

512K x 16 LOW VOLTAGE, ULTRA LOW POWER CMOS STATIC RAM

DECEMBER 2007

FEATURES

- High-speed access time: 45ns, 55ns
- · CMOS low power operation
 - 36 mW (typical) operating
 - 12 μW (typical) CMOS standby
- TTL compatible interface levels
- Single power supply
 - 1.65V--2.2V VDD (62WV51216ALL)
 - -2.5V--3.6V VDD (62WV51216BLL)
- Fully static operation: no clock or refresh required
- Three state outputs
- Data control for upper and lower bytes
- Industrial temperature available
- Lead-free available

DESCRIPTION

The *ISSI* IS62WV51216ALL/ IS62WV51216BLL are high-speed, 8M bit static RAMs organized as 512K words by 16 bits. It is fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices.

When $\overline{\text{CS1}}$ is HIGH (deselected) or when CS2 is LOW (deselected) or when $\overline{\text{CS1}}$ is LOW, CS2 is HIGH and both $\overline{\text{LB}}$ and $\overline{\text{UB}}$ are HIGH, the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs. The active LOW Write Enable (WE) controls both writing and reading of the memory. A data byte allows Upper Byte (UB) and Lower Byte (LB) access.

The IS62WV51216ALL and IS62WV51216BLL are packaged in the JEDEC standard 48-pin mini BGA (7.2mm x 8.7mm) and 44-Pin TSOP (TYPE II).

FUNCTIONAL BLOCK DIAGRAM

Copyright©2005 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

PIN CONFIGURATIONS

PIN DESCRIPTIONS

A0-A18	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
<u>CS1</u> , CS2	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
ĪB	Lower-byte Control (I/O0-I/O7)
UB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
VDD	Power
GND	Ground

44-Pin TSOP (Type II)

TRUTH TABLE

						I/O PIN				
Mode	WE	CS ₁	CS2	ŌĒ	LB	UB	I/O0-I/O7	I/O8-I/O15	VDD Current	
Not Selected	Х	Н	Х	Χ	Х	Х	High-Z	High-Z	ISB1, ISB2	
	Χ	Χ	L	Χ	Χ	Χ	High-Z	High-Z	ISB1, ISB2	
	Χ	Χ	Χ	Χ	Н	Н	High-Z	High-Z	ISB1, ISB2	
Output Disabled	Н	L	Н	Н	L	Х	High-Z	High-Z	lcc	
-	Н	L	Н	Н	Χ	L	High-Z	High-Z	Icc	
Read	Н	L	Н	L	L	Н	D оит	High-Z	Icc	
	Н	L	Н	L	Н	L	High-Z	Dout		
	Н	L	Н	L	L	L	D оит	Dout		
Write	L	L	Н	Χ	L	Н	Din	High-Z	Icc	
	L	L	Н	Χ	Н	L	High-Z	DIN		
	L	L	Н	Χ	L	L	DIN	DIN		

OPERATING RANGE (VDD)

Range	Ambient Temperature	S62WV51216ALL (70ns) IS	S62WV51216BLL (55ns, 70ns)	IS62WV51216BLL (45ns)
Commercia	al 0°C to +70°C	1.65V - 2.2V	2.5V - 3.6V	3.0 - 3.6V
Industrial	–40°C to +85°C	1.65V - 2.2V	2.5V - 3.6V	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.2 to VDD+0.3	V
TBIAS	Temperature Under Bias	-40 to +85	°C
V _{DD}	VDD Related to GND	-0.2 to +3.8	V
Tstg	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W

Note:

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions Vo	Min.	Max.	Unit
Vон	Output HIGH Voltage	Iон = -0.1 mA 1.65-2	2.2V 1.4	_	V
		IOH = -1 mA 2.5-3	3.6V 2.2	_	V
Vol	Output LOW Voltage	IoL = 0.1 mA 1.65-2	2.2V —	0.2	V
		IoL = 2.1 mA 2.5-3	3.6V —	0.4	V
ViH	Input HIGH Voltage	1.65-2	2.2V 1.4	VDD + 0.2	V
		2.5-3	3.6V 2.2	$V_{DD} + 0.3$	V
VIL ⁽¹⁾	Input LOW Voltage	1.65-2	2.2V -0.2	0.4	V
		2.5-3	3.6V –0.2	0.6	V
ILI	Input Leakage	$GND \le V_{IN} \le V_{DD}$	-1	1	μΑ
ILO	Output Leakage	GND ≤ Vout ≤ Vdd, Outputs D	isabled -1	1	μΑ

Notes:

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect reliability.

