Nonparametric Causal Identification

UCLA SOCIOL 212B Winter 2025

19 Feb 2025

Learning goals for today

By the end of class, you will be able to

- ► define causal effects
- ▶ identify average causal effects by
 - exchangeability
 - conditional exchangeability
- select a sufficient adjustment set using a Directed Acyclic Graph

Left photo: By Fernando Frazão/Agência Brasil - http://agenciabrasil.ebc.com.br/sites/_agenciabrasil2013/files/fotos/1035034-_mg_0802_04.08.16.jpg, CCBY3.0br, https://commons.wikimedia.org/w/index.php?curid=50548410
Right photo: By Agencia Brasil Fotografias - EUA levam ouro na ginástica artística feminina; Brasil fica em 8 lugar, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=50584648

1. Statistical evidence

Simone Biles swung on the uneven bars. She won a gold medal.

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

Possible causal claim.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	?
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

Possible causal claim.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

Possible causal claim.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
lan	No (0)	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

Possible causal claim.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
lan	No (0)	No (0)	0

Holland 1986

Descriptive evidence

under

Mediterranean

diet

Holland 1986

under

Mediterranean

diet

under

standard

diet

under

standard

diet

Holland 1986

Holland 1986

Causal inference is a missing data problem

 Y_i Outcome

Whether person i survived

 Y_i Outcome A_i Treatment

Whether person i survived Whether person i ate a Mediterranean diet

 Y_i Outcome Whether person i survived A_i Treatment Whether person i ate a Mediterranean diet Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

 Y_i Outcome

 A_i Treatment

 Y_i^a Potential Outcome

Whether person *i* survived Whether person *i* ate a Mediterranean diet Outcome person *i* would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$

Ian survived

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 $Y_{lan}^{Mediterranean Diet} = survived$ Ian would survive on a Mediterranean diet

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 $Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$ lan would survive on a Mediterranean diet

 $Y_{\text{lan}}^{\text{StandardDiet}} = \text{died}$ lan would die on a standard diet

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

 $Y_{lan} = survived$ lan survived

 $A_{lan} = MediterraneanDiet$ lan ate a Mediterranean diet

 $Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$ lan would survive on a Mediterranean diet

 $Y_{\text{lan}}^{\text{StandardDiet}} = \text{died}$ lan would die on a standard diet

Discuss.

Which potential outcome is observed?

Which is counterfactual?

 $Y_i^{\mathsf{MediterraneanDiet}}$

 $Y_i^{\text{StandardDiet}}$

Potential Outcomes

 $Y_i^{\text{MediterraneanDiet}}$

 $Y_{:}^{StandardDiet}$

Potential Outcomes

 Y_i

Factual Outcomes

Consistency Assumption

$$Y_i^{A_i} = Y_i$$

 $Y_i^{\text{MediterraneanDiet}}$

 $Y_i^{\text{StandardDiet}}$

Potential Outcomes

 Y_i

Factual Outcomes

A person's potential outcome is a fixed quantity

A person's potential outcome is a fixed quantity

 $Y_{lan}^{MediterraneanDiet} = \mathtt{survived}$

A person's potential outcome is a fixed quantity

$$Y_{\text{lan}}^{\text{MediterraneanDiet}} = \text{survived}$$

The outcome for a random person is a random variable

A person's potential outcome is a fixed quantity

$$Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$$

The outcome for a random person is a random variable

► Draw a random person from the population

A person's potential outcome is a fixed quantity

$$Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}$$

The outcome for a random person is a random variable

- ▶ Draw a random person from the population
- ► Assign them a Mediterranean diet

A person's potential outcome is a fixed quantity

$$Y_{lan}^{MediterraneanDiet} = survived$$

The outcome for a random person is a random variable

- ► Draw a random person from the population
- ► Assign them a Mediterranean diet
- ightharpoonup The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - ► takes the value survived if we randomly sample some people
 - takes the value died if we randomly sample others

A person's potential outcome is a fixed quantity

$$Y_{lan}^{MediterraneanDiet} = survived$$

The outcome for a random person is a random variable

- ► Draw a random person from the population
- ► Assign them a Mediterranean diet
- ightharpoonup The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - ► takes the value survived if we randomly sample some people
 - takes the value died if we randomly sample others

Check for understanding:

Does it make sense to write $V(Y_i^a)$? How about $V(Y^a)$

Notation: Expectation operator

The **expectation operator** E() denotes the population mean

$$\mathsf{E}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{\mathsf{a}}$$

The quantity Y^a inside the expectation must be a random variable

Notation: Expectation operator

The **expectation operator** E() denotes the population mean

$$\mathsf{E}(Y^a) = \frac{1}{n} \sum_{i=1}^n Y_i^a$$

The quantity Y^a inside the expectation must be a random variable

A conditional expectation is denoted with a vertical bar

$$\mathsf{E}(Y\mid A=a)=\frac{1}{n_a}\sum_{i:A:=a}Y_i$$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

1.
$$E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$$

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

- 2. $E(Earnings^{Degree=TRUE}) > E(Earnings^{Degree=FALSE})$
 - On average, a degree causes higher earnings

Practice: How would you wi	rite this	in	math?
----------------------------	-----------	----	-------

1. On average, students who do the homework learn more than those who don't

2. On average, doing the homework causes more learning

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't

$$\mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{FALSE})$$

2. On average, doing the homework causes more learning

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't

$$\mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{FALSE})$$

2. On average, doing the homework causes more learning

$$\mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathsf{TRUE}}) > \mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathsf{FALSE}})$$

An example about inequality

Americans' education in 1900

(Brand 2023 p. 6)

- ► 6% graduated from high school
- ► 3% graduated from college

Figure 1.1 High School and Four-Year College Completion Rates, 1940–2020

Source: U.S. Census Bureau, March Current Population Survey and Annual Social and Economic Supplement to the Current Population Survey.

