Uniform Distribution Arabin Kumar Dey

Uniform Distribution

Arabin Kumar Dey

Assistant Professor

Department of Mathematics Indian Institute of Technology Guwahati

14-th January, 2013

Outline

Uniform Distribution

Arabin Kumar Dey

Alternative Algorithm for Uniform Distribution

Lattice Structure Uniform Distribution

1 Alternative Algorithm for Uniform Distribution

- Integer arithmetic is sometimes faster than floating point arithmetic
- If variable y and m are represented on integers in a computer, the integer operation y/m produces y/m.
- Therefore y mod m can be implemented as $y (y/m) \cdot m$. Therefore y mod m can be implemented as $y - (y/m) \cdot m$.
- It can be shown that to avoid overflow a straight forward implementation of a linear congruential generator in integer variables must be restricted to small modulus.

■ Let q = m/a and $r = m \mod a$. Therefore m = aq + r

$$ax_i \mod m = ax_i - \lfloor \frac{ax_i}{m} \rfloor \cdot m$$

= $(ax_i - \lfloor \frac{x_i}{q} \rfloor m) + (\lfloor \frac{x_i}{q} \rfloor - \lfloor \frac{ax_i}{m} \rfloor) m$

■ The term 1 of right hand side satisfy

$$(ax_i - \lfloor \frac{x_i}{q} \rfloor m) = ax_i - \lfloor \frac{x_i}{q} \rfloor (aq + r)$$

$$= a(x_i - \lfloor \frac{x_i}{q} \rfloor q) - \lfloor \frac{x_i}{q} \rfloor r$$

$$= a(x_i \mod q) - \lfloor \frac{x_i}{q} \rfloor r$$

Uniform Distribution

■ Substituting:

$$ax_i \mod m = a(x_i \mod q) - \lfloor \frac{x_i}{q} \rfloor r + (\lfloor \frac{x_i}{q} \rfloor - \lfloor \frac{ax_i}{m} \rfloor) m.$$

- To prevent overflow we need to avoid calculation of the potentially large term involving ax_i on the RHS. One can entirely avoid calculation of $\left(\lfloor \frac{x_i}{q} \rfloor \lfloor \frac{ax_i}{m} \rfloor\right)$
- \blacksquare IF we can show that this expression takes only the values 0 and 1.
- In this case the last term $(\lfloor \frac{x_i}{q} \rfloor \lfloor \frac{ax_i}{m} \rfloor)m$ has value either 0 or m.
- But the final calculation must result in a value in $\{0, 1, 2, 3, \dots, m-1\}$.
- Therefore the last term is m precisely when $a(x_i \mod q) \lfloor \frac{x_i}{a} \rfloor r < 0$
- One can check that $(\lfloor \frac{x_i}{q} \rfloor \lfloor \frac{ax_i}{m} \rfloor)$ takes only the values 0 and 1 only if $a \leq \sqrt{m}$.

Algorithm

Uniform Distribution

Arabin Kumar Dey

Alternative Algorithm for Uniform Distribution

- m and a are integer constants.
- q and r are pre-computed integer values with q = m/a and $r = m \mod a$.
- \blacksquare x is an integer variable holding the correct x_i .
- $\mathbf{k} = \lfloor \frac{x}{q} \rfloor$
- If x < 0, then $x \to x + m$
- Finally convert uniform random number using $u \to x \cdot h$, where $h = \frac{1}{m}$.

Outline

Uniform Distribution

Arabin Kumar Dey

Alternative Algorithm for Uniform Distribution

Lattice Structure of Uniform Distribution

1 Alternative Algorithm for Uniform Distribution

- Random numbers N_i can be arranged in m-tuples $(N_i, N_{i+1}, \dots, N_{i+m-1})$ for $i \ge 1$. Then the tuples or the corresponding points $(u_i, u_{i+1}, \dots, u_{i+m-1}) \in [0, 1)^m$ are analyzed with respect to correlation and distribution. A sequence defined by N_0 and for $i = 1, 2, \dots$ and with generators $N_i = (aN_{i-1} + b) \mod M$, lie on (m 1) dimensional hyperplane.
- Analysis for case m = 2:

$$N_i = (aN_{i-1} + b) modM$$

= $(aN_{i-1} + b - kM), kM \le aN_{i-1} + b \le (k+1)M$

where k is an integer.

