Discrete Inverse Problems - Solving Real Problems

Jonas Ackermann and Lasse Schuirmann

19.09.2014

Barcode Reader

Modellierung Diskretisierung Rekonstruktion

Data Model Mismatch

Inverse Crime

Grenzbedingungen

Mögliche Ansätze Reflektierende Grenzbedingung Diskretisierung

Image Deblurring

Umsetzung

Fazit

Barcode Reader (1)

Barcode Reader (2)

Modellierung des Barcode Readers (1)

Modellierung des Barcode Readers (2)

$$g(s) = \int_0^1 f(t) \cdot K(s,t) dt = \int_0^1 f(t) \cdot e^{-\left(\frac{s-t}{s}\right)^2} dt, \quad 0 \le s \le 1$$

Barcode Reader: Faltung

$$g(s) = \int_{0}^{1} f(t) \cdot h(s-t) dt$$

Entspricht einer Faltung \rightarrow Invers: Dekonvolution (Entfaltung)

Barcode Reader: Diskretisierung (1)

$$Ax = b$$

$$A \triangleq K(s, t),$$

$$x \triangleq f(t),$$

$$b \triangleq g(s)$$

Barcode Reader: Diskretisierung (2)

$$a_{ij} = K(s_i, t_j) = \frac{1}{n} e^{-\left(\frac{i-j}{sn}\right)^2}, \quad i, j = 1, ..., n$$

Mit:
$$s_i = \frac{(i - \frac{1}{2})}{n}$$
, $t_j = \frac{(j - \frac{1}{2})}{n}$

Diskretisierung (3)

$$(x \star h)[i] = \sum_{j=0}^{N-1} x[j] \cdot h[i-j] = b[i]$$

$b[i] \setminus x[j]$	×[0]	x[1]		x[N-1]
<i>b</i> [0]	h[0]	h[-1]		h[-N+1]
b[1]	h[1]	<i>h</i> [0]	• • •	h[-N+2]
:	:	:	٠	÷
b[N - 1]	h[N-1]	h[N - 2]		h[0]

Matrixeigenschaften

$$\begin{pmatrix} 1 & 2 & 4 & 6 \\ 0 & 1 & 2 & 4 \\ 3 & 0 & 1 & 2 \\ 5 & 3 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 2 & 4 \\ 4 & 0 & 1 & 2 \\ 2 & 4 & 0 & 1 \end{pmatrix}$$

Demo time!

Barcode Reader: Rekonstruktion

Data Model Mismatch (1)

Modell basiert auf Annahmen über Daten. Annahmen erfüllt?

Data Model Mismatch (2)

Inverse Crime (1)

Kann das Modell anhand des Modells selbst geprüft werden?

Inverse Crime (2)

Grenzbedingungen (1)

Was passiert ausserhalb der Grenzen im Originalsignal? Wie wird das gegebene Signal dadurch beeinflusst?

Grenzbedingungen (2)

Häufig sind Annahmen nötig:

- Originalfunktion null ausserhalb der Grenzen?
- Originalfunktion verhält sich ähnlich wie innerhalb?
 - \rightarrow Reflektierende Grenzbedingung.

Reflektierende Grenzbedingung (1)

$$f_{BC}(t) = egin{cases} f(-t), & -1 < t < 0, \ f(t), & 0 \le t \le 1, \ f(2-t), & 1 < t < 2. \end{cases}$$

Reflektierende Grenzbedingung (2)

$$g_{BC}(s) = \int_{-1}^{2} K(s,t) f_{BC}(t) dt$$

$$= \int_{-1}^{0} K(s,t) f_{BC}(t) dt + \int_{0}^{1} K(s,t) f_{BC}(t) dt + \int_{1}^{2} K(s,t) f_{BC}(t) dt$$

$$= \int_{0}^{1} K(s,-t) f(t) dt + \int_{0}^{1} K(s,t) f(t) dt + \int_{0}^{1} K(s,2-t) f(t) dt$$

Reflektierende Grenzbedingung (3)

$$K_{BC} = K(s,-t) + K(s,t) + K(s,2-t)$$

Reflektierende Grenzbedingung (4)

Matrix

Zurück zum Diskreten!

