

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Фундаментальные науки»

КАФЕДРА «Прикладная математика»

ДОМАШНЕЕ ЗАДАНИЕ ПО ПРЕДМЕТУ:

МЕТОДЫ ЧИСЛЕННОГО РЕШЕНИЯ <u>ЗАДАЧ ЛИНЕЙНОЙ АЛГЕБРЫ</u> Вариант №3

Выполнил: студент группы ФН2-32М Матвеев Михаил

Проверил:

Родин А. С.

Содержание

1	Пос	Постановка домашнего задания				
2	Зад	ача №1	3			
	2.1	Постановка задачи	3			
	2.2	Применяемые методы	4			
		2.2.1 Метод отражений Хаусхолдера	4			
	2.3	Результаты расчётов	7			
	2.4	Код решения	8			
3	Задача №2					
	3.1	Постановка задачи				
	3.2	Применяемые методы				
		3.2.1 Базовый итерационный QR-алгоритм	10			
		3.2.2 Приведение матрицы к форме Хессенберга методом Хаус-				
		холдера	11			
		3.2.3 Итерационный QR-алгоритм со сдвигом	12			
		3.2.4 Метод Гивенса для неявного QR - алгоритма со сдвигом .	13			
		3.2.5 Неявный QR-алгоритм со сдвигом	14			
	3.3	Результаты расчётов				
	3.4	Код решения				
4	Вы	воды	18			

1 Постановка домашнего задания

Нужно сформировать матрицу размером 10х10 по следующему принципу. В качестве базовой матрицы берется известная матрица, которая получается после дискретизации одномерного оператора Лапласа методом конечных разностей или методом конечных элементов на равномерной сетке:

$$A_0 = \begin{pmatrix} 2 & -1 & 0 & 0 & \cdots & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & \cdots & \cdots & \cdots & 0 \\ & & & \ddots & & & & \\ 0 & \cdots & \cdots & \cdots & \cdots & -1 & 2 & -1 & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 2 & -1 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 & 2 & -1 \end{pmatrix}$$

Для данной матрицы известны аналитические формулы для собственных значений (n=10):

$$\lambda_j^0 = 2(1 - \cos(\frac{\pi j}{n+1})), \quad j = 1, \dots, n$$

и компонент собственных векторов (вектора имеют 2-норму равную 1):

$$z_j^0(k) = \sqrt{\frac{2}{n+1}} \sin(\frac{\pi j k}{n+1}), \quad k = 1, \dots, n$$

Итоговая матрица получается по формулам:

$$A = A_0 + \delta A,$$

$$\delta A_{ij} = \begin{cases} \frac{c}{i+j}, & i \neq j \\ 0 & i = j \end{cases},$$
$$c = \frac{N_{var}}{N_{var} + 1} \varepsilon,$$

где N_{var} - номер варианта (совпадает с номером студента в списке в журнале группы), ε - параметр, значение которого задается далее.

2 Задача №1

2.1 Постановка задачи

Взять матрицу A для значения $\varepsilon=0.1$, убрать последний столбец и сформировать из первых 9 столбцов матрицу \hat{A} размера 10х9. Решить линейную задачу наименьших квадратов для вектора невязки

$$r = \hat{A}x - b,$$

где вектор b размерности 10x1 нужно получить по следующему алгоритму: выбрать вектор x_0 размерности 9x1 и для него вычислить $b = \hat{A}x_0$.

Для решения поставленной задачи использовать QR разложение: для вариантов с четным номером использовать соответствующий алгоритм, основанный на методе вращений Гивенса, для вариантов с нечетным номером – алгоритм, основанный на методе отражений Хаусхолдера. После получения решения сделать оценку величины $\frac{\|x-x_0\|_2}{\|x_0\|_2}.$

2.2 Применяемые методы

2.2.1 Метод отражений Хаусхолдера

Описание метода Преобразованием Хаусхолдера (или отражением) называется матрица вида $P = I - 2uu^T$, где вектор u называется вектором Хаусхолдера и его норма $\|u\|_2 = 1$.

Пусть дан вектор x. Тогда легко найти отражение $P = I - 2uu^T$, аннулирующее в векторе x все компоненты, кроме первой: $Px = [c, 0, \dots, 0]^T = c \cdot e_1$. По итогу, вектор Хауслендера вычисляется по формуле:

$$u = x + sign(x_1) ||x||_2 e_1$$

Описание алгоритмов

Обычный метод for i in range(n): (цикл по строкам)

