Aide pour le rapport du projet

C. Maugis-Rabusseau

2024-12-04

Contents

1	Consignes de rédaction	1			
2	Quelques éléments de Rmarkdown	1			
3	Etude du jeu de données Iris				
	3.1 Récupération des données	2			
	3.2 Statistiques descriptives	3			

Ce document a pour but de vous donner des consignes pour la rédaction du rapport et vous donner des éléments de démarrage pour la rédaction d'un rapport en Rmarkdown.

1 Consignes de rédaction

Votre rapport doit synthétiser votre travail d'étude du jeu de données abordé durant le projet commun. Il doit comprendre :

- une organisation par sections, sous-sections, ... une introduction et une conclusion
- pour chaque méthode d'analyse considérée : expliquer son principe et l'objectif, la mettre en application, commenter les résultats
- Toute figure doit avoir une légende et doit être commentée
- Même remarque pour les tableaux de résultats
-

2 Quelques éléments de Rmarkdown

Des éléments de rédaction d'un document Rmarkdown sont donnés dans la partie 4 des tutoriels R (ici)

Vous pouvez également trouver de nombreux exemples sur le web.

Nous rappelons ici quelques points :

- Vous devez créer un documents Rmardown au format de sortie PDF
- Vous pouvez organiser votre document en sections, sous-sections, ... grâce à #, ##, ...
- Vous pouvez dans l'en-tête de votre document Rmarkdown
 - préciser le titre du document, les auteurs, la date, ...
 - ajouter une table des matières avec l'option toc dans le output:pdf_document
 - ajouter des macro Latex dans header-includes
 - ajouter une bibliographie avec bibliography:
 - **–** ...

- Vous pouvez mettre du code R dans des chunks R et jouer sur les options comme
 - echo=F pour ne pas afficher le code dans le rapport
 - eval=F pour ne pas l'évaluer dans le rapport
 - fig.height, fig.width, ... pour maitriser la taille des figures
 - fig.cap pour mettre une légende aux figures

5.4

- message=F pour ne pas afficher les messages de R

– ...

• Vous pouvez mettre des formules mathématiques Latex entre \$...\$. On peut aussi utiliser \begin{equation} \end{equation}, ...

3 Etude du jeu de données Iris

On va ici utiliser le célèbre jeu de données des Iris pour illustrer quelques points de rédaction en Rmarkdown. Vous êtes donc invités à parcourir en même temps le .pdf et le .Rmd pour comprendre les points de syntaxe.

3.1 Récupération des données

Les données Iris ont été collectées par Edgar Anderson [@iris]. Ce sont les mesures en centimètres des variables suivantes : longueur du sépale (Sepal.Length), largeur du sépale (Sepal.Width), longueur du pétale (Petal.Length) et largeur du pétale (Petal.Width) pour trois espèces d'iris : Iris setosa, I. versicolor et I. virginica. Les données sont disponibles de base sous R et on les récupère donc avec la fonction data(iris). Les premières lignes du jeu de données sont affichés dans la Table 1.

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa

1.7

0.4

setosa

3.9

Table 1: Les premières lignes du jeu de données iris.

On retrouve bien que les données sont composées de 150 individus, de 4 variables quantitatives et d'une variable qualitative Species. Dans la suite, nous notons Y la variable Species et X la matrice composées des 4 autres variables

$$X = (X_{ij})_{i \in \{1,\dots,150\}, j \in \{1,\dots,4\}}$$
.

3.2 Statistiques descriptives

Nous faisons ici quelques statistiques descriptives pour prendre en main les données.

3.2.1 La variable Species

Nous commençons par la variable Species (vecteur Y) qui est une variable qualitative. La Figure 1 nous permet de contrôler que nous avons bien 50 individus par espèce.

Figure 1: Barplot de la variable Species

3.2.2 Les 4 variables quantitatives

Nous nous intéressons maintenant aux 4 variables quantitatives (matrice X). La Figure 2 montre les corrélations entre les 4 variables. On peut remarquer que la largeur et la longuer des pétales sont fortement corrélées positivement, ce n'est pas le cas pour les sépales.

Figure 2: Matrice des corrélations entre les 4 variables quantitatives

A l'aide de la librairie FactoMineR, on met en place une ACP. On représente ici les individus projetés sur le premier plan factoriel, la couleur correspondant à l'espèce ainsi que les corrélations des variables quantitatives initiales avec les deux premières composantes principales.

```
respca=PCA(iris,quali.sup=5,graph=F)
g1=fviz_pca_ind(respca,label="none",habillage=5)+ theme(legend.position="bottom")
g2=fviz_pca_var(respca)
grid.arrange(g1,g2,ncol=2)

Individuals - PCA

Variables - PCA
```


On peut remarquer que les Setosa se distinguent des deux autres espèces principalement par la largeur de leur sépales. On peut appuyer ce point à l'aide de la Figure 3.

Figure 3: Violin plots de la largeur des sépales pour chaque espèce.