```
In [4]:
         import numpy as np
          import pandas as pd
          from sklearn.preprocessing import StandardScaler
          import statsmodels.api as sm
          from sklearn import linear model
          df = pd.read csv(r'C:\Users\Berk\Desktop\aapl e.csv')
In [5]: | df.tail(2)
Out[5]:
                                                                                     Ask
                    #RIC
                                    Date-Time
                                                Price Volume Numberoftrades
                                                                           Bidprice
                                                                                    Price
                                      2019-12-
          24072 AAPL.OQ
                                              293.675
                                                      2716.0
                                                                      NaN
                                                                             293.50 293.85
                         31T22:00:00.000000000Z
                                      2019-12-
          24073 AAPL.OQ
                                              293.810
                                                       848.0
                                                                      NaN
                                                                             293.77 293.85
                         31T23:00:00.000000000Z
In [6]: | df = df.dropna(subset=['Numberoftrades', 'Depth', 'Volume', 'Spread', 'Price'])
In [7]: x = df[['Numberoftrades', 'Depth','Volume','Spread']]
          y = df[['Price']]
In [8]: x normalized = StandardScaler().fit transform(x)
          y normalized = StandardScaler().fit transform(y)
In [9]: #To check if the data is normalized
          x normalized
Out[9]: array([[-8.75524028e-01, -9.51987624e-01, -7.68765782e-01,
                   1.91725535e-01],
                 [-8.79798866e-01, -9.52366910e-01, -7.70541302e-01,
                   1.57982502e-01],
                 [-8.79086393e-01, -9.52499659e-01, -7.69804553e-01,
                   7.76419457e-02],
                 [-4.48277732e-01, -3.18827468e-01, -4.78221197e-01,
                  -1.89520475e-03],
                 [7.10203332e-01, 5.81216890e-01, 4.55488938e-01,
                  -1.09179919e-03],
                 [-8.81223812e-01, -9.43870916e-01, 1.36051802e+00,
                   1.17626898e-02]])
In [10]: | x e = pd.DataFrame(x normalized, columns = ['Numberoftrades', 'Depth', 'Volum
          e','Spread'])
```

```
In [11]: reg = linear_model.LinearRegression()
reg.fit(x_normalized, y_normalized)
```

```
In [12]: model = sm.OLS(y_normalized, x_normalized).fit()
    predictions = model.predict(x_normalized)

    print_model = model.summary()
    print(print_model)
```

OLS Regression Results

=======									
Dep. Variable:	·			у	R-sai	uared (und	entered)	١.	
0.144				y	it squ	aur cu (unc	.circci ca ,	, •	
Model:			(OLS	Adi.	R-squared	l (uncent	cered):	
0.144							(
Method:		Least	t Squa	res	F-sta	atistic:			
673.1									
Date:		Wed, 03	Jun 20	020	Prob	(F-statis	stic):		
0.00		•				,	•		
Time:			02:49	:04	Log-l	_ikelihood	l:		
-21463.									
No. Observation	ns:		160	003	AIC:				
4.293e+04									
Df Residuals:			159	999	BIC:				
4.296e+04				_					
Df Model:				4					
Covariance Typ			nonrob						
=======================================	:=====:	======	=====	====:	=====	=======	:======	:======	======
-	COR	f s+d	arr		+	P> t	Га	0.025	0.97
5]	COC	364	CII			17[0]	L	7.023	0.57
_									
x1	0.3988	3 0.	.013	29	.733	0.000) (3.372	0.42
5									
x2	-0.5496	9 0.	.012	-45	.031	0.000	- (0.573	-0.52
5									
x3	-0.199	5 0	.009	-23	.088	0.000) -6	0.216	-0.18
3									
x4	-0.0152	1 0	.007	-2	.067	0.039	- 6	0.029	-0.00
1									
=========				=====	=====			:======	
= Omnibus:			1611	002	Dunh	in Notcone			0.10
			4614.	893	Durb	in-Watson:			0.10
7 Prob(Omnibus):			0 (000	Jangi	ue-Bera (J	IB).		10705.47
9	•		0.1	000	Jarqu	ue-bera (J	· · · · · · · · · · · · · · · · · · ·		10/03.4/
Skew:			1 /	651	Prob((1R)·			0.0
0					001	(55).			0.0
Kurtosis:			5	269	Cond	. No.			3.4
6			- ·	-					
=========	.=====		:	=====	=====				
=									

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [48]: from sklearn.tree import DecisionTreeRegressor
          df = pd.read csv(r'C:\Users\Berk\Desktop\aapl e.csv')
          df.describe()
          df = df.dropna(subset=['Numberoftrades', 'Depth','Volume','Spread','Price'])
          x = df[['Numberoftrades', 'Depth', 'Volume', 'Spread']].values
          y = df[['Price']].values
In [49]:
         from sklearn.model selection import train test split
          x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, rando
          m_state=0)
          regr = DecisionTreeRegressor()
          regr.fit(x_train,y_train)
Out[49]: DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=None,
                                max_leaf_nodes=None, min_impurity_decrease=0.0,
                                min_impurity_split=None, min_samples_leaf=1,
                                min_samples_split=2, min_weight_fraction_leaf=0.0,
                                presort=False, random_state=None, splitter='best')
In [50]: | y_pred = regr.predict(x_test)
In [51]: | df2=pd.DataFrame({'y_pred':y_pred})
          df2.assign(y=y_test)
Out[51]:
               y_pred
                          У
             0 518.10 528.75
               223.64 186.70
             2
               112.55 114.95
             3
               265.98 215.61
                 98.20 175.32
          3196
               131.77
                       97.36
          3197
                110.67 120.25
          3198
                93.39 511.83
          3199 131.50 114.61
          3200 104.97 127.15
          3201 rows × 2 columns
```

```
In [52]: from sklearn import metrics
    print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```

Mean Absolute Error: 40.269442674164324 Mean Squared Error: 6366.101425572007 Root Mean Squared Error: 79.78785261912998

```
In [ ]:
```