Matrix: Berücksichtigung von Grenzbedingungen (1)

Korrekturterme notwendig.

Reflektierende Grenzbedingungen - Erinnerung:

$$K_{BC} = K(s,-t) + K(s,t) + K(s,2-t)$$

Also: was fehlt in der Matrix?

Matrix: Berücksichtigung von Grenzbedingungen (1)

Korrekturterme notwendig. Reflektierende Grenzbedingungen - Erinnerung:

$$K_{BC} = K(s, -t) + K(s, t) + K(s, 2 - t)$$

Also: was fehlt in der Matrix? A^{I} und A^{r} !

Matrix: Berücksichtigung von Grenzbedingungen (2)

Beispielhaft für A^{I} :

$$a_{ij}^{l} = K(s_i, -t_j) = \frac{1}{n} e^{-\left(\frac{i+j-1}{sn}\right)^2}, \quad i, j = 1, ..., n$$

Daraus ergibt sich A_{BC} :

$$A_{BC} = A + A^{I} + A^{r}$$

Hankel Matrix

```
\begin{pmatrix} 6 & 2 & 4 & 1 \\ 2 & 4 & 1 & 2 \\ 4 & 1 & 2 & 5 \\ 1 & 2 & 5 & 7 \end{pmatrix}
```

Image Deblurring

Image Deblurring - Theorie

$$\int\limits_0^1\int\limits_0^1 K(\mathbf{s},\mathbf{t})\cdot f(\mathbf{t})dt_1dt_2=g(\mathbf{s})\quad s\in [0,1] imes [0,1].$$

Mit $\mathbf{s} = (s_1, s_2)$ und $\mathbf{t} = (t_1, t_2)$

Zweidimensionale Faltung!

2D: Point Spread Function

Image Deblurring - Diskret

$$B_{ij} = \sum_{l=1}^{N} P_{i-k,j-l} X_{kl} \text{ mit } i, j = 1, ..., N$$

Image Deblurring - Rearranging (1)

Fold two dimensions into one: $m = fold(i, j) = i \cdot N + j$.

$$b_{fold(i,j)} = B_{ij} = \sum_{k,l=1}^{N} P_{i-k,j-l} x_{fold(k,l)} = \sum_{k,l=1}^{N} P_{i-k,j-l} X_{kl}$$
$$A_{fold(i,j),fold(k,l)} = P_{i-j,k-l}$$

Mit i, j, k, l = 1, ..., N also $m = 1, ..., N^2$.

Image Deblurring - Rearranging (2)

Also:

Ax = b

Achtung: A ist riesig!

Image Deblurring - Rearranging (2)

Also:

$$Ax = b$$

Achtung: A ist riesig! Aber Block-Toeplitz!

X-Ray Depth Profiling (1)

X-Ray Depth Profiling (2)

- Qelle sendet Strahl mit Winkel s ins Material
- Dringt bis in Tiefe dcos(s) ein, d abhängig von Energie
- ▶ Reflektiert abhängig von Materialparameter f(t)
- ▶ t beschreibt Tiefe im Material, $0 \le t \le d$
- ▶ Detektor misst reflektiertes g(s), abhängig von Winkel s und Material

Depth Profiling: Modell

$$g(s) = \int\limits_{-\infty}^{d\cos(s)} f(t) \cdot e^{-\mu t} dt, \quad 0 \le s \le \frac{1}{2}\pi$$

Depth Profiling: Kern (1)

$$\mathcal{K}(s,t) = egin{cases} \mathrm{e}^{-\mu t}, & 0 \leq t \leq d cos(s) \ 0, & d cos(s) \leq t \leq d \end{cases}$$

Depth Profiling: Kern (2)

Diskret mit equidistanten t:

$$a_{ij} = egin{cases} rac{1}{n}e^{-\mu t_j}, & t_j \leq dcos(s_i) \\ 0, & sonst \end{cases}$$

Depth Profiling: Kern (3)

Modell angepasst, t = sin(t):

$$g(s) = \int\limits_{0}^{\mathit{arcsin}(dcos(s))} f(t) \cdot e^{-\mu sin(au)} cos(au) d au, \quad 0 \leq s \leq rac{1}{2}\pi$$

Depth Profiling: Kern (3)

