Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Nam	Name of the course ELECTRIC CIRCUIT THEORY			
Course Code: PC-EEE 301 Semester: 3 rd				
Dura	tion: 6 months	Maximum Marks: 100		
	Teaching Scheme Examination Scheme			
	ry: 3 hrs/week	Mid Semester Exam: 15 M		
	rial: 1 hr/week	8	<u> Marks</u>	
	tical: 0 hr/week		Marks	
Cred	it Points: 4	End Semester Exam: 70 M	<u>larks</u>	
	011			
1	Object		-::4-	41
1.	To understand the structure and properties	s of different type of electrical	circuits,	networks
2.	and sources. To apply different mathematical tools & to	achniques for analyzing alcomi	ool noty	orke
3.	To apply circuit analysis techniques to sin		icai iiciw	UIKS.
4.	To solve problems of electrical circuits			
4.	Pre-Re			
1.	Basic Electrical Engineering (ES-EE-101)	1		
2.	Mathematics (BS-M-102, Bs-M202))		
Unit	Content		Hrs	Marks
1	Introduction: Continuous & Discrete, Fi	xed & Time varying Linear	3	IVIAINS
1	and Nonlinear, Lumped and Distributed,	• •	5	
	and systems. Independent & Dependent so			
	Sinusoidal, Square, Saw tooth signals	, 1, 1, 1		
2	Graph theory and Networks equations	s: Concept of Tree, Branch,	4	
	Tree link, Incidence matrix, Tie-set matri	ix and loop currents, Cut set		
	matrix and node pair potentials. Duality, S	Solution of Problems		
3	Coupled circuits: Magnetic coupling, F		3	
	induced voltage, Concept of Self and Mu			
	of coupling, Modeling of coupled circuits,			
4	Laplace transforms: Impulse, Step &		8	
	RC, and RLC circuits. Transient analysis			
	with and without initial conditions. Cond			
	and its application. Solution of Problems v		(
5	Fourier method of waveform analysis		6	
	Transform (in continuous domain on analysis, Solution of Problems	ry). Application in circuit		
6	Network Theorems: Formulation of	network equations Source	8	
	transformation, Loop variable analysis, No.	* '	O	
	Network theorem: Superposition, Thever	•		
	power transfer theorem. Millman's theorem.			
	three phase unbalanced circuit analysis. So			
	& AC sources.			
				i

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

7	Two port networks analysis: Open circuit Impedance & Short circuit	4	
	Admittance parameter, Transmission parameters, Hybrid parameters		
	and their inter relations. Driving point impedance & Admittance.		
	Solution of Problems		
8	Filter Circuits: Analysis and synthesis of Low pass, High pass, Band	4	
	pass, Band reject, All pass filters (first and second order only) using		
	operational amplifier. Solution of Problems		

Text books:

- 1. Networks and Systems, Asfaq Husain, Khanna Publishing House, New Delhi
- 2. Networks and Systems, D. Roy Chowdhury, New Age International Publishers
- 3. Network Analysis and Synthesis, C.L. Wadhwa, New Age International Publishers
- 4. Circuit and Networks: Analysis and synthesis, A. Sudhakar & S.S. Palli4th edition. Tata Mc Graw Hill Education Pvt. Ltd.
- 5. Circuit theory, Dr. Abhijit Chakrabarty, Dhanpat Rai & Co Pvt. Ltd.

Reference books

- 1. Network Analysis, M.E. Valkenburg, Pearson Education .
- 2. Fundamental of Electric circuit theory, D. Chattopadhay & P.C. Rakshit, S. Chand
- 3. Engineering Circuit Analysis, W.H. Hyat, J.E. Kemmerly & S.M. Durbin, The Mc Graw Hill Company.

Course Outcome: After completion of this course, the learners will be able to

- 1. describe different type of networks, sources and signals with examples.
- 2. explain different network theorems, coupled circuit and tools for solution of networks.
- 3. apply network theorems and different tools to solve network problems.
- 4. select suitable techniques of network analysis for efficient solution.
- 5. estimate parameters of two-port networks.
- 6. design filter circuits.

