On NTRU- ν -um Modulo $X^N - 1$

FHE :: Fully Homomorphic Encryption

FHE: Controlling the Noise

Noise accumulates over time

Gentry's Recryption (a.k.a. Bootstrapping)

Application to TFHE

- Gentry's recryption enables bootstrapping ciphertexts
- How to round over encrypted data?

TLWE encryption

- \blacksquare $a \stackrel{\$}{\leftarrow} \mathbb{T}_q^n$
- $\square \mu^* := \mu + e \in \mathbb{T}_q$
- $b \leftarrow \mu^* + \langle s, a \rangle$

TLWE decryption

- round μ*

Polynomials to the Rescue

Proposition

Let \mathfrak{M} be a module. For any polynomial $v \in \mathfrak{M}[X]/(X^N+1)$

$$v(X) = v_0 + v_1 X + \dots + v_j X^j + \dots + v_{N-1} X^{N-1}$$

it holds that

$$X^{-j} \cdot v(X) = v_i + \dots$$

(i.e., is a polynomial with constant term v_i)

Illustration :: 2-digit Rounding

μ*		μ
0.00 0.01	$\overset{\rightarrow}{\rightarrow}$	0.0
0.02	\rightarrow	0.0
:		:
0.09 0.10	→	0.1 0.1
0.11	\rightarrow	0.1
:		:
0.19	\rightarrow	0.2
0.20 0.21	\rightarrow	0.2 0.2
:		:
0.29	\rightarrow	0.3

```
v(X) = v_0 + \dots + v_{N-1} X^{N-1} \implies X^{-j} \cdot v(X) = v_j + \dots
```

N = 32 (power of 2)

$$v(X) = 0.0 + 0.0X + 0.0X^{2} + \dots + 0.0X^{4} + 0.1X^{5} + \dots + 0.1X^{10} + \dots + 0.1X^{14} + 0.2X^{15} + \dots + 0.2X^{20} + \dots + 0.2X^{24} + 0.3X^{25} + \dots + 0.3X^{29}$$

$$\forall \mu^* \in [0.00, 0.29]$$

$$X^{-100\mu^*} \cdot v(X) = \mu + \dots$$

Implementation :: RLWE vs. NTRU

RI WE

- $a \stackrel{\$}{\leftarrow} \mathcal{R}_a$
- $\mu^* := \Delta m + e \text{ with } e \leftarrow \chi$
- $3\theta \leftarrow 3a + \mu^*$

$$ightharpoonup c = (\alpha, \beta) \in \mathcal{R}_q \times \mathcal{R}_q$$

NTRU

- $e_1 \leftarrow \chi$
- $\mu^* := \Delta m + e_2$ with $e_2 \leftarrow \chi$
- $c \leftarrow \frac{e_1}{f} + \mu^*$
 - $\leadsto c \in \mathcal{R}_q$

where

RLWE
$$\mathcal{R} = \mathbb{Z}[X]/(X^N + 1)$$
 with N a power of 2

NTRU
$$\mathcal{R} = \mathbb{Z}[X]/(X^N + 1)$$
 as for RLWE, or $\mathcal{R} = \mathbb{Z}[X]/(X^N - 1)$ with N prime

and
$$\mathcal{R}_q = \mathcal{R}/q\mathcal{R}$$

Concurrent Works

Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P. Smart

FINAL: Faster FHE instantiated with NTRU and LWE

In ASIACRYPT 2022, pp. 188-215

Cryptology ePrint Archive 2022/074

Kamil Kluczniak

NTRU- ν -um: Secure Fully Homomorphic Encryption from NTRU with Small Modulus

In ACM CCS 2022, pp. 1783-1797

Cryptology ePrint Archive 2022/089

NTRUnium Modulo $X^N - 1$: Encryption

$$c \leftarrow \frac{e}{\ell} + \Delta m \pmod{q, X^N - 1}$$
 where $e = e_1 + e_2 \ell$

where

$$\begin{cases} f \text{ is the private key} \\ e_1, e_2 \text{ are error polynomials} \end{cases}$$

such that

- = f is invertible in and has random coefficients (uniformly) chosen in $\{-1,0,1\}$
- $\Delta = q/p$ for some $p \mid q$ and $m \in \mathcal{R}_p$

NTRUnium Modulo $X^N - 1$: Decryption

$$c \leftarrow \frac{e}{\ell} + \Delta m \pmod{q, X^N - 1}$$
 where $e = e_1 + e_2 \ell$

