

SEQUENCE LISTING

O I P JCA2
 10V 03 2003
 P T & TRADEMARKS
 <110> ANDERSON, DARRELL R.
 HANNA, NABIL
 LEONARD, JOHN E.
 NEWMAN, ROLAND A.
 REFF, MITCHELL E.
 RASTETTER, WILLIAM H.

<120> THERAPEUTIC APPLICATION OF CHIMERIC AND RADIOLABELED
 ANTIBODIES TO HUMAN B LYMPHOCYTE RESTRICTED
 DIFFERENTIATION ANTIGEN FOR TREATMENT OF B CELL
 LYMPHOMA

<130> 037003-0280646

<140> 09/911,692
 <141> 2001-07-25

<150> 08/475,813
 <151> 1995-06-07

<150> 08/149,099
 <151> 1993-11-03

<150> 07/978,891
 <151> 1992-11-13

<160> 11

<170> PatentIn Ver. 2.1

<210> 1
 <211> 8541
 <212> DNA
 <213> Homo sapiens

<400> 1
 gacgtcgccg cgcctctagg cctccaaaaa agcctcctca ctacttctgg aatagcttag 60
 aggccgaggg ggcctcggcc tctgcataaaa taaaaaaaaat tagtcagcca tgcatggggc 120
 ggagaatggg cggaaactggg cggagtttagg ggcgggatgg gcggagtttag gggcgggact 180
 atggttgcgtg actaatttgag atgcattgtt tgcatacttc tgctgtctgg ggagcctggg 240
 gactttccac acctgggtgc tgactaattt agatgcattgc tttgcataact tctgcctgct 300
 ggggagcctg gggactttcc acaccctaact tgacacacat tccacagaat taattcccc 360
 agtatttaat agtaatcaat tacggggtca tttagttcata gcccataatat ggagtccgc 420
 gttacataaac ttacggtaaa tggcccgct ggctgaccgc ccaacgaccc cggccatttg 480
 acgtcaataaa tgacgtatgt tcccatagta acgccaatag ggactttcca ttgacgtcaa 540
 tgggtggact atttacggta aactgcccac ttggcagttac atcaagtgta tcataatgcc 600
 agtacgcccc ctattgacgt caatgacgtt aaatggcccg cctggcatta tgcccagtac 660
 atgaccttat gggactttcc tacttggcag tacatctacg tattagtcat cgctattacc 720
 atggtgatgc ggttttggca gtacatcaat gggcgtggat agcgggttga ctcacgggga 780
 tttccaagtc tccaccccat tgacgtcaat gggagtttgt tttggcacca aaatcaacgg 840
 gactttccaa aatgtcgtaa caactccggc ccattgacgc aaatggccgg taggcgtgta 900
 cggtgggagg tctatataag cagagctggg tacgtgaacc gtcagatcgc ctggagacgc 960
 catcacagat ctctcaccat gagggtcccc gtcagctcc tggggctcct gctgctctgg 1020
 ctcccaggtg cacgatgtga tggtaccaag gtggaaatca aacgtacggt ggctgcacca 1080
 tctgtcttca tcttcccgcc atctgatgag cagttgaaat ctggaaactgc ctctgttgg 1140
 tgctctgtga ataacttcta tcccagagag gccaaagtac agtggaaagt ggataacgcc 1200
 ctccaatcggt gtaactccca ggagagtgic acagagcagg acagcaagga cagcacctac 1260
 agcctcagca gcaccctgac gctgagcaaa gcagactacg agaaacacaa agtctacgcc 1320
 tgcgaagtca cccatcaggg cctgagctcg cccgtcacaa agagcttcaa cagggagag 1380

