Name: Key

Question 1

Consider the reaction: $C(s) + H_2O(g) \implies CO(g) + H_2(g)$ $K_C = 5.63 \times 10^{-4}$

Give the equilibrium concentrations of all species if excess C(s) is places in a chamber with $[H_2O(g)] = 0.250 M$

I	0.250 M	Ø	Ø
C	_X	+*	+ X
E	0.250-x	1	*

$$5.63.10^{-24} = \frac{\chi^{2}}{0.250 - \chi} = \frac{\chi^{2}}{0.250 - \chi} = \frac{\chi^{2}}{0.250} = \frac{\chi^$$

Question 2

Consider the reaction: $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$ $K_C = 0.0160$ An amount of pure $PCl_5(g)$ is placed in an empty chamber. After equilibrium is reached, the position of pure $PCl_5(g)$ is placed in an empty chamber.

An amount of pure $\mathrm{PCl_5}(g)$ is placed in an empty chamber. After equilibrium is reached, the product concentrations are measured as: $\left[\mathrm{PCl_3}\right] = \left[\mathrm{Cl_2}\right] = 0.0134~M$

What are the initial and equilibrium concentrations of PCl₅?

I	X	0	0
(-0.0134	+0.0134	to.0132
E	X-0.01324	0.0134	0.0134

$$0.0160 = \frac{0.0134 \cdot 0.0134}{\chi - 0.0134}$$

$$0.0160 \cdot \chi - \lambda.14 \cdot 10^{-4} = 1.4\% \cdot 10^{-4}$$

$$\chi = 0.0246$$

Question 3

Consider the reaction: $Cl_2(g) + Br_2(g) \implies 2 BrCl(g)$ $K_C = 7.20$

Find the equilibrium concentrations if a chamber is charged with 0.500 mol Br₂(g) and 0.0500 mol BrCl and the reaction is allowed to reach equilibrium

i	Ŧ	0	0.5	0.05
_	C	+X	+1	-7x
	E	X	0.5+x	0-05 - 2X
	V	7	J. V. C	2507-10 0406 males

$$7.2 = \frac{(0.05-2x)^{2}}{x.(0.5+x)}$$

LASSIAME x is small

2x is only 2-8% of 0-05!

V.[cla] = 6-94.10-7 moles / V.[Brce] = 0-0486 moles

V-[05]= 0.501 moles