Théorie des groupes

Feuille de TD1

11 Septembre 2017

Exercice 1. Pour chacun des couples suivants (ensemble, loi de composition), justifier s'il s'agit ou non d'un groupe.

- 1. $(\mathbf{Q}, *)$ avec $a * b = a + b + \alpha ab$ et $\alpha \in \mathbf{Q}$.
- 2. $(\{A \in \mathcal{M}_n(\mathbf{R}) \mid \det(A) \neq 0\}, \cdot)$, où \cdot est la multiplication usuelle pour les matrices et $n \geq 1$.
- 3. $(\{f : E \to \mathbf{Z}\}, +)$ où E est un ensemble.

Exercice 2. Soit (G, *) un ensemble muni d'une loi de composition interne associative. On suppose de plus que :

- 1. * admet un élément neutre à droite (il existe $e \in G$ tel que pour tout $x \in G$, on ait x * e = x)
- 2. tout élément $x \in G$ admet un symétrique à droite (i.e pour tout $x \in G$, il existe $x' \in G$ tel que x * x' = e).

Montrer que G est un groupe (on pourra commencer par montrer que l'inverse à droite est aussi un inverse à gauche).

Si on ne suppose plus * associative, montrer que l'on peut vérifier 1. et 2. sans pour autant que l'inverse à droite et à gauche ne coïncident.

Exercice 3. Soient G un groupe et $g \in G$. On définit une nouvelle loi par $x * y = xg^{-1}y$. Montrer que (G, *) est encore un groupe et préciser le neutre et l'inverse d'un élément de G.

Exercice 4. Soit X un ensemble de cardinal $|X| \le 4$. Décrire (en fonction du cardinal de X) toutes les lois de composition sur X qui en font un groupe.

Exercice 5. Soit (G, *) un groupe dont tous les éléments vérifient $g^2 = e$.

- 1. Montrer que G est abélien.
- 2. Donner un exemple d'un tel groupe (non réduit à un élément).
- 3. Montrer que si G est fini, alors le cardinal de G est une puissance de 2 (*Indication : Montrer que G est muni d'une structure de* $\mathbb{Z}/2\mathbb{Z}$ *espace vectoriel.*)

Exercice 6. Soit (G, *) un groupe.

- 1. Si pour tous $g, h \in G$ on a $(gh)^{-1} = g^{-1}h^{-1}$. Montrer que G est abélien
- 2. Si pour tous $g, h \in G$ on a $(gh)^2 = g^2h^2$. Peut-on conclure que G est abélien?
- 3. On considère le groupe $G < \operatorname{GL}_3(\mathbf{Z}/3\mathbf{Z})$ formé des matrices triangulaires supérieures avec des 1 sur la diagonale. Montrer que pour tous $g \in G$ on a $g^3 = 1$ (en particulier $(gh)^3 = g^3h^3$ pour tout $(g,h) \in G^2$). Le groupe G est-il abélien?

Exercice 7. 1. Montrer que les décimaux $D := \{ \frac{a}{10^n} \mid a \in \mathbf{Z}, n \in \mathbf{N} \}$ est un sous-groupe de $(\mathbf{Q}, +)$. Que se passe-t-il si l'on remplace 10 par n'importe quel autre entier non nul?

- 2. L'ensemble $\{-1,0,1\}$ est-il un sous-groupe de $(\mathbf{Z},+)$?
- 3. Soit $n \ge 1$. Montrer que $U_n := \{e^{\frac{2ik\pi}{n}} \mid k \in \mathbf{N}\}$ est un sous-groupe fini de $(\mathbf{C}^{\times}, \cdot)$. Donner l'ordre de chaque élément de U_n . Donner un exemple de groupe infini dont chaque élément est d'ordre fini.

