Единый государственный экзамен по ИНФОРМАТИКЕ и ИКТ

Инструкция по выполнению работы

Экзаменационная работа состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера.

На выполнение экзаменационной работы по информатике и ИКТ отводится 3 часа 55 минут (235 минут).

Экзаменационная работа выполняется с помощью специализированного программного обеспечения, предназначенного для проведения экзамена в компьютерной форме. При выполнении заданий Вам будут доступны на протяжении всего экзамена текстовый редактор, редактор электронных таблиц, системы программирования. Расположение указанного программного обеспечения на компьютере и каталог для создания электронных файлов при выполнении заданий Вам укажет организатор в аудитории.

На протяжении сдачи экзамена доступ к сети Интернет запрещён.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

В экзаменационных заданиях используются следующие соглашения.

- 1. Обозначения для логических связок (операций):
- а) *отрицание* (инверсия, логическое НЕ) обозначается ¬ (например, ¬А);
- b) конъюнкция (логическое умножение, логическое И) обозначается \land (например, $A \land B$) либо & (например, A & B);
- с) *дизъюнкция* (логическое сложение, логическое ИЛИ) обозначается \lor (например, $A \lor B$) либо | (например, $A \mid B$);
- d) следование (импликация) обозначается \rightarrow (например, A \rightarrow B);
- е) *тождество* обозначается \equiv (например, $A \equiv B$). Выражение $A \equiv B$ истинно тогда и только тогда, когда значения A и B совпадают (либо они оба истинны, либо они оба ложны);
- f) символ 1 используется для обозначения истины (истинного высказывания); символ 0 для обозначения лжи (ложного высказывания).
- 2. Два логических выражения, содержащих переменные, называются равносильными (эквивалентными), если значения этих выражений совпадают при любых значениях переменных. Так, выражения $A \to B$ и ($\neg A$) \lor В равносильны, а $A \lor B$ и $A \land B$ неравносильны (значения выражений разные, например, при A = 1, B = 0).
- 3. Приоритеты логических операций: инверсия (отрицание), конъюнкция (логическое умножение), дизъюнкция (логическое сложение), импликация (следование), тождество. Таким образом, $\neg A \land B \lor C \land D$ означает то же, что и (($\neg A$) \land B) \lor ($C \land D$).

Возможна запись $A \land B \land C$ вместо $(A \land B) \land C$. То же относится и к дизьюнкции: возможна запись $A \lor B \lor C$ вместо $(A \lor B) \lor C$.

4. Обозначения Мбайт и Кбайт используются в традиционном для информатики смысле – как обозначения единиц измерения, чьё соотношение с единицей «байт» выражается степенью двойки.

Ответами к заданиям 1-23 являются число, последовательность букв или цифр, которые следует записать в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки, <u>без</u> пробелов, запятых и других дополнительных символов. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами.

На рисунке справа схема дорог Н-ского района изображена в виде графа; в таблице слева содержатся сведения о протяжённости каждой из этих дорог (в километрах).

	П1	П2	П3	П4	П5	П6
П1		10			8	5
П2	10			20	12	
ПЗ				4		
П4		20	4		15	
П5	8	12		15		7
П6	5				7	

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта Б в пункт В. В ответе запишите целое число — так, как оно указано в таблице.

Ответ:	

Миша заполнял таблицу истинности функции $(\neg x \land \neg y) \lor (x \equiv z) \lor w$, но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

				$(\neg x \land \neg y) \lor (x \equiv z) \lor w$
1	1			0
		1	0	0
0	1	1	0	0

Определите,	какому	столбцу	таблицы	соответствует	каждая	из перемен	ных
w, x, y, z.							

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

_			
Ответ:			

Ниже представлены два фрагмента таблиц из базы данных о жителях микрорайона. Каждая строка таблицы 2 содержит информацию о ребёнке и об одном из его родителей. Информация представлена значением поля ID в соответствующей строке таблицы 1. Определите на основании приведённых данных, у скольких детей на момент их рождения матерям было больше 22 полных лет. При вычислении ответа учитывайте только информацию из приведённых фрагментов таблиц.

