EXERCISE SHEET 3

Answers should be handed in by Monday 16th November 2009.

- **1.** For each of the following polynomials, construct a splitting field L over \mathbb{Q} and compute $[L:\mathbb{Q}]$.
- (i) $t^3 1$; (ii) $t^4 + 5t^2 + 6$; (iii) $t^6 8$.
- **2.** Let K be a field, and suppose that $f \in K[t]$ is **not** irreducible, and that amongst its irreducible factors are two of different degrees. Let $\Sigma : K$ be a splitting field extension for f. Show that there are roots α and β of f with the property that there exists no automorphism $\sigma : \Sigma \to \Sigma$ that fixes K and satisfies $\sigma(\alpha) = \beta$. What happens in the situation where the irreducible factors of f have the same degree?
- **3.** Take $a \in \mathbb{F}_p$ and suppose that $f(t) = t^p t a$ is irreducible in $\mathbb{F}_p[t]$.
 - (a) Show that if α is a zero of f(t), then $\alpha + i$ is also a zero for each $i \in \mathbb{F}_p$;
 - (b) Deduce that $\Gamma(\mathbb{F}_p(\alpha) : \mathbb{F}_p)$ is cyclic of order p, and find a generator.
- **4.** Suppose that L: K is a field extension, and that for i = 1, 2, the field M_i is an intermediate field with $K \subseteq M_i \subseteq L$. Show that if $M_i: K$ is normal for i = 1 and 2, then (i) $K(M_1, M_2): K$ is normal, and (ii) $M_1 \cap M_2: K$ is normal.
- **5.** Let K be a field of characteristic 0, and L:K an extension of degree 2. Prove that L:K is a normal extension. Now prove the same result for K of characteristic 2.
 - **6.** Which of the following extensions are normal? (Give reasons).
 - (a) $\mathbb{Q}(t):\mathbb{Q};$
 - (b) $\mathbb{Q}(\sqrt{-5}):\mathbb{Q};$
 - (c) $\mathbb{Q}(\alpha)$: \mathbb{Q} , where α is the real seventh root of 5;
 - (d) $\mathbb{Q}(\sqrt{5}, \alpha) : \mathbb{Q}(\alpha)$, where α is the real seventh root of 5;
 - (e) $\mathbb{R}(\sqrt{-7}):\mathbb{R}$.