Math Note

数学一 笔记

Audentis Fortuna iuvat.

整理: XYL

整理时间: April 9, 2025

Email: xyl_27@outlook.com

目 录

1	高等	数学																		3
	1.1	函数极	限与	连续																3
		1.1.1	有界	性、	单调	性、	青		性	`	周	期	性							3
		1.1.2	初等	函数																3
		1.1.3	函数	极限	计算	•														4
		1.1.4	函数	连续	与间	断														4
		1.1.5	综合																	4
	1.2	数列极	限.																	5
	1.3	一元函	数微	分学	概念															7
	1.4	一元函	数微	分学	计算															9
	1.5	一元函	数微	分学	几何	应用														11
	1.6	一元函	数微	分学	的应	用														12
	1.7	一元函	数微	分学	的物	理应	加													13
	1.8	一元函	数积	分学	的概	念														13
	1.9	一元函	数积	分学	的计	算														15
2	线性	代数																		16
3	概率	论与数3	理统证	+																17

第1章

高等数学

- 1. 区间再现
- 2. 梅林变换
- 3. 拉普拉斯变换
- 4. 有理函数积分
- 5. 费曼积分

1.1 函数极限与连续

1.1.1 有界性、单调性、奇偶性、周期性

- 1. 严格单调函数必然有反函数
- 2. 双曲正余弦函数的积分和导数
- 3. 反双曲正弦函数的积分和导数(奇函数)
- 4. 单调性: 内偶则偶, 内奇则外
- 5. 任意一个函数都可以写成一个奇函数加上偶函数之和
- 6. 求导(积分)一次,奇偶性互换

1.1.2 初等函数

- 1. $1 + \tan^2 \alpha = \sec^2 \alpha$; $1 + \cot^2 \alpha = \csc^2 \alpha$
- 2. 反三角函数的恒等式

1.1.3 函数极限计算

- 1. $\exists x \to 0$ 时, $\ln(x + \sqrt{1 + x^2}) \sim x \sim \sin x \sim \tan x \sim \arctan x \sim e^x 1 \sim \ln(1 + x)$.
- 3. $(1+x)^{\frac{1}{x}} e \sim -\frac{e}{2}x \quad (x \to 0^+)$
- 4. $\lim_{x\to 0^+} x^{\alpha} \ln^{\beta} x = 0 (\beta, \alpha > 0)$
- 5. $\lim u^{\nu} = \lim \left\{ [1 + (u 1)]^{\frac{1}{u 1}} \right\}^{(u 1)\nu} = e^{\lim(u 1)\nu}$

题目

- 1. 设函数 $f(x) = \lim_{n \to \infty} \frac{x^2 + nx(1-x)\sin^2 \pi x}{1 + n\sin^2 \pi x}$,则 f(x) =_____
- 2. 已知极限 $\lim_{x\to 0} \frac{\tan 2x + xf(x)}{\sin x^3} = 0$,则 $\lim_{x\to 0} \frac{2+f(x)}{x^2} =$ ____。
- 3. 设函数 $f(x) = \frac{\sin x}{1+x^2}$ 在x = 0处的 3 次泰勒多项式为 $ax + bx^2 + cx^3$,则a, b, c为多少
- 4. 计算 $\lim_{x\to 0} (1+|x|)^{\frac{1}{x}}$

1.1.4 函数连续与间断

- 1. 判断连续性的 3 个条件: 极限存在, 值存在, 极限等于值. 其中极限存在是必须 左右极限都存在且相等
- 2. 第一类间断点 (可去或跳跃): 存在有限的左、右极限,如 $f(x)=x\sin\frac{1}{x}, x=0$
- 3. 第二类间断点 (无穷或振荡): 左、右极限至少有一个不存在或无穷大,如 $f(x) = \sin \frac{1}{x^2}, x = 0$

题目

1. $f(x) = \frac{e^{\frac{1}{x-1}\ln|1+x|}}{(e^x-1)(x-2)}$ 的第二类间断点的个数为

1.1.5 综合

- 1.4 函数 $f(x) = \lim_{t\to 0} \left(1 + \frac{\sin t}{x}\right)^{\frac{x^2}{t}}$ 在 $(-\infty, +\infty)$ 内 $(-\infty, +\infty)$
 - (A) 连续
 - (B) 有可去间断点
 - (C) 有跳跃间断点
 - (D) 有无穷间断点

