Batched BLAS

Generated by Doxygen 1.8.11

Contents

1	Mair	n Page			1
2	Mod	ule Ind	ex		5
	2.1	Routin	es		5
3	Mod	ule Doo	cumentatio	on	7
	3.1	Batche	ed BLAS .		7
		3.1.1	Detailed	Description	7
	3.2	: Stand	dard Batch	ed matrix-matrix operations,	8
		3.2.1	Detailed	Description	8
	3.3	gemm	_batch: Ba	atched general matrix multiply: C[i] = A[i]B[i] + C[i]	9
	3.4	hemm	_batch: Ba	tched hermitian matrix multiply	10
		3.4.1	Detailed	Description	10
		3.4.2	Function	Documentation	10
			3.4.2.1	blas_chemm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const int *m, const int *n, const bblas_complex32_t *alpha, bblas_complex32_t const *const *A, const int *lda, bblas_complex32_t const *const *B, const int *ldb, const bblas—complex32_t *beta, bblas_complex32_t **C, const int *ldc, int *info)	10
			3.4.2.2	blas_zhemm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const int *m, const int *n, const bblas_complex64_t *alpha, bblas_complex64_t const *const *A, const int *lda, bblas_complex64_t const *const *B, const int *ldb, const bblas—complex64_t *beta, bblas_complex64_t **C, const int *ldc, int *info)	12
	3.5	herk_b	oatch: Bato	ched hermitian rank k update	14
		3.5.1	Detailed	Description	14
		352	Function	Documentation	14

iv CONTENTS

		3.5.2.1	blas_cherk_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const float *alpha, bblas_complex32_t const *const *A, const int *lda, const float *beta, bblas_complex32_t **C, const int *ldc, int *info)	14
		3.5.2.2	blas_zherk_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const double *alpha, bblas_complex64_t const *const *A, const int *lda, const double *beta, bblas_complex64_t **C, const int *ldc, int *info)	16
3.6	her2k_	batch: Ba	tched hermitian rank 2k update	18
	3.6.1	Detailed	Description	18
	3.6.2	Function	Documentation	18
		3.6.2.1	blas_cher2k_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const bblas_complex32_t *alpha, bblas_complex32_t const *const *A, const int *Ida, bblas_complex32_t const *const *B, const int *Idb, const float *beta, bblas_complex32_t **C, const int *Idc, int *info)	18
		3.6.2.2	blas_zher2k_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const bblas_complex64_t *alpha, bblas_complex64_t const *const *A, const int *lda, bblas_complex64_t const *const *B, const int *ldb, const double *beta, bblas_complex64_t **C, const int *ldc, int *info)	20
3.7	symm_	_batch: Ba	tched symmetric matrix multiply	23
	3.7.1	Detailed	Description	23
	3.7.2	Function	Documentation	23
		3.7.2.1	blas_csymm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const int *m, const int *n, const bblas_complex32_t *alpha, bblas_complex32_t const *const *A, const int *lda, bblas_complex32_t const *const *B, const int *ldb, const bblas complex32_t *beta, bblas_complex32_t **C, const int *ldc, int *info)	23
		3.7.2.2	blas_dsymm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const int *m, const int *n, const double *alpha, double const *const *A, const int *lda, double const *const *B, const int *ldb, const double *beta, double **C, const int *ldc, int *info)	25
		3.7.2.3	blas_ssymm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const int *m, const int *n, const float *alpha, float const *const *A, const int *lda, float const *const *B, const int *ldb, const float *beta, float **C, const int *ldc, int *info)	27
		3.7.2.4	blas_zsymm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const int *m, const int *n, const bblas_complex64_t *alpha, bblas_complex64_t const *const *A, const int *lda, bblas_complex64_t const *const *B, const int *ldb, const bblas—complex64_t *beta, bblas_complex64_t **C, const int *ldc, int *info)	29
3.8	syrk_b	atch: Batc	hed symmetric rank k update	31
	3.8.1	Detailed	Description	31

CONTENTS

	3.8.2	Function	Documentation	31
		3.8.2.1	blas_csyrk_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const float *alpha, bblas_complex32_t const *const *A, const int *lda, const float *beta, bblas_complex32_t **C, const int *ldc, int *info)	31
		3.8.2.2	blas_dsyrk_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const double *alpha, double const *const *A, const int *lda, const double *beta, double **C, const int *ldc, int *info)	33
		3.8.2.3	blas_ssyrk_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const float *alpha, float const *const *A, const int *Ida, const float *beta, float **C, const int *Idc, int *info)	34
		3.8.2.4	blas_zsyrk_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const double *alpha, bblas_complex64_t const *const *A, const int *lda, const double *beta, bblas_complex64_t **C, const int *ldc, int *info)	36
3.9	syr2k_l	batch: Bat	ched symmetric rank 2k update	39
	3.9.1	Detailed	Description	39
	3.9.2	Function	Documentation	39
		3.9.2.1	blas_csyr2k_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const bblas_complex32_t *alpha, bblas_complex32_t const *const *A, const int *lda, bblas_complex32_t const *const *B, const int *ldb, const bblas—complex32_t *beta, bblas_complex32_t **C, const int *ldc, int *info)	39
		3.9.2.2	blas_dsyr2k_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const double *alpha, double const *const *A, const int *lda, double const *const *B, const int *ldb, const double *beta, double **C, const int *ldc, int *info)	41
		3.9.2.3	blas_ssyr2k_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const float *alpha, float const *const *A, const int *lda, float const *const *B, const int *ldb, const float *beta, float **C, const int *ldc, int *info)	43
		3.9.2.4	blas_zsyr2k_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const bblas_complex64_t *alpha, bblas_complex64_t const *const *A, const int *lda, bblas_complex64_t const *const *B, const int *ldb, const bblas←_complex64_t *beta, bblas_complex64_t **C, const int *ldc, int *info)	45
3.10	trmm_t	oatch: Bat	ched triangular matrix multiply	47
	3.10.1	Detailed	Description	47
	3.10.2	Function	Documentation	47

vi

		3.10.2.1	blas_ctrmm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m, const int *n, const bblas_complex32_t *alpha, bblas_complex32_t const *const *A, const int *Ida, bblascomplex32_t **B, int const *Idb, int *info)	47
		3.10.2.2	blas_dtrmm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const bblas_enum← t *transa, const bblas_enum_t *diag, const int *m, const int *n, const double *alpha, double const *const *A, const int *Ida, double **B, int const *Idb, int *info)	49
		3.10.2.3	blas_strmm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m, const int *n, const float *alpha, float const *const *A, const int *lda, float **B, int const *ldb, int *info)	51
		3.10.2.4	blas_ztrmm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m, const int *n, const bblas_complex64_t *alpha, bblas_complex64_t const *const *A, const int *lda, bblascomplex64_t **B, int const *ldb, int *info)	53
3.11	trsm_b	atch: Batcl	hed triangular solve matrix	56
	3.11.1	Detailed I	Description	56
	3.11.2	Function	Documentation	56
		3.11.2.1	blas_ctrsm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m, const int *n, const bblas_complex32_t *alpha, bblas_complex32_t const *const *A, const int *lda, bblascomplex32_t **B, const int *ldb, int *info)	56
		3.11.2.2	blas_dtrsm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const bblas_enum → t *transa, const bblas_enum_t *diag, const int *m, const int *n, const double *alpha, double const *const *A, const int *lda, double **B, const int *ldb, int *info)	58
		3.11.2.3	blas_strsm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m, const int *n, const float *alpha, float const *const *A, const int *lda, float **B, const int *ldb, int *info)	60
		3.11.2.4	blas_ztrsm_batch(int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m, const int *n, const bblas_complex64_t *alpha, bblas_complex64_t const *const *A, const int *lda, bblascomplex64_t **B, const int *ldb, int *info)	62
3 12	Fixed F	Ratched RI	AS API	65
0.12			Description	65
3.13			natrix-matrix operations,	66
0.10			Description	66
3.14			atch of same size general matrix multiply: C[i] = A[i]B[i] + C[i]	67
	J			- ,

CONTENTS vii

	3.14.1	Detailed I	Description	67
	3.14.2	Function	Documentation	67
		3.14.2.1	blas_cgemm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t transa, bblas_enum_t transb, int m, int n, int k, bblas_complex32_t alpha, bblas_ \leftarrow complex32_t const *const *A, int lda, bblas_complex32_t const *const *B, int ldb, bblas_complex32_t beta, bblas_complex32_t **C, int ldc, int *info)	67
		3.14.2.2	$blas_dgemm_batchf(int\ group_size,\ bblas_enum_t\ layout,\ bblas_enum_t\ transa,\ bblas_enum_t\ transb,\ int\ m,\ int\ n,\ int\ k,\ double\ alpha,\ double\ const\ *const\ *A,\ int\ lda,\ double\ const\ *const\ *B,\ int\ ldb,\ double\ beta,\ double\ **C,\ int\ ldc,\ int\ *info)\ .$	69
		3.14.2.3	blas_sgemm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t transa, bblas_enum_t transb, int m, int n, int k, float alpha, float const *const *A, int lda, float const *const *B, int ldb, float beta, float **C, int ldc, int *info)	71
		3.14.2.4	blas_zgemm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t transa, bblas_enum_t transb, int m, int n, int k, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_complex64_t const *const *B, int ldb, bblas_complex64_t beta, bblas_complex64_t **C, int ldc, int *info)	72
3.15	hemm_	_batchf: Ba	atch of same size hermitian matrix multiply	76
	3.15.1	Detailed I	Description	76
	3.15.2	Function	Documentation	76
		3.15.2.1	blas_chemm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t const *const *B, int ldb, bblas_complex32_t beta, bblas_complex32_t **C, int ldc, int *info)	76
		3.15.2.2	blas_zhemm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_complex64_t const *const *B, int ldb, bblas_complex64_t beta, bblas_complex64_t **C, int ldc, int *info)	77
3.16	herk_b	atchf: Batc	ch of same size hermitian rank k update	80
	3.16.1	Detailed I	Description	80
	3.16.2	Function	Documentation	80
		3.16.2.1	$blas_cherk_batchf(int_group_size, bblas_enum_t_layout, bblas_enum_t_uplo, bblas_enum_t_trans, int n, int k, const float_alpha, bblas_complex32_t_const *const *A, int lda, const float_beta, bblas_complex32_t **C, int ldc, int *info) \\$	80
		3.16.2.2	$blas_zherk_batchf(int_group_size, \ bblas_enum_t_layout, \ bblas_enum_t_uplo, \\bblas_enum_t_trans, \ int_n, \ int_k, \ const_double_alpha, \ bblas_complex64_t_const*const *A, \ int_lda, \ const_double_beta, \ bblas_complex64_t_**C, \ int_ldc, \ int_*info) \ .$	81
3.17	her2k_	batchf: Ba	tch of same size hermitian rank 2k update	83
	3.17.1	Detailed I	Description	83
	3.17.2	Function	Documentation	83

viii CONTENTS

		3.17.2.1	blas_cher2k_batchf(int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t const *const *B, int ldb, const float beta, bblas_complex32_t **C, int ldc, int *info)	83
		3.17.2.2	blas_zher2k_batchf(int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, bblas_complex64_t alpha, bblas_complex64← _t const *const *A, int lda, bblas_complex64_t const *const *B, int ldb, const double beta, bblas_complex64_t **C, int ldc, int *info)	85
3.18	symm_	batchf: Ba	atch of same size symmetric matrix multiply	87
	3.18.1	Detailed	Description	87
	3.18.2	Function	Documentation	87
		3.18.2.1	blas_csymm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t const *const *B, int ldb, bblas_complex32_t beta, bblas_complex32_t **C, int ldc, int *info)	87
		3.18.2.2	blas_dsymm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, double alpha, double const *const *A, int lda, double const *const *B, int ldb, double beta, double **C, int ldc, int *info)	89
		3.18.2.3	blas_ssymm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, float alpha, float const *const *A, int lda, float const *const *B, int ldb, float beta, float **C, int ldc, int *info)	90
		3.18.2.4	blas_zsymm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_complex64_t const *const *B, int ldb, bblas_complex64_t beta, bblas_complex64_t **C, int ldc, int *info)	92
3.19	syrk_ba	atchf: Batc	ch of same size symmetric rank k update	94
	3.19.1	Detailed	Description	94
	3.19.2	Function	Documentation	94
		3.19.2.1	blas_csyrk_batchf(int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const float alpha, bblas_complex32_t const *const *A, int lda, const float beta, bblas_complex32_t **C, int ldc, int *info)	94
		3.19.2.2	blas_dsyrk_batchf(int_group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const double alpha, double const *const *A, int lda, const double beta, double **C, int ldc, int *info)	95
		3.19.2.3	blas_ssyrk_batchf(int_group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const float alpha, float const *const *A, int lda, const float beta, float **C, int ldc, int *info)	97
		3.19.2.4	blas_zsyrk_batchf(int_group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const double alpha, bblas_complex64_t const *const *A, int lda, const double beta, bblas_complex64_t **C, int ldc, int *info) .	98
3.20	syr2k_l	oatchf: Ba	tch of same size symmetric rank 2k update	100
	3.20.1	Detailed	Description	100

CONTENTS

	3.20.2	Function	Documentation	100
		3.20.2.1	blas_csyr2k_batchf(int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t const *const *B, int ldb, bblas_complex32_t beta, bblas_complex32_t **C, int ldc, int *info)	100
		3.20.2.2	blas_dsyr2k_batchf(int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, double alpha, double const $*$ const $*$ A, int lda, double const $*$ const $*$ B, int ldb, double beta, double $**$ C, int ldc, int $*$ info)	102
		3.20.2.3	blas_ssyr2k_batchf(int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, float alpha, float const *const *A, int lda, float const *const *B, int ldb, float beta, float **C, int ldc, int *info)	103
		3.20.2.4	blas_zsyr2k_batchf(int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_complex64_t const *const *B, int ldb, bblas_complex64_t beta, bblas_complex64_t **C, int ldc, int *info)	105
3.21	trmm_b	oatchf: Bat	ch of same size triangular matrix multiply	107
	3.21.1	Detailed	Description	107
	3.21.2	Function	Documentation	107
		3.21.2.1	blas_ctrmm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t **B, int ldb, int *info)	107
		3.21.2.2	blas_dtrmm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, double alpha, double const *const *A, int lda, double **B, int ldb, int *info)	109
		3.21.2.3	blas_strmm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, float alpha, float const *const *A, int lda, float **B, int ldb, int *info)	111
		3.21.2.4	blas_ztrmm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_←	110
			complex64_t **B, int ldb, int *info)	
3.22	trsm_b	atchf: Bato	ch of same size triangular solve matrix	116
	3.22.1	Detailed	Description	116
	3.22.2	Function	Documentation	116
		3.22.2.1	blas_ctrsm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t *B, int ldb, int *info)	116
		3.22.2.2	blas_dtrsm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, double alpha, double const *const *A, int lda, double **B, int ldb, int *info)	118

X CONTENTS

		3.22.2.3	blas_strsm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, float alpha, float const *const *A, int lda, float **B, int ldb, int *info)	120
		3.22.2.4	blas_ztrsm_batchf(int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_ \leftarrow complex64_t **B, int ldb, int *info)	122
3.23	Bblas_	const		125
	3.23.1	Detailed	Description	125
	3.23.2	Function	Documentation	125
		3.23.2.1	bblas_diag_const(char lapack_char)	125
		3.23.2.2	bblas_info_const(char lapack_char)	125
		3.23.2.3	bblas_direct_const(char lapack_char)	125
		3.23.2.4	bblas_norm_const(char lapack_char)	125
		3.23.2.5	bblas_side_const(char lapack_char)	126
		3.23.2.6	bblas_storev_const(char lapack_char)	126
		3.23.2.7	bblas_trans_const(char lapack_char)	126
		3.23.2.8	bblas_uplo_const(char lapack_char)	126
		3.23.2.9	lapack_const(int bblas_const)	126

Chapter 1

Main Page

Batched Basic Linear Algebra Subroutines

University of Manchester (UK)

University of Tennessee (US)

Download BBLAS Software

About

BBLAS is the reference implementation of the Batched BLAS standard specification. A current trend in high-performance computing is to decompose a large linear algebra problem into batches containing thousands of smaller problems, which can be solved independently, before collating the results. To standardize the interface to these routines, the community developed an extension to the BLAS standard (the batched BLAS), enabling users to perform thousands of small BLAS operations in parallel whilst making efficient use of their hardware. Please visit BBLAS workshops for more information on the standardization efforts.

The main folders & files

- compute: contains the standard BBLAS group API functions
- · core: contains the auxiliary batched BLAS functions which perform on groups of same size problems
- control: contains auxiliary functions for type conversions
- test: contains testing routines associated with the BBLAS functions and provides an insight on how the BBLAS functions should be called/used.
- · include: contains header files
- make.inc: a configuration file to specify a C/C++ compiler, compilation flags and a BLAS library. The default configuration should work when MKL is installed.
- Makefile: the Makefile, normally, it should not be modified.

2 Main Page

Requirements

BLAS & LAPACK

• MKL is now free for academics (students and researchers) available at https://software.intel. ← com/en-us/articles/free-mkl

OR

- Netlib BLAS no optimized BLAS routines, available at BLAS-3.8.0.tgz
- Netlib LAPACK no optimized LAPACK routines, available at LAPACK-3.8.0.tgz

Doxygen for documentation

Doxygen can be install on Unix systems by sudo apt-get install doxygen or downloaded on the doxygen page.

Compilation

After the configuration of **make.inc**, the compilation is very simple:

- · make [all] make lib test
- make lib make lib/libbblas.{a,so} lib/libcore.{a,so}
- make test make test/test
- make docs make docs/html
- · make generate generate precisions
- make clean remove objects, libraries, and executables
- make cleangen remove generated precision files
- make distclean remove above, Makefile.*.gen, and anything else that can be generated

Citing

Feel free to use the following publications to reference BBLAS:

- Jack Dongarra, Sven Hammarling, Nicholas J. Higham, Samuel D. Relton, Mawussi Zounon: Optimized Batched Linear Algebra for Modern Architectures. Euro-Par 2017: 511-522.
- Jack Dongarra, Sven Hammarling, Nicholas J. Higham, Samuel D. Relton, Pedro Valero-Lara, Mawussi Zounon: The Design and Performance of Batched BLAS on Modern High-Performance Computing Systems, ICCS 2017: 495-504
- Jack Dongarra, Iain Duff, Mark Gates, Azzam Haidar, Sven Hammarling, Nicholas J. Higham, Jonathan Hogg, Pedro Valero Lara, Mawussi Zounon, Samuel D. Relton, and Stanimire Tomov, A Proposed API for Batched Basic Linear Algebra Subprograms, Draft Report, May 2016.

Funding

Primary funding for BBLAS was provided the European Union grant:

• NLAFET: Parallel Numerical Linear Algebra for Future Extreme Scale Systems, Grant Agreement no. 671633

People

The following people listed in alphabetical order contributed to the BBLAS reference implementation:

- Jack Dongarra
- · Mark Gates
- · Srikara Pranesh
- · Samuel Relton
- · Pedro Valero Lara
- Mawussi Zounon

4 Main Page

Chapter 2

Module Index

2.1 Routines

Here is a list of all modules:

6 Module Index

Chapter 3

Module Documentation

3.1 Batched BLAS

Batched BLAS group API functions. Standard Batched BLAS routines.

Modules

• : Standard Batched matrix-matrix operations,

Batched matrix-matrix operations that perform on many groups of different size matrices.

3.1.1 Detailed Description

Batched BLAS group API functions. Standard Batched BLAS routines.

3.2 : Standard Batched matrix-matrix operations,

Batched matrix-matrix operations that perform on many groups of different size matrices.

Modules

```
- gemm_batch: Batched general matrix multiply: C[i] = A[i]B[i] + C[i]
```

$$C[i] = \alpha[i] \ op(A[i]) \ op(B[i]) + \beta[i]C[i]$$

· hemm_batch: Batched hermitian matrix multiply

$$C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$$
 or $C[i] = \alpha[i]B[i]A[i] + \beta C[i]$ where $A[i]$ are hermitian

• herk_batch: Batched hermitian rank k update

$$C[i] = \alpha[i] A[i] A[i]^T + \beta[i] C[i]$$
 where $C[i]$ are hermitian

• her2k batch: Batched hermitian rank 2k update

$$C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are Hermitian

• symm_batch: Batched symmetric matrix multiply

$$C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$$
 or $C[i] = \alpha[i]B[i]A[i] + \beta[i]C[i]$ where $A[i]$ are symmetric

• syrk batch: Batched symmetric rank k update

$$C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are symmetric

· syr2k batch: Batched symmetric rank 2k update

$$C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are symmetric

• trmm_batch: Batched triangular matrix multiply

$$B[i] = \alpha[i] \ op(A[i]) \ B[i] \ or \ B[i] = \alpha[i] B[i] \ op(A[i])$$
 where $A[i]$ are triangular

• trsm batch: Batched triangular solve matrix

$$C[i] = op(A[i])^{-1}B[i]$$
 or $C[i] = B[i]$ $op(A[i])^{-1}$ where $A[i]$ are triangular

3.2.1 Detailed Description

Batched matrix-matrix operations that perform on many groups of different size matrices.

3.3 gemm_batch: Batched general matrix multiply: C[i] = A[i]B[i] + C[i]

$$C[i] = \alpha[i] \ op(A[i]) \ op(B[i]) + \beta[i]C[i]$$

$$C[i] = \alpha[i] \ op(A[i]) \ op(B[i]) + \beta[i]C[i]$$

3.4 hemm_batch: Batched hermitian matrix multiply

 $C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$ or $C[i] = \alpha[i]B[i]A[i] + \beta C[i]$ where A[i] are hermitian

Functions

- void blas_chemm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const int *m, const int *n, const bblas_complex32_t *alpha, bblas
 _complex32_t const *const *A, const int *lda, bblas_complex32_t const *const *B, const int *ldb, const
 bblas complex32_t *beta, bblas complex32_t **C, const int *ldc, int *info)
- void blas_zhemm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const int *m, const int *n, const bblas_complex64_t *alpha, bblas
 _complex64_t const *const *A, const int *lda, bblas_complex64_t const *const *B, const int *ldb, const
 bblas_complex64_t *beta, bblas_complex64_t **C, const int *ldc, int *info)

3.4.1 Detailed Description

 $C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$ or $C[i] = \alpha[i]B[i]A[i] + \beta C[i]$ where A[i] are hermitian

3.4.2 Function Documentation

3.4.2.1 void blas_chemm_batch (int group_count, const int * group_sizes, bblas_enum_t layout, const bblas_enum_t * side, const bblas_enum_t * uplo, const int * m, const int * n, const bblas_complex32_t * alpha, bblas_complex32_t const *const * A, const int * lda, bblas_complex32_t const * const int * ldb, const bblas_complex32_t * beta, bblas_complex32_t * C, const int * ldc, int * info)

Performs one of the batch matrix-matrix operations on each group of matrices

$$C[i] = \alpha[i] \times A[i] \times B[i] + \beta[i] \times C[i]$$

or

$$C[i] = \alpha[i] \times B[i] \times A[i] + \beta[i] \times C[i]$$

where alpha[i] and beta[i] are scalars, A[i]-s are Hermitian matrices B[i]-s and C[i]-s are m-by-n matrices.

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format BblasRowMajor: Row major format BblasColMajor: Column major format
in	side	An array of length group_count. side[i] Specifies whether the Hermitian matrices A[j]-s of i-th group appear on the left or right in the operation as follows: $C[j] = \alpha[i] \times A[j] \times B[j] + \beta[i] \times C[j]$
		- BblasRight: Generated by Doxygen $C[j] = \alpha[i] \times B[j] \times A[j] + \beta[i] \times C[j]$
in	uplo	An array of length group_count, where uplo[i] specifies whether the upper or lower triangular part of the Hermitian matrices A[j]-s of i-th group are to be referenced

- BblasLower: Only the lower triangular part of the Hermitian matrices A[j] is to be referenced.
- BblasUpper: Only the upper triangular part of the Hermitian matrices A[j] is to be referenced.

Parameters

m	An of array of integers of length group_count, where $m[i]$ denotes the number of rows in the matrices $C[j]$ of i-th group. $m[i] >= 0$.
n	An of array of integers of length group_count, where $n[i]$ denotes the number of columns in the matrices $C[j]$ of i-th group. $n[i] >= 0$.
alpha	An array of scalars of length group-count.
Α	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where each element A[j] of i-th group is a pointer to a matrix A[j] of size Ida[i]-by-ka, where ka is m[i] when side[i] = BblasLeft, and is n[i] otherwise. Only the uplo triangular part is referenced. batch_count={i=1}^{group_count}group_sizes[i].
lda	An array of length group_count, where $lda[i]$ is the leading dimension of the arrays A[j] of i-th group. $lda[i] >= max(1,ka)$.
В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1], where each element B[j] of i-th group is a pointer to a matrix B[j] of size ldb[i]-by-n[i] matrix, where the leading m[i]-by-n[i] part of the array B[j] must contain the matrix B[j]. batch_count={i=1}^{group_count}group_sizes[i].
ldb	An array of length group_count, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ of i-th group. $ldb[i] >= max(1,m[i])$.
beta	An array of scalars of length group_count.
С	C is an array of pointers to matrices C[0], C[1],,C[batch_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j]. On exit, each array C[j] of i-th group is overwritten by the m[i]-by-n[i] updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
ldc	An array of integers of size group_count, which denotes the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1,m[i])$.
info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group count*batch count).
	BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast to (group_count).
	 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
	BblasErrorsReportNone : No error will be reported on output, and length of the array
	n alpha A lda B ldb beta C

Return values

See also

chemm_batch chemm_batch

3.4.2.2 void blas_zhemm_batch (int group_count, const int * group_sizes, bblas_enum_t layout, const bblas_enum_t * side, const bblas_enum_t * uplo, const int * m, const int * n, const bblas_complex64_t * alpha, bblas_complex64_t const *const * A, const int * Ida, bblas_complex64_t const * const int * Idb, const bblas_complex64_t * beta, bblas_complex64_t * C, const int * Idc, int * info)

Performs one of the batch matrix-matrix operations on each group of matrices

$$C[i] = \alpha[i] \times A[i] \times B[i] + \beta[i] \times C[i]$$

or

$$C[i] = \alpha[i] \times B[i] \times A[i] + \beta[i] \times C[i]$$

where alpha[i] and beta[i] are scalars, A[i]-s are Hermitian matrices B[i]-s and C[i]-s are m-by-n matrices.

