

!!! Bienvenidos!!!

Equipo de Cátedra:

- Teoría (Resp. Cátedra): Silvina Migani
- Práctica:
 - Silvina Balmaceda (balmaceda.silvina@gmail.com)
 - Cynhtia Aguilera (cynthiaguilerap@gmail.com)
 - Cristina Vera
 - María Eugenia Moreira (mariaeugeniamoreira086@gmail.com)
- Ayudante:
 - Juan Manuel Capdevila (juan.capdevila27@gmail.com)

Medios de Comunicación:

- https://campusvirtual.unsj.edu.ar/course/view.php?id=760
- Auto matriculación: Habilitada
- fcefn.basededatos@gmail.com
- <u>silvina.migani@gmail.com</u>
- Grupo de WhatsApp

Correlatividades

Para la carrera LCC:

- Estructura y Funcionamiento de las Computadoras II (2do año)
- Estructuras de Datos y Algoritmos (2do año)

Para la carrera LSI:

- Sistemas de Datos (3er año)
- Tópicos de Ingeniería de Software y de Requerimientos (3er año)
- Inglés II (3er año)

Para la carrera TPW (PROMOCIONAL):

- Sistemas Operativos
- Programación Procedural
- Matemática aplicada a la Informática
- <u>Fuertes</u> (Para promocionar o rendir deben tener aprobada o rendida):
 - Algoritmos y Resolución de Problemas

Objetivos de la Asignatura

- Comprender el Modelo Matemático subyacente de las bases de datos relacionales
- Construir una base de datos:
 - DISEÑAR
 - IMPLEMENTAR Y USAR (LENGUAJE SQL) una base de datos relacional, a través de un Sistema de Gestión de Base de Datos (SGBD)
- Conocer los problemas de entorno de un SGBD:
 - RECUPERACIÓN
 - CONCURRENCIA

Bibliografía Básica

- Fundamentals of Database Systems (7ma edición, 2016), de los autores Elmasri y Navathe.
- Database Systems: The Complete Book (2da edición, 2008), de los autores Garcia-Molina, Ullman, Widom.
- Database System Concepts (7ma edición, 2019), de los autores
 <u>Silb</u>erschatz, Korth y Sudarshan.

Compromisos de la Cátedra

- Trabajar con honestidad y entusiasmo en el proceso enseñanza-aprendizaje
- Estar disponibles ante sus dudas e inconvenientes
- Acompañarlos en el proceso

Relevancia de las bases de datos en el mundo de la computación

- "Las bases de datos son el corazón de casi todas las aplicaciones informáticas modernas; son el alma que da vida y estructura a nuestros datos." Autor: Michael J. Hernandez
- "En el mundo digital de hoy, las bases de datos son como el oxígeno: invisibles pero indispensables para la vida de nuestras aplicaciones y sistemas informáticos." Autor desconocido
- "Las bases de datos son la columna vertebral de la informática moderna; sin ellas, el mundo digital se desmoronaría en un caos de datos desorganizados e inaccesibles." Autor desconocido

Las bases de datos en el mundo de los trabajos...

Conceptos Fundamentales

¿Qué es una base de datos?

¿Qué es un Sistema de Gestión de Base de Datos (SGBD o DBMS)?

¿Quién es el DBA?

Bases de Datos - Concepto

Una base de datos es un conjunto de datos relacionados entre sí, cuyas características principales son:

- Guarda hechos conocidos que:
 - Pueden registrarse
 - Tienen significado
- Representa una realidad particular, conocido como Minimundo,
 Universo de Discurso o Dominio
- Contiene datos relacionados lógicamente
- Es de propósito específico, es decir, corresponde a un minimundo particular

Base de Datos - Concepto

- Tamaño y complejidad variable
- Mantenida manualmente o por una computadora

Bases de Datos: Evolución

1950 - 1960 **BD Pre-Relacionales** Modelos Codasyl (en red), Jerárquico Ficheros planos 1970 - 1980**BD** Relacionales * Modelo Relacional: Codd en 1970 Sistemas Bases de Datos Relacionales (SGBD: Finales década del 80) 2000 **BD Post-Relacionales (BD NoSQL)** Modelo Orientado a Objetos Modelo de Documentos Modelo de Grafos Modelo Clave-Valor

Porción de una Base de Datos Relacional de un minimundo específico (bancos)

Clientes

id-cliente	nombre-cliente	calle-cliente	ciudad-cliente
19.283.746	González	Arenal	La Granja
01.928.374	Gómez	Carretas	Cerceda
67.789.901	López	Mayor	Peguerinos
18.273.609	Abril	Preciados	Valsain
32.112.312	Santos	Mayor	Peguerinos
33.666.999	Rupérez	Ramblas	León
01.928.374	Gómez	Carretas	Cerceda

Tablas

Vínculos

Cuentas de <u>sus clientes</u>

id-cliente	número-cuenta		
19.283.746	C-101		
19.283.746	C-201		
01.928.374	C-215		
67.789.901	C-102		
18.273.609	C-305		
32.112.312	C-217		
33.666.999	C-222		
01.928.374	C-201		

Conceptos Fundamentales

¿Qué es una base de datos?

