ПАРНАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ

Парная линейная регрессия — регрессионная зависимость между двумя переменными y и x, т. е. модель вида y = a + bx + e, где y — отклик, x — фактор, e — случайная «остаточная» компонента.

Далее рассмотрим алгоритм вычисления для случая парной линейной регрессии.

1. Выбор формы модели

На этом этапе по исходным статистическим данным выбирается наиболее подходящая модель, т. е. уравнение регрессии. Этот выбор может быть осуществлен тремя способами:

- Графическим
 - На координатной плоскости строят точки с координатами (x, y), по расположению которых предполагают наличие зависимости определенного вида. Такое изображение статистической зависимости называется ∂u аграммой рассеяния.
- Аналитическим, т. е. исходя из теории изучаемой взаимосвязи
- Экспериментальным

2. Вычисление коэффициентов (параметров) регрессионной модели

Для оценки параметров используется *метод наименьших квадратов* (МНК), согласно которому неизвестные параметры a и b выбираются таким образом, чтобы сумма квадратов отклонений фактических значений отклика y от прогнозных (полученных по уравнению регрессии) y была минимальна, t. e.

$$\sum (y - y)^2 \to \min.$$

Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю. Обозначим:

$$\sum (y-y)^2 = \sum (y-a-bx)^2 = S(a,b)$$
. Тогда,

$$\begin{cases} \frac{\partial S}{\partial a} = \sum (2(y - a - bx)(-1)) = 0\\ \frac{\partial S}{\partial b} = \sum (2(y - a - bx)(-x)) = 0 \end{cases} \Rightarrow \begin{cases} \sum (-2y + 2a + 2bx) = 0\\ \sum (-2yx + 2ax + 2bx^2) = 0 \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} -2\sum y + 2na + 2b\sum x = 0 \\ -2\sum yx + 2a\sum x + 2b\sum x^2 = 0 \end{cases} \Rightarrow \begin{cases} Na + b\sum x = \sum y \\ a\sum x + b\sum x^2 = \sum yx \end{cases}$$

Делим обе части уравнений системы на N (объем выборки). Получим:

$$\begin{cases} a+b\overline{x}=\overline{y} \\ -\overline{ax}+b\overline{x^2}=\overline{xy} \end{cases} \Rightarrow \begin{cases} a=\overline{y}-b\overline{x} \\ b=\overline{y}-\overline{y}-\overline{y}-\overline{x} \\ b=\overline{x}^2-\left(\overline{x}\right)^2 \end{cases}.$$

Формально a — значение y при x = 0. Если фактор x не имеет и не может иметь нулевого значения, то такая трактовка параметра a не имеет смысла. Этот параметр может и не иметь экономического содержания. Попытки экономически интерпретировать параметр a могут привести к абсурду, особенно при a < 0.

Интерпретировать можно лишь знак при параметре a. $Ecлu \ a > 0$, то относительное

изменение отклика происходит медленнее, чем изменение фактора.

Коэффициент b называется коэффициентом регрессии и показывает среднее изменение отклика при изменении фактора на одну единицу.

3. Оценка значимости коэффициента регрессии

Используется t-критерий Стьюдента. Выдвигается гипотеза H_0 : b=0 об отсутствии влияния фактора на отклик. Вычисляется фактическое значения t-критерия:

$$t_b = \frac{|b|}{SE_b},$$

где SE_b - cmandapmnas ouu б к a, вычисляемая по формуле:

$$SE_b = \sqrt{\frac{\sum \left(y-y\right)^2}{(N-1)\cdot (N-2)\cdot \sigma_x^2}} = \left|\text{остатки } e_i = y_i - y_i\right| = \sqrt{\frac{\sum e_i^2}{(N-1)\cdot (N-2)\cdot \sigma_x^2}} \ .$$

