não exatamente bom especificado

Problema: Rearranjar um dado vetor A[p..r] e devolver um índice q tal que $p \le q \le r$ e

$$A[\textcolor{red}{p}\mathinner{.\,.} \textcolor{blue}{q}-1] \leq A[\textcolor{red}{q}] < A[\textcolor{red}{q}+1\mathinner{.\,.} \textcolor{blue}{r}]$$

Entra:

Partição

Problema: Rearranjar um dado vetor A[p..r] e devolver um índice q tal que $p \le q \le r$ e

$$A[p \dots q-1] \le A[q] < A[q+1 \dots r]$$

Entra:

Sai:

Partição

Problema: Rearranjar um dado vetor A[p..r] e devolver um índice q tal que $p \le q \le r$ e

$$A[\textcolor{red}{p}\mathinner{.\,.} \textcolor{blue}{q}-1] \leq A[\textcolor{red}{q}] < A[\textcolor{red}{q}+1\mathinner{.\,.} \textcolor{blue}{r}]$$

Entra:

Sai:

 p
 r

 A
 99
 33
 55
 77
 11
 22
 88
 66
 33
 44


```
Rearranja A[p..r] de modo que p \leq q \leq r e
A[p ...q-1] < A[q] < A[q+1...r]
      PARTICIONE (A, p, r)
      1 \times \leftarrow A[r] > \times \text{\'e o "piv\'o"}
      2 \quad i \leftarrow p-1
      3 para j \leftarrow p até r-1 faça
      4 se A[j] \leq x
                  então i \leftarrow i + 1
                          A[i] \leftrightarrow A[i]
      7 A[i+1] \leftrightarrow A[r]
      8 devolva i+1
```

Invariantes: no começo de cada iteração de 3-6,

(i0)
$$A[p..i] \le x$$
 (i1) $A[i+1..j-1] > x$ (i2) $A[r] = x$


```
Rearranja A[p ... r] de modo que p \leq q \leq r e
A[p ...q-1] < A[q] < A[q+1...r]
     PARTICIONE (A, p, r)
     1 \times \leftarrow A[r] > \times \text{\'e o "piv\'o"}
     2 \quad i \leftarrow p-1
     3 para i \leftarrow p até r-1 faça
     4 se A[i] < x
                então i \leftarrow i + 1
                       A[i] \leftrightarrow A[i]
     7 A[i+1] \leftrightarrow A[r]
         devolva i+1
               - prova de corretude no CLRS
Invariantes: no começo de cada iteração de 3-6,
(i0) A[p..i] < x (i1) A[i+1..i-1] > x (i2) A[r] = x
```

```
Rearranja A[p ... r] de modo que p \leq q \leq r e
A[p \dots q-1] \leq A[q] < A[q+1 \dots r]
      PARTICIONE (A, p, r)
      1 \times \leftarrow A[r] > \times \text{ \'e o "piv\^o"}
     2 \quad i \leftarrow p-1
     3 para j \leftarrow p até r-1 faça
     4 se A[i] < x
                 então i \leftarrow i + 1
                         A[i] \leftrightarrow A[i]
     7 A[i+1] \leftrightarrow A[r]
                                     pense en como isso ficaria mais
limpo com intervalos semi abertos,
          devolva i+1
                                      por exemplo, [p,i), [i,j)
Invariantes: no começo de cada iteração de 3-6,
(i0) A[p..i] < x (i1) A[i+1..j-1] > x (i2) A[r] = x
```

Consumo de tempo

Quanto tempo consome em função de n := r - p + 1?

linha	consumo de todas as execuções da linha
1-2	
3	
4	
5-6	
7-8	₹. <u>3</u> '

total

Rearranja
$$A[p ... r]$$
 de modo que $p \le q \le r$ e $A[p ... q-1] \le A[q] < A[q+1 ... r]$

PARTICIONE (A, p, r)

