Cálculo Diferencial

Victoria Torroja Rubio 8/9/2025

Índice general

		3
1.1.	Espacios normados	4
1.2.	Bolas en un espacio métrico	7
1.3.	Conceptos topológicos	9
1.4.	Conjuntos abiertos y cerrados relativos	15
1.5.	Sucesiones en espacios métricos	16
1.6.	Completitud	19
1.7.	Compacidad	22
1.8.	Recubrimientos	23

Profesor: Jesús Jaramillo

Despacho: 305-E

Correo: jaramil@mat.ucm.es

Contenido:

- Topología de los espacios métricos (Cap 1-5) Aprox: 6'5 semanas
- Cálculo diferencial en varias variables (Cap 6-11) Resto

Bibliografía:

- Marsdem-Hoffman (sirve para las dos partes): 'Análisis clásico elemental'
- K. Smith (la parte de integración es más avanzada): 'Primer of modern analysis'

Materiales Campus:

- Apuntes de Victor Sánchez (apuntes muy condensados)
- Manual de Ansemil-Ponte (versión extendida de Marsden-Hoffman)
- Curso de Daniel Azagra

Capítulo 1

Espacios métricos

Definición 1.1 (Espacio métrico). Un **espacio métrico** es un par (X, d) donde X es un conjunto no vacío y $d: X \times X \to \mathbb{R}$ es una función que se llama **distancia** o **métrica**, tal que:

- 1. $d(x,y) \ge 0, \forall x,y \in X$.
- $2. \ d(x,y) = 0 \iff x = y.$
- 3. $d(x,y) = d(y,x), \forall x, y \in X$.
- 4. (Propiedad triangular) $d(x,y) \leq d(x,z) + d(z,y), \forall x,y,z \in X$.

Ejemplo. Algunos ejemplos de espacios métricos son:

- 1. Consideremos (\mathbb{R}, d) donde d(x, y) = |x y|.
- 2. La distancia euclídea en $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}:$

$$d((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

3. La 'métrica del taxi' en \mathbb{R}^2 con distancia:

$$d_1((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|.$$

- 4. Distancias geodésicas: el camino más corto (por ejemplo, en una superficie esférica el camino más corto entre dos puntos es un arco de circunferencia).
- 5. Distancias en \mathbb{R}^n . Si $x=(x_1,\ldots,x_n)$ e $y=(y_1,\ldots,y_n)$, consideramos la distancia euclídea

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

También podemos generalizar la 'métrica del taxi':

$$d_1(x, y) = |x_1 - y_1| + \dots + |x_n - y_n|$$
.

También se puede considerar la métrica

$$d_{\infty}(x, y) = \max\{|x_i - y_i| : 1 \le i \le n\}.$$

Definición 1.2 (Espacio discreto). Sea $X \neq \emptyset$ un conjunto cualquiera, y definimos $\forall x,y \in X$

$$d(x,y) = \begin{cases} 0, & \text{si } x = y \\ 1, & \text{si } x \neq y \end{cases}$$

Se dice que d es la métrica discrecta y (X,d) el espacio métrico discreto.

Definición 1.3 (Subespacio métrico). Sea (X,d) un espacio métrico y sea $Y \subset X$. Se define la **métrica relativa** (o **restringida**) a Y como $d_Y(y,y') = d(y,y'), \forall y,y' \in Y$. Entonces, (Y,d_Y) es un espacio métrico que llamaremos **subespacio** de X.

1.1. Espacios normados

Definición 1.4 (Espacio normado). Un **espacio normado** es un par $(E, \|\cdot\|)$ donde E es un espacio vectorial y $\|\cdot\|: E \to \mathbb{R}$ es una función que se llama **norma** tal que:

- 1. $||x|| \ge 0, \forall x \in E$.
- 2. $||x|| = 0 \iff x = 0$.
- 3. $\|\lambda x\| = |\lambda| \|x\|, \forall \lambda \in \mathbb{K}, \forall x \in E^{a}$.
- 4. $||x + y|| \le ||x|| + ||y||, \forall x, y \in E$.

Proposición 1.1. Sea $(E, \|\cdot\|)$ un espacio normado. Si definimos

$$d(x,y) = ||x - y||, \forall x, y \in E,$$

se obtene que d es una distancia en E, que se llama **asociada** a la norma.

Demostración. Demostremos todas las propiedades de las métricas:

- 1. Tenemos que $d(x,y) = ||x-y|| \ge 0, \forall x,y \in E$.
- 2. $d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y = 0 \iff x = y$.
- 3. d(x,y) = ||y-x|| = |-1| ||x-y|| = ||x-y|| = d(x,y).

 $[^]a\mathrm{En}$ este curso $\mathbb K$ va a ser principalmente $\mathbb R.$

4. $d(x,y) = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = d(x,z) + d(z,y)$.

Observación. En \mathbb{R}^n , dado $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ se definen:

(Norma euclídea)
$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$$
.

$$||x||_1 = |x_1| + \dots + |x_n|$$
.

$$||x||_{\infty} = \max\{|x_i| : 1 \le i \le n\}.$$

Proposición 1.2 (Relación entre las normas en \mathbb{R}^n). $\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}.$$

Demostración. Supongamos que $|x_{i_0}| = ||x||_{\infty}$. Entonces, tenemos que

$$|x_{i_0}|^2 \le |x_1|^2 + \dots + |x_n|^2$$
.

Dado que la función de la raíz es creciente, tenemos que

$$||x||_{\infty} = |x_{i_0}| \le \sqrt{|x_1|^2 + \dots + |x_n|^2} = ||x||_2.$$

Por otro lado, tenemos que

$$||x||_1^2 = (|x_1| + \dots + |x_n|)^2 = |x_1|^2 + \dots + |x_n|^2 + C^1 \ge |x_1|^2 + \dots + |x_n|^2 = ||x||_2^2.$$

Finalmente, tenemos que

$$||x||_1 = |x_1| + \dots + |x_n| \le |x_{i_0}| + \dots + |x_{i_0}| = n |x_{i_0}| = n ||x||_{\infty}.$$

Definición 1.5. Dos normas $\|\cdot\|$ y $\|\cdot\|'$ en un mismo espacio vectorial E son **equivalentes** cuando existen m, M > 0 tales que

$$m||x||' \le ||x|| \le M||x||', \ \forall x \in E.$$

Observación. Hemos visto en la proposición anterior que $\|\cdot\|_1, \|\cdot\|_2$ y $\|\cdot\|_\infty$ son equivalentes en \mathbb{R}^n .

 $^{^{1}}C \geq 0.$

Definición 1.6 (Producto escalar). Sea E un espacio vectorial real. Un **producto escalar** en E es una forma bilineal, simétrica y definida positiva. Es decir, una aplicación $\langle , \rangle : E \times E \to \mathbb{R}$ tal que

- 1. $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle, \forall x, y, z \in E, \forall \lambda, \mu \in \mathbb{R}.$
- 2. $\langle x, y \rangle = \langle y, x \rangle, \forall x, y \in E$.
- 3. $\forall x \in E, \langle x, x \rangle \ge 0 \text{ y } \langle x, x \rangle = 0 \iff x = 0.$

Observación. En este caso, denotaremos $||x|| = \sqrt{\langle x, x \rangle}$.

