COMP9418: Advanced Topics in Statistical Machine Learning

Markov Networks

Instructor: Gustavo Batista

University of New South Wales

Introduction

- This lecture discusses Markov networks
 - These are undirected graphical models
 - They are frequently used to model symmetrical dependencies, as in case of pixels in an image
- Like Bayesian networks, Markov networks are used to model variable independencies
 - However, these representations are not redundant
 - There exist sets of independencies that can be expressed in a Markov network but not in a Bayesian network and vice-versa
- We will discuss the semantics of Markov networks
 - As well as some inference algorithms such as stochastic search and variable elimination

Introduction

- Several processes such as an sentence or image can be modelled as a series of states in a chain or grid
 - Each state can be influenced by the state of its neighbours
 - Such symmetry is modelled using undirected graphs called Markov random fields (MRFs) or Markov networks (MN)
- MNs were proposed to model ferromagnetic materials
 - In Physics, these models are known as *Ising* models
 - Each variable represents a dipole with two states + and -
 - The state of each dipole depends on an external field and its neighbours

Introduction

- In an MN a variable is independent of all other variables given its neighbours
 - For instance, in this figure, $X_1 \perp X_3, X_4 \mid X_2$
 - Therefore, $P(X_1|X_2, X_3, X_4) = P(X_1|X_2)$
- A common query is to find the instantiation of maximum probability
 - MAP or MPE query
 - The probability of each instantiation depends on an external influence (prior) and the internal influence (likelihood)
 - MNs can be thought as a series of rings in poles, where each ring is a variable, and the height of a ring corresponds to its state

- Suppose that we are modeling voting preferences among four persons A, B, C, D
 - Let's say that A B, B C, C D, and D A are friends
 - Friends can influence each other
 - These influences can be naturally represented by an undirected graph
- In this example, A does not interact directly with C. The same occurs with B and D
 - $A \perp C \mid B, D \text{ and } B \perp D \mid A, C$
 - We saw there is no Bayesian network that can represent *only* these independence assumption (Lecture 4 Slide 33)

- Like Bayesian networks, Markov networks encode independence assumptions
 - Variables that are not independent must be in some factor
 - Factor is a generalization of a CPT. It does not need to store values in the range 0-1
- In this example, we can factorise the joint distribution as

$$P(A, B, C, D) = \frac{1}{Z}\phi_1(A, B) \phi_2(B, C) \phi_3(C, D) \phi_4(D, A)$$

- Z is a normalizing constant known as the partition function
 - $Z = \sum_{A,B,C,D} P(A,B,C,D)$

- We can view $\phi(A, B)$ as an interaction that pushes B's vote closer to that of A
 - The term $\phi(B,C)$ pushes B's vote closer to C, but C pushes D's vote away (and vice-versa).
 - The most likely vote will require reconciling these conflicting influences
- We simply indicate a level of coupling between dependent variables in the graph
 - This requires less prior knowledge than CPTs
 - It defines an energy landscape over the space of possible assignments
 - We convert this energy to a probability via the normalization constant

D	A	$\phi_4(D,A)$	_	A	В	$\phi_1(A,B)$
d	a	100		а	b	30
d	\bar{a}	1		a	\overline{b}	5
$egin{array}{c} d \ ar{d} \ ar{d} \end{array}$	a	1		\bar{a}	b	1
$ar{d}$	\bar{a}	100	(A)	\bar{a}	\overline{b}	10
		•				•
		\sim		\		
		(D)		(E	}	
		\sim				
		`	\searrow			
		1	(c)			1
_ <i>C</i> _	D	$\phi_3(C,D)$		<u>B</u>	\mathcal{C}	$\phi_2(B,C)$
С	d	1		b	С	100
С	$ar{d}$	100		b	\bar{c}	1
\bar{C}	d	100		\overline{b}	С	1
$ar{c}$	$ar{d}$	1		\overline{b}	\bar{c}	100

	As	ssig	nme	ent	Unnormalized	Normalized	$D A \phi_4(D,A)$	$A B \phi_1(A, B)$
	а	b	С	d	300,000	0.04	d a 100	a b 30
	a	b	С	$ar{d}$	300,000	0.04	$d \bar{a}$ 1	$a \ \overline{b}$ 5
	a	b	\bar{c}	d	300,000	0.04	$\bar{d} \mid a \mid 1$	\bar{a} b 1
	a	b	\bar{c}	$ar{d}$	30	4.1 10-6	\bar{d} \bar{a} 100 $\binom{A}{A}$	$ar{a}$ $ar{b}$ 10
MPE assignment	a	$ar{b}$	С	d	500	6.9 10 ⁻⁵		\
	a	$ar{b}$	С	$ar{d}$	500	6.9 10 ⁻⁵		\rightarrow
	а	$ar{b}$	\bar{c}	d	5,000,000	0.69	D	(B)
	а	$ar{b}$	\bar{c}	$ar{d}$	500	6.9 10 ⁻⁵		
	\bar{a}	b	С	d	100	1.4 10 ⁻⁵	C	
	\bar{a}	b	С	$ar{d}$	1,000,000	0.14	$C D \phi_3(C,D)$	$B C \mid \phi_2(B,C)$
	\bar{a}	b	\bar{c}	d	100	1.4 10 ⁻⁵	c d 1	b c 100
	\bar{a}	b	\bar{c}	$ar{d}$	100	1.4 10 ⁻⁵	c \bar{d} 100	$b \bar{c} \mid \qquad 1$
	\bar{a}	$ar{b}$	С	d	10	1.4 10-6	\bar{c} d 100	$ar{b}$ c 1
	\bar{a}	\overline{b}	С	$ar{d}$	100,000	0.014	$ar{c}$ $ar{d}$ 1	\overline{b} \overline{c} 100
	\bar{a}	$ar{b}$	\bar{c}	d	100,000	0.014		8
	\bar{a}	$ar{b}$	\bar{c}	$ar{d}$	100,000	0.014		•

