

\_\_\_\_\_

# Lab 2 Report

\_\_\_\_\_

by

# Jonathan Huynh #016137719 Adam Godfrey #015981472

Instructor: Dr. Mohamed Aly
Class: ECE 3300L.E02-OU - Verilog Design

June 25th, 2025

### **Summary:**

In lab 2, we are tasked with designing, simulating, and implementing a 4-to-16 decoder along with an enable input on our Digilent Nexys A7-100T board.

### **Design:**

```
Behavior Level Snippet:
                                                           Gate Level Snippet:
                                                           assign Y[0] = E \& \sim A[3] \& \sim A[2] \& \sim A[1] \& \sim A[0];
always @(*) begin
  Y = 16'b0; // reset all outputs to 0
                                                           assign Y[1] = E & \simA[3] & \simA[2] & \simA[1] & A[0];
  if (E) begin // only decode when enabled
                                                           assign Y[2] = E & \simA[3] & \simA[2] & A[1] & \simA[0];
                                                           assign Y[3] = E & \simA[3] & \simA[2] & A[1] & A[0];
     case (A)
       4'b0000: Y = 16'b0000 0000 0000 0001; //
                                                           assign Y[4] = E \& \sim A[3] \& A[2] \& \sim A[1] \& \sim A[0];
output 0
                                                           assign Y[5] = E \& \sim A[3] \& A[2] \& \sim A[1] \& A[0];
       4'b0001: Y = 16'b0000 0000 0000 0010;
                                                           assign Y[6] = E & \simA[3] & A[2] & A[1] & \simA[0];
       4'b0010: Y = 16'b0000_0000_0000_0100;
                                                           assign Y[7] = E \& \sim A[3] \& A[2] \& A[1] \& A[0];
       4'b0011: Y = 16'b0000 0000 0000 1000;
                                                           assign Y[8] = E & A[3] & \simA[2] & \simA[1] & \simA[0];
       4'b0100: Y = 16'b0000_0000_0001_0000;
                                                           assign Y[9] = E & A[3] & ~A[2] & ~A[1] & A[0];
       4'b0101: Y = 16'b0000 0000 0010 0000:
                                                           assign Y[10] = E \& A[3] \& \sim A[2] \& A[1] \& \sim A[0];
       4'b0110: Y = 16'b0000 0000 0100 0000;
                                                           assign Y[11] = E \& A[3] \& \sim A[2] \& A[1] \& A[0];
       4'b0111: Y = 16'b0000 0000 1000 0000;
                                                           assign Y[12] = E \& A[3] \& A[2] \& \sim A[1] \& \sim A[0];
       4'b1000: Y = 16'b0000 0001 0000 0000;
                                                           assign Y[13] = E & A[3] & A[2] & ~A[1] & A[0];
       4'b1001: Y = 16'b0000 0010 0000 0000;
                                                           assign Y[14] = E \& A[3] \& A[2] \& A[1] \& \sim A[0];
       4'b1010: Y = 16'b0000_0100_0000_0000;
                                                           assign Y[15] = E & A[3] & A[2] & A[1] & A[0];
       4'b1011: Y = 16'b0000 1000 0000 0000;
       4'b1100: Y = 16'b0001 0000 0000 0000;
       4'b1101: Y = 16'b0010 0000 0000 0000;
       4'b1110: Y = 16'b0100 0000 0000 0000;
       4'b1111: Y = 16'b1000 0000 0000 0000;
     endcase
  end
end
```

### **Simulation:**

#### **Testbench Description:**

The testbench tb\_decoder4x16 is designed to verify the correct functionality of a 4-to-16 line decoder module (decoder4x16\_behav). The decoder takes a 4-bit input A, an enable signal E, and produces a 16-bit one-hot output Y.

- Enable = 1 (Active Phase):
  - When the enable signal E is asserted (E = 1), the testbench iterates through all 16 possible values of the 4-bit input A (from 0000 to 1111)
  - For each input value, it checks that the decoder output Y produces a one-hot encoding by comparing it to 1 << A</li>

- If the output does not match, the simulation halts with a failure message; otherwise, a success message is displayed.
- Enable = 0 (Disabled Phase):
  - After verifying all valid inputs with the decoder enabled, the testbench disables the decoder by setting E = 0
  - It again iterates over all values of A to ensure that the output Y remains zero regardless of the input
  - Any non-zero output is treated as an error and flagged.

#### Sample Waveform:

|                            |          |         |      |        |      |        |      |        |      |        |      |        |      | 117.400 : | 78   |        |      |        |                |        |     |         |     |        |      |        |      |         |     |         |     |         |        |
|----------------------------|----------|---------|------|--------|------|--------|------|--------|------|--------|------|--------|------|-----------|------|--------|------|--------|----------------|--------|-----|---------|-----|--------|------|--------|------|---------|-----|---------|-----|---------|--------|
| Name                       | Value    | 0.000 E |      | 20.000 |      | 40.000 |      | 60.000 |      | 80.000 |      | 100.00 | 0 ns | 120.00    |      | 140.00 |      | 160.00 |                | 180.00 |     | 200.000 |     | 220.00 | 0 ns | 240.00 |      | 260.000 |     | 280.000 |     | 300.000 | ns  32 |
| > ₩ [4(3.0]]<br>¼ E        | b        |         | Ċ    | 2      | Х 3  | 4      | 5    | 6      | 7    | 8      | X 9  | X      | Хр   | 7         | ( a  |        | X -  | X o    | χ <del>τ</del> | 2      | 3   | 4       | 5   | 6      | 7    | 8      | X 9  |         | -   | -       | ĊĠ. |         |        |
|                            | 1        |         |      |        |      |        |      |        |      |        |      |        |      |           |      |        |      |        |                |        |     |         |     |        |      |        |      |         |     |         |     |         |        |
| > ♥ Y[15.0]<br>> ♥ i[31:0] | 0800     | 0001    | 0002 | 0004   | 8000 | 0010   | 0020 | 0040   | 0080 | 0100   | 0200 | 0400   | 0800 | 1000      | 2000 | 4000   | 8000 | X      |                |        |     |         |     |        | 00   | 000    |      |         |     |         |     |         |        |
| > W i(31:0)                | 0000000b | 000     | 000  | 000    | 000  | 000    | 000  | 000    | 000  | 000    | 000  | 000    | 000. | . 000     | 000  | 000    | 000  | 000    | 000            | 000    | 000 | 000     | 000 | 000    | 000  | 000    | X000 | 000     | 000 | 000     | 000 | 000     | 000    |

#### Zoomed in to 3 periods:



### **Implementation:**

#### Resource Utilization Table

| Resource        | <u>Used</u> | <u>Available</u> | <u>Utilization</u> |
|-----------------|-------------|------------------|--------------------|
| LUTs            | 8           | 63,400           | 0.0126%            |
| Registers (FFs) | 0           | 126,800          | 0%                 |
| Bonded IOB      | 21          | 210              | 10%                |

#### **Timing Summary:**

| Worst Negative Slack (WNS) |  |
|----------------------------|--|
| Minimum Clock Period       |  |
| Max Frequency              |  |

### **Contributions:**

|--|

| Jonathan Huynh | Demo, Debugging, Synthesis, Simulation, Written Report | 50% |
|----------------|--------------------------------------------------------|-----|
| Adam Godfrey   | Verilog Code, Test Bench, Written Report               | 50% |

## **Link To Video:**

https://youtu.be/pE-wBqzjdYA