(Brand 2023)

We would like to know whether **college pays off**: does it have positive effects on desired outcomes?

People with college degrees earn more

A college degree causes higher earnings

People with college degrees earn more

A college degree causes higher earnings

Two sets of people Two treatments

People with college degrees earn more

A college degree causes higher earnings

Two sets of people Two treatments

People with college degrees earn more

A college degree causes higher earnings

Two sets of people Two treatments

Same people Two treatments

People with college degrees earn more

A college degree causes higher earnings

Two sets of people Two treatments

Same people Two treatments

People with college degrees earn more

A college degree causes higher earnings

People with college degrees earn more

A college degree causes higher earnings

The fundamental problem of causal inference

The data

Holland 1986

The fundamental problem of causal inference

Holland 1986

The fundamental problem of causal inference

Counterfactuals are not observed

Holland 1986

The data

Quick review

Quick review

- 1. causal claims involve potential outcomes: Y^a
- 2. not all potential outcomes are observed
- 3. causal inference is a missing data problem

Population Outcomes

Populatio Outcome	
Y_{Maria}	$S_{Maria} = 1$
$Y_{William}$	$S_{William} = 0$
Y_{Rich}	$S_{Rich} = 0$
Y_{Sarah}	$S_{Sarah} = 1$
$Y_{Alondra}$	$S_{Alondra} = 0$
$Y_{Jesús}$	$S_{Jesús} = 1$

Population Outcomes			Sampled Outcomes	
	Y_{Maria}	$S_{Maria} = 1$	Y_{Maria}	
	Y _{William}	$S_{William} = 0$		
	Y_{Rich}	$S_{Rich} = 0$		
	Y_{Sarah}	$S_{Sarah} = 1$	Y_{Sarah}	
	Y _{Alondra}	$S_{Alondra} = 0$		
	Y _{Jesús}	$S_{Jesús} = 1$	Y _{Jesús}	

Population Outcomes			Sampled Outcomes	Estimator: Estimate the		
	Y_{Maria}	$S_{Maria} = 1$	Y_{Maria}	population mean by the sample mean		
	$Y_{William}$	$S_{ m William}=0$				
	Y_{Rich}	$S_{Rich} = 0$		Key assumption : Sampled and		
	Y_{Sarah}	$S_{Sarah} = 1$	Y_{Sarah}	unsampled units are exchangeable		
	$Y_{Alondra}$	$S_{Alondra} = 0$		due to random sampling		
	Y _{Jesús}	$S_{Jesús} = 1$	Y _{Jesús}			
				$Y \perp \!\!\! \perp S$		

Now suppose our population all participate in a randomized experiment with treatment (A = 1) and control (A = 0) conditions

Population Potential Outcomes

Population Potential Outcomes	Randomized Treatment	
Y^1_{Maria}	$A_{Maria} = 1$	
Y _{William}	$A_{\text{William}} = 0$	
Y _{Rich}	$A_{Rich} = 0$	
Y _{Sarah}	$A_{\sf Sarah}=1$	
Y ¹ Alondra	$A_{Alondra} = 0$	
$Y^1_{Jesús}$	$A_{Jesús} = 1$	

Population Potential Outcomes		Randomized	Observed Outcomes	
	Y^1_{Maria}	$A_{Maria} = 1$	Y^1_{Maria}	
	$Y^1_{William}$	$A_{\text{William}} = 0$		
	Y^1_{Rich}	$A_{Rich} = 0$		
	Y^1_{Sarah}	$A_{Sarah} = 1$	Y^1_{Sarah}	
	$Y^1_{Alondra}$	$A_{Alondra} = 0$		
	$Y^1_{Jesús}$	$A_{Jesús} = 1$	Y ¹ Jesús	

Population Potential Outcomes

 Y^1_{Alond} ra

Randomized Treatment

$$A_{Maria} = 1$$
 $A_{William} = 0$

$$A_{\mathsf{Rich}} = 0$$

$$A_{\mathsf{Sarah}} = 1$$

$$A_{Alondra} = 0$$

$$A_{\mathsf{Jesús}} = 1$$

Observed Outcomes

$$Y^1_{\mathsf{Maria}}$$

Estimator:

Estimate the population mean $\mathsf{E}(Y^1)$ by the untreated sample mean

Key assumption:

Treated and untreated units are **exchangeable** due to random treatment assignment

$$Y^1 \perp \!\!\! \perp A$$

Randomized Observed **Treatment** Outcomes $A_{\text{Maria}} = 1$ Y_{William} $A_{William} = 0$ $A_{\rm Rich} = 0$ $A_{\mathsf{Sarah}} = 1$ $Y_{Alondra}^{0}$ $A_{Alondra} = 0$ $A_{\text{legús}} = 1$

Estimator:

Estimate the population mean $\mathsf{E}(Y^0)$ by the untreated sample mean

Key assumption:

