Gaia: Geo-Distributed Machine Learning **Approaching LAN Speeds**

Kevin Hsieh

Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R. Ganger, Phillip B. Gibbons, Onur Mutlu[†]

Carnegie Mellon University † ETH zürich

Machine Learning and Big Data

 Machine learning is widely used to derive useful information from large-scale data

Big Data is Geo-Distributed

 A large amount of data is generated rapidly, all over the world

Centralizing Data is Infeasible [1, 2, 3]

- Moving data over wide-area networks (WANs) can be extremely slow
- It is also subject to data sovereignty laws

1. Vulimiri et al., NSDI'15 2. Pu et al., SIGCOMM'15

Geo-distributed ML is Challenging

 No ML system is designed to run across data centers (up to 53X slowdown in our study)

Our Goal

- Develop a geo-distributed ML system
 - Minimize communication over wide-area networks
 - Retain the accuracy and correctness of ML algorithms
 - Without requiring changes to the algorithms

Key Result: **1.8-53.5X speedup** over state-of-the-art ML systems on WANs

Outline

- Problem & Goal
- Background & Motivation
- Gaia System Overview
- Approximate Synchronous Parallel
- System Implementation
- Evaluation
- Conclusion

Background: Parameter Server Architecture

 The parameter server architecture has been widely adopted in many ML systems

Background: Parameter Server Architecture

 The parameter server architecture has been widely adopted in many ML systems

ML Model

Synchronization is critical to the accuracy and correctness of ML algorithms

Deploy Parameter Servers on WANs

 Deploying parameter servers across data centers requires a lot of communication over WANs

WAN: Low Bandwidth and High Cost

- WAN bandwidth is 15X smaller than LAN bandwidth on average, and up to 60X smaller
- In Amazon EC2, the monetary cost of WAN communication is up to 38X the cost of renting machines

ML System Performance on WANs

- Cui et al., "Exploiting Iterative-ness for Parallel ML Computations", SoCC'14
- Wei et al., "Managed Communication and Consistency for Fast Data-Parallel Iterative Analytics", SoCC'15

ML System Performance on WANs

Outline

- Problem & Goal
- Background & Motivation
- Gaia System Overview
- Approximate Synchronous Parallel
- System Implementation
- Evaluation
- Conclusion

Gaia System Overview

 Key idea: Decouple the synchronization model within the data center from the synchronization model between data centers

Gaia System Overview

 Key idea: Decouple the synchronization model within the data center from the synchronization model between data centers

Key Finding: Study of Update Significance

Outline

- Problem & Goal
- Background & Motivation
- Gaia System Overview
- Approximate Synchronous Parallel
- System Implementation
- Evaluation
- Conclusion

Approximate Synchronous Parallel

The significance filter

• Filter updates based on their significance

ASP selective barrier

Ensure significant updates are read in time

Mirror clock

Safe guard for pathological cases

The Significance Filter

Approximate Synchronous Parallel

The significance filter

Filter updates based on their significance

ASP selective barrier

Ensure significant updates are read in time

Mirror clock

Safeguard for pathological cases

ASP Selective Barrier

Outline

- Problem & Goal
- Background & Motivation
- Gaia System Overview
- Approximate Synchronous Parallel
- System Implementation
- Evaluation
- Conclusion

Put it All Together: The Gaia System

Put it All Together: The Gaia System

Problem: Broadcast Significant Updates

Communication overhead is proportional to the number of data centers

Mitigation: Overlay Networks and Hubs

Save communication on WANs by aggregating the updates at hubs

Outline

- Problem & Goal
- Background & Motivation
- Gaia System Overview
- Approximate Synchronous Parallel
- System Implementation
- Evaluation
- Conclusion

Methodology

Applications

- Matrix Factorization with the Netflix dataset
- Topic Modeling with the Nytimes dataset
- Image Classification with the ILSVRC12 dataset

Hardware platform

- 22 machines with emulated EC2 WAN bandwidth
- We validated the performance with a real EC2 deployment

Baseline

• IterStore (Cui et al., SoCC'14) and GeePS (Cui et al., EuroSys'16) on WAN

Performance metrics

- Execution time until algorithm convergence
- Monetary cost of algorithm convergence

Performance – 11 EC2 Data Centers

Gaia achieves 3.7-6.0X speedup over Baseline Gaia is at most 1.40X of LAN speeds

Performance and WAN Bandwidth

Results – EC2 Monetary Cost

Image Classification

More in the Paper

 Convergence proof of Approximate Synchronous Parallel (ASP)

