CLAIMS:

	CLAIMS.	
1	1.	A clock selection device adapted to select one of a pair of clock sources
2	onto an outp	ut clock line, comprising:
3		a first input clock line coupled to a first clock source;
4		a second input clock line coupled to a second clock source, the second
5	clock	source asynchronous to the first clock source; and
6		a clock selection logic adapted to select from the first input clock line and
7	the se	econd input clock line, producing an internal clock line coupled to the output
8	clock	line.
1	2.	The clock selection device of claim 1, the first clock source having a first
2	frequency an	d the second clock source having a second frequency, the second frequency
3	independent	of the first frequency.
1	3.	The clock selection device of claim 1, further comprising:
2		a clock synchronization logic coupled to the first input clock line, the
3	secon	nd input clock line, and the clock selection logic, adapted to synchronize the
4	first input clock line, the second input clock line, and the clock selection logic,	
5	such	that the internal clock line is glitch free.
1	4.	The clock selection device of claim 3, the clock synchronization logic
2	comprising:	
3		a first clock synchronization block, coupled to the first clock source,
4	adapt	ed to synchronize the first clock source and the clock selection logic; and
5		a second clock synchronization block, coupled to the second clock source,
6	adapt	ed to synchronize the second clock source and the clock selection logic.
1	5.	The clock selection device of claim 4, the clock synchronization logic
2	further comp	rising:
3		a first clock reset signal, synchronized to the first clock signal, adapted to
4	reset	the first clock synchronization block; and
5		a second clock reset signal, synchronized to the second clock signal,
6	adapt	ed to reset the second clock synchronization block,

12

7	wherein the first clock reset signal and the second clock reset signal can	be	
8	asserted to prevent meta-stability of the clock synchronization logic.		
1	6. The clock selection device of claim 3, wherein the clock synchronizat		
2	logic is scalable to produce a predetermined delay time between the assertion of the clo	ock	
3	select signal and the selection onto the output line by the clock selection logic.		
1	7. The clock selection device of claim 1, wherein the clock selection lo	gıc	
2	comprises a multiplexer with two clock input lines.		
	- 1 1 1 1 C 1 1 7 - 1 min the multiplexer exvite	haa	
1	8. The clock selection device of claim 7, wherein the multiplexer switch	пся	
2	only when both clock input lines of the multiplexer are at the same assertion level.		
1	9. The clock selection device of claim 1, further comprising:		
1 2	a clock selection signal, asynchronous to the first clock source and	the	
3	second clock source, adapted to cause the clock selection logic to select one of		
<i>3</i>	first input clock source and the second input clock source onto the internal clock		
5	line, selecting the first input clock source when the clock selection signa		
	asserted and the second input clock source when the clock selection signa		
6 7	deasserted.		
,	deaserted.		
1	10. The clock selection device of claim 3, the clock synchronization lo	gic	
2	comprising:		
3	an OR gate coupled to a clock select line and an internal feedback line	e of	
4	the clock synchronization logic;		
5	a first plurality of flip-flops coupled to the output of the OR gate and	the	
6	second input clock line, producing a clock switch line adapted to cause the cl	ock	
7	selection logic to switch between the first clock source and the second cl	ock	
8	source;		
9	an AND gate coupled to the clock select line and the clock switch line;	and	
10	a second plurality of flip-flops coupled to the output of the AND gate	and	
11	the first input clock line, the output of the second plurality of flip-flops couple	d to	

the internal feedback line.

