2017

程式設計加強班

程式設計與實習(一)

BY 孫茂助 Email:JOHN85051232@GMAIL.COM

學程式前你要知道的幾件事

- ◆ 不要相信自己記得住,動手寫寫看
- 未來是自己的,請對自己負責,作業不要抄襲
- ●加強班時間:週三晚上6:30~
- 資工必學技能:學習上網找資料 (Google不到?你有試過百度嗎)

學程式可以幹嘛?

學習的程式語言

C語言

- 高階語言
- 指標(Pointer)
- 大學四年都會用到

開發環境(Integrated Development Environment,IDE)

Visual Studio 2010/2012/2015/2017

線上檢定-CPE

簡介與規則

報名或登入

最新考試

環境與教材

CPE秘笈

歷屆考試

成績證明

協辦專區

合作廠商

聯絡與帳號

相關網站

CPE完整簡介

大學程式能力檢定辦理要點 大學程式能力檢定考試規則

為了提升國內學生的程式能力,各大學相關教授於2009年組織了「國際計算機器協會程式競賽台灣協會」,做為跨校交流與合作的平台。該協會並於2011年2月通過「組織章程」、「大學程式能力檢定辦理要點」、「大學程式能力檢定考試規則」。為使組織更進一步法制化,以更順利推動各項事務,故於2013/11/30召開正式成立大會,更名為「臺灣國際計算機器程式競賽暨檢定學會」(ACM-ICPC Contest Council for Taiwan,簡稱ACM-ICPC Taiwan Council),並成為內政部登記在案的正式學會。該學會下設有一個「大學程式能力檢定委員會」(Collegiate Programming Examination Committee, 簡稱CPE Committee),負責推動辦理CPE程式檢定考試。

此項檢定首度於2010年6月由交通大學與中山大學跨校試辦,2010、2011年各辦理三場,2012年之後每年各辦理四場,預計未來每年都將辦理四場。

- 主辦學校:交通大學(2010)、中山大學(2011~2014)
- 。 電腦評判系統:交通大學(2010年6月~2013年5月)、銘傳大學(2013年6月~)
- 。 協辦學校考場:2010年:2~9校,2011年:19~21校,2012年: 25~37校,2013年:37~45校,2014年:39~46校,2015年:44~46校,2016年:45~46校

CPE的目標是做為全台灣「程式能力檢定」的標準,有如英文的多益或全民英檢。CPE的終極目標是提升全台灣學生的程式設計能力。有些大學已將CPE成績採計為碩士班入學招生參考標準之一,如下:

• 中山大學、中正大學、中央大學、中興大學、台中教育大學、交通大學、清華大學、高雄大學、高雄第一科技大學產碩班、雲林科技大學

也有些大學規範學十班學生畢業門檔,CPE成績已被採計或可抵免,如下:

考CPE可以幹嘛

- ▶ 畢業門檻(單次2題/累積4題)
- 培養程式競賽的能力
- ▶ 找教授請你吃飯

→ 未來考過了記得上網登記:goo.gl/fwCcFF

線上練習-Etutor

下載

所有開發人員及應用程式均能使用的工具

Visual Studio

功能豐富的整合開發環境,可讓您創作能在 Windows、Android 及 iOS 上執行的酷炫應用程 式,以及各種現代化 Web 應用程式及雲端服務。

了解 Visual Studio >

下載 Community 2015

比較 2015 產品版本 >

Visual Studio Team Services

雲端上的共同作業服務可針對 Visual Studio、 Eclipse、Xcode 或任何其他 IDE 或程式碼編輯器進 行版本控制、Agile 規劃、持續傳遞及應用程式分 析。

了解 Team Services >

免費開始使用

將一切交由 Team Foundation Server 代管 >

Visual Studio Code

Code 編輯已和以往不同。 可建置及偵錯最新 Web 和雲端應用程式。 Code 完全免費,而且可以在您慣用的平台上執行,包括 Windows、Mac OS X 或 Linux。

了解 Visual Studio Code >

下載 Windows 版 Code

下載 Mac OS X 版 **业**Linux 版 **业**

使用 VS Code 即表示您同意其 授權及 隱私權聲明。

V:--J----- PE C--J-

Feedback

開啟行號顯示功能

▶ 工具->選項->文字編輯器->所有語言->一般

開啟專案

新建專案

● 檔案->新增->專案

Win32 應用程式精靈 - 3 ? ×				×
應用程式i	投定			
概觀	應用程式類型:	對下列加入通用標頭檔:		
應用程式設定	○ Windows 應用程式(<u>W</u>)	□ ATL(<u>A</u>)		
	● 主控台應用程式(O)	\square MFC(\underline{M})		
	○ DLL(<u>D</u>)			
	○ 靜態程式庫(<u>S</u>)			
	其他選項: ②空專案(E) 证出行號(X) 《先行編譯標頭檔(P)			
	<上一步	下一步 > 完成	取消	Í

