Algèbre de base

Chapitre 9

Applications linéaires sur \mathbb{K}^n

Pré-requis
□ Applications.
\square Notions de sous-espaces vectoriels de \mathbb{K}^n .
\square Notions de bases et dimension d'un espace vectoriel de \mathbb{K}^n .
\square Matrices.
Objectifs
☐ Savoir reconnaître une application linéaire.
☐ Utilisation de la linéarité
□ Notions de noyau et image d'une application linéaire.
☐ Déterminer la matrice d'une application linéaire dans des bases données.
\square Effectuer des changements de bases.

Sommaire

Séquence 1 : Applications linéaires, noyau et image

3

Définition et premières propriétés - Noyau et image d'une application linéaire - Applications linéaires bijectives.

Séquence 2 : Matrice d'une application linéaire

13

Définition et propriétés - Matrices équivalentes et changement de bases.

Chapitre 9 - Séquence 1

Applications linéaires, noyau et image

Dans toute la suite, n et p désignent des entiers naturels non nuls et $\mathbb{K} := \mathbb{R}$ ou \mathbb{C} .

1 Définition et premières propriétés

Définition: Application linéaire

On appelle **application linéaire de** \mathbb{K}^n dans \mathbb{K}^p , toute application f de \mathbb{K}^n dans \mathbb{K}^p telle que, pour tous $x, y \in \mathbb{K}^n$ et $\lambda \in \mathbb{K}$, on a

$$f(\lambda x + y) = \lambda f(x) + f(y).$$

On note $\mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$ l'ensemble des applications linéaires de \mathbb{K}^n dans \mathbb{K}^p . Si p = n, on pose $\mathcal{L}(\mathbb{K}^n) := \mathcal{L}(\mathbb{K}^n, \mathbb{K}^n)$.

© Exemples

1) L'application nulle f de \mathbb{K}^n dans \mathbb{K}^p définie par

$$\forall x \in \mathbb{K}^n, \quad f(x) := 0_{\mathbb{K}^p},$$

est linéaire.

2) L'application identité $id_{\mathbb{K}^n}$ de \mathbb{K}^n dans \mathbb{K}^n définie par

$$\forall x \in \mathbb{K}^n, id_{\mathbb{K}^n}(x) := x,$$

est linéaire.

3) L'application f définie de \mathbb{R}^3 dans \mathbb{R}^2 par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (2x_1 + x_2, x_2 - x_3),$$

est linéaire.

En effet, soient $x := (x_1, x_2, x_3), y := (y_1, y_2, y_3) \in \mathbb{R}^3$ et $\lambda \in \mathbb{K}$. Alors,

$$\lambda x + y = (\lambda x_1 + y_1, \lambda x_2 + y_2, \lambda x_3 + y_3),$$

ďoù

$$f(\lambda x + y) = (2(\lambda x_1 + y_1) + \lambda x_2 + y_2, x_2 + y_2 - (\lambda x_3 + y_3))$$

= $(2\lambda x_1 + \lambda x_2 + 2y_1 + y_2, \lambda x_2 - \lambda x_3 + y_2 - y_3)$
= $\lambda (2x_1 + x_2, x_2 - x_3) + (2y_1 + y_2, y_2 - y_3) = \lambda f(x) + f(y).$

4) Par contre, l'application f définie de \mathbb{R}^3 dans \mathbb{R}^2 par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (2x_1^2 + x_2, x_2 - x_3),$$

n'est pas linéaire.

En effet, soit x := (1,0,0), y := (0,0,0) et $\lambda := 2$. Alors, on a

$$f(\lambda x + y) = f(2,0,0) = (8,0)$$
 et $\lambda f(x) + f(y) = 2(2,0) + (0,0) = (4,0)$,

donc $f(\lambda x + y) \neq \lambda f(x) + f(y)$.

🔥 Remarque

Pour toute application linéaire $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$, on a

$$f(0_{\mathbb{K}^n}) = 0_{\mathbb{K}^p}.$$

En effet, $f(0_{\mathbb{K}^n}) = f(0_{\mathbb{K}^n} + 0_{\mathbb{K}^n}) = f(0_{\mathbb{K}^n}) + f(0_{\mathbb{K}^n})$, d'où $f(0_{\mathbb{K}^n}) = 0_{\mathbb{K}^p}$.

Exemple

L'application f de \mathbb{K}^2 dans \mathbb{K} définie par

$$\forall (x,y) \in \mathbb{K}^2, \quad f(x,y) \coloneqq 1 + x + y,$$

n'est pas linéaire. En effet, on a $f(0_{\mathbb{K}^2})=1+0+0=1\neq 0.$

Exercice 1.

Les applications ci-dessous sont-elles linéaires? Justifier vos réponses.