1.2 数列极限 -5/17-

• 1.6 设函数 $f(x) = \frac{x}{1+x}$, $x \in [0,1]$, 定义函数列:

• 1.11 设 $f(x) = \arcsin(\sin x)$, 画出 f(x) 的图形。

- 1.12 求极限 $\lim_{x\to 0} \left(\frac{e^x + xe^x}{e^x 1} \frac{1}{x}\right)$ 。
- 1.14 已知 $\lim_{x\to 0} \left[a \frac{2+e^{\frac{1}{x}}}{1+e^{\frac{4}{x}}} + (1+|x|)^{\frac{1}{x}} \right]$ 存在,求 a 的值。

1.2 数列极限

递推数列求极限

- 1. 收敛数列的任意子列也收敛
- 2. 二次平均数(二阶矩开根)大于等于算术平均数
- 3. $\sin x < x < \tan x \quad (0 < x < \frac{\pi}{2})$
- 4. $\arctan x < x < \arcsin x \quad (0 < x < 1)$
- 5. $\frac{1}{1+x} < \ln(1 + \frac{1}{x}) < \frac{1}{x} \quad (x > 0)$
- 6. $\frac{x}{1+x} < \ln(1+x) < x \quad (x > 0)$
- 7. $\frac{a_1 + a_2 + \dots + a_n}{n} \le \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}$

题目

1. 求极限 $\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n}$, 其中 $a_1 + a_2 + \dots + a_m$ 非负。

\rightarrow		ᅫᄼᇅ	W. T.	1.77 777	MZ, Thit :	T + 4T	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
- 	1 1.	' 戸'	<i>木</i> 灯 灯	不及 ド見	プトガリ	人ケ 伸弁	法速查表
11	1.1.	H1 71.7	女人 ツリ	1/1/X PIX	オモノ	ᄊ	1/2

 类型	一般形式	解法	示例
多项式分式	$\lim_{n \to \infty} \frac{P(n)}{Q(n)}$	同除最高次项	$\lim_{n \to \infty} \frac{3n^2 + 1}{2n^2 - n} = \frac{3}{2}$
根式差	$\lim_{n \to \infty} (\sqrt{an+b} - \sqrt{cn+d})$	有理化(乘共轭式)	$\lim_{\substack{n \to \infty \\ \sqrt{n}}} (\sqrt{n+1} - \frac{1}{n}) = 0$
递推数列	$a_{n+1} = f(a_n)$	1. 假设极限存在, 解方程 $L = f(L)$ 2. 验证单调有界性	$a_{n+1} = \sqrt{2 + a_n} \psi$ 敛于 2
求和式(黎曼和)	$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)$	转 化 为 定 积 分 $\int_0^1 f(x) dx$	$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n+k} = \ln 2$
指数型(1∞)	$\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n$	利用 e^a 定义或对数 化	$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n = e^2$
夹逼定理型	复杂数列 a_n 满足 $b_n \le a_n \le c_n$	找 到 b_n, c_n 使 $\lim b_n = \lim c_n = L$	$\lim_{n \to \infty} \frac{n!}{n^n} = 0$
Stolz 定理	$\lim_{n\to\infty}\frac{a_n}{b_n}$ $(b_n$ 单调趋于 ∞)	若 $\lim \frac{a_{n+1} - a_n}{b_{n+1} - b_n} =$ L,则原极限为 L	$\lim_{\substack{n \to \infty \\ \frac{1}{2}}} \frac{1+2+\dots+n}{n^2} =$
连分数	$x_{n+1} = a + \frac{b}{x_n}$	 设极限 L 解方程 归纳法证有界性 	$x_{n+1} = 1 + \frac{1}{x_n}$ 收敛
 阶乘型	$\lim_{n\to\infty} \frac{n!}{n^n}$	夹逼定理或比值判 别法	$\lim_{n \to \infty} \frac{n!}{n^n} = 0$
三角函数型	$\lim_{n \to \infty} \sin\left(\frac{n\pi}{2n+1}\right)$	利用连续性: $\lim f(a_n) = f(\lim a_n)$	1
交错数列	$\lim_{n\to\infty} (-1)^n b_n$	若 $b_n \rightarrow 0$ 则极限为 0 ,否则发散	$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$

