Лабораторная работа 5.2.2

Изучение спектров атома водорода и молекулы йода

Шерхалов Денис Б02-204и Фаттахов Марат Б02-204кт

29 ноября 2024 г.

В работе: исследовать спектральные закономерности в оптическом спектре водорода. По результатам измерений вычислить постоянную Ридберга. Исследовать спектр поглощения паров йода в видимой области; по результатам измерения вычислить энергию колебательного кванта молекулы йода и энергию ее диссоциации в основном и возбужденном состояниях.

1. Введение

Длины волн спектральных линий водородоподобного атома описываются формулой

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),$$

где $R=109677.6~{\rm cm^{-1}}$ — константа, называемая постоянной Ридберга, а m и n — целые числа. Мы будем изучать серию Бальмера, линии которой лежат в видимой области. Для неё n=2, а $m=3,\,4,\,5,\,6\ldots$ Первые четыре линии обозначаются соответственно $H_{\alpha},\,H_{\beta},\,H_{\gamma},\,H_{\delta}$. Для молекулы йода мы рассматриваем только нулевую серию, энергетическое положение линий поглощения определяется выражением

$$h\nu_{0,n_2} = (E_2 - E_1) + h\nu_2\left(n_2 + \frac{1}{2}\right) - \frac{1}{2}h\nu_1.$$

Рис. 1: Линии молекулы йода.

Описание установки

Для наблюдения спектра водорода используется установка, изображённая на Рис. 2А. Источником света для наблюдения служит водородная трубка Н-образной формы, в состав газа которой добавлены водные пары для увеличения яркости интересующих нас линий. Источник Л помещается на оптическую скамью вместе с конденсером K, так что свет концентрируется на входной щели 1. Далее через коллиматорный объектив 2 свет попадает на сложную спектральную призму, состояющую из призм Π_1 , Π_2 и Π_3 . Первые две призмы обладают большой дисперсией, а промежуточная Π_3 поворачивает лучи — такое устройство позволяет складывать дисперии Π_1 и Π_2 . После прохождения призмы свет попадает в зрительную трубу 4-5, объектив которой даёт изображение входной щели различных цветов.

Рис. 2: Установки для наблюдения линий А. водорода; Б. йода.

На Рис. 2Б изображена схема установки, используемой для наблюдения спектра йода. Спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания 1, питаемой от блока питания 2. Кювета 3 с кристаллами йода подогревается нихромовой спиралью, подключённой вместе с лампой накаливания к блоку питания. Линза 4 используется как конденсор. В результате подогрева кристаллы йода частично возгоняются, образуя пары с лёгкой фиолетовой окраской. Спектрометр 5 позволяет визуально наблюдать линии поглощения молекул йода на фоне сплошного спектра излучения лампы накаливания видимой области.

2. Ход работы

Калибровка

Сначала произведём градуировку монохроматора. Для этого проведём измерения линий спектра неона и ртути, сняв зависимость длины волны наблюдаемого света λ от параметра θ барабана монохроматора. Погрешность измерения θ примем половиной цены деления $\sigma_{\theta}=5^{\circ}$. Измерения представлены в Таблице 1.

Таблица 1: Измерения для градуировки. Неон и ртуть.

λ ,		Å 54		01 58		52 59		45	6143		6402				
		θ ,	0	19	58	22	16	22	68	23	60	24	60		
λ , Å	40	47	43	58	49	16	54	61	57	70	57	91	62	34	6907
θ , °	38	80	92	22	15	82	20	00	21	84	21	96	24	00	2650

Искать зависимость $\lambda = \lambda(\theta)$ будем в виде (дисперсионная формула Гартмана): $\lambda = \lambda_0 + \frac{C}{\theta - \theta_0}$ График аппроксимации представлен на Рис. 3, полученные константы:

$$\lambda_0 = (2179 \pm 15) \text{ Å}$$
 $C = -(696 \pm 6) \cdot 10^4 \text{ Å}$ $\theta_0 = (4118 \pm 11) \circ$

Рис. 3: Зависимость $\lambda = \lambda(\theta)$.

Водород

Произведём непосредственно измерения для серий водорода. Измеренные значения параметра барабана для $H_{\alpha},\ H_{\beta},\ H_{\gamma}$ и H_{δ} :

Таблица 2: Водород

θ , °	568	898	1534	2534
λ, A	4140	4341	4874	6574
λ_{th}, A	4100	4340	4861	6563

Воспользовавшись формулой (1), рассчитаем константу Ридберга для каждой из линий, итоговое значение:

$$R = 110100 \pm 800 \text{ cm}^{-1}$$

Йод

Перейдём к измерениям для йода. Параметры, соответствующие самой длинноволновой линии, линии, отстоящей от неё на 6, и границе спектра:

Таблица 3: Йод

θ , °	2326	2250	1818
λ, A	6064	5906	5206

Энергии колебательного кванта возбуждённого состояния молекулы йода:

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{5} = 0.012 \text{ pB}.$$

Учитывая, что $h\nu_1=0.027$ эВ, с помощью формулы (2) рассчитаем энергию перехода

$$h\nu_{\text{эл}} = h\nu_{(1,0)} - \frac{1}{2}h\nu_2 + \frac{3}{2}h\nu_1 = 2.13 \text{ эB}.$$

Тогда энергии диссоциации частиц в основном и возбуждённом состоянии, с учётом того, что энергия возбуждения атома $E_A=0.94$ эВ:

$$D_1 = h\nu_{\rm rp} - E_A = 1.47 \pm 0.02 \text{ 9B},$$

$$D_2 = h\nu_{\rm rp} - h\nu_{\rm эл} = 0.26 \pm 0.03 \text{ pB}.$$