

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A method for producing a lactone comprising culturing *Candida sorbophila* in a medium containing at least one selected from ~~the group consisting of~~ a hydroxy fatty acid, a hydroxy fatty acid derivative, and a hydrolysate of a hydroxy fatty acid derivative, and recovering the produced lactone from the medium.
2. (Currently Amended) A method for producing a lactone comprising culturing *Candida sorbophila* in a medium containing at least one selected from ~~the group consisting of~~ a hydroxy fatty acid, a hydroxy fatty acid derivative, and a hydrolysate of a hydroxy fatty acid derivative, and lactonizing a lactone precursor hydroxy fatty acid produced in the medium.
3. (Currently Amended) The method according to claim 1 or 2, wherein the *Candida sorbophila* is at least one selected from ~~the group consisting of~~ the *Candida sorbophila* strain ATCC 74362, [[the]] *Candida sorbophila* strain ATCC 60130, [[the]] *Candida sorbophila* strain IFO 1583, and [[the]] *Candida sorbophila* strain FC 58 deposited under the accession number FERM BP-8388.
4. (Original) The method according to claim 1 or 2, wherein the lactone is represented by general formula (1):

wherein ring A represents a lactone ring; R¹ represents a hydrogen atom, a hydrocarbon group, a substituted hydrocarbon group, a heterocyclic group, or a substituted heterocyclic group; and R² represents a hydrogen atom, a hydrocarbon group, or a substituted hydrocarbon group; in which ring A and R² may be bonded to form a ring.

5. (Original) The method according to claim 1 or 2, wherein the lactone is an optically active lactone.

6. (Original) The method according to claim 1 or 2, wherein the hydroxy fatty acid is represented by general formula (2):

wherein R¹ represents a hydrogen atom, a hydrocarbon group, a substituted hydrocarbon group, a heterocyclic group, or a substituted heterocyclic group; R² represents a hydrogen atom, a hydrocarbon group, or a substituted hydrocarbon group; and R³ represents an optionally substituted divalent hydrocarbon group having a 4 or more-carbon chain; in which R² and R³ may be bonded to form a ring.

7. (Original) The method according to claim 1 or 2, wherein the hydroxy fatty acid derivative is an alkyl ester of hydroxy fatty acid or a glyceride of hydroxy fatty acid.

8. (Original) The method according to claim 7, wherein the alkyl ester of hydroxy fatty acid is represented by general formula (3):

wherein R¹ represents a hydrogen atom, a hydrocarbon group, a substituted hydrocarbon group, a heterocyclic group, or a substituted heterocyclic group; R² represents a hydrogen atom, a hydrocarbon group, or a substituted hydrocarbon group; R³ represents an optionally substituted divalent hydrocarbon group having a 4 or more-carbon chain; and R⁴ represents an alkyl group; in which R² and R³ may be bonded to form a ring.

9. (Original) The method according to claim 7, wherein the glyceride of hydroxy fatty acid is represented by general formula (4):

wherein R⁶ to R⁸ each independently represents a hydrogen atom or a group represented by general formula (6):

wherein R¹ represents a hydrogen atom, a hydrocarbon group, a substituted hydrocarbon group, a heterocyclic group, or a substituted heterocyclic group; R² represents a hydrogen atom, a hydrocarbon group, or a substituted hydrocarbon group; R³ represents an optionally substituted divalent hydrocarbon group having a 4 or more-carbon chain; and R⁴ represents an alkyl group; in which R² and R³ may be bonded to form a ring, provided that at least one of R⁶ to R⁸ is a group represented by the above general formula (6).

10. (Currently Amended) The method according to claim 1 or 2, wherein *Candida sorbophila* is cultured in a medium containing at least one selected from ~~the group consisting of~~ castor oil, a castor oil hydrolysate, ricinoleic acid, 11-hydroxypalmitic acid, lesquerolic acid, 10-hydroxystearic acid, 10-hydroxypalmitic acid, and ethyl 11-hydroxypalmitate.

11. (Original) The method according to claim 2, wherein the lactone precursor hydroxy fatty acid is a hydroxy fatty acid of 4 or more carbon atoms having a hydroxy group at position 4 or 5 thereof.

12. (Currently Amended) The method according to claim 1 or 2, wherein the lactone is any one selected from ~~the group consisting of~~ γ -decalactone, γ -valerolactone, γ -hexalactone, γ -heptalactone, γ -octalactone, γ -nonalactone, γ -undecalactone, γ -dodecalactone, γ -tridecalactone, γ -tetradecalactone, δ -decalactone, δ -hexalactone, δ -heptalactone, δ -octalactone, δ -nonalactone, δ -undecalactone, δ -dodecalactone, δ -tridecalactone, and δ -tetradecalactone.

13. (Currently Amended) A method for producing a lactone precursor hydroxy fatty acid comprising culturing *Candida sorbophila* in a medium containing at least one selected from the group consisting of a hydroxy fatty acid, a hydroxy fatty acid derivative, and a hydrolysate of a hydroxy fatty acid derivative.

14. (Currently Amended) A method for producing γ -decalactone comprising culturing *Candida sorbophila* in a medium containing at least one selected from the group consisting of castor oil, a castor oil hydrolysate, ricinoleic acid, and lesquerolic acid, and recovering the produced γ -decalactone from the medium.

15. (Currently Amended) A method for producing γ -decalactone comprising culturing *Candida sorbophila* in a medium containing at least one selected from the group consisting of castor oil, a castor oil hydrolysate, ricinoleic acid, and lesquerolic acid, and lactonizing γ -hydroxydecanoic acid produced in the medium.

16. (Original) The method according to claim 14 or 15, wherein γ -decalactone is an optically active γ -decalactone.

17. (Currently Amended) The method according to claim 14 or 15, wherein the at least one selected from the group consisting of castor oil, a castor oil hydrolysate, ricinoleic acid, and lesquerolic acid is castor oil and/or a castor oil hydrolysate.

18. (Original) A method for producing δ -decalactone comprising culturing *Candida sorbophila* in a medium containing 11-hydroxypalmitic acid and/or ethyl 11-hydroxypalmitate and recovering the produced δ -decalactone from the medium.

19. (Original) A method for producing δ -decalactone comprising culturing *Candida sorbophila* in a medium containing 11-hydroxypalmitic acid and/or ethyl 11-hydroxypalmitate and lactonizing δ -hydroxydecanoic acid produced in the medium.

20. (Original) The method according to claim 18 or 19, wherein δ -decalactone is an optically active δ -decalactone.

21. (Currently Amended) The method according to claim 14, 15, 18, or 19, wherein the *Candida sorbophila* is at least one selected from ~~the group consisting of the~~ *Candida sorbophila* strain ATCC 74362, [[the]] *Candida sorbophila* strain ATCC 60130, [[the]] *Candida sorbophila* strain IFO 1583, and [[the]] *Candida sorbophila* strain FC 58 deposited under the accession number FERM BP-8388.

22. (Currently Amended) A method of producing a lactone comprising culturing Use of
Candida sorbophila in a medium for producing a lactone.

23. (Currently Amended) [[A]] An isolated *Candida sorbophila* strain FERM BP-8388.