Sumário

1	Curvatura com Sinal	2
2	Teorema dos 4 Vértices	3
	2.1 Definições e Propriedades Iniciais	3
	2.2 Enunciado e Demonstração	5
3	Exercícios	7
4	Exemplo Geogebra	11
\mathbf{R}_{i}	eferências	12

1 Curvatura com Sinal

Antes de prosseguirmos com o teorema, vamos definir curvatura com sinal.

Dada um curva plana suave $\gamma: I \subset \mathbb{R} \to \mathbb{R}^2$, regular e *unit-speed*, considere o vetor tangente (unitário), $T(s) = \frac{d\gamma}{ds}$.

Seja N o vetor normal à curva, unitário, obtido à partir de uma rotação de 90 graus no sentido horário de T.

Pela Proposição 1.2.4 de [1], ou pelo Exercício 7 da Lista 1, o vetor $\dot{T}(s) = \frac{dT(s)}{ds}$ é ortogonal a T(s).

Desse forma $\dot{T}//N$, definimos então a curvatura com sinal, como sendo o múltiplo κ_s tal que

$$\dot{T} = \kappa_s N \tag{1}$$

No caso em que γ não é unit-speed, considere $J \subset \mathbb{R}$ um intervalo de reparametrização obtido pela função $h: I \to J$, via $h(t) = \int_{t_0}^t ||\gamma'(u)|| du$. Para simplificar a notação, considere h(t) = s e $\Phi(s) := h^{-1}(s) = t$.

Seja $\overline{\gamma}(s)$ a curva reparametrizada definida por $\overline{\gamma}(s) = \gamma(\Phi(s))$.

Abusando um pouco da notação, reusando t e s para representar Φ e h respectivamente, a tangente de γ em relação à t será igual a

$$T_{\gamma}(t) = T_{\overline{\gamma}}(s)$$

$$= \frac{d\overline{\gamma}(s)}{ds} = \frac{d\gamma(t)}{ds}$$

$$= \frac{d\gamma}{dt} \cdot \frac{dt}{ds}$$

$$= \frac{d\gamma}{dt} \cdot \frac{1}{||\gamma'(t)||}$$

$$= \frac{\gamma'(t)}{||\gamma'(t)||}$$
(3)

Onde 2 segue da Regra da Cadeia e 3 segue do Teorema da Função Inversa e Teorema Fundamental do Cálculo: $\frac{dt}{ds} = \frac{1}{ds/dt} = \frac{1}{d(h(t))/dt} = \frac{1}{||\gamma'(t)||}$

Definimos N da mesma forma, rotacionando por 90 graus anti-horários o vetor $T_{\gamma}(t)$

 $^{^{1}}$ A notação ponto representa d/ds

 $^{^{2}}$ A notação linha representa d/dt

Tomemos a derivata de $T_{\gamma}(t)$ em relação a t:

$$T'_{\gamma}(t) = \frac{d}{dt} T_{\overline{\gamma}}(s)$$

$$= \frac{dT_{\overline{\gamma}}(s)}{ds} \cdot \frac{ds}{dt}$$

$$= \dot{T}_{\overline{\gamma}}(s) \frac{ds}{dt}$$
De 1, tem-se:
$$= \kappa_s N \cdot \frac{dh(t)}{dt}$$

$$= \kappa_s N ||\gamma'(t)||$$

Onde κ_s e N são respectivamente a curvatura com sinal e o vetor normal da reparametrização $\overline{\gamma}$. Mas em relação ao parâmetro t, a relação que se satisfaz deixa de ser 1 e passa a ser:

$$T' = \kappa_s N||\gamma'(t)||$$

Perceba que no caso unit-speed, a fórmula acima coincide com 1, conforme esperado.

Se γ é unit-speed e admite função ângulo $\theta(s)$ tal que $\dot{\gamma}(s) = (\cos \theta(s), \sin \theta(s))$, então a curvatura com sinal pode ser entendida como uma taxa de variação da rotação do vetor tangente, na qual será positiva quando $\dot{T} := \ddot{\gamma}$ estiver no mesmo sentido de N e negativa caso contrário.

