Lab 1 – Day 3 Dynamic Power Management

- Power manager (PM)
 - Monitors requestor's activity and sets state of provider according to some **policy** (implemented inside the PM)

- Policy implementation
 - Implement the history-based policy

Assignment 2 History-based prediction policy implementation

- So far we worked with timeout policies...
 - Put the device in off state T_{TO} time units after it has entered the idle state

- So far we worked with timeout policies...
 - Put the device in off state T_{TO} time units after it has entered the idle state

Can history teach us something?

- Predictive policies
 - Predict idle period T_{pred} ~ T_{idle}
 - Use history
 - E.g., T_{active} and T_{idle} of previous period
 - Go to sleep state if T_{pred} is long enough to amortize state transition cost

• Example (non-linear) regression equation:

$$T_{idle}[i] = \mathbf{K} + \mathbf{K_1} \cdot T_{idle}[i-1] + \mathbf{K_2} \cdot T_{active}[i] + \mathbf{K_3} \cdot T_{active}[i]^2$$

$$T_{idle}[i] = \mathbf{K} + \mathbf{K_1} \cdot T_{idle}[i-1] + \mathbf{K_2} \cdot T_{active}[i] + \mathbf{K_3} \cdot T_{active}[i]^2$$

$$T_{idle}[i] = \mathbf{K} + \mathbf{K_1} \cdot T_{idle}[i-1] + \mathbf{K_2} \cdot T_{active}[i] + \mathbf{K_3} \cdot T_{active}[i]^2$$

Drawback: will my guess be right?

$$T_{idle}[i] = \mathbf{K} + \mathbf{K_1} \cdot T_{idle}[i-1] + \mathbf{K_2} \cdot T_{active}[i] + \mathbf{K_3} \cdot T_{active}[i]^2$$

Drawback: will my guess be right?

Parenthesis

- Polynomial Regression
 - Estimate the relationship between variables
 - Independent variables ~ my inputs
 - Dependent variable ~ the value I want to estimate
 - Estimated as a polynomial
 - Choose the grade
 - Get the coefficients s.t. the polynomial estimates «well» the samples

Parenthesis

- Regression
 - In our scenario, e.g.:
 - Independent variables: length of previous IDLE/ACTIVE periods
 - Dependent variable: length of current IDLE period
 - What are the coefficients for the polynomial s.t. it can estimate well?

$$T_{idle}[i] = \mathbf{K} + \mathbf{K}_1 \cdot T_{idle}[i-1] + \mathbf{K}_2 \cdot T_{idle}[i-1]^2$$

Example

- E.g., Matlab polyfit function
 - http://it.mathworks.com/help/matlab/ref/polyfit.html

polyfit

Polynomial curve fitting

expand all in pa

Syntax

```
p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)
```

Description

p = polyfit(x, y, n) finds the coefficients of a polynomial p(x) of degree n that fits the data, p(x(i)) to y(i), in a least squares sense. The result p is a row vector of length n+1 containing the polynomial coefficients in descending powers:

$$p(x) = p_1 x^n + p_2 x^{n-1} + ... + p_n x + p_{n+1}.$$

- Predictive policies
 - Predict idle period T_{pred} ~ T_{idle}
 - Use history
 - E.g., T_{active} and T_{idle} of previous period
 - Go to sleep state if T_{pred} is long enough to amortize state transition cost

• Example (non-linear) regression equation:

$$T_{idle}[i] = \mathbf{K} + \mathbf{K_1} \cdot T_{idle}[i-1] + \mathbf{K_2} \cdot T_{active}[i] + \mathbf{K_3} \cdot T_{active}[i]^2$$

 Modify the simulator to implement a historybased prediction policy

```
case DPM_HISTORY:
    if(curr_time < idle_period.start) {
        *next_state = PSM_STATE_ACTIVE;
    } else {
        *next_state = PSM_STATE_ACTIVE;
        /* LAB 3 EDIT */
        // hparams.alpha[i] * history[i] ....
        //if(value_prediction ...)
        // *next_state = PSM_STATE_ACTIVE; ...
}
break;</pre>
```

- Modify the simulator to implement a historybased prediction policy
 - Choose any regression you like
 - E.g., that works well with the workload...
 - Note that the regression may consider a number of previous idle or active periods → window size
 - How far shall I go in the past?
 - How many past elements shall I consider?
 - Compute regression coefficients
 - E.g., with Matlab, but you can pick your favourite tool

- Report assignment
 - Description of implemented predictive policy
 - Result of implemented predictive policy with the workload profiles
 - Analysis on:
 - Window size vs. energy saving
 - Coefficient values vs. energy saving (model order)
 - Timing/energy overhead
 - Comparison between predictive and timeout policies

End of Lab 1! Now you're ready to prepare the first report...