1) $f_1: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$\forall x := (x_1, x_2) \in \mathbb{R}^2, \quad f_1(x) := (2x_1 + x_2, x_1).$$

2) $f_2: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$\forall x := (x_1, x_2) \in \mathbb{R}^2, \quad f_2(x) := (x_2 - 1, x_1 + x_2).$$

3) $f_3: \mathbb{R}^3 \to \mathbb{R}^2$ définie par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f_3(x) := x_1 - x_2 + x_3.$$

4) $f_4: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f_4(x) := (x_1 x_2 + x_3, x_2, x_3).$$

Proposition

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$. Soient $k \in \mathbb{N}^*$, $(\lambda_1, \dots, \lambda_k) \in \mathbb{K}^k$, $x_1 \in \mathbb{K}^n$, ..., $x_k \in \mathbb{K}^n$. Alors, on a

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) = \sum_{i=1}^{n} \lambda_i f(x_i).$$

Exemples

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$. On illustre ci-dessous la proposition précédente dans le cas k=2 et

 $\,\rhd\,$ Soient u,v deux éléments de \mathbb{K}^n et $(\lambda_1,\lambda_2)\in\mathbb{K}^2.$ Alors, on a

$$f(\lambda_1 u + \lambda_2 v) = \lambda_1 f(u) + \lambda_2 f(v).$$

 \triangleright Soient u, v, w trois éléments de \mathbb{K}^n et $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{K}^3$. Alors, on a

$$f(\lambda_1 u + \lambda_2 v + \lambda_3 w) = \lambda_1 f(u) + \lambda_2 f(v) + \lambda_3 f(w).$$

Proposition

Soit $\mathcal{B} := (e_1, \dots, e_n)$ une base de \mathbb{K}^n .

Alors, pour tout $u_1 \in \mathbb{K}^p$, ..., $u_n \in \mathbb{K}^p$, il existe une unique application linéaire $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$ telle que

$$\forall i \in [1; n], \quad f(e_i) = u_i. \tag{1}$$

Cette application est définie par

$$\forall x \in \mathbb{K}^n, \quad f(x) := \sum_{i=1}^n x_i f(e_i) = \sum_{i=1}^n x_i u_i, \tag{2}$$

où

$$x = \sum_{i=1}^{n} x_i e_i.$$

Remarque

Autrement dit, on peut définir une application linéaire de manière unique en ne donnant que les images des vecteurs de base, i.e. $f(e_1), \ldots, f(e_n)$.

Exemple

Soit $\mathcal{B} := (e_1, e_2)$ la base canonique de \mathbb{R}^2 . On définit $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ par

$$f(e_1) := (1, 2, 0)$$
 et $f(e_2) := (0, 1, 1)$.

On a ainsi bien défini l'application linéaire f.

Déterminons l'expression de f. Soit $x := (x_1, x_2) \in \mathbb{R}^2$. Puisque $\mathcal{B} = (e_1, e_2)$ est la base canonique de \mathbb{R}^2 , on a $x = x_1e_1 + x_2e_2$, d'où

$$f(x) = f(x_1e_1 + x_2e_2) = x_1f(e_1) + x_2f(e_2) = x_1(1, 2, 0) + x_2(0, 1, 1) = (x_1, 2x_1 + x_2, x_2).$$

Exercice 2.

On note (e_1, e_2) la base canonique de \mathbb{R}^2 et (e'_1, e'_2, e'_3) la base canonique de \mathbb{R}^3 . Déterminer les expressions des applications linéaires ci-dessous.

1) L'application $f_1 \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^4)$ définie par

$$f(e_1) := (1, 1, 1, 1)$$
 et $f(e_2) := (0, 1, 2, 0)$.

2) L'application $f_2 \in \mathcal{L}(\mathbb{R}^3)$ définie par

$$f(e_1') := (1, 0, 1), \quad f(e_2') := (-1, 1, -1) \quad \text{et} \quad f(e_2') := (0, -1, 2).$$

Proposition

Soient $q \in \mathbb{N}^*$, $g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^q)$ et $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$. Alors, $g \circ f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^q)$.

Exemple

Soient $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ et $g \in \mathcal{L}(\mathbb{R}^2)$ définies par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (3x_1 + 5x_2 + 7x_3, 2x_1 + 2x_2 + 2x_3),$$

$$\forall x := (x_1, x_2) \in \mathbb{R}^2, \quad g(x) := (x_1 + x_2, x_1 - x_2).$$

et
$$\forall \ x \coloneqq (x_1,x_2) \in \mathbb{R}^2, \quad g(x) \coloneqq (x_1+x_2,x_1-x_2).$$
 Alors, $h \coloneqq g \circ f$ est donnée par
$$\forall \ x \coloneqq (x_1,x_2,x_3) \in \mathbb{R}^3, \quad h(x) = (5x_1+7x_2+9x_3,x_1+3x_2+5x_3).$$
 Il est clair que $h \in \mathcal{L}(\mathbb{R}^2)$.

Noyau et image d'une application linéaire 2

On donne ci-dessous la définition de deux ensembles associés à une application linéaire qui auront une très grande importance pour la suite.

Définitions: Noyau et image

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$.

1) On appelle noyau de f le sous-ensemble de \mathbb{K}^n , noté $\mathrm{Ker}(f)$, défini par

$$\operatorname{Ker}(f) := \{ x \in \mathbb{K}^n \mid f(x) = 0_{\mathbb{K}^p} \}.$$

2) On appelle image de f le sous-ensemble de \mathbb{K}^p , noté $\mathrm{Im}(f)$, défini par

$$\operatorname{Im}(f) \coloneqq \{ f(x) \mid x \in \mathbb{K}^n \} = \{ y \in \mathbb{K}^p \mid \exists \ x \in \mathbb{K}^n, \ y = f(x) \}.$$

\right Remarque

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$. Par définition, on a toujours

$$\operatorname{Ker}(f) \subset \mathbb{K}^n \quad \text{et} \quad \operatorname{Im}(f) \subset \mathbb{K}^p.$$

De plus, puisque $f(0_{\mathbb{K}^n}) = 0_{\mathbb{K}^p}$, on a aussi toujours $0_{\mathbb{K}^n} \in \text{Ker}(f)$.

