Naval Surface Warfare Center Carderock Division

West Bethesda, MD 20817-5700

NSWCCD-TR-1999/14 March 1999

Survivability, Structures, and Materials Directorate Technical Report

Rechargeable Li/Li_xCoO₂ 100 Ah/600 Ah Battery with Integral Smart Charge Control

By Charles J. Kelly

(Alliant Techsystems, Inc., Alliant Power Sources Company)

Patricia H. Smith and Stanley D. James

(Naval Surface Warfare Center)

Charles W. Fleischmann

(Advanced Technology & Research Corporation)

20000426 058

Approved for public release - distribution is unlimited.

Naval Surface Warfare Center Carderock Division

West Bethesda, MD 20817-5700

NSWCCD-TR-1999/14 March 1999

Survivability, Structures, and Materials Directorate

Technical Report

Rechargeable Li/Li_xCoO₂ 100 Ah/600 Ah Battery with Integral Smart Charge Control

By

Charles J. Kelly (Alliant Techsystems, Inc., Alliant Power Sources Company)

Patricia H. Smith and Stanley D. James (Naval Surface Warfare Center)

Charles W. Fleischmann (Advanced Technology & Research Corporation)

Approved for public release - distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

AGENCY USE ONLY (Leave blank)	2. REPORT DATE March 1999		T TYPE AND DATES COVERED Report
		•	·
 TITLE AND SUBTITLE Rechargeable Li/Li_xCoO₂ 100 Charge Control AUTHOR(S) C. J. Kelly (Alli S. D. James (NSWC), C. W. Fle 	ant Power Sources Co.),	P. H. Smith and	5. FUNDING NUMBERS Contract No. N60921-93-C-0060 Contract No. N60921-94-C-0056
Research Corp) 7. PERFORMING ORGANIZATION NAME(Alliant Techsystems, Inc., All Power Sources Center 104 Rock Road Horsham, PA 19044	s) and address(es) iant Power Sources Co	ompany	8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY Office of Naval Research Ballston Tower One 800 N Quincy Street Arlington VA 22217-5660	NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER NSWCCD-TR-1999/14
11. SUPPLEMENTARY NOTES		-	
12a. DISTRIBUTION/AVAILABILITY STATI	EMENT		12b. DISTRIBUTION CODE
Approved for public release			
13. ABSTRACT (Maximum 200 words)			
The Navy is seeking to develop is placed on achieving high end a battery that could deliver twic by the SEAL Delivery Vehicle.	ergy density as opposed e the energy density (1	d to cycle life. In 00 Wh/lb) of the 2	opulsion of underwater vehicles. Emphasis e goal of this effort was the development of zinc/silver oxide system presently employed
True 1) d oo tho unit buil	ding block of a series/n	arallel-connected	eloped at the 100 ampere-hour cell level. I battery. Charge and discharge control pattery protected from operator error and
I to the second heathers of	satronice control and M	ionitorina on a six	cells along with a battery test, for cell battery. Test data on battery response ers manual for its PC based Smart Battery

15. NUMBER OF PAGES 14. SUBJECT TERMS 43 and 3 appendices Li/Li_xCoO₂ SEAL Delivery Vehicle lithium/ metal oxide 100 Ah rechargeable lithium 16. PRICE CODE large prismatic lithium cell **Smart Battery** Rechargeable lithium metal anode 17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION 20. LIMITATION OF **ABSTRACT** OF ABSTRACT THIS PAGE REPORT SAR **UNCLASSIFIED** UNCLASSIFIED **UNCLASSIFIED**

NSN 7540-01-280-5500

functionality.

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

Contents

		Page
1.0	INTRODUCTION	1
	1.1 Background	1
2.0	REOLIBEMENTS	2
3.0	BATTERY DESIGN APPROACH	
5.0	3.1 Materials	3
	3.2 Processes	5
	3.3 Design Features	8
	3.4 Cell Capacity	15
4.0	CELL AND BATTERY TESTING	16
4.0	4.1 Test Equipment	17
	4.2 100 Ah Li/Lis-CoOs Cell Characterization Test Plan	17
	4.3 100 Ah Cell Characterization Test Results - Summary	19
5.0	SMART CHARGE CONTROL AND MONITORING AT THE CELL LEVEL	23
5.0	5.1 The Smart Battery Product	26
	5.2 Set Up of Smart Battery Demonstration	31
	5.3 300 Ah, 8.0 Volt Smart Battery Function Test Results	36
6.0	CONCLUSIONS	37
7.0	REFERENCES	43
ADDI	ENDLY A 100 Ah Li CO Cell Test Results	A-1
APP	ENDIX B - Smart Battery Controller Reference Manual	B-1
APPI	ENDIX C - 100 Ah Li _{0.5} CO ₂ Drawing Package	C-1
AFFI	FRIBUTION	(1)
וסוט	I KIDU I IUN	

	Figures	D- ~-
Numl	ber	Page
1	400 AL Little / Lithium Coholt Ovido Pechargeable Cell	2
2	Compression Soal Used in the 100 Ah Cell	
3	Ctandard Laboratory Call	
4	Lab Call NCMC17 Porformance	O
5	400 Ab Call Swalling Force During Charge and Discharge	12
6	A Correct Collector with Graphite Frame	IJ
7	400 Ab Lift CoO Coll Cross Section Evolution	10
8	Design Safety Features Shown in 100 Ah Cell Cross Section	15
9	40 Ab LiCaO Bookargookle Cells Demonstrating Performance	
3	Description from Decign Modifications	17
10	Outle Life as a Eurotion of Charge Rate	20
10	Minimal Effect of Discharge Rate on Working Vollage	20
11	Ob and Circuit	۱ کے
12	Charge Float Voltage Established by Characterization Testing	21
13	Cold Temperature Environment Effect on Capacity	22
14	DoD Cycling Effects at Tactical Discharge Rates	22
15	Charge/Discharge Logic for Each Cell of the 300 Ah Smart Battery	24
16	Charge/Discharge Logic for Battery Overview of the 300 Ah Smart Battery	25
17	SMB Main Menu	28
18	SMB Main MenuSMB Data Logging Selection Screen	28
19	SMB Setup ScreenSMB Setup Screen	29
20	SMB Setup ScreenSMB Set Points Screen	29
21	SMB Set Points ScreenSMB Cell Monitoring Screen	30
22	SMB Cell Monitoring Screen SMB Debug/Administrative Utilities Screen	30
23	General Arrangement of Two Cells of the Six Cell Battery (Plan View)	31
24	General Arrangement of Two Cells of the Six Cell Battery (Fight Flow)	32
25	Test Chamber The SMB Battery	32
26	The SMB BatteryClose-up of PCB's	33
27	Side View of SMB Battery	33
28	SMB Module Looking Down	34
29	SMB Module Looking DownSMB Battery Looking Down	34
30	Remote Electrolyte Fill Station	35
31	Calibrated Electrolyte Fill Reservoirs	35
32	Pressure Gauge Bank for CO ₂ Charge	36
33	Charge of Unbalanced Cells, Constant Voltage at 10 Ampere	38
34	Charge of Unbalanced Cells, Constant Voltage at 10 Ampere (5 Amps Per Cell)	38
35	Charge of Unbalanced Cells, Constant Voltage at 10 7th per 6 Constant Current	
36	(2 Amps Per Cell)	39
	(2 Amps Per Cell)	39
37	Continued Charge of Unbalanced Cells, Constant Current of 2 Amperes Per Cell	40
38	Continuous Charge of Unbalanced Cells, Constant Current of 2 Amperes Per Cell.	40
39	Continued Charge of Unbalanced Battery, Constant Current Discharge of Balanced Battery Initiated after 100% Charge	4
40	Discharge of Balanced Battery Initiated after 100% Charge (Cont)	4
41	Discharge of Balanced Battery Initiated after 100% Charge (Cont) Discharge of Balanced Battery Initiated after 100% Charge (Cont)	42
42	Charge at 20 Hour Rate and Discharge at 20 Hour Rate	42
40	Chargo at 20 Hour Rate and discusting at 70 Hour Date	

Tables

	140.00	
Numb	or .	Page
4	Hoechst Celanese Celgard Separator 2300	4
1	moetrist Celariese Celgario Coparació de la Maria (Coo Dechargoshla Celle	18
2	Plan for Characterization Testing of 100 Ah Li _{0.5} /CoO ₂ Rechargeable Cells	

Administrative Information

This report is based on Alliant Techsystem's final report* on Navy Contracts N060921-93-C-0060 and N60921-94-C-0056, Naval Surface Warfare System, Carderock Division (NSWCCD). The work was conducted under the Battery R&D Group (Code 683, NSWCCD) and funded by the Office of Naval Research. The report has been updated and enlarged as a result of subsequent discussions between the technical monitors at NSWCCD and Alliant. Mr. Charles J. Kelly, the principal Alliant author, wishes to identify the contributions of present and prior staff, notably the seminal works of Drs. David L. Chua and Hsiu-Ping Lin, and Mr. Walter Ebner. These efforts first demonstrated the Li/Li_{0.5}CoO₂ electrochemistry at the hermetic cell and battery level. The strong technical contributions of Ms. Rebecca Morris and Messrs. Kevin Burgess, Khiem Pham, David Hughes, Leo Brown, and Tom Pertuch are also acknowledged, as is the dedicated support of Ms. Patricia Wilson, Administrative Assistant.

^{*} Kelly, Charles J., Rechargeable Li_xCoO₂ 100/600 Ah Battery with Integral Smart Charge Control, Alliant Techsystems, Power Sources Center, Horsham, PA, Mar 1999.

1.0 INTRODUCTION

The goal of the current program was to demonstrate performance in cells sized for SEAL Delivery Vehicle (SDV) use. Under the performance contracts, Alliant Techsystems (Alliant) developed a rechargeable Li/Li_{0.5}CoO₂ cell that had a minimum 100 ampere-hour (Ah) capacity (See Figure 1), which served as a design precursor to the SDV-sized cell. Initially, the cell size believed to be the best unit multiplier for the SDV was set at 600 Ah. Four, 600 Ah cells were gauged to fill a single SDV tray (a single cavity in the newer SDV Battery Box). Later, it was decided to revise the unit cell to 300 Ah for structural considerations.

This report is divided into seven sections and three appendices. Section 2 describes the technical requirements. Section 3 discusses the design, processes, and unique features of the 100 Ah cell. In Section 4, the electrochemical performance of the 100 Ah cell is characterized to allow consideration of the cell for general applications. Section 5 describes an *in situ* controller and monitor for the battery. Conclusions are provided in Section 6.

1.1 Background

Underwater vehicles have been battery-powered since the late 19th century. Originally, leadacid batteries were used. At the five to six hour rate, lead-acid batteries can provide up to 2000 cycles depending on the design, but gravimetric energy densities measured only in the teens. The mission range of an underwater vehicle powered by a battery is limited by the battery's energy density at a given power density. Smaller underwater vehicles are preferably powered by silver oxide/zinc (AgO/Zn) batteries, the only other rechargeable system used for these applications. That system was selected because it can provide three times the energy density of lead-acid. No other commercially available battery provides as high an energy per unit weight or volume. Vehicle range is thereby increased, but a severe loss in cycle life must be accepted. Under optimum conditions, AgO/Zn cells provide about 50 cycles at 50 watt hours per pound (Wh/lb). Users in the field have reported far fewer cycles. They have been under active development and production for half a century and have found a niche market when high cycle life and low cost are less important than energy density.

The technical approach has been to develop a battery based on a more energetic couple than AgO/Zn for the SDV and other submersibles. The system selected for development was lithium/lithium cobalt oxide (Li/Li_xCoO₂) which included the following design goals: provide a minimum energy density of 100 Wh/lb over at least fifty cycles, at -2°C to 35°C; and last five years in storage. This work continues earlier research. That work developed and evaluated 7 to 30 Ah prismatic cells¹ and investigated the Li/Li_xCoO₂ system in AA size⁺ cylindrical cells.² Finally, the relative advantages and disadvantages of Li/Li_xCoO₂ and AgO/Zn were compared.³

Earlier work on the Li/Li_xCoO₂ system demonstrated its unique characteristics: high energy density, high cell voltage, excellent rate capability, and good reversibility. Because of these studies, the baseline was defined. The cell reaction is given by Equation 1-1.

(Charged) (1-x) Li +
$$Li_xCoO_2 \leftrightarrow Li_{1.0}CoO_2$$
 (Discharged)

(1-1)

American Standards Association

On discharge, lithium metal is oxidized at the anode to lithium ions, which dissolve in the electrolyte. Correspondingly, lithium ions are reduced at the cathode and inserted (intercalated) into the crystal lattice of Li_xCoO_2 . At full discharge, the value of x in Li_xCoO_2 is unity. One Faraday per mole (F/mole) would be transferred if the initial value of x were zero and the final value one (one electron transferred). To achieve consistent capacity over about fifty cycles, however, the range of x must be limited to between 1.0 and about 0.5.

Figure 1. 100 Ah Lithium/Lithium Cobalt Oxide Rechargeable Cell

2.0 REQUIREMENTS

The rechargeability of Li/Li_{0.5}CoO₂ was demonstrated earlier, as discussed above. The focus of the program was toward larger multi-cell modules of 600 Ah size and was modified during the course of execution to 300 Ah size cells in order to address more directly the evolving requirements of underwater vehicles. The propulsion power supply cells operate at a nominal potential of 3.9 volts (V) for Li/Li_{0.5}CoO₂. Actual voltage range for vehicle propulsion is 4.0 V to 3.0 V over a 6-hour period (6-hour rate to 100% depth of discharge). Cycling at greater depth of discharge will increase delivered energy and run time, but cycle life will be reduced.

The capacity and energy density of an electrochemical cell depends on the depth of discharge i.e., the percent of the total available capacity actually used on discharge. Depth of discharge is

important for underwater vehicle run time capability. For the Li/Li_xCoO₂ battery, 100 percent depth of discharge is based on a (x), in the range of 0.5 and 1.0 during charge/discharge reactions. Thus a 100 percent depth of discharge for the 100 Ah cells developed during this contract is actually cycling the cell within a capacity window that is 50 percent of the theoretical capacity. When that capacity is obtained in one hour, it defines the C rate for the purpose of this report.*

Seawater temperatures range form -2 to 35°C. The real challenge to electrochemical cells is in maintaining performance at the lowest temperature requirement. Capacity per cycle and cycle life at -2°C are a required benchmark for the Li/Li_{0.5}CoO₂ battery technology.

3.0 BATTERY DESIGN APPROACH

Previous work¹ outlined specific materials and component processes that were advantageous to cell performance enhancement in the current contract. The materials and component processes are described below in subsections 3.1 and 3.2 respectively and reflect updated information since the time that the 30 Ah cell development has been added. New materials have been added in some cases or a more cost-effective source of supply identified. Following that, subsection 3.3 describes design features of the developed 100 Ah cell.

3.1 Materials

Electrolytes

The following electrolyte components were used as received: Lithium hexafluoroarsenate (LiAsF $_6$), Electrochemical, LaRoche; carbon dioxide (CO $_2$), Bone Dry, Toll Co., and methyl formate (HCOOCH $_3$), Alliant Techsystems' specification, E.M. Science Co. lithium tetrafluoroborate (LiBF $_4$), Electrochemical, Cyprus Foote Mineral Co., was dried at 80°C under vacuum (200 millitorr) for 16 hours, minimum.

Solutions were prepared in a glove box under argon. LiAsF $_6$ and LiBF $_4$ were dissolved in methyl formate to obtain concentrations 2.0 molar (M) in LiAsF $_6$ and 0.4 M in LiBF $_4$. The solutions were then saturated with CO $_2$ by passing the gas through them at a pressure of 30 pounds per square inch, gage (psig) for at least 30 minutes. Typically, they had less than 50 parts per million (ppm) of water, as measured by a Photovolt Model 128 Fischer Titrator.

Electrodes

Anode - Lithium Foil, (Li, 99.9% minimum) FMC Corporation, Lithium Div., was purchased in 0.006 inch thickness and die cut to area dimensions of the electrode.

 $I=C_M/n$

The capacity, C_M , is the total ampere-hours delivered to a given cutoff voltage over the period of M hours. M is often 1 but 5, 6, and 20 are also common to some systems.

 $^{^{\}circ}$ C/n Ratings--These ratings describe a common practice to represent charge and discharge rates. That practice describes the rate in amperes, in terms of the number of hours, n, required to charge or discharge the cell capacity, C_{M_s}

Cathode Components - Used as received were:

- Lithium cobalt dioxide (LiCoO₂), lithium cobalt (III) oxide, FMC
- Carbon (C), Cabot Corp., type Vulcan XC-72R (98.5%), (characterized by a surface area of 254 square meters per gram (m²/g) and a particle size of 30 microns); and
- Polytetrafluoroethylene ([-CF₂ CF₂-]_n), DuPont Corp., Teflon-30, (an aqueous emulsion, 60% solids).

Separators

Microporous, polypropylene/high density polyethylene/polypropylene/polyethylene trilayer separator, Hoechst Celanese Corp, Celgard 2300 was dried under vacuum (200 millitorr) at room temperature for a minimum of 16 hours prior to use. Three layers of this separator were used between the anode and cathode plates.

In the 30 Ah prior cell development¹ 3M Co. type E003 separator was used. This material was discontinued. The Celgard separator, selected to replace E003, is designed to create a high electrical resistance in the event of a temperature rise, such as that caused by a short circuit. The resistance is due to separator melting. This separation system is sometimes identified as "shutdown separator." The physical properties of the separators are listed in Table 1, by permission of Hoechst Celanese Corp.*

Table 1.	Hoechst Celan	ese Celgard	Separator	2300

CHARACTERISTICS	TYPICAL VALUE
Thickness	25.6 Microns
Shrinkage, MD (60 min. @ 90° C)	. 4%
Tensile Strength MD TD	1487 Kg/cm² 167 Kg/cm²
Gurley	

Inert Metal Components

The inert metal components include the electrode current collectors, cell cases, headers, and feed-throughs. These metal parts were washed with deionized water (H_2O). The cleaned parts were then vacuum dried at 200 millitorr and 125°C for a minimum of 16 hours prior to use.

Current Collectors. Cathode collectors were made of expanded aluminum (AI) metal grid (Delker Corporation's type 5AL 17-125). Tabs of aluminum (type1100) were ultrasonically welded to the grid for use as electrical leads. Anode collectors were grids formed from nickel foil 200 using an electro-etch process manufactured by Lancaster Metals, Lancaster, PA. The anode individual collector grids are 0.002 inch thick.

^{*} Hoechst Celanese Battery Application Data Sheet, Separations Products Division, 13800 South Lakes Drive, Charlotte, NC 28273.

Cell Cases. Prismatic cell cases were fabricated by Trenton Sheet Metal Co. from type 304 stainless steel (SS). They are of welded seam construction, as a cost-effective way of avoiding the high cost of deep draw forming tools that would be used in production. There is a weight penalty attached to welded seam construction.

Headers. Case headers were of type 304 SS. The glass-to-metal (GTM) seal generally used to isolate battery terminals from the header was used for only the anode terminal. A compression seal was used for the cathode terminal. Compression seals have been shown very effective when properly designed.⁴ A sketch of the seal, designed by Alliant and manufactured by THREE E Labs, is shown in Figure 2 and a drawing in Appendix C. The insulating material between the aluminum positive terminal and the header was Tefzel.* The seal had an additional feature that provided multiple tabs for cell internal connections. Multiple tabs enhanced the ability to make high quality ultrasonic tab welds.

Section View

Figure 2. Compression Seal Used in the 100 Ah Cell.

3.2 Processes

Cathode Process for Basic Effort

Much of the beginning effort of this contract was directed toward scaling-up and further developing a cathode manufacturing process that would perform as well as or better than the dry formed cathodes produced during the 30 Ah cell development. It was evident early in the development that the much larger area cathode needed for the 100 Ah cell did not lend itself to

^{*} duPont's polymer, ethylene tetrafluoroethylene.

a press forming process alone, as was the case with the 30 Ah cathode. The amount of press force needed to apply the same unit area force as was applied to the 30 Ah cathode was prohibitively high from a machine standpoint. Consequently, a wet process, using mill rolling with thickness reduction steps evolved. Prior to mill rolling, several steps of mixing of raw materials were necessary to obtain the right consistency for mill reduction. The mixing steps were developed as follows:

- Muller mixing of LiCoO₂ powder and Vulcan XC-72R at a ratio of 87% to 9.7% respectively. The batch size at this step is 11.12 lbs.
- The next step involved making an aqueous dough with 3.3%Teflon 30 added as a binder to maintain body as the material was rolled into a cathode sheet.

The cathode loading percentages identified above were identical to the cathodes made and used in the 30 Ah cell program. Two other cathode parameters, which departed from the 30 Ah experience, were final cathode density and cathode plate thickness. These parameters were aggressively sized upward to achieve a drawing design, energy density of greater than 7100 Wh/lb for the 100 Ah cell. Average 30 Ah cell cathode density and thickness are compared with average 100 Ah cell cathode density and thickness below:

	30 Ah Cell	100 Ah Cell
Cathode density	2.37 g/cc	2.7 g/cc
Cathode thickness (double side)	0.027 inch	0.060 inch (later returned to 0.029)

Cathode Pad

Cathode pads were made by passing the kneaded cathode mix through a roll mill six times at a gap setting of starting at 0.080 inches. After every two passes, the pad was folded in half and rotated 90 degrees. This procedure was repeated several times, except that the roller gap setting was reduced every six passes until a final setting of 0.015 inches was reached.

Cathode Pad/Current Collector

Cathode pads were rolled onto both sides of the expanded metal collectors at a gap setting of 0.027 inches followed by drying at 200°C for at least 16 hours. Pad dimensions exceeded those of the current collector. The final cathode dimensions were obtained by die cutting the finished composite pads and expanded metal grid collector. The drawing package shows final dimensions for the cathode. Finished cathodes were vacuum-dried at 170°C for a minimum of 16 hours prior to use.

Cathode Performance Evaluation

As cathodes were produced, quality checks were made by building and cycle testing laboratory cells constructed of 0.50 square inch area cathodes. These lab cells required mechanical adjustment and several cells were built before the technique was perfected enough to give reliable test data. Typical lab cell configuration and test results are shown in Figures 3 and 4. During these lab cell tests, we also tried to judge the effects of electrode plate compression, including 0%, + 10% and -10% (or relaxation). The last is gap or expansion allowance of 10%.

The results were inconclusive except to note that degrees of compression or relaxation at extreme levels can degrade performance. Too much compression (>10%) and too loose a pack (<10% expansion allowance) can cause cycle life to fall off. During the build of the Basic Effort 100 Ah cells, stack compression was deliberately varied and performance tracked. As a result, it was judged that an allowance for 6% expansion (measured from the initial as built stack thickness), was least detrimental to cycle performance. All cells built at the end of the Basic Effort lot construction and through the balance of the program had 6% expansion allowance as part of standard assembly practice. Smaller cells; i.e., lab cells and 8 Ah flat plate cells (See Section 5) do better than full 100 Ah cells. Other variations in material and design make it difficult to make a judgment about compression from this study.

Figure 3. Standard Laboratory Cell

Anode Process

Lithium foil, 0.006 inch thick was die cut for pressing on each side of the current collector by rolling. First, one piece of lithium was rolled onto one side of the collector. A second piece was then rolled onto the opposite side. A portion of the lithium is extruded into the opening in the electro-etched grid metal; the final anode thickness was .013 inches. Further discussion on special design features added to the anode electrode can be found in subsection 3.3.

<u>Ultrasonic Welding Process</u>

To date, only aluminum was found suitable as the collector material for the Li_{0.5}CoO₂ cathodes because of its high conductivity and corrosion resistance at high charging potentials. This requirement, however, presents a challenge in welding Al-to-Al (specifically, leads and spacers to the bus bar). The use of resistance welding was found highly unreliable because of the oxide layers on aluminum surface.

Excellent bonding of Al-to-Al was achieved by using an ultrasonic weld technique. No electrical current is passed through the joint, and the amount of heat produced is insufficient to affect the mechanical and metallurgical properties of the aluminum. In ultrasonic welding, high-frequency power is converted into vibratory power by a transducer, to which the welding tip is attached. The welding tip oscillates in a plane essentially parallel to the joint interface. Transverse (shear) waves in the two adjoining surfaces break the oxide layers and produce the weld. Since cathode current collectors and electrode tabs are aluminum, ultrasonic welds were necessary to connect them together in the electrode plate. Tabs (30 each) were connected to the external terminal via the compression seal (Figure 2).

Figure 4. Lab Cell NSWC17 Performance

3.3 Design Features

Retrofit to SDV Battery

The 100 Ah cell (sub-SDV cell), Figure 1, embodies all scale-up features of an engineering baseline SDV cell with regard to electrode size and weight. It is a sub-SDV cell only because the number of electrically paralleled plates is equivalent to 100 Ah capacity. The sub-SDV cell's external width and height are full scale; only the length is increased in a full SDV cell to accommodate more plates. The 100 Ah cell is designed for continuous cycling at 100 percent of its rated capacity. The goal was to provide 50 cycles (6 hour discharge/10 hour charge) with an energy density of 100 Wh/lb. Accomplishing this goal would be a factor of two improvements over AgO/Zn electrochemistry, currently in use. Since the Li/Li_{0.5}CoO₂ battery retrofits the existing SDV battery, it was necessary to duplicate the present weight of the battery at 776 lbs. The Li/Li_{0.5}CoO₂ cell has been designed to take maximum advantage of existing tray volumes without exceeding the filled tray weight. Operating temperature range for the battery and consequently the sub-SDV cell is -2° C to 35°C. Voltage compatibility with the existing vehicle

battery was also important. Consideration needed to be made for the difference in electrochemical potential between the existing AgO/Zn cell at 1.5 V and the Li/Li_{0.5}CoO₂ cell at 4.0 V, to maintain vehicle voltage at the required 128 V. To accomplish this, the modular approach was taken. Four series connected modules, each composed of two, 300 Ah Li/Li_{0.5}CoO₂ cells per tray, are equivalent to the same tray with 10 AgO/Zn cells. Both electrochemistries are then 15 to 16 V, open circuit potential.

