Оглавление

1	21.03.2018, математический анализ	2
	1.0.1 Приложения разложений функций в ряд Маклорена	4
2	28.03.2018, математический анализ	5
	2.0.1 Тригонометрические ряды Фурье	5
3	11.04.2018, математический анализ	7
	3.0.1 Уравнение в полных дифференциалах	7
	3.1 Линейное уравнение первого порядка	7
4	18.04.2018, математический анализ	8
	4.0.1 Уравнение Бернулли	8
5	25.04.2018, математический анализ	9
	5.0.1 Линейные дифференциальные уравнения с постоянными коэффициентами	9
6	16.05.2018, математический анализ	10
	6.0.1 Линейные дифференциальные уравнения с постоянными коэффициентами	10
	6.0.2 Системы линейных дифференциальных уравнений с постоянными коэффициентами	11
7	23.05.2018, математический анализ	12
	7.0.1 Неоднородные системы	12
	7.1 Приближённое решение дифференциальных уравнений	13
	7.1.1 Решение с помощью степенного ряда	13
	7.1.2 Метод Эйлера	14
	7.1.3 Графический метод	14

21.03.2018, математический анализ

Найдём радиус сходимости ряда $\sum\limits_{k=0}^{\infty}\frac{x^k}{k^p} :$

$$R = \lim_{n \to \infty} \frac{\frac{1}{n^p}}{\frac{1}{(n+1)^p}} = \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^p = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^p = 1$$

Подставим x=1, тогда $\sum\limits_{k=0}^{\infty}\frac{1}{k^{p}}$ сходится при p>1 и расходится при $p\leqslant 1.$

Подставим x=-1, тогда $\sum\limits_{k=0}^{\infty} \frac{(-1)^k}{k^p}$ сходится абсолютно при p>1, сходится условно при $0< p\leqslant 1$ и расходится при $p\leqslant 0$.

Утверждение 1.0.1. Если $\sum_{k=0}^{\infty} c_k x^k = S(x)$ при |x| < R, то

$$1. \int\limits_{a}^{b} S(x) \, dx = \sum_{k=0}^{\infty} c_k \int\limits_{a}^{b} x^k \, dx$$
, где $|a|, |b| < R$

2.
$$(S(x))^{(n)} = \sum_{k=0}^{\infty} c_k(x^k)^{(m)}$$
, где $|x| < R$

Связь суммы ряда и его коэффициентов:

1.
$$c_0 = S(0)$$

2.
$$c_1 = S'(0)$$

3.
$$c_2 = \frac{S''(0)}{2}$$

4.
$$c_3 = \frac{S'''(0)}{3!}$$

5.
$$c_k = \frac{S^{(k)}(0)}{k!}$$

Т. о.,
$$S(x) = \sum_{k=0}^{\infty} \frac{S^{(k)}(0)}{k!} x^k$$
 при $|x| < R$.

Рассмотрим ряд $\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$.

$$R = \lim_{n \to \infty} \frac{\left| \frac{f^{(n)}(0)}{n!} \right|}{\left| \frac{f^{(n+1)}(0)}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{|f^{(n)}(0)|(n+1)}{|f^{(n+1)}(0)|}$$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \frac{f^{(n+1)}(\Theta x)}{(n+1)!} x^{n+1}$$

Тогда $f(x)=\sum_{k=0}^{\infty}rac{f^{(k)}(0)}{k!}\,x^k$ при $\lim_{n o\infty}rac{f^{(n+1)}(\Theta x)}{(n+1)!}\,x^{n+1}=0.$

Разложение некоторых функций:

1.
$$f(x) = e^x$$
. Для $\sum_{k=0}^{\infty} \frac{x^k}{k!}$

$$R = \lim_{n \to \infty} (n+1) = \infty$$

$$r_n = \frac{e^{\Theta x}}{(n+1)!} x^{n+1} < \frac{e^{|x|}}{(n+1)!} |x|^{n+1} \& \lim_{n \to \infty} \frac{e^{|x|}}{(n+1)!} |x|^{n+1} = 0 \Rightarrow \lim_{n \to \infty} \frac{e^{\Theta x}}{(n+1)!} x^{n+1} = 0$$

Тогда при $x \in \mathbb{R}$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

