#### Министерство образования и науки РФ

федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Факультет общей и прикладной физики

Образовательная программа "Вычислительная физика конденсированного состояния и живых систем"

# Влияние конформации остатка пролина на структурно-динамические характеристики трансмембранного домена рецептора инсулина

Диплом на соискание степени бакалавра

#### Выполнила:

студентка 626 группы Щекотихина Дарья Денисовна

### Научный руководитель:

доктор физико-математических наук Ефремов Роман Гербертович

# Аннотация

Данная работа посвящена исследованию роли конформации пептидной связи пролина в трансмембранном домене рецептора инсулина в контексте механизма активации рецептора.

# Содержание

| 1 Введение        |                                                      |                                              | 4                                                                |    |
|-------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|----|
| 2                 | Обзор литературы                                     |                                              |                                                                  |    |
|                   | 2.1                                                  | Рецеп                                        | тор инсулина                                                     | 5  |
|                   |                                                      | 2.1.1                                        | Модели активации IR                                              | 7  |
|                   | 2.2 Трансмембраный домен IR                          |                                              | смембраный домен IR                                              | 7  |
|                   |                                                      | 2.2.1                                        | Исследование трансмембранного домена                             | 7  |
|                   |                                                      | 2.2.2                                        | Экспериментальные данные                                         | 8  |
|                   |                                                      | 2.2.3                                        | Данные моделирования                                             | 9  |
|                   | 2.3                                                  | .3 Пролин в трансмембранных $lpha$ -спиралях |                                                                  | 9  |
|                   |                                                      | 2.3.1                                        | Влияние пролина на свойства спирали                              | 9  |
|                   |                                                      | 2.3.2                                        | Цис-транс изомеризация                                           | 10 |
|                   | 2.4 Компьютерное моделирование биологических молекул |                                              | ьютерное моделирование биологических молекул                     | 10 |
|                   |                                                      | 2.4.1                                        | Молекулярная динамика                                            | 11 |
|                   |                                                      | 2.4.2                                        | Классический метод рассчета MD для трансмембранного белка        | 12 |
|                   |                                                      | 2.4.3                                        | PREDDIMER и метод потенциала средней силы                        | 13 |
| 3                 | Материалы и методы                                   |                                              |                                                                  |    |
|                   | 3.1                                                  | 3.1 Разработанные алгоритмы                  |                                                                  | 14 |
|                   |                                                      | 3.1.1                                        | Получение информации о геометрии трансмембранной $lpha$ -спирали | 14 |
|                   |                                                      | 3.1.2                                        | Поиск пересечений двух $\alpha$ -спиралей                        | 15 |
| 4                 | Результаты и обсуждение                              |                                              |                                                                  | 16 |
|                   | 4.1                                                  | Моно                                         | меры с цис- связью                                               | 16 |
|                   | 4.2                                                  | Предо                                        | сказание структуры димеров с цис- связью                         | 16 |
| 5                 | Вы                                                   | Выводы                                       |                                                                  |    |
| Список литературы |                                                      |                                              |                                                                  |    |

# 1 Введение

TO-DO

- про компьютерные методы исследования про сухую биологию
- про рецептор инсулина, какой он важный про медицину, как важно этот рецептор изучать почему нам нужны тут комп. методы
  - про эту работу в контексте общего исследования, к чему это приведет

## 2 Обзор литературы

#### 2.1 Рецептор инсулина



Рис. 1: ?Схематиченое изображение пространственной структуры IR. Внеклеточный домен изображен сверху; внутриклеточный (киназный домен) изображен снизу; мембрана схематично показана серым цветом. https://pdb101.rcsb.org/motm/182

Инсулиновый рецептор (IR) - это рецептор, активируемый инсулином и инсулиноподобными факторами роста I и II (IGF-I и IGF-II). Он принадлежит обширному классу рецепторных тирозинкиназ и представляет собой интегральный мембранный белок. Этот белок является димером, состоящим из двух одинаковых молекул, пронизывающих мембрану.

В рецепторе инсулина выделяют внеклеточный, трансмембранный и внутриклеточный (киназный) домены (см рис. 1). Внеклеточный домен связывается с лигандом, трансмембранный домен передает сигнал от внеклеточного домена к киназному, киназный домен осуществляет реакцию фосфорилирования остатков тирозина в сигнальном белке, что приводит к каскаду реакций внутри клетки.

