Lecture 19

6.2.4 Language classes with polynomial complexity

194

Class of polynomial time complexity P

Class of polynomial time complexity P

$$P = \bigcup_{i \ge 1} \mathsf{DTIME}(n^i)$$

Class of polynomial time complexity P

$$P = \bigcup_{i \ge 1} \mathsf{DTIME}(n^i)$$

Class of nondeterministic polynomial time complexity NP

Class of polynomial time complexity P

$$P = \bigcup_{i \ge 1} \mathsf{DTIME}(n^i)$$

Class of nondeterministic polynomial time complexity NP

$$NP = \bigcup_{i \ge 1} \mathsf{NTIME}(n^i)$$

Language L_{sat}

- Language L_{sat}
- Logical expression

- Language L_{sat}
- Logical expression
 - Variables, brackets, logical operator and (∧), logical operator or (∨) and the operator of negation (¬)

- Language L_{sat}
- Logical expression
 - Variables, brackets, logical operator and (∧), logical operator or (∨) and the operator of negation (¬)
 - Variables take values 0 or 1

- Language L_{sat}
- Logical expression
 - Variables, brackets, logical operator and (∧), logical operator or (∨) and the operator of negation (¬)
 - Variables take values 0 or 1
 - String w logical expression

- Language L_{sat}
- Logical expression
 - Variables, brackets, logical operator and (∧), logical operator or (∨) and the operator of negation (¬)
 - Variables take values 0 or 1
 - String w logical expression

$$y_1 \wedge y_2$$

- Language L_{sat}
- Logical expression
 - Variables, brackets, logical operator and (∧), logical operator or (∨) and the operator of negation (¬)
 - Variables take values 0 or 1
 - String w logical expression

$$y_1 \wedge y_2$$

 $y_1 \wedge \neg y_1$

- Language L_{sat}
- Logical expression
 - Variables, brackets, logical operator and (∧), logical operator or (∨) and the operator of negation (¬)
 - Variables take values 0 or 1
 - String w logical expression

$$y_1 \wedge y_2$$

 $y_1 \wedge \neg y_1$

String w belongs to L_{sat} if it is possible to give values

 0 or 1 to the variables of the logical expression so
 that it evaluates to 1

$$y_1 \wedge y_2$$

 $0 \wedge y_2$

0 ^ 0

 $0 \land 0 \neq 1$

$$0 \wedge 0 \neq 1$$

$$y_1 \wedge y_2 \notin L_{sat}$$

$$y_1 \wedge y_2$$

$$y_1 \wedge y_2 \notin L_{sat}$$

$$1 \wedge y_2$$

$$y_1 \land y_2 \notin L_{sat}$$

1 ^ 0

$$y_1 \land y_2 \notin L_{sat}$$

1
$$\wedge$$
 0 \neq 1
$$y_1 \wedge y_2 \notin L_{sat}$$

$$y_1 \wedge y_2$$

$$y_1 \land y_2 \notin L_{sat}$$

$$0 \wedge y_2$$

$$y_1 \wedge y_2 \notin L_{sat}$$

0 ^ 1

$$y_1 \wedge y_2 \notin L_{sat}$$

$$0 \wedge 1 \neq 1$$

$$y_1 \wedge y_2 \notin L_{sat}$$

$$y_1 \wedge y_2$$

$$y_1 \land y_2 \notin L_{sat}$$

$$1 \wedge y_2$$

$$y_1 \land y_2 \notin L_{sat}$$

1 ^ 1

$$y_1 \land y_2 \notin L_{sat}$$

1
$$\wedge$$
 1 = 1
$$y_1 \wedge y_2 \in L_{sat}$$

$$y_1 \wedge \neg y_1$$

$$0 \land \neg y_1$$

$$0 \land \neg 0 \neq 1$$

1
$$\wedge$$
 1 = 1
$$y_1 \wedge y_2 \in L_{sat}$$
0 \wedge 7 0 \neq 1
$$y_1 \wedge \neg y_1 \notin L_{sat}$$