Proposition

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$. Alors,

- 1) Ker(f) est un sous-espace vectoriel de \mathbb{K}^n ,
- 2) Im(f) est un sous-espace vectoriel de \mathbb{K}^p .

Démonstration. On donne la preuve seulement pour Ker(f). Le cas de Im(f) sera traité en exercice. D'après la remarque, $0_{\mathbb{K}^n} \in Ker(f)$.

Soient $x, y \in \text{Ker}(f)$ et $\lambda \in \mathbb{K}$. Alors, on a

$$f(\lambda x + y) = \lambda \underbrace{f(x)}_{=0_{\mathbb{K}^p}} + \underbrace{f(y)}_{=0_{\mathbb{K}^p}} = 0_{\mathbb{K}^p}.$$

Donc $\lambda x + y \in \text{Ker}(f)$. On en déduit que Ker(f) est un sous-espace vectoriel de \mathbb{K}^n .

Exemple

On considère l'application linéaire f définie de \mathbb{R}^3 dans \mathbb{R}^2 par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (2x_1 + x_2, x_2 - x_3).$$

Soit $x := (x_1, x_2, x_3) \in \text{Ker}(f)$. Alors $f(x) = 0_{\mathbb{R}^2}$, d'où

$$\begin{cases} 2x_1 + x_2 & = 0, \\ x_2 - x_3 & = 0. \end{cases}$$

Ce qui équivaut à $x_2 = -2x_1$ et $x_3 = x_2 = -2x_1$. On en déduit $x \in \text{Vect}(1, -2, -2)$ donc $\text{Ker}(f) \subset \text{Vect}(1, -2, -2)$.

De plus, $f(1,-2,-2)=0_{\mathbb{R}^2}$ d'où $(1,-2,-2)\in \mathrm{Ker}(f)$ donc, puisque $\mathrm{Ker}(f)$ est un sous-espace vectoriel de \mathbb{R}^3 , on obtient

$$Ker(f) = Vect(1, -2, -2)$$
.

En particulier, Ker(f) est un sous-espace vectoriel de dimension 1.

Exercice 3.

Soit $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ définie par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (2x_1 + x_2, x_2 - x_3),$$

Déterminer Ker(f).

Proposition

Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$ et (e_1, \ldots, e_n) une base de \mathbb{K}^n . Alors,

$$Im(f) = Vect(f(e_1), \dots, f(e_n))$$

$ilde{m{\mathcal{L}}}$ Attention

Dans le cadre de la proposition précédente, on ne peut pas conclure que $(f(e_1), \ldots, f(e_n))$ est une base de Im(f). En effet, cela n'est le cas que si $(f(e_1), \ldots, f(e_n))$ est une famille libre.

© Exemple

On considère de nouveau l'application linéaire f définie de \mathbb{R}^3 dans \mathbb{R}^2 par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (2x_1 + x_2, x_2 - x_3).$$

Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . Alors, on a

$$f(e_1)=f(1,0,0)=(2,0), \quad f(e_2)=f(0,1,0)=(1,1) \quad \text{et} \quad f(e_3)=f(0,0,1)=(0,-1).$$
 On en déduit
$$\mathrm{Im}(f)=\mathrm{Vect}\left((2,0),(1,1),(0,-1)\right).$$

On en déduit

$$\operatorname{Im}(f) = \operatorname{Vect}((2,0), (1,1), (0,-1)).$$

Or (2,0) = 2(1,1) + 2(0,-1). Autrement dit, (2,0) est combinaison linéaire de (1,1) et (0,-1). Ainsi, on obtient

$$\operatorname{Im}(f) = \operatorname{Vect}((1,1),(0,-1)).$$

Puisque la famille ((1,1),(0,-1)) est libre, il n'est pas possible de simplifier davantage l'expression de Im(f).

S Exercice 4.

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ définie par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (x_1 + x_3, x_1 + x_2 + 2x_3, x_2 + x_3).$$

Déterminer Im(f).

Applications linéaires bijectives 3

Définitions

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$. On dit que f est **bijective** (ou que f est une **bijection**) de \mathbb{K}^n sur \mathbb{K}^p si, pour tout $y \in \mathbb{K}^p$, il existe un unique $x \in \mathbb{K}^n$ tel que y = f(x).

Si f est bijective, l'application qui à tout $y \in \mathbb{K}^p$ associe son unique antécédent $x \in \mathbb{K}^n$ par f, est notée f^{-1} et est appelée la **réciproque** de f, i.e.

$$\forall y \in \mathbb{K}^p, \quad f^{-1}(y) = x \iff y = f(x).$$

Proposition

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$.

Si f est bijective, alors f^{-1} est une application linéaire.

👶 Remarque

La démonstration de ce résultat sera faite en exercice.

Proposition

Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$.

Alors, f est bijective si et seulement si

- 1) n = p
- **2)** et $Ker(f) = \{0_{\mathbb{K}^n}\}.$

Exemples

ightharpoonup Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par

$$\forall x := (x_1, x_2) \in \mathbb{R}^2, \quad f(x) := (x_1 + x_2, x_1 - x_2, x_1).$$

Alors, f est linéaire (exercice). Déterminons Ker(f). Soit $x := (x_1, x_2) \in Ker(f)$. Alors, on a

$$x_1 + x_2 = 0$$
, $x_1 - x_2 = 0$ et $x_1 = 0$.