2.
$$f(x) = \sin x$$
. Для $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)!} x^{2k-1}$

$$R = \lim_{n \to \infty} \frac{\frac{1}{(2n-1)!}}{\frac{1}{(2n+1)!}} = \lim_{n \to \infty} 2n(2n+1) = \infty$$

$$r_n = \frac{|x|^{2n+1}}{(2n+1)!} \left| \sin \left(\Theta x + \frac{\pi}{den} \right) < \frac{|x|^{2n+1}}{(2n+1)!} \, \& \lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} = 0 \Rightarrow \lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} \left| \sin \left(\Theta x + \frac{\pi}{den} \right) = 0 \right| = 0$$

Тогда при $x \in \mathbb{R}$

$$\sin x = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)!} x^{2k-1}$$

3.
$$f(x) = \cos x$$
. Для $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$

$$R = \lim_{n \to \infty} \frac{\frac{1}{(2n)!}}{\frac{1}{(2n+2)!}} = \lim_{n \to \infty} (2n+1)(2n+2) = \infty$$

$$r_n = \frac{|x|^{2n+1}}{(2n+1)!} \left| \cos \left(\Theta x + \frac{\pi}{den} \right) < \frac{|x|^{2n+1}}{(2n+1)!} \, \& \lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} = 0 \Rightarrow \lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} \left| \cos \left(\Theta x + \frac{\pi}{den} \right) = 0 \right| = 0$$

Тогда при $x \in \mathbb{R}$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$

4.
$$f(x)=(1+x)^{\alpha}$$
 при $\alpha\notin\mathbb{N}$. Для $\sum\limits_{k=1}^{\infty}\frac{\alpha(\alpha-1)\cdot\ldots\cdot(\alpha-k+1)}{k!}\,x^k$

$$R = \lim_{k \to \infty} \frac{|\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - k + 1)|(k + 1)!}{k!|\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - k)|} = \lim_{k \to \infty} \frac{k + 1}{|\alpha - k|} = 1$$

$$r_n = \frac{\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - n)(1 + \Theta x)^{\alpha - n - 1}}{(n + 1)!} x^{n + 1} = \frac{\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - n)}{(n + 1)!} \cdot \frac{x^{n + 1}}{(1 + \Theta x)^{n + 1 - \alpha}}$$

Если $x \in [0;1)$ $|r_n(x)| \leqslant M \cdot \frac{x^{n+1}}{1} \Rightarrow \lim_{n \to \infty} r_n(x) = 0.$

Тогда при $x \in (-1;1)$

$$(1+x)^{\alpha} = \sum_{k=1}^{\infty} \frac{\alpha(\alpha-1) \cdot \ldots \cdot (\alpha-k+1)}{k!} x^{k}$$

1.0.1 Приложения разложений функций в ряд Маклорена

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots, |x| < 1$$
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots, |x| < 1$$

Тогда при |x| < 1

$$\ln(1+x) = \int_0^x \frac{dt}{1+t} = \int_0^x \sum_{k=0}^\infty (-1)^k t^k dt = \sum_{k=0}^\infty \frac{(-1)^k t^{k+1}}{k+1} = \sum_{k=1}^\infty \frac{(-1)^{k-1} x^k}{k}$$
$$\operatorname{arctg} x = \int_0^x \frac{dt}{1+t^2} = \int_0^x \sum_{k=0}^\infty (-1)^k t^{2k} dt = \sum_{k=0}^\infty (-1)^k \cdot \frac{x^{2k+1}}{2k+1}$$

28.03.2018, математический анализ

2.0.1 Тригонометрические ряды Фурье

Представим функцию f(x) на отрезке $\left[-\frac{T}{2}; \frac{T}{2}\right]$ в виде

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_n \cos \frac{2\pi n}{T} x + \sum_{k=1}^{\infty} b_n \sin \frac{2\pi n}{T} x$$

Скалярным произведением функций f(x) и g(x) называется $\langle f(x),g(x)\rangle=\int\limits_{-\frac{T}{2}}^{\frac{T}{2}}f(x)g(x)\,dx.$

Проверим, что функции 1, $\cos \frac{2\pi n}{T} \, x$ и $\sin \frac{2\pi n}{T} \, x$ попарно ортогональны:

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi n}{T} x \, dx = \frac{T}{2\pi n} \sin \frac{2\pi n}{T} x \Big|_{-\frac{T}{2}}^{\frac{T}{2}} = 0$$

$$\oint_{-\frac{T}{2}}^{\frac{T}{2}} \sin \frac{2\pi n}{T} x \, dx = -\frac{T}{2\pi n} \cos \frac{2\pi n}{T} x \Big|_{-\frac{T}{2}}^{\frac{T}{2}} = 0$$

