Определение 1

Комплексное число — число вида $z=a+bi\in\mathbb{C}$, где i — комплексная единица: $i^2=-1,\ a\ a,b\in\mathbb{R}$ такая форма записи называется **алгебраической**.

 ${\it Beщественной частью}\ z$ называется число ${
m Re}(z)=a$

Мнимой частью z называется число $\operatorname{Im}(z) = b$

Пример 1. $1+2i \in \mathbb{C}$

Определение 2

Сложение и вычитание комплексных чисел определяется так:

$$(a + bi) \pm (c + di) = (a \pm c) + (b \pm d)i$$

Определение 3

Умножение комплексных чисел определяется так:

$$(a+bi)\cdot(c+di) = (ac-bd) + (ad+bc)i$$

Определение 4

 ${\it Conp яженноe}$ комплексное число к z=a+bi это $\overline{z}=a-bi$

Пример 2. $z + \overline{z} \in \mathbb{R}$

Пример 3. $z \cdot \overline{z} \in \mathbb{R}$

Задача 1

Пусть $x_0, x_1, x_2 \in \mathbb{C}, f(x)$ — многочлен с вещественными коэффициентами. Докажите, что

(a)
$$\overline{x_1 + x_2} = \overline{x_1} + \overline{x_2}$$
,

(b)
$$\overline{x_1 \cdot x_2} = \overline{x_1} \cdot \overline{x_2}$$
,

(c)
$$\overline{x_1/x_2} = \overline{x_1}/\overline{x_2}$$
,

(d)
$$\overline{f(x_0)} = f(\overline{x_0}).$$

(е) Докажите, что если x_0 — корень многочлена f(x). Докажите, что и $\overline{x_0}$ корень f(x).

Докажите, что если есть комплексное число t, такое, что $t+z\in\mathbb{R},\,t\cdot z\in\mathbb{R},\,$ и ${\rm Im}(z)\neq 0.$ Тогда $t=\overline{z}$

Определение 5

 \pmb{Modynb} комплексного числа к z=a+bi является $|z|=\sqrt{a^2+b^2}$

Пример 4. $z \cdot \overline{z} = |z|^2$

Задача 3

Докажите, что $|z_1| \cdot |z_2| = |z_1 \cdot z_2|$

Определение 6

Обратное к комплексному числу z=a+bi является $\frac{1}{z}=\frac{\overline{z}}{|z|^2}$

Задача 4

Выведите формулу деления комплексного числа a+bi на c+di

Задача 5

Найдите
$$\frac{1+4i}{2-3i}+3i-4$$

Теорема 1 Эйлера

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Определение 7

Тригонометрической формой записи комплексного числа z=a+bi является запись $z=r(\cos(\varphi)+i\sin(\varphi))=re^{i\varphi}$ $\arg(z)=\varphi-$ **аргумент** комплексного числа z

Найдите тригонометрическую форму для $z=10+10\sqrt{3}i$

Задача 7

Найти множество точек комплексной плоскости, удовлетворяющих: |z-i|=1

Задача 8

Найти на плоскости множество решений, удовлетворяющих данному условию: 1 < |z+3+i| < 3

Задача 9

Докажите, что $\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$

Задача 10

Найдите формулу умножения комплексных чисел в тригонометрической форме

Задача 11

Найдите формулу деления комплексных чисел в тригонометрической форме

Задача 12

Докажите, что возведение в целую степень комплексного числа $z=r(\cos(\varphi)+i\sin(\varphi))=re^{i\varphi}$ работает так:

$$z^{n} = r^{n}e^{in\varphi} = r^{n}(\cos(n\varphi) + i\sin(n\varphi))$$

Задача 13

Найти $(1+\sqrt{3}i)^9$

Найти $(1+i)^{1000}$

Определение 8

Взятие корня n-той степени из комплексного числа $z = r(\cos(\varphi) + i\sin(\varphi)) = re^{i\varphi}$ работает так:

$$\sqrt[n]{z} = \sqrt[n]{r}e^{i\frac{\varphi+2\pi k}{n}} = r^n \left(\cos\left(\frac{\varphi+2\pi k}{n}\right) + i\sin\left(\frac{\varphi+2\pi k}{n}\right)\right) \forall k \in \{1, 2, \dots, n\}$$

Задача 15

Извлеките корень из числа z=3+4i

Задача 16

Решите уравнение $z^3 = -1$

Задача 17

Вычислите корни третьей степени из комплексного числа 2+2i

Задача 18

Решите в комплексных числах следующие квадратные уравнения:

a)
$$z^2 + z + 1 = 0$$

$$6) z^2 + 4z + 29 = 0$$

Задача 19

Известно, что $z + z^{-1} = 2\cos\alpha$.

Докажите, что $z^n + z^{-n} = 2\cos(\alpha \cdot n)$.

Задача 20

Пусть $P(x^n)$ делится на x-1. Докажите, что $P(x^n)$ делится на x^n-1 .

Вычислите

a)
$$C_{100}^0 - C_{100}^2 + C_{100}^4 \cdots + C_{100}^{100}$$

б) $C_{100}^1 - C_{100}^3 + C_{100}^5 \cdots - C_{100}^{99}$

6)
$$C_{100}^1 - C_{100}^3 + C_{100}^5 \cdots - C_{100}^{99}$$

Задача 22

Докажите, что многочлен $P(x) = (\cos \varphi + x \sin \varphi)^n - \cos (\varphi \cdot n) - x \sin (\varphi \cdot n)$ делится на $x^2 + 1$.

Задача 23

Докажите, что для произвольных комплексных чисел z и w выполняется равенство $|z+w|^2+|z-w|^2=2(|z|^2+|w|^2)$. Какой геометрический смысл оно имеет?

Задача 24

Докажите данное равенство:
$$\sin\frac{2\pi}{n} + \sin\frac{4\pi}{n} \cdots + \sin\frac{2(n-1)\pi}{n} = 0$$

Задача 25

При каких вещественных p и q двучлен $x^4 + 1$ делится на $x^2 + px + q$?