Nichtlineare Dynamik

14. November 2013

Fehler in der Mitschrift an alexander.book@gmx.de oder dominik.o@gmx.net

Inhaltsverzeichnis

1	Gru	ındlagen 3	
	1.1	Dynamische Systeme	
		1.1.1 Eigenschaften der Flussabbildung ϕ 4	
	1.2	Elementarste Typen von dynamischen Systemen 4	
		1.2.1 Gewöhnliche Differentialgleichungs Systeme (GDG-Systeme)	5
		1.2.2 Homöomorphismus Systeme (Hom-Systeme) 5	
	1.3	Gleichgewichtspunkte	
		1.3.1 Gleichgewichtspunkte in GDG-Systemen 6	
		1.3.2 Gleichgewichtspunkte in Hom-Systemen 6	
		1.3.3 Gleichgewichtspunkte von linearen dynamischen Systemen 6	
		1.3.4 Beispiele von Gleichgewichtspunkten	
	1.4	Dynamische Stabilität von Gleichgewichtspunkten im Sinne von Lyap	unov 8
		1.4.1 Indirekte Methode von Lyapunov 8	
		1.4.2 Direkte Methode von Lyapunov	
2	Lineare Systeme		
	2.1	GDG-Systeme	
	2.2	Klassifikation von Phasendiagrammen von GDG-Systemen für $n=1$	14
	2.3	Klassifikation von Phasendiagrammen von GDG-Systemen für $n=2$	14
		2.3.1 Jordannormalform ist in Diagonalform	
		2.3.2 Jordannormalform ist in Pseudo-Diagonalform 15	
		2.3.3 Jordannormalform ist in keiner Diagonalform 19	
	2.4	Reduktion des Klassifikationsproblems	
	2.5	Klassifikation von Phasendiagrammen von Hom-Systemen für $n=1$ 2	23
3	Gro	obman-Hartman-Theorem 26	
	3.1	Kontinuierlicher Fall	
	3.2	Diskreter Fall	

1 Grundlagen

1.1 Dynamische Systeme

Definition 1.1.1 (dynamische Systeme). Wir behandeln zwei Arten von dynamischen Systemen:

- 1. kontinuierliches dynamisches System: Es gibt eine kontinulierliche Zeitvariable $t \in \mathbb{R}$
- 2. diskretes dynamisches System: Es gibt eine kontinulierliche Zeitvariable $t \in \mathbb{Z}$

Im folgenden bezeichnet T entweder \mathbb{R} oder \mathbb{Z} , je nachdem, welches dynamische System im Kontext verwendet wird.

Es gibt einen (Zustands-)Phasenraum X, der den Zustand eines Systems mit verschiedenen Größen beschreibt ($X \subseteq \mathbb{R}^n, n \in \mathbb{N}$). $x \in X$ beschreibt somit einen möglichen Zustand eines dynamischen Systems. Falls $\dim(X) < \infty$, so nennt man es endlich dimensionales dynamisches System. Andernfalls $(\dim(X) = \infty)$ nennt man es unendlich dimensionales dynamisches System. Mit Dynamik bezeichnet man die zeitliche Veränderung des Zustands eines dynamischen Systems.

Generell beginnt ein dynamisches System bei einer Anfangszeit t_o und einem Zustand $x(t_0) = x_0 \in X$. Anhand dieses Punktes wird jedem andern Zeitpunkt ein eindeutiger Zustand zugewiesen $(x(t_0) = x_0 \Rightarrow \forall t \in T \exists ! x_t \in \mathbb{R}^n : x(t) = x_t)$ Diese Zuordnung wird durch die Flussabbildung definiert:

$$\phi \colon \mathbb{R} \times X \to X, \ \forall t \in T : x(t) := \phi(t - t_0, x_0)$$

Definition 1.1.2 (Klassifikation von dynamischen Systemen). Man unterscheidet dynamische Systeme in lineare und nicht-lineare Systeme:

- 1. Lineares dynamisches System: $\phi(t,\cdot)\colon X\to X$ ist linear. Man schreibt dann auch $\phi(t,x)=\phi(t)x$. Dabei ist $\phi(t)$ ein linearer Operator für alle $t\in T$
- 2. Nichtlineares dynamisches System: $\phi(t,\cdot): X \to X$ ist nicht linear.

Definition 1.1.3 (Phasendiagramm). Durch ein dynamischen Systems (X, ϕ) wird jedem Zustand $x \in X$ ein *Orbit* zugeordnet:

$$\Gamma_x := \{ y \in X | \exists t \in T : \phi(t, x) = y \}$$

Ein Phasendiagramm ist die Skizze des Orbits Γ_x für einige $x \in X$.

Bemerkung Durch jeden Punkt $x \in X$ verläuft genau ein Orbit Γ_x . Insbesondere können sich Orbits nicht traversal (selbst) schneiden.

1.1.1 Eigenschaften der Flussabbildung ϕ

Die Flussabbildung genügt folgenden Eigenschaften:

- 1. $\forall x \in X : \phi(0, x) = x$
- 2. $\phi(\cdot, x)$ ist stetig für alle $x \in X$.
- 3. $\phi(t,\cdot)$ ist stetig für alle $t \in T$.
- 4. $\phi(t,\cdot)\colon X\to X$ ist ein Homö
omorphismus (d.h. bijektiv und Umkehrabbildung ist stetig)
- 5. $\phi(s+t,x) = \phi(s,\phi(t,x))$ für alle $s,t \in T, x \in X$

1.2 Elementarste Typen von dynamischen Systemen

Dynamische Systeme können auch implizit angegeben werden. Im Folgenden werden die zwei wichtigsten dynamischen Systeme für diese Vorlesung vorgestellt.

