

Secteur ESPACE

16 Place Jacques Brel - 91130 RIS ORANGIS

Téléphone: 01-69-02-76-10 / Télécopie: 01-69-43-21-43

E-Mail: espace@anstj.mime.univ-paris8.fr

Web: http://anstj.mime.univ-paris8.fr

Edition Octobre 1999

Le vol de la fusée

Note technique ANSTJ

Le vol de la fusée - Stabilité et performances

Remerciements

L'auteur de ce document tient à remercier pour leur aide précieuse tous ceux qui :

D'une part, ont rédigé les documents ayant servi de base à ce dossier technique.

D'autre part, ont relu les premières versions de ce dossier. Merci à Marc Zirnheld, Arnaud Colmon et Gilles Soubrier pour leur lecture critique et leurs précieuses remarques . . .

L'auteur remercie également l'attraction terrestre et la résistance de l'air.

Le vol de la fusée - Stabilité et performances

SOMMAIRE

INTRODUCTIO	N			8
			SUR LE VOL DE LA FUSEE. LES PHASES DE RCES EN PRESENCE.	10
1.	1. Le	es phases	de vol.	11
1.	1.: 1.:	2.2. La 2.3. La 1.5	présence. e poids. a poussée du moteur. a résistance de l air. 2.3.1. La traînée. 2.3.2. La portance.	11 13 15 15 16 17
1.	3. Ev	volution d	les paramètres de la trajectoire au cours du vol.	18
CHAPITRE 2 - E	VALU	JATION	I DE LA STABILITE DE LA FUSEE	21
2.	.1. Le	e rôle des	différentes forces.	22
2.	2.: 2.: 2.:	2.1. St 2.2. In 2.3. Co	nent en vol et critères de stabilité. rabilité. Instabilité. onditions nécessaires pour assurer la stabilité. eux cas extrêmes : surstabilité et indifférence.	23 23 24 25 26
2.	2.3 2.3 2.3	3.1. Po 3.1. Po 3.2. D	ion de la stabilité d une fusée monoétage. osition du problème. rincipe de la méthode. étermination de la position des centres de poussée. alcul des coefficients de portance.	28 28 29 31 32
2.	2.	4.1. Fu	ées multiétages ou comportant des jupes et des rétreints. usée multiétage. pe et rétreint.	32 32 34
CHAPITRE 3 - E	VALU	JATION	DE TRAJECTOIRE ET DE PERFORMANCES	36
3	1. P1	résentation	n du problème et des différentes méthodes.	37
3.	3.5 3.5	2.1. In 2.2. C	on de la trajectoire par la méthode pas-à-pas . atroduction. as du vol vertical. ol oblique.	38 38 39 43
3.	3.	3.1. P 1	que des performances. rincipe de la méthode. ormules de calcul.	49 49 50

Le vol de la fusée - Stabilité et performances

ANNEXES			52
	Annexe A.	Estimation du coefficient de traînée pour une microfusée.	53
		Estimation du coefficient de traînée pour des minifusées ou de imentales.	es fusées 54
	Annexe C.	Détail du calcul des performances analogiques.	55
	C.1. c 2.	Phase propulsée. Phase balistique.	55 56
GLOSSAIRE	DES TERM	IES TECHNIQUES	58
BIBLIOGRAI	PHIE		63

Le vol de la fusée - Stabilité et performances

LISTE DES FIGURES

Figure 1	les phases de vol.	11
Figure 2	les forces en présence.	12
Figure 3	Décomposition des forces en composante axiale et composante normale.	12
Figure 4	Composantes axiales et normales du poids.	14
Figure 5	Composantes axiales et normales de la résistance de l'air	16
Figure 6	Le maîtrecouple.	17
Figure 7	Evolution de différents paramètres au cours du vol d'une fusée	19
Figure 8	Rotation de la fusée sous l'effet de la portance et de la composante normale du poids.	23
Figure 9	Comportement d'une fusée stable.	24
Figure 10	Comportement d'une fusée instable.	25
Figure 11	Comportement d'une fusée surstable.	26
Figure 12	Evolution de l'attitude d'une fusée surstable durant sa montée.	27
Figure 13	Détermination expérimentale du centre de gravité d'une fusée.	28
Figure 14	Dimensions intervenant dans le calcul de la position du centre de poussée.	30
Figure 15	Configuration typique de fusée bi-étage.	33
Figure 16	Dimensions caractéristiques d'une jupe et d'un retreint.	35
Figure 17	Bilan des forces appliquées durant les phases ascendantes et descendantes.	40
Figure 18	Déroulement du calcul en pas-à-pas pour un vol vertical.	42
Figure 19	Bilan des forces appliquées dans le cas d'un vol oblique.	43
Figure 20	Bilan des forces appliquées dans la rampe de lancement.	46
Figure 21	Déroulement du calcul en pas-à-pas pour un vol oblique.	48

Le vol de la fusée - Stabilité et performances

LISTE DES TABLEAUX

Tableau 1	Calcul de la position du centre latéral de poussée de la pointe d'une fusée.	31
Tableau 2	Calcul de la position du centre latéral de poussée d'un empennage.	31
Tableau 3	Calcul du coefficient de portance d'un empennage.	32
Tableau 4	Calcul des coefficients de portance et des centres de poussée d'une jupe ou d'un retreint.	35
Tableau 5	Formules d'estimation des performances d'une fusée par la méthode analogique.	51
Tableau 6	Estimation du CA pour une microfusée.	53

Le vol de la fusée - Stabilité et performances **INTRODUCTION**

Le vol de la fusée - Stabilité et performances

Ce dossier rassemble les éléments de base concernant le vol de la **fusée**. Rédigé **à** partir de nombreux documents plus spécialisés, son objectif est de présenter les principales méthodes utilisées pour répondre aux deux questions suivantes :

- Comment obtenir une belle trajectoire ?
- Peut-on estimer l'altitude atteinte par une fusée² (et savoir où elle va retomber?)?

Ces deux questions illustrent deux volets complémentaires (stabilité et performances) d'un même problème : la physique du vol de la fusée. La difficulté de compréhension de ces phénomènes est due à plusieurs causes dont les plus importantes sont :

- La réalité est bien plus complexe que les modèles utilisés dans les cours de physique élémentaire (nos fusées sont rarement des solides indéformables en mouvement de translation uniformément accéléré dans le vide). Les phénomènes auxquels nous sommes confrontés sont essentiellement dynamiques (variation de la masse de la fusée due à la combustion de la poudre, variation de la poussée du moteur, . ..)
- Malgré le nombre relativement réduit de forces en présence (poids de la fusée, poussée du moteur et résistance de l air), certains paramètres sont difficiles à prendre en compte dans les équations: En particulier tout ce qui touche à la résistance de l air donne naissance à un certain nombre de coefficients fourre-tout où on essaie d intégrer les éléments inconnus. Que dire de l influence du vent?

Quoiqu il en soit, les pages suivantes fournissent un certain nombre d'éléments permettant une meilleure compréhension.

Les éléments théoriques nécessaires restent très simples et il est toujours possible de se limiter à l'aspect qualitatif. Lorsque certaines équations sont énoncées, en particulier pour l'évaluation des performances en vol, elles correspondent à un niveau de première ou terminale⁴.

Dans sa grande bonté, **l'ANSTJ** met à la disposition des clubs qui le désirent un logiciel de calcul de stabilité et de trajectoire de fusées utilisant les méthodes présentées dans ce document. Cet outil fonctionne sur tout ordinateur compatible PC. Il est notamment utilisé pour effectuer les derniers contrôles durant les campagnes de lancement.

¹ Préoccupation d'odre esthétique.

Préoccupation fondamendale des membres dés clubs aérospatiaux. Mutliples raisons ancestrales : s arracher à la terre, syndrôme d Icare, . . .

Préoccupation plus prosaïque : retrouver sa fusée ou éviter de la prendre sur le coin de la figure !

A l'exception des formules analytiques présentées en annexe C qui nécessitent de bonne base en calcul intégral et quelques cachets d'aspirine.

Le vol de la fusée - Stabilité et performances

R LE VOL DE LA	TES SUR I	RALI	1 - GENE	APITRE	CH
FUSEE.					
EN PRESENCE	FORCES E	LES	DE VOL	PHASES	LES

Les phases de vol. 1.1.

Le vol d'une fusée se décompose en plusieurs phases:

La phase propulsée.

La phase balistique.

La descente sous parachute.

phases Ces s'articulent autour d'évènements majeurs:

La période s'écoulant de l'instant de la mise à feu à la fin de combustion du propulseur s'appelle la phase propulsée.

Elle comprend une partie où la fusée est guidée par la rampe de lancement et une partie où la fusée est livrée à elle-même.

Après l'extinction du propulseur commence la phase balistique pendant laquelle la fusée, uniquement soumise à son poids et à la résistance de l'air exploite la vitesse acquise pendant la propulsion pour atteindre son altitude maximale.

Apres la culmination, lorsque l'engin commence à retomber, la phase balistique se poursuit jusqu'à l'ouverture du parachute.

Bien sûr, on peut rencontrer des phases balistiques avortées lorsque le parachute s'ouvre avant la culmination, ou des vols balistiques complets sans ouverture de parachute⁵.

1.2. Les forces en présence.

Au cours de son vol, la fusée est soumise à trois forces:

mais c'est moins souhaitable!

Le vol de la fusée - Stabilité et performances

EF. Son poids.

E P La poussée du moteur.

EFF La résistance del'air.

L évolution de ces trois forces et leur relative vont régir le comportement de la fusée et déterminer sa trajectoire et ses performances.

