Definition 0.0.1. Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, c)$ be a deterministic parity automaton. For $w \in \Sigma^* \cup \Sigma^\omega$ and $q \in Q$, we define $\lambda_{\mathcal{A}}(q, w) \in \mathbb{N}^{1+|w|}$ as follows: Let $q_0q_1 \cdots \in Q^{1+|w|}$ be the unique run of \mathcal{A} on w. Then $\lambda_{\mathcal{A}}(q, w)(n) = c(q_n)$.

Two DPAs \mathcal{A} and \mathcal{B} are **priority almost-equivalent**, if for all words $\alpha \in \Sigma^{\omega}$, $\lambda_{\mathcal{A}}(q_0^{\mathcal{A}}, \alpha)$ and $\lambda_{\mathcal{B}}(q_0^{\mathcal{B}}, \alpha)$ differ in only finitely many positions. We call two states $p, q \in Q$ of \mathcal{A} priority almost-equivalent, \mathcal{A}_q and \mathcal{A}_p are priority almost-equivalent, where \mathcal{A}_q behaves like \mathcal{A} with initial state q.

We define the **reachability order** $\preceq_{\text{reach}}^{\mathcal{A}} \subseteq Q \times Q$ as $p \preceq_{\text{reach}}^{\mathcal{A}} q$ iff q is reachable from p. ("p is closer to q_0 than q"). Note that $p \preceq_{\text{reach}}^{\mathcal{A}} q$ and $q \preceq_{\text{reach}}^{\mathcal{A}} p$ together mean that p and q reside in the same SCC.

Lemma 0.0.1. Priority almost-equivalence is a congruence relation.

Definition 0.0.2. Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, c)$ be a DPA and let $\sim \subseteq Q \times Q$ be a congruence relation on \mathcal{A} . We define the **Schewe** automaton \mathcal{S} as follows:

For each state q, let $[q]_{\sim} = \{p \in Q \mid q \sim p\}$ be its equivalence class of \sim and let $Q /_{\sim} = \{[q]_{\sim} \mid q \in Q\}$ be the set of equivalence classes. For each such class \mathfrak{c} we fix a representative $r_{\mathfrak{c}} \in \mathfrak{c}$ which is $\preceq_{\mathrm{reach}}^{\mathcal{A}}$ -maximal in its class, meaning that all states in \mathfrak{c} that are reachable from $r_{\mathfrak{c}}$ are also in its SCC.

The automaton is then almost the same as the original DPA, with only a few modifications. Namely, $S = (Q, \Sigma, r_{[q_0]_{\sim}}, \delta_{\mathcal{S}}, c)$.

For each transition $\delta_{\mathcal{S}}(q, a)$, let $\delta(q, a) = p$. If $q \prec_{\text{reach}}^{\mathcal{A}} r_{[p]_{\sim}}$ (i.e. q is not reachable from the representative of $[p]_{\sim}$), then $\delta_{\mathcal{S}}(q, a) = r_{[p]_{\sim}}$. Otherwise, we keep $\delta_{\mathcal{S}}(q, a) = p$. In other words, every time a transition moves to a different quotient class, it skips to the representative which lies as "deep" inside the automaton as possible.

Lemma 0.0.2. For a given A and \sim , the Schewe automaton S can be computed in O(|A|).

Proof. Using e.g. Kosaraju's algorithm ??, the SCCs of \mathcal{A} can be computed in $\mathcal{O}(|\mathcal{A}|)$ if we assume an adjacency list or similar as the underlying data structure. A topological sorting of the states and therefore the SCCs can then be computed in $\mathcal{O}(|\mathcal{A}|)$ again, e.g. by DFS.

We focus on a specialized version of the Schewe automaton. Let \sim be the priority equivalence and let \mathcal{S} be the according automaton. We define \mathcal{S}_m as the Moore-minimization of \mathcal{S} .

Lemma 0.0.3. Priority almost-equivalence implies language equivalence.

Proof. Let $\mathcal{A} = (Q_{\mathcal{A}}, \Sigma, q_0^{\mathcal{A}}, \delta_{\mathcal{A}}, c_{\mathcal{A}})$ and $\mathcal{B} = (Q_{\mathcal{B}}, \Sigma, q_0^{\mathcal{B}}, \delta_{\mathcal{B}}, c_{\mathcal{B}})$ be two DPA that are priority almost-equivalent and assume towards a contradiction that they are not language equivalent. Due to symmetry we can assume that there is a $w \in L(\mathcal{A}) \setminus L(\mathcal{B})$.

