Rudin Ch2 - Positive Borel Measure

Aaron Lou

May 2018

1 Notes

1.1 Vector Spaces

- **2.1 Def** A complex vector space has vectors with scalars and sums. Linear transformations are as expected, and if mapped to the scalars, we call Λ a linear functional. R^k is the only real vector space.
- **2.2 Integration as a Linear Functional** To every positive linear functional Λ on C corresponds a finite positive Borel measure μ on I s.t.

$$\Lambda f = \int_{I} f d\mu$$

1.2 Topological Preliminaries

- **2.3 Def** Let X be a topological space
- (a) A set $E \subset X$ is closed if its complement E^c is open.
- (b) The closure \overline{E} of a set $E \subset X$ is the smallest closed set in X which contains E.
- (c) A set $K \subset X$ is compact if every open of K contains a finite subcover. Specifically, if $\{V_{\alpha}\}$ is a collection of open sets whose union contains K, then the union of finite sub-collection of $\{V_{\alpha}\}$ also covers K.
- (d) A neighborhood of a point $p \in X$ is any open subset of X which contains p.
- (e) X is a Haussdorff space if $\forall p, q \in X, p \neq q$ and p has a nbhd U and q has a nbhd V s.t. $U \cap V = \emptyset$.
- (f) X is locally compact if every point of X has a nbhd whose closure is compact.

By Heine-Borel, compact subsets are closed and bounded in \mathbb{R}^k .

2.4 Thm Suppose K is compact and F is closed, in a topological space X. If $F \subset K$, then F is compact.

Corollary: If $A \subset B$ and B has compact closure, then so does A.

2.5 Thm Suppose X is a Hausdorff space, $K \subset X$, K is compact, and $p \in K^c$. Then there are open sets U and W s.t. $p \in U$, $K \subset W$, and $U \cap W = \emptyset$.

Corollaries:

- (a) Compact subsets of Hausdorff spaces are closed.
- (b) If F is closed and K is compact in a Hausdorff space, then $F \cap K$ is compact.
- **2.6 Thm** If $\{K_{\alpha}\}$ is a collection of compact subsets of a Hausdorff space and if $\bigcap_{\alpha} K_{\alpha} = \emptyset$, then some finite subcollection of $\{K_{\alpha}\}$ also has empty intersection.
- **2.7 Thm** Suppose U is open in a locally compact Hausdorff space in $X, K \subset U$ is compact. Then there is an open set V with compact closure s.t.

$$K \subset V \subset \overline{V} \subset U$$

2.8 Def Let f be a real (or extended-real) function on a topological space. If

$${x: f(x) > \alpha}$$

is open for every real α , f is lower semicontinuous. If

$${x: f(x) < \alpha}$$

is open for every real α , f is upper semicontinuous.

The supremum of any collection of lower semicontinuous functions is lower semicontinuous. The infinum of any collection of upper semicontinuous functions is upper semicontinuous.

2.9 Def The support of a complex function f on a topological space X is the closure of the set

$${x: f(x) \neq 0}$$

The collection of functions whose support is compact is $C_c(x)$.

Corr: The range of any $f \in C_c(X)$ is a compact subset.

- **2.10 Def** Let X and Y be topological spaces, and $f: X \to Y$ be continuous. If K is a compact subset of X, then f(K) is compact.
- **2.11 Not** We denote $K \prec f$ implies that K is a compact subset of $X, f \in C_c(X), 0 \leq f \leq 1$, and $f(x) = 1 \forall x \in K$.

We denote $f \prec V$ means that V is open, $f \in C_c(X), 0 \leq f \leq 1$, and the support of f lies in V.

