CMSC411 Quiz 15	
Your email will be recorded when you submit this *Required	s form
What operation copies data from main mer	nory into a general purpose register? *
load	
o store	
O move	
add	
Which one of the following addresses is wo	rd aligned? *
Ox01234567	
0x00FA0700	
Ox77000003	
Ox00000042	
Say that four bytes in main storage contain What is the address is used for this integer?	
The address of the byte with the highest ad	ddress of the four.
The address of each byte is used.	
Only one byte at a time can be addressed.	
The address of the byte with the lowest address of the byte with the lowest address.	dress of the four.
Here is a 32-bit pattern: 0x00224477. This p using bytes at addresses 0x10000000, 0x10 0x10000003. On a big endian processor, wh 0x10000000?	0000001, 0x10000002, and
● 0x00	
Ox22	
Ox44	
Ox77	

	w is to load register \$5 from location 0x0040000C in memory. Register \$10 * ntains 0x00400000. Write the assembly language instruction:
0	lw \$10,0x0C(\$10)
0	lw \$10,0x0C(\$5)
•	lw \$5,0x0C(\$10)
0	lw \$5,0x0C(400000)
	gister \$10 contains 0x10000000. Beginning at that address there are five *egers in a row. Write the instruction that loads the last integer into register \$7.
0	lw \$7, 50(\$10)
0	lw \$7, 20(\$10)
o	lw \$7, 16(\$10)
0	lw \$7, 40(\$10)
	gister \$5 contains the address 0x10000100. Write the instruction that loads the * ur bytes that precede this address into register \$7.
0	lw \$7, 4(\$5)
•	lw \$7, -4(\$5)
0	lw \$5, 4(-\$5)
	lw \$7, 0(\$5-4)
0	47,5(46-1)
_	ite the assembly instruction that fills register \$10 with 0x10000000 *
Wri	
Wri	ite the assembly instruction that fills register \$10 with 0x10000000 *
Wri	ite the assembly instruction that fills register \$10 with 0x10000000 *

ш

•	now register \$10 has been loaded with the address 0x10000000. action that alters \$10 so that it contains 0x100000F0.	*
O ori \$10, \$0,	0x00F0	
O or \$10, \$10	, 0x00F0	
ori \$10, \$10	0, 0x00F0	
andi \$10, \$	10, 0x00F0	
	llowing program fragment. Assuming that SPIM starts the address 0x10000000, what address does symbolic address resu	* It
## fragn	ment.asm	
	.text	
	program statements	
	.data	
	.word 23 .word 97	
Ox1000000	4	
Ox1000000	0	
Ox1000000	3	
Ox0000009	7	
	he previous fragment. We want register \$8 to contain the address in the data section. What instruction does this?	*
O lui \$8,1000		
O lui \$8,\$8,0x	1000	
O lui \$8,0x100	000000	
lui \$8,0x100	00	

address 0x10000000. What instruction stores the contents of register \$4 into location result? sw \$4,4(\$8) O sw \$4,0(\$8) O sw \$4,0x0(\$8) osw \$4,\$0x05(\$8) Get link

Refer back to the previous fragment. Assume that register \$8 contains the

This form was created inside of UMBC. Report Abuse

Google Forms

CMSC411 Quiz 16	
Your email will be recorded when you submit this form * Required	
What is the smallest addressable unit of main memory? *	
byte	
O bit	
nibble	
O halfword	
Which of the following instructions does sign extension? *	
Olbu	
Ib	
add	
Olhu	
Say that: put in register \$8 after lb \$8,0(\$5) is executed?	What is *
• Memory at 0x10000000 contains 0x80 • Register \$5 contains 0x10000000	
Ox88888880	
Ox00000080	
Ox80000000	
0xffffff80	
What instruction is used to store a byte to memory? *	
sb	
Sbu	
O Ib	
○ sw	

!