tgttgaattc agatccgtta acggttacca actacctaga ctggattcgt gacaacatgc 1440
ggcggtgata tctacgtatg atcagcctcg actgtgcctt cttagttgcc a cccatctgtt 1500
gttgcggccct cccccgtgcc ttcccttgacc ctggaaagggtg ccactccac tgccctttcc 1560
taataaaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctgggggggt 1620
gggggtggggc aggacagcaa gggggaggat tggaaagaca atagcagcga tgctggggat 1680
gcggtgtggct ctatggAAC agctggggct cgacagctat gccaagtacg ccccttatttq 1740
acgtcaatga cggtaaatgg cccgcctggc attatgccc gtacatgacc ttatgggact 1800
ttcctacttg gcagtagatc tacgtattag tcatcgctat taccatgtg atgcgggttt 1860
ggcagtagatc caatggcgt ggatagcggt ttgactcag gggatttcca agtctccacc 1920
ccattgacgt caatgggagt ttgtttggc accaaaatca acgggactt caaaaatgtc 1980
gtaacaactc cggcccatgg acgcaaatgg gcggtaggcg tgtaggtgg gaggtctata 2040
taagcagagc tgggtacgtc ctcacattca gtgatcagca ctgaacacag acccggtcgc 2100
atgggttggc gcctcatctt gctttcctt gtcgtgtt ctacgcgtgt cgctagcacc 2160
aaggggccat cggtctccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 2220
gcccctggct gcctggca gggactacttc cccgaaccgg tgacgggtgc tggttaactca 2280
ggcccccgtg ccagcggcgt gcacacccccc cgggtgtcc tacagtctc aggactctac 2340
tccctcagca gcgtgggtac cgtccctcc agcagcttgg gcacccagac ctacatctgc 2400
aacgtgaatc acaagccccag caacaccaag gtggacaaga aagcagagcc caaatcttgc 2460
gacaaaactc acacatgccc accgtgccc gcacctgaac tcctgggggg accgtcagtc 2520
ttcctcttcc ccccaaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 2580
tgcgtgggtgg tggacgttag ccacgaagac cctgaggtca agttcaactg gtacgtggac 2640
ggcgtggagg tgcataatgc caagacaaaag cggggggagg agcagtagaa cagcacgtac 2700
cgtgtggtca gcgtccctac cgtccctgac caggactggc tgaatggcaa ggactacaag 2760
tgcaggtct ccaacaaagg cctcccaagg cccatcgaga aaaccatctc caaagccaaa 2820
ggcagcccc gagaaccaca ggtgtacacc ctgccccat cccggatgaa gctgaccagg 2880
aaccagggtca gctgacccctg cctggtaaa ggcttctat ccagcgacat cgcgtggag 2940
tgggagagca atgggacggcc ggagaacaaac tacaagacca cgcctccctg gctggactcc 3000
gacggctct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcaacgggg 3060
aacgtcttct catgtccctg gatgtcatgag gctctgcaca accactacac gcagaagagc 3120
ctctccctgt ctccggtaa atgaggatcc gttaaacggtt accaactacc tagactggat 3180
