Amazon Data Analytics Interview Questions 0-3 YOE 22-25 LPA

SQL Questions

1. Write a query to find the second-highest salary from an employee table.

Solution: To find the second-highest salary, we can use the DISTINCT clause along with the ORDER BY and LIMIT clauses.

Example:

SELECT MAX(Salary) AS Second_Highest_Salary

FROM Employees

WHERE Salary < (SELECT MAX(Salary) FROM Employees);

- The subquery (SELECT MAX(Salary) FROM Employees) finds the maximum salary.
- The outer query finds the maximum salary that is less than the highest salary.

2. How do you remove duplicates from a table in SQL?

Solution: To remove duplicates, we use the ROW_NUMBER() window function along with a DELETE statement.

Example:

```
WITH DuplicateCTE AS (

SELECT *,

ROW_NUMBER() OVER (PARTITION BY EmployeeID, Name, Department ORDER BY EmployeeID) AS Row_Num

FROM Employees
)

DELETE FROM DuplicateCTE

WHERE Row_Num > 1;
```

- The ROW_NUMBER() assigns a unique number to duplicate rows.
- The DELETE operation removes rows where Row_Num is greater than 1.

3. Explain window functions and give an example.

Solution: Window functions perform calculations across a set of table rows related to the current row. Unlike aggregate functions, they do not collapse rows into a single result.

Example:

SELECT

EmployeeID,

Name,

Salary,

RANK() OVER (ORDER BY Salary DESC) AS Salary_Rank

FROM Employees;

The RANK() function assigns a rank to each row based on salary in descending order.

• If two employees have the same salary, they will have the same rank, and the next rank will be skipped.

4. Write a query to find top N customers by total sales.

Solution: To find the top N customers by total sales, we can use the SUM() aggregate function along with ORDER BY and LIMIT.

Example:

SELECT CustomerID,

SUM(SalesAmount) AS Total_Sales

FROM Sales

GROUP BY CustomerID

ORDER BY Total_Sales DESC

LIMIT 5; -- Replace 5 with the desired N value

- The SUM(SalesAmount) calculates the total sales for each customer.
- The result is ordered in descending order, and the LIMIT clause restricts the result to the top N customers.

5. What is the difference between WHERE and HAVING?

Criteria	WHERE	HAVING
Application Level	Works on individual rows	Works on aggregated results
Aggregate Functions	Cannot be used	Can be used
Filtering Phase	Filters before aggregation	Filters after aggregation

Example:

-- Using WHERE

SELECT *

FROM Employees

WHERE Department = 'Sales';

-- Using HAVING

SELECT Department, AVG(Salary) AS Avg_Salary

FROM Employees

GROUP BY Department

HAVING AVG(Salary) > 50000;

- The WHERE clause filters rows before aggregation.
- The HAVING clause filters based on the aggregated result.

If you need further assistance or more questions solved, feel free to ask!

Data Analytics & Business Insights

6. How do you analyze customer churn using data?

Solution: Customer churn analysis identifies the reasons why customers stop doing business with a company. It helps develop strategies for customer retention.

Steps to Analyze Customer Churn:

- 1. **Data Collection:** Gather customer data like demographics, transaction history, usage frequency, complaints, feedback, etc.
- 2. **Define Churn:** Clearly define what constitutes churn, such as no transactions in the last 6 months.
- 3. **Feature Engineering:** Create features like average transaction value, days since the last transaction, tenure, etc.
- 4. **Exploratory Data Analysis (EDA):** Analyze patterns, distributions, correlations, and potential factors influencing churn.
- 5. **Predictive Modeling:** Apply classification techniques like Logistic Regression, Decision Trees, or Random Forest to predict churn.
- 6. **Customer Segmentation:** Segment customers based on demographics, behavior, and churn risk.
- 7. KPIs: Monitor churn rate, retention rate, customer lifetime value (CLV), etc.

Example Query (SQL):

SELECT

CustomerID,

COUNT(CASE WHEN TransactionDate >= DATEADD(MONTH, -6, GETDATE()) THEN 1 END) AS Transactions_Last_6_Months

FROM CustomerTransactions

GROUP BY CustomerID

HAVING COUNT(CASE WHEN TransactionDate >= DATEADD(MONTH, -6, GETDATE()) THEN 1 END) = 0;

This query identifies customers who have not made any transactions in the last 6 months.