L étude des deux problèmes qui nous concernent (stabilité et évaluation des performances) amène à rechercher une manière de décomposer les différentes forces exercées de façon à séparer leurs effets selon les deux **critères** précédents. La méthode la plus naturelle consiste à travailler selon les deux axes suivants:

- 1 L axe de **la** fusée. En fonction de leur sens, les forces exercées dans cette direction vont favoriser ou freîner le déplacement de l'engin et influencer ses performances, en particulier l'altitude de culmination.
- EFF L'axe perpendiculaire à la fusée (ou axe normal). Les forces exercées selon cette direction contribuent à faire tourner la fusée dans un sens ou dans l'autre autour de sa position d'équilibre. C'est la combinaison de ces effets antagonistes qui détermine la stabilité de la fusée.

Si on veut être vraiment complet, on définit le mouvement de la fusée dans deux repères différents :

> L ATTITUDE correspond au mouvement de rotation de la fusée par rapport à son centre de gravité. Il se décompose en ROULIS, TANGÂGE et LACET.

> La TRAJECTOIRE représente le mouvement du centre de gravité de la fusée par rapport à un REPERE INERTIEL défini par les trois axes X,Y et Z.

La décomposition en deux composantes orthogonales est possible ici à cause de la symétrie de révolution de la fusée. Ce n est pas toujours le cas⁷.

figure 3 : décomposition des forces en composante axiale et composante normale.

Il s agit donc ici d un repère lié à la fusée.

Par exemple, une navette spatiale montée sur une fusée.

Le vol de la fusée - Stabilité et performances

Dans les pages suivantes, la notation ci-dessous sera employée pour décomposer une force F.

$$\vec{F} = \vec{F_A} + \vec{F_N}$$

avec

 $\overline{F_A}$: composante axiale de la force F. $\overline{F_N}$: composante normale.

Les paragraphes suivants présentent un rappel des principales caractéristiques des différentes forces.

1.2.1. Le poids.

Causé par l'attraction terrestre⁸, il s exerce au centre de gravité de la fusée et est dirigé verticalement du haut vers le bas.

Le poids est lié à la masse de la fusée par la formule suivante :

$$\overrightarrow{P} = M\overrightarrow{g}$$

avec

P poids de la fusée M masse de la fusée gacélération de la pesanteur.

Toutes les grandeurs doivent être exprimées en unités du **système** internationnal, les forces (comme le poids) en **Newtons (N)**, les masses en kilogrammes (kg), et les accélérations en **mètres** par seconde par **seconde** 9 (m/s 2).

Au sol, l'accélération de la pesanteur g vaut **9,81 m/s²**, c est-à-dire qu une fusée ayant une masse de 1 kg subit du fait de la pesanteur une force de **9,81 Newtons**.

Une remarque importante doit être notée. la masse de la fusée et l accélération de la pesanteur évoluent au cours du vol :

la masse de la fusée décroît pendant la phase propulsée en raison de la combustion de la poudre. Si le débit massique est constant, la formule donnant la masse de la fusée en fonction du **temps** est la suivante :

$$\mathbf{M}_{\mathsf{t}} = \mathbf{M}_{\mathsf{0}} - \mathbf{D}_{\mathsf{M}} \cdot \mathbf{t}$$

avec M_t

masse de la fusée à l'instant t masse initiale de la fusée.

 $\mathbf{M_0}$ $\mathbf{D_M}$

débit massique (en kg/s).

t temps écoulé depuis la mise à feu.

Le principe de l'attraction universelle énoncé par Newton affirme qu'un masse m exerce sur une masse m située à une distance r (distance entre les centres de gravité) une force attractive égale à f = -Gmm'/r² avec G = 6,67.10⁻¹¹ unités du système international.

Pour faire plus physicien , vous pouvez dire : mètres par seconde au carré.

Le vol de la fusée - Stabilité et performances

L accélération de la pesanteur décroît lorsque l altitude augmente. En effet, l attraction terrestre décroît avec le carré de la distance séparant la fusée du centre de la terre.

Onadonc:

$$M.g_0 = \frac{GmM_t}{R^2}$$

et:

$$M.g_h = \frac{GmMt}{(R+h)^2}$$

Doù:

$$\frac{g_0}{g_h} = \frac{(R+h)^2}{R^2} = (1+\frac{h}{R})^2$$

avec R Rayon de la terre (environ 6.400.000 m¹⁰).

h Altitude de la fusée par rapport au sol.

En faisant l'hypothèse que h reste faible par rapport à R, on obtient donc la relation suivante¹¹:

$$g_h \cong g_0.(1-2h/R)$$

Notons cependant que dans le domaine d altitude qui nous concerne, de 0 à 3000 mètres, cette variation reste extrêmement faible. En effet, en ramenant toutes les unités en kilomètres :

$$g_{3000} \cong g_0.(1-6/6000)$$

Cette variation de l ordre de 0,1 % peut être négligée.

Le poids agit selon la direction verticale qui n est pas forcément celle de la fusée, et, dans le cas général, on obtient la décomposition:

$$P = P_A + P_N$$

Si la fusée fait un angle α avec la verticale, on a:

$$P_A = mg.cos \Omega$$

$$P_N = mg.sin\alpha$$

Approximativement . . . On ne va pas s amuser à organiser une campagne en haut de l'Everest.

On peut écrire $(1+x)^n \cong 1+n.x$ lorsque x est très petit devant 1.

Le vol de la fusée - Stabilité et performances

1.2.2. La poussée du moteur.

C est la combustion du pain de poudre du propulseur qui, selon le principe d action et de **réaction**¹², entraı̂ne l existence de la force de poussée. La poussée P s applique suivant l axe longitudinal de la fusée si le propulseur est correctement positionné et dans le sens tuyère vers ogive.

La poussée ne possède donc qu une composante axiale :

$$P = P_A \text{ et } P_N = 0$$

Comme le poids, elle s applique au centre de gravité. Bien évidemment, la force de poussée disparaît au moment de l'extinction du propulseur (début de la phase balistique).

La loi d'évolution de la poussée en fonction du temps est **très** variable. Selon les objectifs recherchés, les propulseurs ont des courbes de poussée différentes, depuis le pic marqué pour les boosters jusqu au palier des propulseurs de croisière. Le dossier technique sur la propulsion des fusées donne la signification des paramètres permettant de caractériser un propulseur à poudre.

1.2.3. La résistance de l air.

C est certainement l'élément le plus difficile **à** quantifier étant donnée la complexité des phénomenes **à** modéliser. La résistance de l air provient de l action combinée :

- **De l'air fixe par rapport à la fusée en déplacement :** il constitue ce qu on appelle le **VENT PROPRE.** La vitesse de ce vent est égale à la vitesse de déplacement de la fusée dans l axe de sa trajectoire.
- de l'air en mouvement pour des raisons météorologiques, il s agit du VENT VRAI.

Ces deux vents se combinent pour créer un seul déplacement d air apparent : le VENT RELATIF ou APPARENT.

La résistance de l air s oppose à l avancement de la fusée et est donc opposée à la direction du déplacement. Elle s applique en un point appelé CENTRE DE POUSSEE AERODYNAMIQUE et dont la position dépend des caractéristiques géométriques de la fusée. (taille, forme et position des ailerons, . . .). Le chapitre 2 fournit des formules permettant de déterminer la position du centre de poussée aérodynamique en fonction de ces caractéristiques géométriques. La résistance de l air s exerce donc dans la direction du vent relatif. Lorsque la direction de la fusée n est pas exactement celle de la vitesse (on dit que la fusée prend de l'INCIDENCE) ou lorsque l action du vent vrai est sensible, la résistance de l air comprend deux composantes:

$$\vec{R} = \vec{R_A} + \vec{R_N}$$

¹² Voir le livret technique Propulsion des Fusées".

Le vol de la fusée - Stabilité et performances

- R_A, composante de laxe longitudinal qui influe sur les performances de la fusée est appelée TRAINEE.
- RN composante normale à l axe long qui intervient dans la stabilité de la fusée est appelée PORTANCE.

figure 5 : Composantes axiales et normales de la résistance de l'air

1.2.3.1. La traînée.

La traînée, R_A dépend de trois facteurs :

- ① La **vitesse de la fusée. On** conçoit aisément que plus la vitesse sera élevée, plus **la** résistance de l air sera importante. Les études et les expérimentations ont montré que la résistance de l air variait avec le carré de la vitesse.
- **Le milieu dans lequel se déplace l'engin,** c est-à-dire 1 air. Ses caractéristiques modifient l intensité de la résistance de l air. En fait, plus la densité du milieu est grande, plus la résistance qu il oppose au déplacement est élevée. Le **paramètre** à prendre en compte est donc la masse volumique.

Celle-ci varie avec l'altitude de l'engin. Elle peut être trouvée dans les tables de l'atmosphère standard*? Dans le domaine des basses altitudes (inférieures à 11000 mètres), on peut se contenter de la formule simplifiée suivante :

$$\rho_h = \rho_0 \cdot \frac{20000 - h}{20000 + h}$$

 $\begin{array}{ccc} avec & h & altitude \ (en \ m\`{e}tres) \\ \rho_h & masse \ volumique \ \grave{a} \ l'altitude \ h \\ PO & " & au \ sol \\ \rho_0 = 1,2250 \ kg/m^3 \end{array}$

Notons que pour une altitude de 1000 mètres, la variation de masse volumique de l air atteint :

$$\frac{\rho_h}{\rho_0} = \frac{19000}{21000} = \frac{19}{21} \approx 0.1 \text{ soit } 10\%$$

Cette variation est donc assez sensible et doit être prise en compte dans les calculs.

¹³ Voir la bibliographie et la liste des documents de référence.