Parameters

in	group_count	The number groups of matrices.	
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.	
in	layout	Specifies if the matrix is stored in row major or column major format BblasRowMajor: Row major format BblasColMajor: Column major format	
in	side	An array of length group_count. side[i] Specifies whether the Hermitian matrices A[j]-s of i-th group appear on the left or right in the operation as follows: $C[j] = \alpha[i] \times A[j] \times B[j] + \beta[i] \times C[j]$ • BblasRight: $C[j] = \alpha[i] \times B[j] \times A[j] + \beta[i] \times C[j]$	
in	uplo	An array of length group_count, where uplo[i] specifies whether the upper or lower triangular part of the Hermitian matrices A[j]-s of i-th group are to be referenced	

- BblasLower: Only the lower triangular part of the Hermitian matrices A[j] is to be referenced.
- BblasUpper: Only the upper triangular part of the Hermitian matrices A[j] is to be referenced.

in	m	An of array of integers of length group_count, where $m[i]$ denotes the number of rows in the matrices $C[j]$ of i-th group. $m[i] >= 0$.
in	n	An of array of integers of length group_count, where $n[i]$ denotes the number of columns in the matrices $C[j]$ of i-th group. $n[i] >= 0$.
in	alpha	An array of scalars of length group-count.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where each element A[j] of i-th group is a pointer to a matrix A[j] of size Ida[i]-by-ka, where ka is m[i] when side[i] = BblasLeft, and is n[i] otherwise. Only the uplo triangular part is referenced. batch_count={i=1}^{group_count}group_sizes[i].
in	lda	An array of length group_count, where $lda[i]$ is the leading dimension of the arrays $A[j]$ of i-th group. $lda[i] >= max(1,ka)$.

Parameters

in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1], where each element B[j] of i-th group is a pointer to a matrix B[j] of size ldb[i]-by-n[i] matrix, where the leading m[i]-by-n[i] part of the array B[j] must contain the matrix B[j]. batch_count={i=1}^{group_count}group_sizes[i].
in	ldb	An array of length group_count, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ of i-th group. $ldb[i] >= max(1,m[i])$.
in	beta	An array of scalars of length group_count.
in,out	С	C is an array of pointers to matrices C[0], C[1],,C[batch_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j]. On exit, each array C[j] of i-th group is overwritten by the m[i]-by-n[i] updated matrix. batch_count= $\{i=1\}^{\land}$ {group_count} group_sizes[i].
in	ldc	An array of integers of size group_count, which denotes the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1,m[i])$.
in, out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*batch_count). BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit

See also

zhemm_batch chemm_batch

3.5 herk_batch: Batched hermitian rank k update

 $C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$ where C[i] are hermitian

Functions

- void blas_cherk_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const float *alpha, bblas_complex32_t const *const *A, const int *Ida, const float *beta, bblas complex32_t **C, const int *Ida, int *info)
- void blas_zherk_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const double *alpha, bblas_complex64_t const *const *A, const int *lda, const double *beta, bblas complex64_t **C, const int *ldc, int *info)

3.5.1 Detailed Description

 $C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$ where C[i] are hermitian

3.5.2 Function Documentation

3.5.2.1 void blas_cherk_batch (int group_count, const int * group_sizes, bblas_enum_t layout, const bblas_enum_t * uplo, const bblas_enum_t * trans, const int * n, const int * k, const float * alpha, bblas_complex32_t const * const * A, const int * lda, const float * beta, bblas complex32_t * C, const int * ldc, int * info)

Performs one of the batch Hermitian rank k operations on a group of matrices, where matrices in each group have constant properties

$$C[i] = \alpha A[i] \times A[i]^H + \beta C[i],$$

or

$$C[i] = \alpha A[i]^H \times A[i] + \beta C[i],$$

where alpha and beta are real scalars, C[i]-s are n-by-n Hermitian matrices, and A[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

Parameters

in	group_count	The number groups of matrices with fixed size.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format BblasRowMajor: Row major format BblasColMajor: Column major format
in	uplo	An array of length group_count, where uplo[i] specifies whether the upper or lower triangular part of the Hermitian matrices C[j]-s of i-th group are to be stored

• BblasLower: Only the lower triangular part of the Hermitian matrices C[j] are to be stored.

• BblasUpper: Only the upper triangular part of the Hermitian matrices C[j] are to be stored.

Parameters

trans	An array of length group_count, where for j-th matrix in i-th group	
	BblasNoTrans:	
	$C[j] = \alpha[i]A[j] \times B[j]^{H} + conjg(\alpha[i])B[j] \times A[j]^{H} + \beta[i]C[j];$	
	BblasConjTrans:	
	$C[j] = \alpha[i]A[j]^H \times B[j] + conjg(\alpha[i])B[j]^H \times A[j] + \beta[i]C[j].$	
n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.	
k	An array of integers of length group_count. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasConjTrans, number of rows of A[j]-s and B[j]-s matrices.	
alpha	An array of scalars of length group_count.	
A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasConjTrans, ka = n[i]. batch_count={i=1}^{group_count}group_sizes[i].	
lda	An array of integers of length group_count, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $Ida[i] >= max(1, n[i])$; if trans[i] = BblasConjTrans, $Ida[i] >= max(1, k[i])$.	
beta	An array of scalars of length group_count.	
С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size Idc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].	
ldc	An array of integers of length group_count. Where $Idc[i]$ is the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1, n[i])$.	
info	Array of int for error handling. On entry info[0] should have one of the following values	
	 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i]. 	
	 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count). 	
	BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.	
	BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.	
	n k alpha A Ida beta C	

Return values

BblasSuccess	successful exit

See also

cherk_batch cherk_batch

3.5.2.2 void blas_zherk_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *uplo*, const bblas_enum_t * *trans*, const int * *n*, const int * *k*, const double * *alpha*, bblas_complex64_t const * *const int * lda*, const double * *beta*, bblas_complex64_t ** *C*, const int * *ldc*, int * *info*)

Performs one of the batch Hermitian rank k operations on a group of matrices, where matrices in each group have constant properties

$$C[i] = \alpha A[i] \times A[i]^H + \beta C[i],$$

or

$$C[i] = \alpha A[i]^H \times A[i] + \beta C[i],$$

where alpha and beta are real scalars, C[i]-s are n-by-n Hermitian matrices, and A[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

Parameters

in	group_count	The number groups of matrices with fixed size.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format BblasRowMajor: Row major format BblasColMajor: Column major format
in	uplo	An array of length group_count, where uplo[i] specifies whether the upper or lower triangular part of the Hermitian matrices C[j]-s of i-th group are to be stored

- BblasLower: Only the lower triangular part of the Hermitian matrices C[j] are to be stored.
- BblasUpper: Only the upper triangular part of the Hermitian matrices C[j] are to be stored.

in	trans	An array of length group_count, where for j-th matrix in i-th group
		BblasNoTrans:
		$C[j] = \alpha[i]A[j] \times B[j]^{H} + conjg(\alpha[i])B[j] \times A[j]^{H} + \beta[i]C[j];$
		BblasConjTrans:
		$C[j] = \alpha[i]A[j]^H \times B[j] + conjg(\alpha[i])B[j]^H \times A[j] + \beta[i]C[j].$
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.
in	k	An array of integers of length group_count. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasConjTrans, number of rows of A[j]-s and B[j]-s matrices.
in	alpha	An array of scalars of length group_count.
in	Α	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasConjTrans, ka = n[i]. batch_count={i=1}^{group_count}group_sizes[i].

Parameters

in	lda	An array of integers of length group_count, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $Ida[i] >= max(1, n[i])$; if trans[i] = BblasConjTrans, $Ida[i] >= max(1, k[i])$.
in	beta	An array of scalars of length group_count.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size Idc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
in	ldc	An array of integers of length group_count. Where ldc[i] is the leading dimension of the arrays C[j] in i-th group. ldc[i] >= max(1, n[i]).
in, out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i]. BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit

See also

zherk_batch cherk_batch

3.6 her2k_batch: Batched hermitian rank 2k update

$$C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are Hermitian

Functions

- void blas_cher2k_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const bblas_complex32_t *alpha, bblas_complex32_t const *const *A, const int *lda, bblas_complex32_t const *const *B, const int *ldb, const float *beta, bblas complex32 t **C, const int *ldc, int *info)
- void blas_zher2k_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const bblas_complex64_t *alpha, bblas_complex64_t const *const *A, const int *lda, bblas_complex64_t const *const *B, const int *ldb, const double *beta, bblas_complex64_t **C, const int *ldc, int *info)

3.6.1 Detailed Description

$$C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are Hermitian

3.6.2 Function Documentation

3.6.2.1 void blas_cher2k_batch (int group_count, const int * group_sizes, bblas_enum_t layout, const bblas_enum_t * uplo, const bblas_enum_t * trans, const int * n, const int * k, const bblas_complex32_t * alpha, bblas_complex32_t const *const * A, const int * Ida, bblas_complex32_t const * const int * Idb, const float * beta, bblas_complex32_t * C, const int * Idc, int * info)

Performs one of the batch Hermitian rank 2k operations

$$C[i] = \alpha[i]A[i] \times B[i]^H + conjg(\alpha[i])B \times A[i]^H + \beta[i]C[i],$$

or

$$C[i] = \alpha[i]A[i]^H \times B[i] + conjg(\alpha[i])B[i]^H \times A[i] + \beta[i]C[i],$$

for a group of matrices, where alpha[i] is a complex scalar, beta[i] is a real scalar, C[i]-s are n-by-n Hermitian matrices, and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	uplo	An array of length group_count, where uplo[i] specifies whether the upper or lower triangular part of the Hermitian matrices C[j]-s of i-th group are to be stored

- BblasLower: Only the lower triangular part of the Hermitian matrices C[j] are to be stored.
- BblasUpper: Only the upper triangular part of the Hermitian matrices C[j] are to be stored.

in	trans	An array of length group_count, where for j-th matrix in i-th group
		BblasNoTrans:
		$C[j] = \alpha[i]A[j] \times B[j]^{H} + conjg(\alpha[i])B[j] \times A[j]^{H} + \beta[i]C[j];$
		BblasConjTrans:
		$C[j] = \alpha[i]A[j]^H \times B[j] + conjg(\alpha[i])B[j]^H \times A[j] + \beta[i]C[j].$
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.
in	k	An array of integers of length group_count. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasConjTrans, number of rows of A[j]-s and B[j]-s matrices.
in	alpha	An array of scalars of length group_count.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasConjTrans, ka = n[i]. batch_count={i=1}^{group_count}group_sizes[i].
in	lda	An array of integers of length group_count, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $Ida[i] >= max(1, n[i])$; if trans[i] = BblasConjTrans, $Ida[i] >= max(1, k[i])$.
in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1]. In i-th group each element B[j] is a pointer to a matrix B[j] of size ldb[i]-by-kb. If trans[i] = BblasNoTrans, kb = k[i]; if trans[i] = BblasConjTrans, kb = n[i]. batch_count={i=1}^{group_count}group_sizes[i].
in	ldb	An array of integers of length group_count, are the leading dimension of the arrays B[j] in i-th group. If trans[i] = BblasNoTrans, $ldb[i] >= max(1, n[i])$; if trans[i] = BblasConjTrans, $ldb[i] >= max(1, k[i])$.
in	beta	An array of scalars of length group_count.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size ldc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
in	ldc	An array of integers of length group_count. Where $Idc[i]$ is the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1, n[i])$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i]
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		 BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess succes	sful exit
---------------------	-----------

See also

cher2k_batch cher2k_batch

3.6.2.2 void blas_zher2k_batch (int group_count, const int * group_sizes, bblas_enum_t layout, const bblas_enum_t * uplo, const bblas_enum_t * trans, const int * n, const int * k, const bblas_complex64_t * alpha, bblas_complex64_t const *const * A, const int * Ida, bblas_complex64_t const * const int * Idb, const double * beta, bblas_complex64_t * C, const int * Idc, int * info)

Performs one of the batch Hermitian rank 2k operations

$$C[i] = \alpha[i]A[i] \times B[i]^H + conjg(\alpha[i])B \times A[i]^H + \beta[i]C[i],$$

or

$$C[i] = \alpha[i]A[i]^H \times B[i] + conjg(\alpha[i])B[i]^H \times A[i] + \beta[i]C[i],$$

for a group of matrices, where alpha[i] is a complex scalar, beta[i] is a real scalar, C[i]-s are n-by-n Hermitian matrices, and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format BblasRowMajor: Row major format BblasColMajor: Column major format
in	uplo	An array of length group_count, where uplo[i] specifies whether the upper or lower triangular part of the Hermitian matrices C[j]-s of i-th group are to be stored

- BblasLower: Only the lower triangular part of the Hermitian matrices C[j] are to be stored.
- BblasUpper: Only the upper triangular part of the Hermitian matrices C[j] are to be stored.

Parameters

in	trans	An array of length group_count, where for j-th matrix in i-th group
		BblasNoTrans:
		$C[j] = \alpha[i]A[j] \times B[j]^{H} + conjg(\alpha[i])B[j] \times A[j]^{H} + \beta[i]C[j];$
		BblasConjTrans:
		$C[j] = \alpha[i]A[j]^H \times B[j] + conjg(\alpha[i])B[j]^H \times A[j] + \beta[i]C[j].$
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.
in	k	An array of integers of length group_count. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasConjTrans, number of rows of A[j]-s and B[j]-s matrices.
in	alpha	An array of scalars of length group_count.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasConjTrans, ka = n[i]. batch_count={i=1}^{group_count}group_sizes[i].
in	lda	An array of integers of length group_count, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $lda[i] >= max(1, n[i])$; if trans[i] = BblasConjTrans, $lda[i] >= max(1, k[i])$.
in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1]. In i-th group each element B[j] is a pointer to a matrix B[j] of size ldb[i]-by-kb. If trans[i] = BblasNoTrans, kb = k[i]; if trans[i] = BblasConjTrans, kb = n[i]. batch_count={i=1}^{group_count}group_sizes[i].
in	ldb	An array of integers of length group_count, are the leading dimension of the arrays B[j] in i-th group. If trans[i] = BblasNoTrans, $ db[i]\rangle = max(1, n[i])$; if trans[i] = BblasConjTrans, $ db[i]\rangle = max(1, k[i])$.
in	beta	An array of scalars of length group_count.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size ldc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
in	ldc	An array of integers of length group_count. Where ldc[i] is the leading dimension of the arrays C[j] in i-th group. ldc[i] >= max(1, n[i]).
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i]
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit

See also

zher2k_batch cher2k_batch

3.7 symm_batch: Batched symmetric matrix multiply

 $C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$ or $C[i] = \alpha[i]B[i]A[i] + \beta[i]C[i]$ where A[i] are symmetric

Functions

- void blas_csymm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const int *m, const int *n, const bblas_complex32_t *alpha, bblas
 _complex32_t const *const *A, const int *lda, bblas_complex32_t const *const *B, const int *ldb, const bblas_complex32_t *beta, bblas_complex32_t **C, const int *ldc, int *info)
- void blas_dsymm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum

 _t *side, const bblas_enum_t *uplo, const int *m, const int *n, const double *alpha, double const *const
 *A, const int *lda, double const *const *B, const int *ldb, const double *beta, double **C, const int *ldc, int
 *info)
- void blas_ssymm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const int *m, const int *n, const float *alpha, float const *const *A, const int *Ida, float const *const *B, const int *Idb, const float *beta, float **C, const int *Idc, int *info)
- void blas_zsymm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const int *m, const int *n, const bblas_complex64_t *alpha, bblas
 _complex64_t const *const *A, const int *lda, bblas_complex64_t const *const *B, const int *ldb, const
 bblas_complex64_t *beta, bblas_complex64_t **C, const int *ldc, int *info)

3.7.1 Detailed Description

 $C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$ or $C[i] = \alpha[i]B[i]A[i] + \beta[i]C[i]$ where A[i] are symmetric

3.7.2 Function Documentation

3.7.2.1 void blas_csymm_batch (int group_count, const int * group_sizes, bblas_enum_t layout, const bblas_enum_t * side, const bblas_enum_t * uplo, const int * m, const int * n, const bblas_complex32_t * alpha, bblas_complex32_t const *const * A, const int * Ida, bblas_complex32_t const *const * B, const int * Idb, const bblas_complex32_t * beta, bblas_complex32_t * C, const int * Idc, int * info)

Performs one of the batch matrix-matrix operations

$$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$$

or

$$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$$

for a group of matrices, where alpha[i] and beta[i] are scalars, A[i]-s are symmetric matrices and B[i]-s are C[i] are m[i]-by-n[i] matrices.

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of
		matrices in i-th group.

Parameters

in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	An array of length group_count. side[i] Specifies whether the Hermitian matrices A[j]-s of i-th group appear on the left or right in the operation as follows:
		BblasLeft: Of all the plants and all the plants are all the plan
		$C[j] = \alpha[i] \times A[j] \times B[j] + \beta[i] \times C[j]$
		• BblasRight: $C[j] = \alpha[i] \times B[j] \times A[j] + \beta[i] \times C[j]$
		$C[j] = \alpha[i] \wedge D[j] \wedge A[j] + \beta[i] \wedge C[j]$
in	uplo	An array of length group_count, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices A[j]-s of i-th group are to be referenced

- BblasLower: Only the lower triangular part of the symmetric matrices A[j] is to be referenced.
- BblasUpper: Only the upper triangular part of the symmetric matrices A[j] is to be referenced.

in	m	An of array of integers of length group_count, where $m[i]$ denotes the number of rows in the matrices $C[j]$ of i-th group. $m[i] >= 0$.
in	n	An of array of integers of length group_count, where $n[i]$ denotes the number of columns in the matrices $C[j]$ of i-th group. $n[i] >= 0$.
in	alpha	An array of scalars of length group-count.
in	Α	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where each element A[j] of i-th group is a pointer to a matrix A[j] of size Ida[i]-by-ka, where ka is m[i] when side[i] = BblasLeft, and is n[i] otherwise. Only the uplo triangular part is referenced. batch_count={i=1}^{group_count}group_sizes[i].
in	lda	An array of length group_count, where $lda[i]$ is the leading dimension of the arrays A[j] of i-th group. $lda[i] >= max(1,ka)$.
in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1], where each element B[j] of i-th group is a pointer to a matrix B[j] of size Idb[i]-by-n[i] matrix, where the leading m[i]-by-n[i] part of the array B[j] must contain the matrix B[j]. batch_count={i=1}^{group_count}group_sizes[i].
in	ldb	An array of length group_count, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ of i-th group. $ldb[i] >= max(1,m[i])$.
in	beta	An array of scalars of length group_count.
in,out	С	C is an array of pointers to matrices C[0], C[1],,C[batch_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j]. On exit, each array C[j] of i-th group is overwritten by the m[i]-by-n[i] updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
in	ldc	An array of integers of length group_count, which denotes the leading dimension of the arrays C[j] in i-th group. ldc[i] >= max(1,m[i]).

Parameters

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast to (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BolasSuccess Successiul exit	BblasSuccess	successful exit
--------------------------------	--------------	-----------------

See also

csymm_batch csymm_batch dsymm_batch ssymm_batch

3.7.2.2 void blas_dsymm_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *side*, const bblas_enum_t * *uplo*, const int * *m*, const int * *n*, const double * *alpha*, double const *const * A, const int * *lda*, double const *const * B, const int * *ldb*, const double * *beta*, double ** C, const int * *ldc*, int * *info*)

Performs one of the batch matrix-matrix operations

$$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$$

or

$$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$$

for a group of matrices, where alpha[i] and beta[i] are scalars, A[i]-s are symmetric matrices and B[i]-s are C[i] are m[i]-by-n[i] matrices.

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format

Parameters

in	side	An array of length group_count. side[i] Specifies whether the symmetric matrices A[j]-s of i-th group appear on the left or right in the operation as follows:
in	uplo	An array of length group_count, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices A[j]-s of i-th group are to be referenced

- BblasLower: Only the lower triangular part of the symmetric matrices A[j] is to be referenced.
- BblasUpper: Only the upper triangular part of the symmetric matrices A[j] is to be referenced.

in	т	An of array of integers of length group_count, where m[i] denotes the number of rows in the matrices C[j] of i-th group. m[i] $>= 0$.
in	n	An of array of integers of length group_count, where $n[i]$ denotes the number of columns in the matrices $C[j]$ of i-th group. $n[i] >= 0$.
in	alpha	An array of scalars of length group-count.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where each element A[j] of i-th group is a pointer to a matrix A[j] of size Ida[i]-by-ka, where ka is m[i] when side[i] = BblasLeft, and is n[i] otherwise. Only the uplo triangular part is referenced. batch_count={i=1}^{group_count}group_sizes[i].
in	lda	An array of length group_count, where $lda[i]$ is the leading dimension of the arrays A[j] of i-th group. $lda[i] >= max(1,ka)$.
in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1], where each element B[j] of i-th group is a pointer to a matrix B[j] of size ldb[i]-by-n[i] matrix, where the leading m[i]-by-n[i] part of the array B[j] must contain the matrix B[j]. batch_count={i=1}^{group_count}group_sizes[i].
in	ldb	An array of length group_count, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ of i-th group. $ldb[i] >= max(1,m[i])$.
in	beta	An array of scalars of length group_count.
in,out	С	C is an array of pointers to matrices C[0], C[1],,C[batch_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j]. On exit, each array C[j] of i-th group is overwritten by the m[i]-by-n[i] updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
in	ldc	An array of integers of length group_count, which denotes the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1,m[i])$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess succes	sful exit
---------------------	-----------

See also

dsymm_batch csymm_batch dsymm_batch ssymm_batch

3.7.2.3 void blas_ssymm_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *side*, const bblas_enum_t * *uplo*, const int * *m*, const int * *n*, const float * *alpha*, float const *const * A, const int * *Ida*, float const *const * B, const int * *Idb*, const float * *beta*, float ** C, const int * *Idc*, int * *info*)

Performs one of the batch matrix-matrix operations

$$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$$

or

$$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$$

for a group of matrices, where alpha[i] and beta[i] are scalars, A[i]-s are symmetric matrices and B[i]-s are C[i] are m[i]-by-n[i] matrices.

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of
		matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	An array of length group_count. side[i] Specifies whether the symmetric matrices A[j]-s of i-th group appear on the left or right in the operation as follows:
		BblasLeft:
		$C[j] = \alpha[i] \times A[j] \times B[j] + \beta[i] \times C[j]$
		BblasRight:
		$C[j] = \alpha[i] \times B[j] \times A[j] + \beta[i] \times C[j]$
in	uplo	An array of length group_count, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices A[j]-s of i-th group are to be referenced

- BblasLower: Only the lower triangular part of the symmetric matrices A[j] is to be referenced.
- · BblasUpper: Only the upper triangular part of the symmetric matrices A[j] is to be referenced.

Parameters

in	m	An of array of integers of length group_count, where $m[i]$ denotes the number of rows in the matrices $C[j]$ of i-th group. $m[i] >= 0$.
in	n	An of array of integers of length group_count, where $n[i]$ denotes the number of columns in the matrices $C[j]$ of i-th group. $n[i] >= 0$.
in	alpha	An array of scalars of length group-count.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where each element A[j] of i-th group is a pointer to a matrix A[j] of size Ida[i]-by-ka, where ka is m[i] when side[i] = BblasLeft, and is n[i] otherwise. Only the uplo triangular part is referenced. batch_count={i=1}^{group_count}group_sizes[i].
in	lda	An array of length group_count, where $lda[i]$ is the leading dimension of the arrays $A[j]$ of i-th group. $lda[i] >= max(1,ka)$.
in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1], where each element B[j] of i-th group is a pointer to a matrix B[j] of size ldb[i]-by-n[i] matrix, where the leading m[i]-by-n[i] part of the array B[j] must contain the matrix B[j]. batch_count={i=1}^{group_count}group_sizes[i].
in	ldb	An array of length group_count, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ of i-th group. $ldb[i] >= max(1,m[i])$.
in	beta	An array of scalars of length group_count.
in,out	С	C is an array of pointers to matrices C[0], C[1],,C[batch_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j]. On exit, each array C[j] of i-th group is overwritten by the m[i]-by-n[i] updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
in	ldc	An array of integers of length group_count, which denotes the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1,m[i])$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit

See also

ssymm_batch csymm_batch dsymm_batch ssymm_batch 3.7.2.4 void blas_zsymm_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *side*, const bblas_enum_t * *uplo*, const int * *m*, const int * *n*, const bblas_complex64_t * *alpha*, bblas_complex64_t const * const * A, const int * *lda*, bblas_complex64_t const * const int * *ldb*, const bblas_complex64_t * *beta*, bblas_complex64_t * C, const int * *ldc*, int * *info*)

Performs one of the batch matrix-matrix operations

$$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$$

or

$$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$$

for a group of matrices, where alpha[i] and beta[i] are scalars, A[i]-s are symmetric matrices and B[i]-s are C[i] are m[i]-by-n[i] matrices.

