Package 'Giotto'

December 6, 2019

```
Title Spatial single-cell transcriptomics pipeline.
Version 0.1.3
Description Pipeline to process, analyze and visualize (spatial) single-cell expression data.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.0.1
Depends data.table (>= 1.12.2),
      ggplot2 (>= 3.1.1),
      base (>= 3.5.1),
      utils (>= 3.5.1),
      R (>= 3.5.1)
Imports Rtsne (>= 0.15),
      uwot (>= 0.0.0.9010),
      multinet (>= 3.0.2),
      FactoMineR (>= 1.34),
      factoextra (>= 1.0.5),
      cowplot (>= 0.9.4),
      grDevices,
      RColorBrewer (>= 1.1-2),
      jackstraw (>= 1.3),
      dbscan (>= 1.1-3),
      ggalluvial (>= 0.9.1),
      scales (>= 1.0.0),
      ComplexHeatmap (>= 1.20.0),
      qvalue (>= 2.14.1),
      lfa (>= 1.12.0),
      igraph (>= 1.2.4.1),
      plotly,
      reticulate,
      magrittr,
      limma,
      ggdendro,
      smfishHmrf,
      matrixStats (>= 0.55.0),
      IRanges,
      devtools,
      reshape2
```

2 R topics documented:

```
Suggests knitr,
rmarkdown,
MAST,
scran (>= 1.10.1),
png,
tiff,
biomaRt
```

biocViews

VignetteBuilder knitr

Remotes lambdamoses/smfishhmrf-r

${\sf R}$ topics documented:

addCellMetadata	6
	7
	8
	9
addHMRF	0
addNetworkLayout	0
addStatistics	
adjustGiottoMatrix	2
aes_string2	3
allCellCellcommunicationsScores	3
all_plots_save_function	4
annotateGiotto	5
annotateSpatialNetwork	6
annotate_spatlocs_with_spatgrid_2D	7
annotate_spatlocs_with_spatgrid_3D	7
average_gene_gene_expression_in_groups	8
binGetSpatialGenes	8
calculateHVG	0
calculateMetaTable	1
calculateMetaTableCells	2
calculate_spatial_genes_python	3
cellProximityBarplot	4
cellProximityEnrichment	5
cellProximityHeatmap	6
cellProximityNetwork	7
cellProximitySpatPlot	8
cellProximitySpatPlot2D	0
cellProximitySpatPlot3D	2
cellProximityVisPlot	4
cellProximityVisPlot_2D_ggplot	6
cellProximityVisPlot_2D_plotly	8
cellProximityVisPlot_3D_plotly	9
changeGiottoInstructions	1
clusterCells	2
combineMetadata	
convertEnsemblToGeneSymbol	5
createGiottoInstructions 4	

createGiottoObject
createHeatmap_DT
createNearestNetwork
createSpatialEnrich
createSpatialGrid
createSpatialGrid_2D
createSpatialGrid_3D
createSpatialNetwork
create_average_detection_DT 56
create_average_DT
create_cell_type_random_cell_IDs
create_cluster_matrix
create_dimObject
decide_cluster_order
detectSpatialPatterns
dimCellPlot
dimCellPlot2D
dimGenePlot
dimGenePlot2D
dimGenePlot3D
dimPlot2D
dimPlot3D
direction_test_CPG
doHclust
doHMRF
doKmeans
doLeidenCluster
doLeidenSubCluster
doLouvainCluster
doLouvainCluster_community
doLouvainCluster_multinet
doLouvainSubCluster
doLouvainSubCluster_community
_ ,
-
doRandomWalkCluster
doSNNCluster
dt_to_matrix
exportGiottoViewer
exprOnlyCellCellcommunicationScores
extended_gini_fun
extractNearestNetwork
fDataDT
filterCombinations
filterCPGscores
filterDistributions
filterGiotto
findGiniMarkers
findGiniMarkers_one_vs_all
findMarkers
findMarkers_one_vs_all
findMastMarkers
findMastMarkers one vs all

4

findScranMarkers	8
findScranMarkers_one_vs_all	9
find_grid_2D	0
find_grid_3D	
 find_grid_y	
 find_grid_z	
fish_function	
fish_function2	
FSV_show	
GenePattern show	
general_save_function	
get10Xmatrix	
getCellProximityGeneScores	
getClusterSimilarity	
getDendrogramSplits	
getDistinctColors	
getGeneToGeneScores	
get_cell_to_cell_sorted_name_conversion	
get_interaction_gene_enrichment	
get_specific_interaction_gene_enrichment	
ggplot_save_function	
giotto-class	
hyperGeometricEnrich	
terCluster	
terLeidenCluster	
terLouvainCluster	
terLouvainCluster_community	
terLouvainCluster_multinet	
kmeans_binarize	
oadHMRF	
makeSignMatrixPAGE	
makeSignMatrixRank	
make_simulated_network	
mergeClusters	5
mygini_fun	6
nnDT_to_kNN	6
node_clusters	7
normalizeGiotto	7
OR_function2	8
PAGEEnrich	9
DataDT	0
blotCPGscores	0
blotGTGscores	1
olotHeatmap	
blotly_axis_scale_2D	
blotly_axis_scale_3D	
plotly_grid	
blotly_network	
blotMetaDataCellsHeatmap	
blotMetaDataHeatmap	
blotPCA	
21011 011	1

plotPCA_2D	. 152
plotPCA_3D	
plotTSNE	
plotTSNE_2D	
plotTSNE_3D	
plotUMAP	
plotUMAP_2D	. 162
plotUMAP_3D	
plot_network_layer_ggplot	. 166
plot_point_layer_ggplot	
plot_spat_point_layer_ggplot	. 168
print.giotto	. 170
rankEnrich	. 171
rank_binarize	. 172
readGiottoInstructions	. 172
removeCellAnnotation	. 173
removeGeneAnnotation	. 173
replaceGiottoInstructions	. 174
runPCA	. 174
runtSNE	. 175
runUMAP	. 177
selectPatternGenes	. 178
select_expression_values	. 179
show,giotto-method	. 179
showClusterDendrogram	. 180
showClusterHeatmap	. 181
showCPGscores	. 182
showGeneExpressionProximityScore	. 183
showGiottoInstructions	. 184
showGTGscores	. 184
showIntExpressionProximityScore	. 185
showPattern	. 186
showPattern2D	. 187
showPattern3D	. 188
showPatternGenes	. 190
showProcessingSteps	. 191
showTopGeneToGene	. 191
signPCA	. 192
spatCellPlot	. 193
spatCellPlot2D	. 196
spatDimCellPlot	. 198
spatDimCellPlot2D	
spatDimGenePlot	. 206
spatDimGenePlot2D	. 208
spatDimGenePlot3D	. 211
spatDimPlot	. 213
spatDimPlot2D	
spatDimPlot3D	
spatGenePlot	
spatGenePlot2D	
spatGenePlot3D	
Spatial_AEH	

6 addCellMetadata

	Spatial_DE	230
	spatPlot	231
	spatPlot2D	234
	spatPlot3D	237
	specificCellCellcommunicationScores	239
	split_dendrogram_in_two	240
	stitchFieldCoordinates	240
	subClusterCells	241
	subsetGiotto	243
	subsetGiottoLocs	243
	viewHMRFresults	244
	viewHMRFresults2D	245
	viewHMRFresults3D	246
	violinPlot	247
	visDimGenePlot	248
	visDimGenePlot_2D_ggplot	250
	visDimGenePlot_3D_plotly	252
	visDimPlot	253
	visDimPlot_2D_ggplot	255
	visDimPlot_2D_plotly	257
	visDimPlot_3D_plotly	259
	visForceLayoutPlot	260
	visGenePlot	262
	visGenePlot_2D_ggplot	264
	visGenePlot_3D_plotly	266
	visPlot	267
	visPlot_2D_ggplot	270
	visPlot_2D_plotly	272
	visPlot_3D_plotly	273
	visSpatDimGenePlot	275
	visSpatDimGenePlot_2D	278
	visSpatDimGenePlot_3D	280
	visSpatDimPlot	282
	visSpatDimPlot_2D	
	visSpatDimPlot_3D	287
	writeHMRFresults	289
	write_giotto_viewer_annotation	290
	write_giotto_viewer_dim_reduction	290
		•••
Index		292
addCe	ellMetadata addCellMetadata	

Description

adds cell metadata to the giotto object

addCellStatistics 7

Usage

```
addCellMetadata(
  gobject,
  new_metadata,
  by_column = FALSE,
  column_cell_ID = NULL
)
```

Arguments

```
gobject giotto object

new_metadata new cell metadata to use (data.table, data.frame, ...)

by_column merge metadata based on cell_ID column in pDataDT (default = FALSE)

column_cell_ID column name of new metadata to use if by_column = TRUE
```

Details

You can add additional cell metadata in two manners: 1. Provide a data.table or data.frame with cell annotations in the same order as the cell_ID column in pDataDT(gobject) 2. Provide a data.table or data.frame with cell annotations and specificy which column contains the cell IDs, these cell IDs need to match with the cell_ID column in pDataDT(gobject)

Value

```
giotto object
```

Examples

```
addCellMetadata(gobject)
```

addCellStatistics

addCellStatistics

Description

adds cells statistics to the giotto object

Usage

```
addCellStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

8 addGeneMetadata

Arguments

Details

This function will add the following statistics to cell metadata:

- nr_genes: Denotes in how many genes are detected per cell
- perc_genes: Denotes what percentage of genes is detected per cell
- total_expr: Shows the total sum of gene expression per cell

Value

```
giotto object if return_gobject = TRUE
```

Examples

```
addCellStatistics(gobject)
```

addGeneMetadata

addGeneMetadata

Description

adds gene metadata to the giotto object

Usage

```
addGeneMetadata(gobject, new_metadata, by_column = F, column_gene_ID = NULL)
```

Arguments

gobject giotto object

new_metadata new metadata to use

by_column merge metadata based on gene_ID column in fDataDT column_cell_ID column name of new metadata to use if by_column = TRUE

Details

You can add additional gene metadata in two manners: 1. Provide a data.table or data.frame with gene annotations in the same order as the gene_ID column in fDataDT(gobject) 2. Provide a data.table or data.frame with gene annotations and specificy which column contains the gene IDs, these gene IDs need to match with the gene_ID column in fDataDT(gobject)

addGeneStatistics 9

Value

```
giotto object
```

Examples

```
addGeneMetadata(gobject)
```

addGeneStatistics

addGeneStatistics

Description

adds gene statistics to the giotto object

Usage

```
addGeneStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

This function will add the following statistics to gene metadata:

- nr_cells: Denotes in how many cells the gene is detected
- per_cells: Denotes in what percentage of cells the gene is detected
- total_expr: Shows the total sum of gene expression in all cells
- mean_expr: Average gene expression in all cells
- mean_expr_det: Average gene expression in cells with detectable levels of the gene

Value

```
giotto object if return_gobject = TRUE
```

```
addGeneStatistics(gobject)
```

10 addNetworkLayout

addHMRF addHMRF

Description

Add selected results from doHMRF to the giotto object

Usage

```
addHMRF(gobject, HMRFoutput, k = NULL, betas_to_add = NULL, hmrf_name = NULL)
```

Arguments

gobject giotto object

 $HMRF output \qquad \qquad HMRF output \ from \ doHMRF()$

k number of domains

betas_to_add results from different betas that you want to add

name specify a custom name

Details

Description ...

Value

giotto object

Examples

addHMRF(gobject)

addNetworkLayout

addNetworkLayout

Description

Add a network layout for a selected nearest neighbor network

Usage

```
addNetworkLayout(
  gobject,
  nn_network_to_use = NULL,
  network_name = NULL,
  layout_type = c("drl"),
  options_list = NULL,
  layout_name = "layout",
  return_gobject = TRUE
)
```

addStatistics 11

Arguments

Details

Description of layouts and options.

Value

giotto object with updated layout for selected NN network

Examples

```
addNetworkLayout(gobject)
```

addStatistics addStatistics

Description

adds genes and cells statistics to the giotto object

Usage

```
addStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

See addGeneStatistics and addCellStatistics

12 adjustGiottoMatrix

Value

```
giotto object if return_gobject = TRUE, else a list with results
```

Examples

```
addStatistics(gobject)
```

```
adjustGiottoMatrix adjustGiottoMatrix
```

Description

normalize and/or scale expresion values of Giotto object

Usage

```
adjustGiottoMatrix(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  batch_columns = NULL,
  covariate_columns = NULL,
  return_gobject = TRUE,
  update_slot = c("custom")
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use

batch_columns metadata columns that represent different batch (max = 2)
covariate_columns
metadata columns that represent covariates to regress out
return_gobject boolean: return giotto object (default = TRUE)
update_slot expression slot that will be updated (default = custom)
```

Details

This function implements the limma::removeBatchEffect function to remove known batch effects and to adjust expression values according to provided covariates.

Value

```
giotto object
```

```
adjustGiottoMatrix(gobject)
```

aes_string2

Description

makes sure aes_string can also be used with names that start with numeric values

Usage

```
aes_string2(...)
```

 $all \textit{CellCellcommunications} Scores \\ all \textit{CellCellcommunications} Scores$

Description

All Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
allCellCellcommunicationsScores(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column = "cell_types",
  random_iter = 100,
  gene_set_1,
  gene_set_2,
  log2FC_addendum = 0.1,
  min_observations = 2,
  verbose = c("a little", "a lot", "none")
)
```

```
giotto object to use
gobject
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
                  number of iterations
random_iter
gene_set_1
                  first specific gene set from gene pairs
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
verbose
                  verbose
```

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
allCellCellcommunicationsScores(gobject)
```

```
all_plots_save_function 
 all_plots_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
all_plots_save_function(
  gobject,
  plot_object,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  default_save_name = "giotto_plot",
  save_format = NULL,
  show_saved_plot = F,
  ncol = 1,
  nrow = 1,
  scale = 1,
  base_width = NULL,
  base_height = NULL,
  base_aspect_ratio = NULL,
  units = NULL,
  dpi = NULL,
  limitsize = TRUE,
)
```

```
gobject giotto object
plot_object object to plot
save_dir directory to save to
save_folder folder in save_dir to save to
save_name name of plot
```

annotateGiotto 15

```
save_format format (e.g. png, tiff, pdf, ...)
```

show_saved_plot

load & display the saved plot

ncol number of columns nrow number of rows

scale scale
base_width width
base_height height
base_aspect_ratio

aspect ratio

units units

dpi Plot resolution

limitsize When TRUE (the default), ggsave will not save images larger than 50x50 inches,

to prevent the common error of specifying dimensions in pixels.

... additional parameters to ggplot_save_function or general_save_function

See Also

```
Giotto::general_save_function
```

Examples

```
all_plots_save_function(gobject)
```

 $annotate {\tt Giotto}$

annotateGiotto

Description

Converts cluster results into provided annotation.

Usage

```
annotateGiotto(
  gobject,
  annotation_vector = NULL,
  cluster_column = NULL,
  name = "cell_types"
)
```

Details

You need to specifify which (cluster) column you want to annotate and you need to provide an annotation vector like this:

- 1. identify the cell type of each cluster
- 2. create a vector of these cell types, e.g. cell_types = c('T-cell', 'B-cell', 'Stromal')
- 3. provide original cluster names to previous vector, e.g. names(cell_types) = c(2, 1, 3)

Value

```
giotto object
```

Examples

```
annotateGiotto(gobject)
```

```
annotate {\tt Spatial Network}
```

annotate Spatial Network

Description

Annotate spatial network with cell metadata information.

Usage

```
annotateSpatialNetwork(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column
)
```

Arguments

Value

annotated network in data.table format

```
annotateSpatialNetwork(gobject)
```

```
annotate\_spatlocs\_with\_spatgrid\_2D \\ annotate\_spatlocs\_with\_spatgrid\_2D
```

Description

annotate spatial locations with 2D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_2D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_2D()
```

Description

annotate spatial locations with 3D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_3D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

```
{\tt annotate\_spatlocs\_with\_spatgrid\_3D()}
```

18 binGetSpatialGenes

```
average_gene_gene_expression_in_groups

average_gene_expression_in_groups
```

Description

calculate average expression per cluster

Usage

```
average_gene_gene_expression_in_groups(
  gobject,
  cluster_column = "cell_types",
  gene_set_1,
  gene_set_2
)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

gene_set_1 first specific gene set from gene pairs

gene_set_2 second specific gene set from gene pairs
```

Details

Details will follow.

Value

data.table with average expression scores for each cluster

Examples

```
average_gene_gene_expression_in_groups(gobject)
```

binGetSpatialGenes binGetSpatialGenes

Description

Rapid computation of genes that are spatially clustered

binGetSpatialGenes 19

Usage

```
binGetSpatialGenes(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  spatial_network_name = "spatial_network",
  nstart = 3,
  iter_max = 10,
  percentage_rank = 10,
  do_fisher_test = F,
  community_expectation = 5,
  verbose = F
)
```

Arguments

```
gobject
                  giotto object
bin_method
                  method to binarize gene expression
expression_values
                  expression values to use
spatial_network_name
                  name of spatial network to use (default = 'spatial_network')
                  kmeans: nstart parameter
nstart
iter_max
                  kmeans: iter.max parameter
do_fisher_test perform fisher test
community_expectation
                  cell degree expectation in spatial communities
                  be verbose
verbose
rank_percentage
                  percentage of top cells for binarization
```

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a k-nearest neighbor network
- 3. contingency table: A contingency table is calculated based on all pairwise cell-cell interactions (0-0, 0-1, 1-0 or 1-1)
- 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Additionally 2 other statistics are provided:

- Number of cells with high expression (binary = 1)
- total and ratio of highly connected cells: Cells with a connectivity higher than community_expectation

20 calculateHVG

Value

```
data.table with results (see details)
```

Examples

binGetSpatialGenes(gobject)

calculateHVG

calculateHVG

Description

compute highly variable genes

Usage

```
calculateHVG(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  method = c("cov_groups", "cov_loess"),
  reverse_log_scale = FALSE,
  logbase = 2,
  expression_threshold = 0,
  nr_expression_groups = 20,
  zscore_threshold = 1.5,
  HVGname = "hvg",
  difference_in_cov = 0.1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "HVGplot",
  return_gobject = TRUE
)
```

```
gobject
                  giotto object
expression_values
                  expression values to use
method
                  method to calculate highly variable genes
reverse_log_scale
                  reverse log-scale of expression values (default = FALSE)
                  if reverse_log_scale is TRUE, which log base was used?
logbase
expression_threshold
                  expression threshold to consider a gene detected
nr_expression_groups
                  number of expression groups for cov_groups
zscore_threshold
                  zscore to select hvg for cov_groups
```

calculateMetaTable 21

Details

Currently we provide 2 ways to calculate highly variable genes: 1. high coeff of variance (COV) within groups:

First genes are binned (*nr_expression_groups*) into average expression groups and the COV for each gene is converted into a z-score within each bin. Genes with a z-score higher than the threshold (*zscore_threshold*) are considered highly variable.

2. high COV based on loess regression prediction:

A predicted COV is calculated for each gene using loess regression (COV~log(mean expression)) Genes that show a higher than predicted COV (*difference_in_cov*) are considered highly variable.

Value

giotto object highly variable genes appended to gene metadata (fDataDT)

Examples

```
calculateHVG(gobject)
```

calculateMetaTable calculateMetaTable

Description

calculates the average gene expression for one or more (combined) annotation columns.

Usage

```
calculateMetaTable(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL
)
```

22 calculateMetaTableCells

Arguments

```
gobject giotto object
expression_values
expression values to use
metadata_cols annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
```

Value

data.table with average expression values for each gene per (combined) annotation

Examples

```
calculateMetaTable(gobject)
```

```
{\tt calculateMetaTableCells}
```

calculateMetaTableCells

Description

calculates the average metadata values for one or more (combined) annotation columns.

Usage

```
calculateMetaTableCells(
  gobject,
  value_cols = NULL,
  metadata_cols = NULL,
  spat_enr_names = NULL
)
```

Arguments

```
gobject giotto object
value_cols metadata or enrichment value columns to use
metadata_cols annotation columns found in pDataDT(gobject)
spat_enr_names which spatial enrichment results to include
```

Value

data.table with average metadata values per (combined) annotation

```
calculateMetaTableCells(gobject)
```

Description

Calculate spatial genes using distance matrix.

Usage

```
calculate_spatial_genes_python(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metric = "euclidean",
  subset_genes = NULL,
  rbp_p = 0.95,
  examine_top = 0.3,
  python_path = NULL
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use

metric distance metric to use

subset_genes only run on this subset of genes
rbp_p fractional binarization threshold
examine_top top fraction to evaluate with silhouette
python_path specify specific path to python if required
```

Details

Description of how we compute spatial pattern genes.

Value

data.table with spatial scores

```
calculate_spatial_genes_python(gobject)
```

24 cellProximityBarplot

```
cellProximityBarplot cellProximityBarplot
```

Description

Create barplot from cell-cell proximity scores

Usage

```
cellProximityBarplot(
  gobject,
  CPscore,
  min_orig_ints = 5,
  min_sim_ints = 5,
  p_val = 0.05,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityBarplot"
)
```

Arguments

```
gobject
                  giotto object
                  CPscore, output from cellProximityEnrichment()
CPscore
                  filter on minimum original cell-cell interactions
min_orig_ints
                  filter on minimum simulated cell-cell interactions
min_sim_ints
                  p-value
p_val
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a barplot that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

```
ggplot barplot
```

```
cellProximityBarplot(CPscore)
```

```
cellProximityEnrichment
```

cellProximityEnrichment

Description

Compute cell-cell interaction enrichment (observed vs expected)

Usage

```
cellProximityEnrichment(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column,
  number_of_simulations = 100
)
```

Arguments

Details

Spatial proximity enrichment or depletion between pairs of cell types is calculated by calculating the observed over the expected frequency of cell-cell proximity interactions. The expected frequency is the average frequency calculated from a number of spatial network simulations. Each individual simulation is obtained by random permutations of the cell type labels of each node (cell) in the spatial network.

Value

List of cell Proximity scores (CPscores) in data.table format. The first data.table (raw_sim_table) shows the raw observations of both the original and simulated networks. The second data.table (enrichm_res) shows the enrichment results.