- Although expensive, the joint probability can be used to answer probabilistic queries
 - Prior marginal queries, such as P(A, B)

<u>A</u>	В	P(A,B)
а	b	.13
а	\overline{b}	.69
\bar{a}	b	.14
\bar{a}	\overline{b}	.04

- Probability of evidence, such as $P(\bar{b}) = 0.732$
- Posterior marginal, such as $P(\bar{b}|c) = 0.06$

_	Assignment		ent	Unnormalized	Normalized	
	a	b	С	d	300,000	0.04
	a	b	С	$ar{d}$	300,000	0.04
	a	b	\bar{c}	d	300,000	0.04
	a	b	\bar{c}	$ar{d}$	30	4.1 10 ⁻⁶
	a	$ar{b}$	С	d	500	6.9 10 ⁻⁵
	а	$ar{b}$	С	$ar{d}$	500	6.9 10 ⁻⁵
	a	$ar{b}$	\bar{c}	d	5,000,000	0.69
	а	$ar{b}$	\bar{c}	$ar{d}$	500	6.9 10 ⁻⁵
	\bar{a}	b	С	d	100	1.4 10 ⁻⁵
	\bar{a}	b	С	$ar{d}$	1,000,000	0.14
	\bar{a}	b	\bar{c}	d	100	1.4 10 ⁻⁵
	\bar{a}	b	\bar{c}	$ar{d}$	100	1.4 10 ⁻⁵
	\bar{a}	$ar{b}$	С	d	10	1.4 10 ⁻⁶
	\bar{a}	\overline{b}	С	$ar{d}$	100,000	0.014
	ā	\overline{b}	Ē	d	100,000	0.014
	ā	\overline{b}	Ē	\bar{d}	100,000	0.014

Voting Example: Bad News for Learning!

- Suppose we had learned P(A, B) from data
 - By counting the occurrences of a and b
 - P(A,B) is not a direct replacement for $\phi_1(A,B)$

A	B	P(A,B)	
а	b	.13	
а	\overline{b}	.69	4
\bar{a}	b	.14	
\bar{a}	\overline{b}	.04	

Random Field

- A random field X is a set of random variables
 - It is common that each variable X_i to be associated with a *site*
 - This idea comes from areas such as image processing in which each variable is associated with a pixel or region
- We use a set S to index a set of n sites
 - The sites can be spatially regular, as in the case of a 2D image
 - Or irregular, if they do not present spatial regularity
- The sites in S are related to one another via a neighborhood system
 - A site is not neighboring to itself: $i \notin N_i$
 - The neighboring relationship is mutual: $i \in N_{i'}$ iff $i' \in N_i$

$$X = \{X_1, \dots, X_n\}$$

 N_i is a set of sites neighboring i $N = \{N_i | \forall i \in S\}$

Markov Networks

• A random field X is a *Markov random field* (or *Markov network*) on S w.r.t. a neighbourhood system N if and only if

$$P(X_1 = x_1, ..., X_n = x_n) > 0, \forall x \in X$$

(positivity)

$$P(X_i | X_{S \setminus \{i\}}) = P(X_i | X_{N_i})$$

(Markovianity)

- G = (V, E), where V consists of a set of random variables, and E a set of undirected edges
- A set of variables X is independent of Y given Z, if the variables in Z separate X and Y in the graph
- Therefore, if we remove the nodes in **Z** from the graph, there will be no paths between **X** and **Y**

Markov Networks: Gibbs Distribution

- When the positivity condition is satisfied the joint probability distribution is uniquely determined by the Gibbs distribution
 - This result is known as the *Hammersley-Clifford theorem*
 - Like in Bayesian networks, it allow us to factorise the full joint distribution into smaller factors
 - Therefore, we can efficiently answer probabilistic queries
- Using the example we have the following factorisation for maximal cliques
 - $P(A, B, C, D) = \frac{1}{Z}\phi_1(A, B, D)\phi_2(B, C, D)$
- In practice, we frequently use smaller cliques such as pairwise factors
 - $P(A, B, C, D) = \frac{1}{Z}\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A)$

$$P(\mathbf{X}) = \frac{1}{Z} \prod_{c \in cliques(G)} \phi_c(\mathbf{X}_c)$$

$$Z = \sum_{\mathbf{x}} \prod_{c \in cliques(G)} \phi_c(\mathbf{X}_c)$$

Markov Networks: Positivity

This graph encodes the independencies

- $A \perp C \mid B, D \text{ and } D \perp B \mid A, C$
- Let us verify if this joint distribution has the same independence assumptions