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi m}{T} x \cos \frac{2\pi n}{T} x dx = \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi (m-n)}{T} x + \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi (m+n)}{T} x = 0, \ m \neq n$$

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin \frac{2\pi m}{T} x \sin \frac{2\pi n}{T} x dx = \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi (m-n)}{T} x - \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi (m+n)}{T} x = 0, \ m \neq n$$

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi m}{T} x \sin \frac{2\pi n}{T} x dx = \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin \frac{2\pi (m+n)}{T} x + \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin \frac{2\pi (m-n)}{T} x = 0$$

Найдём квадраты этих функций:

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} 1^2 \, dx = T$$

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos^2 \frac{2\pi n}{T} x \, dx = \frac{T}{2}$$

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin^2 \frac{2\pi n}{T} x \, dx = \frac{T}{2}$$

Тогда можно найти коэффициенты:

•
$$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos \frac{2\pi k}{T} x \, dx$$

•
$$b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin \frac{2\pi k}{T} x dx$$

Причём если f(x) чётна, то $b_k=0$. Если же f(x) нечётна, то $a_k=0$.

11.04.2018, математический анализ

3.0.1 Уравнение в полных дифференциалах

Уравнением в полных дифференциалах называется уравнение вида $y' = -\frac{M(x,y)}{N(x,y)}$. Если $M_y' = N_x'$, то $M(x,y) = F_x' \ \& \ N(x,y) = F_y'$, тогда

$$y' = -\frac{M(x,y)}{N(x,y)} \Leftrightarrow M(x,y) dx + N(x,y) dy = 0 \Leftrightarrow dF(x,y) = 0 \Leftrightarrow F(x,y) = C$$

Пусть $M_y' \neq N_x'$, но $\exists \mu(x,y) \colon (\mu \cdot M)_y' = (\mu \cdot N)_x'$, тогда

$$M(x,y)\,dx + N(x,y)\,dy = 0 \Leftrightarrow \mu(x,y)M(x,y)\,dx + \mu(x,y)N(x,y)\,dy = 0 \Leftrightarrow dF(x,y) = 0 \Leftrightarrow F(x,y) = C(x,y) = 0$$

 $\mu(x,y)$ называется **интегрирующим множителем**.

3.1 Линейное уравнение первого порядка

Линейным дифференциальным уравнением первого порядка называется уравнение вида y' = a(x)y + b(x).

Рассмотрим метод вариации произвольной постоянной.

1. Решим уравнение

$$y_0' = a(x)y_0 \Leftrightarrow \frac{dy_0}{y_0} = a(x) dx \Rightarrow \ln y_0 = \varphi(x) + \ln C \Rightarrow y_0 = Ce^{\varphi(x)}$$

2. Подставим $y = C(x)e^{\varphi(x)}$ в исходное уравнение:

$$C'(x)e^{\varphi(x)}+C(x)e^{\varphi(x)}\varphi'(x)=a(x)C(x)e^{\varphi(x)}+b(x)$$

 $y_0 = Ce^{arphi(x)} \Rightarrow Ce^{arphi(x)} arphi'(x) = a(x) Ce^{arphi(x)}$, тогда получим

$$C'(x)e^{\varphi(x)} = b(x) \Leftrightarrow C'(x) = b(x)e^{-\varphi(x)} \Leftrightarrow C(x) = \int b(x)e^{-\varphi(x)}$$

Тогда $y = C(x)e^{\varphi(x)}$.

18.04.2018, математический анализ

4.0.1 Уравнение Бернулли

Уравнением Бернулли называется уравнение вида $y'=a(x)y+b(x)y^n$, где $n\neq 1$. Пусть $\frac{1}{u^{n-1}}=z$, тогда

$$y' = a(x)y + b(x)y^n \Leftrightarrow \frac{y'}{y^n} = a(x)y^{1-n} + b(x) \Leftrightarrow \frac{z'}{1-n} = a(x)z + b(x)$$

Т. о., решение уравнения Бернулли сводится к решению линейного уравнения.

