Estimating divergence-free flows via neural networks

D. I. Kabanov 1 L. Espath 1 J. Kiessling 2 R. F. Tempone 1,3

18 March 2021, GAMM 91st Annual Meeting

¹RWTH Aachen, Germany

²KTH, Sweden

³KAUST. Saudi Arabia

Outline

- Problem formulation
- How neural networks are used for the problem
- Example 1: synthetic dataset
- Example 2: real wind dataset from Sweden

Problem formulation

Consider dataset

$$D = \{x_i, u_i\}, i = 1, ..., N$$

where $x_i = (x_i, y_i) \in \mathcal{D} \subset \mathbb{R}^2$ is a spatial point, $u_i = (u_i, v_i) \in \mathbb{R}^2$ is the velocity field at point i.

Assume that the velocity field u(x) satisfies the divergence-free condition, at least approximately:

$$\nabla \cdot \boldsymbol{u}(\boldsymbol{x}) \approx 0.$$

Goal: estimate the velocity field u(x) using the above condition.

Problem formulation

Instead of the true velocity field, we seek for estimator

$$\hat{u}(x;\theta)$$

parameterized by

$$\theta \in \mathbb{R}^n$$

that satisfies the measurements and the divergence-free condition

$$\arg\min_{\boldsymbol{\theta}} \quad \mathbb{E}\left[\|\boldsymbol{u}(\boldsymbol{x}) - \hat{\boldsymbol{u}}(\boldsymbol{x};\boldsymbol{\theta})\|_{L^2(\mathbb{R}^2)}^2\right] + \gamma \|\nabla \cdot \hat{\boldsymbol{u}}(\boldsymbol{x};\boldsymbol{\theta})\|_{L^2(\mathbb{R})}^2$$

where γ is a regularization parameter that determines how strongly the divergence-free condition is enforced.

Problem formulation

$$\arg\min_{\boldsymbol{\theta}} \quad \mathbb{E}\left[\|\boldsymbol{u}(\boldsymbol{x}) - \hat{\boldsymbol{u}}(\boldsymbol{x};\boldsymbol{\theta})\|_{L^2(\mathbb{R}^2)}^2\right] + \gamma \|\nabla \cdot \hat{\boldsymbol{u}}(\boldsymbol{x};\boldsymbol{\theta})\|_{L^2(\mathbb{R})}^2$$

Finite number of measurements to evaluate the first term.

Introduce an additional set of ${\cal P}$ points, at which the divergence-free condition is enforced.

Then the problem is to find

$$\arg\min_{\theta} \quad \frac{1}{N} \sum_{i=1}^{N} ||\boldsymbol{u}_{i} - \hat{\boldsymbol{u}}(\boldsymbol{x}_{i}; \theta)||_{2}^{2} + \frac{\gamma}{P} \sum_{i=1}^{P} (\nabla \cdot \hat{\boldsymbol{u}}(\boldsymbol{x}_{i}; \theta))^{2}$$

Estimator function

We use a neural network as an estimator function $\hat{u}(x;\theta)$.

This neural network is of type "multi-layer perceptron":

$$\hat{\boldsymbol{u}}(\boldsymbol{x};\boldsymbol{\theta}) = A \circ F_{L-1} \circ \cdots \circ F_1(\boldsymbol{x})$$

where

ullet Hidden layers $F_j:\mathbb{R}^{n_{j-1}} o\mathbb{R}^{n_j}$ are defined as

$$F_{j}\left(\boldsymbol{z}_{j-1}\right) = \sigma\left(\boldsymbol{W}_{j}\boldsymbol{z}_{j-1} + \boldsymbol{b}_{j}\right)$$

with $\boldsymbol{\sigma}$ being a nonlinear function applied componentwise

- $A(z_L) = W_L z_L + b_L$ the output layer
- Parameter vector $\boldsymbol{\theta}$ is a concatenation of weight matrices \boldsymbol{W}_j and bias vectors \boldsymbol{b}_j , $j=1,\ldots,L$.

