Programme de la semaine 14 (du 15/01 au 21/01).

Suites: tout le chapitre

Reprise.

Introduction aux développements limités

- Définitions de o pour les suites, en passant par le quotient. Exemples classiques à connaître $((\ln n)^{\alpha}; n^{\beta}; a^{n}; n!;$ Propriétés de base, liens avec la notion de limite. Adaptation de ces définitions et résultats sur les fonctions.
 - La définition de l'équivalence est donnée uniquement pour traduire $u_n = v_n + o(v_n)$, et pour obtenir des informations en termes de limite ou de signe.
- Développements limités en 0 : définition, troncature. DL usuels en 0 : exp, ch, sh, cos, sin, tan (à l'ordre 3 seulement), $(1+x)^{\alpha}$, en particulier $\frac{1}{1+x}$ et $\sqrt{1+x}$, $\frac{1}{1-x}$, $\ln(1+x)$, Arctan(x).
- Opérations sur les DL (pas de résultats généraux, vues sur des exemples) : somme, produit, inverse, quotient, composition, en 0
- DL en un x_0 non nul, applications : limites, asymptotes.

Ensembles

• Ensembles, parties d'un ensemble, notation $\mathcal{P}(E)$. Opérations : réunion, intersection, complémentaire, différence. Quelques propriétés élémentaires sur ces opérations. Ensembles disjoints, recrouvrements disjoints, partitions. Produit cartésien d'un nombre fini d'ensembles.

Les applications ne sont pas encore au programme de colle

Questions de cours

Demander:

- UN DL USUEL EN 0
- une définition ou un énoncé du cours;
- et l'une des démonstrations suivantes :
 - Convergence de la suite $(q^n)_{n\in\mathbb{N}}$ avec $q\in\mathbb{C}$, en admettant le cas $q\in\mathbb{R}$.
 - Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + u_n^2 \end{cases}$ Montrer que $u_n \underset{n \to +\infty}{\longrightarrow} +\infty$. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Semaine suivante: Introduction aux DL, ensembles et applications, limite d'une fonction.