Genome-Wide Association Studies (GWAS) Workshop

Ida Moltke & Shyam Gopalakrishnan Genomes and Biodiversity, Nov 2019

Learning objectives for today

By the end of today you should:

- be able to explain the basic idea behind a GWAS
- be able to perform the most basic steps of a GWAS
- ▶ be able to interpret the plots typically used in GWAS
 - ► Manhattan plots
 - QQ-plots
- be aware of some important potential pitfalls (poor quality data, batch effects, multiple testing, population structure)

Learning objectives for today

By the end of today you should:

- be able to explain the basic idea behind a GWAS
- ▶ be able to perform the most basic steps of a GWAS
- ▶ be able to interpret the plots typically used in GWAS
 - ► Manhattan plots
 - QQ-plots
- be aware of some important potential pitfalls (poor quality data, batch effects, multiple testing, population structure)

The plan is to reach these goals via a lecture with exercises along the way

Outline

- 1. Introduction
 - Why GWAS?
 - What is GWAS?
- 2. The different steps of a GWAS
 - Step 1: Collect samples and phenotypic data
 - Step 2: Genotype samples
 - Step 4: Statistically test each SNP for association
 - Step 5: Assess the results
 - Step 3: Lots and lots of QC
 - Step 7: Replication
- 3. Additional potential pitfalls
- 4. Extra details (if time allows)
 - Study design and power
 - Effect sizes
 - . GWAS so far (if time allows)

What is the goal?

- ► To find (map) genetic variants that have an effect on a trait, e.g. height
- ► Often focused on disease traits (also our main focus today)
 - ▶ i.e. studies where the phenotype of interest is whether the participants have a disease (cases) or not (controls)

What is the goal?

- ► To find (map) genetic variants that have an effect on a trait, e.g. height
- ► Often focused on disease traits (also our main focus today)
 - ▶ i.e. studies where the phenotype of interest is whether the participants have a disease (cases) or not (controls)

Case

Controls

- ► The motivation is that reaching this goal can hopefully
 - reveal the role genetics play in the disease
 - hopefully lead to better understanding the disease etiology
 - ▶ ideally lead to better treatment and/or prevention

Why learn about GWAS?

- ► Several approaches to such mapping, e.g. linkage mapping
- ► GWAS the most used approach to mapping since 2007:

HTRA1 Promoter Polymorphism in V Age-Related Macular Degeneration

Andrew DeWas, * Nugentis, ** Stephen Burtman, ** Samuel Shao-Bin Zhang ** David T. Comic Zhoo, * Parcy O. S. Tany, 'Wai Man Chan,' Demis S. C. Lan, * Michael Snyder, 'Calls Barrostable,' Chi Pul Pang, ' Jacoby Lee Bulk**!

www.sciencemag.org SCIENCE VOL 314 10 NOVEMBER 2006

A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene

Hickard R. Daer, ^{1,4} Kent D. Tayler, ^{1,4} Saven R. Brast, ^{1,4} John D. Hisse, ^{1,4} Mark S. Silverberg, ¹
Ker's Y. Dely, ^{1,5} A. Hillery, Serichert, ¹Cleo & Norsham, ¹-Mijer i Reyerin, ²Ause Griffitts, ^{1,5}
Hermitotics Desoporcies, ²Ause Histon, ³ Major J. Payl, ²-Saparia Taylor, ²Ause Griffitts, ^{1,5}
Lisa Wa Data, ³ Seriy G. Coston, ³L. 3-10 Solvens, ^{3,5} Anomic T. Lee, ^{3,5} Paper E. Gregoros, ^{3,6}
M. Richard Branch, ³Desor E. Richers, ^{5,6} Deso F. Coston, ^{3,6} Lee, ^{3,6} Paper E. Gregoros, ^{3,6}
M. Richard Branch, ^{3,6} Seriy G. Coston, ^{5,6} Lee, ^{5,6} Desopher, ^{5,6} Lee, ^{3,6} Paper E. Gregoros, ^{3,6}
M. Richard Branch, ^{5,6} Seriy G. Coston, ^{5,6} Lee, ^{5,6} Desopher, ^{5,6} Lee, ^{5,6} Paper E. Gregoros, ^{5,6}
M. Richard Branch, ^{5,6} Seriy G. Coston, ^{5,6} Lee, ⁵

