

FIG. 1

FIG. 2

FIG. 2A

FIG. 3

FIG. 3(a)

FIG. 3A

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

ORDER OF PIXELS PRESENTED BY A SEQUENTIAL READ ITERATOR
ON A 4×2 IMAGE WITH PADDING.

0	1	2	3	
4	5	6	7	

FIG. 17

FIG. 18

A 3×3 BOX VIEW TRAVERSES THE PIXELS IN ORDER: 0, 1, 2, 3, 4, 5, 6, 7, 8 ETC, PLACING A 3×3 BOX CENTERED OVER EACH PIXEL...

3×3 BOX VIEW OF FIRST
PIXEL IN IMAGE = 9 PIXELS,
5 OF WHICH ARE OUTSIDE
THE IMAGE

FIRST 9 PIXELS FROM THE BOX
READ ITERATOR:

152 → IF DUPLICATION OF EDGE PIXELS IS ON: 0, 0, 0, 0, 0, 1, 4, 4, 5
IF DUPLICATION OF EDGE PIXELS IS OFF: V, V, V, V, O, 1, V, 4, 5
WHERE V IS CONSTANTPIXEL
REGISTER VALUE REPRESENTING "OUTSIDE THE IMAGE"

3×3 BOX VIEW OF
SECOND PIXEL IN IMAGE
= 9 PIXELS,
3 OF WHICH ARE
OUTSIDE THE IMAGE

SECOND 9 PIXELS FROM THE BOX
READ ITERATOR:

153 → IF DUPLICATION OF EDGE PIXELS IS ON: 0, 1, 2, 0, 1, 2, 4, 5, 6
IF DUPLICATION OF EDGE PIXELS IS OFF: V, V, V, O, 1, 2, 4, 5, 6
WHERE V IS CONSTANTPIXEL
REGISTER VALUE REPRESENTING "OUTSIDE THE IMAGE"

FIG. 19

FIG. 20

IMAGE BROKEN INTO
VERTICAL STRIPS,
EACH STRIP IS 32
PIXELS ACROSS

LINES ARE ACCESSED
LINE 0 TO LINE N
WITHIN A SINGLE STRIP.

PIXELS ARE ACCESSED
PIXEL 0 - PIXEL 31
WITHIN A SINGLE LINE

FIG. 21

'RANDOM
ACCESS'
READER

CALCULATE
OUTPUT
PIXELS

VERTICAL-
STRIP
WRITE
ITERATOR

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26

2X2 PIXEL BLOCK FROM SENSOR

FIG. 27

FIG. 28

FIG. 29

2X2 PIXEL BLOCK FROM CCD

FIG. 30

FIG. 31

FIG. 32

FIG. 33

FIG. 34

FIG. 35

FIG. 36

FIG. 37

FIG. 38

FIG. 39

FIG. 40

FIG. 41

FIG. 44

FIG. 45

FIG. 46

FIG. 47

FIG. 48

FIG. 49

FIG. 51

FIG. 52

↑
1107

FIG. 50

FIG. 53

FIG. 54

FIG. 55

FIG. 56

FIG. 57

FIG. 58

00:	4F	00	3D									
0C:	4F	00	3D									
18:	4F	00	3D									
24:	4F	00	3D									
30:	4F	00	3D									
3C:	4F	00	3D									
48:	4F	00	3D									
54:	4F	00	3D									
60:	00	00	00	00	00	00	00	00	00	00	00	00
6C:	00	00	00	00	00	00	00	00	00	00	00	00
78:	00	00	00	00	00	00	00	00	00	00	00	00

32 COPIES OF THE
3 BYTE CONTROL
INFORMATION

RESERVED
BYTES ARE 0

FIG. 59

FIG. 60

FIG. 61

FIG. 62

FIG. 63

FIG. 64

RANGE OF BLACK DOTS
(FREQUENCY DISTRIBUTION)

RANGE OF WHITE DOTS
(FREQUENCY DISTRIBUTION)

FIG. 65

PROBABILITY OF A SYMBOL BEING IN ERROR DURING A READ

FIG. 66

APPROXIMATE DATA SIZES FOR 1600 DPI DOTCARD

86MM + 1MM IN HORIZONTAL DIMENSION FOR P ROTATION = 87MM

87MM = 16,252 SCANLINES

16,440 SCANLINES @ 11,000 PIXELS PER SCANLINE = 180,840,000 PIXELS

180,840,000 PIXELS @ 1 BYTE PER PIXEL = 180,840,000 BYTES = 172.5 MB

64 DATA BLOCKS, EACH CONTAINING 597 COLUMNS (595 DATA REGION COLUMNS AND 2 ORIENTATION COLUMNS), @ 48 BYTES PER COLUMN = 28,656 BYTES PER DATA BLOCK FOR A TOTAL OF 1,833,984 BYTES.