Special Remarks:

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

Name	me of the course Electric circuit theory				
Cour	rse Code:PC-EEE391	Semester: 3 rd			
Dura	tion: 6 months	Maximum marks:100			
	hing Scheme	Examination scheme:			
	ry:0 hr/week	Continuous Internal Assessment:40			
	rial:0 hr/week	External Assessment: 60			
	tical: 2 hrs/week				
Cred	it Points:1				
	T				
	Laboratory I				
1.	Transient response of R-L and R-C netwo	rk: simulation with software & hardware			
2.	Transient response of R-L-C series and parallel circuit: simulation with software &				
	hardware				
3.					
3.	Determination of Impedance (Z) and Admittance (Y) parameter of two-port network: simulation & hardware.				
4.	Frequency response of LP and HP filters: simulation & hardware.				
5.	Frequency response of BP and BR filters:	simulation & hardware.			
6.		soidal, Damped Sinusoidal, Step, Impulse,			
	Ramp signal using MATLAB in both discrete and analog form.				
7.	Determination of Laplace transform and I	nverse Laplace transform using MATLAB.			
8.	Amplitude and Phase spectrum analysis o	f different signals using MATLAB.			
9.	Verification of Network theorems using	software & hardware			

Course Outcome: After completion of this course, the learners will be able to

- 1. determine
 - transient response of different electrical circuit
 - parameters of two port network
 - frequency response of filters.
 - Laplace transform and inverse Laplace transform
- 2. generate different signals in both discrete and analog form
- 3. analyze amplitude and phase spectrum of different signals.
- 4. verify network theorems.
- 5. construct circuits with appropriate instruments and safety precautions.
- 6. Simulate electrical circuit experiments using suitable software.

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

Namo	Name of the course ANAI		RONICS	
Course Code: PC-EEE 302 Sem		Semester: 3 rd		
Dura	tion: 6 months	Maximum Marks: 1	00	
Teac	Teaching Scheme Examination Scheme			
	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
	rial: 0 hr/week	Assignment & Quiz:	10 Marks	
	ical: 0 hr/week	Attendance:	05 Marks	
Credi	t Points: 3	End Semester Exam:	70 Marks	
	ctive:			
1.	To understand the structure and properties			
2.	To explain principle of operation of anal-		ents and circui	ts.
3.	To understand the application of operation			
4.	To solve problems of analog electronic			
5.	To analyze amplifiers, oscillators and other	er analog electronic cir	cuits.	
	Requisite			
1.	Physics (10+2)			
Unit	Content		Hrs	Marks
1	Filters & Regulators: Review of half wave and full wave 4			
	rectifier, Capacitor filters, π -section filter, ripple factor, series			
	and shunt voltage regulator, percentage regulation.			
2	BJT circuits: Structure and I-V characte		8	
	as a switch. BJT as an amplifier: small-s			
	circuits, current mirror; common-emitter			
	common-collector amplifiers; Small signa	al equivalent circuits,		
	high-frequency equivalent circuits	1 777		
3		ructure and I-V	8	
	characteristics. MOSFET as a switch			
	amplifier: small-signal model and biasin			
	source, common-gate and common-dra			
	signal equivalent circuits - gain, input and			
1	trans-conductance, high frequency equiva		5	
4	Feed back amplifier & Oscillators: Co		5	
	Negative & Positive feedback, Voltage/Geedback, Berkhausen criterion, Colpit, I			
	Wien bridge, & Crystal oscillators.	iainey s, rhase shift,		
5	Operational amplifier: Ideal OPAMP, I	Differential amplifier	5	
)	Constant current source (Current mirror	1 '	3	
	CMRR, Open & closed loop circuits, im			
	loop (positive & negative), inverting			
	100p (positive & negative), invertin	g & non-mverting		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

	amplifiers, Voltage follower/Buffer circuits.	
6	Application of Operational amplifiers: Adder, Integrator & Differentiator, Comparator, Schmitt Trigger, Instrumentation Amplifier, Log & Antilog amplifier, Trans-conductance multiplier, Precision rectifier, Voltage to current & Current to voltage converter.	5
7	Power amplifier: Class A, B, AB, C, Conversion efficiency	2
8	Multivibrator: Monostable, Bistable multivibrator, Monostable & Astable operation using 555 timer.	2
9	Special function circuits: VCO & PLL	2

Text books:

- 1. Malvino—Electronic Principles, 6/e, TMH
- 2. Nagrath, Electronics: Analog and Digital, PHI, 2004
- 3. Mottershed, Electronics Devices & Circuits, Wiley Eastern
- 4. Millman & Halkias Integrated Electronics, Tata McGraw Hill.
- 5. Gayakwad R.A -- OpAmps and Linear IC's, 4/e, Pearson-PHI
- 6. Franco—Design with Operational Amplifiers & Analog Integrated Circuits , 3/e,TMH
- 7. Coughlin and Drisscol Operational Amplifier and Linear Integrated Circuits Pearson Education Asia.
- 8. A.K. Maini, Analog Electronics, Khanna Publishing House, New Delhi (2018)

Reference books

- 1. Nagchoudhuri, Microelectronic Devices, 1/e, Pearson Education, 2001
- 2. Natarajan, Microelectronics: Analysis & Design, 1/e 2005, TMH
- 3. Maheshwari and Anand, Analog Electronics, PHI
- 4. Boyle'stead, Nashelsky: & Kishore, Electronic Devices & Circuit theory, 1/e, PHI/Pearson.
- 5. Millman & Halkias: Basic Electronic Principles; TMH.
- 6. Tobey & Grame Operational Amplifier: Design and Applications, Mc Graw Hill.

Course Outcome: After completion of this course, the learners will be able to

- 1. describe analog electronic components and analog electronics circuits
- 2. explain principle of operation of analog electronic components, filters, regulators and analog electronic circuits.
- 3. compute parameters and operating points of analog electronic circuits.
- 4. determine response of analog electronic circuits.
- 5. distinguish different types amplifier and different types oscillators based on application.
- 6. construct operational amplifier based circuits for different applications.

Special Remarks:

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

Nam	Name of the course Analog electronic laboratory				
Course Code:PC-EEE392 Semester: 3rd		Semester: 3rd			
Dura	ation: 6 months	Maximum marks:100			
Teaching Scheme Examination scheme:		Examination scheme:			
	ry: 0 hr/week	Continuous Internal Assessment: 40			
Tuto	rial: 0 hr/week	External Assessment: 60			
Pract	rical: 2 hrs/week				
Cred	it Points:1				
	Laboratory l	Experiments:			
1.	1. Study of ripple and regulation characteristics of full wave rectifier with and withou				
	capacitor filter.				
2.	Study of Zener diode as voltage regulator.				
3.	Study of characteristics curves of B.J.T & F.E.T.				
4.	Construction of a two-stage R-C coupled amplifier & study of it's gain & Bandwidth.				
5.	Study of class A, C & Push-Pull amplifiers.				
6.	Study of timer circuit using NE555 & con	figuration for monostable & astable and			
	bistable multivibrator				
7.		construction of a linear voltage regulator using			
	regulator IC chip				
8.	Construction of a simple function generate				
9.	Realization of a V-to-I & I-to-V converter using Op-Amps.				
10.	Realization of a Phase Locked Loop using Voltage Controlled Oscillator (VCO).				
11.	Study of D.A.C & A.D.C.				

Course Outcome: After completion of this course, the learners will be able to

1. determine

- characteristics of full wave rectifier with filter and without filter
- characteristics of BJT and FET
- characteristics of Zener diode as voltage regulator
- characteristics of class A, C and push pull amplifiers
- 2. verify function of DAC and ADC
- 3. construct
 - function generator using IC
 - R-C coupled amplifier
 - linear voltage regulator using regulator IC chip.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

- timer circuit using 555 for monostable, astable and multistable multivibrator.
- V to I and I to V converter with Op amps.
- phase locked loop using Voltage Controlled Oscillator (VCO)
- 4. work in a team
- 5. validate theoretical learning with practical