Одна из ролей IR в организме заключается в регуляции гомеостаза глюкозы. Этот процесс можно кратко описать следующим образом:

• Пища поступает в организм, вследствие расщепления углеводов происходит повышение уровня глюкозы в крови.



Puc. 2: Схема каскада реакций, запускаемых рецептором инсулина (синий) в результате связывания с инсулином (красный). https://pdb101.rcsb.org/global-health/diabetes-mellitus/drugs/insulin/insulin-receptor

- В ответ на повышение уровня глюкозы выработывается гормон инсулин.
- Инсулин связывается с внеклеточным доменом рецептора
- Происходит передача сигнала внутрь клетки к внутриклеточному домену.
- Киназный домен запускает каскад реакций, приводящий к увеличению завата глюкозы клеткой. Вследствие этого уровень глюкозы в крови понижается.

Это справедливо для одной из изоформ IR. В организме человека рецептор инсулина существует в двух изоформах: IR-A и IR-B. Они различаются по афинности к IGF-I и IGF-II. Так, установлено, что IR-A отвечает за внутриутробный рост и развитие, а IR-B отвечает за метаболическую регуляцию [1]. В контексте данной работы нас интересует активация IR инсулином, поэтому мы опускаем рассмотрение IR-A.

Поскольку рецептор отвечает за столь важные процессы в организме человека, нарушения в его работе приводят к различным клиническим проявления, в том числе к диабету. Поэтому то, как происходит процесс активации IR является актуальным вопросом современной биохимии. Знание этого процесса на молекулярном уровне может послужить базой для создания лекарств на основе структуры белка (Structure-based drug design (TO-DO add reference to some article??)).

#### 2.1.1 Модели активации IR



Рис. 3: **TO-DO change picture! Leave only one model.** Models of the mechanism of ligand activation of the insulin receptor tyrosine kinase. A: The "yo-yo"model. B: The TM domain ligand-induced separation model. C: The TM domain ligand-induced approximation model. D. The "rotation model". [3]

На данный момент общепринятой моделью активации IR, подтверждающейся экспериментальными данными, является предложенная Lee [4] (см рис. 3С). В данной модели после активации инсулином две части внеклеточного домена "сходятся тем самым сближая α-спирали ТМ домена. ТМ домен димеризуется и далее, из-за такого изменения конформации ТМ участка, киназный домен переходит в активированное состояние.

### 2.2 Трансмембраный домен IR

#### 2.2.1 Исследование трансмембранного домена

В то время как для внеклеточного и киназного доменов возможно подробное исследование структуры экспериментальными методами, в том числе с помощью криоэлектронной микроскопии [2], трансмембранный домен представляет особую сложность, т.к. он может существовать только в липидном окружении. Таким образом, в изучении ТМ домена особый интерес представляют методы компьютерного моделирования. Они позволяют на базе неполных структурных данных проверять теоретические предполо-

жения на основе оценки стабильности структур, а так же получать представление о динамике полученных структур в модельном окружении (см. раздел 2.4).

#### 2.2.2 Экспериментальные данные



Рис. 4: Схематическое изображение ТМ домена IR в мицелле детергента (желтым указаны головки липидов, буквы обозначают аминокислотный остаток.) [5].

С помощью метода двумерной ЯМР спектроскопии была расшифрована структура ТМ домена IR в мицеллах [5]. Структура для последовательности остатков 940–988 была получена в мицелах ДФХ (додецилфосфохолина). Несмотря на то, что в работе удалось получить только мономеры белка, авторы указывают на возможность существования структур в форме димеров в мицеллах. У мономеров внемембранные участки являются подвижными и располагаются в водном окружении. Мембранный участок имеет структуру  $\alpha$ -спирали. При этом был отмечен кинк в этой спирали, созданный связью Gly960-Pro961, потенциально важный для функции домена.

В лаборатории биомолекулярной ЯМР-спектроскопии ИБХ РАН был проведен аналогичный эксперимент с целью получения димерных форм в мицеллах ДФХ. Был выделен участок 944-973 и созданы образцы мономерных и димерных форм в мицеллах. Спектры показали необычные результаты в отношении кинка Gly-Pro. Спектр мономера двоится в N-концевых остатках, начиная с Pro961. Это говорит об изменении локального окружения этих остатков, что позволяет судить о наличии двух форм мономера, различающихся по форме с N-конца.

В спектре димеров начиная с пролина сигнал троится. То есть, аналогичным образом, существует три конформации димера ТМ домена IR.

