

The Traveling Salesman Problem Under Squared Euclidean Distances

Mark de Berg Fred van Nijnatten

Gerhard Woeginger

TU Eindhoven

René Sitters

Vrije Universiteit Amsterdam

Alexander Wolff

Universität Würzburg

Notation. For points $p=(p_1,\ldots,p_d), q=(q_1,\ldots,q_d)\in\mathbb{R}^d$, denote by $|pq|=\sqrt{\sum_{i=1}^d(p_i-q_i)^2}$ their Euclidean distance.

Notation. For points $p=(p_1,\ldots,p_d), q=(q_1,\ldots,q_d)\in\mathbb{R}^d$, denote by $|pq|=\sqrt{\sum_{i=1}^d(p_i-q_i)^2}$ their Euclidean distance.

|pq|

Problem. Euclidean TSP

Given a finite set $S \subset \mathbb{R}^d$, find a tour π through all points in S such that π has minimum length among all tours through S w.r.t. $|\cdot|$.

Notation. For points $p=(p_1,\ldots,p_d), q=(q_1,\ldots,q_d)\in\mathbb{R}^d$, denote by $|pq|=\sqrt{\sum_{i=1}^d(p_i-q_i)^2}$ their Euclidean distance.

Problem. Euclidean TSP

Given a finite set $S \subset \mathbb{R}^d$, find a tour π through all points in S such that π has minimum length among all tours through S w.r.t. $|\cdot|$.

Notation. For points $p=(p_1,\ldots,p_d), q=(q_1,\ldots,q_d)\in\mathbb{R}^d$, denote by $|pq|^2=\sqrt{\sum_{i=1}^d(p_i-q_i)^2}$ their squared Euclidean distance.

Problem. Euclidean TSP

Given a finite set $S \subset \mathbb{R}^d$, find a tour π through all points in S such that π has minimum length among all tours through S w.r.t. $|\cdot|$.

Notation. For points $p=(p_1,\ldots,p_d), q=(q_1,\ldots,q_d)\in\mathbb{R}^d$, denote by $|pq|^2=\sqrt{\sum_{i=1}^d(p_i-q_i)^2}$ their squared Euclidean distance.

Problem. Euclidean TSP(d, 2)

Given a finite set $S \subset \mathbb{R}^d$, find a tour π through all points in S such that π has minimum length among all tours through S w.r.t. $|\cdot|^2$.

Notation. For points $p=(p_1,\ldots,p_d), q=(q_1,\ldots,q_d)\in\mathbb{R}^d$, denote by $|pq|^2=\sqrt{\sum_{i=1}^d(p_i-q_i)^2}$ their squared Euclidean distance.

Problem. Euclidean TSP(d, 2)

Given a finite set $S \subset \mathbb{R}^d$, find a tour π through all points in S such that π has minimum length among all tours through S w.r.t. $|\cdot|^2$.

Notation. For points $p=(p_1,\ldots,p_d), q=(q_1,\ldots,q_d)\in\mathbb{R}^d$, denote by $|pq|^\alpha=\sqrt{\sum_{i=1}^d(p_i-q_i)^2}$ their power- α Euclidean distance.

Problem. Euclidean $TSP(d, \alpha)$

Given a finite set $S \subset \mathbb{R}^d$, find a tour π through all points in S such that π has minimum length among all tours through S w.r.t. $|\cdot|^{\alpha}$.

Theorem. [folklore]

Theorem. [folklore]

The MST yields a 2-approximation for metric TSP.

•

•

Theorem. [folklore]

Theorem. [folklore]

The MST yields a 2-approximation for metric TSP.

Theorem. [Christofides'76]

There is a 3/2-approximation for metric TSP.

Theorem. [folklore]

The MST yields a 2-approximation for metric TSP.

Theorem. [Christofides'76]

There is a 3/2-approximation for metric TSP.

Theorem. [Papadimitriou'77]

Euclidean TSP is NP-hard in any dimension $d \geq 1$

Theorem. [folklore]

The MST yields a 2-approximation for metric TSP.

Theorem. [Christofides'76]

There is a 3/2-approximation for metric TSP.