開啟專案

新建專案

● 檔案->新増->專案

第一個程式 - HELLO WORLD

```
#include <stdio.h>
#include <stdlib.h>
#pragma_warning(disable:4996)//ver_2012/2015;
int main()
    printf("hello\n");
    system("PAUSE");
    return 0;
```

如何執行? Ctrl + F5 或 F5

來解釋一下這段程式碼

- #include
- int main()
- **** {}
- 縮排
- *****;
- //
- /*...*/
- printf/scanf

- system("pause");
- case sensitive
- return 0;
- pragma ...

```
#include <stdio.h>
#include <stdlib.h>
#pragma warning(disable:4996)//ver 2012/2015
int main()
{
    printf("hello\n");
    system("PAUSE");
    return 0;
}
```


先停一下,聽說下禮拜有小考

可是加強班才第一堂是吧 我應該教不完…也不想教太快…փ2+6h3 246頁是三小

所以

我會跟老師討論考試的範圍,確定後會公布E平台

最晚這禮拜五以前公佈下禮拜二考試範圍和規定

先來計概一下

記憶體(RAM、ROM)與硬碟(DISK)的差別

▶七代Core i5 || 920MX 2G獨顯 ▲

ASUS X541UV-0051A7200U

• <u>處理器: Intel Core i5-72</u>00U, 2.5GHz (up to 3.1GHz)

• 記憶體: 4GB DDR4 硬碟:500GB 5400亩

獨立顯卡: Nvidia GeForce 920MX 獨顯2G

• LCD尺寸: 15.6" HD 螢幕

無線網路:802.11 bgn、藍芽4.0

• 其他: HDMI、USB 3.1 Type C、SDXC 讀卡機

作業系統: Windows 10 Home 64Bits

▶ 本商品詳細規格

加購 Office 2016 家用版

3期0利率	32家	18期0利率	<u>17家</u>
6期0利率	32家	24期0利率	<u>15家</u>
10期0利率 2	25家	30期0利率	2実

網路價\$19900

先來計概一下

記憶體的概念

- 想像一下電腦的記憶體是一格一格的....
- 一格單位是1Byte(8bits)
- 100 Bytes 代表有100個格子
- 4GB RAM = ?

Q:格子塞滿了會怎麼樣?

變數(Variable)

- 在電腦中會需要將資料儲存起來
- Ex: (.exe) (.txt) (.word)
- 將檔案存在電腦的硬碟(DISK),下次再從硬碟取出來用

那麼程式呢?

- 執行期間利用變數將資料儲存在記憶體(RAM)中
- ▲ 直到程式結束電腦會將該資料從記憶體刪除

資料型態 (Data Type)

● 根據不同需求來設置,占用的記憶體空間以及可用範圍都不同。

宣告方式

- ▶ 資料型態變數名稱 = 初始值;
- 一開始給定初始值是個良好的習慣。

Ex:

- int a;
- \bullet int a = 10;

變數名稱

- 可以使用大小寫字母 A-Z、數字 0-9 及底線符號 _ 等任意組合
- 但是第一個字母不可以是數字
- 不可以和 C 的保留字相同
- Case-sensitive

Туре	Typical Bit Width	Typical Range
char	1byte	-128 to 127 or 0 to 255
unsigned char	1byte	0 to 255
signed char	1byte	-128 to 127
int	4bytes	-2147483648 to 2147483647
unsigned int	4bytes	0 to 4294967295
signed int	4bytes	-2147483648 to 2147483647
long int	4bytes	-2,147,483,648 to 2,147,483,647
signed long int	4bytes	-2,147,483,648 to 2,147,483,647
unsigned long int	4bytes	0 to 4,294,967,295
float	4bytes	+/- 3.4e +/- 38 (~7 digits)
double	8bytes	+/- 1.7e +/- 308 (~15 digits)
long double	8bytes	+/- 1.7e +/- 308 (~15 digits)

不同類型的變數

Ex:

- int hp = 10000;char word = 'a';
- float pi = 3.1415926;

變數可以用來做運算

→ 因為變數是記憶體中的資料,我們當然可以把資料取

出來做運算

```
#include <stdio.h>
#include <stdlib.h>
int main()
    int var1 = 10;
    int var2 = 20;
    int sum = var1 + var2;
    int div = var1 - var2;
    printf("%d %d", sum, div);
    system("PAUSE");
```


整數變數間的除法

▶ 7 / 3 = ?