Teorema 1.1 (Desigualdad de Cauchy-Schwarz). Sea E un espacio vectorial dotado de un producto escalar \langle , \rangle . Entonces

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||, \ \forall x, y \in E.$$

Demostración. Caso 1. Si x = 0 o y = 0, obtenemos la igualdad.

Caso 2. Si $y \neq 0$, tenemos que $\forall \alpha \in \mathbb{R}$,

$$0 \leq \langle x + \alpha y, x + \alpha y \rangle = \langle x, x \rangle + \alpha \langle x, y \rangle + \alpha \langle y, x \rangle + \alpha^2 \langle y, y \rangle = \|x\|^2 + 2\alpha \langle x, y \rangle + \alpha^2 \|y\|^2.$$

Tomamos $\alpha = -\frac{\langle x, y \rangle}{\|y\|^2}$. Así, tenemos que

$$0 \le \|x\|^2 - \frac{2\langle x, y \rangle^2}{\|y\|^2} + \frac{\langle x, y \rangle^2}{\|y\|^4} \|y\|^2 = \|x\|^2 - \frac{\langle x, y \rangle^2}{\|y\|^2}.$$

Así, tenemos que $\frac{\langle x,y\rangle^2}{\|y\|^2} \leq \|x\|^2$, por lo que $\langle x,y\rangle^2 \leq \|x\|^2\|y\|^2$ y tenemos que $|\langle x,y\rangle| \leq \|x\|\|y\|$.

Proposición 1.3. Sea E un espacio vectorial dotado de un producto escalar \langle, \rangle . Entonces, $||x|| = \sqrt{\langle x, x \rangle}$, es una norma en E, que se dice asociada a \langle, \rangle .

Demostración. Comprobamos que se cumplen las propiedades de las normas:

- 1. Tenemos que claramente $||x|| = \sqrt{\langle x, x \rangle} \ge 0, \forall x \in E$.
- 2. $||x|| = 0 \iff \langle x, x \rangle = 0 \iff x = 0$.
- 3. $\|\lambda x\|^2 = \langle \lambda x, \lambda x \rangle = \lambda^2 \, \langle x, x \rangle = \lambda^2 \|x\|^2$. Tomando la raíz cuadrada, $\|\lambda x\| = |\lambda| \, \|x\|$.

CAPÍTULO 1. ESPACIOS MÉTRICOS

4. Si $x, y \in E$,

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2 \langle x, y \rangle + ||y||^2$$

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Tomando raíces, tenemos que se verifica la propiedad triangular: $||x+y|| \le ||x|| + ||y||$.

1.2. Bolas en un espacio métrico

Definición 1.7. Sea (X, d) un espacio métrico y consideramos $a \in X$, r > 0. Se definen como **bola abierta** de centro a y radio r al conjunto

$$B(a,r) = \{x \in X : d(x,a) < r\}.$$

Similarmente, se llama **bola cerrada** de centro a y radio r al conjunto

$$\overline{B}(a,r) = \{x \in X : d(x,a) \le r\}.$$

Ejemplo. Considermos bolas en \mathbb{R}^2 de distintas normas.

1. Consideremos bolas abiertas y cerradas con la métrica euclídea:

$$B_2\left(\left(0,0\right),r\right) = \left\{\left(x,y\right) : \sqrt{x^2 + y^2} < r\right\}, \ \overline{B}_2\left(\left(0,0\right),r\right) = \left\{\left(x,y\right) : \sqrt{x^2 + y^2} \le r\right\}.$$

$$\overline{B}_2((0,0),r)$$

2. Consideremos bolas abiertas y cerradas con la métrica 'del taxi':

$$B_1((0,0),r) = \{(x,y) : |x| + |y| < r\}, \overline{B}_1((0,0),r) = \{(x,y) : |x| + |y| \le r\}.$$

3. Consideremos bolas abiertas y cerradas con la métrica infinita:

$$B_{\infty}((0,0),r) = \{(x,y) : \max\{|x|,|y|\} < r\} = \{(x,y) : |x|,|y| < r\}.$$

$$\overline{B}_{\infty}\left(\left(0,0\right),r\right)=\left\{ \left(x,y\right)\ :\ \max\left\{ \left|x\right|,\left|y\right|\right\} \leq r\right\} =\left\{ \left(x,y\right)\ :\ \left|x\right|,\left|y\right| \leq r\right\} .$$

 $B_{\infty}((0,0),r)$

 $\overline{B}_{\infty}((0,0),r)$

Observación. En $(\mathbb{R}, |\cdot|)$ se tiene que B(0, r) = (-r, r) y $\overline{B}(0, r) = [-r, r]$. Similarmente, tenemos que B(a, r) = (a - r, a + r) y $\overline{B}(a, r) = [a - r, a + r]$.

Observación (Relación de las bolas en \mathbb{R}^n). Sabemos que

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}.$$

Por tanto, tenemos que

$$B_1(a,r) \subset B_2(a,r) \subset B_{\infty}(a,r) \subset B_1(a,nr)^a$$
.

En efecto, si $x \in B_1(a,r)$, tenemos que $||x-a||_1 < r$. Por tanto, es fácil ver que $||x-a||_2 \le ||x-a||_1 < r$, por lo que $x \in B_2(a,r)$. El resto de inclusiones se deducen de forma análoga.

^aTambién se puede escribir $B_{\infty}\left(a,nr\right)\subset B_{1}\left(a,r\right)\subset B_{2}\left(a,r\right)\subset B_{\infty}\left(a,nr\right)$.

Definición 1.8. Sean (X,d) un espacio métrico y $A \subset X$. Se define el **diámetro** de A como

$$diam(A) = \sup \{d(x, y) : x, y \in A\} \in [0, \infty).$$

Se dice que A es **acotado** si $diam(A) < \infty$.

Proposición 1.4. Dado un espacio métrico (X,d) con $A\subset X$, tenemos que A está acotado si y solo si A está contenido en alguna bola.

- Demostración. (i) Supongamos que A está acotado, entonces $diam(A) = r < \infty$. Así, tenemos que si $x \in A$, etonces $\forall a \in A$ se tiene que $d(a,x) \le r$, por lo que $A \subset \overline{B}(a,r)$. También podemos ver que lo contiene una bola abierta: $A \subset \overline{B}(a,r) \subset B(a,r+1)$.
- (ii) Si A está contenido en una bola, tenemos que existe $x \in X$ y $\frac{r}{2} > 0$ tal que $A \subset B\left(x, \frac{r}{2}\right)$. De esta manera, si $a, b \in A$ se tiene que

$$d(a,b) \le d(a,x) + d(x,b) < \frac{r}{2} + \frac{r}{2} = r.$$

Así, se tiene que $\forall a, b \in A$, d(a, b) < r, por lo que $diam(A) \le r < \infty$, por lo que A está acotado.

1.3. Conceptos topológicos

Definición 1.9 (Conjunto abierto). Sean (X,d) un espacio métrico y $A \subset X$. Se dice que A es un **conjunto abierto** si $\forall a \in A, \exists r > 0$ tal que $B(a,r) \subset A$.

Proposición 1.5. Toda bola abierta es un conjunto abierto.

