Computer Networks

Lecture on

Ethernet

Plan of This Lecture

- Ethernet features
- History of Ethernet
- CSMA/CD basis
- Differences between Ethernet varieties
- Ethernet frame structure
- Virtual local networks
- Ethernet switches
- Industrial Ethernet
- Ethernet Passive Optical Network

Features of Today's Ethernet

- Used in LANs, MANs, WANs
 and even between printed boards in one chassis
- Different speeds: 10, 100 Mb/s, 1, 10, 40, 100, 400 Gb/s
- Different ranges: 15 m 100 km
- Different copper and optical interfaces
- 48-bit flat addressing, i.e. no subnets
- Point-to-point or bus topology
- Half- or full-duplex
- Speed and duplex auto-configuration possible
- Transmission media sharing possible for interfaces up to 1Gb/s
 - o CSMA/CD
 - o collisions, back-off, retransmissions, saturation

- Basic frame size min. 46, max. 1500 bytes of payload
- Jumbo frames up to 9000 bytes
- Flow-control possible
- Power supply via Ethernet interfaces (PoE) possible
- Virtual LANs
- Frame prioritization
- Ethernet-in-Ethernet tunnelling
- Link aggregation EtherChannel, IEEE 802.3ad
- Ethernet switches allow for:
 - o frame transmission between interfaces with different speeds
 - o redundancy without loop dynamic formation of tree topology

History of Ethernet

• Was developed at Xerox PARC between 1973 and 1974 stiff coaxial cable as a shared medium

• Upgrade from 2.94 Mbit/s to 10 Mbit/s 1980

- Digital Equipment Corporation (DEC), Intel, and Xerox cooperation
- Frame specification called Ethernet II used nowadays
- IEEE 802.3 draft/standard 1983/1985 a bit different frame used nowadays
- Shift to inexpensive thin coaxial cable and then ubiquitous twisted pair wiring
- Ethernet competed with Token Ring and other LAN technologies in 80's
- Ethernet became prevalent, must-have interface in 90's

•	Coaxial cable replaced with point-to-point links connected by Ethernet repeaters or switches	in 90's
•	First optical interfaces	1993
•	Fast Ethernet, i.e. 100 Mbit/s	1995
•	Gigabit Ethernet, i.e. 1 Gbit/s	1998
•	10 Gigabit Ethernet	2002
•	100 Gigabit Ethernet	2010
•	400 Gbit/s	2017

CSMA/CD Basis

Carrier-Sense Multiple Access with Collision Detection is a media access control method

It is like a human conversation

- I can speak if nobody speaks otherwise I am waiting
- If I started simultaneously with someone else
 - o than we stop both
 - o after a random delay I start again

Collision in Ethernet

- Jam signal is generated by the first node who recognizes a collision
 - to ensure that any receiving node drops the corrupted frame
- Time slot for random delay grows exponentially after subsequent collisions (max. 10 times)
- No more attempts after 16 subsequent collisions
 - network is reported as unused / saturated

Collision Detection is possible only if transmission time of a frame > 2 * time of signal propagation in the medium

Node Z

signal transmitted from A to Z

Z starts a new frame collision occurs

2 propagation times

corrupted signal propagates from Z to A

A should still transmit to detect the collision

Min. Ethernet frame length = 64 B (51,2 µs)

= 512 B for 1 Gb/s

- carrier extension
- or more than 1 standard frame

CSMA/CD used only on electrical 10 Mb/s, 100 Mb/s and 1 Gb/s

Higher speed \Rightarrow shorter cable

Max. cable length

for many Ethernet varieties = 100 m — cabling in a building

200 m, 500 m for some 10 Mb/s interfaces

Differences Between Ethernet Varieties

Selected Ethernet variants

Name	Speed	Cabling Topology	Cable	Range
10Base-5	10 Mbps	bus	thick coax	500 m
10Base-2	10 Mbps	bus	thin coax	200 m
10Base-T	10 Mbps	star	UTP cat 3	100 m
100Base-TX	100 Mbps	star	UTP cat 5	100 m
1000Base-T	1 Gbps	star	UTP cat 5e	100 m
1000Base-SX	1 Gbps	star	MM fiber	300 m
1000Base-LX	1 Gbps	star	SM fiber	10 km
10GBase-T	10 Gbps	star	UTP cat6	100 m
10GBase-SR	10 Gbps	star	MM fiber	300 m
10GBase-LR	10 Gbps	star	SM fiber	10km

