1 Signals and Systems

1.1 Types of Signals

Tibor Schneider

- $\ell^1_{\mathbb{R}}(\mathbb{Z})$ Set of all discrete-time real-valued absolutely summable signals
- $\ell_{\mathbb{C}}^2(\mathbb{Z})$ Set of all discrete-time complex-valued square summable signals
- $\ell^{\infty}_{\mathbb{R}}(\mathbb{Z})$ Set of all discrete-time real-valued bounded signals
- $L^1_{\mathbb{R}}(\mathbb{R})$ Set of all continuous-time real-valued absolutely summable signals
- $L^1_{\mathbb{C}}(\mathbb{R})$ Set of all continuous-time complex-valued square summable signals
- $L^{\infty}_{\mathbb{C}}(\mathbb{R})$ Set of all continuous-time complex-valued bounded signals

$$\ell^1_{\mathbb{R}} \subset \ell^2_{\mathbb{R}} \subset \ell^\infty_{\mathbb{R}} \qquad \ell^1_{\mathbb{C}} \subset \ell^2_{\mathbb{C}} \subset \ell^\infty_{\mathbb{C}}$$

type of signal	continuous-time	discrete-time
absolutely summable	$\int_{-\infty}^{+\infty} f(x) dx < \infty$	$\sum_{k=-\infty}^{\infty} \left f[k] \right < \infty$
square summable	$\int_{-\infty}^{+\infty} f(x) ^2 dx < \infty$	$\sum_{k=-\infty}^{\infty} f[k] ^2 < \infty$
bounded:	$ f(x) < b, \ \forall x \in \mathbb{R}$	$ f[k] < b, \ \forall k \in \mathbb{Z}$

1.2 LTI System

$$y[.] = u[.] * h[.] = \sum_{k \in \mathbb{Z}} u[k]h[.-k]$$

$$y(t) = u(t) * h(t) = \int_{-\infty}^{+\infty} u(\tau)h(t-\tau)d\tau$$

Theorem 1.1 An LTI system is **BIBO-stable**, if and only if it's impulse response is a stable signal (i.e. absolutely summable or integrable)

f	g	f * g	
right-sided	right-sided	right-sided	
causal	causal	causal	
anything	finite duration	well defined	
bounded	absolutely summable	bounded	
absolutely summable	absolutely summable	absolutely summable	
square summable	absolutely summable	square summable	
square summable	square summable	bounded	

1.3 canonical forms

$$H(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}}{1 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_n z^{-n}} = \frac{a_0 z^n + a_1 z^{n-1} + \dots + a_n}{z^n + b_1 z^{n-1} + \dots + b_n}$$

1.4 Maison's Gain Formula

$$\frac{Y(z)}{U(z)} = \frac{\sum_{p \in P} T_p(z) \Delta_p(z)}{\Delta(z)}$$

P is the set of all forward paths from node u to node y. $T_p(z)$ is the transfer function of the forward path p. $\Delta_p(z)$ is the network determinant of that parto of the block diagram that is not touched by the forward path p. $\Delta(z)$ is the network determinant.

$$\Delta(z) = 1 - \sum_{s \in S_1} + \sum_{(s_1, s_2) \in S_2} T_{s_1} T_{s_2} - \sum_{(s_1, s_2, s_3) \in S_3} T_{s_1} T_{s_2} T_{s_3} \pm \cdots$$

 $T_s(z)$ denotes the transfer function of a simple loop s. S_1 is the set of all simple loops. S_2 is the set of all unordered pairs (s_1, s_2) of simple loops $s_1, s_2 \in S_1$ that do not touch. S_3 is defined as three not touching loops and so on...

