Competitive Sustainable Manufacturing

Personalized Production Paradigm

Exactly the product needed ...

... Exactly when needed

Yoram Koren and Jun Ni

The University of Michigan, Ann Arbor

Competitive Sustainable Manufacturing

1. How can the US and Europe sustain manufacturing jobs?

Products in which short delivery time is critical will be produced domestically

2. How can we create new Small Business (SB) mfg. industries?

Products of <u>large-variety & small-volume</u> to be produced by domestic SB

3. How can the US and Europe sustain a strong auto industry?

A new direction to the auto industry, of which domestic manufacturing is advantageous because it requires a short delivery time

We will show that a new paradigm of personalized design of automobile interiors responds to these issues

Manufacturing Paradigms

Our society experienced three manufacturing paradigms

Craft Production

Mass Production

Mass Customization

and more recently the emerging paradigm of Personalized Production

The personalized production paradigm can sustain a strong auto industry in the US and Europe, and create new Small Business industries

Product-Process-Business

Manufacturing enterprises contain three main elements:

Product, Process, and business.

And three main corresponding actions:

Design the product

Make the product

Sell the product

What are the Possible Sequences?

There are only three possible sequences!

And each sequence defines a paradigm

Three Paradigms

Craft
Production
Unique Products
Fit the exact need
Market of One

Mass
Production
Standard Products

Small Product Variety High Volume per Product

Mass

Customization
Options of Customized
Standard Products
High Product Variety
Small Volume per Product

Is it possible to define a new paradigm?

Two Phases in Personalized Kitchens

A. Modules are designed by the manufacturer P. The personalized kitchen is designed by the customer

Product Design Phases in the personalization paradigm

The product design in the personalization paradigm has two phases:

 An initial phase, Design (A), in which the product architecture is designed, and the range of modules is established.

This design phase is a strategic decision done by the manufacturer.

 The personalized design phase, Design (P), in which the final tailored-design takes place with close interaction with the customer.

Mass Customization & Personalization

The manufacturer MASS designs the options CUSTOMIZATION Design Product Options Customer Sell Make One Option Push-Pull Model

PERSONALIZED PRODUCTION Design Architecture and Modules Customer Sell Customer Personalized Design **Customer involved** Customer Involved The customer designs the option Make One Unique Product Pull Model

Paradigm Transition

Yoram Koren and Jun I November 2009 #10

1

Mass Production of Automobiles

The opening of the moving assembly line by Henry Ford in 1913 in Dearborn, Michigan, started the mass production paradigm.

The auto industry is still using the serial moving assembly line, 100 years after its invention

Paradigm Changes

Changeable Automobile Interior

Customers' Wishes of Their Automobile Interior

Small Business Industry for Car Modules

Should be Open-Architecture standards for

- Mechanical
- Electrical
- Information
 Module interfaces

Module interfaces are designed according to the open-architecture standards

Computer stations; Clothing-racks
Microwaves; Refrigerators
Weight storages; Folding Beds
Portable-potty for kids; Folding tables
Dog baskets; File cabinets

Michigan **Engineering**

Challenge #1: Creating New CAD Technologies

Paradigm Transitions Over Time

The Number of Possible Configurations

Configurations of assembly systems with 5 stations.

In practice there may be over 50 stations

Challenge: How to design a configuration which is not a serial line

Number of RMS configurations of ${\cal N}$ machines arranged in up to ${\cal N}$ stages

Reconfigurable Manufacturing System - Example

A RMS is a system designed at the outset for rapid changes in structure, in order to quickly adjust production capacity and functionality when needed

Challenge #2: Similar RMS concepts should be developed for cost-effective assembly of personalized interiors of automobiles

A Reconfigurable Assembly System – an Example

Ford's serial assembly line that was invented in 1913, should be substituted

Example of assembly system of personalized automobile interiors

Example: Reconfigurable Assembly System

Another example of assembly system of personalized automobile interiors

This layout resembles the layout of a reconfigurable shoe factory in Italy

Reconfigurable Shoe Factory

Example of the shoe factory in Vigevano, Italy Fast delivery of personalized shoes

<u>Summary</u>

Personalized Products – the buyers are <u>actively involved</u> in the design of their products

Two engineering challenges to make the personalized paradigm a reality

Challenge #1: Creating New CAD Technologies

Exactly the product needed

,,,,,,,,, Exactly when needed

Challenge #2: Reconfigurable Assembly System