DIGITAL GEOMETRY PROCESSING

Algorithms for Representing, Analyzing and Comparing 3D shapes

Point Clouds

- Simplest representation: only points, no connectivity.
- Collection of (x,y,z) coordinates, possibly with normals

Point Clouds

- Simplest representation: only points, no connectivity.
- Collection of (x,y,z) coordinates, possibly with normals.
- Points with orientation are called surfels.

Filip Van Bouwel

Point Clouds

- Simplest representation: only points, no connectivity.
- Collection of (x,y,z) coordinates, possibly with normals.
- Points with orientation are called surfels.
- Severe limitations:
 - no Simplification or subdivision
 - no direct smooth rendering
 - no topological information

Why Point Clouds?

1) Typically, that's the only thing that's available

Nearly all 3d scanning devices produce point clouds

Why Point Clouds?

- 1) Typically, that's the only thing that's available
- 2) Locality: sometimes, easier to handle (esp. in hardware).

Fracturing Solids

Meshless Animation of Fracturing Solids Pauly et al., SIGGRAPH '05

Fluid Simulation

Adaptively sampled particle fluids, Adams et al. SIGGRAPH '07

Typical Scanning and Reconstruction Pipeline

Single View Scanners

Major types of 3d scanners

Range (emission-based) scanners

- Time-of-flight laser scanner
- Phase-based laser scanner

Triangulation

- Laser line sweep
- Structured light

Stereo / computer vision

- Passive stereo
- Active stereo / space time stereo

Microsoft Kinect 1 (2009)

Low-cost (100\$) 3d scanner – gadget for Xbox.

Allows to acquire Image (640 x 480) and 3d geometry (300k points) at 30 FPS.

Uses infrared active illumination with an infrared sensor **and** depth-from blur. accuracy of ~1mm (at 0.5m distance) to 4cm (at 2m distance).

Modern Mobile Devices (2017)

Asus Zenfone AR

Sony Xperia XZ1

Typically use a combination of structured (infrared) light + stereo based depth.

3d Point Cloud Processing

Typically point cloud sampling of a shape is insufficient for most applications. Main stages in processing:

- 1. Shape scanning (acquisition)
- 2. If have multiple scans, align them.
- 3. Smoothing remove local noise.
- 4. Estimate surface normals.
- 5. Surface reconstruction
 - Implicit representation (today).
 - Triangle mesh (today).

Fundamental Registration Problem

Given (at least) two shapes with partially overlapping geometry, find an alignment between them.

Why Registration?

Fundamental problem in geometry analysis

Appears in many shape analysis applications

ICP: one of the best-known algorithms in computer graphics and computational geometry. Widely used in industry.

For you: very nice programming exercise.

Quick introduction to an active research area.

. . .

Local Alignment

Simplest instance of the registration problem

Given two shapes that are **approximately aligned** (e.g. by a human) we want to find the optimal tranformation.

Other Applications

Manufacturing:

One shape is a **model** and the other is a **scan** of a product. Finding defects.

Medicine:

Finding correspondences between 3D MRI scans of the same person or different people.

- Animation Reconstruction & 3D Video.
- Statistical Shape Analysis:

Building models for a collection of shapes.

Local Alignment

What does it mean for an alignment to be good?

Intuition: want corresponding points to be close after transformation.

Problems

- 1. We don't know what points correspond.
- 2. We don't know the optimal alignment.

Iterative Closest Point (ICP)

 Approach: iterate between finding correspondences and finding the transformation:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing:

$$\sum_{i=1}^{N} \|\mathbf{R}x_i + t - y_i\|_2^2$$

Iterative Closest Point (ICP)

 Approach: iterate between finding correspondences and finding the transformation:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing: $\sum_{i=1}^{\infty} ||\mathbf{R}x_i + t y_i||_2^2$

 Approach: iterate between finding correspondences and finding the transformation:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing: $\sum_{i=1}^{\infty} ||\mathbf{R}x_i + t y_i||_2^2$

 Approach: iterate between finding correspondences and finding the transformation:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing: $\sum_{i=1}^{\infty} ||\mathbf{R}x_i + t y_i||_2^2$

