Proof Theory of Modal Logic

Lecture 5 Beyond the S5-cube

Marianna Girlando

ILLC, Universtiy of Amsterdam

5th Tsinghua Logic Summer School Beijing, 14 - 18 July 2025 Today's lecture: Beyond the S5 – *cube*

- Conditional logics
- Labelled proof systems for conditional logics
- Structured proof systems for conditional logics

Conditionals

If A then B

Counterfactuals

- If I had some ice cream, then life would be awesome.
- If kangaroos had no tails, then they would topple over.
- If Sam saw a lunar eclipse, then she would no longer believe that Earth is flat.

Paradoxes of material implication			
If I had some ice cream, then life would be awesome.			

Paradoxes of material implication

▶ If I had some ice cream, then life would be awesome.

Α	В	$A \rightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1

Paradoxes of material implication

▶ If I had some ice cream, then life would be awesome.

Α	В	$A \rightarrow B$
1	1	1
1	0	0
0	1	1)
0	0	1

▶ Co-tenability theories of conditionals [Goodman, 1955]

- ▶ Co-tenability theories of conditionals [Goodman, 1955]
- ▶ Probabilistic models [Adams, 1975]

- ▶ Co-tenability theories of conditionals [Goodman, 1955]
- Probabilistic models [Adams, 1975]
- ▶ Belief revision [Gärdenfors, 1978]

- ▶ Co-tenability theories of conditionals [Goodman, 1955]
- Probabilistic models [Adams, 1975]
- ▶ Belief revision [Gärdenfors, 1978]
- ▶ Causal models [Galles and Pearl, 1998]

- ▶ Co-tenability theories of conditionals [Goodman, 1955]
- Probabilistic models [Adams, 1975]
- Belief revision [Gärdenfors, 1978]
- Causal models [Galles and Pearl, 1998]
- ▶ Possible world models [Stalnaker, 1968], [Lewis, 1973]

- ▶ Co-tenability theories of conditionals [Goodman, 1955]
- Probabilistic models [Adams, 1975]
- ▶ Belief revision [Gärdenfors, 1978]
- Causal models [Galles and Pearl, 1998]
- ▶ Possible world models [Stalnaker, 1968], [Lewis, 1973], [Nute, 1980], [Chellas, 1975], [Burgess, 1981], and many more!

Modal logics

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B$$

Modal logics

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B$$

 $\neg A := A \to \bot$

Modal logics

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid \Box A$$

$$\neg A := A \to \bot$$

$$\Diamond A := \neg \Box \neg A$$

Modal logics

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid \Box A$$

$$\neg A := A \to \bot$$

$$\Diamond A := \neg \Box \neg A$$

Modal logics

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid \Box A$$

$$\neg A := A \to \bot$$

$$\Diamond A := \neg \Box \neg A$$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B$$

 $\neg A := A \rightarrow \bot$

Modal logics

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid \Box A$$

$$\neg A := A \to \bot$$

$$\Diamond A := \neg \Box \neg A$$

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid A > B$$

 $\neg A := A \rightarrow \bot$

Modal logics

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid \Box A$$

$$\neg A := A \to \bot$$

$$\diamond A := \neg \Box \neg A$$

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid A > B$$

$$\neg A := A \rightarrow \bot$$

$$\Box A := \neg A > \bot$$

$$\Diamond A := \neg (A > \bot)$$

▶ Prototypical properties [KLM, 1990], [Burgess, 1981]

- Prototypical properties [KLM, 1990], [Burgess, 1981]
- ▶ Counterfactuals [Lewis,1973]

- ▶ Prototypical properties [KLM, 1990], [Burgess, 1981]
- Counterfactuals [Lewis,1973]
- ▶ Conditional belief of agents [Baltag and Smets, 2006, 2008]