Demostración. Tomemos A = B(a, R) y $x \in B(a, R)$. Sea $\delta = d(x, a) < R$ y $r = R - \delta > 0$ ². Sea $y \in B(x, r)$, tenemos que d(x, y) < r. Así,

$$d(y, a) \le d(y, x) + d(x, a) < r + \delta = R.$$

Así, $y \in B(a, R)$, por lo que $B(x, r) \subset B(a, R)$.

Ejemplo. En $(\mathbb{R}^2, \|\cdot\|_2)$.

1. Consideremos $A = \{(x,y) : 0 < x < 1\}$. Vamos a ver que es abierto. Si $a \in A$, sea a = (x,y) y consideramos $r = \min\{x,1-x\}$. Entonces, tenemos que $B_2(a,r) \subset A$

²No hace falta de escribir $r = \min \{R - \delta, \delta\}$ al tratarse de una bola.

A, en efecto, si $(x', y') \in B_2(a, r)$:

$$\sqrt{(x - x')^2 + (y - y')^2} < r \Rightarrow |x - x'| < r \Rightarrow 0 < x' < 1.$$

Así, tenemos que $(x', y') \in A$.

2. Consideremos $A = \{(x,y) : 0 < x \le 1\}$. Vamos a ver que no es abierto. En efecto, si tomamos a = (1,0) y r > 0, tenemos que $\left(1 + \frac{r}{2}, 0\right) \in B_2(a,r)$ pero $\left(1 + \frac{r}{2}, 0\right) \notin A$.

Proposición 1.6. En \mathbb{R}^n los conjuntos abiertos coinciden para $\|\cdot\|_1$, $\|\cdot\|_2$ y $\|\cdot\|_{\infty}$.

Demostración. Como se vio en una observación anterior, sabemos que

$$B_1(a,r) \subset B_2(a,r) \subset B_{\infty}(a,r) \subset B_1(a,nr)$$
.

- Sea $A \subset \mathbb{R}^n$. Si A es abierto con la norma $\|\cdot\|_2$, tenemos que $\forall a \in A, \exists r > 0$ tal que $B_2(a,r) \subset A$. Por la observación, como $B_1(a,r) \subset B_2(a,r) \subset A$, tenemos que también es abierto para la norma $\|\cdot\|_1$.
- Sea $A \subset \mathbb{R}^n$. Si A es abierto con la norma $\|\cdot\|_{\infty}$, entonces $\forall a \in A, \exists r > 0$ tal que $B_{\infty}(a,r) \subset A$. Por la observación anterior, tenemos que $B_2(a,r) \subset B_{\infty}(a,r) \subset A$, por lo que A es abierto respecto a la norma $\|\cdot\|_2$.
- Sea $A \subset \mathbb{R}^n$. Si A es abierto respecto de $\|\cdot\|_1$, tenemos que $\forall a \in A, \exists r > 0$ tal que $B_1(a,r) \subset A$. Sea $r' = \frac{r}{n} > 0$,

$$B_{\infty}\left(a,r'\right)\subset B_{1}\left(a,nr'\right)=B_{1}\left(a,r\right)\subset A.$$

Por tanto, A es abierto respecto de la norma $\|\cdot\|_{\infty}$.

Teorema 1.2 (Propiedades de los abiertos). Sea (X, d) un espacio métrico.

- 1. $X y \emptyset$ son abiertos.
- 2. La unión arbitraria de abiertos es abierto.
- 3. La intersección finita de abiertos es abierto.

Demostración. 1. Es trivial que \emptyset es abierto. Por otro lado, si $a \in X$, tenemos que $\forall r > 0$, $B(x,r) \subset X$. Así, X está abierto.

2. Supongamos que $\{A_i\}_{i\in I}$ es una familia de conjuntos abiertos y sea $A=\bigcup_{i\in I}A_i$. Si $a\in A$, tenemos que $a\in A_i$ para algún $i\in I$. Así, existe r>0 tal que $B(a,r)\subset A_i\subset\bigcup_{i\in I}A_i$. Por tanto, $B(a,r)\subset A$ y A es abierto.

3. Sean A_1, \ldots, A_m conjuntos abiertos y sea $A = A_1 \cap \cdots \cap A_m$. Si $a \in A$, tenemos que $a \in A_i$ para $1 \le i \le m$. Así, existe $r_i > 0$ tal que $B(a, r_i) \subset A_i$. Si tomamos $r = \min\{r_i : 1 \le i \le m\}$, tenemos que $B(a, r) \subset B(a, r_i), \forall i = 1, \ldots, m$. Por tanto, $B(a, r) \subset A$ y A es abierto.

Observación. La intersección infinita de conjuntos abiertos puede no ser abierto. Por ejemplo, consideremos en $(\mathbb{R}^2, \|\cdot\|_2)$ consideramos $A_m = B_2\left((0,0), \frac{1}{m}\right)$, que es abierto $\forall m \in M$. Sin embargo, $A = \bigcap_{i=1}^{\infty} A_m = \{(0,0)\}$, que no es abierto.

Definición 1.10 (Conjunto cerrado). Sea (X,d) un espacio métrico. Se dice que un conjunto $C \subset X$ es **cerrado** si X/C es abierto.

Proposición 1.7. Toda bola cerrada es un conjunto cerrado.

Demostración. En efecto, sea $C=\overline{B}\left(p,R\right)=\left\{x\in X:d\left(x,p\right)\leq R\right\}$ y sea $A=X/C=\left\{x\in X:d\left(x,p\right)>R\right\}$. Si $a\in A$, tenemos que $d\left(a,p\right)=\delta>R$. Así, tomando $r=\delta-R>0$, si $x\in B\left(a,r\right)$, tenemos que

$$d(x,p) \ge d(p,a) - d(x,a) > \delta - r = R.$$

Así, tenemos que $x \in A$, por lo que $B(a,r) \subset A$ y X/C es abierto, por lo que C es cerrado.

Observación. Es fácil ver que en $(\mathbb{R}, |\cdot|)$:

- \blacksquare (a,b) es abierto.
- \blacksquare [a, b] es cerrado.
- (a,b] y [a,b) no son ni abiertos ni cerrados.

Teorema 1.3 (Propiedades de los cerrados). Sea (X,\emptyset) un espacio métrico.

- 1. Los conjuntos X y \emptyset son cerrados.
- 2. La intersección arbitraria de cerrados es cerrado.
- 3. La unión finita de cerrados es cerrado.

Demostración. 1. Dado que $\emptyset = X/X$ y $X = X/\emptyset$, del teorema anterior se sigue que son cerrados.

2. Sean $\{C_i\}_{i\in I}$ cerrados. Entonces, $\forall i\in I$ tenemos que X/C_i es abierto, así,

$$X/\bigcap_{i\in I}C_i=\bigcup_{i\in I}\left(X/C_i\right),$$

que es abierto, por lo que $\bigcap_{i \in I} C_i$ es cerrado.

3. Sean C_1, \ldots, C_m cerrados. Entonces, $\forall i=1,\ldots,m,$ tenemos que X/C_i es abierto. Así,

$$X/\bigcup_{i=1}^{m} C_i = \bigcap_{i=1}^{m} (X/C_i),$$

es abierto, por lo que $\bigcup_{i=1}^{m} C_i$ es cerrado.

Definición 1.11 (Punto interior). Sea (X,d) un espacio métrico y $A \subset X$. Se dice que $a \in A$ es un **punto interior** de A si existe r > 0 tal que $B(a,r) \subset A$. Denotamos Int (A) al conjunto de puntos interiores de A.