1.2.1 Gewöhnliche Differentialgleichungs Systeme (GDG-Systeme)

GDG-Systeme sind ein Beispiel für kontinuierliche dynamische Systeme. Betrachtet man eine autonome gewöhnliche Differentialgleichung 1. Ordnung

$$\dot{x} = v(x)$$

wobei $v: \mathbb{R}^n \to \mathbb{R}^n$ ein Vektorfeld ist. Durch das zugehörige AWP $x(0) = x_0$ wird die Lösung $x(t) = \phi(t, x_0)$ festgelegt, falls v hinreichende Struktur besitzt. Falls v beispielsweise lokal Lipschitz-stetig ist, liefert Picard-Lindelöf eine lokal eindeutige Lösung. Dies induziert ein dynamisches System (X, ϕ) , wobei $X = \mathbb{R}^n$, bzw. X das Definitionsgebiet des Vektorfeldes ist.

Lemma 1.2.1. Die durch dieses AWP induziert ϕ genügt den Eigenschaften einer Flussabbildung

Beweis Sei $\phi(t,x)$ die Fundamentallösung der Differentialgleichung

$$\dot{x} = v(x)$$

wobei $v \in C^1(\mathbb{R}^n)$. D.h. $x(t) = \phi(t, x)$ ist die eindeutige Lösung des zugehörigen AWP $x(0) = x_0$. Folglich ist $\phi(t + s, x)$ eine Lösung der Differentialgleichung für alle $s \in \mathbb{R}$, denn:

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi(t+s,x_0) = v(\phi(t+s,x_0))$$

Aber $\phi(t+s,x_0)|_{t=0} = \phi(s,x_0)$ ist die Anfangsbedingung dieser Lösung. Also löst $\phi(t+s,x_0)$ das AWP $x(0) = \phi(s,x_0)$. Deswegen gilt $\phi(t+s,x_0) = \phi(t,(\phi(s,x_0))$

1.2.2 Homöomorphismus Systeme (Hom-Systeme)

Betrachte einen Homöomorphismus $\psi \colon X \to X$. Dieser induziert ein diskretes dynamisches System wie folgt:

$$\phi(k,x) := \begin{cases} \psi^k(x), & \text{falls } k \in \mathbb{N} \\ \psi^0(x) = x, & \text{falls } k = 0 \\ \psi^{-k}(x) := (\psi^{-1})^{-k}(x), & \text{falls } k \in \mathbb{Z} \setminus \mathbb{N}_0 \end{cases}$$

 ϕ ist damit die Flussabbildung eines diskreten dynamischen Systems (X, ϕ) .

1.3 Gleichgewichtspunkte

Definition 1.3.1. Ein Punkt $x_G \in X$ heißt Gleichgewichtszustand(-punkt) des dynamischen Systems (X, ϕ) , falls gilt

$$\forall t \in T : \phi(t, x_G) = x_G$$

1.3.1 Gleichgewichtspunkte in GDG-Systemen

Sei x_G ein Gleichgewichtspunkt des durch die Differentialgleichung $\dot{x} = v(x)$ induzierte dynamischen Systems. Dann gilt:

$$\forall t \in \mathbb{R} : \phi(t, x_G) = x_G$$

Differenzieren liefert

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi(t,x_G) = 0$$

Somit liegt jeder Gleichgewichtspunkt des dynamischen Systems in der Nullstellenmenge des Vektorfeldes v.

$$x_G$$
 Gleichgewichtspunkt $\Leftrightarrow x_G \in v^{-1}(\{0\})$

1.3.2 Gleichgewichtspunkte in Hom-Systemen

Sei ψ ein Homöomorphismus. Sei (X, ϕ) das durch ψ induzierte dynamische System. Somit muss für jeden Gleichgewichtspunkt x_G des dynamischen Systems gelten:

$$\forall k \in \mathbb{Z} : \phi(k, x_G) = \psi^k(x_G) = x_G$$

Für k=1 folgt $x_G=\psi(x_G)$. Also sind alle Gleichgewichtspunkte des dynamischen Systems Fixpunkte von ψ .

 x_G Gleichgewichtspunkt $\Leftrightarrow x_G$ Fixpunkt von ψ

1.3.3 Gleichgewichtspunkte von linearen dynamischen Systemen

Im linearen Fall ist für beide Typen GDG- bzw. Hom-Systeme ein trivialer Gleichgewichtspunkt $x_G=0$ gegeben.

1. GDG-System: Gegeben sei die Differentialgleichung

$$\dot{x} = v(x) = Ax, \ A \in \mathbb{R}^{n \times n}, \ x \in \mathbb{R}^n$$

Dann ist die Flussabbildung gegeben durch $\phi(t,x) = \exp(tA)x$. Zur Wiederholung: Die exponential Matrix ist definiert durch $\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$ und konvergiert für jedes $A \in \mathbb{R}^{n \times n}$ gleichmäßig.

Die Bedingung ein Gleichgewichtspunkt zu sein ist $\phi(t,x) = 0$. Also erfüllt $x_G = 0$ trivialer weise dieser Bedingung.

2. Hom-System: Sei ψ eine lineare Funktion, also

$$\psi(x) = Ax, \ A \in \mathbb{R}^{n \times}, \ x \in \mathbb{R}^n$$

Damit ψ ein Homöomorphismus wird, muss $\det(A) \neq 0$ gelten. Die Bedingung für ein Gleichgewichtspunkt ist diesesmal

$$\psi(x) = x$$

 $x_G = 0$ erfüllt dies Bedingung und ist daher ein Gleichgewichtspunkt.