Treated and untreated units are **exchangeable** due to random treatment assignment

$$Y^0 \perp \!\!\! \perp A$$

Population Potential Outcomes		Randomized Treatment	Observed Outcomes	
Y^1_{Maria}	Y _{Maria}	$A_{Maria} = 1$	Y_{Maria}^1	
Y _{William}	Y _{William}	$A_{\text{William}} = 0$		Y _{William}
Y ¹ Rich	Y _{Rich}	$A_{Rich} = 0$		Y _{Rich}
Y^1_{Sarah}	Y _{Sarah}	$A_{Sarah} = 1$	Y _{Sarah}	
Y ¹ _{Alondra}	Y _{Alondra}	$A_{Alondra} = 0$		Y _{Alondra}
Y _{Jesús}	Y _{Jesús}	$A_{Jesús} = 1$	Y ¹ Jesús	

Causal Estimand:

(expected outcome if assigned to treatment)

(expected outcome if assigned to control)

$$\mathsf{E}\left(Y^{1}\right)-\mathsf{E}\left(Y^{0}\right)$$

Exchangeability Assumption:

Potential outcomes are independent of treatment assignment

$$\{Y^0, Y^1\} \perp A$$

Empirical Estimand:

(expected outcome among the treated)

(expected outcome among the untreated)

$$E(Y | A = 1) - E(Y | A = 0)$$

$$E(Y^{1}) - E(Y^{0})$$
= $E(Y^{1} | A = 1) - E(Y^{0} | A = 0)$
= $E(Y | A = 1) - E(Y | A = 0)$

$$\begin{split} &\mathsf{E}\left(Y^{1}\right) - \mathsf{E}\left(Y^{0}\right) \\ &= \mathsf{E}\left(Y^{1} \mid A = 1\right) - \mathsf{E}\left(Y^{0} \mid A = 0\right) \\ &= \mathsf{E}\left(Y \mid A = 1\right) - \mathsf{E}\left(Y \mid A = 0\right) \end{split} \qquad \text{by consistency}$$

$$\begin{split} &\mathsf{E}\left(Y^{1}\right) - \mathsf{E}\left(Y^{0}\right) \\ &= \mathsf{E}\left(Y^{1} \mid A = 1\right) - \mathsf{E}\left(Y^{0} \mid A = 0\right) \quad \text{by exchangeability} \\ &= \mathsf{E}\left(Y \mid A = 1\right) - \mathsf{E}\left(Y \mid A = 0\right) \qquad \qquad \text{by consistency} \end{split}$$

$$\begin{split} &\mathsf{E}\left(Y^{1}\right) - \mathsf{E}\left(Y^{0}\right) \\ &= \mathsf{E}\left(Y^{1} \mid A = 1\right) - \mathsf{E}\left(Y^{0} \mid A = 0\right) \quad \text{by exchangeability} \\ &= \mathsf{E}\left(Y \mid A = 1\right) - \mathsf{E}\left(Y \mid A = 0\right) \qquad \qquad \text{by consistency} \end{split}$$

This is an example of **causal identification**: using assumptions to arrive at an empirical quantity (involving only factual random variables, no potential outcomes) that equals our causal estimand if the assumptions hold

The causal estimand $E(Y^1) - E(Y^0)$ is **identified** by the empirical estimand $E(Y \mid A = 1) - E(Y \mid A = 0)$

Potential outcome exercise: Covid vaccines

Potential outcome exercise: Covid vaccines

Suppose we know the following pieces of information:

- Martha was vaccinated against Covid.
 Martha tested negative 6 months later.
- Ezra was not vaccinated against Covid. Ezra tested positive 6 months later.

Potential outcome exercise: Covid vaccines

Suppose we know the following pieces of information:

- ► Martha was vaccinated against Covid.

 Martha tested negative 6 months later.
- Ezra was not vaccinated against Covid. Ezra tested positive 6 months later.

Which cells have known values? What are the values?

	A_i	Y_i	$Y_i^{\text{Vaccinated}}$	$Y_i^{Unvaccinated}$
Martha				
Ezra				

Suppose we gathered data by surveying individuals in Fall of 2021

- ▶ Vaccinated for covid $(A_i = 1)$ or not $(A_i = 0)$
- ▶ Tested positive for Covid in 2021: yes $(Y_i = 1)$ or no $(Y_i = 0)$

We observe evidence

- ▶ Of the individuals who are **vaccinated** $(A_i = 1)$, 50% had a positive Covid test $(Y_i = 1)$
- ▶ Of the individuals who are **not vaccinated** $(A_i = 0)$, 70% had a positive Covid test $(Y_i = 1)$

We observe evidence

- ▶ Of the individuals who are **vaccinated** $(A_i = 1)$, 50% had a positive Covid test $(Y_i = 1)$
- ▶ Of the individuals who are **not vaccinated** $(A_i = 0)$, 70% had a positive Covid test $(Y_i = 1)$

How might a vaccine skeptic explain the data?

Experiment designed by Pfizer **randomly assign** each individual (43,000 total) into two groups¹:

- ► Two doses of BNT162b2 vaccine 21 days apart
- ► Two doses of placebo 21 days apart
- ► Whether a positive Covid test was recorded between 7 days and 14 weeks after the injection

Experiment designed by Pfizer **randomly assign** each individual (43,000 total) into two groups¹:

- ► Two doses of BNT162b2 vaccine 21 days apart
- ► Two doses of placebo 21 days apart
- Whether a positive Covid test was recorded between 7 days and 14 weeks after the injection
- ▶ Of the individuals who were given the vaccine $(A_i = 1)$, 0.04% had a positive Covid test $(Y_i = 1)$
- ▶ Of the individuals who were given the placebo $(A_i = 0)$, 0.9% had a positive Covid test $(Y_i = 1)$
- ▶ Individuals who received the placebo were \approx 20 times more likely to get Covid

Experiment designed by Pfizer **randomly assign** each individual (43,000 total) into two groups¹:

- ► Two doses of BNT162b2 vaccine 21 days apart
- ► Two doses of placebo 21 days apart
- ► Whether a positive Covid test was recorded between 7 days and 14 weeks after the injection
- ▶ Of the individuals who were given the vaccine $(A_i = 1)$, 0.04% had a positive Covid test $(Y_i = 1)$
- ▶ Of the individuals who were given the placebo $(A_i = 0)$, 0.9% had a positive Covid test $(Y_i = 1)$
- ▶ Individuals who received the placebo were \approx 20 times more likely to get Covid

Do the skeptic's objections still hold?

