Lesson 45: Method of Undetermined Coefficients

ODE 1 with Prof. Adi Ditkowski

Tel Aviv University

1 The Non-Homogeneous Linear ODE

Definition 1 (Non-Homogeneous Linear ODE). An n-th order non-homogeneous linear ODE with constant coefficients has the form:

$$L[y] = a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = f(t)$$

where $f(t) \not\equiv 0$ is called the forcing function or non-homogeneous term.

Theorem 1 (Structure of General Solution). The general solution of L[y] = f(t) is:

$$y(t) = y_h(t) + y_p(t)$$

where:

- $y_h(t)$ is the general solution of the homogeneous equation L[y] = 0
- $y_p(t)$ is any particular solution of L[y] = f(t)

Proof. If $L[y_p] = f(t)$ and $L[y_h] = 0$, then:

$$L[y_h + y_p] = L[y_h] + L[y_p] = 0 + f(t) = f(t)$$

Conversely, if y_1 and y_2 both satisfy L[y] = f(t), then:

$$L[y_1 - y_2] = L[y_1] - L[y_2] = f(t) - f(t) = 0$$

So $y_1 - y_2$ is a homogeneous solution.

2 Suitable Forcing Functions

Definition 2 (UC-Suitable Functions). A function f(t) is suitable for the method of undetermined coefficients if it belongs to a finite-dimensional space that is closed under differentiation.

The method works for linear combinations of:

- 1. Polynomials: $t^n, t^{n-1}, \ldots, t, 1$
- 2. Exponentials: e^{at} where $a \in \mathbb{C}$
- 3. Trigonometric: $\sin(bt)$, $\cos(bt)$ where $b \in \mathbb{R}$
- 4. Products: $t^n e^{at}$, $e^{at} \sin(bt)$, $e^{at} \cos(bt)$, $t^n e^{at} \sin(bt)$, etc.

3 The Method: Non-Resonant Case

Method 1 (Undetermined Coefficients - Basic). For L[y] = f(t) where f(t) is UC-suitable:

- 1. Solve the homogeneous equation L[y] = 0 to find y_h
- 2. Based on the form of f(t), guess the form of y_p with undetermined coefficients
- 3. Compute the derivatives of y_p
- 4. Substitute into $L[y_p] = f(t)$
- 5. Equate coefficients of like terms to determine the unknowns
- 6. Write the general solution: $y = y_h + y_p$

3.1 Guessing Rules for Common Functions

Forcing Function $f(t)$	Trial Solution $y_p(t)$
$P_n(t)$ (polynomial degree n)	$A_n t^n + A_{n-1} t^{n-1} + \dots + A_1 t + A_0$
e^{at}	Ae^{at}
$\sin(bt)$ or $\cos(bt)$	$A\cos(bt) + B\sin(bt)$
$P_n(t)e^{at}$	$(A_nt^n + \dots + A_0)e^{at}$
$e^{at}\sin(bt)$ or $e^{at}\cos(bt)$	$e^{at}[A\cos(bt) + B\sin(bt)]$
$P_n(t)e^{at}\sin(bt)$	$e^{at}[(A_nt^n + \dots + A_0)\cos(bt) +$
	$(B_n t^n + \dots + B_0) \sin(bt)]$

Always include both sin and cos terms when the forcing function contains either trigonometric function, as derivatives will produce both.

4 Resonance and the Modification Rule

Definition 3 (Resonance). Resonance occurs when the trial solution y_p (or part of it) is a solution of the homogeneous equation L[y] = 0.

Theorem 2 (Modification for Resonance). If the standard trial solution is a homogeneous solution corresponding to a root r of multiplicity m, multiply the trial solution by t^m .

Resonance physically corresponds to driving a system at its natural frequency, leading to unbounded growth in amplitude (the t^m factor).

4.1 Resonance Detection Algorithm

Method 2 (Checking for Resonance). 1. Find all roots of the characteristic equation (with multiplicities)

- 2. For forcing function $f(t) = e^{at}g(t)$:
 - If a is not a characteristic root: no modification
 - If a is a simple root: multiply trial by t
 - If a is a root of multiplicity m: multiply trial by t^m
- 3. For $f(t) = e^{at}[\sin(bt) \text{ or } \cos(bt)]$:
 - Check if $a \pm ib$ are characteristic roots
 - Multiply by t^m where m is the multiplicity

5 The Superposition Principle

Theorem 3 (Superposition). If $f(t) = f_1(t) + f_2(t) + \cdots + f_k(t)$ and $L[y_{p_i}] = f_i(t)$ for each i, then:

$$L[y_{p_1} + y_{p_2} + \dots + y_{p_k}] = f_1(t) + f_2(t) + \dots + f_k(t)$$

Therefore: $y_p = y_{p_1} + y_{p_2} + \dots + y_{p_k}$

Handle each term in f(t) separately, then add the particular solutions. This often simplifies the algebra significantly.