Theorem. [Papadimitriou'77]

Euclidean TSP is NP-hard in any dimension $d \geq 1$

Theorem. [folklore]

The MST yields a 2-approximation for metric TSP.

Theorem. [Christofides'76]

There is a 3/2-approximation for metric TSP.

Theorem. [Papadimitriou'77]

Euclidean TSP is NP-hard in any dimension $d \geq 1$

Theorem. [Arora'96, Mitchell'96, RaoSmith'98]

Euclidean TSP admits a PTAS for any fixed $d \geq 1$.

Theorem. [folklore]

The MST yields a 2-approximation for metric TSP.

Theorem. [Christofides'76]

There is a 3/2-approximation for metric TSP.

Theorem. [Papadimitriou'77]

Euclidean TSP is NP-hard in any dimension $d \geq 1$

Theorem. [Arora'96, Mitchell'96, RaoSmith'98]

Euclidean TSP admits a PTAS for any fixed $d \geq 1$.

But what about $\mathsf{TSP}(d, \alpha)$ for $\alpha \neq 1$?

1. Range assignment for wireless networks

• transmission range depends on power

- transmission range depends on power
- energy consumption $\sim d^{\alpha}$ for some $\alpha \in [2, 6]$ ("distance-power gradient")

- transmission range depends on power
- energy consumption $\sim d^{\alpha}$ for some $\alpha \in [2, 6]$ ("distance-power gradient")

- transmission range depends on power
- energy consumption $\sim d^{\alpha}$ for some $\alpha \in [2, 6]$ ("distance-power gradient")

1. Range assignment for wireless networks

- transmission range depends on power
- energy consumption $\sim d^{\alpha}$ for some $\alpha \in [2, 6]$ ("distance-power gradient")

ullet range assignment ho

1. Range assignment for wireless networks

- transmission range depends on power
- energy consumption $\sim d^{\alpha}$ for some $\alpha \in [2, 6]$ ("distance-power gradient")

• range assignment ρ induces dir. communication graph G_{ρ}

1. Range assignment for wireless networks

- transmission range depends on power
- energy consumption $\sim d^{\alpha}$ for some $\alpha \in [2, 6]$ ("distance-power gradient")

- range assignment ρ induces dir. communication graph G_{ρ}
- optimization problem: compute min-energy range assignment ρ s.t. G_{ρ} ...

1. Range assignment for wireless networks

- transmission range depends on power
- energy consumption $\sim d^{\alpha}$ for some $\alpha \in [2, 6]$ ("distance-power gradient")

- range assignment ρ induces dir. communication graph G_{ρ}
- optimization problem: compute min-energy range assignment ρ s.t. G_{ρ} ...
 - is strongly connected
 - contains broadcast tree
 - contains tour [Funke...'08]

 G_{ρ} strongly connected

2. Directional antennas with circular sectors [Caragiannis...'08]

3. Complexity

Are things becoming simpler or harder?

2. Directional antennas with circular sectors [Caragiannis...'08]

3. Complexity

Are things becoming simpler or harder?

Is Arora's PTAS for Euclidean TSP a "lucky coincidence"?

2. Directional antennas with circular sectors [Caragiannis...'08]

3. Complexity

Are things becoming simpler or harder? Is Arora's PTAS for Euclidean TSP a "lucky coincidence"? If it is, how well can we approximate, say, TSP(2,2)?

Definition. dist (\cdot, \cdot) fulfills the τ -relaxed triangle inequality if any three points p, q, r satisfy

 $\operatorname{dist}(p,r) \leq \tau \cdot (\operatorname{dist}(p,q) + \operatorname{dist}(q,r)).$

Definition. dist (\cdot, \cdot) fulfills the τ -relaxed triangle inequality if any three points p, q, r satisfy

 $\operatorname{dist}(p,r) \leq \tau \cdot (\operatorname{dist}(p,q) + \operatorname{dist}(q,r)).$

Lemma. [Funke...'08]

 $|\cdot|^2$ fulfills the 2-relaxed triangle inequality.

