May 7. 2022, 1:49:0

Fixed Income Securities

- Understand the cash flows and quoted price.

 Fixed-Rate Mortan

 - Treasury Bills: Zero-coupon bonds.

Fixed-Rate Mortgage: Equal payment in each period.

• Balance at
$$t$$
: The value of future payments at t .

Treasury Bills: Zero-coupon bonds.

• Price quoted as discount.

$$d = \frac{360}{n} \times \frac{100 - P}{100}$$

$$P = 100 \times \left(1 - \frac{nd}{360}\right)$$

May 7.2022. 1:49:0

Fixed Income Securities Pankai Rumar@berk Sincl • Cash flow: $N\Delta r_n(T-\Delta,T)$ at T • Price as if the forward rates

- pankaj_kumar@berkele)

Price as if the forward rates are realized.
$$P = \frac{N\Delta f_n(t, T - \Delta, T)}{\left(1 + \Delta r_n(t, T)\right)^{nT}}$$

MAN 7. 2022. 1:49:0

Pankal Rumar & Sinci . gie floating payment: • Cash flow: $N\Delta r_n(T-\Delta,T)$ at T • Price as if the forward rates are

$$P = \frac{N\Delta f_n(t, T - \Delta, T)}{(1 + \Delta r_n(t, T))^{nT}}$$

- $P = \frac{N\Delta f_n(t, T \Delta, T)}{(1 + \Delta r_n(t, T))^{nT}}$ Forward Rate Agreement: Fixed payment c Single floating payment.
 - The value of FRA at t = 0 is 0. $c = f(0, T_1, T_2)$
 - What is the value at $t \in (0, T_1)$?

AII - NAZII 7 - 2022. 1:49:0

Fixed Income Securities $0.0 \bullet 0.00$ FRA: valuation

• What is the value V_t of FRA at t?

a. r?

Pankaj_kumar@berkeley.edu - May 2, 2022, 1:49:04 AM PDT pankaj_kumar@berkeley.edu - May 2, 2022, 1:49:04 AM Pr

- Fixed Income Securities

 Fitting the Yiele Securities

 Fitting the Yiele Securities

 Fitting the Yiele Securities

 What is the value V_t of FRA at t?

 Sell another FRA at t. (c_t will be $f(t, T_1, T_2)$)
 - Value of two FRA: V_t

• Value of two FRA:
$$V_t$$

• Value of cash flows (Assume simple rate, N=1):
$$CF = Z(t, T_2) \left(f(0, T_1, T_2)(T_2 - T_1) - f(t, T_1, T_2)(T_2 - T_1) \right)$$

$$= Z(t, T_2) \times \left(\frac{Z(0, T_1)}{Z(0, T_2)} - \frac{Z(t, T_1)}{Z(t, T_2)} \right)$$

$$= Z(t, T_2) \times \frac{Z(0, T_1)}{Z(0, T_2)} - Z(t, T_1)$$

May 2022. 1:49:0

Floating Rate Note: pricing

FRN: bond with a coupon indexed to a benchmark interest rate

In class, we have seen that the value of a FRN is $P^{FI} = 100$ at every reset date pankaj_kumar@berkeley.edu - May 2, 2022, 1:49:04 AM Pr

What if we are not at a reset date? pankaj_kumar@ber

Floating Rate Note: pricing

FRN: bond with a coupon indexed to a benchmark interest rate

 In class, we have seen that the value of a FRN is $P^{FI} = 100$ at every reset date

What if we are not at a reset date?

• In general for $T_i < t < T_{i+1}$, the formula (assuming

at if we are not at a reset date?

In general for
$$T_i < t < T_{i+1}$$
, the formula (assuming semiannual compounding) is

$$P^{FI}(t,T) = Z(t,T_{i+1}) \times 100 \times \left(1 + \frac{r_2(T_i,T_{i+1})}{2}\right)$$

$$= 100 \times \frac{Z(t,T_{i+1})}{Z(T_i,T_{i+1})}$$

May 7.2022, 1:49:0

pankaj_kumar@berk.Fixed Income Securities edu-May 2, 2022, 1:49:04 AM PDT

• Swap: Bond - floater
• The value of the floater =
$$N$$
.
• The value of the bond:
$$P = N \times Z(0,T) + N \times \frac{c}{n} \sum_{i=1}^{n_c} Z(0,T_i)$$

MAN 2022. 1:49:0

Calculate Discount Factor from Swap Rate • problem: • t date is 6/6/18 • r swap, payment frequently and factor.

Sample problem:

- Spot date is 6/6/18
- 2 year swap, payment frequency = 2. swap rate = 2.77%
- Discount factors for 12/6/18, 6/6/19, 12/6/19 are 0.987, 0.974, 0.960

 Find the discount factor at maturity date.
- Find the discount factor at maturity date.

Calculate Discount Factor from Swap Rate ample problem: Spot date is 6/6/18 2 year swap, payment frequency = 2. swap rate = 2.77%

Sample problem:

- Discount factors for 12/6/18, 6/6/19, 12/6/19 are 0.987, 0.974, 0.960
 Find the discount factor at maturity date.
 DF = \frac{1-0.5 \times 2.77\% \times (0.987 + 0.974 + 0.960)}{1 + \frac{182}{360} \times 2.77\%} = 0.946

$$\mathsf{DF} = \frac{1 - 0.5 \times 2.77\% \times (0.987 + 0.974 + 0.960)}{1 + \frac{182}{360} \times 2.77\%} = 0.946$$

MAN 2022. 1:49:0

Securities for Bloomberg 23 Curve Forward Rate Agreements Effective dates: Third Quoted rate

- Swap
- Pays semiannually. If it is not a business day, pay on the next business day.

 Hint: the time different better
 - Hint: the time different between two payments are not pankaj_kumar@berkeley.edu

ar@berkelCalculate Yield Curve

- Compute the discount factor at maturity date for each given security
- Compute simple zero rate from discount factor by

$$DF(d_0,d) = \frac{1}{1+rs(t)\times t}$$

- Simple zero rate fits a piece-wise linear continuous function. Calculate the simple zero rates for the wanted dates and turn them into discount factor.
- Turn discount factors into semi-annually compounded zero May 2.2022, 1:49:0 rates and simple forward rates.
- See example in Excel.

pankaj kumar@berkel Nelson-Seigel model

Nelson-Seigel model Consider the Nelson-Seigel model for spot rates:
$$r(t,t+T) = \beta_0 + \beta_1 * \left(\frac{1-e^{-\tau_1 T}}{\tau_1 T}\right) + \beta_2 * \left(\frac{1-e^{-\tau_2 T}}{\tau_2 T} - e^{-\tau_2 T}\right)$$
 Assume that you observe spot rates $r(t,T)$ for several (short

(A) How would you estimate β s given τ s?

(B) Estimate all the and very long) maturities.

- (B) Estimate all the parameters of the model, but optimizing over only two parameters. pankaj_kumar@l

May 2022. 1:49:0

pankaj_kumar@berkel-Nelson-Seigel model

- There are many numerical complexities in seemingly simple fitting

 There may be no guarantee of getting "

 Try a variety of parametal terpret the simple fitting
 There may be no guarantee of getting the global minimum

 - pankaj_kumar@berkeley.edu May Interpret the parameters. Generate a sensible grid of parameters to explore.