summary

Präodnung: reflexiv, transitiv

Halbordnung: reflexiv, antisymmetrisch, transitiv

total/linear: Halbordung & keine unvergleichbaren Elemente

Wohlordnung: total & jede teilmenge hat ein minimales Element

Äquivalenzrelation: reflexiv, symmetrisch, transitiv

Quantorenregeln:

• $\forall x \ A(x) \Leftrightarrow \neg \exists x \ \neg A(x)$

• $\forall x \in K \ A(x) \Leftrightarrow \neg \exists x \in K \ \neg A(x)$

• $\forall x \in K \ A(x) \iff \forall x (x \in K \Rightarrow A(x))$

• $\exists x \in K \ A(x) \Leftrightarrow \exists x (x \in K \land A(x))$

Distributivgesetz: $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$

De Morgan: $\neg(F \land G) \equiv \neg F \lor \neg G$

DNF: $(A \wedge B) \vee (C \wedge D)$

KNF: $(A \lor B) \land (C \lor D)$

NNF: kein \rightarrow und kein !(...) (alle Negationen kommen in Literalen vor)

Injektiv: Eine Funktion f ist genau dann injektiv, wenn die Relation f $-1 = \{(y, x) \mid (x, y) \in f\}$ eine Funktion ist. Ist $f: A \to B$ eine injektive Funktion, dann nennt man $f-1: Im(f) \to A$ die Umkehrfunktion oder inverse Funktion von f. = Elemente der Zielmenge werden höchstens einmal getroffen.

Surjektiv: Eine Funktion $f: A \rightarrow B$ heisst surjektiv auf B, wenn B = Im(f). = Elemente der Zielmenge werden mindestens einmal getroffen.

Bijektiv: surjektiv + injektiv

Die Menge aller Funktionswerte $Im(f) := \{f(x) \mid x \in A\}$ wird als Bild(menge) von f bezeichnet.

Prädikative Schreibweise: $\{z \in X \mid E(z)\}\$ oder mit $\{z \mid z \in X \land E(z)\}\$ Ersetzungsschreibweise: $\{F(x) \mid x \in X\} := \{y \mid \exists x \in X \ (y = F(x))\}\$

- Sind X und Y Mengen, dann ist $X \cup Y := \{x \mid x \in X \lor x \in Y \}$ die Vereinigung von X mit Y .
- Die Schnittmenge von X und Y ist durch $X \cap Y := \{x \in X \mid x \in Y \} = \{x \in Y \mid x \in X\} = \{x \mid x \in X \land x \in Y \}$ gegeben.
- Ist I eine Menge so, dass für alle Elemente $i \in I$ auch Ai eine Menge ist, dann wird $U(i \in I)$ Ai := $\{x \mid \exists i \in I \ (x \in Ai)\}$. die Vereinigung von $\{Ai \mid i \in I\}$ genannt.
- Analog dazu, ist die Schnittmenge durch \cap i \in I Ai := $\{x \mid \forall i \in I \ (x \in Ai)\}$ gegeben, falls I nicht = \emptyset ist.

Es sei R eine (binäre) Relation.

- Als transitiven Abschluss von R bezeichnet man die kleinste (bezüglich ⊆) transitive Relation, die R als Teilmenge enthält, sie wird mit R+ notiert.
- Die kleinste Relation, die R+ enthält und reflexiv ist, nennt man den reflexivtransitiven Abschluss von R, sie wird mit R* bezeichnet.
- Ein Element $x \in X$ einer Teilmenge $X \subseteq M$ von M heisst R-minimal in X, falls es kein anderes Element $y \in X$ mit yRx gibt.
- Ein Element $x \in X$ einer Teilmenge $X \subseteq M$ von M heisst R-maximal in X, falls es kein anderes Element $y \in X$ mit xRy gibt.

Transitiv: Wenn für alle x, y, $z \in X$. xRy \land yRz \Rightarrow xRz gilt.

Symmetrisch: Wenn für alle x, $y \in X$. $xRy \Rightarrow yRx$ gilt.

Antisymmetrisch: Wenn für alle x, $y \in X$. $xRy \land yRx \Rightarrow x = y$ gilt.

Reflexiv: Wenn für alle $x \in X$. xRx gilt.

Linear: Für alle x,y xRy oder yRx

- ggt(n,m) = ggt(n, m n) = ggt(m, n m) für 0 < n < m
- partition: nichtleer, paarweise disjunkt
- paarweise disjunkt: $\forall i, j \in I \ (i = /= j \Rightarrow Xi \cap Xj = \emptyset)$.
- multiplikatives inverses: a x m = 1 (mod n) \Rightarrow axm + bxn = 1 suchen
- äquivalenzklasse [x] = klasse k in der x drin ist, k bildet äq.relation
- paarweise vergleichbar: aRb, aRc, aRd...
- $P(P(a)) = \{\emptyset, \{\emptyset\}, \{a\}, \{\emptyset, \{a\}\}\}$
- N,Z,Q: abzählbar
- DAG = gerichteter zyklenfreier Graph G(Menge, Relation)

Peano axiome:

- $1.0 \in \mathbb{N}$
- 2. \forall n(n \in N \Rightarrow n' \in N)
- 3. \forall n(n \in N \Rightarrow n' \neq 0)

- 4. $\forall n, m(n, m \in \mathbb{N} \Rightarrow (m' = n' \Rightarrow m = n))$
- 5. $\forall X(0 \in X \land \forall n(n \in \mathbb{N} \Rightarrow (n \in X \ n' \in X)) \Rightarrow \mathbb{N} \subseteq X)$

9 mod 4 = 1. -9 mod 4 = 3. -9 mod -4 = -1. 9 mod -4 = -3.