Le vol de la fusée - Stabilité et performances

3 Les caractéristiques géométriques de la fusée. Tout d'abord, la surface de la fusée vue par l'air en mouvement. Ce paramètre s appelle le MAITRE-COUPLE. Il est égal à l aire de la projection de la fusée sur un plan perpendiculaire à longitudinal de la fusée. Plus le maître-couple est grand, plus la traînée est élevée. Lorsque la fusée se met en incidence, cela se complique un peu. On en rediscutera plus loin.

Par ailleurs, les profils de la pointe, des ailerons ainsi que la présence de tout élément extérieur à la fusée (guide de de vis, tête connecteur d initialisation) et l état de surface de la fusée influent sur la résistance de l air.

Figure 6: Le maître--couple.

Pour tenir compte de ces derniers éléments, un coefficient sans dimension, appelé COEFFICIENT DE TRAINEE AERODYNAMIQUE (noté C_A) est introduit. C est un des fameux coefficients fourre-tout dont il est question dans l'introduction de ce dossier. La relation donnant l'expression de la traînée en fonction de ces facteurs est donc¹⁴:

$$R_A = \frac{1}{2}\rho.SC_A .V^2$$

est la masse volumique de l air (en kg/m³)

est le maître-couple (en m²).

est le coefficient de traînée (sans dimension).

1.2.3.2. La portance.

Les paramètres influant sur la composante normale de la résistance de l air sont les mêmes que pour la traînée. Il faut maintenant prendre en compte le maître-couple comme la projection sur un plan parallèle à l axe longitudinal de la fusée et le coefficient de correction devient le COEFFICIENT DE PORTANCE C_N . On obtient alors la relation suivante :

$$R_N = \frac{1}{2}\rho.SC_N.V^2$$

est la masse volumique de l air (en kg/m³)

est le maître-couple (en m²).

est le coefficient de **portance** (sans dimension).

¹⁴ Je me suis toujours demandé d où venait le coefficient ½ dans la formule donnant la traînée en fonction de la vitesse. Faute de miueux, je crois que cela provient de l'intégration d'une expression du style V.dV. Si quelqu'un connaît une meilleure explication . . .

Le vol de la fusée - Stabilité et performances

13. Evolution des paramètres de la trajectoire au cours du vol.

Les courbes ci-dessous (figure 7) décrivent l'évolution des principaux paramètres de la trajectoire durant les différentes phases de vol. Il s agit de :

- La poussée du moteur.
- re le poids de la fusée.
- 📭 la traînée.
- 📭 l accélération de la fusée.
- la vitesse¹⁵.
- □ l altitude.

6 dates principales figurent sur les graphiques : la date de mise à feu (t_0) , la fin de propulsion (t_1) , la date de culmination (t_2) , l'instant d'ouverture du parachute (t_3) , acquisition de la vitesse limite $^{16}(t_4)$ et la date d impact au sol (t_5) . Les résultats donnés correspondent à un moteur idéal qui développe une poussée constante pendant toute la phase de combustion.

¹⁵ Il s agit de la vitesse verticale.

Pour un vol vertical, la vitesse limite est atteinte en descente en phase balistique lorsque le poids de la fusée est égal à la résistance de l air. L accélération résultante est nulle et la vitesse reste donc constante. En réalité, la descente se fait rarement à la verticale et la notion de vitesse limite ne concerne que la composante verticale de la vitesse. La vitesse horizontale peut rester très élevée (supérieure à 150 km/h).

Le vol de la fusée - Stabilité et performances

Le vol de la fusée - Stabilité et performances

Attention, les échelles de temps sont très différentes selon les phases ; la phase propulsée dure de 0,5 à 3 secondes. La culmination est atteinte en 5 à 20 secondes. Apres la phase de descente sans parachute, l'acquisition de la VITESSE LIMITE sous parachute est quasi-instantanée (de l'ordre de quelques dixièmes de seconde) et la descente sous parachute peut durer plusieurs minutes.

L'allure des courbes traduit l'influence des différentes forces : durant la phase propulsée, l'accélération reste pratiquement constante jusqu'à ce que la vitesse rende la résistance de l'air plus influente, l'accélération décroît alors. La vitesse augmente alors plus lentement jusqu'à atteindre une vitesse maximale à la fin de propulsion. La trainée suit une courbe directement liée au carré de la vitesse. La phase propulsée est également marquée par une diminution du poids due à la combustion du moteur.

La phase balistique commence par une forte décélération au moment de la fin de combustion. La fusée n'est plus alors soumise qu'à son poids et à la résistance de l'air qui freînent sa progression. La vitesse décroît et la courbe d'altitude commence à s'infléchir. La culmination intervient lorsque la vitesse verticale devient nulle. L'altitude est alors maximale. A l'ouverture du parachute, la première partie de la descente se traduit par une augmentation de la vitesse sous l'effet de l'attraction terrestre. Cette vitesse crée une trainée¹⁷ qui va progressivement équilibrer le poids. La fusée est alors soumise à deux forces égales et opposées. l'accélération est nulle et la vitesse constante. C'est la VITESSE LIMITE. L'altitude décroit alors linéairement en fonction du temps.

Si le parachute ne s'ouvre pas, la fusée descend sous l'effet de son poids et la traînée n'est pas suffisante pour atteindre une vitesse limite. La vitesse **augmente**¹⁸...

Grâce à la surface du parachute (entraînant une forte augmentation du maître-couple), la traînée est suffisamment importante pour équilibrer le poids de la fusée, même si la vitesse est faible. Conclusion pratique : ça freine!

On a récemment constaté que de façon proportionnelle le stress des spectacteurs augmentait également.

Le vol de la fusée - Stabilité et performances

CHAPITRE 2 -	EVALUATION	DE	LA	STA	BILI	(TE
			Dl	E LA	FUS	SEF

Le vol de la fusée - Stabilité et performances

2.1. Le rôle des différentes forces.

Pour être STABLE, la fusée doit conserver la même attitude durant son vol en maintenant son axe longitudinal aligné le mieux possible avec la direction du vent relatif.

Lorsque cet alignement est rompu, la fusée est dite en INCIDENCE. L'angle que suit alors la fusée avec le vent relatif est I ANGLE D INCIDENCE.

En dautres termes,

Une fusée est stable si elle retrouve naturellement sa position initiale lorsque, pour une raison quelconque, elle se met en incidence.

Le chapitre 1 à montré que les forces qui contribuaient à la stabilité étaient celles qui s'exercaient perpendiculairement à laxe de la fusée, c est-à-dire la composante P_N du poids et la portance R_N .

La **portance** étant proportionnelle au carré de la vitesse, des que la fusée $\mathbf{\hat{a}}$ acquis un peu de vitesse, la **portance** P_N devient propondérante par rapport au poids.

Le poids s'applique au CENTRE DE GRAVITE. La **portance** s'applique au CENTRE DE POUSSEE, et est très supérieure à la composante normale du **poids**¹⁹, la fusée tourne autour d'un centre de rotation proche du centre de gravité. Elle tourne autour de ce centre de rotation dans le sens de la **portance**. Ce phénomène est représenté sur la figure 8.

¹⁹ Cela est vrai dès que la vitesse est suffisamment importante puisque la portance augmente avec le carré de la vitesse.

Le vol de la fusée - Stabilité et performances

Figure 8: Rotation de la **fusée** sous l'effet de la **portance** et de la composante normale du poids.

Pour simplifier, on peut négliger la composante normale du poids et donc supposer que la fusée tourne autour du centre de gravité sous la seule action de la **portance**. Cette approximation cesse d'être valable lorsque la traînée est plus faible, c'est-à-dire aux faibles vitesses. C'est le cas au moment du décollage (la fusée est alors guidée par la rampe de lancement) et au voisinage de la culmination. Dans ce dernier cas, il est très difficile de prédire le comportement de la fusée.

Les hypothèses précédentes vont nous permettre d'étudier les différents cas de figure :

la STABILITE.

I INSTABILITE.

la SURSTABILITE.

2.2. Comportement en vol et critères de stabilité.

2.2.1. Stabilité.

Lorsque la fusée se met en incidence, si le centre de poussée est placé en arrière du centre de gravité par rapport à la pointe, la force de **portance** entraîne la fusée qui revient vers sa

Le vol de la fusée - Stabilité et performances

position initiale. Une fois la fusée dans cette position, la force de **portance** s'annule. Ce comportement est représenté sur la figure 9 et caractérise une fusée stable.

En fait, l'effet de rappel de la **portance** a tendance à entraîner la fusée en incidence de l'autre côté du vent relatif et c'est seulement **après** plusieurs oscillations de plus en plus faibles, amorties, que la fusée retrouve sa position initiale.

Dans les mêmes conditions qu'au paragraphe précédent, lorsque le centre de poussée se trouve en avant du centre de **gravité** par rapport à la pointe, la force de **portance** va entraîner la fusée qui va se retourner par rapport au vent relatif, la pointe en arrière.

Or, le moteur propulse la fusée et le vent relatif est la résultante du vent propre de la fusée (engendré par son déplacement) et du vent vrai. La fusée se retournant, l'axe de propulsion fera de même et le vent propre également. Le vent relatif aura donc tendance à suivre l'axe longitudinal de la fusée (voir la figure 10).

Comme la position qui convient alors à la fusée est le sens de la pointe opposé à celui du vent relatif, la fusée se comporte comme un serpent qui tente, en vain, de se mordre la queue. Elle effectue donc des "loopings" avant de retomber au sol. Il s'agit d'une situation d'INSTABILITE.

Le vol de la fusée - Stabilité et performances

2.2.3. Conditions nécessaires pour assurer la stabilité.

Il est possible, de manière expérimentale, de définir des conditions moyennes de stabilité pour une microfusée ou une minifusée :

- La MARGE STATIQUE, distance du centre de gravité au centre de poussée, doit être comprise entre 1 et 3 CALIBRES (diamètre du corps de la fusée). Cette condition permet d'obtenir une trajectoire sans à coups et insensible au vent vrai.
- Le COEFFICIENT DE PORTANCE total C_N doit être suffisant pour permettre une rétablissement rapide dans la ligne de vol. Une valeur de C_N supérieure à 9 donne généralement de bons résultats.