- 2. *** 版 $0 < a_n < \frac{\pi}{2}$, $0 < b_n < \frac{\pi}{2}$, $\cos a_n a_n = \cos b_n$, 且 $\lim_{n \to \infty} b_n = 0$, 求 $\lim_{n \to \infty} a_n$, $\lim_{n \to \infty} \frac{a_n}{b_n^2}$ 。
- 3. 设 $0 < x_1 < 3$, $x_{n+1} = \sqrt{x_n(3-x_n)}$ $(n=1,2,\cdots)$, 证明数列 $\{x_n\}$ 的极限存在,并求此极限。
- 4. (1) 证明方程 $x = \cos x$ 在 $(0, \frac{\pi}{3})$ 内有唯一实根 a;
 - (2) 设 $-1 \le x_i \le 1$,定义 $x_{n+1} = \cos x_n$, $n = 1, 2, \cdots$,证明 $\lim_{n \to \infty} x_n$ 存在,且 极限值就是 (1) 中的 a。
- 5. "存在正整数 N,当 $n \ge N$ 时,恒有 $|x_n a| \le \frac{1}{n}$ 是数列 $\{x_n\}$ 收敛于 a 的 \bigcirc 。
 - (A) 充分不必要条件
 - (B) 必要不充分条件
 - (C) 充分必要条件
 - (D) 既不充分也不必要条件
- 6. 设 $\lim_{n\to\infty} a_n = a$,且 $a \neq 0$,则当 n 充分大时,有 0。
 - (A) $|a_n| > \frac{|a|}{2}$
 - (B) $|a_n| < \frac{|a|}{2}$
 - (C) $a_n > a \frac{1}{n}$
 - (D) $a_n < a + \frac{1}{n}$
- 7. 设 $x_1 = 2, x_n + (x_n 4)x_{n-1} = 3(n = 2, 3, \dots)$, 证明 $\lim_{n \to \infty} x_n$ 存在, 并求其值.

1.3 一元函数微分学概念

- 1. 可导必连续,连续不一定可导
- 2. 求函数在 0 处的导数时先判断奇偶 (求导奇偶互换), 若奇则 0
- 3. $[(e^x 1)g(x)]' = e^x g(x) + (e^x 1)g'(x)$
- 4. 绝对值函数在零点不可导,

题目

1. 设 $f(x) = \frac{1}{2^x + 1}$, $x \in \mathbb{R}$, 则 $f^{(4)}(0) = \underline{\hspace{1cm}}$

2. 设 f(x) 是二阶可导且以 2 为周期的奇函数, $f(\frac{1}{2}) > 0$, $f'(\frac{1}{2}) > 0$, 记 $M = f(-\frac{1}{2})$,

$$N = f'\left(\frac{3}{2}\right), K = f''(0).$$

则()。

- (A) M < N < K
- (B) M > N > K
- (C) M < K < N
- (D) M > K > N
- 3. 设 f(x) 在 x = a 处连续, F(x) = f(x)|x a|,则 f(a) = 0 是 F(x) 在 x = a 处可导的 \bigcirc 。
 - (A) 充要条件
 - (B) 充分非必要条件
 - (C) 必要非充分条件
 - (D) 既非充分又非必要条件
- 4. 设函数

$$f_1(x) = (x^2 - 1)|x^3 + x^2 - 2x - 2|,$$

$$f_2(x) = (x^2 - 1)|x^3 - 2x^2 - x + 2|,$$

$$f_3(x) = (x^2 - 1)|x^3 + 3x^2 - 2x - 6|,$$

将函数 $f_i(x)(i=1,2,3)$ 的不可导点个数记为 n_i ,则 〇。

- (A) $n_2 < n_1 < n_3$
- (B) $n_1 < n_2 < n_3$
- (C) $n_3 < n_2 < n_1$
- (D) $n_2 < n_3 < n_1$
- 5. 设函数 f(u) 可导,且 $y = f(x^2)$,当自变量 x 在 x = -1 处取得增量 $\Delta x = -0.1$ 时,相应的函数增量 Δy 的线性主部为 0.1,则 f'(1) = ()。
 - (A) -1
 - (B) 0.1
 - (C) 0.5
 - (D) 1

