RKNN Compiler Support Operator List

发布 v2.1.0

NPU 团队

2024年08月07日

文档内容:

1	关于:	本文档
2	更新 2.1 2.2	万史 V2.0.0-beta
3	3.1 3.2 3.3 3.4 3.5 3.6 3.7	OPs 规格介绍5RK3566/RK35686RK358850RK3562101RV1103/RV1106147RK3576189RK2118238RV1103B275
4	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.20 4.21 4.22 4.23 4.24	OPs 规格介绍 307 Add 307 AveragePool 307 ArgMin 307 ArgMax 307 BatchNormalization 308 Cast 308 Clip 308 Concat 308 Convolution 308 Convolution 308 ConvTranspose/Deconvolution 308 Cos 309 DataConvert 309 DepthToSpace 309 Div 309 Equal 309 Exp 309 Flatten 309 Gather 310 Greater OrEqual 310 GRU 310 exGRU 310 exHardSwish 310 InstanceNormalization 310

4.26	exLayerNorm	311
	Less	
	LessOrEqual	
	LogSoftmax	
	LpNormalization	
	exLRN	
	MatMul	
	Max	
	MaxPool	
4.35	MaxRoiPool	312
4.36	MaxUnpool	312
4.37	exMish	312
4.38	Min	312
4.39	Mul	
4 40	Pad	
	Pow	
	exProposal	
	ReduceMax	
	ReduceMean	
	ReduceMin	
4.48	Reshape	314
4.49	Resize	314
4.50	ReverseSequence	314
	exRMSNorm	
	RoiAlign	
	ScatterND	
	Sin	
	Slice	
	Softmax	
	exSoftmax13	
	SpaceToDetph	
	Split	
	Sqrt	
4.61	Squeeze	316
4.62	Sub	316
4.63	Tanh	316
	Tile	
	Transpose	
	Upsample	
	Not	
	where	
	Erf	
	Floor	
	Mod	
	exMeanVarianceNormalization	
	And	
4.74	GatherElements	317
4.75	Log	318
	exDataConvert	
	SpaceToDepth	
	SoftmaxMask	
	TransposeReshape	
	ReshapeTranspose	
	ReduceL2	
	LayerNormalization	
4.83	PassThrough	319

	4.85 4.86 4.87 4.88 4.90 4.91 4.92 4.93 4.94 4.95 4.96	Sigmoid		
5	模型 5.1 5.2			32 3
6	特殊 6.1 6.2	dilated_kernel_h		33: 33

CHAPTER 1

关于本文档

文件标识: RK-YH-YF-418

发布版本: V2.1.0 日期: 2024-08-07

文件密级: □ 绝密 □ 秘密 □ 内部资料 ■ 公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2024 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址:福建省福州市铜盘路软件园 A 区 18 号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590 客户服务传真: +86-591-83951833 客户服务邮箱: fae@rock-chips.com

概述

RKNN Compiler Support Operator List

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
早期版本	NPU 团队	-	详情页
V2.0.0-beta	NPU 团队	2024-03-22	详情页
V2.1.0	NPU 团队	2024-08-07	详情页

CHAPTER 2

更新历史

2.1 V2.0.0-beta

修改人

NPU 团队

修改日期

2024-03-22

修改内容

- 1. 新增 RK3576 平台算子支持规格
- 2. 新增 RK3588/RK3562/RK3576 平台的 exSDPAttention、exMatMul 的硬件支持规格
- 3. 新增 Floor、Mod、And、GatherElements 以及 exMeanVarianceNormalization CPU 算子支持
- 4. 新增 RK2118 平台算子支持规格

2.2 V2.1.0

修改人

NPU 团队

修改日期

2024-08-07

修改内容

- 1. 新增 RK2118 文档说明
- 2. 新增 RV1103B 文档说明
- 3. 全平台算子规格更新
- 4. RK3576 算子规格新增 (包含 Hardmax、ConvLut 等)
- 5. RK2118 exConvStreaming 支持

6. RK3562/RK3576 exSDPA 算子添加 FlashAttentionV2 优化支持

 $\mathsf{CHAPTER}\, 3$

NPU OPs 规格介绍

3.1 RK3566/RK3568

3.1.1 Add

执行元素级二进制加法 (C = A + B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(const Tensor)

3.1.2 AddRelu

Add与Relu融合计算, C = Relu(A + B)

输入列表

• 同Add

输出列表

• 同Add

其他支持

• **多核联合**: 支持

3.1.3 BatchNormalization

按照论文 https://arxiv.org/abs/1502.03167 中的描述对输入张量进行批量归一化计算

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- epsilon: float (默认值 = 1e-5)
 - 除以标准差时加上防止除 0 的实数
 - $epsilon \in (0, \infty]$
- momentum: float
 - 训练时的滑动平均参数

3.1.4 Concat

将一系列向量在 axis 指定的方向上组合成一个向量,所有向量除 axis 指定的方向外大小必须相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

- axis int64
 - $axis \in \{0, 1, 2, 3\}$

3.1.5 Convolution

卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - ★ width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: T1
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_ $h \in [1, 31]$
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- strides: int(strides_h, strides_w)
 - stride_ $h \in [1, 7]$
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - **-** pads_top ∈ [0, 15]
 - pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$

- dilations_ $w \in [1, 32]$

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.6 Depthwise Convolution

深度可分离卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_ $h \in [1, 8]$
 - * kernel_w $\in [1, 8]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 7]
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - pads_top ∈ [0, 15]
 - **-** pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)

- dilations_ $h \in [1, 32]$
- dilations_ $w \in [1, 32]$

• **T1**: int8(Tensor), float16(Tensor)

3.1.7 ConvolutionRelu

Convolution 与 Relu 融合计算, Output = Relu(Conv(Input))

说明及规格限制同Convolution

3.1.8 ConvolutionClip

Convolution 与 Clip 融合计算, Output = Clip(Conv(Input))

说明及规格限制同Convolution

3.1.9 ConvolutionPRelu/LeakyRelu

Convolution 与 PRelu/LeakyRelu 融合计算, Output = PRelu(Conv(Input)) 或者 Output = LeakyRelu(Conv(Input))

说明及规格限制同Convolution

3.1.10 ConvolutionAdd

Convolution 与 Add 融合计算, Output = Add(Conv(Input0), Input1)

说明及规格限制同Convolution

3.1.11 ConvolutionSigmoid

Convolution 与 Sigmoid 融合计算, Output = Sigmoid(Conv(Input))

说明及规格限制同Convolution

3.1.12 ConvolutionTanh

Convolution 与 Tanh 融合计算, Output = Tanh(Conv(Input))

说明及规格限制同Convolution

3.1.13 ConvolutionSoftplus

Convolution 与 Softplus 融合计算, Output = Softplus(Conv(Input))

说明及规格限制同Convolution

3.1.14 ConvolutionHardSigmoid

Convolution 与 HardSigmoid 融合计算, Output = HardSigmoid(Conv(Input))

说明及规格限制同Convolution

3.1.15 ConvolutionHardSwish

Convolution 与 HardSwish 融合计算, Output = HardSwish(Conv(Input))

说明及规格限制同Convolution

3.1.16 ConvolutionElu

Convolution 与 Elu 融合计算, Output = Elu(Conv(Input))

说明及规格限制同Convolution

3.1.17 ConvolutionSwish

Convolution 与 Swish 融合计算, Output = Swish(Conv(Input))

说明及规格限制同Convolution

3.1.18 ConvolutionMish

Convolution 与 Mish 融合计算, Output = Mish(Conv(Input))

说明及规格限制同Convolution

3.1.19 ConvolutionAddRelu

Convolution 与 Add 及 Relu 融合计算, Output = Relu(Add(Conv(Input0), Input1))

说明及规格限制同Convolution

3.1.20 ConvTranspose

转置卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: T1
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_h \in [1, 31]
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - stride_h 仅支持 1,2,4,8
 - stride w 仅支持 1,2,4,8
- pads: int(pads_top, pads_left, pads_bottom, pads_right)

设置 pad 时注意:

不支持 kernel_h * dilations_h - dilations_h - pads_top < 0

不支持 kernel_w * dilations_w - dilations_w - pads_left < 0

不支持 stride_h *(height - 1) - pads_top + 1 < output_h

不支持 stride_w *(width - 1) - pads_left + 1 < output_w

- pads_top ∈ [0, 15]
- pads_left $\in [0, 15]$
- pads_bottom $\in [0, 15]$
- **-** pads_right ∈ [0, 15]
- group: int

- group: 仅支持 1, 当且仅当 num_input=num_output 时支持 num_output
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_w $\in [1, 32]$

• **T1**: int8(Tensor), float16(Tensor)

3.1.21 ConvTranposeRelu

ConvTranpose 与 Relu 融合计算, Output = Relu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.1.22 ConvTranposeClip

ConvTranpose 与 Clip 融合计算, Output = Clip(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.1.23 ConvTranposePRelu/LeakyRelu

ConvTranpose 与 PRelu/LeakyRelu 融合计算, Output = PRelu(ConvTranpose(Input)) 或者 Output = LeakyRelu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.1.24 ConvTranposeAdd

ConvTranpose 与 Add 融合计算, Output = Add(ConvTranpose(Input0), Input1)

说明及规格限制同ConvTranspose

3.1.25 ConvTranposeSigmoid

ConvTranpose 与 Sigmoid 融合计算, Output = Sigmoid(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.1.26 ConvTranposeTanh

ConvTranpose 与 Tanh 融合计算, Output = Tanh(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.1.27 ConvTranposeSoftplus

ConvTranpose 与 Softplus 融合计算, Output = Softplus(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.1.28 ConvTranposeHardSigmoid

ConvTranpose 与 HardSigmoid 融合计算, Output = HardSigmoid(ConvTranpose(Input))

3.1.29 ConvTranposeHardSwish

ConvTranpose 与 HardSwish 融合计算, Output = HardSwish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.1.30 ConvTranposeElu

ConvTranpose 与 Elu 融合计算, Output = Elu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.1.31 ConvTranposeSwish

ConvTranpose 与 Swish 融合计算, Output = Swish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.1.32 ConvTranposeMish

ConvTranpose 与 Mish 融合计算, Output = Mish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.1.33 Div

执行元素级二进制除法 (C = A/B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- **T2**: float(const Tensor)

3.1.34 Expand

根据给定的 shape 和广播规则广播输入张量。广播规则类似于 numpy.array(input) * numpy.ones(shape):维度右对齐;两个对应维度必须具有相同的值,或者其中一个等于 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- shape: **T2**
 - **shape**: [batch, channel, height, width]

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)

广播约束

- [b, c, 1, w]->[b, c, h, w], $h \in [1, 8192]$
- $[b, 1, 1, w] \rightarrow [b, c, h, w], h \in [1, 8192]$
- [b, c, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, 1, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, c, 1, 1]->[b, c, h, w], $h \in [1, 8192], w \in [1, 8192]$

3.1.35 GRU

门控循环单元(GRU,Gated Recurrent Unit)

GRU 扩展以及变体命名为 exGRU 算子,参数项中指明

(extern) 的项为 exGRU 独有的参数项。

计算公式如下:

Equations (Default: f=Sigmoid, g=Tanh):

$$r_{t} = f(x_{t} \cdot W_{r} + h_{t-1} \cdot R_{r} + Wb_{r} + Rb_{r})$$

$$z_{t} = f(x_{t} \cdot W_{z} + h_{t-1} \cdot R_{z} + Wb_{z} + Rb_{z})$$

$$h_{t} = g(x_{t} \cdot W_{h} + (r_{t} \odot h_{t-1}) \cdot R_{h} + Rb_{h} + Wb_{h}), (WRB = 0)$$

$$h_{t} = g(x_{t} \cdot W_{h} + r_{t} \odot (h_{t-1} \cdot R_{h} + Rb_{h})) + Wb_{h}, (WRB = 1)$$

$$H_{t} = (1 - z_{t}) \odot h_{t} + z_{t} \odot h_{t-1}$$

输入列表

- X: **T1**
 - **shape**: [seq_length, batch_size, input_size]
 - * $seqlength \in (0, 8192]$
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star inputsize \in (0, 8192]$
 - 量化支持
 - * per-layer
- W: **T1**
 - **shape**: [num_directions, 4*hidden_size, input_size]

- $\star inputsize \in (0,8192]$
- * $hiddensize \in (0, 8192]$
- * num directions: 1 or 2

- 量化支持

- * per-layer
- * per-channel
- R: **T1**
 - **shape**: [num_directions, 4*hidden_size, hidden_size]
 - $\star hiddensize \in (0,8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- B: **T2**
 - **shape**: [num_directions, 8*hidden_size]
 - * $hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- sequence_lens: **T3** (optional)
 - **shape**: [batch_size]
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- initial_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - \star hiddensize $\in (0, 8192]$
 - 量化支持
 - * per-layer

输出列表

- Y: **T1**
 - **shape**: [seq_length, num_directions, batch_size, hidden_size]
 - \star seqlength $\in (0, 8192]$
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - \star hiddensize $\in (0, 8192]$
 - 量化支持
 - * per-layer

- Y_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0,8192]$
 - 量化支持
 - * per-layer

属性列表

- linear_before_reset: int
 - LBR 变种的选择: 1(T) or 0(F)
- · direction (extern): string
 - 指定 GRU 的运算方向
 - forward: 指定 GRU 的运算方向为前向
 - reverse: 指定 GRU 的运算方向为反向
 - bidirectional: 指定 GRU 的运算方向为双向
- sequence size (extern): int
 - 指定 GRU 输入的 seqsize,无限制,建议 4 对齐
- hidden_size (extern): int
 - GRU 单元中的 hiddensize, 无限制,建议 8 对齐
- input_layout (extern): int
 - 指定与对应输入 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size。
 - snc: 指定 layout 对应的输入 shape 为 [seqs, batches, input_size]
 - (sn)c: 指定 layout 对应的输入 shape 为 [seqs*batches, input_size,1,1]
- output_layout (extern): int
 - 指定与对应输出 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size、directions。
 - sbnc: 指定 layout 对应的输出 shape 为 [segs,directions,batches, hidden size]
 - (sn)c: 指定 layout 对应的输出 shape 为 [seqsbatches, directionsinput_size,1,1]

数据类型约束

- T1: float16(Tensor)
- **T2**: float(Tensor)
- T3: float(Scalar)

其他支持

· 多核联合: 暂不支持

3.1.36 Gather

根据索引 Indices 获取输入 X 的指定 axis 维度的条目,并将它们拼接在一起。

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- Indices: T2
 - 要收集的元素的索引,秩 rank = 1

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: int(Tensor)

属性列表

- axis: int(Tensor)
 - $axis \in \{0, 1, 2, 3\}$
 - 指定 Indices 获取输入的维度

其他支持

• 多核联合: 尚不支持

3.1.37 LSTM

长短期记忆网络(LSTM,Long Short-Term Memory)

LSTM 扩展以及变体命名为 exLSTM 算子,参数项中指明

(extern) 的项为 exLSTM 独有的参数项。

计算公式如下:

Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):

$$i_t = f(x_t \cdot W_i + h_{t-1} \cdot R_i + Wb_i + Rb_i)$$

$$f_t = f(x_t \cdot W_f + h_{t-1} \cdot R_f + Wb_f + Rb_f)$$

$$c_t = f(x_t \cdot W_c + h_{t-1} \cdot R_c + Wb_c + Rb_c)$$

$$o_t = f(x_t \cdot W_o + h_{t-1} \cdot R_o + Wb_o + Rb_o)$$

$$C_t = f_t \odot C_(t-1) + i_t \odot c_t$$

$$h_t = o_t \odot h(C_t)$$

输入列表

- X:**T1**
 - shape : [seq_length, batch_size, input_size]
 - * $seqlength \in (0, 8192]$
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star inputsize \in (0, 8192]$
 - 量化支持
 - * per-layer
- W: **T1**
 - **shape**: [num_directions, 4*hidden_size, input_size]
 - $\star inputsize \in (0, 8192]$
 - $\star hiddensize \in (0,8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- R: **T1**
 - **shape**: [num_directions, 4*hidden_size, hidden_size]
 - * $hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- B: T2, T3
 - **shape**: [num_directions, 8*hidden_size]
 - * $hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- sequence_lens: **T4**, **T5** (optional)
 - shape : [batch_size]
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- initial_h : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数

* $hiddensize \in (0, 8192]$

- 量化支持

- * per-layer
- initial_c: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0,8192]$

- 量化支持

* per-layer

输出列表

- Y: **T1**
 - **shape**: [seq_length, num_directions, batch_size, hidden_size]
 - * $seqlength \in (0, 8192]$
 - * num directions: 1 or 2
 - * batchsize ∈ (0,8192],大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$

- 量化支持

- * per-layer
- Y_h : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$

- 量化支持

- * per-layer
- Y_c : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0,8192]$

- 量化支持

* per-layer

- · direction (extern): string
 - 指定 LSTM 的运算方向
 - forward: 指定 LSTM 的运算方向为前向
 - reverse: 指定 LSTM 的运算方向为反向
 - bidirectional: 指定 LSTM 的运算方向为双向

- sequence_size (extern): int
 - 指定 LSTM 输入的 seqsize, 无限制, 建议 4 对齐
- hidden_size (extern): int
 - LSTM 单元中的 hiddensize,无限制,建议 8 对齐
- proj size (extern): int
 - projection 时的 proj_size, $projsize \in [0, hiddensize]$
 - 目前限定 0,即尚不支持 projection 功能
- input_forget (extern): int
 - cifg 变种的选择: 1(T) or 0(F) 目前限定 0, 即尚不支持
- has_projection (extern): int
 - projection 变种: 1(T) or 0(F) 目前限定 0, 即尚不支持
- input_layout (extern): int
 - 指定与对应输入 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size。
 - snc: 指定 layout 对应的输入 shape 为 [seqs, batches, input_size]
 - (sn)c: 指定 layout 对应的输入 shape 为 [seqs*batches, input_size,1,1]
- output_layout (extern): int
 - 指定与对应输出 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size、directions。
 - sbnc: 指定 layout 对应的输出 shape 为 [seqs,directions,batches, hidden_size]
 - (sn)c: 指定 layout 对应的输出 shape 为 [seqsbatches, directionsinput_size,1,1]

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- **T3**: int32(Tensor)
- T4: float(Scalar)
- **T5**: int(Scalar)

其他支持

• 多核联合: 暂不支持

3.1.38 Max

计算输入张量的元素级最大值

输入列表

- A:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer/per-channel

- 广播支持

- * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即 C 维度做 broadcasting
 - · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting

• B: **T1**

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer/per-channel
- 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即 C 维度做 broadcasting
 - · OP(A(N,C,H,W),B(scalar)),即以单个标量做 broadcasting

输出列表

- C: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.1.39 Min

计算输入张量的元素级最小值

输入列表

- A:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即 C 维度做 broadcasting
 - · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting

- B: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即C维度做broadcasting
 - · OP(A(N,C,H,W),B(scalar)),即以单个标量做 broadcasting

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.1.40 Mul

执行元素级二进制乘法 (C = A * B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- T1: int8(Tensor), float16(Tensor)
- T2: float(const Tensor)

3.1.41 MulRelu

其余说明同 Mul

• 支持的数据类型:

同 Mul

3.1.42 Pad

给定一个包含要填充的数据的张量 (data), 包含轴的开始和结束填充数值的张量 (pads), 模式 (mode), 常量数值 (constant_value), 生成一个填充张量 (output)

输入列表

- data: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- pads: **T2**
 - shape: [batch_begin, channel_begin, height_begin, width_begin, batch_end, channel_end, height_end, width_end]
- constant_value (optional): T3
 - shape: [1]
 - 量化支持
 - * per-layer

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)
- T3: float(Scalar), int8(Scalar), float16(Scalar)

属性列表

- mode: **string**(默认值 constant)
 - 支持模式: constant, reflect
 - * constant 无限制
 - * reflect channel $\in (0, 8192]$, height $\in (0, 8192]$, width $\in (0, 8176]$

其他支持

• 多核联合: 尚不支持

3.1.43 MaxPool

MaxPool 消耗输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用最大池化。最大池化包括根据内核大小计算输入张量子集的所有值的最大值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - $kernel_w \in (0,7]$
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)

- pad_top $\in [0, 7]$
- **-** pad_left ∈ [0, 7]
- pad_bottom $\in [0, 7]$
- pad_right $\in [0, 7]$
- storage_order:int64
 - 优先储存方式: 0

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- T3: float(Scalar)

3.1.44 GlobalMaxPool

GlobalMaxPool 使用输入张量 X 并对同一通道中的值应用最大池化。这相当于 MaxPool 的 kernel_shape 大小等于 input 的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - \star channel $\in (0, 8192]$
 - * $height \in (1,7]$
 - * $width \in (1,7]$

输出列表

- output : **T1**
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0,7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_ $\mathbf{w} \in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1

- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.1.45 AveragePool

AveragePool 使用输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用平均池化。平均池化包括根据内核大小计算输入张量子集的所有值的平均值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - $kernel_w \in (0,7]$
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- · ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1

- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- **T3**: float(Scalar)

3.1.46 GlobalAveragePool

GlobalAveragePool 使用输入张量 X 并对同一通道中的值应用平均池化。这相当于 AveragePool,其 kernel_shape 大小等于输入张量的空间维度。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0,7]$
 - * $width \in (0,7]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0,7]
 - $kernel_w \in (0,7]$
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - pad_top $\in [0, 7]$
 - **-** pad_left ∈ [0, 7]

- pad_bottom $\in [0, 7]$
- pad_right $\in [0,7]$

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- **T3**: float(Scalar)

3.1.47 Pow

 $Z = X^Y$

指数运算,采用输入数据(张量)和指数,并产生一个输出数据(张量)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- Y: **T2**
 - shape: [1]
 - * 当前仅支持 0、1、2、3、0.5、-0.5

输出列表

- Z:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int8(Tensor), int32(Tensor), int64(Tensor), float16(Tensor), float(Tensor)

其他支持

• 多核联合: 尚不支持

3.1.48 Relu

将输入张量的负值设为零,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

- * per-layer
- 广播支持
 - * 无

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

· 多核联合: 暂不支持

3.1.49 Clip/ReLU6

将输入张量的值裁剪到[0,6]范围内

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.1.50 PRelu

将输入张量的负值按可学习参数缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

属性列表

- slope: PRelu 系数
 - 仅支持单个标量或 C 维度系数

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.1.51 LeakyRelu

将输入张量的负值按固定比例缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.1.52 Reshape

在不改变输入数据和元素数量的情况下,返回一个具有指定形状的张量。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- shape: int
 - 指定输出张量的形状

其他支持

• 多核联合: 尚不支持

3.1.53 Resize

调整输入张量的大小。一般来说,它将输出张量中的每个值计算为输入张量中邻域(即采样位置)的加 权平均值

- X:T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- roi (optional): T2

- 目前暂不支持
- scales (optional): T2
 - 沿每个维度的缩放比例数组
- sizes (optional): T3
 - 输出张量的目标大小

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- **T3**: int64(Tensor)

属性列表

- antialias: int (默认值为 0)
 - 目前不支持设置
- axes: int[]
 - 目前不支持设置
- coordinate_transformation_mode: strings(默认值为"half_pixel")
 - 目前仅支持 half_pixel, pytorch_half_pixel, align_corners 三种
- cubic_coeff_a: float (默认为-0.75)
 - 目前不支持设置
- exclude_outside: int (默认值为 0)
 - 目前不支持设置
- extrapolation_value: float (默认为 0)
 - 目前不支持设置
- keep_aspect_ratio_policy: strings (默认值为" stretch")
 - 目前不支持设置
- mode: strings (默认值为"nearest")
 - 目前仅支持 nearest 和 linear 两种可配置
- nearest_mode: strings (默认值为"round_prefer_floor")
 - 目前不支持设置

3.1.54 Slice

获得当前向量的一个切片,具体规则和numpy切片相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

属性列表

- starts: int(Tensor)
 - 切分的起始位置: 无限制
- ends: int(Tensor)
 - 切分的终止位置: 无限制
- axes: int(Tensor)
 - 选取切分的轴: 支持任意 0~3 轴, 支持同时多轴选择
- steps: int(Tensor)
 - 选取切分对应轴的步长
 - 当 height * width == 1 && channel % subc == 0 && starts[1] % subc == 0 && ends[1] % subc == 0 && steps[1] <= subc 时, steps 可以不为 1, 否则只有 steps == [1,1,1,1] 时, 才可通过 NPU 运行 Slice OP

3.1.55 Split

将向量沿着 axis 方向分成 num_outputs 个向量,split 用于指定切分后向量在 axis 方向上的大小

输入列表

- input_tensor: **T**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

• output: T

- 一或多个输出向量,由 num_outputs 属性决定
- shape:根据切分情况决定
- 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

属性列表

- axis:int
 - $axis \in \{0, 1, 2, 3\}$
- num_outputs:int
- split: int(Tensor)

3.1.56 Sub

• 执行元素级二进制减法 (C = A - B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(const Tensor)

3.1.57 Tile

通过平铺给定的张量构造张量,这与 Numpy 中的函数 tile 相同,但没有广播

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- repeats: T2
 - **shape**: [batch, channel, height, width]

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)

3.1.58 Transpose

对输入张量进行转置

输入列表

- X:**T1**
 - **shape**: [n1, c1, h1, w1]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

输出列表

- Y: T1, T2
 - **shape**: [n2, c2, h2, w2]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

属性列表

- perm 转置的轴顺序:
 - 不同 perm 参数限制如下: (其中 p=8192, q=2048)
 - perm=[0,1,2,3]

- * 无限制
- perm=[0,1,3,2]
 - * 不支持
- perm=[0,2,3,1]
 - * 不支持
- perm=[0,2,1,3]
 - * 不支持
- perm=[0,3,1,2]
 - * 不支持
- perm=[0,3,2,1]
 - * 不支持
- perm=[1,0,2,3]
 - * 不支持
- perm=[1,0,3,2]
 - * 不支持
- perm=[1,2,0,3]
 - * 不支持
- perm=[1,2,3,0]
 - * 不支持
- perm=[1,3,0,2]
 - * 不支持
- perm=[1,3,2,0]
 - * 不支持
- perm=[2,1,0,3]
 - * **T1, T2**: c1<8192, n<8192, h1*w1<8192, (h1=w1=1, n1%4=0) or (n1=h1=1, h1%4=0)
- perm=[2,1,3,0]
 - **T1**, **T2**: c1<8192, n<8192, h1*w1<8192, (h1=w1=1, n1%4=0) or (n1=h1=1, h1%4=0)
- perm=[2,0,3,1]
 - * 不支持
- perm=[2,0,1,3]
 - * 不支持
- perm=[2,3,1,0]
 - * 不支持
- perm=[2,3,0,1]
 - * 不支持
- perm=[3,0,2,1]
 - * 不支持
- perm=[3,0,1,2]
 - * 不支持

- perm=[3,2,0,1]
 - * 不支持
- perm=[3,2,1,0]
 - * 不支持
- perm=[3,1,0,2]
 - * **T1**, **T2**: c1<8192, n<8192, h1*w1<8192, (h1=w1=1, n1%4=0) or (n1=h1=1, w1%4=0)
- perm=[3,1,2,0]
 - * **T1**, **T2**: c1<8192, n<8192, h1*w1<8192, (h1=w1=1, n1%4=0) or (n1=h1=1, w1%4=0)

数据类型约束

- **T1**: int8(Tensor)
- T2: int16(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.1.59 Sigmoid

给定输入张量,函数 y = 1/(1 + exp(-x)) 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.60 Tanh

计算给定输入张量单元的双曲正切

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.61 Softplus

按元素应用 Softplus 函数, y = ln(exp(x) + 1)

输入列表

- X: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.62 HardSigmoid

给定输入张量,函数 y = max(0, min(1, alpha * x + beta)) 按元素应用于输入张量,得到输出张量,这里 alpha = 1/6,beta = 0.5

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.63 HardSwish

按元素应用 HardSwish 函数, y = x * max(0, min(1, alpha * x + beta)) = x * <math>HardSigmoid < alpha, beta > (x), 这里 HardSigmoid < alpha, beta Har

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.64 Elu

给定输入张量,函数 f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0 按元素应用于输入张量,得到输出张量,这里 alpha = 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.65 exSwish

按元素应用 Sigmoid 线性单元函数, Swish 函数也称为 SiLU 函数, y = x * sigmoid(x)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.66 exMish

给定输入张量,函数 $mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))$ 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.67 exGelu

给定输入张量,函数 $y=x*\Phi(x)$ 按元素应用于输入张量,得到输出张量,当 $\Phi(x)$ 函数设置成 tanh 时, $y=0.5*x*(1+Tanh(\sqrt{\frac{2}{\pi}}*(x+0.044715*x^3)))$

输入列表

• input: **T1**

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.68 exSwooshR

给定输入张量,按论文 https://arxiv.org/abs/2310.11230 给定的下列函数,按元素应用于输入张量,得到输出张量

SwooshR(x) = log(1 + exp(x-1)) - 0.08x - 0.313261687

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.69 exSwooshL

给定输入张量,按论文 https://arxiv.org/abs/2310.11230 给定的下列函数,按元素应用于输入张量,得到输出张量

SwooshL(x) = log(1 + exp(x-4)) - 0.08x - 0.035

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.1.70 Where

根据 mask_tensor 获取 x_tensor 或 y_tensor 的值,当 mask_tensor 位置为 **True** 时,取 x_tensor 对 应位置的值,否则取 y_tensor 的值。

输入列表

- mask_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- x_tensor: *T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- y_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子

输出列表

- output: **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer

数据类型约束

- **T1**: bool(Tensor)
- **T2**: int8(Tensor), float16(Tensor)

3.1.71 exGlu

门控线性单元 (Gated Linear Unit) 函数, 其中 a 是输入矩阵的前一半, b 是后一半

$$GLU(a,b) = a \otimes \sigma(b)$$

输入列表

- Input: **T1**
 - **shape**: [batch, channel, height, width]
 - * channel: 16 对齐
 - 量化支持: per-layer

