Fonctions : limites de fonctions

Activité : conjecturer une limite à l'aide d'un tableau de valeurs

- 1. Soit une fonction f définie par $f(x) = \frac{x^2 + 4}{x^2 4}$
 - (a) Peut-on calculer l'image de 2 par f ? Donner l'ensemble de définition de f.

(b) A l'aide du tableau de valeurs sur votre calculatrice, compléter les tableaux suivants :

x	Valeur approchée de $f(x)$
1	
1,5	
1,9	
1,99	
1,999	
1,99999	

x	Valeur approchée de $f(x)$
3	
2,5	
2,1	
2,01	
2,0001	
2,00001	

(c) Que devient f(x) lorsque x prend des valeurs infiniment proches de 2 ? En déduire les limites

• limite à gauche : $\lim_{\substack{x \to 2 \\ x < 2}} f(x) = \dots$ et • limite à droite $\lim_{\substack{x \to 2 \\ x > 2}} f(x) = \dots$

2. Le tableau de variation de la fonction f est donné ci-dessous.

- (a) A l'aide de la question 1. compléter le tableau de variation de f.
- (b) Lire les limites de la fonction f en $-\infty$ et en $+\infty$.

Conclusion:

Conclusion:

1 Limites d'une fonction et asymptotes

1.1 Limite infinie en $+\infty$ ou en $-\infty$

Définition 1.

Soit f une fonction définie sur un intervalle non borné à droite.

• On dit que f tend vers $+\infty$ en $+\infty$ si, et seulement si, tout intervalle de la forme $]A; +\infty[$ (où A est un réel) contient toutes les valeurs f(x) dès que x est assez grand.

$$\lim_{x \to +\infty} f(x) = +\infty$$

Soit f une fonction définie sur un intervalle non borné à gauche.

• On dit que f tend vers $-\infty$ en $+\infty$ si, et seulement si, tout intervalle de la forme $]-\infty; B[$ (où B est un réel) contient toutes les valeurs f(x) dès que x est assez grand.

$$\lim_{x \to +\infty} f(x) = -\infty$$

• Exemple 1

$$\bullet \lim_{x \to -\infty} f(x) = \dots$$

$$\bullet \lim_{x \to +\infty} f(x) = \dots$$

•
$$\lim_{x \to +\infty} g(x) = \dots$$

•
$$\lim_{x \to -\infty} g(x) = \dots$$

• Asymptote horizontale

$oxed{\mathbf{D}}$ éfinition 2.

• On dit que la droite d'équation $y = \ell$ est une **asymptote (horizontale)** à la courbe représentative de f en $+\infty$ (respectivement en $-\infty$) si, et seulement si,

$$\lim_{x \to +\infty} f(x) = \ell$$

(respectivement $\lim_{x \to -\infty} f(x) = \ell$)

• Exemple 2

Soit la fonction inverse f définie sur \mathbb{R} *

$$\bullet \lim_{x \to -\infty} \frac{1}{x} = \dots$$

$$\bullet \lim_{x \to +\infty} \frac{1}{x} = \dots$$

 $\bullet\,$ Que peut-on conclure de l'équation y=0 ?

1.2 Limite finie en un réel a

Définition 3.

• Soit a un réel. Soit f une fonction définie sur un intervalle ouvert borné par a. On dit que f admet $+\infty$ pour limite en a si, et seulement si, tout intervalle de la forme $]A; +\infty[$ (où A est un réel) contient toutes les valeurs f(x) dès que x est assez proche de a.

$$\lim_{x \to a} f(x) = +\infty$$

• Soit a un réel. Soit f une fonction définie sur un intervalle ouvert borné par a. On dit que f admet $-\infty$ pour limite en a si, et seulement si, tout intervalle de la forme $]-\infty; B[(où B \text{ est un réel}) \text{ contient toutes les valeurs } f(x) \text{ dès que } x \text{ est assez proche de } a$.

$$\lim_{x \to a} f(x) = -\infty$$

• Asymptote verticale

Définition 4.