www.eciencemag.org SCIENCE VOL 314 1 DECEMBER 2006

A genome-wide association study identifies novel risk loci for type 2 diabetes

Robert Stadok ^{1,4,4} Ghistain Rocheleau¹*, Johan Rung¹*, Christian Dina¹*, Lishuang Sheni¹, David Serrei,
Guillamm Changerbeurin, ¹Damid Vircentif, Alexandre Brislier¹, Samy Hadjadt, ¹Boertery Ballaut, ¹Barbara Heuder¹,
Guillamm Changerbeite¹, ¹Thomas J. Hudson ¹*, Alexandre Montpatk², Naury V. Phashatskiller³, Marc Plendis^{1,1}1,
Barry I. Posner^{1,1,2}, David J. Buiding^{1,3}, David Mayre², Constantin Folychronatos^{1,3} & Philippe Frogue^{6,1,4}
enth National Marchatskiller³
nation

A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1

Jochen Hampe^{1,10}, Andre Iranke^{1,10}, Philip Rosensieli^{1,0}, Andren Sill, Markus Teuber¹, Klam Hme², Mario Albench¹, Gabriele Mayr², Francisco M De La Vage², Juson Brigge², Simone Gimber³, Nazile J Pracces², Cilve Obanele, Robert Halde³, Sonce Spor³, Vinha R. Fothels³, Toknober Gamber³, Manhais Patzer², Christopher G Mathor³, Michal Koneczal² & Stein Schneiber³
NATIRE CEMERICS VOLUME 30 I NUMBER 21 FERRI JAPY 2003.

So probably the single most important approach within disease mapping

- ▶ Previous methods successful for **Mendelian diseases**, where
 - environmental factors are less important than genetic factors
 - ► causal genetic variants have **high penetrance*** (close to 1)
 - only one or a few causal variants are involved
 - causal variants are typically rare

^{*}proportion of cases among individuals carrying the variant

- ► Previous methods successful for **Mendelian diseases**, where
 - environmental factors are less important than genetic factors
 - ► causal genetic variants have **high penetrance*** (close to 1)
 - only one or a few causal variants are involved
 - causal variants are typically rare
- ▶ BUT previous methods not successful for **complex diseases**, where
 - environmental factors are very important
 - causal genetic variants have low penetrance
 - many causal genetic variants are involved
 - causal variants are potentially common (we do not know)

^{*}proportion of cases among individuals carrying the variant

- ▶ Previous methods successful for **Mendelian diseases**, where
 - environmental factors are less important than genetic factors
 - ► causal genetic variants have **high penetrance*** (close to 1)
 - only one or a few causal variants are involved
 - causal variants are typically rare
- ▶ BUT previous methods not successful for **complex diseases**, where
 - environmental factors are very important
 - causal genetic variants have low penetrance
 - many causal genetic variants are involved
 - causal variants are potentially common (we do not know)
- Most common diseases are complex! e.g. type 2 diabetes, CVD

^{*}proportion of cases among individuals carrying the variant

- ▶ Previous methods successful for **Mendelian diseases**, where
 - environmental factors are less important than genetic factors
 - ► causal genetic variants have **high penetrance*** (close to 1)
 - only one or a few causal variants are involved
 - causal variants are typically rare
- ▶ BUT previous methods not successful for complex diseases, where
 - environmental factors are very important
 - causal genetic variants have low penetrance
 - many causal genetic variants are involved
 - causal variants are potentially common (we do not know)
- Most common diseases are complex! e.g. type 2 diabetes, CVD
- ► GWAS works for common, low penetrance variants (common disease)

^{*}proportion of cases among individuals carrying the variant

The basic idea behind association studies

▶ We look at genetic data from unrelated, randomly sampled individuals

► Typically 500,000-5,000,000 SNP variants along the genome

The basic idea behind association studies

▶ We look for SNP variants that are associated (correlated) with disease

Genotype (number of copies of variant)

► Test each SNP for association & identify those with low p-value

Introduction ps of a GWAS

Additional potential pitfalls Extra details (if time allows) GWAS so far (if time allows) Why GWAS? What is GWAS?

