

Experiment 1

Student Name: Sanampreet Singh UID: 23BCS13053

Branch: CSE Section/Group: KRG_2B

Semester: 5th Date of Performance: 21/07/25

Subject Name: ADBMS Subject Code: 23CSP-333

1. Aim:

• To design and implement normalized relational database schemas for different real world scenarios using SQL, establish foreign key relationships, insert relevant data, and retrieve specific information using JOINs and subqueries.

Part A – Easy Level:

- To create tables for AUTHOR1 and BOOKS1, capturing author and book details.
- To implement a foreign key relationship between books and their respective authors.
- To retrieve and display book name, author name, and country using an INNER JOIN.

Part B – Medium Level:

- To create tables for DEPARTMENT and COURSE, maintaining referential integrity.
- To populate the tables with department and course data.
- To use a correlated subquery to count the number of courses per department.
- To filter and display departments offering more than two courses.

2. Objective:

To understand and apply the concepts of relational database design by creating normalized tables with primary and foreign key constraints.

To insert meaningful real-world data into related tables representing entities such as authors, books, departments, and courses.

To retrieve and manipulate data using SQL operations like INNER JOIN and correlated subqueries.

To display relevant information by combining data from multiple tables and applying filtering conditions.

To strengthen knowledge of referential integrity, data relationships, and query-based data analysis in SQL Server.

3. ADBMS script and output:

EASY-LEVEL PROBLEM

```
CREATE TABLE AUTHOR1 (
  AUTHOR_ID INT PRIMARY KEY,
 AUTHOR_NAME VARCHAR(100),
 COUNTRY VARCHAR(50)
);
CREATE TABLE BOOKS1 (
  BOOK_ID INT PRIMARY KEY,
  BOOK_NAME VARCHAR(100),
 AUTHOR_ID INT,
 FOREIGN KEY (AUTHOR_ID) REFERENCES AUTHOR1(AUTHOR_ID)
);
INSERT INTO AUTHOR1 (AUTHOR_ID, AUTHOR_NAME, COUNTRY) VALUES
  (1, 'George Orwell',
                         'United Kingdom'),
 (2, 'Haruki Murakami',
                          'Japan'),
 (3, 'Isabel Allende',
                        'Chile'),
  (4, 'Fyodor Dostoevsky',
                        'Russia');
```

```
INSERT INTO BOOKS1 (BOOK_ID, BOOK_NAME, AUTHOR_ID) VALUES
  (201, '1984', 1),
 (202, 'Kafka on the Shore', 2),
  (203, 'The House of the Spirits', 3),
  (204, 'Crime and Punishment', 4);
SELECT
 B.BOOK_NAME,
 A.AUTHOR_NAME,
 A.COUNTRY
FROM
  BOOKS1 B
INNER JOIN
  AUTHOR1 A
  ON B.AUTHOR_ID = A.AUTHOR_ID;
MEDIUM LEVEL PROBLEM:
CREATE TABLE DEPARTMENT (
  DEPT_ID INT PRIMARY KEY,
  DEPT_NAME VARCHAR(100)
);
CREATE TABLE COURSE (
  COURSE_ID INT PRIMARY KEY,
  COURSE NAME VARCHAR(100),
```

```
DEPT_ID INT,
  FOREIGN KEY (DEPT ID) REFERENCES DEPARTMENT(DEPT ID)
);
INSERT INTO DEPARTMENT (DEPT_ID, DEPT_NAME) VALUES
(1, 'Computer Science'),
(2, 'Electronics'),
(3, 'Mathematics'),
(4, 'Communication'),
(5, 'General Studies');
INSERT INTO COURSE (COURSE_ID, COURSE_NAME, DEPT_ID) VALUES
(101, 'Operating Systems', 1),
(102, 'Computer Networks', 1),
(103, 'Competitive Programming', 1),
(104, 'Microcontroller', 2),
(105, 'Embedded Systems', 2),
(106, 'Mathematics I', 3),
(107, 'Mathematics II', 3),
(108, 'Communication Skills', 4),
(109, 'English Literature', 4),
(110, 'DAA', 1);
SELECT
  DEPT NAME
```

FROM

DEPARTMENT

WHERE

(SELECT COUNT(*)

FROM COURSE

WHERE COURSE.DEPT_ID = DEPARTMENT.DEPT_ID) > 2;

OUTPUTS:

⊞ R	Results Sessages			
	BOOK_NAME	AUTHOR_NAME	COUNTRY	
1	1984	George Orwell	United Kingdom	
2	Kafka on the Shore	Haruki Murakami	Japan	
3	The House of the Spirits	Isabel Allende	Chile	
4	Crime and Punishment	Fyodor Dostoevsky	Russia	

Figure 1: Easy level Problem

Figure 2: Medium level Problem