1.3.4 Beispiele von Gleichgewichtspunkten

Gleichgewichtspunkte des DGD-Systems Betrachte die Differentialgleichung $\dot{x} = x - x^3 = v(x), \ x \in \mathbb{R} = X$ Die Gleichgewichtspunkte sind also gegeben durch

$$v(x) = x - x^3 = 0$$

= $x(1 - x^2) = 0$
 $\Rightarrow x_G^1 = 0, x_G^{2/3} = \pm 1$

Gleichgewichtspunkte des Hom-Systems Betrachten den Homöomorphismus $\psi(x) = x^3$, $x \in \mathbb{R}$. Die Gleichgewichtspunkte des von ψ induzierten dynamischen Systems sind gegeben durch

$$\psi(x) = x \Leftrightarrow x^3 = x \Leftrightarrow x^3 - x = 0$$
$$x_G^1 = 0, x_G^{2/3} = \pm 1$$

1.4 Dynamische Stabilität von Gleichgewichtspunkten im Sinne von Lyapunov

Sei (X, ϕ) ein dynamisches System, $x_G \in X$ ein Gleichgewichtspunkt, (X, d) ein metrischer Raum.

Wiederholung: d heißt Metrik auf X, falls $d\colon X\times X\to \mathbb{R}$ und für beliebige Elemente $x,y,z\in X$ gilt:

- 1. $d(x,y) \ge 0$, $d(x,y) = 0 \Leftrightarrow x = y$ (Definitheit)
- 2. d(x,y) = d(y,x) (Symmetrie)
- 3. $d(x,y) \le d(x,z) + d(z,y)$ (Dreiecksungleichung)

Definition 1.4.1. Ein Gleichgewichtspunkt x_G heißt

• stabil (im Sinne von Lyapunov), falls

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in X, t \in T, t > 0 : d(x, x_G) < \delta \Rightarrow d(\phi(t, x), x_G) < \varepsilon$$

- instabil (im Sinne von Lyapunov), falls x_G nicht stabil ist.
- asymptotisch stabil (im Sinne von Lyapunov), falls x_G stabil ist und gilt

$$\exists b > 0 \ \forall x \in X : d(x, x_G) < b \Rightarrow \lim_{t \to \infty} d(\phi(t, x), x_G) = 0$$

1.4.1 Indirekte Methode von Lyapunov

Indirekte Methode von Lyapunov für GDG-Systeme

Sei v ein C^1 -Vektorfeld ($v \in C^1(\mathbb{R}^n, \mathbb{R}^n)$), x_G ein Gleichgewichtspunkt des von v erzeugten GDG-Systems. Es bezeichne $\sigma(A)$ die Menge aller Eigenwerte der Matrix A.

Lemma 1.4.1. Betrachte die Jacobi-Matrix $J_v(x)$ an der Stelle $x = x_G$.

• Falls $\forall \lambda \in \sigma(J_v(x_G))$: Re $\lambda < 0$, dann ist x_G asymptotisch stabil.

Abbildung 1.1: Stabilität(links); Instabilität (rechts)

- Falls $\exists \lambda \in \sigma(J_v(x_G)) : \operatorname{Re} \lambda > 0$, dann ist x_G instabil.
- Falls v ein lineares dynamisches System induziert und es gilt

$$\forall \lambda \in \sigma(J_v(x_G)) : \text{Re} \leq 0 \text{ und } \lambda \text{ halb einfach, falls } \text{Re } \lambda = 0$$

dann ist x_G stabil. Dabei ist ein Eigenwert λ halb einfach, falls seine geometrische Vielfachheit, seiner algebraischen Vielfachheit entspricht.

Indirekt Methode von Lyapunov für Hom-Systeme

Sei ψ ein C^1 -Homöomorphismus (C^1 -Diffeomorphismus), x_G ein Gleichgewichtspunkt des von ψ erzeugten Hom-Systems.

Lemma 1.4.2. Betrachte die Jacobi-Matrix von ψ an der Stelle x_G

- Falls $\forall \lambda \in \sigma(J_{\psi}(x_G)) : |\lambda| < 1$, dann ist x_G asymptotisch stabil
- Falls $\exists \lambda \in \sigma(J_{\psi}(x_G)) : |\lambda| > 1$, dann ist x_G instabil.
- \bullet Falls ψ ein lineares dynamisches System erzeugt und gilt

$$\forall \lambda \in \sigma(J_{\psi}(x_G)) : |\lambda| \leq 1 \text{ und } \lambda \text{ halbeinfach, falls } |\lambda| = 1$$

dann ist x_G stabil.

1.4.2 Direkte Methode von Lyapunov

Direkte Methode von Lyapunov für GDG-Systeme

Sei v ein C^1 -Vektorfeld, x_G ein Gleichgewichtspunkt.

Definition 1.4.2. Eine (strikte) Lyapunov-Funktion V ist eine Funktion $V \in C^1(U, \mathbb{R})$, sodass $x_G \in U$, $U \subset \mathbb{R}^n$ offen und

- 1. $V(x_G) = 0$
- 2. $\forall x \in U \setminus \{x_G\} : V(x) > 0$
- 3. $\forall x \in U : \langle \nabla V(x), v(x) \rangle \stackrel{(<)}{\leq} 0$ $(\Rightarrow \partial_t V(\phi(t, x)) = \langle \nabla V(\phi(t, x)), v(\phi(t, x)) \rangle \stackrel{(<)}{\leq} 0)$

Lemma 1.4.3. Falls eine Lyapunov-Funktion für v um x_G existiert dann ist x_G stabil. Gilt strikte Ungleichheit in (3), dann ist x_G sogar asymptotisch stabil.

Bemerkung Falls $U = \mathbb{R}^2$ und V eine strikte Lyapunov-Funktion zu x_G , dann ist x_G global asymptotisch stabil.

