Problem 1.41. Compute the gradient and Laplacian of the scalar function $T = r(\cos\theta + \sin\theta\cos\phi)$. Check the Laplacian by converting T to Cartesian coordinates and using Eq. <u>1.42</u>. Test the gradient theorem for this function, using the path shown in Fig. 1.41, from (0, 0, 0) to (0, 0, 2).

Fig. 1.41

Problem 1.50.

- (a) Let $\mathbf{F}_1 = x^2 \hat{\mathbf{z}}$ and $\mathbf{F}_2 = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$. Calculate the divergence and curl of \mathbf{F}_1 and \mathbf{F}_2 . Which one can be written as the gradient of a scalar? Find a scalar potential that does the job. Which one can be written as the curl of a vector? Find a suitable vector potential.
- (b) Show that $\mathbf{F}_3 = yz\hat{\mathbf{x}} + zx\hat{\mathbf{y}} + xy\hat{\mathbf{z}}$ can be written both as the gradient of a scalar and as the curl of a vector. Find scalar and vector potentials for this function.

Problem 1.54. Check the divergence theorem for the function

$$\mathbf{v} = r^2 \cos\theta \,\hat{\mathbf{r}} + r^2 \cos\phi \,\hat{\boldsymbol{\theta}} - r^2 \cos\theta \sin\phi \,\hat{\boldsymbol{\phi}},$$

using as your volume one octant of the sphere of radius R (Fig. 1.48). Make sure you include the *entire* surface. [Answer: $\pi R^4/4$.]

Fig. 1.48

Problem 1.55. Check Stokes' theorem using the function $\mathbf{v} = ay\hat{\mathbf{x}} + bx\hat{\mathbf{y}}$ (a and b are constants) and the circular path of radius R, centered at the origin in the xy plane. [Answer: $\pi R^2(b-a)$.]

• Problem 1.63.

(a) Find the divergence of the function

$$\mathbf{v} = \frac{\hat{\mathbf{r}}}{r}$$
.

First compute it directly, as in Eq. <u>1.84</u>. Test your result using the divergence theorem, as in Eq. <u>1.85</u>. Is there a delta function at the origin, as there was for $\hat{\mathbf{r}}/r^2$? What is the general formula for the divergence of $\mathbf{r}^n\hat{\mathbf{r}}$? [Answer: $\nabla \cdot (\mathbf{r}^n\hat{\mathbf{r}}) = (n+2)\mathbf{r}^{n-1}$, unless n=-2, in which case it is $4\pi\delta^3(\mathbf{r})$; for n<-2, the divergence is ill defined at the origin.]

(b) Find the *curl* of $r^n \hat{\mathbf{r}}$. Test your conclusion using Prob. 1.61b. [Answer: $\nabla \times (r^n \hat{\mathbf{r}}) = 0$.]