

الامتحان الوطني الموحد للبكالوريا

الدورة الاستدراكية 2018 -الموضوع-

RS25

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية: "أ" و"ب" (الترجمة الفرنسية)	الشعبة أو المسلك

- La durée de l'épreuve est de 4 heures.
- L'épreuve comporte 4 exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.

L'usage de la calculatrice n'est pas autorisé L'usage de la couleur rouge n'est pas autorisé الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 — الموضوع – مادة: الرياضيات — شعبة العلوم الرياضة "أ" و"بم" (الترجمة الغرنسية)

EXERCICE 1 (3.5points):

On rappelle que $(M_2(i),+,i)$ est un anneau unitaire de zéro la matrice nulle

$$O = \begin{cases} 30 & 0 \frac{\ddot{o}}{\dot{\pm}} \\ 0 & 0 \frac{\ddot{c}}{\ddot{\phi}} \end{cases}$$
 et d'unité la matrice $I = \begin{cases} 31 & 0 \frac{\ddot{o}}{\dot{\pm}} \\ 0 & 1 \frac{\ddot{c}}{\ddot{\phi}} \end{cases}$ et que $(M_2(i), +, ...)$ est un espace

vectoriel réel de dimension 4.

Pour tout couple $(x, y)\hat{\mathbf{l}}_{\hat{\mathbf{l}}}^2$, on pose $M(x, y) = \begin{cases} x & y \frac{\ddot{\mathbf{0}}}{2} \\ x & x \frac{\ddot{\mathbf{0}}}{2} \end{cases}$ et on considère

l'ensemble
$$E = \{M(x, y)/(x, y)\hat{\mathbf{1}}^2\}$$

- 0.5 1- Montrer que E est un sous-groupe du groupe $(M_2(i),+)$
- 0.5 | 2- a) Montrer que E est un sous-espace de l'espace vectoriel $(M_2(i),+,.)$
- b) Montrer que l'espace vectoriel réel (E, +, .)est de dimension 2
- 0.25 3-a) Montrer que E est stable pour la loi " "
- 0.5 b) Montrer que (E, +, ') est un anneau commutatif.
 - 4- On définit dans $M_2(i)$ la loi de composition interne T par : pour tout M(x,y) et M(x',y') de $M_2(i)$,

$$M(x, y)TM(x', y') = M(x, y)' M(x', y') - M(y, 0)' M(y', 0)$$

Et soit j l'application de £ *vers E qui à tout nombre complexe x + iy

(où
$$(x, y) \in \square^2$$
) fait correspondre la matrice $M(x, y)$ de E

- 0.25 a) Montrer que E est stable pour la loi "T"
- 0.25 b) Montrer que j est un homomorphisme de $(f_*, ')$ vers (E, T)
- 0.25 c) On pose: $E^* = E \{O\}$. Montrer que (E^*, T) est un groupe commutatif.
- 0.5 | 5- a) Montrer que la loi T est distributive par rapport à la loi « + » dans E
- 0.25 b) Montrer que (E,+,T) est un corps commutatif.

0.75

0.5

0.5

1

1

1

EXERCICE 2:(3.5points)

1- Pour tout nombre complexe
$$z \hat{\mathbf{l}}$$
 £ - $\{i\}$ on pose : $h(z) = i \underbrace{\overset{\approx}{\mathbf{c}} z - 2i \frac{\ddot{o}}{\dot{\sigma}}}_{z-i \dot{\sigma}}$

0.5 a) Vérifier que :
$$h(z) = z$$
 \hat{U} $z^2 - 2iz - 2 = 0$

0.5 b) Résoudre dans £ l'équation (E):
$$z^2$$
 - $2iz$ - $2 = 0$

2- Le plan complexe est rapporté à un repère orthonormé
$$(O, e_1, e_2)$$
.