Стандартные отклонения для фактора и отклика вычисляются по формулам:

$$\sigma_{\scriptscriptstyle X} = \sqrt{\frac{\sum \left(x_i - \overline{x}\right)^2}{N-1}} = \sqrt{\frac{N}{N-1} \cdot \left(\overline{x^2} - \left(\overline{x}\right)^2\right)} \ \text{и} \ \sigma_{\scriptscriptstyle Y} = \sqrt{\frac{\sum \left(y_i - \overline{y}\right)^2}{N-1}} = \sqrt{\frac{N}{N-1} \cdot \left(\overline{y^2} - \left(\overline{y}\right)^2\right)}.$$

Сравнивая фактическое и табличное $t_{maбn}$ значения на уровне значимости $\alpha = 0,05$ и числе степеней свободы N-2 принимается решение:

- Если $t_{\text{ma}6\pi} < t_b$, то H_0 отклоняется, влияние фактора на отклик обнаружено.
- Если $t_{ma \delta n} > t_b$, то гипотеза H_0 принимается, фактор на отклик не оказывает существенного влияния.

Далее необходимо рассчитать *границы доверительного интервала для коэффициента регрессии*. Вычисленное выше значение коэффициента регрессии – это среднее значение. Доверительный интервал показывает, каким может быть коэффициент регрессии в 95% случаев. Формулы для расчета имеют следующий вид:

$$H.2p. = b - t_{ma\delta\pi} \cdot SE_b$$
, $e.2p. = b + t_{ma\delta\pi} \cdot SE_b$.

Рассчитывать границы доверительного интервала следует лишь тогда, когда влияние фактора на отклик обнаружено.

4. Оценка качества всей модели

Тесноту связи отклика и фактора оценивает линейный коэффициент корреляции $\mathbf{\Pi}$ ирсона r, который можно вычислить, например, по следующей формуле: $r = b \frac{\sigma_x}{\sigma_y}$.

Важным свойством коэффициента корреляции является следующее: $-1 \le r \le 1$. Если r > 0, то корреляционная связь между переменными называется *прямой*, если r < 0 – *обрамной*. Качественная оценка тесноты связи может быть выявлена на основе *шкалы* $4 e \partial \partial \sigma \kappa a$.

Теснота связи	Значение $ r $
слабая	0,1-0,3
умеренная	0,3-0,5
заметная	0,5-0,7
высокая	0,7-0,9
весьма высокая	0.9 - 0.99

Коэффициент детерминации – для парной линейной регрессии – это квадрат

линейного коэффициента корреляции. Величина R^2 показывает, сколько процентов отклика объясняется с помощью включенного в модель фактора. Чем больше R^2 , тем лучше построенная модель. Если $R^2 < 30\%$, то прогнозировать по такой модели нецелесообразно.

Для оценивания качества уравнения регрессии используется F-критерий Φ ишера, который состоит в проверке гипотезы H_0 о статистической незначимости уравнения регрессии и коэффициента детерминации $(R^2 = 0)$. Для этого необходимо вычислить фактическое значение F-критерия:

$$F_{\phi a \kappa m} = \frac{R^2}{1 - R^2} (N - 2)$$
.

Сравнивая фактическое значение $F_{\phi a \kappa m}$ и табличное $F_{m a \delta n}$ на уровне значимости $\alpha = 0.05$ и числе степеней свободы 1 и N-2 принимается решение:

- Если $F_{malon} < F_{\phi a \kappa m}$, то гипотеза H_0 отклоняется, полученное уравнение значимо, т.е. построенная модель «лучше» прогноза по среднему.
- Если $F_{ma\delta n} > F_{\phi a\kappa m}$, то гипотеза H_0 принимается, уравнение незначимо, качество построенной модели сравнимо с точностью прогноза по среднему.

5. Анализ остатков

Для проверки целесообразности использования линейной регрессионной модели используется процедура графического анализа остатков. Остатки должны быть нормально распределены и не зависеть от предсказанных по уравнению регрессии значений отклика. Для такой проверки по столбцу остатков строится гистограмма и ящик с усами — для проверки на нормальность и диаграмма рассеяния для проверки независимости остатков от прогноза.

