Hamiltonian simulation algorithms for near-term quantum hardware

Patrick Bettermann

June 8, 2022

Attosecond Physics

Definition

- 1 Attosecond (as) = $1*10^{-18}$ s
 - Shortest timescale available to us in experiments
 - Special analysis methods are required

Pulses

Definition

Complex Wavefunction
$$U(t) = |A(t)| \exp(i[\omega_0 t + \varphi(t)])$$

 $|A(t)|$ magnitude of the envelope, angular frequency ω_0 , phase $\varphi(t) = arg[A(t)]$
 $\varphi(t+t_0) \approx \varphi_0 + \varphi' t + \frac{1}{2} \varphi'' t^2$ $A(t) = A_0 \exp(-t^2/\tau^2) \exp(iat^2/\tau^2)$
 $I(t) = I_0 \exp(-2t^2/\tau^2)$

figures/irpulse_neu2.png

figures/pulsechirp.png

short-time Fourier Transform

Definition

$$\Phi(\nu,\tau) = \int P(t)G(t-\tau)\exp(-i2\pi\nu t)dt$$

Gate :
$$G(t - \tau)$$

Gated Pulse : $P(t)G(t - \tau)$

Spectrogram:
$$|\Phi(\nu,\tau)|^2$$

 $2\sqrt{2}sin(4\pi t + cos(2\pi * 0, 25t))$:

figures/5spectrogram.pdf

Attosecond Streaking Spectroscopy

figures/experimental_setup.jpg

Direct Measurement of Light Waves, E.Goulielmakis, 2004, Science

Applying FROG to Attosecond Streaking

Attosecond Streaking Formula:

$$\Phi(p,\tau) = \int_{-\infty}^{+\infty} E_X(t) d(p + A_L(t+\tau)) e^{-i\phi(p,t+\tau)} e^{i(p^2)/2 - \Omega_X + W)t} dt$$

Modified Spectrogram:

$$\hat{S}(p,\tau) = \frac{|\Phi(t,\tau)|^2}{|d(p)|^2} \approx \left| \int_{-\infty}^{+\infty} E_X G(t+\tau) e^{\frac{i}{2}p^2t} dt \right|^2$$

FROG Spectrogram:

$$\tilde{S} = \left| \int_{-\infty}^{+\infty} P(t) G(t+\tau) e^{i\omega t} dt \right|^2$$

The accurate FROG characterization of attosecond pulses from streaking measurements, J.Gagnon et al., 2008, Appl.Phys. B 92, 25-32

Least Squares Generalized Projections Algorithm

Initial Guess: figures/lsgpa_0.png

Least Squares Generalized Projections Algorithm

LSGPA Loop:

 \bullet apply alternating constraints in time-/freq. domain

figures/lsgpa_1.png

Problem Statement

figures/roi.pdf

- Identify Regions-Of-Interest
- Setup the data structures
- Satisfy the data constraints
 - FFT
 - LSGPA

Data Constraints

figures/gatetrick.png

The accurate FROG characterization of attosecond pulses from streaking measurements, J.Gagnon et al., 2008, Appl.Phys. B 92, 25-32

Data Structures

- object-oriented
- modularized

- expandable
- built on top of the Scan framework

figures/class-diagram.png

Example Code

figures/example_code.png

Setup Function

figures/setup_code.png

figures/setup1.png

Run the Algorithm

figures/run_code.png

figures/lsgpa_1.png

Results: synthesized data

figures/working/results_synthesized_2.png

$$\mathsf{Merit} = \sqrt{\sum_{i=1}^{\textit{N}_{\epsilon}} |\textit{S}_{1,i} - \textit{IFFT}(\tilde{\textit{S}}_{2,i})|^2}$$

Results: measured data

figures/working/result_measured_new.png

Merit =
$$\sqrt{\sum_{i=1}^{N_{\epsilon}} |S_{1,i} - \mathit{IFFT}(\tilde{S}_{2,i})|^2}$$

Outlook

- Make the algorithm run perfectly, fix the bug
- Research Interest: get the delays between two traces

Thank you for your attention!

EM spectrum

figures/em.jpg

source: Melissa Petruzzello et all., Encyclopædia Britannica Inc., 2017

Attosecond Streaking Formula

$$\Phi(p,\tau) = \int_{-\infty}^{+\infty} E_X(t) d(p + A_L(t+\tau)) e^{-i\phi(p,t+\tau)} e^{i(p^2)/2 - \Omega_X + W)t} dt$$

$$\varphi(p,t) = \int_t^\infty (pA_L(t') + \frac{1}{2}A_L^2(t'))dt'$$

The accurate FROG characterization of attosecond pulses from streaking measurements, J.Gagnon et al., 2008, Appl.Phys. B 92, 25-32