Russian (RUS)

SocialEngineering

Problem Name	Social Engineering
Input file	Interactive task
Output file	Interactive task
Time limit	5 seconds
Memory limit	256 megabytes

Социальная сеть представляет собой неориентированный связный граф с n вершинами и m ребрами, каждая вершина соответствует участнику, два участника сети друзья, если между ними есть ребро.

Мария — участница этой социальной сети. Она любит устраивать челленджи для своих друзей. Это означает, что она выполняет какое-то задание, а затем вызывает одного из своих друзей на челлендж — предлагает ему сделать то же самое. Выполнивший задание участник затем вызывает на челлендж своего друга, и так далее. Задание, таким образом, начинает перемещаться по сети. Может случиться, что кому-то придется выполнить задание более одного раза, но для каждой неупорядоченной пары друзей вызов на челлендж может произойти только один раз. (После того, как участник А вызывает на челлендж участника В, ни А не может больше вызывать на челлендж В, ни В не может вызывать на челлендж А.) Другими словами, задание челленджа перемещается по пути в графе, который не проходит по одному ребру дважды.

Участник проигрывает в челлендже, если выполнив задание, он не может вызвать на челлендж ни одного из своих друзей. Мария всегда начинает челленджи и часто выигрывает. Теперь остальные n-1 участников социальной сети решили объединить усилия и добиться, чтобы Мария проиграла в следующем челлендже. Ваша задача — скоординировать их действия.

Implementation

Вам необходимо реализовать функцию

void SocialEngineering(int n, int m, vector<pair<int,int>> edges); которая соответствует запуску челленджа на графе с n вершинами и m ребрами. Эта функция будет

вызвана грейдером ровно один раз. Вектор edges будет содержать ровно m пар целых чисел (u, v), такая пара задает ребро между вершинами u и v. Вершины пронумерованы от 1 до n. Мария соответствует вершине номер 1.

Эта функция может вызывать следующие функции:

```
int GetMove();
```

Эта функция должна вызываться каждый раз, когда Мария выполняет задание, в частности, в начале челленджа. Если вы вызовете эту функцию, когда задание выполняет не Мария, вы получите вердикт Wrong Answer. Функция возвращает одно из следующих значений:

- целое число v, где $2 \le v \le n$. Это означает, что Мария вызывает на челлендж участника номер v. Это всегда будет корректный вызов.
- 0, если Мария сдается, в частности, если она проиграла и не может вызывать никого на челлендж. После этого ваша программа должна выйти из функции SocialEngineering и получит вердикт Accepted.

```
void MakeMove(int v);
```

Эта функция должна быть вызвана, если сейчас не Мария выполняет задание. Вызов этой функции означает, что выполняющий сейчас задание вызывает на челлендж участника номер *v*. Если это некорректный вызов или сейчас задание должна выполнять Мария, то вы получите вердикт Wrong Answer.

Если у Марии на заданном графе есть выигрышная стратегия в начале челленджа, то ваша программа должна выйти из функции SocialEngineering ∂о первого вызова GetMove. В этом случае вы получите вердикт Accepted.

Constraints

- $2 \le n \le 2 \cdot 10^5$.
- $1 \le m \le 4 \cdot 10^5$.
- Заданный граф связен. Каждая неупорядоченная пара вершин соединена не более чем одним ребром, каждое ребро соединяет две различные вершины.

Subtasks

Мария всегда будет играть оптимально в том смысле, что если она может выиграть, она будет это делать. Если у нее нет выигрышной стратегии, она будет пытаться заставить вашу

программу ошибиться разными способами. Она будет сдаваться только, если у нее нет возможности вызвать кого-нибудь на челлендж, за исключением подзадачи 3.

- 1. (15 баллов) $n, m \le 10$.
- 2. (15 баллов) У всех, кроме Марии, не более двух друзей.
- 3. (20 баллов) Мария сдаётся во время первого вызова GetMove всегда, за исключением случая, когда у нее есть выигрышная стратегия.
- 4. (25 баллов) n, m ≤ 100.
- 5. (25 баллов) Нет дополнительных ограничений.

Sample Interaction

Действия решения	Действия грейдера	Пояснение
-	SocialEngineering(5, 6, {{1,4}, {1,5}, {2,4}, {2,5}, {2,3}, {3,5}})	SocialEngineering вызвана на графе с 5 вершинами и 6 ребрами.
GetMove()	Возвращает 4	Мария вызывает на челлендж участника с номером 4.
MakeMove(2)	-	Участник номер 4 вызывает на челлендж участника номер 2.
MakeMove(5)	-	Участник номер 2 вызывает на челлендж участника номер 5.
MakeMove(1)	-	Участник номер 5 вызывает на челлендж Марию.
GetMove()	Возвращает О	Мария не может вызвать никого на челлендж, она сдается.
Выход из	-	Мария проиграла, необходимо выйти из функции SocialEngineering.

Contestant action	Grader action	Explanation
-	<pre>SocialEngineering(2, 1, {{1,2}})</pre>	SocialEngineering вызывается на графе с 2 вершинами и 1 ребром.

Contestant action	Grader action	Explanation
Выход из функции	-	У Марии есть выигрышная стратегия, поэтому необходимо выйти из функции.

Sample Grader

Пример грейдера grader.cpp, приведенный в файле SocialEngineering.zip, считывает входные данные со стандартного потока ввода в следующем формате:

- Первая строка содержит количество вершин n и число ребер m в графе.
- Следующие m строк содержат описание ребер, каждое ребро задается парой вершин, которые оно соединяет.

Пример грейдера считывает входные данные и вызывает функцию SocialEngineering в вашем решении. Обратите внимание, что пример грейдера не реализует оптимальную стратегию Марии, а просто демонстрирует, как устроено взаимодействие.

Чтобы скомпилировать пример грейдера с вашим решением, используйте следующую команду:

```
g++ -std=gnu++11 -02 -o solution grader.cpp solution.cpp
```

где solution.cpp это файл с решением, который вы планируете отправить на провеку. Для запуска программы с примером ввода, можно использовать команду: ./solution < input.txt