Para curvas parametrizadas por comprimento de arco, podemos calcular a curvatura com sinal pela fórmula:

$$\kappa_s(s) = \det[\dot{\gamma}(s), \ddot{\gamma}(s)]$$

e para curvas de parâmetro t qualquer:

$$\kappa_s(t) = \frac{\det[\gamma'(t), \gamma''(t)]}{||\gamma'(t)||^3}$$

2 Teorema dos 4 Vértices

2.1 Definições e Propriedades Iniciais

Definição 1. (Curvas Convexas)

Uma curva fechada simples, (ou curva de Jordan), γ no plano \mathbb{R}^2 , pelo Teorema da Curva de Jordan[3], divide o plano em duas componentes conexas, uma limitada (interior) denotada por int (γ) e uma ilimitada (exterior). O traço da curva γ é a borda dessas regiões.

Definimos como curva de Jordan γ como convexa, quando $int(\gamma)$ é um conjunto convexo. Isto é, dados dois pontos interiores de γ o segmento de reta que linha esses dois pontos pertence inteiramente ao interior da curva. Mais precisamente:

$$\forall P, Q \in int(\gamma) \subset \mathbb{R}^2$$

$$\Rightarrow Pt + (1 - t)Q \in int(\gamma), \ \forall t \in [0, 1]$$

Definição 2. (Vértice) Um vértice de uma curva $\gamma(t) := (x(t), y(t))$ é um ponto (x(t), y(t)) na qual $d\kappa_s(t)/dt = 0$

Teorema 1. (Teorema do Valor Extremo - Weierstrass) [2]

Toda função contínua $f: X \to \mathbb{R}$ definida num compacto $X \subset \mathbb{R}$ é limitada e atinge seus valores extremos. Ou seja,

$$\exists x_1, x_2 \in X; \ f(x_1) \le f(x) \le f(x_2) \ \forall x \in X.$$

Assim $f(x_1)$ é o valor mínimo de f e $f(x_2)$ é seu valor máximo.

A demonstração segue na referência.

Propriedade 1. Se $\gamma(s)$ é parametrizada por comprmeiro de arco, então $\dot{N}(s) = -\kappa_s(s)T(s)$, onde T, N e κ_s são respectivamente o vetor tangente, normal e a curvatura com sinal, conforme definidos na primeira seção.

Prova: Vamos usar a Proposição 1.2.4 de [1] novamente, que diz que no caso da curva unit-speed, temos $T(s) \cdot N(s) = 0$. Diferenciando o produto escalar em relação a s, temos:

$$\dot{T} \cdot N + T \cdot \dot{N} = 0$$

Usando 1, temos:

$$\kappa_s N \cdot N + T \cdot \dot{N} = 0$$

$$\Rightarrow \kappa_s ||N||^2 = -T \cdot \dot{N}$$

$$\Rightarrow \kappa_s = -T \cdot \dot{N}$$

$$\Rightarrow -\kappa_s T = ||T||^2 \dot{N}$$

$$\Rightarrow \dot{N}(s) = -\kappa_s(s) T(s)$$

Como queríamos demonstrar.

2.2 Enunciado e Demonstração

Teorema 2. (Teorema dos 4 Vértices) Toda curva de Jordan convexa no plano \mathbb{R}^2 tem pelo menos 4 vértices.

Demonstração:

Vamos supor que γ é uma curva de Jordan unit-speed, (caso não seja basta usar a reparametrização por comprimento de arco). Como γ é fechada, podemos considerar o traço restrito à apenas um período, ou seja $\gamma|_{[0,\ell]}$ onde ℓ é o comprimento de arco da curva (apenas uma volta).

Suponhamos, por absurdo que γ possui menos de 4 vértices.

Afirmamos que existem $s_1, s_2 \in [0, \ell]$ tais que o segmento de reta que passa pelos pontos $P = \gamma(s_1)$ e $Q = \gamma(s_2)$ divide a curva em duas partes, uma na qual $\dot{\kappa_s} > 0$ e outra onde $\dot{\kappa_s} \geq 0$.

