Zusammenfassung Höhere Mathematik

Paul Nykiel

3. März 2018

Schlagzahl erhöhen.

Inhaltsverzeichnis

Ι	\mathbf{H}	M 1 -	– Zusammenfassung	16
1	Vor	kurs		17
	1.1	Aussag	genlogik	17
		1.1.1	Definition Aussage	17
		1.1.2	Verknüpfungen	17
		1.1.3	Mehr zu Implikationen	18
		1.1.4	Bezeichnung von Aussagen	18
		1.1.5	Satz der Identität	18
	1.2	Menge	en	19
		1.2.1	Defintion: Mengen nach Cantor	19
		1.2.2	Begrifflichkeiten und Schreibweise	19
		1.2.3	Leere Menge, Teilmengen	
		1.2.4	Transitivität u.a	19
		1.2.5	Verknüpfung von Mengen	20
		1.2.6	Potenzmenge	20
		1.2.7	Rechenregeln für Mengen	20
		1.2.8	Komplement	21
		1.2.9	Bemerkung	21
		1.2.10	Verknüpfungen über mehrere Elemente	21
		1.2.11	Wichtige Zusammenhänge	21
	1.3	Vollstä	ändige Induktion	21
		1.3.1	Summen und Produktzeichen	21
		1.3.2	Prinzip der Vollständigen Induktion	22
		1.3.3	Rechenregeln für Summen	22
		1.3.4	Doppelsummen	23
		1.3.5	Fakultät und Binomialkoeffizient	23
		1.3.6	Rechenregeln für den Binomialkoeffizienten	23
		1.3.7	Binomischer Lehrsatz	23
		1.3.8	Definition Betrag	23
		1.3.9	Dreiecksungleichung	24
	1.4	Funkti	ion und Differentiation	24
		1.4.1	Injektivität, Surjektivität, Bijektivität	
		1.4.2	Verknüpfung von Funktionen	
		1.4.3	Verkettung von Funktionen	

		1.4.4	Stetigkeit und Differenzierbarkeit			25
		1.4.5	Zusammenhang Differentierbarkeit — Stetigkeit			25
		1.4.6	Verkettung differentierbarer Funktionen			26
		1.4.7	Differentiation von Monomen			26
		1.4.8	Kettenregel			26
		1.4.9	Ableitung der Umkehrfunktion			26
	1.5	Elemen	ntare Funktionen			26
	1.6	Integra	alrechnung			26
	1.7	Kompl	lexe Zahlen			26
	1.8		ntare Differentialgleichungen			26
		1.8.1	Definition Rechteck			26
		1.8.2	Lineare DGL 1. Ordnung $\dots \dots \dots$.	 •		27
2	\mathbf{Gre}	nzwert	te			28
	2.1	Grupp	en und Körper			28
		2.1.1	Gruppen			28
		2.1.2	Körper			28
		2.1.3	Angeordnete Körper			29
		2.1.4	Minimum und Maximum			30
		2.1.5	Obere und untere Schranke			31
		2.1.6	Supremum und Infimum			31
	2.2	Folgen				31
		2.2.1	Konvergenz			31
		2.2.2	Bestimmte Divergenz			32
		2.2.3	Beschränktheit			32
		2.2.4	Zusammenhang Konvergenz — Beschränktheit			32
		2.2.5	Grenzwertrechenregeln			32
		2.2.6	Sandwich Theorem u.a			33
		2.2.7	Monotonie			33
		2.2.8	Zusammenhang Monotonie und Beschränktheit			33
	2.3		ngswerte			33
	2.0	2.3.1	Teilfolgen			33
		2.3.2	Teilfolgen einer Konvergenten Folge			33
		2.3.3	Häufungswerte			33
		2.3.4	Limes superior/inferior			34
		2.3.5	Charakterisierung limsup/liminf			34
		2.3.6	Konvergenz und limsup/liminf			34
		2.3.7	Satz von Bolzano-Weierstraß			34
		2.3.1	Cauchy-Kriterium			34
	2.4		liche Reihen			35
	2.4	2.4.1	Definition			35
		2.4.1 $2.4.2$				
			Cauchy-Kriterium für unendliche Reihen			35
		2.4.3	Grenzwertrechenregeln für unendliche Reihen .			35
		2.4.4	Positive Folgen			36
		2.4.5	Leibniz-Kriterium			36
		2.4.6	Absolute Konvergenz			36

	4	2.4.7	Majorantenkriterium
	4	2.4.8	Minorantenkriterium
	4	2.4.9	Wurzel- und Quotientenkriterium
	4	2.4.10	Umordnung einer Reihe
	4	2.4.11	Cauchy-Produkt
	4	2.4.12	Cauchy-Verdichtungssatz
	2.5	Potenz	reihen
	6	2.5.1	Definition
	6	2.5.2	Hadamard (Konvergenzradius mit Wurzelkriterium) 38
	6	2.5.3	Konvergenzradius mit Quotientenkriterium
	4	2.5.4	Hinweis
	4	2.5.5	Integration und Differentiation von Potenzreihen 39
	4	2.5.6	Cauchy-Produkt für Potenzreihen
	4	2.5.7	Wichtige Potenzreihen
	4	2.5.8	Alternative Definiton der Exponentialfunktion 40
	2.6	Funkti	onsgrenzwerte
	4	2.6.1	Bemerkung
	4	2.6.2	Epsilon-Umgebung
	6	2.6.3	Funktionsgrenzwerte (über Delta-Epsilon-Kriterium) 40
	6	2.6.4	Folgenkriterium
	4	2.6.5	Rechenregeln für Funktionsgrenzwerte 41
	6	2.6.6	Cauchy-Kriterium für Funktionsgrenzwerte 42
	4	2.6.7	Bestimmte Divergenz
	4	2.6.8	Monotone Funktionen
	4	2.6.9	Grenzwerte an Intervallgrenzen
	2.7	Stetigk	eit
	6	2.7.1	Anschaulich
	4	2.7.2	Stetigkeit: Delta-Epsilon-Kriterium
	4	2.7.3	Bemerkungen
	4	2.7.4	Rechenregeln für Stetigkeit 43
	4	2.7.5	Stetigkeit von Potenzreihen
	4	2.7.6	Umgebung positiver Funktionswerte 44
	4	2.7.7	Zwischenwertsatz
	4	2.7.8	Existenz des Logarithmus
	4	2.7.9	Maximum/Minimum/Infimum/Supremum einer Funktion 44
	4	2.7.10	Beschränktheit einer stetigen Funktion 45
	4	2.7.11	Weierstraß: Existenz von Min und Max 45
	4	2.7.12	Zusammenhang Injektivität — Stetigkeit 45
	4	2.7.13	Existenz und Monotonie der Umkehrfunktion 45
	2	2.7.14	Gleichmäßige Stetigkeit 45
3	Diffe	rentia	lrechnung 46
3			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		3.1.1	Definition Differenzen-Quotient
		3.1.2	Rechtsseitige und linksseitige Ableitung
		3.1.2	Ableitungsrechenregeln
	•		

		3.1.4	Alternative Definition der Ableitung	47
		3.1.5	Zusammenhang Differentierbarkeit — Stetigkeit	47
		3.1.6	Differentiation von Potenzreihen	47
		3.1.7	Ableitung der Umkehrfunktion	47
		3.1.8	Ketternregel	47
	3.2	Mittely	wertsätze	47
		3.2.1	Satz von Rolle	47
		3.2.2	Definition lokaler Extrempunkt	48
		3.2.3	Notwendige Bedingung für lokale Extrema	48
		3.2.4	2. Mittelwertsatz	48
		3.2.5	1. Mittelwertsatz (Folgerung aus 2. Mittelwertsatz)	48
		3.2.6	$L'Hospital\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	48
		3.2.7	Satz von Taylor	49
II	Н	IM 2 -	— Zusammenfassung	50
			G	
4		egration		51
	4.1	Integra		51
		4.1.1	Definition Zerlegung, Zwischenwerte	51
		4.1.2	Definition Riemannsumme	51
		4.1.3	Definition Riemann-Integral	52
		4.1.4	Menge der Riemann-Integrierbaren Funktionen	53
		4.1.5	Kriterien für Riemann-Integrierbarkeit	53
		4.1.6	Endliche änderung von Funktionen	54
		4.1.7	Zusammenhang Stetigkeit und Integrierbarkeit	54
		4.1.8	Stückweise Integration	54
		4.1.9	1. Mittelwertsatz der Integralrechnung	54
			Existenz der Stammfunktion	55
			Definition Stammfunktion	55
			Eindeutigkeit der Stammfunktion	55
			Hauptsatz der Differential und Integralrechnung	55
			Zusammenhang Monotonie und Riemann-Integrierbarkeit	55
			Zweiter Mittelwertsatz der Integralrechnung	55
	4.2		entliche Integrale	56
		4.2.1	Definition uneigentliches Integral	56
		4.2.2	Cauchy-Kriterium	56
		4.2.3	Majorantenkriterium	57
		4.2.4	Absolute Konvergenz	57
		$4.2.5 \\ 4.2.6$	Minorantenkriterium	57 57

5	Gle	ichmäß	Bige Konvergenz		58
	5.1	Gleich	mäßige Konvergenz	 	58
		5.1.1	Definition Funktionenfolge und Funktionenreihe	 	58
		5.1.2	Gleichmäßige Konvergenz	 	58
		5.1.3	Stetigkeit der Grenzfunktion		59
		5.1.4	Integration der Grenzfunktion		59
		5.1.5	Cauchy Kriterium für gleichmäßige Konvergenz		59
		5.1.6	Differentiation der Grenzfunktion		59
		5.1.7	Majorantenkriterium auf Potenzreihen anwenden .		60
		5.1.8	Majorantenkriterium für Funktionenreihen		60
6	Diff	erentia	alrechung mit mehreren Variablen		61
	6.1		dimensionale Euklidische Raum	 	61
	0.1	6.1.1	Definitionen		61
		6.1.2	Folgerungen		61
		6.1.3	Konventionen		62
		6.1.4	Definition Epsilon-Umgebung		62
		6.1.5	Definition Topologische Begriffe	 	62
		6.1.6	Definition offene und abgeschlossene Menge		63
	6.2	Folgen			64
	0.2	6.2.1	Definition		64
		6.2.1	Bolzano-Weierstraß		64
		6.2.2	Grenzwertrechenregeln		64
		6.2.4			65
	6.3		Weitere Bemerkungen	 • •	65
	0.5		ionsgrenzwerte und Stetigkeit	 	
		6.3.1 $6.3.2$	Definition Funktion		$\frac{65}{65}$
		6.3.2	Definition Funktionsgrenzwert		
			Definitionen aus HM 1 im Mehrdimensionalen		65
		6.3.4	Definition Stetigkeit		66
		6.3.5	Grenzwerte von verketteten Funktionen		66
		6.3.6	Grenzwertrechenregeln		66
		6.3.7	Maximum und Minimum Kompakter Mengen		67
		6.3.8	Weierstraß		67
	6.4		lle Ableitungen und Richtungsableitungen		67
		6.4.1	Definition partielle Ableitung		67
		6.4.2	Definition Umgebung eines Punktes		68
		6.4.3	Definition Richtungsableitung		68
	6.5		tale Ableitung		68
		6.5.1	Definition totale Ableitung		68
		6.5.2	Zusammenhang Stetigkeit und Differenzierbarkeit .		69
		6.5.3	Zusammenhang partielle und totale Diffbarkeit $$		69
		6.5.4	Kettenregel		70
		6.5.5	Matrix-Produkt		70
	6.6		nwerte, Mittelwertsatz		70
		6.6.1	Definition lokales Extrema		70
		6.6.2	Notwendige Bedingung für lokale Extrema	 	70

		6.6.3	Mittelwertsatz	71
		6.6.4	Gebiete bzw. kurvenweise zusammenhängende Gebiete	71
		6.6.5	Partielle Ableitung r-ter Ordnung	71
		6.6.6	Hessematrix	72
		6.6.7	Definitheit	72
		6.6.8	Satz von Schwarz	72
		6.6.9	Satz von Taylor	73
		6.6.10		73
	6.7	Impliz	it definierte Funktionen	73
		6.7.1	Bemerkung	73
		6.7.2	Vorläufige Definition Rang einer Matrix	73
		6.7.3	Einheitsmatrix und Inverse eine Matrix	73
		6.7.4	Zusammenhang Bijektivität und reguläre Matrizen	74
		6.7.5	Satz über die Umkehrfunktion	74
		6.7.6	Satz über die Gebietstreue	74
		6.7.7	Definition Auflösbarkeit	74
		6.7.8	Hauptsatz über implizite Funktionen	75
		6.7.9	Extrema unter Nebenbedingungen	75
		6.7.10	Definition lokale Minima/Maxima unter Nebenbedingungen	76
			Definition Linear Unabhängig	76
			Satz von Lagrange	77
			Lagrange Funktion	77
7	Inte	gratio	n in mehreren Veränderlichen	7 8
	7.1	Param	eterintegrale	78
		7.1.1	Eigentliche Parameterintegrale	78
		7.1.2	Leibniz Regel	78
		7.1.3	Uneigentliche Parameterintegrale	79
		7.1.4	Majorantenkriterium	79
		7.1.5	Fubini für uneigentliche Parameterintegrale	79
		7.1.6	Konvergenzkriterien	79
	7.2	Kurvei	nintegrale	80
		7.2.1	Äquivalenz für Kurven	80
		7.2.2	Kurven im \mathbb{R}^n	80
				01
		7.2.3	Eigenschaften von Parameterdarstellungen	81
		7.2.3 $7.2.4$	Eigenschaften von Parameterdarstellungen	81 82
			Weitere Definitionen zu Kurven	81 82 82
		7.2.4 7.2.5	Weitere Definitionen zu Kurven	82 82
		7.2.4 7.2.5 7.2.6	Weitere Definitionen zu Kurven	82 82 83
		7.2.4 7.2.5 7.2.6 7.2.7	Weitere Definitionen zu Kurven	82 82 83 83
		7.2.4 7.2.5 7.2.6 7.2.7 7.2.8	Weitere Definitionen zu Kurven Kurventintegrale 2. Art Substitutionsregel Definition Wegunabhängigkeit 1. Hauptsatz für Kurvenintegral	82 82 83 83 84
		7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 7.2.9	Weitere Definitionen zu Kurven Kurventintegrale 2. Art Substitutionsregel Definition Wegunabhängigkeit 1. Hauptsatz für Kurvenintegral Äquivalente Aussagen zu Stammfunktionen	82 82 83 83 84 84
		7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 7.2.9 7.2.10	Weitere Definitionen zu Kurven Kurventintegrale 2. Art Substitutionsregel Definition Wegunabhängigkeit 1. Hauptsatz für Kurvenintegral Äquivalente Aussagen zu Stammfunktionen Definition einfach zusammenhängende Gebiete	82 82 83 83 84 84 84
		7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 7.2.9 7.2.10 7.2.11	Weitere Definitionen zu Kurven Kurventintegrale 2. Art Substitutionsregel Definition Wegunabhängigkeit 1. Hauptsatz für Kurvenintegral Äquivalente Aussagen zu Stammfunktionen Definition einfach zusammenhängende Gebiete Sternförmige Gebiete	82 82 83 83 84 84 84 84
		7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 7.2.9 7.2.10 7.2.11 7.2.12	Weitere Definitionen zu Kurven Kurventintegrale 2. Art Substitutionsregel Definition Wegunabhängigkeit 1. Hauptsatz für Kurvenintegral Äquivalente Aussagen zu Stammfunktionen Definition einfach zusammenhängende Gebiete Sternförmige Gebiete 2. Hauptsatz für Kurvenintegrale	82 82 83 84 84 84 84 85
		7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 7.2.9 7.2.10 7.2.11 7.2.12 7.2.13	Weitere Definitionen zu Kurven Kurventintegrale 2. Art Substitutionsregel Definition Wegunabhängigkeit 1. Hauptsatz für Kurvenintegral Äquivalente Aussagen zu Stammfunktionen Definition einfach zusammenhängende Gebiete Sternförmige Gebiete	82 82 83 83 84 84 84 84

		7.2.15	Definition Linienintegral/Kurvenintegral 1. Art	86
	7.3		chsintegrale	87
		7.3.1	Intervalle im \mathbb{R}^n	87
		7.3.2	Definition Zerlegung	87
		7.3.3	Definition Riemann-Summe	88
		7.3.4	Riemann integrierbare Bereichsintegrale	88
		7.3.5	Bereichsintegrale über beschränkte Mengen	88
		7.3.6	Cavalieri	89
		7.3.7	Fubini	89
		7.3.8	Definition Meßbare-Mengen	89
		7.3.9	Definition 2×2 Determinante	89
		7.3.10	Mehrdimensionale Substitutionsregel	90
	7.4		alsätze in der Ebene	90
		7.4.1	Positiv berandete Menge	90
		7.4.2	Satz von Green	90
		7.4.3	Definition Normalbereiche	90
		7.4.4	Gauß'sche Integralsätze in der Ebene	90
	7.5	Oberf	lächenintegrale und Integralsätze im \mathbb{R}^3	91
		7.5.1	Definition Reguläre Flächen	91
		7.5.2	Defintion Oberflächenintegral	91
		7.5.3	Satz von Stokes	92
		7.5.4	Divergenzsatz von Gauß	92
8			lgebra	93
	8.1		egriff Vektorraum	93
		8.1.1	Definition Vektorraum	93
	0.0	8.1.2	Rechenregeln	93
	8.2		räume	94
		8.2.1	Definition Unterraum	94
		8.2.2	Unterraumkriterien	94
		8.2.3	Durchschnitt von Unterräumen	94
		8.2.4	Definition lineare Hülle	94
		8.2.5	Definition Linearkombination	95
	0.0	8.2.6	Zusammenhang lineare Hülle — Linearkombination	95
	8.3		re Unabhängigkeit	95
		8.3.1	Definition Lineare Unabhängigkeit	95
	0.4	8.3.2	Rechenregeln für lineare Unabhängigkeit	95
	8.4		und Dimension	96
		8.4.1	Definition Hamel-Basis	96
		8.4.2	Äquivalente Aussagen zu Basen	97
		8.4.3	Existenz einer Basis	97
		8.4.4	Eigenschaften der Basis	97
		8.4.5	Definition Dimension	97
		8.4.6	Beziehung von Dimensionen	98
	0.5	8.4.7	Lineare unabängigkeit im <i>n</i> -Dimensionalen	98 98
	X :	Linear	THE CHINOSCASTATION	чx

		8.5.1 8.5.2 8.5.3 8.5.4 8.5.5 8.5.6 8.5.7 8.5.8 8.5.9 8.5.10	Zusammenhang Kern und Lösung eines LGS Definition Affiner Unterraum, lineare Mannigfaltigkeit Definition Zeilen-/Spaltenrang Elementare Zeilen-/Stufenoperationen	01
ΙI	I F	HM 3	— Zusammenfassung 10)2
9	Exk	urs Fu	nktionanlanalysis 10	03
	9.1		en und innere Produkte	03
		9.1.1	Definition Vektornorm	
		9.1.2	Skalarprodukt / inneres Produkt	
		9.1.3	Definition induzierte Norm	
		9.1.4	Äquivalente Aussagen zu induzierten Normen 1	
		9.1.5	Rechenregeln für Skalarprodukte	
		9.1.6	<u>-</u>	05
	9.2			05
		9.2.1		05
		9.2.2	9	06
		9.2.3		06
		9.2.4	Orthogonale Projektion	
10	Gev	vöhnlic	che Differentialgleichungen 10	07
				07
	-		<u> </u>	07
				07
				08
				09
	10.2			09
				09
			Bemerkung: Newton-Verfahren zur Bestimmung von Null-	
			· ·	10
		10.2.3		10
				10^{-10}
				11
			Picard-Lindelöf (Existenz und Eindeutigkeit einer Lösung) 1	
				11
			(11
			ŭ ŭ	12
			•	12

		10.2.11	Stabilität	112
11				113
	11.1	System	ne von DGLen 1. Ordnung	113
		11.1.1	Definition DGL-System	113
		11.1.2	Schreibweise	114
		11.1.3	Voltera'sche Integralgleichung	114
		11.1.4	Definition Lipschitz-Bedingung	115
		11.1.5	Bemerkung	115
		11.1.6	Satz von Picard-Lindelöf	115
		11.1.7	Satz von Peano	115
		11.1.8	Stabilität	115
	11.2	Linear	e DGL-Systeme 1. Ordnung	115
		11.2.1	Definition	115
		11.2.2	Definition Frobenius-Norm	116
		11.2.3	Matrixnorm und Vektornorm	116
		11.2.4	Grenznorm	116
		11.2.5	Lösungsmengen von linearen Gleichungssystemen	117
		11.2.6	Definition Fundamental system	117
		11.2.7	Definition Determinante	117
		11.2.8	Entwicklungssatz von Laplace	117
			Leibniz-Formel für Determinanten	
		11.2.10	Berechnung der Wronski-Determinante ohne bekanntes FS	118
		11.2.11	Ableitung der Determinante	119
			ZÄquivalente Aussagen zu FSen und Wronski-Determinaten	
		11.2.13	Partikuläre Lösung aus Wronksi-Determinante	119
	11.3	Linear	e DGL-Systeme 1. Ordnung mit konstanten Koeffizienten .	119
		11.3.1	Definition Eigenwerte und Eigenvektoren	120
		11.3.2	Algebraische und Geometrische Vielfachheit	120
		11.3.3	Diagonalisierbarkeit	120
			Submultiplikativität von $\ \cdot\ _F$	
			Folgenkonvergenz für Matrizen	
			Definition Matrix-Exponential funktion	
		11.3.7	Rechenregeln Matrix-Exponential funktion	122
		11.3.8	Zusammenhang Matrix Exponentialfunktion und FS	122
		11.3.9	Cayley Hamilton	122
			Algorithmus von Putzer	
			Jordan-Blöcke	
	11.4		ntialgleichungen höherer Ordnung	
		11.4.1	Differentialgleichungen höhere Ordnung	123
		11.4.2	Picard-Lindelöf für DGLen höherer Ordnung	123
				124
			——————————————————————————————————————	124
			*	125
			Definiton FS und Wronski-Determinante	
				125

		11.4.8	Lösungen und Wronksi-Determninanten	126
	11.5		e DGLen n-ter Ordnung mit konstanten Koeffizienten	
			Charakterisitisches Polynom einer Frobenius Matrix	
			Zusammenhang Nullstellen des char. Polynoms und Lösung	
			der (hom.) DGL	127
		11.5.3	FS für lineare DGLen n-ter Ordnung mit konstanten Ko-	
			effizienten	127
12	Ergi	änzung	g zur Analysis	128
			alenzrelation und Äquivalenzklassen	
	1-11		Definition	
	12.2		outionen	
	12.2		Testfunktionen	
			Distributionen	
			Duale Paarung und Repräsentanten	
			Ableitung einer Distribution	
	12.3		rtransformation	
	12.0		Definition Fourier-Trafo	
			Stetigkeit der Fourier-Transformierten	
			Zeitliche Verschiebung und Skalierung der Fouriertrans-	100
		12.0.0	formierten	130
		1934	Ableitung der Fouriertransformierten	
			Fouriertransformation der Ableitung	
			Definition inverse Fouriertransformation	
			Plancherel	
			Definition Faltung	
			Fouriertransformation der Faltung	
			Fouriertransformation im Distributionenellen Sinne	
		12.3.10	rourier transformation in Distributionenenen Sinne	191
13				132
	13.1	Grund	lagen	132
			Definition Stetigkeit	
		13.1.2	Definition Argument	132
		13.1.3	Komplexe Wurzel	133
			Definition komplexer Logarithmus	
	13.2	Kompl	lexe Differenzierbarkeit	133
		13.2.1	Definition	133
		13.2.2	Cauchy-Riemann'sche Differentialgleichungen	133
		13.2.3	Definition Holomorphe Funktionen	134
		13.2.4	Definition orientierter Winkel	134
		13.2.5	Definition Winkeltreue	134
		13.2.6	Biholomorphe Funktionen	134
		13.2.7	Ableitung der Umkehrfunktion	134
	13.3	Kompl	lexe Kurvenintegrale	135
		13.3.1	Eigenschaften komplexer Kurvenintegrale	135
			Definition Kurveneigenschaften	135

	13.3.3	Komplexe Kurvenintegrale	135
	13.3.4	Konvention zu kreisförmigen Kurven	136
13.4		y-Integralsatz	
		Geschlossene Kurvenintegrale	
		Definition Windungszahl	
		Eigenschaften der Windungszahl	
		Windungszahl über zusammenhängende Gebiete	
		Cauchy-Integralformel für sternförmige Gebiete	
	13.4.6	Mittelwerteigenschaften der Cauchy-Integralformel	137
		Definition n-te Ableitung	
		Cauchy-Integralformel für n-te Ableitung	
13.5	Eigens	chaften holomorpher Funktionen	137
	13.5.1	Holomorphe Funktionen und Potenzreihen	137
	13.5.2	Abschätzung der Ableitung	138
	13.5.3	Definition ganze Funktion	138
	13.5.4	Satz von Lionville	138
		Fundamentalsatz der Algebra	
	13.5.6	Identitätssatz für holomorphe Funktionen	138
	13.5.7	Maximumsprinzip	138
		Abschätzung von Potenzreihen	
13.6		e Singularitäten	
	13.6.1	Definition isolierte Singularitäten	
		Charakterisierung von isolierten Singularitäten	
	13.6.3	Riemannscher Hebbarkeitssatz	139
	13.6.4	Zusammenhang ganzrationale Funktionen und Polstellen .	139
	13.6.5	Eigenschaften wesentlicher Singularitäten	139
	13.6.6	Variation von Kurven	139
		Holomorphie der Stammfunktion	
	13.6.8	Laurentzerlegung	140
		Definition Laurentreihe	140
	13.6.10	Berechnung der Laurent-Koeffizienten mit Cauchy und	
		Taylor	141
		Zusammenhang Holomorphie und Laurentreihen	
13.7		ensatz	
	13.7.1	Definition Residduum	141
		Bestimmung des Residuums	
	13.7.3	L'Hospital für Residuen	141
	13.7.4	Residuensatz	142
	13.7.5	Anwendung des Residuensatz auf uneigentliche Integrale .	142
	13.7.6	Anwendung des Residuensatz auf bestimmte uneigentliche	
		Integrale	142

ΙV	7 E	Beweisansätze	143
14	$\mathbf{H}\mathbf{M}$	1	144
	14.1	Grenzwerte	144
		14.1.1 Eindeutigkeit des Grenzwert einer Folge	144
		14.1.2 Konvergente Folgen sind beschränkt	
		14.1.3 Grenzwertrechenregeln	144
		14.1.4 Monotoniekriterium	144
		14.1.5 Grenzwert einer konv. Folge = Grenzwert jeder Teilfolge	144
		14.1.6 Charakterisierung $\overline{\lim}$ und $\underline{\lim}$	
		14.1.7 Folge konv. $\overline{\lim} = \underline{\lim}$	
		14.1.8 Bolzano-Weierstraß	
		14.1.9 Cauchykriterium	
		$14.1.10\mathrm{Reihe}$ konv. Folge ist Nullfolge $\ \ldots\ \ldots\ \ldots\ \ldots$	
		$14.1.11\mathrm{GrenzwertRR}$ für Reihen \hfill	
		$14.1.12\mathrm{Reihe}$ konv g. 0 $$	
		14.1.13 Leibniz	
		$14.1.14 Absolut \ konv. \ \Rightarrow konv. . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
		14.1.15 Majorantenkriterium	
		14.1.16 Minorantenkriterium	
		14.1.17 Wurzelkriterium	
		14.1.18 Quotientenkriterium	
		14.1.19 Hadamard	
		14.1.20 Differenzieren / Integrieren von Potenzreihen	
		14.1.21 Lemma zu sin, cos und exp	146
		14.1.22 $e^z \neq 0$ und $e^{-z} = \frac{1}{e^z}$	146
		14.1.23 Pythagoras \dots	140
		$14.1.24 e^x > 0 \ \forall x \in \mathbb{R} \dots \dots \dots \dots \dots$	
		$14.1.251 + x \le e^x \ \forall x \in \mathbb{R} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	140
		$14.1.20 x < y \Rightarrow e < e^{x}$	
		14.1.28 Cauchy für Funktionen	
		14.1.29 Grenzwerte an Intervallgrenzen	
		14.1.30 Verknüpfungen stetiger Funktionen stetig	
		14.1.31 Potenzreihen sind innerhalb des Konvergenzradius stetig	
		14.1.32 Umgebung pos. Funktionswerte	
		14.1.33 Zwischenwertsatz	
		14.1.34 Existenz log	
		14.1.35 Beschränktheit stetiger Funktionen	
		14.1.36 Weierstraß existenz min bzw. max	
15	HM		148
	15.1	Integration	148
		15.1.1 Riemann integrierbar impliziert Beschränktheit	
		15.1.2 Rechenregeln für Integrale (Verkettung usw.)	148 148
		15 1 3 Transitivität	1/18

			1. MWS der Integralrechnung	. 148
		15.1.5	Eine Stammfunktion einer Funktion ist stetig und diffe-	
			rentierbar	. 148
		15.1.6	Hauptsatz der DI	. 149
		15.1.7	Monotonie impliziert Riemann Integrierbarkeitbarkeit .	. 149
			2. MWS der Integralrechnung	
			Integralkriterium	
	15.2		mäßige Konvergenz	
			Stetigkeit der Grenzfunktion	
	15.3		entialrechnung mit mehreren Veränderlichen	
			Grenzwertrechenregeln	
		15.3.2	Max/Min kompakter Mengen	. 149
			Stetigkeit einer Funktion durch beschränkte partielle Ab-	
			leitungen	
		15.3.4	Differentierbarkeit impliziert Stetigkeit	. 150
		15.3.5	Zusammenhang totale und partielle Diff'barkeit	. 150
			Kettenregel	
			Notwendige Bedingung für Extrema	
		15.3.8	Mittelwertsatz	. 150
		15.3.9	Konstante Funktionen	. 151
			Taylor	
			Hinreichende Bedingung für Extrema	
		15.3.12	2 Beweisidee für den Hauptsatz über implizite Funktionen	. 151
		15.3.13	BHerleitung für die Ableitung der Auflösung	. 151
		15.3.14	Satz von Lagrange	. 151
	15.4	Integra	ation in mehreren Veränderlichen	. 151
		15.4.1	Ableitung in Integral ziehen	. 151
		15.4.2	Fubini	. 152
		15.4.3	Leibniz Regel	. 152
		15.4.4	Beweis-Idee Kurvenintegrale (Substitutionsregel)	. 152
		15.4.5	1. Hauptsatz für Kurvenintegrale	. 152
		15.4.6	Äquivalente Aussagen für Kurvenintegrale	. 152
		15.4.7	2. Hauptsatz für Kurvenintegrale	. 152
		15.4.8	Gauß'sche Integralsätze in der Ebene	. 153
V	\mathbf{K}	lausu	rvorbereitung	154
16	$\mathbf{H}\mathbf{M}$	1		156
۱7	$\mathbf{H}\mathbf{M}$	2		157
•		I ntegra	ation	
			Wichtige Beweise	
		17.1.2	Typische Aufgaben	
		17.1.3		
			Weitere hilfreiche Dinge	

17.2 Gleichmäßige Konvergenz	158
17.2.1 Wichtige Beweise	
17.2.2 Typische Aufgaben	
17.2.3 Trickreiche Aufgaben	
17.3 Differentialrechnung mit mehreren Veränderlichen	158
17.3.1 Wichtige Beweise	158
17.3.2 Typische Aufgaben	
17.4 Integration in mehreren Veränderlichen	159
17.4.1 Wichtige Beweise	
17.4.2 Typische Aufgaben	
17.4.3 Trickreiche Aufgaben	160
17.5 Lineare Algebra	160
17.5.1 Typische Aufgaben	160
VI Appendix 1	61
18 Grenzwerte	162
18.1 Konvergenzkriterien	162
19 Integration	163
19.1 Riemann-Integrierbarkeit	
	_ 50
	164
20.1 Häufige Additionstheoreme	164
20.2 Integral-Shortcuts	165

Kapitel 1

Vorkurs

1.1 Aussagenlogik

1.1.1 Definition Aussage

Eine Aussage ist ein Satz, der entweder wahr oder falsch ist.

Bemerkung

Wir beschäftigen uns mit der klassischen zweiwertigen Logik. Es gibt auch Logiken mit 3 bzw. 4 Werten.

1.1.2 Verknüpfungen

Formal kann eine Oder-Verknüfung mit dem \vee -Zeichen durch eine Wahrheitstabelle definiert werden:

\overline{A}	B	$A \lor B$
1	1	1
1	0	1
0	1	1
0	0	0

Analog kann eine Und-Verknüpfung mit dem \land -Zeichen durch eine Wahrheitstabelle definiert werden:

\overline{A}	B	$A \wedge B$
1	1	1
1	0	0
0	1	0
0	0	0

Und eine Negation wird definiert durch:

A	$\neg A$
1	0
0	1

Eine sog. Implikation wird durch das \Rightarrow -Zeichen dargestellt und ist definiert durch:

\overline{A}	В	$A \Rightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1

Bemerkung

Bei mehr als einer Verknüpfung muss klar sein welche Verknüpfung als erstes ausgewerted werden muss, hierfür werden Klammern verwendet.

1.1.3 Mehr zu Implikationen

Bei der Aussage $A \Rightarrow B$ bezeichnet man A als hinreichende Bedingung und B als notwendige Bedingung.

Die Aussage $A \Rightarrow B$ ist äquivalent zu $\neg B \Rightarrow \neg A$.

1.1.4 Bezeichnung von Aussagen

Eine Aussageform heißt:

- (a) Allgemeingültig (oder Tautologie), wenn sie als Wahrheitswert stets den Wert wahr annimmt.
- (b) Erfüllbar, wenn die Wahrheitstabelle mindestens einmal den Wert wahr enthält.
- (c) Unerfüllbar (oder Kontradiction), wenn die Wahrheitstabelle nur falsch-Einträge enthält.

1.1.5 Satz der Identität

Mit $A \Leftrightarrow B$ kürzen wir die Aussage:

$$(A \Rightarrow B) \land (B \Rightarrow A)$$

ab.

Bemerkung

Für den allg. Fall sagt man zu $A \Leftrightarrow B$: A ist äquivalent zu B. Das heißt aber nicht, dass A=B ist.

1.2 Mengen

1.2.1 Defintion: Mengen nach Cantor

Unter einer Menge versteht man eine Zusammenfassung bestimmter wohlunterscheidbarer Objekte unsere Anschauung oder unseres Denkens zu einem Ganzen.

1.2.2 Begrifflichkeiten und Schreibweise

Objekte einer Menge bezeichnet man als Elemente einer Menge. Schreibweise:

- (a) $x \in M$ oder $x \notin M$
- (b) Mengen können durch Aufzählen der Elemente beschrieben werden: $M = \{a,b,c\}$
- (c) Mengen können durch Eigenschaften der Elemente beschrieben werden: $M = \{x: x \text{ hat Eigenschaft}...\}$

1.2.3 Leere Menge, Teilmengen

- (a) Die Menge, die kein Element enthält, heißt leere Menge. Wir bezeichnen diese mit \emptyset .
- (b) Eine Menge M_1 heißt Teilmenge einer Menge M_2 (Schreibweise $M_1 \subseteq M_2$) falls jedes Element von M_1 auch Element von M_2 ist. D.h. es gilt:

$$x \in M_1 \Rightarrow x \in M_2$$

(c) Zwei Mengen sind gleich wenn gilt:

$$M_1 = M_2 \Leftrightarrow M_1 \subseteq M_2 \land M_2 \subseteq M_1$$

(d) M_1 heißt echte Teilmenge von M_2 wenn gilt:

$$M_1 \subseteq M_2 \land M_1 \neq M_2$$

Schreibweise: $M_1 \subset M_2$ oder $M_1 \subsetneq M_2$.

1.2.4 Transitivität u.a.

Für Mengen M, M_1, M_2, M_3 gilt stets:

- (a) Aus $M_1 \subseteq M_2$ und $M_2 \subseteq M_3$ folgt stets: $M_1 \subseteq M_3$
- (b) $M_1 = M_2 \Leftrightarrow M_1 \subseteq M_2 \land M_2 \subseteq M_1$
- (c) $M \subseteq M$ und $\emptyset \subseteq M$

1.2.5 Verknüpfung von Mengen

Für Mengen M_1 und M_2 definiert man:

(a) Die Vereinigung von M_1 und M_2 durch:

$$M_1 \cup M_2 := \{x : x \in M_1 \lor x \in M_2\}$$

(b) Den Schnitt von M_1 und M_2 durch:

$$M_1 \cap M_2 := \{x : x \in M_1 \land x \in M_2\}$$

(c) Die Differenz von M_1 und M_2 durch:

$$M_1 \backslash M_2 := \{x : x \in M_1 \land x \notin M_2\}$$

(d) Das Kartesische Produkt von M_1 und M_2 durch:

$$M_1 \times M_2 := \{(a, b) : a \in M_1 \land b \in M_2\}$$

(e) Das Kartesische Produkt von M_1 und M_1 durch;

$$\left(M_1\right)^2 := M_1 \times M_1$$

1.2.6 Potenzmenge

Für eine Menge M ist durch

$$P(M) := \{A : A \subseteq M\}$$

die Potenzmenge definiert (Menge aller Teilmengen von M).

Bemerkung

Hier gilt $\emptyset \in P(M)$.