Innovative Technology

During the development of the 100 Ah cell, many new features were introduced. Two U.S. patents have resulted. The first involved the synthesis of pre-charged Li_{0.5}CoO₂ for use in reserve battery applications. Although not specific to vehicle propulsion use, they have advantages to military applications. The second patent improved the design of the flat plate anode. When multiple plates are paralleled together as in the case of the 100 Ah, high numbers of cycles tend to produce inefficiency in plating lithium. Repeated formation and dissolution of metallic lithium causes dendrite lithium to form on electrode edges, particularly the anode perimeter. The developed patent design works to abate or scavenge the dendrites in areas where they do the most harm. Improved cycle life and safety result.

Features for Performance

While improved materials were being tested for their application to 100 Ah cell performance and electrode fabrication processes as well as assembly processes were being optimized, work was proceeding on mechanical design features that would bring out the best cell package for the 100 Ah Li/Li_{0.5}CoO₂ SDV cell configuration. The following subsection describes observations of cell behavior that limited performance, and solution seeking design features implemented. Design parameters were evaluated using two different cell designs: a 12 Ah subcell and the 100 Ah full cell. Other than the number of plates used in the cell stack, the designs of the cell stack and internal hardware were identical.

Features for Safety

Moving the program from the cell development stage to a battery integration phase required the need to address system safety. In the case of multiple cell batteries, system management of cells in series and parallel is a challenge particularly during charging. The management system not only monitors the state of charge of the individual cells in the battery but also allows for electrical bypass of cells, which have reached full charge or are not operating satisfactorily. Complete shut-off of cells that show abnormal behavior is a mandatory feature of any high energy, large capacity system. This is particularly true of an electrochemical battery that combines flammable electrolyte, moisture reactive lithium metal, physically expanding electrodes, and internal gas pressure that may increase during normal operation. Therefore a program task was to design and demonstrate a suitable electronic circuit that would provide all of the features of charge monitoring and control, and safety shut-off on discharge and abnormal temperature. The result was an individual circuit board Smart Battery Interface (SBI) on each cell that allows for cell replacement when retirement of a single cell in a battery becomes necessary. While aspects of the design address safety as suggested by analysis or preliminary testing, the scope of the present work did not include full-scale safety evaluation of the final product.

Component Testing Using Fixtures

As testing proceeded, the multi-plate prismatic electrode design evolved into a stacked configuration of 31 rectangular anode electrodes, and 30 rectangular cathode electrodes. Many additional questions relating to such things as the grade of LiCoO₂, electrolyte composition, electrode interface, separator choice, and dendrite control had to be addressed. Early work with 12 Ah flat plate cells tried to answer some of the questions. Design resulting in the best performance was then carried over to the 100 Ah cells. Performance evaluation continued with safety and cycle life improvement as a major goal. A set of design features resulted that set the stage for the characterization testing that followed. Summarized below are the most important design features:

Stack Compression

Control of the cathode and separator compression using the spacers adjusted to internal case width and stack height. A 6% oversizing of the case during assembly benefits stack insertion and helps prevent misaligning the rectangular electrodes while sliding the stack into the case that is open only at the terminal end.

Anode Expansion

The stack of electrodes expands on charging because lithium from within the cathode active material is transferred to, and plated onto the anode. Because the cell is built in the discharged state, the first plating accompanies the initial charge. Space can be allowed for this by design, that is, by the extent of compression on the stack. The extent of expansion, however, increases with cycle life because the deposited lithium can react to form more voluminous products at the electrode surface. Aurbach*and others have studied these surface products. In any case, three significant observed effects are:

- An increase in thickness of the anode plates which causes stack swelling. In the case of the
 multiple flat plate 100 Ah cell design, the expansion force, as a result of restrained swelling,
 (see Figure 5), has been observed to more than triple in cells from the discharged state to
 the charged state. A change of 24,000 pounds force was measured.
- Cell resistivity increases by an order of magnitude over cycle life. In the case of multiple flat plate 100 Ah cell stacks, static 1,000 Hz AC Impedance checks that measured 14 milliohm AC impedance at the beginning of life reached 140 milliohm after 40 cycles.
- Edge expansion and dendrite growth cause separator penetration and localized soft shorts.
 These effects raise safety concerns.

^{*}The nature of lithium metal anode surface as it changes with cycle life progression have been studied by Aurbach, et al, among others. They describe lithium surface films composed of species of electrolyte solvent reduction, salts, and dissolved gases. The gases could be atmospheric contaminants or purposely added gases for cycling benefit. Appearances of the uncontrolled anode surface during the dissolution and plating of lithium ions are three-fold in nature: first, increased surface area due to the lithium metal surface roughness, created by the reaction process; second, electrode perimeter enlargement as deposition seeks electrode edges; and third, accumulation of spalled dendritic lithium from suspension in the liquid electrolyte onto bare surfaces, such as current collecting tabs of the anode plates.

Shorting Protection

The 100 Ah cell has over 60 linear feet of anode electrode edge that is susceptible to deposition thickening. Edge shorts have been directly related to low cycle life. Plated lithium on electrode edges had been measured at twice the thickness of the original anode thickness after only 25 cycles.

Three design solutions were created to counteract the dendrite shorting problem created by edge plating:

- 1. The cathode is enveloped between with two layers of heat sealable microporous separator, Celgard 2300;
- The cathode plate is die cut smaller than the anode plate size. Postmortem of cycled cells gave strong evidence in favor of using undersized cathode plates. The layer of dendritic lithium plated around the edges of the anodes was thinner and more uniform in the case where the cathodes are sized smaller than the anodes; and
- 3. A graphite frame⁶ was added on both sides of all boarders of the anode electrode plates as shown in Figure 6. The evolution of the electrode profile and multiple interface is depicted in the 100 Ah cell cross sections, Figure 7, beginning with the earliest on the left and the current design on the right. The edge was protected from dendrite shorting because, on charge, lithium was deposited into the graphite structure, eliminating thick build up. The interior surfaces of the anode plate remained a cold-rolled lithium metal directly in contact with the current collector grid. Lithium can intercalate into and out of the frame. It was observed that the graphite frame, supported by an extended anode current collector, turned a yellowish-green color indicating intercalation after repeated cycling. Examination after 60 cycles, when suspended on a discharge half cycle, found the frame to contain 25 weight percent of lithium. Based on 100 Ah cells cycled with and without graphite frames, cycle life improvement appeared to be 25 to 30 percent. Postmortems of cell stacks showed a noticeable absence of free-floating dendrites from those observed with unframed anodes. More uniform current distribution and, therefore, more efficient utilization of the active materials form plate-to-plate was obtained through the use of properly positioned bus bars and tabs. To achieve this design objective, good bonding of leads and spacers to the bus bars was critical. Please see section on ultrasonic welding above.

Figure 5. 100 Ah Cell Swelling Force During Charge and Discharge

Figure 6. Anode Current Collector with Graphite Frame

Figure 7. 100 Ah Li/Li_{0.5}CoO₂ Cell Cross Section Evolution

Electrolyte Optimization

For the electrolyte, 2 *M* LiAsF₆ + 0.4 *M* LiBF₄ salts are dissolved in the highly conductive solution methyl formate in which CO₂ (gas) is added. The high conductivity characteristic is particularly beneficial for the cold temperature service required in underwater vehicle operation. The selected salts for the electrolyte include 2.0 *M* lithium hexafluoroarsenate for its stability and non-reactiveness with the lithium anode. Lithium tetrafluoroborate, on the other hand, is added in lesser amounts, 0.4 M, and contributes to cycling efficiency. Lithium tetrafluoroborate does react with the lithium surface. Lithium cycling efficiency of batteries with this electrolyte is poor without the addition of bone-dry carbon dioxide gas.⁸ Li₂CO₃ is formed on the lithium anode surface by the CO₂ addition. This surface film protects and passivates the lithium and extends cycle life. Solutions of methyl formate solvent and carbon dioxide gas have doubled cycle life from ten years ago when the same electrolyte without CO₂ was noted to provide no more than twenty cycles.

Safety Features

Vents. A reverse frustum-buckling disc manufactured by BS&B was used in the 100 Ah cell header. To avoid any heat effect during welding, the disc is pre-welded into a housing and the entire assembly is then heat treated to either partial or full anneal condition. For partial annealing, the parts were heated under vacuum from room temperature to 800°C in 1 to 1.5 hours and held at 800°C for 1 hour before switching off the furnace cooled them. These vents open at a nominal 325 psig. In the fully annealed case, the vacuum furnace was heated from room temperature to 1052 to 1070°C in 1.5 hours. The parts were held at this temperature for 1 hour, and then force-cooled by nitrogen gas.⁸ These vents open at 350 psi. For this program, we used the partially annealed vents.

Other Safety Features. These include the "shutdown separator," graphite frame on the anode and the electronic controller discussed above. Other features include the use of a flash-back arrestor (flame arrestor matting), teflon coating of exposed container surfaces, and overall cell design to readily permit venting through access areas as shown in Figure 8.

Electronic Control*

Electronic charge control, cell monitoring, and capacity data storage capability of 100 Ah cells was added to each cell individually. Batteries composed of electronically controlled cells were also electronically coordinated to be controlled in series/parallel connected battery arrangements. Uniquely, this was all accomplished at high propulsion power levels. The criteria were:

Electronic control with circuits capable of handling the high electrical current of each 100 Ah cell. Currents were on the order of 20 amperes per cell.

^{*}The task for the electronic design and demonstration of the Charge, Monitor, and Control system was the effort of DaTran Corporation under the direction of Alliant Techsystems. DaTran's Operations Manual, and System Description is reprinted in the Appendix.

Individual, stand-alone control of each cell in a battery matrix, with "On-Board" electronics on each cell, rendering each cell "change-out" capable in a battery scenario consisting of hundreds of cells per ship set.

Control logic for cells is explained in Section 5.0 of this report.

Figure 8. Design Safety Features Shown in 100 Ah Cell Cross Section

3.4 Cell Capacity

The present design provides cells rated at 116 ± 2 Ah based on 90 percent of the calculated capacity, assuming ½ F/mole, i.e., 0.9 (½ F/mole). However, and with probable sacrifice in cycle life, a maximum of 0.55 F/mole can be obtained which would result in a capacity of 142 Ah.

At present, the cell weighs 5.8 lbs, but the cell case is overweight because it is made from heavy gauge sheet metal to facilitate hand weld fabrication. Deep drawn cases would be lighter and stronger. Thus, energy density can be expected to improve in production quantities due to a higher level tooling commitment. Likewise, anode grid foil can be decreased in thickness with proportional weight savings. A cell weight of 5.25 lbs can be projected. Corresponding energy densities are as shown below:

	Capacity, Ah	Capacity, Wh, @ 3.85 V	Energy Density, Wh/lb, assuming a 5.8 lb cell	Energy Density, Wh/lb, assuming a 5.25 lb cell
Rated	116 ± 2	447 ± 8	78 ± 1	86 ± 1
Calculated Maximum	129 ± 2 142 ± 2	497 ± 8 547 ± 9	85 ± 1 94 ± 1	95 ± 1 104 ± 2

4.0 CELL AND BATTERY TESTING

Development of large capacity lithium/lithium cobalt oxide cells for naval electric underwater propulsion was on track prior to the current effort. Significant accomplishments had been made, but more optimization and characterization were needed. Up until this point, Alliant Techsystems had built, tested and documented 18 rechargeable cells of 100 Ah capacity. This followed successful programs in which 8 Ah and 30 Ah cylindrical cells of the same electrochemistry were demonstrated. Each development build and test execution, regardless of cell size, was followed by postmortem examination and documentation of the cells. It was through this iterative process that improvements were made in the design and assembly techniques. The original experimental design intent was to build a rectangular cell large enough such that all of the challenging effects of the electrochemical system could be observed in a cell with field useful energy levels. Even larger scale-up would then be only an increase in the number of paralleled electrode plates needed to build a cell of the desired capacity. This "design of experiments" approach appears to have been a wise choice in the case of the 100 Ah cell. Observed characteristics, both good and bad, are the same as those expected in much larger cells. The 100 Ah cell itself has useful underwater propulsion applications. For this reason, it merited not only further optimization but characterization of the optimized design. Characterization would provide needed parametric data to help users access its capability in specific applications.

Beginning efforts in the program used smaller cells to test some of the design changes. Figure 9 is substantiation that some of the changes tested in smaller cells, 12 Ah (flat plate, full electrode) cells showed improvements expected to carry over to the 100 Ah cell. Significant improvements in cycle life were noted and a 90 percent depth of discharge was maintained throughout the testing. Some of the major items tested included: thinner cathodes, alternate separator material, and molarity reduced electrolyte. The encouraging results of the 12 Ah cell tests left us positioned to duplicate; particularly cycle life longevity and energy density, in the 100 Ah cell size. It was not too ambitious to project that successful duplication of the 12 Ah cell results in the 100 Ah cell would bring the 100 Ah cell to a level of usefulness for underwater propulsion applications by the Navy. Characterization studies in the work described herein may well prove to be the bridge between the developmental 100 Ah cell of a new electrochemistry and a developed Li/Li_{0.5}CoO₂ cell ready for useful underwater propulsion trials.

Figure 9. 12 Ah LiCoO₂ Rechargeable Cells Demonstrating Performance Resulting from Design Modifications

4.1 Test Equipment

The cells in the characterization study as well as the development cells that preceded the study were all tested on Maccor' Series 2000 battery test system. The versatility of the machine allows testing of primary cells and continuous cycling or individual charges or discharges as desired in the case of secondary cells. This sub-section does not address the test equipment used in the Smart Battery development part of this contract. A description of the Smart Battery testing will be treated separately in a later subsection.

4.2 100 Ah Li_{0.5}CoO₂ Cell Characterization Test Plan

The test plan for a build of a single lot of 30 cells was prepared with the understanding that every possible characteristic of the baseline design of the 100 Ah cell could not be statistically documented in such a small lot quantity. It was hoped that a consistent build could be achieved such that test data would not be masked by variations in hand building techniques and operator error. The dedication of only 2 cells per test type was all that the build quantity allowed due to program funding constraints. The initial test plan is shown in Table 2. A contingent plan, not documented, was to continue the decision-making process during the course of testing to allow shifting of cells to tests where more data was wanted. Also, in attempting to understand characterization trend; past 100 Ah cell test results, prior to the 30 cell build, were examined for supportive or detractable data.

Maccor is an independent corporation based in Tulsa, Oklahoma.

Table 2. Plan for Characterization Testing of 100 Amp Hour Li_{.05}/CoO₂ Rechargeable Cells

TEST	CELL	TEST DESCRIPTION		
NO.	NUMBERS			
1	703, 704, 712 718, 717, 719,723	Baseline Charge - 10 hr rate; Discharge - 6 hr rate ("baseline rates") Cycle to 80% of rated capacity (r.c.) * Temp. 25°C		
2	725	Cycles 1 & 2 - Baseline rates Cycles 3 to 80% of r.c. Charge - 20 hr rate; Discharge - 6 hr rate Temp. 25°C		
3	729, 730	Baseline rates cycling to 80% of r.c2°C ± 3°C temp.		
4	none	Baseline rates cycling to 80% of r.c. 35°C ± 3°C temp.		
5	714	Cycles 1 & 2 - Baseline rates Cycles 3 to 80% of r.c. Charge - 10 hr rate Temp. 25°C Discharge - 6 hr rate, 2 hr max.		
6	720, 722	Cycles 1 & 2 - Baseline rates Cycles 3 to 80% of r.c. Charge - 10 hr rate Temp. 25°C Discharge - 6 hr rate, 4 hr max.		
7	727 after baseline	Cycles 1 & 2 - Baseline rates Cycles 3 to 80% of r.c. Charge - 10 hr rate Temp. 25°C Discharge - 6 hr rate Pulses after 1 hr : 50A 2 hr: 70A 180 sec 3 hr: 85A for each 4 hr: 100A pulse 5 hr: 125A		
8	721, 724	Cycles 1 & 2 - Baseline rates Cycles 3 to 80% of r.c. Charge - 10 hr rate Temp. 25°C Discharge - 20 hr rate		
10	728	Charge at 10 hr rate Discharge at 6 hr rate for 9 hrs - stop test (use one of 15 day stand test cells) Temp. 25°C		
11	used 724 after 10	Charge at 10 hr rate for 15 hrs - no voltage cutoff - stop test Temp. 25°C (use one of 15 day stand test cells)		
12	713 <u>,</u> 715	Baseline Test Charge at 10 hr constant current, switch to constant voltage at 4.3V Discharge at 6 hr rate - to 80% of r.c. Temp. 25°C		
13	709-710	Cycles 1 & 2 - Baseline rates Cycles 3 to 80% of r.c. Charge - 10 hr rate Temp. 25°C Discharge - at target profile rate		
14	706-711	Cycles 1 & 2 - Baseline rates Cycles 3 to 80% of r.c. Charge - 4 hr rate Temp. 25°C Discharge - 4 hr rate		
15	707-708	Cycles 1 & 2 - Baseline rates Cycles 3 to 80% of r.c. Charge - 10 hr rate Temp. 25°C Discharge - 3 hr rate		
9	701, 702, 705	Cycles 1 & 2 - Baseline rates Cycle 3 - Charge - 10 hr rate Discharge - 6 hr rate for 3 hrs 15 day stand Discharge at 6 hr rate for 3 hrs Cycles 4 & 5 - Baseline rates Stop test		
		Move cells to abuse tests 1 to overcharge; 1 to overdischarge		

^{*} Rated Capacity is 90% of $\rm Li_xCoO_2$ material capacity within $\rm Li_{0.5} \rightarrow \rm Li_{1.0}$

4.3 100 Ah Cell Characterization Test Results - Summary*

Typical charge/discharge regimes for underwater propulsion sources were selected. The baseline regimen was taken to be a 10-hour charge followed by a six-hour discharge. This regime is test No. 1 in Table 2. As shown by the other tests in the table, variants of the baseline were also applied to more fully characterize the cell. Cycle lives up to 45 have been demonstrated. More typically, 30 cycles were obtained. This is due to less than perfect cell build consistency because of hand assembly during the development stage. Shallow cycling benefits cycle life; Cell 714 cycled at 2-hour discharges at the 6-hour rate gave 44 cycles. Because of the limited number of cells, this test was not repeated. A test at 4-hour discharge duration per cycle at the 6-hour rate vented prematurely. Longer cycle life performance, in a useful capacity range, was obtained from those cells that were charged at a 20-hour rate. A nominal 5 cycles more are attainable from 20-hour charges than 10-hour charges. Data plotted in Figure 10 substantiates the benefit of cycle life versus charge rate.

Plateau voltage or working voltage during discharge varied minimally over the range of useful discharge rates. Voltage was a nominal 3.90 V at a 33-hour rate and decreased only 0.15 V to 3.75 V at a 2-hour discharge rate. See Figure 11. High discharge rates, up to the "C" rate (1 hour) have a minimal effect on capacity; short circuit testing after 39 full depth cycles at normal design rates revealed a short circuit current of 420 amperes when shorted at the 50 percent charge level. See Figure 12. Overdischarging by 50 percent (down to 1.0 V, instead of 3.0 V) resulted in no safety incident.

A noted characteristic of cells cycling normally (a 6-hour discharge and 10-hour recharge) was the signature voltage at 100 percent charged capacity. Typically, cutoff voltage was in the range of 4.06 V to 4.16 V when allowed to float during a constant current charge. Figure 13 shows a bar chart for six voltage ranges. The high percentage of cycles in the highest voltage range (4.26 V to 4.3 V) indicates that limiting the charge voltage to 4.3 V prevents electrode damage.

Low environmental temperatures, i.e., -2°C had minimal effect on capacity. The effect of temperature on capacity and cycle life is shown in Figure 14. Cycle life, as expected, was sensitive to depth of discharge. However, cycle life is relatively insensitive to current density over 60 to 100 percent depth of discharge. See Figure 15.

^{*} For detailed results see tabulate data in Appendix A. Figures 10-15 are plotted from these data. Cell numbers are for specific data given in the appendix.

Figure 10. Cycle Life as a Function of Charge Rate

Figure 11. Minimal Effect of Discharge Rate on Working Voltage

Figure 12. Short Circuit

Figure 13. Charge Float Voltage Established by Characterization Testing

Figure 14. Cold Temperature Environment Effect on Capacity

Figure 15. DoD Cycling Effects at Tactical Discharge Rates

5.0 SMART CHARGE CONTROL AND MONITORING AT THE CELL LEVEL

The 100 Ah cell was substantial enough to be a key building block for larger modules, but at the same time allow demonstration of series and parallel connected cells, key to any Underwater Vehicle propulsion system. It was the management of numerous cells in series/parallel arrangement, and the complexity of charge control in that situation that led the Navy to modify the existing contract and point the remaining resources toward a demonstration with safety and efficient operation as its goals. The effort to accomplish these goals first required a definition of the logic for control. Logic was added for discharge as well as charge since both processes have safety concerns. Electrical currents in both cases are high enough to produce rapid heating at any fault point created in the battery. It was also a key design parameter to create all of the control and monitoring functions as individual logic for each cell as a stand-alone device. This requirement then necessitated that the electronic control be board mountable and be restricted in size to that of the individual cell it is controlling. At the same time each individual cell must work homogeneously within the battery complex, allowing any one or more cells to be bypassed if necessary without affecting the load levels on the remaining functioning cells. Logic diagram for cell charge and discharge are presented in Figure 16. A logic diagram at the battery level is shown in Figure 17.

Notes:

- 1. 10 hour charge rate is 12 amperes (adjustable ± 2 amp).
- 2. Maximum set point temperature is 50°C.
- 3. Rated capacity is 110 Ah (adjustable ± 5 Ah).
- 4. 6 hour discharge rate is 18.6 amperes (adjustable ± 2 amp).
- 5. Wait time, t is 1 minute.

[B70512-4.ved]*paw

Figure 16. Charge/Discharge Logic for Each Cell of the 300 Ah Smart Battery

[B70520-1.vsd]
Figure 17. Charge/Discharge Logic for Battery Overview of the 300 Ah Smart Battery

5.1 The Smart Battery Product

The firmware, the software, and the hardware were all created by DaTran Corporation, Tulsa, Oklahoma. The initial checkout was performed at DaTran followed by installation on the cells and battery at Alliant. Although the purpose of the contract was not to demonstrate portability, however, efforts to control the size of the printed circuit board were largely successful and the fact that the Smart Battery System (SMB) is PC-based would allow future field demonstration with minor "ruggedization" added. Following is a product description.

Product Description

Alliant's SMB system is an integrated smart battery charger system. The SMB controller system consists of six SBI battery charger boards and a host PC that is running the Alliant SBI Program. The host PC communicates with each SBI board through an I2C (pronounced eye squared see) interface and a multiplexed RS232 interface. There is a SBI board on each battery cell.

The Alliant SBI Program provides the user with an easy to use comprehensive interface to the entire battery system. It allows the user to set the various set points, then control and monitor the charge and discharge cycles of the battery system and it periodically logs the condition of each cell. The period is user definable from 1 second to 999 minutes. The data in the log file consists of date, time, voltage, current, temperature, and capacity for each cell. This data can be imported into a spreadsheet program such as Microsoft Excel for analysis.

The SBI board is a microcontroller controlled battery charger circuit board. The microcontroller used for the SBI board is a derivative of the 80C51--microcontroller family that either contains internal flash memory (ATMEL AT89C55), or internal EPROM (Philips P87C58EBLKA). The SBI board has an EEPROM (Microchip 93AA66) for storing non-volatile information. Each SBI board is given charge or discharge parameters by the Alliant SBI Program, and controls the charge and discharge of its cell. The SBI board reads voltage, current, and temperature. It sends this information to the Alliant SBI Program as requested.

The multiplexed RS232 interface is used for all communications between the Alliant SBI Program and the SBI boards except for voltage, current and temperature readings. It is the primary interface between the Alliant SBI Program and the SMB. The RS232 multiplexer has a standard DB9P connector to connect to the PC and six SBI interface cables to connect to each SBI board. The RS232 multiplexer also has a DC power adapter that must be plugged in to operate.

The SBI boards need two external 12 V DC power supplies to charge. The three boards that have the positive posts tied together share one of the power supplies and the three boards that have the negative posts tied together share the other power supply.

SMB Screen Displays

Once the SMB program is installed on a PC with Windows 95[™] or higher, a series of screen displays allows the technician to review the status of each cell in the battery and set or change points. The screen displays are listed in order of their normal appearance and usual sequence of operation.

- Main Menu allows access to all features of the SMB. See Figure 18.
- Data Logging Screen sampling rate of recorded data, if option selected, is numerically set for frequency in seconds or minutes. See Figure 19 and Notepad record sample, Figure 20.
- Set Points Screen either global or individual cell option, to set temperature limits, voltage limits for charge and discharge, trickle charge current, charging current with limits settings.
 See Figure 21.
- Monitor Cells Screen displays all cells in the battery by serial number and provides real time information on cell voltage, temperature, current, capacity, and state of activity (charging, discharging, idle, or alarm). See Figure 22.
- Debug/Administrative Utilities displays system options, such as:

initialize new cell
set addresses and calibration
access to memory
requests for accumulation dump
reset alarm
terminal window
See Figure 23 for a graphic of this screen.

Figure 18. SMB Main Menu

Figure 19. SMB Data Logging Selection Screen

Figure 20. SMB Setup Screen

Figure 21. SMB Set Points Screen

Figure 22. SMB Cell Monitoring Screen

Figure 23. SMB Debug/Administrative Utilities Screen

5.2 Set Up of Smart Battery Demonstration

In parallel effort to that of DaTran Corporation designing and building the Smart Battery firmware, software, and hardware, the 300 Ah demonstration battery was being fabricated at Alliant Techsystems. Once the six individual 100 Ah cells were constructed, the battery was made by connecting them in a series/parallel arrangement to form a 300 Ah, 8.0 V system. The sketch in Figure 24 depicts the general arrangement, plan view of two of the six cells.

