Thesis

Yajie Bao

10/21/2019

1 引言

设罐子 A 中最初有 s_0 个球,其中红球个数为 $R_A(0)$,罐子 B 中最初有 t_0 个球,红球个数为 $R_B(0)$,然后在每一步进行以下操作:

- 从罐子 A 拿出 m 个球,记其中红球的数目为 a,然后将取出的球放回罐子 A;从罐子 B 拿出 l 个球,记其中红球的数目为 b,然后将取出的球放回罐子 B。
- 对于随机变量 $E \sim b(1,p)$,其中 0 。若 <math>E = 1,则往罐子 A 添加 a 个红球与 m a 个白球,往罐子 B 中添加 b 个红球与 l b 个白球;若 E = 0,则把从罐子 A 添加 b 个红球与 l b 个白球,往罐子 B 中添加 a 个红球与 m a 个白球。

重复上述步骤,则第 n 步之后,两个罐子内的球总数为:

$$s_n = s_0 + \sum_{i=1}^n mE_i + \sum_{i=1}^n l(1 - E_i),$$

$$t_n = t_0 + \sum_{i=1}^n lE_i + \sum_{i=1}^n m(1 - E_i),$$

其中 $E_i \sim b(1,p), i = 1,2,...$ 独立同分布。设 V_{n+1} 为第 n+1 步中从罐子 A 中取出球的红球比例, U_{n+1} 为从罐子 B 中取出球的红球比例,则第 n+1 步后,两个罐子内的红球数目为:

$$R_A(n+1) = R_A(n) + mV_{n+1}E_{n+1} + lU_{n+1}(1 - E_{n+1}),$$

$$R_B(n+1) = R_B(n) + lU_{n+1}E_{n+1} + mV_{n+1}(1 - E_{n+1}).$$

设第 n+1 步后 A 罐子中红球比例为 X_{n+1} , B 罐子中红球比例为 Y_{n+1} , 则有

$$X_{n+1} = \frac{R_A(n+1)}{s_{n+1}} = \frac{s_n X_n + m V_{n+1} E_{n+1} + l U_{n+1} (1 - E_{n+1})}{s_{n+1}},$$
(1)

$$Y_{n+1} = \frac{R_B(n+1)}{t_{n+1}} = \frac{t_n Y_n + l U_{n+1} E_{n+1} + m V_{n+1} (1 - E_{n+1})}{t_{n+1}}.$$
 (2)

设 \mathcal{F}_n 为 $X_1, X_2, ..., X_n$ 以及 $Y_1, Y_2, ..., Y_n$ 生成的 σ - 代数, $b_n = \sum_{i=1}^n E_i$, $b_n \sim b(n, p)$ 为二项分布。 当 \mathcal{F}_n 以及 b_n 给定时, mV_{n+1} 服从参数为 $s_n, s_n X_n, m$ 的超几何分布, mU_{n+1} 服从参数为 $t_n, t_n Y_n, l$ 的超几何分布,由此可知

$$E(V_{n+1}|\mathcal{F}_n, b_n) = \frac{1}{m} \frac{m s_n X_n}{s_n} = X_n, \tag{3}$$

$$E(U_{n+1}|\mathcal{F}_n, b_n) = \frac{1}{l} \frac{lt_n Y_n}{t_n} = Y_n.$$

$$\tag{4}$$

所以有,

$$E(X_{n+1}|\mathcal{F}_n, b_n) = X_n - (1-p)\frac{l}{s_0 + b_n(m-l) + (n+1)l}(X_n - Y_n),$$

$$E(Y_{n+1}|\mathcal{F}_n, b_n) = Y_n + (1-p)\frac{m}{t_0 + b_n(l-m) + (n+1)m}(X_n - Y_n).$$

故

$$E(X_{n+1}|\mathcal{F}_n) = X_n - (1-p)lE\left(\frac{1}{s_0 + b_n(m-l) + (n+1)l}\right)(X_n - Y_n),\tag{5}$$

$$E(Y_{n+1}|\mathcal{F}_n) = Y_n + (1-p)mE\left(\frac{1}{t_0 + b_n(l-m) + (n+1)m}\right)(X_n - Y_n).$$
 (6)