В	D	A	P(A B,D)	В	D	С	P(C B,D)
b	d	a	.5	b	d	С	1
b	d	ā	.5	b	d	\bar{c}	0
b	\bar{d}	a	1	b	\bar{d}	С	.5
b	\bar{d}	\bar{a}	0	b	\bar{d}	\bar{c}	.5
\overline{b}	d	a	0	\bar{b}	d	С	.5
\overline{b}	d	ā	1	\bar{b}	d	Ē	.5
\overline{b}	\bar{d}	a	.5	\bar{b}	\bar{d}	С	0
\overline{b}	\bar{d}	ā	.5	\bar{b}	\bar{d}	\bar{c}	1

В	D	A	С	P(A,C B,D)
b	d	а	С	.5
b	d	a	\bar{c}	0
b	d	ā	С	.5
b	d	\bar{a}	\bar{c}	0
b	$ar{d}$	a	С	.5
b	$ar{d}$	a	\bar{c}	.5
b	$ar{d}$	\bar{a}	С	0
b	$ar{d}$	ā	\bar{c}	0
\bar{b}	d	a	С	0
\bar{b}	d	a	\bar{c}	0
\bar{b}	d	ā	С	.5
\bar{b}	d	ā	\bar{c}	.5
\overline{b}	$ar{d}$	a	С	0
\bar{b}	$ar{d}$	a	\bar{c}	.5
\overline{b}	$ar{d}$	ā	С	0
\overline{b}	$ar{d}$	\bar{a}	\bar{c}	.5

A	В	С	D	P(.)
a	b	С	d	1/8
a	b	С	$ar{d}$	1/8
a	b	\bar{c}	$ar{d}$	1/8
a	$ar{b}$	\bar{c}	$ar{d}$	1/8
\bar{a}	b	С	d	1/8
\bar{a}	\overline{b}	С	d	1/8
\bar{a}	\overline{b}	\bar{c}	d	1/8
\bar{a}	\overline{b}	\bar{c}	$ar{d}$	1/8

Markov Networks: Positivity

This graph encodes the independencies

- $A \perp C \mid B, D \text{ and } D \perp B \mid A, C$
- Let us verify if this joint distribution has the same independence assumptions

A	С	В	P(B A,C)	Α	С	D	P(D A,C)
a	С	b	1	a	С	d	.5
a	С	\overline{b}	0	a	С	\bar{d}	.5
a	\bar{c}	b	.5	a	\bar{c}	d	0
a	\bar{c}	\overline{b}	.5	a	\bar{c}	\bar{d}	1
ā	С	b	.5	ā	С	d	1
ā	С	\overline{b}	.5	ā	С	\bar{d}	0
ā	\bar{c}	b	0	ā	\bar{c}	d	.5
ā	\bar{c}	$ar{b}$	1	\bar{a}	\bar{c}	$ar{d}$.5

A	С	В	D	P(B,D A,C)
а	С	b	d	.5
а	С	b	$ar{d}$.5
а	С	\bar{b}	d	0
a	С	\bar{b}	$ar{d}$	0
a	\bar{c}	b	d	0
a	\bar{c}	b	$ar{d}$.5
a	\bar{c}	\bar{b}	d	0
a	\bar{c}	\bar{b}	$ar{d}$.5
\bar{a}	С	b	d	.5
\bar{a}	С	b	$ar{d}$	0
\bar{a}	С	\bar{b}	d	.5
\bar{a}	С	$ar{b}$	$ar{d}$	0
\bar{a}	\bar{c}	b	d	0
\bar{a}	\bar{c}	b	\bar{d}	0
\bar{a}	\bar{c}	\bar{b}	d	.5
\bar{a}	ī	$ar{b}$	\bar{d}	.5

Α	В	С	D	P(.)
a	b	С	d	1/8
a	b	С	$ar{d}$	1/8
a	b	\bar{c}	$ar{d}$	1/8
a	$ar{b}$	Ē	$ar{d}$	1/8
\bar{a}	b	С	d	1/8
\bar{a}	\overline{b}	С	d	1/8
\bar{a}	$ar{b}$	\bar{c}	d	1/8
\bar{a}	\overline{b}	\bar{c}	$ar{d}$	1/8

Markov Networks: Positivity

This graph encodes the independencies

- $A \perp C \mid B, D \text{ and } D \perp B \mid A, C$
- Let us verify if this joint distribution has the same independences assumptions

$$P(\bar{a}, b, c, \bar{d}) = \phi_1(\bar{a}, b)\phi_2(b, c)\phi_3(c, \bar{d})\phi_4(\bar{d}, a) = 0$$

$$P(\bar{a}, b, c, d) = \phi_1(\bar{a}, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a) = \frac{1}{8}$$

$$P(\bar{a}, \bar{b}, \bar{c}, \bar{d}) = \phi_1(\bar{a}, \bar{b})\phi_2(\bar{b}, \bar{c})\phi_3(\bar{c}, \bar{d})\phi_4(\bar{d}, \bar{a}) = \frac{1}{8}$$

•
$$P(a,b,c,\bar{d}) = \phi_1(a,b)\phi_2(b,c)\phi_3(c,\bar{d})\phi_4(\bar{d},a) = \frac{1}{8}$$

Α	В	С	D	P(.)
а	b	С	d	1/8
a	b	С	$ar{d}$	1/8
a	b	Ē	$ar{d}$	1/8
a	$ar{b}$	Ē	$ar{d}$	1/8
\bar{a}	b	С	d	1/8
\bar{a}	\overline{b}	С	d	1/8
\bar{a}	$ar{b}$	Ē	d	1/8
\bar{a}	\overline{b}	\bar{c}	$ar{d}$	1/8