Name	e of the course	ELECTRO MAGNETI	IC FIELD	THEORY
Cour	se Code: PC-EEE 303	Semester: 3 rd		
Dura	tion: 6 months	Maximum Marks: 100		
Teacl	hing Scheme	Examination Scheme		
Theo	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	rial: 0 hr/week	Assignment & Quiz: 1	0 Marks	
Pract	ical: 0 hrs/week	Attendance: 0	5 Marks	
Credi	it Points: 3	End Semester Exam: 7	70 Marks	
		ctive:		
1.	To understand the basic mathematical to		•	Problem.
2.	To understand properties and application		field.	
3.	To analyze electromagnetic wave propaga			
4.	4. To solve problem related to Electromagnetic field.			
Pre-Requisite				
	1. Basic Electrical Engineering (ES-EE-101)			
2.	Mathematics (BS-M-102, Bs-M202)			
3.	Physics (BS-PH 101)			
Unit	Content		Hrs	Marks
1	Introduction: Co-ordinate systems and		4	
		coordinates, Spherical		
	coordinates & their transformation. Diff	© ,		
	volume in different coordinate systems.	.	4	
2	Introduction to Vector calculus: DEL	*	4	
	scalar, Divergence of a vector & Divergence	,		
	vector & Strokes theorem, Laplacian of			
	vector fields, Helmholtz's theorem. Solu		0	
3	Electrostatic field: Coulomb's law, fiel	•	8	
	Electric potential and Potential gradient,			
	V, an Electric dipole and flux lin			
	electrostatic field. Boundary conditio			
	Conductor –dielectric, Conductor-free	-		
	Laplace's equation, General procedure f	or solving Poisson's and		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

	Laplace's equation. Solution of problems		
4	Magneto static fields: Biot- savart law, Ampere's circuit law,	8	
	Magnetic flux density, Magnetic static and Vector potential,		
	Forces due to magnetic field, Magnetic torque and moments,		
	Magnetisation in material, Magnetic boundary condition,		
	Inductor and Inductances, Magnetic energy, Force on magnetic		
	material. Solution of problems		
5	Electromagnetic fields: Faraday's law, Transformer and	6	
	motional emf, Displacement current, Maxwell's equations, Time		
	varying Potential, Time harmonic fields. Solution of problems		
6	Electromagnetic wave propagation: Wave equation, Wave	6	
	propagation in lossy dielectric, Plane waves in loss less dielectric,		
	Plane wave in free space, Plane wave in good conductor, Skin		
	effect, Skin depth, Power & Poynting vector, Reflection of a		
	plane wave at normal incidence, reflection of a plane wave at		
	oblique incidence, Polarisation. Solution of problems		
7	Transmission line: Concept of lump & distributed parameters,	4	
	Line parameters, Transmission line equation & solutions,		
	Physical significance of solutions, Propagation constants,		
	Characteristic impedance, Wavelength, Velocity of propagation.		
	Solution of problems		

Text books:

- 1. Elements of Electromagnetic, Mathew N.O. Sadiku, 4th edition, Oxford university press.
- 2. Engineering Electromagnetic, W.H. Hyat & J.A. Buck, 7th Edition, TMH
- 3. Theory and problems of Electromagnetic, Edminister, 2nd Edition, TMH
- 4. Electromagnetic field theory fundamentals, Guru & Hizroglu, 2nd edition, Cambridge University

Reference books

Course Outcome: After completion of this course, the learners will be able to

- 1. relate different coordinate systems for efficient solution of electromagnetic problems.
- 2. describe mathematical s tools to solve electromagnetic problems.
- 3. explain laws applied to electromagnetic field.
- 4. apply mathematical tools and laws to solve electromagnetic problems.
- 5. analyze electromagnetic wave propagation
- 6. estimate transmission line parameters

Special Remarks:

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Nam	e of the course	ENGINEERING MI	ECHANICS	
Cour	rse Code: ES-ME 301	Semester: 3 rd		
Dura	Duration: 6 months Maximum Marks: 100			
Teac	Teaching Scheme Examination Scheme			
Theo	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
Tutor	rial: 0 hr/week	Assignment & Quiz:	10 Marks	
Pract	ical: 0 hrs/week	Attendance:	05 Marks	
Credi	t Points: 3	End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To understand the basic mathematical to	ols to deal with the phy	sical bodies.	
2.	To learn different mathematical technique	s to analyze physical b	odies.	
2.	To learn analysis techniques of rigid bodi	es.		
2.	To solve problem of general motion.			
Pre-I	Requisite			
1.	Physics (BS-PH-101)			
2.	Mathematics (BS-M102, BS-M202)			
Unit	Content		Hrs	Marks
1	Introduction to vectors and tensor	s and co-ordinate	5	
	systems			
	Introduction to vectors and tensors and			
	Vector and tensor algebra; Indical nota			
	anti-symmetric tensors; Eigenvalues and I	Principal axes.		
2	Three-dimensional Rotation		4	
	Three-dimensional rotation: Euler's t			
	formulation and Euler angles; Coordina	te transformation of		
	vectors and tensors.			
3	Kinematics of Rigid Body		6	
	Kinematics of rigid bodies: Dentition and	_		
	body; Rigid bodies as coordinate systems			
	a rigid body, and its rate of change; Dist			
	and three dimensional rotational motion;	_		
	velocity to find orientation; Motion relati	ve to a rotating rigid		
4	body: Five term acceleration formula.			
4	Kinetics of Rigid Bodies		5	
	Kinetics of rigid bodies: Angular mome			
	Inertia tensor: Dentition and computation	-		
	and axes of inertia, Parallel and perpendi			
	Mass moment of inertia of symmetric			
	sphere, cone etc., Area moment of inertia			
	inertia, Forces and moments; Newton-E	duici s laws of rigid		
	body motion.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

