EE 604 Image Processing

Lec 01: Introduction

Lecture Outline

- **♦ Course Overview ←**
- Guidelines & Course Policies
- Introduction to Image Processing

EE 604 Team

Instructor

TAs

Ayushi Ojha	ayushio23@iitk.ac.in
Suryansh Singh	ssingh24@iitk.ac.in
Aditya Raj	adityar24@iitk.ac.in
Parampreet Singh	params21@iitk.ac.in

Logistics

Course Schedule: Wednesdays and Fridays, 3:30 to 5:00 p.m. (L07)

Office Hours: Wednesdays and Fridays, 5:00 to 5:30 p.m.

- @ my office, ACES 302
- Take appointment before coming

Course Objectives

At the end of the course, the student should be able to:

- ❖ Understand the fundamentals of image formation, processing, and analysis
- **Explore** the broad range of applications of image processing techniques
- **Develop** the ability to choose appropriate methods for different scenarios
- ❖ Apply the learned concepts to design and implement a real-world image processing system

Contents

- 1. Introduction & Image Fundamentals
- 2. Image Enhancement & Spatial Filtering
- 3. Filtering in Frequency Domain
- 4. Image Restoration & Reconstruction
- 5. Color Image Processing
- 6. Wavelet and Other Image Transforms
- 7. Image Compression and Watermarking
- 8. Morphological Image Processing
- 9. Feature Extraction & Learning
- 10. Image Classification
- 11. Image Segmentation
- 12. Object Detection
- 13. Landmark Detection

Primary Reference

Rafael Gonzalez, Richard Woods

Digital Image Processing Global Edition

4th edition

Publication year: 2017

Print-ISBN: 978-1-292-22304-9

E-ISBN: 978-1-292-22307-0

Pages: 1024

The fourth edition is available online. Just search for "gonzalez dip"

Other References

Jain, A.K. (1989) Fundamentals of Digital Image Processing. Prentice Hall, Cliffs.

Szeliski, Richard. Computer vision: algorithms and applications. Springer Nature, 2022.

Research Papers:

1.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	450	702
2.	European Conference on Computer Vision	<u>262</u>	417
3.	IEEE/CVF International Conference on Computer Vision	256	412
4.	IEEE Transactions on Pattern Analysis and Machine Intelligence	217	376
5.	IEEE Transactions on Image Processing	<u>165</u>	217
6.	IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)	<u>131</u>	211
7.	Medical Image Analysis	126	197
8.	Pattern Recognition	126	178
9.	IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)	117	194
10.	International Journal of Computer Vision	109	211
11.	Pattern Recognition Letters	92	132
12.	International Conference on Pattern Recognition	<u>68</u>	106
13.	IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)	<u>63</u>	99
14.	British Machine Vision Conference (BMVC)	<u>57</u>	96
15.	International Conference on 3D Vision (3DV)	<u>56</u>	94
16.	IEEE International Conference on Image Processing (ICIP)	<u>55</u>	89
17.	Asian Conference on Computer Vision (ACCV)	<u>52</u>	81
18.	IET Image Processing	<u>52</u>	73
19.	Image and Vision Computing	<u>51</u>	84
20.	Computer Vision and Image Understanding	46	91

Evaluation

Components	Weightage	Remarks
Homeworks (10)	10%	Simple questions; once a week; binary marking
Quizzes (2)	20%	MCQ, T/F, FITB & SA type question; announced; closed-book
Assignments (2)	20%	You will have 1-2 weeks; late submissions aren't allowed.
Course Project	20%	Presentation (5%) + Implementation (10%) + Write-up (5%)
Endsem Exam	30%	Theoretical & numerical questions; closed-book

Grading Policy

Grade	[Min	Max)
A*	95	100
A	M+ <i>p</i> *S	95
B+	M+q*S	M+ <i>p</i> *S
В	M	M+q*S
C+	M-q*S	M
С	M-p*S	M-q*S
D+	40	M-p*S
D	35	40

M=Mean S=Standard Deviation p will be decided such that 10% students will get A or above q will be decided such that 25% students will get B+ or above

Lecture Outline

- Course Overview
- Guidelines & Course Policies
- Introduction to Image Processing

Guidelines

- The best way to reach the instructor is via email to: <u>ee604.iitk@gmail.com</u>
- Homeworks, Assignments & Course Project should be submitted at Hello IITK.
- Quizzes & End-sem exam will be conducted offline, and they will be closed-book.
- Maximum team-size in the course project: 4
- A list of projects will be shared soon.
- Assignments will be entirely programming-based.