7. How would you forecast sales for the next quarter?

Solution: Sales forecasting predicts future sales based on historical data. Accurate forecasts help in decision-making, inventory management, and marketing strategies.

Steps for Forecasting:

- Data Collection: Gather historical sales data, seasonal trends, marketing campaigns, and economic factors.
- 2. **Data Preprocessing:** Handle missing values, remove outliers, and create time series data.
- 3. Exploratory Data Analysis: Analyze trends, seasonality, and cyclic patterns.
- 4. Model Selection: Use techniques like:
 - o **Time Series Models:** ARIMA, SARIMA
 - o Machine Learning: Random Forest, XGBoost
 - **Deep Learning:** LSTM (if the dataset is extensive)
- 5. **Evaluation:** Evaluate model performance using RMSE, MAE, and MAPE.
- 6. Forecasting: Predict sales for the next quarter and adjust strategies accordingly.

Example (Python with ARIMA):

from statsmodels.tsa.arima.model import ARIMA

```
# Assuming 'sales_data' is a DataFrame with 'Sales' column

model = ARIMA(sales_data['Sales'], order=(1, 1, 1))

result = model.fit()

forecast = result.forecast(steps=3) # Forecasting for the next quarter (3 months)

print(forecast)
```

8. Explain A/B testing and how to interpret the results.

Solution: A/B testing compares two versions (A and B) of a variable (like a webpage) to determine which performs better.

Steps for A/B Testing:

- 1. **Define Objective:** Identify the metric to optimize, like click-through rate (CTR) or conversion rate.
- 2. **Formulate Hypothesis:** State the null hypothesis (no difference) and the alternative hypothesis (there is a difference).
- Sample Selection: Randomly divide the audience into two groups Group A (control) and Group B (test).
- 4. **Experiment Design:** Implement the changes in the test group while keeping the control group unchanged.
- 5. Statistical Testing: Use t-tests or chi-square tests to evaluate the significance.
- 6. **Analyze Results:** If the p-value < 0.05, reject the null hypothesis the change has a significant impact.

Example:

```
SELECT
```

Version,

COUNT(*) AS Users,

SUM(Conversion) AS Conversions,

(SUM(Conversion) * 1.0 / COUNT(*)) AS Conversion_Rate

FROM AB_Testing_Data

GROUP BY Version;

• The query helps compare the conversion rates for versions A and B.

9. What metrics would you track for Amazon Prime subscription growth?

Solution: To track the growth of Amazon Prime subscriptions, monitor the following metrics:

- Subscriber Growth Rate: Percentage increase in subscriptions over time.
- Churn Rate: Percentage of subscribers who cancel their membership.
- Retention Rate: Percentage of users renewing their subscriptions.
- Customer Lifetime Value (CLV): Estimated revenue from a subscriber during their lifetime.
- Average Revenue Per User (ARPU): Revenue generated per subscriber.
- Engagement Metrics: Frequency of use, purchase behavior, video streaming hours, etc.
- Conversion Rate: Percentage of free-trial users converting to paid subscriptions.

Example Query (SQL):

SELECT

COUNT(*) AS Total_Subscribers,

SUM(CASE WHEN SubscriptionStatus = 'Cancelled' THEN 1 ELSE 0 END) AS Cancelled Subscribers,

(SUM(CASE WHEN SubscriptionStatus = 'Cancelled' THEN 1 ELSE 0 END) * 100.0 / COUNT(*)) AS Churn_Rate

FROM PrimeSubscriptions;

This query calculates total subscribers and the churn rate.

10. How do you handle seasonality in sales data?

Solution: Seasonality refers to periodic fluctuations in data due to seasonal factors. Ignoring seasonality may lead to inaccurate forecasts.

Techniques to Handle Seasonality:

- Decomposition: Separate time series into trend, seasonality, and residual components.
- 2. Seasonal Adjustment: Remove seasonality to analyze the underlying trend.
- 3. Seasonal ARIMA (SARIMA): Time series model that accounts for seasonality.
- 4. **Moving Averages:** Smooth out seasonal variations.
- 5. **One-Hot Encoding:** Represent seasons or months as categorical variables for ML models.

Example (Python for Seasonal Decomposition):

from statsmodels.tsa.seasonal import seasonal_decompose

result = seasonal_decompose(sales_data['Sales'], model='multiplicative', period=12)
result.plot();

• The decomposition shows the observed, trend, seasonal, and residual components.