Алгоритм оценки остатков:

- 1) по формуле Стерджесса определить количество интервалов, на которые следует разбить остатки: $n = 1 + 3,322 \cdot \lg N$;
- 2) определить длину интервала: $h = \frac{e_{\text{max}} e_{\text{min}}}{n-1}$;
- 3) найти границы первого интервала: $\left[e_{\min} \frac{h}{2}; e_{\min} + \frac{h}{2}\right];$
- 4) рассчитать границы остальных интервалов и частоты (количество остатков, попавших в тот или иной интервал). Получим интервальный вариационный ряд;
- 5) построить гистограмму. В случае нормального распределения остатков гистограмма будет иметь (почти) симметричный вид;
- 6) упорядочить столбик остатков по возрастанию;
- 7) по полученным данным найти медиану, верхнюю и нижнюю квартили, минимальное и максимальное знаечния:

Медиана — значение в упорядоченной выборке, которое делит ее на две равные части.

Нижняя квартиль — значение в упорядоченной выборке, которое отделяет 25%, начиная с минимального.

Верхняя квартиль — значение в упорядоченной выборке, которое отделяет 25%, начиная с максимального.

8) построить ящик с усами по следующей схеме:

В случае нормального распределения ящик будет (почти) симметричным.

9) построить диаграмму рассеяния, на которой изобразить точки с координатами (y_i, e_i) . В случае «хорошей» модели никакой закономерности в расположении точек не должно прослеживаться.

6. Оценка точности прогнозов и прогнозирование

Средняя абсолютная ошибка модели (Mean Absolute Percent Error – MAPE) показывает, на сколько процентов в среднем прогноз отклоняется от факта. Вычисляется по формуле:

$$MAPE = \frac{\sum \left| \frac{e_i}{y_i} \right|}{N} \cdot 100\% .$$

Показатель МАРЕ полезен при использовании разных методов построения модели на основе одних и тех же данных. Чем меньше МАРЕ, тем лучше модель.

Прогнозное значение y_f определяется путем подстановки в уравнение линейной регрессии соответствующего прогнозного значения x_f . Далее вычисляется стандартная ошибка прогноза:

$$SE_f = \sqrt{\frac{\sum e^2}{N-2} \cdot \left(1 + \frac{1}{N} + \frac{(x_f - \overline{x})^2}{\sigma_x^2 \cdot (N-1)}\right)}.$$

95-процентный доверительный интервал прогноза строится по формуле:

н.гр. =
$$y_f - t_{\text{ma\'en}} \cdot SE_f$$
, в.гр. = $y_f + t_{\text{ma\'en}} \cdot SE_f$.

Пример 1 Постановка задачи

По территориям региона за 199Хг. имеются следующие данные:

Номер региона	Средний прожиточный минимум, <i>x</i> , руб.	Среднедневная заработная плата, <i>у</i> , руб.
1	78	133
2	82	148
3	87	134
4	79	154
5	89	162
6	106	195
7	67	139
8	88	158
9	73	152
10	87	162
11	76	159
12	115	173

Задание

- 1. Изобразить диаграмму рассеяния и сформулировать гипотезу о форме связи.
- 2. Найти параметры a и b уравнения парной линейной регрессии y = a + bx. Пояснить эконометрический смысл параметра b.
- 3. Оценить статистическую значимость коэффициента регрессии (b) используя t-критерий Стьюдента на уровне значимости $\alpha = 0,05$.
- 4. Рассчитать границы доверительного интервала для параметра b.
- 5. Вычислить коэффициент корреляции r и оценить тесноту связи между фактором и откликом.
- 6. Вычислить коэффициент детерминации R^2 , пояснить его эконометрический смысл и проверить его значимость с использованием F-критерия Фишера при $\alpha = 0.05$.
- 7. Проанализировать остатки.
- 8. Вычислить МАРЕ.
- 9. Выполнить прогноз среднедневной заработной платы при прогнозном значении прожиточного минимума 83 руб. Оценить доверительный интервал прогноза.

