

Analyse Numérique

Série d'exercices Nº1: Résolution numérique des systèmes d'équations linéaires

Niveau : 3A & 3 B Année universitaire : 2023-2024

Exercice 1

On considère le système d'équations linéaires (S), dont l'écriture matricielle est donnée par AX=b avec :

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 4 & -1 \\ -1 & 1 & 3 \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad et \, b = \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}.$$

$Partie\ I:$

- 1. (a) Montrer que (S) admet dans \mathbb{R}^3 une unique solution.
 - (b) Résoudre (S) en utilisant la méthode du pivot de Gauss.
- 2. (a) Justifier la convergence de la méthode de Jacobi et de la méthode de Gauss-Seidel pour la résolution du système (S).
 - (b) Écrire les schémas itératifs des méthodes de Jacobi et de Gauss-Seidel pour la résolution du système (S).
 - (c) Pour le vecteur initial $X^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, donner les résultats des deux premières itérations en utilisant
 - i. la méthode de Jacobi.
 - ii. la méthode de Gauss-Seidel.

Partie II:

3. En considérant l'erreur $E = ||X - X^{(k)}||_2$, avec X la solution exacte, $X^{(k)}$ $(k \in \{1, 2\})$ une solution approchée par l'une des deux méthodes et $||.||_2$ la norme euclidienne définie par

$$||X||_2 = \sqrt{x_1^2 + x_2^2 + x_3^2}, \quad \forall X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3,$$

calculer les erreurs commises par les méthodes de Jacobi et de Gauss-Seidel pour les deux premières itérations.

4. Comparer alors les méthodes de Jacobi et de Gauss-Seidel en terme de précision pour les deux premières itérations pour la résolution du système (S).

Exercice 2

On considère le système d'équations linéaires $(S_{\alpha}): AX = b$ avec $\alpha \in \mathbb{R}$,

$$A = \begin{pmatrix} \alpha & 1 & 0 \\ 1 & \alpha & 1 \\ 0 & 1 & \alpha \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad et \ b = \begin{pmatrix} 5 \\ 10 \\ 11 \end{pmatrix}$$

- 1. Déterminer les valeurs de α pour lesquelles A est inversible.
- 2. Déterminer une condition suffisante sur α assurant la convergence de la méthode de Jacobi pour la résolution du système (S_{α}) .
- 3. Pour $\alpha = 3$,
 - (a) Résoudre (S₃) par la méthode du pivot de Gauss.
 - (b) Donner le schéma itératif de la méthode de Jacobi.
 - (c) Pour le vecteur initial $X^{(0)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, donner les résultats des deux premières itérations de la méthode de Jacobi pour la résolution du (S_3) .

Exercice 3

On considère le système d'équations linéaires (S^{θ}_{α}) : AX = b avec

$$A = \begin{pmatrix} 3\theta & 4 & -2 \\ 1 & 2\theta & 1 \\ 0 & 2 & \alpha \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad et \ b = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \quad et \ \alpha \in \mathbb{R}$$

Partie $I: \theta = 1$

- 1. Déterminer les valeurs de α pour lesquelles le système (S^1_{α}) admet une unique solution.
- 2. Sachant que pour $\theta = 1$ et $\alpha = 6$ la matrice A peut être décomposée en un produit LU, résoudre le système (S_6^1) en utilisant cette décomposition.
- 3. Sans calculer A^2 ni L^2 proposer un raisonnement pour résoudre le système d'équations linéaires $A^2X=b$.

Partie II: $\theta \in \mathbb{R}$

- 1. Déterminer une condition suffisante sur θ et α pour que les méthodes de Jacobi et de Gauss-Seidel soient convergentes.
- 2. Pour un vecteur initial $X^{(0)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, donner le résultat des deux premières itérations de la méthode de Jacobi appliquée au système (S^{θ}_{α}) pour $\theta = 3$ et $\alpha = 6$.
- 3. Pour un vecteur initial $X^{(0)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, donner le résultat des deux premières itérations de la méthode de Gauss-Seidel appliquée au système (S^{θ}_{α}) pour $\theta = 3$ et $\alpha = 6$.