Say that the MIPS chip is running in little-endian mode (as does SPIM on an Intel * computer). What is put in register $\$8$ after lh $\$8,0(\$5)$ is executed?
 Memory at 0x10000000 contains 0x80 Memory at 0x10000001 contains 0x00 Register \$5 contains 0x10000000
OxFFFFF80
Ox88888880
● 0x0000080
Ox8000000
Say that the MIPS chip is running in big-endian mode (as does SPIM on an Apple * computer). What is put in register \$8 after Ih \$8,0(\$5) is executed? • Memory at 0x10000000 contains 0x80 • Memory at 0x10000001 contains 0x00 • Register \$5 contains 0x10000000 • 0xFFFFF800 • 0x000000080 • 0x800000000
Which one of the following address are half-word aligned? *
0x01004F35
0 0x01004F37 0 0x01004F3A
0x01004F3F

Say that data is in memory and the base register has been initialized correctly. * You have the following program:
lh \$5,0(\$10) lb \$6,4(\$10) addu \$7,\$5,\$4
What does the addu instruction do?
It performs the binary addition algorithm on whatever 32-bit patterns are in registers \$4 and \$5.
O It performs a 16-bit addition because that is the size of the largest operand.
It performs an 8-bit addition.
The instruction causes a trap because the operands are not the same sizes.
Which of the following assembler directives reserves 1210 bytes of memory? * .word 3 .byte 12 .block 6 .space 12
You wish to speed up the execution of a C program. The program runs on a 32-bit * processor. You notice that the variables in the program are a mix of short int, int and long int variables. The program does a great deal of integer arithmetic. How might you speed up this program?
Make as many variables of type int as is possible.
Make as many variables of type short int as is possible.
O Make all variables as small as is needed for the range of values they are exected to hold.
Shorten the names of all the variables.

This form was created inside of UMBC. Report Abuse

Google Forms

How does SPIM display the data section of simulated main memory? *

In groups of 4-byte words with the highest address on the right.
 In groups of 4-byte words with the lowest address on the right.

One byte per address in columns.

O This depends on the type of data in memory.

A digital image is stored in a file. The pixels of the image represent a gray level of * 0 to 255. What instruction are you likely to use in loading a register with the value

of a pixel?

| Ib |
| Ibu |
| Ih |
| Ihu |

Get link

CMSC411 Quiz 17 Your email will be recorded when you submit this form * Required What are the three steps in the machine cycle? * increment the PC; fetch the instruction; execute the instruction of fetch the instruction; execute the instruction; increment the PC o execute the instruction; fetch the instruction; increment the PC fetch the instruction; increment the PC; execute the instruction What are the four bytes immediately following a jump instruction called? * fetch delay slot O pipeline delay slot branch delay slot O PC advance slot What is a pipeline? * O Several words of data from memory are moved into the processor before instructions need them. Several sequential instructions are simultaneously prepared for execution while one instruction finishes its execution. O A single instruction is divided into four phases and each phase is executed in one machine circle. Multiple items of data are sent down the system bus like water in a pipe. Say that a sll instruction is located in memory at address 0x400100, and an add * instruction is located in memory at address 0x400104. After the add instruction executes, what value will be in the PC? Ox400100 Ox400104 Ox400105 ① 0x400108

Say that a j (jump) instruction is located in memory at address 0x400100, and a sll instruction is located in memory at address 0x400104. After the j instruction executes, what value will be in the PC? Ox400100 Ox400101 Ox400102 ① 0x400104 Here is a schematic program loop. * PC just after this Instruction Address instruction has executed (details omitted) (at the bottom of the cycle) 00450008 00450008 add 0045000C 0045000C store 00450010 00450010 jump 0x00450008 004500___ 00450014 no-op 004500 What numbers go into the two blanks? 14 14 08 00 O b a 14 00 18 08 \bigcirc d 0 0

1

Here is a 32-bit j instruction. The first 6 bits are the op-code. * 000010 00 0001 0000 0000 0000 0000 1000 Here is the value of the PC while the target address is being constructed: 0000 1000 0001 0000 0000 1100 0110 1000 What address does the j put into the PC? 0000 00 0001 0000 0000 0000 0000 1000 00 0000 1000 0001 0000 0000 1100 0110 1000 0000 10 0001 0000 0000 1100 0110 1000 00 0 1000 00 0001 0000 0000 0000 0000 1000 00 Examine the following program fragment. The program is to add \$5 and \$6 together only if they are not equal. ori \$5,\$0,8 # load \$5 with 8 # load \$6 with 9 ori \$6,\$0,9 \$5,\$6,spot \$0,\$0,0 # branch delay slot addu \$8,\$5,\$6 # \$8 = \$5 + \$6 spot: Pick instructions to fill the blanks. O beq;addu O bne; sll O bne; addu beq;sll

p p

Here is an if-then-else structure. The code is to compare \$10 and \$11. If these registers contain the same bit pattern, set register \$7 to 1. Otherwise set \$7 to 0.

```
ori $10,$0,123
ori $11,$0,123

$10,$11,

$11,$0,$0,0
ori $7,$0,0

$11,$0,$0,0

$11,$0,$0,0

$11,$0,$0,0

$11,$0,$0,0

$11,$0,$0,0

equal: ori $7,$0,1

join: ....

Which choices should fill the blanks?
```

- O bne; equal; join
- O beq; join; equal
- beq; equal; join
- O bne; join; equal

Say that registers \$5 and \$6 each contain an ASCII character in the low order byte. Can the beq instruction be used to compare the characters?