UTP – unshielded twisted pair, MM – multi-mode, SM – single-mode

Ethernet frame variations

Ethernet II

destination addr.	source addr.	type	
			is the most common

IEEE 802.3

was used in Novell NetWare

IEEE 802.3 + IEEE 802.2

destination addr.	source addr.	len	DS	SS	ctrl	
			is us	ed on	FDD	I, Token Ring, IEEE 802

IEEE 802.3 + SNAP

destination addr.	source addr.	len	AA	AA	03	00	00	00	type	
							is use	ed on	AppleTa	lk v

SNAP – IEEE 802.2 Subnetwork Access Protocol

Ethernet Frame Structure

Preamble – to synchronize the receiver with incoming signal

1010...1010

Start delimiter = 10101011

802.1Q tag – virtual LAN header

16 3 1 12 tag identifier = 0x8100 priority DEI VLAN id

DEI – drop eligible indicator

VLAN tags can be added, removed and modified by switches

Frame Standards for Network Service Providers

Q-in-Q

- allows for multiple VLAN tags
- one VLAN can be tunnelled by another one
- used in big enterprise networks

Mac-in -Mac aka Provider Backbone Bridges (PBB)

• Customer Eth. frames are tunnelled by a backbone Eth. network

octets	6	6	2	16	2	8	3	64-1522
	backbone dest. addr.	backbone src. addr.	EtherType = 0x88A8	backbone VLAN tag	EtherType = 0x88E7	flags & priority	service identifier	original Ethernet frame
	Backbone component			Servi	ce compoi	nent	Customer component	

Virtual Local Network – VLAN

What for?

Physical vs. Logical Topology

• Locations buildings, floors, rooms...

VS.

 Organizational units production, management, accounting...

Advantages of VLANs

- Independence of logical and physical topologies
- Manageability
- Scalability
 - smaller broadcast domains
- Security
 - impossible to intercept a frame from other VLAN

Example of usage

- Production
- Network management
- Voice over IP
- Storage area network (SAN)
- Guest Internet access
- Demilitarized zone (DMZ)
- Separation of TV content in hotel networks

Routers can exchange of data between VLANs

Static vs. Dynamic VLANs

- Static port-based
 - administrator configures port assignments
- Dynamic based on MAC addresses or usernames
 - administrator configures port assignment rules
 - a trunking protocol propagates them
 Trunk is a set of VLANs
 Trunk port is an uplink port

Protocol-based VLANs – e.g. ARP, IP, IPX switched to selected interfaces

Enabling standards:

• IEEE 802.1Q 4,096 VLANs

• IEEE 802.1ad (QinQ) 4,096 x 4,096 VLANs x ... – manufacturer dependent

• IEEE 802.1aq (Shortest Path Bridging) expands the VLAN limit to 16 million

Ethernet Switches

Aim: enlarge LAN span

Hubs passive & active do the same but

switch separates collision domains

Flooding switch

each frame is forwarded to all interfaces without the input one

Learning switch

- Stores MAC addresses heard on each interface
- If destination address is in the table
 - \circ then the frame is forwarded only to the pointed interface
 - o otherwise to all interfaces without the input one
- Bigger overall throughput of the LAN segment

Different speed interfaces

- Slower (often downlink ports)
 - to workstations
 - o to LANs
- Faster
 - o to servers
 - o uplink ports
 - to aggregation switches
 - to WANs

Ethernet network topologies

- Mesh
- Hierarchical
 - o access
 - o aggregation
 - o core
- Ring
- Some data centre topologies, e.g. Fat Tree Topology,

Exemplary Topologies

Main Management Features of an Ethernet Switch

- Enable and disable ports
- Network Access Control
 - o e. g. MAC address filtering
- Link bandwidth settings
- QoS configuration and monitoring
- VLAN configuration
- Configuration of Spanning Tree Protocol (STP) and Shortest Path Bridging (SPB) features
- Monitoring of device and link health
- Port mirroring for monitoring traffic and troubleshooting
- Link aggregation configuration

Redundant Topology

- Good because of
 - o increased reliability
- Bad, because of
 - broadcast storms
 - o multiple frame retransmissions
 - MAC address tables instabilities
- Redundant physical and non-redundant logical topology

Spanning Tree Protocol (STP) – prevents loops

- elects the root switch
- disables redundant links
- switches communicate with each other using Bridge Protocol
- the best path to the root bridge is calculated based on
 - o port cost
 - o path cost
 - o port priority

Spanning Tree Protocols

• STP 1985 (DEC), 1990 (IEEE) 50 s convergence

• RSTP – Rapid STP 2001 (IEEE) 5 s

• PVST – Per-VLAN STP CISCO many trees

• R-PVST – Rapid PVST CISCO & other proprietary protocols

• MSTP – Multiple STP 2005 (IEEE)

