Sztuczna Inteligencja Wykład 3

Piotr Wąsiewicz Zakład Sztucznej Inteligencji - ISE FW

pwasiewi@elka.pw.edu.pl

Tablica warunkowo-działaniowa

Tablice warunkowo-działaniowe (condition-action tables) zwane są również systemem informacyjnym i zostały zaproponowane przez prof. Z.Pawlaka.

	Atrybuty warunko	Atrybut dzia- łaniowy	
	а	b	С
x_1	L	0	u
x_2	Н	0	u
x_3	L	1	W
x_4	Н	1	V
x_5	L	2	W
x_6	Н	2	W

Tablice warunkowo-działaniowe

Tablice tego typu mogą być tworzone na podstawie bazy danych, protokołu wywiadu z ekspertem lub protokołu obserwacji danego procesu. Z każdym atrybutem związany jest zbiór jego wartości zwany dziedziną np. $a \in \{L, H\}, b \in \{0, 1, 2\}, c \in \{u, v, w\}$. Elementy x_1, \ldots, x_n zwane są obiektami lub jednostkami np. pacjenci, jednostki czasu itp. Tablica jest kompletna , jeśli wszystkie permutacje wartości atrybutów warunkowych są w niej zawarte. W części działaniowej może wystąpić też kilka atrybutów. Obiekt x_1 może być opisany w następujący sposób:

$$(x_1, a, L) \land (x_1, b, 0) \Rightarrow (x_1, c, u)$$

lub zamieniając stałą x_1 na zmienną x:

$$(x, a, L) \land (x, b, 0) \Rightarrow (x, c, u)$$

W podobny sposób dla obiektu x_2 :

$$(x, a, H) \land (x, b, 0) \Rightarrow (x, c, u)$$

Dwie ostatnie reguły mogą być zastąpione jedną prostszą regułą:

$$(x,b,0) \Rightarrow (x,c,u)$$

Tablice warunkowo-działaniowe

Po uproszczeniu tak wygląda baza reguł dla podanej, pełnej tablicy :

$$(b,0) \Rightarrow (c,u)$$

$$(a,L) \land (b,1) \Rightarrow (c,w)$$

$$(b,2) \Rightarrow (c,w)$$

$$(a,H) \land (b,1) \Rightarrow (c,v)$$

Po skreśleniu wiersza dla x_3 można otrzymać następujący baza reguł:

$$(b,0) \Rightarrow (c,u)$$

 $(b,1) \Rightarrow (c,v)$
 $(b,2) \Rightarrow (c,w)$

Z drugiej reguły usuneliśmy warunek z artybutem a, gdyż nie występował w innych regułach. Opuszczona reguła $(a,L) \wedge (b,1) \Rightarrow (c,w)$ została zgubiona. W ten sposób nowa baza reguł mniej dokładnie opisuje jakąś dziedzinę wiedzy niż zestaw reguł wyprowadzony dla pełnej tablicy.

Relacje nierozróżnialności

W tablicach atrybuty warunkowe i działaniowe mogą nie być rozróżniane.

			Działania	
	а	b	С	d
	znajomość terenu	poziom paliwa	odległość	szybkość $[{km \atop godz}]$
x_1	słaba	niski	mała	< 50
x_2	słaba	niski	mała	< 50
x_3	dobra	niski	średnia	< 50
x_4	dobra	średni	mała	5080
x_5	słaba	niski	mała	< 50
x_6	słaba	wysoki	duża	> 80

Relacje nierozróżnialności

Niech Q oznacza zbiór wszystkich atrybutów np. $Q = \{a,b,c,d\}$. Niech P będzie dowolnym niepustym zbiorem Q. Niech U będzie zbiorem wszystkich obiektów np. $U = \{x_1, x_2, \dots, x_6\}$. Dwa obiekty x, y nie dają się odróżnić w zbiorze P, co oznaczamy

$$x \sim y$$
,

jeśli x oraz y mają te same wartości dla wszystkich atrybutów ze zbioru P np. dla podanej tablicy można napisać:

$$x_{3} \underbrace{x_{4}}_{x_{2}} x_{4}$$

$$x_{2} \underbrace{x_{6}, d}_{Q} x_{3}$$

$$x_{1} \underbrace{Q}_{Q} x_{5}$$

Klasyfikacje

Relacja nierozróżnialności związana z P jest relacją <u>równoważności</u> na U. Można mówić w takim przypadku o <u>klasyfikacji</u> U generowanej przez P, którą oznacza się P^* . Klasyfikacja P^* jest <u>zbiorem klas równoważności</u> (zwanych również blokami) relacji nierozróżnialności np.: klasyfikacja $\{a\}^*$ ma dwa bloki $\{x_1, x_2, x_5, x_6\}$ oraz $\{x_3, x_4\}$, a wszystkie możliwe klasyfikacje podanej wcześniej tabeli są podane poniżej:

$$\{a\}^* = \{\{x_1, x_2, x_5, x_6\}, \{x_3, x_4\}\}$$

$$\{b\}^* = \{\{x_1, x_2, x_3, x_5\}, \{x_4\}, \{x_6\}\}$$

$$\{c\}^* = \{\{x_1, x_2, x_4, x_5\}, \{x_3\}, \{x_6\}\}$$

$$\{d\}^* = \{\{x_1, x_2, x_3, x_5\}, \{x_4\}, \{x_6\}\}$$

$$\{a, b\}^* = \{\{x_1, x_2, x_5\}, \{x_3\}, \{x_4\}, \{x_6\}\}$$

$$\{a, c\}^* = \{\{x_1, x_2, x_5\}, \{x_3\}, \{x_4\}, \{x_6\}\}$$

$$\{a, b, c\}^* = \{\{x_1, x_2, x_5\}, \{x_3\}, \{x_4\}, \{x_6\}\}$$

$$Q^* = \{\{x_1, x_2, x_5\}, \{x_3\}, \{x_4\}, \{x_6\}\}$$

Klasyfikacje

Niech P oraz R będą niepustymi podzbiorami zbioru atrybutów Q. Zbiór R jest zależny od P, jeśli

$$\widetilde{P} \subseteq \widetilde{R}$$

co ma miejsce przy spełnionej nierówności

$$P^* \leqslant R^*$$

Klasyfikacja P^* jest mniejsza lub równa klasyfikacji R^* , jeśli dla każdego bloku B klasyfikacji P^* istnieje blok B' klasyfikacji R^* taki, że

$$B \subseteq B'$$

Niech $P = \{a, b\}$ oraz $R = \{d\}$, wówczas

$$P^* = \{\{x_1, x_2, x_5\}, \{x_3\}, \{x_4\}, \{x_6\}\} \leqslant R^* = \{\{x_1, x_2, x_3, x_5\}, \{x_4\}, \{x_6\}\},\$$

zatem $\{d\}$ jest zależny od $\{a,b\}$.

Teoria zbiorów przybliżonych (1981)

Podstawową ideą zbiorów przybliżonych (ang. rough sets) jest wyznaczenie <u>dolnej</u> i <u>górnej</u> aproksymacji dla klasyfikacji generowanych przez atrybuty. Na podstawie tych aproksymacji wyznaczane są dwa zbiory reguł: <u>pewnych</u> i <u>możliwych</u> przetwarzane <u>niezależnie</u> przez dwie maszyny wnioskujące.

Teoria ma pewne <u>powiązania</u> z teorią Dempstera-Shafera i jest szczególnie odpowiednia w procesie pozyskiwania wiedzy <u>niespójnej</u> i <u>niepewnej</u>. Jej zaletą poza prostymi algorytmami jest fakt, że <u>nie</u> <u>wymaga</u> dodatkowych wstępnych informacji o przetwarzanych danych, ani prawdopodobieństwa, ani rozkładów prawdopodobieństwa a priori, ani funkcji przynależności w zbiorach rozmytych.