Теорема 4.0.1. Пусть y'(x) = f(x, y(x)) & $y(x_0) = y_0$, причём в некоторой окрестности $\exists M > 0 \colon |f(x, y_1) - f(x, y_2)| \leqslant M|y_1 - y_2|$, тогда уравнение имеет единственное решение в окрестности $(x_0 - d; x_0 + d) \colon y(x) = \int_{x_0}^x f(x, y(x)) dx + y_0$.

Это уравнение можно решить методом итераций:

$$y_1(x) = \int_{x_0}^x f(x, y_0) dx + y_0$$
$$y_n(x) = \int_{x_0}^x f(x, y_{n-1}(x)) dx + y_0$$

Доказательство.

$$y_n(x) - y_{n-1}(x) = \int_{x_0}^x (f(x, y_{n-1}(x)) - f(x, y_{n-2}(x))) dx$$

 $|\int\limits_{a}^{b}g(x)\,dx|\leqslant |b-a|\max_{x\in[a;b]}|g(x)|$, тогда

$$\max_{|x-x_0| < d} |y_n(x) - y_{n-1}(x)| \leqslant d \max_{|x-x_0| < d} |f(x, y_{n-1}(x)) - f(x, y_{n-2}(x))| \leqslant dM \max_{|x-x_0| < d} |y_{n-1}(x) - y_{n-2}(x)|$$

Пусть q = dM < 1, тогда

$$\max_{|x-x_0| < d} |y_n(x) - y_{n-1}(x)| \leqslant q \max_{|x-x_0| < d} |y_{n-1}(x) - y_{n-2}(x)| \leqslant q^{n-1} \max_{|x-x_0| < d} |y_1(x) - y_0|$$

Тогда

$$\forall k \geqslant 1 \max_{x \in [a;b]} |y_{n+k}(x) - y_n(x)| = \max_{|x - x_0| < d} |(y_{n+k}(x) - y_{n+k-1}(x)) + (y_{n+k-1}(x) + y_{n+k-2}(x)) + \ldots + (y_{n+1}(x) - y_n(x))| \leqslant \max_{|x - x_0| < d} |y_{n+k}(x) - y_n(x)|$$

По признаку Коши получим

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall n > N \ \forall k \geqslant 1 \ \max_{x \in [a;b]} |y_{n+k}(x) - y_n(x)| < \varepsilon \Rightarrow \exists \lim_{n \to \infty} y_n(x) = \tilde{y}(x)$$

Докажем единственность:

$$|y(x) - \tilde{y}(x)| = |\int_{x_0}^x (f(x, y(x)) - f(x, \tilde{y}(x))) \, dx| \Rightarrow \max_{|x - x_0| < d} |y(x) - \tilde{y}(x)| \leqslant |x - x_0| \cdot \max_{|x - x_0| < d} |f(x, y(x)) - f(x, \tilde{y}(x))| < dM \max_{|x - x_0| < d} |y(x) - \tilde{y}(x)|$$

Противоречие, значит, решение единственно. ■

25.04.2018, математический анализ

Рассмотрим F(y,y',y'')=0. Пусть y'(x)=z(y), тогда $y''(x)=\frac{dy'}{dx}=\frac{dy'}{dy}\cdot\frac{dy}{dx}=z'\cdot z$ и $F(y,y',y'')=0\Leftrightarrow F(y,z,z'\cdot z)=0$.

5.0.1 Линейные дифференциальные уравнения с постоянными коэффициентами

Линейным дифференциальным уравнением n-го порядка называется уравнение вида $y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = f(x)$.

Введём функции $y_0 = y, y_1 = y', \dots, y_{n-1} = y^{(n-1)}$, тогда

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = f(x) \Leftrightarrow \begin{cases} y'_0 = y_1 \\ y'_1 = y_2 \\ \ldots \\ y'_{n-1} = f(x) - a_0y_0 - a_1y_1 - \ldots - a_{n-1}y_{n-1} \end{cases}$$

$$\begin{vmatrix} 0 \\ 0 \\ \dots \\ f(x) \end{vmatrix}$$

Уравнение можно решить методом итераций: $Y_k(x) = Y_0 + \int\limits_{x_0}^x (AY_{k-1}(t) + F(t)) dt.$

Определителем Вронского, или вронскианом, называется определитель

$$\begin{vmatrix} \tilde{y}_0(x_0) & \tilde{y}_1(x_0) & \dots & \tilde{y}_{n-1}(x_0) \\ \tilde{y}'_0(x_0) & \tilde{y}'_1(x_0) & \dots & \tilde{y}'_{n-1}(x_0) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \tilde{y}_0^{(n-1)}(x_0) & \tilde{y}_1^{(n-1)}(x_0) & \dots & \tilde{y}_{n-1}^{(n-1)}(x_0) \end{vmatrix}$$

где $\tilde{y}_1,\ldots,\tilde{y}_n$ — частные решения уравнения.

