

幾何学2第9回

距離空間の同相写像

講義のページ

野本 慶一郎 明星大学 教育学部 教育学科

2024年11月20日

スライド

今日の数学パズル

■ 有理数 p, q に対して

$$|p-q|_2\coloneqq rac{1}{2^{(p-q)^3}2$$
で割れる回数)

と定義すると, 写像 $|\cdot|_{\circ}: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ は距離関数になることが知られている.

■ このとき距離空間 (ℚ, |·|₂) における無限級数

$$1+2+2^2+\cdots$$

は収束するか? 収束するのであればどのような値になるか?

前回の復習

連続写像の同値条件

命題 (教科書 p.113-114 定義 9.1)

距離空間の間の写像 $f:(X,d_X) \to (Y,d_Y)$ 及び $x_0 \in X$ に対して以下は全て同値.

- **1.** f は点 $x_0 \in X$ で連続, すなわち
- 任意の $\varepsilon > 0$ に対して、ある $\delta_{\varepsilon} > 0$ が存在して、 $d_X(x,x_0) < \delta_{\varepsilon} \Rightarrow d_Y(f(x),f(x_0)) < \varepsilon$.
- **2.** 任意の $\varepsilon > 0$ に対して, ある $\delta_{\varepsilon} > 0$ が存在して, $U(x_0, \delta_{\varepsilon}) \subset f^{-1}(U(f(x_0), \varepsilon))$.
- **3.** (X, d_X) の任意の点列 $\{x_n\}_{n\geq 1}$ に対して, $x_n\to x_0 \Longrightarrow f(x_n)\to f(x_0)$.

今日の内容

二つの距離空間が同じとは? (1/2)

- 二つの距離空間 (X, d_X) と (Y, d_Y) が "同じ" とは何を指すだろうか?
- そもそも, 距離空間という概念を定義したモチベーションは初回の講義でも述べたように 2点の近さを距離によって判定できる集合を考えたい. ということであった.
- よって仮に写像 $f:X\to Y$ によって $x_1\leftrightarrow y_1, x_2\leftrightarrow y_2$ と 1:1 に対応しているとすれば $x_1\mathrel{ E } x_2\mathrel{ が近い} \Longleftrightarrow y_1\mathrel{ E } y_2\mathrel{ が近い}$

という性質が成り立つとき, (X,d_X) と (Y,d_Y) は同じと見なすことができそうである.

二つの距離空間が同じとは? (2/2)

- \blacksquare 今述べたことを踏まえて、距離空間 X と Y が同じであることの定義を考えよう.
- 写像 $f: X \to Y$ によって $x_1 \leftrightarrow y_1, x_2 \leftrightarrow y_2$ と 1:1 に対応する, という文言から f は全単射であることが要請される. すなわち $f^{-1}: Y \to X$ が存在する.
- 「 x_1 と x_2 が近い $\Longrightarrow y_1$ と y_2 が近い」という性質を実現するのはまさに写像 $f: X \to Y$ が連続であることだった.
- 同様にして「 y_1 と y_2 が近い $\Longrightarrow x_1$ と x_2 が近い」という性質を実現するのは 逆写像 $f^{-1}: X \to Y$ が連続であることに他ならない.
- よって X と Y が同じであるというのは 全単射 $f: X \to Y$ が存在して, f も f^{-1} も連続写像 と定義すれば良さそうである.

同相写像

定義 (教科書 p.118 定義 9.14)

距離空間 X,Y に対して、写像 $f:X\to Y$ が以下の三条件を満たすとき f を同相写像という.

- 1. $f: X \to Y$ は全単射
- 2. $f: X \to Y$ は連続写像
- **3.** $f^{-1}: Y \to X$ は連続写像

定義 (教科書 p.119 定義 9.15)

距離空間 X から距離空間 Y への同相写像が存在するとき, $X \ge Y$ は<mark>同相</mark>であるといい, $X \simeq Y$ と表す.

同相写像の例

■ これまでよく例として挙げてきた以下の距離空間は, 実は全て同相である.

1.
$$\mathbb{E}^n = (\mathbb{R}^n, d_2), d_2(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

- **2.** $(\mathbb{R}^n, d_1), d_1(\boldsymbol{x}, \boldsymbol{y}) = |x_1 y_1| + \dots + |x_n y_n|$
- **3.** $(\mathbb{R}^n, d_{\infty}), d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) = \max\{|x_1 y_1|, \dots, |x_n y_n|\}$
- \blacksquare ここでは $(\mathbb{R}^n, d_2) \simeq (\mathbb{R}^n, d_1)$ を証明しよう (残りは演習問題).

