110 學年度第二學期五專(資工二乙)數學期中考

學號:______ 姓名:_____ 姓名:____

一、單一選擇題(共70分,每題10分)

1. (B) 在聯立不等式
$$\begin{cases} 1 \le x \le 6 \\ x - 2y + 4 \ge 0 \ge \text{條件下}, f(x, y) = 2x - y + 3 \ge \text{最小值為} \\ x + y - 5 \ge 0 \end{cases}$$
 (A)2 (B)4

$$(C)6$$
 $(D)8$

解析:

2. (B)已知一雙曲線的兩焦點為(-3,0)、(7,0),且買軸長為6,試求此雙曲線的方程式為

$$(A) \frac{(x-2)^2}{16} - \frac{y^2}{9} = 1 \quad (B) \frac{(x-2)^2}{9} - \frac{y^2}{16} = 1 \quad (C) \frac{x^2}{16} - \frac{(y-2)^2}{9} = 1$$

(D)
$$\frac{x^2}{9} - \frac{(y-2)^2}{16} = 1$$

解析: : 左右形雙曲線,中心 $(\frac{-3+7}{2},\frac{0+0}{2}) = (2,0)$

$$2c = 7 - (-3) = 10 \implies c = 5$$

$$\sqrt{2}a = 6 \Rightarrow a = 3$$

$$b^2 = c^2 - a^2 = 16 \Rightarrow b = 4$$

故方程式
$$\frac{(x-2)^2}{9} - \frac{y^2}{16} = 1$$

3. (A) 雙曲線
$$(x+3)^2 - 36(y-2)^2 = 16$$
 之正焦弦長為 (A) $\frac{2}{9}$ (B)3 (C) $\frac{2}{3}$ (D)4

解析: 原式
$$\Rightarrow \frac{(x+3)^2}{16} - \frac{9(y-2)^2}{4} = 1$$
 $\Rightarrow \frac{(x+3)^2}{16} - \frac{(y-2)^2}{\frac{4}{9}} = 1$

$$\therefore a^2 = 16$$
 、 $b^2 = \frac{4}{9} \Rightarrow a = 4$ 、 $b = \frac{2}{3}$ 故正焦弦長 = $\frac{2b^2}{a} = \frac{2 \times \frac{4}{9}}{4} = \frac{2}{9}$

4. (C)
$$\tau: \frac{x^2}{9} + \frac{y^2}{16} = 1$$
,若 $P(x, y)$ 在 τ 上,則 P 到直線 $3x - 4y - 2 = 0$ 之最長距離為

(A)
$$\frac{\sqrt{37}-2}{5}$$
 (B) $\frac{\sqrt{37}+2}{5}$ (C) $\frac{\sqrt{337}+2}{5}$ (D) $\frac{\sqrt{437}+2}{5}$

解析: $x = 3\cos\theta, y = 4\sin\theta$, ∴ $P(3\cos\theta, 4\sin\theta)$

$$d(P,L) = \frac{|9\cos\theta - 16\sin\theta - 2|}{\sqrt{3^2 + (-4)^2}} = \frac{|9\cos\theta - 16\sin\theta - 2|}{5} \le \frac{\sqrt{337} + 2}{5}$$
$$-\sqrt{9^2 + (-16)^2} \le 9\cos\theta - 16\sin\theta \le \sqrt{9^2 + (-16)^2}$$
$$\Rightarrow -\sqrt{337} - 2 \le 9\cos\theta - 16\sin\theta - 2 \le \sqrt{337} - 2$$

$$\Rightarrow -\sqrt{337} - 2 \le 9\cos\theta - 16\sin\theta - 2 \le \sqrt{337}$$
$$\therefore 0 \le |9\cos\theta - 16\sin\theta - 2| \le \sqrt{337} + 2$$

5. (C) 拋物線
$$(y+2)^2 = -8(x-2)$$
 的準線方程式為 (A) $x=0$ (B) $x=2$ (C) $x=4$ (D) $x=5$