```
cellProximityEnrichment(gobject)
```

cellProximityHeatmap cellProximityHeatmap

Description

Create heatmap from cell-cell proximity scores

Usage

```
cellProximityHeatmap(
  gobject,
  CPscore,
  scale = T,
  order_cell_types = T,
  color_breaks = NULL,
  color_names = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityHeatmap")
```

Arguments

```
giotto object
gobject
                  CPscore, output from cellProximityEnrichment()
CPscore
scale
                  scale cell-cell proximity interaction scores
order_cell_types
                  order cell types based on enrichment correlation
color_breaks
                  numerical vector of length 3 to represent min, mean and maximum
                  character color vector of length 3
color_names
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a heatmap that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

ggplot heatmap

cellProximityNetwork 27

Examples

```
cellProximityHeatmap(CPscore)
```

```
cell Proximity Network \qquad cell Proximity Network
```

Description

Create network from cell-cell proximity scores

Usage

```
cellProximityNetwork(
  gobject,
  CPscore,
  remove_self_edges = FALSE,
  self_loop_strength = 0.1,
  color_depletion = "lightgreen",
  color_enrichment = "red",
  rescale_edge_weights = TRUE,
  edge_weight_range_depletion = c(0.1, 1),
  edge_weight_range_enrichment = c(1, 5),
  layout = "Fruchterman",
  only_show_enrichment_edges = F,
  edge_width_range = c(0.1, 2),
  node_size = 4,
  node_text_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityNetwork"
```

```
gobject
                  giotto object
CPscore
                  CPscore, output from cellProximityEnrichment()
remove_self_edges
                  remove enrichment/depletion edges with itself
self_loop_strength
                  size of self-loops
color_depletion
                  color for depleted cell-cell interactions
color_enrichment
                  color for enriched cell-cell interactions
rescale_edge_weights
                  rescale edge weights (boolean)
{\tt edge\_weight\_range\_depletion}
                  numerical vector of length 2 to rescale depleted edge weights
```

```
edge_weight_range_enrichment
```

numerical vector of length 2 to rescale enriched edge weights

layout algorithm to use to draw nodes and edges

only_show_enrichment_edges

show only the enriched pairwise scores

edge_width_range

range of edge width

node_size size of nodes

node_text_size size of node labels

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

This function creates a network that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

igraph plot

Examples

```
cellProximityNetwork(CPscore)
```

```
cellProximitySpatPlot cellProximitySpatPlot
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot(gobject, ...)
```

Arguments

gobject giotto object

 ${\tt interaction_name}$

cell-cell interaction name

cluster_column cluster column with cell clusters

sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy')

29

```
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
point_size_select
                  size of selected points
point_select_border_col
                  border color of selected points
point_select_border_stroke
                  stroke size of selected points
point_size_other
                  size of other points
point_other_border_col
                  border color of other points
point_other_border_stroke
                  stroke size of other points
                  show plots
show_plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

cellProximitySpatPlot2D and cellProximitySpatPlot3D for 3D

Examples

```
cellProximitySpatPlot(gobject)
```

```
cellProximitySpatPlot2D
```

cellProximitySpatPlot2D

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot2D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot2D"
)
```

cluster_column cluster column with cell clusters x-axis dimension name (default = 'sdimx') sdimx sdimy y-axis dimension name (default = 'sdimy') cell_color color for cells (see details) cell_color_code named vector with colors color_as_factor convert color column to factor show_other_cells decide if show cells not in network show_network show underlying spatial network color of spatial network network_color spatial_network_name name of spatial network to use show spatial grid show_grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use coord_fix_ratio fix ratio between x and y-axis show_legend show legend point_size_select size of selected points point_select_border_col border color of selected points point_select_border_stroke stroke size of selected points point_size_other size of other points point_other_border_col border color of other points point_other_border_stroke stroke size of other points show_plot show plots return_plot return ggplot object directly save the plot [boolean] save_plot save_param list of saving parameters from all_plots_save_function() default_save_name default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

Examples

```
cellProximitySpatPlot2D(gobject)
```

```
cell Proximity SpatPlot 3D \\ cell Proximity SpatPlot 2D
```

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximitySpatPlot3D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = T,
  show_network = T,
  show\_other\_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 4,
  point_size_other = 2,
  point_alpha_other = 0.5,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot3D",
)
```

Arguments

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimz')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
point_size_other
                  size of other points
                  show plots
show_plot
return_plot
                  return plotly object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

plotly

```
cellProximitySpatPlot3D(gobject)
```

34 cellProximityVisPlot

```
cellProximityVisPlot cellProximityVisPlot
```

Description

Visualize cell-cell interactions according to spatial coordinates

Usage

```
cellProximityVisPlot(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_{ticks} = NULL,
  plot_method = c("ggplot", "plotly"),
)
```

cellProximityVisPlot 35

sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')
sdimz z-axis dimension name (default = 'sdimz')

cell_color color for cells (see details)

cell_color_code

named vector with colors

color_as_factor

convert color column to factor

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

point_size_select

size of selected points

point_select_border_col

border color of selected points

point_select_border_stroke

stroke size of selected points

point_size_other

size of other points

point_other_border_col

border color of other points

point_other_border_stroke

stroke size of other points

Details

Description of parameters.

Value

ggplot or plotly

Examples

cellProximityVisPlot(gobject)

```
cell Proximity VisPlot\_2D\_ggplot \\ cell Proximity VisPlot\_2D\_ggplot
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximityVisPlot_2D_ggplot(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
)
```

```
color_as_factor
```

convert color column to factor

show_other_cells

decide if show cells not in network

show_network show underlying spatial network

network_color color of spatial network

 $spatial_network_name$

name of spatial network to use

show_grid show spatial grid

grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

point_size_select

size of selected points

point_select_border_col

border color of selected points

point_select_border_stroke

stroke size of selected points

point_size_other

size of other points

point_other_border_col

border color of other points

point_other_border_stroke

stroke size of other points

Details

Description of parameters.

Value

ggplot

Examples

cellProximityVisPlot_2D_ggplot(gobject)

```
cell Proximity VisPlot\_2D\_plotly \\ cell Proximity VisPlot\_2D\_plotly
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximityVisPlot_2D_plotly(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 2,
  point_size_other = 1,
  point_alpha_other = 0.3,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
)
```

Arguments

```
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
                  color of spatial grid
grid_color
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

plotly

Examples

```
cell Proximity VisPlot\_2D\_plotly (gobject)
```

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

```
cellProximityVisPlot_3D_plotly(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
```

```
color_as_factor = T,
show_other_cells = F,
show_network = F,
show_other_network = F,
network_color = NULL,
spatial_network_name = "spatial_network",
show\_grid = F,
grid_color = NULL,
spatial_grid_name = "spatial_grid",
show_legend = T,
point_size_select = 2,
point_size_other = 1,
point_alpha_other = 0.5,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
x_ticks = NULL,
y_ticks = NULL,
z_{ticks} = NULL,
```

Arguments

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
                  z-axis dimension name (default = 'sdimz')
sdimz
cell color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

plotly

Examples

```
cellProximityVisPlot_3D_plotly(gobject)
```

```
{\tt changeGiottoInstructions}
```

change Giot to Instructions

Description

Function to change one or more instructions from giotto object

Usage

```
changeGiottoInstructions(
  gobject,
  params = NULL,
  new_values = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

params parameter(s) to change

new_values new value(s) for parameter(s)

return_gobject (boolean) return giotto object
```

Value

named vector with giotto instructions

Examples

changeGiottoInstructions()

42 clusterCells

clusterCells

clusterCells

Description

cluster cells using a NN-network and community detection algorithms

```
clusterCells(
  gobject,
 cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
    "sNNclust", "kmeans", "hierarchical"),
  name = "cluster_name",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  pyth_leid_resolution = 1,
  pyth_leid_weight_col = "weight",
 pyth_leid_part_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
  pyth_leid_init_memb = NULL,
  pyth_leid_iterations = 1000,
  pyth_louv_resolution = 1,
  pyth_louv_weight_col = NULL,
  python_louv_random = F,
  python_path = NULL,
  louvain_gamma = 1,
  louvain\_omega = 1,
  walk\_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  sNNclust_k = 20,
  sNNclust_eps = 4,
  sNNclust_minPts = 16,
  borderPoints = TRUE,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  km_centers = 10,
  km_iter_max = 100,
  km_nstart = 1000,
  km_algorithm = "Hartigan-Wong",
 hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  hc_k = 10,
  hc_h = NULL
  return_gobject = TRUE,
  set_seed = T,
```

clusterCells 43

```
seed_number = 1234,
...
)
```

Arguments

```
gobject
                 giotto object
cluster_method community cluster method to use
                 name for new clustering result
name
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
pyth_leid_resolution
                 resolution for leiden
pyth_leid_weight_col
                 column to use for weights
pyth_leid_part_type
                 partition type to use
pyth_leid_init_memb
                 initial membership
pyth_leid_iterations
                 number of iterations
pyth_louv_resolution
                 resolution for louvain
pyth_louv_weight_col
                 python louvain param: weight column
python_louv_random
                 python louvain param: random
python_path
                 specify specific path to python if required
                 louvain param: gamma or resolution
louvain_gamma
louvain_omega
                 louvain param: omega
walk_steps
                 randomwalk: number of steps
walk_clusters
                 randomwalk: number of clusters
                 randomwalk: weight column
walk_weights
                 SNNclust: k neighbors to use
sNNclust_k
                 SNNclust: epsilon
sNNclust_eps
sNNclust_minPts
                 SNNclust: min points
borderPoints
                 SNNclust: border points
expression_values
                 expression values to use
genes_to_use
                 = NULL,
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
```

name of reduction 'pca',

44 combineMetadata

dimensions_to_use

dimensions to use

distance_method

distance method

km_centers kmeans centers km_iter_max kmeans iterations

km_nstart kmeans random starting points

km_algorithm kmeans algorithm

hc_agglomeration_method

hierarchical clustering method

hc_k hierachical number of clusters

hc_h hierarchical tree cutoff

return_gobject | boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed
... additional parameters

Details

Description of different clustering methods.

Value

giotto object appended with new cluster

Examples

clusterCells(gobject)

combineMetadata combineMetadata

Description

This function combines the cell metadata with spatial locations and enrichment results from createSpatialEnrich

Usage

```
combineMetadata(gobject, spat_enr_names = NULL)
```

Arguments

gobject Giotto object

spat_enr_names names of spatial enrichment results to include

Value

Extended cell metadata in data.table format.

Examples

combineMetadata(gobject)

convertEnsemblToGeneSymbol

convert Ensembl To Gene Symbol

Description

This function convert ensembl gene IDs from a matrix to official gene symbols

Usage

```
convertEnsemblToGeneSymbol(matrix, species = c("mouse", "human"))
```

Arguments

matrix an expression matrix with ensembl gene IDs as rownames

species species to use for gene symbol conversion

Details

This function requires that the biomaRt library is installed

Value

expression matrix with gene symbols as rownames

Examples

convertEnsemblToGeneSymbol(matrix)

createGiottoInstructions

create Giot to Instructions

Description

Function to set global instructions for giotto functions

46 createGiottoObject

Usage

```
createGiottoInstructions(
   python_path = NULL,
   show_plot = NULL,
   return_plot = NULL,
   save_plot = NULL,
   save_dir = NULL,
   plot_format = NULL,
   dpi = NULL,
   units = NULL,
   height = NULL,
   width = NULL
```

Arguments

```
path to python binary to use
python_path
show_plot
                  print plot to console, default = TRUE
                  return plot as object, default = TRUE
return_plot
save_plot
                  automatically save plot, dafault = FALSE
                  path to directory where to save plots
save_dir
                  resolution for raster images
dpi
height
                  height of plots
width
                  width of plots
```

Value

named vector with giotto instructions

Examples

```
createGiottoInstructions()
```

Description

Function to create a giotto object

```
createGiottoObject(
  raw_exprs,
  spatial_locs = NULL,
  norm_expr = NULL,
  norm_scaled_expr = NULL,
  custom_expr = NULL,
  cell_metadata = NULL,
```

createGiottoObject 47

```
gene_metadata = NULL,
spatial_network = NULL,
spatial_network_name = NULL,
spatial_grid = NULL,
spatial_grid_name = NULL,
spatial_enrichment = NULL,
spatial_enrichment_name = NULL,
dimension_reduction = NULL,
nn_network = NULL,
offset_file = NULL,
instructions = NULL
```

Arguments

```
raw_exprs
                  matrix with raw expression counts [required]
spatial_locs
                  data.table or data.frame with coordinates for cell centroids
                  normalized expression values
norm_expr
norm_scaled_expr
                  scaled expression values
custom_expr
                  custom expression values
cell_metadata
                  cell annotation metadata
gene_metadata
                  gene annotation metadata
spatial_network
                  list of spatial network(s)
spatial_network_name
                  list of spatial network name(s)
                  list of spatial grid(s)
spatial_grid
spatial_grid_name
                  list of spatial grid name(s)
spatial_enrichment
                  list of spatial enrichment score(s) for each spatial region
spatial_enrichment_name
                  list of spatial enrichment name(s)
dimension_reduction
                  list of dimension reduction(s)
                  list of nearest neighbor network(s)
nn_network
                  file used to stitch fields together (optional)
offset_file
instructions
                  list of instructions or output result from createGiottoInstructions
```

Details

[Requirements] To create a giotto object you need to provide at least a matrix with genes as row names and cells as column names. To include spatial information about cells (or regions) you need to provide a data.table or data.frame with coordinates for all spatial dimensions. This can be 2D (x and y) or 3D (x, y, x). The row order for the cell coordinates should be the same as the column order for the provided expression data.

[Instructions] Additionally an instruction file, generated manually or with createGiottoInstructions can be provided to instructions, if not a default instruction file will be created for the Giotto object.

48 createHeatmap_DT

[Multiple fields] In case a dataset consists of multiple fields, like seqFISH+ for example, an offset file can be provided to stitch the different fields together. stitchFieldCoordinates can be used to generate such an offset file.

[**Processed data**] Processed count data, such as normalized data, can be provided using one of the different expression slots (norm_expr, norm_scaled_expr, custom_expr).

[Metadata] Cell and gene metadata can be provided using the cell and gene metadata slots. This data can also be added afterwards using the addGeneMetadata or addCellMetadata functions.

[Other information] Additional information can be provided through the appropriate slots:

- · spatial networks
- · spatial girds
- · spatial enrichments
- · dimensions reductions
- · nearest neighbours networks

Value

giotto object

Examples

```
createGiottoObject(raw_exprs, spatial_locs)
```

createHeatmap_DT

createHeatmap_DT

Description

creates order for clusters

```
createHeatmap_DT(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cluster_cor_method = "pearson",
  cluster_hclust_method = "ward.D",
  gene_order = c("custom", "correlation"),
  gene_custom_order = NULL,
  gene_cor_method = "pearson",
  gene_hclust_method = "complete"
)
```

createNearestNetwork 49

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
genes
                 genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
                 custom order for clusters
cluster_cor_method
                 method for cluster correlation
cluster_hclust_method
                 method for hierarchical clustering of clusters
                 method to determine gene order
gene_order
gene_custom_order
                 custom order for genes
gene_cor_method
                 method for gene correlation
gene_hclust_method
                 method for hierarchical clustering of genes
```

Details

Creates input data.tables for plotHeatmap function.

Value

list

Examples

```
createHeatmap_DT(gobject)
```

createNearestNetwork createNearestNetwork

Description

create a nearest neighbour network

```
createNearestNetwork(
  gobject,
  type = c("sNN", "kNN"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  genes_to_use = NULL,
```

50 createNearestNetwork

```
expression_values = c("normalized", "scaled", "custom"),
name = "sNN.pca",
return_gobject = TRUE,
k = 30,
minimum_shared = 5,
top_shared = 3,
verbose = T,
...
)
```

Arguments

```
gobject
                 giotto object
                 sNN or kNN
type
dim_reduction_to_use
                 dimension reduction method to use
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
genes_to_use
                 if dim_reduction_to_use = NULL, which genes to use
expression_values
                 expression values to use
                 arbitrary name for NN network
name
return_gobject boolean: return giotto object (default = TRUE)
                 number of k neighbors to use
minimum_shared minimum shared neighbors
top_shared
                 keep at ...
verbose
                 be verbose
                 additional parameters
. . .
```

Details

Description of nearest neighbor network creation and filter steps.

Value

giotto object with updated NN network

```
createNearestNetwork(gobject)
```

createSpatialEnrich 51

createSpatialEnrich createSpatialEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

Usage

```
createSpatialEnrich(
  gobject,
  enrich_method = c("PAGE", "rank", "hypergeometric"),
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore"),
  name = "PAGE",
  return_gobject = TRUE
)
```

Arguments

```
gobject
                  Giotto object
enrich_method
                  method for gene signature enrichment calculation
                  Matrix of signature genes for each cell type / process
sign_matrix
expression_values
                  expression values to use
reverse_log_scale
                  reverse expression values from log scale
logbase
                  log base to use if reverse_log_scale = TRUE
output_enrichment
                  how to return enrichment output
name
                  to give to spatial enrichment results, default = PAGE
return_gobject return giotto object
```

Details

For details see the individual functions:

PAGE: PAGEEnrichPAGE: rankEnrichPAGE: hyperGeometricEnrich

Value

Giotto object or enrichment results if return_gobject = FALSE

52 createSpatialGrid

Examples

```
createSpatialEnrich(gobject)
```

createSpatialGrid

createSpatialGrid

Description

Create a spatial grid.

Usage

```
createSpatialGrid(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

```
createSpatialGrid(gobject)
```

createSpatialGrid_2D 53

```
createSpatialGrid\_2D createSpatialGrid\_2D
```

Description

create a spatial grid for 2D spatial data.

Usage

```
createSpatialGrid_2D(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

```
createSpatialGrid_2D(gobject)
```

```
createSpatialGrid\_3D \quad \textit{createSpatialGrid\_3D}
```

Description

Create a spatial grid for 3D spatial data.

Usage

```
createSpatialGrid_3D(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

sdimz_stepsize stepsize along the z-axis

minimum_padding

minimum padding on the edges

name name for spatial grid (default = 'spatial_grid')

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

```
createSpatialGrid_3D(gobject)
```

createSpatialNetwork 55

```
createSpatialNetwork createSpatialNetwork
```

Description

Create a spatial network based on cell centroid physical distances.

Usage

```
createSpatialNetwork(
  gobject,
  k = 4,
  dimensions = "all",
  maximum_distance = NULL,
  minimum_k = 0,
  name = "spatial_network",
  verbose = F,
  return_gobject = TRUE
)
```

Arguments

gobject giotto object

k number of nearest neighbors based on physical distance

dimensions which spatial dimensions to use (default = all)

maximum_distance

distance cuttof for nearest neighbors to consider

minimum_k minimum nearest neighbours if maximum_distance != NULL

name name for spatial network (default = 'spatial_network')

verbose verbose

return_gobject boolean: return giotto object (default = TRUE)

Details

Creates a spatial network connecting single-cells based on their physical distance to each other. Number of neighbors can be determined by k, maximum distance from each cell with or without setting a minimum k for each cell.

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

maximum_distance: to create a network based on maximum distance only, you also need to set k to a very high value, e.g. k = 100

Value

giotto object with updated spatial network slot

```
createSpatialNetwork(gobject)
```

56 create_average_DT

```
create\_average\_detection\_DT \\ create\_average\_detection\_DT
```

Description

calculates average gene detection for a cell metadata factor (e.g. cluster)

Usage

```
create_average_detection_DT(
  gobject,
  meta_data_name,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0
)
```

Arguments

Value

data.table with average gene epression values for each factor

Description

calculates average gene expression for a cell metadata factor (e.g. cluster)

Usage

```
create_average_DT(
  gobject,
  meta_data_name,
  expression_values = c("normalized", "scaled", "custom")
)
```

Arguments

```
gobject giotto object
meta_data_name name of metadata column to use
expression_values
 which expression values to use
```

Value

data.table with average gene epression values for each factor

Description

creates randomized cell ids within a selection of cell types

Usage

```
create_cell_type_random_cell_IDs(
  gobject,
  cluster_column = "cell_types",
  needed_cell_types
)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

needed_cell_types

vector of cell type names for which a random id will be found
```

Details

Details will follow.

Value

list of randomly sampled cell ids with same cell type composition

```
create_cell_type_random_cell_IDs(gobject)
```

58 create_dimObject

```
create_cluster_matrix create_cluster_matrix
```

Description

creates aggregated matrix for a given clustering

Usage

```
create_cluster_matrix(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  gene_subset = NULL
)
```

Examples

```
create_cluster_matrix(gobject)
```

create_dimObject

create_dimObject

Description

Creates an object that stores a dimension reduction output

Usage

```
create_dimObject(
  name = "test",
  reduction_method = NULL,
  coordinates = NULL,
  misc = NULL
)
```

Arguments

```
name arbitrary name for object
reduction_method
method used to reduce dimensions
coordinates accepts the coordinates after dimension reduction
misc any additional information will be added to this slot
```

Value

number of distinct colors

decide_cluster_order 59

```
decide_cluster_order
```

Description

creates order for clusters

Usage

```
decide_cluster_order(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cor_method = "pearson",
  hclust_method = "ward.D"
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters

cor_method method for correlation
hclust_method method for hierarchical clustering
```

Details

Calculates order for clusters.

Value

custom

```
decide_cluster_order(gobject)
```

60 detectSpatialPatterns

detectSpatialPatterns detectSpatialPatterns

Description

Identify spatial patterns through PCA on average expression in a spatial grid.

Usage

```
detectSpatialPatterns(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  scale_unit = F,
  ncp = 100,
  show_plot = T,
  PC_zscore = 1.5
)
```

Arguments

Details

Steps to identify spatial patterns:

- 1. average gene expression for cells within a grid, see createSpatialGrid
- 2. perform PCA on the average grid expression profiles
- 3. convert variance of principlal components (PCs) to z-scores and select PCs based on a z-score threshold

Value

spatial pattern object 'spatPatObj'

```
detectSpatialPatterns(gobject)
```

dimCellPlot 61

dimCellPlot

dimCellPlot

Description

Visualize cells according to dimension reduction coordinates

```
dimCellPlot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  cell_annotation_values,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimCellPlot"
```

62 dimCellPlot

Arguments

giotto object gobject dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include cell_annotation_values numeric cell annotation columns show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points size of labels label_size label_fontface font of labels edge_alpha column to use for alpha of the edges point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points show_legend show legend

dimCellPlot2D 63

```
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
                  title for plot, defaults to cell_color parameter
title
```

Details

Description of parameters. For 3D plots see dimCellPlot2D

Value

ggplot

Examples

```
dimCellPlot(gobject)
```

dimCellPlot2D

dimCellPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimCellPlot2D(
 gobject,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
  spat_enr_names = NULL,
 cell_annotation_values,
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
```

64 dimCellPlot2D

```
show_other_cells = T,
      other_cell_color = "lightgrey",
      other_point_size = 0.5,
      show_cluster_center = F,
      show_center_label = T,
      center_point_size = 4,
      center_point_border_col = "black",
      center_point_border_stroke = 0.1,
      label_size = 4,
      label_fontface = "bold",
      edge_alpha = NULL,
      point_size = 1,
      point_border_col = "black",
      point_border_stroke = 0.1,
      show_legend = T,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimCellPlot2D"
    )
Arguments
                    giotto object
    gobject
    dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
                    dimension to use on x-axis
   dim1_to_use
    dim2_to_use
                    dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                    numeric cell annotation columns
    show_NN_network
                    show underlying NN network
    nn_network_to_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use, if show_NN_network = TRUE
   network_name
    cell_color_gradient
                    vector with 3 colors for numeric data
    gradient_midpoint
                    midpoint for color gradient
    gradient_limits
                    vector with lower and upper limits
    select_cell_groups
```

select subset of cells/clusters based on cell_color parameter

dimCellPlot2D 65

```
select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
                  show legend
show_legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
                  title for plot, defaults to cell_color parameter
title
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

Examples

dimCellPlot2D(gobject)

66 dimGenePlot

dimGenePlot

dimGenePlot

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = "red",
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimGenePlot"
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
dim_reduction_to_use
dimension reduction to use
```

dimGenePlot 67

```
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
                 column to use for alpha of the edges
edge_alpha
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
point_size
                 size of point (cell)
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
midpoint
                 size of point (cell)
cow_n_col
                 cowplot param: how many columns
cow_rel_h
                 cowplot param: relative height
                 cowplot param: relative width
cow_rel_w
cow_align
                 cowplot param: how to align
show_legend
                 show legend
show_plot
                 show plots
return_plot
                 return ggplot object
save_plot
                 directly save the plot [boolean]
save_param
                 list of saving parameters from all_plots_save_function()
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 parameters for cowplot::save_plot()
. . .
```

Details

Description of parameters.

Value

ggplot

See Also

dimGenePlot3D

Examples

dimGenePlot(gobject)

68 dimGenePlot2D

dimGenePlot2D

dimGenePlot2D

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot2D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = "red",
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimGenePlot2D"
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
dim_reduction_to_use
dimension reduction to use
```

dimGenePlot2D 69

```
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
                 column to use for alpha of the edges
edge_alpha
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
point_size
                 size of point (cell)
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
midpoint
                 size of point (cell)
cow_n_col
                 cowplot param: how many columns
cow_rel_h
                 cowplot param: relative height
                 cowplot param: relative width
cow_rel_w
cow_align
                 cowplot param: how to align
show_legend
                 show legend
show_plot
                 show plots
return_plot
                 return ggplot object
save_plot
                 directly save the plot [boolean]
save_param
                 list of saving parameters from all_plots_save_function()
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 parameters for cowplot::save_plot()
. . .
```

Details

Description of parameters.

