

Linear Inequations Ex 15.6 Q1(v)

We have,

$$2x + 3y \le 35$$
, $y \ge 3$, $x \ge 2$, $x \ge 0$ and $y \ge 0$

Converting the inequations into equations, we get

$$2x + 3y = 35$$
, $y = 3$, $x = 2$, $x = 0$ and $y = 0$.

Region represented by $2x + 3y \le 35$:

Putting x = 0 in 2x + 3y = 35, we get $y = \frac{35}{3}$

Putting y = 0 in 2x + 3y = 35, we get $x = \frac{35}{2}$

: The line 2x + 3y = 35 meets the coordinate axes at $\left(0, \frac{35}{3}\right)$ and $\left(\frac{35}{2}, 0\right)$, joining these point by a thick line.

Now, putting x = 0 and y = 0 in $2x + 3y \le 35$, we get $0 \le 35$.

Clearly, (0,0) satisfies the inequality $2x + 3y \le 35$. So, the portion containing the origin represents the solution $2x + 3y \le 35$.

Region represented by $y \ge 3$

Clearly, y=3 is a line parallel to x-axis at a distance 3 units from the origin. Since (0,0) does not satisfies the inequation $y \ge 3$.

So, the portion not containing the origin is represented by the $y \ge 3$.

Region represented by $x \ge 2$

Clearly, x = 2 is a line parallel to y-axis at a distance of 2 units from the origin. Since (0,0) does not satisfies the inequation $x \ge 2$, so, the portion not containing the origin is represented by the given inequation.

Region represented by $x \ge 0$ and $y \ge 0$: clearly, $x \ge 0$ and $y \ge 0$ represent the first quadrant.

The common region of the above five regions represents the solution set of the given inequations as shown below.

Linear Inequations Ex 15.6 Q2(i)

We have,

$$x-2y \ge 0$$
, $2x-y \le -2$, $x \ge 0$ and $y \ge 0$

Converting the inequations into equations, we get

$$x - 2y = 0$$
, $2x - y = -2$, $x = 0$ and $y = 0$.

Region represented by $x-2y\geq 0$: Putting x=0 in x-2y=0, we get y=0Putting y=2 in x-2y=0, we get x=4

: The line x - 2y = 0 meets the coordinate axes at $\{0,0\}$, joining these point $\{0,0\}$ and $\{4,2\}$ by a thick line.

Now, putting x=0 and y=0 in $x-2y\geq 0$, we get $0\geq 0$. Clearly, we find that $\{0,0\}$ satisfies the inequation $x-2y\geq 0$. So, the portion containing the origin is represented by the given inequation.

Region represented by $2x - y \le -2$: Putting x = 0 in 2x - y = -2, we get y = 2Putting y = 0 in 2x - y = -2, we get $x = \frac{-2}{2} = -1$.

: The line 2x - y = -2 meets the coordinate axes of (0,2) and (-1,0). Joining these points by a thick line.

Now, putting x=0 and y=0 in $2x-y\le -2$, we get $0\le -2$ This is not possible. Since, (0,0) does not satisfy the portion inequation $2-y\le -2$. So, the portion not containing the origin is represented by the inequation $2x-y\le -2$.

Region represented by $x \ge 0$ and $y \ge 0$: Clearly, $x \ge 0$ and $y \ge 0$ represented the first quadrant.

******* END *******