PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA

<u>IEE239 - PROCESAMIENTO DE SEÑALES E IMÁGENES DIGITALES</u> Examen 1

(Segundo semestre 2015)

Indicaciones generales:

- Duración: 3 horas.
- No está permitido el uso de **calculadoras programables** ni material adicional.
- Está permitido el uso de tablas de transformadas.
- Indicar claramente el procedimiento seguido en cada pregunta.
- La presentación, la ortografía y la gramática influirán en la calificación.
- La evaluación es estrictamente personal.

Puntaje total: 20 puntos

Cuestionario:

Pregunta 1 (4 puntos)

Dado el diagrama de polos y ceros descrito en la Figura 1:

- a) (1.5 puntos) **Asumiendo que se trata de un sistema bilateral**, hallar la respuesta al impulso del sistema. ¿Es un sistema BIBO estable?
- b) (1 punto) **Asumiendo que se trata de un sistema causal**, hallar la respuesta al impulso del sistema. ¿Es un sistema FIR o IIR?
- c) (1.5 puntos) **Asumiendo que se trata de un sistema BIBO estable**, hallar la señal de entrada x[n] que genere la salida:

$$y[n] = -\frac{1}{3} \left(-\frac{1}{4}\right)^n u[n] - \frac{4}{3} (2)^n u[-n-1]$$

Figura 1. Diagrama de polos y ceros.

Pregunta 2 (4 puntos)

Se cuenta con el sistema descrito en la Figura 2 y la señal en tiempo continuo cuyo espectro es descrito en la Figura 3. Se sabe además que $T_1 = \frac{1}{2000}s$, $T_2 = \frac{1}{3000}s$ y la función de transferencia $H(e^{j\omega})$ está definida como:

$$H(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \pi/3 \\ 0, & \pi/3 < |\omega| \le \pi \end{cases};$$

- a) (1.5 puntos) Describir gráficamente $R(e^{j\omega})$, $X(e^{j\omega})$, $Y(e^{j\omega})$ y $S(e^{j\omega})$ para $\omega \in [-5\pi, 5\pi]$.
- b) (1.5 puntos) Describir gráficamente $S_c(j\Omega)$ para $\Omega \in [\frac{-5\pi}{T_2}, \frac{5\pi}{T_2}]$.
- c) (1 punto) ¿Es posible modelar el sistema total como un sistema LTI en tiempo continuo? En caso sea cierto, determine su respuesta al impulso $h_{eff}(t)$. En caso no sea cierto, justifique claramente su respuesta.

Figura 2. Sistema discreto.

Figura 3. Espectro de señal de entrada.

Pregunta 3 (4 puntos)

a) (1.5 puntos) Dado un sistema LTI discreto con respuesta al impulso:

$$h[n] = \left(\frac{1}{2}\right)^n u[n];$$

Determinar la respuesta del sistema a la siguiente señal de entrada a partir de la transformada de Fourier en tiempo discreto:

$$x[n]=(-1)^n$$

b) (1.5 puntos) Dado un sistema LTI discreto con respuesta al impulso:

$$h[n] = \left[\left(\frac{1}{2} \right)^n \cos \left(\frac{\pi n}{2} \right) \right] u[n];$$

Determinar la respuesta del sistema a la siguiente señal de entrada a partir de la transformada de Fourier en tiempo discreto:

$$x[n] = \left(\frac{1}{2}\right)^n u[n]$$

c) (1 punto) Dadas la señal de entrada x[n] y el sistema h[n] caracterizados por las siguientes transformadas de Fourier:

$$X(e^{j\omega}) = 3e^{j\omega} + 1 - e^{-j\omega} + 2e^{-j3\omega}$$
$$H(e^{j\omega}) = -e^{j\omega} + 2e^{-j2\omega} + e^{j4\omega}$$

Determinar la respuesta del sistema y[n].

Pregunta 4 (4 puntos)

Diseñar un filtro digital IIR a partir del método de **transformación bilineal** tomando como referencia la siguiente función de transferencia:

$$H_c(s) = \frac{\alpha \cdot s}{\alpha \cdot s + 1}, \ \alpha > 0.$$

El filtro digital debe tener una frecuencia de corte en $\omega_c = \frac{3\pi}{10}$.

- a) (1.5 puntos) Establecer Ω_c del filtro analógico para T=0.1 y a partir de ello hallar el valor de α . Hacer un bosquejo de su espectro de magnitud para $\left[-20,20\right]$ rad/s. Según su ganancia, ¿de qué tipo de filtro se trata?
- b) (1.5 puntos) Hallar H(z) para T=0.1. Hacer un bosquejo de su espectro de magnitud para $\left[-3\pi,3\pi\right]$ rad/m. ¿Cuál es el efecto de T en H(z)?
- c) (1 punto) Hallar la ecuación diferencial del sistema diseñado y describir gráficamente su diagrama de bloques.

Pregunta 5 (4 puntos)

Dada la secuencia:

$$x[n] = \{0 \ 1 \ 2 \ 0 \ 3 \ 0 \ 2 \ 1\};$$

- a) (1.5 puntos) A partir de la definición de transformada discreta de Fourier, hallar la secuencia X(k) para N=8.
- b) (1 punto) Dada una estructura capaz de calcular la DFT directa, es posible usarla para calcular la DFT inversa de la siguiente manera:

$$F^{-1}\{X(k)\} = \frac{1}{N} (F\{X^*(k)\})^*;$$

Demostrar matemáticamente esta relación. Justifique claramente su respuesta.

c) (1.5 puntos) Hallar la **transformada inversa** de $\hat{X}(k) = (-1)^k \cdot X(k)$ usando el algoritmo FFT Radix-2. Calcular los resultados de cada etapa intermedia y mostrar claramente su procedimiento. La Figura 4 describe la implementación de interés.

Figura 4: Diezmado temporal descrito a partir de bloques elementales.

Los profesores del curso.

San Miguel, 15 de octubre del 2015.