Observación. Es trivial ver que $\operatorname{Int}(A) \subset A$.

Proposición 1.8. Sea (X, d) un espacio métrico y $A \subset X$.

- 1. El conjunto Int(A) es el mayor abierto contenido en A.
- 2. A es abierto si y solo si A = Int(A).

Demostración. 1. Sea $U = \operatorname{Int}(A)$. Vamos a ver que es abierto. Dado $x \in U$, tenemos que existe r > 0 tal que $B(x,r) \subset A$. Si $y \in B(x,r)$, por tratarse de una bola abierta existe r' > 0 tal que $B(y,r') \subset B(x,r) \subset A$, por lo que $y \in \operatorname{Int}(A) = U$. Por tanto, $B(x,r) \subset U$ y U es abierto.

Ahora tenemos que ver que es el mayor abierto. Supongamos que V es abierto y $V \subset A$. Sea $x \in V$, tenemos que existe r > 0 tal que $B(x,r) \subset V \subset A$. Por tanto, $x \in \text{Int}(A) = U$ y $V \subset U$.

2. Si A = Int(A) está claro que A es abierto. Recíprocamente, si A es abierto, tenemos que como A es el mayor abierto contenido en A, A = Int(A).

Ejemplo. En $(\mathbb{R}, |\cdot|)$, sea A = (0, 2]. Tenemos que Int (A) = (0, 2). En efecto,

- (i) Si $x \in (0,2)$, entonces existe r > 0 tal que $(x-r,x+r) \subset (0,2) \subset (0,2]$, por lo que $x \in \text{Int}(A)$.
- (ii) Recíprocamente, tenemos que $2 \notin \text{Int}(A)$, puesto que $\forall r > 0$ tenemos que (2-r, 2+r)

no es subconjunto de (0,2].

Definición 1.12 (Punto adherente). Sean (X, d) un espacio métrico y $A \subset X$. Se dice que $x \in X$ es **punto adherente** a A (o también **punto clausura**) si $\forall r > 0$, $A \cap B(x, r) \neq \emptyset$. Denotamos \overline{A} o Adh(A) al conjunto de puntos adherentes de A.

Observación. Se ve trivialmente que $A \subset \overline{A}$.

Ejemplo. En $(\mathbb{R}, |\cdot|)$ sea A = (0, 2]. Tenemos que $\overline{A} = [0, 2]$. En efecto:

- (i) Tenemos que $0 \in \overline{A}$, puesto que $\forall r > 0$ tenemos que $(-r, r) \cap A \neq \emptyset$. Así, tenemos que $[0, 2] \subset \overline{A}$.
- (ii) Recíprocamente, si x > 2, tenemos que existe r > 0 suficientemente pequeño tal que x r > 2, por tanto $x \notin \overline{A}$. Similarmente, podemos demostrar que $0 \notin \overline{A}$.

Lema 1.1. Sean (X, d) un espacio métrico y $A \subset X$. Entcones, $\overline{A} = X/\operatorname{Int}(X/A)$.

- Demostración. (i) Sea $x \in \overline{A}$. Tenemos que $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$, por lo que $B(x,r) \not\subset X/A$, por lo que $x \notin \operatorname{Int}(X/A)$, por lo que $x \in X/\operatorname{Int}(X/A)$.
- (ii) Sea $x \in X/\operatorname{Int}(X/A)$, entonces $x \notin \operatorname{Int}(X/A)$, es decir, $\forall r > 0$ tenemos que $B(x,r) \not\subset X/A$. Así, debe ser que $B(x,r) \cap A \neq \emptyset$, por lo que $x \in \overline{A}$.

Proposición 1.9. 1. \overline{A} es el menor cerrado que contiene a A.

- 2. Un conjunto $A \subset X$ es cerrado si y solo si $A = \overline{A}$.
- Demostración. 1. Tenemos que $\overline{A} = X/\operatorname{Int}(X/A)$, por lo que su complementario es abierto y él es cerrado. Ahora vamos a ver que es el menor cerrado que contiene a A. Sea $C \subset X$ cerrado con $A \subset C$. Tenemos que $X/C \subset X/A$, por lo que $X/C \subset \operatorname{Int}(X/A)$ y tenemos que $C \supset X/\operatorname{Int}(X/A) = \overline{A}$.
 - 2. Si $A = \overline{A}$, A es cerrado. Por otro lado, si A es cerrado, entonces su complementario, X/A es abierto, por lo que $X/A = \operatorname{Int}(X/A)$, por lo que $\overline{A} = X/\operatorname{Int}(X/A) = X/(X/A) = A$.

Definición 1.13 (Punto frontera). Sean (X,d) un espacio métrico y $A \subset X$. Se dice que $x \in X$ es un **punto frontera** de A si $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$ y $B(x,r) \cap (X/A) \neq \emptyset$. Denotamos Fr(A) o ∂A el conjunto de puntos frontera de A.

Observación. Tenemos que $Fr(A) = \overline{A} \cap \overline{X/A}$ y en particular Fr(A) es cerrado.

Ejemplo. En $(\mathbb{R}^2, \|\cdot\|_2)$ sea $A = \{(x,y) : 0 < x \le 1\}$. Tenemos que

$$Fr(A) = \{(0, y) : y \in \mathbb{R}\} \cup \{(1, y) : y \in \mathbb{R}\}.$$

En efecto:

- (i) Sea P = (0, y). Tenemos que $\forall r > 0$, $B(P, r) \cap A \neq \emptyset$ y $B(P, r) \cap (X/A) \neq \emptyset$. Así, $P \in Fr(A)$. De forma análoga, se puede demostrar que $P = (1, y) \in Fr(A)$.
- (ii) El recíproco lo demostramos típicamente por contrapositiva. Sea $P=(x,y)\in\mathbb{R}^2$ con $x\neq 0$ y $x\neq 1$. Hay tres posibilidades a considerar: $x\in (-\infty,0), x\in (0,1)$ o $x\in (1,\infty)$. Si $x\in (-\infty,0), \exists r>0$ tal que $B(P,r)\cap A=\emptyset$. El resto de los casos se demuestran de forma análoga.

Definición 1.14 (Punto de acumulación). Sean (X,d) un espacio métrico y $A \subset X$. Se dice que $x \in X$ es un **punto de acumulación** de A si $\forall r > 0$ se tiene que $A \cap (B(x,r)/\{x\}) \neq \emptyset$. Denotamos A' el conjunto de los puntos de acumulación de A.

Observación. Tenemos que $A' \subset \overline{A}$. En efecto, si $x \in A'$, tenemos que $\forall r > 0$ se cumple que $A \cap (B(x,r) / \{x\}) \neq \emptyset$, es decir, $A \cap B(x,r) \neq \emptyset$, por lo que $x \in \overline{A}$.