Why?

Why?

► Expect to see association in locus with a causal variant!

Why?

- ► Expect to see association in locus with a causal variant!
- Expect to see it in loci highly correlated w. causal variant, e.g.

Causal	Other	locus
A	G	
A	G	
A	G	
A	G	
A	G	
C	T	
C	T	
C	T	

- ▶ We expect to see it in loci that are in high LD with the causal SNP
- ▶ NB LD measure usually used is r^2 (ranges 0-1, where 1=fully correlated)

: Collect samples and phenotypic data

ep 2: Genotype samples

ep 4: Statistically test each SNP for association

Step 3: Lots and lots of QC

Outline

- 1. Introduction
 - Why GWAS?
 - What is GWAS?
- 2. The different steps of a GWAS
 - Step 1: Collect samples and phenotypic data
 - Step 2: Genotype samples
 - Step 4: Statistically test each SNP for association
 - Step 5: Assess the results
 - Step 3: Lots and lots of QC
 - Step 7: Replication
- 3. Additional potential pitfalls
- 4. Extra details (if time allows)
 - Study design and power
 - Effect sizes
- 5. GWAS so far (if time allows)

1: Collect samples and phenotypic data
 2: Genotype samples

tep 5: Assess the results

Step 3: Lots and lots of C

GWAS step-by-step

- 1. Collect samples and traits of interest
- 2. Genotype samples at a number (\geq 500,000) of SNP loci
- Lots and lots of quality control (QC)!
- 4. Statistically test each SNP that passed QC for association
- 5. Assess the results:
 - ► make sure things went OK
 - ► identify associated SNPs
- 6. Identify causal variant (if possible)
- 7. Replicate associations in a different dataset
- 8. Investigate what the underlying biological mechanism is
- 9. Ideal longterm goal/hope: better prevention or treatment

1: Collect samples and phenotypic data

tep 2: Genotype samples

p 4: Statistically test each SNP for association n.5: Assess the results

Step 3: Lots and lots of QC

GWAS step-by-step

- 1. Collect samples and phenotypic data
- 2. Genotype samples at a number (\geq 500,000) of SNP loci
- 3. Lots and lots of quality control (QC)!
- 4. Statistically test each SNP for association
- 5. Assess the results:
 - ▶ make sure things went OK
 - ► identify associated SNPs
- 6. Identify causal variant (if possible)
- 7. Replicate associations in a different dataset
- 8. Investigate what the underlying biological mechanism is
- 9. Ideal longterm goal/hope: better prevention or treatment

Step 1: Collect samples and phenotypic data

en 4: Statistically test each

otep 5: Assess the results Step 3: Lots and lots of QC

Step 3: Lots and lots Step 7: Replication

Step 1: Collect samples and phenotypic data

Two possible designs:

► Take a random sample from a population (population cohort):

Select samples based on traits:

Cases

Controls

► Both require informed consent! (and ethical approval)

Step 1: Collect samples and phenotypic data
Step 2: Genotype samples
Step 4: Statistically test each SNP for association
Step 5: Assess the results
Step 3: Lots and lots of OC

Outcome

The outcome of collecting data:

- ► Blood samples or similar (for later genotyping)
- ▶ Plus information about the traits of interest
 - disease status
 - e.g. have diabetes (case) vs do not have diabetes (control)
 - quantitative
 - e.g. cholesterol, blood pressure or blood sugar

Step 2: Genotype samples

How does one choose genotyping platform?