Решение

1. Графический анализ — построение диаграммы рассеяния, по которой определяется форма регрессионной модели.

По расположению точек предположим наличие линейной зависимости y = a + bx.

2. Вычислим параметры a и b уравнения парной линейной регрессии y = a + bx. Для расчета параметров уравнения линейной регрессии составляем расчетную таблицу. Сначала заполняем столбцы с (1) по (5).

No	x	У	xy	x^2	y ²	у	e = y - y	e^2	$\left \frac{e}{y} \right \cdot 100\%$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	78	133	10374	6084	17689	149	-16	256	12,03
2	82	148	12136	6724	21904	152	-4	16	2,70
3	87	134	11658	7569	17956	157	-23	529	17,16
4	79	154	12166	6241	23716	150	4	16	2,60
5	89	162	14418	7921	26244	159	3	9	1,85
6	106	195	20670	11236	38025	175	20	400	10,26
7	67	139	9313	4489	19321	139	0	0	0,00
8	88	158	13904	7744	24964	158	0	0	0,00
9	73	152	11096	5329	23104	144	8	64	5,26
10	87	162	14094	7569	26244	157	5	25	3,09
11	76	159	12084	5776	25281	147	12	144	7,55
12	115	173	19895	13225	29929	183	-10	100	5,78
Сумма	1027	1869	161808	89907	294377			1559	68,28
Среднее	85,58	155,75	13484	7492,25	24531,42			•	5,69

$$b = \frac{\overline{yx} - \overline{y} \cdot \overline{x}}{\overline{x^2} - (\overline{x})^2} = \frac{13484 - 85,58 \cdot 155,75}{7492,25 - 85,58^2} = 0,92;$$

$$a = \overline{y} - b \cdot \overline{x} = 155,75 - 0,92 \cdot 85,58 = 77,02.$$

Получено уравнение регрессии: y = 77,02+0,92x.

Эконометрический смысл коэффициента регрессии: с увеличением среднего прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб.

3. Проверим статистическую значимость коэффициента регрессии.

Используем t-критерий Стьюдента. Выдвигаем гипотезу $H_0: b=0$ об отсутствии влияния фактора на отклик. Далее, необходимо сначала заполнить столбцы с (6) по (8), затем вычислить стандартную ошибку:

$$SE_{b} = \sqrt{\frac{\sum e_{i}^{2}}{(N-1)\cdot(N-2)\cdot\sigma_{x}^{2}}} = \left|\sigma_{x} = \sqrt{\frac{N}{N-1}\cdot\left(\overline{x^{2}} - \left(\overline{x}\right)^{2}\right)} = \sqrt{\frac{12}{12-1}\cdot\left(7492,25-85,58^{2}\right)} = 13,55\right| = \sqrt{\frac{1559}{(12-1)\cdot(12-2)\cdot13,55^{2}}} = 0,278.$$

Фактическое значение *t*-критерия Стьюдента: $t_b = \frac{|b|}{SE_c} = \frac{0.92}{0.278} = 3,309$.

 $t_{\text{maб},n}$ на уровне значимости $\alpha=0,05$ и числа степеней свободы N-2=12-2=10 равно 2,228.

 $t_b=3,309>t_{\it maбn}=2,228$, гипотеза H_0 отклоняется, т. е. влияние фактора на отклик обнаружено.

4. Границы 95-процентного доверительного интервала для коэффициента регрессии:

н.гр. =
$$b - t_{maб\pi} \cdot SE_b = 0,92 - 2,228 \cdot 0,278 = 0,301$$
,
в.гр. = $b + t_{maf\pi} \cdot SE_b = 0,92 + 2,228 \cdot 0,278 = 1,539$.

При увеличении среднего прожиточного минимума на 1 руб. среднедневная заработная плата вырастет в среднем на 0.92 руб., в 95% случаев рост может составлять от 0.3 руб. до 1.5 руб.

