Analysis by Its History

Editors

E. Hairer G. Wanner Department of Mathematics University of Geneva Geneva, Switzerland

Editorial Board

S. Axler
Mathematics Department
San Francisco State
University
San Francisco, CA 94132
USA
axler@sfsu.edu

K.A. Ribet
Mathematics Department
University of California
at Berkeley
Berkeley, CA 94720-3840
USA
ribet@math.berkeley.edu

ISBN 978-0-387-77031-4 ISBN 978-0-387-77036-9 (eBook) DOI 10.1007/978-0-387-77036-9

Library of Congress Control Number: 2008925883

© 2008 Springer Science+Business Media New York

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Contents

Cnap	ter 1 Introduction to Analysis of the Infinite
I.1	Cartesian Coordinates and Polynomial Functions
	"Algebra Nova" Descartes's Geometry Polynomial Functions Exercises
1.2	Exponentials and the Binomial Theorem
	Binomial Theorem
	Exponential Funcion
	Exercises
I.3	Logarithms and Areas
1.3	Computation of Logarithms Computation of Areas
	Area of the Hyperbola and Natural Logarithms Exercises
1.4	Trigonometric Functions
	Basic Relations and Consequences
	Series Expansions
	Inverse Trigonometric Functions Computation of Pi
	Exercises
1.5	Complex Numbers and Functions
	Euler's Formula and Its Consequences
	A New View on Trigonometric Functions Euler's Product for the Sine Function
	Exercises
1.	
1.0	Continued Fractions Origins
	Convergents
	Irrationality
	Exercises
Char	oter II Differential and Integral Calculus
_	G
II.1	The Derivative
	The Derivative
	Differentiation Rules
	Parametric Representation and Implicit Equations
	Exercises
II.2	Higher Derivatives and Taylor Series
	The Second Derivative
	De Conversione Functionum in Series
	Exercises
II.3	Envelopes and Curvature
	Envelope of a Family of Straight Lines
	The Caustic of a Circle
	Envelope of Ballistic Curves
	Curvature
	Exercises
II.4	Integral Calculus
	Primitives

	Applications Integration Techniques Taylor's Formula with Remainder Exercises	112 116
	Functions with Elementary Integral Integration of Rational Functions Useful Substitutions Exercises	118 123 125
II.6	Approximate Computation of Integrals. Series Expansions Numerical Methods Asymptotic Expansions Exercises	126 128 131
II.7	Ordinary Differential Equations Some Types of Integrable Equations Second Order Differential Equations Exercises	139 140
II.8	Linear Differential Equations Homogeneous Equation with Constant Coefficients Inhomogeneous Linear Equations Cauchy's Equation Exercises	145 148 152 152
II.9	Numerical Solution of Differential Equations Euler's Method Taylor Series Method Second Order Equations Exercises	154 156 158
II.10	The Euler-Maclaurin Summation Formula Euler's Derivation of the Formula De Usu Legitimo Formulae Summatoriae Maclaurinianae Stirling's Formula The Harmonic Series and Euler's Constant Exercises	160 163 165 167
Chap	oter III Foundations of Classical Analysis	
III.1	Infinite Sequences and Real Numbers Convergence of a Sequence Construction of Real Numbers Monotone Sequences and Least Upper Bound Accumulation Points Exercises	172 177 182 184
III.2	Infinite Series Criteria for Convergence Absolute Convergence Double Series The Cauchy Product of Two Series Exchange of Infinite Series and Limits Exercises	188 189 192 195 197 199
III.3	Real Functions and Continuity Continuous Functions The Intermediate Value Theorem The Maximum Theorem Monotone and Inverse Functions Limit of a Function Exercises	202 204 206 206 208 209

III.4	Uniform Convergence and Uniform Continuity The Limit of a Sequence of Functions	. 213
	Weierstrass's Criterion for Uniform Convergence	. 216
	Uniform Continuity	. 217
III.5	The Riemann Integral	
111.0	Definitions and Criteria of Integrability	. 221
	Integrable Functions	. 226
	Integration of Infinite Series	. 230
	Exercises	. 232
III.6	Differentiable Functions	. 235
	The Fundamental Theorem of Differential Calculus The Rules of de L'Hospital	
	Derivatives of Infinite Series	. 245
	Exercises	
III.7	Power Series and Taylor Series	
	Determination of the Radius of Convergence	. 249
	Differentiation and Integration	. 251
	Taylor Series Exercises	
III.8	Improper Integrals	
111.0	Bounded Functions on Infinite Intervals	. 257
	Unbounded Functions on a Finite Interval	. 260
	Euler's Gamma Function Exercises	
III.9	Two Theorems on Continuous Functions	
	Continuous, but Nowhere Differentiable Functions	. 263
	Weierstrass's Approximation Theorem	
	LACICISCS	. 20)
Chap	eter IV Calculus in Several Variables	
IV.1	Topology of <i>n</i> -Dimensional Space	. 273
	Distances and Norms	. 273
	Convergence of Vector Sequences	. 278
	Compact Sets	. 283
	Exercises	
IV.2	Continuous Functions	
	Uniform Continuity and Uniform Convergence	. 290
	Linear Mappings	.293
	Integrals with Parameters	
	Exercises	
IV.3	Differentiable Functions of Several Variables	
	Differentiability	
	A Geometrical Interpretation of the Gradient	. 305
	The Mean Value Theorem	.308
	The Implicit Function Theorem	. 309 . 311
	Exercises	
IV.4	Higher Derivatives and Taylor Series	
	Taylor Series for Two Variables	319

x Contents

	Taylor Series for <i>n</i> Variables	320
	Maximum and Minimum Problems	. 323
	Conditional Minimum (Lagrange Multiplier)	325
	Exercises	328
IV.5	Multiple Integrals	330
	Double Integrals over a Rectangle	330
	Null Sets and Discontinuous Functions	334
	Arbitrary Bounded Domains	336
	The Transformation Formula for Double Integrals	
	Integrals with Unbounded Domain	
	Exercises	347
Appe	ndix: Original Quotations	351
• •		
Refer	ences	358
Symb	ol Index	. 369
Index	, 	371