準備: 三つの距離関数の間の関係

補題 (教科書 p.105 補題 8.10)

任意の $x, y \in \mathbb{R}^n$ に対して, 以下の不等式が成り立つ:

$$d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) \leq d_{2}(\boldsymbol{x}, \boldsymbol{y}) \leq d_{1}(\boldsymbol{x}, \boldsymbol{y}) \leq n d_{\infty}(\boldsymbol{x}, \boldsymbol{y}).$$

(証明)

簡単のため $|x_1-y_1|,\ldots,|x_n-y_n|$ の中で最大のものを $|x_k-y_k|$ とおくと, 以下が成り立つ.

$$d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) = |x_k - y_k| = \sqrt{(x_k - y_k)^2} \le \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} = d_2(\boldsymbol{x}, \boldsymbol{y})$$

$$d_2(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} \le \sqrt{(x_1 - y_1)^2 + \dots + \sqrt{(x_n - y_n)^2}}$$

$$= |x_1 - y_1| + \dots + |x_n - y_n| = d_1(\boldsymbol{x}, \boldsymbol{y})$$

$$d_1(\boldsymbol{x}, \boldsymbol{y}) = |x_1 - y_1| + \dots + |x_n - y_n| \le |x_k - y_k| + \dots + |x_k - y_k| = nd_{\infty}(\boldsymbol{x}, \boldsymbol{y})$$

ユークリッド空間とマンハッタン空間の同相性 (1/3)

命題

ユークリッド空間 $\mathbb{E}^n = (\mathbb{R}^n, d_2)$ 及びマンハッタン空間 (\mathbb{R}^n, d_1) に対して, $\mathbb{E}^n \simeq (\mathbb{R}^n, d_1)$ が成り立つ. ただし, 距離関数 d_2, d_1 は以下で定義される.

$$d_2(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

$$d_1(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + \dots + |x_n - y_n|$$

(証明)

全単射写像 $f: \mathbb{R}^n \to \mathbb{R}^n$ として、恒等写像 f(x) = x を選ぶ (このとき $f^{-1}(x) = x$ である). このとき $f: (\mathbb{R}^n, d_2) \to (\mathbb{R}^n, d_1)$, 及び $f^{-1}: (\mathbb{R}^n, d_1) \to (\mathbb{R}^n, d_2)$ が 連続写像であることを示せばよい.

ユークリッド空間とマンハッタン空間の同相性 (2/3)

(証明続き)

 $f:(\mathbb{R}^n,d_2) \to (\mathbb{R}^n,d_1)$ の連続性

■ f が任意の $x=x_0$ で連続であることを示す.「第7回 p.7 命題」より $\lim_{m\to\infty} x_m=x_0$ となる点列 $\{x_m\}_{m\geq 1}$ に対して, $\lim_{m\to\infty} f(x_m)=f(x_0)$ を示せばよい. (今は f を恒等写像として取っているので $f(x_m)=x_m$, $f(x_0)=x_0$ である.)

注意: $\lim_{m\to\infty}x_m=x_0$ は (\mathbb{R}^n,d_2) における等式, $\lim_{m\to\infty}f(x_m)=f(x_0)$ は (\mathbb{R}^n,d_1) における等式である.距離の測り方が異なっている.

■ さらにそれを示すには「第4回 p.17 命題」より

$$\lim_{m \to \infty} d_2(\boldsymbol{x}_m, \boldsymbol{x}_0) = 0 \Longrightarrow \lim_{m \to \infty} d_1(f(\boldsymbol{x}_m), f(\boldsymbol{x}_0)) = 0$$

が成り立つことを示せばよい.

ユークリッド空間とマンハッタン空間の同相性 (3/3)

(証明続き)

■ ここで, f が恒等写像であることと p.10 の補題より以下が成り立つ:

$$0 \le d_1(f(\boldsymbol{x}_m), f(\boldsymbol{x}_0)) = d_1(\boldsymbol{x}_m, \boldsymbol{x}_0) \le nd_2(\boldsymbol{x}_m, \boldsymbol{x}_0)$$

■ よって $\lim_{m\to\infty} d_2(\boldsymbol{x}_m, \boldsymbol{x}_0) = 0$ ならば挟みうちの原理より $\lim_{m\to\infty} d_1(f(\boldsymbol{x}_m), f(\boldsymbol{x}_0)) = 0$.

$f^{-1}: (\mathbb{R}^n, d_1) \to (\mathbb{R}^n, d_2)$ の連続性

■ f の連続性の場合と同様にして, 距離関数の不等式

$$0 \le d_2(f^{-1}(\boldsymbol{x}_m), f^{-1}(\boldsymbol{x}_0)) = d_2(\boldsymbol{x}_m, \boldsymbol{x}_0) \le d_1(\boldsymbol{x}_m, \boldsymbol{x}_0)$$

から証明できる (省略).

演習目標: 同相写像の取り扱いに慣れる