• On dit que la droite d'équation x = a est une **asymptote** (verticale) à la courbe représentative de f en $+\infty$ (respectivement en $-\infty$) si, et seulement si,

$$\lim_{x \to a} f(x) = +\infty$$

ou
$$\lim_{x \to a} f(x) = -\infty$$

• Exemple 3

Soit f la fonction définie sur $\mathbb{R} \setminus \{-1\}$ dont le tableau de variations suivant :

- 1. Donner les limites de f en $-\infty$, $+\infty$ et en -1 à droite et à gauche.
- 2. Préciser le type de chaque asymptote ainsi qu'une équation correspondante

- exercice 1 et 2 page 167 (résolus)
- les exercices 51 à 55 page 180(entrainement ; corrigés en classe)
- exercice 149, 150 page 187 (en autonomie, réponses en fin de livre)

Opérations sur les limites 2

Limites des fonctions de référence 2.0.1

•
$$\lim_{x \to +\infty} x^2 = +\infty$$

•
$$\lim_{x \to \infty} x^2 = +\infty$$

•
$$\lim_{x \to +\infty} x^3 = +\infty$$

$$\bullet \lim_{x \to +\infty} x^2 = +\infty \qquad \bullet \lim_{x \to -\infty} x^2 = +\infty \qquad \bullet \lim_{x \to +\infty} x^3 = +\infty \qquad \bullet \lim_{x \to -\infty} x^3 = -\infty$$

• Pour tout entier n > 0:

$$\bullet \lim_{x \to +\infty} x^n = +\infty$$

$$\bullet \lim_{x \to +\infty} x^n = +\infty$$

$$\bullet \lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est } pair \\ -\infty & \text{si } n \text{ est } impair \end{cases}$$

$$\bullet \lim_{x \to +\infty} x^n = +\infty$$

$$\bullet \lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si n est $pair$} \\ -\infty & \text{si n est impair} \end{cases}$$

$$\bullet \lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$\bullet \lim_{x \to +\infty} e^x = 0$$

$$\begin{cases}
 x \to 0 & x \\
 x < 0
\end{cases}$$

$$\lim_{x \to 0} \frac{1}{x^n} = -\infty \quad \text{si } n \text{ impair}$$

$$x < 0$$

$$\bullet \lim_{x \to \pm \infty} k = k$$

•
$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$\bullet \lim_{x \to -\infty} e^x = 0$$

•
$$\lim_{x \to +\infty} e^x = +\infty$$

Somme de fonctions

$\operatorname{Si} \lim_{x \to a} f(x) =$	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$
$\operatorname{Si} \lim_{x \to a} g(x) =$	ℓ'	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$-\infty$
alors $\lim_{x \to a} (f(x) + g(x)) =$	$\ell + \ell'$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	F.I

Produit de fonctions

$\operatorname{Si} \lim_{x \to a} f(x) =$	ℓ	$\ell(\ell \neq 0)$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
$\operatorname{Si} \lim_{x \to a} g(x) =$	ℓ'	$\pm\infty$	$+\infty$	$-\infty$	$+\infty$	0
alors $\lim_{x \to a} (f(x) \times g(x)) =$	$\ell \times \ell'$	$\pm\infty(*)$	$+\infty$	$+\infty$	$-\infty$	F.I

Quotient de fonctions

$\operatorname{Si} \lim_{x \to a} f(x) =$	ℓ	$\ell(\ell \neq 0)$	ℓ	$\pm \infty$	0	$\pm \infty$
$\operatorname{Si} \lim_{x \to a} g(x) =$	$\ell'(\ell' \neq 0)$	0	$\pm \infty$	ℓ'	0	$\pm \infty$
alors $\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) =$	$\frac{\ell}{\ell'}$	$\pm\infty(*)$	0	$+\infty$ ou $-\infty(*)$	F.I	F.I

- exercices 3 à 5 pages 169 et 171 (résolus)
- les exercices 56, 64, 72, 73 et 74 pages 180 à 182 (entrainement ; corrigés en classe)
- les exercices 145, 147, 151 et 152 page 187 (en autonomie, réponses en fin de livre)

2.0.2 Limites d'une fonction composée

Définition 5.

Soit deux fonctions u et v puis a, b et c des réels ou $+\infty$ ou $-\infty$, telles que

Si
$$\lim_{x\to a}u(x)=b$$
 et $\lim_{X\to b}v(X)=c$, alors $\lim_{x\to a}v\left[u(x)\right]=c$
$$v\circ u(x)=v\left[u(x)\right]$$

• Exemples 4

1) Soit f la fonction définie sur l'intervalle $]-\infty$; 1] pas $f(x)=\sqrt{1-x}$ Déterminer la limite de f quand x tend vers $-\infty$

2) Soit h la fonction définie sur \mathbb{R} pas $h(x)=\cos\left(\frac{1}{x^2+1}\right)$ Déterminer la limite de h quand x tend vers $+\infty$

- exercice 6 page 171 (résolu)
- les exercices 91, 96 et 99 page 182 (entrainement ; corrigés en classe)
 - exercice 152 page 187 (en autonomie, réponses en fin de livre)

3 Théorèmes de comparaison et croissances comparées

• Théorème de comparaison

Soient f et g deux fonctions définies sur un intervalle I de la forme A; $+\infty$ où A est soit un réel, soit $-\infty$.