運算順序(優先權)?

● 先加減後乘除,就是這麼簡單

```
y = 2 * 5 * 5 + 3 * 5 + 7; (Leftmost multiplication)
                         2 * 5 is 10
                   y = 10 * 5 + 3 * 5 + 7;
                                                        (Leftmost multiplication)
                         10 * 5 is 50
                   y = 50 + 3 * 5 + 7;
                                                        (Multiplication before addition)
                   y = 50 + 15 + 7;
                                                        (Leftmost addition)
                         50 + 15 is 65
                   y = 65 + 7;
                                                        (Last addition)
                         65 + 7 is 72
                                                        (Last operation—place 72 in y)
                    v = 72
Fig. 2.11 Order in which a second-degree polynomial is evaluated.
                            © 2016 Pearson Education, Ltd. All rights reserved.
```



```
#include <stdio.h>
#include <stdlib.h>
int main()
    //integer
    int a = 10;
    //char
    char b = 'c';
    int c = 2147483647;
    int d = 2147483648;
    printf("a = %d\n", a);
    printf("b = \%c\n",b);
    printf("c = %d\n",c);
    printf("d = %d\n",d);//overflow
    system("PAUSE");
    return 0;
```

```
a = 10
b = c
c = 2147483647
d = -2147483648
請按任意鍵繼續 . .
```


輸出某個資料型態的最大/最小值

```
#include <stdio.h>
2 #include <stdlib.h>
#include <LIMITS.H>
4 int main(void) {
    printf("int max : %d min : %d\n" , INT MAX, INT MIN);
    printf("char max: %d min: %d\n", CHAR MAX, CHAR MIN);
     system("pause");
     return 0;
11 }
```


輸出某個資料型態的記憶體大小

```
#include <stdio.h>
#include <stdlib.h>
int main(void) {
  printf("int %d bytes\n", sizeof(int));
  printf("float %d bytes\n", sizeof(float));
  printf("double %d bytes\n", sizeof(double));
  printf("char %d bytes\n", sizeof(char));
    system("pause");
    return 0;
```


補充資料

運算子優先權詳細版

https://goo.gl/aH7C1C

不同資料型態佔的記憶體大小

https://openhome.cc/Gossip/CGossip/Dataty pe.html

關於變數命名這件事

猜猜看助教想寫什麼程式?

```
int main()
    int HP = 1000;
    int MP = 500;
    int Qskill\_Cd = 4;
    int Wskill\_Cd = 4;
    int Eskill\_Cd = 8;
    int Rskill\_Cd = 100;
    int ff_Cd = 0;
```


關於變數命名這件事

一樣的程式,如果你偷懶不好好幫變數取名字看的人會很崩潰

```
int main()
    int a = 1000;
    int b = 500;
   int c = 4;
    int d = 4;
    int e = 8;
    int f = 100;
    int g = 0;
```


I/0

- #include <stdio.h>
- Input function : printf \ putchar \ put.....
- Output function: scanf getchar get.....

Format Specifier

搭配printf、scanf

%с	以字元 方式輸出
%d	10 進位整數輸出
%o	以8進 位整數方式輸出
%u	無號整數輸出
%x, %X	將整 數以16進位方式輸出
%f	浮點 數輸出
%e, %E	使用科學記號顯示浮點數
%g, %G	浮點數輸出,取%f或%e(%f或%E),看哪個表示精簡
%%	顯示 %
%s	字串輸出


```
int integer1 = -10;
float float1 = 3.14;
char char1 = 'a';
printf("%d %f %c\n",integer1,float1,char1);// \n是換行的意思
int input1 = 0;
char input2 = 0;
float input3 = 0;
                                      10 3.140000 a
scanf("%d",&input1);//注意input前面有個
printf("%d\n", input1);
fflush(stdin);//清空輸入的暫存
scanf("%c",&input2);
printf("%c\n",input2);
fflush(stdin);
                                     3.100000
scanf("%f",&input3);
printf("%f\n",input3);
fflush(stdin);
```


Escape Sequence

Q:如何用printf輸出\、"、'?

```
printf("\"");
printf("\\");
printf("\\");
```


Escape Sequence

跳脫序列的字元	功能
\a	塞鈴
\phi	倒退鍵
\f	跳頁
\n	印出新列
\r	歸位符號
\t	tab 鍵
\v	垂直定位符號
\\	印出反斜線
\?	印出問號
\'	印出單引號
\"	印出雙引號

Format Specifier

與printf的一些搭配: %2d就是預留兩位,如果a是個位數前面就會空一格,a 是十位數則會剛好補滿。

%02d也是預留兩位,以0來補齊。

```
int a = 5;
printf("%2d \n",a);
```

請按任意鍵繼續...

