jm

2023-10-29

Minimum zmiennych wykładniczych

Niech $X_1,...,X_n$ będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych z parametrami $\lambda_1,...,\lambda_n$. Jeśli $M=\min(X_1,...,X_n)$, wtedy:

- $M \sim \operatorname{Exp}(\lambda_1 + \ldots + \lambda_n),$
- dla k = 1, ..., n,

$$\mathbb{P}(M = X_k) = \frac{\lambda_k}{\lambda_1 + \ldots + \lambda_n}.$$

Zaproponuj i przeprowadź symulacje ilustrujące powyższe fakty.

Symulacja procesu Poissona

Symulacja N_t dla $t \geq 0$:

- niech $\tau_0 = 0$,
- wygenerować ciąg niezależnych zmiennych losowych ρ_1, ρ_2, \dots o jednakowym rozkładzie wykładniczym $Exp(\lambda)$,
- niech $\tau_n = \rho_1 + ... + \rho_n$ dla n = 1, 2, ...,
- dla każdego k = 0, 1, ..., niech $N_t = k$ dla $\tau_k \le t < \tau_{k+1}$.
- 1. Korzystając z powyższego algorytmu wygenerować realizację $(N_t)_t$ dla $\lambda=0.5$ i $t\in[0,20]$. Narysować wykres uzyskanej trajektorii.
- 2. Wygenerować 10000 realizacji procesu $(N_t)_t$ z $\lambda=0.5$ i na tej podstawie oszacować $\mathbb{P}(N_{10}=i)$, $i=0,\ldots,9$. Porównać uzyskane wartości z ich teoretycznymi odpowiednikami.