ТО-DO добавить график вторичной структуры и спектр (если это возможно)

Итак, целью данной работы является предсказание структур, которые были бы согласованны с результатом вышеописанного эксперимента, путем компьютерного моделирования.

#### 2.2.3 Данные моделирования

Ранее в лаборатории моделирования биомолекулярных систем ИБХ РАН были предсказаны наиболее вероятные структуры димеров для ТМ доменов IR [6]. Для получения димеров на основе последовательности мономера был использован программный пакет PREDDIMER [7] (см. раздел 2.4.3).

Структуры димеров, полученные с помощью PREDDIMER, затем были помещены в мембранное окружение из молекул пальмитоилолеилфосфатидилхолина (POPC), проведена минимизация энергии, релаксация и рассчет траектории молекулярной динамики (2.4.2). Затем методом потенциала средней силы (2.4.3) были предложены 3 наиболее стабильные димерные структуры. Все они имеют характерную водородную связь Ser969-Ser969.

TO-DO добавить картинку этих структур из диплома Мифтаха (если это возможно) или сделать свои картинки

## 2.3 Пролин в трансмембранных $\alpha$ -спиралях

#### 2.3.1 Влияние пролина на свойства спирали

Принято считать, что остаток пролина в трансмембранных α-спиралях играет функциональную роль. На это указывает сравнительно высокая встречаемость пролина в трансмембранных спиралях по сравнению со спиралями водорастворимых белков [8], [9]. Кроме того, было показано, что внесение мутаций в Pro в ТМ домене транспортных белков приводит к их деактивации [10]. Все это дает основание полагать, что пролин может быть функционально важен трансмембранных доменах большого количества белков.

Как компьютерное моделирование, так и экспериментальные данные показывают, что пролин вносит конформационные изменения в геометрию ТМ  $\alpha$ -спирали [12], [11]. Цис- конформация пептидной связи между пролином и предшествующим ему остатком создает излом в  $\alpha$ -спирали, что может изменять ее положение в мембране и, как следствие, меняет функциональные свойства пептида.

Также было замечено, что пролин в трансмембранных спиралях имеет достаточно консервативное положение: он чаще всего оказывается "вытащен" в область полярных головок молекул липидов, составляющих мембрану [13]. Такое специфическое положе-

ние в свою очередь имеет связь с процессом димеризации ТМ спиралей. Так, с помощью поиска мотивов, образующих водородные связи в димерах, было исследовано, что пролин, находящийся в гидрофильной области ТМД (трансмембранного домена) индуцирует димеризацию мономеров в мембране [14]. Этот факт вызывает особый интерес в контексте изучения механизма работы ТМД в IR.

#### 2.3.2 Цис-транс изомеризация

В исследовании цис-транс конформаций  $\alpha$ -спиралей в мембранах особняком стоит вопрос о цис-транс изомеризации. В эксперименте тяжело зафиксировать конформационный переход, меняющий геометрию пептида в связи с необходимостью нокопления данных от множества пептидов. Моделирование транс-цис перехода вычислительными методами также является трудоемкой задачей, требующей введения более сложных силовых полей. Это приводит к недостатку данных о возможности, а также роли цистранс изомеризации в работе ТМД.

Так же сложность в вопрос конформационного изменения вносит энергия перехода. Если в мембранной спирали происходит подобное изменение с образованием кинка посередине, то дополнительно к энергии изомеризации пептидной связи добавится энергия поворота участка α-спирали в мембране. Это наличие избыточной энергии может являться причиной того, что пролины преимущественно оказываются в гидрофильной области, т.к. в таком случае исчезает проблема поворота участка спирали в мембране.

Несмотря на сложности в получении данных, известны рецепторы, в которых цистранс изомеризация, приводящая к конформационным изменениям, является механизмом передачи сигнала, к примеру рецептор родопсин, в котором поглощение кванта света дает энергию изомеризации. Также подобные изменения в ТМ спиралях показаны в ионных каналах с помощью мутагенеза пролина [15].

#### 2.4 Компьютерное моделирование биологических молекул

Атомистическое моделирование (AM) - это численный метод исследования вещества на основе микроструктуры вещества. АМ рассматривает вещество как совокупность атомов, взаимодействие между которыми определяет физические свойства вещества.

Методы АМ находят применение как в процессе создания новых материалов, так и в процессе исследования биологических систем (так называемая "сухая"биология). Численное моделирование, работая в совокупности с экспериментальными методами, колоссально ускоряет и удешевляет исследование. Структурно-динамическая информация, полученная численно, ложится в основу эксперимента, снижая затраты на поиск необходимых структур.

