Fonaments Matemàtics (segona part)

José Luis Ruiz Juliol 2017

Departament de Matemàtiques Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

L'anell dels nombres enters

L'anell dels enters

Nombres naturals i nombres enters

Nombre naturals: $\mathbb{N} = \{0, 1, 2, \ldots\}.$

Nombres enters: $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}.$

Operacions amb enters

La suma i el producte de dos enters és un altre enter; és a dir, són operacions binàries internes en el conjunt \mathbb{Z} :

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \qquad :: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}.$$

Propietats de les operacions

Propietats de la suma

- Associativa: si $a, b, c \in \mathbb{Z}$, llavors a + (b + c) = (a + b) + c.
- Commutativa: si $a, b \in \mathbb{Z}$, llavors a + b = b + a.
- Existència d'element neutre: si $a \in \mathbb{Z}$, llavors 0 + a = a.
- Existència d'element invers: si $a \in \mathbb{Z}$, llavors a + (-a) = 0.

Propietats de les operacions

Propietats del producte

- Associativa: si $a, b, c \in \mathbb{Z}$, llavors a(bc) = (ab)c.
- Commutativa: si $a, b \in \mathbb{Z}$, llavors ab = ba.
- Existència d'element neutre: si $a \in \mathbb{Z}$, llavors $1 \cdot a = a$.

Propietat distributiva

Si $a, b, c \in \mathbb{Z}$, llavors a(b + c) = ab + ac.

\mathbb{Z} és un anell

Definició d'anell

Un **anell** és un conjunt amb dues operacions que satisfan totes les propietats anteriors.

Exemple: \mathbb{Z} és un anell amb la suma i el producte usuals.

Definició de cos

Un **cos** és un conjunt amb dues operacions que satisfan totes les propietats anteriors i, a més, l'equació ax = 1 té solució per a tot $a \neq 0$.

Exemple: Q és un cos.

Observació

No sempre podem dividir un enter per un altre (és a dir, no sempre hi ha inversos): l'equació ax = 1 té solució a \mathbb{Z} si, i només si, a = 1 o a = -1. Per tant, \mathbb{Z} no és un cos.

Altres propietats de \mathbb{Z}

Llei de cancel·lació

Per a tot $a, b, c \in \mathbb{Z}$, si $a \cdot c = b \cdot c$ i $c \neq 0$, aleshores a = b.

Relació d'ordre

Si $a, b \in \mathbb{Z}$, aleshores:

$$a < b \iff b - a \in \mathbb{N} - \{0\}.$$

Relació d'ordre i operacions

- Si $a \in \mathbb{Z}$, llavors a < 0, a = 0 o a > 0.
- Si $a, b, c \in \mathbb{Z}$ i a < b, llavors a + c < b + c.
- Si $a, b, c \in \mathbb{Z}$, a < b i c > 0, llavors ac < bc.
- Si $a, b, c \in \mathbb{Z}$, a < b i c < 0, llavors ac > bc.

Divisibilitat

La relació de divisibilitat

Siguin $a, b \in \mathbb{Z}$.

Definició

a divideix b si existeix un enter $x \in \mathbb{Z}$ tal que ax = b. És a dir, si ax = b té solució entera en x.

- També diem: a és un divisor de b; b és un múltiple d'a; b és divisible per a.
- · Notació: a | b. Si a no divideix b, escrivim a ∤ b.

Observació

0 no divideix cap enter diferent de 0.

Propietats de la relació de divisibilitat

Propietats bàsiques

- 1. Per a tot $a \in \mathbb{Z}$, $1 \mid a$.
- 2. Per a tot $a \in \mathbb{Z}$, $a \mid 0$.
- 3. Per a tot $a, b, c \in \mathbb{Z}$, si $a \mid b$, llavors $a \mid bc$.
- 4. Reflexiva: per a tot $a \in \mathbb{Z}$, $a \mid a$.
- 5. Transitiva: per a tot $a, b, c \in \mathbb{Z}$, si $a \mid b$ i $b \mid c$, llavors $a \mid c$.
- 6. Linealitat: per a tot $a, b, c \in \mathbb{Z}$, si $a \mid b$ i $a \mid c$, llavors per a tot $x, y \in \mathbb{Z}$, $a \mid bx + cy$.

