第八周

■ 教学计划

- 贝叶斯网络(上次课)
- 项目进度报告: 0106, 0202, 0211
- 马可夫模型(这次课)

■ 任务

- 家作4: 家作3的后两题+家作4
- 项目4: 贝叶斯网络,马可夫模型(14道题)
- 有三周的时间,5/3提交

Probability Recap

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

Chain rule

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$
$$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$

- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

CS 188: Artificial Intelligence Markov Models

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

Value of X at a given time is called the state

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Joint Distribution of a Markov Model

$$X_1$$
 X_2 X_3 X_4 $P(X_1)$ $P(X_t|X_{t-1})$

Joint distribution:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$

More generally:

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$
$$= P(X_1)\prod^T P(X_t|X_{t-1})$$

- Questions to be resolved:
 - Does this indeed define a joint distribution?
 - Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

t=2

Chain Rule and Markov Models

• From the chain rule, every joint distribution over X_1, X_2, X_3, X_4 can be written as:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)P(X_4|X_1, X_2, X_3)$$

Assuming that

$$X_3 \perp \!\!\! \perp X_1 \mid X_2$$
 and $X_4 \perp \!\!\! \perp X_1, X_2 \mid X_3$

results in the expression posited on the previous slide:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$

Chain Rule and Markov Models

• From the chain rule, every joint distribution over X_1, X_2, \dots, X_T can be written as:

$$P(X_1, X_2, \dots, X_T) = P(X_1) \prod_{t=2}^{T} P(X_t | X_1, X_2, \dots, X_{t-1})$$

• Assuming that for all t: $X_t \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$

gives us the expression posited on the earlierslide:

$$P(X_1, X_2, \dots, X_T) = P(X_1) \prod_{t=2} P(X_t | X_{t-1})$$

Implied Conditional Independencies

• We assumed: $X_3 \perp \!\!\! \perp X_1 \mid X_2$ and $X_4 \perp \!\!\! \perp X_1, X_2 \mid X_3$

- Do we also have $X_1 \perp \!\!\! \perp X_3, X_4 \mid X_2$?
 - Yes!
 - Proof:

$$P(X_1 \mid X_2, X_3, X_4) = \frac{P(X_1, X_2, X_3, X_4)}{P(X_2, X_3, X_4)}$$

$$= \frac{P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}{\sum_{x_1} P(x_1)P(X_2 \mid x_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}$$

$$= \frac{P(X_1, X_2)}{P(X_2)}$$

$$= P(X_1 \mid X_2)$$

Markov Models Recap

- Explicit assumption for all $t: X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$

$$= P(X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})$$

- Implied conditional independencies: (try to prove this!)
 - Past variables independent of future variables given the present

i.e., if
$$t_1 < t_2 < t_3$$
 or $t_1 > t_2 > t_3$ then: $X_{t_1} \perp \!\!\! \perp X_{t_3} \mid X_{t_2}$

• Additional explicit assumption: $P(X_t \mid X_{t-1})$ is the same for all t

Conditional Independence

- Basic conditional independence:
 - Past and future independent of the present
 - Each time step only depends on the previous
 - This is called the (first order) Markov property
- Note that the chain is just a (growable) BN
 - We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example Markov Chain: Weather

States: X = {rain, sun}

Initial distribution: 1.0 sun

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Two new ways of representing the same CPT

Example Markov Chain: Weather

Initial distribution: 1.0 sun

What is the probability distribution after one step?

$$P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})$$

$$0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$$

Mini-Forward Algorithm

• Question: What's P(X) on some day t?

$$P(x_1) = \text{known}$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

Example Run of Mini-Forward Algorithm

From initial observation of sun

From initial observation of rain

• From yet another initial distribution $P(X_1)$:

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle \qquad \cdots \qquad \left\langle \begin{array}{c} 0.75 \\ 0.25 \end{array} \right\rangle$$

$$P(X_1) \qquad P(X_{\infty})$$

[Demo: L13D1,2,3]

Video of Demo Ghostbusters Basic Dynamics

Video of Demo Ghostbusters Circular Dynamics

Video of Demo Ghostbusters Whirlpool Dynamics

Stationary Distributions

For most chains:

- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution

Stationary distribution:

- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Example: Stationary Distributions

• Question: What's P(X) at time t = infinity?

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow X_4$$

$$P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$$

$$P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$$

$$P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$$

$$P_{\infty}(sun) = 3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 1/3P_{\infty}(sun)$$

$$P_{\infty}(sun) = 3/4$$

$$P_{\infty}(rain) = 1/4$$

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Application of Stationary Distribution: Web Link Analysis

PageRank over a web graph

- Each web page is a state
- Initial distribution: uniform over pages
- Transitions:
 - With prob. c, uniform jump to a random page (dotted lines, not all shown)
 - With prob. 1-c, follow a random outlink (solid lines)

Stationary distribution

- Will spend more time on highly reachable pages
- E.g. many ways to get to the Acrobat Reader download page
- Somewhat robust to link spam
- Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)

Application of Stationary Distributions: Gibbs Sampling*

• Each joint instantiation over all hidden and query variables is a state: $\{X_1, ..., X_n\} = H \cup Q$

Transitions:

With probability 1/n resample variable X_i according to

$$P(X_j \mid x_1, x_2, ..., x_{j-1}, x_{j+1}, ..., x_{n_j} e_{1_j}, ..., e_m)$$

Stationary distribution:

- Conditional distribution $P(X_1, X_2, ..., X_n | e_1, ..., e_m)$
- Means that when running Gibbs sampling long enough we get a sample from the desired distribution
- Requires some proof to show this is true!