Data Visualization (Power BI/Tableau)

11. How do you choose the right visualization for different datasets?

Solution: Choosing the right visualization depends on the purpose of data representation. Here's a guide:

- Comparison: To compare categories or groups
 - Bar Chart, Column Chart: Categorical comparisons

- Stacked Bar/Column Chart: Breakdown of sub-categories
- **Distribution:** To understand the distribution of data
 - o **Histogram:** Distribution of a single variable
 - o **Box Plot:** Spread and outliers of data
- Trend Analysis: To track data changes over time
 - o Line Chart: Continuous time-series data
 - Area Chart: Emphasizes magnitude over time
- Part-to-Whole Relationship: To analyze proportions
 - Pie Chart, Donut Chart: Share of total
 - Stacked Bar/Area Chart: Cumulative comparison
- Correlation: To see relationships between variables
 - Scatter Plot: Correlation and outliers
 - o **Bubble Chart:** Relationship with an additional variable
- Geographical Data: Location-based insights
 - o Map Visualizations: Regional and spatial data

Example:

In Power BI, use a **line chart** to analyze monthly sales trends and a **bar chart** to compare regional performance.

12. Explain drill-through & drill-down in Power BI.

Solution: Drill-through and drill-down help in analyzing data at different granularity levels.

- **Drill-Down:** Navigate from a summary level to a detailed view within the same visual.
 - Example: Click on a year in a bar chart to see monthly breakdowns.
 - o Implementation: Enable drill-down in visuals and use hierarchical fields like
 Year → Quarter → Month.
- **Drill-Through:** Navigate from one page to another with a focus on specific data.

- Example: Right-click a region in a report to view detailed sales data on a separate page.
- Implementation: Create a new report page, add a "Drill-through" field, and set up "Back" navigation.

Example in Power BI:

To analyze regional sales:

- 1. Create a bar chart by **Region**.
- 2. Add a drill-through field like **Product Category** to view detailed sales by category.

13. What are parameters in Tableau, and how do you use them?

Solution: Parameters in Tableau are dynamic input values used for filtering, calculations, and control of visualizations.

Use Cases of Parameters:

- Filtering data dynamically (e.g., select top N customers)
- Switching between measures (e.g., Sales vs. Profit)
- Adjusting reference lines
- What-if analysis scenarios

Example:

Creating a parameter to switch between **Sales** and **Profit**:

- 1. Create a Parameter:
 - Name: Measure Selector
 - o Data Type: String
 - Values: 'Sales', 'Profit'

2. Create a Calculated Field:

IF [Measure Selector] = 'Sales' THEN [Sales]

ELSE [Profit]

END

3. Use the calculated field in the visualization, and apply the parameter control.

14. How do you create a year-over-year growth visualization?

Solution: Year-over-year (YoY) growth compares metrics across different years to analyze growth trends.

In Power BI:

• Use **DAX** to create measures:

```
Total Sales = SUM(Sales[Amount])

YoY Growth =

CALCULATE(

[Total Sales],

SAMEPERIODLASTYEAR(Sales[Order Date]))

YoY Growth % =

DIVIDE(

[Total Sales] - [YoY Growth],

[YoY Growth],

0
```

Create a line and clustered column chart:

X-axis: Year

Columns: Total Sales

Line values: YoY Growth %

In Tableau:

Use Table Calculations:

- Compute sales by year
- Use a quick table calculation: Year over Year Growth
- o Adjust compute using "Specific Dimensions" for accurate analysis.

15. How do you optimize a Power BI dashboard for performance?

Solution: Optimizing a Power BI dashboard ensures faster load times and smoother user experiences.

Best Practices for Optimization:

1. Data Modeling:

- Use a Star Schema instead of a Snowflake Schema.
- Create relationships with integers instead of text.

2. Efficient Measures and Calculations:

- Use SUMX, AVERAGEX judiciously.
- Avoid calculated columns; prefer calculated measures.

3. Reduce Data Load:

- Filter unnecessary data at the source level.
- Use **DirectQuery** for large datasets if real-time data is needed.

4. Query Optimization:

- Remove unused columns and tables.
- Limit the number of visuals on a single report page.

5. Visual Optimization:

- Disable auto-date/time for large datasets.
- Reduce visuals using complex DAX measures.
- Use aggregations for large fact tables.

Example of Optimized DAX:

Optimized Measure = CALCULATE([Total Sales], REMOVEFILTERS(Calendar[Year]))

• Here, REMOVEFILTERS improves performance by reducing filter context.