Beweis Fall " \leq ":

Sei $\varepsilon > 0$ hinreichend klein, sodass $B_{\varepsilon}(x_G) \subset U$. Sei m das Minimum von V auf $\partial B_{\varepsilon}(x_G)$. Dies existiert, da $\partial B_{\varepsilon}(x_G)$ kompakt und V stetig (Satz von Weierstraß). Dann folgt mit Bedingung 1), 2) : m > 0.

Definiere $\tilde{U} := \{x \in B_{\varepsilon}(x_G) \mid V(x) < m\} \neq \emptyset$ offen. $(x_G \in \tilde{U} \text{ und insbesondere ex. } \delta \geq 0 \text{ mit } B_{\delta}(x_G) \subset \tilde{U}, \text{ wie auch in jedem anderen Punkt von } \tilde{U}).$

$$x_0 \in \tilde{U} \Rightarrow V(x_0) < m \text{ und damit } V(\Phi(t, x_0)) \le V(x_0) < m$$

$$\Rightarrow \Phi(t, x_0) \notin \partial B_{\varepsilon}(x_G) \ \forall t \ge 0$$

$$\Rightarrow \Phi(t, x_0) \in B_{\varepsilon}(x_G)$$

 $\Rightarrow x_G$ ist Lyapunov-stabil

Beispiel $X = \mathbb{R}^2$

$$\begin{cases} \dot{x} = y \\ \dot{y} = x - x^3 \end{cases}$$

• Gleichgewichtspunkte:

$$v(x,y) = \begin{pmatrix} y \\ x - x^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\Leftrightarrow y = 0, x = 0 \quad \forall x = \pm 1$$
$$\Rightarrow x_G^1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, x_G^{2/3} = \begin{pmatrix} \pm 1 \\ 0 \end{pmatrix}$$

• Konstruktion einer Lyapunov Funktion $II \cdot y - I \cdot x$

$$-x\dot{y} + y\dot{y} = -x^{3}y = -x^{3}\dot{x}$$

$$\Leftrightarrow \frac{d}{dt} \left(-0.5x(t)^{2} + 0.5y(t)^{2} + 0.25x(t)^{4} \right) = 0$$

$$\Leftrightarrow -0.5x(t)^{2} + 0.5y(t)^{2} + 0.25x(t)^{4} = C$$

Dann ist

$$V(x,y) = -0.5x(t)^{2} + 0.5y(t)^{2} + 0.25x(t)^{4} - C$$

eine Lyapunov-Funktion für jedes $x_G^i, (i=1,2,3)$ bei geeigneter Wahl von C, denn

$$\begin{split} &-V(x_G^i)=0 \text{ mit } C=0 \text{ für } x_G^1 \text{ und } C=-0,25 \text{ für } x_G^{2/3} \\ &-\langle \nabla V(x,y),v(x,y)\rangle =0 \\ &-\nabla V(x,y)=\begin{pmatrix} -x+x^3\\y \end{pmatrix}=\begin{pmatrix} 0\\0 \end{pmatrix} \\ &-HV(x,y)=\begin{pmatrix} -1+3x^2&0\\0&1 \end{pmatrix} \\ &HV(x_G^1)=\begin{pmatrix} -1&0\\0&1 \end{pmatrix} \text{ indefinit } \Rightarrow x_G^1 \text{ ist Sattelpunkt von } V \\ &HV(x_G^{2/3})=\begin{pmatrix} 2&0\\0&1 \end{pmatrix} \text{ pos. definit } \Rightarrow x_G^{2/3} \text{ sind strikte lokale Minima von } V\Rightarrow V>0 \text{ für alle } x\neq x_G^{2/3} \text{ in einer gewissen Umgebung von } x_G^{2/3}. \\ &\Rightarrow x_G^{2/3} \text{ sind Lyapunov-stabil.} \\ &Jv(x,y)=\begin{pmatrix} 0&1\\1-3x^2&0 \end{pmatrix}\Rightarrow Jv(x_G^1)=\begin{pmatrix} 0&1\\1&0 \end{pmatrix}\Rightarrow \lambda_{1/2}=\pm 1 \end{split}$$

 $\Rightarrow Re(\lambda_{1/2}) > 0 \Rightarrow \text{indirekte Methode: } x_G^1 \text{ ist instabil}$

Direkte Methode für Hom-Systeme

Direkte Methode von Lyapunov funktioniert entsprechend des GDG-Falls wobei in der Definition einer Lyapunov-Funktion die Bedingng 3) zu ersetzen ist durch:

$$\forall x \in U : V(\Psi(x)) \stackrel{(<)}{\leq} V(x)$$

wobei Ψ der erzeugende Homö
omorphismus des Hom-Systems sei.

2.1 GDG-Systeme

Betrachte die Differentialgleichung

$$\dot{x} = Ax =: v(x)$$

wobei $x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}$ Systemmatrix

Satz 2.1.1 (Jordannormalform von A). Es exisitiert eine invertierbare lineare Transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, sodass

$$J = T^{-1}AT$$

in Jordan-Normalform ist. Es gilt außerdem

$$e^{Jt} = e^{T^{-1}AT} = \sum_{j=1}^{\infty} \frac{t^j}{j!} (T^{-1}AT)^j = T^{-1} \sum_{j=1}^{\infty} \frac{t^j}{j!} A^j T = T^{-1} e^{At} T$$

Dabei ist J die Matrix der Flußabbildung des J-Systems $\dot{\xi}=J\xi,$ A die Matrix des A-Systems $\dot{x}=Ax$

Terminologie Man sagt, dass das J- und das A-System bezüglich der linearen Transformation T zueinander konjugiert oder $\ddot{a}quivalent$ sind.