本文将证明两个罐子中的红球比例差的数学期望收敛到 0,而且红球比例均处处收敛到同一个极限。

2 $E(X_n - Y_n)$ 的收敛性

引理 1: (Gautschi 不等式) x 为一个正实数且 $s \in (0,1)$, $\Gamma(x)$ 为 Gamma 函数, 成立

$$x^{1-s} < \frac{\Gamma(x+1)}{\Gamma(x+s)} < (1+x)^{1-s}.$$

定理 1: 设 $E|X_n - Y_n|$ 收敛阶在 $O\left(n^{-2(1-p)\frac{m}{t}}\right)$ 与 $o\left(n^{-2(1-p)\frac{1}{m}}\right)$ 之间。

证明: 设 $d = \max\{s_0, t_0\}, \ \tilde{d} = \min\{s_0, t_0\}, \ \text{由} \ (1) 以及 \ (2) 可知,$

$$E[|X_{n+1} - Y_{n+1}||\mathcal{F}_n] = \left[1 - (1-p)\left(\frac{l}{s_n + l} + \frac{m}{t_n + m}\right)\right]|X_n - Y_n|.$$

两边同时取数学期望可得,

$$\prod_{k=0}^{n} \left[1 - 2(1-p) \frac{m}{\tilde{d} + nl + l} \right] \le \frac{E(|X_{n+1} - Y_{n+1}|)}{|X_0 - Y_0|} \le \prod_{k=0}^{n} \left[1 - 2(1-p) \frac{l}{d + km + m} \right]. \tag{7}$$

进一步可得

$$\prod_{k=0}^{n} \left[1 - 2(1-p) \frac{l}{d+km+m} \right] = \frac{\prod_{k=0}^{n} (d+km+m-2(1-p)l)}{\prod_{k=0}^{n} (d+km+m)}
= \frac{\prod_{k=0}^{n} \left(\frac{d}{m} + k + 1 - 2(1-p) \frac{l}{m} \right)}{\prod_{k=0}^{n} \left(\frac{d}{m} + k + 1 \right)}
= \frac{\Gamma\left(\frac{d}{m} + n + 2 - 2(1-p) \frac{l}{m} \right) / \Gamma\left(\frac{d}{m} + 2 - 2(1-p) \frac{l}{m} \right)}{\Gamma\left(\frac{d}{m} + n + 2 \right) / \Gamma\left(\frac{d}{m} + 1 \right)}
= \frac{\Gamma\left(\frac{d}{m} + n + 2 - 2(1-p) \frac{l}{m} \right)}{\Gamma\left(\frac{d}{m} + n + 2 \right)} \frac{\Gamma\left(\frac{d}{m} + 1 \right)}{\Gamma\left(\frac{d}{m} + 2 - 2(1-p) \frac{l}{m} \right)}.$$
(8)

同理,

$$\prod_{k=0}^{n} \left[1 - 2(1-p) \frac{m}{\tilde{d} + kl + l} \right] = \frac{\prod_{k=0}^{n} \left(\tilde{d} + kl + l - 2(1-p)m \right)}{\prod_{k=0}^{n} \left(\tilde{d} + kl + l \right)}$$

$$= \frac{\prod_{k=0}^{n} \left(\frac{\tilde{d}}{l} + k + 1 - 2(1-p) \frac{m}{l} \right)}{\prod_{k=0}^{n} \left(\frac{\tilde{d}}{l} + k + 1 \right)}$$

$$= \frac{\Gamma\left(\frac{\tilde{d}}{l} + n + 2 - 2(1-p) \frac{m}{l} \right) / \Gamma\left(\frac{\tilde{d}}{l} + 2 - 2(1-p) \frac{m}{l} \right)}{\Gamma\left(\frac{\tilde{d}}{l} + n + 2 \right) / \Gamma\left(\frac{\tilde{d}}{l} + 1 \right)}$$

$$= \frac{\Gamma\left(\frac{\tilde{d}}{l} + n + 2 - 2(1-p) \frac{m}{l} \right)}{\Gamma\left(\frac{\tilde{d}}{l} + n + 2 \right)} \frac{\Gamma\left(\frac{\tilde{d}}{l} + 1 \right)}{\Gamma\left(\frac{\tilde{d}}{l} + 2 - 2(1-p) \frac{m}{l} \right)}. \tag{9}$$

