

Curso: MAT1620 - Calculo II

Profesor: Vania Ramirez Ayudante: Ignacio Castañeda Mail: ifcastaneda@uc.cl

Ayudantía 15

Repaso Examen 9 de noviembre de 2017

1. Sea

$$I = \int_0^1 \int_0^{2y} f(x, y) dx dy + \int_1^3 \int_0^{3-y} f(x, y) dx dy$$

escribir I como una única integral doble.

- 2. Evalúe $\iint_S sen(y^3) dA$, siendo S la región acotada por $y = \sqrt{x}$, y = 2 y x = 0.
- 3. Sea la aplicación de \mathbb{R}^2 a \mathbb{R}^2 , $\varphi:(u,v)\to(x,y)$, definida por:

$$x = \left(\frac{u+v}{2}\right)^{1/2}$$
 ; $y = \left(\frac{v-u}{2}\right)^{1/2}$

encontrar la imagen $D = \varphi(R)$ por esta aplicación (en el plano xy) del rectangulo R en el plano uv limitado por $u = 1, \ u = 4, \ v = 9, \ v = 16$ y calcular

$$\iint\limits_{D} xydxdy$$

4. Sea R la región del plano en el cuarto cuadrante acotada por las rectas

$$x + y = 0$$
, $x - y = 1$, $y = 0$

Calcule
$$\iint\limits_{R} \frac{dxdy}{[(x+y)(x-y)]^{2/5}}$$

- 5. Calcule la masa de una esfera sólida de radio 5 si su densidad de masa en cada punto es el triple de la distancia del punto al centro de la esfera.
- 6. Determine el volumen del sólido dentro de la esfera $x^2+y^2+z^2=4$, arriba del plano xy y debajo del cono $z=\sqrt{x^2+y^2}$