Value

ggplot

See Also

dimGenePlot3D

Examples

dimGenePlot2D(gobject)

70 dimGenePlot3D

dimGenePlot3D

dimGenePlot3D

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  edge_alpha = NULL,
  point_size = 2,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimGenePlot3D"
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
dim_reduction_to_use
dim_neduction_name
dimension reduction name
```

dimPlot2D 71

```
dim1_to_use
                  dimension to use on x-axis
dim2\_to\_use
                  dimension to use on y-axis
dim3\_to\_use
                  dimension to use on z-axis
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
                  column to use for alpha of the edges
edge_alpha
                  size of point (cell)
point_size
                  show legend
show_legend
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for cowplot::save_plot()
```

Details

Description of parameters.

Value

ggplot

Examples

dimGenePlot3D(gobject)

dimPlot2D dimPlot2D

Description

Visualize cells according to dimension reduction coordinates

Visualize cells according to dimension reduction coordinates

72 dimPlot2D

```
dimPlot2D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  title = NULL,
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimPlot2D"
dimPlot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
```

dimPlot2D 73

```
cell_color = NULL,
      color_as_factor = T,
      cell_color_code = NULL,
      cell_color_gradient = c("blue", "white", "red"),
     gradient_midpoint = NULL,
     gradient_limits = NULL,
      select_cell_groups = NULL,
      select_cells = NULL,
      show_other_cells = T,
     other_cell_color = "lightgrey",
     other_point_size = 0.5,
      show_cluster_center = F,
      show_center_label = T,
     center_point_size = 4,
      center_point_border_col = "black",
      center_point_border_stroke = 0.1,
      label_size = 4,
     label_fontface = "bold",
     edge_alpha = NULL,
     point_size = 1,
     point_border_col = "black",
     point_border_stroke = 0.1,
      title = NULL,
      show_legend = T,
      show_plot = NA,
     return_plot = NA,
      save_plot = NA,
     save_param = list(),
     default_save_name = "dimPlot"
   )
Arguments
                    giotto object
   gobject
   dim_reduction_to_use
                    dimension reduction to use
   {\tt dim\_reduction\_name}
                    dimension reduction name
                    dimension to use on x-axis
   dim1_to_use
   dim2_to_use
                    dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
   show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use, if show_NN_network = TRUE
   network_name
   cell_color
                    color for cells (see details)
   color_as_factor
                    convert color column to factor
   cell_color_code
                    named vector with colors
```

74 dimPlot2D

```
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

```
Description of parameters. For 3D plots see dimPlot3D Description of parameters, see dimPlot2D. For 3D plots see dimPlot3D
```

Value

ggplot ggplot dimPlot3D 75

Examples

```
dimPlot2D(gobject)
dimPlot2D(gobject)
```

dimPlot3D

dimPlot3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimPlot3D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3\_to\_use = 3,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  edge_alpha = NULL,
  point_size = 3,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dim3D"
)
```

```
gobject giotto object
dim_reduction_to_use
dim_neduction_name
dimension reduction name
```

76 dimPlot3D

```
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
dim3_to_use
                  dimension to use on z-axis
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
color_as_factor
                  convert color column to factor
                  color for cells (see details)
cell_color
cell_color_code
                  named vector with colors
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
show_legend
                  show legend
```

Details

Description of parameters.

Value

plotly

Examples

dimPlot3D(gobject)

direction_test_CPG 77

```
direction_test_CPG direction_test_CPG
```

Description

shows direction of change

Usage

```
direction_test(x, min_fdr = 0.05)
```

Examples

```
direction_test_CPG()
```

doHclust

doHclust

Description

cluster cells using hierarchical clustering algorithm

Usage

```
doHclust(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
  "manhattan", "canberra", "binary", "minkowski"),
agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  k = 10,
  h = NULL
  name = "hclust",
  return_gobject = TRUE,
  set\_seed = T,
  seed_number = 1234
)
```

```
gobject giotto object
expression_values
expression values to use
genes_to_use subset of genes to use
```

78 doHMRF

```
dim_reduction_to_use
                  dimension reduction to use
dim_reduction_name
                  dimensions reduction name
dimensions_to_use
                  dimensions to use
distance_method
                  distance method
{\tt agglomeration\_method}
                  agglomeration method for hclust
k
                  number of final clusters
h
                  cut hierarchical tree at height = h
                  name for hierarchical clustering
name
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                  set seed
seed_number
                  number for seed
                  additional parameters
```

Details

Description on how to use Kmeans clustering method.

Value

giotto object appended with new cluster

Examples

```
doHclust(gobject)
```

doHMRF

doHMRF

Description

Run HMRF

```
doHMRF(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_network_name = "spatial_network",
  spatial_genes = NULL,
  spatial_dimensions = c("sdimx", "sdimy", "sdimz"),
  dim_reduction_to_use = NULL,
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "test",
  k = 10,
```

doHMRF 79

```
betas = c(0, 2, 50),
tolerance = 1e-10,
zscore = c("none", "rowcol", "colrow"),
numinit = 100,
python_path = NULL,
output_folder = NULL,
overwrite_output = TRUE
)
```

Arguments

```
giotto object
gobject
expression_values
                 expression values to use
spatial_network_name
                 name of spatial network to use for HMRF
                 spatial genes to use for HMRF
spatial_genes
spatial_dimensions
                 select spatial dimensions to use, default is all possible dimensions
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 name of HMRF run
name
k
                 number of HMRF domains
betas
                 betas to test for
tolerance
                 tolerance
zscore
                 zscore
numinit
                 number of initializations
                 python path to use
python_path
output_folder
                 output folder to save results
overwrite_output
                 overwrite output folder
```

Details

Description of HMRF parameters ...

Value

Creates a directory with results that can be viewed with viewHMRFresults

```
doHMRF(gobject)
```

80 doKmeans

doKmeans

doKmeans

Description

cluster cells using kmeans algorithm

Usage

```
doKmeans(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  centers = 10,
  iter_max = 100,
  nstart = 1000,
  algorithm = "Hartigan-Wong",
  name = "kmeans",
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

```
gobject
                 giotto object
expression_values
                 expression values to use
genes_to_use
                 subset of genes to use
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimensions reduction name
dimensions_to_use
                 dimensions to use
distance_method
                 distance method
                 number of final clusters
centers
                 kmeans maximum iterations
iter_max
nstart
                 kmeans nstart
algorithm
                 kmeans algorithm
                 name for kmeans clustering
return_gobject boolean: return giotto object (default = TRUE)
```

doLeidenCluster 81

```
set_seed set seed
seed_number number for seed
... additional parameters
```

Details

Description on how to use Kmeans clustering method.

Value

giotto object appended with new cluster

Examples

```
doKmeans(gobject)
```

doLeidenCluster

doLeidenCluster

Description

cluster cells using a NN-network and the Leiden community detection algorithm

Usage

```
doLeidenCluster(
   gobject,
   name = "leiden_clus",
   nn_network_to_use = "sNN",
   network_name = "sNN.pca",
   python_path = NULL,
   resolution = 1,
   weight_col = "weight",
   partition_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
   init_membership = NULL,
   n_iterations = 1000,
   return_gobject = TRUE,
   set_seed = T,
   seed_number = 1234,
   ...
)
```

82 doLeidenSubCluster

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

Examples

```
doLeidenCluster(gobject)
```

doLeidenSubCluster doLeidenSubCluster

Description

subcluster cells using a NN-network and the Leiden algorithm

```
doLeidenSubCluster(
  gobject,
  name = "sub_pleiden_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  resolution = 0.5,
  n_{iterations} = 500,
  python_path = NULL,
```

doLeidenSubCluster 83

```
nn_network_to_use = "sNN",
network_name = "sNN.pca",
return_gobject = TRUE,
verbose = T,
...
)
```

Arguments

gobject giotto object

name name for new clustering result cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution of Leiden clustering

n_iterations number of iterations

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

... additional parameters

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

```
\\ do Leiden Sub Cluster (gobject)
```

84 doLouvainCluster

doLouvainCluster

doLouvainCluster

Description

cluster cells using a NN-network and the Louvain algorithm.

Usage

```
doLouvainCluster(
  gobject,
  version = c("community", "multinet"),
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = NULL,
  gamma = 1,
  omega = 1,
  louv_random = F,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
)
```

Arguments

```
gobject
                 giotto object
                 implemented version of Louvain clustering to use
version
name
                 name for cluster
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
python_path
                 specify specific path to python if required
resolution
                 resolution
gamma
                 gamma
omega
                 omega
return_gobject boolean: return giotto object (default = TRUE)
                 set seed
set_seed
seed_number
                 number for seed
                 additional parameters
```

Details

Louvain clustering using the community or multinet implementation of the louvain clustering algorithm.

Value

giotto object appended with new cluster

Examples

```
doLouvainCluster(gobject)
```

```
\label{lower_community} do Louvain Cluster\_community
```

Description

cluster cells using a NN-network and the Louvain algorithm from the community module in Python

Usage

```
doLouvainCluster_community(
   gobject,
   name = "louvain_clus",
   nn_network_to_use = "sNN",
   network_name = "sNN.pca",
   python_path = NULL,
   resolution = 1,
   weight_col = NULL,
   louv_random = F,
   return_gobject = TRUE,
   set_seed = F,
   seed_number = 1234,
   ...
)
```

```
gobject
                 giotto object
                 name for cluster
name
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
                 specify specific path to python if required
python_path
resolution
                 resolution
weight_col
                 weight column
louv_random
                 random
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                 set seed
                 number for seed
seed_number
                 additional parameters
```

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

Examples

```
doLouvainCluster_community(gobject)
```

```
{\tt doLouvainCluster\_multinet}
```

doLouvainCluster_multinet

Description

cluster cells using a NN-network and the Louvain algorithm from the multinet package in R.

Usage

```
doLouvainCluster_multinet(
  gobject,
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  weight_col = NULL,
  gamma = 1,
  omega = 1,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
  ...
)
```

```
gobject
                 giotto object
                 name for cluster
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
                 gamma
gamma
omega
                 omega
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                 set seed
seed_number
                 number for seed
                 additional parameters
                 specify specific path to python if required
python_path
```

doLouvainSubCluster 87

Details

See louvain algorithm from the multinet package in R.

Value

giotto object appended with new cluster

Examples

```
doLouvainCluster_multinet(gobject)
```

 ${\tt doLouvainSubCluster} \qquad do LouvainSubCluster$

Description

subcluster cells using a NN-network and the Louvain algorithm

Usage

```
doLouvainSubCluster(
  gobject,
  name = "sub_louvain_clus",
  version = c("community", "multinet"),
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  resolution = 0.5,
  gamma = 1,
  omega = 1,
  python_path = NULL,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T,
)
```

```
gobject giotto object

name name for new clustering result

version version of Louvain algorithm to use
```

88 doLouvainSubCluster

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork
resolution resolution for community algorithm

gamma gamma

omega omega

python_path specify specific path to python if required

 $nn_network_to_use$

type of NN network to use (kNN vs sNN)

 ${\tt network_name} \quad \quad name \ of \ NN \ network \ to \ use$

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

... additional parameters

Details

Description of Louvain clustering method.

Value

giotto object appended with new cluster

Examples

doLouvainSubCluster(gobject)

```
\begin{tabular}{ll} do Louvain Sub Cluster\_community \\ & do Louvain Sub Cluster\_community \\ \end{tabular}
```

Description

subcluster cells using a NN-network and the Louvain community detection algorithm

Usage

```
doLouvainSubCluster_community(
  gobject,
  name = "sub_louvain_comm_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  resolution = 0.5,
  python_path = NULL,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T,
)
```

```
gobject
                  giotto object
                  name for new clustering result
name
cluster_column cluster column to subcluster
selected_clusters
                  only do subclustering on these clusters
                  parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                  threshold for detection in min percentage of cells
hvg_mean_expr_det
                  threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                  forces all genes to be HVG and to be used as input for PCA
                  minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
                  parameters for runPCA
pca_param
```

```
nn_param
                 parameters for parameters for createNearestNetwork
                 number of k for createNearestNetwork
k_neighbors
resolution
                 resolution
python_path
                 specify specific path to python if required
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
return_gobject boolean: return giotto object (default = TRUE)
verbose
                 verbose
                 additional parameters
```

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

Examples

```
doLouvainSubCluster_community(gobject)
```

```
\label{lower_multinet} do Louvain SubCluster\_multinet \\ do Louvain SubCluster\_multinet
```

Description

subcluster cells using a NN-network and the Louvain multinet detection algorithm

```
doLouvainSubCluster_multinet(
 gobject,
 name = "sub_louvain_mult_clus",
 cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
 gamma = 1,
  omega = 1,
```

```
nn_network_to_use = "sNN",
network_name = "sNN.pca",
return_gobject = TRUE,
verbose = T,
...
)
```

Arguments

gobject giotto object

name name for new clustering result cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

gamma gamma omega omega nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

... additional parameters

python_path specify specific path to python if required

Details

Description of Louvain clustering method.

Value

giotto object appended with new cluster

```
{\tt doLouvainSubCluster\_multinet(gobject)}
```

92 doRandomWalkCluster

doRandomWalkCluster doRandomWalkCluster

Description

Cluster cells using a random walk approach.

Usage

```
doRandomWalkCluster(
  gobject,
  name = "random_walk_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  walk_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
  ...
)
```

Arguments

```
giotto object
gobject
name
                 name for cluster
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use
                 number of walking steps
walk_steps
walk_clusters
                 number of final clusters
walk_weights
                 cluster column defining the walk weights
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                 set seed
seed_number
                 number for seed
                 additional parameters
```

Details

See random walk algorithm from the igraph package in R.

Value

giotto object appended with new cluster

```
doRandomWalkCluster(gobject)
```

doSNNCluster 93

doSNNCluster doSNNCluster

Description

Cluster cells using a SNN cluster approach.

Usage

```
doSNNCluster(
  gobject,
  name = "sNN_clus",
  nn_network_to_use = "kNN",
  network_name = "kNN.pca",
  k = 20,
  eps = 4,
  minPts = 16,
  borderPoints = TRUE,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
  ...
)
```

Arguments

gobject giotto object name for cluster name nn_network_to_use type of NN network to use (only works on kNN) network_name name of kNN network to use Neighborhood size for nearest neighbor sparsification to create the shared NN k graph. Two objects are only reachable from each other if they share at least eps nearest eps neighbors. minimum number of points that share at least eps nearest neighbors for a point minPts to be considered a core points. borderPoints should borderPoints be assigned to clusters like in DBSCAN? return_gobject boolean: return giotto object (default = TRUE) set_seed set seed seed_number number for seed

Details

See sNNclust algorithm from dbscan package

additional parameters

94 exportGiottoViewer

Value

giotto object appended with new cluster

Examples

```
doSNNCluster(gobject)
```

dt_to_matrix

dt_to_matrix

Description

converts data.table to matrix

Usage

```
dt_to_matrix(x)
```

Examples

```
dt_to_matrix(x)
```

exportGiottoViewer

exportGiottoViewer

Description

compute highly variable genes

```
exportGiottoViewer(
  gobject,
  output_directory = NULL,
  spat_enr_names = NULL,
  annotations,
  dim_reductions,
  dim_reduction_names,
  expression_values = c("normalized", "scaled", "custom"),
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  expression_rounding = NULL,
  overwrite_dir = F,
  verbose = T
```

Arguments

gobject giotto object

output_directory

directory where to save the files

spat_enr_names spatial enrichment results to include for annotations

annotations giotto cell annotations to view

dim_reductions high level dimension reductions to view

dim_reduction_names

specific dimension reduction names

expression_values

expression values to use in Viewer

dim_red_rounding

numerical indicating how to round the coordinates

dim_red_rescale

numericals to rescale the coordinates

expression_rounding

numerical indicating how to round the expression data

overwrite_dir overwrite files in the directory if it already existed

verbose be verbose

Details

Giotto Viewer expects the results from Giotto Analyzer in a specific format, which is provided by this function.

Value

writes the necessary output to use in Giotto Viewer

Examples

exportGiottoViewer(gobject)

 ${\tt exprOnlyCellCellcommunicationScores}$

exprOnly Cell Cell communication Scores

Description

Cell-Cell communication scores based on expression only

96 extended_gini_fun

Usage

```
exprOnlyCellCellcommunicationScores(
  gobject,
  cluster_column = "cell_types",
  random_iter = 100,
  gene_set_1,
  gene_set_2,
  log2FC_addendum = 0.1,
  verbose = T
)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

random_iter number of iterations

gene_set_1 first specific gene set from gene pairs

gene_set_2 second specific gene set from gene pairs

log2FC_addendum

addendum to add when calculating log2FC

verbose verbose
```

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on expression only

Examples

```
exprOnlyCellCellcommunicationScores(gobject)
```

```
extended_gini_fun extended_gini_fun
```

Description

calculate gini coefficient on a minimum length vector

Usage

```
extended_gini_fun(x, weights = rep(1, length = length(x)), minimum_length = 16)
```

Value

gini coefficient

extractNearestNetwork 97

```
extractNearestNetwork extractNearestNetwork
```

Description

Extracts a NN-network from a Giotto object as an igraph object

Usage

```
extractNearestNetwork(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca"
)
```

Arguments

```
\begin{array}{ccc} \text{gobject} & \text{giotto object} \\ \text{nn\_network\_to\_use} & & & \\ & & & & \\ & & & & \\ \text{NN or sNN} & \\ \text{network\_name} & & \text{name of NN network to be used} \end{array}
```

Value

igraph object

Examples

extractNearestNetwork(gobject)

 ${\sf fDataDT}$

fDataDT

Description

show gene metadata

Usage

```
fDataDT(gobject)
```

Arguments

```
gobject giotto object
```

Value

data.table with gene metadata

```
pDataDT(gobject)
```

98 filterCombinations

filterCombinations filterCombinations

Description

Shows how many genes and cells are lost with combinations of thresholds.

Usage

```
filterCombinations(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_thresholds = c(1, 2),
  gene_det_in_min_cells = c(5, 50),
  min_det_genes_per_cell = c(200, 400),
  scale_x_axis = "identity",
  x_axis_offset = 0,
  scale_y_axis = "identity",
  y_axis_offset = 0,
  show_plot = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_thresholds
                  all thresholds to consider a gene expressed
gene_det_in_min_cells
                  minimum number of cells that should express a gene to consider that gene fur-
                  ther
min_det_genes_per_cell
                  minimum number of expressed genes per cell to consider that cell further
scale_x_axis
                  ggplot transformation for x-axis (e.g. log2)
x_axis_offset
                 x-axis offset to be used together with the scaling transformation
                  ggplot transformation for y-axis (e.g. log2)
scale_y_axis
y_axis_offset
                  y-axis offset to be used together with the scaling transformation
show_plot
                  show plot
```

Details

Creates a scatterplot that visualizes the number of genes and cells that are lost with a specific combination of a gene and cell threshold given an arbitrary cutoff to call a gene expressed. This function can be used to make an informed decision at the filtering step with filterGiotto.

Value

list of data.table and ggplot object

filterCPGscores 99

Examples

filterCombinations(gobject)

filterCPGscores

filterCPGscores

Description

visualize Cell Proximity Gene enrichment scores

Usage

```
filterCPGscores(
   CPGscore,
   min_cells = 5,
   min_fdr = 0.05,
   min_spat_diff = 0.2,
   min_log2_fc = 0.5,
   keep_int_duplicates = TRUE,
   direction = c("both", "up", "down")
)
```

Arguments

Details

This function filters the output from getCellProximityGeneScores based on false-discovery rate, minimum absolute difference, minimum log fold-change and direction of change.

Value

Gene to gene scores in data.table format

```
filterCPGscores(CPGscore)
```

100 filterDistributions

filterDistributions filterDistributions

Description

show gene or cell distribution after filtering on expression threshold

Usage

```
filterDistributions(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  detection = c("genes", "cells"),
  plot_type = c("histogram", "violin"),
  nr_bins = 30,
  fill_color = "lightblue",
  scale_axis = "identity",
  axis_offset = 0,
  show_plot = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_threshold
                  threshold to consider a gene expressed
detection
                  consider genes or cells
plot_type
                  type of plot
nr_bins
                  number of bins for histogram plot
fill_color
                  fill color for plots
scale_axis
                  ggplot transformation for axis (e.g. log2)
                  offset to be used together with the scaling transformation
axis_offset
show_plot
                  show plot
```

Value

ggplot object

```
filterDistributions(gobject)
```

filterGiotto 101

filterGiotto

filterGiotto

Description

filter Giotto object based on expression threshold

Usage

```
filterGiotto(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  gene_det_in_min_cells = 100,
  min_det_genes_per_cell = 100,
  verbose = F
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

expression_threshold

threshold to consider a gene expressed

gene_det_in_min_cells

minimum # of cells that need to express a gene

min_det_genes_per_cell

minimum # of genes that need to be detected in a cell

verbose

verbose
```

Details

The function filterCombinations can be used to explore the effect of different parameter values.

Value

giotto object

```
filterGiotto(gobject)
```

102 findGiniMarkers

findGiniMarkers

findGiniMarkers

Description

Identify marker genes for selected clusters based on gini detection and expression scores.

Usage

```
findGiniMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  filter on minimum gini coefficient for expression
min_det_gini_score
                  filter minimum gini coefficient for detection
{\tt detection\_threshold}
                  detection threshold for gene expression
                  rank scores to include
rank_score
```

Details

Description of parameters.

Value

data.table with marker genes

```
find {\it GiniMarkers} (gobject)
```

Description

Identify marker genes for all clusters based on gini detection and expression scores.

Usage

```
findGiniMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  min_genes = 10,
  verbose = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
min_expr_gini_score
                  filter on minimum gini coefficient on expression
min_det_gini_score
                  filter on minimum gini coefficient on detection
detection_threshold
                  detection threshold for gene expression
                  minimum genes to keep per cluster, overrides pval and logFC
min_genes
verbose
                  be verbose
```

Details

Description of parameters.

Value

data.table with marker genes

```
findGiniMarkers_one_vs_all(gobject)
```

104 findMarkers

findMarkers

findMarkers

Description

Identify marker genes for selected clusters.

Usage

```
findMarkers(
 gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
 method = c("scran", "gini", "mast"),
  subset_clusters = NULL,
 group_1 = NULL,
 group_2 = NULL,
 min_expr_gini_score = 0.5,
 min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  group_1_name = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
)
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
method
                  method to use to detect differentially expressed genes
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster column for pairwise comparison
group_1
group_2
                  group 2 cluster IDs from cluster_column for pairwise comparison
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
detection_threshold
                  gini: detection threshold for gene expression
                  gini: rank scores to include
rank_score
                  mast: custom name for group_1 clusters
group_1_name
group_2_name
                  mast: custom name for group_2 clusters
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
                  additional parameters for the findMarkers function in scran or zlm function in
                  MAST
```

Details

Wrapper for findScranMarkers, findGiniMarkers and FindMastMarkers.

Value

data.table with marker genes

Examples

```
findMarkers(gobject)
```

Description

Identify marker genes for all clusters.

Usage

```
findMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  method = c("scran", "gini", "mast"),
  pval = 0.01,
  logFC = 0.5,
  min\_genes = 10,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  adjust_columns = NULL,
  verbose = TRUE,
)
```

106 findMastMarkers

```
scan & mast: filter on logFC
logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
detection_threshold
                  gini: detection threshold for gene expression
                  gini: rank scores to include
rank_score
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
verbose
                  be verbose
                  additional parameters for the findMarkers function in scran or zlm function in
                  MAST
```

Details

Wrapper for findScranMarkers_one_vs_all, findGiniMarkers_one_vs_all and FindMastMarkers_one_vs_all.

Value

data.table with marker genes

Examples

```
findMarkers_one_vs_all(gobject)
```

find Mast Markers

findMastMarkers

Description

Identify marker genes for selected clusters based on the MAST package.

```
findMastMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  group_1 = NULL,
  group_1_name = NULL,
  group_2 = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
  ...
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use

cluster_column clusters to use
group_1 group 1 cluster IDs from cluster_column for pairwise comparison
group_1_name custom name for group_1 clusters
group_2 group 2 cluster IDs from cluster_column for pairwise comparison
group_2_name custom name for group_2 clusters
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
... additional parameters for the zlm function in MAST
```

Details

This is a minimal convenience wrapper around the MAST functions to detect differentially expressed genes.

Value

data.table with marker genes

Examples

```
findMastMarkers(gobject)
```

```
\label{lem:findMastMarkers_one_vs_all} find \textit{MastMarkers\_one\_vs\_all}
```

Description

Identify marker genes for all clusters based on the MAST package.

```
findMastMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  adjust_columns = NULL,
  pval = 0.001,
  logFC = 1,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

108 findScranMarkers

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
pval
                  filter on minimal p-value
logFC
                  filter on logFC
                  minimum genes to keep per cluster, overrides pval and logFC
min_genes
verbose
                  be verbose
                  additional parameters for the zlm function in MAST
. . .
```

Details

This is a minimal convenience wrapper around the MAST functions to detect differentially expressed genes.