 Approach: iterate between finding correspondences and finding the transformation:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing: $\sum_{i=1}^{n} ||\mathbf{R}x_i + t y_i||_2^2$

 Approach: iterate between finding correspondences and finding the transformation:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing: $\sum_{i=1}^{\infty} ||\mathbf{R}x_i + t y_i||_2^2$

 Approach: iterate between finding correspondences and finding the transformation:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing: $\sum_{i=1}^{\infty} ||\mathbf{R}x_i + t y_i||_2^2$

 Approach: iterate between finding correspondences and finding the transformation:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing: $\sum_{i=1}^{\infty} ||\mathbf{R}x_i + t y_i||_2^2$

 Approach: iterate between finding correspondences and finding the transformation:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing: $\sum_{i=1}^{n} ||\mathbf{R}x_i + t y_i||_2^2$

Requires two main computations:

- 1. Computing nearest neighbors.
- 2. Computing the optimal transformation

ICP: Nearest Neighbor Computation

Closest points

$$y_i = \arg\min_{y \in Y} \|y - x_i\|$$

- How to find closest points efficiently?
- Straightforward complexity: $\mathcal{O}(MN)$ M number of points on X, N number of points on Y.
- Y divides the space into Voronoi cells

$$V(y \in Y) = \{ z \in \mathbb{R}^3 : ||y - z|| < ||y' - z|| \ \forall \ y' \in Y \neq y \}$$

lacktriangle Given a query point y, determine to which cell it belongs.

ICP: Nearest Neighbor Computation

Closest points

$$y_i = \arg\min_{y \in Y} \|y - x_i\|$$

- How to find closest points efficiently?
- Straightforward complexity: $\mathcal{O}(MN)$ M number of points on X, N number of points on Y.

ICP: Optimal Transformation

Problem Formulation:

1. Given two sets points: $\{x_i\}, \{y_i\}, i = 1..n$ in \mathbb{R}^3 . Find the rigid transform:

 ${f R},t$ that minimizes:

$$\sum_{i=1}^{N} \|\mathbf{R}x_i + t - y_i\|_2^2$$

ICP: Optimal Transformation

Problem Formulation:

1. Given two sets points: $\{x_i\}, \{y_i\}, i = 1..n$ in \mathbb{R}^3 . Find the rigid transform:

$${f R},t$$
 that minimizes:

$$\sum_{i=1}^{N} \|\mathbf{R}x_i + t - y_i\|_2^2$$

ICP: Optimal Transformation

Problem Formulation:

1. Given two sets points: $\{x_i\}, \{y_i\}, i = 1..n$ in \mathbb{R}^3 . Find the rigid transform:

$$\mathbf{R}, t$$
 that minimizes:
$$\sum_{i=1}^{N} \|\mathbf{R}x_i + t - y_i\|_2^2$$

- Closed form solution with rotation matrices:
 - 1. Construct: $C = \sum_{i=1}^{N} (y_i \mu^Y)(x_i \mu^X)^T$, where $\mu^X = \frac{1}{N} \sum_i x_i$,
 - 2. Compute the SVD of C: $C = U \Sigma V^T$ $\mu^Y = \frac{1}{N} \sum_i y_i$
 - 1. If $\det(UV^T) = 1$, $R_{\text{opt}} = UV^T$
 - 2. Else $R_{\mathrm{opt}} = U\tilde{\Sigma}V^T, \tilde{\Sigma} = \mathrm{diag}(1,1,\ldots,-1)$
 - 3. Set $t_{\text{opt}} = \mu^Y R_{\text{opt}}\mu^X$

Note that C is a 3x3 matrix. SVD is very fast.

Arun et al., Least-Squares Fitting of Two 3-D Point Sets

Given a pair of shapes, X and Y, iterate:

- 1. For each $x_i \in X$ find **nearest** neighbor $y_i \in Y$.
- 2. Find deformation \mathbf{R} , t minimizing: $\sum_{i=1}^{\infty} ||\mathbf{R}x_i + t y_i||_2^2$

Convergence:

- at each iteration $\sum_{i=1}^{N} d^2(x_i, Y)$ decreases.
- Converges to local minimum
- Good initial guess: global minimum.

[Besl&McKay92]

Variations of ICP

- 1. Selecting source points (from one or both scans): sampling
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

