

Topic 5 Visualization Word 1 vec Nekbeh 1, moder - sire 2, model Project Mile stone

Doc2Vec

Figure 3-13. Doc2vec architectures: (a) DM and (b) DBOW

Poc 2 Vec

GIOVE C+1+ Hub Pinh

	"he	kalu	Mas	home	\	iiked
the	0	2	0	0	0	1
farm	2	0	1	0	0	0
was	0	1	0	1	0	0
home	0	0	1	0	0	0
1	0	0	0	0	0	1
liked	1	0	0	0	1	0

Document 1: The farm was home.

Document 2: I liked the farm.

Window size: Let's say it is 3

Co-occurrence matrix

GloVE

Document 1: The farm was home.

GloVE

Document 1: The farm was home.

Document 2: I liked the farm.

Window size: Let's say it is 3

of times any word appears in the context of word home.

$$X_i = \sum_{j=1}^N X_{ij}$$

Co-occurrence matrix

GloVE

```
the
 was ()
home ()
liked
```

Co-occurrence matrix

Document 1: The farm was home.

Document 2: I liked the farm.

Window size: Let's say it is 3

= P(j | i) = The probability word j will appear in the context of word i.

GloVe

• Finding relevant words for the given words among probe words

Probability and Ratio	k = solid	k = gas	k = water	k = fashion	
P(k ice)	1.9 × 10-4	6.6 × 10-5	3.0 × 10-3	1.7 × 10-5	fishion
P(k steam)	2.2 × 10-5	7.8 × 10-4	2.2 × 10-3	1.8 × 10-5	dest
P(k ice) / P(k steam)	8.9	8.5 × 10-2	1.36	0.96	frequely

Ice appear with le mar than skam

Glove (déprisé of verd 2 vec

$$F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$$

$$F(w_i - w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$$

$$F((w_i - w_j)^T \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$$

$$w_i T \widetilde{w_k} + b_i + b_k = log(X_{ik})$$

factorization of the logarithm of co-occurrence matrix

• Cost Function = $f(X_{ij}) * [\sum_{ij=1}^{V} w_i^T \widetilde{w_j} + b_i + \widetilde{b_j} - \ln(X_{ij})]^2$

Visually inspecting word vectors

• We still have quite a high-dimensional vector representation for each

word...

```
#What is the vector representation for a word?
w2v model['beautiful']
                                                               0.15136719,
                                                               0.22851562.
                                   -0.15332031, -0.05908203
                                  -0.09472656, -0.03344727,
                                                               0.24707031
                                                               0.08105469
                                                               0.08203125,
                      0.24316406,
                                    0.04150391,
                                    0.07128906
                                                 0.04736328,
                      0.03833008, -0.24804688,
                                                 0.03515625.
```

t-SNE

 $\frac{https://towardsdatascience.com/google-news-and-leo-tolstoy-visualizing-word2vec-word-embeddings-with-t-sne-11558d8bd4d}{}$

t-SNE

Figure 3-16. t-SNE visualization shows some interesting relationships [7]

WOMAN t-SNE AUNT Areas of Computer Science Athletic Sports Species N Albums Films ıg relationships [7]

Figure 3-17. Visualization of Wikipedia document vectors [34]

Visualizing Embeddings

- How do we visualize such a high dimension?
- Dimensionality reduction techniques
 - t-SNE
 - The number of components
 - Perplexity value
 - The type of initialization
 - Mapping Gaussian Distribution to a t-distribution

Steps of t-SNE

- 1. Compute pairwise similarities between data points
- 2. Transform similarities into a probability distribution that represents the similarities between datapoints in high-dimensional space
- 3. Reduce the dimensionality minimize a cost function measuring difference between the similarities in the high-dimensional space and the low-dimensional space
- 4. Optimize this mapping between the spaces

The Embedding Projector

Drawbacks of t-SNE

- Perplexity balances the attention t-SNE gives to local and global aspects of the data and can have large effects on the resulting plot
- You cannot see the relative sizes of clusters in a t-SNE plot
- Distances between well-separated clusters in a t-SNE plot may mean nothing
- Clumps of points especially with small perplexity values might just be noise

Activity

- Train a Word2Vec model from scratch using Gensim
- Visualize this embedding using t-SNE

Types of Similarity between Embeddings

- Euclidean
- Cosine
- Manhattan
- etc.

Types of Similarity between Embeddings

Euclidean

- Cosine
- Manhattan
- etc.

$$A = [a_1, ..., a_n]$$
 $B = [b_1, ..., b_n]$

euclidean_dist = $sqrt(\sum_i (a_i - b_i)^2)$

Types of Similarity between Embeddings

- Euclidean
- Cosine
- Manhattan
- etc.

$$similarity(A,B) = \frac{A \cdot B}{\|A\| \times \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Heatmaps

https://www.conniefan.com/2017/03/measures-of-similarity-in-the-20-newsgroups-dataset/

Scattertext (Example in Exercise Notebook)

Next time

Finding important topics in a text