Ответы по матлогике

github.com

5 января 2025 г.

[subsection] [subsection]

Содержание

1	Булевы функции				
	1.1	Булевы функции. Способы задания, основные свойства.	3		
	1.2	Булевы функции одной и двух переменных	3		
	1.3	Основные законы алгебры логики	5		
	1.4	Следствия из законов алгебры логики: операции скле-			
		ивания, поглощения, правила развертывания логиче-			
		ских выражений	6		
	1.5	Пять классов функций. Теорема о функциональной пол-			
		ноте	6		
	1.6	Основная функционально полная система логических			
		связей	8		
	1.7	Теорема Жегалкина. Алгебра Жегалкина. Функции Шеф-			
		фера и Пирса	9		
	1.8		9		

1 Булевы функции

1.1 Булевы функции. Способы задания, основные свойства.

Булева (или логическая) функция $y = f(x_1, x_2, ..., x_n)$ от n переменных $x_1, x_2, ..., x_n$ — такая функция, что и аргументы и функция могут принимать только значения 0 (истина) либо 1 (ложь).

Способы задания

- 1. Таблицей истинности
- 2. Вектором значений
- 3. Номером
- 4. Формулами

Пример

Приоритет выполнения операций

1.2 Булевы функции одной и двух переменных Одной переменной

Функция	x = 0	x = 1	Словесное описание
f = 0	0	0	Константный ноль
$f_0 \equiv 0$			(противоречие)
f - x	0	1	Повторение аргумента
$f_1 = x$			(тождественная функция)
$f = \overline{x}$	1	0	Инверсия (отрицание)
$f_2 = \overline{x}$			аргумента
$f_{-} - 1$	1	1	Константная единица
$f_3 \equiv 1$			(тавтология)

Двух переменных Обратите внимание на порядок следования переменных в таблице!

- 00	Ω	Ω	1	1	
x_1	0	0	1	1	Описание
x_2	0	1	0	1	
f_0	0	0	0	0	Противоречие
ſ			0	1	Конъюнкция
$\int f_1$	0	0	0	1	$f = x_1 \wedge x_2$
f_2	0	0	1	0	$f = \overline{x_1 \to x_2}$
f_3	0	0	1	1	$f = x_1$
f_4	0	1	0	0	$f = \overline{x_2 \to x_1}$
f_5	0	1	0	1	$f = x_2$
ſ	0	1	1	0	XOR (исключающее или)
f_6		1			$f = x_1 \oplus x_2$
ſ	0	_	1	1	Дизъюнкция
f_7		1	1	1	$f = x_1 \vee x_2$
ſ	1	0	0	0	Стрелка Пирса (отр. дизъюнкции)
f_8					$f = x_1 \downarrow x_2 = \overline{x_1 \lor x_2}$
ſ	1	0	0	1	Эквиваленция
f_9					$f = (x_1 \leftrightarrow x_2) = (x_1 \to x_2) \land (x_2 \to x_1)$
f_{10}	1	0	1	0	$f = \overline{x}_2$
r	1	0	1	1	Импликация
$\int f_{11}$	1	0	1	1	$f = x_2 \to x_1$
f_{12}	1	1	0	0	$f = \overline{x}_1$
r	1	1	0	1	Импликация
f_{13}	1				$f = x_1 \to x_2$
ſ	1	1	1	0	Штрих Шеффера (отр. конъюнкции)
f_{14}	1	1			$f = x_1 x_2 = \overline{x_1 \wedge x_2}$
f_{15}	1	1	1	1	Тавтология

Функции без названий либо имеют очевидные названия, либо ущербны по своей природе и не заслуживают его.

1.3 Основные законы алгебры логики

Основные законы алгебры логики касаются конъюнкции и дизъюнкции. Вощможно, на экзамене их потребуется доказать. Делать это лучше всего с помощью таблцы истинности, поскольку на этом этапе все законы как бы не доказаны и опираться на них нельзя.

- 1. Идемпотентность: $x \wedge x = x$ $x \vee x = x$
- 2. Коммутативность: $x \wedge y = x \wedge y$ $x \vee y = y \vee x$
- 3. Ассоциативность: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ $x \vee (y \vee z) = (x \vee y) \vee z$
- 4. Поглощение
- 5. Дистрибутивность
- 6. Правила де Моргана
- 7. Свойства констант
- 8. Закон исключения третьего и закон противоречия
- 9. Снятие двойного отрицания $\overline{\overline{x}}=x$
- 10. Склеивание
- 11. Связь импликации с конъюнкцией, дизъюнкцией, отрицанием
- 12. Выражение эквивалентности

Из правил де Моргана следует, что если все операции в тождестве — это конъюнкции, дизъюнкции и отрицания, то при взаимной замене конъюнкций на дизъюнкции получится верное тождество.