Definition. dist (\cdot, \cdot) fulfills the τ -relaxed triangle inequality if any three points p, q, r satisfy

 $\operatorname{dist}(p,r) \leq \tau \cdot (\operatorname{dist}(p,q) + \operatorname{dist}(q,r)).$

Lemma.

[Funke...'08]

For $\alpha \geq 1$,

 $|\cdot|^{\alpha}$ fulfills the $2^{\alpha-1}$ -relaxed triangle inequality.

Definition. dist (\cdot, \cdot) fulfills the τ -relaxed triangle inequality if any three points p, q, r satisfy

 $\operatorname{dist}(p,r) \leq \tau \cdot (\operatorname{dist}(p,q) + \operatorname{dist}(q,r)).$

Lemma. [Funke...'08]

For $\alpha > 1$,

 $|\cdot|^{\alpha}$ fulfills the $2^{\alpha-1}$ -relaxed triangle inequality.

Good news. Can apply algorithms for Δ_{τ} -TSP to TSP(\cdot , α)!

Definition. dist (\cdot, \cdot) fulfills the τ -relaxed triangle inequality if any three points p, q, r satisfy

$$\operatorname{dist}(p,r) \leq \tau \cdot (\operatorname{dist}(p,q) + \operatorname{dist}(q,r)).$$

Lemma. [Funke...'08]

For $\alpha > 1$,

 $|\cdot|^{\alpha}$ fulfills the $2^{\alpha-1}$ -relaxed triangle inequality.

Good news. Can apply algorithms for Δ_{τ} -TSP to TSP(\cdot , α)!

Definition. dist (\cdot, \cdot) fulfills the τ -relaxed triangle inequality if any three points p, q, r satisfy

$$\operatorname{dist}(p,r) \leq \tau \cdot (\operatorname{dist}(p,q) + \operatorname{dist}(q,r)).$$

Lemma. [Funke...'08]

For $\alpha > 1$,

 $|\cdot|^{\alpha}$ fulfills the $2^{\alpha-1}$ -relaxed triangle inequality.

Good news. Can apply algorithms for Δ_{τ} -TSP to TSP(\cdot , α)!

[Sekanina'60, AndreaeBandelt'95]

CYCLEINCUBE $(T, e = u_1u_2)$

[Sekanina'60, AndreaeBandelt'95]

CycleInCube $(T, e = u_1u_2)$ Take MST of given point set!

[Sekanina'60, AndreaeBandelt'95]