$$1 \qquad \qquad 1 \qquad = 1$$

$$y_1 \land y_2 \in L_{sat}$$

$$y_1 \wedge \neg y_1$$

$$y_1 \land \neg y_1 \notin L_{sat}$$

$$1 \land \neg y_1$$

$$y_1 \land \neg y_1 \notin L_{sat}$$

$$y_1 \land \neg y_1 \notin L_{sat}$$

1
$$\wedge$$
 1 = 1
$$y_1 \wedge y_2 \in L_{sat}$$
1 \wedge 7 1 \neq 1
$$y_1 \wedge \neg y_1 \notin L_{sat}$$

1
$$\wedge$$
 1 = 1
$$y_1 \wedge y_2 \in L_{sat}$$
1 \wedge 7 1 \neq 1
$$y_1 \wedge \neg y_1 \notin L_{sat}$$

- $L_{sat} \in NP$
 - TM nondeterministically generates values for all variables of the logical expression and verifies whether the logical expression for the given values evaluates to 1

Language L_{vc}

- Language L_{vc}
- G = (V, E) undirected graph

- Language L_{vc}
- G = (V, E) undirected graph
 - a set of vertices V and a set of edges E

- Language L_{vc}
- G = (V, E) undirected graph
 - a set of vertices V and a set of edges E
- A vertex cover A

- Language L_{vc}
- G = (V, E) undirected graph
 - a set of vertices V and a set of edges E
- A vertex cover A
 - Subset of vertices V such that

- Language L_{vc}
- G = (V, E) undirected graph
 - a set of vertices V and a set of edges E
- A vertex cover A
 - Subset of vertices V such that
 - if (x, y) is any edge from E

- Language L_{vc}
- G = (V, E) undirected graph
 - a set of vertices V and a set of edges E
- A vertex cover A
 - Subset of vertices V such that
 - if (x, y) is any edge from E
 - then A contains at least one of the vertices x or y

Graph vertices Graph edges

Graph vertices Graph edges

Graph vertices Graph edges

Graph vertices Graph edges

Graph vertices Graph edges

Graph vertices Graph edges

Graph vertices Graph edges

$$A = \{2, 3\}$$

Graph vertices Graph edges

$$A = \{2, 3\}$$

2 ** 1 * 2 * 3 * 4 * 5 ** 1,3 * 3,4 * 2,2 * 2,5 $\in L_{vc}$

Graph vertices Graph edges

$$A = \{2, 3\}$$
 $2 ** 1 * 2 * 3 * 4 * 5 ** 1,3 * 3,4 * 2,2 * 2,5 \in L_{vc}$
 $1 ** 1 * 2 * 3 * 4 * 5 ** 1,3 * 3,4 * 2,2 * 2,5 \notin L_{vc}$

• $L_{vc} \in NP$

- $L_{vc} \in NP$
 - TM nondeterministically generates all sets of *k* vertices, and for each generated set verifies whether it is a vertex cover

- $L_{vc} \in NP$
 - TM nondeterministically generates all sets of k vertices, and for each generated set verifies whether it is a vertex cover
- Difference between the complexity of languages in classes NP and P

- $L_{vc} \in NP$
 - TM nondeterministically generates all sets of k vertices, and for each generated set verifies whether it is a vertex cover
- Difference between the complexity of languages in classes NP and P
 - Harder to verify

- $L_{vc} \in NP$
 - TM nondeterministically generates all sets of k vertices, and for each generated set verifies whether it is a vertex cover
- Difference between the complexity of languages in classes NP and P
 - Harder to verify
 - Is it is possible to give values 0 or 1 to the variables of the logical expression so that it evaluates to 1?