输出列表

- Output: T1
 - **shape**: [batch, channel / 2, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- axis: int(默认值 = 1)
 - 分割输入的维度
 - 约束: 仅支持1

3.1.72 exMatMul

矩阵乘法操作

$$\mathbf{Y} = \begin{cases} \mathbf{A} \cdot \mathbf{B} + \mathbf{C}, & \text{if } c_type = " \text{ add"} \\ \mathbf{A} \cdot \mathbf{B} * \mathbf{C}, & \text{if } c_type = " \text{ mul"} \end{cases}$$

- A: **T1**
 - **shape**: [b, k, 1, n]
 - * $k \in (0, 8192]$
 - 量化支持
 - * per-layer

- B:**T1**
 - **shape**: [b, k, 1, m]
 - 量化支持
 - * per-layer
- C (optional): **T1**, **T2**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

- Y:**T1**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)

属性列表

- c_type: strings (默认值"add")
 - 支持 add 和 mul 可选、表示 C 是做加法还是乘法

3.1.73 exNorm

在 channel 方向上做层归一化,公式如下:

$$\mathsf{LayerNorm}(x) = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} \cdot W + B$$

其中:

x 是输入向量。

 μ 和 σ^2 分别是输入向量的均值和方差:

$$\mu = \frac{1}{H} \sum_{i=1}^{H} x_i$$

$$\sigma^2 = \frac{1}{H} \sum_{i=1}^{H} (x_i - \mu)^2$$

 ϵ 是一个很小的数,用于防止除零操作。

W 和 B 是可选择的参数。

- X:T1
 - **shape**: [batch, channel, height, width]
- W (optional): T1
 - **shape**: [batch, channel, height, width]
- B (optional): **T1**
 - **shape**: [batch, channel, height, width]

- Y: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• T1: float16(Tensor)

属性列表

- epsilon: **float**(默认值 1e-05)
 - 用来防止除 0 的 epsilon 数值

其他支持

• 多核联合: 尚不支持

3.1.74 exWindow

exWindow 来源于swin_transformer的 window_partition 和 window_reverse 操作。原论文中输入特征被划分为多个不重叠的窗口,每个窗口的大小为 window_size × window_size。要求输入和输出特征都为 4 维 shape,在高和宽方向上都进行划分。pytorch 实现的计算方法如下:

```
def window_partition(x, window_size):
    """

Args:
    x: (B, C, H, W)
    window_size (int): window size

Returns:
    windows: (B, C, num_windows*num_windows, window_size*window_size)
    """

B, C, H, W = x.shape
    x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
```

(下页继续)

(续上页)

```
windows = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, -1, window_size*window_size)

return windows

def window_reverse(windows, window_size, H, W):

"""

Args:

windows: (B, C, num_windows*num_windows, window_size*window_size)

window_size (int): Window size

H (int): Height of image

W (int): Width of image

Returns:

x: (B, C, H, W)

"""

B, C, _, _ = windows.shape

x = windows.view(B, C, H // window_size, W // window_size, window_size, window_size)

x = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, H, W)

return x
```

输入列表

- X:T1
 - **shape**: [batch, channel, height, width]

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- mode: string
 - 支持模式: partition, reverse, partition_num_first
 - * partition: 参考 window_partition 实现;
 - * reverse: 参考 window_reverse 实现;

- * partition_num_first: 与 partition 的区别在于,partition_num_first 的 H,W 按照 num_windows 进行划分,而 partition 的 H,W 按照 window_sizes 进行划分。
- window_sizes: list of ints
 - 2 维向量, 窗口的大小。定义了每个窗口的高度和宽度。窗口内的注意力计算和特征提取都是基于这个大小。
- num_windows: list of ints
 - 2 维向量, 窗口的数量。定义了输入特征的高度和宽度被划分为多少个窗口。

其他支持

• 多核联合: 尚不支持

3.2 RK3588

3.2.1 Add

执行元素级二进制加法 (C = A + B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(const Tensor)

其他支持

• **多核联合**: 支持

3.2.2 AddRelu

Add与Relu融合计算, C = Relu(A + B)

输入列表

• 同Add

输出列表

• 同Add

其他支持

• **多核联合**: 支持

3.2.3 BatchNormalization

按照论文 https://arxiv.org/abs/1502.03167 中的描述对输入张量进行批量归一化计算

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- epsilon: float (默认值 = 1e-5)
 - 除以标准差时加上防止除 0 的实数
 - $epsilon \in (0, \infty]$
- momentum: float
 - 训练时的滑动平均参数

其他支持

• 多核联合: 尚不支持

3.2.4 Concat

将一系列向量在 axis 指定的方向上组合成一个向量,所有向量除 axis 指定的方向外大小必须相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T: int8(Tensor), float16(Tensor)

属性列表

- axis int64
 - $axis \in \{0, 1, 2, 3\}$

3.2.5 Convolution

卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - shape : [output_channel, input_channel, kernel_w]
 - * kernel_h \in [1, 31]
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

• output: **T1**

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - stride_ $h \in [1, 7]$
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - **-** pads_top ∈ [0, 15]
 - **-** pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_ $w \in [1, 32]$

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• **多核联合**: 支持

3.2.6 Depthwise Convolution

深度可分离卷积

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - ★ width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: T1
 - shape: [output_channel, input_channel, kernel_h, kernel_w]
 - * kernel_ $h \in [1, 8]$
 - * kernel_w $\in [1, 8]$
 - 量化支持

- * per-layer
- * per-channel

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - stride_ $h \in [1, 7]$
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - **-** pads_top ∈ [0, 15]
 - pads_left $\in [0, 15]$
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_w $\in [1, 32]$

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• **多核联合**: 支持

3.2.7 ConvolutionRelu

Convolution 与 Relu 融合计算, Output = Relu(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.2.8 ConvolutionClip

Convolution 与 Clip 融合计算, Output = Clip(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.2.9 ConvolutionPRelu/LeakyRelu

Convolution 与 PRelu/LeakyRelu 融合计算, Output = PRelu(Conv(Input)) 或者 Output = LeakyRelu(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.2.10 ConvolutionAdd

Convolution 与 Add 融合计算, Output = Add(Conv(Input0), Input1)

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.2.11 ConvolutionSigmoid

Convolution 与 Sigmoid 融合计算, Output = Sigmoid(Conv(Input))

说明及规格限制同Convolution

其他支持

• 多核联合: 暂不支持

3.2.12 ConvolutionTanh

Convolution 与 Tanh 融合计算, Output = Tanh(Conv(Input))

说明及规格限制同Convolution

其他支持

• 多核联合: 暂不支持

3.2.13 ConvolutionSoftplus

Convolution 与 Softplus 融合计算, Output = Softplus(Conv(Input))

说明及规格限制同Convolution

其他支持

• 多核联合: 暂不支持

3.2.14 ConvolutionHardSigmoid

Convolution 与 HardSigmoid 融合计算, Output = HardSigmoid(Conv(Input))

说明及规格限制同Convolution

其他支持

• 多核联合: 暂不支持

3.2.15 ConvolutionHardSwish

Convolution 与 HardSwish 融合计算, Output = HardSwish(Conv(Input))

说明及规格限制同Convolution

其他支持

• 多核联合: 暂不支持

3.2.16 ConvolutionElu

Convolution 与 Elu 融合计算, Output = Elu(Conv(Input))

说明及规格限制同Convolution

其他支持

• 多核联合: 暂不支持

3.2.17 ConvolutionSwish

Convolution 与 Swish 融合计算, Output = Swish(Conv(Input))

说明及规格限制同Convolution

其他支持

• 多核联合: 暂不支持

3.2.18 ConvolutionMish

Convolution 与 Mish 融合计算, Output = Mish(Conv(Input))

说明及规格限制同Convolution

其他支持

• 多核联合: 暂不支持

3.2.19 ConvolutionAddRelu

Convolution 与 Add 及 Relu 融合计算, Output = Relu(Add(Conv(Input0), Input1))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.2.20 ConvTranspose

转置卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: T1
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_h \in [1, 31]
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - stride_h 仅支持 1,2,4,8
 - stride_w 仅支持 1,2,4,8
- pads: int(pads_top, pads_left, pads_bottom, pads_right)

设置 pad 时注意:

不支持 kernel_h * dilations_h - dilations_h - pads_top < 0

不支持 kernel_w * dilations_w - dilations_w - pads_left < 0

不支持 stride_h *(height - 1) - pads_top + 1 < output_h

不支持 stride_w *(width - 1) - pads_left + 1 < output_w

- pads_top ∈ [0, 15]
- pads_left $\in [0, 15]$
- pads_bottom $\in [0, 15]$
- **-** pads_right ∈ [0, 15]
- group: int

- group: 仅支持 1, 当且仅当 num_input=num_output 时支持 num_output
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_w $\in [1, 32]$

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.2.21 ConvTranposeRelu

ConvTranpose 与 Relu 融合计算, Output = Relu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.2.22 ConvTranposeClip

ConvTranpose 与 Clip 融合计算, Output = Clip(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.2.23 ConvTranposePRelu/LeakyRelu

ConvTranpose 与 PRelu/LeakyRelu 融合计算, Output = PRelu(ConvTranpose(Input)) 或者 Output = LeakyRelu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.2.24 ConvTranposeAdd

ConvTranpose 与 Add 融合计算, Output = Add(ConvTranpose(Input0), Input1)

说明及规格限制同ConvTranspose

3.2.25 ConvTranposeSigmoid

ConvTranpose 与 Sigmoid 融合计算, Output = Sigmoid(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.2.26 ConvTranposeTanh

ConvTranpose 与 Tanh 融合计算, Output = Tanh(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.2.27 ConvTranposeSoftplus

ConvTranpose 与 Softplus 融合计算, Output = Softplus(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.2.28 ConvTranposeHardSigmoid

ConvTranpose 与 HardSigmoid 融合计算, Output = HardSigmoid(ConvTranpose(Input))

3.2.29 ConvTranposeHardSwish

ConvTranpose 与 HardSwish 融合计算, Output = HardSwish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.2.30 ConvTranposeElu

ConvTranpose 与 Elu 融合计算, Output = Elu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.2.31 ConvTranposeSwish

ConvTranpose 与 Swish 融合计算, Output = Swish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.2.32 ConvTranposeMish

ConvTranpose 与 Mish 融合计算, Output = Mish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.2.33 Div

执行元素级二进制除法 (C = A/B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- **T2**: float(const Tensor)

其他支持

• 多核联合: 不支持

3.2.34 Expand

根据给定的 shape 和广播规则广播输入张量。广播规则类似于 numpy.array(input) * numpy.ones(shape):维度右对齐;两个对应维度必须具有相同的值,或者其中一个等于 1

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

- * per-layer
- shape: **T2**
 - **shape**: [batch, channel, height, width]

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: int64(Tensor)

广播约束

- [b, c, 1, w]->[b, c, h, w], $h \in [1, 8192]$
- [b, 1, 1, w]->[b, c, h, w], $h \in [1, 8192]$
- [b, c, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, 1, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, c, 1, 1]->[b, c, h, w], $h \in [1, 8192], w \in [1, 8192]$

其他支持

· 多核联合: 不支持

3.2.35 GRU

门控循环单元(GRU,Gated Recurrent Unit)

GRU 扩展以及变体命名为 exGRU 算子,参数项中指明

(extern) 的项为 exGRU 独有的参数项。

计算公式如下:

Equations (Default: f=Sigmoid, g=Tanh):

$$\begin{split} r_t &= f(x_t \cdot W_r + h_{t-1} \cdot R_r + W b_r + R b_r) \\ z_t &= f(x_t \cdot W_z + h_{t-1} \cdot R_z + W b_z + R b_z) \\ h_t &= g(x_t \cdot W_h + (r_t \odot h_{t-1}) \cdot R_h + R b_h + W b_h), (WRB = 0) \\ h_t &= g(x_t \cdot W_h + r_t \odot (h_{t-1} \cdot R_h + R b_h)) + W b_h, (WRB = 1) \\ H_t &= (1 - z_t) \odot h_t + z_t \odot h_{t-1} \end{split}$$

- X:T1
 - **shape**: [seq_length, batch_size, input_size]
 - * $seqlength \in (0, 8192]$

- * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- $\star inputsize \in (0,8192]$

- 量化支持

- * per-layer
- W: **T1**
 - **shape**: [num_directions, 4*hidden_size, input_size]
 - $\star inputsize \in (0,8192]$
 - $\star hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- R: **T1**
 - **shape**: [num_directions, 4*hidden_size, hidden_size]
 - $\star hiddensize \in (0,8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- B: **T2**
 - **shape**: [num_directions, 8*hidden_size]
 - $\star hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- sequence_lens: T3 (optional)
 - shape : [batch_size]
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- initial_h : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0,8192]$
 - 量化支持
 - * per-layer

输出列表

- Y: **T1**
 - **shape**: [seq_length, num_directions, batch_size, hidden_size]

- * $seqlength \in (0, 8192]$
- * num directions: 1 or 2
- * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- * $hiddensize \in (0, 8192]$

- 量化支持

- * per-layer
- Y_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$

- 量化支持

* per-layer

属性列表

- linear_before_reset: int
 - LBR 变种的选择: 1(T) or 0(F)
- · direction (extern): string
 - 指定 GRU 的运算方向
 - forward: 指定 GRU 的运算方向为前向
 - reverse: 指定 GRU 的运算方向为反向
 - bidirectional: 指定 GRU 的运算方向为双向
- sequence_size (extern): int
 - 指定 GRU 输入的 seqsize,无限制,建议 4 对齐
- hidden_size (extern): int
 - GRU 单元中的 hiddensize,无限制,建议 8 对齐
- input_layout (extern): int
 - 指定与对应输入 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size。
 - snc: 指定 layout 对应的输入 shape 为 [seqs, batches, input_size]
 - (sn)c: 指定 layout 对应的输入 shape 为 [seqs*batches, input_size,1,1]
- output_layout (extern): int
 - 指定与对应输出 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hidden_size、directions。
 - sbnc: 指定 layout 对应的输出 shape 为 [seqs,directions,batches, hidden_size]
 - (sn)c: 指定 layout 对应的输出 shape 为 [seqsbatches, directionsinput_size,1,1]

数据类型约束

- T1: float16(Tensor)
- **T2**: float(Tensor)

• T3: float(Scalar)

其他支持

• 多核联合: 暂不支持

3.2.36 Gather

根据索引 Indices 获取输入 X 的指定 axis 维度的条目,并将它们拼接在一起。

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- Indices: T2
 - 要收集的元素的索引,秩 rank = 1

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: int(Tensor)

属性列表

- axis: int(Tensor)
 - $axis \in \{0, 1, 2, 3\}$
 - 指定 Indices 获取输入的维度

其他支持

• 多核联合: 尚不支持

3.2.37 LSTM

长短期记忆网络(LSTM,Long Short-Term Memory)

LSTM 扩展以及变体命名为 exLSTM 算子,参数项中指明

(extern) 的项为 exLSTM 独有的参数项。

计算公式如下:

Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):

$$i_t = f(x_t \cdot W_i + h_{t-1} \cdot R_i + Wb_i + Rb_i)$$

$$f_t = f(x_t \cdot W_f + h_{t-1} \cdot R_f + Wb_f + Rb_f)$$

$$c_t = f(x_t \cdot W_c + h_{t-1} \cdot R_c + Wb_c + Rb_c)$$

$$o_t = f(x_t \cdot W_o + h_{t-1} \cdot R_o + Wb_o + Rb_o)$$

$$C_t = f_t \odot C_(t-1) + i_t \odot c_t$$

$$h_t = o_t \odot h(C_t)$$

- X: **T1**
 - **shape**: [seq_length, batch_size, input_size]
 - * $seqlength \in (0, 8192]$
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $inputsize \in (0, 8192]$
 - 量化支持
 - * per-layer
- W:T1
 - **shape**: [num_directions, 4*hidden_size, input_size]
 - $\star input size \in (0, 8192]$
 - * $hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- R: **T1**
 - **shape**: [num_directions, 4*hidden_size, hidden_size]
 - \star $hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- B: **T2**, **T3**
 - **shape**: [num_directions, 8*hidden_size]
 - * $hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- sequence_lens: **T4**, **T5** (optional)
 - shape : [batch_size]
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数

- initial_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer
- initial_c: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer

输出列表

- Y: **T1**
 - **shape**: [seq_length, num_directions, batch_size, hidden_size]
 - * $seqlength \in (0, 8192]$
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer
- Y_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star \ hiddensize \in (0,8192]$
 - 量化支持
 - * per-layer
- Y_c : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - \star hiddensize $\in (0, 8192]$
 - 量化支持
 - * per-layer

属性列表

direction (extern): string

- 指定 LSTM 的运算方向
- forward: 指定 LSTM 的运算方向为前向
- reverse: 指定 LSTM 的运算方向为反向
- bidirectional: 指定 LSTM 的运算方向为双向
- sequence_size (extern): int
 - 指定 LSTM 输入的 seqsize,无限制,建议 4 对齐
- hidden_size (extern): int
 - LSTM 单元中的 hiddensize,无限制,建议 8 对齐
- proj_size (extern): int
 - projection 时的 proj_size, $projsize \in [0, hiddensize]$
 - 目前限定 0,即尚不支持 projection 功能
- input_forget (extern): int
 - cifg 变种的选择: 1(T) or 0(F) 目前限定 0, 即尚不支持
- has_projection (extern): int
 - projection 变种: 1(T) or 0(F) 目前限定 0,即尚不支持
- input_layout (extern): int
 - 指定与对应输入 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hidden size。
 - snc: 指定 layout 对应的输入 shape 为 [seqs, batches, input_size]
 - (sn)c: 指定 layout 对应的输入 shape 为 [seqs*batches, input_size,1,1]
- output_layout (extern): int
 - 指定与对应输出 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size、directions。
 - sbnc: 指定 layout 对应的输出 shape 为 [seqs,directions,batches, hidden_size]
 - (sn)c: 指定 layout 对应的输出 shape 为 [segsbatches, directionsinput_size,1,1]

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- **T3**: int32(Tensor)
- **T4**: float(Scalar)
- T5: int(Scalar)

其他支持

· 多核联合: 暂不支持

3.2.38 Max

计算输入张量的元素级最大值

输入列表

- A:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即C维度做broadcasting
 - · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting
- B:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即C维度做broadcasting
 - · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.2.39 Min

计算输入张量的元素级最小值

输入列表

- A:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即C维度做broadcasting
 - · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting
- B:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即C维度做broadcasting
 - · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.2.40 Mul

执行元素级二进制乘法 (C = A * B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(const Tensor)

其他支持

• **多核联合**: 支持

3.2.41 MulRelu

Mul与Relu融合计算, C = Relu(A * B)

输入列表

• 同Mul

输出列表

• 同Mul

其他支持

• **多核联合**: 支持

3.2.42 Pad

给定一个包含要填充的数据的张量 (data), 包含轴的开始和结束填充数值的张量 (pads), 模式 (mode), 常量数值 (constant_value), 生成一个填充张量 (output)

输入列表

- data: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- pads: **T2**
 - shape: [batch_begin, channel_begin, height_begin, width_begin, batch_end, channel_end, height_end, width_end]
- constant_value (optional): T3
 - shape: [1]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)
- T3: float(Scalar), int8(Scalar), float16(Scalar)

属性列表

- mode: string(默认值 constant)
 - 支持模式: constant, reflect
 - * constant 无限制
 - * reflect channel $\in (0, 8192]$, height $\in (0, 8192]$, width $\in (0, 8176]$

其他支持

3.2.43 MaxPool

MaxPool 消耗输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用最大池化。最大池化包括根据内核大小计算输入张量子集的所有值的最大值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

属性列表

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_ $h \in (0, 7]$
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_ $\mathbf{w} \in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$
- storage_order:int64
 - 优先储存方式: 0

- T1: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.2.44 GlobalMaxPool

GlobalMaxPool 使用输入张量 X 并对同一通道中的值应用最大池化。这相当于 MaxPool 的 kernel_shape 大小等于 input 的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - \star channel $\in (0, 8192]$
 - * $height \in (0,7]$
 - * $width \in (0,7]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

属性列表

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_ $h \in (0,7]$
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.2.45 AveragePool

AveragePool 使用输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用平均池化。平均池化包括根据内核大小计算输入张量子集的所有值的平均值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

属性列表

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- · ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_ $\mathbf{w} \in (0, 8]$
- count_include_pad: int64[]
 - count include pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.2.46 GlobalAveragePool

GlobalAveragePool 使用输入张量 X 并对同一通道中的值应用平均池化。这相当于 AveragePool,其 kernel_shape 大小等于输入张量的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - \star channel $\in (0, 8192]$
 - * $height \in (0,7]$
 - * $width \in (0,7]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

属性列表

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0,7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- · ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_ $w \in (0, 8]$
- count_include_pad : int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - $pad_top \in [0, 7]$
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.2.47 Pow

 $Z = X^Y$

指数运算,采用输入数据(张量)和指数,并产生一个输出数据(张量)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- Y: **T2**
 - shape: [1]
 - * 当前仅支持 0、1、2、3、0.5、-0.5

输出列表

- Z:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: int8(Tensor), int32(Tensor), int64(Tensor), float16(Tensor), float(Tensor)

其他支持

• 多核联合: 尚不支持

3.2.48 Relu

将输入张量的负值设为零,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.2.49 Clip/ReLU6

将输入张量的值裁剪到[0,6]范围内

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.2.50 PRelu

将输入张量的负值按可学习参数缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持

* 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

属性列表

- slope: PRelu 系数
 - 仅支持单个标量或 C 维度系数

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.2.51 LeakyRelu

将输入张量的负值按固定比例缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.2.52 Reshape

在不改变输入数据和元素数量的情况下,返回一个具有指定形状的张量。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- shape: int
 - 指定输出张量的形状

其他支持

• **多核联合**: 尚不支持

3.2.53 Resize

调整输入张量的大小。一般来说,它将输出张量中的每个值计算为输入张量中邻域(即采样位置)的加 权平均值

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- roi (optional) : **T2**
 - 目前暂不支持
- scales (optional): T2
 - 沿每个维度的缩放比例数组
- sizes (optional): T3
 - 输出张量的目标大小

输出列表

• Y: **T1**

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- **T3**: int64(Tensor)

属性列表

- antialias: int (默认值为 0)
 - 目前不支持设置
- axes: int[]
 - 目前不支持设置
- coordinate_transformation_mode: strings(默认值为"half_pixel")
 - 目前仅支持 half_pixel, pytorch_half_pixel, align_corners 三种
- cubic_coeff_a: float (默认为-0.75)
 - 目前不支持设置
- exclude_outside: int (默认值为 0)
 - 目前不支持设置
- extrapolation_value: float (默认为 0)
 - 目前不支持设置
- keep_aspect_ratio_policy: strings(默认值为" stretch")
 - 目前不支持设置
- mode: strings (默认值为"nearest")
 - 目前仅支持 nearest 和 linear 两种可配置
- nearest_mode: strings (默认值为"round_prefer_floor")
 - 目前不支持设置

其他支持

• **多核联合**: 不支持

3.2.54 Slice

获得当前向量的一个切片,具体规则和numpy切片相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer

输出列表

- output: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

属性列表

- starts: int(Tensor)
 - 切分的起始位置: 无限制
- ends: int(Tensor)
 - 切分的终止位置: 无限制
- axes: int(Tensor)
 - 选取切分的轴: 支持任意 0~3 轴,支持同时多轴选择
- steps: int(Tensor)
 - 选取切分对应轴的步长
 - 当 height * width == 1 && channel % subc == 0 && starts[1] % subc == 0 && ends[1] % subc == 0 && steps[1] <= subc 时, steps 可以不为 1, 否则只有 steps == [1,1,1,1] 时, 才可通过 NPU 运行 Slice OP

3.2.55 **Softmax**

该运算符计算给定输入的归一化指数值:

$$\mathsf{Softmax}(input,axis) = \frac{\exp(input - \max(input,axis))}{\sum_{axis} \exp(input - \max(input,axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * width:
 - · axis=1, 无限制;
 - · axis=3/-1, $width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output : **T1**
 - **shape**: [batch, channel, height, width]

• T1: int8(Tensor), float16(Tensor)

属性列表

- · axis: int
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向

其他支持

• 多核联合: 尚不支持

3.2.56 exSoftmax13

该运算符计算给定输入的归一化指数值:

$$\text{exSoftmax13}(input, axis) = \frac{\exp(input - \max(input, axis))}{\sum_{axis} \exp(input - \max(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

数据类型约束

• T1: int8(Tensor), float16(Tensor)

属性列表

- axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向

其他支持

• 多核联合: 尚不支持

3.2.57 exSoftmaxMask

该运算符计算给定输入的归一化指数值:

$$input(x, mast_t, mask_value) = \begin{cases} x + (mast_t - 1) * inf & \text{if } mask_value = 0 \\ x + mast_t * (-inf) & \text{elif } mask_value = 1 \end{cases}$$

$$\text{exSoftmaxMask}(input, axis) = \frac{\exp(input - \max(input, axis))}{\sum_{axis} \exp(input - \max(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - \star width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

- mask (optional): T1
 - **shape**: [1, channel, height, width]
 - \star channel $\in (0, 8192]$
 - * *width*:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向
- mask_value: int64
 - 需要 mask 的值: 0,1

其他支持

• 多核联合: 尚不支持

3.2.58 Split

将向量沿着 axis 方向分成 num_outputs 个向量,split 用于指定切分后向量在 axis 方向上的大小

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - 一或多个输出向量,由 num_outputs 属性决定
 - shape:根据切分情况决定
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

属性列表

- · axis:int
 - $axis \in \{0, 1, 2, 3\}$
- num_outputs:int
- split: int(Tensor)

3.2.59 Sub

• 执行元素级二进制减法 (C = A - B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

• **T2**: float(const Tensor)

其他支持

• 多核联合: 不支持

3.2.60 Tile

通过平铺给定的张量构造张量,这与 Numpy 中的函数 tile 相同,但没有广播

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- repeats: **T2**
 - **shape**: [batch, channel, height, width]

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)

其他支持

· 多核联合: 不支持

3.2.61 Transpose

对输入张量进行转置

输入列表

- X:**T1**
 - **shape**: [n1, c1, h1, w1]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

输出列表

- Y: **T1**, **T2**
 - **shape**: [n2, c2, h2, w2]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

属性列表

• perm 转置的轴顺序:

不同 perm 参数限制如下: (其中 p=8192, g=2048)

- perm=[0,1,2,3]
 - * 无限制
- perm=[0,1,3,2]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q
- perm=[0,2,3,1]
 - * **T1**: c1<8192, h1*w1%8=0, w1*c1<p*16
 - * **T2**: c1<8192, h1*w1%8=0, w1*c1<p*8
- perm=[0,2,1,3]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q, c1*w1<p
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1*w1<p
- perm=[0,3,1,2]
 - * **T1**, **T2**: h1*w1<p, w1<8192, h1*c1<p
- perm=[0,3,2,1]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q, c1<p*16
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1<p*8
- perm=[1,0,2,3]
 - * **T1**: h1*w1<16*p, n1<8192, h1*w1<p
 - * **T2**: h1*w1<8*p, n1<8192, h1*w1<p
- perm=[1,0,3,2]
 - * **T1**: h1%16=0, c1*h1*w1<16*p, h1*w1<2*q
 - * **T2**: h1%8=0, c1*h1*w1<8*p, h1*w1<2*q
- perm=[1,2,0,3]
 - * **T1**: n1*w1<p*16, c1*h1*w1<p, w1%16=0
 - * **T2**: n1*w1<p*8, c1*h1*w1p, w1%8=0
- perm=[1,2,3,0]
 - * **T1**: h1*w1<p, n1<p*16, c1*h1*w1<p*16, n1*w1<p*16
 - * **T2**: h1*w1<p, n1<p*8, c1*h1*w1<p*8, n1*w1<p*8
- perm=[1,3,0,2]
 - * **T1**: c1*w1<8192, n1*h1<p, w1%16=0
 - * **T2**: c1*w1<8192, n1*h1<p, w1%8=0

- perm=[1,3,2,0]
 - * **T1**: c1*h1*w1<p, n1*h1<p, w1<8192, w1%16=0
 - * **T2**: c1*h1*w1<p, n1*h1<p, w1<8192, w1%8=0
- perm=[2,1,0,3]
 - * **T1**, **T2**: c1<8192, c1*h1*w1<p, n1*w1<p
- perm=[2,1,3,0]
 - * **T1**: c1*h1*w1<p, n1*w1<p*16, c1<8192, n1*w1%4=0
 - * **T2**: c1*h1*w1<p, n1*w1<p*8, c1<8192, n1*w1%4=0
- perm=[2,0,3,1]
 - * **T1**, **T2**: c1<8192, c1*h1*w1<p
- perm=[2,0,1,3]
 - * **T1**: n1*c1*h1*w1<p, h1*w1%16=0
 - * **T2**: n1*c1*h1*w1<p, h1*w1%8=0
- perm=[2,3,1,0]
 - * **T1**: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%16=0
 - * **T2**: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%8=0
- perm=[2,3,0,1]
 - * **T1**, **T2**: h1*w1<8192, n1*c1<p
- perm=[3,0,2,1]
 - * **T1**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%16=0
 - * **T2**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%8=0
- perm=[3,0,1,2]
 - * **T1**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%16=0
 - * **T2**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%8=0
- perm=[3,2,0,1]
 - * **T1**, **T2**: h1*w1<p, n1*c1<8192, n1*c1*w1<p
- perm=[3,2,1,0]
 - * **T1**: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*16, h1%16=0
 - * **T2**: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*8, h1%8=0
- perm=[3,1,0,2]
 - * **T1**, **T2**: h1*w1<p, c1*w1<8192, n1*h1<p
- perm=[3,1,2,0]
 - * **T1**, **T2**: h1*w1<p, n1*c1<8192, n1*h1<p, n1*c1*w1<p

数据类型约束

- **T1**: int8(Tensor)
- **T2**: int16(Tensor), float16(Tensor)