Propietats de la relació de divisibilitat

Propietats addicionals

- 1. Si $a, b \in \mathbb{Z}$, llavors: $a \mid b \iff \pm a \mid \pm b$.
- 2. Si $a, b, c \in \mathbb{Z}$ i $a \mid b$, llavors $ac \mid bc$.
- 3. Si $a, b, c \in \mathbb{Z}$ i $ac \mid bc$ i $c \neq 0$, llavors $a \mid b$.
- 4. Si $a, b \in \mathbb{Z}$ i $a \mid b$ i $b \neq 0$, llavors $|a| \leq |b|$.
- 5. Si $a, b \in \mathbb{Z}$ i $a \mid b$ i $b \mid a$, llavors |a| = |b|.
- 6. Si $a, b \in \mathbb{Z}$ i $a \mid b$ i $a \neq 0$, llavors $\frac{b}{a} \mid b$.

Divisió euclidiana

Teorema de la divisió euclidiana

Si $a \in \mathbb{Z}$ i $b \in \mathbb{Z} - \{0\}$, aleshores existeixen enters únics q i r que satisfan:

$$a = bq + r$$
, $0 \le r < |b|$.

Quocient i residu

Els enters q i r s'anomenen, respectivament, el quocient i el residu de la divisió entera de a per b.

Observació

No confondre el teorema de la divisió amb l'algorisme usual de la divisió!

Nombres primers i factorització

d'enters

Nombres primers

Definició

- Un enter p > 1 és *primer* si, i només si, els únics divisors positius de p són 1 i p.
- Un nombre enter n > 1 és compost si no és primer.

Exemples

· Els primers més petits que 50 són:

• El primer conegut més gran (gener de 2016) és: $2^{74207281} - 1$, que té 22338618 dígits decimals.

Propietats dels nombres primers

Teorema de factorització d'enters (existència)

Tot enter n > 1 és un nombre primer o un producte de nombres primers.

Teorema d'Euclides

Hi ha infinits nombres primers.

Proposició

Tot enter compost N té un factor primer $p \leq \sqrt{N}$.

Test de primalitat

Sigui N > 1 un enter. Si per a tot primer $q \le \sqrt{N}$ se satisfà $q \not\mid N$, llavors N és primer.

Garbell d'Eratòstenes

Sigui N > 3 enter.

Problema

Trobar tots els primers $p \leq N$.

Garbell d'Eratòstenes

L: llista dels enters senars entre 3 i N.

 $x \in L$ pot estar en 3 estats: marcat com a primer, està eliminat, cap dels anteriors.

- 1. p = primer element de L no marcat com a primer ni eliminat.
- 2. Marquem p com a primer. Si $p > \sqrt{N}$, acabem i marquem com a primers els $x \in L$ encara no eliminats.
- 3. Si $p \le \sqrt{N}$, eliminem els $x \in L$ múltiples de p. Tornem al pas 1.

Exemple

Primers < 100

Apliquem el garbell d'Eratòstenes a N = 100.

```
9- 11
                           13
                               <del>15</del> 17
                                           19
                                                 21
                           33
                               <del>35</del> 37 <del>39</del>
23
    <del>25</del> <del>27</del>
                29 31
                                                 41
43
     45
           47
                49
                     51
                           53
                                55
                                      57
                                           59
                                                 6-1
     <del>6</del>5
                           73
                                75
                                     77
63
           67
                69
                     71
                                           79
                                                 81
83
     85
          87
                89
                      91
                           93
                                95
                                     97
```

Obtenim els primers:

El màxim comú divisor

El màxim comú divisor

Màxim comú divisor

Per definició: mcd(0,...,0) = 0. $d \in \mathbb{Z}$ és *el màxim comú divisor* de $a_1,...,a_n \in \mathbb{Z}$ (no tots nuls) si, i només si, d satisfà:

- 1. d és un divisor comú dels enters a_1, \ldots, a_n ;
- 2. si d' és un divisor comú de a_1, \ldots, a_n , aleshores $d' \leq d$.

