Veriopt Theories

September 21, 2022

Contents

1	Can	onicalization Optimizations	1
	1.1	AbsNode Phase	3
	1.2	AddNode Phase	8
	1.3	AndNode Phase	11
	1.4	BinaryNode Phase	15
	1.5	ConditionalNode Phase	16
	1.6	MulNode Phase	19
	1.7	Experimental AndNode Phase	28
	1.8	NotNode Phase	42
	1.9	OrNode Phase	43
	1.10	ShiftNode Phase	46
	1.11	SignedDivNode Phase	48
	1.12	SignedRemNode Phase	48
	1.13	SubNode Phase	49
	1.14	XorNode Phase	56
	1.15	NegateNode Phase	58
	1.16	AddNode	61
	1.17	NegateNode	62
1	Ca	anonicalization Optimizations	
theory Common imports OptimizationDSL.Canonicalization Semantics.IRTreeEvalThms begin			
De,	5·11		
lemma $size-pos[size-simps]: 0 < size y$ apply $(induction y; auto?)$ by $(smt (z3) add-2-eq-Suc' add-is-0 not-gr0 size.elims size.simps(12) size.simps(13) size.simps(14) size.simps(15) zero-neq-numeral zero-neq-one)$			

```
lemma size-non-add[size-simps]: size (BinaryExpr op a b) = size a + size b + 2
\longleftrightarrow \neg (is\text{-}ConstantExpr\ b)
 by (induction b; induction op; auto simp: is-ConstantExpr-def)
lemma \ size-non-const[size-simps]:
  \neg is\text{-}ConstantExpr y \Longrightarrow 1 < size y
 using size-pos apply (induction y; auto)
 by (metis Suc-lessI add-is-1 is-ConstantExpr-def le-less linorder-not-le n-not-Suc-n
numeral-2-eq-2 pos2 size.simps(2) size-non-add)
lemma \ size-binary-const[size-simps]:
  size\ (BinaryExpr\ op\ a\ b) = size\ a + 2 \longleftrightarrow (is-ConstantExpr\ b)
 by (induction b; auto simp: is-ConstantExpr-def size-pos)
lemma size-flip-binary[size-simps]:
   \neg (is\text{-}ConstantExpr\ y) \longrightarrow size\ (BinaryExpr\ op\ (ConstantExpr\ x)\ y) > size
(BinaryExpr\ op\ y\ (ConstantExpr\ x))
 by (metis add-Suc not-less-eq order-less-asym plus-1-eq-Suc size.simps(11) size.simps(2)
size-non-add)
lemma size-binary-lhs-a[size-simps]:
  size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ a
 by (metis add-lessD1 less-add-same-cancel1 pos2 size-binary-const size-non-add)
lemma size-binary-lhs-b[size-simps]:
  size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ b
 by (metis IRExpr.disc(42) One-nat-def add.left-commute add.right-neutral is-ConstantExpr-def
less-add-Suc2 numeral-2-eq-2 plus-1-eq-Suc size.simps(11) size-binary-const size-non-add
size-non-const trans-less-add1)
lemma size-binary-lhs-c[size-simps]:
 size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ c
 \textbf{by} \ (\textit{metis IRExpr.disc} (42) \ \textit{add.left-commute add.right-neutral is-ConstantExpr-def}
less-Suc-eq\ numeral-2-eq-2\ plus-1-eq-Suc\ size.simps (11)\ size-non-add\ size-non-const
trans-less-add2)
lemma size-binary-rhs-a[size-simps]:
  size (BinaryExpr \ op \ c \ (BinaryExpr \ op' \ a \ b)) > size \ a
 by (smt (verit, best) less-Suc-eq less-add-Suc2 less-add-same-cancel1 linorder-neqE-nat
not-add-less1 order-less-trans pos2 size.simps(4) size-binary-const size-non-add)
lemma size-binary-rhs-b[size-simps]:
  size (BinaryExpr \ op \ c \ (BinaryExpr \ op' \ a \ b)) > size \ b
 \mathbf{by}\ (\textit{metis add.left-commute add.right-neutral is-ConstantExpr-def lessI\ numeral-2-eq-2})
plus-1-eq-Suc\ size.simps(11)\ size.simps(4)\ size-non-add\ trans-less-add2)
lemma size-binary-rhs-c[size-simps]:
  size (BinaryExpr \ op \ c \ (BinaryExpr \ op' \ a \ b)) > size \ c
```

```
by simp
lemma \ size-binary-lhs[size-simps]:
  size (BinaryExpr op x y) > size x
  by (metis One-nat-def Suc-eq-plus1 add-Suc-right less-add-Suc1 numeral-2-eq-2
size-binary-const size-non-add)
lemma size-binary-rhs[size-simps]:
  size (BinaryExpr op x y) > size y
 by (metis\ IRExpr.disc(42)\ add\text{-}strict\text{-}increasing\ is\text{-}ConstantExpr\text{-}def\ linorder\text{-}not\text{-}le
not-add-less1 size.simps(11) size-non-add size-non-const size-pos)
\mathbf{lemmas} \ arith[\mathit{size-simps}] = \mathit{Suc-leI} \ add\text{-}\mathit{strict-increasing} \ order\text{-}\mathit{less-trans} \ trans\text{-}\mathit{less-add2}
definition well-formed-equal :: Value \Rightarrow Value \Rightarrow bool
  (infix \approx 50) where
  well-formed-equal v_1 v_2 = (v_1 \neq UndefVal \longrightarrow v_1 = v_2)
lemma well-formed-equal-defn [simp]:
  well-formed-equal v_1 v_2 = (v_1 \neq UndefVal \longrightarrow v_1 = v_2)
 unfolding well-formed-equal-def by simp
end
        AbsNode Phase
1.1
theory AbsPhase
 imports
    Common
begin
phase AbsNode
 terminating size
begin
lemma abs-pos:
 fixes v :: ('a :: len word)
 assumes 0 \le s v
 shows (if v < s \ 0 \ then - v \ else \ v) = v
 by (simp add: assms signed.leD)
lemma abs-neg:
 fixes v :: ('a :: len word)
 assumes v < s \theta
 assumes -(2 \hat{\ } (Nat.size \ v - 1)) < s \ v
```

shows (if $v < s \ \theta$ then -v else v) = $-v \land \theta < s -v$

```
by (smt\ (verit,\ ccfv\text{-}SIG)\ assms(1)\ assms(2)\ signed-take-bit-int-greater-eq-minus-exp
    signed-take-bit-int-greater-eq-self-iff\ sint-0\ sint-word-ariths (4)\ word-sless-alt)
lemma abs-max-neg:
 fixes v :: ('a :: len word)
 assumes v < s \theta
 \mathbf{assumes} - (2 \ \widehat{} \ (Nat.size \ v - 1)) = v
 shows -v = v
 using assms
 by (metis One-nat-def add.inverse-neutral double-eq-zero-iff mult-minus-right size-word.rep-eq)
lemma final-abs:
 fixes v :: ('a :: len word)
 assumes take-bit (Nat.size v) v = v
 \mathbf{assumes} - (2 \ \widehat{} \ (Nat.size \ v - 1)) \neq v
 shows 0 \le s (if v < s \ 0 then -v else v)
proof (cases v < s \theta)
 case True
  then show ?thesis
 proof (cases\ v = -(2 \cap (Nat.size\ v - 1)))
   case True
   then show ?thesis using abs-max-neg
     using assms by presburger
 \mathbf{next}
   case False
   then have -(2 \cap (Nat.size\ v-1)) < s\ v
     unfolding word-sless-def using signed-take-bit-int-greater-self-iff
       by (smt (verit, best) One-nat-def diff-less double-eq-zero-iff len-gt-0 lessI
less-irrefl
        mult-minus-right neg-equal-0-iff-equal signed.rep-eq signed-of-int
        signed-take-bit-int-greater-eq-self-iff\ signed-word-eqI\ sint-0\ sint-range-size
       sint-sbintrunc' sint-word-ariths(4) size-word.rep-eq unsigned-0 word-2p-lem
        word-sless.rep-eq word-sless-def)
   then show ?thesis
     using abs-neg abs-pos signed.nless-le by auto
 qed
next
 case False
  then show ?thesis using abs-pos by auto
qed
lemma wf-abs: is-IntVal x \Longrightarrow intval-abs x \ne UndefVal
 using intval-abs.simps unfolding new-int.simps
 using is-IntVal-def by force
```

```
fun bin-abs :: 'a :: len word <math>\Rightarrow 'a :: len word where
  bin-abs\ v = (if\ (v < s\ 0)\ then\ (-\ v)\ else\ v)
lemma val-abs-zero:
  intval-abs (new-int b \theta) = new-int b \theta
 by simp
lemma less-eq-zero:
 assumes val-to-bool (val[(IntVal\ b\ 0) < (IntVal\ b\ v)])
 shows int-signed-value b \ v > 0
 using assms unfolding intval-less-than.simps(1) apply simp
 by (metis\ bool-to-val.elims\ val-to-bool.simps(1))
lemma val-abs-pos:
 assumes val-to-bool(val[(new\text{-}int\ b\ \theta) < (new\text{-}int\ b\ v)])
 shows intval-abs (new-int b v) = (new-int b v)
 using assms using less-eq-zero unfolding intval-abs.simps new-int.simps
 by force
lemma val-abs-neg:
  assumes val-to-bool(val[(new\text{-}int\ b\ v) < (new\text{-}int\ b\ 0)])
 shows intval-abs (new-int b v) = intval-negate (new-int b v)
 using assms using less-eq-zero unfolding intval-abs.simps new-int.simps
 by force
lemma val-bool-unwrap:
  val-to-bool (bool-to-val v) = v
 by (metis\ bool-to-val.elims\ one-neq-zero\ val-to-bool.simps(1))
lemma take-bit-unwrap:
  b = 64 \implies take-bit\ b\ (v1::64\ word) = v1
 by (metis size64 size-word.rep-eq take-bit-length-eq)
lemma bit-less-eq-def:
 fixes v1 v2 :: 64 word
 assumes b \leq 64
 shows sint (signed-take-bit (b - Suc (0::nat)) (take-bit b v1))
   < sint (signed-take-bit (b - Suc (0::nat)) (take-bit b v2)) \longleftrightarrow
    signed-take-bit (63::nat) (Word.rep v1) < signed-take-bit (63::nat) (Word.rep
v2)
 using assms sorry
lemma less-eq-def:
 shows val-to-bool(val[(new\text{-}int\ b\ v1) < (new\text{-}int\ b\ v2)]) \longleftrightarrow v1 < s\ v2
 unfolding new-int.simps intval-less-than.simps bool-to-val-bin.simps bool-to-val.simps
```

```
int-signed-value.simps apply (simp add: val-bool-unwrap)
   apply auto unfolding word-sless-def apply auto
   unfolding signed-def apply auto using bit-less-eq-def
   apply (metis bot-nat-0.extremum take-bit-0)
   by (metis bit-less-eq-def bot-nat-0.extremum take-bit-0)
lemma val-abs-always-pos:
   assumes intval-abs (new-int b v) = (new-int b v')
  shows 0 \le s v'
   using assms
proof (cases \ v = \theta)
   case True
   then have v' = \theta
     using val-abs-zero assms
        by (smt (verit, ccfv-threshold) Suc-diff-1 bit-less-eq-def bot-nat-0.extremum
diff-is-0-eq len-gt-0 l
take-bit-unwrap)
   then show ?thesis by simp
next
   case neq0: False
   then show ?thesis
   proof (cases\ val\ to\ bool(val[(new\ int\ b\ 0)<(new\ int\ b\ v)]))
     case True
     then show ?thesis using less-eq-def
         using assms val-abs-pos
           by (smt (verit, ccfv-SIG) One-nat-def Suc-leI bit.compl-one bit-less-eq-def
cancel-comm-monoid-add-class.diff-cancel diff-zero len-gt-0 len-of-numeral-defs(2)
mask-0\ mask-1\ one-le-numeral\ one-neq-zero\ signed-word-eqI\ take-bit-dist-subL\ take-bit-minus-one-eq-mask
take-bit-not-eq-mask-diff\ take-bit-signed-take-bit\ zero-le-numeral)
  next
      case False
     then have val-to-bool(val[(new-int b \ v) < (new-int b \ 0)])
         using neq0 less-eq-def
        by (metis\ signed.neqE)
        then show ?thesis using val-abs-neg less-eq-def unfolding new-int.simps
intval-negate.simps
         by (metis signed.nless-le take-bit-0)
   qed
qed
lemma intval-abs-elims:
   assumes intval-abs x \neq UndefVal
  shows \exists t \ v \ . \ x = IntVal \ t \ v \land intval-abs \ x = new-int \ t \ (if int-signed-value \ t \ v <
0 then - v else v
   using assms
```

