





Branch of artificial intelligence using data to train a machine (model) to make predictions based on inputs (data)



- Supervised Learning
  - Data for training machine learning model include known labels (outputs) and features (inputs)
- Unsupervised Learning
  - Data for training model include only features (inputs) but no known labels (outputs)
    - Machine learning model is trained by observing similarities in features (inputs)

- Supervised Learning
  - Popular supervised learning method
    - Regression model

$$f(x) = y$$
$$Y = a + bX$$

where X is the explanatory variable
Y is the dependent variable.
b is the slope of the line
a is the intercept value of y when x = 0)

| Temperature | Customer |
|-------------|----------|
| 71          | 204      |
| 75          | 198      |
| 100         | 311      |
| 65          | 128      |
| 97          | 280      |
| 77          | 284      |
| 70          | 168      |
| 88          | 236      |
| 76          | 162      |
| 96          | 245      |





| Temperature | Customer |
|-------------|----------|
| 71          | 204      |
| 75          | 198      |
| 100         | 311      |
| 65          | 128      |
| 97          | 280      |
| 77          | 284      |
| 70          | 168      |
| 88          | 236      |
| 76          | 162      |
| 96          | 245      |

#### SUMMARY OUTPUT

| Regression Statistics |             |  |  |  |  |  |
|-----------------------|-------------|--|--|--|--|--|
| Multiple R            | 0.813790773 |  |  |  |  |  |
| R Square              | 0.662255423 |  |  |  |  |  |
| Adjusted R Square     | 0.620037351 |  |  |  |  |  |
| Standard Error        | 36.81556566 |  |  |  |  |  |
| Observations          | 10          |  |  |  |  |  |
|                       |             |  |  |  |  |  |

#### ANOVA

|            | Coefficients | Standard Error | t Ctat      | D value     | Lower 05%      | Unnar 05% | 104 |
|------------|--------------|----------------|-------------|-------------|----------------|-----------|-----|
| Total      | 9            | 32104.4        |             |             |                |           |     |
| Residual   | 8            | 10843.087      | 1355.385875 |             |                |           |     |
| Regression | 1            | 21261.313      | 21261.313   | 15.68653871 | 0.004173386    |           |     |
|            | df           | SS             | MS          | F           | Significance F |           |     |

|             | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%    | Upper 95%   | Lower 95.0%  | Upper 95.0% |
|-------------|--------------|----------------|--------------|-------------|--------------|-------------|--------------|-------------|
| Intercept   | -91.29220104 | 79.85396655    | -1.143239403 | 0.285994895 | -275.4357781 | 92.85137604 | -275.4357781 | 92.85137604 |
| Temperature | 3.839168111  | 0.969334269    | 3.960623525  | 0.004173386 | 1.603879278  | 6.074456944 | 1.603879278  | 6.074456944 |

# Multiple R

- Absolute value of correlation coefficient (Pearson r)
  - The large the number the more indication of possible relationship
  - Can't tell the direction because of the absolute value

# $R^2$

- coefficient of determination
  - How well the regression model (line) fits the data
  - Proportion of the variance in the dependent variable that is explainable (predictable) by he independent variable
  - R<sup>2</sup> = 1 means 100% of the dependent variable can be explained by the independent variable
  - R<sup>2</sup> = 0.80 means 80% of the dependent variable can be explained by the independent variable

# **Standard Error**

- A measure of the precision of the model
  - Average error of the regression model.
  - Tells how wrong the model is
  - The smaller the better (in relation to the coefficient)

# Significant F

- Significant F is the P-value of F
  - a ratio computed by dividing the mean regression sum of squares by the mean error sum of squares
  - Ranges from 0 to very large number
  - Model is OK if less than 0.05
  - Look for another independent variable if greater than 0.05

## P-values

- Probability that the estimated coefficient is unreliable.
  - OK if less than 0.05
  - Otherwise, delete the independent variable > 0.05

## Residuals

• error =  $y - \hat{y}$  (y actual – y predicted)











#### Data Science Fundamentals: Regression Results

# • Temperature vs. Customers

| Temperature | Customers |
|-------------|-----------|
| 100         | 60        |
| 95          | 98        |
| 90          | 100       |
| 85          | 200       |
| 80          | 300       |
| 75          | 320       |