tcgtgacaac atgcggccgt gatatctacg tatgtatcgc ctcgactgtg ccttctagtt 3240
gccagccatc tgggtttgc ccctcccccg tgccttcctt gaccctggaa ggtgccactc 3300
ccactgtctt ttccctaataa aatgaggaaa ttgcatcgca ttgtctgagt aggtgtcatt 3360
ctattctggg ggggggggtgg gggcaggaca gcaagggggga ggattgggaa gacaatagca 3420
ggcatgtgg ggtatgggtg ggctctatgg aaccagctgg ggctcgacag cgctggatct 3480
cccgatcccc agctttgtt ctcattttt tatttgcata atgagaaaaa aaggaaaaatt 3540
aattttaaaca ccaattcagt agttgattga gcaaatgcgt tgccaaaaag gatgttttag 3600
agacagtgtt ctctgcacag ataaggacaa acattattca gaggagtag ccagagctga 3660
gactcctaag ccagttagtg gcacagcatt ctagggagaa atatgctgt catcaccgaa 3720
gcctgattcc gtagagccac accttggtaa gggcaatct gctcacacag gatagagagg 3780
gcaggagcca gggcagagca tataaggtga ggttaggtca gttgctctc acatttgctt 3840
ctgacatagt tgggtgggtgg gcttggatag cttggacagc tcagggtcgc gattcgcgc 3900
caaacttgac ggcacattctt cgtgtaaaggc tggtaggatt ttatccccgc tgccatcatg 3960
gttcgaccat tgaactgcat cgtccctcg tcccaaaaata tggggatgg caagaacgga 4020
gacctaccct ggcctccgct caggaacgag ttcaagtact tccaaagaat gaccacaacc 4080
tcttcagttgg aaggtaaaca gaatctgggtt attatggta gaaaaacctg gtttccatt 4140
cctgagaaga atcgacccctt aaaggacaga attaatatag ttctcagtag agaactcaaa 4200
gaaccaccac gaggagctca ttttcttgcc aaaagtttgg atgatgcctt aagacttatt 4260
gaacaaccgg aattggcaag taaagtagac atgggttgg tagtcggagg cagttctgtt 4320
taccaggaag ccatgaatca accaggccac cttagactct ttgtgacaag gatcatgcag 4380
gaatttggaaa gtgacacgtt ttcccagaa attgatttgg gaaaaataa acttctccca 4440
gaatacccgag cgtccctctc tgaggtccag gaggaaaaag gcatcaagta taagttgaa 4500
gtctacgaga agaaagacta acaggaagat gcttcaagt tctctgcctt cctccctaaag 4560
tcgtgcattt ttataagacc atggacttt tgctggctt agatcagct cgtctgtcc 4620
ttcttagttgc cagccatctg ttgtttgccc ctccccctg cttcccttga ccctggagg 4680
tgccactccc actgtccctt cctaataaaa tgagggaaatt gcatcgcat gtctgagtag 4740
gtgtcattctt attctggggg gtgggggtgg gcagggacagc aagggggagg attggaaaga 4800
caatagcagg catgtgggg atgcgggtgg ctctatggaa ccagctgggg ctcgagctac 4860
tagctttgtct tctcaatttc ttatttgcatt aatgagaaaa aaggaaaaat taattttaaac 4920
accattcag tagttgattt agcaaatgcg ttgccaaaaa ggatgcttta gagacagtgt 4980
tctctgcaca gataaggaca aacattattc agagggagta cccagagctg agactcctaa 5040

