

Global United Technology Services Co., Ltd.

Report No.:GTS201912000066F01

TEST REPORT

Applicant: Shenzhen Hysiry Technology Co., Ltd.

Address of Applicant: 2403D, 24th floor, coast huanging building, no.24 futian road,

xu town community, futian street, futian district, shenzhen

Manufacturer: Shenzhen Hysiry Technology Co., Ltd.

2403D, 24th floor, coast huanging building, no.24 futian road, Address of Manufacturer: xu town community, futian street, futian district, shenzhen

Equipment Under Test (EUT)

Product Name: Bluetooth gateway

BG1 Model No.:

Trade Mark: HYSIRY

汇思锐

FCC ID: 2AKBP-BG1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 2019-10-30

Date of Test: 2019-11-04 to 2019-12-05

Date of report issued: 2019-12-12

Test Result: PASS *

Authorized Signat

Robinson Lo Laboratory Manager

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.:GTS201912000066F01

2 Version

Version No.	Date	Description
00	2019-12-12	Original

Prepared By:	Joseph Du	Date:	2019-12-12
	Project Engineer	_	
Check By:	Reviewer	Date:	2019-12-12

3 Contents

			Page
1	COVER	PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	6
	5.3	DESCRIPTION OF SUPPORT UNITS	6
	5.4	DEVIATION FROM STANDARDS	6
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	6
	5.6	TEST FACILITY	6
	5.7	TEST LOCATION	
	5.8	ADDITIONAL INSTRUCTIONS	6
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED EMISSIONS	_
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	14
	7.5	POWER SPECTRAL DENSITY	18
	7.6	BAND EDGES	21
	7.6.		
	7.6.2		
	7.7	Spurious Emission	
	7.7.		
	7.7.2	2 Radiated Emission Method	43
8	TES	T SETUP PHOTO	53
9	EUT	CONSTRUCTIONAL DETAILS	52
J	_01		JJ

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement uncert	tainty is for coverage factor of k	=2 and a level of confidence of	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Bluetooth gateway
Model No.:	BG1
Hardware Version:	V1.0
Software Version:	V1.0
Test sample(s) ID:	GTS201912000066-1
Sample(s) Status:	Engineer sample
Sample(s) Status:	Engineer sample
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
	802.11n(HT40):7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)
	802.11g/802.11n(H20)/802.11n(HT40):
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB Antenna
Antenna gain:	1.7dBi
Power supply:	Input: AC 120V/60Hz

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)			
rest channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

Report No.:GTS201912000066F01

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software Version	UI_mptool_1V16
Power Setting	Power Setting: not applicable, test used software
	default power level.

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020	
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020	
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020	
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020	
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020	
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020	

Con	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020		

RF C	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020		

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020			
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020			

Report No.:GTS201912000066F01

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antennas are PCB antenna, the best case gain of the antennas are 1.7dBi, reference to the appendix II for details

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Frequency range (MHz)	Limit	(dBuV)			
		Quasi-peak		erage		
	0.15-0.5	66 to 56*		o 46*		
	0.5-5 56 46 5-30 60 50					
	* Decreases with the logarithm			50		
Test setup:	Reference Plane	1 ,				
	AUX Equipment E.U.T Filter AC power EMI Receiver Remark EUT: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impedance.	n network (L.I.S.N.).	This provide	es a		
	2. The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs).	n/50uH coupling imp	edance with	50ohm		
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25.2 °C Hum	nid.: 47%	Press.:	1010mbar		
Test voltage:	AC 120V, 60Hz	<u>'</u>				
Test results:	Pass					

Measurement data

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Emission Level= Read Level+ Correct Factor
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Measurement Data

Test CH		Peak Outp	Limit(dBm)	Result		
Test Off	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Liiiii(abiii)	Nesuit
Lowest	20.24	18.78	19.05	18.66		
Middle	19.66	18.32	18.39	18.16	30.00	Pass
Highest	18.38	16.94	17.11	17.40		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 13 of 53

7.4 Channel Bandwidth & 99% Occupy Bandwidth

Test Requirement :	FCC Part15 C Section 15.247 (a)(2)		
Test Method :	KDB558074 D01 DTS Meas Guidance V05or02		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test CH		Channel E	Bandwidth (MHz)		Limit(KHz)	Result
1631 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Liiiii(Ki iZ)	Nesuit
Lowest	9.058	16.34	17.32	35.00		
Middle	8.557	16.08	17.34	35.14	>500	Pass
Highest	8.594	16.33	17.30	35.15		