Утверждение 5.0.1. *Если решения* $\tilde{y}_0, \dots, \tilde{y}_{n-1}$

16.05.2018, математический анализ

Пусть дифференциальному уравнению $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = 0$ соответствует характеристическое уравнение $k^n + a_{n-1}k^{n-1} + \ldots + a_1k + a_0 = 0$.

Доказательство. $y'' + a_1 y' + a_0 y = 0$

Пусть $k_1=k_2$, тогда $k_1^2+a_1k_1+a_0=0$ & $2k_1+a_1=0$. Подставим $y=C_1e^{k_1x}+C_2xe^{k_1x}$:

$$e^{k_1x}(C_1k_1^2 + 2C_2k_1 + C_2xk_1^2 + C_1a_1k_1 + C_2a_1 + C_2a_1k_1x + C_1a_0 + C_2a_0x) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2(2k_1 + a_1) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2x(k_1^2 + a_1k_1 + a_0) + C_2x(k_1^2 + a_1k_1 + a_0) = 0 \\ \Leftrightarrow C_1(k_1^2 + a_1k_1 + a_0) + C_2x(k_1^2 + a_0) + C_2x(k_1^2$$

Пусть $k_1=\alpha+i\beta,\,k_2=\alpha-i\beta,\,$ тогда, используя $e^{it}=\cos t+i\sin t,\,$ получим

$$y(x) = C_{10}e^{(\alpha+i\beta)x} + C_{20}e^{(\alpha-i\beta)x} = e^{\alpha x}(C_{10}e^{i\beta x} + C_{20}e^{-i\beta x}) = e^{\alpha x}((C_{10} + C_{20})\cos\beta x + i(C_{10} - C_{20})\sin\beta x) = e^{\alpha x}(C_{1}\cos\beta x + C_{2}\sin\beta x) = e^{\alpha x}(C_{10}e^{i\beta x} + C_{20}e^{-i\beta x}) = e^{\alpha x}(C_{10}$$

6.0.1 Линейные дифференциальные уравнения с постоянными коэффициентами

Рассмотрим следующие методы решения уравнений вида $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = f(x)$.

Метод вариации произвольных постоянных

- 1. Найдём решение $y_0 = C_1 \tilde{y}_1 + C_2 \tilde{y}_2 + \ldots + C_n \tilde{y}_n$ уравнения $y_0^{(n)} + a_{n-1} y_0^{(n-1)} + \ldots + a_1 y_0' + a_0 y_0 = 0$.
- 2. Решением исходного уравнения будет $y(x) = C_1(x)\tilde{y}_1 + \ldots + C_n(x)\tilde{y}_n$.
- 3. Найдём $C_1(x), \ldots, C_n(x)$, решая систему

$$\begin{cases} C'_1(x)\tilde{y}_1 + \dots + C'_n(x)\tilde{y}_n = 0 \\ C'_1(x)\tilde{y}'_1 + \dots + C'_n(x)\tilde{y}'_n = 0 \\ C'_1(x)\tilde{y}''_1 + \dots + C'_n(x)\tilde{y}''_n = 0 \\ \dots \\ C'_1(x)\tilde{y}_1^{(n-1)} + \dots + C'_n(x)\tilde{y}_n^{(n-1)} = f(x) \end{cases}$$

и интегрируя $C'_1(x), \ldots, C'_n(x)$.

Доказательство. Пусть дано уравнение $y'' + a_1 y' + a_0 = f(x)$ и $y_0(x) = C_1 \tilde{y}_1 + C_2 \tilde{y}_2$, тогда

$$y(x) = C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2$$
$$y'(x) = C'_1(x)\tilde{y}_1 + C_1(x)\tilde{y}'_1 + C'_2(x)\tilde{y}_2 + C_2(x)\tilde{y}'_2$$
$$y''(x) = C''_1(x)\tilde{y}_1 + 2C'_1\tilde{y}'_1 + C_1(x)\tilde{y}''_1 + C''_2(x)\tilde{y}_2 + 2C'_2\tilde{y}'_2 + C_2(x)\tilde{y}''_2$$