Consider $\alpha = \lambda_{\mathcal{A}}(q_0^{\mathcal{A}}, w)$ and $\beta = \lambda_{\mathcal{B}}(q_0^{\mathcal{B}}, w)$, the priority outputs of the automata on w. By choice of w, we know that $a := \max \operatorname{Inf}(\alpha)$ is even and $b := \max \operatorname{Inf}(\beta)$ is odd. Without loss of generality, assume a > b. That means a is seen only finitely often in β but infinitely often in a. Hence, α and β differ at infinitely many positions where a occurs in α . That would mean w is a witness that the two automata are not priority almost-equivalent, contradicting our assumption. \square

Definition 0.0.3. Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, c)$ be a DPA and $\sim \subseteq Q \times Q$ a congruence relation. We call \sim a **finite difference relation** if for all $p, q \in Q$ and all $\alpha \in \Sigma^{\omega}$, there is a finite prefix $w \sqsubset \alpha$ such that $\delta^*(p, w)$ and $\delta^*(q, w)$ are language equivalent.

Examples of finite difference relations include the priority almost-equivalence relation and language equivalence relation.

0.0.1 Structure of the Schewe automaton

For this section, we consider the Schewe automaton $S = (Q, \Sigma, r_{[q_0]_{\sim}}, \delta_{\mathcal{S}}, c)$ of a DPA $\mathcal{A} = (Q, \Sigma, q_0, \delta_{\mathcal{A}}, c)$ with a congruence relation \sim .

Lemma 0.0.4. Let $p, q \in Q$ such that $p \preceq_{\text{reach}}^{\mathcal{A}} q$. Then $r_{[q]_{\sim}} \not\prec_{\text{reach}}^{\mathcal{A}} r_{[p]_{\sim}}$.

Proof. We have to show that $r_{[q]_{\sim}}$ and $r_{[p]_{\sim}}$ lie in the same SCC or are not connected at all. For that, let $r_{[q]_{\sim}} \preceq^{\mathcal{A}}_{\text{reach}} r_{[p]_{\sim}}$. We will prove that $r_{[p]_{\sim}} \preceq^{\mathcal{A}}_{\text{reach}} r_{[q]_{\sim}}$ holds as well.

Let $w \in \Sigma^*$ with $p \xrightarrow{w} q$. Since $p \sim r_{[p]_{\sim}}$ and \sim is a congruence relation, we also have $r_{[p]_{\sim}} \xrightarrow{w} q'$

Let $w \in \Sigma^*$ with $p \xrightarrow{w} q$. Since $p \sim r_{[p]_{\sim}}$ and \sim is a congruence relation, we also have $r_{[p]_{\sim}} \xrightarrow{w} q'$ for some $q' \sim q$. Now we find $r_{[q]_{\sim}} \preceq^{\mathcal{A}}_{\operatorname{reach}} r_{[p]_{\sim}} \preceq^{\mathcal{A}}_{\operatorname{reach}} q'$. Since $q' \sim r_{[q]_{\sim}}$ and the representatives are chosen as $\preceq^{\mathcal{A}}_{\operatorname{reach}}$ -maximal elements, we have $q' \preceq^{\mathcal{A}}_{\operatorname{reach}} r_{[q]_{\sim}}$ via some word v. Hence, $r_{[q]_{\sim}}$ is reachable from $r_{[p]_{\sim}}$ via wv.

Lemma 0.0.5. For all $q \in Q$ and $a \in \Sigma$, $\delta_{\mathcal{A}}(q, a) \sim \delta_{\mathcal{S}}(q, a)$.

Proof. This statement is rather trivial. If $\delta_{\mathcal{A}}(q, a) = \delta_{\mathcal{S}}(q, a)$, then it is implied by the reflexivity of \sim . Otherwise we have $\delta_{\mathcal{S}}(q, a) = r_{[\delta_{\mathcal{A}}(q, a)]_{\sim}}$ which is equivalent to $\delta_{\mathcal{A}}(q, a)$ by definition of the representative.

Lemma 0.0.6. Let $\rho \in Q^{\omega}$ be an infinite run in S starting at a reachable state. Then ρ has a suffix that is a run in A.

Proof. Let $\rho = p_0 \cdots$ be the run and let $r_i = r_{[p_i]_{\sim}}$ for all i. Let $I \subseteq \mathbb{N}$ be the set of positions at which a "redirected" transition is taken, i.e. $\delta_{\mathcal{S}}(p_i, \alpha(i)) \neq \delta_{\mathcal{A}}(p_i, \alpha(i))$.