解析:

$$c = -2, |c| = 2$$
 , ∴ 準線: $x = 4$

6. (A) 一拋物線焦點(0,1),準線
$$y+3=0$$
,其方程式為 (A) $x^2-8y-8=0$ (B) $y^2-8x-8=0$ (C) $x^2+4y-4=0$ (D) $y^2+4x-4=0$

解析: 設動點
$$P(x,y) \Rightarrow \sqrt{x^2 + (y-1)^2} = |y+3| \Rightarrow x^2 + (y-1)^2 = (y+3)^2 \Rightarrow x^2 - 8y - 8 = 0$$

7. (B) 若
$$A(1,3)$$
, $B(4,k)$ 在直線 $2x-y+3=0$ 之反側,則 k 之最小整數為 (A)11 (B)12 (C)13 (D)14

解析: $\Rightarrow f(x, y) = 2x - y + 3$

因 A, B 在直線 f(x, y) = 0 之反側

$$\therefore f(1,3) \times f(4,k) < 0 \Rightarrow (2-3+3)(8-k+3) < 0 \Rightarrow k > 11$$
,故 k 之最小整數為 12

二、計算與證明題(共30分,每題10分)

1. 某一公司有甲、乙兩工廠,生產 $A \times B \times C$ 三款螺絲。甲廠每日生產 A 款 12 噸、 B 款 4 噸、 C 款 6 噸;乙廠每日生產 A 款 3 噸、 B 款 4 噸、 C 款 12 噸。若一訂單要求每週至少需要 A 款 36 噸、 B 款 24 噸、 C 款 48 噸。又甲廠每日開支 2 萬元,乙廠每日開支 1.5 萬元。問甲、乙兩廠每週各開工幾天,就可以最節省的方式供應訂單所需?

答案:

	A型	<i>B</i> 型	<i>C</i> 型	開支
甲工廠	12	4	6	20000
乙工廠	3	4	12	15000

設甲廠開工x天、乙廠開工y天

 $\int x \ge 0 \cdot y \ge 0$

 $\int 12x + 3y \ge 36$

 $4x + 4y \ge 24$

 $6x + 12y \ge 48$

目標函數 f(x,y) = 2x + 1.5y (萬元)

依題意可得

頂點坐標為(0,12)、(2,4)、(4,2)、(8,0)

f(0,12) = 0 + 18 = 18

f(2,4) = 4 + 60 = 10 (最節省成本)

f(4,2) = 8 + 3 = 11

f(8,0) = 16 + 0 = 16

∴甲廠開工2天、乙廠開工4天

2. 設一雙曲線兩焦點為(0,5)、(0,-5),一頂點為(0,4),試求此雙曲線方程式。

答案: 由圖形可知為上下形雙曲線

∴方程式為
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

中心(0,0)

$$2c = 5 - (-5) = 10 \implies c = 5$$

$$a = 4 - 0 = 4$$

$$\Rightarrow b = \sqrt{c^2 - a^2} = 3$$

故
$$\frac{y^2}{16} - \frac{x^2}{9} = 1$$

3. 試求橢圓 $4(x+3)^2+(y-1)^2=4$ 的中心、焦點、頂點、長軸長、短軸長與正焦弦長。

答案:
$$4(x+3)^2 + (y-1)^2 = 4 \Rightarrow \frac{(x+3)^2}{1} + \frac{(y-1)^2}{4} = 1$$
$$\Rightarrow \frac{(x+3)^2}{1^2} + \frac{(y-1)^2}{2^2} = 1$$

圖形為直立形橢圓

$$a = 2$$
 $b = 1$ $c = \sqrt{a^2 - b^2} = \sqrt{2^2 - 1^2} = \sqrt{3}$

中心 (-3,1)

焦點:
$$F_1(-3,1+\sqrt{3})$$
 及 $F_2(-3,1-\sqrt{3})$

長軸頂點: (-3,3)及(-3,-1)

短軸頂點: (-2,1)及(-4,1)

長軸長2a=4短軸長2b=2

正焦弦長
$$\frac{2b^2}{a} = \frac{2 \times 1^2}{2} = 1$$