Metric monitoring

A well-designed **metric monitoring** and alerting system plays a key role in providing clear visibility into the health of the infrastructure to ensure high availability and reliability. The diagram below explains how it works at a high level.

Metrics source: This can be application servers, SQL databases, message queues, etc.

Metrics collector: It gathers metrics data and writes data into the time-series database.

Time-series database: This stores metrics data as time series. It usually provides a custom query interface for analyzing and summarizing a large amount of time-series data. It maintains indexes on labels to facilitate the fast lookup of time-series data by labels.

Kafka: Kafka is used as a highly reliable and scalable distributed messaging platform. It decouples the data collection and data processing services from each other.

Consumers: Consumers or streaming processing services such as Apache Storm, Flink and Spark, process and push data to the time-series database.

Query service: The query service makes it easy to query and retrieve data from the time-series database. This should be a very thin wrapper if we choose a good time-series database. It could also be entirely replaced by the time-series database's own query interface.

Alerting system: This sends alert notifications to various alerting destinations.

Visualization system: This shows metrics in the form of various graphs/charts.

If you enjoyed this post, you might like our system design interview books as well.

SDI-vol1: https://amzn.to/3tK0qQn

SDI-vol2: https://amzn.to/37ZisW9

Comments

© 2023 ByteByteGo \cdot <u>Privacy</u> \cdot <u>Terms</u> \cdot <u>Collection notice</u> <u>Substack</u> is the home for great writing