16

Gibbs Distribution and Graph

- Different Gibbs distributions may induce a same undirected graph
 - $\phi_1(A,B,D)\phi_2(B,C,D)$
 - $\phi_1(A, B, D)\phi_2(B, D)\phi_3(B, C)\phi_4(C, D)$
 - $\phi_1(A,B)\phi_2(A,D)\phi_3(B,D)\phi_3(B,C)\phi_4(C,D)$

- All these factorizations have the same independence assumptions
- However, they do not have the same representational power
- For example, for a fully connected graph, a maximal clique has $O(d^n)$ parameters, but a pairwise graph has only $O(n^2d^2)$ parameters

Factors

Clique factors can be:

 Single-node factors: specify an affinity for a particular candidate

$$\phi_A(+a) = 0.8$$

Pairwise-factors: enforce affinities between friends

$$\phi_{AB}(a,b) = 100 \ if \ a = b$$

 Higher-order: important to specify relationships among sets of variables

$$\phi_{ABC}(a,b,c) = 100 if a \oplus b \oplus c$$

The normalization Z makes the factors scale invariant!

Factor Graphs

- A factor graph is a graph containing two types of nodes
 - Random variables
 - Factors over the sets of variables
- It allow us to derive the factorization without ambiguity
 - $P(X_1, X_2, X_3, X_4, X_5) = P(X_1, X_2, X_3)P(X_2, X_3, X_4)P(X_3, X_5)$
 - $P(X_1, X_2, X_3, X_4, X_5) =$ $P(X_1, X_2)P(X_1, X_3)P(X_2, X_3)P(X_2, X_4)P(X_3, X_4)P(X_3, X_5)$
 - $P(X_1, X_2, X_3, X_4, X_5) = P(X_1, X_2)P(X_1, X_3)P(X_2, X_3, X_4)P(X_3, X_5)$

Energy Functions

- The joint probability in a MN is frequently expressed in terms of energy functions
 - E(X) is the energy. Therefore, maximising P(X) is equivalent to minimising E(X)
 - The energy function can be written in terms of local functions ψ_c known as *potentials*

- Why?
 - Historical: statistical physics

$$P(X) = \frac{1}{Z} \exp(-E(X))$$

$$E(X) = \sum_{c \in Cliques(G)} \psi_c(X_c)$$

$$P(X) = \frac{1}{Z} \exp\left(-\sum_{c \in Cliques(G)} \psi_c(X_c)\right)$$

$$\psi(X_c) = -\log \phi_c(X_c)$$

	Assignment			ent	Unnormalized	Normalized	
,	a	b	С	d	300,000	0.04	
	a	b	С	\bar{d}	300,000	0.04	
	a	b	\bar{c}	d	300,000	0.04	
	a	b	\bar{c}	\bar{d}	30	4.1 10 ⁻⁶	
	a	\overline{b}	С	d	500	6.9 10 ⁻⁵	
	a	\overline{b}	С	\bar{d}	500	6.9 10 ⁻⁵	
	a	\overline{b}	\bar{c}	d	5,000,000	0.69	
	a	\overline{b}	\bar{c}	\bar{d}	500	6.9 10 ⁻⁵	
	\bar{a}	b	С	d	100	1.4 10 ⁻⁵	
	\bar{a}	b	С	\bar{d}	1,000,000	0.14	
	\bar{a}	b	\bar{c}	d	100	1.4 10 ⁻⁵	
	\bar{a}	b	\bar{c}	\bar{d}	100	1.4 10 ⁻⁵	
	\bar{a}	$ar{b}$	С	d	10	1.4 10 ⁻⁶	
	\bar{a}	$ar{b}$	С	\bar{d}	100,000	0.014	
	\bar{a}	$ar{b}$	\bar{c}	d	100,000	0.014	
	ā	\bar{b}	Ē	\bar{d}	100,000	0.014	

D	A	$\phi_4(D,A)$		Α	В	$\phi_1(A,B)$
d	a	100		а	b	30
d	\bar{a}	1		а	\overline{b}	5
$rac{d}{ar{d}}$	a	1		\bar{a}	b	1
$ar{d}$	\bar{a}	100	(A)	\bar{a}	\overline{b}	10
			$\nearrow \checkmark$			
		\sim		\nearrow		
		\bigcup		$\int_{\mathbb{R}^{2}}$		
			C			
С	D	$\phi_3(C,D)$		В	С	$\phi_2(B,C)$
С	d	1		b	С	100
С	$ar{d}$	100		b	\bar{c}	1

Assignment		ent	Unnormalized	Normalized		
a	b	С	d	300,000	0.04	
a	b	С	$ar{d}$	300,000	0.04	
a	b	\bar{c}	d	300,000	0.04	
a	b	\bar{c}	$ar{d}$	30	4.1 10 ⁻⁶	
a	\overline{b}	С	d	500	6.9 10 ⁻⁵	
a	$ar{b}$	С	$ar{d}$	500	6.9 10 ⁻⁵	
a	\overline{b}	\bar{c}	d	5,000,000	0.69	
a	\overline{b}	\bar{c}	$ar{d}$	500	6.9 10 ⁻⁵	
\bar{a}	b	С	d	100	1.4 10 ⁻⁵	
\bar{a}	b	С	$ar{d}$	1,000,000	0.14	
\bar{a}	b	\bar{c}	d	100	1.4 10 ⁻⁵	
\bar{a}	b	\bar{c}	$ar{d}$	100	1.4 10 ⁻⁵	
\bar{a}	\overline{b}	С	d	10	1.4 10 ⁻⁶	
\bar{a}	\overline{b}	С	$ar{d}$	100,000	0.014	
\bar{a}	\bar{b}	\bar{c}	d	100,000	0.014	
ā	\overline{b}	Ē	$ar{d}$	100,000	0.014	

