Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Departement Informatik Wintersession 2023

Prof. Ueli Maurer

Exam Diskrete Mathematik

27. Januar 2023

Hinweise:

- 1.) Erlaubte Hilfsmittel: Selbstverfasste, handgeschriebene Notizen auf 6 A4-Seiten. Es ist erlaubt ein Wörterbuch zu benutzen. Es sind keine weiteren Hilfsmittel erlaubt.
- 2.) Falls nicht explizit ausgeschlossen dürfen Resultate (z.B. Lemmas oder Theoreme) aus dem Skript mit entsprechendem Verweis (z.B. "Lemma Skript"; die Nummer ist nicht notwending falls klar ist welches Resultat gemeint ist) ohne Beweis verwendet werden. Resultate aus der Übung dürfen nicht ohne Beweis verwendet werden.
- 3.) Die Aufgaben sind in drei Schwierigkeitsstufen von (\star) bis $(\star \star \star)$ eingeteilt.
- 4.) Die Aufgaben sind direkt auf dem Prüfungsblatt zu lösen. Bei Platzmangel befinden sich am Ende der Prüfung vier Zusatzblätter. Weitere Zusatzblätter können während der Prüfung bei uns bezogen werden. Nur von uns verteilte Zusatzblätter sind erlaubt.
- 5.) Die Antwortfelder unter den Aufgaben sind jeweils grosszügig bemessen. Es ist oft nicht die Erwartung, dass eine Antwort das ganze Feld füllt.
- 6.) Bitte verwenden Sie einen dokumentenechten Stift (also keinen Bleistift) und nicht die Farben Rot oder Grün.
- 7.) Bitte legen Sie die Legi für die Ausweiskontrolle auf den Tisch.
- 8.) Sie dürfen bis 10 Minuten vor Ende der Prüfung vorzeitig abgeben und den Raum still verlassen.
- 9.) Mobiltelefone und Smartwatches müssen komplett ausgeschaltet sein (kein Standby) und dürfen nicht am Körper getragen werden.

Prüfungs-Nr.			
StudNr.:			

Korrektur:

		Punkte	Unterschrift	
Aufgabe	Max	Erreicht	Korr.	Ver.
1	31			
2	11			
3	25			
4	27			
Total	94			

г	How many elements does the set $\{\{0,1\},\{0\}\times\{1\}\}\times\{0\}$ have?
2.)	List each element of the set $\{\emptyset, (0,1)\} \times \{\{0\} \cup \{1\}, \{1,0\}\}$ exactly once.
3.)] [Find sets A, B , and C such that $A \cap C \neq \emptyset$ and $A \setminus B \subseteq A \setminus C$.
4.)] [Find a set A such that $A \cap \mathcal{P}(A) \neq \emptyset$.
5.) • [Consider the relation $\rho = \{(a, b), (a, c), (b, a)\}$ on $\{a, b, c\}$. List each element of the relation ρ^{c}
	Which of the properties reflexive, symmetric, antisymmetric, transitive are satisfied by the relation $ \cup \equiv_2 \text{ on } \mathbb{N} \setminus \{0\}$? List all satisfied properties.
	Consider the partial order \leq on \mathbb{N}^2 defined by $(a,b) \leq (c,d) \iff a \leq c \land b \leq d$. What is the least upper bound of the set $\{(3,8),(1,4),(2,9)\}$?
8.)]	Find a surjective function $f: \mathbb{N} \to \mathbb{Z}$.
[(* *)) Consider the set $S = \{1, 2,, 9\}$. Prove that any subset $A \subseteq S$ with $ A = 6$ contains a

	$(a,b) \preceq (c,d)$	\iff	$(a,b) = (c,d) \lor (a < c \land a + d \le b + c).$	
Prove that \leq	\leq is a partial order.			(6 Points)

c) (*) Consider the relation \leq on \mathbb{N}^2 defined by

5	$(\star \star)$ Let X and Y be two non-empty sets. Moreover, let $f: X \to Y$ and $g: Y \to X$ be functions such that $f \circ g \circ f$ is injective and surjective. Prove that both f and g are injective and surjective. State clearly which assumptions and
]	properties you use in each step. $(8 Points)$ f is injective:
	f is surjective:
	g is injective:
	g is surjective:

$S = \{ A \subseteq \mathbb{N} \mid A \text{ or } \mathbb{N} \setminus A \text{ is finite} \}.$		
Prove or disprove that the set S is countable.	(5 Points	

Ta	sk 2. Number Theory
a)	Short Questions. Each correct answer gives one point. No justification is required. (4 Points)
	1.) Compute $R_{2023}(2022^{2023})$.
	2.) Compute $R_{17}(2^{2023})$.
	3.) Compute gcd(455, 182).
	4.) Let $a, b \in \mathbb{N} \setminus \{0\}$ such that $gcd(a, b) = 1$. What are the possible values of $gcd(3a, 7b)$?
b)	(*) Alice proposes a variant of RSA encryption where e is chosen such that $\gcd(e,\varphi(n))>1$. That is, the public key is (n,e) for $n=pq$ (where p and q are distinct primes), e is chosen such that $\gcd(e,\varphi(n))>1$ and the ciphertext of a message $m\in\mathbb{Z}_n^*$ is $c=R_n(m^e)$. What is the problem with this variant? You do not need to prove your claim(s). (2 Points)