其他支持

3.2.62 Sigmoid

给定输入张量,函数 y = 1/(1 + exp(-x)) 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.2.63 Tanh

计算给定输入张量单元的双曲正切

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.2.64 Softplus

按元素应用 Softplus 函数, y = ln(exp(x) + 1)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.2.65 HardSigmoid

给定输入张量,函数 y = max(0, min(1, alpha * x + beta)) 按元素应用于输入张量,得到输出张量,这里 alpha = 1/6,beta = 0.5

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.2.66 HardSwish

按元素应用 HardSwish 函数, y = x * max(0, min(1, alpha * x + beta)) = x * <math>HardSigmoid = x + beta = x

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.2.67 Elu

给定输入张量,函数 f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0 按元素应用于输入张量,得到输出张量,这里 alpha = 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output : **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.2.68 exSwish

按元素应用 Sigmoid 线性单元函数, Swish 函数也称为 SiLU 函数, y = x * sigmoid(x)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.2.69 exMish

给定输入张量,函数 $mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))$ 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.2.70 exGelu

给定输入张量,函数 $y=x*\Phi(x)$ 按元素应用于输入张量,得到输出张量,当 $\Phi(x)$ 函数设置成 tanh 时, $y=0.5*x*(1+Tanh(\sqrt{\frac{2}{\pi}}*(x+0.044715*x^3)))$

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.2.71 exSwooshR

给定输入张量,按论文 https://arxiv.org/abs/2310.11230 给定的下列函数,按元素应用于输入张量,得到输出张量

SwooshR(x) = log(1 + exp(x-1)) - 0.08x - 0.313261687

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.2.72 exSwooshL

给定输入张量,按论文 https://arxiv.org/abs/2310.11230 给定的下列函数,按元素应用于输入张量,得到输出张量

SwooshL(x) = log(1 + exp(x-4)) - 0.08x - 0.035

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.2.73 Where

根据 mask_tensor 获取 x_tensor 或 y_tensor 的值,当 mask_tensor 位置为 **True** 时,取 x_tensor 对 应位置的值,否则取 y_tensor 的值。

输入列表

- mask_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- x_tensor: *T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子

- y_tensor: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子

输出列表

- output: **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: bool(Tensor)
- **T2**: int8(Tensor), float16(Tensor)

3.2.74 exGlu

门控线性单元 (Gated Linear Unit) 函数, 其中 a 是输入矩阵的前一半, b 是后一半

$$GLU(a,b) = a \otimes \sigma(b)$$

输入列表

- Input: **T1**
 - **shape**: [batch, channel, height, width]
 - * channel: 32 对齐
 - 量化支持: per-layer

输出列表

- Output: **T1**
 - **shape**: [batch, channel / 2, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- axis: int(默认值 = 1)
 - 分割输入的维度
 - 约束: 仅支持1

其他支持

3.2.75 exMatMul

矩阵乘法操作

$$\mathsf{Y} = \begin{cases} \mathsf{A} \cdot \mathsf{B} + \mathsf{C}, & \text{if } c_type = \texttt{"add"} \\ \mathsf{A} \cdot \mathsf{B} * \mathsf{C}, & \text{if } c_type = \texttt{"mul"} \end{cases}$$

输入列表

- A:**T1**
 - **shape**: [b, k, 1, n]
 - * $k \in (0, 8192]$
 - 量化支持
 - * per-layer
- B:**T1**
 - **shape**: [b, k, 1, m]
 - 量化支持
 - * per-layer
- C (optional): **T1**, **T2**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- Y: **T1**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)

属性列表

- c_type: strings (默认值"add")
 - 支持 add 和 mul 可选, 表示 C 是做加法还是乘法

其他支持

3.2.76 exNorm

在 channel 方向上做层归一化,公式如下:

$$\mathsf{LayerNorm}(x) = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} \cdot W + B$$

其中:

x 是输入向量。

 μ 和 σ^2 分别是输入向量的均值和方差:

$$\mu = \frac{1}{H} \sum_{i=1}^{H} x_i$$

$$\sigma^2 = \frac{1}{H} \sum_{i=1}^{H} (x_i - \mu)^2$$

 ϵ 是一个很小的数,用于防止除零操作。

W 和 B 是可选择的参数。

输入列表

• X:**T1**

- **shape**: [batch, channel, height, width]

• W (optional): **T1**

- **shape**: [batch, channel, height, width]

• B (optional): T1

- **shape**: [batch, channel, height, width]

输出列表

• Y:**T1**

- **shape**: [batch, channel, height, width]

数据类型约束

• T1: float16(Tensor)

属性列表

• epsilon: float(默认值 1e-05)

- 用来防止除 0 的 epsilon 数值

其他支持

3.2.77 exSDPAttention

计算查询 (query)、键 (key) 和值 (value) 之间的缩放点积注意力 (SDPA)

输入列表

- query: **T1**
 - **shape**: [batch, channel, height, width]
 - \star channel $\in (0, 8192]$
 - 量化支持
 - * per-layer
- key: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- value: **T1**
 - **shape**: [batch, channel, height, width]
 - ★ channel ∈ (0,8192]
 - 量化支持
 - * per-layer
- mask (optional): T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
- scale (optional): T3

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- T3: float(Scalar)

其他支持

3.2.78 exWindow

exWindow 来源于swin_transformer的 window_partition 和 window_reverse 操作。 原论文中输入特征被划分为多个不重叠的窗口,每个窗口的大小为 window_size × window_size。要求输入和输出特征都为 4 维 shape,在高和宽方向上都进行划分。 pytorch 实现的计算方法如下:

```
def window_partition(x, window_size):
 0.00
 Args:
   x: (B, C, H, W)
   window_size (int): window size
 Returns:
   windows: (B, C, num_windows*num_windows, window_size*window_size)
 B, C, H, W = x.shape
 x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
 windows = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, -1, window_size*window_size)
 return windows
def window_reverse(windows, window_size, H, W):
 Args:
   windows: (B, C, num_windows*num_windows, window_size*window_size)
   window_size (int): Window size
   H (int): Height of image
   W (int): Width of image
 Returns:
   x: (B, C, H, W)
 B,C,_,_ = windows.shape
 x = windows.view(B, C, H // window_size, W // window_size, window_size, window_size)
 x = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, H, W)
```

(续上页)

return x

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]

输出列表

- Y:**T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- mode: string
 - 支持模式: partition, reverse, partition_num_first
 - * partition: 参考 window_partition 实现;
 - * reverse: 参考 window_reverse 实现;
 - * partition_num_first: 与 partition 的区别在于, partition_num_first 的 H,W 按照 num_windows 进行划分,而 partition 的 H,W 按照 window_sizes 进行划分。
- window_sizes: list of ints
 - 2 维向量, 窗口的大小。定义了每个窗口的高度和宽度。窗口内的注意力计算和特征提取都是基于这个大小。
- num_windows: list of ints
 - 2 维向量, 窗口的数量。定义了输入特征的高度和宽度被划分为多少个窗口。

其他支持

3.3 RK3562

3.3.1 Add

执行元素级二进制加法 (C = A + B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(const Tensor)

3.3.2 AddRelu

Add与Relu融合计算, C = Relu(A + B)

输入列表

• 同Add

输出列表

• 同Add

其他支持

3.3.3 BatchNormalization

按照论文 https://arxiv.org/abs/1502.03167 中的描述对输入张量进行批量归一化计算

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- epsilon: float (默认值 = 1e-5)
 - 除以标准差时加上防止除 0 的实数
 - $epsilon \in (0, \infty]$
- momentum: float
 - 训练时的滑动平均参数

3.3.4 Concat

将一系列向量在 axis 指定的方向上组合成一个向量,所有向量除 axis 指定的方向外大小必须相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

属性列表

- axis int64
 - $axis \in \{0, 1, 2, 3\}$

3.3.5 Convolution

卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - ★ width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_ $h \in [1, 31]$
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- strides: int(strides_h, strides_w)
 - stride_ $h \in [1, 7]$
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - **-** pads_top ∈ [0, 15]
 - pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$

- dilations_w $\in [1, 32]$

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.3.6 Depthwise Convolution

深度可分离卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_ $h \in [1, 8]$
 - * kernel_w $\in [1, 8]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 7]
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - pads_top ∈ [0, 15]
 - **-** pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)

- dilations_ $h \in [1, 32]$
- dilations_ $w \in [1, 32]$

• **T1**: int8(Tensor), float16(Tensor)

3.3.7 ConvolutionRelu

Convolution 与 Relu 融合计算, Output = Relu(Conv(Input))

说明及规格限制同Convolution

3.3.8 ConvolutionClip

Convolution 与 Clip 融合计算, Output = Clip(Conv(Input))

说明及规格限制同Convolution

3.3.9 ConvolutionPRelu/LeakyRelu

Convolution 与 PRelu/LeakyRelu 融合计算, Output = PRelu(Conv(Input)) 或者 Output = LeakyRelu(Conv(Input))

说明及规格限制同Convolution

3.3.10 ConvolutionAdd

Convolution 与 Add 融合计算, Output = Add(Conv(Input0), Input1)

说明及规格限制同Convolution

3.3.11 ConvolutionSigmoid

Convolution 与 Sigmoid 融合计算, Output = Sigmoid(Conv(Input))

说明及规格限制同Convolution

3.3.12 ConvolutionTanh

Convolution 与 Tanh 融合计算, Output = Tanh(Conv(Input))

说明及规格限制同Convolution

3.3.13 ConvolutionSoftplus

Convolution 与 Softplus 融合计算, Output = Softplus(Conv(Input))

说明及规格限制同Convolution

3.3.14 ConvolutionHardSigmoid

Convolution 与 HardSigmoid 融合计算, Output = HardSigmoid(Conv(Input))

说明及规格限制同Convolution

3.3.15 ConvolutionHardSwish

Convolution 与 HardSwish 融合计算, Output = HardSwish(Conv(Input))

说明及规格限制同Convolution

3.3.16 ConvolutionElu

Convolution 与 Elu 融合计算, Output = Elu(Conv(Input))

说明及规格限制同Convolution

3.3.17 ConvolutionSwish

Convolution 与 Swish 融合计算, Output = Swish(Conv(Input))

说明及规格限制同Convolution

3.3.18 ConvolutionMish

Convolution 与 Mish 融合计算, Output = Mish(Conv(Input))

说明及规格限制同Convolution

3.3.19 ConvolutionAddRelu

Convolution 与 Add 及 Relu 融合计算, Output = Relu(Add(Conv(Input0), Input1))

说明及规格限制同Convolution

3.3.20 ConvTranspose

转置卷积

输入列表

- input_tensor: **T1**
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: T1
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_h \in [1, 31]
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 8]
 - stride_w ∈ [1, 8]
- pads: int(pads_top, pads_left, pads_bottom, pads_right)

设置 pad 时注意:

不支持 kernel_h * dilations_h - dilations_h - pads_top < 0

不支持 kernel_w * dilations_w - dilations_w - pads_left < 0

不支持 stride_h *(height - 1) - pads_top + 1 < output_h

不支持 stride_w *(width - 1) - pads_left + 1 < output_w

- pads_top ∈ [0, 15]
- pads_left $\in [0, 15]$
- pads_bottom $\in [0, 15]$
- pads_right $\in [0, 15]$
- group: int

- group: 仅支持 1, 当且仅当 num_input=num_output 时支持 num_output
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_ $\mathbf{w} \in [1, 32]$

• **T1**: int8(Tensor), float16(Tensor)

3.3.21 ConvTranposeRelu

ConvTranpose 与 Relu 融合计算, Output = Relu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.3.22 ConvTranposeClip

ConvTranpose 与 Clip 融合计算, Output = Clip(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.3.23 ConvTranposePRelu/LeakyRelu

ConvTranpose 与 PRelu/LeakyRelu 融合计算, Output = PRelu(ConvTranpose(Input)) 或者 Output = LeakyRelu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.3.24 ConvTranposeAdd

ConvTranpose 与 Add 融合计算, Output = Add(ConvTranpose(Input0), Input1)

说明及规格限制同ConvTranspose

3.3.25 ConvTranposeSigmoid

ConvTranpose 与 Sigmoid 融合计算, Output = Sigmoid(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.3.26 ConvTranposeTanh

ConvTranpose 与 Tanh 融合计算, Output = Tanh(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.3.27 ConvTranposeSoftplus

ConvTranpose 与 Softplus 融合计算, Output = Softplus(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.3.28 ConvTranposeHardSigmoid

ConvTranpose 与 HardSigmoid 融合计算, Output = HardSigmoid(ConvTranpose(Input))

3.3.29 ConvTranposeHardSwish

ConvTranpose 与 HardSwish 融合计算, Output = HardSwish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.3.30 ConvTranposeElu

ConvTranpose 与 Elu 融合计算, Output = Elu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.3.31 ConvTranposeSwish

ConvTranpose 与 Swish 融合计算, Output = Swish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.3.32 ConvTranposeMish

ConvTranpose 与 Mish 融合计算, Output = Mish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.3.33 Div

执行元素级二进制除法 (C = A/B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- **T2**: float(const Tensor)

3.3.34 Expand

输入列表

- input1: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

• **T1**: int8(Tensor), float16(Tensor)

广播约束

- [b, c, 1, w]->[b, c, h, w], $h \in [1, 8192]$
- $[b, 1, 1, w] \rightarrow [b, c, h, w], h \in [1, 8192]$
- [b, c, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, 1, h, 1]-> $[b, c, h, w], w \in [1, 8192]$
- [b, c, 1, 1]->[b, c, h, w], $h \in [1, 8192], w \in [1, 8192]$

3.3.35 GRU

门控循环单元(GRU,Gated Recurrent Unit)

GRU 扩展以及变体命名为 exGRU 算子,参数项中指明

(extern) 的项为 exGRU 独有的参数项。

计算公式如下:

Equations (Default: f=Sigmoid, g=Tanh):

$$r_{t} = f(x_{t} \cdot W_{r} + h_{t-1} \cdot R_{r} + Wb_{r} + Rb_{r})$$

$$z_{t} = f(x_{t} \cdot W_{z} + h_{t-1} \cdot R_{z} + Wb_{z} + Rb_{z})$$

$$h_{t} = g(x_{t} \cdot W_{h} + (r_{t} \odot h_{t-1}) \cdot R_{h} + Rb_{h} + Wb_{h}), (WRB = 0)$$

$$h_{t} = g(x_{t} \cdot W_{h} + r_{t} \odot (h_{t-1} \cdot R_{h} + Rb_{h})) + Wb_{h}, (WRB = 1)$$

$$H_{t} = (1 - z_{t}) \odot h_{t} + z_{t} \odot h_{t-1}$$

- X:T1
 - **shape**: [seq_length, batch_size, input_size]
 - \star seqlength $\in (0, 8192]$
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star inputsize \in (0, 8192]$
 - 量化支持
 - * per-layer
- W: **T1**
 - **shape**: [num_directions, 4*hidden_size, input_size]
 - $\star inputsize \in (0, 8192]$
 - $\star hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel

- R: **T1**
 - **shape**: [num_directions, 4*hidden_size, hidden_size]
 - $\star hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- B: **T2**
 - **shape**: [num_directions, 8*hidden_size]
 - * $hiddensize \in (0,8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- sequence_lens: T3 (optional)
 - **shape**: [batch_size]
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- initial_h : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * batchsize ∈ (0,8192],大于1时仅支持4的倍数
 - \star hiddensize $\in (0, 8192]$
 - 量化支持
 - * per-layer

输出列表

- Y: **T1**
 - **shape**: [seq_length, num_directions, batch_size, hidden_size]
 - * $seqlength \in (0, 8192]$
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0,8192]$
 - 量化支持
 - * per-layer
- Y_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$
 - 量化支持

* per-layer

属性列表

- linear_before_reset: int
 - LBR 变种的选择: 1(T) or 0(F)
- direction (extern): string
 - 指定 GRU 的运算方向
 - forward: 指定 GRU 的运算方向为前向
 - reverse: 指定 GRU 的运算方向为反向
 - bidirectional: 指定 GRU 的运算方向为双向
- sequence_size (extern): int
 - 指定 GRU 输入的 seqsize,无限制,建议 4 对齐
- hidden_size (extern): int
 - GRU 单元中的 hiddensize, 无限制,建议 8 对齐
- input_layout (extern): int
 - 指定与对应输入 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size。
 - snc: 指定 layout 对应的输入 shape 为 [seqs, batches, input_size]
 - (sn)c: 指定 layout 对应的输入 shape 为 [seqs*batches, input_size,1,1]
- output_layout (extern): int
 - 指定与对应输出 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size、directions。
 - sbnc: 指定 layout 对应的输出 shape 为 [seqs,directions,batches, hidden_size]
 - (sn)c: 指定 layout 对应的输出 shape 为 [segsbatches, directionsinput_size,1,1]

数据类型约束

- **T1**: float16(Tensor)
- T2: float(Tensor)
- **T3**: float(Scalar)

其他支持

• 多核联合: 暂不支持

3.3.36 Gather

根据索引 Indices 获取输入 X 的指定 axis 维度的条目,并将它们拼接在一起。

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

- * per-layer
- Indices: T2
 - 要收集的元素的索引,秩 rank = 1

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: int(Tensor)

属性列表

- axis: int(Tensor)
 - $axis \in \{0, 1, 2, 3\}$
 - 指定 Indices 获取输入的维度

其他支持

· 多核联合: 尚不支持

3.3.37 LSTM

长短期记忆网络(LSTM,Long Short-Term Memory)

LSTM 扩展以及变体命名为 exLSTM 算子,参数项中指明

(extern) 的项为 exLSTM 独有的参数项。

计算公式如下:

Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):

$$i_t = f(x_t \cdot W_i + h_{t-1} \cdot R_i + Wb_i + Rb_i)$$

$$f_t = f(x_t \cdot W_f + h_{t-1} \cdot R_f + Wb_f + Rb_f)$$

$$c_t = f(x_t \cdot W_c + h_{t-1} \cdot R_c + Wb_c + Rb_c)$$

$$o_t = f(x_t \cdot W_o + h_{t-1} \cdot R_o + Wb_o + Rb_o)$$

$$C_t = f_t \odot C_(t-1) + i_t \odot c_t$$

$$h_t = o_t \odot h(C_t)$$

- X:**T1**
 - shape : [seq_length, batch_size, input_size]
 - * $seqlength \in (0, 8192]$
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star inputsize \in (0, 8192]$

- 量化支持

- * per-layer
- W: **T2**
 - **shape**: [num_directions, 4*hidden_size, input_size]
 - $\star inputsize \in (0, 8192]$
 - $\star hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- R: **T2**
 - **shape**: [num_directions, 4*hidden_size, hidden_size]
 - \star hiddensize $\in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- B: **T2**
 - **shape**: [num_directions, 8*hidden_size]
 - * $hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- sequence_lens: T2 (optional)
 - **shape**: [batch_size]
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- initial_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer
- initial_c : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$

- 量化支持

* per-layer

输出列表

- Y: **T1**
 - **shape**: [seq_length, num_directions, batch_size, hidden_size]
 - \star seqlength $\in (0, 8192]$
 - * num directions: 1 or 2
 - * batchsize ∈ (0,8192],大于1时仅支持4的倍数
 - $\star hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer
- Y_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer
- Y_c : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * batchsize ∈ (0,8192],大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer

- direction (extern): string
 - 指定 LSTM 的运算方向
 - forward: 指定 LSTM 的运算方向为前向
 - reverse: 指定 LSTM 的运算方向为反向
 - bidirectional: 指定 LSTM 的运算方向为双向
- sequence_size (extern): int
 - 指定 LSTM 输入的 seqsize, 无限制,建议 4 对齐
- hidden_size (extern): int
 - LSTM 单元中的 hiddensize,无限制,建议 8 对齐
- proj_size (extern): int
 - projection 时的 proj_size, $projsize \in [0, hiddensize]$
 - 目前限定 0,即尚不支持 projection 功能
- input_forget (extern): int

- cifg 变种的选择: 1(T) or 0(F) 目前限定 0, 即尚不支持
- has_projection (extern): int
 - projection 变种: 1(T) or 0(F) 目前限定 0, 即尚不支持
- input_layout (extern): int
 - 指定与对应输入 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size。
 - snc: 指定 layout 对应的输入 shape 为 [seqs, batches, input_size]
 - (sn)c: 指定 layout 对应的输入 shape 为 [seqs*batches, input_size,1,1]
- output_layout (extern): int
 - 指定与对应输出 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size、directions。
 - sbnc: 指定 layout 对应的输出 shape 为 [seqs,directions,batches, hidden_size]
 - (sn)c: 指定 layout 对应的输出 shape 为 [seqsbatches, directionsinput_size,1,1]

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- **T3**: int32(Tensor)
- T4: float(Scalar)

其他支持

• 多核联合: 暂不支持

3.3.38 Max

计算输入张量的元素级最大值

- A: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即 C 维度做 broadcasting
 - · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting
- B:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer/per-channel

- 广播支持

- * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即C维度做broadcasting
 - · OP(A(N,C,H,W),B(scalar)),即以单个标量做 broadcasting

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.3.39 Mul

执行元素级二进制乘法 (C = A * B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(const Tensor)

3.3.40 MulRelu

Mul与Relu融合计算, C = Relu(A * B)

输入列表

• 同Mul

输出列表

• 同Mul

其他支持

• **多核联合**: 支持

3.3.41 Pad

给定一个包含要填充的数据的张量 (data), 包含轴的开始和结束填充数值的张量 (pads), 模式 (mode), 常量数值 (constant_value), 生成一个填充张量 (output)

输入列表

- data: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- pads: **T2**
 - **shape**: [batch_begin, channel_begin, height_begin, width_begin, batch_end, channel_end, height_end, width_end]
- constant_value (optional): T3
 - shape : [1]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)
- T3: float(Scalar), int8(Scalar), float16(Scalar)

属性列表

- mode: string(默认值 constant)
 - 支持模式: constant, reflect
 - * constant 无限制
 - * reflect channel $\in (0, 8192]$, height $\in (0, 8192]$, width $\in (0, 8176]$

其他支持

• 多核联合: 尚不支持

3.3.42 MaxPool

MaxPool 消耗输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用最大池化。最大池化包括根据内核大小计算输入张量子集的所有值的最大值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- · ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides h, strides w)
 - strides_ $h \in (0, 8]$
 - strides_ $\mathbf{w} \in (0, 8]$

- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$
- storage_order:int64[]
 - 优先储存方式: 0

- T1: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.3.43 GlobalMaxPool

GlobalMaxPool 使用输入张量 X 并对同一通道中的值应用最大池化。这相当于 MaxPool 的 kernel_shape 大小等于 input 的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0,7]$
 - * $width \in (0,7]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad : int64[]

- count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.3.44 AveragePool

AveragePool 使用输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用平均池化。平均池化包括根据内核大小计算输入张量子集的所有值的平均值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1

- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - $pad_left \in [0, 7]$
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- **T3**: float(Scalar)

3.3.45 GlobalAveragePool

GlobalAveragePool 使用输入张量 X 并对同一通道中的值应用平均池化。这相当于 AveragePool,其 kernel_shape 大小等于输入张量的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0,7]$
 - * $width \in (0,7]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0,7]
 - $kernel_w \in (0,7]$
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - pad_top $\in [0, 7]$
 - **-** pad_left ∈ [0, 7]

- pad_bottom $\in [0, 7]$
- pad_right $\in [0,7]$

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- **T3**: float(Scalar)

3.3.46 Pow

 $Z = X^Y$

指数运算,采用输入数据(张量)和指数,并产生一个输出数据(张量)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- Y: **T2**
 - shape: [1]
 - * 当前仅支持 0、1、2、3、0.5、-0.5

输出列表

- Z:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int8(Tensor), int32(Tensor), int64(Tensor), float16(Tensor), float(Tensor)

其他支持

• 多核联合: 尚不支持

3.3.47 Relu

将输入张量的负值设为零,正值保持不变

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

- * per-layer
- 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

· 多核联合: 暂不支持

3.3.48 Clip/ReLU6

将输入张量的值裁剪到[0,6]范围内

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.3.49 PRelu

将输入张量的负值按可学习参数缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

属性列表

- slope: PRelu 系数
 - 仅支持单个标量或 C 维度系数

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.3.50 LeakyRelu

将输入张量的负值按固定比例缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.3.51 Reshape

在不改变输入数据和元素数量的情况下,返回一个具有指定形状的张量。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- shape: int
 - 指定输出张量的形状

其他支持

• 多核联合: 尚不支持

3.3.52 Resize

调整输入张量的大小。一般来说,它将输出张量中的每个值计算为输入张量中邻域(即采样位置)的加 权平均值

- X:T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- roi (optional): T2

- 目前暂不支持
- scales (optional): T2
 - 沿每个维度的缩放比例数组
- sizes (optional): T3
 - 输出张量的目标大小

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- **T3**: int64(Tensor)

- antialias: int (默认值为 0)
 - 目前不支持设置
- axes: int[]
 - 目前不支持设置
- coordinate_transformation_mode: strings(默认值为"half_pixel")
 - 目前仅支持 half_pixel, pytorch_half_pixel, align_corners 三种
- cubic_coeff_a: float (默认为-0.75)
 - 目前不支持设置
- exclude_outside: int (默认值为 0)
 - 目前不支持设置
- extrapolation_value: float (默认为 0)
 - 目前不支持设置
- keep_aspect_ratio_policy: strings (默认值为" stretch")
 - 目前不支持设置
- mode: strings (默认值为"nearest")
 - 目前仅支持 nearest 和 linear 两种可配置
- nearest_mode: strings (默认值为"round_prefer_floor")
 - 目前不支持设置

3.3.53 Slice

获得当前向量的一个切片,具体规则和numpy切片相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

属性列表

- starts: int(Tensor)
 - 切分的起始位置: 无限制
- ends: int(Tensor)
 - 切分的终止位置: 无限制
- axes: int(Tensor)
 - 选取切分的轴: 支持任意 0~3 轴, 支持同时多轴选择
- steps: int(Tensor)
 - 选取切分对应轴的步长
 - 当 height * width == 1 && channel % subc == 0 && starts[1] % subc == 0 && ends[1] % subc == 0 && steps[1] <= subc 时, steps 可以不为 1, 否则只有 steps == [1,1,1,1] 时, 才可通过 NPU 运行 Slice OP

3.3.54 **Softmax**

该运算符计算给定输入的归一化指数值:

$$\mathsf{Softmax}(input, axis) = \frac{\mathsf{exp}(input - \mathsf{max}(input, axis))}{\sum_{axis} \mathsf{exp}(input - \mathsf{max}(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$

- \star width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- axis: int
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向

3.3.55 exSoftmax13

该运算符计算给定输入的归一化指数值:

$$\text{exSoftmax13}(input, axis) = \frac{\exp(input - \max(input, axis))}{\sum_{axis} \exp(input - \max(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表 *

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

- · axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向

3.3.56 exSoftmaxMask

该运算符计算给定输入的归一化指数值:

$$input(x, mast_t, mask_value) = \begin{cases} x + (mast_t - 1) * inf & \text{if } mask_value = 0 \\ x + mast_t * (-inf) & \text{elif } mask_value = 1 \end{cases}$$

$$\mathsf{exSoftmaxMask}(input, axis) = \frac{\mathsf{exp}(input - \mathsf{max}(input, axis))}{\sum_{axis} \mathsf{exp}(input - \mathsf{max}(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - shape: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - \star width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

- mask (optional): T1
 - **shape**: [1, channel, height, width]
 - * $channel \in (0, 8192]$
 - * width:
 - · axis=1, 无限制;
 - axis=3/-1, $width \in (0, 8192]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

- axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向
- mask_value: int64
 - 需要 mask 的值: 0,1

3.3.57 Split

将向量沿着 axis 方向分成 num_outputs 个向量,split 用于指定切分后向量在 axis 方向上的大小

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - 一或多个输出向量,由 num_outputs 属性决定
 - shape:根据切分情况决定
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

属性列表

- axis:int
 - $axis \in \{0, 1, 2, 3\}$
- · num_outputs:int
- split: int(Tensor)

3.3.58 Sub

• 执行元素级二进制减法 (C = A - B), 支持多向 Numpy 样式的广播

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持

- * [b, c, 1, 1]
- * [scalar]

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(const Tensor)

3.3.59 Tile

通过平铺给定的张量构造张量,这与 Numpy 中的函数 tile 相同,但没有广播

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- repeats: **T2**
 - **shape**: [batch, channel, height, width]

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)

3.3.60 Transpose

对输入张量进行转置

- X:**T1**
 - **shape**: [n1, c1, h1, w1]
 - * 详细约束规则见属性列表
 - 量化支持

* per-layer

输出列表

- Y: T1, T2
 - **shape**: [n2, c2, h2, w2]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

- perm 转置的轴顺序:
 - 不同 perm 参数限制如下: (其中 p=268435456, q=65536)
 - perm=[0,1,2,3]
 - * 无限制
 - perm=[0,1,3,2]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q
 - perm=[0,2,3,1]
 - * **T1**: c1<8192, h1*w1%8=0, w1*c1<p*16
 - * **T2**: c1<8192, h1*w1%8=0, w1*c1<p*8
 - perm=[0,2,1,3]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q, c1*w1<p
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1*w1<p
 - perm=[0,3,1,2]
 - * **T1**, **T2**: h1*w1<p, w1<8192, h1*c1<p
 - perm=[0,3,2,1]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q, c1<p*16
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1<p*8
 - perm=[1,0,2,3]
 - * **T1**: h1*w1<16*p, n1<8192, h1*w1<p
 - * **T2**: h1*w1<8*p, n1<8192, h1*w1<p
 - perm=[1,0,3,2]
 - * **T1**: h1%16=0, c1*h1*w1<16*p, h1*w1<2*q
 - * **T2**: h1%8=0, c1*h1*w1<8*p, h1*w1<2*q
 - perm=[1,2,0,3]
 - * **T1**: n1*w1<p*16, c1*h1*w1<p, w1%16=0
 - * **T2**: n1*w1<p*8, c1*h1*w1p, w1%8=0
 - perm=[1,2,3,0]
 - * **T1**: h1*w1<p, n1<p*16, c1*h1*w1<p*16, n1*w1<p*16
 - * **T2**: h1*w1<p, n1<p*8, c1*h1*w1<p*8, n1*w1<p*8
 - perm=[1,3,0,2]