	_				
Таблица 1				Таблица 2	
ID	Фамилия_И.О.	Пол	Год рождения	ID_Родителя	ID_Ребенка
15	Петрова Н. А.	Ж	1944	22	23
22	Иваненко И. М.	M	1940	42	23
23	Иваненко М. И.	M	1968	23	24
24	Иваненко М. М.	M	1993	73	24
32	Будай А. И.	Ж	1960	22	32
33	Будай В. С.	Ж	1987	42	32
35	Будай С. С.	M	1965	32	33
42	Коладзе А. С.	Ж	1941	35	33
43	Коладзе Л. А.	M	1955	15	35
44	Родэ О. С.	M	1990	32	44
46	Родэ М. О.	M	2010	35	44
52	Ауэрман А. М.	Ж	1995	23	52
73	Антонова М. А.	Ж	1967	73	52

U	твет:				

Для кодирования некоторой последовательности, состоящей из букв A, Б, B, Γ , Д решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв A, Б, B, Γ использовали соответственно кодовые слова 011, 010, 110, 111.

Укажите кратчайшее возможное кодовое слово для буквы E, при котором код не будет удовлетворять условию Фано, при этом в записи самого этого слова должно использоваться более одного символа, а само слово не должно совпадать ни с одним из используемых слов для кодирования букв A, Б, В, Г и Д. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

Ответ:		

- На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
 - 1. Строится двоичная запись числа N.
 - 2. К этой записи дописываются справа ещё два разряда по следующему правилу: если N чётное, в конец числа (справа) дописывается сначала ноль, а затем единица. В противном случае, если N нечётное, справа дописывается сначала единица, а затем ноль.

Например, двоичная запись 100 числа 4 будет преобразована в 10001, а двоичная запись 111 числа 7 будет преобразована в 11110.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа R — результата работы данного алгоритма.

Укажите максимальное число R, которое меньше 125 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.

Ответ:		
OTBET:		

6 При каком наименьшем введенном числе d после выполнения программы будет напечатано 67?

C++	Паскаль
#include <iostream></iostream>	var s, n, d: integer;
using namespace std;	begin
CDOCCUMCULA	readln(d);
int main()	n := 2;
{ VK.COM/FO	s := 0;
int d;	while $s \le 365$ do
cin >> d;	begin
int $n = 2$;	s := s + d;
int $s = 0$;	n := n + 5;
while(s \leq 365)	end;
{	writeln(n)
s = s + d;	end.
n=n+5;	
cout << n;	
return 0;	
ALCOPAN ALCOPAN	
Python	Алгоритмический язык
d = int(input())	алг
n=2	нач
s = 0	цел n, s, d
while s <= 365:	ввод d
All .	2

n := 2s := 0

s := s + d

n := n + 5 кц

вывод п

кон

нц пока s <= 365

Ответ:

s = s + d

n = n + 5print(n)

сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 480 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число – количество байт. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр. A) заменить (v, w). Эта команда заменяет в строке первое слева вхождение цепочки у на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150. Если в строке нет вхождений цепочки у, то выполнение команды заменить

Б) нашлось (v).

Эта команда проверяет, встречается ли цепочка у в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

Цикл

ПОКА условие

последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

(v, w) не меняет эту строку.

В конструкции

ЕСЛИ условие

ТО команла1

ИНАЧЕ команда2

КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 84 идущих подряд цифр 8? В ответе запишите полученную строку.

Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 18 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 6 раз ниже и частотой дискретизации в 1,5 раза больше, чем в первый раз. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной записи. Otbet: _______ VK.COM/EGE100BALLOV В коробке лежат 32 цветных карандаша. Сообщение о том, что достали

белый карандаш, несет 3 бита информации. Сколько белых карандашей было в коробке?

Откройте файл электронной таблицы, содержащей вещественные числа результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Найдите максимальную среднесуточную температуру (в ответ запишите только целую часть).

Задание выполняется с использованием прилагаемых файлов.

С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «дверь» или «Дверь» в тексте романа в стихах А.С. Пушкина «Евгений Онегин». Другие формы слова «дверь», такие как «дверью», «дверьми» и т.д., учитывать не следует. В ответе укажите только число.

Ответ: _______.

11

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 25 символов и содержащий только символы Е, Г, Э, 2, 1, 0, 9. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные

НАЧАЛО ПОКА нашлось (777) ИЛИ нашлось (888) ЕСЛИ нашлось (777) ТО заменить (777, 8) ИНАЧЕ заменить (888, 7) КОНЕЦ ЕСЛИ КОНЕЦ ПОКА КОНЕЦ

На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой.

