南京大学大学数学试卷 答案

- 一、 简答题(每小题7分,共4题,计28分)
- 1. 设四阶行列式 D 中第1行元素为 1,2,0,-4, 第3行元素的余子式为 6,x,19,2, 求 x.
- 解: 因为 $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} + a_{14}A_{34} = a_{11}M_{31} a_{12}M_{32} + a_{13}M_{33} a_{14}M_{34} = 0$,故有 $1 \cdot 6 2 \cdot x + 0 \cdot 19 (-4) \cdot 2 = 0$,解得: x = 7.
- 2. 设有四阶方阵 A 满足条件 $|\sqrt{2}E+A|=0, AA^T=2E, |A|<0$,其中 E 为四阶单位矩阵,求 A^* 的一个特征值.
- 解:由 $|\sqrt{2}E+A|=0$ 得 $|-\sqrt{2}E-A|=0$,故 $\lambda=-\sqrt{2}$ 是 A 的一个特征值.因为 $AA^T=2E$,所以 $|AA^T|=|A|^2=2^4$,而 |A|<0,所以 |A|=-4.又 A^* 的特征值为 $\frac{|A|}{\lambda}$,故将 |A|,入代入得 A^* 的一个特征值为 $\frac{-4}{-\sqrt{2}}=2\sqrt{2}$.
- 3. 设三阶方阵 A,B 满足 $A^2B-A-B=E$,若 $A=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -2 & 0 & 1 \end{pmatrix}$,求 |B|.
- 解: 由 $A^2B A B = E \Rightarrow (A^2 E)B = A + E \Rightarrow (A + E)(A E)B = A + E$, 因为 $|A + E| = 18 \neq 0$,故 A + E 可逆,两边同时左乘 $(A + E)^{-1}$,可得 (A E)B = E. 两边再取行列式,因为 |A E| = 2,故有 2|B| = 1,从而 $|B| = \frac{1}{2}$.
- 解法二:由 $A^2B-A-B=E$ 可得 $(A^2-E)B=A+E$,两边取行列式,有 $|A^2-E|\cdot|B|=|A+E|$. 因为 $|A^2-E|=\begin{vmatrix} -2 & 0 & 2 \\ 0 & 3 & 0 \\ -4 & 0 & -2 \end{vmatrix}=36, |A+E|=\begin{vmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ -2 & 0 & 2 \end{vmatrix}=18$,故有 36|B|=18,从而 $|B|=\frac{1}{2}$.
- 4. 设 α, β 分别是 A 的属于特征值 λ_1, λ_2 的特征向量,且 $\lambda_1 \neq \lambda_2$. 证明: $\alpha + \beta$ 不可能是 A 的特征向量.
- 证:反证之,假设 $\alpha+\beta$ 是 A 的特征向量,则有 λ_0 存在,使 $A(\alpha+\beta)=\lambda_0(\alpha+\beta)$,又 α,β 是 A 的属于特征值 λ_1,λ_2 的特征向量,所以 $A\alpha=\lambda_1\alpha,A\beta=\lambda_2\beta$,则 $A\alpha+A\beta=A(\alpha+\beta)=\lambda_0(\alpha+\beta),\lambda_1\alpha+\lambda_2\beta=\lambda_0(\alpha+\beta)$,即 $(\lambda_1-\lambda_0)\alpha+(\lambda_2-\lambda_0)\beta=0$,因为 A 的属于不同特征值 λ_1,λ_2 的特征向量线性无关,所以 $\lambda_1-\lambda_0=0,\lambda_2-\lambda_0=0$,即 $\lambda_1=\lambda_2=\lambda_0$,这与 $\lambda_1\neq\lambda_2$ 矛盾.故假设不成立,即 $\alpha+\beta$ 不是 A 的特征向量.
- 二、 (本题12分) 设矩阵 $A=\begin{pmatrix} 3 & 2 & -2 \\ k & 1 & -k \\ 4 & 2 & -3 \end{pmatrix}$,求 k 为何值时,矩阵 A 可以对角化?
- 解: 由 $|\lambda E A| = \begin{vmatrix} \lambda 3 & -2 & 2 \\ -k & \lambda 1 & k \\ -4 & -2 & \lambda + 3 \end{vmatrix} = (\lambda 1)^2 (\lambda + 1) = 0$,解得 $\lambda_1 = \lambda_2 = 1, \lambda_3 = -1$.

若 A 相似于对角矩阵,则 A 的属于特征值 $\lambda_1=\lambda_2=1$ 的线性无关的特征向量应有两个,即矩阵 $(1\cdot E-A)$ 的秩应为1.

