Week 2 (& 3): Reviews

- Probability review
 - Bayesian Learning
- Linear Algebra
 - Principle Component Analysis
- News:
 - On Saturday, we added 3 additional questions to Assignment I
 - Assignment I due Oct 3rd
 - Discussion session today @ 3:20-4:55pm in Oakes 105

Razvan Marinescu

News:

- On Saturday, we added 3 additional questions to Assignment I
 - Existing questions did not change
- Assignment I due Oct 3rd do start working on it!
- Discussion session today @ 3:20-4:55pm in Oakes 105
 - How to run a jupyter notebook, how to submit the assignment on gradescope, revision of lectures
- All up-to-date info is on the Canvas home page

Probability Review

Probability Review

- Based on experiment: outcome space $\,\Omega\,$ containing all possible atomic outcomes
 - $-\{1,2,3,4,5,6\}$ for a fair die
- Each outcome (atom) has probability density or mass (discrete vs. continuous spaces)
 - p(X = I) = I/6
- Event is a subset of Ω
 - Example event "Die lands on odd numbers": {1,3,5}
- P(event) is sum (or integral) over event's atoms
- Random variable V is a function that maps Ω to (usually) R
- V=value is an event, P(V) is a distribution

Example

- Roll a fair 6-sided die and then flip that many fair coins.
- What is Ω ?

Example

- Roll a fair 6-sided die and then flip that many fair coins.
- What is Ω ?
- Ω={(I,H), (I,T), (2, HH), (2, HT), ..., (6,TTTTTT)}

Event F = "the die lands on an even number"

Example

- Roll a fair 6-sided die and then flip that many fair coins.
- What is Ω ?
- Ω={(I,H), (I,T), (2, HH), (2, HT), ..., (6,TTTTTT)}

Event F = "the die lands on an even number" - F = {(2, HH), (2, HT), ..., (4, HHHH) ... (4, TTTT), ... (6, HHHHHHH), ..., (6, TTTTTT)}

• Number of heads is a random variable

Expectation

What is the expected number of heads?
 Expectation of V is

$$\mathbb{E}[V] = \sum_{\text{atoms } a} \mathbb{P}(a) \cdot V(a)$$

In previous example, atoms are (I, H) or (2, HT)

Expectation and Variance

Expectation for discrete random variables

$$\mathrm{E}[X] = \sum_{i=1}^\infty x_i \, p_i$$

Expectation for continuous random variables

$$\mathrm{E}[X] = \int_{-\infty}^{\infty} x f(x) \, dx.$$

Variance

$$\operatorname{Var}(X) = \operatorname{E}[(X - \operatorname{E}[X])^2]$$

Variance expansion

$$egin{aligned} ext{Var}(X) &= ext{E}ig[(X - ext{E}[X])^2ig] \ &= ext{E}ig[X^2 - 2X \, ext{E}[X] + ext{E}[X]^2ig] \ &= ext{E}ig[X^2ig] - 2 \, ext{E}[X] \, ext{E}[X] + ext{E}[X]^2 \ &= ext{E}ig[X^2ig] - ext{E}[X]^2 \end{aligned}$$

Independence and conditional probability

• Events A and B independent iff:

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

- Conditional probability of A given B
 P(A | B) = P(A and B) / P(B)
- So,
 P(A and B) = P(A | B) P(B)
 P(B and A) = P(B | A) P(A)
- Bayes Rule:

$$P(A \mid B) = P(B \mid A) P(A) / P(B)$$

Expectation and sum-rule

- Expectations add: $E(V_1 + V_2) = E(V_1) + E(V_2)$
- Rule of conditioning: (sum rule)

if events $e_1, e_2, ..., e_k$ partition Ω then:

P(event) =
$$\sum P(e_i) P(\text{event} \mid e_i)$$

= $\sum P(\text{aed event})$
E(randVar) = $\sum P(e_i) E(\text{randVar} \mid e_i)$