Niech U będzie niepustym zbiorem zwanym uniwersum , natomiast R relacją równoważności na U zwaną relacją nierozróżnialności. Uporządkowaną parę A=(U,R) nazywać będziemy przestrzenią aproksymującą . Dla dowolnego elementu x należącego do U klasa równoważności R zawierająca x oznaczana będzie przez $[x]_R$. Klasy równoważności R nazywane są elementarnymi zbiorami w A.

Teoria zbiorów przybliżonych

Niech dany będzie pewien podzbiór X uniwersum U. Celem zdefiniowania zbioru X za pomocą zbioru A wprowadzić możemy dwie aproksymacje.

Dolna aproksymacja X w A, oznaczona przez $\underline{R}X$, jest zbiorem

$$\{x \in U | [x]_R \subseteq X\}$$

Górna aproksymacja X w A, oznaczona przez $\overline{R}X$, jest zbiorem

$$\{x \in U | [x]_R \cap X \neq \emptyset\}$$

Dolna aproksymacja X w A jest największym zbiorem w A zawartym w X. Górna aproksymacja X w A jest najmniejszym zbiorem w A zawierającym X.

Teoria zbiorów przybliżonych

Niech uniwersum $U = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$, a R relacja równoważności określa klasyfikację - zbiór klas równoważności R:

$$R^* = \{\{x_1\}, \{x_2, x_3\}, \{x_4, x_5\}, \{x_6, x_7\}, \{x_8\}\}$$

Niech zbiór X ma następującą postać $\{x_1, x_2, x_3, x_5, x_7\}$. Wówczas dolną aproksymacją X w A będzie zbiór:

$$\underline{R}X = \{x_1, x_2, x_3\},$$

natomiast górną aproksymacją X w A będzie zbiór:

$$\overline{R}X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$$

Przykładowe aproksymacje dolna i górna

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$$

$$R^* = \{\{x_1\}, \{x_2, x_3\}, \{x_4, x_5\}, \{x_6, x_7\}, \{x_8\}\}$$

$$X = \{x_1, x_2, x_3, x_5, x_7\}$$

Dolna aproksymacja X w A:

$$\underline{R}X = \{x_1, x_2, x_3\}$$

$$-U$$
, $-X$, $-\underline{R}X$

Górna aproksymacja X w A:

$$\overline{R}X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$$

$$-U$$
, $-X$, $\overline{R}X$

Teoria zbiorów przybliżonych

Niech X i Y będą podzbiorami U. Dolna i górna aproksymacja X i Y w A mają następujące właściwości:

$$\underline{R}X \subseteq X \subseteq \overline{R}X$$

$$\underline{R}U = U = \overline{R}U$$

$$\underline{R}\phi = \phi = \overline{R}\phi$$

$$\underline{R}(X \cup Y) \supseteq \underline{R}X \cup \underline{R}Y$$

$$\overline{R}(X \cup Y) = \overline{R}X \cup \overline{R}Y$$

$$\underline{R}(X \cap Y) = \underline{R}X \cap \underline{R}Y$$

$$\overline{R}(X \cap Y) \subseteq \overline{R}X \cap \overline{R}Y$$

Teoria zbiorów przybliżonych

Oznaczmy przez -X uzupełnienie U-X zbioru X

$$\underline{R}(X - Y) \subseteq \underline{R}X - \underline{R}Y
\overline{R}(X - Y) \supseteq \overline{R}X - \overline{R}Y
\underline{R}(-X) = -\overline{R}X
\overline{R}(-X) = -\underline{R}X
\underline{R}X \cup \overline{R}(-X) = X
\underline{R}(\underline{R}X) = \overline{R}(\underline{R}X) = \underline{R}X
\overline{R}(\overline{R}X) = \underline{R}(\overline{R}X) = \overline{R}X$$

Tabela z regułami

		Decyzja			
	Temperatura (T)	Suchy kaszel (SK)	Ból głowy (BG)	Ból mięśni (BM)	Grypa (G)
0	normalna	brak	brak	brak	nie
1	normalna	brak	tak	tak	nie
2	średnia	brak	tak	tak	tak
3	średnia	tak	brak	brak	nie
4	średnia	tak	brak	brak	tak
5	wysoka	brak	brak	brak	nie
6	wysoka	tak	brak	brak	nie
7	wysoka	tak	brak	brak	tak
8	wysoka	tak	tak	tak	tak
9	wysoka	tak	tak	tak	tak