On en déduit $x_1 = x_2 = 0$ donc $x = 0_{\mathbb{R}^2}$. D'où $\operatorname{Ker}(f) = \{0_{\mathbb{R}^2}\}$.

Mais f n'est pas bijective. En effet, soit $y := (1, 1, 0) \in \mathbb{R}^3$ et supposons qu'il existe $x := (x_1, x_2) \in \mathbb{R}^2$ tel que y = f(x). Alors, on obtient

$$\begin{cases} x_1 + x_2 &= 1, \\ x_1 - x_2 &= 1, \\ x_1 &= 0, \end{cases}$$

d'où $x_2 = 1$ et $x_2 = -1$, ce qui est absurde. Ainsi, il existe $y \in \mathbb{R}^3$ tel qu'il n'existe pas $x \in \mathbb{R}^2$ pour lequel y = f(x).

Le fait que f ne soit pas bijective est ici une conséquence du fait que $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ et $2 \neq 3$.

 \triangleright Soit $f \in \mathcal{L}(\mathbb{R}^2)$ définie par

$$\forall x := (x_1, x_2) \in \mathbb{R}^2, \quad f(x) := (x_1 + x_2, 0).$$

Alors, f n'est pas bijective (bien que n=p avec les notations de la Proposition précédente).

En effet, pour tout $y := (y_1, y_2) \in \mathbb{R}^2$ avec $y_2 \neq 0$, il n'existe pas $x \in \mathbb{R}^2$ tel que f(x) = y.

Le fait que f ne soit pas bijective est ici une conséquence du fait que $Ker(f) \neq \{0_{\mathbb{R}^2}\}$. En effet, par exemple, $(1, -1) \in Ker(f)$.

ightharpoonup Soit $f \in \mathcal{L}(\mathbb{R}^2)$ définie par

$$\forall x := (x_1, x_2) \in \mathbb{R}^2, \quad f(x) := (x_1 + x_2, x_1 - x_2).$$

Alors, f est bijective. En effet, les propriétés ${\bf 1}$) et ${\bf 2}$) de la Proposition précédente sont bien vérifées.

On peut aussi le vérifier directement. Soit $y := (y_1, y_2) \in \mathbb{R}^2$. On cherche $x := (x_1, x_2) \in \mathbb{R}^2$ tel que y = f(x). On obtient alors le système suivant :

$$\begin{cases} x_1 + x_2 &= y_1, \\ x_1 - x_2 &= y_2. \end{cases}$$

Ce système admet une unique solution donc f est bijective. De plus, on obtient $x_1 = \frac{y_1 + y_2}{2}$ et $x_2 = \frac{y_1 - y_2}{2}$ donc on en déduit que la réciproque f^{-1} est donnée par

$$\forall y := (y_1, y_2) \in \mathbb{R}^2, \quad f^{-1}(y) = \left(\frac{y_1 + y_2}{2}, \frac{y_1 - y_2}{2}\right).$$

9

Chapitre 9

Feuille d'exercices : Séquence 1

Dans toute la suite, $\mathbb{K} := \mathbb{R}$ ou \mathbb{C} .

S Exercice 1.

Pour tout $x \in \mathbb{R}^n$, $n \in \mathbb{N}^*$, on note x_i , $i \in [1; n]$, les composantes de x dans la base canonique, c'est-à-dire $x = (x_1, \dots, x_n)$.

Les applications ci-dessous sont-elles linéaires?

1)
$$\forall x \in \mathbb{R}^3$$
, $f_1(x) := x_1 + x_2 + 2x_3$,

2)
$$\forall x \in \mathbb{R}^3$$
, $f_2(x) := x_1 + x_2 + 1$,

$$\mathbf{3)} \ \forall \ x \in \mathbb{R}^2, \quad f_3(x) \coloneqq x_1 x_2,$$

4)
$$\forall x \in \mathbb{R}^3, \quad f_4(x) := x_1 - x_3,$$

5)
$$\forall x \in \mathbb{R}^2$$
, $f_5(x) := (x_1 - 2x_2, 2x_1 + x_2)$,

6)
$$\forall x \in \mathbb{R}^3$$
, $f_6(x) := (x_1 + x_2 - x_3, 2x_1 + x_2 + 3x_3)$,

7)
$$\forall x \in \mathbb{R}^3$$
, $f_7(x) := (2x_1 - x_2 + x_3, x_1 - x_2 + 2x_3, -x_1 + 2x_2 - 5x_3)$,

8)
$$\forall x \in \mathbb{R}^3$$
, $f_8(x) := (x_2 + x_1 x_3, 3x_1 - 4x_2 + 5x_3, x_1 - x_3, 3x_2 + x_3)$.

Exercice 2.

Soient $n, p, q \in \mathbb{N}^*$.

- 1) Montrer qu'une combinaison linéaire d'applications linéaires de \mathbb{K}^n dans \mathbb{K}^p est une application linéaire de \mathbb{K}^n dans \mathbb{K}^p .
- 2) Montrer que la composée d'une applications linéaire de \mathbb{K}^n dans \mathbb{K}^p et d'une application linéaire de \mathbb{K}^p dans \mathbb{K}^q est une application linéaire de \mathbb{K}^n dans \mathbb{K}^q .

S Exercice 3.

Pour chaque application linéaire de l'exercice 1,

- $\,\rhd\,$ déterminer une base de son noyau et une base de son image,
- ⊳ en déduire si elles sont bijectives.

Exercice 4.

Soit (u_1, u_2, u_3) une base de \mathbb{K}^3 .

