Mesh Triangulation

- Triangle mesh: 2-manifold with all polygons triangles
- Any polygon can be triangulated
- Vertices co-planar
- Efficient data structures and algorithms
- Barycentric interpolation

Barycentric Coordinates

- Concept proposed by A. Möbius (1827)
- For non-collinear distinct vertices \mathbf{p}_0 , \mathbf{p}_1 , ..., \mathbf{p}_{n-1} and weights λ_0 , λ_1 , ..., λ_{n-1} vertex \mathbf{q} is **barycenter** iff

$$\mathbf{q} = \frac{\lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 + \dots + \lambda_{n-1} \mathbf{p}_{n-1}}{\lambda_0 + \lambda_1 + \dots + \lambda_{n-1}}$$

- Weights λ_i barycentric coordinates of \mathbf{q} with respect to \mathbf{p}_0 , \mathbf{p}_1 , ..., \mathbf{p}_{n-1}
- Note: $k\lambda_0$, $k\lambda_1$, ..., $k\lambda_{n-1}$, $k \neq 0$ also barycentric coordinates of ${\bf q}$

Barycentric Coordinates

- Typical to employ **normalized barycentric coordinates** $\lambda_0 + \lambda_1 + \cdots + \lambda_{n-1} = 1$
- Note: for $\mathbf{q} = \mathbf{p}_i$ we have $\lambda_i = 1$ and $\lambda_{j \neq i} = 0$
- Example: barycentric coordinates on a line

$$\mathbf{q} = \lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 = \lambda_0 \mathbf{p}_0 + (1 - \lambda_0) \mathbf{p}_1$$

Computer Graphics – SS2015

10

Barycentric Coordinates in Triangles

 \blacksquare Barycentric coordinates of vertex ${\bf q}$ in triangle given by vertices ${\bf p}_0,\,{\bf p}_1,\,{\bf p}_2$

$$\mathbf{q} = \lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 + \lambda_2 \mathbf{p}_2$$
$$= \lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 + (1 - \lambda_0 - \lambda_1) \mathbf{p}_2$$

@igs

Computer Graphics – SS2015

25

Barycentric Coordinates in Triangles

- Normalized barycentric coordinates unique in triangle
- In triangles also known as areal coordinates
- Directly related to ratio of (signed) areas of subtriangles formed by q to total triangle area

Barycentric Coordinates in Triangles

- Vertex ${f q}$ inside triangle iff barycentric coordinates $\lambda_i>0$
- Vertex ${\bf q}$ at centroid iff $\lambda_0=\lambda_1=\lambda_2=1/3$
- Vertex ${\bf q}$ on line, e.g. between ${\bf p}_0$ and ${\bf p}_2$ iff $\lambda_{_{\! 1}}=0$

Barycentric Interpolation

- Barycentric coordinates useful for linear interpolation of function f over triangle area (e.g. during shading)
- Assume function values at triangle vertices

$$f(\mathbf{p}_i) = \mathbf{f}_i, \quad i = 0,1,2$$

Interpolation function

$$g(\mathbf{x}) = \lambda_0 \mathbf{f}_0 + \lambda_1 \mathbf{f}_1 + \lambda_2 \mathbf{f}_2$$

with barycentric coordinates λ_0 , λ_1 , λ_2 of vertex ${\bf x}$

Note: interpolation also possible outside of triangle

Computer Graphics - SS2015

Stored Properties in Data Structure

- Geometry: vertex coordinates
- Topology: faces, adjacency relationships
- Attributes: normals, colors, texture coordinates