Expected number of heads

• E(# heads)
$$= \sum_{r=1}^{6} P(\text{roll} = r) E(\text{# heads | roll} = r)$$

$$= \frac{1}{6} \left(\frac{1+2+3+4+5+6}{2} \right)$$

$$= \frac{21}{12} = 1.75$$

• Joint Distributions factor:

If
$$\Omega = (S \times T \times U)$$
 then $P(S=s,T=t,U=u)$ is $P(S=s) P(T=t \mid S=s) P(U=u \mid S=s,T=t)$ (can draw one at a time with conditioning)

Conditional distributions are distributions:

$$P(A \mid B) = P(A \text{ and } B) / P(B), \text{ so also:}$$

 $P(A \mid B, C) = P(A \text{ and } B \mid C) / P(B \mid C)$

Bayesian Learning

Bayes Rule for Learning

- Assume joint distribution P(X=x,Y=y)
- Want P(Y=y | X=x) for each label y on a new instance x (here (x,y) is an atom)
- $P(y \mid x) = P(x \mid y) \cdot P(y) / P(x)$ Bayes rule
 - Posterior (over Y)
 - Likelihood (of X given Y)
 - Prior (over Y)
 - Normalization constant or Partition function (often intractable)

RVs

Bayes Rule for Learning

- $P(y \mid x)$ proportional to $P(x \mid y)$ P(y)
- From data, learn P(x | y) and P(y)
- Predict label y with largest product

How to learn probabilities

- Street hustler takes bets on coin flips
- You see HTH, what is probability that next flip is H? What is P(H) for coin?

(don't be shy)

Frequentist solution

- Street hustler takes bets on coin flips
- You see HTH.What is P(H) for the coin?
 - (can assume coin is not necessarily fair)

JOIN QUIZ

https://quizizz.com/join

Please use your full name at sign-in, not a nickname

Frequentist solution

- You are a street hustler taking bets on coin flips
- $\theta = p(H)$ (not necessarily 0.5)
- You see HTH.What is P(H) for the coin?
 - (can assume coin is not necessarily fair)
 - $-p(HTH) = p(H)p(T)p(H) = \theta(I \theta)\theta = \theta^{2}(I \theta)$
 - Maximise p(HTH) by setting the derivative to zero: $\partial p(HTH)/\partial \theta = 0$
 - $-\partial p(HTH)/\partial \theta = 2 \theta 3 \theta^2 = 0 \Rightarrow \theta = 2/3 = p(H)$

Frequentist

- Frequentist maximizes likelihood
- <u>Likelihood function</u> $L(\theta) = P(HTH \mid \theta)$
- Frequentist performs $\theta^* = \operatorname{argmax}_{\theta} L(\theta)$
- The probability P(HTH | θ =2/3) is
 - P(HTH | θ =2/3) = P(H| θ =2/3)P(T| θ =2/3)P(H| θ =2/3) = 2/3 * 1/3*2/3 = 4/27

Bayesian Parameter Estimation

• Have <u>prior</u> distribution $P(\theta)$ on $\theta = P(H)$; two phase experiment, pick θ then flip 3 times

• Posterior on θ is given by Bayes' rule: $P(\theta \mid \text{HTH}) = P(\text{HTH} \mid \theta) \cdot P(\theta) / P(\text{HTH})$

• In this case, $\theta^2(I-\theta)P(\theta)$ / normalization

Bayesian examples

- In Bayesian methods, we need to set a prior
- Example Prior:

$$P(\theta=0) = P(\theta=1/2) = P(\theta=1) = 1/3$$
:

• $\theta^2(1-\theta)$ P(θ) is 0, 1/24, and 0 for these three cases

posterior
$$P(\theta=1/2 \mid HTH) = 1$$

Bayesian examples

• Prior density: $P(\theta) = I$ for $0 \le \theta \le I$:

$$\theta^2(1-\theta) P(\theta)$$
 is $\theta^2(1-\theta)$ for $0 \le \theta \le 1$

posterior $P(\theta \mid HTH)$ is $12 \theta^2(1-\theta)$

Posterior plot

- Max at 2/3
- Average is 3/5
- 3/5 = (2+1)/(3+2)
- Not a coincidence!
 Laplace's rule of succession - add one fictitious observation of each class

Bayes' Estimation

• Treat parameter θ as a random var with the prior distribution $P(\theta)$, see training data Z,

```
P(ML model \mid Data) = P(Model) P(Data \mid Model) / P(Z)
```

Posterior Prior Data likelihood constant

$$P(\theta \mid Z)$$
 proportional to $P(\theta)$ $P(Z \mid \theta)$

Posterior Prior Data likelihood

Bayes' Estimation

• Treat parameter θ ' as a random var with the prior distribution $P(\theta)$, use fixed data Z(RVS)

Maximum Likelihood (ML):

$$-\theta_{ML} = \operatorname{argmax}_{\theta'} P(Z \mid \theta = \theta')$$

Maximum a Posteriori (MAP):

$$-\theta_{MAP} = \operatorname{argmax}_{\theta'} P(\theta = \theta' \mid Z)$$

= $\operatorname{argmax}_{\theta'} P(Z \mid \theta = \theta') P(\theta = \theta') / P(Z)$

Use for learning RVs

- Draw enough data so that $P(Y=y \mid X=x)$ estimated for every possible (x,y) pair
- This takes lots of data curse of dimensionality
 ...rote learning
- Another approach: a class of models
- Think of each model m as a way of generating the training set Z of (x,y) pairs

The "Data Experiment"

- Prior P(M=m) on model space
- Models gives $P(Z=z \mid M=m)$ (here data Z is both y's and x's)

Joint experiment (if data i.i.d. given m)

$$P(\{(\boldsymbol{x}_{i},\boldsymbol{y}_{i})\}, m) = P(m) \prod_{i} (P(\boldsymbol{x}_{i}|m) P(\boldsymbol{y}_{i}|\boldsymbol{x}_{i}, m))$$

Bayesian model selection

- **Prior** P(m) over models
- Each model gives P(Z | m)
- Posterior $P(m \mid Z) = P(Z \mid m) P(m) / P(Z)$

- Max. likelihood: m having max P(Z | m)
- Max. a'posteriori: m having max P(m | Z)

Discriminative and Generative models

- Generative model: $P((x, y) \mid m)$
 - Tells how to generate examples (both instances and labels)
- Discriminative model: $P(y \mid m, x)$
 - Tells how to create labels from instances, (like linear regression)
 - Discriminate function: predict y = f(x),
 - often $f(x) = \operatorname{argmax}_{y} f_{y}(x)$.

More on Generative approach

- Generative approach models P(x,y | m)
- Learn P(x | y,m) and use Bayes' rule

$$P(y \mid \mathbf{x}, m) = P(\mathbf{x} \mid y, m) P(y \mid m) / P(\mathbf{x} \mid m)$$

• Need model for P(x | y, m)

More on Generative approach

- Need model for P(x | y, m)
- One common assumption:
 - $P(x \mid y,m)$ Gaussian $P(y \mid m)$ Bernoulli (biased coin flip)
- How to learn (fit) Gaussian from data?

I dimensional Gausians

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• Maximum likelihood estimate has sample mean $\mu = (1/n) \sum_{i} x_{i}$ and

sample variance
$$\sigma^2 = (1/n) \sum_i (x_i - \mu)^2$$

= $E[(x - \mu)^2]$
= $E[x^2] - \mu^2$

• What (μ, σ^2) best fits [-1, 1, 1, 7] ?