D	A	$\psi_4(D,A)$		A	В	$ \psi_1(A,B) $
d	а	-4.61		а	b	-3.40
d	\bar{a}	0		а	\overline{b}	-1.61
$ar{d} \ ar{d}$	\boldsymbol{a}	0		\bar{a}	b	0
$ar{d}$	\bar{a}	-4.61	(A)	\bar{a}	\overline{b}	-2.30
		\sim		\ <u></u>		
		(D)		(B))	
		\sim		/		
			\searrow			
-	_	, , , , , , , , ,	(c)	_	-	
C	D	$\psi_3(C,D)$		<u>B</u>	C	$\psi_2(B,C)$
С	d	0		b	С	-4.61
С	$ar{d}$	-4.61		b	\bar{C}	0
\bar{c}	d	-4.61		\overline{b}	С	0
\bar{c}	$ar{d}$	0		\overline{b}	\bar{c}	-4.61

Pairwise Markov Networks

Common subclass of Markov networks

- All the factors are over single variables or pairs of variables
- Node potentials: $\{\psi(X_i): i = 1,...,n\}$
- Edge potentials: $\{\psi(X_i, X_j): (X_i, X_j) \in H\}$
- Application: noise removal from binary images
 - Noisy image of pixel values, $Y_{i,j}$
 - Noise-free image of pixel values, $X_{i,j}$
 - Markov Net with
 - $\phi(X_{i,j}, X_{i',j'})$ potentials representing correlations between neighbouring pixels
 - $\phi(X_{i,j},Y_{i,j})$ potentials describing correlations between same pixels in noise-free and noisy image

Example: Image Smoothing

- Many applications of Markov networks involve finding the MAP or MPE assignment
 - This is known as the MAP-MRF approach
 - Given the Gibbs distribution, it is equivalent to minimize the energy function
- The number of possible assignments is very large
 - It increases exponentially with the number of variables in the network
 - For instance, for a binary image of 100 x 100 pixels, there are $2^{10,000}$ possible assignments
- Finding the assignment of minimal energy is usually posed as a stochastic search
 - Start with a random value for each variable in the network
 - Improve this configuration via local operations
 - Until a configuration of (local) minimum energy is found

Stochastic Search Algorithm

```
Input: Markov network N with variables X, energy function E
Output: an assignment s for X with minimum (local) energy
s \leftarrow initial assignment for every variable X_i \in X
s_{prev} \leftarrow s
for i = 1 to I
                                              # I is maximum number of iterations
     s' \leftarrow s
     for each variable X_i \in X do
          s_i' \leftarrow alternative value for variable X_i
          if E(s') < E(s) or random(E(s') - E(s)) < T then
               s \leftarrow s'
                                             # T is threshold of accepting a change to a higher energy state
    if |E(s_{prev}) - E(s)| < \epsilon # \epsilon is a convergence threshold
         break
     s_{prev} \leftarrow s
return s
```

Example: Image Smoothing

- This algorithm has three main variations
 - Iterative Conditional Modes (ICM): it always selects the assignment of minimum energy
 - Metropolis: with a fixed probability, p, it selects an assignment with higher energy
 - Simulated annealing (SA): with a variable probability, P(T), it selects an assignment with higher energy. T is a parameter known as temperature. The probability of selecting a value with higher energy is determined by the expression $P(T) = e^{-\delta E/T}$ where δE is the energy difference. The value of T is reduced with each iteration

Local Independence

- In a Markov network the absence of edges imply in independence
 - Given an undirected graph G = (V, E)
 - If the edge $X Y \notin E$ then $X \perp Y | V \setminus \{X, Y\}$
 - lacktriangle These are known as *pairwise Markov independencies* of G
- Another local property of independence is the Markov blanket
 - As in the case of Bayesian networks, the Markov blanket U of a variable X is the set of nodes such that X is independent from the rest of the graph if U is observed
 - In the undirected case the Markov blanket turns out to be simply equal a node's neighborhood

Global Independence: Separation

- A global interpretation of independence uses the idea of separation
 - Let X, Y, and Z be disjoint sets of nodes in a graph G. We will say that X and Y are separated by Z, written $sep_G(X, Z, Y)$, iff every path between a node in X and a node in Y is blocked by Z
 - A path is blocked by Z iff at least one valve on the path is closed given Z
 - Like Bayesian networks. But now, there is not the exception of convergent structures

Separation: Complexity

- The definition of separation considers all paths connecting a node in X with a node in Y
 - In practice, this test is too inefficient
 - We can replace it by a cut-set test
- Two sets X and Y of variables are separated by a set Z iff
 - There is no path from every node $X \in X$ to every node $Y \in Y$ after removing all nodes in Z
 - **Z** is a *cut-set* between two parts of the graph