Diskretisiert, equidistante τ :

$$a_{ij} = egin{cases} rac{\pi}{2n} e^{-\mu sin(au_j} cos(au_j), & sin(au_j) \leq s_i \\ 0, & sonst \end{cases}$$

Depth Profiling: Rekonstruktion

Mit künstlichem f(t):

$$f(t) = e^{(-30(t-0.25)^2)} + 0.4e^{(-30(t-0.5)^2)} + 0.5e^{(-50(t-0.75)^2)}$$

Depth Profiling: Auflösung

Mit wenig Rauschen:

Depth Profiling: Auflösung

Mit viel Rauschen:

Umsetzung (1)

Umsetzung (2)

 $Performanz \rightarrow Ausnutzbare\ Matrixeigenschaften?$

 $Realit \"{a} tsn \"{a} he \rightarrow Womit \ Algorithmus \ testen?$

► Benötigte Grundlagen:

- Benötigte Grundlagen:
 - ► Toepliz Matrizen

- Benötigte Grundlagen:
 - ► Toepliz Matrizen
 - ► Zirkuläre Matrizen

- ► Benötigte Grundlagen:
 - ► Toepliz Matrizen
 - ► Zirkuläre Matrizen
 - Regularisierung

- Benötigte Grundlagen:
 - ► Toepliz Matrizen
 - Zirkuläre Matrizen
 - Regularisierung
 - ► Faltung, natürlich!

- Benötigte Grundlagen:
 - ► Toepliz Matrizen
 - Zirkuläre Matrizen
 - Regularisierung
 - ► Faltung, natürlich!
- ▶ Beispiele für diskrete inverse Probleme:

- ► Benötigte Grundlagen:
 - ► Toepliz Matrizen
 - Zirkuläre Matrizen
 - Regularisierung
 - ► Faltung, natürlich!
- ▶ Beispiele für diskrete inverse Probleme:
 - ▶ Barcode Reader

- Benötigte Grundlagen:
 - Toepliz Matrizen
 - Zirkuläre Matrizen
 - Regularisierung
 - ► Faltung, natürlich!
- ▶ Beispiele für diskrete inverse Probleme:
 - ▶ Barcode Reader
 - Bildunschärfe

- Benötigte Grundlagen:
 - ► Toepliz Matrizen
 - Zirkuläre Matrizen
 - Regularisierung
 - ► Faltung, natürlich!
- ▶ Beispiele für diskrete inverse Probleme:
 - ▶ Barcode Reader
 - Bildunschärfe
- Dinge die es zu beachten gibt:

- Benötigte Grundlagen:
 - Toepliz Matrizen
 - Zirkuläre Matrizen
 - Regularisierung
 - ► Faltung, natürlich!
- ▶ Beispiele für diskrete inverse Probleme:
 - ▶ Barcode Reader
 - Bildunschärfe
- Dinge die es zu beachten gibt:
 - Grenzbedingungen

- Benötigte Grundlagen:
 - Toepliz Matrizen
 - Zirkuläre Matrizen
 - Regularisierung
 - ► Faltung, natürlich!
- ▶ Beispiele für diskrete inverse Probleme:
 - ▶ Barcode Reader
 - Bildunschärfe
- Dinge die es zu beachten gibt:
 - Grenzbedingungen
- Validierung von Problemlösungen:

- Benötigte Grundlagen:
 - Toepliz Matrizen
 - Zirkuläre Matrizen
 - Regularisierung
 - ► Faltung, natürlich!
- ▶ Beispiele für diskrete inverse Probleme:
 - ▶ Barcode Reader
 - Bildunschärfe
- Dinge die es zu beachten gibt:
 - Grenzbedingungen
- Validierung von Problemlösungen:
 - Inverse Crime

- Benötigte Grundlagen:
 - Toepliz Matrizen
 - Zirkuläre Matrizen
 - Regularisierung
 - ► Faltung, natürlich!
- ▶ Beispiele für diskrete inverse Probleme:
 - Barcode Reader
 - Bildunschärfe
- Dinge die es zu beachten gibt:
 - Grenzbedingungen
- Validierung von Problemlösungen:
 - Inverse Crime
 - Data/Model Mismatch

Fragen?