- $L_{vc} \in NP$
 - TM nondeterministically generates all sets of k vertices, and for each generated set verifies whether it is a vertex cover
- Difference between the complexity of languages in classes NP and P
 - Harder to verify
 - Is it is possible to give values 0 or 1 to the variables of the logical expression so that it evaluates to 1?
 - Easier to verify

- $L_{vc} \in NP$
 - TM nondeterministically generates all sets of k vertices, and for each generated set verifies whether it is a vertex cover
- Difference between the complexity of languages in classes NP and P
 - Harder to verify
 - Is it is possible to give values 0 or 1 to the variables of the logical expression so that it evaluates to 1?
 - Easier to verify
 - Does the logical expression for the given variable values evaluates to 1?

- $L_{vc} \in NP$
 - TM nondeterministically generates all sets of k vertices, and for each generated set verifies whether it is a vertex cover
- Difference between the complexity of languages in classes NP and P
 - Harder to verify
 - Is it is possible to give values 0 or 1 to the variables of the logical expression so that it evaluates to 1?
 - Easier to verify
 - Does the logical expression for the given variable values evaluates to 1?
 - Harder to verify

- $L_{vc} \in NP$
 - TM nondeterministically generates all sets of *k* vertices, and for each generated set verifies whether it is a vertex cover
- Difference between the complexity of languages in classes NP and P
 - Harder to verify
 - Is it is possible to give values 0 or 1 to the variables of the logical expression so that it evaluates to 1?
 - Easier to verify
 - Does the logical expression for the given variable values evaluates to 1?
 - Harder to verify
 - Does the given graph contain a vertex cover with k or less vertices?

- $L_{vc} \in NP$
 - TM nondeterministically generates all sets of *k* vertices, and for each generated set verifies whether it is a vertex cover
- Difference between the complexity of languages in classes NP and P
 - Harder to verify
 - Is it is possible to give values 0 or 1 to the variables of the logical expression so that it evaluates to 1?
 - Easier to verify
 - Does the logical expression for the given variable values evaluates to 1?
 - Harder to verify
 - Does the given graph contain a vertex cover with k or less vertices?
 - Easier to verify

- $L_{vc} \in NP$
 - TM nondeterministically generates all sets of *k* vertices, and for each generated set verifies whether it is a vertex cover
- Difference between the complexity of languages in classes NP and P
 - Harder to verify
 - Is it is possible to give values 0 or 1 to the variables of the logical expression so that it evaluates to 1?
 - Easier to verify
 - Does the logical expression for the given variable values evaluates to 1?
 - Harder to verify
 - Does the given graph contain a vertex cover with k or less vertices?
 - Easier to verify
 - Is the given set of vertices a vertex cover of the given graph?

Class of polynomial time complexity P

$$P = \bigcup_{i \ge 1} \mathsf{DTIME}(n^i)$$

Class of nondeterministic polynomial time complexity NP

$$NP = \bigcup_{i \ge 1} \mathsf{NTIME}(n^i)$$

Class of polynomial time complexity P

$$P = \bigcup_{i \ge 1} \mathsf{DTIME}(n^i)$$

Class of nondeterministic polynomial time complexity NP

$$NP = \bigcup_{i \ge 1} NTIME(n^i)$$

Classes of languages with respect to space complexity

Class of polynomial time complexity P

$$P = \bigcup_{i \ge 1} \mathsf{DTIME}(n^i)$$

Class of nondeterministic polynomial time complexity NP

$$NP = \bigcup_{i \ge 1} \mathsf{NTIME}(n^i)$$

Classes of languages with respect to space complexity

$$\begin{array}{c} \mathsf{PSPACE} = \bigcup \mathsf{DSPACE} (n^i) \\ i \ge 1 \end{array}$$

