Bayesian calibration of differentiable agent-based models

Arnau Quera-Bofarull, Ayush Chopra, Anisoara Calinescu, Michael Wooldridge, Joel Dyer

Calibration of ABMs

Forward simulation:

ABM calibration aims to inverse this process

Calibration of ABMs

Calibration of ABMs

Bayesian calibration

Ideally, we want to get all θ that can create x

[TODO: June example of infections in schools vs companies for 1st wave...]

The object of interest is the **Bayesian posterior**: $p(\theta | x)$

$$p(\theta \mid x) \propto p(x \mid \theta) p(\theta)$$

likelihood

Bayesian calibration

ABMs have computationally intractable likelihoods

Bayesian calibration as an optimisation problem (variational inference)

- 1. Assume posterior can be approximated by a family of distributions
- 2. Optimise for optimal parameters

Generalized Variational Inference (GVI) Knoblauch et al., (2022)

• [TODO: Ask Joel about what details to put here...) hard to summarize

Generalized posteriors -> More robust to miss-specification

Use VI to approximate the generalized posterior.

Generalised Variational Inference

Gradients: path-wise vs score

Gradient-assisted calibration algorithms need

- Two ways of obtaining the gradient:
- 1. Differentiating the measure (score-based gradient)
- 2. Differentiating the simulator (path-wise gradient)

Differentiable simulators

- Leverage Automatic Differentiation to build simulators
- Use "reparameterisation" techniques to differentiate through randomness.

$$x \sim \mathcal{N}(\mu, \sigma) \iff x = \mu + \sigma r \quad r \sim \mathcal{N}(0, 1)$$

$$\frac{\mathrm{d}x}{-1} = 1 \quad \frac{\mathrm{d}x}{-1} = r$$

$$\frac{\mathrm{d}\mu}{\mathrm{d}\sigma}$$

Differentiable ABMs

The problem of discrete randomness

- Discrete sampling + flow control = no differentiability?
 - Gumbel-Softmax

Jang et al. (2016)

Differentiable Agent-Based Epidemiology

Chopra et al. (2023), Quera-Bofarull et al. (2023)

JUNE model 8 M agents (London)

	Simulation	Calibration	Sensitivity
			Analysis
JUNE	50 hours	100k hours	5k hours
GRADABM-JUNE (CPU)	5 minutes	10 hours	10 minutes
GRADABM-JUNE (GPU)	5 seconds	20 minutes	10 seconds

x40,000 speed-up!

Bayesian Inference for Differentiable Simulators (BIRDS)

Normalizing Flows

What do we choose for q?

Image credit: Lilian Weng

Bayesian Inference for Differentiable Simulators (BIRDS)

Experiment with JUNE

- ABM model of Covid19
- Model
 - ~200k agents
 - 3 layers of interactions (household, company, school)
 - Calibrate to synthetic data

Conclusions

1. ABM calibration should be Bayesian

2. ABMs can be made differentiable even with discrete randomness and control flow

3. Diff simulators + Bayesian inference (via Normalizing Flows) promising route to calibrate large-scale ABMs efficiently

Paper + slides: www.arnau.ai/iclr