Algebra Syllabus

Unit 1:

- Complex Numbers:
 - Polar representation.
 - nth roots of unity and De Moivre's theorem.

• Theory of Equations:

- Relationship between roots and coefficients.
- Transformation of equations.
- Location of roots: Descartes rule of signs, Sturm's theorem, cubic and biquadratic equations, Cardon's, Ferrai's, and Euler's methods.

Inequality:

Inequalities involving AM ≥ GM > HM and Cauchy-Schwartz inequality.

Unit 2:

- Relations and Order:
 - Equivalence relations, partial order relations, and poset.

• Properties of Integers:

- Well-ordering property, division algorithm, divisibility, Euclidean algorithm.
- Prime numbers and their properties.
- Euclid's theorem, congruence relation, principles of mathematical induction.
- Statement of the Fundamental Theorem of Arithmetic.

Unit 3:

- · Linear Algebra:
 - Systems of linear equations, row reduction, and echelon forms.
 - Vector equations and the matrix equation Ax = b.
 - Solutions to linear systems and applications, including linear independence.

Unit 4:

- Linear Transformations:
 - Introduction to linear transformations and the matrix of a linear transformation.
 - Inverse of a matrix and properties of invertible matrices.

Subspaces:

- Characterization of subspaces in \mathbb{R}^n , dimension of subspaces.
- Geometric significance and rank of a matrix.

• Eigenvalues and Eigenvectors:

 Characteristic equation, Cayley-Hamilton theorem, and methods for finding the inverse of a matrix.