Claim 1 I is finite.

In particular, it has as most as many elements as there are equivalence classes in \sim . Assume the opposite towards a contradiction. There are positions $i_0, \ldots, i_k \in I$ which describe a cycle in the visited equivalence classes. More formally we want the sequence $(i_j)_{0 \le j \le k}$ to satisfy:

- The indices are strictly growing, i.e. $i_0 < i_1 < \cdots < i_k$.
- Between i_0 and i_k , all transitions not at the given indices are transitions from \mathcal{A} (i.e. not redirected transitions).
- $r_{i_j} \prec_{\text{reach}}^{\mathcal{A}} r_{i_j+1} = p_{i_j+1}$.
- $p_{i_0+1} \sim p_{i_k+1}$.

Let $\mathfrak C$ be the set of equivalence classes which occur in the run between i_0 and i_k . For each representative r_{i_j+1} , its SCC in $\mathcal A$ contains a state in $\mathfrak c$ for every $\mathfrak c \in \mathfrak C$: there are words to reach r_{i_k+1} from r_{i_j+1} and to reach r_{i_j+1} from r_{i_0+1} . By Lemma ??, we can use these words to find a run in $\mathcal A$ starting at r_{i_j+1} , ending in a state in $[p_{i_j+1}]_{\sim}$ and visiting all classes $\mathfrak C$ inbetween.

Now consider an arbitrary redirected transition, e.g. the first one. The definition of the Schewe automaton tells us that $r_{i_0} \prec^{\mathcal{A}}_{\text{reach}} r_{i_0+1}$. From r_{i_0+1} we can find a state $t \sim r_{i_0}$ as we have just shown, so $r_{i_0+1} \preceq^{\mathcal{A}}_{\text{reach}} t$. However, r_{i_0} is a $\preceq^{\mathcal{A}}_{\text{reach}}$ -maximal element in its class, so $t \preceq^{\mathcal{A}}_{\text{reach}} r_{i_0} \prec^{\mathcal{A}}_{\text{reach}} r_{i_0+1} \preceq^{\mathcal{A}}_{\text{reach}} t$, which is a contradiction.

Claim 2 ρ has a suffix that is a run in \mathcal{A} .

I is finite, so let $k=1+\max I$. That means, from position k onwards, we have $\delta_{\mathcal{S}}(p_i,\alpha(i))=\delta_{\mathcal{A}}(p_i,\alpha(i))$ for all i. Hence, the suffix $\pi=\rho(k)\rho(k+1)\cdots$ is a run in \mathcal{A} on the word $\alpha(k)\alpha(k+1)\cdots$.

Lemma 0.0.7. Let $R \subseteq Q$ be the states that are reachable in S. If \sim implies language equivalence on R in A, then it is also implies language equivalence in S.

Proof. Let $p, q \in R$ be reachable states with $p \sim q$ and let $\alpha \in \Sigma^{\omega}$ be arbitrary. We show that S_p accepts α if and only if S_q accepts α .

Let ρ_p and ρ_q be the runs of \mathcal{S} on α which start at p and q respectively. By Lemma ??, there are suffixes π_p and π_q of these runs in \mathcal{A} . The "offset" of a suffix, i.e. the starting point in the original string, can be increased without violating this property. By choosing the greater offset of both runs, we can assume that π_p and π_q start at the same offset k.

Because \sim is a congruence relation, $p \sim q$, and Lemma ??, we know that $p' = \pi_p(0) = \rho_p(k) \sim q' = \pi_q(0) = \rho_q(k)$. Let $\beta = \alpha(k)\alpha(k+1)\cdots$. Since \sim implies language equivalence in \mathcal{A} , $\mathcal{A}_{p'}$ accepts β if and only if $\mathcal{A}_{q'}$ accepts β . The parity condition is prefix independent, so this is extended to \mathcal{S}_p and \mathcal{S}_q .

Lemma 0.0.8. Let p and q be reachable states in S with $p \sim q$. If there is a path in A from p to q, then that same path exists in S.