¿Qué es un Sistema de Gestión de Base de Datos (SGBD o DBMS)?

¿Quién es el DBA?

Sistemas de Gestión de Base de Datos

- Conjunto de programas que permite crear y manipular bases de datos
- Nombres: Database Management System (DBMS), Sistema de Gestión de Base de Datos (SGBD), o informalmente Motor de Base de Datos

SGBDs mas usados actualmente

DB-Engines Ranking

The DB-Engines Ranking ranks database management systems according to their popularity. The ranking is updated monthly.

Read more about the method of calculating the scores.

418 systems in ranking, March 2024

		капк				Score		
	Mar 2024	Feb 2024	Mar 2023	DBMS	Database Model	Mar 2024	Feb 2024	Mar 2023
	1.	1.	1.	Oracle 😷	Relational, Multi-model 🔞	1221.06	-20.39	-40.23
	2.	2.	2.	MySQL 🚹	Relational, Multi-model 🔞	1101.50	-5.17	-81.29
	3.	3.	3.	Microsoft SQL Server 🞛	Relational, Multi-model 🔞	845.81	-7.76	-76.20
	4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 🛐	634.91	+5.50	+21.08
	5.	5.	5.	MongoDB 🖪	Document, Multi-model 👔	424.53	+4.18	-34.25
	6.	6.	6.	Redis 🚹	Key-value, Multi-model 🛐	157.00	-3.71	-15.45
	7.	7.	1 8.	Elasticsearch	Search engine, Multi-model 🛐	134.79	-0.95	-4.28
	8.	8.	4 7.	IBM Db2	Relational, Multi-model 🔞	127.75	-4.47	-15.17
	9.	9.	1 11.	Snowflake 🖪	Relational	125.38	-2.07	+10.98
	10.	10.	4 9.	SQLite 🚹	Relational	118.16	+0.88	-15.66

PostgreSQL

Fuente: https://db-engines.com/en/ranking/relational+dbms

Sistemas de Gestión de Base de Datos (SGBD)

- Es un sistema de propósito general, es decir, <u>puede gestionar diferentes</u>
 <u>bases de datos usada</u>s por distintas aplicaciones
- Permite definir, construir y manipular bases de datos
- Cuenta con un Diccionario o Catálogo del sistema (adapta SGBD a una bd concreta)

- Generadas por los usuarios
- BDs que contienen datos de las aplicaciones de usuarios

Vistas del diccionario de datos:

DICTIONARY
USER_OBJECTS
USER_TABLES
USER_TAB_COLUMNS

_ _

- Generada automáticamente por el SGBD
- BD que contiene datos de las bds de los usuarios

Propósito de un Sistema de Base de Datos

- Proveer una <u>visión abstracta de los datos</u>: Esconder detalles de cómo se almacenan (no exclusivo de los SGBDs) y mantienen los datos
- Esa visión abstracta incluye 3 niveles:

Niveles de Abstracción

Nivel Físico (Nivel Interno)

Abarca la <u>totalidad</u> de los datos, tal <u>como se encuentran en</u> el <u>almacenamiento secundario (archivos físicos)</u>

Niveles de Abstracción

Nivel lógico (Nivel Conceptual)

Abarca la **totalidad** de los datos que constituyen la base de datos con la <u>"forma"</u> de la <u>estructura</u> de datos propia de una base de datos <u>relacional</u>, es decir, **tablas**

Niveles de Abstracción

Nivel de Vistas/Nivel Externo

Cada Vista abarca los datos de una <u>porción de la base</u> de datos con la <u>"forma"</u> de la <u>estructura</u> de datos propia de una base de datos <u>relacional</u>, es decir, **tablas**

Muchas vistas externas

Sistema de Base de Datos

¿Por qué será necesaria la arquitectura de tres niveles?

Es necesario poder contar:

- Diferentes vistas de los mismos datos
- Cambiar estructuras de almacenamiento o técnicas de acceso

Independencia de los datos

(requisito fundamental para los SGBDs)

Aplicaciones Dato-Dependientes

- Conocimiento de la organización de los datos
- Conocimiento de las técnicas de acceso

Es <u>imposible cambiar</u> la estructura de almacenamiento o técnicas de acceso <u>sin afectar las</u>

<u>aplicaciones</u>

Conceptos Fundamentales

¿Qué es un Sistema de Gestión de Base de Datos (SGBD o DBMS)?

¿Quién es el DBA?

Actores

- Programadores de Aplicación
- Usuarios finales (Aplicaciones, Consultas ad hoc)
- Administrador de Datos (DA)
 - Qué datos serán almacenados
 - Políticas para mantener y manejar los datos (ej. de seguridad: usuarios, backup, etc.)
- Administrador de la Base de Datos (DBA)
 - Implementa las decisiones del DA
 - Crea la base de datos y los controles de seguridad e integridad
 - Responsable de que el sistema opere con la performance adecuada

Y ahora, ¿cómo seguimos?

Por el principio, vamos a construir una base de datos!!!