- 1. подготавливаем матрицу P_i (единичная матрица размера m x m, где m количество строк);
- 2. в начале каждой итерации выбираем столбец матрицы А (не весь столбец, а элемент на диагонали и элементы под диагональю) в качестве вектора х;
- 3. применяем к вектору х метод house для получения вектора Хаусхолдера размера m i;
- 4. вычитаем из матрицы A внешнее произведение двух векторов для получения матрицы P' размера m i x m i;
- 5. добавляем матрицу P' в матрицу P_i ;
- 6. перемножаем матрицы P_i и R для получения матрицы A_i , у которой обнуляются поддиагональные элементы;
- 7. домножаем матрицу Q на матрицу P_i (для получения в конце итоговой матрицы Q);

end for

Эффективный метод for i in range(n): (цикл по строкам)

- 1. в начале каждой итерации выбираем столбец матрицы A (не весь столбец, а элемент на диагонали и элементы под диагональю) в качестве вектора x;
- 2. применяем к вектору x метод house для получения вектора Xаусхолдера размера m i;
- 3. вычитаем из матрицы А внешнее произведение двух векторов;
- 4. записываем вектор и в поддиагональные элементы матрицы A кроме первого элемента вектора u;
- 5. записываем первый элемент вектора и в отдельный вектор;

end for

```
import numpy as np
from math import sqrt, hypot
def house(x):
     u_{tilde} = np.copy(x)
     u\_tilde\left[\begin{smallmatrix}0\end{smallmatrix}\right] \; +\!\!=\; np.\,sign\left(x\left[\begin{smallmatrix}0\end{smallmatrix}\right]\right) \; *\; np.\,lin\,alg.\,norm\left(x\right)
     return u tilde / np.linalg.norm(u tilde)
def qr householder(A):
     m, n = A.shape
     Q = np.identity(m)
     R = np.copy(A)
     for i in range(n):
          P_i = np.identity(m)
          x = R[i:, i]
          u = house(x)
          P_{streak} = np.identity(m - i) - 2 * np.outer(u, u)
          P i[i:, i:] = np.copy(P streak)
          R = P i @ R
          Q = Q @ P i
     return Q[:, :n], R[:n, :]
def qr_householder_effective(A):
     \operatorname{curr}_{A} = \operatorname{np.copy}(A)
     list_first_elements = []
     m, n = A.shape
     for i in range(n):
          x = curr A[i:, i]
          u = house(x)
          \operatorname{curr}_A[i:m, i:n] = 2 * \operatorname{np.outer}(u, \operatorname{np.matmul}(u, \operatorname{curr}_A[i:m, i:n]))
          curr_A[i + 1:m, i] = u[1:]
           list_first_elements.append(u[0])
     return curr A, list first elements
```

- 1. np.identity создание двумерного массива, у которого элементы на главной диагонали единицы, остальные элементы нули;
- 2. np.outer внешнее произведение двух векторов;
- 3. np.linalg.norm евклидова норма вектора;

2.3 Результаты расчётов

Был взят случайный вектор

$$x_0 = [0.6401, 0.2454, 0.5507, 0.3099, 0.5663, 0.7639, 0.9395, 0.1872, 0.2075]$$

Полученное решение совпадает с начальным условием, величина относительной погрешности $\frac{\|x-x_0\|_2}{\|x_0\|_2}=5.0357e^{-16}.$

2.4 Код решения

```
def construct_delta_A(N_var, eps):
    par = 10
    delta_A = []
    c = N\_var * eps / (N\_var + 1)
    for i in range(par):
        temp = []
        for j in range(par):
             temp.append(0 if i = j else c / (i + j))
        delta A.append(temp)
    return np.array (delta A)
def task_01(A_0, N_var, eps):
    delta A = construct delta A(N var, eps)
    A = A 0 + delta A
    amnt deletable cols = 1
    list_deletable_cols = [9 - i \text{ for } i \text{ in } range(amnt_deletable_cols)]
    A_hat = np.delete(A, list_deletable_cols, axis = 1)
    x = 0 = np.random.rand(10 - amnt deletable cols)
    b = A_hat @ x_0
    Q, R = qr householder (A hat)
    assert ((Q @ R - A hat) < 1e-6). all(), "QR_decomposition_is_wrong"
 1. amnt deletable cols - количество удаляемых столбцов
 2. assert - проверка на верное QR - разложение
```

3 Задача №2

3.1 Постановка задачи

Для матрицы A найти все ее собственные значения $(\lambda_j, j=1,\ldots,10)$ и собственные вектора $(z_j$, с 2-нормой равной 1) с помощью неявного QR-алгоритма со сдвигом для трех вариантов: $\varepsilon=10^{-1},10^{-3},10^{-6}$.