Characteristic	BNT162b2 (N=18,860)	Placebo (N=18,846)	Total (N=37,706)
Sex — no. (%)			
Male	9,639 (51.1)	9,436 (50.1)	19,075 (50.6)
Female	9,221 (48.9)	9,410 (49.9)	18,631 (49.4)
Race or ethnic group — no. (%)†			
White	15,636 (82.9)	15,630 (82.9)	31,266 (82.9)
Black or African American	1,729 (9.2)	1,763 (9.4)	3,492 (9.3)
Asian	801 (4.2)	807 (4.3)	1,608 (4.3)
Native American or Alaska Native	102 (0.5)	99 (0.5)	201 (0.5)
Native Hawaiian or other Pacific Islander	50 (0.3)	26 (0.1)	76 (0.2)
Multiracial	449 (2.4)	406 (2.2)	855 (2.3)
Not reported	93 (0.5)	115 (0.6)	208 (0.6)
Hispanic or Latinx	5,266 (27.9)	5,277 (28.0)	10,543 (28.0)
Country — no. (%)			
Argentina	2,883 (15.3)	2,881 (15.3)	5,764 (15.3)
Brazil	1,145 (6.1)	1,139 (6.0)	2,284 (6.1)
South Africa	372 (2.0)	372 (2.0)	744 (2.0)
United States	14,460 (76.7)	14,454 (76.7)	28,914 (76.7)
Age group — no. (%)			
16–55 yr	10,889 (57.7)	10,896 (57.8)	21,785 (57.8)
>55 yr	7,971 (42.3)	7,950 (42.2)	15,921 (42.2)
Age at vaccination — yr			
Median	52.0	52.0	52.0
Range	16-89	16-91	16-91
Body-mass index:			
≥30.0: obese	6,556 (34.8)	6,662 (35.3)	13,218 (35.1)

^{*} Percentages may not total 100 because of rounding. † Race or ethnic group was reported by the participants.

[‡] The body-mass index is the weight in kilograms divided by the square of the height in meters.

In random experiments, the distribution of **potential outcomes** for those who are treated and those who are not treated (control group) are identically distributed!

$$\{Y^1, Y^0\} \perp A$$

This is exchangeability

Question. Does exchangeability imply $Y \perp A$?

Exchangeability is about **potential** rather than **observed** outcomes

$$\{Y^0, Y^1\} \perp A$$
 rather than $Y \not\perp A$

Exchangeability is about **potential** rather than **observed** outcomes

$$\{Y^0, Y^1\} \perp A$$
 rather than $Y \not\perp A$

- ▶ Potential outcomes are independent of treatment $\{Y^0, Y^1\} \perp A$
 - ▶ Example: Risk of covid under no vaccine (Y^0) is the same for those with and without a vaccine

Exchangeability is about **potential** rather than **observed** outcomes

$$\{Y^0, Y^1\} \perp A$$
 rather than $Y \not\perp A$

- ▶ Potential outcomes are independent of treatment $\{Y^0, Y^1\} \perp A$
 - ▶ Example: Risk of covid under no vaccine (Y^0) is the same for those with and without a vaccine
- ightharpoonup Observed outcomes are not independent of treatment $Y \not\perp \!\!\! \perp A$
 - ► Example: Risk of covid is lower for those with the vaccine
 - ▶ Why? Because for them $Y = Y^1$. For others, $Y = Y^0$.
 - ▶ If A affects Y, then $Y \perp \!\!\! \perp A$

Exchangeability is about **potential** rather than **observed** outcomes

$$\{Y^0, Y^1\} \perp A$$
 rather than $Y \not\perp A$

- ▶ Potential outcomes are independent of treatment $\{Y^0, Y^1\} \perp A$
 - Example: Risk of covid under no vaccine (Y^0) is the same for those with and without a vaccine
- ightharpoonup Observed outcomes are not independent of treatment $Y \not\perp\!\!\!\perp A$
 - ► Example: Risk of covid is lower for those with the vaccine
 - ▶ Why? Because for them $Y = Y^1$. For others, $Y = Y^0$.
 - ▶ If A affects Y, then $Y \perp \!\!\! \perp A$

Under exchangeability, the only reason $Y \not\perp A$ is if A causes Y.

