Ciencias de la Computación I Inducción Matemática

Eduardo Contrera Schneider

Universidad de la Frontera

5 de septiembre de 2016

1 Principio del buen orden

2 Principio de Inducción Matemática

Operation Definiciones Recursivas

Principio del buen orden

Una propiedad importante y bien interesante que cumple el conjunto de los enteros positivos \mathbb{Z}^+ es la siguiente:

Principio del buen orden

Cualquier subconjunto no vacío de \mathbb{Z}^+ contiene un elemento mínimo. (Con frecuencia se dice que \mathbb{Z}^+ es bien ordenado).

Este enunciado dintingue \mathbb{Z}^+ de \mathbb{R} y otros subconjuntos de \mathbb{R} , y además es la base de una técnica de demostración conocida como la inducción matemática.

Principio de Inducción Matemática

Principio de Inducción Matemática

Sea S(n) una proposición matemática abierta (o un conjunto de tales proposiciones abiertas), en la que aparece una o varias veces la variable n, que representa a un entero positivo.

- Si S(1) es verdadera; y
- ② siempre que S(k) sea verdadera (para algún $k \in \mathbb{Z}^+$ particular, pero elegido al azar), entonces S(k+1) será verdadera; entonces S(n) es verdadera para todo $n \in \mathbb{Z}^+$.

Ejemplos

- Para todo $n \in \mathbb{Z}^+$ se cumple que $\sum_{i=1}^n (2i-1) = n^2$.
- Se definen los números armónicos H_n como

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, \ \forall n \in \mathbb{Z}^+$$

Pruebe que $H_{2^n} \leq 1 + n$, para todo $n \in \mathbb{Z}^+$.

• Pruebe también que $\sum\limits_{i=1}^n H_i = (n+1)H_n - n$, para todo $n \in \mathbb{Z}^+$.

Inducción Forma Alternativa

Principio de Inducción Matemática

Sea S(n) una proposición matemática abierta (o un conjunto de tales proposiciones abiertas), donde la variable n, que representa a un entero positivo, aparace una o más veces. Además, sean $n_0, n_1 \in \mathbb{Z}^+$.

- **1** Si $S(n_0)$, $S(n_0 + 1)$, ..., $S(n_1 1)$, $S(n_1)$ son verdaderas; y
- ② siempre que S(k) sea verdadera (para algún $k \in \mathbb{Z}^+$ particular, pero elegido al azar), entonces S(k+1) será verdadera; entonces S(n) es verdadera para todo $n \ge n_0$.

Ejemplos

- Todo número entero mayor o igual a 14 se puede escribir como suma de treses y ochos.
- Consideremos la sucesión $a_0, a_1, a_2, ...,$ donde

$$a_0=1, a_1=2, a_2=3$$

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}, \quad \forall n \ge 3$$

Pruébese que $a_n \leq 3^n$ para todo $n \in \mathbb{Z}^+$.

• Consideremos la sucesión $p_0, p_1, p_2, ...,$ donde

$$p_0 = 3, p_1 = 7$$

$$p_n = 3p_{n-1} - 2p_{n-2}, \quad \forall n \ge 2$$

Pruébese que $p_n = 2^{n+2} - 1$ para todo $n \in \mathbb{Z}^+$.

Definiciones Recursivas

Cuando trabajamos con una sucesión de números enteros, podemos definirla en base a una fórmula explícita que dependa de n. Pero no todas las sucesiones son fáciles de definir en base a fórmulas. En algunos casos, es mucho más fácil definirlas en base a su propia definición. A esto último, es lo que llamamos recursividad o definiciones recursivas.

Ejemplos

- n!
- Los números de Fibonacci.
- Las torres de Hanoi.

Recursividades Famosas

- Los números de Fibonacci se definen de forma recursiva como
 - **1** $F_0 = 0$, $F_1 = 1$; y
 - $P_n = F_{n-1} + F_{n-2} \text{ para } n \in \mathbb{Z}^+ \text{ con } n \geq 2.$

Esta sucesión cumple

$$\sum_{i=0}^{n} F_i^2 = F_n \times F_{n+1}$$

- Los números de Lucas se definen recursivamente como
 - **1** $L_0 = 2$, $L_1 = 1$; y

y cumplen

$$\sum_{i=0}^{n} L_i = L_{n+2} - 1$$

$$L_n = F_{n-1} + F_{n+1}$$