Axioms

PCL: classical propositional logic plus

rcea
$$\frac{A \leftrightarrow B}{(A > C) \leftrightarrow (B > C)}$$
 rck $\frac{A \rightarrow B}{(C > A) \rightarrow (C > B)}$ id $A > A$

r.and $(A > B) \land (A > C) \rightarrow (A > (B \land C))$ cm $(A > B) \land (A > C) \rightarrow ((A \land C) > B)$ rt $(A > B) \land ((A \land B) > C) \rightarrow ((A \land C) > B)$ rt $(A > B) \land ((A \land B) > C) \rightarrow ((A \land C) \land (C) \land (C)$

▶ Selection function semantics [Chellas, 1975]

- ▶ Selection function semantics [Chellas, 1975]
- ▶ Sphere semantics [Lewis,1973]

- ▶ Selection function semantics [Chellas, 1975]
- ▶ Sphere semantics [Lewis,1973]
- Preferential semantics [Burgess,1981]

- ▶ Selection function semantics [Chellas, 1975]
- ▶ Sphere semantics [Lewis,1973]
- Preferential semantics [Burgess,1981]
- ▶ Neighbourhood semantics [Scott, 1970], [Montague, 1970]

- ▶ Selection function semantics [Chellas, 1975]
- ▶ Sphere semantics [Lewis,1973]
- Preferential semantics [Burgess,1981]
- Neighbourhood semantics [Scott, 1970], [Montague, 1970]
 Direct proof of soundness and completeness w.r.t. the axiomatization of PCL and extensions [G, Negri, Olivetti, 2021]

Neighbourhood models for VC

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$

Neighbourhood models for VC

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$

y

X

z

k

Neighbourhood models for VC

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$
 $\mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin \mathbb{N}(x)$

y

X

z

k

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$
 $\mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin \mathbb{N}(x)$

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle \quad N : W \to \mathcal{P}(\mathcal{P}(W)) \text{ s.t. } \emptyset \notin N(x) \quad \llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)$$

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle \quad N : W \to \mathcal{P}(\mathcal{P}(W)) \text{ s.t. } \emptyset \notin N(x) \quad \llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)$$

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$
 $\mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin N(x)$ $\llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)$

Nesting for all x, for all $\alpha, \beta \in N(x)$, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$
 $\mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin \mathbb{N}(x)$ $\llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)$

Nesting for all x, for all $\alpha, \beta \in N(x)$, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$ Centering for all x, for all $\alpha \in N(x)$, $x \in \alpha$ and $\{x\} \in N(x)$

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$
 $\mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin \mathbb{N}(x)$ $\llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)$

Nesting for all x, for all $\alpha, \beta \in N(x)$, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$ Centering for all x, for all $\alpha \in N(x)$, $x \in \alpha$ and $\{x\} \in N(x)$

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$
 $\mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin \mathbb{N}(x)$ $\llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)$

Nesting for all x, for all $\alpha, \beta \in N(x)$, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$ Centering for all x, for all $\alpha \in N(x)$, $x \in \alpha$ and $\{x\} \in N(x)$

$$\alpha \Vdash^{\forall} A \equiv \forall y \in \alpha, y \Vdash A$$

$$\alpha \Vdash^{\exists} A \equiv \exists y \in \alpha \text{ s. t. } y \Vdash A$$

★ Centering For all x, for all $\alpha \in N(x)$, $x \in \alpha$ and $\{x\} \in N(x)$.

3

★ Nesting For all x, for all $\alpha, \beta \in N(x)$, either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.

