Regulation of respiration: Chemical regulation INTENDED LEARNING OBJECTIVES (ILOs)

By the end of this lecture the student will be able to:

- 1. Identify the location and function of central chemoreceptors and their role in regulation of ventilation.
- 2. Identify the location and function of peripheral chemoreceptors and their role in regulation of ventilation.
- 3. Explain the ventilatory responses to increased PCO₂.
- 4. Describe the ventilatory responses to decreased PO₂.
- 5. Explain causes of hyperventilation during moderate muscular exercise.

CHEMICAL REGULATION OF RESPIRATION

Chemical regulation of ventilation is done by changes in level of CO₂, O₂ and H⁺ These changes are mediate by 2 types of chemoreceptors

A- Central:

Located in medulla and stimulated by rise in arterial blood CO_2 which pass through BBB leading to rise CSF H⁺, stimulating the central chemoreceptors.

Change in arterial H⁺ does not affect central chemoreceptors can't pass BBB.

B- Peripheral:

Located in the carotid and aortic bodies, stimulated by decrease in PO_2 and increase in PCO_2 and H^+ in arterial blood.

N.B: peripheral chemoreceptors respond to decrease in PO_2 and not the O_2 content. So,

Figure 42-4. Respiratory control by peripheral chemoreceptors in the carotid and actic bodies

in anemia and CO poisoning the peripheral chemoreceptors are not stimulated

VENTILATORY RESPONSES TO INCREASED PCO₂

Under normal condition arterial PCO₂ is the main regulator of respiration. It contribute to *minute to minute control* of respiration

Change in arterial PCO2 stimulate ventilation reflexly *mainly* through the central *chemoreceptors* and to lesser extend through carotid and aortic bodies which are only weakly responsive to changes in arterial PCO₂

N.B.: *Increase in PCO₂ beyond* 70 mmHg, does not increase ventilation, but actually depress the entire brain (CO₂ narcosis).

Response to CO₂:

N.B: ventilation stimulated via peripheral chemoreceptors by a decrease in PO_2 only when the decrease is large.

VENTILATORY RESPONSES TO DECREASED PO2

Arterial PO_2 is monitored by peripheral chemoreceptors. Arterial PO_2 must **fall below 60 mm Hg** before the peripheral chemoreceptors respond by sending afferent impulses to the medullary inspiratory neurons, thereby reflexly increasing ventilation.

It does not play a role in the normal ongoing regulation of respiration, but it is a life-saver mechanism.

N.B: Decreased arterial PO₂ from 100-60 mm Hg stimulates peripheral chemoreceptors less than expected, because hyperventilation will decrease both blood PCO₂ and H⁺ leading to depression of respiratory centers.

Therefore, the stimulatory effects of hypoxia on ventilation are not clearly manifest until they become strong enough to override the counterbalancing inhibitory effects of a decline in arterial H⁺ concentration and PCO₂.

VENTILATORY RESPONSES TO CHANGE IN pH

Change in arterial H⁺ concentration can't affect central chemoreceptors, it produces its effect through peripheral chemoreceptors.

Increase in arterial H⁺ concentration will lead to hyperventilation and vice versa

CHANGE IN VENTILATION WITH MUSCULAR EXERCISE

- 1- There is abrupt increase in ventilation with onset of the exercise which may be due to
 - Neurogenic signals transmitted directly to respiratory center at the same time that signals go to the muscles to cause contraction.
 - Afferent impulses from proprioceptors in muscles, tendons, and joints.
- 2- The more gradual increase is presumably, even though arterial pH, Pco₂, and Po₂ remain constant during moderate exercise and it could be due to:

FIGURE 36–14 Diagrammatic representation of changes in ventilation during exercise. See text for details.

- > The increase in body temperature.
- ➤ Exercise increases the plasma K⁺ level, and this increase may stimulate the peripheral chemoreceptors.
- ➤ The sensitivity of the neurons controlling the response to CO₂ is increased

N.B. In heavy exercise: arterial PCO₂ and H⁺ concentration rises at the same time that PO₂ fall, which gives a strong ventilation drive.

SUGGESTED TEXTBOOKS

- 1. Guyton and Hall textbook of medical physiology, thirteenth edition 2016, Elsevier, chapter 42 , from page 539 to 548
- 2. Ganong's Review of Medical Physiology, twenty-fifth edition 2016, McGraw-Hill Education, chapter 36, from page 655 to 664
- 3. Lauralee Sherwood Human Physiology: From Cells to Systems, Ninth edition 2016. CENGAGE, chapter 13, from page 479 to 487