gccagtgagt ggcacacgcat tctagggaga aatatgcttg tcatacccgaa agcctgattc 5100
cgttagagcca caccttggta agggccaatc tgctcacaca ggatagagag ggcaggagcc 5160
aggcagagc atataagggtg aggttaggatc agttgctcct cacatttgc tctgacatag 5220
tttgttgggg agcttggatc gatcctctat ggttgaacaa gatggatgc acgcagggttc 5280
tccggccgct tgggtggaga ggctattcgg ctatgactgg gcacaacaga caatcggtcg 5340
ctctgatgcc gccgtgtcc ggctgtcagc gcaggggcgc ccggttctt ttgtcaagac 5400
cgacctgtcc ggtgccctga atgaactgca ggacgaggca gcggggctat cgtggctggc 5460
cacacgggc gttccttgcg cagctgtgtc cgacgttgc actgaagcgg gaaggactg 5520
gctgctattg ggcgaagtgc cggggcagga tctcctgtca tctcacctt ctccgtccga 5580
gaaagtatcc atcatggctg atgcaatgca gcggctgtcat acgcttgcattc cggttacactg 5640
cccattcgac caccaagcga aacatcgcat cgacgagca cgtactcggta tggaaagccgg 5700
tcttgcgtat caggatgatc tggacgaaga gcatcagggg ctcgcgcag ccgaactgtt 5760
cgccaggctc aaggcgcgca tgcccgcagg cgagatctc gtcgtgaccc atggcgatgc 5820
ctgcttgcgg aatatcatgg tggaaaatgg ccgcctttctt ggattcatcg actgtggccg 5880
gctgggtgtg gcgaccgct atcaggacat agcgttggct acccggtata ttgtcaaga 5940
gcttggcgcc gaatgggctg accgcttctt cgtgtttac ggtatcgccg cttcccgatt 6000
cgcaagcgcat cgccttctat cgccttctt acgagttttt ctgagcgggta ctctgggtt 6060
cgaaatgacc gaccaagcga cgcccaacact gccatcacga gatttcgatt ccacccgcgc 6120
cttctatgaa agttgggct tcggaatcgt tttccggac gccggctggta tgatcctcca 6180
gcgcggggat ctcatgctgg agttcttcgc ccaccccaac ttgttattt cagttataa 6240
tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcattt tttcaactgca 6300
ttcttagttgt gtttgccttca aactcatcaa tctatcttat catgtctggta tcgcggccgc 6360
gatcccgtcg agagcttggc gtaatcatgg tcatacgctgt ttccctgtgtg aaattgttat 6420
ccgcctcacaa ttccacacaa catacgagcc ggaagcataa agtgtaaagc ctgggggtgcc 6480
taatgagtga gctaactcac attaattgcg ttgcgtcac tgcccgcctt ccagtcggga 6540
aacctgtcgat gccagctgca ttaatgaatc ggccaaacgcg cggggagagg cggttgcgt 6600
attggcgct gttccgcctt ctcgctact gactcgctgc gtcggcgtcg tcggctgcgg 6660
cgagcggat cagctcactc aaaggcggtt atacggttt ccacagaatc agggataac 6720
gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa aaaggccgcg 6780
ttgttgcgt tttccatag gtcggcccc cctgacgagc atcacaaaaa tcgacgctca 6840
agttagaggt ggcgaaaccc gacaggacta taaagatacc aggcgttcc ccctggaaagc 6900
tccctcgatc gctctctgt tccgaccctg ccgccttaccg gataacctgtc cgccttctc 6960
ccttcggaa gctggcgct ttctcaatgc tcacgctgtt ggtatctcag ttgggtgttag 7020
gtcggtcgct ccaagctggg ctgtgtgcac gaacccccgg ttcagcccgaa ccgctgcgc 7080
ttatccggta actatcgct ttagtccaaac ccggtaagac acgacttatac gccactggca 7140
gcagccactg gtaacaggat tagcagagcg aggtatgttag ggggtgcgtac agagttctt 7200
aagtggtggc ctaactacgg ctacactaga aggacagttt ttgttactctg cgctctgtc 7260
aaggcagttt cttcgaaaaa aagagttgtt agcttgcgtt ccggcaaaaca aaccaccgtt 7320
ggtagcggtg gttttttgtt ttgcaaggcag cagattacgc gcagaaaaaaa aggtatctcaa 7380
gaagatccctt tgatctttt tacgggggtt gacgctcgtt ggaacggaaaa ctcacgttaa 7440
gggattttgg tcatgagatt ataaaaagg atcttcaccc agatccctttt aaattaaaaa 7500
tgaagtttta aatcaatcta aagtatataat gagttaaactt ggtctgacag ttaccaatgc 7560
ttaatcagtg aggccacccat ctcagcgatc tgtcttattc gttcatccat agttgcctga 7620
ctccccgtcg tgttagataac tacgatacgg gagggcttac catctggccc cagtgcgtca 7680
atgataccgc gagaccacgc ctcaccggctt ccagattttt cagcaataaa ccagccagcc 7740
ggaaggccgcg agcgcagaag tggtcgtca actttatccg ctcacatcca gtcttataat 7800
tgttgcgggg aagctagatc aagtatgttgc ccagttataa gtttgcgca cgttggcc 7860
attgtctacag gcatcggtt gtcacgctcg tcgtttggta tggcttcat cagctccgg 7920
tcccaacgtt caaggcgatg tacatgatcc cccatgtgtt gcaaaaaaagc ggttagctcc 7980
ttcggctctc cgatcggtt cagaagtaag ttggccgcag ttttactact catgggttat 8040
gcacgcactgc ataattctt tactgtcatc ccacccgtaa gatgccttgc tttgtactgg 8100
gagttactaa ccaagtcattt ctgagaatag tgatgcggc gaccggatgg ctcttgcggc 8160
gcgtcaatac gggataatac cgcgcacat agcagaactt taaaagtgctt catcattgg 8220
aaacgttctt cggggcgaaa actctcaagg atcttaccgc ttttgatgc cagttcgatc 8280
taacccactc gtgcacccaa ctgatcttca gcatctttt ctttccacccag cgttctggg 8340
tgagcaaaaaa caggaaggca aaatgcgcga aaaaaggaa taaggccgac acggaaatgt 8400
tgaatactca tactcttctt tttcaatat tattgaagca tttatcaggg ttattgtctc 8460
atgagcgat acatatttga atgtatggat aaaaataaaac aaataggggt tccgcgcaca 8520
tttccccgaa aagtgcacc t 8541