5. Вычислим коэффициент корреляции:

$$r = b \frac{\sigma_x}{\sigma_y} = \left| \sigma_y = \sqrt{\frac{N}{N-1} \cdot \left(\overline{y^2} - \left(\overline{y}\right)^2\right)} = \sqrt{\frac{12}{12-1} \cdot \left(24531, 42 - 155, 75^2\right)} = 17, 27 \right| = 0.92 \cdot \frac{13,55}{17,27} = 0,721.$$

Корреляция больше нуля, значит связь прямая, по шкале Чеддока – заметная.

6. Вычислим коэффициент детерминации: $R^2 = 0.721^2 = 0.520$. Это означает, что 52% заработной платы объясняется с помощью фактора «средний прожиточный минимум». $R^2 = 52\% > 30\%$, значит прогнозировать по данной модели целесообразно.

Проверим статистическую значимость уравнения регрессии с помощью F-критерия Фишера. Выдвигаем гипотезу H_0 о статистической незначимости уравнения регрессии и коэффициента детерминации. Фактическое значение F-критерия равно:

$$F_{\phi a \kappa m} = \frac{R^2}{1 - R^2} (N - 2) = \frac{0,520}{1 - 0,520} (12 - 2) = 10,83.$$

 $F_{\text{mator}} = 4,694$ на уровне значимости $\alpha = 0,05$ и числе степеней свободы 1 и

$$N-2=12-2=10$$
.

 $F_{\phi a \kappa m} = 10,83 > F_{m a \delta n} = 4,964$, гипотеза H_0 отклоняется и признается статистическая значимость уравнения регрессии. Построенная модель «лучше» прогноза по среднему.

7. Проанализируем остатки.

Проверим остатки на нормальность графическим способом:

1) Изобразим гистограмму. Для этого построим интервальный вариационный ряд. Число интервалов, на которые разобъем найденные остатки, определим по формуле Стерджесса

$$n = 1 + 3,322 \cdot \lg N = 1 + 3,322 \cdot \lg 12 \approx 5$$
.

Длина интервала:
$$h = \frac{R}{n-1} = \frac{e_{\text{max}} - e_{\text{min}}}{n-1} = \frac{20 - (-23)}{5 - 1} = 11.$$

Границы первого интервала определим следующим образом:

$$\left[e_{\min} - \frac{h}{2}; e_{\min} + \frac{h}{2}\right] = \left[-23 - \frac{11}{2}; -23 + \frac{11}{2}\right] = \left[-28, 5; -17, 5\right].$$

No	Нижняя граница	Верхняя граница	Частота
1	-28,5	-17,5	1
2	-17,5	-6,5	2
3	-6,5	4,5	5
4	4,5	15,5	3
5	15,5	26,5	1
Сумма			12

Гистограмма будет иметь вид:

2) Изобразим ящик с усами. Для этого упорядочим остатки по возрастанию и найдем медиану и квартили.

Остатки	Упорядоченные остатки	
-16	-23	минимум
-4	-16	
-23	-10	-10-4
4	-4	$Q_{H} = \frac{-10 - 4}{2} = -7$
3	0	
20	0	0+3
0	3	$Me = \frac{0+3}{2} = 1,5$
0	4	
8	5	5+8
5	8	$Q_6 = \frac{5+8}{2} = 6,5$
12	12	
-10	20	максимум

Ящик с усами будет иметь вид:

И гистограмма, и ящик с усами являются симметричными, что свидетельствует о нормальном распределении остатков.

С помощью диаграммы рассеяния проверим, чтобы остатки не зависели от предсказанных по уравнению регрессии значений.

Остатки не зависят от предсказанных по уравнению регрессии значений.

Все это говорит о приемлемости линейной модели для описания скрытой в исходных данных зависимости.

- **8.** Оценим точность прогнозов, вычислим среднюю абсолютную ошибку прогноза в процентах (МАРЕ). Заполнив столбец (9) в расчетной таблице, получим MAPE = 5,69%. Это означает, что при прогнозе по построенной модели ошибка в среднем будет составлять 5,69%. Такой результат будем считать приемлемым.
- **9.** Вычислим прогнозное значение отклика y_f , если прогнозное значение фактора $x_f = 83$ руб.

$$y_f = 77,02 + 0,92 \cdot 83 \cong 153$$
. py6.

