RESUMEN DE FÓRMULAS

Descripciones numéricas de un conjunto de datos x_1, \ldots, x_n

Media $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Moda Dato con mayor frecuencia.

Mediana Dato ordenado de en medio.

Varianza $s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$

Desviación estándar $s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$

Desviación media $dm = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$

Rango $r = x_{(n)} - x_{(1)}$

Coeficiente de variación $cv = \frac{s}{\bar{x}}$

Momentos $m'_k = \frac{1}{n} \sum_{i=1}^n x_i^k$

Momentos centrales $m_k = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^k$

Cuantil al 100p% Al menos el 100p% de los datos son me-

nores al cuantil y al menos $100(1-p)\,\%$

de los datos son mayores al cuantil.

Asimetría $\operatorname{sk} = \frac{1}{s^3} \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3 \right)$

Curtosis $k = \frac{1}{s^4} \left(\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^4 \right)$

RESUMEN DE FÓRMULAS

Descripciones numéricas para una variable aleatoria X con función de densidad o de probabilidad f(x)

Media $\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$

Moda Valor x en donde f(x) es máxima

Mediana Valor m tal que

 $P(X \le m) \ge 1/2 \text{ y } P(X \ge m) \ge 1/2$

Varianza $\sigma^2 = E(X - \mu)^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Desviación estándar $\sigma = \sqrt{E(X - \mu)^2}$

Desviación media $E|X - \mu| = \int_{-\infty}^{\infty} |x - \mu| f(x) dx$

Rango Conjunto de valores de la v.a.

Coeficiente de variación σ/μ

Momentos $\mu'_k = E(X^k) = \int_{-\infty}^{\infty} x^k f(x) dx$

Momentos centrales $\mu_k = E(X - \mu)^k = \int_{-\infty}^{\infty} (x - \mu)^k f(x) dx$

Cuantil al 100p% Valor x tal que

 $P(X \le x) \geqslant p$ y $P(X \geqslant x) \geqslant 1 - p$

Asimetría μ_3/σ^3 Curtosis μ_4/σ^4

Tabla 1.7