Parameters

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of
		matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	An array of length group_count. side[i] Specifies whether the Hermitian matrices A[j]-s of i-th group appear on the left or right in the operation as follows:
		BblasLeft:
		C[j] = lpha[i] imes A[j] imes B[j] + eta[i] imes C[j]
		BblasRight:
		$C[j] = \alpha[i] \times B[j] \times A[j] + \beta[i] \times C[j]$
in	uplo	An array of length group_count, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices A[j]-s of i-th group are to be referenced

- BblasLower: Only the lower triangular part of the symmetric matrices A[j] is to be referenced.
- · BblasUpper: Only the upper triangular part of the symmetric matrices A[j] is to be referenced.

in	m	An of array of integers of length group_count, where $m[i]$ denotes the number of rows in the matrices $C[j]$ of i-th group. $m[i] >= 0$.
in	n	An of array of integers of length group_count, where $n[i]$ denotes the number of columns in the matrices $C[j]$ of i-th group. $n[i] >= 0$.
in	alpha	An array of scalars of length group-count.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where each element A[j] of i-th group is a pointer to a matrix A[j] of size Ida[i]-by-ka, where ka is m[i] when side[i] = BblasLeft, and is n[i] otherwise. Only the uplo triangular part is referenced. batch_count={i=1}^{group_count}group_sizes[i].
in	lda	An array of length group_count, where $lda[i]$ is the leading dimension of the arrays A[j] of i-th group. $lda[i] >= max(1,ka)$.

Parameters

in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1], where each element B[j]
		of i-th group is a pointer to a matrix B[j] of size ldb[i]-by-n[i] matrix, where the leading
		m[i]-by-n[i] part of the array B[j] must contain the matrix B[j].
		batch_count={i=1}^{group_count}group_sizes[i].
in	ldb	An array of length group_count, where ldb[i] is the leading dimension of the arrays B[j] of
		i-th group. $db[i] \ge max(1,m[i])$.
in	beta	An array of scalars of length group_count.
in,out	С	C is an array of pointers to matrices C[0], C[1],,C[batch_count-1]. In i-th group each
		element C[j] is a pointer to a matrix C[j]. On exit, each array C[j] of i-th group is overwritten
		by the m[i]-by-n[i] updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
in	ldc	An array of integers of length group_count, which denotes the leading dimension of the
		arrays C[j] in i-th group. $Idc[i] \ge max(1,m[i])$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		BblasErrorsReportAll : All errors will be specified on output. Length of the array
		should be atleast (group_count*group_size).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of
		the array should be atleast to (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer
		value, and length of the array should be atleast 1.
		 BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.
1		

Return values

BblasSuccess	successful exit
Doidocaccoc	Dadoocoolai oxii

See also

zsymm_batch csymm_batch dsymm_batch ssymm_batch

3.8 syrk_batch: Batched symmetric rank k update

 $C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$ where C[i] are symmetric

Functions

- void blas_csyrk_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const float *alpha, bblas_complex32_t const *const *A, const int *lda, const float *beta, bblas complex32_t *C, const int *ldc, int *info)
- void blas_dsyrk_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const double *alpha, double const *const *A, const int *lda, const double *beta, double **C, const int *ldc, int *info)
- void blas_ssyrk_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const float *alpha, float const *const *A, const int *lda, const float *beta, float **C, const int *ldc, int *info)
- void blas_zsyrk_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const double *alpha, bblas_complex64_t const *const *A, const int *lda, const double *beta, bblas complex64_t **C, const int *ldc, int *info)

3.8.1 Detailed Description

 $C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$ where C[i] are symmetric

3.8.2 Function Documentation

3.8.2.1 void blas_csyrk_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *uplo*, const bblas_enum_t * *trans*, const int * *n*, const int * *k*, const float * *alpha*, bblas_complex32_t const * const * A, const int * *Ida*, const float * *beta*, bblas_complex32_t ** C, const int * *Ida*, int * *info*)

Performs one of the batch symmetric rank k operations

$$C[i] = \alpha A[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times A[i] + \beta C[i],$$

for a group of matrices, where alpha[i] and beta[i] are scalars, C[i]-s are n[i]-by-n[i] symmetric matrices, and A[i]-s are n[i]-by-k[i] matrices in the first case and a k[i]-by-n[i] matrices in the second case.

in	group_count	The number groups of matrices with fixed size.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format BblasColMajor: Column major format
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower
Generat	ed by Doxygen	triangular part of the Hermitian matrices C[j]-s of i-th group are to be stored

- BblasLower: Only the lower triangular part of the Symmetric matrices C[j] are to be stored.
- BblasUpper: Only the upper triangular part of the Symmetric matrices C[j] are to be stored.

Parameters

in	trans	An array of length group_count-1, where for j-th matrix in i-th group
		• BblasNoTrans: $C[j] = \alpha[i]A[j] \times A[j]^T + \beta[i]C[j];$
		• BblasTrans: $C[j] = \alpha[i] A[j]^T \times A[j] + \beta[i] C[j].$
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.
in	k	An array of integers of length group_count-1. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasTrans, number of rows of A[j]-s and B[j]-s matrices.
in	alpha	An array of scalars of length group_count-1.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasTrans, ka = n[i]. batch_count={i=1}^{q} (group_count) (group_sizes[i]).
in	lda	An array of integers of length group_count-1, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $Ida[i] >= max(1, n[i])$; if trans[i] = BblasTrans, $Ida[i] >= max(1, k[i])$.
in	beta	An array of scalars of length group_count-1.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size Idc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
in	ldc	An array of integers of length group_count-1. Where $Idc[i]$ is the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1, n[i])$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_size[i].
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

|--|

See also

csyrk_batch csyrk_batch dsyrk_batch ssyrk_batch

3.8.2.2 void blas_dsyrk_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *uplo*, const bblas_enum_t * *trans*, const int * *n*, const int * *k*, const double * *alpha*, double const *const * A, const int * *lda*, const double * *beta*, double ** C, const int * *ldc*, int * *info*)

Performs one of the batch symmetric rank k operations

$$C[i] = \alpha A[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times A[i] + \beta C[i],$$

for a group of matrices, where alpha[i] and beta[i] are scalars, C[i]-s are n[i]-by-n[i] symmetric matrices, and A[i]-s are n[i]-by-k[i] matrices in the first case and a k[i]-by-n[i] matrices in the second case.

Parameters

in	group_count	The number groups of matrices with fixed size.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices C[j]-s of i-th group are to be stored

- BblasLower: Only the lower triangular part of the Symmetric matrices C[i] are to be stored.
- BblasUpper: Only the upper triangular part of the Symmetric matrices C[j] are to be stored.

in	trans	An array of length group_count-1, where for j-th matrix in i-th group	
		• BblasTrans: $C[j] = \alpha[i] A[j]^T \times A[j] + \beta[i] C[j].$	
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.	
in	k	An array of integers of length group_count-1. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasTrans, number of rows of A[j]-s and B[j]-s matrices.	
in	alpha	An array of scalars of length group_count-1.	
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasTrans, ka = n[i]. batch_count={i=1}^{group_count}group_sizes[i].	

Parameters

in	lda	An array of integers of length group_count-1, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $lda[i] >= max(1, n[i])$; if trans[i] = BblasTrans, $lda[i] >= max(1, k[i])$.
in	beta	An array of scalars of length group_count-1.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size Idc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
in	ldc	An array of integers of length group_count-1. Where $Idc[i]$ is the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1, n[i])$.
in, out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_size[i]. BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit

See also

dsyrk_batch csyrk_batch dsyrk_batch ssyrk_batch

3.8.2.3 void blas_ssyrk_batch (int $group_count$, const int * $group_sizes$, bblas_enum_t layout, const bblas_enum_t * uplo, const bblas_enum_t * uplo, const int * uplo, const int * uplo, const float * uplo, float const *const * uplo, const int * uplo, const float * uplo, float * uplo, const int * uplo, const int * uplo, const float * uplo, float * uplo, const int * uplo, const int * uplo, const float * uplo, float * uplo, const int * uplo, const int * uplo, const float * uplo, float * uplo, const int * uplo, const

Performs one of the batch symmetric rank k operations

$$C[i] = \alpha A[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times A[i] + \beta C[i],$$

for a group of matrices, where alpha[i] and beta[i] are scalars, C[i]-s are n[i]-by-n[i] symmetric matrices, and A[i]-s are n[i]-by-k[i] matrices in the first case and a k[i]-by-n[i] matrices in the second case.

in	group_count	The number groups of matrices with fixed size.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format BblasRowMajor: Row major format BblasColMajor: Column major format
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices C[j]-s of i-th group are to be stored

- BblasLower: Only the lower triangular part of the Symmetric matrices C[j] are to be stored.
- BblasUpper: Only the upper triangular part of the Symmetric matrices C[j] are to be stored.

in	trans	An array of length group count-1, where for j-th matrix in i-th group	
		• BblasNoTrans:	
		$C[j] = \alpha[i]A[j] \times A[j]^T + \beta[i]C[j];$	
		BblasTrans:	
		$C[j] = \alpha[i]A[j]^T \times A[j] + \beta[i]C[j].$	
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.	
in	k	An array of integers of length group_count-1. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasTrans,	
		number of rows of A[j]-s and B[j]-s matrices.	
in	alpha	An array of scalars of length group_count-1.	
in	Α	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasTrans, ka = n[i]. batch_count={i=1}^{group_count}group_sizes[i].	
in	lda	An array of integers of length group_count-1, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $Ida[i] >= max(1, n[i])$; if trans[i] = BblasTrans, $Ida[i] >= max(1, k[i])$.	
in	beta	An array of scalars of length group_count-1.	
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size Idc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].	
in	ldc	An array of integers of length group_count-1. Where $Idc[i]$ is the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1, n[i])$.	

Parameters

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_size[i].
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

ssyrk_batch csyrk_batch dsyrk_batch ssyrk_batch

3.8.2.4 void blas_zsyrk_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *uplo*, const bblas_enum_t * *trans*, const int * *n*, const int * *k*, const double * *alpha*, bblas_complex64_t const * *A*, const int * *Ida*, const double * *beta*, bblas_complex64_t ** *C*, const int * *Idc*, int * *info*)

Performs one of the batch symmetric rank k operations

$$C[i] = \alpha A[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times A[i] + \beta C[i],$$

for a group of matrices, where alpha[i] and beta[i] are scalars, C[i]-s are n[i]-by-n[i] symmetric matrices, and A[i]-s are n[i]-by-k[i] matrices in the first case and a k[i]-by-n[i] matrices in the second case.

in	group_count	The number groups of matrices with fixed size.
in	group_sizes	An array of integers of length group_count, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format: • BblasRowMajor: Row major format • BblasColMajor: Column major format
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the Hermitian matrices C[j]-s of i-th group are to be stored

- BblasLower: Only the lower triangular part of the Symmetric matrices C[j] are to be stored.
- BblasUpper: Only the upper triangular part of the Symmetric matrices C[j] are to be stored.

in	trans	An array of length group_count-1, where for j-th matrix in i-th group	
		- BblasNoTrans: $C[j] = \alpha[i] A[j] \times A[j]^T + \beta[i] C[j];$	
		• BblasTrans: $C[j] = \alpha[i] A[j]^T \times A[j] + \beta[i] C[j].$	
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.	
in	k	An array of integers of length group_count-1. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasTrans, number of rows of A[j]-s and B[j]-s matrices.	
in	alpha	An array of scalars of length group_count-1.	
in	Α	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasTrans, ka = n[i]. batch_count={i=1}^{group_count}group_sizes[i].	
in	lda	An array of integers of length group_count-1, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $lda[i] >= max(1, n[i])$; if trans[i] = BblasTrans, $lda[i] >= max(1, k[i])$.	
in	beta	An array of scalars of length group_count-1.	
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size Idc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].	
in	ldc	An array of integers of length group_count-1. Where ldc[i] is the leading dimension of the arrays C[j] in i-th group. ldc[i] >= max(1, n[i]).	
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values	
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_size[i]. 	
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count). 	
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. 	
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.	

Return values

BblasSuccess	successful exit

See also

zsyrk_batch csyrk_batch dsyrk_batch

ssyrk_batch

3.9 syr2k batch: Batched symmetric rank 2k update

 $C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$ where C[i] are symmetric

Functions

- void blas_csyr2k_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const bblas_complex32_t *alpha, bblas
 _complex32_t const *const *A, const int *lda, bblas_complex32_t const *const *B, const int *ldb, const
 bblas complex32 t *beta, bblas complex32 t **C, const int *ldc, int *info)
- void blas_dsyr2k_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const double *alpha, double const *const *A, const int *lda, double const *const *B, const int *ldb, const double *beta, double **C, const int *ldc, int *info)
- void blas_ssyr2k_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum_t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const float *alpha, float const *const *A, const int *lda, float const *const *B, const int *ldb, const float *beta, float **C, const int *ldc, int *info)
- void blas_zsyr2k_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *uplo, const bblas_enum_t *trans, const int *n, const int *k, const bblas_complex64_t *alpha, bblas
 _complex64_t const *const *A, const int *lda, bblas_complex64_t const *const *B, const int *ldb, const
 bblas_complex64_t *beta, bblas_complex64_t **C, const int *ldc, int *info)

3.9.1 Detailed Description

 $C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$ where C[i] are symmetric

3.9.2 Function Documentation

3.9.2.1 void blas_csyr2k_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *uplo*, const bblas_enum_t * *trans*, const int * *n*, const int * *k*, const bblas_complex32_t * *alpha*, bblas_complex32_t const * const * A, const int * *lda*, bblas_complex32_t const * const * B, const int * *ldb*, const bblas_complex32_t * *beta*, bblas_complex32_t * C, const int * *ldc*, int * *info*)

Performs one of the symmetric rank 2k operations on a group of matrices, .

$$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i],$$

where alpha[i]-s and beta[i]-s are scalars, C[i]-s are n-by-n symmetric matrices and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_count	ount The number groups of matrices.	
in	group_sizes	An array of integers of length group_count-1, where group_sizes[i] denotes the number of matrices in i-th group.	
in	layout	Specifies if the matrix is stored in row major or column major format:	
		BblasRowMajor: Row major format	
Generated by Doxygen • Bbla		BblasColMajor: Column major format	
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the Hermitian matrices C[j]-s of i-th group are to be stored	

- BblasLower: Only the lower triangular part of the symmetric matrices C[j] are to be stored.
- BblasUpper: Only the upper triangular part of the symmetric matrices C[j] are to be stored.

in	trans	An array of length group_count-1, where for j-th matrix in i-th group
		BblasNoTrans:
		$C[i] = \alpha[i]A[j] \times B[j]^T + \alpha[i]B[j] \times A[j]^T + \beta[i]C[j];$
		BblasTrans:
		$C[j] = \alpha[i]A[j]^T \times B[j] + \alpha[i]B[j]^T \times A[j] + \beta[i]C[j].$
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.
in	k	An array of integers of length group_count-1. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasTrans, number of rows of A[j]-s and B[j]-s matrices.
in	alpha	An array of scalars of length group_count-1.
in	Α	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size $Ida[i]$ -by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasTrans, ka = n[i]. batch_count={i=1}^{group}_count}group_sizes[i].
in	lda	An array of integers of length group_count-1, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, Ida[i] >= max(1, n[i]); if trans[i] = BblasTrans, Ida[i] >= max(1, k[i]).
in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1]. In i-th group each element B[j] is a pointer to a matrix B[j] of size ldb[i]-by-kb. If trans[i] = BblasNoTrans, kb = k[i]; if trans[i] = BblasTrans, kb = n[i]. batch_count={i=1}^{group_count}group_sizes[i].
in	ldb	An array of integers of size group_count-1, are the leading dimension of the arrays B[j] in i-th group. If trans[i] = BblasNoTrans, ldb[i] >= max(1, n[i]); if trans[i] = BblasTrans, ldb[i] >= max(1, k[i]).
in	beta	An array of scalars of size group_count-1.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size ldc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].
in	ldc	An array of integers of length group_count-1. Where ldc[i] is the leading dimension of the arrays C[j] in i-th group. ldc[i] >= max(1, n[i]).
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_sizes).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		 BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

csyr2k_batch csyr2k_batch dsyr2k_batch ssyr2k_batch

3.9.2.2 void blas_dsyr2k_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *uplo*, const bblas_enum_t * *trans*, const int * *n*, const int * *k*, const double * *alpha*, double const *const * *A*, const int * *lda*, double const *const * *B*, const int * *ldb*, const double * *beta*, double ** *C*, const int * *ldc*, int * *info*)

Performs one of the symmetric rank 2k operations on a group of matrices, .

$$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i],$$

where alpha[i]-s and beta[i]-s are scalars, C[i]-s are n-by-n symmetric matrices and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count-1, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format BblasRowMajor: Row major format BblasColMajor: Column major format
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices C[j]-s of i-th group are to be stored

- BblasLower: Only the lower triangular part of the symmetric matrices C[j] are to be stored.
- BblasUpper: Only the upper triangular part of the symmetric matrices C[j] are to be stored.

Parameters

in	trans	An array of length group_count-1, where for j-th matrix in i-th group	
		BblasNoTrans:	
		$C[i] = \alpha[i]A[j] \times B[j]^T + \alpha[i]B[j] \times A[j]^T + \beta[i]C[j];$	
		$C[i] = \alpha[i]A[j] \times B[j]^2 + \alpha[i]B[j] \times A[j]^2 + \beta[i]C[j];$	
		BblasTrans:	
		$C[j] = \alpha[i]A[j]^T \times B[j] + \alpha[i]B[j]^T \times A[j] + \beta[i]C[j].$	
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.	
in	k	An array of integers of length group_count-1. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasTrans, number of rows of A[j]-s and B[j]-s matrices.	
in	alpha	An array of scalars of length group_count-1.	
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasTrans, ka = n[i]. batch_count={i=1}^{q} (group_count) (group_sizes[i]).	
in	lda	An array of integers of length group_count-1, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $lda[i] >= max(1, n[i])$; if trans[i] = BblasTrans, $lda[i] >= max(1, k[i])$.	
in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1]. In i-th group each element B[j] is a pointer to a matrix B[j] of size ldb[i]-by-kb. If trans[i] = BblasNoTrans, kb = $k[i]$; if trans[i] = BblasTrans, kb = $n[i]$. batch_count= $i=1$ ^{group_count}group_sizes[i].	
in	ldb	An array of integers of size group_count-1, are the leading dimension of the arrays B[j] in i-th group. If trans[i] = BblasNoTrans, ldb[i] >= max(1, n[i]); if trans[i] = BblasTrans, ldb[i] >= max(1, k[i]).	
in	beta	An array of scalars of size group_count-1.	
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size ldc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].	
in	ldc	An array of integers of length group_count-1. Where $Idc[i]$ is the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1, n[i])$.	
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values	
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_sizes). 	
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count). 	
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.	
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.	

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

dsyr2k_batch csyr2k_batch dsyr2k_batch ssyr2k_batch

3.9.2.3 void blas_ssyr2k_batch (int group_count, const int * group_sizes, bblas_enum_t layout, const bblas_enum_t * uplo, const bblas_enum_t * trans, const int * n, const int * k, const float * alpha, float const * const * A, const int * Ida, float const * const * B, const int * Idb, const float * beta, float ** C, const int * Idc, int * info)

Performs one of the symmetric rank 2k operations on a group of matrices, .

$$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i],$$

where alpha[i]-s and beta[i]-s are scalars, C[i]-s are n-by-n symmetric matrices and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

Parameters

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count-1, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices C[j]-s of i-th group are to be stored

- BblasLower: Only the lower triangular part of the symmetric matrices C[j] are to be stored.
- BblasUpper: Only the upper triangular part of the symmetric matrices C[j] are to be stored.

in	trans	An array of length group_count-1, where for j-th matrix in i-th group	
		BblasNoTrans:	
		$C[i] = \alpha[i]A[j] \times B[j]^T + \alpha[i]B[j] \times A[j]^T + \beta[i]C[j];$	
		BblasTrans:	
		$C[j] = \alpha[i]A[j]^T \times B[j] + \alpha[i]B[j]^T \times A[j] + \beta[i]C[j].$	
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.	

Parameters

in	k	An array of integers of length group_count-1. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasTrans, number of rows of A[j]-s and B[j]-s matrices.	
in	alpha	An array of scalars of length group_count-1.	
in	А	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasTrans, ka = n[i]. batch_count={i=1}^{group_count}group_sizes[i].	
in	lda	An array of integers of length group_count-1, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $lda[i] >= max(1, n[i])$; if trans[i] = BblasTrans, $lda[i] >= max(1, k[i])$.	
in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1]. In i-th group each element B[j] is a pointer to a matrix B[j] of size ldb[i]-by-kb. If trans[i] = BblasNoTrans, kb = $k[i]$; if trans[i] = BblasTrans, kb = $n[i]$. batch_count= $i=1$ ^{group_count}group_sizes[i].	
in	ldb	An array of integers of size group_count-1, are the leading dimension of the arrays B[j] in i-th group. If trans[i] = BblasNoTrans, ldb[i] >= max(1, n[i]); if trans[i] = BblasTrans, ldb[i] >= max(1, k[i]).	
in	beta	An array of scalars of size group_count-1.	
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size Idc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].	
in	ldc	An array of integers of length group_count-1. Where $Idc[i]$ is the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1, n[i])$.	
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values	
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_sizes). 	
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count). 	
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. 	
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.	

Return values

BblasSuccess	successful exit

See also

ssyr2k_batch csyr2k_batch dsyr2k_batch ssyr2k_batch Performs one of the symmetric rank 2k operations on a group of matrices, .

$$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i],$$

where alpha[i]-s and beta[i]-s are scalars, C[i]-s are n-by-n symmetric matrices and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

Parameters

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count-1, where group_sizes[i] denotes the number of matrices in i-th group.
in	layout	Specifies if the matrix is stored in row major or column major format BblasRowMajor: Row major format BblasColMajor: Column major format
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the Hermitian matrices C[j]-s of i-th group are to be stored

- BblasLower: Only the lower triangular part of the symmetric matrices C[j] are to be stored.
- BblasUpper: Only the upper triangular part of the symmetric matrices C[j] are to be stored.

in	trans	An array of length group_count-1, where for j-th matrix in i-th group	
		BblasNoTrans:	
		$C[i] = \alpha[i]A[j] \times B[j]^T + \alpha[i]B[j] \times A[j]^T + \beta[i]C[j];$	
		BblasTrans:	
		$C[j] = \alpha[i]A[j]^T \times B[j] + \alpha[i]B[j]^T \times A[j] + \beta[i]C[j].$	
in	n	An array of integers of length group count-1, where $n[i]$ is the order of the matrices $C[j]$ in i-th group. $n[i] >= 0$.	
in	k	An array of integers of length group_count-1. For matrices in i-th group If trans = BblasNoTrans, number of columns of A[j]-s and B[j]-s matrices; if trans = BblasTrans, number of rows of A[j]-s and B[j]-s matrices.	
in	alpha	An array of scalars of length group_count-1.	
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1]. In i-th group each element A[j] is a pointer to a matrix of A[j] of size Ida[i]-by-ka. If trans[i] = BblasNoTrans, ka = k[i]; if trans[i] = BblasTrans, ka = n[i]. batch_count={i=1}^{group_count}group_sizes[i].	

Parameters

in	lda	An array of integers of length group_count-1, are the leading dimension of the arrays A[j] in i-th group. If trans[i] = BblasNoTrans, $lda[i] >= max(1, n[i])$; if trans[i] = BblasTrans, $lda[i] >= max(1, k[i])$.	
in	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1]. In i-th group each element B[j] is a pointer to a matrix B[j] of size ldb[i]-by-kb. If trans[i] = BblasNoTrans, kb = $k[i]$; if trans[i] = BblasTrans, kb = $n[i]$. batch_count= $i=1$ ^{group_count}group_sizes[i].	
in	ldb	An array of integers of size group_count-1, are the leading dimension of the arrays B[j] in i-th group. If trans[i] = BblasNoTrans, ldb[i] \geq = max(1, n[i]); if trans[i] = BblasTrans, ldb[i] \geq = max(1, k[i]).	
in	beta	An array of scalars of size group_count-1.	
in,out	С	C is an array of pointers to matrices C[0], C[1] C[batc_count-1]. In i-th group each element C[j] is a pointer to a matrix C[j] of size ldc[i]-by-n[i]. On exit, the uplo[i] part of the matrix is overwritten by the uplo[i] part of the updated matrix. batch_count={i=1}^{group_count}group_sizes[i].	
in	ldc	An array of integers of length group_count-1. Where $Idc[i]$ is the leading dimension of the arrays $C[j]$ in i-th group. $Idc[i] >= max(1, n[i])$.	
in, out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_sizes). BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1. 	

Return values

BblasSuccess	successful exit

See also

zsyr2k_batch csyr2k_batch dsyr2k_batch ssyr2k_batch

3.10 trmm_batch: Batched triangular matrix multiply

$$B[i] = \alpha[i] \ op(A[i]) \ B[i] \ or \ B[i] = \alpha[i] B[i] \ op(A[i])$$
 where $A[i]$ are triangular

Functions

- void blas_ctrmm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m,
 const int *n, const bblas_complex32_t *alpha, bblas_complex32_t const *const *A, const int *Ida, bblas_complex32_t *B, int const *Idb, int *info)
- void blas_dtrmm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m, const int *n, const double *alpha, double const *const *A, const int *Ida, double **B, int const *Idb, int *info)
- void blas_strmm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m, const int *n, const float *alpha, float const *const *A, const int *lda, float **B, int const *ldb, int *info)
- void blas_ztrmm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m,
 const int *n, const bblas_complex64_t *alpha, bblas_complex64_t const *const *A, const int *lda, bblas_complex64_t **B, int const *ldb, int *info)

3.10.1 Detailed Description

$$B[i] = \alpha[i] \ op(A[i]) \ B[i] \ or \ B[i] = \alpha[i] B[i] \ op(A[i])$$
 where $A[i]$ are triangular

3.10.2 Function Documentation

3.10.2.1 void blas_ctrmm_batch (int group_count, const int * group_sizes, bblas_enum_t layout, const bblas_enum_t * side, const bblas_enum_t * uplo, const bblas_enum_t * transa, const bblas_enum_t * diag, const int * m, const int * m, const bblas_complex32_t * alpha, bblas_complex32_t const * const * A, const int * Ida, bblas_complex32_t * B, int const * Idb, int * info)

Performs a triangular batch matrix-matrix multiply of the form

$$B[i] = \alpha[op(A[i]) \times B[i]]$$

, if side = BblasLeft or

$$B[i] = \alpha[B[i] \times op(A[i])]$$

, if side = BblasRight

for a group of matrices, and op(X) is one of:

```
- op(A[i]) = A[i] or

- op(A[i]) = A[i]^T or

- op(A[i]) = A[i]^H
```

alpha[i]-s are scalars, B[i]-s are m-by-n matrices and A[i]-s are a unit or non-unit, upper or lower triangular matrix.

