LAPORAN PRAKTIKUM 3 ANALISIS ALGORITMA

DISUSUN OLEH

AHMAD IRFAN FADHOLI 140810180034

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN 2020

Worksheet 3

1. Untuk $T(n)=2+4+6+8+16+\cdots+n^2$, tentukan nilai C, f(n), n_o , dan notasi Big-O sedemikian sehingga T(n)=O(f(n)) jika $T(n)\leq C$ untuk semua $n\geq n_0$

1) Tin)= 2+9+8+10	B+ +2"	
Dorot: a(1"-1)	= 2(27-1) = 7	cn+1-7
(1-1)	2-1	
Notari big 0 -7	B (2")	
T(n) L C. 2"	2-2 50	
	2	
21+1-2 € €. 27	C21	guest de malagas de deministrativos especialistas de la compresentación de la compresent
2 - 3 4 C		

2. Buktikan bahwa untuk konstanta-konstanta positif p, q, dan r: $T(n)=pn^2+qn+r \text{ adalah } O(n^2), \Omega(n^2), dan \ \Theta(n^2)$

2) By Pembultian Big -0	* Pemberhan Rig is (1 Ch')
T(n) L C.r(n)	T(n) > c(n)
Pmpn 2 ton tr & C. n2	pnif qnitr > cni
pn 2 far +r con	misalam n =1 dan p =qx=1
n2 ni ni	p+9 +5 ≥ C
ptg tr	n n
n n²	1+1 +1 2 C
misalun n=1 den p=d=1=1	C > 5
1+1+1 & C *	Big (3)
1 2	Karon B (n2) don or (n2) forbulate make
C Z 3	O(n) Auga Conar

3. Tentukan waktu kompleksitas asimptotik (Big-O, Big-Ω, dan Big-Θ) dari kode program berikut: for k ← 1 to n do
for i ← 1 to n do
for j ← to n do
wij ← wij or wik and wkj
endfor
endfor

```
3) f(n) = o(n) + o(n) + o(n) + o(1)

= o(n^{3}) \rightarrow f(n)

Big o = o(f(n)) = o(n^{5})

Big n = n(f(n)) - n(n^{3})

Big \theta = \theta(f(n)) = \theta(n^{3}), karom Big o = big so
```

4. Tulislah algoritma untuk menjumlahkan dua buah matriks yang masing-masing berukuran n x n. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big- Ω , dan Big- Θ ?

```
(1) For 1 \in I to n do

for j \in I to n do

for j \in I to n do

\lim_{n \to \infty} 0 = 0 \quad (n^{\alpha})

\lim_{n \to \infty} 0 = 0 \quad (n^{\alpha})

\lim_{n \to \infty} 0 = 0 \quad (n^{\alpha})

\lim_{n \to \infty} 0 = 0 \quad (n^{\alpha})
```

5. Tulislah algoritma untuk menyalin (copy) isi sebuah larik ke larik lain. Ukuran elemen larik adalah n elemen. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big-Ω, dan Big-Θ?

5) For i <1	to n do	てい)こり	eta a fanta a santa a de a santa a san
0, 5	61		
en afor			and the second s
,			
0 (n)	s (n)		
n c Cn	n > Cn		
C 21	C ()		
0 (v	1): 2 (1)) -7 0 (n)	

6. Diberikan algoritma Bubble Sort sebagai berikut:

```
procedure BubbleSort(input/output a1, a2, ..., an integer)
 { Mengurut tabel integer TabInt[1..n] dengan metode pengurutan bubble-
  Masukan: a1, a2, ..., an
   Keluaran: a_1, a_2, ..., a_n (terurut menaik)
 Deklarasi
    k : integer ( indeks untuk traversal tabel )
    pass : integer ( tahapan pengurutan )
    temp : integer ( peubah bantu untuk pertukaran elemen tabel )
Algoritma
    for pass \leftarrow 1 to n - 1 do
      for k ← n downto pass + 1 do
         if a_k < a_{k-1} then
             { pertukarkan ak dengan ak-1 }
             temp \leftarrow a_k
             a_k \leftarrow a_{k-1}
             a_{k-1}\leftarrow temp
         endif
      endfor
    endfor
```

- (a) Hitung berapa jumlah operasi perbandingan elemen-elemen tabel!
- (b) Berapa kali maksimum pertukaran elemen-elemen tabel dilakukan?
- (c) Hitung kompleksitas waktu asimptotik (Big-O, Big- Ω , dan Big- Θ) dari algoritma Bubble Sort tersebut!

Ga. Pass) Dum on operas.		
1	10-1 +	$(n) = (n-1) + (n-2) + \dots + 1$	
2	n - 2	= n(n-1)	
3	n - 5	= (n2n)	
		-2	
n			
1 00 4	= hilacas alam	n (a 1)	
b. Mah po	rfularan slom	on: n (n-1)	
Komple	unifus would us	on : n (n-1)	
e. Komplet	critary world u	2 (n-1)	
e. Komplet - Big -	wifes would u $0 = O(n^2)$ $1 = 10$	2 (n-1)	

- 7. Untuk menyelesaikan problem X dengan ukuran N tersedia 3 macam algoritma:
 - (a) Algoritma A mempunyai kompleksitas waktu O(log N)
 - (b) Algoritma B mempunyai kompleksitas waktu O(N log N)
 - (c) Algoritma C mempunyai kompleksitas waktu $O(N^2)$

Untuk problem X dengan ukuran N=8, algoritma manakah yang paling cepat? Secara asimptotik, algoritma manakah yang paling cepat?

7) a. Algoritma A -> O (log n)	
2 Algoritma B -) O (n log n)	
1 21	
$N = \emptyset$ $A \rightarrow O(1090) = O(3/092)$	
B-> 0 (8/90) = 0 (22/092)	
(-) (pt) = (64)	de lorena Semalian hocal
milminya somalun dutit oper menya	

8. Algoritma mengevaluasi polinom yang lebih baik dapat dibuat dengan metode Horner berikut:

$$p(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + ... + x(a_{n-1} + a_n x)))...))$$

function p2(input x : real) → real
(Mengembalikan nilai p(x) dengan metode Horner)

Deklarasi

k : integer

b₁, b₂, ..., b_n : real

Algoritma

b_n ← a_n

for $k \leftarrow n - 1$ downto 0 do

b_k ← a_k + b_{k · 1} * x

endfor

return b₀

Hitunglah berapa operasi perkalian dan penjumlahan yang dilakukan oleh algoritma diatas, Jumlahkan kedua hitungan tersebut, lalu tentukan kompleksitas waktu asimptotik (Big-O)nya. Manakah yang terbaik, algoritma p atau p2?

0)	Al doritma P		Algoritan	f 7		Landon Marie
	Juntah = n	4n/s	t_(n) =	1+n20-627		
	Kahi = n $T(n) = n + r$					
	dari lodnanya	Setaro	yaita	gama-sama	baguer 166	
	P2 10bih ban	the horona	tion plotust	tas well t	udu (EP)	,h louil