	()		ı
5	Free Body Diagram (1 hour)	1	
	Free body diagrams; Examples on modelling of typical		
	supports and joints and discussion on the kinematic and kinetic		
	constraints that they impose.		
6	General Motion	9	
	Examples and problems. General planar motions. General 3-D		
	motions. Free precession, Gyroscopes, Rolling coin.		
7	Bending Moment	5	
	Transverse loading on beams, shear force and bending moment		
	in beams, analysis of cantilevers, simply supported beams and		
	overhanging beams, relationships between loading, shear force		
	and		
	bending moment, shear force and bending moment diagrams.		
8	Torsional Motion	2	
	Torsion of circular shafts, derivation of torsion equation, stress		
	and deformation in circular and hollow shafts.		
9	Friction	3	
	Concept of Friction; Laws of Coulomb friction; Angle of		
	Repose; Coefficient of friction.		

Text books:

- 1. M.P. Poonia & D.S. Bedi, Engineering Mechanics, Khanna Publishing House, New Delhi (2018)
- 2. J. L. Meriam and L. G. Kraige, "Engineering Mechanics: Dynamics", Wiley, 2011.
- 3. M. F. Beatty, "Principles of Engineering Mechanics", Springer Science & Business Media, 1986.
- 4. Manoj K. Harbola, "Engineering Mechanics", Cengage Learning India Pvt. Ltd, 2018
- 5. R.S. Khurmi, Engineering Mechanics, S.Chand Publications, New Delhi

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the co-ordinate system, principle of three dimensional rotation, kinematics and kinetics of rigid bodies.
- 2. elaborate the theory of general motion, bending moment, torsional motion and friction.
- 3. develop free body diagram of different arrangements.
- 4. solve problems with the application of theories and principle of motion, friction and rigid bodies.
- 5. analyze torsional motion and bending moment.

Special Remarks:

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Nam	e of the course	MATHEMATICS-I	II	
Course Code: BS- M 301		Semester: 3 rd		
Duration: 6 months Maximum Marks: 100		00		
Teac	hing Scheme	Examination Schem	e	
	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
Tutor	rial: 0 hr/week	Assignment & Quiz:	10 Marks	
Pract	ical: 0 hrs/week	Attendance:	05 Marks	
Credi	it Points: 3	End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To understand Probability theory required	an Electrical Engineer	r to apply in pr	ofession.
2.	To understand numerical methods to sol			
3.	To understand basics of Z transform to s	olve engineering prob	olems.	
Pre-I	Requisite			
1.	Mathematics (10+2)			
Unit	Content		Hrs	Marks
1	Probability: Basic Probability Theory: Classical of limitations. Axiomatic definition. Some et i) P(O)=0, ii) 0≤P(A)≤1, iii) P(A')=1-It symbols have their usual meanings. Free of probability. Addition rule for 2 events (proof) & its ex 2 events (statement only). Related proprobability & Independent events. Extent events (pair wise & mutual independent Rule. Examples. Baye's theorem (statement problems.	lementary deduction: P(A) etc. where the quency interpretation attension to more than oblems. Conditional sion to more than 2 ence). Multiplication	3	
	Random Variable & Probability Distribution Definition of random variable. Continuous random variables. Probability density function for single variable only. Distand its properties (without proof). Example Expectation & Variance, properties & example expectation & Variance, properties & example expectation and related problems. Some idistributions and related problems. Some idistributions: Uniform, Exponential, Normal related problems. Determination of Median Binomial, Poisson & Uniform distributions	s and discrete stion & probability stribution function es. Definitions of mples. Binomial & Poisson important continuous mal distributions and can & Variance for	2	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