Review of exchangeability

Exchangeable sampling from a population

Population Outcomes			Sampled Outcomes	Estimator: Estimate the
	Y_{Maria}	$S_{Maria} = 1$	Y_{Maria}	population mean by the sample mean
	Y_{William}	$S_{William} = 0$		
	Y_{Rich}	$S_{Rich} = 0$		Key assumption : Sampled and
	Y_{Sarah}	$S_{Sarah} = 1$	Y_{Sarah}	unsampled units are exchangeable
	$Y_{Alondra}$	$S_{Alondra} = 0$		due to random
	Y _{Jesús}	$S_{Jesús} = 1$	$Y_{Jesús}$	sampling
				$Y \perp \!\!\! \perp S$

Population Potential Outcomes		Randomized Treatment	Observed Outcomes	
Y_{Maria}^1	Y _{Maria}	$A_{Maria} = 1$	Y^1_{Maria}	
Y _{William}	Y _{William}	$A_{William} = 0$		Y _{William}
Y _{Rich}	Y_{Rich}^0	$A_{Rich} = 0$		Y_{Rich}^0
Y^1_{Sarah}	Y _{Sarah}	$A_{Sarah} = 1$	Y^1_{Sarah}	
$Y^1_{Alondra}$	Y _{Alondra}	$A_{Alondra} = 0$		Y _{Alondra}
Y _{Jesús}	Y _{Jesús}	$A_{Jesús} = 1$	Y _{Jesús}	

A **conditionally** randomized experiment

A hypothetical experiment: Conditional randomization

Outcome: Employed at age 40

Does exchangeability hold? How would you analyze?

A hypothetical experiment: Conditional randomization

Outcome: Employed at age 40

Conditional randomization: Exchangeability does not hold

Conditional randomization: Exchangeability does not hold

Treated units are more likely to have done well in high school

Conditional randomization: Exchangeability does not hold

Treated units are more likely to have done well in high school

Those who do well in high school are more likely to be employed at age 40 even without college

Conditional randomization: Exchangeability does not hold

Treated units are more likely to have done well in high school

Those who do well in high school are more likely to be employed at age 40 even without college

$$\{Y^1, Y^0\} \not\perp\!\!\!\perp A$$

Conditional randomization: Analyze within subgroups

Conditional randomization: Analyze within subgroups

Among top 25%, simple random experiment. Among bottom 75%, simple random experiment.

Conditional randomization: Analyze within subgroups

Among top 25%, simple random experiment. Among bottom 75%, simple random experiment.

Conditional exchangeability:

Conditional average treatment effects

We get two estimates. Average effect of college on employment

- ▶ among those in the top 25% of their high school class
- ▶ among those in the bottom 75% of their high school class

These are conditional average treatment effects

Effect heterogeneity: CATEs differ across subgroups

Why might the effect of college on future employment

- ▶ be larger for those from the top 25% of the high school class?
- ▶ be larger for those from the bottom 75% of the high school class?

Effect heterogeneity and policy

Suppose we study (college \rightarrow employment) in two subgroups

- ► Advantaged subgroup
 - ► Both parents finished college
 - ► Top quartile of family income at age 14
 - Took college prep courses
- Disadvantaged subgroup
 - Neither parent finished college
 - ▶ Bottom quartile of family income at age 14
 - ► Took college prep courses

Discuss:

- 1. Whose CATE would be larger?
- 2. How might the difference inform policy?

A hypothetical experiment: Conditional randomization

Outcome: Employed at age 40

- ▶ **Nodes** (X, A, Y) are random variables
- ▶ **Edges** (\rightarrow) are causal relationships.
 - ► X has a causal effect on A
 - ➤ X has a causal effect on Y
 - ► A has a causal effect on Y

A path is a sequence of edges connecting two nodes.

A path is a sequence of edges connecting two nodes.

Between A and Y, what are the two paths?

A path is a sequence of edges connecting two nodes.

Between A and Y, what are the two paths?

- ightharpoonup A
 ightarrow Y
- $\blacktriangleright \ A \leftarrow X \rightarrow Y$

Define Causal Effects

$$A \to Y$$

$$A \to M \to Y$$

$$A \leftarrow X \to Y$$

$$A o Y$$
 causal path $A o M o Y$ $A \leftarrow X o Y$

$$A o Y$$
 causal path $A o M o Y$ causal path $A \leftarrow X o Y$

$$A o Y$$
 causal path $A o M o Y$ causal path $A \leftarrow X o Y$ not a causal path

Causal path: Marginal dependence

$$ullet$$
 o o o

A causal path $A \to \cdots \to B$ will make the variables A and B statistically dependent

Example:

 $(\text{visits grocery store}) \rightarrow (\text{buys ice cream}) \rightarrow (\text{eats ice cream})$

Causal path: Marginal dependence

$$ullet$$
 o o o

A causal path $A \to \cdots \to B$ will make the variables A and B statistically dependent

Example:

 $(\text{visits grocery store}) \rightarrow (\text{buys ice cream}) \rightarrow (\text{eats ice cream})$

What if we condition: filter to those with (buys ice cream = FALSE)?

Causal path: Conditional independence

ullet o ullet o

A causal path $A \to \cdots \to B$ will not make the variables A and B statistically dependent if we condition on a variable along the path

Example:

 $(\text{visits grocery store}) \rightarrow \Big| (\text{buys ice cream}) \Big| \rightarrow (\text{eats ice cream})$

Causal path: Conditional independence

ullet o ullet o

A causal path $A \to \cdots \to B$ will not make the variables A and B statistically dependent if we condition on a variable along the path

Example:

$$(\text{visits grocery store}) \rightarrow \Big| (\text{buys ice cream}) \Big| \rightarrow (\text{eats ice cream})$$

Among people who didn't buy ice cream today, those who went to the store and didn't are equally likely to be eating ice cream.

Causal path: Conditional independence

A causal path $A \rightarrow \cdots \rightarrow B$ will not make the variables A and B

Example:

$$(\text{visits grocery store}) \rightarrow \Big| (\text{buys ice cream}) \Big| \rightarrow (\text{eats ice cream})$$

statistically dependent if we condition on a variable along the path

Among people who didn't buy ice cream today, those who went to the store and didn't are equally likely to be eating ice cream.