Course Policies

- It is expected that you will maintain academic honesty in every form.
- Please familiarize yourself with the general rules and laws of plagiarism.
- If plagiarism is detected, you'll be given zero marks in the entire evaluation component. That is,
 - ➤ If it's detected in any homework, you get 0 for entire 10% (weightage of homeworks).
 - ➤ If it's detected in any assignment, you get 0 for entire 20%
 - ➤ If it's detected in any quiz, you get 0 for entire 20%
 - ➤ If it's detected in any part of the course project, you get 0 for entire 20%
 - ➤ If it's detected in any question of the end-sem exam, you get 0 for entire 30%
- While attendance is not mandatory, it's important to attend lectures to do well in the homeworks' component, and the course at large.

Lecture Outline

- Course Overview
- Guidelines & Course Policies
- Introduction to Image Processing

Why study images?

Image Enhancement

Image Storage

Image Transmission

Image Fundamentals

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87		201
172	106	207	233	233	214	220	239	228	98		206
881	88	179	209	185	215	211	158	139		20	169
89	97	165	84	10	168	134	11	31	62	22	148
99	168	191	193	158	227	178	143	182	105	36	190
106	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
90	224	147	108	227	210	127	102	36	101	255	224
90	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	.81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

Pixels: picture elements

157	153	174	168	150	152	129	151	172	161	156	156	
156	182	163	74	75	62	33	17	110	210	180	154	
180	180	50	14	34	6	10	33	48	106	159	181	
206	109	5	124	131	111	120	204	166	15	56	180	
194	68	137	251	237	239	239	228	227	87	71	201	
172	106	207	233	233	214	220	239	228	98	74	206	
188	88	179	209	185	215	211	158	139	76	20	169	
189	97	166	84	10	168	134	11	31	62	22	148	
199	168	191	193	158	227	178	143	182	106	36	190	
206	174	155	252	236	231	149	178	228	43	95	234	
190	216	116	149	236	187	86	150	79	38	218	241	
190	224	147	108	227	210	127	102	36	101	256	224	
190	214	173	66	103	143	96	50	2	109	249	215	
187	196	235	75	1	81	47	0	6	217	255	211	
183	202	237	145	0	0	12	108	200	138	243	236	
196	206	123	207	177	121	123	200	175	13	96	218	
		100	175			100	100%	1	100	5.00		

Image Enhancement & Spatial Filtering

Filtering in Frequency Domain

a b c d

(a) Image corrupted by sinusoidal interference. (b) Magnitude of the Fourier transform showing the bursts of energy caused by the interference (the bursts were enlarged for display purposes). (c) Mask used to eliminate the energy bursts. (d) Result of computing the inverse of the modified Fourier transform. (Original image courtesy of NASA.)

Credits: Primary Reference

Image Restoration

a b c

(a) Image corrupted by salt-and-pepper noise with probabilities $P_s = P_p = 0.25$. (b) Result of filtering with a 7×7 median filter. (c) Result of adaptive median filtering with $S_{\text{max}} = 7$.

Credits: Primary Reference

Color Image Processing

Image Compression

OVERCOMPRESSED: X IMPACTED QUALITY

Watermarking

Morphological Image Processing

Feature Extraction

Feature Learning

Image Classification

2. Analysis through deep neural network 1. Input picture 3. Output class hidden layer 1 hidden layer 2 hidden layer 3 input layer output 1 Cat

Image Segmentation

FIGURE 10.40 (a) Image of yeast cells. (b) Histogram of (a). (c) Segmentation of (a) with Otsu's method using the histogram in (b). (d) Mask image formed by thresholding the absolute Laplacian image. (e) Histogram of the nonzero pixels in the product of (a) and (d). (f) Original image thresholded using Otsu's method based on the histogram in (e). (Original image courtesy of Professor Susan L. Forsburg, University of Southern California.)

Object Detection

Landmark Detection

Outputs of these processes generally are images

Credits: Primary Reference

Image processing (IP) vs Computer vision (CV)

- · Loosely speaking
 - IP: Image -> Image
 - CV: Image -> high level information
 - IP: Wide range of image modalities
 - CV: mostly natural images
- In practice, we need both and do not differentiate!

Image Modalities