On note a et b les deux solutions de l'équation (E) tel que : Re(a)=1

Et pour tout $z \hat{1}$ £ - $\{i,a,b\}$ on note M(z),M'(h(z)),A(a) et B(b) les points d'affixes respectivement z,h(z),a et b

0.75 a) Montrer que :
$$\frac{h(z)-a}{h(z)-b} = -\frac{z-a}{z-b}$$

b) En déduire que :
$$(M'B, M'A)^{\circ}$$
 p + (MB, MA) [2p]

3- a) Montrer que si
$$M, A$$
 et B sont alignés alors M, A, B et M' sont alignés.

b) Montrer que si M, A et B ne sont pas alignés alors M, A, B et M' sont cocycliques.

EXERCICE 3:(3points)

On lance 10 fois de suite une pièce de monnaie parfaitement équilibrée.

On désigne par X la variable aléatoire égale à la fréquence d'apparition de la face « pile ».

(le nombre de fois d'apparition de la face « pile » divisé par 10)

1-a) Déterminer les valeurs prise par
$$X$$

b) Déterminer la probabilité de l'événement
$$\left[X = \frac{1}{2}\right]$$

2- Quelle est la probabilité de l'évènement :
$$X$$
 supérieur ou égale à $\frac{9}{10}$?

0.5

1

1

0.75

1

0.75

EXERCICE 4:(10points):

Soit f la fonction numérique définie sur l'intervalle [0,+Y] [par :

$$f(x) = \sqrt{x} (\ln x)^2 \text{ pour } x > 0$$
 et $f(0) = 0$

On note (C)sa courbe représentative dans un repère orthonormé (O,i,j)

1-a) Montrer que f est continue à droite en 0

(On pourra remarquer que :
$$f(x) = \frac{\overset{\circ}{\epsilon}}{\overset{\circ}{\epsilon}} 4x^{\frac{1}{4}} \ln \overset{\circ}{\overset{\circ}{\epsilon}} \frac{1}{\overset{\circ}{\epsilon}} \overset{\circ}{\overset{\circ}{\epsilon}} \frac{1}{\overset{\circ}{\epsilon}}$$

0.75 b) Calculer
$$\lim_{x \to +\frac{\pi}{2}} f(x)$$
 et $\lim_{x \to +\frac{\pi}{2}} \frac{f(x)}{x}$, puis interpréter graphiquement le résultat obtenu

0.75 2- a) Etudier la dérivabilité de
$$f$$
 à droite en 0, puis interpréter graphiquement le résultat obtenu .

0.75 b) Montrer que
$$f$$
 est dérivable sur $]0,+\infty[$ puis calculer $f'(x)$ pour $x>0$.

c)
Etudier les variations de
$$f$$
 sur $\left[0,+\infty\right[$, en déduire que :

$$(\forall x \in]0,1]$$
 $0 \le \sqrt{x} (\ln x)^2 \le \left(\frac{4}{e}\right)^2$

0.5 d) Tracer la courbe
$$(C)$$
 dans un repère orthonormé. (On prendra pour unité 2cm)

3- Pour tout réel
$$x \ge 0$$
, on pose $F(x) = \int_{x}^{1} f(t) dt$

0.5 a) Montrer que la fonction
$$F$$
 est dérivable sur l'intervalle $[0, +\infty[$

b) Calculer
$$F'(x)$$
 pour $x \ge 0$, en déduire le sens de variation de F sur $[0,+\infty[$

0.75 4- a) En utilisant la méthode d'intégration par parties, calculer
$$\int_{x}^{1} \sqrt{t} \ln t \, dt$$
 pour tout $x > 0$

b) Montrer que pour
$$x > 0$$
, $F(x) = -\frac{2}{3}x\sqrt{x}(\ln x)^2 + \frac{8}{9}x\sqrt{x}\ln x - \frac{16}{27}x\sqrt{x} + \frac{16}{27}$

c) En déduire l'aire du domaine plan limité par la courbe (
$$C$$
) et les droites d'équations respectives : $x = 0$, $x = 1$ et $y = 0$

5- Pour tout entier naturel
$$n$$
 non nul, on pose : $u_n = \int_{\frac{1}{n}}^{1} f(x) dx$

a) Montrer que la suite
$$(u_n)_{n\geq 1}$$
 est bornée et strictement monotone.

b) Montrer que la suite
$$(u_n)_{n\geq 1}$$
 est convergente puis calculer $\lim_{n\to +\infty} u_n$