- Si, pour tout $x \in I$, $f(x) \geqslant g(x)$ et $\lim_{x \to +\infty} g(x) = +\infty$, alors $\lim_{x \to +\infty} f(x) = +\infty$ (Théorème de minoration).
- Si, pour tout $x \in I$, $f(x) \leqslant g(x)$ et $\lim_{x \to +\infty} g(x) = -\infty$, alors $\lim_{x \to +\infty} f(x) = -\infty$ (Théorème de majoration).

• Exemple 5

Déterminer la limite en $-\infty$ de la fonction définie sur $\mathbb{R} - \{1\}$ par $f(x) = \frac{2x^2 + \sin(x)}{x - 1}$.

• Théorème des gendarmes (d'encadrement)

Soient f, g et h trois fonctions définies sur un intervalle I de la forme A; $+\infty$ où A est soit un réel, soit $-\infty$, soit ℓ un nombre réel.

Si, pour tout $x \in I$, $f(x) \leq g(x) \leq h(x)$ et si g et h ont la même limites ℓ en $+\infty$, alors $\lim_{x \to +\infty} f(x) = \ell.$

• Exemple 6

Déterminer la limite en $+\infty$ da la fonction définie sur \mathbb{R} par $h(x) = \cos(x)e^{-x}$

• Croissances comparées

Soit n un entier naturel non nul.

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

$$\bullet \lim_{x \to -\infty} x^n e^x = 0$$

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \qquad \bullet \lim_{x \to -\infty} x^n e^x = 0 \qquad \bullet \lim_{x \to +\infty} \frac{e^x}{\sqrt{x}} = +\infty$$

Démontrer que $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$

A faire: voir démonstration page 172

Voir les démonstrations page 9

- exercice 7 et 8 page 173 (résolus)
- les exercices 104, 109, 110 et 116 page 183(entrainement ; corrigés en classe)
 - exercice 153, 156 page 187 (en autonomie, réponses en fin de livre)

Synthèse sur les limites de fonctions page 186

Limites

• Pour $n \in \mathbb{N}^*$: $\lim x^n = +\infty$.

Si *n* est impair, $\lim x^n = -\infty$;

si n est pair, $\lim x^n = +\infty$. $x \rightarrow -\infty$

• Pour $n \in \mathbb{N}^*$:

$$\lim_{x \to -\infty} \frac{1}{x^n} = \lim_{x \to +\infty} \frac{1}{x^n} = 0 \text{ et } \lim_{x \to 0} \frac{1}{x^n} = +\infty.$$

Si *n* impair, $\lim_{\substack{x\to 0\\x<0}} \frac{1}{x^n} = -\infty$; si *n* pair, $\lim_{\substack{x\to 0\\x<0}} \frac{1}{x^n} = +\infty$.

- $\lim k = \lim k = k$ $x \to -\infty$ $x \to +\infty$
- $\lim \sqrt{x} = +\infty$
- $\lim e^x = 0$ et $\lim e^x = +\infty$ $x \rightarrow +\infty$

Asymptotes

a et L sont des réels.

• Si
$$\lim_{x \to +\infty} f(x) = L$$
 ou $\lim_{x \to -\infty} f(x) = L$

alors asymptote horizontale d'équation y = L.

alors asymptote verticale d'équation x = a.

Théorèmes de comparaison

Le réel a peut être remplacé par $-\infty$ ou $+\infty$; $L \in \mathbb{R}$

- Si $f(x) \le g(x)$ et $\lim_{x \to \infty} f(x) = +\infty$, alors $\lim_{x \to \infty} g(x) = +\infty$
- Si $f(x) \le g(x)$ et $\lim_{x \to \infty} f(x) = -\infty$, alors $\lim_{x \to \infty} g(x) = -\infty$ $x \rightarrow a$
- Théorème des gendarmes

 $\operatorname{Si} f(x) \leq g(x) \leq h(x)$ et $\lim f(x) = \lim h(x) = L$, alors $\lim g(x) = L$.