1.2.7 Rechenregeln für Mengen

Für bel. Mengen M_1, M_2, M_3 gilt:

(a) Kommutativität:

$$M_1 \cup M_2 = M_2 \cup M_1$$
 und $M_1 \cap M_2 = M_2 \cap M_1$

(b) Assoziativität:

$$(M_1 \cup M_2) \cup M_3 = M_1 \cup (M_2 \cup M_3)$$
 und $(M_1 \cap M_2) \cap M_3 = M_1 \cap (M_2 \cap M_3)$

(c) Distributivgesetz:

$$M_1 \cap (M_2 \cup M_3) = (M_1 \cap M_2) \cup (M_1 \cap M_3)$$
 und $M_1 \cup (M_2 \cap M_3) = (M_1 \cup M_2) \cap (M_1 \cup M_3)$

1.2.8 Komplement

Ist X eine feste Menge und $M \subseteq X$ beliebig, so heißt

$$M^c := X \backslash M$$

das Komplement von M (bzgl, X).

1.2.9 Bemerkung

Die Schreibweise erfordert das X aus dem Kontext bekannt sein muss.

1.2.10 Verknüpfungen über mehrere Elemente

Für Mengen M_1, M_2, \dots, M_n mit $n \in \mathbb{N}$ definieren wir die Notation:

(a)

$$\bigcup_{k=1}^{n} M_k = M_1 \cup M_2 \cup \ldots \cup M_n$$

(b)

$$\bigcap_{k=1}^{n} M_k = M_1 \cap M_2 \cap \ldots \cap M_n$$

(c)

$$\underset{k=1}{\overset{n}{\times}} M_k = M_1 \times M_2 \times \dots \times M_n$$

1.2.11 Wichtige Zusammenhänge

- (a) $(M^c)^c = M$
- (b) $M_1 \subseteq M_2 \Rightarrow M_2^c \subseteq M_1^c$
- (c) $(M_1 \cup M_2)^c = M_1^c \cap M_2^c$

1.3 Vollständige Induktion

1.3.1 Summen und Produktzeichen

Für $m, n \in \mathbb{Z}, m \leq n$ und $a_m, a_{m+1}, \dots a_n \in \mathbb{R}$ definieren wir:

$$\sum_{k=n}^{n} a_k := a_m + a_{m+1} + \ldots + a_n$$

und

$$\prod_{k=m}^{n} a_k := a_m \cdot a_{m+1} \cdot \ldots \cdot a_n$$

Falls m > n ist definieren wir $\sum_{k=m}^{n} a_k := 0$ und $\prod_{k=m}^{n} a_k := 1$

1.3.2 Prinzip der Vollständigen Induktion

Gegen seien Aussagen A(n) für $n \geq n_0$ mit $n_0, n \in \mathbb{Z}$ (n_0 beliebig aber fest). Und es gelte:

- (a) $A(n_0)$ ist wahr
- (b) Für alle $n \ge n_0$ gilt: $A(n) \Rightarrow A(n+1)$

Bemerkung

- (a) n_0 wird als Induktionsanfang, n als Induktionsschritt bezeichnet
- (b) Nachteil: wir wissen nicht wieso etwas gilt, nur dass es gilt

1.3.3 Rechenregeln für Summen

Für $m, n \in \mathbb{Z}$ und $a_k, b_k, c \in \mathbb{R}$ gilt:

(a) Indexverschiebung:

$$\sum_{k=m}^{n} a_k = \sum_{k=m+l}^{n+l} a_{k-l}$$

für beliebiges $l \in \mathbb{Z}$

(b) Trennen von Summen:

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$$

(c) Konstante Faktoren können aus der Summe "gezogen" werden:

$$\sum_{k=m}^{n} c \cdot a_k = c \cdot \sum_{k=m}^{n} a_k$$

(d) "Teleskopsummen":

$$\sum_{k=m}^{n} (a_k - a_{k+1}) = a_m - a_{n+1}$$

(e) Summe über Konstanten:

$$\sum_{k=m}^{n} c = c \cdot (n-m+1)$$

1.3.4 Doppelsummen

Für $n \in \mathbb{N}$ und $a_{ij} \in \mathbb{R}$, $1 \le i \le j \le n$ gilt:

$$\sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{j} a_{ij}$$

1.3.5 Fakultät und Binomialkoeffizient

Für $n \in \mathbb{N}_0$ und ein $\alpha \in \mathbb{R}$ heißt

(a) die Fakultät von n

$$n! := \begin{cases} n \cdot (n-1)! & ; n \neq 0 \\ 1 & ; n = 0 \end{cases}$$

(b) den Binomialkoeffizienten

$$\binom{\alpha}{n} := \frac{\prod\limits_{k=1}^{n} (\alpha - k + 1)}{n!}$$

1.3.6 Rechenregeln für den Binomialkoeffizienten

Für $n, m \in \mathbb{N}_0$ mit $m \ge n$ und $\alpha \in \mathbb{R}$ gilt:

(a)

$$\binom{\alpha}{n} + \binom{\alpha}{n+1} = \binom{\alpha+1}{n+1}$$

(b)

$$\binom{m}{n} = \frac{m!}{n!(m-n)!}$$

1.3.7 Binomischer Lehrsatz

Für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}_0$ gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

1.3.8 Definition Betrag

Für $x \in \mathbb{R}$ heißt

$$|x| := \begin{cases} x & , x \ge 0 \\ -x & , x < 0 \end{cases}$$

 $\mathrm{der}\;\mathrm{Betrag}\;\mathrm{von}\;x$

Bemerkung

Es gilt:

- (a) $|x| \ge 0 \ \forall x \in \mathbb{R}$
- (b) $|x \cdot y| = |x| \cdot |y| \ \forall x, y \in \mathbb{R}$
- (c) $|x a| < \varepsilon \Leftrightarrow a \varepsilon < x < a + \varepsilon$
- (d) $|x| = \max\{x, -x\} \ \forall x \in \mathbb{R}$

1.3.9 Dreiecksungleichung

Für alle $x, y \in \mathbb{R}$ gilt:

- (a) $|x + y| \le |x| + |y|$ (obere Dreiecksungleichung)
- (b) $|x + y| \ge ||x| |y||$ (unter Dreiecksungleichung)

Bemerkung

Es gilt $x \leq |x| \ \forall x \in \mathbb{R}$.

1.4 Funktion und Differentiation

Eine Funktion (bzw. Abbildung, Operator) f von X nach Y ist eine Vorschrift, die jedem $x \in X$ ein eindeutig bestimmtes $y \in Y$ zuordnet. Das $x \in X$ zugeordnete Element aus Y wird mit f(x) bezeichnet.

Schreibweise

$$f: X \to Y, \quad x \mapsto f(x)$$

Bemerkung

X heißt Definitionsbereich, $Y := \{y \in Y : \exists x \in X \text{ mit } y = f(x)\}$ die Zielmenge.

1.4.1 Injektivität, Surjektivität, Bijektivität

(a) Eine Funktion heißt injektiv, falls gilt:

$$x \neq y \Rightarrow f(x) \neq f(y) \ forall x, y \in X$$

(b) Eine Funktion heißt surjektiv, falls gilt:

$$\forall y \in Y \ \exists x \in X : y = f(x)$$

(c) Eine Funktion heißt bijektiv, wenn sie injektiv und surjektiv ist.

1.4.2 Verknüpfung von Funktionen

Gegeben seien $f,g:X\to Y$ und $c\in\mathbb{R}.$ Dann definieren wir die Funktionen

$$\begin{split} c\cdot f: & X\to Y, \quad x\mapsto (cf)(x):=c\cdot f(x)\\ f+g: & X\to Y, \quad x\mapsto (f+g)(x):=f(x)+g(x)\\ f\cdot g: & X\to Y, \quad x\mapsto (fg)(x):=f(x)\cdot g(x)\\ \frac{f}{g}: & X\to Y, \quad x\mapsto (\frac{f}{g})(x):=\frac{f(x)}{g(x)} \text{ für } x \text{ mit } g(x)\neq 0 \end{split}$$

1.4.3 Verkettung von Funktionen

Seien $f: X \to Y$ und $g: Y \to Z$ gegeben, dann heißt die Funktion

$$g \circ f : X \to Z, x \mapsto (g \circ f)(x) := g(f(x))$$

die Verkettung von g mitt f oder das Kompositum von g mit f

1.4.4 Stetigkeit und Differenzierbarkeit

Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$

- (a) f heißt stetig in x_0 , wenn $\lim_{x\to x_0} f(x) = f(x_0)$ gilt
- (b) f heißt stetig auf I, wenn f in jedem $x_0 \in I$ stetig ist.
- (c) f heißt differenzierbar in x_0 , wenn der Grenzwert $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existiert.

Bemerkung

Im Fall der Differenzierbarkeit bezeichnen wir den Grenzwert mit $f'(x_0)$ (Newton Notation) oder $\frac{\mathrm{d}}{\mathrm{d}x}f(x_0)$ (Leibniz Notation).

1.4.5 Zusammenhang Differentierbarkeit — Stetigkeit

Eine differentierbare Funktion ist stets stetig.

Bemerkung

Die Ableitung einer differentierbaren Funktion muss hingegen nicht stetig sein.

1.4.6 Verkettung differentierbarer Funktionen

Seien $g, f: I \to \mathbb{R}$ differentierbar, dann sind cf, f+g, $f\cdot g$ und im Fall $g(x) \neq 0 \forall x \in I$ auch $\frac{f}{g}$ differentierbare Funktionen, und es gilt:

$$\frac{\mathrm{d}}{\mathrm{d}x}(c \cdot f)(x) = (c \cdot f)'(x) = c \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(f+g)(x) = (f+g)'(x) = f'(x) + g'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(f \cdot g)(x) = (f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f}{g}\right)(x) = \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2}$$

1.4.7 Differentiation von Monomen

Es sei $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto x^n = f(x)$ und $n \in \mathbb{Z}$. Dann ist f differentierbar mit $f'(x) = n \cdot x^{n-1}$.

1.4.8 Kettenregel

Gegeben seien Intervalle $I, J \subseteq \mathbb{R}$ und differentierbare Funktionen $f: I \to J, g: J \to \mathbb{R}$. Dann ist auch $g \circ f$ differentierbar und es gilt:

$$\frac{\mathrm{d}}{\mathrm{d}x}(g \circ f)(x) = \frac{\mathrm{d}}{\mathrm{d}x}g(f(x)) = (g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

1.4.9 Ableitung der Umkehrfunktion

Sei $f:I\to J$ bijektiv und differentierbar dann ist die Umkehrfunktion $f^{-1}:J\to I$ ebenfalls differentierbar und es gilt:

$$\frac{\mathrm{d}}{\mathrm{d}x}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

1.5 Elementare Funktionen

1.6 Integral rechnung

1.7 Komplexe Zahlen

1.8 Elementare Differentialgleichungen

1.8.1 Definition Rechteck

(a) $I_1, I_2, \ldots, I_n \subseteq \mathbb{R}^n$ seien nicht leeren Intervalle. Dann heißt die Menge $M = I_1 \times I_2 \times \ldots \times I_n$ ein (n-Dimensionales) Rechteck.

(b) Sei $M \subseteq \mathbb{R}^n$ ein Rechteck und $\varphi: M \to R$ stetig. Dann heißt eine Funktion $y: I \to \mathbb{R}$ die Lösung der Differentialgleichung (1. Ordnung)

$$y' = \varphi(t; y)$$

wenn gilt:

i y ist stetig differentierbar

ii
$$(t, y(t)) \in M \forall t \in I$$

iii
$$y'(t) = \varphi(t, y(t)) \forall t \in I$$

(c) Sei $M \subseteq \mathbb{R}^2$ ein Rechteck, $\varphi : M \to \mathbb{R}$ stetig und $(t_0, y_0) \in M$. Dann heißt $\varphi : I \to \mathbb{R}$ eine Lösung des Anfangswertproblems (AWP)

$$y' = \varphi(t, y); \ y(t_0) = y_0$$

wenn y eine Lösung von y' = f(t, y) ist und $y(t_0) = y_0$ gilt.

Bemerkung

Eine DGL n-ter Ordnung mit $n \geq 2$ ist nicht direkt durch die Definition beschrieben.

Wenn wir aber eine Funktion $\vec{y}: I \subseteq \mathbb{R} \to \mathbb{R}^2$ definiert mit:

$$\begin{array}{rcl} y(t) & = & \left(\begin{array}{c} y_1(t) \\ y_2(t) \end{array}\right) \\ y_1(t) & = & x(t) \\ y_2(t) & = & \dot{y}_1(t) - \dot{x}(t) \\ \dot{y}_2(t) & = & \ddot{x}(t) = -\frac{a_1}{a_2} \dot{x}(t) - \frac{a_0}{a_2} x(t) = -\frac{a_1}{a_2} y_2(t) - \frac{a_0}{a_2} y_1(t) \end{array}$$

1.8.2 Lineare DGL 1. Ordnung

Sei $I \subseteq R$ ein Interval und t_0 ein Punkt in I mit $t_0 - \delta; t_0 + \delta) \subseteq I$ (d.h. nicht auf dem Rand von I). Weiter seien $f, g: I \to \mathbb{R}$ stetig. Definiere

$$\begin{array}{rcl} y_0 & : & I \to \mathbb{R} \\ y_0(t) & = & \exp\left(\int_{t_0}^t f(u) \mathrm{d}u\right) \\ y & : & I \to \mathbb{R} \\ y(t) & = & \left(y_0 \cdot \int_{t_0}^t \frac{g(u)}{y_0(u)} \mathrm{d}u\right) \cdot y_0(t) \end{array}$$

Dann ist:

- (a) y_0 eine Lösung von y' = f(t)y; $y(t_0) = 1$
- (b) y eine Lösung von y' = f(t)y + g(t); $y(t_0) = y_0$

Kapitel 2

Grenzwerte

2.1 Gruppen und Körper

2.1.1 Gruppen

Eine Gruppe ist definiert als ein Tuppel aus einer (nicht-leeren) Menge und einer Verknüpfung. Eine Gruppe erfüllt die folgenden Axiome (seien $a, b, c \in \mathbb{G}$):

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 (Assoziativität)
 $a \circ \varepsilon = a$ (Rechtsneutrales Element)
 $a \circ a' = \varepsilon$ (Rechtsinverses Element)

Eine abelsche Gruppe erfüllt des weiteren:

$$a \circ b = b \circ a$$
 (Kommutativität)

2.1.2 Körper

Ein Körper ist definiert als eine Menge mit mindestens zwei Elementen (0 und 1) und zwei Verknüfungen.

$$\begin{array}{cccc} + : \mathbb{K} \times \mathbb{K} & \to & \mathbb{K} \\ \cdot : \mathbb{K} \times \mathbb{K} & \to & \mathbb{K} \end{array}$$

 \mathbb{K} ist bezüglich der Addition und der Multiplikation (genauer: $\mathbb{K}\setminus\{0\}$) ein abelscher Körper, das heißt es gilt (seien $a,b,c\in\mathbb{K}$):

$$a+(b+c)=(a+b)+c \quad \text{(Assoziativität bez. der Addition)}$$

$$a+0=a \quad \text{(Existenz einer 0)}$$

$$a+(-a)=0 \quad \text{(Existenz eines Inversen bez. der Addition)}$$

$$a+b=b+a \quad \text{(Kommutativität bez. der Addition)}$$

$$a\cdot(b\cdot c)=(a\cdot b)\cdot c \quad \text{(Assoziativität bez. der Multiplikation)}$$

$$a\cdot 1=a \quad \text{(Existenz einer 1)}$$

$$a\cdot a^{-1}=1 \quad \forall a\neq 0 \quad \text{(Existenz eines Inversen bez. der Multiplikation)}$$

$$a\cdot b=b\cdot a \quad \text{(Kommutativität bezüglich der Multiplikation)}$$

außerdem gilt:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 (Distributivgesetz)

Bemerkung

 \mathbb{Q} , \mathbb{R} und \mathbb{C} sind Körper. \mathbb{Z} und \mathbb{N} nicht (kein additiv inverses bei \mathbb{N} , kein multiplikativ inverses bei beiden).

2.1.3 Angeordnete Körper

Ein Körper heißt angeordent wenn folgende Axiome erfüllt sind (seien $a,b,c\in\mathbb{K}$):

$$\begin{array}{cccc} a < b \lor & b < a & \lor a = b \\ \\ a < b \land b < c & \Rightarrow & a < c \\ \\ a < b & \Rightarrow & a + c < b + c \\ \\ a < b \land c > 0 & \Rightarrow & a * c < b * c \end{array}$$

Bemerkung

 $\mathbb Q$ und $\mathbb R$ sind angeordnete Körper. Für $\mathbb C$ kann keine Ordnungsrelation definiert werden so das alle Axiome erfüllt sind.

Gebräuchliche Definition zu angeordenten Körpern

Es gilt 0 < 1, sonst Widerspruch in (O3). Die Ordnungsrelation wird dann definiert durch:

Die Natürlichen Zahlen werden Induktiv definiert:

- 1. $1 \in \mathbb{N}$
- 2. $n \in \mathbb{N} \Rightarrow (n+1) \in \mathbb{N}$

Bemerkung

Aus 2. lässt sich direkt ableiten das \mathbb{N} nach oben unbeschränkt ist (Archimedisches Prinzip).

Vollständig Angeordnete Körper

Ein Körper heißt Vollständig, falls jede nach oben beschränkte, nicht-leere Teilmenge ein Supremum besitzt.

 $\Rightarrow \mathbb{R}$ ist der einzige Vollständig angeordnete Körper.

Bemerkung

 \mathbb{Q} ist nicht vollständig angeordnet, da $A:=\{x|x^2\leq 2\}\subset \mathbb{Q}$ kein Supremum besitzt (Supremum ist $\sqrt{2}\notin \mathbb{Q}$).

2.1.4 Minimum und Maximum

Sei $\mathbb K$ ein angeord
nter Körper und $A\subset \mathbb K$ dann heißt m Minimum falls gilt:

- 1. $m \in \mathbb{K}$
- 2. $a \ge m \ \forall a \in A$

Analog ist das Maximum definiert: Sei $\mathbb K$ ein angeord
nter Körper und $A\subset \mathbb K$ dann heißt m Maximum falls gilt:

- 1. $m \in \mathbb{K}$
- 2. $a \le m \ \forall a \in A$

Schreibweisen: $m = \min(A)$ bzw. $m = \max(A)$

Bemerkung

Minimum und Maximum exisitieren nicht immer.

Beispiel: $A:=\{x|x>0\}\subset\mathbb{R}$ hat nicht 0 als Minimum da $0\notin A$ und kein beliebiges m da $\tilde{m}:=\frac{m}{2}< m\ \forall m\in A$

2.1.5 Obere und untere Schranke

Sei \mathbb{K} ein angeordenter Körper und $A \subset \mathbb{K}$ dann ist s untere Schranke falls gilt:

• $s \le a \ \forall a \in A$

Analog ist die obere Schranke definiert: Sei $\mathbb K$ ein angeordenter Körper und $A\subset \mathbb K$ dann ist s obere Schranke falls gilt:

• $s \ge a \ \forall a \in A$

Bemerkung

Hat eine Menge eine obere (bzw. untere) Schranke heißt er nach oben (bzw. unten) beschränkt. Ist eine Menge nach unten und oben beschränkt bezeichnet man sie als beschränkt.

2.1.6 Supremum und Infimum

s heißt Infimum (größte untere Schranke) falls gilt:

- s ist untere Schranke
- \bullet Falls \tilde{s} ebenfalls untere Schranke ist gilt $s \geq \tilde{s}$

Analog ist das Supremum definiert: s heißt Supremum (kleinste obere Schranke) falls gilt:

- \bullet s ist obere Schranke
- \bullet Falls \tilde{s} ebenfalls obere Schranke ist gilt $s \leq \tilde{s}$

Schreibweise: $s = \inf(A)$ bzw. $s = \sup(A)$

Bemerkung

Wenn Minimum (bzw. Maximum) existieren sind diese gleich dem Infimum (bzw. Supremum).

2.2 Folgen

Eine Folge a_n ist definiert als eine Funktion:

$$a_n := \varphi : \mathbb{N} \to \mathbb{M} \subset \mathbb{R}$$

oder auch $(a_n)_{n=1}^{\infty}$.

2.2.1 Konvergenz

Eine Folge a_n heißt konvergent wenn gilt:

$$\forall \varepsilon > 0 \ \exists \ n_0(\varepsilon) : |a_n - a| < \varepsilon \ \forall n > n_0(\varepsilon)$$

Bemerkung

Der Grenzwert ist eindeutig, d.h. es existiert nur ein Grenzwert.

Schreibweise

Falls a_n gegen a konvergiert schreibt man:

$$\lim_{n \to \infty} a_n = a$$

2.2.2 Bestimmte Divergenz

Eine Folge a_n heißt bestimmt Divergent wenn gilt

$$\forall x \in \mathbb{R} \ \exists n(x) : \ a_n > x \text{ bzw. } a_n < x$$

Schreibweise:

$$\lim_{n \to \infty} a_n = \infty \text{ bzw. } -\infty$$

2.2.3 Beschränktheit

Eine Folge heißt beschränkt wenn gilt:

$$|a_n| < c \ \forall n$$

Beschränktheit nach oben/unten

Eine Folge heißt nach oben (bzw. unten) beschränkt wenn gilt:

$$a_n < c \ \forall n \in \mathbb{N}$$
 bzw. $a_n > c \ \forall n \in \mathbb{N}$

2.2.4 Zusammenhang Konvergenz — Beschränktheit

Jede konvergente Folge ist beschränkt.

2.2.5 Grenzwertrechenregeln

Seien $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ Folgen in $\mathbb C$ mit:

$$\lim_{n \to \infty} a_n = a \text{ und } \lim_{n \to \infty} b_n = b$$

Dann gilt:

- $\lim_{n\to\infty} |a_n| = |a|$
- $\bullet \lim_{n \to \infty} (a_n + b_n) = a + b$
- $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
- Falls $b \neq 0$: $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

2.2.6 Sandwich Theorem u.a.

Seien $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ Folgen in \mathbb{R} mit:

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b \text{ und } \gamma \in \mathbb{R}$$

Dann gilt:

- $a_n \le \gamma \ \forall n \in \mathbb{N} \Rightarrow a \le \gamma$
- $a_n \ge \gamma \ \forall n \in \mathbb{N} \Rightarrow a \ge \gamma$
- $a_n \le b_n \ \forall n \in \mathbb{N} \Rightarrow a \le b$
- $a_n \le c_n \le b_n \ \forall n \in \mathbb{N} \land a = b \Rightarrow c = \lim_{n \to \infty} c_n = a = b$

2.2.7 Monotonie

Eine Folge $(a_n)_{n=1}^{\infty}$ in \mathbb{R} heißt:

- Monoton wachsend falls: $a_{n+1} \ge a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \nearrow$)
- Monoton fallend falls: $a_{n+1} \leq a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \searrow$)
- Streng monoton wachsend falls: $a_{n+1} > a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \uparrow$)
- Streng monoton fallend falls: $a_{n+1} < a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \downarrow$)

2.2.8 Zusammenhang Monotonie und Beschränktheit

Jede Monotone und beschränkte Folge konvergiert.

2.3 Häufungswerte

Häufungswerte sind Grenzwerte einer Teilfolge.

2.3.1 Teilfolgen

Eine Folge $(b_n)_{n=1}^{\infty}$ heißt Teilfolge von $(a_n)_{n=1}^{\infty}$, wenn eine streng monotone Funktion $\varphi: \mathbb{N} \to \mathbb{N}$ exisitiert mit $b_n = a_{\varphi(n)}$.

2.3.2 Teilfolgen einer Konvergenten Folge

Sei $(a_n)_{n=1}^{\infty}$ eine konvergente Folge in \mathbb{C} mit: $\lim_{n\to\infty} a_n = a$ und $(b_n)_{n=1}^{\infty}$ sei eine Teilfolge. Dann gilt $\lim_{n\to\infty} b_n = a$.

2.3.3 Häufungswerte

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} . Dann heißt $a \in \mathbb{C}$ ein Häufungswert einer Folge, falls eine Teilfolge gegen a konvergiert.

2.3.4 Limes superior/inferior

Sei $(a_n)_{n=1}^{\infty}$ eine reele Folge, dann heißt:

$$\lim_{n \to \infty} \sup a_n := \overline{\lim}_{n \to \infty} a_n := \sup \{ x \in \mathbb{R}, a_n > x \text{ } \infty\text{-oft} \}$$

der Limes superior von $(a_n)_{n=1}^{\infty}$ und

$$\lim_{n \to \infty} \inf a_n := \underline{\lim}_{n \to \infty} a_n := \inf \{ x \in \mathbb{R}, a_n < x \text{ } \infty\text{-oft} \}$$

der Limes inferior von $(a_n)_{n=1}^{\infty}$.

2.3.5 Charakterisierung limsup/liminf

Sei $(a_n)_{n=1}^{\infty}$ eine reelle Folge und $s \in \mathbb{R}$. Dann gilt:

(a)
$$s = \overline{\lim}_{n \to \infty} a_n \Leftrightarrow \forall \varepsilon > 0 \text{ gilt:}$$

i $a_n < s + \varepsilon$ für fast alle n

ii $a_n > s - \varepsilon$ für ∞ -viele n

(b)
$$s = \varliminf_{n \to \infty} a_n \Leftrightarrow \forall \varepsilon > 0 \text{ gilt:}$$

i $a_n > s - \varepsilon$ für fast alle n

ii $a_n < s + \varepsilon$ für ∞ -viele n

2.3.6 Konvergenz und limsup/liminf

Eine beschränkte Folge $(a_n)_{n=1}^{\infty}$ in \mathbb{R} konvergiert \Leftrightarrow

$$\overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n$$

2.3.7 Satz von Bolzano-Weierstraß

Jede beschränkte Folge in $\mathbb C$ besitzt eine konvergente Teilfolge.

2.3.8 Cauchy-Kriterium

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} , dann gilt

$$(a_n)_{n=1}^{\infty}$$
 konv. $\Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) : |a_n - a_m| < \varepsilon \ \forall n, m > n_0(\varepsilon)$

Bemerkung

Im Gegensatz zur Definition der Folgenkonvergenz muss der Grenzwert nicht bekannt sein.

2.4 Unendliche Reihen

2.4.1 Definition

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} , dan heißt die durch

$$s_n = \sum_{k=1}^n a_k$$

definiert Folge $(s_n)_{n=1}^\infty$ eine Folge von Partialsummen der unendlichen Reihe:

$$\sum_{k=1}^{\infty} a_k$$

Falls die Folge $(s_n)_{n=1}^{\infty}$ konvergiert setzten wir:

$$\lim_{n \to \infty} s_n =: \sum_{k=1}^{\infty} a_k$$

2.4.2 Cauchy-Kriterium für unendliche Reihen

Sei $\sum_{k=1}^{\infty} a_k$ eine
 ∞-Reihe, dann gilt:

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \left| \sum_{k=m}^n a_k \right| < \varepsilon \ \forall n, m > n_0(\varepsilon)$$

und:

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Rightarrow \lim_{n \to \infty} a_n = 0$$

2.4.3 Grenzwertrechenregeln für unendliche Reihen

Seien

$$\sum_{k=1}^{\infty} a_k \text{ und } \sum_{k=1}^{\infty} b_k \text{ gegeben und } \alpha, \beta \in \mathbb{C}$$

dann gilt:

(a)

$$\sum_{n=1}^{\infty} a_k \text{ und } \sum_{n=1}^{\infty} b_k \text{ konv.:}$$

$$\Rightarrow \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) \text{ konv.}$$

$$\text{und: } \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{n=1}^{\infty} a_k + \beta \sum_{n=1}^{\infty} b_k$$

(b)
$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \sum_{k=1}^{\infty} \operatorname{Re}(a_k) \text{ und } \sum_{k=1}^{\infty} \operatorname{Im}(a_k) \text{ konv.}$$

(c)
$$\sum_{k=1}^\infty a_k \text{ konv.} \Leftrightarrow \text{ die Restreihe } R_n := \sum_{k=n}^\infty a_k \text{ konv. gegen } 0 \Rightarrow \lim_{n\to\infty} R_n = 0$$

2.4.4 Positive Folgen

Es sei $(a_n)_{n=1}^{\infty}$ eine Folge mit $(a_n)_{n=1}^{\infty} \in [0, \infty)$ dann gilt:

$$\sum_{k=1}^{\infty} a_k$$
konv. \Leftrightarrow Folge der Partialsummen $\sum_{k=1}^n a_k$ ist beschr.

2.4.5 Leibniz-Kriterium

Sei $(a_n)_{n=1}^{\infty}$ eine monoton fallende, reele Folge. Dann gilt falls $\lim_{n\to\infty} a_n = 0$ ist, konv. die sogennante alternierende Reihe

$$\sum_{k=1}^{\infty} \left(-1\right)^k a_k$$

2.4.6 Absolute Konvergenz

Eine Reihe $\sum_{k=1}^{\infty}a_k$ heißt absolut konvergent, wenn

$$\sum_{k=1}^{\infty} |a_k|$$

konvergiert.

Bemerkung

Jede absolut konvergente Reihe ist auch konvergent.

2.4.7 Majorantenkriterium

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ mit $b_k \ge 0$ gegeben. Wenn $\sum_{k=1}^{\infty} b_k$ konv. und ein c > 0 ex. mit

$$|a_k| \le c \cdot |b_k|$$

für fast alle k
, dann konv. $\sum_{k=1}^{\infty}a_k$ absolut.

2.4.8 Minorantenkriterium

Falls ein c>0 ex. mit $a_k\geq c\cdot b_k>0$ für fast alle k, dann:

$$\sum_{k=1}^{\infty} b_k \text{ div. } \Rightarrow \sum_{k=1}^{\infty} a_k \text{ div.}$$

2.4.9 Wurzel- und Quotientenkriterium

Sei $\sum_{k=1}^{\infty} a_k$ gegeben. Dann gilt:

(a) Wenn

$$\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

gilt, dann konv. $\sum_{k=1}^{\infty}a_k$ absolut.

Wenn

$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} > 1$$

gilt, dann div. $\sum_{k=1}^{\infty} a_k$.

(b) Wenn $a_n \neq 0 \ \forall n \text{ und}$

$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

gilt, dann konv. $\sum_{k=1}^{\infty} a_k$ absolut.

Wenn $a_n \neq 0 \ \forall n \ \text{und}$

$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$

gilt, dann divergiert. $\sum_{k=1}^{\infty} a_k$.

Bemerkung

Wenn das Wurzelkriterium keine Aussage macht, kann das Quotientenkriterium trotzdem eine Aussage machen.

2.4.10 Umordnung einer Reihe

Eine Reihe $\sum_{k=1}^{\infty} b_k$ heißt Umordnung der Reihe $\sum_{k=1}^{\infty} a_k$, wenn eine bij. Abb $\varphi: \mathbb{N} \to \mathbb{N}$ ex. mit $b_k = a_{\varphi(k)}$.

Bemerkung

Die Reihe konvergiert nur gegen den selben Wert, wenn $\sum_{k=1}^\infty a_k$ absolut konvergent ist.

2.4.11 Cauchy-Produkt

Die Reihen $\sum_{k=1}^\infty b_k$ und $\sum_{k=1}^\infty a_k$ seien absolut konv.. Dann gilt:

$$\left(\sum_{k=0}^{\infty} a_k\right) \cdot \left(\sum_{k=0}^{\infty} b_k\right) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j \cdot b_{k-j}\right) = \sum_{k=0}^{\infty} c_k$$

und $\sum_{k=0}^{\infty} c_k$ konv. ebenfalls absolut.

2.4.12 Cauchy-Verdichtungssatz

$$\sum_{n=1}^{\infty} a_n \text{ konv. } \Leftrightarrow \sum_{k=1}^{\infty} 2^k a_{2^k} \text{ konv.}$$

2.5 Potenzreihen

2.5.1 Definition

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in $\mathbb C$ und $z_0 \in \mathbb C$. Dann heißt

$$\sum_{k=0}^{\infty} a_k \cdot (z - z_0)^k$$

eine Potenzreihe mit Entwicklungspunkt z_0 und Koeffizienten a_n .

Bemerkung

Viele wichtige Funktionen können als Potenzreihen dargestellt werden.

2.5.2 Hadamard (Konvergenzradius mit Wurzelkriterium)

Sei $\sum_{k=0}^{\infty} a_k (z-z_o)^k$ eine PR. Definiere

$$R := \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}$$

Dabei sei $R := \infty$, falls $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 0$ und R = 0 falls $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \infty$. Dann konv. die PR absolut, falls $|z - z_0| < R$ und divergiert falls $|z - z_0| > R$.

Bemerkung I

Für $|z - z_0| = R$ wird keine Aussage gemacht.

Bemerkung II

R heißt der Konvergenzradius der Potenzreihe.

2.5.3 Konvergenzradius mit Quotientenkriterium

Sei $\sum_{k=0}^{\infty}a_k(z-z_0)^k$ eine PR. Der Potenzradius kann ebenfalls berechnet werden durch:

$$R = \overline{\lim}_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

2.5.4 Hinweis

Es gilt:

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

2.5.5 Integration und Differentiation von Potenzreihen

Sei $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ mit Konvergenzradius R. Dann besitzen auch die Potenzreihen

$$\sum_{k=0}^{\infty} k \, a_k (z-z_0)^{k-1} \text{ und } \sum_{k=0}^{\infty} \frac{a_k}{k+1} (z-z_0)^{k+1}$$

den Konvergenzradius R.

2.5.6 Cauchy-Produkt für Potenzreihen

Seien $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ und $\sum_{k=0}^{\infty} b_k (z-z_0)^k$ Potenzreihen, die den Konvergenzradius R_1 bzw. R_2 besitzen. Dann besitzt

$$\sum_{k=0}^{\infty} c_k (z - z_0)^k \text{ mit } c_k = \sum_{l=0}^{k} a_l \cdot b_{k-l}$$

den Konvergenzradius $R = \min\{R_1, R_2\}.$

2.5.7 Wichtige Potenzreihen

(a) Die Expontentialfunktion ist definiert durch:

$$\exp: \mathbb{C} \to \mathbb{C} \quad z \mapsto \exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

(b) Die Trigonometrischen Funktionen sind definiert durch:

$$\sin: \mathbb{C} \to \mathbb{C} \quad z \mapsto \sin(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$
$$\cos: \mathbb{C} \to \mathbb{C} \quad z \mapsto \cos(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

(c) Tangens und Cotangens sind dann definiert als:

$$\tan: \{z \in \mathbb{C}: \cos(z) \neq 0\} \to \mathbb{C} \quad z \mapsto \tan(z) := \frac{\sin(z)}{\cos(z)}$$
$$\cot: \{z \in \mathbb{C}: \sin(z) \neq 0\} \to \mathbb{C} \quad z \mapsto \cot(z) := \frac{\cos(z)}{\sin(z)}$$

2.5.8 Alternative Definiton der Exponentialfunktion

$$\forall z \in \mathbb{C} \text{ gilt } \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = \exp\left(z\right)$$

2.6 Funktionsgrenzwerte

2.6.1 Bemerkung

In diesem Intervall bezeichnet I stets ein offenes Intervall und \overline{I} dessen sog. Abschluss z.B.:

- (a) I = (a, b) und $\overline{I} = [a, b]$
- (b) $I = (-\infty, b)$ und $\overline{I} = (-\infty, b]$
- (c) $I = (a, \infty)$ und $\overline{I} = [a, \infty)$
- (d) $I = (\infty, \infty)$ und $\overline{I} = (\infty, \infty)$

2.6.2 Epsilon-Umgebung

Für $x_0 \in \mathbb{R}$ und $\varepsilon > 0$ heißt

$$U_e(x_0) := \{x \in \mathbb{R} : |x - x_0| < \varepsilon\} = (x_0 - \varepsilon, x_0 + \varepsilon)$$

die ε -Umgebung von x_0 . Und

$$\dot{U}_e(x_0) := U_e(x_0) \setminus \{0\} = (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon)$$

die punktierte ε -Umgebung von x_0 .

