Machine Learning - Classification Assignment

 ${\bf 1.}\ {\bf Identify}\ {\bf your}\ {\bf problem}\ {\bf statement}$

Goal : CHRONIC KIDNEY DISEASE PREDICTION

3 Stages : Machine Learning (number based data)

Supervised Learning (Input & Output present)

Classification Algorithms Used - Logistic Resgression, K Nearest Neighbors, Naive Bayes(Gaussian, Bernoulli, Multinomial), Support Vector Machinee, Decision Tree & Random Forest

2. No of rows & columns : 399 rows 25 columns

3. Pre-processing method : Categorical data - Nominal - One Hot Encoding Method (pandas function - get_dummies)

Support Vector Machine :

Confusion Matrix

```
Tree science, metrics; paper confusion, metric
DE confusion, patrickS, Sert, grid, predictions:
0

erroy(ESM, 0),
[1, 47]], stape-late()
```

Classification Report

```
from Octour.metrics toport classification_report
Lif_report = risksification_report(Y_iost_grid_predictions)
print(Cif_report)
```

	0.00	1.00	0.10	11
1	1.00	0.36	8.90	44
accuracy of			0.00	
mero sing	4.55	0.55	9;89	14
a label death along	46.00	B. 700	W. Arts	- 10

ROC_AUC_SCORE

```
From Alliant American Copper Not and Linear England (American American Amer
```

Decision Tree :

Confusion Matrix

Classification Report

```
Free stamm.even impet (JanTicalia report
(Jf papers - classification report) fact, grid prediction)
print(If jegers)
```

	precision	recall	71-lune	naport
	1.00	0.00	11.01	12
- +	16.100	1.00	11.00	311
accuracy.			0.10	**
sport and	0.86	0.77	10.00	34
unighted ang	0.70	0.17	0.00	810

ROC_AUC_SCORE

```
the stransactic input or populate ( 
80, Som a reconstruction ( 
90, Som a reconstruct
```

9,76879

Random Forest:

Confusion Matrix

Classification Report

```
from Mileon metrics impact classification, report
Lit_report v classification_report(r_test_grid_predictions)
print(CIP_report)
```

Activities (CO. "Late	1000				
	presta	yes.	repitt	PE-interes	Appert
0.0	1	.00	0.10	1.10	30
1		40	1.99	4,00	44
accuracy.				8,10	91
MARKET STATE		-	0.00	4.00	99
ontgitted avg.		-	46.00	4.00	-

ROC_AUC_SCORE

from Adjaces metrics import our partition on the product product $(X, X \cap Y, Y \cap Y, Y$

1.4

Confusion Matrix

```
from blicars activity dagent confession metrics
(N = confession_matrix(f,fest_grid_prod))));
(N
```

Classification Report

True thlear antries again classification paper of resert a classification paper () True of a passification paper () True of a passification paper () True of a passification of the paper () True of t

ROC_AUC_SCORE

From this environ depart on management of the property of the

KNN:

Confusion Matrix 1

from obligars notice impact coffucion patric ID = confucion_makeris(*_conf_gr=12_proj)(+)one) (H

Classification Report

Trans relation metrics impact (lassification_report (17_report a classification_report(0_text_grid_prediction) print(11*,report)

ROC_AUC_SCORE

#.RESS4EDEXISTO

Naive Bayes: 1. Guassian NB

Confusion Matrix

tion ellow metric impact confusion metric
DE a confusion metric IV. here grid predictions)
DE

array([532, 0], [5, 4][], dtgps=(r)64)

Classification Report

from oblain matrice began discritication report (If report a classification report) test productional point(If report)

ROC_AUC_SCORE

Free shipses service impact two_doc_stores

MX_Store = roo_ser_store(V_text_Classifier_predict_predict_crebs)(V_text_Classifier_predict_predict_crebs)(V_text_Classifier_predict_predict_predict_crebs)

Naive Bayes : 2. Bernoulli NB

Confusion Matrix

from object-septron bounds confusion_matrix
On a confusion_matrix(T_sept.prid_prodictions)
On

#****([[14, #), [1, 47]], dissolving)

Classification Report

from oblasm.metrics impact (lamification_report CST_report = signationation_report(v_tend_grad_pred(rtime) print(CST_report)

ROC_AUC_SCORE

Free obligation and the language was asset to an extension

```
NE_Score = rec_sec_ecce(r_Sect_Closetfler.gendist_pediat_pediat(,Section )))
NE_Score
```

Naive Bayes : 2. Multinomial NB

Result:

- 1. For this given dataset "Random Forest Classifier Algorithm" predicts the better model (99% Accuracy) compared to others.
- 2. Accuracy, Recall, Precision, F1 Score, Macro Average & Weighted Average values of all the algorithms mentioned above.
- $3.\ ROC_AUC_SCORE: Here \ SVM, Random \ Forest, Logistic Regression, Gaussian \ \& \ Bernoulli \ results in better classification Perfomance.$