Language Independent End-to-End Architecture For Joint Language and Speech Recognition Watanabe, S.; Hori, T.; Hershey, J.R. (2017)

Motivation / Goal

Recognize multiple languages at the same time

- ▶ Use a single model for 10 languages (EN, JP, CH, DE, ES, FR, IT, NL, PT, RU)
- ► Check if transfer learning between languages work
- two tasks: identify language AND recognize speech (simultaneously)

Related Work

Related Work

(e.g. only attention)

- Multilingual Speech Recognition With A Single End-To-End Model (Shubham Toshniwal)
 - separate output for language id
 - only on 9 indian languages

Model overview

Model overview

Model overview

- 1. Input: for each audio frame one 2d input image, 3 channels (like RGB image processing)
 - spectral features (what exactly?) delta spectral features
 - deltadelta spectral features

features

- Encoder 2.1 VGGNet CNN
 - 2.2 One bidirectional LSTM layer (320 cells x2)
 - Decoder
 - Decoder 1 (CTC)
 - fully connected layer (converts 640 outputs from BLSTM -> N characters softmax)
 - ▶ Decoder 2 (Attention + one directional LSTM)

 - Attention for each input frame to each output character LSTM (300 cells), input: previous hidden state and output, attention-weighted input
 - fully connected layer (converts 300 outputs from LSTM -> N characters softmax)
- 4. Output
 - ► N characters from union of all languages (softmax)
 - 5. Loss function: 0.5 * CTC loss + 0.5 * Attention loss

Input

spectral features

probably cepstral? fourier, fundamental frequency variation? etc

either just one feature map or they have some convolution issues $% \left(1\right) =\left(1\right) \left(1\right) \left($

Encoder - VGG Net Architecture

Encoder - VGG Net Architecture

Figure 3: VGG Net - first 6 layers

(actual input dimensions are not mentioned)

Encoder - Bidirectionaly LSTM layer

320 cells *2 in both directions (image)

Conclusions

Potential problems / future work?

- ▶ uniform random parameter initialization with [-0.1, 0.1] sounds bad
- does not work in realtime (without complete input utterance)
 - ► Bidirectional LSTM in encoder
 - ▶ Could try one directional, but Language ID would completely break
 - CTC in realtime?
 - Attention does not work in realtime
- same latin characters are used for multiple languages, while others (RU, CN, JP) get their own character set

BC Utterance Selection

- ► Get a list of all backchannel phrases
- ▶ BC phrase list from the *Switchboard Dialog Act Corpus* (SwDA)

BC Utterance Selection

- ► Get a list of all backchannel phrases
- ▶ BC phrase list from the *Switchboard Dialog Act Corpus* (SwDA)

SwDA incomplete

→ Identify utterances only from their text

Something like "uh" can be a disfluency or a BC.

- ightarrow only include phrases with silence or BC before them.
- \rightarrow Balanced data

Feature Selection

- ► Acoustic features like power, pitch
- ► Linguistic features (from the transcriptions)

Neural network design

Recurrent NNs

BCs are more probable after a longer period without BCs.

ightarrow Use RNN / LSTM

Recurrent NNs

BCs are more probable after a longer period without BCs.

ightarrow Use RNN / LSTM

Postprocessing

NN output is

- ▶ a value between 0 and 1
- quickly changing
- noisy

Postprocessing – Low-pass filter

Gauss filter looks into future

 \rightarrow Cut off filter and shift it

Thresholding / Triggering

- ▶ Use areas of output > threshold t (0 < t < 1)
- ► Trigger at local maximum

Evaluation

Objective Evaluation

- Precision (portion of predictions that were correct)
- ► Recall (portion of correct BCs that were predicted)
- ► F1-Score (harmonic mean of Precision and Recall)

Lots of parameters to tune

- Context width
- Context stride
- Which features
- ► NN depth
- ► NN layer sizes
- LSTM vs Feed forward
- ► Trigger threshold
- Gaussian filter sigma
- ► Gaussian filter cutoff
- Prediction delay

Lots of parameters to tune

manually through trial and error:

- Context width
- Context stride
- Which features
- ► NN depth
- ► NN layer sizes
- LSTM vs Feed forward

automatically with Bayesian optimization:

- ▶ Trigger threshold
- Gaussian filter sigma
- Gaussian filter cutoff
- Prediction delay

Results

Context width

Context	Context Precision		F1-Score
500 ms	0.219	0.466	0.298
$1000\mathrm{ms}$	0.280	0.497	0.358
$1500\mathrm{ms}$	0.305	0.488	0.375
2000 ms	0.275	0.577	0.373

Table 1: Results with various context lengths. Performance peaks at $1500\,\mathrm{ms}$.

LSTM vs FF

Layers	Parameter count	Precision	Recall	F1-Score
FF (56 : 28)	40k	0.230	0.549	0.325
FF (70:35)	50k	0.251	0.468	0.327
FF (100:50)	72k	0.242	0.490	0.324
LSTM (70:35)	38k	0.305	0.488	0.375

Table 2: LSTM outperforms feed forward architectures.

Layer sizes

Layer sizes	Precision	Recall	F1-Score
100	0.280	0.542	0.369
50 : 20	0.291	0.506	0.370
70 : 35	0.305	0.488	0.375
100 : 50	0.303	0.473	0.369
70 : 50 : 35	0.278	0.541	0.367

Table 3: Comparison of different network configurations. Two LSTM layers give the best results.

