

Optimizing Semi-Supervised Support Vector Machines using Semidefinite Programming

Joint work with Veronica Piccialli* and Antonio M. Sudoso

September 6, 2023

Input

▶ data points $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$ and labels $y_i \in \{-1, 1\}$

Input

▶ data points $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$ and labels $y_i \in \{-1, 1\}$

Goal/Output

▶ hyperplane $w^Tx + b = 0$ separating classes

Input

▶ data points $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$ and labels $y_i \in \{-1, 1\}$

- ▶ hyperplane $w^{\top}x + b = 0$ separating classes
- ▶ prediction model $y(x) = sign(w^Tx + b)$ for new data

Input

▶ data points $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$ and labels $y_i \in \{-1, 1\}$

- ▶ hyperplane $w^Tx + b = 0$ separating classes
- ▶ prediction model $y(x) = sign(w^T x + b)$ for new data

Input

▶ data points $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$ and labels $y_i \in \{-1, 1\}$

- ▶ hyperplane $w^Tx + b = 0$ separating classes (maximum margin)
- ▶ prediction model $y(x) = sign(w^T x + b)$ for new data

Input

▶ data points $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$ and labels $y_i \in \{-1, 1\}$

- ▶ hyperplane $\mathbf{w}^{\top}\mathbf{x} + \mathbf{b} = 0$ separating classes (maximum margin)
- ▶ prediction model $y(x) = sign(w^T x + b)$ for new data

Hard Margin

Maximum hard margin hyperplane

$$egin{array}{ll} \min_{w,b} & rac{1}{2} \|w\|_2^2 \ \mathrm{s.t.} & y_i(w^{\top}x_i+b) \geq 1, \ i=1,\ldots,n \end{array}$$

Hard Margin

Maximum hard margin hyperplane

$$\begin{aligned} & \min_{w,b} & & \frac{1}{2} \|w\|_2^2 \\ & \text{s.t.} & & y_i(w^\top x_i + b) \geq 1, \ i = 1, \dots, n \end{aligned}$$

Question: What if data is not linearly separable?

The Kernel Trick Boser, Guyon, Vapnik (1992)

Kernel trick

Map data into a higher-dimensional space via $\phi \colon \mathbb{R}^d \to \mathbb{R}^m, \ m \geq d$. Then find a separating hyperplane in the new space.

The Kernel Trick Boser, Guyon, Vapnik (1992)

Kernel trick

Map data into a higher-dimensional space via $\phi \colon \mathbb{R}^d \to \mathbb{R}^m, \ m \geq d$. Then find a separating hyperplane in the new space.

- ▶ linear or polynomial kernel, radial basis function kernel, . . .
- ▶ no explicit mapping into higher dimension via kernel function

$$k(x_i, x_j) := \langle \phi(x_i), \phi(x_j) \rangle$$

The Kernel Trick Boser, Guyon, Vapnik (1992)

Kernel trick

Map data into a higher-dimensional space via $\phi \colon \mathbb{R}^d \to \mathbb{R}^m, \ m \geq d$. Then find a separating hyperplane in the new space.

- ▶ linear or polynomial kernel, radial basis function kernel, . . .
- ▶ no explicit mapping into higher dimension via kernel function

$$k(x_i, x_j) := \langle \phi(x_i), \phi(x_j) \rangle$$

- separator is nonlinear in original space
- parameters must be chosen, risk of overfitting

- ► data 'almost' linearly separable ⇒ allow misclassifications
- \blacktriangleright introduce slack variables ξ_i and add penalty term to objective:

- ► data 'almost' linearly separable ⇒ allow misclassifications
- ▶ introduce slack variables ξ_i and add penalty term to objective:

$$\min_{\substack{w,b,\xi \\ s.t.}} \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^n \xi_i
s.t. y_i(w^\top x_i + b) \ge 1 - \xi_i, i = 1, ..., n
\xi_i \ge 0, i = 1, ..., n$$

- ▶ data 'almost' linearly separable ⇒ allow misclassifications
- ▶ introduce slack variables ξ_i and add penalty term to objective:

$$\min_{\substack{w,b,\xi \\ w,b,\xi}} \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^n \xi_i
\text{s.t.} \quad y_i (w^\top x_i + b) \ge 1 - \xi_i, \ i = 1, \dots, n
\xi_i > 0, \ i = 1, \dots, n$$