4. Soit p un nombre premier. Montrer que $\{a+ib\sqrt{p}\mid (a,b)\in \mathbf{Z}\}$ est un sous-groupe de $(\mathbf{C},+)$ et que $\{a+ib\sqrt{p}\mid (a,b)\in \mathbf{Q}^{\times}\}$ est un sous-groupe de $(\mathbf{C}^{\times},\cdot)$

Exercice 8. Soit

$$\Gamma := \{ \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix} \mid x \in \mathbf{R}^{\times} \}.$$

Montrer que Γ muni de la loi de multiplication pour les matrices est un groupe mais que ce n'est pas un sous-groupe de $Gl_2(\mathbf{R})$. Vérifier que Γ est isomorphe au groupe $(\mathbf{R}^{\times},\cdot)$.

Exercice 9. Soit G un groupe. On appelle centre du groupe et l'on note $\mathcal{Z}(G) := \{x \in G \mid \forall y \in G, xy = yx\}$. Montrer que $\mathcal{Z}(G)$ est un sous-groupe abélien de G et que si G possède un unique élément d'ordre deux, alors cet élément est dans $\mathcal{Z}(G)$.

Exercice 10. Soit H une partie non vide d'un groupe G qui est stable par la loi de groupe $(g, h \in H)$ $H \Rightarrow gh \in H$. Montrer que, si H est finie, H est alors un sous-groupe de G. Donner un exemple de couple (G, H) avec H multiplicativement stable mais où H n'est pas un sous-groupe de G.

Exercice 11. Soit G un groupe et H, K deux sous-groupes de G.

- 1. Montrer que $K \cup H$ est un sous-groupe de G si et seulement si $K \subset H$ ou $H \subset K$.
- 2. Montrer qu'un groupe ne peut pas être la réunion de deux sous-groupes propres.
- 3. Donner un exemple où H,K sont deux sous-groupe de G mais que $H\cup K$ n'est pas un sous-groupe de G.

Exercice 12. En considérant les matrices

$$A:=\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \quad \text{et} \quad B:=\left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array}\right),$$

montrer que le produit de deux éléments d'ordres finis ne l'est pas nécessairement.

Exercice 13. On considère G un groupe fini.

- 1. Montrer que si |G| est pair, alors G contient un élément $g \neq 1$ avec $g^2 = 1$.
- 2. Montrer que, si G contient un élément d'ordre 2, alors il est d'ordre |G| pair

Exercice 14. Soient H et G deux groupes. Montrer que le produit cartésien $H \times G$ muni de la loi (h,g)*(h',g')=(hh',gg') a une structure de groupe. Indiquer l'élément neutre et l'inverse.

Exercice 15 (Groupe des quaternions).

Soit les éléments de $GL(2, \mathbb{C})$ suivants :

$$I = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right), \qquad J = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \qquad K = \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array} \right)$$

Nous notons 1 la matrice identité de $GL(2, \mathbb{C})$.

- 1. Montrer que : $I^2 = J^2 = K^2 = IJK = -1$.
- 2. En déduire que $\{id = 1, -id = -1, I, -I, J, -J, K, -K\}$ est le groupe d'ordre 8 engendré par I, J et K. Vérifier qu'il n'est pas abélien. Ce groupe est appelé **groupe des quaternions** et on le note Q_8 .
- 3. Donner la liste des sous-groupes de Q_8 .

Exercice 16 (Groupe libre). Soit X un ensemble. À tout élément x de X, on associe un symbole x^{-1} . Et l'on note X^{-1} l'ensemble des x^{-1} pour x parcourant x. On va construire un ensemble G(X) de la manière suivante : un élément de G(X) est un mot, c'est-à-dire une suite finie d'éléments de $X \cup X^{-1}$ ne comprenant aucune séquence de deux termes consécutifs de la forme xx^{-1} ou $x^{-1}x$ pour $x \in X$. On va ajouter une loi de composition interne sur G(X). On multiplie deux éléments (ou mots) de G(X) en les concaténant puis en le réduisant, c'est-à-dire en éliminant les séquences xx^{-1} ou $x^{-1}x$ que l'on rencontre. On va définir l'élément neutre de G(X) comme étant le mot vide

- 1. Montrer que G(X) avec la loi ainsi définie est un groupe.
- 2. Soit $f: X \to G$ une application ensembliste, montrez que l'on peut définir un morphisme de groupe $\tilde{f}: G(X) \to G$ qui vérifie $\tilde{f}(x) = f(x)$ pour tout $x \in X$.