Dataflow Analysis (part 2)

15-411/15-611 Compiler Design

Seth Copen Goldstein

September 24, 2020

Today

- Dataflow Analysis
 - reaching definitions
 - liveness
 - available expressions
 - very busy expressions
- Framework

A sample program

```
int fib10(void) {
                                 n <- 10
  int n = 10;
                              1:
  int older = 0;
                              2:
                                   older <- 0
  int old = 1;
                              3: old <- 1
  int result = 0;
                              4: result <- 0
                              5: if n \le 1 goto 14
  int i;
                              6: i < -2
                                    if i > n goto 13
  if (n \le 1) return n;
                              7:
  for (i = 2; i < n; i++) {
     result = old + older;
                           8:
                                    result <- old + older
     older = old;
                              9:
                                    older <- old
     old = result;
                              10: old <- result
                              11: i \leftarrow i + 1
  return result;
                              12:
                                    JUMP 7
                              13:
                                    return result
                              14:
                                    return n
```

Simple Constant Propagation

- Can we do SCP?
- How do we recognize it?

What aren't we doing?

- Metanote:
 - keep opts simple!
 - Use combined power

```
1: n <- 10
```

2: older <- 0

3: old <- 1

4: result <- 0

5: if $n \le 1$ goto 14

6: i <- 2

7: if i > n goto 13

8: result <- old + older

9: older <- old

10: old <- result</pre>

11: $i \leftarrow i + 1$

12: JUMP 7

13: return result

Reaching Definitions

A definition of variable v at program point d reaches program point u if there exists a path of control flow edges from d to u that does not contain a definition of v.


```
1:
      n < -10
2:
      older <- 0
3:
      old <- 1
4:
      result <- 0
5:
      if n <= 1 goto 14
6:
      i <- 2
7:
      if i > n goto 13
8:
      result <- old + older
9:
      older <- old
10:
      old <- result
11:
      i < -i + 1
12:
      JUMP 7
13:
      return result
14:
      return n
```

Reaching Definitions (ex)

• 1 reaches 5, 7, and 14

```
14, Really?
```

Meta-notes:

- (almost) always conservative
- only know what we know
- Keep it simple:
 - What opt(s), if run before this would help
 - What about:

```
1: x < 0
```

2: if (false) x<-1

3: ... x ...

- Does 1 reach 3?
- What opt changes this?

```
1:
      n < -10
2:
      older <- 0
3:
      old <- 1
4:
      result <- 0
5:
      if n <= 1 goto 14
6:
      i <- 2
7:
      if i > n goto 13
8:
      result <- old + older
9:
      older <- old
10:
      old <- result
11:
      i < -i + 1
12:
      JUMP 7
13:
      return result
14:
      return n
```

Calculating Reaching Definitions

A definition of variable v at program point d reaches program point u if there exists a path of control flow edges from d to u that does not contain a definition of v.

- Build up RD stmt by stmt
- Stmt s, "d: v <- x op y", generates d
- Stmt s, "d: v <- x op y", kills all other defs(v)
 Or,
- Gen[s] = { d }
- Kill[s] = defs(v) { d }

Gen and kill for each stmt

```
Gen
                                          kill
1: n <- 10
2: older <- 0
3: old <- 1
                                           10
4: result <- 0
5: if n \le 1 goto 14
6: i <- 2
                                           11
                                   6
7: if i > n goto 13
8: result <- old + older
9: older <- old
10: old <- result
                                   10
                                           3
11: i < -i + 1
                                   11
12: JUMP 7
13: return result
14: return n
```

we determine the defs that reach a node by using:

- control flow information
- gen and kill info

Computing in[n] and out[n]

- In[n]: the set of defs that reach the beginning of node n
- Out[n]: the set of defs that reach the end of node n

$$\mathsf{in[n]} = \bigcup_{p \in \mathit{pred[n]}} \mathit{out[p]}$$

$$out[n] = gen[n] \bigcup (in[n] - kill[n])$$

- Initialize in[n]=out[n]={} for all n
- Solve iteratively

pred[n]?

- Pred[n] are all nodes that can directly reach n in the control flow graph.
- E.g., pred[7] = { 6, 12 }


```
1:
      n < -10
2:
      older <- 0
3:
      old <- 1
4:
      result <- 0
5:
      if n <= 1 goto 14
6:
      i <- 2
7:
      if i > n goto 13
8:
      result <- old + older
9:
      older <- old
10:
      old <- result
11:
      i < -i + 1
12:
      JUMP 7
13:
      return result
14:
      return n
```

What order to eval nodes?