# Customers = Y = Dependent Variable

| Υ         | Ϋ́   |
|-----------|------|
| Customers | Mean |
| 60        | 180  |
| 98        | 180  |
| 100       | 180  |
| 200       | 180  |
| 300       | 180  |
| 320       | 180  |





# Regression Results ERROR

## Residual Residual <sup>2</sup>

| Υ   | Ÿ      | Υ - Ϋ   | (Y - Ÿ)^2 |
|-----|--------|---------|-----------|
| 60  | 179.67 | -119.67 | 14320.11  |
| 98  | 179.67 | -81.67  | 6669.44   |
| 100 | 179.67 | -79.67  | 6346.78   |
| 200 | 179.67 | 20.33   | 413.44    |
| 300 | 179.67 | 120.33  | 14480.11  |
| 320 | 179.67 | 140.33  | 19693.44  |

Total Sum of Square (SST) =  $\Sigma(Y - \overline{Y})^2 = 61923.33$ 

61923.33

| X           | Υ         |
|-------------|-----------|
| Temperature | Customers |
| 100         | 60        |
| 95          | 98        |
| 90          | 100       |
| 85          | 200       |
| 80          | 300       |
| 75          | 320       |



| Regression S      | tatistics    |                |              |             |                |              |              |              |
|-------------------|--------------|----------------|--------------|-------------|----------------|--------------|--------------|--------------|
| Multiple R        | 0.963506714  |                |              |             |                |              |              |              |
| R Square          | 0.928345189  |                |              |             |                |              |              |              |
| Adjusted R Square | 0.910431486  |                |              |             |                |              |              |              |
| Standard Error    | 33.30579815  |                |              |             |                |              |              |              |
| Observations      | 6            |                |              |             |                |              |              |              |
| ANOVA             |              |                |              |             |                |              |              |              |
|                   | df           | SS             | MS           | F           | Significance F |              |              |              |
| Regression        | 1            | 57486.22857    | 57486.22857  | 51.82318801 | 0.00197334     |              |              |              |
| Residual          | 4            | 4437.104762    | 1109.27619   |             |                |              |              |              |
| Total             | 5            | 61923.33333    |              |             |                |              |              |              |
|                   | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%    | Lower 95.0%  | Upper 95.0%  |
| Intercept         | 1182.666667  | 139.990045     | 8.448219777  | 0.001075413 | 793.9919915    | 1571.341342  | 793.9919915  | 1571.341342  |
| Temerature        | -11.46285714 | 1.592321712    | -7.198832406 | 0.00197334  | -15.88385097   | -7.041863319 | -15.88385097 | -7.041863319 |

$$\hat{Y} = 1182.67 - 11.46(X)$$



| Χ          | Υ           | Ŷ          | Y-Ŷ      | (Y-Ŷ)^2  |
|------------|-------------|------------|----------|----------|
| 100        | 60          | 36.67      |          |          |
| ٥٢         | 00          | 93.97      | 1 55     | K        |
|            | CT          | 51.27      |          |          |
|            | ) J         | 08.57      | CC       |          |
| 80         | 300         | 265.87     | 1 55     |          |
| 75         | 320         | 323.17     |          |          |
| Sum of Squ | ares Error  | (SSE)      |          | 4437.49  |
| Total Sum  | of Squares  |            | 61923.33 |          |
| Sum of Squ | iares Regre | ssion (SSR | )        | 57485.84 |