Notació: $d = mcd(a_1, ..., a_n)$. Observem que d > 0.

Enters primers entre ells

 $a,b\in\mathbb{Z}$ són primers entre ells si, i només si, els únics divisors comuns d'a i de b són ± 1 . És a dir, si mcd(a,b)=1.

Propietats del màxim comú divisor

Propietats

- El màxim comú divisor d'un conjunt finit d'enters existeix i és únic.
- 2. El màxim comú divisor no depèn del signe:

$$mcd(a,b) = mcd(-a,b) = mcd(a,-b) = mcd(-a,-b).$$

- 3. mcd(a, 0) = |a|.
- 4. Si $a, b \in \mathbb{Z}$, $b \neq 0$ i $b \mid a$, aleshores mcd(a, b) = |b|.
- 5. Si $a, b \neq 0$ i d = mcd(a, b), llavors a/d, b/d són enters primers entre ells; és a dir: mcd(a/d, b/d) = 1.

Teorema d'Euclides

Teorema d'Euclides

Si $a, b \in \mathbb{Z}$, aleshores mcd(a, b) = mcd(a - b, b).

Conseqüència

Si $a \ge 0$ i b > 0 són enters i a = bq + r, amb $0 \le r < b$, llavors:

$$mcd(a, b) = mcd(a - bq, b) = mcd(r, b).$$

La identitat de Bézout

Identitat de Bézout

Teorema

Si $a, b \in \mathbb{Z}$ i d = mcd(a, b), aleshores existeixen enters x i y tals que:

d = ax + by.

És a dir, el màxim comú divisor de dos nombres enters és una combinació lineal, amb coeficients enters, d'aquests nombres.

Observació

Els coeficients x i y de la identitat de Bézout no són únics. Per exemple, si x i y satisfan ax + by = d, llavors:

$$\forall t \in \mathbb{Z} \ a(x - bt) + b(y + at) = d$$

Conseqüències de la identitat de Bézout

Proposició

Siguin $a, b \in \mathbb{Z}$, d = mcd(a, b). Si d' és un divisor comú de a i b, llavors d'|d.

Definició alternativa del mcd

Siguin $a, b \in \mathbb{Z}$ no nuls. Llavors $d \in \mathbb{Z}$ és el màxim comú divisor de a i b si, i només si:

- 1. *d*|*a* i *d*|*b*;
- 2. si *d'*|*a* i *d'*|*b*, llavors *d'*|*d*;
- 3. d > 0.

Associativitat del mcd

mcd(mcd(a, b), c) = mcd(a, mcd(b, c)) = mcd(a, b, c).

Conseqüències de la identitat de Bézout

Proposició

Siguin $a, b \in \mathbb{Z}$. Llavors: a i b són primers entre ells si, i només si, existeixen $x, y \in \mathbb{Z}$ tals que ax + by = 1.

Lema de Gauss

Si $a, b, c \in \mathbb{Z}$, $a \mid bc \mid mcd(a, b) = 1$, aleshores $a \mid c$.

Lema d'Euclides

Si p és un primer i a i b són enters tals que $p \mid ab$, aleshores $p \mid a$ o $p \mid b$.

L'algorisme d'Euclides

Algorisme d'Euclides

Algorisme

Siguin $a \ge 0$ i b > 0 enters. Aplicant el teorema de la divisió entera successives vegades, obtenim:

$$a = bq_1 + r_1,$$
 $q_1 \ge 0,$ $0 \le r_1 < b$
 $b = r_1q_2 + r_2,$ $q_2 \ge 0,$ $0 \le r_2 < r_1$
 \vdots \vdots \vdots \vdots \vdots $r_{n-2} = r_{n-1}q_n + r_n,$ $q_n \ge 0,$ $0 \le r_n < r_{n-1}$