Pour les fusées expérimentales, le cahier des charges impose aux clubs fixe des limites un peu différentes :

- Coefficient de **portance** compris entre 15 et 30.
- Marge statique comprise entre 1,5 et 7.
- FINESSE comprise entre 15 et 30.

Ces valeurs ne sont nullement limitatives car les fusées peuvent très bien voler en dehors de ces limites. Elles donnent simplement un ordre de grandeur de ce qui est couramment utilise pour obtenir de bons résultats.

Le vol de la fusée - Stabilité et performances

2.2.4. Deux cas extrêmes : surstabilité et indifférence.

Deux facteurs principaux interviennent dans la stabilité:

- La valeur de la **portance** qui est en relation directe avec la surface et la forme des ailerons.
- Les positions relatives du centre de gravité et du centre de poussée.

Ces deux facteurs doivent être inclus dans les fourchettes définies au paragraphe précédent.

Si la **portance** ou la marge statique sont très fortes, la force de rappel aura une grande influence, enverra la fusée de l'autre côté du vent relatif et la fusée oscillera continuellement sans jamais trouver de position d'équilibre (voir figure 11). Cette attitude est nommée SURSTABILITE. Cette situation peut devenir critique, notamment si la résistance des matériaux n'est pas suffisante pour supporter ces contraintes : fixation des ailerons, pièces de liaison inter-étages, . . .

Le vol de la fusée - Stabilité et performances

Un autre inconvénient de cette surstabilité est l'effet du vent météo²⁰. Ainsi, lorsque la fusée est stable, elle aligne son axe longitudinal avec le vent relatif donc en partie avec le vent vrai. Cela signifie que la fusée a tendance à remonter le vent. Le problème est que cette situation n'est pas statique : le vent propre cherche à s'aligner sur le vent relatif, qui lui-même se rapproche du vent vrai et la fusée se couche lentement dans le vent vrai.

Dans le cas d'une fusée surstable, la fusée se couchera presque immédiatement dans le vent vrai et partira donc quasiment horizontalement, ce qui n'est pas le but recherché . . .

L autre cas extrême est le cas où le centre de gravité et le centre de poussée sont confondus. Les deux forces P_N et R_N sont alignées et la fusée n'est donc pas soumise à une couple de rotation: elle va errer dans une position quelconque.

En fait, au cours du vol, centres de poussée et de gravité ne sont pas fixes²¹ et l'indifférence constitue donc une phase transitoire alternative entre stabilité et instabilité, difficilement évaluable avant le vol.

21

²⁰ On dit aussi "vent vrai".

En particulier, la combustion de la poudre entraîne une déplacement vers le haut du centre de gravité.

23. Détermination de la stabilité d'une fusée monoétage.

2.3.1. Position du problème.

Le chapitre précédent a mis en évidence les critères de stabilité d'une fusée. La détermination expérimentale de la proposition du centre de gravité d'une fusée est relativement simple : c'est le point où la fusée reste en équilibre lorsqu'elle n'est soumise qu'a la seule force de pesanteur (voir figure 13).

On peut également noter que la définition du centre de gravité d'un objet donne immédiatement une méthode pour déterminer sa position sur des objets complexes. Le centre de gravité étant le point d'application de la résultante des actions de la pesanteur sur toutes lesparties d'un corps, sa position, pour un objet complexe composé de plusieurs éléments peut être obtenue par recombinaison des centres de gravité de chaque élément.

Par contre, l'évolution du coefficient de **portance** de l'engin ainsi que la position du centre de poussée sont moins évidentes.

Pour des microfusées simples, le facteur essentiel pour la position du centre de poussée est la position des ailerons qui subissent une forte action de l'air. Pour s'en convaincre il suffit de regarder la fusée et de comparer les surfaces relatives.

Pour affiner ces estimations et utiliser les **critères** de stabilité pour des fusées plus complexes, on peut utiliser la **méthode** présentée dans le paragraphe suivant. Cette méthode prend en compte les différents éléments constitutifs de la fusée (corps, pointe et ailerons).

Le paragraphe **2.4.** généralise la méthode au cas de fusées multiétages ou présentant des jupes et des retreints.

2.3.1. Principe de la méthode.

Elle consiste à déterminer l'influence de l'empennage et de l'ogive. Le corps de la fusée, supposé cylindrique et symétrique, n'exerce pas d'influence en ce qui concerne la stabilité.

Pour l'ogive et l'empennage, on détermine les deux grandeurs suivantes :

- La position du centre latéral de poussée (CLP) qui correspond à l'endroit ou s'applique la résultante des contributions de la portance sur l'empennage ou l'ogive.
- Le coefficient de portance qui mesure l'influence de la portance sur chaque élément de surface.

Le coefficent de portance total C_N est égal à la somme des coefficients de portance.

La position²² du centre latéral de poussée de l'engin est obtenue en calculant la moyenne des positions des centre latéraux de pousée (CLP) pondérée par les coefficients de portance comme l'indique la formule suivante²³:

$$X_{\text{CLP}} = \frac{X_{\text{CLP}}(\text{emp}).C_{\text{N}}(\text{emp}) + X_{\text{CLP}}(\text{og}).C_{\text{N}}(\text{og})}{C_{\text{N}}(\text{emp}) + C_{\text{N}}(\text{og})}$$

$$\text{avec} \quad X_{\text{CLP}}(\text{emp}) \quad \text{position du CLP de l'empennage.}$$

$$X_{\text{CLP}}(\text{og}) \quad \text{position du CLP de l'ogive.}$$

$$C_{\text{N}}(\text{emp}) \quad \text{coefficient de portance de l'empennage.}$$

$$C_{\text{N}}(\text{og}) \quad \text{coefficient de portance de l'ogive.}$$

Les formules suivantes utilisent un certain nombre de dimensions caractéristiques de la fusée définies sur la figure 14. La détermination des positions des centres de poussée ($X_{\text{CLP}}(\text{emp})$ et $X_{\text{CLP}}(\text{og})$) et des coefficients de portance ($X_{\text{CN}}(\text{emp})$) et $X_{\text{CN}}(\text{og})$) se fait à partir des formules données dans les pages suivantes. L'unité utilisée pour les mesures de distances n'a pas d'importance mais toutes les dimensions doivent être exprimées dans la même unité.

²² Les positions sont mesurées par rapport au sommet de la fusée.

On peut noter l'analogie de la méthode avec celle consistant à déterminer la position du centre de gravité d'un objet constitué de deux masses M₁ et M₂ situées à une distance D.

Figure 14 : Dimensions intervenant dans le calcul de la position du centre de poussée.

2.3.2. Détermination de la position des centres de poussée.

Ogive

Forme	Position du centre latéral de poussée		
Conique	$\mathbf{x_{CP}(og)} = \frac{2}{3} \cdot \mathbf{\ell}$		
Ogivale	$\mathbf{x_{CP}(og)} = \frac{7}{15} \cdot \boldsymbol{\ell}$		
Parabolique	$\mathbf{x_{CP}(og)} = \frac{1}{2} \cdot \boldsymbol{\ell}$		

Tableau 1: Calcul de la position du centre latéral de poussée de la pointe d'une fusée.

Empennage

$$\mathbf{X_{CP}(emp) = L + \frac{p(m+2n)}{3(m+n)} + \frac{1}{6}.(m+n - \frac{mn}{m+n})}$$

Tableau 2 : Calcul de la position du centre latéral de poussée d'un empennage.

Le vol de la fusée - Stabilité et performances

2.3.3. Calcul des coefficients de portance.

Ogive

Quelle que soit sa forme : $C_N(og) = 2$.

Empennage

Pour 3 ou 4 ailerons, Q étant le nombre d ailerons, on a :

$$C_N(emp) = 4Q(\frac{e}{D})^2 (1 + \frac{D}{2e + D})(\frac{1}{1 + \sqrt{1 + (2f/(m+n))^2}})$$

Tableau 3 : Calcul du coefficient de portance d'un empennage.

2.4. Cas des fusées multiétages ou comportant des jupes et des rétreints.

Dans les deux cas, il s'agit d'une généralisation des formules précédentes qui tient compte des nouveaux constituants de la fusée (empennage supplémentaire, jupe ou **retreint)**.

2.4.1. Fusée multiétage.

Lorque la fusée comporte deux étages, il est nécessaire de garantir la stabilité dans les trois configurations de vol suivantes:

- Vol en configuration bi-étage.
- Vol en configuration second étage seul.
- Vol en configuration premier étage seul²⁴.

En effet, le premier étage poursuit sa trajectoire après la séparation. La stabilité de celui-ci est donc indispensable.

Le vol de la fusée - Stabilité et performances

La figure 15 présente un exemple de configuration de fusée à deux étages.

Pour la configuration bi-étage, la démarche est la suivante :

- Calcul des coefficients de **portance** de tous les éléments de la fusée $C_N(og)$, $C_N(emp1)$ et $C_N(emp2)$ en utilisant les formules citées plus haut.
- Calcul de la position des centres latéraux de poussée de tous les éléments de la fusée $X_{CLP}(og)$, $X_{CLP}(emp1)$ et $X_{CLP}(emp2)$.
- La position du centre latéral de pousée résultant est donnée par la formules suivante :

$$x_{CLP}(1+2) = \frac{x_{CLP}(emp1).C_{N}(emp1) + x_{CLP}(emp2).C_{N}(emp2) + x_{CLP}(og).C_{N}(og)}{C_{N}(emp1) + C_{N}(emp2) + C_{N}(og)}$$

Le vol de la fusée - Stabilité et performances

Après séparation des deux étages, le second étage poursuit sa route seul et le calcul est le même que pour une fusée monoétage. On obtient :

$$X_{CLP}(2) = \frac{X_{CLP}(emp2).C_N(emp2) + X_{CLP}(og).C_N(og)}{C_N(emp2) + C_N(og)}$$
 et
$$X_{CLP}(1) = \frac{X_{CLP}(emp1).C_N(emp1)}{C_N(emp1)}$$

Pour déterminer les marges statiques, la mesure de la position du centre de gravité doit également être effectuée dans les trois configurations ($X_{CG}(1+2)$, $X_{CG}(1)$ et $X_{CG}(2)$).

