|--|

CO₂ CL₃

PADRE CONCEIÇÃO COLLEGE OF ENGINEERING, VERNA-GOA

TUTORIAL NO: 7 (Batch 1)

Semester: II (RC 2019-'20)

Course Instructor: Prof. Komal Paroolkar

Mathematics-II

Topic: Applications of Double Integration.

Q1.	Use double integration to find the area of the region bounded by $x^2 + y^2 = a^2$ and $x + y = a$ lying in the 1 st quadrant.	<u>CO</u> CO2	CL CL3
Q2	Evaluate the area of the region between $r = 1$ and $r = 3$ using double integration.	CO2	CL3
Q3	The region bounded by the curve $r = 2a \cos \theta$ is revolved about the initial line. Find the volume of the object generated.	CO2	CL3
Q4.	Find, by double integration, the volume of the object formed by the revolution of the region bounded by $x^2 + \frac{y^2}{4} = 1$ about the X-axis.	CO2	CL3
Q5.	Find the mass of the area bounded by the curves $y = x^2$ and $x = y^2$ if $\rho = K(x^2 + y^2)$.		

Roll No:

 \mathbf{CO}

 \mathbf{CL}

TUTORIAL NO: 7 (Batch 2)

Semester: II (RC 2019-'20)Course: FE210Course Instructor: Prof. Komal ParoolkarMathematics-II

Topic: Applications of Double Integration.

Q1.	Find the area that lies inside $r = a(1 + \cos \theta)$ and outside $r = a$.	CO2	CL3
Q2	Find the area bounded by $x^2 + y^2 = 4$, $x = y$ and $x = 0$ lying in the first quadrant.	CO2	CL3
Q3	Find, by double integration, the volume of the object formed by the revolution of the region bounded by $x^2 + y^2 = 4$ about the line $x = 3$.	CO2	CL3
Q4.	The region bounded by the curve $r = 1 + \cos \theta$ is revolved about the initial line. Find the volume of the object generated.	CO2	CL3
Q5.	Find the mass of a plate between $r = 1$ and $r = 4$ if the density varies as the square of the distance of a point from the pole.	CO2	CL3

Roll No:						
----------	--	--	--	--	--	--

PADRE CONCEIÇÃO COLLEGE OF ENGINEERING, VERNA-GOA

TUTORIAL NO: 7 (Batch 3)

Semester: II (RC 2019-'20)

Course Instructor: Prof. Komal Paroolkar

Mathematics-II

Topic: Applications of Double Integration.

Q1.	Find the area of the region bounded by $y = x^2$ and $y = 1$	<u>CO</u> CO2	CL CL3
Q2	Find the area of the region $r \leq 3 + \cos \theta$.	CO2	CL3
Q3	The region $y \ge x^2$ and $y \le 1$ is revolved about the Y=axis. Find the volume of the object formed.	CO2	CL3
Q4.	The cardioid $r = 1 + \sin \theta$ is revolved about its own axis. Find the volume of the object formed.	CO2	CL3
Q5.	Find the mass of a plate in the form of $r = 2\cos\theta$ if the density varies as the distance of a point (in the region) from the initial line.	CO2	CL3

