Experimental page: ratios of curve fit deaths to curve fit confirmed cases (CFR)

Excess deaths as a Z score:

 $0.04\% \times 14 = 0.560\%$

What follows is cumulative plot of same.

Data in recent weeks are incomplete. Only 60% of death records are submitted to NCHS within 10 days of the date of death, and completeness

varies by jurisdiction. Data are not weighted and counts are likely

False Positives Demonstration

Total

Use 0.04% as estimated daily incidence *Prevalence* estimated as avg. infected period of 2 weeks X incidence

99% accuracy of test

Positive	Negative		
test pos	0.554%	0.994%	1.55%
test neg	0.006%	98.446%	98.45%
0.560%	99.440%	100.00%	

False pos. is more than half of total positives.

TRUE + 0.554%/1.55% 35.8%

FALSE + 0.994%/1.55% 64.2%

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

100.00%

https://data.cdc.gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-xrst/data

USA Excess Deaths (from CDC data):

Annualized on 52 weeks

		All Cause	All Cause, excl. CV19	CV19
3	yr average before 2020	859:100,000	859:100,000	-
	2020	1017:100,000	905:100,000	-
	Diff.	157:100.000	46:100.000	111:100,000

3 yr average 859:100,000

29% of All-Cause excess deaths are non-CV19

https://data.cdc.gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-xrst/data

K = 0.318 R_o : R:

gamma = 0.171 $R_o = \exp(K/\text{gamma}) = 6.42$ 84%

gamma = 0.286 $R > 1 - 1/R_o = 3.04$ 67%

Here are some demonstrations of SIR model, using R_e, gamma, and beta

https://data.cdc.gov/NCHS/Weekly-Counts-of-Deaths-by-State-and-Select-Causes/muzy-jte6/data