- Does it matter?
- Lets do: 1,2,3,4,5,14,6,7,13,8,9,10,11,12


```
1: n < -10
2: older <- 0
3: old <- 1
4: result <- 0
5:
     if n <= 1 goto 14
6:
      i <- 2
7:
      if i > n goto 13
8:
      result <- old + older
9: older <- old
10: old <- result
11: i \leftarrow i + 1
12:
      JUMP 7
13:
      return result
14:
      return n
```

Example:

• Order: 1,2,3,4,5,14,6,7,13,8,9,10,11,12

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

Gen kill in out

1: $n < -10$ 1 1 1

2: older < -0 2 9

3: old < -1 3 10

4: result < -0 4 8

5: if $n < = 1$ goto 14

6: $i < -2$ 6 11

7: if $i > n$ goto 13

8: result $< -$ old $+$ older 8 4

9: older $< -$ old 9 2

10: old $< -$ result 10 3

11: $i < -i + 1$ 11 6

12: JUMP 7

13: return result

Example:

• Order: 1,2,3,4,5,14,6,7,13,8,9,10,11,12

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

Gen kill in out

1: $n < -10$

2: older < -0

3: old < -1

4: result < -0

5: if $n < = 1$ goto 14

6: $i < -2$

7: if $i > n$ goto 13

8: result $< -$ old $+$ older

9: older $< -$ old

10: old $< -$ result

10: 3

11: $i < -i + 1$

12: JUMP 7

13: return result

13

Example:

