Single-Equation GMM: Endogeneity Bias Lecture for Economics 241B

Douglas G. Steigerwald

UC Santa Barbara

January 2012

Initial Question

How valuable is investment in college education?

- economics measure value in terms of wage
- How would you determine the return on investment in college education?

Stochastic Model

What are the returns to a college education?

- Random variables of interest
 - W log of worker wage
 - *S* years of schooling
 - A age
 - *M* indicator for male
 - R indicator for white
 - U other factors that affect wages
- Stochastic Model

$$W = \beta_0 + \beta_1 S + \beta_2 A + \beta_3 A^2 + \beta_4 M + \beta_5 R + U$$

Estimates

$$W = \beta_0 + \beta_1 S + \beta_2 A + \beta_3 A^2 + \beta_4 M + \beta_5 R + U$$

- $\hat{\beta}_1$
 - .084 (and significantly different from zero)
 - each additional year of schooling is worth an additional 8.4% in wages
 - 4 years of college would increase wages by 38% (1.084⁴)
- the median full time worker earns about \$550 per week in 2000
 - wage increase of 38% is \$210 per week
- over 30 year work-life, earnings increase by \$170,000 in present value (5% interest), makes public universities a good deal

Potential Endogeneity

$$W = \beta_0 + \beta_1 S + \beta_2 A + \beta_3 A^2 + \beta_4 M + \beta_5 R + U$$

- lacksquare eta_1 may not capture a causal impact on wages
 - workers who obtained more education may have attributes that would have led to higher earnings even without additional education
 - S is endogenous $\Rightarrow Cov(S, U) \neq 0$
 - $\hat{\beta}_1$ is biased and inconsistent
- What is the direction of bias in $\hat{\beta}_1$?

Potential Endogeneity

$$W = \beta_0 + \beta_1 S + \beta_2 A + \beta_3 A^2 + \beta_4 M + \beta_5 R + U$$

- lacksquare eta_1 may not capture a causal impact on wages
 - workers who obtained more education may have attributes that would have led to higher earnings even without additional education
 - S is endogenous $\Rightarrow Cov(S, U) \neq 0$
 - $\hat{\beta}_1$ is biased and inconsistent
- What is the direction of bias in $\hat{\beta}_1$?
- $\hat{\beta}_1$ is biased upward, does not provide a helpful bound to argue for benefits of education

Sources of Covariate-Error Correlation

Focus on Cor(S, U)

- Endogeneity
 - workers who would otherwise have high wage rates are more likely to obtain higher education
 - $U = \mu + e$ μ ability e random shock
 - $S = \alpha \mu + w$
 - describes how schooling is correlated with ability
 - in this application, likely that Cor(S, U) > 0
- Measurement Error
 - $S = S^* + v$
 - $ightharpoonup S^*$ actual schooling S reported v measurement error
 - in all applications, Cor(S, U) < 0

Detail: Measurement Error Correlation

Simplify

population model
$$W_t = \beta S_t^* + U_t$$
 $S_t = S_t^* + v_t$ estimated model $W_t = \beta S_t + (U_t - \beta v_t)$

- v_t is a component of $S_t \Rightarrow Cor[S_t, (U_t \beta v_t)] < 0$

$$\hat{\beta} = \beta + \frac{\sum_{t=1}^{n} S_{t} [U_{t} - \beta V_{t}]}{\sum_{t=1}^{n} S_{t}^{2}}$$

lacksquare in large samples \hat{eta} tends to

$$\beta \left[1 - \frac{Cov\left(S_{t}, v_{t}\right)}{Var\left(S_{t}\right)} \right] = \beta \left[\frac{Var\left(S_{t}^{*}\right)}{Var\left(S_{t}^{*}\right) + Var\left(v_{t}\right)} \right]$$

- where $Var(S_t) = Var(S_t^*) + Var(v_t) Cov(S_t, v_t) = Var(v_t)$
- Iron Law of Econometrics measurement error leads to attenuation bias

Solutions

- Instrument
 - z is a (valid) instrument if
 - $Cov(S, z) \neq 0$ and Cov(U, z) = 0
 - instruments can address both sources of covariate-error correlation
 - issue instruments can be difficult to find
- Measurement error assumption
 - $S = S^* + v$ assumptions regard v
 - example: v is symmetric around 0
 - issue does not address endogeneity

Instrument Solutions

- Standard Instrument Solution
 - implicit model of endogeneity
 - no specified model linking endogenous covariates to error
 - yields classic instrumental variable (IV) estimator
- Model-Based Selection (Endogeneity) Correction
 - explicit model of endogeneity
 - clearly specified model linking endogenous covariates to error
 - yields selection-corrected IV estimator

Standard Instrument Solution: Identification

- $lackbox{$\ Z$}_{(K imes 1)}$ covariate vector Z instrument vector Z
- Identification Assumption (Rank Condition)

The L \times K matrix $\mathbb{E}(ZX^{T})$ has rank K.

