## Числа Каталана.

Определение *Числа Каталана* — это рекурсивная последовательность, определенная следующим образом.

$$c_0 = 1;$$
  $c_n = c_0 c_{n-1} + c_1 c_{n-2} + \ldots + c_{n-1} c_0 = \sum_{i=1}^n c_{i-1} c_{n-i}.$ 

Утверждение. Количество различных триангуляций диагоналями выпуклых (n+2)-угольников с помеченными вершинами равно  $\mathcal{C}_n$ .

Доказательство. Воспользуемся обобщенным принципом математической индукции. Назовем триангуляцию триангуляцией k-ого типа, если она содержит треугольник (k, n+1, n+2).



После выделения треугольника (k, n+1, n+2) остается разбить диагоналями (k+1)-угольник с вершинами (1, 2,..., k, n+2) и (n+2-k)-угольник с вершинами (k, k+1,..., n+1). По предположению индукции триангуляций k-ого типа  $c_{k-1}c_{n-k}$ . Поскольку триангуляции различных типов не пересекаются, то достаточно взять их сумму при  $k=\{1,...,n\}$ .



Пример 2. Обозначим  $r_n$  количество способов, которым можно задать порядок выполнения n операций умножения матриц  $A_1 \cdot A_2 \cdot ... \cdot A_{n+1}$ . Эта задача равносильна задаче расстановки n пар скобок между n+1 сомножителями, так чтобы внутри каждой скобки было ровно 2 сомножителя.

Замечание. Трудоемкость перемножения матриц зависит от порядка выполнения операций.

Если размерности умножаемых матриц  $i \times j$  и  $j \times k$  ,то для их умножения требуется ik(2j-1) элементарных операций умножения и сложения.

Пусть матрицы  $A_1, A_2, A_3$  имеют размерности  $10 \times 100$  ,  $100 \times 1000$  и  $1000 \times 10$  .

Умножение  $(A_1 \cdot (A_2 \cdot A_3))$  требует 1999000+19900 элементарных операций сложения и умножения.

Умножение  $((A_1 \cdot A_2) \cdot A_3)$  требует 1990000+199900 элементарных операций сложения и умножения.

Утверждение. Количество различных расстановок пар скобок между n+1 сомножителем выражается числом Каталана  $r_n=c_n$ .

Доказательство. Индукция по количеству пар скобок.

База индукции.  $r_0 = r_1 = 1$ .

Индукционный переход. Пусть для всех i < n утверждение верно.

Рассмотрим произведение n+1 сомножителей. Назовем произведением k-ого типа, если последним выполняется k-ое умножение. Тогда перед этим надо перемножить матрицы  $A_1 \cdot A_2 \cdot \ldots \cdot A_k$  и матрицы  $A_{k+1} \cdot A_{k+2} \cdot \ldots \cdot A_{n+1}$ .

По предположению индукции это можно сделать  $c_{k-1}$  и  $c_{n-k}$  способами.

Отсюда следует, что произведений k-ого типа  $c_{k-1}c_{n-k}$  и по правилу суммы

$$r_n = \sum_{i=1}^n c_{i-1} c_{n-i} = c_n.$$

## Плоские корневые деревья.

Определение. Плоское корневое дерево — это дерево с единственной выделенной вершиной, называемой корнем, расположенное на плоскости так, что потомки каждой вершины лежат выше нее.



Деревья, отличающиеся порядком потомков, считаются различными.



**Теорема.** Количество  $t_m$  различных плоских корневых деревьев с m ребрами равно  $c_m$ .

Доказательство проведем индукцией по количеству ребер. При m равном 0 и 1 утверждение очевидно.

Пусть утверждение верно при любом i < m. Рассмотрим дерево T с m ребрами. Поскольку m больше 0, то у корня есть хотя бы один потомок. Обозначим r' самого левого потомка корня. Тогда дерево T можно разбить на поддерево L с корнем r' и поддерево R с корнем r.



По построению суммарное количество ребер в деревьях L и R равно m-1. Отнесем к k-ому типу деревья T, у которых поддерево L содержит k рёбер. По предположению индукции имеется  $c_k c_{m-1-k}$  деревьев k-ого типа. Поэтому

$$t_{m} = \sum_{i=0}^{m-1} c_{i} c_{m-i-1} = \sum_{i=1}^{m} c_{i-1} c_{m-i} = c_{m}.$$

# Формула для чисел Каталана.

Сопоставим каждому плоскому корневому дереву T с m вершинами последовательность, состоящую из m «+» и m «-» следующим образом.



$$(++-++---++-+--).$$

Определение. Последовательность из m плюсов и m минусов назовем хорошей, если на любом ее начальном отрезке количество «+» больше либо равно количества «-». Множество хороших последовательностей обозначим через X(m,m), а  $\pi$  плохих (m,m)-последовательностей — через  $\Pi(m,m)$ .

Утверждение. Количество корневых деревьев с m ребрами равно количеству хороших (m,m) последовательностей.

Следствие.  $c_n = |X(n,n)|$ .

**Теорема.**  $|\Pi(n,n)| = C_{2n}^{n-1}$ .

Доказательство. Установим взаимно-однозначное соответствие между плохими (n,n) последовательностями и (n-1,n+1) последовательностями.

Для любой плохой последовательности существует номер i для которого в начальном участке последовательности длины i количество «-» больше количества «+». Наименьшее из таких чисел обязательно нечетное. Назовем его момент «грехопадения» и обозначим 2k+1. В последовательности длины 2k+1 ровно k+1 минусов. Инвертировав хвост плохой последовательности после 2k+1, получим некоторую (n-1,n+1) последовательность.

