TEST REPORT

Reference No. : WTS19S05028978W001

FCC ID : 2AFMLBMTX-1000

Applicant.....: BRIGHTON TECHNOLOGIES GROUP

NSW 2213

Manufacturer: Group Sense Mobile-Tech Limited

Kowloon Bay, Hong Kong

Product.....: Paging Transmitter

Model(s). : BMTX-1000

Brand Name : N/A

Standards.....: FCC CFR Title 47 Part 90 Subpart I

Date of Receipt sample : 2019-05-09

Date of Test : 2019-05-10 to 2019-06-06

Date of Issue..... : 2019-06-11

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Ford Wang / Project Engineer

Approved by:

Zhong / Manager

2 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation, the certification number is 4243.01) of USA, CNAS (China National Accreditation Service for Conformity Assessment, the registration number is L3110) of China. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC (The Federal Communications Commission), CEC (California energy efficiency), ISED (Innovation, Science and Economic Development Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek (ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. Electro Magnetic Compatibility (EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

Test Facility:

A. Accreditations for Conformity Assessment (International)

Country/Region	Scope Covered By	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe		EMCD\RED	-
Taiwan	ISO/IEC 17025	NCC	-
Hong Kong		OFCA	-
Australia		RCM	-
India		WPC	-
Thailand		NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. ISED CAB identifier: CN0013

B. TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

3 Contents

		Page
1	COVER PAGE	1
2	LABORATORIES INTRODUCTION	
3	CONTENTS	
4	REVISION HISTORY	
5	GENERAL INFORMATION	
	5.1 GENERAL DESCRIPTION OF E.U.T. 5.2 DETAILS OF E.U.T. 5.3 CHANNEL LIST	
6	TEST SUMMARY	
7	EQUIPMENT USED DURING TEST	
	7.1 EQUIPMENTS LIST	9
8	RF OUTPUT POWER	
	8.1 EUT OPERATION	
9	OCCUPIED BANDWIDTH	
	9.1 EUT OPERATION	
10	EMISSION MASK	
	10.1 EUT OPERATION	
11	OUT OF BAND EMISSION AT ANTENNA TERMINALS	1
	11.1 EUT OPERATION	
12	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	
	12.1 EUT OPERATION	
13	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	
	13.1 EUT OPERATION	
14		
	14.1 EUT OPERATION	20

Reference No.: WTS19S05028978W001 Page 5 of 27

4 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS19S05028 978W001	2019-05-09	2019-05-10 to 2019-06- 06	2019-06-11	original	-	Valid

Reference No.: WTS19S05028978W001 Page 6 of 27

5 **General Information**

5.1 General Description of E.U.T.

Product: Paging Transmitter

BMTX-1000 Model(s):

Model Description: N/A

5.2 Details of E.U.T.

430MHz~470MHz Operation Frequency:

Type of Modulation: **FSK**

Antenna installation: External antenna

Antenna Gain: 2.0dBi

Input: AC 100-240V 50/60Hz 600mA from adapter Ratings:

Output: 12V, 2.0A

5.3 **Channel List**

Channel	Frequency (MHz)
Low	433.050
Middle	450.375
High	469.125

Reference No.: WTS19S05028978W001 Page 7 of 27

6 Test Summary

Test Items	Test Requirement	Result
RF Output Power	Part 2.1046&Part 90.205	PASS
Occupied Bandwidth	Part 2.1049&Part 90.209	PASS
Emission Mask	Part 2.1049&Part 90.209	PASS
Spurious Emissions at Antenna Terminal	Part 2.1051&Part 90.210	PASS
Field Strength of Spurious Radiation	Part 2.1053&Part 90.210	PASS
Frequency stability	Part 2.106&Part 90.214	PASS

Pass: The EUT complies with the essential requirements in the standard.

7 Equipment Used during Test

7.1 Equipments List

	7.1 Equipments List					
3m Semi-anechoic Chamber for Radiation Emissions Test site 1#						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP	100091	2019-04-29	2020-04-28
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	2019-04-09	2020-04-08
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2019-04-09	2020-04-08
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2018-09-12	2019-09-11
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2018-04-09	2019-04-08
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2019-04-09	2020-04-08
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2019-04-09	2020-04-08
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	2019-04-13	2020-04-12
9	Universal Radio Communication Tester	R&S	CMU 200	112461	2019-04-13	2020-04-12
10	Signal Generator	R&S	SMR20	100046	2018-09-12	2019-09-11
11	Smart Antenna	SCHWARZBECK	HA08	-	2019-04-09	2020-04-08
3m Se	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2019-04-13	2020-04-12
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2019-04-09	2020-04-08
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	2019-04-13	2020-04-12
4	Cable	HUBER+SUHNER	CBL2	525178	2019-04-13	2020-04-12
RF Co	RF Conducted Testing					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2018-09-12	2019-09-11
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2018-09-12	2019-09-11