Подставим в уравнение:

$$C_1''(x)\tilde{y}_1 + 2C_1'\tilde{y}_1' + C_1(x)\tilde{y}_1'' + C_2''(x)\tilde{y}_2 + 2C_2'\tilde{y}_2' + C_2(x)\tilde{y}_2'' + a(C_1'(x)\tilde{y}_1 + C_1(x)\tilde{y}_1' + C_2'(x)\tilde{y}_2 + C_2(x)\tilde{y}_2') + b(C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2) = f(x) \Leftrightarrow C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2 + C_2(x)\tilde{y}_2' + C$$

Решим систему

$$\begin{cases} C_1'(x)\tilde{y}_1 + C_2'(x)\tilde{y}_2 = 0\\ C_1'(x)\tilde{y}_1' + C_2'(x)\tilde{y}_2' = f(x) \end{cases}$$

тогда

$$C_1''(x)\tilde{y}_1 + C_1'\tilde{y}_1' + C_2''(x)\tilde{y}_2 + C_2'\tilde{y}_2' = 0$$

Подставляя в уравнение, получим f(x) = f(x).

Метод неопределённых коэффициентов

Уравнение $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = f(x)$ можно решить методом неопределённых коэффициентов, если

$$f(x) = \sum_{j} e^{\alpha_j x} (P_j(x) \cos \beta_j x + Q_j(x) \sin \beta_j x)$$

Тогда решение имеет вид

$$\sum_{j} e^{\alpha_j x} (T_j(x) \cos \beta_j x + R_j(x) \sin \beta_j x) x^{s_j}$$

где s_j — кратность корня.

6.0.2 Системы линейных дифференциальных уравнений с постоянными коэффициентами

Решим систему

$$\begin{cases} y_1' = ay_1 + by_2 \\ y_2' = cy_1 + dy_2 \end{cases}$$

$$y_1'' = ay_1' + by_2' \Rightarrow y_1'' = ay_1' + b(cy_1 + dy_2) \Rightarrow y_1'' = ay_1' + bcy_1 + d(y_1' - ay_1) \Rightarrow y_1'' = (a+d)y_1' + (bc-ad)y = 0$$

Т. о., система свелась к уравнению.

23.05.2018, математический анализ

$$\begin{cases} y_1' = ay_1 + by_2 \\ y_0' = cy_1 + dy_2 \end{cases}$$

Известно, что $y_1 = Le^{kx}$, $y_2 = Me^{kx}$, тогда

$$\begin{cases} Lk = aL + bM \\ Mk = cL + dM \end{cases} \Leftrightarrow \begin{cases} L(a-k) + Mb = 0 \\ Lc + M(d-k) = 0 \end{cases}$$

Если $\begin{vmatrix} a-k & b \\ c & d-k \end{vmatrix} \neq 0$, то получим единственное решение — нулевое. Тогда

$$(a-k)(d-k) - bc = 0 \Leftrightarrow k^2 - k(a+d) + ad - bc = 0$$

Получили характеристическое уравнение.

Решим системы

$$\begin{cases} L(a - k_i) + Mb = 0\\ Lc + M(d - k_i) = 0 \end{cases}$$

где $k_i - i$ -й корень характеристического уравнения, причём в каждой системе одно из уравнений можно убрать, т. к. главный определитель равен нулю. Возьмём частные решения $(L_1, M_1), (L_2, M_2)$, тогда

$$y_1 = C_1 L_1 e^{k_1 x} + C_2 L_2 e^{k_2 x}$$
$$y_0 = C_1 M_1 e^{k_1 x} + C_2 M_2 e^{k_2 x}$$

7.0.1 Неоднородные системы

$$\begin{cases} y_1' = ay_1 + by_2 + f_1 \\ y_2' = cy_1 + dy_2 + f_2 \end{cases}$$