Value

data.table with marker genes

Examples

```
findMastMarkers_one_vs_all(gobject)
```

findScranMarkers findScranMarkers

Description

Identify marker genes for selected clusters based on scran's implementation of findMarkers.

```
findScranMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  ...
)
```

Arguments

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

Value

data.table with marker genes

Examples

```
findScranMarkers(gobject)
```

Description

Identify marker genes for all clusters in a one vs all manner based on scran's implementation of findMarkers.

```
findScranMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  pval = 0.01,
  logFC = 0.5,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

110 find_grid_3D

Arguments

gobject giotto object

expression_values

gene expression values to use

cluster_column clusters to use

subset_clusters

subset of clusters to use

pval filter on minimal p-value

logFC filter on logFC

min_genes minimum genes to keep per cluster, overrides pval and logFC

verbose be verbose

... additional parameters for the findMarkers function in scran

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

Value

data.table with marker genes

Examples

findScranMarkers_one_vs_all(gobject)

find_grid_2D

 $find_grid_2D$

Description

find grid location in 2D

Usage

```
find_grid_2D(grid_DT, x_loc, y_loc)
```

find_grid_3D

find_grid_3D

Description

find grid location in 3D

```
find_grid_3D(grid_DT, x_loc, y_loc, z_loc)
```

find_grid_x

find_grid_x

 $find_grid_x$

Description

find grid location on x-axis

Usage

```
find_grid_x(grid_DT, x_loc)
```

find_grid_y

find_grid_y

Description

find grid location on y-axis

Usage

```
find_grid_y(grid_DT, y_loc)
```

find_grid_z

find_grid_z

Description

find grid location on z-axis

Usage

```
find_grid_z(grid_DT, z_loc)
```

fish_function

fish_function

Description

perform fisher exact test

```
fish_function(x_to, x_from)
```

FSV_show

fish_function2

fish_function2

Description

perform fisher exact test

Usage

```
fish_function2(A, B, C, D)
```

FSV_show

FSV_show

Description

Visualize spatial varible genes caculated by spatial_DE

Usage

```
FSV_show(
  results,
  ms_results = NULL,
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5
)
```

Arguments

results results caculated by spatial_DE
ms_results ms_results caculated by spatial_DE
size indicate different levels of qval
color indicate different SV features
sig_alpha transparency of significant genes
unsig_alpha transparency of unsignificant genes

Details

Description of parameters.

Value

nothing

```
FSV_show(results)
```

GenePattern_show 113

GenePattern_show

GenePattern_show

Description

Visualize genes distribution patterns calculated by spatial_AEH

Usage

```
GenePattern_show(
  gobject = NULL,
  AEH_results = NULL,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  point_alpha = 1,
  low_color = "blue",
  mid_color = "white",
  high_color = "red",
  midpoint = 0
)
```

Arguments

gobject giotto object results from spatial_AEH AEH_results sdimx x axis of spatial locus sdimy y axis of spatial locus point_size size of points to indicate cells transparency of points to indicate cells point_alpha low_color color to indicate low score level color to indicate middle score level mid_color high_color color to indicate high score level point to set mid_color midpoint

Details

Description of parameters.

Value

nothing

```
GenePattern_show(gobject,AEH_results)
```

```
general_save_function general_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
general_save_function(
  gobject,
  plot_object,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  default_save_name = "giotto_plot",
  save_format = c("png", "tiff", "pdf", "svg"),
  show_saved_plot = F,
  base_width = NULL,
  base_height = NULL,
  base_aspect_ratio = NULL,
  units = NULL,
  dpi = NULL,
  ...
)
```

Arguments

```
gobject
                  giotto object
                  non-ggplot object to plot
plot_object
save_dir
                  directory to save to
save_folder
                  folder in save_dir to save to
                  name of plot
save_name
save_format
                  format (e.g. png, tiff, pdf, ...)
show_saved_plot
                  load & display the saved plot
base_width
                  width
base_height
                  height
base_aspect_ratio
                  aspect ratio
units
                  units
dpi
                  Plot resolution
```

```
general_save_function(gobject)
```

get10Xmatrix 115

get10Xmatrix

get10Xmatrix

Description

This function creates an expression matrix from a 10X structured folder

Usage

```
get10Xmatrix(path_to_data)
```

Arguments

```
path_to_data path to the 10X folder
```

Details

A typical 10X folder is named raw_feature_bc_matrix or raw_feature_bc_matrix. It has 3 files:

- barcodes
- features.tsv.gz
- matrix.mtx.gz

Value

expression matrix from 10X

Examples

```
get10Xmatrix(10Xmatrix)
```

```
{\it getCellProximityGeneScores} \\ {\it getCellProximityGeneScores}
```

Description

Compute cell-cell interaction enrichment (observed vs expected)

```
getCellProximityGeneScores(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column = "louvain_clus.1",
  selected_genes = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  do_diff_test = TRUE,
  diff_test = c("t.test", "wilcox"),
  minimum_unique_cells = NA,
```

```
fold_change_addendum = 0.1,
  in_two_directions = TRUE,
  exclude_selected_cells_from_test = F,
  verbose = T
)
```

Arguments

```
gobject
                  giotto object
spatial_network_name
                  name of spatial network to use
cluster_column name of column to use for clusters
selected_genes selection of genes to perform calculations for
expression_values
                  expression values to use
do_diff_test
                  perform differential test
diff_test
                  which differential expression test
minimum_unique_cells
                  minimum number of cells needed to proceed
fold_change_addendum
                  constant to add when calculating log2 fold-change
in_two_directions
                  shows enrichment in both directions: cell1-cell2, cell2-cell1
exclude_selected_cells_from_test
                  exclude certain cells from test
verbose
                  verbose
```

Details

Function to calculate if genes are differentially expressed in cell types when they interact (according to physical proximity) with other cell types. The results data.table contains the following columns:

- genes: All or selected list of tested genes
- cell_expr_1: average gene expression in cell type 1 from unified_int cell-cell interaction
- cell_expr_2: average gene expression in cell type 2 from unified_int cell-cell interaction
- comb_expr: combined average gene expression in cell type 1 and 2 from unified_int cell-cell interaction
- all_cell_expr_1: average gene expression for all cells from cell type 1
- all_cell_expr_2: average gene expression for all cells from cell type 2
- all_comb_expr: combined average gene expression for all cells from cell type 1 and 2
- pval_1: p-value from test between interacting cells and all cells from cell type 1
- pval_2: p-value from test between interacting cells and all cells from cell type 2
- cell_type_1: first cell type of cell-cell interaction
- cell_type_2: second cell type of cell-cell interaction
- interaction: the cell-cell interaction, based on physical proximity
- nr_1: number of cell type 1 in the unified cell-cell interaction
- nr_2: number of cell type 2 in the unified cell-cell interaction

getClusterSimilarity 117

- all_nr_1: number of all cell type 1 in the whole dataset
- all_nr_2: number of all cell type 2 in the whole dataset
- diff_spat: difference between comb_expr and all_comb_expr
- diff_spat_1: difference between cell_expr_1 and all_cell_expr_1
- diff_spat_2: difference between cell_expr_1 and all_cell_expr_1
- log2fc_spat_1: fold-change of diff_spat_1
- log2fc_spat_2: fold-change of diff_spat_2
- log2fc_spat: fold-change of diff_spat
- type_int: type of interaction
- unified_int: interaction with alphabetically sorted cell type 1 and cell type 2
- unif_int_rank: 1 or 2
- fdr_1: fdr from test between interacting cells and all cells from cell type 1
- fdr_2: fdr from test between interacting cells and all cells from cell type 2

Value

Cell Proximity Gene scores (CPGscores) in data.table format

Examples

```
getCellProximityGeneScores(gobject)
```

```
getClusterSimilarity
```

Description

Creates data.table with pairwise correlation scores between each cluster.

Usage

```
getClusterSimilarity(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman")
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

Details

Creates data.table with pairwise correlation scores between each cluster and the group size (# of cells) for each cluster. This information can be used together with mergeClusters to combine very similar or small clusters into bigger clusters.

Value

data.table

Examples

```
getClusterSimilarity(gobject)
```

```
getDendrogramSplits getDendrogramSplits
```

Description

Split dendrogram at each node and keep the leave (label) information..

Usage

```
getDendrogramSplits(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  show_dend = TRUE,
  verbose = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
distance
                  distance method to use for hierarchical clustering
h
                  height of horizontal lines to plot
h_color
                  color of horizontal lines
                  show dendrogram
show_dend
verbose
                  be verbose
```

getDistinctColors 119

Details

Creates a data.table with three columns and each row represents a node in the dendrogram. For each node the height of the node is given together with the two subdendrograms. This information can be used to determine in a hierarchical manner differentially expressed marker genes at each node.

Value

data.table object

Examples

```
getDendrogramSplits(gobject)
```

getDistinctColors

getDistinctColors

Description

Returns a number of distint colors based on the RGB scale

Usage

```
getDistinctColors(n)
```

Arguments

n

number of colors wanted

Value

number of distinct colors

 ${\tt getGeneToGeneScores}$

getGeneToGeneScores

Description

Compute gene-gene enrichment scores.

```
getGeneToGeneScores(
   CPGscore,
   selected_genes = NULL,
   specific_genes_1 = NULL,
   specific_genes_2 = NULL,
   min_cells = 5,
   min_fdr = 0.05,
   min_spat_diff = 0.2,
   min_log2_fc = 0.5,
```

```
direction = c("both", "up", "down"),
fold_change_addendum = 0.1,
verbose = TRUE
)
```

Arguments

```
CPGscore
                  CPGscore, output from getCellProximityGeneScores()
selected_genes select subset of genes
specific_genes_1
                  specific source genes (see details)
specific_genes_2
                  specific target genes (see details)
                  min number of cells threshold
min_cells
min_spat_diff
                  spatial difference threshold
                  log2 fold-change threshold
min_log2_fc
direction
                  up or downregulation or both
fold_change_addendum
                  constant to add when calculating log2 fold-change
verbose
                  verbose
min_pval
                  p-value threshold
```

Details

Give more details ...

Value

Gene to gene scores in data.table format

Examples

```
getGeneToGeneScores(CPGscore)
```

```
{\it get\_cell\_to\_cell\_sorted\_name\_conversion} \\ {\it get\_cell\_to\_cell\_sorted\_name\_conversion}
```

Description

creates unified cell-cell interaction names

Usage

```
get_cell_to_cell_sorted_name_conversion(all_cell_types)
```

```
get_cell_to_cell_sorted_name_conversion()
```

```
{\it get\_interaction\_gene\_enrichment} \\ {\it get\_interaction\_gene\_enrichment}
```

Description

Computes gene enrichment between all interactions

Usage

```
get_interaction_gene_enrichment(
  spatial_network,
  unified_int_col = "unified_int",
  source_col = "source_clus",
  source_IDs = "from",
  neighb_col = "neighb_clus",
  neighb_IDs = "to",
  expression_matrix,
  cell_annotation,
  annotation_ID = "uniq_ID",
  cell_type_col,
  do_diff_test = T,
  diff_test = c("t.test", "wilcox"),
  minimum_unique_cells = NA,
  exclude_selected_cells_from_test = T,
  verbose = T
)
```

Examples

```
get_interaction_gene_enrichment()
```

```
{\it get\_specific\_interaction\_gene\_enrichment} \\ {\it get\_specific\_interaction\_gene\_enrichment}
```

Description

Computes gene enrichment between specified interaction

```
get_specific_interaction_gene_enrichment(
  sub_spatial_network,
  source_col = "source_clus",
  source_IDs = "from",
  neighb_col = "neighb_clus",
  neighb_IDs = "to",
  expression_matrix,
```

122 ggplot_save_function

```
interaction_name = "to_specify",
  cell_annotation,
  annotation_ID = "uniq_ID",
  cell_type_col,
  do_diff_test = T,
  diff_test = c("t.test", "wilcox"),
  minimum_unique_cells = NA,
  exclude_selected_cells_from_test = T
)
```

Examples

```
get_specific_interaction_gene_enrichment()
```

```
ggplot_save_function ggplot_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
ggplot_save_function(
  gobject,
  plot_object,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  default_save_name = "giotto_plot",
  save_format = NULL,
  show_saved_plot = F,
  ncol = 1,
  nrow = 1,
  scale = 1,
  base_width = NULL,
  base_height = NULL,
  base_aspect_ratio = NULL,
  units = NULL,
  dpi = NULL,
  limitsize = TRUE,
)
```

Arguments

```
gobject giotto object
plot_object ggplot object to plot
save_dir directory to save to
save_folder folder in save_dir to save to
```

giotto-class 123

save_name name of plot

save_format (e.g. png, tiff, pdf, ...)

show_saved_plot

load & display the saved plot

ncol number of columns nrow number of rows

scale scale
base_width width
base_height height
base_aspect_ratio

aspect ratio

units units

dpi Plot resolution

limitsize When TRUE (the default), ggsave will not save images larger than 50x50 inches,

to prevent the common error of specifying dimensions in pixels.

See Also

```
cowplot::save_plot
```

Examples

```
ggplot_save_function(gobject)
```

giotto-class S4 giotto Class

Description

Framework of giotto object to store and work with spatial expression data

Slots

```
raw_exprs raw expression counts

norm_expr normalized expression counts

norm_scaled_expr normalized and scaled expression counts

custom_expr custom normalized counts

spatial_locs spatial location coordinates for cells

cell_metadata metadata for cells

gene_metadata metadata for genes

cell_ID unique cell IDs

gene_ID unique gene IDs

spatial_network spatial network in data.table/data.frame format

spatial_grid spatial grid in data.table/data.frame format

dimension_reduction slot to save dimension reduction coordinates
```

nn_network nearest neighbor network in igraph format parameters slot to save parameters that have been used instructions slot for global function instructions offset_file offset file used to stitch together image fields OS_platform Operating System to run Giotto analysis on

hyperGeometricEnrich hyperGeometricEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

Usage

```
hyperGeometricEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore")
)
```

Arguments

Details

The enrichment score is calculated based on the p-value from the hypergeometric test, -log10(p-value).

Value

data.table with enrichment results

```
hyperGeometricEnrich(gobject)
```

iterCluster 125

iterCluster

iterCluster

Description

cluster cells iteratively

Usage

```
iterCluster(
 gobject,
 cluster_method = c("leiden", "louvain_community", "louvain_multinet"),
 nr_rounds = 5,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 20,
 resolution = 1,
  gamma = 1,
 omega = 1,
 python_path = NULL,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 name = "iter_clus",
 return_gobject = TRUE,
)
```

Arguments

```
giotto object
gobject
cluster_method clustering algorithm to use
nr_rounds
                 number of iterative rounds
                 parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                 threshold for detection in min percentage of cells
hvg_mean_expr_det
                 threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                 forces all genes to be HVG and to be used as input for PCA
min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA
                 parameters for runPCA
pca_param
                 parameters for parameters for runPCA
nn_param
```

126 iterLeidenCluster

```
k_neighbors
                 k for nn-network
resolution
                 resolution
gamma
                 gamma
omega
                 omega
                 python path to use for Leiden clustering
python_path
nn_network_to_use
                 NN network to use
                 NN network name
network_name
                 name of clustering
name
return_gobject boolean: return giotto object (default = TRUE)
                 additional parameters
```

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

```
iterCluster(gobject)
```

iterLeidenCluster iterLeidenCluster

Description

cluster cells iteratively

```
iterLeidenCluster(
 gobject,
 name = "iter_clus",
 nr_rounds = 5,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 20,
 resolution = 1,
 n_{iterations} = 1000,
 python_path = NULL,
```

iterLeidenCluster 127

```
nn_network_to_use = "sNN",
network_name = "sNN.pca",
return_gobject = TRUE,
...
)
```

Arguments

gobject giotto object

name of clustering

nr_rounds number of iterative rounds
hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for runPCA

 $k_neighbors$ k for nn-network

resolution resolution for Leiden clustering

n_iterations number of iterations for Leiden clustering

python_path python path to use for Leiden clustering

nn_network_to_use

NN network to use

network_name NN network name

return_gobject boolean: return giotto object (default = TRUE)

... additional parameters

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

```
iterLeidenCluster(gobject)
```

128 iterLouvainCluster

Description

cluster cells iteratively

Usage

```
iterLouvainCluster(
 gobject,
 version = c("community", "multinet"),
 nr_rounds = 5,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 20,
 resolution = 1,
  gamma = 1,
 omega = 1,
 python_path = NULL,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 name = "iter_clus",
 return_gobject = TRUE,
)
```

Arguments

```
gobject
                  giotto object
version
                  louvain clustering algorithm to use
nr_rounds
                  number of iterative rounds
                  parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                  threshold for detection in min percentage of cells
hvg_mean_expr_det
                  threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                  forces all genes to be HVG and to be used as input for PCA
min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA
                  parameters for runPCA
pca_param
                  parameters for parameters for runPCA
nn_param
```

```
k_neighbors
                 k for nn-network
resolution
                 resolution
                 gamma
gamma
omega
                 omega
                 python path to use for Leiden clustering
python_path
nn_network_to_use
                 NN network to use
network_name
                 NN network name
                 name of clustering
name
return_gobject boolean: return giotto object (default = TRUE)
                 additional parameters
```

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

```
iterLouvainCluster(gobject)
```

```
iter Louvain {\tt Cluster\_community} \\ iter Louvain {\tt Cluster\_community} \\
```

Description

cluster cells iteratively

```
network_name = "sNN.pca",
name = "iter_clus",
return_gobject = TRUE,
...
)
```

Arguments

gobject giotto object

nr_rounds number of iterative rounds hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

 $hvg_mean_expr_det$

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for runPCA

 $k_neighbors$ k for nn-network

resolution resolution for Leiden clustering

python_path python path to use for Leiden clustering

nn_network_to_use

NN network to use

network_name NN network name name of clustering

return_gobject boolean: return giotto object (default = TRUE)

... additional parameters

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

iterLouvainCluster_community(gobject)

```
iter Louvain Cluster\_multinet
```

iterLouvainCluster_multinet

Description

cluster cells iteratively

Usage

```
iterLouvainCluster_multinet(
 gobject,
 nr_rounds = 5,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 20,
  gamma = 1,
  omega = 1,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 name = "iter_clus",
 return_gobject = TRUE,
)
```

Arguments

```
gobject
                 giotto object
nr_rounds
                 number of iterative rounds
hvg_param
                 parameters for calculateHVG
hvg_min_perc_cells
                 threshold for detection in min percentage of cells
hvg_mean_expr_det
                 threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                 forces all genes to be HVG and to be used as input for PCA
                 minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
                 parameters for runPCA
pca_param
                 parameters for parameters for runPCA
nn_param
                 k for nn-network
k_neighbors
                 gamma
gamma
omega
                 omega
```

132 loadHMRF

```
nn_network_to_use
```

NN network to use

 $\begin{array}{ll} \mbox{network_name} & NN \mbox{ network name} \\ \mbox{name} & \mbox{name of clustering} \end{array}$

return_gobject boolean: return giotto object (default = TRUE)

... additional parameters

python_path python path to use for Leiden clustering

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

iterLouvainCluster_multinet(gobject)

kmeans_binarize

kmeans_binarize

Description

create binarized scores using kmeans

Usage

```
kmeans_binarize(x, nstart = 3, iter.max = 10)
```

loadHMRF

loadHMRF

Description

load previous HMRF

```
loadHMRF(
  name_used = "test",
  output_folder_used,
  k_used = 10,
  betas_used,
  python_path_used
```

makeSignMatrixPAGE 133

Arguments

 $name_used \hspace{1cm} name \ of \ HMRF \ that \ was \ run$

output_folder_used

output folder that was used

k_used number of HMRF domains that was tested

betas_used betas that were tested

python_path_used

python path that was used

Details

Description of HMRF parameters ...

Value

reloads a previous ran HMRF from doHRMF

Examples

loadHMRF(gobject)

makeSignMatrixPAGE

make Sign Matrix PAGE

Description

Function to convert list of signature genes (e.g. for cell types or processes) into a binary matrix format that can be used with the PAGE enrichment option.

Usage

```
makeSignMatrixPAGE(sign_names, sign_list)
```

Arguments

sign_names vector with names for each provided gene signature

sign_list list of genes (signature)

Value

matrix

See Also

PAGEEnrich

Examples

 ${\tt makeSignMatrixPAGE()}$

make Sign Matrix Rank

makeSignMatrixRank

Description

Function to convert a single-cell count matrix and a corresponding single-cell cluster vector into a rank matrix that can be used with the Rank enrichment option.

Usage

```
makeSignMatrixRank(sc_matrix, sc_cluster_ids, gobject = NULL)
```

Arguments

```
sign_names vector with names for each provided gene signature sign_list list of genes (signature)
```

Value

matrix

See Also

rankEnrich

Examples

```
makeSignMatrixRank()
```

```
make_simulated_network
```

make_simulated_network

Description

Simulate random network.

Usage

```
make_simulated_network(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column,
  number_of_simulations = 100
)
```

```
make_simulated_network(gobject)
```

mergeClusters 135

mergeClusters

mergeClusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
mergeClusters(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  new_cluster_name = "merged_cluster",
  min_cor_score = 0.8,
  max_group_size = 20,
  force_min_group_size = 10,
  return_gobject = TRUE,
  verbose = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
new_cluster_name
                  new name for merged clusters
min_cor_score min correlation score to merge pairwise clusters
max_group_size max cluster size that can be merged
force_min_group_size
                  size of clusters that will be merged with their most similar neighbor(s)
return_gobject return giotto object
verbose
                  be verbose
```

Details

Merge selected clusters based on pairwise correlation scores and size of cluster. To avoid large clusters to merge the max_group_size can be lowered. Small clusters can be forcibly merged with their most similar pairwise cluster by adjusting the force_min_group_size parameter. Clusters smaller than this value will be merged independent on the provided min_cor_score value.

A giotto object is returned by default, if FALSE then the merging vector will be returned.

Value

Giotto object

nnDT_to_kNN

Examples

```
mergeClusters(gobject)
```

mygini_fun

mygini_fun

Description

calculate gini coefficient

Usage

```
mygini_fun(x, weights = rep(1, length(x)))
```

Value

gini coefficient

nnDT_to_kNN

 $nnDT_to_kNN$

Description

Convert a nearest network data.table to a kNN object

Usage

```
nnDT_to_kNN(nnDT)
```

Arguments

nnDT

nearest neighbor network in data.table format

Value

kNN object

node_clusters 137

node_clusters

node_clusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
node_clusters(hclus_obj, verbose = TRUE)
```

Arguments

hclus_obj hclus object verbose be verbose

Value

list of splitted dendrogram nodes from high to low node height

Examples

```
node_clusters(hclus_obj)
```

normalizeGiotto

normalizeGiotto

Description

normalize and/or scale expresion values of Giotto object

```
normalizeGiotto(
  gobject,
  norm_methods = c("standard", "osmFISH"),
  library_size_norm = TRUE,
  scalefactor = 6000,
  log_norm = TRUE,
  logbase = 2,
  scale_genes = T,
  scale_cells = T,
  scale_order = c("first_genes", "first_cells"),
  verbose = F
)
```

OR_function2

Arguments

gobject giotto object

norm_methods normalization method to use

library_size_norm

normalize cells by library size

scalefactor scale factor to use after library size normalization

log_norm transform values to log-scale

logbase log base to use to log normalize expression values

scale_genes z-score genes over all cells scale_cells z-score cells over all genes scale_order order to scale genes and cells

verbose be verbose

Details

Currently there are two 'methods' to normalize your raw counts data.

A. The standard method follows the standard protocol which can be adjusted using the provided parameters and follows the following order:

- 1. Data normalization for total library size and scaling by a custom scale-factor.
- 2. Log transformation of data.
- 3. Z-scoring of data by genes and/or cells.
- B. The normalization method as provided by the osmFISH paper is also implemented:
 - 1. First normalize genes, for each gene divide the counts by the total gene count and multiply by the total number of genes.
 - 2. Next normalize cells, for each cell divide the normalized gene counts by the total counts per cell and multiply by the total number of cells.

This data will be saved in the Giotto slot for custom expression.

Value

giotto object

Examples

normalizeGiotto(gobject)

OR_function2 OR_function2

Description

calculate odds-ratio

```
OR_function2(A, B, C, D)
```

PAGEEnrich 139

PAGEEnrich PAGEEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

Usage

```
PAGEEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore")
)
```

Arguments

```
gobject Giotto object

sign_matrix Matrix of signature genes for each cell type / process

expression_values

expression values to use

reverse_log_scale

reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

output_enrichment

how to return enrichment output
```

Details

The enrichment Z score is calculated by using method (PAGE) from Kim SY et al., BMC bioinformatics, 2005 as $Z=((Sm\ \ mu)*m^(1/2))/delta$. For each gene in each spot, mu is the fold change values versus the mean expression and delta is the standard deviation. Sm is the mean fold change value of a specific marker gene set and m is the size of a given marker gene set.

Value

data.table with enrichment results

```
PAGEEnrich(gobject)
```

plotCPGscores

pDataDT

pDataDT

Description

show cell metadata

Usage

```
pDataDT(gobject)
```

Arguments

gobject

giotto object

Value

data.table with cell metadata

Examples

```
pDataDT(gobject)
```

plotCPGscores

plotCPGscores

Description

Create heatmap from cell-cell proximity scores

```
plotCPGscores(
   CPGscores,
   selected_interactions = NULL,
   selected_genes = NULL,
   detail_plot = T,
   simple_plot = F,
   simple_plot_facet = c("interaction", "genes"),
   facet_scales = "fixed",
   facet_ncol = length(selected_genes),
   facet_nrow = length(selected_interactions),
   show_plot = F
)
```

plotGTGscores 141

Arguments

```
CPGscores
                  CPGscores, output from getCellProximityGeneScores()
selected_interactions
                  interactions to show
selected_genes genes to show
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
                  ggplot facet scales paramter
facet_scales
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
show_plot
                  show plot
```

Details

Give more details ...

Value

ggplot barplot

Examples

```
plotCPGscores(CPGscores)
```

plotGTGscores

plotGTGscores

Description

Create heatmap from cell-cell proximity scores

```
plotGTGscores(
   gobject,
   GTGscore,
   selected_interactions = NULL,
   selected_gene_to_gene = NULL,
   detail_plot = T,
   simple_plot = F,
   simple_plot_facet = c("interaction", "genes"),
   facet_scales = "fixed",
   facet_ncol = length(selected_gene_to_gene),
   facet_nrow = length(selected_interactions),
   colors = c("blue", "red"),
   show_plot = NA,
   return_plot = NA,
```

142 plotGTGscores

```
save_plot = NA,
save_param = list(),
default_save_name = "plotGTGscores"
)
```

Arguments

gobject giotto object

GTGscore GTGscore, output from getGeneToGeneScores()

selected_interactions

interactions to show

detail_plot show detailed info in both interacting cell types

simple_plot show a simplified plot

simple_plot_facet

facet on interactions or genes with simple plot

facet_scales ggplot facet scales paramter
facet_ncol ggplot facet ncol parameter
facet_nrow ggplot facet nrow parameter

colors vector with 2 colors to represent respectively all and selected cells

show_plot show plots

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

selected_genes genes to show

Details

Give more details ...