CYCLEINCUBE(T, $e = u_1u_2$) for $i \leftarrow 1$ to 2 do $T_i \leftarrow \text{component of } T - e \text{ that contains } u_i$ T_1 T_2 u_1 u_2

```
\begin{array}{c} \textbf{FORTITE INCUBE}(T,\ e=u_1u_2) \\ \textbf{for } i \leftarrow 1 \ \textbf{to 2 do} \\ \mid T_i \leftarrow \textbf{component of } T-e \ \textbf{that contains } u_i \\ \textbf{if } |T_i| = 1 \ \textbf{then } \Pi_i \leftarrow \emptyset; \ w_i \leftarrow u_i \\ \textbf{else} \\ \mid \textbf{pick an edge } e_i = u_iw_i \ \textbf{incident to } u_i \ \textbf{in } T_i \end{array}
```



```
\begin{array}{c} \textbf{for } i \leftarrow 1 \textbf{ to 2 do} \\ & \textbf{for } i \leftarrow 1 \textbf{ to 2 do} \\ & T_i \leftarrow \textbf{component of } T - e \textbf{ that contains } u_i \\ & \textbf{if } |T_i| = 1 \textbf{ then } \Pi_i \leftarrow \emptyset; \ w_i \leftarrow u_i \\ & \textbf{else} \\ & \textbf{pick an edge } e_i = u_i w_i \textbf{ incident to } u_i \textbf{ in } T_i \\ & \textbf{if } |T_i| = 2 \textbf{ then } \Pi_i \leftarrow e_i \\ & \textbf{else } \Pi_i \leftarrow \textbf{CYCLEINCUBE}(T_i, e_i) - e_i \end{array}
```



```
CYCLEINCUBE (T, e = u_1u_2)
   for i \leftarrow 1 to 2 do
        T_i \leftarrow \text{component of } T - e \text{ that contains } u_i
        if |T_i| = 1 then \Pi_i \leftarrow \emptyset; w_i \leftarrow u_i
        else
              pick an edge e_i = u_i w_i incident to u_i in T_i
             if |T_i| = 2 then \Pi_i \leftarrow e_i
             else \Pi_i \leftarrow \text{CYCLEINCUBE}(T_i, e_i) - e_i
   return \Pi_1 + e + \Pi_2 + w_1 w_2
                                                                                   T_2
                                                              u_1
                                                                       u_2
```

```
CYCLEINCUBE (T, e = u_1u_2)
   for i \leftarrow 1 to 2 do
        T_i \leftarrow \text{component of } T - e \text{ that contains } u_i
        if |T_i| = 1 then \Pi_i \leftarrow \emptyset; w_i \leftarrow u_i
        else
             pick an edge e_i = u_i w_i incident to u_i in T_i
             if |T_i| = 2 then \Pi_i \leftarrow e_i
             else \Pi_i \leftarrow \text{CYCLEINCUBE}(T_i, e_i) - e_i
   return \Pi_1 + e + \Pi_2 + w_1w_2
                                                                           w_2
             3-shortcut
                                                                                 T_2
                                                             u_1
                                                                     u_2
```

```
CYCLEIN CUBE (T, e = u_1u_2)
   for i \leftarrow 1 to 2 do
        T_i \leftarrow \text{component of } T - e \text{ that contains } u_i
        if |T_i| = 1 then \Pi_i \leftarrow \emptyset; w_i \leftarrow u_i
        else
             pick an edge e_i = u_i w_i incident to u_i in T_i
             if |T_i| = 2 then \Pi_i \leftarrow e_i
             else \Pi_i \leftarrow \text{CYCLEINCUBE}(T_i, e_i) - e_i
   return \Pi_1 + e + \Pi_2 + w_1w_2
                                                                            w_2
            3-shortcut
                                                  T_1
                                                                                 T_2
                                                              u_1
                                                                      u_2
```

```
CYCLEINCUBE (T, e = u_1u_2)
   for i \leftarrow 1 to 2 do
        T_i \leftarrow \text{component of } T - e \text{ that contains } u_i
        if |T_i| = 1 then \Pi_i \leftarrow \emptyset; w_i \leftarrow u_i
        else
             pick an edge e_i = u_i w_i incident to u_i in T_i
             if |T_i| = 2 then \Pi_i \leftarrow e_i
             else \Pi_i \leftarrow \text{CYCLEINCUBE}(T_i, e_i) - e_i
   return \Pi_1 + e + \Pi_2 + w_1w_2
                                                                           w_2
             3-shortcut
                                                                                 T_2
                                                             u_1
                                                                     u_2
```

```
CYCLEINCUBE(T, e = u_1u_2)
   for i \leftarrow 1 to 2 do
        T_i \leftarrow \text{component of } T - e \text{ that contains } u_i
        if |T_i| = 1 then \Pi_i \leftarrow \emptyset; w_i \leftarrow u_i
        else
             pick an edge e_i = u_i w_i incident to u_i in T_i
             if |T_i| = 2 then \Pi_i \leftarrow e_i
             else \Pi_i \leftarrow \text{CYCLEINCUBE}(T_i, e_i) - e_i
   return \Pi_1 + e + \Pi_2 + w_1w_2
   (2- or) 3-shortcut
                                                                                 T_2
                                                             u_1
                                                                     u_2
```

```
CYCLEINCUBE(T, e = u_1u_2)
   for i \leftarrow 1 to 2 do
        T_i \leftarrow \text{component of } T - e \text{ that contains } u_i
        if |T_i| = 1 then \Pi_i \leftarrow \emptyset; w_i \leftarrow u_i
        else
             pick an edge e_i = u_i w_i incident to u_i in T_i
             if |T_i| = 2 then \Pi_i \leftarrow e_i
             else \Pi_i \leftarrow \text{CYCLEINCUBE}(T_i, e_i) - e_i
   return \Pi_1 + e + \Pi_2 + w_1w_2
   (2- or) 3-shortcut
   uses edges e, e_1, and e_2
                                                 T_1
                                                                                T_2
                                                            u_1
                                                                    u_2
```

```
CYCLEINCUBE (T, e = u_1u_2)
   for i \leftarrow 1 to 2 do
        T_i \leftarrow \text{component of } T - e \text{ that contains } u_i
        if |T_i| = 1 then \Pi_i \leftarrow \emptyset; w_i \leftarrow u_i
        else
             pick an edge e_i = u_i w_i incident to u_i in T_i
             if |T_i| = 2 then \Pi_i \leftarrow e_i
             else \Pi_i \leftarrow \text{CYCLEINCUBE}(T_i, e_i) - e_i
   return \Pi_1 + e + \Pi_2 + w_1w_2
   (2- or) 3-shortcut
   uses edges e_1, e_1, and e_2
                                                T_1
                                                                              T_2
                                                           u_1
                                                                   u_2
Observation.
                                                \Pi_1
Every edge is used at most
```

