

Lemma 1. Let \mathcal{M} be a primitive integer norm pointset with characteristic D. If p is a rational prime that is also prime in \mathcal{O}_{-D} , and p divides the norm of some pairwise difference in \mathcal{M} , then p divides it with even multiplicity.

Proof. Translate and possibly reflect \mathcal{M} in the plane so that, of the two points whose pairwise distance's norm p divides, one lies at the origin and the other lies on the positive x-axis. Denote the latter point by β .

We will assume, for an contradiction, that p divides $[\beta]$ with odd multiplicity - that is, there exist some positive integers c and k such that $\beta = \sqrt{p^{2k-1}c}$, but p does not divide c.

Now let α be any other arbitrary point in \mathcal{M} . We will show that α takes the form

$$\alpha = \frac{\delta\sqrt{p}}{2\sqrt{c}}\tag{1}$$

for some $\delta \in \mathcal{O}_{-D}$.

Since $[\alpha]$, $[\beta]$, and $[\alpha - \beta]$ are all integers, we know that

$$[\alpha] - [\beta] - [\alpha - \beta] = \alpha \overline{\beta} + \overline{\alpha} \beta = 2x \sqrt{p^{2k-1}c} = a$$

for some $a \in \mathbb{Z}$ such that $x = \frac{a}{2\sqrt{p^{2k-1}c}}$.

The area of the triangle formed by 0, α , and β is

$$\frac{1}{2}y\sqrt{p^{2k-1}c} = \frac{b}{4}\sqrt{D}$$

for some $b \in \mathbb{Z}$ such that $y = \frac{b\sqrt{D}}{2\sqrt{p^{2k-1}c}}$.

Now, letting $\gamma = a + b\sqrt{-D} \in \mathcal{O}_{-D}$, we obtain the following expression for α :

$$\alpha=x+y\sqrt{-D}=\frac{a+b\sqrt{-D}}{2\sqrt{p^{2k-1}c}}=\frac{\gamma}{2\sqrt{p^{2k-1}c}}.$$

Since α has integer norm, the norm of its denominator must divide the norm of γ . So $p^{2k-1} \mid \gamma \overline{\gamma}$. Since p is prime in \mathcal{O}_{-D} , we must have either $p^k \mid \gamma$ or $p^k \mid \overline{\gamma}$. Since p is rational, either case implies that $p^k \mid \gamma$. Thus there exists some $\delta \in \mathcal{O}_{-D}$ such that $\gamma = p^k \delta$, hence proving α takes the form given in (1).

First, assume that $p \neq 2$. Since $p \nmid c$, we must have $2c \mid [\delta]$, thus $p \mid [\alpha]$. Now, instead assume p = 2. Then $\alpha = \frac{\delta}{\sqrt{2c}}$, so $2 \mid \delta \overline{\delta}$, hence $2 \mid \delta$ since we have

assumed p=2 is prime. So $\alpha=\frac{\delta'\sqrt{p}}{\sqrt{c}}$ for some $\delta'\in\mathcal{O}_{-D}$, and again $p\mid [\alpha]$.

Since

$$[\alpha - \beta] = [\alpha] + [\beta] - \alpha \overline{\beta} - \overline{\alpha}\beta = [\alpha] + [\beta] - \sqrt{p^{2k-1}c} \left(\frac{\delta \sqrt{p}}{2\sqrt{c}} + \overline{\frac{\delta \sqrt{p}}{2\sqrt{c}}} \right)$$
$$= [\alpha] + [\beta] - p^k Re(\delta).$$

Since p divides all three of these terms, it divides $[\alpha - \beta]$.

Now, since α was an arbitrary point in \mathcal{M} other than 0 or β , we know if we take some other point $\eta \in \mathcal{M}$, p will divide both $[\eta]$ and $[\eta - \beta]$. It will also be of the form $\eta = \frac{\varepsilon\sqrt{p}}{2\sqrt{c}}$ given in (1), thus

$$p\mid p\frac{[\delta-\varepsilon]}{4c}=[\alpha-\eta]$$

since $p \nmid c$ and, again, if p = 2 then p divides both δ and ε . Therefore, p divides the norms of all pairwise differences in \mathcal{M} , contradicting our assumption that \mathcal{M} is primitive.

Lemma 2. Let \mathcal{M} be an integer norm pointset with characteristic D, and let s be the greatest common divisor of the norms of all pairwise distances in M. The following are equivalent:

- 1. For every $\alpha \in \mathcal{M}$ there exists an ideal $L \subset \mathcal{O}_{-D}$, not necessarily unique, such that $\langle [\alpha] \rangle = L\overline{L}$
- 2. Every prime p which is also prime in \mathcal{O}_{-D} divides s with even multiplicity. In particular, this occurs if \mathcal{M} is primitive.