| Regression S      | tatistics    |                |              |             |                |       | Χ        | Υ              | Ŷ          | Υ-    | Ŷ  | (Y-Ŷ)^2  |
|-------------------|--------------|----------------|--------------|-------------|----------------|-------|----------|----------------|------------|-------|----|----------|
| Regression 3      | latistics    |                |              |             |                | _     | 100      | 60             | 36.67      | 23.3  | 33 | 544.29   |
| Multiple R        | 0.963506714  | R Squa         | re = SSR     | / SST       |                | ╄     | 95       | 98             | 93.97      | 4.0   | )3 | 16.24    |
| R Square          | 0.928345189  |                | = 574        | 85.84/      | 51923.33       |       | 90       | 100            | 151.27     | -51.  | 27 | 2628.61  |
| Adjusted R Square | 0.910431486  |                | = 0.92       | •           |                | ı     | 85       | 200            | 208.57     | -8.5  | 57 | 73.44    |
| Standard Error    | 33.30579815  |                |              |             |                | J     | 80       | 300            | 265.87     | 34.3  | 13 | 1164.86  |
| Observations      | 6            |                |              |             |                |       | 75       | 320            | 323.17     | -3.1  | 17 | 10.05    |
|                   |              |                |              |             |                |       | Sum of S | Squares Error  | (SSE)      |       |    | 4437.49  |
| ANOVA             |              |                |              |             |                |       | Total Su | m of Squares   | (CCT)      |       |    | 61923.33 |
|                   | df           | SS             | MS           | F           | Significance F |       | Total Su | iii oi squares | (331)      |       |    | 01923.33 |
| Regression        | 1            | 57486.22857    | 57486.22857  | 51.82318801 | 0.00197334     |       | Sum of S | SquaresRegre   | ssion (SSI | R)    |    | 57485.84 |
| Residual          | 4            | 4437.104762    | 1109.27619   |             |                |       |          |                |            |       |    |          |
| Total             | 5            | 61923.33333    |              |             |                |       |          |                |            |       |    |          |
|                   | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%      | Upp   | er 95%   | Lower 95.0%    | Upper 9    | 5.0%  |    |          |
| Intercept         | 1182.666667  | 139.990045     | 8.448219777  | 0.001075413 | 793.9919915    | 157   | 1.341342 | 793.9919915    | 1571.3     | 41342 |    |          |
| Temerature        | -11.46285714 | 1.592321712    | -7.198832406 | 0.00197334  | -15.88385097   | -7.04 | 1863319  | -15.88385097   | -7.0418    | 63319 |    |          |

$$\hat{Y} = 1182.67 - 11.46(X)$$

#### Machine Learning- Python -Regression Analysis



# • Temperature vs. Customers

| Temperature | Customers |
|-------------|-----------|
| 100         | 60        |
| 95          | 98        |
| 90          | 100       |
| 85          | 200       |
| 80          | 300       |
| 75          | 320       |

| Regression S      | tatistics    |                |              |             |                |              |              |              |
|-------------------|--------------|----------------|--------------|-------------|----------------|--------------|--------------|--------------|
| Multiple R        | 0.963506714  |                |              |             |                |              |              |              |
| R Square          | 0.928345189  |                |              |             |                |              |              |              |
| Adjusted R Square | 0.910431486  |                |              |             |                |              |              |              |
| Standard Error    | 33.30579815  |                |              |             |                |              |              |              |
| Observations      | 6            |                |              |             |                |              |              |              |
| ANOVA             |              |                |              |             |                |              |              |              |
|                   | df           | SS             | MS           | F           | Significance F |              |              |              |
| Regression        | 1            | 57486.22857    | 57486.22857  | 51.82318801 | 0.00197334     |              |              |              |
| Residual          | 4            | 4437.104762    | 1109.27619   |             |                |              |              |              |
| Total             | 5            | 61923.33333    |              |             |                |              |              |              |
|                   | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%    | Lower 95.0%  | Upper 95.0%  |
| Intercept         | 1182.666667  | 139.990045     | 8.448219777  | 0.001075413 | 793.9919915    | 1571.341342  | 793.9919915  | 1571.341342  |
| Temerature        | -11.46285714 | 1.592321712    | -7.198832406 | 0.00197334  | -15.88385097   | -7.041863319 | -15.88385097 | -7.041863319 |

$$\hat{Y} = 1182.67 - 11.46(X)$$

```
import pandas as pd
```

```
# need for regression analysis
```

import statsmodels.api as sm from statsmodels.formula.api import ols

```
temperature = [100,95,90,85,80,75]
customer= [60,98,100,200,300,320]
```

```
df = pd.DataFrame(temperature, columns=["Temperature"])
df["Customer"] = customer
```

```
# Perform Regression Analysis
```

```
results = ols ("Customer ~ Temperature", data=df).fit() print (results.summary())
```

