مجموعة التعريف D

بیانیا:

$$D_h =]-\infty; 0[\cup]0; +\infty[$$

$$D_g = [0; +\infty[$$

$$D_f =]-\infty; +\infty[$$

 $D_p = [-2; 3]$

$$D_M =]-\infty; -2] \cup]1; +\infty[$$

$$D_k =]-\infty; -1[\ \cup\]-1; 1[\ \cup\]1; +\infty[$$

الم

$$f(x) = 6x^2 - 15x + 8$$
 : لا جذر و لا كسر مثل

$$oldsymbol{D_f} = \mathbb{R} =]-\infty; +\infty[$$
نکتب:

$$x-2 \neq 0$$

:نكتب
$$f(x) = \frac{x^2+7}{x-2}$$
 كسر مثل (1

$$x \neq 2$$

$$extbf{\emph{D}}_f = \mathbb{R} - \{ \mathbf{2} \}$$
 أي $extbf{\emph{D}}_f =] - \infty; \mathbf{2}[\ \cup\]\mathbf{2};\ + \infty[$

$$x-3 \geq 0$$

:نكتب
$$f(x) = \sqrt{x-3}$$
 نكتب (2

$$x \ge 3$$

$$D_f = [3; +\infty[$$

$$x + 5 > 0$$

$$f(x) = \frac{3x-1}{\sqrt{x+5}}$$
 :1مثال

$$x > -5$$

$$D_f =]-5; +\infty[$$

$$x+4\geq 0 \quad y \quad x-6\neq 0$$

:نكتب
$$f(x) = \sqrt{x+4} + \frac{9}{x-6}$$
 نكتب

$$x \ge -4$$
 و $x \ne 6$

$$D_f =]-4; 6[\cup]6; +\infty[$$

إذن القاعدة:

 $oldsymbol{D_f} = \mathbb{R} =]{-\infty; +\infty[}$ لا كسر و لا جذر: $oldsymbol{0}$

المقام $\neq 0$ المقام الكسر نكتب:

€ في الجذر نكتب: 0 ≤ ما داخل الجذر

 $m{D}_f$ في مجموع، طرح، جداء أو قسمة دالتين فأكثر: $m{D}_f$ هي تقاطع مجالات تعريف كل هذه الدوال

♦ الملخص:

مجموعة التعريف	الدالة
$D_f = \mathbb{R} =]-\infty; +\infty[$	f(x) = 2کثیر الحدود
$D_f = \{x \in \mathbb{R}/h(x) \neq 0\}$	$f(x) = \frac{g(x)}{h(x)}$
$D_f = \{x \in \mathbb{R}/g(x) \ge 0\}$	$f(x) = \sqrt{g(x)}$
$D_f = \{x \in \mathbb{R}/h(x) > 0\}$	$f(x) = \frac{g(x)}{\sqrt{h(x)}}$
$D_f = \{x \in \mathbb{R}/ g(x) \ge 0 \land k(x) \ne 0\}$	$f(x) = \sqrt{g(x)} + \frac{h(x)}{k(x)}$
$D_f = \{x \in \mathbb{R}/ g(x) \ge 0 \land h(x) > 0\}$	$f(x) = \frac{\sqrt{g(x)}}{\sqrt{h(x)}}$
$D_f = \left\{ x \in \mathbb{R} / \frac{g(x)}{h(x)} \ge 0 \land h(x) \ne 0 \right\}$	$f(x) = \sqrt{\frac{g(x)}{h(x)}}$
حيث $h(x)$ ، $g(x)$ و $k(x)$ كلها دوال كثيرات حدود	

* العمليات على الدوال ومجموعة التعريف:

و g و التان معرفتان على D_g و و D_g على الترتيب. λ و λ عددان حقيقيان.

مجموعة التعريف	العملية
D_f	f + k
D_f	λf
$D_f \cap D_g$	f+g
$D_f \cap D_g$	$f \times g$
$\left\{x\in D_f\cap D_g\wedge g(x)\neq 0\right\}$	$\frac{f}{g}$
$D_{f \circ g} = \{x/x \in D_g \land g(x) \in D_f\}$	$f[g(x)]$ أي $f \circ g$