<210> 2
<211> 9209
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic DNA encoding chimeric antibody

<400> 2
gacgtcgccg ccgcctctagg cctccaaaaaa agcctcctca ctacttctgg aatagcttag 60
aggccgaggg ggcctcggcc tctgcataaaa taaaaaaaaat tagtcagcca tgcatgggc 120
ggagaatggg cggaactggg cggagttagg ggcccggatgg gcggagttag gggccggact 180
atggttgcg actaatggag atgcattgtt tgcatacttc tgctgtgg ggagcctggg 240
gactttcac acctgggtgc tgactaattt agatgcattgc ttgcataact tctgcctgct 300
ggggagcctg gggactttcc acaccctaac tgacacacat tccacagaat taattcccc 360
agtattaaat agtaatcaat tacgggtca tttagttcata gccccatataat ggagttccgc 420
gttacataaac ttacggtaaa tggcccgct ggctgaccgc ccaacgaccc cggccattg 480
acgtcaataa tgacgtatgt tcccatagta acgccaatag ggactttcca ttgacgtcaa 540
tgggtggact atttacggta aactgcccac ttggcagttac atcaagtgtt tcatatgcca 600
agtacgcccc ctattgacgt caatgacggt aaatggcccg cctggcatta tgcccgatgt 660
atgaccttat gggactttcc tacttggcag tacatctacg tattagtcat cgctattacc 720
atggtgatgc gttttggca gtacatcaat gggcgtggat agcgggttga ctcacgggga 780
tttccaagtc tccaccccat tgacgtcaat gggagtttg tttggcacca aaatcaacgg 840
gactttccaa aatgtcgtaa caactccggc ccattgacgc aaatggccgg taggcgtgt 900
cggtgggagg tctatataag cagagctggg tacgtgaacc gtcagatcgc ctggagacgc 960
catcacagat ctctcaactat ggattttcag gtgcagatta tcagcttct gctaattcgt 1020
gcttcagtca taatgtccag aggacaaatt gttctctcc agtctccagc aatcctgtct 1080
gcacatccag gggagaaggt cacaatgact tgcaaggccca gctgaagtgt aagtttacatc 1140
cactggttcc agcagaagcc aggatcctcc cccaaacctt ggatttatgc cacaatccaa 1200
ctggcttctg gagtcctctg tcgcttcgtt ggcagttggg ctgggacttc ttactcttc 1260
accatcagca gagtgaggc tgaagatgtt gccacttatt actgcccagca gtggactagt 1320
aaccacccca cgttcggagg ggggaccaag ctggaaatca aacgtacggt ggctgcacca 1380
tctgttctca tcttcccccc atctgtatcagtgaaat ctggaaactgc ctctgttgt 1440
tgcctgctga ataacttcta tcccagagac gccaaagtac agtggaaaggt ggataacgcc 1500
ctccaatcgg gtaactccca ggagagtgtc acagagcagg acagcaagga cagcacctac 1560
agcctcagca gcaccctgac gctgagcaaa gcagactacg agaaacacaa agtctacgcc 1620
tgcgaagtca cccatcaggg cctgagtcg cccgtcacaag agagcttcaa caggggagag 1680
tgttgaattc agatccgtt acgggttacca actaccttaga ctggattctgt gacaacatgc 1740
ggccgtgata tctacgtatc atcagcctcg actgtgcctt cttagtgcca gccatctgtt 1800
gtttgcccct cccccgtgccc ttcttgcattt ctggaaagggtt ccactccac tgcctttcc 1860
taataaaatg aggaaattgc atcgcattgtt ctgatgttagt gtcattctat tctgggggggt 1920
gggggtggggc aggacagcaa gggggaggat tggaaagaca atagcaggca tgcgtgggat 1980
gccccgtggct ctatggaaacc agctggggctt cgacagctat gccaagtacg ccccttattt 2040
acgtcaatga cggtaaatgg cccgcctgac attatgccc gtcacatgacc ttatggact 2100
ttctctacttgc gcaatcatac tacgtatttgc tcacatcgat taccatgggt atgcgggttt 2160
ggcagtcacat caatgggcgtt ggatagcgtt ttgactcagc gggatttcca agtctccacc 2220
ccatttgcgtt caatgggagt ttgttttggc accaaaatca acgggactttt cccaaatgtc 2280
gttaacaactc cggcccatgtt acgcaaatgg ggggttggcg tgcgtgggaggttata 2340
taagcagagc tgggtacgtc ctcacattca gtgtatcagca ctgaacacag acccgtcgac 2400
atgggttggc gcctcatctt gctttccctt gtcgtgtt gtcgtgtt gggatttcca agtctccacc 2460
gtacaactgc agcagcctgg ggctgagctg gtgaaggctg gggccttcaat gaagatgtcc 2520
tgcacggctt ctggctacac atttaccatgt tacaatatgc actgggtaaa acagacacac 2580
ggtcggggcc tggaaatggat tggagtttgc tatccggaa atgggtatc ttcctacaat 2640
cagaaggtaa aaggcaaggc cacattgact gcagacaaat cctccagcac agcttacatg 2700
cagctcagca gcctgacatc tgaggactt ggggttggcg tgcgtgggaggttata 2760
tacggcgggtg actggactt caatgtctgg ggcgcaggga ccacggtcac cgctctgtca 2820
gctagcacca agggccatc ggtttccccc ctggcaccctt cctccaagag cacctctggg 2880
ggcacagcgg ccctgggtcg ctgggtcaag gactacttcc ccgaaccgggt gacgggtgtcg 2940
tggaaactcag ggcacccatc cgtgttccac cacacccatc cggctgttcc acagtcctca 3000
ggactctactt ccctcagcagc cgtgttgcacc ctggcccttca gcagcttggg cacccagacc 3060

