Contents

 \mathcal{C}

Chapter 1

1

```
(1.5) \\ OrderTrichotomy(<,S) := \forall_{x,y \in S} (x < y \lor x = y \lor y < x) \\ OrderTransitivity(<,S) := \forall_{x,y,z \in S} ((x < y \land y < z) \implies x < z) \\ Order(<,S) := OrderTrichotomy(<,S) \land OrderTransitivity(<,S) \\ (1.7) \\ Bounded Above(E,S,<) := Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (x \leq b) \\ Bounded Below(E,S,<) := Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \leq x) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \in E) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \in E) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \in E) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \in E) \\ A = Order(<,S) \land E \subset S \land \exists_{b \in S} \forall_{x \in E} (b \in E) \\ A = Order(<,S) \land E \subset S \land
```

4 CHAPTER 1. 1

Chapter 2

First Chapter

- 1. First
 - 1.1. Second
 - 1.2. Third
- 2. Fourth

This will be an empty chapter and I will put some text here

$$\sum_{i=0}^{\infty} a_i x^i \tag{2.1}$$

The equation 2.1 shows a sum that is divergent. This formula will later be used in the page ??. For further references see Something Linky or go to the next url: http://www.sharelatex.com or open the next file File.txt It's also possible to link directly any word or any sentence in your document. supwithitSup With It Theorem If you read this text, you will get no information. Really? Is there no information?

For instance this sentence. supwithit