Value

ggplot barplot

```
plotGTGscores(GTGscore)
```

plotHeatmap 143

plotHeatmap

plotHeatmap

Description

creates order for clusters

Usage

```
plotHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cluster_color_code = NULL,
  cluster_cor_method = "pearson",
  cluster_hclust_method = "ward.D"
  gene_order = c("custom", "correlation"),
  gene_custom_order = NULL,
  gene_cor_method = "pearson",
  gene_hclust_method = "complete",
  show_values = c("rescaled", "z-scaled", "original"),
  size_vertical_lines = 1.1,
  gradient_colors = c("blue", "yellow", "red"),
  gene_label_selection = NULL,
  axis_text_y_size = NULL,
  legend_nrows = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotHeatmap"
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters
cluster_color_code
color code for clusters
cluster_cor_method
method for cluster correlation
```

 ${\tt cluster_hclust_method}$

method for hierarchical clustering of clusters

gene_order method to determine gene order

gene_custom_order

custom order for genes

gene_cor_method

method for gene correlation

gene_hclust_method

method for hierarchical clustering of genes

show_values which values to show on heatmap

size_vertical_lines

sizes for vertical lines

gradient_colors

colors for heatmap gradient

gene_label_selection

subset of genes to show on y-axis

axis_text_y_size

size for y-axis text

legend_nrows number of rows for the cluster legend

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Creates heatmap for genes and clusters.

Value

ggplot

Examples

plotHeatmap(gobject)

plotly_axis_scale_2D plotly_axis_scale_2D

Description

adjust the axis scale in 3D plotly plot

plotly_axis_scale_3D 145

Usage

```
plotly_axis_scale_2D(
  cell_locations,
  sdimx = NULL,
  sdimy = NULL,
  mode = c("cube", "real", "custom"),
  custom_ratio = NULL
)
```

Arguments

```
cell_locations spatial_loc in giotto object sdimx x axis of cell spatial location sdimy y axis of cell spatial location mode axis adjustment mode custom_ratio set the ratio artificially
```

Value

edges in spatial grid as data.table()

Examples

```
plotly_axis_scale_2D(gobject)
```

```
plotly_axis_scale_3D plotly_axis_scale_3D
```

Description

adjust the axis scale in 3D plotly plot

Usage

```
plotly_axis_scale_3D(
  cell_locations,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  mode = c("cube", "real", "custom"),
  custom_ratio = NULL
)
```

Arguments

```
cell_locations spatial_loc in giotto object
sdimx x axis of cell spatial location
sdimy y axis of cell spatial location
sdimz z axis of cell spatial location
mode axis adjustment mode
custom_ratio set the ratio artificially
```

plotly_network

Value

```
edges in spatial grid as data.table()
```

Examples

```
plotly_axis_scale_3D(gobject)
```

plotly_grid

plotly_grid

Description

provide grid segment to draw in plot_ly()

Usage

```
plotly_grid(
   spatial_grid,
   x_start = "x_start",
   y_start = "y_start",
   x_end = "x_end",
   y_end = "y_end"
)
```

Arguments

```
spatial_grid spatial_grid in giotto object
```

Value

edges in spatial grid as data.table()

Examples

```
plotly_grid(gobject)
```

plotly_network

plotly_network

Description

```
provide network segment to draw in 3D plot_ly()
```

Usage

```
plotly_network(
  network,
  x = "sdimx_begin",
  y = "sdimy_begin",
  z = "sdimz_begin",
  x_end = "sdimx_end",
  y_end = "sdimy_end",
  z_end = "sdimz_end")
```

Arguments

gobject network in giotto object

Value

edges in network as data.table()

Examples

```
plotly_network(gobject)
```

plotMetaDataCellsHeatmap

plotMetaDataCellsHeatmap

Description

creates order for clusters

```
plotMetaDataCellsHeatmap(
  gobject,
  metadata_cols = NULL,
  spat_enr_names = NULL,
  value_cols = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_values_order = NULL,
  values_cor_method = "pearson",
  values_cluster_method = "complete",
  midpoint = 0,
  x_{text_size} = 8,
  x_{text_angle} = 45,
  y_{text_size} = 8,
```

```
strip_text_size = 8,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotMetaDataCellsHeatmap")
```

Arguments

```
gobject
                  giotto object
metadata_cols
                  annotation columns found in pDataDT(gobject)
spat_enr_names spatial enrichment results to include
value_cols
                  value columns to use
first_meta_col if more than 1 metadata column, select the x-axis factor
second_meta_col
                  if more than 1 metadata column, select the facetting factor
show_values
                  which values to show on heatmap
custom_cluster_order
                  custom cluster order (default = NULL)
clus_cor_method
                  correlation method for clusters
clus_cluster_method
                  hierarchical cluster method for the clusters
                  midpoint of show_values
midpoint
                  size of x-axis text
x_text_size
                  angle of x-axis text
x_text_angle
y_text_size
                  size of y-axis text
strip_text_size
                  size of strip text
                  show plot
show_plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
custom_gene_order
                  custom gene order (default = NULL)
gene_cor_method
                  correlation method for genes
gene_cluster_method
                  hierarchical cluster method for the genes
```

Details

Creates heatmap for the average values of selected value columns in the different annotation groups

plotMetaDataHeatmap 149

Value

```
ggplot or data.table
```

Examples

```
plotMetaDataCellsHeatmap(gobject)
```

```
plotMetaDataHeatmap
```

Description

creates order for clusters

Usage

```
plotMetaDataHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_gene_order = NULL,
  gene_cor_method = "pearson",
  gene_cluster_method = "complete",
  midpoint = 0,
  x_{text_size} = 10,
  x_{text_angle} = 45,
  y_{text_size} = 10,
  strip_text_size = 8,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotMetaDataHeatmap"
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use

metadata_cols annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
first_meta_col if more than 1 metadata column, select the x-axis factor
```

```
second_meta_col
```

if more than 1 metadata column, select the facetting factor

show_values which values to show on heatmap

custom_cluster_order

custom cluster order (default = NULL)

clus_cor_method

correlation method for clusters

clus_cluster_method

hierarchical cluster method for the clusters

custom_gene_order

custom gene order (default = NULL)

gene_cor_method

correlation method for genes

gene_cluster_method

hierarchical cluster method for the genes

midpoint midpoint of show_values

x_text_size size of x-axis text

x_text_angle angle of x-axis text

y_text_size size of y-axis text

strip_text_size

size of strip text

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Creates heatmap for average the average expression of selected genes in the different annotation groups

Value

ggplot or data.table

Examples

plotMetaDataHeatmap(gobject)

plotPCA 151

plotPCA plotPCA

Description

Short wrapper for PCA visualization

Usage

```
plotPCA(gobject, dim_reduction_name = "pca", default_save_name = "PCA", ...)
```

Arguments

```
gobject
                  giotto object
dim_reduction_name
                  dimension reduction name
default_save_name
                  default save name for saving, don't change, change save_name in save_param
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
```

plot center of selected clusters

plotPCA_2D

```
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

Examples

plotPCA(gobject)

plotPCA_2D

plotPCA_2D

Description

Short wrapper for PCA visualization

```
plotPCA_2D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_2D",
   ...
)
```

plotPCA_2D 153

Arguments

giotto object gobject dim_reduction_name dimension reduction name default_save_name default save name for saving, don't change, change save_name in save_param dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges point_size size of point (cell) point_border_col color of border around points

plotPCA_3D

```
point_border_stroke
```

stroke size of border around points

show_legend show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

Examples

```
plotPCA_2D(gobject)
```

plotPCA_3D

plotPCA_3D

Description

Visualize cells according to 3D PCA dimension reduction

Usage

```
plotPCA_3D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_3D",
   ...
)
```

Arguments

plotPCA_3D 155

nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels edge_alpha column to use for alpha of the edges size of point (cell) point_size show_legend show legend

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

Details

Description of parameters.

Value

plotly

Examples

```
plotPCA_3D(gobject)
```

156 plotTSNE

plotTSNE

Description

Short wrapper for tSNE visualization

plotTSNE

Usage

```
plotTSNE(gobject, dim_reduction_name = "tsne", default_save_name = "tSNE", ...)
```

Arguments

```
gobject
                  giotto object
dim_reduction_name
                  dimension reduction name
default_save_name
                  default save name for saving, don't change, change save_name in save_param
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
```

plot center of selected clusters

plotTSNE_2D 157

```
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

Examples

```
plotTSNE(gobject)
```

plotTSNE_2D

plotTSNE_2D

Description

Short wrapper for tSNE visualization

```
plotTSNE_2D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "tSNE_2D",
   ...
)
```

158 plotTSNE_2D

Arguments

giotto object gobject dim_reduction_name dimension reduction name default_save_name default save name for saving, don't change, change save_name in save_param dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name color for cells (see details) cell_color color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges point_size size of point (cell) point_border_col color of border around points

plotTSNE_3D

```
point_border_stroke
```

stroke size of border around points

show_legend show legend
show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

Examples

```
plotTSNE_2D(gobject)
```

plotTSNE_3D

plotTSNE_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotTSNE_3D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "TSNE_3D",
  ...
)
```

Arguments

160 plotTSNE_3D

```
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
edge_alpha
                  column to use for alpha of the edges
                  size of point (cell)
point_size
show_legend
                  show legend
                  show plot
show_plot
return_plot
                  return ggplot object
```

directly save the plot [boolean]

list of saving parameters from all_plots_save_function()

Details

Description of parameters.

Value

plotly

save_plot

save_param

Examples

```
plotTSNE_3D(gobject)
```

plotUMAP 161

plotUMAP plotUMAP

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP(gobject, dim_reduction_name = "umap", default_save_name = "UMAP", ...)
```

Arguments

```
gobject
                  giotto object
dim_reduction_name
                  dimension reduction name
default_save_name
                  default save name for saving, don't change, change save_name in save_param
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
```

plot center of selected clusters

162 plotUMAP_2D

```
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

Examples

```
plotUMAP(gobject)
```

plotUMAP_2D

plotUMAP_2D

Description

Short wrapper for UMAP visualization

```
plotUMAP_2D(
  gobject,
  dim_reduction_name = "umap",
  default_save_name = "UMAP_2D",
   ...
)
```

plotUMAP_2D 163

Arguments

giotto object gobject dim_reduction_name dimension reduction name default_save_name default save name for saving, don't change, change save_name in save_param dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges point_size size of point (cell) point_border_col color of border around points

plotUMAP_3D

```
point_border_stroke
```

stroke size of border around points

show_legend show legend
show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

Examples

```
plotUMAP_2D(gobject)
```

plotUMAP_3D

plotUMAP_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotUMAP_3D(
  gobject,
  dim_reduction_name = "umap",
  default_save_name = "UMAP_3D",
   ...
)
```

Arguments

plotUMAP_3D

```
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
edge_alpha
                  column to use for alpha of the edges
                  size of point (cell)
point_size
show_legend
                  show legend
                  show plot
show_plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
```

list of saving parameters from all_plots_save_function()

Details

Description of parameters.

Value

plotly

save_param

Examples

```
plotUMAP_3D(gobject)
```

Description

Visualize cells in network layer according to dimension reduction coordinates

Usage

```
plot_network_layer_ggplot(
   ggobject,
   annotated_network_DT,
   edge_alpha = NULL,
   show_legend = T
)
```

Arguments

```
annotated\_network\_DT
```

annotated network data.table of selected cells

edge_alpha alpha of network edges

show_legend show legend gobject giotto object

Details

Description of parameters.

Value

ggplot

Examples

```
plot_network_layer_ggplot(gobject)
```

Description

Visualize cells in point layer according to dimension reduction coordinates

Usage

```
plot_point_layer_ggplot(
      ggobject,
      annotated_DT_selected,
      annotated_DT_other,
      cell_color = NULL,
      color_as_factor = T,
      cell_color_code = NULL,
      cell_color_gradient = c("blue", "white", "red"),
      gradient_midpoint = 0,
      gradient_limits = NULL,
      select_cell_groups = NULL,
      select_cells = NULL,
      point_size = 1,
      point_border_col = "black",
      point_border_stroke = 0.1,
      show_cluster_center = F,
      show_center_label = T,
      center_point_size = 4,
      center_point_border_col = "black",
      center_point_border_stroke = 0.1,
      label_size = 4,
      label_fontface = "bold",
      edge_alpha = NULL,
      show\_other\_cells = T,
      other_cell_color = "lightgrey",
      other_point_size = 0.5,
      show_legend = T
    )
Arguments
    annotated_DT_selected
                    annotated data.table of selected cells
    annotated_DT_other
                    annotated data.table of not selected cells
    cell_color
                    color for cells (see details)
    color_as_factor
                    convert color column to factor
    cell_color_code
                    named vector with colors
    cell_color_gradient
                    vector with 3 colors for numeric data
    gradient_midpoint
                    midpoint for color gradient
    gradient_limits
                    vector with lower and upper limits
    select_cell_groups
                    select subset of cells/clusters based on cell_color parameter
                    select subset of cells based on cell IDs
    select_cells
```

size of point (cell)

point_size

```
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
{\tt center\_point\_size}
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_legend
                  show legend
```

giotto object

Details

gobject

Description of parameters.

Value

ggplot

Examples

```
plot_point_layer_ggplot(gobject)
```

Description

creat ggplot point layer for spatial coordinates

Usage

```
plot_spat_point_layer_ggplot(
  ggobject,
  sdimx = NULL,
  sdimy = NULL,
  cell_locations_metadata_selected,
  cell_locations_metadata_other,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  point_size = 2,
  point_border_col = "lightgrey",
  point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  show_legend = TRUE
)
```

Arguments

```
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimv
cell_locations_metadata_selected
                  annotated location from selected cells
cell_locations_metadata_other
                  annotated location from non-selected cells
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
{\tt cell\_color\_gradient}
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
```

print.giotto

```
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
show_other_cells
                  display not selected cells
other_cell_color
                  color for not selected cells
other_point_size
                  point size for not selected cells
show_legend
                  show legend
gobject
                  giotto object
```

Details

Description of parameters.

Value

ggplot

Examples

```
plot_spat_point_layer_ggplot(gobject)
```

print.giotto

print method for giotto class

Description

print method for giotto class. Prints the chosen number of genes (rows) and cells (columns) from the raw count matrix. Also print the spatial locations for the chosen number of cells.

```
print.giotto(object, ...)
```

rankEnrich 171

Arguments

nr_genes number of genes (rows) to print nr_cells number of cells (columns) to print

rankEnrich rankEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a rank based approach.

Usage

```
rankEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore")
)
```

Arguments

Details

First a new rank is calculated as $R = (R1*R2)^{n}(1/2)$, where R1 is the rank of fold-change for each gene in each spot and R2 is the rank of each marker in each cell type. The Rank-Biased Precision is then calculated as: $RBP = (1 - 0.99) * (0.99)^{n}(R - 1)$ and the final enrichment score is then calculated as the sum of top 100 RBPs.

Value

data.table with enrichment results

Examples

```
rankEnrich(gobject)
```

172 readGiottoInstructions

rank_binarize

rank_binarize

Description

create binarized scores using arbitrary rank of top genes

Usage

```
rank_binarize(x, max_rank = 200)
```

readGiottoInstructions

read Giot to Instrunctions

Description

Retrieves the instruction associated with the provided parameter

Usage

```
readGiottoInstructions(giotto_instructions, param = NULL)
```

Arguments

giotto_instructions

 $giot to\ object\ or\ result\ from\ create Giot to Instructions()$

param

parameter to retrieve

Value

specific parameter

Examples

readGiottoInstrunctions()

removeCellAnnotation 173

```
remove Cell Annotation remove Cell Annotation
```

Description

removes cell annotation of giotto object

Usage

```
removeCellAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

if return_gobject = FALSE, it will return the cell metadata

Value

giotto object

Examples

removeCellAnnotation(gobject)

```
removeGeneAnnotation removeGeneAnnotation
```

Description

removes gene annotation of giotto object

Usage

```
removeGeneAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

if return_gobject = FALSE, it will return the gene metadata

174 runPCA

Value

```
giotto object
```

Examples

```
removeGeneAnnotation(gobject)
```

```
replaceGiottoInstructions
```

replace Giot to Instructions

Description

Function to replace all instructions from giotto object

Usage

```
replaceGiottoInstructions(gobject, instructions = NULL)
```

Arguments

```
gobject giotto object
instructions new instructions (e.g. result from createGiottoInstructions)
```

Value

named vector with giotto instructions

Examples

```
replaceGiottoInstructions()
```

runPCA

runPCA

Description

runs a Principal Component Analysis

```
runPCA(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  name = "pca",
  genes_to_use = NULL,
  return_gobject = TRUE,
  scale_unit = F,
  ncp = 200,
  ...
)
```

runtSNE 175

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
                  cells or genes
reduction
name
                  arbitrary name for PCA run
                  subset of genes to use for PCA
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
scale_unit
                  scale features before PCA
                  number of principal components to calculate
ncp
                  additional parameters for PCA (see details)
. . .
```

Details

See PCA for more information about other parameters.

Value

giotto object with updated PCA dimension recuction

runtSNE

Examples

```
runPCA(gobject)
```

runtSNE

Description

run tSNE

```
runtSNE(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "tsne",
  genes_to_use = NULL,
  return_gobject = TRUE,
  dims = 2,
  perplexity = 30,
  theta = 0.5,
  do_PCA_first = F,
  set\_seed = T,
  seed_number = 1234,
)
```

176 runtSNE

Arguments

gobject giotto object

expression_values

expression values to use

reduction cells or genes

dim_reduction_to_use

use another dimension reduction set as input

dim_reduction_name

name of dimension reduction set to use

dimensions_to_use

number of dimensions to use as input

name arbitrary name for tSNE run

genes_to_use if dim_reduction_to_use = NULL, which genes to use

return_gobject boolean: return giotto object (default = TRUE)

dims tSNE param: number of dimensions to return

perplexity tSNE param: perplexity

theta tSNE param: theta

do_PCA_first tSNE param: do PCA before tSNE (default = FALSE)

set_seed use of seed

seed_number seed number to use

... additional tSNE parameters

Details

See Rtsne for more information about these and other parameters.

- Input for tSNE dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- multiple tSNE results can be stored by changing the *name* of the analysis

Value

giotto object with updated tSNE dimension recuction

Examples

runtSNE(gobject)

runUMAP 177

runUMAP runUMAP

Description

run UMAP

Usage

```
runUMAP(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "umap",
  genes_to_use = NULL,
  return_gobject = TRUE,
  n_neighbors = 40,
  n_{components} = 2,
  n_{epochs} = 400,
  min_dist = 0.01,
  n_{threads} = 1,
  spread = 5,
  set\_seed = T,
  seed_number = 1234,
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
                 cells or genes
reduction
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 arbitrary name for UMAP run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
n\_neighbors
                 UMAP param: number of neighbors
                 UMAP param: number of components
n_components
n_epochs
                 UMAP param: number of epochs
```

178 selectPatternGenes

```
min_dist UMAP param: minimum distance
n_threads UMAP param: threads to use
spread UMAP param: spread
set_seed use of seed
seed_number seed number to use
additional UMAP parameters
```

Details

See umap for more information about these and other parameters.

- Input for UMAP dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- multiple UMAP results can be stored by changing the *name* of the analysis

Value

giotto object with updated UMAP dimension recuction

Examples

```
runUMAP(gobject)
```

selectPatternGenes selectPatternGenes

Description

Select genes correlated with spatial patterns

Usage

```
selectPatternGenes(
   spatPatObj,
   dimensions = 1:5,
   top_pos_genes = 10,
   top_neg_genes = 10,
   min_pos_cor = 0.5,
   min_neg_cor = -0.5,
   return_top_selection = FALSE
)
```

Arguments

spatPatObj

```
dimensions dimensions to identify correlated genes for.

top_pos_genes Top positively correlated genes.

top_neg_genes Top negatively correlated genes.

min_pos_cor Minimum positive correlation score to include a gene.

min_neg_cor Minimum negative correlation score to include a gene.
```

Output from detectSpatialPatterns

179

Details

Description.

Value

Data.table with genes associated with selected dimension (PC).

Examples

```
selectPatternGenes(gobject)
```

```
select_expression_values
```

select_expression_values

Description

helper function to select expression values

Usage

```
select_expression_values(gobject, values)
```

Arguments

gobject giotto object

values expression values to extract

Value

expression matrix

show,giotto-method

show method for giotto class

Description

show method for giotto class

```
## S4 method for signature 'giotto'
show(object)
```

 $show Cluster Dendrogram \quad show Cluster Dendrogram \quad$

Description

Creates dendrogram based on identified clusters

Usage

```
showClusterDendrogram(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  rotate = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterDendrogram",
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
distance
                  distance method to use for hierarchical clustering
h
                  height of horizontal lines to plot
h_color
                  color of horizontal lines
                  rotate dendrogram 90 degrees
rotate
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for ggdendrogram()
```

Details

Correlation dendrogram of selected clustering.

showClusterHeatmap 181

Value

ggplot

Examples

showClusterDendrogram(gobject)

showClusterHeatmap

showClusterHeatmap

Description

Creates heatmap based on identified clusters

Usage

```
showClusterHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = "all",
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterHeatmap",
  ...
)
```

Arguments

```
giotto object
gobject
expression_values
                  expression values to use
                  vector of genes to use, default to 'all'
genes
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
distance
                  distance method to use for hierarchical clustering
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for the Heatmap function from ComplexHeatmap
. . .
```

182 showCPGscores

Details

Correlation heatmap of selected clusters.

Value

ggplot

Examples

```
showClusterHeatmap(gobject)
```

showCPGscores

showCPGscores

Description

visualize Cell Proximity Gene enrichment scores

Usage

```
showCPGscores(
 gobject,
 CPGscore,
 method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey"),
 min_cells = 5,
 min_fdr = 0.05,
 min_spat_diff = 0.2,
 min_log2_fc = 0.5,
 keep_int_duplicates = TRUE,
 direction = c("both", "up", "down"),
 cell_color_code = NULL,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "showCPGscores"
)
```

Arguments

```
CPGscore
                 CPGscore, output from getCellProximityGeneScores()
method
                 visualization method
                 min number of cells threshold
min_cells
min_fdr
                 fdr threshold
min_spat_diff
                 spatial difference threshold
                 min log2 fold-change
min_log2_fc
keep_int_duplicates
                 keep both cell_A-cell_B and cell_B-cell_A
direction
                 up or downregulation or both
```

```
cell_color_code
```

color code for cell types

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Give more details ...

Value

Gene to gene scores in data.table format

Examples

```
showCPGscores(CPGscore)
```

showGeneExpressionProximityScore

show Gene Expression Proximity Score

Description

Create heatmap from cell-cell proximity scores

Usage

```
showGeneExpressionProximityScore(
  scores,
  selected_gene,
  sort_column = "diff_spat"
)
```

Arguments

scores CPscore, output from getAverageCellProximityGeneScores()

selected_gene gene to show

sort_column column name to use for sorting

Details

Give more details ...

Value

ggplot barplot

184 showGTGscores

Examples

```
showGeneExpressionProximityScore(scores)
```

```
{\tt showGiottoInstructions}
```

showGiottoInstructions

Description

Function to display all instructions from giotto object

Usage

```
showGiottoInstructions(gobject)
```

Arguments

```
gobject giotto object
```

Value

named vector with giotto instructions

Examples

```
showGiottoInstructions()
```

showGTGscores

showGTGscores

Description

visualize Cell Proximity Gene enrichment scores

```
showGTGscores(
 GTGscore,
 method = c("cell_barplot", "cell-cell", "cell_sankey"),
 min_cells = 5,
 min_pval = 0.05,
 min_spat_diff = 0.2,
 min_log2_fc = 0.5,
 direction = c("both", "up", "down"),
 cell_color_code = NULL,
 show_plot = T,
  specific_genes_1 = NULL,
 specific_genes_2 = NULL,
 first_cell_name = "ligand cell",
 second_cell_name = "receptor cell",
 return_DT = F
)
```

Arguments

```
visualization method
method
min_cells
                  min number of cells threshold
                  p-value threshold
min_pval
min_spat_diff
                  spatial difference threshold
                  log2 fold-change threshold
min_log2_fc
direction
                  up or downregulation or both
cell_color_code
                  color code for cell types
show_plot
                  print plot
specific_genes_1
                  subset of genes, matched with specific_genes_2
specific_genes_2
                  subset of genes, matched with specific_genes_1
first_cell_name
                  name for first cells
second_cell_name
                  name for second cells
                  CPGscore, output from getCellProximityGeneScores()
CPGscore
```

Details

Give more details ...

Value

ggplot

Examples

```
showGTGscores(CPGscore)
```

```
show Int {\tt Expression Proximity Score} \\ show Int {\tt Expression Proximity Score}
```

Description

Create heatmap from cell-cell proximity scores

```
showIntExpressionProximityScore(
   scores,
   selected_interaction,
   sort_column = "diff_spat",
   show_enriched_n = 5,
   show_depleted_n = 5
)
```

186 showPattern

Arguments