Proof. Scale \mathcal{M} down by \sqrt{s} to obtain a primitive integer pointset, and let $\alpha \in \mathcal{M}$. By Lemma 1, every rational prime p which is also prime in \mathcal{O}_{-D} divides $\frac{[\alpha]}{s}$ with even multiplicity, so factoring $\langle [\alpha] \rangle$ into prime ideals gives

$$\left\langle \frac{[\alpha]}{s} \right\rangle = \langle p_1 \rangle^{2k_1} \cdots \langle p_k \rangle^{2k_m} L_1 \overline{L_1} \cdots L_n \overline{L_n}$$

$$= \left(\langle p_1 \rangle^{k_1} \cdots \langle p_k \rangle^{k_m} L_1 \cdots L_n \right) \left(\langle p_1 \rangle^{k_1} \cdots \langle p_k \rangle^{k_m} \overline{L_1} \cdots \overline{L_n} \right)$$

$$= J \overline{J}$$

where $J = \langle p_1 \rangle^{k_1} \cdots \langle p_k \rangle^{k_m} L_1 \cdots L_n$. Similarly, factoring s into prime ideals gives

$$\langle [\alpha] \rangle = \langle s \rangle \left\langle \frac{[\alpha]}{s} \right\rangle = \langle q_1 \rangle^{j_1} \cdots \langle q_k \rangle^{j_m} H_1 \overline{H_1} \cdots H_n \overline{H_n} J \overline{J}.$$

This factorization becomes $L\overline{L}$ for some ideal L if and only if each j_i is even.

Theorem. \mathcal{O}_{-D} contains an element of norm $[\alpha]$ if and only if $\langle [\alpha] \rangle$ has such a factorization where L is principal for some $\alpha \in \mathcal{M}$.

Proof. Suppose assume the norm of some $\alpha \in \mathcal{M}$ has such a factorization where L is principal, and let β be a generator of L. Then $[\beta] = [\alpha]$.

For the other direction, assume β has norm $[\alpha]$. Then $[\langle \alpha \rangle] = \langle \beta \rangle \langle \overline{\beta} \rangle$ gives such a factorization where L is principal.

Corollary. Suppose an integer norm pointset \mathcal{M} has characteristic D, where D is a Heegner number, and let s be the greatest common divisor of the norms of all pairwise distances in \mathcal{M} . \mathcal{M} embeds in \mathcal{O}_{-D} if and only if every prime p which is also prime in \mathcal{O}_{-D} divides s with even multiplicity.

In particular, every primitive integer norm pointset with characteristic D embeds in \mathcal{O}_{-D} .

Proof. If some prime p which is also prime in \mathcal{O}_{-D} does not divide s with even multiplicity, then no such factorization exists. So for every $\alpha \in \mathcal{M}$, \mathcal{O}_{-D} contains no element of norm $[\alpha]$, thus \mathcal{M} cannot embed in \mathcal{O}_{-D} .

Now suppose every prime p which is also prime in \mathcal{O}_{-D} does divide s with even multiplicity. Then the norm of some $\alpha \in \mathcal{M}$ has such a factorization, and since \mathcal{O}_{-D} is a principal ideal domain, L is principal. So there exists an element of norm $[\alpha]$ for some $\alpha \in \mathcal{M}$. Thus \mathcal{M} embeds in $\mathbb{Q}(\sqrt{-D})$. Since the square of every ideal of \mathcal{O}_{-D} is principal, \mathcal{M} embeds in \mathcal{O}_{-D} .

The following proposition, proven by Dantong, is the missing direction of Lemma 3 in the paper.

Proposition. If \mathcal{M} is primitive, then $\langle K_1, \ldots, K_n \rangle = \langle 1 \rangle$.

Proof. Suppose some prime ideal $H \subset \mathcal{O}_{-D}$ divides K_i for all i. We know that $\left\langle \left[\frac{\beta_i}{r} \right] \right\rangle = \left\langle [K_i] \right\rangle = K_i \overline{K_i}$ for all i. By Lemma 1, $\left\langle \left[\frac{\beta_i}{r} \right] \right\rangle = L_i \overline{L_i}$ for some ideal $L \subset \mathcal{O}_{-D}$ as well. So, for all i, $H_i \mid L_i$ or $H_i \mid \overline{L_i}$. In either case, $\left\langle [H] \right\rangle = H \overline{H} \mid L_i \overline{L_i} = \left\langle \left[\frac{\beta_i}{r} \right] \right\rangle$ for all i. Thus $[H] \mid \left[\frac{\beta_i}{r} \right]$ for all i.