المادة: الرياضيات الشهادة: المتوسطة نموذج رقم -3-المدة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I- (3 points)

Répondre par « vrai » ou « faux » en justifiant.

- 1) $(-2x-2)^2 = 4(x+1)^2$.
- 2) Les solutions de l'équation $x^2 + 10 = 0$ sont $\sqrt{10}$ et $\sqrt{10}$.
- 3) Si x est un angle aigu et sin x = $\frac{1}{3}$, alors cos x = $\frac{2}{3}$.
- 4) L'équation $(x + 3)^2 = 0$ n'a pas de solution.
- 5) Si x est un nombre supérieur à 3, alors $(x^2 + 1)(2x 5)$ est positif.

II- (2 points)

Remarques : Les questions 1) et 2)sont indépendantes.(Donner les étapes de calcul suivies).

1) On donne A = $\frac{1}{\sqrt{7}+1} + \frac{1}{\sqrt{7}-1}$ et B = $\frac{7}{3\sqrt{7}}$. Comparer A et B.

2)

- a) Vérifierque : $\frac{4\sqrt{2}+2}{4+\sqrt{2}} = \sqrt{2}$.
- b) Utiliser l'égalité précédente pour montrer que $\frac{(\sqrt{32}+2)^2}{\left(\sqrt{36}-10-\sqrt{2}\right)^2}$ est un entier .

III-(4 points)

ABCD est un rectangle tel que AB = 4m et AD = 3m. M est un point sur [AD].

La parallèle à (BM) menée de D coupe [BC] en N.

On pose AM = x.

Partie A

- 1) Prouver que:
 - a) x est plus petit que 3.
 - b) DMBN est un parallélogramme.
 - c) NC = x.
- 2) Prouver que l'aire S du carré de côté DM est $(3-x)^2$.
- 3) Prouver que l'aire S' du parallélogramme DMBN est 12 4x.

Partie B.

- 1) Factoriser S' S.
- 2)Peut on trouver x tels que les deux aires soient égales?
- 3)a)Résoudre l'équation (x+1)(3-x) = 3.
- b)Donner une interprétation géométrique du résultat.

IV- (2 points)

Deux nombres ont pour somme 47. Quand on divise l'un des deux par 2 et l'autre par 3, leur somme devient 17,5.

1) Parmi les 3 systèmes ci-dessous, lequel traduit cette donnée ?

$$\begin{cases} x + y = 47 \\ 3x + 2y = 17,5 \end{cases} \begin{cases} y = 47 - x \\ 3x + 2y = 105 \end{cases} \begin{cases} x + y = 47 \\ \frac{x + y}{2} + \frac{y}{3} = 17,5 \end{cases}$$

2) Déterminer alors les deux nombres.

V- (4 points)

Dans un plan muni d'un repère orthonormé d'axes x'Oxet y'Oy), on considère la droite (D) d'équation y = 2x - 1, les points B(2;3) et C(3;1).

- 1) Représenter la droite (D) et placer les points B et C.
- 2) La droite (D) passe-t-elle par les points B et C? Justifier.
- 3) Soit (D') la droite d'équation $y = -\frac{1}{2}x + \frac{5}{2}$.
 - a) Montrer que (D') passe par C et est perpendiculaire à (D).
 - b) (D') et (D) se coupent en S. Déterminer, par calcul, les coordonnées du point S
- 4) Déterminer les coordonnées du centre I du cercle circonscrit au triangle BSC ainsi que la longueur de son rayon.
- 5) Déterminer les coordonnées du point A tel que BSCA soit un parallélogramme. Montrer que A est un point du cercle circonscrit au triangle BSC.

VI- (5 points)

Dans la figure ci-contre, on a :

- un demi-cercle de diamètre [AB], de centre O;
- AB = 2R;
- E sur [OB];
- (GE) médiatrice de [OB] (G est un point du demicercle);

- K est un point du segment [EG]. La droite (BK) coupe le demi-cercle en M.
- 1) Reproduire la figure, elle sera complétée dans la suite du problème.
- 2) a)Démontrer que le triangle OBG est équilatéral.
 - b) Calculer GE en fonction de R.
 - c) Calculer l'angle GMB.
- 3) Démontrer que les triangles BEK et BMA sont semblables. En déduire que BK x BM = R^2 .
- 4) La perpendiculaire a (AM) passant par E coupe (AM) en N .

Trouver le rapport
$$\frac{MN}{AM}$$

- 5) Dans cette question, on suppose que K est le centre de gravité du triangle GOB.
 - a) Calculer EN et MN en fonction de R.
 - b) Calculer R pour que le périmètre du quadrilatère BMNE soit égal à $7\sqrt{3} + 3$.