Reguły pewne i możliwe

Podana tablica dotyczy zagadnień medycznych i zawiera <u>niespójności</u>, np.: pacjenci 3 i 4 lub 6 i 7. Klasyfikacja pacjentów <u>chorych</u> na grypę i <u>nie</u> chorych może być dokonana w następujący sposób:

$$\mathcal{X} = \{\{2, 4, 7, 8, 9\}, \{0, 1, 3, 5, 6\}\}\$$

Spośród czterech atrybutów warunkowych, trzy atrybuty T, SK, BG stanowią redukt tzn. są niezbędne dla właściwego podejmowania decyzji. Atrybut BM jest redundacyjny. Oznaczmy zbiór atrybutów T,SK,BG przez P. Wyznaczmy dolną aproksymację $\underline{P}\mathcal{X}$ eliminując niespójne dane z \mathcal{X} :

oraz górną aproksymację $\overline{P}\mathcal{X}$:

$$\overline{P}\mathcal{X} = \{\{2, 3, 4, 6, 7, 8, 9\}, \{0, 1, 3, 4, 5, 6, 7\}\}$$

Reguły pewne i możliwe

Ze zbioru $\underline{P}\mathcal{X}=\{\{2,8,9\},\{0,1,5\}\}$ określającego dolną aproksymację wynikają reguły pewne:

- $2: (T, rednia) \land (SK, brak) \land (BG, tak) \Rightarrow (G, tak)$
- 8: $(T, wysoka) \land (SK, tak) \land (BG, tak) \Rightarrow (G, tak)$
- 9: $(T, wysoka) \land (SK, tak) \land (BG, tak) \Rightarrow (G, tak)$
- $0: (T, normalna) \land (SK, brak) \land (BG, brak) \Rightarrow (G, nie)$
- 1: $(T, normalna) \land (SK, brak) \land (BG, tak) \Rightarrow (G, nie)$
- $5: (T, wysoka) \land (SK, brak) \land (BG, brak) \Rightarrow (G, nie)$

Pozostałe reguły wynikające z tabeli tworzą zbiór reguł możliwych.

Teoria zbiorów rozmytych (1965)

Niech U będzie przestrzenią rozważanych obiektów (ang. universe of discourse). Zbiór taki scharakteryzujemy przez funkcję ustalającą przynależność do zbioru u_w : $U \to \{0,1\}$. Symbolem A oznaczony jest zbiór odpowiadający rozpatrywanej właśności. Funkcja u_w jest wówczas określona następująco:

$$\forall_{u \in U} \quad \mu_A(u) = \begin{cases} 1 & \mu \in A, \\ 0 & \mu \notin A \end{cases}$$

Dla wielu właśności trudno jest określić granicę rozdzielającą elementy spełniające od niespełniających. Funkcją μ w takim przypadku nazywać się będzie $\operatorname{funkcjq}$ przynależności (ang. $\operatorname{membership}$ function), przekształcającą elementy przestrzeni U w odcinek [0,1]. Zbiór taki nazywany jest $\operatorname{rozmy-tym}$ (ang. fuzzy) np. zbiór A jest pewnym podzbiorem U o $\operatorname{niewyraźnych}$ granicach.

Wszelkie pojęcia oraz własności związane ze zbiorami rozmytymi można wprowadzić za pomocą funkcji przynależności. Dwa zbiory rozmyte są równe A=B, jeśli $\forall~u\in U~~\mu_A(u)=\mu_B(u)$.

$$A = \phi \Leftrightarrow \mu_{\phi}(u) = 0$$

$$A \subseteq B \Leftrightarrow \forall_{u \in U} \ \mu_A(u) \leqslant \mu_B(u)$$

Nośnikiem zbioru A jest nazywany zbiór elementów U, dla których wartość μ_A jest większa od zera.

Wysokością zbioru A jest kres górny funkcji μ_A , tzn. $\sup_{u \in U} \mu_A(u)$.

