

Decision Trees

- For regression & classification
- Rely on segmenting the feature space into number of regions using set of splitting rules
- Rules are represented in a tree.
- Tree also has
 - Nodes:
 - First rule at root
 - Terminal nodes represent regions in feature space
 - Internal nodes are points of splits
 - Branches: segment that connect nodes
- Tree depth is maximum number of branches (from tree root) until a terminal node

Regression Trees Example: Baseball Salary

Predicting the log salary (in \$1000) of a baseball player, based on the number of years that he has played in the major leagues and the number of hits that he made in the previous year

Example: predict a baseball player log salary (in thousands of dollars) using two features

- Features:
 - Years: number of years the player is in a major league
 - Hits: number of hits the player made in the previous year

- Tree consists of series of spitting rules
 - Start with checking if Years < 4.5
 - If Years<4.5, the tree checks Hits

Years_i < 4.5

Regression Trees Example: Baseball Salary The tree divides the feature space!

- The tree divides the feature space into regions
- If observation lies in region R_i, then predicted response is the average response of training observation in that region

Tree Interpretation

- In this tree example, the following interpretations can be made
 - Years is the most important feature --Appears at root of the tree
 - Player with less experience, gets lower salary
 - If a player is less experienced, Hits will not be a significant feature in determining the salary
 - If player is experienced, then "Hits" plays a key role in determining the salary
 - More hits, higher salary

Tree Divides the Feature Space into Rectangular Regions

Building a Regression Tree

- The goal is to divide the feature space into J regions (R_1, R_2, \dots, R_I) , and find these region that minimizes the RSS
- The RSS is given by:

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

- $\hat{\mathcal{Y}}_{R_j}$ is the mean response of training observation in region j
- \mathcal{Y}_i is the response of the *i*th training example
- Greedy approach: try every possible set of partitions
 → Infeasible
- Instead, we use recursive binary splitting
 - Find one split at a time

Recursive Binary Splitting

- Start with entire space, and iterate:
- 1. Each iteration select predictor X_j and cutpoint s such that splitting the space into regions with s leads to the largest reduction in the RSS

Region 1 :
$$X_i < s$$

Region 2:
$$X_j \ge s$$

$$R_1(j,s) = \{X | X_j < s\}$$

$$R_2(j,s) = \{X | X_j \ge s\}$$

- Focus on **one split at a time** (instead of finding all splits at the same time like the greedy approach). Then find a best feature along with its splitting rule that minimizes RSS.
- Find feature X_i and s that minimize

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

- 2. Repeat the process with redefined regions: find the feature and cutpoint to split one of the regions already obtained (not entire space)
 - We choose the one with largest reduction in RSS
- In other words: in each iteration, we split a region into two region. In the next iteration, we focus on one of the regions then split it into two, and so on

We repeat until a stopping criterion

Avoid Overfitting & Underfitting

- We can have very long trees → Complex
 - Tree can grow until there is one sample (one one label) per region
- Short trees (fewer splits/regions) are easy to interpret → have low variance, but may have high bias
- We want to achieve a good bias variance trade-off
- Pre-pruning: Set a stopping criteria to prevent overfitting.
 - Like **limit** on **depth** of tree, or number of **observations per region**, number of leaves (**regions**), threshold on reduction of **RSS**
- Post-pruning (or just pruning): Grow a very long tree using training data, then prune it to obtain a subtree
 - Check if you remove a node, how well the pruned tree work on the validation set
 - Get the tree that minimizes average cross validation error

Classification Trees

Decision trees can be used for classification

- Prediction: assign the observation to the most commonly occurring class in the region
- Similar to regression trees, recursive binary splitting is used to grow the tree
 - However, instead of using the RSS in regression we use other metrics

Metrics for Growing a Tree

• Let \hat{p}_{mk} be the proportion of training observations in the mth region that are from the kth class

Classification error rate:

- Training observations in a region that do not belong to the most common class
 - Error in region m is E: fraction of observations that do not belong to the common class

$$E = 1 - \max_{k} (\hat{p}_{mk})$$

- Other metrics are common for growing a tree:
 - These metrics are: Gini index and Entropy (Cross-entropy)

Metrics for Growing a Tree – Gini Index

- Gini index (G): is a measure of a node purity
 - Nodes are pure when they contain observations that belongs to a single class
 - For region m

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

- When nodes are pure, the Gini index value is zero
 - Example: consider K=2 (two classes), and all observations in region m belong to class 1. Then $\hat{p}_{m1}=1$ and $\hat{p}_{m2}=0$ \Longrightarrow In this case the Gini index G=0
- Gini index is maximal if classes are mixed
 - Example: consider K=2 (two classes), and half observations in region m belong to class 1 and the other half belongs to class 2. Then $\hat{p}_{m1}=0.5$ and $\hat{p}_{m2}=0.5$ In this case the Gini index G=0.5 (maximum)

Metrics for Growing a Tree – Cross-Entropy

- Entropy is a measure of uncertainty
- Similar to the Gini metric, it measures node purity
- Cross entropy is defined as:

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

(note the log here is base 2) $Log_2(p)=In(P)/In(2)$

- D is close to zero when nodes are almost pure
- D is maximum if classes are mixed.
- We search for splits the minimizes the metric (Gini or cross-entropy) in a recursive way as we did before

Example: Iris Dataset

Example Tree vs Linear Model Boundaries

Example Tree vs Linear Model Boundaries

Python

- <u>Decision trees</u>: For classification
 - from sklearn.tree import **DecisionTreeClassifier** treeModel=DecisionTreeClassifier(max_depth=m, criterion='gini')
 - max_depth is depth of the tree
 - Default criterion is 'gini' (so no need to write it)
 - http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
- <u>Decision trees</u>: For regression, **DecisionTreeRegressor** is used
 - http://scikitlearn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.htm l#sklearn.tree.DecisionTreeRegressor

Decision Trees: Advantages and Disadvantages

- Very useful for interpretation, but may not have the same level of accuracy compared to other approaches
- Can handle mixed types of features
- Low accuracy would be from overfitting the training data
 - If you have other training samples, maybe splitting rules are different
- Can be very accurate when we combine multiple trees together:
 - Helps in avoiding overfiting
 - Combining trees improves the accuracy, but becomes harder to interpret
 - Examples of approaches that do combining that are random forest, boosting