Aleshores:

$$mcd(a, b) = mcd(b, r_1) = mcd(r_1, r_2) = \cdots = mcd(r_{n-1}, r_n) = r_n.$$

Algorisme d'Euclides

Organització dels càlculs

Χ	$X_{-1} = 1$	$x_0 = 0$	<i>X</i> ₁	X2	 X_{n-2}	Xn−1	Xn
Y	$y_{-1} = 0$	$y_0 = 1$	<i>y</i> ₁	<i>y</i> ₂	 <i>y</i> _{n−2}	<i>y</i> _{n−1}	Уn
Q	_	91	q ₂	q ₃	 q_{n-1}	q _n	q_{n+1}
R	а	b	r_1	r_2	 r_{n-2}	r_{n-1}	r _n
	r_1	r ₂	r_3	r ₄	 r _n	0	

$$x_{-1} = 1$$
, $x_0 = 0$, $x_{k+1} = x_{k-1} - q_{k+1}x_k$,
 $y_{-1} = 0$, $y_0 = 1$, $y_{k+1} = y_{k-1} - q_{k+1}y_k$.

Proposició

Per a tot $k \ge 0$, se satisfà: $r_k = ax_k + by_k$. En particular:

$$r_n = mcd(a, b) = ax_n + by_n$$

Algorisme d'Euclides

Exemple

Càlcul de mcd(4999, 1109) i de la identitat de Bézout.

Χ	1	0	1	-1	2	-65	522
Υ	0	1	-4	5	-9	293	-2353
Q	_	4	1	1	32	8	2
R	4999	1109	563	546	17	2	1
	563	546	17	36	1	0	
				2			

Per tant:

$$mcd(4999, 1109) = 1,$$
 $4999 \cdot 522 + 1109 \cdot (-2353) = 1.$

El mínim comú múltiple

El mínim comú múltiple

Mínim comú múltiple

Siguin a_1, \ldots, a_n enters.

Si algun dels $a_j = 0$, el mínim comú múltiple és 0, per definició.

Si tots els enters a_1, \ldots, a_n són no nuls, el mínim comú múltiple és l'enter m tal que:

- 1. per a tot j, $a_j \mid m$;
- 2. si r > 0 i per a tot j, $a_j \mid r$, llavors $m \leq r$;
- 3. m > 0.

Notació: $mcm(a_1, \ldots, a_n)$.

Propietats del mínim comú múltiple

Propietats

- 1. El mínim comú múltiple d'un conjunt finit d'enters existeix i és únic.
- 2. El mínim comú múltiple no depèn del signe:

$$mcm(a,b) = mcm(-a,b) = mcm(a,-b) = mcm(-a,-b).$$

- 3. Si $a, b \in \mathbb{Z}$, $b \neq 0$ i $b \mid a$, aleshores mcm(a, b) = |a|.
- 4. Si m = mcm(a, b) i r és un múltiple comú d'a i de b, llavors $m \mid r$.
- 5. Associativitat: mcm(a, b, c) = mcm(mcm(a, b), c) = mcm(a, mcm(b, c)).
- 6. Càlcul: $mcm(a, b) \cdot mcd(a, b) = |ab|$.

Teorema fonamental de l'aritmètica

Teorema fonamental de l'aritmètica

Teorema

Tot enter $n \ge 2$ factoritza de manera única com a producte de primers (llevat de l'ordre en què escrivim els primers.)

Corol·lari

Tot enter $n \neq 0, \pm 1$ es pot escriure de manera única com:

$$n = \epsilon \cdot p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r},$$

on $\epsilon = \pm 1$, $r \ge 1$, $a_i > 0$ i els p_i són primers diferents.

Aplicacions

Siguin $n, m \in \mathbb{Z}$, n, m > 0.

- Escrivim la factorització com: $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$, on p_i són primers diferents i els $e_i > 0$.
- Si $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$, amb $e_i > 0$, llavors els divisors positius de n són de la forma $p_1^{f_1} p_2^{f_2} \cdots p_t^{f_t}$, amb $0 \le f_i \le e_i$.
- El nombre de divisors positius de n és $\prod_{i=1}^{n} (e_i + 1)$.
- Si $n = p_1^{e_1} \cdots p_r^{e_r}$ i $m = p_1^{f_1} \cdots p_r^{f_r}$, on els exponents $e_i \ge 0$ i els $f_i \ge 0$, aleshores:

$$mcd(n,m) = p_1^{\min(e_1,f_1)} \cdots p_r^{\min(e_r,f_r)},$$

$$mcm(n,m) = p_1^{\max(e_1,f_1)} \cdots p_r^{\max(e_r,f_r)}.$$

Equacions diofàntiques

Equacions diofàntiques: l'equació ax + by = c

Siguin $a, b, c \in \mathbb{Z}$, d = mcd(a, b).