by (meson intval-abs.elims)

```
lemma wf-abs-new-int:
 assumes intval-abs (IntVal\ t\ v) \neq UndefVal
 shows intval-abs (IntVal\ t\ v) = new-int\ t\ v\ \lor\ intval-abs\ (IntVal\ t\ v) = new-int
t(-v)
 using assms
 using intval-abs.simps(1) by presburger
lemma mono-undef-abs:
 assumes intval-abs (intval-abs x) \neq UndefVal
 shows intval-abs x \neq UndefVal
 using assms
 by force
lemma val-abs-idem:
 assumes intval-abs(intval-abs(x)) \neq UndefVal
 shows intval-abs(intval-abs(x)) = intval-abs(x)
 using assms
proof -
 obtain b v where in-def: intval-abs x = new-int b v
   using assms intval-abs-elims mono-undef-abs by blast
 then show ?thesis
 proof (cases\ val\ to\ bool(val[(new\ int\ b\ v)\ <\ (new\ int\ b\ 0)]))
   {\bf case}\  \, True
   then have nested: (intval-abs\ (intval-abs\ x)) = new-int\ b\ (-v)
     using val-abs-neg intval-negate.simps in-def
     by simp
   then have x = new\text{-}int \ b \ (-v)
     using in-def True unfolding new-int.simps
   by (smt\ (verit,\ best)\ intval-abs.simps(1)\ less-eq-def\ less-eq-zero\ less-numeral-extra(1)
      mask-1 mask-eq-take-bit-minus-one neg-one.elims neg-one-signed new-int.simps
            one-le-numeral\ one-neq\hbox{-}zero\ signed.neqE\ signed.not\hbox{-}less\ take-bit-of-0
val-abs-always-pos)
   then show ?thesis using val-abs-always-pos
     using True in-def less-eq-def signed.leD
     using signed.nless-le by blast
 next
   case False
   then show ?thesis
     using in-def by force
 qed
qed
lemma val-abs-negate:
 assumes intval-abs (intval-negate x) \neq UndefVal
 shows intval-abs (intval-negate x) = intval-abs x
 using assms apply (cases x; auto)
```

```
apply (metis less-eq-def new-int.simps signed.dual-order.strict-iff-not signed.less-linear
        take-bit-0)
 by (smt (verit, ccfv-threshold) add.inverse-neutral intval-abs.simps(1) less-eq-def
less-eq-zero
   less-numeral-extra(1) mask-1 mask-eq-take-bit-minus-one neg-one.elims neg-one-signed
   new-int.simps one-le-numeral one-neg-zero signed.order.order-iff-strict take-bit-of-0
    val-abs-always-pos)
Optimisations
optimization AbsIdempotence: abs(abs(x)) \longmapsto abs(x)
  apply auto
 by (metis UnaryExpr unary-eval.simps(1) val-abs-idem)
optimization AbsNegate: (abs(-x)) \longmapsto abs(x)
   apply auto using val-abs-negate
 by (metis\ unary-eval.simps(1)\ unfold-unary)
end
end
       AddNode Phase
1.2
theory AddPhase
 imports
   Common
begin
phase AddNode
 terminating size
begin
lemma binadd-commute:
 assumes bin-eval\ BinAdd\ x\ y \neq UndefVal
 shows bin-eval BinAdd x y = bin-eval BinAdd y x
 using assms intval-add-sym by simp
optimization AddShiftConstantRight: ((const v) + y) \mapsto y + (const v) when
\neg (is\text{-}ConstantExpr\ y)
 using size-non-const
 apply (metis add-2-eq-Suc' less-Suc-eq plus-1-eq-Suc size.simps(11) size-non-add)
 unfolding le-expr-def
 apply (rule impI)
 subgoal premises 1
```

```
apply (rule allI impI)+
   subgoal premises 2 for m p va
     apply (rule BinaryExprE[OF 2])
     subgoal premises 3 for x ya
      apply (rule BinaryExpr)
      using 3 apply simp
      using 3 apply simp
      using 3 binadd-commute apply auto
      done
     done
   done
 done
optimization AddShiftConstantRight2: ((const\ v) + y) \longmapsto y + (const\ v) when
\neg (is\text{-}ConstantExpr\ y)
 unfolding le-expr-def
  apply (auto simp: intval-add-sym)
 using size-non-const
 by (metis add-2-eq-Suc' lessI plus-1-eq-Suc size.simps(11) size-non-add)
lemma is-neutral-\theta [simp]:
 assumes 1: intval-add (IntVal\ b\ x)\ (IntVal\ b\ 0) \neq UndefVal
 shows intval-add (IntVal b x) (IntVal b 0) = (new-int b x)
 using 1 by auto
optimization AddNeutral: (e + (const (IntVal 32 0))) \mapsto e
 unfolding le-expr-def apply auto
 using is-neutral-0 eval-unused-bits-zero
 by (smt (verit) add-cancel-left-right intval-add.elims val-to-bool.simps(1))
ML-val \langle @\{term \langle x = y \rangle \} \rangle
\mathbf{lemma}\ \mathit{NeutralLeftSubVal} :
 assumes e1 = new\text{-}int \ b \ ival
 shows val[(e1 - e2) + e2] \approx e1
 apply simp using assms by (cases e1; cases e2; auto)
optimization RedundantSubAdd: ((e_1 - e_2) + e_2) \longmapsto e_1
 apply auto using eval-unused-bits-zero NeutralLeftSubVal
 unfolding well-formed-equal-defn
```

```
by (smt (verit) evalDet intval-sub.elims new-int.elims)
lemma allE2: (\forall x \ y. \ P \ x \ y) \Longrightarrow (P \ a \ b \Longrightarrow R) \Longrightarrow R
 by simp
lemma just-goal2:
  assumes 1: (\forall a \ b. \ (intval-add \ (intval-sub \ a \ b) \ b \neq UndefVal \ \land \ a \neq UndefVal
   intval-add (intval-sub a b) b = a))
 shows (BinaryExpr BinAdd (BinaryExpr BinSub e_1 e_2) e_2) \geq e_1
 unfolding le-expr-def unfold-binary bin-eval.simps
 by (metis 1 evalDet evaltree-not-undef)
optimization RedundantSubAdd2: e_2 + (e_1 - e_2) \longmapsto e_1
 apply (metis add.commute add-less-cancel-right less-add-Suc2 plus-1-eq-Suc size-binary-const
size-non-add trans-less-add2)
  by (smt (verit, del-insts) BinaryExpr BinaryExprE RedundantSubAdd(1) bi-
nadd-commute le-expr-def rewrite-preservation.simps(1))
\mathbf{lemma}\ Add To Sub Helper Low Level:
 shows intval-add (intval-negate e) y = intval-sub y \in (is ?x = ?y)
 by (induction y; induction e; auto)
print-phases
{f lemma}\ val	ext{-}redundant	ext{-}add	ext{-}sub:
 assumes a = new-int bb ival
 assumes val[b + a] \neq UndefVal
 \mathbf{shows} \ val[(b+a)-b] = a
 using assms apply (cases a; cases b; auto)
 by presburger
\mathbf{lemma}\ \mathit{val-add-right-negate-to-sub} :
 assumes val[x + e] \neq UndefVal
 shows val[x + (-e)] = val[x - e]
 using assms by (cases x; cases e; auto)
```

```
{\bf lemma}\ exp\text{-}add\text{-}left\text{-}negate\text{-}to\text{-}sub\text{:}
exp[-e + y] \ge exp[y - e]
 apply (cases e; cases y; auto)
 \mathbf{using}\ \mathit{AddToSubHelperLowLevel}\ \mathbf{by}\ \mathit{auto} +
Optimisations
optimization RedundantAddSub: (b + a) - b \mapsto a
  apply auto using val-redundant-add-sub eval-unused-bits-zero
  by (smt (verit) evalDet intval-add.elims new-int.elims)
optimization AddRightNegateToSub: x + -e \longmapsto x - e
 apply (metis Nat.add-0-right add-2-eq-Suc' add-less-mono1 add-mono-thms-linordered-field(2)
less-SucI not-less-less-Suc-eq size-binary-const size-non-add size-pos)
  using AddToSubHelperLowLevel intval-add-sym by auto
optimization AddLeftNegateToSub: -e + y \longmapsto y - e
 \mathbf{using}\ \mathit{exp-add-left-negate-to-sub}\ \mathbf{apply}\ \mathit{blast}
 by (smt (verit, best) One-nat-def add.commute add-Suc-right is-ConstantExpr-def
less-add-Suc2\ numeral-2-eq-2\ plus-1-eq-Suc\ size.simps(1)\ size.simps(11)\ size-binary-const
size-non-add)
end
end
       AndNode Phase
1.3
theory AndPhase
 imports
   Common
```

 $\begin{array}{c} \mathbf{phase} \ \mathit{AndNode} \\ \mathbf{terminating} \ \mathit{size} \end{array}$

begin

begin

$$(^{\sim}x \& ^{\sim}y) = (^{\sim}(x \mid y))$$

by $simp$

Proofs.StampEvalThms

```
lemma bin-and-neutral:
(x \& ^{\sim}False) = x
 \mathbf{by} \ simp
lemma val-and-equal:
 assumes x = new\text{-}int \ b \ v
 and val[x \& x] \neq UndefVal
 shows val[x \& x] = x
  using assms by (cases x; auto)
\mathbf{lemma}\ val\text{-}and\text{-}nots:
  val[^{\sim}x \& ^{\sim}y] = val[^{\sim}(x \mid y)]
 apply (cases x; cases y; auto) by (simp add: take-bit-not-take-bit)
lemma val-and-neutral:
 assumes x = new\text{-}int \ b \ v
          val[x \& ^{\sim}(new\text{-}int \ b' \ \theta)] \neq UndefVal
 and
 shows val[x \& ^{\sim}(new\text{-}int \ b' \ \theta)] = x
  using assms apply (cases x; auto) apply (simp add: take-bit-eq-mask)
  by presburger
lemma val-and-zero:
 assumes x = new\text{-}int \ b \ v
 shows val[x \& (IntVal \ b \ \theta)] = IntVal \ b \ \theta
  using assms by (cases x; auto)
\mathbf{lemma}\ exp\text{-}and\text{-}equal:
  exp[x \& x] \ge exp[x]
  apply auto using val-and-equal eval-unused-bits-zero
 by (smt (verit) evalDet intval-and.elims new-int.elims)
lemma exp-and-nots:
  exp[^{\sim}x \& ^{\sim}y] \ge exp[^{\sim}(x \mid y)]
  apply (cases x; cases y; auto) using val-and-nots
 by fastforce+
lemma exp-sign-extend:
 assumes e = (1 \ll In) - 1
 \mathbf{shows} \quad \textit{BinaryExpr BinAnd (UnaryExpr (UnarySignExtend In Out) x)}
                          (ConstantExpr(new-int b e))
                         \geq (UnaryExpr (UnaryZeroExtend In Out) x)
 apply auto
 subgoal premises p for m p va
```

```
proof -
     obtain va where va: [m,p] \vdash x \mapsto va
      using p(2) by auto
     then have va \neq UndefVal
      by (simp add: evaltree-not-undef)
     then have 1: intval-and (intval-sign-extend In Out va) (IntVal b (take-bit b
e)) \neq UndefVal
      using evalDet p(1) p(2) va by blast
     then have 2: intval-sign-extend In Out va \neq UndefVal
      by auto
     then have 21:(0::nat) < b
      by (simp \ add: \ p(4))
     then have 3: b \sqsubseteq (64::nat)
      by (simp\ add:\ p(5))
     then have 4:-((2::int) \hat{b} div (2::int)) \subseteq sint (signed-take-bit (b - Suc
(0::nat) (take-bit\ b\ e)
      by (simp\ add:\ p(6))
   then have 5: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) < (2::int)
^ b div (2::int)
      by (simp\ add:\ p(7))
     then have 6: [m,p] \vdash UnaryExpr (UnaryZeroExtend In Out)
            x \mapsto intval-and (intval-sign-extend In Out va) (IntVal b (take-bit b e))
      apply (cases va; simp)
      apply (simp \ add: \langle (va::Value) \neq UndefVal \rangle) defer
       subgoal premises p for x3
        proof -
         have va = ObjRef x3
           using p(1) by auto
           then have sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) <
(2::int) ^ b div (2::int)
           by (simp add: 5)
         then show ?thesis
           using 2 intval-sign-extend.simps(3) p(1) by blast
       subgoal premises p for x4
        proof -
         have sg1: va = ObjStr x4
           using 2 p(1) by auto
            then have sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) <
(2::int) ^ b div (2::int)
           by (simp add: 5)
         then show ?thesis
           using 1 sg1 by auto
        qed
        subgoal premises p for x21 x22
         proof -
```

```
have sgg1: va = IntVal \ x21 \ x22
             by (simp\ add:\ p(1))
           then have sgg2: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e))
< (2::int) \hat{} b div (2::int)
              by (simp add: 5)
            then show ?thesis
             sorry
            qed
          done
     then show ?thesis
       by (metis evalDet p(2) va)
   qed
 done
lemma val-and-commute[simp]:
  val[x \& y] = val[y \& x]
  apply (cases x; cases y; auto)
 by (simp\ add:\ word-bw-comms(1))
Optimisations
optimization And Equal: x \& x \longmapsto x
 using exp-and-equal by blast
optimization And Shift Constant Right: ((const\ x)\ \&\ y) \longmapsto y\ \&\ (const\ x)
                                    when \neg (is\text{-}ConstantExpr\ y)
 using size-flip-binary by auto
optimization And Nots: (^{\sim}x) \& (^{\sim}y) \longmapsto ^{\sim}(x \mid y)
   defer using exp-and-nots
  apply presburger
 by (metis add-2-eq-Suc' less-SucI less-add-Suc1 not-less-eq size-binary-const size-non-add)
optimization And Sign Extend: Binary Expr Bin And (Unary Expr (Unary Sign Extend
In Out)(x)
                                         (const\ (new\text{-}int\ b\ e))
                          \longmapsto (UnaryExpr\ (UnaryZeroExtend\ In\ Out)\ x)
                              when (e = (1 << In) - 1)
  using exp-sign-extend by simp
optimization And Neutral: (x \& ^{\sim}(const\ (IntVal\ b\ \theta))) \longmapsto x
  when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
  apply auto using val-and-neutral
```

```
new-int.simps new-int-bin.simps take-bit-eq-mask)
end
context stamp-mask
begin
lemma And Right Fall through: (((and (not (\downarrow x)) (\uparrow y)) = \theta)) \longrightarrow exp[x \& y] \ge
 apply simp apply (rule impI; (rule allI)+)
 apply (rule\ impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto xv
     using p(2) by blast
   obtain yv where yv: [m, p] \vdash y \mapsto yv
     using p(2) by blast
   have v = val[xv \& yv]
     using p(2) xv yv
     by (metis BinaryExprE bin-eval.simps(4) evalDet)
   then have v = yv
     using p(1) not-down-up-mask-and-zero-implies-zero
   by (smt (verit) eval-unused-bits-zero intval-and.elims new-int.elims new-int-bin.elims
p(2) unfold-binary xv yv)
   then show ?thesis using yv by simp
 \mathbf{qed}
 done
lemma AndLeftFallthrough: (((and (not (\downarrow y)) (\uparrow x)) = 0)) \longrightarrow exp[x \& y] \ge
 apply simp apply (rule impI; (rule allI)+)
 apply (rule\ impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto xv
     using p(2) by blast
   obtain yv where yv: [m, p] \vdash y \mapsto yv
     using p(2) by blast
   have v = val[xv \& yv]
     using p(2) xv yv
     by (metis BinaryExprE bin-eval.simps(4) evalDet)
   then have v = xv
     using p(1) not-down-up-mask-and-zero-implies-zero
   by (smt (verit) and commute eval-unused-bits-zero intval-and elims new-int.simps
```

by (smt (verit) Value.sel(1) eval-unused-bits-zero intval-and.elims intval-word.simps

new-int-bin.simps p(2) unfold-binary xv yv)

```
then show ?thesis using xv by simp
  qed
  done
end
end
1.4
       BinaryNode Phase
{\bf theory} \ BinaryNode
 imports
    Common
begin
{f phase} BinaryNode
 terminating size
begin
optimization BinaryFoldConstant: BinaryExpr op (const v1) (const v2) \longmapsto Con-
stantExpr (bin-eval op v1 v2)
  unfolding le-expr-def
  {\bf apply} \ (\mathit{rule} \ \mathit{allI} \ \mathit{impI}) +
 subgoal premises bin for m p v
   print-facts
   apply (rule BinaryExprE[OF bin])
   subgoal premises prems for x y
     print-facts
   proof -
     have x: x = v1 using prems by auto
     have y: y = v2 using prems by auto
     have xy: v = bin\text{-}eval op } x y  using prems x y  by simp
     have int: \exists b vv \cdot v = new\text{-}int b vv \text{ using } bin\text{-}eval\text{-}new\text{-}int prems } \mathbf{by} \text{ } fast
     show ?thesis
       unfolding prems \ x \ y \ xy
       apply (rule ConstantExpr)
       apply (rule validDefIntConst)
       using prems x y xy int sorry
     qed
   done
  done
print-facts
```

end

1.5 ConditionalNode Phase

```
{\bf theory}\ {\it Conditional Phase}
 imports
    Common
    Proofs. Stamp Eval Thms
begin
phase ConditionalNode
 terminating size
begin
lemma negates: \exists v \ b. \ e = IntVal \ b \ v \land b > 0 \implies val-to-bool \ (val[e]) \longleftrightarrow
\neg(val\text{-}to\text{-}bool\ (val[!e]))
 unfolding intval-logic-negation.simps
 by (metis (mono-tags, lifting) intval-logic-negation.simps(1) logic-negate-def new-int.simps
of\text{-}bool\text{-}eq(2) one-neg-zero take-bit-of-0 take-bit-of-1 val-to-bool.simps(1))
{f lemma} negation-condition-intval:
 assumes e = IntVal \ b \ ie
 assumes \theta < b
 shows val[(!e) ? x : y] = val[e ? y : x]
 using assms by (cases e; auto simp: negates logic-negate-def)
lemma negation-preserve-eval:
  assumes [m, p] \vdash exp[!e] \mapsto v
 shows \exists v'. ([m, p] \vdash exp[e] \mapsto v') \land v = val[!v']
 using assms by auto
lemma negation-preserve-eval-intval:
 assumes [m, p] \vdash exp[!e] \mapsto v
 shows \exists v' \ b \ vv. \ ([m, p] \vdash exp[e] \mapsto v') \land v' = IntVal \ b \ vv \land b > 0
 using assms
 by (metis eval-bits-1-64 intval-logic-negation.elims negation-preserve-eval unfold-unary)
optimization NegateConditionFlipBranches: ((!e) ? x : y) \mapsto (e? y : x)
 apply simp using negation-condition-intval negation-preserve-eval-intval
 by (smt (z3) ConditionalExpr ConditionalExprE evalDet negates negation-preserve-eval)
optimization DefaultTrueBranch: (true ? x : y) \mapsto x.
optimization DefaultFalseBranch: (false ? x : y) \longmapsto y.
optimization Conditional Equal Branches: (e ? x : x) \mapsto x.
optimization condition-bounds-x: ((u < v) ? x : y) \mapsto x
   when (stamp-under\ (stamp-expr\ u)\ (stamp-expr\ v)\ \land\ wf-stamp\ u\ \land\ wf-stamp\ v)
```

```
optimization condition-bounds-y: ((u < v) ? x : y) \mapsto y
   when (stamp-under\ (stamp-expr\ v)\ (stamp-expr\ u) \land wf-stamp\ u \land wf-stamp\ v)
  using stamp-under-defn-inverse by auto
\mathbf{lemma}\ \mathit{val-optimise-integer-test}\colon
 assumes \exists v. x = IntVal \ 32 \ v
  shows val[((x \& (IntVal 32 1)) eq (IntVal 32 0)) ? (IntVal 32 0) : (IntVal 32 0)]
[1)] =
        val[x \& IntVal 32 1]
 using assms apply auto
 apply (metis (full-types) bool-to-val.<math>simps(2) val-to-bool.<math>simps(1))
 by (metis (mono-tags, lifting) and-one-eq bool-to-val.simps(1) even-iff-mod-2-eq-zero
odd-iff-mod-2-eq-one val-to-bool.simps(1))
optimization Conditional Eliminate Known Less: ((x < y) ? x : y) \mapsto x
                              when \ (stamp\text{-}under \ (stamp\text{-}expr \ x) \ (stamp\text{-}expr \ y)
                                  \land wf-stamp x \land wf-stamp y)
   using stamp-under-defn by auto
optimization Conditional Equal Is RHS: ((x \ eq \ y) \ ? \ x : y) \longmapsto y
 apply auto
 by (smt (verit) Value.inject(1) bool-to-val.simps(2) bool-to-val-bin.simps evalDet
intval-equals. elims\ val-to-bool. elims(1))
optimization normalizeX: ((x \ eq \ const \ (IntVal \ 32 \ 0)) \ ?
                             (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto x
                         when \ (x = Constant Expr \ (Int Val \ 32 \ 0) \mid (x = Constant Expr
(Int Val \ 32 \ 1))).
optimization normalizeX2: ((x eq (const (IntVal 32 1))) ?
                              (const\ (IntVal\ 32\ 1)): (const\ (IntVal\ 32\ 0))) \longmapsto x
                                     when (x = ConstantExpr (IntVal 32 0) | (x =
ConstantExpr (IntVal 32 1))) .
optimization flip X: ((x \ eq \ (const \ (Int Val \ 32 \ 0))) \ ?
                        (const\ (Int Val\ 32\ 1)): (const\ (Int Val\ 32\ 0))) \longmapsto
                         x \oplus (const (IntVal 32 1))
                        when (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr
(Int Val \ 32 \ 1))).
```