Format Specifier

●與printf的一些搭配:

%.3f表示顯示到小數點後第三位。

```
float b = 3.14159;
printf("%.3f \n",b);
```

3.142 請按任意鍵繼續

補充資料

Printf參數說明 https://goo.gl/MrmBfH

scanf參數說明 https://goo.gl/bpLc1v

輸入、輸出函式的使用方式請自己多練習!

大二學長有話要說

ASCII

```
(全域範圍)
                                                        ▼ ■ main()
   1 ≡#include <stdio.h>
       #include <stdlib.h>
     □int main()
   6
           char ch = 'A'; //宣告字元
   8
           printf("%c", ch); // 以字元型態輸出ch
  10
           printf("%d", ch);
  12
           system("PAUSE");
  13
           return 0;
```


ASCII

●簡單的來說,就是電腦的一套文字編碼系統

●EASCII · Unicode · BIG-5......

●參考資料: https://goo.gl/gZRJ69

我也要來計概一下

●來講講二進位

●10進位 → 遇到 10則進位

▶2進位 → 遇到2則進位

二進位

 $\ge 2 \rightarrow 10$

- ●上面講的int(整數)的max → 2147483647

二進位

來練習看看把下面的十進位改成二進位吧

100

■318

87

●這是蔡英文?

●這是馬英九?

●這是柯文哲?

- ●這裡面有柯文哲且馬英九?
- 這裡面有柯文哲或馬英九?

●邏輯的概念:True/False、AND、OR、NOT

●位元運算子

運算子	敘述	範例
&&	將A 運算元和B 運算元作AND 運算並返回結果值。	(A && B)
П	將A 運算元和B 運算元作OR 運算並返回結果值。	(A B)
۸	將A 運算元和B 運算元作XOR 運算並返回結果值。	(A ^ B)
~	將A 運算元和B 運算元作補數運算並返回結果值。	(~A)
<<	二進位進行運元左移,A運算元依照右邊數值作移動。	A << 2
>>	二進位進行運元右移,A運算元依照右邊數值作移動。	A >> 2

●指派運算子

運算子	敘述	範例
=	將等號右邊的值給等號左邊	C = A + B 將 A + B 的值給 C
+=	將C值和A值相加並將結果給C	C += A 等價於 C = C + A
-=	將C值減A值並將結果給C	C -= A 等價於C = C - A
*=	將C值和A值相乘並將結果給C	C *= A 等價於 C = C * A
/=	將C 值除以A 值並將結果給C	C/= A 等價於 C = C/A
%=	將C值和A值取餘數並將結果給C	C %= A 等價於 C = C % A
<<=	將C 值進行位元左移,並將結果給C	C <<= 2 等價於 C = C << 2
>>=	將C 值進行位元右移,並將結果給C	C>>= 2 等價於 C = C>> 2
& =	將C 值進行AND 運算,並將結果給C	C &= 2 等價於 C = C & 2
^=	將C 值進行XOR 運算,並將結果給C	C ^= 2 等價於 C = C ^ 2
=	將C 值進行OR 運算,並將結果給C	C = 2 等價於 C = C 2

●關係運算子

運算子	敘述	範例
==	檢查兩運算元是否相等,相等返回true,不相等返回false。	(A == B)
<u>!</u> =	檢查兩運算元是否不相等,不相等返回true,相等返回false。	(A != B)
>	檢查A 運算元是否大於B 運算元,成立返回true	(A > B)
<	檢查A 運算元是否小於B 運算元,成立返回true	(A < B)
>=	檢查A 運算元是否大於等於B 運算元,成立返回true	(A >= B)
<=	檢查A 運算元是否小於等於B 運算元,成立返回true	(A <= B)

注意 = 與 == 的差別:

- ●=是指定運算,將等號右邊的值指定給左邊的變數。
- ●==是關係運算,比較左右是否相等。


```
| #include <stdio.h>
                                            ■ C:\Users\ethan\Desktop\新文件1.exe
2 #include <stdlib.h>
                                            a = 10
                                            a++ = 10
4 int main() {
    int a = 10;
                                            ++a = 12
    printf("a = %d\n", a);
    printf("a++ = %d\n" , a++);
    printf("a = %d\n", a);
    printf("++a = %d\n" , ++a);
12
      system("pause");
13
      return 0;
15 }
16
```


Algorithms(補充)

Algorithms(演算法)