[Sekanina'60, AndreaeBandelt'95]

```
CYCLEINCUBE (T, e = u_1u_2)
   for i \leftarrow 1 to 2 do
        T_i \leftarrow \text{component of } T - e \text{ that contains } u_i
        if |T_i| = 1 then \Pi_i \leftarrow \emptyset; w_i \leftarrow u_i
        else
             pick an edge e_i = u_i w_i incident to u_i in T_i
             if |T_i| = 2 then \Pi_i \leftarrow e_i
             else \Pi_i \leftarrow \text{CYCLEINCUBE}(T_i, e_i) - e_i
   return \Pi_1 + e + \Pi_2 + w_1w_2
```

(2- or) 3-shortcut uses edges e, e_1 , and e_2

Observation.

Every edge is used at most twice.

Result #1

Observation. Every edge is used at most twice.

Result #1

Observation. Every edge is used at most twice.

Lemma. Let e be a 3-shortcut using a,b,c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1} \big(|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha} \big)$.

Observation. Every edge is used at most twice.

Lemma. Let e be a 3-shortcut using a,b,c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1}(|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha})$.

Corollary. For $\alpha \geq 2$, the T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) .

Observation. Every edge is used at most twice.

Lemma.

Let e be a 3-shortcut using a,b,c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1} \big(|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha} \big)$.

Corollary.

For $\alpha \geq 2$, the T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) .

Proof.

Observation. Every edge is used at most twice.

Lemma.

Let e be a 3-shortcut using a,b,c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1} \big(|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha} \big)$.

Corollary.

For $\alpha \geq 2$, the T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) .

Proof.

Observation. Every edge is used at most twice.

Lemma.

Let e be a 3-shortcut using a,b,c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1} (|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha})$.

Corollary.

For $\alpha \geq 2$, the T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) .

Proof.

Observation. Every edge is used at most twice.

Lemma.

Let e be a 3-shortcut using a,b,c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1} (|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha})$.

Corollary.

For $\alpha \geq 2$, the T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) .

Proof.

Observation. Every edge is used at most twice.

Lemma.

Let e be a 3-shortcut using a,b,c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1} (|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha})$.

Corollary.

For $\alpha \geq 2$, the T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) .

Proof.

Observation. Every edge is used at most twice.

Lemma.

Let e be a 3-shortcut using a,b,c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1} (|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha})$.

Corollary.

For $\alpha \geq 2$, the T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) .

Proof.

Observation. Every edge is used at most twice.

Lemma.

Let e be a 3-shortcut using a,b,c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1} (|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha})$.

Corollary.

For $\alpha \geq 2$, the T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) .

Proof.

Observation. Every edge is used at most twice.

Lemma.

Let e be a 3-shortcut using a,b,c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1} (|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha})$.

Corollary.

For $\alpha \geq 2$, the T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) .

Proof.