Statistics & Probability

16. What is normal distribution, and why is it important?

Solution:

A **normal distribution** is a symmetric, bell-shaped distribution of data where most of the observations cluster around the central peak (mean). It is defined by its **mean** (μ) and **standard deviation** (σ).

Key Properties:

- Symmetrical around the mean
- Mean = Median = Mode
- 68% of data lies within ±1σ from the mean
- 95% of data lies within ±2σ from the mean
- 99.7% of data lies within ±3σ from the mean (Empirical Rule)

Importance:

- Many natural phenomena (height, weight, IQ scores) follow a normal distribution.
 - It is the foundation for various statistical tests like **t-tests** and **confidence** intervals.
- Assumptions of normality are often necessary for parametric tests.

Example:

If the average IQ score is 100 with a standard deviation of 15:

68% of people have IQs between 85 and 115.

95% of people have IQs between 70 and 130.

17. Explain p-value in hypothesis testing.

Solution:

A **p-value** is the probability of obtaining a result at least as extreme as the observed result, assuming that the null hypothesis (\mathbf{H}_0) is true.

- Low p-value (< 0.05): Strong evidence against $H_0 \rightarrow \text{Reject}$ the null hypothesis.
- **High p-value (> 0.05):** Weak evidence against $H_0 \rightarrow$ Fail to reject the null hypothesis.

Interpreting p-value:

- p < 0.01: Very strong evidence against H₀
- 0.01 ≤ p < 0.05: Moderate evidence against H₀
- 0.05 ≤ p < 0.1: Suggestive evidence, but not strong
- p ≥ 0.1: Weak evidence

Example:

In an A/B test, suppose p = 0.03 when comparing two marketing strategies.

• Since **p < 0.05**, there is significant evidence to reject the null hypothesis that both strategies perform the same.

18. How do you determine if a dataset is skewed?

Solution:

Skewness measures the asymmetry of the data distribution:

- Right (Positive) Skew: Tail extends to the right; Mean > Median > Mode
- Left (Negative) Skew: Tail extends to the left; Mean < Median < Mode
- Zero Skew: Symmetrical distribution

Methods to Determine Skewness:

- Visualization: Use histograms or box plots to observe skewness.
- Skewness Coefficient:

- Pearson's Skewness: Skewness=3(Mean-Median) / Standard Deviation
- If skewness > 0: Right skewed
- If skewness < 0: Left skewed
- Using Python (Pandas):

import pandas as pd

data = pd.Series([5, 7, 9, 10, 15, 22, 30])

print(data.skew()) # Positive value indicates right skew

Example:

A dataset of house prices typically shows **right skew** because a few expensive houses inflate the mean.

19. What is the difference between correlation and causation?

Solution:

- Correlation: Measures the strength and direction of the relationship between two variables. It does not imply causation.
 - Ranges from -1 to +1.
 - +1: Perfect positive correlation
 - 0: No correlation
 - -1: Perfect negative correlation
- Causation: Indicates that a change in one variable directly causes a change in another.
 - Requires experimental control to establish causality.
 - Not all correlated variables have a causal relationship.

Example:

- Correlation: Ice cream sales and drowning incidents are positively correlated.
 However, ice cream consumption does not cause drowning it's due to summer temperatures.
- Causation: Increasing the number of study hours leads to better exam scores.

20. Explain the Central Limit Theorem (CLT) in simple terms.

Solution:

The **Central Limit Theorem** (CLT) states that the distribution of sample means approaches a normal distribution as the sample size increases, regardless of the original data distribution.

Key Points:

- Sample size ≥ 30 is generally considered sufficient.
- The mean of the sample means equals the population mean (µ).
- The standard deviation of sample means is called the Standard Error (SE):
 SE=σ/n
 where σ is the population standard deviation and n is the sample size.

Importance:

- CLT allows us to apply normal distribution techniques to analyze sample means.
- Used in hypothesis testing and confidence interval estimation.

Example:

If we take the average height of random samples of 30 students from a population, the distribution of those sample means will approximate a normal distribution, regardless of the population's height distribution.

Python for Data Analytics

21. How do you handle missing values in Pandas?

Solution:

Handling missing values is crucial in data cleaning to ensure data quality. Pandas provides multiple ways to handle missing data.