По итогам расчетов нужно сделать сводную таблицу, в которой указать следующие величины: $\left|\lambda_j-\lambda_j^0\right|$ и $\left\|z_j-z_j^0\right\|$ для $j=1,\dots,10.$

3.2 Применяемые методы

3.2.1 Базовый итерационный QR-алгоритм

Описание алгоритма Пока не будет выполнено условие критерия сходимости:

- 1. выполняем QR разложение $A_i = Q_i R_i$;
- 2. производим умножение $A_{i+1} = R_i Q_i$;

Критерий сходимости - "Пока матрица A не станет достаточно близка к верхней треугольной матрице по своей структуре".

```
def basic_qr(A):
    curr_A = np.copy(A)
    amnt_iters = 0
while True:
    amnt_iters += 1
    Q, R = qr_householder(curr_A)
    curr_A = np.dot(R, Q)
    if np.allclose(curr_A, np.triu(curr_A)) or amnt_iters > 400:
        break
    return np.diag(curr_A).sort(), amnt_iters
```

3.2.2 Приведение матрицы к форме Хессенберга методом Хаусхолдера

Дана квадратная симметричная матрица размера $n \times n$; for i in range(n-2):

- 1. подготавливаем матрицу Q (единичная матрица размера $n \times n$);
- 2. в начале каждой итерации выбираем столбец матрицы A (не весь столбец, а элементы под первой диагональю) в качестве вектора x;
- 3. применяем к вектору x метод house для получения вектора Хаусхолдера размера n i 2 x n i 2;
- 4. вычитаем из единичной матрицы внешнее произведение двух векторов для получения матрицы P' размера n i $2 \times n$ i 2;
- 5. добавляем матрицу P' в матрицу Q;
- 6. домножаем матрицу $A = QAQ^T$;

end for

```
def hessenberg_householder(A):
    m, n = A.shape
    curr_A = np.copy(A)
    for i in range(n - 2):
        Q = np.identity(m)
        x = curr_A[i + 1:, i]
        u = house(x)
        P = np.identity(m - i - 1) - 2 * np.outer(u, u)
        Q[i + 1:, i + 1:] = np.copy(P)
        curr_A = Q @ curr_A @ Q.T
```

3.2.3 Итерационный QR-алгоритм со сдвигом

Описание алгоритма Приводим матрицу к форме Хессенберга до начала основного итерационного процесса;

```
for i in range(n, 0, -1):
```

Пока не будет выполнено условие критерия сходимости:

- 1. в качестве сдвига выбираем самый правый нижний элемент матрицы $\sigma = A_{i,i}$;
- 2. выполняем QR разложение $A_i \sigma E = Q_i R_i$;
- 3. производим умножение $A_{i+1} = R_i Q_i + \sigma E$;
- если выполняется условие критерия сходимости, то правый нижний элемент матрицы принимается за собственное значение, сохраняется, а матрица размера A[i, i] лишается самой нижней строки и самого правого столбца;

endfor

Критерий сходимости - "Пока самая нижняя строка матрицы A (за исключением правого элемента) и самый правый столбец (за исключением нижнего элемента) не станут близки к нулю".

```
for i in range (n, 0, -1):
     lc_it = 0
     if curr_A.size == 1:
           list_eigenval.append(curr_A[0, 0])
           break
     while True:
           sigma = curr A[-1, -1]
           Q, R = qr householder(curr A - sigma * np.identity(i))
           \operatorname{curr}_A = \operatorname{np.dot}(R, Q) + \operatorname{sigma} * \operatorname{np.identity}(i)
           lc it += 1
           cond = lambda elem: np.allclose (elem, np.zeros (i - 1))
           if \operatorname{cond}(\operatorname{curr}_A[-1, :-1]) and \operatorname{cond}(\operatorname{curr}_A[:-1, -1]) or \operatorname{lc}_i = 50:
                amnt iters += lc it
                list\_eigenval.append(curr\_A[-1, -1])
                \operatorname{curr}_A = \operatorname{np.copy}(\operatorname{curr}_A[:-1, :-1])
                break
return np.array(sorted(list_eigenval)), amnt_iters
```

3.2.4 Метод Гивенса для неявного QR - алгоритма со сдвигом

Описание алгоритма for i in range(n - 1):

- 1. подготавливаем единичную матрицу Q размера n x n;
- 2. в качестве сдвига выбираем самый правый нижний элемент матрицы $\sigma = A_{i,i}$;
- 3. вычисляем

$$c = \frac{A_{i,i} - \sigma}{\sqrt{(A_{i,i} - \sigma)^2 + A_{i+1,i}}} \quad s = \frac{A_{i+1,i}}{\sqrt{(A_{i,i} - \sigma)^2 + A_{i+1,i}}};$$

4. вводим матрицу

$$\begin{pmatrix} c & s \\ -s & c \end{pmatrix}$$

в матрицу Q на позиции [i,i] - [i+1,i+1];