```
scores scores, output from getAverageCellProximityGeneScores()
selected_interaction
interaction to show
sort_column column name to use for sorting
show_enriched_n
show top enriched interactions
show_depleted_n
```

show top depleted interactions

Details

Give more details ...

Value

ggplot barplot

Examples

showIntExpressionProximityScore(scores)

showPattern showPattern

Description

```
create a spatial grid
show patterns for 2D spatial data
```

Usage

```
showPattern(gobject, spatPatObj, ...)
showPattern(gobject, spatPatObj, ...)
```

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

dimension dimension to plot

trim Trim ends of the PC values.

background_color

background color for plot

grid_border_color

color for grid

show_legend show legend of ggplot

show_plot show plot

showPattern2D 187

Details

Description.

Value

ggplot ggplot

See Also

showPattern2D

Examples

```
showPattern(gobject)
showPattern(gobject)
```

showPattern2D

showPattern2D

Description

show patterns for 2D spatial data

```
showPattern2D(
  gobject,
  spatPatObj,
  dimension = 1,
  trim = c(0.02, 0.98),
  background_color = "white",
  grid_border_color = "grey",
  show_legend = T,
  point_size = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPattern2D"
)
```

188 showPattern3D

Arguments

gobject giotto object spatPatObj Output from detectSpatialPatterns dimension dimension to plot trim Trim ends of the PC values. background_color background color for plot grid_border_color color for grid show_legend show legend of ggplot show_plot show plot return_plot return ggplot object directly save the plot [boolean] save_plot save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

showPattern2D(gobject)

showPattern3D showPattern3D

Description

show patterns for 3D spatial data

```
showPattern3D(
  gobject,
  spatPatObj,
  dimension = 1,
  trim = c(0.02, 0.98),
  background_color = "white",
  grid_border_color = "grey",
  show_legend = T,
  point_size = 1,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
```

showPattern3D 189

```
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "showPattern3D"
)
```

Arguments

```
gobject
                  giotto object
spatPatObj
                  Output from detectSpatialPatterns
                  dimension to plot
dimension
                  Trim ends of the PC values.
trim
background_color
                  background color for plot
grid_border_color
                  color for grid
show_legend
                  show legend of plot
point_size
                  adjust the point size
                  scale the axis
axis_scale
                  cutomize the scale of the axis
custom_ratio
                  the tick number of x_axis
x_ticks
y_ticks
                  the tick number of y_axis
                  the tick number of z_axis
z_ticks
                  show plot
show_plot
return_plot
                  return plot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
```

default save name for saving, don't change, change save_name in save_param

Value

plotly

Examples

```
showPattern3D(gobject)
```

190 showPatternGenes

showPatternGenes

showPatternGenes

Description

show genes correlated with spatial patterns

Usage

```
showPatternGenes(
  gobject,
  spatPatObj,
  dimension = 1,
  top_pos_genes = 5,
  top_neg_genes = 5,
  point_size = 1,
  return_DT = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPatternGenes"
)
```

Arguments

```
gobject
                  giotto object
spatPatObj
                  Output from detectSpatialPatterns
dimension
                  dimension to plot genes for.
top_pos_genes
                  Top positively correlated genes.
top_neg_genes
                  Top negatively correlated genes.
                  size of points
point_size
return_DT
                  if TRUE, it will return the data.table used to generate the plots
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
showPatternGenes(gobject)
```

showProcessingSteps 191

```
showProcessingSteps showProcessingSteps
```

Description

shows the sequential processing steps that were performed in a summarized format

Usage

```
showProcessingSteps(gobject)
```

Arguments

```
gobject giotto object
```

Value

list of processing steps and names

Examples

```
showProcessingSteps(gobject)
```

showTopGeneToGene

showTopGeneToGene

Description

Show enriched/depleted gene-gene enrichments

Usage

```
showTopGeneToGene(
  GTGscore,
  top_interactions = 10,
  direction = c("increased", "decreased"),
  complement_data = T,
  subset_cell_ints = NULL,
  subset_genes = NULL
)
```

Arguments

192 signPCA

Details

Give more details ...

Value

ggplot barplot

Examples

showTopGeneToGene(scores)

signPCA

signPCA

Description

identify significant prinicipal components (PCs)

Usage

```
signPCA(
  gobject,
  method = c("screeplot", "jackstraw"),
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  genes_to_use = NULL,
  scale_unit = T,
  ncp = 50,
  scree_labels = T,
  scree_ylim = c(0, 10),
  jack_iter = 10,
  jack_threshold = 0.01,
  jack_verbose = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "signPCA",
)
```

Arguments

spatCellPlot 193

```
ncp
                  number of principal components to calculate
                  show labels on scree plot
scree_labels
scree_ylim
                  y-axis limits on scree plot
jack_iter
                  number of interations for jackstraw
jack_threshold p-value threshold to call a PC significant
                  show progress of jackstraw method
jack_verbose
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for PCA
```

Details

Two different methods can be used to assess the number of relevant or significant prinicipal components (PC's).

- 1. Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC does not show a significant contribution anymore (= 'elbow method').
- 2. The Jackstraw method uses the permutationPA function. By systematically permuting genes it identifies robust, and thus significant, PCs.

multiple PCA results can be stored by changing the name parameter

Value

ggplot object for scree method and maxtrix of p-values for jackstraw

Examples

```
signPCA(gobject)
```

spatCellPlot spatCellPlot

Description

Visualize cells according to spatial coordinates

```
spatCellPlot(
  gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
  cell_annotation_values,
  cell_color_gradient = c("blue", "white", "red"),
```

194 spatCellPlot

```
gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
 center_point_border_col = "black",
 center_point_border_stroke = 0.1,
  label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
  show\_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  show_legend = T,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatCellPlot"
)
```

Arguments

spatCellPlot 195

```
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
show_network
                  show underlying spatial network
spatial_network_name
                  name of spatial network to use
                  color of spatial network
network_color
network_alpha alpha of spatial network
show_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
grid_color
                  color of spatial grid
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  point size of not selected cells
other_cells_alpha
                  alpha of not selected cells
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
                  show plot
show_plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

spatCellPlot2D

Value

ggplot

Examples

```
spatCellPlot(gobject)
```

spatCellPlot2D

spatCellPlot2D

Description

Visualize cells according to spatial coordinates

```
spatCellPlot2D(
 gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
 spat_enr_names = NULL,
 cell_annotation_values,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
 select_cell_groups = NULL,
 select_cells = NULL,
 point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
 show\_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
 coord_fix_ratio = NULL,
  show_legend = T,
  cow_n_col = 2,
```

spatCellPlot2D 197

```
cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatCellPlot2D"
Arguments
    gobject
                      giotto object
    sdimx
                      x-axis dimension name (default = 'sdimx')
    sdimy
                      y-axis dimension name (default = 'sdimy')
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                      numeric cell annotation columns
    cell_color_gradient
                      vector with 3 colors for numeric data
    gradient_midpoint
                      midpoint for color gradient
    gradient_limits
                      vector with lower and upper limits
    select_cell_groups
                      select subset of cells/clusters based on cell_color parameter
    select_cells
                      select subset of cells based on cell IDs
                      size of point (cell)
    point_size
    point_border_col
                      color of border around points
    point_border_stroke
                      stroke size of border around points
    show_cluster_center
                      plot center of selected clusters
    show_center_label
                      plot label of selected clusters
    center_point_size
                      size of center points
    label_size
                      size of labels
    label_fontface font of labels
    show_network
                      show underlying spatial network
    spatial_network_name
                      name of spatial network to use
                      color of spatial network
    network_color
    network_alpha
                      alpha of spatial network
    show_grid
                      show spatial grid
    spatial_grid_name
```

name of spatial grid to use

198 spatDimCellPlot

```
color of spatial grid
grid_color
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  point size of not selected cells
other_cells_alpha
                  alpha of not selected cells
coord_fix_ratio
                  fix ratio between x and y-axis
                  show legend
show_legend
                  show plot
show_plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

Examples

```
spatCellPlot2D(gobject)
```

spatDimCellPlot
 spatDimCellPlot

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

```
spatDimCellPlot(
  gobject,
  plot_alignment = c("vertical", "horizontal"),
  spat_enr_names = NULL,
  cell_annotation_values,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
```

spatDimCellPlot 199

```
dim2_to_use = 2,
sdimx = "sdimx",
sdimy = "sdimy",
cell_color_gradient = c("blue", "white", "red"),
gradient_midpoint = NULL,
gradient_limits = NULL,
select_cell_groups = NULL,
select_cells = NULL,
dim_point_size = 1,
dim_point_border_col = "black",
dim_point_border_stroke = 0.1,
spat_point_size = 1,
spat_point_border_col = "black",
spat_point_border_stroke = 0.1,
dim_show_cluster_center = F,
dim_show_center_label = T,
dim_center_point_size = 4,
dim_center_point_border_col = "black",
dim_center_point_border_stroke = 0.1,
dim_label_size = 4,
dim_label_fontface = "bold",
spat_show_cluster_center = F,
spat_show_center_label = F,
spat_center_point_size = 4,
spat_center_point_border_col = "black",
spat_center_point_border_stroke = 0.1,
spat_label_size = 4,
spat_label_fontface = "bold",
show_NN_network = F,
nn_network_to_use = "sNN",
nn_network_name = "sNN.pca",
dim_edge_alpha = 0.5,
spat_show_network = F,
spatial_network_name = "spatial_network",
spat_network_color = "red",
spat_network_alpha = 0.5,
spat_show_grid = F,
spatial_grid_name = "spatial_grid",
spat_grid_color = "green",
show_other_cells = TRUE,
other_cell_color = "grey",
dim_other_point_size = 0.5,
spat_other_point_size = 0.5,
spat_other_cells_alpha = 0.5,
coord_fix_ratio = NULL,
cow_n_col = 2,
cow_rel_h = 1,
cow_rel_w = 1,
cow_align = "h",
show_legend = T,
show_plot = NA,
return_plot = NA,
```

200 spatDimCellPlot

```
save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimCellPlot"
    )
Arguments
                     giotto object
    gobject
    plot_alignment direction to align plot
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
                     dimension to use on x-axis
    dim1_to_use
                     dimension to use on y-axis
    dim2_to_use
    sdimx
                     = spatial dimension to use on x-axis
    sdimy
                     = spatial dimension to use on y-axis
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    dim_point_size size of points in dim. reduction space
    dim_point_border_col
                     border color of points in dim. reduction space
    dim_point_border_stroke
                     border stroke of points in dim. reduction space
    spat_point_size
                     size of spatial points
    spat_point_border_col
                     border color of spatial points
    spat_point_border_stroke
                     border stroke of spatial points
    dim_show_cluster_center
                     show the center of each cluster
    dim_show_center_label
                     provide a label for each cluster
    dim_center_point_size
                     size of the center point
    dim_center_point_border_col
```

border color of center point

dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) nn_network_name name of NN network to use, if show_NN_network = TRUE dim_edge_alpha column to use for alpha of the edges spat_show_network show spatial network spatial_network_name name of spatial network to use spat_network_color color of spatial network spat_show_grid show spatial grid spatial_grid_name name of spatial grid to use spat_grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells dim_other_point_size size of not selected dim cells spat_other_point_size size of not selected spat cells spat_other_cells_alpha alpha of not selected spat cells coord_fix_ratio ratio for coordinates cowplot param: how many columns cow_n_col cowplot param: relative height cow_rel_h

cowplot param: relative width

cow_rel_w

202 spatDimCellPlot2D

Details

Description of parameters.

Value

ggplot

Examples

```
spatDimCellPlot(gobject)
```

```
spatDimCellPlot2D
```

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

```
spatDimCellPlot2D(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
  spat_enr_names = NULL,
 cell_annotation_values,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
```

spatDimCellPlot2D 203

```
spat_point_size = 1,
spat_point_border_col = "black",
spat_point_border_stroke = 0.1,
dim_show_cluster_center = F,
dim_show_center_label = T,
dim_center_point_size = 4,
dim_center_point_border_col = "black",
dim_center_point_border_stroke = 0.1,
dim_label_size = 4,
dim_label_fontface = "bold"
spat_show_cluster_center = F,
spat_show_center_label = F,
spat_center_point_size = 4,
spat_center_point_border_col = "black",
spat_center_point_border_stroke = 0.1,
spat_label_size = 4,
spat_label_fontface = "bold",
show_NN_network = F,
nn_network_to_use = "sNN",
nn_network_name = "sNN.pca",
dim_edge_alpha = 0.5,
spat_show_network = F,
spatial_network_name = "spatial_network",
spat_network_color = "red",
spat_network_alpha = 0.5,
spat_show_grid = F,
spatial_grid_name = "spatial_grid",
spat_grid_color = "green",
show_other_cells = TRUE,
other_cell_color = "grey"
dim_other_point_size = 0.5,
spat_other_point_size = 0.5,
spat_other_cells_alpha = 0.5,
coord_fix_ratio = NULL,
cow_n_col = 2,
cow_rel_h = 1,
cow_rel_w = 1,
cow_align = "h"
show_legend = T,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "spatDimCellPlot2D"
```

Arguments

)

```
gobject giotto object

plot_alignment direction to align plot

spat_enr_names names of spatial enrichment results to include
```

204 spatDimCellPlot2D

cell_annotation_values numeric cell annotation columns dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dimension to use on x-axis dim1_to_use dim2_to_use dimension to use on y-axis sdimx = spatial dimension to use on x-axis sdimy = spatial dimension to use on y-axis cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells dim_point_size size of points in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster

spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) nn_network_name name of NN network to use, if show_NN_network = TRUE dim_edge_alpha column to use for alpha of the edges spat_show_network show spatial network spatial_network_name name of spatial network to use spat_network_color color of spatial network spat_show_grid show spatial grid spatial_grid_name name of spatial grid to use spat_grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells dim_other_point_size size of not selected dim cells spat_other_point_size size of not selected spat cells spat_other_cells_alpha alpha of not selected spat cells coord_fix_ratio ratio for coordinates cowplot param: how many columns cow_n_col cowplot param: relative height cow_rel_h cow_rel_w cowplot param: relative width cow_align cowplot param: how to align show_legend show legend show plot show_plot return_plot return ggplot object directly save the plot [boolean] save_plot list of saving parameters from all_plots_save_function() save_param default_save_name default save name for saving, don't change, change save_name in save_param 206 spatDimGenePlot

Details

Description of parameters.

Value

ggplot

Examples

```
spatDimCellPlot2D(gobject)
```

spatDimGenePlot

spatDimGenePlot

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

```
spatDimGenePlot(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
  show_spatial_grid = F,
  nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
  spatial_network_name = "spatial_network",
  spatial_grid_name = "spatial_grid",
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 midpoint = 0,
 genes_high_color = "red",
 genes_mid_color = "white",
  genes_low_color = "blue",
 cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
```

spatDimGenePlot 207

```
cow_align = "h",
      show_legend = T,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot"
Arguments
    gobject
                     giotto object
    expression_values
                     gene expression values to use
    plot_alignment direction to align plot
                     genes to show
    genes
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    point_size
                     size of point (cell)
    dim_point_border_col
                     color of border around points
    dim_point_border_stroke
                     stroke size of border around points
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    edge_alpha_dim dim reduction plot: column to use for alpha of the edges
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
    spatial_network_name
                     name of spatial network to use
    spatial_grid_name
                     name of spatial grid to use
    spat_point_size
                     spatial plot: point size
    spat_point_border_col
                     color of border around points
    {\tt spat\_point\_border\_stroke}
                     stroke size of border around points
    midpoint
                     size of point (cell)
                     cowplot param: how many columns
    cow_n_col
```

208 spatDimGenePlot2D

```
cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_legend
                  show legend
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
dim_point_size dim reduction plot: point size
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimGenePlot3D
```

Examples

```
spatDimGenePlot(gobject)
```

spatDimGenePlot2D

spatDimGenePlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

```
spatDimGenePlot2D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  plot_alignment = c("vertical", "horizontal"),
  genes,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  point_size = 1,
  dim_point_border_col = "black",
  dim_point_border_stroke = 0.1,
```

spatDimGenePlot2D 209

```
show_NN_network = F,
      show_spatial_network = F,
      show_spatial_grid = F,
      nn_network_to_use = "sNN",
      network_name = "sNN.pca",
      edge_alpha_dim = NULL,
      scale_alpha_with_expression = FALSE,
      spatial_network_name = "spatial_network",
      spatial_grid_name = "spatial_grid",
      spat_point_size = 1,
      spat_point_border_col = "black",
      spat_point_border_stroke = 0.1,
      midpoint = 0,
      genes_high_color = "red",
      genes_mid_color = "white",
      genes_low_color = "blue",
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_legend = T,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot2D"
    )
Arguments
   gobject
                    giotto object
   expression_values
                    gene expression values to use
   plot_alignment direction to align plot
    genes
                    genes to show
    dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
                    dimension to use on y-axis
   dim2_to_use
                    size of point (cell)
   point_size
    dim_point_border_col
                    color of border around points
   dim_point_border_stroke
                    stroke size of border around points
    show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
```

210 spatDimGenePlot2D

```
name of NN network to use, if show NN network = TRUE
network_name
edge_alpha_dim dim reduction plot: column to use for alpha of the edges
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
spatial_network_name
                  name of spatial network to use
spatial_grid_name
                  name of spatial grid to use
spat_point_size
                  spatial plot: point size
spat_point_border_col
                  color of border around points
spat_point_border_stroke
                  stroke size of border around points
midpoint
                  size of point (cell)
                  cowplot param: how many columns
cow_n_col
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_legend
                  show legend
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
{\tt default\_save\_name}
                  default save name for saving, don't change, change save_name in save_param
dim_point_size dim reduction plot: point size
```

Details

Description of parameters.

Value

ggplot

See Also

spatDimGenePlot3D

Examples

spatDimGenePlot2D(gobject)

spatDimGenePlot3D 211

spatDimGenePlot3D

spatDimGenePlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

```
spatDimGenePlot3D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
 dim3_to_use = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
 genes,
 cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1.5,
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
  label_size = 16,
  genes_low_color = "blue",
 genes_mid_color = "white",
  genes_high_color = "red",
 dim_point_size = 3,
 nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
 network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  legend_text_size = 12,
  axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
```

212 spatDimGenePlot3D

```
z_ticks = NULL,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot3D"
    )
Arguments
    gobject
                     giotto object
    expression_values
                     gene expression values to use
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    dim3_to_use
                     dimension to use on z-axis
    genes
                     genes to show
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    dim_point_size dim reduction plot: point size
    spatial_network_name
                     name of spatial network to use
    spatial_grid_name
                     name of spatial grid to use
    spatial_point_size
                     spatial plot: point size
    show_plot
                     show plots
    return_plot
                     return plotly object
    save_plot
                     directly save the plot [boolean]
    save_param
                     list of saving parameters from all_plots_save_function()
    default_save_name
                     default save name for saving, don't change, change save_name in save_param
    edge_alpha_dim dim reduction plot: column to use for alpha of the edges
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
                     size of point (cell)
    point_size
    show_legend
                     show legend
```

spatDimPlot 213

Details

Description of parameters.

Value

plotly

Examples

```
spatDimGenePlot3D(gobject)
```

spatDimPlot

spatDimPlot

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

```
spatDimPlot(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
 dim_show_center_label = T,
 dim_center_point_size = 4,
 dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
 dim_label_size = 4,
  dim_label_fontface = "bold",
```

214 spatDimPlot

```
spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  nn_network_alpha = 0.05,
  show_spatial_network = F,
  spat_network_name = "spatial_network",
  spat_network_color = "blue",
  spat_network_alpha = 0.5,
  show_spatial_grid = F,
  spat_grid_name = "spatial_grid",
  spat_grid_color = "blue",
  show_other_cells = T,
  other_cell_color = "lightgrey",
  dim_other_point_size = 1,
  spat_other_point_size = 1,
  spat_other_cells_alpha = 0.5,
  dim_show_legend = F,
  spat_show_legend = F,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatDimPlot"
)
```

Arguments

```
gobject
                  giotto object
plot_alignment direction to align plot
dim_reduction_to_use
                  dimension reduction to use
dim_reduction_name
                  dimension reduction name
                  dimension to use on x-axis
dim1_to_use
dim2_to_use
                  dimension to use on y-axis
                  = spatial dimension to use on x-axis
sdimx
                  = spatial dimension to use on y-axis
sdimy
spat_enr_names names of spatial enrichment results to include
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
```

gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells dim_point_size size of points in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster ${\tt dim_center_point_size}$ size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name nn_network_alpha column to use for alpha of the edges

216 spatDimPlot

```
show_spatial_network
                  show spatial network
spat_network_name
                  name of spatial network to use
spat_network_color
                  color of spatial network
show_spatial_grid
                  show spatial grid
spat_grid_name name of spatial grid to use
spat_grid_color
                  color of spatial grid
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
dim_other_point_size
                  size of not selected dim cells
spat\_other\_point\_size
                  size of not selected spat cells
spat_other_cells_alpha
                  alpha of not selected spat cells
dim_show_legend
                  show legend of dimension reduction plot
spat_show_legend
                  show legend of spatial plot
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

spatDimPlot2D and spatDimPlot3D for 3D visualization.

Examples

```
spatDimPlot(gobject)
```

spatDimPlot2D

spatDimPlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

```
spatDimPlot2D(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
  dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
  color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
 dim_show_center_label = T,
 dim_center_point_size = 4,
 dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
 dim_label_size = 4,
 dim_label_fontface = "bold",
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
  nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 nn_network_alpha = 0.05,
  show_spatial_network = F,
  spat_network_name = "spatial_network",
```

```
spat_network_color = "blue",
      spat_network_alpha = 0.5,
      show_spatial_grid = F,
      spat_grid_name = "spatial_grid",
      spat_grid_color = "blue",
      show_other_cells = T,
      other_cell_color = "lightgrey",
      dim_other_point_size = 1,
      spat_other_point_size = 1,
      spat_other_cells_alpha = 0.5,
      dim_show_legend = F,
      spat_show_legend = F,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimPlot2D"
    )
Arguments
   gobject
                     giotto object
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
   dim1_to_use
                     dimension to use on x-axis
   dim2_to_use
                     dimension to use on y-axis
    sdimx
                     = spatial dimension to use on x-axis
                     = spatial dimension to use on y-axis
    sdimy
    spat_enr_names names of spatial enrichment results to include
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    dim_point_size size of points in dim. reduction space
    dim_point_border_col
```

border color of points in dim. reduction space

dim_point_border_stroke border stroke of points in dim. reduction space spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point ${\tt dim_center_point_border_stroke}$ stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name nn_network_alpha column to use for alpha of the edges $show_spatial_network$ show spatial network spat_network_name name of spatial network to use spat_network_color color of spatial network $show_spatial_grid$ show spatial grid spat_grid_name name of spatial grid to use

spat_grid_color

color of spatial grid

```
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
{\tt dim\_other\_point\_size}
                  size of not selected dim cells
spat_other_point_size
                  size of not selected spat cells
spat_other_cells_alpha
                  alpha of not selected spat cells
{\tt dim\_show\_legend}
                  show legend of dimension reduction plot
spat_show_legend
                  show legend of spatial plot
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

spatDimPlot3D

Examples

spatDimPlot2D(gobject)

spatDimPlot3D spatDimPlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

```
spatDimPlot3D(
 gobject,
 plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
 dim3_to_use = 3,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 16,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1.5,
 cell_color = NULL,
 color_as_factor = T,
  cell_color_code = NULL,
  dim_point_size = 3,
 nn_network_alpha = 0.5,
  show\_spatial\_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 legend_text_size = 12,
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "spatDimPlot3D"
```

Arguments

gobject giotto object plot_alignment direction to align plot dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dimension to use on x-axis dim1_to_use dim2_to_use dimension to use on y-axis dim3_to_use dimension to use on z-axis sdimx = spatial dimension to use on x-axis = spatial dimension to use on y-axis sdimy sdimz = spatial dimension to use on z-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name show_cluster_center show the center of each cluster show_center_label provide a label for each cluster center_point_size size of the center point size of the center label label_size select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors dim_point_size size of points in dim. reduction space nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spatial_network_name name of spatial network to use

spatial_network_alpha

alpha of spatial network

show_spatial_grid

show spatial grid

spatial_grid_name

name of spatial grid to use

spatial_grid_color

color of spatial grid

spatial_point_size

size of spatial points

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

dim_point_border_col

border color of points in dim. reduction space

dim_point_border_stroke

border stroke of points in dim. reduction space

spatial_network_color

color of spatial network

spatial_other_point_size

size of not selected spatial points

spatial_other_cells_alpha

alpha of not selected spatial points

 ${\tt dim_other_point_size}$

size of not selected dim. reduction points

show_legend show legend

Details

Description of parameters.

Value

plotly

Examples

spatDimPlot3D(gobject)

224 spatGenePlot

spatGenePlot

spatGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 genes,
 genes_high_color = "darkred",
  genes_mid_color = "white",
 genes_low_color = "darkblue",
 show_network = F,
 network_color = NULL,
 spatial_network_name = "spatial_network",
 edge_alpha = NULL,
  show\_grid = F,
 grid_color = NULL,
  spatial_grid_name = "spatial_grid",
 midpoint = 0,
  scale_alpha_with_expression = FALSE,
 point_size = 1,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
 cow_rel_h = 1,
 cow_rel_w = 1,
 cow_align = "h",
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatGenePlot"
)
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
genes_high_color
color represents high gene expression
genes_mid_color
color represents middle gene expression
```

spatGenePlot 225

```
genes_low_color
                  color represents low gene expression
show_network
                  show underlying spatial network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for cowplot::save_plot()
. . .
```

Details

Description of parameters.