Features

Features	Precision	Recall	F1-Score
power	0.244	0.516	0.331
power, pitch	0.307	0.435	0.360
power, pitch, mfcc	0.278	0.514	0.360
power, ffv	0.259	0.513	0.344
power, ffv, mfcc	0.279	0.515	0.362
power, pitch, ffv	0.305	0.488	0.375
word2vec _{dim=30}	0.244	0.478	0.323
power, pitch, word2vec _{dim=30}	0.318	0.486	0.385
power, pitch, ffv, word $2 \text{vec}_{dim=15}$	0.321	0.475	0.383
power, pitch, ffv, word2vec _{dim=30}	0.322	0.497	0.390
power, pitch, ffv, word $2 \text{vec}_{\textit{dim}=50}$	0.304	0.527	0.385

Table 4: Results with various input features, separated into only acoustic features and acoustic plus linguistic features.

Other research

Predictor	Precision	Recall	F1-Score
Baseline (random)	0.042	0.042	0.042
Müller et al. (offline)	_	_	0.109
Our results (offline, context of -750ms to 750ms)	0.114	0.300	0.165
Our results (online, context of $-1500\mathrm{ms}$ to $0\mathrm{ms}$)	0.100	0.318	0.153

Table 5: Comparison with previous research.

Varying margin of error

Margin of Error Constraint		Precision	Recall	F1-Score
-200 ms to 200 ms		0.172	0.377	0.237
-100 ms to 500 ms		0.239	0.406	0.301
-500 ms to 500 ms		0.247	0.536	0.339
0 ms to 1000 ms Baseline (random) Only acoustic features Acoustic and linguistic features		0.079	0.323	0.127
		0.294	0.488	0.367
		0.312	0.511	0.388

Table 6: Results with various margins of error used in other research. Performance improves with a wider margin width and a later margin center.

Survey

Randomly show participants 6 samples of the following categories

- 1. Random predictor
- 2. NN predictor
- 3. Ground truth

Survey

Figure 4: Screenshot of the survey interface.

Survey Results

Predictor	Sample	Timing	Naturalness	Sample Size
random	average	2.33 points	2.63 points	40
nn	average	3.48 points	3.08 points	40
truth	average	4.20 points	4.08 points	40

Table 7: Average user ratings of different BC predictors

Thank you for your attention

Addendum

Demo

http://localhost:3000/

#N4lgDgNghgngRlAxgawAoHsDOBLALt9AOxAC5CBXCCAGhADN0r0B3VaeJZUuaCTAU1alia aeXH9dJA-WO5T-OQHoAgg-4APXOKS5+ AEwdQvoialCl65LzYAF4ScgDqUGIM4gC2lcKEdNgA5nKE6KmRMQAv6li86aZmhLgASlCE2fYk cAurQAFvw5T7hyUOS46CHk17c5pdDDY7BYrEYTGZHC5PA1MIhxNgwLgHD4PCEwpglhBorE

KFXEIMoVIRVfg1eqNZoUKhXbA3EgiB7PV7Zd6fb6-Lk8voXaigf7c24DWiQ2xmcEggHNEDONFeQgIpEohzMAg+XTi24TWhYnF48RvYkYsmZHJ5AgrWn8UrlCCVcTVOoNJgkDkQfkgF5vD4Er4-

EDA6zq1Xx5UarUAOVTAAJ0N8wN9MA4RDtVJ0shRCNgsn5OiNOtk+nB+ItFHBOr5sOJcDASHxcClOg3MLgS6CVZ0wCwJNQwHhEE9aHQ6CJaEbxL5IGJEAB9NspObFz

ehkgRBMlkB5qtdobD06iHMoiiKMMZx7MMyjjMslCrOsJC9KMMyjBMfSjKchzDBMwwzMclwg 6Hswx6nuePSYCk6DoLgTyYle7q2gSd78MkaSOhSLo0ni77eovvrMv6bKkP+HS9KoJx9Kocx7PMfSxcoEF9CsayAVMGHjAM0wRZhYFSkRAlkMoyj0SOKYuOx2a4LmuD5oW

EVtgVY1nWDZNpJ7adt2g5yeYQ4MaO47MJO04nupi7Lsa678FuO57p0B5HtlJn9WZFlWU8PT

UKcmmBKSNKlibO86TVpM1zXpC1LUZK1PGea3mZZ1k9HAwRHdi14ObeiTOQ+ bnPvdr7ut5Pp+

gyH3BaQ3Q9DMsWKH0cwzAMKiTGcSWIb0UEDBIAyA5K0G5cDBUXD95H-

SwDA categories

	name	act_tag	example	full_count
1	Statement-non-opinion	sd	Me, I'm in the legal department.	75145
2	Acknowledge	b	Uh-huh.	38298
	(Backchannel)			
3	Statement-opinion	sv	I think it's great	26428
4	Agree/Accept	aa	That's exactly it.	11133
5	Abandoned or Turn-Exit	%	So, -	15550
6	Appreciation	ba	I can imagine.	4765
7	Yes-No-Question	qy	Do you have to have any special training?	4727

Figure 5: SwDA categories

Context stride

Stride	Stride Precision		F1-Score
10ms	0.290	0.490	0.364
20ms	0.305	0.488	0.375
40ms	0.285	0.498	0.363

Table 8: Results with various context frame strides.