Separation: Soundness and Completeness

- Like d-separation, separation test is sound
 - If P is a probability distribution induced by a Markov network then $sep_G(X, Z, Y)$ only if $X \perp Y \mid Z$
 - We can safely use separation test to derive independence statements about the probability distributions induced by Markov networks
- Like d-separation, separation test is not complete
 - The lack of separation does not imply into dependency
 - This is expected. As d-separation, separation only looks at the graph structure

Markov VS Bayesian Networks

Markov Nets

- Factors are easy to change (no normalization), but difficult to elicit
- Can be applied to problems with cycles or no natural directionality
- Difficult to read the factorization from the graph, but we can use factor graphs
- Z requires summing over all entries (NP-hard)

Bayes Nets

- Factors are easy to elicit from people
- Must have no cycles and edges are directed
- Graphs are easy to interpret particularly the causal ones
- Naturally normalized
- Easy to generate synthetic data from it (more about this later)

Markov VS Bayesian: Representation

- Bayesian and Markov networks can be understood as languages to represent independencies
 - These languages can represent different sets of independencies
 - Therefore, these representations are not redundant
- For example, there is no directed graph that is a perfect map for the top case
 - Conversely, there is no undirected graph that is a perfect map for the bottom case
- In several circumstances, we need to find a Markov network that is an I-MAP for a Bayesian network
 - This is achievable through moralisation
 - We connect the parents of unmarried child nodes
 - We lose the marginal independence of parents

- Let us now consider if Variable Elimination (VE) works for Markov networks
 - The idea of VE is to anticipate the elimination of variables
 - Using the network example, suppose we want to compute P(A, B)
- We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{3}(C,D) \phi_{4}(D,A)$$

D	A	$\phi_4(D,A)$	_	A	В	$\phi_1(A,B)$
\overline{d}	a	100	_	a	b	30
d	\bar{a}	1		a	\overline{b}	5
$rac{ar{d}}{ar{d}}$	a	1		\bar{a}	b	1
$ar{d}$	\bar{a}	100	(A)	\bar{a}	\overline{b}	10
		\sim		\setminus		
		(D)		(E))	
			\searrow			
C	D	(CD)	(c)	D	C	(D ()
<u></u>	D	$\phi_3(C,D)$	_	\underline{B}	<u>C</u>	$\phi_2(B,C)$
С	d	1		b	С	100
С	\bar{d}	100		b	\bar{C}	1
\bar{c}	d	100		\overline{b}	С	1
\bar{c}	$ar{d}$	1		\overline{b}	\overline{C}	100

- Let us now consider if Variable Elimination (VE) works for Markov networks
 - The idea of VE is to anticipate the elimination of variables
 - Using the network example, suppose we want to compute P(A, B)
- We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

<u>C</u>	D	A	Φ_1
С	d	а	100
С	d	\bar{a}	1
С	$ar{d}$	a	100
С	$ar{d}$	\bar{a}	10000
\bar{c}	d	a	10000
\bar{c}	d	\bar{a}	100
\bar{c}	$ar{d}$	a	1
\bar{c}	$ar{d}$	\bar{a}	100

B	С	$\phi_2(B,C)$
b	С	100
b	\overline{C}	1
\overline{b}	С	1
\overline{b}	\bar{c}	100
		35

- Let us now consider if Variable Elimination (VE) works for Markov networks
 - The idea of VE is to anticipate the elimination of variables
 - Using the network example, suppose we want to compute P(A,B)
- We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \tau_{1}(C,A)$$

	A	$\tau_1(C,A)$	В	С	$\phi_2(B,C)$
С	а	200	b	С	100
С	\bar{a}	10001	b	\bar{c}	1
\bar{c}	a	10001	\overline{b}	С	1
\bar{C}	\bar{a}	200	\overline{b}	\bar{C}	100

We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \Phi_{1}(C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \tau_{1}(C,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(C,A,B)$$

We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \tau_{1}(C,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(C,A,B)$$

$$= \phi_{1}(A,B) \tau_{2}(A,B)$$

We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{1}(C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \tau_{1}(C,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(C,A,B)$$

$$= \phi_{1}(A,B) \tau_{2}(A,B)$$

$$= \phi_{3}(A,B)$$

A	В	$\Phi_3(A,B)$
а	b	900030
a	\overline{b}	5001500
\bar{a}	b	1000300
\bar{a}	\overline{b}	900030 5001500 1000300 300010

We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$\propto \sum_{C} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,C) \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \phi_{3}(C,D) \phi_{4}(D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \sum_{D} \Phi_{1}(C,D,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(B,C) \tau_{1}(C,A)$$

$$= \phi_{1}(A,B) \sum_{C} \phi_{2}(C,A,B)$$

$$= \phi_{1}(A,B) \tau_{2}(A,B)$$

$$= \Phi_{3}(A,B)$$

- We need to normalise the results to get P(A, B)
- Differently from BN, MN are not naturally normalised

A		$\Phi_3(A,B)$	_	A	В	P(A,B)
a		900030		а	b	.13
		5001500		а	\overline{b}	.69
\bar{a}		1000300		\bar{a}	b	.14
\bar{a}	\overline{b}	300010		\bar{a}	\overline{b}	.04

- Let us now consider computing a query with evidence such as P(B|c=true) using VE
 - We start by setting evidence by eliminating the rows that do not match the evidence

- Let us now consider computing a query with evidence such as P(B|c=true) using VE
 - We start by setting evidence by eliminating the rows that do not match the evidence
- Again, we start with the Gibbs distribution

