Algoritmika

11. szeminárium

Adott n különböző címletű bankjegy (b₁, b₂, ..., b_n) és egy S összeg. Állapítsuk meg, hogy kifizethető-e az S összeg a megadott bankjegyek felhasználásával. Minden bankjegyből csak 1 darab áll rendelkezésre.

Példa: S = 10 S = 10

b = (1, 2, 5) b = (1, 2, 5, 7)

Válasz: nem Válasz: igen

Minden i. bankjegy esetén két választási lehetőségünk van:

- **1. eset**: Nem használjuk fel az i. bankjegyet az összeg kifizetéséhez:
 - továbbra is az S összeget kell kifizetni a megmaradt bankjegyek segítségével
- **2. eset**: Felhasználjuk az i. bankjegyet az összeg kifizetéséhez:
 - a továbbiakban S- $b_i^{}$ összeget kell kifizetni a megmaradt bankjegyek segítségével

Legyen X annak a feladatnak a megoldáshalmaza, ahol az (1,2,...,i) bankjegyek segítségével fiztejük ki az S összeget.

1. eset: **i** ∉ *X*:

akkor X annak a feladatnak is megoldáshalmaza, ahol az (1,2,...,i-1) bankjegyek segítségével fiztejük ki az S összeget

2. eset: **i ∈ X**:

akkor X- $\{i\}$ annak a feladatnak a megoldáshalmaza, ahol az (1,2,...,i-1) bankjegyek segítségével fiztejük ki az S- b_i összeget

Legyen $V_{i,k} \in \{0,1\}$ - az értéke annak az optimális megoldásnak, amely:

- Csak az első *i* bankjegyet használja
- A k összeget fizeti ki

```
V_{i,k} = V_{i-1, k} VAGY (ha az első eset áll fenn) V_{i-1, k-bi} (ha a második eset áll fenn)
```

Magyarul: Egy k összeget akkor tudunk kifizetni az $\{1,...,i\}$ bankjegyek segítségével ha vagy a k, vagy a k-bi összeget ki tudjuk fizetni az $\{1,...,i-1\}$ bankjegyek segítségével

```
A[i,k] := A[i-1,k] | | A[i-1,k-b]
```

a 0 összeget ki tudjuk fizetni

5-0	
b ₁ =1	
b ₂ =2	
b ₃ =5	
b ₄ =7	

C-6

	x=0	1	2	3	4	5	6
i = 0	1	0	0	0	0	0	0
1	1						
2	1						
3	1						
4	1						

A[i,k] := A[i-1,k] | | A[i-1,k-b]

S=6

 $b_1 = 1$

 $b_2 = 2$

 $b_3 = 5$

b₄=7

	x=0	1	2	3	4	5	6
i = 0	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0
2	1	1	1	1	0	0	0
3	1	1	1	1	0	1	1
4	1						

- A fenti mátrix minden eleme egy részfeladat, amit megoldottunk ahhoz, hogy a végeredményt megkapjuk.
- A mátrixos ábrázolás abban segít, hogy átlátható legyen, hogy hogyan épül fel a végső megoldás

- A feladat megoldásához nincs szükség egy teljes mátrix tárolására

Implementálási részletek:

- Egy S méretű a tömbben tároljuk, hogy melyek azok az összegek, amelyeket ki tudunk fizetni
 - Ha a[k] = 1: a k összeget ki tudjuk fizetni
- Kezdetben az a[0] értéket leszámítva, minden érték HAMIS
- A bankjegyeket sorban dolgozzuk fel. Minden i. bankjegy esetén:
 - Ha a[k] = 1: az a[k+b[i]] értéket is igazra állíthatjuk
- Az összes bankjegy feldolgozása után az a[S] értéke lesz a végeredmény

```
Algoritmus Fizet (S, b, n)
    a[0] = IGAZ
    Minden i = 1, n végezd el
        minden j = S,b[i] végezd el
            ha b[j-b[i]] = IGAZ akkor
                 b[i] = IGAZ
            vége ha
        vége minden
    vége minden
    visszatérít b[S]
vége algoritmus
```

Kérdés: Hogyan kapjuk meg a felhasznált bankjegyeket?

Bemenet:

- *n* elem, minden *i*. elemhez tarozik egy:
 - érték: $e_i \ge 0$
 - súly/méret: $s_i \ge 0$ (feltételezzük, hogy egész szám)
- Kapacitás: *S* (feltételezzük, hogy egész szám)

Kimenet: Egy halmaz, $X \subseteq \{1, 2, ..., n\}$, amely

- maximalizálja a $\sum_{i \in X} e_i$ összeget
- úgy, hogy $\sum_{i \in X} s_i \leq S$

Legyen X = optimális megoldása annak a feladatnak, ahol az (1,2,...,i) elemeket használjuk fel és a maximális kapacitás S.

- 1. Eset: Feltételezzük, hogy $i \notin X$
 - \Rightarrow X optimális megoldása az első *i*-1 elemnek (a max. kapacitás marad S)
- 2. Eset: Feltételezzük, hogy $i \in X$
 - $\Rightarrow X \{i\}$ optimális megoldása ez első i-1 elemnek, úgy, hogy a max. kapacitás $S s_i$

Legyen $V_{i,k}$ = az értéke annak az optimális megoldásnak, amely:

- Csak az első *i* elemet használja
- Az összmérete ≤ *k*

```
V_{i,k} = \max \{ V_{i-l, k} (ha az első eset áll fenn), e_i + V_{i-l, k-si} (ha a második eset áll fenn) \}
```

-
$$A[i,k] := max \{ A[i-1,k], A[i-1,k-s] + e_i \}$$

S=6

$$e_1 = 3, s_1 = 4$$

$$e_2 = 2, s_2 = 3$$

$$e_3 = 4$$
, $s_3 = 2$

$$e_4 = 4, s_4 = 3$$

	k=0	1	2	3	4	5	6
i = 0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3
2	0	0	0	2	3	3	3
3	0	0	4	4	4	6	7
4	0	0	4	4	4	8	8

-
$$A[i,k] := max \{ A[i-1,k], A[i-1,k-s] + e_i \}$$

S=6

$$e_1 = 3, s_1 = 4$$

$$e_2 = 2, s_2 = 3$$

$$e_3 = 4$$
, $s_3 = 2$

$$e_4 = 4, s_4 = 3$$

	k=0	1	2	3	4	5	6
i = 0	0	0	0	0	0	0	0
1	0	0	0	0	3	3	3
2	0	0	0	2	3	3	3
3	0	0	4	4	4	6	7
4	0	0	4	4	4	8	8