2.6.3 Funktionsgrenzwerte (über Delta-Epsilon-Kriterium)

Sei $f: I \to \mathbb{R}$ und $x_0 \in I$

(a) fkonv. gegen ein $a\in\mathbb{R}$ für $x\to x_0$ (kurz: $\lim_{x\to x_0}f(x)=a)$ wenn gilt

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon): \ \left| f(x) - a \right| < \varepsilon \ \forall x \ \mathrm{mit} \ \left| x - x_0 \right| < \delta(\varepsilon) \ \mathrm{und} \ x \neq x_0$$

Schreibweise:

$$\lim_{x \to x_0} f(x) = a \text{ oder } f(x) = a \text{ für } x \to x_0$$

(b) Sei $x_o \in I$, dann konv. f einseitig von links gegen $a \in \mathbb{R}$ wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \in (x_0 - \delta \varepsilon, x_0)$$

Schreibweise:

$$\lim_{x \to x_{0^-}} f(x) = a$$

(c) Sei $x_o \in I$, dann konv. f einseitig von rechts gegen $a \in \mathbb{R}$ wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : \ |f(x) - a| < \varepsilon \ \forall x \in (x_0, x_0 + \delta \varepsilon)$$

Schreibweise:

$$\lim_{x \to x_{0^+}} f(x) = a$$

(d) Sei $I=(\alpha,\infty)$ (bzw. $I=(-\infty,\beta)$) dann konv. f gegen a für $x\to\infty$ (bzw. $x\to-\infty$) wenn gilt:

$$\forall \varepsilon > 0 \ \exists x_1(\varepsilon) : \ |f(x) - a| < \varepsilon \ \forall x \in I : \ x > x_1(\varepsilon) \ (\text{bzw. } x < x_1(\varepsilon))$$

2.6.4 Folgenkriterium

Sei $f: I \to \mathbb{R}$ und $x_0 \in \overline{I}, u \in \mathbb{R}$ dann gilt $\lim_{x \to \infty} f(x) = a \Leftrightarrow$

Für eine beliebe Folge
$$(x_n)_{n=1}^{\infty}$$
 mit $(i)x_n \neq x_0 \forall n$ $(ii) \lim_{n \to \infty} x_n = x_0$ gilt stets: $\lim_{n \to \infty} f(x_n) = a$

2.6.5 Rechenregeln für Funktionsgrenzwerte

Seien $f, g: I \to \mathbb{R}$ und $x_0 \in I$ und gelte

$$\lim_{x \to x_0} f(x) = a, \ \lim_{x \to x_0} g(x) = b$$

Dann gilt:

$$\lim_{x \to x_0} (\alpha \cdot f(x)) = \alpha \cdot a$$

$$\lim_{x \to x_0} (g(x) + f(x)) = a + b$$

(c)
$$\lim_{x \to x_0} (g(x) \cdot f(x)) = a \cdot b$$

(d)
$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{a}{b} \quad \text{falls } b \neq 0$$

2.6.6 Cauchy-Kriterium für Funktionsgrenzwerte

Sei $f: I \to \mathbb{R}$ und $x_0 \in I$ dann ex. $\lim_{x \to x_0} f(x) \Leftrightarrow$

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : \big| f(x) - f(y) \big| < \varepsilon \ \forall x, y \in I \ \text{mit} \ 0 < |x - x_o| < \delta(\varepsilon) \ \text{und} \ 0 < |y - x_0| < \delta(\varepsilon)$$

2.6.7 Bestimmte Divergenz

Sei $f: I \to \mathbb{R}, x_0 \in I$ dann definieren wir die bestimmte Divergenz (uneigentliche Konvergenz) von $(f \to \infty)$ durch

$$\lim_{x \to x_0} f(x) = \infty \Leftrightarrow \forall c > 0 \ \exists \delta(c) : f(x) > c \ \forall x \ \text{mit} \ 0 < |x - x_0| < \delta(c)$$

Analog definieren man links- und rechtsseitig Divergenz gegen ∞ bzw. $-\infty$.

2.6.8 Monotone Funktionen

Sei $f: I \to \mathbb{R}$ dann heißt (auf I)

(a) monoton wachsend $(f \nearrow)$, falls gilt

$$x < y \Rightarrow f(x) \le f(y)$$

(b) streng monoton wachsend $(f \uparrow)$, falls gilt

$$x < y \Rightarrow f(x) < f(y)$$

(c) monoton fallend $(f \searrow)$, falls gilt

$$x < y \Rightarrow f(x) \ge f(y)$$

(d) streng monoton fallend $(f \downarrow)$

$$x < y \Rightarrow f(x) > f(y)$$

- (e) monoton falls f monoton fallend oder monoton steigend ist
- (f) streng monoton falls f streng monoton fallend oder streng monoton steigend ist
- (g) Beschränkt falls gilt:

$$\exists c : |f(x)| < c \ \forall x \in I$$

2.6.9 Grenzwerte an Intervallgrenzen

Sei $a \leq b$ und $f:(a,b) \to \mathbb{R}$ monoton und beschränkt, dann ex.

$$\lim_{x \to b^-} f(x) \text{ und } \lim_{x \to a^+} f(x)$$

2.7 Stetigkeit

2.7.1 Anschaulich

Graph einer Funktion kann ohne Absetzen gezeichnet werden \Leftrightarrow Es gibt keine Sprünge \Leftrightarrow $f:I\to\mathbb{R}$ an keiner Stelle $x_0\in I$ ist ein Sprung \Leftrightarrow $\forall x_0\in I: \lim_{x\to x_0}f(x)=f(x_0)$

2.7.2 Stetigkeit: Delta-Epsilon-Kriterium

Sei $f: I \to \mathbb{R}$ und $x_0 \in I$, dann ist f in x_0 stetig falls gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - f(x_0)| < \varepsilon \ \forall x \in I \ \text{mit} \ |x - x_0| < \delta(\varepsilon)$$

Und f ist stetig (auf I), wenn f in jedem $x_0 \in I$ stetig ist.

2.7.3 Bemerkungen

(a) f ist stetig in $x_0 \Leftrightarrow$

$$\lim_{x \to x_0} f(x) = f(x_0)$$

gilt.

(b) f ist stetig in x_0 dann gilt:

$$\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0)$$

2.7.4 Rechenregeln für Stetigkeit

Sind $f, g: I \to \mathbb{R}$ stetig, dann sind auch die Funktionen

- (a) $c \cdot f$ (für $c \in \mathbb{R}$)
- (b) f + q
- (c) $f \cdot g$
- (d) und falls $g(x) \neq 0 \forall x \in I_{\frac{f}{g}}$

stetie.

Ist $f: I \to J, g: I \to \mathbb{R}$ und beide stetig dann ist auch $g \circ f$ stetig.

2.7.5 Stetigkeit von Potenzreihen

Sei $f(x) = \sum_{k=0}^{\infty} a_k (x-x_0)^k$ eine Potenzereihe mit Konvergenzradius R>0, dann gilt für $x_1\in U_R(x_0)$, dass $\lim_{x\to x_1} f(x)=f(x_1)$ (d.h. Potenzreihen sind innerhalb des Konvergenzradius stetig).

2.7.6 Umgebung positiver Funktionswerte

Sei $f: I \to \mathbb{R}$ stetig in x_0 , dann gilt:

$$f(x_0) > 0 \Rightarrow \exists \delta > 0: \ f(x) > 0 \ \forall x \in I \ \text{mit} \ |x - x_0| < \delta$$

2.7.7 Zwischenwertsatz

Sei D=[a,b] (also abgeschlossen) und $f:D\to\mathbb{R}$ stetig dann ex. zu jedem y zwischen f(a) und f(b) ein $x\in[a,b]$ mit f(x)=y.

Genauer:

$$\forall y \in [m, M] \ \exists x \in [a, b] \ \text{mit} \ f(x) = y$$

Wobei $m = \min\{f(a), f(b)\}\$ und $M = \max\{f(a), f(b)\}.$

Bemerkung

Bei einer Funktion ist das Bild eines Intervals wieder ein Interval. D.h.

$$f([a,b]) = [c,d]$$

2.7.8 Existenz des Logarithmus

Die Exponentialfunktion exp : $\mathbb{R} \to (0, \infty)$ ist bijektiv. Das heißt es existiert eine Umkehrfunktion, diese wird log : $(0, \infty) \to \mathbb{R}$ genannt.

2.7.9 Maximum/Minimum/Infimum/Supremum einer Funktion

Sei $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$, dann heißt im Fall der Existenz:

(a)
$$\max_{x \in D} f(x) \coloneqq \max_{D} f(x) \coloneqq \max\{f(x) \mid x \in D\}$$

das Maximum von f auf D.

(b)
$$\min_{x \in D} f(x) := \min_{D} f(x) := \min\{f(x) \mid x \in D\}$$

das Minimum von f auf D.

(c)
$$\sup_{x \in D} f(x) \coloneqq \sup_{D} f(x) \coloneqq \sup \{ f(x) \mid x \in D \}$$

das Supremum von f auf D.

(d)
$$\inf_{x \in D} f(x) := \inf_{D} f(x) := \inf_{D} \{f(x) \mid x \in D\}$$

das Infimum von f auf D.

2.7.10 Beschränktheit einer stetigen Funktion

Seien $a,b \in \mathbb{R}$ mit a < b und eine stetige Funktion $f:[a,b] \to \mathbb{R}$ gegeben, dann ist f beschränkt. (d.h. $\sup_{[a,b]} (f) < \infty$ und $\inf_{[a,b]} (f) > \infty$).

2.7.11 Weierstraß: Existenz von Min und Max

Seien $a, b \in \mathbb{R}$ mit a < b und $f : [a, b] \to \mathbb{R}$ stetig, dann ex.:

$$\min_{[a,b]} f$$
 und $\max_{[a,b]} f$

2.7.12 Zusammenhang Injektivität — Stetigkeit

Sei $f: I \to \mathbb{R}$ stetig auf einem Intervall $I \subseteq \mathbb{R}$. Dann gilt:

f inj. auf $I \Leftrightarrow f$ ist streng monoton

2.7.13 Existenz und Monotonie der Umkehrfunktion

Sei $f:I\to\mathbb{R}$ stetig und streng monoton auf einem Intervall I. Dann ex. auf J:=f(I) die Umkehrfunktion $f^{-1}:J\to I$ und diese ist im gleichen Sinn wie f streng Monoton und stetig.

2.7.14 Gleichmäßige Stetigkeit

Eine Funktion $f: I \to \mathbb{R}$ heißt gleichmäßig stetig auf I, wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) \ |f(x_1) - f(x_2)| < \varepsilon \ \forall x_1, x_2 \in I \ \text{mit} \ |x_1 - x_2| < \delta(\varepsilon)$$

Bemerkung

Im Gegensatz zur normalen Stetigkeit wird bei der gleichmäßigen Stetigkeit eine Funktion $\delta(\varepsilon)$ für die ganze Funktion bestimmt und nicht nur für jeden Punkt einzeln (also $\delta(x_0,\varepsilon)$). Es wird also zwischen Stetigkeit in einem Punkt und Stetigkeit auf einem Intervall unterschieden.

Kapitel 3

Differentialrechnung

3.1 Ableitung

3.1.1 Definition Differenzen-Quotient

Sei $f:D\subseteq\mathbb{R}\to\mathbb{R}$. Dann heißt f in $x_0\in D$ differentierbar, falls

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

für alle $x_0 \in D$ existiert.

3.1.2 Rechtsseitige und linksseitige Ableitung

Im Fall der Existenz heißen

$$f'(x_0^+) := \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \text{ bzw.}$$

 $f'(x_0^-) := \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$

die rechts- bzw. linksseitige Ableitung in x_0

Bemerkung

$$f'(x_0)$$
 ex. $\Leftrightarrow f'(x_0^+)$ und $f(x_0^-)$ ex. und $f'(x_0^+) = f'(x_0^-)$

3.1.3 Ableitungsrechenregeln

Seien $f, g: D \to \mathbb{R}$ differentierbar in $x_0 \in D$, dann gilt:

(a)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

(b)
$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

(c) Falls
$$g(x_0) \neq 0$$
: $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$

3.1.4 Alternative Definition der Ableitung

Sei $f:D\subseteq\mathbb{R}\to\mathbb{R}$ und $x_0\in D$. Dann gilt: f differenzierbar in $x_0\Leftrightarrow$

$$\exists A \in \mathbb{R} \text{ und } r: D \to \mathbb{R} \text{ mit } \lim_{x \to x_0} r(x) = 0 \text{ so dass gilt: } f(x) = f(x_0) + A \cdot (x - x_0) + r(x) \cdot (x - x_0)$$

3.1.5 Zusammenhang Differentierbarkeit — Stetigkeit

Ist $f: D \to \mathbb{R}$ differentierbar in $x_0 \in D \Rightarrow f$ stetig in x_0

3.1.6 Differentiation von Potenzreihen

Sei $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$ eine Potenzreihe mit R > 0, dann ist f für x mit $|x - x_0| < R$ differentierbar, und es gilt:

$$f'(x) = \sum_{k=1}^{\infty} a_k \cdot k \cdot (x - x_0)^{k-1}$$

Bemerkung

Der Konvergenzradius von f'(x) ist ebenfalls R.

3.1.7 Ableitung der Umkehrfunktion

Seien $I, J \subseteq \mathbb{R}$ Intervalle und $f: I \to J$ sei differentiarbar und bijektiv, dann ist auch $f^{-1}: J \to I$ differentierbar und es gilt:

$$(f^{-1})'(y_0) = \frac{d}{dx}f^{-1}(y_0) = \frac{1}{f'(f^{-1}(y_0))} \forall y_0 \in J \text{ für ein } y_0 = f(x_0) \text{ und } f'(y_0) \neq 0$$

3.1.8 Ketternregel

Seien $f:A\to B,\,g:B\to\mathbb{R}$ mit $A,B\subseteq\mathbb{R}$ differentierbar auf A bzw. B, dann ist auch $g\circ f$ auf A differentierbar und es gilt:

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0) \ \forall x_0 \in A$$

3.2 Mittelwertsätze

3.2.1 Satz von Rolle

Sei $f:[a,b] \to \mathbb{R}$ stetig und auf (a,b) differentierbar. Falls f(a)=f(b) gilt, existiert ein $x_0 \in (a,b)$ mit $f'(x_0)=0$

3.2.2 Definition lokaler Extrempunkt

Sei $f:D\to\mathbb{R}$ und $x_0\in D$. Dann besitztf in x_0 ein lokales Maximum (bzw. Minimum): \Leftrightarrow

$$\exists \delta > 0 : f(x) \leq f(x_0) \text{ (bzw. } f(x) \geq f(x_0)) \ \forall x \in D \cap U_{\delta}(x_0)$$

3.2.3 Notwendige Bedingung für lokale Extrema

Sei $f: D \to \mathbb{R}$ differentierbar in $x_0 \in D$ und x_0 sei kein Randpunkt, dann gilt: Liegt bei x_0 ein lokales Maximum/Minimum $\Rightarrow f'(x_0) = 0$.

3.2.4 2. Mittelwertsatz

Seien $f,g:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differentierbar dann existiert ein $x_0\in(a,b)$ mit

$$f'(x_0) \cdot (g(b) - g(a)) = g'(x_0) \cdot (f(b) - f(a))$$

Bzw. falls nicht durch Null geteilt wird:

$$\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

3.2.5 1. Mittelwertsatz (Folgerung aus 2. Mittelwertsatz)

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differentierbar

$$\Rightarrow \exists x_0 \in (a,b) \text{ mit } f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

3.2.6 L'Hospital

Seien $f,g:[a,b) \to \mathbb{R}(a < b,b \in (\mathbb{R} \cup \infty))$ differentierbar auf (a,b) mit $g'(x) \neq 0 \ \forall x \in (a,b)$. Falls der Grenzwert $\alpha = \lim_{n \to b^-} \frac{f'(x)}{g'(x)}$ ex. und:

(a)
$$\lim_{n \to b^{-}} f(x) = \lim_{n \to b^{-}} g(x) = 0$$
 oder

(b)
$$\lim_{x \to b^-} g(x) = \infty$$

dann gilt:

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}$$

3.2.7 Satz von Taylor

Sei $f:[a,b]\to\mathbb{R}$ n+1 mal differentierbar auf (a,b) und $x_0\in(a,b)$. Dann gilt für ein $\xi\in(x_0,x)$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot (x - x_0)^{n+1}$$

${\rm Teil~II} \\ {\rm HM~2-Zusammenfassung}$

Kapitel 4

Integration

4.1 Integration

4.1.1 Definition Zerlegung, Zwischenwerte

Eine Teilmenge T von [a, b] mit $a, b \in T$ nennt man eine Unterteilung, Zerlegung oder Partitionierung von [a, b] wenn gilt:

$$T = \{x_0, x_1, \dots, x_n\}$$
 mit $a = x_0 < x_1 < \dots < x_n = b$

Schreibweise für diese Menge T sei:

$$T: a = x_0 < x_1 < \ldots < x_n = b$$

Ist T eine Zerlegung, dann heißt:

- (a) Die Zahl $\mu(T) := \max\{ |x_{k-1} x_k|, k = 0, ..., n \}$ das Feinheitsmaß von T.
- (b) Ein Vektor $\xi=(\xi_1,\ldots,\xi_n)\in\mathbb{R}^n$ heißt ein Zwischenwertvektor zu T, wenn gilt

$$x_{k-1} \le \xi_k \le x_k$$
 für $k = 1, \dots, n$

Dann heißt die Komponente ξ_k ein Zwischenwert von x_{k-1} und x_k .

4.1.2 Definition Riemannsumme

Ist $f:[a,b]\to\mathbb{R}$ eine Funktion, $T:a=x_0<\ldots< x_n=b$ eine Zerlegung von [a,b] und $\xi=(\xi_1,\ldots,\xi_n)$ ein Zwischenwertevektor zu T, dann nennen wir die Summe

$$S(f;T,\xi) = S_f(T,\xi) = \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1})$$

die Riemansumme von f bezüglich T und ξ .

4.1.3 Definition Riemann-Integral

Eine Funktion $f:[a,b]\to\mathbb{R}$ heißt Riemann-Integrierbar unter [a,b] wenn für jede Folge $(T_N)_{N=1}^\infty$ von Zerlegungen von [a,b] mit $\mu(T_N)\to 0$ für $N\to\infty$ und jede Folge $(\xi_N)_{N=1}^\infty$ von Zwischenpunktvektoren der Grenzwert

$$\lim_{N\to\infty} S(f;T_N,\xi_N) \text{ existiert.}$$

Behauptung

Der Grenzwert ist im Fall der Existenz für jede Folge identisch.

Bemerkung

(a) Im Fall der Existenz bezeichnet man den Grenzwert durch:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{N \to \infty} S(f; T_N, \xi_N)$$

(b) Zu $(T_N)_{N=1}^{\infty}$, also $T_1, T_2, T_3, ...$:

$$T_1: \quad a = x_0^{(1)} < \dots < x_n^{(1)} = b$$

$$T_2: \quad a = x_0^{(2)} < \dots < x_n^{(2)} = b$$

$$T_3: \quad a = x_0^{(3)} < \dots < x_n^{(3)} = b$$

$$\vdots$$

$$T_l: \quad a = x_0^{(l)} < \dots < x_n^{(l)} = b$$

(c) Zu $(\xi_N)_{N=1}^{\infty}$, also $\xi_1, \xi_2, \xi_3, ...$:

$$\xi_1 = (\xi_1^{(1)}, \dots, \xi_n^{(1)}) \text{ mit } x_{k-1}^{(1)} \le \xi_k^{(2)} \le x_k^{(1)} \text{ mit } 1 \le k \le n_1$$

$$\xi_2 = (\xi_1^{(2)}, \dots, \xi_n^{(2)}) \text{ mit } x_{k-1}^{(2)} \le \xi_k^{(2)} \le x_k^{(2)} \text{ mit } 1 \le k \le n_2$$

$$\xi_3 = (\xi_1^{(3)}, \dots, \xi_n^{(3)}) \text{ mit } x_{k-1}^{(3)} \le \xi_k^{(3)} \le x_k^{(3)} \text{ mit } 1 \le k \le n_3$$

$$\vdots$$

$$\xi_l = (\xi_1^{(l)}, \dots, \xi_n^{(l)}) \text{ mit } x_{k-1}^{(l)} \le \xi_k^{(l)} \le x_k^{(l)} \text{ mit } 1 \le k \le n_l$$

(d) Sei f integrierbar und $(T_N)_{N=1}^{\infty}$ und $(\xi_N)_{N=1}^{\infty}$ sowie $(\tilde{T}_N)_{N=1}^{\infty}$ und $(\tilde{\xi}_N)_{N=1}^{\infty}$ entsprechende Folgen, d.h. $\mu(T_N) \to 0, \mu(\tilde{T}_N) \to 0$ für $N \to \infty$. Dann gilt gilt für $(\hat{T}_N)_{N=1}^{\infty}$ und $(\hat{\xi}_N)_{N=1}^{\infty}$ mit

$$\hat{T}_N := \begin{cases} T_N & \text{ für } N \text{ gerade} \\ \tilde{T}_N & \text{ für } N \text{ ungerade} \end{cases}$$

und

$$\hat{\xi}_N := \begin{cases} \xi_N & \text{für } N \text{ gerade} \\ \tilde{\xi}_N & \text{für } N \text{ ungerade} \end{cases}$$

dass

$$\lim_{N\to\infty} S(f; \hat{T}_N, \hat{S}_N)$$

existiert, da f integrier
bar ist.

Dann stimmt der Grenzwert von $\lim_{N\to\infty} S(f; \tilde{T}_N, \tilde{S}_N)$ und $\lim_{N\to\infty} S(f; T_N, S_N)$ überein.

4.1.4 Menge der Riemann-Integrierbaren Funktionen

Mit R[a,b] oder R([a,b]) bezeichnen wir die Menge von Funktionen $f:[a,b]\to\mathbb{R}$ die auf [a,b] Riemann integrierbar sind.

4.1.5 Kriterien für Riemann-Integrierbarkeit

(a)

$$f \in R[a,b] \Rightarrow f$$
ist auf $[a,b]$ beschränkt

(b) Ist $f,g\in R[a,b]$ und $c\in\mathbb{R}$ dann sind auch die Funktionen

$$\begin{array}{cccc} f & + & g \\ f & - & g \\ c & \cdot & f \end{array}$$

Riemann integrierbar auf [a, b].

(c) Ist $f, g \in R[a, b]$, dann ist auch

$$f \cdot g \in R[a, b]$$

(d) Ist $f, g \in R[a, b]$ und falls $|g(x)| > \delta > 0 \ \forall x \in [a, b]$ dann ist auch

$$\frac{f}{g} \in R[a, b]$$

(e) Für beliebiges $c \in [a, b]$ gilt:

$$f \in R[a,b] \Leftrightarrow f \in R[a,c] \land f \in R[c,b]$$

und weiter gilt:

$$\int_a^b f(x) \ \mathrm{d}x = \int_a^c f(x) \ \mathrm{d}x + \int_c^b f(x) \ \mathrm{d}x$$

(f)

$$f \in R[a,b] \Rightarrow |f| \in R[a,b]$$

und

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} \left| f(x) \right| \, \mathrm{d}x$$

4.1.6 Endliche änderung von Funktionen

Wenn $f \in R[a, b]$ ist und durch endlich viele Änderungen daraus $g : [a, b] \to \mathbb{R}$ konstruiert werden kann, d.h.

$$g(x) = \begin{cases} f(x) & \text{falls } x \notin \{x_1, \dots, x_n\} \\ y_1 & \text{falls } x = x_1 \\ & \vdots \\ y_n & \text{falls } x = x_n \end{cases}$$

dann gilt $g \in R[a, b]$ und

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{b} g(x) \, \mathrm{d}x$$

4.1.7 Zusammenhang Stetigkeit und Integrierbarkeit

Es gilt:

$$f \in C[a,b] \Rightarrow f \in R[a,b]$$

4.1.8 Stückweise Integration

Falls $f:[a,b]\to\mathbb{R}$ stückweise stetig ist, d.h. es existieren endlich viele Intervall-Stücke auf denen f stetig ist, dann ist $f\in R[a,b]$ und es gilt:

$$\int_{a}^{b} f(x) \, dx = \int_{x_0}^{x_1} f(x) \, dx + \int_{x_1}^{x_2} f(x) \, dx + \dots + \int_{x_{n-1}}^{x_n} f(x) \, dx$$

4.1.9 1. Mittelwertsatz der Integralrechnung

Seien $f, g \in R[a, b]$ und $g \ge 0$ auf [a, b]. Dann gibt es ein $\mu \in \mathbb{R}$ mit $\inf_{[a, b]} f(x) \le \mu \le \sup_{[a, b]} f(x)$ sodass gilt:

$$\int_{a}^{b} f(x)g(x) dx = \mu \int_{a}^{b} g(x) dx$$

Ist f stetig auf [a, b], dann existiert ein $\xi \in [a, b]$ mit

$$\int_a^b f(x)g(x) \, dx = f(\xi) \int_a^b g(x) \, dx$$

Bemerkung

Für g(x) = 1 und f stetig lautet die Aussage also:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = f(\xi) \cdot (b - a)$$

4.1.10 Existenz der Stammfunktion

Sei $f \in R[a, b]$, dann ist für jedes $c \in [a, b]$ durch:

$$F(x) := \int_{c}^{x} f(t)dt$$

eine stetige Funktion definiert. Und für jedes $x_0 \in (a, b)$ gilt:

f stetig in $x_0 \Rightarrow F$ ist differentierbar in $x_0 \wedge F'(x_0) = f(x_0)$

4.1.11 Definition Stammfunktion

Gilt $F'(x) = f(x) \ \forall x \in [a, b]$ dann wird F als Stammfunktion von f bezeichnet.

4.1.12 Eindeutigkeit der Stammfunktion

Sind F und G Stammfunktionen von f, dann existiert ein $c \in \mathbb{R}$ mit

$$F(x) = G(x) + c \ \forall x \in [a, b]$$

4.1.13 Hauptsatz der Differential und Integralrechnung

Sei $f:[a,b]\to\mathbb{R}$ gegeben dann gilt:

(a) Ist $f \in R[a, b]$ und F eine Stammfunktion, dann gilt:

$$\int_{a}^{b} f(t)dt = F(b) - F(a) =: [F(x)]_{a}^{b}$$

(b) Ist $f \in C[a, b]$ dann existiert eine Stammfunktion und zwar

$$F(x) := \int_{c}^{x} f(t)dt$$

Bemerkung

Aus dem Hauptsatz folgen Integrationstechniken wie partielles Integrieren oder die Subsitutionsregel.

4.1.14 Zusammenhang Monotonie und Riemann-Integrierbarkeit

Ist $f:[a,b]\to\mathbb{R}$ auf [a,b] monoton, dann ist $f\in R[a,b]$.

4.1.15 Zweiter Mittelwertsatz der Integralrechnung

Ist f monoton auf $[a,b],\ g$ integrierbar auf [a,b], dann exisitiert ein $\xi\in[a,b]$ mit:

$$\int_{a}^{b} f(x)g(x) \, dx = f(a) \int_{a}^{\xi} g(x) \, dx + f(b) \int_{\xi}^{b} g(x) \, dx$$

4.2 Uneigentliche Integrale

4.2.1 Definition uneigentliches Integral

Eine Funktion $f:[a,b)\to\mathbb{R}$ mit $a< b\leq \infty$ heißt über [a,b) uneigentlich Riemann integrierbar, wenn gilt:

- (a) $\forall c \text{ mit } a \leq c < b \text{ ist } f \in R[a, c]$
- (b) Der Grenzwert

$$\alpha = \lim_{c \to b^{-}} \int_{a}^{c} f(x) \, \mathrm{d}x$$

existiert. In dem Fall schreiben wir

$$\alpha = \int_a^b f(x) \, \mathrm{d}x$$

und sagen das uneigentliche Integral

$$\int_a^b f(x) \, \mathrm{d}x$$

konvergiert gegen α oder hat den Wert α .

Andernfalls divergiert das uneigentliche Integral. Analog geht man für Funktionen

- $f:(a,b] \to \mathbb{R}$ mit $-\infty \le a < b$ und
- $f:(a,b) \to \mathbb{R} \text{ mit } -\infty \le a < b \le \infty$

vor.

4.2.2 Cauchy-Kriterium

Sei $f \in R[a, b] \ \forall c \in (a, b), a < c < \infty$ Dann konv.

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

(a) Im Fall $b < \infty$ genau dann, wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \left| \int_{T_1}^{T_2} f(x) \ dx \right| < \varepsilon \ \forall \ T_1, T_2 \in [b - \delta, b)$$

(b) Im Fall $b = \infty$, wenn gilt:

$$\forall \varepsilon > 0 \ \exists K \ge a : \left| \int_{T_1}^{T_2} f(x) \ dx \right| < \varepsilon \ \forall \ T_1, T_2 \ge K$$

4.2.3 Majorantenkriterium

Seien $f,g \in R[a,c] \ \forall c \in (a,b), a < b \le \infty$ oder $f,g \in R[c,b] \ \forall c \in (a,b) - \infty \le a < b$. Außerdem $|f(x)| \le g(x)$. Und

$$\int_{a}^{b} g(x) \, \mathrm{d}x$$

konvergiert, dann konvergiert auch

$$\int_a^b f(x) \, \mathrm{d}x$$

4.2.4 Absolute Konvergenz

Ist $f \in R[T_1, T_2]$ für $a < T_1 \le T_2 < b \le \infty$ so heißt

$$\int_a^b f(x) \, \mathrm{d}x$$

absolut konvergent, wenn

$$\int_{a}^{b} |f(x)| \, \mathrm{d}x$$

konvergent ist.

4.2.5 Minorantenkriterium

$$f(x) \ge g(x) \ge 0 \land \int_a^b g(x) \, dx = \infty \Rightarrow \int_a^b f(x) \, dx = \infty$$

4.2.6 Integralkriterium für Reihen

Sei $f:[a,\infty)\to [0,\infty)$ und $f\searrow (a\in \mathbb{Z}).$ Dann gilt:

$$\sum_{n=m}^{\infty} f(n) < \infty \Leftrightarrow \int_{a}^{\infty} f(x) \, dx < \infty$$

Kapitel 5

Gleichmäßige Konvergenz

5.1 Gleichmäßige Konvergenz

5.1.1 Definition Funktionenfolge und Funktionenreihe

Sei M eine Menge und $m \in \mathbb{Z}$. Ist jedem $n \in \{m, m+1, \ldots\}$ eine Funktion $f_n : M \to \mathbb{R}$ zugeordnet, so nennt man:

- (a) Die Folge $(f_n)_{n=m}^{\infty}$ eine Funktionenfolge auf M
- (b) Die Reihe $\sum_{n=m}^{\infty} f_n(x)$ eine Funktionenreihe auf M

konvergiert $(f_n)_{n\geq m}$ (bzw. $\sum_{n=m}^{\infty} f_n(x)$) für alle $x\in \tilde{M}\subseteq M$ so heißt die durch $f(x)=\lim_{n\to\infty} f_n(x)$ (bzw. $f(x)=\sum_{n=m}^{\infty} f_n(x)$) definierte Funktion $f:\tilde{M}\to\mathbb{R}$ die Grenzfunktion von $(f_n)_{n=m}^{\infty}$ (bzw. $\sum_{n=m}^{\infty} f_n$).

5.1.2 Gleichmäßige Konvergenz

Sei Meine Menge und sei $f:M\to\mathbb{R}$ eine Funktion.

(a) Eine Funktionenfolge $(f_n)_{n=1}^{\infty}$ heißt auf M gleichmäßig konvergent gegen f wenn gilt:

$$\forall \varepsilon > 0 \ \exists \ n_0(\varepsilon) : |f_n(x) - f(x)| < \varepsilon \ \forall x \in M \ \text{und} \ n \geq n_0(\varepsilon)$$

(b) Eine Funktionenfolge $\sum_{n=m}^{\infty} f_n$ konvergiert gleichmäßig auf M wenn gilt:

$$\forall \varepsilon > 0 \ \exists \ n_0(\varepsilon) : \left| \sum_{k=m}^n f_k(x) - f(x) \right| < \varepsilon \ \forall x \in M \ \text{und} \ n \ge n_0(\varepsilon)$$

Bemerkung

Offensichtlich gilt:

Gleichmäßig konvergent ⇒ Punktweise Konvergent

5.1.3 Stetigkeit der Grenzfunktion

Sei $(f_n)_{n=1}^{\infty}$ (bzw. $\sum_{n=1}^{\infty} f_n(x)$) gleichmäßig konvergent gegen f auf einem Intervall I und alle f_n stetig auf I. Dann ist auch die Grenzfunktion f stetig.

5.1.4 Integration der Grenzfunktion

Sei $(f_n)_{n=1}^{\infty}$ eine Folge von integrierbaren Funktionen auf [a,b]

(a) Falls $(f_n)_{n=1}^{\infty}$ gleichmäßig gegn f konvergiert, dann ist auch f auf [a,b] integrierbar und es gilt:

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to \infty} f_n(x) \, dx$$

(b) Analog für Funktionenreihen

5.1.5 Cauchy Kriterium für gleichmäßige Konvergenz

(a) Eine Funktionenfolge $(f_n)_{n=1}^{\infty}$ konvergiert genau dann gleichmäßig auf einer Menge M (\subseteq Definitionsbereich), wenn gilt:

$$\forall \varepsilon > 0 \ \exists n(\varepsilon) : |f_n(x) - f_m(x)| < \varepsilon \ \forall n \ge n(\varepsilon) \forall x \in M$$

(b) Analog für Funktionenreihen

5.1.6 Differentiation der Grenzfunktion

Sei $(f_n)_{n=1}^{\infty}$ eine auf dem Intervall I differentierbare Folge von Funktionen.

(a) Konvergiert die Folge $(f'_n)_{n=1}^{\infty}$ gleichmäßig auf I und konvergiert für ein beliebiges, festes $x_0 \in I$ die reele Folge $(f_n(x_0))_{n=1}^{\infty}$ dann ist auch die Grenzfunktion f von $(f_n)_{n=1}^{\infty}$ differentierbar und es gilt:

$$\lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x) = \frac{\mathrm{d}}{\mathrm{d}x} \lim_{n \to \infty} f_n(x)$$

(b) Analog für Funktionenreihen

Bemerkung

Außerdem gilt dass $(f_n)_{n=1}^{\infty}$ (bzw. $\sum_{n=1}^{\infty} f_n$) auf jedem beschränkten Teilintervall von I gleichmäßig konvergiert.

5.1.7 Majorantenkriterium auf Potenzreihen anwenden

Für eine reele Potenzreihe $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$ mit Konvergenzradius R > 0 gilt:

- (a) f ist stetig auf $(x_0 R, x_0 + R) =: I$
- (b) f ist differentierbar auf I und

$$f'(x) = \sum_{k=0}^{\infty} a_k \cdot k \cdot (x - x_0)^{k-1}$$

(c) f ist integrierbar auf I und hat die Stammfunktion

$$F(x) = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x - x_0)^{k+1}$$

Bemerkung

Wurde alles schon in HM1 gezeigt aber mühsam.

5.1.8 Majorantenkriterium für Funktionenreihen

Falls $|f_n(x)| \le a_n$ und $\sum_{n=1}^{\infty} a_n$ konvergiert $\Rightarrow \sum_{n=1}^{\infty} f_n(x)$ ist gleichmäßig konvergent.

Kapitel 6

Differentialrechung mit mehreren Variablen

6.1 Der n-dimensionale Euklidische Raum

6.1.1 Definitionen

Sind $n, m \in \mathbb{N}$, so gelten folgende Bezeichungen:

$$\mathbb{R}^{n} := \left\{ \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \text{ für } x_{1}, \dots, x_{n} \in \mathbb{R} \right\}$$

$$\mathbb{R}^{m \times n} := \left\{ \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \text{ für } a_{ij} \in \mathbb{R}, 1 \leq i \leq m, 1 \leq j \leq n \right\}$$

$$\langle x, y \rangle := x \cdot y := x^{T} y := \sum_{k=1}^{n} x_{k} y_{k} \text{ (Skalarprodukt)}$$

$$\|x\| := \|x\|_{2} := |x| := \sqrt{\sum_{k=1}^{n} x_{k}^{2}} \text{ euklidische Norm des } \mathbb{R}^{n}/\text{Betrag in } \mathbb{R}^{n}$$

6.1.2 Folgerungen

1.
$$||x||_{\infty} = \max_{k=1...n} |x_k| \le ||x||_2 \le \sqrt{n} \max_{k=1...n} |x_k| \ \forall x \in \mathbb{R}^n$$
 2.
$$||x||_1 = \sum_{k=1}^n |x_k|$$

und

$$||x||_2 \le ||x||_1$$

3. $\|x\|_1, \|x\|_2, \|x\|_{\infty}$ sind drei mögliche Festlegungen für Vektornormen. Allgemein hat eine Norm $\|\cdot\|$ ($\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$) folgende Eigenschaften:

$$||x|| \ge 0 \qquad \forall x \in \mathbb{R}^n \land ||x|| = 0 \Leftrightarrow x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \vec{0}$$
$$||\alpha \cdot x|| = |\alpha| \cdot ||x|| \qquad \forall \alpha \in \mathbb{R} \land \forall x \in \mathbb{R}^n$$
$$||x + y|| \le ||x|| + ||y|| \qquad \forall x, y \in \mathbb{R}^n$$

- 4. Der Einheitskreis ist bezüglich verschiedener Normen nicht immer ein Kreis
- 5. p-Norm:

$$||x||_p = \sqrt[p]{\sum_{k=1}^n |x_k|^p}$$

6. $x \cdot y$ im \mathbb{R}^2 hat die anschauliche Bedeutung

$$< x, y > = x \cdot y = ||x||_2 \cdot ||y||_2 \cdot \cos(\alpha)$$

Daraus folgt die Cauchy-Schwarzsche-Ungleichung (CSU)

$$< x,y> \leq \|x\|_2 \cdot \|y\|_2$$

6.1.3 Konventionen

- (a) In \mathbb{R}^n sei stets $A^c := \mathbb{R}^n \backslash A$ für eine Menge $A \subseteq \mathbb{R}^n$
- (b) Mit $\|\cdot\|$ bezeichnen wir die euklidische Norm $\|\cdot\|_2$. Außer es wird explizit gesagt, dass $\|\cdot\|$ eine allgemeine Norm ist (z.B. "Sei $\|\cdot\|$ eine Norm auf \mathbb{R}^n ")

6.1.4 Definition Epsilon-Umgebung

Sei $a \in \mathbb{R}^n, \varepsilon > 0$ dann heißt

$$U_{\varepsilon}(a) := \{x \in \mathbb{R}^n | \|x - a\| < \varepsilon\}$$
 die ε -Umgebung von a

$$\dot{U}_\varepsilon(a) \ := \ U_\varepsilon(a) \backslash \{a\} \ (= \{x \in \mathbb{R}^n | \ 0 < \|x - a\| < \varepsilon\}) \ \text{die punktierte} \ \varepsilon\text{-Umgebung von} \ a$$

6.1.5 Definition Topologische Begriffe

Sei $A\subseteq \mathbb{R}^n$. Ein Punkt $a\in \mathbb{R}^n$ heißt:

(a) Innerer Punkt von A, falls ein $\varepsilon > 0$ existiert, sodass $U_{\varepsilon}(a) \subseteq A$ Kurz:

$$a$$
innerer Punkt von $A:\Leftrightarrow \exists \varepsilon>0: U_\varepsilon(a)\subseteq A$

Die Menge $\overset{\circ}{A}$ ist die Menge aller innerer Punkte von A

$$\overset{\circ}{A}:=\{a\in\mathbb{R}^n|\exists\varepsilon>0\text{ mit }U_\varepsilon(a)\subseteq A\}$$

(b) Berührungspunkt von A, wenn jede ε -Umgebung von a mindestens einen Punkt aus A enthält. Kurz:

$$a \in \mathbb{R}^n$$
 ist Berührpunkt von $A :\Leftrightarrow \forall \varepsilon > 0 : U_{\varepsilon}(a) \cap A \neq \emptyset$

Die Menge aller Berührpunkte von

$$\bar{A} := \{ x \in \mathbb{R}^n | \forall \varepsilon > 0 \text{ ist } U_{\varepsilon}(a) \cap A \neq \emptyset \}$$

heißt der Abschluss oder abgeschlossene Hülle von A.