Parameters

in	group_count	The number groups of matrices.	
in	group_sizes	he number of matrices in each group.	
in	layout	Specifies if the matrix is stored in row major or column major format:	
		BblasRowMajor: Row major format	
		BblasColMajor: Column major format	
in	side	An array of length group_count-1, for matrices of i-th group it specifies whether op(A[j]) appears on the left or on the right of B[j]:	
		BblasLeft: alpha[i]*op(A[j])*B[j]	
		BblasRight: alpha[i]*B[j]*op(A[j])	
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices A[j]-s of i-th group are to be referenced	

- BblasLower: Only the lower triangular part of the symmetric matrices A[j] is to be referenced.
- BblasUpper: Only the upper triangular part of the symmetric matrices A[j] is to be referenced.

in	transa	An array of length group_count-1, where
		BblasNoTrans: A[j]-s in i-th group are not transposed,
		BblasTrans: A[j]-s in i-th group are transposed,
		BblasConjTrans: A[j]-s in i-th group are conjugate transposed.
in	diag	An array of length group_count-1, which specifies whether or not A[j]-s of i-th group are unit triangular:
		BblasNonUnit: A[j]-s are non-unit triangular;
		BblasUnit: A[j]-s are unit triangular.
in	m	An array integers of length group_count-1, which specified the number of rows of matrices $B[j]$ in i-th group. $m[i] >= 0$.
in	n	An array integers of length group_count-1, which specified the number of columns of matrices B[j] in i-th group. $n[i] >= 0$.
in	alpha	An array of length group_count-1, where alpha[i] is a scalar.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where for i-th group each element A[j] is a pointer to a triangular matrix of dimension Ida[i]-by-k, where k is m[i] when side='L' or 'l' and k is n[i] when when side='R' or 'r'. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[j] contains the upper triangular matrix, and the strictly lower triangular part of A[j] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[j] contains the lower triangular matrix, and the strictly upper triangular part of A[j] is not referenced. If diag = BblasUnit, the diagonal elements of A[j] are also not referenced and are assumed to be 1. batch_count={i=1}^{goup}-count}-count-group_sizes[i].
in	lda	An array of integers of length group_count-1, where $lda[i]$ denotes the leading dimension of the arrays A[j] of i-th group. When $side='L'$ or 'l', $lda[i] >= max(1,m[i])$, when $side='R'$ or 'r' then $lda[i] >= max(1,n[i])$.

in	В	B is an array of pointers to matrices B[0], B[1],,B[batch_count-1], where for i-th group each element B[j] is a pointer to a matrix. On entry, the matrices B[j] are of dimension ldb[i]-by-n[i]. On exit, the result of a triangular matrix-matrix multiply (alpha[i]*op(A[j])*B[j]) or (alpha[i]*B[j]*op(A[j])). batch_count={i=1}^{group}count}group_sizes[i].	
in	ldb	An array of integers of length group_count-1, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ of i-th group. $ldb[i] >= max(1,m[i])$.	
in,out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i]. BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1. 	

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

ctrmm_batch ctrmm_batch dtrmm_batch strmm_batch

3.10.2.2 void blas_dtrmm_batch (int $group_count$, const int * $group_sizes$, bblas_enum_t layout, const bblas_enum_t * side, const bblas_enum_t * uplo, const bblas_enum_t * transa, const bblas_enum_t * diag, const int * m, const int * n, const double * alpha, double const *const * A, const int * lda, double ** B, int const * ldb, int * info)

Performs a triangular batch matrix-matrix multiply of the form

$$B[i] = \alpha[op(A[i]) \times B[i]]$$

, if side = BblasLeft or

$$B[i] = \alpha[B[i] \times op(A[i])]$$

, if side = BblasRight

for a group of matrices, and op(X) is one of:

```
- op(A[i]) = A[i] or

- op(A[i]) = A[i]^T or

- op(A[i]) = A[i]^T
```

alpha[i]-s are scalars, B[i]-s are m-by-n matrices and A[i]-s are a unit or non-unit, upper or lower triangular matrix.

Parameters

in	group_count	The number groups of matrices.	
in	group_sizes	he number of matrices in each group.	
in	layout	Specifies if the matrix is stored in row major or column major format:	
		BblasRowMajor: Row major format	
		BblasColMajor: Column major format	
in	side	An array of length group_count-1, for matrices of i-th group it specifies whether op(A[j]) appears on the left or on the right of B[j]:	
		BblasLeft: alpha[i]*op(A[j])*B[j]	
		BblasRight: alpha[i]*B[j]*op(A[j])	
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices A[j]-s of i-th group are to be referenced	

- BblasLower: Only the lower triangular part of the symmetric matrices A[j] is to be referenced.
- BblasUpper: Only the upper triangular part of the symmetric matrices A[j] is to be referenced.

in	transa	An array of length group count-1, where
T11	transa	7.11 andy of length group_count 1, where
		BblasNoTrans: A[j]-s in i-th group are not transposed,
		BblasTrans: A[j]-s in i-th group are transposed,
		BblasConjTrans: A[j]-s in i-th group are conjugate transposed.
in	diag	An array of length group_count-1, which specifies whether or not A[j]-s of i-th group are unit triangular:
		BblasNonUnit: A[j]-s are non-unit triangular;
		BblasUnit: A[j]-s are unit triangular.
in	m	An array integers of length group_count-1, which specified the number of rows of matrices $B[j]$ in i-th group. $m[i] >= 0$.
in	n	An array integers of length group_count-1, which specified the number of columns of matrices B[j] in i-th group. $n[i] >= 0$.
in	alpha	An array of length group_count-1, where alpha[i] is a scalar.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where for i-th group each element A[j] is a pointer to a triangular matrix of dimension Ida[i]-by-k, where k is m[i] when side='L' or 'l' and k is n[i] when when side='R' or 'r'. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[j] contains the upper triangular matrix, and the strictly lower triangular part of A[j] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[j] contains the lower triangular matrix, and the strictly upper triangular part of A[j] is not referenced. If diag = BblasUnit, the diagonal elements of A[j] are also not referenced and are assumed to be 1. batch_count={i=1}^{goup}-count}-count-goup-sizes[i].
in	lda	An array of integers of length group_count-1, where $lda[i]$ denotes the leading dimension of the arrays A[j] of i-th group. When $side='L'$ or 'l', $lda[i] >= max(1,m[i])$, when $side='R'$ or 'r' then $lda[i] >= max(1,n[i])$.

in	В	B is an array of pointers to matrices B[0], B[1],,B[batch_count-1], where for i-th group each element B[j] is a pointer to a matrix. On entry, the matrices B[j] are of dimension ldb[i]-by-n[i]. On exit, the result of a triangular matrix-matrix multiply (alpha[i]*op(A[j])*B[j]) or (alpha[i]*B[j]*op(A[j])). batch_count= $\{i=1\}^{group}$
in	ldb	An array of integers of length group_count-1, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ of i-th group. $ldb[i] >= max(1,m[i])$.
in,out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i]. BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

dtrmm_batch ctrmm_batch dtrmm_batch strmm_batch

3.10.2.3 void blas_strmm_batch (int $group_count$, const int * $group_sizes$, bblas_enum_t layout, const bblas_enum_t * side, const bblas_enum_t * uplo, const bblas_enum_t * transa, const bblas_enum_t * diag, const int * m, const int * n, const float * alpha, float const *const * A, const int * Ida, float ** B, int const * Idb, int * Info)

Performs a triangular batch matrix-matrix multiply of the form

$$B[i] = \alpha[op(A[i]) \times B[i]]$$

, if side = BblasLeft or

$$B[i] = \alpha[B[i] \times op(A[i])]$$

, if side = BblasRight

for a group of matrices, and op(X) is one of:

```
- op(A[i]) = A[i] or

- op(A[i]) = A[i]^T or

- op(A[i]) = A[i]^T
```

alpha[i]-s are scalars, B[i]-s are m-by-n matrices and A[i]-s are a unit or non-unit, upper or lower triangular matrix.

Parameters

in	group_count	The number groups of matrices.	
in	group_sizes	he number of matrices in each group.	
in	layout	Specifies if the matrix is stored in row major or column major format:	
		BblasRowMajor: Row major format	
		BblasColMajor: Column major format	
in	side	An array of length group_count-1, for matrices of i-th group it specifies whether op(A[j]) appears on the left or on the right of B[j]:	
		BblasLeft: alpha[i]*op(A[j])*B[j]	
		BblasRight: alpha[i]*B[j]*op(A[j])	
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices A[j]-s of i-th group are to be referenced	

- BblasLower: Only the lower triangular part of the symmetric matrices A[j] is to be referenced.
- BblasUpper: Only the upper triangular part of the symmetric matrices A[j] is to be referenced.

in	transa	An array of length group_count-1, where
		BblasNoTrans: A[j]-s in i-th group are not transposed,
		BblasTrans: A[j]-s in i-th group are transposed,
		BblasConjTrans: A[j]-s in i-th group are conjugate transposed.
in	diag	An array of length group_count-1, which specifies whether or not A[j]-s of i-th group are unit triangular:
		BblasNonUnit: A[j]-s are non-unit triangular;
		BblasUnit: A[j]-s are unit triangular.
in	m	An array integers of length group_count-1, which specified the number of rows of matrices $B[j]$ in i-th group. $m[i] >= 0$.
in	n	An array integers of length group_count-1, which specified the number of columns of matrices B[j] in i-th group. $n[i] >= 0$.
in	alpha	An array of length group_count-1, where alpha[i] is a scalar.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where for i-th group each element A[j] is a pointer to a triangular matrix of dimension Ida[i]-by-k, where k is m[i] when side='L' or 'l' and k is n[i] when when side='R' or 'r'. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[j] contains the upper triangular matrix, and the strictly lower triangular part of A[j] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[j] contains the lower triangular matrix, and the strictly upper triangular part of A[j] is not referenced. If diag = BblasUnit, the diagonal elements of A[j] are also not referenced and are assumed to be 1. batch_count={i=1}^{goup}-count}-count-group_sizes[i].
in	lda	An array of integers of length group_count-1, where $lda[i]$ denotes the leading dimension of the arrays A[j] of i-th group. When $side='L'$ or 'l', $lda[i] >= max(1,m[i])$, when $side='R'$ or 'r' then $lda[i] >= max(1,n[i])$.

in	В	B is an array of pointers to matrices B[0], B[1],,B[batch_count-1], where for i-th group each element B[j] is a pointer to a matrix. On entry, the matrices B[j] are of dimension ldb[i]-by-n[i]. On exit, the result of a triangular matrix-matrix multiply (alpha[i]*op(A[j])*B[j]) or (alpha[i]*B[j]*op(A[j])). batch_count= $\{i=1\}^{group}$
in	ldb	An array of integers of length group_count-1, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ of i-th group. $ldb[i] >= max(1,m[i])$.
in,out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i]. BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

strmm_batch ctrmm_batch dtrmm_batch strmm_batch

3.10.2.4 void blas_ztrmm_batch (int group_count, const int * group_sizes, bblas_enum_t layout, const bblas_enum_t * side, const bblas_enum_t * uplo, const bblas_enum_t * transa, const bblas_enum_t * diag, const int * m, const int * n, const bblas_complex64_t * alpha, bblas_complex64_t const * const * A, const int * Ida, bblas_complex64_t * B, int const * Idb, int * info)

Performs a triangular batch matrix-matrix multiply of the form

$$B[i] = \alpha[op(A[i]) \times B[i]]$$

, if side = BblasLeft or

$$B[i] = \alpha[B[i] \times op(A[i])]$$

, if side = BblasRight

for a group of matrices, and op(X) is one of:

```
- op(A[i]) = A[i] or

- op(A[i]) = A[i]^T or

- op(A[i]) = A[i]^H
```

alpha[i]-s are scalars, B[i]-s are m-by-n matrices and A[i]-s are a unit or non-unit, upper or lower triangular matrix.

Parameters

in	group_count	The number groups of matrices.	
in	in group_sizes The number of matrices in each group.		
in	layout	Specifies if the matrix is stored in row major or column major format:	
		BblasRowMajor: Row major format	
		BblasColMajor: Column major format	
in	side	An array of length group_count-1, for matrices of i-th group it specifies whether op(A[j]) appears on the left or on the right of B[j]:	
		BblasLeft: alpha[i]*op(A[j])*B[j]	
		BblasRight: alpha[i]*B[j]*op(A[j])	
in	uplo	An array of length group_count-1, where uplo[i] specifies whether the upper or lower triangular part of the symmetric matrices A[j]-s of i-th group are to be referenced	

- BblasLower: Only the lower triangular part of the symmetric matrices A[j] is to be referenced.
- BblasUpper: Only the upper triangular part of the symmetric matrices A[j] is to be referenced.

in	transa	An array of length group_count-1, where	
		BblasNoTrans: A[j]-s in i-th group are not transposed,	
		BblasTrans: A[j]-s in i-th group are transposed,	
		BblasConjTrans: A[j]-s in i-th group are conjugate transposed.	
in	diag	An array of length group_count-1, which specifies whether or not A[j]-s of i-th group are unit triangular:	
		BblasNonUnit: A[j]-s are non-unit triangular;	
		BblasUnit: A[j]-s are unit triangular.	
in	m	An array integers of length group_count-1, which specified the number of rows of matrices $B[j]$ in i-th group. $m[i] >= 0$.	
in	n	An array integers of length group_count-1, which specified the number of columns of matrices B[j] in i-th group. $n[i] >= 0$.	
in	alpha	An array of length group_count-1, where alpha[i] is a scalar.	
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where for i-th group each element A[j] is a pointer to a triangular matrix of dimension Ida[i]-by-k, where k is m[i] when side='L' or 'l' and k is n[i] when when side='R' or 'r'. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[j] contains the upper triangular matrix, and the strictly lower triangular part of A[j] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[j] contains the lower triangular matrix, and the strictly upper triangular part of A[j] is not referenced. If diag = BblasUnit, the diagonal elements of A[j] are also not referenced and are assumed to be 1. batch_count={i=1}^{group}count}group_sizes[i].	
in	lda	An array of integers of length group_count-1, where $lda[i]$ denotes the leading dimension of the arrays A[j] of i-th group. When $side='L'$ or 'l', $lda[i] >= max(1,m[i])$, when $side='R'$ or 'r' then $lda[i] >= max(1,n[i])$.	

in	В	B is an array of pointers to matrices B[0], B[1],,B[batch_count-1], where for i-th group each element B[j] is a pointer to a matrix. On entry, the matrices B[j] are of dimension ldb[i]-by-n[i]. On exit, the result of a triangular matrix-matrix multiply (alpha[i]*op(A[j])*B[j]) or (alpha[i]*B[j]*op(A[j])). batch_count= $\{i=1\}^{g}$ (group_count) group_sizes[i].
in	ldb	An array of integers of length group_count-1, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ of i-th group. $ldb[i] >= max(1,m[i])$.
in, out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i]. BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

See also

ztrmm_batch ctrmm_batch dtrmm_batch strmm_batch

3.11 trsm_batch: Batched triangular solve matrix

$$C[i] = op(A[i])^{-1}B[i]$$
 or $C[i] = B[i] op(A[i])^{-1}$ where $A[i]$ are triangular

Functions

- void blas_ctrsm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m,
 const int *n, const bblas_complex32_t *alpha, bblas_complex32_t const *const *A, const int *lda, bblas_complex32_t **B, const int *ldb, int *info)
- void blas_dtrsm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m, const int *n, const double *alpha, double const *const *A, const int *Ida, double **B, const int *Idb, int *info)
- void blas_strsm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m, const int *n, const float *alpha, float const *const *A, const int *lda, float **B, const int *ldb, int *info)
- void blas_ztrsm_batch (int group_count, const int *group_sizes, bblas_enum_t layout, const bblas_enum
 _t *side, const bblas_enum_t *uplo, const bblas_enum_t *transa, const bblas_enum_t *diag, const int *m,
 const int *n, const bblas_complex64_t *alpha, bblas_complex64_t const *const *A, const int *Ida, bblas_complex64_t **B, const int *Idb, int *info)

3.11.1 Detailed Description

$$C[i] = op(A[i])^{-1}B[i]$$
 or $C[i] = B[i]$ $op(A[i])^{-1}$ where $A[i]$ are triangular

3.11.2 Function Documentation

3.11.2.1 void blas_ctrsm_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *side*, const bblas_enum_t * *uplo*, const bblas_enum_t * *transa*, const bblas_enum_t * *diag*, const int * *m*, const int * *n*, const bblas_complex32_t * *alpha*, bblas_complex32_t const * *const* * *A*, const int * *Ida*, bblas_complex32_t * * *B*, const int * *Idb*, int * *info*)

Solves one of the batch matrix equations

$$op(A[i]) \times X[i] = \alpha[i]B[i],$$

or

$$X[i] \times op(A[i]) = \alpha[i]B[i],$$

for a group of matrices, and op(A[i]) is one of:

$$op(A[i]) = A[i],$$

 $op(A[i]) = A[i]^T,$
 $op(A[i]) = A[i]^H,$

alpha[i] is a scalar, X[i]-s and B[i]-s are m-by-n matrices, and A[i]-s are unit or non-unit, upper or lower triangular matrices. The matrix X[i] overwrites B[i].

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count-1 denoting the number of matrices in each group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	An array of length group_count-1, where for matrices of i-th group specifies whether op(A[j]) appears on the left or on the right of X[j]:
		 BblasLeft: op(A[j])*X[j] = B[j],
		• BblasRight: X[j]*op(A[j]) = B[j].
in	uplo	An array of length group_count-1, where for matrices of i-th group specifies whether the matrices A[j]-s are upper triangular or lower triangular:
		BblasUpper: Upper triangle of A[j] is stored;
		BblasLower: Lower triangle of A[j] is stored.
in	transa	An array of length group_count-1, where
		BblasNoTrans: A[j]-s in i-th group are not transposed,
		BblasTrans: A[j]-s in i-th group are transposed,
		BblasConjTrans: A[j]-s in i-th group are conjugate transposed.
in	diag	An array of length group_count-1, which specifies whether or not A[j]-s of i-th group are unit triangular:
		BblasNonUnit: A[j]-s are non-unit triangular;
		BblasUnit: A[j]-s are unit triangular.
in	m	An array integers of length group_count-1, which specified the number of rows of matrices B[j] in i-th group. $m[i] >= 0$.
in	n	An array integers of length group_count-1, which specified the number of columns of matrices B[j] in i-th group. $n[i] >= 0$.
in	alpha	An array of length group_count-1, where alpha[i] is a scalar.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where for i-th group each element A[j] is a pointer to a triangular matrix of dimension $Ida[i]$ -by-ka triangular, where $Ida[i]$ if side = BblasLeft, and $Ida[i]$ if side = BblasRight. If $Ida[i]$ uplo[i] = BblasUpper, the leading k-by-k upper triangular part of the array A[j] contains the upper triangular matrix, and the strictly lower triangular part of A[j] is not referenced. If $Ida[i]$ = BblasLower, the leading k-by-k lower triangular part of the array A[j] contains the lower triangular matrix, and the strictly upper triangular part of A[j] is not referenced. If $Ida[i]$ = BblasUnit, the diagonal elements of A[j] are also not referenced and are assumed to be 1. $Ida[i]$ = BblasUnit, the diagonal elements of A[j] are also not referenced and are assumed to be 1.
in	lda	An arrray of integers of length group_count-1, where $lda[i]$ is the leading dimension of the arrays A[j] in i-th group. $lda[i] >= max(1,k[i])$.
in,out	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1], On entry, for i-th group each B[j]-s are ldb[i]-by-n[i] right hand side matrix. On exit, if return value = 0, the ldb[i]-by-n[i] solution matrix X. batch_count={i=1}^{group_count}group_sizes[i].

Parameters

in	ldb	An array of integers of length group_count-1, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ in i-th group. $ldb[i] >= max(1,m[i])$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i].
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		 BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

ctrsm_batch ctrsm_batch dtrsm_batch strsm_batch

3.11.2.2 void blas_dtrsm_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *side*, const bblas_enum_t * *uplo*, const bblas_enum_t * *transa*, const bblas_enum_t * *diag*, const int * *m*, const int * *n*, const double * *alpha*, double const *const * A, const int * *Ida*, double ** B, const int * *Idb*, int * *info*)

Solves one of the batch matrix equations

$$op(A[i]) \times X[i] = \alpha[i]B[i],$$

or

$$X[i] \times op(A[i]) = \alpha[i]B[i],$$

for a group of matrices, and op(A[i]) is one of:

$$op(A[i]) = A[i],$$

$$op(A[i]) = A[i]^T,$$

$$op(A[i]) = A[i]^T,$$

alpha[i] is a scalar, X[i]-s and B[i]-s are m-by-n matrices, and A[i]-s are unit or non-unit, upper or lower triangular matrices. The matrix X[i] overwrites B[i].

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count-1 denoting the number of matrices in each group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	An array of length group_count-1, where for matrices of i-th group specifies whether op(A[j]) appears on the left or on the right of X[j]:
		• BblasLeft: op(A[j])*X[j] = B[j],
		BblasRight: X[j]*op(A[j]) = B[j].
in	uplo	An array of length group_count-1, where for matrices of i-th group specifies whether the matrices A[j]-s are upper triangular or lower triangular:
		BblasUpper: Upper triangle of A[j] is stored;
		BblasLower: Lower triangle of A[j] is stored.
in	transa	An array of length group_count-1, where
		BblasNoTrans: A[j]-s in i-th group are not transposed,
		BblasTrans: A[j]-s in i-th group are transposed,
		BblasConjTrans: A[j]-s in i-th group are conjugate transposed.
in	diag	An array of length group_count-1, which specifies whether or not A[j]-s of i-th group are unit triangular:
		BblasNonUnit: A[j]-s are non-unit triangular;
		BblasUnit: A[j]-s are unit triangular.
in	m	An array integers of length group_count-1, which specified the number of rows of matrices B[j] in i-th group. $m[i] >= 0$.
in	n	An array integers of length group_count-1, which specified the number of columns of matrices B[j] in i-th group. $n[i] >= 0$.
in	alpha	An array of length group_count-1, where alpha[i] is a scalar.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where for i-th group each element A[j] is a pointer to a triangular matrix of dimension Ida[i]-by-ka triangular, where ka = m[i] if side = BblasLeft, and ka = n[i] if side = BblasRight. If uplo[i] = BblasUpper, the leading k-by-k upper triangular part of the array A[j] contains the upper triangular matrix, and the strictly lower triangular part of A[j] is not referenced. If uplo[i] = BblasLower, the leading k-by-k lower triangular part of the array A[j] contains the lower triangular matrix, and the strictly upper triangular part of A[j] is not referenced. If diag[i] = BblasUnit, the diagonal elements of A[j] are also not referenced and are assumed to be 1. batch_count= $\{i=1\}^{\Lambda}$ {group_count}group_sizes[i].
in	lda	An arrray of integers of length group_count-1, where Ida[i] is the leading dimension of the arrays A[j] in i-th group. Ida[i] >= max(1,k[i]).
in,out	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1], On entry, for i-th group each B[j]-s are ldb[i]-by-n[i] right hand side matrix. On exit, if return value = 0, the ldb[i]-by-n[i] solution matrix X. batch_count={i=1}^{group_count}group_sizes[i].

Parameters

in	ldb	An array of integers of length group_count-1, where ldb[i] is the leading dimension of the arrays B[j] in i-th group. $ db[i]\rangle = max(1,m[i])$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i].
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		 BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

dtrsm_batch ctrsm_batch dtrsm_batch strsm_batch

3.11.2.3 void blas_strsm_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *side*, const bblas_enum_t * *uplo*, const bblas_enum_t * *transa*, const bblas_enum_t * *diag*, const int * *m*, const int * *n*, const float * *alpha*, float const * *A*, const int * *Ida*, float ** *B*, const int * *Idb*, int * *info*)

Solves one of the batch matrix equations

$$op(A[i]) \times X[i] = \alpha[i]B[i],$$

or

$$X[i] \times op(A[i]) = \alpha[i]B[i],$$

for a group of matrices, and op(A[i]) is one of:

$$op(A[i]) = A[i],$$

$$op(A[i]) = A[i]^{T},$$

$$op(A[i]) = A[i]^{T},$$

alpha[i] is a scalar, X[i]-s and B[i]-s are m-by-n matrices, and A[i]-s are unit or non-unit, upper or lower triangular matrices. The matrix X[i] overwrites B[i].