1 $x \leftarrow A[r]$ $\triangleright x \in o \text{"pivo"}$ $\Theta(1)$

2 $i \leftarrow p-1$

3 para $j \leftarrow p$ até $r-1$ faça $\{ e \in A[j] \le x \}$

5 então $\{ e \in A[j] \} \}$

6 $\{ e \in A[j] \} \}$

7 $\{ e \in A[j] \} \}$

8 devolva $\{ e \in A[r] \}$

Invariantes: no começo de cada iteração de 3-6,

(i0)
$$A[p..i] \le x$$
 (i1) $A[i+1..j-1] > x$ (i2) $A[r] = x$

Consumo de tempo

Quanto tempo consome em função de n := r - p + 1?

total = $\Theta(2n+4) + O(2n)$

linha	consumo de todas as execuções da linha
1-2 3 4 5-6 7-8	$= 2\Theta(1)$ $= \Theta(n)$ $= \Theta(n)$ $= 2O(n)$ $= 2\Theta(1)$

Conclusão:

O algoritmo PARTICIONE consome tempo $\Theta(n)$.

 $=\Theta(n)$

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r)
```

Rearranja A[p..r] em ordem crescente.

QUICKSORT
$$(A, p, r)$$

1 se $p < r$
2 então $q \leftarrow \text{PARTICIONE}(A, p, r)$
3 QUICKSORT $(A, p, q - 1)$
4 QUICKSORT $(A, q + 1, r)$

No começo da linha 3,

$$A[p ... q-1] \leq A[q] \leq A[q+1...r]$$

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

QUICKSORT (A, q + 1, r)
```

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r)
```

	p				q					r
Α	11	22	33	33	44	55	66	77	88	99

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \text{PARTICIONE}(A, p, r) \leftarrow \text{divisão}

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r)
```

```
    p
    q
    r

    A
    11
    22
    33
    33
    44
    55
    66
    77
    88
    99
```

Rearranja A[p ... r] em ordem crescente.

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r)
```

No começo da linha 3,

$$A[p \dots q-1] \le A[q] \le A[q+1 \dots r]$$

Consumo de tempo?

Rearranja A[p ... r] em ordem crescente.

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow PARTICIONE (A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r)
```

No começo da linha 3

$$A[p \cdot q-1] \le A[q] \le A[q+1 \cdot r]$$

Consumo de tempo?

$$T(n) := \text{consumo de tempo no pior caso sendo}$$
 $n := r - p + 1 \leftarrow \text{tamanho de A}[p..r]$

Consumo de tempo

Quanto tempo consome em função de n := r - p + 1?

linha		consumo de todas as execuções da linha
1	=	?
2	=	?
3	=	?
4	=	?

total =
$$????$$

Rearranja A[p ... r] em ordem crescente.

QUICKSORT
$$(A, p, r)$$

1 se $p < r$ } \bigcirc (1)
2 então $q \leftarrow PARTICIONE (A, p, r)$ } \bigcirc (w)
3 QUICKSORT $(A, p, q - 1)$ } \top (%)
4 QUICKSORT $(A, q + 1, r)$ } \top (w - & -1)

$$A[p ... q-1] \le A[q] \le A[q+1... r]$$

Consumo de tempo?

$$T(n) := \text{consumo de tempo no pior caso sendo}$$
 $n := r - p + 1 \leftarrow \text{tamanho de } A[p..r]$

Rearranja A[p ... r] em ordem crescente.

QUICKSORT
$$(A, p, r)$$

1 se $p < r$ } \bigcirc (1)
2 então $q \leftarrow PARTICIONE(A, p, r)$ } \bigcirc (n)
3 QUICKSORT $(A, p, q - 1)$ } \top (\checkmark)
4 QUICKSORT $(A, q + 1, r)$ } \top ($r - q$)

No começo da linha 3,
$$r = (9+1) + 1 = r - 9$$

$$A[p \dots q-1] \le A[q] \le A[q+1 \dots r]$$

Consumo de tempo?

$$T(n) := \text{consumo de tempo no pior caso sendo}$$
 $n := r - p + 1 \leftarrow \text{tamanho at } A[p..r]$

Quicksort

Rearranja A[p ... r] em ordem crescente.