 $\circ\;$ spanning tree can be defined for individual VLANs or for groups of VLANs

o interworks with RSTP switches

- Shortest Path Bridging (SPB) 2012 (IEEE)
 - o routing but using MAC addresses
 - o builds shortest path trees
 - o can support up to 1000 switches
 - o can provide tens of thousands of layer-2 E-LAN services
 - E-LINE Ethernet virtual private line connects two customer Ethernet ports
 - E-LAN Ethernet Virtual Private LAN connects a set of customer endpoints
 - E-TREE Ethernet Virtual Private Tree multipoint service, preventing inter-leaf communication
 - o interworks with RSTP & MSTP switches

Jacek Wytrębowicz

for big networks

Industrial Ethernet

Idea: use Ethernet as the link-layer protocol

with one of industry standards as the application-layer:

- Modbus
- Profibus
- DeviceNet
- Foundation Fieldbus

Advantages

- Increased speed and overall performance
- Increased distance
- Ability to use standard access points, routers, switches, hubs, cables and optical fibre
- Immensely cheaper than equivalent serial-port devices

Devices can be manufactured for outdoor conditions

Switches can have very fast STP convergence, e.g. 10 ms

(proprietary protocols)

Ethernet Passive Optical Network

OLT – Optical Line Termination ONU – Optical Network Unit

OLT sends Ethernet frames to the end-users

End-users send Ethernet frames to OLT

Advantages:

- less fibers
- less optical ports
- no power supply for a splitter
- easier to manage
- cheaper to maintain
- separate frequency window for cable TV

Disadvantages:

- limited scalability
- lack of redundancy
- less bandwidth for end user
- difficult DWDM upgrade in the future
- lack of widely accepted standards
- technology provider gets control over network owner
- still expensive

27

Summary

- Ethernet features
- History of Ethernet
- CSMA/CD basis
- Ethernet varieties
 - Physical interfaces
 - Frame variations
- Ethernet frame structure
 - o standard frame
 - o VLAN tag
 - o Q-in-Q
 - o Mac-in-Mac

- Virtual local networks
- Ethernet switches
 - O What for are they?
 - Learning switch
 - Main management features
 - Exemplary topologies
 - Spanning tree protocols
- Industrial Ethernet
- Ethernet Passive Optical Network

Questions

- 1. What is the scope of usage of the Ethernet technology?
- 2. What are the main features of the Ethernet technology?
- 3. What for Ethernet-in-Ethernet tunneling is used?
- 4. What is the advantage of using jumbo frames?
- 5. What is the disadvantage of using jumbo frames?
- 6. What are standard sizes of min and max Ethernet frames?
- 7. What is the jumbo frame size?
- 8. What is EtherChannel and when it is used?
- 9. What do the Ethernet header contains in its fields?
- 10. What are the distance ranges of Ethernet interfaces?
- 11. What is the standard range of electrical Ethernet interfaces (from 100-megabit to 10-gigabit)?
- 12. What are the transmission speeds of Ethernet interfaces?
- 13. What is the difference between multimode and single mode fibers?
- 14. Can one fiber be used to transmit and receive signals? Why?
- 15. What is the principle of CSMA/CD mechanism?
- 16. Why do a preamble have to start a frame in CSMA and CSMA/CD protocols?
- 17. Is a frame collision possible when only 2 Ethernet interfaces are connected by a half-duplex link? Why?
- 18. What is the reason for minimum length of Ethernet frame?
- 19. What does happen when a frame collision is discovered on the Ethernet link?
- 20. Does the full-duplex point-to-point Ethernet use CSMA/CD mechanism? Why?

- 21. When a switch having interfaces with different speeds should be installed?
- 22. What is it the fat tree network? Where is it applied?
- 23. What is it the hierarchical internetworking model?
- 24. What is the aim of Spanning-Tree protocols in Ethernet networks?
- 25. What is the aim of VLANs (Virtual Local Area Network)?
- 26. What is the purpose of VLAN trunking protocols?
- 27. How does an Ethernet switch process frame priorities?
- 28. What are the pros for Industrial Ethernet deployment?
- 29. How an EPON network works?
- 30. What are the advantages of EPON (Ethernet Passive Optical Network)?

Questions for curious minds

- 1. What is the Sneakernet throughput?
- 2. Why copper cables are used more frequently than fiber cables inside buildings, in spite of being sensitive to interference and radio noises?
- 3. Why can Ethernet be used in real time industry networks?
- 4. How many times one can look into a light beam from a telecommunication fiber?