Eine Woche, ein Beispiel 8.21 equivariant cohomology of P'

Ref:

[Ginz] Ginzburg's book "Representation Theory and Complex Geometry"
[LCBE] Langlands correspondence and Bezrukavnikov's equivalence
[LW-BWB] The notes by Liao Wang: The Borel-Weil-Bott theorem in examples (can not be found on the internet)
Other references will be add soon.

- I notations and warnings
- 2. result
- 3. computation of completion in practice
- 4. pt & B
- 5 Euler class

1 notations and warnings

In this document,

$$GL_{1} = GL_{1}(\mathbb{C})$$
 $T = \begin{pmatrix} * & \circ \\ \circ & * \end{pmatrix} \subset GL_{2}$ $B = \begin{pmatrix} * & * \\ \circ & * \end{pmatrix} \subset GL_{3}$ or SL_{1}
 $SL_{2} = SL_{3}(\mathbb{C})$ $C^{\times} = \begin{pmatrix} * & \circ \\ \circ & * \end{pmatrix} \subset SL_{2}$ $P' = P'(\mathbb{C})$

$$K_{o}^{G}(X)_{i} = k_{o}(Gh^{G}(X))$$

$$R(G)_{i} = K_{o}^{G}(pt) = Rep(G)$$

$$K_{o}^{G}(X)_{1}^{G} := \lim_{n \to \infty} K_{o}^{G}(X)/_{1}^{n}$$

$$H_{G}^{G}(X;Q)_{i} = H_{G}^{*}(pt;Q) = H_{G}^{*}(X;Q)_{i}$$

$$H_{G}^{G}(X;Q)_{i} := \lim_{n \to \infty} H_{G}^{n}(X;Q) = H_{G}^{*}(X;Q)_{i}$$

To avoid confusion, we don't consider any convolution structure in this document. we don't consider $G \times C^{\times}$ -action either

(Cx is already occupied as a maximal torus of SLz)

2. result

This time we are not so ambitious. For example, we don't fill in $K^B_o(\mathcal{B} \times \mathcal{B}) \cong K^G_o(\mathcal{B} \times \mathcal{B} \times \mathcal{B}) \cong R(T) \otimes_{R(G)} R(T) \otimes_{R(G)} R(T)$ just because the result is too long.

We don't want to use these symbols(like x,y,z) in later documents either. If you want to fix a notation, please use the notations in https://github.com/ramified/personal_handwritten_collection/blob/main/weeklyupdate/2022.10.23_notation_K%5EG(St).pdf

K_ (-)		et	B T*B	B × B
	SL,	Z[y+y-']	Z[z1]	Z[z;, z,]/((z,-z,)(z,-z;))
G = SL2	В	ℤ [y [±] ']	Z[y+', z]/(z-y)(z-y))	,
	Id	Z	Z[z]/(z-1)2	$\mathbb{Z}[z_1,z_1]/((z_1-1)^2,(z_2-1)^2)$
	GL،	Z[4,+4,,4,4, 4,5]	Z[z1, z1]	Z[z, z, , z,]((z,-z,)(z,-z,))
G = GL2	В	$\mathbb{Z}[y_{\cdot}^{\pm 1},y_{\cdot}^{\pm 1}]$	Z[yt, yt, z,/(2,3)(2,-4))	
	Id	Z	Z[=]/(z-1)2	$\mathbb{Z}[z_{i}^{\prime},z_{i}^{\prime}]/((z_{i}^{\prime}-1)^{2},(z_{i}^{\prime}-1)^{2})$
G = SLn or GLn	G	R(G)	R(T)	R(T) ⊗ _{R(G)} R(T)
	۷			$\bigoplus_{\omega \in \mathcal{W}} R(G) \left[\overline{\Omega}_{\omega} \right]^{G}$
	В	R(T)	$R(T) \otimes_{R(G)} R(T)$	
d - 1 Th or Girl	ס		$\mathcal{L}_{\mathcal{L}}^{\mathcal{L}} R(T) [\overline{\Omega}_{\omega}]^{T}$	$_{\omega,\omega'\in\mathbf{W}}^{\bullet} R(T) \left[\overline{\Omega}_{\omega,\omega'} \right]^{T}$
	Id	Z		
	10		men Z · [Ωm]	Ow,w'ew Z [\overline{\Omega} \omega_{\omega,\omega'}]

K_o (-)		pt	B T*B	<u> 3 × B</u>
G = SL2	SL,	Q[b]	Q[e]	Q[e,,e,]/(e; -e;)
	В	Q[b]	Q[b,e]/(e'-b')	
	Id	Q	Q[e]/(e)	Q[e,,e,]/(e,,e,)
G = GL2	GL	Q[b,+b.,b,b.]	Q[e., e.]	Q[e,ez.ei]/((ei-e1)(ei-e1)
	В	Q[b,,b,]	Q[b.,b.,e]/((e,-b.)(e,-b.)	
	Id	Q	Q[e]/(e2)	Q[e', e,]/(e', e'2)
G = SLn or GLn	G	S(G)	S(T)	(T)2 _{(G)2} ⊗(T)
	٩			$\bigoplus_{\omega \in \mathcal{M}} S(G) \left[\overline{\Omega}_{\omega} \right]^{G}$
	В	S(T)	S(T) 0 _{S(G)} S(T)	
	ט		$\omega_{\text{ew}}^{\text{P}} S(T) [\Omega_{\omega}]^{T}$	$_{\omega,\omega'\in W}$ $S(T)[\overline{\Omega}_{\omega,\omega}]^{T}$
	Id	Q	_	0
	ΙU		wew Q [Qw]	$\bigoplus_{\omega,\omega'\in\mathbf{w}}\mathbb{Q}\left[\overline{\Omega}_{\omega,\omega'}\right]$