using stamp-under-defn by auto

```
optimization flip X2: ((x eq (const (Int Val 32 1))) ?
                        (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto
                        x \oplus (const (IntVal 32 1))
                       when (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr
(Int Val \ 32 \ 1))).
lemma stamp-of-default:
 assumes stamp-expr \ x = default-stamp
 assumes wf-stamp x
 shows ([m, p] \vdash x \mapsto v) \longrightarrow (\exists vv. \ v = IntVal \ 32 \ vv)
 using assms
 by (metis default-stamp valid-value-elims(3) wf-stamp-def)
optimization OptimiseIntegerTest:
    (((x \& (const (IntVal 32 1))) eq (const (IntVal 32 0))) ?
     (const\ (Int Val\ 32\ 0)): (const\ (Int Val\ 32\ 1))) \longmapsto
      x & (const (IntVal 32 1))
      when (stamp-expr \ x = default-stamp \land wf-stamp \ x)
 apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises eval for m p v
proof -
  obtain xv where xv: [m, p] \vdash x \mapsto xv
   using eval by fast
  then have x32: \exists v. xv = IntVal 32 v
   using stamp-of-default eval by auto
 obtain lhs where lhs: [m, p] \vdash exp[((x \& (const (IntVal 32 1))) eq (const (IntVal 32 1)))]
32 0))) ?
     (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1)))] \mapsto lhs
   using eval(2) by auto
 then have lhsV: lhs = val[((xv \& (IntVal 32 1)) eq (IntVal 32 0)) ? (IntVal 32 0))
0): (IntVal \ 32 \ 1)]
   using \ xv \ evaltree. Binary Expr \ evaltree. Constant Expr \ evaltree. Conditional Expr
  by (smt\ (verit)\ Conditional ExprE\ Constant ExprE\ bin-eval.simps(11)\ bin-eval.simps(4)
evalDet intval-conditional.simps unfold-binary)
  obtain rhs where rhs: [m, p] \vdash exp[x \& (const (Int Val 32 1))] \mapsto rhs
   using eval(2) by blast
  then have rhsV: rhs = val[xv \& IntVal 32 1]
   by (metis BinaryExprE ConstantExprE bin-eval.simps(4) evalDet xv)
  have lhs = rhs using val-optimise-integer-test x32
   using lhsV rhsV by presburger
  then show ?thesis
   by (metis\ eval(2)\ evalDet\ lhs\ rhs)
qed
  done
optimization opt-optimise-integer-test-2:
    (((x \& (const (IntVal 32 1))) eq (const (IntVal 32 0))) ?
```

```
(const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto \\ x \\ when\ (x = ConstantExpr\ (IntVal\ 32\ 0) \mid (x = ConstantExpr\ (IntVal\ 32\ 1))) \ .
```

end

end

1.6 MulNode Phase

```
theory MulPhase
 imports
    Common
    Proofs. Stamp Eval Thms \\
begin
\mathbf{phase}\ \mathit{MulNode}
  terminating size
begin
\mathbf{lemma}\ bin\text{-}eliminate\text{-}redundant\text{-}negative:}
  uminus\ (x:: 'a::len\ word)*uminus\ (y:: 'a::len\ word) = x*y
  \mathbf{by} \ simp
lemma bin-multiply-identity:
 (x :: 'a :: len word) * 1 = x
 \mathbf{by} \ simp
\mathbf{lemma}\ \mathit{bin-multiply-eliminate}\colon
 (x :: 'a :: len word) * \theta = \theta
 by simp
{\bf lemma}\ bin-multiply-negative:
 (x :: 'a :: len \ word) * uminus 1 = uminus x
 by simp
lemma bin-multiply-power-2:
 (x:: 'a::len \ word) * (2^j) = x << j
  \mathbf{by} \ simp
```

```
lemma take-bit64[simp]:
 fixes w :: int64
 shows take-bit 64 w = w
proof -
 have Nat.size w = 64
   by (simp add: size64)
 then show ?thesis
  by (metis lt2p-lem mask-eq-iff take-bit-eq-mask verit-comp-simplify1(2) wsst-TYs(3))
qed
lemma testt:
 \mathbf{fixes}\ a::\ nat
 fixes b c :: 64 word
 shows take-bit a (take-bit a (b) * take-bit a (c)) =
       take-bit\ a\ (b*c)
by (smt (verit, ccfv-SIG) take-bit-mult take-bit-of-int unsigned-take-bit-eq word-mult-def)
lemma val-eliminate-redundant-negative:
 assumes val[-x * -y] \neq UndefVal
 shows val[-x * -y] = val[x * y]
 using assms apply (cases x; cases y; auto)
 using testt by auto
lemma val-multiply-neutral:
 assumes x = new\text{-}int \ b \ v
 shows val[x * (IntVal \ b \ 1)] = val[x]
 using assms by force
lemma val-multiply-zero:
 assumes x = new\text{-}int b v
 shows val[x * (IntVal \ b \ \theta)] = IntVal \ b \ \theta
 using assms by simp
lemma val-multiply-negative:
 assumes x = new\text{-}int b v
 shows val[x * intval-negate (IntVal b 1)] = intval-negate x
 using assms
 by (smt\ (verit)\ Value.disc(1)\ Value.inject(1)\ add.inverse-neutral\ intval-negate.simps(1)
      is-IntVal-def mask-0 mask-eq-take-bit-minus-one new-int.elims of-bool-eq(2)
take-bit-dist-neg
   take-bit-of-1\ val-eliminate-redundant-negative\ val-multiply-neutral\ val-multiply-zero
     verit-minus-simplify(4) zero-neq-one)
```

```
lemma val-MulPower2:
 fixes i :: 64 word
 assumes y = IntVal\ 64\ (2 \cap unat(i))
 and
          0 < i
 and
          i < 64
          val[x * y] \neq UndefVal
 and
 \mathbf{shows} \quad val[x*y] = val[x << IntVal \ 64 \ i]
 using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
   proof -
     have 63: (63::int64) = mask 6
      by eval
     then have (2::int) \hat{\phantom{a}} 6 = 64
      \mathbf{by} \ eval
     then have uint \ i < (2::int) \ \widehat{\phantom{a}} \ 6
      by (metis linorder-not-less lt2p-lem of-int-numeral p(4) size64 word-2p-lem
word-of-int-2p wsst-TYs(3))
     then have and i \pmod{6} = i
      using mask-eq-iff by blast
     then show x2 \ll unat i = x2 \ll unat (and i (63::64 word))
      unfolding 63
      by force
   qed
   by presburger
lemma val-MulPower2Add1:
 fixes i :: 64 word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) + 1)
          \theta < i
 and
 and
          i < 64
 and
          val-to-bool(val[IntVal\ 64\ 0< x])
 and
          val-to-bool(val[IntVal\ 64\ 0< y])
 shows val[x * y] = val[(x \ll IntVal 64 i) + x]
 using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
 proof -
   have 63: (63::int64) = mask 6
     by eval
   then have (2::int) \hat{\phantom{a}} 6 = 64
     by eval
   then have and i (mask 6) = i
     using mask-eq-iff by (simp add: less-mask-eq p(6))
   then have x2 * ((2::64 \ word) \cap unat \ i + (1::64 \ word)) = (x2 * ((2::64 \ word)))
\hat{\ }unat\ i))\ +\ x2
     by (simp add: distrib-left)
   then show x2 * ((2::64 word) \cap unat i + (1::64 word)) = x2 << unat (and i)
(63::64 \ word)) + x2
```

```
by (simp add: 63 \langle and (i::64 word) (mask (6::nat)) = i\rangle)
   qed
   using val-to-bool.simps(2) by presburger
lemma val-MulPower2Sub1:
  fixes i :: 64 \ word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) - 1)
 and
          0 < i
 and
          i < 64
          val-to-bool(val[IntVal\ 64\ 0\ <\ x])
 and
          val-to-bool(val[IntVal\ 64\ 0\ <\ y])
 and
 shows val[x * y] = val[(x << IntVal 64 i) - x]
 using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
 proof -
   have 63: (63::int64) = mask 6
     by eval
   then have (2::int) \cap 6 = 64
     by eval
   then have and i \pmod{6} = i
     using mask-eq-iff by (simp\ add:\ less-mask-eq\ p(6))
   then have x2 * ((2::64 \ word) \cap unat \ i - (1::64 \ word)) = (x2 * ((2::64 \ word)))
\hat{} unat i)) - x2
     by (simp add: right-diff-distrib')
   then show x^2 * ((2::64 \ word) \cap unat \ i - (1::64 \ word)) = x^2 << unat \ (and \ i
(63::64 \ word)) - x2
     by (simp add: 63 \langle and (i::64 word) (mask (6::nat)) = i\rangle)
   qed
   using val-to-bool.simps(2) by presburger
{f lemma}\ val	ext{-} distribute	ext{-} multiplication:
 assumes x = new\text{-}int \ 64 \ xx \land q = new\text{-}int \ 64 \ qq \land a = new\text{-}int \ 64 \ aa
 shows val[x * (q + a)] = val[(x * q) + (x * a)]
 apply (cases x; cases q; cases a; auto) using distrib-left assms by auto
\mathbf{lemma}\ val\text{-}MulPower2AddPower2:
 fixes i j :: 64 word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) + (2 \cap unat(j)))
 and
          0 < i
 and
          0 < j
 and
          i < 64
 and
          j < 64
          x = new-int 64 xx
 and
 shows val[x * y] = val[(x << IntVal 64 i) + (x << IntVal 64 j)]
 using assms
```

```
proof -
   have 63: (63 :: int64) = mask 6
    by eval
   then have (2::int) \cap 6 = 64
    by eval
   then have n: IntVal\ 64\ ((2 \cap unat(i)) + (2 \cap unat(j))) =
         val[(IntVal\ 64\ (2 \cap unat(i))) + (IntVal\ 64\ (2 \cap unat(j)))]
     using assms by (cases i; cases j; auto)
  then have 1: val[x * ((IntVal 64 (2 \cap unat(i))) + (IntVal 64 (2 \cap unat(j))))]
         val[(x * IntVal 64 (2 \cap unat(i))) + (x * IntVal 64 (2 \cap unat(j)))]
    using assms val-distribute-multiplication val-MulPower2 by simp
  then have 2: val[(x * IntVal 64 (2 \cap unat(i)))] = val[x << IntVal 64 i]
    using assms val-MulPower2
    using Value.distinct(1) intval-mul.simps(1) new-int.simps new-int-bin.simps
    by (smt\ (verit))
  then show ?thesis
  using 1 Value.distinct(1) assms(1) assms(3) assms(5) assms(6) intval-mul.simps(1)
n
         new-int.simps new-int-bin.elims val-MulPower2
    by (smt (verit, del-insts))
  qed
thm-oracles val-MulPower2AddPower2
lemma exp-multiply-zero-64:
exp[x * (const (IntVal 64 0))] \ge ConstantExpr (IntVal 64 0)
 using val-multiply-zero apply auto
 \mathbf{using}\ Value.inject(1)\ constant AsStamp.simps(1)\ int-signed-value-bounds\ intval-mul.elims
    mult-zero-right new-int.simps new-int-bin.simps nle-le numeral-eq-Suc take-bit-of-0
      unfold-const valid-stamp.simps(1) valid-value.simps(1) zero-less-Suc
 by (smt (verit))
lemma exp-multiply-neutral:
exp[x * (const (IntVal \ b \ 1))] \ge x
 using val-multiply-neutral apply auto
 by (smt (verit) Value.inject(1) eval-unused-bits-zero intval-mul.elims mult.right-neutral
     new-int.elims new-int-bin.elims)
{f thm	ext{-}oracles}\ exp	ext{-}multiply	ext{-}neutral
lemma exp-MulPower2:
 fixes i :: 64 word
```

```
assumes y = ConstantExpr (IntVal 64 (2 ^unat(i)))
 and
          \theta < i
 and
          i < 64
          exp[x > (const\ IntVal\ b\ \theta)]
 and
 and
          exp[y > (const\ IntVal\ b\ 0)]
 shows exp[x * y] \ge exp[x << ConstantExpr (IntVal 64 i)]
 using assms apply simp using val-MulPower2
 by (metis ConstantExprE equiv-exprs-def unfold-binary)
\mathbf{lemma}\ \mathit{exp-MulPower2Add1}\colon
 fixes i :: 64 \ word
 assumes y = ConstantExpr (IntVal 64 ((2 \cap unat(i)) + 1))
 and
          0 < i
 and
          i < 64
          exp[x > (const\ IntVal\ b\ \theta)]
 and
 and
          exp[y > (const\ IntVal\ b\ 0)]
shows
         exp[x * y] = exp[(x << ConstantExpr (IntVal 64 i)) + x]
 sorry
lemma greaterConstant:
 assumes a > b
 and y = ConstantExpr (IntVal 64 a)
 and x = ConstantExpr (IntVal 64 b)
 shows y > x
 apply auto
 sorry
Optimisations
optimization EliminateRedundantNegative: -x * -y \longmapsto x * y
 apply (metis One-nat-def Suc-eq-plus1 add-Suc-shift add-less-imp-less-right less-Suc-eq
not-add-less1 not-less-eq numeral-2-eq-2 size-binary-const size-non-add)
  apply auto using val-eliminate-redundant-negative bin-eval.simps(2)
 by (metis BinaryExpr)
optimization MulNeutral: x * ConstantExpr(IntVal\ b\ 1) \longmapsto x
 using exp-multiply-neutral by blast
optimization MulEliminator: x * ConstantExpr (IntVal b 0) \longrightarrow const (IntVal b 0)
 apply auto using val-multiply-zero
 \mathbf{using}\ Value.inject(1)\ constant AsStamp.simps(1)\ int-signed-value-bounds\ intval-mul.elims
      mult-zero-right new-int.simps new-int-bin.simps take-bit-of-0 unfold-const
      valid-stamp.simps(1) valid-value.simps(1)
 by (smt (verit))
```

```
optimization MulNegate: x * -(const (IntVal \ b \ 1)) \longmapsto -x
     apply auto using val-multiply-negative
    by (smt\ (verit)\ Value.distinct(1)\ Value.sel(1)\ add.inverse-inverse\ intval-mul.elims
            intval-negate.simps(1) mask-eq-take-bit-minus-one new-int.simps new-int-bin.simps
                take-bit-dist-neg unary-eval.simps(2) unfold-unary
                val-eliminate-redundant-negative)
fun isNonZero :: Stamp \Rightarrow bool where
      isNonZero (IntegerStamp \ b \ lo \ hi) = (lo > 0)
      isNonZero - = False
\mathbf{lemma}\ is NonZero\text{-}defn:
      assumes isNonZero (stamp-expr x)
     assumes wf-stamp x
     \mathbf{shows}\ ([m,\,p] \vdash x \mapsto v) \longrightarrow (\exists\,vv\ b.\ (v = \mathit{IntVal}\ b\ vv \land \mathit{val-to-bool}\ \mathit{val}[(\mathit{IntVal}\ b\ v) \land val)) \cap (\exists\,vv \land val) \cap (\exists\,vv \land v
(0) < v(0)
     apply (rule impI) subgoal premises eval
proof -
     obtain b lo hi where xstamp: stamp-expr x = IntegerStamp b lo hi
           using assms
           by (meson\ isNonZero.elims(2))
      then obtain vv where vdef: v = IntVal\ b\ vv
           by (metis assms(2) eval valid-int wf-stamp-def)
     have lo > 0
           using assms(1) xstamp by force
      then have signed-above: int-signed-value b vv > 0
           using assms unfolding wf-stamp-def
           using eval vdef xstamp by fastforce
     have take-bit b vv = vv
           using eval eval-unused-bits-zero vdef by auto
      then have vv > 0
           using signed-above
       by (metis bit-take-bit-iff int-signed-value.simps not-less-zero signed-eq-0-iff signed-take-bit-eq-if-positive
take-bit-0 take-bit-of-0 verit-comp-simplify1(1) word-qt-0)
     then show ?thesis
           using vdef using signed-above
           by simp
qed
     done
optimization MulPower2: x * y \longmapsto x \ll const (IntVal 64 i)
                                                                                   when (i > 0 \land
                                                                                                   64 > i \land
                                                                                                   y = exp[const (IntVal 64 (2 \cap unat(i)))])
        defer
        apply simp apply (rule impI; (rule allI)+; rule impI)
```

```
subgoal premises eval for m p v
proof -
 obtain xv where xv: [m, p] \vdash x \mapsto xv
   using eval(2) by blast
 then obtain xvv where xvv: xv = IntVal\ 64\ xvv
   using eval
  {f using}\ Constant ExprE\ bin-eval. simps(2)\ eval Det\ intval-bits. simps\ intval-mul. elims
new-int-bin.simps unfold-binary
   by (smt (verit))
 obtain yv where yv: [m, p] \vdash y \mapsto yv
   using eval(1) eval(2) by blast
 then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
   by (metis\ bin-eval.simps(2)\ eval(1)\ eval(2)\ evalDet\ unfold-binary\ xv)
 have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
  by (smt (verit, ccfv-SIG) ConstantExpr constantAsStamp.simps(1) eval-bits-1-64
take-bit64 validStampIntConst valid-value.simps(1) xv xvv)
 then have rhs: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
i)
   using xv xvv using evaltree.BinaryExpr
  by (metis Value.simps(5) bin-eval.simps(8) intval-left-shift.simps(1) new-int.simps)
 have val[xv * yv] = val[xv << (IntVal 64 i)]
   using val-MulPower2
   by (metis ConstantExprE eval(1) evaltree-not-undef lhs yv)
 then show ?thesis
   by (metis\ eval(1)\ eval(2)\ evalDet\ lhs\ rhs)
qed
 sorry
optimization MulPower2Add1: x * y \longmapsto (x << const (IntVal 64 i)) + x
                         when (i > 0 \land
                              64 > i \land
                              y = ConstantExpr (IntVal 64 ((2 \cap unat(i)) + 1)))
  defer
  apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p by fast
   then obtain xvv where xvv: xv = IntVal 64 xvv
     by (smt (verit) p ConstantExprE bin-eval.simps(2) evalDet intval-bits.simps
intval	ext{-}mul.elims
        new-int-bin.simps unfold-binary)
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using p by blast
   have ygezero: y > ConstantExpr (IntVal 64 0)
     using greaterConstant p by fastforce
   then have 1: 0 < i \land
```

```
i < 64 \ \land
               y = ConstantExpr (IntVal 64 ((2 \cap unat(i)) + 1))
     using p by blast
   then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
     by (metis bin-eval.simps(2) evalDet p(1) p(2) xv yv unfold-binary)
   then have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
      by (metis\ verit\text{-}comp\text{-}simplify1(2)\ zero\text{-}less\text{-}numeral\ ConstantExpr\ constant})
tAsStamp.simps(1)
         take-bit64 validStampIntConst valid-value.simps(1))
   then have rhs2: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
64\ i)
   by (metis Value.simps(5) bin-eval.simps(8) intval-left-shift.simps(1) new-int.simps
xv \ xvv
        evaltree.BinaryExpr)
   then have rhs: [m, p] \vdash exp[(x << const (IntVal 64 i)) + x] \mapsto val[(xv <<
(IntVal \ 64 \ i)) + xv
        by (metis (no-types, lifting) intval-add.simps(1) rhs2 bin-eval.simps(1)
Value.simps(5)
         evaltree.BinaryExpr intval-left-shift.simps(1) new-int.simps xv xvv)
    then have val[xv * yv] = val[(xv << (Int Val 64 i)) + xv]
      using 1 exp-MulPower2Add1 ygezero by auto
    then show ?thesis
     by (metis evalDet lhs p(1) p(2) rhs)
 qed
 sorry
end
end
       Experimental AndNode Phase
1.7
theory NewAnd
 imports
   Common
   Graph.Long
begin
lemma bin-distribute-and-over-or:
  bin[z \& (x | y)] = bin[(z \& x) | (z \& y)]
 by (smt (verit, best) bit-and-iff bit-eqI bit-or-iff)
lemma intval-distribute-and-over-or:
  val[z \& (x | y)] = val[(z \& x) | (z \& y)]
 apply (cases x; cases y; cases z; auto)
 \mathbf{using}\ bin\mbox{-}distribute\mbox{-}and\mbox{-}over\mbox{-}or\ \mathbf{by}\ blast+
```