Value

ggplot

See Also

spatGenePlot3D and spatGenePlot2D

Examples

```
spatGenePlot(gobject)
```

226 spatGenePlot2D

spatGenePlot2D

spatGenePlot2D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot2D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 genes,
 genes_high_color = "darkred",
  genes_mid_color = "white",
 genes_low_color = "darkblue",
 show_network = F,
 network_color = NULL,
 spatial_network_name = "spatial_network",
 edge_alpha = NULL,
  show\_grid = F,
 grid_color = NULL,
  spatial_grid_name = "spatial_grid",
 midpoint = 0,
  scale_alpha_with_expression = FALSE,
 point_size = 1,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
 cow_rel_h = 1,
 cow_rel_w = 1,
 cow_align = "h",
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatGenePlot2D"
)
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
genes_high_color
color represents high gene expression
genes_mid_color
color represents middle gene expression
```

spatGenePlot2D 227

```
genes_low_color
                  color represents low gene expression
show_network
                  show underlying spatial network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for cowplot::save_plot()
. . .
```

Details

Description of parameters.

Value

ggplot

See Also

 ${\tt spatGenePlot3D}$

Examples

spatGenePlot2D(gobject)

228 spatGenePlot3D

spatGenePlot3D spatGenePlot3D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot3D(
 gobject,
  expression_values = c("normalized", "scaled", "custom"),
 genes,
 show_network = F,
 network_color = NULL,
  spatial_network_name = "spatial_network",
 edge_alpha = NULL,
 show\_grid = F,
 cluster_column = NULL,
  select_cell_groups = NULL,
 select_cells = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 genes_high_color = NULL,
 genes_mid_color = "white",
 genes_low_color = "blue",
  spatial_grid_name = "spatial_grid",
 point_size = 2,
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatGenePlot3D"
)
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
show_network show underlying spatial network
network_color color of spatial network
```

Spatial_AEH 229

spatial_network_name

name of spatial network to use

show spatial grid show_grid

genes_high_color

color represents high gene expression

genes_mid_color

color represents middle gene expression

genes_low_color

color represents low gene expression

spatial_grid_name

name of spatial grid to use

size of point (cell) point_size

 ${\sf show_legend}$ show legend

show_plot show plots

return ggplot object return_plot

save_plot directly save the plot [boolean]

list of saving parameters from all_plots_save_function() save_param

default_save_name

default save name for saving, don't change, change save_name in save_param

grid_color color of spatial grid midpoint expression midpoint scale_alpha_with_expression

scale expression with ggplot alpha parameter

parameters for cowplot::save_plot() . . .

Details

Description of parameters.

Value

ggplot

Examples

spatGenePlot3D(gobject)

Spatial_AEH

Spatial_AEH

Description

calculate automatic expression histology with spatialDE method

Spatial_DE

Usage

```
Spatial_AEH(
  gobject = NULL,
  results = NULL,
  pattern_num = 5,
  1 = 1.05,
  show\_AEH = T,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  point_alpha = 1,
  low_color = "blue",
  mid_color = "white",
  high_color = "red",
  midpoint = 0,
  python_path = NULL
)
```

Arguments

gobject Giotto object

results output from spatial_DE

pattern_num the number of gene expression patterns

show_AEH show AEH plot

python_path specify specific path to python if required

Details

Description.

Value

a list or a dataframe of SVs

Examples

```
Spatial_DE(gobject)
```

Spatial_DE Spatial_DE

Description

calculate spatial varible genes with spatialDE method

spatPlot 231

Usage

```
Spatial_DE(
  gobject = NULL,
  show_plot = T,
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5,
  python_path = NULL
)
```

Arguments

gobject Giotto object
show_plot show FSV plot
python_path specific path to python if required

Details

Description.

Value

a list or a dataframe of SVs

Examples

Spatial_DE(gobject)

spatPlot

spatPlot

Description

Visualize cells according to spatial coordinates

```
spatPlot(
  gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
```

232 spatPlot

```
point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
  show_grid = F,
  spatial_grid_name = "spatial_grid",
  grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  title = NULL,
  show_legend = T,
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "spatPlot"
)
```

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
spat_enr_names names of spatial enrichment results to include
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
```

spatPlot 233

```
size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
                  show underlying spatial network
show_network
spatial_network_name
                  name of spatial network to use
network_color color of spatial network
network_alpha
                 alpha of spatial network
show_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
grid_color
                  color of spatial grid
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  point size of not selected cells
other_cells_alpha
                  alpha of not selected cells
coord_fix_ratio
                  fix ratio between x and y-axis
title
                  title of plot
show_legend
                  show legend
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

234 spatPlot2D

Value

ggplot

See Also

```
spatPlot3D
```

Examples

```
spatPlot(gobject)
```

spatPlot2D

spatPlot2D

Description

Visualize cells according to spatial coordinates

```
spatPlot2D(
 gobject,
 sdimx = "sdimx",
 sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
 color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 point_size = 3,
  point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
 center_point_size = 4,
  center_point_border_col = "black",
 center_point_border_stroke = 0.1,
 label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
  show\_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
```

spatPlot2D 235

```
other_cell_color = "lightgrey",
  other_point_size = 1,
  other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  title = NULL,
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatPlot2D"
)
```

```
gobject
                  giotto object
\operatorname{sdim} x
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
spat_enr_names names of spatial enrichment results to include
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
show_network
                  show underlying spatial network
```

236 spatPlot2D

```
spatial_network_name
```

name of spatial network to use

network_color color of spatial network network_alpha alpha of spatial network

show_grid show spatial grid

spatial_grid_name

name of spatial grid to use

grid_color color of spatial grid

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

other_point_size

point size of not selected cells

other_cells_alpha

alpha of not selected cells

coord_fix_ratio

fix ratio between x and y-axis

title title of plot show_legend show legend show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

See Also

spatPlot3D

Examples

spatPlot2D(gobject)

spatPlot3D 237

spatPlot3D spatPlot3D

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot3D(
 gobject,
 sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
 point_size = 3,
 cell_color = NULL,
 cell_color_code = NULL,
 select_cell_groups = NULL,
 select_cells = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 0.5,
 show_network = F,
 network_color = NULL,
 network_alpha = 1,
 other_cell_alpha = 0.5,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  title = "",
  show_legend = T,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_{ticks} = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spat3D"
)
```

```
gobject giotto object

sdimx x-axis dimension name (default = 'sdimx')

sdimy y-axis dimension name (default = 'sdimy')

sdimz z-axis dimension name (default = 'sdimy')
```

238 spatPlot3D

```
size of point (cell)
point_size
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
                  color of spatial grid
grid_color
spatial_grid_name
                  name of spatial grid to use
title
                  title of plot
show_legend
                  show legend
axis_scale
                  the way to scale the axis
custom_ratio
                  customize the scale of the plot
                  set the number of ticks on the x-axis
x_ticks
                  set the number of ticks on the y-axis
y_ticks
z_ticks
                  set the number of ticks on the z-axis
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

Examples

```
spatPlot3D(gobject)
```

```
specific Cell Cell communication Scores\\ specific Cell Cell communication Scores
```

Description

Specific Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
specificCellCellcommunicationScores(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column = "cell_types",
  random_iter = 100,
  cell_type_1 = "astrocyte",
  cell_type_2 = "endothelial",
  gene_set_1,
  gene_set_2,
  log2FC_addendum = 0.1,
  min_observations = 2,
  verbose = T
)
```

Arguments

```
gobject
                  giotto object to use
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
                  number of iterations
random_iter
cell_type_1
                  first cell type
cell_type_2
                  second cell type
                  first specific gene set from gene pairs
gene_set_1
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
verbose
                  verbose
```

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

240 stitchFieldCoordinates

Examples

```
specificCellCellcommunicationScores(gobject)
```

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
split_dendrogram_in_two(dend)
```

Arguments

dend

dendrogram object

Value

list of two dendrograms and height of node

Examples

```
split\_dendrogram\_in\_two(dend)
```

```
stitchFieldCoordinates
```

stitchFieldCoordinates

Description

Helper function to stitch field coordinates together to form one complete picture

```
stitchFieldCoordinates(
  location_file,
  offset_file,
  cumulate_offset_x = F,
  cumulate_offset_y = F,
  field_col = "Field of View",
  X_coord_col = "X",
  Y_coord_col = "Y",
  reverse_final_x = F,
  reverse_final_y = T
)
```

subClusterCells 241

Arguments

```
location_file
                  location dataframe with X and Y coordinates
offset_file
                  dataframe that describes the offset for each field (see details)
cumulate_offset_x
                  (boolean) Do the x-axis offset values need to be cumulated?
cumulate_offset_y
                  (boolean) Do the y-axis offset values need to be cumulated?
field_col
                  column that indicates the field within the location_file
X_coord_col
                  column that indicates the x coordinates
Y_coord_col
                  column that indicates the x coordinates
reverse_final_x
                  (boolean) Do the final x coordinates need to be reversed?
reverse_final_y
                  (boolean) Do the final y coordinates need to be reversed?
```

Details

Stitching of fields:

- 1. have cell locations: at least 3 columns: field, X, Y
- 2. create offset file: offset file has 3 columns: field, x_offset, y_offset
- 3. create new cell location file by stitching original cell locations with stitchFieldCoordinates
- 4. provide new cell location file to createGiottoObject

Value

Updated location dataframe with new X ['X_final'] and Y ['Y_final'] coordinates

Examples

```
stitchFieldCoordinates(gobject)
```

subClusterCells

subClusterCells

Description

subcluster cells

242 subClusterCells

```
hvg_min_perc_cells = 5,
      hvg_mean_expr_det = 1,
      use_all_genes_as_hvg = FALSE,
      min_nr_of_hvg = 5,
      pca_param = list(expression_values = "normalized", scale_unit = T),
      nn_param = list(dimensions_to_use = 1:20),
      k_neighbors = 10,
      resolution = 1,
      gamma = 1,
      omega = 1,
      python_path = NULL,
      nn_network_to_use = "sNN",
      network_name = "sNN.pca",
      return_gobject = TRUE,
      verbose = T,
    )
Arguments
    gobject
                     giotto object
                     name for new clustering result
    name
    cluster_method clustering method to use
    cluster_column cluster column to subcluster
    selected_clusters
                     only do subclustering on these clusters
    hvg_param
                     parameters for calculateHVG
    hvg_min_perc_cells
                     threshold for detection in min percentage of cells
    hvg_mean_expr_det
                     threshold for mean expression level in cells with detection
    use_all_genes_as_hvg
                     forces all genes to be HVG and to be used as input for PCA
                     minimum number of HVG, or all genes will be used as input for PCA
    min_nr_of_hvg
                     parameters for runPCA
    pca_param
    nn_param
                     parameters for parameters for createNearestNetwork
    k_neighbors
                     number of k for createNearestNetwork
    resolution
                     resolution
    gamma
                     gamma
    omega
                     omega
    python_path
                     specify specific path to python if required
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use
    network_name
    return_gobject boolean: return giotto object (default = TRUE)
                     verbose
    verbose
                     additional parameters
```

. . .

subsetGiotto 243

Details

Description of Louvain clustering method.

Value

giotto object appended with new cluster

Examples

```
subClusterCells(gobject)
```

subsetGiotto

subsetGiotto

Description

subsets Giotto object including previous analyses.

Usage

```
subsetGiotto(gobject, cell_ids = NULL, gene_ids = NULL)
```

Arguments

gobject giotto object
cell_ids cell IDs to keep
gene_ids gene IDs to keep

Value

giotto object

Examples

subsetGiotto(gobject)

 ${\tt subsetGiottoLocs}$

subsetGiottoLocs

Description

subsets Giotto object based on spatial locations

244 viewHMRFresults

Usage

```
subsetGiottoLocs(
  gobject,
  x_max = NULL,
  x_min = NULL,
  y_max = NULL,
  y_min = NULL,
  z_max = NULL,
  z_min = NULL,
  return_gobject = T
)
```

Arguments

```
gobject giotto object

x_max maximum x-coordinate

x_min minimum x-coordinate

y_max maximum y-coordinate

y_min minimum y-coordinate

z_max maximum z-coordinate

z_min minimum z-coordinate

return_gobject return Giotto object
```

Details

if return_gobject = FALSE, then a filtered combined metadata data.table will be returned

Value

giotto object

Examples

```
subsetGiottoLocs(gobject)
```

viewHMRFresults

viewHMRFresults

Description

View results from doHMRF.

```
viewHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

viewHMRFresults2D 245

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

visPlot

Examples

viewHMRFresults(gobject)

viewHMRFresults2D

viewHMRFresults2D

Description

View results from doHMRF.

Usage

```
viewHMRFresults2D(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

gobject giotto object

 $\begin{array}{ll} \mbox{HMRF output from doHMRF} \\ \mbox{k} & \mbox{number of HMRF domains} \end{array}$

betas_to_view results from different betas that you want to view

... paramters to visPlot()

246 *viewHMRFresults3D*

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot2D
```

Examples

```
viewHMRFresults2D(gobject)
```

viewHMRFresults3D

viewHMRFresults3D

Description

View results from doHMRF.

Usage

```
viewHMRFresults3D(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

 $\verb|betas_to_view| \quad \textit{results from different betas that you want to view}$

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot3D
```

violinPlot 247

Examples

```
viewHMRFresults3D(gobject)
```

violinPlot

violinPlot

Description

Creates heatmap based on identified clusters

Usage

```
violinPlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column,
  cluster_custom_order = NULL,
  color_violin = c("genes", "cluster"),
  cluster_color_code = NULL,
  strip_position = c("top", "right", "left", "bottom"),
  strip_text = 7,
  axis_text_x_size = 10,
  axis_text_y_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "violinPlot"
)
```

```
giotto object
gobject
expression_values
                  expression values to use
genes
                  genes to plot
cluster_column name of column to use for clusters
cluster_custom_order
                  custom order of clusters
color_violin
                  color violin according to genes or clusters
cluster_color_code
                  color code for clusters
strip_position position of gene labels
                  size of strip text
strip_text
axis_text_x_size
                  size of x-axis text
axis_text_y_size
                  size of y-axis text
```

248 visDimGenePlot

```
show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Details

Correlation heatmap of clusters vs genes.

Value

ggplot

Examples

```
violinPlot(gobject)
```

visDimGenePlot visDimGenePlot

Description

Visualize cells and gene expression according to dimension reduction coordinates

```
visDimGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
```

visDimGenePlot 249

```
cow_rel_h = 1,
cow_rel_w = 1,
cow_align = "h",
show_legend = T,
plot_method = c("ggplot", "plotly"),
show_plots = F
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 gene expression values to use
                 genes to show
genes
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2\_to\_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha
                 column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
point_size
                 size of point (cell)
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
midpoint
                 size of point (cell)
                 cowplot param: how many columns
cow_n_col
cow_rel_h
                 cowplot param: relative height
cow_rel_w
                 cowplot param: relative width
cow_align
                 cowplot param: how to align
show_legend
                 show legend
                 show plots
show_plots
```

Details

Description of parameters.

Value

ggplot

Examples

```
visDimGenePlot(gobject)
```

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_2D_ggplot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = "red",
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_legend = T,
  show_plots = F
)
```

```
gobject giotto object
expression_values
gene expression values to use
```

genes genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

 $dim1_to_use$ dimension to use on x-axis

dim2_to_use dimension to use on y-axis

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

 $network_name$ name of NN network to use, if $show_NN_network = TRUE$

edge_alpha column to use for alpha of the edges

scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

midpoint size of point (cell)

cow_n_col cowplot param: how many columns

cow_rel_hcowplot param: relative heightcow_rel_wcowplot param: relative width

cow_align cowplot param: how to align

show_legend show_plots show plots

Details

Description of parameters.

Value

ggplot

Examples

visDimGenePlot_2D_ggplot(gobject)

```
\label{local_plot_spin} vis {\tt DimGenePlot\_3D\_plotly} \\ vis {\tt DimGenePlot\_3D\_plotly}
```

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_3D_plotly(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  point_size = 1,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_legend = T,
  show_plots = F
```

```
gobject
                 giotto object
expression_values
                 gene expression values to use
genes
                 genes to show
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
```

visDimPlot 253

```
network_name name of NN network to use, if show_NN_network = TRUE
edge_alpha column to use for alpha of the edges
point_size size of point (cell)
show_legend show_plots show plots
```

Details

Description of parameters.

Value

ggplot

Examples

```
visDimGenePlot_3D_plotly(gobject)
```

visDimPlot visDimPlot

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
```

254 visDimPlot

```
label_fontface = "bold",
      edge_alpha = NULL,
      point_size = 3,
      point_border_col = "black",
      point_border_stroke = 0.1,
      plot_method = c("ggplot", "plotly"),
      show_legend = T,
      show_plot = F,
      return_plot = TRUE,
      save_plot = F,
      save_dir = NULL,
      save_folder = NULL,
      save_name = NULL,
      save_format = NULL,
      show_saved_plot = F,
    )
Arguments
   gobject
                     giotto object
   dim_reduction_to_use
                     dimension reduction to use
   dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
                     dimension to use on y-axis
    dim2_to_use
   dim3_to_use
                     dimension to use on z-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
   network_name
                     color for cells (see details)
    cell_color
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
    label_size
                     size of labels
    label_fontface font of labels
                     column to use for alpha of the edges
    edge_alpha
    point_size
                     size of point (cell)
```

visDimPlot_2D_ggplot 255

```
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_dir
                  directory to save the plot
                  (optional) folder in directory to save the plot
save_folder
                  name of plot
save_name
                  format of plot (e.g. tiff, png, pdf, ...)
save_format
show_saved_plot
                  load & display the saved plot
```

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visDimPlot(gobject)
```

```
visDimPlot_2D_ggplot visDimPlot_2D_ggplot
```

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot_2D_ggplot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
```

select_cells

show_other_cells

```
select_cells = NULL,
     show_other_cells = T,
     other_cell_color = "lightgrey",
     other_point_size = 0.5,
      show_cluster_center = F,
      show_center_label = T,
      center_point_size = 4,
      center_point_border_col = "black",
      center_point_border_stroke = 0.1,
      label_size = 4,
      label_fontface = "bold",
     edge_alpha = NULL,
     point_size = 1,
     point_border_col = "black",
     point_border_stroke = 0.1,
      show_legend = T,
      show_plot = F,
     return_plot = TRUE,
      save_plot = F,
      save_dir = NULL,
     save_folder = NULL,
      save_name = NULL,
      save_format = NULL,
      show_saved_plot = F,
   )
Arguments
   gobject
                    giotto object
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
   show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use, if show NN network = TRUE
   network_name
   cell_color
                    color for cells (see details)
   color_as_factor
                    convert color column to factor
   cell_color_code
                    named vector with colors
    select_cell_groups
                    select subset of cells/clusters based on cell_color parameter
```

select subset of cells based on cell IDs

display not selected cells

visDimPlot_2D_plotly 257

```
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
```

Details

Description of parameters.

Value

ggplot

Examples

```
visDimPlot_2D_ggplot(gobject)
```

```
visDimPlot_2D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot_2D_plotly(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  select_cell_groups = NULL,
  select_cells = NULL,
```

```
show_other_cells = T,
      other_cell_color = "lightgrey",
      other_point_size = 0.5,
      show_NN_network = F,
      nn_network_to_use = "sNN",
      network_name = "sNN.pca",
      color_as_factor = T,
      cell_color = NULL,
      cell_color_code = NULL,
      show_cluster_center = F,
      show_center_label = T,
      center_point_size = 4,
      label_size = 4,
      edge_alpha = NULL,
      point_size = 5
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
                     dimension to use on x-axis
    dim1_to_use
    dim2_to_use
                     dimension to use on y-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    color_as_factor
                     convert color column to factor
    cell_color
                     color for cells (see details)
    cell_color_code
                     named vector with colors
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
    label_size
                     size of labels
                     column to use for alpha of the edges
    edge_alpha
                     size of point (cell)
    point_size
```

Details

Description of parameters.

visDimPlot_3D_plotly

259

Value

plotly

Examples

```
visDimPlot_2D_plotly(gobject)
```

```
visDimPlot_3D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

Usage

```
visDimPlot_3D_plotly(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  edge_alpha = NULL,
  point_size = 1
```

260 visForceLayoutPlot

```
dimension to use on y-axis
dim2_to_use
dim3_to_use
                  dimension to use on z-axis
show_NN_network
                  show underlying NN network
nn\_network\_to\_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
color_as_factor
                  convert color column to factor
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
                  column to use for alpha of the edges
edge_alpha
point\_size
                  size of point (cell)
```

Details

Description of parameters.

Value

plotly

Examples

visDimPlot_3D_plotly(gobject)

visForceLayoutPlot visForceLayoutPlot

Description

Visualize cells according to forced layout algorithm coordinates

visForceLayoutPlot 261

Usage

```
visForceLayoutPlot(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  layout_name = "layout",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  show_NN_network = T,
  cell_color = NULL,
  color_as_factor = F,
  cell_color_code = NULL,
  edge_alpha = NULL,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  show_plot = F,
  return_plot = TRUE,
  save_plot = F,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  save_format = NULL,
  show_saved_plot = F,
)
```

```
gobject
                 giotto object
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 NN network to use
layout_name
                 name of layout to use
dim1_to_use
                 dimension to use on x-axis
dim2\_to\_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
edge_alpha
                 column to use for alpha of the edges
point_size
                 size of point (cell)
point_border_col
                 color of border around points
```

262 visGenePlot

```
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_dir
                  directory to save the plot
                  (optional) folder in directory to save the plot
save_folder
                  name of plot
save_name
                  format of plot (e.g. tiff, png, pdf, ...)
save_format
show_saved_plot
                  load & display the saved plot
```

Details

Description of parameters.

Value

ggplot

Examples

visForceLayoutPlot(gobject)

visGenePlot

visGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

```
visGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  edge_alpha = NULL,
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  midpoint = 0,
```

visGenePlot 263

```
scale_alpha_with_expression = FALSE,
      point_size = 1,
      point_border_col = "black",
      point_border_stroke = 0.1,
      show_legend = T,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_ticks = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      plot_method = c("ggplot", "plotly"),
      show_plots = F
Arguments
    gobject
                     giotto object
    expression_values
                     gene expression values to use
    genes
                     genes to show
    genes_high_color
                     color represents high gene expression
    genes_mid_color
                     color represents middle gene expression
    genes_low_color
                     color represents low gene expression
                     show underlying spatial network
    show_network
                     color of spatial network
    network_color
    spatial_network_name
                     name of spatial network to use
    show_grid
                     show spatial grid
    grid_color
                     color of spatial grid
    spatial_grid_name
                     name of spatial grid to use
                     expression midpoint
    midpoint
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
    point_size
                     size of point (cell)
    point_border_col
                     color of border around points
    point_border_stroke
                     stroke size of border around points
    show_legend
                     show legend
    cow_n_col
                     cowplot param: how many columns
```

```
cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
                  three mode to adjust axis scale
axis_scale
x_ticks
                  number of ticks on x axis
y_ticks
                  number of ticks on y axis
z_ticks
                  number of ticks on z axis
plot_method
                  two methods of plot
show_plots
                  show plots
```

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visGenePlot(gobject)
```

```
visGenePlot_2D_ggplot visGenePlot_2D_ggplot
```

Description

Visualize cells and gene expression according to spatial coordinates

```
visGenePlot_2D_ggplot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  genes_high_color = "darkred",
  genes_mid_color = "white",
  genes_low_color = "darkblue",
  show_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  edge_alpha = NULL,
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  midpoint = 0,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  point_border_col = "black",
```

show_legend = T,
cow_n_col = 2,

point_border_stroke = 0.1,

```
cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plots = F
Arguments
    gobject
                     giotto object
    expression_values
                     gene expression values to use
    genes
                     genes to show
    genes_high_color
                     color represents high gene expression
    genes_mid_color
                     color represents middle gene expression
    genes_low_color
                     color represents low gene expression
    show_network
                     show underlying spatial network
                     color of spatial network
    network_color
    spatial_network_name
                     name of spatial network to use
                     show spatial grid
    show_grid
    grid_color
                     color of spatial grid
    spatial_grid_name
                     name of spatial grid to use
                     expression midpoint
    midpoint
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
                     size of point (cell)
    point_size
    point_border_col
                     color of border around points
    point_border_stroke
                     stroke size of border around points
    show_legend
                     show legend
    cow_n_col
                     cowplot param: how many columns
```

cowplot param: relative height

cowplot param: relative width cowplot param: how to align

show plots

Details

cow_rel_h

cow_rel_w

cow_align

show_plots

Description of parameters.

Value

ggplot

Examples

```
visGenePlot_2D_ggplot(gobject)
```

```
visGenePlot_3D_plotly
```

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot_3D_plotly(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  show_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  edge_alpha = NULL,
  show\_grid = F,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  spatial_grid_name = "spatial_grid",
  point_size = 1,
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plots = F
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
show_network show underlying spatial network
network_color color of spatial network
spatial_network_name
name of spatial network to use
```

visPlot 267

show spatial grid show_grid genes_high_color color represents high gene expression genes_mid_color color represents middle gene expression genes_low_color color represents low gene expression spatial_grid_name name of spatial grid to use point_size size of point (cell) show_legend show legend axis_scale three mode to adjust axis scale x_{ticks} number of ticks on x axis y_ticks number of ticks on y axis z_ticks number of ticks on z axis show_plots show plots grid_color color of spatial grid cow_n_col cowplot param: how many columns

cowplot param: relative height cowplot param: relative width

cowplot param: how to align

Details

cow_rel_h

cow_rel_w
cow_align

Description of parameters.