QUICKSORT
$$(A, p, r)$$

1 se $p < r$

2 então $q \leftarrow \text{PARTICIONE}(A, p, r) \} \ominus (n)$

3 QUICKSORT $(A, p, q - 1) \} \top (k)$

4 QUICKSORT $(A, q + 1, r) \} \top (r - q)$

No começo da linha 3, $r - (q + 1) + 1 = r - q$

entermos de $n \in k$?

 $A[p ... q - 1] \le A[q] \le A[q + 1 ... r]$

$$T(n) := \text{consumo de tempo no pior caso sendo}$$
 $n := r - p + 1 \leftarrow \text{tamanho at } A[p..r]$

Rearranja A[p..r] em ordem crescente.

QUICKSORT
$$(A, p, r)$$

1 se $p < r$ } \bigcirc (1)
2 então $q \leftarrow PARTICIONE(A, p, r)$ } \bigcirc (n)
3 QUICKSORT $(A, p, q - 1)$ } \top ($r - q$)
4 QUICKSORT $(A, q + 1, r)$ } \top ($r - q$)
em termos

No começo da linha 3,

$$A[p .. q-1] \le A[q] \le A[q+1.. r]$$

$$T(n) := \text{consumo de tempo no pior caso sendo}$$
 $n := r - p + 1 \leftarrow \text{tamanho at } A[p..r]$

Rearranja A[p..r] em ordem crescente.

QUICKSORT
$$(A, p, r)$$

1 se $p < r$ } \ominus (1)
2 então $q \leftarrow PARTICIONE(A, p, r)$ } \ominus (n)
3 QUICKSORT $(A, p, q - 1)$ } \top (k)
4 QUICKSORT $(A, q + 1, r)$ } \top ($r - q$)
em termos

No começo da linha 3,

$$A[p \dots q-1] \leq A[q] \leq A[q+1 \dots r]$$

$$T(n) := \text{consumo de tempo no pior caso sendo}$$

$$n := r - p + 1 \leftarrow \text{tamanho de } A[p..r]$$

Rearranja A[p..r] em ordem crescente.

QUICKSORT
$$(A, p, r)$$

1 se $p < r$ } \ominus (1)
2 então $q \leftarrow PARTICIONE(A, p, r)$ } \ominus (n)
3 QUICKSORT $(A, p, q - 1)$ } \top (n - 4 - 1)

No começo da linha 3,

$$A[p \dots q-1] \leq A[q] \leq A[q+1 \dots r]$$

$$T(n) := \text{consumo de tempo no pior caso sendo}$$
 $n := r - p + 1 \leftarrow \text{tamanho at } A[p..r]$

Consumo de tempo

Quanto tempo consome em função de n := r - p + 1?

linha		consumo de todas as execuções da linha
1	=	$\Theta(1)$
2	=	$\Theta(n)$
3	=	T(k)
4	=	T(n-k-1)

total =
$$T(k) + T(n-k-1) + \Theta(n+1)$$

$$0 \leq k := q - p \leq n - 1$$

Recorrência

$$T(n):=$$
 consumo de tempo máximo quando $n=r-p+1$ para algum $k\in\{0,...,n-1\}$
$$T(n)=T(k)+T(n-k-1)+\Theta(n)$$

Recorrência

$$T(n) :=$$
 consumo de tempo máximo quando $n = r - p + 1$

$$T(n) = T(k) + T(n-k-1) + \Theta(n)$$

Recorrência grosseira:

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$T(n) \in \Theta(???)$$
.