6 Comprehensive Examples

Example 1 (Polynomial Forcing). Solve: $y'' - 3y' + 2y = 6t^2 - 4t + 1$ Solution:

1. Homogeneous: $r^2 - 3r + 2 = 0 \Rightarrow r = 1, 2$

Thus:
$$y_h = c_1 e^t + c_2 e^{2t}$$

- 2. Trial: $y_p = At^2 + Bt + C$
- 3. Derivatives: $y'_p = 2At + B$, $y''_p = 2A$
- 4. Substitute:

$$2A - 3(2At + B) + 2(At^{2} + Bt + C) = 6t^{2} - 4t + 1$$
$$2At^{2} + (-6A + 2B)t + (2A - 3B + 2C) = 6t^{2} - 4t + 1$$

5. Match coefficients:

$$t^2: \quad 2A = 6 \Rightarrow A = 3 \tag{1}$$

$$t^1: -6A + 2B = -4 \Rightarrow B = 7$$
 (2)

$$t^0: 2A - 3B + 2C = 1 \Rightarrow C = 8$$
 (3)

6. Solution: $y = c_1 e^t + c_2 e^{2t} + 3t^2 + 7t + 8$

Example 2 (Resonant Exponential). Solve: $y'' - 4y' + 4y = e^{2t}$ Solution:

- 1. Homogeneous: $(r-2)^2 = 0 \Rightarrow r = 2$ (double root) Thus: $y_h = (c_1 + c_2 t)e^{2t}$
- 2. Standard trial Ae^{2t} appears in y_h (resonance!) Since 2 is a double root, multiply by t^2 : $y_p = At^2e^{2t}$
- 3. Derivatives:

$$y_p' = 2Ate^{2t} + 2At^2e^{2t} = 2Ate^{2t}(1+t)$$
(4)

$$y_p'' = 2Ae^{2t}(1 + 4t + 2t^2) (5)$$

- 4. Substitute and simplify: $2Ae^{2t} = e^{2t}$
- 5. Thus A = 1/2 and $y_p = \frac{t^2}{2}e^{2t}$

Example 3 (Resonant Trigonometric). Solve: $y'' + \omega^2 y = F_0 \cos(\omega t)$ Solution:

- 1. Homogeneous: $r^2 + \omega^2 = 0 \Rightarrow r = \pm i\omega$ Thus: $y_h = c_1 \cos(\omega t) + c_2 \sin(\omega t)$
- 2. Resonance! Multiply by $t: y_p = t[A\cos(\omega t) + B\sin(\omega t)]$
- 3. After substitution: A = 0, $B = \frac{F_0}{2\omega}$
- 4. Solution exhibits linear growth: $y_p = \frac{F_0 t}{2\omega} \sin(\omega t)$

7 Common Pitfalls and Tips

Common mistakes to avoid:

- 1. Forgetting lower-degree terms in polynomial trials
- 2. Omitting sine or cosine in trigonometric trials
- 3. Missing resonance when the forcing matches homogeneous solutions
- 4. Wrong multiplicity in resonance modification

5. Arithmetic errors in coefficient matching

Prof. Ditkowski's exam strategy:

- 1. Always find y_h first and write it clearly
- 2. Check for resonance before writing trial solution
- 3. For mixed forcing terms, use superposition
- 4. Verify one coefficient as a check
- 5. State the general solution explicitly

8 Complete Trial Solution Table

Forcing $f(t)$	Char. Root?	Trial y_p
$P_n(t)$	r = 0 not a root	$A_n t^n + \dots + A_0$
	r = 0 mult. m	$t^m(A_nt^n+\cdots+A_0)$
e^{at}	r = a not a root	Ae^{at}
	r = a mult. m	$At^m e^{at}$
$\sin(bt), \cos(bt)$	$r = \pm ib$ not roots	$A\cos(bt) + B\sin(bt)$
	$r = \pm ib$ mult. m	$t^m[A\cos(bt) + B\sin(bt)]$
$P_n(t)e^{at}$	r = a not a root	$(A_n t^n + \dots + A_0)e^{at}$
	r = a mult. m	$t^m(A_nt^n+\cdots+A_0)e^{at}$
$e^{at}\sin(bt)$	$r = a \pm ib$ not roots	$e^{at}[A\cos(bt) + B\sin(bt)]$
$e^{at}\cos(bt)$	$r = a \pm ib$ mult. m	$t^m e^{at} [A\cos(bt) + B\sin(bt)]$