根据引理 1Gautschi 不等式,

$$\frac{\Gamma\left(\frac{d}{m}+n+2-2(1-p)\frac{l}{m}\right)}{\Gamma\left(\frac{d}{m}+n+2\right)} = \mathcal{O}(n^{-2(1-p)\frac{l}{m}}) \tag{10}$$

$$\frac{\Gamma\left(\frac{\tilde{d}}{l}+n+2-2(1-p)\frac{m}{l}\right)}{\Gamma\left(\frac{\tilde{d}}{l}+n+2\right)} = \mathcal{O}(n^{-2(1-p)\frac{m}{l}}),\tag{11}$$

所以有, $E|X_n-Y_n|$ 的收敛阶在 $O\left(n^{-2(1-p)\frac{m}{l}}\right)$ 与 $O\left(n^{-2(1-p)\frac{l}{m}}\right)$ 之间。

上面证明了 $E(X_n - Y_n)$ 是收敛到 0 的,下面我们来看 $E(X_n - Y_n)$ 的具体表达式。

令 $c_n = E(s_0 + b_n(m-l) + (n+1)l)^{-1}$, $d_n = E(t_0 + b_n(l-m) + (n+1)m)^{-1}$, $c_0 = (s_o + l)^{-1}$, $d_0 = (t_0 + m)^{-1}$ 。根据 (5) 以及 (6) 可知,

$$E(X_{n+1} - Y_{n+1}) = [1 - (1-p)(lc_n + md_n)] E(X_n - Y_n).$$

所以,

$$E(X_n - Y_n) = (X_0 - Y_0) \prod_{k=0}^{n-1} [1 - (1-p)(lc_k + md_k)].$$

进一步可得,

$$E(X_n + Y_n) = [1 + (1 - p)(md_0 - lc_0)](X_0 + Y_0) - (1 - p)(X_0 - Y_0) \sum_{k=1}^{n-1} (md_k - lc_k) \prod_{j=0}^{k-1} [1 - (1 - p)(lc_j + md_j)]$$

由以上证明可知 $\sum_{k=1}^{\infty} (md_k - lc_k) \prod_{j=0}^{k-1} \left[1 - (1-p)(lc_j + md_j)\right]$ 是收敛的,所以 $E(X_n + Y_n)$ 也是收敛的,并记 $\beta = \lim_{n \to \infty} E(X_n + Y_n)$,

$$\beta = [1 + (1-p)(md_0 - lc_0)](X_0 + Y_0) - (1-p)(X_0 - Y_0) \sum_{k=1}^{\infty} (md_k - lc_k) \prod_{j=0}^{k-1} [1 - (1-p)(lc_j + md_j)].$$

因为 $E(X_n)$ 与 $E(Y_n)$ 收敛到相同的极限,故 $\lim_{n\to\infty} E(X_n) = \lim_{n\to\infty} E(Y_n) = \frac{\beta}{2}$ 。

X_n, Y_n 的强收敛性

引理 2: 假设 $\{x_n, n \geq 1\}$, $\{a_n, n \geq 1\}$ 以及 $\{b_n, n \geq 1\}$ 为非负实数数列满足 $x_{n+1} \leq a_n x_n + b_n$, 其中 $0 < a_n < 1, n \geq 1$ 。若 $\lim_{n \to \infty} \prod_{i=1}^n a_i = 0$ 且 $\sum_{n=1}^\infty b_n$ 收敛,那么 $\lim_{n \to \infty} x_n = 0$ 。

定理 2: $X_n - Y_n$ 几乎处处收敛到 0。

证明:

注意到,

$$X_{n+1} - Y_{n+1} = (X_n - Y_n) + \frac{m(V_{n+1} - X_n)E_{n+1} + l(U_{n+1} - Y_n)(1 - E_{n+1})}{s_{n+1}} - \frac{l(U_{n+1} - Y_n)E_{n+1} + m(V_{n+1} - Y_n)(1 - E_{n+1})}{t_{n+1}},$$

记

$$H_{n+1} = \frac{m(V_{n+1} - X_n)E_{n+1} + l(U_{n+1} - Y_n)(1 - E_{n+1})}{s_{n+1}} - \frac{l(U_{n+1} - Y_n)E_{n+1} + m(V_{n+1} - Y_n)(1 - E_{n+1})}{t_{n+1}}$$