而
$$E-A=\begin{pmatrix} -2 & -2 & 2 \\ -k & 0 & k \\ -4 & -2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
,无论 k 为何值, $E-A$ 的秩都是2,

故无论 k 为何值, A 都不能相似于对角矩阵

- 三. (本题12分) 设 A, B 都是对称正定矩阵,且 AB = BA,试判断 AB 是否也是正定矩阵?
- 证: 由 $(AB)^T = B^T A^T = BA = AB$ 得出 AB 是实对称矩阵.

令 λ 是 AB 的任一特征值,对应特征向量为 $\xi \neq \theta$,则有 $AB\xi = \lambda \xi$,于是 $B\xi = \lambda A^{-1}\xi$, 两边左乘 ξ^T 得 $\xi^T B \xi = \lambda \xi^T A^{-1} \xi$.

由 A 是正定矩阵可知 A^{-1} 还是正定矩阵(因为 A^{-1} 的所有特征值均为正),即 $\xi^T A^{-1} \xi > 0$, 而由题设还有 $\xi^T B \xi > 0$,所以 $\lambda > 0$.

故 AB 的任一特征值都是正数, 因此 AB 也是正定矩阵.

证法二: 因为 A, B 对称正定, 故存在可逆矩阵 P 使得 $P^TAP = E$, 即 $A = P^{-T}P^{-1}$.

令 $M = P^T(AB)P = P^T(P^{-T}P^{-1}B)P = P^{-1}BP$, 则 $M^T = P^TB^TP^{-T} = P^TBP^{-T} = P^TBAP = P^T(AB)P = M$,故 M 对称.

又 M 相似于 B, 故 M 与对称正定矩阵 B 有相同的特征值,均为正数,故 M 为对称正定矩阵.

由于 AB 与 M 合同,而 M 为对称正定矩阵,合同于单位矩阵,故 AB 也合同于单位矩阵,对称正定.

- 四. (本题12分) 已知三阶非零矩阵 B 的每个列向量都是齐次线性方程组 $\begin{cases} x_1 + 2x_2 2x_3 &= 0\\ 2x_1 x_2 + \lambda x_3 &= 0 \end{cases}$ 的解向 $3x_1 + x_2 x_3 &= 0$
- 量,(1) 求 λ 的值;(2) 求矩阵 B 的秩.

解: (1) 由题设, 题中的齐次线性方程组有非零解, 故它的系数行列式为零, 即

$$\begin{vmatrix} 1 & 2 & -2 \\ 2 & -1 & \lambda \\ 3 & 1 & -1 \end{vmatrix} = 5(\lambda - 1) = 0$$
,解得 $\lambda = 1$

 $\begin{vmatrix} 1 & 2 & -2 \\ 2 & -1 & \lambda \\ 3 & 1 & -1 \end{vmatrix} = 5(\lambda - 1) = 0, 解得 \lambda = 1.$ $(2) 又由于 <math>r(\begin{pmatrix} 1 & 2 & -2 \\ 2 & -1 & 1 \\ 3 & 1 & -1 \end{pmatrix}) = 2, 故题设齐次线性方程组的基础解系中所含向量个数= 3 - 2 = 1, 而$

五. (本题12分) n 维列向量 $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$ 线性无关,且与非零向量 β_1, β_2 都正交. 证明: (1) $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, \beta_2$ 线性无关; (2) β_1 , β_2 线性相关.

证: (1) 令 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_{n-1}\alpha_{n-1} + k\beta_2 = \theta$,因为 β_2 与 $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$ 正交,故有 $k_1(\alpha_1, \beta_2) + k_2(\alpha_2, \beta_2) + \dots + k_{n-1}(\alpha_{n-1}, \beta_2) + k(\beta_2, \beta_2) = 0, k(\beta_2, \beta_2) = 0 \Rightarrow k = 0 (\beta_2 \neq \theta).$ 又因为 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ 线性无关,所以 $k_1 = k_2 = \dots = k_{n-1} = 0$,从而 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \beta_2$ 线性无关. (2) 另一方面,又因为 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1},\beta_2,\beta_1$ 线性相关(n+1)个n维向量必线性相关), 所以 β_1 可由 $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, \beta_2$ 线性表示,设 $\beta_1 = t_1\alpha_1 + t_2\alpha_2 + \cdots + t_{n-1}\alpha_{n-1} + t\beta_2$, $\diamondsuit \alpha = t_1 \alpha_1 + t_2 \alpha_2 + \dots + t_{n-1} \alpha_{n-1}, \quad \emptyset \beta_1 = \alpha + t \beta_2,$ 且有 $(\alpha, \beta_1) = t_1(\alpha_1, \beta_1) + t_2(\alpha_2, \beta_1) + \dots + t_{n-1}(\alpha_{n-1}, \beta_1) = 0$,同理 $(\alpha, \beta_2) = 0$. 又 $(\alpha, \beta_1) = (\alpha, \alpha + t\beta_2) = (\alpha, \alpha) + t(\alpha, \beta_2) = (\alpha, \alpha)$,故 $(\alpha, \alpha) = 0$,于是 $\alpha = \theta$,得 $\beta_1 = t\beta_2$, 此即 β_1, β_2 线性相关.