#### 2.4.1 Молекулярная динамика

Молекулярная динамика (MD) - один из методов атомистического моделирования. Он заключается в решении уравнений движения системы N взаимодействующих атомов:

$$m_i \frac{\partial r_i}{\partial t^2} = F_i, \ i = 1..N; \qquad F_i = \frac{-\partial V}{\partial r_i}$$
 (1)

Потенциал  $V(r_1,...,r_N)$  определяется параметрами силового поля<sup>1</sup>.

Полученная система уравнений решается через некоторый малый промежуток времени  $\Delta t$  на некотором отрезке  $[t_0,t_1]$  при заданных начальных условиях  $(r_1(t_0),...,r_N(t_0))$ . В результате, совокупность точек  $(r_1,...,r_N)$  в каждый момент времени  $t0,\ t0+\Delta t,\ t_0+2\Delta t,\ ...,\ t_1$  составляет траекторию MD. Эта траектория определяет эволюцию системы в течение промежутка времени  $[t_0,t_1]$ .

При рассчете макросистем (  $10^5$  атомов) аналитическое решение уравнений (1) на большом промежутке времени не представляется возможным для современной техники. Поэтому в MD уравнения решаются численно с использованием выбранной разностной схемы.

Критерием удачного расчета MD является стабильность системы предмет + окружение. Систем должна прийти к уравновешенному состоянию, в котором флуктуации остаются постоянными на некотором достаточно большом временном отрезке  $[t_S, t_2] >> \Delta t$ . В качестве оценочной функции используется среднеквадратичное отклонение, усредненное либо по атомам (RMSD), либо по временному промежутку (RMSF). Усреднение по атомам позволяет оценить стабильность структуры в целом, а усреднение по времени позволяет отслеживать участки повышенной подвижности структуры, которые часто играют большое значение в функции молекулы.

Описанный выше функционал реализуется открытыми программными пакетами. В настоящей работе используется пакет Gromacs.

<sup>&</sup>lt;sup>1</sup>Какое-либо взаимодействие атомов можно описать в рамках соответствующей модели (к примеру, валентную связь между атомами можно описать как идеально жесткую связь или в модели гармонического осциллятора). Модель дает аналитическое выражение для потенциала взаимодействия. Силовое поле - это совокупность потенциалов разных взаимодествий с коэфициентами, подобранными эмпирически, чтобы модель соответствовала предмету в реальной жизни.

#### 2.4.2 Классический метод рассчета MD для трансмембранного белка

Стандартный рассчетный эксперимент для трансмембранного белка состоит из пяти основных частей:

- Погружение белка в мембранное окружение.
- Минимизация энергии составленной системы.
- Релаксация системы.
- Рассчет траектории MD.
- Обработка полученных результатов.

Изначально, белок и мембрана<sup>2</sup> представлены в виде отдельных файлов, содержащих информацию о координатах каждого атома и принадлежности к определенной группе. Поскольку ТМ белок не существует без мембранного окружения, а мембрана является сложной стабилизированной системой, возникает проблема погружения белка в мембрану. Для решения этой проблемы используется подход InflateGRO [16].

Мембрана растягивается в ширину в 4 раза и совмещается с белком. Те липиды, которые попали в пересечение с молекулой белка, удаляются. После этого мембрана постепенно сжимается с коэфициентом 0.95 с минимизацией энергии на каждом шаге, пока не достигнет своей стандартной плотности.

На следующем шаге происходит минимизация энергии алгоритмом градиентного спуска. После этого с помощью специальных алгоритмов термостата и баростата в коротком прогоне молекулярной динамики происходит релаксация системы к определенной температуре и давлению. Отрелаксированная система готова к рассчету траектории MD.

После получения итоговой траектории проводится ее визуальная оценка с помощью программ визуализации. Затем вычисляется RMSD и RMSF, по которым окончательно можно судить о стабильности белка в мембране.

<sup>&</sup>lt;sup>2</sup>В связи с достаточно однородной структурой строения мембраны как липидного бислоя, рассчет мембранных белков всегда проводится в периодических граничных условиях. Таким образом, файл хранит небольшой участок бислоя, который самостабилизирован так, как если бы бислой был бесконечен. Это является преимуществом исследования мембранных белков с помощью моделирования, в отличие от экспериментальных методов, в которых используются мицеллы, кубическая липидная фаза и т.д.

