School of Electronics and Telecommunications Electronics Devices – ET2015E

Tutor: Assoc. Prof. Nguyen Tien Dzung

Department: Electronics and Computer Engineering

Emai: tiendungbk@gmail.com; dzung.nguyentien@hust.edu.vn

Mobile: 0988.355.343

Office: 94 Le Thanh Nghi, R102, C-Bulding (Tại chức)

Chapter 3. Pulse circuits

Outline

- 3.0. Pulses
- 3.1. Saturation mode of transistor
- 3.2. Saturation mode of OPAM
- 3.3. Comparator
- 3.4. Bi-stable multivibrator
- 3.5. Monostate multivibrator
- 3.6. Astate multivibrator

3.0. Pulses

- Types of pulse: square, triangle, edge-trigged
- > t_{on}: existing time of pulse; t_{off}: non-existing time of pulse
- > t_{inc}: increasing ramp of pulse; t_{dec}: decreasing ramp of pulse
- Periodic pulse
- \rightarrow T = 1/f or f = 1/T
- > Duty cycle: t_{on}/T; Non-duty cycle: t_{off}/T; t_{on}/t_{off}
- One-polarity or two-polarity pulse

3.1. Saturation mode of transistor

- Transistor as a switch: Output in two distinguished states:
- \rightarrow $U_{out} \ge U_H$ when $U_{in} \le U_L$
- \rightarrow $U_{out} \leq U_H$ when $U_{in} \geq U_L$
- Transition between two stages: 1) Pulse at the input or 2) Periodical transition based on positive feedback
- From EC circuit:
- > Saturation: $I_{C(sat)} = (E_C U_{CE})/R_C \sim E_C/R_C \rightarrow I_{B(sat)} = I_C/\beta \rightarrow U_{CE} = U_{out} \sim 0 \text{ V} = U_L \text{ (Typically } U_L = 10\%E_C)$
- ightharpoonup Cut-off: $I_{Bcut-off} = 0
 ightharpoonup I_{Ccut-off} = 0
 ightharpoonup U_{CE} = U_{out} = E_C$ (No Load). If $R_C = R_L
 ightharpoonup U_{out} = E_C/2$ (Typically U_H 30% E_C)

Example: 1) Determine saturated current I_B and 2) Select R_B to guarantee pulse mode of transistor

- 1) $U_H = 0.3E_C = 1.5V = U_{in}$; $U_L = 0.1E_C = 0.1V$; $I_{C(sat)} \sim 5V/5K = 0.1mA <math>\Rightarrow I_{B(sat)} = 0.1mA/100 = 10\mu A$
- 2) For deep saturation \Rightarrow Select $I_B = 10I_{B(sat)} = 100 \mu A \Rightarrow R_B = (U_{in} U_{BE})/I_B = (1.5V- 0.7V)/100 \mu A = 8k\Omega$

3.2. Saturation mode of OPAM

- Transfer characteristic: Saturation area and U_{out} = ± U_{max}
 - > Since $K_{OPAM} = ∞$ (ideal)
 - \rightarrow U_P U_N = U_{out}/K_{OPAM} = 0
 - ✓ If $U_P > U_N$: Positive saturation
 - ✓ If $U_P < U_N$: Negative saturation
- In high speed transition: Delay between states ± U_{max}

3.3. Comparator

- Inverse and non-inverse; operating in saturation mode
- **▶ Inverse:** () input compared with U_{ref} in (+) input

✓ If
$$U_0 = U_{ref} - U_{in} > 0 \rightarrow U_{in} < U_{ref} \rightarrow U_{out}$$
 from + U_{max} -> - U_{max}

✓ If
$$U_0 = U_{ref} - U_{in} < 0 \rightarrow U_{in} > U_{ref} \rightarrow U_{out}$$
 from $-U_{max} \rightarrow + U_{max}$

✓ Transfer characteristic: based on inverse amplifier

➤ Non-Inverse: Non-Inverse (+) input compared with U_{ref} in (-) input

✓ If
$$U_0 = U_{in} - U_{ref} > 0 \rightarrow U_{in} > U_{ref} \rightarrow U_{out}$$
 from $-U_{max} -> + U_{max}$