^{1.} V_{IL} (min.) = -1.0V for pulse width less than 10 ns.

CAPACITANCE(1)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	$V_{IN} = 0V$	8	pF
Соит	Input/Output Capacitance	Vout = 0V	10	pF

Note:

AC TEST CONDITIONS

Parameter	62WV51216ALL (Unit)	62WV51216BLL (Unit)	
Input Pulse Level	0.4V to VDD-0.2	0.4V to V _{DD} -0.3V	
Input Rise and Fall Times	5 ns	5ns	
Input and Output Timing and Reference Level	VREF	Vref	
Output Load	See Figures 1 and 2	See Figures 1 and 2	

	62WV51216ALL (1.65V - 2.2V)	62WV51216BLL (2.5V - 3.6V)
R1(Ω)	3070	1029
R2(Ω)	3150	1728
VREF	0.9V	1.5V
V _{TM}	1.8V	2.8V

AC TEST LOADS

Figure 1

Figure 2

^{1.} Tested initially and after any design or process changes that may affect these parameters.

IS62WV51216ALL, POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		Max. 70	Unit	
lcc	VDD Dynamic Operating Supply Current	VDD=Max., IOUT=0 mA, f=fMAX	Com. Ind.	20 25	mA	
lcc1	Operating Supply Current	VDD=Max., CS1 =0.2V WE =VDD-0.2V CS2=VDD-0.2V, f=1мн	Com. Ind.	4 4	mA	
ISB1	TTL Standby Current (TTL Inputs)	VDD=Max., VIN=VIHORVIL CS1=VIH, CS2=VIL, f=1 MHz	Com. Ind.	0.3 0.3	mΑ	
	OR					
	ULB Control	$\frac{V_{DD}=Max., V_{IN}=V_{IH} \text{ or } V_{I}}{\overline{CS1}} = V_{IL}, f = 0, \overline{UB} = V_{I}$				
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{array}{l} V_{DD} = Max., \\ \hline \textbf{CS1} \geq V_{DD} - 0.2V, \\ \textbf{CS2} \leq 0.2V, \\ V_{IN} \geq V_{DD} - 0.2V, \text{ or } \\ V_{IN} \leq 0.2V, \text{ f} = 0 \end{array}$	Com. Ind. typ. ⁽¹⁾	15 21 3	μΑ	
	OR					
	ULB Control	$V_{DD} = Max., \overline{CS1} = V$ $V_{IN} \ge V_{DD} - 0.2V, \text{ or } V_{IN} \le \overline{UB}/\overline{LB} = V_{DD} - 0.2V$				

Note:

6

^{1.} Typical values are measured at $V_{DD} = 1.8V$, $T_A = 25^{\circ}C$ and not 100% tested.

IS62WV51216BLL, POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		Max. 45	Max. 55	Max. 70	Unit
lcc	VDD Dynamic Operating Supply Current	VDD=Max., IOUT=0 mA, f=fmax	Com. Ind.	35 40	30 35	25 30	mA
lcc1	Operating Supply Current	VDD=Max., CS1 =0.2V WE =VDD-0.2V CS2=VDD-0.2V, f=1MH	Com. Ind.	5 5	5 5	5 5	mA
ISB1	TTLStandbyCurrent (TTLInputs)	VDD=Max., VIN=VIH OT VIL CS1 = VIH, CS2 = VIL, f = 1 MHz	Com. Ind.	0.3 0.3	0.3 0.3	0.3 0.3	mA
	OR						
	ULB Control	$\frac{V_{DD}=Max., V_{IN}=V_{IH} \text{ or } V_{IN}}{CS1} = V_{IL}, f = 0, \overline{UB} = V_{IH}$					
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:decomposition} \begin{split} & \underset{\mbox{VDD$}=\mbox{Max.},}{\mbox{$\overline{CS1}$}} \ge V_{\mbox{$DD$}}-0.2V, \\ & \mbox{$CS2$} \le 0.2V, \\ & \mbox{$VIN} \ge V_{\mbox{DD}}-0.2V, \mbox{or} \\ & \mbox{VIN$} \le 0.2V, \mbox{$f=0$} \end{split}$	Com. Ind. typ. ⁽²⁾	20 25 4	20 25 4	20 25 4	μΑ
	OR						
	ULB Control	$V_{DD} = Max., \overline{CS1} = V_{IN} \ge V_{DD} - 0.2V, \text{ or } V_{IN} = V_{DD} - 0.2V$					