Every edge c of the MST (w.r.t. $|\cdot|^{\alpha}$) contributes at most twice at most $3^{\alpha-1}|c|^{\alpha}$ to the T³-tour.

 $\Rightarrow |\mathsf{T}^3\text{-tour}|^{\alpha} \leq 2 \cdot \frac{\mathsf{3}^{\alpha-1} |\mathsf{MST}|^{\alpha}}{\mathsf{MST}|^{\alpha}} \leq 2 \cdot \mathsf{3}^{\alpha-1} \cdot \mathsf{OPT}$

Observation. Every edge is used at most twice.

Lemma.

Let e be a 3-shortcut using a b, c. Let $\alpha \geq 1$. Then $|e|^{\alpha} \leq 3^{\alpha-1} (|a|^{\alpha} + |b|^{\alpha} + |c|^{\alpha})$.

Corollary.

For $\alpha \geq 2$, the T³-a graiting yields a $(2 \cdot 3^{\alpha-1})$ -approximation for $1 \cdot P(\cdot, \alpha)$.

Proof.

Every edge of the MST (w.r.t. $|\cdot|^{\alpha}$) contributes at most $\frac{3^{\alpha-1}|c|^{\alpha}}{10^{\alpha}}$ to the T³-tour.

$$\Rightarrow |\mathsf{T}^3\text{-tour}|^{\alpha} \leq 2 \cdot \frac{\mathsf{3}^{\alpha-1} |\mathsf{MST}|^{\alpha}}{\mathsf{MST}|^{\alpha}} \leq 2 \cdot \mathsf{3}^{\alpha-1} \cdot \mathsf{OPT}$$

Corollary. The T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) if $\alpha \geq 2$.

Corollary. The T³-algorithm yields a $(2\cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) if $\alpha \geq 2$.

Theorem. For $\alpha \geq 2$, the *geometric* T³-algorithm yields a $(3^{\alpha-1} + \sqrt{6}^{\alpha}/3)$ -approximation for TSP(2, α).

Corollary.

The T³-algorithm yields a $(2\cdot3^{\alpha-1})$ -approximation for TSP (\cdot, α) if $\alpha \geq 2$.

Theorem.

For $\alpha \geq 2$, the *geometric* T³-algorithm yields a $(3^{\alpha-1} + \sqrt{6}^{\alpha}/3)$ -approximation for TSP(2, α).

Corollary. The T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) if $\alpha \geq 2$.

Theorem. For $\alpha \geq 2$, the *geometric* T³-algorithm yields a $(3^{\alpha-1} + \sqrt{6}^{\alpha}/3)$ -approximation for TSP(2, α).

Corollary. The T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) if $\alpha \geq 2$.

Theorem. For $\alpha \geq 2$, the *geometric* T³-algorithm yields a $(3^{\alpha-1} + \sqrt{6}^{\alpha}/3)$ -approximation for TSP(2, α).

MST w.r.t. $|\cdot|^{\alpha}$

```
GEOMETRICT<sup>3</sup>(tree T, e=u_1u_2 of T)

for i\leftarrow 1 to 2 do

T_i\leftarrow \text{component of }T-e \text{ that contains }u_i
\vdots
\text{pick an edge }e_i=u_iw_i \text{ incident to }u_i \text{ in }T_i
\vdots
\Pi_i\leftarrow \text{GEOMETRICT}^3(T_i,e_i)-e_i
\text{return }\Pi_1+e+\Pi_2+w_1w_2
```

Corollary. The T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) if $\alpha \geq 2$.

Theorem. For $\alpha \geq 2$, the *geometric* T³-algorithm yields a $(3^{\alpha-1} + \sqrt{6}^{\alpha}/3)$ -approximation for TSP(2, α).

MST w.r.t. $|\cdot|^{\alpha}$

Corollary. The T³-algorithm yields a $(2 \cdot 3^{\alpha-1})$ -approximation for TSP (\cdot, α) if $\alpha \geq 2$.

Theorem. For $\alpha \geq 2$, the *geometric* T³-algorithm yields a $(3^{\alpha-1} + \sqrt{6}^{\alpha}/3)$ -approximation for TSP(2, α).