Ejemplo. Consideremos $A = \mathbb{N} \times \mathbb{N} \subset (\mathbb{R}^2, d_2)$. Tenemos que

- Int $(A) = \emptyset$. En efecto, tenemos que $\forall r > 0$, si $n_0 = (n, n) \in \mathbb{N}^2$, existe $x \in \mathbb{R}/\mathbb{Q}$ tal que n < x < n + r, por lo que $(x, x) \in B(n, r)$ pero $(x, x) \notin \mathbb{N}^2$.
- $\overline{A} = A$. En efecto, si $x \notin A$, tenemos que podemos encontrar r > 0 suficientemente pequeño tal que $B(x,r) \cap A = \emptyset$.
- $\partial A = A$. Dado que $A = \overline{A}$ y $\partial A = \overline{A} \cap \overline{X/A}$, tenemos que $A \subset \partial A$. Por otro lado, si $x \notin A$, tenemos que existe un r > 0 suficientemente pequeño tal que $B(x,r) \cap A = \emptyset$, como hemos visto anteriormente, por lo que $x \notin \partial A$.
- $A' = \emptyset$. Si cogemos r < 1 y $n \in \mathbb{N}^2$, está claro que $(B(n,r)/\{n\}) \cap A = \emptyset$, por lo que n no puede ser un punto de acumulación. Si $x \notin A$, hacemos un argumento similar al del apartado anterior.

Definición 1.15 (Punto aislado). Sean (X, d) un espacio métrico y $A \subset X$. Se dice que $x \in A$ es un **punto aislado** de A si existe r > 0 tal que $B(x, r) \cap A = \{x\}$. Denotaremos A is (A) al conjunto de los puntos aislados de A.

Proposición 1.10. Sean (X, d) un espacio métrico y $A \subset X$. Entonces, se cumple que $\overline{A} = A' \cup Ais(A)$.

- Demostración. (i) Sea $x \in \overline{A}$. Supongamos que $x \notin A'$, entonces existe r > 0 tal que $A \cap (B(x,r)/\{x\}) = \emptyset$. Sin embargo, sabemos que $A \cap B(x,r) \neq \emptyset$ al ser $x \in \overline{A}$, por tanto debe ser que $A \cap B(x,r) = \{x\}$, es decir, $x \in Ais(A)$.
- (ii) Está claro que $Ais(A) \subset A \subset \overline{A}$ y $A' \subset \overline{A}$, por lo que $A' \cup Ais(A) \subset \overline{A}$.

Corolario 1.1. Sean (X,d) un espacio métrico y $A \subset X$. Entonces, A es cerrado si y solo si A contiene todos sus puntos de acumulación.

Demostración. (i) Tenemos que $A = \overline{A} = A' \cup Ais(A)$, por lo que $A' \subset A$.

(ii) Tenemos que $Ais(A) \subset A$ y $A' \subset A$, por lo que $\overline{A} = Ais(A) \cup A' \subset A$, así, $\overline{A} = A$.

Definición 1.16. Sean (x, d) un espacio métrico, $A \subset X$ y $x \in X$. Se define la **distancia** de x a A como:

$$d(x, A) = \inf \left\{ d(x, a) : a \in A \right\}.$$

Proposición 1.11. Sean (X, d) un espacio métrico y $A \subset X$. Entonces,

$$\overline{A} = \{ x \in X : d(x, A) = 0 \}.$$

Demostración. (i) Sea $x \in \overline{A}$, entonces existe r > 0 tal que $A \cap B(x,r) \neq \emptyset$. Por tanto, existe $a_r \in A \cap B(x,r)$, por tanto $d(x,a_r) < r$. Así, tenemos que

$$d(x, A) \le d(x, a_r) < r, \forall r > 0.$$

Por tanto, d(x, A) = 0.

(ii) Tenemos que $\forall r > 0$, d(x, A) < r, por lo que existe $a_r \in A$ tal que $d(x, a_r) < r$. Por tanto, $a_r \in A \cap B(x, r) \neq \emptyset$ y podemos concluir que $x \in \overline{A}$.

1.4. Conjuntos abiertos y cerrados relativos

Observación. Sean (X,d) un espacio métrico e $Y\subset X$. Sabemos que (Y,d_Y) es un subespacio métrico de (X,d) donde $d_Y(y_1,y_2)=d(y_1,y_2)$. Dado $y_0\in Y$ y r>0, la bola $B_Y(y_0,r)=\{y\in Y:d(y,y_0)< r\}=B(y_0,r)\cap Y$. Es decir, la forma de las bolas cambia.

Observación. En un espacio métrico (X,d), todo conjunto abierto es unión de bolas abiertas. En efecto, si A es abierto, entonces $\forall a \in A$, existe $r_a > 0$ tal que $B(a,r_a) \subset A$, por lo que $A = \bigcup_{a \in A} B(a,r_a)^a$.

Proposición 1.12. Sean (X, d) un espacio métrico e $Y \subset X$.

- (a) $A \subset Y$ es d_Y -abierto si y solo si existe $U \subset X$ abierto tal que $A = U \cap Y$.
- (b) $C \subset Y$ es d_Y -cerrado si y solo si existe $H \subset X$ cerrado tal que $C = H \cap Y$.

Estos conjuntos se llaman abiertos y cerrados relativos de Y, respectivamente.

Demostración. (a) Sea $Y \subset X$,

- (i) Tenemos que $\forall y \in A$, existe $r_y > 0$ tal que $B_Y(y, r_y) \subset A$. Definimos $U = \bigcup_{y \in A} B(y, r_y)$, que es abierto en (X, d) por ser unión de bolas abiertas. Veamos que $A = U \cap Y$. Tenemos que si $y \in A$, entonces $y \in B(y, r_y) \subset A \subset U$ (puesto que $B_Y(y, r_y) \subset B(y, r_y)$). Recíprocamente, sea $z \in Y \cap U$, entonces existe $y \in Y$ tal que $z \in B(y, r_y) \cap Y = B_Y(y, r_y) \subset A$. Por tanto, $Y \cap U \subset A$.
- (ii) Dado $y_0 \in A = U \cap Y$, como U es abierto 3 , existe r > 0 tal que $B(y_0, r) \subset U$. Por tanto, tenemos que $B_Y(y_0, r) = B(y_0, r) \cap Y \subset U \cap Y = A$. Así, hemos visto que A es d_Y -abierto.
- (b) Sea $Y \subset X$.
 - (i) Sea $C \subset Y$ d_Y -cerrado, entonces tenemos que Y/C es d_Y -abierto. Así, existe $U \subset X$ abierto tal que $Y/C = U \cap Y$. Sea H = X/U, que es cerrado. Veamos que $C = H \cap Y$:

$$C = Y/(Y/C) = Y/(U \cap Y) = Y/U = Y \cap (X/U) = Y \cap H.$$

(ii) Si $C = H \cap Y$ con H cerrado en X, entonces X/H es abierto. Tenemos que

$$Y/C = Y/(H \cap Y) = Y \cap (X/H)$$
.

Dado que X/H es abierto, por (a) tenemos que Y/C es d_Y -abierto, por lo que C es d_Y -cerrado.

1.5. Sucesiones en espacios métricos

 $[^]a$ Esta observación se puede reformular diciendo que un subconjunto $A\subset X$ es abierto si y solo si es unión de bolas abiertas.

 $^{^{3}}$ Cuando escribimos abierto y B(x,r) queremos decir que es d-abierto y es la bola en X, respectivamente.