#### 2.4.3 PREDDIMER и метод потенциала средней силы

In vivo формирование трансмембранных димеров происходит при соблюдении соответствия свойств поверхностей. Поэтому, по карте гидрофобности мономеров можно предсказать, как будет формироваться димерная форма. Программа PREDDIMER реализует такой подход. Она позволяет предсказывать димеры по последовательности для  $\alpha$ -спиральных TM пептидов.

Сначала по аминокислотной последовательности формируются идеальные спирали. Затем происходит вычисление их поверхности и рассчет ее гидрофобных свойств. Затем полученные двумерные карты сопоставляются и с помощью варьирования угла между этими картами ищется интерфейс димеризации. В итоге для наиболее вероятных вариантов восстанавливается конечная структра димера.

После уравновешивания структуры методом MD, возникает задача вычисления энергии взаимодействия мономеров в димере, чтобы установить наиболее стабильные. Для этого используется метод потенциала средней силы.

ТО-DO добавить инфу про метод потенциала средней силы

# 3 Материалы и методы

### 3.1 Разработанные алгоритмы

#### 3.1.1 Получение информации о геометрии трансмембранной $\alpha$ -спирали

Необходимым аппаратом в исследовании трансмембранных α-спиралей является обработка информации о геометрических характеристиках спирали в мембране: наклон спирали относительно перпендикуляру к мембране, изломы спирали, ориентация и т.д. Для решения подобных задач был разработан специальный алгоритм.

Идеальный виток  $\alpha$ -спирали, ориентированный по оси Z (ось Z перпендикулярна плоскости мембраны), методом наименьших квадратов фитится на соответствующий участок трансмембранной спирали. Результатом фита является матрица поворота вит-ка в пространстве. Данная матрица содержит всю информацию о геометрии данного участка спирали. Получая такие матрицы для витков по всей длине спирали, можно установить геометрические характеристики всего пептида.

В данной работе этот алгоритм применяется для определения угла наклона спирали относительно перпендикуляра к плоскости мембраны и для отслеживания изломов спирали. Для определения угла наклона, единичный вектор, направленный вдоль оси Z, умножается на матрицу поворота, тогда проекция полученного вектора на ось Z определяет косинус угла наклона спирали (см. рис. 5а). Для отслеживания излома спирали, каждый полученный вектор вычитается из предыдущего. В итоге, модуль этой разности показывает наличие излома на данном участке спирали (см. рис. 5b).



Рис. 5: Схема обработки геометрических данных трансмембранной  $\alpha$ -спирали

Для реализации алгоритма была использована библиотека MDAnalysis (https://www.mdanalysis.org).

| 3.1.2 | Поиск пересечений двух $\alpha$ -спиралей |
|-------|-------------------------------------------|
| ТО    | -DO                                       |

# 4 Результаты и обсуждение

#### 4.1 Мономеры с цис- связью

Для получения структуры мономера с цис-конформацией пептидной связи Gly-Pro эта пептидная связь была повернута на  $180^{\circ}$ в мономере, полученном в [5] с помощью программы Pymol <sup>3</sup>.

В процессе рассчетов было замечено, что длина внешних свободных участков сильно влияет на структуру пептида. Поэтому рассчет проводился как для "коротких" пептидов с обрезанными свободными участками цепи с N и C концов, так и для "длинных" (ТО-DO дописать точные остатки). Полученные структуры показаны на рис. 6.



Рис. 6: Стабильные структуры мономеров. Слева направо: референсный длинный пептид с транс конформацией, длинный пептид с цис конформацией, короткий пептид с транс конформацией, короткий пептид с цис конформацией.

TO-DO

ТО-DO дообработать с нормальным доказательством жесткости?...

## 4.2 Предсказание структуры димеров с цис- связью

В разделе 4.1 было обнаружено, что структура в области Pro961 является жетской в том случае, когда участок с N конца сохраняет спиральную конформацию после остат-

<sup>&</sup>lt;sup>3</sup>Т.к. пептидная связь является идеально жесткой в поле (ТО-DO написать поле), после искуственного изменения угла пептидной связи этот угол сохранится в процессе рассчета траектории МД.

ка пролина. Это накладывает геометрическое ограничение на возможные структуры димеров с цис-связью.