证法二: (1) 假设 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \beta_2$ 线性相关,由于 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ 线性无关, 故 β_2 可由 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ 线性表示,设为 $\beta_2 = k_1\alpha_1 + k_2\alpha_2 + \dots + k_{n-1}\alpha_{n-1}$. 因为 β_2 与 $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$ 正交,故有 $(\beta_2, \beta_2) = k_1(\alpha_1, \beta_2) + k_2(\alpha_2, \beta_2) + \cdots + k_{n-1}(\alpha_{n-1}, \beta_2) = 0$, 即 $\beta_2 = \theta$, 与题设 β_2 为非零向量矛盾, 故结论成立.

$$(2) \diamondsuit A = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \vdots \\ \alpha_{n-1}^T \end{pmatrix}, 则由 $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$ 线性无关知 $r(A) = n-1$.$$

故齐次线性方程组 $Ax = \theta$ 的基础解系只含一个向量,设为 ξ ,且解集为 $k\xi$.

显然 β_1, β_2 均为 $Ax = \theta$ 的非零解,故 $\beta_1 = k_1 \xi, \beta_2 = k_2 \xi, k_1, k_2 \neq 0$,于是 $\beta_2 = \frac{k_2}{k_1} \beta_1$,

即 β_1, β_2 线性相关.

六. (本题12分) 设 $\alpha_1, \alpha_2, \alpha_3$ 和 $\beta_1, \beta_2, \beta_3$ 是 R³ 的两个基,其中 $\beta_1 = \alpha_1, \beta_2 = \alpha_1 + \alpha_2, \beta_3 = \alpha_1 + \alpha_2 + \alpha_3$, 试求 $\alpha = \alpha_1 - 2\alpha_2 + 3\alpha_3$ 分别在基 $\alpha_1, \alpha_2, \alpha_3$ 和基 $\beta_2, \beta_2, \beta_3$ 下的坐标.

解: 由 $\alpha = \alpha_1 - 2\alpha_2 + 3\alpha_3$,显然可知, α 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为 $(x_1, x_2, x_3)^T = (1, -2, 3)^T$,

又由题设可知,由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为: $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$,

于是, α 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标 $(y_1, y_2, y_3)^T$ 能由坐标变换公式得到,即

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \\ 3 \end{pmatrix}.$$

七. (本题12分) 设矩阵 $A=\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & y & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$ 的一个特征值为3,(1) 求 y; (2) 求正交矩阵 P,使 $(AP)^T(AP)$

为对角矩阵.

解: (1) 因为 A 有特征值3, 故 |3E - A| = 8(2 - y) = 0, 得到 y = 2.

则要求正交矩阵 P 使得 $(AP)^T(AP) = P^T(A^TA)P = P^TBP$ 为对角矩阵.

 $|\lambda E - B| = (\lambda - 1)^3 (\lambda - 9)$ 得到 B 的特征值为: $\lambda = 1(3\mathbb{1}), 9$.

 $\lambda = 1$ 时,解 $(E - B)x = \theta$ 得无关特征向量: $\alpha_1 = (1, 0, 0, 0)^T, \alpha_2 = (0, 1, 0, 0)^T, \alpha_3 = (0, 0, 1, -1)^T$,

标准正交化得:
$$\beta_1 = (1,0,0,0)^T$$
, $\beta_2 = (0,1,0,0)^T$, $\beta_3 = (0,0,\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})^T$

标准正交化得: $\beta_1 = (1,0,0,0)^T$, $\beta_2 = (0,1,0,0)^T$, $\beta_3 = (0,0,\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})^T$. $\lambda = 9$ 时,解 $(9E-B)x = \theta$ 得单位特征向量: $\beta_4 = (0,0,\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})^T$. 令 $P = (\beta_1, \beta_2, \beta_3, \beta_4)$,则 P 为正交矩阵,且有 $P^T A P = diag(1, 1, 1, 9)$.