Toot CU		Dooult			
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Result
Lowest	13.673	16.563	17.698	35.873	
Middle	13.599	16.590	17.696	35.824	Pass
Highest	13.555	16.582	17.695	35.867	

Test plot as follows:

802.11b

802.11g

Lowest channel

Middle channel

Highest channel

802.11n(HT20)

| Special Section Analysis Compared No. | Special Section | Specia

802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	KDB558074 D01 DTS Meas Guidance V05or02		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test CH		Power Spectra	Limit	Result		
1631 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	Nesuit
Lowest	-0.74	-11.955	-13.437	-16.909		
Middle	-7.977	-13.942	-14.330	-17.081	8.00	Pass
Highest	-6.698	-14.343	-14.795	-17.955		

Test plot as follows:

802.11b

802.11g

Lowest channel

Middle channel

Highest channel

Page 19 of 53

802.11n(HT20)

| Septime Reprint September Advance Seept | September Advance | Se

802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	KDB558074 D01 DTS Meas Guidance V05or02		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Test plot as follows:

Test mode:

802.11b

Highest channel

Lowest channel

Test mode:

802.11g

Lowest channel

Highest channel

Test mode: | State |

802.11n(HT20)

Highest channel

Lowest channel

Test mode:

802.11n(HT40)

Lowest channel

Highest channel

Page 23 of 53

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.20				
Test Method:	ANSI C63.10: 2	013			
Test Frequency Range:	All of the restrict 2500MHz) data		ested, only	the worst b	pand's (2310MHz to
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
·		Peak	1MHz	3MHz	Peak
	Above 1GHz	Average	1MHz	3MHz	Average
Limit:	Freque		Limit (dBuV	/m @3m)	Value
			54.0		Average
	Above 1	GHZ	74.0	0	Peak
Test Secup:	Test Antenna+ < 1m 4m > v < 150 cm > v Receivery Preamplifiery				
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section	5.2 for details			
Test results:	Pass				

Radiation Test:

Emission Level= Read Level+ Correct Factor

101.50

1.62

103.12

54.00

49.12

AVG

2411.400

4

7.7 Spurious Emission

7.7.1 Conducted Emission Method

	7
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D01 DTS Meas Guidance V05or02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Test plot as follows:

802.11b(Only worse case is reported)

Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209				
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distar	ice: 3	3m				
Receiver setup:	Frequency	Detector		RB	W	VBW	Value
	9KHz-150KHz	Quasi-peak		200	Hz	600Hz	Z Quasi-peak
	150KHz-30MHz	Qι	ıasi-peak	9KI	Ηz	30KHz	z Quasi-peak
	30MHz-1GHz	Qι	ıasi-peak	100k	(Hz	300KH	z Quasi-peak
	Above 1CHz		Peak	1MI	Ηz	3MHz	Peak
	Above 1GHz		Peak	1MI	Ηz	10Hz	Average
Limit:	Frequency		Limit (u\	//m)	V	/alue	Measurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m
	0.490MHz-1.705M	Hz	Hz 24000/F(F			QP	300m
	1.705MHz-30MH	Z	30			QP	30m
	30MHz-88MHz		100			QP	
	88MHz-216MHz		150			QP	
	216MHz-960MH	Z	200			QP	3m
	960MHz-1GHz		500			QP	JIII
	Above 1GHz		500		Av	rerage	
	Above 19112		5000)	F	Peak	
Tost satura:							

Test setup:

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30MHz to1GHz

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Report No.:GTS201912000066F01

	Report No.:GTS201912000066F01
	For radiated emissions above 1GHz
	Tum Table <pre></pre>
Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test voltage:	AC120V 60Hz
Test environment:	Temp.: 23.6 °C Humid.: 49% Press.: 1012mbar
Test voltage:	AC 120V, 60Hz
Test results:	Pass

Measurement data:

■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

■ Below 1GHz

■ Above 1GHz

An	t. Pol				Horizor	ntal					
Tes	st Mo	de):	•	TX B M	lode 241	2MHz				
	No	_	Mk.	Freq		eading _evel	Correct Factor	Measure- ment	Limit	Over	
				MHz		dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	18	k	4903.13	36 2	28.48	13.03	41.51	54.00	-12.49	AVG
	2			4903.56	62 4	42.50	13.03	55.53	74.00	-18.47	peak

