An-Najah National University Faculty of Engineering and Information Technology Computer Engineering Department

Digital Circuit Design II (10636321)

Due to 28/11/2020

Points:10 HW1: (ILOs: III)

Mathematically, we can define the n-th Fibonacci number as the sum of the (n-1)-th and (n-2)-th.

$$F(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases}$$

Given the following entity declaration for a Fibonacci Calculator, complete the architecture to provide a behavioral description for the Fibonacci calculator.

entity Fibonacci_Calculator is

port (

clk : in std_logic;
data_in : in std_logic_vector (3 downto 0);

load_enable : in std_logic;

data_out : out std_logic_vector (9 downto 0));

end Fibonacci_Calculator;

architecture behavioral of Fibonacci_Calculator is

(Note: Do not use algorithmic state machine)

You have to submit two files:

- 1. A VHDL code to implement your Design.
- 2. A testbench file to simulate and test your design.
 - a. You have to cover all the possible cases for the input data:
 - b. For each case you have to:
 - Select a test value for data_in
 - ii. Activate the **load_enable** signal for at least one clock cycle.
 - iii. The Fibonacci number should be calculated at the rising edge of the input clock.