المادة:الرياضيات الشهادة: المتوسطة نموذج رقم -3-المدة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١٧ وحتى صدور المناهج المطوّرة)

Indications de réponses

		Vrai.	
I.	1)	Développer les deux ou : $(-2x - 2)^2 = [-2(x + 1)]^2 = 4(x + 1)^2$	0,5
	2)	Faux	0,5
		L'équation n'a pas de solution : un carré ne peut pas êtrenégatif.	
	3)	Faux .	0,75
		$(\cos x)^2 = 1 - (\sin x)^2 = \frac{8}{9}; \cos x = \frac{2\sqrt{2}}{3}.$	
	4)	Faux.	0,5
		-3 est la seule solution.	
	5)	Vrai car : $x^2 + 1 > 0$ pour tout x; et $2x - 5 > 0$ quand $x > 2,5$.	0,75
		Le produit de deux nombres positifs est positif.	
	1)	$A = \frac{2\sqrt{7}}{6} = \frac{\sqrt{7}}{3} = \frac{\sqrt{7} \times \sqrt{7}}{3\sqrt{7}} = \frac{7}{3\sqrt{7}}, \text{ donc } A = B$	0,75
11	2) a.	On peut montrer que : $\sqrt{2} \times (4 + \sqrt{2}) = 4\sqrt{2} + 2$.	0,5
II.	2) b.	$\frac{(\sqrt{32}+2)^2}{(\sqrt{36}-10-\sqrt{2})^2} = \frac{(4\sqrt{2}+2)^2}{(6-10-\sqrt{2})^2} = \frac{(4\sqrt{2}+2)^2}{(-4-\sqrt{2})^2} = \frac{(4\sqrt{2}+2)^2}{(4+\sqrt{2})^2} = \left(\frac{4\sqrt{2}+2}{4+\sqrt{2}}\right)^2 = (\sqrt{2})^2 = 2$, qui est un entier.	0,75
III	1) b	DMBN est un parallélogramme car côtés opposés parallèles.	0,5
	1) c	On a: AD =BC,car ABCD rectangle et DM = NB, car DMBN parallélogramme. Donc : AD –DM =BC – NB, d'où AM = NC = x	0,5
	2)	DM = 3-x, alors 1 'aire du carré = $(3-x)^2$.	0,25
		Plusieurs méthodes de calcul :	0,75
	3)	Aire (DMBN) = aire (ABCD) -2 x Aire (AMB), car les triangles AMB et DCN sont superposables.	
		Aire (DMBN) = $12 - 4 x$.	
	В	1) $(12-4x)-(3-x)^2-=(3-x)(x+1)$.	0,5
		2) $x = 3$ ou $x = -1$, les deux valeurs sont à rejeter.	0,5 0,5
		3) a - $(x+1)(3-x) = 3$, donc $x = 2$ ou $x=0$.	0,5
		b- l'aire du parallélogramme = l'aire du carré + 3.	
IV	1)	$\begin{cases} x + y = 47 \\ \frac{x}{2} + \frac{y}{3} = 17,5 \end{cases}$ qui devient $\begin{cases} y = 47 - x \\ 3x + 2y = 105 \end{cases}$	1
	2)	les deux nombres sont 11 et 36	1

V	1)	figure	0,5
		Pour $x = 2, 2x - 1 = 3$; donc B est sur (D).	0,25
	2)	Pour $x = 3$, $2x - 1 = 5$; donc C n'est pas sur (D).	0,25
		a.Pour $x = 3, -\frac{1}{2}x + \frac{5}{2} = 1$; donc C est sur (D').	0,25
	3)		0.75
		$b. s\left(\frac{7}{5}; \frac{9}{5}\right)$	
		I milieu de [BC]. Donc $I(\frac{5}{2}; 2)$	0,5
	4)	$R = IB = \frac{\sqrt{5}}{2}$	0,5
		$\overrightarrow{BA} = \overrightarrow{SC}$, donc : $x - 2 = 3 - \frac{7}{5}$ et $y - 3 = 1 - \frac{9}{5}$	0,5
	5)	$x = \frac{18}{5}$ et $y = \frac{11}{5}$	0,5
		BSCA rectangle donc A, donc BSC rectangle en A et A est sur	
		le cercle circonscrit au triangle BSC.	
VI	1)		0,5
		a-OG = BG (médiatrice) ; OG = OB (rayons)	0,75
		Donc OG = BG = OB et OBG équilatéral.	
	2)	$b- GE = \frac{R\sqrt{3}}{2}.$	0.25
		$c- G\hat{M}B = \frac{G\hat{O}B}{2} = 30^{\circ}.$	0.25
		BMA et BEK sont des triangles rectangles et ils ont un angle commun B.	0,75
	3)	$\frac{BA}{BK} = \frac{AM}{KE} = \frac{MB}{EB} \text{ ; donc } BK \times BM = BA \times EB = 2R \times \frac{R}{2} = R^2$	0,5+0,5
	4)	$\frac{EN}{AM} = \frac{BE}{BA} = \frac{1}{4} .$	0,75
	5-	a) $AM = \frac{AB}{2} = R \text{ et } EN = \frac{3R\sqrt{3}}{4}$.	0,75
		b) $BE = \frac{R}{2}$ et $MN = \frac{R}{4}$ et $MB = R\sqrt{3}$	
		$\frac{3R\sqrt{3}}{4} + \frac{2R}{4} + \frac{R}{4} + \frac{4R\sqrt{3}}{4} = 7\sqrt{3} + 3$	
		R=4.	