5. домножаем матрицу $A = Q^T A Q$;

endfor

```
def implicit_givens(A):
    m, n = A.shape
    curr_A = np.copy(A)
    for i in range(n - 1):
        sigma = curr_A[-1, -1]
        Q = np.identity(m)
        b = hypot(curr_A[i, i] - sigma, curr_A[i + 1, i])
        c = (curr_A[i, i] - sigma) / b
        s = curr_A[i + 1, i] / b
        Q[i, i] = Q[i + 1, i + 1] = c
        Q[i + 1, i], Q[i, i + 1] = s, -s
        curr_A = Q.T @ curr_A @ Q
```

3.2.5 Неявный QR-алгоритм со сдвигом

Описание алгоритма Приводим матрицу к форме Хессенберга до начала основного итерационного процесса;

```
for i in range(n, 0, -1):
```

Пока не будет выполнено условие критерия сходимости:

- 1. применяем к матрице Q метод Гивенса, описанный ранее;
- 2. если выполняется условие критерия сходимости, то правый нижний элемент матрицы принимается за собственное значение, сохраняется, а матрица размера $A_{i,i}$ лишается самой нижней строки и самого правого столбца;

endfor

Критерий сходимости - "Пока самая нижняя строка матрицы A (за исключением правого элемента) и самый правый столбец (за исключением нижнего элемента) не станут близки к нулю".

```
for i in range(n, 0, -1):
    lc_it = 0
    if curr_A.size == 1:
        list_eigenval.append(curr_A[0, 0])
        break
    while True:
        curr_A = implicit_givens(curr_A)
        lc_it += 1
        cond = lambda elem: np.allclose(elem, np.zeros(i - 1))
        if cond(curr_A[-1, :-1]) and cond(curr_A[:-1, -1]) or lc_it > 50:
            amnt_iters += lc_it
            list_eigenval.append(curr_A[-1, :-1])
            curr_A = np.copy(curr_A[:-1, :-1])
            break
```

3.3 Результаты расчётов

Расчёты были проведены, выведем две таблицы результатов: - таблица $\left|\lambda_j - \lambda_j^0\right|$:

	1e-01	1e-03	1e-06
0	7.103e-02	7.995e-04	8.003e-07
1	1.961e-02	1.689e-04	1.687e-07
2	1.887e-02	1.503e-04	1.500e-07
3	5.989e-04	1.782e-05	1.792e-08
4	9.211e-03	9.795e-05	9.800e-08
5	2.016e-02	1.985e-04	1.985e-07
6	2.391e-02	2.370e-04	2.370e-07
7	2.411e-02	2.427e-04	2.427e-07
8	1.937e-02	1.986e-04	1.987e-07
9	1.216e-02	1.262e-04	1.262e-07

- таблица $\left\|z_{j}-z_{j}^{0}\right\|$ для $j=1,\dots,10$:

	1e-01	1e-03	1e-06
0	1.776e-01	1.545 e - 03	1.543e-06
1	1.762e-01	1.500 e-03	1.495e-06
2	1.041e-01	9.317e-04	9.306e-07
3	4.239e-02	3.703 e-04	3.780e-07
4	3.038e-02	2.838e-04	2.836e-07
5	3.631e-02	3.567e-04	3.542e-07
6	4.926e-02	4.896e-04	4.896e-07
7	5.655e-02	5.748e-04	5.123e-07
8	5.583e-02	5.841e-04	5.843e-07
9	3.866e-02	4.129e-04	4.245e-07

-количество итераций для получения собственных чисел:

- 1. $1e^-1$ 29 итераций;
- $2. \ 1e^{-3} 30$ итераций;
- $3. \ 1e^-6$ 33 итераций;

3.4 Код решения

```
for curr_eps in eps:
    temp_eigenvec = []
A = A_0 + construct_delta_A(N_var, curr_eps)
    curr_eigenvalues, iters = implicit_shifting_qr(A)
    print(iters)
    diff_eigenvalues = abs(curr_eigenvalues - eigenvalue_0)
    eigenval_results.append([f"{i:.3e}" for i in diff_eigenvalues])
    for idx, eigenval in enumerate(sorted(curr_eigenvalues)):
        y = np.linalg.solve(A - eigenval * np.identity(10), np.ones(10))
        x = y / np.linalg.norm(y)
        if np.sign(x[0]) != np.sign(eigenvector_0(idx + 1)[0]):
```

4 Выводы

Были решены поставленные задачи с помощью методов Хаусхолдера и Гивенса, программы были написаны на языке Python. Все алгоритмы кода были предоставлены с кратким описанием действий.

Решение первой задачи показало, что после QR разложения ответ совпадает с изначально заданным x_0 , что показано оценкой $\frac{\|x-x_0\|_2}{\|x_0\|_2}$.

Решение второй задачи показало, что собственные значения, как и собственные вектора, при уменьшении значения ϵ становятся ближе к известным аналитическим собственным значениям и векторам.