- ▶ data 'almost' linearly separable ⇒ allow misclassifications
- ▶ introduce slack variables ξ_i and add penalty term to objective:

$$\min_{w,b,\xi} \ \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \xi_i$$

s.t.
$$y_i(w^\top x_i + b) \ge 1 - \xi_i$$
, $i = 1, ..., n$
 $\xi_i \ge 0$, $i = 1, ..., n$

- ▶ data 'almost' linearly separable ⇒ allow misclassifications
- ▶ introduce slack variables ξ_i and add penalty term to objective:

$$\min_{w,b,\xi} \ \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \xi_i$$

s.t.
$$y_i(w^{\top}x_i + b) \ge 1 - \xi_i, i = 1,...,n$$

 $\xi_i \ge 0, i = 1,...,n$

Summary: SVMs

Properties

- robust prediction technique
- applicable to very large data sets
- convex quadratic problem must be solved

Applications

- image processing and classification
- face detection, pattern recognition, . . .
- "Support Vector Machines Applications" (Ma & Guo, 2014)

Summary: SVMs

Properties

- robust prediction technique
- applicable to very large data sets
- convex quadratic problem must be solved

Applications

- image processing and classification
- face detection, pattern recognition, . . .
- "Support Vector Machines Applications" (Ma & Guo, 2014)

Practical limitations

- supervised learning: all data must be labeled
- high costs, high time expenditure, limited resources, ...

Semi-Supervised Support Vector Machines (S3VMs)

Bennett & Demiriz (1998)

Input

- ightharpoonup n data points $x_i \in \mathbb{R}^d, \ i = 1, \dots, n$
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

Semi-Supervised Support Vector Machines (S3VMs)

Bennett & Demiriz (1998)

Input

- ightharpoonup n data points $x_i \in \mathbb{R}^d, \ i = 1, \ldots, n$
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

Assumption

All data points are centered around the origin ($\Rightarrow b = 0$).

Semi-Supervised Support Vector Machines (S3VMs)

Bennett & Demiriz (1998)

Input

- ightharpoonup n data points $x_i \in \mathbb{R}^d, \ i = 1, \ldots, n$
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

Assumption

All data points are centered around the origin ($\Rightarrow b = 0$).

S3VM model with linear kernel

$$\min_{\substack{w,\xi,y^{u} \\ s.t.}} \frac{1}{2} \|w\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i}^{2}
s.t. \quad y_{i} w^{\top} x_{i} \ge 1 - \xi_{i}, \quad i = 1, \dots, n
y^{u} := (y_{\ell+1}, \dots, y_{n}) \in \{-1, +1\}^{n-\ell}$$

Notation

- $ightharpoonup K^* \succeq 0$ kernel matrix with $K_{ij}^* \coloneqq k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$
- $K := K^* + \frac{1}{2C}I_n \succ 0$

Notation

- ightharpoonup $K^* \succeq 0$ kernel matrix with $K^*_{ij} \coloneqq k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$
- $K := K^* + \frac{1}{2C}I_n \succ 0$

Reformulation Bai & Yan (2016)

min
$$\frac{1}{2}v^{\top}K^{-1}v$$

s.t. $y_iv_i \geq 1$, $i = 1, ..., \ell$
 $v_i^2 \geq 1$, $i = \ell + 1, ..., n$
 $v \in \mathbb{R}^n$ (*)

Notation

- $K^* \succeq 0$ kernel matrix with $K^*_{ij} \coloneqq k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$
- $K := K^* + \frac{1}{2C}I_n \succ 0$

Reformulation Bai & Yan (2016)

$$\begin{aligned} & \min & \quad \frac{1}{2} v^{\top} \mathcal{K}^{-1} v \\ & \text{s.t.} & \quad y_i v_i \geq 1, \quad i = 1, \dots, \ell \\ & \quad v_i^2 \geq 1, \quad i = \ell + 1, \dots, n \\ & \quad v \in \mathbb{R}^n \end{aligned} \tag{*}$$

- quadratic programming problem in continuous variables
- convex objective function
- nonconvex feasible set
- **bound constraints**: $y_i v_i \ge 1$ means either $v_i \le -1$ or $v_i \ge 1$

Notation

- $ightharpoonup K^* \succeq 0$ kernel matrix with $K^*_{ij} \coloneqq k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$
- $K := K^* + \frac{1}{2C}I_n \succ 0$