Definición 1.17 (Sucesión y convergencia). Sea (X,d) un espacio métrico. Una **sucesión** es una aplicación $S: \mathbb{N} \to X$. Si $S(n) = x_n \in X$, denotamos la sucesión por $\{x_n\}_{n \in \mathbb{N}}$. Se dice que $\{x_n\}_{n \in \mathbb{N}}$ **converge** a $x_0 \in X$ cuando $d(x_n, x_0)_{n \in \mathbb{N}} \to 0$

Observación. Recordamos que $x_n \to x_0$ si y solo si (ambas definiciones son equivalentes):

- $\forall \varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se tiene que $d(x_n, x_0) < \varepsilon$.
- $\forall \varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se tiene que $x_n \in B(x_0, \varepsilon)$.

Proposición 1.13. Sea (X, d) un espacio métrico. Si la sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge, el límite es único.

Demostración. Supongamos que $l_1, l_2 \in X$ son límites de la sucesión, entonces tenemos que si $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se cumple que

$$d(l_1, l_2) \le d(l_1, x_n) + d(x_n, l_2) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Como esto es cierto para todo $\varepsilon > 0$, debe ser que $d(l_1, l_2) = 0$, por lo que $l_1 = l_2$.

Proposición 1.14. Sea (X,d) un espacio métrico y $A \subset X$. Entonces, $x \in \overline{A}$ si y solo si existe una sucesión $\{x_n\}_{n \in \mathbb{N}} \subset A$ tal que $x_n \to x$.

Demostración. (i) Tenemos que si $x \in \overline{A}$, entonces para todo $\varepsilon > 0$ se tiene que $B(x,\varepsilon) \cap A \neq \emptyset$, es decir. Así, podemos coger una sucesión tal que para $\varepsilon = \frac{1}{n}$ se tiene que $x_n \in B\left(x, \frac{1}{n}\right) \cap A$. Vamos a ver que la sucesión $\{x_n\}_{n \in \mathbb{N}}$ converge a x.

$$0 \le d(x_n, x) < \frac{1}{n} \Rightarrow d(x_n, x) \to 0 \iff x_n \to x.$$

(ii) Si existe $\{x_n\}_{n\in\mathbb{N}}\subset A$ tal que $x_n\to x$, tenemos que si r>0, existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0,\ x_n\in B\ (x,r),$ es decir, $B\ (x,r)\cap A\neq\emptyset$, por lo que $x\in\overline{A}$.

Proposición 1.15. Sea (X, d) un espacio métrico y $A \subset X$. Entonces $x \in A'$ si y solo si existe una sucesión $\{x_n\}_{n\in\mathbb{N}}$ de términos distintos con $x_n \to x$.

Demostración. (i) Si $x \in A'$, tenemos que $\forall r > 0, A \cap (B(x,r)/\{x\}) \neq \emptyset$.

■ Para n = 1, tomamos x_1 tal que $x_1 \in A \cap (B(x, 1) / \{x\})$.

- Para n = 2, tomamos $\varepsilon = \min \left\{ \frac{1}{2}, d(x_1, x) \right\}$, y tomamos x_2 tal que $x_2 \in A \cap (B(x, \varepsilon) / \{x\})$.
- Asumimos que tenemos $\{x_1, \ldots, x_n\}$ distintos como los hemos descrito anteriormente. Ahora, en el caso n+1, cogemos $\varepsilon = \min\left\{\frac{1}{n+1}, d\left(x_i, x\right)\right\}$ para $i=1,\ldots,n$. Así, cogemos $x_{n+1} \in A \cap (B\left(x,\varepsilon\right)/\{x\})$. Obtenemos que

$$0 < d(x_{n+1}, x) < \frac{1}{n+1} < d(x_i, x), \ 1 \le i \le n.$$

Así, está claro que $x_{n+1} \neq x_i$ para $1 \leq i \leq n$.

Así, hemos construido la sucesión $\{x_n\}_{n\in\mathbb{N}}$ que buscábamos. Tenemos que ver que la sucesión converge a x. En efecto, si $\varepsilon>0$ existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0,\,\frac{1}{n}<\varepsilon$, por lo que $d(x_n,x)<\frac{1}{n}<\varepsilon$.

(ii) Puesto que los elementos de la sucesión no se repiten, existe $m \in \mathbb{N}$ tal que $\forall n \geq m$, $x_n \neq x$. Como la sucesión converge, si $\varepsilon > 0$, existe $n_0 \geq m$ tal que $\forall n \geq n_0$, $A \cap (B(x_n, x) / \{x\}) \neq \emptyset$, por lo que $x \in A'$.

Observación. Sea $(E, \|\cdot\|)$ un espacio normado. Tenemos que una sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a un punto $x\in E$ si y solo si $\|x_n-x\|\to 0$.

Proposición 1.16. En \mathbb{R}^n consideremos las normas $\|\cdot\|_1$, $\|\cdot\|_2$ y $\|\cdot\|_\infty$. Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión de \mathbb{R}^n tal que

$$x_k = \left(x_k^1 \,,\, \dots \,,\, x_k^n\right),\,$$

y $x_n \to x = (x^1, \dots, x^n) \in \mathbb{R}^n$. Entonces, la sucesión converge coordenada a coordenada, es decir, $x_k^i \to x^i$ para $1 \le i \le n$.

Demostración. Recordamos que

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 < n||x||_{\infty}.$$

Así, tenemos que si $x_k \to x$,

$$||x_k - x||_{\infty} \le ||x_k - x||_2 \le ||x_k - x||_1 \le n||x_k - x||_{\infty}.$$

Por tanto, la convergencia no depende de la métrica que escojamos. Así, para $1 \leq i \leq n$ tenemos que

$$|x_k^i - x^i| \le ||x_k - x||_2 \le |x_k^1 - x^1| + \dots + |x_k^n - x^n| \to 0.$$

Definición 1.18 (Subsucesión). Sea sucesión $\{x_n\}_{n\in\mathbb{N}}\subset X$, donde (X,d) es un espacio métrico. Una **subsucesión** es otra sucesión de la forma $\{x_{n_k}\}_{k\in\mathbb{N}}$ tal que n_k es estrictamente creciente.

Proposición 1.17. Sea (X,d) un espacio métrico y $\{x_n\}_{n\in\mathbb{N}}\subset X$ tal que $x_n\to x$. Entonces, toda subsucesión converge a x.

Demostración. Sea $\{x_{n_k}\}_{k\in\mathbb{N}}\subset\{x_n\}_{n\in\mathbb{N}}$. Tenemos que si $\varepsilon>0$, existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0$ se tiene que $d(x_n,x)<\varepsilon$. Como $n_k\to\infty$, podemos encontrar $n_{k_0}\in\mathbb{N}$ tal que $\forall n_k\geq n_{k_0}$ se tenga que $n_k\geq n_0$, por lo que $\forall k\geq k_0$, tenemos que $d(x_k,x)$. Así, hemos visto que la subsucesión converge al mismo límite.

1.6. Completitud

Definición 1.19 (Sucesión de Cauchy). Sea (X,d) un espacio métrico. Se dice que una sucesión $\{x_n\}_{n\in\mathbb{N}}$ en X es una **sucesión de Cauchy** si $\forall \varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $\forall m, n \geq n_0, d(x_n, x_m) < \varepsilon$.

Proposición 1.18. Toda sucesión convergente es de Cauchy.