(c) Häufungspunkt von A, wenn jede punktierte ε -Umgebung von a ein Element von A enthält. Kurz:

$$a \in \mathbb{R}^n$$
 ist Häufungspunkt : $\Leftrightarrow \forall \ \varepsilon > 0 : \dot{U}_{\varepsilon}(a) \cap A \neq \emptyset$

(d) Randpunkt von A, wenn jede ε -Umgebung Elemente aus A und A^c enthält. Kurz:

$$a \in \mathbb{R}^n$$
 ist Randpunkt von $A : \Leftrightarrow \forall \varepsilon > 0 \ (U_{\varepsilon}(a)\hat{A} \neq \emptyset) \land (U_{\varepsilon}(a)\hat{A}^c \neq \emptyset)$

Die Menge

$$\partial A := \{ a \in \mathbb{R}^n | a \text{ ist Randpunkt von } A \}$$

heißt der Rand von A.

Bemerkung

Man kann zeigen:

$$\bar{A} = A \cup \partial A = \mathring{A} \cup \partial A$$

6.1.6 Definition offene und abgeschlossene Menge

Eine Menge $A \subseteq \mathbb{R}^n$ heißt:

- (a) offen, wenn $A = \overset{\circ}{A}$ gilt (also A besteht nur aus innerern Punkten)
- (b) abgeschlossen, wenn $\partial A \subseteq A$ (Rand gehört zu A)

6.2 Folgen

6.2.1 Definition

Eine Folge

$$a_k = \begin{pmatrix} a_1^{(k)} \\ \vdots \\ a_n^{(k)} \end{pmatrix}$$

in \mathbb{R}^n heißt:

(a) Konvegent gegen einen Grenzwert a, wenn gilt:

$$\forall \varepsilon > 0 \ \exists n(\varepsilon) : ||a_k - a|| < \varepsilon \ \forall k \ge n(\varepsilon)$$

Schreibweise:

$$\lim_{k \to \infty} a_k = a \text{ oder } a_k \to a \ (k \to \infty)$$

(b) Beschränkt, wenn gilt:

$$\exists c > 0: \|a_k\| < c \ \forall k \in \mathbb{N}$$

Bemerkung

(a) Die Norm $\|\cdot\|$ sei hier die euklidische Norm $\|\cdot\|_2$. Wir werden aber sehen: Jede Norm auf \mathbb{R}^n wäre ok.

(b)

 $a_k \to a \ (k \to \infty) \Rightarrow \text{ Jede Komponente von } a_k \text{ konvergiert gegen entsprechende Komponente von } a$

(c) Cauchy-Kriterium:

$$(a_k)_{k=1}^{\infty}$$
 konv. $\Leftrightarrow \forall \varepsilon > 0 \ \exists n(\varepsilon) : ||a_k - a_l|| < \varepsilon \forall k, l \ge n(\varepsilon)$

6.2.2 Bolzano-Weierstraß

Jede beschränkte Folge im \mathbb{R}^n hat eine konvergente Teilfolge.

6.2.3 Grenzwertrechenregeln

Die Grenzwertrechenregeln übertragen sich auch auf Folgen im \mathbb{R}^n .

6.2.4 Weitere Bemerkungen

Sei $A \subseteq \mathbb{R}^n$ und $a \in \mathbb{R}^n$, dann gilt:

(a)
$$a \in \bar{A} \Leftrightarrow \exists (a_k)_{k=1}^{\infty} \text{ mit } a_k \in A \ \forall k \text{ mit } \lim_{k \to \infty} a_k = a$$

(b) a ist ein Häufungspunkt von A

$$\exists (a_k)_{k=1}^{\infty} \text{ mit } a_k \in A \setminus \{a\} \text{ mit } \lim_{k \to \infty} a_k = a$$

- (c) A ist abgeschlossen \Leftrightarrow für jede konvergente Folge $(a_k)_{k=1}^{\infty}$ mit $a_k \in A \ \forall k$ gilt $\lim_{k \to \infty} a_k \in A$.
- (d) A ist kompakt \Leftrightarrow Jede Folge in A besitzt einen Häufungspunt in A.

6.3 Funktionsgrenzwerte und Stetigkeit

6.3.1 Definition Funktion

Eine Funktione $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ nennt man eine Funktion in n Veränderlichen (oder Vektorfeld). Im Fall m=1 nennt man f eine reele Funktion (oder Skalarfeld).

Schreibweise

$$f(x_1, x_2, \dots, x_n) := f\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right) := \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix}$$

6.3.2 Definition Funktionsgrenzwert

Sei $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ und $a\in\bar{A}$ dann heißt ein $b\in\mathbb{R}^m$ mit:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : ||f(x) - b|| < \varepsilon \ \forall x \in \dot{U}_{\delta(\varepsilon)}(a) \cap A$$

der Grenzwert von f für x gegen a. Kurz:

$$\lim_{x \to a} f(x) = b$$

6.3.3 Definitionen aus HM 1 im Mehrdimensionalen

Sei $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $a \in \bar{A}$ und $b \in \mathbb{R}^m$

(a) Folgende Aussagen sind äquivalent:

(a)
$$f(x) \to b \ (x \to a)$$

- (b) $||f(x) b|| \to 0 \ (x \to a, x \in A)$
- (c) Für jede Komponente

$$f_l(x)$$
 von $f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix}$ gilt $f_l(x) \to b_l$ $(x \to a)$

(d) Für eine Folge $(x_k)_{k=1}^{\infty}$ in A mit $\lim_{k\to\infty}$ und $x_k\neq a\ \forall k$ folgt:

$$f(x_k) \to b \ (k \to \infty)$$

- (b) Falls $\lim_{x\to a} f(x)$ existiert ist dieser Eindeutig.
- (c) Cauchy-Kriterium:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : ||f(x) - f(y)|| < \varepsilon \ \forall x, y \in \dot{U}_{\delta\varepsilon}(a) \cap A$$

- (d) Grenzwertrechenregeln gelten analog zu HM 1
- (e) Sei $B \subseteq A$ mit $a \in \bar{B}$ dann gilt:

$$\lim_{x \to a \text{ mit } x \in B} f(x) = b \Leftrightarrow \lim_{x \to a \text{ mit } x \in A} f(x) = b$$

6.3.4 Definition Stetigkeit

Sei $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ und $a \in A$, dann ist f in a stetig wenn gilt $\lim_{x \to a} f(x) = f(a)$. Das heißt:

$$\forall \varepsilon \ \exists \delta(\varepsilon) : ||f(x) - f(a)|| < \varepsilon \ \forall x \in U_{\delta(\varepsilon)}(a) \cap A$$

6.3.5 Grenzwerte von verketteten Funktionen

Sei $A \subseteq \mathbb{R}^n, B \subseteq \mathbb{R}^m, a \in \bar{A}$ und $f: A \to B, g: B \to \mathbb{R}^l$. Existiert $\lim_{x \to a} f(x) = b$ so gilt $b \in \bar{B}$ und es gilt:

$$\lim_{x \to a} g(f(x)) = \lim_{y \to b} g(y)$$

sofern der Grenzwert $\lim_{y\to b} g(y)$ existiert.

6.3.6 Grenzwertrechenregeln

Für $f,g:A\to\mathbb{R}^n$ gilt: Falls $\lim_{x\to a}f(x)=\alpha$ und $\lim_{x\to a}g(x)=\beta$ existiert, dann gilt:

$$\lim_{x \to a} f(x) + g(x) = \alpha + \beta$$

$$\lim_{x \to a} f(x)^T g(x) = \alpha^T \beta$$

6.3.7 Maximum und Minimum Kompakter Mengen

- (a) Ist $\emptyset \neq A \subseteq \mathbb{R}$ kompakt, so existiert max A und min A.
- (b) Ist $A \subseteq \mathbb{R}^n$, A kompakt und $f: \mathbb{R}^m \to \mathbb{R}^n$ stetig auf A, dann ist f(A) kompakt.

6.3.8 Weierstraß

Falls $A \subseteq \mathbb{R}^m$ und $f: A \to \mathbb{R}$ stetig ist dann gilt:

$$A \text{ kompakt } \Rightarrow \min_{x \in A} f(x), \max_{x \in A} f(x) \text{ existient}$$

6.4 Partielle Ableitungen und Richtungsableitungen

6.4.1 Definition partielle Ableitung

Eine Funktion $f:A\subseteq\mathbb{R}^m\to\mathbb{R}^n$ heißt in einem Punkt $a\in\mathbb{R}^m$ partiell differentierbar nach seiner k-ten Variable $x_k(k\in\{1,\ldots,m\})$ wenn $f(a+h\cdot e_k)$ mit

$$e_k = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \text{ (k-te Komponente)} \\ \vdots \\ 0 \end{pmatrix}$$

für ein festes $\delta > 0$ und alle h mit $|h| < \delta$ existiert:

$$\frac{\partial}{\partial x_k} f(a) := f_{x_k}(a) := \lim_{h \to 0} \frac{f(a + h \cdot e_k) - f(a)}{h}$$

Dieser Grenzwert heißt partielle Ableitung von f nach x_k bei a.

Exisitiert bei a die partiellen Ableitungen $f_{x_1}(a), \ldots, f_{x_m}(a)$ so heißt f (einmal) partiell differentierbar bei a und nennt man im Fall n=1 den Spaltenvektor

$$\nabla f(a) := \operatorname{grad} f(a) := \begin{pmatrix} f_{x_1}(a) \\ \vdots \\ f_{x_m}(a) \end{pmatrix}$$

den Gradienten von f bei a.

Falls alle partiellen Ableitungen stetig sind nennt man f stetig partiell differentierbar.

Schreibweise

 $C^k(G,\mathbb{R}^n) := \{f : G \to \mathbb{R}^n | \text{ alle } k\text{-ten partiellen Ableitungen existieren und sind stetig} \}$

6.4.2 Definition Umgebung eines Punktes

Eine Umgebung eines Punktes $a \in \mathbb{R}^n$ ist eine Menge $U \subseteq \mathbb{R}^n$ für die ein $\varepsilon > 0$ existiert, so dass $U_{\varepsilon}(a) \subseteq U$. Eine offene Umgebung U ist eine Umgebung, die zusätzlich eine offene Menge ist.

Bemerkung

Ist $f: G \subseteq \mathbb{R}^n \to \mathbb{R}$ partiell differentierbar und sind in einer Umgebung von $a \in G$ alle partiellen Ableitungen beschränkt, dann ist f stetig in a.

6.4.3 Definition Richtungsableitung

Seien $a, r \in \mathbb{R}^n$ und r eine Richtung, d.h. ||r|| = 1. Eine Funktion $f : G \subseteq \mathbb{R}^n \to \mathbb{R}^m$ heißt bei a in Richtung r differentierbar, wenn der Grenzwert

$$\frac{\partial}{\partial r}f(a) := \lim_{h \to 0} \frac{f(a+h \cdot r) - f(a)}{h}$$

existiert. Dieser Grenzwert heißt dann die Richtungsableitung von f bei a in Richtung r.

6.5 Die totale Ableitung

6.5.1 Definition totale Ableitung

Sei $f: G \subseteq \mathbb{R}^n \to \mathbb{R}^m$ und $a \in G \subseteq \mathbb{R}^n$

(a) Man nennt f total differentierbar bei a, wenn es eine Matrix $A \in \mathbb{R}^{m \times n}$ gibt, dass bei einer Umgebung U von a gilt:

$$f(x) = f(a) + A(x - a) + r(x)$$

mit

$$\frac{r(x)}{\|x-a\|} \to \vec{0} \ (x \to a)$$

In dem Fall nennen wir A die (totale) Ableitung von f bei a und wir schreiben f'(a) = A

(b) Ist
$$f = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}$$
 partiell differentierbar bei a , so heißt

$$\begin{pmatrix} \frac{\partial}{\partial x_1} f_1(a) & \cdots & \frac{\partial}{\partial x_n} f_1(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} f_m(a) & \cdots & \frac{\partial}{\partial x_n} f_m(a) \end{pmatrix} = \begin{pmatrix} \nabla f_1(a)^T \\ \vdots \\ \nabla f_n(a)^T \end{pmatrix} = \frac{\partial}{\partial x} f(a) = J_f(a)$$

die Jacobi-Matrix von f bei a.

Bemerkung

(a) Wir werden sehen, dass gilt:

f ist in a total differentierbar $\Leftrightarrow f'(a) = J_f(a)$

(b) Im Fall m = 1 gilt also:

$$J_f(a) = \nabla f(a)^T$$

und falls f total differentierbar ist gilt:

$$f'(a) = \nabla f(a)^T$$

(c) Bedeutung des Skalarprodukts $x, y \in \mathbb{R}^n$

$$x \cdot y := x^T y := \sum_{k=1}^n x_k y_k = ||x||_2 ||y||_2 \cos \alpha$$

(d) Definition des Matrix-Vektor-Produktes:

$$A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m$$

$$A \cdot x = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{pmatrix}$$

6.5.2 Zusammenhang Stetigkeit und Differenzierbarkeit

Ist $f:G\subseteq\mathbb{R}^n\to\mathbb{R}^m$ differentier bar in $a\in G\Rightarrow f$ stetig in a.

6.5.3 Zusammenhang partielle und totale Diffbarkeit

Sei $f:G\subseteq\mathbb{R}^n\to\mathbb{R}^m$ und $a\in G$

(a) Ist f total differentierbar bei a, so gilt:

(a) f ist bei a partiell differentierbar und

$$f'(a) = \frac{\partial}{\partial x} f(a)$$

(b) f ist bei a in jede Richtung r differentierbar und

$$\frac{\partial}{\partial r}f(a) = J_f(a) \cdot r$$

(b) Wenn f partiell differentierbar in a ist und alle partiellen Ableitungen in a stetig sind, so ist f in a differentierbar.

$$\frac{\partial}{\partial x_n} f(x_n)$$
 stetig in $a \Leftrightarrow f$ difference in a

6.5.4 Kettenregel

Ist $f: A \subseteq \mathbb{R}^n \to B \subseteq \mathbb{R}^m$ total differentierbar in $a \in A$ und $g: B \to R^l$ total differentierbar in a. Dann gilt $g \circ f$ ist in a differentierbar und

$$(g \circ f)' = g'(f(a)) \cdot f'(a)$$

6.5.5 Matrix-Produkt

Für $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}$ und $C \in \mathbb{R}^{m \times n}$ ist das Matrix-Produkt $C = A \cdot B$ definiert durch:

$$c_{ij} = \sum_{l=1}^{k} a_{il} b_{lj}$$

6.6 Extremwerte, Mittelwertsatz

6.6.1 Definition lokales Extrema

(a) Eine Funktion $f: G \subseteq \mathbb{R}^n \to \mathbb{R}$ besitzt in $x_0 \in G$ ein lokales Minimum (bzw. Maximum), wenn in einer Umgebung von U von x_0 gilt:

$$f(x) \ge f(x_0)$$
 (bzw. $f(x) \le f(x_0)$) $\forall x \in U$

unter einem lokalen Extrema versteht man ein lokales Minimum oder Maximum

(b) f besitzt in x_0 ein globales Minimum (bzw. Maximum), wenn

$$f(x) \ge f(x_0)$$
 (bzw. $f(x) \le f(x_0)$) $\forall x \in G$

6.6.2 Notwendige Bedingung für lokale Extrema

Besitzt $f: G \subseteq \mathbb{R}^n \to \mathbb{R}, f \in C^1(G, \mathbb{R})$ in $x_0 \in \overset{\circ}{G}$ ein lokales Extrema, so gilt:

$$\nabla f(x_0) = 0$$

Bemerkung

Einen Punkt $x_0 \in G$ mit $\nabla f(x_0) = 0$ nennen wir kritischen Punkt oder stationären Punkt.

6.6.3 Mittelwertsatz

Sei $f:G\subseteq\mathbb{R}^n\to\mathbb{R}$ mit G offen differentierbar und G enthalte die Menge

$$L(a,b) := \overline{ab} := \{a + t \cdot (b-a) \mid t \in [0,1]\}$$

für $a, b \in G$. Dann exisitiert ein $\xi \in (0, 1)$ mit

$$f(b) = f(a) + \nabla f(a + \xi(b - a))^{T}(b - a)$$

6.6.4 Gebiete bzw. kurvenweise zusammenhängende Gebiete

(a) Eine Menge

$$\overline{a_0, a_1, \dots, a_n} := \bigcup_{k=0}^{n-1} \overline{a_k, a_{k+1}}$$

für $a_0, \dots, a_n \in \mathbb{R}^m$ heißt Polygonzug

- (b) Eine Menge $M \subseteq \mathbb{R}^n$ heißt kurvenweise zuammenhängend, wenn zu $a, b \in M$ stets eine stetige Funktion $\gamma : [0,1] \to M$ exisitiert mit $\gamma(0) = a$ und $\gamma(1) = b$ (dann ist γ) eine Kurve von a nach b.
- (c) Eine Menge $G \subseteq \mathbb{R}^n$ heißt Gebiet, wenn G offen und kurvenweise zusammenhängend ist (keine Inseln).

Bemerkung

Ist G ein Gebiet und $a,b\in G$ dann existiert stets ein Polynomzug, der a und b verbindet und durch G verläuft.

6.6.5 Partielle Ableitung r-ter Ordnung

Für $f: G \subseteq \mathbb{R}^n \to \mathbb{R}^m$ definiert man (falls existent) für $x_0 \in G$ und $k_1, \ldots, k_r \in \{1, \ldots, n\}$ die partielle Ableitung r-ter Ordnung indirekt durch:

$$\frac{\partial^r}{\partial x_{k_1} \dots \partial x_{k_r}} f(x_0) := f_{x_{k_1} \dots x_{k_r}}(x_0) := \begin{cases} \frac{\partial}{\partial x_{k_1}} f(x_0) & \text{falls } r = 1\\ \frac{\partial}{\partial x_{k_1}} \left(\frac{\partial^{r-1}}{\partial x_{k_2} \dots \partial x_{k_r}} f(x_0) \right) & \text{sonst} \end{cases}$$

existieren alle partiellen Ableitungen der Ordnung r, dann ist f r-mal partiell differentierbar sind diese außerdem stetig, so ist f r-mal stetig partiell differentierbar.

Schreibweise

 $C^r(G,\mathbb{R}^m) := \{ f : G \to \mathbb{R}^m \mid f \text{ r-mal stetig partial differentierbar} \} \text{ und } C^r(G) := C^r(G,\mathbb{R}^1)$

6.6.6 Hessematrix

Ist $f:G\subseteq\mathbb{R}^n\to\mathbb{R}$ 2-mal partiell differentierbar bei $a\in G$ so heißt

$$H_f(a) := \begin{pmatrix} f_{x_1 x_1}(a) & \cdots & f_{x_1 x_n}(a) \\ \vdots & \ddots & \vdots \\ f_{x_n x_1}(a) & \cdots & f_{x_n x_n}(a) \end{pmatrix} = \left(\nabla f_{x_1}(a) & \cdots & \nabla f_{x_n}(a) \right)$$

die Hesse-Matrix von f bei a.

6.6.7 Definitheit

Sei $A \in \mathbb{R}^{n \times n}$

- (a) Die durch $Q_A(x) := x^T \cdot A \cdot x$ definierte Funktion $Q_A : \mathbb{R}^n \to \mathbb{R}$ heißt die Quadratische Form von A.
- (b) Die Matrix und die Quadratische Form heißen:
 - (a) positiv definit

$$:\Leftrightarrow Q_A(x) > 0 \ \forall x \in \mathbb{R}^n \setminus \{0\}$$

(b) positiv semidefinit

$$\Leftrightarrow Q_A(x) > 0 \ \forall x \in \mathbb{R}^n$$

(c) negativ definit

$$:\Leftrightarrow Q_A(x) < 0 \ \forall x \in \mathbb{R}^n \setminus \{0\}$$

(d) negativ semidefinit

$$\Leftrightarrow Q_A(x) \leq 0 \ \forall x \in \mathbb{R}^n$$

(e) indefinit

$$: \Leftrightarrow \exists x, y \in \mathbb{R}^n : \ Q_A(x) < 0, Q_A(y) > 0$$

6.6.8 Satz von Schwarz

Ist $G \neq \emptyset, f: G \subseteq \mathbb{R}^n \to \mathbb{R}$ 2-mal stetig partiell differentier bar, dann gilt:

$$H_f(x,y) = H_f(x,y)^T$$

6.6.9 Satz von Taylor

Seien $a, b \in G$ (G eine Gebiet mit $G \neq \emptyset$), $f : G \subseteq \mathbb{R}^n \to \mathbb{R}$ zweimal stetig differentierbar und $\overline{ab} \subseteq G$. Dann existiert eine $\xi \in (0,1)$ mit

$$f(b) = f(a) + \nabla f(a)^{T} (b - a) + \frac{1}{2} (b - a)^{T} H_{f}(a + \xi(b - a))(b - a)$$

6.6.10 Hinreichende Bedinung für lokale Extrema

Sei $f \in C^2(U, \mathbb{R})$ mit U eine Umgebung von a und $\nabla f(a) = \vec{0}$ dann gilt:

- (a) Ist $H_f(a)$ positiv definit, so ist bei a ein lokales Minimum
- (b) Ist $H_f(a)$ negativ definit, so ist bei a ein lokales Maximum

6.7 Implizit definierte Funktionen

6.7.1 Bemerkung

Wir betrachten zunächst lineare Funktionen $f: \mathbb{R}^n \to \mathbb{R}^m$ dann lässt sich f(x) darstellen als:

$$f(x) = Ax + b$$

mit $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

6.7.2 Vorläufige Definition Rang einer Matrix

Wir definieren für eine Matrix $A \in \mathbb{R}^{m \times n}$ den Rang vorläufig als die Anzahl der Stufen nachdem mit dem Gauss-Algorithmus die Matrix in Zeilen-Stufenform überführt wurde.

Bemerkung

Allgemein werden wir sehen, dass Ax = b lösbar ist \Leftrightarrow Rang von A gleich Rang von (A|b) gilt. Eindeutig lösbar ist das LGS wenn in der Zeilen-Stufen Form in jeder Zeile eine Stufe anfängt und A quadratisch ist.

6.7.3 Einheitsmatrix und Inverse eine Matrix

Ist $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times n}$ mit

$$B \cdot A = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & & & \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} I \text{ (Einheitsmatrix)}$$

dann nennt man B die zu A inverse Matrix und schreibt $A^{-1} := B$. Dann gilt:

$$\begin{array}{rcl} Ax & = & b \\ \Leftrightarrow A^{-1} \cdot A \cdot x & = & A^{-1} \cdot b \\ \Leftrightarrow I \cdot x & = & A^{-1} \cdot b \\ \Leftrightarrow x & = & A^{-1} \cdot b \end{array}$$

Falls zu einer Matrix $A \in \mathbb{R}^{n \times n}$ die Inverse A^{-1} existiert nennt man A regulär.

Bemerkung

Die Menge $G := \{A \in \mathbb{R}^n : A \text{ ist regulär}\}$ ist bezüglich der Matrixmultiplikation eine nicht abelsche Gruppe mit I als neutrales Element und A^{-1} als das zu A (links-) inverse Element.

6.7.4 Zusammenhang Bijektivität und reguläre Matrizen

Für $f: \mathbb{R}^n \to \mathbb{R}^n$ mit $f(x) = A \cdot x + b$ gilt:

f ist bijektiv $\Leftrightarrow A$ ist regulär

6.7.5 Satz über die Umkehrfunktion

Sei $f \in C^1(G, \mathbb{R}^n)$ für ein Gebiet $G \subseteq \mathbb{R}^n$ und $x_0 \in G$. Weiter gelte, dass $f'(x_0)$ regulär ist. Dann gibt es eine offene Umgebung U von x_0 ($U \subseteq G$), dass gilt:

- (a) f(U) ist offen und f'(x) ist regulär
- (b) $f: U \to V$ ist bijektiv und $f^{-1}: V \to U$ ist aus $C^1(V, U)$

(c) $\frac{\mathrm{d}}{\mathrm{d}y}f^{-1}(y) = \left(f'(f^{-1}(y))\right)^{-1} \, \forall y \in V$

6.7.6 Satz über die Gebietstreue

Ist G eine offene Menge in \mathbb{R}^n und $f \in C^1(G, \mathbb{R}^n)$ mit f'(x) ist regulär auf G, so ist auch f(G) ein Gebiet.

6.7.7 Definition Auflösbarkeit

Sei $g:\mathbb{R}^{m+n}\to\mathbb{R}^m$ $(n,m\in\mathbb{N})$ und $b\in\mathbb{R}^m.$ Man nennt die Gleichung

$$g(x,y) = b \text{ mit } x \in \mathbb{R}^n \text{ und } y \in \mathbb{R}^m$$

(a) Auf $G \in \mathbb{R}^n$ (global) nach y auflösbar, wenn es eine Funktion $f:G\subseteq \mathbb{R}^n \to \mathbb{R}^m$ gibt mit $g(x,f(x))=b \ \forall x\in G$

(b) Bei $x_0 \in \mathbb{R}^n$ lokal nach y auflösbar, wenn g(x,y) = b in einer Umgebung von x_0 nach y (global) auflösbar ist.

D.h mit $y_0 := f(x_0)$ existiert die Auflösung y = f(x) mit g(x, f(x)) = b und $y_0 = f(x_0)$ in einer Umgebung von x_0 .

Bemerkung

Allgemein soll auch für nichtline
are Funktionen einfach geprüft werden können ob eine lokale Auflösung nach x oder
 y existiert.

Wir werden sehen es gilt:

$$\frac{\partial}{\partial x}g|_{x=x_0}$$
 regulär \Leftrightarrow Es existiert eine lokale Auflösung nach x (6.1)

(Analog für Auflösungen nach y).

6.7.8 Hauptsatz über implizite Funktionen

Sei $x_0 \in \mathbb{R}^n$ und $y_0, b \in \mathbb{R}^m$. Für eine offene Umgebung G von $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$. Sei $g \in C^1(G, \mathbb{R}^m)$ (d.h $g : G \subseteq \mathbb{R}^{m+n} \to \mathbb{R}^m$ und stetig differentierbar) ist $g(x_0, y_0) = b$ und $\frac{\partial}{\partial y}g(x_0, y_0)$ regulär, so gibt es eine Umgebung U von x_0 und V von y_0 , so dass:

(a) $\frac{\partial}{\partial u}g(x,y) \text{ ist regul\"ar } \forall x \in U \text{ und } \forall y \in V$

(b) Die Gleichung g(x,y)=b besitzt eine eindeutige Auflösung $f:U\to V$ mit $y_0=f(x_0)$ und es gilt:

$$f'(x) = \left(\frac{\partial}{\partial y}g(x, f(x))\right)^{-1} \cdot \frac{\partial}{\partial x}g(x, f(x)) \forall x \in U$$

(die Auflösung ist also differentierbar)

(c) Ist $g \in C^r(g, \mathbb{R}^m)$ dann ist $f \in C^r(U, \mathbb{R}^m)$

6.7.9 Extrema unter Nebenbedingungen

$$\begin{cases} x+y & \to \text{max oder min} \\ x^2+y^2=1 \end{cases}$$

 ${f Idee}$ Nebenbedingung nach y auflösen und in Zielfunktion einsetzten

1.
$$y = \pm \sqrt{1 - x^2}$$

$$\Rightarrow f(x,y) = f(x, \pm \sqrt{1 - x^2}) = \tilde{f}(x) \tag{6.2}$$

2.

$$\tilde{f}(x) \stackrel{!}{=}, \tilde{f}^{(k)}(x) \stackrel{!}{=}, \dots, \tilde{f}^{2l}(x) \stackrel{!}{=} 0 \ k = 1, \dots, 2 \cdot l - 1$$

 ${\bf Beobachtung}~$ Bei den gesuchten Extrema berühren sich die Höhenlinien von f und g

$$\overset{\text{Formaler}}{\Rightarrow} \exists \lambda \in \mathbb{R} : \nabla f(x, y) = \lambda \nabla g(x, y)$$

Aber die Bedingung ist ist nicht hinreichend, sondern nur notwendig. Trotzdem: Die notwendige Bedingung liefert (hoffentlich) einen Endliche Anzahl Kandidaten, diese können einzeln überprüft werden.

6.7.10 Definition lokale Minima/Maxima unter Nebenbedingungen

Seien $f, g_1, \ldots g_m : G \subseteq \mathbb{R}^n \to \mathbb{R}$ mit G offen gegeben sowie $b_1, \ldots, b_m \in \mathbb{R}$. Dann nennt man ein $x_0 \in G$ ein lokales Minimum (bzw. Maximum) von f unter der Nebenbedingung $g_1(x) = b_1 \ldots g_m(x) = b_m$ wenn es eine offene Umgebung $U \subseteq G$ von x_0 gibt mit $f(x) \geq f(x_0) \forall x \in U$ und $g_k(x) = b_k$ für $k = 1 \ldots m$ (bzw. $f(x) \leq f(x_0) \forall x \in U$).

6.7.11 Definition Linear Unabhängig

Seien $a_1, \ldots, a_m \in \mathbb{R}^n$ mit $m \in \mathbb{N}$. Dann heißen diese Vektoren linear unabhängig, wenn das lineare Gleichungssystem

$$\alpha_1 a_1 + \dots + \alpha_n a_n = \vec{0}$$

nur die Lösung $\alpha_1 = \cdots = \alpha_m = 0$ besitzt.

$$\Leftrightarrow (a_1 \quad \dots \quad a_m) \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Ansonsten sind die Vektoren linear abhängig.

Bemerkung

Sind $a_1, \dots a_k$ nicht linear abhängig:

$$\stackrel{\text{Def.}}{\Rightarrow} \exists \ k \in \{1, \dots m\} \text{ und L\"osung } \alpha_1, \dots \alpha_m \text{ mit}$$

$$\alpha_1 a_1 + \dots + \alpha_k a_k + \dots \alpha_m a_m = 0 \ a_k \neq 0$$

$$\Rightarrow a_k = -\frac{\alpha_1}{\alpha_k} a_1 \dots - \frac{\alpha_1}{\alpha_k} a_{k-1} - \frac{\alpha_1}{\alpha_k} a_{k+1} \dots$$

d.h. a_k lässt sich aus durch $a_1, \ldots, a_{k-1}, a_{k+1}, \ldots, a_m$ bestimmen.

6.7.12 Satz von Lagrange

Seien $f, g_1, \ldots g_m \in C^1(U)$ für eine offene Umgebung U von $x_0 \in \mathbb{R}$ (wie oben $f, g_1, \ldots : G \subseteq \mathbb{R}^n \to \mathbb{R}$) und seien $b_1, \ldots b_m \in \mathbb{R}$. Ist x_0 ein lokales Extrema unter der Nebenbedinung $g_k(x) = b_k k = 1, \ldots m$ und die Vektoren $\nabla g_1(x_0), \ldots \nabla g_m(x_0)$ linear unabhängig.

$$\exists \lambda_1, \dots, \lambda_m \in \mathbb{R} \quad \text{mit} \quad \nabla f(x_0) + \lambda_1 \nabla g_1(x_0) + \dots + \lambda_m \nabla g(x_0) = \vec{0}$$

$$\Leftrightarrow \quad f'(x_0)^T + J_g(x_0)^T \cdot \lambda = \vec{0}$$

$$\Leftrightarrow \quad f'(x_0) = \lambda^T J_g(x_0)$$

Zudem muss x_0 die Nebenbedingung erfüllen.

6.7.13 Lagrange Funktion

$$L(x,\lambda) = L(x_1,\dots,x_m,\lambda_1,\dots,\lambda_m) := f(x) + \lambda^T(g(x) - b)$$

$$\Leftrightarrow L'(x,\lambda) = \left(f'(x) + \lambda^T g'(x), g(x) - b\right) \stackrel{!}{=} \vec{0}$$

Kapitel 7

Integration in mehreren Veränderlichen

7.1 Parameterintegrale

7.1.1 Eigentliche Parameterintegrale

Sei f(x,t) reel und stetig in $[\alpha,\beta] \times [a,b]$ (also $x \in [\alpha,\beta], t \in [a,b]$). Dann gilt für

$$F(x) := \int_{a}^{b} f(x, t) \, \mathrm{d}t$$

- (a) F ist stetig auf $[\alpha, \beta]$
- (b) Ist f_x stetig in $[\alpha, \beta] \times [a, b]$, so ist $F \in C^1([\alpha, \beta])$ und $F'(x) = \int_a^b f_x(x, t) dt$
- (c) Satz von Fubini:

$$\int_{\alpha}^{\beta} F(x) \, \mathrm{d}x = \int_{\alpha}^{\beta} \int_{a}^{b} f(x,t) \, \mathrm{d}t \, \mathrm{d}x = \int_{a}^{b} \int_{\alpha}^{\beta} f(x,t) \, \mathrm{d}x \, \mathrm{d}t$$

7.1.2 Leibniz Regel

Seien $f(x,t), f_x(x,t)$ stetig in $[\alpha,\beta] \times [a,b]$ und $u,v \in C^1([a,b])$. Dann ist

$$F(x) = \int_{u(x)}^{v(x)} f(x,t) \, dt \in C^{1}([a,b])$$

und

$$F'(x) = \int_{u(x)}^{v(x)} f_x(x,t) dt + f(x,v(x))v'(x) - f(x,u(x))u'(x)$$

7.1.3 Uneigentliche Parameterintegrale

Ist für jedes $x \in M \subseteq \mathbb{R}$ ein uneigentliches Integral

$$\int_a^b f(x,t) \, dt$$

mit kritischem Punkt a oder b gegeben, so heißt dieses gleichmäßig konvergent in M, wenn gilt:

$$\forall \varepsilon > 0 \,\exists L \in (a,b) : \left| \int_{T_1}^{T_2} f(x,t) \, \, \mathrm{d}t \right| < \varepsilon \, \forall x \in M \forall T_1, T_2 \in (a,L) (\mathrm{bzw.} \forall T_1, T_2 \in (L,b))$$

7.1.4 Majorantenkriterium

Ein uneigentliches Integral $\int_a^b f(x,t) \; \mathrm{d}t$ konvergiert gleichmäßig in M wenn ein konvergentes Integral

$$\int_{a}^{b} g(t) dt \text{ ex. mit} |f(x,t)| \leq g(t)$$

7.1.5 Fubini für uneigentliche Parameterintegrale

Ist f(x,t) stetig in $[\alpha,\beta] \times [a,b]$ und konvergiert

$$F(x) = \int_{a}^{b} f(x,t) \, \mathrm{d}t$$

gleichmäßig auf $[\alpha, \beta]$ dann ist F stetig und

$$\int_{\alpha}^{\beta} \int_{a}^{b} f(x,t) dt dx = \int_{a}^{b} \int_{\alpha}^{\beta} f(x,t) dx dt$$

7.1.6 Konvergenzkriterien

Sind $f(x,t), f_x(x,t)$ stetig auf $[\alpha, \beta] \times [a,b]$ und ist

$$\int_{a}^{b} f(x,t) \, \mathrm{d}t$$

für ein $x_0 \in [\alpha, \beta]$ konvergent und ist

$$\int_a^b f_x(x,t) \, dt$$

gleichmäßig konvergent. Dann gilt:

$$F(x) = \int_{a}^{b} f(x,t) dt \ \forall x \in [\alpha, \beta]$$

und

$$F'(x) = \int_a^b f_x(x,t) \, dt \, \forall x \in (\alpha, \beta)$$

existiert und ist stetig.

7.2 Kurvenintegrale

7.2.1 Äquivalenz für Kurven

Zwei stetige Funktionen $x:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n,y:[\alpha,\beta]\subseteq\mathbb{R}\to\mathbb{R}^n$ heißen Äquivalent (schreibweise $x\sim y$), wenn eine streng monoton wachsende Funktion

$$\phi: [a,b] \to [\alpha,\beta]$$

gibt mit

$$x(t) = y(\phi(t)) \ \forall t \in [a, b]$$

Bemerkung

Es gilt:

- (a) $x \sim x$ (Reflexivität)
- (b) $x \sim y \Rightarrow y \sim x$ (Symmetrie)
- (c) $x \sim y \wedge y \sim z \Rightarrow x \sim z$ (Transitivität)

7.2.2 Kurven im \mathbb{R}^n

Ist $x:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n$ stetig, so nennt man die Menge

$$\mathbb{K} := \{ y : [\alpha, \beta] \subseteq \mathbb{R} \to \mathbb{R}^n \text{ mit } x \sim y \}$$

die Kurve \mathbb{K} mit Parameterdarstellung x und den Punkt x(a) Anfangspunkt und x(b) Endpunkt.

