Section 1, $A - \mathbb{R}^n$ and \mathbb{C}^n

, subtraction, 1/lpha, division: Let lpha, $eta\in{f C}$. Let -lpha denote the $\,$ the function defined by additive inverse of α . Thus $-\alpha$ is the unique complex number such that

$$\alpha + (-\alpha) = 0$$

· Subtraction on C is defined by

$$\beta - \alpha = \beta + (-\alpha)$$

· For $\alpha \neq 0$, let $1/\alpha$ denote the multiplicative inverse of α . Thus $1/\alpha$ is the unique complex number such that

$$\alpha(1/\alpha) = 1$$

· Division on C is defined by

$$\beta/\alpha = \beta(1/\alpha)$$

list, length: Suppose n is a nonnegative integer. A list of length n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length nlooks like this:

$$(x_1,\ldots,x_n)$$

 \mathbb{F}^n : \mathbb{F}^n is the set of all lists of length n of elements of \mathbb{F} :

$$\mathbf{F}^n = \left\{ \left(x_1, \dots, x_n\right) : x_j \in \mathbf{F} \text{ for } j = 1, \dots, n \right\}$$

For $(x_1,\ldots,x_n)\in \mathbf{F}^n$ and $j\in\{1,\ldots,n\}$, we say that $x_j=U+W$ is a direct sum if and only if $U\cap W=\{0\}$ is the j^{th} coordinate of (x_1,\dots,x_n) and some j^{th} i^{th} i^{th

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$$

Commutativity of addition in \mathbb{F}^n : If $x, y \in \mathbb{F}^n$, then x + y =

o: Let o denote the list of length n whose coordinates are all o:

$$0 = (0, \dots, 0)$$

additive inverse in \mathbb{F}^n : For $x \in \mathbf{F}^n$, the additive inverse of x , denoted -x, is the vector $-x \in \mathbf{F}^n$ such that x + (-x) = 0 In other words, if $x=(x_1,\ldots,x_n)$, then $-x=(-x_1,\ldots,-x_n)$ scalar multiplication in \mathbb{F}^n : The product of a number λ and a vector in \mathbf{F}^n is computed by multiplying each coordinate of the vector by λ :

$$\lambda (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$

here $\lambda \in \mathbf{F}$ and $(x_1, \ldots, x_n) \in \mathbf{F}^n$

Section 1,B - Definition of Vector Space

addition, scalar multiplication: \cdot An addition on a set V is a function that assigns an element $u+v\in V$ to each pair of elements $u,v\in V\cdot A$ scalar multiplication on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \mathbf{F}$ and each $v \in V$

 $ctor\ Space$: A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold: commutativity

$$u + v = v + u$$
 for all $u, v \in V$

associativity
$$(u+v)+w=u+(v+w)$$
 and $(ab)v=a(bv)$ for all $u,v,w\in V$

and all
$$a\,,\,b\,\in\,\mathbf{F}$$

additive identity there exists an element $0 \in V$ such that v + 0 = v for all $v \ \in \ V$ additive inverse for every $v \ \in \ V$, there exists $w \ \in \ V$ such that v+w=0 multiplicative identity 1v=v for all $v\in V$ distributive properties

a(u+v) = au+av and (a+b)v = av+bv for all $a, b \in \mathbf{F}$ and

all
$$u, v \in V$$

vector, point: Elements of a vector space are called vectors or points.

real vector space, complex vector space: • A vector space over R is called a real vector space. · A vector space over C is called a complex vector space. \mathbb{F}^S : \cdot If S is a set, then \mathbf{F}^S denotes the set of functions from S to \mathbf{F} \cdot For

 $f,\,g\in\mathbf{F}^S$, the sum $f+g\in\mathbf{F}^S$ is the function defined by

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in S \bullet$ For $\lambda \in \mathbf{F}$ and $f \in \mathbf{F}^S$, the product $\lambda f \in \mathbf{F}^S$ is

$$(\lambda f)(x) = \lambda f(x)$$

for all $x \in S$

Unique Additive Identity: A vector space has a unique additive identity

Unique additive inverse: Every element in a vector space has a unique additive

The number o times a vector: 0v = 0 for every $v \in V$ A number times the vector o: a0 = 0 for every $a \in \mathbf{F}$

The number -1 times a vector: (-1)v = -v for every $v \in V$

Section 1,C - Subspaces

 $\it Subspace$: A subset $\it U$ of $\it V$ is called a subspace of $\it V$ if $\it U$ is also a vector space (using the same addition and scalar multiplication as on V). Conditions for a subspace: A subset U of V is a subspace of V if and only if U satisfies the following three conditions: additive identity $0 \in U$ closed under addition u , $w \in U$ implies $u+w \in U$ closed under scalar multiplication $a \in \mathbf{F}$ and $u \in U$ implies $au \in U$ sum of subsets: Suppose U_1, \ldots, U_m are subsets of V. The sum of

 U_1,\ldots,U_m , denoted $U_1+\cdots+U_m$, is the set of all possible sums of elements of U_1 , . . . , U_m More precisely,

$$U_1 + \cdots + U_m = \{u_1 + \cdots + u_m : u_1 \in U_1, \dots, u_m \in U_m\}$$

 (x_1,\dots,x_n) Sum of subspaces is the smalles containing subspace: Suppose U_1,\dots,U_m are subspace of V. Then $U_1+\dots+U_m$ is Two lists are equal if and only if they have the same length and the same elements the smallest subspace of V containing U_1,\dots,U_m direct sum: Suppose U_1,\ldots,U_m are subspaces of V. The sum $U_1+\cdots+U_m$ is called a direct sum if each element of $U_1+\cdots+U_m$

can be written in only one way as a sum $u_1 + \cdots + u_m$, where each u_j is in U_i . If $U_1+\cdots+U_m$ is a direct sum, then $U_1\oplus\cdots\oplus U_m$ denotes $U_1+\cdots+U_m$, with the \oplus notation serving as an indication that this is a direct sum.

this is a direct sum. Condition for a direct sum: Suppose
$$U$$
 and W are subspaces of V . Then $U+W$ is a direct sum if and only if $U\cap W=\{0\}$