On définit l'application linéaire $f \in \mathcal{L}(\mathbb{K}^3)$ par :

$$f(u_1) := u_1 + 2u_2 + u_3, \ f(u_2) := u_1 + u_2 - u_3, \ f(u_3) := u_2 + u_3.$$

Déterminer Ker(f) et Im(f).

Exercice 5.

Soit $f \in \mathcal{L}(\mathbb{K}^n)$. On suppose f bijective.

Montrer que f^{-1} est linéaire.

Chapitre 9 - Séquence 2

Matrice d'une application linéaire

Dans toute séquence, $n, p \in \mathbb{N}^*$ et on note

$$E \coloneqq \mathbb{K}^p \quad \text{et} \quad F \coloneqq \mathbb{K}^n.$$

4 Définition et propriétés

Soient $\mathcal{B}_E := (u_1, \dots, u_p)$ une base de E, $\mathcal{B}_F := (v_1, \dots, v_n)$ une base de F et $f \in \mathcal{L}(E, F)$. Soit $x \in E$. Alors, il existe $x_1, \dots, x_p \in \mathbb{K}$ tels que

$$x = \sum_{j=1}^{p} x_j u_j.$$

Puisque f est linéaire de E dans F, on a

$$f(x) = \sum_{j=1}^{p} x_j f(u_j).$$

Or, pour tout $j \in [1, p]$, $f(u_j) \in F$, donc il existe $a_{ij} \in \mathbb{K}$, $i \in [1, n]$ tels que

$$f(u_j) = \sum_{i=1}^n a_{ij} v_i. \tag{3}$$

On en déduit

$$f(x) = \sum_{i=1}^{n} \underbrace{\left(\sum_{j=1}^{p} a_{ij} x_{j}\right)}_{=(Ax)_{i}} v_{i}, \quad \text{où} \quad x = \sum_{j=1}^{p} x_{j} u_{j} \quad \text{et} \quad A = (a_{ij})_{1 \le i \le n \atop 1 \le j \le p}.$$
(4)

Définitions: Matrice associée à une application linéaire

Soient $\mathcal{B}_E := (u_1, \dots, u_p)$ une base de $E, \mathcal{B}_F := (v_1, \dots, v_n)$ une base de F.

- $ightharpoonup ext{Soit } f \in \mathcal{L}(E, F).$ On appelle **matrice associée** à f dans les bases \mathcal{B}_E et \mathcal{B}_F la matrice notée $M_{\mathcal{B}_F\mathcal{B}_E}(f) \in \mathcal{M}_{n,p}(\mathbb{K})$ dont les coefficients sont les a_{ij} donnés par (3). Dans le cas où F := E et $\mathcal{B}_F := \mathcal{B}_E$, on note simplement $M_{\mathcal{B}_E}(f) \in \mathcal{M}_n(\mathbb{K})$.
- \triangleright Soit $A := (a_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K})$. Alors, **l'application linéaire associée** à A dans les bases \mathcal{B}_E et \mathcal{B}_F est l'application linéaire f définie par (4).

Remarques

 \triangleright Si f et g sont deux applications linéaires de $\mathcal{L}(E,F)$ et $\lambda \in \mathbb{K}$ alors

$$M_{\mathcal{B}_F \mathcal{B}_E}(\lambda f + g) = \lambda M_{\mathcal{B}_F \mathcal{B}_E}(f) + M_{\mathcal{B}_F \mathcal{B}_E}(g).$$

 \triangleright Dans les conditions de la définition précédente, on construit $M_{\mathcal{B}_F\mathcal{B}_E}(f) \in \mathcal{M}_{n,p}(\mathbb{K})$ de

la façon suivante:

$$M_{\mathcal{B}_F \mathcal{B}_E}(f) = \begin{pmatrix} a_{11} & a_{12} & \dots & f(u_p) \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} / v_1$$

La notation précédente se comprend de la manière suivante : a_{ij} est la composante de $f(u_i)$ par rapport à v_i .

 \triangleright Pour tout $x \in E$, on a

$$M_{\mathcal{B}_F}(f(x)) = M_{\mathcal{B}_F \mathcal{B}_E}(f) M_{\mathcal{B}_E}(x).$$

$\overset{\mathcal{L}}{\triangleright}$ Attention

L'ordre des bases dans la notation des matrices est important.

La matrice $M_{\mathcal{B}_F\mathcal{B}_E}(f)$ est la matrice de f avec \mathcal{B}_E comme base de départ et \mathcal{B}_F comme base d'arrivée.

Exemples

 \triangleright Soit $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ définie par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (x_1 + x_2 - x_3, 2x_1 + x_2 + 3x_3).$$

On note $\mathcal{B}_1 := (u_1, u_2, u_3)$ la base canonique de \mathbb{R}^3 et $\mathcal{B}_2 := (v_1, v_2)$ la base canonique

Pour déterminer $M_{\mathcal{B}_2\mathcal{B}_1}(f)$, on calcule $f(u_i)$, $i \in [1;3]$ en fonction de v_1 et v_2 . On a

$$f(u_1) = (1,2) = (1,0) + 2(0,1) = v_1 + 2v_2,$$

$$f(u_2) = (1,1) = v_1 + v_2$$

$$f(u_3) = (-1,3) = -v_1 + 3v_2.$$

On obtient alors

$$M_{\mathcal{B}_2\mathcal{B}_1}(f) = \begin{pmatrix} f(u_1) & f(u_2) & f(u_3) \\ 1 & 1 & -1 \\ 2 & 1 & 3 \end{pmatrix} / v_1 / v_2$$