Был проведен эксперимент с целью отбора возможных структур димеров с цистранс, транс-цис и цис-цис пептидной связью Gly-Pro. За основу были взяты димеры, полученные в работе (ТО-DO как сослаться на диплом или новую статью?) С помощью программного пакета Gromax был проведен фит структуры мономера (ТО-DO ссылка на мономер) на соответствующую часть димера по совпадающей части (ТО-DO дописать точные остатки). Далее методом, описанном в разделе 3.1.2 были выявлены пересечения двух спиралей димеров между собой. Результаты представлены в таблице 4.2.

TO-DO вставить таблицу

Очевидно, что структуры, содержащие пересечения, геометрически невозможны в силу жесткости мономера. Для структур без пересечений был поставлен эксперимент для получения траектории молекулярной динамики 2.4.2.

В силу предположения о том, что димеризация происходит для цис-мономеров (см. 2.3.1), далее нас интересуют только цис-цис димеры. Как видно из таблицы ??, это цис-цис димеры, полученные из структур 2 и 7.

ТО-DO нарисовать схематичную картинку цис-цис 2 и 7 (симметричный 2 и несимметричный 7)

Димер 7 при наложении представлял собой несимметричную структуру (см рис. 4.26). В процессе релаксации спирали димера развернулись, из чего следует вывод, что данный димер нестабилен в мембранном окружении.

Таким образом, была получена единственная структура цис-цис димера, стабильная в мембране (см. графики 4.2, 4.2).

TO-DO add rmsd plot

TO-DO add rmsf plot

• • • •

# 5 Выводы

## Список литературы

- [1] Belfiore A, Malaguarnera R, Vella V, et al.: Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev. 2017;38(5):379–431. 10.1210/er.2017-00073
- [2] Uchikawa E, Choi E, Shang G, Yu H, Bai XC. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex Elife. 2019; 2019 Aug 22.
- [3] De Meyts P. The insulin receptor and its signal transduction network. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, Mclachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth, MA: MDText.com, Inc. (2000).
- [4] Lee J, Miyazaki M, Romeo GR and Shoelson SE. Insulin receptor activation with transmembrane domain ligands. J Biol Chem 289: 19769-19777 (2014)
- [5] Q. Li, et al. Solution structure of the transmembrane domain of the insulin receptor in detergent micelles Biochim. Biophys. Acta, 1838 (2014), pp. 1313-1321
- [6] Zamaletdinov M.F., Kuznetsov A.S., Maurice P., Efremov R.G. Putative role of transmembrane domain dimerization in activation of proteins from the Insulin receptor family J Bioenerg Biomembr. 2018. V. 50, no. 6, p. 515.
- [7] Polyansky A. A. et al. PREDDIMER: a web server for prediction of transmembrane helical dimers //Bioinformatics. − 2014. − T. 30. − №. 6. − C. 889-890.
- [8] Woolfson DN, Mortishire-Smith RJ, Williams DH. Conserved positioning of proline residues in membrane-spanning helices of ion-channel proteins. Biochem Biophys Res Commun 1991; 175: 733–737
- [9] Alex Peralvarez-Marin, Jose-Luis Bourdelande, Enric Querol, Esteve Padros (2006) The role of proline residues in the dynamics of transmembrane helices: the case of bacteriorhodopsin, Molecular Membrane Biology, 23:2, 127-135
- [10] Slepkov ER, Chow S, Lemieux MJ, Fliegel L. Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na?+?/H+ exchanger isoform 1. Biochem J 2004; 379: 31–38
- [11] Cordes FS, Bright JN, Sansom MSP. Proline-induced distortions of transmembrane helices. J Mol Biol 2002; 323: 951–960
- [12] L.K. Iyer, S. Vishveshwara A model for transmembrane helix with a cis-proline in the middle FEBS Lett., 374 (1995), pp. 21-24

- [13] D.N. Woolfson, R.J. Mortishire-Smith, D.H. Williams Conserved positioning of proline residues in membrane-spanning helices of ion-channel proteins Biochem. Biophys. Res. Commun., 175 (1991), pp. 733-737
- [14] N. Sal-Man, D. Gerber, Y. Shai Proline localized to the interaction interface can mediate self-association of transmembrane domains Biochim. Biophys. Acta - Biomembr., 1838 (2014), pp. 2313-2318
- [15] Lummis, S., Beene, D., Lee, L. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005)
- [16] C. Kandt, W.L. Ash, D.P. Tieleman Setting up and running molecular dynamics simulations of membrane proteins Methods, 41 (4) (2007), pp. 475-488