	(11		
2	Numerical Methods: Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors.	4	
	Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation.	5	
	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.	3	
	Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method.	6	
	Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method, Newton-Raphson method.	4	
	Numerical solution of ordinary differential equation: Euler's method, Runge-Kutta methods, Predictor-Corrector methods and Finite Difference method.	6	
3	Z transform:		
	Sequence, Representation of sequence, Basic operations on sequences, Z-transforms, Properties of Z-transforms, Change of scale, Shifting property, Inverse Z-transform, Solution of difference equation, Region of convergence.	4	

Text books:

- 1. Lipschutz S., and Lipson M.L.: Probability (Schaum's Outline Series), TMH.
- 2. C.Xavier: C Language and Numerical Methods.
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J.B.Scarborough: Numerical Mathematical Analysis.
- 5. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).
- 6. Hwei P Hsu, "Signal and system", (Schaum's Outline Series), Mc Graw Hill education.
- 7. R.S. Salaria, Numerical Methods, Khanna Publishing House

Reference books

- 1. Balagurusamy: Numerical Methods, Scitech.
- 2. Baburam: Numerical Methods, Pearson Education.
- 3. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.
- 4. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

5. Srimanta Pal: Numerical Methods, OUP.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain basics of probability theories, rules, distribution and properties of Z transform
- 2. describe different methods of numerical analysis.
- 3. solve numerical problems based on probability theories , numerical analysis and Z transform
- 4. apply numerical methods to solve engineering problems.
- 5. solve engineering problems using z transform and probability theory.

Special Remarks:

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

Nam	ne of the course Numerical Methods laboratory			
Cour	rse Code: PC-CS 391	Semester: 3 rd		
Dura	ation: 6 months	Maximum marks:100		
Teac	ching Scheme	Examination scheme:		
Theo	ory: 0 hr/week	Continuous Internal Assessment:40		
Tuto	rial: 0 hr/week	External Assessment: 60		
Pract	tical: 2 hrs/week			
Cred	it Points:1			
	Laboratory E	Experiments:		
1.	Assignments on Newton forward /backwar	rd, Lagrange's interpolation.		
2.	Assignments on numerical integration using	ng Trapezoidal rule, Simpson's 1/3 rule,		
	Weddle's rule.			
3.	Assignments on numerical solution of a sy	stem of linear equations using Gauss		
	elimination and Gauss-Seidel iterations			
4.	Assignments on numerical solution of Alg	ebraic Equation by Regular-falsi and Newton		
	Raphson methods.			
5.	Assignments on ordinary differential equa-	on ordinary differential equation: Euler's and Runga-Kutta methods.		
6.	Introduction to Software Packages: Matlab / Scilab / Labview / Mathematica.			
_				

Course Outcome: After completion of this course, the learners will be able to

- 1. solve
 - problems with Newton forward /backward, Lagrange's interpolation
 - problems of numerical integration using Trapezoidal rule, Simpson's 1/3 rule. Weddle's rule
 - problems to find numerical solution of a system of linear equations using Gauss elimination and Gauss-Seidel iterations.
 - problems to find numerical solution of Algebraic Equation by Regularfalsi and Newton Raphson methods.
 - ordinary differential equation by Euler's and Runga-Kutta methods.
- 2. find appropriate numerical methods to solve engineering problems.
- 3. use software package to solve numerical problems.

Special Remarks:

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name	Name of the course BIOLOGY FOR ENGINEERS			
	se Code:BS-EEE-301	Semester: 3 rd		
Dura	tion: 6 months	Maximum Marks: 100		
Teac	hing Scheme	Examination Scheme		
	ry: 3 hrs/week	Mid Semester Exam: 15	Marks	
	rial: 0 hr/week	Assignment & Quiz: 10	Marks	
	ical: 0 hrs/week	Attendance: 05	Marks	
Credi	t Points: 3	End Semester Exam: 70	Marks	
	ctive:			
1.	To introduce modern biology with an disciplinary field.	emphasis on evolution o	f biology	as a multi-
2.	To make students aware of application		iples in b	iology and
	engineering robust solution inspired by bi	ological examples.		
Pre-F	Requisite			
1.	NIL			
Unit	Content		Hrs	Marks
1	Introduction Purpose: To convey that Biology is a discipline as Mathematics, Physics and 6 fundamental differences between scient drawing a comparison between eye and aircraft. Mention the most exciting as independent scientific discipline. Why w Discuss how biological observations of major discoveries. Examples from Brown of thermodynamics by referring to the Robert Brown and Julius Mayor. These the fundamental importance of observinguiry	Chemistry. Bring out the ace and engineering by camera, Bird flying and spect of biology as an e need to study biology? If 8th Century that lead to ian motion and the origin original observation of examples will highlight	2	
2	Classification: Purpose: To convey that classification per all about. The underlying criterion, biochemical or ecological be highlighted at phenomenological level. A common hierarchy Classification. Discuss classification cellularity— Unicellular or ultrastructure prokaryotes or eucaryotes. utilization - Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion—ureotelic (e) Habitata—acquatic or to taxonomy—three major kingdoms of life	such as morphological, . Hierarchy of life forms on thread weaves this sification based on (a) multicellular (b) (c) energy and Carbon aminotelic, uricotelic, errestrial (e) Molecular	3	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

	(rippineasie from the academic session 2010 2013)		
	come under different category based on classification. Model		
	organisms for the study of biology come from different groups.		
	E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana,		
	M. musculus.		
	Biomolecules		
	Purpose: To convey that all forms of life has the same building	4	
3	blocks and yet the manifestations are as diverse as one can		
	imagine. Molecules of life. In this context discuss monomeric		
	units and polymeric structures. Discuss about sugars, starch and		
	cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.		
	Two carbon units and lipids.		
	Macromolecular analysis:		
	Purpose: To analyze biological processes at the reductionistic	5	
4	level. Proteins- structure and function. Hierarch in protein		
	structure. Primary secondary, tertiary and quaternary structure.		
	Proteins as enzymes, transporters, receptors and structural		
	elements.		
	Metabolism		
	Purpose: The fundamental principles of energy transactions are the	4	
5	same in physical and biological world. Thermodynamics as	•	
	applied to biological systems. Exothermic and endothermic versus		
	endergonic and exergonic reactions. Concept of Keq and its		
	relation to standard free energy. Spontaneity. ATP as an energy		
	currency. This should include the breakdown of glucose to CO2 +		
	H2O (Glycolysis and Krebs cycle) and synthesis of glucose from		
	CO2 and H2O (Photosynthesis). Energy yielding and energy		
	consuming reactions. Concept of Energy charge.		
	Microbiology		
	Concept of single celled organisms. Concept of species and	3	
6	strains. Identification and classification of microorganisms.	3	
0	Microscopy. Ecological aspects of single celled organisms.		
	Sterilization and media compositions. Growth kinetics. Immunology		
	Purpose: How does the immune system work? What are the	5	
7	_ ·	3	
7	molecular and cellular components and pathways that protect an		
	organism from infectious agents or cancer? This comprehensive		
	course answers these questions as it explores the cells and		
	molecules of the immune system.		
	Immunology- Self vs Non-self, pathogens, human immune system,		
	antigen-antibody reactions.		
	Information Transfer	A	
	Purpose: The molecular basis of coding and decoding genetic	4	
8	information is universal. Molecular basis of information transfer.		
	DNA as a genetic material. Hierarchy of DNA structure- from		
	single stranded to double helix to nucleosomes. Concept of genetic		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

	code. Universality and degeneracy of genetic code. Define gene in		
	terms of complementation and recombination. s on cell		
	proliferation • metastasis • cell proliferation • cell death • cell •D		
9	Cancer biology Purpose: A basic understanding of cancer biology and treatment. The course is not designed for patients seeking treatment guidance – but it can help to understand how cancer develops and provides a framework for understanding cancer diagnosis and treatment. Identification of the major types of cancer worldwide. Description of how genes contribute to the risk and growth of cancer. List and description of the ten cellular hallmarks of cancer. Definition of metastasis, and identification of the major steps in the metastatic process. Description of the role of imaging in the screening, diagnosis, staging, and treatments of cancer. Explanation of how cancer is treated.	5	
10	Techniques in bio physics Purpose: Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. The techniques including microscopy, spectroscopy, electrophysiology, single-molecule methods and molecular modeling	3	
11	Stem cell Purpose: Stem cells and derived products offer great promise for new medical treatments. Learn about stem cell types, current and possible uses, ethical issues.	2	