Proof. Let $\rho = p_0 \cdots p_m$ be the path with $p_0 = p$ and $p_m = q$. Assume towards a contradiction that there is a position k at which this path is not valid in S anymore, i.e. $\delta_S(p_k, a) \neq p_{k+1}$. Let this k be minimal. We split the word that is used for ρ into parts $u \in \Sigma^*$, $a \in \Sigma$, and $v \in \Sigma^*$ such that $p_0 \xrightarrow[A]{u} p_k \xrightarrow[A]{u} p_{k+1} \xrightarrow[A]{v} p_m$.

We consider the states reached by \mathcal{A} if it would use the redirected transition at k and analyze their relation w.r.t. \sim . Let $p'_{k+1} = \delta_{\mathcal{S}}(p_k, a)$ and let p'_{k+2}, \ldots, p'_m be the following run of \mathcal{A} on v. Then let $s = \delta^*_{\mathcal{A}}(p_m, u)$ and $s' = \delta^*_{\mathcal{A}}(p'_m, u)$. As \sim is a congruence relation, $p \sim q$, and Lemma ??, we have $s \sim s'$. With the same argument we also find $s \sim \delta^*_{\mathcal{A}}(p_0, u) = p_k$, so $s' \sim p_k$.

On the other hand, we can analyze reachability between the states. k is a position where the transition is redirected which implies $r_{[p_k]_{\sim}} \prec^{\mathcal{A}}_{\text{reach}} r_{[p_{k+1}]_{\sim}}$ by definition of the construction. Redirected transitions in \mathcal{S} always lead to representatives of the original target, so $p'_{k+1} = r_{[p_{k+1}]_{\sim}}$. The definition of s' shows $p'_{k+1} \preceq^{\mathcal{A}}_{\text{reach}} s'$. Putting these two statements together we obtain $r_{[p_k]_{\sim}} \prec^{\mathcal{A}}_{\text{reach}} s'$.

However, $r_{[p_k]_{\sim}}$ is a $\preceq_{\text{reach}}^{\mathcal{A}}$ -maximal element in its class, which implies that $r_{[p_k]_{\sim}} \nsim s'$. This stands in contradiction to our previous observation that $p_k \sim s'$.

Lemma 0.0.9. Let \mathcal{A} a DPA, \sim the relation of priority almost-equivalence, and \mathcal{S} be the Schewe automaton. Then \mathcal{A} and \mathcal{S} are priority almost-equivalent.

Proof. Let $\mathcal{A} = (Q, \Sigma, q_0^{\mathcal{A}}, \delta_{\mathcal{A}}, c)$ and $\mathcal{S} = (Q, \Sigma, q_0^{\mathcal{S}}, \delta_{\mathcal{S}}, c)$. Let $\alpha \in \Sigma^{\omega}$. We have to show that $\lambda_{\mathcal{A}}(q_0^{\mathcal{A}}, \alpha)$ and $\lambda_{\mathcal{S}}(q_0^{\mathcal{S}}, \alpha)$ differ in only finitely many positions. For that, let $a_0a_1 \cdots \in Q^{\omega}$ and $s_0s_1 \cdots \in Q^{\omega}$ be the respective runs of the automata on α .

Claim 1 For all i, \mathcal{A}_{a_i} and \mathcal{A}_{s_i} are priority almost-equivalent. $(a_i \sim s_i)$

For i=0, we have $a_i=q_0^{\mathcal{A}}$ and $s_i=q_0^{\mathcal{S}}=r_{[q_0^{\mathcal{A}}]_{\sim}}$. By definition, $s_i=r_{[q_0^{\mathcal{A}}]_{\sim}}\in[q_0^{\mathcal{A}}]_{\sim}$, so $s_i\sim a_i$. Using induction, assume $a_i\sim s_i$ and consider i+1. We separate two cases: If $\delta_{\mathcal{S}}(s_i,\alpha(i))=\delta_{\mathcal{A}}(s_i,\alpha(i))$, then $a_{i+1}\sim s_{i+1}$ follows from \sim being a congruence relation.

For the second case, consider $\delta_{\mathcal{S}}(s_i, \alpha(i)) = r_{[p]_{\sim}}$, where $\delta_{\mathcal{A}}(s_i, \alpha(i)) = p$. Again we have $s_{i+1} = r_{[p]_{\sim}} \in [p]_{\sim}$, so $s_{i+1} \sim p$. Since \sim is a congruence relation, we have $\delta_{\mathcal{A}}(a_i, \alpha(i)) \sim \delta_{\mathcal{A}}(s_i, \alpha(i))$, which is $a_{i+1} \sim p$ and therefore $a_{i+1} \sim s_{i+1}$ by transitivity.