ASP vs. fully asynchronous

Gaia vs. centralizing data approach

Key Takeaways

- The Problem: How to perform ML on geo-distributed data?
 - Centralizing data is infeasible. Geo-distributed ML is very slow
- Our Gaia Approach
 - Decouple the synchronization model within the data center from that across data centers
 - Eliminate insignificant updates across data centers
 - A new synchronization model: Approximate Synchronous Parallel
 - Retain the correctness and accuracy of ML algorithms

Key Results:

- 1.8-53.5X speedup over state-of-the-art ML systems on WANs
- at most 1.40X of LAN speeds
- without requiring changes to algorithms

Gaia: Geo-Distributed Machine Learning **Approaching LAN Speeds**

Kevin Hsieh

Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R. Ganger, Phillip B. Gibbons, Onur Mutlu[†]

Carnegie Mellon University † ETH zürich

Executive Summary

- The Problem: How to perform ML on geo-distributed data?
 - Centralizing data is infeasible. Geo-distributed ML is very slow

Our Goal

- Minimize communication over WANs
- Retain the correctness and accuracy of ML algorithms
- Without requiring changes to ML algorithms

Our Gaia Approach

- Decouple the synchronization model within the data center from that across data centers: Eliminate insignificant updates on WANs
- A new synchronization model: Approximate Synchronous Parallel

Key Results:

- 1.8-53.5X speedup over state-of-the-art ML systems on WANs
- within 1.40X of LAN speeds

Approximate Synchronous Parallel

The significance filter

Filter updates based their significance

ASP selective barrier

Ensure significant updates are read in time

Mirror clock

Safeguard for pathological cases

Mirror Clock

Effect of Synchronization Mechanisms

Matrix Factorization

Topic Modeling

Methodology Details

Hardware

 A 22-node cluster. Each has a 16-core Intel Xeon CPU (E5-2698), a NVIDIA Titan X GPU, 64GB RAM, and a 40GbE NIC

Application details

- Matrix Factorization: SGD algorithm, 500 ranks
- Topic Modeling: Gibbs sampling, 500 topics

Convergence criteria

 The value of the objective function changes less than 2% over the course of 10 iterations

Significance Threshold

• 1% and shrinks over time $\left(\frac{1\%}{\sqrt{T}}\right)$

ML System Performance Comparison

 IterStore [Cui et al. SoCC'15] shows 10X performance improvement over PowerGraph [Gonzalez et al., OSDI'12] for Matrix Factorization

 PowerGraph matches the performance of GraphX [Gonzalez et al., OSDI'14], a Spark-based system

Matrix Factorization (1/3)

 Matrix factorization (also known as collaborative filtering) is a technique commonly used in recommender systems

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	?	?
Romance forever	5	?	?	0	?	?
Cute puppies of love	?	4	0	?	?	?
Nonstop car chases	0	0	5	4	?	?
Swords vs. karate	0	0	5	?	?	?

Matrix Factorization (2/3)

Matrix Factorization (3/3)

Objective function (L2 regularization)

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1\\ x^{(1)}, \dots, x^{(n_m)}\\ \theta^{(1)}, \dots, \theta^{(n_u)}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2$$

Solve with stochastic gradient decent (SGD)

Background – BSP

- BSP (Bulk Synchronous Parallel)
 - All machines need to receive all updates before proceeding to the next iteration

Background – SSP

- SSP (Stale Synchronous Parallel)
 - Allows the fastest worker ahead of the slowest worker by a bounded number of iterations

Compare Against Centralizing Approach

		Gaia Speedup over	Gaia to Centralize
		Centralize	Cost Ratio
Matrix Factorization	EC2-ALL	1.11	3.54
	V/C WAN	1.22	1.00
	S/S WAN	2.13	1.17
Topic Modeling	EC2-ALL	0.80	6.14
	V/C WAN	1.02	1.26
	S/S WAN	1.25	1.92
Image Classification	EC2-ALL	0.76	3.33
	V/C WAN	1.12	1.07
	S/S WAN	1.86	1.08

SSP Performance – 11 Data Centers

Matrix Factorization

SSP Performance – 11 Data Centers

Topic Modeling

SSP Performance – V/C WAN

Matrix Factorization

Topic Modeling

SSP Performance – S/S WAN

Matrix Factorization

Topic Modeling