Class of polynomial time complexity P

$$P = \bigcup_{i \ge 1} \mathsf{DTIME}(n^i)$$

Class of nondeterministic polynomial time complexity NP

$$NP = \bigcup_{i \ge 1} NTIME(n^i)$$

Classes of languages with respect to space complexity

PSPACE =
$$\bigcup$$
 DSPACE (n^i)
 $i \ge 1$

NPSPACE = \bigcup NSPACE (n^i)
 $i \ge 1$

NSPACE
$$(f(n)) \subseteq DSPACE (f(n)^2)$$

NSPACE (
$$f(n)$$
) \subseteq DSPACE ($f(n)^2$)
We put $f(n) = n^i$


```
NSPACE ( f(n) ) \subseteq DSPACE ( f(n)^2 )

We put f(n) = n^i

NSPACE ( n^i ) \subseteq DSPACE ( n^{2i} )
```



```
NSPACE ( f(n) ) \subseteq DSPACE ( f(n)^2 )

We put f(n) = n^i

NSPACE ( n^i ) \subseteq DSPACE ( n^{2i} )

PSPACE = \bigcup DSPACE ( n^i )

i \ge 1
```



```
NSPACE (f(n)) \subseteq DSPACE (f(n)^2)
 We put f(n) = n^i
 NSPACE(n^i) \subseteq DSPACE(n^{2i})
 PSPACE = \bigcup DSPACE(n^i)
              i > 1
NPSPACE = \bigcup NSPACE (n^i)
              i > 1
```


NSPACE (
$$f(n)$$
) \subseteq DSPACE ($f(n)^2$)

We put $f(n) = n^i$

NSPACE (n^i) \subseteq DSPACE (n^{2i})

PSPACE = \bigcup DSPACE (n^i)

 $i \ge 1$

NPSPACE = \bigcup NSPACE (n^i)

 $i \ge 1$

PSPACE = NPSPACE


```
NSPACE (f(n)) \subseteq DSPACE (f(n)^2)
 We put f(n) = n^i
 NSPACE(n^i) \subseteq DSPACE(n^{2i})
 PSPACE = \bigcup DSPACE(n^i)
              i > 1
NPSPACE = \bigcup NSPACE (n^i)
              i > 1
```

$$P \subseteq NP \subseteq PSPACE = NPSPACE$$

 $TM M_R$

TM
$$M_R$$

 $x \in L_1 \Rightarrow y = R(x) \in L_2$

TM
$$M_R$$

 $x \in L_1 \Rightarrow y = R(x) \in L_2$

$$\longrightarrow \begin{array}{c} X \\ \hline TM M_R \end{array} \qquad \begin{array}{c} y = R(x) \\ \hline \end{array}$$

TM
$$M_R$$

 $x \in L_1 \Rightarrow y = R(x) \in L_2$

TM
$$M_R$$

 $x \in L_1 \Rightarrow y = R(x) \in L_2$

 $TM M_2$

TM
$$M_R$$

 $x \in L_1 \Rightarrow y = R(x) \in L_2$

$$TM M_2$$

$$L(M_2) = L_2$$

TM
$$M_R$$

 $x \in L_1 \Rightarrow y = R(x) \in L_2$

$$TM M_2$$

$$L(M_2) = L_2$$

TM
$$M_R$$

 $x \in L_1 \Rightarrow y = R(x) \in L_2$

$$TM M_1$$

$$TM M_2$$

$$L(M_2) = L_2$$

TM
$$M_R$$

 $x \in L_1 \Rightarrow y = R(x) \in L_2$

$$TM M_1$$

$$L(M_1) = L_1$$

$$TM M_2$$

$$L(M_2) = L_2$$

TM
$$M_R$$

 $x \in L_1 \Rightarrow y = R(x) \in L_2$

$$TM M_1$$

$$L(M_1) = L_1$$

$$TM M_2$$

$$L(M_2) = L_2$$

Language L_1 is reduced to language L_2

 L_1

• If complexity of TM M_R is small

- If complexity of TM M_R is small
 - If we can reduce L₁ to L₂

- If we can reduce L₁ to L₂
- then language L₂ has equal or higher complexity than L₁

- If we can reduce L₁ to L₂
- then language L₂ has equal or higher complexity than L₁
- Example

- If we can reduce L₁ to L₂
- then language L₂ has equal or higher complexity than L₁
- Example
 - language L_1 with polynomial time complexity can be reduced in polynomial time to language L_2 with exponential or polynomial time complexity