- 6. 3.2 设函数 $f(x) = |x^3 1|\varphi(x)$,其中 $\varphi(x)$ 在 x = 1 处连续,则 $\varphi(1) = 0$ 是 f(x) 在 x = 1 处可导的 O。#用定义
 - (A) 充分必要条件
 - (B) 充分但非必要条件
 - (C) 必要但非充分条件
 - (D) 既非充分又非必要条件
- 7. 3.4 设函数 y = f(x) 在点 x_0 处可导,且 $f'(x_0) \neq 0$ 。当自变量有增量 Δx 时,函数 y = f(x) 的增量为 Δy ,则当 $\Delta x \rightarrow 0$ 时, $\Delta y dy$ 是 dy 的 \bigcirc 。
 - (A) 高阶无穷小
 - (B) 低阶无穷小
 - (C) 同阶非等价无穷小
 - (D) 等价无穷小
- 8. 3.7 证明: (1) 若 F(x) 在 $[x_0, x_0 + \delta)(\delta > 0)$ 连续,在 $(x_0, x_0 + \delta)$ 内可导,当 $\lim_{x \to x_0^+} F'(x) = A$ 时,有 $F'_+(x_0) = A$;
 - (2) 若 F(x) 在 $(x_0 \delta, x_0](\delta > 0)$ 连续,在 $(x_0 \delta, x_0)$ 内可导,当 $\lim_{x \to x_0^-} F'(x) = A$ 时,有 $F'_-(x_0) = A$ 。
- 9. 3.8 设 $f(x) = \begin{cases} x^2 \sin \frac{\pi}{x}, & x < 0, \\ A, & x = 0, \end{cases}$ 求常数 A, a, b 的值,使 f(x) 在 x = 0 处可导, 并求 f'(0)。

1.4 一元函数微分学计算

- 1. 多个乘法求导不好求时,可以尝试化成两项相乘
- 2. 分段点用导数的定义求导
- 3. $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$
- 4. $(\arctan x)' = \frac{1}{1+x^2}$
- 5. $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$

6.
$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

7.
$$(\sec x)' = \sec x \tan x$$

8.
$$(\csc x)' = -\csc x \cot x$$

9.
$$(\ln(x+\sqrt{x^2+1}))'=\frac{1}{\sqrt{x^2+1}}$$

10.
$$(\ln(x+\sqrt{x^2-1}))'=\frac{1}{\sqrt{x^2-1}}$$

11.
$$y'_x = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{x'_y}$$

12. 反函数的二阶导数
$$x_{yy}^{"} = -\frac{y_{xx}^{"}}{(y_x^{'})^3}$$

13.
$$\frac{dy}{dx} = -\frac{F_x'}{F_y'}$$

- 14. 隐函数求二阶导时注意代入一阶导 y'
- 15. 莱布尼茨公式求高阶导 $uv^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}$

16.
$$(u+v)^{(n)} = u^{(n)} + v^{(n)}$$

题目

1. 设
$$f(x) = x^2 \ln(1-x)$$
, 则当 $n \ge 3$ 时, $f^{(n)}(0) = ($)。

$$(A) - \frac{n!}{n-2}$$

(B)
$$\frac{n!}{n-2}$$

(A)
$$-\frac{n!}{n-2}$$

(B) $\frac{n!}{n-2}$
(C) $-\frac{(n-2)!}{n}$
(D) $\frac{(n-2)!}{n}$

(D)
$$\frac{(n-2)!}{n}$$

2. 4.5 设函数 f(x) 在 x=2 的某邻域内具有任意阶导数,且 $f'(x)=e^{f(x)}$, f(2)=1, 则当 $n \ge 1$ 时,

$$f^{(n)}(2) = \underline{\hspace{1cm}}$$

3. 4.7 已知 g(x) 在 x = 0 处二阶可导,且 g(0) = g'(0) = 0,设

$$f(x) = \begin{cases} \frac{g(x)}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

证明: f(x) 的导函数在 x = 0 处连续。

1.5 一元函数微分学几何应用

- 1. 判断极值的第三充分条件
- 2. 一个可导点不可能同时是极值点和拐点
- 3. 不可导点,可能既是极值点,又是拐点
- 4. 多项式函数拐点和极值点个数判断:
- 5. $f(x) = x^2$ 图像凹,国内:下凸,凹; 国际:凸,convex
 - k_1 为 $n_i = 1$ 的个数
 - k_2 为 n_i 是偶数且 $n_i \neq 1$ 的个数
 - k_3 为 n_i 是奇数且 $n_i \neq 1$ 的个数
 - 极值点个数为 $k_1 + 2k_2 + k_3 1$
 - 极值点个数为 $k_1 + 2k_2 + 3k_3 2$
- 6. 渐近线的判断:铅直渐近线 x = a,水平渐近线 y = b,斜渐近线 y = kx + b,通过极限计算
- 7. 切线斜率的增量和弧长的增量比为平均曲率
- 8. 曲率公式 $k = \frac{|y''|}{(1+(y')^2)^{\frac{3}{2}}}$
- 9. 曲率半径 $R = \frac{1}{k}$