On peut alors calculer f(x), pour $x \in \mathbb{R}^3$, via la matrice $M_{\mathcal{B}_2\mathcal{B}_1}(f)$. Par exemple, si x := (1, 1, 1), alors $x = u_1 + u_2 + u_3$ donc

$$f(1,1,1) = M_{\mathcal{B}_2\mathcal{B}_1}(f) \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\6 \end{pmatrix}.$$

▷ La matrice associée à l'application identité dans deux bases identiques est la matrice identité. En effet, on a

$$M_{\mathcal{B}_E}(id_E) = \begin{pmatrix} id_E(u_1) & id_E(u_2) & \dots & id_E(u_p) \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} / u_1 / u_2 = I_p$$

14

Réciproquement, si $M_{\mathcal{B}_E}(f) = I_p$, alors $f = id_E$.

La composée de deux applications linéaires est une application linéaire (fait en exercie). Une question naturelle est alors de déterminer la matrice associée à cette application linéaire en fonction des matrices associées aux applications linéaires qui la composent.

Théorème

Soient $q \in \mathbb{N}^*$ et $G := \mathbb{K}^q$. Soit \mathcal{B}_E (resp. \mathcal{B}_F et \mathcal{B}_G) une base de E (resp. F et G). Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Alors,

$$M_{\mathcal{B}_G \mathcal{B}_E}(g \circ f) = M_{\mathcal{B}_G \mathcal{B}_E}(g) M_{\mathcal{B}_F \mathcal{B}_E}(f).$$

Remarque

Autrement dit, de façon moins formelle, la matrice associée à une composée est le produit des matrices associées.

Corollaire

Soient \mathcal{B} , \mathcal{B}' deux bases de \mathbb{K}^n et $f \in \mathcal{L}(\mathbb{K}^n)$.

Alors, l'application f est bijective si et seulement si $M_{\mathcal{B}'\mathcal{B}}(f) \in \mathcal{M}_n(\mathbb{K})$ est inversible. De plus, dans ce cas, on a

$$(M_{\mathcal{B}'\mathcal{B}}(f))^{-1} = M_{\mathcal{B}\mathcal{B}'}(f^{-1}),$$

où $f^{-1} \in \mathcal{L}(\mathbb{K}^n)$ est la réciproque de f.

🔴 Remarque

En particulier, le résultat précédent ne dépend pas des bases \mathcal{B} et \mathcal{B}' choisies. Autrement dit, f est bijective si et seulement si n'importe quelle matrice associée à f est inversible.

5 Matrices équivalentes et changement de bases

Soient $\mathcal{B}_E, \mathcal{B}'_E$ deux bases de E et $\mathcal{B}_F, \mathcal{B}'_F$ deux bases de F. On considère

$$f \in \mathcal{L}(E, F), \quad A := M_{\mathcal{B}_F \mathcal{B}_E}(f) \quad \text{et} \quad B := M_{\mathcal{B}_F' \mathcal{B}_E'}(f).$$

Autrement dit, A et B sont des matrices associées à la même application linéaire mais dans des bases différentes. L'objectif de cette section est de déterminer le lien existant entre A et B.

Définitions: Matrices équivalentes et matrices semblables

On reprend les notations ci-dessus.

- 1) Les matrices A et B sont dites équivalentes.
- 2) Dans le cas où E := F, $\mathcal{B}_E := \mathcal{B}_F$ et $\mathcal{B}_E' := \mathcal{B}_F'$, i.e. $A = M_{\mathcal{B}_E}(f)$ et $B = M_{\mathcal{B}_E'}(f)$, on dit que A et B sont **semblables**.

Remarque

D'après le dernier résultat vu dans la section précédente, si deux matrices sont équivalentes alors si l'une est inversible, l'autre l'est aussi.

Exemple

Soit $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ définie par

$$\forall x \in \mathbb{R}^3, \quad f(x) := (x_1 + x_2 - x_3, 2x_1 + x_2 + 3x_3).$$

On note $\mathcal{B}_1 := (u_1, u_2, u_3)$ la base canonique de \mathbb{R}^3 et $\mathcal{B}_2 := (v_1, v_2)$ la base canonique de \mathbb{R}^2 . On a vu précédemment que l'on a

$$A := M_{\mathcal{B}_2 \mathcal{B}_1}(f) = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 3 \end{pmatrix}$$

Les familles $\mathcal{B}_1' := ((1,1,1),(1,1,0),(1,0,0))$ et $\mathcal{B}_2' := ((1,1),(0,1))$ sont des bases de, respectivement, \mathbb{R}^3 et \mathbb{R}^2 (exercice). On a (exercice)

$$B := M_{\mathcal{B}_2'\mathcal{B}_1'}(f) = \begin{pmatrix} 1 & 2 & 1 \\ 5 & 1 & 1 \end{pmatrix}$$

Alors, les matrices A et B sont équivalentes.

Définition: Matrice de passage

Soit $P \in \mathcal{M}_n(\mathbb{K})$ la matrice associée à l'application identité id_E de E dans les bases \mathcal{B}'_E et \mathcal{B}_E , i.e.

$$P := M_{\mathcal{B}_E \mathcal{B}_E'}(id_E). \tag{5}$$

Alors, on dit que P est la matrice de passage de la base \mathcal{B}_E à la base \mathcal{B}'_E .