Visualization of a neural network $\mathbb{R}^2 o \mathbb{R}^2$

 $[\verb|https://texample.net/tikz/examples/neural-network/, with modifications|]$

Other details

- Points where divergence-free condition is enforced, are on the uniform grid
- To solve the optimization problem, we use ADAM optimizer
- Exponential averaging of the parameters is used for prediction
- Code is written using libraries Keras and Tensorflow 2

Example 1

Example 1

Dataset of synthetic noiseless data

$$\{x_i, u_i\}, \quad i = 1, ..., 10$$

where

$$u(x,y) = \begin{pmatrix} \cos x \sin y \\ -\sin x \cos y \end{pmatrix}$$

and points $x_i = (x_i, y_i)$ are sampled uniformly from domain $[0; 2\pi]^2$.

This dataset is a Taylor-Green 2D vortex fixed in time.

Test data are 21×21 uniform grid in this domain.

Example 1, true field

Model performance score

Model performance is measured with R^2 score:

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} \|\boldsymbol{u}_{i} - \hat{\boldsymbol{u}}(\boldsymbol{x}; \boldsymbol{\theta})\|_{2}^{2}}{\sum_{i=1}^{N} \|\boldsymbol{u}_{i}\|_{2}^{2}}$$

Interpretation:

- measure model performance relative to the model that predicts zero velocity field at each point
- perfect model has $R^2 = 1$.

R^2 score versus γ

Training by minimizing misfit $+\ \gamma$ div-free condition

Error fields

Training by minimizing misfit $+ \gamma$ div-free condition

Example 2

Example 2: Reconstruction of wind field over Sweden

- We apply a neural network with div-free regularization to the problem of reconstruction of the wind fields over Sweden
- Data are collected from 165 weather stations in 2018
- Measurements are hourly but a lot of missing data points form different stations

Basic model to compare with

As a basic model, we use Inverse Distance Weighting (averaging) model, which estimates velocity at point \boldsymbol{x} as

$$\hat{u}_{\mathsf{IDW}}(x) = rac{\sum_{i=1}^{N} W(r_{i,j}) u(x)}{\sum_{i=1}^{N} W(r_{i,j})}$$

where W is a weight: decaying function of distance $r_{i,j}$.

Performance score

To assess the quality of the model, we estimate the prediction error by selecting at random from the dataset T=500 time snapshots and computing an average R^2 score using five-fold cross-validation:

$$R^{2} = 1 - \frac{\sum_{i=1}^{T} \sum_{j=1}^{5} \frac{1}{N'_{ij}} \sum_{k=1}^{N'_{ij}} \|\boldsymbol{u}_{ijk} - \hat{\boldsymbol{u}}_{ijk}\|_{2}^{2}}{\sum_{i=1}^{T} \sum_{j=1}^{5} \frac{1}{N'_{ij}} \sum_{k=1}^{N'_{ij}} \|\boldsymbol{u}_{ijk}\|_{2}^{2}}$$

where N'_{ij} denotes number of test measurements for the ith time snapshot and jth cross-validation fold.

That is, we train $500 \times 5 = 2500$ neural networks.

Search for neural network better than the base model

We train neural networks with configuration specified by a triplet:

Divergence-free multiplier: $\gamma \in \{0, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$

Number of neurons in the 1st hidden layer: $h_1 \in \{20,30\}$

Number of neurons in the 2nd hidden layer: $h_2 \in \{0, 10, 20\}$

Search for neural network better than the base model

We train neural networks with configuration specified by a triplet:

Divergence-free multiplier: $\gamma \in \{0, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$

Number of neurons in the 1st hidden layer: $h_1 \in \{20,30\}$

Number of neurons in the 2nd hidden layer: $h_2 \in \{0, 10, 20\}$

Summary

- We implemented a neural network which learns divergence-free velocity fields
- True div-free data with scarce measurements greatly benefit from such network: prediction error decreases 4x
- Application to real data of wind velocity measurements over Sweden does not show much advantage of the neural network over simple Inverse Distance Weighting model. Moreover, div-free regularizer improves prediction abilities of the neural network only marginally

Thank you!