

coursera

Wireless Systems Review

- History and Challenges
- Introduced concepts:
 - Path loss (PL)
 - Transmitter output power (P_{OUT})
 - Receiver sensitivity (P_{IN})
 - Selectivity
 - Distortion (P1dB and IP3)

System Design Methodology

Specifications and RequirementsWireless Tin Can Telephone (my design)

System Specification	\rightarrow	System Requirements	\rightarrow	System Architecture
Audio Wireless	\rightarrow	Analog processing	\rightarrow	Amplitude modulation
Low Power	\rightarrow	$P_{DC} < 1 W$	\rightarrow	Direct conversion
Simple Design	\rightarrow	$f_c = 1 MHz$	\rightarrow	Half-duplex
Noisy Environment	\rightarrow	SNR _{OUT} ≥ 70 dB	\rightarrow	Differential Circuit

System ArchitectureWireless Tin Can Telephone

System Architecture

Transmitter

System Architecture Channel

Blockers

From AM stations

Path Loss

Two loop antennas 10 meters apart

Data will be available at Cousera

Man-made noise

https://en.wikipedia.org/wiki/Atmospheric_noise

System Architecture Receiver Load – Speaker

1 - Sound Pressure Level

- This is how loud the sound will be at a specific distance.
- 0 dB is the lower limit of audibility, and 60 dB is the SPL at 1 m from a TV set at home level.

2 - Speaker Sensitivity

- How much SPL is <u>measured</u> at 1 meter from a speaker with 1 W power driving it.
- It indicates how much the speaker transforms electrical energy into sound.

3 - Example:

• Traditional speakers may have a 85 dB sensitivity. This means that a signal with 2.8 Vrms (1 W at 8 Ω load) on the speaker generates a SPL of 85 dB at 1 meter.

System Architecture Receiver

System Architecture Link Budget – Reference Table

Thanks for watching!

C.A.M.Costa.Junior@tue.nl

P.G.M.Baltus@tue.nl