- * **T1**: c1*w1<8192, n1*h1<p, w1%16=0
- * **T2**: c1*w1<8192, n1*h1<p, w1%8=0
- perm=[1,3,2,0]
 - * **T1**: c1*h1*w1<p, n1*h1<p, w1<8192, w1%16=0
 - * **T2**: c1*h1*w1<p, n1*h1<p, w1<8192, w1%8=0
- perm=[2,1,0,3]
 - * **T1**, **T2**: c1<8192, c1*h1*w1<p, n1*w1<p
- perm=[2,1,3,0]
 - * **T1**: c1*h1*w1<p, n1*w1<p*16, c1<8192, n1*w1%4=0
 - * **T2**: c1*h1*w1<p, n1*w1<p*8, c1<8192, n1*w1%4=0
- perm=[2,0,3,1]
 - * **T1**, **T2**: c1<8192, c1*h1*w1<p
- perm=[2,0,1,3]
 - * **T1**: n1*c1*h1*w1<p, h1*w1%16=0
 - * **T2**: n1*c1*h1*w1<p, h1*w1%8=0
- perm=[2,3,1,0]
 - * **T1**: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%16=0
 - * **T2**: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%8=0
- perm=[2,3,0,1]
 - * **T1**, **T2**: h1*w1<8192, n1*c1<p
- perm=[3,0,2,1]
 - * **T1**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%16=0
 - * **T2**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%8=0
- perm=[3,0,1,2]
 - * **T1**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%16=0
 - * **T2**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%8=0
- perm=[3,2,0,1]
 - * **T1**, **T2**: h1*w1<p, n1*c1<8192, n1*c1*w1<p
- perm=[3,2,1,0]
 - * **T1**: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*16, h1%16=0
 - * **T2**: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*8, h1%8=0
- perm=[3,1,0,2]
 - * **T1**, **T2**: h1*w1<p, c1*w1<8192, n1*h1<p
- perm=[3,1,2,0]
 - * **T1**, **T2**: h1*w1<p, n1*c1<8192, n1*h1<p, n1*c1*w1<p

- **T1**: int8(Tensor)
- **T2**: int16(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.3.61 Sigmoid

给定输入张量,函数 y = 1/(1 + exp(-x)) 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.3.62 Tanh

计算给定输入张量单元的双曲正切

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.3.63 Softplus

按元素应用 Softplus 函数, y = ln(exp(x) + 1)

输入列表

- X:T1
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.3.64 HardSigmoid

给定输入张量,函数 y = max(0, min(1, alpha * x + beta)) 按元素应用于输入张量,得到输出张量,这里 alpha = 1/6,beta = 0.5

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.3.65 HardSwish

按元素应用 HardSwish 函数, y = x * max(0, min(1, alpha * x + beta)) = x * <math>HardSigmoid = x + beta = x

- X:**T1**
 - **shape**: [batch, channel, height, width]

- 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.3.66 Elu

给定输入张量,函数 f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0 按元素应用于输入张量,得到输出张量,这里 alpha = 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.3.67 exSwish

按元素应用 Sigmoid 线性单元函数, Swish 函数也称为 SiLU 函数, y = x * sigmoid(x)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.3.68 exMish

给定输入张量,函数 $mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))$ 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.3.69 exGelu

给定输入张量,函数 $y=x*\Phi(x)$ 按元素应用于输入张量,得到输出张量,当 $\Phi(x)$ 函数设置成 tanh 时, $y=0.5*x*(1+Tanh(\sqrt{\frac{2}{\pi}}*(x+0.044715*x^3)))$

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.3.70 Where

根据 mask_tensor 获取 x_tensor 或 y_tensor 的值,当 mask_tensor 位置为 **True** 时,取 x_tensor 对 应位置的值,否则取 y_tensor 的值。

输入列表

- mask_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- x_tensor: *T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- y_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子

输出列表

- output: **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: bool(Tensor)
- T2: int8(Tensor), float16(Tensor)

3.3.71 exGlu

门控线性单元 (Gated Linear Unit) 函数, 其中 a 是输入矩阵的前一半, b 是后一半

$$GLU(a,b) = a \otimes \sigma(b)$$

输入列表

- Input: **T1**
 - **shape**: [batch, channel, height, width]
 - * channel: 32 对齐
 - 量化支持: per-layer

输出列表

- Output: T1
 - **shape**: [batch, channel / 2, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- axis: int(默认值 = 1)
 - 分割输入的维度
 - 约束: 仅支持1

3.3.72 exMatMul

矩阵乘法操作

$$\mathsf{Y} = \begin{cases} \mathsf{A} \cdot \mathsf{B} + \mathsf{C}, & \text{if } c_type = \texttt{"} \text{ add"} \\ \mathsf{A} \cdot \mathsf{B} * \mathsf{C}, & \text{if } c_type = \texttt{"} \text{ mul"} \end{cases}$$

输入列表

- A:**T1**
 - **shape**: [b, k, 1, n]
 - * $k \in (0, 8192]$
 - 量化支持
 - * per-layer
- B:**T1**
 - **shape**: [b, k, 1, m]
 - 量化支持
 - * per-layer
- C (optional): **T1**, **T2**

- **shape**: [b, n, 1, m]

- 量化支持

* per-layer

- 广播支持

* 支持任意维度广播操作

* 广播约束同Expand算子

输出列表

• Y: **T1**

- **shape**: [b, n, 1, m]

- 量化支持

* per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

• **T2**: float(Tensor)

属性列表

• c_type: strings (默认值"add")

- 支持 add 和 mul 可选, 表示 C 是做加法还是乘法

3.3.73 exNorm

在 channel 方向上做层归一化,公式如下:

$$\mathsf{LayerNorm}(x) = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} \cdot W + B$$

其中:

x 是输入向量。

 μ 和 σ^2 分别是输入向量的均值和方差:

$$\mu = \frac{1}{H} \sum_{i=1}^{H} x_i$$

$$\sigma^2 = \frac{1}{H} \sum_{i=1}^{H} (x_i - \mu)^2$$

 ϵ 是一个很小的数,用于防止除零操作。

W 和 B 是可选择的参数。

输入列表

• X:T1

- **shape**: [batch, channel, height, width]

• W (optional): T1

- **shape**: [batch, channel, height, width]

• B (optional): T1

- **shape**: [batch, channel, height, width]

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: float16(Tensor)

属性列表

- epsilon: float(默认值 1e-05)
 - 用来防止除 0 的 epsilon 数值

其他支持

• 多核联合: 尚不支持

3.3.74 exSDPAttention

计算查询 (query)、键 (key) 和值 (value) 之间的缩放点积注意力 (SDPA)

输入列表

- query: **T1**
 - **shape**: [batch, channel, height, width]
 - \star channel $\in (0, 8192]$
 - 量化支持
 - * per-layer
- key: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- value: **T1**
 - **shape**: [batch, channel, height, width]
 - \star channel $\in (0, 8192]$
 - 量化支持
 - * per-layer
- mask (optional): T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 默认支持任意维度广播操作

- * 开启 FA 支持后, 只支持 [b,c,1,1], [1,c,1,1] 和 [1,c,h,w] 三种规格
- scale (optional): T3

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

其他支持

- FlashAttentionV2(FA): 支持
 - 基于 https://arxiv.org/abs/2307.08691 实现, 通过高速缓存内循环实现加速以及减少宽带使用,但是会导致模型增大,请根据具体场景和模型选择是否开启使用
 - RKNPU 驱动版本 >= 0.8.8
 - RKNPU Runtime 库 (librknnrt.so) 版本 >= 2.0.0
 - 支持数据类型: float16

3.3.75 exWindow

exWindow 来源于swin_transformer的 window_partition 和 window_reverse 操作。原论文中输入特征被划分为多个不重叠的窗口,每个窗口的大小为 window_size × window_size。要求输入和输出特征都为 4 维 shape,在高和宽方向上都进行划分。pytorch 实现的计算方法如下:

```
def window_partition(x, window_size):
    """

Args:
    x: (B, C, H, W)
    window_size (int): window size

Returns:
    windows: (B, C, num_windows*num_windows, window_size*window_size)
    """

B, C, H, W = x.shape
    x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
```

(下页继续)

(续上页)

```
windows = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, -1, window_size*window_size)

return windows

def window_reverse(windows, window_size, H, W):

"""

Args:

windows: (B, C, num_windows*num_windows, window_size*window_size)

window_size (int): Window size

H (int): Height of image

W (int): Width of image

Returns:

x: (B, C, H, W)

"""

B, C, _, _ = windows.shape

x = windows.view(B, C, H // window_size, W // window_size, window_size, window_size)

x = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, H, W)

return x
```

输入列表

- X:T1
 - **shape**: [batch, channel, height, width]

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

- mode: string
 - 支持模式: partition, reverse, partition_num_first
 - * partition: 参考 window_partition 实现;
 - * reverse: 参考 window_reverse 实现;

- * partition_num_first: 与 partition 的区别在于,partition_num_first 的 H,W 按照 num_windows 进行划分,而 partition 的 H,W 按照 window_sizes 进行划分。
- window_sizes: list of ints
 - 2 维向量, 窗口的大小。定义了每个窗口的高度和宽度。窗口内的注意力计算和特征提取都是基于这个大小。
- num_windows: list of ints
 - 2 维向量, 窗口的数量。定义了输入特征的高度和宽度被划分为多少个窗口。

其他支持

• 多核联合: 尚不支持

3.4 RV1103/RV1106

3.4.1 Add

执行元素级二进制加法 (C = A + B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- T2: float(const Tensor)

3.4.2 AddRelu

Add与Relu融合计算, C = Relu(A + B)

输入列表

• 同Add

输出列表

• 同Add

其他支持

• **多核联合**: 支持

3.4.3 BatchNormalization

按照论文 https://arxiv.org/abs/1502.03167 中的描述对输入张量进行批量归一化计算

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- epsilon: float (默认值 = 1e-5)
 - 除以标准差时加上防止除 0 的实数
 - $epsilon \in (0, \infty]$
- momentum: float
 - 训练时的滑动平均参数

3.4.4 Concat

将一系列向量在 axis 指定的方向上组合成一个向量,所有向量除 axis 指定的方向外大小必须相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

- axis int64
 - $axis \in \{0, 1, 2, 3\}$

3.4.5 Convolution

卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_ $h \in [1, 31]$
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- strides: int(strides_h, strides_w)
 - stride_ $h \in [1, 7]$
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - **-** pads_top ∈ [0, 15]
 - pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - **-** pads_right \in [0, 15]
- group: int
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$

- dilations_ $w \in [1, 32]$

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.4.6 Depthwise Convolution

深度可分离卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_ $h \in [1, 8]$
 - * $kernel_w \in [1, 8]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 7]
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - pads_top ∈ [0, 15]
 - **-** pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)

- dilations_ $h \in [1, 32]$
- dilations_ $w \in [1, 32]$

• **T1**: int8(Tensor), float16(Tensor)

3.4.7 ConvolutionRelu

Convolution 与 Relu 融合计算, Output = Relu(Conv(Input))

说明及规格限制同Convolution

3.4.8 ConvolutionClip

Convolution 与 Clip 融合计算, Output = Clip(Conv(Input))

说明及规格限制同Convolution

3.4.9 ConvolutionPRelu/LeakyRelu

Convolution 与 PRelu/LeakyRelu 融合计算, Output = PRelu(Conv(Input)) 或者 Output = LeakyRelu(Conv(Input))

说明及规格限制同Convolution

3.4.10 ConvolutionAdd

Convolution 与 Add 融合计算, Output = Add(Conv(Input0), Input1)

说明及规格限制同Convolution

3.4.11 ConvolutionSigmoid

Convolution 与 Sigmoid 融合计算, Output = Sigmoid(Conv(Input))

说明及规格限制同Convolution

3.4.12 ConvolutionTanh

Convolution 与 Tanh 融合计算, Output = Tanh(Conv(Input))

说明及规格限制同Convolution

3.4.13 ConvolutionSoftplus

Convolution 与 Softplus 融合计算, Output = Softplus(Conv(Input))

说明及规格限制同Convolution

3.4.14 ConvolutionHardSigmoid

Convolution 与 HardSigmoid 融合计算, Output = HardSigmoid(Conv(Input))

说明及规格限制同Convolution

3.4.15 ConvolutionHardSwish

Convolution 与 HardSwish 融合计算, Output = HardSwish(Conv(Input))

说明及规格限制同Convolution

3.4.16 ConvolutionElu

Convolution 与 Elu 融合计算, Output = Elu(Conv(Input))

说明及规格限制同Convolution

3.4.17 ConvolutionSwish

Convolution 与 Swish 融合计算, Output = Swish(Conv(Input))

说明及规格限制同Convolution

3.4.18 ConvolutionMish

Convolution 与 Mish 融合计算, Output = Mish(Conv(Input))

说明及规格限制同Convolution

3.4.19 ConvolutionAddRelu

Convolution 与 Add 及 Relu 融合计算, Output = Relu(Add(Conv(Input0), Input1))

说明及规格限制同Convolution

3.4.20 ConvTranspose

转置卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_h \in [1, 31]
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 8]
 - stride_w ∈ [1, 8]
- pads: int(pads_top, pads_left, pads_bottom, pads_right)

设置 pad 时注意:

不支持 kernel_h * dilations_h - dilations_h - pads_top < 0

不支持 kernel_w * dilations_w - dilations_w - pads_left < 0

不支持 stride_h *(height - 1) - pads_top + 1 < output_h

不支持 stride_w *(width - 1) - pads_left + 1 < output_w

- pads_top ∈ [0, 15]
- pads_left $\in [0, 15]$
- pads_bottom $\in [0, 15]$
- **-** pads_right ∈ [0, 15]
- group: int

- group: 仅支持 1, 当且仅当 num_input=num_output 时支持 num_output
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_w $\in [1, 32]$

• **T1**: int8(Tensor), float16(Tensor)

3.4.21 ConvTranposeRelu

ConvTranpose 与 Relu 融合计算, Output = Relu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.4.22 ConvTranposeClip

ConvTranpose 与 Clip 融合计算, Output = Clip(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.4.23 ConvTranposePRelu/LeakyRelu

ConvTranpose 与 PRelu/LeakyRelu 融合计算, Output = PRelu(ConvTranpose(Input)) 或者 Output = LeakyRelu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.4.24 ConvTranposeAdd

ConvTranpose 与 Add 融合计算, Output = Add(ConvTranpose(Input0), Input1)

说明及规格限制同ConvTranspose

3.4.25 ConvTranposeSigmoid

ConvTranpose 与 Sigmoid 融合计算, Output = Sigmoid(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.4.26 ConvTranposeTanh

ConvTranpose 与 Tanh 融合计算, Output = Tanh(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.4.27 ConvTranposeSoftplus

ConvTranpose 与 Softplus 融合计算, Output = Softplus(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.4.28 ConvTranposeHardSigmoid

ConvTranpose 与 HardSigmoid 融合计算, Output = HardSigmoid(ConvTranpose(Input))

3.4.29 ConvTranposeHardSwish

ConvTranpose 与 HardSwish 融合计算, Output = HardSwish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.4.30 ConvTranposeElu

ConvTranpose 与 Elu 融合计算, Output = Elu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.4.31 ConvTranposeSwish

ConvTranpose 与 Swish 融合计算, Output = Swish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.4.32 ConvTranposeMish

ConvTranpose 与 Mish 融合计算, Output = Mish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.4.33 Div

执行元素级二进制除法 (C = A/B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- **T2**: float(const Tensor)

3.4.34 Expand

根据给定的 shape 和广播规则广播输入张量。广播规则类似于 numpy.array(input) * numpy.ones(shape):维度右对齐;两个对应维度必须具有相同的值,或者其中一个等于 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- shape: **T2**
 - **shape**: [batch, channel, height, width]

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- **T2**: int64(Tensor)

广播约束

- [b, c, 1, w]->[b, c, h, w], $h \in [1, 8192]$
- $[b, 1, 1, w] \rightarrow [b, c, h, w], h \in [1, 8192]$
- [b, c, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, 1, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, c, 1, 1]->[b, c, h, w], $h \in [1, 8192], w \in [1, 8192]$

3.4.35 LSTM

长短期记忆网络(LSTM,Long Short-Term Memory)

LSTM 扩展以及变体命名为 exLSTM 算子,参数项中指明

(extern) 的项为 exLSTM 独有的参数项。

计算公式如下:

Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):

$$i_t = f(x_t \cdot W_i + h_{t-1} \cdot R_i + Wb_i + Rb_i)$$

$$f_t = f(x_t \cdot W_f + h_{t-1} \cdot R_f + Wb_f + Rb_f)$$

$$c_t = f(x_t \cdot W_c + h_{t-1} \cdot R_c + Wb_c + Rb_c)$$

$$o_t = f(x_t \cdot W_o + h_{t-1} \cdot R_o + Wb_o + Rb_o)$$

$$C_t = f_t \odot C_(t-1) + i_t \odot c_t$$

$$h_t = o_t \odot h(C_t)$$

输入列表

- X:**T1**
 - shape : [seq_length, batch_size, input_size]
 - * $seqlength \in (0, 8192]$
 - * batchsize ∈ (0,8192],大于1时仅支持4的倍数
 - $\star inputsize \in (0, 8192]$
 - 量化支持
 - * per-layer
- W:**T1**

- **shape**: [num_directions, 4*hidden_size, input_size]
 - $\star inputsize \in (0, 8192]$
 - \star hiddensize $\in (0, 8192]$
 - * num directions: 1 or 2
- 量化支持
 - * per-layer
 - * per-channel
- R: **T1**
 - **shape**: [num_directions, 4*hidden_size, hidden_size]
 - * $hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- B: **T2**
 - **shape**: [num_directions, 8*hidden_size]
 - \star hiddensize $\in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- sequence_lens: T3 (optional)
 - shape : [batch_size]
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- initial_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - \star hiddensize $\in (0, 8192]$
 - 量化支持
 - * per-layer
- initial_c: **T3** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * batchsize ∈ (0,8192],大于1时仅支持4的倍数
 - \star hiddensize $\in (0, 8192]$
 - 量化支持
 - * per-layer

输出列表

- Y: **T1**
 - **shape**: [seq_length, num_directions, batch_size, hidden_size]
 - * $seqlength \in (0, 8192]$
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer
- Y_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer
- Y_c: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer

- direction (extern): string
 - 指定 LSTM 的运算方向
 - forward: 指定 LSTM 的运算方向为前向
 - reverse: 指定 LSTM 的运算方向为反向
 - bidirectional: 指定 LSTM 的运算方向为双向
- sequence_size (extern): int
 - 指定 LSTM 输入的 seqsize, 无限制,建议 4 对齐
- hidden_size (extern): int
 - LSTM 单元中的 hiddensize,无限制,建议 8 对齐
- proj_size (extern): int
 - projection 时的 proj_size, $projsize \in [0, hiddensize]$
 - 目前限定 0,即尚不支持 projection 功能
- input_forget (extern): int
 - cifg 变种的选择: 1(T) or 0(F) 目前限定 0, 即尚不支持
- has_projection (extern): int
 - projection 变种: 1(T) or 0(F) 目前限定 0,即尚不支持

- input_layout (extern): int
 - 指定与对应输入 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size。
 - snc: 指定 layout 对应的输入 shape 为 [seqs, batches, input_size]
 - (sn)c: 指定 layout 对应的输入 shape 为 [seqs*batches, input_size,1,1]
- output_layout (extern): int
 - 指定与对应输出 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hidden_size、directions。
 - sbnc: 指定 layout 对应的输出 shape 为 [seqs,directions,batches, hidden_size]
 - (sn)c: 指定 layout 对应的输出 shape 为 [seqsbatches, directionsinput_size,1,1]

- **T1**: int8(Tensor)
- **T2**: int32(Tensor)
- T3: int(Scalar)

其他支持

• 多核联合: 暂不支持

3.4.36 Max

计算输入张量的元素级最大值

- 输入列表
- A:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即 C 维度做 broadcasting
 - · OP(A(N,C,H,W),B(scalar)),即以单个标量做 broadcasting
- B:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作

- · OP(A(N,C,H,W),B(C,1,1)),即 C 维度做 broadcasting
- · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting

输出列表

- C: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.4.37 Min

计算输入张量的元素级最小值

输入列表

- A: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即 C 维度做 broadcasting
 - · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting
- B:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即C维度做broadcasting
 - · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting

输出列表

- C: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer/per-channel

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.4.38 Mul

执行元素级二进制乘法 (C = A * B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- **T2**: float(const Tensor)

3.4.39 MulRelu

Mul与Relu融合计算, C = Relu(A * B)

输入列表

• 同Mul

输出列表

• 同Mul

其他支持

• **多核联合**: 支持

3.4.40 Pad

给定一个包含要填充的数据的张量 (data), 包含轴的开始和结束填充数值的张量 (pads), 模式 (mode), 常量数值 (constant_value), 生成一个填充张量 (output)

输入列表

- data: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- pads: **T2**
 - shape: [batch_begin, channel_begin, height_begin, width_begin, batch_end, channel_end, height_end, width_end]
- constant_value (optional): T3
 - shape : [1]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: int8(Tensor)
- **T2**: int64(Tensor)
- T3: float(Scalar), int8(Scalar), float16(Scalar)

- mode: string(默认值 constant)
 - 支持模式: constant, reflect
 - * constant 无限制
 - * reflect channel $\in (0, 8192]$, height $\in (0, 8192]$, width $\in (0, 8176]$

其他支持

• 多核联合: 尚不支持

3.4.41 MaxPool

MaxPool 消耗输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用最大池化。最大池化包括根据内核大小计算输入张量子集的所有值的最大值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_ $h \in (0, 7]$
 - $kernel_w \in (0,7]$
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- · ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_ $\mathbf{w} \in (0, 8]$
- count_include_pad : int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - $pad_top \in [0, 7]$
 - **-** pad_left ∈ [0, 7]

- pad_bottom $\in [0, 7]$
- pad_right $\in [0, 7]$
- storage_order:int64[]
 - 优先储存方式: 0

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.4.42 GlobalMaxPool

GlobalMaxPool 使用输入张量 X 并对同一通道中的值应用最大池化。这相当于 MaxPool 的 kernel_shape 大小等于 input 的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0,7]$
 - * $width \in (0,7]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - **-** kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- · auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad : int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - $pad_left \in [0, 7]$
 - pad_bottom $\in [0, 7]$

- pad_right $\in [0,7]$

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- T3: float(Scalar)

3.4.43 AveragePool

AveragePool 使用输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用平均池化。平均池化包括根据内核大小计算输入张量子集的所有值的平均值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- · ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_ $\mathbf{w} \in (0, 8]$
- count_include_pad : int64[]
 - count include pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- **T3**: float(Scalar)

3.4.44 GlobalAveragePool

GlobalAveragePool 使用输入张量 X 并对同一通道中的值应用平均池化。这相当于 AveragePool,其 kernel_shape 大小等于输入张量的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0,7]$
 - * $width \in (0,7]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

属性列表

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0,7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_ $\mathbf{w} \in (0, 8]$
- count_include_pad : int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)

• T3: float(Scalar)

3.4.45 Pow

 $Z = X^Y$

指数运算,采用输入数据(张量)和指数,并产生一个输出数据(张量)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- Y: **T2**
 - shape: [1]
 - * 当前仅支持 0、1、2、3、0.5、-0.5

输出列表

- Z:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: int8(Tensor), int32(Tensor), int64(Tensor), float16(Tensor), float(Tensor)

其他支持

• 多核联合: 尚不支持

3.4.46 Relu

将输入张量的负值设为零,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

• output : **T1**

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.4.47 Clip/ReLU6

将输入张量的值裁剪到[0,6]范围内

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.4.48 PRelu

将输入张量的负值按可学习参数缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

- * per-layer/per-channel
- 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

属性列表

- slope: PRelu 系数
 - 仅支持单个标量或 C 维度系数

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.4.49 LeakyRelu

将输入张量的负值按固定比例缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.4.50 Reshape

在不改变输入数据和元素数量的情况下,返回一个具有指定形状的张量。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- shape: int
 - 指定输出张量的形状

其他支持

• **多核联合**: 尚不支持

3.4.51 Resize

调整输入张量的大小。一般来说,它将输出张量中的每个值计算为输入张量中邻域(即采样位置)的加 权平均值

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- roi (optional): T2
 - 目前暂不支持
- scales (optional): T2
 - 沿每个维度的缩放比例数组
- sizes (optional): T3
 - 输出张量的目标大小

输出列表

• Y: **T1**

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer

- **T1**: int8(Tensor)
- T2: float(Tensor)
- **T3**: int64(Tensor)

属性列表

- antialias: int (默认值为 0)
 - 目前不支持设置
- axes: int[]
 - 目前不支持设置
- coordinate_transformation_mode: strings(默认值为"half_pixel")
 - 目前仅支持 half_pixel, pytorch_half_pixel, align_corners 三种
- cubic_coeff_a: float (默认为-0.75)
 - 目前不支持设置
- exclude_outside: int (默认值为 0)
 - 目前不支持设置
- extrapolation_value : float (默认为 0)
 - 目前不支持设置
- keep_aspect_ratio_policy: strings (默认值为" stretch")
 - 目前不支持设置
- mode: strings (默认值为"nearest")
 - 目前仅支持 nearest 和 linear 两种可配置
- nearest_mode: strings (默认值为"round_prefer_floor")
 - 目前不支持设置

3.4.52 Slice

获得当前向量的一个切片,具体规则和numpy切片相同

输入列表

- input_tensor: **T**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

• output: T

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer

• T: int8(Tensor), float16(Tensor)

属性列表

- starts: int(Tensor)
 - 切分的起始位置: 无限制
- ends: int(Tensor)
 - 切分的终止位置: 无限制
- axes: int(Tensor)
 - 选取切分的轴: 支持任意 0~3 轴,支持同时多轴选择
- steps: int(Tensor)
 - 选取切分对应轴的步长
 - 当 height * width == 1 && channel % subc == 0 && starts[1] % subc == 0 && ends[1] % subc == 0 && steps[1] <= subc 时, steps 可以不为 1, 否则只有 steps == [1,1,1,1] 时, 才可通过 NPU 运行 Slice OP

3.4.53 Softmax

该运算符计算给定输入的归一化指数值:

$$\mathsf{Softmax}(input, axis) = \frac{\mathsf{exp}(input - \mathsf{max}(input, axis))}{\sum_{axis} \mathsf{exp}(input - \mathsf{max}(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。输入列表 *

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

· axis: int

- 做 softmax 的轴: 1,3,即 channel 和 width 方向

3.4.54 exSoftmax13

该运算符计算给定输入的归一化指数值:

$$\text{exSoftmax13}(input, axis) = \frac{\exp(input - \max(input, axis))}{\sum_{axis} \exp(input - \max(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向

3.4.55 exSoftmaxMask

该运算符计算给定输入的归一化指数值:

$$input(x, mast_t, mask_value) = \begin{cases} x + (mast_t - 1) * inf & \text{if } mask_value = 0 \\ x + mast_t * (-inf) & \text{elif } mask_value = 1 \end{cases}$$

$$\mathsf{exSoftmaxMask}(input, axis) = \frac{\mathsf{exp}(input - \mathsf{max}(input, axis))}{\sum_{axis} \mathsf{exp}(input - \mathsf{max}(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$

- \star width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

- mask (optional): T1
 - **shape**: [1, channel, height, width]
 - * $channel \in (0, 8192]$
 - * width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向
- mask_value: int64
 - 需要 mask 的值: 0,1

3.4.56 Split

将向量沿着 axis 方向分成 num_outputs 个向量,split 用于指定切分后向量在 axis 方向上的大小

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - 一或多个输出向量,由 num_outputs 属性决定
 - shape:根据切分情况决定
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

属性列表

- axis:int
 - $axis \in \{0, 1, 2, 3\}$
- num_outputs:int
- split: int(Tensor)

3.4.57 Sub

• 执行元素级二进制减法 (C = A - B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]
- B:**T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- **T2**: float(const Tensor)

3.4.58 Tile

通过平铺给定的张量构造张量,这与 Numpy 中的函数 tile 相同,但没有广播

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- repeats: T2
 - **shape**: [batch, channel, height, width]

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)

3.4.59 Transpose

对输入张量进行转置

输入列表

- X:**T1**
 - **shape**: [n1, c1, h1, w1]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

输出列表

- Y: T1, T2
 - **shape**: [n2, c2, h2, w2]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

属性列表

- perm 转置的轴顺序:
 - 不同 perm 参数限制如下: (其中 p=8192, q=2048)
 - perm=[0,1,2,3]

- * 无限制
- perm=[0,1,3,2]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q
- perm=[0,2,3,1]
 - * **T1**: c1<8192, h1*w1%8=0, w1*c1<p*16
 - * **T2**: c1<8192, h1*w1%8=0, w1*c1<p*8
- perm=[0,2,1,3]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q, c1*w1<p
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1*w1<p
- perm=[0,3,1,2]
 - * **T1**, **T2**: h1*w1<p, w1<8192, h1*c1<p
- perm=[0,3,2,1]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q, c1<p*16
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1<p*8
- perm=[1,0,2,3]
 - * **T1**: h1*w1<16*p, n1<8192, h1*w1<p
 - * **T2**: h1*w1<8*p, n1<8192, h1*w1<p
- perm=[1,0,3,2]
 - * **T1**: h1%16=0, c1*h1*w1<16*p, h1*w1<2*q
 - * **T2**: h1%8=0, c1*h1*w1<8*p, h1*w1<2*q
- perm=[1,2,0,3]
 - * **T1**: n1*w1<p*16, c1*h1*w1<p, w1%16=0
 - * **T2**: n1*w1<p*8, c1*h1*w1p, w1%8=0
- perm=[1,2,3,0]
 - * **T1**: h1*w1<p, n1<p*16, c1*h1*w1<p*16, n1*w1<p*16
 - * **T2**: h1*w1<p, n1<p*8, c1*h1*w1<p*8, n1*w1<p*8
- perm=[1,3,0,2]
 - * **T1**: c1*w1<8192, n1*h1<p, w1%16=0
 - * **T2**: c1*w1<8192, n1*h1<p, w1%8=0
- perm=[1,3,2,0]
 - * **T1**: c1*h1*w1<p, n1*h1<p, w1<8192, w1%16=0
 - * **T2**: c1*h1*w1<p, n1*h1<p, w1<8192, w1%8=0
- perm=[2,1,0,3]
 - * **T1**, **T2**: c1<8192, c1*h1*w1<p, n1*w1<p
- perm=[2,1,3,0]
 - * **T1**: c1*h1*w1<p, n1*w1<p*16, c1<8192, n1*w1%4=0
 - * **T2**: c1*h1*w1<p, n1*w1<p*8, c1<8192, n1*w1%4=0
- perm=[2,0,3,1]

- * **T1**, **T2**: c1<8192, c1*h1*w1<p
- perm=[2,0,1,3]
 - * **T1**: n1*c1*h1*w1<p, h1*w1%16=0
 - * **T2**: n1*c1*h1*w1<p, h1*w1%8=0
- perm=[2,3,1,0]
 - * **T1**: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%16=0
 - * **T2**: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%8=0
- perm=[2,3,0,1]
 - * **T1**, **T2**: h1*w1<8192, n1*c1<p
- perm=[3,0,2,1]
 - * **T1**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%16=0
 - * **T2**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%8=0
- perm=[3,0,1,2]
 - * **T1**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%16=0
 - * **T2**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%8=0
- perm=[3,2,0,1]
 - * **T1**, **T2**: h1*w1<p, n1*c1<8192, n1*c1*w1<p
- perm=[3,2,1,0]
 - * **T1**: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*16, h1%16=0
 - * **T2**: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*8, h1%8=0
- perm=[3,1,0,2]
 - * **T1**, **T2**: h1*w1<p, c1*w1<8192, n1*h1<p
- perm=[3,1,2,0]
 - * **T1**, **T2**: h1*w1<p, n1*c1<8192, n1*h1<p, n1*c1*w1<p

数据类型约束

- **T1**: int8(Tensor)
- **T2**: int16(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.4.60 Sigmoid

给定输入张量,函数 $y = 1/(1 + \exp(-x))$ 按元素应用于输入张量,得到输出张量

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.4.61 Tanh

计算给定输入张量单元的双曲正切

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.4.62 Softplus

按元素应用 Softplus 函数, y = ln(exp(x) + 1)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.4.63 HardSigmoid

给定输入张量,函数 y = max(0, min(1, alpha * x + beta)) 按元素应用于输入张量,得到输出张量,这里 alpha = 1/6,beta = 0.5

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.4.64 HardSwish

按元素应用 HardSwish 函数, y = x * max(0, min(1, alpha * x + beta)) = x * <math>HardSigmoid = x + beta = x

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.4.65 Elu

给定输入张量,函数 f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0 按元素应用于输入张量,得到输出张量,这里 alpha = 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.4.66 exSwish

按元素应用 Sigmoid 线性单元函数, Swish 函数也称为 SiLU 函数, y = x * sigmoid(x)

输入列表

- X:T1
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.4.67 exMish

给定输入张量,函数 $mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))$ 按元素应用于输入张量,得到输出张量

- input: **T1**
 - **shape**: [batch, channel, height, width]

- 量化支持

* per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.4.68 exGelu

给定输入张量,函数 $y=x*\Phi(x)$ 按元素应用于输入张量,得到输出张量,当 $\Phi(x)$ 函数设置成 tanh 时, $y=0.5*x*(1+Tanh(\sqrt{\frac{2}{\pi}}*(x+0.044715*x^3)))$

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

3.4.69 Where

根据 mask_tensor 获取 x_tensor 或 y_tensor 的值,当 mask_tensor 位置为 **True** 时,取 x_tensor 对 应位置的值,否则取 y_tensor 的值。

- mask_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- x_tensor: *T2

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer
- 广播支持
 - * 支持任意维度广播操作
- 广播约束
 - * 广播约束同Expand算子
- y_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子

输出列表

- output: **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: bool(Tensor)
- **T2**: int8(Tensor), float16(Tensor)

3.4.70 exGlu

门控线性单元 (Gated Linear Unit) 函数, 其中 a 是输入矩阵的前一半, b 是后一半

$$GLU(a,b) = a \otimes \sigma(b)$$

输入列表

- Input: **T1**
 - **shape**: [batch, channel, height, width]
 - * channel: 32 对齐
 - 量化支持: per-layer

输出列表

- Output: T1
 - **shape**: [batch, channel / 2, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- axis: int(默认值 = 1)
 - 分割输入的维度
 - 约束: 仅支持1

3.4.71 exMatMul

矩阵乘法操作

$$\mathsf{Y} = \begin{cases} \mathsf{A} \cdot \mathsf{B} + \mathsf{C}, & \text{if } c_type = \texttt{"} \text{ add"} \\ \mathsf{A} \cdot \mathsf{B} * \mathsf{C}, & \text{if } c_type = \texttt{"} \text{ mul"} \end{cases}$$

输入列表

- A: **T1**
 - **shape**: [b, k, 1, n]
 - * $k \in (0, 8192]$
 - 量化支持
 - * per-layer
- B:**T1**
 - **shape**: [b, k, 1, m]
 - 量化支持
 - * per-layer
- C (optional): **T1**, **T2**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- Y:**T1**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- **T2**: float(Tensor)

属性列表

- c_type: strings (默认值"add")
 - 支持 add 和 mul 可选, 表示 C 是做加法还是乘法

3.4.72 exSDPAttention

计算查询 (query)、键 (key) 和值 (value) 之间的缩放点积注意力 (SDPA)

输入列表

- query: **T1**
 - **shape**: [batch, channel, height, width]
 - $\star channel \in (0, 8192]$
 - 量化支持
 - * per-layer
- key: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- value: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - 量化支持
 - * per-layer
- mask (optional): T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 默认支持任意维度广播操作
- scale (optional): T3

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.4.73 exWindow

exWindow 来源于swin_transformer的 window_partition 和 window_reverse 操作。原论文中输入特征被划分为多个不重叠的窗口,每个窗口的大小为 window_size × window_size。要求输入和输出特征都为 4 维 shape,在高和宽方向上都进行划分。pytorch 实现的计算方法如下:

```
def window_partition(x, window_size):
 0.00
 Args:
   x: (B, C, H, W)
   window_size (int): window size
 Returns:
   windows: (B, C, num_windows*num_windows, window_size*window_size)
 B, C, H, W = x.shape
 x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
 windows = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, -1, window_size*window_size)
 return windows
def window_reverse(windows, window_size, H, W):
 Args:
   windows: (B, C, num_windows*num_windows, window_size*window_size)
   window_size (int): Window size
   H (int): Height of image
   W (int): Width of image
 Returns:
   x: (B, C, H, W)
 B,C,_,_ = windows.shape
 x = windows.view(B, C, H // window_size, W // window_size, window_size, window_size)
 x = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, H, W)
```

(下页继续)

(续上页)

return x

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]

输出列表

- Y:**T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- mode: string
 - 支持模式: partition, reverse, partition_num_first
 - * partition: 参考 window_partition 实现;
 - * reverse: 参考 window_reverse 实现;
 - * partition_num_first: 与 partition 的区别在于, partition_num_first 的 H,W 按照 num_windows 进行划分,而 partition 的 H,W 按照 window_sizes 进行划分。
- window_sizes: list of ints
 - 2 维向量, 窗口的大小。定义了每个窗口的高度和宽度。窗口内的注意力计算和特征提取都是基于这个大小。
- num_windows: list of ints
 - 2 维向量, 窗口的数量。定义了输入特征的高度和宽度被划分为多少个窗口。

其他支持

3.5 RK3576

3.5.1 Add

执行元素级二进制加法 (C = A + B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(const Tensor)

其他支持

3.5.2 AddRelu

Add与Relu融合计算, C = Relu(A + B)

输入列表

• 同Add

输出列表

• 同Add

其他支持

• **多核联合**: 支持

3.5.3 BatchNormalization

按照论文 https://arxiv.org/abs/1502.03167 中的描述对输入张量进行批量归一化计算

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- epsilon: float (默认值 = 1e-5)
 - 除以标准差时加上防止除 0 的实数
 - $epsilon \in (0, \infty]$
- momentum: float
 - 训练时的滑动平均参数

其他支持

3.5.4 Concat

将一系列向量在 axis 指定的方向上组合成一个向量,所有向量除 axis 指定的方向外大小必须相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T: int8(Tensor), float16(Tensor)

属性列表

- axis int64
 - $axis \in \{0, 1, 2, 3\}$

3.5.5 Convolution

卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - shape : [output_channel, input_channel, kernel_w]
 - * kernel_h \in [1, 31]
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

• output: T1

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - stride_ $h \in [1, 7]$
 - **-** stride_w ∈ [1, 7]
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - **-** pads_top ∈ [0, 15]
 - **-** pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_ $w \in [1, 32]$

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• **多核联合**: 支持

3.5.6 Depthwise Convolution

深度可分离卷积

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - ★ width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: T1
 - shape: [output_channel, input_channel, kernel_h, kernel_w]
 - * kernel_ $h \in [1, 8]$
 - * kernel_w $\in [1, 8]$
 - 量化支持

- * per-layer
- * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - stride_ $h \in [1, 7]$
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - **-** pads_top ∈ [0, 15]
 - pads_left $\in [0, 15]$
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_w $\in [1, 32]$

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• **多核联合**: 支持

3.5.7 ConvolutionRelu

Convolution 与 Relu 融合计算, Output = Relu(Conv(Input))

说明及规格限制同Convolution

其他支持

3.5.8 ConvolutionClip

Convolution 与 Clip 融合计算, Output = Clip(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.5.9 ConvolutionPRelu/LeakyRelu

Convolution 与 PRelu/LeakyRelu 融合计算, Output = PRelu(Conv(Input)) 或者 Output = LeakyRelu(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.5.10 ConvolutionAdd

Convolution 与 Add 融合计算, Output = Add(Conv(Input0), Input1)

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.5.11 ConvolutionSigmoid

Convolution 与 Sigmoid 融合计算, Output = Sigmoid(Conv(Input))

说明及规格限制同Convolution

其他支持

3.5.12 ConvolutionTanh

Convolution 与 Tanh 融合计算, Output = Tanh(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.5.13 ConvolutionSoftplus

Convolution 与 Softplus 融合计算, Output = Softplus(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.5.14 ConvolutionHardSigmoid

Convolution 与 HardSigmoid 融合计算, Output = HardSigmoid(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.5.15 ConvolutionHardSwish

Convolution 与 HardSwish 融合计算, Output = HardSwish(Conv(Input))

说明及规格限制同Convolution

其他支持

3.5.16 ConvolutionElu

Convolution 与 Elu 融合计算, Output = Elu(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.5.17 ConvolutionSwish

Convolution 与 Swish 融合计算, Output = Swish(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.5.18 ConvolutionMish

Convolution 与 Mish 融合计算, Output = Mish(Conv(Input))

说明及规格限制同Convolution

其他支持

• **多核联合**: 支持

3.5.19 ConvolutionAddRelu

Convolution 与 Add 及 Relu 融合计算, Output = Relu(Add(Conv(Input0), Input1))

说明及规格限制同Convolution

其他支持

3.5.20 ConvTranspose

转置卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: T1
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_h \in [1, 31]
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 8]
 - stride_w ∈ [1, 8]
- pads: int(pads_top, pads_left, pads_bottom, pads_right)

设置 pad 时注意:

不支持 kernel_h * dilations_h - dilations_h - pads_top < 0

不支持 kernel_w * dilations_w - dilations_w - pads_left < 0

不支持 stride_h *(height - 1) - pads_top + 1 < output_h

不支持 stride_w *(width - 1) - pads_left + 1 < output_w

- pads_top ∈ [0, 15]
- pads_left $\in [0, 15]$
- pads_bottom $\in [0, 15]$
- **-** pads_right ∈ [0, 15]
- group: int

- group: 仅支持 1, 当且仅当 num_input=num_output 时支持 num_output
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_ $\mathbf{w} \in [1, 32]$

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.5.21 ConvTranposeRelu

ConvTranpose 与 Relu 融合计算, Output = Relu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.22 ConvTranposeClip

ConvTranpose 与 Clip 融合计算, Output = Clip(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.23 ConvTranposePRelu/LeakyRelu

ConvTranpose 与 PRelu/LeakyRelu 融合计算, Output = PRelu(ConvTranpose(Input)) 或者 Output = LeakyRelu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.24 ConvTranposeAdd

ConvTranpose 与 Add 融合计算, Output = Add(ConvTranpose(Input0), Input1)

说明及规格限制同ConvTranspose

3.5.25 ConvTranposeSigmoid

ConvTranpose 与 Sigmoid 融合计算, Output = Sigmoid(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.26 ConvTranposeTanh

ConvTranpose 与 Tanh 融合计算, Output = Tanh(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.27 ConvTranposeSoftplus

ConvTranpose 与 Softplus 融合计算, Output = Softplus(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.28 ConvTranposeHardSigmoid

ConvTranpose 与 HardSigmoid 融合计算, Output = HardSigmoid(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.29 ConvTranposeHardSwish

ConvTranpose 与 HardSwish 融合计算, Output = HardSwish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.30 ConvTranposeElu

ConvTranpose 与 Elu 融合计算, Output = Elu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.31 ConvTranposeSwish

ConvTranpose 与 Swish 融合计算, Output = Swish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.32 ConvTranposeMish

ConvTranpose 与 Mish 融合计算, Output = Mish(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.5.33 Div

执行元素级二进制除法 (C = A/B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- **T2**: float(const Tensor)

其他支持

• 多核联合: 不支持

3.5.34 Expand

根据给定的 shape 和广播规则广播输入张量。广播规则类似于 numpy.array(input) * numpy.ones(shape):维度右对齐;两个对应维度必须具有相同的值,或者其中一个等于 1

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

- * per-layer
- shape: **T2**
 - **shape**: [batch, channel, height, width]

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: int64(Tensor)

广播约束

- [b, c, 1, w]->[b, c, h, w], $h \in [1, 8192]$
- [b, 1, 1, w]->[b, c, h, w], $h \in [1, 8192]$
- [b, c, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, 1, h, 1]-> $[b, c, h, w], w \in [1, 8192]$
- [b, c, 1, 1]->[b, c, h, w], $h \in [1, 8192], w \in [1, 8192]$

其他支持

· 多核联合: 不支持

3.5.35 GRU

门控循环单元(GRU,Gated Recurrent Unit)

GRU 扩展以及变体命名为 exGRU 算子,参数项中指明

(extern) 的项为 exGRU 独有的参数项。

计算公式如下:

Equations (Default: f=Sigmoid, g=Tanh):

$$r_{t} = f(x_{t} \cdot W_{r} + h_{t-1} \cdot R_{r} + Wb_{r} + Rb_{r})$$

$$z_{t} = f(x_{t} \cdot W_{z} + h_{t-1} \cdot R_{z} + Wb_{z} + Rb_{z})$$

$$h_{t} = g(x_{t} \cdot W_{h} + (r_{t} \odot h_{t-1}) \cdot R_{h} + Rb_{h} + Wb_{h}), (WRB = 0)$$

$$h_{t} = g(x_{t} \cdot W_{h} + r_{t} \odot (h_{t-1} \cdot R_{h} + Rb_{h})) + Wb_{h}, (WRB = 1)$$

$$H_{t} = (1 - z_{t}) \odot h_{t} + z_{t} \odot h_{t-1}$$

- X:T1
 - **shape**: [seq_length, batch_size, input_size]
 - * $seqlength \in (0, 8192]$

- * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- $\star inputsize \in (0, 8192]$

- 量化支持

- * per-layer
- W: **T1**
 - **shape**: [num_directions, 4*hidden_size, input_size]
 - $\star inputsize \in (0, 8192]$
 - \star hiddensize $\in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- R: **T1**
 - **shape**: [num_directions, 4*hidden_size, hidden_size]
 - $\star hiddensize \in (0,8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- B: **T2**
 - **shape**: [num_directions, 8*hidden_size]
 - $\star hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- sequence_lens: T3 (optional)
 - shape : [batch_size]
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- initial_h : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0,8192]$
 - 量化支持
 - * per-layer

输出列表

- Y: **T1**
 - **shape**: [seq_length, num_directions, batch_size, hidden_size]

- * $seqlength \in (0, 8192]$
- * num directions: 1 or 2
- * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- * $hiddensize \in (0, 8192]$

- 量化支持

- * per-layer
- Y_h : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * batchsize ∈ (0,8192],大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$

- 量化支持

* per-layer

属性列表

- linear_before_reset: int
 - LBR 变种的选择: 1(T) or 0(F)
- · direction (extern): string
 - 指定 GRU 的运算方向
 - forward: 指定 GRU 的运算方向为前向
 - reverse: 指定 GRU 的运算方向为反向
 - bidirectional: 指定 GRU 的运算方向为双向
- sequence_size (extern): int
 - 指定 GRU 输入的 seqsize,无限制,建议 4 对齐
- hidden_size (extern): int
 - GRU 单元中的 hiddensize,无限制,建议 8 对齐
- input_layout (extern): int
 - 指定与对应输入 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hid-den_size。
 - snc: 指定 layout 对应的输入 shape 为 [seqs, batches, input_size]
 - (sn)c: 指定 layout 对应的输入 shape 为 [seqs*batches, input_size,1,1]
- output_layout (extern): int
 - 指定与对应输出 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hidden_size、directions。
 - sbnc: 指定 layout 对应的输出 shape 为 [seqs,directions,batches, hidden_size]
 - (sn)c: 指定 layout 对应的输出 shape 为 [segsbatches, directionsinput_size,1,1]

数据类型约束

- T1: float16(Tensor)
- **T2**: float(Tensor)

• T3: float(Scalar)

其他支持

• 多核联合: 暂不支持

3.5.36 Gather

根据索引 Indices 获取输入 X 的指定 axis 维度的条目,并将它们拼接在一起。

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- Indices: T2
 - 要收集的元素的索引,秩 rank = 1

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: int(Tensor)

属性列表

- axis: int(Tensor)
 - $axis \in \{0, 1, 2, 3\}$
 - 指定 Indices 获取输入的维度

其他支持

• 多核联合: 尚不支持

3.5.37 Hardmax

该 OP 计算给定输入的 hardmax 激活函数,实现参照 onnx 中的Hardmax-13

$$Hardmax(input, axis) = \begin{cases} 1 & \text{if } i = \arg\max(input, axis) \\ \\ 0 & \text{otherwise} \end{cases}$$

输入列表

• input: **T**

- shape: [batch, channel, height, width]
 - * axis=1 \forall , height * width ∈ [1, 16384);
 - * axis=3/-1 时, $channel*height \in [1, 16384)$, 且受限于 tranpose 的规格限制

输出列表

- output: **T**
 - **shape**: [batch, channel, height, width]

数据类型约束

• T: int8(Tensor), float16(Tensor)

属性列表

- · axis: int
 - 做 hardmax 的轴: $axis \in \{-1, 1, 3\}$ 即 channel 和 width 方向

3.5.38 LSTM

长短期记忆网络(LSTM,Long Short-Term Memory)

LSTM 扩展以及变体命名为 exLSTM 算子,参数项中指明

(extern) 的项为 exLSTM 独有的参数项。

计算公式如下:

Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):

$$i_t = f(x_t \cdot W_i + h_{t-1} \cdot R_i + Wb_i + Rb_i)$$

$$f_t = f(x_t \cdot W_f + h_{t-1} \cdot R_f + Wb_f + Rb_f)$$

$$c_t = f(x_t \cdot W_c + h_{t-1} \cdot R_c + Wb_c + Rb_c)$$

$$o_t = f(x_t \cdot W_o + h_{t-1} \cdot R_o + Wb_o + Rb_o)$$

$$C_t = f_t \odot C(t-1) + i_t \odot c_t$$

$$h_t = o_t \odot h(C_t)$$

- X: **T1**
 - shape: [seq_length, batch_size, input_size]
 - * $seqlength \in (0, 8192]$
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star inputsize \in (0, 8192]$
 - 量化支持
 - * per-layer
- W: **T1**
 - **shape**: [num_directions, 4*hidden_size, input_size]
 - $\star inputsize \in (0, 8192]$
 - * $hiddensize \in (0, 8192]$

* num directions: 1 or 2

- 量化支持

- * per-layer
- * per-channel
- R: **T1**
 - **shape**: [num_directions, 4*hidden_size, hidden_size]
 - * $hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- B: T2, T3
 - **shape**: [num_directions, 8*hidden_size]
 - \star hiddensize $\in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- sequence_lens: **T4**, **T5** (optional)
 - shape : [batch_size]
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- initial_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - \star hiddensize $\in (0, 8192]$
 - 量化支持
 - * per-layer
- initial_c: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0,8192]$
 - 量化支持
 - * per-layer

输出列表

- Y: **T1**
 - **shape**: [seq_length, num_directions, batch_size, hidden_size]
 - * $seglength \in (0, 8192]$

- * num directions: 1 or 2
- * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- * $hiddensize \in (0, 8192]$

- 量化支持

- * per-layer
- Y_h : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$

- 量化支持

- * per-layer
- Y_c : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * batchsize ∈ (0,8192],大于1时仅支持4的倍数
 - $\star hiddensize \in (0, 8192]$

- 量化支持

* per-layer

属性列表

- direction (extern): string
 - 指定 LSTM 的运算方向
 - forward: 指定 LSTM 的运算方向为前向
 - reverse: 指定 LSTM 的运算方向为反向
 - bidirectional: 指定 LSTM 的运算方向为双向
- sequence_size (extern): int
 - 指定 LSTM 输入的 seqsize, 无限制, 建议 4 对齐
- hidden_size (extern): int
 - LSTM 单元中的 hiddensize,无限制,建议 8 对齐
- proj_size (extern): int
 - projection 时的 proj_size, $projsize \in [0, hiddensize]$
 - 目前限定 0,即尚不支持 projection 功能
- input_forget (extern): int
 - cifg 变种的选择: 1(T) or 0(F) 目前限定 0, 即尚不支持
- has_projection (extern): int
 - projection 变种: 1(T) or 0(F) 目前限定 0, 即尚不支持
- input_layout (extern): int
 - 指定与对应输入 shape 含义一致的 layout

- 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hidden_size。
- snc: 指定 layout 对应的输入 shape 为 [seqs, batches, input_size]
- (sn)c: 指定 layout 对应的输入 shape 为 [seqs*batches, input_size,1,1]
- output_layout (extern): int
 - 指定与对应输出 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hidden size、directions。
 - sbnc: 指定 layout 对应的输出 shape 为 [seqs,directions,batches, hidden_size]
 - (sn)c: 指定 layout 对应的输出 shape 为 [segsbatches, directionsinput_size,1,1]

数据类型约束

- T1: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- **T3**: int32(Tensor)
- T4: float(Scalar)
- T5: int(Scalar)

其他支持

• 多核联合: 暂不支持

3.5.39 Max

计算输入张量的元素级最大值

- A: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即 C 维度做 broadcasting
 - · OP(A(N,C,H,W),B(scalar)),即以单个标量做 broadcasting
- B:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作

- · OP(A(N,C,H,W),B(C,1,1)),即C维度做broadcasting
- · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.5.40 Mul

执行元素级二进制乘法 (C = A * B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

• **T2**: float(const Tensor)

其他支持

• **多核联合**: 支持

3.5.41 MulRelu

Mul与Relu融合计算, C = Relu(A * B)

输入列表

• 同Mul

输出列表

• 同Mul

其他支持

• **多核联合**: 支持

3.5.42 Pad

给定一个包含要填充的数据的张量 (data), 包含轴的开始和结束填充数值的张量 (pads), 模式 (mode), 常量数值 (constant_value), 生成一个填充张量 (output)

输入列表

- data: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- pads: **T2**
 - shape: [batch_begin, channel_begin, height_begin, width_begin, batch_end, channel_end, height_end, width_end]
- constant_value (optional): T3
 - shape: [1]
 - 量化支持
 - * per-layer

输出列表

- output : **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)
- T3: float(Scalar), int8(Scalar), float16(Scalar)

属性列表

- mode: **string**(默认值 constant)
 - 支持模式: constant, reflect
 - * constant 无限制
 - * reflect channel $\in (0, 8192]$, height $\in (0, 8192]$, width $\in (0, 8176]$

其他支持

• 多核联合: 尚不支持

3.5.43 MaxPool

MaxPool 消耗输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用最大池化。最大池化包括根据内核大小计算输入张量子集的所有值的最大值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- · ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides h, strides w)
 - strides_ $h \in (0, 8]$
 - strides_ $\mathbf{w} \in (0, 8]$

- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$
- storage_order:int64[]
 - 优先储存方式: 0

- T1: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.5.44 GlobalMaxPool

GlobalMaxPool 使用输入张量 X 并对同一通道中的值应用最大池化。这相当于 MaxPool 的 kernel_shape 大小等于 input 的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad : int64[]

- count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.5.45 AveragePool

AveragePool 使用输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用平均池化。平均池化包括根据内核大小计算输入张量子集的所有值的平均值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_ $\mathbf{w} \in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1

- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

- **T1**: int8(Tensor), float16(Tensor)
- T2: float(Tensor)
- **T3**: float(Scalar)

3.5.46 GlobalAveragePool

GlobalAveragePool 使用输入张量 X 并对同一通道中的值应用平均池化。这相当于 AveragePool,其 kernel_shape 大小等于输入张量的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (1,7]$
 - * $width \in (1,7]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w $\in (0,7]$
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - $pad_top \in [0, 7]$
 - **-** pad_left ∈ [0, 7]

- pad_bottom $\in [0, 7]$
- pad_right $\in [0,7]$

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- T3: float(Scalar)

3.5.47 Pow

 $Z = X^Y$

指数运算,采用输入数据(张量)和指数,并产生一个输出数据(张量)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- Y: **T2**
 - shape: [1]
 - * 当前仅支持 0、1、2、3、0.5、-0.5

输出列表

- Z:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int8(Tensor), int32(Tensor), int64(Tensor), float16(Tensor), float(Tensor)

其他支持

• 多核联合: 尚不支持

3.5.48 Relu

将输入张量的负值设为零,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

- * per-layer
- 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

· 多核联合: 暂不支持

3.5.49 Clip/ReLU6

将输入张量的值裁剪到[0,6]范围内

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.5.50 PRelu

将输入张量的负值按可学习参数缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

属性列表

- slope: PRelu 系数
 - 仅支持单个标量或 C 维度系数

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.5.51 LeakyRelu

将输入张量的负值按固定比例缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持

* per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.5.52 Reshape

在不改变输入数据和元素数量的情况下,返回一个具有指定形状的张量。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- shape: int
 - 指定输出张量的形状

其他支持

• 多核联合: 尚不支持

3.5.53 Resize

调整输入张量的大小。一般来说,它将输出张量中的每个值计算为输入张量中邻域(即采样位置)的加 权平均值

输入列表

- X:T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- roi (optional): T2

- 目前暂不支持
- scales (optional): T2
 - 沿每个维度的缩放比例数组
- sizes (optional): T3
 - 输出张量的目标大小

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- **T3**: int64(Tensor)

属性列表

- antialias: int (默认值为 0)
 - 目前不支持设置
- axes: int[]
 - 目前不支持设置
- coordinate_transformation_mode: strings(默认值为"half_pixel")
 - 目前仅支持 half_pixel, pytorch_half_pixel, align_corners 三种
- cubic_coeff_a: float (默认为-0.75)
 - 目前不支持设置
- exclude_outside: int (默认值为 0)
 - 目前不支持设置
- extrapolation_value: float (默认为 0)
 - 目前不支持设置
- keep_aspect_ratio_policy: strings (默认值为" stretch")
 - 目前不支持设置
- mode: strings (默认值为"nearest")
 - 目前仅支持 nearest 和 linear 两种可配置
- nearest_mode: strings (默认值为"round_prefer_floor")
 - 目前不支持设置

其他支持

3.5.54 Slice

获得当前向量的一个切片,具体规则和numpy切片相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

属性列表

- starts: int(Tensor)
 - 切分的起始位置: 无限制
- ends: int(Tensor)
 - 切分的终止位置: 无限制
- axes: int(Tensor)
 - 选取切分的轴: 支持任意 0~3 轴, 支持同时多轴选择
- steps: int(Tensor)
 - 选取切分对应轴的步长
 - 当 height * width == 1 && channel % subc == 0 && starts[1] % subc == 0 && ends[1] % subc == 0 && steps[1] <= subc 时, steps 可以不为 1, 否则只有 steps == [1,1,1,1] 时, 才可通过 NPU 运行 Slice OP

3.5.55 Softmax

该运算符计算给定输入的归一化指数值:

$$\mathsf{Softmax}(input, axis) = \frac{\mathsf{exp}(input - \mathsf{max}(input, axis))}{\sum_{axis} \mathsf{exp}(input - \mathsf{max}(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$

- \star width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- · axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向

其他支持

• 多核联合: 尚不支持

3.5.56 exSoftmax13

该运算符计算给定输入的归一化指数值:

$$\text{exSoftmax13}(input, axis) = \frac{\exp(input - \max(input, axis))}{\sum_{axis} \exp(input - \max(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向

其他支持

3.5.57 exSoftmaxMask

该运算符计算给定输入的归一化指数值:

$$input(x, mast_t, mask_value) = \begin{cases} x + (mast_t - 1) * inf & \text{if } mask_value = 0 \\ x + mast_t * (-inf) & \text{elif } mask_value = 1 \end{cases}$$

$$\mathsf{exSoftmaxMask}(input, axis) = \frac{\mathsf{exp}(input - \mathsf{max}(input, axis))}{\sum_{axis} \mathsf{exp}(input - \mathsf{max}(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - shape: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - \star width:
 - · axis=1, 无限制;
 - axis=3/-1, $width \in (0, 8192]$

且受限于 tranpose 的规格限制

- mask (optional): T1
 - **shape**: [1, channel, height, width]
 - * $channel \in (0, 8192]$
 - * width:
 - · axis=1, 无限制;
 - axis=3/-1, $width \in (0, 8192]$

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- · axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向
- mask_value: int64
 - 需要 mask 的值: 0,1

其他支持

3.5.58 Split

将向量沿着 axis 方向分成 num_outputs 个向量,split 用于指定切分后向量在 axis 方向上的大小

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - 一或多个输出向量,由 num_outputs 属性决定
 - shape:根据切分情况决定
 - 量化支持
 - * per-layer

数据类型约束

• **T**: int8(Tensor), float16(Tensor)

属性列表

- axis:int
 - $axis \in \{0, 1, 2, 3\}$
- · num_outputs:int
- split: int(Tensor)

3.5.59 Sub

• 执行元素级二进制减法 (C = A - B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持

- * [b, c, 1, 1]
- * [scalar]

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(const Tensor)

其他支持

· 多核联合: 不支持

3.5.60 Tile

通过平铺给定的张量构造张量,这与 Numpy 中的函数 tile 相同,但没有广播

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- repeats: **T2**
 - **shape**: [batch, channel, height, width]

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- T2: int64(Tensor)

其他支持

3.5.61 Transpose

对输入张量进行转置

输入列表

- X:**T1**
 - **shape**: [n1, c1, h1, w1]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

输出列表

- Y: T1, T2
 - **shape**: [n2, c2, h2, w2]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

属性列表

• perm 转置的轴顺序:

不同 perm 参数限制如下: (其中 p=268435456, q=65536)

- perm=[0,1,2,3]
 - * 无限制
- perm=[0,1,3,2]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q
- perm=[0,2,3,1]
 - * **T1**: c1<8192, h1*w1%8=0, w1*c1<p*16
 - * **T2**: c1<8192, h1*w1%8=0, w1*c1<p*8
- perm=[0,2,1,3]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q, c1*w1<p
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1*w1<p
- perm=[0,3,1,2]
 - * **T1**, **T2**: h1*w1<p, w1<8192, h1*c1<p
- perm=[0,3,2,1]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q, c1<p*16
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1<p*8
- perm=[1,0,2,3]
 - * **T1**: h1*w1<16*p, n1<8192, h1*w1<p
 - * **T2**: h1*w1<8*p, n1<8192, h1*w1<p
- perm=[1,0,3,2]

- * **T1**: h1%16=0, c1*h1*w1<16*p, h1*w1<2*q
- * **T2**: h1%8=0, c1*h1*w1<8*p, h1*w1<2*q
- perm=[1,2,0,3]
 - * **T1**: n1*w1<p*16, c1*h1*w1<p, w1%16=0
 - * **T2**: n1*w1<p*8, c1*h1*w1p, w1%8=0
- perm=[1,2,3,0]
 - * **T1**: h1*w1<p, n1<p*16, c1*h1*w1<p*16, n1*w1<p*16
 - * **T2**: h1*w1<p, n1<p*8, c1*h1*w1<p*8, n1*w1<p*8
- perm=[1,3,0,2]
 - * **T1**: c1*w1<8192, n1*h1<p, w1%16=0
 - * **T2**: c1*w1<8192, n1*h1<p, w1%8=0
- perm=[1,3,2,0]
 - * **T1**: c1*h1*w1<p, n1*h1<p, w1<8192, w1%16=0
 - * **T2**: c1*h1*w1<p, n1*h1<p, w1<8192, w1%8=0
- perm=[2,1,0,3]
 - * **T1**, **T2**: c1<8192, c1*h1*w1<p, n1*w1<p
- perm=[2,1,3,0]
 - * **T1**: c1*h1*w1<p, n1*w1<p*16, c1<8192, n1*w1%4=0
 - * **T2**: c1*h1*w1<p, n1*w1<p*8, c1<8192, n1*w1%4=0
- perm=[2,0,3,1]
 - * **T1**, **T2**: c1<8192, c1*h1*w1<p
- perm=[2,0,1,3]
 - * **T1**: n1*c1*h1*w1<p, h1*w1%16=0
 - * **T2**: n1*c1*h1*w1<p, h1*w1%8=0
- perm=[2,3,1,0]
 - * **T1**: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%16=0
 - * **T2**: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%8=0
- perm=[2,3,0,1]
 - * **T1**, **T2**: h1*w1<8192, n1*c1<p
- perm=[3,0,2,1]
 - * **T1**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%16=0
 - * **T2**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%8=0
- perm=[3,0,1,2]
 - * **T1**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%16=0
 - * **T2**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%8=0
- perm=[3,2,0,1]
 - * **T1**, **T2**: h1*w1<p, n1*c1<8192, n1*c1*w1<p
- perm=[3,2,1,0]
 - * **T1**: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*16, h1%16=0

- * **T2**: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*8, h1%8=0
- perm=[3,1,0,2]
 - * **T1**, **T2**: h1*w1<p, c1*w1<8192, n1*h1<p
- perm=[3,1,2,0]
 - * **T1**, **T2**: h1*w1<p, n1*c1<8192, n1*h1<p, n1*c1*w1<p

- **T1**: int8(Tensor)
- **T2**: int16(Tensor), float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.5.62 Sigmoid

给定输入张量,函数 y = 1/(1 + exp(-x)) 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.5.63 Tanh

计算给定输入张量单元的双曲正切

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

• Y: **T1**

- **shape**: [batch, channel, height, width]
- 量化支持: per-layer

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.5.64 Softplus

按元素应用 Softplus 函数, y = ln(exp(x) + 1)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.5.65 HardSigmoid

给定输入张量,函数 y = max(0, min(1, alpha * x + beta)) 按元素应用于输入张量,得到输出张量,这里 alpha = 1/6,beta = 0.5

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output : **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T1: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.5.66 HardSwish

按元素应用 HardSwish 函数, y = x * max(0, min(1, alpha * x + beta)) = x * <math>HardSigmoid = 1/6, beta = 0.5

输入列表

- X:T1
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.5.67 Elu

给定输入张量,函数 f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0 按元素应用于输入张量,得到输出张量,这里 alpha = 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.5.68 exSwish

按元素应用 Sigmoid 线性单元函数, Swish 函数也称为 SiLU 函数, y = x * sigmoid(x)

输入列表

- X:T1
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.5.69 exMish

给定输入张量,函数 $mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))$ 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

3.5.70 exGelu

给定输入张量,函数 $y=x*\Phi(x)$ 按元素应用于输入张量,得到输出张量,当 $\Phi(x)$ 函数设置成 tanh 时, $y=0.5*x*(1+Tanh(\sqrt{\frac{2}{\pi}}*(x+0.044715*x^3)))$

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.5.71 Where

根据 mask_tensor 获取 x_tensor 或 y_tensor 的值,当 mask_tensor 位置为 **True** 时,取 x_tensor 对 应位置的值,否则取 y_tensor 的值。

输入列表

- mask_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- x_tensor: T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- y_tensor: **T2**

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer
- 广播支持
 - * 支持任意维度广播操作
- 广播约束
 - * 广播约束同Expand算子

输出列表

- output : **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: bool(Tensor)
- **T2**: int8(Tensor), float16(Tensor)

3.5.72 exGlu

门控线性单元 (Gated Linear Unit) 函数, 其中 a 是输入矩阵的前一半, b 是后一半

$$GLU(a,b) = a \otimes \sigma(b)$$

输入列表

- Input: **T1**
 - **shape**: [batch, channel, height, width]
 - * channel: 32 对齐
 - 量化支持: per-layer

输出列表

- Output: T1
 - **shape**: [batch, channel / 2, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- axis: int(默认值 = 1)
 - 分割输入的维度
 - 约束: 仅支持1

其他支持

3.5.73 exMatMul

矩阵乘法操作

$$\mathsf{Y} = \begin{cases} \mathsf{A} \cdot \mathsf{B} + \mathsf{C}, & \text{if } c_type = \texttt{"add"} \\ \mathsf{A} \cdot \mathsf{B} * \mathsf{C}, & \text{if } c_type = \texttt{"mul"} \end{cases}$$

输入列表

- A:**T1**
 - **shape**: [b, k, 1, n]
 - * $k \in (0, 8192]$
 - 量化支持
 - * per-layer
- B:**T1**
 - **shape**: [b, k, 1, m]
 - 量化支持
 - * per-layer
- C (optional): **T1**, **T2**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- Y: **T1**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)

属性列表

- c_type: strings (默认值"add")
 - 支持 add 和 mul 可选, 表示 C 是做加法还是乘法

其他支持

3.5.74 exNorm

在 channel 方向上做层归一化,公式如下:

$$\mathsf{LayerNorm}(x) = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} \cdot W + B$$

其中:

x 是输入向量。

 μ 和 σ^2 分别是输入向量的均值和方差:

$$\mu = \frac{1}{H} \sum_{i=1}^{H} x_i$$

$$\sigma^{2} = \frac{1}{H} \sum_{i=1}^{H} (x_{i} - \mu)^{2}$$

 ϵ 是一个很小的数,用于防止除零操作。

W 和 B 是可选择的参数。

输入列表

• X:**T1**

- **shape**: [batch, channel, height, width]

• W (optional): **T1**

- **shape**: [batch, channel, height, width]

• B (optional): T1

- **shape**: [batch, channel, height, width]

输出列表

• Y: **T1**

- **shape**: [batch, channel, height, width]

数据类型约束

• T1: float16(Tensor)

属性列表

• epsilon: float(默认值 1e-05)

- 用来防止除 0 的 epsilon 数值

其他支持

3.5.75 exSDPAttention

计算查询 (query)、键 (key) 和值 (value) 之间的缩放点积注意力 (SDPA)

输入列表

- query: **T1**
 - **shape**: [batch, channel, height, width]
 - \star channel $\in (0, 8192]$
 - 量化支持
 - * per-layer
- key: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- value: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - 量化支持
 - * per-layer
- mask (optional): T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 默认支持任意维度广播操作
 - * 开启 FA 支持后, 只支持 [b,c,1,1], [1,c,1,1] 和 [1,c,h,w] 三种规格
- scale (optional): T3

输出列表

- output : **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: float(Tensor)
- **T3**: float(Scalar)

其他支持

• FlashAttentionV2(FA): 支持

- 基于 https://arxiv.org/abs/2307.08691 实现, 通过高速缓存内循环实现加速以及减少宽带使用, 但是会导致模型增大, 请根据具体场景和模型选择是否开启使用
- RKNPU 驱动版本 >= 0.9.7
- RKNPU Runtime 库 (librknnrt.so) 版本 >= 2.1.0
- 支持数据类型: float16

3.5.76 exWindow

exWindow 来源于swin_transformer的 window_partition 和 window_reverse 操作。原论文中输入特征被划分为多个不重叠的窗口,每个窗口的大小为 window_size × window_size。要求输入和输出特征都为 4 维 shape,在高和宽方向上都进行划分。pytorch 实现的计算方法如下:

```
def window_partition(x, window_size):
 0.00
 Args:
   x: (B, C, H, W)
   window_size (int): window size
 Returns:
   windows: (B, C, num_windows*num_windows, window_size*window_size)
 0.00
 B, C, H, W = x.shape
 x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
 windows = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, -1, window_size*window_size)
 return windows
def window_reverse(windows, window_size, H, W):
 Args:
   windows: (B, C, num_windows*num_windows, window_size*window_size)
   window_size (int): Window size
   H (int): Height of image
   W (int): Width of image
```

(下页继续)

(续上页)

```
Returns:
```

x: (B, C, H, W)

0.00

B,C,_,_ = windows.shape

x = windows.view(B, C, H // window_size, W // window_size, window_size, window_size)

x = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, H, W)

return x

输入列表

- X:T1
 - **shape**: [batch, channel, height, width]

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor), float16(Tensor)

属性列表

- mode: string
 - 支持模式: partition, reverse, partition_num_first
 - * partition: 参考 window_partition 实现;
 - * reverse: 参考 window_reverse 实现;
 - * partition_num_first: 与 partition 的区别在于,partition_num_first 的 H,W 按照 num_windows 进行划分,而 partition 的 H,W 按照 window_sizes 进行划分。
- window_sizes: list of ints
 - 2 维向量, 窗口的大小。定义了每个窗口的高度和宽度。窗口内的注意力计算和特征提取都是基于这个大小。
- num_windows: list of ints
 - 2 维向量, 窗口的数量。定义了输入特征的高度和宽度被划分为多少个窗口。

其他支持

3.6 RK2118

3.6.1 Add

执行元素级二进制加法 (C = A + B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- T2: float(const Tensor)

3.6.2 AddRelu

Add与Relu融合计算, C = Relu(A + B)

输入列表

• 同Add

输出列表

• 同Add

其他支持

3.6.3 BatchNormalization

按照论文 https://arxiv.org/abs/1502.03167 中的描述对输入张量进行批量归一化计算

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T1: float16(Tensor)

属性列表

- epsilon: float (默认值 = 1e-5)
 - 除以标准差时加上防止除 0 的实数
 - $epsilon \in (0, \infty]$
- momentum: float
 - 训练时的滑动平均参数

3.6.4 Concat

将一系列向量在 axis 指定的方向上组合成一个向量,所有向量除 axis 指定的方向外大小必须相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T: float16(Tensor)

- · axis int64
 - $axis \in \{0, 1, 2, 3\}$

3.6.5 Convolution

卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - ★ width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: T1
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_h ∈ [1, 31]
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- strides: int(strides_h, strides_w)
 - stride_ $h \in [1, 7]$
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - **-** pads_top ∈ [0, 15]
 - pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$

- dilations_w $\in [1, 32]$

数据类型约束

• T1: float16(Tensor)

3.6.6 Depthwise Convolution

深度可分离卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_ $h \in [1, 8]$
 - * $kernel_w \in [1, 8]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 7]
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - pads_top ∈ [0, 15]
 - **-** pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)

- dilations_ $h \in [1, 32]$
- dilations_ $w \in [1, 32]$

• **T1**: float16(Tensor)

3.6.7 ConvolutionRelu

Convolution 与 Relu 融合计算, Output = Relu(Conv(Input))

说明及规格限制同Convolution

3.6.8 ConvolutionClip

Convolution 与 Clip 融合计算, Output = Clip(Conv(Input))

说明及规格限制同Convolution

3.6.9 ConvolutionPRelu/LeakyRelu

Convolution 与 PRelu/LeakyRelu 融合计算, Output = PRelu(Conv(Input)) 或者 Output = LeakyRelu(Conv(Input))

说明及规格限制同Convolution

3.6.10 ConvolutionAdd

Convolution 与 Add 融合计算, Output = Add(Conv(Input0), Input1)

说明及规格限制同Convolution

3.6.11 ConvolutionSigmoid

Convolution 与 Sigmoid 融合计算, Output = Sigmoid(Conv(Input))

说明及规格限制同Convolution

3.6.12 ConvolutionTanh

Convolution 与 Tanh 融合计算, Output = Tanh(Conv(Input))

说明及规格限制同Convolution

3.6.13 ConvolutionSoftplus

Convolution 与 Softplus 融合计算, Output = Softplus(Conv(Input))

说明及规格限制同Convolution

3.6.14 ConvolutionHardSigmoid

Convolution 与 HardSigmoid 融合计算, Output = HardSigmoid(Conv(Input))

说明及规格限制同Convolution

3.6.15 ConvolutionHardSwish

Convolution 与 HardSwish 融合计算, Output = HardSwish(Conv(Input))

说明及规格限制同Convolution

3.6.16 ConvolutionElu

Convolution 与 Elu 融合计算, Output = Elu(Conv(Input))

说明及规格限制同Convolution

3.6.17 ConvolutionSwish

Convolution 与 Swish 融合计算, Output = Swish(Conv(Input))

说明及规格限制同Convolution

3.6.18 ConvolutionMish

Convolution 与 Mish 融合计算, Output = Mish(Conv(Input))

说明及规格限制同Convolution

3.6.19 ConvTranspose

转置卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_h \in [1, 31]
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 8]
 - stride_w ∈ [1, 8]
- pads: int(pads_top, pads_left, pads_bottom, pads_right)

设置 pad 时注意:

不支持 kernel_h * dilations_h - dilations_h - pads_top < 0

不支持 kernel_w * dilations_w - dilations_w - pads_left < 0

不支持 stride_h *(height - 1) - pads_top + 1 < output_h

不支持 stride_w *(width - 1) - pads_left + 1 < output_w

- pads_top ∈ [0, 15]
- pads_left $\in [0, 15]$
- pads_bottom $\in [0, 15]$
- **-** pads_right ∈ [0, 15]
- group: int

- group: 仅支持 1, 当且仅当 num_input=num_output 时支持 num_output
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_ $w \in [1, 32]$

• T1: float16(Tensor)

3.6.20 ConvTranposeRelu

ConvTranpose 与 Relu 融合计算, Output = Relu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.6.21 ConvTranposeClip

ConvTranpose 与 Clip 融合计算, Output = Clip(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.6.22 ConvTranposePRelu/LeakyRelu

ConvTranpose 与 PRelu/LeakyRelu 融合计算, Output = PRelu(ConvTranpose(Input)) 或者 Output = LeakyRelu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.6.23 Div

执行元素级二进制除法 (C = A/B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持

- * per-layer
- 广播支持
 - * [b, c, 1, 1]
 - * [scalar]

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- T2: float(const Tensor)

3.6.24 Expand

根据给定的 shape 和广播规则广播输入张量。广播规则类似于 numpy.array(input) * numpy.ones(shape):维度右对齐;两个对应维度必须具有相同的值,或者其中一个等于 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- shape: **T2**
 - **shape**: [batch, channel, height, width]

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- **T2**: int64(Tensor)

广播约束

- [b, c, 1, w]->[b, c, h, w], $h \in [1, 8192]$
- $[b, 1, 1, w] \rightarrow [b, c, h, w], h \in [1, 8192]$
- [b, c, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, 1, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, c, 1, 1]->[b, c, h, w], $h \in [1, 8192], w \in [1, 8192]$

3.6.25 LSTM

长短期记忆网络(LSTM,Long Short-Term Memory)

LSTM 扩展以及变体命名为 exLSTM 算子,参数项中指明

(extern) 的项为 exLSTM 独有的参数项。

计算公式如下:

Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):

$$i_t = f(x_t \cdot W_i + h_{t-1} \cdot R_i + Wb_i + Rb_i)$$

$$f_t = f(x_t \cdot W_f + h_{t-1} \cdot R_f + Wb_f + Rb_f)$$

$$c_t = f(x_t \cdot W_c + h_{t-1} \cdot R_c + Wb_c + Rb_c)$$

$$o_t = f(x_t \cdot W_o + h_{t-1} \cdot R_o + Wb_o + Rb_o)$$

$$C_t = f_t \odot C_(t-1) + i_t \odot c_t$$

$$h_t = o_t \odot h(C_t)$$

- X:**T1**
 - **shape**: [seq_length, batch_size, input_size]
 - * $seqlength \in (0, 8192]$
 - * batchsize ∈ (0,8192],大于1时仅支持4的倍数
 - $\star inputsize \in (0, 8192]$
 - 量化支持
 - * per-layer
- W: **T1**
 - **shape**: [num_directions, 4*hidden_size, input_size]
 - $\star inputsize \in (0, 8192]$
 - \star hiddensize $\in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- R: **T1**
 - **shape**: [num_directions, 4*hidden_size, hidden_size]
 - \star hiddensize $\in (0, 8192]$
 - * num directions: 1 or 2
 - 量化支持
 - * per-layer
 - * per-channel
- B:**T2**

- **shape**: [num_directions, 8*hidden_size]
 - * $hiddensize \in (0, 8192]$
 - * num directions: 1 or 2
- 量化支持
 - * per-layer
 - * per-channel
- sequence_lens: T3 (optional)
 - shape : [batch_size]
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
- initial_h: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - \star hiddensize $\in (0, 8192]$
 - 量化支持
 - * per-layer
- initial_c : **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer

输出列表

- Y:**T1**
 - **shape**: [seq_length, num_directions, batch_size, hidden_size]
 - * $seqlength \in (0, 8192]$
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0,8192]$
 - 量化支持
 - * per-layer
- Y_h: **T1** (optional)
 - shape: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - $\star hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer

- Y_c: **T1** (optional)
 - **shape**: [num_directions, batch_size, hidden_size]
 - * num directions: 1 or 2
 - * $batchsize \in (0,8192]$,大于1时仅支持4的倍数
 - * $hiddensize \in (0, 8192]$
 - 量化支持
 - * per-layer

属性列表

- direction (extern): string
 - 指定 LSTM 的运算方向
 - forward: 指定 LSTM 的运算方向为前向
 - reverse: 指定 LSTM 的运算方向为反向
 - bidirectional: 指定 LSTM 的运算方向为双向
- sequence_size (extern): int
 - 指定 LSTM 输入的 seqsize,无限制,建议 4 对齐
- hidden_size (extern): int
 - LSTM 单元中的 hiddensize,无限制,建议 8 对齐
- proj_size (extern): int
 - projection 时的 proj_size, $projsize \in [0, hiddensize]$
 - 目前限定 0,即尚不支持 projection 功能
- input_forget (extern): int
 - cifg 变种的选择: 1(T) or 0(F) 目前限定 0, 即尚不支持
- has_projection (extern): int
 - projection 变种: 1(T) or 0(F) 目前限定 0,即尚不支持
- input_layout (extern): int
 - 指定与对应输入 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hidden size。
 - snc: 指定 layout 对应的输入 shape 为 [seqs, batches, input_size]
 - (sn)c: 指定 layout 对应的输入 shape 为 [seqs*batches, input_size,1,1]
- output_layout (extern): int
 - 指定与对应输出 shape 含义一致的 layout
 - 要求填写指定的 layout,同时要求填写该 op 实际对应的 batch_size、sequence_size、hidden_size、directions。
 - sbnc: 指定 layout 对应的输出 shape 为 [seqs,directions,batches, hidden_size]
 - (sn)c: 指定 layout 对应的输出 shape 为 [seqsbatches, directionsinput_size,1,1]

数据类型约束

- **T1**: float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

其他支持

• 多核联合: 暂不支持

3.6.26 Max

计算输入张量的元素级最大值

- 输入列表
- A:**T1**
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即C维度做broadcasting
 - · OP(A(N,C,H,W),B(scalar)),即以单个标量做 broadcasting
- B:**T1**
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 支持两个 tensor 的广播操作,以 ONNX 默认排列 NCHW 做说明:
 - · OP(A(N,C,H,W),B(N,C,H,W)) ,即两个维度相同的 tensor 进行操作
 - · OP(A(N,C,H,W),B(C,1,1)),即C维度做broadcasting
 - · OP(A(N,C,H,W),B(scalar)), 即以单个标量做 broadcasting

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• T1: float16(Tensor)

其他支持

3.6.27 Mul

执行元素级二进制乘法 (C = A * B), 支持多向 Numpy 样式的广播

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持

- * 支持任意维度广播操作
- * 广播约束同Expand算子
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: float16(Tensor)
- **T2**: float(const Tensor)

3.6.28 MulRelu

Mul与Relu融合计算, C = Relu(A * B)

输入列表

• 同Mul

输出列表

• 同Mul

其他支持

• **多核联合**: 支持

3.6.29 Pad

给定一个包含要填充的数据的张量 (data), 包含轴的开始和结束填充数值的张量 (pads), 模式 (mode), 常量数值 (constant_value), 生成一个填充张量 (output)

- data: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- pads: **T2**
 - shape: [batch_begin, channel_begin, height_begin, width_begin, batch_end, channel_end, height_end, width_end]
- constant_value (optional): T3
 - shape: [1]
 - 量化支持
 - * per-layer

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- **T2**: int64(Tensor)
- T3: float(Scalar), int8(Scalar), float16(Scalar)

属性列表

- mode: string(默认值 constant)
 - 支持模式: constant, reflect
 - * constant 无限制
 - * reflect channel $\in (0, 8192]$, height $\in (0, 8192]$, width $\in (0, 8176]$

其他支持

• 多核联合: 尚不支持

3.6.30 MaxPool

MaxPool 消耗输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用最大池化。最大池化包括根据内核大小计算输入张量子集的所有值的最大值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - $\star channel \in (0, 8192]$
 - * $height \in (0, 8192]$
 - * $width \in (0, 8192]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

属性列表

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad : int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - $pad_top \in [0, 7]$
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

数据类型约束

- **T1**: float16(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.6.31 GlobalMaxPool

GlobalMaxPool 使用输入张量 X 并对同一通道中的值应用最大池化。这相当于 MaxPool 的 kernel_shape 大小等于 input 的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0,7]$
 - * $width \in (0,7]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_ $h \in (0,7]$
 - $kernel_w \in (0,7]$
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- ceil mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_w $\in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - $pad_left \in [0, 7]$
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0,7]$

数据类型约束

- T1: float16(Tensor)
- **T2**: float(Tensor)
- T3: float(Scalar)

3.6.32 AveragePool

• 不支持 (工具端转换成卷积实现)

3.6.33 GlobalAveragePool

• 不支持 (工具端转换成卷积实现)

3.6.34 Pow

 $Z = X^Y$

指数运算,采用输入数据(张量)和指数,并产生一个输出数据(张量)

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- Y: T2

- shape: [1]
 - * 当前仅支持 0、1、2、3、0.5、-0.5

输出列表

- Z:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- T2: int8(Tensor), int32(Tensor), int64(Tensor), float16(Tensor), float(Tensor)

其他支持

• 多核联合: 尚不支持

3.6.35 Relu

将输入张量的负值设为零,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.6.36 Clip/ReLU6

将输入张量的值裁剪到 [0, 6] 范围内

- input: **T1**
 - **shape**: [batch, channel, height, width]

- 广播支持

* 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.6.37 PRelu

将输入张量的负值按可学习参数缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

属性列表

- slope: PRelu 系数
 - 仅支持单个标量或 C 维度系数

数据类型约束

• **T1**: float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.6.38 LeakyRelu

将输入张量的负值按固定比例缩放,正值保持不变

- input: **T1**
 - **shape**: [batch, channel, height, width]

- 广播支持

* 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: float16(Tensor)

其他支持

• 多核联合: 暂不支持

3.6.39 Reshape

在不改变输入数据和元素数量的情况下,返回一个具有指定形状的张量。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: float16(Tensor)

属性列表

- shape: int
 - 指定输出张量的形状

其他支持

• 多核联合: 尚不支持

3.6.40 Resize

调整输入张量的大小。一般来说,它将输出张量中的每个值计算为输入张量中邻域(即采样位置)的加 权平均值

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- roi (optional): T2
 - 目前暂不支持
- scales (optional): T2
 - 沿每个维度的缩放比例数组
- sizes (optional): T3
 - 输出张量的目标大小

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- **T2**: float(Tensor)
- **T3**: int64(Tensor)

- antialias: int (默认值为 0)
 - 目前不支持设置
- axes: int[]
 - 目前不支持设置
- coordinate_transformation_mode: strings (默认值为"half_pixel")
 - 目前仅支持 half_pixel, pytorch_half_pixel, align_corners 三种
- cubic_coeff_a: float (默认为-0.75)
 - 目前不支持设置
- exclude_outside: int (默认值为 0)
 - 目前不支持设置
- extrapolation_value: float (默认为 0)
 - 目前不支持设置

- keep_aspect_ratio_policy: strings (默认值为" stretch")
 - 目前不支持设置
- mode: strings (默认值为"nearest")
 - 目前仅支持 nearest 和 linear 两种可配置
- nearest_mode: strings(默认值为"round_prefer_floor")
 - 目前不支持设置

3.6.41 Slice

获得当前向量的一个切片,具体规则和numpy切片相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T: float16(Tensor)

- starts: int(Tensor)
 - 切分的起始位置: 无限制
- ends: int(Tensor)
 - 切分的终止位置: 无限制
- axes: int(Tensor)
 - 选取切分的轴: 支持任意 0~3 轴,支持同时多轴选择
- steps: int(Tensor)
 - 选取切分对应轴的步长
 - 当 height * width == 1 && channel % subc == 0 && starts[1] % subc == 0 && ends[1] % subc == 0 && steps[1] <= subc 时, steps 可以不为 1, 否则只有 steps == [1,1,1,1] 时, 才可通过 NPU 运行 Slice OP

3.6.42 **Softmax**

该运算符计算给定输入的归一化指数值:

$$\mathsf{Softmax}(input, axis) = \frac{\mathsf{exp}(input - \mathsf{max}(input, axis))}{\sum_{axis} \mathsf{exp}(input - \mathsf{max}(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - \star width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output : **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• T1: float16(Tensor)

属性列表

- axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向

3.6.43 exSoftmax13

该运算符计算给定输入的归一化指数值:

$$\texttt{exSoftmax13}(input, axis) = \frac{\texttt{exp}(input - \texttt{max}(input, axis))}{\sum_{axis} \texttt{exp}(input - \texttt{max}(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - shape: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - \star width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• T1: float16(Tensor)

属性列表

axis: int64

• 做 softmax 的轴: 1,3,即 channel 和 width 方向

3.6.44 exSoftmaxMask

• 尚不支持

3.6.45 Split

将向量沿着 axis 方向分成 num_outputs 个向量,split 用于指定切分后向量在 axis 方向上的大小

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - 一或多个输出向量,由 num_outputs 属性决定
 - shape:根据切分情况决定
 - 量化支持
 - * per-layer

数据类型约束

• T: float16(Tensor)

- axis:int
 - $axis \in \{0, 1, 2, 3\}$
- num_outputs:int
- split: int(Tensor)

3.6.46 Sub

• 执行元素级二进制减法 (C = A - B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- **T2**: float(const Tensor)

3.6.47 Tile

通过平铺给定的张量构造张量,这与 Numpy 中的函数 tile 相同,但没有广播

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- repeats: **T2**
 - **shape**: [batch, channel, height, width]

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)