\bigcirc Remarques

 \triangleright On pose $\mathcal{B}_E := (u_1, \dots, u_p)$ et $\mathcal{B}'_E := (u'_1, \dots, u'_p)$. Alors, on a

$$P := M_{\mathcal{B}_E \mathcal{B}_E'}(id_E) = \begin{pmatrix} u_1' & u_2' & \dots & u_p' \\ \alpha_{11} & \alpha_{12} & \dots & a_{1p} \\ \vdots & \vdots & & \vdots \\ \alpha_{p1} & \alpha_{p2} & \dots & a_{pp} \end{pmatrix} / u_p$$

Autrement dit, la matrice de passage P de la base \mathcal{B}_E à la base \mathcal{B}_E' s'obtient en écrivant les vecteurs de la nouvelle base \mathcal{B}_E' en fonction de l'ancienne base \mathcal{B}_E .

ightharpoonup Soit $x\in E$. Alors, il existe $(x_1,\ldots,x_p)\in \mathbb{K}^p$ et $(x_1',\ldots,x_p')\in \mathbb{K}^p$ tels que

$$x = \sum_{i=1}^{p} x_i u_i$$
 et $x = \sum_{i=1}^{p} x'_i u'_i$.

Donc

$$M_{\mathcal{B}_E}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \quad \text{et} \quad M_{\mathcal{B}'_E}(x) = \begin{pmatrix} x'_1 \\ \vdots \\ x'_p \end{pmatrix}.$$

De plus, d'après le Théorème 4.4, on a

$$M_{\mathcal{B}_E}(x) = M_{\mathcal{B}_E \mathcal{B}_E'}(id_E) M_{\mathcal{B}_E'}(x).$$

En posant $P := M_{\mathcal{B}_E \mathcal{B}_E'}(id_E)$, on obtient

$$\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} = P \begin{pmatrix} x_1' \\ \vdots \\ x_p' \end{pmatrix}$$

Exemple

On reprend les bases vues dans l'exemple précédent. La base $\mathcal{B}_1 := (u_1, u_2, u_3)$ est la base canonique de \mathbb{R}^3 et $\mathcal{B}_1' := (u_1', u_2', u_3')$ avec

$$u'_1 = (1, 1, 1) = u_1 + u_2 + u_3,$$

 $u'_2 = (1, 1, 0) = u_1 + u_2,$
 $u'_3 = (1, 0, 0) = u_1.$

Donc la matrice de passage P de \mathcal{B}_1 à \mathcal{B}_1' est donnée par

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

De même, la matrice de passage Q de \mathcal{B}_2 à \mathcal{B}_2' est donnée par

$$Q = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

D'après le Corollaire 4.2, puisque id_E est bijective et $id_E^{-1} = id_E$, on a le résultat suivant :

Proposition

Soit P la matrice de passage de la base \mathcal{B}_E à la base \mathcal{B}'_E . Alors, P est inversible et P^{-1} est la matrice de passage de la base \mathcal{B}'_E à la base \mathcal{B}_E .

Exemple

On reprend l'exemple précédent. La matrice de passage P de \mathcal{B}_1 à \mathcal{B}_1' est donnée par

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

On a

$$\det(P) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1 \neq 0,$$

donc P est bien inversible. De plus,

$$com(P) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$

donc la matrice de passage de \mathcal{B}_1' à \mathcal{B}_1 est

$$P^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix}.$$

De même la matrice de passage de \mathcal{B}_2' à \mathcal{B}_2 est

$$Q^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

Théorème : Théorème de changement de base

Soient \mathcal{B}_E , \mathcal{B}'_E deux bases de E et \mathcal{B}_F , \mathcal{B}'_F deux bases de F, P la matrice de passage de \mathcal{B}_E à \mathcal{B}'_E et Q la matrice de passage de \mathcal{B}_F à \mathcal{B}'_F . Soit $f \in \mathcal{L}(E, F)$, on pose

$$A := M_{\mathcal{B}_F \mathcal{B}_E}(f)$$
 et $B := M_{\mathcal{B}_F' \mathcal{B}_E'}(f)$.

Alors,

$$B = Q^{-1}AP.$$

🌘 Exemple

On reprend l'exemple vu précédemment : soit $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ définie par

$$\forall x \in \mathbb{R}^3, \quad f(x) := (x_1 + x_2 - x_3, 2x_1 + x_2 + 3x_3).$$

On note $\mathcal{B}_1 := (u_1, u_2, u_3)$ la base canonique de \mathbb{R}^3 et $\mathcal{B}_2 := (v_1, v_2)$ la base canonique de \mathbb{R}^2 . On a vu précédemment que $A := M_{\mathcal{B}_2\mathcal{B}_1}(f)$ est donnée par

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 3 \end{pmatrix}$$

et $B \coloneqq M_{\mathcal{B}_2'\mathcal{B}_1'}(f)$ est donnée par

$$B = \begin{pmatrix} 1 & 2 & 1 \\ 5 & 1 & 1 \end{pmatrix}$$

De plus, la matrice de passage P de \mathcal{B}_1 à \mathcal{B}_1' est donnée par

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

et la matrice de passage Q de \mathcal{B}_2 à \mathcal{B}_2' vérifie

$$Q^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Ainsi, d'après la formule de changement de base, on obtient

$$B = Q^{-1}AP = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 6 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 5 & 1 & 1 \end{pmatrix}$$

On retrouve bien ainsi le résultat obtenu précédemment.

