

MATH 152 - PYTHON LAB 8

Directions: Use Python to solve each problem, unless the question states otherwise. (Template link)

- 1. Given the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{e^{4n-2}}$:
 - (a) Using the Remainder Estimate for the Alternating Series Test for N terms, plot the upper bound (function) in the window and the line y = 0.00005. Use your graph to determine how many terms are needed to sum the series to within 0.00005.
 - (b) Use **sp.nsolve** to confirm your graphical answer from part (a).
 - (c) Find the sum of the series to within 0.00005.
- 2. Given $\sum_{n=0}^{\infty} \frac{(1000)^n}{n!}$:
 - (a) Print the first 11 terms of the series (from a_0 to a_{10}). Based on your output, do you expect the series to converge or diverge?
 - (b) Apply the Ratio Test to the series, i.e., compute $\left|\frac{a_{n+1}}{a_n}\right|$ and $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$.
 - (c) What does your answer to part (b) tell you about the series?
- 3. Given the power series $\sum_{n=0}^{\infty} (-1)^n \frac{x^{6n+5}}{2n+1}$:
 - (a) Simplify $\left|\frac{a_{n+1}}{a_n}\right|$ and compute the limit $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$.
 - (b) State the interval of convergence for this power series. Remember to check the endpoints.
 - (c) Find the partial sums s_1 , s_3 , and s_5 for this power series. You can use the **sp.summation** command for this.
 - (d) It can be shown that the series converges to $f(x) = x^2 \arctan(x^3)$. Plot s_1 , s_3 , s_5 , and f on the same graph to illustrate this. Use the interval of convergence found in part (b) as your plot's x-domain.