Teorema

- 1. L'equació ax + by = c té solució entera en x, y si, i només si, $d \mid c$.
- 2. Si (x_0, y_0) és una solució, llavors totes les solucions són de la forma:

$$x = x_0 - \frac{b}{d} \cdot t$$
$$y = y_0 + \frac{a}{d} \cdot t$$

on $t \in \mathbb{Z}$ és arbitrari.

Equacions diofàntiques

Exemple

Trobeu totes les solucions enteres de 212x + 400y = 20.

- mcd(212, 400) = 4 | 20. Per tant, l'equació té solucions enteres.
- Identitat de Bézout: $400 \cdot (-9) + 212 \cdot 17 = 4$.
- Solució particular: $400 \cdot (-45) + 212 \cdot 85 = 20$.
- · Solució general:

$$x = 85 - \frac{400}{4}t = 85 - 100t$$
$$y = -45 + \frac{212}{4}t = -45 + 53t$$

 $t \in \mathbb{Z}$.

La relació de congruència

La relació de congruència

Nombres congruents

 $m \ge 1$ enter. $a, b \in \mathbb{Z}$ són congruents mòdul m si $m \mid b - a$. Notació: $a \equiv b \pmod{m}$ o bé simplement $a \equiv b \pmod{m}$.

És a dir:

$$a \equiv b \pmod{m} \iff m \mid b - a$$

$$\iff \exists k \in \mathbb{Z} \colon b = a + km$$

$$\iff \text{residu de } a \text{ per } m = \text{residu de } b \text{ per } m.$$

Exemples

- $\cdot \ \forall a,b \in \mathbb{Z} \ a \equiv b \pmod{1}.$
- \cdot $n \in \mathbb{Z}$ és parell $\iff n \equiv 0 \pmod{2}$. $n \in \mathbb{Z}$ és senar $\iff n \equiv 1 \pmod{2}$.

Propietats bàsiques de les congruències

Proposició

 $m \ge 1$ enter. La relació de congruència mòdul m és d'equivalència a \mathbb{Z} . És a dir, si $a, b, c \in \mathbb{Z}$:

- 1. Reflexiva: $a \equiv a \pmod{m}$.
- 2. Simètrica: si $a \equiv b \pmod{m}$, llavors $b \equiv a \pmod{m}$.
- 3. Transitiva: si $a \equiv b \pmod{m}$ i $b \equiv c \pmod{m}$, llavors $a \equiv c \pmod{m}$.

Congruències i operacions

Proposició

Les congruències mòdul un enter positiu m es poden sumar i multiplicar terme a terme. Concretament, si $a \equiv b \pmod{m}$ i $a' \equiv b' \pmod{m}$, llavors:

$$a + a' \equiv b + b' \pmod{m}$$
, $aa' \equiv bb' \pmod{m}$.

Observació

En general, no es pot simplificar un factor comú dels dos membres d'una congruència. És a dir:

$$ra \equiv rb \pmod{m}$$
 no implica que $a \equiv b \pmod{m}$.

Contraexemple: $5 \cdot 12 \equiv 5 \cdot 18 \pmod{10}$, però $12 \not\equiv 18 \pmod{10}$.

Propietats addicionals de les congruències

Simplificació de congruències

m>1 enter. Si $a,b,r\in\mathbb{Z}$ i mcd(m,r)=1, aleshores:

$$ra \equiv rb \pmod{m} \iff a \equiv b \pmod{m}$$
.

Per tant, només podem eliminar un factor comú en una congruència (i mantenir el mòdul) si el factor i el mòdul són primers entre ells.