	$\gcd(a,bc)\mid\gcd(a,b)\cdot\gcd(a,c).$				
Hint:	For any $x, y \in \mathbb{N} \setminus \{0\}$ there exist $u, v \in \mathbb{Z}$ such that $ux + vy = \gcd(x, y)$.	(5 Points			

-	nired.	No justification i
1.)	How many generators does the group $\langle \mathbb{Z}_{29}; \oplus_{29} \rangle$ have?	(1 Poin
2.)	Let $\langle G; \cdot \rangle$ be a group and let $x \in G$ be an element with order 36. What is the in the direct product group $G \times G$?	e order of (x^6, x^{10}) (2 Points
3.)	Find a noncyclic group G such that all proper subgroups H of G (i.e., all state cyclic.	ubgroups $H \neq G$ (2 Points
4.)	Consider the polynomial $p(x) = x^4 + 2x + 1$ in the ring $\mathbb{Z}_3[x]$. Find all mon with degree 1.	ic divisors of $p(x)$
5.)	Compute $R_{x^2+1}(x^6)$ in $\mathbb{Z}_3[x]$.	(2 Points
(*)	Prove that the groups $\langle \mathbb{Z}_{12}^*; \odot_{12} \rangle$ and $\langle \mathbb{Z}_4; \oplus_4 \rangle$ are not isomorphic.	(3 Points
<i>þ</i> : .	Let $\langle G; +, , e_G \rangle$, $\langle H; \odot, , e_H \rangle$, and $\langle J; \otimes, ^{-1}, e_J \rangle$ be groups. Moreover, let $H \to J$ be group homomorphisms. we that $\phi \circ \varphi$ is a group homomorphism.	arphi:G o H an (3 Points
<i>þ</i> : .	$H \to J$ be group homomorphisms.	
<i>þ</i> : .	$H \to J$ be group homomorphisms.	

	$H = \{ x \in G \mid \operatorname{ord}(x) \neq \infty \}.$	
Prove	e that H is a subgroup of G .	(5 Points)
Hint:	You can use without proof that for any $a \in G$ and any $i, j \in \mathbb{Z}$ we ha	$ve \ a^{ij} = (a^i)^j = (a^j)^i$

	$a^2 + b^2 + ab = 0$	
nave? Hint: $(a-b)(a^2+b^2+ab)$	$a^3 - b^3$	(6 Poin
11111. (d 0)(d 0 d0) — w v .	

Ta	ısk 4	4. Logic	7 Points				
a)	Short Questions. Each correct answer gives the indicated number of points. No justification is required.						
		Find a formula H which has both x and y as free variables, such that $\forall xH \equiv \forall yH$.	(1 Point)				
		Consider the formulas $F = P(x) \land \neg Q(x)$ and $G = \exists x \ \neg (\neg P(x) \to Q(x))$. Give an intersuitable for both formulas that is a model for F but not for G .	rpretation (2 Points)				
	3.)	Find a formula equivalent to $(\forall x P(x)) \to (\exists x Q(x) \lor P(y))$ that is in prenex form.	(2 Points)				
b)	(*)	Use the resolution calculus to prove that the formula					
		$(A \to B) \to ((B \to C) \to (A \to C))$					
	is a tautology. You are allowed to apply multiple steps at once when transforming the formula (as long as it is easy to follow). Show your work! (5 Points)						

c)	(*) Let $\Pi_1 = (S_1, \mathcal{P}_1, \tau_1, \phi_1)$ and $\Pi_2 = (S_2, \mathcal{P}_2, \tau_2, \phi_2)$ be two proof systems. We combine Π_1 and Π_2 into a third proof system					
	$\Pi_3 = (\mathcal{S}_1 \times \mathcal{S}_2, \mathcal{P}_1 \times \mathcal{P}_2, \tau_3, \phi_3),$					
	where					
	$ \tau_3(s_1, s_2) = 1 \stackrel{\text{def}}{\Longleftrightarrow} \tau_1(s_1) \neq \tau_2(s_2), $					
	and					
	$\phi_3((s_1, s_2), (p_1, p_2)) = 1 \stackrel{\text{def}}{\iff} \phi_1(s_1, p_1) \neq \phi_2(s_2, p_2).$					
	Prove or disprove : If Π_3 is complete, then Π_1 or Π_2 is complete. (5 Points)					

$\{F,F \to G\}$	\vdash_{R_1}	G	
Ø	\vdash_{R_2}	$F \to (G \to F)$	
Ø	\vdash_{R_3}	$(\neg F \to \neg G) \to (G \to F)$	
Ø	\vdash_{R_4}	$F \to (G \to F)$ $(\neg F \to \neg G) \to (G \to F)$ $(F \to G) \to ((G \to H) \to (F \to H))$	
Formally derive $\neg A \to (A \to B)$			(5 Points)
Hint: You may want to instantia			

d) (\star) Consider the calculus consisting of the following four derivation rules:

$\forall x \ (F \diamondsuit G) \ \models \ (\forall xF) \diamondsuit \ (\forall xG).$				
	is or lemmas from the lecture notes. Use. Note that x may appear free in F , C			