1) Sketch a graph of each function. Then, sketch a graph of the inverse of each function. Label each graph with its equation.

a)
$$y = 2^x$$

b)
$$y = 4^x$$

2) Match each equation to its corresponding graph.

A)
$$y = 5^x$$

$$\mathbf{B)} \ y = \left(\frac{1}{2}\right)^x$$

c)
$$y = 2^x$$

D)
$$y = \left(\frac{1}{5}\right)^x$$

3) An influenza virus is spreading according to the function $N = 10(2)^t$, where N is the number of people infected and t is the time, in days.

- a) How many people have the virus at each time?
 - i) initially, when t = 0

ii) after 1 day

iii) after 2 days

iv) after 3 days

b) After how many days will 40960 people be infected?

4) Rewrite each equation in logarithmic form

a)
$$4^3 = 64$$

b)
$$128 = 2^7$$

c)
$$5^{-2} = \frac{1}{25}$$

d)
$$\left(\frac{1}{2}\right)^2 = 0.25$$

e)
$$6^x = y$$

$$\mathbf{f)} \ 10^5 = 100 \ 000$$

g)
$$\frac{1}{27} = 3^{-3}$$

- 5) Evaluate each logarithm
- a) $\log_2 64$

b) log₃ 27

c) $\log_2\left(\frac{1}{4}\right)$

d) $\log_4\left(\frac{1}{64}\right)$

e) log₅ 125

f) $\log_2 1024$

- 6) Evaluate each common logarithm
- **a)** log 1000

b) $\log\left(\frac{1}{10}\right)$

c) log 1

d) $\log 0.001$

e) $\log 10^{-4}$

f) log 1 000 000

- 7) Rewrite in exponential form
- a) $\log_7 49 = 2$

b) $5 = \log_2 32$

c) $\log 10\ 000 = 4$

d) $w = \log_b z$

e) $\log_2 8 = 3$

 $f) -2 = \log\left(\frac{1}{100}\right)$