2.12 Urysohn's Lemma Suppose that X is a locally compact Hausdorff space, V is open in X, $K \subset V$, and K is compact. Then there exists an $f \in C_c(X)$ s.t.

$$K \prec f \prec V$$

2.13 Thm Suppose $V_1, \ldots V_n$ are open locally compact subsets of a locally compact Hausdorff space X, K is compact, and

$$K \subset V_1 \cup \cdots \cup V_n$$

Then there exists a function $h_i \prec V_i (i = 1, ..., n)$ s.t.

$$h_1(x) + \dots + h_n(x) = 1$$

 $\{h_1,\ldots,h_n\}$ is a called a partition of unity on K subordinate to the cover $\{V_1,\ldots,V_n\}$.

1.3 The Riesz Representation Thm

- **2.14 Thm** Let X be a locally compact Hausdorff space, and let Λ be a positive linear functional on $C_c(X)$. Then there exists a σ -algebra on \mathfrak{M} in X which contains all Borel sets in X, and there exists a unique positive measure μ on \mathfrak{M} which represents Λ in the sense that
- (a) $\Lambda f = \int_X f d\mu$ for every $f \in C_c(X)$.
- (b) $\mu(K) < \infty$ for every compact set $K \subset X$.
- (c) For every $E \in \mathfrak{M}$, we have

$$\mu(E) = \inf{\{\mu(V) : E \subset V, V \text{ open}\}}$$

(d) The relation

$$\mu(E) = \sup \{ \mu(K) : K \subset E, K \text{ compact} \}$$

(e) If $E \in \mathfrak{M}$, $A \subset E$, and $\mu(E) = 0$, then $A \in \mathfrak{M}$.

1.4 Regularity Properties of Borel Measures

- **2.15 Def** A measure μ on the σ -algebra of all Borel Sets (\mathfrak{B}) in a locally compact Hausdorff space X is called a Borel Measure of X. μ is outer regular if it is the infimum of all larger open sets, and μ is inner regular if it is the supremum of all smaller compact sets.
- **2.16 Def** A set E in topological space is called σ -compact if E is a countable union of compact sets. It is said to have σ -finite measure if E is a countable union of E_i with $\mu(E_i) < \infty$.

- **2.17 Thm** Suppose X is a locally compact, σ -compact Hausdorff space. If $\mathfrak M$ and μ are as described in the statement of Thm 2.14, then $\mathfrak M$ and μ have the following properties:
- (a) If $E \in \mathfrak{M}$ and $\epsilon > 0$, there is a closed set F and an open set V s.t. $F \subset E \subset V$ and $\mu(V F) < \epsilon$.
- (b) μ is a regular Borel measure of X.

If $E \in \mathfrak{M}$ there are sets A and B s.t. $A \in F_{\sigma}$, $B \in G_{\delta}$, $A \subset E \subset B$, and $\mu(B-A)=0$.

2.18 Thm Let X be a locally compact Hausdorff space in which every open set is σ -compact. Let λ be any positive Borel measure on X s.t. $\lambda(K) < \infty$ for every compact set K. Then λ is regular.

1.5 Lebesgue Measure

2.19 Euclidean Space Euclidean space is defined as \mathbb{R}^k , with operations as normal. The translate of a set E+x is also as expected. We define a k-cell to be any set of the form

$$W = \{x : \alpha_i < \zeta_i < \beta_i, 1 \le i \le k\}$$

and we can use \leq instead of <. A δ -box with corner at a is defined as

$$Q(a; \delta) = \{x : \alpha_i \le \zeta_i < \alpha_i + \delta, 1 \le i \le k\}$$

Let Ω_n be the set of all 2^{-n} boxes with corners at integral multiples of 2^{-n} . The following are obvious.

- (a) Points can only lie in one
- (b) Larger values of n are entirely within other boxes.
- (c) There are $2^{(n-r)k}$ points smaller cubes r in a larger cube of n.
- (d) Each open set is a countable union of disjoint boxes.
- **2.20 Thm** There exists a positive complete measure m on a σ -algebra \mathfrak{M} in \mathbb{R}^k with the following properties (volume):
- (a) m(W) = vol(W) for every k-cell W.
- (b) \mathfrak{M} contains all Borel Sets, m is regular. More precisely, $E \in \mathfrak{M}$ iff \exists , A is F_{σ} , B is G_{δ} , $A \subset E \subset B$, m(B-A)=0.
- (c) m is translation invariant.
- (d) If μ is any positive, translation-invariant measure where $\mu(K) < \infty$ for every compact K, then $\mu(E) = cm(E)$ for all Borel Sets E.

