POC for Bank of China Using Financial Crime Alerts Insight with Watson

Supervised Machine Learning Analysis

■Method – Random Forests

- Decision Trees based
- Ensemble supervised learning
- Predict likelihood of an alert being escalated

□Process

- Preparing Input Data
- Generating Model
- Testing Model
- Validating Performance

ML – Random Forests Method

☐Decision Trees

- Less sensitive to outliers
- Normalization is not required
- Capture non-linear relationship

□Ensemble Learning

- Allow automatic feature selection
- Handle missing data
- Apply bagging and cross-validation

ML - Preparing Input Data

☐ Create features for the selected aggregator (account)

- Given the input data files specified by FCAI data requirements, the FCAI calculate a set of derived statistics to capture transactional behavior for each account
- Additional features for each account can be added as needed
- Additional aggregators can be added

☐ Generate target variable for the selected aggregator (account)

- For each alert, the disposition information is extracted.
- Based on the subject account for each alert, generate a mapping target variable (SAR or NonSAR) for each account

ML - Generating Model

□ Splitting the input data into training and validation sets

- Using different accounts to ensure blind testing
- The default setting is 80/20 split
- The split will be based on the target variable distribution so that the percentage of SAR and nonSAR within both data sets stays the same

☐ Generate model using training data set

- Since the percentage of SAR is very small, over/under sampling of training data set is applied
- The default supervised ML model in FCAI is Random Forrest
- The model will be saved in the supervisedML_FPTP.rda file

ML - Testing Model

☐ Predict SAR/NonSAR for the testing data set

- Using the model created based on training data set, generate SAR/nonSAR prediction for each record in the testing data set
- The output includes prediction probability which can be used as threshold for adjusting tradeoff between False Positive and True Positive rate

☐ Evaluate performance for the testing data set

- Provide confusion matrix showing the summarized performance
- Generate ROC curve for selecting optimal setting
- Extract importance features for overall contribution
- Explain the output through supporting evidence

ML - Validating Performance

- ☐ Evaluating Model Performance Using FP-rate and TP-rate
 - > ROC (Receiver Operating Characteristic) Curve

TP-rate = True Positive rate (model correctly predict SAR)

FP-rate = False Positive (model incorrectly predict SAR when it should be nonSAR)

ML - Validating Performance

☐ Account Level Prediction Results

Confusion Matrix for validation data with 0.5 cutoff

Ground False Ground Truth

	nonSAR	SAR	subtotal
Predict_nonSAR	12,039 (TN)	15 (FN)	12,054 (87%)
Predict_SAR	1,691 (FP)	89 (TP)	1,780(12.9%)
subtotal	13,730 (99%)	104 (1%)	13,834

Ground False = non-escalated alert/no SAR filed

Ground Truth = escalated alerts/SAR filed

TP = True Positive = model correctly predict SAR

FP = False Positive = model incorrectly predict SAR when it should be nonSAR

TN = True Negative = model correctly predict nonSAR

FN = False Negative = model incorrectly predict nonSAR when it should be SAR

Identify 85.6% (89/104) of the SAR with 12.3% (1,691/13,730) of the FP, by reviewing top 12.9% (1,780/13,834) of the cases

ML - Validating Performance

- ☐ Accuracy Plot (prediction that are correct)
 - > TP-rate and TN-rate (=1-FP-rate) vs Scoring Cutoff

ML Performance Landscape – Account Level

ML Performance Landscape – Account Level

ML Performance Landscape – Account Level

Validation Set Only (20% of all accounts)

Overall SAR/NonSAR ratio = 104:13,730 = 1:132

Cumulated % of Review

Ensemble Model for Alert Level Score

- ☐Method
 - Random Forests
 - Simple Average
 - Weighted Average

Ensemble - Validating Performance

- ☐ Evaluating Model Performance Using FP-rate and TP-rate
 - ROC (Receiver Operating Characteristic) Curve

Alert - Validating Performance

□ Alert Level Prediction Results

- Method: ensemble with random forest
- Confusion Matrix with 0.25 cutoff
- Validation Data only

Ground False Ground Truth

	nonSAR	SAR	subtotal
Predict_nonSAR	7,232(TN)	59 (FN)	7,291(37%)
Predict_SAR	11,807 (FP)	587 (TP)	12,394(63%)
subtotal	19,039 (96.7%)	646 (3.3%)	19,685

Identify 90.1% (587/646) of the TP, with 62% (11,807/19,039) of the FP, by reviewing top 63% (12,394/19,685) of the cases

Ensemble - Validating Performance

- □ Accuracy Plot (prediction that are correct)
 - > TP-rate and TN-rate (=1-FP-rate) vs Scoring Cutoff

Ensemble Performance Landscape – Alert Level

Validation Set Only (20% of all Alerts) **Cumulated %** of review FCAI Solution – with 0.25 Cutoff **Current Benchmark** Risk Score 0% 100 587 (=4.7%) 11,807 (=95.3%) Total=12,394 90.8% 62% (TP rate) (FP_rate) 63% (=12,394)

Ensemble Performance Landscape – Alert Level

Ensemble Performance Landscape – Alert Level

Validation Set Only (20% of all Alerts)

Overall SAR/NonSAR ratio = 646 : 19,039 = 1:29.5

Cumulated % of Review

Enhanced BoC Insights

- Utilize overall importance features and threshold value as preconfigured insights
- Provide historical population statistics

Supervised Machine Learning Module (examples)

- LOW: The subject account has the following key transaction attributes:
 average_monthly_TXN_count < 1.8 and max_yearly_TotalAmount < 10,810 which
 corresponds to 2.5% of True Positive. The population statistics for
 average_monthly_TXN_count and max_yearly_TotalAmount is 30 and 10,000.
- HIGH: The subject account has the following key transaction attributes: average_monthly_TXN_count >= 1.8 and max_yearly_TotalAmount >=81,200 which corresponds to 54.5% of True Positive. The population statistics for average_monthly_TXN_count and max_yearly_TotalAmount is 30 and 10,000.
- HIGH: The subject account has the following key transaction attributes:
 average_monthly_TXN_count >= 1.8 and max_yearly_TotalAmount > 10,810 and
 max_Daily_TXNamount >= 500_which corresponds to 21.4% of True Positive. The
 population statistics for average_monthly_TXN_count, max_yearly_TotalAmount, and
 max_Daily_TXNamount is 30, 10,000 and 800.