Dado que a função curvatura com sinal $\kappa_s(s)$ atinge todos seus possíveis valores entre $[0, \ell]$, assim pela diferenciabilidade da curvatura, ela é contínua, e podemos aplicar o Teorema 1, pois $[0, \ell]$ é compacto.

Pelo teorema, $\kappa_s(s)$ atinge seu valor máximo e mínimo no intervalo de definição. Seja então s_1, s_2 tais que

$$\max_{s \in [0,\ell]} \kappa_s(s) = \kappa_s(s_1) e$$

$$\min_{s \in [0,\ell]} \kappa_s(s) = \kappa_s(s_2).$$

Faça $P = \gamma(s_1)$ e $Q = \gamma(s_2)$. Se P = Q então o Teorema 2 fica provado diretamente, pois se o máximo e mínimo da curvatura são iguais, ela é constante, logo a derivada é zero em todos os pontos, ou seja, a curva teria infinitos vértices.

Supondo $P \neq Q$, sabemos que $\dot{\kappa_s}(s_1) = \dot{\kappa_s}(s_2) = 0$, ou seja P,Q são vértices. Se eles forem os únicos vértices da curva, fica claro que eles à dividem em uma parte com $\dot{\kappa_s} > 0$ e outra $\dot{\kappa_s} \leq 0$. Isso pois, entre s_1 e s_2 a curvatura não pode mudar de sinal³, suponha então sem perda de generalidade, que nesse intervalo, se tenha $\dot{\kappa_s} > 0$. Assim para $s \leq s_1$ e $s \geq s_2$ tem-se $\kappa_s(s) \leq 0$, já que a troca de sinal ocorrem em s_1 e s_2 .

Supondo que haja um terceiro vértice $R = \gamma(s_3)$. Sem perda de generalidade podemos supor $0 \le s_1 < s_2 < s_3 < \ell$, pois a demonstração seria análoga apenas trocando os papéis de P,Q e R. Neste caso triplo, a curvatura zera em s_1, s_2 e s_3 .

Novamente, sem perda de generalidade, suponha que para $s \in (s_1, s_2)$, tem-se $\kappa_s(s) > 0$ Trocando de sinal em s_2 , temos que para $s \in [s_2, s_3]$ $\kappa_s(s) \leq 0$. Com a troca de sinal em s_3 a derivada da curvatura passa a ser estritamente positiva em $(s_3, \ell) \cup [0, s_1)$.

Sendo assim, para $s \in [s_2, s_3]$ temos $\dot{\kappa_s}(s) \leq 0$ e em todo o complemento temos $\dot{\kappa_s}(s) > 0$,

³senão, haveriam mais de dois vértices

sendo assim podemos selecionar os pontos $Q = \gamma(s_2)$ e $R = \gamma(s_3)$ para formarem o segmento que divide a curva em duas parte com o sinal de $\kappa_s(s)$ diferente.

Concluímos então que, sobre a hipótese de curva com menos de 4 vértices, existe um segmento ligando dois pontos da própria curva, que a separa em uma parte $\dot{\kappa}_s > 0$ e $\dot{\kappa}_s \leq 0$.

Seja L tal segmento. Tome \vec{a} , um vetor unitário perpendicular a L, como na Figura 1

Figura 1: Reprodução [1] - Ilustração do vetor \vec{a}

Em um dos lados de L, teremos $\gamma \cdot \vec{a} > 0$, enquanto no outro lado valerá que $\gamma \cdot \vec{a} < 0$, a depender do ângulo entre a curva e o vetor \vec{a} ser agudo ou obtuso.

Dessa forma a quantidade $\dot{\kappa}_s(s)(\gamma(s)\cdot\vec{a})$ ou é estritamente positiva, ou é estritamente negativa em todo s exceto P,Q.

Sendo assim, a integral

$$\int_0^\ell \dot{\kappa}_s(s)(\gamma(s)\cdot\vec{a})ds \neq 0 \tag{4}$$

pois uma propriedade básica de integrais é que se o integrando é não-nulo, a integral é não nula.

