Analysis Qualifying exam - Spring 09

Burckel & Naibo

Instructions: Do all ten problems. Start each problem on a separate page and clearly indicate the problem number.

Notation: \mathbb{N} is the positive integers, \mathbb{R} the reals, \mathbb{C} the complexes, $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, $\mathbb{T} := \{u \in \mathbb{C} : |u| = 1\}$, Ω is an open connected subset of \mathbb{C} (=: a region), $H(\Omega)$ is the set of all holomorphic (= analytic) functions in Ω .

- 1. P is a polynomial of degree at most $n \in \mathbb{N}$ and $\sup\{|P(u)| : u \in \mathbb{T}\} = 1$. Show that $|P(z)| \leq |z|^n$ for all $z \in \mathbb{C} \setminus \mathbb{D}$ and determine for what P equality holds at some $z \neq 0$. Hint: Consider the function (polynomial!) $f(w) := w^n P(1/w)$.
- 2. State five equivalent definitions of Ω being simply-connected.
- 3. $f_n \in H(\Omega)$ and $f_n \to f$ uniformly in each compact subset of Ω . Show that f is holomorphic in Ω .

Hint: First show that f is continuous. Then use Morera's theorem.

- 4. Ω is a convex region, $g \in H(\Omega)$, $f \in H(\Omega)$ is zero-free.
 - (a) Construct a primitive h for g (and prove that h' = g). Hint: What role does convexity play?
 - (b) Use (4a) to construct a holomorphic logarithm for f, that is, $L \in H(\Omega)$ such that $e^L = f$.
- 5. Show that $f(x) := \frac{\cos x}{4 + x^2}$ is absolutely integrable over $\mathbb R$ and compute its integral.

Hint: When integrating over a circle, e^{iz} is better than $\cos z$.

6. Let E be a Lebesgue measurable set in \mathbb{R}^n . Prove that

$$E = A_1 \cup N_1 = A_2 \setminus N_2$$

where A_1 is an F_{σ} set, A_2 is a G_{δ} set, and $m(N_1) = m(N_2) = 0$ (m denotes Lebesgue measure in \mathbb{R}^n).

Hint: Recall that m is a regular measure, what does that mean?

7. (a) Let (X, M, μ) be a measure space. For each n∈ N, let f_n: X → C be a measurable function. Consider the following types of convergence for the sequence {f_n}: uniform convergence (uc), convergence in measure (μ-c), convergence in L^p(X, μ) (L^p-c), and almost everywhere convergence (a.e.-c). Complete the following diagrams by drawing an arrow (→) if one type of convergence implies another and by drawing a dashed arrow (-→) if one type of convergence implies another for some subsequence. You do not have to give proofs.

 L^p -c a.e.-c L^p -c a.e.-c μ -c

General measure space

Measure space with $\mu(X) < \infty$

- (b) State the Monotone Convergence Theorem, Fatou's lemma, the Dominated Convergence Theorem, and Egoroff's Theorem.
- 8. Let (X, \mathcal{M}, μ) be a measure space in which measurable functions f_n and f are given. Prove that if $f_n \to f$ in measure, $|f_n| \le |g|$ a.e. for all n, and $g \in L^p(X, \mu)$, then f_n , $f \in L^p(X, \mu)$ and $f_n \to f$ in $L^p(X, \mu)$.
- 9. Let E be a Lebesgue measurable set in $\mathbb R$ such that $0 < m(E) < \infty$ (m denotes Lebesgue measure in $\mathbb R$). Prove that if f is a nonnegative Lebesgue measurable function then $g(x) = \int_E f(x-t) \, dt$ is Lebesgue measurable and that $g \in L^1(\mathbb R, m)$ if and only if $f \in L^1(\mathbb R, m)$.
- 10. (a) Give four equivalent definitions of an orthonormal basis in a Hilbert space.
 - (b) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces such that $L^2(X, \mu)$ and $L^2(Y, \nu)$ are separable. If $\{u_m\}_{m\in\mathbb{N}}$ and $\{v_n\}_{n\in\mathbb{N}}$ are orthonormal bases for $L^2(X, \mu)$ and $L^2(Y, \nu)$, respectively, prove that $\{u_mv_n\}$ is an orthonormal basis for $L^2(X \times Y, \mu \times \nu)$.