Reference No.: WTS19S05028978W001 Page 9 of 27

3.	Universal Radio Communication Tester	R&S	CMU 200	112461	2019-04-13	2020-04-12
4	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2018-09-12	2019-09-11

7.2 Measurement Uncertainty

Parameter	Uncertainty	
Conducted Emission	± 3.64 dB(AC mains 150KHz~30MHz)	
Radiated Spurious Emissions	± 5.08 dB (Bilog antenna 30M~1000MHz)	
Radiated Spurious Emissions	± 5.47 dB (Horn antenna 1000M~25000MHz)	
Radio Frequency	± 1 x 10 ⁻⁷ Hz	
RF Power	± 0.42 dB	
RF Power Density	± 0.7dB	
Conducted Spurious Emissions	± 2.76 dB (9kHz~26500MHz)	
Confidence interval: 95%. Confidence factor:k=2		

7.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS19S05028978W001 Page 10 of 27

8 RF Output Power

Test Requirement: FCC part90.205
Test Method: TIA/EIA 603-E

Test Mode: Transmitting mode

8.1 EUT Operation

Operating Environment:

Temperature: 22.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

8.2 Test Procedure

The RF output of the transceiver was connected to a power meter through appropriate attenuation.

8.3 Test Result

Band (MHz)	Frequency(MHz)	Conducted Output Power(dBm)
	433.050	35.45
430-470	450.375	34.80
	469.125	34.31

Reference No.: WTS19S05028978W001 Page 11 of 27

9 Occupied Bandwidth

Test Requirement: FCC part 90.210
Test Method: TIA/EIA 603-E

Test Mode: Transmitting mode

9.1 EUT Operation

Operating Environment:

Temperature: 22.5 °C
Humidity: 52.3% RH
Atmospheric Pressure: 101.2kPa

9.2 Test Procedure

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer through appropriate attenuation..
- 2. The transmitter shall be operated at its maximum carrier power measured under normal test
- 3. The span of the analyzer shall be set to capture all products of themodulation process, including the emission skirts.
- 4. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall beapproximately 3x RBW.

9.3 Test Result

Band (MHz)	Frequency(MHz)	Occupied Bandwidth(kHz)
	433.050	17.2
430-470	450.375	17.2
	469.125	17.8

Test plots

Date: 4.JUN.2019 21:33:31

Date: 4.JUN.2019 21:11:17

Date: 4.JUN.2019 20:59:57

Reference No.: WTS19S05028978W001 Page 14 of 27

10 Emission Mask

Test Requirement: FCC part 90.210
Test Method: TIA/EIA 603-E

Test Mode: Transmitting mode

Emission Mask B. For transmitters that are equipped with an audio

low-pass filter, the power of any emission must be attenuated

below the unmodulated carrier power (P) as follows:

(1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the

authorized bandwidth: At least 25 dB.

(2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the

authorized bandwidth: At least 35 dB.

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 +

10 log (P) dB

10.1 EUT Operation

Operating Environment:

Temperature: 22.5 °C
Humidity: 52.3% RH
Atmospheric Pressure: 101.2kPa

10.2 Test Procedure

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. RBW=300Hz, VBW=1kHz

Trace mode: Power averaging over 100 sweeps

10.3 Test Result

Date: 11.NOV.2008 21:58:44

Date: 11.NOV.2008 22:02:40

Date: 11.NOV.2008 21:53:05

Reference No.: WTS19S05028978W001 Page 17 of 27

11 Out of band emission at antenna terminals

Test Requirement: FCC part90.210
Test Method: TIA/EIA 603-E

Test Mode: Transmitting mode

Limit: -25dBm

11.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.3kPa

11.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.

11.3 Test Result

Result:PASS.

Test Plots

Date: 4.JUN.2019 21:15:02

Low Channel - 150kHz~30MHz

Low Channel - 9kHz~150kHz

Date: 4.JUN.2019 21:13:38

Reference No.: WTS19S05028978W001 Page 20 of 27

12 Field strength of spurious radiation measurement

Test Requirement: FCC part90.210
Test Method: TIA/EIA 603-E

Test Mode: Transmitting mode

Limit: -25dBm

12.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

12.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site. The test setup for emission measurement from 30 MHz to 1 GHz.

Semi-anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

3m

Turn Table

CMU200/ PC Spectrum AMP Combining

Analyzer

Network

The test setup for emission measurement above 1 GHz.

