Course Syllabus

Assumption University

Vincent Mary School of Engineering, Science and Technology Bachelor of Science Program in Computer Science (BSCS) Semester 2/2024

COURSE INFORMATION			
Course Number:	CSX3008		
Course Title:	Operating Systems		
Credits:	3		
Pre-requisite:	None		
Status:	Major Required Course		
Classroom:	SLM0308		
Day and Time:	Wednesday 13:30-16:30 (541), Thursday 13:30 -16:30 (542)		
Material Portal:	MS Team File		

COURSE INSTRUCTOR					
Instructor:	Asst. Prof. Dr. Anilkuma	ar K.G			
Email & Mobile No:	Office: VMES0401, aGo	palakrishnan@.au.edu, 0891351711			
COURSE OUTLINE					
Course Description:	Components and functions of operating systems, uni-programming, multi-programming, multitasking, multithreading, resource management functions of operating systems, process scheduling algorithms, device management algorithms, virtual memory management, and classical problems related to operating systems such as deadlock, starvation, and concurrency.				
Learning Objectives:	Upon completion of this subject, students should be able:				
	2. To have the abi	mponents and functions of an operating system lity to analyze the issues related to operating systems e tradeoffs involved in designing a modern operating system			
Learning Contents:	Week	Topic			
	01 02 03 04 05 06 07 08 09 10 11 12 13 14	Operating System Overview Process Description and Control Process Description and Control(continue) Threads management Threads management (continue) Process Synchronization CPU scheduling Programming Assignment 1 Presentation Quiz I Midterm Examination Deadlock Memory Management Virtual Memory Input and Output management Programming Assignment 2 Presentation Programming Assignment 3 Presentation Quiz II Final Examination			
Evaluation:	Programming Assignm Programming Assignm Class Assignments: Quiz1 Quiz II Midterm Examination: Final Examination:				
COURSE MATERIALS					
Main Textbook:	Operating System Cor Gagne, Wiley (ISBN: 97	ncepts, 9th Edition, Abraham Silberschatz, Peter B. Galvin, Greg 8-1-118-09375-7)			
Supplementary Textbook:		nternals and Design Principles 8th Edition, William Stallings, Prentice			

COURSE POLICIES

- 1. Students must have at least 80% of class attendance to be eligible for the final examination.
- 2. If a student is absent from more than 3 classes without any relevant reason, then they should withdraw from the course immediately.
- 3. The student who misses the final exam will receive a grade based on their total marks. In this case, the 'F' grade (if any) will replace with a 'W.'

ASSESSMENT APPEAL POLICY

For any assignments/projects and examination(s) (EXCLUDING final examination), the lecturer will announce scores and discuss with students about solutions approximately within 1-3 weeks after the submission deadline and finishing grading. Students may request the lecturer for an assessment appeal, if any, within 1 week or as specified by the appeal's deadline.

PROGRAMMING ASSIGNMENT OUTLINE						
Programming	No.	Instruction	Marks			
Assignments:	1	Write a simulation program to simulate the behavior of FCFS and	8%			
		Round Robin CPU scheduling algorithms (the simulations must be				
		based on the arrival time of each process).				
	2	Write a simulation program to show the behavior of a banker's	8%			
		algorithm for multiple resource unit allocation problems. The				
		program should indicate whether a solution ended in a <i>safe state</i>				
		or not. And also, the program should be able to collect input				
		datasets from either a text file or a random generator.				
		Total	16%			
Programming	Grad	ling of a presented assignment is based on the following criteria:				
Assignments		The program accepts all input(s). Ultimately				
Evaluation Criteria:		Program shows the progress of the algorithm step-by-step				
		The program offers all output(s) correctly				
		The program provides a clean and simple UI design				
		(Submit the completed assignment along with its full source code via	e-mail)			