Propietats addicionals de les congruències

Altres propietats

- 1. Si $k \ge 1$, $a \equiv b \pmod{m} \iff ak \equiv bk \pmod{mk}$.
- 2. Si $a \equiv b \pmod{m}$ i $d \mid m$, llavors $a \equiv b \pmod{d}$.
- 3. Si $a \equiv b \pmod{r}$ i $a \equiv b \pmod{s}$, aleshores $a \equiv b \pmod{m}$, on m = mcm(r, s).
- 4. $ra \equiv rb \pmod{m} \iff a \equiv b \pmod{m/d}$, on $d = \operatorname{mcd}(r, m)$.

Classes de congruència

Classes de congruències

Sigui $m \ge 1$ un enter.

Observacions

- La relació de congruència mòdul m és una relació d'equivalència a Z.
- Per tant, els enters es classifiquen en classes d'equivalència, que reben el nom de classes de congruència mòdul m.
- · Cada $a \in \mathbb{Z}$ determina una classe de congruència: \overline{a} .

$$\overline{a} = \{ x \in \mathbb{Z} \colon x \equiv a \pmod{m} \}$$
$$= \{ x \in \mathbb{Z} \colon \exists k \in \mathbb{Z}, \ x = a + mk \}.$$

· Tenim: $a \equiv b \pmod{m} \iff \overline{a} = \overline{b}$.

El enters modulars \mathbb{Z}_m

Conjunt quocient

Denotem per \mathbb{Z}_m el conjunt quocient de \mathbb{Z} per la relació de congruència mòdul m:

$$\mathbb{Z}_m = \{\overline{a} \colon a \in \mathbb{Z}\}.$$

Proposició

 \mathbb{Z}_m té m elements: $\mathbb{Z}_m = {\overline{0}, \overline{1}, \dots, \overline{m-1}}.$

Exemple

 \mathbb{Z}_4

Determinem les classes de congruència mòdul 4:

$$\overline{0} = \{x : x \equiv 0 \pmod{4}\} = \{4k : k \in \mathbb{Z}\} = \{0, \pm 4, \pm 8, \ldots\}
\overline{1} = \{x : x \equiv 1 \pmod{4}\} = \{4k + 1 : k \in \mathbb{Z}\} = \{1, -3, 5, -7, \ldots\}
\overline{2} = \{x : x \equiv 2 \pmod{4}\} = \{4k + 2 : k \in \mathbb{Z}\} = \{2, -2, 6, -6, \ldots\}
\overline{3} = \{x : x \equiv 3 \pmod{4}\} = \{4k + 3 : k \in \mathbb{Z}\} = \{3, -1, 7, -5, \ldots\}$$

En total hi ha 4 classes de congruència mòdul 4, que es corresponen amb els possibles residus de dividir un enter per 4. És a dir:

$$\mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\}.$$

congruència

Operacions amb clases de

Suma i producte de classes

Sigui $m \ge 2$ un enter.

Definició de suma i producte de classes

Definim la suma i el producte de classes mòdul *m* per les fórmules:

$$\overline{a} + \overline{b} := \overline{a+b},$$
 $\overline{a} \cdot \overline{b} := \overline{ab}.$

Proposició

La suma i el producte de classes estan ben definides a \mathbb{Z}_m . És a dir, les fórmules de les definicions no depenen dels representants triats.

Propietats de les operacions de classes

Teorema

El conjunt \mathbb{Z}_m és un anell amb la suma i el producte de classes.

Això vol dir que:

- la suma satisfà les propietats: associativa, commutativa, hi ha una classe neutra $\overline{0}$ i cada classe té una classe simètrica $\overline{a} + \overline{-a} = \overline{0}$;
- el producte és associatiu, commutatiu i té element neutre: 1;
- · la suma i el producte satisfan la propietat distributiva.

En general, no podem dividir una classe per una altra; és a dir, no sempre existeix la classe inversa d'una classe respecte del producte.