则

$$E(H_{n+1}^2|\mathcal{F}_n) = (1-p)\left(\frac{m}{t_n+m} + \frac{l}{s_n+l}\right)^2 (X_n - Y_n)^2 + p\left(\frac{m^2\sigma_{1n}^2}{(s_n+m)^2} + \frac{l^2\sigma_{2n}^2}{(t_n+l)^2}\right) + (1-p)\left(\frac{m^2\sigma_{1n}^2}{(t_n+m)^2} + \frac{l^2\sigma_{2n}^2}{(s_n+l)^2}\right),$$

其中
$$\sigma_{1n}^2 = \frac{X_n(1-X_n)}{m^2} \frac{s_n-m}{s_n-1}, \ \sigma_{2n}^2 = \frac{Y_n(1-Y_n)}{l^2} \frac{t_n-l}{t_n-1}$$

另外有,

$$E(H_{n+1}|\mathcal{F}_n) = -(1-p)\left(\frac{l}{s_n+l} + \frac{m}{t_n+m}\right)(X_n + Y_n).$$

这里仍然假设 m > l 且 $d = \max\{s_0, t_0\}$ 于是有,

$$E\left[(X_{n+1} - Y_{n+1})^{2} \middle| \mathcal{F}_{n}\right] = \left[1 - 2(1 - p)\left(\frac{l}{s_{n} + l} + \frac{m}{t_{n} + m}\right) + (1 - p)\left(\frac{l}{s_{n} + l} + \frac{m}{t_{n} + m}\right)^{2}\right] (X_{n} - Y_{n})^{2}$$

$$+ p\left(\frac{m^{2}\sigma_{1n}^{2}}{(s_{n} + m)^{2}} + \frac{l^{2}\sigma_{2n}^{2}}{(t_{n} + l)^{2}}\right) + (1 - p)\left(\frac{m^{2}\sigma_{1n}^{2}}{(t_{n} + m)^{2}} + \frac{l^{2}\sigma_{2n}^{2}}{(s_{n} + l)^{2}}\right)$$

$$\leq \left[1 - (1 - p)\left(\frac{l}{s_{n} + l} + \frac{m}{t_{n} + m}\right)\right] (X_{n} - Y_{n})^{2} + p\left(\frac{m^{2}\sigma_{1n}^{2}}{(s_{n} + m)^{2}} + \frac{l^{2}\sigma_{2n}^{2}}{(t_{n} + l)^{2}}\right)$$

$$+ (1 - p)\left(\frac{m^{2}\sigma_{1n}^{2}}{(t_{n} + m)^{2}} + \frac{l^{2}\sigma_{2n}^{2}}{(s_{n} + l)^{2}}\right)$$

$$\leq \left[1 - \frac{2(1 - p)l}{d + mn + m}\right] (X_{n} - Y_{n})^{2} + \frac{4}{(n + 1)^{2}}, \tag{12}$$

(12) 两边取数学期望后,

$$E(X_{n+1} - Y_{n+1})^2 \le \left[1 - \frac{2(1-p)l}{d+mn+m}\right] E(X_n - Y_n)^2 + \frac{4}{(n+1)^2}$$

其中 $\lim_{n\to\infty}\prod_{k=1}^n\left[1-rac{2(1-p)l}{d+mk+m}
ight]=0$ 以及 $\sum_{k=1}^\inftyrac{4}{(n+1)^2}$ 收敛,根据引理 2 可知

$$\lim_{n \to \infty} E(X_n - Y_n)^2 = 0.$$

同时根据 (12) 可知, $\{(X_n-Y_n)^2+\frac{4}{n},\ n=1,2,...\}$ 为下鞅。由下鞅收敛定理, $(X_n-Y_n)^2+\frac{4}{n}$ 几乎处处收敛,故 $(X_n-Y_n)^2$ 几乎处处收敛。设 $\lim_{n\to\infty}(X_n-Y_n)^2\stackrel{\text{a.s.}}{=} Z,\ \ \,$ 则 $Z\geq 0,\ a.s.$ 。

另一方面,由控制收敛定理可知 E(Z)=0,所以 Z=0,a.s.。故 X_n-Y_n 几乎处处收敛到 0。

定理 3: 在此罐子模型中,

$$\{X_n + \sum_{k=0}^{n-1} (1-p) \frac{l}{s_k + l} (X_k - Y_k), \ n \ge 1\}$$
(13)

以及

$$\{Y_n - \sum_{k=0}^{n-1} (1-p) \frac{m}{t_k + m} (X_k - Y_k), \ n \ge 1\}$$
 (14)

均为鞅且 X_n 以及 Y_n 均几乎处处收敛。

证明.

