Literature Survey

S.No.	Title of the	Name Of Authors	Published	Remarks
	Paper		year	
1.	A Decision Tree Optimised SVM model for stress detection using Bio signals	Alana Paul Cruz, Aravind Pradeep, Kavali Riya Sivasankar, Krishnaveni KS	2020	Features: ECG bio signals, EDR (ECG Derived Respiration), Respiration Rate, QT interval. Algorithms: Optimised SVM using decision trees Advantages: Better Accuracy (96.3%). Determining ECG can easily derive information about respiratory signals without using any extra sensors.
2.	Stress Detection using deep neural networks	Russell Li, Zhandong Liu	2020	Features: Physiological signals from chest worn and wrist worn sensors. Algorithms: 1-dimensional convolutional neural network and a multilayer perceptron neural network. Advantages: The deep convolutional neural network achieved 99.80% and 99.55% accuracy rates for binary and 3-class classification, respectively. The deep multilayer perceptron neural network achieved 99.65% and 98.38% accuracy rates respectively. Disadvantages: The test dataset was very small (consisting only of 15 humans.)
3.	Machine Learning and IoT for Prediction and Detection of Stress	Mr. Purnendu Shekhar Pandey	2017	Features: Heartbeat rate Algorithms: Used ML algos along with IoT. Used algorithms include, VF-15, Naive Bayes along with SVM and Logistic Regression.

			as a steppingstone. Gives accuracy of about 66-68%. Disadvantages: Low accuracy compared to other models.
Stress Detection with Machine Learning and Deep Learning using Multimodal Physiological Data	Pramod Bobade, Vani M.	2020	Features: Three Axis Acceleration (ACC), ECG, BVP, body temperature, Electrodermal Activity(EDA). Algorithms: K-Nearest Neighbour, Linear Discriminant Analysis, Random Forest, Decision Tree, AdaBoost and Kernel Support Vector Machine. Feed forward deep learning artificial neural network for three-class and binary classifications.
			Advantages: Accuracies of up to 81.65% and 93.20% for three-class and binary classification problems respectively. Using deep learning, the achieved accuracy is up to 84.32% and 95.21% respectively.
Automatic Stress Detection using wearable sensors and machine learning: a review	Shruti Gedam, Sanchita Paul	2020	Features: heart rate, heart rate variability and skin conductance. Algorithms: SVM, Random Forest, K-nearest neighbour. Advantages: Physiological signals can be used to detect stress using wearable sensors and ml algo. Effective and affordable. Disadvantages: Increased
	Detection with Machine Learning and Deep Learning using Multimodal Physiological Data Automatic Stress Detection using wearable sensors and machine learning: a	Detection with Machine Learning and Deep Learning using Multimodal Physiological Data Automatic Stress Detection using wearable sensors and machine learning: a	Detection with Machine Learning and Deep Learning using Multimodal Physiological Data Automatic Stress Detection using wearable sensors and machine learning: a