 L_2

It is not possible to

- It is not possible to
 - language L_1 with exponential time complexity

L₂

- It is not possible to
 - language L_1 with exponential time complexity
 - reduce in polynomial time to

 L_2

- It is not possible to
 - language L_1 with exponential time complexity
 - reduce in polynomial time to
 - language L₂ with polynomial time complexity

 L_2

- It is not possible to
 - language L₁ with exponential time complexity
 - reduce in polynomial time to
 - language L₂ with polynomial time complexity
 - If we can reduce language L_1 in polynomial time to language L_2 with polynomial time complexity, then language L_1 also has polynomial time complexity, not exponential

 L_1

 L_2

- It is not possible to
 - language L₁ with exponential time complexity
 - reduce in polynomial time to
 - language L₂ with polynomial time complexity
 - If we can reduce language L_1 in polynomial time to language L_2 with polynomial time complexity, then language L_1 also has polynomial time complexity, not exponential

Large complexity of TM M_R

- Large complexity of TM M_R
 - Impossible to estimate complexities of L₁ and L₂

- Large complexity of TM M_R
 - Impossible to estimate complexities of L₁ and L₂

- Large complexity of TM M_R
 - Impossible to estimate complexities of L_1 and L_2

Efficient language reduction

- Efficient language reduction
 - Polynomial time complexity TM M_R

- Efficient language reduction
 - Polynomial time complexity TM M_R
 - Language L_1 is polynomial-time reduced to language L_2 if there is a deterministic TM M_R with polynomial time complexity which generates an output string y=R(x) from language L_2 if and only if the input string x belongs to language L_1

- Efficient language reduction
 - Polynomial time complexity TM M_R
 - Language L_1 is polynomial-time reduced to language L_2 if there is a deterministic TM M_R with polynomial time complexity which generates an output string y=R(x) from language L_2 if and only if the input string x belongs to language L_1
 - Logarithmic space complexity TM M_R

- Efficient language reduction
 - Polynomial time complexity TM M_R
 - Language L_1 is polynomial-time reduced to language L_2 if there is a deterministic TM M_R with polynomial time complexity which generates an output string y=R(x) from language L_2 if and only if the input string x belongs to language L_1
 - Logarithmic space complexity TM M_R
 - Language L_1 is log-space reduced to language L_2 if there is a deterministic TM M_R with logarithmic space complexity which generates an output string y=R(x) from language L_2 if and only if the input string x belongs to language L_1

Language L₁ is polynomial-time reduced to language L₂

- Language L₁ is polynomial-time reduced to language L₂
 - a) If language L_2 is in class P, then language L_1 is also in class P

- Language L₁ is polynomial-time reduced to language L₂
 - a) If language L_2 is in class P, then language L_1 is also in class P
 - b) If language L₂ is in class NP, then language L₁ is also in class NP

Language L_1 is log-space reduced to language L_2

- Language L₁ is log-space reduced to language L₂
 - c) If language L_2 is in class P, then language L_1 is also in class P

- Language L₁ is log-space reduced to language L₂
 - c) If language L_2 is in class P, then language L_1 is also in class P
 - d) If language L_2 is in class NSPACE($log^k n$), then language L_1 is also in class NSPACE($log^k n$)

- Language L₁ is log-space reduced to language L₂
 - c) If language L_2 is in class P, then language L_1 is also in class P
 - d) If language L_2 is in class NSPACE($log^k n$), then language L_1 is also in class NSPACE($log^k n$)
 - e) If language L_2 is in class DSPACE($log^k n$), then language L_1 is also in class DSPACE($log^k n$)

 $L \in \mathsf{DSPACE}(f(n)) \Rightarrow L \in \mathsf{DTIME}(c^{f(n)})$

 $L \in \mathsf{DSPACE}(f(n)) \Rightarrow L \in \mathsf{DTIME}(c^{f(n)})$

 $f(n) = \log_b n$

 $L \in \mathsf{DSPACE}(f(n)) \Rightarrow L \in \mathsf{DTIME}(c^{f(n)})$

$$f(n) = \log_b n$$

$$c^{f(n)} = c^{\log bn} \square (b^k)^{\log bn} = b^k \log^{bn} = (b^{\log bn})^k = n^k$$