Figure 24. General Arrangement of Two Cells of the Six Cell Battery (Plan View)

As a general precaution, the battery was set up in the Special Test Laboratory, which has provisions for test room air cleaning and battery containment. The battery was placed in a chamber that allowed environmental control for cold (-2°C) and hot (+55°C) testing. A number of photographs were taken of the complete Smart Battery test assembly and are shown as a matrix of Figures 25 through 33.

Figure 25. Test Chamber

Figure 26. The SMB Battery

Figure 27. Close-up of PCB's

Figure 28. Side View of SMB Battery

Figure 29. SMB Module Looking Down

Figure 30. SMB Battery Looking Down

Figure 31. Remote Electrolyte Fill Station

Figure 32. Calibrated Electrolyte Fill Reservoirs

Figure 33. Pressure Gauge Bank for CO₂ Charge

5.3 300 Ah, 8.0 Volt Smart Battery Function Test Results

The cells in the battery assembly were not filled with electrolyte until the test setup was completely ready. Normal procedure required a vacuum draw down of each cell and then electrolyte filling with a known volume, usually 80% of total void volume. In this case, each series pair of cells was filled with electrolyte simultaneously. The reason for this was that electrolyte filling is backed with 60-psig carbon dioxide gas. Case swelling can occur. In order to maintain a balanced state between each pair of cells they were activated together. It should also be mentioned that the fixture for each pair of cells allowed pressure transfer between them. Please refer to the sketch of Figure 25 for positioning of fixtured plates. Also within the battery fixturing, plywood plates on either side of each cell acted as insulators. Since each cell was being monitored independently for temperature, thermal separation was necessary. Smart Battery use in field applications is not anticipated to need the type of fixturing described above. Cell separation by metal plate and wooden planks was for the purpose of cell and battery characterization. The high expansion forces described in Section 3.3 can be compensated in normal battery tray design without the need for fixture plates.

Smart Battery Charge

The first Smart Battery Charge began on December 9, 1998 with a low current constant voltage step, followed by a fast rate (10 A) constant current charge. As part of the Smart Battery design package, DaTran Corporation included a plotting routine that allowed graphic representation of

the monitored parameters, i.e., voltage, capacity, temperature, and current. Figures 34 through 43 depict capacity increase of each cell in the battery over the first charge. Once individual cells reached a fully charged state, i.e., 106 Ahs, they were automatically switched to idle and current for that cell was reduced to zero while other cells remained in a constant state of charge at 10 amperes each without fluctuation.

6.0 CONCLUSIONS

The primary goal of the program was accomplished, namely, to demonstrate the lithium/lithium cobalt oxide rechargeable battery system may be further considered for use in the SEAL Delivery Vehicle. An energy density of 100 Wh/lb through 50 cycles at 100% depth of discharge was nearly accomplished. We reached a level of 80 Wh/lb (hard packaged) and 25 cycles minimum, 40 cycles maximum of 100% depth of discharge. For the first time, the physical constraint requirements of this advanced pressurized system were defined. Characterization of the 100 Ah Li/Li_{0.5}CoO₂ cell through a build and test of 30 hermetically sealed cells generated information necessary to design batteries for the SDV application as well as other types of vehicles or any applications in need of a high voltage system, high energy capacity system. By far the greatest advancement of this program work was the integration of a series/parallel connected battery with full electronic control by a small cell top mounted circuit. In addition to the safety benefit provided by the control mode of the Smart Battery electronics, the monitoring mode gives the user immediate information on battery status at the individual cell level. The monitoring mode can also archive information to provide battery and cell history, allowing the user to make decisions on cell exchange or charging prior to releasing a battery for vehicle installation.

Figure 34. Charge of Unbalanced Cells, Constant Voltage at 10 Ampere

Figure 35. Charge of Unbalanced Cells, Constant Voltage at 10 Ampere (5 Amps Per Cell)

Figure 36. Charge of Unbalanced Cells, Constant Voltage Charged to Constant Current (2 Amps Per Cell)

Figure 37. Continued Charge of Unbalanced Cells, Constant Current of 2 Amperes Per Cell

Figure 38. Continuous Charge of Unbalanced Cells, Constant Current of 2 Amperes Per Cell

Figure 39. Continued Charge of Unbalanced Battery, Constant Current

Figure 40. Discharge of Balanced Battery Initiated After 100% Charge

Figure 41. Discharge of Balanced Battery Initiated After 100% Charge (cont)

Figure 42. Discharge of Balanced Battery Initiated After 100% Charge (cont)

Figure 43. Charge at 20 Hour Rate and Discharge at 20 Hour Rate

REFERENCES

- 1. Lin, H-P.W., Kelly, C.J., Chua, D.L., Smith, P.H., James, S. D. and Fleischmann, C. W., Development of a 30-Ampere-Hour Lithium/Lithium Cobalt Oxide Rechargeable Battery, NAVSWC TR 91-184, Silver Spring, MD, 30 Sept 1994.
- Lin, H-P.W., Kelly, C.J., Chua, D.L., Smith, P.H., James, S. D., Murphy, T.C., Fleischmann, C. W. and Zoski, G.D., Rechargeable Lithium Cells with High Energy Density Transition Metal Compound Cathodes-Characterization in AA-Size Cells, CARDIVNSWC-TR-95/034, Silver Spring, MD, Apr 1996.
- 3. Lin, H-P.W., Kelly, C.J., Chua, D.L., Fleischmann, C. W., Smith, P.H., and James, S. D., Silver Oxide/Zinc Rechargeable Lithium Cells A Comparison with High Energy Density Lithium/Lithium Cobalt Oxide, CARDIVNSWC-TR-95/027, Silver Spring, MD, Nov 1995.
- 4. McHenry, E.J. and Hubbauer, P., *Hermetic Compression Seals for Alkaline Batteries*, J. Electrochem Soc, 119, 1972, p. 564.
- Lin, H.W. and Burgess, K., Synthesis of Charged Li_xCoO₂ (0<x<1) For Primary and Secondary Batteries, U.S. Patent No. 5,667,660, 16 Sept 1997.
- 6. Kelly, C.J. and Chua, D.L., *Improved Lithium Metal Anodes*, U.S. Patent No. 5,756,232, 8 Jul 1998.
- 7. Aurbach, D., Zaban, A., Gofer, Y., Einely, Y., Weissman, I., Chusio, O., Abramson, O., Recent Studies of the Lithium-Liquid Electrolyte Interface Electrochemical, Morphological and Spectral Studies of a few Important Systems, J. Power Sources, 54, 1995, p. 76.
- 8. Ebner, W.B. and Lin, W., *Prototype Rechargeable Lithium Batteries*, Edited and reviewed by Smith, P.H. and James, S.D., NAVSWC TR 86-108, Silver Spring, MD, Jun 1987.

APPENDIX A 100 Ah Li_{0.5}CoO₂ Cell Test Results

ACTIVATED; 3/8/96	REMARKS																																															LAST UPDATED: 04-08-96	
	PLATEAU	VOLT.	3.88		3.88		3.88		٠	3.88	3 87			3.87	3.07	207	307	3.87	3.87	3.87	387	3.87	3.87	3.87	3.87	387	3.87	387	3.87	3.87	3 87	38/	38/				3.856												
	FORCE	GAUGE																																															
	RESSURE	(PSIG)		<u> </u>	. .					48			48		-	. [85	, ye	38	3	36	36	-	-	•								-																
	remp.('F)		2	2 2	2 0	La	2	RT	RT	RT	RI	72	2	2	Σį	2 1	2 5	2 0		12	R	RT	RT	RT	RT	R	Z	2	2	æ	2	2	2 2	2 0	ā	E	RI												,
	AC IMPED. 1	(Cm)							-		•				•	•								•		•		•																					
509 E (C/6)	AMP-HRS % RETURNS AC IMPED. TEMP.('F) PRESSURE		97.69	101.56	201.39	07 00	79 66	95 57	99 21	97.93	98 44	98.49	98 59	98 09	97.89	20 20	60 /60	96 43	90 39	95.17	98 59	98 83	98 33	98.34	98 08	97 94	97.58	97.88	97.05	97.04	97.13	96.52	95 88	93.31	94.55	93.05	8157												
FLAT PLATE FP509 DISCHARGE (C/6)	MP-HRS %		9.701	10.085	10.069	0.000	9 897	9.49	9.852	9724	9 775	9.78	9.79	974	9.72	0/8	9/2	8/8	373	9.45	9.79	9.814	9.764	9 765	9.739	9.725	69.6	9.719	9.637	9.636	9.645	9.584	9521	9 404	200	9.24	-8												
ELAT	ш	(PSIG)		. !	+	1		49												.						٠				•		,																	
	TEMP ('F) P		RT	2	2 6	2 10	12	E E	E.	E	RT	RT	RI	R	2	X	IN	2 2	2 0	2 0	12	B	E	RT	RT	RT	RŢ	RT	RT	RT	RF	RT	Z.	2 6	2 6	12	TG												
	AMP-HRS T		9.93	883	9 93	200	200	983	9 93	9.93	8 93	9.93	9.93	9.93	9 93	9 93	9 93	683	56.0	200	9 93	9 93	9.93	9.93	8 93	9.93	9.93	9.93	9 93	9.93	9.93	9 93	933	200	2000	933	0 03	200											
CHARGE		VOLT.	4.079	4 099	4 099	1000	100	4119	4 128	4 123	4 128	4.133	4.142	4 151	4.16	4177	4.186	8	68	4 184	200	1 207	4 207	4 206	4 208	4.207	4 207	4.209	4.214	4.219	4.22	4.221	4 228	4 23/	4 240	4 217	1 207	107											_
ľ	RATE (C/20	ន	888	3 3	3 5	900	900	200	0,10	50	C10	ş	5	9	5	200	200	3 6	3 2		5	95	ş	C/10	CYLO	C/10	C10	C/10	C/10	9	5	2 0	3 2	3 5	200	3											L
	CYCLE#		_	2	6		. "	,	8	6	2	=	12	13	7	15	9		8	2	3 5	3	23	24	25	56	27	78	53	90	31	32	33	9	3	2 2	9	8 8	9	-	2	5	4	45	46	41	48	49	20

Marche Carlot Carlo Ca		CHAR	CHARGE (10 hour rate, except as noted)	ur rate, c	Cept as no	•							Activated 8/28/96
1,000 1,00	CYCLE #	RATE	CUTOFF		AMP-HRS	5	RESSURE	DISCHAR	SS	AMP-HRS		LATEAU	REMARKS
1,014 4,010 3,12 3,12 3,124 1,010 3,12 3,1	Ì		VOLT.		00.00		(Lolle)	2416		12 1968	00 50	3 77	
1, 2, 10, 10 3, 17 1, 10, 10 3, 17 1, 10, 10 3, 17 1, 10, 10 3, 10 3, 10 3	\top	Jun 1	4 0/91		2771	0 :				12 3144	100 20	3.75	
1, 4 (1056 4 08 1, 2, 2, 5 93 (0 3 6)	T	-	4 1014	4 05	-	=				12 304	100 10	3 73	
1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 1	T	=	4 1056	4 08		=				12 254	99 70	37	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Τ	-	4 1089	4 08	-	:		:		12 205	99 30	3 69	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Τ	:	4 1118	4 09	-	:		=		12 256	99 70	3 69	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	T	=	4 1106	4 08	-	-		,		12 323	100.30	3.76	
1, 255 93 70 374 5 day stand after 5th Development of 100 1	T	-	4 1086	-		-				12 267	99 80	371	
19 19 19 19 19 19 19 19	T		4 0999		=	:		:		12 255	99 70	3.71	5 day stand after 9th cycle.
20th 4 (10.6 4 07 7.396 " 10th 1.2799 99 00 3 65		=	4 1012	4 07	-	-		뚠		7 398		0 7749	
10	Γ	20hr	4 1036	407	7.396	-		10hr		12 063	98.20	3 89	
100 10 10 10 10 10 10 1	Γ	=	4 1012	4 09	12.29	:		10hr.		12 279	06 66	3.85	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	I	-	4 1036	L	-			10hr.		12 299	100.10	4	
1, 4,1022 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		-	4 1036					10hr		12 368	100 60	3.9	
10,000 1	I	-	4 1022			-		£		8 45448			
1, 106 10.05 1.00		-	4 1024		8.425			10hr		12.351	100 50		File (p510d
10 10 10 10 10 10 10 10		:	4 1088	L	12.29	=		품		7 397			30W power step 54 min, runtime 2 day stand after this run.
1137 1920 397 29W power step 1137 1920 397 29W power step 1136 41056 4105 41		-	43	L	10.867	-		10hr.		15 608		3 86	File fp510e
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		=	4 1066		12.29			뚶		11 377	92 60		28W power step
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		-	4 1663	L		2		10hr.		13 29	108.00	3 97	
1128 9180 37 28W Dower step File [5510]		=	4 1058	L	-	-		Ŧ		11.258	91.60	3.7	28W power step. 3 day stand after this run.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		-	4 105	L	11.247	=		HR		11 28	91 80	37	28W power step. File [p510g
1752 411 10.786 81 80 10 35 280 power sitep File [5510] 1752 411 10.786 81 81 80 35 280 power sitep File [5510] 1752 411 10.786 81 81 80 80 35 280 power sitep File [5510] 1752 411 10.786 81 81 80 35 280 power sitep File [5510] 1752 411 10.786 81 81 80 38 280 power sitep File [5510] 1752 415 81 81 81 81 81 81 81 81 81 81 81 81 81		=	4.1212	L	11 56	:		HR		11 283	91 80	37	28W power step File (p510h
10 786 11 11 12 12 12 13 13 13		:	4 124	Ц	11 282	:		銋		10 786	87.80	36	28W power step File (point)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		-	4 1252	4	10 786	:		¥		02607		200	2000 power step. File 193101
41754 416 12.29 HR 12.04 105.80 38 28W power step File [5510m 41764 417 12.08 13.004 105.80 38 28W power step File [5510m 4163 414 12.09 HR 12.04 105.80 38 28W power step File [5510m 41763 416 12.29 HR 12.417 39 28W power step File [5510m HR 12.417 12.417 28W power step File [5510m HR 12.407 28W power step File [5510m HR 13.212 28W power step File [5510m HR 14.417 28W power		=	43	4	10 447	-		Ĭ		14 3/3	405 50	2 6	20VV power step. File (p5 tot)
1195 417 1		=	4 1794	_	12.29			¥!		7/6 7/	105.30	2 0	
41901 417 HR 13104 98 0 36 20 20 20 20 20 20 20 20 20 20 20 20 20	اسا	:	4 1795	_	اد			ξ		80.71	98.30 406.80	2 0	
15.63 4.14 1.15.9 1.15.10 1.			4.1901	4				Ĭ		13.004	00.001	200	29th Fourier step. File foot the
12.29 HR 12.417 2.8W power siep File [p510n 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.38 12.407 28W power siep File [p510n 12.407 28W power siep File [p510n 12.407 28W power siep File [p510n 12.4107 28W power siep F			4.1563	_		•		Ĭ		12.116	98 00	000	28W power step. File fp510n
12.29	_		4 1763	4				Ě		42 447			28W rower sten File fo510n
12 115 12 119 1	_	-			12.29			Ĭ		42 446			DatA rough stop File (n510n
4175	_	=						Ě		12.410			2014 power slop. File footing
HR 12 411 12 407 12 40	Ļ		4.175		•			¥!		12.383			20VV DOWEL SIED. THE IDO LOSS
12 407 12 407 12 407 12 407 13 407 13 407 14 417 14 412 13 407 14 417 14 417 14 417 14 417 14 417 14 417 14 417 14 417 14 417 14 417 14 417 18 417 1	ما	=			:			£		12 411			Zovy power step, rile ipolitii
4 1758 HR 13.22 28W power step. Frie p510n	۵	_	4.1759			=		뚶		12.407			Zavy power step. File (Da) or
" 4 1107 " " HR 11.412 28W power step. File p510n 28W power step. File p510	1	<u>-</u>	4.1758		:			뜻		13 212			28W power step. File tp310n
" 5 1105 4 238 " HR 28W power step. File [p5] Un.		-	4.1107		:			꿈		11.412			- 1
	6	-	5 1105		4.238	:		HR					- 1
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ا												
2 3 4 4 6 6 7 7	, -		_										
13	2												
15 16 17 17 18	2												
45 47 47	4												
15 17 18 18	15												
17 47	9												
9	17												
	٠												

Rated Capacity; Ahr.:12.29

NSWC-FP510

1/21/95	IRKS														54 to 30	rge for 16 hrs	rge for 3 hrs,	n to 50 psig.			,																										
ACTIVATED: 11/21/95	/ REMARKS													_			80 Psig on charge for 3 hrs,											\neg	END OF TEST																		
	END OCV		-		•	•		·	1		3.838	3.837	3.836	3.836	3.838	3.837	3.839	3.824	3.848	3.848	5.047	3.843	3 841	3.844	3.838	3.835	3.8351	3.833									_	_				_		<u> </u>			
	PLATEAU	375	3.72	3.71	3.7	3.7	3.7	3.7	3.7	7.6	3.7	3.7	3.7	3.7	3.69	3.69	3.69	3.68	3.68	3.68	20.5	3.64	3.64	3.63	3.62	3.62	3.61	3.6																			
	PRESSURE P	200		•			000	000	20 22	200	5 .			·		٠	-		43	45	3 6	33	33	33	33	33	33	34																			
	RETURN I	3426	322.3	321.0	319.8	319.8	319.1	240.0	3400	346.0	317.3	316.9	315.6	314.9	307.7	309.6	299.6	297.9	304.3	297.1	0.767	289.1	288.5	288.1	283.0	278.9	270.9	261.7	0.0	0.0																	ļ
	AC IMPED.		19	19	19	50	20	77	21	200	23	23	23	23	23 ·	23	23	23	23	23	378	22	23	23	24	25	26	26																			
I DSMF	AMP-HRS "RETURNS	96.35	100.16	100.01	99.92	99.89	99.69	89.00	99.44	90.90	99.12	99.02	98.59	98.38	96.38	26.96	93.85	93.58	95.57	93.33	32.13	91.80	91 60	91.75	90.38	90.68	86.75	84.05	74.37																		
DOD W/ 2M DSMF DISCHARGE (C/6)	AMP-HRS	93 349	86.649	86.516	86.439	86.419	86.241	00.117	85.U28	85.67	85 746	85.658	85.286	85.109	83.375	83.893	81.188	80.953	82.681	20.74	73.75	79.418	79 247	79.377	78.19	77.05	75.05	72.708	64.34																`.		
100 AH AT 90% DOD W/ 2M DSMF DISCHARGE IC/6	END OCV	TOWN TO THE PERSON NAMED IN COLUMN T		٠						_	4.098	4.102	4.105	4.111	4.114	4.135	4.15	4.18	4.218	4.22/	4.22/	4.225	4 225	4 222	4.221	4.222	4.222	4.222	4.1957																		
	RESSURE	500	n/a	n/a	n/a	n/a	20	200	200	200	8 .	-	54		39	70	1	•	-	27	3/	34	33	31	31	32	32	35	38																		
NSWC-602 -	TEMP.('F) PRES	1	71	7.	7	7	2	7		- 52	72	72	72	72	72	72	72	72	72	72	7,5	72	72	72	72	72	72	72	72																		
	AC IMPED. 1	15	15	15	15	15	15	94	1,10	18	6	19	19	19	19	19	19	20	20	21	777	27.0	23	23	23	24	24	24 c	24	00	88																
C/20)	HRS	86.51	86.51	86.51	86.51	86.51	96.51	60.31	80.31	00.01	86.51	86.51	86.51	86.51	86.51	86.51	86.51	86.51	86.51	84.46	61.43	80.34	80.6	80.087	80.607	81.267	81.15	80.535	76.523	,	200																
CHARGE (C/20)	CUTOFF	4 100	4.141	4.137	4.134	4.137	4.141	4 144	4.161	4 131	4.162	4.167	4.169	4.175	4.18	4.202	4.218	4.249	4 289	43	5	6.4	43	43	4.3	4.3	4.3	4.3	4.3																		
	CYCLE#	-	2	3	4	2	9	-	2	2 5	= =	12	13	14	15	16	17	9	19	8 8	17	27	24	25	26	27	28	29	္က	33	33	34	35	36	37	38	39	9	14 5	7 5	2 4	45	46	47	48	49	

ACTIVATED: 12/27/95	REMARKS		12/28/95			1/2/98											Poor performance on 1-15-96 tookcell off	test at 8 am in the 14th hr of charge.	nut cell back on test on 01-24-96 at 8	om on the 18th curle in discharge	the cell was compress back to its	original size after having horizon fixture boths	The cell was on ocy for 192 hrs before it was	out hack on test				•																				LAST UPDATED: 02-14-96		
	END OCV	-	+	3 839	3 836	1	3 834	383	3.829	3 829	3 831	3834	3833	3 83	3.834	500	+	Т	Τ.	T.	3 831	2 85.6	3 858	2 851	3 827	3.8526	3 8558	3 8558	3 8526	3 8528	3.852	3.851	3.8513	3.6537	acae c	3 8608	2 0000													
	Ļ		\dagger	8 8	3.86	3 855	3 855	3 85	3.84	3 835	3 83	3 827	3 825	3 873	185	3705	2 A7 E	2,803	2 783	37.5	37.62	27.5	37.4	2 700	2703	270	3718	3 708	3 713	3707	3 703	3.698	3 693	3 688	3 666	2 003	3073		-											
	1	VOLTAGE											-			1		3.73	2	2000	3.098	0000	3 667	200	3 63	3 636	3 643	3 633	3.64	3.634	3.63	3.625	3 62	3.615	3 615	301	0 0	0 0	3.0											
	l l	(PSIG)	46									,		+	.	A A	. 5	8 8	700	9 2	12.6	778	9 8	3 2	5 6	200	2,5	2,4	3 %	28	28	30	31	34	38	500	50	9	40											
	TEMP (*F) PRESSURE		99	8 8	3 8	3 8	99	89	99	69	99	88	89	88	2 3	8	8 8	8 8	8 8	8	8 8	8 3	8 8	8 8	8 8	8		8 8	3 8	8	8	89	88	68	88	8	8 8	8 8	8											
	AC IMPED. TI	(DIII)	3	-	+			-	7	-	4	7	7	2	<u> </u>	•			1	+	+	-				•		1		. .						•														
DSMF (C/6)	2		95 52	100 08	00 00	300	100 02	100 07	99 74	19 68	99 54	99 30	99 47	99 42	98 78	85.24	82 /8	/B 63	11045	100 15	99 68	88 23	99 28	A/ 88	99 02	98 64	640	/1 88 1/	97.20	200	95 79	94 85	93.76	92.85	06 06	88 12	86 64	75 03	56 49											
AT 90% DOD W/ 2M DSME DISCHARGE (C/6)	AMP-HRS " RETURNS	•	91 54	95.01	200	85 83	95.85	95.9	95 58	95 51	95 39	95 18	95 32	95 27	94 64	91 27	79.31	78 31	100 PM	95 97	95.5	95.38	95 141	200	94 89	94 53	84 34	94 08	200	93 10	91.8	90 992	89 8512	88 9826	87 1073	84 4497	83 0287	719	54 13											
AT 90% (END OCV A	CHARGE	4 065	4 083	4 0826	4 08//	1088	4 0879	4 0868	4 0878	4 0887	4 0905	4 0945	4 0979	4 1015	4 1099	4 1514	4 2994		4 092	88	4 091	4 092	4 092	4 091	1607	4 092	4 093	F 1083	4 004	4.09.0	4 0957	4 0998	4 1137	4 1356	4.1709	4 2349													
NSWC-603 - 100 AH	ESSURE	(PSIG)	H		+		. =	42	45				49		S	•	88		S	45	\$	45	43	43	43	9	37	37	8	3	3 8	3 8	42	43	43	45	45	48	48											
NSWC-60	TEMP (*F) PRESSURE	•	65	92	92	65	C Y	5	85	85	95	65	65	65	65	65	65	65	65	85	65	65	95	65	95	92	92	65	9	50	6	3 8	99	67	67	67	67	67	67											
	AC IMPED.		- 	3	6	+	┤				-	7	•	4	7	2	2	S	2													1												_						
100	SS		95 83	95 83	95 83	85	20 20	2 5	2 2	3 5	883	95.83	95 83	95 83	95 83	95 83	95 83	95 83	68 03	85 83	95 83	95.83	95 83	95 83	95 83	95 83	95 83	95.83	95.83	95.83	95.63	2 2	25.83	85.83	95 83	95.83	95.83	89 48	75 45											
Section 1	41	L	4 0817	4 0989	4 0997	4 1069	4 1083	41070	1080	1082	1007	4 1125	4 1169	4 1204	4.1245	4 1343	4 1775	4 2994	4 236	80.¥	4.084	4 089	4 091	4 097	4117	4.117	4.1138	41124	4.1112	4 1184	41.68	4 1 1 2 1	11202	4 1421	4 1595	4 1972	4 2619	4.285	4 348										1	
	CUTOFF VOLTAGE	MACCOR	-				+		+	+	.	T	+						,	4 153	4 157	4 162	4 164	417	4.10	4 19	4 1888	4.1854	4.1842	4 1914	4 1878	1001	1032	4 2151	4 2325	4 2702	4 3349	4.358	4 421											
	CVC F	1	<u> </u> -	2	3	7	S		1		۶	2 -	2	2	77	15	18	41	18	9	50	21	z	23	24	25	28	27	28	8	8	5	355	3 8	35	38	37	38	L	9	41	42	43	4	45	9	43	æ	9	3