Demostración. Sea $\{x_n\}_{n\in\mathbb{N}}\subset X$ una sucesión convergente a $x_0\in X$. Así, si $\varepsilon>0$, tenemos que existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0,\ d\left(x_n,x\right)<\frac{\varepsilon}{2}$. Si $n,m\geq n_0$,

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Definición 1.20 (Espacio completo). Se dice que un espacio métrico (X, d) es **completo** si toda sucesión de Cauchy es convergente en (X, d).

Teorema 1.4. El espacio $(\mathbb{R}, |\cdot|)$ es completo.

Ejemplo. Consideramos $X = \mathbb{Q}$ con la distancia usual. Entonces, $(\mathbb{Q}, |\cdot|)$ no es completo. Hay sucesiones $\{q_n\}_{n\in\mathbb{N}}\subset\mathbb{Q}$ de Cauchy tales que $q_n\to x\in\mathbb{R}/\mathbb{Q}$. Entonces la sucesión $\{q_n\}_{n\in\mathbb{N}}$ no converge en $(\mathbb{Q}, |\cdot|)$. Como ejemplo se puede tomar la sucesión de los decimales de $\sqrt{2}$.

Corolario 1.2. El espacio \mathbb{R}^n con la norma $\|\cdot\|_1, \|\cdot\|_2$ y con $\|\cdot\|_\infty$ también es completo.

Demostración. Recordamos que

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}.$$

Por tanto una sucesión $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^n$ es de Cauchy para $\|\cdot\|_{\infty}$ si y solo si lo es para $\|\cdot\|_2$, si y solo si lo es para $\|\cdot\|_1$. Por ejemplo, para $\|\cdot\|_2$, si $\{x_k\}_{k\in\mathbb{N}}\subset\mathbb{R}^n$ es de Cauchy, entoces $\forall \varepsilon>0$ existe $k_0\in\mathbb{N}$ tal que $\forall k,j\geq k_0$,

$$|x_k^i - x_i^i| \le ||x_k - x_i||_2 < \varepsilon, \quad \forall i = 1, \dots, n.$$

Donde $x_m = (x_m^1, \dots, x_m^n)$. Por tanto, cada componente $\{x_k^i\}_{k \in \mathbb{N}}$ es de Cauchy en \mathbb{R} , por lo que cada componente es convergente en \mathbb{R} y la sucesión es convergente en \mathbb{R}^n .

Ejemplo. Sea $[a, b] \subset \mathbb{R}$. Consideramos el siguiente espacio normado:

$$X = \mathcal{C}[a, b] = \{f : [a, b] \to \mathbb{R} : f \text{ continua en } [a, b]\}.$$

$$||f||_{\infty} = \sup\{|f(t)| : t \in [a, b]\} = \max\{|f(t)| : t \in [a, b]\}.$$

Por ser f continua, la norma está bien definida. Se trata de una norma, puesto que:

- $\|f\|_{\infty} \ge 0.$
- $\|f\|_{\infty} = 0$ si y solo si $|f(t)| = 0, \forall t \in [a, b]$, es decir, f = 0.
- Comprobamos la propiedad triangular:

$$||f + g||_{\infty} = \sup \{|f(t) + g(t)| : t \in [a, b]\}$$

$$\leq \sup \{|f(t)| : t \in [a, b]\} + \sup \{|g(t)| : t \in [a, b]\} = ||f||_{\infty} + ||g||_{\infty}.$$

Podemos observar que $\{f_n\}_{n\in\mathbb{N}} \to f$ en $\|\cdot\|_{\infty}$ si y solo si $\|f_n - f\|_{\infty} \to 0$. Es decir, si $\forall \varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$: $\|f_n - f\|_{\infty} \leq \varepsilon$. Esto es cierto si y solo si $\forall \varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se tiene que $|f_n(t) - f(t)| \leq \varepsilon$, $\forall t \in [a, b]$. Es decir, si $\{f_n\}_{n\in\mathbb{N}}$ converge uniformemente en [a, b] a f.

Otra observación que podemos hacer es que $\{f_n\}_{n\in\mathbb{N}}$ es de Cauchy con $\|\cdot\|_{\infty}$ si y solo si $\forall \varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $\forall n, m \geq n_0$ se tiene que $\|f_m - f_m\|_{\infty} \leq \varepsilon$, si y solo si $\forall \varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $\forall n, m \geq n_0$, $|f_n(t) - f_m(t)| \leq \varepsilon$, $\forall t \in [a, b]$. Así, podemos decir que $\{f_n\}_{n\in\mathbb{N}}$ es **uniformemente de Cauchy**.

Teorema 1.5. El espacio $(\mathcal{C}[a,b], \|\cdot\|_{\infty})$ es completo.

Demostración. Sea $\{f_n\}_{n\in\mathbb{N}}$ de Cauchy para $\|\cdot\|_{\infty}$. Tenemos que

$$\forall t \in [a, b], |f_n(t) - f_m(t)| \le ||f_n - f_m||_{\infty}.$$

Luego, $\forall t \in [a, b], \{f_n\}_{n \in \mathbb{N}}$ es de Cauchy en \mathbb{R} , por lo que existe $a_t \in \mathbb{R}$ tal que $\{f_n(t)\} \to a_t$. Definimos la función

$$f: [a,b] \to \mathbb{R}$$

$$t \to a_t$$

Vamos a ver que $f_n \to f$ en $\|\cdot\|_{\infty}$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $\forall n, m \geq n_0$, tenemos que

$$|f_n(t) - f_m(t)| \le \varepsilon, \ \forall t \in [a, b].$$

Si cogemos $m \to \infty$, tenemos que

$$|f_n(t) - f(t)| \le \varepsilon, \ \forall t \in [a, b], \forall n \ge n_0.$$

Así, tenemos que $||f_n - f||_{\infty} \le \varepsilon$, $\forall n \ge n_0$. Por tanto, $\{f_n\}_{n \in \mathbb{N}}$ converge a f uniformemente en [a, b]. Como el límite de una sucesión de funciones continuas es una función continua, tenemos que $f \in \mathcal{C}[a, b]$.

Proposición 1.19. Sea (X, d) un espacio métrico completo y sea $Y \subset X$. Entonces, (Y, d_Y) es completo si y solo si Y es cerrado en X.

- Demostración. (i) Sea (Y, d_Y) completo. Vamos a ver que Y es cerrado. Sea $x \in \overline{Y}$, por lo que $\exists \{y_n\}_{n \in \mathbb{N}} \subset Y$ tal que $y_n \to x$. Por tanto, $\{y_n\}_{n \in \mathbb{N}}$ es de Cauchy en X e Y. Luego, existe $y_0 = x = \lim_{n \to \infty} y_n \in Y$, por lo que $x \in Y$. Así, tenemos que $\overline{Y} \subset Y$ y por tanto Y es cerrado.
- (ii) Supongamos que Y es cerrado en X. Sea $\{y_n\}_{n\in\mathbb{N}}\subset (Y,d_Y)$ sucesión de Cauchy. Entonces, $\forall \varepsilon>0$, existe $n_0\in\mathbb{N}$ tal que $\forall n,m\geq n_0$ $d_Y(y_n,y_m)<\varepsilon$. Por ser de Cauchy en (X,d), existe $x\in X$ tal que $y_n\to x$. Por tanto, tenemos que $x\in\overline{Y}=Y$, por lo que $\{y_n\}_{n\in\mathbb{N}}$ es convergente en Y.