1.5 z-Transform

Definition 1.1 The z-transform of a real or complex signal f[.] is the function

$$\mathrm{ROC}(f) \to \mathbb{C} : z \mapsto F(z) := \sum_{k=-\infty}^{\infty} f[k]z^{-k}$$

with $ROC(f) := \{ z \in \mathbb{C} : r_1 < |z| < r_2 \}$

$$r_2 := \left(\limsup_{\ell \to \infty} \left| f([-\ell]) \right|^{1/\ell} \right)^{-1} \quad r_1 := \limsup_{k \to \infty} \left| f[k] \right|^{1/k}$$

Theorem 1.2 Let f[.] be a real or complex discrete-time signal with rational z-transform. Then f[.] is $stable \iff ROC(f)$ contains the unit circle. If f[.] is right-sided, then f[.] is $stable \iff$ all poles of F(z) are strictly inside the unit circle.

Addition
$$ROC(f+g) \subseteq ROC(f) \cap ROCg$$

Multiplication
$$H(z) := F(z)G(z) \longrightarrow ROC(h) \subseteq ROC(f) \cap ROC(g)$$

Scalar multipl. ROC(af) = ROC(a)

Time shift
$$H(z) := z^m F(z) \longrightarrow ROC(h) = ROC(f)$$

Time reversal
$$h[k] := f[-k] \longrightarrow ROC(h) = \{z \in \mathbb{C} : 1/r_2 < |z| < 1/r_1\}$$

$$f[k] \qquad F(z)$$

$$f[k] \qquad F(z) = \sum_{k=-\infty}^{\infty} f[k]e^{-k} \quad \text{definition}$$

$$\alpha f[k] + \beta g[k] \qquad \alpha F(z) + \beta G(z) \quad \text{linearity}$$

$$f[k-m] \qquad z^m \cdot F(z) \quad \text{time delay}$$

$$f[k] * g[k] \qquad F(z) \cdot G(z) \quad \text{convolution - multiplicity}$$

1.6 Inverse z-Transform

$$F(z) \qquad \text{ROC}(f) \qquad f[.]$$

$$\frac{z}{z-p} \qquad |z| > |p| \qquad f[k] = \begin{cases} 0 & k < 0 \\ p^k & k \ge 0 \end{cases}$$

$$|z| < |p| \qquad f[k] = \begin{cases} -p^k & k < 0 \\ 0 & k \ge 0 \end{cases}$$

$$\frac{Az}{z-p} + \frac{\overline{A}z}{z-\overline{p}} \qquad |z| > |p| \qquad f[k] = \begin{cases} 0 & k < 0 \\ 2|A| |p|^k \cos \Omega k + \varphi & k \ge 0 \\ 0 & k \ge 0 \end{cases}$$

$$|z| < |p| \qquad f[k] = \begin{cases} -2|A| |p|^k \cos \Omega k + \varphi & k < 0 \\ 0 & k \ge 0 \end{cases}$$

$$\text{where } A = |A| \cdot e^{i\varphi} \text{ and } p = |p| \cdot e^{i\Omega}$$

1.7 Spectrum of Discrete-time Signals

Theorem 1.3 The spectrum of a discrete-time signal is the z-transform on the unit circle.

$$F(e^{i\Omega}) := F(z)|_{z=e^{i\Omega}}$$

Theorem 1.4 For a stable real-valued discrete-time signal $f[.] \in \mathbb{R} \, \forall \, k \in \mathbb{Z}$:

$$F(e^{-i\omega}) = \overline{F(e^{i\Omega})}$$

$$F(z) = c \cdot \frac{\prod_{k=1}^{m} (z - z_k)}{\prod_{\ell=1}^{n} (z - p_\ell)} \qquad \left| F(e^{i\Omega}) \right| = |c| \cdot \frac{\prod_{k=1}^{m} \left| e^{i\Omega} - z_k \right|}{\prod_{\ell=1}^{n} \left| e^{i\Omega} - p_\ell \right|}$$