Usando o resultado da Propriedade 1 ($\dot{N} = -\kappa_s \dot{\gamma}$), podemos encontrar uma primitiva para a integral acima. Veja que, pela Regra da Cadeia e pela linearidade da derivada, temos que:

$$\dot{\kappa}_s \gamma = (\kappa_s \gamma) - \kappa_s \dot{\gamma} = (\kappa_s \gamma) + \dot{N} = \frac{d}{ds} (\kappa_s \gamma + \dot{N})$$

Dado que, fixado \vec{a} ele é um vetor constante em relação ao parâmetro s, então uma primitiva para o integrando acima seria $(\kappa_s \gamma + \dot{N}) \cdot \vec{a}$ que chamaremos de $\lambda(s)$.

Como γ é uma curva fechada de comprimento ℓ ela é ℓ -periódica [1], ou seja,

$$\gamma(s+\ell) = \gamma(s),$$

para qualquer parâmetro s onde a curva esteja definida.

Diferentiando em relação a s, obtemos:

$$T(s+\ell) = T(s)$$

Rotationando os vetores acima por 90 graus antihorários, obtemos:

$$N(s+\ell) = N(s)$$

Assim, $\dot{T}(s+\ell) = \dot{T}(s)$, e pela definição de curvatura com sinal, teremos também uma curvatura periódica: $\kappa_s(s+\ell) = \kappa_s(s)$.

Dessa forma,

$$\lambda(s+\ell) = (\kappa_s(s+\ell)\gamma(s+\ell) + \dot{N}(s+\ell)) \cdot \vec{a}$$
$$= (\kappa_s(s)\gamma(s) + \dot{N}(s)) \cdot \vec{a}$$
$$= \lambda(s)$$

Então, calculando a integral, considerando a periodicidade de λ , teríamos:

$$\int_0^\ell \dot{\kappa}_s(s)(\gamma(s)\cdot\vec{a})ds = \int_0^\ell \frac{d}{ds}\lambda(s)ds = \lambda(\ell) - \lambda(0) = 0$$

Absurdo pois em 4 concluímos que tal integral era não-nula.

3 Exercícios

Segue a Resolução dos exercícios da Seção 3.3 de [1]:

3.3.1 Mostre que a elipse Example $\gamma(s)=(p\cos s,q\sin s)$ com $p,q\neq 0$ é convexa.

Solução: Podemos definir o interior da elipse como om conjunto $int(\gamma) = \left\{ (x,y) \in \mathbb{R}^2; \frac{x^2}{p^2} + \frac{y^2}{q^2} < 1 \right\}$ Sejam $P = (x_p, y_p)$ e $Q = (x_q, y_q)$ pontos interiores da elipse. Assim, vale que

$$\frac{x_p^2}{p^2} + \frac{y_p^2}{q^2} < 1 e \frac{x_q^2}{p^2} + \frac{y_q^2}{q^2} < 1$$

Pela Definição de curvas convexas 1, precisamos provar que

$$Pt + (1-t)Q \in int(\gamma), \ \forall t \in [0,1],$$

ou seja,

$$(tx_p + (1-t)x_q, ty_p + (1-t)y_q) \in int(\gamma), \ \forall t \in [0,1]$$

Basta provar então que

$$\frac{(tx_p + (1-t)x_q)^2}{p^2} + \frac{(ty_p + (1-t)y_q)^2}{q^2} < 1$$

Fazendo os cálculos:

$$\frac{(tx_p + (1-t)x_q)^2}{p^2} + \frac{(ty_p + (1-t)y_q)^2}{q^2}
= \frac{t^2x_p^2}{p^2} + \frac{(1-t)^2x_q^2}{p^2} + \frac{t^2y_p^2}{q^2} + \frac{(1-t)^2y_q^2}{q^2} + 2t(1-t)\left(\frac{x_px_q}{p^2} + \frac{t_py_q}{q^2}\right)
= t^2\left(\frac{x_p^2}{p^2} + \frac{y_p^2}{q^2}\right) + (1-t)^2\left(\frac{x_p^2}{p^2} + \frac{y_p^2}{q^2}\right) + 2t(1-t)\left(\frac{x_px_q}{p^2} + \frac{y_py_q}{q^2}\right)
< t^2 + (1-t)^2 + 2t(1-t)\left(\frac{x_px_q}{p^2} + \frac{y_py_q}{q^2}\right)$$
(5)

