24-650 Applied Finite Element Analysis Assignment 6

submitted by

Letian Leng

Objective

The goal of this assignment is to perform an analysis of nonlinear contact and plasticity of a 4-point bend specimen. The results are:

Part A: $FS_1 = 0.168$, $FS_2 = 0.202$

Part B: $FS_3 = 1.61$, Max equivalent plastic strain = 0.0201 mm/mm

Assumptions and Loading Conditions

- 1) The specimen is notched and made of a **soft aluminum alloy**: E = 67 GPa, v = 0.33. Wind load 9000N at the top.
- 2) Its yield strength, Sy, and ultimate strength, Su, are 220 MPa and 640 MPa.
- 3) The support and load pins are made of **machine steel:** E = 205 GPa, v = 0.29.
- 4) The load pins are constrained against in-plane motion and each load by an imposed deformation: delta = 1mm.

Figure 1

Model

Figure 2. The geometry of the specimen.

Boundary Conditions (Part A&B)

The boundary conditions of support on bottom of the pin is indicated below.

Figure 3. Support BC

Two displacement BCs are indicated below:

Figure 4. Displacement BCs.

Contacts

The four contacts with a **friction coefficient of 0.15** is indicated below:

	etails of iviultiple Selection	" ::::::::::::::::::::::::::::::::::::	×
Ξ	Scope		1
	Scoping Method	Geometry Selection	
	Contact	1 Face	
	Target	1 Face	
	Contact Bodies	HW6_obj\Solid	
	Target Bodies	HW6_obj\Solid	ı
	Protected	No	
	Definition		
	Type	Frictional	
	Friction Coefficient	0.15	
	Scope Mode	Manual	
	Behavior	Program Controlled	
	Trim Contact	Program Controlled	
	Contact APDL Name		
	Target APDL Name		
	Suppressed	No	
	Suppressed		
=			

Analysis Settings

In this case, for the step settings, the sub-step has been settled with slow and careful loads, as indicated below:

Mech Settings

The mesh setting stays at default except for the refinement factor of 2 around the notch area.

Results (Part A)

Results (Part B)

Conclusion

In this assignment, we performed an analysis of nonlinear contact and plasticity of a 4-point bend specimen.

For model contact, implementing robust contact algorithms within the simulation software to accurately capture the interactions between different components during the forming process, and define contact interfaces between the contact and target material helped to correct the model contact.

Over-penetration occurs when the explosive force penetrates the target material excessively, leading to undesirable deformation or damage. To minimize over-penetration, optimize the explosive charge design, including its shape, size, and placement relative to the target material such as the steel pin is slightly wider than the notched alloy.

Based on the result, the strain-rate is not relatively high, so in this case a large deformation is not necessary.

During this assignment, we also explored the difference between elastic and plastic material, as their performance could be completely different under same boundary conditions.