★ Normality For all x , $N(x) \neq \emptyset$.	N
★ Total reflexivity For all x , there is $\alpha \in N(x)$ such that $x \in \alpha$.	Т
★ Weak centering For all x , $N(x) \neq \emptyset$ and for all $\alpha \in N(x)$, $x \in \alpha$.	W
★ Centering For all x , for all $\alpha \in N(x)$, $x \in \alpha$ and $\{x\} \in N(x)$.	C
★ Uniformity For all $x, y, \cup N(y) = \bigcup N(x)$.	U
★ Absoluteness For all $x, y, N(x) = N(y)$.	A
* Nesting For all x , for all $\alpha, \beta \in N(x)$, either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.	V

Labelled calculi for conditional logics

 \square Countably many variables for worlds: $x, y, z \dots$ (labels)

- \square Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas

- Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas
 - \triangleright xRy \rightsquigarrow "x has access to y" (relational atoms)

- Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas
 - \triangleright xRy \rightsquigarrow "x has access to y" (relational atoms)
 - $\triangleright x : A \rightsquigarrow "x \text{ satisfies } A"$ (labelled formulas)

- Countably many variables for worlds: x, y, z... (labels)
- Labelled formulas
 - \triangleright xRy \rightsquigarrow "x has access to y" (relational atoms)
 - $\triangleright x : A \rightsquigarrow "x \text{ satisfies } A"$ (labelled formulas)

- \square Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas
 - ▶ *xRy* → "*x* has access to *y*" (relational atoms)
 - $\triangleright x : A \rightsquigarrow "x \text{ satisfies } A"$ (labelled formulas)
- Rules for

$${}_{\square_L}\frac{xRy,\mathcal{R},\Gamma\Rightarrow\Delta,y:A}{\mathcal{R},\Gamma\Rightarrow\Delta,x:\square A}\;y! \quad {}_{\square_R}\frac{xRy,\mathcal{R},x:\square A,y:A,\Gamma\Rightarrow\Delta}{xRy,\mathcal{R},x:\square A,\Gamma\Rightarrow\Delta}$$

 $x \Vdash \Box A$ iff for all $y \text{ s.t. } xRy, y \Vdash A$

- \square Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas

 - $\triangleright x : A \iff "x \text{ satisfies } A"$ (labelled formulas)
- Labelled sequent: $\mathcal{R}, \Gamma \Rightarrow \Delta$
- Rules for

$${}_{\square_{L}}\frac{xRy,\mathcal{R},\Gamma\Rightarrow\Delta,y:A}{\mathcal{R},\Gamma\Rightarrow\Delta,x:\square A}\;y! \quad {}_{\square_{R}}\frac{xRy,\mathcal{R},x:\square A,y:A,\Gamma\Rightarrow\Delta}{xRy,\mathcal{R},x:\square A,\Gamma\Rightarrow\Delta}$$

$$x \Vdash \Box A$$
 iff for all $y s.t. xRy, y \Vdash A$

Rules for frame conditions, example: transitivity

$$\operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

 \square Countably many variables for worlds x, y, z, ...

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

- \square Countably many variables for worlds x, y, z, ...
- \blacksquare Countably many variables for neighbourhoods a, b, c, ...
- Relational atoms

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...
- Relational atoms
 - ▶ $x \in a \iff$ "x is an element of a"

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"
- ▶ $a \subseteq b \rightsquigarrow$ "a is included in b"

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, \ldots

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"
- ▶ $a \subseteq b \rightsquigarrow$ "a is included in b"

Labelled formulas

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, \ldots

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"
- ▶ $a \subseteq b \iff$ "a is included in b"

Labelled formulas

- \square Countably many variables for worlds x, y, z, ...
- \blacksquare Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x) \implies$ "a is an element of N(x)"
- ▶ $a \subseteq b \iff$ "a is included in b"

Labelled formulas

- \square Countably many variables for worlds x, y, z, ...
- \blacksquare Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x) \implies$ "a is an element of N(x)"
- ▶ $a \subseteq b \iff$ "a is included in b"

Labelled formulas

- ▶ $a \Vdash^{\exists} A \iff$ "A is satisfied at some world of a"

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"
- ▶ $a \subseteq b \iff$ "a is included in b"

□ Labelled formulas

- ▶ $a \Vdash^{\exists} A \rightsquigarrow$ "A is satisfied at some world of a"
- a ⊩ A → "A is satisfied at all worlds of a"