Schreibweise

$$\mathbb{K}: x(t), a \leq t \leq b$$

Die Menge

$$T(\mathbb{K}) := \{x(t) : t \in [a, b]\} = x([a, b])$$

nennt man den Träger der Kurve \mathbb{K} .

Bemerkung

Verschieden Kurven können also den gleichen Träger haben. Man nennt K:

- (a) Geschlossen, wenn x(a) = x(b)
- (b) Einfach oder Jordankurve, wenn $x(t) \neq x(s) \ \forall t, s : a \leq t < s < b$

7.2.3 Eigenschaften von Parameterdarstellungen

(a) Eine Parameterdarstellung $x:[a,b]\to\mathbb{R}^n$ einer Kurve heißt stückweise stetig differentierbar, wenn eine Zerlegung

$$T: a = t_0 < \dots < t_k = b \tag{7.1}$$

existiert und x auf (t_l, t_{l+1}) $l \in \{0, \dots, k-1\}$ differentierbar ist.

- (b) Besitzt eine Kurve $\mathbb K$ eine (stückweise) stetig differentierbare Parameter-darstellung $x(t), t \in [a,b]$ mit $\dot{x}(t) \neq \vec{0}$ für $t \in [a,b]$ so heißt $\mathbb K$ stückweise glatt oder stückweise regulär.
- (c) Ist eine Parameterdarstellung x von \mathbb{K} differentierbar und glatt, so heißt

$$T(t) := \frac{\dot{x}(t)}{\|\dot{x}(t)\|}$$

der Tangential (einheits) vektor von x und \mathbb{K}

(d) Ist auch T differentierbar und glatt (also $\dot{T}(k) \neq \vec{0}$) so heißt

$$N(t) := \frac{\dot{T}(t)}{\left\|\dot{T}(t)\right\|}$$

der (Haupt-) Normalen (einheits) vektor von $\mathbb K$ und x bei t

(e) Und falls n=3

$$B(t) = T(t) \times N(t)$$

der Binormalen (einheits) vektor von \mathbb{K} und x bei t (Man nennt dann T(t), N(t), B(t) ein begleitendes Dreibein von \mathbb{K})

(f) Existiert T(t), so nennt man die Gerade

$$\{x(t) + \lambda \dot{x}(t) : \lambda \in \mathbb{R}\}$$

die Tangente von \mathbb{K} bei t

(g) Existiert auch N(t) so nennt man die Ebene

$$\{x(t) + \lambda \dot{x}(t) + \mu \ddot{x}(t) : \lambda, \mu \in \mathbb{R}\}$$

die Schmiegeebene von \mathbb{K} bei t.

Bemerkung

Sei $x(t) = y(\phi(t))$ mit $a \le t \le b$ zwei Parameterdarstellungen von x. Dann gilt:

$$T(t) = \frac{\dot{x}(t)}{\|\dot{x}(t)\|} = \frac{\dot{y}(\varphi(t)) \cdot \dot{\varphi}(t)}{\|\dot{y}(\phi(t)) \cdot \dot{\varphi}(t)\|} = \frac{\dot{y}(\varphi(t))}{\|\dot{y}(\varphi(t))\|}$$

Das heißt die Berechnung von T ist unabhängig von der konkreten Parameterdarstellung

Existiert N(t) dann gilt:

$$N(t) \perp T(t)$$

Existiert auch B(t) (im \mathbb{R}^3), dann gilt: N(t), T(t), B(t) sind paarweise Orthogonal.

7.2.4 Weitere Definitionen zu Kurven

(a) Ist $\mathbb{K}: x(t), a \leq t \leq b$ eine Kurve, so heißt:

$$-\mathbb{K}: y(t), a \le t \le b \text{ mit } y(t) = x(a+b-1)$$

die zu \mathbb{K} entgegengesetzte Kurve

(b) Sind $\mathbb{K}: x(t), a \leq t \leq b$ und $\mathbb{L}: y(t), \alpha \leq t \leq \beta$ zwei Kurven und gilt $x(b) = y(\alpha)$ dann ist

$$\mathbb{K} + \mathbb{L} : z(t), a \le t \le (\beta - \alpha) + b$$

und

$$z(t) = \begin{cases} x(t) &, a \le t \le b \\ y(t - b + \alpha) &, b \le t \le (\beta - \alpha) + b \end{cases}$$

die Aus \mathbb{K} und \mathbb{L} zusammengesetzte Kurve.

7.2.5 Kurventintegrale 2. Art

Sei \mathbb{K} eine Kurve im \mathbb{R}^n und

$$f:T(\mathbb{K})\to\mathbb{R}^n$$

- (a) Sei $x:[a,b]\to\mathbb{R}^n$ eine Parameterdarstellung von \mathbb{K}
 - (i) Für eine Zerlegung $T:a=t_0<\cdots< t_n=b,$ Zwischenpunte $Z:(\xi_1,\ldots,\xi_n)$ mit $t_{k-1}\leq \xi_k\leq t_k$ heißt

$$S(f, x, T, Z) := \sum_{k=1}^{n} f(x(\xi_k)) \cdot (x(t_k) - x(t_{k-1}))$$

die Riemann-Summe von f, T, Z bezüglich x.

(ii) Exitiert eine Zahl $I\in\mathbb{R}$ derart, dass für jede Folge von Zerlegungen T_n mit

$$\lim_{n \to \infty} \mu(T_n) = 0$$

stets

$$\lim_{n \to \infty} S(f, x, T_n, Z_n) = I$$

folgt, so heißt I das Kurvenintegral (2. Art) von f längs \mathbb{K} bzgl. x.

(b) Gibt es stets ein I wie in (a) so heißt f längs $\mathbb K$ (Riemann-) integrierbar und man nennt I das (unbestimmte) Kurvenintegral von f längs $\mathbb K$ und schreibt:

$$I = \int_{\mathbb{K}} f = \int_{\mathbb{K}} f(x) \cdot dx = \int_{\mathbb{K}} f_1(x) dx_1 + \dots + f_n(x) dx_n$$

7.2.6 Substitutionsregel

Ist $\mathbb{K}: x(t), a \leq t \leq b$ eine Kurve im \mathbb{R}^n und x(t) stückweise differentierbar, sowie $f: T(\mathbb{K}) \to \mathbb{R}^n$ stetig, so ist f längs \mathbb{K} integrierbar und es gilt:

$$\int_{\mathbb{K}} f(x) \, \mathrm{d}x = \int_{a}^{b} f(x(t)) \mathrm{d}x(t) = \int_{a}^{b} f(x(t)) \cdot \dot{x}(t) \, \mathrm{d}t$$

7.2.7 Definition Wegunabhängigkeit

Sei $f \in C(G, \mathbb{R}^n)$ mit $G \subseteq \mathbb{R}^n$ ein Gebiet:

(a) Gilt für zwei Wege $\mathbb K$ und $\mathbb L$ mit gleichem Anfangs- und Endpunkt stets

$$\int_{\mathbb{K}} f = \int_{\mathbb{T}} f$$

dann heißen die Kurvenintegrale Wegunabängig in G.

(b) Eine Funktion $F \in C^1(G, \mathbb{R})$ heißt Stammfunktion von f in G, wenn

$$\nabla F(x) = f(x) \ \forall x \in G$$

gilt.

(c) Man nennt

$$P := -F$$

das Potential von f.

(d) Man nennt f konservativ in G oder ein Potentialfeld oder Gradienentenfeld in G, wenn f eine Stammfunktion hat.

7.2.8 1. Hauptsatz für Kurvenintegral

Sei f konservativ in G mit Stammfunktion F und Potential P dann gilt für jeden Weg $\mathbb K$ in G mit Anfangspunkt $A \in G$ und Endpunkt $B \in G$:

$$\int_{\mathbb{K}} f = F(B) - F(A) = P(A) - P(B)$$

insbesondere ist also das Integral wegunabhängig.

7.2.9 Äquivalente Aussagen zu Stammfunktionen

(a) $\int_{\mathbb{K}} f \text{ ist wegunabhängig in } G$

(b) f besitzt eine Stammfunktion

(c) $\int_{\mathbb{K}} f = 0 \text{ für jede geschlossene Kurve } \mathbb{K}$

Bemerkung

Rechenregeln für zwei Kurven \mathbb{K} und \mathbb{L} :

(a) $\int_{\mathbb{K}+\mathbb{L}} f = \int_{\mathbb{K}} f + \int_{\mathbb{L}} f$

(b) $\int_{-\mathbb{K}} f = -\int_{\mathbb{K}} f$

7.2.10 Definition einfach zusammenhängende Gebiete

Ein Gebiet $G\subseteq\mathbb{R}^n$ heißt einfach zusammenhängend, wenn sich jede geschlossene Kurve in G innerhalb von G "auf einen beliebigen Punkt zusammenziehen lässt".

7.2.11 Sternförmige Gebiete

Eine Menge $G \subseteq \mathbb{R}^n$ heißt Sternförmig bezüglich $x_0 \in G$, wenn für alle $x \in G$ gilt, dass $\overline{x_0x} \subseteq G$ (d.h. jedes x ist von x_0 durch einen Streckenzug erreichbar). G ist ein sternförmiges Gebiet, wenn G offen und sternförmig ist.

Bemerkung

Gsternförmig $\Rightarrow G$ einfach zusammenhängend

7.2.12 2. Hauptsatz für Kurvenintegrale

Sei $f \in C^1(G, \mathbb{R}^n), G \subseteq \mathbb{R}^n$ ein Gebiet, dann gilt:

(a) Besitzt f eine Stammmfunktion in G, so erfüllt f in G die Integrabilitätsbedingung:

$$\frac{\partial f_l}{\partial x_k} = \frac{\partial f_k}{\partial x_l} \ k, l \in \{1, \dots, n\}$$

D.h. die Jacobi-Matrix von f ist symetrisch.

Kurz:

$$f$$
 hat Stammfunktion $\Rightarrow f' = (f')^T$

(b) Ist G einfach zusammenhängend und erfüllt f die Integrabilitätsbedingung dann besitzt f eine Stammfunktion.

Kurz:

G einfach zusammenhängend $\wedge f' = (f')^T \Rightarrow \exists F : \nabla F = f$

7.2.13 Definition Rotation

Sei $G\subseteq\mathbb{R}^3$ offen und $f:G\to R^3$ partiell differentierbar, dann heißt die Funktion rot $f:G\to\mathbb{R}$ mit

$$\operatorname{rot} f(x) := \begin{pmatrix} \frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3} \\ \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1} \\ \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2} \end{pmatrix}$$

die Rotation von f in G.

Bemerkung

Im Fall $f: G \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ definiert man

$$\operatorname{rot} f(x_1, x_2) = \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}$$

Formal betrachtet man die Hilfsfunktion

$$\tilde{f}(x,y,z) := \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \\ 0 \end{pmatrix}$$

7.2.14 Zusammenhang Rotation und Integrabilitätsbedingung

Ist $f \in C^1(G, \mathbb{R}^3), G$ ein Gebiet, dann gilt

- (a) f besitzt eine Stammfunktion \Rightarrow rot $f = \vec{0}$
- (b) G einfach zusammenhängend und rot $f = \vec{0} \Rightarrow f$ hat Stammfunktion.

7.2.15 Definition Linienintegral/Kurvenintegral 1. Art

Sei $\mathbb{K}: x(t), a \leq t \leq b$ ein Weg, und x stückweise differentierbar. Für ein $\phi \in C(T(\mathbb{R}), \mathbb{R})$ heißt

$$\int_{\mathbb{K}} \phi \ \mathrm{d}s := \int_a^b \phi(x(t)) \big\| \dot{x}(t) \big\| \ \mathrm{d}t$$

ein Linienintegral oder Kurvenintegral 1. Art von ϕ längs \mathbb{K} .

Bemerkung

(a) Mit $\phi \equiv 1$:

$$\int_{\mathbb{K}} 1 \, \mathrm{d}s = \int_{a}^{b} \phi(x, t) \|\dot{x}(t)\| \, \mathrm{d}t \int_{a}^{b} \|\dot{x}(t)\| \, \mathrm{d}t = l(\mathbb{K})$$

d.h. mit Linienintegralen können auch Weglängen berechnet werden, bzw. Weglängen berechnet man mit $\phi=1.$

(b) $\phi: [a, b] \to \mathbb{R}$ wähle $\mathbb{K}: x(t) = a + t \cdot (b - a)$ $t \in [0, 1]$:

$$\int_{\mathbb{K}} \phi \, \mathrm{d}s = \int_0^1 \phi(a + t \cdot (b - a)) \|b - a\| \, \mathrm{d}t = \int_a^b \phi(t) \, \mathrm{d}t$$

- (c) Linienintegrale hängen nicht von der Parameterdarstellung ab.
- (d) Man schreibt (falls Parameter-Darstellung bekannt ist) oft

$$ds = ||\dot{x}(t)|| dt$$

und nennt ds Bogensegment oder Liniensegment.

(e) Ist $f \in C(T(\mathbb{K}), \mathbb{R}^n)$ und $\dot{x}(t) \neq \vec{0} \ \forall t \in [a, b]$, dann ist:

$$\begin{split} \int_{\mathbb{K}} f &= \int_{\mathbb{K}} f(x) \, \mathrm{d}x = \int_{a}^{b} f(x(t)) \dot{x}(t) \, \mathrm{d}t \\ &= \int_{a}^{b} \frac{f(x(t)) \dot{x}(t)}{\left\| \dot{x}(t) \right\|} \left\| \dot{x}(t) \right\| \, \mathrm{d}t \\ &= \int_{a}^{b} f(x(t)) \cdot T(t) \left\| \dot{x}(t) \right\| \, \mathrm{d}t \\ &= \int_{\mathbb{K}} \phi \, \mathrm{d}s \, \min \, \phi(t) = f(x(t)) \cdot T(t) \end{split}$$

7.3 Bereichsintegrale

Hier: $f:G\subseteq\mathbb{R}^n\to\mathbb{R}$ und

$$\int_G f = \int_G f(x_1, \dots, x_n) \ d(x_1, \dots x_n)$$

sollen anschaulich bedeuten:

Welches Volumen schließt der Graph von f mit der Grundfläche G ein.

7.3.1 Intervalle im \mathbb{R}^n

Für $a,b \in \mathbb{R}^n$ bezeichnet die Menge

$$[a,b] := [a_1,b_1] \times \cdots \times [a_n,b_n]$$

einen (kompakten) Quader oder (kompaktes) Intervall im \mathbb{R}^n . Die Zahl

$$V([a,b]) = \begin{cases} \prod_{k=1}^{n} (b_k - a_k) & \text{, falls } b_k > a_k \text{ für } k = 1, \dots \\ 0 & \text{, sonst} \end{cases}$$

bezeichnet das Volumen, und die Zahlen $b_1 - a_1, \dots b_n - a_n$ als Kantenlängen.

7.3.2 Definition Zerlegung

Ist $[a,b] = [a_1,b_1] \times \cdots \times [a_n,b_n]$ und ist für jedes $k \in \{1,\ldots,n\}$ mit

$$T^{(k)}: a_k = x_0 < \dots < x_{l_k} = b_k$$

eine Zerlegung von $[a_k, b_k]$ dann heißt die Menge

$$I_{l_1,\dots,l_n} = [x_{l_1-1}^{(1)} - x_{l_1}^{(1)}] \times \dots \times [x_{l_1-1}^{(n)} - x_{l_1}^{(n)}]$$

mit $l_k \in \{1, \dots, l_k\}$ für $k \in \{1, \dots, n\}$ eine Zerlegung T von [a, b]. Das Feinheitsmaß von T ist

$$\mu(T) = \max_{l_1, \dots, l_n} V(I_{l_1, \dots, l_n})$$

Allgemein ist ein Intervall von der Form

$$[x_i^{(1)}, x_{i+1}^{(1)}] \times [x_j^{(2)}, x_{j+1}^{(2)}]$$

mit $i \in \{0, \dots, l_1 - 1\}$ und $j \in \{0, \dots l_2 - 1\}$.

7.3.3 Definition Riemann-Summe

Sei T eine Zerlegung eines kompakten Quaders $I \subseteq \mathbb{R}^n$ mit Teilquadern I_1, \ldots, I_l mit $l = l_1 \cdot \cdots \cdot l_n$ (entstehen indem man die Zerlegungsintervalle fortlaufend durchnummeriert) und Zwischenpunkte $\xi = (\xi_1, \ldots, \xi_l)$ mit $\xi_i \in I_i (i \in \{l, \ldots, n\})$ und $f: I \to \mathbb{R}$ (d.h. Skalarwertige Funktion). Dann heißt

$$S(f, T, \xi) = \sum_{i=1}^{l} f(\xi_i) f(\xi_i) \mu(I_1)$$

die Riemann-Summe von f bezüglich T und ξ .

7.3.4 Riemann integrierbare Bereichsintegrale

Sei $f:I\to\mathbb{R}$ eine Funktion, $I\subseteq\mathbb{R}^n$ ein Quader. Gibt es eine Zahl $\alpha\in\mathbb{R}$, so dass für jede Folge von Zerlegungen $(T_k)_{k=1}^\infty$ mit Zwischenpunkten $(\xi_k)_{k=1}^\infty$ mit lim $\mu(T_k)=0$ die Riemann-Summe $S(f,T_k,\xi_k)$ gegen α konvergiert für $k\to\infty$ dann heißt f Riemann integrierbar über I und α nennen wir das Bereichsintegral von f über I.

Schreibweise

$$\alpha = \int_{I} f(x) \, \mathrm{d}x$$

Zur Schreibweise: z.B. n = 2 auch:

$$\alpha = \iint_I f(x,y) \ \mathrm{d}(x,y) := \int_I f(x,y) \ \mathrm{d}(x,y)$$

oder Angabe von I an dem Integral:

$$\alpha = \int_{[a_1,b_1]\times[a_2,b_2]} f(x,y) \ d(x,y)$$

7.3.5 Bereichsintegrale über beschränkte Mengen

Sei $M \subseteq \mathbb{R}^n$ beschränkt und $I = [a_1, b_1] \times \cdots \times [a_n, b_n]$ ein Quader mit $M \subseteq I$. Dann heißt $f: M \to \mathbb{R}$ über M integrierbar wenn die Funktion

$$\tilde{f}: I \to \mathbb{R} \text{ mit } \tilde{f}(x) = \begin{cases} f(x) &, x \in M \\ 0 &, \text{ sonst} \end{cases}$$

über I Bereichs-Riemann integrierbar ist. Wir definieren:

$$\int_{M} f(x) \, \mathrm{d}x = \int_{I} \tilde{f}(x) \, \mathrm{d}x$$

7.3.6 Cavalieri

Sei $M \subseteq \mathbb{R}^n (n > 1)$ und bezeichne

$$M' = \{x \in \mathbb{R} : (x, y)^T \in M \text{ für ein } y \in \mathbb{R}^{n-1}\}\$$

und für $x \in M'$

$$M(x) = \{ y \in \mathbb{R}^{n-1} : (x, y)^{\in} M \}$$

dann gilt für $f \in C(\overline{M})$ (falls M, M', M(x) sogenannte messbare Mengen sind, d.h $\mu(M), \mu(M', \mu(X))$ sind definiert)

$$\int_{M} f(x,y) d(x,y) = \int_{M'} \left[\int_{M(x)} f(x,y) dy \right] dx$$

mit $x \in \mathbb{R}$ und $y \in \mathbb{R}^{n-1}$.

7.3.7 Fubini

Im Fall n=2 steht nach Cavalieri ein Parameterintegral und mit Fubini gilt:

$$\int_{M'} \int_{M(x)} f(x, y) \, dy \, dx = \int_{\tilde{M}'} \int \tilde{M}(y) f(x, y) \, dx \, dy$$

wobei $\tilde{M}', \tilde{M}(y)$ analog zu M', M(x) bezüglich y definiert sind.

7.3.8 Definition Meßbare-Mengen

Eine beschränkte Menge $M \subseteq \mathbb{R}^n$ heißt (Jordan-) meßbar, wenn

$$\int_{M} 1 \, \mathrm{d}x$$

existiert, in diesem Fall nennt man

$$\mu(M) := \int_M 1 \, \mathrm{d}x$$

das Volumen von M. Ist $\mu M = 0$, so nenntn man M eine Nullmenge.

7.3.9 Definition 2×2 Determinante

Für

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

definieren wir die Funktion

$$\det: \mathbb{R}^{2\times 2} \to \mathbb{R}$$

durch $A\mapsto \det(A)=a\cdot d-c\cdot b$ und nennen die Funktionsauswertung die Determinante von A.

7.3.10 Mehrdimensionale Substitutionsregel

Sei $M \subseteq \mathbb{R}^n$ meßbar und $G \supseteq M$ ein Gebiet. Ist $T \in C^1(G, \mathbb{R}^m)$ und gilt $\det(T'(x)) \neq 0 \ \forall x \in M \setminus N$ für eine Nullmenge N, dann gilt:

$$\int_{T(M)} f(x_1, \dots, x_n) \, d(x_1, \dots, x_n) = \int_M f(T(u_1, \dots, u_n)) | \det(T'(u_1, \dots, u_n)) | \, d(u_1, \dots, u_n)$$

7.4 Integralsätze in der Ebene

7.4.1 Positiv berandete Menge

Eine beschränkte Menge $B \subseteq \mathbb{R}^2$ heißt positiv berandet durch einen Weg, (Randkurve) \mathbb{K} , wenn $T(\mathbb{K}) = \partial B$ ist und wenn \mathbb{K} eine stückweise stetig differentierbare Parameterdarstellung $x : [a, b] \to \mathbb{R}^2$ hat mit:

- (i) $\dot{x}(t) \neq 0$ für fast alle $t \in [a, b]$
- (ii) der Normalenvektor von x(t) zeigt nach außen

7.4.2 Satz von Green

Ist $B \subseteq \mathbb{R}^2$ positiv berandet, dann gilt für alle $f \in C^1(B, \mathbb{R}^2)$

$$\iint_{B} \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \ \mathrm{d}(x,y) = \int_{\partial B} f(x,y) \ \mathrm{d}(x,y)$$

7.4.3 Definition Normalbereiche

Eine Menge $B \subseteq \mathbb{R}^2$ heißt Normalbereich bezüglich der x-Achse (bzw. y-Achse), wenn es ein Intervall [a, b] gibt und die Funktion φ, ψ mit

$$B = \{(x, y)^T : a \le x \le b, \phi(x) \le y \le \psi(x)\}\$$

7.4.4 Gauß'sche Integralsätze in der Ebene

Sei $B \subseteq \mathbb{R}^2$ ein positiv berandeter Bereich und $f \in C^1(B, \mathbb{R}^2)$ bzw. $f \in C^2(B, \mathbb{R}^2)$ und bezeichne ν die nach außen gerichtete Normale auf ∂B . Dann gelten die Integralsätze:

(i)
$$\iint_{B} (\operatorname{div} f)(x, y) \ \mathrm{d}(x, y) = \int_{\partial B} f \cdot \nu \ \mathrm{d}s$$

(ii)
$$\iint_{B} f_{1}(x,y)\Delta f_{2}(x,y) - f_{2}(x,y)\Delta f_{1}(x,y) d(x,y) = \int_{\partial B} f_{1}\frac{\partial f_{2}}{\partial \nu} - f_{2}\frac{\partial f_{1}}{\partial \nu}$$

7.5 Oberflächen
integrale und Integralsätze im \mathbb{R}^3

7.5.1 Definition Reguläre Flächen

Sei $B \subseteq \mathbb{R}^2$ und $x : B \to \mathbb{R}^3$,

$$x(u,v) = \begin{pmatrix} x_1(u,v) \\ x_2(u,v) \\ x_3(u,v) \end{pmatrix}$$

eine stetig diffbare Funktion, für die $x_u = \frac{\partial x}{\partial u}$ und $x_v = \frac{\partial x}{\partial v}$ linear unabhängig sind (d.h. die Vektoren x_u und x_v zeigen nicht in die gleiche oder entgegengesetzte Richtung) (für fast alle $(u,v)^T \in B$) die Menge der Ausnahmen muss $\tilde{B} \subset B$ muss $\mu \tilde{B} = 0$ erfüllen.

Das Bild einer solchen Funktion, d.h. die Menge

$$A = x(B) := \{x(u, v) | (u, v)^T \in B\}$$

heißt dann eine reguläre Fläche im \mathbb{R}^3 und die Funktion x heißt die Parametrisierung von A.

Man nennt

- (i) $x_u(u, v), x_v(u, v)$ die Tangentialvektoren in $(u, v)^T$
- (ii) $n(u,v) := \frac{(x_u \times x_v)(u,v)}{\|(x_u \times x_v)\|(u,v)}$
 - Vektor mit Länge 1 der Senkrecht auf den Tangentialvektoren steht
 - Rechnerisch zu enthalten durch das Kreuzprodukt der Tangentialvektoren

der (Flächen-) Normalenvektor in $(u,v)^T$ falls $x_u(u,v)$ und $x_v(u,v)$ linear unabhängig sind.

Ist B positiv berandet durch $\mathbb{K}: y(t), a \leq t \leq b$ so nennt man A positiv berandet durch Kurve mit Parameterdarstellung $x(y(t)), a \leq t \leq b$.

7.5.2 Defintion Oberflächenintegral

Sei A eine reguläre Fläche im \mathbb{R}^3 mit Parameterdarstellung $x:B\to\mathbb{R}^3, B\subseteq\mathbb{R}^2$ meßbar und x injektiv auf $B\setminus N$ für eine Nullmenge N.

(a) Für jedes $f \in C(A, \mathbb{R})$ heißt

$$\iint_A f \cdot do = \iint_B f(x(u,v)) \cdot \left\| (x_u \times x_v)(u,v) \right\| d(u,v)$$

das Oberflächen
integral von f über A und man nennt

$$do = ||(x_u \times x_v)(u, v)|| d(u, v)$$

das Oberflächenelement.

(b) $O(A) := \iint_A 1$ heißt Oberflächen
inhalt von A.

Bemerkung

- 1. Das Oberflächenintegral hängt nicht von der Parameterdarstellung ab.
- 2. Ein Summand des Obeflöchenintegrals sieht so aus:

$$f(x(u,v)) \cdot ||(x_u \times x_v)(u,v)|| \cdot \Delta u \Delta v$$

7.5.3 Satz von Stokes

Sei A eine reguläre Fläche im \mathbb{R}^3 und ∂A positiv berandet. Dann gilt für $f\in C^1(A,\mathbb{R}^3)$

$$\iint_A \operatorname{rot} f \cdot n \, do = \int_{\partial A} f$$

Mit n:

- (i) Normalenvektor
- (ii) Länge 1
- (iii) Senkrecht auf Fläche
- (iv) Immer auf der gleichen Seite von A

also

$$\iint_{B} \operatorname{rot}(f(x(u,v))) \cdot n(x(u,v)) \cdot \|(x_{u} \times x_{v})(u,v)\| \ d(u,v) = \int_{\partial A} f(x_{u} \times x_{v})(u,v) \| \ d(u$$

mit

$$n(x(u,v)) = \pm \frac{(x_u \times x_v)(u,v)}{\|(x_u \times x_v)(u,v)\|}$$

7.5.4 Divergenzsatz von Gauß

Sei $M\subseteq\mathbb{R}^3$ kompakt und ∂M ergebe sich als endliche Vereinigung von regulären Flächen, deren Normale n (normiert) nach Außen zeigt. Dann gilt für jedes $f\in C^1(M,\mathbb{R}^3)$

$$\iiint_M \operatorname{div} f = \iint_{\partial M} f \cdot n \, \operatorname{d}\! o$$

Kapitel 8

Lineare Algebra

8.1 Der Begriff Vektorraum

8.1.1 Definition Vektorraum

Gegeben sei eine abelsche Gruppe V und ein Körper \mathbb{K} (bei uns wird $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ gelten) und eine Abbildung:

$$\cdot : \mathbb{K} \times V \to V, \cdot (\alpha, x) \mapsto \alpha \cdot x =: \alpha x \text{ (Skalierung)}$$

Dann nennt man V einen Vektorraum über \mathbb{K} , wenn die folgenden Vektorraumaxiome erfüllt sind:

(V1)
$$\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta) \cdot v$$
 (Assoziativgesetz)

(V2)
$$\alpha \cdot (x+y) = (\alpha \cdot x) + (\alpha \cdot y) = \alpha x + \alpha y$$

 $(\alpha + \beta) \cdot x = \alpha x + \beta x$ (Distributivgesetzte)

(V3)
$$1 \cdot x = x$$
 für die $1 \in \mathbb{K}$ (Gesetz der Eins)

In einem Vektorraum V über \mathbb{K} nennt man Elemente aus V Vektoren, die Elemente aus \mathbb{K} Skalare, \mathbb{K} den Skalarkörper und "·" die Multiplikation mit Skalaren. Die "+" Verknüpfung in V die V die Vektoraddition und das neutrale Element $\vec{0} \in V$ den Nullvektor.

8.1.2 Rechenregeln

Ist V ein Vektorraum über \mathbb{K} , so gilt für $\alpha, \beta \in \mathbb{K}$ und $x, y \in V$:

1. (a)
$$0 \cdot x = \vec{0} = \alpha \vec{0}$$

(b)
$$\alpha \cdot x = \vec{0} \Rightarrow \alpha = 0 \lor x = \vec{0}$$

2.

$$\alpha(-x) = (-\alpha)x = -(\alpha x)$$

8.2 Unterräume

8.2.1 Definition Unterraum

Eine Teilmenge U eines Vektorraums V über $\mathbb K$ heißt Unterraum von V, wenn U bezüglich der in V definierten Vektoraddition und Skalierung ein Vektorraum ist.

8.2.2 Unterraumkriterien

Für $U \subseteq V$ und $U \neq \emptyset$ sind folgende Aussagen äquivalent

- (a) U ist ein Unterraum von V
- (b)

$$x, y \in U, \alpha, \beta \in \mathbb{K} \Rightarrow \alpha x + \beta y \in U$$

(c)
$$(x, y \in U \Rightarrow x + y \in U) \land (\alpha \in K, x \in U \Rightarrow \alpha x \in U)$$

8.2.3 Durchschnitt von Unterräumen

Der Durchschnitt von Unterräumen ist wieder ein Unterraum, d.h.:

$$U_i \ i \in J \ (J \ \text{eine Indexmenge})$$
sind Unterräume $\Rightarrow \bigcap_{i \in J} U_i$ ist Unterraum

8.2.4 Definition lineare Hülle

ullet Ist M eine beliebige Teilemenge eines Vektorraums. Dann heißt

$$\mathrm{span}(M) := \bigcap_{U \in S} U \text{ mit } S := \{U \subseteq V : U \text{ ist Unterraum}, U \supseteq M\}$$

der von M aufgespannte Unterraum oder die lineare Hülle von M.

 \bullet Ist Uein Unterraum und $M\subseteq V$ mit $\operatorname{span}(M)=U,$ dann heißt Mein erzeugendes System von U.

Bemerkung

- 1. $\operatorname{span}(M)$ ist der kleinste Unterraum, der M enthält
- 2. $\operatorname{span}(\emptyset) = \vec{0}$
- 3. $M \subseteq N \Rightarrow \operatorname{span}(M) \subseteq \operatorname{span}(N)$
- 4. Ist U ein Unterraum, dann gilt $U = \operatorname{span}(U) = \operatorname{span}(U \setminus \{\vec{0}\})$

8.2.5 Definition Linearkombination

Ist V ein Vektorraum über \mathbb{K} und $x_1, \ldots, x_n \in V, \alpha_1, \ldots, \alpha_n \in \mathbb{K}$ dann heißt

$$\sum_{k=1}^{n} a_k x_k \in V$$

eine Linearkombination von x_1, \ldots, x_n (mit Koeffizienten $\alpha_1, \ldots, \alpha_n$).

8.2.6 Zusammenhang lineare Hülle — Linearkombination

Sei V ein Vektorraum über \mathbb{K} und $M\subseteq V$, dann gilt span M ist die Menge aller Linearkombinationen, d.h.

$$\mathrm{span}(M) = \{\alpha_1 x_1 + \dots + \alpha_n x_n | x \in \mathbb{N}, x_1, \dots, x_n \in M, \alpha_1, \dots, \alpha_n \in \mathbb{K}\}\$$

im Fall $M = \{x_1, \ldots, x_n\}$ gilt:

$$\mathrm{span}(M) = \{\alpha_1 x_1 + \dots + \alpha_n x_n | \alpha_1, \dots \alpha_n \in \mathbb{K}\}\$$

8.3 Lineare Unabhängigkeit

8.3.1 Definition Lineare Unabhängigkeit

Sei V ein Vektorraum über \mathbb{K}

(a) Eine endliche Liste $a_1, \ldots, a_n \in V$ heißt linear unabhängig (l.u.), wenn gilt

$$\alpha_1 a_1 + \dots + \alpha_n a_n = \vec{0} \Rightarrow \alpha_1 = \dots = \alpha_n = 0$$

Andernfalls heißen a_1, \ldots, a_n linear abhängig (l.a.).

(b) Eine beliebige Teilmenge $M \subseteq V$ heißt linear unabhängig, wenn für eine beliebige endliche Liste $a_1, \ldots, a_n \in M$ gilt, dass diese linear unabhängig sind. Andernfalls ist M linear abhängig.

8.3.2 Rechenregeln für lineare Unabhängigkeit

Für Vektoren $a,a_1,\dots,a_n,b_1,\dots,b_n$ eines Vektorraumes V gilt:

(a) $al.u. \Leftrightarrow \{a\} l.u. \Leftrightarrow a \neq \vec{0}$

Bemerkung:

 a_1, a_2 mit $a_1 = a_2$ ist linear unabhängig, aber $M = \{a, a\} = \{a\}$ ist nur dann linear abhängig wenn $a = \vec{0}$.

(b) a_1,\dots,a_n linear abhängig $\Rightarrow a_1,\dots a_n,b_1,\dots,b_k$ sind linear abhängig für $k\geq 0.$

- (c) a_1, \ldots, a_n linear unabhängig $\Rightarrow a_1, \ldots, a_k$ linear unabhängig für $k \leq n$
- (d) a_1, \ldots, a_n linear unabhängig $\Rightarrow a_1, \ldots a_n$ sind paarweise verschieden
- (e) Für $n \geq 2$ sind a_1, \ldots, a_n genau dann linear abhängig, wenn ein Vektor als Linearkombination darstellbar ist. D.h.:

$$\exists i \in \{1, \dots, n\} : a_i = \sum_{k=1, k \neq i}^n \alpha_k a_k \text{ für } \alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n \in \mathbb{K}$$

- (f) Sind a_1, \ldots, a_n linear unabhängig und a_1, \ldots, a_n, a linear abhängig, so ist a die linear Kombination von a_1, \ldots, a_n und die Koeffizienten sind eindeutig.
- (g) Ist a eine Linearkombination von a_1, \ldots, a_n und jeder Vektor a_k eine Linearkombination von b_1, \ldots, b_m so ist a eine Linearkombination von b_1, \ldots, b_m

Bemerkung

Für Teilmengen M, N eines Vektorraums V gilt:

- (a) M l.a. $M \subseteq N \Rightarrow N$ l.a.
- (b) $M = \emptyset \Rightarrow M$ l.u.
- (c) $\vec{0} \in M \Rightarrow M$ l.a.

Für $V = \mathbb{R}^3$

- (a) a_1, a_2, a_3 seien linear abhängig und a_1, a_2 linear unabhängig
 - \Leftrightarrow also a_3 ist in der von a_1 und a_2 aufgespannten Ebene
 - \Rightarrow Spat mit Kanten a_1, a_2, a_3 hat Volumen 0
 - $\Leftrightarrow \det(a_1, a_2, a_3) = 0$
- (b) a_1, a_2 linear abhängig $\Rightarrow a_2$ ist auf der von a_1 aufgespannten Gerade $\Rightarrow \det(a_1, a_2) = 0$

8.4 Basis und Dimension

8.4.1 Definition Hamel-Basis

- (a) Eine Teilmenge B eines Vektorraums V heißt (Hamel-) Basis von V, wenn gilt
 - (i) B ist linear unabhängig
 - (ii) $V = \operatorname{span}(B)$

Kurz:

B ist ein linear unabhängiges Erzeuger-System von V

(b) Man sagt Vektoren b_1,\dots,b_n bilden eine Basis von V, wenn gilt $B=\{b_1,\dots,b_n\}$ ist eine Basis von V.

8.4.2 Äquivalente Aussagen zu Basen

Sein $B \subseteq V, V$ ein Vektorraum, dann sind folgende Aussagen äquivalent

- 1. B ist eine Basis
- $2.\ B$ ist ein minimales Erzeugersystem
 - (a) $V = \operatorname{span}(B)$
 - (b) $V \neq \operatorname{span}(\tilde{B}) \operatorname{mit} \tilde{B} \subseteq B$
- 3. B ist eine maximale, linear Unabhängige Teilmenge von V, d.h
 - (a) B ist linear unabhängig
 - (b) $B \cup \{x\}$ ist linear abhängig für $x \in V \setminus B$ beliebig. D.h. $x \in \text{span}(B)$
- 4. Falls $B \neq \emptyset$ ist dies auch äquivalent zu:

Jedes $x \in V$ ist eine Linearkombination von endlich vielen Vektoren aus B und die koeffizienten sind eindeutig bestimmt.