3-step process:

$$d \leftarrow c f = e + \Delta m f$$

$$\underline{d} \leftarrow \lceil d/\Delta \rfloor \pmod{p}$$

$$m \leftarrow \bar{d} f^{-1} \in \mathcal{R}_p$$

Correctness of decryption requires $\|e\|_{\infty} < \Delta/2$

Definition

'Mildly noisy' samples: $\|e\|_{\infty} \ll \frac{\Delta}{2\sqrt{N}}$

Attacking Mildly Noisy Ciphertexts

$$c \leftarrow \frac{e}{\ell} + \Delta m \pmod{q, X^N - 1}$$
 with $\|e\|_{\infty} \ll \frac{\Delta}{2\sqrt{N}}$

Since
$$(X-1) \mid (X^N-1)$$

$$c \leftarrow \frac{e}{\ell} + \Delta m \pmod{q, X-1}$$

and thus

$$d(1) := c(1) \cdot f(1) \equiv e(1) + \Delta m(1) \cdot f(1)$$
$$\equiv e(1) + \Delta \cdot (m(1) \cdot f(1) \bmod p) \pmod q$$

Attacking Mildly Noisy Ciphertexts

$$c \leftarrow \frac{e}{\ell} + \Delta m \pmod{q, X^N - 1} \quad \text{with } \|e\|_{\infty} \ll \frac{\Delta}{2\sqrt{N}}$$

$$d(1) = \underbrace{m(1)f(1)}_{e(1)}$$

$$d(1) := c(1) \cdot f(1) \equiv e(1) + \Delta m(1) \cdot f(1)$$
$$\equiv e(1) + \Delta \cdot (m(1) \cdot f(1) \mod p) \pmod{q}$$

Attacking Mildly Noisy Ciphertexts

$$c \leftarrow \frac{e}{\ell} + \Delta m \pmod{q, X^N - 1} \quad \text{with } \|e\|_{\infty} \ll \frac{\Delta}{2\sqrt{N}}$$

- Initialize $\mathcal{L} = \{0, \dots, N\}$
- $\, {f iny 2 \,}$ Obtain a mildly noisy ciphertext ${f c}$
- For each candidate value $f(1) \in \mathcal{L}$, do the following:
 - a. check whether d(1) := c(1) f(1) satisfies above form
 - b. if not, disregard candidate f(1) and update $\mathcal{L} \leftarrow \mathcal{L} \setminus \{f(1)\}$
- 4 If $\#\mathcal{L} > 1$ go to Step 2

Bootstrapping Keys: Key Recovery Attack

For gadget parameters B and ℓ

$$bsk[i] \leftarrow (NTRU(s_iB^j))_{0 \le i \le \ell-1} \in (\mathcal{R}_q)^\ell \qquad (1 \le i \le n)$$

ullet Var(Err($c_{
m bootstrapped}$)) has a term of the form

$$\varrho \cdot \sigma_{bsk}^2$$
 where $\varrho = \frac{1}{12} n N \ell (B^2 - 1)$

$$\implies \sqrt{\varrho} \cdot \sigma_{bsk} \ll \Delta/2$$

NTRUnium bootstrapping keys are mildly noisy ciphertexts

 \longrightarrow Key recovery attack: secret key bits s_i can be recovered using f(1)

Validation :: Numerical Experiments

Source code available for computer algebra system GP/Pari*

NTRUnium Parameter Sets

Binary LWE keys				
		q	N	$\sqrt{\varrho}$
	NTRU-v-um-C-11-B	2 ³⁰	$2^{11} - 9$	2 ^{15.64}
	NTRU- ν -um-C-12-B	2^{38}	$2^{12} - 3$	$2^{18.14}$
	NTRU- ν -um-C-13-B	2^{41}	$2^{13} - 1$	$2^{19.68}$
	NTRU-v-um-C-14-B	242	$2^{14} - 3$	220.23

Ternary LWE keys				
		q	N	$\sqrt{\varrho}$
	NTRU-v-um-C-11-T NTRU-v-um-C-12-T NTRU-v-um-C-13-T NTRU-v-um-C-14-T	2 ³⁸ 2 ⁴²	$2^{11} - 9$ $2^{12} - 3$ $2^{13} - 1$ $2^{14} - 3$	$2^{20.46}$ $2^{20.20}$

Contact and Links

marc@zama.ai

zama.ai

Github

Community links