tacatctgca acgtgaatca caagcccagc aacaccaagg tggacaagaa agcagagccc 3120
aaatcttgtg acaaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggg 3180
ccgtcagtct tccttcttccc cccaaaaccc aaggacaccc tcataatctc ccggaccct 3240
gaggtcacat gcgtgggtgg ggcgtgagc cacgaagacc ctgaggtaa gttcaactgg 3300
tacgtggacg gcgtggaggt gcataatgcc aagacaagc cgccggagga gcagtacaac 3360
agcacgttacc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag 3420
gagtaacaagt gcaaggcttc caacaaagcc ctcccagccc ccatacgagaa aaccatctcc 3480
aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatt ccgggatgag 3540
ctgaccaaga accaggtcag cctgacactgc ctggtaaag gcttctatcc cagcgacatc 3600
gcccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctccctg 3660
ctgactccg acggctcctt ctccctctac agcaagctca ccgtggacaa gagcagggtgg 3720
cagcaggggg acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 3780
cagaagagcc tctccctgtc tccggtaaa tgaggatccg ttaacggtta ccaactacct 3840
agactggatt cgtgacaaca tgccggcgtg atatctacgt atgatca gtcactgtgc 3900
cttcttagtt ccagccatct gttgttgc cctcccccgt gccttcctt acccttggaaag 3960
gtgccactcc cactgtcctt tcctaataaaa atgagggaaat tgcatacgcat tgcgtgagta 4020
ggtgtcattc tattctgggg ggtgggtgg ggcaggacag caagggggag gattggaaag 4080
acaatagcag gcatgtggg gatgcgtgg gctctatggg accagctggg gctcgacacg 4140
gctggatctc ccgatccccca gctttgcctt tcaatttctt atttgcataa tgagaaaaaa 4200
agggaaaatta attttaaacac caattcagta gttgattgag caaatgcgtt gccaaaaagg 4260
atgcctttaga gacagtggc tctgcacaga taagacaaa cattattcag agggagtacc 4320
cagagctgag actcctaagc cagtgcgtgg cacagcatt tagggagaaa tatgcttgc 4380
atcaccgaag cctgattccg tagagccaca ccttggtaag ggccaatctg ctcacacagg 4440
atagagaggg caggagccag ggcagagcat ataaggtgag gttaggatcgt ttgctcctca 4500
catttgcttc tgacatagtt gtgttgggg cttggatagc ttggacagct caggcgtcg 4560
atttcgcgc aaacttgacg gcaatcttag cgtgaaggct ggtaggattt tatccccgt 4620
gccatcatgg ttcgaccatt gaactgcatt gtcggcgtgt cccaaaatat ggggattggc 4680
aagaacggag acctaccctg gcctccgctc aggaacgagt tcaagtactt ccaaagaatg 4740
accacaacct cttcagtggaa aggtaaacag aatctggta ttatgggttag gaaaacctgg 4800
tttccatcc ctgagaagaa tcgacacccaa aaggacagaa ttaatatagt tctcagtaga 4860
gaactcaaag aaccaccacg aggagctcat tttcttgc aaggtttggaa tgatgcctt 4920
agacttattt aacaaccggaa attggcaagt aaagtagaca tgggttggat agtcggaggc 4980
agtctgttt accaggaagc catgaatcaa ccagggccacc tttagactt tgcgtacaagg 5040
atcatgcagg aatttggaaag tgacacgtt ttcccgaaaa ttgattttgg gaaatataaa 5100
cttctcccaag aataccacgg cgtcctctt gaggccagg aggaaaaagg catcaagtat 5160
aagtttgaag tctacggaaa gaaagactaa caggaagatg cttaaattt ctctgctccc 5220
ctcctaaagg tatgcattt tataagacca tggactttt gctggcttta gatcggcctc 5280
gactgtgcct tctagttgcc agccatctgt tggttgc cccccgtgc ctcccttgac 5340
ccttggaaagg gccactccccca ctgtccctt ctaataaaaat gaggaaattt catcgattt 5400
tctgagtagg tgtcatttca ttctgggggg tgggtgggg caggacagca agggggagga 5460
ttgggaagac aatagcaggc atgttgggg tgcgtggc tctatggaaac cagctggggc 5520
tcgagctact agcttgcctt ctcaattttc tatttgcata atgagaaaaa aaggaaaaatt 5580
aattttaaca ccaattcagt agttgattga gcaaatcggt tgccaaaaag gatgttttag 5640
agacagtgtt ctctgcacag ataaggacaa cttagggagaa atatgcgtt catcaccgaa 5700
gactcctaag ccagtgcgtg gcacagcatt cttagggagaa atatgcgtt catcaccgaa 5760
gcctgttcc gtagagccac accttggtaa gggccaaatct gtcacacag gatagagagg 5820
gcaggagcca gggcagagca tataagggtga ggttaggatca gttgctcctc acatttgctt 5880
ctgacatagt tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 5940
cgcaaggttct ccggccgcctt ggggtggagag gctattcgc tatgacttggg cacaacagac 6000
aatccggctgc tctgtatcccg ccgtgttccg gctgtcagcg cagggggcc cgggtttttt 6060
tgtcaagacc gacctgtccg gtgccttgc gtaactgcag gacgaggccag cgccggctatc 6120
gtggctggcc acgacggggcg ttccctgcgc agctgtgtc gacgttgc tgaagcggg 6180
aaggggactgg ctgttatccg gcaagtgcc gggggcaggat ctccctgtcat ctccaccttgc 6240
tcctggccgag aaagtatcca tcatggctga tgcaatgcgg cggctgcata cgcttgcattc 6300
ggctacctgc ccattcgacc accaagcgaa acatcgcat gagcgacac gtactcgat 6360
ggaagccggc ttgtcgatc aggtatgtt ggcggacag catcaggggc tcgcggccagc 6420
cgaactgttc gccaggctca aggccgcgc gcccgcgc gaggatctcg tcgtgaccca 6480
tggcgatgcc tgcgttgcga atatcatgtt ggaaatggc cgctttctg gattcatcga 6540
ctgtggccgg ctgggtgtgg cggaccgcata tcagacata ggcgttgc gcccgtatc 6600
tgcgtgaagag ctggccggc aatgggtgtca ccgttccctc gtcgtttacg gtatcgccgc 6660
tcccgattcg cagcgcatcg cttctatcg cttcttgac gagttcttctc gagcgggact 6720