lemma exp-distribute-and-over-or:

```
exp[z \& (x | y)] \ge exp[(z \& x) | (z \& y)]
 apply simp using intval-distribute-and-over-or
 using BinaryExpr\ bin-eval.simps(4,5)
 using intval-or.simps(1) unfolding new-int-bin.simps new-int.simps apply auto
 by (metis\ bin-eval.simps(4)\ bin-eval.simps(5)\ intval-or.simps(2)\ intval-or.simps(5))
\mathbf{lemma}\ intval\text{-} and\text{-} commute:
 val[x \& y] = val[y \& x]
 by (cases x; cases y; auto simp: and.commute)
\mathbf{lemma}\ intval\text{-}or\text{-}commute:
 val[x \mid y] = val[y \mid x]
 by (cases x; cases y; auto simp: or.commute)
lemma intval-xor-commute:
 val[x \oplus y] = val[y \oplus x]
 by (cases x; cases y; auto simp: xor.commute)
lemma exp-and-commute:
 exp[x \& z] \ge exp[z \& x]
 apply simp using intval-and-commute by auto
lemma exp-or-commute:
 exp[x \mid y] \ge exp[y \mid x]
 apply simp using intval-or-commute by auto
lemma exp-xor-commute:
 exp[x \oplus y] \ge exp[y \oplus x]
 apply simp using intval-xor-commute by auto
lemma bin-eliminate-y:
 assumes bin[y \& z] = 0
 shows bin[(x \mid y) \& z] = bin[x \& z]
 using assms
 by (simp add: and.commute bin-distribute-and-over-or)
lemma intval-eliminate-y:
 assumes val[y \& z] = IntVal \ b \ \theta
 shows val[(x \mid y) \& z] = val[x \& z]
 using assms bin-eliminate-y by (cases x; cases y; cases z; auto)
lemma intval-and-associative:
 val[(x \& y) \& z] = val[x \& (y \& z)]
 apply (cases x; cases y; cases z; auto)
 by (simp add: and.assoc)+
lemma intval-or-associative:
```

```
val[(x \mid y) \mid z] = val[x \mid (y \mid z)]
 apply (cases x; cases y; cases z; auto)
 by (simp \ add: \ or. assoc)+
lemma intval-xor-associative:
  val[(x \oplus y) \oplus z] = val[x \oplus (y \oplus z)]
 apply (cases x; cases y; cases z; auto)
 by (simp\ add:\ xor.assoc)+
{f lemma} exp-and-associative:
  exp[(x \& y) \& z] \ge exp[x \& (y \& z)]
 apply simp using intval-and-associative by fastforce
lemma exp-or-associative:
  exp[(x \mid y) \mid z] \ge exp[x \mid (y \mid z)]
 apply simp using intval-or-associative by fastforce
lemma exp-xor-associative:
  exp[(x \oplus y) \oplus z] \ge exp[x \oplus (y \oplus z)]
 apply simp using intval-xor-associative by fastforce
{f lemma}\ intval	ext{-} and	ext{-} absorb	ext{-} or:
  assumes \exists b \ v \ . \ x = new\text{-}int \ b \ v
 assumes val[x \& (x \mid y)] \neq UndefVal
 shows val[x \& (x \mid y)] = val[x]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags,\ lifting)\ intval-and.simps(5))
lemma intval-or-absorb-and:
 assumes \exists b \ v \ . \ x = new\text{-}int \ b \ v
 assumes val[x \mid (x \& y)] \neq UndefVal
 shows val[x \mid (x \& y)] = val[x]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags,\ lifting)\ intval-or.simps(5))
lemma exp-and-absorb-or:
  exp[x \& (x \mid y)] \ge exp[x]
 apply auto using intval-and-absorb-or eval-unused-bits-zero
 by (smt (verit) evalDet intval-or.elims new-int.elims)
lemma exp-or-absorb-and:
  exp[x \mid (x \& y)] \ge exp[x]
 apply auto using intval-or-absorb-and eval-unused-bits-zero
 by (smt (verit) evalDet intval-or.elims new-int.elims)
definition IRExpr-up :: IRExpr \Rightarrow int64 where
  IRExpr-up \ e = not \ \theta
```

```
definition IRExpr-down :: IRExpr \Rightarrow int64 where
 IRExpr-down \ e = 0
lemma
 assumes y = \theta
 shows x + y = or x y
 using assms
 by simp
lemma no-overlap-or:
 assumes and x y = 0
 shows x + y = or x y
 using assms
 by (metis bit-and-iff bit-xor-iff disjunctive-add xor-self-eq)
context stamp-mask
begin
{f lemma}\ intval-up-and-zero-implies-zero:
 assumes and (\uparrow x) (\uparrow y) = 0
 assumes [m, p] \vdash x \mapsto xv
 \mathbf{assumes}\ [m,\ p] \ \vdash \ y \mapsto \ yv
 assumes val[xv \& yv] \neq UndefVal
 shows \exists b \cdot val[xv \& yv] = new\text{-}int b \theta
 using assms apply (cases xv; cases yv; auto)
 using up-mask-and-zero-implies-zero
 apply (smt (verit, best) take-bit-and take-bit-of-0)
 by presburger
lemma exp-eliminate-y:
  and (\uparrow y) \ (\uparrow z) = 0 \longrightarrow BinaryExpr BinAnd (BinaryExpr BinOr x y) z \ge Bina-
ryExpr\ BinAnd\ x\ z
 apply simp apply (rule impI; rule allI; rule allI; rule allI)
 subgoal premises p for m p v apply (rule \ impI) subgoal premises e
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using e by auto
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using e by auto
   obtain zv where zv: [m,p] \vdash z \mapsto zv
```

```
using e by auto
   have lhs: v = val[(xv \mid yv) \& zv]
     using xv yv zv
       by (smt (verit, best) BinaryExprE bin-eval.simps(4) bin-eval.simps(5) e
evalDet)
   then have v = val[(xv \& zv) \mid (yv \& zv)]
     by (simp add: intval-and-commute intval-distribute-and-over-or)
   also have \exists b. \ val[yv \& zv] = new\text{-}int \ b \ \theta
     using intval-up-and-zero-implies-zero
     by (metis calculation e intval-or.simps(5) p unfold-binary yv zv)
   ultimately have rhs: v = val[xv \& zv]
     using intval-eliminate-y lhs by force
   from lhs rhs show ?thesis
     by (metis BinaryExpr BinaryExprE bin-eval.simps(4) e xv zv)
  qed
 done
 done
lemma leadingZeroBounds:
 fixes x :: 'a :: len word
 assumes n = numberOfLeadingZeros x
 shows 0 \le n \land n \le Nat.size x
 {f using} \ assms \ {f unfolding} \ number Of Leading Zeros-def
 by (simp add: MaxOrNeg-def highestOneBit-def nat-le-iff)
lemma above-nth-not-set:
  fixes x :: int64
 assumes n = 64 - numberOfLeadingZeros x
 shows j > n \longrightarrow \neg(bit \ x \ j)
 using assms unfolding numberOfLeadingZeros-def
 by (smt (verit, ccfv-SIG) highestOneBit-def int-nat-eq int-ops(6) less-imp-of-nat-less
max-set-bit size64 zerosAboveHighestOne)
no-notation LogicNegationNotation (!-)
lemma zero-horner:
  horner-sum of-bool 2 (map (\lambda x. False) xs) = 0
 apply (induction xs) apply simp
 by force
lemma zero-map:
 assumes j \leq n
 assumes \forall i. j \leq i \longrightarrow \neg(f i)
 shows map \ f \ [0..< n] = map \ f \ [0..< j] @ map \ (\lambda x. \ False) \ [j..< n]
 apply (insert assms)
 \mathbf{by} \; (smt \; (verit, \, del\text{-}insts) \; add\text{-}diff\text{-}inverse\text{-}nat \; at Least Less Than\text{-}iff \; bot\text{-}nat\text{-}0 \; .extremum }
leD map-append map-eq-conv set-upt upt-add-eq-append)
```