- ► Want to (indirectly) test as many (common) SNPs as possible CHEAPLY
- Which and how many SNPs are needed depend on LD.
- Often data from standard SNP arrays (500K-5M, the smaller the cheaper!)

Introduction
The different steps of a GWAS
Additional potential pitfalls
Extra details (if time allows)

Step 1: Collect samples and phenotypic data
Step 2: Genotype samples
Step 4: Statistically test each SNP for association

Step 3: Lots and lots of QC

Step 3: Lots and lots of QC

Skip for now:)

ep 1: Collect samples and phenotypic data

Step 4: Statistically test each SNP for association

Step 5: Assess the results

Overview of possible tests

- ► One can use many different tests
- ▶ Which to use depends on inheritance mode (additive, recessive, dominant)
- ► Mainly depends on type of data (case-control or quantitative)

ep 1: Collect samples and phenotypic data

Step 4: Statistically test each SNP for association

Step 3: Lots and lots of QC

Overview of possible tests

- ► One can use many different tests
- ▶ Which to use depends on inheritance mode (additive, recessive, dominant)
- ► Mainly depends on type of data (case-control or quantitative)
- ► Additive model for inheritance mode is almost always assumed
- ► For quantitative traits, e.g. height, **linear regression** often used
- ► For case-control traits, e.g. T2D, logistic regression often used

Step 1: Collect samples and pnenotypic data Step 2: Genotype samples Step 4: Statistically test each SNP for association Step 5: Assess the results Step 3: Lots and lots of OC

Test for association in case-control traits

Can you think of a simple statistic to find SNPs associated with disease status?

p 1: Collect samples and phenotypic data

p 4: Statistically test ea

Step 5: Assess the results

Step 3: Lots and lots

Identify associated SNPs

Step 1: Collect samples and phenotypic data Step 2: Genotype samples Step 4: Statistically test each SNP for association

Step 5: Assess the results Step 3: Lots and lots of QC

What p-value threshold to use

- Usually for a single test we use a p-value threshold of $\alpha = 0.05$
- If you perform many tests w. this α you will get a lot of false positives!
- ► So we have to **correct for multiple testing**

1: Collect samples and phenotypic data
 2: Genotype samples

Step 2: Genotype samples

Step 5: Assess the results

Step 7: Replication

What p-value threshold to use

- lacktriangle Usually for a single test we use a p-value threshold of lpha=0.05
- ▶ If you perform many tests w. this α you will get a lot of false positives!
- ► So we have to **correct for multiple testing**
- ▶ Often **Bonferroni correction** is used; α is divided by the number of tests:
 - ▶ 100000 SNPs and $\alpha = 0.05$
 - ▶ Bonferroni corrected $\alpha = 0.05/100000 = 0.0000005 = 5 \times 10^{-7}$
 - which on the Manhattan plot is $-log_{10}(5 \times 10^{-7}) = 6.3$

Step 1: Collect samples and phenotypic data
Step 2: Genotype samples
Step 4: Statistically test each SNP for association
Step 5: Assess the results
Step 3: Lots and lots of QC
Step 7: Pacification

Exercise

Solve exercise A, i.e. run your first GWAS! :)

ep 1: Collect samples and phenotypic data

Step 4: Statistically test each SNP for association

Step 5: Assess the results Step 3: Lots and lots of QC

Make sure things went OK!

QQ-plots and genomic control inflation factor λ

If so most of the dots will be on the x=y line and $\lambda \simeq 1$

Step 1: Collect samples and phenotypic data
Step 2: Genotype samples
Step 4: Statistically test each SNP for association
Step 5: Assess the results
Step 3: Lots and lots of QC

Exercise

Solve exercise B, i.e. check if your results look OK...

o 1: Collect samples and phenotypic data

ep 2: Genotype samples

Step 4: Statistically test each SNP for association

Step 3: Lots and lots of QC

Step 3 again: Lots and lots of QC

Now you have seen why one shouldn't skip QC...! :)

Let's therefore return to that step (we wont go through all QCs, but some important ones)

ep 1: Collect samples and phenot ep 2: Genotype samples

Step 4: Statistically test each SNP for association

Step 3: Lots and lots of QC

Sample mislabeling?

