MINISTERUL EDUCAŢIEI, CERCETĂRII, TINERETULUI ŞI SPORTULUI

Olimpiada de Fizică - Etapa naţională 1 – 6 aprilie 2012 Ilfov

Barem

Subied	·t	Parțial	Punctaj
	n Mecanică A	1 ai şiai	5.00p
a)	Fie v_x și v_y componentele (orizontală, respectiv verticală) vitezei corpului și V_x viteza emisferei.	0,25	4,00
	Din conservarea impulsului (pe axa orizontală): $mv_x = MV_x$	0,25	-
	Considerăm momentul la care particula se află la unghiul θ.	0,25	
	Din SR legat de emisferă se observă imediat $\frac{v_y}{v_x + V_x} = \operatorname{tg} \theta$	0,25	
	$\Rightarrow v_y = \left(1 + \frac{m}{M}\right)v_x \operatorname{tg}\theta$ (condiția ca particula să rămână în contact cu	0,25	
	emisfera). Din conservarea energiei: $\frac{1}{2}m(v_x^2 + v_y^2) + \frac{1}{2}MV_x^2 = mgr(1 - \cos\theta)$.	0,50	
	Eliminând v_y se obține:	0,50	
	$v_x^2 = \frac{2gR(1-\cos\theta)}{(1+r)(1+(1+r)tg^2\theta)}$ unde $r \equiv \frac{m}{M}$.		
	Componenta v_x poate doar să crească (componenta orizontală a reacțiunii normale accelerează particula!)	0,50	
	Aceasta va fi maximă atunci când are loc desprinderea corpurilor.	0,25	
	Ca urmare, trebuie găsit unghiul θ la care v_x atinge valoarea maximă. $\frac{d}{d\theta}v_x^2 = \left(1 + \left(1 + r\right)\operatorname{tg}^2\theta\right)\sin\theta - \left(1 - \cos\theta\right)\left(1 + r\right)\frac{2\operatorname{tg}\theta}{\cos^2\theta} = 0$	0,50	
	$r\cos^3\theta - 3(1+r)\cos\theta + 2(1+r) = 0.$	0,50	
b)	Pentru cazul particular $r = 1$ ecuația se poate scrie: $(\cos \theta - 2)(\cos^2 \theta + 2\cos \theta - 2) = 0$	0,25	0,75
	Soluția $\cos \theta = 2$ nu are sens!	0,25	
	Singura soluție care are sens este $\cos \theta = \sqrt{3} - 1 \approx 0.732 \Rightarrow \theta \approx 42.9^{\circ}$.	0,25	
c)	Dacă emisfera este fixă ($r = 0$) $\cos \theta = 2/3$.	0,25p	0,25
	ı Mecanică B		4,00p
a)	Chiar înainte ca mingea de baschet să atingă solul, ambele mingi au viteza $v = \sqrt{2gh}$.	0,25p	1,00p
	Imediat după ciocnirea cu solul, mingea de baschet urcă cu viteza v . Ca urmare, viteza relativă a celor două mingi este $2v$.	0,25p	
	Ciocnirea fiind perfect elastică, după ciocnire, viteza relativă are aceeași valoare $2v$ (ciocnirea cu un perete!). Față de sol, viteza mingii de tenis va fi $2v + v = 3v$.	0,25p	
	Din conservarea energiei rezultă că mingea de tenis va urca la înălțimea maximă $H = 2R + \frac{(3v)^2}{2g}$ adică $H = 2R + 9h$.	0,25p	

MINISTERUL EDUCAŢIEI, CERCETĂRII, TINERETULUI ŞI SPORTULUI

Olimpiada de Fizică - Etapa naţională 1 – 6 aprilie 2012 Ilfov

b)	Chiar înainte ca mingea M_1 să atingă solul, toate mingile coboară cu viteza $v = \sqrt{2gh}$.	0,25p	
	Se pot determina prin inducție vitezele mingilor după ciocniri. Dacă mingea M_i are viteza v_i după ciocnirea cu mingea M_{i-1} care este viteza mingii M_{i+1} ?	0,50p	
	Viteza relativă a mingii M_{i+1} față de mingea M_i este $v + v_i$ și are același modul și după ciocnire. Cum viteza mingii M_i rămâne practic v_i , viteza de urcare a mingii M_{i+1} este $2v_i + v$. Deoarece $v_i = v$ se obține: $v_2 = 3v$, $v_3 = 7v$, $v_4 = 15v$, etc.	1,00p	2,25
	Din conservarea energiei, M_n va ajunge la înălțimea $H_n = 2R + \frac{\left((2^n - 1)v\right)^2}{2g} = 2R + (2^n - 1)^2 h$	0,50p	
c)	Pentru $h = 1 \text{ m si } H = 1000 \text{ m } 2^n - 1 > \sqrt{1000} \text{ rezultă n=6.}$	0,75p	0,75
Oficiu	l		1p
Total			10p