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- $\triangleright x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"
- ▶ $a \subseteq b \iff$ "a is included in b"

Labelled formulas

- ▶ $a \Vdash^{\exists} A \rightsquigarrow$ "A is satisfied at some world of a"
- ▶ $a \Vdash^{\forall} A \iff$ "A is satisfied at all worlds of a"
- ▶ $x \Vdash_a A \mid B \rightsquigarrow$ "there is a $b \in N(x)$ such that $b \subseteq a, b \Vdash^{\exists} A$ and $b \Vdash^{\forall} A \rightarrow B$ "

Labelled rules

Rules for >

$$\geq_{\mathsf{R}} \frac{a \in \mathsf{N}(x), \mathcal{R}, a \Vdash^{\exists} A, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}{\mathcal{R}, \Gamma \Rightarrow \Delta, xA > B}$$
 (a!)

$$a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta, a \Vdash^{\exists} A \quad a \in N(x), \mathcal{R}, x \Vdash_{a} A \mid B, x : A > B, \Gamma \Rightarrow \Delta$$

$$a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta$$

$$\frac{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_a A \mid B, c \Vdash^{\exists} A \quad c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_a A \mid B, c \Vdash^{\forall} A \rightarrow B}{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_a A \mid B}$$

$$\frac{b \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \to B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x \Vdash_{a} A \mid B, \Gamma \Rightarrow \Delta}$$
(a!)

Labelled rules

Rules for >

$$\begin{array}{c} \underset{>_{\mathbb{R}}}{a \in N(x), \mathcal{R}, a \Vdash^{\exists} A, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B} \\ \underset{>_{\mathbb{L}}}{\alpha \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta, a \Vdash^{\exists} A \quad a \in N(x), \mathcal{R}, x \Vdash_{a} A \mid B, x : A > B, \Gamma \Rightarrow \Delta} \\ \underset{>_{\mathbb{L}}}{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta} \\ \underline{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\exists} A \quad c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\forall} A \rightarrow B} \\ \underline{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\exists} A \quad c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B} \\ \end{array}$$

$$\frac{b \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \to B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x \Vdash_{a} A \mid B, \Gamma \Rightarrow \Delta} \text{ (a!)}$$

Rules for frame conditions: centering

C For all
$$x$$
, for all $\alpha \in N(x)$, $\{x\} \in N(x)$ and $x \in \alpha$

$$C \frac{\{x\} \in N(x), \{x\} \subseteq a, a \in N(x), \mathcal{R}, \Gamma \Rightarrow \Delta}{a \in N(x), \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Labelled rules

Rules for >

$$\frac{a \in N(x), \mathcal{R}, a \Vdash^{\exists} A, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x A > B} \text{ (a!)}$$

$$\frac{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta, a \Vdash^{\exists} A \quad a \in N(x), \mathcal{R}, x \Vdash_{a} A \mid B, x : A > B, \Gamma \Rightarrow \Delta}{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}$$

$$\frac{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\exists} A \quad c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\forall} A \Rightarrow B}{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}$$

$$\frac{b \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \to B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x \Vdash_a A \mid B, \Gamma \Rightarrow \Delta} \text{ (a!)}$$

- Rules for frame conditions: centering
- C For all x, for all $\alpha \in N(x)$, $\{x\} \in N(x)$ and $x \in \alpha$

$$C\frac{\{x\} \in N(x), \{x\} \subseteq a, a \in N(x), \mathcal{R}, \Gamma \Rightarrow \Delta}{a \in N(x), \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \text{single } \frac{x \in \{x\}, \{x\} \in N(x), \mathcal{R}, \Gamma \Rightarrow \Delta}{\{x\} \in N(x), \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Labelled rules