Recorrência

$$T(n) :=$$
 consumo de tempo máximo quando $n = r - p + 1$

$$T(n) = T(k) + T(n-k-1) + \Theta(n)$$

Recorrência grosseira:

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$T(n) \in \Theta(n^2)$$
.

Demonstração: ... Exercício!

$$T(n):=$$
 consumo de tempo máximo quando $n=r-p+1$
$$T(n)=\max_{0\leq k\leq n-1}\{T(k)+T(n-k-1)\}+\Theta(n)$$

$$T(n):=$$
 consumo de tempo máximo quando $n=r-p+1$
$$T(n)=\max_{0\leq k\leq n-1}\{T(k)+T(n-k-1)\}+\Theta(n)$$

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + n \text{ para } n = 2, 3, 4, \dots$$

$$\frac{n \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5}{T(n) \mid 1 \quad 1 \quad 2+2 \quad 5+3 \quad 9+4 \quad 14+5}$$

$$T(n) := \text{consumo de tempo máximo quando } n = r - p + 1$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + \Theta(n)$$
Versão simplificada:
$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + n \text{ para } n = 2, 3, 4, \dots$$

$$\frac{n \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5}{T(n) \mid 1 \quad 1 \quad 2 + 2 \quad 5 + 3 \quad 9 + 4 \quad 14 + 5}$$

$$T(n):=$$
 consumo de tempo máximo quando $n=r-p+1$
$$T(n)=\max_{0\leq k\leq n-1}\{T(k)+T(n-k-1)\}+\Theta(n)$$

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + n \text{ para } n = 2, 3, 4, \dots$$

$$\frac{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5}{T(n) \mid 1 \mid 1 \mid 2+2 \mid 5+3 \mid 9+4 \mid 14+5}$$

$$T(n):=$$
 consumo de tempo máximo quando $n=r-p+1$
$$T(n)=\max_{0\leq k\leq n-1}\{T(k)+T(n-k-1)\}+\Theta(n)$$

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = \max_{0 \le k \le n-1} \{T(k) + T(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$$

$$\frac{n \mid 0 \quad 1 \quad 2}{T(n) \mid 1 \quad 1 \quad 2+2 \quad 5+3 \quad 9+4 \quad 14+5}$$

$$T(n) := \text{consumo de tempo } \frac{\text{máximo quando } n = r - p + 1}{T(n) = \max_{0 \le k \le n - 1} \{T(k) + T(n - k - 1)\} + \Theta(n)}$$

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + n \text{ para } n = 2, 3, 4, \dots$$

$$\frac{n \mid 0 \quad 1 \quad 2}{T(n) \mid 1 \quad 1 \quad 2 + 2 \quad 5 + 3 \quad 9 + 4 \quad 14 + 5}$$

$$T(n) := \text{consumo de tempo } \frac{\text{máximo quando } n = r - p + 1}{T(n) = \max_{0 \le k \le n - 1} \{T(k) + T(n - k - 1)\} + \Theta(n)}$$

Versão simplificada:

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + n \text{ para } n = 2, 3, 4, \dots$$

$$\frac{n \mid 0 \quad 1 \quad 2 \quad 3}{T(n) \mid 1 \quad 1 \quad 2+2 \quad 5+3 \quad 9+4 \quad 14+5}$$

Vamos mostrar que $T(n) \le n^2 + 1$ para $n \ge 0$.

Demonstração

Prova: Trivial para $n \le 1$. Se $n \ge 2$ então

$$T(n) = \max_{0 \le k \le n-1} \left\{ T(k) + T(n-k-1) \right\} + n$$

$$\stackrel{\text{hi}}{\le} \max_{0 \le k \le n-1} \left\{ k^2 + 1 + (n-k-1)^2 + 1 \right\} + n$$

$$= \dots$$

$$= n^2 - n + 3$$

$$\le n^2 + 1.$$

Prove que $T(n) \ge \frac{1}{2} n^2$ para $n \ge 1$.

