

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY **END OF SEMESTER EXAMINATION 2012**

CODE:MTH 304	TIME: 3 HOURS
TITLE: COMPLEX ANALYSIS I	TOTAL: 100 MARKS

CREDIT UNIT: 3

INSTRUCTION: ANSWER ANY 5 QUESTIONS

1.(a) Find the following complex number in the form of x + iy

(i)
$$(4-7i)(-2+3i)$$

$$\frac{(5+2i)}{(1+i)}$$

(ii) (b) Evaluate each of the following using theorems on limits

 $\lim_{z \to i + i} (z^2 - 5z + 10)$

(i)
$$z-i1+i$$

$$\lim_{(ii)} \frac{(2z+3)(z-1)}{z^{-i-2}i} \frac{(2z+3)(z-1)}{(z^2-2z+4)}$$

(5 each = **10 marks**)

2. (a) Find a polar form of $(1+i)(1+i\sqrt{3})$

6marks

- (b) Find a function y that described that part of the curve $y = 4x^3 + 1$ between x=0 and x=10 **7marks**
- (c) Find a function *V* such that f(z) = u + i v and express f(z) in terms of *z* 7marks

3. (a)Prove that
$$f(z)=z^2$$
 is uniformly continuous in the region $|z|<1$

10marks

- (b) Using the definition, find the derivative of $w = f(z) = z^3 2z$ at the point where
 - $z=z_0$ (ii) z = -1

10marks

4. (a) Expand
$$f(z) = \frac{1}{z-3}$$
 in Laurent series about (i) $|z| < 3$ (ii) $|z| > 3$

10marks

 $I_1 = \int_c z^2 dz$, where c_1 is the line segment from z = 0 to z = 2+i 10 marks (b) Find the value of the integral

5. (a) Expand
$$f(z) = Cos z$$
 in Taylor series about $z = \frac{\pi}{4}$ and determine its region of convergence. 10 **marks**

(b) Let C be the ellipses $9x^2 + 4y^2 = 36$ traversed once in the countered elluption direction determine the function

(b) Let C be the ellipse
$$9x^2 + 4y^2 = 36$$
 traversed once in the counterclockwise direction.determine the function

$$g(z) = \int_{c}^{s^{2} + s + 1} ds$$
g by find $g(4i)$

10marks

6. Suppose f is analytic inside and on the simple closed curve C. Show that

$$\int_{C} \frac{f'(z)}{z - w} dz = \int_{C} \frac{f(z)}{(z - w)^2} dz$$

10 marks

10

for every $w \in C$.

$$\int_{c} \frac{5z-2}{z(z-1)} dz$$

marks

7. (a) Verify that the real and imaginary parts of the function f(z) = z + 5i z + 3 = i satisfy Cauchy-Riemann equation 8 marks

$$\oint \frac{\sin^6}{\left(z - \frac{\pi}{6}\right)^3} dz$$
(b) Find the value of $\left|z - \frac{\pi}{6}\right|^3$, where C is a circle $|z| = 1$

12

marks

Good Luck