3.6.48 Transpose

对输入张量进行转置

输入列表

- X:**T1**
 - **shape**: [n1, c1, h1, w1]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

输出列表

- Y: **T1**
 - **shape** : [n2, c2, h2, w2]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

- perm 转置的轴顺序:
 - 不同 perm 参数限制如下: (其中 p=268435456, q=65536)
 - perm=[0,1,2,3]
 - * 无限制
 - perm=[0,1,3,2]
 - * **T1**: h1%8=0, h1*w1<8*p, h1*w1<2*q
 - perm=[0,2,3,1]
 - * **T1**: c1<8192, h1*w1%8=0, w1*c1<p*8
 - perm=[0,2,1,3]
 - * **T1**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1*w1<p
 - perm=[0,3,1,2]
 - * **T1**: h1*w1<p, w1<8192, h1*c1<p
 - perm=[0,3,2,1]
 - * **T1**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1<p*8

```
- perm=[1,0,2,3]
   * T1: h1*w1<8*p, n1<8192, h1*w1<p
- perm=[1,0,3,2]
   * T1: h1%8=0, c1*h1*w1<8*p, h1*w1<2*q
- perm=[1,2,0,3]
   * T1: n1*w1<p*8, c1*h1*w1p, w1%8=0
- perm=[1,2,3,0]
   * T1: h1*w1<p, n1<p*8, c1*h1*w1<p*8, n1*w1<p*8
- perm=[1,3,0,2]
   * T1: c1*w1<8192, n1*h1<p, w1%8=0
- perm=[1,3,2,0]
   * T1: c1*h1*w1<p, n1*h1<p, w1<8192, w1%8=0
- perm=[2,1,0,3]
   * T1: c1<8192, c1*h1*w1<p, n1*w1<p
- perm=[2,1,3,0]
   * T1: c1*h1*w1<p, n1*w1<p*8, c1<8192, n1*w1%4=0
- perm=[2,0,3,1]
   * T1: c1<8192, c1*h1*w1<p
- perm=[2,0,1,3]
   * T1: n1*c1*h1*w1<p, h1*w1%8=0
- perm=[2,3,1,0]
   * T1: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%8=0
- perm=[2,3,0,1]
   * T1: h1*w1<8192, n1*c1<p
- perm=[3,0,2,1]
   * T1: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%8=0
- perm=[3,0,1,2]
   * T1: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%8=0
- perm=[3,2,0,1]
   * T1: h1*w1<p, n1*c1<8192, n1*c1*w1<p
- perm=[3,2,1,0]
   * T1: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*8, h1%8=0
- perm=[3,1,0,2]
```

数据类型约束

• **T1**: int16(Tensor), float16(Tensor)

- perm=[3,1,2,0]

* **T1**: h1*w1<p, c1*w1<8192, n1*h1<p

* **T1**: h1*w1<p, n1*c1<8192, n1*h1<p, n1*c1*w1<p

其他支持

• 多核联合: 暂不支持

3.6.49 Sigmoid

给定输入张量,函数 y = 1/(1 + exp(-x)) 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T1: float16(Tensor)

3.6.50 Tanh

计算给定输入张量单元的双曲正切

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• T1: float16(Tensor)

3.6.51 Softplus

按元素应用 Softplus 函数, y = ln(exp(x) + 1)

输入列表

- X:T1
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• T1: float16(Tensor)

3.6.52 HardSigmoid

给定输入张量,函数 y = max(0, min(1, alpha * x + beta)) 按元素应用于输入张量,得到输出张量,这里 alpha = 1/6,beta = 0.5

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T1: float16(Tensor)

3.6.53 HardSwish

按元素应用 HardSwish 函数, y = x * max(0, min(1, alpha * x + beta)) = x * <math>HardSigmoid = x + beta = x

- X:**T1**
 - **shape**: [batch, channel, height, width]

- 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• T1: float16(Tensor)

3.6.54 Elu

给定输入张量,函数 f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0 按元素应用于输入张量,得到输出张量,这里 alpha = 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: float16(Tensor)

3.6.55 exSwish

按元素应用 Sigmoid 线性单元函数, Swish 函数也称为 SiLU 函数, y = x * sigmoid(x)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: float16(Tensor)

3.6.56 exMish

给定输入张量,函数 $mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))$ 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T1: float16(Tensor)

3.6.57 exGelu

给定输入张量,函数 $y=x*\Phi(x)$ 按元素应用于输入张量,得到输出张量,当 $\Phi(x)$ 函数设置成 tanh 时, $y=0.5*x*(1+Tanh(\sqrt{\frac{2}{\pi}}*(x+0.044715*x^3)))$

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T1: float16(Tensor)

3.6.58 Where

根据 mask_tensor 获取 x_tensor 或 y_tensor 的值,当 mask_tensor 位置为 **True** 时,取 x_tensor 对 应位置的值,否则取 y_tensor 的值。

输入列表

- mask_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- x_tensor: *T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- y_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子

输出列表

- output: **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: bool(Tensor)
- T2: float16(Tensor)

3.6.59 exConvStreaming

为了减少语音模型的时延,把原始卷积的输入分成若干个时间帧片,将每个时间帧片作为输入,计算卷积,最后将计算结果缓存起来供后续时间帧使用,从而达到音频流式处理的目的。

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - shape: [output_channel, input_channel, kernel_w]
 - * kernel_ $h \in [1, 31]$
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 7]
 - **-** stride_w ∈ [1, 7]
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - **-** pads_top ∈ [0, 15]
 - pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_ $w \in [1, 32]$

数据类型约束

• T1: float16(Tensor)

其他支持

• 多核联合: 尚不支持

3.6.60 exGlu

门控线性单元 (Gated Linear Unit) 函数, 其中 a 是输入矩阵的前一半, b 是后一半

$$GLU(a,b) = a \otimes \sigma(b)$$

输入列表

- Input: **T1**
 - **shape**: [batch, channel, height, width]
 - * channel: 8 对齐
 - 量化支持: per-layer

输出列表

- Output: T1
 - **shape**: [batch, channel / 2, height, width]
 - 量化支持: per-layer

数据类型约束

• T1: float16(Tensor)

属性列表

- axis: int(默认值 = 1)
 - 分割输入的维度
 - 约束: 仅支持1

3.6.61 exMatMul

矩阵乘法操作

$$\mathsf{Y} = \begin{cases} \mathsf{A} \cdot \mathsf{B} + \mathsf{C}, & \text{if } c_type = \texttt{"add"} \\ \mathsf{A} \cdot \mathsf{B} * \mathsf{C}, & \text{if } c_type = \texttt{"mul"} \end{cases}$$

- A:**T1**
 - **shape**: [b, k, 1, n]
 - * $k \in (0, 8192]$
 - 量化支持
 - * per-layer
- B:**T1**
 - **shape**: [b, k, 1, m]

- 量化支持

* per-layer

• C (optional): **T1**, **T2**

- **shape**: [b, n, 1, m]

- 量化支持

* per-layer

- 广播支持

* 支持任意维度广播操作

* 广播约束同Expand算子

输出列表

- Y: **T1**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: float16(Tensor)
- **T2**: float(Tensor)

属性列表

- c_type: strings (默认值"add")
 - 支持 add 和 mul 可选, 表示 C 是做加法还是乘法

3.6.62 exWindow

exWindow 来源于swin_transformer的 window_partition 和 window_reverse 操作。原论文中输入特征被划分为多个不重叠的窗口,每个窗口的大小为 window_size × window_size。要求输入和输出特征都为 4 维 shape,在高和宽方向上都进行划分。pytorch 实现的计算方法如下:

```
def window_partition(x, window_size):
    """

Args:
    x: (B, C, H, W)
    window_size (int): window size

Returns:
    windows: (B, C, num_windows*num_windows, window_size*window_size)
    """

B, C, H, W = x.shape
```

(下页继续)

(续上页)

```
x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
 windows = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, -1, window_size*window_size)
 return windows
def window_reverse(windows, window_size, H, W):
 Args:
   windows: (B, C, num_windows*num_windows, window_size*window_size)
   window_size (int): Window size
   H (int): Height of image
   W (int): Width of image
 Returns:
   x: (B, C, H, W)
 0.00
 B,C,_,_ = windows.shape
 x = windows.view(B, C, H // window_size, W // window_size, window_size, window_size)
 x = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, H, W)
 return x
```

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• T1: float16(Tensor)

- mode: string
 - 支持模式: partition, reverse, partition_num_first
 - * partition: 参考 window_partition 实现;

- * reverse: 参考 window_reverse 实现;
- * partition_num_first: 与 partition 的区别在于, partition_num_first 的 H,W 按照 num_windows 进行划分,而 partition 的 H,W 按照 window_sizes 进行划分。
- window_sizes: list of ints
 - 2 维向量, 窗口的大小。定义了每个窗口的高度和宽度。窗口内的注意力计算和特征提取都是基于这个大小。
- num_windows: list of ints
 - 2 维向量, 窗口的数量。定义了输入特征的高度和宽度被划分为多少个窗口。

其他支持

• 多核联合: 尚不支持

3.7 RV1103B

3.7.1 Add

执行元素级二进制加法 (C = A + B), 支持多向 Numpy 样式的广播

输入列表

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- T2: float(const Tensor)

3.7.2 AddRelu

Add与Relu融合计算, C = Relu(A + B)

输入列表

• 同Add

输出列表

• 同Add

其他支持

• **多核联合**: 支持

3.7.3 BatchNormalization

按照论文 https://arxiv.org/abs/1502.03167 中的描述对输入张量进行批量归一化计算

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor)

属性列表

- epsilon: float (默认值 = 1e-5)
 - 除以标准差时加上防止除 0 的实数
 - $epsilon \in (0, \infty]$
- momentum: float
 - 训练时的滑动平均参数

3.7.4 Concat

将一系列向量在 axis 指定的方向上组合成一个向量,所有向量除 axis 指定的方向外大小必须相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T: int8(Tensor)

- · axis int64
 - $axis \in \{0, 1, 2, 3\}$

3.7.5 Convolution

卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_ $h \in [1, 31]$
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- strides: int(strides_h, strides_w)
 - stride_ $h \in [1, 7]$
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - **-** pads_top ∈ [0, 15]
 - pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$

- dilations_ $w \in [1, 32]$

数据类型约束

• **T1**: int8(Tensor)

3.7.6 Depthwise Convolution

深度可分离卷积

输入列表

- input_tensor: T1
 - **shape**: [batch, channel, height, width]
 - * width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_ $h \in [1, 8]$
 - * kernel_w $\in [1, 8]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 7]
 - stride_w $\in [1, 7]$
- pads: int(pads_top, pads_left, pads_bottom, pads_right)
 - pads_top ∈ [0, 15]
 - **-** pads_left ∈ [0, 15]
 - pads_bottom $\in [0, 15]$
 - pads_right $\in [0, 15]$
- group: int
- dilations: int(dilations_h, dilations_w)

- dilations_ $h \in [1, 32]$
- dilations_ $w \in [1, 32]$

数据类型约束

• **T1**: int8(Tensor)

3.7.7 ConvolutionRelu

Convolution 与 Relu 融合计算, Output = Relu(Conv(Input))

说明及规格限制同Convolution

3.7.8 ConvolutionClip

Convolution 与 Clip 融合计算, Output = Clip(Conv(Input))

说明及规格限制同Convolution

3.7.9 ConvolutionPRelu/LeakyRelu

Convolution 与 PRelu/LeakyRelu 融合计算, Output = PRelu(Conv(Input)) 或者 Output = LeakyRelu(Conv(Input))

说明及规格限制同Convolution

3.7.10 ConvolutionAdd

Convolution 与 Add 融合计算, Output = Add(Conv(Input0), Input1)

说明及规格限制同Convolution

3.7.11 ConvolutionSigmoid

Convolution 与 Sigmoid 融合计算, Output = Sigmoid(Conv(Input))

说明及规格限制同Convolution

3.7.12 ConvolutionTanh

Convolution 与 Tanh 融合计算, Output = Tanh(Conv(Input))

说明及规格限制同Convolution

3.7.13 ConvolutionSoftplus

Convolution 与 Softplus 融合计算, Output = Softplus(Conv(Input))

说明及规格限制同Convolution

3.7.14 ConvolutionHardSigmoid

Convolution 与 HardSigmoid 融合计算, Output = HardSigmoid(Conv(Input))

说明及规格限制同Convolution

3.7.15 ConvolutionHardSwish

Convolution 与 HardSwish 融合计算, Output = HardSwish(Conv(Input))

说明及规格限制同Convolution

3.7.16 ConvolutionElu

Convolution 与 Elu 融合计算, Output = Elu(Conv(Input))

说明及规格限制同Convolution

3.7.17 ConvolutionSwish

Convolution 与 Swish 融合计算, Output = Swish(Conv(Input))

说明及规格限制同Convolution

3.7.18 ConvolutionMish

Convolution 与 Mish 融合计算, Output = Mish(Conv(Input))

说明及规格限制同Convolution

3.7.19 ConvTranspose

转置卷积

输入列表

- input_tensor: **T1**
 - **shape**: [batch, channel, height, width]
 - ★ width: 当dilated_kernel_h > 1 时, width < 16383。此外, 对首层输入 width 存在限制, 详见模型输入说明。
 - 量化支持
 - * per-layer
- weight: **T1**
 - **shape**: [output_channel, input_channel, kernel_w]
 - * kernel_h \in [1, 31]
 - * kernel_w $\in [1, 31]$
 - 量化支持
 - * per-layer
 - * per-channel

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

属性列表

- strides: int(strides_h, strides_w)
 - **-** stride_h ∈ [1, 8]
 - stride_w ∈ [1, 8]
- pads: int(pads_top, pads_left, pads_bottom, pads_right)

设置 pad 时注意:

不支持 kernel_h * dilations_h - dilations_h - pads_top < 0

不支持 kernel_w * dilations_w - dilations_w - pads_left < 0

不支持 stride_h *(height - 1) - pads_top + 1 < output_h

不支持 stride_w *(width - 1) - pads_left + 1 < output_w

- pads_top ∈ [0, 15]
- pads_left $\in [0, 15]$
- pads_bottom $\in [0, 15]$
- **-** pads_right ∈ [0, 15]
- group: int

- group: 仅支持 1, 当且仅当 num_input=num_output 时支持 num_output
- dilations: int(dilations_h, dilations_w)
 - dilations_ $h \in [1, 32]$
 - dilations_ $\mathbf{w} \in [1, 32]$

数据类型约束

• **T1**: int8(Tensor)

3.7.20 ConvTranposeRelu

ConvTranpose 与 Relu 融合计算, Output = Relu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.7.21 ConvTranposeClip

ConvTranpose 与 Clip 融合计算, Output = Clip(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.7.22 ConvTranposePRelu/LeakyRelu

ConvTranpose 与 PRelu/LeakyRelu 融合计算, Output = PRelu(ConvTranpose(Input)) 或者 Output = LeakyRelu(ConvTranpose(Input))

说明及规格限制同ConvTranspose

3.7.23 Div

执行元素级二进制除法 (C = A/B), 支持多向 Numpy 样式的广播

- A: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]
- B: T1, T2
 - **shape**: [batch, channel, height, width]
 - 量化支持

- * per-layer
- 广播支持
 - * [b, c, 1, 1]
 - * [scalar]

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: float16(Tensor)
- T2: float(const Tensor)

3.7.24 Expand

根据给定的 shape 和广播规则广播输入张量。广播规则类似于 numpy.array(input) * numpy.ones(shape):维度右对齐;两个对应维度必须具有相同的值,或者其中一个等于 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- shape: **T2**
 - **shape**: [batch, channel, height, width]

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: int8(Tensor)
- **T2**: int64(Tensor)

广播约束

- [b, c, 1, w]->[b, c, h, w], $h \in [1, 8192]$
- [b, 1, 1, w]-> $[b, c, h, w], h \in [1, 8192]$
- [b, c, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, 1, h, 1]->[b, c, h, w], $w \in [1, 8192]$
- [b, c, 1, 1]->[b, c, h, w], $h \in [1, 8192], w \in [1, 8192]$

3.7.25 Mul

执行元素级二进制乘法 (C = A * B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- **T2**: float(const Tensor)

3.7.26 MulRelu

Mul与Relu融合计算, C = Relu(A * B)

输入列表

• 同Mul

输出列表

• 同Mul

其他支持

• **多核联合**: 支持

3.7.27 Pad

给定一个包含要填充的数据的张量 (data), 包含轴的开始和结束填充数值的张量 (pads), 模式 (mode), 常量数值 (constant_value), 生成一个填充张量 (output)

输入列表

- data: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- pads: **T2**
 - shape: [batch_begin, channel_begin, height_begin, width_begin, batch_end, channel_end, height_end, width_end]
- constant_value (optional): T3
 - shape: [1]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- T1: int8(Tensor)
- T2: int64(Tensor)
- T3: float(Scalar), int8(Scalar), float16(Scalar)

属性列表

- mode: string(默认值 constant)
 - 支持模式: constant, reflect
 - * constant 无限制
 - * reflect channel $\in (0, 8192]$, height $\in (0, 8192]$, width $\in (0, 8176]$

其他支持

• 多核联合: 尚不支持

3.7.28 MaxPool

MaxPool 消耗输入张量 X 并根据内核大小、步幅大小和 pad 长度在张量上应用最大池化。最大池化包括根据内核大小计算输入张量子集的所有值的最大值,并将数据下采样到输出张量 Y 中以进行进一步处理。输出空间形状的计算方式有所不同,具体取决于是否使用显式填充(在使用 pads 的情况下)或使用自动填充(在使用 auto_pad 的情况下)。仅使用显式填充

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - * $height \in (0,7]$
 - * $width \in (0,7]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

属性列表

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_h ∈ (0, 7]
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- · ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_ $\mathbf{w} \in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

数据类型约束

- T1: int8(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.7.29 GlobalMaxPool

GlobalMaxPool 使用输入张量 X 并对同一通道中的值应用最大池化。这相当于 MaxPool 的 kernel_shape 大小等于 input 的空间维度。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - \star channel $\in (0, 8192]$
 - * $height \in (0,7]$
 - * $width \in (0,7]$

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]

属性列表

- kernel_shape: int64(kernel_h, kernel_w)
 - kernel_ $h \in (0,7]$
 - kernel_w ∈ (0, 7]
- auto_pad: string
 - pad 的方式: 仅支持 NOTSET
- · ceil_mode: int64
 - 使用 ceil 或 floor 的方式计算输出的 shape: 不支持
- strides: int64(strides_h, strides_w)
 - strides_ $h \in (0, 8]$
 - strides_ $w \in (0, 8]$
- count_include_pad: int64[]
 - count_include_pad 是否包含 pad 数值进行计算: 1
- pad: int64(pad_top, pad_left, pad_bottom, pad_right)
 - **-** pad_top ∈ [0, 7]
 - **-** pad_left ∈ [0, 7]
 - pad_bottom $\in [0, 7]$
 - pad_right $\in [0, 7]$

数据类型约束

- **T1**: int8(Tensor)
- T2: float(Tensor)
- T3: float(Scalar)

3.7.30 AveragePool

• 不支持 (工具端转换成卷积实现)

3.7.31 GlobalAveragePool

• 不支持 (工具端转换成卷积实现)

3.7.32 Relu

将输入张量的负值设为零,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor)

其他支持

• 多核联合: 暂不支持

3.7.33 Clip/ReLU6

将输入张量的值裁剪到[0,6]范围内

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor)

其他支持

• 多核联合: 暂不支持

3.7.34 PRelu

将输入张量的负值按可学习参数缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer/per-channel

属性列表

- slope: PRelu 系数
 - 仅支持单个标量或 C 维度系数

数据类型约束

• **T1**: int8(Tensor)

其他支持

• 多核联合: 暂不支持

3.7.35 LeakyRelu

将输入张量的负值按固定比例缩放,正值保持不变

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 无

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor)

其他支持

• 多核联合: 暂不支持

3.7.36 Reshape

在不改变输入数据和元素数量的情况下,返回一个具有指定形状的张量。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor)

属性列表

• shape: int

- 指定输出张量的形状

其他支持

· 多核联合: 尚不支持

3.7.37 Resize

调整输入张量的大小。一般来说,它将输出张量中的每个值计算为输入张量中邻域(即采样位置)的加 权平均值

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- roi (optional): T2
 - 目前暂不支持
- scales (optional): T2
 - 沿每个维度的缩放比例数组
- sizes (optional): T3
 - 输出张量的目标大小

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- T2: float(Tensor)
- **T3**: int64(Tensor)

属性列表

- antialias: int (默认值为 0)
 - 目前不支持设置
- axes: int[]
 - 目前不支持设置
- coordinate_transformation_mode: strings (默认值为"half_pixel")
 - 目前仅支持 half_pixel, pytorch_half_pixel, align_corners 三种
- cubic_coeff_a: float (默认为-0.75)
 - 目前不支持设置

- exclude_outside: int (默认值为 0)
 - 目前不支持设置
- extrapolation_value: float (默认为 0)
 - 目前不支持设置
- keep_aspect_ratio_policy: strings (默认值为" stretch")
 - 目前不支持设置
- mode: strings (默认值为" nearest")
 - 目前仅支持 nearest 和 linear 两种可配置
- nearest_mode: strings(默认值为"round_prefer_floor")
 - 目前不支持设置

3.7.38 Slice

获得当前向量的一个切片,具体规则和numpy切片相同

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T: int8(Tensor)

属性列表

- starts: int(Tensor)
 - 切分的起始位置: 无限制
- ends: int(Tensor)
 - 切分的终止位置: 无限制
- axes: int(Tensor)
 - 选取切分的轴: 支持任意 0~3 轴, 支持同时多轴选择
- steps: int(Tensor)
 - 选取切分对应轴的步长
 - 当 height * width == 1 && channel % subc == 0 && starts[1] % subc == 0 && ends[1] % subc == 0 && steps[1] <= subc 时, steps 可以不为 1, 否则只有 steps == [1,1,1,1] 时, 才可通过 NPU 运行 Slice OP

3.7.39 Softmax

该运算符计算给定输入的归一化指数值:

$$\mathsf{Softmax}(input, axis) = \frac{\mathsf{exp}(input - \mathsf{max}(input, axis))}{\sum_{axis} \mathsf{exp}(input - \mathsf{max}(input, axis))}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - \star width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• T1: int8(Tensor)

属性列表

- axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向

3.7.40 exSoftmax13

该运算符计算给定输入的归一化指数值:

$$\label{eq:exsoftmax13} \begin{aligned} \text{exSoftmax13}(input, axis) &= \frac{\exp(input - \max(input, axis))}{\sum_{axis} \exp(input - \max(input, axis))} \end{aligned}$$

"axis"属性表示 Softmax 执行的维度。输出张量具有相同的形状并包含相应输入的 Softmax 值。

输入列表*

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - * $channel \in (0, 8192]$
 - \star width:
 - · axis=1, 无限制;
 - $axis=3/-1, width \in (0, 8192]$

且受限于 tranpose 的规格限制

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor)

属性列表

- axis: int64
 - 做 softmax 的轴: 1,3,即 channel 和 width 方向

3.7.41 exSoftmaxMask

• 尚不支持

3.7.42 Split

将向量沿着 axis 方向分成 num_outputs 个向量,split 用于指定切分后向量在 axis 方向上的大小

输入列表

- input_tensor: T
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: T
 - 一或多个输出向量,由 num_outputs 属性决定
 - shape:根据切分情况决定
 - 量化支持
 - * per-layer

数据类型约束

• T: int8(Tensor)

属性列表

- axis:int
 - $axis \in \{0, 1, 2, 3\}$
- num_outputs:int
- split: int(Tensor)

3.7.43 Sub

• 执行元素级二进制减法 (C = A - B), 支持多向 Numpy 样式的广播

输入列表

- A: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]
- B: **T1**, **T2**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * [b, c, 1, 1]
 - * [scalar]

输出列表

- C:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- **T2**: float(const Tensor)

3.7.44 Tile

通过平铺给定的张量构造张量,这与 Numpy 中的函数 tile 相同,但没有广播

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
- repeats: **T2**
 - **shape**: [batch, channel, height, width]

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor), float16(Tensor)
- **T2**: int64(Tensor)

3.7.45 Transpose

对输入张量进行转置

输入列表

- X:**T1**
 - **shape**: [n1, c1, h1, w1]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

输出列表

- Y: T1, T2
 - **shape** : [n2, c2, h2, w2]
 - * 详细约束规则见属性列表
 - 量化支持
 - * per-layer

属性列表

- perm 转置的轴顺序:
 - 不同 perm 参数限制如下: (其中 p=268435456, q=65536)
 - perm=[0,1,2,3]
 - * 无限制
 - perm=[0,1,3,2]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q
 - perm=[0,2,3,1]
 - * **T1**: c1<8192, h1*w1%8=0, w1*c1<p*16
 - * **T2**: c1<8192, h1*w1%8=0, w1*c1<p*8
 - perm=[0,2,1,3]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q, c1*w1<p
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1*w1<p
 - perm=[0,3,1,2]

- * **T1**, **T2**: h1*w1<p, w1<8192, h1*c1<p
- perm=[0,3,2,1]
 - * **T1**: h1%16=0, h1*w1<16*p, h1*w1<2*q, c1<p*16
 - * **T2**: h1%8=0, h1*w1<8*p, h1*w1<2*q, c1<p*8
- perm=[1,0,2,3]
 - * **T1**: h1*w1<16*p, n1<8192, h1*w1<p
 - * **T2**: h1*w1<8*p, n1<8192, h1*w1<p
- perm=[1,0,3,2]
 - * **T1**: h1%16=0, c1*h1*w1<16*p, h1*w1<2*q
 - * **T2**: h1%8=0, c1*h1*w1<8*p, h1*w1<2*q
- perm=[1,2,0,3]
 - * **T1**: n1*w1<p*16, c1*h1*w1<p, w1%16=0
 - * **T2**: n1*w1<p*8, c1*h1*w1p, w1%8=0
- perm=[1,2,3,0]
 - * **T1**: h1*w1<p, n1<p*16, c1*h1*w1<p*16, n1*w1<p*16
 - * **T2**: h1*w1<p, n1<p*8, c1*h1*w1<p*8, n1*w1<p*8
- perm=[1,3,0,2]
 - * **T1**: c1*w1<8192, n1*h1<p, w1%16=0
 - **T2**: c1*w1<8192, n1*h1<p, w1%8=0
- perm=[1,3,2,0]
 - * **T1**: c1*h1*w1<p, n1*h1<p, w1<8192, w1%16=0
 - * **T2**: c1*h1*w1<p, n1*h1<p, w1<8192, w1%8=0
- perm=[2,1,0,3]
 - * **T1**, **T2**: c1<8192, c1*h1*w1<p, n1*w1<p
- perm=[2,1,3,0]
 - * **T1**: c1*h1*w1<p, n1*w1<p*16, c1<8192, n1*w1%4=0
 - * **T2**: c1*h1*w1<p, n1*w1<p*8, c1<8192, n1*w1%4=0
- perm=[2,0,3,1]
 - * **T1**, **T2**: c1<8192, c1*h1*w1<p
- perm=[2,0,1,3]
 - * **T1**: n1*c1*h1*w1<p, h1*w1%16=0
 - * **T2**: n1*c1*h1*w1<p, h1*w1%8=0
- perm=[2,3,1,0]
 - * **T1**: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%16=0
 - * **T2**: c1*h1*w1<p, n1*c1<p, h1*w1<8192, h1*w1%8=0
- perm=[2,3,0,1]
 - * **T1**, **T2**: h1*w1<8192, n1*c1<p
- perm=[3,0,2,1]
 - * **T1**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%16=0

- * **T2**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*w1%8=0
- perm=[3,0,1,2]
 - * **T1**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%16=0
 - * **T2**: h1*w1<p, n1*c1<8192, c1*h1<p, n1*w1<8192, n1*h1*w1%8=0
- perm=[3,2,0,1]
 - * **T1**, **T2**: h1*w1<p, n1*c1<8192, n1*c1*w1<p
- perm=[3,2,1,0]
 - * **T1**: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*16, h1%16=0
 - * **T2**: c1*h1*w1<p, h1*w1<8192, 2*h1*w1<q, n1*c1<p*8, h1%8=0
- perm=[3,1,0,2]
 - * **T1**, **T2**: h1*w1<p, c1*w1<8192, n1*h1<p
- perm=[3,1,2,0]
 - * **T1**, **T2**: h1*w1<p, n1*c1<8192, n1*h1<p, n1*c1*w1<p

数据类型约束

- **T1**: int8(Tensor)
- **T2**: int16(Tensor)

其他支持

• 多核联合: 暂不支持

3.7.46 Sigmoid

给定输入张量,函数 y = 1/(1 + exp(-x)) 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor)

3.7.47 Tanh

计算给定输入张量单元的双曲正切

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• T1: int8(Tensor)

3.7.48 Softplus

按元素应用 Softplus 函数, y = ln(exp(x) + 1)

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor)

3.7.49 HardSigmoid

给定输入张量,函数 y = max(0, min(1, alpha * x + beta)) 按元素应用于输入张量,得到输出张量,这里 alpha = 1/6,beta = 0.5

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor)

3.7.50 HardSwish

按元素应用 HardSwish 函数, y = x * max(0, min(1, alpha * x + beta)) = x * <math>HardSigmoid = 1/6, beta = 0.5

输入列表

- X:**T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor)

3.7.51 Elu

给定输入张量,函数 f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0 按元素应用于输入张量,得到输出张量,这里 alpha = 1

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor)

3.7.52 exSwish

按元素应用 Sigmoid 线性单元函数, Swish 函数也称为 SiLU 函数, y = x * sigmoid(x)

输入列表

- X:T1
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

输出列表

- Y: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持: per-layer

数据类型约束

• T1: int8(Tensor)

3.7.53 exMish

给定输入张量,函数 mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x})) 按元素应用于输入张量,得到输出张量

输入列表

- input: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

输出列表

- output: **T1**
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• **T1**: int8(Tensor)