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{3}(c,D) \phi_{4}(D,A)$$

D	A	$\phi_4(D,A)$	_	Α	В	$\phi_1(A,B)$
d	a	100		a	b	30
d	\bar{a}	1		a	\overline{b}	5
$egin{array}{c} d \ ar{d} \ ar{d} \end{array}$	a	1		\bar{a}	b	1
$ar{d}$	\bar{a}	100	(A)	\bar{a}	\overline{b}	10
			$\nearrow \checkmark$			
		\sim		\ \		
		(D)		(E	})	
		\sim				
			\searrow			
	D	1 (- D)	$\begin{pmatrix} c \end{pmatrix}$	ח		1 (D -)
С	D	$\phi_3(c,D)$	_	_ <i>B</i> _	С	$\phi_2(B,c)$
С	d	1		b	С	100
С	$ar{d}$	100		\overline{b}	С	1

- Let us now consider computing a query with evidence such as P(B|c=true) using VE
 - We start by setting evidence by eliminating the rows that do not match the evidence
- Again, we start with the Gibbs distribution

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(c,D,A)$$

Α	B	$\phi_1(A,B)$
а	b	30
а	\overline{b}	5
\bar{a}	b	1
\bar{a}	\overline{b}	10

С	D	A	$\Phi_1(c,D,A)$	B	С	$\phi_2(B,c)$
С	d	a	100	b	С	100
С	d	\bar{a}	1	\overline{b}	С	1
С	$ar{d}$	a	100			
С	$ar{d}$	\bar{a}	10000			

- Let us now consider computing a query with evidence such as P(B|c=true) using VE
 - We start by setting evidence by eliminating the rows that do not match the evidence
- Again, we start with the Gibbs distribution

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \Phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1}(c,A)$$

Α	B	$ \phi_1(A,B) $
а	b	30
a	\overline{b}	5
\bar{a}	b	1
\bar{a}	\overline{b}	10

<u>C</u>	A	$\tau_1(c,A)$
С	a	200
С	\bar{a}	10001

$$egin{array}{c|c} B & c & \phi_2(B,c) \ \hline b & c & 100 \ \hline ar{b} & c & 1 \ \hline \end{array}$$

Again, we start with the Gibbs distribution

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1}(c,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{2}(c,A,B)$$

	A	В	$\phi_1(A,B)$
(A)	a	b	30
	a	\overline{b}	5
	$ar{a}$	b	1
(D) (B)	\bar{a}	\overline{b}	10
		/	
$C = A \mid \tau_1(C,A)$	R	C	$\phi_2(B,c)$

100

Again, we start with the Gibbs distribution

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1}(c,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{2}(c,A,B)$$

С	A	В	$\Phi_2(c,A,B)$
С	a	b	6000
С	\boldsymbol{a}	\overline{b}	1000
С	\bar{a}	b	10001
С	\bar{a}	\overline{b}	100010

$$\begin{array}{c|cc} B & c & \phi_2(B,c) \\ \hline b & c & 100 \\ \overline{b} & c & 1 \end{array}$$

Again, we start with the Gibbs distribution

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \Phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1}(c,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{2}(c,A,B)$$

$$= \phi_{2}(B,c) \tau_{2}(c,B)$$

С	В	$\tau_2(c,B)$	 В	С	$\phi_2(B,c)$
С	b	16001	\overline{b}	С	100
С	\overline{b}	101010	\overline{b}	С	1

Again, we start with the Gibbs distribution

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \Phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1}(c,A)$$

$$= \phi_{2}(B,c) \sum_{A} \Phi_{2}(c,A,B)$$

$$= \phi_{2}(B,c) \tau_{2}(c,B)$$

$$= \Phi_{3}(c,B)$$

С	В	$\Phi_3(c,B)$
С	b	16001
С	\overline{b}	101010

Again, we start with the Gibbs distribution

$$P(B,c) = \sum_{A} \sum_{D} P(A,B,c,D)$$

$$= \sum_{A} \sum_{D} \frac{1}{Z} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$\propto \sum_{A} \sum_{D} \phi_{1}(A,B) \phi_{2}(B,c) \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \phi_{3}(c,D) \phi_{4}(D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \sum_{D} \Phi_{1}(c,D,A)$$

$$= \phi_{2}(B,c) \sum_{A} \phi_{1}(A,B) \tau_{1}(c,A)$$

$$= \phi_{2}(B,c) \sum_{A} \Phi_{2}(c,A,B)$$

$$= \phi_{2}(B,c) \tau_{2}(c,B)$$

$$= \Phi_{3}(c,B)$$

After normalisation, we get

_ <i>C</i>	B	$\Phi_3(c,B)$
С	b	16001
С	\overline{b}	101010

С	B	P(B c)
С	b	.94
С	\overline{b}	.06

Variable Elimination with Energy Functions

We start with the Gibbs distribution

$$P(A,B) = \sum_{C} \sum_{D} P(A,B,C,D)$$

$$= \sum_{C} \sum_{D} \frac{1}{Z} \exp(-(\psi_{1}(A,B) + \psi_{2}(B,C) + \psi_{3}(C,D) + \psi_{4}(D,A)))$$

$$\propto \sum_{C} \sum_{D} \exp(-(\psi_{1}(A,B) + \psi_{2}(B,C) + \psi_{3}(C,D) + \psi_{4}(D,A)))$$

$$= \sum_{C} \sum_{D} \exp(-(\psi_{1}(A,B)) \exp(-(\psi_{2}(B,C)) \exp(-(\psi_{3}(C,D)) \exp(-(\psi_{4}(D,A))))$$

$$= \phi_{1} \exp(-(\psi_{1}(A,B)) \sum_{C} \exp(-(\psi_{2}(B,C)) \sum_{D} \exp(-(\psi_{3}(C,D)) \exp(-(\psi_{4}(D,A))))$$