- ✓ If $U_0 = U_{in} U_{ref} < 0 \rightarrow U_{in} < U_{ref} \rightarrow U_{out}$ from + U_{max} -> U_{max}
- ✓ Transfer characteristic: based on non-inverse amplifier
- Transition delay

3.4. Bi-stable multivibrator:

- Symmetrical: RS Trigger using transistor
- Unsymmetrical: Schmitt trigger using transistor and OPAM
- a) Symmetrical bi-stable multivibrator: RS trigger using Transistor
- Transition between two output stages U_H (1) and U_L(0): apply a pulse
- > State 1: RS = 10 \rightarrow T₁ saturated (\overline{Q} = 1) and T₂ off (Q = 0)
- > State 0: RS = 01 \rightarrow T₂ saturated (Q = 1) and T₁ off ($\overline{Q} = 0$)
- \rightarrow Forbidden state: RS = 11 \rightarrow T₁ and T₂ are simultaneously saturated or off
- Operation:
- > Apply a pulse to S (S = 1): T_1 saturates → \overline{Q} = U_L = 0 → Feedback to T_2 → T_2 off → $Q = U_H = 1$ → State 1
- > Apply a pulse to R (R = 1): T_2 saturates → $Q = U_L = 0$ → Feedback to T_1 → T1 off → $\overline{Q} = U_H = 1$ → State 0

R_n	S_n	Q_{n+1}	$\overline{Q_{n+1}}$
0	0	Q_n	$\overline{Q_n}$
0	1	1	0
1	0	0	1
1	1	X	X

b1) Unsymmetrical bi-stable multivibrator using transistor:

- Schmitt trigger using Transistor
- ➤ Initial U_{in} increasing from negative value: T₁ off, T₂ saturated
 - → U_{out} = U_{CE(sat)} = U_{min}
- **▶** U_{in} reaches U_{on}: T₁ saturated leads to T₂ off because of feedback
 - → U_{out} changes state from U_{min} to U_{max}
- **▶** U_{in} decreases from positive value: T₁ saturated and T₂ off
 - \rightarrow $U_{out} = U_{max}$
- - → U_{out} changes state from U_{max} to U_{min}

EXAMPLE: U_{in} is a sin wave → Output signal?

b2) Unsymmetrical bi-stable multivibrator using OPAM:

- Inverse Schmitt trigger: using OPAM
- ➤ Inverse comparator-based operation: U_{out} = ± U_{max}
- > Since $U_{out} = \pm U_{max} \rightarrow U_P = U_{out}R_1/(R_1+R_2)$

- > And $U_{in} = U_{N} = U_{P} \rightarrow U_{in} = \pm U_{out}R_{1}/(R_{1} + R_{2})$ or $U_{in} = \pm U_{max}R_{1}/(R_{1} + R_{2}) = \pm U_{ref} = \pm \beta U_{max}$, where $\beta = R_{1}/(R_{1} + R_{2})$
- \triangleright Once $U_0 = U_P U_N$ zero-crosses, U_{out} changes between $-U_{max} \leftarrow \rightarrow + U_{max}$
- ➤ Transfer characteristic: refer to that of inverse comparator, where U_{on} = U_{ref} or U_{off} = + U_{ref}
- > Switching delay: $\Delta U_{delay} = \frac{R_1}{R_1 + R_2} [U_{\text{max}} (-U_{\text{max}})] = \frac{R_1}{R_1 + R_2} 2U_{\text{max}}$

EXAMPLE: Sin input signal applied to inverse Schmitt trigger. Investigate the output signal.

- Non-inverse Schmitt trigger: using OPAM
- \triangleright Inverse comparator-based operation: $U_{out} = \pm U_{max}$
- Since U_{out} = ± U_{max} → Let's determine ± U_{ref}
- \rightarrow Since $(U_{in} U_{p})/R_1 = (U_{p} U_{out})/R_2$ and $U_{p} = U_{N} = 0$

$$\rightarrow$$
 $U_{in} = -U_{out}(R_1/R_2) = \mp U_{max}(R_1/R_2) = \mp U_{ref}$

- > Once U_{in} − U_{ref} zero-crosses, U_{out} changes between − U_{max} → + U_{max} and vice versa
- ➤ Transfer characteristic: refer to that of non-inverse comparator, where U_{on} = + U_{ref} or U_{off} = U_{ref}
- > Switching delay: $\Delta U_{delay} = \frac{R_1}{R_2} [U_{\text{max}} (-U_{\text{max}})] = \frac{R_1}{R_2} 2U_{\text{max}}$

EXAMPLE: Sin input signal applied to non-inverse Schmitt trigger. Investigate the output signal.