Стандартная ошибка прогноза:

$$SE_f = \sqrt{\frac{\sum e^2}{N-2} \cdot \left(1 + \frac{1}{N} + \frac{\left(x_f - \overline{x}\right)^2}{\sigma_x^2 \cdot \left(N-1\right)}\right)} = \sqrt{\frac{1559}{12-2} \cdot \left(1 + \frac{1}{12} + \frac{\left(83 - 85, 58\right)^2}{13,55^2 \cdot \left(12 - 1\right)}\right)} = 13,016.$$

95-процентный доверительный интервал прогноза строится по формуле:

н.гр. =
$$y_f - t_{ma\delta n} \cdot SE_f = 153 - 2,228 \cdot 13,016 = 124$$
,

$$e.ep. = y_f + t_{ma6\pi} \cdot SE_f = 153 + 2,228 \cdot 13,016 = 182.$$

Для прожиточного минимума, равного 83 руб. значение заработной платы с вероятностью 0,95 попадет в интервал от 124 руб. до 182 руб.

Пример 2

<u>Постановка задачи</u>

Имеются следующие данные о покупателях продуктовых магазинов некоторой сети:

No	Количество приобретенных товаров, шт.,	Время выбора товара, мин.,
покупателя	y	X
1	8	10
2	5	11
3	9	13
4	7	15
5	11	17
6	13	20
7	21	21
8	16	24
9	21	26
10	22	29

Задание

- 1. Изобразить диаграмму рассеяния и сформулировать гипотезу о форме связи.
- 2. Найти параметры a и b уравнения парной линейной регрессии y = a + bx. Пояснить эконометрический смысл параметра b.
- 3. Оценить статистическую значимость коэффициента регрессии (b) используя t-критерий Стьюдента на уровне значимости $\alpha = 0,05$.
- 4. Рассчитать границы доверительного интервала для параметра b.
- 5. Вычислить коэффициент корреляции r и оценить тесноту связи между фактором и откликом.
- 6. Вычислить коэффициент детерминации R^2 , пояснить его эконометрический смысл и проверить его значимость с использованием F-критерия Фишера при $\alpha = 0,05$.
- 7. Проанализировать остатки.
- 8. Вычислить МАРЕ.
- 9. Выяснить, в какой интервал с вероятностью 95% попадет прогнозное значение отклика, если значение фактора равно \bar{x} .

Решение:

1. Графический анализ — построение диаграммы рассеяния, по которой определяется форма регрессионной модели.

По расположению точек предположим наличие линейной зависимости y = a + bx.

2. Вычислим параметры a и b уравнения парной линейной регрессии y = a + bx. Для расчета параметров уравнения линейной регрессии составляем расчетную таблицу. Сначала заполняем столбцы c (1) по (5).

No	у	x	xy	x^2	y^2	у	e = y - y	e^2	$\left \frac{e}{y} \right \cdot 100\%$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	8	10	80	100	64	6	2	4	25,00
2	5	11	55	121	25	7	-2	4	40,00
3	9	13	117	169	81	8	1	1	11,11
4	7	15	105	225	49	10	-3	9	42,86
5	11	17	187	289	121	12	-1	1	9,09
6	13	20	260	400	169	15	-2	4	15,38
7	21	21	441	441	441	16	5	25	23,81
8	16	24	384	576	256	18	-2	4	12,50
9	21	26	546	676	441	20	1	1	4,76
10	22	29	638	841	484	23	-1	1	4,55
Сумма	133	186	2813	3838	2131	_	-2	54	189,06
Среднее	13,3	18,6	281,3	383,8	213,1				18,91

$$b = \frac{\overline{yx} - \overline{y} \cdot \overline{x}}{\overline{x^2} - (\overline{x})^2} = \frac{281, 3 - 18, 6 \cdot 13, 3}{383, 3 - 18, 6^2} = 0,9;$$

$$a = \overline{y} - b \cdot \overline{x} = 13,3 - 0,9 \cdot 18,6 = -3,4.$$

Получено уравнение регрессии: y = -3,4+0,9x.