- Yes, because beq will recognize the character data and do a character comparison.
- No, because beq only works with two's complement integers.
- No, because beq only works with full 32-bit data.
- Yes, because beq compares bit patterns regardless of what they represent.

Get link

This form was created inside of UMBC. Report Abuse

Google Forms

CMSC411 Quiz 18

Your email will be recorded when you submit this form

* Required

examine the following program fragment:*

ori \$8,\$0,13
ori \$9,\$0,1
bltz \$8, target
sl1 \$0,\$0,0
ori \$9,\$0,0
target: sl1 \$0,\$0,0

target: sl1 \$0,\$0,0 # arbitrary instruction

What value is found in \$9 when control reaches target?

o 0
1
4
13

Trick Question: Examine the following program fragment:*

ori \$8,\$0,-57
ori \$9,\$0,1
bltz \$8,target
ori \$9,\$0,0 # think about the delay
 # slot
target: sll \$0,\$0,0 # arbitrary instruction

What value is found in \$9 when control reaches target?

olimits 0

1
3
4

Examine the fol	llowing pro	ogram fragment: *	
	ori bgez sll	\$8,\$0,13 \$9,\$0,1 \$8,target \$0,\$0,0 \$9,\$0,0	
target	: sll	\$0,\$0,0	# arbitrary instruction
What value is	found in	\$9 when control re	aches target?
O 0			
1			
O 4			
O 13			

Examine the following program fragment (slightly different from the previous): *

ori \$8,\$0,13
bgez \$8,target
ori \$9,\$0,1
ori \$9,\$0,0

target: sll \$0,\$0,0 # arbitrary instruction

What value is found in \$9 when control reaches target?

0

1

4

13

	lowing program fra	iginent.	
	addiu addiu ?????	\$3,\$0,-13 \$7,\$0,23	
Pick the ins	truction to replac	ee ????? that will set register \$	10 to one.
Sltu \$3,\$7,\$1	0		
O slt \$10,\$7,\$3	3		
slt \$10,\$3,\$7	7		
sltu \$10,\$3,\$	37		
Examine the fol	lowing program fra	igment: *	
	addiu slti	/ /	
100	e is in \$5 after	. , . ,	
vvnat valu		both instructions exectute?	
		both instructions exectute?	
0 0		poin instructions exectute?	
01	e is iii \$5 aitei	both instructions exectute?	
0 1 -8	e is iii \$5 aitei	poin instructions execute?	
01	e is iii yo aitei	potn instructions exectute?	
0 0 1 -8 -13	lowing program fra		
0 0 1 -8 -13	lowing program fra		
0 0 1 -8 -13	lowing program fra	gment: * \$3,\$0,25	
0 1 -8 -13 Examine the fol	lowing program fra Ori Slti	gment: * \$3,\$0,25	
0 1 -8 -13 Examine the fol	lowing program fra Ori Slti	sgment:* \$3,\$0,25 \$5,\$3,53	
0 1 -8 -13 Examine the fol	lowing program fra Ori Slti	sgment:* \$3,\$0,25 \$5,\$3,53	
0 0 1 -8 -13 Examine the foll What value	lowing program fra Ori Slti	sgment:* \$3,\$0,25 \$5,\$3,53	

(Very Tricky:) Examine the following program fragment: What value is in \$5 * after both instructions exectute? \$3,\$0,-1 addiu slti \$5,\$3,17 0 O 1 O -8 O -13 Which style of implementing a counting loop is usually easiest to understand? O data driven loop O bottom driven loop O conditional driven top driven loop Examine the following program fragment: * ori \$5,\$0,5 ori \$8,\$0,0 # initialize count
initialize accumulator test: bltz \$5,done sll \$0,\$0,0 addu \$8,\$8,\$5 # add count to accumulator addiu \$5,\$5,-1 j test sll \$0,\$0,0 done: sll \$0,\$0,0 How many times is the addu instruction executed? 0 O 5 6 0 7

Get link

H

This form was created inside of UMBC. Report Abuse

Google Forms

H