8.4.3 Existenz einer Basis

Jeder Vektorraum V besitzt eine Basis. Genauer gilt: ist M ein Erzeugendensystem von V, so gibt es eine Basis B von V mit $B \subseteq V$.

8.4.4 Eigenschaften der Basis

Sei V ein Vektorraum, dann gilt

- 1. Ist $M\subseteq V$ endlich und linear unabhängig so existiert eine Basis B von V mit $M\subseteq B$. D.h. M kann zu einer Basis von V erweitert werden.
- 2. Ist B und \tilde{B} jeweils eine Basis von V dann haben beide gleich viele Elemente. Also $|B| = \left|\tilde{B}\right|$ (also auch im Fall $\infty = \infty$).

8.4.5 Definition Dimension

Ist V ein Vektorraum und B eine Basis, dann ist

$$\dim V := |B|$$

die Dimension von V. Im Fall $|B|<\infty$ also dim $V\in\mathbb{N}_0$ heißt V endlich dimensional.

8.4.6 Beziehung von Dimensionen

Ist U ein Unterraum von V, so gilt

- (a) $\dim U \leq \dim V$
- (b) $\dim U = \dim V \Leftrightarrow U = V$ für $\dim V < \infty$

8.4.7 Lineare unabängigkeit im n-Dimensionalen

Ist V ein n-Dimensionaler Vektorraum, so gilt:

- (a) n linear unabhängige Vektoren bilden eine Basis
- (b) n+1 Vektoren V sind linear abhängig.

8.5 Lineare Gleichungssysteme

8.5.1 Definition lineares Gleichungssystem

Sei $m, n \in \mathbb{K}, \mathbb{K}$ ein Körper. $A \in \mathbb{K}^{m \times n}, b \in \mathbb{K}^m$ dann nennt man die Gleichung

$$A \cdot x = b \Leftrightarrow \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

ein Lineares Gleichungssystem mit Koeffizienten A, rechter Seite b und Unbekannten x.

Etwas allgemeiner mit $A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{m \times r}, X \in \mathbb{K}^{n \times r}$.

Dann ist

$$A \cdot X = B \Leftrightarrow \begin{cases} A \cdot x_1 &= b_1 \\ \vdots &\vdots \\ A \cdot x_r &= b_r \end{cases}$$

ein System von Linearengleichungen mit Koeffizienten X, rechten Seiten B und Unbekannten X.

Im Fall $b = \vec{0}$ (bzw. $B = \vec{0}$) heißt das LGS homogen.

Bemerkung

Im Fall Ax = b nennt man

- (a) $\mathbb{L}(A,b) := \{x \in \mathbb{K}^n : Ax = b\}$ die Lösungsmenge des LGS
- (b) Kern(A) := $\{x \in \mathbb{K}^n : A \cdot x = \vec{0}\}$ den Kern von A. Es gilt Kern(A) = $\mathbb{L}(A, \vec{0})$.
- (c) $\operatorname{Im}(A) := \{ y \in \mathbb{K}^m : \exists x \in \mathbb{K}^n \text{ mit } Ax = y \} \text{ das Bild von } A.$

8.5.2 Zusammenhang Kern und Lösung eines LGS

Sei $A \in \mathbb{K}^{m \times n}$, dann gilt

- (a) $\operatorname{Kern}(A)$ ist Unterraum von \mathbb{K}^n
- (b) Ist $b \in \mathbb{K}^m$ und $x_0 \in \mathbb{K}^n$ eine Lösung von Ax = n, dann ist die Lösungsgesamtheit

$$x_0 + \operatorname{Kern}(A) := \{x_0 + y : y \in \operatorname{Kern}(A)\}\$$

Bemerkung

Außerdem ist $\mathbb{L}(A, b)$ und $\operatorname{Kern}(A) = \mathbb{L}(A, \vec{0})$ ein Unterraum von \mathbb{K}^n .

8.5.3 Definition Affiner Unterraum, lineare Mannigfaltigkeit

Ist x_0 ein Vektor und U ein Unterraum, dann ist

$$x_0 + U := \{x_0 + u : u \in U\}$$

ein affiner Unterraum und $\dim(x_0 + U) := \dim(U)$ die Dimension von $x_0 + U$.

8.5.4 Definition Zeilen-/Spaltenrang

Sei

$$A = (a_1, \dots, a_n) = \begin{pmatrix} \tilde{a}_1^T \\ \vdots \\ \tilde{a}_m^T \end{pmatrix}$$

. Dann heißt

- (a) $\dim(\operatorname{span}(a_1,\ldots,a_n))$ der Spaltenrang
- (b) $\dim(\operatorname{span}(\tilde{a}_1,\ldots,\tilde{a}_m))$ der Zeilenrang

Bemerkung

Also Spaltenrang $\widehat{=}$ Anzahl der linear unabhängigen Spalten. Und Zeilenrang $\widehat{=}$ Anzahl der linear unabhängigen Zeilen.

8.5.5 Elementare Zeilen-/Stufenoperationen

Mittels elementarer Zeilen- bzw. Stufenoperationen kann man eine Matrix auf Zeilenstufenform bringen.

Vertauschen von Zeilen bzw. Spalten Spalten-Operation:

$$A \cdot E = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ 9 & 8 & 7 \end{pmatrix}$$

Zeilen-Operationen

$$E \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}$$

2. Das α -fache der zweiten Zeile/Spalte zur ersten Zeile/Spalte addieren Spalten-Operation:

$$A \cdot E = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \alpha & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 + 2\alpha & 2 & 3 \\ 4 + 5\alpha & 5 & 6 \\ 7 + 8\alpha & 8 & 9 \end{pmatrix}$$

Zeilen-Operationen

$$E \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ \alpha & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 + 4\alpha & 2 + 5\alpha & 3 + 6\alpha \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

3. Zeile/Spalte 2 mit α multiplizieren Spalten-Operation:

$$A \cdot E = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2\alpha & 3 \\ 4 & 5\alpha & 6 \\ 7 & 8\alpha & 9 \end{pmatrix}$$

Zeilen-Operationen:

$$E \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4\alpha & 5\alpha & 6\alpha \\ 7 & 8 & 9 \end{pmatrix}$$

Formal bedeutet die Übeführung von A in Zeilenstufenform \tilde{A} also:

- (a) mit elementaren Zeilenoperationen (Gauß) überführt ist $\tilde{A} = E_r \cdots E_1 \cdot A$ mit Elementarmatrizen E_1, \ldots, E_r .
- (b) Mit elementaren Spaltenoperationen ist $\tilde{A} = A_1 \cdot E_1 \cdot \cdots \cdot E_s$ mit Elementarmatrizen E_1, \ldots, E_s .

Bemerkung

Statt in Zeilenstufenform kann man A auch in die Form der Pseudo-Einheitsmatrix

$$\hat{I} = \begin{pmatrix} 1 & & & \\ & 1 & \vec{0} & \\ & \vec{0} & \ddots & \\ & & & 0 \end{pmatrix} = \operatorname{diag}(1, 1, \dots, 0, 0)$$

Man kann zeigen:

- 1. Wird eine Zeilenoperation durchgeführt ändert sich nicht der Zeilenrang
- 2. Wir eine Spaltenoperation durchgeführt ändert sich nicht der Spaltenrang

8.5.6 Beziehung Spalten-/Zeilenrang

Zeilen- und Spaltenrang sind gleich.

8.5.7 Definition Rang einer Matrix

Seu $A \in \mathbb{K}^{m \times n}$, dann ist der Rang von A definiert aös der Zeilenrang von A und wir schreiben dafür:

$$rg(A) := Zeilenrang$$

8.5.8 Gauß-Algorithmus

Sei für $A \in \mathbb{K}^{m \times n}, b \in \mathbb{K}^m, x \in \mathbb{K}^n$ Ax = b ein LGS mit gewissen elementaren Zeilenoperationen wird A in eine Zeilenstufenform \tilde{A} überführt ($\tilde{A} = E_r \cdot \cdots \cdot E_1 \cdot A$). Gleichzeitig werden diese auf b angewende, wobei man ein \tilde{b} erhält ($\tilde{b} = E_r \cdot \cdots \cdot E_1 \cdot b$).

Dann gilt für x:

$$Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$$

8.5.9 Lösbarkeit eines LGS

Ein LGS AX=bist lösbar, genau dann wenn

$$rg(A) = rg(A|b)$$

gilt.

8.5.10 Lösung eines LGS

Falls ein LGS Ax = b lösbar ist, dann ist $\mathbb{L}(A|b)$ ein affiner Unterraum und es gilt:

$$\dim(\mathcal{L}(A|b)) = n - \operatorname{rg}(A)$$

${\rm Teil~III} \\ {\rm HM~3-Zusammenfassung}$

Kapitel 9

Exkurs Funktionanlanalysis

9.1 Normen und innere Produkte

9.1.1 Definition Vektornorm

Sei V ein Vektorraum über $\mathbb K$ eine Abbildung

$$\left\| \cdot \right\| : V \to \mathbb{R}$$

nennt man eine Norm, wenn für $\lambda \in \mathbb{K}, x, y \in V$ stets gilt:

(a)
$$||x|| \ge 0 \ \forall x \in V \ \land ||x|| = 0 \Leftrightarrow x = \vec{0}$$

(b)
$$\|\lambda \cdot x\| = |\lambda| \cdot \|x\|$$

(c)
$$||x + y|| \le ||x|| + ||y||$$

In dem Fall heißt heißt V normierter Vektorraum. Einen Vektor $a \in V$ nennen wir normiert, wenn $\|a\| = 1$ ist.

Bemerkung

1. In einem normierten Vektorraum, kann man jedes $a \in V \backslash \{\vec{0}\}$ durch

$$\tilde{a} = \frac{1}{\|a\|} \cdot a$$

normieren, dann

$$\|\tilde{a}\| = \left\| \frac{1}{\|a\|} \cdot a \right\| = \left| \frac{1}{\|a\|} \right| \|a\| = \frac{1}{\|a\|} \|a\| = 1$$

2. Es gilt in einem normierten Vektorraum auch, dass

$$||x|| - ||y|| \le ||x - y|| \ \forall x, y \in V$$

Bew.: folgt aus (N3) (vgl. HM1)

9.1.2 Skalarprodukt / inneres Produkt

Sei V ein Vektorraum über $K=\mathbb{C}$ oder $K=\mathbb{R}$. Eine Abbildung:

$$<\cdot,\cdot>:V\times V\to\mathbb{K},(x,y)\mapsto< x,y>$$

heißt inneres Produkt oder Skalarprodukt in V, wenn für $\lambda \in \mathbb{K}, x,y \in V$ stets gilt:

1.

$$\langle x, x \rangle \geq 0 \land \langle x, x \rangle = 0 \Leftrightarrow x = \vec{0}$$

2. Homogenität:

$$< x, \lambda y > = \lambda < x, y >$$

3. Additivität:

$$< x, y + z > = < x, y > + < x, z >$$

4.

$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

Ist < ·,· > ein inneres Produkt von V, dann heißt V innerer Produktraum und genauer:

- (a) euklidischer Raum für $V = \mathbb{R}^n$
- (b) unitärer Raum für $V = \mathbb{C}^n$

Bemerkung

In (S1) wird implizit verlangt, dass $\langle x, x \rangle \in \mathbb{R}$ gilt.

9.1.3 Definition induzierte Norm

Ist V ein innerer Produktraum bezüglich $<\cdot,\cdot>$ so heißt die durch $\|x\|:=\sqrt{< x,y>}$ definierte Abbildung

$$\|\cdot\|:V\to\mathbb{R}$$

die induzierte Norm.

Bemerkung

Dass die induzierte Norm eine Norm ist, ist noch zu zeigen.

9.1.4 Äquivalente Aussagen zu induzierten Normen

Sei V ein Vektorraum über \mathbb{K} und $\|\cdot\|$ eine Norm, dann sind folgende Aussagen äquivalent:

- 1. Die Norm wird durch ein Skalarprodukt induziert
- 2. Es gilt die sogennante Parallelogram Identität:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

9.1.5 Rechenregeln für Skalarprodukte

Seien $x, y \in V, \lambda \in \mathbb{K}$:

1.

$$<\lambda x, y> = \overline{\lambda} < x, y>$$

2.

$$< x + y, z > = < x, z > + < y, z >$$

3.

$$<\vec{0},y> = < x,\vec{0}> = 0$$

9.1.6 Cauchy-Schwarz'sche-Ungleichung

Sei V ein Vektorraum mit Skalarprodukt < ·, · > und induzierter Norm $\|\cdot\|$ dann gilt < $x,y>\leq \|x\|\|y\|$

9.2 Orthogonalität

9.2.1 Orthogonaltität

Sei V ein innerer Produktraum, dann nennt man

(a) Zwei Vektoren $x, y \in V$ orthogonal (schreibweise $x \perp y$)

$$\Leftrightarrow \langle x, y \rangle = 0$$

(b) $M \subseteq V$ ein Orthogonalsystem (OGS) in V, wenn gilt:

$$x, y \in M \land x \neq y \Rightarrow x \perp y$$

(c) $M\subseteq V$ ein Orthonormal system (ONS) in V, wenn M ein OGS ist und gilt

$$x \in M \Rightarrow ||x|| = 1$$

- (d) $B \subseteq V$ eine Orthogonalbasis von V wenn B eine Basis von V ist und B ein OGS ist.
- (e) $B \subseteq V$ eine Orthonormalbasis von V wenn B eine Basis von V ist und B ein ONS ist.

9.2.2 Orthogonalität und lineare Abhängigkeit

Sei V ein innerer Produktraum. Dann gilt:

- (a) Seien $b_1, \ldots, b_n \in V$ orthogonal und alle $\neq \vec{0} \Rightarrow b_1, \ldots, b_n$ sind linear unabhängig.
- (b) Ist $B = \{b_1, \dots, b_n\}$ ein OGS und $x \in \text{span } B$, dann gilt

$$x = \alpha_1 b_1 + \ldots + \alpha_n b_n$$

mit

$$\alpha_k = \frac{\langle b_k, x \rangle}{\langle b_k, b_k \rangle}$$

9.2.3 Gram-Schmidt (Orthogonalisierung von Vektoren)

Seien x_1, \ldots, x_n linear unabhängige Vektoren eines inneren Produktraums. Definiert man:

$$y_1 := x_1$$

$$y_k := x_k - \sum_{l=1}^{k-1} \frac{\langle y_l, x_k \rangle}{\langle y_l, y_l \rangle} y_l \text{ für } k \in \{2, \dots, n\}$$

dann gilt: span (x_1, \ldots, x_n) = span (y_1, \ldots, y_n) und $y_l \perp y_k$ für $l \neq k$.

9.2.4 Orthogonale Projektion

Sei Vein innerer Produktraum und x_1,\dots,x_n linear unabhängig. Dann gilt für $x\in V$

(a)
$$\exists ! \hat{x} \in V : ||x - \hat{x}|| = \min\{||x - u|| : u \in \text{span}(x_1, \dots, x_n)\}$$

(b) Für \hat{x} aus (a) gilt $x - \hat{x} \perp U$ d.h.

$$x - \hat{x} \perp u \ \forall u \in U$$

Sind y_1, \ldots, y_n ein OGS mit $U = \text{span}(y_1, \ldots, y_n)$ dann gilt:

$$\hat{x} = \sum_{k=1}^{n} \frac{\langle y_k, x \rangle}{\langle y_k, y_k \rangle} y_k$$

Kapitel 10

Gewöhnliche Differentialgleichungen

10.1 Einführung

10.1.1 Explizite DGL 1. Ordnung

Gegeben sei ein Gebiet $G \subseteq \mathbb{R}^2$ und eine stetige Funktion $f: G \to \mathbb{R}$, dann heißt eine Funktion $y: I \to \mathbb{R}$ (mit $I \subseteq \mathbb{R}$ ein Intervall) eine Lösung der (expliziten) Differentialgleichung (DGL)

$$y' = f(x, y)$$

wenn gilt:

(a) $\begin{pmatrix} x \\ y(x) \end{pmatrix} \in G \ \forall x \in I$

(b)
$$y'(x) = f(x, y(x)) \ \forall x \in I$$

Ferner heißt y eine Lösung des Anfangswertproblems

$$(AWP) = \begin{cases} y' &= f(x,y) \\ y(x_0) &= y_0 \end{cases}$$

wenn y eine Lösung von y' = f(x, y) ist und $y(x_0) = y_0$ gilt.

10.1.2 Implizite DGL 1. Ordnung

(a) Eine DGL der Form

$$g(x, y, y') = 0$$

mit $g:M\subseteq\mathbb{R}^3\to\mathbb{R}$ heißt eine implizite DGL 1. Ordnung und

$$(AWP) = \begin{cases} g(x, y, y') = 0\\ y(x_0) = y_0 \end{cases}$$

ist das dazugehörige AWP.

(b) Das lässt sich (manchmal) auf eine explizite DGL zurückführen:

$$g(x, y, z) = 0$$

hat bei (x_0, y_0) eine Auflösung nach z = f(x, y) falls die Determinate der Jakobi-Matrix $J = \frac{\partial}{\partial z} g(x, y, z)$ nicht null ist.

10.1.3 DGL-System 1. Ordnung

Sei $G\subseteq\mathbb{R}^{n+1}$ und für $k\in\{1,\ldots,n\}$ sei $f_k:G\to\mathbb{R}$ stetig. $y:I\to\mathbb{R}^n$ mit $y(x)=(y_1(x),\ldots,y_n(x))^T$ heißt Lösung des Systems

$$\begin{cases} y'_1 &= f_1(x, y_1, \dots, y_n) \\ \vdots \\ y'_n &= f_n(x, y_1, \dots, y_n) \end{cases}$$

kurz:

$$y' = f(x, y)$$

von Differentialgleichungen 1. Ordnung, wenn gilt:

1.

$$\begin{pmatrix} x \\ y(x) \end{pmatrix} = \begin{pmatrix} x \\ y_1() \\ \vdots \\ y_n(x) \end{pmatrix} \in G \ \forall x \in I$$

2. y_k ist stetig differentierbar auf I

3.
$$y'_k(x) = f_k(x, y_1(x), \dots, y_n(x)) = f_k(x, y(x))$$

Außerdem heißt y eine Lösung des zugehörigen AWP

$$(AWP) = \begin{cases} y' = f(x, y) \\ y(x_0) = \begin{pmatrix} y_1(x_0) \\ \vdots \\ y_n(x_0) \end{pmatrix} = \begin{pmatrix} \tilde{y_1} \\ \vdots \\ \tilde{y_n} \end{pmatrix} = \tilde{y} = y_0$$

wenn gilt: y ist eine Lösung von y' = f(x, y) und $y(x_0) = y_0$.

10.1.4 Umschreiben von DGLen

Eine sogenannte DGL n-ter Ordnung

$$y^{(n+1)} = f(x, y, y', \dots, y^{(n+1)})$$

kann man stets in ein System 1. Ordnung umschreiben.

1. y_1, \ldots, y_n definieren als:

$$y_1 := y$$

$$y_2 := y'_1$$

$$y_n := y'_{n-1}$$

2. Das ursprüngliche Problem einsetzten:

$$y'_n = y^{(n)} = f(x, y, y', \dots, y^{(n-1)}) = f(x, y_1, \dots, y_n)$$

3. Als System formulieren:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}' = \begin{pmatrix} f_1(x, y_1, \dots, y_n) \\ \vdots \\ f_n(x, y_1, \dots, y_n) \end{pmatrix} = \begin{pmatrix} y_2 \\ y_3 \\ \vdots \\ f(x, y_1, \dots, y_n) \end{pmatrix}$$

4. Die Anfangsbedinung formulieren:

$$y(x_0) = \tilde{y_1}$$

$$y'(x_0) = \tilde{y_2}$$

$$\vdots$$

$$y^{(n-1)}(x_0) = \tilde{y_n}$$

ergibt den Vektor

$$\tilde{y} := \begin{pmatrix} \tilde{y_1} \\ \vdots \\ \tilde{y_n} \end{pmatrix}$$

10.2 Existenz- und Eindeutigkeitsaussagen

10.2.1 Voltera'sche Integralgleichung

Sei $G \subseteq \mathbb{R}^2$ ein Gebiet und $f: G \to \mathbb{R}$ stetig, $I \subseteq \mathbb{R}$ ein Intervall und $x_0 \in I$. Dann gilt:

1. $y: I \to \mathbb{R}$ löst das AWP.

$$y' = f(x, y), \ y(x_0) = y_0$$

genau dann, wenn die Integralgleichung

2.

$$y(x) = y(x_0) \int_{x_0}^x f(t, y(t)) dt \ \forall x \in I$$

für alle y erfüllt ist.

Von der Form $y = \Phi(y)$ mit

$$\Phi(y) := y_0 + \int_{x_0}^x f(t, y(t)) dt$$

genauer: $\Phi: C^1(I) \to C^1(I)$ also y muss Fixpunkt von Φ sein.

10.2.2 Bemerkung: Newton-Verfahren zur Bestimmung von Nullstellen

Sei $f: \mathbb{R} \to \mathbb{R}$. Tangente bestimmen:

$$T(x) = f(x_0) + f'(x_0)(x - x_0) = 0$$

$$\Rightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \Phi(x_0)$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \Phi(x_n)$$

Hoffnung die so erzeugte Folge $(x_n)_{n=1}^{\infty}$ konvertiert gegen ein \overline{x} , das heißt es gilt (falls Φ stetig):

$$\overline{x} = \lim_{n \to \infty} xn + 1 = \lim_{n \to \infty} \Phi(x_n) = \Phi(\lim_{n \to \infty} x_n) = \Phi(\overline{x})$$

Das heißt, falls alles gut geht ist \overline{x} der Fixpunkt von Φ (muss aber nicht immer so sein, z.B $f(x) = \sin(x)$).

10.2.3 Picard-Iterator

Der sogenannte Picard-Iterator bildet Funktionen auf Funktionen ab und ist definiert durch:

$$\Phi: y \to y_0 + \int_{x_0}^x f(t, y(t)) \, \mathrm{d}t$$

10.2.4 Definition Lipschitz-Bedingung

Sei $G \subseteq \mathbb{R}^2$ ein Gebiet. Eine Funktion $f: G \to \mathbb{R}$ erfüllt eine Lipschitz-Bedingung (L-Bedingung) bezüglich der zweiten Komponente wenn gilt:

$$\exists L > 0: |f(x, y_1) - f(x, y_2)| < L \cdot |y_1 - y_2|$$

Bemerkung

Für x fest, ist die L-Bedingung äquivalent zur Lipschitz-Stetigkeit.

10.2.5 Partielle Ableitung und Lipschitz-Bedingung

Ist bei f die partielle Ableitung nach der zweiten Komponente beschränkt, dann ist die L-Bedingung erfüllt:

$$|f_y(x,y)| < L \,\forall \begin{pmatrix} x \\ y \end{pmatrix} \in G \Rightarrow |f(x,y_1) - f(x,y_2)| = |f_y(x,\xi)(y_1 - y_2)| \le L|y_1 - y_2|$$

10.2.6 Picard-Lindelöf (Existenz und Eindeutigkeit einer Lösung)

Seien $r, s > 0, x_0; y_0 \in \mathbb{R}; M := [x_0, x_0 + r] \times [y_0 - s, y_0 + s]$ sei G ein Gebiet mit $M \subseteq G \subseteq \mathbb{R}^2$. Außerdem erfülle f auf G eine L-Bedingung bezüglich der zweiten Komponente mit L > 0. Außerdem gelte $|f(x, y)| \le c \ \forall (x, y)^T \in M$. Dann besitzt das AWP

$$(AWP) = \begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

auf dem Intervall $I := [x_0, x_0 + \alpha]$ mit $\alpha = \min\{r, \frac{s}{c}\}$ genau eine Lösung.

10.2.7 Peano (Existenz einer Lösung)

Gelten alle Voraussetzungen von Picard-Lindelöf bis auf die L-Bedingung, dann besitzt

$$(AWP) = \begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

mindestens eine Lösung $y: I \to \mathbb{R}$ mit $I = [x_0, x_0 + \alpha]$ und $\alpha = \min\{r, \frac{s}{\alpha}\}$.

10.2.8 Gronwallsche Ungleichung

Sei $c > 0; f, g : [a, b] \to [0, \infty)$ stetig gilt:

$$f(x) \le c + \int_{a}^{x} f(t)g(t) dt \ \forall x \in [a, b]$$

dann ist

$$f(x) \le c \cdot \exp\left(\int_{a}^{x} g(t) dt\right) \forall x \in [a, b]$$

10.2.9 Banach'scher Fixpunktsatz

Sei $V = \mathbb{R}^n$ und $M \subseteq \mathbb{R}^n$ abgeschlossen (bezüglich $\|\cdot\|_{\infty}$) weiter sei: $\Phi: M \to M$ eine Kontradiktion, das heißt Φ ist L-stetig mit L < 1.

Dann besitzt Φ genau einen Fixpunkt $\overline{x} \in M$ (das heißt $\Phi(\overline{x}) = \overline{x}$) und \overline{x} ist der Grenzwert der Folge $(x_n)_{n=1}^{\infty}$ mit:

$$x_k = \begin{cases} \text{beliebig} & k = 0\\ \Phi(x_{k-1}) & \text{sonst} \end{cases}$$

10.2.10 Norm Äquivalenz im \mathbb{R}^n

Sei $\|\cdot\|$ eine beliebige Norm im \mathbb{R}^n , dann existieren $c_1, c_2 > 0$ mit

$$c_1 \|x\|_{\infty} \le \|x\| \le c_2 \|x\|_{\infty} \ \forall x \in \mathbb{R}^n$$

10.2.11 Stabilität

Sei $G \subseteq \mathbb{R}^2$ ein Gebiet, $f_1, f_2 : G \to \mathbb{R}$ stetige Funktionen die auf G eine L-Bedingung erfüllen mit L > 0. Zusätzlich gelte $|f_1(x,y) - f_2(x,y)| < c \ \forall (x,y)^T \in G$ (Modellierungsfehler).

Dann gilt ist y_1 eine Lösung des AWP $y'=f_1(x,y),y(x_0)=y_0$ und y_2 eine Lösung des AWP $y'=f_2(x,y),y(x_0)=\tilde{y_0}$ so folgt:

$$|y_1(x) - y_2(x)| \le (|y_0 - \tilde{y_0}| + c \cdot (x - x_0)) \exp(L(x - x_0))$$

Kapitel 11

DGL-Systeme und DGLen n-ter Ordnung

11.1 Systeme von DGLen 1. Ordnung

11.1.1 Definition DGL-System

Sei $G \subseteq \mathbb{R}^{n+1}$ und für $k \in \{1, ..., n\}$ sei $f_k : G \to \mathbb{R}$ stetig:

(a) $y(x) = (y_1(x), \dots, y_n(x))^T$ heißt Lösung des Systems:

$$y'_1 = f_1(x, y_1, \dots, y_n)$$

$$\vdots$$

$$y'_n = f_n(x, y_1, \dots, y_n)$$

von DLGen n-ter Ordnung, wenn gilt:

(a)

$$\begin{pmatrix} x \\ y(x) \end{pmatrix} \in G \ \forall x \in I$$

- (b) y ist differentierbar auf I (Komponentenweise, d.h. y_k ist diff'bar $\forall k$)
- (c) $y_k'(x) = f_k(x, y_1(x), \dots, y_n(x)) \ \forall x \in I \text{ und bel. } k \in \{1, \dots, n\}$
- (b) Ist $(x,y)^T = (x_0, y_1^{(0)}, \dots, y_n^{(0)})^T \in G$ dann löst $y: I \to \mathbb{R}^n$ das AWP.

$$(AWP) = \begin{cases} y_1'(x) &= f_1(x, y_1(x), \dots, y_n(x)) \\ &\vdots \\ y_n'(x) &= f_n(x, y_1(x), \dots, y_n(x)) \\ y_k(x_0) &= y_k^{(0)} \ k \in \{1, \dots, n\} \end{cases}$$

wenn y die DGL löst und $y(x_0) = (y_1^{(0)}, \dots, y_n^{(0)})^T$ gilt.

11.1.2 Schreibweise

(a) DGL:

(a)

$$y: I \to \mathbb{R}^n, y(x) := \begin{pmatrix} y_1(x) \\ \vdots \\ y_n(x) \end{pmatrix} \text{ oder } y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

(b)

 $f_k(x,y) = f_k(x,y_1,...,y_n)$ bzw. $f_k(x,y(x)) = f_k(x,y_1(x),...,y_n(x)) \ \forall x \in I$

(c) $f: G \subseteq \mathbb{R}^{n+1} \to \mathbb{R}^n$ mit

$$f(x,y) = f(x,y_1,...,y_n) = \begin{pmatrix} f_1(x,y_1,...,y_n) \\ \vdots \\ f_n/(x,y_1,...,y_n) \end{pmatrix}$$

(b) AWP:

(AWP) =
$$\begin{cases} y' & = f(x, y) \\ y(x_0) & = y_0 \end{cases}$$
 mit $y_0 = \begin{pmatrix} y_1^{(0)} \\ \vdots \\ y_n^{(0)} \end{pmatrix}$

(c) Integration von Vektoren: Für $g:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n, g(x)=(g_1(x),\ldots,g_n(x))^T$ definieren wir (falls g_1,\ldots,g_n int'bar sind):

$$\int_{a}^{b} g(x) \, dx = \begin{pmatrix} \int_{a}^{b} g_{1}(x) \, dx \\ \vdots \\ \int_{a}^{b} g_{n}(x) \, dx \end{pmatrix}$$

11.1.3 Voltera'sche Integralgleichung

Sei $G\subseteq \mathbb{R}^{n+1}$ ein Gebiet, $f:G\to \mathbb{R}^n$ stetig und

$$\begin{pmatrix} x_0 \\ y_1^{(0)} \\ \vdots \\ y_n^{(0)} \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in G$$

dann ist $y:I\subseteq\mathbb{R}\to\mathbb{R}^n$ genau dann eine Lösung des AWP $y'=f(x,y),y(x_0)=y_0,$ wenn gilt

$$y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$$

11.1.4 Definition Lipschitz-Bedingung

Sei $f: M \subseteq \mathbb{R}^{n+1} \to \mathbb{R}^n$. Dann erfüllt f eine L-Bed. Mit L > 0, wenn gilt:

$$||f(x,y_1) - f(x,y_2)|| < L \cdot ||y_1 - y_2|| \ \forall (x,y_1), (x,y_2) \in M$$

11.1.5 Bemerkung

Welche Norm hier verwendet wird ist egal, denn es existiert ein c_1, c_2 mit

$$c_1 \|\cdot\|_{\infty} \le \|\cdot\| \le c_2 \|\cdot\|$$

11.1.6 Satz von Picard-Lindelöf

Seien $r, s > 0; x_0 \in \mathbb{R}, y_0 = (y_1^{(0)}, \dots, y_n^{(n)})^T \in \mathbb{R}^n$ und $M = \{(x, y_1, \dots, y_n)^T \in \mathbb{R}^n : x \in [x_0, x_0 + r], y_k \in [y_k^{(0)} - s, y_k^{(0)} + s]\}$ und $f : G \to \mathbb{R}^n$ stetig. Falls f auf M eine L-Bed. erfüllt so exitiert auf $I = [x_0, x_0 + \alpha]$ mit $\alpha = \min\{r, \frac{s}{c}\}$ für

$$c := \max_{(x,y)^T \in M} \bigl\| f(x,y) \bigr\|_{\infty}$$

11.1.7 Satz von Peano

Falls die L-Bed. im Satz von Picard-Lindelöf nicht erfüllt ist, alle anderen Vorraussetzungen aber gelten kann man auf $I = [x_0, x_0 + \alpha]$ (mit α wie oben) trotzdem die Existenz einer Lösung zeigen, nicht aber deren Eindeutigkeit.

11.1.8 Stabilität

Analog gilt, falls f eine L-Bed. erfüllt und eine Lösung existiert:

$$||y_1(x) - y_2(x)||_{\infty} \le (||y_0 - \tilde{y_0}||_{\infty} c(x - x_0)) \exp(L(x - x_0))$$

dabei ist y_1 Lösung von $y' = f_1(x, y), y(x_0) = y_0$ und $y' = f_2(x, y), y(x_0) = \overline{y_0}$

11.2 Lineare DGL-Systeme 1. Ordnung

11.2.1 Definition

Ein DGL System der Form

$$\begin{pmatrix} y_1'(x) \\ \vdots \\ y_n'(x) \end{pmatrix} = \begin{pmatrix} a_{11}(x) & \cdots & a_{1n}(x) \\ \vdots & \ddots & \vdots \\ a_{n1}(x) & \cdots & a_{nn}(x) \end{pmatrix} \begin{pmatrix} y_1(x) \\ \vdots \\ y_n(x) \end{pmatrix} + \begin{pmatrix} b_1(x) \\ \vdots \\ b_n(x) \end{pmatrix}$$

oder in kurz:

$$y'(x) = A(x)y(x) + b(x)$$

mit stetigen Funktionen $a_{ij}: I \to \mathbb{R}, b_i: I \to \mathbb{R} \ \forall i, j \in \{1, \dots, n\}, \ I \subseteq \mathbb{R}$ ein Intervall heißt ein lineares DGL-System 1. Ordnung.

11.2.2 Definition Frobenius-Norm

Für $A \in \mathbb{R}^{m \times n}$ ist durch

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$$

die sogenannte Frobenius-Norm $\left\|\cdot\right\|_F:\mathbb{R}^{m\times n}\to\mathbb{R}$ definiert.

11.2.3 Matrixnorm und Vektornorm

- (a) $\left\|\cdot\right\|_F$ ist eine Vektornorm auf dem Vektorraum $\mathbb{R}^{m\times n}$ (oder $\mathbb{C}^{m\times n})$
- (b) Die Matrix-Norm $\|\cdot\|_F$ ist bezüglich der Vektornorm $\|\cdot\|_2$ submultiplikativ, d.h. es gilt

$$||A \cdot x||_2 \le ||A||_F \cdot ||x||_2$$

(c) Bezüglich einer beliebigen Vektornorm auf \mathbb{R}^n gilt:

$$||Ax|| \le c_1 ||Ax||_2 \le ||A||_F ||x||_2 \le c_2 ||A||_F ||x||$$

11.2.4 Grenznorm

Die sogenannte Grenznorm für eine Matrix-Norm wird bezüglich einer Vektornorm $\|\cdot\|$ so definiert:

$$||A|| := \sup_{x \in \mathbb{R}^n \land x \neq \vec{0}} \frac{||Ax||}{||x||} = \max_{||x||=1} ||Ax||$$

Daraus folgt:

$$||Ax|| \le ||A|| ||x||$$

und für mindestens ein x gilt = (d.h die Abschätzung ist scharf).

Die Bezeichnung der Grenznorm wird von der Vektornorm übernommen. Es gilt also:

$$||A||_p = \sup_{x \in \mathbb{R}^n \land x \neq \vec{0}} \frac{||Ax||_p}{||x||_p}$$

die Grenznorm bezüglich $\|\cdot\|_p$.

Bemerkung

Es gilt:

$$||A||_2 \le ||A||_F$$

11.2.5 Lösungsmengen von linearen Gleichungssystemen

- (a) Die Lösungsmenge von y'=A(x)y ist ein Unterraum des Vektorraums der stetigen Funktionen
- (b) Die Lösungsmenge von y' = A(x)y + b(x) ist ein affiner Unterraum des Vektorraums der stetigen Funktionen

11.2.6 Definition Fundamental system

Sei $I\subseteq\mathbb{R}$ ein nicht entartetes Intervall und $A:I\to\mathbb{R}^{n\times n}$ stetig

(a) Eine Basis des Lösungsraums von y' = A(x)y heißt Fundamentalsystem (FS). Ist y_1, \ldots, y_n so ein FS, dann heißt die Matrix

$$Y(x) = (y_1(x), \dots, y_n())$$

die Fundamentalmatrix

(b) Für $y_1, \ldots, y_n : I \to \mathbb{R}^n$ heißt $W : I \to \mathbb{R}$ mit $W(x) = \det(Y(x))$ die Wronski-Determinante des Fundamentalsystems.