Exemple

\cap	n	Δ	ra	ci	^	n	c	2	\mathbb{Z}_6
v	μ	C	ıα	CI	U	ш	3	а	46

+	0	1		3	4	5	
0	0 1	1	2	3	4	5	
1	1	2	3	4	5	$\frac{0}{0}$	
2	2	3	4	5	$\frac{0}{0}$	1	
+ 0 1 2 3 4 5	2 3 4 5	$ \begin{array}{c c} \hline 1\\ \hline 2\\ \hline 3\\ \hline 4\\ \hline \hline 5\\ \hline 0 \end{array} $	5 0	0	1	2	
4	4	5	0	1	$\overline{2}$	3	
5	5	0	1	2	3	4	

	0 0 0 0 0 0 0 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
$ \begin{array}{c} \overline{0} \\ \overline{1} \\ \overline{2} \\ \overline{3} \\ \overline{4} \\ \overline{5} \end{array} $	0	$\overline{2}$	4	0	$\overline{2}$	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Observem que $\overline{2}$ no té invers respecte del producte. És a dir, no hi ha cap classe $\overline{x} \in \mathbb{Z}_6$ tal que $\overline{2} \cdot \overline{x} = \overline{1}$. O, equivalentment, la congruència $2x \equiv 1 \pmod{6}$ no té solució entera.

Per tant, \mathbb{Z}_6 no és un cos.

Classes invertibles

Definició

Diem que $\overline{a} \in \mathbb{Z}_m$ és invertible (respecte del producte) si té un invers; és a dir, si existeix $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \cdot \overline{b} = \overline{1}$.

Notació

 $\mathbb{Z}_m^* = \{ \overline{x} \in \mathbb{Z}_m \colon \overline{x} \text{ \'es invertible} \}.$

Observació

Si una classe \overline{a} és invertible, la seva classe inversa és única. La denotem per \overline{a}^{-1} .

Proposició

Una classe $\overline{a} \in \mathbb{Z}_m$ és invertible si, i només si, mcd(a, m) = 1.

Classes invertibles

Observació

Si $\overline{a} \in \mathbb{Z}_m^*$, llavors \overline{a}^{-1} es pot calcular aplicant l'algorisme d'Euclides estès (identitat de Bézout) als enters a i m.

Càlcul de $\overline{6}^{-1}$ a \mathbb{Z}_{13}

- $\overline{6} \in \mathbb{Z}_{13}^*$, ja que mcd(6,13) = 1.
- Escrivim la identitat de Bézout de 6 i 13: $6 \cdot (-2) + 13 \cdot 1 = 1$.
- Per tant: $\overline{6} \cdot \overline{-2} + \overline{13} \cdot \overline{1} = \overline{1}$. És a dir: $\overline{6}^{-1} = \overline{-2} = \overline{11}$.

Quan és \mathbb{Z}_m un cos?

Recordem que un cos és un anell on cada element no nul té invers respecte del producte.

Teorema

L'anell \mathbb{Z}_m és un cos si, i només si, l'enter m és un nombre primer.

Observació

Si p és un nombre primer, aleshores el conjunt \mathbb{Z}_p és un cos que té un nombre finit d'elements: és un cos finit. Per exemple: \mathbb{Z}_2 , \mathbb{Z}_3 i \mathbb{Z}_{13} són cossos finits. Però \mathbb{Z}_4 , \mathbb{Z}_6 no són cossos (només anells).

Exponenciació modular

Teorema petit de Fermat

Teorema

Si p és primer i $p \not\mid a$, llavors $a^{p-1} \equiv 1 \pmod{p}$.

O bé, en termes de classes: si $\overline{a} \in \mathbb{Z}_p$ i $\overline{a} \neq \overline{0}$, llavors $\overline{a}^{p-1} = \overline{1}$.

Demostració

- · L'aplicació $f: \mathbb{Z}_p \setminus \{\overline{0}\} \to \mathbb{Z}_p \setminus \{\overline{0}\}, f(\overline{x}) = \overline{a} \cdot \overline{x}$ és bijectiva.
- Per tant, els conjunts $\{\overline{1}, \overline{2}, \dots, \overline{p-1}\}$ i $\{f(\overline{1}), f(\overline{2}), \dots, f(\overline{p-1})\}$ són iguals.
- · Fem el producte de tots els elements i ha de donar igual:

$$\overline{1} \cdot \overline{2} \cdot \cdot \cdot \overline{p-1} = \overline{a}^{p-1} \cdot \overline{1} \cdot \overline{2} \cdot \cdot \cdot \overline{p-1}$$

• D'on deduïm que $\overline{a}^{p-1} = \overline{1}$.