Эконометрический смысл коэффициента регрессии: с увеличением времени выбора

товара на 1 минуту количество купленных товаров возрастает в среднем на 0,9 шт. (При интерпретации можно 0,9 шт. округлить до 1, т.е. каждая проведенная в магазине минута прибавляет к покупке в среднем 1 единицу товара.)

3. Проверим статистическую значимость коэффициента регрессии.

Используем t-критерий Стьюдента. Выдвигаем гипотезу $H_0: b=0$ об отсутствии влияния фактора на отклик. Далее, необходимо сначала заполнить столбцы с (6) по (8), затем вычислить стандартную ошибку:

$$\begin{split} SE_b &= \sqrt{\frac{\sum e_i^2}{(N-1)\cdot(N-2)\cdot\sigma_x^2}} = \left|\sigma_x = \sqrt{\frac{N}{N-1}\cdot\left(\overline{x^2} - \left(\overline{x}\right)^2\right)} = \sqrt{\frac{10}{10-1}\cdot\left(393, 3-13, 3^2\right)} = 6,44\right| = \\ &= \sqrt{\frac{54}{(10-1)\cdot(10-2)\cdot6,44^2}} = 0,134. \end{split}$$

Фактическое значение *t*-критерия Стьюдента: $t_b = \frac{|b|}{SE_b} = \frac{0.9}{0.134} = 6,716$.

 t_{mads} на уровне значимости $\alpha = 0.05$ и числа степеней свободы N-2=10-2=8 равно 2,306.

 $t_b = 6,716 > t_{ma \delta n} = 2,306$, гипотеза H_0 отклоняется, т. е. влияние фактора на отклик обнаружено.

4. Границы 95-процентного доверительного интервала для коэффициента регрессии:

н.гр. =
$$b - t_{maбn} \cdot SE_b = 0,9 - 2,306 \cdot 0,134 = 0,519,$$

в.гр. = $b + t_{mafn} \cdot SE_b = 0,9 + 2,306 \cdot 0,134 = 1,209.$

При увеличении времени выбора товара на 1 мин. Количество выбранных товаров вырастет в среднем на 0,9 шт., в 95% случаев рост может составлять от 0,519 шт. до 1,209 шт. (В данном случае границы доверительного интервала округляются до 1 шт. в соответствии со смыслом отклика.)

5. Вычислим коэффициент корреляции:

$$r = b \frac{\sigma_x}{\sigma_y} = \left| \sigma_y = \sqrt{\frac{N}{N-1} \cdot \left(\overline{y^2} - \left(\overline{y}\right)^2\right)} = \sqrt{\frac{10}{10-1} \cdot \left(213,1-13,3^2\right)} = 6,34 \right| = 0,9 \cdot \frac{6,44}{6,34} = 0,914.$$

Корреляция больше нуля, значит связь прямая, по шкале Чеддока – весьма высокая.

6. Вычислим коэффициент детерминации: $R^2 = 0.914^2 = 0.835$. Это означает, что 67,7% количества приобретенных товаров объясняется временем выбора товара. $R^2 = 83.5\% > 30\%$, значит прогнозировать по данной модели целесообразно.

Проверим статистическую значимость уравнения регрессии с помощью F-критерия Фишера. Выдвигаем гипотезу H_0 о статистической незначимости уравнения регрессии и коэффициента детерминации. Фактическое значение F-критерия равно:

$$F_{\phi a \kappa m} = \frac{R^2}{1 - R^2} (N - 2) = \frac{0.835}{1 - 0.835} (10 - 2) = 40.49.$$

 $F_{max} = 5,318$ на уровне значимости $\alpha = 0,05$ и числе степеней свободы 1 и

$$N-2=10-2=8$$
.