Rules for >

$$\frac{a \in N(x), \mathcal{R}, a \Vdash^{\exists} A, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x \Rightarrow A > B} \text{ (al)}$$

$$\frac{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta, a \Vdash^{\exists} A \quad a \in N(x), \mathcal{R}, x \Vdash_{a} A \mid B, x : A > B, \Gamma \Rightarrow \Delta}{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}$$

$$\frac{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}$$

$$\frac{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}{a \in N(x), x \in A}$$

$$\frac{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}{a \in N(x), x \in A}$$

$$c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_a A \mid B, c \Vdash^{\exists} A \quad c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_a A \mid B, c \Vdash^{\forall} A \rightarrow B$$

$$c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_a A \mid B$$

$$b \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta$$

$$\frac{b \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \to B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x \Vdash_a A \mid B, \Gamma \Rightarrow \Delta} \text{ (a!)}$$

Rules for frame conditions: centering

C For all x, for all $\alpha \in N(x)$, $\{x\} \in N(x)$ and $x \in \alpha$

$$\mathtt{C}\frac{\{x\} \in \mathit{N}(x), \{x\} \subseteq \mathit{a}, \mathit{a} \in \mathit{N}(x), \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathit{a} \in \mathit{N}(x), \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \text{single} \frac{\mathit{x} \in \{x\}, \{x\} \in \mathit{N}(x), \mathcal{R}, \Gamma \Rightarrow \Delta}{\{x\} \in \mathit{N}(x), \mathcal{R}, \Gamma \Rightarrow \Delta}$$

$$\operatorname{Repl}_{1} \frac{y \in \{x\}, At(y), At(x), \mathcal{R}, \Gamma \Rightarrow \Delta}{y \in \{x\}, At(x), \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \operatorname{Repl}_{2} \frac{y \in \{x\}, At(x), At(y), \mathcal{R}, \Gamma \Rightarrow \Delta}{y \in \{x\}, At(y), \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Example

Axiom c
$$(p \land q) \rightarrow (p > q)$$

For L any logic in the conditional lattice

Theorem (Soundness). If the sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ is provable in the labelled calculus for L, then the sequent is valid in the logic L.

Theorem (Completeness, I). If A is derivable from the axioms for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

For L any logic in the conditional lattice

Theorem (Soundness). If the sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ is provable in the labelled calculus for L, then the sequent is valid in the logic L.

Theorem (Completeness, I). If A is derivable from the axioms for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. By proving cut-admissibility (easy).

For L any logic in the conditional lattice

Theorem (Soundness). If the sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ is provable in the labelled calculus for L, then the sequent is valid in the logic L.

Theorem (Completeness, I). If A is derivable from the axioms for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. By proving cut-admissibility (easy).

For *L* any logic in the conditional lattice **without** absoluteness

Theorem (Completeness, II). If A is valid in the class of models for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

For L any logic in the conditional lattice

Theorem (Soundness). If the sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ is provable in the labelled calculus for L, then the sequent is valid in the logic L.

Theorem (Completeness, I). If A is derivable from the axioms for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. By proving cut-admissibility (easy).

For L any logic in the conditional lattice without absoluteness

Theorem (Completeness, II). If A is valid in the class of models for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. Show that if A is not provable, we can construct a finite countermodel for it (easy).

For L any logic in the conditional lattice

Theorem (Soundness). If the sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ is provable in the labelled calculus for L, then the sequent is valid in the logic L.

Theorem (Completeness, I). If A is derivable from the axioms for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. By proving cut-admissibility (easy).

For L any logic in the conditional lattice without absoluteness

Theorem (Completeness, II). If A is valid in the class of models for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. Show that if *A* is not provable, we can construct a finite countermodel for it (easy). We need to show termination (difficult).

Structured proof systems for (some) Lewis' logics

Conditionals in a modal framework

To define our structured proof system, we change the language: instead of the conditional operator, we shall take as primitive the comparative plausibility operator, \leq , also introduced by Lewis, which can be used to define the conditional.

