representations comes down to the Yoneda lemma.

data Adapter a b s t = Adapter $\{ \text{ from } :: s \rightarrow a, \text{ to } :: b \rightarrow t \}$

▶ Categorically, this translates to a pair of morphisms $\mathbb{S}et(S, A) \times \mathbb{S}et(B, T)$.

- ▶ Categorically, this translates to a pair of morphisms $Set(S, A) \times Set(B, T)$.
- ▶ This pair is a morphism $(Set^{op} \times Set)((A, B), (S, T))$.

- ▶ Categorically, this translates to a pair of morphisms $Set(S, A) \times Set(B, T)$.
- ▶ This pair is a morphism $(Set^{op} \times Set)((A, B), (S, T))$.
- We can compose adapters with matching types and define an identity adapter Adapter id id.

- ▶ Categorically, this translates to a pair of morphisms $Set(S, A) \times Set(B, T)$.
- ▶ This pair is a morphism $(Set^{op} \times Set)((A, B), (S, T))$.
- We can compose adapters with matching types and define an identity adapter Adapter id id.
- This lets us view the category $\mathbb{S}et^{op} \times \mathbb{S}et$ as the category $\mathbb{A}da$ where morphisms are adapters.

▶ A profunctor is a functor $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{S}et$.

- ▶ A profunctor is a functor $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{S}et$.
- As Haskell code:

class Profunctor p where dimap :: (s -> a) -> (b -> t) -> p a b -> p s t

- ▶ A profunctor is a functor $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{S}et$.
- As Haskell code:

```
class Profunctor p where dimap :: (s \rightarrow a) \rightarrow (b \rightarrow t) \rightarrow p \ a \ b \rightarrow p \ s \ t
```

► The canonical example of a profunctor is the function type former, where dimap is function composition:

```
instance Profunctor (->) where dimap f g h = g . h . f
```

- ▶ A profunctor is a functor $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{S}et$.
- As Haskell code:

```
class Profunctor p where dimap :: (s \rightarrow a) \rightarrow (b \rightarrow t) \rightarrow p \ a \ b \rightarrow p \ s \ t
```

The canonical example of a profunctor is the function type former, where dimap is function composition:

```
instance Profunctor (->) where
dimap f g h = g . h . f
```

 $lackbox{We define the category } \mathbb{P}rof \text{ of Profunctors to be } \mathbb{S}et^{\mathbb{S}et^{op}\times\mathbb{S}et} = \mathbb{S}et^{\mathbb{A}da}$

Functor Application as a Functor

▶ Given a category \mathbb{C} , the operation of applying a functor $F: \mathbb{C} \to \mathbb{S}et$ to an object $A \in |\mathbb{C}|$ is itself a functor from $\mathbb{S}et^{\mathbb{C}}$ to $\mathbb{S}et$.

Functor Application as a Functor

- ▶ Given a category \mathbb{C} , the operation of applying a functor $F: \mathbb{C} \to \mathbb{S}et$ to an object $A \in |\mathbb{C}|$ is itself a functor from $\mathbb{S}et^{\mathbb{C}}$ to $\mathbb{S}et$.
- ▶ We write -(A) for this functor.

Functor Application as a Functor

- ▶ Given a category \mathbb{C} , the operation of applying a functor $F: \mathbb{C} \to \mathbb{S}et$ to an object $A \in |\mathbb{C}|$ is itself a functor from $\mathbb{S}et^{\mathbb{C}}$ to $\mathbb{S}et$.
- ▶ We write -(A) for this functor.
- $ightarrow G(A)
 ightharpoonup -(A) \in \mathbb{S}et^{\mathbb{S}et^{\mathbb{C}}}$

▶ The profunctor representation of an adapter is given by:

$$\label{eq:type} \begin{array}{l} \mathbf{type} \ \mathsf{AdapterP} \ \mathsf{a} \ \mathsf{b} \ \mathsf{s} \ \mathsf{t} = \\ \mathsf{forall} \quad \mathsf{p}. \ \mathsf{Profunctor} \ \mathsf{p} \ -\!\!\!> \mathsf{p} \ \mathsf{a} \ \mathsf{b} \ -\!\!\!> \mathsf{p} \ \mathsf{s} \ \mathsf{t} \end{array}$$

$$p(A,B) - \eta o p'(A,B)$$
 natural transformation.
 $Adapter P_p$ $Adapter P_{p'}$ $p(S,T) - \vartheta o p'(S,T)$

The profunctor representation of an adapter is given by:
type AdapterP a b s t =
forall p. Profunctor p → > p a b → > p s t

► As we saw earlier, the polymorphism makes AdapterP a natural transformation.