Какова длина самого длинного пути из города А в город Л? Длиной пути считать количество дорог, составляющих этот путь.

Ответ:

Значение арифметического выражения: 414+6416-81 - записали в системе счисления с основанием 4. Сколько цифр «2» содержится в этой записи?

Ответ: ______

Для какого наибольшего целого неотрицательного числа А выражение $(69 \neq y + 2x) \lor (A < x) \lor (A < y)$

тождественно истинно, то есть принимает значение 1 при любых целых неотрицательных x и y?

Ответ:

16 Алгоритм вычисления функции F(n) задан следующими соотноше
--

F(n)=1 при n=1

F(n)=n+F(n-1), если n чётно,

 $F(n)= 2 \cdot F(n-2)$, если n>1 и n нечётно.

Чему равно значение функции F(26)?

Рассматривается множество целых чисел, принадлежащих отрезку [1170; 8367], которые делятся на 3 или на 7 и не делятся на 11, 13, 17 и 19. Найдите количество таких чисел и минимальное из них.

В ответе запишите два целых числа без пробелов и других дополнительных символов: сначала количество, затем минимальное число.

Квадрат разлинован на $N \times N$ клеток (2 < N < 20), N – нечетное число. В каждой клетке лежат монеты, количество которых соответствует записанному числу. Количество монет не может быть меньше 1.

Два исполнителя – ПРАВО и ЛЕВО – существуют в рамках одного поля. Первый имеет две команды – вверх и вправо, второй – вверх и влево, которые, соответственно, перемещают исполнитель на одну клетку вверх, вправо или влево. Исполнитель ПРАВО начинает движение в левой нижней ячейке, исполнитель ЛЕВО – в правой нижней.

Исполнители обязательно встречают в одной из клеток, находящихся в среднем столбце. При этом движение вверх по данному столбцу запрещено. Например, при работе в квадрате 5х5 исполнители встречаются в одной из клеток третьего столбца.

Какую максимальную сумму монет могут собрать исполнители?

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	4	3	1	2
10	1	1	3	2
1	3	13	10	8
2	3	5	6	11
3	19	14	11	5

22

Для указанных входных данных ответом является число 75 (3+19+3+3, 5+11+8+10, 13)

Ответ:				

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 75 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 84. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 84 или больше камней. В начальный момент в куче было S камней, $1 \le S \le 83$.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Укажите минимальное значение числа S, при котором Петя может выиграть в один ход.

Ответ:	

- Для игры, описанной в предыдущем задании, укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
- Петя не может выиграть за один ход;
- Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

В ответе запишите найденные значения в порядке возрастания без пробелов.

_			
Ответ:			

- **21** Для игры, описанной в задании 19, укажите максимальное значение S, при котором:
 - у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и
 - у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Ниже на разных языках программирования записан алгоритм. Получив на вход число х, этот алгоритм печатает число М. Известно, что х>100. Укажите наименьшее такое (т.е. большее 100) число х, при вводе которого алгоритм печатает 2.

Python	Паскаль
x = int(input())	var x, L, M: integer;
L = x - 12	begin
M = x + 12	readln(x);
while L != M:	L := x - 12;
if $L > M$:	M := x + 12;
L = L - M	while L <> M do begin
else:	if $L > M$
M = M - L	then $L := L - M$
print(M)	else $M := M - L$;
	end;
	writeln(M);
	end.
Алгоритмический язык	C++
алг	#include <iostream></iostream>
начало	using namespace std;
цел x, L, M	int main()
ввод х	{
L := x - 12	int x, L, M;
M := x + 12	cin >> x;
нц пока L != M	L = x - 12;
если L > M	M = x + 12;
L := L - M	while (L != M) {
иначе	if(L > M)
M := M - L	L = L - M;
кц	else

\exists	
甲	
=	
二	
\sim	
OBO	
\approx	
\mathcal{Q}	
÷	
#	
<u>U</u>	
Ζ̈́	
大	
\leq	
\equiv	
_	
<u> </u>	
10	
12	
1032	
$\breve{\omega}$	
22	
\sim	

го	7,
не	즈
На	\leq
DB.	\leq
ри	7
cy.	10
от, Д.	N
	$\stackrel{\longrightarrow}{=}$
ТЬ	$\mathcal{C}_{\mathcal{C}}$
)В,	$\tilde{\aleph}$
	N
(ее из	
из	
из	
из	

M = M - L: вывол М кон $cout \ll M \ll endl$; return 0:

Исполнитель В16 преобразует число, записанное на экране.