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid A \leq B$$

"A is at least as plausible as B"

$$\square A := \bot \le \neg A$$

$$A > B := (\bot \le A) \lor \neg((A \land \neg B) \le (A \land B))$$

The interdefinability of > and \leq does not hold for all the systems, but only for Lewis' logics.

$$\mathcal{M}, x \models A \leq B \text{ iff for all } \alpha \in N(x), \text{ if } \alpha \Vdash^{\exists} B \text{ then } \alpha \Vdash^{\exists} A$$

Blocks (
$$\Sigma$$
 multiset of formulas) [Olivetti & Pozzato, 2015]

$$[\Sigma \triangleleft C]$$
 \leadsto $\bigvee_{B \in \Sigma} (B \leq C)$

Blocks (Σ multiset of formulas) [Olivetti & Pozzato, 2015]

$$[\Sigma \triangleleft C] \quad \leadsto \quad \bigvee_{B \in \Sigma} (B \leq C)$$

Example
$$[A, B \triangleleft C] \longrightarrow (A \leq C) \lor (B \leq C)$$

Blocks (Σ multiset of formulas) [Olivetti & Pozzato, 2015]

$$[\Sigma \triangleleft C] \quad \leadsto \quad \bigvee_{B \in \Sigma} (B \leq C)$$

Example
$$[A, B \triangleleft C] \longrightarrow (A \leq C) \vee (B \leq C)$$

Sequents with blocks $(\Gamma, \Delta \text{ multisets of formulas})$

$$[\Sigma \triangleleft C] \quad \leadsto \quad \bigvee_{B \in \Sigma} (B \leq C)$$

Example
$$[A, B \triangleleft C] \longrightarrow (A \leq C) \vee (B \leq C)$$

Sequents with blocks $(\Gamma, \Delta \text{ multisets of formulas})$

$$\Gamma \Rightarrow \Delta, [\Sigma_1 \vartriangleleft C_1], \ldots, [\Sigma_k \vartriangleleft C_k]$$

$$[\Sigma \triangleleft C] \quad \leadsto \quad \bigvee_{B \in \Sigma} (B \leq C)$$

Example
$$[A, B \triangleleft C] \longrightarrow (A \leq C) \vee (B \leq C)$$

Sequents with blocks $(\Gamma, \Delta \text{ multisets of formulas})$

$$\Gamma \Rightarrow \Delta, [\Sigma_1 \triangleleft C_1], \dots, [\Sigma_k \triangleleft C_k] \quad \rightsquigarrow$$

$$\bigwedge \Gamma \to \bigvee \Delta \vee \Big(\bigvee_{B \in \Sigma_1} (B \leq C_1)\Big) \vee \cdots \vee \Big(\bigvee_{B \in \Sigma_k} (B \leq C_k)\Big)$$

Blocks (
$$\Sigma$$
 multiset of formulas) [Olivetti & Pozzato, 2015]

$$[\Sigma \triangleleft C] \quad \leadsto \quad \bigvee_{B \in \Sigma} (B \leq C)$$

Example
$$[A, B \triangleleft C] \longrightarrow (A \leq C) \vee (B \leq C)$$

Sequents with blocks $(\Gamma, \Delta \text{ multisets of formulas})$

$$\Gamma \Rightarrow \Delta, [\Sigma_1 \triangleleft C_1], \dots, [\Sigma_k \triangleleft C_k] \quad \rightsquigarrow$$

$$\bigwedge \Gamma \to \bigvee \Delta \vee \Big(\bigvee_{B \in \Sigma_1} (B \leq C_1)\Big) \vee \cdots \vee \Big(\bigvee_{B \in \Sigma_k} (B \leq C_k)\Big)$$

Example

$$G_1,\,G_2 \Rightarrow D, [A,B \vartriangleleft C] \quad \rightsquigarrow \quad \big(G_1 \land G_2\big) \to \Big(D \lor \big(\big(A \leq C\big) \lor \big(B \leq C\big)\big)\Big)$$