(e) Every linear transformation has a unique value (the determinant) which maps the volume.

The member of \mathfrak{M} are Lebesgue measurable. m is the Lebesgue measure.

- **2.21 Remarks** We often write $L^1(\mathbb{R}^k)$ instead of $L^1(m)$. We can consider a new measure space on the measurable subsets of a set E.
- **2.22 Thm** If $A \subset R^1$ and every subset of A is Lebesgue Measurable, then m(A) = 0.

Corr: Every set of positive measure has nonmeasurable subsets.

2.23 Det This is omitted but determinants.

1.6 Continuity Properties of Measurable Functions

2.24 Lusin's Thm Suppose f is a complex measurable function on X, $\mu(A) < \infty$, f(x) = 0. If $x \notin A$, and $\epsilon > 0$. Then there exists a $g \in C_c(X)$ s.t.

$$\mu(\lbrace x: f(x) \neq g(x)\rbrace) < \epsilon$$

We can also arrnage it so that

$$\sup_{x \in X} |g(x)| \le \sup_{x \in X} |f(x)|$$

2.25 The Vitali-Carathéodary Thm Suppose $f \in L^1(\mu)$, f is real-valued, and $\epsilon > 0$. Then there exist functions u and v on X s.t. $u \le f \le v$. u is upper semicontinuous and bounded above, v is lower semicontinuous and bounded below, and

$$\int_X (v - u) d\mu < \epsilon$$

2 Problems

Problem 1

a. This is true. To see this, notice that the set $\{x: (f_1+f_2)(x) < \alpha\}$ is the union of the uncountably many sets

$$\bigcup_{0 \le \beta_1 \le \alpha} \{x : f_1(x) < \beta_1\} \cap \{x : f_2(x) < \alpha - \beta_1\}$$

b. This is also true. To see this, notice that the set $\{x: (f_1+f_2)(x) > \alpha\}$ is the union of uncountably many sets

$$\bigcup_{0 \le \beta_1} \{x : f_1(x) > \beta_1\} \cap \{x : f_2(x) > \alpha - \beta_1\}$$

c. This is false. If we define $f_n=\chi_{[\frac{1}{n+1},\frac{1}{n}]}$, then clearly this is an upper semi-continuous function. However, we notice that $\sum_{i=1}^{\infty}f_n=\chi_{(0,1]}+\chi_X$, where $X=\{x:\frac{1}{x}\in\mathbb{Z}^+\}$. Notice that this value, for an α of 1, is clearly not an open set as it's complement is not closed.

d. This is true. Let $g_k = \sum_{i=1}^k f_i$. Clearly, we can check that g_k is lower continuous

$$\bigcup_{\beta_1,\beta_2,\dots\beta_{k-1}} \{x: f_1(x) > \beta_1\} \dots \cap \{x: f_{k-1}(x) > \beta_3\} \cap \{x: f_k(x) > \alpha - \sum_{i=1}^{k-1} \beta_i\}$$

We know that $\sup_k g_k$ is also lower continuous, and, since $f_i \geq 0$, it follows that $\lim_{k \to \infty} g_k = \sup_k g_k$ is lower continuous.

If f_i are not nonnegative, when our proofs for (a), (b), and (c) are still correct. However, our last proof fails because $\sup_k g_k$ is not necessarily $\sum_{i=1}^{\infty} f_i$.

Problem 3

We wish to prove that $\forall \epsilon, x_1, x_2$, there exists $\delta : \rho(x_1, x_2) < \delta \implies |\rho_E(x_1) - \rho_E(x_2)| < \epsilon$.