Limites d'une fonction

Formes indéterminées $\ll \infty - \infty$; $\ll \infty \times 0$ »;

$$(\frac{\infty}{\infty})$$
; $(\frac{0}{0})$

Croissances comparées

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \ (n \in \mathbb{N}^*)$$

$$\lim_{n \to \infty} x^n e^x = 0 \ (n \in \mathbb{N}^*)$$

$$\lim_{x \to +\infty} \frac{e^x}{\sqrt{x}} = +\infty$$

Fonction composée u suivie de v $v \circ u$ telle que $v \circ u(x) = v(u(x))$

Exemple de calcul d'une limite

$$\lim_{x \to +\infty} (-2x) = -\infty \text{ et } \lim_{X \to -\infty} e^X = 0 \text{ donc } \lim_{x \to +\infty} e^{-2x} = 0$$

Démonstrations

• Montrons que $\lim_{x\to +\infty} e^x = +\infty$ et $\lim_{x\to -\infty} e^x = 0$

Soit la fonction $f(x) = e^x - x$ définie sur \mathbb{R} .

Sa dérivée est $f'(x) = e^x - 1$. et $f'(x) > 0 \iff e^x - 1 > 0 \iff x > 0$. D'oû le tableau de variation de f:

x	$-\infty$		0		$+\infty$
f'(x)		_	0	+	
f(x)	$+\infty$		1		+∞

On remarque que f(x) > 0 pour tout $x \in \mathbb{R}$, donc $e^x > x$.

$$\lim_{x \to +\infty} x = +\infty \quad \text{par comparaison}$$

$$\lim_{x \to +\infty} e^x = +\infty.$$

Et avec un changement de variable : en posant X=-x on peut déduire: On a donc $e^x=e^{-X}=\frac{1}{e^X}$. De plus, $\lim_{x\to -\infty}X=+\infty$ et $\lim_{X\to +\infty}e^X=+\infty$ donc $\lim_{X\to +\infty}\frac{1}{e^X}=0$. C'est-à-dire, d'après le théorème de la limite de la composée de deux fonctions, $\lim_{x\to -\infty}e^x=0$.

- Montrons que $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$
- Pour n = 1 Soit la fonction $g(x) = e^x \frac{x^2}{2}$ définie sur \mathbb{R} .

Sa dérivée est $g'(x) = e^x - x = f(x)$ qui est positive. D'oû le tableau de variation de g:

x	$-\infty$	0	$+\infty$
g'(x)	+	+	
g(x)	$-\infty$	1	$+\infty$

On remarque que pour tout x > 0,

$$g(x) > 1 \iff g(x) > 0,$$

 $e^x - \frac{x^2}{2} > 0 \iff e^x > \frac{x^2}{2} \iff \frac{e^x}{x} > \frac{x}{2}$

 $\lim_{x\to +\infty} \frac{x}{2} = +\infty \text{ par comparaison,}$ $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty.$

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

• Pour
$$n \ge 2$$
 Pour tout $x \in \mathbb{R}^*$, $\frac{e^x}{x^n} = \frac{\left(\frac{x}{e^n}\right)^n}{x^n} = \frac{\left(\frac{x}{e^n}\right)^n}{\left(n \times \frac{x}{n}\right)^n} = \frac{\left(\frac{x}{e^n}\right)^n}{n^n \times \left(\frac{x}{n}\right)^n} = \left(\frac{1}{n} \times \frac{\frac{x}{e^n}}{x}\right)^n$

Et avec un changement de variable : en posant $X = \frac{x}{n}$ on peut déduire

$$\left(\frac{\frac{x}{e^n}}{\frac{x}{n}}\right) = \frac{e^X}{X}, \lim_{X \to +\infty} \frac{e^X}{X} = +\infty \text{ donc par composition } \lim_{x \to +\infty} \left(\frac{\frac{x}{e^n}}{\frac{x}{n}}\right) = +\infty.$$

$$\frac{1}{n} > 0$$
, on en déduit $\lim_{X \to +\infty} \left(\frac{1}{n} \times \frac{\frac{x}{n}}{\frac{x}{n}} \right) = +\infty$.

De plus
$$\lim_{X \to +\infty} X^n = +\infty$$
, donc $\lim_{X \to +\infty} \left(\frac{1}{n} \times \frac{e^{\frac{x}{n}}}{\frac{x}{n}} \right)^n = +\infty$. Conclusion : $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$.