leem	etay of	YUAS on	moduli of	cultes
	j.w.w.	Chiara I	Damiolini leibneu	
				,
Goal	Mg.n 3	Rew sect	or bundler	
		Conformal		
Patline Page 19	9. P. +	verter operale. V and M=(M ² ,, M	exator 1	Lie alg.
[C.P.		M=(M*,, r s.t. M'; a V-mod		V(Y; M) [c.?, ±]
Thin	in the or	ector space pinoaciant		L (V) & M
		Re J. 17. of		blocks

* Extend this in families of curses => W(Y; M) * get rid of the coordinates # Don Man: Frenkel-Ben-Zoi after Beilinson-Dointald Conj. (Ilm. 1:994; FBZ~'00) Under some natural assumptions on V: 3 W (V; M) can be extended / Hg. n and is a sector bursle; 2 Factorization: $\mathbb{V}(\mathsf{V};\mathsf{M}) \cong \bigoplus \mathbb{V}(\mathsf{V};\mathsf{M}^{\mathsf{T}},\mathsf{V}) \otimes \mathbb{V}(\mathsf{V};\mathsf{M}^{\mathsf{T}},\mathsf{V}^{\mathsf{T}})$

VOAs can be induced from:

Itsuchiya-Veno-Yamada, 189] * affine Lie alg.

* Virasoro alg.

[Beilinson-Feigin-Markur, '91]

* pos. def. lattices

Borcherds 86]

Example: Even latices [Fitenkel-lepowski-Mewman 8]

Input: a pos-cht. even lattice

* a free abelian gp L of finite rank

* a pos. def. bil. Form (·,·) on L s.t.

(d,d) e 2Z Yael

~ V even lattice VOA

* Esimple 1/2- mod 3/2 = 5 L/L VI+L -> 1+L

where $L' := \{ l \in L \otimes \mathbb{Q} : (l, \mu) \in \mathbb{Z} \}$ dual lattice $\forall \mu \in L$

* contragredient $= \sqrt{1+L} = \sqrt{-1+L}$

Shun (Damiolini - G. bney -T.) When I is zational, Cz-cofinite, and Vo = a. the Conj. holds. Fur thermore: 3 W (V; M) in a or balle / Hz. with a proj. Flat log. connection 2 Factorination holds 3 If V=V'and simple, then (ch (V(V; M))) is a semi-simple CohtT H* (Fg., , Q) For affine Le alg.: [TUY], [Touchimoto], [MOPPZ] spam {A(-2)B: A,BeV} Vin Cz-cofiniti: has finite codin in V V is rational: every finitely generated V-mod decomposes

or a direct rum

of simple V-mod's

A vertex operator of in:
$$(\bigvee, 1, \omega, \bigvee(\cdot, t))$$

$$\emptyset \bigvee_{i \geqslant 0} \bigvee_{i \geqslant 0} \bigvee_{i \in \mathbb{Z}} \bigvee_{i \in \mathbb{Z}} \underbrace{\bot_{i \geq 1}}_{i \in \mathbb{Z}}$$

+ axioms...

vertex operators

I clea the vertex operators endow V with a weakly commutative ely. ste.

* obly many products: A * B := Aci) B VieZ

* emit 1 : 1 (-1) = id

 $\frac{1}{(i)} = 0 , i \neq -1$

* the vertex operators of w + 11(-1)

=> Viz :

 $\omega_{(p+1)} \equiv L_p$ central charge $[L_p, L_q] = (p-q)L_{p+q} + \frac{c}{12} \sum_{p+q=0}^{\infty} (p^3-p)id_V$

1 Frenkel-Ben-Zoi Regard t as a formal coordinate at a pt PEC!

Viranto ancillary V-mod

Vir 2 M° induces a proj. Flat log. connection Coc1(DGT) Assume Mi is simple, Vi=1,..., r. * $a_i = conformal dim of <math>M^i \in Q$ * 1 = C1 (Hadge line bolk) * Yi = C1 (cotg line bolk at i-th pt) Corr(DGT) The Formula for ch (V(V; M)) in aff. Lie aly. care computed by $H^*(\overline{\mathcal{H}}_{g,n}, Q)$ [Marian - Oprea - Pandharipande - Pixton - Isankine]

extends to the case of VOA of CohfT-type.

Question (Pandhazipande)

Find an alternative way to conquite ch (N(Y; M))