Решая соответствующую однородную систему, получим

$$y_1 0 = C_1 \tilde{y}_1 + C_2 \tilde{y}_2$$

$$y_2 0 = D_1 \tilde{y}_1 + D_2 \tilde{y}_2$$

где D_1 и D_2 линейно связаны с C_1 и C_2 сооветственно. Тогда

$$y_1 = C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2$$

 $y_2 = D_1(x)\tilde{y}_1 + D_2(x)\tilde{y}_2$

Подставляя в систему, получим

$$\begin{cases} C_1'(x)\tilde{y}_1 + C_2'(x)\tilde{y}_2 + C_1(x)\tilde{y}_1' + C_2(x)\tilde{y}_2' = a(C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2) + b(D_1(x)\tilde{y}_1 + D_2(x)\tilde{y}_2) + f_1(x) \\ D_1'(x)\tilde{y}_1 + D_2'(x)\tilde{y}_2 + D_1(x)\tilde{y}_1' + D_2(x)\tilde{y}_2' = c(C_1(x)\tilde{y}_1 + C_2(x)\tilde{y}_2) + d(D_1(x)\tilde{y}_1 + D_2(x)\tilde{y}_2) + f_2(x) \end{cases} \Leftrightarrow \begin{cases} C_1'(x)\tilde{y}_1 + C_2'(x)\tilde{y}_2 = f_1(x)\tilde{y}_1 + f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 - f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 + f_2(x)\tilde{y}_2 - f_2$$

Решая, получим $C'_1(x)$ и $C'_2(x)$, откуда найдём $C_1(x)$ и $C_2(x)$.

7.1 Приближённое решение дифференциальных уравнений

7.1.1 Решение с помощью степенного ряда

Рассмотрим уравнение $y^{(n)} = F(x, y, y', \dots, y^{(n-1)})$ с начальными условиями $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$. Найдём его решение в окрестности точки x_0 :

$$y(x) = y_0 + y_1(x - x_0) + \frac{y_2}{2!}(x - x_0)^2 + \ldots + \frac{y^{(n-1)}}{(n-1)!}(x - x_0)^{n-1} + \frac{F(x_0, y_0, y_1, \ldots, y_{n-1})}{n!}(x - x_0)^n + c_{n+1}(x - x_0)^{n+1} + \ldots$$

Неизвестные коэффициенты можно определить подстановкой в исходное уравнение или его дифференцированием и подстановкой начальных условий.

7.1.2 Метод Эйлера

$$y_{k+1} = y_k + f(x_k, y_k)(x_{k+1} - x_k)$$

Можно улучшить точность:
$$y_{k+1} = y_k + f($$

Метод приближённого решения дифференциального уравнения высшего порядка заключается в его сведении к системе линейных уравнений.

7.1.3 Графический метод

Приближённые решения уравнения вида y' = f(x,y) можно получить графическим методом, находя изоклины — линии, на которых производная функции не меняет значение. По ним можно получить представление о том, какую форму имеет кривая.

Рассмотрим динамическую систему

$$\begin{cases} \dot{x} = f(x, y, t) \\ \dot{y} = g(x, y, t) \end{cases}$$

Если $\begin{cases} f(a,b,t)=0 \\ g(a,b,t)=0 \end{cases}$, то (a,b) называется **точкой покоя**, или **положением равновесия**.

Исследуем систему

$$\begin{cases} \dot{x} = ax + by \\ \dot{y} = cx + dy \end{cases}$$

Для неё (0,0) — точка покоя.

Решая уравнение $\begin{vmatrix} a-k & b \\ c & d-k \end{vmatrix} = 0$, получим корни k_1 и k_2 .

Тогда

1. Если $k_1, k_2 \in \mathbb{R}$, то

$$x = C_1 e^{k_1 t} + C_2 e^{k_2 t} y = C_1 \frac{k_1 - a}{b} e^{k_1 t} + C_2 \frac{k_2 - a}{b} e^{k_2 t}$$

- ullet Если $k_1,k_2<0,$ то (0,0) устойчивый узел.
- Если $k_1, k_2 > 0$, то (0,0) неустойчивый узел.
- Если $k_1 < 0 < k_2$, то (0,0) седло.
- 2. Если $k_{1,2} = \alpha \pm i\beta$, то

$$\begin{cases} x = C_1 e^{\alpha t} \cos \beta t + C_2 e^{\alpha t} \sin \beta t \\ y = \left(\frac{\alpha - a}{b} C_1 + \frac{\beta}{b} C_2\right) e^{\alpha t} \cos \beta t + C_2 e^{\alpha t} \sin \beta t \end{cases}$$

- Если $\alpha < 0$, то (0,0) устойчивый фокус.
- Если $\alpha > 0$, то (0,0) неустойчивый фокус.
- Если $\alpha = 0$, то (0,0) центр.
- 3. Если $k_1 = k_2 = \alpha \in R$, то

x =