COURSE INFORMATION

Department/ Faculty:	Electronic Systems Engineering / Malaysia-Japan Int'l Inst. Of Technology	Page:	1 of 6	
Course code:	SMJE 2173	Academ	ic Session/Semester:	2019-2020/ SEM.2
Course name:	DIGITAL SYSTEM DESIGN	-	requisite (course name e, if applicable):	SMJE 1113 DIGITAL ELECTRONICS
Credit hours:	3 (2 + 1) (2 HR LECTURE + 3 HR PRACTICAL)		-,pp	2.3

Course synopsis	This course introduces design method and sequential circuits, by means of Verilog. Areas of topics include: (1) Co Hardware Description Languages (HD specification, design, and simulation. If 1113) will be reviewed briefly in refr features of HDL will be examined. The and synthesize digital logic circuits. techniques will be discussed and how circuits. Hand-on experience is gained board through weekly lab practices ar	of Hardward mputer-Aid L) for simula Principles an resher session course will The datafl they are us I by implem	e Descriptive La ed Design (CAD) to ation and synthe ad fundamentals on. In this cours enable students ow, structural, a ed to design com-	nguage (HDL) specifically cools for design, (2) Verilog sis, and (3) state machine of digital electronics (SMJE e, some of the important to design, simulate, model and behavioral modelling abinational and sequential				
Course coordinator (if applicable)	AP Dr Ooi Chia Yee							
Course lecturer(s)	Name Office Contact no. E-mail							
	Prof.Dr. Koichiro Mashiko	09.41.01	2203-1320	k.mashiko@utm.my				

Mapping of the Course Learning Outcomes (CLO) to the Programme Learning Outcomes (PLO), Teaching & Learning (T&L) methods and Assessment methods:

No.	CLO	PLO	Weight (%)	*Taxonomies / **generic skills*	T&L methods	***Assessment methods
CO1	Apply principles and methodologies of digital system design at registertransfer-level (RTL) and gate-level, including both combinational and sequential circuits.	PLO1 (KW1)	20	C1, C2 / SCH1	Active Learning	Quiz Test Final Exam
CO2	Design digital system that can function correctly on FPGA by	PLO3 (THDS)	30	C3 / TH1 - 3	Active Learning Collaborative Learning	Test, Final exam Lab Practice
Prepared by: Name: Ooi Chia Yee / Koichiro Mashiko Signature:			Certified by: Name: Dr Signature: Date:	. Mohd. Ibrahim Shapi	ai @ Abd. Razak	
Dat	e: 31 Jan. 2020					

Department/ Faculty:	ELECTRONIC SYSTEMS ENGINEERING / MALAYSIA-JAPAN INT'L INST OF TECHNOLOGY	Page:	2 of 7	
Course code:	SMJE 2173 / SMJE 3173	Academ	ic Session/Semester:	2018-2019/ SEM.2
Course name:	DIGITAL SYSTEM DESIGN	Pre/co requisite (course name and code, if applicable):		SMJE 1113
Credit hours:	3	and cod	е, п аррисавіе):	DIGITAL ELECTRONICS

	using Hardware Descriptive Language (HDL).				Cooperative Learning	Project
CO3	Manipulate (circuit), synthesis and utilize simulation tools to solve design problems.	PLO5 (THPA)	5	C5 / TH	Cooperative Learning Collaborative Learning	Lab Practice
CO4	Work collaboratively to design and complete a sizable digital system implemented on FPGA.	PLO3- (THDS) PLO9 – (CS) PLO10 –(TW)	(15%) 5 5 5	C6 / TH, CS,TW	Collaborative Learning	PR

Refer *Taxonomies of Learning and **UTM's Graduate Attributes, where applicable for measurement of outcomes achievement

Details on Innovative T&L practices:

No.	Туре	Implementation
1.	Lecture	2 hrs/ week x 14 week = 28 hrs
2.	Lab & Project - Practical	3 hrs/ week x 14 week = 42 hrs
3	Continuous Assessment	7.5 hrs
4.	Final Assessment	2.5 hrs
5.	Revision	10 hours
6.	Assessment Preparations	30 hours
	TOTAL	120 hrs

Weekly Schedule:

Week 1	Introduction to Digital Logic Construct Using Verilog - Introduction to HDL and Verilog. Hierarchical design. Verilog constructs – functional, behavioural and structural modelling.
	Basic Logic Design in Verilog (functional and behavioural) in assign statement and sequential statement: MULTIPLEXER and applications – Include review on digital logic principles of MUX in discrete logics.

^{***}T – Test; Q – Quiz; HW – Homework; PR – Project; Pr – Presentation; F – Final Exam etc.