Rules for V $\underset{\text{init}}{\text{init}} \frac{\Gamma, \rho \Rightarrow \rho, \Delta}{\Gamma, \rho \Rightarrow \rho, \Delta} \xrightarrow{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma, \bot \Rightarrow \Delta} \xrightarrow{\to_R} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{\to_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta}$

Rules for V $\frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma, p \Rightarrow p, \Delta} \xrightarrow{\perp_L} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma, \perp} \xrightarrow{\rightarrow_R} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B} \xrightarrow{\rightarrow_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \rightarrow B \Rightarrow \Delta}$ $\stackrel{\leq_R}{\Gamma} \xrightarrow{\Gamma} \xrightarrow{\Lambda} \xrightarrow{\Lambda} \xrightarrow{\Lambda} \xrightarrow{R} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B} \xrightarrow{\rightarrow_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \rightarrow B \Rightarrow \Delta}$

Rules for V
$$\frac{\Gamma, \rho \Rightarrow \rho, \Delta}{\Gamma, \rho \Rightarrow \rho, \Delta} \xrightarrow{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma, \bot \Rightarrow \Delta} \xrightarrow{\neg_R} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B} \xrightarrow{\neg_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \rightarrow B \Rightarrow \Delta}$$

$$\leq_{\mathsf{R}} \frac{\Gamma \Rightarrow \Delta, [A \triangleleft B]}{\Gamma \Rightarrow \Delta, A \leq B}$$

Rules for V
init
$$\frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma, \rho \Rightarrow \rho, \Delta} \xrightarrow{\perp_L} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma, \bot} \xrightarrow{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{\downarrow_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, A}$$

$$\stackrel{\leq_R}{\Gamma} \xrightarrow{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow B \Rightarrow \Delta}$$

$$\stackrel{\leq_R}{\Gamma} \xrightarrow{\Gamma, A \Rightarrow \Delta, [A \triangleleft B]} \xrightarrow{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, A \Rightarrow A$$

Rules for V
init
$$\frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma, \rho \Rightarrow \rho, \Delta} \xrightarrow{\perp_L} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma, \Delta, A \Rightarrow B} \xrightarrow{\rightarrow_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma} \frac{\Gamma, A \Rightarrow \Delta, A}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma} \frac{\Gamma, A \Rightarrow \Delta, A}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma} \frac{\Gamma, B \Rightarrow \Delta}{$$

Rules for extensions: centering

$$\operatorname{c} \frac{A,\Gamma\Rightarrow\Delta\quad\Gamma\Rightarrow\Delta,B}{A\leq B,\Gamma\Rightarrow\Delta}$$

Examples

Axiom
$$(A \leq B) \vee (B \leq A)$$

$$\frac{\text{jump}}{\text{com}} = \frac{\frac{\text{init } \overline{b \Rightarrow a, b}}{\overline{b \Rightarrow a, b}} \qquad \frac{\text{init } \overline{a \Rightarrow a, b}}{\overline{a \Rightarrow a, b}}$$

$$\Rightarrow \underline{a \leq b, b \leq a, [a, b \triangleleft b], [b \triangleleft a]} \xrightarrow{\text{jump}} \frac{\Rightarrow \underline{a \leq b, b \leq a, [a \triangleleft b], [a, b \triangleleft a]}}{\Rightarrow \underline{a \leq b, b \leq a, [a \triangleleft b]}}$$

$$\Rightarrow \underline{a \leq b, b \leq a, [a \triangleleft b]} \xrightarrow{\Rightarrow \underline{a \leq b, b \leq a}}$$

$$\xrightarrow{\vee_{R}} \frac{\Rightarrow \underline{a \leq b, b \leq a, [a \triangleleft b]}}{\Rightarrow \underline{a \leq b, b \leq a}}$$

$$\xrightarrow{\vee_{R}} \frac{\Rightarrow \underline{a \leq b, b \leq a}}{\Rightarrow (\underline{a \leq b}) \vee (\underline{b \leq a})}$$