ACTIVATED: 12/27/95	REMARKS	10000	C8/92/7.			1/2/96						,					Poor performance on 1-15-98 tookcell off	test at 8 am in the 14th hr of charge.	put cell back on test on 01-24-96 at 8	am on the 18th cycle in discharge.	the cell was compress back to its	original size and having broken lixure bolts. The cell was on pay for 192 hrs before it was	but back on test.																						LAST UPDATED: 02-14-96	
	END OCY	-	3.6544	3 830	3.836	Т	T	3.83	3.829	3.829	3.831	3.834	3.833	383	3.834	3.848	3.858	3.85	3.852	3.8522	3,631	3.856	3.851	3.827	3.8528	3.8556	3.8556	3.8526	3.6528	3.851	3.8513	3.8537		3.8628	2.0030	.										
		2001	3.86	3 88	3.86	3,855	3.855	3.85	3.84	3.835	3.83	3 827	3.625	3.82	3.81	3.785	3.76	3.803	3.783	3.772	3/53	3.74	3,709	3.703	3.709	3.716	3.708	3.713	3.707	3.698	3.693	3.688	3.688	3.683	3,673	3 673							-			
	DELTA	VOLIAGE	•									-						3.73	3.71	3.699	3.68	3.667	3.636	3.63	3.636	3.643	3.633	3.64	3.034	3.625	3.62	3.615	3.615	361	96	3.6										
	PRESSURE	(1)	8							-					49		20	62	38	37	32	8 8	31	8	26	52	22	52	8 8	8 8	3	34	38	8	8 8	9								-		
	z	JUM C	2033	3645	369.9	369.2	369.5	369.2	367.0	366.3	365.3	364.2	364.6	361.5	347.7	300.2	286.9	402 5	363.1	360.2	0.855	357.7	3519	350.0	349.9	349.6	346.3	345.7	341 8	336.5	331.8	328.2	321.3	3110	264.1	198.8										
	<u>.</u>	imisz)	,,	2 6	, 4	4	4	4	4	4	4	4	4 (2	6	9	9			1	1																						-			
		23 30	75.52	08 55	100.00	99.94	100.02	100.001	99.74	29.66	99.54	99.30	99.47	98 78	95.24	82.76	79.83	110.45	100 15	99.68	89.53	97.58	99.02	98.64	98.45	98.17	97.52	97.16	07.90	94.85	93.76	92.85	90.90	88.12	75.03	56 49										
DOD W/ 2M DSMF DISCHARGE (C/6)	AMP-HRS % RETURNS	75 75	91.54	93.91	95 83	95.77	95.85	95.9	95.58	95 51	95.39	95.16	95.32	94 64	91.27	79.31	78.31	105.84	95.97	95.5	95.38	95.63	94.89	94.53	94.34	94.08	93.45	93.11	92.192	90.992	89.8512	88.9826	87.1073	84.4497	71.0	54 13										
AT 90% I	ND OCV	TARGE .	4,065	4.003	4 0877	4 0874	4.088	4.0879	4 0868	4.0876	4.0887	4.0905	4.0945	4 1015	4 1099	4.1514	4.2994	•	4.092	4 09	4.091	4.092	4 091	1004	4 092	4.093	4.093	4.094	4.0916	4.0957	4.0998	4.1137	4.1356	4.1709	4.6348											
되	ш ,	<u>.</u>	20	\dagger	-		<u> </u>	42		•		1	48			20		20	45	45	45	5 63	43	9	37	37	38	34	3 8	3 8	42	43	43	45	£ 8	46	1									
NSWC-60	TEMP.(*F) PRESSURE	- 00	908	88	8 9	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99 99	99	99	99	99	99	99	200	8 8	68	68	89	89	8 8	89										
	e.	(mrs)	,,	26	, 4	4	4	4	4	4	4	4	4 4	, 4	5	2	5	2		1								1	+			,		1												
(20)	AMP-HRS AC	ŀ	95.83	25.03	95.83	95.83	95.83	95.83	95.83	95.83	95.83	95.83	95.83	95.83	95.83	95.83	95.83	68.03	95.83	95.83	95.83	95.83	95.83	95.83	95.83	95.83	95.83	95.83	85.83	85.83 85.83	95.83	95.83	95.83	85.83	80.03	75.45	2				_			\dagger		
뽔	1.	ار	+	4.0909	+	╀	╀	╀	H	-	4.1097	+	4.1169	4	4.1343	┞	Н	\dashv	+	4.084	+	4.091	╁	t	-	4.1124	4.1112	4.1184	4.1148	4.1138	4.1202	4.1421	4.1595	4.1972	4.2019	4 348	25									
	191	MACCOR	\dagger	1		\dagger	\dagger						\dagger		T	-		\dashv	4.153	4.157	4 162	4.164	4 19	4.19	4.1868	4.1854	4.1842	4.1914	4.1878	4.1868	4 1932	4.2151	4.2325	4.2702	4 3349	4 423	175									
	CYCLE # C	†	-	7 6	, 4	. 2	, 60	7	8	8	10	=	5 5	2 4	15	18	17	18	19	20	21	22	24	25	26	27	28	59	30	32	33	34	35	98	200	900	8 9	41	42	43	44	45	46	48	2 0	2

ACTIVATED: 2/29/96) REMARKS				MACCOR MALFUNCTION OVER THE	WEEKEND OF THE 9TH & 10TH OF	MARCH.										BLEED PRESSURE FROM 76 PSIG TO	28 PSIG MID WAY THROUGH THE 16TH	CYCLE DISCHARGE							END OF TEST																							LAST UPDATED: 03-28-96		
	VOLT.	3.75		•			$\cdot $	3 685	364	•		٠		•	3 22	3 43	3 46	351	351	347	3 47	3 36	3 36			335																									
	% RETURN TEMP.('F) PRESSURE PLATEAU B VOLT.			٠								٠	•	•			28			49	49	49	49	49	49	49																									
	TEMP.("F)	RI	RT	RI	RI	ž	2	RT	2	RT	RT	RT	RT	RT	RT	RT	RT	RT	RT	RT	RT	RT	RT	RT	RT	RI																									
	% RETURN B	94.59	97.87	100 01	99.18	38 36	98 91	100 34	100 24	100.20	99.92	99 80	100.00	62.66	99.33	99 43	99 00	59 07	99 18	99 21	98 61	98 42	98 42	100.09	97 91	97 30																									
504 3E (C/6)	, RETURN A	94.59	77.51	100 01	112.16	10.811	111 67	100 34	100 24	100 20	99.92	99 80	100.00	99 79	99 33	99 43	00 66	20 66	99 18	99 21	98 61	98 42	98 42	100 09	79.32	71.58																									
NSWC- NSWC604 DISCHARGE (C/6)	AMP-HRS 9	89 869	73 647	20.26	106.56	112.119	106.1	95.33	95.24	95.2	94.93	94 82	95 01	94.812	94.37	94.47	94 06	94 13	94 23	94 26	69 66	93.51	93.51	95.1	75.36	68 01																									
NSN	RS TEMP.(*F) PRESSURE AMP-HRS % RETURN (PSIG)			•	•		•	46	•	59			99	•	•						•	•	•	-	•																										
	TEMP.(°F)	RT	RT	RT	R	Σ	RI	RT	RT	RT	RT	RT	RT	RT	RT	RT	RT	RT	RI	RT	RT	RT	RT	RT	RT	RT																			Ī						
		95.01	75 25	95.01	107.44	113,303	107,266	95 01	95.01	95 01	95.01	95.01	95.01	95.01	95.01	95.01	95 01	95.01	95.01	95.01	95.01	95 01	95.01	95 01	76 97	6 69																									
CHARGE	CUTOFF AMP-H VOLT.	4.178	4.327	4 146	4.3	2	43	4.182	4.176	4.155	4.156	4.175	4.23	4.265	4.166	4.17	4 177	4.168	4.2	4.2	4.2	4.19	4.17	4 22	43	43																									
	1	C/10	C/10	C/20	C/20	2	22	C/20	023	C/20	C/20	C/20	C/10	C/10	C/20	C/20	C/20	C/20	C/20	C/20	C/20	C/20	C/20	C/20	C/20	C22																									
	CYCLE#	-	2	3	4	c	9	_		6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	/7	82 5	29	8	31	33	33	ĕ	35	9	7	g	2 5	P V	- 5	2 5	?	4,4	2	47	48	49	20	

% RETURN A: PERCENTAGE OF RATED CAPACITY.

** RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

ACTIVATED: 2/29/96	REMARKS				MACCOR MAI FINCTION OVER THE	WEEKEND OF THE 9TH & 10TH OF	MARCH									BLEED PRESSURE FROM 76 PSIG TO	28 PSIG MID WAY I HROUGH THE 16TH	CTCLE DISCHARGE.						END OF TEST																						ACT HODATED: 03 39 96	LASI UPUAIED. U3-20-30	
	LATEAU	VOLT.	3.75	3.75	Τ	Τ	Т	3.685	3.64	3.64	3.64	3.64	3.64	3.55	3.43	3.46	3.51	3.51	3.47	30.00	3.36	9000	3.36	3 35	2																							
	RESSURE	(PSIG)	-													28		,	49	£ 6	430	9	49	9	Gr.																							
	RETURN P	Whr	337.0	276.2	300.5	420.4	397.9	351.3	346.7	346.5	345.5	343.1	345.1	335.0	324.0	325.4	330.4	330.7	327.1	323.1	314.2	3105	253.2	2022	67,72																						<u> </u>	_
	RETURNS	8	94.59	97.87	100.01	98.96	98.91	100.34	100.24	100.20	99.92	99.80	99.79	99.33	99.43	99.00	99.07	99.18	99.21	98.01	30.42	30 47	97 91	02.20	97.30																							
04 E (C/6)	AMP-HRS "RETURNS RETURNS RETURN PRESSURE PLATEAU	۷	94.59	77.51	100.01	118 01	111.67	100.34	100.24	100.20	99.92	39.80	99.79	99.33	99.43	99.00	99.07	99.18	99.21	98.01	30.42	30.42	79.33	74.50	00.17																							
NSWC-NSWC604 DISCHARGE (C/6)	AMP-HRS %		89.869	73.647	95.02	112 119	106.1	95.33	95.24	95.2	94.93	94.82	94.812	94.37	94.47	94.06	94.13	94.23	94.26	93.69	93.01	93.31	75.36	20.00	0.80																							
MSN	ļw,	(PSIG)	•		1			46	,	59		. 33	8 .			-		-				•			•																							
	TEMP.('F) P		RT	RT	Z 1	Z	<u> </u>	R	RT	RT	RT	2 6	2 2	RT	RT	RT	RT	RT	RT	Z į	¥	ž	Z D	2 2	¥					-											-							
	AMP-HRS		95.01	75.25	95.01	1107.44	107.266	95.01	95.01	95.01	95.01	95.01	95.01	95.01	95.01	95.01	95.01	95.01	95.01	95.01	95.01	95.01	95.01	10.97	66.69																							
CHARGE	CUTOFF	VOLT.	4.178	4.327	4.146	4.3	4.3	4 182	4.176	4.155	4.156	4.175	4.23	4.166	4.17	4.177	4.168	4.2	4.2	4.2	4.19	4.17	4.22	4.0	43					_							1	-										
	# RATE		C/10	C/10	C/20	C/20	02/20	C/20	C/20	C/20	C/20	C/20	2 2	023	C/20	C/20	C/20	C/20	Н	┪	+	+	255	+	0Z20	-	-	-		-					-	1		1	-	1						-	_	_
	CYCLE#		-	2	6	4	0 4	,		6	9	=	7 5	1	15	9	17	2	19	8	5	22	2 2		22 2	L	2 8	29	18	6	32	33	34	35	8	37	8 8	3 8	4	42	43	44	42	46	47	8	49	8

% RETURN A: PERCENTAGE OF RATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

ACTIVATED: 4/16/96	REMARKS				BLEED PSI FROM 75 TO 50 PSIG						CISC 03 OF 30 HCG2 130 CTT 10	BLEED PSI FROM 96 10 30 PSIS		BLEED PSI FROM 82 TO 60 PSIG	BLEED PSI FROM 72 TO 60 PSIG					J					4							Maccor cycle machine toogled through 3	cycles rapidly then vented at the safety	vent closest to the negative terminal. This	terminal was later found to have developed	a low resistance short due to dendrite	deposits across the GTM seal											1 AST HPDATED: 05.24.96	
	MATERI	VOLT.	3.7	37	3 69	369	3 69	369	7 1	3/3	3,50	37.5	37.5		3 76	3.76	3.76	3.76	3.76	3.76	376	3.76	376	3 /6	376	3/6	3/6	2/0	2/2	3/6	376	2/2								1									
	PRESCURE PLATER	(PSIG)			20				0,			C.		. 09	20		89	68	09	09				63	64	09	g		. [2	3 5	63																	
	200	3	3 847	3 842	3 839	3 8384	3 8338	3 8384	3 837	3 8365	3 8393	3 83/1	3 0 30 5	3 8395	3 8361	3 8345	3 8352	3 8384	3 8399	3 8391	3 8391	3 835	3 8381	3 841	3 8381	3 8357	3 835	3 83/4	3 8383	3 8381	3 8383	2 0345																	
	EMP ('E)	EMF.(r)	RT	RT	F.	2	2	2 2	2	2	2 6	2 6	Z 6	2 2	RT	122	RI	R	RT	RI	RT	RT	<u></u>	RT	RT	2	Ξ.	¥	¥	2	¥	7 2	RT	RT										-					
3E (C/6)	AND UP . DETLIBNS TEMP ('E)	6870137	95 50	98 61	97 89	97 93	98 45 .	98 27	27 66	98 51	98 74	99 19	0.55	98 57	98 69	96 28	96 26	96 88	96 22	96 10	94 90	95 07	94 74	94 11	94 41	92 48	89 65	87.82	90 39	88 38	86 48	62 /4	-																
NSWC. NSWC605 DISCHARGE (C/6)	NAD LIDE	י מאני-ושי	88 9563	91 8544	91 1842	91 225	91 709	91 5408	97 4710	91 764	91 9761	92 4001	92 3148	91 3033	91 9288	89 6838	89 6707	90 2459	89 6282	89 5218	88 4013	88 5608	88 2533	87 6661	87 9447	86 1458	88 1528	86 3501	86 346	84 262	85 0324	CB083																	
NSMC	A SOUNDSIO				C/6	C/6	9/0	9/0	5	1	9/0	1	900	\dagger	T	0,0		T	9/0		9/3	C/6	9/O	9/2	C/6	C/6	9/2	9/2	9	C/6	900	8 8	CVB	9/2															
	O DECENIOR IN	(S)	40	,	75							96	()		22									63																									
		EMP ("F)	RT	RT	RI	2	2	F.	Σ	RI	RT	R.	R.	× 10	la	24	RT	2	RT	RT	RT	R	RT	RT	RT	2	RT	2	RT	F.	2	¥ 10	į.	R															
	2011 0114		93 15	93 15	93 15	93 15	93 15	93 15	93.15	93 15	93 15	93 15	93 15	51 10	93.15	93.15	93 15	93 15	93 15	93 15	93 15	93 15	93 15	93 15	93 15	93 15	98 325	98 325	95 523	95 344	31 1263	70 0945	200																
		٠ ک	4 0601	4 0751	4 0751	4 07 16	4 0763	4 0 7 4 4	4 0806	4 0841	4 0898	4 0945	4 0939	4 0941	4 1008	4 0902	4 0914	4 0966	4 0953	4 0967	4 0918	4 0929	4 0915	4 0918	4 0952	4 0903	4 1139	4 1062	4 1184	4 1181	4 1415	4 1184	. .	1.															
CHARGE	CHANGE	VOLT.	-	-	Н	4 1131	-	4	\dashv	\dashv	-	4 1372	+	+	4 1 4 4 7	+	4 1365	4 1422	4 1409	4 1423	41374	4 1384	4 1371	4 1375	4 141	4.1359	4 1597	4 1525	-	4 1649	+	4 1659	5 1077	5 1077													1		
2	1	A .	\vdash	\vdash	Н	C/20	ᆛ	\dashv	4	4	-	+	+	250	+	┿	╀	╀	╀	╀	┞	┝	_		C/20	Н	-	+	4	-	+	+	200	02/3											1		1	+	
		CYCLE #	-	2	3	4	2	9	/	8	6	9	=	2		7	91	-	18	19	20	21	22	23	24	25	26	27	28	29	30	5	325	34	35	36	37	38	39	40	41	42	43	44	.	9	4	9 9	50

ACTIVATED: 4/16/96	REMARKS				BLEED PSI FROM 75 10 50 PSIG						BLEED PSI FROM 96 TO 50 PSIG		Т	BLEED PSI FROM 72 TO 60 PSIG						-3										Maccor cycle machine toggled through 3	Г	П	terminal was later found to have developed	a low resistance short due to dendrite	Ueposits across the CTM seat										LAST UPDATED: 05-24-96	
	PLATEAU	VOLT.	3.7	3.7	3.69	3 0	3.69	3.74	3.75	3.75	3.75	3.75	3.75	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3/6	3.76	2 2	3.76	3.78	3.76	3.76	3.76		1											<u> </u>	4
	PRESSURE PLATEAU	(PSIG)	,		20			76		-	50	-	. 09	50		99	89	00	3			63	64	09	99	•	.	63	38	3		,														
	OCV		3.847	3.842	3.839	3 8338	3.8384	3.837	3.8365	3.8393	3.8371	3.8369	3.8395	3.8361	3.8345	3.8352	3.8384	3 6399	3 8301	3.835	3.8381	3.841	3.8381	3.8357	3.835	3.8374	3.0303	3 8381	3 8394	2.0345																
	RETURN	Whr	329.1	339.9	336.5	330.0	337.8	345.7	344.1	344.9	346.5	346.2	344.3	345.7	337.2	337.2	339.3	337.0	330.0	333.0	331.8	329.6	330.7	323.9	331.5	324.7	324.7	316.8	3003	300.3	300.3	300.3														_
05 SE (C/6)	DISCHARGE AMP-HRS % RETURNS RETURN		95.50	98.61	97.89	97.93	98.27	99 22	98.51	98.74	99.19	99.10	98.57	69.86	96.28	96.26	96.88	96.22	90.10	95.07	94.74	94.11	94.41	92.48	89.65	87.82	80.39	88.38	85.74	200																
NSWC- NSWC605 DISCHARGE (C/6)	AMP-HRS %		88.9563	91.8544	91.1842	91.223	91 5408	92.4216	91.764	91.9761	92.4001	92.3148	91.3039	91.9288	89.6838	89 6707	90.2459	89 6282	88 4013	88 5608	88.2533	87.6661	87.9447	86.1458	88.1528	86.3501	86.340	84.262	79 8685	0.0003		-														_
MSN	SCHARGE	RATE	C/6	C/6	90	9 9	5 5	95	9/2	C/6	9/O	C/6	9 5	C/6	C/6	C/6	C/6	900	9	900	C/6	C/6	C/6	9/2	C/6	90	9	ع ال	900	88	C/6	. C/6														
	SSURE	(PSIG)	40	-	75	+	 		-		96	75		72		•						63		•	•			•	-																	_
	EMP.('F) P		RT	RT	12 E	z !	× 12	R	RT	RT	RT	Rī	× 2	RT	RT	RT	RT	2 6	70	2 12	RT	RT	RT	RT	RT	F.	Z	2 6	2 0	2 12	RT	R														
	AMP-HRS TEMP.('F) PRE		93.15	93.15	93.15	93.13	93.15	93.15	93.15	93.15	93.15	93.15	93.15	93.15	93.15	93.15	93.15	93.15	93.10	93.15	93.15	93.15	93.15	93.15	98.325	98.325	95.523	95.344	70 0045	67.6843																
	OCV A		4.0601	4.0751	4.0751	4.0710	4.0763	4 0806	4.0841	4.0898	4.0945	4.0939	4.0941	4 1008	4.0902	4.0914	4.0966	4.0953	4.0967	4 0929	4 0915	4.0918	4.0952	4.0903	4.1139	4.1062	4.1184	4.1181	4.1413	104																
CHARGE	CUTOFF	VOLT.	4.0984	4.1344	4.1291	4.1131	4.1356	4 1379	4.134	4.1307	4 1372	4.1367	4 13/5	4 1447	4.1345	4.1365	4.1422	4 1409	4.1423	4 1384	4.1371	4.1375	4.141	4.1359	4.1597	4.1525	4.1649	4.1649	4.1000	5 1077	5.1077	5.1077														
	RATE		C/20	-	C/20	+	+	200	C/20	C/20	C/20	C/20	0220	C/20	C/20	C/20	C/20	C730	C/20		C/20	C/20	C/20	C/20	C/20	C/20	C/20	C/20	250	0770	C/20	C/20													1	_
	CYCLE#		1	2	6	4	c g	7	. 8	6	안	7	12	14	15	16	17	18	13	2,0	22	23	24	25	26	27	28	53	3	ક	33	34	35	36	37	8 8	8 8	41	42	43	44	45	46	47	8 6	ה ד

ACTIVATED: 4/16/96	90% 0.5F/M = 96.26 AHr. (Rated Capacity)	KEMAKKU			AC Imp probes click Massor from charge to disch	AC IIII) propes click maccol florif charge to discri	Cell 606 cycling eff. at rated	capacity			7	2888 2888 2888 2888 2888 2888 2888 288	20 342 345 360 37 360 37 37	DISCHARGE CYCLE NUMBER			poor performance due to leaking cell	repaired suspected source of leak	restarted test after adding lost electrolyte, 40cc	-1																				Suspended after 7.33 hrs. into charge, 35.277 Ah.	49.8476Ah additional charged at C/30.	New file no. is NSWC606c			A ACT HEDATED: 06 35 95 TEST TERMINATED	באסו טרבווהי יפיגייין ובטו ובייייייי
		VOLT.	3.79	3.79	3.77	3.64	3.55	3.55	3.55	3.55	3.75	3.75	3.75	3.75	3.75	3.75	3/5	3.75	3.75	3.75	3.88	3.88	3.88	3.68	00.0	3 88	3.88	3.88	3.88	3.88	3.87	3.67	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.91	3.92	3.92	3.93	3.93	30.0
	_1	PRESSURE 1 (PSIG)			-	†		50	•	•	30	5 5	200	50	50	10	2 5	10	10	10	43	43	43	43	-				_	_	41									,	65	٠	•	,	. 18	70
	C/20 = 4.	20	3.847	3.8425	3.8414	3 8435	3.8482	3.8433	3.8384	3.8405	3.8409	3.8391	3.8407	3.8405	3.8403	3.844	3.8842	3 8524	3.8375	3.8373	3.8374	3.8364	3 8363	3.8302	3.833	3 8404	3 8419	3.8433	3.8438	3 8451	3.8449	3.8445	3.8448	3.8449	3.8449	3.8456	3.8465	3.848	3.8532	3.8562	3.787	3.7882	3.7866	3.7849	3,7851	3.7002
	3.04Amp.,	KE LUKN Whr	350.7	365.4	362.3	3700	338.7	341.8	341.1	339.9	358.5	358.1	356.3	356.7	356.9	360.2	171.7	13.1	349.0	355.0	368.1	369.1	368.5	368.5	304.0	362.2	363.1	361.9	361.7	360.0	358.5	355.1	353.3	352.1	350.4	348.0	342.7	330.9	303.1	287.3	369.2	350.8	345.9	338.9	327.5	303.u
99	E (C/6 = 1	RETURNS	96.14	100.15	99.83	00.78	99 11	100.001	99.83	99.46	99.32	99.20	98.70	98.82	98.87	99.78	3.40	3.62	96.69	98.34	98.55	98.81	98.65	98.66	97.63	97.27	97.22	96.90	96.84	96.39	96.25	95.75	94.83	94 52	94.06	93.42	92	88.83	81.36	77.13	98.1	95.96	91.68	89.57	86.56	90.31
NSWC- NSWC606	DISCHARGE (C/6 = 16.04Amp., C/20 = 4.81Amp.	AMP-HRS % RETURNS KETURN Whr	92.5449	96.4063	96.1011	58 5112	95,4031	96.2697	96.0944	95.745	95.61	95.488	95.0046	95.128	95.1746	96.0528	45 7995	3.4875	93.0772	94.667	94.8678	95.1175	94.964	94.9662	93.9784	93.6328	93 5797	93.2744	93.2205	92.7819	92.6467	92.1666	91.2843	90.9835	90.5454	89 9253	88.5559	85.5121	78.3181	74.2449	94.4371	89.4862	88.2491	86.2225	83.3267	100.11
NSWC	- 1	DISCHARG A	┝	Н	900	\dagger	3 8	T		Н	C/6	90	90	9/2	9/0	9/2	9/0	9 (2	C/6	9/2	C/6	9/O	C/6	1	1	\dagger	800	95	9/O	9/2	C/6	8 5	9/3	C/6	9/2	C/6	900	90	9/0	0,0	C/20	C/20	C/20	C/20	C/20	CIZU
		ш	40		6	. 2	<u>.</u>	-			•	+	. .				-		-	,		-	,		1	.			44	45	45	.	45	45	•	48	20		57	09			65	67	73	
	4.81Amp., C/30 = 3.21Amp.)	AMP-HRS TEMP.("F) PRESSUR (PSIG)	RT	RT	IZ C	2 2	7 E	R	RT	RT	RT		Z Z	RT	RT	RT	72	2 10	RT	RT	RT	RT	RT	TZ I	X	¥ 6	10	2 2	RT	RT	RT	× 6	- la	R	RT	RT	RI.	RT	2 18	RT	RT	RT	RT	RT	F	ž
	Amp., C.	MP-HRS TI	96.26	96.26	96.26	96.26	96 26	96.26	96.26	96.26	96.26	96.26	30.20 96.26	96.26	96.26	96.26	44.9616	3 3847	94 55	96.26	96.26	96.26	96.26	96.26	96.26	96.26	30.20	96.26	96.26	96.26	96.26	96.26	96.26	96.26	96.26	96.26	95.2886	92.224	85 4106	81 6361	85.1249	96.26	96.26	96.26	96.26	92 92
	41	OCV A	4.065	4.0829	4.0819	4.0716	4.0629	4 0569	4 0842	4.0834	4.0852	4.0877	4.095	4.1029	4.1064	Н	+	3 206	4 0785	4 0927	4 0983	4.1016	4.1016	4.1013	4.1023	4 1074	7 700	4.1381	4.1494	4.1589	4.1683	4.1767	4 2027	4.219	4.2357	4.2537	4.2676	4.2668	47645	4 2631	4.2742	4.2362	4.2378	4.2429	4.2564	4.2603
	CHARGE (C/20 =	CUTOFF	4 1022	4.1196	4.119	5.1093	4.1488	4 1602	4.1309	4.1368	4.1476	4.1566	4.1505	4.177	4.1946	4.2181	4.3001	4 3007	4 0986	4 1134	4.1195	4.1232	4.1237	4.1238	4.1267	4.1326	4.14.10	4 1645	4 1763	4.1862	4.1962	4.2051	4.2177	4.2489	4.2662	4.285	4.3	4.3	2 6	2 6	43	4.2623	4.2666	4.2738	4.2913	4.3
	-	RATE	C/20	0720	C/20	C/20	0220	0770	C/20	C/20	C/20	C/20	C 250	C/20	C/20	C/20	C/20	0770	200	0730	C/20	C/20	C/20	C/20	C/20	C/20	2750	0220	C/20	C/20	C/20	C/20	222	0220	C/20	C/20	C/20	C/20	07/2	222	0000	023	C/30	C/30	C/30	SS
		CYCLE#	-	2	3	4	2 "	2		6	10	4	12	14	15	16	17	£ 5	2 2	21	22	23	24	25	56	27	07	£ 6	31	32	33	34	36	37	38	33	9	4	3 5	3	45	46	47	48	49	S.