Department/ Faculty:	ELECTRONIC SYSTEMS ENGINEERING / MALAYSIA-JAPAN INT'L INST OF TECHNOLOGY	Page:	3 of 7		
Course code:	SMJE 2173 / SMJE 3173	Academ	ic Session/Semester:	2018-2019/ SEM.2	
Course name:	DIGITAL SYSTEM DESIGN	-	requisite (course name e, if applicable):	SMJE 1113 DIGITAL ELECTRONICS	
Week 2	Constructing MULTIPLE Learning Topics: Basic Logic Design in Verilog (functional and becoders, TRI-STATE BUFFER, and APPLICAT Arithmetic Circuits: Representation of negative statements and the statements of the statements and the statements are statements.	Eus® II, FPGA and simple Verilog coding. PLEXER in Verilog I behavioural) in assign statement and sequential statement: ATIONS. gative number: sign-and-magnitude, 1's complement, 2's and subtraction. Adder/ Subtractor circuits. Introduction			
Week 3	Lab Practice Week 3: Designing for an applic Designing a 4-bit binary input to output a 2-		mal display		

Objective: 1) Able to construct and understand the functionality of a simple 2-by-4 decoder 2) Able to construct in Verilog a 7-segment decoder. 3) Able to construct a Verilog module of a simple comparator. 4) Able to integrate all previous modules into a new design project – a BCD converter with a singledigit decimal display Learning topics: Comparator and Arithmetic Logic Unit (ALU). Week 4 Lab Practice Week 4: Designing for an application Designing a digit BCD adder 1) Able to construct a 4-bit full adder circuit on FPGA 2) Able to integrate a 4-bit full adder circuit into a new design application – a 2-digit BCD adder with 4-digit decimal display Construct an 8-bit ALU Objective: 1) Able to construct a pre-specified bit-slice design of an ALU. 2) Able to expand the ALU to be 8-bit wide. Learning topics: Basic Sequential Circuits Design using Verilog: Sequential statements □ Blocking vs.Unblocking statements □ Latches □ Master-slave □ Flip-flops timing and clock trigger. ☐ Memory

Department/ Faculty:	ELECTRONIC SYSTEMS ENGINEERING / MALAYSIA-JAPAN INT'L INST OF TECHNOLOGY	Page:	4 of 7	
Course code:	SMJE 2173 / SMJE 3173	Academ	ic Session/Semester:	2018-2019/ SEM.2
Course name:	DIGITAL SYSTEM DESIGN	Pre/co requisite (course name and code, if applicable):		SMJE 1113
Credit hours:	3	and cod	е, п аррисавіе):	DIGITAL ELECTRONICS

Week 5	Lab Practice Week 5: Latches and Flip-flops
	Constructing latches and flip-flops circuits Objective:
	1) Able to construct and simulate in Quartus®II a S-R latch in a 4-input LUT design by means of assign statement and structural modeling.
	2) Able to construct and simulate a gated-D latch by 'instantiating' a previously built S-R latch
	3) Able to construct and perform a master-slave D-flip flop on FPGA by instantiating a previously built gated D-latch.
	4) Able to construct a gated D-latch and flip-flop in sequential statements
	Learning topics:
	Sequential Circuits Design in Verilog: Registers, Counters
Week 6	Lab Practice Week 6: Slow-clock and sequential logic circuit applications Objective:
	1) Able to construct a simple 4-bit binary counter
	2) Able to construct variable-size counter by using parameter declaration
	3) Able to build a 1Hz timer circuit from an on-board 50 MHz crystal oscillator
	4) Able to construct a timed circuit – a 3-digit BCD counter
	Test 1: Include Week 1 to Week 5 topics and material
Week 7	Finite State Machine Design using Verilog

	Finite state machine – concept and structure. Moore and Mealy machines. Design procedure. Demonstrate examples of finite state machines.
Week 8	Mid-Semester Break
Week 9	Lab Practice Week 9: Project-based work
	Learning topics:
	Finite State Machine Design using Verilog Demonstrate examples of finite state machines. Re-visit critical path delay analysis. Setup time and hold time.
Week 10	Lab Practice Week 10: Project-based work
	Learning topics: Verification: Testbench

г

Department/ Faculty:	ELECTRONIC SYSTEMS ENGINEERING / MALAYSIA-JAPAN INT'L INST OF TECHNOLOGY	Page:	5 of 7	
Course code:	SMJE 2173 / SMJE 3173	Academic Session/Semester:		2018-2019/ SEM.2
Course name:	DIGITAL SYSTEM DESIGN	Pre/co requisite (course name and code, if applicable):		SMJE 1113 DIGITAL ELECTRONICS
Week 11	Lab Practice Week 11: Project-based work			
	Learning topics: Verification: Testbench			
Week 12	Lab Practice Week 12: Project-based work Test 2: Sequential Logic Circuits			
Week 13	Group reporting on project progress Lab Practice Week 13: Project-based work			
Week 14	Group reporting on project progress Lab Practice Week 14: Project-based work			
Week 15	PRESENTATIONS Lab Practice Week 15: Project-based work –	PRESENT/	ATIONS	