Como (x_p, y_p) e (x_q, y_q) são pontos interiores, podemos usar uma parametrização por coordenadas polares da seguinte forma:

$$x_p = pc_1 \cos \theta_1$$

$$y_p = qc_1 \sin \theta_1$$

$$x_q = pc_2 \cos \theta_2$$

$$y_q = qc_2 \sin \theta_2$$
Para $c_1, c_2 \in [0, 1)$ e $\theta_1, \theta_2 \in \mathbb{R}$

É facil ver que tais parametrizações satisfazem a condição de pertencer à $int(\gamma)$:

$$\frac{x_p^2}{p^2} + \frac{y_p^2}{q^2} < \frac{p^2 \cos^2 \theta_1}{p^2} + \frac{q^2 \sin^2 \theta_1}{q^2} = 1$$

O mesmo vale para (x_q, y_q) . Assim, podemos transformar o último termo de 5 em:

$$2t(1-t)\left(\frac{x_p x_q}{p^2} + \frac{y_p y_q}{q^2}\right) = 2t(1-t)\left(\frac{pc_1 \cos \theta_1 pc_2 \cos \theta_2}{p^2} + \frac{qc_1 \sin \theta_1 qc_2 \sin \theta_2}{q^2}\right)$$

$$= 2t(1-t)c_1 c_2 \left(\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2\right)$$

$$< 2t(1-t)\cos(\theta_1 - \theta_2)$$

$$< 2t(1-t)$$

Continuando em 5:

$$t^{2} + (1-t)^{2} + 2t(1-t)\left(\frac{x_{p}x_{q}}{p^{2}} + \frac{y_{p}y_{q}}{q^{2}}\right)$$

$$< t^{2} + (1-t)^{2} + 2t(1-t)$$

$$= t^{2} + 1 - 2t + t^{2} + 2t - 2t^{2}$$

$$= 1$$

o que termina a demonstração.

3.3.2 Prove que a limaçon

$$\gamma(t) = ((1+2\cos t)\cos t, (1+2\cos t)\sin t), t \in \mathbb{R}$$

tem apenas dois vértices.

Solução: Vamos analisar os pontos onde derivada da curvatura com sinal é nula.

$$\gamma'(t) = (-(4\cos t + 1)\sin t, 2\cos 2t + \cos t)$$

$$= (-2\sin 2t - \sin t, 2\cos 2t + \cos t)$$

$$\gamma''(t) = (-\cos t - 4\cos 2t, -\sin t - 4\sin 2t)$$

$$det[\gamma', \gamma''] = 2\sin 2t\sin t + 8\sin^2 2t + \sin^2 t + 4\sin 2t\sin t$$

$$- (-2\cos 2t\cos t - 8\cos^2 2t - \cos^2 t - 4\cos 2t\cos t)$$

$$= 8(\sin^2 2t + \cos^2 2t) + (\sin^2 t + \cos^2 t) + 6\sin 2t\sin t + 6\cos 2t\cos t$$

$$= 9 + 6\cos t(2\sin^2 t + \cos^2 t - \sin^2 t)$$

$$= 9 + 6\cos t$$

$$||\gamma'(t)|| = \sqrt{4\cos t + 5}$$

Assim:

$$\kappa_s(t) = \frac{9 + 6\cos t}{(4\cos t + 5)^{3/2}}$$

Derivando, temos:

$$\kappa_s'(t) = \frac{(4\cos t + 5)^{3/2}[-6\sin t] - (9 + 6\cos t)[-6\sin t(4\cos t + 5)^{1/2}]}{(4\cos t + 5)^3}$$