Algumas conclusões

$$T(n) \in \Theta(n^2)$$
.

O consumo de tempo do QUICKSORT no pior caso é $O(n^2)$.

O consumo de tempo do QUICKSORT é $O(n^2)$.

$$M(n) :=$$
 consumo de tempo mínimo quando $n = r - p + 1$
$$M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + \Theta(n)$$

$$M(n) :=$$
 consumo de tempo mínimo quando $n = r - p + 1$
$$M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + \Theta(n)$$

$$\begin{split} &M(0) = 1 \\ &M(1) = 1 \\ &M(n) = \min_{0 < k < n-1} \{M(k) + M(n-k-1)\} + n \ \text{para } n = 2, 3, 4, \dots \end{split}$$

$$M(n):=$$
 consumo de tempo mínimo quando $n=r-p+1$
$$M(n)=\min_{0\leq k\leq n-1}\{M(k)+M(n-k-1)\}+\Theta(n)$$

Versão simplificada:

$$M(0) = 1$$
 $M(1) = 1$
 $M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$

Mostre que $M(n) \ge n \log_{10} n p l + olo n \ge 1$.

$$M(n) :=$$
 consumo de tempo mínimo quando $n = r - p + 1$
$$M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + \Theta(n)$$

Versão simplificada:

$$M(0) = 1$$
 $M(1) = 1$
 $M(n) = \min_{0 < k < n-1} \{M(k) + M(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$

Mostre que $M(n) \ge n \log_{10} n$ pl todo $n \ge 1$.

Isto implica que no melhor caso o QUICKSORT é $\Omega(n \lg n)$,

$$M(n) :=$$
 consumo de tempo mínimo quando $n = r - p + 1$
$$M(n) = \min_{0 \le k \le n - 1} \{M(k) + M(n - k - 1)\} + \Theta(n)$$

Versão simplificada:

$$M(0) = 1$$
 $M(1) = 1$
 $M(n) = \min_{0 < k < n-1} \{M(k) + M(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$

Mostre que $M(n) \ge n$ log n para todo $n \ge 1$.

Isto implica que no melhor caso o QUICKSORT é $\Omega(n \lg n)$, que é o mesmo que dizer que o QUICKSORT é $\Omega(n \lg n)$.

Mais algumas conclusões

$$M(n) \in \Theta(n \lg n)$$
.

O consumo de tempo do QUICKSORT no melhor caso é $\Omega(n \log n)$.

Na verdade . . .

O consumo de tempo do QUICKSORT no melhor caso é $\Theta(n \log n)$.

Análise de caso médio do Quicksort

Apesar do consumo de tempo de pior caso do QUICKSORT ser $\Theta(n^2)$, sua performance na prática é comparável (e em geral melhor) a de outros algoritmos cujo consumo de tempo no pior caso é $O(n \lg n)$.

Por que isso acontece? (Intuitivamente.)

Exercício

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/3 \rceil) + T(\lfloor 2n/3 \rfloor) + n$

para n = 2, 3, 4, ...

Solução assintótica: T(n) é O(???), T(n) é $\Theta(???)$

Exercício

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/3 \rceil) + T(\lfloor 2n/3 \rfloor) + n$

para n = 2, 3, 4, ...

Solução assintótica: T(n) é O(???), T(n) é $\Theta(???)$

Vamos olhar a árvore da recorrência.

Árvore da recorrência

Os níveis da esquerda chegarão antes na base, ou seja, a árvore será inclinada para a direita.

Árvore da recorrência

soma em cada horizontal $\leq n$

número de "níveis" $\leq \log_{3/2} n$

T(n) = a soma de tudo

$$T(n) \leq n \log_{3/2} n + \underbrace{1 + \cdots + 1}_{\log_{3/2} n}$$

 $T(n) \in O(n \lg n)$.