	D	$\psi_3(C,D)$
С	d	0
С	$ar{d}$	-4.61
\bar{c}	d	-4.61
\bar{c}	\bar{d}	0

$$\begin{array}{c|ccc} D & A & \psi_4(D,A) \\ \hline d & a & -4.61 \\ d & \overline{a} & 0 \\ \overline{d} & a & 0 \\ \overline{d} & \overline{a} & -4.61 \\ \hline \end{array}$$

- Suppose we want to use Machine Learning classifiers to recognise handwritten words
 - We can train a classifier C that takes as input an image of a single letter x
 - C outputs a class probability P(Y|x) or a score that is proportional to the classifier confidence
- Given an input sequence (word) $x_1, ..., x_n$
 - We can call the classifier C n times and obtain n independent predictions $P(Y_i|x_i)$
 - However, this approach does use the information that some sequences of letters may be very unlikely
 - For instance, we expect that "QU" is much more common than "QV"

- A conditional random field (CRF) is a discriminative model
 - In this example, it will directly approximate $P(Y|x) = P(Y_1, ..., Y_n|x_1, ..., x_n)$
 - So far, we have only studied generative models (more about this later)
- With independent classifiers, the probability of classifying a given input \boldsymbol{x} with \boldsymbol{n} letters is simply

$$P(Y_1, \dots, Y_n | \mathbf{x}) = \prod_i P(Y_i | x_i)$$

- We can see the output of the classifiers as factors
 - $\phi_i(Y_i, x_i)$ is the score of the classifier
 - It assigns higher values to y_i 's that are consistent with the input x_i

- We can see the output of the classifiers as factors
 - $\phi_i(Y_i, x_i)$ is the score of the classifier
 - It assigns higher values to y_i 's that are consistent with the input x_i
- We can add a new pairwise factor for consecutive letters
 - $\phi(Y_i, Y_{i+1})$ is a measure of co-occurrence of consecutive letters
 - It measures the affinity between y values

- Therefore, this problem can be modelled by the graph shown on the right
 - It is known as the linear chain CRF
 - It is an undirected version of the Hidden Markov Model
- In this application, we want to know the most probable instantiation
 - MAP or MPE query
 - The output is a sequence of letters that corresponds to the assignment with the highest probability
 - The answer is efficiently computed by the Viterbi algorithm

$$P(Y|x) = \frac{1}{Z(x)}\phi_1(Y_1, x_1) \prod_{i=2} \phi_i(Y_i, x_i)\phi(Y_{i-1}, Y_i)$$

Structured (output) learning

- Techniques that involves predicting structured objects, rather than scalar discrete or real values
- CRF graph can be as complex as necessary

Original

Segmented

Independent classifiers

CRFs

Generative and Discriminative Models

- In this course, we have discussed several generative models
 - Markov chains, Hidden Markov models, Bayesian networks, Markov networks are examples of generative models
 - They model P(X) being X a set of variables that correspond to graph nodes
 - As these models estimate P(X), they can be used to answer any queries that involve variables in X
- However, most of the Machine Learning algorithms are discriminative
 - Discriminative models approximate P(Y|X)
 - These models can only answer queries that involve estimating the probability of *Y* given *X*, such as in the case of classification
- Generative models can be used in classification tasks
 - We pick one variable as class attribute (Y) and compute P(Y|X) from P(Y,X)
 - But, in this case, which model is better? Generative or discriminative?

Generative and Discriminative Models

- Generative models are particularly useful when missing data is present
 - We can leave the attributes with missing data as unobserved as run inference
 - Several discriminative models require complete data
- However, the prevailing consensus is that discriminative models are preferred for classification tasks
 - "Discriminative models have lower generalization error"
 - "Discriminative models need less data to train"

Generative and Discriminative Models

This paper compares a generative-discriminative pair

- Naïve Bayes and logistic regression
- The generative model has indeed a higher asymptotic error as the training set grows
- However, it approaches its asymptotic error much faster than the discriminative model

Therefore, we can observe two regimes of performance

- For smaller datasets, the generative model has already approached its asymptotic error and is performing better
- For larger datasets, the discriminative model approaches its lower asymptotic error and performs better

Generative Models and Synthetic Data

Conclusion

- Markov networks are undirected probabilistic graphical models
 - These models are widespread in areas such as image and language processing
 - The dependency between variables do not have an intrinsic direction
- Several tasks in image processing involve the computation of a MAP or MPE assignment
 - It is known as the MAP-MRF approach
 - As images involve a large number of variables and have large treewidth. This task requires specialised approximate inference methods
- Variable elimination works for Markov networks
 - Most of the algorithms were designed for MN and involve transforming the BN to an MN
 - VE is one case, the interaction graph is an MN
- CRFs are popular discriminative approaches
 - Frequently used in structured output prediction tasks