1	11. The clock selection device of claim 10, the clock selection logic
2	comprising:
3	an AND gate coupled to the internal feedback line and the first input clock
4	line.
1	12. The clock selection device of claim 10, the clock synchronization logic
2	further comprising:
3	an inverter coupled to the first input clock line producing an inverted first
4	input clock line coupled to the first plurality of flip-flops; and
5	an inverter coupled to the second input clock line producing an inverted
6	second input clock line coupled to the second plurality of flip-flops; and
7	the clock selection logic comprising:
8	a NAND gate coupled to the internal feedback line and the inverted firs
9	input clock line.
1	13. The clock selection device of claim 1, further comprising:
2	a buffer coupled to the internal clock line, producing a buffered output
3	clock signal.
1	14. A processor-based device comprising:
2	a processor;
3	a plurality of communication controllers coupled to the processor, each of
4	the plurality of communication controllers comprising:
5	a first clock source;
6	a second clock source asynchronous to the first clock source; and
7	a clock selection device coupled to the first clock source and th
8	second clock source comprising:
9	a first input clock line coupled to the first clock source;
10	a second input clock line coupled to the second cloc
11	source; and
12	a clock selection logic adapted to select from the first inpu
13	clock line and the second input clock line, producing an interna
14	clock line.

1	15.	The clock selection device of claim 14, the first clock source having a first
2	frequency and	d the second clock source having a second frequency, the second frequency
3	independent o	of the first frequency.
1	16.	The processor-based device of claim 14, the clock selection device further
2	comprising:	,
3	r - 0	a clock synchronization logic coupled to the first input clock line, the
4	secon	d input clock line, and the clock selection logic, adapted to synchronize the
5		nput clock line, the second input clock line, and the clock selection logic,
6		hat the internal clock line is glitch free.
1	17.	The processor-based device of claim 16, the clock synchronization logic
2	comprising:	
3		a first clock synchronization block, coupled to the first clock source,
4	adapte	ed to synchronize the first clock source and the clock selection logic;
5		a second clock synchronization block, coupled to the second clock source,
6	adapte	ed to synchronize the second clock source and the clock selection logic.
1	18.	The processor-based device of claim 17, the clock synchronization logic
2	further compr	rising:
3		a first clock reset signal, synchronized to the first clock signal, adapted to
4	reset t	the first clock synchronization block; and
5		a second clock reset signal, synchronized to the second clock signal,
6	adapte	ed to reset the second clock synchronization block,
7		wherein the first clock reset signal and the second clock reset signal can be
8	assert	ed to prevent meta-stability of the clock synchronization logic.
1	19.	The processor-based device of claim 16, wherein the clock
2	•	on logic is scalable to produce a predetermined delay time between the
3		the clock select signal and the selection onto the output line by the clock
4	selection logi	c.
1	20.	The processor-based device of claim 14, wherein the clock selection logic

2

comprises a multiplexer with two input lines.

1	21.	The processor-based device of claim 20, wherein the multiplexer switches
2	only when bo	oth input lines of the multiplexer are at the same assertion level.
1	22.	The processor-based device of claim 14, the clock selection device further
2	comprising:	
3		a clock selection signal, asynchronous to the first clock source and the
4	secon	d clock source, adapted to cause the clock selection logic to select one of the
5	first i	nput clock source and the second input clock source onto the internal clock
6	line,	selecting the first input clock source when the clock selection signal is
7	asserted and the second input clock source when the clock selection signal is	
8	unasserted.	
1	23.	The processor-based device of claim 22, the clock selection device further
2	comprising:	
3		a clock synchronization logic coupled to the first input clock line, the
4	secon	d input clock line, and the clock selection logic, adapted to synchronize the
5	first i	nput clock line, the second input clock line, and the clock selection logic,
6	such t	hat the internal clock line is glitch free.
1	24.	The processor-based device of claim 23, the clock synchronization logic
2	comprising:	
3		an OR gate coupled to a clock select line and an internal feedback line of
4	the clo	ock synchronization logic;
5		a first plurality of flip-flops coupled to the output of the OR gate and the
6	second	d input clock line, producing a clock switch line adapted to cause the clock
7	selecti	on logic to switch between the first clock source and the second clock
8	source	»;
9		an AND gate coupled to the clock select line and the clock switch line; and
10		a second plurality of flip-flops coupled to the output of the AND gate and
11	the fir	st input clock line, the output of the second plurality of flip-flops coupled to
12	the int	ernal feedback line.