64 DATA BLOCKS, EACH CONTAINING 112 ENCODED REED-SOLOMON BLOCKS, @ 255 BYTES PER REED-SOLOMON BLOCK FOR A TOTAL OF 1,827,840 BYTES.

DECODED DATA, WITH A MAXIMUM SIZE OF 910,082 BYTES.
(64 X 112 X 127 - (2 CONTROL BLOCKS @ 127 BYTES))

FIG. 67

FIG. 68

FIG. 69

FIG. 71

FIG. 72

FIG. 73

FIG. 74

FIG. 75

FIG. 76

FIG. 77

FIG. 78

FIG. 79

FIG. 80

FIG. 81

FIG. 82

FIG. 83

FIG. 84

FIG. 85

FIG. 86

FIG. 88

FIG. 87

FIG. 89

POINT (x, y) ON LEVEL B
OF PYRAMID

LEVEL B OF PYRAMID
 $(In_{2^S}+1)$

FIG. 90

FIG. 91

378

FIG. 92

FIG. 93

FIG. 94

FIG. 101

FIG. 95

FIG. 96

FIG. 97

FIG. 98

FIG. 99

FIG. 100

FIG. 106

FIG. 107

FIG. 108

FIG. 109

FIG. 110

FIG. 111

FIG. 112

FIG. 113

FIG. 114

FIG. 115

FIG. 116

FIG. 117

FIG. 118

FIG. 119

FIG. 120

FIG. 121

FIG. 122

FIG. 123

FIG. 124

FIG. 125

FIG. 126

FIG. 127

FIG. 128

FIG. 129

FIG. 130

FIG. 131

FIG. 132

FIG. 133

FIG. 134

FIG. 135

FIG. 136

FIG. 137

FIG. 138

FIG. 139

FIG. 140

FIG. 141

FIG. 142

FIG. 143

FIG. 144

FIG. 145

FIG. 146

FIG. 147

FIG. 148

FIG. 149

FIG. 150

FIG. 151

FIG. 152

FIG. 153

FIG. 154

BECOMES:

FIG. 155

FIG. 156

FIG. 157

FIG. 158

FIG. 159

FIG. 160

FIG. 161

FIG. 162

FIG. 163

FIG. 164

FIG. 164A

FIG. 164B

FIG. 164C

FIG. 164D

FIG. 164E

FIG. 164G

FIG. 164F

FIG. 164H

FIG. 164J

FIG. 165

FIG. 166

FIG. 167

FIG. 168

FIG. 169

FIG. 170

FIG. 171

FIG. 172

FIG. 173

FIG. 174

FIG. 175

FIG. 176

FIG. 177

FIG. 178

FIG. 179

FIG. 180

FIG. 181

FIG. 182

FIG. 183

FIG. 184

FIG. 185

FIG. 186

FIG. 187

FIG. 188

FIG. 189

FIG. 190

FIG. 191

FIG. 192

FIG. 193

FIG. 194

FIG. 195

FIG. 196

FIG. 197

FIG. 198

FIG. 200

FIG. 201

FIG. 203

705 →

DATA TYPE	BITS
Factory Code	16
Batch Number	32
Serial Number	48
Manufacturing Date	16
Media Length	24
Media Type	8
Preprinted Media Length	16
Cyan Ink Viscosity	8
Magenta Ink Viscosity	8
Yellow Ink Viscosity	8
Cyan Drop Volume	8
Magenta Drop Volume	8
Yellow Drop Volume	8
Cyan Ink Color	24
Magenta Ink Color	24
Yellow Ink Color	24
Remaining-media Length Indicator	16
Authentication Key	128
Copyrightable bit pattern	512
Reserved for Camera Use	88
TOTAL	1024

728 →

FIG. 204

FIG. 205

FIG. 206

FIG. 207

FIG. 208

FIG. 209

FIG. 210

FIG. 211

FIG. 212

FIG. 213

FIG. 214

FIG. 215

FIG. 216

FIG. 217

FIG. 218

FIG. 219

FIG. 220

FIG. 221

FIG. 222

901

FIG. 222

FIG. 223

FIG. 224

FIG. 225

FIG. 226

FIG. 227

FIG. 228

FIG. 229

FIG. 230

FIG. 231