3.5. Monostate multivibrator:

- Using transistor
- > Stable state: T₁ off, T₂ saturated (0)
- > At t₀, U_{in} as a pulse is applied across R₁ to B₁
- → T_1 is saturated → U_{C1} decreases from E_C to 0 and passing across RC to B_2

- \rightarrow Therefore U_{B2} decreases from $U_{BE} \rightarrow -E_{C}$ resulting T_{2} off and $U_{C2} = E_{C}$ (unstable)
- \rightarrow Equation for B₂ while C charging is expressed as: $U_{B2} = E_{C}[1-2e^{(-t/RC)}]$

$$\checkmark$$
 U_{B2} = - E_C at t = t₀ → t₀ = 0

$$\checkmark$$
 U_{B2} = 0 at t₁ \Rightarrow t₁ = - RCIn[(E_C-U_{B2})/2E_C] \sim RCIn(E_C/2E_C) \sim RCIn2 \sim 0.7RC

- \succ Existing pulse time (duty cycle): $t_{pulse} = t_1 t_0 = 0.7RC$
- \triangleright After t₁, T2 is saturated again the output fed back across R₁R₂ to B₁ \rightarrow T₁ off \rightarrow Stable state

U_{out} ♠

+E_C

Using OPAM

- Stable state: U_{out} = U_{max}
- ➤ At t < t_1 : $U_{out} = -U_{max}$ and $U_C = U_N = 0$ → Stable state
- → $U_P = U_{out}R_1/(R_1 + R_2) = -U_{max}R_1/(R_1 + R_2) = +\beta U_{max}$, D -FB U_{in}
- \rightarrow At t = t₁: a pulse > βU_{max} applied to P (+)
- \rightarrow Output changes from $U_{max} \rightarrow + U_{max}$ (unstable), and $U_P = + \beta U_{max}$
- \triangleright From t₁ to t₂: C is charged to + βU_{max} , D is isolated because of RB
- \rightarrow At t = t₂: Since U_N = U_P = U_C \rightarrow U₀ = U_P U_N zero-crosses \rightarrow C discharges until t₃
- → U_{out} changes from + U_{max} → U_{max} → stable state
- $> U_C(t) = U_{max}(1 e^{(-t/RC)}). \text{ At } t = t_1: U_C(t_1) = 0; \text{ At } t = t_2: U_C(t_2) = \beta U_{max} = RCIn(1 + R_1/R_2) \Rightarrow t_{pulse} = t_2 t_1 = RCIn(1 + R_1/R_2)$
- \succ At t_3 , C discharges: UC(t) = $U_c(\infty)$ [U(∞) $U_c(0)$]e^(-t/RC), where U(∞) = U_{max} , $U_c(0)$ = $U_c(t_2)$ = + β Umax
- $ightharpoonup U_C(t_3) = 0 \Rightarrow t_3 = C \text{ discharges and } t_3 = RCIn[(-U_{max} 0)/(-U_{max} \beta U_{max})] = RCIn(1 + \beta)$

3.6. Astable multivibrator

- Using transistor
- > Periodical change between the stages 1 and 0
- \rightarrow At t< t₀: C₁ is charged to E_C \rightarrow Stage 1
- For $T_1 = t_1 t_0$: T_1 off, T_2 saturated; C_1 discharges as: + $C_1 \rightarrow T_{CE2} \rightarrow R_1 \rightarrow -C_1 \rightarrow U_{B1}$ goes negative to $-E_C$

- ➤ At the same time: C2 is charged to + EC as: + $E_C \rightarrow R_C \rightarrow T_{CE2} \rightarrow E_C$ → at t_1 : T_1 saturated, T_2 off → A new state established → Stage 0
- \rightarrow For $T_2 = t_2 t_1$: T_1 off, T_2 saturated; C_2 in turn discharges, operating in similar manner
- \rightarrow Time interval between the stages: $T_1 = 0.7R_1C_1$; $T_2 = 0.7R_2C_2$

