

Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0121 –Arquitetura de Computadores

Introdução

Prof. Gustavo Girão girao@imd.ufrn.br

Roteiro

- Motivação
- Breve histórico de evolução
- Organização x Arquitetura
- Solução em Sistemas Computacionais
- Informações sobre a disciplina
- Referências

POR QUE ESTUDAR ARQUITETURA DE COMPUTADORES?

IMD0121

Por que estudar arquitetura de computadores?

4

http://prof.valiante.info/disciplinas/hardware/por-que-es<mark>tudar</mark>

- Frequência:
 - o Intel i7 8ª geração (Kaby lake): 3 GHz
 - o Intel Xeon: 2 GHz

O que faz um processador ter mais desempenho do que o outro?

- Memória Cache
 - o 17 8 MB
 - o Xeon 12 MB

Por que existe memória cache? Como funciona a memória cache?

Memória principal

o i7: 64 GB

Xeon: 128 GB

- Barramento
 - PCI Express

Como funciona a troca de dados entre memória cache e memória principal?

Qual a influência do barramento no desempenho?

- Número de núcleos
 - o 17: 4
 - o Xeon: 8
- Número de threads
 - o i7: 8 threads
 - Xeon: 16 threads

Qual a real influência na quantidade de núcleos?
Como funciona a execução de múltiplas threads?

IMD0121

Interação com outras áreas

Aplicação

Sistema Operacional, Compiladores, Redes (Software)

Arquitetura do Computador

Circuitos, Fios, Redes (Hardware)

Fonte: Why Computer Architecture is Exciting and Challenging Prof. Daniel Sorin.

Department of Electrical & Computer Engineering.

Duke University/USA

http://people.ee.duke.edu/~sorin/

O que vamos estudar?

- Representação binária e Introdução a Circuitos Lógicos
 - o Representação algébrica e de Portas Lógicas
 - Circuitos combinacionais e Sequenciais
- Arquitetura de computadores
 - Visão do programador
 - Fluxo de síntese de software (compilação e execução)
 - Programação em Assembly
- Introdução à hierarquia de memórias
 - o Primária, secundária, cache
 - Memória virtual

O que vamos estudar?

- Conceitos básicos de sistemas de entrada e saída
 - Troca de informações com o meio externo
- Conceitos básicos de barramentos
 - Como dados e operações trafegam entre os componentes
- Como o computador funciona internamente
 - Todos os componentes combinados permitem a execução de operações

De ITP para Arquitetura

Breve Histórico

História dos Sistemas de Computação

Geração	Datas Aproximadas	Tecnologia	Principal produto
1	1950 - 1959	Válvula	Comp. eletrônico comercial
2	1960 - 1968	Transistor	Comp. mais baratos
3	1969 - 1977	Circuito integrado	Minicomputadores
4	1978 - ?	LSI - VLSI	Comp. pessoais e estações de trabalho

PATTERSON, David A; HENNESSY, John L. Organização e projeto de computadores: A interface HARDWARE/SOFTWARE. Rio de Janeiro: Elsevier, 2005, 3ª edição

1^a Geração

- 1950-1959
- Tecnologia: válvulas
- SO: não existia
- Linguagens de programação
 - Plugues
- Memória: não existia
- E/S: plugues e leds
- Sem divisão de funções de trabalho
- Figura: ENIAC

1^a Geração

• 1950-1959

Tecnologia: válvula

• SO: não existia

Linguagens de prog

Plugues

Memória: não existid

• E/S: plugues e leds

Sem divisão de funç

• Figura: ENIAC

2a Geração

- 1960 1968
- Tecnologia: transistores
- Processamento por lote
- Sistema operacional: criado para automatizar tarefas
- Linguagens de programação: Assembly, Fortran, Cobol
- Memória: memórias magnéticas
- Armazenamento secundário: fita de papel, fita magnética
- E/S: cartão perfurado, fita de papel perfurada, fita magnética, impressora
- Mais confiáveis: comercialização em maior escala

IBM 1400 series

2^a Geração

- Necessidade de divisão de funções:
 - Projetista, operador, programador, equipe de manuntenção
- Alto custo
 - Somente viável para grandes empresas, agências de governo e universidade
- Dois tipos de sistemas
 - ♦ Processamento numérico (científico)
 - Processamento de caracteres (comercial)

3a Geração

- 1969-1977
- Tecnologia: Circuito Integrado
- Sistema operacional:
 - Complexo
 - Causava atraso
 - Muitos bugs
- Linguagens de programação: Assembly, Fortran, Cobol, C
- Memória: circuitos integrados
- Armazenamento secundário: discos

3a Geração

- Menor preço
- Melhor desempenho
- Único tipo de sistema para processamento científico e comercial
- Exemplos:
 - 1961 DEC PDP 1 (minicomputer) (4k palavras de 18bits, US\$ 120.000,00)
 - o PDP 7, PDP 11
 - o IBM360/370
 - o IBM7094(US\$2.000.000,00)

Gerações seguintes

- Maior capacidade de integração
- Barateamento do hardware
- Evolução no desempenho
- Redes de computadores
- Compartilhamento de recursos
- Multimídia

Organização X Arquitetura

Organização X Arquitetura

- Arquitetura
 - Recursos do processador percebidos pelo programador em linguagem de máquina
 - Memória; tamanho da palavra do computador; tamanho do HD; E/S;
 - ◆Conjunto de instruções: formatos, tipos de dados, modos de endereçamento

Organização X Arquitetura

- Organização
 - Recursos de hardware efetivamente existentes no processador
 - ◆Registradores
 - ♦ Memórias auxiliares
 - ♦Unidades funcionais
 - **♦**Barramentos
 - ♦Bloco de controle

Solução em Sistemas Computacionais

Microprocessadores

Mercado atual – 3 segmentos

Microprocessadores pessoais

Estações de trabalho

Sistemas Embarcados

Microprocessadores Pessoais

Custo unitário entre U\$ 25 e U\$ 500

 Dezenas de milhões vendidos a cada ano

- Competição pequena:
 - o Intel domina o mercado, AMD
 - PowerPC (ex-Macintosh) detém pequena fatia do mercado

Microcomputadores Pessoais

- Solução de propósito geral
 - Funcionalidades implementadas por programação
 - ♦ Reaproveitamento de componentes
 - ♦Foco em todo o mercado
 - Restrições:
 - ♦ Mobilidade;
 - ♦Consumo de energia potência;
 - ♦Desempenho;
 - ♦Confiabilidade;
 - ♦Adaptação;

Estações de Trabalho

- 1% do mercado de microcomputadores pessoais
- Desempenho é mais importante do que preço
- Dominado por processadores RISC
- Empresas fornecem estações e microprocessadores
 - Sun, HP, Silicon Graphics

Sistemas Embarcados

- Para sistemas dedicados telecomunicações, automação, eletrônica de entretenimento, etc.
- 98% dos processadores existentes
- Preços baixos até menos de U\$ 1,00
- Compatibilidade de software não é tão importante
- Muita competição entre diversos fornecedores
 - ARM, MIPS, AMD, Intel, Microchip, Atmel
- Aspectos
- área, potência, memória, tempo real, confiabilidade

Soluções Dedicadas -

Embarcadas

Soluções Dedicadas – Embarcadas

Qual a diferença?

Micro<u>processador</u> X Micro<u>controlador</u>

Informações sobre a disciplina

Informações sobre a Disciplina

- SIGAA
 - Turma Virtual
 - Cronograma ATUALIZADO
 - Contato entre alunos e professor!
- Presença cobrada através das listas d eexercícios e acesso ao SIGAA
- Leitura de textos complementares indicados pelo professor
- Entrega de listas de exercícios associadas a cada aula (ver o cronograma).

Avaliação

- Em todas as unidades a avaliação será contínua através de:
 - Listas de Exercícios e;
 - Trabalhos práticos

Informações sobre a Disciplina

- Dúvidas e Contato
 - Ocontato SIGAA
 - ogirao@imd.ufrn.br
 - okayo@imd.ufrn.br
 - oroger@imd.ufrn.br

Referências

- STALLINGS, William. Arquitetura e organização de computadores. 8. ed. São Paulo: Pearson, 2010. 624 p. ISBN: 9788576055648
- PATTERSON, David A; HENNESSY, John L. Organização e projeto de computadores: A interface HARDWARE/SOFTWARE. Rio de Janeiro: Elsevier, 2005, 3º edição.

 TANENBAUM, Andrew S. Organização estruturada de computadores. 5. ed. São Paulo SP: Pearson Prentice Hall, 2007, 449 p. ISBN 9788576050674

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