Zbiór rozmyty jest nazywany znormalizowanym, jeśli jego wysokość jest równa 1.

Zadeh wprowadził specyficzną notację dla zbiorów rozmytych nieprzeliczalnych

$$A = \int_{U} \mu_{A}(u)/u$$

lub w przypadku przeliczalnym

$$A = \sum_{i} \mu_A(u_i)/u_i$$

gdzie znak / nie oznacza dzielenia np. tabele prędkości $V=\{0,20,40,60,80,100\}$ oraz określeń ich szybkości, czy też stopnia niebezpieczeństwa można zapisać w następujący sposób:

$$SZYBKIE = 0/0 + 0.02/10 + 0.1/40 + 0.8/60 + 0.9/80 + 1/100$$

 $NIEBEZP = 0/0 + 0.1/10 + 0.2/40 + 0.7/60 + 1/80 + 1/100$

Preferowana jednak będzie następująca notacja:

$$SZYBKIE = \{(0,0), (20,0.02), (40,0.1), (60,0.8), (80,0.9), (100,1)\}$$

Wszystkie operacje na zwykłych zbiorach mogą być rozszerzone na zbiory rozmyte.

Uzupełnienie \overline{A} zbioru rozmytego A definiowane jest jako:

$$\mu_{\overline{A}}(u) = 1 - \mu_A(u)$$

Suma dwóch zbiorów rozmytych $A \cup B$ definiowane jest przez:

$$\mu_{A \cup B}(u) = \max(\mu_A(u), \mu_B(u))$$

Przecięcie dwóch zbiorów rozmytych $A \cap B$ definiowane jest przez:

$$\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u))$$

Suma ograniczona:

$$\mu_{A \oplus B}(u) = \min(\mu_A(u) + \mu_B(u), 1)$$

Różnica ograniczona:

$$\mu_{A \ominus B}(u) = \max(\mu_A(u) - \mu_B(u), 0)$$

lloczyn:

$$\mu_{AB}(u) = \mu_A(u) \cdot \mu_B(u)$$

Jeśli $\alpha>0$ oraz α mnożone przez wysokość zbioru A nie jest większe od 1, wówczas

$$\mu_{\alpha A}(u) = \alpha \mu_A(u)$$

Za szczególne przypadki potęgowania uważa się operacje koncentracji i rozpraszania:

$$CON(A) = A^2$$

$$DIL(A) = A^{\frac{1}{2}}$$

lloczyn kartezjański zbioru A z przestrzeni U i zbioru B z przestrzeni V określa się następująco:

$$\mu_{A \times B} = \min_{U \times V} (\mu_A(u), \mu_B(v))$$

Liczby rozmyte

 ${
m Liczba\ rozmyta\ }\ L$ określa się wypukły i znormalizowany zbiór rozmyty z przestrzeni R taki, że

- 1) istnieje dokładnie jedno $x_o \in R$, dla którego $\mu_L(x_o) = 1$, a x_o nazywane jest średnią wartością L,
- 2) funkcja μ_L jest ciągła, ściślej półciągła z góry. Przykładowymi rozmytymi liczbami są:

okoo
$$2 = L_1$$
, $\mu_{L_1}(x) = \frac{1}{1+|2-x|}$
okoo $5 = L_2$, $\mu_{L_2}(x) = \frac{1}{1+|5-x|}$

Relacje rozmyte

Niech dane będą przestrzenie obiektów U_1, U_2, \ldots, U_n . Rozmytą n-elementową relacją R nazywamy zbiór rozmyty z przestrzeni będącej iloczynem kartezjańskim $U_1 \times U_2 \times \ldots \times U_n$, co można zapisać $R = \{((u_1, u_2, \ldots, u_n), \mu_R(u_1, u_2, \ldots, u_n) | u_i \in U_i, i = 1\}$

Przykładowe relacje rozmyte

u_1	μ	
0	0	
20	0.02	
40	0.1	
60	0.8	
80	0.9	
100	1	

u_1	μ
0	0
20	0.1
40	0.2
60	0.7
80	1
100	1

u_1	μ
0	1
20	0.9
40	0.8
60	0.3
80	0
100	0

Rzut relacji rozmytej

Niech q będzie ciągiem indeksów (i_1, \ldots, i_k) , natomiast q' uzupełnieniem q do ciągu $(1, \ldots, n)$ np. q = (1, 4, 5) w ciągu (1, 2, 3, 4, 5), zaś q' = (2, 3).

