

Serie de revision nº5 T.1

Exercice 1 A^{2}/a A^{2}/a A^{2}/a A^{2}/a A^{2}/a A^{2}/a A^{2}/a A^{2}/a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C_1V_1 C_2V_2 O O O
Et. intermidiative CIV_2n C2V2x x 2n
Et. intermidiative C1V1-22 C2V2-X x 22 Et final C1V1-2Xf C2V2-Xf Xf 2xf
b) tobleau M(I-) = C,V, -2n = Mo(I-)-2n
2 [" " " " " " " " " " " " " " " " " "
$= m(T) - \alpha n_0(T)$
$\Rightarrow \mathcal{H} = \frac{1}{2} \left[\mathcal{M}_{o}(\overline{\Gamma}) - \mathcal{A} \mathcal{M}_{o}(\overline{\Gamma}) \right] \qquad \Rightarrow \mathcal{M}(\overline{\Gamma}) = \mathcal{A} \mathcal{M}_{o}(\overline{\Gamma})$
$\mathcal{N} = \frac{\mathcal{N}_o(T)}{2} \left[\Lambda - \alpha \right] = \frac{C_i V_i}{2} \left[\Lambda - \alpha \right].$
c) Compred = $\frac{m_1(\overline{L})}{m_0(\overline{L})} = 0, 4 \Rightarrow m_1(\overline{L}) \neq 0$
reaction totale et I m'st nas totalement Consomme
reaction to fole et I n'et pas to folement Consomme : à lu fin de la réaction _ I est en excès.
A létot final. Me = $\frac{C_1V_1}{2}(1-\alpha_p)$ avec $\alpha_p = 0, Y$
$= \frac{2\sqrt{16^2 \times 20\sqrt{10^3}} \times 0.6}{2\sqrt{12\sqrt{10^3}}} = \frac{1.2\sqrt{10^3}}{1.2\sqrt{10^3}}$
d) S20g2 réactif limitant et réaction total

$$= \frac{C_2 + m_f}{V_2} = \frac{m_f}{3V_1} = \frac{1.2 \, \text{Lo}^4}{60 \cdot \text{Lo}^3} = \frac{2. \, \text{Lo}^3 \, \text{mol.} - 1}{60 \cdot \text{Lo}^3}$$

2% aj Volt). C'A la deriver par rapport ou temps de J'avancament volumique, y, de la réaction

- Uolt1 - dy

 $\Rightarrow \frac{dn}{dt} = \frac{C_1 V_1}{2} \left(-\frac{dq}{dt} \right)$

 $= V_{U}(t) = -\frac{1}{V_{t}} \frac{C_{1}V_{1}}{2} \frac{d\alpha}{dt} \quad \text{on} \quad V_{t} = V_{1} + V_{2} = 4V_{1}$

 $V_{\varphi}(+) = -\frac{C_1 V_1}{4 V_1 \cdot 2} \frac{da}{dt} = V_{\varphi}(+) = -\frac{C_1}{8} \frac{da}{dt}$

b) Un maximal at = 0 (concentrations de reactifs Emt maximales)

Umax = Uo(0) = C1 | pente de lutg at =0|

 $||v(0)| = \frac{2.10^{2}}{8} \frac{(1-0)}{9-0} = \frac{2.10^{-2}}{8\times9} = 2.7.10 \text{ mall-mist}$

3%a) t = 15mm $\Rightarrow \alpha = 0,44$

tableau d'ovancement. $M_{t}(I_{t}) = 3c = \frac{C_{1}V_{1}}{2}(1-\alpha)$

 $= \sum_{v \in V_t} \left[\sum_$

 $= \frac{C_1 V_1}{8 V_1} \left(\lambda - \alpha \right) = \frac{C_1}{8} \left(\lambda - \alpha \right)$

= $(I_2) = \frac{210^{-2} \times 0.56}{8} \times 0.56 = 1.4.6^{-3} \text{ mol } 1^{-1}$

+216 73 832 002

b) Iz doséi par SzOz-
$= J_2 + 2 S_1 O_3^{2-} - 2 J_1 + S_4 O_6^{2-}$
A l'equivalenc $m(I_z) = \frac{1}{2} m(S_z o_3^{(-)})$
$[T_i] V_p - \frac{1}{2}CV_0 = V_0 - \frac{2(T_i)V_p}{C}$
$\begin{bmatrix} T_{2} \end{bmatrix} V_{p} = \frac{1}{2} C V_{0} = 3 V_{0} = \frac{2 (T_{1}) V_{p}}{C}$ $AN : V_{0} = \frac{1}{2} \times 1/4 \cdot V_{0}^{3} \times 10 \cdot V_{0}^{3} = 14 \cdot V_{0}^{3} L = 14 \text{ ML}$ $2.10^{3} L$
u'/a) Fe2+ on'et pas consomme'e par la réaction
= Fe 2 post un Cutalyseur : pour accelerer le réaction
b) * Experiences (a) ef(c) mi T= mais l'exp (c)
b) * Experiences (a) ef(c) m T= mais l'exp (e) est réplisée en presence d'un cotaly seur - Vrc (a) > Vra (b) (Viterre ini trate)
plus élevée et avec de concentrations des réactippes importantes => Vu(0) > Vog (0)
→ V _{vc} (0) > V _{vo} (0) > V _{vb} (0)
Experience (a) (b) (c)
Courhes 2 3