■ Example $X^{T} = (1, S)$ $Z^{T} = (1, z)$

$$\mathbb{E}\left(ZX^{\mathrm{T}}\right) = \left[\begin{array}{cc} 1 & \mathbb{E}\left(S\right) \\ \mathbb{E}\left(z\right) & \mathbb{E}\left(Sz\right) \end{array}\right]$$

■ Rank is K if determinant is not zero $\Leftrightarrow Cov(S, z) \neq 0$

Identification

Identification Assumption (Order Condition)

There are at least as many instruments as endogenous covariates: $L \ge K$.

- Over identification
 - \blacksquare rank condition satisfied and L > K
- Exact identification
 - \blacksquare rank condition satisfied and L=K
- No identification
 - L < K (rank condition cannot hold)

Selection (Endogeneity) Correction

- Key construct $\mathbb{E}\left[U|X,Z\right]$
 - add to regression, remaining error uncorrelated with covariates

Wage Regression Application

- data on twins (indexed by i) who share family characteristics
- Selection (Endogeneity) Model

$$U_i = \mu + \varepsilon_i$$
 $\mu = \gamma S_1 + \gamma S_2 + \omega$

- ullet μ latent family characteristics, correlated with S
- could relax assumption that γ is constant (use equation for twin 1 to identify γ_2)
 - γ selection effect : $\gamma>0 \Rightarrow$ families that would otherwise have high wages are more likely to educate their children

Selection Correction

• wage regression (twin 1 $C_1' = (A_1, A_1^2, M_1, R_1)$)

$$W_{1} = \beta_{0} + \beta_{1}S_{1} + C'_{1}\delta + (\mu + \varepsilon_{1})$$

= $\beta_{0} + \beta_{1}S_{1} + C'_{1}\delta + (\gamma S_{1} + \gamma S_{2} + \omega + \varepsilon_{1})$

identification assumption

$$\blacksquare \mathbb{E}\left[U_1|X,Z\right] = \gamma S_1 + \gamma S_2$$

selection-corrected regression

$$W_1 = \beta_0 + (\beta_1 + \gamma) S_1 + \gamma S_2 + C_1' \delta + (\varepsilon_1 + \omega)$$

Variable OLS Include S_2 Own education 0.084 0.088 (0.014) (0.015)
Sibling's education - -0.007 (0.015)

■ Twins data - endogeneity bias is negative!

Stochastic Model

$$W_i = \beta_0 + \beta_1 S_i + U_i$$

■ What two issues lead to correlation between S_i and U_i ?

$$W_i = \beta_0 + \beta_1 S_i + U_i$$

- What two issues lead to correlation between S_i and U_i ?
 - 1) endogeneity latent ability that impacts both S_i and U_i

$$W_i = \beta_0 + \beta_1 S_i + U_i$$

- What two issues lead to correlation between S_i and U_i ?
 - lacksquare 1) endogeneity latent ability that impacts both S_i and U_i
 - \blacksquare 2) measurement error in S_i

$$W_i = \beta_0 + \beta_1 S_i + U_i$$

- What two issues lead to correlation between S_i and U_i ?
 - lacksquare 1) endogeneity latent ability that impacts both S_i and U_i
 - lacksquare 2) measurement error in S_i
- What is the impact of the correlation on B_{OLS} ?

$$W_i = \beta_0 + \beta_1 S_i + U_i$$

- What two issues lead to correlation between S_i and U_i ?
 - lacksquare 1) endogeneity latent ability that impacts both S_i and U_i
 - lacksquare 2) measurement error in S_i
- What is the impact of the correlation on B_{OLS} ?
 - biased and inconsistent

$$W_i = \beta_0 + \beta_1 S_i + U_i$$

- What two issues lead to correlation between S_i and U_i ?
 - lacksquare 1) endogeneity latent ability that impacts both S_i and U_i
 - lacksquare 2) measurement error in S_i
- What is the impact of the correlation on B_{OLS} ?
 - biased and inconsistent
- What is needed to construct a consistent estimator?

$$W_i = \beta_0 + \beta_1 S_i + U_i$$

- What two issues lead to correlation between S_i and U_i ?
 - lacksquare 1) endogeneity latent ability that impacts both S_i and U_i
 - lacksquare 2) measurement error in S_i
- What is the impact of the correlation on B_{OLS} ?
 - biased and inconsistent
- What is needed to construct a consistent estimator?
 - 1) instrument Z_i Cor $(Z_i, S_i) \neq 0$ Cor $(Z_i, U_i) = 0$

$$W_i = \beta_0 + \beta_1 S_i + U_i$$

- What two issues lead to correlation between S_i and U_i ?
 - lacksquare 1) endogeneity latent ability that impacts both S_i and U_i
 - \blacksquare 2) measurement error in S_i
- What is the impact of the correlation on B_{OLS} ?
 - biased and inconsistent
- What is needed to construct a consistent estimator?
 - 1) instrument Z_i Cor $(Z_i, S_i) \neq 0$ Cor $(Z_i, U_i) = 0$
 - 2) assumption about measurement error