Conditioning on (buys ice cream = FALSE) blocks this path.

Fork structure

A sequence of edges within a path in which two variables are both caused by a third variable: $A \leftarrow C \rightarrow B$

Fork structure

A sequence of edges within a path in which two variables are both caused by a third variable: $A \leftarrow C \rightarrow B$

In our initial graph, what path contains a fork structure?

Recall that there are two paths:

- 1. $A \rightarrow Y$
- $A \leftarrow X \rightarrow Y$

Fork structure

A sequence of edges within a path in which two variables are both caused by a third variable: $A \leftarrow C \rightarrow B$

In our initial graph, what path contains a fork structure?

Recall that there are two paths:

- 1. $A \rightarrow Y$
- 2. $A \leftarrow X \rightarrow Y$ (this path contains a fork structure)

A fork structure $A \leftarrow C \rightarrow B$ will make A and B statistically dependent (because C causes both).

Example:

(completed college) \leftarrow (top 25% of high school) \rightarrow (employed at 40)

ullet \leftarrow ullet \rightarrow ullet

A fork structure $A \leftarrow C \rightarrow B$ will make A and B statistically dependent (because C causes both).

Example:

(lifeguard rescues) \leftarrow (temperature) \rightarrow (ice cream sales)

$$ullet$$
 \leftarrow $ullet$ \rightarrow $ullet$

A fork structure $A \leftarrow C \rightarrow B$ will make A and B statistically dependent (because C causes both).

Example:

 $(\mathsf{lifeguard}\ \mathsf{rescues}) \leftarrow (\mathsf{temperature}) \rightarrow (\mathsf{ice}\ \mathsf{cream}\ \mathsf{sales})$

On days with many lifeguard rescues, there are also many ice cream sales. Warm temperature causes both.

$$ullet$$
 \leftarrow $ullet$ \rightarrow $ullet$

A fork structure $A \leftarrow C \rightarrow B$ will make A and B statistically dependent (because C causes both).

Example:

 $(\mathsf{lifeguard}\ \mathsf{rescues}) \leftarrow (\mathsf{temperature}) \rightarrow (\mathsf{ice}\ \mathsf{cream}\ \mathsf{sales})$

On days with many lifeguard rescues, there are also many ice cream sales. Warm temperature causes both.

What if we look only at days with a given temperature?

Fork structure: Conditional independence

$$ullet$$
 \leftarrow $ullet$ \rightarrow $ullet$

A fork structure $A \leftarrow \boxed{C} \rightarrow B$ does not make A and B statistically dependent if we condition on C.

Example:

$$(\mathsf{lifeguard\ rescues}) \leftarrow \boxed{(\mathsf{temperature})} \rightarrow (\mathsf{ice\ cream\ sales})$$

Among days with a given temperature, lifeguard rescues and ice cream sales are unrelated.

Conditioning on (temperature) blocks this path.

Collider structure

A sequence of edges within a path in which two variables both cause a third variable: $A \rightarrow C \leftarrow B$

Collider structure

A sequence of edges within a path in which two variables both cause a third variable: $A \rightarrow C \leftarrow B$

Example:

- ► sprinklers on a timer
- ► rain on random days
- ▶ either one can make the grass wet

$$(sprinklers on) \rightarrow (grass wet) \leftarrow (raining)$$

Collider structure

A sequence of edges within a path in which two variables both cause a third variable: $A \rightarrow C \leftarrow B$

Example:

- ► sprinklers on a timer
- ► rain on random days
- ▶ either one can make the grass wet

$$(sprinklers on) \rightarrow (grass wet) \leftarrow (raining)$$

Are (sprinklers on) and (raining) statistically related?

Collider structure: Marginal independence

In a collider structure $A \rightarrow C \leftarrow B$, A and B are marginally independent.

$$(\mathsf{sprinklers}\ \mathsf{on}) \to (\mathsf{grass}\ \mathsf{wet}) \leftarrow (\mathsf{raining})$$

Knowing (sprinklers on = TRUE) tells me nothing about whether (raining = TRUE)

Collider structure: Marginal independence

In a collider structure $A \rightarrow C \leftarrow B$, A and B are marginally independent.

$$(\mathsf{sprinklers}\ \mathsf{on}) \to (\mathsf{grass}\ \mathsf{wet}) \leftarrow (\mathsf{raining})$$

Knowing (sprinklers on = TRUE) tells me nothing about whether (raining = TRUE)

What if I condition: look only at days when the grass is wet?

Collider structure: Conditional dependence

$$\bullet \to \bullet \leftarrow \bullet$$

$$(\mathsf{sprinklers}\;\mathsf{on}) \to \Big|\,(\mathsf{grass}\;\mathsf{wet})\,\Big| \leftarrow (\mathsf{raining})$$

Collider structure: Conditional dependence

$$ullet$$
 o $ullet$ \leftarrow $ullet$

$$(\mathsf{sprinklers}\;\mathsf{on}) \to \boxed{(\mathsf{grass}\;\mathsf{wet})} \leftarrow (\mathsf{raining})$$

```
Among days when (grass wet = TRUE), if (sprinklers on = FALSE) then it must be (raining = TRUE) (grass had to get wet somehow!)
```

Collider structure: Conditional dependence

$$ullet$$
 o o \leftarrow o

$$(\mathsf{sprinklers}\ \mathsf{on}) \to \boxed{(\mathsf{grass}\ \mathsf{wet})} \leftarrow (\mathsf{raining})$$

Among days when (grass wet = TRUE), if (sprinklers on = FALSE) then it must be (raining = TRUE) (grass had to get wet somehow!)

