Lectures

Ilia Kamyshev

January 6, 2021

Contents

1	\mathbf{The}	e Learning Problem	1
	1.1	Introduction]
	1.2	Formal definition of learning	2

1 The Learning Problem

1.1 Introduction

It is assumed that training data is randomly generated. It is also assumed that there is a probability distribution P defined on Z. P is fixed and unknown for given problem. A sequence of labelled examples of the form (x,y) is presented to the neural network during training. For some positive integer m there is training sample:

$$z = ((x_1, y_1), \dots, (x_m, y_m)) = (z_1, \dots, z_m) \in Z^m$$

Random training sample of length m is an element of Z^m distributed according to the product probability distribution P^m . Let's denote the set of all functions the network can approximate as H. Then, an *error* of $h \in H$ will be:

$$error_P(h) = P\{(x, y) \in Z : h(x) \neq y\}$$

The sample error (observed error) is defined as:

$$error_z(h) = \frac{1}{m} |\{i : 1 \le i \le m \text{ and } h(x_i) \ne y_i\}|$$

Given h after the training is hypothesis (the error of this function should have minimum value), so:

$$opt_P(H) = \inf_{g \in H} error_P(g)$$

We may say that h is ϵ – good if for $\epsilon \in (0, 1)$:

$$error_P(h) < opt_P(H) + \epsilon$$

1.2 Formal definition of learning

Let's denote δ as a confidence parameter to ensure that the learning algrotihm will be ϵ – good with probability at least $1 - \delta$. Suppose that H maps from a set X to $\{0,1\}$. A learning algorithm L for H is a function:

$$L: \bigcup_{m=1}^{\infty} Z^m \to H$$

So if z is a training sample drawn randomly from distribution P^m , then the hypothesis L(z) is such that:

$$error_P(L(z)) < opt_P(H) + \epsilon$$

In other words:

$$P^{m}\{error_{P}(L(z)) < opt_{P}(H) + \epsilon\} \ge 1 - \delta$$

H is learnable if there is a learning algorithm for H. Let's denote $m_0(\epsilon, \delta)$ as a minimum sample size sufficient to learn with ϵ and δ prescribed. Then, m_L is a sample complexity:

 $m_L(\epsilon, \delta) = min\{m : m \text{ is a sufficient sample size for } (\epsilon, \delta)\text{-learning } H \text{ by } L\}$

Similarly, estimation error can be defined as the smallest possible estimation error bound $\epsilon_L(m, \delta)$ of L. Also similarly, sample complexity $m_H(\epsilon, \delta)$ for H (absolute lower bound on sample size to be sufficient to (ϵ, δ) – learn H):

$$m_H(\epsilon, \delta) = \min_L m_L(\epsilon, \delta)$$

Theorem 1. Suppose h is a function from X to $\{0,1\}$, then:

$$P^m\{z \in Z^m : |error_z(h) - error_P(h)| \ge \epsilon\} \le 2\exp(-2\epsilon^2 m)$$

Proof: The equation above has a form of Hoeffding's Inequality: $P\{|\bar{X} - \mathbb{E}[\bar{X}]| \geq t\} \leq \exp(-2mt^2)$, where $X = \{X_1, \dots, X_m\}$ is independent random variables bounded by [0,1] and t > 0, and m is still sample size. In our case $X_i = 1$ on $(x_i, y_i) \in Z$ if and only if $h(x_i) \neq y$. It is easy to

see that $error_z(h) = \frac{1}{m}(X_1 + X_2 + \ldots + X_m) = \bar{X}$. As for true error $P\{h(x) \neq y\} = error_P(h) = \mathbb{E}[\bar{X}]$.

This theorem is not sufficient to prove that L learns. This theorem implies that the true error $error_P(h)$ is approximately minimazing with minimization of the estimation error $error_z(h)$.

Theorem 2. Suppose that H is a finite set of functions map from a set X to $\{0,1\}$. Then:

$$P^{m}\{\max_{h\in H}|error_{z}(h) - error_{P}(h)| \ge \epsilon\} \le 2|H|\exp(-2\epsilon^{2}m)$$

Proof. Let A(h) be a simple random event corresponding to $|error_z(h) - error_P(h)| \ge \epsilon$. Thus, following holds:

$$P^{m}\{\max_{h\in H}|error_{z}(h) - error_{P}(h)| \ge \epsilon\} = P^{m}(\bigcup_{h\in H} A(h))$$

Applying union bound we will have:

$$P^m(\bigcup_{h\in H} A(h)) \le \sum_{h\in H} P^m(A(h))$$

Substitying $A(h)=\{z\in Z^m: |error_z(h)-error_P(h)|\geq \epsilon\}$ and using theorem 1 we will have:

$$\sum_{h \in H} P\{z \in Z^m : |error_z(h) - error_p(h)| \ge \epsilon\} \le |H|(2\exp(-2\epsilon^2 m))$$

Theorem 3. Suppose that H is a finite set of functions from a set X to $\{0,1\}$. Let $L: \bigcup_{m=1}^{\infty} Z^m \to H$ be such that for any m and any $z \in Z^m$,

$$error_z(L(z)) = \min_{h \in H} error_z(h)$$

Then L is a learning algorithm for H, with estimation error:

$$\epsilon_L(m,\delta) \le \sqrt{\frac{2}{m} \ln(\frac{2|H|}{\delta})}$$

, and sample complexity:

$$m_L(\epsilon, \delta) \le \frac{2}{\epsilon^2} \ln(\frac{2|H|}{\delta})$$

Proof: *TODO*.