Разным плохим последовательностям соответствуют разные (n-1,n+1) последовательности.

У любой (n-1,n+1) последовательности тоже существует момент «грехопадения». Инвертировав хвост последовательности, получим плохую (n,n) последовательность.

Следствие. 
$$c_n = \frac{1}{n+1}C_{2n}^n$$
.

### Доказательство.

$$c_{n} = |X(n,n)| = C_{2n}^{n} - |\Pi(n,n)| = C_{2n}^{n} - C_{2n}^{n-1} = C_{2n}^{n} - \frac{n}{n+1}C_{2n}^{n} = \frac{1}{n+1}C_{2n}^{n}.$$

# Формула включений и исключений.

Пример.  $|A \cup B| = |A| + |B| - |A \cap B|$ .

Доказательство.

$$|A \cup B| = |A \cup (B \setminus A)| = |A| + |B \setminus A|$$

И

$$|B| = |(A \cap B) \cap (B \setminus A)| = |A \cap B| + |B \setminus A|.$$



**Теорема.** Пусть  $A_1, A_2, ..., A_n$  конечные множества. Тогда

$$|A_1 \cup A_2 \cup ... \cup A_n| = \sum_{i=1}^n (-1)^{i-1} \sum_{I \subset \{1,...,n\}, |I|=i} |\bigcap_{k \in I} A_k|.$$

Доказательство. Пусть элемент a входит ровно в t множеств, тогда в правое слагаемое равенства он входит  $C_t^1 - C_t^2 + ... + (-1)^{t-1} C_t^t$  раз. Но эта сумма равна 1, поскольку

$$0 = (1-1)^{t} = C_{t}^{0} - C_{t}^{1} + C_{t}^{2} - \dots + (-1)^{t} C_{t}^{t} = 1 - (C_{t}^{1} - C_{t}^{2} + \dots + (-1)^{t-1} C_{t}^{t})$$

Следствие. Пусть дано конечное множество A и семейство его подмножеств  $A_1, A_2, ..., A_n$ . Будем считать что  $\bigcap_{i \in \mathcal{O}} A_i = A$ . Тогда

$$|A \setminus (A_1 \cup A_2 \cup \ldots \cup A_n)| = \sum_{i=0}^n (-1)^i \sum_{I \subset \{1,\ldots,n\}, |I|=i} \left| \bigcap_{k \in I} A_k \right|.$$

## Пример. Задача о беспорядках.

Определение. Назовем перестановку  $\pi = (i_1, i_2, ..., i_n)$  беспорядком, если для любого номера  $i_k \neq k$  .

Подсчитать количество беспорядков  $D_n$ .

Решение. Обозначим  $A_k$  перестановки, для которых  $i_k = k$  .

Тогда для любого набора  $I\subseteq\{1,...,n\}$  множество перестановок оставляющих на месте все элементы из I есть  $\bigcap_{k\in I}A_k$  .

$$\left|\bigcap_{k\in I} A_k\right| = \left(n - |I|\right)!$$

Количество i-элементных подмножеств равно  $C_n^i$  .

По теореме включений и исключений.

$$\left|D_n\right| = \left|A \setminus \left(A_1 \cup A_2 \cup \ldots \cup A_n\right)\right| = P_n - \sum_{i=1}^n \left(-1\right)^{i-1} \sum_{I \subset \{1,\ldots,n\}, |I|=i} \left|\bigcap_{k \in I} A_k\right| = P_n - \sum_{i=1}^n \left(-1\right)^{i-1} \sum_{I \subset \{1,\ldots,n\}, |I|=i} \left|\bigcap_{k \in I} A_k\right| = P_n - P_$$

$$P_n - \sum_{i=1}^n \left(-1\right)^{i-1} (n-i)! C_n^i = n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^n \frac{n!}{n!} \cong n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^i \frac{1}{i!} + \dots\right) = \frac{n!}{e}.$$

# Еще одно тождество для чисел Стирлинга. Утверждение.

$$S(m,n) = \frac{1}{n!} \left( n^m - (n-1)^m C_n^1 + (n-2)^m C_n^2 + \dots + (-1)^{n-1} C_n^{n-1} \right)$$

#### Доказательство.

Количество отображений  $f: X \to Y$  произвольного типа равно  $n^m$ , а сюръекций —  $S(m,n)\cdot n!$ . Обозначим  $A_i$  множество отображений, для которых  $y_i \notin f(X)$  и A множество всех отображений. Отображение  $f: X \to Y$  не является сюръекцией только если  $f \in A_1 \cup A_2 \cup ... \cup A_n$ .

Для любого  $I \subset Y$  существует  $\binom{n-|I|}{m}$  отображений избегающих элементов из I.

По формуле включений и исключений

$$S(m,n) \cdot n! = |A \setminus (A_1 \cup ... \cup A_n)| = n^m - \sum_{i=1}^n (-1)^{i-1} \sum_{I \subset \{1,...,n\}, |I| = i} |\bigcap_{k \in I} A_k| = 1$$

$$n^{m} - \sum_{i=1}^{n} (-1)^{i-1} (n-i)^{m} C_{n}^{i}.$$

## Формулы для чисел Стирлинга.

$$S(m,n) = S(m-1,n-1) + n \cdot S(m-1,n)$$
.

$$S(m,n) = \sum_{i=1}^{m-n+1} C_{m-1}^{i-1} S(m-i,n-1).$$

$$\sum_{k=1}^n A_m^k \cdot S(m,k) = m^n.$$

$$S(m,n) = \frac{1}{n!} \left( n^m - (n-1)^m C_n^1 + (n-2)^m C_n^2 + \dots + (-1)^{n-1} C_n^{n-1} \right).$$