$$p(A,B) - \eta \rightarrow p'(A,B)$$

$$AdapterP_{p} \downarrow \qquad AdapterP_{p'} \downarrow$$

$$p(S,T) - \vartheta \rightarrow p'(S,T)$$

The profunctor representation of an adapter is given by:
type AdapterP a b s t =
forall p. Profunctor p → > p a b → > p s t

- ► As we saw earlier, the polymorphism makes AdapterP a natural transformation.
- ▶ We define $\mathbb{A}daP$ as the functor category where objects are $|\mathbb{A}daP| = |\mathbb{A}da| = |\mathbb{S}et^{op} \times \mathbb{S}et|$, and whose morphisms are profunctor adapters.

$$p(A,B) - \eta \rightarrow p'(A,B)$$
 $AdapterP_p \downarrow$
 $p(S,T) - \vartheta \rightarrow p'(S,T)$

► The profunctor representation of an adapter is given by:
type AdapterP a b s t =
forall p. Profunctor p -> p a b -> p s t

- ► As we saw earlier, the polymorphism makes AdapterP a natural transformation.
- ▶ We define $\mathbb{A}daP$ as the functor category where objects are $|\mathbb{A}daP| = |\mathbb{A}da| = |\mathbb{S}et^{op} \times \mathbb{S}et|$, and whose morphisms are profunctor adapters.
- ightharpoonup Specifically, the homsets in $\mathbb{A}daP$ are:

$$AdaP((A,B),(S,T)) = Set^{Set^{Ada}}(-(A,B),-(S,T))$$
$$= Nat(-(A,B),-(S,T))$$

$$\mathbb{A}daP((A,B),(S,T)) = \mathsf{Nat}(-(A,B),-(S,T)) \stackrel{?}{\simeq} \mathbb{A}da((A,B),(S,T))$$

$$\mathbb{A}daP((A,B),(S,T)) = \mathsf{Nat}(-(A,B),-(S,T)) \stackrel{?}{\simeq} \mathbb{A}da((A,B),(S,T))$$

► This involves expanding the functors on the left using the Yoneda lemma and then summarizing everything by applying the Yoneda embedding twice.

$$\mathbb{A}daP((A,B),(S,T)) = \mathsf{Nat}(-(A,B),-(S,T)) \stackrel{?}{\simeq} \mathbb{A}da((A,B),(S,T))$$

- ► This involves expanding the functors on the left using the Yoneda lemma and then summarizing everything by applying the Yoneda embedding twice.
- ▶ This proof is left as an exercise to the reader :)

$$\mathbb{A}daP((A,B),(S,T)) = \mathsf{Nat}(-(A,B),-(S,T)) \stackrel{?}{\simeq} \mathbb{A}da((A,B),(S,T))$$

- ► This involves expanding the functors on the left using the Yoneda lemma and then summarizing everything by applying the Yoneda embedding twice.
- ► This proof is left as an exercise to the reader :) (a short version of the proof is uploaded alongside the slides on ilias).

▶ The Yoneda lemma is a fundamental result in category theory.

- ▶ The Yoneda lemma is a fundamental result in category theory.
- ▶ The lemma states that the set of natural transformations between a homfunctor $\mathbb{C}(A,-)$ and an arbitrary functor $F:\mathbb{C}\to \mathbb{S}et$ is naturally isomorphic to the set F(A).

- The Yoneda lemma is a fundamental result in category theory.
- ▶ The lemma states that the set of natural transformations between a homfunctor $\mathbb{C}(A,-)$ and an arbitrary functor $F:\mathbb{C}\to \mathbb{S}et$ is naturally isomorphic to the set F(A).
- The Yoneda lemma enables the use of the Yoneda embedding, which is a natural isomorphism between a category $\mathbb C$ and the category of homfunctors on $\mathbb C$.

- The Yoneda lemma is a fundamental result in category theory.
- ▶ The lemma states that the set of natural transformations between a homfunctor $\mathbb{C}(A,-)$ and an arbitrary functor $F:\mathbb{C}\to \mathbb{S}et$ is naturally isomorphic to the set F(A).
- ▶ The Yoneda lemma enables the use of the Yoneda embedding, which is a natural isomorphism between a category \mathbb{C} and the category of homfunctors on \mathbb{C} .
- Equivalence of adapters and profunctor adapters can be shown by applying the Yoneda embedding twice.

- The Yoneda lemma is a fundamental result in category theory.
- ▶ The lemma states that the set of natural transformations between a homfunctor $\mathbb{C}(A,-)$ and an arbitrary functor $F:\mathbb{C}\to \mathbb{S}et$ is naturally isomorphic to the set F(A).
- ▶ The Yoneda lemma enables the use of the Yoneda embedding, which is a natural isomorphism between a category \mathbb{C} and the category of homfunctors on \mathbb{C} .
- Equivalence of adapters and profunctor adapters can be shown by applying the Yoneda embedding twice.
- Similar techniques can be used to show the equivalence of any optic and its profunctor representation.

Thank You!