• Order: 1,2,3,4,5,14,6,7,13,8,9,10,11,12

14

13: return result

• Order: 1,2,3,4,5,14,6,7,13,8,9,10,11,12

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

Gen kill in out

1: $n < -10$

2: older < -0

3: old < -1

4: result < -0

4: result < -0

5: if $n < = 1$ goto 14

6: i < -2

7: if i > n goto 13

8: result $< -$ old + older

9: older $< -$ old

9: older $< -$ old

10: old $< -$ result

10: JUMP 7

13: return result

14: return n

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

Gen kill in out

1: $n < -10$

2: older < -0

3: old < -1

4: result < -0

4: result < -0

5: if $n < = 1$ goto 14

6: i < -2

7: if i > n goto 13

8: result $< -$ old + older

9: older $< -$ old

9: older $< -$ old

10: old $< -$ result

10: $= 1$ old

11: i $< -$ i + 1

12: JUMP 7

13: return result

14: return $= 1$ out[n] = $= 1$ out[n] = $= 1$ out

10: old $= 1$ out

10: old $= 1$ out

11: old

12: JUMP 7

13: return result

14: return $= 1$

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

Gen kill in out

1: $n < -10$

2: older < -0

3: old < -1

4: result < -0

4: result < -0

5: if $n < = 1$ goto 14

6: i < -2

7: if i > n goto 13

8: result $< -$ old + older

9: older $< -$ old

9: older $< -$ old

10: old $< -$ result

10: 3

11: i $< -$ i + 1

12: JUMP 7

13: return result

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

Gen kill in out

1: $n < -10$

2: older < -0

3: old < -1

4: result < -0

5: if $n < = 1$ goto 14

6: i < -2

7: if i > n goto 13

8: result $< -$ old + older

9: older $< -$ old

9: older $< -$ old

10: old $< -$ result

10: 3

11: i $< -$ i + 1

12: JUMP 7

13: return result

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

Gen kill in out

1: $n < -10$

2: older < -0

3: old < -1

4: result < -0

4: result < -0

5: if $n < = 1$ goto 14

6: i < -2

7: if i > n goto 13

8: result $< -$ old + older

9: older $< -$ old

9: older $< -$ old

10: old $< -$ result

11: i $< -$ i + 1

12: JUMP 7

13: return result

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

Gen kill in out

1: $n < -10$

2: older < -0

3: old < -1

4: result < -0

4: result < -0

5: if $n < = 1$ goto 14

6: i < -2

7: if i > n goto 13

8: result $< -$ old + older

9: older $< -$ old

9: older $< -$ old

1: i $< -$ i + 1

12: JUMP 7

13: return result

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

Gen kill in out

1: $n < -10$

2: older < -0

3: old < -1

4: result < -0

4: result < -0

5: if $n < = 1$ goto 14

6: i < -2

7: if i > n goto 13

8: result $< -$ old + older

9: older $< -$ old

9: older $< -$ old

1: i $< -$ i + 1

12: JUMP 7

13: return result

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

Gen kill in out

1: $n < -10$

2: older < -0

3: old < -1

4: result < -0

4: result < -0

5: if $n < = 1$ goto 14

6: i < -2

7: if i > n goto 13

8: result $< -$ old + older

9: older $< -$ old

9: older $< -$ old

1: i $< -$ i + 1

10: JUMP 7

13: return result

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

1-4,6

• Order: 1,2,3,4,5,14,6,7,13,8,9,10,11,12

32

An Improvement: Basic Blocks

- No need to compute this one stmt at a time
- For straight line code:
 - $\ln[s1; s2] = \ln[s1]$
 - Out[s1; s2] = out[s2]
- Combine the gen and kill sets into one per BB.

	Gen	kill
• Gen[BB]={2,3,4,5} 1: i <- 1	1	8,4
2: j <- 2	2	
• Kill[BB]={1,8,11} 3: k <- 3 + i	3	11
4: i <- j	4	1,8
$5: m \leftarrow i + k$	5	

BB sets

		Gen	kill		
_	1: n <- 10	1			
	2: older <- 0	2	9		
1	3: old <- 1	3	10		
	4: result <- 0	4	8		
	5: if n <= 1 goto 14			1,2,3,4	8,9,10
3	6: i <- 2	6	11	6	11
4	7: if i > n goto 13				
_	8: result <- old + older	8	4		
	9: older <- old	9	2		
6	10:old <- result	10	3		
	11: i <- i + 1	11	6		
	12: JUMP 7			8-11	2-4,6
₂ 5	13: return result				
2 -	14: return n				

BB sets

In out

1,2,3,4

BB sets

In out

1,2,3,4

1,2,3,4

1,2,3,4,6

1-4,6,8-11 1-4,6,8-11

1-4,6,8-11

1,8-11

Forward Dataflow

Reaching definitions is a forward dataflow problem:
 It propagates information from the predecessors of a node to the node

Defined by:

- Basic attributes: (gen and kill)
- Transfer function: F_{bb} $out[n] = gen[n] \bigcup (in[n] kill[n])$
- Meet operator: union $in[n] = \bigcup_{p \in pred[n]} out[p]$
- Set of values (a lattice, in this case powerset of program points)
- Initial values for each node b
- Solve for fixed point solution

How to implement?

- Values?
- Gen?
- Kill?
- F_{bb}?
- Order to visit nodes?
- When are we done?
 - In fact, do we know we terminate?

Implementing RD

- Values: bits in a bit vector
- Gen: 1 in each position generated, otherwise 0
- Kill: 0 in each position killed, otherwise 1
- F_{bb}: out[b] = gen[b] | (in[b] & kill[b])
- Init in[b]=out[b]=0

- When are we done?
- What order to visit nodes? Does it matter?

