University of Copenhagen Computer Science Department

Data-Parallel Compilation Lexical analysis & Syntax Tree Construction

William Henrich Due (mcj284) Submitted: 5th of April 2024

Abstract

Abstract.

1 Introduction

Introduction.

2 Theory

Hills paper "Parallel lexical analysis and parsing on the AMT distributed array processor" [1] describes a method to obtain the path in a deterministic finite automata given a input string. This section will describe the theory of this method and extend the it for tokenization.

2.1 Data-parallel Lexical Analysis

To explain the theory of parallel lexical analysis we first remind the reader of the definition of a deterministic finite automaton.

Definition 2.1 (DFA). A deterministic finite automata [2] [3] is given by a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where.

- 1. Q is the set of states where $|Q| < \infty$.
- 2. Σ is the set of symbols where $|\Sigma| < \infty$.
- 3. $\delta: \Sigma \times Q \to Q$ is the transition function.
- 4. $q_0 \in Q$ is the initial state.
- 5. $F \subseteq Q$ is the set of accepting states.

This definition is fine as is but we will need to reformulate it to develop data-parallel lexical analysis. We would want the definition to use a curried transition function. But for this to hold then the DFA would also have to be total.

Definition 2.2 (Total DFA). A DFA $(Q, \Sigma, \delta, q_0, F)$ is said to be total if and only if

$$\delta(a,q) \in Q : \forall (a,q) \in \Sigma \times Q$$

If a DFA is total we may use a curried transition function $\delta: \Sigma \to Q \to Q$.

This is needed since else the function would not be fully defined in the domains Σ and Q.

The reason for doing so is because if we have any two functions $g = \delta(a)$ and $f = \delta(a')$ then it follows from composition that.

$$q(f(q)) = (q \circ f)(q)$$

This allows for an alternative way of determining if a string can be produced by an DFA. Instead of first evaluating f(q), then g(f(q)) and then checking if this state is a member of F. We could instead partially apply δ to the symbols and then compose them to a single function which could be used to determine if a string is valid. This sets the stage for data-parallel lexing, we want to find a way to make the problem into a map-reduce. We want to do this because it can be computed using a data-parallel implementation unlike the normal way of traversing a DFA.

For the ability to use a data-parallel map-reduce we must have a monoidal structure. Here Δ is the set of all the composed partially applied δ functions needs to be closed under function composition.

Proposition 2.1 (DFA Composition Closure). Given a total DFA, the set of all partially applied function compositions (Endofunctions) that is closed under function composition $\Delta : \{Q \to Q\}$. Is the set $\Delta = \Delta_i$ in the recurrence relation with the smallest i such that $\Delta_i = \Delta_{i+1}$.

$$\Delta_1 = \{\delta(a) : a \in \Sigma\}$$

$$\Delta_{i+1} = \Delta_i \cup \{f \circ g : f, g \in \Delta_i\}$$

Proof. We will start by showing that a solution Δ exists. First note that the cardinality is monotonically increasing i.e. $\Delta_i \subseteq \Delta_{i+1}$ since Δ_{i+1} is a union of Δ_i and another set. Secondly note that since $|Q| < \infty$ then a finite amount of functions of the form $Q \to Q$ can be created. Since the set is bounded and increasing then at some point $\Delta_i = \Delta_{i+1}$ and the smallest i where it holds is the solution Δ .

For Δ to be closed under function composition, then for arbitray $f, g \in \Delta$ it must hold that $f \circ g \in \Delta$. Since Δ_1 is the set of endofunctions that contructs Δ then all elements of Δ can be expressed on the form.

$$\delta(a_1) \circ \cdots \circ \delta(a_n) \in \Delta$$

If all combinations of Δ_1 of any sequence length are members of Δ then Δ would be closed under function composition. Futhermore, it is known that Δ is finite so combinations after some $\Delta_i = \Delta_{i+1}$ would only add new sequences of compositions but no new endofunctions. Therefore it suffices to show that if all combinations of length k where $1 \leq k \leq i$ is a subset of Δ_i then Δ is closed under function composition. This can be shown using a proof by induction.

Base: Δ_1 trivially holds since it only contains sequences of length one and they are the initial endofunctions.

Step: Given Δ_i contains every combination of length i or less then we to show this implies that Δ_{i+1} will contain every combination of length i+1 or less.

By definition Δ_{i+1} it must contain every of length i or less due to $\Delta_i \leq \Delta_{i+1}$. It remains to show that every sequence of length i+1 is a member of Δ_{i+1} . We know Δ_i will contain every sequence of length 1 and i by monotonicity. It is also known that a direct product of Δ_i is used in the definition meaning $\{f \circ g : f, g \in \Delta_i\} \subseteq \Delta_{i+1}$. There by a direct product between sequences of length 1 and i leading to every sequence of length i+1 being a member of Δ_{i+1} . Thereby Δ is closed under function composition.

Since Δ is closed under function composition then it follows that Δ can induce a monoidal structure.

Corollary 2.1 (Total DFA monoid). DFA composition closure induces a semigroup which intern induces the monoid $(\Delta \cup \{id\}, \circ)$ where $id : Q \to Q$ and id(q) = q.

Knowing this we can establish the following algorithm

Algorithm 2.1 (Data-parallel Lexical Analysis). It can be determined in O(n) work and $O(\log n)$ span if a string can be produced by a DFA. First construct the total DFA $(Q, \Sigma, \delta, q_0, F)$ from the DFA.

- 1. Partially apply δ to every symbol in the input string such that it becomes a sequence of endofunctions.
- 2. Reduce the endofunction in to a single endofunction $\delta': Q \to Q$.
- 3. Evaluate $\delta'(q_0)$ and determine if $\delta'(q_0) \in F$.

2.2 Parallel Tokenization

3 Conclusion

Conclusion.

References

- Jonathan M.D Hill. "Parallel lexical analysis and parsing on the AMT distributed array processor". In: Parallel Computing 18.6 (1992), pp. 699-714. ISSN: 0167-8191. DOI: https://doi.org/10.1016/0167-8191(92)90008-U. URL: https://www.sciencedirect.com/science/article/pii/016781919290008U.
- [2] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Computation (3rd Edition)*. USA: Addison-Wesley Longman Publishing Co., Inc., 2006. ISBN: 0321455363.
- [3] Wikipedia contributors. Deterministic finite automaton Wikipedia, The Free Encyclopedia. [Online; accessed 4-February-2024]. 2023. URL: https://en.wikipedia.org/w/index.php?title=Deterministic_finite_automaton&oldid=1192025610.