MST w.r.t. $|\cdot|^{\alpha}$

GEOMETRICT³(tree T, $e = u_1u_2$ of T)

for $i \leftarrow 1$ to 2 do

 $T_i \leftarrow \text{component of } T - e \text{ that contains } u_i$

pick an edge $e_i = u_i w_i$ incident to u_i in T_i

 $\Pi_i \leftarrow \text{GEOMETRICT}^3(T_i, e_i) - e_i$

return $\Pi_1 + e + \Pi_2 + w_1 w_2$

s.t. the angle $\angle ee_i$ is min!

Why can we bound γ_1 (and γ_2) from above?

Why can we bound γ_1 (and γ_2) from above?

• If deg $u_1 \leq 2$, then we can't.

Why can we bound γ_1 (and γ_2) from above?

• If deg $u_1 \leq 2$, then we can't.

But then e is used by at most *one* 3-shortcut and maybe a 2-shortcut

Why can we bound γ_1 (and γ_2) from above?

• If deg $u_1 \leq 2$, then we can't.

But then e is used by at most *one* 3-shortcut and maybe a 2-shortcut—but those are cheap.

Why can we bound γ_1 (and γ_2) from above?

• If deg $u_1 \leq 2$, then we can't.

But then e is used by at most *one* 3-shortcut and maybe a 2-shortcut—but those are cheap.

• Otherwise recall that in the MST (w.r.t. $|\cdot|$ and w.r.t. $|\cdot|^{\alpha}$) edges incident to the same vertex make angles $\geq 60^{\circ}$.

Why can we bound γ_1 (and γ_2) from above?

• If deg $u_1 \leq 2$, then we can't.

But then e is used by at most *one* 3-shortcut and maybe a 2-shortcut—but those are cheap.

• Otherwise recall that in the MST (w.r.t. $|\cdot|$ and w.r.t. $|\cdot|^{\alpha}$) edges incident to the same vertex make angles $\geq 60^{\circ}$.

Why can we bound γ_1 (and γ_2) from above?

• If deg $u_1 \leq 2$, then we can't.

But then e is used by at most *one* 3-shortcut and maybe a 2-shortcut—but those are cheap.

• Otherwise recall that in the MST (w.r.t. $|\cdot|$ and w.r.t. $|\cdot|^{\alpha}$) edges incident to the same vertex make angles $\geq 60^{\circ}$.

Why can we bound γ_1 (and γ_2) from above?

• If deg $u_1 \leq 2$, then we can't.

But then e is used by at most *one* 3-shortcut and maybe a 2-shortcut—but those are cheap.

• Otherwise recall that in the MST (w.r.t. $|\cdot|$ and w.r.t. $|\cdot|^{\alpha}$) edges incident to the same vertex make angles $\geq 60^{\circ}$.

Thus, there is an edge e_1 incident to u_1 with $\angle ee_1 \leq 150^{\circ}$.

• Geometry helps!

Geometry helps!

We have improved approx. of TSP(2,2) from factor 6 to 5. There is a lower bound of $4\frac{4}{11}$ for MST-based methods.

Geometry helps!

We have improved approx. of TSP(2,2) from factor 6 to 5. There is a lower bound of $4\frac{4}{11}$ for MST-based methods.

What about complexity?

Geometry helps!

We have improved approx. of TSP(2,2) from factor 6 to 5. There is a lower bound of $4\frac{4}{11}$ for MST-based methods.

What about complexity?

Geometry helps!

We have improved approx. of TSP(2,2) from factor 6 to 5. There is a lower bound of $4\frac{4}{11}$ for MST-based methods.

What about complexity?

 $\mathsf{TSP}(d,\alpha)$ is APX-hard for any $d \geq 3$ and $\alpha > 1$! This is in sharp contrast with Euclidean TSP.

What about allowing the salesperson to revisit cities?

Geometry helps!

We have improved approx. of TSP(2,2) from factor 6 to 5. There is a lower bound of $4\frac{4}{11}$ for MST-based methods.

What about complexity?

