Offline Assignment 2 Report

CSE 472 Sessional

Name: Md. Zulkar Naim

Student ID: 1905016

How to run script:

We just need to comment out dataset specific parts from **Dataset selection** code block (second code block in jupyter notebook).

```
# For first dataset
dataframe = pd.read_csv("M_Fn-UseC_-Telco-Customer-churn.csv")
dataframe = pd.read_csv("M_Fn-UseC_-Telco-Customer-churn.csv")
dataframe = dataframe.drop("customerD", axis=1)
dataframe['totalcharges'] = pd.to. numeric(dataframe['Totalcharges'], errors='coerce')
Features, Labels = preprocessing(dataframe, 'churn', feature_count-30)
X. X test, y, y test = train_test_split(features, Labels, test_size=0.2, random_state=96)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=16)

# # For second dataset
# dataframe = pd.read_csv("adult.data", header=None)
# dataframe = pd.read_csv("adult.test", skiprows=1, header=None)
# dataframe = pd.read_csv("adult.test", skiprows=1, header=None)
# dataframe = pd.concat([dataframe, dataf], ignore_index=True)
# dataframe = pd.concat([dataframe, dataf], ignore_index=True)
# Features, Labels = preprocessing(dataframe, 14, feature_count=30)
# X_test = Labels[index]
# Y_test = Labels[index]
# y = Labels[index]
# y = Labels[index]
# x_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=16)

# # For third dataset
# dataframe = pd.concat([dataframe] (class']==1], dataframe[dataframe['Class']==0].sample(n=20000, random_state=16)], ignore_index=True)
# dataframe = pd.read_csv("creditcard.csv")
# dataframe = pd.read_csv([dataframe] (class']==1], dataframe[dataframe['Class']==0].sample(n=20000, random_state=16)], ignore_index=True)
# Features, Labels = preprocessing(dataframe, 'class') = 1, dataframe['class']==0].sample(n=20000, random_state=16)], ignore_index=True)
# X_tx test, y_y_test = train_test_split(Reatures, tabels, test_size=0.2, random_state=06)
# X_train, X_val, y_train, y_val = train_test_split(Reatures, tabels, test_size=0.2, random_state=16)
```

- For first dataset (https://www.kaggle.com/blastchar/telco-customer-churn): Keep the first part of this code and comment the rest of this block.
- For second dataset (https://archive.ics.uci.edu/ml/datasets/adult): Keep the second part of this code and comment the rest of this block.
- For third dataset (https://www.kaggle.com/mlg-ulb/creditcardfraud): Keep the third part of this code and comment the rest of this block.

Performance Evaluation:

For first dataset (https://www.kaggle.com/blastchar/telco-customer-churn):

Learning rate = 0.0001, no regularization

Performance on Test set

	Accuracy	Sensitivity	Specificity	Precision	F1-Score	AUROC	AUPR
LR	0.800 ± 0.007	0.546 ± 0.010	0.884 ± 0.012	0.610 ± 0.022	0.576 ± 0.007	0.843 ± 0.001	0.641 ± 0.006
Voting ensemble	0.79573	0.538682	0.880682	0.598726	0.567119	0.844396	0.644381
Stacking ensemble	0.808541	0.515759	0.905303	0.642857	0.572337	0.748987	0.50329

Violin plots for each performance metric for the 9 bagging LR learners

For second dataset (https://archive.ics.uci.edu/ml/datasets/adult):

Learning rate = 0.0001, no regularization

Performance on Test set

	Accuracy	Sensitivity	Specificity	Precision	F1-Score	AUROC	AUPR
LR	0.843 ± 0.001	0.556 ± 0.006	0.932 ± 0.002	0.717 ± 0.004	0.627 ± 0.003	0.893 ± 0.000	0.720 ± 0.001
Voting ensemble	0.843552	0.555295	0.932715	0.718529	0.626453	0.893589	0.720353
Stacking ensemble	0.843552	0.556077	0.932473	0.718087	0.626782	0.755387	0.522309

Violin plots for each performance metric for the 9 bagging LR learners

For third dataset (https://www.kaggle.com/mlg-ulb/creditcardfraud):

Learning rate = 0.01, L2 regularization, Regularization strength = 0.1

Performance on Test set

	Accuracy	Sensitivity	Specificity	Precision	F1-Score	AUROC	AUPR
LR	0.993 ± 0.001	0.766 ± 0.009	0.999 ± 0.001	0.967 ± 0.027	0.855 ± 0.008	0.978 ± 0.001	0.872 ± 0.002
Voting ensemble	0.993405	0.767857	0.999749	0.988506	0.864322	0.978656	0.872587
Stacking ensemble	0.992672	0.776786	0.998744	0.945652	0.852941	0.888031	0.773377

Violin plots for each performance metric for the 9 bagging LR learners