Ant	Ant. Pol.			Ve	ertical								
Test Mode:					TX B Mode 2412MHz								
	No	. N	1k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
				MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
	1			4822.890	42.70	12.54	55.24	74.00	-18.76	peak			
	2	*		4823.922	29.32	12.54	41.86	54.00	-12.14	AVG			

Ant	Ant. Pol.			Hori	zontal								
Tes	t Mod	le:		TX E	TX B Mode 2437MHz								
	No.	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
			МН	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
	1		4874.	750	43.45	12.85	56.30	74.00	-17.70	peak			
	2	*	4874.	870	28.55	12.85	41.40	54.00	-12.60	AVG			

Ant	. Pol.			Vert	ical							
Tes	t Mod	e:		TX E	TX B Mode 2437MHz							
	No.	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			МН	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
	1		4874.	000	42.88	12.85	55.73	74.00	-18.27	peak		
	2	*	4875.	026	28.63	12.86	41.49	54.00	-12.51	AVG		

An	Ant. Pol.			Hor	izontal								
Te	st Mo	de:		TX	TX B Mode 2462MHz								
	No	. N	1k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
				MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
	1	*		4923.292	28.52	13.15	41.67	54.00	-12.33	AVG			
	2			4925.362	42.67	13.17	55.84	74.00	-18.16	peak			

An	Ant. Pol.				Vert	ical								
Tes	Test Mode:					TX B Mode 2462MHz								
	No	. M	k.	Fred	q .	Reading Level	Correct Factor	Measure- ment	Limit	Over				
				MHz	:	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
	1		4	4923.0	10	43.08	13.15	56.23	74.00	-17.77	peak			
	2	*	4	4923.0	10	28.54	13.15	41.69	54.00	-12.31	AVG			

Ant. Pol.			Н	orizontal							
Tes	t Mod	le:	T	TX G Mode 2412MHz							
-	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
•			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
	1		4822.728	43.37	12.54	55.91	74.00	-18.09	peak		
	2	*	4823.922	29.43	12.54	41.97	54.00	-12.03	AVG		

٩nt	. Pol.		Ve	ertical								
Гes	t Mod	le:	T	TX G Mode 2412MHz								
-	No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
-			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
-	1		4823.622	42.87	12.54	55.41	74.00	-18.59	peak			
-	2	*	4823.922	29.38	12.54	41.92	54.00	-12.08	AVG			

	Ant. Pol.			.	lorizontal								
Те	Test Mode:				TX G Mode 2437MHz								
	No. Mk		Mk. Fre		Reading Level	Correct Factor	Measure- ment	Limit	Over				
				MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
	1	*		4872.50	28.61	12.84	41.45	54.00	-12.55	AVG			
	2			4874.32	4 42.46	12.85	55.31	74.00	-18.69	peak			

Ant	. Pol	•		Vert	ical					
Tes	t Mo	de:		TX (G Mode 2437	7MHz				
	No). M	k. Fr	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			М	Hz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4874	.864	42.51	12.85	55.36	74.00	-18.64	peak
	2	*	4874	.870	28.60	12.85	41.45	54.00	-12.55	AVG

۱nt	. Pol.		Hor	izontal					
es	t Mod	e:	TX	G Mode 2462	2MHz				
-	Na	MI	From	Reading	Correct		Limit	Over	
-			. Freq.	Level dBuV	Factor dB/m	ment dBuV/m	dBuV/m	dB	Detector
-	1		4923.730	42.87	13.15	56.02	74.00	-17.98	peak
•	2	*	4925.344	28.53	13.17	41.70	54.00	-12.30	AVG

An	t. Pol.			Ver	tical					
Tes	st Mod	le:		TX	G Mode 246	2MHz				
	No.	Mk	. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MH	łz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4943.	676	42.15	13.28	55.43	74.00	-18.57	peak
	2	*	4944.	234	28.14	13.28	41.42	54.00	-12.58	AVG

An	t. Pol.			Hori	zontal					
Tes	st Mod	de:		۱XT	N(HT20) Mo	de 2412MH	Hz			
	No.	Mk	. Fred] .	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz		dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	4823.9	22	29.42	12.54	41.96	54.00	-12.04	AVG
	2		4823.9	46	42.85	12.54	55.39	74.00	-18.61	peak

An	t. Pol	•		Vert	tical					
Tes	st Mo	de:		TXI	N(HT20) Mod	de 2412MH	lz			
	No	. M	k. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			N	ИHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	482	3.922	29.24	12.54	41.78	54.00	-12.22	AVG
	2		482	3.928	42.49	12.54	55.03	74.00	-18.97	peak