Exponenciació modular

Problema

Donats enters $a, n, m \ge 1$, calcular $a^n \pmod{m}$.

- Expressem l'exponent en binari: $n = n_k n_{k-1} \dots n_1 n_{0(2)}$.
- · Calculem, mòdul m, els termes de la successió:

$$b_0 = a, b_1 = b_0^2 = a^2, b_2 = b_1^2 = a^{2^2}, \dots, b_k = b_{k-1}^2 = a^{2^k}.$$

• Multipliquem, mòdul m, els termes b_i tals que $n_i = 1$.

En efecte:

$$a^n = a^{\sum_{i=0}^k n_i 2^i} = \prod_{i=0}^k \left(a^{2^i}\right)^{n_i} = \prod_{i=0}^k b_i^{n_i}.$$

Exponenciació modular

Exemple

Calcular 23¹⁶⁹⁰ (mod 350).

- $1690 = 11010011010_{(2)}$.
- Calculem els b_i , i = 0, ..., 10, mòdul 350:

$$b_0 = 23$$
 $b_1 = 23^2 \equiv 179$ $b_2 \equiv 179^2 \equiv 191$
 $b_3 \equiv 191^2 \equiv 81$ $b_4 \equiv 81^2 \equiv 261$ $b_5 \equiv 261^2 \equiv 221$
 $b_6 \equiv 221^2 \equiv 191$ $b_7 \equiv 81$ $b_8 \equiv 261$
 $b_9 \equiv 221$ $b_{10} \equiv 191$

· Finalment:

$$23^{1690} = b_1 b_3 b_4 b_7 b_9 b_{10} \equiv 179 \cdot 81 \cdot 261 \cdot 81 \cdot 221 \cdot 191$$
$$\equiv 179 \cdot 81 \equiv 149$$

Teorema xinès dels residus: motivació

Problema (Sun-Tsu, segle I)

Trobeu un nombre que al dividir per 3 dóna residu 2, al dividir per 5 dóna residu 3 i al dividir per 7 dóna residu 2.

És a dir, una solució del sistema de congruències lineals:

```
x \equiv 2 \pmod{3}
```

$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

Teorema

Siguin a_1, \ldots, a_k enters arbitraris i m_1, \ldots, m_k enters positius primers entre ells dos a dos. Llavors el sistema de congruències lineals:

$$x \equiv a_1 \pmod{m_1}$$
...
 $x \equiv a_k \pmod{m_k}$

té solució en x i és única mòdul $m = m_1 \cdots m_k$.

Demostració

- Siguin $M_i = (m_1 \cdots m_k)/m_i$, $i = 1, \dots, k$.
- · $mcd(m_i, M_i) = 1 \Rightarrow M_i y \equiv 1 \pmod{m_i}$ té solució.
- Sigui y_i una solució: $M_i \cdot y_i \equiv 1 \pmod{m_i}$.
- · Llavors $x = a_1 M_1 y_1 + \cdots + a_k M_k y_k$ és una solució del sistema.

Finalment, donades dues solucions x, x' del sistema, tenim:

$$\forall i: x \equiv x' \pmod{m_i} \Rightarrow x \equiv x' \pmod{m}$$

on $m = \text{mcm}(m_1, \ldots, m_k) = m_1 \cdots m_k$.

Exemple

El sistema següent té solució (els mòduls són primers entre ells dos a dos):

$$x \equiv 2 \pmod{3}$$
, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$.

Organitzem els càlculs:

$$M_1 = 5 \cdot 7 = 35$$
 $35y_1 \equiv 1 \pmod{3}$ $y_1 = 2$ $a_1 = 2$ $a_2 = 3 \cdot 7 = 21$ $21y_2 \equiv 1 \pmod{5}$ $y_2 = 1$ $a_2 = 3$ $a_3 = 3 \cdot 5 = 15$ $15y_2 \equiv 1 \pmod{7}$ $a_3 = 2$

La solució del sistema és:

$$x \equiv \sum_{i} a_{i} M_{i} y_{i} = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1$$

= 233 \equiv 23 \quad \text{(mod 105)}