## Công thức tính cường độ điện trường tổng hợp

#### 1. Định nghĩa

Giả sử có các điện tích  $q_1, q_2, \ldots, q_n$  gây ra tại M các vectơ cường độ điện trường  $\overrightarrow{E}_1, \overrightarrow{E}_2, \overrightarrow{E}_3, \ldots, \overrightarrow{E}_n$  thì vecto cường độ điện trường tổng hợp do các điện tích trên gây ra tuân theo nguyên lý chồng chất điện trường

$$\overrightarrow{E} = \overrightarrow{E_1} + \overrightarrow{E_2} + \overrightarrow{E_3} + ... + \overrightarrow{E_n} = \sum \overrightarrow{E_i}$$

#### 2. Công thức

Áp dụng nguyên lý chồng chất điện trường:  $\vec{E} = \vec{E_1} + \vec{E_2} + \vec{E_3} + ... + \vec{E_n} = \sum \vec{E_i}$ Theo quy tắc hình bình hành, ta tổng hợp được vector  $\vec{E}$  hợp lực:



- Xét trường hợp tại điểm M trong vùng điện trường của 2 điện tích:  $\vec{E} = \vec{E_1} + \vec{E_2}$ Với các trường hợp đặc biết, ta có:

$$+ N\acute{e}u \overrightarrow{E_1} \uparrow \uparrow \overrightarrow{E_2} \rightarrow E_M = E_1 + E_2$$

+ Nếu 
$$\overrightarrow{E_1} \uparrow \downarrow \overrightarrow{E_2} \rightarrow E_M = E_1 - E_2$$

+ Nếu 
$$\overrightarrow{E_1} \perp \overrightarrow{E_2} \rightarrow E_M = \sqrt{E_1^2 + E_2^2}$$

+ Nếu 
$$(\overrightarrow{E_1}, \overrightarrow{E_2}) = \alpha \rightarrow E_M = \sqrt{E_1^2 + E_2^2 + 2E_1E_2\cos\alpha}$$

## 3. Ví dụ minh họa

**Ví dụ 1:** Có hai điện tích điểm  $q_1 = 0.5$  nC và  $q_2 = -0.5$  nC lần lượt đặt tại hai điểm A, B cách nhau một đoạn a = 6 cm trong không khí. Hãy xác định cường độ điện trường  $\vec{E}$  tại điểm M trong các trường hợp sau:

- a) Điểm M cách A một đoạn 6 cm, cách B một đoạn 12 cm.
- b) Điểm M nằm trên đường trung trực của AB và cách AB một đoạn 4 cm.

### Hướng dẫn giải:

a) Gọi  $\vec{E}_1,\vec{E}_2$  lần lượt là cường độ điện trường do điện tích  $q_1$  và  $q_2$  gây ra tại M

$$+ \text{ Ta c\'o:} \begin{cases} E_1 = k \frac{\left| q_1 \right|}{r_1^2} = 9.10^9. \frac{0.5.10^{-9}}{0.06^2} = 1250 \left( \text{V} \ / \ \text{m} \right) \\ E_2 = k \frac{\left| q_2 \right|}{r_2^2} = 9.10^9. \frac{0.5.10^{-9}}{0.12^2} = 312.5 \left( \text{V} \ / \ \text{m} \right) \end{cases}$$

+ Các vecto  $\vec{E}_1, \vec{E}_2$  được biểu diễn như hình



- + Gọi  $\vec{E}$  là điện trường tổng hợp do  $q_1$  và  $q_2$  gây ra tại M. Ta có:  $\vec{E} = \vec{E}_1 + \vec{E}_2$
- + Vì  $\vec{E}_1$ ,  $\vec{E}_2$  ngược chiều nên:  $E = E_1 E_2 = 937,5 (V/m)$
- + Vậy  $\overrightarrow{E}$  có điểm đặt tại M, phương AB, chiều từ B đến A, độ lớn 937,5 V/m b)



Gọi  $\vec{E}_1, \vec{E}_2$  lần lượt là cường độ điện trường do điện tích  $q_1$  và  $q_2$  gây ra tại M + Vì độ lớn hai điện tích bằng nhau nên điểm M cách đều hai điện tích nên:

$$E_1 = E_2 = k \frac{|q|}{r^2} = k \frac{|q|}{MH^2 + HA^2} = 9.10^9 \cdot \frac{0.5 \cdot 10^{-9}}{0.05^2} = 1800 (V/m)$$

- + Các vecto  $\vec{E}_1, \vec{E}_2$  được biểu diễn như hình
- + Vì  $E_1 = E_2$  nên hình  $ME_1EE_2$  là hình thoi nên:

 $ME = 2.MK = 2.ME_1 \cos \beta \Leftrightarrow E = 2.E_1 \cos \beta$ 

$$\Rightarrow$$
 E = 2.E<sub>1</sub>  $\frac{AH}{AM}$  = 2.1800.  $\frac{3}{\sqrt{3^2 + 4^2}}$  = 2160 (V/m)

+ Do ME<sub>1</sub>EE<sub>2</sub> là hình thoi nên ME song song AB.

Vậy vectơ cường độ điện trường tổng hợp tại M có:

+ điểm đặt tại M

+ Phương: ME

+ Chiều: từ M đến E

+ Độ lớn 2160 V/m.

**Ví dụ 2:** Một quả cầu nhỏ khối lượng m = 0,1 g mang điện tích  $q = 10^{-8}$  C được treo bằng một sợi dây không dãn và đặt vào điện trường đều  $\vec{E}$  có đường sức nằm ngang. Khi quả cầu cân bằng, dây treo hợp với phương thẳng đứng góc  $\alpha = 45^{\circ}$ . Lấy g = 10 m/s<sup>2</sup>. Tính độ lớn của cường độ điện trường.

# Hướng dẫn giải:



- Các lực tác dụng lên quả cầu gồm: Lực căng dây  $\vec{T}$ , trọng lực  $\vec{P}$ , lực điện trường  $\vec{F}$ .
- + Điều kiện cân bằng của quả cầu:  $\vec{P} + \vec{F} + \vec{T} = 0$
- + Gọi  $\overrightarrow{R}$  là vecto tổng hợp của  $\overrightarrow{P}$  và  $\overrightarrow{F} \Longrightarrow \overrightarrow{R} + \overrightarrow{T} = 0$
- + Suy ra  $\overrightarrow{R}$  có phương sợi dây  $\Rightarrow$   $\tan \alpha = \frac{F}{P} \Leftrightarrow \tan \alpha = \frac{qE}{mg}$

$$\Rightarrow E = \frac{\text{mg.tan }\alpha}{q} = \frac{\left(0, 1.10^{-3}\right).10. \tan 45^{\circ}}{10^{-8}} = 10^{5} \left(\text{V/m}\right)$$