- What about allowing the salesperson to revisit cities?
 - Rev-TSP (d, α) is APX-hard for any $d \geq 3$ and $\alpha > 1$.
 - Rev-TSP(2, α) has a PTAS for any $\alpha \geq 2$.
 - Rev-TSP(\cdot , α) has a quasi-PTAS for any $0 < \alpha < 1$.

Geometry helps!

We have improved approx. of TSP(2,2) from factor 6 to 5. There is a lower bound of $4\frac{4}{11}$ for MST-based methods.

What about complexity?

- What about allowing the salesperson to revisit cities?
 - Rev-TSP (d, α) is APX-hard for any $d \geq 3$ and $\alpha > 1$.
 - Rev-TSP(2, α) has a PTAS for any $\alpha \geq 2$.
 - Rev-TSP(\cdot , α) has a quasi-PTAS for any $0 < \alpha < 1$.
 - What about Rev-TSP(2, α) with $1 < \alpha < 2$?

Geometry helps!

We have improved approx. of TSP(2,2) from factor 6 to 5. There is a lower bound of $4\frac{4}{11}$ for MST-based methods.

What about complexity?

- What about allowing the salesperson to revisit cities?
 - Rev-TSP (d, α) is APX-hard for any $d \geq 3$ and $\alpha > 1$.
 - Rev-TSP(2, α) has a PTAS for any $\alpha \geq 2$.
 - Rev-TSP(\cdot , α) has a quasi-PTAS for any $0 < \alpha < 1$.
 - What about Rev-TSP(2, α) with 1 < α < 2? (At least as hard as TSP in weighted planar graphs!)

Geometry helps!

We have improved approx. of TSP(2,2) from factor 6 to 5. There is a lower bound of $4\frac{4}{11}$ for MST-based methods.

What about complexity?

- What about allowing the salesperson to revisit cities?
 - Rev-TSP (d, α) is APX-hard for any $d \geq 3$ and $\alpha > 1$.
 - Rev-TSP(2, α) has a PTAS for any $\alpha \geq 2$.
 - Rev-TSP(\cdot , α) has a quasi-PTAS for any $0 < \alpha < 1$.
 - What about Rev-TSP(2, α) with 1 < α < 2? (At least as hard as TSP in weighted planar graphs!)

Theorem. TSP (d, α) and Rev-TSP (d, α) are APX-hard for any $d \geq 3$ and any $\alpha > 1$.

Theorem. TSP (d, α) and Rev-TSP (d, α) are APX-hard for any $d \geq 3$ and any $\alpha > 1$.

Theorem. TSP (d, α) and Rev-TSP (d, α) are APX-hard for any $d \geq 3$ and any $\alpha > 1$.

Theorem. TSP (d, α) and Rev-TSP (d, α) are APX-hard for any $d \geq 3$ and any $\alpha > 1$.

Theorem. TSP (d, α) and Rev-TSP (d, α) are APX-hard for any $d \geq 3$ and any $\alpha > 1$.

Theorem. TSP (d, α) and Rev-TSP (d, α) are APX-hard for any $d \geq 3$ and any $\alpha > 1$.

Theorem. TSP (d, α) and Rev-TSP (d, α) are APX-hard for any $d \geq 3$ and any $\alpha > 1$.

Theorem. TSP (d, α) and Rev-TSP (d, α) are APX-hard for any $d \geq 3$ and any $\alpha > 1$.

Conclusion (once more :-)

Geometry helps!

We have improved approx. of TSP(2,2) from factor 6 to 5. There is a lower bound of $4\frac{4}{11}$ for MST-based methods.

What about complexity?

- What about allowing the salesman to revisit cities?
 - Rev-TSP (d, α) is APX-hard for any $d \geq 3$ and $\alpha > 1$.
 - Rev-TSP(2, α) has a PTAS for any $\alpha \geq 2$.
 - Rev-TSP(\cdot , α) has a quasi-PTAS for any $0 < \alpha < 1$.
 - What about Rev-TSP(2, α) with 1 < α < 2? (At least as hard as TSP in weighted planar graphs!)