题目

- 1. 设函数 f(x) 可导,且 f(x)f'(x) > 0,则 \bigcirc 。
 - (A) f(1) > f(-1) (B) f(1) < f(-1) (C) |f(1)| > |f(-1)| (D) |f(1)| < |f(-1)|
- 2. 判断 $y = |xe^{-x}|$ 在x = 0, 点(0,0) 的极值点和拐点
- 3. 曲线 $f(x) = (x-1)^2(x-3)^3$ 的拐点个数为 \bigcirc 。
- 4. 5.1 设函数 f(x)、g(x) 具有二阶导数,且 g''(x) < 0。若 $g(x_0) = a$ 是 g(x) 的极值,则 f[g(x)] 在 x_0 取极大值的一个充分条件是 〇。

(A)
$$f'(a) < 0$$
 (B) $f'(a) > 0$ (C) $f''(a) < 0$ (D) $f''(a) > 0$

5. 5.5 曲线 $y = (x-5)x^{\frac{2}{3}}$ 的拐点坐标为 ____

1.6 一元函数微分学的应用

- 1. 费马定理
- 2. 平均值定理
- 3. 拉格朗日中值定理
- 4. 柯西中值定理
- 5. 介值定理
- 6. 罗尔定理,构造,部分题目需要多次构造
 - (a) $[f^2(x)]' = 2f(x)f'(x)$
 - (b) $[f(x)f'(x)]' = f(x)f''(x) + f'(x)^2$
 - (c) $[f(x)e^{g(x)}]' = f'(x)e^{g(x)} + f(x)g'(x)e^{g(x)}$
 - (d) $[f(x)/x]' = (f'(x)x f(x))/x^2$
 - (e) $\left[\frac{f(x)}{f'(x)}\right]' = \frac{f''(x)f(x) f'(x)f'(x)}{f'(x)^2}$
 - (f) $[\ln(f(x))]' = \frac{f'(x)}{f(x)}$
- 7. 一族函数

题目

1.

设函数f(x)满足f(0) = 0,且当x > 0时,f(x) < 0,f'(x) < 0,f'(x) > 0,则当0 < a < x < b时,有

$$(\mathbf{A})xf(x) > af(a) \quad (\mathbf{B})bf(b) > xf(x) \quad (\mathbf{C})xf(a) > af(x) \quad (\mathbf{D})xf(b) > bf(x)$$

- 2. 设函数 f(x) 在 [0,1] 上二阶可导,且 $\int_0^1 f(x) dx = 0$,则().
 - (A) 当 f'(x) < 0 时 $, f(\frac{1}{2}) < 0$
 - (C) 当 f'(x) > 0 时, $f(\frac{1}{2}) < 0$
 - (B) 当 f''(x) < 0 时 $f(\frac{1}{2}) < 0$
 - (D) 当 f''(x) > 0 时, $f(\frac{1}{2}) < 0$
- 3. 设函数 f(x) 在区间 [-1,1] 上具有三阶连续导数,且 f(-1) = 0, f(1) = 1, f'(0) = 0, 证明: 在区间 (-1,1) 内至少存在一点 ξ , 使 $f'''(\xi) = 3$.

- 5. 证明 $2^x x^2 1 = 0$ 有且仅有三个根
- 6. 证明: $\left(\ln \frac{1+x}{x} \frac{1}{1+x}\right)^2 < \frac{1}{x(1+x)^2}(x>0)$.
- 7. 6.6 已知 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0) = 0, f(1) = 1. 证明:
 - (1) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 1 \xi$;
 - (2) 存在 $\eta, \tau \in (0, 1), \eta \neq \tau$, 使得 $f'(\eta)f'(\tau) = 1$.
- 8. 6.7 设函数 f(x) 在 [a,b] 上连续 (0 < a < b), 在 (a,b) 内可导,且 $f(a) \neq f(b)$. 证明:存在 $\xi, \eta \in (a,b)$, 使得 $\frac{f'(\xi)}{2\xi} = \frac{f'(\eta)}{b+a}$.
- 9. 6.8 设 f(x) 在 [0,1] 上具有二阶导数,且满足条件 $|f(x)| \le a, |f''(x)| \le b$, 其中 a, b 都是非负常数, c 是 (0,1) 内任意一点.
 - (1) 写出 f(x) 在点 x = c 处带拉格朗日型余项的一阶泰勒公式,
 - (2) 证明 $|f'(x)| \leq 2a + \frac{b}{2}$.