Multivariate Gaussians

$$P(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp(-\frac{1}{2} [\mathbf{x} - \mu]^T \Sigma^{-1} [\mathbf{x} - \mu])$$

• Mean vector μ , covariance matrix Σ , entries of covariance matrix are variances (or co-variances), $\sigma^2_{i,j} = \mathbb{E}[(x_i - \mu_i)(x_j - \mu_j)]$ (subscripts are indices into vectors)

Estimating Gaussians (maximum likelihood)

- Maximum likelihood estimate: argmax μ p($\mathbf{x} | \mu$, σ)
 - $-\mu^* = (\sum_k x_k) / n$ (Exercise: prove this)
- For covariance we get
 - $-\sigma^{2}_{i,j} = (\sum_{k} (x_{k,i} \mu_{i}) (x_{k,j} \mu_{j})) / n$
 - this is <u>biased</u>: use "n-1" for normalization
- If domain *d*-dimensional:
 - d parameters for μ
 - d(d+1)/2 parameters for $\sigma^2_{i,j}$'s
 - For each class!
 - Many parameters "requires" lots of data

Common tricks

- Share same Σ for all classes
- Assume diagonal Σ 's for each class
- Assume shared $\Sigma = cI$ (spherical)
 - This leads to the simple mean-based linear classifier if data balanced

Exercise: Expectation of a Gamma random variable

- Support: $x \in (0, \infty)$
- Gamma probability density function: $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$
- Expectation:

$$\mathrm{E}(X) = \int_{\mathcal{X}} x \cdot f_X(x) \, \mathrm{d}x \; .$$

Derivation:

$$egin{aligned} \mathrm{E}(X) &= \int_0^\infty x \cdot rac{b^a}{\Gamma(a)} x^{a-1} \exp[-bx] \, \mathrm{d}x \ &= \int_0^\infty rac{b^a}{\Gamma(a)} x^{(a+1)-1} \exp[-bx] \, \mathrm{d}x \ &= \int_0^\infty rac{1}{b} \cdot rac{b^{a+1}}{\Gamma(a)} x^{(a+1)-1} \exp[-bx] \, \mathrm{d}x \ . \end{aligned}$$

Exercise: Expectation of a Gamma random variable

Employing the relation $\Gamma(x+1) = \Gamma(x) \cdot x$, we have

$$\mathrm{E}(X) = \int_0^\infty rac{a}{b} \cdot rac{b^{a+1}}{\Gamma(a+1)} x^{(a+1)-1} \exp[-bx] \, \mathrm{d}x$$

and again using the density of the gamma distribution, we get

$$\mathrm{E}(X) = rac{a}{b} \int_0^\infty \mathrm{Gam}(x; a+1, b) \, \mathrm{d}x \ = rac{a}{b} \; .$$

Week 2: Reviews

- Linear Algebra
 - Principal Component Analysis
- News:
 - Assignment deadline extended to Oct 5th.
 - Late days policy: Each student has a total of five late days for use on assignments. You can extend each assignment due date by either 24 hours or 2 days.
 - Additional late days might only be considered for very special circumstances. Email my TAs to explain your circumstances, and they will decide if they grant an exception.

Razvan Marinescu

Linear Algebra

A matrix:

 $A \in \mathbb{R}^{m \times n}$: a matrix with m rows and n columns

A vector:

 $x \in \mathbb{R}^n$: a vector with n entries

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_i \\ \dots \\ x_n \end{bmatrix}$$

Matrices always represent a linear transformation

Linear Algebra

- To differentiate from a scalar, we often use bolded X
- An element (i_{th}) is denoted as x_i
- An element in a matrix is denoted as a_{ij} or A_{ij}
- j_{th} column of A: a_i or $A_{:,i}$
- i_{th} row of A: a_i^{\top} or $A_{i,:}$

Matrix multiplication

$$A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$$
.

$$C = AB \in \mathbb{R}^{m \times p}$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Inner product
$$x^{\top} \cdot y \in \mathbb{R}$$