Value

plotly

Examples

visGenePlot_3D_plotly(gobject)

visPlot visPlot

Description

Visualize cells according to spatial coordinates

268 visPlot

Usage

```
visPlot(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  show_network = F,
  network_color = NULL,
  network_alpha = 1,
  other_cell_alpha = 0.1,
  spatial_network_name = "spatial_network",
  show_grid = F,
  grid_color = NULL,
  grid_alpha = 1,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 0.6,
  title = "",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_{ticks} = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  plot_method = c("ggplot", "plotly"),
  show_plot = F,
  return_plot = TRUE,
  save_plot = F,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  save_format = NULL,
  show_saved_plot = F,
)
```

```
gobject giotto object

sdimx x-axis dimension name (default = 'sdimx')

sdimy y-axis dimension name (default = 'sdimy')

sdimz z-axis dimension name (default = 'sdimz')
```

visPlot 269

```
size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
                  color for cells (see details)
cell_color
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
                  title of plot
title
                  show legend
show_legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_dir
                  directory to save the plot
save_folder
                  (optional) folder in directory to save the plot
save_name
                  name of plot
save_format
                  format of plot (e.g. tiff, png, pdf, ...)
show_saved_plot
                  load & display the saved plot
```

Details

Description of parameters.

Value

ggplot

Examples

visPlot(gobject)

270 visPlot_2D_ggplot

```
visPlot_2D_ggplot
visPlot_2D_ggplot
```

Description

Visualize cells according to spatial coordinates

```
visPlot_2D_ggplot(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  show_network = F,
  network_color = NULL,
  network\_alpha = 1,
  other_cells_alpha = 0.1,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 0.6,
  title = "",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_{ticks} = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = F,
  return_plot = TRUE,
  save_plot = F,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  save_format = NULL,
  show\_saved\_plot = F,
)
```

visPlot_2D_ggplot 271

Arguments

gobject giotto object sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy') size of point (cell) point_size point_border_col color of border around points point_border_stroke stroke size of border around points cell_color color for cells (see details) cell_color_code named vector with colors color_as_factor convert color column to factor select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells show_other_cells display not selected cells other_cell_color color of not selected cells show_network show underlying spatial network network_color color of spatial network spatial_network_name name of spatial network to use show_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use coord_fix_ratio fix ratio between x and y-axis title of plot title show legend show_legend show_plot show plot return ggplot object return_plot directly save the plot [boolean] save_plot save_dir directory to save the plot (optional) folder in directory to save the plot save_folder save_name name of plot format of plot (e.g. tiff, png, pdf, ...) save_format show_saved_plot load & display the saved plot

Details

Description of parameters.

272 visPlot_2D_plotly

Value

ggplot

Examples

```
visPlot_2D_ggplot(gobject)
```

```
visPlot_2D_plotly
```

Description

Visualize cells according to spatial coordinates

Usage

```
visPlot_2D_plotly(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_network = F,
  network_color = "lightgray",
  network_alpha = 1,
  other_cell_alpha = 0.5,
  spatial_network_name = "spatial_network",
  show_grid = F,
  grid_color = NULL,
  grid_alpha = 1,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_{ticks} = NULL,
  y_ticks = NULL,
  show_plot = F
)
```

```
gobject giotto object

sdimx x-axis dimension name (default = 'sdimx')
```

visPlot_3D_plotly 273

sdimy y-axis dimension name (default = 'sdimy')

point_size size of point (cell)

cell_color color for cells (see details)

cell_color_code

named vector with colors

color_as_factor

convert color column to factor

select_cell_groups

select a subset of the groups from cell_color

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid

grid_color color of spatial grid

grid_alpha alpha of spatial grid

spatial_grid_name

name of spatial grid to use

show_legend show legend
show_plot show plot

Details

Description of parameters.

Value

plotly

Examples

visPlot_2D_plotly(gobject)

visPlot_3D_plotly

Description

Visualize cells according to spatial coordinates

274 visPlot_3D_plotly

Usage

```
visPlot_3D_plotly(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_network = F,
  network_color = NULL,
  network_alpha = 1,
  other_cell_alpha = 0.5,
  spatial_network_name = "spatial_network",
  spatial_grid_name = "spatial_grid",
  title = "",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = F
)
```

```
gobject
                  giotto object
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimz')
                  size of point (cell)
point_size
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select a subset of the groups from cell_color
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
spatial_grid_name
                  name of spatial grid to use
                  title of plot
title
```

visSpatDimGenePlot 275

```
show_legend
                  show legend
show_plot
                  show plot
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
color_as_factor
                  convert color column to factor
show_grid
                  show spatial grid
                  color of spatial grid
grid_color
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

ggplot

Examples

```
visPlot_3D_plotly(gobject)
```

visSpatDimGenePlot visSpatDimGenePlot

Description

integration of visSpatDimGenePlot_2D(ggplot) and visSpatDimGenePlot_3D(plotly)

```
visSpatDimGenePlot(
 gobject,
 plot_method = c("ggplot", "plotly"),
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
 genes,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
```

276 visSpatDimGenePlot

```
show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
  label_size = 16,
 genes_low_color = "blue",
 genes_mid_color = "white",
  genes_high_color = "red",
 dim_point_size = 3,
 nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
 network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  spatial_point_border_col = "black",
  spatial_point_border_stroke = 0.1,
  legend_text_size = 12,
  axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 midpoint = 0,
 point_size = 1,
 cow_n_col = 2,
 cow_rel_h = 1,
 cow_rel_w = 1,
 cow_align = "h",
 show_legend = T,
  show_plots = F
)
```

```
gobject giotto object
expression_values
gene expression values to use
plot_alignment direction to align plot
dim_reduction_to_use
dimension reduction to use
dim_reduction_name
dimension reduction name
dim1_to_use
dimension to use on x-axis
dim2_to_use
dimension to use on y-axis
dim3_to_use
dimension to use on z-axis
```

sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy') sdimz z-axis dimension name (default = 'sdimz') genes genes to show dim_point_border_col color of border around points dim_point_border_stroke stroke size of border around points show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name edge_alpha_dim dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter size for the label label_size genes_low_color color to represent low expression of gene genes_high_color color to represent high expression of gene dim_point_size dim reduction plot: point size spatial_network_name name of spatial network to use spatial_grid_name name of spatial grid to use spatial_point_size spatial plot: point size spatial_point_border_col color of border around points spatial_point_border_stroke stroke size of border around points legend_text_size the size of the text in legend axis_scale three modes to adjust axis scale ratio custom_ratio set the axis scale ratio on custom x_ticks number of ticks on x axis y_ticks number of ticks on y axis z_{ticks} number of ticks on z axis midpoint size of point (cell) point_size size of point (cell) cowplot param: how many columns cow_n_col cowplot param: relative height cow_rel_h cow_rel_w cowplot param: relative width

cowplot param: how to align

show legend

show plot

cow_align

show_plot

show_legend

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visSpatDimGenePlot(gobject)
```

```
visSpatDimGenePlot_2D visSpatDimGenePlot_2D
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

```
visSpatDimGenePlot_2D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 point_size = 1,
 dim_point_border_col = "black",
  dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
  show_spatial_grid = F,
  nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
  spatial_network_name = "spatial_network",
  spatial_grid_name = "spatial_grid",
  spatial_point_size = 1,
  spatial_point_border_col = "black",
  spatial_point_border_stroke = 0.1,
 midpoint = 0,
 genes_high_color = "red",
 genes_mid_color = "white",
  genes_low_color = "blue",
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
```

```
cow_align = "h",
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_ticks = NULL,
      y_ticks = NULL,
      show_legend = T,
      show_plots = F
Arguments
    gobject
                     giotto object
    expression_values
                     gene expression values to use
    plot_alignment direction to align plot
                     genes to show
    genes
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    point_size
                     size of point (cell)
    dim_point_border_col
                     color of border around points
    dim_point_border_stroke
                     stroke size of border around points
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    edge_alpha_dim dim reduction plot: column to use for alpha of the edges
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
    spatial_network_name
                     name of spatial network to use
    spatial_grid_name
                     name of spatial grid to use
    spatial_point_size
                     spatial plot: point size
    spatial_point_border_col
                     color of border around points
    spatial_point_border_stroke
                     stroke size of border around points
    midpoint
                     size of point (cell)
                     cowplot param: how many columns
    cow_n_col
```

```
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_legend show legend
dim_point_size dim reduction plot: point size
show_plot show plot
```

Details

Description of parameters.

Value

ggplot

Examples

```
visSpatDimGenePlot_2D(gobject)
```

```
visSpatDimGenePlot_3D visSpatDimGenePlot_3D
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

```
visSpatDimGenePlot_3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  genes,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  label_size = 16,
  genes_low_color = "blue",
  genes_mid_color = "white",
  genes_high_color = "red",
  dim_point_size = 3,
  nn_network_alpha = 0.5,
```

```
show_spatial_network = F,
      spatial_network_name = "spatial_network",
     network_color = "lightgray",
      spatial_network_alpha = 0.5,
      show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
     legend_text_size = 12,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
     x_ticks = NULL,
     y_ticks = NULL,
     z_{ticks} = NULL
Arguments
                    giotto object
   gobject
   plot_alignment direction to align plot
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
   dim3_to_use
                    dimension to use on z-axis
   show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use, if show_NN_network = TRUE
   network_name
   genes_low_color
                    color represent high gene expression (see details)
   genes_high_color
                    color represent high gene expression (see details)
   nn_network_alpha
                    column to use for alpha of the edges
   show\_spatial\_network
                    show spatial network
   spatial_network_name
                    name of spatial network to use
   network_color color of spatial/nn network
    spatial_network_alpha
                    alpha of spatial network
   show_spatial_grid
                    show spatial grid
```

282 visSpatDimPlot

```
spatial_grid_name
name of spatial grid to use
spatial_grid_color
color of spatial grid
spatial_grid_alpha
alpha of spatial grid
legend_text_size
text size of legend
show_legend show legend
show_plot show plot
```

Details

Description of parameters.

Value

plotly

Examples

```
visSpatDimPlot_3D(gobject)
```

 ${\tt visSpatDimPlot}$

visSpatDimPlot

Description

integration of visSpatDimPlot_2D and visSpatDimPlot_3D

```
visSpatDimPlot(
  gobject,
  plot_method = c("ggplot", "plotly"),
  plot_alignment = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = NULL,
```

visSpatDimPlot 283

```
label_fontface = "bold",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  dim_point_size = 3,
  dim_point_border_col = "black",
  dim_point_border_stroke = 0.1,
  nn_network_alpha = NULL,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  legend_text_size = 12,
  spatial_point_border_col = "black",
  spatial_point_border_stroke = 0.1,
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = F
                giotto object
gobject
```

```
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
cell_color
                 color for cells (see details)
```

284 visSpatDimPlot

```
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
nn_network_alpha
                  column to use for alpha of the edges
show_spatial_network
                  show spatial network
spatial\_network\_name
                  name of spatial network to use
spatial\_network\_alpha
                  alpha of spatial network
show_spatial_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
spatial_grid_color
                  color of spatial grid
spatial_grid_alpha
                  alpha of spatial grid
legend_text_size
                  text size of legend
show_legend
                  show legend
                  show plot
show_plot
plot_mode
                  choose the mode to draw plot: ggplot or plotly
spatial_network_color
                  color of spatial network
```

Details

Description of parameters.

Value

ggplot or plotly

Examples

visSpatDimPlot(gobject)

visSpatDimPlot_2D 285

visSpatDimPlot_2D

visSpatDimPlot_2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot2 mode

```
visSpatDimPlot_2D(
  gobject,
  plot_alignment = c("vertical", "horizontal"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  sdimx = NULL,
  sdimy = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  label_fontface = "bold",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  dim_plot_mode = NULL,
  dim_point_size = 1,
  dim_point_border_col = "black",
  dim_point_border_stroke = 0.1,
  nn_network_alpha = 0.05,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
  spatial_network_color = NULL,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_point_size = 1,
  spatial_point_border_col = "black",
  spatial_point_border_stroke = 0.1,
  show_legend = T,
  show_plot = F,
  plot_method = "ggplot"
```

286 visSpatDimPlot_2D

Arguments

gobject giotto object plot_alignment direction to align plot dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dimension to use on x-axis dim1_to_use dim2_to_use dimension to use on y-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spatial_network_name name of spatial network to use spatial_network_color color of spatial network show_spatial_grid show spatial grid spatial_grid_name name of spatial grid to use spatial_grid_color color of spatial grid show_legend show legend show_plot show plot return_plot return ggplot object save_plot directly save the plot [boolean] save_dir directory to save the plot save_folder (optional) folder in directory to save the plot

visSpatDimPlot_3D 287

Details

Description of parameters.

Value

ggplot

Examples

```
visSpatDimPlot_2D(gobject)
```

visSpatDimPlot_3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

```
visSpatDimPlot_3D(
  gobject,
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 16,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  dim_point_size = 3,
  nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
```

288 visSpatDimPlot_3D

```
network_color = "lightgray",
      spatial_network_alpha = 0.5,
      show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_ticks = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      legend_text_size = 12
    )
Arguments
    gobject
                     giotto object
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
                     dimension to use on y-axis
    dim2_to_use
    dim3_to_use
                     dimension to use on z-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    nn_network_alpha
                     column to use for alpha of the edges
    \verb|show_spatial_network||
                     show spatial network
    spatial_network_name
                     name of spatial network to use
    spatial_network_alpha
                     alpha of spatial network
    show_spatial_grid
                     show spatial grid
    spatial_grid_name
```

name of spatial grid to use

writeHMRFresults 289

Details

Description of parameters.

Value

plotly

Examples

```
visSpatDimPlot_3D(gobject)
```

writeHMRFresults

writeHMRFresults

Description

write results from doHMRF to a data.table.

Usage

```
writeHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  print_command = F
)
```

Arguments

gobject giotto object

HMRF output from doHMRF

k k to write results for

 $\verb|betas_to_view| results from different betas that you want to view$

print_command see the python command

Value

data.table with HMRF results for each b and the selected k

Examples

```
writeHMRFresults(gobject)
```

Description

write out annotation data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_annotation(
  annotation,
  annot_name = "test",
  output_directory = getwd()
)
```

Arguments

```
annotation annotation from the data.table from giotto object
annot_name name of the annotation
output_directory
directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

```
write\_giotto\_viewer\_dim\_reduction \\ write\_giotto\_viewer\_dim\_reduction
```

Description

write out dimensional reduction data from a giotto object for the Viewer

```
write_giotto_viewer_dim_reduction(
  dim_reduction_cell,
  dim_red = NULL,
  dim_red_name = NULL,
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  output_directory = getwd()
)
```

Arguments

dim_reduction_cell

dimension reduction slot from giotto object

dim_red high level name of dimension reduction

dim_red_name specific name of dimension reduction to use

dim_red_rounding

numerical indicating how to round the coordinates

dim_red_rescale

numericals to rescale the coordinates

output_directory

directory where to save the files

Value

write a .txt and .annot file for the selection annotation

Index

m : -*-44-	110
*Topic giotto ,	cellProximityVisPlot_2D_plotly, 38
giotto-class, 123	cellProximityVisPlot_3D_plotly, 39
print.giotto, 170	changeGiottoInstructions, 41
show, giotto-method, 179	clusterCells, 42
*Topic giotto	combineMetadata, 44
createGiottoObject, 46	convertEnsemblToGeneSymbol, 45
*Topic object	cowplot::save_plot, <i>123</i>
giotto-class, 123	<pre>create_average_detection_DT, 56</pre>
print.giotto, 170	create_average_DT, 56
show,giotto-method,179	<pre>create_cell_type_random_cell_IDs, 57</pre>
	create_cluster_matrix, 58
addCellMetadata, 6, 48	create_dimObject,58
addCellStatistics, 7, 11	createGiottoInstructions, 45, 47
addGeneMetadata, $8,48$	createGiottoObject, 46, 241
addGeneStatistics, 9, 11	createHeatmap_DT,48
addHMRF, 10	createNearestNetwork, 49
addNetworkLayout, 10	createSpatialEnrich, 51
addStatistics, 11	createSpatialGrid, 52
adjustGiottoMatrix, 12	createSpatialGrid_2D, 53
aes_string2, 13	createSpatialGrid_3D, 54
all_plots_save_function, 14	createSpatialNetwork, 55
allCellCellcommunicationsScores, 13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
annotate_spatlocs_with_spatgrid_2D, 17	decide_cluster_order, 59
annotate_spatlocs_with_spatgrid_3D, 17	detectSpatialPatterns, 60
annotateGiotto, 15	dimCellPlot, 61
annotateSpatialNetwork, 16	dimCellPlot2D, 63, 63
average_gene_gene_expression_in_groups,	dimGenePlot, 66
18	dimGenePlot2D, 68
	dimGenePlot3D, 67, 69, 70
binGetSpatialGenes, 18	dimPlot(dimPlot2D), 71
	dimPlot2D, 71, 74, 152, 154, 157, 159, 162,
<pre>calculate_spatial_genes_python, 23</pre>	164
calculateHVG, 20	dimPlot3D, 65, 74, 75
calculateMetaTable, 21	direction_test (direction_test_CPG), 77
calculateMetaTableCells, 22	direction_test_CPG, 77
cellProximityBarplot, 24	doHclust, 77
cellProximityEnrichment, 25	doHMRF, 78
cellProximityHeatmap, 26	doKmeans, 80
cellProximityNetwork, 27	doLeidenCluster, 81
cellProximitySpatPlot, 28	doLeidenSubCluster, 82
cellProximitySpatPlot2D, 29, 30	doLouvainCluster, 84
cellProximitySpatPlot3D, 29, 32	doLouvainCluster_community, 85
cellProximityVisPlot, 34	doLouvainCluster_multinet, 86
cellProximityVisPlot_2D_ggplot, 36	doLouvainSubCluster, 87
CETTI I OVIIII (A A I 20 T ZO T Z	uolouvailisubciustel, o/

INDEX 293

doLouvainSubCluster_community, 89	iterCluster, 125
<pre>doLouvainSubCluster_multinet, 90</pre>	iterLeidenCluster, 126
doRandomWalkCluster, 92	iterLouvainCluster, 128
doSNNCluster, 93	<pre>iterLouvainCluster_community, 129</pre>
dt_to_matrix,94	<pre>iterLouvainCluster_multinet, 131</pre>
exportGiottoViewer,94	kmeans_binarize, 132
exprOnlyCellCellcommunicationScores,	7
95	loadHMRF, 132
extended_gini_fun, 96	make simulated network 124
extractNearestNetwork, 97	make_simulated_network, 134 makeSignMatrixPAGE, 133
	makeSignMatrixRank, 134
fDataDT, 97	mergeClusters, 135
filterCombinations, 98, 101	mygini_fun, 136
filterCPGscores, 99	mygini_idn, 130
filterDistributions, 100	nnDT_to_kNN, 136
filterGiotto, 101	node_clusters, 137
find_grid_2D, 110	normalizeGiotto, 137
find_grid_3D, 110	
find_grid_x, 111	OR_function2, 138
find_grid_y, 111	
find_grid_z, 111	PAGEEnrich, <i>51</i> , <i>133</i> , 139
findGiniMarkers, 102	PCA, <i>175</i>
findGiniMarkers_one_vs_all, 103	pDataDT, 140
findMarkers, 104	permutationPA, 193
findMarkers_one_vs_all, 105	plot_network_layer_ggplot, 166
findMastMarkers, 106	plot_point_layer_ggplot, 166
findMastMarkers_one_vs_all, 107	<pre>plot_spat_point_layer_ggplot, 168</pre>
findScranMarkers, 108	plotCPGscores, 140
findScranMarkers_one_vs_all, 109	plotGTGscores, 141
fish_function, 111	plotHeatmap, 143
fish_function2, 112	plotly_axis_scale_2D, 144
FSV_show, 112	plotly_axis_scale_3D, 145
0 0 0 1 110	plotly_grid, 146
GenePattern_show, 113	plotly_network, 146
general_save_function, 114	plotMetaDataCellsHeatmap, 147
get10Xmatrix, 115	plotMetaDataHeatmap, 149
<pre>get_cell_to_cell_sorted_name_conversion,</pre>	plotPCA, 151
120	plotPCA_2D, 152
get_interaction_gene_enrichment, 121	plotPCA_3D, 152, 154, 154
<pre>get_specific_interaction_gene_enrichment,</pre>	plotTSNE, 156
121	plotTSNE_2D, 157
getCellProximityGeneScores, 115	plotTSNE_3D, 157, 159, 159
getClusterSimilarity, 117	plotUMAP, 161
getDendrogramSplits, 118	plotUMAP_2D, 162
getDistinctColors, 119	plotUMAP_3D, 162, 164, 164
getGeneToGeneScores, 119	print.giotto, 170
ggplot_save_function, 122	rank hiparizo 170
giotto (giotto-class), 123	rank_binarize, 172 rankEnrich, <i>51</i> , <i>134</i> , 171
giotto-class, 123	readGiottoInstructions, 172
Giotto::general_save_function, 15	removeCellAnnotation, 173
hyperGeometricEnrich, 51, 124	removeGeneAnnotation, 173

294 INDEX

replaceGiottoInstructions, 174	viewHMRFresults3D, 246
Rtsne, <i>176</i>	violinPlot, 247
runPCA, 174	visDimGenePlot, 248
runtSNE, 175	visDimGenePlot_2D_ggplot, 250
runUMAP, 177	visDimGenePlot_3D_plotly, 252
Tanona, 177	visDimPlot, 253
select_expression_values, 179	visDimPlot_2D_ggplot, 255
selectPatternGenes, 178	visDimPlot_2D_plotly, 257
show, giotto-method, 179	
showClusterDendrogram, 180	visDimPlot_3D_plotly, 259
	visForceLayoutPlot, 260
showClusterHeatmap, 181	visGenePlot, 262
showCPGscores, 182	visGenePlot_2D_ggplot, 264
showGeneExpressionProximityScore, 183	visGenePlot_3D_plotly, 266
showGiottoInstructions, 184	visPlot, 245, 267
showGTGscores, 184	visPlot_2D_ggplot, 270
showIntExpressionProximityScore, 185	visPlot_2D_plotly,272
showPattern, 186	visPlot_3D_plotly, 273
showPattern2D, <i>187</i> , 187	visSpatDimGenePlot, 275
showPattern3D, 188	<pre>visSpatDimGenePlot_2D, 278</pre>
showPatternGenes, 190	<pre>visSpatDimGenePlot_3D, 280</pre>
showProcessingSteps, 191	visSpatDimPlot, 282
showTopGeneToGene, 191	<pre>visSpatDimPlot_2D, 285</pre>
signPCA, 192	<pre>visSpatDimPlot_3D, 287</pre>
spatCellPlot, 193	
spatCellPlot2D, 196	write_giotto_viewer_annotation, 290
spatDimCellPlot, 198	write_giotto_viewer_dim_reduction, 290
spatDimCellPlot2D, 202	writeHMRFresults,289
spatDimGenePlot, 206	
spatDimGenePlot2D, 208	
spatDimGenePlot3D, 208, 210, 211	
spatDimPlot, 213	
spatDimPlot2D, 216, 217	
spatDimPlot3D, 216, 220, 220	
spatGenePlot, 224	
spatGenePlot2D, 225, 226	
spatGenePlot3D, 225, 227, 228	
Spatial_AEH, 229	
Spatial_DE, 230	
spatPlot, 231 spatPlot2D, 234, 246	
•	
spatPlot3D, 234, 236, 237, 246	
specificCellCellcommunicationScores,	
239	
split_dendrogram_in_two, 240	
stitchFieldCoordinates, 48, 240	
subClusterCells, 241	
subsetGiotto, 243	
subsetGiottoLocs, 243	
umap, <i>178</i>	
viewHMRFresults, 244	
viewHMRFresults2D, 245	