lemma *map-join-horner*:

```
assumes map f [0..< n] = map f [0..< j] @ map (\lambda x. False) [j..< n]
 shows horner-sum of-bool (2::'a::len\ word)\ (map\ f\ [0..< n]) = horner-sum\ of-bool
2 (map f [0..< j])
proof -
 have horner-sum of-bool (2::'a::len word) (map f [0...< n]) = horner-sum of-bool
2 \pmod{f[0...< j]} + 2 \cap length[0...< j] * horner-sum of-bool 2 \pmod{f[j...< n]}
   using horner-sum-append
    by (smt (verit) assms diff-le-self diff-zero le-add-same-cancel2 length-append
length-map length-upt map-append upt-add-eq-append)
  also have ... = horner-sum of-bool 2 (map f [0..< j]) + 2 \widehat{} length [0..< j] *
horner-sum of-bool 2 (map (\lambda x. False) [j..<n])
   using assms
   by (metis calculation horner-sum-append length-map)
 also have ... = horner-sum of-bool 2 (map f [0..<j])
   using zero-horner
   using mult-not-zero by auto
 finally show ?thesis by simp
qed
lemma split-horner:
 assumes j \leq n
 assumes \forall i. j \leq i \longrightarrow \neg(f i)
 shows horner-sum of-bool (2::'a::len\ word)\ (map\ f\ [0..< n]) = horner-sum\ of-bool
2 (map f [0..< j])
 apply (rule map-join-horner)
 apply (rule zero-map)
 using assms by auto
\mathbf{lemma}\ \mathit{transfer-map} :
 assumes \forall i. i < n \longrightarrow f i = f' i
 shows (map \ f \ [0..< n]) = (map \ f' \ [0..< n])
 using assms by simp
lemma transfer-horner:
 assumes \forall i. i < n \longrightarrow f i = f' i
 shows horner-sum of-bool (2::'a::len \ word) \ (map \ f \ [0..< n]) = horner-sum of-bool
2 (map f' [0..< n])
  using assms using transfer-map
 by (smt\ (verit,\ best))
lemma L1:
 assumes n = 64 - numberOfLeadingZeros (\uparrow z)
 assumes [m, p] \vdash z \mapsto IntVal\ b\ zv
 shows and v zv = and (v mod <math>2^n) zv
proof -
 have nle: n \leq 64
   using assms
   using diff-le-self by blast
 also have and v zv = horner-sum \ of-bool \ 2 \ (map \ (bit \ (and \ v \ zv)) \ [0...<64])
```

```
using horner-sum-bit-eq-take-bit size64
   by (metis size-word.rep-eq take-bit-length-eq)
  also have ... = horner-sum of-bool 2 (map (\lambda i. bit (and v zv) i) [0..<64])
   by blast
 also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit v i) \wedge (bit zv i))) [0..<64])
   using bit-and-iff by metis
 also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit\ v\ i) \land (bit\ zv\ i))) [0... < n])
  proof -
   have \forall i. i \geq n \longrightarrow \neg(bit \ zv \ i)
     using above-nth-not-set \ assms(1)
     using assms(2) not-may-implies-false
    by (smt (verit, ccfv-SIG) One-nat-def diff-less int-ops(6) leadingZerosAddHigh-
estOne\ linorder-not-le\ nat-int-comparison(2)\ not-numeral-le-zero\ size 64\ zero-less-Suc
zerosAboveHighestOne)
   then have \forall i. i \geq n \longrightarrow \neg((bit \ v \ i) \land (bit \ zv \ i))
     by auto
   then show ?thesis using nle split-horner
     by (metis (no-types, lifting))
  also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit (v mod 2^n) i) \wedge (bit zv
i))) [0..< n])
 proof -
   have \forall i. i < n \longrightarrow bit (v \bmod 2 \hat{n}) i = bit v i
     by (metis bit-take-bit-iff take-bit-eq-mod)
   then have \forall i. i < n \longrightarrow ((bit \ v \ i) \land (bit \ zv \ i)) = ((bit \ (v \ mod \ 2 \widehat{\ n}) \ i) \land (bit \ v \ i))
zv(i)
     by force
   then show ?thesis
     by (rule transfer-horner)
  qed
  also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit (v \mod 2^{\hat{}} n) i) \wedge (bit zv
i))) [0..<64])
 proof -
   have \forall i. i \geq n \longrightarrow \neg(bit \ zv \ i)
     using above-nth-not-set \ assms(1)
     using assms(2) not-may-implies-false
    by (smt (verit, ccfv-SIG) One-nat-def diff-less int-ops(6) leadingZerosAddHigh-
estOne\ linorder-not-le\ nat-int-comparison(2)\ not-numeral-le-zero\ size 64\ zero-less-Suc
zerosAboveHighestOne)
   then show ?thesis
     by (metis (no-types, lifting) assms(1) diff-le-self split-horner)
 also have ... = horner-sum of-bool 2 (map (bit (and (v \mod 2^n) zv)) [0...<64])
   by (meson bit-and-iff)
 also have ... = and (v \mod 2\widehat{\ } n) zv
   using horner-sum-bit-eq-take-bit size64
   by (metis size-word.rep-eq take-bit-length-eq)
  finally show ?thesis
     using \langle and (v::64 \ word) \ (zv::64 \ word) = horner-sum \ of-bool \ (2::64 \ word)
```

```
(map\ (bit\ (and\ v\ zv))\ [0::nat..<64::nat]) \land (horner-sum\ of-bool\ (2::64\ word)\ (map
(\lambda i::nat. bit ((v::64 word) mod (2::64 word) ^ (n::nat)) i \land bit (zv::64 word)
i) [0::nat..<64::nat]) = horner-sum of-bool (2::64 word) (map (bit (and (v mod)))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod))))) = horner-sum of-bool (2::64 word) (map (bit (and (v mod)))))) = horner-sum of-bool (2::64 word))) = horner-sum of-bool (2::64 word))
(2::64 \text{ word}) \cap n) \text{ zv})) [0::nat..<64::nat]) \land (horner-sum \text{ of-bool} (2::64 \text{ word}) \text{ (map}))
(\lambda i::nat.\ bit\ ((v::64\ word)\ mod\ (2::64\ word)\ \widehat{\ }(n::nat))\ i\ \wedge\ bit\ (zv::64\ word)\ i)
[0::nat..< n]) = horner-sum\ of-bool\ (2::64\ word)\ (map\ (\lambda i::nat.\ bit\ (v\ mod\ (2::64\ word)))
word) \widehat{\ } i \wedge bit \ zv \ i) \ [0::nat..<64::nat]) \land (horner-sum \ of-bool \ (2::64 \ word))
(map\ (\lambda i::nat.\ bit\ (v::64\ word)\ i\ \land\ bit\ (zv::64\ word)\ i)\ [0::nat..<64::nat]) =
horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit v i \wedge bit zv i) [0::nat..<n::nat])>
\langle horner\text{-}sum \ of\text{-}bool \ (2::64 \ word) \ (map \ (\lambda i::nat. \ bit \ (v::64 \ word) \ i \ \wedge \ bit \ (zv::64 \ word)
word) i) [0::nat.. < n::nat]) = horner-sum\ of-bool\ (2::64\ word)\ (map\ (\lambda i::nat.\ bit
(v \mod (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat.. < n]) \land (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge n) i \wedge (horner-sum of-bool (2::64 \mod ) \cap n) i \wedge n) i \wedge n) i \wedge n) i \wedge n
word) (map (bit (and ((v::64 word) mod (2::64 word) ^ (n::nat)) (zv::64 word)))
[0::nat..<64::nat]) = and (v mod (2::64 word) ^n) zv (horner-sum of-bool (2::64 word))
word) (map\ (bit\ (and\ (v::64\ word)\ (zv::64\ word)))\ [\theta::nat..<64::nat]) = horner-sum
of-bool (2::64 word) (map (\lambda i::nat. bit v i \wedge bit zv i) [0::nat..<64::nat]) by pres-
buraer
qed
lemma up-mask-upper-bound:
   assumes [m, p] \vdash x \mapsto IntVal\ b\ xv
  shows xv \leq (\uparrow x)
   using assms
  by (metis (no-types, lifting) and.idem and.right-neutral bit.conj-cancel-left bit.conj-disj-distribs(1)
bit.double-compl ucast-id up-spec word-and-le1 word-not-dist(2))
lemma L2:
   assumes number Of Leading Zeros (\uparrow z) + number Of Trailing Zeros (\uparrow y) \geq 64
   assumes n = 64 - numberOfLeadingZeros (\uparrow z)
  \mathbf{assumes}\ [m,\ p] \ \vdash \ z \mapsto \mathit{IntVal}\ b\ \mathit{zv}
  assumes [m, p] \vdash y \mapsto IntVal\ b\ yv
   shows yv \mod 2 \hat{\ } n = 0
proof -
   have yv \mod 2 \hat{\ } n = horner-sum \ of-bool \ 2 \ (map \ (bit \ yv) \ [0..< n])
      by (simp add: horner-sum-bit-eq-take-bit take-bit-eq-mod)
   also have ... \leq horner-sum of-bool 2 (map (bit (\uparrow y)) [0... < n])
      \mathbf{using}\ up\text{-}mask\text{-}upper\text{-}bound\ assms(4)
    by (metis (no-types, opaque-lifting) and right-neutral bit.conj-cancel-right bit.conj-disj-distribs(1)
bit.double-compl horner-sum-bit-eq-take-bit take-bit-and ucast-id up-spec word-and-le1
word-not-dist(2)
  also have horner-sum of-bool 2 (map (bit (\uparrow y)) [0..< n]) = horner-sum of-bool 2
(map (\lambda x. False) [0..< n])
   proof -
      have \forall i < n. \neg (bit (\uparrow y) i)
         using assms(1,2) zerosBelowLowestOne
        by (metis add.commute add-diff-inverse-nat add-lessD1 leD le-diff-conv num-
berOfTrailingZeros-def)
      then show ?thesis
         by (metis (full-types) transfer-map)
```

```
qed
 also have horner-sum of-bool 2 (map (\lambda x. False) [0..<n]) = 0
   \mathbf{using}\ \mathit{zero-horner}
   by blast
 finally show ?thesis
   by auto
qed
thm-oracles L1 L2
lemma unfold-binary-width-add:
 shows ([m,p] \vdash BinaryExpr\ BinAdd\ xe\ ye \mapsto IntVal\ b\ val) = (\exists\ x\ y.
         (([m,p] \vdash xe \mapsto IntVal\ b\ x) \land
          ([m,p] \vdash ye \mapsto IntVal\ b\ y) \land
          (IntVal\ b\ val = bin-eval\ BinAdd\ (IntVal\ b\ x)\ (IntVal\ b\ y))\ \land
          (IntVal\ b\ val \neq UndefVal)
       )) (is ?L = ?R)
proof (intro iffI)
 assume 3: ?L
 show ?R apply (rule evaltree.cases[OF 3])
   apply force+ apply auto[1]
   apply (smt (verit) intval-add.elims intval-bits.simps)
   by blast
next
 assume R: ?R
 then obtain x \ y where [m,p] \vdash xe \mapsto IntVal \ b \ x
       and [m,p] \vdash ye \mapsto IntVal\ b\ y
       and new-int b val = bin-eval\ BinAdd\ (IntVal\ b\ x)\ (IntVal\ b\ y)
       and new\text{-}int\ b\ val \neq UndefVal
   by auto
 then show ?L
   using R by blast
qed
lemma unfold-binary-width-and:
 shows ([m,p] \vdash BinaryExpr\ BinAnd\ xe\ ye \mapsto IntVal\ b\ val) = (\exists\ x\ y.
         (([m,p] \vdash xe \mapsto IntVal\ b\ x) \land
          ([m,p] \vdash ye \mapsto IntVal\ b\ y) \land
          (IntVal\ b\ val = bin-eval\ BinAnd\ (IntVal\ b\ x)\ (IntVal\ b\ y))\ \land
          (IntVal\ b\ val \neq UndefVal)
       )) (is ?L = ?R)
proof (intro iffI)
 assume 3: ?L
 show ?R apply (rule evaltree.cases[OF 3])
   apply force+ apply auto[1] using intval-and.elims intval-bits.simps
   apply (smt (verit) new-int.simps new-int-bin.simps take-bit-and)
   by blast
\mathbf{next}
 assume R: ?R
```

```
then obtain x \ y where [m,p] \vdash xe \mapsto IntVal \ b \ x
       and [m,p] \vdash ye \mapsto IntVal\ b\ y
       and new-int b \ val = bin-eval \ BinAnd \ (IntVal \ b \ x) \ (IntVal \ b \ y)
       and new-int b val \neq UndefVal
   by auto
  then show ?L
   using R by blast
qed
lemma mod-dist-over-add-right:
 fixes a \ b \ c :: int64
 fixes n :: nat
 assumes 1: \theta < n
 assumes 2: n < 64
 shows (a + b \mod 2 \hat{n}) \mod 2 \hat{n} = (a + b) \mod 2 \hat{n}
 using mod-dist-over-add
 by (simp add: 1 2 add.commute)
lemma number Of Leading Zeros-range:
  0 \leq numberOfLeadingZeros \ n \land numberOfLeadingZeros \ n \leq Nat.size \ n
 unfolding numberOfLeadingZeros-def highestOneBit-def using max-set-bit
 by (simp add: highestOneBit-def leadingZeroBounds numberOfLeadingZeros-def)
lemma improved-opt:
  assumes number Of Leading Zeros (\uparrow z) + number Of Trailing Zeros (\uparrow y) \geq 64
 shows exp[(x + y) \& z] \ge exp[x \& z]
 apply simp apply ((rule \ all I)+; rule \ imp I)
 subgoal premises eval for m p v
proof -
  obtain n where n: n = 64 - numberOfLeadingZeros (\uparrow z)
   by simp
 obtain b val where val: [m, p] \vdash exp[(x + y) \& z] \mapsto IntVal \ b \ val
   by (metis BinaryExprE bin-eval-new-int eval new-int.simps)
  then obtain xv yv where addv: [m, p] \vdash exp[x + y] \mapsto IntVal\ b\ (xv + yv)
   apply (subst (asm) unfold-binary-width-and) by (metis add.right-neutral)
  then obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
   apply (subst (asm) unfold-binary-width-add) by blast
  from addv obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
   apply (subst (asm) unfold-binary-width-add) by blast
  from val obtain zv where zv: [m, p] \vdash z \mapsto IntVal \ b \ zv
   apply (subst (asm) unfold-binary-width-and) by blast
  have addv: [m, p] \vdash exp[x + y] \mapsto new\text{-}int\ b\ (xv + yv)
   apply (rule evaltree.BinaryExpr)
   using xv apply simp
   using yv apply simp
   by simp+
  have lhs: [m, p] \vdash exp[(x + y) \& z] \mapsto new\text{-int } b \text{ (and } (xv + yv) zv)
   apply (rule evaltree.BinaryExpr)
   using addv apply simp
```

```
using zv apply simp
       using addv apply auto[1]
       \mathbf{by} \ simp
    have rhs: [m, p] \vdash exp[x \& z] \mapsto new\text{-int } b \text{ (and } xv \ zv)
       apply (rule evaltree.BinaryExpr)
       using xv apply simp
       using zv apply simp
        apply force
       by simp
    then show ?thesis
    proof (cases numberOfLeadingZeros (\uparrow z) > 0)
       case True
       have n-bounds: 0 \le n \land n < 64
           using diff-le-self n numberOfLeadingZeros-range
           by (simp add: True)
       have and (xv + yv) zv = and ((xv + yv) mod 2^n) zv
           using L1 \ n \ zv by blast
       also have ... = and ((xv + (yv \mod 2\widehat{n})) \mod 2\widehat{n}) zv
           using mod-dist-over-add-right n-bounds
           by (metis take-bit-0 take-bit-eq-mod zero-less-iff-neq-zero)
       also have ... = and (((xv \mod 2\widehat{n}) + (yv \mod 2\widehat{n})) \mod 2\widehat{n}) zv
             by (metis bits-mod-by-1 mod-dist-over-add n-bounds order-le-imp-less-or-eq
power-0)
       also have ... = and ((xv \mod 2\widehat{\ n}) \mod 2\widehat{\ n}) zv
           using L2 \ n \ zv \ yv
           using assms by auto
       also have ... = and (xv \mod 2^n) zv
           using mod-mod-trivial
        by (smt (verit, best) and idem take-bit-eq-mask take-bit-eq-mod word-bw-assocs(1))
       also have \dots = and xv zv
           using L1 \ n \ zv by metis
       finally show ?thesis
           using eval lhs rhs
           by (metis evalDet)
   next
       case False
       then have numberOfLeadingZeros (\uparrow z) = 0
       then have numberOfTrailingZeros\ (\uparrow y) \geq 64
           using assms(1)
           by fastforce
       then have yv = 0
           using yv
               by (metis (no-types, lifting) L1 L2 add-diff-cancel-left' and.comm-neutral
and.idem\ bit.compl-zero\ bit.conj-cancel-right\ bit.conj-disj-distribs(1)\ bit.double-complex and and all of the complex and all of th
less-imp-diff-less\ linorder-not-le\ word-not-dist(2))
       then show ?thesis
           by (metis add.right-neutral eval evalDet lhs rhs)
   qed
```

```
qed
done
thm-oracles improved-opt
\mathbf{lemma}\ \mathit{falseBelowN-nBelowLowest} \colon
 assumes n \leq Nat.size a
 assumes \forall i < n. \neg (bit \ a \ i)
 shows lowestOneBit a \ge n
proof (cases \{i. bit a i\} = \{\})
 case True
 then show ?thesis unfolding lowestOneBit-def MinOrHighest-def
   using assms(1) trans-le-add1 by presburger
next
 {f case}\ {\it False}
 have n \leq Min (Collect (bit a))
  by (metis False Min-ge-iff assms(2) finite-bit-word linorder-le-less-linear mem-Collect-eq)
 then show ?thesis unfolding lowestOneBit-def MinOrHighest-def
   using False by presburger
qed
lemma noZeros:
  fixes a :: 64 word
 assumes zeroCount \ a = 0
 shows i < Nat.size \ a \longrightarrow bit \ a \ i
 using assms unfolding zeroCount-def size64
 using zeroCount-finite by auto
{f lemma}\ zerosAboveOnly:
 fixes a :: 64 word
 assumes numberOfLeadingZeros \ a = zeroCount \ a
 shows \neg(bit\ a\ i) \longrightarrow i \ge (64 - numberOfLeadingZeros\ a)
 sorry
lemma consumes:
  assumes number Of Leading Zeros (\uparrow z) + bit Count (\uparrow z) = 64
 and \uparrow z \neq 0
 and and (\uparrow y) (\uparrow z) = 0
 shows numberOfLeadingZeros (\uparrow z) + numberOfTrailingZeros (\uparrow y) \geq 64
proof -
  obtain n where n = 64 - numberOfLeadingZeros (\uparrow z)
   by simp
 then have n = bitCount (\uparrow z)
   by (metis add-diff-cancel-left' assms(1))
  have numberOfLeadingZeros (\uparrow z) = zeroCount (\uparrow z)
   using assms(1) size64 ones-zero-sum-to-width
   by (metis add.commute add-left-imp-eq)
```

```
then have \forall i. \neg (bit (\uparrow z) i) \longrightarrow i \geq n
   using assms(1) zerosAboveOnly
   using \langle (n::nat) = (64::nat) - numberOfLeadingZeros (\uparrow (z::IRExpr)) \rangle by blast
  then have \forall i < n. \ bit \ (\uparrow z) \ i
   using leD by blast
  then have \forall i < n. \neg (bit (\uparrow y) i)
   using assms(3)
   by (metis bit.conj-cancel-right bit-and-iff bit-not-iff)
  then have lowestOneBit (\uparrow y) \geq n
   by (simp\ add: \langle (n::nat) = (64::nat) - numberOfLeadingZeros\ (\uparrow (z::IRExpr)) \rangle
falseBelowN-nBelowLowest \ size 64)
  then have n \leq numberOfTrailingZeros (\uparrow y)
   unfolding \ number Of Trailing Zeros-def
   by simp
 have card \{i.\ i < n\} = bitCount\ (\uparrow z)
   by (simp\ add: \langle (n::nat) = bitCount\ (\uparrow (z::IRExpr)) \rangle)
  then have bitCount (\uparrow z) \leq numberOfTrailingZeros (\uparrow y)
   using \langle (n::nat) \sqsubseteq numberOfTrailingZeros (\uparrow (y::IRExpr)) \rangle by auto
  then show ?thesis using assms(1) by auto
qed
thm-oracles consumes
lemma right:
 assumes numberOfLeadingZeros\ (\uparrow z) + bitCount\ (\uparrow z) = 64
 assumes \uparrow z \neq 0
 assumes and (\uparrow y) (\uparrow z) = 0
 shows exp[(x + y) \& z] \ge exp[x \& z]
apply simp apply (rule allI)+
 subgoal premises p for m p v apply (rule \ impI) subgoal premises e
proof -
 obtain j where j: j = highestOneBit (\uparrow z)
   by simp
 obtain xv \ b where xv: [m,p] \vdash x \mapsto IntVal \ b \ xv
   using e
   by (metis\ EvalTreeE(5)\ bin-eval-inputs-are-ints\ bin-eval-new-int\ new-int.simps)
  obtain yv where yv: [m,p] \vdash y \mapsto IntVal\ b\ yv
   using e EvalTreeE(5) bin-eval-inputs-are-ints bin-eval-new-int new-int.simps
   by (smt (verit) Value.sel(1) bin-eval.simps(1) evalDet intval-add.elims xv)
  obtain xyv where xyv: [m, p] \vdash exp[x + y] \mapsto IntVal\ b\ xyv
   using e EvalTreeE(5) bin-eval-inputs-are-ints bin-eval-new-int new-int.simps
   xv yv
   by (metis\ BinaryExpr\ Value.distinct(1)\ bin-eval.simps(1)\ intval-add.simps(1))
  then obtain zv where zv: [m,p] \vdash z \mapsto IntVal\ b\ zv
   using e EvalTreeE(5) bin-eval-inputs-are-ints bin-eval-new-int new-int.simps
    Value.sel(1) bin-eval.simps(4) evalDet intval-and.elims
   by (smt (verit) new-int-bin.simps)
```

```
have xyv = take-bit\ b\ (xv + yv)
   using xv yv xyv
  by (metis\ BinaryExprE\ Value.sel(2)\ bin-eval.simps(1)\ evalDet\ intval-add.simps(1))
  then have v = IntVal\ b\ (take-bit\ b\ (and\ (take-bit\ b\ (xv + yv))\ zv))
   using zv
    by (smt\ (verit)\ EvalTreeE(5)\ Value.sel(1)\ Value.sel(2)\ bin-eval.simps(4)\ e
evalDet intval-and.elims new-int.simps new-int-bin.simps xyv)
  then have veval: v = IntVal\ b\ (and\ (xv + yv)\ zv)
  by (metis (no-types, lifting) eval-unused-bits-zero take-bit-eq-mask word-bw-comms(1)
word-bw-lcs(1) zv)
  have obligation: (and (xv + yv) zv) = (and xv zv) \Longrightarrow [m,p] \vdash BinaryExpr
BinAnd \ x \ z \mapsto v
     by (smt\ (verit)\ EvalTreeE(5)\ Value.inject(1)\ (v::Value) = IntVal\ (b::nat)
(take-bit\ b\ (and\ (take-bit\ b\ ((xv::64\ word) + (yv::64\ word)))\ (zv::64\ word))) \land (xyv::64\ word))) \land (xyv::64\ word))) \land (xyv::64\ word))) \land (xyv::64\ word))
word) = take-bit (b::nat) ((xv::64 \ word) + (yv::64 \ word))> bin-eval.simps(4) e
evalDet eval-unused-bits-zero evaltree.simps intval-and.simps(1) take-bit-and xv xyv
 have per-bit: \forall n . bit (and (xv + yv) zv) n = bit (and xv zv) n \Longrightarrow (and (xv + yv) zv)
yv) zv) = (and xv zv)
   by (simp add: bit-eq-iff)
 show ?thesis
   apply (rule obligation)
   apply (rule per-bit)
   apply (rule allI)
   subgoal for n
  proof (cases \ n \leq j)
   case True
   then show ?thesis sorry
  next
   case False
   then have \neg(bit\ zv\ n)
     \mathbf{by}\ (\textit{metis j linorder-not-less not-may-implies-false zerosAboveHighestOne zv})
   then have v: \neg(bit (and (xv + yv) zv) n)
     by (simp add: bit-and-iff)
   then have v': \neg(bit (and xv zv) n)
     by (simp\ add: \leftarrow bit\ (zv::64\ word)\ (n::nat) \rightarrow bit-and-iff)
   from v v' show ?thesis
     by simp
 qed
 done
qed
 done
 done
end
lemma ucast-zero: (ucast (0::int64)::int32) = 0
```

```
by simp
lemma ucast-minus-one: (ucast (-1::int64)::int32) = -1
 apply transfer by auto
interpretation \ simple-mask: \ stamp-mask
 IRExpr-up :: IRExpr \Rightarrow int64
 IRExpr-down :: IRExpr \Rightarrow int64
 unfolding IRExpr-up-def IRExpr-down-def
 apply unfold-locales
 by (simp \ add: \ ucast-minus-one)+
phase NewAnd
 terminating size
begin
optimization redundant-lhs-y-or: ((x \mid y) \& z) \longmapsto x \& z
                           when (((and (IRExpr-up y) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y by blast
optimization redundant-lhs-x-or: ((x \mid y) \& z) \longmapsto y \& z
                           when (((and (IRExpr-up x) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y
 by (meson exp-or-commute mono-binary order-refl order-trans)
optimization redundant-rhs-y-or: (z \& (x \mid y)) \longmapsto z \& x
                           when (((and (IRExpr-up y) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y
 \mathbf{by}\ (\mathit{meson}\ \mathit{exp-and-commute}\ \mathit{order.trans})
optimization redundant-rhs-x-or: (z \& (x \mid y)) \longmapsto z \& y
                           when (((and (IRExpr-up x) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y
 by (meson dual-order trans exp-and-commute exp-or-commute mono-binary or-
der-refl)
end
end
```

