Imperial College London

MATH 50006 Winter 2022

Department of Mathematics Lecturer: P.-F. Rodriguez p.rodriguez@imperial.ac.uk

Tutorials Lead (Senior GTA): Yuriy Shulzhenko yuriy.shulzhenko16@imperial.ac.uk

Graduate Teaching Assistants (GTAs):

John McCarthy j.mccarthy18@imperial.ac.uk Riccardo Carini r.carini19@imperial.ac.uk Soham Karwa s.karwa19@imperial.ac.uk William Turner william.turner17@imperial.ac.uk

Exercise Sheet 1

- 1. Let (X, \mathcal{A}) be a measurable space, and let $(A_n)_{n\geq 1}$ be a sequence of measurable sets.
 - a) Show that the sets $\liminf A_n$ and $\limsup A_n$ are measurable, where

$$\lim\inf A_n = \bigcup_{N\geq 1} \bigcap_{n\geq N} A_n, \qquad \lim\sup A_n = \bigcap_{N\geq 1} \bigcup_{n\geq N} A_n.$$

- **b)** Let $B, C \in \mathcal{A}$. Specify $\liminf A_n$ and $\limsup A_n$ in terms of B and C if $A_n = B$ for even n and $A_n = C$ for odd n.
- **2.** Let X, Y be sets and $f: X \to Y$ a map. Let \mathcal{B} be a σ -algebra over Y.
 - a) Show that the collection of pre-image sets

$$\{f^{-1}(B): B \in \mathcal{B}\}$$

is a σ -algebra (recall that $f^{-1}(A) \stackrel{\text{def.}}{=} \{x \in X : f(x) \in B\}$). This σ -algebra is usually denoted by $\sigma(f)$.

- **b)** If $y \in Y$ is fixed, $\{y\} \in \mathcal{B}$ and f(x) = y for all $x \in X$ (i.e. f is the constant function equal to y), what is $\sigma(f)$? If $f: X \to Y$ is arbitrary and $Y = \{0, 1\}$, $\mathcal{B} = 2^Y$, what is $\sigma(f)$?
- **3.** Let \mathcal{F}_1 and \mathcal{F}_2 be two σ -algebras over a set X.
 - a) Give an example showing that $\mathcal{F}_1 \cup \mathcal{F}_2 = \{A : A \in \mathcal{F}_1 \text{ or } A \in \mathcal{F}_2\}$ is in general not a σ -algebra.

b) Let

$$\mathcal{F}_1 \vee \mathcal{F}_2 \stackrel{\text{def.}}{=} \sigma(\mathcal{F}_1 \cup \mathcal{F}_2)$$
 (see (1.5) in the notes for notation)

be the σ -algebra generated by $\mathcal{F}_1 \cup \mathcal{F}_2$. Show that:

$$\mathcal{F}_1 \vee \mathcal{F}_2 = \sigma \{ A \cup B : A \in \mathcal{F}_1 \text{ and } B \in \mathcal{F}_2 \},$$

$$\mathcal{F}_1 \vee \mathcal{F}_2 = \sigma \{ A \cap B : A \in \mathcal{F}_1 \text{ and } B \in \mathcal{F}_2 \}.$$

- **4.** Let X be a set and let \mathcal{C} be a non-empty collection of subsets of X. Lucy claims: "For any $A \in \sigma(\mathcal{C})$, there must exist a countable sub-collection $\mathcal{D} \subset \mathcal{C}$ such that $A \in \sigma(\mathcal{D})$." Do you agree with Lucy? Prove your claim or give a counter-example.
- **5.** Let X be an uncountable set,

$$\mathcal{A} = \{ E \subset X : E \text{ is countable or } E^c = X \setminus E \text{ is countable} \}.$$

Show that \mathcal{A} defines a σ -algebra and that $\mu: \mathcal{A} \to [0,1]$ with

$$\mu(E) = \begin{cases} 0, & \text{if } E \text{ is countable} \\ 1, & \text{else} \end{cases}$$

is a measure on X (cf. Example 1.4,3) in the notes).