Word translation using word embeddings

Emma Covili, Salomé Papereux, Éloïse Zaghrini

-- DeepL --

Brief statement of the problem

Goal: Build a translator from a source language to a target language ex: $fr \rightarrow en$, $fr \rightarrow it$...

- Idea of the translation:
 - Words used in the same context usually have the same meaning
 - Words can be represented as vectors → Words can be embedded

Methods

X: set of english word embeddings Y: set of italian word embeddings

We need to compute the matrix W that does the translation between the sets

2 ways to do so:

- Supervised, where we need a bilingual dictionary to build W
- Unsupervised, where W is computed by a GAN

Supervised

Settings: set of pair of words and their associated vector representation $\{x_i, z_i\}_{i=1}^n$, where \mathcal{X}_i is the vector of the word i in the source language and \mathcal{Z}_i the vector of its translation.

Linear:

$$\min_{W} \sum_{i=1}^{n} \|Wx_i - z_i\|^2$$

Solution of this optimization problem (with regularization) is:

$$W = (XX^T - \lambda Id)X^T Z$$

Orthogonal:

$$\begin{cases} \min_{W} \sum_{i=1}^{n} \|Wx_{i} - z_{i}\|^{2} \\ \min_{\bar{W}} \|W - \bar{W}\| \quad s.t. \quad \bar{W}^{T}\bar{W} = Id \end{cases}$$

Application of gradient descent and procrustes (through SVD)

Supervised

Linear:

Orthogonal:

Supervised & KNN

Supervised

	fr-en	en-fr	fr-it	it-fr	en-el	el-en	en-ch
$Supervised\ methods$							
Linear - 1-NN	0,57	0,42	0,89	0,78	0,40	0,51	0,23
Linear - 7-NN	0,86	0,87	0,96	0,94	0,76	0,79	0,42
Procrustes - 1-NN	0,57	0,43	0,90	0,79	0,42	0,54	0,43
Procrustes - 7-NN	0,87	0,89	0,97	0,96	0,78	0,82	0,79

Note: with the hubness issue resolved, our en-fr translator has an accuracy of 0.57 for 1-NN and 0.72 for 7-NN

Unsupervised

Setting: 2 sets of word embeddings (X, Y) trained independently on monolingual data. The similarities between monolingual embedding spaces can be exploited to learn mappings between the 2 sets with an adversarial model.

Minimization Problem

$$W^{\star} = \underset{W \in M_d(\mathbb{R})}{\operatorname{argmin}} \|WX - Y\|_{\mathcal{F}}$$

The cosine similarity is used translate words $t = \operatorname{argmax}_t \cos(Wx_s, y_t)$

Unsupervised & KNN

1-nn accuracies

	fr-en	en-fr	fr-it	it-fr	en-el	en-ch
linear	0,57	0,42	0,89	0,78	0,40	0,23
procrustes	0,57	0,43	0,90	0,79	0,42	0,43
unsupervised	0,73	0,72	0,86	0,84	0,42	0,45