Lecture 15: PKI and Certificates

COSC362 Data and Network Security

Book 1: Chapter 14 - Book 2: Chapters 21 and 23

Spring Semester, 2021

Motivation

- Public key infrastructures imply the use of public digital certificates.
- ▶ Digital signatures provide these certificates.
- X.509 certificates are standardised and used in most network security applications.

Outline

Public Key Infrastructure (PKI)

Digital Certificates
Trust of Certificates

PKI Examples

Public Key Infrastructure (PKI)

Outline

Public Key Infrastructure (PKI)

Digital Certificates
Trust of Certificates

PKI Examples

Definition

NIST definition:

- "A public key infrastructure is the key management environment for public key information of a public key cryptographic system."
- Key management concerned with *lifecycle* of cryptographic keys:
 - Generation, distribution, storage and destruction of keys.
- Various legal or business (trusted) entities may be involved:
 - Registration authorities (RAs): vouching for the identity of an user.
 - Validation authorities (VAs): verifying that identity.
 - ► Certification authorities (CAs): issuing digital certificates (certifying the public key of the user).

Outline

Public Key Infrastructure (PKI)

Digital Certificates
Trust of Certificates

PKI Examples

Digital Certificates

- How to be confident of the correct binding between a public key and its owner?
 - When using a public key to encrypt a message or to verify a digital signature.
- ▶ Achieved through the use of *digital certificates*:
 - ▶ They contain the public key and owner identity.
 - ► There is other information such as signature algorithm and validity period.
- ► Certificate digitally signed by a *certification authority* (CA):
 - ▶ CA should be trusted by the certificate verifier.
- Certificates play a central role in key management for PKIs.

Certification Authority (CA)

- A CA creates, issues and revokes certificates for subscribers and other CAs.
- ► A CA has a certification practice statement (CPS).
- A CPS covers issues such as:
 - Checks performed before certificate issue
 - Physical, personnel and procedural security controls for the CA
 - ► Technical and key pair protection and management controls
 - Certificate revocation management procedures
 - Accreditation information
 - Legal and privacy issues and liability limitations

X.509 Standard

- Most widely used standard:
 - Originally ITU standard.
 - Now RFC 5280.
 - Current version (number 3) allows flexible extensions.
- ► Important fields in X.509 certificates:
 - Version number
 - Serial number (set by the CA)
 - Signature algorithm identifier (algorithm used to digitally sign)
 - Issuer name (of the CA)
 - Subject name (of the user to which the certificate is issued)
 - Public key information
 - Validity period
 - Digital signature (of the certificate, generated by the CA)

Example

 Information about the subject (the user to which the certificate is issued)

Information about the issuer (the CA)

Example

- Serial number
- ➤ X.509 version (3)
- Signature algorithm
- Period validity
- Information about the public key
- Information about the signature

Using a Certificate

- Verifying a certificate:
 - By checking that the CA's signature is valid.
 - By checking that any conditions set in the certificate are correct.
- In order to verify a certificate:
 - The user of the certificate must have the correct public key of the CA.
- It does not matter how the user obtains the certificate.
- Public directories may store certificates:
 - Often, the owner of the public key sends the certificate to the user.

Certification Paths

- Suppose that the public key of the CA ca₀ is not already known and trusted.
- ▶ Then, ca_0 's public key can be certified by another CA ca_1 .
- ▶ In turn, ca₁'s public key can be certified by another CA ca₂.
- ► Thus, a *chain of trust* is set up, known as a *certification* path:

$$ca_n \rightarrow \cdots \rightarrow ca_2 \rightarrow ca_1 \rightarrow ca_0$$

- Suppose that an entity has a trusted copy of can's public key.
- ► The chain of trust is used with certificates for all the intermediate CAs to obtain a trusted copy of ca₀'s public key.

☐ Trust of Certificates

Phishing Attack

- The victim connects securely to a bogus site with the wrong certificate.
- ► The attacker makes the URL similar and the interface identical to a genuine site.

- If the website uses a certificate, then the padlock indicator still shows:
 - But the secure connection is to the attacker's site.
- Not always easy to tell if a certificate is one for a genuine site.

Trust of Certificates

Extended Validation Certificates

Browser indication:

- ▶ A color in the address bar to indicate that the certificate has been issued at a specified level.
- Agreement between browser developers and CAs:
 - No technical difference in the certificate.
 - Just signed by a specific intermediate CA.
- Surveys have shown that extended validation certificates are mostly ignored by users.

Trust of Certificates

Revocation

- Declaring a certificate invalid even though its validity period is current.
- The user must check which certificates have been revoked.
- Certificate revocation list (CRL):
 - Each CA periodically issues a list of revoked certificates which can be downloaded and then checked by clients before using a certificate.
- ➤ Online certificate status protocol (OCSP):
 - A server maintains a current list of revoked certificates and responds to requests about specific certificates.

☐ Trust of Certificates

Public Key Pinning

- ► Allowing browsers to fix for a certain time the public key used to verify certificates for certain sites.
- Preventing attacks due to compromised CAs.
- Supported by Firefox and other browsers.
- Previously supported by Chrome, but Google announced to remove it (Oct. 2017).

Outline

Public Key Infrastructure (PKI)

Digital Certificates
Trust of Certificates

PKI Examples

Hierarchical PKI

- A CA certifies the public key of the entity below.
- ▶ In a non-hierarchical PKI, certification done between any CAs:
 - ▶ X can certify Y's public key, or Z can certify Y's public key.

Browser PKI

- Multiple hierarchies with preloaded public keys as root CAs.
- Intermediate CAs can be added.
- Users can also add their own certificates.
- Most servers send their public key and certificate to the browser at the start of a secure communication using TLS protocol.

OpenPGP PKI

- Used in PGP email security.
- Certificate includes ID, public key, validity period and self-signature.
- ▶ There is NO certification authorities:
 - ► Keys signed by anyone.
- Various key servers store keys:
 - ► Example: http://pqp.mit.edu
- Often known as web of trust.

Do we have some time left?

Yes, then let's start Lecture 16!