Rzutem (ang. projection) n-elementowej relacji rozmytej R na $U_S = U_{i_1} \times U_{i_2} \times \ldots \times U_{i_k}$ nazywa się k-elementową relację rozmytą o postaci

$$\{((u_{i_1},\ldots,u_{i_k}),\sup_{u_{i_{k+1}},u_{i_{k+2}},\ldots,u_{i_n}}\mu_R(u_1,\ldots,u_n))|(u_{i_1},\ldots,u_{i_k})\in U_S\},$$

gdzie \sup oznacza najmniejsze górne ograniczenie. Jeśli przestrzenie obiektów U_1, U_2, \ldots, U_n są ograniczone, wówczas \sup może być zastąpione przez \max . Operację rzutowania oznacza się przez $Proj_{U_S}(R)$.

Przykłady rzutów relacji

$u_1 \backslash u_2$	0	20	40	60	80	100
0	0	0.2	0.4	0.7	0.9	1
20	0	0	0.2	0.4	0.7	0.8
40	0	0	0	0.2	0.4	0.6
60	0	0	0	0	0.2	0.4
80	0	0	0	0	0	0.2
100	0	0	0	0	0	0

Rzut relacji WIĘKSZE_NIŻ na u_2

u_2	0	20	40	60	80	100
μ	0	0.2	0.4	0.7	0.9	1

Rzut relacji WIĘKSZE_NIŻ na u_1

u_1	μ
0	1
20	0.8
40	0.6
60	0.4
80	0.2
100	0
80	0.2

Rozszerzenie cylindryczne relacji rozmytej

Niech R(q) będzie k-elementową rozmytą relacją na $U_q = U_{i_1} \times U_{i_2} \times \ldots \times U_{i_k}$. Rozszerzeniem cylindrycznym relacji $R_{(q)}$ (z U_q) na $U = U_1 \times U_2 \times \ldots \times U_n$ nazywa się n-elementową relację $c(R_{(q)})$ określoną następująco $c(R_{(q)}) = \{(u_1, u_2, \ldots, u_n), \mu(u_{i_1}, u_{i_2}, \ldots, u_{i_k}) | (U_1, U_2, \ldots, U_n) \in U\}$

Przykład rozszerzenia cylindrycznego relacji

Relacja SZYBKIE

u_1	μ
0	0
20	0.02
40	0.1
60	0.8
80	0.9
100	1

Rozszerzenie cylindryczne relacji SZYBKIE na u_2

$u_1 \backslash u_2$	0	20	40	60	80	100
0	0	0	0	0	0	0
20	0.02	0.02	0.02	0.02	0.02	0.02
40	0.1	0.1	0.1	0.1	0.1	0.1
60	0.8	0.8	0.8	0.8	0.8	0.8
80	0.9	0.9	0.9	0.9	0.9	0.9
100	1	1	1	1	1	1

Połączenie relacji rozmytych

Niech R będzie r-elementową rozmytą relacją na $U_1 \times U_2 \times \ldots \times U_r$ oraz S (n-s+1)-elementową relacją na $U_S \times U_{S+1} \times \ldots \times U_n$, gdzie $1 \le s \le r \le n$. Połączenie (ang. join) R oraz S jest definiowane jako przecięcie:

$$c(R) \cap c(S)$$
,

gdzie c(R) oraz c(S) są rozszerzeniami cylindrycznymi R i S na $U_1 \times U_2 \times \ldots \times U_n$.

Przecięcie rozumiane jest jako $\min(c(R), c(S))$. W tym przypadku brane jest minimum przy porównaniu macierzy.