Reformulation Bai & Yan (2016)

$$\begin{aligned} & \min \quad \frac{1}{2} v^{\top} \mathcal{K}^{-1} v \\ & \text{s.t.} \quad y_i v_i \geq 1, \quad i = 1, \dots, \ell \\ & \quad v_i^2 \geq 1, \quad i = \ell + 1, \dots, n \\ & \quad v \in \mathbb{R}^n \end{aligned} \tag{*}$$

- quadratic programming problem in continuous variables
- convex objective function
- nonconvex feasible set
- **bound constraints**: $y_i v_i \ge 1$ means either $v_i \le -1$ or $v_i \ge 1$

Goal: exact approach for (*) using branch-and-cut

Textbook-like form

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1, ..., n$
 $x_i^2 \geq 1, i = 1, ..., n$
 $x \in \mathbb{R}^n$

▶ rename variables

Textbook-like form

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1, ..., n$
 $x_i^2 \geq 1, i = 1, ..., n$
 $x \in \mathbb{R}^n$

- rename variables
- C symmetric and positive definite

Textbook-like form

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1,...,n$
 $x_i^2 \geq 1, i = 1,...,n$
 $x \in \mathbb{R}^n$

- rename variables
- C symmetric and positive definite
- ▶ $L_i \in \mathbb{R} \cup \{-\infty\}$ and $U_i \in \mathbb{R} \cup \{+\infty\}$

Textbook-like form

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1,...,n$
 $x_i^2 \geq 1, i = 1,...,n$
 $x \in \mathbb{R}^n$

- rename variables
- C symmetric and positive definite
- ▶ $L_i \in \mathbb{R} \cup \{-\infty\}$ and $U_i \in \mathbb{R} \cup \{+\infty\}$
- some constraints redundant

Convex Relaxations

Quadratic programming (QP) relaxation

min
$$x^{\top}Cx$$

s. t. $L_i \leq x_i \leq U_i, i = 1,...,n$ (QP)
 $x \in \mathbb{R}^n$

Convex Relaxations

Quadratic programming (QP) relaxation

min
$$x^{\top}Cx$$

s. t. $L_i \leq x_i \leq U_i, i = 1,...,n$ (QP)
 $x \in \mathbb{R}^n$

Bai & Yan (2016) introduce $X := xx^{\top}$ and relax to $X - xx^{\top} \succeq 0$:

Semidefinite programming (SDP) relaxation

min
$$\langle C, X \rangle$$

s.t. $X_{ii} \geq 1, i = 1, ..., n$
 $L_i \leq x_i \leq U_i, i = 1, ..., n$ (SDP)
 $\begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0$

Convex Relaxations

Quadratic programming (QP) relaxation

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1,...,n$ (QP)
 $x \in \mathbb{R}^n$

Bai & Yan (2016) introduce $X := xx^{\top}$ and relax to $X - xx^{\top} \succeq 0$:

Semidefinite programming (SDP) relaxation

min
$$\langle C, X \rangle$$

s.t. $X_{ii} \geq 1, i = 1, ..., n$
 $L_i \leq x_i \leq U_i, i = 1, ..., n$ (SDP)
 $\begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0$

Bai & Yan (2016): doubly nonnegative relaxation

Finding Good Upper Bounds

min
$$x^{\top}Cx$$

s.t. $y_i x_i \ge 1$, $i = 1, ..., \ell$
 $x_i^2 \ge 1$, $i = \ell + 1, ..., n$
 $x \in \mathbb{R}^n$ (P)

Let $\hat{x} \in \mathbb{R}^n$ be the optimal solution of (QP) or (SDP).

Finding Good Upper Bounds

min
$$x^{\top}Cx$$

s.t. $y_i x_i \ge 1$, $i = 1, \dots, \ell$
 $x_i^2 \ge 1$, $i = \ell + 1, \dots, n$
 $x \in \mathbb{R}^n$ (P)

Let $\hat{x} \in \mathbb{R}^n$ be the optimal solution of (QP) or (SDP).

Direct approach (fast)

Construct feasible solution $x \in \mathbb{R}^n$ for (P) via

$$x_i = egin{cases} \hat{x}_i, & ext{if } |\hat{x}_i| \geq 1 \\ ext{sign}(\hat{x}_i), & ext{otherwise.} \end{cases}$$

Finding Good Upper Bounds

$$\begin{array}{ll} \min & x^{\top} C x \\ \text{s.t.} & y_i x_i \geq 1, \ i = 1, \dots, \ell \\ & x_i^2 \geq 1, \ i = \ell + 1, \dots, n \\ & x \in \mathbb{R}^n \end{array} \tag{P}$$

Let $\hat{x} \in \mathbb{R}^n$ be the optimal solution of (QP) or (SDP).