Axiom c
$$(p \land q) \rightarrow (p > q)$$

$$\frac{\int_{\neg L} \overline{p, p, q} \Rightarrow [\bot \triangleleft p], q}{p, \neg q, p, q \Rightarrow [\bot \triangleleft p]} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p]} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p]} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p]} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p]} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p]} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q, p, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q, q]{} \underbrace{[\bot \triangleleft p], p} \xrightarrow[\rho, q]{} \underbrace{[$$

For $L \in \{V, VN, VT, VW, VC, VA, VNA\}$

Theorem (Soundness). If the sequent $\Gamma \Rightarrow \Delta$ is provable in the sequent calculus w. blocks for L, then the formula interpretation of the sequent is derivable from the axioms for L.

For $L \in \{V, VN, VT, VW, VC, VA, VNA\}$

Theorem (Soundness). If the sequent $\Gamma\Rightarrow\Delta$ is provable in the sequent calculus w. blocks for L, then the formula interpretation of the sequent is derivable from the axioms for L.

Theorem (Completeness, I). If A is derivable from the axioms for L, then A is provable in the sequent calculus w. blocks for L.

Proof. For V, by proving cut-admissibility (difficult). For the other logics, by simulating cut-free proofs of a non-standard calculus.

For $L \in \{V, VN, VT, VW, VC, VA, VNA\}$

Theorem (Soundness). If the sequent $\Gamma \Rightarrow \Delta$ is provable in the sequent calculus w. blocks for L, then the formula interpretation of the sequent is derivable from the axioms for L.

Theorem (Completeness, I). If A is derivable from the axioms for L, then A is provable in the sequent calculus w. blocks for L.

Proof. For V, by proving cut-admissibility (difficult). For the other logics, by simulating cut-free proofs of a non-standard calculus.

Theorem (Completeness, II). If A is valid in the class of models for L, then A is provable in the labelled calculus for L.

For $L \in \{V, VN, VT, VW, VC, VA, VNA\}$

Theorem (Soundness). If the sequent $\Gamma \Rightarrow \Delta$ is provable in the sequent calculus w. blocks for L, then the formula interpretation of the sequent is derivable from the axioms for L.

Theorem (Completeness, I). If A is derivable from the axioms for L, then A is provable in the sequent calculus w. blocks for L.

Proof. For V, by proving cut-admissibility (difficult). For the other logics, by simulating cut-free proofs of a non-standard calculus.

Theorem (Completeness, II). If A is valid in the class of models for L, then A is provable in the labelled calculus for L.

Proof. Show that if *A* is not provable, we can construct a finite countermodel for it (difficult). We need to show termination (easy).

▶ Labelled calculi for all the logics [G, Negri, Olivetti, 2021]

- ▶ Labelled calculi for all the logics [G, Negri, Olivetti, 2021]
- ▶ Sequent calculus with blocks for V, VN, VT, VW, VC, VA, VNA [G, Lellmann, Olivetti, Pozzato, 2016]

- ▶ Labelled calculi for all the logics [G, Negri, Olivetti, 2021]
- Sequent calculus with blocks for V, VN, VT, VW, VC, VA, VNA [G, Lellmann, Olivetti, Pozzato, 2016]
- Hypersequent calculus with blocks for logics VTU, VWU, VCU, VTA, VWA, VCA [G, Lellmann, Olivetti, Pozzato, 2017]

	fml. interpr.	invertible rules	analyti- city	termination proof search	counterm. constr.	modu- larity
G3cp	yes	yes	yes	yes, easy!	yes, easy!	n/a
G3K	yes	no	yes	yes, easy!	yes, not easy	no
NK ∪ X [◊]	yes	yes	yes	yes	yes, easy!	45-clause
labK ∪ X	no	yes	yes	yes, for most	yes, easy!	yes
lab, cond	no	yes	easy	difficult	easy	yes
str, cond	yes	no	difficult	easy	difficult	no