 $F_{\phi a \kappa m} = 40,49 > F_{m a \delta \pi} = 5,318$, гипотеза H_0 отклоняется и признается статистическая значимость уравнения регрессии. Построенная модель «лучше» прогноза по среднему.

7. Проанализируем остатки.

Проверим остатки на нормальность графическим способом:

1) Изобразим гистограмму. Для этого построим интервальный вариационный ряд. Число интервалов, на которые разобъем найденные остатки, определим по формуле Стерджесса

$$n = 1 + 3,322 \cdot \lg N = 1 + 3,322 \cdot \lg 10 \approx 4$$
.

Длина интервала:
$$h = \frac{R}{n-1} = \frac{e_{\text{max}} - e_{\text{min}}}{n-1} = \frac{5 - (-3)}{4 - 1} = 2,67 \approx 3$$
.

Границы первого интервала определим следующим образом:

$$\left[e_{\min} - \frac{h}{2}; e_{\min} + \frac{h}{2}\right] = \left[-3 - \frac{3}{2}; -3 + \frac{3}{2}\right] = \left[-4, 5; -1, 5\right].$$

$N_{\underline{0}}$	Нижняя граница	Верхняя граница	Частота
1	-4,5	-1,5	4
2	-1,5	1,5	4
3	1,5	4,5	1
4	4,5	7,5	1
Сумма			10

Гистограмма будет иметь вид:

2) Изобразим ящик с усами. Для этого упорядочим остатки по возрастанию и найдем медиану и квартили.

Остатки	Упорядоченные остатки	
2	-3	минимум
-2	-2	
1	-2	$=Q_{\scriptscriptstyle H}$
-3	-2	
-1	-1	-1+(-1)
-2	-1	$Me = \frac{-1 + \left(-1\right)}{2} = -1$
5	1	
-2	1	$=Q_{\scriptscriptstyle \mathcal{B}}$
1	2	
-1	5	максимум

Ящик с усами будет иметь вид:

С учетом недостаточного размера выборки будем считать гистограмму и ящик с усами симметричными.

С помощью диаграммы рассеяния проверим, чтобы остатки не зависели от предсказанных по уравнению регрессии значений.

Остатки не зависят от предсказанных по уравнению регрессии значений.

Все это говорит о приемлемости линейной модели для описания скрытой в исходных данных зависимости.

- **8.** Оценим точность прогнозов, вычислим среднюю абсолютную ошибку прогноза в процентах (МАРЕ). Заполнив столбец (9) в расчетной таблице, получим MAPE = 18,91%. Это означает, что при прогнозе по построенной модели ошибка в среднем будет составлять 18,91%. Такой результат будем считать приемлемым.
- **9.** Вычислим прогнозное значение отклика y_f , если прогнозное значение фактора $x_f = \overline{x} = 18,6$ мин.

$$y_f = -3.4 + 0.9 \cdot 18.6 = 13.34 \cong 13 \text{ IIIT.}$$

Стандартная ошибка прогноза:

$$SE_f = \sqrt{\frac{\sum e^2}{N-2} \cdot \left(1 + \frac{1}{N} + \frac{(x_f - \overline{x})^2}{\sigma_x^2 \cdot (N-1)}\right)} = \sqrt{\frac{54}{10-2} \cdot \left(1 + \frac{1}{10} + \frac{(18,6-18,6)^2}{6,44^2 \cdot (10-1)}\right)} = 2,725.$$

95-процентный доверительный интервал прогноза строится по формуле:

н.гр. =
$$y_f - t_{maбa} \cdot SE_f = 13 - 2,306 \cdot 2,725 = 6,716 \cong 7,$$

e.zp. =
$$y_f + t_{mag_{\pi}} \cdot SE_f = 13 + 2,306 \cdot 2,725 = 19,284 \cong 19$$
.

Для времени выбора товара, равного 18,6 мин. количество приобретенных товаров с вероятностью 0,95 будет составлять от 7 шт. до 19 шт.