Javelin Diagrams

James C. Felli

Defense Resources Management Institute

Gordon B. Hazen

Northwestern University

Consider the following problem

	Min	Max	Base
p	0	1	0.667
\mathbf{q}	0	1	0.333
\mathbf{V}	-350	400	25
\mathbf{W}	-400	0	-133.3
X	0	620	206.67
Y	-400	600	266.67
Z	-400	400	-133.3

Tornado diagram

Two tornado diagrams on a single graph

Modify the tornado

Redefine the bars:

Now include parameter density information

Parameter	Beta a	Beta b	lower	upper	mean
р	9	4.5	0	1	0.6667
\mathbf{q}	3	6	0	1	0.3333
\mathbf{V}	8	8	-350	400	25
\mathbf{W}	3.15	1.575	-400	0	-133.3
X	2.475	4.95	0	620	206.67
Y	3	1.5	-400	600	266.67
${f Z}$	4.875	9.75	-400	400	-133.3

Building a javelin

over the range of improvement

Building a javelin

over the range of improvement

Javelin diagram

Now we have a javelin diagram!

Javelin diagram

Javelins can include any parameter set

If MSI=5

Parameter	Beta a	Beta b	
p	9	4.5	
${f q}$	3	6	
${f V}$	8	8	
\mathbf{W}	3.15	1.575	
X	2.475	4.95	
Y	3	1.5	
Z	4.875	9.75	

Case 1 parameter densities:

Parameter	Beta a	Beta b	lower	upper	mean
р	9	4.5	0	1	0.6667
\mathbf{q}	3	6	0	1	0.3333
\mathbf{V}	8	8	-350	400	25
\mathbf{W}	3.15	1.575	-400	0	-133.3
X	2.475	4.95	0	620	206.67
Y	3	1.5	-400	600	266.67
Z	4.875	9.75	-400	400	-133.3

Case 2 parameter densities

Parameter	Beta a	Beta b	lower	upper	mean
р	12	6	0	1	0.6667
\mathbf{q}	4	8	0	1	0.3333
\mathbf{V}	8	8	-350	400	25
\mathbf{W}	4.2	2.1	-400	0	-133.3
X	3.3	6.6	0	620	206.67
Y	4	2	-400	600	266.67
${f Z}$	6.5	13	-400	400	-133.3

Javelin diagrams

Comparison of the two javelin diagrams

Javelin advantages

- ➤ Includes all alternatives in single diagram
- > Reference point of zero highlights benefits
- > Shows range of potentially foregone benefits
- > Shows **probability** of the BOA losing optimality
- > Provides EVPI as additional sensitivity measure

That's all, folks!