ctggggttcg aaatgaccga ccaagcgacg cccaacctgc catcacgaga tttcgattcc 6780
accggccct tctatgaaag gttgggcttc ggaatcgaaa tccgggacgc cggttggatg 6840
atcctccagc gcggggatct catgctggag ttcttcgccc accccaactt gtttattgca 6900
gcttataatg gttacaataa aagcaatagc atcacaatt tcacaaataa agcattttt 6960
tcactgcatt ctatgttgg tttgtccaaa ctcataatc tatcttatca tgcttggatc 7020
gcggccgcga tcccgtcgag agcttggcgt aatcatggc atagctttt cctgtgtgaa 7080
attgttatcc gctcacaatt ccacacaaca tacgagccgg aagcataaag tgtaaaggct 7140
gggggtgccta atgagtgagc taactcacat taattgcgtt gcgcacttg cccctttcc 7200
agtcgggaaa cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg 7260
gttgcgtat tggcgctct tccgcttcg cgtcactga ctcgctgcgc tcggcgttc 7320
ggctgcggcg agcggatca gctcactcaa aggccgtaat acggttatcc acagaatcag 7380
gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa 7440
aggccgcgtt gctggcgtt ttccataggg tccgcggggg tgacgagcat cacaaaaatc 7500
gacgctcaag tcagagggtt cgaaacccga caggactata aagataccag gcgttcccc 7560
ctgaaagctc ctcgtgcgc tctcctgttc cgaccctgcc gcttaccggg tacctgtccg 7620
cctttctccc ttcgggaagc gtggcgtt ctcaatgtc acgctgttagg tatctcagtt 7680
cggtttaggt cgttcgtcc aagctgggt gtgtcacga acccccccgtt cagccgcacc 7740
gctgcgcctt atccgttaac ttcgtctt agtccaaccc ggttaagacac gacttacgc 7800
cactggcagc agccacttgt aacaggatta gcagagcggc gtatgttaggc ggtgctacag 7860
agtcttgaa gtgggtggct aactacggct acactagaag gacagtattt ggtatctgcg 7920
ctctgctgaa gccagttacc ttcggaaaaaa gagttggtag ctcttgatcc ggcaaaacaaa 7980
ccaccgctgg tagcgggtt tttttgtt gcaaggcggc gattacgcgc agaaaaaaag 8040
gatctcaaga agatcccttg atcttttcta cgggctctga cgctcagtttgg aacgaaaact 8100
cacgttaagg gatttggc atgagattt caaaaaggat cttcaccttag atccttttaa 8160
ataaaaaatg aagttttaaa tcaatctaaa gtatataatg gtaaacttgg tctgacagtt 8220
accaatgctt aatcagttag gcacccat cagcgatctg tctatccatcg tcatccatag 8280
ttgcctgact ccccgctgt tagataacta cgatacggg gggcttacca tctggcccca 8340
gtgctgcaat gataccgcg gacccacgtt caccggctcc agatttatca gcaataaacc 8400
agccagccgg aaggcccgag cgcagaagtg gtcctgcaac ttatccgccc tccatccagt 8460
ctattaattt ttgcggggaa gctagagtaa gtatccgtt agttaatagt ttgcgcacg 8520
ttgttgccat tgctacaggc atcgtgggtt cacgctcgat gtttggatg gcttcattca 8580
gctccgggtt ccaacgatca aggcgagttt catgatcccc catgttgcg aaaaaagcgg 8640
ttagctcctt cggccctccg atcgttgcgaa gaagtaagt ggccgcgtt ttatcactca 8700
tgggtatggc agcactgcatt aattcttta ctgtcatgcc atccgttaaga tgctttctg 8760
tgactggta gtactcaacc aagtcttcat gagaatagt tatgcggcga ccgagttgt 8820
cttgcccccgtt gtaatacgg gataatacgg cgccacatag cagaacttta aaagtgcctca 8880
tcattggaaa acgttcttcg gggcgaaaac tctcaaggat cttaccgcgt ttgagatcca 8940
ggtcgtatgtt acccactcgat gcacccaaact gatcttcagc atctttact ttccaccagcg 9000
tttctgggtt agcaaaaaca ggaaggcaaa atgcccggaaa aaagggaata agggcgacac 9060
ggaaatgttg aatactcata ctcttcctt ttcaatatta ttgaaggcatt tattcagggtt 9120
attgtctcat gagcggatata tatttgaat gtatttagaa aaataaacaat ataggggttc 9180
cgccacatt tccccgaaaaa gtgccaccc 9209

