

Computer Electronics

Lecture 18: Multiplier Circuits – Part 1

Lecture outline

- Parallel unsigned multiplier
- Parallel carry-save multiplier
- Signed multiplier
 - Subtraction review
 - Parallel signed multiplier

Unigned matrix multiplier: algorithm

Matrix multiplier with ripple carry

Pipelined MM w/ RCA

- Pipeline stages after each partial product addition
- What is the maximum clock frequency?

Carry-Save Adder Principle

3-input adder using carry-save stage

Matrix multiplier with carry save

Pipelined MM w/ CSaA

- Pipeline stages after each partial product addition
- What is the maximum clock frequency?
 - What is the stage responsible for it?
- Solution for increasing the frequency
 - Work at the CSaA clock frequency
 - Use N-1 clock cycles to compute the last stage

Subtraction: fundamentals

- Adder circuits work equally well with unsigned and signed numbers
- A-B = A + (-B)
 - To subtract simply add the symmetric
 - Symmetric is 2's complement
 - Easiest way to compute 2's complement in hardware
 - Complement and add 1

Subtraction: circuit

Sign extension

- Sometimes we need to increase the number of bits for representation in different signed integer format
- Sign of the number should be preserved
- Q1: represent signed number 1000 (-8₁₀) with 8 bits
- A1: 11111000 (sign extension in red)
- Q2: represent signed number 0111 (7₁₀) with 8 bits
- A2: 00000111(sign extension in red)

Logical/Arithmetic right shift

- Shifting a number **left** by p positions is the same as multiplying it by 2^p
- Shifting a **signed** number **right** by p positions is the same as dividing it by 2^p
- Sign must me preserved: arithmetic right shift
- 1000 (-8₁₀) shift right by 2 (divide by 4)
 - Logical right shift $0010 (2_{10})$: wrong!
 - Arithmetic right shift 1110 (-2₁₀): correct!

Signed multiplication: fundamentals

- A = a3 a2 a1 a0, B = b3 b2 b1 b0
- In decimal notation

$$B = -b3*23 + b2*22 + b1*21 + b0*20$$

$$A*B = A*[-b3*23+b2*22+b1*21+b0*20]$$

- Algorithm:
 - Add least significant partial products, subtract most significant partial product

1

Signed multiplication: circuit