2.4.2. Jupe et rétreint.

Lorque la fusée présente une augmentation ou une diminution du diamètre par jupe et retreint, il faut prendre en compte ces nouvelles parties de la fusée.

La généralisation de la formule donnant la position du centre latéral de poussée s écrit :

$$\mathbf{X}_{\text{CLP}} = \begin{array}{c} \frac{\mathbf{X}_{\text{CLP}}(\text{emp}).\mathbf{C}_{\text{N}}(\text{emp}) + \mathbf{X}_{\text{CLP}}(\text{og}).\mathbf{C}_{\text{N}}(\text{og}) + \mathbf{X}_{\text{CLP}}(\text{ret}).\mathbf{C}_{\text{N}}(\text{ret}) + \mathbf{X}_{\text{CLP}}(\text{jup}).\mathbf{C}_{\text{N}}(\text{jup})}{\mathbf{C}_{\text{N}}(\text{emp}) + \mathbf{C}_{\text{N}}(\text{og}) + \mathbf{C}_{\text{N}}(\text{ret}) + \mathbf{C}_{\text{N}}(\text{jup})} \end{array}$$

avec	$X_{CLP}(emp)$	position du CLP de l'empennage.
	$X_{CLP}(og)$	position du CLP de l'ogive.
	$X_{CLP}(ret)$	position du CLP du retreint.
	X _{CLP} (jup)	position du CLP de la jupe.
	C _N (emp)	coefficient de portance de l'empennage.
	C _N (og)	coefficient de portance de l'ogive.
	C _N (ret)	coefficient de portance du retreint,
	C _N (jup)	coefficient de portance de la jupe.

Pour le calcul des positions des centres de poussée et des coefficients de **portance** de la jupe et du rétreint, on prend comme référence le diamètre de l ogive (voir figure 16).

Le vol de la fusée - Stabilité et performances

Les formules permettant de calculer les coefficients de **portance** $C_N(jupe)$ et $C_N(ret)$ et les positions des centres latéraux de poussée $X_{CLP}(jupe)$ et $X_{CLP}(ret)$ des jupes et des rétreints sont les suivantes :

	Coefficient de portance	Position du centre latéral de poussée		
Јф е	C _N (jupe) = 2[(D ₂ /D) ² -(D ₁ /D) ²]	X _{CLP} (jupe) = L _{J+} (1+[1-D ₁ /D ₂]/[1-(D ₁ /D ₂) ²])l _J /3		
Retreint	$C_{N}(\text{ret})$ = 2[(D ₃ /D) ² -(D ₂ /D) ²]	$X_{\text{CLP}}(\text{ret})$ = LR+ $(1+[1-D_2/D_3]/[1-(D_2/D_3)^2])l_R/3$		

Tableau 4 : Calcul des coefficients de portance et des centres de poussée d'une jupe ou d'un retreint.

Le vol de la fusée - Stabilité et performances

CHAPITRE 3 - EVALUAT	ION DE LA	TRAJECTOIRE
	ET DES P	ERFORMANCES

3.1. Présentation du problème et des différentes méthodes.

Les **critères** de stabilité aérodynamique présentés au chapitre précédent reposent sur l'étude de l influence des composantes normales des différentes forces. Les calculs de trajectoire **et** de prévision des performances quant à eux prennent en compte les composantes axiales de ces mêmes forces.

Le point de départ de toutes les méthodes utilisées est le même. Il s agit du principe fondamental de la dynamique qui affirme qu un corps de masse M soumis à une force F subit une accélération γ telle que :

$$\overrightarrow{F} = M\overrightarrow{\gamma}$$

Lorsque plusieurs forces s exercent, c est leur résultante qu il faut prendre en compte.

Dans le cas de notre fusée, on obtient donc :

$$\overrightarrow{M\gamma} = \overrightarrow{P} + \overrightarrow{Mg} + \overrightarrow{R}$$

avec P: poussée du moteur poids de la fusée résistance de l'air.

Le but du jeu consiste à essayer de déterminer à tout moment la valeur de l'accélération γ . La connaissance de γ permet de calculer la vitesse \mathbf{v} de l'engin puis son altitude \mathbf{z} .

En effet, l'accélération est, par définition, la variation de vitesse par unité de temps. Par exemple, un objet à l'arrêt soumis à une accélération de 1 m/s^2 aura une vitesse de 1 m/s après un temps de une seconde, de 2 m/s après un temps de 2 secondes, . . .

De même, la vitesse v permet de calculer l'altitude z puisqu elle correspond à la variation d'altitude par unité de temps.

Pour les matheux, cela s écrit:

$$v = \int_{t_0}^{t} \gamma dt$$

$$z = \int_{t_0}^{t} v dt$$

Le vol de la fusée • Stabilité et performances

Si on a une accélération constante²⁵, les formules précédentes deviennent plus simples :

$$v = \gamma t + v_0$$

$$z = \frac{1}{2}\gamma t^2 + v_0 \quad t + z_0$$

 v_0 et z_0 sont respectivement la vitesse et l'altitude initiale%

La connaissance de v et de **z** permet de déterminer les différents moments clés de la trajectoire. Par exemple, la date de culmination permettant le réglage des minuteries et des temporisateurs déclenchant l'ouverture du parachute correspond au moment où la vitesse verticale²⁷ s annule.

L impact au sol en vol balistique correspond à une altitude nulle obtenue pour une date postérieure à la mise à feu.

Pour des raisons de simplicité de l'exposé, les deux méthodes présentées dans les paragraphes suivants considèrent un vol sans incidence, c'est-à-dire que la **portance** est nulle. La résistance de l'air est donc limitée à sa composante longitudinale, la traînée. C'est une hypothèse tout à fait justifiée lorsque la fusée est stable et le vent vrai négligeable.

3.2. Détermination de la trajectoire par la méthode **pas-à-pas*.

3.2.1. Introduction.

On a vu précédemment que les équations de la trajectoire étaient :

$$F = M\gamma$$

$$v = \int_{t_0}^{t} \gamma dt$$

$$z = \int_{t_0}^{t} v dt$$

²⁵ Dans ce cas, le mouvement est dit uniformément accéléré .

Sauf pour l'étude de la trajectoire d'une fusée bi-étage, z₀ correspond généralement à l'altitude de la rampe de lancement et la vitesse initiale v₀ est nulle.

Il est important de noter que le changement de signe ne concerne que la composante verticale de la vitesse.

Le vol de la fusée - Stabilité et performances

Le principe de la méthode de calcul pas à pas consiste à considérer la mouvement durant des instants suffisamment petits pour que les différents paramètres puissent être considérés comme constants et égaux à leur valeur acquise au début de l'intervalle de temps appelé PAS DU CALCUL. On effectue ainsi successivement les calculs $\bf{\hat{a}}$ partir de la date origine \bf{t}_0 jusqu'à la fin du mouvement considéré :

 $\Delta t_1,...,\Delta t_n$ peuvent être pris différents : ils peuvent varier en cours de calcul suivant l'évolution des grandeurs. En particulier, lorsque les paramètres varient lentement, on peut augmenter l'intervalle de temps. Par convention, la valeur du paramètre K à l'instant ti sera notée K_i .

La principale conséquence de cette modélisation est la simplification des équations du mouvement.

En particulier, l'accélération étant constante sur un intervalle de temps, on peut écrire :

$$F = M\gamma$$

$$v = \gamma t + v_0$$

$$z = \frac{1}{2}\gamma t^2 + v_0 \quad t + z_0$$

Les chapitres 3.2.2. et 3.2.3. sont des applications de cette méthode aux cas du vol vertical et du vol oblique.

3.2.2. Cas du vol vertical.

Le problème se limite à une seule dimension. Si on appelle z l'axe des altitudes orienté du bas vers le haut, l'équation du mouvement permet d'écrire :

$$\overrightarrow{M\gamma} = \overrightarrow{P} + \overrightarrow{Mg} + \overrightarrow{R}$$

La figure 17 montre les forces appliquées durant les trois phases. En tenant compte de l'orientation des forces, on obtient pour la phase ascendante (le poids et la résistance de l'air s'opposent au mouvement d'ascension):

$$M\gamma = P - Mg - R$$

et pour la phase descendante (la résistance de l'air s'oppose à la chute de l'engin) :

$$M\gamma = -Mg + R$$

Le vol de la fusée - Stabilité et performances

Figure 17: Bilan des forces appliquées durant les phases ascendantes et descendantes.

La transition entre les deux phases correspondant à l'instant où la poussée s'annule.