Bemerkung T bildet die Orbits des J-Systems bijektiv auf die Orbits des A-Systems ab. Sei dazu $\xi \in \mathbb{R}^n$. Dann gilt für die Orbits durch ξ

$$e^{Jt}\xi = T^{-1}e^{At}T\xi$$
$$\Leftrightarrow Te^{Jt}\xi = e^{At}T\xi = e^{At}x$$

T bildet den Orbit durch ξ des J-Systems auf den Orbit durch $x=T\xi$ des A-Systems ab. Daher klassifiziert man lineare Differentialgleichungen modulo einer linearen Transformation T.

2.2 Klassifikation von Phasendiagrammen von GDG-Systemen für n=1

Die erzeugende Differentialgleichung lautet

$$\dot{x} = ax, \qquad a \in \mathbb{R}$$

Man erhält dann folgende Klassifikation in Abhänigkeit von a:

- 1. a = 0: alle Punkte sind Gleichgewichtspunkte
- 2. a > 0: x = 0 ist eine Quelle
- 3. a > 0: x = 0 ist eine Senke

2.3 Klassifikation von Phasendiagrammen von GDG-Systemen für n=2

$$\dot{x} = Ax, \qquad A \in \mathbb{R}^{2 \times 2}$$

Die Jordannormalform von A kann dann folgende 3 Typen annehmen

2.3.1 Jordannormalform ist in Diagonalform

Ahabe Eigenwerte $\lambda_1,\lambda_2\in\mathbb{R}$ halbeinfach. Die Jordannormalform von Aist gegeben durch

$$J = \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array}\right)$$

Das dazugehörige Anfangswertproblem lautet dann

$$\begin{cases} \dot{\xi_1} = \lambda_1 \xi_1, \ \xi_1(0) = \xi_{10} \in \mathbb{R} \\ \dot{\xi_2} = \lambda_2 \xi_2, \ \xi_2(0) = \xi_{20} \in \mathbb{R} \end{cases}$$

Die Lösung der obigen Differentialgleichung ist offensichtlich

$$\xi_1(t) = \xi_{10} e^{\lambda_1 t}$$

$$\xi_2(t) = \xi_{20}e^{\lambda_2 t}$$

Nun wollen wir ξ_2 in Abhänigkeit von ξ_1 angeben, falls alle Rechnungen so durchführbar sind:

$$\frac{\xi_1}{\xi_{10}} = e^{\lambda_1 t}$$

$$\Leftrightarrow \ln\left(\frac{\xi_1}{\xi_{10}}\right) = \lambda_1 t \Leftrightarrow t = \frac{1}{\lambda_1} \ln\left(\frac{\xi_1}{\xi_{10}}\right)$$

$$\Rightarrow \xi_2 = \xi_{20} \exp\left(\frac{\lambda_2}{\lambda_1} \ln\left(\frac{\xi_1}{\xi_{10}}\right)\right) = \xi_{20} \left(\frac{\xi_1}{\xi_{10}}\right)^{\frac{\lambda_2}{\lambda_1}}$$

Nun können die Phasendiagramme klassifiziert und skizziert werden. Es ergeben sich daher die Fälle

1. Fall: $0 < \lambda_1 < \lambda_2$

x = 0 wird instabiler Knoten 2. Art genannt.

2. Fall: $\lambda_2 < \lambda_1 < 0$

x = 0 ist wird stabiler Knoten 2. Art genannt.

3. Fall: $0 < \lambda_1 = \lambda_2$

x = 0 wird instabiler Knoten 1. Art genannt.

4. Fall: $\lambda_1 = \lambda_2 < 0$

x = 0 wird stabiler Knoten 1. Art genannt.

5. Fall: $\lambda_1 < 0 < \lambda_2$

x = 0 wird Sattelpunkt genannt und ist offensichtlich instabil. Es ergeben sich in diesem Fall als Orbits Hyperbeln.

2.3.2 Jordannormalform ist in Pseudo-Diagonalform

A habe einen geometrisch einfachen und algebraisch doppelten Eigenwert $\lambda \in \mathbb{R}$. Die Jordannormalform von A ist dann gegeben durch

$$J = \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right)$$

Abbildung 2.1: 1. Fall (links); 2. Fall (rechts)

Abbildung 2.3: 5. Fall

Das dazugeörige Anfangswertproblem lautet

$$\begin{cases} \dot{\xi_1} = \lambda \xi_1 + \xi_2, \ \xi_1(0) = \xi_{10} \in \mathbb{R} \\ \dot{\xi_2} = \lambda \xi_2, \qquad \xi_2(0) = \xi_{20} \in \mathbb{R} \end{cases}$$

Die Lösungen sind schließlich folgendermaßen gegeben

$$\Rightarrow \xi_2(t) = \xi_{20}e^{\lambda t} \qquad \Rightarrow \xi_1(t) = \xi_{10}e^{\lambda t} + t\xi_{20}e^{\lambda t}$$

Die Orbits sind analog zur vorherigen . Aannormalform darstellbar als

$$\xi_1 = \left(\frac{\xi_{10}}{\xi_{20}} + \frac{1}{\lambda} \ln \frac{\xi_2}{\xi_{20}}\right) \xi_2$$

solange keine ungültige Rechenoperation durchgeführt wird.

1. Fall: $\lambda < 0$

x = 0 wird stabiler Knoten 3. Art genannt.

2. Fall: $\lambda < 0$

x = 0 wird instabiler Knoten 3. Art genannt.