Outer product
$$x \cdot y^{\top} \in \mathbb{R}^{m \times n}$$

Matrix multiplication

$$Ax = \begin{bmatrix} a_1^\top x \\ a_2^\top x \\ \dots \\ a_m^\top x \end{bmatrix}$$

Matrix multiplication

Associative property

$$(AB)C = A(BC)$$

Distributive property

$$A(B+C) = AB + AC$$

Identity matrix
$$I$$
 $AI = A = IA$

Diagonal matrix
$$D: D_{ij} = 0$$
, if $i \neq j$

Transpose
$$(A^{\top})_{ij} = A_{ji}$$

$$(A^{\top})^{\top} = A$$

$$(AB)^{\top} = B^{\top}A^{\top}$$

$$(A+B)^{\top} = A^{\top} + B^{\top}$$

Trace of a matrix

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}$$

$$\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$$

$$tr(A+B) = tr(A) + tr(B)$$

$$\operatorname{tr}(cA) = c\operatorname{tr}(A), c \in \mathbb{R}$$

Norm

$$||x||_{2} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \qquad ||x||_{2}^{2} = x^{T}x$$

$$||x||_{1} = \sum_{i}^{n} |x_{i}|$$

$$||x||_{\infty} = \max_{i} |x_{i}|$$

$$||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{\operatorname{tr}(A^{\top}A)}$$

Rank
$$\operatorname{rank}(A)$$

Inverse
$$A^{-1}: A^{-1}A = I$$

$$(A^{-1})^{-1} = A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

Orthogonal
$$x^{\top}y = 0$$

Projection: Use PCA as an example shortly

Eigenuevalues and Eigenvectors

$$Ax = \lambda x, x \neq 0$$

x = eigenvectors

 λ = eigenvalues

Eigenvalue decomposition

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}$$

- A has to be square (n x n) and diagonalizable
- Q = eigenvectors of A
- Λ = diagonal matrix with eigenvalues of A

Singular value decomposition

$$\mathbf{A}_{nxp} = \mathbf{U}_{nxn} \, \mathbf{S}_{nxp} \, \mathbf{V}^{\mathbf{T}}_{pxp}$$

- U = eigenvectors of AA^T
- $V = eigenvectors of A^TA$
- S = matrix containing singular values on the diagonal
- Singular values = square root of eigenvalues of either AA^T or A^TA

 As opposed to eigenvalue decomposition, SVD can be applied to any matrix

Singular value decomposition

$$\mathbf{A}_{nxp} = \mathbf{U}_{nxn} \, \mathbf{S}_{nxp} \, \mathbf{V}^{\mathsf{T}}_{pxp}$$

- U = eigenvectors of AA^T
- $V = eigenvectors of A^TA$
- S = matrix containing singular values on the diagonal
- Singular values = square root of eigenvalues of either AA^T or A^TA

How to compute the SVD:

- U: Solve for eigenvectors and eigenvalues of AA^T: (AA^T λI)u =
- V: Solve for eigenvectors of A^TA : $(A^TA \lambda I)v = 0$
- S is the diagonal matrix containing the square-roots of λ (eigenvalues of AA^T)

SVD example

$$\mathbf{A}_{nxp} = \mathbf{U}_{nxn} \, \mathbf{S}_{nxp} \, \mathbf{V}^{\mathbf{T}}_{pxp}$$

Matrix Calculus

Derivative w.r.t. a matrix A:

Suppose a function $f:R^{m \times n} \rightarrow R$ takes a matrix A as inputs

$$\partial_{A} f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \dots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \dots & \frac{\partial f(A)}{\partial A_{2n}} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \dots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

Matrix Calculus

Gradient of a function f: Rⁿ -> R w.r.t. a vector

$$\partial_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \dots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

Matrix Calculus

The Hessian of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the matrix of double derivatives

$$\partial_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \dots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \end{bmatrix}$$

Let's try
Principal Component Analysis

- One of the most widely used feature construction/selection techniques is Principal Component Analysis (PCA)
 - PCA constructs new features that are linear combinations of given features
- Computed eigenvectors and eigenvalues hold useful information
- Often used for dimensionality reduction, finding the intrinsic linear structure in the data

Given features I and 2 (x_1, x_2) <u>Computed</u> features I and 2 (green axes)

$$PC_1 = \underset{y}{\operatorname{argmax}}(y^T X)(X^T y)$$
(maximize variance of points projected onto unit vector y)

A vector projection to another:

$$\mathbf{x}^{\top}u$$

Now with n vectors

$$\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(n)}$$

Which η_L represent them the best?