Kompozycja (złożenie) relacji rozmytych

Niech R będzie r-elementową relacją rozmytą na $U_1 \times U_2 \times \ldots \times U_r$ oraz S będzie (n-s+1)-elementową relacją rozmytą na $U_S \times U_{S+1} \times \ldots \times U_n$, gdzie $1 \leqslant s \leqslant n$. Niech $(\{1,2,\ldots,r\}-\{s,s+1,\ldots,n\})=(\{s,s+1,\ldots,n\}-\{1,2,\ldots,r\})$ będzie oznaczone przez $\{i_1,i_2,\ldots,i_k\}$ i nazwane różnicą symetryczną $\{1,2,\ldots,r\}$ oraz $\{s,s+1,\ldots,n\}$. Złożeniem (ang. composition) dwóch relacji R oraz S oznaczonym przez $R \circ S$ będzie następująca relacja rozmyta:

 $Proj_{(U_{i_1},U_{i_2},...,U_{i_k})}(c(R)\cap c(S)),$

która jest rzutem połączenia c(R) oraz c(S) na $U_{i_1} \times U_{i_2} \times \ldots \times U_{i_k}$. Interesujące jest rozważenie dwóch przypadków szczególnych:

1) dla r=1=s oraz n=2. Złożenie $R\circ S$ może być liczone w następujący sposób:

$$R \circ S = \{(u_2, \sup_{u_1} \min(\mu_R(u_1), \mu_S(u_1, u_2))) | u_1 \in U_1, u_2 \in U_2\}$$

2) dla r=2=s oraz n=3. Złożenie $R\circ S$ można zapisać:

$$R \circ S = \{((u_1, u_3), \sup_{u_2} \min(\mu_R(u_1, u_2), \mu_S(u_2, u_3))) | u_1 \in U_1, u_2 \in U_2, u_3 \in U_2, u_3 \in U_2, u_3 \in U_2, u_3 \in U_3, u_3 \in U_3,$$

Złożenie SZYBKIE: WIĘKSZE_NIŻ

μ
0
0.02
0.1
0.8
0.9
1

Relacja WIĘKSZE_NIŻ

$u_1 \backslash u_2$	0	20	40	60	80	100
0	0	0.2	0.4	0.7	0.9	1
20	0	0	0.2	0.4	0.7	8.0
40	0	0	0	0.2	0.4	0.6
60	0	0	0	0	0.2	0.4
80	0	0	0	0	0	0.2
100	0	0	0	0	0	0

Relacja SZYBKIEoWIĘKSZE_NIŻ

u_2	μ		
0	0		
20	0		
40	0.02		
60	0.1		
80	0.2		
100	0.4		

$$\mu_{\mathsf{SZYBKIE} \circ \mathsf{WIEKSZE_NIZ}}(80) = \max_{\mu_1} \min(\mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{WIEKSZE_NIZ}}(u_1, 80)) = \min_{\mu_1} \min(\mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{WIEKSZE_NIZ}}(u_1, 80)) = \min_{\mu_1} \min(\mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{WIEKSZE_NIZ}}(u_1, 80)) = \min_{\mu_1} \min(\mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{WIEKSZE_NIZ}}(u_1, 80)) = \min_{\mathsf{SZYBKIE}} \min(\mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{SZYBKIE}}(u_1, 80)) = \min_{\mathsf{SZYBKIE}} \min(\mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{SZYBKIE}}(u_1, 80)) = \min_{\mathsf{SZYBKIE}} \min(\mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{SZYBKIE}}(u_1, 80)) = \min_{\mathsf{SZYBKIE}} \min(\mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{SZYBKIE}}(u_1) \circ \mu_{\mathsf{SZYBKI$$