System

12.3 Spectrum Analyzer Setup

CMW500

30MHz ~ 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth	100kHz
Video Bandwidth	300kHz

Above 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth	1MHz
Video Bandwidth	3MHz
Detector	Ave.
Resolution Bandwidth	1MHz
Video Bandwidth	10Hz

Reference No.: WTS19S05028978W001 Page 22 of 27

12.4 Test Procedure

 The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

- 2. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.
- 3. The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission was identified, the power of the emission was determined using the substitution method.
- 4. The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP / EIRP = S.G. output (dBm) + Antenna Gain(dB/dBi) – Cable Loss (dB)

12.5 Test Result

Test Mode	Test Channel	Test Frequency Spurious Emission		Frequency	Limit	Result
		(MHz)	Polarization	Level (dBm)	(dBm)	Result
Low		866.1	Vertical	-31.03		
	Low	1299.15	V	-38.16		
	866.1	Horizontal	-29.89			
		1299.15	Н	-40.02		PASS
10MHz		900.75	Vertical	-32.77		
	Middle	1351.125	V	-41.51		
QPSK	QPSK Wilddle	900.75	Horizontal	-33.52	-25.0	
		1351.125	Н	-40.47		
		938.25	Vertical	-30.01		
	∐iah	1407.375	V	-40.65		PASS
	High	938.25	Horizontal	-34.19		
		1407.375	Н	-40.78		

13 Frequency stability V.S. Temperature measurement

Test Requirement: FCC Part90.213
Test Method: TIA/EIA 603-E

Test Mode: Transmitting mode

Limit:

F	Sired and have stations (comm)	Mobile stations (±ppm)		
Frequency range (MHz)	Fixed and base stations (±ppm)	Over 2 watts output power	2 watts or less output power	
Below 25	100	100	200	
25-50	20	20	50	
72-76	5		50	
150-174	5	5	50	
216-220	1.0		1.0	
220-222	0.1	1.5	1.5	
421-512	2.5	5	5	
806-809	1.0	1.5	1.5	
809-824	1.5	2.5	2.5	
851-854	1.0	1.5	1.5	
854-869	1.5	2.5	2.5	
896-901	0.1	1.5	1.5	
902-928	2.5	2.5	2.5	
902-928	2.5	2.5	2.5	
929-930	1.5			
935-940	0.1	1.5	1.5	
1427-1435	300	300	300	
Above 2450				

13.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.3 % RH
Atmospheric Pressure: 101.3kPa

13.2 Test Procedure

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25℃ operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to $-30\,^{\circ}$ C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Note: Measurement setup for testing on Antenna connector

13.3 Test Result

Remark: All three channels of all modulations have been tested, but only the worst channel and the worst modulation show in this test item.

Low channel				
Power supplied (Vdc)	Temperature (℃)	Frequency error		
rower supplied (vac)		Hz	ppm	
48.00	-40	199	0.0544	
	-25	187	0.0512	
	-10	155	0.0424	
	0	163	0.0446	
	10	132	0.0361	
	20	144	0.0394	
	30	171	0.0468	
	40	108	0.0295	
	55	128	0.0350	

14 Frequency stability V.S. Voltage measurement

Test Requirement: FCC Part90.213

Test Method: TIA/EIA 603-E

Test Mode: Transmitting mode

Limit:

Frequency range (MHz)	Fixed and base stations (±ppm)	Mobile stations (±ppm)		
	Fixed and base stations (±ppm)	Over 2 watts output power	2 watts or less output powe	
Below 25	100	100	200	
25-50	20	20	50	
72-76	5		50	
150-174	5	5	50	
216-220	1.0		1.0	
220-222	0.1	1.5	1.5	
421-512	2.5	5	5	
806-809	1.0	1.5	1.5	
809-824	1.5	2.5	2.5	
851-854	1.0	1.5	1.5	
854-869	1.5	2.5	2.5	
896-901	0.1	1.5	1.5	
902-928	2.5	2.5	2.5	
902-928	2.5	2.5	2.5	
929-930	1.5			
935-940	0.1	1.5	1.5	
1427-1435	300	300	300	
Above 2450				

14.1 EUT Operation

Operating Environment:

Temperature: 22.9 °C
Humidity: 52.0 % RH
Atmospheric Pressure: 101.3kPa

14.2 Test Procedure

- 1. Set chamber temperature to 25 ℃. Use a variable DC power source to power the EUT and set the voltage to rated voltage.
- 2. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.
- 3. Reduce the input voltage to specify extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

Variable Power Supply

Note: Measurement setup for testing on Antenna connector

14.3 Test Result

Remark: All three channels of all modulations have been tested, but only the worst channel and the worst modulation show in this test item.

Lowchannel			
Tomporoture (%)	Dower cumplied (Vde)	Freq	uency error
Temperature (℃)	Power supplied (Vdc)	Hz	ppm
25	42	98	0.0268
	48	76	0.0208
	58	90	0.0246