Пусть $f \colon \mathbb{R}^n \to \mathbb{R}^m$, $f_i(x) = x^T A_i x + 2b_i^T x$, $A_i = A_i^T$. Обозначим $F = f(\mathbb{R}^n)$, G = conv F

Обозначим
$$H_i = \left| \begin{array}{ccc} A_i & b_i \\ b_i^T & 0 \end{array} \right|$$

Обозначим
$$H_i = \left| \begin{array}{cc} A_i & b_i \\ b_i^T & 0 \end{array} \right|$$
Обозначим $X = \left| \begin{array}{cc} x \\ 1 \end{array} \right| \left| \begin{array}{cc} x \\ x^T & 1 \end{array} \right| \left| \begin{array}{cc} xx^T & x \\ x^T & 1 \end{array} \right|$

Тогда $f_i(x)=\mathrm{tr} \overset{\square}{H_i} X, \overset{\square}{f}(x)=H(X)$ Обозначим $V=\{X\in\mathbb{R}^{(n+1)\times(n+1)}|X=X^T,\,X\geqslant0,\,X_{n+1,n+1}=1\}$

Обозначим $G_1 = H(V)$.

Доказать: $G_1 = G$ (On the feasibility for the system of quadratic equations, Theorem 3.1. (Convex hull))

- 1. $G\subseteq G_1$. Пусть $y\in G$. Тогда $\exists \{y_i\}_{i=1}^l\subset F,\ \{\lambda_i\}_{i=1}^l\colon y=\sum_{i=1}^l\lambda_iy_i,\ \text{где }\lambda_i\geqslant 0,\ \sum\lambda_i=1.$ Поскольку $y_i \in F$, $\exists \{X_i\} \colon y_i = H(X_i)$, причем $X_i = \left| \left| \begin{array}{cc} x_i x_i^{T} & x_i \\ x_i^T & 1 \end{array} \right| \right| \in V$. Рассмотрим j-ю компоненту $y^j = \sum \lambda_i y_i^j = \sum \lambda_i \mathrm{tr} H_j X_i = \mathrm{tr} H_j \underbrace{\sum \lambda_i X_i}_{X}$. То есть, найден $X \in V \colon y = H(X)$. Значит, $y \in G_1$
- 2. $G_1\subseteq G$. Пусть $y\in G_1$. Тогда $y=H(X),\,X\in V$. Доказать: $y\in G=\mathrm{conv} F$. Представим Xв виде выпуклой комбинации $X=\sum \lambda_i X_i$, где $X_i\in V$, причем $X_i=\left|\left|\begin{array}{cc}x_ix_i^T & x_i\\x_i^T & 1\end{array}\right|\right|\in V$ для некоторого x_i . Это докажет $y \in G$.

Рассмотрим $X = \sum_{k=1}^{n} \lambda_k s_k s_k^T$ — спектральное разложение. Поскольку $X \in V, X \geqslant 0$, значит, $\lambda_k\geqslant 0$. Обозначим $\Lambda=\sum\limits_{k}\lambda_k$. Пусть $s_{k,n+1}\neq \frac{1}{\Lambda}$. Тогда переопределим $s_{k,n+1}=\frac{1}{\Lambda}$. Это можно сделать, т.к. $H_i(s_ks_k^T)$ не изменится (прямая проверка, использовать $H_{i,n+1,n+1}=0$). Рассмотрим $X=\sum\underbrace{\frac{\lambda_k}{\Lambda}}\underbrace{\Lambda s_k s_k^T}$. Получили представление $X=\alpha_k X_k,\ X_k$ имеет нужный вид,

 α_k — выпуклая комбинация. Получаем $y \in G$