In a collider structure $A \rightarrow \boxed{C} \leftarrow B$, A and B are conditionally dependent.

Review: Three structures

		A and B marginally	A and B conditionally
Name	Structure	dependent?	dependent given C?
Causal path	$A \rightarrow C \rightarrow B$	Yes	No
Fork	$A \leftarrow C \rightarrow B$	Yes	No
Collider	$A \rightarrow C \leftarrow B$	No	Yes

 $(\mathsf{timer}\;\mathsf{displays}\;\mathsf{clock}) \leftarrow (\mathsf{timer}\;\mathsf{works}) \rightarrow (\mathsf{sprinklers}\;\mathsf{on}) \rightarrow (\mathsf{grass}\;\mathsf{wet}) \leftarrow (\mathsf{raining})$

```
 \begin{tabular}{ll} (timer displays clock) \leftarrow (timer works) \rightarrow (sprinklers on) \rightarrow (grass wet) \leftarrow (raining) \\ (timer displays clock) is statistically related to which variables? \\ timer works \\ sprinklers on \\ grass wet \\ raining \\ \end{tabular}
```

```
(timer displays clock) ← (timer works) → (sprinklers on) → (grass wet) ← (raining)
(timer displays clock) is statistically related to which variables?
timer works yes
sprinklers on
grass wet
raining
```

```
(timer displays clock) ← (timer works) → (sprinklers on) → (grass wet) ← (raining)
(timer displays clock) is statistically related to which variables?
timer works yes
sprinklers on yes
grass wet
raining
```

```
 \begin{array}{l} \text{(timer displays clock)} \leftarrow \text{(timer works)} \rightarrow \text{(sprinklers on)} \rightarrow \text{(grass wet)} \leftarrow \text{(raining)} \\ \\ \text{(timer displays clock)} \text{ is statistically related to which variables?} \\ \\ \text{timer works} \quad \text{yes} \\ \\ \text{sprinklers on} \quad \text{yes} \\ \\ \text{grass wet} \quad \text{yes} \\ \\ \text{raining} \\ \end{array}
```

```
 \begin{array}{ll} \text{(timer displays clock)} \leftarrow \text{(timer works)} \rightarrow \text{(sprinklers on)} \rightarrow \text{(grass wet)} \leftarrow \text{(raining)} \\ \\ \text{(timer displays clock)} \text{ is statistically related to which variables?} \\ \\ \text{timer works} & \text{yes} \\ \\ \text{sprinklers on} & \text{yes} \\ \\ \text{grass wet} & \text{yes} \\ \\ \text{raining} & \text{no} \end{array}
```

```
(timer displays clock) ← (timer works) → (sprinklers on) → (grass wet) ← (raining)
(timer displays clock) is statistically related to which variables?
timer works yes
sprinklers on yes
grass wet yes
raining no
```

We just learned: One collider can block an entire path

 $(\mathsf{timer\ displays\ clock}) \leftarrow (\mathsf{timer\ works}) \rightarrow \boxed{(\mathsf{sprinklers\ on})} \rightarrow (\mathsf{grass\ wet}) \leftarrow (\mathsf{raining})$

Define Causal Effects

```
  (\text{timer displays clock}) \leftarrow (\text{timer works}) \rightarrow (\text{sprinklers on}) \rightarrow (\text{grass wet}) \leftarrow (\text{raining})    (\text{timer displays clock}) \text{ is statistically related to which variables?}    \text{timer works yes}    \text{grass wet no}    \text{raining}
```

```
(\mathsf{timer\ displays\ clock}) \leftarrow (\mathsf{timer\ works}) \rightarrow \boxed{(\mathsf{sprinklers\ on})} \rightarrow (\mathsf{grass\ wet}) \leftarrow (\mathsf{raining})
```

(timer displays clock) is statistically related to which variables?

timer works yes grass wet no raining no

We just learned: One conditioned non-collider can block an entire path

Rules for whether paths are open or blocked

- ▶ If a path contains an unconditioned collider, it is blocked
- ▶ If a path contains a conditioned non-collider, it is blocked
- ► Otherwise, the path is open

Open paths create statistical dependence. Blocked paths do not.

- 1. List all paths between the two nodes
 - $ightharpoonup A \leftarrow C \rightarrow B$
 - ▶ $A \rightarrow D \leftarrow B$

- 1. List all paths between the two nodes
 - \blacktriangleright $A \leftarrow C \rightarrow B$
 - ► $A \rightarrow D \leftarrow B$
- 2. Cross out any blocked paths that are blocked
 - $ightharpoonup A \leftarrow C \rightarrow B$
 - $ightharpoonup A
 ightharpoonup D \leftarrow B$

- 1. List all paths between the two nodes
 - $ightharpoonup A \leftarrow C \rightarrow B$
 - ▶ $A \rightarrow D \leftarrow B$
- 2. Cross out any blocked paths that are blocked
 - $ightharpoonup A \leftarrow C \rightarrow B$
 - $ightharpoonup A
 ightharpoonup D \leftarrow B$
- 3. If any paths remain, the two nodes are dependent
 - ▶ Dependent!