Transf	erable sl	cills	(generic skills	learned i	in course of	stuc	ly wh	nich ca	n be usefi	ul and	d uti	lised	in ot	her se	ttings):
--------	-----------	-------	-----------------	-----------	--------------	------	-------	---------	------------	--------	-------	-------	-------	--------	--------	----

Student learning time (SLT) details:

Distribution of student Learning		Teaching and Le	TOTAL SLT	
Time (SLT) Course content outline	Guided Learning (Face-to-Face) T(tutorial), P(Practical), O(??)	Guided Learning Non Face-to-Face	Independent Learning Non Face-to-Face	

CLO - PLO	Lecture	Т	Р	0		
CO1-PO1, [Principles of RTL] Lecture only	10				10	20
CO2 – PO3, [HDL programming] Lecture, Lab, Project	18		20		10	58
CO3 – PO5 [Quartus2&FPGA] Lab, Project			10		10	38
CO4 – PO10 Project			12		10	9

Department/ Faculty:	ELECTRONIC SYSTEMS ENGINEERING / MALAYSIA-JAPAN INT'L INST OF TECHNOLOGY	Page:	6 of 7	
Course code:	SMJE 2173 / SMJE 3173	Academ	ic Session/Semester:	2018-2019/ SEM.2
Course name:	DIGITAL SYSTEM DESIGN		requisite (course name	SMJE 1113 DIGITAL ELECTRONICS
Credit hours:	3	and cod	e, if applicable):	DIGITAL ELECTRONICS

Total SLT		28		42				40	110
	Continuous Assessment						Percentage		Total SLT
1	Quiz					1		0.5 hr	
2	Test 1					1		1.0 hr	
3	Test 2							1.0 hr	
4	Lab Work/ Practice							3.0 hr	
5	Project – (Report & Project demo)							2.0 hr	
Total SLT (Assessment)								50%	7.5 hr
Final Assessment							Percentage		Total SLT
1	Final Exam							50%	2.5 hrs
	Total SLT (Assessment)								2.5 hrs
Grand Total SLT									

Special requirement to deliver the course (e.g. software, nursery, computer lab, simulation room):

- 1) A computer system installed with and FPGA EDA GUI Altera® Quartus II , Xilinx® ISE or Xilinx® Vivado
- 2) FPGA development board at least Altera[©] DE2-115

Learning resources:

Text book (if applicable)

- 1. Khalil Mohamed Hani, "RTL Design of Digital Systems with Verilog HDL" Univ. Teknologi. Malaysia, 2017.
- 2. Stephen Brown and Zvonko Vranesic, **"Fundamentals of Digital Logic with Verilog Design"**, 3rd Edition, Mc GrawHill, 2014

Main references

1. Peter J. Ashenden, *Digital System: An Embedded System Approach Using Verilog*, Morgan Kaufmann Publishers, 2008. **Additional references**

Online

٠

Academic honesty and plagiarism:

Department/ Faculty:	ELECTRONIC SYSTEMS ENGINEERING / MALAYSIA-JAPAN INT'L INST OF TECHNOLOGY	Page:	7 of 7	
Course code:	SMJE 2173 / SMJE 3173	Academ	nic Session/Semester:	2018-2019/ SEM.2
Course name:	DIGITAL SYSTEM DESIGN	-	requisite (course name le, if applicable):	SMJE 1113 DIGITAL ELECTRONICS

Academic honesty and integrity is fundamental in any education institution and a principle to good academic work. We, in the university, view cheating as an unethical conduct. Cheating, copying and plagiarizing are serious violations to principles of academic honesty. Students who cheat consider the work they produced as theirs and undermine the effort and hard work of people who actually produce the original work. Strong penalty shall be imposed to students who commit such offense.

- All programming codes, documentation, lab reports and assignments must be from the student's own effort.
- In programming, when a student copies code from an external source regardless whether he is copying a snippet of code or an entire module, the student should credit the source. The student should explicitly cite the work.
- When a student copies the code and adapt it, the student should still credit the source. The student was not the original developer of the code
- Students are expected to cite, paraphrase, disclose on any similarity found on their work with an original source.
- In the case of a group work, each member of the group is held equally accountable and responsible for any kind of cheating found in the work which the group presented to the lecturer.
- Academic dishonesty conducted in this course will be penalized and the penalties are, but not limited to, as the following:
 - (i) The assignment/report/lab work/project will not be graded
 - (ii) The work will be omitted and student have the opportunity to deliver a new work but at a reduced grade.
 - (i) Every member of the group (in group work) shall be penalized equally.
- Those who invest the time working through the problem sets are better prepared to answer exam questions that call for conceptual thinking. And those who copy and cheat are far more likely to fail in the subject than those who did not copy.

Other additional information (Course policy, any specific instruction etc.):

Disclaimer:

All teaching and learning materials associated with this course are for personal use only. The materials are intended for educational purposes only. Reproduction of the materials in any form for any purposes other than what it is intended for is prohibited.

While every effort has been made to ensure the accuracy of the information supplied herein, Universiti Teknologi Malaysia cannot be held responsible for any errors or omissions.