Lema 1.2. En un espacio métrico (X,d), toda sucesión de Cauchy está acotada.

Demostración. Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión de Cauchy. Entonces, si cogemos $\varepsilon=1$, existe $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0$ se tiene que $d(x_n,x_{n_0})<1$. Podemos tomar

$$R = \max \left\{ d(x_1, x_{n_0}), d(x_2, x_{n_0}), \dots, d(x_{n_0-1}, x_{n_0}), 1 \right\}.$$

Entonces, tenemos que $\{x_n\}_{n\in\mathbb{N}}\subset B(x_{n_0},R)$.

Lema 1.3. Sea $\{x_n\}_{n\in\mathbb{N}}$ sucesión de Cauchy en un espacio métrico (X,d). Si existe una subsucesión $\{x_{n_k}\}_{k\in\mathbb{N}}$ convergente a $x\in X$, entonces toda la sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a x.

Demostración. Sea $\varepsilon > 0$, existe $n_1 \in \mathbb{N}$ tal que $\forall n, m \geq n_0, d(x_n, x_m) < \frac{\varepsilon}{2}$. También existe $k_0 \in \mathbb{N}$ tal que $\forall k \geq k_0, d(x_{n_k}, x) < \frac{\varepsilon}{2}$. Sea $n_0 = \max\{n_0, n_{k_0}\}$ y sea $n \geq n_0$,

$$d(x_n, x) \le d(x_n, x_{n_0}) + d(x_{n_0}, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

1.7. Compacidad

Teorema 1.6 (Teorema de Bolzano-Weierstrass). Toda sucesión acotada en $\mathbb R$ admite una subsucesión convergente.

Corolario 1.3. En \mathbb{R}^{n-a} , toda sucesión acotada admite una subsucesión convergente.

^aCon las normas $\|\cdot\|_1, \|\cdot\|_2$ o $\|\cdot\|_{\infty}$.

Demostración. El caso general es un poco tedioso, por lo que solo haremos la demostración cuando n=2.

Sea $(x_n,y_n)_{n\in\mathbb{N}}\subset\mathbb{R}^2$ acotada, por lo que existe R>0 tal que $|x_n|$, $|y_n|\leq R$, $\forall n\in\mathbb{N}$. Como $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ está acotada, existe $\{x_{n_k}\}_{k\in\mathbb{N}}$ convergente a $x_0\in\mathbb{R}$. Consideramos $\{y_{n_k}\}_{k\in\mathbb{N}}$ está acotada, existe $\{y_{n_{k_j}}\}_{j\in\mathbb{N}}$ convergente a $y_0\in\mathbb{R}$. Así, tenemos que $(x_{n_{k_j}},y_{n_{k_j}})_{j\in\mathbb{N}}$ es una subsucesión de (x_n,y_n) y $(x_{n_{k_j}},y_{n_{k_j}})\to (x_0,y_0)$.

Definición 1.21 (Conjunto compacto). Sea (X, d) un espacio métrico y sea $K \subset X$. Se dice que K es **compacto** si toda sucesión en K admite una subsucesión convergente en K.

Lema 1.4. Sean (X,d) un espacio métrico y $K \subset X$ compacto. Entonces K es cerrado y acotado en (X,d).

- Demostración. (i) Supongamos que K no es acotado. Si fijamos $x_0 \in X$ y sabemos que $\forall n \in \mathbb{N}, K \not\subset B(x_0,n)$. Por tanto, existe $x_n \in K$ tal que $d(x_n,x_0) \geq n$. Por tanto, la sucesión $\{x_n\}_{n\in\mathbb{N}} \subset K$ y $d(x_n,x_0) = \infty$, por lo que la sucesión $\{x_n\}_{n\in\mathbb{N}}$ no es acotada. Además, para toda subsucesión $\{x_{n_j}\}_{j\in\mathbb{N}}$, se tiene que $d(x_{n_j},x_0) = \infty$, por lo que $\{x_{n_j}\}_{j\in\mathbb{N}}$ no es acotada, por lo que no es convergente. Por tanto, K no es compacto.
- (ii) Supongamos que K no es cerrado. Es decir, existe $x \in \overline{K}/K$. Así, existe una sucesión $\{x_n\}_{n\in\mathbb{N}} \subset K$ con $x_n \to x \notin K$. Además, para toda subsucesión $\{x_{n_j}\}_{j\in\mathbb{N}}$ se tiene que $x_{n_j} \to x \notin K$. Es decir, todas las subsucesiones de $\{x_n\}_{n\in\mathbb{N}}$ convergen fuera de K, por lo que K no es compacto.

Teorema 1.7. En \mathbb{R}^n (con $\|\cdot\|_1, \|\cdot\|_2$ o $\|\cdot\|_\infty$) un subconjunto $K \subset \mathbb{R}^n$ es compacto si y solo si K es cerrado y acotado.

Demostración. (i) Es trivial a partir del lema anterior.

(ii) Sea $K \subset \mathbb{R}^n$ cerrado y acotado. Sea $\{x_j\}_{j\in\mathbb{N}}$ una sucesión en K. Entonces, $\{x_j\}_{j\in\mathbb{N}}$ está acotada y por tanto existe una subsucesión $\{x_{n_l}\}_{l\in\mathbb{N}}$ convergente a $x_0 \in \mathbb{R}^n$. Entonces, $x_0 \in \overline{K} = K$ puesto que K es cerrado. Entonces, K es compacto.

Ejemplo. El recíproco del lema anterior no es cierto. Consideremos por ejemplo (X, d) donde $X = \mathbb{N}$ y d es la métrica discreta. El conjunto de todos los números naturales es cerrado y acotado (tal y como lo hemos definido). Sin embargo, no es compacto.

Sea $\{x_n\}_{n\in\mathbb{N}}$ convergente a $x\in\mathbb{N}$. Entonces, tenemos que $\forall \varepsilon>0, \exists n_0\in\mathbb{N}, \forall n\geq n_0, d\left(x_n,x\right)<\varepsilon$. Esto solo sucede si existe un $n_0\in\mathbb{N}$ tal que $\forall n\geq n_0, x_n=x$.

Por tanto, la sucesión $\{n\}_{n\in\mathbb{N}}\subset X$ está acotada pero no es convergente (puesto que no cumple la condición de convergencia que hemos visto anteriormente) y no tiene subsucesiones convergentes.

1.8. Recubrimientos

Definición 1.22 (Recubrimiento). Sean (X,d) un espacio métrico y $M \subset X$.

- (a) Un recubrimiento de M es una familia $\{U_i\}_{i\in I}$ de subconjuntos de X que recubre M en el sentido de que $M\subset\bigcup_{i\in I}U_i$. Se dice que el recubrimiento es abierto si cada U_i es un conjunto abierto en X.
- (b) Un sub-recubrimiento de $\{U_i\}_{i\in I}$ es un recubrimiento de la forma $\{U_j\}_{j\in J}$ donde $J\subset I$ y tal que $M\subset \bigcup_{j\in J}U_j$.

Teorema 1.8. Sea (X,d) un espacio métrico y $K \subset X$. Entonces K es compacto si y solo si todo recubrimiento abierto de K admite un subrecubrimiento finito.

CAPÍTULO 1. ESPACIOS MÉTRICOS