- 將解決一個問題的步驟、過程定義出來稱之
- Ex:食譜

我不知道該回什麼,只好貼上乳酪蛋糕做法 自己做健康又好吃 準備所有材料。低筋麵粉過 入較厚的食物袋中,用桿麵棍敲碎。 將融化的奶油稍微冷卻後備用。 將融化的奶油稍微冷卻 後備用。 將奶油倒入餅乾袋裡,攪拌混合。 將奶油倒入餅乾袋裡,攪拌混合。 將做法4.倒入模 上即可。 將做法4.倒入模型中,用杯子或湯匙等工具輕壓,使其鋪滿模型底部,然後放入冰箱冷 藏定型。冷藏約30分鐘以上即可。 將香草豆莢剖半,用刀片刮下香草豆莢籽。 將香草豆莢剖 酸奶及2/3的細砂糖攪拌混合。 製作起司蛋糕的麵糊,將軟化的奶油乳酪用橡皮刮刀攪拌,並加 入酸奶及2/3的細砂糖攪拌混合。 均勻混合後,加入蛋黃攪拌至表面光滑(這時可改用打蛋攪拌 器),接著加入鮮奶油同樣攪拌至表面光滑。 均勻混合後,加入蛋黃攪拌至表面光滑(這時可改用 打蛋攪拌器),接著加入鮮奶油同樣攪拌至表面光滑。 加入香草籽及過篩的低筋麵粉一起攪拌 均勻。 加入香草籽及過篩的低筋麵粉一起攪拌均勻。 再加入檸檬汁及檸檬皮(絲)混合。 再加 入檸檬汁及檸檬皮(絲)混合。 使用一個乾淨的調理碗加入蛋白,剩餘的細砂糖分兩次倒入,並同 時用電動攪拌器攪拌,打發至蛋白霜的尖端會往下低垂的柔軟程度。 使用一個乾淨的調理碗加 柔軟程度。 加入一半的蛋白霜至起司蛋糕糊中攪拌均勻。再將起司蛋糕糊全部倒回剩下的蛋 糕糊全部倒回剩下的蛋白霜裡攪拌均勻,動作快速而輕巧。 在模型底部包上錫箔紙,(避免隔水 加熱時水份會流進模型裡)接著倒入麵糊,用橡皮刮刀將麵糊表面刮平整。 在模型底部包上錫

Pseudocode(補充)

Pseudocode(虛擬碼,P不發音)

●將程式碼用較簡易的方式描述的方式,虛擬碼不能被電腦讀懂,但人類們可以較容易看懂,常用來描述一些演算法的步驟。

Ex: Add two var algo.

- Step 1. generate two variables
- Step 2.add two variables and print the answer

Pseudocode(補充)

將剛剛的例子從Pseudocode 改寫成程式碼

Add two var algo.

```
int var1 = 10;
int var2 = 20;
printf( "%d\n", var1+var2);
```


- If...else if...else
- switch

If...else if...else


```
if(判斷式)
    -
else if(判斷式)
                  else if可以有很多個
else if(判斷式)
i
else
    numumum.
```


Q:設計一個程式,輸入 10分以下:輸出D 50分以下:輸出C 80分以下:輸出B 100分以下:輸出A

```
int score = 0;
printf("輸入分數(0~100)\n");
scanf("%d",&score);
if(score < 10)
    printf("D\n");
else if(score < 50)
    printf("C\n");
else if(score < 80)
    printf("B\n");
else//score < 100
    printf("A\n");
```


- 三元運算子
- ●條件式?成立傳回值:失敗傳回值
- Ex : int a = b > c ? 10 : 20;


```
●Nested (巢狀) if
```

```
●Ex:如果他是男生,且他很帥
```


巢狀迴圈很好用,但不要濫用

```
jint main()
     if(a -- b)
         if(b -- g)
             if(c - d)
                  if(d - f)
                      if(f - g)
                          if(g -- h)
                              if(h - \underline{i})
                                   if(i - j)
                                      if (j -- k)
```



```
switch(要判斷的值或字元)
case 判斷值值或字元:
                   case可以有很多個
   break;
case 判斷值值或字元:
   break;
default:
```


Q:設計一個程式,

A:輸出APPLE

B:輸出BANANA

C:輸出CHERRY

D:輸出DOG

```
char score = 0;
printf("輸入分數(ABCD)\n");
scanf("%c",&score);
switch(score)
 case 'A':
     printf("APPLE\n");
     break;
 case 'B':
    printf("BANANA\n");
     break:
 case 'C':
     printf("CHERRY\n");
     break:
 default://D
     printf("DOG\n");
```

THANK YOU