Direct approach (fast)

Construct feasible solution $x \in \mathbb{R}^n$ for (P) via

$$x_i = egin{cases} \hat{x}_i, & ext{if } |\hat{x}_i| \geq 1 \\ ext{sign}(\hat{x}_i), & ext{otherwise.} \end{cases}$$

Indirect approach (via solving convex QP)

- ① Construct labeling vector $y \in \{-1, 1\}^n$ with $y_i = \operatorname{sign}(\hat{x}_i)$.
- ② Solve convex QP with full labeling y.

Computing Finite Box Constraints $L_i \leq x_i \leq U_i$

Via QP

$$L_i/U_i \coloneqq \min / \max \quad x_i$$

s. t. $L_i \le x_i \le U_i, \ i = 1, \dots, n$
 $x^\top C x \le \mathsf{UB}$
 $x \in \mathbb{R}^n$

Computing Finite Box Constraints $L_i \leq x_i \leq U_i$

Via QP

$$L_i/U_i := \min / \max \quad x_i$$
 s.t. $L_i \le x_i \le U_i, \ i = 1, \dots, n$ $x^\top C x \le \mathsf{UB}$ $x \in \mathbb{R}^n$

Via SDP

$$egin{aligned} L_i/U_i &:= \min/\max & x_i \ & ext{s.t.} & X_{ii} \geq 1, \ i = 1, \dots, n \ & L_i \leq x_i \leq U_i, \ i = 1, \dots, n \ & \langle C, X
angle \leq \mathsf{UB} \ & egin{pmatrix} 1 & x^{ op} \\ x & X \end{pmatrix} \succeq 0 \end{aligned}$$

Computing Finite Box Constraints $L_i \leq x_i \leq U_i$

Via QP

$$L_i/U_i \coloneqq \min / \max \quad x_i$$
 s.t. $L_i \le x_i \le U_i, \ i = 1, \dots, n$ $x^\top C x \le \mathsf{UB}$ $x \in \mathbb{R}^n$

Via SDP

$$egin{aligned} L_i/U_i &:= \min / \max & x_i \ ext{s. t.} & X_{ii} \geq 1, \ i = 1, \ldots, n \ L_i \leq x_i \leq U_i, \ i = 1, \ldots, n \ \langle C, X
angle \leq \mathsf{UB} \ egin{pmatrix} 1 & x^{ op} \\ x & X \end{pmatrix} \succeq 0 \end{aligned}$$

Any further convex feasibility or optimality cuts can be added!

For any $x_i, x_j, i, j = 1, ..., n$, we have:

■
$$U_i - x_i \ge 0$$

■ $x_i - L_i > 0$

$$U_j - x_j \ge 0$$

$$\blacksquare x_j - L_j \geq 0$$

For any $x_i, x_i, i, j = 1, ..., n$, we have:

$$U_i - x_i \ge 0$$

$$x_i - L_i \ge 0$$

$$U_j - x_j \ge 0$$

$$x_j - L_j \ge 0$$

$$(U_i - x_i)(x_j - L_j) \ge 0 \quad \Leftrightarrow \quad X_{ij} \le U_i x_j + L_j x_i - U_i L_j$$

$$X_{ij} \leq U_i x_j + L_j x_i - U_i L_j$$

For any $x_i, x_j, i, j = 1, ..., n$, we have:

$$U_i - x_i \geq 0$$

$$x_i - L_i \ge 0$$

$$U_i - x_i \geq 0$$

$$x_j - L_j \ge 0$$

$$(U_i - x_i)(x_j - L_j) \ge 0 \quad \Leftrightarrow \quad X_{ij} \le U_i x_j + L_j x_i - U_i L_j$$

RLT cuts

$$X_{ij} \ge U_i x_j + U_j x_i - U_i U_j$$

 $X_{ij} \ge L_i x_j + L_j x_i - L_i L_j$
 $X_{ij} \le L_i x_j + U_j x_i - L_i U_j$
 $X_{ij} \le U_i x_j + L_j x_i - U_i L_j$