Corollaire

- \triangleright Deux matrices A et B de $\mathcal{M}_{n,p}(\mathbb{K})$ sont équivalentes si et seulement s'il existe $P \in \mathcal{M}_p(\mathbb{K})$ et $Q \in \mathcal{M}_n(\mathbb{K})$ inversibles telles que $B = Q^{-1}AP$.
- \triangleright Deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$ sont semblables si et seulement s'il existe $P \in \mathcal{M}_n(\mathbb{K})$ inversible telle que $A = PBP^{-1}$.

Exemple

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ donnée par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (x_1, x_2, x_1 - x_2 + 2x_3).$$

On note $\mathcal{B} := (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Alors, on a

$$A := M_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}.$$

Soit $\mathcal{B}' := (u_1, u_2, u_3)$ où u_1, u_2, u_3 sont donnés par

$$u_1 := (0,0,1), \quad u_2 := (1,0,-1) \quad \text{et} \quad u_3 := (0,1,1).$$

Alors, \mathcal{B}' est une base de \mathbb{R}^3 (à vérifier). On va déterminer $B = M_{\mathcal{B}'}(f)$. Soit P la matrice de passage de \mathcal{B} à \mathcal{B}' . Alors, on a

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix},$$

et (à vérifier)

$$P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

On obtient

$$B = P^{-1}AP = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Chapitre 9

Feuille d'exercices : Séquence 2

Dans toute la suite, $\mathbb{K} := \mathbb{R}$ ou \mathbb{C} .

Exercice 1.

Soient $f: \mathbb{R}^2 \to \mathbb{R}^2$ et $g: \mathbb{R}^3 \to \mathbb{R}^2$ les deux applications linéaires définies par

$$\forall x := (x_1, x_2) \in \mathbb{R}^2, \quad f(x) := (x_1 - x_2, -3x_1 + 3x_2),$$

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad g(x) := (x_1 + x_2 + x_3, 2x_1 + x_2 - x_3).$$

Notons \mathcal{B}_2 et \mathcal{B}_3 les bases canoniques respectives de \mathbb{R}^2 et \mathbb{R}^3 . Déterminer $M_{\mathcal{B}_2}(f)$ et $M_{\mathcal{B}_2\mathcal{B}_3}(g)$.

Exercice 2.

Soient $f: \mathbb{R}^3 \to \mathbb{R}^2$ et $g: \mathbb{R}^2 \to \mathbb{R}^3$ les deux applications linéaires définies par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (x_1 + x_2, x_1 + x_2 - x_3),$$

$$\forall x := (x_1, x_2) \in \mathbb{R}^2, \quad g(x) := (3x_1 - x_2, 3x_2 - x_1, x_1).$$

Notons \mathcal{B}_2 et \mathcal{B}_3 les bases canoniques respectives de \mathbb{R}^2 et \mathbb{R}^3 .

- 1) Calculer la matrice $A := M_{\mathcal{B}_2\mathcal{B}_3}(f)$, puis la matrice $B := M_{\mathcal{B}_3\mathcal{B}_2}(g)$.
- 2) En déduire Im(f) et Im(g).
- 3) Déterminer $h := g \circ f$, puis sa matrice $M_{\mathcal{B}_3}(h)$.
- 4) Calculer BA, que remarque t-on?

SExercice 3.

Soient $f: \mathbb{R}^2 \to \mathbb{R}^2$ et $g: \mathbb{R}^3 \to \mathbb{R}^3$ définies par

$$\forall x := (x_1, x_2) \in \mathbb{R}^2, \quad f(x) := (x_1 - x_2, x_1 + x_2),$$

 et

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad g(x) := (-x_1, x_2 + x_3, 2x_3).$$

- 1) Montrer que f et g sont des applications linéaires.
- 2) Écrire les matrices associées à f et g dans les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .

Exercice 4.

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie, pour tout $x := (x_1, x_2) \in \mathbb{R}^2$, par $f(x) := (2x_1 + x_2, 3x_1 - 2x_2)$. Soient \mathcal{B}_0 la base canonique de \mathbb{R}^2 et $\mathcal{B}_1 := ((3, 2), (2, 2))$ une autre base de \mathbb{R}^2 .

- 1) Calculer la matrice de f dans la base canonique, puis dans la base \mathcal{B}_1 .
- 2) Calculer la matrice de passage de \mathcal{B}_0 à \mathcal{B}_1 . En déduire de nouveau la matrice de f dans la base \mathcal{B}_1 .

Exercice 5.

Soient \mathcal{E} la base canonique de \mathbb{R}^3 et $\mathcal{F} := (f_1, f_2, f_3)$, où

$$f_1 := (1, 1, 1), \quad f_2 := (1, 1, 0) \quad \text{et} \quad f_3 := (1, 0, 0).$$

- 1) Vérifier que \mathcal{F} est une base de \mathbb{R}^3 .
- 2) Déterminer $M_{\mathcal{F}}(f)$, où $f \in \mathcal{L}(\mathbb{R}^3)$ est définie par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (2x_1 + x_3, x_1 - 4x_2, 3x_1).$$

Exercice 6.

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice associée A dans la base canonique est

$$A := \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}.$$

On pose

$$u_1 := (1, 0, -1), \quad u_2 := (0, 1, 1) \quad \text{et} \quad u_3 := (1, 0, 1).$$

- 1) Montrer que $\mathcal{B} := (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 2) Déterminer $M_{\mathcal{B}}(f)$.

Exercice 7.

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices semblables. Montrer que $\det(A) = \det(B)$.