■ Let z_0 and z_1 be arbitrary. Then,

$$z_0 N_{i-1} + z_1 N_i = z_0 N_{i-1} + z_1 (aN_{i-1} + b - kM)$$
$$= M(N_{i-1} \frac{z_0 + az_1}{M} - z_1 k) + z_1 b$$

The points calculated by the linear congruence generator line on these straight lines

Lattice Structure of Uniform Distribution ■ We divide by M and obtain the equation of a straight line in the (u_{i-1}, u_i) plane namely,

$$z_0 u_{i-1} + z_1 u_i = c + z_1 b M^{-1}$$

- The points calculated by the linear congruence generator line on these straight lines.
- If the tuple (z_0, z_1) such that only few of the straight lines cut the square $[0, 1)^2$, the wide areas of the square would be free of random points, which violates the requirements of uniform distribution.
- The minimum number of parallel straight lines cutting the square or equivalently the maximum distance between them serves as measure of equidistributiveness.

- We analyze for the worst case scenario. When we admit only integers (z_0, z_1) and require $z_0 + az_1 \equiv 0 mod M$. Now $c = z_0 u_{i-1} + z_1 u_i z_1 b M^{-1}$ and applying $0 \le u_i < 1$, we obtain the maximal interval I_c such that for each integer $c \in I_c$, its straight line cuts or touches the square $[0, 1)^2$.
- $N_i = 2N_{i-1} \mod 11$
- Here a=2, b=0 and M=11. Need $z_0+az_1=0 \mod M \rightarrow z_0+2z_1=0 \mod 11$. $z_0=-2$ and $z_1=1$ satisfies this relation.
- Now we investigate the family of straight lines $-2u_{i-1} + u_i = c$. For $u_i \in [0, 1)$ we have -2 < c < 1.
- There are only two values which satisfy this namely, c = -1, 0. The two corresponding lines cut the interior of $[0, 1)^2$.

Extended Fibonacci Generators

Uniform Distribution

Arabin Kumar Dey

Alternative Algorithm fo Uniform Distribution

- Fibonacci sequence: $x_n = x_{n-1} + x_{n-2}$
- Fibonacci RNG: $x_n = x_{n-1} + x_{n-2} \mod m$
- Properties (a) not very good randomness (b) high correlation.
- Extended Fibonacci generator (Marsaglia 1983)

$$x_n = (x_{n-5} + x_{n-17}) \mod 2^k$$

- Ring buffer with 17 values. We used to initialize the 17 values through LCG or usual Fibonacci RNG.
- Properties
 - (a) passes all statistical tests
 - (b) period = $2^k(2^{17} 1)$ [much longer than LCG]

Seed Selection Guidelines

Uniform Distribution

Arabin Kumar Dey

Alternative Algorithm for Uniform Distribution

- Don't use 0 [except few, not discussed here]
- Avoid even values
 - (a) seed should be odd for multiplicative LCG with $m = 2^k$
 - (b) for full period generators, all non-zero values equally good
- Don't subdivide one stream (a) don't use a single stream for all random variables
 - (b) might be a strong correlation between items in same stream
- Use non-overlapping streams (a) each stream requires separate seed
 - (b) if seeds are bad, streams will overlap and not be independent.
 - (c)
 - example: need 3 streams of 20,000 numbers
 - \blacksquare pick u_0 as seed for first stream
 - pick $u_{20,000}$ as seed for second stream
 - \blacksquare pick $u_{40,000}$ as seed for third stream

Seed Selection Guidelines

Uniform Distribution

Arabin Kumar Dey

Alternative Algorithm for Uniform Distribution

- Reuse seeds in successive replications if simulation experiment is replicated several times. – can use seeds from end of previous replication in next one.
- Don't use random seeds
 - (a) simulation can't be reproduced
 - (b) impossible to guarantee multiple streams won't overlap.

Two Candidate LCGs

Uniform Distribution

Arabin Kumar Dey

Alternative Algorithm for Uniform

Lattice Structure of Uniform ■ Which is better?

$$x_n = ((2^{34} + 1)x_{n-1} + 1) \mod 2^{35}$$

$$x_n = ((2^{18} + 1)x_{n-1} + 1) \mod 2^{35}$$

- Both must be full period generators
 m = 2k, for some integer k
 a = 4c + 1, for some integer c
 b is an odd integer
- Check Autocorrelation !!

Autocorrelation Function

Uniform Distribution

Arabin Kumar Dey

Alternative Algorithm fo Uniform Distribution

Lattice Structure of Uniform Distribution ■ The lag-1 sample autocorrelation function of r_t is defined as

$$\hat{\rho}_1 = \frac{\sum_{t=2}^{T} (r_t - \bar{r})(r_{t-1} - \bar{r})}{\sum_{t=1}^{T} (r_t - \bar{r})^2}$$

■ The lag-l sample autocorrelation function of r_t is defined as

$$\hat{\rho}_l = \frac{\sum_{t=l+1}^{T} (r_t - \bar{r})(r_{t-l} - \bar{r})}{\sum_{t=1}^{T} (r_t - \bar{r})^2}$$