						NSWC- NSWC	607		Rated Capa	city;Ahr.:	95.17	
	Cł	IARGE (10 ho	our rate, ex	cept as show	n)		·		DISCHARG	E (6 hour ra	te)	Activated: 7/26/96
CYCLE	RATE	CUTOFF	ocv	AMP HRS	TEMP.	PRESSURE (PSIG)	DISCHARGE RATE	ocv	AMP HRS	% RETURN	PLATEAU VOLT.	REMARKS
*		VOLT.	1		-2	60	C/8	4.0635	86.559	90.95	3.94	file nswc607
_1_1	C/10	4.101	3.1206	95.17 95.17	-2	1 30	C/6	4,116	94.913	99.73	3.95	
2	C/10	4.153	3.886	95.17	-2	+	C/6	4.119	96.033	100.91	3.95	
3	C/10	4.156	3.886	95.17	-2	 	C/6	4.11	94,855	99.67	3.94	
4	C/10	4.148	3.881	95.17	-2	 	C/6	4.115	95,117	99.94	3.93	
5	C/10	4.155	3.882	95.17 95.17	-2	60	C/6	4.118	94.38	99.17	3.94	
6	C/10	4.162	3.882	95.17 95.17	-2	32	C/6	4.105	88.186	92.66		
7	C/10	4.161	3.878	95.17	-2	 	C/6	4.106	82.592	86.78	3.92	
8	C/10	4.162	3.878	95.17 95.17	-2		C/6	4.166	89.803	94.36	3.9	
9	C/10	4.224	3.878		-2		C/6	4.159	91.448	96.09	3.91	
10	C/10	4.217	3.879	95.17 95.17	-2	+	C/6	4.172	92,644	97.35	3.91	
11	C/10	4.237	3.878	95.17	-2	 	C/6	4.177	94.63	99.43		
12	C/10	4.245	3.881	95.17	-2	+	C/6	4.185	94.818	99.63	3.9	
13	C/10	4.258	3.878	95.17 95.17	-2	40	C/6	4,183	91.683	96.34		
14	C/10	4 26	3.877	95.17 95.17	-2		C/6	4,199	90.945	95.56	3.9	
15	C/10	4.284	3.881	94.79	-2	30	C/6	4.217	90.721	95.33		
16	C/10	4.3	3.878	91.43	-2		C/6	4.215	87.255	91.68		
17	C/10	4.3	3.881 3.879	88.164	-2	27	C/6	4.212	83.054	87.27	Ī	
18	C/10	4.3	3.883	83.366	-2	24	C/6	4.207	78.431	82.41		
19	C/10	4.3	3.883	79.353	-2		C/6	4.205	73.794	77.54	3.9	added 60g El
20 21	C/20	4.3	3.885	85.179	-2	60	C/6	4.251	88.294	92.78	3.8	file nswc607B
22	C/20	4.3	3.882	90.987	-2	60	C/6	4.255	87.019	91.44	ļ	file nswc607C
23	C/20	4.3	3.882	93.906	-2		C/6	4.258	84.538	88.83	3.8	
24	C/20	4.3	3.883	91.626	-2	51	C/6	4.258	82.411	86.59		power failure
25	C/20	4.3	3.881	95.081	-2	50	C/6	4.267	81.149	85.27	3.8	file nswc607D
26	C/20	4.3	3.882	91,616	-2	50	C/5	4.255	75.835	79.68	3.8	
27	C/20	4.3	3.888	76.699	-2		C/6	4.252	72.653	76.34	3.8	44
28									ļ	<u> </u>		test ended
29									 	<u> </u>		
30									ļ	 	 	
31							<u> </u>			 	 	
32						ļ			 	 	 	
33										 		
34										 	 	
35										-	 	
36						 	ļ		 	-	 	
37						 	-		 	 		
38			<u> </u>									†
39			-						 	-		1
40				ļ <u> </u>			I		 			
41						 						
42			1		 							
43			+		 	 			1			
44			 			1.	9					
45			 			1						
46			 									
47			-									
48			+			+				T		
49			ļ	<u> </u>								

[%] RETURN A: PERCENTAGE OF RATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

	REMARKS	.pa																																														
Activated: 7/26/96		Vented - Repaired																	,	١											-																	
	PLATEAU VOLT.	3 8504	3 8565	3.8591	3 8589	3 8602	1.8614	3 8622	3,8697	3 8635	3 8620	3 8595	3 8580	3.8555	3 8593	3 8540	3 8558	3 6626	3 8344	3.8691	3 8580	2.0230	18760	0079.5																								
cept as noted)	% RETURN	97.5	0.66	88.8	89.4	6 99		95.8	986	883	87.8	1.08	85.9	94.5	93.5	92.3	90.80	69.40	98 00	96 60	96 60	83.10	27.30	250																								
DISCHARGE (6 hour rate except as noted)	AMP-HRS	109 8410	111.5530	112 4320	110 8680	110 5640	010011	108 2440	111 3270	110 7560	110 1940	101.6080	108 0350	106.5530	105.4350	104.0040	102.2870	100 8180	99.1387	97.5720	97 6107	80,808	100 8 00	0875.76																								
ä	OCV																																															
	DISCHARG	95		-	•	-			-										•		•																											
	EMP.(°C) PRESSURE																							ľ																			-					
	TEMP.(°C)	AMB	•	•					1.						-			٠		٠	•	-	-																_	1		1		-	
as noted)	AMP-HRS	112.71	•	•																•	•		109 827	100 413									,															
CHARGE (10 hour rate, except as noted)	OCV	404	4.07	4.07	4.08	4 07	4 07	8 3	10.5	80.7	80.4	200	2	107	407	7 08	4 08	0.7	4.17	4.14	4.18	4.21	424	4 2300																								
CHARGE (16	CUTOFF	VOL. 1.	4 1059	4.1112	4 1227	4.1037	4.1058	4.1068	4 0940	4 1081	4 1079	4,10,4	000	4 1000	4 1117	41108	A 1288	4.1440	4.1877	4.1921	4.2298	4 2674	4.2999	4.2999		. .				•			•	•														
	RATE	997	3		- -			•		•	- -			-	-	-	•					•	•				1						•															
	YCLE #	-	- ^	-	-	2		~	-	<u>a</u>	2	= :	2 :	7	=	2	:	=	2 2	R	12	22	23	74	52	2	12	10	2 5	3 5	32	S	7	35	36	37	38	8	ę	=	42	4	7	45	9	5	9	•

% RETURN A: PERCENTAGE OF RATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

Rated Capacity; Ahr.: 114.04

NSWC-NSWC702

% RETURN A: PERCENTAGE OF RATED CAPACITY.
% RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

% RETURN A: PERCENTAGE OF RATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

						NSWC-706			Rated Capacity, Ahr.: 116.29	Ahr.:116.29		
		011 20 0 1 10 O				_			Medica as described at many at 100 Miles		7000	
		CHANGE (10	Change (10 nour rate, except 48 noted	francii ea idi					Discussion of the	AVE BIR INCL	(Da. 01)	Activated:1/3/97 Test start: 1/6/97
CYCLE	RATE	CUTOFF	λ	AMP-HRS	TEMP.("C RESSUR	RESSUR	ISCHAR	} 6	AMP-HRS	RETURN	PLATEAU	REMARKS
		VOLT.				(PSIG)	RATE			Whr.	VOLT.	
1	10hrs.	4.117	3.3599	116.29	RVT	87	6hrs.	4.082	112.185	433.72	3.86	STL was below 60F
2		4.1358	3.7929			75		4.1004	115.643	446 49	F	Test stopped to change to 4hr. rate. 29.07 ampheres
60	4hrs.	4.1996	3.8634			52	4hrs.	4.1077	114.643	438.34	3.83	Test procedure: NSWC708a
•		4.16	3.8171	3	1		•	4.0847	109 205	415.94	3.825	
2	•	4.2072	3 8152		2	53	•	4 1089	114.532	436.99	3.82	
•	•	4.2215	3.8139			67		4.1203	115.6	441.93		
7		4.2226	3.812	•			3	4.1202	115.51	442.48	1	
•	•	4.226	3.8097	1			,	1	115.141	441.51		-1
8	,	4227	3.8095	•	•	70	•	4.1184	114.508	439 19		
9	•	4.2255	3.8078	2			1	4.1158	113.778	436.27	•	
1	•	4.2268	3.8068				•	4,1144	112.722	431.96	1	
12	•	4 2348	3.8093		•		•	4.1181	111.658	427.63	3.818	
13	•	4.249	3.814	2	٠		•	4.1275	110.372	422.47	3.82	
14	•	4.2679	3.8188	3			t	4.141	108.679	415.82		
15	•	4.2929	348234	,	,		1	4.1598	106.849	408 05	•	
9	•	4.2999	3.878	112.29	•		•	4.1618	100 933	385.75	3.81	80% DOD = 83 03 Ahr.
17	•	4.3	3.8318	105.633	•	2	•	4.1558	92 35	351.85	3.8	
18		4.3	3.836	97.9	,		•	4.1506	89.094	339.25	3.81	
19	•	4.3	3.8361	96 43	•		٠	4.1507	85.557	325.79	3.8	70% DOD = 81.40 Ahr.
20		43	3.6336	84.046	٠	9		4.151	81.107	308.43		
21	20hrs.	4.1831	3 8031	116.29	•		10hrs.	4.1595	96.7418	374.38.	3.85	Test procedure: NSWC706b
22	•	4.2078	3.7978	•		9	٠	41724	95.1066	367.71	•	117/97
33			3.8075									

% RETURN & PERCENTAGE OF RATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREMOUS CHARGE.

NSWC-708

:	
i	
;	
•	
7	
١.	
•	
Ĺ	
÷	
,	
í	
į	
5	

Cell shorted at 8hr.57min.Into charge- cell vented at 9hr.25sec. into charge. Total of 3min. of 11.3Amp. charge of shorted cell. Activated:12/17/96 Test Start 12/19/96 Test End:1/5/97 3 Hr. rate discharge load is 37,72 Amp 53 hrs. soak prior to test 90.53 Ah = 80% 3.79 3.78 3.78 3.75 DISCHARGE (3 hour rate except as noted) 3.787 3.787 3.78 3.78 3.777 3.79 3.787 3.79 3.79 3.86 3 78 3.79 VOLT. PLATEAU RETURN 411 48 380 47 423 88 419.10 416 40 416.04 414.15 410 44 409 60 406 28 404 42 401 73 402.81 404 83 397 28 410 11 386 96 432 79 428 08 418 61 424 80 423 36 415 71 431 21 412.01 418 37 409 88 433 89 105.187 109 808 108 167 106.19 106.457 108 466 111.994 108 918 108.713 109.307 108 381 107.341 106 979 102.774 101 228 AMP-HRS 109 922 114347 110.721 110.01 106.87 110.63 110.517 111 809 113 123 110 04 112.851 108 442 113 96 11458 4 2049 4.1308 4.1658 4.2123 4.1982 4.1293 4 1219 4.1293 4 1364 4 1399 4 1513 4.1855 4 2027 4.1258 4.132 4 224 4 0768 4.1065 4.1054 41103 4.1167 4.0839 4 1227 4.13 4 0743 4.103 4 0604 4.1336 င္မ TEMP. (°C RESSURE DISCHARG RATE 8hr. 흥 (PSIG) 67 99 8 8 88 ₽ 101.928 **AMP-HRS** CHARGE (10 hour rate, except as noted) 113 17 3.8383 3 8404 9 8313 3.8323 3.8349 3 8447 3.8455 3 8373 3.8353 3.8364 3.8351 3.831 3.8412 3 8863 3.8348 3.8309 3.8309 3.834 3 8338 3.831 3.8457 3.8263 3.833 3.838 3.837 3.7936 3.4844 8 42119 4.2512 42474 5.1148 4.1843 4 2613 4 27 27 41705 4.1663 4.1759 4.1729 4.1807 4 1078 4.1229 4 1458 41787 4.1574 4.1495 4.1483 4.1552 4.1627 4.1764 4.1743 4.1751 4 1963 4.233 CUTOFF 4.0148 VOLT RATE 10hr. 17 CYCLE 2 28 8 32 8 8 23 8

	Activated 11/11/06 Test start: 11/14/06			decharged Ther. Train after charge that was finded by 4. 3v only.	Began 270w const. power regine on sycie 2.	2.11 1.620V@lbc under 270w	T			3 6447		3 634V & 10/pst G117, under 2/bst 10 bytes 1			3 845				2 444	200		3.628	3.82			then 2 BBV then plumited to 0 47V. At Str. 55min the cell verted.																			
13.65	de except as nete	RETURN PL.	426 45	528 70	421 67	421 62	421.83	420 38	419 28	417 77	415 14	414 30	408 70	417 93	414.85	41138	407.03	402 12	395 78	407 03	67 505	378 53	353.80	797																					
Raind Capacity, Abr.: 113.85	DISCHARGE (6 hour rate except as noted)	AMPHES	16054	135 245	112.50	112.576	112.91	112 167	111 885	111.47	110 78	110 58	100 4	108 554	107.70	106 94	105 879	104 665	103 069	94 616	101 62	6 000	93.00	9.00																					
2	20	A30											+																																
		DISCHARG	-		Var 1270w		-		. .		ŀ			Oh.						•			. .	<u> </u>							1														
NSWC- 788		TEMP ('C) PRESSURE	2			32						107 - 50	\$		2/- 62			70 - 77	0.2	75													1	-	-			+	+		-	-			-
		TEMP (°C)	1									.		•	-	-	-							•	•									-		-			1	-					
	18 noted)	AMP +IRS		113.65	113.85			•							. .							•		•																					
	CHARGE (18 hour rate, except as not	A20		3.3832	7844	4 0754	4 0798	4 077	4 0754	4 0750	4.076	4 0748	4 0748	4.075	4 0826	S80.	4 0058	1 1044	2511.7	4 1313	4 1537	4 177	4 214	4 2339	4.2280																				
	CHARGE (18)	CUTOFF	VOLT.	4 0987	5	11317	4 126	4 1218	4 1169	4 1159	4 1150	1003	4 1142	4 1165	4 1253	4 120	41348	7.637	100	271	4 209	4.236	4 278	43																					
		RATE	1	200	<u>.</u>		-				-	-				-	. .																												
		CYCLE		-	~		•	-			-	9	5	2	=	5	=			9	3 7	,	2	7	22	36	11	20	28	8	7	7	şç	26	37	2	9	42	3	3	\$	40	=	•	S

% RETURN A: PERCENTAGE OF RATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

press. max. 180 on discharge, 72 ocv. pressure:180 charge, 115 discharge. 3.5987V@1hr. under 270w Current doubling problem shown in Maccor Mea 88% return test terminated 86 6%retum 70 Krelum REMARKS 3 511V @ 1hr. under 270w 3 513V 3,7 97.0 DISCHARGE (6 hour rate except as noted) 250 01 202 03 391 16 394 70 377 05 37 MAV. MAV. 425.47 425.62 425.62 424.49 424.10 422.10 42 Ş var./270W TEMP.("C) PRESSURE (PSIQ) 117c P02 4 2119 4 2097 4 2098 4 2092 4 2068 4.0203 4.0203 4.025 4.0036 4.0036 4.1013 RATE

N RETURN A: PERCENTAGE OF RATED CAPACITY. N RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

								•				
					SS	NSWC-711			Rated Capacity, Ant., 119.36	Anr.:116.56		
			•	•					(heton se treave etc. nick 1) 300 kU 2017	ater and	footon se tra	
		CHARGE (4)	CHARGE (4 hour rate, except as	pt as noted)					PISCHANGE (*	ווסתו ושופ בער		Activated:
CYCLE	RATE	CUTOFF	OCV	AMP-HRS	TEMP.("C RESSUR		SCHAR	oc.	AMP-HRS	RETURN	PLATEAU	REMARKS
		VOLT.		•	1	(PSIG)	RATE			Whr.	VOLT.	
-	10hr.	4.0931	3.4214	116.38	RT		Ohr	4 0601	112 653	434.68	3.85	
~	9	4.1102	3.799	•	•	·	Bhr.	4 0785	116 351	448 75	3 85	
,	Į.	4.1682	3.7964	•	,		Ę.	4.0781	115 863	442 07	3.82	
-		4.1794	3.8039		1		•	4.0774	114 288	435.37	3.818	
ď	•	4.182	3.8023		•		•	4 0863	117.267	446 87	3.81	
•	•	4.1751	3 7977	7	•		•	4 0811	116 174	442.94	3.81	
^		4.1768	3.7951				•	4 0806	115.59	441.17	3.82	
•	•	4.1818	3.785		•		1	4 0817	115.282	440 24	3.82	
a		4.1824	3.7937	•	•			4 0809	114.768	438.47	3 82	
9	•	4.1823	3.7938	•	•			4 0801	114 044	435 77	3 82	
=	•	4.1852	3 7964	•	•		•	4 0815	113.494	433 67	3 82	
12	·	4.1892	3.7989	•	1		,	4.084	112.721	430.64	3 82	
13		4.1974	9009	•				4 0895	111.583	426.17	3.81	
7		4.2115	3.804	•			•	4 0995	110 189	420 71	381	
55		42314	3.8089	•			•	4 1158	108 905	415.81	381	
9	,	4.2544	3.8129	•	•		•	4.1355	108 365	405 56	3.81	
17		4.2851	3 8171	•	•			4.1615	108 058	412.88	381	
92		4.3	3.8174	116.074	•		•	4.1735	105.128	401.55	3.81	
19		•	3.8162	112.685			•	41711	100 398	382 89	38	80% capacity cut-off is 93.1Ahr.
8		•	3.8142	108.488				4.1644	92.422	351.44	3.797	
53	•		3.8177	98.707			•	4.1485	77.564	283.59	377	End of test: Capacity return drops below 70%.
22												

	Activated:	PLATEAU ' REMARKS ' VOLT.	3 86 Maccor doubled current on charge.		Normal charge	3.65	•																	80% eff.= 91.69/	3.83 2-//3/17	Charged 8Hr.9Min. then vented, Cell was shorted 51min. prior to	short.																		
1114.06	ir rate except as	RETURN Whr.	432.21	444.13	442 64	441 62	436.12	441.23	444.69	442.03	441 05	438.54	439.30	437.43	437.17	434 83	428.43	424.05	420 43	415.80	413.05	410.33	404.54	395.38	366.20		,								-										
Rated Capacity; Ahr.: 114.86	DISCHARGE (6 hour rate except as noted)	AMP-HRS	111.6	114 62	114.54	114.49	113.06	116.33	115.15	114.45	114.18	113.8	113.75	113.29	113.23	60 711	2	100 05	109.02	107.85	107.15	106.48	105.03	102.73	95.4																				
2		OCV	4.062	4.076	4.077	4 078	4.070	4 013	4.067	4.083	1.084	4.088	4.089	60.7	4.027	000	4.086	888	4.092	4.096	4.104	4.114	4.122	4.133	4.154																				
		DISCHARG	Shr.			•	-	•	•	+	•	•	•	 		1						•			•	•																			
NSWC-712		PRESSURE (PSIG)				S	\$				-							5						-	97d																				
		TEMP.('C) PRESSURE (PSIG)	꿃		-		•		•			•	•		•								•	•		\cdot																_		_	
		AMP-HRS	Γ		•		•		•	•	•	•										•	•		•	•																			
	CHARGE (19 hour rate, except as noted)	000	3.3616	3.775	3.771	3.773	3775	3.778	3.779	3.774	3.774	3.776	3.776	3.777	3.778	3.778		27.5	27.5	3 786	3.701	3.797	3.6	3.801	3.804	3.809	3.818																		
	CHARGE (10)	CUTOFF VOLT.	4.0931	4.1073	4.1136	4.1196	4.1241	4.1320	4.1322	4.1273	4.1302	4 1352	4.1407	4.1422	4.1388	4.1348	2	200,	4 1386	4 1433	4.1529	4.1629	4.1732	4.1862	4.2108	4.2585										1									
		RATE	10hr.								•	•	•	•		.	1	1.	-	-			_									1						1	1						_
		CYCLE	-	2	-	-	}	•	7	•	-	2	=	2	=	=	2		=		2	2	22	23	24	25	2	72	82	2	2	5 5	*	2 3	 2	37	S.	2	ş	5 5	2 2	\$	\$ 41	9	ę

* RETURN A: PERCENTAGE OF PATIETY CAPACITY.
* RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE

						NSWC-713			Nation Copposition (Const.)			
						_			DISCHARGE (6 hour rate except as noted)	hour rate exce	pt as noted)	
		CHARGE (10	CHAKGE (10 nour rate, except as noted)	epres noteuj								Activated:1/22/97 Test start: 1/24/96 Soak: 47hrs.
	PATE	CHTOFF	700	AMP-HRS	TEMP (°C)	PRESSURE	DISCHARGE	Ş	AMP-HRS	RETURN	PLATEAU	REMARKS
1000	<u> </u>	1100				(PSIG)	RATE			Wh	VOLT.	
					RT		J. G.					1st cycle charge and discharge would not accept load. Test stop.
	- T			125.91				4.0625	114.01	410.46	3.59	96 hours additional soak prior to restart.
7	,	;	3.782	15.18					15.02	52.71	3.52	40min, discharge.
2	Aphr	,		81.87				3.951		81.39	3.57	40hr. charge, 6hr. discharge.
	4	4 254		116.99			2	4.0715	115.85	413.46	3.55	
		4.3	3.779	6.12			•	3.865	5.655	20.10	3.45	
•			3,805	47.81			,	3.91	47.032	163.81	3.42	
		3		0.28	8		3	3.821	0.00126	0.00		
			3.824		,		2	3.821	0.0286	0.09		17sec. discharge
•			3.82				:	3.82	0.004	0.01		2.6sec discharge.
:			2	1000			1	3.82	0.002	0.01		1.3sec. discharge.
:		1	,				3	3.82	•	00.0		0.9sec. dischärge
:					•			3.82	0.051	0.16		30sec, discharge.
2			=	11.78			:	3.88	12.45	42.55	3.43	2hr.40min. discharge
=			3.75	15.02			1	3.88	14.98	51.44	3.46	2hr.29min.discharge
9		:	3.74									*
:												end of test 2/24/97
												9
												J 99
6			,									
20												4
77												

	Activated Feb. 7,1997 Test Started, Feb. 11,1997		Cell did not accept charge on 1st cycle.	Cell temperature varied from 20.5C to 24C from beginning of Iffe to	end of life. The 44th cycle discharge increased cell temperature to	34C Room temperature varied from 17C to 19C.																				end vortage 3.78V					end voltage 3.767V				1000	ord vorage 5. fov			had been a family and the second seco	(CCOCOFIST) CATORIA COLLEGE WIRE TO A WAS BUSHING.	Terminated test to five Manners and technology	Official Control of the Control of t	GIN VOIGING S. 13V	Att 46 1 22 97 1 10 2 When 4 404V	THE ADMINITY OF THE POST OF THE PARTY OF THE	ACC BORRION THE	
		PLATEAU VOLT.	3.1			T	3.72	384	382		384	385			3.043	200		200	3.85		•	•	•			2000	3 643	200	3.845	•	3.84	•	3.65	3.845		.	385	3.845	20.0	379	2000	Saga	3.00	٩,	3.60	3.30	
h.:115.44	our rate except a	RETURN F	0.43	418.30	142 19	142 19	143 57	148 46	148 62	148 53	148 12	148 27	148 43	148 52	148 23	14861	200	148 84	148 79	148 70	148 72	148 76	148 80	148 95	148 87	148 69	148 49	140.00	75 875	148 35	148 25	148.19	148 32	148 45	148 32	148 15	148 37	148 41	148 61	147.57	144 30	20.00	90.00	108 41	129 82	(3.18)	
Rated Capacity; Ah.: 115.44	DISCHARGE (8 hour rate except as noted)	AMP-HRS	0.1357	112 112	38 48	•	•	•	•	-	•	•			•				•	•		•	•	•	•				•		•	•	•	•	•	•	•	•		•	.	.	•	•	.	20.81	
		λοσ	373	4 06	391	3 95	394	99	4.17	•		•	•	4.18	•	•	•			•	•	•		•	•	4.179	4177	41/6	4.10	4 178	4.175		4.173	4177	4.176	4.173	4174	4175	4.18	•	101	3.96	38	•	3 93	391	
		DISCHARGE	-6		zhr.	•	•	-	•	-		•				•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•		•		•		•	•	•	
NSWC-714		PRESSURE		73.4	134 c	141 c				82 d													123 c				125 d			1224					140 c		128 d					100					
		TEMP.(°C)	205124				•		•	•	•				•	•	•	•	•	•	•		•		•	•	•	•			•				•	•	•	•		•	-	•	•	•	340].
	f as noted)	AMPHRS	*00.0	115.44	49.74	68 49	36.38	36 67	39.84	38.698	38.71	38 51	38.47	39 39	38.35	38 57	38.78	38.7	38.38	38.22	38.5	38.48	38.7	38.59	38.4	38.32	38.34	38 28	9/ 86	39.05	28.65	38.67	3834	39 29	38.58	38.31	38.71	38 99	39.25	38.71	6.759	2305	4611	22 33	41.7	24.12	
	CHARGE (10 hour rate, except as noted)	A20			3773	3877	3.9	3.985	3.979	3 984		•	•	•	3 986	•	•	3.987		•	3.985		•	3.986	•	3.958	3.984	3 983	3 982	2882	200.0	3 981		3.98	3.982	•	3.98	•	3.981	3 982		3.9	3.897	3.807	198	24	
	CHARGE (10	CUTOFF	, AGE	2.		•							•	•					•						•	•	•		•		•	•		•	•		•	•	•	•		•	•		•		
		Time on	C. Paris	100	2,66	88	908	3.10	3:27	3.21	•	320		3:24	3:19	3:20	3:21		3:19	3:18	3.20		3.21	3.20	3:18	•	•	•	327	200	3.50	2 6	0.5	324	3.20	3:18	3:21	3.22	3:24	3:21		*	:24	1:56	3:36		
		CYCLE		,	•	,	9	9	_		6	9	Ξ	12	13	7	5	19	12	9	5	29	21	z	23	24	25	26	27	828	67	3 2	,	33	35	32	36	37	38	39	40	Ŧ	42	43	7	45	9