RD Worklist algorithm

```
Initialize: in[B] = out[b] = \emptyset
Initialize: in[entry] = \emptyset
Work queue, W = all Blocks in topological order
while (|W| != 0) {
   remove b from W
   old = out[b]
   in[b] = \{over all pred(p) \in b\} \cup out[p]
   out[b] = gen[b] \cup (in[b] - kill[b])
   if (old != out[b]) W = W \cup succ(b)
```

```
1: n <- 10
2: older <- 0
                                 1,2
3: old <- 1
                               1,2,3
                        1,2
4: result <- 0
                        1-3
                               1-4
5: if h <= 1 goto 14
                     1-4 1-4
6: i <- 2
                       1-4 1-4,6
7: if i > n goto 13 1-4,6,8-11 1-4,6,8-11
8: result <- old + older 1-4,6,8-11 1-3,6,8-11
                       1-3,6,8-11 1,3,6,8-11
9: older <- old
10: old <- result
                      1,3,6,8-11 1,6,8-11
11: i < -i + 1
                       1,6,8-11 1,8-11
                        1,8-11 1,8-11
12: JUMP 7
13: return result
                        1-4,6
                        1-4
                                  1 - 4
14: return n
```

```
1: n <- 10
2: older <- 0
                               1,2
                             1,2,3
3: old <- 1
                      1,2
4: result <- 0
                      1-3
                                1 - 4
5: if n <= 1 goto 14
                    1-4 1-4
                     1-4 1-4,6
6: i <- 2
8: result <- old + older 1-4,6,8-11 1-3,6,8-11
                    1-3,6,8-11 1,3,6,8-11
9: older <- old
10: dd <- result
                    1,3,6,8-11 1,6,8-11
11: i \leftarrow i + 1
                      1,6,8-11 1,8-11
                      1,8-11 1,8-11
12: JUMP 7
13: return result
                      1-4,6
                      1-4
                                1 - 4
14: return n
```

```
1: n <- 10
2: older <- 0
                                       1,2
                                       1,2,3
3: old <- 1
                           1,2
4: result <- 0
                           1-3
                                       1-4
5: if n <= 1 goto 14
                           1-4
                                       1 - 4
                           1-4 1-4,6
6: i <- 2
7: if i > n goto 13
                           1-4,6,8-11 1-4,6,8-11
                           1-4,6,8-11 1-3,6,8-11
8: result <- old + older
9: older <- old
                           1-3,6,8-11 1,3,6,8-11
                           1,3,6,8-11 1,6,8-11
10: dld <- result
11: i < -i + 1
                           1,6,8-11 1,8-11
                           1,8-11 1,8-11
12: JUMP 7
                                       1-4,6
13: return result
                           1-4,6
                                       1-4
14: return n
                           1-4
```

```
1: n <- 10
2: older <- 0
                                     1,2
                                   1,2,3
3: old <- 1
                          1,2
4: result <- 0
                          1-3
                                     1-4
5: if n <= 1 goto 14
                          1-4
                                  1-4
6: i <- 2
                          1-4 1-4,6
7: if i > n goto 13
                          1-4,6,8-11 1-4,6,8-11
                          1-4,6,8-11 1-3,6,8-11
8: result <- old + older
9: older <- old
                          1-3,6,8-11 1,3,6,8-11
                          1,3,6,8-11 1,6,8-11
10: dld <- result
11: i <- i + 1
                          1,6,8-11 1,8-11
12: JUMP 7
                          1,8-11 1,8-11
13: return result
                          1-4,6
                          1-4
                                     1-4
14: return n
```

Constant Folding + DCE

-1: n <- 10	1	
1. 11 <- 10	_	
2: older <- 0	1	1,2
3: old <- 1	1,2	1,2,3
4: result <- 0	1-3	1-4
- 5: if 10 <− 1 goto 14	1-4	1-4
6: i <- 2	1-4	1-4,6
7: if i > 10 goto 13	1-4,6,8-11	1-4,6,8-11
8: result <- old + older	1-4,6,8-11	1-3,6,8-11
9: older <- old	1-3,6,8-11	1,3,6,8-11
10: old <- result	1,3,6,8-11	1,6,8-11
11: i <- i + 1	1,6,8-11	1,8-11
12: JUMP 7	1,8-11	1,8-11
13: return result	1-4,6	1-4,6
14: return 10	1-4	1-4

Better Constant Propagation

What about:

How might you solve this with SSA?

Loop Invariant Code Motion

 When can expression be moved out of a loop?

Loop Invariant Code Motion

- When can expression be moved out of a loop?
- When all reaching definitions of operands are outside of loop, expression is loop invariant
- Use ud-chains to detect

Def-use chains are valuable too

- Def-use chain: for each definition of var x, a list of all uses of that definition
- Computed from liveness analysis, a backward dataflow problem
- Def-use is NOT symmetric to use-def

15-411/611 © 2019-20 Goldstein

Liveness (def-use chains)

 A variable x is live-out of a stmt s if x can be used along some path starting a s, otherwise x is dead.

Liveness as a dataflow problem

- This is a backwards analysis
 - A variable is live out if used by a successor
 - Gen: For a use: indicate it is live coming into s
 - Kill: Defining a variable v in s makes it dead before s (unless s uses v to define v)
 - Lattice is just live (top) and dead (bottom)
- Values are variables
- In[n] = variables live before n = $(out[n]-kill[n]) \cup gen[n]$
- Out[n] = variables live after n= \int_In[s]

 $S \in SUCC(n)$ © 2019-20 Goldstein

Dead Code Elimination

- Code is dead if it has no effect on the outcome of the program.
- When is code dead?

Dead Code Elimination

- Code is dead if it has no effect on the outcome of the program.
- When is code dead?
 - When the definition is dead, and
 - When the instruction has no side effects

So:

- run liveness
- Construct def-use chains
- Any instruction which has no users and has no side effects can be eliminated

When can we do CSE?

Available Expressions

- X+Y is "available" at statement S if
 - x+y is computed along every path from the start to S
 AND
 - neither x nor y is modified after the last evaluation of x+y

Available Expressions

- X+Y is "available" at statement S if
 - x+y is computed along every path from the start to S
 AND
 - neither x nor y is modified after the last evaluation of x+y

Computing Available Expressions

- Forward or backward?
- Values?
- Lattice?
- gen[b] =
- kill[b] =
- in[b] =
- out[b] =
- initialization?

