Équations différentielles - Partie 1 : Primitives

Exercice 1.

Mettre en correspondance chaque fonction f avec une de ses primitives F.

$$-f_1(x) = -6\sin(2x), f_2(x) = 2x, f_3(x) = (x+1)e^x, f_4(x) = -6\sin(3x), f_5(x) = 2xe^{x^2}, f_6(x) = 2x+2.$$

$$-F_a(x) = 2\cos(3x), F_b(x) = 3\cos(2x), F_c(x) = (x+1)^2, F_d(x) = x^2 + 1, F_e(x) = e^{x^2}, F_f(x) = xe^x.$$

Indications 1.

F est une primitive de f si F'(x) = f(x) (pour tout x de l'ensemble de définition).

Correction 1.

- 1. $F_a(x) = 2\cos(3x)$, $F'_a(x) = f_4(x) = -6\sin(3x)$.
- 2. $F_b(x) = 3\cos(2x)$, $F'_b(x) = f_1(x) = -6\sin(2x)$.
- 3. $F_c(x) = (x+1)^2$, $F'_c(x) = f_6(x) = 2x + 2$.
- 4. $F_d(x) = x^2 + 1$, $F'_d(x) = f_2(x) = 2x$.
- 5. $F_e(x) = e^{x^2}$, $F'_e(x) = f_5(x) = 2xe^{x^2}$.
- 6. $F_f(x) = xe^x$, $F'_f(x) = f_3(x) = (x+1)e^x$.

Exercice 2.

Pour chacune des fonctions f suivantes, déterminer une primitive F.

- 1. $f_1(x) = -\cos(2x)$
- 2. $f_2(x) = x^3 7x^2 + 1$
- 3. $f_3(x) = \frac{1}{2x-1} (\text{sur }] \frac{1}{2}, +\infty[)$
- 4. $f_4(x) = e^{\pi x 3}$
- 5. $f_5(x) = -(x-2)^2$
- 6. $f_6(x) = \sin(8(x+1))$

Indications 2.

Il s'agit de trouver une fonction F telle que F'(x) = f(x). Il faut bien connaître ses formules des dérivées usuelles.

Correction 2.

- 1. $F_1(x) = -\frac{1}{2}\sin(2x)$, on vérifie que $F_1'(x) = f_1(x)$.
- 2. $F_2(x) = \frac{1}{4}x^4 \frac{7}{3}x^3 + x$, car une primitive de x^k est $\frac{1}{k+1}x^{k+1}$ (pour $k \neq -1$).
- 3. $F_3(x) = \frac{1}{2} \ln(2x 1) \operatorname{car} (\ln(u))' = \frac{u'}{u} \operatorname{avec} \operatorname{ici} u(x) = 2x 1.$
- 4. $F_4(x) = \frac{1}{\pi}e^{\pi x 3} \operatorname{car}(e^u)' = u'e^u \operatorname{avec} \operatorname{ici} u(x) = \pi x 3.$

- 5. $F_5(x) = -\frac{x^3}{3} + 2x^2 4x$ car $f_5(x) = -x^2 + 4x 4$. On peut aussi écrire $F_5(x) = -\frac{1}{3}(x-2)^3$.
- 6. $F_6(x) = -\frac{1}{8}\cos(8(x+1)) \operatorname{car}(\cos(u))' = -u'\sin(u)$.

Dans tous les cas, si F est une primitive, alors pour toute constante C, F+C est aussi une primitive.

Exercice 3.

- 1. (a) Quelle est la dérivée de la fonction $x \mapsto u^k(x)$ où $x \mapsto u(x)$ est une fonction et k un entier?
 - (b) Calculer les dérivées des fonctions définies par $(x^4 + 7x^3 + 2)^3$, $\cos^3(2x)$, $\ln^2(x)$, $\frac{1}{(x^2+1)^2}$.
 - (c) Déterminer une primitive des fonctions définies par $x(x^2+5)^5$, $\sin(x)\cos^3(x)$, $\frac{\ln^n(x)}{x}$ (où $n \ge 0$).
- 2. (a) Quelle est la dérivée de la fonction $x \mapsto e^{u(x)}$ où $x \mapsto u(x)$ est une fonction?
 - (b) Calculer les dérivées des fonctions définies par e^{-5x} , e^{x^3-2x} , $e^{\sin(3x)}$, $e^{1/x}$.
 - (c) Déterminer une primitive des fonctions définies par e^{8x+1} , xe^{x^2+1} , $\frac{e^{\sqrt{x}}}{\sqrt{x}}$.
- 3. (a) Quelle est la dérivée de la fonction $x \mapsto \ln(u(x))$ où $x \mapsto u(x)$ est une fonction strictement positive?
 - (b) Calculer les dérivées des fonctions définies par $\ln(x^3-2)$, $\ln(e^x+e^{-x})$, $\ln(1/x)$, $\ln(\cos(x^2))$.
 - (c) Déterminer une primitive des fonctions définies par $\frac{1}{x+4}$ (sur] -4, $+\infty$ [), $\frac{x}{x^2+4}$ (sur \mathbb{R}), $\frac{\cos(x)}{\sin(x)}$ (pour les x où $\sin(x) > 0$).

