ANALIZA MATEMATYCZNA

LISTA ZADAŃ 2

14.10.2019

- (1) Znajdź potegi naturalne liczby i, czyli wyznacz liczby zespolone postaci i^n dla wszystkich liczb naturalnych n.
- (2) Jakie muszą być argumenty liczb zespolonych z, w, różnych od zera, aby a) iloczyn zw, b) iloraz z/w były rzeczywiste?
- (3) Udowodnij następujące własności sprzężenia liczb zespolonych:
 - (c) $(zw) = \overline{z}\overline{w}$,
 - (d) $\Re(z) = (z + \overline{z})/2$, $\Im(z) = (z \overline{z})/2$ **i**.
- (4) Znajdź moduły liczb zespolonych $z = -2 3\mathbf{i}$ oraz $z = 1 \mathbf{i}$.
- (5) Udowodnij, że dla dowolnych liczb $z, w \in \mathbb{C}$ mamy następujące własności:
 - (a) $|z| \ge 0$ i |z| = 0 wtedy i tylko wtedy gdy z = 0,
 - (b) |zw| = |z||w|,
 - (c) $|z + w| \le |z| + |w|$,
 - (d) $|z-w| \ge ||z|-|w||$.
- (6) Naszkicuj na płaszczyźnie zbiory liczb $z \in \mathbb{C}$ spełniających nierówności:
 - (b) $|z+3\mathbf{i}| < 1$, (c) $|z+4-2\mathbf{i}| \le 3$. (a) |z| < 2,
- (7) Wyznacz postać trygonometryczną następujących liczb zespolonych:
 - (a) -6 + 6i, (b) 2i, (c) 1 + i.
- (8) Oblicz:
 - (a) $\frac{1+\mathbf{i}}{1-\mathbf{i}}$, (b) $\frac{2\mathbf{i}}{1+\mathbf{i}}$, (c) $\frac{4-3\mathbf{i}}{4+3\mathbf{i}}$, (d) $\sqrt{-3-4\mathbf{i}}$, (e) $(2+\mathbf{i}\sqrt{12})^5$, (f) $(1+\cos\frac{1}{3}\pi+\mathbf{i}\sin\frac{1}{3}\pi)^6$, (g) $(1+\mathbf{i})^{10}$, (h) $\left(\frac{1+\mathbf{i}}{\sqrt{2}}\right)^{26}$, (i) $\frac{(1+\mathbf{i})^n}{(1-\mathbf{i})^{n-2}}$, $n \in \mathbf{N}$.
- (9) Znajdź wszystkie wartości pierwiastków:

 - (a) $\sqrt[4]{1}$, (b) $\sqrt[3]{-1}$, (c) $\sqrt[4]{1+\mathbf{i}}$, (d) $\sqrt[3]{2-2\mathbf{i}}$, (e) $\sqrt[6]{-27}$, (f) $\sqrt{3+4\mathbf{i}}$, (g) $\sqrt[3]{1}$, (h) $\sqrt[3]{\mathbf{i}}$. Pokaż ich położenie na płaszczyźnie.
- (10) Znajdź wszystkie pierwiastki równań:
- (a) $x^5 1024 = 0$, (b) $x^4 \mathbf{i} = 0$, (c) $x^4 + 4 = 0$. (11) Udowodnij równość $|z + w|^2 + |z w|^2 = 2|z|^2 + 2|w|^2$.
- (12) Niech $a, b, c \in \mathbb{C}$ będą dowolne, $a \neq 0$ i niech $d \in \mathbb{C}$ będzie jednym z pierwiastków $\sqrt{b^2-4\,a\,c}$. Udowodnij, że pierwiastki równania $a\,z^2+b\,z+c=0$ są postaci

$$z = \frac{-b \pm d}{2a}.$$