Using OPAM

- ▶ Periodical change between the stages 1 and 0 C =
 Output voltage switches stages between ±U_{max}
- \rightarrow U_P = U_{out}R₁/(R₁ + R₂) = ±U_{max}R₁/(R₁ + R₂)
- > Since $U_C(t) = U_{max}[1 + (1 + β)e^{-(t/RC)}] = U_N$, where $β = R_1/(R_1 + R_2)$
- ⇒ Stage change occurs when $U_0 = U_P U_P$ zero-crosses after elapsing time:

$$\tau = RC \ln \left(\frac{1+\beta}{1-\beta} \right) = RC \ln \left(1 + \frac{2R_1}{R_2} \right)$$

- > The period of output signal: $T = 2\tau = 2RC \ln \left(1 + \frac{2R_1}{R_2} \right)$
- > If $R_1 = R_2$: $T = 2RC \ln 3 \approx 2.2RC$

1 + E

EXAMPLE 1: E = +15V; $\pm U_{max} = \pm 12V$, R₁ = $10k\Omega$, R₂ = $30k\Omega$. $U_{in}(t)$ – a triangle signal with amplitude $\pm 6V$, T = 20ms

1. Illustrate transfer curves: a) ideal OPAM (trans delay = 0); b) real OPAM with trans delay rate of $0.5\mu s/V$

- 2. Demonstrate U_{out}(t) and its parameters. Determine time transfer delay between U_{out}(t) and U_{in}(t) if ideal OPAM
- 3. Add a voltage limiter + register at output to limit output amplitude between 0.6V ≤ U_{out m} ≤ +5V, if I_{out} = 10mA

EXAMPLE 1: E = +15V; $\pm U_{max} = \pm 12V$, R₁ = $10k\Omega$, R₂ = $30k\Omega$. $U_{in}(t)$ – a triangle signal with amplitude $\pm 6V$, T = 20ms

1. Illustrate transfer curves: a) ideal OPAM (trans delay = 0); b) real OPAM with trans delay rate of $0.5\mu s/V$

- 2. Demonstrate U_{out}(t) and its parameters. Determine time transfer delay between U_{out}(t) and U_{in}(t) if ideal OPAM
- 3. Add a voltage limiter + register at output to limit output amplitude between 0.6V ≤ U_{out m} ≤ +5V, if I_{out} = 10mA

EXAMPLE 2: a) Determine function of this circuit and signals at N, P, A points with given $\pm U_{max}$

b) If R = $10k\Omega$, VR = $0 \rightarrow 10k\Omega$, R₁ = R₂ = $9.1k\Omega$, C = 0.1μ F, $\pm U_{max}$ = $\pm 12V$.

Determine frequency range of signal at A when adjusting VR.

c) Determine signal at A' and R_0 without load, if $U_Z = +5V$, $I_Z = 10mA$, $E_0 = +3.6V$

Using OPAM

EXAMPLE 3: Given $\pm U_{max} = \pm 12V$, $U_{D1} = U_{D2} = 0.6V$, without R₄ initially

- a) Determine function and transfer characteristic
- b) If polarity of E_0 is subject to change, investigate transfer char.
- c) If D_2 is replace by D_7 . Investigate transfer characteristic.
- d) Connect R₄. Determine transfer characteristic and switching delay.

Example 4: E = +15V; $\pm U_{max} = \pm 12V$, R₁ = $10k\Omega$, R₂ = $20k\Omega$. $U_{in}(t)$ – a triangle signal with amplitude $\pm 6V$, T = 30ms

- 1. Determine output waveform U_{out}(t) and its parameters: amplitude, period, delay
- 2. Add a voltage limiter at output to limit output amplitude between +0.6V ≥ U_{out_m} ≥ -5.4V.
- 3. Determine time delay of output switching, if practical OPAM has transfer time dalay of 20 ns/V

Example 5: E = +15V;
$$\pm U_{max} = \pm 12V$$
, R₁ = 15kΩ, R₂ = 60kΩ, R₃ = 20kΩ, VR = 0 \Rightarrow 40kΩ, C = 0.001μF, I_Z = 10mA

- 1. Determine role of VR and frequency range of output while adjusting VR
- 2. VR at the right end. Illustrate signals at N, P, A points
- 3. Explain operation mechanism of R_4 , D, D_Z . Determine R4, assuming that the load is very large. Select appropriate Dz to get output of +5V.