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count-1 denoting the number of matrices in each group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	An array of length group_count-1, where for matrices of i-th group specifies whether op(A[j]) appears on the left or on the right of X[j]:
		• BblasLeft: op(A[j])*X[j] = B[j],
		BblasRight: X[j]*op(A[j]) = B[j].
in	uplo	An array of length group_count-1, where for matrices of i-th group specifies whether the matrices A[j]-s are upper triangular or lower triangular:
		BblasUpper: Upper triangle of A[j] is stored;
		BblasLower: Lower triangle of A[j] is stored.
in	transa	An array of length group_count-1, where
		BblasNoTrans: A[j]-s in i-th group are not transposed,
		BblasTrans: A[j]-s in i-th group are transposed,
		BblasConjTrans: A[j]-s in i-th group are conjugate transposed.
in	diag	An array of length group_count-1, which specifies whether or not A[j]-s of i-th group are unit triangular:
		BblasNonUnit: A[j]-s are non-unit triangular;
		BblasUnit: A[j]-s are unit triangular.
in	m	An array integers of length group_count-1, which specified the number of rows of matrices B[j] in i-th group. $m[i] >= 0$.
in	n	An array integers of length group_count-1, which specified the number of columns of matrices B[j] in i-th group. $n[i] >= 0$.
in	alpha	An array of length group_count-1, where alpha[i] is a scalar.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where for i-th group each element A[j] is a pointer to a triangular matrix of dimension Ida[i]-by-ka triangular, where ka = m[i] if side = BblasLeft, and ka = n[i] if side = BblasRight. If uplo[i] = BblasUpper, the leading k-by-k upper triangular part of the array A[j] contains the upper triangular matrix, and the strictly lower triangular part of A[j] is not referenced. If uplo[i] = BblasLower, the leading k-by-k lower triangular part of the array A[j] contains the lower triangular matrix, and the strictly upper triangular part of A[j] is not referenced. If diag[i] = BblasUnit, the diagonal elements of A[j] are also not referenced and are assumed to be 1. batch_count= $\{i=1\}^{\Lambda}$ {group_count}group_sizes[i].
in	lda	An arrray of integers of length group_count-1, where Ida[i] is the leading dimension of the arrays A[j] in i-th group. Ida[i] >= max(1,k[i]).
in,out	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1], On entry, for i-th group each B[j]-s are ldb[i]-by-n[i] right hand side matrix. On exit, if return value = 0, the ldb[i]-by-n[i] solution matrix X. batch_count={i=1}^{group_count}group_sizes[i].

Parameters

in	ldb	An array of integers of length group_count-1, where $ldb[i]$ is the leading dimension of the arrays $B[j]$ in i-th group. $ldb[i] >= max(1,m[i])$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i].
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		 BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

See also

strsm_batch ctrsm_batch dtrsm_batch strsm_batch

3.11.2.4 void blas_ztrsm_batch (int *group_count*, const int * *group_sizes*, bblas_enum_t *layout*, const bblas_enum_t * *side*, const bblas_enum_t * *uplo*, const bblas_enum_t * *transa*, const bblas_enum_t * *diag*, const int * *m*, const int * *n*, const bblas_complex64_t * *alpha*, bblas_complex64_t const * *const* * *A*, const int * *Ida*, bblas_complex64_t ** *B*, const int * *Idb*, int * *info*)

Solves one of the batch matrix equations

$$op(A[i]) \times X[i] = \alpha[i]B[i],$$

or

$$X[i] \times op(A[i]) = \alpha[i]B[i],$$

for a group of matrices, and op(A[i]) is one of:

$$op(A[i]) = A[i],$$

$$op(A[i]) = A[i]^{T},$$

$$op(A[i]) = A[i]^{H},$$

alpha[i] is a scalar, X[i]-s and B[i]-s are m-by-n matrices, and A[i]-s are unit or non-unit, upper or lower triangular matrices. The matrix X[i] overwrites B[i].

in	group_count	The number groups of matrices.
in	group_sizes	An array of integers of length group_count-1 denoting the number of matrices in each group.
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	An array of length group_count-1, where for matrices of i-th group specifies whether op(A[j]) appears on the left or on the right of X[j]:
		 BblasLeft: op(A[j])*X[j] = B[j],
		• BblasRight: X[j]*op(A[j]) = B[j].
in	uplo	An array of length group_count-1, where for matrices of i-th group specifies whether the matrices A[j]-s are upper triangular or lower triangular:
		BblasUpper: Upper triangle of A[j] is stored;
		BblasLower: Lower triangle of A[j] is stored.
in	transa	An array of length group_count-1, where
		BblasNoTrans: A[j]-s in i-th group are not transposed,
		BblasTrans: A[j]-s in i-th group are transposed,
		BblasConjTrans: A[j]-s in i-th group are conjugate transposed.
in	diag	An array of length group_count-1, which specifies whether or not A[j]-s of i-th group are unit triangular:
		BblasNonUnit: A[j]-s are non-unit triangular;
		BblasUnit: A[j]-s are unit triangular.
in	m	An array integers of length group_count-1, which specified the number of rows of matrices B[j] in i-th group. $m[i] >= 0$.
in	n	An array integers of length group_count-1, which specified the number of columns of matrices B[j] in i-th group. $n[i] >= 0$.
in	alpha	An array of length group_count-1, where alpha[i] is a scalar.
in	A	A is an array of pointers to matrices A[0], A[1] A[batch_count-1], where for i-th group each element A[j] is a pointer to a triangular matrix of dimension $Ida[i]$ -by-ka triangular, where $Ida[i]$ if side = BblasLeft, and $Ida[i]$ if side = BblasRight. If $Ida[i]$ uplo[i] = BblasUpper, the leading k-by-k upper triangular part of the array A[j] contains the upper triangular matrix, and the strictly lower triangular part of A[j] is not referenced. If $Ida[i]$ = BblasLower, the leading k-by-k lower triangular part of the array A[j] contains the lower triangular matrix, and the strictly upper triangular part of A[j] is not referenced. If $Ida[i]$ = BblasUnit, the diagonal elements of A[j] are also not referenced and are assumed to be 1. $Ida[i]$ = BblasUnit-group_sizes[i].
in	lda	An arrray of integers of length group_count-1, where $lda[i]$ is the leading dimension of the arrays A[j] in i-th group. $lda[i] >= max(1,k[i])$.
in,out	В	B is an array of pointers to matrices B[0], B[1] B[batch_count-1], On entry, for i-th group each B[j]-s are ldb[i]-by-n[i] right hand side matrix. On exit, if return value = 0, the ldb[i]-by-n[i] solution matrix X. batch_count={i=1}^{group_count}group_sizes[i].

Parameters

in	ldb	An array of integers of length group_count-1, where ldb[i] is the leading dimension of the arrays B[j] in i-th group. ldb[i] >= max(1,m[i]).
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i].
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

See also

ztrsm_batch ctrsm_batch dtrsm_batch strsm_batch

3.12 Fixed Batched BLAS API

Fixed Batched BLAS functions.

Modules

• : Fixed Batched matrix-matrix operations,

Fixed Batched matrix-matrix operations that perform on problems of same size.

3.12.1 Detailed Description

Fixed Batched BLAS functions.

3.13 : Fixed Batched matrix-matrix operations,

Fixed Batched matrix-matrix operations that perform on problems of same size.

Modules

- gemm_batchf: Batch of same size general matrix multiply: C[i] = A[i]B[i] + C[i] $C[i] = \alpha[i] \ op(A[i]) \ op(B[i]) + \beta[i]C[i]$
- · hemm batchf: Batch of same size hermitian matrix multiply

$$C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$$
 or $C[i] = \alpha[i]B[i]A[i] + \beta C[i]$ where $A[i]$ are hermitian

· herk batchf: Batch of same size hermitian rank k update

$$C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are hermitian

• her2k batchf: Batch of same size hermitian rank 2k update

$$C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are Hermitian

• symm_batchf: Batch of same size symmetric matrix multiply

$$C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$$
 or $C[i] = \alpha[i]B[i]A[i] + \beta[i]C[i]$ where $A[i]$ are symmetric

• syrk_batchf: Batch of same size symmetric rank k update

$$C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are symmetric

• syr2k_batchf: Batch of same size symmetric rank 2k update

$$C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are symmetric

• trmm_batchf: Batch of same size triangular matrix multiply

$$B[i] = \alpha[i] \ op(A[i]) \ B[i] \ or \ B[i] = \alpha[i] B[i] \ op(A[i])$$
 where $A[i]$ are triangular

• trsm_batchf: Batch of same size triangular solve matrix

$$C[i] = op(A[i])^{-1}B[i]$$
 or $C[i] = B[i]$ $op(A[i])^{-1}$ where $A[i]$ are triangular

3.13.1 Detailed Description

Fixed Batched matrix-matrix operations that perform on problems of same size.

3.14 gemm_batchf: Batch of same size general matrix multiply: C[i] = A[i]B[i] + C[i]

$$C[i] = \alpha[i] \ op(A[i]) \ op(B[i]) + \beta[i]C[i]$$

Functions

- void blas_cgemm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t transa, bblas_enum_t transb, int m, int n, int k, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t const *const *B, int ldb, bblas complex32_t beta, bblas complex32_t **C, int ldc, int *info)
- void blas_dgemm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t transa, bblas_enum_t transb, int m, int n, int k, double alpha, double const *const *A, int lda, double const *const *B, int ldb, double beta, double **C, int ldc, int *info)
- void blas_sgemm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t transa, bblas_enum_t transb, int m, int n, int k, float alpha, float const *const *A, int lda, float const *const *B, int ldb, float beta, float **C, int ldc, int *info)
- void blas_zgemm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t transa, bblas_enum_t transb, int m, int n, int k, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_complex64_t const *const *B, int ldb, bblas_complex64_t beta, bblas_complex64_t **C, int ldc, int *info)

3.14.1 Detailed Description

$$C[i] = \alpha[i] \ op(A[i]) \ op(B[i]) + \beta[i]C[i]$$

3.14.2 Function Documentation

3.14.2.1 void blas_cgemm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *transa*, bblas_enum_t *transb*, int *m*, int *n*, int *k*, bblas_complex32_t *alpha*, bblas_complex32_t const *const * A, int *lda*, bblas_complex32_t const *const * B, int *ldb*, bblas_complex32_t beta, bblas_complex32_t * C, int *ldc*, int * info)

cgemm_batchf is a batch version of cgemm. It performs matrix-matrix multiplication of matrices, where all the matrices of the batch have a fixed size.

$$C[i] = \alpha[op(A[i]) \times op(B[i])] + \beta C[i],$$

where op(X) is one of:

$$op(X) = X,$$

 $op(X) = X^T,$
 $op(X) = X^H,$

alpha and beta are scalars, and A[i], B[i] and C[i] are matrices, with op(A[i]) an m-by-k matrix, op(B[i]) a k-by-n matrix and C[i] an m-by-n matrix.

i

in	group_size	The number of matrices to operate on
----	------------	--------------------------------------

in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	transa	
		BblasNoTrans: A[i] is not transposed,
		BblasTrans: A[i] is transposed,
		BblasConjTrans: A[i] is conjugate transposed.
		- BbiasConj frans. Apj is conjugate transposed.
in	transb	BblasNoTrans: B[i] is not transposed,
		BblasTrans: B[i] is transposed,
		BblasConjTrans: B[i] is conjugate transposed.
in	m	The number of rows of the matrix op($A[i]$) and of the matrix $C[i]$. $m \ge 0$.
in	n	The number of columns of the matrix op($B[i]$) and of the matrix $C[i]$. $n \ge 0$.
in	k	The number of columns of the matrix op($A[i]$) and the number of rows of the matrix op($B[i]$). $k \ge 0$.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix of dimension Ida-by-ka, where ka is k when transa = BblasNoTrans, and is m otherwise. When using transa = BblasNoTrans the leading m-by-k part of A[i] must contain the matrix elements, otherwise the leading k-by-m part of A[i] must contain the matrix elements.
in	lda	The leading dimension of the array A[i]. When transa = BblasNoTrans, $Ida >= max(1,m)$, otherwise, $Ida >= max(1,k)$.
in	В	B is an array of pointers to matrices B[0], B[1],,B[group_size-1], where each element B[i] is a pointer to a matrix of dimension Ida-by-kb, where kb is n when transb = BblasNoTrans, and is k otherwise. When using transb = BblasNoTrans the leading k-by-n part of B[i] must contain the matrix elements, otherwise the leading n-by-k part of B[i] must contain the matrix elements.
in	ldb	The leading dimension of the array B[i]. When transb = BblasNoTrans, ldb \geq = max(1,k), otherwise, ldb \geq = max(1,n).
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1],,C[group_size-1], where each element of C[i] is a pointer to a matrix of dimension ldc-by-n. On exit, each array C[i] is overwritten by the m-by-n matrix (alpha*op(A[i])*op(B[i]) + beta*C[i]).
in	ldc	The leading dimension of the array $C[i]$. $Idc >= max(1,m)$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be at least {i=0}^{group_count-1}group_size[i].
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be at least group_count.
		BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1.
		 BblasErrorsReportNone: No error will be reported on output, and length of the array should be at least 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

cgemm_batchf cgemm_batchf dgemm_batchf sgemm_batchf

3.14.2.2 void blas_dgemm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *transa*, bblas_enum_t *transb*, int *m*, int *n*, int *k*, double *alpha*, double const *const * A, int *lda*, double const *const * B, int *ldb*, double *beta*, double ** C, int *ldc*, int * info)

dgemm_batchf is a batch version of dgemm. It performs matrix-matrix multiplication of matrices, where all the matrices of the batch have a fixed size.

$$C[i] = \alpha[op(A[i]) \times op(B[i])] + \beta C[i],$$

where op(X) is one of:

$$op(X) = X,$$

 $op(X) = X^T,$
 $op(X) = X^T,$

alpha and beta are scalars, and A[i], B[i] and C[i] are matrices, with op(A[i]) an m-by-k matrix, op(B[i]) a k-by-n matrix and C[i] an m-by-n matrix.

i

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	transa	
		BblasNoTrans: A[i] is not transposed,
		BblasTrans: A[i] is transposed,
		BblasConjTrans: A[i] is conjugate transposed.
in	transb	
		BblasNoTrans: B[i] is not transposed,
		BblasTrans: B[i] is transposed,
		BblasConjTrans: B[i] is conjugate transposed.
		Boldsoonj hans. Dij is sonjugate transposed.

Parameters

in	m	The number of rows of the matrix op($A[i]$) and of the matrix $C[i]$. $m \ge 0$.	
in	n	The number of columns of the matrix op($B[i]$) and of the matrix $C[i]$. $n \ge 0$.	
in	k	The number of columns of the matrix op($A[i]$) and the number of rows of the matrix op($B[i]$). $k \ge 0$.	
in	alpha	The scalar alpha.	
in	А	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix of dimension Ida-by-ka, where ka is k when transa = BblasNoTrans, and is m otherwise. When using transa = BblasNoTrans the leading m-by-k part of A[i] must contain the matrix elements, otherwise the leading k-by-m part of A[i] must contain the matrix elements.	
in	lda	The leading dimension of the array A[i]. When transa = BblasNoTrans, $Ida > = max(1,m)$, otherwise, $Ida > = max(1,k)$.	
in	В	B is an array of pointers to matrices B[0], B[1],,B[group_size-1], where each element B[i] is a pointer to a matrix of dimension Ida-by-kb, where kb is n when transb = BblasNoTrans, and is k otherwise. When using transb = BblasNoTrans the leading k-by-n part of B[i] must contain the matrix elements, otherwise the leading n-by-k part of B[i] must contain the matrix elements.	
in	ldb	The leading dimension of the array B[i]. When transb = BblasNoTrans, ldb $>=$ max(1,k), otherwise, ldb $>=$ max(1,n).	
in	beta	The scalar beta.	
in,out	С	C is an array of pointers to matrices C[0], C[1],,C[group_size-1], where each element of C[i] is a pointer to a matrix of dimension ldc-by-n. On exit, each array C[i] is overwritten by the m-by-n matrix (alpha*op(A[i])*op(B[i]) + beta*C[i]).	
in	ldc	The leading dimension of the array $C[i]$. $Idc >= max(1,m)$.	
in, out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be at least {i=0}^{group_count-1}group_size[i]. BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be at least group_count. BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. BblasErrorsReportNone: No error will be reported on output, and length of the 	
		array should be at least 1.	

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

dgemm_batchf cgemm_batchf dgemm_batchf sgemm_batchf 3.14.2.3 void blas_sgemm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *transa*, bblas_enum_t *transb*, int *m*, int *n*, int *k*, float alpha, float const *const * A, int *lda*, float const *const * B, int *ldb*, float beta, float ** C, int *ldc*, int * info)

sgemm_batchf is a batch version of sgemm. It performs matrix-matrix multiplication of matrices, where all the matrices of the batch have a fixed size.

$$C[i] = \alpha[op(A[i]) \times op(B[i])] + \beta C[i],$$

where op(X) is one of:

$$op(X) = X,$$

 $op(X) = X^T,$
 $op(X) = X^T,$

alpha and beta are scalars, and A[i], B[i] and C[i] are matrices, with op(A[i]) an m-by-k matrix, op(B[i]) a k-by-n matrix and C[i] an m-by-n matrix.

i

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	transa	
		BblasNoTrans: A[i] is not transposed,
		BblasTrans: A[i] is transposed,
		BblasConjTrans: A[i] is conjugate transposed.
in	transb	
		BblasNoTrans: B[i] is not transposed,
		BblasTrans: B[i] is transposed,
		BblasConjTrans: B[i] is conjugate transposed.
in	m	The number of rows of the matrix op($A[i]$) and of the matrix $C[i]$. $m \ge 0$.
in	n	The number of columns of the matrix op($B[i]$) and of the matrix $C[i]$. $n \ge 0$.
in	k	The number of columns of the matrix op($A[i]$) and the number of rows of the matrix op($B[i]$). $k \ge 0$.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix of dimension Ida-by-ka, where ka is k when transa = BblasNoTrans, and is m otherwise. When using transa = BblasNoTrans the leading m-by-k part of A[i] must contain the matrix elements, otherwise the leading k-by-m part of A[i] must contain the matrix elements.
in	lda	The leading dimension of the array A[i]. When transa = BblasNoTrans, $ da>=$ max(1,m), otherwise, $ da>=$ max(1,k).

Parameters

in	В	B is an array of pointers to matrices B[0], B[1],,B[group_size-1], where each element B[i] is a pointer to a matrix of dimension Ida-by-kb, where kb is n when transb = BblasNoTrans, and is k otherwise. When using transb = BblasNoTrans the leading k-by-n part of B[i] must contain the matrix elements, otherwise the leading n-by-k part of B[i] must contain the matrix elements.
in	ldb	The leading dimension of the array B[i]. When transb = BblasNoTrans, ldb $>=$ max(1,k), otherwise, ldb $>=$ max(1,n).
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1],,C[group_size-1], where each element of C[i] is a pointer to a matrix of dimension ldc-by-n. On exit, each array C[i] is overwritten by the m-by-n matrix (alpha*op(A[i])*op(B[i]) + beta*C[i]).
in	ldc	The leading dimension of the array $C[i]$. $Idc >= max(1,m)$.
in, out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be at least {i=0}^{group_count-1}group_size[i]. BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be at least group_count. BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be at least 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

sgemm_batchf cgemm_batchf dgemm_batchf sgemm_batchf

3.14.2.4 void blas_zgemm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *transa*, bblas_enum_t *transb*, int *m*, int *n*, int *k*, bblas_complex64_t *alpha*, bblas_complex64_t const *const * *A*, int *lda*, bblas_complex64_t const *const * *B*, int *ldb*, bblas_complex64_t beta, bblas_complex64_t ** *C*, int *ldc*, int * *info*)

zgemm_batchf is a batch version of zgemm. It performs matrix-matrix multiplication of matrices, where all the matrices of the batch have a fixed size.

$$C[i] = \alpha[op(A[i]) \times op(B[i])] + \beta C[i],$$

where op(X) is one of:

$$op(X) = X,$$

 $op(X) = X^{T},$
 $op(X) = X^{H},$

alpha and beta are scalars, and A[i], B[i] and C[i] are matrices, with op(A[i]) an m-by-k matrix, op(B[i]) a k-by-n matrix and C[i] an m-by-n matrix.

i

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
		,
in	transa	Distriction of ASI in such the second
		BblasNoTrans: A[i] is not transposed,
		BblasTrans: A[i] is transposed,
		BblasConjTrans: A[i] is conjugate transposed.
in	transb	
		BblasNoTrans: B[i] is not transposed,
		BblasTrans: B[i] is transposed,
		BblasConjTrans: B[i] is conjugate transposed.
in	m	The number of rows of the matrix op($A[i]$) and of the matrix $C[i]$. $m \ge 0$.
in	n	The number of columns of the matrix op($B[i]$) and of the matrix $C[i]$. $n \ge 0$.
in	k	The number of columns of the matrix op($A[i]$) and the number of rows of the matrix op($B[i]$). $k \ge 0$.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix of dimension Ida-by-ka, where ka is k when transa = BblasNoTrans, and is m otherwise. When using transa = BblasNoTrans the leading m-by-k part of A[i] must contain the matrix elements, otherwise the leading k-by-m part of A[i] must contain the matrix elements.
in	lda	The leading dimension of the array A[i]. When transa = BblasNoTrans, Ida $>=$ max(1,m), otherwise, Ida $>=$ max(1,k).
in	В	B is an array of pointers to matrices B[0], B[1],,B[group_size-1], where each element B[i] is a pointer to a matrix of dimension Ida-by-kb, where kb is n when transb = BblasNoTrans, and is k otherwise. When using transb = BblasNoTrans the leading k-by-n part of B[i] must contain the matrix elements, otherwise the leading n-by-k part of B[i] must contain the matrix elements.
in	ldb	The leading dimension of the array B[i]. When transb = BblasNoTrans, ldb $>=$ max(1,k), otherwise, ldb $>=$ max(1,n).
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1],,C[group_size-1], where each element of C[i] is a pointer to a matrix of dimension ldc-by-n. On exit, each array C[i] is overwritten by the m-by-n matrix (alpha*op(A[i])*op(B[i]) + beta*C[i]).
in	ldc	The leading dimension of the array $C[i]$. $Idc >= max(1,m)$.

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be at least {i=0}^{group_count-1}group_size[i].
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be at least group_count.
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be at least 1.

Return values

BblasSuccess s	successful exit
------------------	-----------------

See also

zgemm_batchf cgemm_batchf dgemm_batchf sgemm_batchf

3.15 hemm_batchf: Batch of same size hermitian matrix multiply

 $C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$ or $C[i] = \alpha[i]B[i]A[i] + \beta C[i]$ where A[i] are hermitian

Functions

- void blas_chemm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t const *const *B, int ldb, bblas complex32_t beta, bblas complex32_t **C, int ldc, int *info)
- void blas_zhemm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_complex64_t const *const *B, int ldb, bblas complex64_t beta, bblas complex64_t **C, int ldc, int *info)

3.15.1 Detailed Description

 $C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$ or $C[i] = \alpha[i]B[i]A[i] + \beta C[i]$ where A[i] are hermitian

3.15.2 Function Documentation

3.15.2.1 void blas_chemm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, int *m*, int *n*, bblas_complex32_t *alpha*, bblas_complex32_t const *const * A, int *lda*, bblas_complex32_t const *const * B, int *ldb*, bblas_complex32_t *beta*, bblas_complex32_t ** C, int *ldc*, int * *info*)

Performs one of the batch matrix-matrix operations

$$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$$

or

$$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$$

where alpha and beta are scalars, A[i]-s are Hermitian matrices B[i]-s and C[i]-s are m-by-n matrices.

in	group_size	The number of matrices to operate on	
in	layout	Specifies if the matrix is stored in row major or column major format: • BblasRowMajor: Row major format	
		BblasColMajor: Column major format	
in	side	Specifies whether the Hermitian matrices A[i] appear on the left or right in the operation as follows:	

in	uplo	Specifies whether the upper or lower triangular part of the Hermitian matrices A[i] are to be referenced as follows:
		BblasLower: Only the lower triangular part of the Hermitian matrices A[i] is to be referenced.
		BblasUpper: Only the upper triangular part of the Hermitian matrices A[i] is to be referenced.
in	m	The number of rows in the matrices $C[i]$. $m \ge 0$.
in	n	The number of columns in the matrices $C[i]$. $n \ge 0$.
in	alpha	The scalar alpha.
in	Α	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka, where ka is m when side = BblasLeft, and is n otherwise. Only the uplo triangular part is referenced.
in	lda	The leading dimension of the arrays A[i]. Ida \geq = max(1,ka).
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-n matrix, where the leading m-by-n part of the array B[i] must contain the matrix B[i].
in	ldb	The leading dimension of the arrays B[i]. $Idb \ge max(1,m)$.
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i]. On exit, the array is overwritten by the m-by-n updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1,m)$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		BblasErrorsReportAll : All errors will be specified on output. Length of the array should be at least (group_count*group_size).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be at least to (group_count).
		BblasErrorsReportAny: Occurrence of an error will be indicated by a single integer value, and length of the array should be at least 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

chemm_batchf chemm_batchf

3.15.2.2 void blas_zhemm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, int *m*, int *n*, bblas_complex64_t *alpha*, bblas_complex64_t const *const * A, int *lda*, bblas_complex64_t const *const * B, int *ldb*, bblas_complex64_t *beta*, bblas_complex64_t ** C, int *ldc*, int * *info*)

Performs one of the batch matrix-matrix operations

$$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$$

or

$$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$$

where alpha and beta are scalars, A[i]-s are Hermitian matrices B[i]-s and C[i]-s are m-by-n matrices.

in	group_size	The number of matrices to operate on	
in	layout	Specifies if the matrix is stored in row major or column major format:	
		BblasRowMajor: Row major format	
		BblasColMajor: Column major format	
in	side	Specifies whether the Hermitian matrices A[i] appear on the left or right in the operation as follows:	
		BblasLeft:	
		$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$	
		BblasRight:	
		$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$	
in	uplo	Specifies whether the upper or lower triangular part of the Hermitian matrices A[i] are to be referenced as follows:	
		 BblasLower: Only the lower triangular part of the Hermitian matrices A[i] is to be referenced. 	
		 BblasUpper: Only the upper triangular part of the Hermitian matrices A[i] is to be referenced. 	
in	т	The number of rows in the matrices $C[i]$. $m \ge 0$.	
in	n	The number of columns in the matrices $C[i]$. $n \ge 0$.	
in	alpha	The scalar alpha.	
in	Α	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka, where ka is m when side = BblasLeft, and is n otherwise. Only the uplo triangular part is referenced.	
in	lda	The leading dimension of the arrays A[i]. Ida >= max(1,ka).	
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-n matrix, where the leading m-by-n part of the array B[i] must contain the matrix B[i].	
in	ldb	The leading dimension of the arrays $B[i]$. $Idb >= max(1,m)$.	
in	beta	The scalar beta.	
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i]. On exit, the array is overwritten by the m-by-n updated matrix.	
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1,m)$.	

