Por tanto, el segmento rectilíneo que va de $\mathbf{c}(t_i)$ a $\mathbf{c}(t_{i+1})$ tiene longitud

$$\sqrt{[x'(t_i^*)]^2 + [y'(t_i^{**})]^2 + [z'(t_i^{***})]^2}(t_{i+1} - t_i).$$

Así, la longitud de la aproximación poligonal es

$$S_N = \sum_{i=0}^{N-1} \sqrt{[x'(t_i^*)]^2 + [y'(t_i^{**})]^2 + [z'(t_i^{***})]^2} (t_{i+1} - t_i).$$

Cuando $N \to \infty$, esta línea poligonal se aproxima cada vez más a la imagen de ${\bf c}$. Por tanto, definimos la longitud de arco de ${\bf c}$ como el límite, si existe, de la sucesión S_N cuando $N \to \infty$. Puesto que suponemos que las derivadas x',y' y z' son continuas en [a,b], podemos concluir que, de hecho, el límite existe y está dado por

$$\lim_{N \to \infty} S_N = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt.$$

(La teoría de integración relaciona la integral como límites de sumas mediante la fórmula

$$\int_{a}^{b} f(t) dt = \lim_{N \to \infty} \sum_{i=0}^{N-1} f(t_{i}^{*})(t_{i+1} - t_{i}),$$

donde t_0, \ldots, t_N es una partición de $[a,b], t_i^* \in [t_i, t_{i+1}]$ es arbitrario y f es una función continua. Aquí, tenemos puntos posiblemente diferentes t_i^*, t_i^{**} y t_i^{***} , por lo que se necesita una extensión adecuada de esta fórmula.)

Ejercicios

En los Ejercicios 1 a 6, calcular la longitud de arco de la curva dada en el intervalo especificado.⁴

1.
$$(2 \cos t, 2 \sin t, t)$$
, para $0 \le t \le 2\pi$.

2.
$$(1,3t^2,t^3)$$
, para $0 \le t \le 1$.

3.
$$(\text{sen } 3t, \, \cos 3t, \, 2t^{3/2}), \, \text{para } 0 \le t \le 1.$$

4.
$$\left(t+1, \frac{2\sqrt{2}}{3}t^{3/2}+7, \frac{1}{2}t^2\right)$$
, para $1 \le t \le 2$.

5.
$$(t, t, t^2)$$
, para $1 \le t \le 2$.

6.
$$(t, t \operatorname{sen} t, t \cos t)$$
, para $0 \le t \le \pi$.

7. Hallar la longitud de arco de $\mathbf{c}(t) = (t, |t|)$ para $-1 \le t \le 1$.

$$\int \sqrt{x^2 + a^2} \, dx = \frac{1}{2} \left[x \sqrt{x^2 + a^2} + a^2 \log \left(x + \sqrt{x^2 + a^2} \right) \right] + C$$

disponible en la tabla de integrales al final del libro.

 $^{^4\}mathrm{En}$ algunos de estos problemas habrá que emplear la siguiente fórmula