Reg. No.		

B.Tech. DEGREE EXAMINATION, MAY 2024

Sixth Semester

18CSE426J – QUANTUM MACHINE LEARNING

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note:

Page 1 of 4

(i)		Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40 th minute.									
(ii)			answe	er booklet.							
Time: 3	Time: 3 hours						x. Marks: 100				
		DADT A (20 v 1 =	= 20 N	Jarks).		Marks	BL	со	PO		
	hall invigilator at the end of 40th minute. Part - B & Part - C should be answered in answer booklet. PART - A (20 × 1 = 20 Marks) Answer ALL Questions 1. Quantum computers are very good at dealing with (A) Clarity (B) Certainty (C) Uncertainty (D) Reliability 2. Determine the result of the given circuit. 0)										
1	O119					1	1	1	1		
1.											
			• /	-							
2.	Dete	ermine the result of the given circuit	it.			1	2	1	1		
		11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1									
	$ 0\rangle$										
	(A)	$ 1\rangle 0\rangle$	(B)	$ +\rangle 0\rangle$							
		1717									
3	Ents	anglement means				1	1	1	1		
٥.			(B)	Two particles are separated							
			. ,								
4.	Whi	ich simulator is ideal to display the	Bloch	sphere?		1	2	1	1		
	` '	•	(D)	Feynman diagram							
5.	. Which of the following is not a supervised machine learning algorithm?						1	2	2		
	. ,		(D)	Support vector machine							
6.		identifies unusual patterns or o	utline	rs in data		1	1	2	2		
	$\overline{(A)}$										
	(C)	Regression	(D)	Image segmentation							
7.	num of g	aber and B denotes an event of getti etting either a prime number or an	ng an even r	even number. Then the probab	ime ility	1	2	2	2		
	(A)		(B)	<u></u>							
		6	(6							
	(C)	<u>5</u>	(D)	2							

22MF6-18CSE426J

8.	If a machine learning model's output model is called as	invo	lves the target variable, then that	1	1	2	2
	(A) Descriptive model	(B)	Predictive model				
	(C) Reinforcement learning	` '	Data model				
9.	Which of the following is NOT a collearning?	ommo	on approach in quantum machine	1	2	3	2
	(A) Classical-quantum approach		Quantum-quantum approach				
	(C) Quantum-classical approach		Classical-classical approach				
10.	Which of the following algorithms gene training phase?	erate l	hyperplane as a model at the end of	1	1	3	2
	(A) Support vector machine	(B)	Decision tree				
	(C) Naive Bayes	(D)	K-nearest neighbour				
11.	The sigmoid activation function f(t) is o			1	2	3	2
	(A) $\frac{1}{\exp(t) + \exp(-t)}$	(B)	$t.\exp(-t)$				
	(C) 1	(D)	1				
	(C) $\frac{1}{1 + \exp(t)}$,	$\frac{1}{1 + \exp(-t)}$				
12.	Which of the following formula represtite two quantum states $ \Psi\rangle$ and $ \phi\rangle$?	sents	the quantum kernel estimation for	1	2	3	2
	(A) $K(\Psi,\phi) = \langle \Psi \phi \rangle ^2$	(B)	$K(\Psi,\phi) = \langle \Psi \phi \rangle$				
	(C) $K(\Psi, \phi) = \langle \Psi \phi \rangle^2$	(D)	$K(\Psi,\phi) = \langle \Psi \phi \rangle $				
13.	 Which of the following is NOT an assur (A) Principal components are orthogonal (C) Principal components with larger 	(B)	Principal component analysis provides linear transformation	1	1	4	2
	variances have important dynamics		important statistics				
14.	Identify the odd one out from the below	_		1	2	4	2
	(A) Cyber-profiling criminals(C) Insurance fraud detection		Call record detail analysis Find the amount of rainfall in the				
	(-)	(2)	next month				
15.	Which of the following machine learning	ng alg	orithm requires normalization?	1	1	4	2
	(A) K-means clustering	(B)	Naive Bayes				
	(C) Decision tree	(D)	Random forest				
16.	Which of the following is an example o			1	1	4	2
	(A) Ratings from 1 to 5(C) Colors	(D)	Height Types of fruit				
		` /	•				
17.	Which quantum algorithm is commonly			1	2	5	3
	(A) Grover's algorithm(C) Quantum Appropriate		Shor's algorithm Variational Quantum Figure				
	Optimization Algorithm (QAOA)		Variational Quantum Eigen solver (VQE)				
Page 2 of			` ` '	MF6-18	CSE4	26J	

	10	What is hybrid Quantum Neural Network (QNN)?	1	2	5	3
		 (A) A neural network that operates (B) A neural network that uses both entirely on quantum data classical and quantum elements (C) A quantum circuit designed to (D) A classical neural network trained mimic the behavior of a classical using quantum algorithms neural network 				
	10	How does a quantum convolutional neural network (QCNN) differ from a	1	2	5	3
		classical convolutional neural network? (A) Quantum convolutional neural (B) Quantum convolutional neural network uses classical gates network operates on classical data instead of quantum gates				
		(C) Quantum convolutional neural (D) Quantum convolutional neural network applies convolution network has fewer layers than a operations using quantum gates classical convolutional network				
	20.	Quantum generative adversarial network means (A) A quantum circuit that generates (B) A quantum algorithm for classical data generated quantum data (C) A neural network that generates (D) A quantum circuit that generates quantum gates quantum data	1	1	5	3
		PART – B (5 \times 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	со	PO
	21.	Using XYZ gates, show that $XYZ = Y$.	4	3	1	1
		Analyze the difference between classical and quantum machine learning.	4	3	2	2
	23.	Write the four approaches which are used in the quantum machine learning.	4	3	3	2
	24.	Show unsupervised learning is functionally different from supervised learning with examples.	4	3	4	2
	25.	Compare biological neuron and artificial neuron.	4	3	5	3
	26.	For a given univariant dataset $S = \{5, 10, 15, 20, 25, 30\}$ of marks. Compute mean, median, mode standard deviation and variance.	4	4	2	2
	27.	Manipulate the quantum feature map and kernels with an example.	4	3	3	2
		$PART - C (5 \times 12 = 60 Marks)$	Marks	BL	CO	PO
		Answer ALL Questions				
2	28. a.	Define Qubit. Show Bloch sphere representation of single qubit gates and one multi-qubit gates with truth table.	12	3	1	1
		(OR)				
	b.		12	4	1	1
		Compute P(1) and P(2).	2MF6-1	8Ccr	426T	
1	Page 3	of 4	₹14TL A-1	OCOL	PERMIT	

29. a.	Compare and contrast classical and quantum machine learning and also interpret the three ingredients of a learning problem.	12	3	2	2
	(OR)				
b.	Write in detail about the linear models in machine learning.	12	3	. 2	2
30. a.	Interpret the quantum information encoding with their types.	12	3	3	2
	(OR)				
b.	Illustrate the quantum support vector machine using Qiskit.	12	3	3	2
31. a.	Apply principal component analysis (PCA) for the following matrix and prove that it works $\begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}$.	12	4	3	2
	(OR)				
₅ b.	Illustrate the types of different classifiers used in quantum machine learning.	12	3	4	2
32. a.	Show that how hybrid quantum neural network is different from quantum convolutional neural network.	12	3	5	3
	(OR)				
b.	Illustrate the workings of a Quantum Generative Adversarial Network (QGAN).	12	3	5	3

* * * * *