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be at least (group_count*group_size).
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be at least to (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be at least 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

zhemm_batchf chemm_batchf

3.16 herk_batchf: Batch of same size hermitian rank k update

 $C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$ where C[i] are hermitian

Functions

- void blas_cherk_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const float alpha, bblas_complex32_t const *const *A, int lda, const float beta, bblas_complex32_t **C, int ldc, int *info)
- void blas_zherk_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const double alpha, bblas_complex64_t const *const *A, int lda, const double beta, bblas_complex64
 _t **C, int ldc, int *info)

3.16.1 Detailed Description

 $C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$ where C[i] are hermitian

3.16.2 Function Documentation

3.16.2.1 void blas_cherk_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *uplo*, bblas_enum_t *trans*, int *n*, int *k*, const float *alpha*, bblas_complex32_t const *const *A, int *lda*, const float *beta*, bblas_complex32_t ** C, int *ldc*, int * info)

Performs one of the batch Hermitian rank k operations

$$C[i] = \alpha A[i] \times A[i]^H + \beta C[i],$$

or

$$C[i] = \alpha A[i]^H \times A[i] + \beta C[i],$$

where alpha and beta are real scalars, C[i]-s are n-by-n Hermitian matrices, and A[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_size	The number of matrices to	o operate on	
in	layout	Specifies if the matrix is stored in row major or column major format:		
		BblasRowMajor: Ro	ow major format	
		BblasColMajor: Col	lumn major format	
in	uplo			
		BblasUpper: Upper	triangle of C[i]-s are stored;	
		BblasLower: Lower	triangle of C[i]-s are stored.	
in	trans			
		BblasNoTrans:	$C[i] = \alpha A[i] \times A[i]^H + \beta C[i].$	
			$C[i] = \alpha A[i] \times A[i] + \beta C[i].$	
		BblasConjTrans:	$C[i] = \alpha A[i]^H \times A[i] + \beta C[i].$	Generated by Doxyger

in	n	The order of the matrices $C[i]$. $n \ge 0$.
in	k	If trans = BblasNoTrans, number of columns of the matrices A[i]; if trans = BblasConjTrans, number of rows of the matrices A[i].
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasConjTrans, ka = n.
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $ da>= max(1, n)$; if trans = BblasConjTrans, $ da>= max(1, k)$.
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc \ge max(1, n)$.
in, out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be at least (group_count*group_size). BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be at least to (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be at least 1.

Return values

BblasSuccess	successful exit

See also

cherk_batchf cherk batchf

3.16.2.2 void blas_zherk_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const double alpha, bblas_complex64_t const *const *A, int lda, const double beta, bblas_complex64_t ** C, int ldc, int * info)

Performs one of the batch Hermitian rank k operations

$$C[i] = \alpha A[i] \times A[i]^H + \beta C[i],$$

or

$$C[i] = \alpha A[i]^H \times A[i] + \beta C[i],$$

where alpha and beta are real scalars, C[i]-s are n-by-n Hermitian matrices, and A[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

Parameters

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
		Dolado Colla III I I I I I I I I I I I I I I I I
in	uplo	
		 BblasUpper: Upper triangle of C[i]-s are stored;
		BblasLower: Lower triangle of C[i]-s are stored.
in	trans	
		BblasNoTrans: **Telephone
		$C[i] = \alpha A[i] \times A[i]^{H} + \beta C[i].$
		BblasConjTrans:
		$C[i] = \alpha A[i]^H \times A[i] + \beta C[i].$
in	n	The order of the matrices $C[i]$. $n \ge 0$.
in	k	If trans = BblasNoTrans, number of columns of the matrices A[i]; if trans = BblasConjTrans, number of rows of the matrices A[i].
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each
		element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasConjTrans, ka = n.
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $Ida >= max(1, n)$; if trans = BblasConjTrans, $Ida >= max(1, k)$.
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1, n)$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be at least (group_count*group_size).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be at least to (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be at least 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

zherk_batchf cherk_batchf

3.17 her2k_batchf: Batch of same size hermitian rank 2k update

$$C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are Hermitian

Functions

- void blas_cher2k_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t const *const *B, int ldb, const float beta, bblas_complex32_t **C, int ldc, int *info)
- void blas_zher2k_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_complex64_t const *const *B, int ldb, const double beta, bblas_complex64_t **C, int ldc, int *info)

3.17.1 Detailed Description

$$C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$$
 where $C[i]$ are Hermitian

3.17.2 Function Documentation

3.17.2.1 void blas_cher2k_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *uplo*, bblas_enum_t *trans*, int *n*, int *k*, bblas_complex32_t *alpha*, bblas_complex32_t const *const * A, int *lda*, bblas_complex32_t const *const * B, int *ldb*, const float *beta*, bblas_complex32_t ** C, int *ldc*, int * *info*)

Performs one of the batch Hermitian rank 2k operations

$$C[i] = \alpha A[i] \times B[i]^H + conjg(\alpha)B \times A[i]^H + \beta C[i],$$

or

$$C[i] = \alpha A[i]^H \times B[i] + conjg(\alpha)B[i]^H \times A[i] + \beta C[i],$$

where alpha is a complex scalar, beta is a real scalar, C[i]-s are n-by-n Hermitian matrices, and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	uplo	
		BblasUpper: Upper triangle of C[i]-s is stored;
		BblasLower: Lower triangle of C[i]-s is stored.

Parameters

 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be at least (group_count*group_size). BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be at least (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. BblasErrorsReportNone: No error will be reported on output, and length of the 	in	trans	
• BblasConjTrans: $C[i] = \alpha A[i]^H \times B[i] + conjg(\alpha)B[i]^H \times A[i] + \beta C[i].$ $\text{in} \qquad n \qquad \text{The order of the matrix C[i]. n} > \text{zero.}$ $\text{in} \qquad k \qquad \text{If trans = BblasNoTrans, number of columns of the A[i] and B[i] matrices; if trans = BblasConjTrans, number of rows of the A[i] and B[i] matrices.}$ $\text{in} \qquad alpha \qquad \text{The scalar alpha.}$ $\text{in} \qquad A \qquad \text{A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasConjTrans, ka = n.}$ $\text{in} \qquad Ida \qquad \text{The leading dimension of the arrays A[i]. If trans = BblasNoTrans, Ida >= max(1, n); if trans = BblasConjTrans, Ida >= max(1, k).}$ $\text{in} \qquad B \qquad \text{B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i]. If trans = BblasNoTrans, Ida >= max(1, n); if trans = BblasConjTrans, kb = n.}$ $\text{in} \qquad Idb \qquad \text{The leading dimension of the arrays B[i]. If trans = BblasNoTrans, Idb >= max(1, n); if trans = BblasConjTrans, Idb >= max(1, k).}$ $\text{in} \qquad beta \qquad The leading dimension of the arrays B[i]. If trans = BblasNoTrans, Idb >= max(1, n); if trans = BblasConjTrans, Idb >= max(1, n); Idb = IdblasConjTrans, Idb >= max(1, n); IdblasConjTrans, IdblasConjTrans, IdblasConjTrans, I$			BblasNoTrans:
$C[i] = \alpha A[i]^H \times B[i] + conjg(\alpha) B[i]^H \times A[i] + \beta C[i].$ $in \qquad n \qquad \text{The order of the matrix } C[i]. \ n >= \text{zero.}$ $in \qquad k \qquad \text{If trans} = \text{BblasNoTrans, number of columns of the A[i] and B[i] matrices; if trans} = \text{BblasConjTrans, number of rows of the A[i] and B[i] matrices.}$ $in \qquad alpha \qquad \text{The scalar alpha.}$ $in \qquad A \qquad \text{A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasConjTrans, ka = n. $ $in \qquad Ida \qquad \text{The leading dimension of the arrays A[i]. If trans} = BblasNoTrans, Ida >= \max(1, n); if trans = BblasConjTrans, Ida >= \max(1, k).$ $in \qquad B \qquad \text{B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size Idb-by-kb. If trans = BblasNoTrans, kb = k; if trans = BblasConjTrans, kb >= \max(1, k).$ $in \qquad Idb \qquad \text{The leading dimension of the arrays B[i]. If trans} = BblasNoTrans, Idb >= \max(1, n); if trans = BblasConjTrans, Idb >= \max(1, k).$ $in \qquad beta \qquad \text{The scalar beta.}$ $in, out \qquad C \qquad C \text{ is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size Idb-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.}$ $in \qquad Idc \qquad \text{The leading dimension of the arrays C[i]. Idc >= \max(1, n).}$ $in, out \qquad info \qquad \text{Array of int for error handling. On entry info[0] should have one of the following values array should be at least (group_count).}$ $\cdot \text{BblasErrorsReportAnl} : \text{All errors will be specified on output. Length of the array should be at least (group_count).}$ $\cdot \text{BblasErrorsReportGroup} : \text{Single error from each group will be reported.}$ $\text{Length of the array should be at least (group_count).}$ $\cdot \text{BblasErrorsReportAnl} : \text{No error will be indicated by a single integer value, and length of the array should be at least (group_count).}$			$C[i] = \alpha A[i] \times B[i]^{H} + conjg(\alpha)B[i] \times A[i]^{H} + \beta C[i];$
in			BblasConjTrans:
in			$C[i] = \alpha A[i]^H \times B[i] + conjg(\alpha)B[i]^H \times A[i] + \beta C[i].$
BblasConjTrans, number of rows of the A[i] and B[i] matrices. in alpha The scalar alpha. in A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasConjTrans, ka = n. in Ida The leading dimension of the arrays A[i]. If trans = BblasNoTrans, Ida >= max(1, n); if trans = BblasConjTrans, Ida >= max(1, k). in B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size Idb-by-kb. If trans = BblasNoTrans, kb = k; if trans = BblasConjTrans, kb = n. in Idb The leading dimension of the arrays B[i]. If trans = BblasNoTrans, Idb >= max(1, n); if trans = BblasConjTrans, Idb >= max(1, k). in beta The scalar beta. in, out C C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size Idc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix. in Idc The leading dimension of the arrays C[i]. Idc >= max(1, n). Array of int for error handling. On entry info[0] should have one of the following values • BblasErrorsReportAll : All errors will be specified on output. Length of the array should be at least (group_count+group_size). • BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be at least (group_count). • BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. • BblasErrorsReportNone : No error will be reported on output, and length of the	in	n	The order of the matrix $C[i]$. $n \ge zero$.
in	in	k	
element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasConjTrans, ka = n. In Ida The leading dimension of the arrays A[i]. If trans = BblasNoTrans, Ida >= max(1, n); if trans = BblasConjTrans, Ida >= max(1, k). In B B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size Idb-by-kb. If trans = BblasNoTrans, kb = k; if trans = BblasConjTrans, kb = n. In Idb The leading dimension of the arrays B[i]. If trans = BblasNoTrans, Idb >= max(1, n); if trans = BblasConjTrans, Idb >= max(1, k). In beta The scalar beta. In, out C C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size Idc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix. In Idc The leading dimension of the arrays C[i]. Idc >= max(1, n). Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be at least (group_count) be indicated by a single integer value, and length of the array should be at least 1. BblasErrorsReportNone: No error will be reported on output, and length of the	in	alpha	The scalar alpha.
if trans = BolasConjTrans, Ida >= max(1, k). B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size Idb-by-kb. If trans = BblasNoTrans, kb = k; if trans = BblasConjTrans, kb = n. In Idb The leading dimension of the arrays B[i]. If trans = BblasNoTrans, Idb >= max(1, n); if trans = BblasConjTrans, Idb >= max(1, k). In beta The scalar beta. In, out C C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size Idc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix. In Idc The leading dimension of the arrays C[i]. Idc >= max(1, n). In, out Info Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll : All errors will be specified on output. Length of the array should be at least (group_count*group_size). BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be at least (group_count). BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. BblasErrorsReportNone : No error will be reported on output, and length of the	in	Α	element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka
element B[i] is a pointer to a matrix B[i] of size Idb-by-kb. If trans = BblasNoTrans, kb = k; if trans = BblasConjTrans, kb = n. in	in	lda	_ · · · · · · · · · · · · · · · · · · ·
if trans = BblasConjTrans, ldb >= max(1, k). in beta The scalar beta. C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix. In ldc The leading dimension of the arrays C[i]. ldc >= max(1, n). in, out info Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll : All errors will be specified on output. Length of the array should be at least (group_count*group_size). BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be at least (group_count). BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. BblasErrorsReportNone : No error will be reported on output, and length of the	in	В	element B[i] is a pointer to a matrix B[i] of size ldb-by-kb. If trans = BblasNoTrans, kb
in, out C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size Idc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix. in Idc The leading dimension of the arrays C[i]. Idc >= max(1, n). in, out info Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll : All errors will be specified on output. Length of the array should be at least (group_count*group_size). BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be at least (group_count). BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. BblasErrorsReportNone : No error will be reported on output, and length of the	in	ldb	_ · · · · · · · · · · · · · · · · · · ·
element C[i] is a pointer to a matrix C[i] of size Idc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix. in Idc The leading dimension of the arrays C[i]. Idc >= max(1, n). in, out info Array of int for error handling. On entry info[0] should have one of the following values • BblasErrorsReportAll : All errors will be specified on output. Length of the array should be at least (group_count*group_size). • BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be at least (group_count). • BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. • BblasErrorsReportNone : No error will be reported on output, and length of the	in	beta	The scalar beta.
in, out info Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be at least (group_count*group_size). BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be at least (group_count). BblasErrorsReportAny: Occurrence of an error will be indicated by a single integer value, and length of the array should be at least 1. BblasErrorsReportNone: No error will be reported on output, and length of the	in,out	С	element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the
 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be at least (group_count*group_size). BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be at least (group_count). BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. BblasErrorsReportNone : No error will be reported on output, and length of the 	in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1, n)$.
 array should be at least (group_count*group_size). BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be at least (group_count). BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. BblasErrorsReportNone : No error will be reported on output, and length of the 	in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
Length of the array should be at least (group_count). • BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1. • BblasErrorsReportNone : No error will be reported on output, and length of the			
integer value, and length of the array should be at least 1. • BblasErrorsReportNone : No error will be reported on output, and length of the			
, , , , , , , , , , , , , , , , , , , ,			, ,
array snould be at least 1.			BblasErrorsReportNone : No error will be reported on output, and length of the array should be at least 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

cher2k_batchf cher2k_batchf 3.17.2.2 void blas_zher2k_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *uplo*, bblas_enum_t *trans*, int *n*, int *k*, bblas_complex64_t *alpha*, bblas_complex64_t const *const * *A*, int *lda*, bblas_complex64_t const *const * *B*, int *ldb*, const double *beta*, bblas_complex64_t ** *C*, int *ldc*, int * *info*)

Performs one of the batch Hermitian rank 2k operations

$$C[i] = \alpha A[i] \times B[i]^{H} + conjg(\alpha)B \times A[i]^{H} + \beta C[i],$$

or

$$C[i] = \alpha A[i]^H \times B[i] + conjg(\alpha)B[i]^H \times A[i] + \beta C[i],$$

where alpha is a complex scalar, beta is a real scalar, C[i]-s are n-by-n Hermitian matrices, and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	uplo	
		BblasUpper: Upper triangle of C[i]-s is stored;
		BblasLower: Lower triangle of C[i]-s is stored.
in	trans	
		BblasNoTrans:
		$C[i] = \alpha A[i] \times B[i]^{H} + conjg(\alpha)B[i] \times A[i]^{H} + \beta C[i];$
		BblasConjTrans:
		$C[i] = \alpha A[i]^H \times B[i] + conjg(\alpha)B[i]^H \times A[i] + \beta C[i].$
in	n	The order of the matrix $C[i]$. $n \ge zero$.
in	k	If trans = BblasNoTrans, number of columns of the A[i] and B[i] matrices; if trans = BblasConjTrans, number of rows of the A[i] and B[i] matrices.
in	alpha	The scalar alpha.
in	Α	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasConjTrans, ka = n.
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $ da>= max(1, n)$; if trans = BblasConjTrans, $ da>= max(1, k)$.
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-kb. If trans = BblasNoTrans, kb = k; if trans = BblasConjTrans, kb = n.
in	ldb	The leading dimension of the arrays B[i]. If trans = BblasNoTrans, ldb \geq max(1, n); if trans = BblasConjTrans, ldb \geq max(1, k).
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1, n)$.

Parameters

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be at least (group_count*group_size).
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be at least (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be at least 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be at least 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

zher2k_batchf cher2k_batchf

3.18 symm_batchf: Batch of same size symmetric matrix multiply

 $C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$ or $C[i] = \alpha[i]B[i]A[i] + \beta[i]C[i]$ where A[i] are symmetric

Functions

- void blas_csymm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t const *const *B, int ldb, bblas complex32_t beta, bblas complex32_t **C, int ldc, int *info)
- void blas_dsymm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, double alpha, double const *const *A, int lda, double const *const *B, int ldb, double beta, double **C, int ldc, int *info)
- void blas_ssymm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, float alpha, float const *const *A, int lda, float const *const *B, int ldb, float beta, float **C, int ldc, int *info)
- void blas_zsymm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, int m, int n, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_complex64_t const *const *B, int ldb, bblas complex64_t beta, bblas complex64_t **C, int ldc, int *info)

3.18.1 Detailed Description

 $C[i] = \alpha[i]A[i]B[i] + \beta[i]C[i]$ or $C[i] = \alpha[i]B[i]A[i] + \beta[i]C[i]$ where A[i] are symmetric

3.18.2 Function Documentation

3.18.2.1 void blas_csymm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, int *m*, int *n*, bblas_complex32_t *alpha*, bblas_complex32_t const *const * A, int *lda*, bblas_complex32_t const *const * B, int *ldb*, bblas_complex32_t *beta*, bblas_complex32_t ** C, int *ldc*, int * *info*)

Performs one of the matrix-matrix operations

$$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$$

or

$$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$$

where alpha and beta are scalars, A[i]-s are symmetric matrices and B[i]-s are C[i] are m-by-n matrices.

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format

Parameters

in	side	Specifies whether the symmetric matrices A[i] appears on the left or right in the operation as follows:
		- BblasLeft: $C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$
		- BblasRight: $C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$
in	uplo	Specifies whether the upper or lower triangular part of the symmetric matrices A[i] are to be referenced as follows:
		 BblasLower: Only the lower triangular part of the symmetric matrices A[i] is to be referenced.
		BblasUpper: Only the upper triangular part of the symmetric matrices A[i] is to be referenced.
in	m	The number of rows of the matrices $C[i]$. $m \ge 0$.
in	n	The number of columns of the matrices $C[i]$. $n \ge 0$.
in	alpha	The scalar alpha.
in	Α	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka, where ka is m when side = BblasLeft, and is n otherwise. Only the uplo triangular part is referenced.
in	lda	The leading dimension of the arrays A[i]. $Ida \ge max(1,ka)$.
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-n matrix, where the leading m-by-n part of the array B[i] must contain the matrix B[i].
in	ldb	The leading dimension of the arrays B[i]. $ldb \ge max(1,m)$.
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i]. On exit, the array is overwritten by the m-by-n updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1,m)$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast to (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit

See also

csymm_batchf csymm_batchf dsymm_batchf ssymm_batchf

3.18.2.2 void blas_dsymm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, int *m*, int *n*, double *alpha*, double const *const * A, int *lda*, double const *const * B, int *ldb*, double *beta*, double ** C, int *ldc*, int * *info*)

Performs one of the matrix-matrix operations

$$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$$

or

$$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$$

where alpha and beta are scalars, A[i]-s are symmetric matrices and B[i]-s are C[i] are m-by-n matrices.

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	Specifies whether the symmetric matrices A[i] appears on the left or right in the operation as follows:
		BblasLeft:
		$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$
		BblasRight:
		$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$
in	uplo	Specifies whether the upper or lower triangular part of the symmetric matrices A[i] are to be referenced as follows:
		 BblasLower: Only the lower triangular part of the symmetric matrices A[i] is to be referenced.
		BblasUpper: Only the upper triangular part of the symmetric matrices A[i] is to be referenced.
in	m	The number of rows of the matrices $C[i]$. $m \ge 0$.
in	n	The number of columns of the matrices $C[i]$. $n \ge 0$.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka, where ka is m when side = BblasLeft, and is n otherwise. Only the uplo triangular part is referenced.
in	lda	The leading dimension of the arrays $A[i]$. $Ida >= max(1,ka)$.
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-n matrix, where the leading m-by-n part of the array B[i] must contain the matrix B[i].

Parameters

in	ldb	The leading dimension of the arrays B[i]. $ldb \ge max(1,m)$.
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i]. On exit, the array is overwritten by the m-by-n updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1,m)$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

dsymm_batchf csymm_batchf dsymm_batchf ssymm_batchf

3.18.2.3 void blas_ssymm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, int *m*, int *n*, float *alpha*, float const *const * A, int *lda*, float const *const * B, int *ldb*, float *beta*, float ** C, int *ldc*, int * info)

Performs one of the matrix-matrix operations

$$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$$

or

$$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$$

where alpha and beta are scalars, A[i]-s are symmetric matrices and B[i]-s are C[i] are m-by-n matrices.

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format

in	side	Specifies whether the symmetric matrices A[i] appears on the left or right in the operation as follows:	
		- BblasLeft: $C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$	
in	uplo	Specifies whether the upper or lower triangular part of the symmetric matrices A[i] are to be referenced as follows:	
		 BblasLower: Only the lower triangular part of the symmetric matrices A[i] is to be referenced. 	
		BblasUpper: Only the upper triangular part of the symmetric matrices A[i] is to be referenced.	
in	m	The number of rows of the matrices $C[i]$. $m \ge 0$.	
in	n	The number of columns of the matrices $C[i]$. $n \ge 0$.	
in	alpha	The scalar alpha.	
in	А	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka, where ka is m when side = BblasLeft, and is n otherwise. Only the uplo triangular part is referenced.	
in	lda	The leading dimension of the arrays A[i]. Ida >= max(1,ka).	
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-n matrix, where the leading m-by-n part of the array B[i] must contain the matrix B[i].	
in	ldb	The leading dimension of the arrays B[i]. $Idb \ge max(1,m)$.	
in	beta	The scalar beta.	
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i]. On exit, the array is overwritten by the m-by-n updated matrix.	
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1,m)$.	
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values	
		BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast (group_count*group_size).	
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast to (group_count).	
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.	
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.	

Return values

BblasSuccess	successful exit

See also

ssymm_batchf csymm_batchf dsymm_batchf ssymm_batchf

3.18.2.4 void blas_zsymm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, int *m*, int *n*, bblas_complex64_t *alpha*, bblas_complex64_t const *const * A, int *lda*, bblas_complex64_t const *const * B, int *ldb*, bblas_complex64_t *beta*, bblas_complex64_t ** C, int *ldc*, int * *info*)

Performs one of the matrix-matrix operations

$$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$$

or

$$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$$

where alpha and beta are scalars, A[i]-s are symmetric matrices and B[i]-s are C[i] are m-by-n matrices.

in	group_size	The number of matrices to operate on	
in	layout	Specifies if the matrix is stored in row major or column major format: • BblasRowMajor: Row major format	
		• Bolashowiviajor. Now major format	
		BblasColMajor: Column major format	
in	side	Specifies whether the symmetric matrices A[i] appears on the left or right in the operation as follows:	
		BblasLeft:	
		$C[i] = \alpha \times A[i] \times B[i] + \beta \times C[i]$	
		BblasRight:	
		$C[i] = \alpha \times B[i] \times A[i] + \beta \times C[i]$	
in	uplo	Specifies whether the upper or lower triangular part of the symmetric matrices A[i] are to be referenced as follows:	
		 BblasLower: Only the lower triangular part of the symmetric matrices A[i] is to be referenced. 	
		BblasUpper: Only the upper triangular part of the symmetric matrices A[i] is to be referenced.	
in	m	The number of rows of the matrices $C[i]$. $m \ge 0$.	
in	n	The number of columns of the matrices $C[i]$. $n \ge 0$.	
in	alpha	The scalar alpha.	
in	Α	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka, where ka is m when side = BblasLeft, and is n otherwise. Only the uplo triangular part is referenced.	
in	lda	The leading dimension of the arrays A[i]. Ida >= max(1,ka).	
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-n matrix, where the leading m-by-n part of the array B[i] must contain the matrix B[i].	

in	ldb	The leading dimension of the arrays $B[i]$. $Idb >= max(1,m)$.
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i]. On exit, the array is overwritten by the m-by-n updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1,m)$.
in, out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		 BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
Doiacoacoac	Caccocciai chit

See also

zsymm_batchf csymm_batchf dsymm_batchf ssymm_batchf

3.19 syrk_batchf: Batch of same size symmetric rank k update

 $C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$ where C[i] are symmetric

Functions

- void blas_csyrk_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const float alpha, bblas_complex32_t const *const *A, int lda, const float beta, bblas_complex32_t **C, int ldc, int *info)
- void blas_dsyrk_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const double alpha, double const *const *A, int lda, const double beta, double **C, int ldc, int *info)
- void blas_ssyrk_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const float alpha, float const *const *A, int lda, const float beta, float *C, int ldc, int *info)
- void blas_zsyrk_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const double alpha, bblas_complex64_t const *const *A, int lda, const double beta, bblas_complex64
 _t **C, int ldc, int *info)

3.19.1 Detailed Description

 $C[i] = \alpha[i]A[i]A[i]^T + \beta[i]C[i]$ where C[i] are symmetric

3.19.2 Function Documentation

3.19.2.1 void blas_csyrk_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *uplo*, bblas_enum_t *trans*, int *n*, int *k*, const float *alpha*, bblas_complex32_t const *const *A, int *lda*, const float *beta*, bblas_complex32_t ** C, int *ldc*, int * info)

Performs one of the batch symmetric rank k operations

$$C[i] = \alpha A[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times A[i] + \beta C[i],$$

where alpha and beta are scalars, C[i]-s are n-by-n symmetric matrices, and A[i]-s are n-by-k matrices in the first case and a k-by-n matrices in the second case.