11.2.7 Definition Determinante

Eine Funktion det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ heißt Determinante, wenn gilt

(a) Mit I der Einheitsmatrix:

$$\det(I) = 1$$

(b) det ist linear in jeder Spalte, d.h. für $1 \leq l \leq n$ gilt:

$$\det(a_1 \dots, a_{l-1}, \alpha x + \beta y, a_{l+1}, \dots, a_n) = \alpha \det(a_1 \dots, a_{l-1}, x, a_{l+1}, \dots, a_n) + \beta \det(a_1 \dots, a_{l-1}, y, a_{l+1}, \dots, a_n)$$

(c) Spalten tauschen ändert Vorzeichen:

$$\det(a_1,\ldots,a_i,\ldots,a_j,\ldots,a_n) = \det(a_1,\ldots,a_j,\ldots,a_i,\ldots,a_n)$$

11.2.8 Entwicklungssatz von Laplace

Sei $A \in \mathbb{R}^{n \times n}$ und bezeichne A_{ij} die $(n-1) \times (n-1)$ Matrix, die aus A durch Streichen der i-ten Zeile und j-ten Spalte entsteht. Die Einträge von A bezeichnen wir mit $A = (a_{ij})_{1 \le i,j \le n}$. Dann gilt:

(a) Für $j \in \{1, ..., n\}$ beliebig aber fest ist

$$\det(A) = \sum_{i=1}^{n} a_{ij} \det A_{ij} (-1)^{i+j}$$

(b) Für $i \in \{1, ..., n\}$ beliebig aber fest ist

$$\det(A) = \sum_{j=1}^{n} a_{ij} \det A_{ij} (-1)^{i+j}$$

11.2.9 Leibniz-Formel für Determinanten

Sei $A \in \mathbb{R}^{n \times n}$ und bezeichne S_n die Gruppe der Permutationen von $\{1, \dots, n\}$ und sei $\operatorname{sgn}(\sigma)$ definiert durch $\operatorname{sgn}: S_n \to \{-1, 1\}$:

$$\operatorname{sgn} \sigma = \begin{cases} 1 & \text{falls } \sigma \text{ durch eine gerade Anzahl Permutationen entsteht} \\ -1 & \text{sonst} \end{cases}$$

wobei eine Transposition einer paarweisen Vertauschung entspricht. Dann gilt:

$$\det(A) = \det((a_{ij})_{1 \le i, j \le n}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{k=1}^n a_{k\sigma(k)}$$

11.2.10 Berechnung der Wronski-Determinante ohne bekanntes FS

Für die Wronski-Determinante gilt (d.h. FS existiert, sonst ist Wronski-Determinante nicht definiert):

(a) W(x) kann durch eine lineare DGL 1. Ordnung bestimmt werden:

$$W'(x) = \operatorname{spur}(A(x)) \cdot W(x)$$

mit

$$spur(A) = \sum_{i=1}^{n} a_{ii}$$

(b) Durch Lösen der DGL folgt:

$$W(x) = W(x_0) \cdot \exp\left(\int_{x_0}^x \operatorname{spur}(A(t)) dt\right)$$

Bemerkung

Falls y' = A(x)y eine Anfangsbedingung hat ist $W(x_0)$ durch die Anfangsbedinung bekannt, dadurch ist W(x) bekannt.

11.2.11 Ableitung der Determinante

Sei $I \subseteq \mathbb{R}$ ein nicht-entartetes Interval und A(x) (komponentenweise) differentierbar auf I, dann ist $\det(A(x))$ differentierbar und es gilt:

$$\frac{d}{dx} \det(A(x)) = \sum_{i=1}^{n} \det \begin{pmatrix} a_{11}(x) & \cdots & a_{1n}(x) \\ & \vdots & & \\ a_{i-1,1}(x) & \cdots & a_{i-1,n}(x) \\ a'_{i1}(x) & \cdots & a'_{in}(x) \\ a_{i+1,1}(x) & \cdots & a_{i+1,n}(x) \\ & \vdots & & \\ a_{n1}(x) & \cdots & a_{nn}(x) \end{pmatrix}$$

11.2.12 Äquivalente Aussagen zu FSen und Wronski-Determinaten

Sei $I \subseteq \mathbb{R}$ ein nicht entartetes Interval, $A: I \to \mathbb{R}^{n \times n}$ stetig. Sind y_1, \ldots, y_n Lösungen von y' = A(x)y und bezeichne $W(x) = \det(y_1(x), \ldots, y_n(x))$ dann sind folgende Aussagen äquivalent:

- (a) y_1, \ldots, y_n bilden ein FS
- (b) $W(x) \neq 0 \ \forall x \in I$
- (c) $\exists x_0 \in I : W(x_0) \neq 0$

11.2.13 Partikuläre Lösung aus Wronksi-Determinante

Sei $I \subseteq \mathbb{R}$ ein nicht entartetes Intervall, $A: I \to \mathbb{R}^{n \times n}$ stetig und $b: I \to \mathbb{R}^n$ stetig, weiter sei y_1, \ldots, y_n ein FS des homogenen Systems y' = A(x)y. Dann ist:

$$y_p: I \to \mathbb{R}^n \text{ mit } y_p(x) = \sum_{k=1}^n y_k(x) \int_{x_0}^x \frac{W_k(t)}{W(t)} dt$$

mit $x_0 \in I$ beliebig und

$$W_k(x) = \det(y_1(x), \dots, y_{k-1}(x), b(x), y_{k+1}(x), \dots, y_n(x))$$

eine Lösung des inhomogenen Systems

$$y'(x) = A(x)y(x) + b(x)$$

11.3 Lineare DGL-Systeme 1. Ordnung mit konstanten Koeffizienten

Für $A \in \mathbb{R}^{n \times n}$ betrachtet man y' = Ay + b(x) bzw. y' = Ay. Ein FS von y' = Ay liefert eine partikuläre Lösung von y' = Ay + b(x).

11.3.1 Definition Eigenwerte und Eigenvektoren

Sei $A \in \mathbb{K}^{n \times n}$ (mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$), dann heißt ein $\lambda \in \mathbb{K}$ Eigenwert von A, wenn ein $v \in \mathbb{K}^n \setminus \{\vec{0}\}$ existiert mit

$$Av = \lambda v$$

Bemerkung

(a) Ein Eigenvektor v zum Eigenwert λ existiert genau dann, wenn

$$p_A(\lambda) := \det(A - \lambda - I) = 0$$

ist.

- (b) Offensichtlich gilt: Ist v ein Eigenvektor zum Eigenwert λ so ist auch αv ein Eigenvektor zu λ .
- (c) Offensichtlich ist $y = v \cdot \exp \lambda$ eine Lösung der homogenen DGL y' = Ay wenn v eine Eigenvektor von A und λ ein zugehöriger Eigenwert ist.

11.3.2 Algebraische und Geometrische Vielfachheit

Ist λ ein Eigenwert von $A \in \mathbb{K}^{n \times n}$, dann ist

- (a) Die Algebraische Vielfachheit von λ die Ordnung der Nullstelle von $p_A(\lambda)$
- (b) Die Geometrische Vielfachheit von λ die Dimension von Kern $(A \lambda I)$, also die Anzahl der linear Unabhängigen Lösungen von $A \lambda I = \vec{0}$.

11.3.3 Diagonalisierbarkeit

Falls zu einer Matrix $A \in \mathbb{K}^{n \times n}$ eine reguläre Matrix $V \in \mathbb{K}^{n \times n}$ existiert mit

$$V^{-1}AV = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda n \end{pmatrix}$$

so heißt A diagonalisierbar.

Bemerkung

(a) Es gilt:

$$V^{-1}AV = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

$$\Leftrightarrow AV = \operatorname{diag}(\lambda_1, \dots, \lambda_n)V$$

$$\Leftrightarrow (A \cdot v_1, \dots, A \cdot v_n) = (\lambda_1 v_1, \dots, \lambda_n v_n) \Leftrightarrow Av_k = \lambda_k v_k \ \forall k \in \{1, \dots, n\}$$

d.
h ${\cal V}$ besteht aus den Eigenvektoren von
 ${\cal A}$ und die Diagonalmatrix aus den Zugehörigen Eigenwerten.

(b) Ist A diagonalisierbar, dann gilt:

$$A^{l} = (VDV^{-1})(VDV^{-1}) \cdots (VDV^{-1}) = VD^{l}V^{-1} = V\operatorname{diag}(\lambda_{1}^{l}, \dots, \lambda_{n}^{l})V^{-1}$$

- (c) So ein V existiert nur wenn n-linear Unabhängige Eigenvektoren existieren, da die Matrix V sonst nicht invertierbar ist.
- (d) Selbst wenn A eine reele Matrix ist sind die Eigenwerte und -vektoren im Allgemeinen Komplex
- (e) Bei einer Matrix mit reelen Koeffizienten gilt stets λ ist Eigenwert $\Rightarrow \overline{\lambda}$ ist ebenfalls Eigenwert.
- (f) Das heißt aus dem FS einer Reelen Matrix lässt sich stets ein reeles Fundamentalsystem konstruieren.

11.3.4 Submultiplikativität von $\|\cdot\|_F$

Für $A, B \in \mathbb{C}^{n \times n}$ gilt

$$||AB||_F \le ||A||_F ||B||_F$$

$$\operatorname{mit} \|A\|_F = \sum_{i=1}^n \sum_{j=1}^n \sqrt{\left|a_{ij}\right|^2}$$

Bemerkung

Es gilt also auch, dass

$$\left\|A^k\right\|_F \le \|A\|_F^k$$

11.3.5 Folgenkonvergenz für Matrizen

Sei $(A_k)_{k=1}^{\infty}$ eine Folge in $\mathbb{C}^{n\times n}$, dann konvergiert die Folge gegen $A\in\mathbb{C}^{n\times n}$, wenn gilt:

$$\forall \varepsilon > 0 : \exists k(\varepsilon) : ||A_k - A||_F < \varepsilon \ \forall k \ge k(\varepsilon)$$

Bemerkung

- (a) Da $\mathbb{C}^{n\times n}$ ein endlicher Vektorraum ist könnte man eine beliebige Matrix-Norm wählen
- (b) In $\mathbb{C}^{n\times n}$ konvergiert jede Cauchy-Folge
- (c) Für eine Reihe $\sum_{k=0}^\infty A_k$ definiert man die Konvergenz über die Konvergenz der Partialsummen $B_l:=\sum_{k=0}^l A_k$

11.3.6 Definition Matrix-Exponential funktion

Für $A \in \mathbb{C}^{n \times n}$ definieren wir die Matrix Exponentialfunktion durch:

$$\exp: \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}, A \mapsto \exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Bemerkung

 $e^A = \exp(A)$ lässt sich leicht ausrechnen, wenn A diagonalierbar ist.

11.3.7 Rechenregeln Matrix-Exponentialfunktion

Es gilt:

- (a) $e^{A+B} = e^A + e^B$ für alle $A, B \in \mathbb{C}^{n \times n}$
- (b) $(e^A)^{-1} = e^{-A}$ für alle $A \in \mathbb{C}^{n \times n}$ d.h. e^A ist stets invertierbar.

11.3.8 Zusammenhang Matrix Exponentialfunktion und FS

Sei $A \in \mathbb{R}^{n \times n}$ dann ist $Y(x) = \exp(xA)$ ein FS von y' = Ay

11.3.9 Cayley Hamilton

Sei $A \in \mathbb{R}^{n \times n}$ und $p_A(\lambda) = \det(\lambda I - A)$, dann gilt für die zugeordnete Matrix-Funktion $p_A(A) = \vec{0}$.

11.3.10 Algorithmus von Putzer

Sei $A \in \mathbb{R}^{n \times n}$ mit Eigenwerten $\lambda_1, \dots, \lambda_n \in \mathbb{C}$. Definiere

$$B_j := \prod_{k=1}^{j-1} (A - \lambda_k I) \ j \in \{1, \dots, n+1\}$$

und Funktionen $v_1, \ldots, v_n : \mathbb{R} \to \mathbb{C}$ mit

$$v_k(x) = \begin{cases} e^{\lambda_1 x} & \text{für } k = 1\\ v'_k = \lambda_k v_k + v_{k-1} \wedge v_k(0) = 0 & \text{sonst} \end{cases}$$

dann ist

$$e^{xA} = \sum_{j=1}^{n} v_j(x)B_j$$

Bemerkung

So kann also e^{xA} berechnet werden, wenn A nicht diagonaliserbar ist.

11.3.11 Jordan-Blöcke

Eine Matrix $A \in \mathbb{R}^{n \times n}$ mit

$$A = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{pmatrix}$$

nennt man Jordan-Block. Solche Matrizen sind nicht diagonalisierbar, d.h. es muss Putzer verwendet werden.

11.4 Differentialgleichungen höherer Ordnung

11.4.1 Differentialgleichungen höhere Ordnung

Sei $G\subseteq\mathbb{R}^{n+1}$ und $f:G\to\mathbb{R}$ stetig. Eine Funktion $y:I\subseteq\mathbb{R}\to\mathbb{R}$ heißt Lösung von

$$y^{(n)} = f(x, y', \dots, y^{(n-1)})$$

wenn y auf dem Intervall I n-mal differentierbar ist und

1.

$$\begin{pmatrix} x \\ y(x) \\ y'(x) \\ \vdots \\ y^{(n-1)}(x) \end{pmatrix} \in G \ \forall x \in I$$

und es gilt

$$y'(x) = y'_1(x)$$

$$\vdots$$

$$y^{(n-1)}(x) = y'_{n-1}(x)$$

$$y'_n(x) = y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x)) = f(x, y_1(x), \dots, y_n(x))$$

11.4.2 Picard-Lindelöf für DGLen höherer Ordnung

Eine DGL n-ter Ordnung $y^{(n)}=f(x,y,y',\ldots,y^{(n-1)})$ mit Anfangsbedingung $y(x_0)=b_1,y'(x_0)=b_2,\ldots,y^{(n-1)}(x_0)=b_n$ ist eindeutig lösbar, wenn f die

L-Bed.:

$$\exists L > 0 : \left| f(x, y_1, \dots, y_n) - f(x, \tilde{y_1}, \dots, \tilde{y_n}) \right| < L \left\| \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\| - \begin{pmatrix} \tilde{y_1} \\ \vdots \\ \tilde{y_n} \end{pmatrix}$$

erfüllt.

11.4.3 Definition lineare DGL n-ter Ordnung

Seien $a_k:I\to\mathbb{R}$ stetige Funktionen für $k\in\{0,\dots,n-1\},$ dann heißt eine DGL der Form

$$y^{(n)} + \sum_{k=0}^{n+1} a_k(x)y_{(k)} = h(x)$$

eine lineare DGL n-ter Ordnung. Falls $h(x) \cong 0$ gilt nennt man dies eine homogene DGL, sonst einen inhomogene DGL. Das zugehörige AWP hat Anfangsbedinungen $y(x_0) = \eta_1, \dots, y^{(n-1)}(x_0) = \eta_n$.

11.4.4 DGL-System zu einer linearen DGL n-ter Ordnung

Bei einer linearen DGL n-ter Ordnung lautet das zugehörige System der homogenen DGL n-ter Ordnung

$$\vec{y}' = \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix} = F(x, \vec{y}) = A(x) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

mit

$$A(x) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\ -a_0(x) & -a_1(x) & -a_2(x) & \cdots & -a_{n-3}(x) & -a_{n-2}(x) & -an-1(x) \end{pmatrix}$$

die Arte der Matrix von A(x) heißt Frobenius-Matrix.

Bei einer inhomogenen linearen DGL n-ter Ordnung lautet das System:

$$\vec{y}' = A(x)\vec{y} + b(x)$$

mit A(x) wie oben und

$$b(x) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ h(x) \end{pmatrix}$$

11.4.5 FS und Wronski-Determinante

Schreibt man eine linear DGL n-ter Ordnug in ein System 1. Ordnung um, so können Begriffe wie Wronski-Determinante und FS entsprechend übertragen werden.

11.4.6 Definition FS und Wronski-Determinante

Sei $I\subseteq\mathbb{R}$ ein Intervall mit |I|>0 und $a_0,\ldots,a_{n-1}:I\to\mathbb{R}$ stetig. Sind y_1,\ldots,y_n (homogene) Lösungen von

$$y^{(n)} + \sum_{k=0}^{n-1} a_k(x)y^{(k)} = 0$$

- (a) Die Lösungen y_1, \ldots, y_n heißen Fundamentalsystem wenn y_1, \ldots, y_n linear unabhängig sind.
- (b) Wir definieren $W: I \to \mathbb{R}$ mit

$$W(x) = \det \begin{pmatrix} y_1(x) & \cdots & y_n(x) \\ y'_1(x) & \cdots & y'_n(x) \\ \vdots & \vdots & \vdots \\ y_1^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{pmatrix}$$

und nennen diese Funktion die Wronski-Determinante (von y_1, \ldots, y_n).

11.4.7 Lösungsraum linearer DGLen n-ter Ordnung

Sei $y^{(n)} + \sum_{k=0}^{n-1} a_k(x) y^{(k)} = h(x)$ eine lineare DGL n-ter Ordnung mit $a_0, \ldots, a_{n-1} : I \to \mathbb{R}$ stetig auf $I \subseteq \mathbb{R}$ (I ein Intervall mit |I| > 0).

- (a) Die Lösungsmenge von homogenen Problemen $y^{(n)}+\sum_{k=0}^{n-1}a_k(x)y^{(k)}=0$ ist ein Unterraum von $C^n(I)$
- (b) Ist y_p eine partikuläre Lösung d.h. Lösung von $y^{(n)} + \sum_{k=0}^{n-1} a_k(x) y^{(k)} = h(x)$ und $y: I \to \mathbb{R}$ eine weitere partikuläre Lösung, dann ist $y y_p$ eine homogene Lösung.

Bemerkung

Diese Aussagen kann man nutzen um ein AWP zu lösen:

- 1. y_p und FS y_1, \ldots, y_n (also Basis des homogenen Lösungsraums bestimmen).
- 2. Mit $y = y_p + \alpha_1 y_1 + \ldots + \alpha_n y_n$ hat man die allgemeine Lösung die mit $y(x_0) = \eta_1, y'(x_0) = \eta_2, \ldots, y^{(n-1)}(x_0) \eta_n$ die $\alpha_1, \ldots, \alpha_n$ als Lösung eines LGS bestimmt werden können.

11.4.8 Lösungen und Wronksi-Determninanten

Sind y_1, \ldots, y_n (homogene) Lösungen von $y^{(n)} + \sum_{k=0}^{n-1} a_k(x) y^{(k)} = 0$ mit Wronski-Det $W: I \to \mathbb{R}, x \mapsto W(x)$, dann gilt

- (a) W'(x) = -an 1(x)W(x) und deshalb $W(x) = W(x_0) \exp\left(\int_{x_0}^x -a_{n-1}(t) dt\right)$
- (b) Folgende Aussagen sind äquivalent
 - (a) y_1, \ldots, y_n bilden ein FS
 - (b) $W(x) \neq 0 \ \forall x \in I$
 - (c) $\exists x \in I : W(x) \neq 0$
- (c) Eine Lösung von $y^{(n)} + \sum_{k=0}^{n-1} a_k(x)y^{(k)} = h(x)$ ist bestimmt durch $y_p = \sum_{k=1}^n c_k(x)y_k(x)$ mit
 - (a) y_1, \ldots, y_n einem Fundamentalsystems der homogenen DGL
 - (b)

$$c_k(x) = \int^x \frac{W_k(t)}{W(t)} \, \mathrm{d}t$$

(c) Dabei ist $W_k: I \to \mathbb{R}$ definiert als

$$W_k(x) = \det \begin{pmatrix} y_1(x) & \cdots & y_{k-1}(x) & 0 & y_{k+1}(x) & \cdots & y_n(x) \\ y'_1(x) & \cdots & y'_{k-1}(x) & 0 & y'_{k+1}(x) & \cdots & y'_n(x) \\ \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ y_1^{(n-2)}(x) & \cdots & y_{k-1}^{(n-2)}(x) & 0 & y_{k+1}^{(n-2)}(x) & \cdots & y_n^{(k-2)}(x) \\ y_1^{(n-1)}(x) & \cdots & y_{k-1}^{(n-1)}(x) & h(x) & y_{k+1}^{(n-1)}(x) & \cdots & y_n^{(k-1)}(x) \end{pmatrix}$$

11.5 Lineare DGLen n-ter Ordnung mit konstanten Koeffizienten

11.5.1 Charakterisitisches Polynom einer Frobenius Matrix

Seien $a_0, \ldots, a_{n-1} \in \mathbb{C}$ und A eine Frobenius Matrix mit

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-3} & -a_{n-2} & -a_{n-1} \end{pmatrix}$$

dann ist $p_A(\lambda) = \det(\lambda I - A) = \lambda^n + \sum_{k=0}^{n-1} a_k \lambda^k$.

11.5.2 Zusammenhang Nullstellen des char. Polynoms und Lösung der (hom.) DGL

Seien $a_0, \ldots, a_{n-1} \in \mathbb{R}$ und $L(y) := y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)}$ mit $L: C^{(n)}(\mathbb{R}) \to C(\mathbb{R})$ dann gilt:

- (a) $L(e^{\lambda x}) = p_A(\lambda) \cdot e^{\lambda x}$
- (b) Wenn $p_A(\lambda) = 0$ ist, dann ist $y(x) = e^{\lambda x}$ eine Lösung von L(y) = 0

11.5.3 FS für lineare DGLen n-ter Ordnung mit konstanten Koeffizienten

Seien $a_0, \ldots, a_{n-1} \in \mathbb{R}, L(y) = y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)}$ und $\lambda_1, \ldots, \lambda_n$ sind Nullstellen von $p_A(\lambda) = \lambda^n + \sum_{k=0}^{n-1} a_k \lambda^k$ mit Vielfachheiten r_1, \ldots, r_p also $p_A(\lambda) = (\lambda - \tilde{\lambda_1})^{r_1} \cdot (\lambda - \tilde{\lambda_2})^{r_2} \cdots (\lambda - \tilde{\lambda_p})^{r_p}$. Dann erhält man ein FS von L(y) mit den durch

$$e^{\lambda_1 x}, x \cdot e^{\lambda_1 x}, x^2 \cdot e^{\lambda_1 x}, \cdots, x^{r_1} e^{\lambda_1 x}$$

$$e^{\lambda_2 x}, x \cdot e^{\lambda_2 x}, x^2 \cdot e^{\lambda_2 x}, \cdots, x^{r_2} e^{\lambda_1 x}$$

$$\vdots$$

$$e^{\lambda_p x}, x \cdot e^{\lambda_p x}, x^2 \cdot e^{\lambda_p x}, \cdots, x^{r_p} e^{\lambda_p x}$$

dargestellten (eventuell komplexen) Funktionen in x. Diese Funktionen bezeichnen wir mit $y_{i,l}$ mit

$$y_{i,l}(x) = x^{l-1}e^{\lambda_i x}$$
 mit $1 \le i \le p \land 1 \le l \le r_i$

Bemerkung

1. Das heißt die allgemeine homogene Lösung von L(y)=0 ist gegeben durch:

$$y_h(x) \sum_{i=1}^{p} \sum_{l=1}^{r_i} \alpha_{i,l} y_{i,l}(x)$$

2. Aus der komplexen homogenen Lösung lassen sich wieder reele homogene Lösungen durch Linearkombinationen bestimmen.

Kapitel 12

Ergänzung zur Analysis

12.1 Äquivalenzrelation und Äquivalenzklassen

12.1.1 Definition

Sei X eine beliebige Menge, mit $\tilde{}$ wird eine Eigenschaft zwischen zwei Elementen definiert (Formal: $\tilde{}$: $X \times X \to \{Wahr, Falsch\}$). Diese Relation heißt Äquivalenzrelation wenn gilt:

- 1. $\tilde{aa} \ \forall a \in X$
- 2. $\tilde{ab} \Rightarrow \tilde{ba} \ \forall a, b \in X$
- 3. $\tilde{ab} \wedge \tilde{bc} \Rightarrow \tilde{ac} \ \forall a, b, c \in X$

Mit so einer Relation kann man X in Äquivalenzklassen \hat{x} zerlegen:

$$\hat{x} := \{ A \subseteq X : \text{Für} a, b \in X \text{ gilt } \tilde{ab} \land \text{für kein} y \in A^C \text{gilt} \tilde{ya} \text{ für } a \in A \}$$

A ist die größte Teilmenge von X in der alle Elemente in Relation stehen.

12.2 Distributionen

12.2.1 Testfunktionen

1. Eine Funktion $\Phi:\mathbb{R}\to\mathbb{R}$ heißt Testfunktion, wenn $\Phi\in C_0^\infty$ gilt, d.h $\Phi\in C^\infty$ und

$$\exists c > 0: \ \Phi(x) = 0 \ \forall x \notin [-c, c]$$

die Menge aller Testfunktionen bezeichnen wir mit D d.h. $D = C_0^{\infty}$.

2. Eine Folge $(\Phi_n)_{n=1}^\infty\subseteq D$ heißt konvergent, wenn ein $\Phi\in D$ existiert mit Φ_n konvergiert gleichmäßig gegen

$$\Phi \Leftrightarrow \forall \varepsilon > 0 : \exists n_0 : |\Phi(x) - \Phi_n(x)| < \varepsilon \ \forall x \in \mathbb{R}, n \ge n_0$$

12.2.2 Distributionen

Eine Funktion $f: D \to \mathbb{R}$ heißt Distribution, wenn

- 1. f ein lineares Funktional ist, das heißt es gilt:
 - (a) Der Wertebereich von f ist \mathbb{R} (oder \mathbb{C})
 - (b) $\forall \Phi, \Psi \in D, \alpha, \beta \in \mathbb{R}$ gilt

$$f(\alpha \Phi + \beta \Psi) = \alpha f(\Phi) + \beta f(\Psi)$$

2. f ist stetig, d.h.

$$\Phi_n \to \Phi(n \to \infty) \Rightarrow f(\Phi_n) \to f(\Phi)(n \to \infty)$$
 (12.1)

Bemerkung:

Die Menge aller Distribution nennen wir D'

12.2.3 Duale Paarung und Repräsentanten

1. Ist $f \in D'$ und $\Phi \in D$ dann schreibt man

$$\langle f, \Phi \rangle = f(\Phi)$$

2. Eine Funktion $\tilde{f}:\mathbb{R}\to\mathbb{R}$ heißt Repräsentant von $f\in D',$ wenn gilt

$$< f, \Phi > = \int_{-\infty}^{\infty} \tilde{f}(x) \Phi(x) dx = < \tilde{f}, \Phi >$$

das heißt f kann man sich vorstellen.

Bemerkung:

Wenn eine Distribution einen Repräsentanten besitzt ist dieser nicht eindeutig.

12.2.4 Ableitung einer Distribution

Sei $f \in D'$, dann heißt f' die schwache Ableitung von f wenn gilt:

$$\langle f', \Phi \rangle = - \langle f, \Phi' \rangle \ \forall \Phi \in D$$

12.3 Fouriertransformation

12.3.1 Definition Fourier-Trafo

Sei $f:\mathbb{R}\to\mathbb{C}$ stückweise stetig und gelte

$$\int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t < \infty$$

dann heißt

$$\hat{f}(x) = F_f(x) = \infty_{-\infty}^{\infty} f(t) \exp(-itx) dt$$

die Fourier-Transformierte von f.

12.3.2 Stetigkeit der Fourier-Transformierten

Sei $f: \mathbb{R} \to \mathbb{C}$ stückweise stetig und $\int_{-\infty}^{\infty} |f(t)| dt < \infty$ dann ist $F_f(x)$ beschränkt und stetig.

12.3.3 Zeitliche Verschiebung und Skalierung der Fouriertransformierten

Seien $f_1, f_2, f : \mathbb{R} \to \mathbb{C}$ stückweise stetig und $\int_{-\infty}^{\infty} |f(t)| dt < \infty$ sowie $\int_{-\infty}^{\infty} |f_k(t)| dt k \in \{1, 2\}.$

Definiere $g: \mathbb{R} \to \mathbb{C}$ mit

$$g(t) = f(a * t + b)$$

dann gilt

1.

$$F_g(x) = \frac{1}{|x|} \exp(ix\frac{b}{a}) \cdot F_f(\frac{x}{a}) \text{ für } a \neq 0$$

2.

$$F_{\alpha f_1 + \beta f_2}(x) = \alpha F_{f_1}(x) + \beta F_{f_2}(x)$$

12.3.4 Ableitung der Fouriertransformierten

Ist $f: \mathbb{R} \to \mathbb{C}$ stückweise stetig, $\int_{-\infty}^{\infty} |f(t)| \, dt < \infty$ sowie $\int_{-\infty}^{\infty} |tf(t)| \, dt < \infty$. Definiere g(t) = tf(t). Ist f differentierbar, dann ist F_f ebenfalls differentierbar und es gilt:

$$F_f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_f(x) = -i F_g(x)$$

12.3.5 Fouriertransformation der Ableitung

Sei $f: \mathbb{R} \to \mathbb{C}$ stetig differentierbar und $\int_{-\infty}^{\infty} |f(t)| \, dt < \infty$ und $\int_{-\infty}^{\infty} |f'(t)| \, dt < \infty$ sowie $\lim t \to \infty f(t) = \lim_{t \to -\infty} = 0$, dann folgt

$$F_{f'}(x) = ixF_f(x)$$

12.3.6 Definition inverse Fouriertransformation

Sei $f:\mathbb{R}\to\mathbb{R}$ Lipschitz-Stetig und stückweise stetig differentierbar mit $\int_{-\infty}^\infty<\infty$ dann gilt:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(itx) F_f(x) \, dx$$

12.3.7 Plancherel

Ist f Lipschitz stetig auf $\mathbb R$ und stückweise stetig differentierbar mit $\int_{-\infty}^{\infty} \left| f(t) \right| \, \mathrm{d}t < \infty$, dann konvergiert $\int_{-\infty}^{\infty} \left| f(t) \right|^2 \, \mathrm{d}t < \infty$ und es gilt:

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |F_f(x)|^2 dx$$

12.3.8 Definition Faltung

Seien $f,g:\mathbb{R}\to\mathbb{C}$ gegeben und das Integral $\int_{-\infty}^\infty f(x-t)g(t)\,\mathrm{d}t$ existiert für alle $x\in\mathbb{R}$, dann heißt die Funktion $f*g:\mathbb{R}\to\mathbb{C}$ mit

$$(f * g)(x) := \int_{-\infty}^{\infty} f(x-t)g(t) dt$$

die Faltung von f und g.

12.3.9 Fouriertransformation der Faltung

Sei $f,g:\mathbb{R}\to\mathbb{C}$ stetig und $\int_{-\infty}^{\infty} \left|f(t)\right| \,\mathrm{d}t < \infty$ und $\int_{-\infty}^{\infty} \left|g(t)\right| \,\mathrm{d}t < \infty$. Ferner sei g beschränkt, dann konvergiert $\int_{-\infty}^{\infty} f(x-t)g(t) \,\mathrm{d}t \,\,\forall x\in\mathbb{R}$ und es gilt:

$$F_{f*g}(x) = F_f(x) \cdot F_g(x)$$

12.3.10 Fouriertransformation im Distributionenellen Sinne

Für eine Distribution $f \in D'$ definieren wir die Fouriertransformation F_f durch:

$$\langle F_f, \Phi \rangle = \langle f, F_{\Phi} \rangle \forall \Phi \in D$$

Kapitel 13

Funktionentheorie

13.1 Grundlagen

13.1.1 Definition Stetigkeit

Sei $M \subseteq \mathbb{C}$ und $f: M \to \mathbb{C}$

1. f heißt stetig in $z_0 \in M$, wenn gilt

$$\forall \varepsilon > 0 \ \exists \delta > 0 : |f(z) - f(z_o)| < \varepsilon \ \forall z \in M \land |z - z_0| < \delta$$

- 2. f heißt stetig aus M, wenn f in jedem $z_0 \in M$ stetig ist
- 3. Eine stetige Funktion $\delta[a,b] \subseteq \mathbb{R} \to \mathbb{C}$ heißt Kurve in \mathbb{C}

13.1.2 Definition Argument

Sei $z \in \mathbb{C}, z \neq 0$. Jede Zahl $\phi \in \mathbb{R}$ mit

$$\frac{z}{|z|} = \exp(i\phi)$$

heißt ein Argument vozund wird mit $\arg(z)$ bezeichnet. Das einedeutig bestimmte Argument aus dem Intervall $[0,2\pi)$ heißt Hauptargument von zund wird mit $\mathrm{Arg}(z)$ bezeichnet.

Bemerkung:

Das Intervall des Hauptarguments könnte man auch als $[-\pi,\pi)$ oder $(-\pi,\pi]$ wählen.

13.1.3 Komplexe Wurzel

1. Es existieren genau zwei stetige Funktionen $\mathbb{C}\setminus(-\infty,0]\to\mathbb{C}$ mit $g(z)=z^2$. Diese sind:

$$g_1(z) = \sqrt{|x|} \exp(i\frac{\operatorname{Arg}(z)}{2})$$

 $g_2(z) = -\sqrt{|x|} \exp(i\frac{\operatorname{Arg}(z)}{2})$

2. Es existiert keine stetige Funktion $g: \mathbb{C} \to \mathbb{C}$ mit $g(z^2) = z$

13.1.4 Definition komplexer Logarithmus

Zu jedem $z \in \mathbb{C} \setminus \{0\}$ existiert ein eindeutig bestimmtes $w \in \mathbb{C}$

- 1. $\Im(w) \in (-\pi, \pi]$
- $2. \exp(w) = z$

dieses w nennen wir den Hauptwert des Logarithmus von z und bezeichnen diesen mit w = Log(z).

Bemerkung:

Durch die Funktion

$$\text{Log}: \mathbb{C}\backslash\{0\} \to \{z \in \mathbb{C}: \Im(z) \in (-\pi,\pi]\}$$

mit $\text{Log}(z) := \log(|z|) + i \operatorname{Arg}(z)$ bezeichnen wir den Hauptwert des komplexen Logarithmus.

13.2 Komplexe Differenzierbarkeit

13.2.1 Definition

Sei $M\subseteq\mathbb{C}$ offen und $f:M\to\mathbb{C}$: f heißt differentierbar in $z_0\in M$, wenn der Grenzwert

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

existiert. Dieser Grenzwert heißt dann Ableitung von f bei z_0 .

13.2.2 Cauchy-Riemann'sche Differentialgleichungen

Sei $M \subseteq \mathbb{C}$ und $M \neq \emptyset$, $f: M \to \mathbb{C}$ weiter sei $z_0 = x_0 + iy_0 \in M$ und $x_0, y_0 \in \mathbb{R}$. Definiere:

$$u(x,y) = \Re(f(x+iy))$$

 $v(x,y) = \Im(f(x+iy))$

sowie $F: \tilde{M} \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ mit $F(x,y) = (u(x,y),v(x,y))^T$ dann gilt:

f ist differentierbar in $z_0 \Leftrightarrow \text{In } z_0$ gelten die CR-DGLen

Die CR-DGLen lauten:

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$

 $u_y(x_0, y_0) = v_x(x_0, y_0)$

Bemerkung:

Wenn die CR-DGLen erfüllt sind ist die Jacobi-Matrix $f'(x_0)$ eine Dreh-Matrix.

13.2.3 Definition Holomorphe Funktionen

Sei $M \subseteq \mathbb{C}$ offen, $M \neq \emptyset, z \in M, f : M \to \mathbb{C}$:

- 1. f heißt in z_0 holomorph, wenn ein $\varepsilon > 0$ existiert, so dass f auf $U_{\varepsilon}(z_0)$ komplex differentierbar ist
- 2. f heißt auf M holomorph, wenn f in jedem $z_0 \in M$ holomorph ist

Bemerkung:

Statt Holomorph sagt man auch analytisch.

13.2.4 Definition orientierter Winkel

Für $z_1, z_2 \in \mathbb{C} \setminus \{0\}$ heißt $\arg(\frac{z_2}{z_1}) := arg(z_2) - arg(z_1)$ der orientierte Winkel von z_1 nach z_2 .

13.2.5 Definition Winkeltreue

Seien $\gamma_1:I_1\to\mathbb{C}, \gamma_2:I_2\to\mathbb{C}$ mit reelem Intervallen I_1,I_2 zwei stetig differentierbare Kurven. Gelte etwa $c=\gamma_1(t_1)=\gamma_2(t_2)$ für $t_1\in I_1,t_2\in I_2$ und weiter sei M eine offene Menge mit $c\in M$ und $f\in H(M)$ mit $f'(c)\neq 0$. Dann schneiden sich die Kurven γ_1,γ_2 im gleichen Winkel wie die abgebildeten Kurven $f\circ\gamma_1,f\circ\gamma_2$.

13.2.6 Biholomorphe Funktionen

Seien $M_1, M_2 \subseteq \mathbb{C}, M_1, M_2 \neq \emptyset$. Eine bijektive Funktion $f: M_1 \to M_2$ heißt biholomorph, wenn $f \in H(M_1)$ und $f^{-1} \in H(M_2)$.

13.2.7 Ableitung der Umkehrfunktion

Seien $M_1, M_2 \subseteq \mathbb{C}$ und nicht leer $f: M_1 \to M_2$ biholomorph und $f'(z) \neq 0 \ \forall z \in M_1$ dann gilt:

$$\frac{\mathrm{d}}{\mathrm{d}z}f^{-1}(z) = \frac{1}{f'(f^{-1}(z))}$$

13.3 Komplexe Kurvenintegrale

13.3.1 Eigenschaften komplexer Kurvenintegrale

Für $f,g:[a,b]\to\mathbb{C}$ stetig, $\alpha,\beta\in\mathbb{C}$ gilt

1.

$$\int_a^b (\alpha f + \beta g)(t) dt = \alpha \int_a^b f(t) dt + \beta \int_a^b g(t) dt$$

2.

$$\int_a^c f(t) dt + \int_c^b f(t) dt = \int_a^b f(t) dt$$

3. Gilt $F'(t) = f(t) \ \forall t \ dann \ folgt$

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

4.

$$\operatorname{Re}\left(\int_{a}^{b} f(t) \, dt\right) = \int_{a}^{b} \operatorname{Re}\left(f(t)\right) \, dt$$

$$\operatorname{Im}\left(\int_{a}^{b} f(t) \, dt\right) = \int_{a}^{b} \operatorname{Im}\left(f(t)\right) \, dt$$

5.

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| \le \int_{a}^{b} \left| f(t) \right| \, \mathrm{d}t$$

13.3.2 Definition Kurveneigenschaften

Sei $\gamma:[a,b]\subseteq\mathbb{R}\to\mathbb{C}$ eine Kurve (d.h. stetige Funktion) dann definiert man

- 1. γ ist glatt, wenn γ stetig differentierbar ist
- 2. γ ist stückweise glatt, wenn γ stückweise stetig differentierbar ist
- 3. Ist γ stückweise glatt, dann nennt man

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)| \, \mathrm{d}t$$

die Länge von γ .