Note:

At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.
 Typical values are measured at VDD = 3.0V, TA = 25°C and not 100% tested.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		45 r	ns	55 r	ıs	70 r	ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t RC	Read Cycle Time	45	_	55	_	70	_	ns
taa	Address Access Time	_	45	_	55	_	70	ns
toha	Output Hold Time	10	_	10	_	10	_	ns
tacs1/tacs2	CS1/CS2 Access Time	_	45	_	55	_	70	ns
t DOE	OE Access Time	_	20	_	25	_	35	ns
thzoe(2)	OE to High-Z Output	_	15	_	20	_	25	ns
tlzoe(2)	OE to Low-Z Output	5	_	5	_	5	_	ns
thzcs1/thzcs2(2)	CS1/CS2 to High-Z Output	0	15	0	20	0	25	ns
tlzcs1/tlzcs2 ⁽²⁾	CS1/CS2 to Low-Z Output	10	_	10	_	10	_	ns
t BA	LB, UB Access Time	_	45	_	55	_	70	ns
t HZB	LB, UB to High-Z Output	0	15	0	20	0	25	ns
t LZB	LB, UB to Low-Z Output	0	_	0	_	0	_	ns

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS

READ CYCLE NO. $1^{(1,2)}$ (Address Controlled) ($\overline{CS1} = \overline{OE} = V_{IL}$, $CS2 = \overline{WE} = V_{IH}$, \overline{UB} or $\overline{LB} = V_{IL}$)

AC WAVEFORMS

READ CYCLE NO. 2^(1,3) (CS1, CS2, OE, AND UB/LB Controlled)

Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. $\overline{\text{OE}}$, $\overline{\text{CS1}}$, $\overline{\text{UB}}$, or $\overline{\text{LB}} = \text{V}_{\text{IL}}$. $\text{CS2} = \overline{\text{WE}} = \text{V}_{\text{IH}}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CS1}}$ LOW transition.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,2) (Over Operating Range)

		45	ns	55	ns	70	ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	45	_	55	_	70	_	ns
tscs1/tscs2	CS1/CS2 to Write End	35	_	45	_	60	_	ns
taw	Address Setup Time to Write End	35	_	45	_	60	_	ns
t HA	Address Hold from Write End	0	_	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	0	_	ns
t PWB	LB, UB Valid to End of Write	35	_	45	_	60	_	ns
tPWE ⁽⁴⁾	WE Pulse Width	35	_	40	_	50	_	ns
tsd	Data Setup to Write End	20	_	25	_	30	_	ns
t HD	Data Hold from Write End	0	_	0	_	0	_	ns
thzwe ⁽³⁾	WE LOW to High-Z Output	_	20	_	20	_	30	ns
tLZWE ⁽³⁾	WE HIGH to Low-Z Output	5	_	5	_	5	_	ns

Notes:

- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1.
 The internal write time is defined by the overlap of CS1 LOW, CS2 HIGH and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but
- The internal write time is defined by the overlap of CS1 LOW, CS2 HIGH and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but
 any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the
 write.
- 3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 4. tpwe > thzwe + tsp when \overline{OE} is LOW.

AC WAVEFORMS

WRITE CYCLE NO. $1^{(1,2)}$ ($\overline{CS1}$ Controlled, \overline{OE} = HIGH or LOW)

Notes:

- 1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the $\overline{\text{CS1}}$, CS2 and $\overline{\text{WE}}$ inputs and at least one of the $\overline{\text{LB}}$ and $\overline{\text{UB}}$ inputs being in the LOW state.
- 2. WRITE = $(\overline{CS1})$ [(\overline{LB}) = (\overline{UB})] (\overline{WE}) .

WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)

WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

WRITE CYCLE NO. 4 (UB/LB Controlled)

DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition	Min.	Max.	Unit
VDR	VDD for Data Retention	See Data Retention Waveform	1.2	3.6	V
IDR	Data Retention Current	$V_{DD} = 1.2V, \overline{CS1} \ge V_{DD} - 0.2V$	_	20	μA
t sdr	Data Retention Setup Time	See Data Retention Waveform	0	_	ns
t RDR	Recovery Time	See Data Retention Waveform	trc	_	ns

DATA RETENTION WAVEFORM (CS1 Controlled)

DATA RETENTION WAVEFORM (CS2 Controlled)

ORDERING INFORMATION

IS62WV51216ALL (1.65V - 2.2V)

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
70	IS62WV51216ALL-70TI	TSOP-II
	IS62WV51216ALL-70BI	mini BGA(7.2mmx8.7mm)
	IS62WV51216ALL-70BLI	mini BGA(7.2mmx8.7mm), lead-free
	IS62WV51216ALL-70XI	DIE

ORDERING INFORMATION

IS62WV51216BLL (2.5V - 3.6V)

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package		
45	IS62WV51216BLL-45B	mini BGA (7.2mm x 8.7mm)		

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package			
55	IS62WV51216BLL-55TI	TSOP-II			
	IS62WV51216BLL-55TLI	TSOP-II, Lead-free			
	IS62WV51216BLL-55BI	mini BGA (7.2mm x 8.7mm)			
	IS62WV51216BLL-55BLI	mini BGA (7.2mm x 8.7mm), Lead-free			
70	IS62WV51216BLL-70XI	DIE			

Mini Ball Grid Array Package Code: B (48-pin)

mBGA - 7.2mm x 8.7mm

	MILLIMETERS			INCHES				
Sym.	Min.	Тур.	Max.	Min. Typ. Max.				
N0. Leads		48						
A	_	_	1.20	— — 0.047				
A1	0 .24	_	0.30	0.009 — 0.012				
A2	0.60	_	_	0.024 — —				
D	8.60	8.70	8.80	0.339 0.343 0.346				
D1	5	.25BS	2	0.207BSC				
E	7.10	7.20	7.30	0.280 0.283 0.287				
E1	3	3.75BS	0	0.148BSC				
9	0.75BSC			0.030BSC				
b	0.30	0.35	0.40	0.012 0.014 0.016				

Notes:

1. Controlling dimensions are in millimeters.

PACKAGING INFORMATION

Plastic TSOP

Package Code: T (Type II)

Notes:

- 1. Controlling dimension: millimieters, unless otherwise specified.
- unless otherwise specified.

 BSC = Basic lead spacing between centers.
- Dimensions D and E1 do not include mold flash protrusions and should be measured from the bottom of the package.
- Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.

Plastic TSOP (T - Type II)													
	Millim	eters	Inche	s	s Millimeters		Inches		Millin	Millimeters		Inches	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Ref. Std.													
No. Leads (N) 32			44					50					
Α	_	1.20	_	0.047	_	1.20	_	0.047	_	1.20	_	0.047	
A1	0.05	0.15	0.002	0.006	0.05	0.15	0.002	0.006	0.05	0.15	0.002	0.006	
b	0.30	0.52	0.012	0.020	0.30	0.45	0.012	0.018	0.30	0.45	0.012	0.018	
С	0.12	0.21	0.005	0.008	0.12	0.21	0.005	0.008	0.12	0.21	0.005	0.008	
D	20.82	21.08	0.820	0.830	18.31	18.52	0.721	0.729	20.82	21.08	0.820	0.830	
E1	10.03	10.29	0.391	0.400	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405	
Е	11.56	11.96	0.451	0.466	11.56	11.96	0.455	0.471	11.56	11.96	0.455	0.471	
е	1.27	BSC	0.050 E	3SC	0.80	BSC	0.032	BSC	0.80	BSC	0.031	BSC	
L	0.40	0.60	0.016	0.024	0.41	0.60	0.016	0.024	0.40	0.60	0.016	0.024	
ZD	0.95	REF	0.037	REF	0.81	REF	0.032	2 REF	0.88	REF	0.035	REF	
α	0°	5°	0°	5°	0°	5°	0°	5°	0°	5°	0°	5°	

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.