For any $x_i, x_i, i, j = 1, ..., n$, we have:

$$\bigcup U_i - x_i \geq 0$$

$$x_i - L_i > 0$$

$$U_i - x_i \geq 0$$

$$x_j - L_j \ge 0$$

$$(U_i - x_i)(x_i - L_i) \ge 0 \quad \Leftrightarrow \quad X_{ij} \le U_i x_j + L_i x_i - U_i L_i$$

$$X_{ij} \leq U_i x_j + L_j x_i - U_i L_j$$

RLT cuts

$$X_{ij} \ge U_i x_j + U_j x_i - U_i U_j$$

$$X_{ij} \ge L_i x_j + L_j x_i - L_i L_j$$

$$X_{ij} \le L_i x_j + U_j x_i - L_i U_j$$

$$X_{ij} \le U_i x_j + L_j x_i - U_i L_j$$

- cutting plane approach
- \triangleright only between n and 3n cuts active at optimum
- significant stronger dualbounds

With three variables x_i, x_j, x_k :

$$(x_i - L_i)(x_j - L_j)(U_k - x_k) \ge 0$$

$$\Leftrightarrow$$

$$L_i L_j U_k - L_i L_j x_k - L_i U_k x_j + L_i x_j x_k - L_j U_k x_i + L_j x_i x_k + U_k x_i x_j \ge x_i x_j x_k$$

With three variables x_i, x_j, x_k :

$$(\mathbf{x}_{i} - L_{i})(\mathbf{x}_{j} - L_{j})(U_{k} - \mathbf{x}_{k}) \geq 0$$

$$\Leftrightarrow$$

$$L_{i}L_{j}U_{k} - L_{i}L_{j}\mathbf{x}_{k} - L_{i}U_{k}\mathbf{x}_{j} + L_{i}\mathbf{x}_{j}\mathbf{x}_{k} - L_{j}U_{k}\mathbf{x}_{i} + L_{j}\mathbf{x}_{i}\mathbf{x}_{k} + U_{k}\mathbf{x}_{i}\mathbf{x}_{j} \geq \mathbf{x}_{i}\mathbf{x}_{j}\mathbf{x}_{k}$$

$$(U_{i} - \mathbf{x}_{i})(U_{j} - \mathbf{x}_{j})(\mathbf{x}_{k} - L_{k}) \geq 0$$

$$\Leftrightarrow$$

$$\mathbf{x}_{i}\mathbf{x}_{j}\mathbf{x}_{k} \geq L_{k}U_{i}U_{j} + L_{k}\mathbf{x}_{i}\mathbf{x}_{j} - U_{i}U_{j}\mathbf{x}_{k} + U_{j}\mathbf{x}_{i}\mathbf{x}_{k} + U_{i}\mathbf{x}_{j}\mathbf{x}_{k} - L_{k}U_{j}\mathbf{x}_{j} - L_{k}U_{i}\mathbf{x}_{j}$$

With three variables x_i, x_j, x_k :

$$(x_{i} - L_{i})(x_{j} - L_{j})(U_{k} - x_{k}) \geq 0$$

$$\Leftrightarrow$$

$$L_{i}L_{j}U_{k} - L_{i}L_{j}x_{k} - L_{i}U_{k}x_{j} + L_{i}x_{j}x_{k} - L_{j}U_{k}x_{i} + L_{j}x_{i}x_{k} + U_{k}x_{i}x_{j} \geq x_{i}x_{j}x_{k}$$

$$(U_{i} - x_{i})(U_{j} - x_{j})(x_{k} - L_{k}) \geq 0$$

$$\Leftrightarrow$$

$$x_{i}x_{i}x_{k} \geq L_{k}U_{i}U_{i} + L_{k}x_{i}x_{j} - U_{i}U_{i}x_{k} + U_{i}x_{j}x_{k} + U_{i}x_{j}x_{k} - L_{k}U_{i}x_{j} - L_{k}U_{i}x_{j}$$

Triangle cut

$$\begin{aligned} (U_k - L_k) x_i x_j + (L_j - U_j) x_i x_k + (L_i - U_i) x_j x_k + L_i L_j U_k - L_k U_i U_j \\ + (L_k U_j - L_j U_k) x_i + (L_k U_i - L_i U_k) x_j + (U_i U_j - L_i L_j) x_k \ge 0 \end{aligned}$$