2 Discrete Time \rightleftharpoons Continuous Time

2.1 Laplace Transform

$$F(s) := \int_{-\infty}^{+\infty} f(t)e^{-st} \quad \text{ROC}(f) = \left\{ s \in \mathbb{C} : r_1 < \text{Re}(s) < r_2 \right\}$$

signal f	z-transform	Laplace transform
right-sided	$ROC(f) = \{z \in \mathbb{C} : z > \rho\}$	$ROC(f) = \{s \in \mathbb{C} : Re(s) > r\}$
left-sided	$\mathrm{ROC}(f) = \{z \in \mathbb{C} : z < \rho\}$	$ROC(f) = \{ s \in \mathbb{C} : Re(s) > r \}$
stable	ROC(f) contains unit circle	ROC(f) contains imaginary axis

2.2 From Discrete-time to Continuous-time

$$\tilde{x}(t) := \sum_{k=-\infty}^{\infty} x[k]\delta(t-kT) \quad y(t) = (\tilde{x}*h)(t) = \sum_{k=-\infty}^{\infty} x[k]h(t-kT)$$
$$\tilde{X}(s) = X(z)\big|_{z=e^{sT}}, \quad \tilde{X}(i\omega) = F(z)\big|_{z=e^{i\omega T}}$$

The spectrum $\tilde{F}(i\omega)$ of a "continuous-time signal" $\tilde{f}(t) := \sum_{k \in \mathbb{Z}} f[k] \delta(t - kT)$ equals the **periodic spectrum** $F(e^{i\Omega})$ of the discrete-time signal f[.] with $\Omega = \omega T$

2.3 Ideal Lowpass and the Sampling Theorem

$$H(i\omega) = \begin{cases} 1 & |\omega| < \omega_c \\ 0 & |\omega| \ge \omega_c \end{cases} \qquad h(t) = \frac{\sin(\omega_c t)}{\pi t} = \frac{\omega_c}{\pi} \operatorname{sinc}\left(\frac{\omega_c t}{\pi}\right)$$

The system above is completely transparent and acts like a discrete-time filter with impulse response $\delta[.]$

Theorem 2.1 (Nyquist-Shannon Sampling Theorem) Let y(.) be a signal with spectrum $Y(i\omega)$ satisfying

$$Y(i\omega) = 0 \,\forall \, |\omega| \ge \pi/T \quad or \quad Y(i2\pi f) = 0 \,\forall \, |f| \ge f_s/2,$$

Twhere $\omega = 2\pi f$ and $f_s := 1/T$. Then, y(.) can be recovered from the discrete-time signal $y_s[k] = Ty(kT)$ by:

$$Y(i\omega) = Y_s(e^{i\omega T}) \,\forall \, |\omega| < \pi/T, \quad y(t) = \sum_{k \in \mathbb{Z}} y(kT) \operatorname{sinc}\left(\frac{t - kT}{T}\right).$$

The spectra of y(.) and $y_s[.]$ are related by:

$$Y_s\left(e^{i\omega T}\right) = \sum_{n\in\mathbb{Z}} Y\left(i\left(\omega + \frac{2\pi n}{T}\right)\right) \qquad Y_s\left(e^{i2\pi f/f_s}\right) = \sum_{n\in\mathbb{Z}} Y\left(i2\pi (f + nf_s)\right)$$

Now, we define the digital frequency and the normalized frequency as following:

$$\Omega = \omega T = 2\pi \frac{f}{f_s}, \quad \Omega \in [-\pi, \pi] \text{ or } [0, 2\pi]$$

$$\frac{\omega}{2\pi} = f_{\text{norm}} = \frac{f}{f_s}, \quad f_{\text{norm}} \in \left[-\frac{1}{2}, \frac{1}{2} \right] \text{ or } [0, 1]$$

The spectrum $Y_s(e^{i\Omega})$ or $\tilde{Y}_s(i\omega)$ of a sampled signal is the sum of copies $Y(i\omega)$ that are shifted by $n \cdot 2\pi/T \,\forall \, n \in \mathbb{Z}$.

hu