Quantitative Evaluation

Adapted in part from:

http://www.cs.cornell.edu/Courses/cs578/2003fa/performance_measures.pdf

Accuracy

- Target: 0/1, -1/+1, True/False, ...
- Prediction = f(inputs) = f(x): 0/1 or Real
- Threshold: $f(x) > thresh \Rightarrow 1$, else $\Rightarrow 0$
- threshold(f(x)): 0/1

$$accuracy = \frac{\prod_{i=1...N} \left(1 \prod_{i} (target_i \prod_{i} threshold(f(\vec{x}_i)))\right)^2}{N}$$

- #right / #total
- p("correct"): p(threshold(f(x)) = target)

Confusion Matrix

	Predicted 1	Predicted 0
True 1	true positive	false negative
True 0	false positive	true negative

	Predicted 1	Predicted 0
True 1	TP	FN
True 0	FP	TN

	Predicted 1	Predicted 0
True 1	hits	misses
True 0	false alarms	correct rejections

	Predicted 1	Predicted 0
True 1	P(pr1ltr1)	P(pr0ltr1)
True 0	P(pr1ltr0)	P(pr0ltr0)

Problems with Accuracy

- Assumes equal cost for both kinds of errors
 - cost(b-type-error) = cost (c-type-error)
- is 99% accuracy good?
 - can be excellent, good, mediocre, poor, terrible
 - depends on problem
- is 10% accuracy bad?
 - information retrieval
- BaseRate = accuracy of predicting predominant class (on most problems obtaining BaseRate accuracy is easy)

Precision and Recall

- typically used in document retrieval
- Precision:
 - how many of the returned documents are correct
 - precision(threshold)
- Recall:
 - how many of the positives does the model return
 - recall(threshold)
- Precision/Recall Curve: sweep thresholds

Precision/Recall

Summary Stats: F & BreakEvenPt

$$PRECISION = a/(a+c)$$

$$RECALL = a/(a+b)$$

$$F = \frac{2 * (PRECISION \square RECALL)}{(PRECISION + RECALL)}$$

harmonic average of precision and recall

BreakEvenPoint = PRECISION = RECALL

ROC Plot and ROC Area

- Receiver Operator Characteristic
- Developed in WWII to statistically model false positive and false negative detections of radar operators
- Better statistical foundations than most other measures
- Standard measure in medicine and biology
- Becoming more popular in ML

ROC Plot

- Sweep threshold and plot
 - TPR vs. FPR
 - Sensitivity vs. 1-Specificity
 - P(true|true) vs. P(true|false)
- Sensitivity = a/(a+b) = Recall = LIFT numerator
- 1 Specificity = 1 d/(c+d)

Properties of ROC

• ROC Area:

- 1.0: perfect prediction
- 0.9: excellent prediction
- 0.8: good prediction
- 0.7: mediocre prediction
- 0.6: poor prediction
- 0.5: random prediction
- − <0.5: something wrong!</p>

Properties of ROC

- Slope is non-increasing
- Each point on ROC represents different tradeoff (cost ratio) between false positives and false negatives
- Slope of line tangent to curve defines the cost ratio
- ROC Area represents performance averaged over all possible cost ratios
- If two ROC curves do not intersect, one method dominates the other
- If two ROC curves intersect, one method is better for some cost ratios, and other method is better for other cost ratios

Lift

- not interested in accuracy on entire dataset
- want accurate predictions for 5%, 10%, or 20% of dataset
- don't care about remaining 95%, 90%, 80%, resp.
- typical application: marketing

$$lift(threshold) = \frac{\%positives > threshold}{\%dataset > threshold}$$

• how much better than random prediction on the fraction of the dataset predicted true (f(x) > threshold)

Lift

Visualizing Lift

Lift(c) = CR(c) / c

Example:

Lift(25%)= CR(25%) / 25% = 62% / 25% = 2.5

If we send to 25% of our prospects using the model, they are 2.5 times as likely to respond than if we were to select them randomly.

Computing Profit

- Assume cut-off at some value c
- Let:
 - T = total number of prospects
 - H = total number of respondents
 - -n = cost per mailing
 - -p = profit per response
- Then:

$$-\operatorname{Profit}(c) = \operatorname{CR}(c).H.p \qquad \text{revenue generated by r} \\ - c.T.n \qquad \text{cost of sending the mai} \\ + (1-c).T.n \qquad \text{saving from not sending} \\ - (1-\operatorname{CR}(c)).H.p \qquad \text{cost of missed revenue}$$

revenue generated by respondents cost of sending the mailings saving from not sending mailings

Understanding Profit (I)

- Profit(c)
 - = 2.CR(c).H.p 2.c.T.n + T.n H.p
 - = 2.[CR(c).H.p c.T.n] [H.p T.n]
- Since:
 - 2 is a constant (scaling)
 - -H.p-T.n is a constant (translation)
- Then,
 - Profit(c) \sim CR(c).H.p c.T.n
- Let
 - -E=H/T

response rate

- Profit(c) \sim CR(c).E.p - c.n

Understanding Profit (II)

- Note that:
 - Lift(c) = CR(c)/c
 - Lift would be maximum if we could send to only exactly all of the respondents; we would then have c = E(=H/T) and CR(E) = 100%
 - The maximum value for lift is thus: 1/E
- Returning to profit:

```
- Case 1: p < n
```

• Profit(*c*) < 0

=> not viable

- Case 2: p = n

• Profit(c) \geq 0 only if Lift(c) \geq 1/E

=> impossible

- Case 3: p > n

• Profit(c) ≥ 0

=> OK

Summary

- the measure you optimize to makes a difference
- the measure you report makes a difference
- use measure appropriate for problem/community
- accuracy often is not sufficient/appropriate
- ROC is gaining popularity in the ML community
- only accuracy generalizes to >2 classes!