We let x_1, x_2 be two different points. Let $y_1 \in E$ such that $\rho(x, y_1) = \rho_E(x_1)$. Notice, by triangle inequality and the definition of infimum, we have

$$\rho(x_1, x_2) + \rho(x_1, y) \ge \rho(x_2, y) \ge \rho_E(x_2)$$

$$\implies \rho(x_1, x_2) \ge \rho_E(x_2) - \rho_E(x_1)$$

Similarly, setting $y_2 \in E$ such that $\rho(x_{y2} = \rho_E(x_2))$ gives us the similar result

$$\rho(x_1, x_2) \ge \rho_E(x_1) - \rho_E(x_2)$$

It follows that

$$\rho(x_1, x_2) \ge |\rho_E(x_1) - \rho_E(x_2)|$$

so we can set $\delta = \epsilon$ and obtain the desired result above, as $\rho(x_1, x_2) < \epsilon \implies |\rho_E(x_1) - \rho_E(x_2)| \le \rho(x_1, x_2) < \epsilon$.

We notice that our X is a locally compact Hausdorff space. Setting K=B and V=X-A gives us the relation described in Urysohn's lemma:

$$K \prec f \prec V$$

Problem 5

To see that the cantor set has measure 0, we can count the measure removed. For C_1 , it is $\frac{1}{3}$, for C_2 it is $\frac{2}{3} \times \frac{1}{3} = \frac{2}{9}$, and in general, for C_i it is $\frac{2^{i-1}}{3^i}$. Summing, we have

$$\sum_{i=1}^{\infty} \frac{2^{i-1}}{3^i} = \frac{1}{3} \times \sum_{i=1}^{\infty} \frac{2^i}{3^i} = 1$$

so m(E)=0. Furthermore, we can define a surjective mapping from $f:E\to [0,1]$. In ternary, all elements of the cantor set can be expressed as a decimal with only 2 and 0. Our function substitutes 1 for 2 and considering the resulting string in binary. Clearly, this is implies that f is uncountable and has the same carnality as \mathbb{R} .

Problem 7

Note that $m(\{q\}) = 0$, where q is a rational number. To see this, note that $m(\{q\}) < m(W) = \frac{1}{q^n}$ for all n. Since the rationals are countable, it follows that $m(\{q \in \mathbb{Q} : q \in [0,1]\}) = 0$.

Our construction of the set is $(0, \epsilon) \cup \{q \in \mathbb{Q} : q \in [0, 1]\}$. We see that this measure is ϵ and that the closure is in fact [0, 1].

Problem 9

We define $f_n(x) = \chi_{A_n}$ where $A_n = \{x : \exists q \in \mathbb{R} \mid qn = x\}$. We note that $\int_{[0,1]} f_n(x) dm = 0$ as the measure of A_n is obviously 0 (since there are countably values). Therefore, it follows that

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$$

as this holds for all n. Furthermore, we note that this value doesn't converge for any value, using $\epsilon - \delta$ notation.

Problem 11

Let $K = \bigcap K_{\alpha}$. Note that $K_{\alpha} \in \mathfrak{M}$, so we can apply Thm 2.7 to get that

$$K \subset K_i \subset V$$

for all open $V: K \subset V$. To prove that K_i is indeed one of the K_{α} . Note that $\mu(K) = 1$ since μ is regular and

$$\mu(K) = \inf\{\mu(V) : E \subset V \subset X\} = 1$$

By Thm 2.17

$$\mu(V - K) = 0 \implies \mu(K_i) = \mu(K) = 1$$

It follows that $\mu(K^c) = 1 - \mu(K) = 0$. Furthermore, since K is the intersection of all K_{α} with measure 1, it follows that it is the largest value.

Problem 13

It clear that the set $\{0\}$ is compact. However, this can't be the support of any continuous function f.

Examining compact sets in general, we find that f must have images both 0 and $y \neq 0$. For this case, we find that these must be open sets in order for the support to be compact. In general, if we have a compact set such that its interior at each discontinuous piece is nonzero, then we can define a continuous function f that approaches zero at the border.