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	uplo	
		BblasUpper: Upper triangle of C[i]-s are stored;
		BblasLower: Lower triangle of C[i]-s are stored.

in	trans		
		BblasNoTrans:	
		$C[i] = \alpha A[i] \times A[i]^T + \beta C[i];$	
		BblasTrans:	
		$C[i] = \alpha A[i]^T \times A[i] + \beta C[i].$	
in	n	The order of the matrices $C[i]$. $n \ge 0$.	
in	k	If trans = BblasNoTrans, number of columns of matrices A[i]; if trans = BblasTrans, number of rows of matrices A[i].	
in	alpha	The scalar alpha.	
in	Α	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasTrans, ka = n.	
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $Ida \ge max(1, n)$; if trans = BblasTrans, $Ida \ge max(1, k)$.	
in	beta	The scalar beta.	
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.	
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1, n)$.	
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values	
		BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast (group_count*group_size).	
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast to (group_count).	
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.	
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.	

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

csyrk_batchf csyrk_batchf dsyrk_batchf ssyrk_batchf

3.19.2.2 void blas_dsyrk_batchf (int $group_size$, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const double alpha, double const *const *A, int lda, const double beta, double ** C, int ldc, int * info)

Performs one of the batch symmetric rank k operations

$$C[i] = \alpha A[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times A[i] + \beta C[i],$$

where alpha and beta are scalars, C[i]-s are n-by-n symmetric matrices, and A[i]-s are n-by-k matrices in the first case and a k-by-n matrices in the second case.

in	group_size	The number of matrices to operate on	
in	layout	Specifies if the matrix is stored in row major or column major format:	
		BblasRowMajor: Row major format	
		BblasColMajor: Column major format	
in	uplo		
		BblasUpper: Upper triangle of C[i]-s are stored;	
		BblasLower: Lower triangle of C[i]-s are stored.	
in	trans		
		- BblasNoTrans: $C[i] = \alpha A[i] \times A[i]^T + \beta C[i];$	
		BblasTrans:	
		$C[i] = \alpha A[i]^T \times A[i] + \beta C[i].$	
in	n	The order of the matrices $C[i]$. $n \ge 0$.	
in	k	If trans = BblasNoTrans, number of columns of matrices A[i]; if trans = BblasTrans, number of rows of matrices A[i].	
in	alpha	The scalar alpha.	
in	А	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasTrans, ka = n.	
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $ da>= max(1, n)$; if trans = BblasTrans, $ da>= max(1, k)$.	
in	beta	The scalar beta.	
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.	
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1, n)$.	
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values	
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size). 	
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast to (group_count).	
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.	
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.	

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

dsyrk_batchf csyrk_batchf dsyrk_batchf ssyrk_batchf

3.19.2.3 void blas_ssyrk_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *uplo*, bblas_enum_t *trans*, int *n*, int *k*, const float *alpha*, float const *const * A, int *lda*, const float beta, float ** C, int *ldc*, int * info)

Performs one of the batch symmetric rank k operations

$$C[i] = \alpha A[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times A[i] + \beta C[i],$$

where alpha and beta are scalars, C[i]-s are n-by-n symmetric matrices, and A[i]-s are n-by-k matrices in the first case and a k-by-n matrices in the second case.

in	group_size	The number of matrices to operate on	
in	layout	Specifies if the matrix is stored in row major or column major format:	
		BblasRowMajor: Row major format	
		BblasColMajor: Column major format	
in	uplo		
		BblasUpper: Upper triangle of C[i]-s are stored;	
		BblasLower: Lower triangle of C[i]-s are stored.	
in	trans		
		• BblasNoTrans: $C[i] = \alpha A[i] \times A[i]^T + \beta C[i];$	
		• BblasTrans: $C[i] = \alpha A[i]^T \times A[i] + \beta C[i].$	
in	n	The order of the matrices $C[i]$. $n \ge 0$.	
in	k	If trans = BblasNoTrans, number of columns of matrices A[i]; if trans = BblasTrans, number of rows of matrices A[i].	
in	alpha	The scalar alpha.	
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasTrans, ka = n.	
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $Ida >= max(1, n)$; if trans = BblasTrans, $Ida >= max(1, k)$.	

Parameters

in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1, n)$.
in,out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size). BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast to (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

ssyrk_batchf csyrk_batchf dsyrk_batchf ssyrk_batchf

3.19.2.4 void blas_zsyrk_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, const double alpha, bblas_complex64_t const *const *A, int Ida, const double beta, bblas_complex64_t ** C, int Idc, int * info)

Performs one of the batch symmetric rank k operations

$$C[i] = \alpha A[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times A[i] + \beta C[i],$$

where alpha and beta are scalars, C[i]-s are n-by-n symmetric matrices, and A[i]-s are n-by-k matrices in the first case and a k-by-n matrices in the second case.

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
		Generated by Doxygen

in	uplo	
		 BblasUpper: Upper triangle of C[i]-s are stored;
		BblasLower: Lower triangle of C[i]-s are stored.
in	trans	
		BblasNoTrans:
		$C[i] = \alpha A[i] \times A[i]^T + \beta C[i];$
		• BblasTrans:
		$C[i] = \alpha A[i]^T \times A[i] + \beta C[i].$
in	n	The order of the matrices $C[i]$. $n \ge 0$.
in	k	If trans = BblasNoTrans, number of columns of matrices A[i]; if trans = BblasTrans, number of rows of matrices A[i].
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasTrans, ka = n.
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $ da>= max(1, n)$; if trans = BblasTrans, $ da>= max(1, k)$.
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1, n)$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast to (group_count).
		BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit

See also

zsyrk_batchf csyrk_batchf dsyrk_batchf ssyrk_batchf

3.20 syr2k_batchf: Batch of same size symmetric rank 2k update

 $C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$ where C[i] are symmetric

Functions

- void blas_csyr2k_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas_complex32_t const *const *B, int ldb, bblas_complex32_t beta, bblas_complex32_t **C, int ldc, int *info)
- void blas_dsyr2k_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, double alpha, double const *const *A, int lda, double const *const *B, int ldb, double beta, double **C, int ldc, int *info)
- void blas_ssyr2k_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int n, int k, float alpha, float const *const *A, int lda, float const *const *B, int ldb, float beta, float **C, int ldc, int *info)
- void blas_zsyr2k_batchf (int group_size, bblas_enum_t layout, bblas_enum_t uplo, bblas_enum_t trans, int
 n, int k, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas_complex64_t const
 *const *B, int ldb, bblas complex64 t beta, bblas complex64 t **C, int ldc, int *info)

3.20.1 Detailed Description

 $C[i] = \alpha[i]A[i]B[i]^T + \alpha[i]B[i]A[i]^T + \beta[i]C[i]$ where C[i] are symmetric

3.20.2 Function Documentation

3.20.2.1 void blas_csyr2k_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *uplo*, bblas_enum_t *trans*, int *n*, int *k*, bblas_complex32_t *alpha*, bblas_complex32_t const *const * *A*, int *lda*, bblas_complex32_t const *const * *B*, int *ldb*, bblas_complex32_t *beta*, bblas_complex32_t ** *C*, int *ldc*, int * *info*)

Performs one of the batch symmetric rank 2k operations

$$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i],$$

where alpha and beta are scalars, C[i]-s are n-by-n symmetric matrix, and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
		- Bolascoliviajor. Column major lormat

in	uplo	
		BblasUpper: Upper triangle of C[i]-s are stored;
		BblasLower: Lower triangle of C[i]-s are stored.
in	trans	
		BblasNoTrans:
		$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i];$
		BblasTrans:
		$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i].$
in	n	The order of the matrices $C[i]$. $n \ge zero$.
in	k	If trans = BblasNoTrans, number of columns of the A[i] and B[i] matrices; if trans = BblasTrans, number of rows of the A[i] and B[i] matrices.
in	alpha	The scalar alpha.
in	А	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasTrans, ka = n.
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $ da>= max(1, n)$; if trans = BblasTrans, $ da>= max(1, k)$.
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-kb. If trans = BblasNoTrans, kb = k; if trans = BblasTrans, kb = n.
in	ldb	The leading dimension of the arrays B[i]. If trans = BblasNoTrans, $ldb >= max(1, n)$; if trans = BblasTrans, $ldb >= max(1, k)$.
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1, n)$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.
	l	

Return values

BblasSuccess	successful exit

See also

csyr2k_batchf csyr2k_batchf dsyr2k_batchf ssyr2k_batchf

3.20.2.2 void blas_dsyr2k_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *uplo*, bblas_enum_t *trans*, int *n*, int *k*, double *alpha*, double const *const * A, int *lda*, double const *const * B, int *ldb*, double *beta*, double ** C, int *ldc*, int * *info*)

Performs one of the batch symmetric rank 2k operations

$$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i],$$

where alpha and beta are scalars, C[i]-s are n-by-n symmetric matrix, and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	uplo	
		 BblasUpper: Upper triangle of C[i]-s are stored;
		BblasLower: Lower triangle of C[i]-s are stored.
in	trans	
		BblasNoTrans:
		$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i];$
		BblasTrans:
		$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i].$
in	n	The order of the matrices $C[i]$. $n \ge zero$.
in	k	If trans = BblasNoTrans, number of columns of the A[i] and B[i] matrices; if trans = BblasTrans, number of rows of the A[i] and B[i] matrices.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasTrans, ka = n.
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $Ida >= max(1, n)$; if trans = BblasTrans, $Ida >= max(1, k)$.
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-kb. If trans = BblasNoTrans, kb = k; if trans = BblasTrans, kb = n.

in	ldb	The leading dimension of the arrays B[i]. If trans = BblasNoTrans, $ldb >= max(1, n)$; if trans = BblasTrans, $ldb >= max(1, k)$.
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc \ge max(1, n)$.
in,out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size). BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count). BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1.

Return values

sful exit

See also

dsyr2k_batchf csyr2k_batchf dsyr2k_batchf ssyr2k_batchf

3.20.2.3 void blas_ssyr2k_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *uplo*, bblas_enum_t *trans*, int *n*, int *k*, float *alpha*, float const *const * A, int *lda*, float const *const * B, int *ldb*, float *beta*, float ** C, int *ldc*, int * *info*)

Performs one of the batch symmetric rank 2k operations

$$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i],$$

where alpha and beta are scalars, C[i]-s are n-by-n symmetric matrix, and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_size	The number of matrices to operate on
----	------------	--------------------------------------

Parameters

in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	uplo	
		BblasUpper: Upper triangle of C[i]-s are stored;
		BblasLower: Lower triangle of C[i]-s are stored.
in	trans	
		BblasNoTrans:
		$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i];$
		BblasTrans:
		$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i].$
in	n	The order of the matrices $C[i]$. $n \ge zero$.
in	k	If trans = BblasNoTrans, number of columns of the A[i] and B[i] matrices; if trans = BblasTrans, number of rows of the A[i] and B[i] matrices.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasTrans, ka = n.
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $Ida >= max(1, n)$; if trans = BblasTrans, $Ida >= max(1, k)$.
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-kb. If trans = BblasNoTrans, kb = k; if trans = BblasTrans, kb = n.
in	ldb	The leading dimension of the arrays B[i]. If trans = BblasNoTrans, ldb \geq = max(1, n); if trans = BblasTrans, ldb \geq = max(1, k).
in	beta	The scalar beta.
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1, n)$.
in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast (group_count).
		BblasErrorsReportAny : Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess successful exi

See also

ssyr2k_batchf csyr2k_batchf dsyr2k_batchf ssyr2k_batchf

3.20.2.4 void blas_zsyr2k_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *uplo*, bblas_enum_t *trans*, int *n*, int *k*, bblas_complex64_t *alpha*, bblas_complex64_t const *const * *A*, int *lda*, bblas_complex64_t const *const * *B*, int *ldb*, bblas_complex64_t *beta*, bblas_complex64_t ** *C*, int *ldc*, int * *info*)

Performs one of the batch symmetric rank 2k operations

$$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i],$$

or

$$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i],$$

where alpha and beta are scalars, C[i]-s are n-by-n symmetric matrix, and A[i]-s and B[i]-s are n-by-k matrices in the first case and k-by-n matrices in the second case.

in	group_size	The number of matrices to operate on
in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	uplo	
		BblasUpper: Upper triangle of C[i]-s are stored;
		BblasLower: Lower triangle of C[i]-s are stored.
in	trans	
		BblasNoTrans:
		$C[i] = \alpha A[i] \times B[i]^T + \alpha B[i] \times A[i]^T + \beta C[i];$
		BblasTrans:
		$C[i] = \alpha A[i]^T \times B[i] + \alpha B[i]^T \times A[i] + \beta C[i].$
in	n	The order of the matrices $C[i]$. $n \ge zero$.
in	k	If trans = BblasNoTrans, number of columns of the A[i] and B[i] matrices; if trans = BblasTrans, number of rows of the A[i] and B[i] matrices.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a matrix A[i] of size Ida-by-ka. If trans = BblasNoTrans, ka = k; if trans = BblasTrans, ka = n.
in	lda	The leading dimension of the arrays A[i]. If trans = BblasNoTrans, $Ida >= max(1, n)$; if trans = BblasTrans, $Ida >= max(1, k)$.
in	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], where each element B[i] is a pointer to a matrix B[i] of size ldb-by-kb. If trans = BblasNoTrans, kb = k; if trans = BblasTrans, kb = n.

Parameters

in	ldb	The leading dimension of the arrays B[i]. If trans = BblasNoTrans, ldb \geq max(1, n); if trans = BblasTrans, ldb \geq max(1, k).	
in	beta	The scalar beta.	
in,out	С	C is an array of pointers to matrices C[0], C[1] C[group_size-1], where each element C[i] is a pointer to a matrix C[i] of size ldc-by-n. On exit, the uplo part of the matrix is overwritten by the uplo part of the updated matrix.	
in	ldc	The leading dimension of the arrays $C[i]$. $Idc >= max(1, n)$.	
in,out	info	 Array of int for error handling. On entry info[0] should have one of the following values BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size). BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count). 	
		 BblasErrorsReportAny: Occurrence of an error will be indicated by a single integer value, and length of the array should be atleast 1. BblasErrorsReportNone: No error will be reported on output, and length of the array should be atleast 1. 	

Return values

sful exit

See also

zsyr2k_batchf csyr2k_batchf dsyr2k_batchf ssyr2k_batchf

3.21 trmm_batchf: Batch of same size triangular matrix multiply

$$B[i] = \alpha[i] \ op(A[i]) \ B[i] \ or \ B[i] = \alpha[i] B[i] \ op(A[i])$$
 where $A[i]$ are triangular

Functions

- void blas_ctrmm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, bblas_complex32_t alpha, bblas_complex32_t const *const *A, int lda, bblas complex32 t **B, int ldb, int *info)
- void blas_dtrmm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, double alpha, double const *const *A, int lda, double **B, int ldb, int *info)
- void blas_strmm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, float alpha, float const *const *A, int lda, float **B, int ldb, int *info)
- void blas_ztrmm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, bblas_complex64_t alpha, bblas_complex64_t const *const *A, int lda, bblas complex64_t **B, int ldb, int *info)

3.21.1 Detailed Description

$$B[i] = \alpha[i] \; op(A[i]) \; B[i] \; {\rm or} \; B[i] = \alpha[i] B[i] \; op(A[i]) \; {\rm where} \; A[i] \; {\rm are} \; {\rm triangular}$$

3.21.2 Function Documentation

3.21.2.1 void blas_ctrmm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, bblas_enum_t *transa*, bblas_enum_t *diag*, int *m*, int *n*, bblas_complex32_t *alpha*, bblas_complex32_t const *const * A, int *lda*, bblas_complex32_t ** B, int *ldb*, int * info)

Performs a triangular batch matrix-matrix multiply of the form

$$B[i] = \alpha[op(A[i]) \times B[i]]$$

, if side = BblasLeft or

$$B[i] = \alpha[B[i] \times op(A[i])]$$

, if side = BblasRight

where op(X) is one of:

```
- op(A[i]) = A[i] or

- op(A[i]) = A[i]^T or

- op(A[i]) = A[i]^H
```

alpha is a scalar, B[i]-s are m-by-n matrices and A[i]-s are a unit or non-unit, upper or lower triangular matrix.

in	group_size	The number of matrices to operate on
----	------------	--------------------------------------

in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	Specifies whether op(A[i]) appears on the left or on the right of B[i]:
		 BblasLeft: alpha*op(A[i])*B[i]
		BblasRight: alpha*B[i]*op(A[i])
in	uplo	Specifies whether the matrices A[i]-s are upper triangular or lower triangular:
		BblasUpper: Upper triangle of A[i] is stored;
		BblasLower: Lower triangle of A[i] is stored.
in	transa	Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed:
		BblasNoTrans: A[i]-s are transposed;
		BblasTrans: A[i]-s are not transposed;
		BblasConjTrans: A[i]-s are conjugate transposed.
in	diag	Specifies whether or not A[i]-s are unit triangular:
		BblasNonUnit: A[i]-s are non-unit triangular;
		BblasUnit: A[i]-s are unit triangular.
in	m	The number of rows of matrices B[i]. $m \ge 0$.
in	n	The number of columns of matrices B[i]. $n \ge 0$.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-k, where k is m when side='L' or 'l' and k is n when when side='R' or 'r'. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1.
in	lda	The leading dimension of the arrays A[i]. When side='L' or 'l', $lda >= max(1,m)$, when side='R' or 'r' then $lda >= max(1,n)$.
in	В	B is an array of pointers to matrices B[0], B[1],,B[group_size-1], where each element B[i] is a pointer to a matrix. On entry, the matrices B[i] are of dimension ldb-by-n. On exit, the result of a triangular matrix-matrix multiply (alpha*op(A[i])*B[i]) or (alpha*B[i]*op(A[i])).
in	ldb	The leading dimension of the arrays $B[i]$. $Idb >= max(1,m)$.

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

ctrmm_batchf ctrmm_batchf dtrmm_batchf strmm_batchf

3.21.2.2 void blas_dtrmm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, bblas_enum_t *transa*, bblas_enum_t *diag*, int *m*, int *n*, double *alpha*, double const *const * A, int *lda*, double ** B, int *ldb*, int * info)

Performs a triangular batch matrix-matrix multiply of the form

$$B[i] = \alpha[op(A[i]) \times B[i]]$$

, if side = BblasLeft or

$$B[i] = \alpha[B[i] \times op(A[i])]$$

, if side = BblasRight

where op(X) is one of:

```
- op(A[i]) = A[i] or

- op(A[i]) = A[i]^T or

- op(A[i]) = A[i]^T
```

alpha is a scalar, B[i]-s are m-by-n matrices and A[i]-s are a unit or non-unit, upper or lower triangular matrix.

in	1	group_size	The number of matrices to operate on

in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	Specifies whether op(A[i]) appears on the left or on the right of B[i]:
		 BblasLeft: alpha*op(A[i])*B[i]
		BblasRight: alpha*B[i]*op(A[i])
in	uplo	Specifies whether the matrices A[i]-s are upper triangular or lower triangular:
		BblasUpper: Upper triangle of A[i] is stored;
		BblasLower: Lower triangle of A[i] is stored.
in	transa	Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed:
		BblasNoTrans: A[i]-s are transposed;
		BblasTrans: A[i]-s are not transposed;
		BblasConjTrans: A[i]-s are conjugate transposed.
in	diag	Specifies whether or not A[i]-s are unit triangular:
		BblasNonUnit: A[i]-s are non-unit triangular;
		BblasUnit: A[i]-s are unit triangular.
in	m	The number of rows of matrices B[i]. $m \ge 0$.
in	n	The number of columns of matrices B[i]. $n \ge 0$.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-k, where k is m when side='L' or 'l' and k is n when when side='R' or 'r'. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1.
in	lda	The leading dimension of the arrays A[i]. When side='L' or 'l', $ da >= max(1,m)$, when side='R' or 'r' then $ da >= max(1,n)$.
in	В	B is an array of pointers to matrices B[0], B[1],,B[group_size-1], where each element B[i] is a pointer to a matrix. On entry, the matrices B[i] are of dimension ldb-by-n. On exit, the result of a triangular matrix-matrix multiply (alpha*op(A[i])*B[i]) or (alpha*B[i]*op(A[i])).
in	ldb	The leading dimension of the arrays B[i]. $ldb \ge max(1,m)$.

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

dtrmm_batchf ctrmm_batchf dtrmm_batchf strmm_batchf

3.21.2.3 void blas_strmm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, bblas_enum_t *transa*, bblas_enum_t *diag*, int *m*, int *n*, float *alpha*, float const *const * A, int *lda*, float ** B, int *ldb*, int * *info*)

Performs a triangular batch matrix-matrix multiply of the form

$$B[i] = \alpha[op(A[i]) \times B[i]]$$

, if side = BblasLeft or

$$B[i] = \alpha[B[i] \times op(A[i])]$$

, if side = BblasRight

where op(X) is one of:

alpha is a scalar, B[i]-s are m-by-n matrices and A[i]-s are a unit or non-unit, upper or lower triangular matrix.

in	1	group_size	The number of matrices to operate on

in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	Specifies whether op(A[i]) appears on the left or on the right of B[i]:
		BblasLeft: alpha*op(A[i])*B[i]
		BblasRight: alpha*B[i]*op(A[i])
in	uplo	Specifies whether the matrices A[i]-s are upper triangular or lower triangular:
		BblasUpper: Upper triangle of A[i] is stored;
		BblasLower: Lower triangle of A[i] is stored.
in	transa	Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed:
		 BblasNoTrans: A[i]-s are transposed;
		BblasTrans: A[i]-s are not transposed;
		BblasConjTrans: A[i]-s are conjugate transposed.
in	diag	Specifies whether or not A[i]-s are unit triangular:
		BblasNonUnit: A[i]-s are non-unit triangular;
		BblasUnit: A[i]-s are unit triangular.
in	m	The number of rows of matrices B[i]. $m \ge 0$.
in	n	The number of columns of matrices B[i]. $n \ge 0$.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-k, where k is m when side='L' or 'l' and k is n when when side='R' or 'r'. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1.
in	lda	The leading dimension of the arrays A[i]. When side='L' or 'l', $lda >= max(1,m)$, when side='R' or 'r' then $lda >= max(1,n)$.
in	В	B is an array of pointers to matrices B[0], B[1],,B[group_size-1], where each element B[i] is a pointer to a matrix. On entry, the matrices B[i] are of dimension ldb-by-n. On exit, the result of a triangular matrix-matrix multiply (alpha*op(A[i])*B[i]) or (alpha*B[i]*op(A[i])).
in	ldb	The leading dimension of the arrays B[i]. $ldb \ge max(1,m)$.

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

strmm_batchf ctrmm_batchf dtrmm_batchf strmm_batchf

3.21.2.4 void blas_ztrmm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, bblas_enum_t *transa*, bblas_enum_t *diag*, int *m*, int *n*, bblas_complex64_t *alpha*, bblas_complex64_t const *const * A, int *lda*, bblas_complex64_t ** B, int *ldb*, int * info)

Performs a triangular batch matrix-matrix multiply of the form

$$B[i] = \alpha[op(A[i]) \times B[i]]$$

, if side = BblasLeft or

$$B[i] = \alpha[B[i] \times op(A[i])]$$

, if side = BblasRight

where op(X) is one of:

alpha is a scalar, B[i]-s are m-by-n matrices and A[i]-s are a unit or non-unit, upper or lower triangular matrix.

in	group_size	The number of matrices to operate on

in	layout	Specifies if the matrix is stored in row major or column major format:
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in	side	Specifies whether op(A[i]) appears on the left or on the right of B[i]:
		 BblasLeft: alpha*op(A[i])*B[i]
		BblasRight: alpha*B[i]*op(A[i])
in	uplo	Specifies whether the matrices A[i]-s are upper triangular or lower triangular:
		BblasUpper: Upper triangle of A[i] is stored;
		BblasLower: Lower triangle of A[i] is stored.
in	transa	Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed:
		BblasNoTrans: A[i]-s are transposed;
		BblasTrans: A[i]-s are not transposed;
		BblasConjTrans: A[i]-s are conjugate transposed.
in	diag	Specifies whether or not A[i]-s are unit triangular:
		BblasNonUnit: A[i]-s are non-unit triangular;
		BblasUnit: A[i]-s are unit triangular.
in	m	The number of rows of matrices B[i]. $m \ge 0$.
in	n	The number of columns of matrices B[i]. $n \ge 0$.
in	alpha	The scalar alpha.
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-k, where k is m when side='L' or 'l' and k is n when when side='R' or 'r'. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1.
in	lda	The leading dimension of the arrays A[i]. When side='L' or 'l', $ da >= max(1,m)$, when side='R' or 'r' then $ da >= max(1,n)$.
in	В	B is an array of pointers to matrices B[0], B[1],,B[group_size-1], where each element B[i] is a pointer to a matrix. On entry, the matrices B[i] are of dimension ldb-by-n. On exit, the result of a triangular matrix-matrix multiply (alpha*op(A[i])*B[i]) or (alpha*B[i]*op(A[i])).
in	ldb	The leading dimension of the arrays B[i]. $ldb \ge max(1,m)$.