Quiz: maximizing the variance

 Consider the two projections below, which maximizes the data diversity?

Idea: project all onto $\,u\,$, but preserve as much variation as possible

Maximize

$$\frac{1}{N} \sum_{m=1}^{N} \left(u^{\mathsf{T}} \mathbf{x}^{(n)} - u^{\mathsf{T}} \bar{\mathbf{x}} \right)^{2}$$

Assume centered, $\mathbf{x} = \mathbf{0}$, so variance becomes

$$\frac{1}{N} \sum_{n=1}^{N} \left(\mathbf{u}^{\mathsf{T}} \mathbf{x}^{(n)} \right)^{2} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}^{\mathsf{T}} \mathbf{x}^{(n)} \bullet (\mathbf{x}^{(n)})^{\mathsf{T}} \mathbf{u}$$

$$= \mathbf{u}^{\mathsf{T}} \underbrace{\left(\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} (\mathbf{x}^{(n)})^{\mathsf{T}} \right)}_{\text{data covariance matrix, S}} \mathbf{u}$$

$$= \mathbf{u}^{\mathsf{T}} \mathbf{S} \mathbf{u}$$

- Constraining $u^{\top}u=1$
- Lagrange multiplier (will cover again at SVM)

$$u^{\mathsf{T}} S u + \lambda (u^{\mathsf{T}} u - 1)$$

Optimize (1st order derivatives in u, set to 0)

$$Su = \lambda u$$

• 11 is the eigenvector!

- Top K most important directions?
- Top K eigenvectors!

$$Su_k = \lambda_k u_k$$

- Application: Reduce redundancy (collapse redundant features).
- Finds new way of encoding examples
- Normalize old features

- Uses a linear transformation:
- New features are projections (how much you weight on each direction)

$$x^{\top}u_{1}, x^{\top}u_{2}, ..., x^{\top}u_{K}$$

Projecting gives K new features

PCA for dimensionality reduction

- So the eigenvalues can give clues to the intrinsic dimensionality of the data, or at least provide a way to more efficiently approximate high-dimensional data with lower-dimensional feature vectors
- For example:

60-dimensional data (60 eigenvectors and eigenvalues)

Many of the eigenvalues are small, meaning that their associated eigenvectors don't contribute much to the representation of the data

We can choose a cutoff – say, only use the first 20 eigenvectors (or 10, or 5)

 A well-known technique for face recognition based on computing eigenvectors of a training set of face images, i.e., Eigenfaces

Eigenfaces I

Eigenfaces 2

Keep in mind: an image is just an N-dimensional point or vector (where $N = rows \times cols$)

 Eigenvectors (eigenfaces) can be thought of as basis vectors for reconstructing data (face images)

- The Eigenfaces span a (relatively) low-dimensional face space, representing all possible face images
- A new (unknown) face image is projected into the face space (reconstructed by the Eigenfaces)

- The distance between the face image and its reconstruction is the

u₂ 3 4 face space

u₂ 3 u₁

1 2

distance from face space

(c)

- The distance from face space measure could be used for face detection: Does this image (or part of an image) look like a face?
- If yes, then use the Eigenface weights (projections) as features for classification (classes Ω_1 , Ω_2 , etc.)
 - E.g., using k-NN

JOIN QUIZ

https://quizizz.com/join

Please use your full name at sign-in, not a nickname