2.3.3 Jordannormalform ist in keiner Diagonalform

A habe ein paar komplex konjugierte Eigenwerte $\lambda_{1/2}=\alpha\pm i\beta$. Die reelle Jordannormalform von A ist gegeben durch

$$J = \left(\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array}\right)$$

und es ergibt sich das Anfangswertproblem

$$\begin{cases} \dot{\xi_1} = \alpha \xi_1 + \beta \xi_2, & \xi_1(0) = \xi_{10} \in \mathbb{R} \\ \dot{\xi_2} = -\beta \xi_1 + \alpha \xi_2, & \xi_2(0) = \xi_{20} \in \mathbb{R} \end{cases}$$

Die Lösung ist daher

$$\phi(t,\xi_0) = e^{Jt}\xi_0 = e^{(A+B)t}\xi_0$$

wobei

$$A = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}, B = \begin{pmatrix} 0 & \beta \\ -\beta & 0 \end{pmatrix}$$

Offensichtlich kommutieren A und B miteinander und es gilt $e^{(A+B)t} = e^{At}e^{Bt}$. Berechnen wir nun die Exponentialmatrix von A bzw. B explizit, so erhalten wir

$$e^{At} = e^{\alpha t} \cdot I_2, \ e^{Bt} = \begin{pmatrix} \cos(\beta t) & \sin(\beta t) \\ -\sin(\beta t) & \cos(\beta t) \end{pmatrix} \in SO(2)$$

Die explizite Lösung ist dann

$$\phi(t,\xi_0) = e^{\alpha t} \underbrace{\begin{pmatrix} \cos(\beta t) & \sin(\beta t) \\ -\sin(\beta t) & \cos(\beta t) \end{pmatrix}}_{Drehmatrix} \xi_0$$

1. Fall: $\alpha \neq 0$

x=0 wird Strudel(Wirbel) genannt. Falls $\alpha<0$ so sagt man zusätzlich, dass x stabil ist. Für $\alpha>0$ entsprechend instabil.

2. Fall: $\beta \neq 0$

x=0 ist mit den Uhrzeigersinn orientiert, falls $\beta < 0$. Entsprechend, falls $\beta > 0$ gegen den Uhrzeigersinn orientiert.

3. Fall: $\alpha = 0$

x = 0 heißt Zentrum. Dieser ist stabil, jedoch nicht asymptotisch stabil.

Abbildung 2.5: $\beta < 0 < \alpha$ (links); $\alpha < 0 < \beta$ (rechts)

Abbildung 2.6: $\alpha = 0, \beta < 0$

2.4 Reduktion des Klassifikationsproblems

Definition 2.4.1. Sei (X, ϕ) ein dynamisches System. Dann heißt

- $M \subset X$ positiv invariant $\Leftrightarrow \forall t \geq 0 : \phi(t, M) \subset M$
- $M \subset X$ negativ invariant $\Leftrightarrow \forall t \leq 0 : M \subset \phi(t, M)$

$$\Leftrightarrow \forall t \geq 0 : \phi(-t, M) \subset M$$

$$\Leftrightarrow \forall t < 0 : \phi(t, M) \subset M$$

• $M \subset X$ invariant $\Leftrightarrow M$ positiv und negativ invariant

$$\Leftrightarrow \forall t \in T : \phi(t, M) = M$$

Ist $M\subset X$ invariant, dann bildet $(M,\phi(t,\cdot)|_M)$ ein dynamisches System auf M und wird Teilsystem des ursprünglichen Systems (X,ϕ) genannt.

Bemerkung Jeder invariante Untervektorraum $U \subset \mathbb{R}^n$ bzgl. der linearen Abbildung

$$x \mapsto Ax : \mathbb{R}^n \to \mathbb{R}^n$$

(d.h. $x \in U \Rightarrow Ax \in U$) ist ein invarianter Untervektorraum des GDG-Systems $\dot{x} = Ax$, denn

$$\phi(t, x_0) = e^{At} x_0 = \sum_{j=0}^{\infty} \frac{t^j}{j!} \underbrace{A^j x_0}_{\in U}, \qquad x_0 \in U$$

Der Wert der Summe liegt in U, da U abgeschlossen und sie Grenzwert ist von

$$e^{At}x_0 = \lim_{N \to \infty} \underbrace{\sum_{j=0}^{N} \frac{t^j}{j!} A^j x_0}_{\in U \ \forall N}$$

Corollar 2.4.1. Alle Eigenräme E_j (bzw. verallgemeinerte Eigenräume), sowie deren direkte Summen sind kanonisch invariante Unervektorräume des Systems

$$\dot{x} = Ax$$
, $A \in \mathbb{R}^{n \times n}$

<u>Speziell:</u> Ist $\mathbb{R}^n = \bigoplus_{j=1}^N E_j$ eine direkte Summe von (relativ niedrig dimensionierten) Eigenräumen von A, dann ist das ursprüngliche System $\dot{x} = Ax$ das

direkte Produkt der Teilsysteme auf den E_j . Falls sich die Teilsysteme vollständig analysieren bzw. klassifizieren lassen, dann auch das ursprüngliche System $\dot{x} = Ax$ im \mathbb{R}^n

Definition 2.4.2. Spezielle (verallgemeinerte) Eigenräume von A und damit invariante Untervektorräume von $\dot{x} = Ax$:

• stabiler Unterraum von $\dot{x} = Ax$

$$E^s := \{ v \in \mathbb{R}^n | (A - \lambda \operatorname{id})(v) = 0 \land \operatorname{Re}(\lambda) < 0 \}$$

Dies ist der verallgemeinterte Eigenraum zu allen Eigenwerten λ von A mit Re $\lambda < 0$.

• instabiler Unterraum von $\dot{x} = Ax$

$$E^{u} := \{ v \in \mathbb{R}^{n} | (A - \lambda \operatorname{id})(v) = 0 \wedge \operatorname{Re}(\lambda) > 0 \}$$

Dies ist der verallgemeinterte Eigenraum zu allen Eigenwerten λ von A mit Re $\lambda > 0$.

• Zentrums-Unterraum von $\dot{x} = Ax$

$$E^{c} := \{ v \in \mathbb{R}^{n} | (A - \lambda \operatorname{id})(v) = 0 \wedge \operatorname{Re}(\lambda) = 0 \}$$

Dies ist der verallgemeinterte Eigenraum zu allen Eigenwerten λ von A mit Re $\lambda = 0$.