CLITICOF CUTTOF						NSWC-715			Rated Capacity, Ahr.: 117.66	Ahr.:117.66				ſ
117.66	ا ا	HARGE (10 hour	r rate, ex	cept as noted)				_	DISCHARGE (61	hour rate exce	_			
117.66 19 100 EOC 1 17.866 439.43 3.856 1.5	1		700	AMP-HRS	TEMP.(°C)	PRESSURE (PSIG)	DISCHARGE	OCV	AMP-HRS	RETURN	_		REMARKS	
1, 1, 200 EOC	1	4 1041	1	117.66	19		6hr.	4.0623	113 966	439 43	3.856			
186 EQC 1001 117 601 453 02 3854	+	4.1178	-		,	200 EOC	•	4 0779	117.398	453 12	3 85			
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	+	4 1251				188 EOC	•	4 0801	117 601	453 02	3 854			
117.243 450.83	+	4 1298		,	ı	50 EOD		4 0807	117 417	45167	3 84			
1,000 1,00	+	4 1333	-	•			•	4 0815	117 243	450 83	•			
1,000 1,00	+	4.1345			•		•	4 0828	116 198	446 74	•			
117 23 451 33 117 25	+-	4.1396			2		3	4 0888	117 531	452 38	•			
153 EOC 1022 117 026 450 56 17 10	۲	4 1419	T					4 0895	117 263	451 33	•			
110 110	۲	41477			3	153 EOC	2	4 0922	117 058	450 58	•			
115 EOC 10909 118 7 449 11 115 EN 140 EN 14	t	4 1495	T					4 0931	117.127	450.82				
115 EOC	†	1.177						4 0909	118.7	449 11	,			
40055 14451 44035 14651 44035 14651 44035 14651 1465	T	4 1475	T			115 EOC	•	4 0874	115.88	445 87				
100 100 100 100 110	+	4 1331	T		3			4.0793	114.51	440 35	•			
100 100	+	4 1343	T		,			4.08		438 70	•			
4,0797 112,305 431.94 4,0819 116.785 429.11 4,0819 116.785 412.951 4,0819 110,334 423.51 4,0819 107,031 410.40 4,0819 107,031 410.40 4,1912 105.86 406.13 4,1912 105.86 406.13 4,1912 103.42 395.85 3.82 4,11549 4,1159 87.81 333.93 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1468 73.296 278.59 3.8 4,11649 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469 4,1469	+-	4 1361			•	107 EOC	•	4 0813		434 00	•			
10 10 10 10 10 10 10 10	1	4 1326		*			•	4.0797		431.94	•			.,
10 10 10 10 10 10 10 10	Т	4 1343						4.0819		429 11	•			
100 100	1	4 1384					•	4 0834		423 51	•			
10	Т	4 1398					,	4 0856		417.43	3.83			
105 96 406 13	T	4 1484			•	0	1	4 0909		410.40	,			
10342 395.85 382 382 383	Т	4.1581		,	•	,		4 1012		408.13	•	90% cycling Eff.= 105.89A	Ahr.	
11649	Т	4.1651		•				4 1072		395.85	3 82			
11,649	Т	4.1764			•		•	41153		373 50				
71,649 - - 42468 73.296 278.56 3.8	Π	4.1358			•	•	•	4 1618		333 93	3.8	80% cycling Eff = 92 72A	lhr.	
	Г	43		f11.649		2		4 2488		278 58	3.8	9hr. const.cum	rent +1hr.const. voltage charge	
Note: Examination of cell after test revealed a vertical weld seam on the side of the case had releaved and exposed cell stack. This caused electrolyte leakage and stack drying. Deep drawn steel caused electrolyte leakage and stack drying. Deep drawn steel caused electrolyte leakage and stack drying. Deep drawn steel caused electrolyte leakage and stack drying. Deep drawn steel caused electrolyte leakage and stack drying. Deep drawn steel	T											End of Test		
on the side of the case had releaved and exposed cell stack. This caused electrolyte leakage and stack drying. Deep drawn steel caused electrolyte leakage and stack drying. Deep drawn steel caused electrolyte leakage and stack drying. Deep drawn steel cases would eliminate this problem in addition to saving weight	T											Note: Examination of cell	l after test revealed a vertical we	Seam
Caused electrolyte leakage and stack drying. Deep drawn steel	T											on the side of the case ha	ad releaved and exposed cell st	St Tis
cases would eliminate this problem in addition to saving weight	T											caused electrolyte leakag	ge and stack drying. Deep draw	steel
	Τ											cases would eliminate thi	is problem in addition to saving	veight
	T													
	T													

	CHARGE (1	CHARGE (16 hour rate, except as noted)	4 as noted)				DISC	DISCHARGE (6 hour rate except as noted)	rate except as n	oled)	
RATE	CUTOFF	λωο	AMP-HRS	TEMP.("C) PRESSURE	RE DISCHARG	WRG OCV		AMP +IRS	RETURN	PLATEAU	REMAKS
7,00	, 000			1 1 1 1 1 1	+	100	-	322.00	Year.		10. B. S.
2	4 054	3 788	20.63	250	-	-		00 00	376.	3 785	
200	111	3.784	5		•		×	33.33	127.7	3 863	2 hr. Discharoe
	4146	3.923	33				35	33.33	127.3	181	
	4.155	3.921			ļ.	4 024	2	3333	127.0	38	
	4.143	3.921					2	33.33	126.7	3.70	
	4.152	3.918			•		13	33.33	128 6	3 79	
	4.105	3.917			<u> </u>	_	7	33.33	126.7	3.8	
	4 155	4,03					-	33.33	126.2	3.78	
	2017	3.016		•	<u> </u>	4 013	2	33.33	1262	3.78	
	4.129	3.017			Ė		8	33.33	126.1	3.78	
	4.121	3.914			Ŀ	900	98	33.33	128.3	3 785	
-	4.118	3,814	ļ. 		Ŀ		80	33 33	128.1	3.78	
	4.121	3 915	•			4 008		33.33	125.4	3.76	
	4117	3.014			<u> </u>	188	٤	1111	126.0	3.77	
	1017	10.	•		ľ		į	1	25.7		
						1	5		136	13.5	
ŀ	5					<u> </u>					***************************************
	6.103	3.812			1	1	100	22.23	120		
	101	3.912				1	2 000	20.23	125 5	376	
	17	3.81			1	+	988	3333	125.7	3.11	
	4.005	3 608			+	+	3 896	33 33	125.2	3.75	
	4.122	200	.		+		88	33.33	125.5	376	
	2	3.91			1	+	3 004	3333	125 0	375	
-	4.102	3 905			1	+	898	33.33	124.5	3.735	
.	¥	389				-	3.084	33.33	124.8	375	
	4.112	3 905	•		1	+	3.994	33.33	124.6	3.74	
	4116	300	•	•			603	33.33	123.73	3.71	
•	4.128	3.906		•			888	33.33	124.32	3.725	
•	4.11	3.606		•		3	1967	33,33	124.03	3.75	
	4.108	3.805		•			3.085	33.33	124.50	3.74	
	4 089	3.906			L		3 983	33 33	124.77	374	
	4.104	3 805		•	-		3 986	33.33	15441	3.73	
	300,	798		•			1077	=======================================	A24 16	1716	
	000 7	600	4.0		1		720	1	27.65	1	
		100							20,000		
	3 3	200	-	 - -	+	1			77 87		
	200	200	_].	<u> </u>	1			200		
	CBO V	200		1.	1	1	1	7	2	23	
	900	200.5		-	+	1	800		124.14		
-	100		-	-		-	200		35 55	2 6	
-				-	+			2 2 2	23 63	100	
		200	1		+]	5 2	3 :	10.00		
	No.	100			+	+	200	77.77)B 67	2 13	
	4 076	2.00	_		1	+	200	22.22	124 35		
	4.074	280			1	1	2 850	22.22	123 32	200	
	4.070	3.60			+	1	3854	33.33	123.4	3 68	
•	4076	3.8			+	+	3 951	3333	124.1	3.725	
•	4.062	3.898				-	3846	33,33	123.73	3.715	
	404	3.897		•	-	+	88	33 33	123 36	371	
	4 064	3.600		•	_	-	2	-	-	-	-
								2	5.531	,,,	

* RETURN A: PERCENTAGE OF RATED CAPACITY. * RETURN B: PERCENTAGE EFFICIENCY OF PREMOUS CHARGE.

.,				Ī																														
		Test Started, 10/15/97	REMARKS		dr. drawye		POR WORTS						3 648v @ Pr., 108 shorts							3.65v @ 2hr.		2.WV @ Zhr.	1.749v @2hr.	20v O.Zhr.	. WOZU.	I. I. W. B. Chr.	O BW DZF.	0.27 IVO ZW.	End of Test					
		Activaled:				3.75	371		2.00	3.68	3 66	3.607	3.07	3.68	3.66	381	3.68	3.68	366	=	929	3	3.65	92	3.6	3.58	35	33						
	noted)		PLATEAU		1	1						•	-	1	-					7		•							+			1		-
.106.	er rate except as		RETURN		123.4	23 88	123 62	123 28	122 50	122.05	122.70	123.00	1227	122 65	122.48	122.57	122 6	122.68	122.52	12241	121.86	120.62	110.57	112.75	105.59	29 65	9302	12.64						
Rated Capacity;Ahr.199.	DISCHARGE (6 hour rate except as noted)		AMP HR 8			200	3333	2	33.33	333	23.33	33.33	33.33	3333	33.33	3333	3333	3333	33.33	23.33	3333	33.33	33.33	3333	2	333	3333	33.33						
			200		2.637	2	3.03	2.834	3.820	3.829	3.032	3.032	3 632	3 628	3 932	3 626	3 028	3.928	3 627	3 925	3.924	3.922	3.82	3.923	3.822	308	3.024	3.037						
			DISCHARG	RAIE							•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•						
NSWC-716			TEMP.(°C) PRESSURE DISCHARG	Tale:					٠																									
_			TEMP.(°C)		•		•	•	•	•						•		•		•	•	•	•	•	•	•		•						
	as noted		AMPHRS				•	•		•	•	•	•		•			•				•	•	•	•	•	•	•	•					
	CHARGE (18 heur rate, except as noted)		V20		3.602	3.089	3	3.884	3.69	3.864	7987	3 607	3.664	3.882	3678	3.875	3.073	3,866	3.653	3,655	3 842	3.622	3.774	2.917	2.097	1.029	- 689	20.	1.65					
	CHARGE (18		CUTOFF	VOLT.	4.054	8	7.00	88.	20.0	682	200	2	3	87	5.07	180	4653	98	1050	3	4.063	1907	4 956	- S	783	4.050	4.073	3						
			RATE		10 kr.	10 M.	200	10 kg	200	ě	2	2	1	200	200	10 10 10	200	2	2	40	- NO	100	2	20 14	10 kr.	- O	-10 Pr	- O PC	- O Pc	10 14.	0 14.	10 kr.	10 kr	
			CYCLE		=	25		3	-	2		,		9		2		2	-	2		5	2	2	-	ñ	Ē		5	2	-		-	2

Colored (tab Norm, neight and marked) Colored (tab Norm) Colored (
Author		CHARGE (1	ië hour rate, except	t as noted)				DISCHARGE (6 ho	ur rate except as	· noted)	BASELINE TEST Achaled:2/17/09 88 hour soak
1,000 17724 1772	RATE	CUTOFF VOLT.	000	AMP HRS	TEMP.(°C) PRESSURI (PSIG)	E DISCHARG RATE	Λ Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	AMP-HRS	RETURN Whr.	PLATEAU VOLT.	REMARKS
4.00 \$7772 1104 1 109 0 42130 1 1 109 1 4112	护	4.095	3.924	44.74	RT	훒	4.065	107.69	417.80	3.86	current doubling on charge.
110 2176 110 2189 110 2189 218	•	4.101	3.7724	109.4	•		4 071	108.86	421.38	•	current doubling on charge and disharpe.
4 (11) 3 (10) 4 (11) 5		4.106	3.7786	•		•	4.073	109 03	421.60		
4.115 3.7784 4.077 1111 53 545 545 541 541 541 541 541 541 541 541	•	4.113	3.7823	•		•	4.075	106.63	411.52	3.855	
411 2704 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4		4.128	3.7864	•	•		4 087	111,183	429 23	3.85	
4 11 2704		4.115	3.7735		•		4.075	109	420 65	•	
4 (1) 27044		7	3 7894				4.073	108.67	420.42	•	
4 11	-		17804				4.073	108.46	418.92		
4.11 3.710							2307	100 33	417 00		
4.131 3.7710 · · · · · · · · · · · · · · · · · · ·	.	4114	3.7763			Ţ.	4.034	10101	8	•	
4121 3772 · · · · · · · · · · · · · · · · · ·		4118	5			[20 00		
4121 31712	$\cdot $	41	3.7711	•			110.4	7/01			
37897 104.46		4.121	3.77.2		•	•	4 079	107.78	416.20		
			3.7697	104.49	•	•					At Shr. 13mm. Into chame the cell shorted. After 30 mm. with
											voltage fluxuations from 0.256V to 5.11V the cell vented.
											-
						-					
						-					
						_					
						-					
						+					
						1				_	
				_							
				-							
								1			
		+	+	_		-					
		-				1					
	L										
					-						
										The second second second	

* RETURN A: PERCENTAGE OF NATED CAPACITY.
* RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARG

																																							T									
	Acilyated:	REMARKS		10.0 min. discharge.	31.0 min discharge.		3.0 fax. 32.0 mm. charge.	3.0 hrs. 53.0 mm, discharge. 10.0 fts. 44.0 mm, charge.	O. D. M. M. C.	OCIES. COCCAINE.	9 0 brs. 14.0 min. charge. 5.0 hrs. 32.0 min. discharge.	9.0 hrs. 4.0 mins. charge.	9 0 hrs. 0.0 min. charge. 5.0 hrs. 22.0 min. discharge.				8.0 hrs. 15.0 min. charge, 4.0 hrs. 55.0 min. discharge.	8.0 hrs. 3.0 min.		7.0 hrs. 47.0 mln. charge. 3.0 hrs. 32.0 mm. discharge.	7.0 hrs. 52.0 min. charge. 4.0 hrs. 36.0 min. discharge.												and of test															
		PLATEAU VOLT.			T	1	3 680	T		3.090	Τ		П	3 680	3 680	2 000	3 670	3 670	3.670		3.660	3.670	3.670	3 670	2000	3.640		3.600		•	.	3 620	3,610															
108.605		RETURN P	0.490	11.140	33.566	389.770	140 320	260 850	414.080	171 400	371 070	363 450	359 410	359.050	352 850	245 900	327.580	316 460	314.230	303 700	305.730	281.050	285 050	265.150	214, 150	182 170	11.610	34.670	32.840	53.230	78.412	75.808	08.87	5														
Rated Capacity; Ahr.:	DISCHARGE (6 hour rate except as noted)	AMP +IRS	0.1535	3,1917	9.37115	108 4400	38.5001	70 4894	111 4400	100.5460	100.3060	88 5030	97 4179	07.4177	95.8290	20.02	92 2380	86 2406	65 8730	82.9450	63 6280	76.9430	77.9050	77 9816	56.6718	201.05	30 6570	9.7400	9.2570	14.8680	11 0470	21 0700	0617 77	00100														
ž	۵	A30	3.7471	3.8710	3 8889	4.0732	3 9160	4 0679	4.0905	4.0773	4.0388	4 0341	4 0345	4 0336	4 0286	4 0224	4.0169	7888	4.0019	3.7939	3.9988	3.9797	3 9861	3 0883	3 8391	3.9421	3.9122	3 8920	3 8920	3.9018	3.8967	3.9076	3 9086	2 8040														
		DISCHARG							+	†						†	1																	-									1					
NSWC-718		TEMP.(*C) PRESSURE (PSIG)					•	•		•							. .		-		•		•	•																								
	s noted)	AMP-HRS TI	0 2060	5.60198	9.85875	108.1630	38.4950	107.2590	74.9360	108 6950	100.6410	100.3030	97.8468	98 0100	98 5017	94 6830	93.0970	80.3030	87 4410	64.6360	85.6250	79.2880	80.7660	81.1940	59.8150	61.0630	31 1460	9 5810	9.4330	15.5960	11.5360		¢ 23 6620	16 4760														
	CHARGE (18 hour rate, except as noted)	ADO.	3,117	3 3986	3.8125	3.6324	3.7828	3.8160	3 9045	3.7819	3 7834	3.7827	7,7840	3.7850	3.7865	3.7878	3.7895	3.7018	7 7064	3 7948	3 7920	3.7912	3.7919	3 7922	3.7936	3.7008	3 7045	3 7892	3.7876	3.7861	3 7857	3.7852	3.7867	3.7883														
	CHARGE (18	CUTOFF	1.1350	4 1250		4.1650	4.1250	4.1650	4.1650	4.1383	4 1650	4.1650												•				•			•	•																
		RATE	- 40 O	100		2.0 hrs	10.0 hrs	20.0 hrs	20.0 hrs	20 0 hrs	10 Ohrs	1001					•	•								•			1			·																
		CYCLE #		-		-	5		7	-	•	9		-	2	15	2	=	=	2 6	7	2	2	24	25	28	27	8 6	5	7	32	ន	X	22	2	5	2	,	-	2	2	7	45	49	5	9	3 %	1

% RETURN A: PERCENTAGE OF RATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

	urs soak								ge, 18A37A																	CHARL PERSON STATE OF																								
	Activated:3/10/67 Start: 3/13/97 72 hours soak								37A Current doubles Boyde charge/discharge, 18A/37A	Current doubles, Charge																Short macated on OCV axes charge then vented at start or	descharge.																							
		PLATEAU VOLT.	3.86	3.05	3 62	3 3	78.	35			384	264	3	38	70	76	20 3	3.64	2	3	2	2	\$.	8 6	3 84																									
110.10	rate except as not	RETURN P		425.4	424.8	422.3	428.1	423.1	413.1	419.9	421.1	420.8	4199	418.7	417	7 9	=	4114	407.9	464.2	000	396.0	200	700	3///6																									
Rated Cepacity; Ahr.: 110.18	DISCHARGE (8 hour rate except as noted)	AMP +IRS	107.293	110 114	10.07	109 651	161 111	109.901	109.311	109.882	109 311	109.22	100 05	108.707	108 478	100 132	9 201	108.901	105 594	105.00	104 162	ē	101.837	100.00	88 288																									
Ž.	5	A30	4.0599	4 0735	4 0739	4.075	4 0845	410.783	4.0798	4 0837	4 080\$	4 0814	4 0808	4 0788	4.079	4.0778	4 0765	4.0761	4.076	4.078	4.0819	4.0865	2000	7 104 7	4 1135																									
		DISCHARG	ξ	-						•	•	•	•	•		•		•	•					1	.																									
NSWC-719		TEMP.("C) PRESSURE (PSIG)	225c																				-	-							-											1		1	_			-	-	
		TEMP.(°C)	1			.					٠		•			•	-		•	•	•	-	· ·	. -	•]•	.	_										_					1	1		1	+	1	1	1	-
	as noted)	AMP-HR\$	110.18		$\cdot \Big $. .				•		•						•		•	•		.		109.519	106.79																							_	
	CHARGE (18 hour rate, except as not	A20	3.4106	3.777	3.77	3.775	3.78.4	3,7783	3,7739	3.774	3.7746	3.7741	3.7733	3.7716	3.7707	3.7702	3,7695	3.7693	377	3.7722	377	3.7819	3 7662	3 7902	3.7844	3.7899																								
	CHARGE (18	CUTOFF VOLT.	4.0785	4.0922	4.1107	4.1162	4 (30)	4.1236	4 1249	4.1293	4.1275	4.128	4.128	4.1269	4.1259	4.124	4.1725	4.1271	4.1210	4.1243	4.1206	4124	4.1428	4.1538	4 1648	4.165																								
		RATE	20 hr		40		1	-			•			•	•	•	•	•	•	•	•	•		•		•																								
		CYCLE #	-	7	•	1			-	•	2	=	13	2	2	2	•	1		2	2	7	22	23	~	22	2	27	2	27	2	5	7 5	3 2	3	8	37	92	38	40	7	2	2	3	\$	9	-	9		3

% RETURN A: PERCENTAGE OF RATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

* RETURN &: PERCENTAGE OF RATED CAPACITY. * RETURN 8: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

S RETURN A: PERCENTAGE OF RAILD CAPALITY.
S. RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARG

						NSWC-722			Rated Capacity; Abr.: 107.55	:107.65		
		CHARGE (18	CHARGE (18 hour rafe, except es	as noted)				۵	DISCHARGE (6 heur rale except as noted)	rale except as no	(pe)	Activated
CYCLE	RATE	CUTOFF	OCV	AMP HRS	TEMP.(°C)	TEMP.(*C) PRESSURE DISCHARG	DISCHARG	OCV	AMP+RIS	RETURN P	PLATEAU VOLT.	REMARKS
-	3 5	1007	3.15	107.55	-		40	4.074	104.604	ll	3.868	Baseine Oycle
,	†	4 109	3.778					4 068	107.35	415.8	3.86	
-	10	5	3.776					4 000	717	280.1	3.667	3.84V end voltage discharge 4ms.
		4.166	3 604	77.436			-	4131	7	281.0	3 607	3 841V and vollage discharge 4ms.
167			3 804	71.407			-			7002	7 096	1 alak and where dechards then
•			3804	71.603			+			787	2.000	2 024 V and subsea dechards dies
1			3.902	71.53	•		-	2		7007	P0.7	S 85 d.V. and unberge discharge Abra
-		•	3 902	72.03			•	4.112		790.1		Substitute of the substitute of the
•		•	3 602	72.14	•			3	711	380	200	3 831V and votage descrator state.
2			3.903	71.78			•	4113	59.429	333	800	JOS. 1900 On OSCURIOR, PAG ON RECOVER PRINCES
=		•	3.608	59.854				411	71.7	280 0	200	
			3 901	72.158	•		•	4.113	7.7	280 1	3 98	Air discharge
١		2371	3901	18.1	•							Test ended 04/1/797
												Cell verted
2												
=												
2												
20												
5												
1												
5												
9												
7									-			
R												
39												
30												
5												
32												
=				وز								
:												
3						L						
	1											
2		1										
2												
<u> </u>	-											
2												
ç					-							
7					-							
\$				1	-		-					
9		1			-	-				-		
43					1							
ę					+							
ę				1	-				_			
8												

																												ŀ																					
	91 hour soak																									9																							
	REMARKS																									charge, cell vent																							
	Acthated:4/13/87 5pm Start:4/17/87 91 hour soak																									42 mindes shorted on charge, cell verted																							
		VOLT.	3.656	3.656	2 2	25	3.64	384	384	3.84	36	70.0		1	2	384	384	3.64	364	364	364	36	28	2		42	1																				1		
DISCHARGE (6 hour rate except as noted)	RETURN PL	ļ	6.104	9118	408.0	407.6	400	410.2	407 5	407.3	406 8	4000	0.07	403.3	0 007	380.0	398 6	394.0	100	386.9	362.7	360.4	376.0	367.5	3713																								
DISCHARGE (6 hour rate e	AMP+IRS		104.163	106.824	100.00	100 101	105.921	108 687	105.09	\$05.0	105.76	105.57	105.01	5 70	00.70	104 02	103.26	102.55	101.81	100 75	969 666	90.04	97.89	95.71	80 62																								
8	OCV		4.038	4 051	200	5	4 052	4 053	4.05	4.052	4 055	4 058	8	5 5	1 050	7 057	4.058	4.057	4 062	780	4.067	4.077	4.083	4.092	4.112	1.123																							
	DISCHARG	RATE	9 74			•					•														•	\cdot																							
	-																																																
	TEMP.(°C)		RT									•	. .	-	-	-	ŀ	ŀ	-	- -			•	•	•	-	1			1	-	1																	_
as noted)	AMP-HR8		106.5								•		.					•			•		•	•	•																								
CHANGE (18 hour rate, except	AGO.		3.386	3 782	3.781	72.	87.6	3.777	3.773	3.774	3774	3.776	3776	37/13	3.172	3.776	377.6	3777	3.781	3 763	3.787	3.788	3.765	3.602	3.808	3.608																							
CHANGE (16	CUTOFF	VOLT.	4.058	4.07	70.7	3	4 098	4.059	4 096	4.096	4 101	4.19	4.102	2	4.163	100	20.7	4 107	4 100	4.1	4.115	4.125	4.133	414	4 163	1.069																							
	RATE		20 hr	20 h	≱.	1	<u> </u>			•		•		•	.				•							•																	_						
	CVCIE		-	2	-	+		-	-	•	9	=	=	=	=	2		=		۶	2	2	8	24	25	2	31	2	2	8	-	2	=	*	9	-	2	2	9	=	2	2	3	2	2	7	7	9	8

% return a: percentage of rated capacity. % return b: percentage efficiency of previous charge.