Como cosseno é limitado entre -1 e 1 a expressão $4\cos t+5$ nunca se anula, logo podemos dividir numerador e denominador acima por $(4\cos t+5)^{1/2}$, e obtemos:

$$\kappa'_s(t) = \frac{-(4\cos t + 5)6\sin t + 6\sin t(9 + 6\cos t)}{(4\cos t + 5)^{5/2}}$$

$$= \frac{12\cos t\sin t + 24\sin t}{(4\cos t + 5)^{5/2}}$$

$$= \frac{12\sin t(2 + \cos t)}{(4\cos t + 5)^{5/2}}$$

Como $(2 + \cos t) > 0 \ \forall t \in \mathbb{R}$, a expressão acima só é zero quando $12 \sin t = 0$, ou seja, considerando apenas a "primeira volta" da curva, os pontos t = 0 e $t = \pi$. Logo, a curva tem apenas dois vértices.

Isso não é um contraexemplo para o teorema, pois a limaçon não é uma curva de Jordan, pois possui um auto-interseção, fazendo com que seu traço não defina apenas duas componentes conexas.

3.3.3 Prove que a curva plana γ possui um vértice em $t=t_0$ se, e somente se, a evoluta ϵ de γ tem um ponto singular em $t=t_0$.

Solução: Supondo γ unit-speed, usando $\epsilon(s) = \gamma(s) + \frac{1}{\kappa_s(s)} N(s)$, e diferenciando ϵ

 $^{^4\}mathrm{A}$ limaçon é 2π periódica.

temos:

$$\dot{\epsilon}(s) = \dot{\gamma}(s) + \frac{\kappa_s \dot{N}(s) - \dot{\kappa}_s(s) N(s)}{\kappa_s(s)}$$
Pela Propriedade 1, segue que:
$$= \dot{\gamma}(s) + \frac{-\kappa_s^2 \dot{\gamma}(s) - \dot{\kappa}_s(s) N(s)}{\kappa_s^2(s)}$$

$$= \frac{\kappa_s^2 \dot{\gamma}(s) - \kappa_s^2 \dot{\gamma}(s) - \dot{\kappa}_s(s) N(s)}{\kappa_s^2(s)}$$

$$= \frac{-\dot{\kappa}_s(s) N(s)}{\kappa_s^2(s)}$$

Note que como $\frac{N(s)}{\kappa_s^2(s)}$ não se anula, então $\dot{\epsilon}(s)$ será nula se, e somente se $\dot{\kappa}_s(s) = 0$.

Logo, γ possui um vértice em t_0 , se, e somente se, $\dot{\epsilon}(t_0) = 0$, ou seja a evoluta ϵ de γ tem um ponto singular em t_0 .

4 Exemplo Geogebra

Neste link há um exemplo interativo mostrando uma elipse $\gamma(t) = (a\cos t, b\sin t)$. Com passos simples de cálculo é possível mostrar que a derivada da curvatura de γ é:

$$\frac{d\kappa_s}{dt} = \frac{3ab(b^2 - a^2)\sin t \cos t}{(a^2\sin^2 t + b^2\cos^2 t)^{5/2}}$$

O arquivo contém um controle deslizante que controla a posição de um ponto A sobre a curva. Pela fórmula acima, se $b \neq a$, a derivada é nula em $t = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$. Ao fazer o controle deslisante passar por esses valores é possível ver a troca de sinal na variável dk, definina no GeoGebra como a fórmula acima. Tem-se assim, exatamente 4 vértices.

No caso b=a, temos uma circunferência, de curvatura constante, cuja derivada é nula em todos os pontos, ou seja, a circunferência tem infinitos vértices.

Referências

- [1] L.M.A. Pressley et al. *Elementary Differential Geometry*. Springer Undergraduate Mathematics Series. Springer, 2001. ISBN: 9781852331528. URL: www.springer.com/series/3423.
- [2] E.L. Lima. "Curso de Análise Vol. 1, 15ª ed." Em: Instituto de Matemática Pura e Aplicada, CNPq, 2019, p. 185. URL: https://impa.br/page-livros/curso-de-analise-vol-1/.
- [3] Wikipedia. Jordan curve theorem Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Jordan%20curve%20theorem&oldid=999461428. [Online; accessed 08-April-2021]. 2021.