1	23.	The processor-based device of claim 24, the clock selection logic
2	comprising:	
3		an AND gate coupled to the internal feedback line and the first input clock
4	line.	
1	26.	The processor-based device of claim 24, the clock synchronization logic
2	further compri	sing:
3		an inverter coupled to the first input clock line producing an inverted first
4	input c	lock line coupled to the first plurality of flip-flops; and
5		an inverter coupled to the second input clock line producing an inverted
6	second	input clock line coupled to the second plurality of flip-flops; and
7	the clock selec	tion logic comprising:
8		a NAND gate coupled to the internal feedback line and the inverted first
9	input c	lock line.
1	27.	The processor-based device of claim 14, the clock selection device further
2	comprising:	
3		a buffer coupled to the internal clock line, producing a buffered output
4	clock s	ignal on the output clock line.
1	28.	A method of selecting one of a pair of clock sources onto a single output
2	clock line, con	nprising the steps of:
3		(a) receiving a first input clock signal from a first clock source;
4		(b) receiving a second input clock signal from a second clock source,
5	the seco	and input clock signal asynchronous to the first input clock signal; and
6		(c) connecting one of first clock signal or the second clock signal to an
7	internal	clock line coupled to the output clock line.
1	29.	The method of claim 28, the first clock source having a first frequency and
2	the second clos	ck source having a second frequency, the second frequency independent of
3	the first frequen	ncy.
1	30.	The method of claim 28, furthering comprising the step of:
2		buffering the internal clock line to generate the output clock line.

1

2

1	31.	The method of claim 28, further comprising the steps of:
2		synchronizing the first input clock signal, the second input clock signal,
3	and st	ep (c), such that the output clock line is glitch free.
1	32.	The method of claim 31, the step of synchronizing comprising the step of:
2		delaying step (c) for a predetermined amount of time.
1	33.	The method of claim 31, the step of synchronizing comprising the steps of:
2		resetting a synchronization logic with a first reset signal synchronous to
3	the fir	st clock signal; and
4		resetting the synchronization logic with a second reset signal synchronous
5	to the	second clock signal.
1	34.	The method of claim 28, step (c) comprising the steps of:
2		(c1) receiving a clock select signal asynchronous to the first clock
3	signal	and the second clock signal; and
4		(c2) connecting the first clock signal to the output clock line when the
5	clock	select signal is asserted;
6		(c3) connecting the second clock signal to the output clock line when
7	the clo	ock select signal is deasserted;
8		(c4) synchronizing the first input clock signal, the second input clock
9	signal	, and steps (c2) and (c3), such that the output clock line is glitch free.
1	35.	A clock switching mechanism with guaranteed stability, comprising:
2		a clock switching means for switching a clock source of a first clock
3	source	e and a second clock source to an output clock line, the second clock source
4		pronous to the first clock source; and
5		a clock synchronization means coupled to the first and the second clock
6	source	es and the clock switching means, the clock synchronization means
7		nteeing the output clock line is glitch free.

The clock switching mechanism of claim 35, the clock synchronization

36.

means comprising:

3	a first reset means synchronized to the first clock source for resetting the	
4	clock synchronization means; and	
5	a second reset means synchronized to the second clock source for resetting	
6	the clock synchronization means,	
7	wherein the first reset means and the second reset means can prevent meta-	
8	stability of the clock synchronization means.	
1	37. The clock switching mechanism of claim 35, the first clock source having	
2	a first frequency and the second clock source having a second frequency, the second	
3	frequency independent of the first frequency.	
1	38. The clock switching mechanism of claim 35, the clock synchronization	
2	means comprising:	
3	a first synchronization means coupled to the first clock source for	
4	synchronizing the first clock source to the clock switching means;	
5	a second synchronization means coupled to the second clock source for	
6	synchronizing the second clock source to the clock switching means;	
7.	a clock selection means coupled to the first synchronization means and the	
8	second synchronization means for causing the clock switching means to switch	
9	between the first clock source and the second clock source;	
10	a first feedback means coupled to the clock selection means and the first	
11	synchronization means for synchronizing the second synchronization means and	
12	the clock selection means; and	
13	a second feedback means coupled to the clock selection means and the	
14	second synchronization means for synchronizing the first synchronization means	
15	and the clock selection means.	