% RETURN A: PERCENTAGE OF RATED CAPACITY. % RETURN B; PERCENTAGE EFFICIBICY OF PREMOUS CHARGE.

	20	IEMARKS																											,	Discharge time 4hr 28 min.	Oischarge time 4 far 23 min.	Discharge time 4hr 9 min	End of Test by Cap. return 75 81 An														
	Activated: Start: \$72/97		Changed file to NSWC 725A																											Discha	Oriela	48 ·	End of Tes														
	(a)	PLATEAU VOLT.	3.845	3.845	3 645	767	3	70.	200				200	3 62	3 62	3 82	3.82	3.827	3.83	3 83	200	383	2		286		2 816	3.0	3.785	3.78	3.75	3.72															_
3	rate except as no	RETURN 1	1	4158	420.0	420.2	420.7	410.0	4178	177	420.1	130.4	410.1	4210	414.7	415.1	415.9	415.0	4114	465.3	403 6	401.0	384.6	384.5	168 3	A /cr	2020	326 98	312.02	302 49	299.67	282.27					•										_
Rated Capacity; Ahr.: 198.3	DISCHARGE (6 how rate except as noted)	AMP-HRS	102.8	107.0	109 02	100.13	109.29	50 601	108 65	110.38	109 42	90 801	76 801	110 05	108 45	108.61	108.76	108.44	107.42	105.82	105.35	104.67	183.1	100.51	26.37	83.77	80.24	86 03	82.55	80.08	79.38	74.02															_
ž	۵	, 000	4.045	4.074	4.062	4.084	780 7	4.008	4.069	1	600	4 089	180	4 063	4.06	4.083	4.08	4.08	4.079	4.075	4.097	4.074	4 068	4 063	4 048	4 2	4.04	4 023	4 018	4 035	1.03	4.113															_
		DISCHARG	ži 6		•	•	•		•										•		•		•	•					-		•	•													+	-	_
N\$WC-725		TEMP.(PC) PRESSURE																									1	-							1	1	L						1	1		 	_
		TEMP.(°C)	٦	ŀ			•						. .	-	-	ŀ			ŀ	<u> </u>						•	•	-	-	ŀ	-				1	-	L					-	 	1	+	 	-
	as noted)	AMP-HRS	108.3				•			•	•		.	-								•	•	•						-			Ę,														
	CHANGE (18 hour rale, except as noted)	000	65,	1978	3776	3.781	3.781	3.763	3.703	3.788	3.782	3.78	3.773	3778	200		277.	3.778	3776	3.784	3.792	3.769	3.786	3.763	3.763	3.783	3.763	3.7863	3.03	3.786	3 802	3.014													-		
	CHANGE (18 I	cutorr	, Age	4 087	\$ 00.5	4.098	5	4.105	4.106	4.111	4 100	4 108	4 106	80	9 3	200	2 2	1	987	4 085	4 098	4 095	4.087	4 082	4.069	90.7	4.06	4.058	6003	3	100	4.148															
		RATE	1	¥ .	-								•			-		<u> </u>						•		•						ŀ															_
		CYCLE	ŀ			-	5	-	_	-	•	10	Ξ	2	2			•			2	~	22	R	ž	25	28	2	28	82	3	3	2	×	22	2		2	9	2	2	3	\$	ş	4	7	

% RETURN A: PERCENTAGE OF NATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

NSWG-727 Rated Capacky,Ahr.: 68.3	DISCHARGE (4 hour rate except as noted) Activaled:	AMPHRS TEMP.("C) PRESSURE DISCHARG OCV AMPHRS RETURN PLATEAU (PSIG) RATE Whr.	88.30 6.0 hre. 3.986 85.3												0/L 71 LL LES 7107												65.42 238.60				3														
NSWC		į	П	•			•	•	•	•	4	•	•		$\frac{1}{1}$	+	•	•	•	•			•		•						6							٠							_
	3E (18 hour rate, except as	RATE CUTOFF OCV	20.0 hrs 4.040 3.3630	+								•			1	10.0 hrs. 4.123									•			ŕ		•															
		CYCLE #	-	2	6	1		,	•	-	02	=	12	2	+	+	-	0.	9.	20	2	22	77	25	28	27	29	30	34	32	2	Se	36	37	8	9	7	42	43	7	45	9	4	9	

* RETURN A: PERCENTAGE OF RATED CAPACITY. * RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

% RETURN A: PERCENTAGE OF RATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREYNOUS CHANGE.

٢			T		Γ				T	T	Τ																						1				Ī	T										7
		REMARKS		narge Targe	on the second	A.	112 hr. 33 mki. Charge																																									
	Activaled:		ľ	2 Sec. Charge	3 3 3 5	5 min.	112 hr. 3:							L		L		L	ļ		ļ	-			Ļ	L	-	-	-	ļ	Ļ			1	1	+	1	1	+	+	<u> </u>	-						4
112.0	6	PLATEAU VOLT.					3.73					Par																																				
	ale except as not	RETURN P					356.2		387.2	1 99	3776	9 600													-																							
Rated Capacity;A hr.	DISCHARGE (6 hour rate except as noted)	AMP +RIS					95.54		105.16	18.36	102 40	1000																	-																			
Rate		OCV		+			4.043		4 104		4.126							-							1			+													Ì							
·		DISCHARG					_				-			-	-				+																					+	1	+						
NSWC-728	_			1																																												
SZ.		TEMP.(°C) PRESSURE	28F					28F		RT															-																	1			+	-		
	(paped)	AMP HRS					4124	0.012		112.8	17.71	112.0	1126																	-																		
	CHARGE (18 hour rate, except as noted)	OCV	3.448	3.45		3.48	Hece	3.815			3.821				1																																	
	CHARGE (18 h	curorr	5	4.225	4.188	17	4.229	4 373	7		4.167	4.14	4.132	1	+	+			1													+																
		RATE	\vdash	<u></u>	9	밀	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 	<u> </u>	11.26A	14	3	+	1	+	+	+				1	+	+	+	1		1	1	1	+	+	\dagger	\dagger		T						1	1			1	1	Ħ
		YCLE # RU	-	2		+	+	-	t	t	╁	=	- 1	2	=	2	9	-1	9	9	2	<u>~</u>	z	E	z	×	28	77	82	2	S	=	-	7	*	3 3	-	88	g	ę	=	43	2	3	2	=		2 8

OCV AMP-188 METURN PLATEAU 4.064 100.08 4725 3.86 28F Decharge 4.077 112.24 423.7 3.86 28F Decharge 4.075 111.24 423.5 3.86 28F Decharge 4.076 111.89 433.4 3.86 28F Decharge 4.076 111.80 432.4 3.86 28F Decharge 4.076 111.97 431.0 3.845 28F Decharge 4.076 111.97 431.0 3.845 28F Decharge 4.076 111.97 431.0 3.845 28F Decharge 4.076 111.07 430.0 3.845 28F Decharge 4.076 111.07 430.0 3.845 28F Decharge 4.076 110.04 422.7 3.845 28F Decharge 4.086 110.07 42.0 3.85 18F Decharge 4.097 110.04 42.0 3.85 18F Decharge 4.098 110.17 42.0 3.85	NSWC-730 CHARGE (18 hour rate, except as noted)			NSWC-730	SWC-738				Nace Capachy, MV. 112.19 DISCHARGE (6 hour rate except as noted)	rate except as n		Achivated:9/12/07 Test Start: 9/18/07
4 004 100 00 4.25 5 3 86 28F Discharge 4 077 112 24 4.34 7 3 66 28F Discharge 4 005 111 82 4.32 5 3 86 28F Discharge 4 006 113 80 4.32 6 3 845 4.06 4 006 111 97 4.31 0 3 845 4.06 4 007 111 57 4.31 0 3 845 844 4 008 111 57 4.31 0 3 845 844 4 008 111 57 4.31 0 3 845 845 4 008 111 57 4.32 0 3 845 845 4 009 111 57 4.32 0 3 845 845 4 009 110 60 4.26 7 3 845 845 4 009 110 12 4.26 7 3 845 845 4 009 110 12 4.26 7 3 845 16 ChargeD 4 009 110 12 4.26 7 3 845 17 ChargeD 4 009 110 12 4.26 7 3 845 18 ChargeD	RATE CUTOFF OCV AMP-HRS TEMP-(*C) PRESSURE DI	AMP-HRS TEMP.(°C) PRESSURE	TEMP.(°C) PRESSURE			15	DISCHARG	000	AMP-HRS	1		REMARKS
4 077 112.24 434.7 3.66 27F Decharge 4 077 110.17 432.2 3.86 27F Decharge 4 005 111.6 422.2 3.86 284.5 4 005 111.5 432.0 3.84.5 28.5 4 007 111.6 432.0 3.84.5 28.5 4 008 111.87 431.0 3.84.5 28.5 4 008 111.87 432.0 3.84.5 28.5 4 008 111.87 431.0 3.84.5 28.5 4 008 111.87 431.0 3.84.5 28.5 4 008 111.87 430.0 3.85.5 RT Chargell 4 008 110.03 420.0 3.85.5 RT Chargell 4 008 110.04 420.0 3.85.5 RT Chargell 4 008 110.04 420.0 3.85.5 RT Chargell 4 008 110.04 420.0 3.85.8 RT Chargell 4 008 10.465 403.0 3.85.8	3.349 112.13 RT 60	112.13 RT 60	RT 60	09	+		5 K	4.064	109.08	425.5	3.86	
4 001 11102 422 386 20 Decing 4 005 111 6 422 3 386 406 4085 111 6 422 3 386 4085 4075 111 5 421 3 2845 4086 4087 111 7 421 3 2845 4087 111 87 421 3 2845 4087 111 87 421 3 2845 4087 111 87 421 3 2845 4087 111 87 421 3 2845 4087 111 87 421 3 2845 4087 111 87 421 3 285 81 Chargell 4 085 110 64 427 3 285 81 Chargell 4 085 110 64 427 3 285 81 Chargell 4 085 110 64 422 3 285 81 Chargell 4 086 110 64 422 3 285 81 Chargell 4 086 110 64 422 3 285 81 Chargell 4 086 110 64 422 3 285 81 Chargell 4 086 110 64 422 3 285 81 Chargell 4 086 110 65 3 267 6 285 81 Chargell 4 086 110 65 3 267 6 285 81 Chargell 4 086 110 65 3 267 6 285 81 Chargell 4 122 67 128 128 128 128 128 128 128 128 128 12	4 099 3.757 112.13 .	. 112.13			98		6 hr.	4 077	112.24	134.7	T	
4 (108) (11.0 pp 4.024 3.646 4.075 111.5 4.299 3.845 4.081 4.082 4.11.5 4.299 3.845 4.082 4.082 4.082 4.083 4.082 4.083 4.082 4.083 4.08	\downarrow	112.13 ST. A.28	. TO	\downarrow	8 8	- 1	2 2	4.071	111.82	422.5	T	ADI Unicination
4 075 1115 429 3845 4076 4117 4311 3845 4076 11187 4311 3845 4082 41187 4319 3845 4079 11187 4319 3845 4099 11187 4319 3845 4099 111980 420 420 3845 4099 11080 420 420 3845 4101 1100 7 420 3845 4101 1100 7 420 3845 4101 1100 7 420 3845 4101 1100 7 420 3845 4101 1100 7 420 3845 4100 420 420 420 420 420 420 420 420 420 4	112.13	112.13			8		6 hr.	4.086	113.89	439.4	3.646	
4 0076 1117 4.311 3.845 4 0081 111.07 4.310 3.845 4 0082 111.07 4.310 3.845 4 0083 114.02 4.02 3.845 4 0084 114.02 4.02 3.845 4 0084 114.02 4.02 3.845 4 0084 110.04 4.20 3.85 4 0084 110.02 4.20 3.85 4 0084 110.02 4.20 3.85 4 0084 110.02 4.20 3.85 4 0084 110.02 4.20 3.85 4 0084 110.02 4.20 3.85 4 0084 110.02 4.20 3.85 4 110 10.02 4.02 3.85 4 110 10.03 0.40 0.40 3.85 4 110 10.03 0.40 0.40 3.85 4 110 10.03 0.40 0.40 0.40 0.40 0.40 0.40 0.40	4.128 3.769 112.13		•		S		6 kr.	4.075	111.5	429.9	3.845	
4.002 111.07 4.10 2.845 4.002 111.07 4.10 2.845 4.003 110.05 4.02 2.845 4.004 114.02 4.09 3.845 4.005 110.04 4.25 3.845 4.005 110.04 4.25 3.845 4.005 110.04 4.25 3.845 4.005 110.04 4.25 3.85 RT Chargello 4.005 100.40 4.23 3.85 RT Chargello 4.005 100.40 4.23 3.85 RT Chargello 4.006 111.12 4.20 3.85 RT Chargello 4.006 111.12 4.20 3.85 RT Chargello 4.006 111.12 4.20 3.85 RT Chargello 4.106 104.65 4.03 3.85 RT Chargello 4.116 105.69 4.05 3.85 RT Chargello 4.120 104.65 4.05 3.85 RT Chargello 4.121 10.93 4.05 3.85 RT Chargello 4.122 4.05 3.85 RT Chargello 4.123 4.05 3.85 RT Chargello 4.124 4.05 3.85 RT Chargello 4.125 6.7139 3.85 RT Chargello 4.126 6.7139 3.85 RT Chargello 4.127 4.05 3.85 RT Chargello 4.128 8.05 3.27 3.85 RT Chargello 4.129 4.05 3.85 RT Chargello 4.120 4.05 3.85 RT Chargello 4.120 4.05 3.85 RT Chargello 4.121 4.122 4.05 3.85 RT Chargello 4.122 4.05 3.85 RT Chargello 4.123 4.05 3.85 RT Chargello 4.124 4.05 3.85 RT Chargello 4.125 6.7139 3.85 RT Chargello 4.126 6.7139 3.85 RT Chargello 4.127 4.128 8.05 RT Chargello 4.128 8.05 RT Chargello 4.129 4.05 RT Chargello 4.120 4.05 RT Chargello 4.120 4.05 RT Chargello 4.120 4.05 RT Chargello 4.120 4.05 RT Chargello 4.121 4.05 RT Chargello 4.122 4.05 RT Chargello 4.123 4.05 RT Chargello 4.124 4.05 RT Chargello 4.125 4.05 RT Chargello 4.126 4.05 RT Chargello 4.127 4.128 RT Chargello 4.128 4.05 RT Chargello 4.129 4.05 RT Chargello 4.120 4.05 RT Chargello 4.121 4.05 RT Chargello 4.122 4.05 RT Chargello 4.124 4.05 RT Chargello 4.125 4.05 RT Chargello	4.13 3.77 112.13 RT	112.13 RT	RT	+	8		10	6.076	1117	431.1	3 845	
4 (076 111.52 4294 3.845 4.093 110.905 42.9 3.845 3.845 4.093 114.02 44.09 3.945 4.094 4.005 4.007 3.845 4.094 4.007 4	4.129 3.766 112.13	112.13	- -	+	8		2 2	4 082	111.87	431.9	3.845	
100 05	10 lb. 4 132 3 105 112 13 60	112.13	-		8	+-	9 14	4.079	111.52	430.4	3.845	
4 099 114 02 44 08 3 55 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4.141 3.825 112.13 RT ch.28	112.13 RT ch 28	RT ch 28	Ц	9	\vdash	9	4 083	109 05	42.9	3 845	
4 008 1100 11 420 8 3 945 1 100 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10	4.152 3.865 112.13	112.13 RT	RT	4	2	-+	9	4.096	114 02	440.9	3.85	
4 101 4 105 4	4 145 3 821 112 13 28F	112.13 28F	28F	+	8	_	- P	4 085	10011	420.8	3,843	RT Dechards
4 085 110.72 427.7 3.85 28F Discharge 10.857 110.72 427.7 3.85 17 Chargering 10.857 10.845 10	4.171 3.856	112.13 28F	182	+	3 5	-	2 2	200 4	111 58	430.0	3.85	28F Discharge
4 (102 1 100 97 424 6 3.65 RT Chaigading 4,005 100 46 4331 3.65 RT Chaigading 4,005 111,12 4.05 3.65 RT Chaigading 4,005 111,12 4.02 3.65 RT Chaigading 4,005 111,12 4.02 3.65 RT Chaigading 4,005 111,10 93 4.05 8.65 RT Chaigading 4,005 111,10 93 4.05 4.05 3.65 RT Chaigading 4,005 111,10 93 4.05 4.05 3.65 RT Chaigading 4,005 110 93 4.05 4.05 3.65 RT Chaigading 4,105 105 8.05 4.04 3.05 3.65 RT Chaigading 4,125 8.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3	2 200 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2	10000	- -	+	8 8	-	2	4 085	110.72	427.7	3.85	
4.085 109.49 4.23.1 3.65 RT ChargeDD 4.085 110.45 4.09 3.658 RT ChargeDD 4.084 111.12 4.09 3.658 RT ChargeDD 4.084 104.65 4.03 3.653 ZBF DischargeDD 4.011 10.65 4.03 3.653 RT ChargeDD 4.011 110.93 4.05 3.654 ZBF ChargeD 4.006 104.65 4.05 3.654 ZBF ChargeD 4.006 104.65 4.04 3.654 ZBF ChargeD 4.10 104.65 3.07 3.65 ZBF ChargeD 4.12 105.67 3.92.76 3.65 ZBF ChargeD 4.12 67.13 3.05.76 3.65 ZBF ChargeD 4.12 67.13 3.05.76 3.65 ZBF ChargeD 4.11 75.93 2.201.16 3.81 ZBF ChargeD 4.12 67.13 3.05 3.65 ZBF ChargeD 4.12 67.13 3.05				L	8		- E	4-082	109.97	424.8	3.85	RT Charge/Discharge
4 603 1104 5 410 9 3.85 RT Chargell 4 608 11112 429 9 3.85 RT Chargell 4 618 109.21 422 3.85 RT Chargell 4 6110 1102 429 3.854 28F Chargel 4 608 104.65 404 5 3.854 28F Chargel 4 103 103.67 401.73 3.85 28F Chargel 4 123 103.67 401.73 3.85 28F Chargel 4 123 103.67 401.73 3.85 28F Chargel 4 124 67.19 335.70 3.85 28F Chargel 4 125 67.19 335.70 3.85 28F Chargel 4 126 75.83 291.10 3.81	A 135 3 76 112 13	112.13			9		S.	4.085	109.49	423.1	3.85	RT Charge/Discharge
4 089 111.12 429 9 588 RT Chargello 4.118 10.05 403 0 585 28 Pt Chargello 4.118 110.93 429.3 3.85 28 Pt Chargello 4 0.08 114.65 403 3.85 28 Pt Chargello 4 10.09 10.56 40.5 3.85 28 Pt Chargello 4 110 10.57 401.73 3.85 28 Pt Chargello 4 123 10.15 39.27 3.85 28 Pt Chargello 4 125 86.55 372.72 3.86 28 Pt Chargello 4 125 87.139 86.55 372.72 3.86 41.16 75.83 28.16 Pt Chargello 4 110 75.83 29.10 3.85 28 Pt Chargello 4 110 75.83 29.10 3.85 28 Pt Chargello 4 110 75.83 29.10 3.81 28 28 Pt Chargello 4 110 75.83 29.10 3.81 28 28 Pt Chargello 4 110 75.83 29.10 3.81 28 28 Pt Chargello 4 110 75.83 29.10 3.81 28 28 Pt Chargello 4 110 75.83 29.10 3.81 28 28 Pt Chargello 4 110 75.83 29.10 3.81 28 28 Pt Chargello 4 110 75.83 29.10 3.81 28 28 Pt Chargello 4 110 75.83 29.10 3.81 28 Pt Chargello 4 110 75.80 29.1	4.141 3.818	112.13 28F	28F		9		9 E	4 083	106 45	410.9	3.85	RT Charge/Discharge
4 084 104.65 403.6 3.65.7 28 Discharge 104.65 405.4 22.2 3.65.5 RT 4.111 110.93 420.2 3.65.5 RT 4.06.6 109.6 405.4 3.65.4 28F Chargel 4.10 105.6 405.4 3.65.7 3.65.4 28F Chargel 4.12 105.6 3.0 3.0 3.6 3.6 28F Chargel 4.12 105.6 3.0 3.0 3.0 3.6 28F Chargel 4.12 105.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	4.147 3.866 112.13 RT	112.13 RT	RT	-	8	-	6 hr.	4 098	111.12	429.0	3.858	RT Charge/Discharge
4.116 1109.21 4.22. 3.85.5 Rf Charget 4.086 1165 4.05.4 3.85.4 28F Charget 4.086 114.655 4.05.4 3.85.4 28F Charget 4.120 105.87 401.73 3.85 28F Charget 4.121 0.05 3.92.79 3.85 28F Charget 4.122 0.05.97 319.30 3.85.5 4.125 0.72 3.95.0 3.85.5 4.125 0.72 3.95 3.85.7 4.125 0.72 3.95 3.85.7 4.126 75.93 2.91.19 3.81	4.137 3.926 112.13 28F	112.13 28F	28F	1	8	-	0 k	4 084	104.65	403.8	3 853	28F Discharge
4 116 110 93 429 3 5 894 421 110 93 405 4 105 4 105 6	4.177 3.876 112.13 28F	112.13 28F	28F	-	2	_	, P	4.118	109 21	422.2	3855	KI
4 000 104 655 404 5 3 694 40 104 655 410 104 655 404 5 3 649 40 104 105 60 400 3 3 65 20 Chargel 4120 103 67 3 10 3 0 3 10 3 0 10 4 120 104 65 3 10 2 10 3 10 3 10 10 10 10 10 10 10 10 10 10 10 10 10	3 878 112.13 RT	112.13 RT	T.	+	2	-	2	4.111	110.93	429.3	3.654	28 F Charge/Uscharge
4.116 105.60 4.06.3 3.65 28E Chargel 4.121 10.55 372.72 3.65 28E Chargel 4.122 80.55 372.72 3.65 28E Chargel 4.123 80.55 372.72 3.65 28E Chargel 4.125 80.55 372.72 3.65 28E Chargel 4.126 80.55 372.72 3.65 28E Chargel 4.127 80.55 372.72 3.65 28E Chargel 4.128 80.55 372.72 3.65 28E Chargel 4.128 80.55 372.72 3.65 28E Chargel 4.129 80.55 372.72 3.65 28E Chargel 4.120 3.65 3.65 28E Chargel 4.120 3.65 3.65 28E Chargel	4.137 3.773	112.13		+	2 5		2 2	4 000	104 855	404.5	3.849	
4 123 103.97 401.73 3.85 28F Chargel 4 128 86.55 372.72 3.86 4 123 87.159 3.35.26 3.87 4 123 83.07 3.16.30 3.81 4 119 75.93 291.10 3.81	11213	11213		1	2	- T	40	4.110	105.69	408.3	3.65	
4.13 101.65 392.79 3.85 4.128 08.55 372.72 3.89 4.123 07.139 335.72 3.837 4.123 83.07 318.30 3.825 4.116 75.93 291.19 3.81	A 176 3.798 112.13	112.13			2		6 hr.	4.123	103.97	401.73	3.85	- 1
4.128 90.55 37.27 3.846 4.123 87.13 33.520 3.815 4.119 75.93 291.10 3.81 4.119 75.93 291.10 3.81	4,184 3,804 111.86 *	111.86	•		02		6 hr.	4.13	101.65	392.76	3.85	28F Charge/Discharge
4.115 07.134 3.19.24 4.116 75.03 291.19 3.815 4.116 75.03 291.19 3.81	4.184 3.802 109.91	10.001	•	+	20	T	E .	4.128	96.55	37272	3.846	28º Charge/Uscharge
4.123 83.07 318.30 3.823 4.116 75.93 291.16 3.81	104.9	104.9	-	1	2	T	2	4.125	87.73	37.000	3.03/	an remain table
4.116 (5.83) (5.11)	4.184 3.819 97.03	97.03	•	+	2	T	, E	4 123	83.07	319 30	3.825	205 Change Day of Test (0480)
	10 hr. 4.184 3.826 89.668 70	899.88	•	1	2	- 1	ž.	4.118	(3.03	01.10	100	TO CHAIRMAN AND THE PARTY AND
	>	>				- i -						
						i						
						1						
						1						
						ŧ						
						- 1					1	
						- 1						
					L	1						
					L							
						. 1						
						J						

% RETURN A: PERCENTAGE OF RATED CAPACITY. % RETURN B: PERCENTAGE EFFICIENCY OF PREVIOUS CHARGE.

APPENDIX B Smart Battery Controller Reference Manual

Alliant Technical Reference Manual

Theory of Operation

Charging and Discharging
Microcontroller to PC Interface

Hardware

Processor Description
Microwire Devices
Analog Devices

Calibration

Three Volt Calibration
Four Volt Calibration
Zero Ampere Calibration
Twelve Ampere Calibration

Firmware

Charge Control
Discharge Control
Error Reporting

RS232 Commands

Format
Commands
Set Point Commands

Theory Of Operation

Charging and Discharging

The primary function of the SBI board is to charge and discharge the cell to which it is attached. The SBI board has three charge states. They are trickle charge, constant current charge, and constant voltage charge. The ALLIANT Smart Battery Interface Program passes the charge parameters to each SBI board. The ALLIANT Smart Battery Interface Program then initiates a charge. The SBI board controls the charge. The charge cycle starts as a trickle charge. When the voltage is above a minimum set value and the temperature is above a minimum set value, the SBI board switches to constant current charge. When the voltage reaches the target voltage, the SBI board switches to the constant voltage charge. Once the SBI board is in the constant voltage charge, it remains there indefinitely. The SBI board meters the charge current to calculate capacity. The SBI board stores the capacity, but it is up to the ALLIANT Smart Battery Interface Program to keep this value up to date. The SBI board has four LEDs that are used to indicate the status.

