Predictive Analytics of The Global Terrorism Database

Gabrielle Agrocostea, Nandini Shah, Vidyavisal Mangipudi

What's the Question?

- -Predict whether an event would be successful
 - Success defined as a terrorist event happening as planned
- -Predict the number of casualties in the test set
 - Casualties includes number of people killed and number of people wounded.

Source:Global Terrorism Data

- Data available from 1970 to 2013
- Definition of a terrorist event:
 - Incident must be intentional
 - Incident must entail a threat of violence
 - Act must attain an economic, financial, political or religious goal
- Contains continuous, discrete and categorical variables
- Dataset used (2006 to 2013) includes ~45,000 instances and 136 features.

Data Cleaning

- Filter and retain the top 6 countries (70% of dataset)
 - o Afghanistan, India, Iraq, Pakistan, Philippines and Thailand
- Dealing with missing data:
 - Exclude any column which has more than 50% of missing data
- Exclude any column with text (news snippet/summary)
- Remove any column with any unnecessary information (event_id/ LatLong)

Data Cleaning II

- Response Variable nCasualty<- nKilled + nWounded
- Vectorized categorical columns
- Approaches to dealing with 'NA' data points
 - Appropriate assumptions based on documentation (ex: nationality)
 - Implemented Linear Regression within the feature
 - Delete the rows with NA's in valuable features and/or few rows
- Filtered dataset has ~30,000 instances and 25 columns

Implementation: "success"

- Binary classifier
- Model choice -> Logistic regression
- AUC: 0.838, Accuracy: 96%
- Confusion matrix: <u>Actual Values</u>

Predicted Values

Class	0	1
FALSE	13	15
TRUE	68	2131

- Report bias and more (8.4% success = 0)
- Reason for not exploring: Definition of success

Implementation: #casualties

• Technique I: Subset selection

Implementation: #casualties

- Large number of columns
- Real valued prediction

- $\hat{w}_{\mathrm{lasso}\,\lambda} := \operatorname*{arg\,min}_{oldsymbol{w} \in \mathbb{R}^p} rac{1}{n} \|oldsymbol{y} oldsymbol{X} oldsymbol{w}\|_2^2 + \lambda \|oldsymbol{w}\|_1$
- Natural model choice -> Lasso Regression (cv.glmnet)

Analysis: #casualties

Both models use similar features

Sampling Distribution

• Comparison of RMSE:

<u>Characteristics</u>	RMSE train	RMSE test	Model Comple xity
Subset Selection	1.455	1.455	20/25
Lasso Regression	1.444	1.458	25/25

Feature Rankings: #casualties

Feature	Lasso	SS
suicide	1	1
multiple	2	2
crit2	3	3
crit1	4	4
attacktype	5	6
weapontype	6	7
success	7	8
region	8	5

Feature	Lasso	SS
int_misc	9	11
gun_certain	10	10
weapon_sub	11	9
target_type	12	13
groupName	13	12
country	14	14
nationality	15	17
claimed	16	18

Feature	Lasso	SS
year	17	20
doubt_terror	18	21
isHostageKid	19	25
extended	20	23
month	21	26
day	22	19
vicinity	23	15
crit3	24	22

Summary

- Exploratory Data Analysis
- Data Cleaning
- Implementation:
 - o "success" Logistic Regression
 - #casualties Subset Selection & Lasso Regression
- Analysis:
 - Size of data set and number of features is small currently so appears to be method agnostic

What did WE learn?

- Data cleaning takes forever
- NA values are the bane of our existence
- Ctrl + C is your best friend