<210> 3
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 3
atcacagatc tctcaccatc gatttcagg tgcagattat cagcttc

47

<210> 4
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 4
tgccatcc gtacgttga tttccagctt 30

<210> 5
<211> 384
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (1)..(384)

<220>
<221> sig_peptide
<222> (1)..(66)

<220>
<221> mat_peptide
<222> (67)..(384)

<400> 5
atg gat ttt cag gtg cag att atc agc ttc ctg cta atc agt gct tca 48
Met Asp Phe Val Gln Ile Ser Phe Leu Leu Ser Ala Ser
-20 -15 -10

gtc ata atg tcc aga gga caa att gtt ctc tcc cag tct cca gca atc 96
Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile
-5 -1 1 5 10

ctg tct gca tct cca ggg gag aag gtc aca atg act tgc agg gcc agc 144
Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser
15 20 25

tca agt gta agt tac atc cac tgg ttc cag cag aag cca gga tcc tcc 192
Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser
30 35 40

ccc aaa ccc tgg att tat gcc aca tcc aac ctg gct tct gga gtc cct 240
Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro
45 50 55

gtt cgc ttc agt ggc agt ggg tct ggg act tct tac tct ctc acc atc 288
Val Arg Phe Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile
60 65 70

agc aga gtg gag gct gaa gat gct gcc act tat tac tgc cag cag tgg 336
Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp
75 80 85 90

act agt aac cca ccc acg ttc gga ggg ggg acc aag ctg gaa atc aaa 384
Thr Ser Asn Pro Pro Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
95 100 105

<210> 6
<211> 27
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 6

gcggctccca cgcggtgcct gtccca

27

<210> 7

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 7

ggstgttgtg ctagctgmrg agacrgtga

29

<210> 8

<211> 420

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (1)..(420)

<220>

<221> sig_peptide

<222> (1)..(57)

<220>

<221> mat_peptide

<222> (58)..(420)

<400> 8

atg ggt tgg agc ctc atc ttg ctc ttc ctt gtc gct gtt gct acg cgt
Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg
-15 -10 -5

48

gtc ctg tcc cag gta caa ctg cag cag cct ggg gct gag ctg gtg aag
Val Leu Ser Gln Val Gln Leu Gln Pro Gly Ala Glu Leu Val Lys
-1 1 5 10

96

cct ggg gcc tca gtg aag atg tcc tgc aag gct tct ggc tac aca ttt
Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe
15 20 25

144

acc agt tac aat atg cac tgg gta aaa cag aca cct ggt cgg ggc ctg
Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu
30 35 40 45

192

gaa tgg att gga gct att tat ccc gga aat ggt gat act tcc tac aat
Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn
50 55 60

240

cag aag ttc aaa ggc aag gcc aca ttg act gca gac aaa tcc tcc agc 288
Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser
65 70 75

aca gcc tac atg cag ctc agc agc ctg aca tct gag gac tct gcg gtc 336
Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
80 85 90

tat tac tgt gca aga tcg act tac tac ggc ggt gac tgg tac ttc aat 384
Tyr Tyr Cys Ala Arg Ser Thr Tyr Gly Gly Asp Trp Tyr Phe Asn
95 100 105

gtc tgg ggc gca ggg acc acg gtc acc gtc tct gca 420
Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala
110 115 120

<210> 9

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
Kozak sequence

<400> 9

gggagcttgg atcgatcctc tatggtt 27

<210> 10

<211> 128

<212> PRT

<213> Mus musculus

<400> 10

Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser
-20 -15 -10

Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile
-5 -1 1 5 10

Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser
15 20 25

Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser
30 35 40

Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro
45 50 55

Val Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile
60 65 70

Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp
75 80 85 90

Thr Ser Asn Pro Pro Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
95 100 105

<210> 11
<211> 140
<212> PRT
<213> Mus musculus

<400> 11
Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg
-15 -10 -5

Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys
-1 1 5 10

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe
15 20 25

Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu
30 35 40 45

Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn
50 55 60

Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser
65 70 75

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
80 85 90

Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn
95 100 105

Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala
110 115 120