1.8 NotNode Phase

terminating size

begin

```
{\bf theory}\ {\it NotPhase}
  imports
    Common
begin
{f phase}\ {\it NotNode}
  terminating size
begin
lemma bin-not-cancel:
 bin[\neg(\neg(e))] = bin[e]
 by auto
\mathbf{lemma}\ \mathit{val}\textit{-}\mathit{not}\textit{-}\mathit{cancel}\text{:}
  assumes val[^{\sim}(new\text{-}int\ b\ v)] \neq UndefVal
  shows val[{}^{\sim}({}^{\sim}(new\text{-}int\ b\ v))] = (new\text{-}int\ b\ v)
   \mathbf{using}\ \mathit{bin-not-cancel}
  by (simp\ add:\ take-bit-not-take-bit)
\mathbf{lemma}\ \textit{exp-not-cancel}:
  shows exp[^{\sim}(^{\sim}a)] \geq exp[a]
   using val-not-cancel apply auto
  by (metis eval-unused-bits-zero intval-logic-negation.cases intval-not.simps(1)
      intval-not.simps(2) \ intval-not.simps(3) \ intval-not.simps(4) \ new-int.simps)
Optimisations
optimization NotCancel: exp[^{\sim}(^{\sim}a)] \longmapsto a
 by (metis exp-not-cancel)
end
\quad \text{end} \quad
1.9
         OrNode Phase
theory OrPhase
  imports
    Common
begin
{\bf phase}\ {\it OrNode}
```

```
lemma bin-or-equal:
 bin[x \mid x] = bin[x]
 \mathbf{by} \ simp
lemma bin-shift-const-right-helper:
x \mid y = y \mid x
 by simp
lemma bin-or-not-operands:
(^{\sim}x \mid ^{\sim}y) = (^{\sim}(x \& y))
 by simp
lemma val-or-equal:
 assumes x = new\text{-}int \ b \ v
 and (val[x \mid x] \neq UndefVal)
 shows val[x \mid x] = val[x]
  apply (cases x; auto) using bin-or-equal assms
 \mathbf{by}\ \mathit{auto} +
\mathbf{lemma}\ \mathit{val-elim-redundant-false} :
 assumes x = new\text{-}int \ b \ v
          val[x \mid false] \neq UndefVal
 shows val[x \mid false] = val[x]
  using assms apply (cases x; auto) by presburger
lemma val-shift-const-right-helper:
  val[x \mid y] = val[y \mid x]
  apply (cases x; cases y; auto)
 by (simp add: or.commute)+
lemma val-or-not-operands:
val[^{\sim}x \mid ^{\sim}y] = val[^{\sim}(x \& y)]
 apply (cases \ x; \ cases \ y; \ auto)
 by (simp add: take-bit-not-take-bit)
lemma exp-or-equal:
  exp[x \mid x] \ge exp[x]
  using val-or-equal apply auto
   by (smt (verit, ccfv-SIG) evalDet eval-unused-bits-zero intval-negate.elims int-
val-or.simps(2)
      intval-or.simps(6) intval-or.simps(7) new-int.simps val-or-equal)
\mathbf{lemma}\ \textit{exp-elim-redundant-false} :
exp[x \mid false] \ge exp[x]
  using val-elim-redundant-false apply auto
  by (smt (verit) Value.sel(1) eval-unused-bits-zero intval-or.elims new-int.simps
```

new-int-bin.simps val-elim-redundant-false)

```
Optimisations
```

context stamp-mask

begin

```
optimization OrEqual: x \mid x \longmapsto x by (meson\ exp-or-equal\ le-expr-def)

optimization OrShiftConstantRight: ((const\ x) \mid y) \longmapsto y \mid (const\ x)\ when\ \neg (is-ConstantExpr\ y)

using size-flip-binary apply force apply auto by (simp\ add:\ BinaryExpr\ unfold-const\ val-shift-const-right-helper)

optimization EliminateRedundantFalse:\ x \mid false \longmapsto x by (meson\ exp-elim-redundant-false\ le-expr-def)

optimization OrNotOperands:\ (^{\sim}x\mid ^{\sim}y) \longmapsto ^{\sim}(x\ \&\ y)

apply (metis\ add-2-eq-Suc'\ less-SucI\ not-add-less1\ not-less-eq\ size-binary-const\ size-non-add)

apply auto\ using\ val-or-not-operands
by (metis\ BinaryExpr\ UnaryExpr\ bin-eval.simps(4)\ intval-not.simps(2)\ unary-eval.simps(3))
end
```

Taking advantage of the truth table of or operations.

If row 2 never applies, that is, can BeZero x & can BeOne y = 0, then (x|y) = x

Likewise, if row 3 never applies, can BeZero y & can BeOne x = 0, then (x|y) = y.

```
lemma OrLeftFallthrough:
   assumes (and\ (not\ (\downarrow x))\ (\uparrow y)) = 0
   shows exp[x\mid y] \geq exp[x]
   using assms
   apply simp\ apply\ ((rule\ allI)+;\ rule\ impI)
   subgoal premises eval\ for\ m\ p\ v
   proof -
   obtain b\ vv\ where e:\ [m,\ p]\ \vdash\ exp[x\mid y]\mapsto IntVal\ b\ vv
```

```
using eval
     by (metis BinaryExprE bin-eval-new-int new-int.simps)
   from e obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width)
     bv force+
   from e obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width)
     by force+
   have vdef: v = intval - or (IntVal b xv) (IntVal b yv)
     using e xv yv
     by (metis\ bin-eval.simps(5)\ eval(2)\ evalDet\ unfold-binary)
   have \forall i. (bit xv i) \mid (bit yv i) = (bit xv i)
     by (metis assms bit-and-iff not-down-up-mask-and-zero-implies-zero xv yv)
   then have IntVal\ b\ xv = intval\text{-}or\ (IntVal\ b\ xv)\ (IntVal\ b\ yv)
   by (smt (verit, ccfv-threshold) and idem assms bit.conj-disj-distrib eval-unused-bits-zero
intval-or.simps(1) new-int.simps new-int-bin.simps not-down-up-mask-and-zero-implies-zero
word-ao-absorbs(3) xv yv)
   then show ?thesis
     using vdef
     using xv by presburger
 qed
 done
lemma Or Right Fall through:
 assumes (and (not (\downarrow y)) (\uparrow x)) = 0
 shows exp[x \mid y] \ge exp[y]
 using assms
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
 proof -
   obtain b vv where e: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b\ vv
     using eval
     by (metis BinaryExprE bin-eval-new-int new-int.simps)
   from e obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width)
     by force+
   from e obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width)
     by force+
   have vdef: v = intval - or (IntVal b xv) (IntVal b yv)
     using e xv yv
     by (metis\ bin-eval.simps(5)\ eval(2)\ evalDet\ unfold-binary)
   have \forall i. (bit xv i) | (bit yv i) = (bit yv i)
     by (metis assms bit-and-iff not-down-up-mask-and-zero-implies-zero xv yv)
   then have IntVal\ b\ yv = intval\text{-}or\ (IntVal\ b\ xv)\ (IntVal\ b\ yv)
      by (metis (no-types, lifting) assms eval-unused-bits-zero intval-or.simps(1)
new-int.elims new-int-bin.elims stamp-mask.not-down-up-mask-and-zero-implies-zero
stamp-mask-axioms word-ao-absorbs(8) xv yv)
   then show ?thesis
```

```
using vdef
     using yv by presburger
 qed
 done
end
end
         ShiftNode Phase
1.10
theory ShiftPhase
 imports
    Common
begin
{f phase} ShiftNode
 terminating size
begin
fun intval-log2 :: Value \Rightarrow Value where
 intval-log2 \ (IntVal \ b \ v) = IntVal \ b \ (word-of-int \ (SOME \ e. \ v=2^e)) \ |
 intval-log2 - = UndefVal
fun in-bounds :: Value \Rightarrow int \Rightarrow int \Rightarrow bool where
  in-bounds (IntVal b v) l h = (l < sint <math>v \wedge sint v < h)
  in-bounds - l h = False
lemma
 assumes in-bounds (intval-log2 val-c) 0 32
 shows intval-left-shift x (intval-log2 val-c) = intval-mul x val-c
  apply (cases \ val-c; \ auto) \ using \ intval-left-shift.simps(1) \ intval-mul.simps(1)
intval-log2.simps(1)
 sorry
lemma e-intval:
 n = intval{-}log2 \ val{-}c \land in{-}bounds \ n \ 0 \ 32 \longrightarrow
   intval-left-shift x (intval-log2 val-c) =
   intval-mul \ x \ val-c
proof (rule impI)
  assume n = intval-log2 \ val-c \wedge in-bounds \ n \ 0 \ 32
 show intval-left-shift x (intval-log2 val-c) =
    intval-mul \ x \ val-c
   proof (cases \exists v . val-c = Int Val 32 v)
     case True
     obtain vc where val-c = IntVal 32 vc
       using True by blast
     then have n = IntVal \ 32 \ (word-of-int \ (SOME \ e. \ vc=2^e))
        using \langle n = intval-log2 \ val-c \wedge in-bounds \ n \ 0 \ 32 \rangle \ intval-log2.simps(1) by
```

```
presburger
     then show ?thesis sorry
   \mathbf{next}
     {f case}\ {\it False}
     then have \exists v . val\text{-}c = IntVal 64 v
     then obtain vc where val-c = IntVal 64 vc
     then have n = IntVal \ 64 \ (word-of-int \ (SOME \ e. \ vc=2^e))
        using \langle n = intval-log2 \ val-c \land in-bounds \ n \ 0 \ 32 \rangle \ intval-log2.simps(1) by
presburger
     then show ?thesis sorry
qed
qed
optimization e:
  x*(const\ c)\longmapsto x<<(const\ n)\ when\ (n=intval-log2\ c\ \land\ in\mbox{-}bounds\ n\ 0\ 32)
 using e-intval
  using BinaryExprE ConstantExprE bin-eval.simps(2,7) sorry
end
\quad \text{end} \quad
1.11
         SignedDivNode Phase
{\bf theory} \ {\it SignedDivPhase}
 imports
    Common
begin
{f phase} \ Signed Div Node
 terminating size
begin
\mathbf{lemma}\ \mathit{val-division-by-one-is-self-32}\colon
  assumes x = new\text{-}int 32 v
 shows intval-div x (IntVal 32 1) = x
  using assms apply (cases x; auto)
  by (simp add: take-bit-signed-take-bit)
```