1.4 Следствия из законов алгебры логики: операции склеивания, поглощения, правила развертывания логических выражений

См. выше. В этом вопросе, я полагаю, надо все это добро вывести. Также в списке вопросов дана ссылка на неясный источник

1.5 Пять классов функций. Теорема о функциональной полноте

Существуют следующие классы булевых функций:

• Самодвойственные (S).

Определение. Булева функция f^* называется **двойствен**ной к булевой функции f, если они обе принимают равное число n аргументов и справедливо равенство:

$$f^*(x_1, x_2, ..., x_n) = \overline{f(\overline{x}_1, \overline{x}_2, ..., \overline{x}_n)}$$

Примечание. Это равенство можно переписать как $\overline{f^*(x_1,...,x_n)}=f(\overline{x}_1,...,\overline{x}_n)$

Определение. Булева функция f называется самодвойственной, если она является функцией, двойственной самой себе:

$$f^* = f$$

• Монотонные (*M*) *Пусть* $a = (a_1, ..., a_n)$ и $b = (b_1, ..., b_n)$ — наборы длины n из 0 и 1.

Определение. Если справедливы неравенства¹

$$a_1 \le b_1, ..., a_n \le b_n,$$

то говорят, что набор а меньше набора в и пишут:

$$a \leq b$$
.

 $^{^{1}}$ Договоримся, что $0 \le 0, 1 \le 1, 0 \le 1.$

Определение. Если выполнено хотя бы одно из равенств: $a \le b, b \le a,$ то наборы a и b **сравнимы**.

Определение. Булева функция f называется монотонной, если для любых наборов a и b условие $a \le b$ влечет выполнение $f(a) \le f(b)$.

• Линейные (L)

Определение. Полиномами Жегалкина назваются формулы над множеством функций $F_J = \{0, 1, \wedge, \oplus\}$:

$$P(x_1, x_2, ..., x_n) = a_0 \tag{1}$$

$$\oplus a_1 X_1 \oplus a_2 X_2 \oplus a_n X_n \tag{2}$$

$$\oplus a_{12}X_{12} \oplus a_{13}X_1X_3 \oplus \cdots \oplus a_{1\dots n}X_1 \dots X_n, \tag{3}$$

 $\epsilon \partial e \ a_{i_1...i_n} - nocmoянные члены, равные 0 или 1.$

Всякую булеву функцию можно представить единственным полиномом Жегалкина.

Алгоритм построения полинома Жегалкина по СДНФ.

- ² Пусть задана совершенная ДНФ функции $f(x_1, ..., x_n)$.
 - 1. Заменяем каждый символ дизъюнкции \vee на символ дизюнкции с исключением \oplus .
 - 2. Заменяем каждую переменную с инверсией (\overline{x}) равносильной формулой $x \oplus 1$.
 - 3. Раскрываем скобки 3 .
 - 4. Вычеркиваем из формулы пары одинаковых слагаемых⁴.

²Не уверен, что это по смыслу это относится сюда, но в презентации оно дано

 $^{^{3}}$ Так, как если бы вместо конъюнкции было обычное умножение, а вместо хог'ов — обычное сложение

 $^{^4}$ Если в формуле четное число однородных слагаемых, то все уходят. Если нечетное — отсается одно

Получен полином Жегалкина функции $f(x_1, ..., x_n)$.

Определение. Функция $f(x_1,...,x_n)$ линейная, если ее многочлен Жегалкина является линейным относительно всех переменных, то есть имеет следующий вид:

$$f(x_1,...,x_n) = a_1x_1 + \cdots + a_nx_n + a_{n+1}$$

• Сохраняющие 0 (T_0)

Определение. Говорят, что булева функция **сохраняет 0**, если выполнено равенство:

$$f(0,0,...,0) = 0$$

• Сохраняющие 1 (T_1)

Определение. Говорят, что булева функция **сохраняет 1**, если выполнено равенство:

$$f(1, 1, ..., 1) = 1$$

Хотя означенные множества и называются классами, принадлежность функции к одному из них не исключает принадлежности и к другим классам.

Теорема. (Поста, о функциональной полноте) Система булевых функций F является полной тогда и только тогда, когда она целиком не принадлежит ни одному из замкнутых классов S, M, L, T_0 , T_1 .

1.6 Основная функционально полная система логических связей

Понятия не имею, чего она хочет в этом вопросе.

1.7 Теорема Жегалкина. Алгебра Жегалкина. Функции Шеффера и Пирса.

Про алгебру Жегалкина см. выше (вопрос 1.5)

1.8