Indications 3.

La dérivée d'une composition f(u(x)) est u'(x)f'(u(x)). Pour déterminer les primitives il faut reconnaître la fonction sous une forme u'(x)f'(u(x)), afin de déterminer qu'une primitive est f(u(x)).

Correction 3.

- 1. (a) La dérivée de $u^k(x)$ est $ku'(x)u^{k-1}(x)$.
 - (b) La dérivée de $(x^4 + 7x^3 + 2)^3$ est $3(4x^3 + 21x^2)(x^4 + 7x^3 + 2)^2$.
 - La dérivée de $\cos^3(2x)$ est $-6\sin(2x)\cos^2(2x)$.
 - La dérivée de $\ln^2(x)$ est $\frac{2}{x}\ln(x)$.
 - La dérivée de $\frac{1}{(x^2+1)^2} = (x^2+1)^{-2}$ est $-2(2x)(x^2+1)^{-3} = \frac{-4x}{(x^2+1)^3}$.
 - (c) Une primitive de $x(x^2+5)^5 = \frac{1}{12} \cdot 6 \cdot (2x) \cdot (x^2+5)^5$ est $\frac{1}{12}(x^2+5)^6$.
 - Une primitive de $\sin(x)\cos^3(x)$ est $-\frac{1}{4}\cos^4(x)$.
 - Une primitive de $\frac{\ln^n(x)}{x}$ est $\frac{1}{n+1} \ln^{n+1}(x)$.
- 2. (a) La dérivée de $e^{u(x)}$ est $u'(x)e^{u(x)}$.
 - (b) La dérivée de e^{-5x} est $-5e^{-5x}$.
 - La dérivée de e^{x^3-2x} est $(3x^2-2)e^{x^3-2x}$.
 - La dérivée de $e^{\sin(3x)}$ est $3\cos(3x)e^{\sin(3x)}$.
 - La dérivée de $e^{1/x}$ est $-\frac{1}{x^2}e^{1/x}$.
 - (c) Une primitive de e^{8x+1} est $\frac{1}{8}e^{8x+1}$.
 - Une primitive de xe^{x^2+1} est $\frac{1}{2}e^{x^2+1}$
 - Une primitive de $\frac{e^{\sqrt{x}}}{\sqrt{x}}$ est $2e^{\sqrt{x}}$.
- 3. (a) La dérivée de $\ln(u(x))$ est $\frac{u'(x)}{u(x)}$.

- (b) La dérivée de $\ln(x^3 2)$ est $\frac{3x^2}{x^3 2}$.
 - La dérivée de $\ln(e^x + e^{-x})$ est $\frac{e^x e^{-x}}{e^x + e^{-x}}$.
 - La dérivée de $\ln(1/x)$ est $-\frac{1}{x}$ (c'est plus facile si on a remarqué que $\ln(1/x) = -\ln(x)$!).
 - La dérivée de $\ln(\cos(x^2))$ est $\frac{-2x\sin(x^2)}{\cos(x^2)}$.
- (c) Une primitive de $\frac{1}{x+4}$ est $\ln(x+4)$.
 - Une primitive de $\frac{x}{x^2+4}$ est $\frac{1}{2}\ln(x^2+4)$.
 - Une primitive de $\frac{\cos(x)}{\sin(x)}$ est $\ln(\sin(x))$.

Exercice 4.

1. Pour la fonction f représentée ci-dessous, déterminer quel est le graphe de la fonction F_i qui correspond à une primitive de f.

2. Pour la fonction f représentée ci-dessous, déterminer quel est le graphe de la fonction F_i qui correspond à une primitive de f.

Indications 4.

Il faut utiliser que la dérivée de F est f et utiliser le signe (et non pas la monotonie) de f pour déterminer là où F est croissante ou décroissante.

3

Correction 4.

Comme la dérivée de F est f, là où f est positive, F est croissante; là où f est négative, F est décroissante.

- 1. f = F' est négative puis positive : F doit être d'abord décroissante, puis ensuite croissante. Ainsi il s'agit de F_3 .
- 2. f = F' est positive, négative puis à nouveau positive. Donc F est croissante, décroissante puis à nouveau croissante. Il s'agit de F_4 .