 $L \in \mathsf{DSPACE}(f(n)) \Rightarrow L \in \mathsf{DTIME}(c^{f(n)})$

$$f(n) = \log_b n$$

$$c^{f(n)} = c^{\log bn} \square (b^k)^{\log bn} = b^k \log^{bn} = (b^{\log bn})^k = n^k$$

 Transitivity of language reductions enables classification of languages in tightly connected language classes

- Transitivity of language reductions enables classification of languages in tightly connected language classes
 - If language <u>L is in class K</u> and all languages from K are <u>polynomial-time</u> reducible to language L, then language L is complete with respect to class K and polynomial-time reduction

- Transitivity of language reductions enables classification of languages in tightly connected language classes
 - If language <u>L is in class K</u> and all languages from K are <u>polynomial-time</u> reducible to language L, then language L is complete with respect to class K and polynomial-time reduction
 - If language <u>L is in class K</u> and all languages from K are <u>log-space</u> reducible to language L, then language L is complete with respect to class K and log-space reduction

- Transitivity of language reductions enables classification of languages in tightly connected language classes
 - If language <u>L is in class K</u> and all languages from K are <u>polynomial-time</u> reducible to language L, then language L is complete with respect to class K and polynomial-time reduction
 - If language <u>L is in class K</u> and all languages from K are <u>log-space</u> reducible to language L, then language L is complete with respect to class K and log-space reduction
 - If all languages from class K are <u>polynomial-time</u> reductible to language L, and language L <u>is not necessarily in class K</u>, then language L is hard with respect to class K and polynomial-time reduction

- Transitivity of language reductions enables classification of languages in tightly connected language classes
 - If language <u>L is in class K</u> and all languages from K are <u>polynomial-time</u> reducible to language L, then language L is complete with respect to class K and polynomial-time reduction
 - If language <u>L is in class K</u> and all languages from K are <u>log-space</u> reducible to language L, then language L is complete with respect to class K and log-space reduction
 - If all languages from class *K* are <u>polynomial-time</u> reductible to language *L*, and language *L* is <u>not necessarily in class *K*</u>, then language *L* is <u>hard</u> with respect to class *K* and polynomial-time reduction
 - If all languages from class *K* are <u>log-space</u> reducible to language L, and language L <u>is not necessarily in class K</u>, then language L is hard with respect to class *K* and log-space reduction

Language L is NP -complete (NP -hard) if and only if L is complete (hard) with respect to class NP and polynomial-time reduction

- Language L is NP -complete (NP -hard) if and only if L is complete (hard) with respect to class NP and polynomial-time reduction
- Language L is NP -complete (NP -hard) if and only if L
 is complete (hard) with respect to class NP and logspace reduction

- Language L is NP -complete (NP -hard) if and only if L
 is complete (hard) with respect to class NP and
 polynomial-time reduction
- Language L is NP -complete (NP -hard) if and only if L
 is complete (hard) with respect to class NP and logspace reduction
- Language L is PSPACE-complete (PSPACE-hard) if and only if L is complete (hard) with respect to class PSPACE and polynomial-time reduction

Language class

NP

Language class

Polynomial-time reduction Log-space reduction

Language class

Polynomial-time reduction Log-space reduction

Polynomial-time reduction Log-space reduction

Language L

Language L is NP -hard

Informal definitions

- P
 - problems that can be solved in polynomial time
- NP
 - problems whose solution can be verified in polynomial time, and found in exponential time by generating all potential solutions
- NP complete
 - the most difficult problems in the NP class
 - they can be used to solve all other problems in NP
- PSPACE
 - problems that require a polynomial amount of memory

Some examples

Source: http://naveenkandwal.blogspot.com/2015/01/p-np-np-complete-np-hard.html