3.7.54 exGelu

给定输入张量,函数 $y=x*\Phi(x)$ 按元素应用于输入张量,得到输出张量,当 $\Phi(x)$ 函数设置成 tanh 时, $y=0.5*x*(1+Tanh(\sqrt{\frac{2}{\pi}}*(x+0.044715*x^3)))$

输入列表

• input: **T1**

- **shape**: [batch, channel, height, width]
- 量化支持
 - * per-layer

输出列表

- output: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer

数据类型约束

• T1: int8(Tensor)

3.7.55 Where

根据 mask_tensor 获取 x_tensor 或 y_tensor 的值,当 mask_tensor 位置为 **True** 时,取 x_tensor 对 应位置的值,否则取 y_tensor 的值。

输入列表

- mask_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- x tensor: *T2
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子
- y_tensor: T1
 - **shape**: [batch, channel, height, width]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - 广播约束
 - * 广播约束同Expand算子

输出列表

• output: **T2**

- **shape**: [batch, channel, height, width]

- 量化支持

* per-layer

数据类型约束

• **T1**: bool(Tensor)

• **T2**: int8(Tensor)

3.7.56 exGlu

门控线性单元 (Gated Linear Unit) 函数, 其中 a 是输入矩阵的前一半, b 是后一半

$$GLU(a,b) = a \otimes \sigma(b)$$

输入列表

• Input: **T1**

- **shape**: [batch, channel, height, width]

* channel: 16 对齐

- 量化支持: per-layer

输出列表

• Output: T1

- **shape**: [batch, channel / 2, height, width]

- 量化支持: per-layer

数据类型约束

• **T1**: int8(Tensor)

属性列表

• axis: int(默认值 = 1)

- 分割输入的维度

- 约束: 仅支持1

3.7.57 exMatMul

矩阵乘法操作

$$\mathbf{Y} = \begin{cases} \mathbf{A} \cdot \mathbf{B} + \mathbf{C}, & \text{if } c_type = " \text{ add"} \\ \mathbf{A} \cdot \mathbf{B} * \mathbf{C}, & \text{if } c_type = " \text{ mul"} \end{cases}$$

输入列表

• A:**T1**

- **shape**: [b, k, 1, n]

* $k \in (0, 8192]$

- 量化支持
 - * per-layer
- B:**T1**
 - **shape** : [b, k, 1, m]
 - 量化支持
 - * per-layer
- C (optional): **T1**, **T2**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer
 - 广播支持
 - * 支持任意维度广播操作
 - * 广播约束同Expand算子

输出列表

- Y: **T1**
 - **shape**: [b, n, 1, m]
 - 量化支持
 - * per-layer

数据类型约束

- **T1**: int8(Tensor)
- **T2**: float(Tensor)

属性列表

- c_type: strings (默认值"add")
 - 支持 add 和 mul 可选, 表示 C 是做加法还是乘法

3.7.58 exWindow

exWindow 来源于swin_transformer的 window_partition 和 window_reverse 操作。原论文中输入特征被划分为多个不重叠的窗口,每个窗口的大小为 window_size × window_size。要求输入和输出特征都为 4 维 shape,在高和宽方向上都进行划分。pytorch 实现的计算方法如下:

```
def window_partition(x, window_size):
    """
Args:
    x: (B, C, H, W)
    window_size (int): window size
```

(下页继续)

(续上页)

```
Returns:
   windows: (B, C, num_windows*num_windows, window_size*window_size)
 B, C, H, W = x.shape
 x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
 windows = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, -1, window_size*window_size)
 return windows
def window_reverse(windows, window_size, H, W):
 0.00
 Args:
   windows: (B, C, num_windows*num_windows, window_size*window_size)
   window_size (int): Window size
   H (int): Height of image
   W (int): Width of image
 Returns:
   x: (B, C, H, W)
 B,C,_,= windows.shape
 x = windows.view(B, C, H // window_size, W // window_size, window_size, window_size)
 x = x.permute(0, 1, 2, 4, 3, 5).contiguous().view(B, C, H, W)
 return x
```

输入列表

• X:T1

- **shape**: [batch, channel, height, width]

输出列表

• Y: **T1**

- **shape**: [batch, channel, height, width]

数据类型约束

• **T1**: int8(Tensor)

属性列表

- mode: string
 - 支持模式: partition, reverse, partition_num_first
 - * partition: 参考 window_partition 实现;
 - * reverse: 参考 window_reverse 实现;
 - * partition_num_first: 与 partition 的区别在于,partition_num_first 的 H,W 按照 num_windows 进行划分,而 partition 的 H,W 按照 window_sizes 进行划分。
- window_sizes: list of ints
 - 2 维向量, 窗口的大小。定义了每个窗口的高度和宽度。窗口内的注意力计算和特征提取都是基于这个大小。
- num_windows: list of ints
 - 2 维向量, 窗口的数量。定义了输入特征的高度和宽度被划分为多少个窗口。

其他支持

- 多核联合: 尚不支持
- 3566/3568 OP 规格介绍
- 3588 OP 规格介绍
- 3562 OP 规格介绍
- 1103/1106 OP 规格介绍
- 3576 OP 规格介绍
- 2118 OP 规格介绍
- 1103B OP 规格介绍

CHAPTER 4

CPU OPs 规格介绍

4.1 Add

-**描述**: 加法操作 -**规格约束**: 无限制

4.2 AveragePool

-**描述**: 平均池化 -**规格约束**: 无限制

4.3 ArgMin

-描述: 取最小值的 index

-**规格约束**: 无限制

4.4 ArgMax

-描述: 取最大值的 index

-**规格约束**: 无限制

4.5 BatchNormalization

-描述: 批量归一化 -规格约束: 无限制

4.6 Cast

-描述: 数据类型转换

-规格约束

SRC 支持: float32/bool/int8/float16/int32/int64

DST 支持: float32/int8/int32/float16

4.7 Clip

-描述: 数据截断激活层 -规格约束: 无限制

4.8 Concat

-描述: 合并操作

-规格约束: axis 仅支持 {0,1,2,3}

4.9 Convolution

-**描述**: 卷积操作 -**规格约束**: 无限制

4.10 ConvTranspose/Deconvolution

-描述: 转置卷积 -规格约束: 无限制

4.11 ConvTransposePad

-描述: 组合 OP -**规格约束**: 无限制

4.12 Cos

-**描述**: 余弦函数 -**规格约束**: 无限制

4.13 DataConvert

-描述: 数据类型转换

-规格约束: 仅支持 bool/int8/float 类型转换

4.14 DepthToSpace

-描述: 通道方向空间方向转换

-规格约束: 无限制

4.15 Div

-**描述**: 除法操作 -**规格约束**: 无限制

4.16 Equal

-**描述**: 等于

-**规格约束**: 无限制

4.17 Exp

-**描述**: 指数函数 -**规格约束**: 无限制

4.18 Flatten

-**描述**: 拉平操作 -**规格约束**: 无限制

4.19 Gather

-描述: 聚集操作 -规格约束: 无限制

4.20 Greater

-**描述**: 大于

-规格约束: 无限制

4.21 GreaterOrEqual

-描述: 大等于

-规格约束: 无限制

4.22 GRU

-描述: 门控循环单元 -规格约束: 无限制

4.23 exGRU

-描述: 门控循环单元 -规格约束: 无限制

-说明: ONNX 扩展算子

4.24 exHardSwish

-描述: 激活函数

-**规格约束**: 无限制

-说明: ONNX 扩展算子

4.25 InstanceNormalization

-描述: 单例归一化 -规格约束: 无限制

4.26 exLayerNorm

-描述: 层归一化 -规格约束: 无限制 -说明: ONNX 扩展算子

4.27 Less

-**描述**: 小于

-规格约束: 无限制

4.28 LessOrEqual

-**描述**: 小等于

-**规格约束**: 无限制

4.29 LogSoftmax

-描述: 激活函数

-**规格约束**: batchsize 仅支持 1

4.30 LpNormalization

-描述: Lp 归一化 -规格约束: 无限制

4.31 exLRN

-描述: 局部响应归一化

-**规格约束**: 无限制

-说明: ONNX 扩展算子

4.32 MatMul

-描述: 多维矩阵相乘

-规格约束: 无限制 (支持四维 x 四维 x 四维 x 三维计算)

4.33 Max

-**描述**: 取最大值 -**规格约束**: 无限制

4.34 MaxPool

-**描述**: 最大池化 -**规格约束**: 无限制

4.35 MaxRoiPool

-描述: 区域最大池化 -规格约束: 无限制

4.36 MaxUnpool

-描述: 反向最大池化 -规格约束: 无限制

4.37 exMish

-描述: 激活函数
-规格约束: 无限制
-说明: ONNX 扩展算子

4.38 Min

-**描述**: 取最小值 -**规格约束**: 无限制

4.39 Mul

-**描述**: 乘法

-规格约束: 无限制

4.40 Pad

-**描述**: 填充

-规格约束: 无限制

4.41 Pow

-**描述**: 指数计算 -**规格约束**: 无限制

4.42 exProposal

-描述: 区域提议网络

- 规格约束: batchsize 仅支持 1

-说明: ONNX 扩展算子

4.43 ReduceMax

-描述: 沿指定维度计算 Max

-规格约束: 输出维度不能超过4维

4.44 ReduceMean

-描述: 沿指定维度计算 Mean

-规格约束: 输出维度不能超过4维

4.45 ReduceSum

-描述: 沿指定维度计算 Sum

-规格约束: 输出维度不能超过 4 维

4.46 ReduceMin

-描述: 沿指定维度计算 Min

-规格约束: 输出维度不能超过 4 维

4.47 Reorg

-**描述**: 数据重排 -**规格约束**: 无限制

4.48 Reshape

-描述: 数据形状改变 -规格约束: 无限制

4.49 Resize

-描述: 数据宽高方向缩放

-规格约束: 支持插值方式 bilinear; nearest2d

4.50 ReverseSequence

-**描述**: 序列翻转 -**规格约束**: 无限制

4.51 exRMSNorm

-**描述**: 均方根归一化 -**规格约束**: 无限制

-说明: ONNX 扩展算子

4.52 RoiAlign

-描述: 区域对齐池化

- 规格约束: 仅支持 Avg Pool Mode, batchsize 仅支持 1

4.53 ScatterND

-**描述**: N 维索引取数 -**规格约束**: 无限制

4.54 Sin

-**描述**: 正弦函数 -**规格约束**: 无限制

4.55 Slice

-描述: 切片操作

- 规格约束: batchsize 仅支持 1

4.56 Softmax

-描述: 激活函数

- 规格约束: batchsize 仅支持 1

-说明: 与 ONNX OPSET 11 规范一致

4.57 exSoftmax13

-描述: 激活函数

- 规格约束: batchsize 仅支持 1

-说明: ONNX 扩展算子,与 ONNX OPSET 13 规范一致

4.58 SpaceToDetph

-描述: 空间方向向通道方向转换

-规格约束: 无限制

4.59 Split

-**描述**: 拆分数据 -**规格约束**: 无限制

4.60 Sqrt

-**描述**: 求平方根 -**规格约束**: 无限制

4.61 Squeeze

-描述: 压缩数据维度 -规格约束: 无限制

4.62 Sub

-**描述**: 减法

-规格约束: 无限制

4.63 Tanh

-描述: 双曲正切函数 -规格约束: 无限制

4.64 Tile

-描述: 扩充拷贝数据

-规格约束: batchsize 仅支持 1, 不支持 broadcasting

4.65 Transpose

-**描述**: 转置计算 -**规格约束**: 无限制

4.66 Upsample

-描述: 上采样

-规格约束: 支持插值方式 bilinear; nearest2d

4.67 Not

-描述: 按元素取非 -规格约束: 无限制

4.68 where

-描述: 通过 mask 取数 -规格约束: 无限制

4.69 Erf

-**描述**: 误差函数 -**规格约束**: 无限制

4.70 Floor

-描述: 向下取整函数 -规格约束: 无限制

4.71 Mod

-**描述**: 取模函数 -**规格约束**: 无限制

4.72 exMeanVarianceNormalization

-描述: 均方差归一化函数

-规格约束: 无限制

4.73 And

-**描述**: 与函数

-**规格约束**: 无限制

4.74 GatherElements

-描述: 元素收集函数 -规格约束: 无限制

4.75 Log

-**描述**: Log 函数 -**规格约束**: 无限制

4.76 exDataConvert

-**描述**: 精度转换 -**规格约束**: 无限制

4.77 SpaceToDepth

-**描述**: 维度变换 -**规格约束**: 无限制

4.78 SoftmaxMask

-描述: where 融合 softmax 的激活函数

-规格约束: 无限制

4.79 TransposeReshape

-**描述**: 组合 OP -**规格约束**: 无限制

4.80 ReshapeTranspose

-**描述**: 组合 OP -**规格约束**: 无限制

4.81 ReduceL2

-描述: 沿某一轴的 L2 范数

-规格约束: 无限制

4.82 LayerNormalization

-**描述**: 层标准化 -**规格约束**: 无限制

4.83 PassThrough

-**描述**: 直接连接 -**规格约束**: 无限制

4.84 Expand

-描述: 张量数据复制或扩展

-**规格约束**: 无限制

4.85 Sigmoid

-**描述**: 激活函数 -**规格约束**: 无限制

4.86 Tanh

-**描述**: 三角函数 -**规格约束**: 无限制

4.87 Cos

-**描述**: 三角函数 -**规格约束**: 无限制

4.88 Sin

-**描述**: 三角函数 -**规格约束**: 无限制

4.89 exSwish

-**描述**: 激活函数 -**规格约束**: 无限制

4.90 exGlu

-**描述**: 激活函数 -**规格约束**: 无限制

4.91 exGelu

-**描述**: 激活函数 -**规格约束**: 无限制

4.92 exWindow

-描述: exWindow 来源于 Swin-Transformer 的 window_partition 和 window_reverse 操作

-规格约束: 无限制

4.93 exNorm

-规格约束: 无限制

4.94 Round

-**描述**: 数据饱和 -**规格约束**: 无限制

4.95 TopK

-描述: 获取数值排行前 K 个数据

-规格约束: 无限制

4.96 exSwooshR

-**描述**: 激活函数 -**规格约束**: 无限制

4.97 exSwooshL

-**描述**: 激活函数 -**规格约束**: 无限制

4.98 OneHot

-**描述**: 独热编码 -**规格约束**: 无限制

CHAPTER 5

模型输入输出限制说明

5.1 模型输入限制说明

- 1. 该对齐约束仅针对零拷贝 API,普通 API 无此对齐约束
- 2. 输入宽的对齐要求可从零拷贝 API 中的 w_stride 属性查询到,注意:w_stride 不支持更改
- 3. 仅对输入宽 (width) 在不同的通道 (channel) 条件下有对齐要求,其他无约束
- 4. 若输入不需要 mean 和 scale, 需要将 mean 和 scale 配置为 0 和 1
- 5. 若通道 (channel)> 4,则 mean/scale 将统一使用第一个数值,即 mean[0] 和 scale[0]
- 6. 若首层为浮点类型则没有 quant 操作
- 7. RV1106/RV1103/RV1103B 不支持 CPU 的 mean/scale/quant 操作
- 8. 详细的用法请参考《Rockchip_RKNPU_User_Guide_RKNN_SDK》

5.1.1 RK3566/RK3568

-t+ u.	推到老日	<i>t</i> △)	首层设置输	mean/scale/quant 后端实现设备	输入宽(widtl 位:元素个数	1)对齐要求单	输入宽(width)大小限制	
芯片 平台	模型首层精度类型	输入 维度	入数据类型		当输入通道 (channel) 为 1,3,4	当输入通道 (channel) 非 1,3,4	当输入通道(channel)为 1,3,4	当输入通道 (channel) 非 1,3,4
	int8	- 4 维度	uint8	NPU			各卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 1. width * dilation kernel h < 1024*N	
			int8		8	1	2. 2. width <= 4096 其中 N 必须为 1 到 7 的整数,超出范围的卷积不受支持,各卷积类型 N 的计算方式如下:	无限制
			float16	CPU			Convolution: N = 8 - CEIL((dilation_kernel_h * dilation_kernel_w) / 128) Depthwise Convolution: N = 8 - CEIL((dilation_kernel_h * dilation_kernel_w) / 4096) ConvTranspose/Deconvolution: N = 8 - CEIL((dilation_kernel_w) / 128) A卷积类型的 width/kernel_h * dilation_kernel_w) / 128) A卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 1. width * dilation_kernel_h < 1024*N 2. 2. width <= 4096 其中 N 必须为 1 到 7 的整数,超出范围的卷积不受支持,各卷积类型 N 的计算方式如下:	200000
			其他类型 输入对齐要 求可能变动					
RK3566 /3568			uint8	CPU	4			
	float16		int8					无限制
	IIOWI I		float16				Convolution: N = 8 - CEIL((dilation_kernel_h * dilation_kernel_w) / 128) Depthwise Convolution: N = 8 - CEIL((dilation_kernel_h * library 12	ZUNA
			其他类型 输入对齐要 求可能变动				dilation_kernel_w) / 4096) ConvTranspose/Deconvolution: N = 8 - CEIL((dilation_kernel_h * dilation_kernel_w) / 128)	
	无限制	非4维	非限制	CPU	1	1	无限制	无限制

5.1.2 RK3588

	*****	44.3	*******		输入宽(widtl 位:元素个数	1)对齐要求单	输入宽(width)大小限制	
芯片 平台	模型首层 精度类型	输入 维度	首层设置输 入数据类型	mean/scale/quant 后端实现设备	当输入通道 (channel) 为 1,3,4	当输入通道 (channel) 非 1,3,4	当输入通道(channel)为 1,3,4	当输入通道 (channel) 非 1,3,4
	int8	— 4 维度	uint8	NPU			各卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 1. width * dilation_kernel_h <= 2048 * N	
			int8		16	1	2. width <= 8192 其中 N 必须为 1 到 7 的整数,超出范围的卷积不受支持,各卷 积类型 N 的计算方式如下: Convolution: N = 12 - MAX(CEIL((dilation kernel h *	无限制
			float16	CPU			dilation_kernel_w)/128), 3) Depthwise Convolution: N = 12 - MAX(CEIL((dilation_kernel_h) / 2048), 3) ConvTranspose/Deconvolution:	7 =
			其他类型 输入对齐要 求可能变动	CIO			N = 12 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 3)	
RK3588			uint8	- CPU	8	1	各卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 1. width * dilation_kernel_h <= 1024 * N 2. width <= 8192 其中 N 必须为 1 到 7 的整数,超出范围的卷积不受支持,各卷积类型 N 的计算方式如下:	
	float16		int8					
	noatro		float16			1	Convolution: N = 12 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 3) Depthwise Convolution: N = 12 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 2048), 3) ConvTranspose/Deconvolution:	J.C.PK 103
			其他类型 输入对齐要 求可能变动				N = 12 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 3)	
	无限制	非4维	非限制	CPU	1	1	无限制	无限制

5.1.3 RV1103/RV1106

芯片	模型首层	输入	首层设置输	mean/scale/quant	输入宽(width)对齐要求单位:元素个数		输入宽(width)大小限制	
平台			后端实现设备	当输入通道 (channel) 为 1,3,4	当输入通道 (channel) 非 1,3,4	当输入通道(channel)为 1,3,4(声明见注释 9)	当输入通道 (channel) 非 1,3,4	
RV1103/ 1106	int8	4 维度	uint8	NPU	16	1	各卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 1. width * dilation_kernel_h <= 2048 * N 2. width <= 4096 其中 N 必须为 1 到 7 的整数,超出范围的卷积不受支持,各卷积类型 N 的计算方式如下; Convolution: N = 8 - MAX(CEIL(dilation_kernel_h * dilation_kernel_w) / 128), 2) Depthwise Convolution: N = 8 - CEIL((dilation_kernel_h * dilation_kernel_w) / 4096) ConvTranspose/Deconvolution: N = 8 AAX(CEIL(dilation_kernel_h * dilation_kernel_w) / 128), 2)	无限制

5.1.4 RK3562

-11-11	W 24 C	44.5	******		输入宽(widtl 位:元素个数	1)对齐要求单	输入宽(width)大小限制	
芯片 平台	模型首层精度类型	输入 维度	首层设置输入数据类型	mean/scale/quant 后端实现设备	当输入通道 (channel) 为 1,3,4	当输入通道 (channel) 非 1,3,4	当输入通道(channel)为 1,3,4	当输入通道 (channel) 非 1,3,4
		- 4 维度	uint8	NPU			各卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 1. width * dilation kernel h <= 2048 * N	
	int8		int8	141.0	16	1	2. width <= 4096 — — — — — — — — — — — — — — — — — — —	无限制
			float16	CPU			Convolution: N = 8 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 2) Depthwise Convolution: N = 8 - CEIL((dilation_kernel_h * dilation_kernel_w) / 4096) ConvTranspose/Deconvolution: N = 8 - 8 - 8	>up-ri
			其他类型 输入对齐要 求可能变动				ConvTranspose/Deconvolution: N = 8 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 2)	
RK3562			uint8	- CPU	8	1	各卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 1. width * dilation_kernel_h <= 2048 * N 2. width <= 4096 其中 N 必须为 1 到 7 的整数,超出范围的卷积不受支持,各卷积类型 N 的计算方式如下:	无限制
	float16		int8					
	noatro		float16			1	Convolution: N = 8 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 2) Depthwise Convolution: N = 8 - CEIL((dilation_kernel_h * dilation_kernel_w) / 4096)) LIPK IPI
			其他类型 输入对齐要 求可能变动				ConvTranspose/Deconvolution: N = 8 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 2)	
	无限制	非4维	非限制	CPU	1	1	无限制	无限制

5.1.5 RK3576

芯片	推刑关目	#A.)	光 巴		输入宽(widtl 位:元素个数	1)对齐要求单	输入宽(width)大小限制	
平台	模型首层 精度类型	输入 维度	首层设置输入数据类型	mean/scale/quant 后端实现设备	当输入通道 (channel) 为 1,3,4	当输入通道 (channel) 非 1,3,4	当输入通道(channel)为 1,3,4	当输入通道 (channel) 非 1,3,4
			uint8	NPU			各卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 3. width * dilation kernel h <= 2048 * N	
	int8	- 4 维度	int8	NIC	16	1	3. Widd Guiddon, Echic 1、2000 N 4. width ← 4096 其中 N 必须为 1 到 7 的整数,超出范围的卷积不受支持,各卷 积类型 N 的计算方式如下:	无限制
			float16				$ \begin{array}{llllllllllllllllllllllllllllllllllll$	June 119
			其他类型 输入对齐要 求可能变动	CPU				
RK3576			uint8	- CPU			各卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 2. width * dilation_kernel_h <= 2048 * N 2. width <= 4096 其中 N 必须为 1 到 7 的整数,超出范围的卷积不受支持,各卷积类型 N 的计算方式如下:	
	float16		int8					无限制
	noatro		float16		8		Convolution: N = 8 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 2) Depthwise Convolution: N = 8 - CEIL((dilation_kernel_h * dilation_kernel_w) / 4096)	儿腔即
			其他类型 输入对齐要 求可能变动				ConvTranspose/Deconvolution: N = 8 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 2)	
	无限制	非4维	非限制	CPU	1	1	无限制	无限制

5.1.6 RK2118

芯片模型首层		首层 输入	首层设置输	mean/scale/quant	输入宽(width)对齐要求单 位:元素个数		输入宽(width)大小限制	
平台			入数据类型	后端实现设备	当输入通道 (channel) 为 1,3,4	当输入通道 (channel) 非 1,3,4	当输入通道(channel)为 1,3,4	当输入通道 (channel) 非 1,3,4
DV2118	4 维度	4维度			4	1	各卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 3. width * dilation_kernel_h <= 2048 * N 4. width <= 4096 其中 N 必须为 1 到 7 的整数,超出范围的卷积不受支持,各卷积类型 N 的计算方式如下:	无限制
RK2118 flo	float16	非4维	float16	CPU	1	1	Convolution: N = 8 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 2) Depthwise Convolution: N = 8 - CEIL((dilation_kernel_h * dilation_kernel_w) / 4096) ConvTranspose/Deconvolution: N = 8 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 2)	元 解即

5.1.7 RV1103B

	芯片	模型首层	输入	首层设置输	mean/scale/quan	输入宽(width)对齐要求单位:元素个数		输入宽(width)大小限制	
	精度类型	维度	入数据类型	t 后端实现设备	当输入通道 (channel) 为 1,3,4	当输入通道 (channel) 非 1,3,4	当输入通道(channel)为 1,3,4	当输入通道 (channel) 非 1,3,4	
				uint8				各卷积类型的 width/kernel_h/kernel_w 需要满足以下两式: 1. width * dilation_kernel_h <= 2048 * N 2. width <= 4096 其中 N 必须为 1 到 7 的整数,超出范围的卷积不受支持,各卷积类型 N 的计算方式如下;	. , , , .
RV1103 B	int8	4 维度	int8	NPU	8	1	探失型 N 的打算力 A 知 下: Convolution: N = 8 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 2) Depthwise Convolution: N = 8 - CEIL((dilation_kernel_h * dilation_kernel_w) / 4096) ConvTranspose/Deconvolution: N = 8 - MAX(CEIL((dilation_kernel_h * dilation_kernel_w) / 128), 2)	无限制	

5.2 模型输出限制说明

- 1. 如果输出 tensor 类型是 NHWC 的,输出转换是 NPU 实现的输出,则有对齐要求,CPU 实现的没有对齐要求。
- 2. 输出精度类型 int8/float16 表示模型最后一层原始输出的数据类型。
- 3. NCHW 输出,如果是 NPU 实现采用零拷贝接口则输出内存开辟的 size 以 query 出来的 size 为准。
- 4. NC1HWC2 输出,输出内存开辟的 size 以 query 出来的 size 为准。

5.2.1 RK3566/RK3568

芯片平台	模型输出	输 出	设置输出	Channel 对齐要求	H*W 对
	精度类型	维度	Layout		齐要求
RK3566	int8	4维	NCHW	无	无
/RK3568		度	NHWC	8 对齐	无
			NC1HWC2	最后一层卷积类算子,16对齐,最后一	H*W 要
				层非卷积类算子8对齐	4 对齐
			UNDE-	无	无
			FINE		
	float16		NCHW	无	无
			NHWC	4 对齐	
			NC1HWC2	最后一层卷积类算子,8对齐,最后一	H*W 要
				层非卷积类算子4对齐	4 对齐
			UNDE-	无	无
			FINE		
	无限制	非 4	UNDE-	无	无
		维度	FINE		

5.2.2 RK3588

芯片	模型输出精	输出	设置输出	Channel 对齐要求	H*W 对
平台	度类型	维度	Layout		齐要求
RK3588	3 int8	4维	NCHW	无	无
		度	NHWC	16 对齐	无
			NC1HWC2	最后一层卷积类算子,32 对齐,最后一层	H*W 要 4
				非卷积类算子 16 对齐	对齐
			UNDEFINE	无	无
	float16		NCHW	无	无
			NHWC	8 对齐	无
			NC1HWC2	最后一层卷积类算子,16对齐,最后一层	H*W 要 4
				非卷积类算子8对齐	对齐
			UNDEFINE	无	无
	无限制	非 4	UNDEFINE	无	无
		维度			

5.2.3 RV1103/RV1106

芯片平台	模型输出	输出	设置输出	Channel 对齐要求	H*W 对
	精度类型	维度	Layout		齐要求
RV1103	int8	4维	NC1HWC2	最后一层卷积类算子,32 对齐,最后一	H*W 要
/RV1106		度		层非卷积类算子 16 对齐	4 对齐
			NHWC	无	无

5.2.4 RK3562

芯片	模型输出精	输出	设置输出	Channel 对齐要求	H*W 对
平台	度类型	维度	Layout		齐要求
RK3562	2 int8	4维	NCHW	无	无
		度	NHWC	无	无
			NC1HWC2	最后一层卷积类算子,32 对齐,最后一层	H*W 要 4
				非卷积类算子 16 对齐	对齐
			UNDEFINE	无	无
	float16		NCHW	无	无
			NHWC	无	无
			NC1HWC2	最后一层卷积类算子,16对齐,最后一层	H*W 要 4
				非卷积类算子8对齐	对齐
			UNDEFINE	无	无
	无限制	非 4	UNDEFINE	无	无
		维度			

5.2.5 RK3576

芯片	模型输出精	输出	设置输出	Channel 对齐要求	H*W 对
平台	度类型	维度	Layout		齐要求
RK3576	int8	4维	NCHW	无	无
		度	NHWC	无	无
			NC1HWC2	最后一层卷积类算子,32 对齐,最后一层	H*W 要 4
				非卷积类算子 16 对齐	对齐
			UNDEFINE	无	无
	float16		NCHW	无	无
			NHWC	无	无
			NC1HWC2	最后一层卷积类算子,16对齐,最后一层	H*W 要 4
				非卷积类算子8对齐	对齐
			UNDEFINE	无	无
	无限制	非 4	UNDEFINE	无	无
		维度			

5.2.6 RK2118

芯片	模型输出精	输出	设置输出	Channel 对齐要求	H*W 对
平台	度类型	维度	Layout		齐要求
RK2118	float16	4维	NC1HWC2	最后一层卷积类算子,8对齐,最后一层	H*W 要 4
		度		非卷积类算子4对齐	对齐
			NHWC	无	无
		非 4	UNDEFINE	无	无
		维度			

5.2.7 RV1103B

芯片	模型输出精	输出	设置输出	Channel 对齐要求	H*W 对
平台	度类型	维度	Layout		齐要求
RV1103	Bint8	4维	NC1HWC2	最后一层卷积类算子,8对齐,最后一层	H*W要4
		度		非卷积类算子8对齐	对齐
			NHWC	一无	无

CHAPTER 6

特殊说明

内容

- 特殊说明
 - dilated_kernel_h
 - dilated_kernel_w

6.1 dilated_kernel_h

dilated_kernel_h = kernel_h * dilations_h - dilations_h + 1

6.2 dilated_kernel_w

dilated_kernel_w = kernel_w * dilations_w - dilations_w + 1