- ▶ One thing that can go wrong is that the samples can be mislabeled
- ► If so, genotypes won't match phenotypes
- ► This is difficult to catch
- ▶ But a simple check is to see of gender is correct
- ▶ If not the disease status is likely not to be either...
- ▶ We can check this using PLINK
- ► Exercise: try checking it for your data (exercise C)

step 1: Collect samples Step 2: Genotype samples Step 4: Statistically test each SNP for associatio

Step 3: Lots and lots of QC

Closely related individuals or duplicates?

- ► Almost all association tests assume that the participants are **independent** samples from a population
- ► This would not be the case if some participants
 - ► are closely related
 - represented more than once
- One way to check if this is the case is to use PLINK (again)
- ► Exercise: try checking it for your data (exercise D)

p 1: Collect samples and phenotypic di pp 2: Genotype samples

Step 4: Statistically test each SNP for association

Step 3: Assess the results
Step 3: Lots and lots of QC
Step 7: Replication

Batch biases/non-random genotyping error?

- Sometimes the data handling/generation process can lead to non-random genotyping errors
- ► E.g. if all cases were genotyped first and then all controls, then changes in genotyping procedure along the way may lead to non-random differences in genotypes between cases and controls
- ► This may lead the false positive association test results
- ► Exercise (if there is time): try checking it for your data (exercise E & F)

ep 1: Collect samples and pheno ep 2: Genotype samples

Step 4: Statistically test each SNP for association

Step 3: Lots and lots of QC

Additional important checks?

- ▶ Other additional signs of something being wrong include:
 - ► high missingness in specific loci/individuals
 - ► loci out of Hardy-Weinberg Equilibrium (in controls)
- ► Furthermore, low frequency variants tend to be difficult to genotype
- Removing such loci/individuals can help a lot!
- ► Exercise: try rerunning your analyses with these QC filters (exercise G)

1: Collect samples and phenotypic data

Step 4: Statistically test each SNP for

Step 3: Assess the results
Step 3: Lots and lots of QC

Step 7: Replication

Replication in a different dataset

- ► Some of the first GWAS results later turned out to be false positives
- Almost impossible to publish without replication now
- ▶ Basically consists of repeating the test of the SNP in a different dataset
- ► To make sure the result is not just a false positives
- ► This time correction for multiple testing not needed (unless you replicate more than one variant)

Outline

- Introduction
 - Why GWAS?
 - What is GWAS?
- 2. The different steps of a GWAS
 - Step 1: Collect samples and phenotypic data
 - Step 2: Genotype samples
 - Step 4: Statistically test each SNP for association
 - Step 5: Assess the results
 - Step 3: Lots and lots of QC
 - Step 7: Replication

3. Additional potential pitfalls

- 4. Extra details (if time allows)
 - Study design and power
 - Effect sizes
 - 5. GWAS so far (if time allows)

Confounding factors

- ► A few factors can sometimes confound your results
- ► One of these is gender
- ▶ We can correct for this by using a slightly more sophisticated test, namely logistic regression, which allows you to include "covariates" in your test and thereby take them into account
- ▶ If you want an example have a look at "Extra exercise if time allows"

Population structure

- ► All presented tests assume samples are from one homogeneous population
- ▶ If they are not this can lead to false positives
- ► E.g. if we look at height and mix Pygmies and Dutch in a GWAS.
- ▶ All loci where Pygmies mainly have A and Dutch a are associated:

► Similar effect of admixture and relatedness

How can we deal with this?

Two ways

- ► Quality filtering: remove admixed individuals in QC
- ▶ Use other tests:
 - ▶ include first 5-10 PCs as covariates
 - ► a linear mixed model (extension of linear model)

QQ plot (linear model)

QQ plot (linear mixed model)