Computing Available Expressions

- Forward
- Values: all expressions
- Lattice: available, not-avail
- gen[b] = if b evals expr e and doesn't
 define variables used in e
- kill[b] = if b assigns to x,
 then all exprs using x are killed.
- out[b] = (in[b] − kill[b]) ∪ gen[b]
- in[b] = what to do at a join point?
- initialization?

Computing Available Expressions

- Forward
- Values: all expressions
- Lattice: available, not-avail
- gen[b] = if b evals expr e and doesn't
 define variables used in e
- kill[b] = if b assigns to x, exprs(x) are killed out[b] = (in[b] - kill[b]) ∪ gen[b]
- in[b] = An expr is avail only if avail on ALL edges, so:
 in[b] = ∩ over all p∈ pred(b), out[p]
- Initialization
 - All nodes, but entry are set to ALL avail
 - Entry is set to NONE avail

Constructing Gen & Kill

Stmt s	Gen	Kill
t <- x op y	{x op y}-kill[s]	{exprs containing t}
t <- M[a]	{M[a]}-kill[s]	
M[a] <- b		
f(a,)		{M[x] for all x}
t <- f(a,)		

Constructing Gen & Kill

Stmt s	Gen	Kill
t <- x op y	{x op y}-kill[s]	{exprs containing t}
t <- M[a]	{M[a]}-kill[s]	{exprs containing t}
M[a] <- b	{}	{for all x, M[x]}
f(a,)	{}	{for all x, M[x]}
t <- f(a,)	{}	{exprs containing t
		for all x, M[x]}

72 © 2019-20 Goldstein 15-411/611

15-411/611 © 2019-20 Goldstein

73

CSE

- Calculate Available expressions
- For every stmt in program If expression, x op y, is available { Compute reaching expressions for "x op y" at this stmt foreach stmt in RE of the form t <- x op y rewrite at: t' <- x op y t <- t' replace "x op y" in stmt with t'

Find x op y available

© 2019-20 Goldstein

Calculating Reaching Expressions

- Could be dataflow problem, but not needed enough, so ...
- To find RE for "x op y" at stmt S
 - traverse cfg backward from S until
 - reach t <- x + y (& put into RE)
 - reach definition of x or y

Dataflow Summary

	Union (may)	intersection (must)
Forward	Reaching defs	Available exprs
Backward	Live variables	very busy exprs

Later in course we look at bidirectional dataflow

Very Busy Expressions

- A Backward, Must data flow analysis
- An expression e is very busy at point p if On every path from p, e is evaluated before the value of e is changed
- Optimization
 - Can hoist very busy expression computation

Forward Must Data Flow Algorithm

```
Out(s) = Gen(s) for all statements s
W = {all statements}
Repeat
       Take s from W
       In(s) = \bigcap_{s' \in pred(s)} Out(s')
       Temp = Gen(s) \cup (In(s) – Kill(s))
       If (temp != Out(s)) {
               Out(s) = temp
              W = W \cup succ(s)
Until W = \emptyset
```

Forward May Data Flow Algorithm

```
Out(s) = Gen(s) for all statements s
W = {all statements}
Repeat
       Take s from W
       In(s) = \bigcup_{s' \in pred(s)} Out(s')
       Temp = Gen(s) \cup (In(s) – Kill(s))
       If (temp != Out(s)) {
               Out(s) = temp
              W = W \cup succ(s)
Until W = \emptyset
```

Backward May Data Flow Algorithm

```
In(s) = Gen(s) for all statements s
W = {all statements} (worklist)
Repeat
       Take s from W
       Out(s) = \bigcup_{s' \in \text{succ(s)}} \text{In(s')}
       Temp = Gen(s) \cup (Out(s) – Kill(s))
        If (temp != In(s)) {
               In(s) = temp
               W = W \cup pred(s)
Until W = \emptyset
```

Backward Must Data Flow Algorithm

```
In(s) = Gen(s) for all statements s
W = {all statements} (worklist)
Repeat
       Take s from W
       Out(s) = \bigcap_{s' \in \text{succ(s)}} \text{In(s')}
       Temp = Gen(s) \cup (Out(s) – Kill(s))
        If (temp != In(s)) {
               In(s) = temp
               W = W \cup pred(s)
Until W = \emptyset
```