1.7 一元函数微分学的物理应用

1.8 一元函数积分学的概念

- 1. 0 到 1 的积分: $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{1}{n} f(\frac{i}{n})$
- 2. 可导则连续则可积则有界
- 3. 广义积分可以用不等式放缩或比较判别判断敛散性
- 4. $\int_0^1 \frac{1}{x^p} dx, p \ge 1$ 发散,0 收敛
- 5. $\int_{1}^{+\infty} \frac{1}{x^{p}} dx,$ p>1 发散,0<=p<=1 收敛

6.

$$\int_0^1 \frac{\ln x}{x^p} \, dx$$

收敛, 0 ,

发散, $p \ge 1$.

7.

$$\int_{1}^{+\infty} \frac{\ln x}{x^p} \, dx$$

发散,0 ,

收敛, p > 1.

题目

- 1. 设可导函数 y = f(x) 在 $[0, +\infty)$ 上的值域是 $[0, +\infty)$, f(0) = 0, f'(x) > 0, $x = \varphi(y)$ 是 y = f(x) 的反函数。记 $I = \int_0^a f(x) dx + \int_0^b \varphi(y) dy$,常数 a, b > 0, 当 $a < \varphi(b)$ 时,则 \bigcirc 。
 - (A) I > ab
 - (B) I < ab
 - (C) I = ab
 - (D) I 与 ab 的大小关系不确定
- 2. 设 $M = \int_0^{\frac{\pi}{2}} \sin(\sin x) dx, N = \int_0^{\frac{\pi}{2}} \cos(\cos x) dx,$ 则.
 - (A)M<1< N
 - (B)M < N < 1
 - $(C)N \le M \le 1$
 - $(D)1 \le M \le N$
- 3. 若反常积分

$$\int_{1}^{\infty} \left(e^{-\cos\frac{1}{x}} - e^{-1} \right) x^{k} dx$$

收敛,则 k 的取值范围是__。

4. 以下反常积分发散的是 ()。

(A)
$$\int_{1}^{+\infty} \left[\ln \left(1 + \frac{1}{x} \right) - \frac{1}{1+x} \right] dx$$

(B)
$$\int_0^{+\infty} \frac{\ln x}{1+x^2} dx$$

$$\int_{-1}^{1} \frac{dx}{\sin x}$$

(D)
$$\int_{-\infty}^{+\infty} \frac{\sin x}{1+x^2} dx$$

5. 确定参数 α 的范围, 使得以下积分收敛:

$$\int_0^{+\infty} \frac{x^{\alpha}}{1+x^2} dx$$

- 6. 判断积分 $\int_0^\pi \frac{dx}{\sqrt{\sin x}}$ 的敛散性
- 7. $\int_0^{+\infty} \frac{\ln x}{(1+x)x^{1-p}} dx$ 收敛,求 p 取值范围
- 8. 8.5 $\lim_{n\to\infty} \sum_{i=1}^n \frac{\sin\frac{i\pi}{n}}{n+\frac{1}{n}}$
- 9. 8.7 讨论 $\int_2^{+\infty} \frac{1}{x \ln^p x} dx$ 的敛散性, 其中 p 为任意实数。

1.9 一元函数积分学的计算

1.
$$\int \frac{1}{\cos x} dx = \ln|\sec x + \tan x| + C$$

2.
$$\int \frac{1}{\sin x} dx = \ln|\csc x + \cot x| + C$$

3.
$$\int \sec x \tan x dx = \sec x + C$$

4.
$$\int \csc x \cot x dx = -\csc x + C$$

5.
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$$

6.
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$$

7.
$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln|x + \sqrt{x^2 - a^2}| + C$$

8.
$$\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln|x + \sqrt{x^2+a^2}| + C$$

9.
$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

10.
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$$

11.
$$\int -\frac{1}{\sqrt{a^2-r^2}} dx = \arccos \frac{x}{a} + C$$

12.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \ln |x + \sqrt{x^2 - a^2}| + C$$

13.
$$\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2} \left(\arcsin \frac{x}{a} + \frac{x}{\sqrt{a^2 - x^2}} \right) + C$$

$$14. \int \tan^2 x dx = \tan x - x + C$$

15.
$$\int \cot^2 x dx = -\cot x - x + C$$

第2章 线性代数

第3章 概率论与数理统计