. Pol			Horiz	zontal					
t Mo	de:		TX N	I(HT20) Mod	de 2437MH	Z			
No	. M	k. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MH	łz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.	700	42.82	12.85	55.67	74.00	-18.33	peak
2	*	4874.	708	28.62	12.85	41.47	54.00	-12.53	AVG
	No.	1	No. Mk. Fre	No. Mk. Freq. MHz 1 4873.700	No. Mk. Freq. Reading MHz dBuV 1 4873.700 42.82	TX N(HT20) Mode 2437MH Reading Correct Level Factor MHz dBuV dB/m 1 4873.700 42.82 12.85	No. Mk. Freq. Reading Level Correct Factor Measurement MHz dBuV dBuV/m dBuV/m 1 4873.700 42.82 12.85 55.67	TX N(HT20) Mode 2437MHz No. Mk. Freq. Reading Level Level Factor Factor Measure-Factor Measure-MHz Limit MHz 1 4873.700 42.82 12.85 55.67 74.00	No. Mk. Freq. Reading Level Correct Factor Measure-ment Limit Over MHz dBuV dBuV dBuV/m d

An	t. Pol.	•		Ver	tical						
Tes	st Mo	de:		TX	N(HT20) Mo	de 2437MF	łz				
	No.	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over		-
			MHz	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	•
	1		4872.7	794	42.81	12.84	55.65	74.00	-18.35	peak	•
	2	*	4875.5	500	28.46	12.86	41.32	54.00	-12.68	AVG	-

An	t. Po	l.		Ho	rizontal					
Te	st Mc	de:		TX	N(HT20) Mod	de 2462MH	z			
	No	o. N	/lk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
				MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*		4922.812	28.56	13.15	41.71	54.00	-12.29	AVG
	2			4923.316	42.73	13.15	55.88	74.00	-18.12	peak

Ant	. Pol.			Vert	ical					
Tes	t Mod	le:		1 XT	N(HT20) Mo	de 2462MH	Z			
	No.	Mk	k. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MH	lz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	4922.	656	28.45	13.15	41.60	54.00	-12.40	AVG
	2		4925.	386	43.10	13.17	56.27	74.00	-17.73	peak

Ant	. Pol			Horiz	zontal					
Tes	t Mo	de:		TX N	I(HT40) Mo	de 2422MH	z			
-	No	. M	k. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-			MH	IZ	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
-	1		4843.	130	42.71	12.66	55.37	74.00	-18.63	peak
	2	*	4843.	292	28.45	12.66	41.11	54.00	-12.89	AVG

An	t. Pol.			Vert	ical					
Tes	est Mode:			1XT	N(HT40) Mo	de 2422MH	łz			
	No	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		4844.′	102	42.47	12.67	55.14	74.00	-18.86	peak
	2	*	4844.7	714	28.33	12.67	41.00	54.00	-13.00	AVG

Report No.:GTS201912000066F01

An	t. Pol.			Ho	orizontal					
Tes	st Mo	de:		TX	(N(HT40) Mo	de 2437MH	łz			
	No	. M	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
				MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	4	874.558	28.61	12.85	41.46	54.00	-12.54	AVG
	2		4	875.044	43.04	12.86	55.90	74.00	-18.10	peak

Ant.	Pol.		Vert	Vertical							
Test Mode:			1 XT	TX N(HT40) Mode 2437MHz							
	No. Mk.		. Freq.	Reading Correct Measure- Freq. Level Factor ment			Limit	Over			
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
	1	*	4873.058	28.54	12.84	41.38	54.00	-12.62	AVG		
	2		4875.038	42.74	12.86	55.60	74.00	-18.40	peak		

Ant. Pol.				Horizontal							
Test Mode:			TX N(HT40) Mode 2452MHz								
	No. Mk. Fre			Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
	1	*	4902.6	656	28.56	13.03	41.59	54.00	-12.41	AVG	
	2		4903.2	274	42.85	13.03	55.88	74.00	-18.12	peak	

Ant. Pol.				Vert	tical							
Test Mode:				TX	TX N(HT40) Mode 2452MHz							
	No.	No. Mk. Fre		q.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
				Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
	1	*	4902.5	500	28.60	13.02	41.62	54.00	-12.38	AVG		
	2		4904.3	348	42.61	13.03	55.64	74.00	-18.36	peak		

Remark:

- 1.No report for the emission which more than 10 dB below the prescribed limit.
- 2.Emission Level= Read Level+ Correct Factor

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----