With three variables x_i, x_j, x_k :

$$(\mathbf{x}_{i} - L_{i})(\mathbf{x}_{j} - L_{j})(U_{k} - \mathbf{x}_{k}) \geq 0$$

$$\Leftrightarrow$$

$$L_{i}L_{j}U_{k} - L_{i}L_{j}\mathbf{x}_{k} - L_{i}U_{k}\mathbf{x}_{j} + L_{i}\mathbf{x}_{j}\mathbf{x}_{k} - L_{j}U_{k}\mathbf{x}_{i} + L_{j}\mathbf{x}_{i}\mathbf{x}_{k} + U_{k}\mathbf{x}_{i}\mathbf{x}_{j} \geq \mathbf{x}_{i}\mathbf{x}_{j}\mathbf{x}_{k}$$

$$(U_{i} - \mathbf{x}_{i})(U_{j} - \mathbf{x}_{j})(\mathbf{x}_{k} - L_{k}) \geq 0$$

$$\Leftrightarrow$$

$$\mathbf{x}_{i}\mathbf{x}_{i}\mathbf{x}_{k} \geq L_{k}U_{i}U_{i} + L_{k}\mathbf{x}_{i}\mathbf{x}_{i} - U_{i}U_{i}\mathbf{x}_{k} + U_{i}\mathbf{x}_{i}\mathbf{x}_{k} + U_{i}\mathbf{x}_{i}\mathbf{x}_{k} - L_{k}U_{i}\mathbf{x}_{i} - L_{k}U_{i}\mathbf{x}_{i}$$

Triangle cut

$$(U_k - L_k)x_i x_j + (L_j - U_j)x_i x_k + (L_i - U_i)x_j x_k + L_i L_j U_k - L_k U_i U_j + (L_k U_j - L_j U_k)x_i + (L_k U_i - L_i U_k)x_j + (U_i U_j - L_i L_j)x_k \ge 0$$

triangle cuts do not improve our dualbounds (using RLT cuts)

- ► UB: best known upper bound for nonconvex problem (P)
- ► LB: optimal value of SDP relaxation

- ► UB: best known upper bound for nonconvex problem (P)
- ► LB: optimal value of SDP relaxation

Bound tightening

If the constraint $L_i - x_i \le 0$ is active at the optimal SDP solution with Lagrange multiplier $\lambda_i^L > 0$, then the inequality

$$x_i \ge U_i - \frac{\mathsf{UB} - \mathsf{LB}}{\lambda_i^L}$$

does not cutoff any optimal solution of (P) better than UB.

- ► UB: best known upper bound for nonconvex problem (P)
- ► LB: optimal value of SDP relaxation

Bound tightening

If the constraint $L_i - x_i \le 0$ is active at the optimal SDP solution with Lagrange multiplier $\lambda_i^L > 0$, then the inequality

$$x_i \ge U_i - \frac{\mathsf{UB} - \mathsf{LB}}{\lambda_i^L}$$

does not cutoff any optimal solution of (P) better than UB.

lacksquare update L_i via $L_i \coloneqq \max\left\{L_i, U_i - rac{\mathsf{UB} - \mathsf{LB}}{\lambda_i^L}
ight\}$ if $\lambda_i^L > 0$

- ► UB: best known upper bound for nonconvex problem (P)
- ► LB: optimal value of SDP relaxation

Bound tightening

If the constraint $L_i - x_i \le 0$ is active at the optimal SDP solution with Lagrange multiplier $\lambda_i^L > 0$, then the inequality

$$x_i \geq U_i - \frac{\mathsf{UB} - \mathsf{LB}}{\lambda_i^L}$$

does not cutoff any optimal solution of (P) better than UB.

- lacksquare update L_i via $L_i \coloneqq \max\left\{L_i, U_i rac{ extsf{UB} extsf{LB}}{\lambda_i^L}
 ight\}$ if $\lambda_i^L > 0$
- lacksquare update U_i via $U_i \coloneqq \min\left\{U_i, L_i rac{\mathsf{UB} \mathsf{LB}}{\lambda_i^U}
 ight\}$ if $\lambda_i^U > 0$

We know that $1 \leq X_{ii} \leq \max\{L_i^2, U_i^2\}$ must hold for i = 1, ..., n.

We know that $1 \leq X_{ii} \leq \max\{L_i^2, U_i^2\}$ must hold for i = 1, ..., n.