- $= \max(\min(\mu_{\mathsf{SZYBKIE}}(0), \mu_{\mathsf{WIEKSZE}}), \min(0, 80)), \min(\mu_{\mathsf{SZYBKIE}}(20), \mu_{\mathsf{WIEKSZE}}), \min(20, 80)),$
- $, \min(\mu_{\mathsf{SZYBKIE}}(40), \mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(40,80)), \min(\mu_{\mathsf{SZYBKIE}}(60), \mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(60,80)),$
- $, \min(\mu_{\mathsf{SZYBKIE}}(80), \mu_{\mathsf{WIEKSZE\ NI\dot{Z}}}(80,80)), \min(\mu_{\mathsf{SZYBKIE}}(100), \mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(100,80)))$
- $= \max(\min(0,0.9), \min(0.02,0.7), \min(0.1,0.4), \min(0.8,0.2), \min(0.9,0), \min(1,0)) =$
- $= \max(0, 0.02, 0.1, 0.2, 0, 0) = 0.2$

Złożenie WIĘKSZE_NIŻoWIĘKSZE_NIŻ

$u_1 \backslash u_2$	0	20	40	60	80	100
0	0	0.2	0.4	0.7	0.9	1
20	0	0	0.2	0.4	0.7	0.8
40	0	0	0	0.2	0.4	0.6
60	0	0	0	0	0.2	0.4
80	0	0	0	0	0	0.2
100	0	0	0	0	0	0

Relacja WIĘKSZE_NIŻoWIĘKSZE_NIŻ

$u_1 \backslash u_2$	0	20	40	60	80	100
0	0	0	0.2	0.2	0.4	0.4
20	0	0	0	0.2	0.2	0.4
40	0	0	0	0	0.2	0.2
60	0	0	0	0	0	0.2
80	0	0	0	0	0	0
100	0	0	0	0	0	0

 $\mu_{\mathsf{WIEKSZE_NI\dot{Z}} \circ \mathsf{WIEKSZE_NI\dot{Z}}}(0,80) = \max_{\mu_2} \min(\mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(0,u_2) \circ \mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(u_2,80)) = \min_{\mu_2} \min(\mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(u_2,u_2) \circ \mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(u_2,80)) = \min_{\mu_2} \min(\mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(u_2,u_2) \circ \mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(u_2,u_2) \circ \mu_{\mathsf{WIEKSZE_NI\dot{Z}}(u_2,u_2) \circ \mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(u_2,u_2) \circ \mu_{\mathsf{WIEKSZE_$

- $= \max(\min(\mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(0,0),\mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(0,80)),\min(\mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(0,20),\mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(20,80)),$
- $, \min(\mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(0,40), \mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(40,80)), \min(\mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(0,60), \mu_{\mathsf{WIEKSZE_NI\dot{Z}}}(60,80)),$
- $, \min(\mu_{\mathsf{WIEKSZE\ NI\dot{Z}}}(0,80), \mu_{\mathsf{WIEKSZE\ NI\dot{Z}}}(80,80)), \min(\mu_{\mathsf{WIEKSZE\ NI\dot{Z}}}(0,100), \mu_{\mathsf{WIEKSZE\ NI\dot{Z}}}(100,80)))$
- $= \max(\min(0,0.9), \min(0.2,0.7), \min(0.4,0.4), \min(0.7,0.2), \min(0.9,0), \min(1,0)) =$
- $= \max(0, 0.2, 0.4, 0.2, 0, 0) = 0.4$

Przykład z relacjami rozmytymi

$u \backslash v$	v_1	v_2	v_3	v_4
u_1	0.5	0.2	0	0
u_2	1	0.4	0.5	0.2

$v \backslash z$	z_1	z_2	z_3	z_4	z_5
v_1	1	0.5	0	0	0
v_2	0	1	0.2	0.5	0
v_3	0	0	0	0.1	0.5
v_4	0	0	0	0	0.3

Rozmyty graf G jako zbiór rozmyty w przestrzeni $A \times A$.

 $\mu_G(a_i,a_j)$ to stopień możliwości połączenia.

W grafie z części składowych U,V,Z wyznaczamy możliwe przejścia: $G_1=U\times V, G_2=V\times Z.$

Stopień możliwości przejścia z U do Z przez złożenie $G_1 \circ G_2$.

$u \backslash z$	z_1	z_2	z_3	z_4	z_5
u_1	0.5	0.5	0.2	0.2	0
u_2	1	0.5	0.2	0.4	0.5