DTU Course 02456 Deep learning 6 Reinforcement learning 2017 updates

Ole Winther

Dept for Applied Mathematics and Computer Science Technical University of Denmark (DTU)

October 8, 2017

Objectives of 2017 RL update

- P1: Deep Q learning
- brief intro taken from this blogpost
- P2: Evolutionary strategies
- a very simple way gradient-free approach to optimisation and RL

Part 1: Deep Q learning

Deep Q learning - Bellman equation

• R_t is the future discounted cumulative reward at t:

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = r_t + \gamma R_{t+1}$$

Deep Q learning - Bellman equation

• R_t is the future discounted cumulative reward at t:

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = r_t + \gamma R_{t+1}$$

• Quality $Q(s_t, a_t)$ at time t in state s_t take action a_t and then take best possible action from there on:

$$Q(s_t, a_t) = \max_{a_{t+1}, \dots, a_{\infty}} R_{t+1}$$

• If Q is known then the optimal policy is:

$$\pi(s_t) = \operatorname{argmax}_{a_t} Q_t(s_t, a_t)$$

Deep Q learning - Bellman equation

• R_t is the future discounted cumulative reward at t:

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = r_t + \gamma R_{t+1}$$

• Quality $Q(s_t, a_t)$ at time t in state s_t take action a_t and then take best possible action from there on:

$$Q(s_t, a_t) = \max_{a_{t+1}, \dots, a_{\infty}} R_{t+1}$$

If Q is known then the optimal policy is:

$$\pi(s_t) = \operatorname{argmax}_{a_t} Q_t(s_t, a_t)$$

• Bellman equation = recursion for Q for $s_t, a_t \rightarrow r_{t+1}, s_{t+1}$,

$$Q(s_t, a_t) = r_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$$

Deep Q learning - learning algorithm

• Bellman equation = recursion for Q for $s_t, a_t \rightarrow r_{t+1}, s_{t+1}$,

$$Q(s_t, a_t) = r_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$$

- Learning:
- For grid world use tabulation (dynamic programming)
- For general state space use learning approach (= Deep Q learning).

Part 2: Evolutionary strategies

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho

Xi Chen OpenAI Szymon Sidor

Ilya Sutskever

https://arxiv.org/pdf/1703.03864.pdf https://blog.openai.com/evolution-strategies/

Buy a lot of computer and forget about gradients

- Parameters θ
- Return (reward) $F(\theta)$
- Evaluate new parameter settings

$$\theta + \sigma \epsilon_i$$
,

- $\epsilon_i \sim \mathcal{N}(0, I), i = 1, \ldots, n.$
- Update in direction that makes $F(\theta)$ larger!

The algorithm

Algorithm 1 Evolution Strategies

- 1: **Input:** Learning rate α , noise standard deviation σ , initial policy parameters θ_0
- 2: **for** $t = 0, 1, 2, \dots$ **do**
- Sample $\epsilon_1, \dots \epsilon_n \sim \mathcal{N}(0, I)$ Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$ for $i = 1, \dots, n$ Set $\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{i=1}^{h} F_i \epsilon_i$
- 6: end for

Derivation

- $F(\theta)$ might be non-differentiable
- So replace with smoothed version:

$$\mathbb{E}_{\psi \sim \mathcal{N}(\theta, \sigma^2 I)}[F(\psi)]$$

The derivative is (reuse policy gradient result):

$$\nabla_{\theta} \mathbb{E}_{\psi \sim \mathcal{N}(\theta, \sigma^2 I)} \left[F(\psi) \right] = \mathbb{E}_{\psi \sim \mathcal{N}(\theta, \sigma^2 I)} \left[F(\psi) \nabla_{\theta} \log \mathcal{N}(\psi | \theta, \sigma^2) \right]$$

• Replace average by samples $\psi_i = \theta + \epsilon_i$, i = 1, ..., n:

$$\mathbb{E}_{\psi \sim \mathcal{N}(\theta, \sigma^2 I)} \left[F(\psi) \nabla_{\theta} \log \mathcal{N}(\psi | \theta, \sigma^2) \right] \approx \frac{1}{n} \sum_{i=1}^{n} F(\psi_i) \frac{\psi_i - \theta}{\sigma^2}$$

• with $\psi_i = \theta + \sigma \sigma_i$.

Variance of estimators

- Really hand-wavy here
- Policy gradient uses a stochastic actions a ~ p(a|s) during training
- So if simulation is T steps long then

Variance gradient estimator $\propto T$

- Evolutionary strategies can use deterministic actions
- so suitable for long simulations with very delayed rewards.

Variance of estimators

- Really hand-wavy here
- Policy gradient uses a stochastic actions a ~ p(a|s) during training
- So if simulation is T steps long then

Variance gradient estimator $\propto T$

- Evolutionary strategies can use deterministic actions
- so suitable for long simulations with very delayed rewards.
- Downside: (stochastic) finite difference gradient estimation scales badly with effective model dimensionality.
- In practice: robust, highly parallel and 3-10× the compute as highly customised RL algorithms!

Thanks! Ole Winther