Lower bound on main diagonal

If $X_{ii} \ge \gamma \ge 1$ is active with Lagrange multiplier $\lambda > 0$, then update

$$L_i := \max \left\{ L_i, -\sqrt{\gamma + \frac{\mathsf{UB} - \mathsf{LB}}{\lambda}} \right\}, \ \ U_i := \min \left\{ U_i, \sqrt{\gamma + \frac{\mathsf{UB} - \mathsf{LB}}{\lambda}} \right\}.$$

We know that $1 \le X_{ii} \le \max\{L_i^2, U_i^2\}$ must hold for i = 1, ..., n.

Lower bound on main diagonal

If $X_{ii} \ge \gamma \ge 1$ is active with Lagrange multiplier $\lambda > 0$, then update

$$L_i \coloneqq \max \left\{ L_i, -\sqrt{\gamma + \frac{\mathsf{UB} - \mathsf{LB}}{\lambda}} \right\}, \ \ U_i \coloneqq \min \left\{ U_i, \sqrt{\gamma + \frac{\mathsf{UB} - \mathsf{LB}}{\lambda}} \right\}.$$

Upper bound on main diagonal

If $X_{ii} \leq \gamma \leq \max\{L_i^2, U_i^2\}$ is active with Lagrange multiplier $\lambda > 0$:

We know that $1 \le X_{ii} \le \max\{L_i^2, U_i^2\}$ must hold for i = 1, ..., n.

Lower bound on main diagonal

If $X_{ii} \ge \gamma \ge 1$ is active with Lagrange multiplier $\lambda > 0$, then update

$$L_i := \max \left\{ L_i, -\sqrt{\gamma + \frac{\mathsf{UB} - \mathsf{LB}}{\lambda}} \right\}, \ \ U_i := \min \left\{ U_i, \sqrt{\gamma + \frac{\mathsf{UB} - \mathsf{LB}}{\lambda}} \right\}.$$

Upper bound on main diagonal

If $X_{ii} \leq \gamma \leq \max\{L_i^2, U_i^2\}$ is active with Lagrange multiplier $\lambda > 0$:

Projecting box constraints

$$L_i > -1 \Rightarrow L_i := \max\{L_i, 1\}$$
 and $U_i < 1 \Rightarrow U_i := \min\{U_i, -1\}$

Preliminary Branch-and-Cut Results

- most fractional branching
 - ► choose $i \in \arg\min\{|x_i|: L_i < 0, \ U_i > 0\}$
 - ightharpoonup add $U_i \leq -1$ in one subproblem and $L_i \geq 1$ in the other
- ► SDP + RLT + bound tightening using MOSEK

Datasets used for 5-fold cross-validation

- **ionosphere**: n = 280, d = 32, almost linearly separable
- **arrhythmia:** n = 361, d = 191, not linearly separable

Preliminary Branch-and-Cut Results

- linear kernel
- ightharpoonup C = 1

$$gap = (UB - LB)/UB$$

instance	30% labeled			60% labeled		
	root gap	nodes	gap	root gap	nodes	gap
ionosphere-0	6.24%	61	0.1%	2.60%	75	0.1%
ionosphere-1	9.15%	187	0.1%	0.94%	7	0.1%
ionosphere-2	4.82%	103	0.1%	0.70%	5	0.1%
ionosphere-3	15.38%	326	6.79%	1.55%	23	0.1%
ionosphere-4	7.20%	127	0.1%	1.20%	9	0.1%
arrhythmia-0	21.90%	15	20.51%	9.12%	83	6.57%
arrhythmia-1	20.65%	15	18.24%	5.64%	82	3.42%
arrhythmia-2	28.11%	15	25.45%	5.39%	82	2.46%
arrhythmia-3	24.21%	15	22.67%	3.01%	90	0.88%
arrhythmia-4	18.55%	15	16.99%	5.13%	103	2.90%

Future Work

Relaxation:

- ► test QP + RLT relaxation
- further strengthen relaxation (disjunctive cuts?)

Implementation:

- ► faster and parallelized
- use other solver than MOSEK
- Lagrangian relaxation to dualize cuts

Future Work

Relaxation:

- ▶ test QP + RLT relaxation
- further strengthen relaxation (disjunctive cuts?)

Implementation:

- ► faster and parallelized
- use other solver than MOSEK
- Lagrangian relaxation to dualize cuts

Thank you!