 $\quad \text{end} \quad$

1.12 SignedRemNode Phase

```
{\bf theory} \ {\it SignedRemPhase}
  imports
    Common
begin
phase SignedRemNode
  terminating size
begin
lemma val-remainder-one:
  assumes intval\text{-}mod\ x\ (IntVal\ 32\ 1) \neq UndefVal
 shows intval-mod x (IntVal 32 1) = IntVal 32 0
  using assms apply (cases x; auto) sorry
value word-of-int (sint (x2::32 word) smod 1)
end
\quad \text{end} \quad
          SubNode Phase
1.13
theory SubPhase
  imports
    Common
begin
phase SubNode
  terminating size
begin
\mathbf{lemma}\ \mathit{bin-sub-after-right-add}\colon
  shows ((x::('a::len) \ word) + (y::('a::len) \ word)) - y = x
  by simp
\mathbf{lemma}\ \mathit{sub-self-is-zero}:
  \mathbf{shows}\ (x::('a::len)\ word)\ -\ x=\ \theta
  \mathbf{by} \ simp
\mathbf{lemma}\ \mathit{bin-sub-then-left-add}\colon
  shows (x::('a::len) \ word) - (x + (y::('a::len) \ word)) = -y
  \mathbf{by} \ simp
\mathbf{lemma}\ bin\text{-}sub\text{-}then\text{-}left\text{-}sub:
```

```
shows (x::('a::len) \ word) - (x - (y::('a::len) \ word)) = y
 by simp
{f lemma}\ bin-subtract-zero:
 shows (x :: 'a :: len word) - (0 :: 'a :: len word) = x
 by simp
lemma bin-sub-negative-value:
(x :: ('a::len) \ word) - (-(y :: ('a::len) \ word)) = x + y
 by simp
lemma bin-sub-self-is-zero:
(x :: ('a::len) \ word) - x = 0
 by simp
lemma bin-sub-negative-const:
(x :: 'a::len \ word) - (-(y :: 'a::len \ word)) = x + y
 by simp
lemma val-sub-after-right-add-2:
 assumes x = new\text{-}int \ b \ v
  \begin{array}{ll} \textbf{assumes} \ val[(x+y)-y] \neq \textit{UndefVal} \\ \textbf{shows} \quad val[(x+y)-y] = val[x] \end{array}
 using bin-sub-after-right-add
 using assms apply (cases x; cases y; auto)
 by (metis\ (full-types)\ intval-sub.simps(2))
lemma \ val-sub-after-left-sub:
 assumes val[(x - y) - x] \neq UndefVal
shows val[(x - y) - x] = val[-y]
 using assms apply (cases x; cases y; auto)
 using intval-sub.elims by fastforce
lemma val-sub-then-left-sub:
 assumes y = new\text{-}int \ b \ v
 \mathbf{assumes} \ val[x-(x-y)] \neq \mathit{UndefVal}
 shows val[x - (x - y)] = val[y]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags)\ intval-sub.simps(5))
lemma val-subtract-zero:
 assumes x = new-int b v
 assumes intval-sub x (IntVal\ b\ 0) \neq UndefVal
 shows intval-sub x (IntVal b 0) = val[x]
 using assms by (induction x; simp)
lemma val-zero-subtract-value:
```

assumes $x = new\text{-}int \ b \ v$

```
assumes intval-sub (IntVal b 0) x \neq UndefVal
 shows intval-sub (IntVal b \theta) x = val[-x]
 using assms by (induction x; simp)
lemma val-sub-then-left-add:
 assumes val[x - (x + y)] \neq UndefVal
 shows val[x - (x + y)] = val[-y]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags,\ lifting)\ intval-sub.simps(5))
lemma val-sub-negative-value:
 assumes val[x - (-y)] \neq UndefVal
 shows val[x - (-y)] = val[x + y]
 using assms by (cases x; cases y; auto)
lemma val-sub-self-is-zero:
 assumes x = new\text{-}int \ b \ v \land val[x - x] \neq UndefVal
 shows val[x - x] = new\text{-}int \ b \ \theta
 using assms by (cases x; auto)
lemma val-sub-negative-const:
 assumes y = new\text{-}int \ b \ v \land val[x - (-y)] \neq UndefVal
 shows val[x - (-y)] = val[x + y]
 using assms by (cases x; cases y; auto)
\mathbf{lemma}\ exp\text{-}sub\text{-}after\text{-}right\text{-}add:
 shows exp[(x + y) - y] \ge exp[x]
 apply auto using val-sub-after-right-add-2
 \mathbf{using}\ evalDet\ eval-unused\text{-}bits\text{-}zero\ intval\text{-}add.elims\ new\text{-}int.simps
 by (smt\ (verit))
lemma exp-sub-after-right-add2:
 shows exp[(x + y) - x] \ge exp[y]
 using exp-sub-after-right-add apply auto
 using bin-eval.simps(1) bin-eval.simps(3) intval-add-sym unfold-binary
 by (smt (z3) Value.inject(1) diff-eq-eq evalDet eval-unused-bits-zero intval-add.elims
     intval-sub.elims new-int.simps new-int-bin.simps take-bit-dist-subL)
\mathbf{lemma}\ exp\text{-}sub\text{-}negative\text{-}value:
 exp[x-(-y)] \ge exp[x+y]
 apply simp using val-sub-negative-value
 by (smt\ (verit)\ bin-eval.simps(1)\ bin-eval.simps(3)\ evaltree-not-undef
     unary-eval.simps(2) unfold-binary unfold-unary)
```

