$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$17 + 29i$$
 C

$$4.56 + 4.56 + \frac{4}{5} + 4 + 5i + 4.56e^{i4.56} + \pi + e + e + i + i + \gamma + \infty$$

$$\frac{22}{7} \approx \pi$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_n \end{pmatrix}$$

$$f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} x^{j}$$

$$x^{2}-9 = x^{2}-3^{2}$$

= (x-3)(x+3)

$$x^2 - 9 = x^2 - 2$$

$$ax^{2} + bx + c = 0$$

$$ax^{2} + bx = -c$$

$$x^{2} + \frac{b}{a}x = \frac{-c}{a}$$
 Divide out leading coefficient.
$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = \frac{-c(4a)}{a(4a)} + \frac{b^{2}}{4a^{2}}$$
 Complete the square.
$$\left(x + \frac{b}{2a}\right)\left(x + \frac{b}{2a}\right) = \frac{b^{2} - 4ac}{4a^{2}}$$
 Discriminant revealed.
$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$x = \frac{-b}{2a} \pm \{C\}\sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$
 There's the vertex formula.
$$x = \frac{-b \pm \{C\}\sqrt{b^{2} - 4ac}}{2a}$$