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast (group_count*group_size).
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

See also

ztrmm_batchf ctrmm_batchf dtrmm_batchf strmm_batchf

3.22 trsm_batchf: Batch of same size triangular solve matrix

$$C[i] = op(A[i])^{-1}B[i]$$
 or $C[i] = B[i] op(A[i])^{-1}$ where $A[i]$ are triangular

Functions

- void blas_ctrsm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas
 _enum_t transa, bblas_enum_t diag, int m, int n, bblas_complex32_t alpha, bblas_complex32_t const *const
 *A, int lda, bblas complex32 t **B, int ldb, int *info)
- void blas_dtrsm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, double alpha, double const *const *A, int lda, double **B, int ldb, int *info)
- void blas_strsm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas
 _enum_t transa, bblas_enum_t diag, int m, int n, float alpha, float const *const *A, int lda, float **B, int ldb, int *info)
- void blas_ztrsm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas
 —enum_t transa, bblas_enum_t diag, int m, int n, bblas_complex64_t alpha, bblas_complex64_t const *const
 *A, int lda, bblas_complex64_t **B, int ldb, int *info)

3.22.1 Detailed Description

$$C[i] = op(A[i])^{-1}B[i]$$
 or $C[i] = B[i] op(A[i])^{-1}$ where $A[i]$ are triangular

3.22.2 Function Documentation

3.22.2.1 void blas_ctrsm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, bblas_enum_t *transa*, bblas_enum_t *diag*, int *m*, int *n*, bblas_complex32_t *alpha*, bblas_complex32_t const *const * A, int *lda*, bblas_complex32_t ** B, int *ldb*, int * info)

Solves one of the batch matrix equations

$$op(A[i]) \times X[i] = \alpha B[i],$$

or

$$X[i] \times op(A[i]) = \alpha B[i],$$

where op(A[i]) is one of:

$$op(A[i]) = A[i],$$

 $op(A[i]) = A[i]^T,$
 $op(A[i]) = A[i]^H,$

alpha is a scalar, X[i]-s and B[i]-s are m-by-n matrices, and A[i]-s are unit or non-unit, upper or lower triangular matrices. The matrix X[i] overwrites B[i].

in	group_size	The number of matrices to operate on	
----	------------	--------------------------------------	--

in la	ayout	Specifies if the matrix is stored in row major or column major format: • BblasRowMajor: Row major format
		BblasRowMajor: Row major format
		BblasColMajor: Column major format
in s	ide	Specifies whether op(A[i]) appears on the left or on the right of X[i]:
		 BblasLeft: op(A[i])*X[i] = B[i],
		BblasRight: X[i]*op(A[i]) = B[i].
in u	ıplo	Specifies whether the matrices A[i]-s are upper triangular or lower triangular:
		 BblasUpper: Upper triangle of A[i] is stored;
		BblasLower: Lower triangle of A[i] is stored.
in tr	ransa	Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed:
		BblasNoTrans: A[i]-s are transposed;
		BblasTrans: A[i]-s are not transposed;
		BblasConjTrans: A[i]-s are conjugate transposed.
in d	liag	Specifies whether or not A[i]-s are unit triangular:
		BblasNonUnit: A[i]-s are non-unit triangular;
		BblasUnit: A[i]-s are unit triangular.
in <i>m</i>	n	The number of rows of matrices $B[i]$. $m \ge 0$.
in <i>n</i>	,	The number of columns of matrices $B[i]$. $n \ge 0$.
in a	lpha	The scalar alpha.
in A		A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1.
in /a	da	The leading dimension of the array A. $Ida \ge max(1,k)$.
in,out B	3	B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are ldb-by-n right hand side matrix. On exit, if return value = 0, the ldb-by-n solution matrix X.
		Solution matrix A.

Parameters

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i].
		 BblasErrorsReportGroup: Single error from each group will be reported. Length of the array should be atleast (group_count).
		 BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

ctrsm_batchf ctrsm_batchf dtrsm_batchf strsm_batchf

3.22.2.2 void blas_dtrsm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, bblas_enum_t *transa*, bblas_enum_t *diag*, int *m*, int *n*, double *alpha*, double const *const * A, int *lda*, double ** B, int *ldb*, int * info)

Solves one of the batch matrix equations

$$op(A[i]) \times X[i] = \alpha B[i],$$

or

$$X[i] \times op(A[i]) = \alpha B[i],$$

where op(A[i]) is one of:

$$op(A[i]) = A[i],$$

$$op(A[i]) = A[i]^{T},$$

$$op(A[i]) = A[i]^{T},$$

alpha is a scalar, X[i]-s and B[i]-s are m-by-n matrices, and A[i]-s are unit or non-unit, upper or lower triangular matrices. The matrix X[i] overwrites B[i].

in	group_size	The number of matrices to operate on]
----	------------	--------------------------------------	---

Specifies if the matrix is stored in row major or column major format: BblasRowMajor: Row major format BblasColMajor: Column major format BblasColMajor: Column major format BblasColMajor: Column major format BblasLeft: op(A[i])*X[i] = B[i], BblasLeft: op(A[i])*X[i] = B[i], BblasRight: X[i]*op(A[i]) = B[i]. BblasUpper: Upper triangle of A[i] is stored; BblasUpper: Lower triangle of A[i] is stored; BblasLower: Lower triangle of A[i] is stored. BblasLower: Lower triangle of A[i] is stored. BblasNorTrans: A[i]-s are transposed, not transposed or conjugate transposed: BblasNorTrans: A[i]-s are transposed; BblasTrans: A[i]-s are transposed; BblasConjTrans: A[i]-s are onjugate transposed. BblasNorTrans: A[i]-s are unit triangular: BblasNorTrans: A[i]-s are unit triangular: BblasNorTrans: A[i]-s are unit triangular: BblasTrans: A[i]-s are unit triangular:			
in side Specifies whether op(A[i]) appears on the left or on the right of X[i]: • BblasLeft: op(A[i]) *X[i] = B[i]. • BblasRight: X[i]*op(A[i]) = B[i]. in uplo Specifies whether the matrices A[i] is stored; • BblasUpper: Upper triangle of A[i] is stored; • BblasLower: Lower triangle of A[i] is stored. in transa Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed: • BblasNoTrans: A[i]-s are transposed; • BblasNoTrans: A[i]-s are not transposed; • BblasConjTrans: A[i]-s are unit triangular: • BblasConjTrans: A[i]-s are unit triangular: • BblasNonUnit: A[i]-s are unit triangular; • BblasNonUnit: A[i]-s are unit triangular: • BblasUnit: A[i]-s are unit triangular; • BblasUnit: A[i]-s are unit triangular: • BblasUnit: A[in	layout	Specifies if the matrix is stored in row major or column major format:
Specifies whether op(A[i]) appears on the left or on the right of X[i]: BloasLeft: op(A[i])*X[i] = B[i]. BloasLeft: op(A[i])*X[i] = B[i]. Specifies whether the matrices A[i]-s are upper triangular or lower triangular: BloasUpper: Upper triangle of A[i] is stored; BloasUpper: Upper triangle of A[i] is stored. In transa Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed: BloasNoTrans: A[i]-s are transposed; BloasConjTrans: A[i]-s are conjugate transposed. Specifies whether or not A[i]-s are unit triangular: BloasNonUnit: A[i]-s are unit triangular: BloasUnit: A[i]-s are unit triangular: BloasUnit: A[i]-s are unit triangular: BloasUnit: A[i]-s are unit triangular: A The number of rows of matrices B[i]. m >= 0. A in n The number of columns of matrices B[i]. n >= 0. A in alpha The scalar alpha. A A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = Bloasteft, and ka = n if side = Bloasteflight. If uplo = BloasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = Bloast.ower, the leading k-by-k lower triangular part of A[i] is not referenced. If diag = BloasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. In Ida The leading dimension of the array A. Ida >= max(1,k). B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Ida-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.			BblasRowMajor: Row major format
BblasLeft: op(A[i])*X[i] = B[i], BblasRight: X[i]*op(A[i]) = B[i]. in uplo Specifies whether the matrices A[i]-s are upper triangular or lower triangular: BblasUpper: Upper triangle of A[i] is stored; BblasLower: Lower triangle of A[i] is stored. in transa Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed: BblasNoTrans: A[i]-s are transposed; BblasConjTrans: A[i]-s are not transposed; BblasConjTrans: A[i]-s are unit triangular: BblasNonUnit: A[i]-s are unit triangular: BblasNonUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular. in n The number of rows of matrices B[i]. m >= 0. in n The number of columns of matrices B[i]. n >= 0. in alpha The scalar alpha. in A A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in Ida The leading dimension of the array A. Ida >= max(1,k). B Bis an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.			BblasColMajor: Column major format
BblasRight: X[i]*op(A[i]) = B[i]. Specifies whether the matrices A[i]-s are upper triangular or lower triangular:	in	side	Specifies whether op(A[i]) appears on the left or on the right of X[i]:
in uplo Specifies whether the matrices A[i]-s are upper triangular or lower triangular: BblasUpper: Upper triangle of A[i] is stored; BblasLower: Lower triangle of A[i] is stored. in transa Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed: BblasNoTrans: A[i]-s are transposed; BblasConjTrans: A[i]-s are conjugate transposed. in diag Specifies whether or not A[i]-s are unit triangular: BblasNonUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular. in n The number of rows of matrices B[i]. n >= 0. in n The number of columns of matrices B[i]. n >= 0. in alpha The scalar alpha. A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] is not referenced and are assumed to be 1. in lda The leading dimension of the array A. Ida >= max(1,k). B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.			 BblasLeft: op(A[i])*X[i] = B[i],
BblasUpper: Upper triangle of A[i] is stored; BblasLower: Lower triangle of A[i] is stored. transa Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed: BblasNoTrans: A[i]-s are transposed; BblasTrans: A[i]-s are not transposed; BblasConjTrans: A[i]-s are conjugate transposed. in diag Specifies whether or not A[i]-s are unit triangular: BblasNonUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular. in n The number of rows of matrices B[i]. m >= 0. in n The number of columns of matrices B[i]. n >= 0. in alpha The scalar alpha. A A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of the array A[i] is not referenced. If diag = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of the array A[i] is not referenced. If diag = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of the array A[i] contains the lower triangular matrix, and			• BblasRight: X[i]*op(A[i]) = B[i].
 BblasLower: Lower triangle of A[i] is stored. transa Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed: BblasNoTrans: A[i]-s are transposed; BblasConjTrans: A[i]-s are not transposed. in diag Specifies whether or not A[i]-s are unit triangular: BblasNonUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular; A is an array of pointers to matrices A[0], A[1]. A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension ida-by-ka triangular, where ka = m if side = BblasUnit, blower triangular part of A[i] is not referenced. If uplo = BblasUnit, the diagonal elements of A[i] s not referenced. If uplo = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in Ida The leading dimension of the array A. Ida >= max(1,k). in, out B B is an array of pointers to ma	in	uplo	Specifies whether the matrices A[i]-s are upper triangular or lower triangular:
In Iransa Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed: BblasNoTrans: A[i]-s are transposed; BblasConjTrans: A[i]-s are not transposed; BblasConjTrans: A[i]-s are conjugate transposed. BblasConjTrans: A[i]-s are unit triangular: BblasNonUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular: BblasUnit: A[i]-s are unit triangular. In n The number of rows of matrices B[i]. m >= 0. In alpha The scalar alpha. In A A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. In Ida In Ida The leading dimension of the array A. Ida >= max(1,k). B B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.			BblasUpper: Upper triangle of A[i] is stored;
transposed: • BblasNoTrans: A[i]-s are transposed; • BblasConjTrans: A[i]-s are not transposed; • BblasConjTrans: A[i]-s are conjugate transposed. in diag Specifies whether or not A[i]-s are unit triangular: • BblasNonUnit: A[i]-s are non-unit triangular; • BblasUnit: A[i]-s are unit triangular; • BblasUnit: A[i]-s are unit triangular. in m The number of rows of matrices B[i]. m >= 0. in n The number of columns of matrices B[i]. n >= 0. in alpha The scalar alpha. in A A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in Ida The leading dimension of the array A. Ida >= max(1,k). B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.			BblasLower: Lower triangle of A[i] is stored.
BblasConjTrans: A[i]-s are not transposed; BblasConjTrans: A[i]-s are conjugate transposed. Specifies whether or not A[i]-s are unit triangular: BblasNonUnit: A[i]-s are non-unit triangular; BblasUnit: A[i]-s are unit triangular; BblasUnit: A[i]-s are unit triangular; BblasUnit: A[i]-s are unit triangular. in m The number of rows of matrices B[i]. m >= 0. in n The number of columns of matrices B[i]. n >= 0. in alpha The scalar alpha. A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in Ida The leading dimension of the array A. Ida >= max(1,k). B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.	in	transa	
 BblasConjTrans: A[i]-s are conjugate transposed. diag Specifies whether or not A[i]-s are unit triangular: BblasNonUnit: A[i]-s are non-unit triangular; BblasUnit: A[i]-s are unit triangular. in m The number of rows of matrices B[i]. m >= 0. in alpha The scalar alpha. in A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in Ida The leading dimension of the array A. Ida >= max(1,k). in, out B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X. 			BblasNoTrans: A[i]-s are transposed;
in diag Specifies whether or not A[i]-s are unit triangular: • BblasNonUnit: A[i]-s are non-unit triangular; • BblasUnit: A[i]-s are unit triangular. in m The number of rows of matrices B[i]. m >= 0. in n The number of columns of matrices B[i]. n >= 0. in alpha The scalar alpha. in A A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in Ida The leading dimension of the array A. Ida >= max(1,k). in, out B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.			BblasTrans: A[i]-s are not transposed;
 BblasNonUnit: A[i]-s are non-unit triangular; BblasUnit: A[i]-s are unit triangular. m The number of rows of matrices B[i]. m >= 0. in n The number of columns of matrices B[i]. n >= 0. in alpha The scalar alpha. A A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in Ida The leading dimension of the array A. Ida >= max(1,k). in, out B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X. 			BblasConjTrans: A[i]-s are conjugate transposed.
BblasUnit: A[i]-s are unit triangular. The number of rows of matrices B[i]. m >= 0. The number of columns of matrices B[i]. n >= 0. The number of columns of matrices B[i]. n >= 0. A In alpha The scalar alpha. A A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. In Ida The leading dimension of the array A. Ida >= max(1,k). B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.	in	diag	Specifies whether or not A[i]-s are unit triangular:
in m The number of rows of matrices B[i]. m >= 0. in n The number of columns of matrices B[i]. n >= 0. in alpha The scalar alpha. A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in Ida The leading dimension of the array A. Ida >= max(1,k). in, out B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.			BblasNonUnit: A[i]-s are non-unit triangular;
in			BblasUnit: A[i]-s are unit triangular.
in A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in Ida The leading dimension of the array A. Ida >= max(1,k). B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.	in	m	The number of rows of matrices B[i]. $m \ge 0$.
A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in Ida The leading dimension of the array A. Ida >= max(1,k). B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are Idb-by-n right hand side matrix. On exit, if return value = 0, the Idb-by-n solution matrix X.	in	n	The number of columns of matrices $B[i]$. $n \ge 0$.
element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1. in	in	alpha	The scalar alpha.
in, out B B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are ldb-by-n right hand side matrix. On exit, if return value = 0, the ldb-by-n solution matrix X.	in	A	element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced
B[i]-s are ldb-by-n right hand side matrix. On exit, if return value = 0, the ldb-by-n solution matrix X.	in	lda	The leading dimension of the array A. $Ida >= max(1,k)$.
in $ db $ The leading dimension of the array B. $ db >= max(1,m)$.	in,out	В	B[i]-s are ldb-by-n right hand side matrix. On exit, if return value = 0, the ldb-by-n
	in	ldb	The leading dimension of the array B. $ldb \ge max(1,m)$.

Parameters

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i].
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

dtrsm_batchf ctrsm_batchf dtrsm_batchf strsm_batchf

3.22.2.3 void blas_strsm_batchf (int group_size, bblas_enum_t layout, bblas_enum_t side, bblas_enum_t uplo, bblas_enum_t transa, bblas_enum_t diag, int m, int n, float alpha, float const *const * A, int lda, float ** B, int ldb, int * info)

Solves one of the batch matrix equations

$$op(A[i]) \times X[i] = \alpha B[i],$$

or

$$X[i] \times op(A[i]) = \alpha B[i],$$

where op(A[i]) is one of:

$$op(A[i]) = A[i],$$

$$op(A[i]) = A[i]^{T},$$

$$op(A[i]) = A[i]^{T},$$

alpha is a scalar, X[i]-s and B[i]-s are m-by-n matrices, and A[i]-s are unit or non-unit, upper or lower triangular matrices. The matrix X[i] overwrites B[i].

in	group_size	The number of matrices to operate on]
----	------------	--------------------------------------	---

in	layout	Specifies if the matrix is stored in row major or column major format:	
		BblasRowMajor: Row major format	
		BblasColMajor: Column major format	
in	side	Specifies whether op(A[i]) appears on the left or on the right of X[i]:	
		 BblasLeft: op(A[i])*X[i] = B[i], 	
		• BblasRight: X[i]*op(A[i]) = B[i].	
in	uplo	Specifies whether the matrices A[i]-s are upper triangular or lower triangular:	
		BblasUpper: Upper triangle of A[i] is stored;	
		BblasLower: Lower triangle of A[i] is stored.	
in	transa	Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed:	
		BblasNoTrans: A[i]-s are transposed;	
		BblasTrans: A[i]-s are not transposed;	
		BblasConjTrans: A[i]-s are conjugate transposed.	
in	diag	Specifies whether or not A[i]-s are unit triangular:	
		BblasNonUnit: A[i]-s are non-unit triangular;	
		BblasUnit: A[i]-s are unit triangular.	
in m The number of rows of matrices B[i]. $m \ge 0$.		The number of rows of matrices B[i]. $m \ge 0$.	
in	n	The number of columns of matrices $B[i]$. $n \ge 0$.	
in	alpha	The scalar alpha.	
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1.	
in	lda	The leading dimension of the array A. $Ida >= max(1,k)$.	
in,out	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are ldb-by-n right hand side matrix. On exit, if return value = 0, the ldb-by-n solution matrix X.	
in	ldb	The leading dimension of the array B. $ldb \ge max(1,m)$.	
	1	1	

Parameters

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll : All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i].
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

strsm_batchf ctrsm_batchf dtrsm_batchf strsm_batchf

3.22.2.4 void blas_ztrsm_batchf (int *group_size*, bblas_enum_t *layout*, bblas_enum_t *side*, bblas_enum_t *uplo*, bblas_enum_t *transa*, bblas_enum_t *diag*, int *m*, int *n*, bblas_complex64_t *alpha*, bblas_complex64_t const *const * A, int *lda*, bblas_complex64_t ** B, int *ldb*, int * info)

Solves one of the batch matrix equations

$$op(A[i]) \times X[i] = \alpha B[i],$$

or

$$X[i] \times op(A[i]) = \alpha B[i],$$

where op(A[i]) is one of:

$$op(A[i]) = A[i],$$

$$op(A[i]) = A[i]^{T},$$

$$op(A[i]) = A[i]^{H},$$

alpha is a scalar, X[i]-s and B[i]-s are m-by-n matrices, and A[i]-s are unit or non-unit, upper or lower triangular matrices. The matrix X[i] overwrites B[i].

in	group_size	The number of matrices to operate on]
----	------------	--------------------------------------	---

in	layout	Specifies if the matrix is stored in row major or column major format:	
		BblasRowMajor: Row major format	
		BblasColMajor: Column major format	
in side Specifies whether op(A[i]) appears on the left or on the right of X[i]:		Specifies whether op(A[i]) appears on the left or on the right of X[i]:	
		 BblasLeft: op(A[i])*X[i] = B[i], 	
		• BblasRight: X[i]*op(A[i]) = B[i].	
in	uplo	Specifies whether the matrices A[i]-s are upper triangular or lower triangular:	
		BblasUpper: Upper triangle of A[i] is stored;	
		BblasLower: Lower triangle of A[i] is stored.	
in	transa	Specifies whether the matrices A[i] are transposed, not transposed or conjugate transposed:	
		BblasNoTrans: A[i]-s are transposed;	
		BblasTrans: A[i]-s are not transposed;	
		BblasConjTrans: A[i]-s are conjugate transposed.	
in	diag	Specifies whether or not A[i]-s are unit triangular:	
		BblasNonUnit: A[i]-s are non-unit triangular;	
		BblasUnit: A[i]-s are unit triangular.	
in	m	The number of rows of matrices $B[i]$. $m \ge 0$.	
in	n	The number of columns of matrices B[i]. $n \ge 0$.	
in	alpha	The scalar alpha.	
in	A	A is an array of pointers to matrices A[0], A[1] A[group_size-1], where each element A[i] is a pointer to a triangular matrix of dimension Ida-by-ka triangular, where ka = m if side = BblasLeft, and ka = n if side = BblasRight. If uplo = BblasUpper, the leading k-by-k upper triangular part of the array A[i] contains the upper triangular matrix, and the strictly lower triangular part of A[i] is not referenced. If uplo = BblasLower, the leading k-by-k lower triangular part of the array A[i] contains the lower triangular matrix, and the strictly upper triangular part of A[i] is not referenced. If diag = BblasUnit, the diagonal elements of A[i] are also not referenced and are assumed to be 1.	
in	lda	The leading dimension of the array A. $Ida >= max(1,k)$.	
in,out	В	B is an array of pointers to matrices B[0], B[1] B[group_size-1], On entry, each B[i]-s are ldb-by-n right hand side matrix. On exit, if return value = 0, the ldb-by-n solution matrix X.	
in	ldb	The leading dimension of the array B. $Idb \ge max(1,m)$.	

Parameters

in,out	info	Array of int for error handling. On entry info[0] should have one of the following values
		 BblasErrorsReportAll: All errors will be specified on output. Length of the array should be atleast {i=1}^{group_count-1}group_sizes[i].
		BblasErrorsReportGroup : Single error from each group will be reported. Length of the array should be atleast (group_count).
		BblasErrorsReportAny: Occurence of an error will be indicated by a single integer value, and length of the array should be atleast 1.
		BblasErrorsReportNone : No error will be reported on output, and length of the array should be atleast 1.

Return values

BblasSuccess	successful exit
--------------	-----------------

See also

ztrsm_batchf ctrsm_batchf dtrsm_batchf strsm_batchf 3.23 Bblas_const 125

3.23 Bblas_const

Functions

- bblas_enum_t bblas_diag_const (char lapack_char)
- bblas_enum_t bblas_info_const (char lapack_char)
- bblas_enum_t bblas_direct_const (char lapack_char)
- bblas_enum_t bblas_norm_const (char lapack_char)
- bblas_enum_t bblas_side_const (char lapack_char)
- bblas_enum_t bblas_storev_const (char lapack_char)
- bblas_enum_t bblas_trans_const (char lapack_char)
- bblas_enum_t bblas_uplo_const (char lapack_char)
- static char lapack_const (int bblas_const)

3.23.1 Detailed Description

Convert LAPACK character constants to BBLAS constants. This is a one-to-many mapping, requiring multiple translators (e.g., "N" can be NoTrans or NonUnit or NoVec). Matching is case-insensitive.

3.23.2 Function Documentation

3.23.2.1 bblas_enum_t bblas_diag_const (char lapack_char)

Return values

BblasNonUnit	if lapack_char = 'N'	
BblasUnit	if lapack_char = 'U'	

3.23.2.2 bblas_enum_t bblas_info_const (char lapack_char)

Return values

BblasErrorsReportAll	if lapack_char = 'a'
BblasErrorsReportGroup	if lapack_char = 'g'
BblasErrorsReportAny	if lapack_char = 'o'
BblasErrorsReportNone	if lapack_char = 'n'

3.23.2.3 bblas_enum_t bblas_direct_const (char lapack_char)

Return values

BblasForward	if lapack_char = 'F'
BblasBackward	if lapack_char = 'B'

3.23.2.4 bblas_enum_t bblas_norm_const (char lapack_char)

Return values

BblasOneNorm	if lapack_char = 'O o 1'
BblasTwoNorm	if lapack_char = '2'
BblasFrobeniusNorm	if lapack_char = $ F f E e $
BblasInfNorm	if lapack_char = 'I i'
BblasMaxNorm	if lapack_char = 'M m'

3.23.2.5 bblas_enum_t bblas_side_const (char lapack_char)

Return values

BblasLeft	if lapack_char = 'L'
BblasRight	if lapack_char = 'R'

3.23.2.6 bblas_enum_t bblas_storev_const (char lapack_char)

Return values

BblasColumnwise	if lapack_char = 'C'
BblasRowwise	if lapack_char = 'R'

3.23.2.7 bblas_enum_t bblas_trans_const (char lapack_char)

Return values

BblasNoTrans	if lapack_char = 'N'
BblasTrans	if lapack_char = 'T'
BblasConjTrans	if lapack_char = 'C'

3.23.2.8 bblas_enum_t bblas_uplo_const (char lapack_char)

Return values

BblasUpper	if lapack_char = 'U'
BblasLower	if lapack_char = 'L'
BblasGeneral	otherwise

3.23.2.9 static char lapack_const (int bblas_const) [inline], [static]

Return values

LAPACK character constant corresponding to BBLA	S constant
---	------------