#### OLS Regression Results

| Dep. Variable: Model: Method: Date: Time: No. Observations: | Customer<br>OLS<br>Least Squares<br>Fri, 29 May 2020<br>21:50:05 | AIC:                                                          | : (                | 0.928<br>0.910<br>51.82<br>0.00197<br>-28.332<br>60.66 |
|-------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|--------------------|--------------------------------------------------------|
| Df Residuals:                                               | 4                                                                | BIC:                                                          |                    | 60.25                                                  |
| Df Model:<br>Covariance Type:                               | 1<br>nonrobust                                                   |                                                               |                    |                                                        |
| CO                                                          | ef std err                                                       | t P> t                                                        | [0.025             | 0.975]                                                 |
| Intercept 1182.66 Temperature / -11.46                      |                                                                  | 8.448 0.001<br>-7.199 0.002                                   | 793.992<br>-15.884 | 1571.341<br>-7.042                                     |
| Omnibus:<br>Prob(Omnibus):<br>Skew:<br>Kurtosis:            | nan<br>nan<br>-0.659<br>2.585                                    | Durbin-Watson:<br>Jarque-Bera (JB):<br>Prob(JB):<br>Cond. No. |                    | 1.909<br>0.477<br>0.788<br>905.                        |
| Ŷ = 1182.67 – 11                                            | .46(X)                                                           |                                                               |                    | :======                                                |

#### Linear Regression in Machine Learning: Train and Test Model



#### Linear Regression in Machine Learning: Train and Test Model



import mysql.connector as sq import pandas as pd

# needed for machine learning regression model training and testing from sklearn.model\_selection import train\_test\_split from sklearn.linear\_model import LinearRegression

# Connecting to MySQL, query database, store results in dataframe variable mydb=sq.connect(host="localhost",user="root",passwd="ucla", buffered=True) query = "SELECT \* FROM covid19USA531.covid19USA531" df = pd.read\_sql(query,mydb)

|   | iso_code | location      | date      | total_cases | new_cases | total_deaths | new_deaths | total_tests | new_tests |
|---|----------|---------------|-----------|-------------|-----------|--------------|------------|-------------|-----------|
| 0 | USA      | United States | 3/14/2020 | 2174        | 511       | 47           | 7          | 31732       | 4575      |
| 1 | USA      | United States | 3/15/2020 | 2951        | 777       | 57           | 10         | 39332       | 7600      |
| 2 | USA      | United States | 3/16/2020 | 3774        | 823       | 69           | 12         | 57173       | 17841     |
| 3 | USA      | United States | 3/17/2020 | 4661        | 887       | 85           | 16         | 72856       | 15683     |
| 4 | USA      | United States | 3/18/2020 | 6427        | 1766      | 108          | 23         | 97590       | 24734     |

# prepare x by droping y = total\_deaths
x = df.drop(["iso\_code", "location", "date", "total\_deaths"], axis=1)

|   | total_cases | new_cases | new_deaths | total_tests | new_tests |
|---|-------------|-----------|------------|-------------|-----------|
| 0 | 2174        | 511       | 7          | 31732       | 4575      |
| 1 | 2951        | 777       | 10         | 39332       | 7600      |
| 2 | 3774        | 823       | 12         | 57173       | 17841     |
| 3 | 4661        | 887       | 16         | 72856       | 15683     |
| 4 | 6427        | 1766      | 23         | 97590       | 24734     |

```
# prepare y = total_deaths
y = df.total_deaths
0
          47
           57
           69
3
          85
4
         108
74
       98916
75
      100442
76
      101617
77
      102836
78
      103781
```

Name: total\_deaths, Length: 79, dtype: int64

```
#train_and_test_data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=40)
```

```
model = LinearRegression()
model.fit(x_train, y_train)
```

model.score(x\_test,y\_test)

 $model.coef\_$ 

model.intercept\_

## Machine Learning: Multicollinearity



Multiple Regression: Multicollinearity

- More may not be better
  - May create problems
    - Independent variable correlates with one or more independent variables
    - Independent is no longer independent!

## Machine Learning: Multicollinearity



Multiple Regression: Multicollinearity

# VIF for Multicollinearity Testing from statsmodels.stats.outliers\_influence import variance\_inflation\_factor