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

Power outage throughout town λ

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

 $\begin{array}{c} \text{Ice cream} \\ \text{freezer broken} \end{array} \begin{array}{c} A \\ \uparrow \\ \text{Power outage} \\ \text{throughout town} \end{array} X$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

$$ightharpoonup A
ightharpoonup B \leftarrow C$$

$$ightharpoonup A \leftarrow X \rightarrow D \leftarrow C$$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

$$ightharpoonup A
ightharpoonup B \leftarrow C$$

▶
$$A \leftarrow X \rightarrow D \leftarrow C$$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

- $ightharpoonup A
 ightharpoonup B \leftarrow C$
- $ightharpoonup A \leftarrow X \rightarrow D \leftarrow C$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

Are A and C statistically independent or dependent?

$$ightharpoonup A
ightharpoonup B \leftarrow C$$

$$ightharpoonup A \leftarrow X \rightarrow D \leftarrow C$$

No unblocked paths. Independent!

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

Are A and D statistically independent or dependent?

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

Are A and D statistically independent or dependent?

$$ightharpoonup A
ightarrow B \leftarrow C
ightarrow D$$

$$ightharpoonup A \leftarrow X \rightarrow D$$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

Are A and D statistically independent or dependent?

$$\blacktriangleright A \rightarrow B \leftarrow C \rightarrow D$$

$$ightharpoonup A \leftarrow X \rightarrow D$$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

Are A and D statistically independent or dependent?

$$ightharpoonup A
ightharpoonup B \leftarrow C
ightharpoonup D$$

$$ightharpoonup A \leftarrow X \rightarrow D$$

A path remains unblocked. Dependent!

Practice with **conditional** dependence (holding something constant)

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

▶
$$A \rightarrow B \leftarrow C \rightarrow D$$

$$\blacktriangleright \ A \leftarrow \boxed{X} \rightarrow D$$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

$$\blacktriangleright A \to B \leftarrow C \to D$$

$$\blacktriangleright A \leftarrow \boxed{X} \rightarrow D$$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

$$\blacktriangleright A \rightarrow B \leftarrow C \rightarrow D$$

$$ightharpoonup A \leftarrow X \rightarrow D$$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

Practice: Are A and D statistically independent or dependent, conditional on X = FALSE?

$$\blacktriangleright A \rightarrow B \leftarrow C \rightarrow D$$

$$\blacktriangleright A \leftarrow X \rightarrow D$$

No unblocked paths. Independent!

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

$$\blacktriangleright A \to \boxed{B} \leftarrow C \to D$$

$$\blacktriangleright A \leftarrow \boxed{X} \rightarrow D$$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

$$\blacktriangleright A \to \boxed{B} \leftarrow C \to D$$

$$\blacktriangleright A \leftarrow X \rightarrow D$$

1. List all paths. 2. Cross out blocked paths. 3. Dependent if any paths remain.

Practice: Are A and D statistically independent or dependent, conditional on X = FALSE and B = 0?

$$\blacktriangleright A \to \boxed{B} \leftarrow C \to D$$

$$ightharpoonup A \leftarrow X \rightarrow D$$

A path remains. Dependent!

When studying the effect of A on Y, conditional exchangeability holds if the only unblocked paths between A and Y are causal paths from A to Y.

When studying the effect of A on Y, conditional exchangeability holds if the only unblocked paths between A and Y are causal paths from A to Y.

When studying the effect of A on Y, conditional exchangeability holds if the only unblocked paths between A and Y are causal paths from A to Y.

When studying the effect of A on Y, conditional exchangeability holds if the only unblocked paths between A and Y are causal paths from A to Y.

▶
$$A \leftarrow X \rightarrow Y$$
 (blocked by conditioning on X)

When studying the effect of A on Y, conditional exchangeability holds if the only unblocked paths between A and Y are causal paths from A to Y.

- ightharpoonup A
 ightarrow Y
- ▶ $A \leftarrow X \rightarrow Y$ (blocked by conditioning on X)

DAGs and conditional exchangeability: Practice

1. List all paths. 2. Choose adjustment set. 3. Only causal paths remain unblocked.

Find a sufficient adjustment set to identify the effect of A on Y.

DAGs and conditional exchangeability: Practice

1. List all paths. 2. Choose adjustment set. 3. Only causal paths remain unblocked.

Find a sufficient adjustment set to identify the effect of A on Y.

Paths:
$$(A \rightarrow Y)$$
, $(A \leftarrow X_2 \rightarrow Y)$, $(A \leftarrow X_1 \rightarrow Y)$, $(A \leftarrow X_1 \rightarrow Y)$, $(A \leftarrow X_1 \rightarrow X_2 \rightarrow Y)$, $(A \leftarrow X_2 \leftarrow X_1 \rightarrow Y)$

DAGs and conditional exchangeability: Practice

1. List all paths. 2. Choose adjustment set. 3. Only causal paths remain unblocked.

Find a sufficient adjustment set to identify the effect of A on Y.

Paths:
$$(A \rightarrow Y)$$
, $(A \leftarrow X_2 \rightarrow Y)$, $(A \leftarrow X_1 \rightarrow Y)$, $(A \leftarrow X_1 \rightarrow X_2 \rightarrow Y)$, $(A \leftarrow X_2 \leftarrow X_1 \rightarrow Y)$
Adjust for $\{X_1, X_2\}$

Define Causal Effects Exchangeability Conditional Exchangeability

How to draw a DAG

- 1. Begin with treatment A and outcome Y
- 2. Add any variable that affects both
- 3. Add any variable that affects any two variables in the DAG.

Assumptions are about nodes and edges that you omit.

Exercise: Draw a DAG

Treatment is college degree. Outcome is employment at age 40. Identify a sufficient adjustment set under your DAG.

Learning goals for today

By the end of class, you will be able to

- ► define causal effects
- ▶ identify average causal effects by
 - exchangeability
 - conditional exchangeability
- select a sufficient adjustment set using a Directed Acyclic Graph