Rque. Re. ù ya	action lotale: réaction du parition totale de	au cous de laquelle
Réactif lir le rencti	nitant : lotalement Ci	n somme o la fin de :
Exercia 2	Fc3+ SCM	= Fe SCN ²⁷
η = [FeS [Fe ³¹]	$\frac{(SCN^{21})}{[SCN^{-}]} \qquad a t = t_0$	[Fe S CM2+)=0:
K, Courtout	=> TI. = D positive (K>0) = Sem direct.	=, T ₀ < K
29 a)	Fe3t + SCN	= Fe SCN ²⁺
Et final	Cn-xt Cn-xt Cn Cn Le31 + 8CN	O (mol)
	[Fe Sen ²) [Scn ⁻]	
	7 - 1000	y_t v_t
K = Vt	$\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{2\sqrt{3}}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^2 = \frac{2\sqrt{3}}{\sqrt{2}} $	$\frac{1}{2} \left(V_{t} = V_{+}V_{-}2V \right)$
8t = Mf	= Nt - Et	Mnax
n(Fe ²⁺)	= CV ; M(SCN)	- C V

hypothese de réaction totale = CV = 2cmaz = 0. Monaz = CV := 2 = 2 = 2
$= \frac{1}{2} \frac{2\sqrt{c_1}(\sqrt{1-c_1})^2}{(2\sqrt{c_1})^2} \frac{(2\sqrt{c_1})^2}{(2\sqrt{c_1})^2} \frac{(2\sqrt{c_1}$
$K = 2 \frac{2}{3} \frac{2}{3} \frac{1}{3} = \frac{100}{3} \frac{2}{3} \frac{1}{3} = \frac{100}{3} \frac{2}{3} \frac{1}{3} = \frac{100}{3} \frac{2}{3} = \frac{100}{3} = 10$
b) $[\bar{r}e^{3t}]_f = \frac{CV - 2l}{2V} = 9 + CV - 2[\bar{r}e^{3t}]_f V$
$\Rightarrow \mathcal{H} = V \left(C - 2 \left(\overline{r}e^{37} \right) \right)$
A l'equel he (en mol) $[26^{2} - 12,36 \cdot 16^{3}] = 1,528 \cdot 16^{4} \text{ mol}$
A l'equelhe (en mol) Fe ³⁺ SCN ⁻ Fe SCN ²⁺ 2,4726 ⁴ 2,4726 ⁴ 15286 ⁻⁴
c) Ef - 9(t - 8/t - 1,528 6) = 0,382
c) $\frac{91}{200} = \frac{91}{200} = $
$\frac{AN \cdot K = 100 \times 0,38^2}{(1-0,38^2)^2} = \frac{K = 100}{}$
3% Rque système en cqui libre + perturbation
Ecrirc Ken fraction de nombres de mol

+216 73 832 002

a) The $K = \frac{(\text{Fe} \text{SeN}^{17})}{(\text{Fe} \text{SeN}^{17})} V_{+} m(\text{Fe} \text{SeN}^{17}) v_{+} m(\text{Fe} \text{Se$ = evolution dans le presinverx (B2): l'ajout de l'acid phophorique Saus changement de volume => M (Fc31) diminue == TTaugmont == TT>K => Seus inverse b) $m_0(fe^{3T}) = m(scn) = \frac{2n172 \cdot 6^4}{2} = 1,236 \cdot 6^4 nl$ $m_0(fc scn^2) = \frac{1,528667}{2} = 0,764 \cdot 6^4 mol$ $\frac{11ep = K = \frac{V \left[0, +64.65 - 20.4 \right)}{\left(1, 2366 + 11'_{4} \right)^{2}} = 100 \qquad \left(V = 100 \text{ mL} \right)$ 100 [x 1 2, 442 6 1/4 1,528 6 3] = 0,1 [0,764 6 - x'] 100 N/ + 2,442 6 N/ + 1,528 6 = 0,764.6 _ 0,1n/

 $100 \text{ Mp} + 0,125 \text{ Mp} = 6,11.66 = 0 \qquad \begin{cases} 91/f = 4,71 \text{ lo mol} \\ 91/f = -1,36 \text{ mol} \end{cases}$ $\Rightarrow \chi f = 4,71.6 \text{ mol}$ 32002

=) Composition of lequilibre (mol) For 37 Sen Fo(Sen) 1-7 1,707.69 1,407.69 2,9369						
	Fc 37	SCN	Fe(SCN)	L.,		
	1,707 6 ⁻⁹	1,407 6 ⁴	2,936	S		
(vei pelio	, <u>0,1</u>	х 2,93 6-1 ,7076-4)2				
			3 5 (
	A A			VIA		
		1 - 1				
	-9- <i>//</i>		/ 53	-,9-		
				- 0 =		
				(63)		