The ALLIANT Smart Battery Interface Program integrates the cells to act as a battery system. The responsibility of the ALLIANT Smart Battery Interface Program include initiating the charge cycle, responding to the conditions of the charge cycle, and logging data from the charge cycle.

Microcontroller to PC Interface

The ALLIANT Smart Battery Interface Program runs on the host PC. The host PC communicates to the SBI boards through I2C and RS232 multiplexed communications. The I2C interface is used to update the host PC on voltage, current, and temperature of all of the SBI boards. The I2C interface cable plugs into the host PC parallel port. It has a PC power supply connector to power its active electronics. This must be plugged into the power plugs inside the host PC. The other end plugs into the I2C four-pin header on one of the SBI boards. The I2C signals are then daisy-chained to the other five SBI boards. The RS232 signals require a RS232 multiplexer box. This box is connected to each SBI board through a star configuration. The RS232 multiplexer box is then connected to host PC using a RS232 cable with DB9S connectors. During charge and discharge cycles, the Smart Battery Interface Program is constantly requesting current, voltage, and temperature from each SBI board. These values are typically sent across the I2C interface, but can be configured to be sent across the RS232 interface. All other communications between the host PC and the SBI boards is done through the RS232 interface.

Hardware

Processor Description

The microcontroller used for the SBI board is an 8-bit derivative of the 80C51-microcontroller family that either contains internal flash memory (ATMEL AT89C55), or internal EPROM (Phillips P87C58EBLKA).

The Philips P87C58EBLKA is a self-contained microcontroller that contains 256 bytes of RAM and 32kbytes of EPROM. The microcontroller has a window in the top of it that allows it to be erased and reprogrammed. It has three built in timers, two hardware interruptible I/O pins, and a built in RS232 shift register.

The ATMEL AT89C55 is also a self-contained microcontroller that contains 256 bytes of RAM and 20kbytes of Flash RAM. Other than the 20kbytes of flash RAM instead of 32Kbytes of EPROM, the AT89C55 functions identically to the Philips P87C58EBLKA.

Microwire Devices

The microwire devices are the devices that communicate with the processor through a serial signal on the SBI board. There are three microwire devices. They are the DAC (MAX 539), the ADC (MAX148), and the EEPROM (93AA66).

The Maxim MAX539 Digital to Analog Converter is what the processor uses to control the charge voltage. The MAX539 is a 12 bit DAC that outputs twice the reference voltage and has a resolution of 2Ref / 4096 per step. The reference voltage is set to 2.5V.

The Maxim MAX148 Analog to Digital Converter is used by the processor to sense the voltage, current and temperature of the cell. The MAX148 is a 10 bit ADC that has a resolution of Ref / 1024. The reference voltage is set to 4.1V.

The Microchip 93AA66 is what the processor uses to store semi-permanent information. It can store 512 bytes. It is used to store information such as make, model; chemical, serial number and capacity of the cell. It also stores the calibration data for the SBI board.

Analog Devices

The Linear Tech LT1339 is a DC to DC converter chip that controls two IRL3803 MOSFETs to provide charge current. It uses Pulse Width Modulation on the gate of the MOSFETs to alternately turn them on and off.

The International Rectifier IRL3803 Power MOSFETs are used for several things on the board. First, they are used by the LT1339 to control the charge current using pulse width modulation. Second, they are used to connect the charger circuit to the cells. Third, they are used to connect the discharge load to the cell.

Calibration

The SBI boards each have calibration values for three volts, four volts, zero amperes, and twelve amperes. These calibration values are stored in the EEPROM. The SBI boards are calibrated at the factory, but a review of the calibration process follows. The tools and equipment required to recalibrate are:

- A twelve-volt six-ampere DC power supply.
- A precision variable DC power supply that is adjustable between three and four volts.
- A sixty-watt resistor rated between 249 milliohms and 333 milliohms.
- A calibrated voltmeter.
- A calibrated current meter that will measure twelve amperes.

Command line communication with the SBI board is necessary to calibrate. The SBI board command line commands use the address as part of the command. These procedures use address 16 in the examples. The SBI board must be disconnected from the cell to calibrate. The twelve-volt power supply must be connected to the SBI board charger connectors to calibrate.

Three volt calibration

To calibrate to 3 volts, follow the procedure listed below:

- Connect the variable power supply to the cell post terminals on the SBI board. Make sure the voltage is already set to between 0 volts and 4.5 volts to avoid over voltage on the circuitry.
- Using a calibrated voltmeter, adjust the voltage to 3 volts.
- 3. Read the voltage value returned by the ADC by doing 16 A V<cr>
 The SBI board will return a 3-digit hexadecimal number. This number is the 3-volt calibration number.
- 4. Do the command 16 X v XXX<cr> where XXX is the 3-volt calibration number. This writes the calibration number to the board.

Four volt calibration

To calibrate to 4 volts, follow the procedure listed below:

- Connect the variable power supply to the cell post terminals on the SBI board. Make sure the voltage is already set to between 0 volts and 4.5 volts to avoid over voltage on the circuitry.
- Using a calibrated voltmeter, adjust the voltage to 4 volts.
- 3. Read the voltage value returned by the ADC by doing 16 A V<cr>
 The SBI board will return a 3-digit hexadecimal number. This number is the 4-volt calibration number.
- 4. Do the command 16 X V XXX<cr> where XXX is the 4-volt calibration number. This writes the calibration number to the board.

Zero Ampere Calibration

To calibrate to 0 amperes, follow the procedure listed below:

- Connect the variable power supply to the cell post terminals on the SBI board. Make sure the voltage is already set to between 0 volts and 4.5 volts to avoid over voltage on the circuitry.
- Using a calibrated voltmeter, adjust the voltage to 4 volts.
- Read the current value returned by the ADC by doing 16 A I<cr>
 The SBI board will return a 3-digit hexadecimal number. This number is the 0-ampere calibration number.
- 4. Do the command 16 X i XXX<cr> where XXX is the 0-ampere calibration number. This writes the calibration number to the board.

Twelve Ampere Calibration

To calibrate to 12 amperes, follow the procedure listed below:

 Connect the sixty-watt resistor in series with the calibrated current meter to the cell post terminals on the SBI board.

- Slowly adjust the charge current up to 12 amperes using the command 16 E XXX<cr> where XXX is a `2. ` 3-digit hexadecimal number. Use the series 100, 180, 200, 280, ... until about twelve amperes is reached. Then adjust until exactly twelve amperes is reached.
- Read the current value returned by the ADC by doing 16 A I<cr>
 The SBI board will return a 3-digit 3. hexadecimal number. This number is the 0-ampere calibration number.
- Do the command 16 E<cr> to stop the SBI board from charging. 4.
- Do the command 16 X I XXX<cr> where XXX is the 12-ampere calibration number. This writes the 5. calibration number to the board.

Do these procedures for each board.

Firmware

The firmware for the microcontroller handles low-level functions for the host. These functions are listed below:

- Charge control
- Discharge control
- Report errors
- Report capacity
- Report Current
- Report Voltage
- Report Temperature

Charge Control

The SBI board checks the set point data when a charge is invoked. If the set point data is valid, then a charge is started. The SBI board has five states that it goes through when it charges. They are: INITIAL RAMP, TRICKLE CHARGE, RAMP UP, CONSTANT CURRENT, and CONSTANT VOLTAGE.

During the INITIAL RAMP charge state, the SBI board finds the point where the battery starts to draw current. This is necessary to get to the voltage of the battery to insure a linear response. This is in preparation for charging. The time that the SBI board is in this state is less than ten seconds.

During the TRICKLE CHARGE charge state, the SBI board charges at a low current until the voltage is above the minimum voltage set point and the temperature is above the minimum temperature set point.

During the RAMP UP charge state, the SBI board increases charge current until either the voltage reaches the target voltage set point or the current reaches target current set point. This process takes two to three minutes.

During the CONSTANT CURRENT charge state, the SBI board holds the current at the target current until the target voltage is reached.

During the CONSTANT VOLTAGE charge state, the SBI board holds the voltage at the target voltage. Once the charge circuit is in this state, it will maintain the target voltage until the charge is stopped.

Discharge Control

The SBI board checks the set point data when a discharge is invoked. If the set point is valid, then the SBI board turns on the positive and negative posts of the cell. The SBI board will keep the cell in discharge unless the discharge current is too high or the voltage drops below the minimum voltage.

Error Reporting

The SBI board can report on errors when they occur. The SBI board sends these error codes back to the host, but it also uses the LEDs on the board to indicate an error condition. The first LED flashes during normal operation, but is steady during an alarm condition. Any time the SBI board encounters an error during charge or discharge, it immediately goes to IDLE and reports the error. The errors and there corresponding error number are listed below:

- Over Temperature during charge.
- Over Current during charge.
- Over Voltage during charge.
- 4. Bad Set Point Data.
- Over Current during discharge.
- 6. Under Voltage during discharge.

The over temperature during charge alarm indicates that the cell has reached a dangerous temperature and must be shut down. The first LED is steady, the second and third LEDs are off, and the fourth LED is flashing when this error occurs.

The over current during charge alarm indicates that the charge current is greater than the maximum charge

current. The first LED is steady, the second and fourth LEDs are off, and the third LED is flashing when this error occurs.

The over voltage during charge alarm indicates that the cell voltage is greater than the maximum voltage. The first LED is steady, the second LED is off, and the third and fourth LEDs are flashing when this error occurs.

The bad set point data alarm indicates that the cell is already outside one of the charge or discharge parameters. The first LED is steady, the second LED is flashing, and the third and fourth LEDs are off when this error occurs.

The over current during discharge alarm indicates that the discharge current is greater than the maximum discharge current set point. The first LED is steady, the third LED is off, and the second and fourth LEDs are flashing when this error occurs.

The under voltage during discharge alarm indicates that the cell voltage is below the minimum voltage set point. The first LED is steady, the second and third LEDs are flashing, and the fourth LED is off when this error occurs.

Report Battery State

The SBI board reports the state of the cell to the ALLIANT Smart Battery Interface Program. The SBI board reports error codes, temperature, current, voltage, and capacity differentials. This information is used by the ALLIANT Smart Battery Interface Program to profile the performance of the cell.

RS232 Commands

This is a summary of all of the RS232 commands supported by each SBI board. These commands are intended to be used by the host computer, but they can be used to directly communicate with each board. Because these commands were intended to be used with the host computer, there are no safeguards to protect the user from issuing a potentially damaging or volatile command. Use caution with these commands. The SBI boards communicate at 9600 baud, 8 data bits, and no parity. Hexadecimal digits greater than 9 are represented by the letters A through F. These letters must be capitalized.

Formats:

aa X Z

Where aa is specific cell Address, X is command letter, Z data for command. All commands are terminated with a carriage return. The SMB will respond with an ACK on all correctly formatted commands followed by any requested data. The SMB will respond with a NAK on any incorrectly formatted commands.

The format for the ACK is:

aa A<cr>

where aa = address, A = the letter A, and <cr> = carriage return.

The format for the NAK is:

aa N<cr>

where aa = address, N = the letter N, and <cr> = carriage return.

Commands:

aa A X<cr>

Read ADC. This command reads the twelve-bit value from the Analog to Digital C onverter. The ADC is used to read cell voltage, cell current, and temperature.

Command Format: X

I = averaged current R = actual current. T = temperature V = voltage

Response: ACK XXX<cr> Response Format:

xxx = 3 bytes ASCII hex ADC value.

aa C S XXXYY<cr>

Set total cell capacity. This command stores the capacity in amp hours of the cell. The number is stored as a whole number. It has to be divided by 100 to read the actual

value (i.e. 10700 = 107.00 amp hours).

Command Format:

XXX = Amp hours in whole numbers. YY = Amp hours as fractional remainder.

Response: ACK

aa C G<cr>

Get total cell capacity.

Response: ACK XXXYY<cr>

Response Format:

XXX = Amp hours in whole numbers YY = Amp hours as fractional remainder

aa C U<cr>

Get capacity used. This command gets the measured amp hours added / removed from cell since last charge / discharge command.

Response: ACK HHMMmmmsss<cr>

Response Format:

HH = Amp Hours MM = Amp Minutes mmm = Milli Amp Minutes sss = Milli Amp Seconds

aa E<cr>

Stop blind charge. This is a debug command that allows a blind charge to be stopped.

Response: ACK

aa E XXX<cr>

Start blind charge. This is a debug command that allows a blind charge to be started. XXX =

Hexadecimal number to write to the DAC. 000 - FFF

Response: ACK

aa F<cr>

Initialize new cell. This command zeroes charge cycle count, discharge cycle count,

and total cell capacity.

Response: ACK

aa G X<cr>

Go command. This command starts and stops the smart chargers charge and

discharge cycles.

Command Format: X:

S = Start Charge

E = End Charge

s = start Discharge

e = end Discharge

Response: ACK

aa I XXX<cr>

Absolute maximum charge current.

Command Format:

XXX = value to set in ASCII hex.

Response: ACK XXX<cr>

Response Format:

XXX = confirmation that the value was set correctly.

aa K<cr>

Returns alarms.

Response: ACK XX <cr> where XX = 2 bytes of ASCII Hex.

aa L X Y<cr>

Look at RAM or EEPROM where X is:

R = RAM

E = EEPROM

and Y = XXX 3 bytes of ASCII HEX.

Range:

Ram: 000 to 0FF.

EEPROM: 000 to 1FF.

Response: ACK XX<cr> where XX = 2 bytes of ASCII Hex

aa M<cr>

Request accumulator dump. ie: cycle counts, battery information.

Response: ACK AAAAAAAAA BBBBBBBBBB CCCCCCCC DDD EEE FFF

GGG HHH III JJJ KKK LLL MMM NNN OOO PPP QQQ RRR SSS<cr>

Format:

A = Manufacturer (10)

B = Model (10)

C = Chemical (10)

D = Charge cycles (3)

E = Discharge cycles (3)

F = Minimum temperature (3) G = Maximum temperature (3)

H = Absolute minimum voltage (3)

I = Minimum voltage before high charge (3)

J = Target voltage (3)

K = Maximum voltage (3)

L = Trickle charge current (3)

M = Target charge current (3)

N = Maximum charge current (3) O = Maximum discharge current (3)

P = Calibration 3 volts (3)
Q = Calibration 4 volts (3)
R = Calibration 0 amperes (3)
S = Calibration 12 amperes (3)

aa N XXXXXXXXX<cr>

Set cell serial number. Eight alphanumeric characters.

Response: ACK

aa O<cr>

Get cell serial number. Eight alphanumeric characters.

Response: ACK XXXXXXXX<cr>

aa Q<cr>

Re-calibrate 0 amperes. This command automatically re-calibrates 0 amperes and

must be issued when the cell is idle.

Response: ACK

aa R X<cr>

Reset. This command resets the alarm or resets the cells microcontroller. It resets the microcontroller by going into an endless loop and waiting for the watchdog (MAX1232)

to reset the controller.

Format: X is:

A = Alarm reset.

I = Initialize entire board.

Response: ACK

aa S p XXX<cr>

Set set point. This command is used to set the various set points. All values in 3-digit ASCII hex for ADC comparison where ${\bf p}$ is:

t = Minimum temperature before high charge is allowed.

T = Maximum temperature before shutdown.

v = Minimum voltage before high charge is allowed.

V = Target charge voltage.i = Trickle charge current.I = Target charge current.

D = Maximum discharge current allowed.

Response: ACK XXX<cr>> Format: XXX is confirmation that the value was set correctly.

aa v XXX<cr>

Set absolute minimum voltage. This command sets the absolute minimum operational

voltage.

Format: XXX is in ASCII hex.

Response: ACK

aa V XXX<cr>

Absolute maximum voltage. Where XXX is in ASCII hex.

Response: ACK

aa W X Y Z<cr>

Write to RAM, EEPROM (calls EEPROM write, unlock should occur just long enough to

write, then it should be locked) where:

X = Resource. (RAM or EEPROM)

Y = Address. (000 - 1FF)

Z = Data to be stored. (00 - FF)

Response: ACK

aa Z<cr>

Set factory defaults. This command sets manufacturer, model, and chemical back to

factory defaults.

Response: ACK

APPENDIX C 100 Ah Li_{0.5}CoO₂ DRAWING PACKAGE

Distribution

Copies		C	opies
DOD - CONUS DEFENSE TECHNICAL INFORMATION CENTER 8725 JOHN KINGMAN ROAD SUITE 0944 FORT BELVOIR VA 22060-6218		COMMANDER ATTN CODE 824 (J WOERNER) NSWC CARDEROCK DIVISION ANNAPOLIS 3A LEGGETT CIRCLE ANNAPOLIS MD 21402-5067	1 LAB
COMMANDER ATTN CODE 8231 (C EGAN) NAVAL UNDERSEA WARFARE CENTER NEWPORT DIVISION NEWPORT RI 02841-5047	2	ATTN R NOWAK DARPA/DSO 3701 NORTH FAIRFAX DRIVE ARLINGTON VA 22203-1714 COMMANDER	1
COMMANDER ATTN AMSEL RD C2 AP (R HAMLEN) US ARMY CECOM RDEC FT MONMOUTH NJ 07703-5601	1	ATTN ONR 322 (K DIAL) OFFICE OF NAVAL RESEARCH 800 N QUINCY STREET ARLINGTON VA 22217-5660	1
LIBRARY NAVAL TECHNICAL INTELLIGENCE CENTER 4301 SUITLAND RD WASHINGTON DC 20390	1	COMMANDER ATTN ONR 331 (R CARLIN) OFFICE OF NAVAL RESEARCH 800 N QUINCY STREET ARLINGTON VA 22217-5660	1
ATTN CRS-ENR (A ABELL) LIBRARY OF CONGRESS WASHINGTON DC 20540 ATTN EE-321 (R SUTULA)	1	COMMANDER ATTN PMS403 (V FIEBIG) NAVAL SEA SYSTEMS COMMAND 2531 JEFFERSON DAVIS HWY	1
DEPARTMENT OF ENERGY 1000 INDEPENDENCE AVENUE WASHINGTON DC 20585	-	ARLINGTON VA 22242-5160 ATTN E WHITLOCK US ARMY	1
ATTN CODE 734 B20 ROOM 166 NASA/GODDARD SPACE FLIGHT CENTER GREENBELT RD GREENBELT MD 20771	1	5925 QUATRELL AVE NO 202 ALEXANDRIA VA 22312 COMMANDER	
COMMANDER ATTN AMSRL-SE-DC (A GOLDBERG) US ARMY RESEARCH LAB 2800 POWDER MILL RD	1	ATTN CODE E232 NSWCDD 17320 DAHLGREN RD DAHLGREN VA 22448-5100	1
ADELPHI MD 20783-1197 COMMANDER ATTN AMSRL-SE-DC (S GILMAN)	1	COMMANDER ATTN CODE E35 NSWCDD 17320 DAHLGREN RD	1
US ARMY RESEARCH LAB 2800 POWDER MILL RD ADELPHI MD 20783-1197		DAHLGREN VA 22448-5100 COMMANDER ATTN CODE N742 (GIDEP)	1
ATTN OTS TYLER X MAHY U S GOVERNMENT 130 DUVALL LANE, APT T-1 GAITHERSBURG MD 20877	1	NSWCDD 17320 DAHLGREN RD DAHLGREN VA 22448-5100	

Distribution

Сор	ies		Copies
COMMANDER ATTN CODE 2310 (E RICHARDS) NSWCDD COASTAL SYSTEMS STATION 6703 WEST HIGHWAY 98 PANAMA CITY FL 32407-7001	1	COMMANDER ATTN PMS 452 (P ESFANDIARI) PEO (TSC) 2231 CHRYSTAL DR SUITE 200 ARLINGTON VA 22242	1
COMMANDER ATTN CODE 2330 (G COOPER) NSWCDD SYSTEMS STATION	1	NON DOD	
6703 WEST HIGHWAY 98 PANAMA CITY FL 32407-7001		ATTN C KELLY D ROLLER K MENON B LARSON	2 1 1
COMMANDER ATTN R MARSH AFRL/PRPB 1950 FIFTH STREET BLDG 18 WRIGHT-PATTERSON AFB OH 45433-7251	1	R SMITH W LYNCH ALLIANT TECHSYSTEMS INC 104 ROCK RD	1
COMMANDER ATTN CODE 609 (J GUCINSKI) NSWC CRANE DIVISION	1	HORSHAM PA 19044 ATTN LIBRARY R HIGGINS	1 1
300 WEST HIGHWAY 361 CRANE IN 47522-5083	1	D SPENCER J WELLS C MARTIN W MCCRACKEN	1 1 1
ATTN G HENRIKSEN CHEMICAL TECHNOLOGY DIVISION ARGONE NATIONAL LAB 9700 SOUTH CASS AVENUE ARGONNE IL 60439	1	EAGLE-PICHER INDUSTRIES INC PO BOX 47 JOPLIN MO 64802	-
ATTN G HUNT T MURPHY IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LAB	1	ATTN LIBRARY POWER CONVERSION INC 495 BOULEVARD ELMWOOD PARK NJ 07407	1
LOCKHEED MARTIN IDAHO TECH CO PO BOX 1625 IDAHO FALLS ID 83415-3830 COMMANDER		ATTN C SCHLAIKJER BATTERY ENGINEERING INC 100 ENERGY DRIVE CANTON MA 02021	1
ATTN D RADZYKEWYCZ AFRL/VSDV 3550 ABERDEEN AVE SE KIRTLAND AFB NM 87117-6008	1	ATTN R REA RAYOVAC CORP PO BOX 44960 601 RAYOVAC DRIVE MADISON WI 53744-4960	1
ATTN R JUNGST SANDIA NATIONAL LABORATORIES PO BOX 5800 MAILSTOP 0613 ALBUQUERQUE NM 87185-0613	1	ATTN F WALSH ECO CORP 20 ASSEMBLY SQUARE DR SOMERVILLE MA 02145	1
COMMANDER ATTN DEPT 40D OFFICE 302(D GARVICK) NAVAL SURFACE WARFARE CENTER) 1		,

INDIAN HEAD MD 20640

Distribution

	Copies		Copies
ATTN T REDDY YARDNEY TECHNICAL PRODUCTS INC 82 MECHANIC STREET PAWCATUCK CT 06379	1	ATTN G FERMENT LITHIUM TECHNOLOGY CORP 5115 CAMPUS DRIVE PLYMOUTH MEETING PA 19462-1129	
ATTN E TAKEUCHI WILSON GREATBATCH LTD 10000 WEHRLE DRIVE CLARENCE NY 14031	1	ATTN A ZOLLA HED BATTERY CORP 3355 WOODWARD AVE SANTA CLARA CA 95054	1
ATTN A MAKRIDES EIC LABORATORIES INC 111 DOWNEY STREET NORWOOD MA 02062	1	ATTN L MARCOUX BLUESTAR ADVANCED TECHNOLOGY CORP 1155 WEST 15TH STREET NORTH VANCOUVER BC CANADA V7P 1M9	1
ATTN A HIMY J J MCMULLEN ASSOC INC	1	V/P 1M9	
2341 JEFFERSON DAVIS HWY ARLINGTON VA 22202	_	ATTN M KLEIN ELECTRO ENERGY INC SHELTER ROCK LANE DANSBURY CT 06810	1
ATTN D CHUA H LIN	1	DANSBURY CT 06610	
MAXPOWER INC 220 STAHL RD HARLEYSVILLE PA 19438		ATTN G RAO NASA/GODDARD SPACE FLIGHT CENTER CODE 734, B-20, ROOM 166 GREENBELT MD 20771	1 R
ATTN N ISAACS	1		-
MSA COMPANY		ATTN L DOMINEY OMG INC	1
38 LOVETON CIRCLE SPARKS MD 21152		2301 SCRANTON RD CLEVELAND OH 44114	`. •
ATTN R STANIEWICZ	1	ATTN E CUELLAR	1
SAFT AMERICA INC 109 BEAVER COURT COCKEYSVILLE MD 21030		ULTRALIFE BATTERIES 1350 ROUTE 88 SOUTH NEWARK NY 14513	_
ATTN C FLEISCHMANN M MADDEN G ZOSKI ADVANCED TECHNOLOGY &	2	ATTN M SCHIMPT POWER CONNECTION INC 495 BOULEVARD	1
RESEARCH CORP. 15210 DINO DRIVE BURTONSVILLE MD 20866-1172		ELMWOOD PARK NJ 07407 ATTN LIBRARY	1
ATTN F DAMPIER LITHIUM ENERGY ASSOCIATES INC 225 CRESCENT STREET	1	EVEREADY BATTERY CO TECHNOLOGY LAB PO BOX 43035 WESTLAKE OH 44145	
WALTHAM MA 02453-3420		ATTN R SURAMPUDI	1
ATTN K ABRAHAM COVALENT ASSOCIATES INC 10 STATE STREET WOBURN MA 01801	1	JET PROPULSION LAB 4800 OAKGROVE DRIVE PASEDENA CA 91109	

Distribution

Copies

		Copies			
	CARDEROCK DIVISION	INTERNAL			
DISTRIBUTION					
Code	Name	Copies			
011	CORRADO	1			
0112	DOUGLAS	1			
0112	HALSALL	1			
0115	MESSICK	1			
3442	TIC	1			
60	MORTON	1			
603	CAVALLARO	1			
604	DESAVAGE	1			
65R	DEPARTMENT LIBRARY				
68	SUDDUTH	1			
683	BARNES	1			
683	SMITH	10			
683	DALLEK	1			
683	JAMES	1			
683	KELLER	1 1			
683	KILROY	1			
683	HAGANS	1			
683	WINCHESTER	1			