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ \text{para} \ n=2,3,4,\dots$$

n	T(n)
1	1
2	1 + 1 + 2 = 4
3	1 + 4 + 3 = 8
4	4 + 4 + 4 = 12

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ \mathsf{para} \ n=2,3,4,\dots$$

$$\begin{array}{cccc}
n & T(n) \\
\hline
1 & 1 \\
2 & 1+1+2=4 \\
3 & 1+4+3=8 \\
4 & 4+4+4=12
\end{array}$$

Vamos mostrar que $T(n) \leq 20 n \lg n$ para $n = 2, 3, 4, 5, 6, \dots$

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ \text{para} \ n=2,3,4,\dots$$

n	T(n)
1	1
2	1 + 1 + 2 = 4
3	1 + 4 + 3 = 8
4	4 + 4 + 4 = 12

Vamos mostrar que $T(n) \leq 20 n \lg n$ para n = 2, 3, 4, 5, 6, ...

Para $n = 2 \text{ temos } T(2) = 4 < 20 \cdot 2 \cdot \lg 2.$

Para $n = 3 \text{ temos } T(3) = 8 < 20 \cdot 3 \cdot \lg 3$.

Suponha agora que n > 3. Então...

Continuação da prova

$$T(n) = T(\lceil \frac{n}{3} \rceil) + T(\lfloor \frac{2n}{3} \rfloor) + n$$

$$\stackrel{\text{hi}}{\leq} 20\lceil \frac{n}{3} \rceil \lg\lceil \frac{n}{3} \rceil + 20\lfloor \frac{2n}{3} \rfloor \lg\lfloor \frac{2n}{3} \rfloor + n$$

$$\leq 20\frac{n+2}{3} \lceil \lg \frac{n}{3} \rceil + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

$$< 20\frac{n+2}{3} (\lg \frac{n}{3} + 1) + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

$$= 20\frac{n+2}{3} \lg \frac{2n}{3} + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

$$= 20\frac{n}{3} \lg \frac{2n}{3} + 20\frac{2}{3} \lg \frac{2n}{3} + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

Continuação da continuação da prova

$$< 20n \lg \frac{2n}{3} + 14 \lg \frac{2n}{3} + n$$

$$= 20n \lg n + 20n \lg \frac{2}{3} + 14 \lg n + 14 \lg \frac{2}{3} + n$$

$$< 20n \lg n + 20n(-0.58) + 14 \lg n + 14(-0.58) + n$$

$$< 20n \lg n - 11n + 14 \lg n - 8 + n$$

$$= 20n \lg n - 10n + 14 \lg n - 8$$

$$< 20n \lg n - 10n + 7n - 8$$

De volta à intuição

Certifique-se que a conclusão seria a mesma qualquer que fosse a proporção fixa que tomássemos. Por exemplo, resolva o seguinte...

De volta à intuição

Certifique-se que a conclusão seria a mesma qualquer que fosse a proporção fixa que tomássemos. Por exemplo, resolva o seguinte...

Exercício: Considere a recorrência

$$T(1) = 1$$

$$T(n) = T(\lceil n/10 \rceil) + T(\lfloor 9n/10 \rfloor) + n$$

para n = 2, 3, 4, ... e mostre que T(n) é $O(n \lg n)$.

De volta à intuição

Certifique-se que a conclusão seria a mesma qualquer que fosse a proporção fixa que tomássemos. Por exemplo, resolva o seguinte...

Exercício: Considere a recorrência

$$T(1) = 1$$

$$T(n) = T(\lceil n/10 \rceil) + T(\lfloor 9n/10 \rfloor) + n$$

para $n = 2, 3, 4, \ldots$ e mostre que T(n) é $O(n \lg n)$.

Note que, se o QUICKSORT fizer uma "boa" partição a cada, digamos, 5 níveis da recursão, o efeito geral é o mesmo, assintoticamente, que ter feito uma boa partição em todos os níveis.