Methods:

Identify Missing Values:

import pandas as pd

df = pd.DataFrame({'Name': ['Alice', 'Bob', None], 'Age': [25, None, 30]})
print(df.isnull()) # Check missing values (True = Missing)
print(df.isnull().sum()) # Count of missing values per column

Drop Missing Values:

df.dropna(inplace=True) # Drops rows with any missing values

Fill Missing Values:

df.fillna(0, inplace=True) # Replace missing values with 0
df['Age'].fillna(df['Age'].mean(), inplace=True) # Fill with mean

Forward/Backward Fill:

df.fillna(method='ffill', inplace=True) # Forward fill
df.fillna(method='bfill', inplace=True) # Backward fill

Choosing the Right Method:

- Drop if missing data is minimal.
- Fill with statistical measures for numerical data.
- Forward/backward fill for time-series data.

22. Write a Python function to calculate the moving average of a time series.

Solution:

A **moving average** smoothens time-series data by averaging data points within a specific window.

import pandas as pd

def moving_average(data, window):

return data.rolling(window=window).mean()

Example

data = pd.Series([10, 20, 30, 40, 50, 60])

print(moving_average(data, window=3))

Output:

- 0 NaN
- 1 NaN
- 2 20.0
- 3 30.0
- 4 40.0
- 5 50.0

dtype: float64

The first two values are NaN because the window size is 3.

Use Cases:

- Stock price trend analysis
- Smoothing noisy data in sensor readings

23. Explain groupby() and agg() in Pandas with an example.

Solution:

- groupby(): Groups data based on one or more columns.
- agg(): Applies aggregation functions like sum, mean, max, etc., on grouped data.

10 Landarita

Example:

import pandas as pd

data = {'Department': ['HR', 'HR', 'IT', 'IT', 'Finance'],

'Salary': [50000, 55000, 60000, 65000, 70000]}

```
grouped = df.groupby('Department').agg({'Salary': ['mean', 'sum']})
print(grouped)
```

Output:

Salary

mean sum

df = pd.DataFrame(data)

Department

Finance 70000 70000

HR 52500 105000

IT 62500 125000

Explanation:

- groupby('Department') groups data by the 'Department' column.
- agg({'Salary': ['mean', 'sum']}) applies mean and sum aggregations.

Use Cases:

- Summarizing sales data by region.
- Aggregating customer transactions by category.

24. How do you merge two datasets in Pandas?

Solution:

Merging in Pandas combines data from different DataFrames based on common columns or indexes. It is similar to SQL joins.

Merge Methods:

Inner Join: Default; returns matching rows only.

import pandas as pd

df1 = pd.DataFrame({'ID': [1, 2, 3], 'Name': ['Alice', 'Bob', 'Charlie']})

df2 = pd.DataFrame({'ID': [2, 3, 4], 'Age': [25, 30, 35]})

merged_df = pd.merge(df1, df2, on='ID', how='inner')
print(merged_df)

Output:

ID Name Age

0 2 Bob 25

1 3 Charlie 30

• **Left Join:** All from left, matching from right.

pd.merge(df1, df2, on='ID', how='left')

• **Right Join:** All from right, matching from left.

pd.merge(df1, df2, on='ID', how='right')

• Outer Join: All data from both, filling NaN for non-matches.

pd.merge(df1, df2, on='ID', how='outer')

Choosing the Right Merge:

- Use inner for common matches.
- Use left for retaining all left records.
- Use **outer** when retaining all data is crucial.

25. What is the difference between apply() and map() in Pandas?

Feature	apply()	map()
Purpose	Works on DataFrame or Series	Works only on Series
Scope	Applies functions element-wise	e Maps values using a dictionary
Flexibility	Can apply complex functions	Typically for mapping/replacing

Feature	apply()	map()
---------	---------	-------

Return Type Series or DataFrame Series

Examples:

• apply() on DataFrame:

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

df['Sum'] = df.apply(lambda row: row['A'] + row['B'], axis=1)

print(df)

Output:

A B Sum

0 1 4 5

1 2 5 7

236 9

map() on Series:

mapping = {1: 'One', 2: 'Two', 3: 'Three'}
df['Mapped_A'] = df['A'].map(mapping)
print(df)

Output:

A B Sum Mapped_A

0 1 4 5 One

1 2 5 7 Two

2 3 6 9 Three

When to Use:

- Use apply() for complex operations.
- Use map() for simple value mappings.

Pratik Jugant Mohat Patra