En tenant compte de la loi d'évolution des différents paramètres, on a à l'instant $\mathbf{t_i}$ (tant que $\mathbf{t_i}$ reste inférieur à la durée de combustion du propulseur):

$$\begin{aligned} M_{i} &= M_{0} - dm.t_{i} \\ Y_{i} &= \frac{P_{i} - R_{i-1}}{M_{i}} - g \\ V_{i} &= V_{i-1} + \gamma_{i}.\Delta t_{i} \\ Z_{i} &= Z_{i-1} + V_{i-1}\Delta t_{i} + \frac{1}{2}\gamma_{i}.(\Delta t_{i})^{2} \\ R_{i} &= \frac{1}{2}\rho_{i}.C_{Ai}.S(V_{i})^{2} \end{aligned}$$

Pour pouvoir appliquer ces formules, il faut déterminer les valeurs de la poussée P_i , de la masse volumique de l'air ρ_i et du coefficient de traînée C_{Ai} . La valeur poussée est obtenue simplement à partir de la courbe de poussée du propulseur utilisé²⁸. Pour la masse volumique de l'air ρ_i , la consultation de tables standards de l'atmosphère peut s'avérer très utile. Il est également possible d'utiliser les formules approchées²⁹ donnant la masse volumique de l'air en fonction de l'altitude. La détermination de C_{Ai} est la plus délicate à cause du manque de modèle d'évolution de ce paramètre. Les annexes A et B donnent des éléments de réponse : l'annexe A donne une grille de détermination empirique du coefficient de traînée pour des microfusées. L'annexe B fournit des résultats de mesures effectuée en

Il suffit de lire la valeur de la poussée à chaque intervalle de temps du calcul pas-à-pas. Les intervalles doivent être assez petits lorsque la poussée varie rapidement.

²⁹ Ces formules sont rappelées au paragraphe 1.2.3.1.

Le vol de la fusée - Stabilité et performances

soufflerie ou en vol et donne l'allure de la courbe d'évolution du coefficient de traînée en fonction de la vitesse?

Par itération (il est assez facile de programmer ces équations sur un petit ordinateur), on peut donc déterminer l'altitude jusqu'à la culmination pour laquelle la vitesse s'annule.

La phase descendante se traite de la même façon, à la différence que la direction de la resistance de l'air s'inverse. On a alors (m étant la masse de poudre du propulseur) :

$$\begin{split} M_i &= M_0 - m \\ \gamma_i &= -\frac{R_{i-1}}{M_i} - g \\ V_i &= V_{i-1} + \gamma_i . \Delta t_i \\ Z_i &= Z_{i-1} + V_{i-1} . \Delta t_i + \frac{1}{2} \gamma_i . (\Delta t_i)^2 . \\ R_i &= \frac{1}{2} \rho_i . C_{Ai} . S(V_i)^2 \end{split}$$

L'enchaînement des calculs peut se représenter sur la figure suivante :

Pour nos fusées, le coefficient de traînée est souvent comprise entre 0,5 et 1.

Figure 18 : Déroulement du calcul en pas-à-pas pour un vol vertical.

3.2.2. Vol oblique.

Le calcul du vol oblique est un peu plus compliqué car il faut considérer les déplacements horizontaux (portée ou axe X) et verticaux (altitude ou axe Z) de la fusée et traiter de manière spécifique la période pendant laquelle la fusée est dans la rampe de lancement. Les forces appliquées sont représentées sur la figure 19. Là encore, on considère un vol sans incidence, l'axe longitudinal de la fusée étant à tout moment parallèle à la trajectoire.

Par rapport au cas du vol vertical, on fait intervenir une nouvelle variable appelée ASSIETTE et notée $\boldsymbol{\theta}$ qui est l'angle que fait l'axe longitudinal de la fusée avec l'horizontale.

Le vol de la fusée - Stabilité et performances

En décomposant les différente forces sur les deux axes X et Z de portée et d'altitude, on obtient les relations suivantes :

$$P_X = P.\cos\theta$$

$$R_X = -R.\cos\theta$$

$$P_Z = P.\sin\theta$$

$$P_Z = -Mg$$

$$R_Z = -R.\sin\theta$$

D'où les accélérations γ_{X} et γ_{Z} respectivement sur les axes de portée et d'altitude :

$$\gamma_{X} = \frac{P-R}{M}.\cos\theta$$

$$\gamma_Z = \frac{P-R}{M}.\sin\theta - g$$

Ces équations sont valables pour la phase ascendante. Après culmination, il faut inverser la direction de R.

$$\gamma_X = -\frac{R}{-\cos\theta}$$

$$\gamma_Z = \begin{pmatrix} R \\ -.\sin\theta - g \\ M \end{pmatrix}$$

Le calcul d'un pas s'effectue de façon similaire au cas du vol vertical:

Le vol de la fusée - Stabilité et performances

$$\begin{aligned} M_{i} &= M_{0} - dm.t_{i} \\ R_{i} &= \frac{1}{2} \rho_{i} . C_{Ai} . S(V_{i-1})^{2} \\ (\gamma x)_{i} &= \frac{P_{i} - R_{i}}{M_{i}} . cos(\theta_{i-1}) \\ (\gamma_{Z})_{i} &= \frac{P_{i} - R_{i}}{M_{i}} . sin(\theta_{i-1}) - g \\ \\ &\{ (V_{X})_{i} = (V_{X})_{i-1} + (\gamma_{X})_{i} . \Delta t_{i} \\ (V_{Z})_{i} &= (V_{Z})_{i-1} + (\gamma_{Z})_{i} . \Delta t_{i} \end{aligned}$$

$$\begin{split} \text{d'où} & \quad V_i = \sqrt{((V_X)_i^2 + (V_Z)_i^2)} \\ \\ & \quad X_i = X_{i-1} + (V_X)_{i-1} \Delta t_i + \frac{1}{2} (\gamma_X)_i \cdot (\Delta t_i)^2 \ . \\ \\ & \quad Z_i = Z_{i-1} + (V_Z)_{i-1} \Delta t_i + \frac{1}{2} (\gamma_Z)_i \cdot (\Delta t_i)^2 \ . \end{split}$$

Pour les deux dernières lignes, la formule suivante est plus rapide à calculer :

$$\begin{cases} X_i = X_{i-1} + \frac{1}{2}((V_X)_{i-1} + (V_X)_i).\Delta t_i \\ Z_i = Z_{i-1} + \frac{1}{2}((V_Z)_{i-1} + (V_Z)_i).\Delta t_i \end{cases}$$

Pour le pas suivant on prend alors θ_i défini par :

$$\sin \theta_{i} = \frac{(V_{Z})_{i}}{V_{i}}$$

$$\cos \theta_{i} = \frac{(V_{X})_{i}}{V_{i}}$$

ou encore:

$$tg\theta_i = \frac{(v_Z)_i}{(v_X)_i}$$

Le vol de la fusée - Stabilité et performances

La culmination se produit lorsque la composante verticale de la vitesse change de signe. Par ailleurs, durant la période où la fusée est sur la rampe de lancement, s'exerce en plus la réaction T de la rampe opposée à la composante du poids normale $\bf a$ la fusée (voir la figure 20). $\bf \theta_0$ est l'angle que fait la rampe de lancement avec l'horizontale (angle de site).

Le vol de la fusée - Stabilité et performances

$$\begin{split} &(\gamma_X)_i & = \underbrace{\begin{array}{c} P_i - R_i \\ = & - \end{array}}_{\text{cos} \theta_i} - \text{g.sin} \theta_i . \text{cos} \theta_i \\ &(\gamma_Z)_i = \underbrace{\begin{array}{c} P_i - R_i \\ M_i \end{array}}_{\text{i}} . \text{sin} \theta_i - \text{g.} + \text{g.cos} (\theta_i)^2 \\ &\text{et} \qquad \theta_i = \theta_0. \end{split}$$

On ne tient plus compte de la rampe de lancement lorsque l'altitude Zi $-Z_0$ devient supérieure à $L.sin\theta_0$ (L étant la longueur de la rampe de lancement).

En résumé, l'enchaînement des calculs pour un vol oblique peut se représenter sur la figure suivante :

Le vol de la fusée - Stabilité et performances

Figure 21: Déroulement du calcul en pas-à-pas pour un vol oblique.

Le vol de la fusée - Stabilité et performances

3.3. Calcul analytique des performances.

3.3.1. Principe de la méthode.

La méthode du pas-à-pas est la mieux adaptée pour obtenir des informations précises sur la trajectoire de la fusée. En particulier, elle possède les avantages suivants :

- ① Elle permet de connaître les différents paramètres de vol de la fusée (accélération, vitesse, . . .) avec une excellente précision si les pas de calcul sont suffisamment fins par rapport aux variations relatives de ces paramètres.
- Elle offre également la possibilité de tenir compte de nombreux **paramètres** pour lesquels il n'existe pas forcément de modèle mathématique d'évolution mais dont on connaît la valeur grâce $\bf a$ des tables ou $\bf a$ des mesures. La poussée du moteur, par exemple, est obtenue $\bf a$ tout instant en utilisant la courbe de poussée correspondante. De même, les variations de $\bf p$ et de $\bf C_A$ peuvent être prises en compte de cette manière.

Cependant, lorsqu'il s'agit simplement d'obtenir une estimation de l'altitude ou du temps de culmination³¹, la méthode pas à pas peut être assez lourde à mettre en oeuvre.

Il est possible d'obtenir directement une bonne estimation des renseignements recherchés en **utlisant** les formules données dans les paragraphes suivants.

La méthode utilisée est appelée METHODE ANALYTIQUE parce que, contrairement à la méthode pas-à-pas, elle considère les variations continues des différents **paramètres** au cours du temps. Elle consiste à résoudre mathématiquement l'équation du mouvement en déterminant les relations qui donnent à tout moment la position et la vitesse de la fusée.

Malheureusement, la résolution de ces équations devient vite extrêmement complexe lorsqu'on essaye de tenir compte des variations de toutes les grandeurs. Les formules présentées ci-dessous sont obtenues en faisant les hypothèses suivantes :

- La poussée du moteur P est constante pendant la phase propulsée (on prend P égale à la poussée moyenne).
- La masse de la fusée est constante pendant la phase propulsée, égale à la masse totale au départ diminuée de la moitié de la masse de poudre. Pendant la phase balistique, la masse est égale à la masse totale moins la masse de poudre.
- La résistance de l'air est égale à $R = KV^2$ avec $K = \frac{1}{2}\rho SC_A$. ρ et C_A sont considérés comme constants durant tout le vol.
- Le vol est vertical sans incidence.

Par exemple dans le but de régler un dispositif de temporisation déclenchant l'éjection du parachute.

Le vol de la fusée - Stabilité et performances

Ici aussi, le point de départ est le principe fondamental de la dynamique. Le bilan des forces appliquées à la fusée permet de déterminer à tout moment l'accélération γ à laquelle celle-ci est soumise.

Lorsqu on connaît l'expression mathématique de l'accélération, il est possible de déterminer la vitesse \mathbf{v}^{32} puis l'altitude par intégrations successives comme le montrent les relations suivantes :

$$v = \int_{t_0}^{t} \gamma dt$$

$$z = \int_{t_0}^{t} v dt$$

En fait, il n y a pas de secret, l'idée de base reste la même que pour la méthode pas-à-pas : analyse du bilan des forces et détermination de la vitesse et de l'altitude.

La différence principale est le mode de représentation des données : la méthode pas-à-pas est une approche de type analyse numérique alors que la seconde méthode utilise une représentation formelle des paramètres sous forme de relation du type p=f(t). Elle est peut-être plus élégante du point de vue intellectuel mais elle ne permet pas de tenir compte des phénomenes fins impossibles à modéliser.

3.3.2. Formules de calcul.

32

Il s agit de la composante verticale de la vitesse.

Le vol de la fusée - Stabilité et performances

	Temps	Vitesse	Altitude
Décollage	t ₀ = 0 (décalage arbitraire)	v ₀ (vitesse initiale)	ho (altitude initiale)
Fin de propulsion	t1= temps de combustion (donnée)	$ \frac{\sqrt{1}}{\sqrt{(a/b)}} $ $ \left[\begin{array}{c} e^{2\sqrt{(ab)}t_{A}} - \alpha \\ e^{2\sqrt{(ab)}t_{A}} + \alpha \end{array}\right] $	$ \begin{array}{c} h_1 \\ = \\ h_0 + 1/(2b). \end{array} $ $ Ln \left[\frac{(e^{2\sqrt{(ab)}t_1} + \alpha)^2}{(1+\alpha)e^{2\sqrt{(ab)}t_2}} \right] $
Culmination	t2 Tu+ Arctg($V_1\sqrt{(b/g)}$) $\sqrt{(bg)}$	v ₂ = 0	$h_2=h_1+(Ln(1+V_1^2.(b/g)))/(2b)$

Tableau 5 : Formules d'estimation des performances d'une fusée par la méthode analogique.

(L'argument de la fonction arctangente est exprimé en radians. Le symbole \boldsymbol{Ln} représente le logarithme népérien').

Les notations suivantes sont utilisées :

$$a = (P/M) - g$$

b = K/M

avec M = Masse totale au départ - 1/2.masse de poudre

pendant la phase propulsée.

M = Masse totale au départ • masse de poudre

pendant la phase balistique.

 $K = \frac{1}{2} \rho S G_{A}$.

$$\propto$$
 est une constante égale à : $\propto = \frac{1 \cdot \sqrt{(a/b)} \cdot V_0}{1 + \sqrt{(a/b)} \cdot V_0}$ si $V_0 = 0$, $\propto = 1$!

Je ne peux pas m'empêcher de vous faire partager ce jeu de mot subtil : le logarithme népérien pour attendre!

Le vol de la fusée - Stabilité et performances

A	N	N	(\mathbf{F})	ŒS	י ר

Le vol de la fusée - Stabilité et performances

Annexe A. Estimation du coefficient de traînée pour une microfusée.

Pour une micro-fusée, le coefficient de traînée $\boldsymbol{C_A}$ peut être estimé à partir du tableau suivant :

C _A minimal	Dans tous les cas	0,4		
Etat de surface	Bon	+ 0,0		
Etat de surface	Mauvais	+ 0,4		
Tuho guido	Absence	+ 0,0		
Tube guide	Présence	+ 0,2		
Profilago dos ailarons	Bon	+ 0,0		
Profilage des ailerons	Mauvais	+ 1,7		
	Ogivale	+ 0,0		
	Parabolique	+ 0,0		
	Conique longue (h > D)	+ 0,1		
Forme de la pointe	Conique courte (h < D)	+ 0,2		
	Hémisphérique	+ 0,1		
	Plate	+ 0,8		
	Creuse	+ 1,4		
0,4 < C _A global < 4,1				
Tableau 6 : Estimation du C _A pour une microfusée.				

Le vol de la fusée - Stabilité et performances

Annexe B. Estimation du coefficient de traînée pour des minifusées ou des fusées expérimentales.

Par rapport au tableau précédent, pour une minifusée ou une fusée expérimentale, la situation s'améliore parce les dimensions des objets en jeu sont plus grandes. Intuitivement, on comprend qu'une imperfection (une tête de vis qui dépasse par exemple) est relativement moins importante sur une grosse fusée.

A complèter.

Annexe C. Détail du calcul des performances analogiques.

C.1. Phase propulsée.

L'équation du mouvement est la suivante :

$$V = \frac{dV}{dt} = \frac{P - R}{M} - g$$
 are $R = KV^2$

En posant a = P/M - g et b = K/M, on obtient la relation suivante :

$$\frac{dv}{dt} = a - bv^2 \text{ on encore } \frac{dv}{a - bv^2} = dt$$

En intégrant entre t0 et t: $\int_{\sqrt{a}-br^2}^{\sqrt{a}} = \int_{t_0}^{t} dt \quad \text{A'où} \quad \frac{1}{\sqrt{ab}} \int_{\sqrt{a}}^{\sqrt{b}} \frac{dr}{\sqrt{ab}} = t - t_0$ Notons que $(\sqrt{\frac{b}{a}}r)^2 = \frac{bv^2}{a} = \frac{R}{P-Mg}$ or MY = P-Mg-R

Pendant la phase propulsée, sest positif donc P-Mg > R et donc w(b/a) est inférieur à 1.

d'où:
$$\int_{Vab}^{V} \int_{Vab}^{L} \left[L_n \left(\frac{1 + \sqrt{\frac{1}{a}} v}{1 - \sqrt{\frac{1}{a}} v} \right) \right]_{Vo}^{v} = t - t_o$$

En décalant arbitrairement l'échelle des temps (t0=0), on obtient donc pour t inférieur à la durée de combustion du propulseur :

durée de combustion du propulseur:
$$L_n\left(\frac{1+\sqrt{\frac{1}{6}v}}{1-\sqrt{\frac{1}{6}v}}\right) + L_n\alpha = 2\sqrt{ab} + avec \alpha = \frac{1-\sqrt{\frac{1}{6}v_o}}{1+\sqrt{\frac{1}{6}v_o}}$$
d'où en prenant l'exponentielle: $\alpha\left(1+\sqrt{\frac{1}{6}v}\right) = \left(1-\sqrt{\frac{1}{6}v_o}\right)$. Evalue

$$v = \sqrt{\frac{e^{2\sqrt{ab} \cdot t} - \alpha}{e^{2\sqrt{ab} \cdot t} + \alpha}}$$
 pour $t \le t_1$ (phase propuloie)

On calcule l'altitude en intégrant v par rapport au temps²:
$$\int_{h_0}^{h} dl = \int_{t_0}^{t} \sqrt{\frac{e^{\sqrt{ab} \cdot t} - \alpha}{e^{2\sqrt{ab} \cdot t} + \alpha}} dt = \sqrt{\frac{1}{b}} \cdot \int_{t_0}^{t} \frac{e^{\sqrt{ab} \cdot t} - \alpha}{e^{\sqrt{ab} \cdot t} + \alpha} dt$$

$$= \sqrt{\frac{1}{b}} \cdot \sqrt{\frac{1}{ab}} \cdot \int_{t_0}^{t} \frac{e^{\sqrt{ab} \cdot t} - \alpha}{e^{\sqrt{ab} \cdot t} + \alpha} dt$$

$$= \sqrt{\frac{1}{b}} \cdot \sqrt{\frac{1}{ab}} \cdot \int_{t_0}^{t} \frac{e^{\sqrt{ab} \cdot t} - \alpha}{e^{\sqrt{ab} \cdot t} + \alpha} dt$$

² Attachez bien vos ceintures . . .

Le vol de la fusée - Stabilité et performances

C'est une expression du type (f'/f). La primitive est Ln(f) d'où:
$$h - ho = \frac{1}{b} \cdot \left[Ln \left(e^{\sqrt{ab} \cdot t} + \alpha \cdot e^{-\sqrt{ab} \cdot t} \right) \right]_{to}^{t}$$

$$avec \quad to = 0$$

$$d'ou \quad h = ho + \frac{1}{b} Ln \left(\frac{e^{\sqrt{ab} \cdot t} + \alpha \cdot e^{-\sqrt{ab} \cdot t}}{1 + \alpha} \right)$$

$$h = ho + \frac{1}{b} Ln \left(\frac{e^{2\sqrt{ab} \cdot t} + \alpha}{(1 + \alpha) e^{\sqrt{ab} \cdot t}} \right)$$

doù:

$$h = h_0 + \frac{1}{2b} \cdot L_n \left(\frac{(e^{2\sqrt{ab} \cdot E} + \alpha)^2}{(1+\alpha)^2 e^{2\sqrt{ab} \cdot E}} \right)$$
 pour $t \le t_1$

C.2. Phase balistique.

L'équation du mouvement devient:
$$V = \frac{dv}{dt} = -\frac{R}{M} - g = -\frac{KV^2}{M} - g$$

doù:
$$\frac{dv}{dt} = -\left(bv^2+g\right)$$
 ou encore $\frac{dv}{bv^2+g} = -dt$

Pour pouroir intégrer "facilement", on met l'équotion sous le forme ouivante:

$$\frac{A}{g} \cdot \frac{dv}{\frac{b}{v^2+1}} = -dt$$

$$d'o \bar{u} \int_{t_A}^{t} dt = -\frac{1}{g} \sqrt{\frac{g}{b}} \cdot \int_{v_A}^{v} \frac{\sqrt{\frac{b}{g}} \cdot dv}{1 + \left(\sqrt{\frac{b}{g}} \cdot v\right)^2}$$

d'où
$$t-t_1=-\frac{1}{\sqrt{bg}}\left[\operatorname{Hrctg}\left(\sqrt{\frac{b}{g}}v\right)\right]_{V_1}^{v}$$

Le vol de la fusée - Stabilité et performances

La date de culmination est obtenue lorsque la vitesse s'annule, c'est-à-dire V2 = 0

$$t_2 = t_1 + \frac{1}{\sqrt{bg}} Arctg \left(\sqrt{\frac{b}{g}} v_1 \right)$$

Dans ce cas pricis, pour déterminer l'altitude maximale, il n'est par nécessaire d'avoir l'expression littérale de la vitesse. En effet, on peut éaire:

v= dz doù dt = dz

l'équation du mouvement étant dr = - (bv2,g), on obtient: $\frac{v \cdot dv}{17} = -\left(bv^2 + q\right) d'où dZ = \frac{-v \cdot dv}{bv^2 + q}$

En intégrant:

$$\int_{h_{1}}^{h} dz = \int_{v_{1}}^{v_{2}} \frac{-v \cdot dv}{bv^{2} + g} = -\frac{1}{2b} \int_{v_{1}}^{v_{2}} \frac{2b \cdot v \cdot dv}{bv^{2} + g}$$

$$h_{1} h_{2} = -\frac{1}{2b} \int_{v_{1}}^{v_{2}} \frac{2b \cdot v \cdot dv}{bv^{2} + g}$$

d'où h.ha = -1 [Ln (bv2+g)]

A culmination, on a vz = 0 d'où:

$$h_{2} - h_{1} = -\frac{1}{2b} \left[L_{n}(q) - L_{n}(bv_{1}^{2} + q) \right]$$

$$= \frac{1}{2b} L_{n} \left(1 + \frac{b}{q} v_{1}^{2} \right)$$

d'où
$$h_2 = h_1 + \frac{1}{2b} L_n \left(1 + \frac{b}{g} v_1^2 \right)$$

Le vol de la fusée - Stabilité et performance	99

	GLOSSAIRE	DES	TERMES	TECHNIQUES
--	-----------	-----	---------------	-------------------

Le vol de la fusée - Stabilité et performances

GLOSSAIRE

Accélération Grandeur physique caractérisant la variation de vitesse par unité de temps.

Le principe fondamental de la dynamique énonce la relation entre la masse d un objet, son accélération et les forces appliquées. Elle est exprimée en

mètres par seconde par seconde (m/s^2) .

Angle d incidence

Lorsqu une fusée est en incidence, angle entre la direction de la vitesse et

1 axe longitudinal de la fusée.

Calibre Diamètre de la **fusée**. En général, le diamètre de référence est celui de la

base de 1 ogive.

Centre de gravité

Point d'application de la résultante des actions de la pesanteur sur toutes

les parties d'un corps. Synonyme de centre d'inertie.

Centre de poussée aérodynamique

Point d'application de la résultante des forces aérodynamiques **sur** toutes les parties d'un corps en déplacement dans un milieu résistant.

Coefficient de portance

Coefficient sans dimension intervenant dans la relation donnant la valeur

de la **portance** en fonction de la vitesse.

Coefficient de trâinée

Coefficient sans dimension intervenant dans la relation donnant la valeur

de la traînée en fonction de la vitesse.

Débit massique Une des grandeurs caractéristiques d'un propulseur à poudre. Correspond

à la masse de poudre brûlée par unité de temps. Le débit massique **est** mesuré en kilogramme par seconde **(kg/s)** dans le système **international (et**

donc partout sauf chez les anglais).

Finesse Rapport entre la longueur et le diamètre d'une fusée.

Incidence Une fusée en dite en incidence lorsque son axe longitudinal n est pas

parallèle à la direction de sa vitesse.

Indifférence Etat d'une fusée pour laquelle centre de poussée aérodynamique et centre de

gravité sont confondus. Il s'agit généralement d une situation transitoire.

Le vol de la fusée - Stabilité et performances

Instabilité Comportement d'une fusée pour laquelle les perturbations d incidence ne

sont pas compensées mais accentuées. C'est la cas lorsque le centre de

poussée est situé au- dessus au centre de gravité.

Ty e Pour une fusée, pièce tronconique permettant de **raccorder** deux éléments

au corps de diamètres différents. L'élément supérieur a le diamètre le plus

petit.

Lacet Mouvement d oscillation cl un mobile autour de son axe vertical.

Maître-couple Correspond à la surface d une coupe transversale de la fusée.

Marge statique Distance entre le centre de gravité et le centre latéral de poussée d'une

fusée. Cette distance est un des critères principaux de stabilité d'une fusée.

Masse Rapport de la masse d un corps sur son volume. La masse volumique est volumique en kilogramme par mètre cube dans le système international

 (kg/m^3) .

Newton3 Dans le système international, unité de mesure des forces. Une force de 1

NEWTON (1N) correspond à la force à appliquey à une masse de 1 kg

pour lui communiquer une accélération de 1 m/s².

Pas de calcul Intervalle de temps élémentaire pour le calcul de trajectoire par la méthode

pas-à-pas. Pendant cette période, tous les paramètres sont considérés comme constants. En particulier, le mouvement de la fusée est

uniformémemt accéléré sur un pas de calcul.

Phase balistique Partie au vol durant laquelle la fusée n est soumise qu'à son poids et à la

résis tance de l air.

Phase propulsée Partie du vol durant laquelle le propulseur communique une force de

poussée à la fusée.

Portance Composante de la résistance de l air perpendiculaire à l axe longitudinal de

la fusée.

balistique

Portée en vol Distance entre le point de lancement d'une fusée et le point d'impact au sol

en vol balistique. Pour les calculs de trajectoire, l axe de portée est l axe horizontal correspondant à la projection au sol de la trajectoire de l engin.

Egalement héros d'une bande dessinée bien connue où il est question de pommes qui tombent.

60

Le vol de la fusée - Stabilité et performances

Référentiel Système de coordonnées (servant notamment à l expression de relations

physiques).

Repère Synonyme de référentiel.

Reférentiel Inertie1 Appelé également référentiel d'inertie ou **référenteil** galiléen. Référentiel dans lequel le mouvement d'un point isolé est **rectigne uniforme. En** première approximation, pour nos applications, un repère lié à la terre est

un référentiel d inertie sympathique.

Retreint Pour une fusée, pièce tronconique permettant de raccorder deux éléments

au corps de diamètres différents. L'élément supérieur a le diamètre le plus

grand.

Roulis4 Mouvement de rotation d'un mobile autour d'un axe longitudinal.

Stabilité Caractère d'une fusée qui retrouve son équilibre initial lorsqu elle est mise

en incidence.

Surstabilité Caractère d'une fusée dont la marge statique est très grande ou le

coefficient de **portance** trop élevé. Les **effets** de compensation dûs au vent relatif entraînent un **vol** en zig-zag et la fusée a tendance à se coucher dans

le vent météorologique.

Tangage Mouvement d oscillation d un mobile se produisant dans le sens de la

longueur.

Tra^mée Composante de la résistance de l air parallèle à l axe longitudinal de la

fusée.

Vent apparent Combinaison du vent propre et du vent vrai. Synonyme de vent relatif.

Vent propre Vent créé par le déplacement de la fusée dans **l** air.

Vent relatif synonyme de vent apparent.

Vent vrai vent créé par le déplacement naturel de l air. On dit aussi vent

météorologique.

⁴ Ne pas confondre avec coulis (purée de fruit additionnée de sirop).

Le vol de la fusée - Stabilité et performances

Vitesse Distance parcourue par unité de temps. S exprime en mètres par seconde

(sauf chez les anglais).

Vitesse limites Valeur vers laquelle tend la vitesse d un objet soumis à une force constante

en déplacement dans un milieu résistant. Pour une **fusée**, la vitesse limite est atteinte en phase balistique descendante lorsque la résistance de l air

égale le poids de la fusée.

62

⁵ La notion de code de la route n est pas prise en compte dans ce contexte.

Le vol de la fusée - Stabilité et performances

R	ΙB	T	\cap	C	R /	ΔT	ľ	TT)	F
v	עני		\sim	U.		71		LL	Ĺ

Le vol de la fusée - Stabilité et performances

BIBLIOGRAPHIE

Données Numériques sur le Vol des fusées.

Dossier technique édité par l'Association Nationale Sciences Techniques Jeunesse.

322 ESPACE - CLAP Aviation - La microfusée.

Numéro spécial de 321 ESPACE (revue des clubs aérospatiaux publiée par l'ANSTJ).

Essais aérodynamiques.

Note technique ANSTJ n°20. Compte-rendu d'essais en soufflerie effectués à l'ONERA.

Caractéristiques de l'atmosphère moyenne.

Note technique ANSTJ n°39 publiée dans le 321 ESPACE n°5.

- Formulaire de mathématiques.
 - L. CHAMBADAL. Editions Dunod Université.
- Le Cours de Physique de Feynman.

Mécanique volumes 1 et 2. FEYNMAN, LEIGHTON et SANDS.

Editions InterEditions

Cours de Physique.

Classes de mathématiques et sciences expérimentales.

R. FAUCHER. Editions HATIER