根据定理 1 可知, $E(|X_n - Y_n|)$ 的收敛阶在 $\mathcal{O}(n^{-2(1-p)\frac{m}{t}})$ 与 $\mathcal{O}(n^{-2(1-p)\frac{1}{m}})$ 之间,于是有

$$E\left[|X_{n} + \sum_{k=0}^{n-1} (1-p) \frac{l}{s_{k} + l} (X_{k} - Y_{k})|\right] \leq 1 + \sum_{k=0}^{n-1} (1-p) \frac{l}{s_{0} + kl + l} E\left(|X_{k} - Y_{k}|\right)$$

$$\leq 1 + \sum_{k=0}^{\infty} (1-p) \frac{l}{s_{0} + kl + l} E\left(|X_{k} - Y_{k}|\right)$$

$$< \infty. \tag{15}$$

根据(5),

$$E\left[X_{n} + \sum_{k=0}^{n-1} (1-p) \frac{l}{s_{k}+l} (X_{k} - Y_{k}) | \mathcal{F}_{n}\right] = X_{n-1} - (1-p) \frac{l}{s_{n-1}+l} (X_{n-1} - Y_{n-1})$$

$$+ \sum_{k=0}^{n-1} (1-p) \frac{l}{s_{k}+l} (X_{k} - Y_{k})$$

$$= X_{n-1} + \sum_{k=0}^{n-2} (1-p) \frac{l}{s_{k}+l} (X_{k} - Y_{k}). \tag{16}$$

所以 $\{X_n + \sum_{k=0}^{n-1} (1-p) \frac{l}{s_k+l} (X_k - Y_k), n \geq 1\}$ 为鞅,同理 $\{Y_n - \sum_{k=0}^{n-1} (1-p) \frac{m}{t_k+m} (X_k - Y_k), n \geq 1\}$ 也为鞅,且根据 Doob 鞅收敛定理,(13) 和 (14) 均几乎处处收敛。

下面证明 $\sum_{k=0}^{n-1} (1-p) \frac{l}{s_k+l} (X_k-Y_k)$ 及 $\sum_{k=0}^{n-1} (1-p) \frac{m}{t_k+m} (X_k-Y_k)$ 几乎处处收敛,从而得到 X_n 和 Y_n 几乎处处收敛。

根据 Jensen 不等式,

$$E(|X_n - Y_n||\mathcal{F}_n) \ge |E(X_n - Y_n|\mathcal{F}_n)|$$

$$= \left[1 - (1 - p)\left(\frac{l}{s_{n-1} + l} + \frac{m}{t_{n-1} + m}\right)\right]|X_{n-1} - Y_{n-1}|,$$

所以 $\{W_n\stackrel{\mathrm{def}}{=}|X_n-Y_n|+\sum_{k=0}^{n-1}(1-p)\left(\frac{l}{s_k+l}+\frac{m}{t_k+m}\right)|X_k-Y_k|, n\geq 1\}$ 为下鞅,另一方面 $E(W_n^+)=E(W_n)<\infty$ 。根据下鞅收敛定理, $\lim_{n\to\infty}W_n=W$ a.s. 且 $E(W)<\infty$ 。

又因为 $|X_n-Y_n|$ 几乎处处收敛,所以 $\sum_{k=0}^{n-1}(1-p)\left(\frac{l}{s_k+l}+\frac{m}{t_k+m}\right)|X_k-Y_k|$ 也几乎处处收敛。故 $\sum_{k=0}^{n-1}(1-p)\frac{l}{s_k+l}(X_k-Y_k)$ 及 $\sum_{k=0}^{n-1}(1-p)\frac{m}{t_k+m}(X_k-Y_k)$ 均几乎处处收敛。

定理 4. A、B 两个罐子中的红球比例 X_n 及 Y_n 的方差均收敛到 0。

证明:

注意到 X_{n+1}^2 的条件数学期望为

$$E(X_{n+1}^2|\mathcal{F}_n)$$

$$= E\left[\left(X_n + \frac{mE_{n+1}(V_{n+1} - X_n) + l(1 - E_{n+1})(U_{n+1} - X_n)}{s_{n+1}}\right)^2 |\mathcal{F}_n\right]$$

$$= X_n^2 + 2X_n \frac{l(1-p)(Y_n - X_n)}{s_n + l} + \frac{m^2p(\sigma_{1n}^2 + X_n^2)}{(s_n + m)^2} + \frac{l^2(1-p)(\sigma_{2n}^2 + (Y_n - X_n)^2)}{(s_n + l)^2}.$$
(17)

又因为

$$E^{2}(X_{n+1}|\mathcal{F}_{n}) = X_{n}^{2} + 2X_{n}\frac{l(1-p)(Y_{n}-X_{n})}{s_{n}+l} + \frac{l^{2}(1-p)^{2}(Y_{n}-X_{n}^{2})}{(s_{n}+l)^{2}},$$

所以有

$$Var(X_{n+1}) = E\left[E(X_{n+1}^2|\mathcal{F}_n) - E^2(X_{n+1}|\mathcal{F}_n)\right]$$

$$= E\left[\frac{m^2p\sigma_{1n}^2}{(s_n+m)^2} + \frac{l^2(1-p)\sigma_{2n}^2}{(s_n+l)^2} + \frac{l^2p(1-p)(X_n-Y_n)^2}{(s_n+l)^2}\right].$$
(18)

显然, $Var(X_{n+1})$ 收敛到 0。同理, $Var(Y_{n+1})$ 也收敛到 0。

综上可知, $X_n \to \frac{\beta}{2}$ a.s., $Y_n \to \frac{\beta}{2}$ a.s..

4 $R_A(n)$ 与 $R_B(n)$ 的大数定律与中心极限定理

定理 5. 两个罐子中的红球数 $R_A(n)$ 与 $R_B(n)$ 满足

$$\lim_{n \to \infty} \frac{R_A(n)}{n} \stackrel{\text{a.s.}}{=} \frac{mp + l(1-p)}{2} \beta,$$

$$\lim_{n \to \infty} \frac{R_B(n)}{n} \stackrel{\text{a.s.}}{=} \frac{lp + m(1-p)}{2} \beta.$$

以及

$$\frac{R_A(n)}{\sqrt{n}} \xrightarrow{d} \mathcal{N}(\frac{\beta(mp+l(1-p))}{2}, \frac{\beta^2(m-l)^2p(1-p)}{4}),$$

$$\frac{R_B(n)}{\sqrt{n}} \xrightarrow{d} \mathcal{N}(\frac{\beta(lp+m(1-p))}{2}, \frac{\beta^2(m-l)^2p(1-p)}{4}).$$

证明:

已知
$$s_n = s_0 + \sum_{i=1}^n [mE_i + l(1-E_i)]$$
。 令 $Z_i = mE_i + l(1-E_i)$,则 Z_i , $i = 1, 2$.. 独立同分布,且
$$E(Z_i) = mp + l(1-p), \ Var(Z_i) = (m-l)^2 p(1-p).$$

根据强大数定律, $\lim_{n\to\infty}\frac{s_n}{n}\stackrel{\mathrm{a.s.}}{=} mp + l(1-p)$ 。 又因为 $X_n\to \frac{\beta}{2}$ a.s.,所以

$$\lim_{n \to \infty} \frac{R_A(n)}{n} \stackrel{\text{a.s.}}{=} \frac{mp + l(1-p)}{2} \beta.$$

根据中心极限定理,

$$\frac{s_n}{\sqrt{n}} \xrightarrow{d} \mathcal{N}(mp + l(1-p), (m-l)^2 p(1-p)),$$

由 Slutsky 定理可知,

$$\frac{R_A(n)}{\sqrt{n}} \stackrel{d}{\longrightarrow} \mathcal{N}(\frac{\beta(mp+l(1-p))}{2}, \frac{\beta^2(m-l)^2p(1-p)}{4}).$$

同理,

$$\lim_{n \to \infty} \frac{R_B(n)}{n} \stackrel{\text{a.s.}}{=} (lp + m(1-p))Z,$$

$$\frac{R_B(n)}{\sqrt{n}} \stackrel{d}{\to} \mathcal{N}(\frac{\beta(lp + m(1-p))}{2}, \frac{\beta^2(m-l)^2p(1-p)}{4}).$$