EEM Assignment - II

Solve all the questions in a separate answer sheet (Hand written) and submit it within given time.

Last Submission Date: 2079 - 09 - 21

- 1) What is the wavelength associated with a canon projectile of mass 100 kg traveling at a velocity 1000 ms⁻¹.
- 2) The value of constant in Richardson Dushman equation for metal is 30. 1 amp cm $^{-2}$ 0 K $^{-2}$ and the value of minimum energy required for electron to escape the metal surface is 2. lev. Find the emission current density at 1000 0 K. Given $K_B = 1.37 \times 10^{16}$ ergs 0 K $^{-1}$.
- 3) The resistivity ρ of copper at 20°C is 1.69x10⁻⁸ ohm-m and density of free electrons, n = 8.5 x 10^{28}m^{-3} . Calculate the mean free time of electron in copper lattice, (Given m* = 1.0lm, where m = $9.1 \text{x} 10^{-31} \text{Kg}$)
- 4) Indium Antimonide has an electron mobility of $6m^2$ volt⁻¹ sec⁻¹ and hole mobility of $0.2m^2$ volt⁻¹ sec⁻¹. The highest room temperature (300^{0} k) resistivity is 2×10^{-4} ohm-m. Assuming the material is Intrinsic, determine the intrinsic carrier density n_i , at room temperature.
- 5) All electron is confined to an infinite potential well of size 0.1 nm. Calculate the ground energy of the electron and radian frequency. How this electron can be put to the fifth energy level.
- 6) At which temperature, do you expect probability of finding electron at the energy state 0.25e V above Fermi level, will be 10%.

	7)	A	semiconductor	crystal is	characterized	by	following	energy	band Diagram	at	300	0 K.
--	----	---	---------------	------------	---------------	----	-----------	--------	--------------	----	-----	-----------

E _c
 E _{fi}
 E _f
E_{v}

- i) Find the type of dopant and the doping level.
- ii) Calculate the conductivity of semiconductor at room temperature.
- iii) If it is desired that Fermi-Level is to be lowered to 0.3 eV below intrinsic Fermi level what type of dopant is to be used? Determine its doping level.
- 8) Find the resistivity of germanium at temperature of 300 0 K. Given $\mu_{n}=3900$ cm 2 / v s $~\mu_{p}=1900$ cm 2 / v s and $n_{i}=2.5$ x 10^{3} atoms / cm 3
- 9) Derive the following expression for an intrinsic semiconductor ρ_i = 1/B exp [E_g / 2KT] Where ρ_i is the resistivity, E_g is the Energy Gap and B is a constant.
- 10) A Silicon wafer doped uniformly with 10^{16} Indium atoms per cm³ is further doped with $2.1 \, x$ 10^{17} Antimony atoms per cm³. Determine the position of the Fermi energy with respect to the Fermi energy E_{Fi} in intrinsic Silicon. The intrinsic concentration of Silicon is $1.45 \, x \, 10^{10}$ per cm³ at room temperature. Draw energy band diagram for the above .

- 11) The drift mobility of electron is 43 cm²V⁻¹S⁻¹ and the mean speed is 2x10² m/s. Calculate the relaxation time and mean free path of electrons between collisions.) The density of states related effective masses of electrons and holes in silicon are approximately 1.08m_e and 0.56m_e respectively. The electron and hole drift mobility's at room temperature are 1350 and 450 cm² V⁻¹S⁻¹ respectively. Calculate intrinsic concentration and Intrinsic resistivity of silicon. Take the energy band gap for silicon as 1.1eV.
- 12) Consider an electron confined to a region of size 0.1 nm, which is the typical dimension of an atom, what will be the uncertainty in its momentum and hence its kinetic energy?
- 13) Find the temperature at which there is 98% probability that a state 0.3 eV below the Fermi energy level will be occupied by an electron.
- 14) Find the resistance of pure silicon cubic crystal of 1 cm³ at room temperature. What will be the resistance of the cube when it is doped with 1 Arsenic in 10⁹ Si-atoms and 1 Boron atom per billion Si-atoms? Atomic concentration of Si is $5x10^{22}$ cm⁻³ and mobility's for electron and holes are 1350 and 450 cm² v⁻¹s⁻¹ respectively.
- 15) Calculate the mean free path and the mean free time between collision of an electron having drift mobility $43~\text{cm}^2\text{V}^{-1}\text{s}^{-1}$ and mean speed $1.2\text{x}10^6~\text{ms}^{-1}$.