Claim 2 $\lambda_{\mathcal{A}}(q_0^{\mathcal{A}}, \alpha)$ and $\lambda_{\mathcal{S}}(q_0^{\mathcal{S}}, \alpha)$ differ in only finitely many positions.

We can see from the definition of S that the "new type of transition" is taken only when the target state of $\delta_{\mathcal{A}}$ is strictly bigger w.r.t. $\preceq_{\text{reach}}^{\mathcal{A}}$. Since this is a partial order on Q, this means in particular that from some point k onwards, only the transition type $\delta_{\mathcal{S}}(q,a) = \delta_{\mathcal{A}}(q,a)$ is taken. Hence, $s_k s_{k+1} \cdots$ is the valid run of \mathcal{A}_{s_k} on some suffix β of α . If now $\lambda_{\mathcal{A}}(q_0^{\mathcal{A}}, \alpha)$ and $\lambda_{\mathcal{S}}(q_0^{\mathcal{S}}, \alpha)$ would differ at infinitely many positions, then also $\lambda_{\mathcal{A}}(a_k, \beta)$ and $\lambda_{\mathcal{A}}(s_k, \beta)$ would (as these are suffixes of the former). However, we have shown in claim 1 that \mathcal{A}_{a_k} and \mathcal{A}_{s_k} are priority almost-equivalent.

Lemma 0.0.10. Let \mathcal{A} a DPA, \sim the relation of priority almost-equivalence, and \mathcal{S} be the Schewe automaton. If p and q are priority almost-equivalent and reachable states in \mathcal{S} , then they lie in the same SCC.

Proof. Let \sim the relation of priority almost-equivalence.

Claim 1 If p and q are reachable in S and A_p and A_q are priority almost-equivalent, then S_p and S_q are priority almost-equivalent.

Assume towards a contradiction that p, q form a counterexample with $\lambda_{\mathcal{S}}(p, \alpha)$ and $\lambda_{\mathcal{S}}(q, \alpha)$ differing at infinitely many positions. Let ρ_p , ρ_q , π_p , and π_q be the runs of \mathcal{A}_p , \mathcal{A}_q , \mathcal{S}_p , and \mathcal{S}_q on α respectively. Similar to the proof of ??, we can

Claim 2 Let p and q be reachable states in S that are priority almost-equivalent and in A there is a path ρ from p to q. Then ρ is also a valid path in S.

Let $\rho = p_0 \cdots p_m$ with $p_0 = p$ and $p_m = q$. Assume towards a contradiction that k is the first position at which this path is not valid in \mathcal{S} , i.e. $\delta_{\mathcal{S}}(p_k, a) \neq p_{k+1}$. That means that the transition was redirected to $\delta_{\mathcal{S}}(p_k, a) = r_{[p_{k+1}]_{\sim}}$. Therefore, $r_{[p_k]_{\sim}} \prec^{\mathcal{A}}_{\text{reach}} r_{[p_{k+1}]_{\sim}}$ by definition of the Schewe automaton. Let $u, v \in \Sigma^*$ with $p_0 \stackrel{u}{\to} p_k \stackrel{a}{\to} p_{k+1} \stackrel{v}{\to} p_m$.

We define $\delta_{\mathcal{A}}^*(p_{k+1}, vu) = s$ and $\delta_{\mathcal{A}}^*(r_{[p_{k+1}]_{\sim}}, vu) = t$. Since $\mathcal{A}_{p_{k+1}}$ and $\mathcal{A}_{r_{[p_{k+1}]_{\sim}}}$ are priority

We define $\delta_{\mathcal{A}}^*(p_{k+1}, vu) = s$ and $\delta_{\mathcal{A}}^*(r_{[p_{k+1}]_{\sim}}, vu) = t$. Since $\mathcal{A}_{p_{k+1}}$ and $\mathcal{A}_{r_{[p_{k+1}]_{\sim}}}$ are priority almost-equivalent and \sim is a congruence relation, also \mathcal{A}_s and \mathcal{A}_t are priority almost-equivalent. The former is priority-almost equivalent to \mathcal{A}_{p_k} . That means, in \mathcal{A} , we have $t \sim s \sim p_k \sim r_{[p_k]_{\sim}}$.