13.3.3 Komplexe Kurvenintegrale

Sei $M\subseteq \mathbb{C}, f:M\to \mathbb{C}$ und $\gamma:[a,b]\to \mathbb{C}$ stückweise glatt, dann definieren wir:

$$\int_{\gamma} f(z) \, dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) \, dt$$

13.3.4 Konvention zu kreisförmigen Kurven

Für Kurvenintegrale bei denen γ einen positiv durchlaufenen Kreis darstellt schreiben wir

$$\int_{|z-z_0|=r} f(z) \, dz = \int_{\gamma} f(z) \, dz$$

es gilt also:

$$\gamma: [0, 2\pi] \to \mathbb{C} \ \gamma(t) \mapsto z_0 + re^{it}$$

13.4 Cauchy-Integralsatz

13.4.1 Geschlossene Kurvenintegrale

Sei $G \subseteq \mathbb{C}$ ein Gebiet und $p \in G$ und $f : G \to \mathbb{C}$ stetig, sowie $f : G \setminus \{p\} \to \mathbb{C}$ holomorph. Dann gitl für jedes Dreieck $\Delta \subseteq G$ (dessen Rand mit $\partial \Delta$ bezeichnet wird):

$$\int_{\partial \Delta} f = \int_{\partial \Delta} f(z) \, dz = 0$$

13.4.2 Definition Windungszahl

Sei γ eine geschlossene, stückweise glatte Kurve und z_0 ein Punkt der nicht auf γ liegt, dann heißt

$$N_{\gamma}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} \, \mathrm{d}z$$

die Windungszahl von γ um z_0 .

Bemerkung:

Es gilt $N_{\gamma}(z_0) \in \mathbb{Z}$.

13.4.3 Eigenschaften der Windungszahl

Sei $\gamma \to \mathbb{C}$ stetig, stückweise glatt und geschlossen, G ein Gebiet mit $G \subseteq \mathbb{C}\backslash \gamma([a,b])$ (das heißt ohne den Träger von γ), dann gilt:

- 1. $N_{\gamma}(z)$ ist konstant auf G
- 2. Im Fall $\{z \in \mathbb{C} : |z| > |\gamma(t)| \ \forall t \in [a, b] \}$ gilt $N_{\gamma}(z) = 0$

13.4.4 Windungszahl über zusammenhängende Gebiete

Sei $\gamma:[a,b]\to\mathbb{C}$ stückweise glatt und geschlossen, G ein Gebiet mit $G\subseteq\mathbb{C}\backslash\gamma([a,b])$. Dann gilt:

1. $N_{\gamma}(z)$ ist stückweise konstant, das heißt existiert für zwei Punkte z_1, z_2 eine Kurve $\Psi \in G$, die z_1, z_2 verbindet, dann ist

$$N_{\gamma}(z_1) = N_{\gamma}(z_2)$$

2. Für ein $z \in G$ mit $G = \{z \in \mathbb{C} : |z| > |\gamma(t)| \ \forall t \in [a, b]\}$ gilt $N_{\gamma}(z) = 0$.

13.4.5 Cauchy-Integralformel für sternförmige Gebiete

Sei $G \subseteq \mathbb{C}$ bezüglich einem $c \in G$ sternförmig, γ eine stückweise glatte, geschlossene Kurve, $f \in H(G)$ dann gilt für alle z_0 , die nicht auf γ liegen mit $\gamma, z_0 \in G$:

$$N_{\gamma}(z_0)f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz$$

13.4.6 Mittelwerteigenschaften der Cauchy-Integralformel

Für jede Funktion $f \in H(U_R(z_0))$ und $r \in (0, R)$ gilt:

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$

13.4.7 Definition n-te Ableitung

Sei $M \subseteq \mathbb{C}$ offen und $f: M \to \mathbb{C}$. Wir setzten $f^{(0)} = f(z) \ \forall z \in M$ ist $f^{(n)}$ in einer Umgebung von $z_0 \in M$ holomorph, definieren wir $f^{(n+1)}(z) = \frac{\mathrm{d}}{\mathrm{d}z} f^{(n)}(z)$ für z in dieser Umgebung.

13.4.8 Cauchy-Integral formel für n-te Ableitung

Sei $G \subseteq \mathbb{C}$ ein Gebiet und $f \in H(G)$, dann gilt

- 1. $f^{(n)}(z)$ existiert für alle $z \in G$ und für alle $n \in \mathbb{N}_0$
- 2. Für alle $z \in G$ und R > 0 mit $\overline{U_R(z_0)} \subseteq G$ gilt

$$f^{(n)}(z_1) = \frac{n!}{2\pi i} \int_{|z-z_0| < R} \frac{f(z)}{(z-z_1)^{n+1}} dz$$

für $z_1 \in U_R(z_0)$.

13.5 Eigenschaften holomorpher Funktionen

13.5.1 Holomorphe Funktionen und Potenzreihen

Sei $G \in \mathbb{C}$ ein Gebiet, $z_0 \in G, R > 0$ mit $U_R(z_0) \subseteq G$. Weiter sei $f \in H(G)$, dann gilt:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \ \forall z \in U_R(z_0)$$

13.5.2 Abschätzung der Ableitung

Sei $G \subseteq \mathbb{C}$ und $f \in H(G)$, dann gilt für alle $n \in \mathbb{N}_0$ und alle $z_0 \in G$ und r > 0 mit $\overline{U_R(z_0)} \subseteq G$:

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{r^n} \max_{|z-z_0|=r} f(z)$$

13.5.3 Definition ganze Funktion

Eine Funktion $f \in H(\mathbb{C})$ heißt ganze Funktion.

13.5.4 Satz von Lionville

Jede ganze, beschränkte Funktion ist konstant.

13.5.5 Fundamentalsatz der Algebra

Ist p ein Polynom vom Grad n mit $n \ge 1$, dann besitzt p eine Nullstelle (in \mathbb{C}).

13.5.6 Identitätssatz für holomorphe Funktionen

Sei $G \subseteq \mathbb{C}$ und $f \in H(G)$ dann sind folgende Aussagen äquivalent:

- 1. $f \equiv 0$ auf G
- 2. Die Menge der Nullstellen von f,d.h. $\{z\in\mathbb{C}:f(z)=0\}$ hat einen Häufungspunkt $z_0\in G$

3.

$$\exists z_0 : f^{(k)}(z_0) = 0 \ \forall k \in \mathbb{N}_0$$

13.5.7 Maximumsprinzip

Sei $G \subseteq \mathbb{C}$ ein Gebiet und $f \in H(G)$, dann gilt:

- 1. Besitzt |f| ein lokales Maximum, dann ist |f| konstant.
- 2. Ist G beschränkt und fstetig auf $\overline{G},$ so nimmt |f| sein Maximum auf dem Rand an.

13.5.8 Abschätzung von Potenzreihen

Sei $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$ eine Potenzreihe mit Konvergenzradius R>0, dann gilt:

$$\sum_{k=0}^{\infty} |a_k|^2 R^{2k} = \frac{1}{2\pi} \int_0^{2\pi} \left| f(z_0 + Re^{it}) \right|^2 dt \le \max_{|z-z_0|=R} \left| f(z) \right|^2$$

13.6 Isolierte Singularitäten

13.6.1 Definition isolierte Singularitäten

Sei $M \in \mathbb{C}$ und $f \in H(M)$, dann heißt ein isolierter Punkt von M^C eine isolierte Singularität von f.

13.6.2 Charakterisierung von isolierten Singularitäten

Eine isolierte Singularität z_0 von f heißt:

- 1. hebbar, falls f in einer punktierten ε -Umgebung von z_0 beschränkt ist
- 2. Polstelle (oder Pol) n-ter Ordnung, wenn ein $n \in \mathbb{N}$ existiert, so dass die durch $(z-z_0)f(z)$ definierte Funktion in z_0 eine hebbare Singularität besitzt.
- 3. wesentliche Singularität, wenn z_0 weder eine hebbare Singularität oder Polstelle ist

13.6.3 Riemannscher Hebbarkeitssatz

Sei $G \in \mathbb{C}$ ein Gebiet, $f \in H(G)$ und z_0 eine hebbare Singularität von f, dann gilt:

$$z_0$$
 hebbar $\Leftrightarrow \exists g \in H(U_{\varepsilon}(z_0)) : \varepsilon > 0 \land g(z) = f(z) \ \forall z \in \dot{U}_{\varepsilon}(z_0)$

13.6.4 Zusammenhang ganzrationale Funktionen und Polstellen

Sei $G \subseteq \mathbb{C}$ ein Gebiet, $f \in H(G), z_0$ eine isolierte Singularität von f, dann gilt:

$$z_0$$
 ist Pol mit Ordnung $m \Leftrightarrow \exists g \in H(U_{\varepsilon}(z_0)) : \varepsilon > 0 \land g(z_0) \neq 0 \land f(z) = \frac{g(z)}{(z-z_0)^m}$

13.6.5 Eigenschaften wesentlicher Singularitäten

Sei $G \subseteq \mathbb{C}$ ein Gebiet, $f \in H(G), z_0$ eine isolierte Singularität, dann gilt:

 z_0 ist eine wesentliche Singularität $\Leftrightarrow f$ kommt auf j
der punktierten ε -Umgebung von z_0 jedem Wert von

13.6.6 Variation von Kurven

Sei $R = \{z \in \mathbb{C} : r_1 \le |z| \le r_2\}$ mit $0 \le r_1 < r_2 \le \infty$ ein Ringgebiet und $f \in H(R)$. Dann gilt:

$$\int_{|z|=d_1} f(z) \, dz = \int_{|z|=d_2} f(z) \, dz$$

für d_1, d_2 mit $r_1 < d_1, d_2 < r_2$.

13.6.7 Holomorphie der Stammfunktion

Sei r>0 und $h:\{w\in\mathbb{C}:|w|=r\}\to\mathbb{C}$ stetig, dann ist die Funktion $F:U_r(0)\to\mathbb{C}$ mit

$$F(z) = \int_{|w|=r} \frac{h(w)}{z - w} \, \mathrm{d}w$$

holomorph.

13.6.8 Laurentzerlegung

Sei $G = \{z \in \mathbb{C} : r < |z - z_0| < R\}$ mit $0 \le r < R \le \infty$ und $f \in H(G)$. Dann existiert

- 1. $g \in H(U_R(0))$
- 2. $h \in H(U_{\underline{1}}(0))$

und es gilt

$$f(z) = g(z) + h(1/z)$$

Setzt man zusätzlich die Bedinung h(0)=0 voraus, dann ist die Zerlegung eindeutig.

13.6.9 Definition Laurentreihe

Eine unendliche Reihe der Form

$$\sum_{k=-\infty}^{\infty} a_k (z - z_0)^k$$

heißt formale Laurent-Reihe. Dabei heißt

$$\sum_{k=-\infty}^{-1} a_k (z-z_0)^k$$

der Hauptteil der Laurentreihe und

$$\sum_{k=0}^{\infty} a_k (z - z_0)^k$$

der Nebenteil der Laurentreihe. Die Laurentreihe ist konvergent wenn der Hauptteil und der Nebenteil (einzeln) konvergieren. In dem Fall ist:

$$\sum_{-\infty}^{\infty} a_k (z - z_0)^k = \sum_{0}^{\infty} a_k (z - z_0)^k + \sum_{-\infty}^{-1} a_k (z - z_0)^k$$

Bemerkung:

Das Konvergenzgebiet einer Laurentreihe ist ein Ringgebiet.

13.6.10 Berechnung der Laurent-Koeffizienten mit Cauchy und Taylor

Sei $f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^k$ für z mit $r < |z-z_0| < R$ dann gilt:

$$a_k = \frac{1}{2\pi i} \int_{|w-z_0|=d} \frac{f(w)}{w - {z_0}^{k+1}} dw$$

13.6.11 Zusammenhang Holomorphie und Laurentreihen

Ist f holomorph auf einem Ringgebiet $G = \{z : r < |z - z_0| < R\}$ dann ist f als Laurentreihe auf G darstellbar und die Koeffizienten sind eindeutig festgelegt.

13.7 Residuensatz

13.7.1 Definition Residduum

Sei $f \in H(\dot{U}_R(z_0)), R > 0$ mit zugehöriger Laurentreihe $f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^k$ dann heißt a_{-1} das Residuum von f bei z_0 und wird mit

$$Res(f, z_0) = a_{-1}$$

Bemerkung:

1. Es gilt:

Res
$$(f, z_0) = \frac{1}{2\pi i} \int_{|z-z_0|=r} f(w) dw$$

 $\min \, 0 < r < R$

2. Falls f bei z_0 holomorph ist oder eine hebbare Singularität hat ist

$$\operatorname{Res}(f, z_0) = 0$$

13.7.2 Bestimmung des Residuums

Sei $f \in H(\dot{U}_R(z_0)), R > 0, z_0$ ein Pol m-ter Ordnung, dann gilt:

Res
$$(f, z_0) = \frac{1}{(m-1)!} \left(\frac{\mathrm{d}}{\mathrm{d}z}\right)^{m-1} (z - z_0)^m f(z)|_{z=z_0}$$

13.7.3 L'Hospital für Residuen

Seien $f,g\in H(U_R(z_0))$ mit $f(z_0)\neq 0, g(z_0)=0, g'(z_0)\neq 0$ dann besitzt $\frac{f}{g}$ bei z_0 einen Pol 1-ter Ordnung und

$$\operatorname{Res}(\frac{f}{g}, z_0) = \frac{f(z_0)}{g'(z_0)}$$

13.7.4 Residuensatz

Sei $G \subseteq \mathbb{C}$ ein Elementargebiet und $z_1, \ldots z_n \in G$ verschiedene Punkte. Weiter sei $f \in H(G \setminus \{z_1, \ldots, z_n\})$ und γ eine geschlossene, stückweise glatte Kurve in $G \setminus \{z_1, \ldots, z_n\}$. Dann gilt:

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{m} N_{\gamma}(z_0) Res(f, z_0)$$

13.7.5 Anwendung des Residuensatz auf uneigentliche Integrale

Seien $z_1, \ldots, z_m (m \in \mathbb{N})$ verschieden Punkte der oberen (bzw. unteren) Halbebene und G die obere (bzw. untere) Halbebene von \mathbb{C} , dann gilt:

$$\lim_{|z| \to \infty} z f(z) = 0 \Rightarrow \int_{-\infty}^{\infty} f(x) \, dx = 2\pi i \sum_{k=1}^{m} \operatorname{Res}(f, z_k) \left(\text{bzw. } -2\pi i \sum_{k=1}^{m} \operatorname{Res}(f, z_k) \right)$$

13.7.6 Anwendung des Residuensatz auf bestimmte uneigentliche Integrale

Für Polynone p, q gilt (in der oberen Halbebene):

1.

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} dx = 2\pi i \int_{k=1}^{m} \text{Res}(\frac{p}{q}, z_k)$$

falls Grad $p \geq$ Grad q + 2

2.

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} e^{iwx} dx = 2\pi i \int_{k=1}^{m} \text{Res}(\frac{p}{q} e^{iwx}, z_k)$$

falls Grad $p \ge$ Grad q + 1

Teil IV Beweisansätze

HM 1

14.1 Grenzwerte

14.1.1 Eindeutigkeit des Grenzwert einer Folge

Zeige, dass Grenzwert a = Grenzwert b, nahrhafte 0

14.1.2 Konvergente Folgen sind beschränkt

Nahrhafte 0, Dreiecks-ugl.

14.1.3 Grenzwertrechenregeln

Nahrhafte 0, Dreiecks-ugl. $a_n \leq \gamma \ \forall n \Rightarrow a \leq \gamma$ Ausgehend von a über nahrh. 0 zu Def Konvergenz $a_n \leq b_n \ \forall n \Rightarrow a \leq b$ Definiere Hilfsfolge, argumentiere nach s.o Sandwich-Theorem Zeige, dass $-\varepsilon < c_n < \varepsilon$ (Quasi Epsilon-Schlauch)

14.1.4 Monotoniekriterium

 $\mathrm{Da}\,|a_n| < c \, \forall n,$ argumentiere über das Supremum der Menge, die aus a_n besteht

14.1.5 Grenzwert einer konv. Folge = Grenzwert jeder Teilfolge

Def. Konvergenz + Def Teilfolge

14.1.6 Charakterisierung lim und lim

Argumentiere über Eigneschaften sup und inf

14.1.7 Folge konv. $\overline{\lim} = \underline{\lim}$

Hin: Eindeutigkeit des Grenzwert; Rück: Charakterisierung lim Sup und lim Inf

14.1.8 Bolzano-Weierstraß

Zunächst für reelle Folge (trivial), dann für komplex: Realteil ist klar, Imaginärteil: Teilfolge konstruieren

14.1.9 Cauchykriterium

Hin: nahrhafte 0; Rück: zeige Beschränktheit, dann folge daraus, dass ein Häufungswert existiert und benutze diesen als Grenzwert-Kandidat

14.1.10 Reihe konv. Folge ist Nullfolge

Cauchy für Reihen

14.1.11 GrenzwertRR für Reihen

GrenzwertRR für Folgen

14.1.12 Reihe konv g. 0

Restreihe als Differenz darstellen

14.1.13 Leibniz

Cauchy für Reihen

14.1.14 Absolut konv. \Rightarrow konv.

Cauchy und Dreiecks-ugl.

14.1.15 Majorantenkriterium

Cauchy

14.1.16 Minorantenkriterium

Kontradiktion von Majorantenkriterium

14.1.17 Wurzelkriterium

Majorantenkrit: geom. Summe über $Q:=q+\varepsilon<1,$ in q das Wurzelkriteriumeinsetzen, Charakterisierung \varlimsup

14.1.18 Quotientenkriterium

Majorantenkrit: setze in q das Quotientenkriteriumein und Argumentation über $\overline{\lim}$

14.1.19 Hadamard

Wurzelkriterium+ Fallunterscheidung für Sonderfälle

14.1.20 Differenzieren / Integrieren von Potenzreihen

Wurzelkriterium

14.1.21 Lemma zu sin, cos und exp

Cauchy-Produkt + Definitionen

14.1.22
$$e^z \neq 0$$
 und $e^{-z} = \frac{1}{e^z}$

Inverses Element der Multiplikation

14.1.23 Pythagoras

3. binomische Formel

14.1.24
$$e^x > 0 \ \forall x \in \mathbb{R}$$

Betrachte $x \geq 0$, angeordneter Körper

14.1.25
$$1 + x \le e^x \ \forall x \in \mathbb{R}$$

Bernoulli

14.1.26
$$x < y \Rightarrow e^x < e^y$$

nahrhafte 0

14.1.27 Folgenkriterium

Hin: Def. Folgenkonv. und dann Def Funktionsgrenzwert einsetzen; Rück: Wähle versch. δ und zeige Widerspruch

14.1.28 Cauchy für Funktionen

 Hin: Def. Funktions Grenzwert +nahrhafte
 0; Rück: Cauchy für Folgen

14.1.29 Grenzwerte an Intervallgrenzen

Argumentiere über Supremum / Infimum

14.1.30 Verknüpfungen stetiger Funktionen stetig

Folgenkriterium

14.1.31 Potenzreihen sind innerhalb des Konvergenzradius stetig

Abschätzung: $\exists r>0: |x-x_0$ bzw. $x_1|\leq r,$ dann einfach $\big|f(x)-f(x_1)\big|$ nach oben abschätzen

14.1.32 Umgebung pos. Funktionswerte

Wähle $\varepsilon = \frac{f(x_0)}{2}$, Def. Stetigkeit

14.1.33 Zwischenwertsatz

Definiere $x_0 := \sup\{x \in [a,b] : f(x) \leq y\}$ und zwei Hilfsfolgen, die gegen x_0 konvergieren

14.1.34 Existenz \log

Zeigen exp ist bijektiv (Zwischenwertsatz)

14.1.35 Beschränktheit stetiger Funktionen

Annahme f nicht beschränkt Folgenkriterium

14.1.36 Weierstraß existenz min bzw. max

Zeigen das $\sup = \max$

HM 2

15.1 Integration

15.1.1 Riemann integrierbar impliziert Beschränktheit

Betrachte Riemannsumme

15.1.2 Rechenregeln für Integrale (Verkettung usw.)

Betrachte Riemannsumme

15.1.3 Transitivität

Betrachte Riemannsumme

15.1.4 1. MWS der Integralrechnung

Benutze die Tranisitivität des Integrals und folgende Abschätzung:

$$m \cdot g(x) \leq f(x)g(x) \leq M \cdot g(x)$$

mit
$$m := \inf_{[a,b]}(f)$$

$$M := \sup_{[a,b]}(f)$$

15.1.5 Eine Stammfunktion einer Funktion ist stetig und differentierbar

Stetigkeit mit $\delta-\varepsilon\textsc{-}K$ riterium nachrechen und dabei die Beschränktheit von fausnutzen

Differentierbarkeit mit Differenzenquotient prüfen (f muss stetig in x_0 sein)

15.1.6 Hauptsatz der DI

Schreibe F(b)-F(a) als Teleskopsumme und nutze den 1. MWS aus HM1 Zweiter Teil folgt aus 15.1.5

15.1.7 Monotonie impliziert Riemann Integrierbarkeitbarkeit

Betrachte Riemannsumme und nutze SWT (mithilfe der Randpunkte, die ξ einschließen)

15.1.8 2. MWS der Integralrechnung

Nur für den vereinfachten Fall $(f \in C^1[a,b], g \in C[a,b])$: Definiere passende Stammfunktion für g. Löse das Integral $\int_a^b f(x)g(x)dx$ über partielle Integration. Weiterhin wird 15.1.4 benötigt.

15.1.9 Integralkriterium

Nutze fogende Abschätzung:

$$f(n) = \int_{n}^{n+1} f(n) dt \ge \int_{n}^{n+1} f(t) dt \ge \int_{n}^{n+1} f(n+1) dt = f(n+1)$$

und dann das Majorantenkriterium.

15.2 Gleichmäßige Konvergenz

15.2.1 Stetigkeit der Grenzfunktion

Zeige Stetigkeit mithilfe $\delta-\varepsilon$ -Kriterium durch einfügen von nahrhaften Nullen. Und dann Dreiecksungleichungen.

15.3 Differentialrechnung mit mehreren Veränderlichen

15.3.1 Grenzwertrechenregeln

Verwende GWRR aus HM1, indem du die einzelnen Vektorkomponenten betrachtest.

15.3.2 Max/Min kompakter Mengen

(a) Konstruiere eine Folge aus der Menge A, die gegen das Supremum von A konvergiert und zeige damit, dass das Supremum in A enthlaten ist.

(b) Ansatz: Zeige, dass eine konvergente Folge $(y_n)_{n=1}^{\infty}$ aus dem Bild B von fB := f(A) beschränkt ist und gegen einen Wert in B konvergiert. Dazu nutzt du eine Folge $(x_n)_{n=1}^{\infty} \in A$ mit $f(x_n) = y_n$. Nutze nun die Stetigkeit von f.

15.3.3 Stetigkeit einer Funktion durch beschränkte partielle Ableitungen

Für $f:G\subseteq\mathbb{R}^n\to\mathbb{R}$ ist zu zeigen: $\left|\frac{\partial f}{\partial x_k}\right|\leq c_k\in\mathbb{R}\ \forall k\Rightarrow f\in C(G,\mathbb{R})$

Ansatz: Definition der Stetigkeit mit nahrhaften Nullen (verändere immer nur ein Argument aus f, sodass du den eindimensionalen Mittelwertsatz aus HM1 anwenden kannst).

15.3.4 Differentierbarkeit impliziert Stetigkeit

Betrachte $\lim_{x\to a} f(x)$ und setze die Definition für totale Differentierbarkeit ein.

15.3.5 Zusammenhang totale und partielle Diff'barkeit

Ist f total differentierbarbar und es ist zu zeigen: $\frac{\partial f(x)}{\partial r} = f'(x) \cdot r$ mit r eine Richtung.

Ansatz: Richtungsableitung mit Definition ausrechnen und dann die Definition der totalen Differentierbarkeit einsetzen. Betrachte also:

$$\left\| \frac{f(x+h\cdot r) - f(x)}{h} - J_f(x)\cdot r \right\|$$

Weiterhin ist zu zeigen, dass wenn alle partiellen Ableitungen von f stetig sind, f differentierbar ist. Dies haben wir nur für Skalarfelder gezeigt.

Ansatz: Schreibe f(x) = f(a) + (f(x) - f(a)) und gehe dann vor wie in 15.3.3.

15.3.6 Kettenregel

Setze in $g \circ f = g(f(x))$ die Definition der totalen Differentierbarkeit ein.

15.3.7 Notwendige Bedingung für Extrema

Definiere eine Hilfsfunktion $g(t) := f(x_0 + t(x - x_0))$ und argumentiere dann für lokale Extrema wie in HM1.

15.3.8 Mittelwertsatz

Hilfsfunktion g(t) := f(a + t(b - a)). Verwende den eindimensionale MWS.

15.3.9 Konstante Funktionen

Zeige: $f(x) \equiv \text{const} \Leftrightarrow \nabla f(x) = \vec{0} \ \forall x \in G$

Ansatz für Rückrichtung: Nutze die Punkte eines Polygonzuges vom Punkt a nach Punkt x und den MWS.

15.3.10 Taylor

Nutze die Hilfsfunktion g(t) := f(a + t(b - a)) und Taylor aus HM1.

15.3.11 Hinreichende Bedingung für Extrema

Nutze den Satz von Taylor.

15.3.12 Beweisidee für den Hauptsatz über implizite Funktionen

Laut Voraussetzung ist $g(x,y) \in C^1(G,\mathbb{R})$. Deswegen kann man g als näherungsweise linear annehmen (lokal betrachtet). Mit dieser Näherung lässt sich g einfach nach z.B. y auflösen.

15.3.13 Herleitung für die Ableitung der Auflösung

Hier für den Fall $g:G\subseteq\mathbb{R}^2\to\mathbb{R}$. Nutze folgenden Ansatz:

$$\frac{\mathrm{d}}{\mathrm{d}x}g(x,f(x)) \stackrel{!}{=} 0$$

Diese Gleichung lässt sich einfach nach f'(x) auflösen.

15.3.14 Satz von Lagrange

Nur für den vereinfachten Fall $f, g: G \subseteq \mathbb{R}^2 \to \mathbb{R}$

Da in userem Fall $\nabla g(x_0, y_0) \neq 0$, existiert eine Auflösung a nach x oder y. Damit kannst du dir eine Hilfsfunktion h(x) := f(x, a(x)) definieren und diese auf Extremstellen untersuchen (wie in HM1).

15.4 Integration in mehreren Veränderlichen

15.4.1 Ableitung in Integral ziehen

Betrachte

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) + F(x)}{h}$$

sowie

$$F'(x) - \int_a^b f_x(x,t) \, dt$$

F'(x) einsetzten, Integral in Grenzwert einsetzten, MWS, zeigen das Differenz im Grenzwert 0.

15.4.2 Fubini

Hilfsfunktion:

$$g(u) = \int_{\alpha}^{\beta} \int_{a}^{b} f(x,t) dt dx - \int_{a}^{b} \int_{\alpha}^{\beta} f(x,t) dx dt$$

zeigen dass $g'(u) \equiv 0$ und g(x) = g(a) = 0.

15.4.3 Leibniz Regel

Hilfsfunktion:

$$G(x, a, b) = \int_{a}^{b} f(x, t) dt$$

 ∇G berechenen, innere Ableitung.

15.4.4 Beweis-Idee Kurvenintegrale (Substitutionsregel)

Riemann Summe, Mittelwertsatz, Abschätzung für verschiedene ξ , da f stetig.

15.4.5 1. Hauptsatz für Kurvenintegrale

Kurvenintegral mit Parametrisierung, integrant als Ableitung darstellen.

15.4.6 Äquivalente Aussagen für Kurvenintegrale

Kurven kombinieren/aufteilen um aus mehreren Kurven eine geschlossene bzw. aus einer geschlossenen Kurven mehrer mit gleichem Anfangs-/Endpunkt zu erzeugen.

15.4.7 2. Hauptsatz für Kurvenintegrale

- 1. f stetig, $F \in \mathbb{C}^2$, Satz von Schwarz
- 2. Nur für Sternförmiges Gebiet.

F als Integral von x_0 (Mittelpunkt von Sternförmigem Gebiet) zu x darstellen und Weg Parametrisieren.

Ableitung von F nach x_k berechnen, Skalarprodukt als Summe schreiben, Produktregel, Integrabilitätsbedinung anwenden, als Ableitung nach t darstellen.

15.4.8 Gauß'sche Integralsätze in der Ebene

1. Hilfsfunktion:

$$h(x,y) = \begin{pmatrix} -f_2(x,y) \\ f_1(x,y) \end{pmatrix}$$

zeigen dass $\int\!\!\int {\rm div}\, h=-\int\!\!\int {\rm rot}\, f,$ Stokes anwenden, f durch h darstellen, Normalenvektor normieren, Linienintegral.

2. Hilfsfunktion:

$$h(x,y) = f_1(x,y)\nabla f_2(x,y) - f_2(x,y)\nabla f_1(x,y)$$

 $\operatorname{div} h$ und $h\nu$ ausrechnen und Gleichheit über ersten Teil von Gauß.

Teil V Klausurvorbereitung

Hier findest du eine kurze Übersicht über alle Themen, die du für die jeweilige Klausur beherrschen solltest: Wichtige Definitionen und Beweise, die man gut in der Klausur abfragen kann, besonders trickreiche Aufgaben, die mehrmals in der Vorlesung oder in der Übung besprochen wurden und generelle Kompetenzen, die höchstwahrscheinlich von dir verlangt werden.

HM1

HM2

17.1 Integration

17.1.1 Wichtige Beweise

- 1. und 2. Mittelwertsatz der Integralrechnung
- Hauptsatz der Differential- und Integralrechnung

17.1.2 Typische Aufgaben

Berechne den GW von z.B. folgender Reihe (hast du also das Prinzip der Riemann-Summen verstanden?)

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^n\sin\frac{k\pi}{n}$$

Untersuche Reihen auf Konvergenz (wende das Integralkriterium an)

$$\sum_{n=-m}^{\infty} \frac{1}{1+n^2} \quad (m \in \mathbb{N})$$

Oder diese hier (Tipp: Eulersche Gammafunktion)

$$\sum_{n=0}^{\infty} n^3 e^{-n^2}$$

Untersuche uneigentliche Integrale auf Konvergenz

17.1.3 Trickreiche Aufgaben

Schwierige uneigentliche Integrale. Konvergiert beispielsweise dieses Integral? (Ja, tut es)

$$\int_{1}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x$$

17.1.4 Weitere hilfreiche Dinge

Schau dir uneigentliche Integrale an, die man gut als Majorante oder Minorante verwenden kann, z.B.:

$$\int_0^1 \frac{1}{x^{\alpha}} \, \mathrm{d}x$$

17.2 Gleichmäßige Konvergenz

17.2.1 Wichtige Beweise

- Stetigkeit der Grenzfunktion
- Satz von Dini (ziemlich tricky, aber die Idee sollte man im Kopf haben)

17.2.2 Typische Aufgaben

Untersuche Reihen auf gleichmäßige Konvergenz, z.B.:

$$\sum_{k=0}^{\infty} x(1-x)^k, \quad \forall x \in [0,1] \quad \text{bzw} \quad \forall x \in [a,1] \quad \text{mit} \quad 0 < a \le 1$$

17.2.3 Trickreiche Aufgaben

Auf welchem Intervall konvergiert die Riemannsche Zeta-Funktion gleichmäßig?

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$$

17.3 Differentialrechnung mit mehreren Veränderlichen

17.3.1 Wichtige Beweise

- Beweise über z.B. die Vereinigung von beliebig vielen offenen Mengen
- Mehrdimensionaler Mittelwertsatz
- Notwendige Bedingung für Extrema
- Satz über konstante Funktionen
- Satz von Taylor
- Hinreichende Bedingung für Extrema
- Herleitung für die Ableitung der Auflösung (kann sehr hilfreich sein, wenn man die Formel vergessen hat)

17.3.2 Typische Aufgaben

Kannst du:

- dir Mengen vorstellen und zeichnen?
- Funktionsgrenzwerte berechnen?
- Funktionen auf Stetigkeit prüfen?
- partielle Ableitungen und Richtungsableitungen berechnen?
- Funktionen auf totale Diff'barkeit prüfen?
- Extremwerte von Funktionen finden und klassifizieren?
- mit Matrizen rechnen und Inverse bestimmen?
- prüfen, ob eine Funktion umkehrbar ist und die Umkehrung bestimmen?
- die Ableitung einer unbekannten Umkehrfunktion bestimmen?
- prüfen, ob eine Funktion nach einer / mehreren Variablen auflösbar ist und die Auflösung bestimmen?
- die Ableitung einer unbekannten Auflösung berechen?
- Extrema unter Nebenbedingung bestimmen?

17.4 Integration in mehreren Veränderlichen

17.4.1 Wichtige Beweise

- Fubini
- Ableitung eines Parameterintegrals
- Leibniz-Formel herleiten können
- 1. Hauptsatz für Kurvenintegrale

17.4.2 Typische Aufgaben

Kannst du:

- die Länge von Kurven bestimmen?
- Funktionen auf Wegunabhängigkeit prüfen?
- Potentiale und Stammfunktionen berechnen?
- Flächen und Volumina berechnen mit:

- Fubini und Cavaleri?
- der Substitutionsregel?
- Integralsätze:
 - verifizieren?
 - geschickt anwenden?

17.4.3 Trickreiche Aufgaben

Schau dir schwierige uneigentliche Integrale an, wie z.B.:

$$\int_0^1 \frac{t^b - t^a}{\log t} \, \mathrm{d}t$$

oder

$$\int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x$$

17.5 Lineare Algebra

17.5.1 Typische Aufgaben

Kannst du:

- prüfen, ob eine Menge ein Vektorraum ist?
- prüfen, ob eine Menge ein Unterraum ist?
- lineare Unabhängigkeit nachprüfen?
- die Basis eines VR bestimmen?
- die Dimension einers VR bestimmen?
- LGS lösen?

$egin{array}{c} { m Teil} \ { m VI} \\ { m Appendix} \end{array}$

Grenzwerte

18.1 Konvergenzkriterien

Zusammenfassung verschiedener Konvergenzkriterien nach Wikipedia (Seite: Konvergenzkriterium):

Kriterium	nur f. mon. F.	Konv.	Div.	abs. Konv.	Absch.	Fehlerabsch.
Nullfolgenkriterium			X			
Monotoniekriterium		X		X		
Leibniz-Kriterium	X	X			X	X
Cauchy-Kriterium		X	X			
Abel-Kriterium	X	X				
Dirichlet-Kriterium	X	X				
Majorantenkriterium		X		X		
Minorantenkriterium			X			
Wurzelkriterium		X	X	X		X
Integralkriterium	X	X	X	X	X	
Cauchy-Kriterium	X	X	X	X		
Grenzwertkriterium		X	X			
Quotientenkriterium		X	X	X		X
Gauß-Kriterium		X	X	X		
Raabe-Kriterium		X	X	X		
Kummer-Kriterium		X	X	X		
Bertrand-Kriterium		X	X	X		
Ermakoff-Kriterium	X	X	X	X		

Integration

$19.1 \quad \hbox{Riemann-Integrier barkeit}$

Kriterium	Integrierbar	Nicht Integrierbar
Funktion nicht beschränkt		X
Verknüpfung Riemann-Integrierbarer Funktionen	X	
Stetige Funktion	X	
Endliche vielen Änderungen zu Riemann-Int.barer Funktion	X	
Monotone Funktion	X	

Integration in mehreren Veränderlichen

20.1 Häufige Additionstheoreme

$$\sin^{2}(t) = \frac{1}{2}(1 - \cos(2t))
\cos^{2}(t) = \frac{1}{2}(1 + \cos(2t))
\sin(t)\cos(t) = \frac{1}{2}\sin(2t)$$

20.2 Integral-Shortcuts

$$\int_a^b \sin(t) \ \mathrm{d}t = \int_a^b \cos(t) \ \mathrm{d}t = 0 \quad \text{Für eine volle Periode } [a,b] \subset \mathbb{R}$$

$$\int_{k\pi}^{(k+1)\pi} \sin(t) \ \mathrm{d}t = \pm 2 \quad \forall k \in \mathbb{Z}$$

$$\int_{k\pi}^{(k+1)\pi} \cos(t) \ \mathrm{d}t = 0 \quad \forall k \in \mathbb{Z}$$

$$\int_{l\pi}^{(l+1)\pi} \cos(t) \ \mathrm{d}t = \pm 2 \quad \forall l \in \{x : x = k + \frac{1}{2}, k \in \mathbb{Z}\}$$

$$\int_{l\pi}^{(l+1)\pi} \sin(t) \ \mathrm{d}t = 0 \quad \forall l \in \{x : x = k + \frac{1}{2}, k \in \mathbb{Z}\}$$

$$\int_a^b \sin(t) \cos(t) \ \mathrm{d}t = 0 \quad \forall [a,b] \subseteq \mathbb{R} \text{ mit } a - b = k\pi, k \in \mathbb{Z}$$

$$\int_a^b \sin^2(t) \ \mathrm{d}t = \frac{a - b}{2} \quad \forall [a,b] \subseteq \mathbb{R} \text{ mit } a - b = k\pi, k \in \mathbb{Z}$$

$$\int_a^b \cos^2(t) \ \mathrm{d}t = \frac{a - b}{2} \quad \forall [a,b] \subseteq \mathbb{R} \text{ mit } a - b = k\pi, k \in \mathbb{Z}$$