У исполнителя есть три команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Прибавить 2
- 3. Умножить на 3

Первая из них увеличивает число на экране на 1, вторая увеличивает его на 2, третья умножает его на 3.

Программа для исполнителя В16 – это последовательность команд.

Сколько существует таких программ, которые исходное число 2 преобразуют в число 14, и при этом траектория вычислений программы содержит число 10?

Траектория вычислений программы – это последовательность результатов выполнения всех команд программы. Например, для программы 132 при исходном числе 7 траектория будет состоять из чисел 8, 24, 26.

Ответ:

Задание выполняе<mark>тся с и</mark>спользованием прилагаемых файлов.

Текстовый файл состоит не более чем из 10⁶ символов X, Y и Z. Определите сколько раз встречаются непересекающиеся комбинации «XYZ» и «ZYX».

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [399969; 400039] простые числа. Выведите на экран все найденные простые числа в порядке возрастания, слева от каждого числа выведите его порядковый номер в последовательности. Каждая пара чисел должна быть выведена в отдельной строке.

Примечание. Простое число — натуральное число, имеющее ровно два различных натуральных делителя — единицу и самого себя.

0	
Ответ:	

Задание выполняется с использованием прилагаемых файлов.

Для перевозки партии грузов различной массы выделен грузовик, но ег 26 грузоподъёмность ограничена, поэтому перевезти сразу все грузы удастся. Грузы массой от 200 до 210 кг грузят в первую очередь. Н оставшееся после этого место стараются взять как можно больше грузо Если это можно сделать несколькими способами, выбирают тот способ, пр котором самый большой из выбранных грузов имеет наибольшую масс Если и при этом условии возможно несколько вариантов, выбирается то при котором наибольшую массу имеет второй по величине груз, и т. Известны количество грузов, масса каждого из них и грузоподъёмност грузовика. Необходимо определить количество и общую массу грузо которые будут вывезены при погрузке по вышеописанным правилам.

Входные данные.

Первая строка входного файла содержит два целых числа: N — обще количество грузов и М — грузоподъёмность грузовика в кг. Каждая следующих N строк содержит одно целое число — массу груза в кг.

В ответе запишите два целых числа: сначала максимально возможно количество грузов, затем их общую массу.

Задание выполняется с использованием прилагаемых файлов.

Имеется набор данных, состоящий из пар положительных целых чисел. Необходимо выбрать из каждой пары ровно одно число так, чтобы сумма всех выбранных чисел не делилась на 10 и при этом была минимально возможной. Если получить требуемую сумму невозможно, в качестве ответа нужно выдать 0.

Программа должна напечатать одно число — максимально возможную сумму, соответствующую условиям задачи (или 0, если такую сумму получить нельзя).

Пример организации исходных данных во входном файле:

6

18

2.3

5 15

23 1.2

89

Пример выходных данных для приведённого выше примера входных данных:

19

Даны два входных файла (файл А и файл В), каждый из которых содержит в первой строке число N ($1 \le N \le 100\,000$). Каждая из следующих N строк содержит два натуральных числа, не превышающих 10 000.

В ответ запишите два числа через пробел: первое - число, полученное из первого файла, второе - из второго.

_			
Ответ:			

О проекте «Пробный ЕГЭ каждую неделю»

Данный ким составлен командой всероссийского волонтёрского проекта 100баллов» https://vk.com/ege100ballov безвозмездно распространяется для любых некоммерческих образовательных целей.

Нашли ошибку в варианте?

Напишите нам, пожалуйста, и мы обязательно её исправим! Для замечаний и пожеланий: https://vk.com/topic-10175642 41259310 (также доступны другие варианты для скачивания)

СОСТАВИТЕЛЬ ВАРИАНТА:				
ФИО:	Дзеранов Иосиф Витальевич			
Предмет: Информатика				
Стаж: 5 лет				
Регалии:	Основатель онлайн-школы BeeGeek. Преподаватель информатики в онлайн-школе BeeGeek			
Аккаунт ВК:	https://vk.com/josefdzeranov			
Сайт и доп. информация:	https://taplink.cc/iron_programmer - все продукты			