Satz 2.4.1. *Es qilt:*

$$\mathbb{R}^n = E^s \oplus E^u \oplus E^c$$

Terminologie Spezielle Eigenraum-Typen des GDG-Systems $\dot{x} = Ax$

- $E^c = \{0\} \Rightarrow x = 0$ heißt hyperbolischer Gleichgewichtspunkt
- $E^c = \{0\}, E^s \neq \{0\}, E^u \neq \{0\} \Rightarrow x = 0$ heißt Sattelpunkt
- $E^c = \{0\}, E^u = \{0\} \Rightarrow x = 0$ heißt Senke (asympt. stabil)

Abbildung 2.7: E^c entscheidet viel über das Verhalten der Orbits

2.5 Klassifikation von Phasendiagrammen von Hom-Systemen für n=1

Sei $X = \mathbb{R}$, $\psi \colon X \to X$ ein linearer Homömorphismus, der das lineare dynamische Systeme (X, ϕ) erzeugt. Insbesondere ist $\psi(x) = ax$ für ein $a \in \mathbb{R} \setminus \{0\}$. Man kann dann die Orbits folgendermaßen klassifizieren.

Falls |a| < 1

x = 0 wird Senke genannt und ist stabil.

Falls |a| > 1

x = 0 wird Quelle genannt und ist instabil.

Falls a < 0

x = 0 wird orientierungsumkehrend genannt.

Falls a > 0

x = 0 wird orientierungserhaltend genannt.

Falls |a|=1

x=0 wird Zentrum genannt. Ist a=1, so ist jeder Punkt $x\in\mathbb{R}$ ein Gleichgewichtspunkt. Für a=-1 ergeben sich 2-periodische Orbits (gezählt an der minimalen positiven Periode). Der Punkt x=0 wird dabei jewweils Zentrum genannt.

Bemerkung Jeder der bzgl. der linearen Abbildung $x\mapsto Ax$ invarianter Unterverktorraum U ist invariant bzgl. des von $\psi(x)=Ax$ erzeugten dynamische Systems.

Abbildung 2.8: $|a| < 1, \ a < 0$

3 Grobman-Hartman-Theorem

3.1 Kontinuierlicher Fall

Sei (X, ϕ) ein dynamisches System, das durch die Differentialgleichung $\dot{x} = v(x)$ induziert ist, wobei $v \in C^k(\mathbb{R}^n, \mathbb{R}^n)$, $k \geq 1$. Sei zusätzlich x_G ein Gleichgewichtspunkt des dynamischen Systems. Betrachte die *Linearisierung* des Systems um x_G

$$\dot{\xi} = Jv(x_G)\xi, \ \xi = x - x_G$$

$$(\dot{\xi}(x_G) \approx v(x), \text{ falls } ||\xi|| \ll 1)$$

Satz 3.1.1 (Grobman-Hartman). Gegeben sei ein dynamisches System (X, ϕ) wie oben, wobei x_G ein hyperbolischer Gleichgewichtspunkt ist, d.h. Re $\lambda \neq 0$ für alle Eigenwerte λ von $Jv(x_G)$. Dann existiert eine Umgebung $U \subseteq \mathbb{R}^n$ von $\xi = 0$ und ein Homöomorphismus $h: U \to \mathbb{R}^n$, so dass

$$\forall t \in D: h(e^{Jv(x_G)t}\xi) = \phi(t, h(\xi))$$

wobei
$$D:=\left\{t\in\mathbb{R}|\,e^{Jv(x_G)t}\xi\in U\right\}$$
 bezeichne.

Somit bildet h homöomorph die Orbits des linearisierten Systems durch $\xi \in U$ auf diejenigen des nichtlinearen Systems durch $h(\xi)$ ab, wobei die zeitliche Orientierung erhalten bleibt. Man sagt, die beiden Systeme sind mittels des Homöomorphismus topologisch konjugiert zueinander. Insbesondere ist damit also das lokale Phasenportrait des nichtlinearen Systems nahe x_G ein homöomorphes Abbild des lokalen Phasenportraits des linearisierten Systems in U; die Bezeichnung zur Typisierung (Klassifikation) entsprechender hyperbolischer Gleichgewichtspunkte nichtlinearer Systeme übernimmt man vom linearen Fall, z.B: Ist $\xi = 0$ ein Sattelpunkt von $\dot{\xi} = Jv(x_G)\xi$, dann ist auch x_G ein Sattelpunkt von $\dot{x} = v(x)$.

Bezeichnung Wir führen folgende Bezeichnungen ein

 ${\it 3\ Grobman-Hartman-Theorem}$

Abbildung 3.1: Illustration Grobman-Hartman-Theorem

3 Grobman-Hartman-Theorem

- $h(E^s \cap U) =: W^s_{loc}(x_G)$ lokale stabile Mannigfaltigkeit von x_G (positiv invariant)
- $h(E^u \cap U) =: W^u_{loc}(x_G)$ lokale instabile Mannigfaltigkeit von x_G (negativ invariant)
- $W^s(x_G):=\{x\in\mathbb{R}^n|\lim_{t\to+\infty}\phi(t,x)=x_G\}$ heißt (globale) stabile Mannigfaltigkeit von x_G
- $W^u(x_G) := \{x \in \mathbb{R}^n | \lim_{t \to -\infty} \phi(t, x) = x_G\}$ heißt (globale) instabile Mannigfaltigkeit von x_G

Bemerkung $W^s(x_G)$ und $W^u(x_G)$ sind invariant, d.h.