Text / References:

- N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.
- E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- 3. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.
- 4. G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.
- 5. L. M. Prescott, J. P. Harley and C. A. Klein, "Microbiology", McGraw Hill Higher Education, 2005.
- 6. Lewis J. Kleinsmith. "Principles of cancer biology", Pearson, 2016

Course Outcome: After completion of this course, the learners will be able to

- 1. describe with examples the biological observations lead to major discoveries.
- 2. explain

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

- the classification of kingdom of life
- the building blocks of life
- different techniques of bio physics used to study biological phenomena.
- the role of imaging in the screening, diagnosis, staging, and treatments of cancer.
- 3. identify DNA as a genetic material in the molecular basis of information transfer
- 4. analyze biological processes at the reductionistic level.
- 5. apply thermodynamic principles to biological systems.
- 6. identify microorganisms.

Special Remarks:

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Nam	Name of the course INDIAN CONSTOTUTION			
	rse Code: MC-EEE 301	Semester: 3 rd		
	tion: 6 months	Maximum Marks: 1	00	
Teac	hing Scheme	Examination Schem	e	
Theo	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
	rial: 0 hr/week	Assignment & Quiz:	10 Marks	
Pract	ical: 0 hrs/week	Attendance:	05 Marks	
Cred	it Points: 0	End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To have basic knowledge about Indian Co	onstitution.		
2.	To understand the structure and functionin			nment.
3.	To understand the structure, jurisdiction a	and function of Indian	judiciary.	
Pre-l	Requisite			
1.	NIL			
Unit	Content		Hrs	Marks
1	Indian Constitution:		5	
	Sources and constitutional history, Fe			
	Preamble, Fundamental Rights and	Duties, Directive		
	Principles of State Policy			
2	Union government and its administration		10	
	Structure of the Indian Union: Federa	· ·		
	relationship, President: Role, power and			
	Council of ministers, Cabinet and Cent	tral Secretariat, Lok		
	Sabha, Rajya Sabha.			
	State government and its administration			
	Governor: Role and Position, CM and Cou	· · · · · · · · · · · · · · · · · · ·		
	State Secretariat: Organisation, Structure a	and Functions		
3	Supreme court: Organization of supreme	e court procedure of	10	
	the court, independence of the court, juris		10	
	supreme court.	aretion and power or		
	High court: Organization of high cou	rt. procedure of the		
	court, independence of the court, jurisdi			
	supreme court.	perior of		
	Subordinate courts: constitutional prov	vision, structure and		
	jurisdiction.	,		
	National legal services authority, Lok ad	dalats, family courts,		
	gram nyayalays.	, , ,		
	Public interest litigation (PIL): meaning	of PIL, features of		
	PIL, scope of PIL, principle of PIL, guid			
	PIL	C		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

/	\ 11
10	4 Local Administration:
e and Importance,	District's Administration head:
nd role of Elected	Municipalities: Introduction, Mayo
oration, Pachayati raj:	Representative, CEO of Municipal C
ed officials and their	Introduction, PRI: Zila Pachayat, El
d role, Block level:	roles, CEO Zila Pachayat: Position
epartments), Village	Organizational Hierarchy (Differen
ficials, Importance of	level: Role of Elected and Appointed
	grass root democracy.
ed officials and their and role, Block level: lepartments), Village	Introduction, PRI: Zila Pachayat, El roles, CEO Zila Pachayat: Position Organizational Hierarchy (Different level: Role of Elected and Appointed

Text books:

1. Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.

Reference books

1. DD Basu, "Introduction to the constitution of India", 21st Edition, Lexis Nexis Books Publication ltd, India

Course Outcome: After completion of this course, the learners will be able to

- 1. describe
 - different features of Indian constitution..
 - power and functioning of Union, state and local self-government.
 - structure, jurisdiction and function of Indian Judiciary.
 - basics of PIL and guideline for admission of PIL.
 - Functioning of local administration starting from block to Municipal Corporation.
- 2. identify authority to redress a problem in the profession and in the society.

Special Remarks: