AD/A-002 515

EXTERIOR BALLISTICS OF A PROJECTILE IN VERTICAL FLIGHT

Robert A. Muldoon

Army Materials and Mechanics Research Center Watertown, Massachusetts

November 1974

DISTRIBUTED BY:

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2 GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AMMRC TR 74-30		ALD/H-002-515
4. TITLE (and Subtitle)		5 TYPE OF REPORT & PERIOD COVERED
EXTERIOR BALLISTICS OF A PROJECTILE IN VERTICAL		Final Report
FLIGHT		6 PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8 CONTRACT OR GRANT NUMBER(s)
Robert A. Muldoon		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Army Materials and Mechanics Rese	arch Center	D/A Project: 1W664603D66300
Watertown, Massachusetts 02172		AMCMS Code 664603.12.26300
AMXMR-K		Agency Accession: DA OF4694
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
U. S. Army Materiel Command		November 1974
Alexandria, Virginia 22333		13 NIIMEER OF PAGES 2 G
14. MONITORING AGENCY NAME & ADDRESS(If different	t from Controlling Office)	15. SECURITY CLASS. (of this toport)
		Unclassified
		15a DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
		_
Approved for public release; dist	ribution unlimit	ed.
		j
17 DISTRIBUTION STATEMENT (of the abstract untered	I- Dtt. 20 1/ 41// /	D
17 DISTRIBUTION STATEMENT (of the abstract untered	in Block 20, it different fro	m Keponij
18 SUPPLEMENTARY NOTES	eed by	
	IONAL TECHNICAL]
INFO	RMATION SERVICE	
U	S Dopartment of Commerce Springfield, VA. 22151	
19. KEY WORDS (Continue on reverse side if necessary an	d Identify by block number;	,
Projectiles Compute	r programs	
•	tical analysis	
Equations of motion		
Differential equations		
20 ABSTRACT (Continue on reverse side il necessary and	1 Identify by block number)	
		İ
(SEE	REVERSE SIDE)	
İ		
		1

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Block No. 20

ABSTRACT

The motion of a projectile fired vertically upward is examined in some detail and the equations which express the instantaneous velocit; and time of flight as a function of projectile diameter, weight, configuration, muzzle velocity, and air density are determined.

Based on these equations a computer program has been developed which allows the velocity, time of flight, and vertical range to be calculated for any projectile weight, diameter, and drag coefficient. The FORTRAN listing of the program is given in the report.

The results of a sample problem which considers the effect of drag variation on the time of flight is presented. (Author)

11

CONTENTS

Pag	ge
INTRODUCTION	1
UPWARD PROJECTILE MOTION	1
Velocity-Range	2
Time of Flight Versus Velocity	4
DOWNWARD PROJECTILE MOTION	
Velocity-Range	4
Time of Flight Versus Velocity	5
RESULTS AND CALCULATIONS	
Projectile Parameter	5
Launch Conditions	7
Projectile Motion	7
APPENDIX A - SAMPLE PROBLEM	8
APPENDIX B - FORTRAN LISTING OF VERICAL FLIGHT COMPUTER PROGRAM 2	3

INTRODUCTION

The Materials Application Division at AMMRC is currently engaged in the development of experimental artillery shell. The projectile features new components, assemblies, materials and methods of manufacture. After the prototype round; are fabricated, a number of models are test fired to determine the adequacy of the design. At launch, high-speed motion pictures are taken as the round emerges from the muzzle and during the early stages of free flight. Also, the time of flight is recorded for several selected ranges. This information is then used to assess the sufficiency of the experimental rounds.

If the coefficient of drag and its variation with velocity is known for the projectile configuration, then the time of flight is readily calculated as a function of the range. The magnitude of the deviation between the measured time of flight and the calculated time of flight—consistent with the accuracy of the drag coefficient data—serves as a reliable index of projectile performance. Thus, substantial increases of the measured time of flight over the calculated allowable time band would suggest excessive yaw, probably induced by some major component malfunction or projectile break-up, whereas modest deviations would indicate less severe problems.

The program presented in this report, in conjunction with the experimentally determined coefficient of drag, permits the time of flight to be calculated at any range for vertical firings as a function of muzzle velocity and projectile weight.

UPWARD PROJECTILE MOTION

The forces acting on a projectile fired straight up in the air are depicted in Figure 1a.

The equation of mction

$$\dot{mu} = D - mg$$
 (1)

and from dimensional analysis

$$D = -\rho d^2 u^2 K_D. \tag{2}$$

The density variation in the atmosphere for the standard structure is 1

$$\rho = \rho_0 e^{-hz}.$$
 (3)

It is assumed that the speed of sound is constant and

$$K_{D} = a + bu \tag{4}$$

^{1.} HAYES, T. J. Elements of Ordnance. John Wiley & Sons, Inc., 1938.

where

m = projectile mass

u = instantaneous projectile deceleration

D = projectile drag

g = acceleration due to gravity

 ρ = air density at altitude z

d = projectile diameter

u = instantaneous projectile velocity

 K_D = ballistic coefficient of drag

 ρ_0 = air density at ground level

h = constant

z = altitude

a = constant

b = constant

In order to simplify the analysis and permit a closed solution to the differential equation of motion, a small increment of z will be chosen such that ${\rm K}_{\rm D}$ and ρ are essentially constant over the increment.

Substituting (2) into (1) gives

$$m\dot{u} = -\rho d^2 u^2 K_D - mg$$

or

$$\dot{\mathbf{u}} + \mathbf{K}\mathbf{u}^2 = -\mathbf{g} \tag{5}$$

where

$$K = \frac{\rho d^2}{m} K_D. \tag{6}$$

Velocity-Range

Now

$$u = dz/dt$$

where t = time

and

$$\dot{u} = \frac{du}{dt} = u \frac{du}{dz}$$
.

Substituting this result into (5) gives

$$u \frac{du}{dz} + Ku^2 = -g. \tag{7}$$

This is a first-order linear differential equation and is readily solved by means of the following transformation

$$p = u^2, (8a)$$

$$\frac{d\rho}{dz} = 2u \frac{du}{dz},\tag{8b}$$

$$\frac{dp}{dz} + 2Kp = -2g. \tag{9}$$

The solution to (9) is

$$p = e^{-\int 2Kdz} \int (-2g) e^{\int 2Kdz} dz + Ce^{-\int 2Kdz}$$
 (10)

where

C = constant.

Now

$$p = (Ce^{-2Kz} - g/K).$$
 (11)

Substituting (8a) into (11) gives

$$u^2 = (Ce^{\cdot 2Kz} - g/K)$$

or

$$u = (Ce^{-2Kz} - g/K)^{1/2}$$
 (12)

The constant C is evaluated from the boundary condition

$$u = u_s$$
 at $z = z_s$.

Then

$$u_s^2 = [ce^{-2Kz}s - g/K]$$

and

$$C = (u_s^2 + g/K)e^{2Kz}s.$$
 (13)

Substituting (13) into (12) gives

$$u_F = [(u_s^2 + g/K)e^{-2K(z_F - z_s)} - g/K]^{1/2}.$$
 (14)

The velocity τ range is calculated from (14) for the case of a projectile fired vertically upward.

Time of Flight versus Velocity

The relationship between the velocity and time of flight is established from (5).

Then, separating the variables and integrating between the limits

$$u = u_s$$
 at $t = t_s$
 $u = u_p$ at $t = t_p$

$$\int_{t_{s}}^{t_{F}} dt = \left(-\frac{1}{K}\right) \int_{u_{s}}^{u_{F}} \frac{du}{\left[u^{2} + (\sqrt{g/K})^{2}\right]}$$

which gives

$$(t_{F}^{-t}t_{S}) = \frac{1}{\sqrt{gK}} \left\{ tan^{-1} \left(\frac{K}{g} \right) u_{S}^{-tan^{-1}} \left(\frac{K}{g} \right) u_{F} \right\}$$
(15)

DOWNWARD PROJECTILE MOTION

Velucity-Range

The forces acting on the projectile in downward flight are depicted in Figure 1b.

The equation of motion is

$$\dot{mu} = D + mg \tag{16}$$

which in the same fashion as before reduces to

$$\dot{\mathbf{u}} + \mathbf{K}\mathbf{u}^2 = \mathbf{g}. \tag{17}$$

The solution follows the identical procedure as with (5) and is written immediately by changing the sign of g in (12) thus

$$u = \left(Ce^{-2Kz} + g/K\right)^{1/2}.$$
 (18)

For convenience, the center of the coordinate axis is transferred to the maximum point of upward travel, and the constant C is evaluated as before.

Then

$$u_{F} = \left[(u_{S}^{2} - g/K) e^{-2K(z_{F} - z_{S})} + e/K \right]^{1/2}.$$
 (19)

Time of Flight versus Velocity

The time of downward flight is determined from (17).

Separating the variables and integrating bet len the limits

$$u = u_s$$
 at $t = t_s$

$$u = u_F$$
 at $t = t_F$,

$$\int_{t_{s}}^{t_{F}} dt = -\left(\frac{1}{K}\right) \int_{u_{s}}^{u_{F}} \frac{du}{\left[u^{2} - (\sqrt{g/K})^{2}\right]}$$
(20)

and

$$(t_{F}-t_{S}) = \frac{1}{2\sqrt{gK}} \left\{ \ln \frac{(u_{F}+\sqrt{g/K})}{(u_{F}-\sqrt{g/K})} - \ln \frac{(u_{S}+\sqrt{g/K})}{(u_{S}-\sqrt{g/K})} \right\}$$
 (21)

RESULTS AND CALCULATIONS

Projectile Parameter

The parameters of a given projectile design which determine the elements of the projectile motion (velocity, range, and time of flight to the target) are the weight, diameter, and general projectile configuration. For the experimental artillery shell under development at AMMRC the weight W is 200 lb and diameter d is 8.00 inches.

The projectile configuration largely determines the aerodynamic forces and moments acting on the projectile in free flight. For the point-mass anglysis performed herein the only aerodynamic force required as the drag force. This force is dependent on the coefficient of drag which in turn is a function of the projectile shape and the instantaneous velocity of the projectile. The coefficient of drag is readily estimated from the large amount of data which has been compiled. Based on the available data and the projectile contour illustrated in Figure 2, the drag coefficient shown in Figure 3 has been selected for the motion calculations.

When the projectile reaches its maximum vertical range from a 90° launch condition, it returns to the earth base firs:. In this attitude, the projectile presents a cylindrical contour to the air stream. The drag coefficient for this case² is practically constant and

Figure 3. Coefficient of Drag Versus Velocity

2. HITCHCOCK, H. P. Aerodynamic Data for Spinning Projectiles. BRL Report No. 620, October 1947.

Launch Conditions

The experimental projectiles were launched from a M110E2 self-propelled howitzer oriented at 90° from the horizontal. The test projectiles were launched at various muzzle velocities up to a maximum of 2800 fps.

Projectile Motion

The velocity and time of flight versus range were calculated for the experimental shell for both the upward and downward trajectories using the applicable equations developed earlier. The calculations were performed for increments of 100 feet. Over each increment, the drag coefficient and air density were assumed to be constant, corresponding to the velocity and range values at the beginning of the increment. At the start of each new increment, the values were recomputed. Thus the terminal conditions for one increment form the initial conditions for the succeeding increment. The equations were programmed for the 1108 UNIVAC computer.

The altitude, velocity, time of flight, air density, and drag coefficient are calculated for an assumed muzzle velocity of 1800 fps. The computer results for both the upward and downward motion are given in Appendix A. The FORTRAN listing of the program is given in Appendix B.

In order to estimate the effect of variations in the experimentally determined drag coefficient $K_{\rm D}$ on the time of flight, computer runs were made in which the intercept of the drag coefficient for two of the linear fits shown in Figure 3 were altered +10% and then -10% while all the other parameters were maintained coastant. The resulting time of flights for the assumed extremes and median drag coefficient at various altitudes are compiled in Table 1. It is noted that for

Table 1. ALTITUDE VERSUS TIME OF FLIGHT FOR VARIATIONS IN PROJECTILE DRAG*

A1titude	Time	of Flight	(sec)
(ft)	A	B	C
0	0	0	0
5,000	3.033	3.065	3.098
10,000	6.675	6.824	6.984
15,000	11.123	11.500	11.904
20,000	16.624	17,451	18.406
25,000	24.081	26.251	29.609
20,000	65.246	60.414	56.730
15,000	72.651	68.211	64.999
10,600	79.715	75.458	27.447
5,000	86.862	82.701	79.793
, O	94.361	90.250	87.393

*"a" Values In Drag Coefficient Equation (see Figure 3)

	A	8	C
	(minimum)	(median)	(maximum)
1	0.223	0.247	0.272
II	-0.254	-0.230	-0.207
	0.083	0.106	0.130

the lower values of the drag coefficient, the time of flights for the same upward range are smaller. However, because the muzzle velocities are the same the lower drag allows the projectile to reach a higher altitude and thus the relationships in downward time of flights is reversed with the lower drag values requiring a larger amount of time to reach the same downward altitude.

The tabulated deviations in the time of flight effectively define the sensitivity limits for the assumed drag scatter. Thus, no inference concerning projectile performance can be made for any range-time of flight measurement that falls within the calculated limits.

APPENDIX A. SAMPLE PROBLEM

PROJECTILE-XF101

MUZZLE VELCCITY-1800(F/S)

	ALTITUDE	VELCCITY	TIME OF	AIR DENSITY	DRAG
TAUCS	(7 7)	(F/S)	TLIGHT (SECS)	(LBS/FT3)	COEFFICIENT
1	٤	1800	030.	•C751	•167
2	100	1793	•058	·C749	.163
3	200	1786	•112	•C747	•168
4	303	1779	•153	• E744	•168
	4CG	1772	•224	•C742	•169
ن د	500	1756	.233	•3746	•169
5 5 7	6CC	1759	•337	.0737	•169
3	700	1752	.394	.0735	.170
9	865	1746	.451	•0733	•170
13	903	1739	•503	• E73E	•170
	700	2.33	4303	• • • • • • • • • • • • • • • • • • • •	• 1.0
11	1000	1732	• 566	·C728	•170
12	1100	172€	.624	•C726	•171
13	1260	1719	• E32	·C723	.171
14	1306	1712	•74C	·C721	.171
15	1400	1705	.793	•C719	•172
16	1500	1699	~ 858	•0717	•172
17	TEGG	1693	.317	• 0714	•172
18	1700	1686	•97€	.0712	•172
19	1800	1630	1.033	•C71G	•173
35	1966	1.6 73	1.095	.0708	•173
21	2000	1667	1.155	.0705	• 1 73
22	2163	1880	1.215	.0703	•174
23	2200	1654	1.275	.0701	.174
24	2300	1547	1.336	.0699	•174
25	2400	1641	1.396	•(696	.174
26	2563	1635	1.457	.0694	•175
2 7	2600	1628	1.519	.0692	.175
23	2700	1322	1.535	.0590	-175
29	2385	1615	1.642	.0688	-176
3 C	2900	1603 🕔	1.734	•C535	-17€
		`	•		
31	7000	1803	1.765	.0583	.176
32	3100	1597	1.829	.0681	.17€
33	3200	1530	1.932	•2673	•17 /
34	3300	1564	1.955	.0677	.177
35	3420	1573	2.013	•0677	•177
3 E	3500	1573	2.031	•C573	•178
31	3653	1565	7.145	•C671	•178
38	37CC	1553	2.209	•0663	.178
; 3	3300	1353	2.273	•0886	.179
4 L	3950	1547	7.733	• C 6 F 4	.179
· -		~ ~			

PROJECTILI-XP101

MUZZLE VELOCITY-1800(F/S)

COUNT	ALTITUDE (FT)	VELOCITY (F/S)	TIME OF TLIGHT (SECS)	AIR CENSITY (LBS/FT3)	DRAC COEFFICIENT
41	40CC	1541	2.462	•06E2	•179
42	4180	1334	2.467	•0650	.179
43	4266	1528	2.533	•C658	•179
44	4300	1522	2.593	• 0656	.180
45	4460	1516	2.664	•C654	.18C
46	4530	1516	2.730	• £652	₀ 130
47	4600	1504	2.797	.0650	.181
48	4700	1498	2.363	• C648	.181
49	48CC	1492	2.930	•DE46	-181
50	4900	1436	2.937	. €644	•131
51	5000	1490	3.065	•C641	•132
52	510r	1474	3.132	•CE39	.182
53	5250	1468	3.200	.0637	•182
54	53CC	1462	3.268	•0635	.182
55	5400	1456	3.337	• 2633	.183
56	5500	1450	3.406	.C631	•183
57	5660	1444	3.475	•3629	•183
58	5700	1438	3.544	•C627	•183
59	5830	1432	3.614	• 0625	.18"
60	5900	1426	3.684	.0624	•184
61	9339	1420	3.754	•0622	.184
62	6169	1414	3.825	.0620	.184
63	6200	1469	3.895	•C618	•185
54	6300	1403	3.967	• 7616	.185
8.5	64GV	1397	4.038	.2614	.185
88	6500	1391	4.110	·0612	.186
€7	6600	1385	4.18?	.0610	-186
53	670C	1373	4.254	• 06 08	•186
€9	0383	1374	4.327	•C606	•1 86
70	6900	1368	4.400	.0604	-187
71	7000	1362	4.473	• 0502	•187
72	7160	1356	4.546	•060L	•187
73	7200	1351	4.620	• E593	•137
73 74	7300	1345	4.694	•C597	•198
75	746C	1333	4.769	.0595	•138
76	7500	1333	4.844	•0593	.188
77	7600	1323	4.913	• C591	•183
78	7700	1323	4.994	•C583	•189
79	7300	1316	5.070	• C537	.189
8C	79CC	1311	5.146	•C585	.189
			24740		• 0 .

PROJECTIL _-XP101

MUZZLE VELCCITY-1800(F/S)

COUNT	ALTITUDE (FT)	VELOCITY (F/S)	TIME OF TLIGHT (SECS)	AIR DENSITY (L3S/FT3)	ERAC COSFFICIENT
0.5	0000			0500	4.00
81	8000	1305	5.223	•C583	.189
32	8100	1299	5.299	•0582	•190
83	82GC	1294	5.376	•C58G	•19C
34	9300	1239	5.454	•C578	.190
85 36	84CG 3500	1282 1277	5.532	•C576	190
87	3300	1271	5.613 5.688	•0574 •0573	•191 •191
88	870C	1265	5.767	•0573 •0571	•191
89	8800	1260	5.846	•0569	•191
95	8900	1254	5.926	•C567	•192
			34,124		-132
31	9000	1249	6.006	•C565	•192
92	9100	1243	6 - C 8 6	•C564	•192
93	92GC	1237	6.166	. 5562	•190
94	93CC	1232	ε.247	•C560	- 1. 88
95	9400	1225	6.329	•C558	•137
96	9566	1221	6.410	·C556	•185
97	3600	1215	6.493	•0555	•183
98	97CC	1210	6.575	•0553	•181
99	9300	1205	6.658	•0551	.179
100	9900	1199	6.741	. €549	•177
101	10000	1194	€.824	-C548	•176
102	10103	1139	6.938	•C546	.174
103	16266	1184	6.993	•C544	•172
154	10300	1173	7.677	• C 5 4 3	•170
105	15460	1173	7.162	·C541	•168
136	18530	1153	7.243	•C539	.167
107	10668	1163	7.333	.0537	•165
103	10709	1153	7.413	.0536	•163
109	10800	1153	7.506	.0574	•162
110	10900	1143	7.593	•0532	•16C
111	1:000	1143	7.630	0574	150
112	11166	1138	7.768	•0531	•158 157
113	11200	1133	7.256	.C523 .C527	.157
114	11350	1128	7.944	•0527 •0526	•155 •153
115	11453	1123	3 • C 3 3	•0524	•152
116	11566	1119	8.122	•0524 •0522	•15C
117	11633	1114	8.212	• C521	•148
118	11700	1109	9.362	•C521	•145 •147
119	11363	1104	3.392	• 5517	•145
120	11960	1099	3.483	.0516	.143
			· · - -		· -

PROJECTILE-XP101 MUZZLE VELOCITY-18CO(F/S)

	ALTITUDE	VELOCITY	TIME OF	AIR DENSITY	DRAC
COUNT	(FT)	(F/S)	FLIGHY (SECS)	(LBS/FT3)	COEFFICIENT
					2 4 0
121	12660	1095	8.574	-0514	•142
122	12100	1090	8.665	•6513	•14C
123	12200	1085	8.757	·C511	•139
124	12300	1091	8 • 850	•0509	•137
125	12460	1076	8.942	•C508	«135
126	12500	1071	9 . 035	•0506	•134
127	12600	1067	9.129	•0505	•132
128	12700	1062	9.223	•0503	•131
129	12890	1057	9.317	.0501	•129
130	12900	1053	9.412	•0500	•128
131	13030	1049	9.507	.0498	•126
132	13100	1044	9.602	.0497	.124
133	13200	1039	9.698	• C495	•127
134	13300	1035	9.795	•0494	.121
135	13400	. 1030	9.892	•0492	•120
136	13500	1026	9.989	.0490	•119
137	13600	1021	10.087	•0489	•117
138	13700	1617	10.185	·6487	•115
139	13800	1012	10.283	.0486	-114
14G	13900	1608	1C.382	.0484	•112
141	14000	1004	10.481	•C483	•111
142	14100	339	10.531	.0481	•109
143	14200	995	10.682	J0480	•108
144	14300	390	10.782	.0478	<u> 106</u>
145	14400	986	10.883	•0477	•106
146	14500	982	10.985	.0475	•106
147	146CC	977	11.087	•0474	•106
143	14700	27.3	11.189	•0472	• 206
149	14800	968	11.292	.0471	.106
150	14900	364	11.396	.0469	.106
161	15000	36 0	11 500	174 C 9	•106
151			11.500	•0468	
152	15100	955 051	11.604	.0466	.106
153	15200	951 846	11.709	• C465	•106
154	15360	946	11.814 11.920	•0463	•106
155	15400 15500	942 938	12.027	•0482 •0460	₄106 •106
156 157	15600	933	12.134	•0460 •0459	•106 •106
158	15760	929	12.241	•0459 •0457	•106 •106
159	15300	924	12.349	•0456	•106
160	159CC	920	12.457	•0455	•106
700	79300	320	12.4431	• 9 1 9 9	• 7 00

FROJECTIĻE-XP1G1 MUZZLE VELOCITY-18CG(F/S)

			-		223
	ALTITUDE	VELCCITY	TIME OF	AIR DENSITY	DRAG
COUNT	(FT)	(F/S)	FLIGHT (SECS)	(LBS/FT3)	COEFFICIENT
161	16000	915	12.566	.0453	.166
152	16100	311	12.676	· C452	.106
163	16200	906	12.786	•C450	.106
164	16303	3C2	12.396	·C449	.186
165	16400	897	13.CG7	·C447	·1C6
166	16500	893	13.113	·C446	.106
157	16600	388	13.231	.C445	.1 C6
168	16700	883	13.344	·C443	.106
169	16800	879	13.458	•G442	·106
173	16900	874	13.572	.0448	.106
	12000	0.70	13.686	.0439	. 106
171	17000	879	13.801	•C438	•106
172	171CC	865		•0436	.106
173	17200	360	13.917	•₽435	.206
174	1736C	856 351	14.C34 14.151	•0434	.105
175	17400	351 847	14.269	.0432	•156
176	17560		14.337	•0431	•106
177	17600	942 837	14.506	.0429	•106
178	17760	831 832	14.506	• C428	•105
179 180	17800 17900	828	14.746	.0427	•1C5
150	17900	020	146140	V. V.	
181	18000	823	14.867	•C425	•1C6
132	13100	313	14.933	.0424	-106
183	18200	814	15.111	.0423	.1 C6
134	18309	303	15.235	•C421	.106
185	18400	8C4	15.359	•C425	.106
136	13500	799	15.483	·C419	.106
187	18600	794	15.609	.C417	.166
133	18703	789	15.735	cC415	.106
189	18866	785	15.862	.C415	.106
130	13900	780	15.990	·5413	- 1.06
131	19888	775	16.118	•C412	.106
132	19100	77C	16.248	.C411	•10E
193	19200	765	16.378	•C410	.105
194	19300	760	16.509	•C4C8	.106
135	19460	755	16.641	·64C7	-106
196	19500	7 50	16.774	•C45E	•1C6
137	19500	745	16.997	.0404	.106
138	19760	74C	17.042	•C4C3	•1CE
199	19300	735	17.177	•0402	-106
200	19966	73C	17.314	°C46J	.106

PROJECTILE-XP101

MUZZLE VELOCITY-18EG(F/S)

COUNT	ALTITUDE (FT)	VELOCITY (F/S)	TIME OF FLIGHT (SECS)	AIR DENSITY (LBS/FT3)	DRAG COEFFICIENT
201	20000	725	17.451	•C399	•1CE
232	20100	720	17.530	•0398 •0398	
203	20200	714	17.723	•C397	•106 100
204	20353	709	17.863		•1CE
205	20400	703	18.C11	•2396 •2394	•106
206	25500	699	13.153	•0393	•1CE
257	20600	694	18.297	•0393 •0392	•1CE •1C6
233	20700	583	13.442	•0391	•106 •106
209	20800	€83	18.587	•0389	•1CE
210	20900	678	13.734	•0388	.108
			200.07	• (3 5 5	• 150
211	21000	672	13.832	•C337	•106
212	21100	667	19.C32	•038E	.165
213	21200	661	13.132	• 0334	•106
214	21300	656	19.334	•C383	·106
215	21409	65C	19.437	•E382	•106
216	21500	645	19.641	₽C381	•1C6
217	21600	633	19.737	•0390	•10E
218	21700	634	19.954	.0378	•106
219	21800	628	20.112	· C377	·1C6
220	21900	622	20.272	•C376	•106
221	22000	616	26.433	•C375	.106
222	22100	611	20.596	.0374	•106
223	22200	605	20.761	•C373	•1C6
224	22300	599	20.927	•E371	.106
225	22400	593	21.094	•C37C	•1G6
226	22500	587	21.264	•0359	.106
227	22600	581	21.435	•C368	•106
223	22700	5 7 5	21.603	•C357	-108
229	228CO	563	21.782	•€36€	.106
230	22900	563	21.953	•r354	•106
231	23060	556	22.133	• 6363	•106
232	23100	550	22.318	•G362	.166
233	23203	544	22.501	.0351	.186
234	23366	537	22.686	•036C	.166
235	23400	531	22.873	.0359	.105
236	23500	524	23.062	•C358	•1C6
237	23603	513	23.254	• 2355	.106
238	23766	511	23.448	·0355	•1C6
239	23300	504	23.645	• €354	·196
24C	23988	497	23.844	·0353	-166

PROJECTILE-XP1C1

MUZZLE VELOCITY-18CC(F/S)

	ALTITUDE	VELOCITY	TIME OF	AIR DENSITY	DRAC
COUNT	(FT)	(F/S)	FLIGHT (SECS)	(LBS/FT3)	COEFFICIENT
241	24600	491	24.046	•0352	.106
242	24100	484	24.252	.0351	•106
243	24200	476	24.460	•C35D	•106
244	24300	469	24.671	•0349	-106
245	24400	452	24.885	. 0348	.106
245	24500	455	25.103	•0346	-106
247	24600	447	25.325	•D345	•106
248	24700	439	25.550	.0344	•106
249	24800	432	25.780	.0343	•106
250	24900	424	26.013	.0342	•106
251	25000	416	25.251	·0341	.106
252	25100	408	26.494	•D340	.1 06
253	25200	399	26.741	•0339	.106
254	25300	391	26.994	- 0338	.1 05
255	25400	382	27.252	• D3 37	-106
256	25500	373	27.517	•0336	•106
257	25600	364	27.787	• Ü335	-1 06
258	25700	355	28.065	·D334	•106
259	25800	346	28.350	.0332	-106
260	25900	336	28.642	•C331	•106
261	26000	326	28.944	aG33C	.1 C6
252	26100	316	29.255	•0329	-106
263	26200	365	29.576	•0328	-106
264	26300	294	29,909	•0327	.106
265	26400	283	30.255	•0326	•106
266	26500	271	30.615	•0325	•106
267	26600	259	3C.992	•0324	•106
268	26700	246	31.388	•0323	-106
269	26800	232	31.805	•0322	.1C6
270	26900	218	32.243	•0321	•106
271	27000	202	32.723	•0320	•106
272	27100	186	33.237	.0319	.106
273	27200	167	33.802	.0318	•106
274	27360	147	34.436	•C317	.105
275	27400	123	35.175	•C316	÷106
276	27500	93	36.096	•0315	-106
277	27600	48	37.505	.C314	•106

PROJECTILE-XP1G1

MUZZLE VELOCITY-1800(F/S)

COUNT	ALTITUDE (FT)	VELCCITY (F/S)	TIME OF TLIGHT (SEOS)	AIR DENSITY	DRAC COEFFICIENT
	• • • •	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-2011 (3603)	([]] / ; 1] /	COTELTOTEAL
1	2765.0	С	37.505	•E314	•550
2	2 75 C0	3 C	39.939	•:315	•550
3	27400	113	41.034	•C316	•55C
4	27300	133	41.330	•5317	• 55℃
5	27200	159	42.5C2	•6318	•550
6 7	27100	177	43.036	•S319	•55C
7	27000	194	43.633	%C32C	.55€
3	25900	209	44-123	.0321	√55 €
9	26800	223	44.590	•C322	•550
10	25709	236	45.C25	•0323	•55C
11	26600	243	45.437	•C324	.55C
12	26500	256	45.830	.0325	•55C
13	26400	271	46.205	•C325	. ዓናር
14	263CC	282	46.567	•C327	•55C
15	26200	292	45.915	•C328	•550
16	26100	301	47.252	. 0329	•55C
17	25000	311	47.573	• C33C	•55₿
18 13	25960	32C	47.895	•C331	•55G
	25800 25700	323 3 3 6	48.203	•0332	•550
- ~	25700	336	48.504	•C334	•550
21	2550				
21	256GC	345	48.797	•C335	•55C
22	25500	352	49.034	•0336	•55℃
23	254C0	36C	49.364	•6337	•550
24 25	25300 25200	367	43.633	- 0338	. 550
25 25	25100	374	49.908	•C339	•550
27	25CCO	331	53.172	• 0345	•550
23	24900	388 395	56.432	•C341	•55D
29	24860	4C1	50•637 5C•938	•0342	•550
35	24763	407	51.185	•C343	•55C
30	27100	401	31-165	• C344	• 550
31	246CC	413	5 1 (122	0.74.5	, a. m. s
32	245CC	419	51.423	• C345	•550
33	244CG	425	51.669	•C346	•55C
34	2436C	425 431	51.905 52.138	• C348	•550
35	24200	436	52 • 13 8 52 • 363	-0349 •0358	•55C
36	24100	442	52.596	•0350 •0351	• 550 550
37	24000	447	52.321	•0352	•550 •550
38	23900	452	53.C43	•0353	•550 •550
39	23800	453	53.262	• C 3 5 4	•55C
4 C	237CC	4 € 3	53.473	•C3F5	•55C

PROJECTILE-XP101 MUZZLE VELCCITY-18CC(F/S)

201117	ALTITUDE	VELOCITY	TIME OF	AIR DENSITY	DRAC
COUNT	(FT)	(F/S)	FLIGHT (SECS)	(LBS/FT3)	COEFFICIENT
41	23600	467	53.694	•£356	•550
42	23500	472	53.907	•0353	• 550
43	23400	477	54.117	•0359	•55C
44	23300	482	54.326	.0360	•550
45	23260	486	54.532	•C361	•55C
46	23100	491	54.737	•0362	•55C
47	23000	495	54.940	•C363	•55C
48	22900	499	55.141	• C364	•55C
49	22800	503	55.34C	•C36€	•550
50	22700	507	55.538	.0367	•550
					• 333
51	22600	511	55.734		
52	22500	515		•0368	- 550
53	22400	515 519	55.928	.0369	•55C
54	22300	523	56.121	•0370	• 550
55	22200	523 527	56.313	.0371	•55C
56	22106	52 <i>1</i> 531	56.503	.0373	• 55 C
5 <i>7</i>	22000	531 534	56.692	•C374	•550
58	21968		56.883	•0375	• 550
59	21300	538 541	57.067	•037€	•550
8C	21700	545	57,252	•0377	• 55 ប
00	21/00	547	57.436	•8378	•550
61	21600	548	57 CAO		
62	21500	546 551	57.619 57.800	•C38C	•55C
63	21400	55 1	57.981	.0391	•550
64	21300	55 4 558		-0382	•550
65	21200	561	58.161	•0383	4 55 0
66	21100	564	58.339	•D384	•550
67	21000	567	58.517 58.694	•D396	• 55 C
63	20960	57 C	58.87C	.C387	•55C
69	20303	573	59.045	• C338	• 55 C
78	25763	576	59.213	•D385	•550
	20,00	316	23.5773	.0391	• 550
71	20600	570	50 710		
72		578	59.332	•C392	• 550
73	20500	581	59.564	•D393	•55C
	20400	584	53.735	• C394	•55C
74 7=	20360	587	59.906	•C396	. 550
75 76	20200	539	60.076	•C397	•55C
76 77	20100	592	6C •245	•C398	•55C
77 78	20000	594	50.414	•C399	•55C
78 73	19900	597	EC .532	•C401	•550
7 9 38	19300	599	6C.743	•C4C2	•55C
00	19765	6.03	60.915	•G4B3	•55C

PROJECTILE-XP101

MUZZLE VELCCITY-18GC(F/S)

сочит	ALTITUDE (TT)	VELOCITY (F/S)	TIME OF TLIGHT (SECS)	AIR DENSITY (LBS/FT3)	DRAG CDEFFICIENT
81	19866	6C4	61.081	.6464	•55C
32	19500	606	61.246	• 0406	•55C
83	19400	609	61.410	•G4C7	•55C
34	13300	611	61.574	.0408	•55C
85	19266	613	61.737	•641C	•55C
35	19100	615	61.30C	.0411	• 550
87	19866	617	62.062	•C412	•55D
33	13900	519	62.224	•C413	•550
89	23881	622	62.385	•C415	•550
30	13700	524	62.545	• C416	• 550
31	19533	626	62.735	·C417	•550
92	18500	627	62.885	.C419	•55C
93	13403	629	63.C24	- 9428	• 55 C
94	18300	631	E3.182	·C421	•55C
35	18200	633	63.34C	· 0423	•55C
96	18100	635	63.498	·C424	•55€
97	18000	537	83.655	• C4 25	•55C
98	17900	638	63.812	·C427	•55C
33	17800	543	63.963	.0429	•55C
186	17760	642	64.124	·C429	•55€
101	176GC	643	64.285	.0431	•55C
132	17503	645	64.435	.0432	• 550
103	1.7460	647	64.589	.0434	•55C
104	17300	648	64.744	· C435	•550
105	17200	650	64.898	.6436	•55C
106	17100	651	65.052	·C433	。55ព
107	17000	652	€5.205	•C439	•55C
103	16900	654	65.358	• C44C	•55C
109	16860	655	85.510	.0442	•55C
113	16700	657	65.663	.0443	•550
111	16600	658	65.815	• C445	•55C
112	1656C	659	65.967	•6446	•55C
113	16400	661	66.113	· C447	•550
114	16360	662	€€.269	.C449	•55G
115	16283	663	66.423	.0450	455 €
116	16100	€64	E6.57L	.C452	•55C
117	16000	655	66.721	· 0453	•55C
118	15900	667	66.871	·C455	•55C
113	15300	663	67.C21	• C456	- 55℃
120	15766	669	67.176	·C457	•55C

PROJECTILE-XP1C1 MUZZLE VZLOCITY-1866(F/S)

COUNT	ALTITUDE (FT)	VELOCITY (F/S)	TIME OF FLIGHT (SECS)	AIR DENSITY (LBS/FT3)	DRAG COEFFICIENT
121	15605	670	67.319	。C459	•55C
122	15500	671	67.463	•0450	• 550
123	15400	672	57.617	•C462	•550
124	15300	673	67.766	•C463	•550
125	15200	674	E7.914	•C465	•550
126	15100	675	63.063	• 8466	•55C
127	15060	676	68.21.1	•C468	•55C
123	14900	677	68.358	.0459	• 55C
129	14800	677	68.5C6	·C471	•55C
130	14700	678	68,653	•0472	•550
131	14600	679	63.801	·C474	• 55£
132	14500	680	68.948	·C475	•55C
133	14400	691	69.C95	•0477	•55C
134	14300	681	69.241	<u> 5478</u>	•55€
135	14200	582	69-338	•0480	• 55C
136	14166	583	69.534	•C481	•55D
137	14000	684	69.631	•0483	• 550
138	13900	684	69.827	•0484	•550
139 14C	13800 13700	685	69.973	• C486	• 55C
740	13700	685	70.119	•G487	•550
	17550				
141	136GC	686	70.264	.0489	•55C
142	13500	687	70.410	•0430	• 55 C
143 144	13400	687	70.555	•0492	•550
145	13300 13260	68 <u>8</u> 688	70-70 <u>1</u>	- Dri 3ri	• 550 550
145	13100	689	7C.846 7C.991	•0495 •0497	•55C
147	130CC	689	71.136	•0497 •0498	• 550 550
143	12900	630	71.281	• 0500	•550 •550
149	12800	69C	71.426	•0501	•550 •550
150	12700	691	71.571	•0503	•550
		_			
151	12600	691	71.715	• 0505	• 55 C
152	12500	691	71.86C	•C506	•55C
153	12400	632	72.C04	• 0508	•550
154	12300	692	72.149	.0509	•55C
155	12200	592	72.293	•0511	• 55C
156	12100	693	72.437	.0513	•550
157	12000	633	72.531	·D514	• 55C
158	11900	693	72.726	•C516	•55C
159	11800	694	72.87G	•C517	• 55C
166	11706	694	73.C14	•C519	•55C

PROJECTILE-XP101

MUZZLE VELCCITY-1800(F/S)

COUNT	ALTITUDE (FT)	VELOCITY (F/S)	TIME OF FLIGHT (SECS)	AIR DENSITY (LBS/FT3)	DRAG COEFFICIENT
161	11600	694	73.158	.0521	•55€
162	11500	694	73.302	•0522	•55C
163	114CC	695	73.446	•0524	•550
154	11300	695	73.539	•0526	•550
165	11200	695	73.733	•0527	•550
156	11100	695	73.877	•0529	•55C
167	11666	695	74.621	•0531	•55C
168	10900	695	74.165	•0532	•55D
169	10800	695	74.308	•C534	•55D
170	10700	635	74.452	• 0536	•550 •550
	29.00	0 3 0	170432	• 6536	: 33C
171	10603	696	74.596	•0537	.55C
172	10500	696	74.739	•G539	.55C
173	10400	696	74.833	•0541	•55€
174	10300	696	75.027	•0543	.55D
175	10200	696	75.170	• 0544	•550
176	10166	696	75.314	•C546	•550
177	10000	696	75.453	• 0548	•55C
178	9960	696	75.601	•C549	•55C
179	3800	896	75.745	0551	•55C
180	97CC	695	75.889	•D553	•555
181	9600	695	76.032	•C555	•55D
132	9500	695	76.176	• C556	•55€
183	94CG	695	76.32C	•C558	•55C
134	9300	695	76.463	•0560	•55℃
185	9200	695	78.607	∍C562	∍55 €
135	9160	695	76.751	•C564	.550
187	9000	695	76.895	•0565	•55C
133	9900	694	77.039	• C567	•55C
189	8800	694	77.183	. €569	•550
190	37CC	694	77.326	•C571	•55C
131	9600	694	77.470	·C573	•55D
192	85CC	694	77.614	•0574	.550
133	3400	593	77.758	•0576	• 55 C
194	8300	693	77.903	.C578	.55C
195	3200	693	73.047	• 058C	.55€
196	81CC	693	78.191	·C582	.55C
137	3000	692	78.335	·C583	• 55C
198	7960	892	78.485	•C585	.55C
139	7800	532	73.624	•0597	• 55 C
2 C G	7766	691	78.768	•€589	.55C

MUZZLE VELCCITY-18CO(F/S)

PROJECTILE-XP1G1

COUNT	ALTITUDE (FT)	VELOCITY (F/S)	TIME OF FLIGHT (SECS)	AIR DENSITY (LBS/FT3)	DRAC CUEFFICIENT
201	7600	691	78.913	•0591	•55C
202	7500	691	73.057	.0593	•550
203	7400	690	79.202	.0505	•550
204	7300	690	79.347	.0597	•550
205	7200	369	79.492	·C598	•550
206	7100	539	79.636	•0500	•550
207	7000	689	79.781	·0602	•55C
238	6960	683	73.928	• D&C4	•55C
209	6800	688	80.672	•0606	•550
210	6700	638	30.217	•u698	•55°C
211	6600	687	80.362	.0510	•55C
212	6500	687	8C.507	∞C612	•550
213	6400	686	80.653	.0514	•55C
214	6300	686	80.799	•C616	•55C
215	6200	685	8C.944	.0618	•55C
216	6160	685	81.09C	•0620	•55C
217	6000	885	81.235	-0622	•55℃
218	5900	684	81.382	•C624	•559
219	5800	683	81.528	• C6 25	•55 0
22C	5700	585	81.674	.0627	•550
221	5600	882	81.82C	•C629	•550
222	5500	682	31.957	.0631	•550
223	54EC	681	82.113	.0633	•55C
224	5300	691	82,260	• C635	•55C
225	5260	68C	82.407	•0637	•55C
226	5100	630	82.554	• C639	•550
227	5000	679	82.701	.0641	•550
228	4900	679	82.843	• 0544	• 550
229	48CO	678	82.995	.0648	•550
230	4700	677	33.143	•0648	•550
231	46CD	677	83.290	•9650	• 55 C
232	45G0	676	83.438	، 0652	. 550
233	4400	575	83.536	• 0654	•550
234	43C0	675	83.734	.0656	•55€
235	4200	574	83.892	«D658	•55C
236	4100	674	84.030	.0660	•550
237	4000	673	84.173	•0662	•550
238	3900	572	84.327	·C664	•550
239	3360	672	34.475	• 0666	• 550
24C	3700	671	84.624	8 3 3 3 ₄	. 550

PROJECTILE-XP101

MUZZLE VELCCITY-18CG(F/S)

COUNT	ALTITUDE (FT)	VELOCITY (F/S)	TIME OF FLIGHT (SECS)	AIR DENSITY (LBS/FT3)	DRAG COEFFICIENT
241	3600	670	84.773	.0671	•5 <i>5</i> 0
242	3500	670	84.922	.0673	•550
243	3400	669	85.071	.0675	•550
244	3300	558	85.221	.0677	•550
245	3200	667	85.375	·C679	•550
245	3160	567	35.528	• CE31	°22C
247	3006	888	85 . 676	•C683	•550
248	2900	665	85.320	•0686	•550
249	2800	€65	85.37C	•C688	•55C
253	2790	564	35.121	•0690	•55C
251	2600	663	86.271	•0692	• 550
252	2500	662	86.422	•C694	•55C
253	2400	661	86.573	•0696	•550
254	2300	661	85.724	. 0699	•55C
255	2200	660	86.875	.0701	• 550
256	2100	659	87.C26	.0703	•550
257	2000	653	87.173	•0705	•550
258	190C	658	87.33C	.0708	•55D
259	180C	657	87.482	•0710	. 550
260	1700	656	87.634	•G712	•550
261	1600	655	87.786	·G714	•550
262	1500	654	87.939	.0717	• 550
263	1400	654	88.091	•C719	•550
254	1300	653	88.244	.0721	• 550
265	1200	652	88.397	•C723	•550
266	1100	651	88.551	•0726	•55C
287	1600	650	88.704	.0728	.55C
263	900	649	33.853	• 0730	•550
269	800	649	89.012	•6733	•55C
270	700	648	39.166	• 0735	•55C
271	600	647	99.320	.0737	•550
272	5 C C	646	89.474	.0740	.55C
273	460	645	89.629	.0742	• 550
274	300	644	89.784	.0744	•55C
275	280	544	89.939	.0747	•550
276	160	643	96.094	.0749	655C
277	0	642	96.250	.0751	.55C

APPENDIX B. FORTRAN LISTING OF VERTICAL FLIGHT COMPUTER PROGRAM

```
.D FILEA. STOP
-RLIB67-1C C7/24-C8:44:43
          DIMENSION ADRO(3), BORO(7), UCHG(3), ITYPT(2)
          REAL KE+KOVC+ MACHOL
    C
    C THIS PROGRAM CALCULATES PROJECTILE VELOCITY AND TIME OF FLIGHT 40
        OF RANGE FOR A PROJECTILE FIRED VERTICALLY UPWARDS
    C
          RIAD (5:106) (ITYPE(K::K=1:2): WST: DIAM: UMUZL
          PEAD (5.107) (ADRC(X).CDRG(K).UCHG(K). K=1.3)
          DIAMEDIAM/12.
          UI1=UMUZL
          KUMUZL JUMUZL
    C
       PROGRAM CONSTANTS FOLLOW
          G=32.2
          RH0GRD=0.07513
          H=C.0000316
       INITIALIZE ALL VARIABLES
           DELZ=1CO.
           JUMP=C
           KOUNT=3
           NUMLIN=40
           Z=0
           T = 0
    C
       CALCULATE MAXIMUM ALTITUDE (IN 160'S -FT) THAT PROJECTILE WILL I
    C
            UPWARD. ASSUMES DRAGED
    C
           ASTOP = (UMUZL **2)/(200. *C)
           ISTOP=ASTOP
    C
       DETERMINE WHICH SECTION OF SEPARATE THREE LINEAR FITS TO DRAG EG
    C
            APPLIES
    C
           DO 8 K=1.3
           IF (UMUZL .CT. UCHC(K) ) CC TC 9
         3 CONTINUE
    C
         9 CONTINUE
           JDRC = K
        CALCULATE TIME AND VELOCITY AT POINT I USING (I-1) VALUES FOR UF
       DO 10 LOOP VELOCITY ALTITUDE AND TIME OF FLIGHT FOR MOTION UPWAF
        IF VELOCITY IS LESS THAN ZERO APEX HAS BEEN PEACHED
```

```
C
      DO 18 I=1.TSTOP
      UCLD=UI1
      RHO=PHOGRO+EXP(-H+Z)
      IF(UI1 .LE. UCHC(JDRC)) JDRG=JDRG + 1
      MACHOL= JOLD/1100.
      KD = ADRC (JDRG) + BDRG (JDRG) * MACHOL
      CONSTERHO *DIAM**2 * KO/WCT
      E=EXP(-2. *CONST*DELZ)
      COVK= C/CONST
      DENOM=SQRT(G*CONST)
      Keve =SGRT(CONST/G)
      IF(KOUNT .GE. NUMLIN ) KOUNT=0
      if(Kount .eq. c) Write(e.id1) (ityp:(K).K=1.2). Kumuzl
      KOUNT=KOUNT +1
      KUI1=UI1
      KZ=Z
      WRITE (6.102) I.KZ. KUII.T.RHC.KD
      JUMP=JUMP + 1
      IF (JUMP .NE. 10) CC TO 15
      WRITE (6,104)
       JUMP=C
   15 CONTINUE
      CHECK = (UCLu**2 + CCVK)*C-CCVK
      I: (CHECK .LT. 0) 00 TO 20
      UI1= SGRT ((UOLD**2 + CCVK )*E " COVK )
С
С
   NOW THE TIME OF FLIGHT CALCULATIONS FOLLOW
      DELT=(ATAN(KOVC+UCLE) - ATAN(KOVG+UI1))/DENOM
      T=T+DELT
       Z=Z+DELZ
   10 CONTINUE
С
   NEXT CALCULATE TIME AND VELOCITY ON DECENDING FLIGHT
   2C CONTINUE
       JUMP=C
       KD=C.55
       UI1=0.0
       KSTOP=I
       KOUNT=0
C
```

```
C
      DO 30 I=1.KSTOP
      UOLD=UI1
      RHO=RHOGRD + EXP(-H+Z)
      CONSTERHO + DIAM++2 + KD/WST
      E = EXP(-2. +CONST+DELZ)
      GCVK =S/CONST
      GOVKHF=SQRT(GOVK)
      DENOM= 2. * SQRT(G *CONST)
      IF (KOUNT .GE. NUMLIN ) KOUNTED
      IF(KOUNT .EQ. D) WRITE(5.101) (ITYPE(K).K=1.2). KUMUZL
      KOUNT = KOUNT +1
      KUI1=UI1
      KZ=Z
      WRITE (6,192) I,XZ, KUII,T,RHO,KD
      JUMP=JUMP + 1
      IF(JUMP .NE. 10) GO TO 35
      WRITE (6,104)
      JUMP=S
   35 CONTINUE
      UI1=SGRY ((UOLD**2 - GOVK )*E + GOVK )
      IF (UOLD .NE. C ) DELT=DELZ/UOLD
      FIRST = (GOVKHF + UI1)/ (GOVKHF - UI1)
      SECOND= (GOVKHF + UOLD)/(CCVKHF - UCLD)
      IF (FIRST .GT. D .AND. SECOND .GT. D)
     1DELT= (ALOG(FIRST) - ALOG(SECOND))/DENOM
      T= T +DELT
      Z=Z - DELZ
      IF (Z .LT. 0 ) GO TO 48
   30 CONTINUE
   4D CONTINUE
C+++++++

                           ÷ FORMATS *****
  101 FORMAT ( 1H1:
                       19X, * PROJECTILE-*, A2, I3, 12X, * MUZZLE VEL
     1Y-** 14**(F/5)** ///
           20X, * ALTITUDE*, 2X, * VELOCITY*, 2X,*
                                                     TIME OF . 5X.
     3DENSITY*, 4x, * DRAG*, /, 13x, * COUNT*, 3x,
             ' (FT)', 6X, ' (F/S)', 3X, ' FLICHT (SECS)', 2X, ' (LBS/F
       2X, * COEFFICIENT*, / )
C
                             ALT
                    COUNT
                                     VEL
                                              TIME
                                                        DENSITY
                                                                  DRAG
   102 FORMAT (
                14X, I4, 3X, I6, 7X, I4, 5X, F8.3, 5X, F9.4, 8X, F5.3
   104 FORMAT ( / )
   106 FORMAT (5X: A2:13:3F10.0
   107 FORMAT ( 3( 2F10.0 , F5.0 ) )
C
C
       CN3
```