$$\phi(t, W^{s/u}(x_G)) = W^{s/u}(x_G) \ \forall t \in \mathbb{R}$$

$$x \in W^s(x_G) \ \Rightarrow \ \lim_{t \to \infty} \phi(t, x) = x_G$$

$$\Rightarrow \ \lim_{t \to \infty} \phi(t, \phi(s, x)) = \lim_{t \to \infty} \phi(t + s, x) = x_G \text{ für jedes } s \in \mathbb{R}$$

$$\Rightarrow \ \phi(s, x) \in W^s(x_G)$$

$$\Rightarrow \ \phi(s, W^s(x_G)) = W^s(x_G) \ \forall s \in \mathbb{R}$$

Satz 3.1.2 (über die lokalen stabilen und instabilen Mannigfaltigkeiten eines hyperbolischen Gleichgewichtspunktes). Unter den Voraussetzungen von (3.1.1) gibt es eine Umgebung $U \subseteq \mathbb{R}^n$ von x_G , sodass Abbildungen

$$h^s: E^s \cap V \to E^u \text{ und } h^u: E^u \cap V \to E^s$$

existieren, die so glatt sind wie das Vektorfeld v(x), so dass

$$W_{loc}^s(x_G) = \operatorname{graph}(h^s, E^s \cap V)$$

und

$$W_{loc}^u(x_G) = \operatorname{graph}(h^u, E^u \cap V)$$

 $mit\ h^{s/u}(x_G) = 0\ und\ J_{h^{s/u}}(x_G) = 0$, $d.h.\ W_{loc}^{s/u}(x_G)$ ist in x_G tangential zu $E^{s/u}$. Speziell kann V = h(U) gewählt werden, wobei h der Homöomorphismus aus (3.1.1) ist.

Beispiel Gegeben sei folgende Differentialgleichung

$$v\begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \dot{x} = x \\ \dot{y} = -y + x^2 \end{cases}$$

Ein Gleichgewichtpunkt ist $x_G = (0,0)$. Die Jacobi-Matrix erfüllt in x_G

$$Jv(x_G) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Daher sind die Eigenwerte

$$\lambda_1 = -1, \lambda_2 = 1 \Rightarrow x_G$$
 hyperbolischer Sattelpunkt

und der Satz von Grobman-Hartman ist anwendbar. Die Orbitgleichung erhält man folgendermaßen:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-y + x^2}{x} \text{ (für } x \neq 0) = -\frac{1}{x} \cdot y + x$$

$$\Rightarrow y(x) = \frac{1}{3}x^2 + \frac{c}{x}, c \in \mathbb{R} \text{ beliebig}$$

$$\Rightarrow h^u : \mathbb{R} \to \mathbb{R}, x \mapsto \frac{x^2}{3} (c = 0)$$

$$\Rightarrow h^u(0) = 0, (h^u)'(0) = Jh^u(0) = 0$$

$$h^s : \mathbb{R} \to \mathbb{R}, x \mapsto 0$$

3.2 Diskreter Fall

Sei ψ ein C^k -Diffeomorphismus von \mathbb{R}^n nach \mathbb{R}^n , d.h. ψ ist bijektiv und $\psi^{-1} \in C^k(\mathbb{R}^n, \mathbb{R}^n)$, x_G ein Gleichgewichtspunkt des von ψ erzeugten dynamischen Systems. Betrachte die Linearisierung dieses Systems in x_G , erzeugt durch $J\psi(x_G)$ (regulär). $(\psi(x) \approx J\psi(G)\xi, \xi = x - x_G, ||\xi|| \ll 1)$

Satz 3.2.1 (Grobman-Hartman). Unter diesen Voraussetzungen existiert eine Umgebung $0 \in U \subset \mathbb{R}^n$ und ein Homöomorphismus $h: U \to h(U) \subset \mathbb{R}^n$, $h(0) = x_G$, sodass das von $J\psi(x_G)\xi$ erzeugte System bzgl. h lokal topologisch konjugiert ist, d.h.

$$h(J\psi(x_G)\xi) = \psi(h(\xi)), \xi \in U$$
$$h(J\psi(x_G)^k\xi) = \psi^k(h(\xi)), k \in \mathbb{Z} \text{ beliebig}$$

3 Grobman-Hartman-Theorem

sofern x_G ein hyperbolischer Gleichgewichtspunkt des ψ -Systems ist, d.h. $\xi = 0$ ein hyperbolischer Gleichgewichtspunkt des linearisierten $J\psi(x_G)$ -Systems ist.

Die restliche Grobman-Hartman-Theorie ist analog zum kontinuierlichen Fall.

Beispiel $\psi(x) = x^3$ erzeugender Homöomorphismus (C^k -Diffeomorphismus für $1 \le k \le \infty$ außerhalb von x = 0)

Als Voraussetzung der Grobman-Hartman-Theorie genügt es, wenn die Voraussetzungen lokal nahe der betrachteten Gleichgewichtspunkte erfüllt sind.

$$x_G = \pm 1, J\psi(x_G) = 3 > 1 \implies x_G$$
 orientierungserhaltende Quelle

Gesucht ist ein Homöomorphismus h, welcher das ψ - und das $J\psi(x_G)$ -System lokal nahe $x_G = \pm 1$ konjugiert (in $U_1 = (-\infty, 0), U_2 = (0, +\infty)$). $h : \mathbb{R} \to \mathbb{R}, \xi \mapsto h(\xi)$ stetig, bijektiv, sodass

$$h(3\xi) = h(\xi)^3 \ \forall \xi \in U$$

$$\Leftrightarrow \ln h(3\xi) = 3 \ln h(\xi)$$

$$\Rightarrow \ln \circ h(\xi) = \xi$$

$$\Rightarrow h(\xi) = e^{\xi}, h(0) = 1 \text{ in } U_2 = (0, +\infty)$$