definition wf- $stamp :: IRExpr \Rightarrow bool$ where

```
wf-stamp e = (\forall m \ p \ v. ([m, p] \vdash e \mapsto v) \longrightarrow valid-value v \ (stamp-expr e))
\mathbf{lemma}\ exp\text{-}sub\text{-}then\text{-}left\text{-}sub\text{:}
 shows exp[x-(x-y)] \ge exp[y]
 using val-sub-then-left-sub apply auto
 subgoal premises p for m p xa xaa ya
   proof-
     obtain xa where xa: [m, p] \vdash x \mapsto xa
       using p(2) by blast
     obtain ya where ya: [m, p] \vdash y \mapsto ya
       using p(5) by auto
     obtain xaa where xaa: [m, p] \vdash x \mapsto xaa
      using p(2) by blast
     have 1: val[xa - (xaa - ya)] \neq UndefVal
      by (metis evalDet p(2) p(3) p(4) p(5) xa xaa ya)
     then have val[xaa - ya] \neq UndefVal
      bv auto
     then have [m,p] \vdash y \mapsto val[xa - (xaa - ya)]
       by (metis 1 Value.exhaust evalDet eval-unused-bits-zero evaltree-not-undef
intval-sub.simps(6) intval-sub.simps(7) new-int.simps(5) val-sub-then-left-sub xa
xaa ya)
     then show ?thesis
      by (metis evalDet p(2) p(4) p(5) xa xaa ya)
   qed
   done
thm-oracles exp-sub-then-left-sub
Optimisations
optimization SubAfterAddRight: ((x + y) - y) \longmapsto x
 using exp-sub-after-right-add by blast
optimization SubAfterAddLeft: ((x + y) - x) \longmapsto y
 using exp-sub-after-right-add2 by blast
optimization SubAfterSubLeft: ((x - y) - x) \longmapsto -y
 apply (metis Suc-lessI add-2-eq-Suc' add-less-cancel-right less-trans-Suc not-add-less1
size-binary-const size-binary-lhs size-binary-rhs size-non-add)
  apply auto
 by (metis evalDet unary-eval.simps(2) unfold-unary val-sub-after-left-sub)
optimization SubThenAddLeft: (x - (x + y)) \longmapsto -y
  apply auto
 by (metis\ evalDet\ unary-eval.simps(2)\ unfold-unary
     val-sub-then-left-add)
optimization SubThenAddRight: (y - (x + y)) \longmapsto -x
  apply auto
 by (metis evalDet intval-add-sym unary-eval.simps(2) unfold-unary
```

```
val-sub-then-left-add)
optimization SubThenSubLeft: (x - (x - y)) \mapsto y
 using size-simps apply simp
 using exp-sub-then-left-sub by blast
optimization SubtractZero: (x - (const \ IntVal \ b \ \theta)) \longmapsto x
                         when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
 apply auto
 \mathbf{by} \; (smt \; (verit) \; add.right-neutral \; diff-add-cancel \; eval-unused-bits-zero \; intval-sub.elims
     intval-word.simps new-int.simps new-int-bin.simps)
optimization SubNegativeValue: (x - (-y)) \longmapsto x + y
  apply (metis add-2-eq-Suc' less-SucI less-add-Suc1 not-less-eq size-binary-const
size-non-add)
 using exp-sub-negative-value by simp
{f thm	ext{-}oracles}\ SubNegative Value
lemma negate-idempotent:
 assumes x = IntVal\ b\ v \land take-bit\ b\ v = v
 shows x = val[-(-x)]
 using assms
 using is-IntVal-def by force
{f lemma}\ remove-sub-preserve-take-bit:
 fixes v :: 64 \ word
 assumes b > \theta \land b \le 64
 assumes take-bit b (-v) = -v
 shows take-bit b v = v
 using assms sorry
value -1::64 word
value take-bit 64 (-1)::64 word
value take-bit 64 (-(-1))::64 word
\mathbf{lemma}\ valid\text{-}sub\text{-}const:
 assumes y = IntVal\ b\ v \land b > 0
 assumes valid-value (val[-y]) (constantAsStamp (val[-y]))
 shows valid-value y (constantAsStamp y)
 using assms apply (cases y; auto)
 apply (simp add: int-power-div-base signed-take-bit-int-greater-eq-minus-exp-word)
```

```
apply (metis (no-types, opaque-lifting) One-nat-def Suc-diff-Suc Suc-le-lessD can-
cel-comm-monoid-add-class. \textit{diff-cancel diff-diff-cancel gr0-conv-Suc~less I~less-imp-le-national limits of the property of
signed-take-bit-int-less-exp-word size64 size-word.rep-eq upper-bounds-equiv)
  apply (metis One-nat-def Suc-less-eq Suc-pred le-imp-less-Suc signed-take-bit-int-greater-eq-minus-exp-word
size64 upper-bounds-equiv wsst-TYs(3))
   apply (metis One-nat-def Suc-le-lessD Suc-pred signed-take-bit-int-less-exp-word
size64 upper-bounds-equiv wsst-TYs(3))
   using remove-sub-preserve-take-bit
   sorry
lemma unnegated-rhs-evals:
   \mathbf{assumes}\ [m,\ p] \ \vdash \ exp[const\ val[-y]] \ \mapsto \ v
   shows [m, p] \vdash exp[const \ val[y]] \mapsto intval\text{-negate } v
proof -
   obtain b vv where vv: [m, p] \vdash exp[const \ val[-y]] \mapsto IntVal \ b \ vv
      using assms
      by (metis evaltree-not-undef intval-negate.elims new-int.elims unfold-const)
   then have take-bit b vv = vv
      by (simp add: eval-unused-bits-zero)
   then have v = val[-(-v)]
      using vv
      by (metis assms negate-idempotent unfold-const)
   then obtain yv where yv: [m, p] \vdash exp[const \ val[y]] \mapsto IntVal \ b \ yv
      using vv apply auto using evaltree. ConstantExpr valid-sub-const
        by (metis Value.distinct(1) Value.inject(1) eval-bits-1-64 intval-negate.elims
new-int.simps)
   then show ?thesis
      using assms apply auto
      using yv by fastforce
qed
optimization SubNegativeConstant: x - (const (val[-y])) \mapsto x + (const y)
    apply simp apply ((rule allI)+; rule impI)
   subgoal premises eval for m p v
   proof -
      obtain xv where xv: [m, p] \vdash x \mapsto xv
          using eval by auto
      obtain yv where yv: [m, p] \vdash exp[const (val[-y])] \mapsto intval\text{-negate } yv
          using eval by auto
      obtain lhs where lhsdef: [m, p] \vdash exp[x - (const (val[-y]))] \mapsto lhs
          using eval by auto
      then have lhs: lhs = val[xv - (-yv)]
         by (metis BinaryExprE bin-eval.simps(3) evalDet xv yv)
      obtain rhs where rhsdef: [m, p] \vdash exp[x + (const y)] \mapsto rhs
          using eval unnegated-rhs-evals
            by (metis\ EvalTreeE(1)\ bin-eval.simps(1)\ bin-eval.simps(3)\ unfold-binary
val-sub-negative-value)
```

```
then have rhs: rhs = val[xv + yv]
    by (metis\ BinaryExprE\ EvalTreeE(1)\ bin-eval.simps(1)\ evalDet\ unnegated-rhs-evals
xv yv
   have lhs = rhs
     using val-sub-negative-value lhs rhs
     by (metis\ bin-eval.simps(3)\ eval\ evalDet\ unfold-binary\ xv\ yv)
   then show ?thesis
     by (metis eval evalDet lhsdef rhsdef)
 \mathbf{qed}
 sorry
optimization ZeroSubtractValue: ((const\ IntVal\ b\ 0) - x) \longmapsto (-x)
                              when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo
hi)
 defer
  apply auto unfolding wf-stamp-def
 apply (smt (verit) diff-0 intval-negate.simps(1) intval-sub.elims intval-word.simps
         new-int-bin.simps\ unary-eval.simps(2)\ unfold-unary)
 sorry
fun forPrimitive :: Stamp \Rightarrow int64 \Rightarrow IRExpr where
  for Primitive \ (Integer Stamp \ b \ lo \ hi) \ v = Constant Expr \ (if \ take-bit \ b \ v = v \ then
(IntVal\ b\ v)\ else\ UndefVal)
 forPrimitive - - = ConstantExpr UndefVal
\mathbf{lemma} \ \mathit{unfold-forPrimitive} :
 for Primitive\ s\ v = Constant Expr\ (if\ is-Integer Stamp\ s\ \land\ take-bit\ (stp-bits\ s)\ v =
v then (IntVal (stp-bits s) v) else UndefVal)
 by (cases s; auto)
lemma forPrimitive-size[size-simps]: size (forPrimitive s v) = 1
 by (cases s; auto)
{\bf lemma}\ for Primitive\text{-}eval\text{:}
 assumes s = IntegerStamp \ b \ lo \ hi
 assumes take-bit b v = v
 shows [m, p] \vdash forPrimitive \ s \ v \mapsto (IntVal \ b \ v)
 unfolding unfold-forPrimitive using assms apply auto
 apply (rule evaltree.ConstantExpr)
 \mathbf{sorry}
\mathbf{lemma}\ eval SubStamp:
 assumes [m, p] \vdash exp[x - y] \mapsto v
 assumes wf-stamp exp[x - y]
 shows \exists b \ lo \ hi. \ stamp-expr \ exp[x - y] = IntegerStamp \ b \ lo \ hi
```

```
proof -
 have valid-value v (stamp-expr exp[x - y])
   using assms unfolding wf-stamp-def by auto
 then have stamp-expr\ exp[x-y] \neq IllegalStamp
   by force
 then show ?thesis
   unfolding stamp-expr.simps using stamp-binary.simps
   by (smt (z3) stamp-binary.elims unrestricted-stamp.simps(2))
qed
lemma evalSubArgsStamp:
 assumes [m, p] \vdash exp[x - y] \mapsto v
 assumes \exists lo\ hi.\ stamp\text{-}expr\ exp[x\ -\ y] = IntegerStamp\ b\ lo\ hi
 shows \exists lo \ hi. \ stamp-expr \ exp[x] = IntegerStamp \ b \ lo \ hi
 using assms sorry
optimization SubSelfIsZero: (x - x) \longmapsto forPrimitive (stamp-expr exp[x - x]) \ \theta
when ((wf\text{-}stamp\ x) \land (wf\text{-}stamp\ exp[x-x]))
 using size-non-const apply fastforce
  apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises eval for m p v
 proof -
   obtain b where \exists lo hi. stamp-expr exp[x - x] = IntegerStamp b lo hi
   using evalSubStamp eval
   by meson
 then show ?thesis sorry
qed
 done
end
end
1.14
        XorNode Phase
theory XorPhase
 imports
   Common
   Proofs. Stamp Eval Thms
begin
{f phase} \ {\it XorNode}
 terminating size
begin
lemma bin-xor-self-is-false:
```

```
bin[x \oplus x] = 0
 by simp
{f lemma}\ bin	ext{-}xor	ext{-}commute:
 bin[x \oplus y] = bin[y \oplus x]
 by (simp add: xor.commute)
\mathbf{lemma}\ \mathit{bin-eliminate-redundant-false}:
 bin[x \oplus \theta] = bin[x]
 \mathbf{by} \ simp
\mathbf{lemma}\ \mathit{val-xor-self-is-false} \colon
  assumes val[x \oplus x] \neq UndefVal
 shows val-to-bool (val[x \oplus x]) = False
 using assms by (cases x; auto)
\mathbf{lemma}\ \mathit{val-xor-self-is-false-2}\colon
  assumes (val[x \oplus x]) \neq UndefVal
           x = IntVal 32 v
 shows val[x \oplus x] = bool\text{-}to\text{-}val \ False
  using assms by (cases x; auto)
lemma val-xor-self-is-false-3:
  assumes val[x \oplus x] \neq UndefVal \land x = IntVal 64 v
  shows val[x \oplus x] = IntVal \ 64 \ 0
  using assms by (cases x; auto)
{f lemma}\ val	ext{-}xor	ext{-}commute:
   val[x \oplus y] = val[y \oplus x]
  apply (cases x; cases y; auto)
  by (simp add: xor.commute)+
\mathbf{lemma}\ val\text{-}eliminate\text{-}redundant\text{-}false:
  assumes x = new\text{-}int \ b \ v
 assumes val[x \oplus (bool\text{-}to\text{-}val\ False)] \neq UndefVal
  shows val[x \oplus (bool\text{-}to\text{-}val\ False)] = x
  using assms apply (cases x; auto)
  by meson
lemma exp-xor-self-is-false:
 assumes wf-stamp x \wedge stamp\text{-}expr \ x = default\text{-}stamp
 shows exp[x \oplus x] \ge exp[false]
  using assms apply auto unfolding wf-stamp-def
  using IntVal0\ Value.inject(1)\ bool-to-val.simps(2)\ constantAsStamp.simps(1)
evalDet
           int-signed-value-bounds new-int.simps unfold-const val-xor-self-is-false-2
```

```
valid-int
       valid-stamp.simps(1) valid-value.simps(1)
 by (smt (z3) validDefIntConst)
lemma exp-eliminate-redundant-false:
 shows exp[x \oplus false] \ge exp[x]
 using val-eliminate-redundant-false apply auto
 subgoal premises p for m p xa
   proof -
     obtain xa where xa: [m,p] \vdash x \mapsto xa
       using p(2) by blast
     then have val[xa \oplus (IntVal \ 32 \ 0)] \neq UndefVal
      using evalDet \ p(2) \ p(3) by blast
     then have [m,p] \vdash x \mapsto val[xa \oplus (IntVal\ 32\ 0)]
      apply (cases xa; auto) using eval-unused-bits-zero xa by auto
     then show ?thesis
      using evalDet p(2) xa by blast
   qed
 done
Optimisations
optimization XorSelfIsFalse: (x \oplus x) \longmapsto false \ when
                   (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = default\text{-}stamp)
 using size-non-const apply force
 using exp-xor-self-is-false by auto
optimization XorShiftConstantRight: ((const \ x) \oplus y) \longmapsto y \oplus (const \ x) when
\neg (is\text{-}ConstantExpr\ y)
 using size-flip-binary apply force
 unfolding le-expr-def using val-xor-commute
 by auto
optimization EliminateRedundantFalse: (x \oplus false) \longmapsto x
   using exp-eliminate-redundant-false by blast
end
end
1.15
         NegateNode Phase
theory NegatePhase
 imports
   Common
begin
```

```
{\bf phase}\ NegateNode
 terminating size
begin
lemma bin-negative-cancel:
-1 * (-1 * ((x::('a::len) word))) = x
 by auto
lemma val-negative-cancel:
 assumes intval-negate (new-int b v) \neq UndefVal
 shows val[-(-(new-int\ b\ v))] = val[new-int\ b\ v]
 using assms by simp
\mathbf{lemma}\ val	ext{-} distribute	ext{-} sub:
 \mathbf{assumes}\ x \neq \mathit{UndefVal}\ \land\ y \neq \mathit{UndefVal}
 shows val[-(x-y)] = val[y-x]
 using assms by (cases x; cases y; auto)
lemma exp-distribute-sub:
 shows exp[-(x-y)] \ge exp[y-x]
 using val-distribute-sub apply auto
 \mathbf{using}\ \mathit{evaltree}\textit{-not-undef}\ \mathbf{by}\ \mathit{auto}
thm-oracles exp-distribute-sub
lemma exp-negative-cancel:
 shows exp[-(-x)] \ge exp[x]
 using val-negative-cancel apply auto
 by (metis (no-types, opaque-lifting) eval-unused-bits-zero intval-negate.elims
     intval-negate.simps(1) \ minus-equation-iff \ new-int.simps \ take-bit-dist-neg)
lemma exp-negative-shift:
 assumes stamp-expr \ x = IntegerStamp \ b' lo hi
          unat y = (b' - 1)
 and
 shows exp[-(x >> (const (new-int b y)))] \ge exp[x >>> (const (new-int b y))]
 apply auto
 subgoal premises p for m p xa
 proof -
   obtain xa where xa: [m,p] \vdash x \mapsto xa
     using p(2) by auto
    then have 1: intval-negate (intval-right-shift xa (IntVal b (take-bit b y))) \neq
UndefVal
     using evalDet p(1) p(2) by blast
   then have 2: intval-right-shift xa (IntVal\ b\ (take-bit b\ y)) \neq UndefVal
     by auto
```

```
then have 3: -((2::int) \cap b \ div \ (2::int)) \subseteq sint \ (signed-take-bit \ (b-Suc
(0::nat)) (take-bit\ b\ y))
     by (simp \ add: p(6))
   then have 4: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b y)) < (2::int)
^ b div (2::int)
     using p(7) by blast
   then have 5: (0::nat) < b
     by (simp \ add: \ p(4))
   then have 6: b \sqsubseteq (64::nat)
     by (simp \ add: \ p(5))
   then have 7: [m,p] \vdash BinaryExpr\ BinURightShift\ x
              (ConstantExpr\ (IntVal\ b\ (take-bit\ b\ y))) \mapsto
               intval-negate (intval-right-shift xa (IntVal b (take-bit b y)))
     apply (cases y; auto)
     subgoal premises p for n
      proof -
        have sg1: y = word\text{-}of\text{-}nat n
          by (simp \ add: \ p(1))
        then have sg2: n < (18446744073709551616::nat)
          by (simp \ add: \ p(2))
        then have sg3: b \sqsubseteq (64::nat)
          by (simp \ add: 6)
        then have sg4: [m,p] \vdash BinaryExpr BinURightShift x
              (ConstantExpr\ (IntVal\ b\ (take-bit\ b\ (word-of-nat\ n)))) \mapsto
               intval-negate (intval-right-shift xa (IntVal b (take-bit b (word-of-nat
n))))
           sorry
        then show ?thesis
          by simp
      qed
     done
   then show ?thesis
     by (metis evalDet p(2) xa)
 qed
 done
Optimisations
optimization NegateCancel: -(-(x)) \mapsto x
 using val-negative-cancel exp-negative-cancel by blast
optimization DistributeSubtraction: -(x - y) \longmapsto (y - x)
 apply (smt (z3) add.left-commute add-2-eq-Suc' add-diff-cancel-left' is-ConstantExpr-def
less-Suc-eq-0-disj plus-1-eq-Suc size.simps(11) size-binary-const size-non-add zero-less-diff)
 using exp-distribute-sub by simp
optimization NegativeShift: -(x >> (const (new-int b y))) \mapsto x >>> (const
```

```
(new\text{-}int \ b \ y))
                                when (stamp-expr \ x = IntegerStamp \ b' \ lo \ hi \land unat \ y)
= (b' - 1))
 using exp-negative-shift by simp
end
end
theory TacticSolving
 imports Common
begin
fun size :: IRExpr \Rightarrow nat where
  size (UnaryExpr \ op \ e) = (size \ e) * 2 
  size (BinaryExpr BinAdd x y) = (size x) + ((size y) * 2) |
  size (BinaryExpr op x y) = (size x) + (size y) \mid
  size (ConditionalExpr \ cond \ t \ f) = (size \ cond) + (size \ t) + (size \ f) + 2
  size (ConstantExpr c) = 1
  size (ParameterExpr ind s) = 2
  size (LeafExpr \ nid \ s) = 2
 size (Constant Var c) = 2
  size (VariableExpr x s) = 2
lemma size-pos[simp]: 0 < size y
 apply (induction y; auto?)
 subgoal premises prems for op a b
   using prems by (induction op; auto)
 done
phase TacticSolving
 terminating size
begin
         AddNode
1.16
\mathbf{lemma}\ value\text{-}approx\text{-}implies\text{-}refinement:
 assumes lhs \approx rhs
 assumes \forall m \ p \ v. \ ([m, p] \vdash elhs \mapsto v) \longrightarrow v = lhs
 assumes \forall m \ p \ v. \ ([m, \ p] \vdash erhs \mapsto v) \longrightarrow v = rhs
 assumes \forall m \ p \ v1 \ v2. \ ([m, \ p] \vdash elhs \mapsto v1) \longrightarrow ([m, \ p] \vdash erhs \mapsto v2)
 shows elhs \ge erhs
 using assms unfolding le-expr-def well-formed-equal-def
 using evalDet evaltree-not-undef
 by metis
method explore-cases for x y :: Value =
  (cases x; cases y; auto)
```

```
method explore-cases-bin for x :: IRExpr =
  (cases x; auto)
method obtain-approx-eq for lhs rhs x y :: Value =
  (rule meta-mp[where P=lhs \approx rhs], defer-tac, explore-cases x y)
{f method}\ obtain\mbox{-}eval\ {f for}\ exp::IRExpr\ {f and}\ val::Value =
  (rule meta-mp[where P = \bigwedge m \ p \ v. ([m, p] \vdash exp \mapsto v) \Longrightarrow v = val], defer-tac)
method solve for lhs rhs x y :: Value =
  (match \ \mathbf{conclusion} \ \mathbf{in} \ size \ - \ \leqslant \ size \ - \ \Rightarrow \ \langle \ simp \rangle)?
  (match \ \mathbf{conclusion} \ \mathbf{in} \ (elhs::IRExpr) \geq (erhs::IRExpr) \ \mathbf{for} \ elhs \ erhs \Rightarrow \langle
   (obtain-approx-eq lhs rhs x y)?\rangle)
print-methods
thm BinaryExprE
optimization opt-add-left-negate-to-sub:
  -x + y \longmapsto y - x
  apply (solve val[-x1 + y1] \ val[y1 - x1] \ x1 \ y1)
 apply simp apply auto using evaltree-not-undef sorry
1.17
         NegateNode
\mathbf{lemma}\ val	ext{-}distribute	ext{-}sub:
 val[-(x-y)] \approx val[y-x]
 by (cases x; cases y; auto)
optimization distribute-sub: -(x-y) \longmapsto (y-x)
  apply simp
  using val-distribute-sub apply simp
  using unfold-binary unfold-unary by auto
lemma val-xor-self-is-false:
 assumes x = IntVal \ 32 \ v
 shows val[x \oplus x] \approx val[false]
 apply simp using assms by (cases x; auto)
definition wf-stamp :: IRExpr \Rightarrow bool where
  wf-stamp e = (\forall m \ p \ v. ([m, p] \vdash e \mapsto v) \longrightarrow valid-value \ v \ (stamp-expr \ e))
lemma exp-xor-self-is-false:
  assumes stamp-expr \ x = IntegerStamp \ 32 \ l \ h
 assumes wf-stamp x
 shows exp[x \oplus x] >= exp[false]
  unfolding le-expr-def using assms unfolding wf-stamp-def
```

```
int-signed-value-bounds new-int-simps new-int-take-bits unfold-binary unfold-const
valid-int valid-stamp.simps(1) valid-value.simps(1) well-formed-equal-defn)
lemma val-or-commute[simp]:
  val[x \mid y] = val[y \mid x]
  apply (cases x; cases y; auto)
 by (simp\ add:\ or.commute)+
lemma val-xor-commute[simp]:
  val[x \oplus y] = val[y \oplus x]
  apply (cases x; cases y; auto)
 by (simp\ add:\ word-bw-comms(3))
lemma exp-or-commutative:
  exp[x \mid y] \ge exp[y \mid x]
 by auto
lemma exp-xor-commutative:
  exp[x \oplus y] \ge exp[y \oplus x]
 by auto
lemma OrInverseVal:
 assumes n = IntVal \ 32 \ v
 shows val[n \mid {}^{\sim}n] \approx new\text{-}int \ 32 \ (-1)
 apply simp using assms using word-or-not apply (cases n; auto) using take-bit-or
 by (metis bit.disj-cancel-right mask-eq-take-bit-minus-one)
optimization OrInverse: exp[n \mid {}^{\sim}n] \longmapsto (const \ (new\text{-}int \ 32 \ (not \ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
 \mathbf{unfolding} \ size.simps \ \mathbf{apply} \ (simp \ add: \ Suc\text{-}lessI)
 apply auto using OrInverseVal unfolding wf-stamp-def
 by (smt (23) constantAsStamp.simps(1) evalDet int-siqued-value-bounds mask-eq-take-bit-minus-one
     new-int.elims new-int-take-bits unfold-const valid-int valid-stamp.simps(1)
     valid-value.simps(1) well-formed-equal-defn)
optimization OrInverse2: exp[{}^{\sim}n \mid n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  using OrInverse apply simp
  using OrInverse exp-or-commutative
 by auto
lemma XorInverseVal:
 assumes n = IntVal \ 32 \ v
```

using val-xor-self-is-false evaltree-not-undef

by $(smt\ (z3)\ bin-eval.simps(6)\ bin-eval-new-int\ constant AsStamp.simps(1)\ eval Det$

```
shows val[n \oplus {}^{\sim}n] \approx new\text{-}int \ 32 \ (-1)
 apply simp using assms using word-or-not apply (cases n; auto)
 by (metis (no-types, opaque-lifting) bit.compl-zero bit.xor-compl-right bit.xor-self
     mask-eq-take-bit-minus-one take-bit-xor)
optimization XorInverse: exp[n \oplus {}^{\sim}n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
 unfolding size.simps apply (simp add: Suc-lessI)
 apply auto using XorInverseVal
  \mathbf{by}\ (smt\ (verit)\ constant AsStamp. simps (1)\ evalDet\ int\text{-}signed\text{-}value\text{-}bounds\ int\text{-}}
val-xor.elims
   mask-eq-take-bit-minus-one new-int. elims new-int-take-bits unfold-const valid-stamp. simps(1)
     valid-value.simps(1) well-formed-equal-defn wf-stamp-def)
optimization XorInverse2: exp[({}^{\sim}n) \oplus n] \longmapsto (const\ (new-int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
 using XorInverse apply simp
  using XorInverse exp-xor-commutative
 by simp
end
end
theory ProofStatus
 imports
   AbsPhase
   AddPhase
   AndPhase
   Conditional Phase
   MulPhase
   NegatePhase
   NewAnd
   NotPhase
   OrPhase
   ShiftPhase
   SignedDivPhase
   SignedRemPhase
   SubPhase
   Tactic Solving
   XorPhase
begin
declare [[show-types=false]]
print-phases
print-phases!
```

${\bf print\text{-}methods}$

print-theorems

 $\begin{array}{l} \textbf{thm} \ \ opt\text{-}add\text{-}left\text{-}negate\text{-}to\text{-}sub\\ \textbf{thm-}\textbf{oracles} \ \ AbsNegate \end{array}$

 $\textbf{export-phases} \ \langle \textit{Full} \rangle$

 \mathbf{end}