On the other hand we have shown that via vu we can reach t from $r_{[p_{k+1}]_{\sim}}$, so $r_{[p_{k+1}]_{\sim}} \preceq_{\text{reach}}^{\mathcal{A}} t$ and therefore $r_{[p_k]_{\sim}} \preceq_{\text{reach}}^{\mathcal{A}} t$. This together with the fact that $t \sim r_{[p_k]_{\sim}}$ contradicts the choice of $r_{[p_k]_{\sim}}$ as a $\preceq_{\text{reach}}^{\mathcal{A}}$ -maximal element in its equivalence class. Hence, k cannot exist and ρ is a valid path in \mathcal{S} .

Claim 3 In the (not-minimized) Schewe automaton S, for all reachable states q we have $q \preceq_{\text{reach}}^{S} r_{[q]_{\sim}}$.

Let q be a reachable state, so there is a run $q_0 \cdots q_m$ in S on w with $q_m = q$. By definition of the automaton, there is a position k on this run at which a \sim -equivalence class \mathfrak{c} is entered with $r_{[q]_{\sim}} \preceq_{\mathrm{reach}}^{\mathcal{A}} r_{\mathfrak{c}}$. At latest this happens when $[q]_{\sim}$ is reached for the first time, as then the transition is directed to $r_{[q]_{\sim}}$ directly. Let $k' \geq k$ be the position in this run at which $[q]_{\sim}$ is entered for the first time.

Let $p_k \cdots p_{k'}$ be the run of \mathcal{A} on $w(k) \cdots w(k'-1)$ with $p_k = q_k$. Using induction we can show that \mathcal{A}_{p_i} and \mathcal{A}_{q_i} are priority almost-equivalent for all $k \leq i \leq k'$. For i = k this is obvious since $p_k = q_k$. Otherwise consider index i+1. Note that because \sim is a congruence relation, $\mathcal{A}_{\delta_{\mathcal{A}}(p_i,w(i))}$ and $\mathcal{A}_{\delta_{\mathcal{A}}(q_i,w(i))}$ are priority almost-equivalent. The definition of the Schewe automaton sets $\delta_{\mathcal{S}}(q_i,w(i))$ either to the state $\delta_{\mathcal{A}}(q_i,w(i))$ or to its representative; in both cases, $\mathcal{A}_{\delta_{\mathcal{S}}(q_i,w(i))} = \mathcal{A}_{q_{i+1}}$ is priority almost-equivalent to $\mathcal{A}_{\delta_{\mathcal{A}}(q_i,w(i))}$ and therefore to $\mathcal{A}_{\delta_{\mathcal{A}}(p_i,w(i))} = \mathcal{A}_{q_i}$.

This observation together with claim 1 implies that all S_{p_i} and S_{q_i} are priority almost-equivalent as well. In particular, $p_{k'} \sim q$ (in S).

Claim 4 If p and q are priority almost-equivalent in S and reachable, then they lie in the same SCC.

Lemma 0.0.11. There is no DPA priority almost-equivalent to A that is smaller than S_m .

Lemma 0.0.12. The priority almost-equivalence of a DPA \mathcal{A} can be computed in $\mathcal{O}(|\mathcal{A}|^2)$.

Theorem 0.0.13. For a given DPA \mathcal{A} , a minimal almost priority-equivalent automaton can be computed in $\mathcal{O}(|\mathcal{A}|^2)$.

Definition 0.0.4. Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, c)$ be a DPA. We define the **Moore-minimization** \mathcal{B} as the parity automaton corresponding to the minimal Moore automaton of \mathcal{A} . That means it is the minimal automaton such that $\lambda_{\mathcal{A}}(\alpha) = \lambda_{\mathcal{B}}(\alpha)$ for all $\alpha \in \Sigma^{\omega}$.

More specifically, we define the congruence relation $\sim \subseteq Q \times Q$ by $p \sim q$ iff $\forall w \in \Sigma^*$: $\lambda_{\mathcal{A}}(p,w) = \lambda_{\mathcal{A}}(q,w)$. Then \mathcal{A}' is constructed from \mathcal{A} by removing unreachable states (from q_0). $\mathcal{B} = (Q/_{\sim}, \Sigma, [q_0]_{\sim}, \delta_{\mathcal{B}}, c_{\mathcal{B}})$ is the quotient automaton of $\mathcal{A}'/_{\sim}$ with $\delta_{\mathcal{B}}([q]_{\sim}, a) = [\delta(q, a)]_{\sim}$ and $c_{\mathcal{B}}([q]_{\sim}) = c(q)$.

Lemma 0.0.14. For a given DPA \mathcal{A} , the Moore-minimization can be computed in \mathcal{O} .