Problem 15

We guess that

$$\lim_{n \to \infty} \int_0^n (1 - \frac{x}{n})^n e^{x/2} dx = 2$$

This is because we assume this value tends to

$$\int_0^\infty e^{-x} \times e^{x/2} dx = \int_0^\infty e^{-x/2} = 2$$

We note this is true because of the dominated convergence theorem, and that $|f_n|=|(1-\frac{x}{n})^ne^{x/2}|\leq e^{-x/2}$ as $(1-\frac{x}{n}^n)$ is increasing

Similarly, for

$$\lim_{n \to \infty} \int_0^n (1 + \frac{x}{n})^n e^{-2x} dx = 1$$

This is because we apply the dominated convergence theorem and find that

$$|f_n| = |(1 + \frac{x}{n})^n e^x| \le e^{-x}$$

since $(1+\frac{x}{n})^n$ is increasing.

Problem 17

We check the conditions of a metric space.

- 1) Obviously, non-negativity holds.
- 2) Furthermore, if $\rho((x_1, y_1), (x_2, y_2)) = 0 \implies x_1 = x_2$ and $|y_1 y_2| = 0 \implies x_1 = x_2, y_1 = y_2$, so identity of 0 holds.

- 3) Symmetry obviously holds.
- 4) Lastly, to prove the triangle inequality. We calculate the individual cases. If $x_1 = x_2 = x_3$, then it holds. If $x_1 = x_2 \neq x_3$, then it holds. Lastly, if $x_1 \neq x_2 \neq x_3$, then it also clearly holds (it adds 1 to the side with two elements).

This is locally compact since, for a neighborhood with radius < 1, then we just have a compact perpendicular line through x.

For our function f and our μ as defined, we notice that

$$\Lambda f = \sum_{j=1}^{n} \int_{-\infty}^{\infty} f(x_j, y) dy = \int_{X} f d\mu$$

Clearly, we can see that the second value is the integral of f over the support. Therefore, it follows that $\mu(E) = \infty$ (we can notice this by taking the function $f = \lim_{n \to \infty} \chi_{E_n}$ and using the construction $\mu(V) = \sup\{\Lambda f : f \prec V\}$. This happens because our value of Λf approaches ∞ as $n \to \infty$. However, for $K \subset E$, $\mu(K) = 0$ because this value is a finite sum of $\int_{-\infty}^{\infty} \chi_{\{0\}} dy$.

Problem 19

First, we notice that V is not only an open subset of X, but is also compact. We can apply this to Steps 1 and 5.

Problem 21

We notice that, $\exists \alpha$ such that $\{x: f(x) < \alpha\} \neq X, \{x: f(x) < \alpha + \epsilon\} = X \ \forall \epsilon > 0$. To see this, it suffices to use the fact that f is upper-semicontinuous and we can pick a value larger than or equal to $\sup_X f(x)$. If we pick $\sup_X f(x)$ as our α , then both equalities are satisfied (or else α wouldn't be $\sup_X f(x)$), so it follows that there exists some x such that $f(x) = \sup_X f(x)$.

Problem 23

I don't have a good solution to this question, so I'm leaving it blank.

Problem 25

(i) We rearrange the formula to find that

$$1 + e^t < e^c e^t \implies \log(1 + e^{-t}) < c$$

The LHS is clearly maximized as $t \to 0$, so we find that $c > \log 2$.

(ii) We apply the dominated convergence theorem to find that

$$\lim_{n \to \infty} \frac{1}{n} \int_0^1 (1 + e^{nf(x)}) dx < \lim_{n \to \infty} \frac{1}{n} \int_0^1 \log 2 + nf(x) dx = \int_0^1 f(x)$$

Furthermore, we notice that our equations

$$f_n(x) = \frac{1 + e^{nf(x)}}{n} \to f(x), n \to \infty$$

since the 1 becomes irrelevant. It follows that our integral converges to $\int_0^1 f(x)$.