

Universitatea Tehnică "Gheorghe Asachi" din Iași Facultatea de Automatică și Calculatoare Domeniul: Sisteme distribuite si tehnologii web

Ray Tracing în CUDA

PROIECT PROGRAMARE GPU

Coordonator științific: assoc. prof. Simona Caraiman

Student:
Mircea Mihai-Adrian
Cîrstea Lucian-Cătălin

1. Introducere

1.1 Context și problemă

Ray tracing-ul este o tehnică de grafică computerizată utilizată pentru generarea de imagini realiste prin simularea comportamentului razelor de lumină într-un mediu tridimensional. Cu toate acestea, implementarea pe unitățile de procesare centrală (CPU) poate deveni ineficientă, mai ales în cazul scenelor complexe. În astfel de situații, numărul mare de raze de lumină și interacțiunile elaborate dintre acestea și obiectele 3D impun o cerință ridicată de putere computațională.

În cadrul problemei abordate, focusul se concentrează pe generarea imaginilor prin tehnica ray tracing în contextul graficii computerizate. Procesul implică urmărirea razei de lumină de la sursa de lumină către observator, iar aceasta interacționează cu obiectele din scenă prin intersectarea lor. De asemenea, se calculează culorile și umbrele în funcție de proprietățile materialelor și sursele de lumină, oferind o imagine detaliată și foto-realistică a scenei tridimensionale.

Pentru a realiza acest proces complex, ray tracing-ul utilizează principii precum reflexie, refracție, și difuzie pentru a simula comportamentul real al luminii. Este o tehnică esențială în domenii precum animație, efecte vizuale, design arhitectural și product design, contribuind la crearea unor vizualizări realiste și estetice.În concluzie, accelerația acestui algoritm prin implementarea sa pe unități de procesare grafică (GPU), în loc de unități de procesare centrală (CPU), devine crucială pentru gestionarea eficientă a complexității scenelor și pentru obținerea unor rezultate în timp util.

1.2 Componentele algoritmice care necesită accelerare

1.2.1 Generarea scenei

Implementarea funcției "create_world" pe GPU pentru a genera și inițializa hitables (obiectele 3D) și camera în scenă. Această funcție creează o scenă complexă cu sfere, materiale diverse și iluminare.

1.2.2 Calculul culorii

Funcția "color" este esențială pentru calculul culorilor în fiecare pixel. Aceasta parcurge razele și interacționează cu obiectele din scenă, aplicând modele de reflexie și refracție, și generând culorile corespunzătoare.

1.2.3 Randarea imaginii

Funcția render în acest context are rolul central în generarea imaginii finale prin aplicarea funcției color pentru fiecare rază de lumină asociată unui pixel din imaginea finală.

1.2.3.1 Anti-Aliasing

Funcția "render" integrează tehnicile de anti-aliasing, un proces esențial în grafica computerizată pentru a reduce artefactele și a îmbunătăți calitatea generală a imaginilor generate.

Anti-aliasing-ul se realizează prin luarea unui număr de eșantioane pentru fiecare pixel. În loc să traseze o singură rază de lumină pentru fiecare pixel, se iau mai multe eșantioane într-o manieră controlată și se calculează media acestora pentru a obține culoarea finală a pixelului. Acest

proces contribuie la diminuarea efectului de "scădere a rezoluției" sau a contururilor neregulate în imagini.

1.2.3.2 Ray Tracing

Pentru fiecare pixel, se generează o rază de lumină corespunzătoare în funcție de parametrii camerei (cum ar fi poziția, direcția și unghiul de vedere). Această rază este apoi urmărită prin scenă, intersectând obiectele 3D și calculând culorile și umbrele corespunzătoare conform principiilor ray tracing-ului.

1.2.3.3 Acumularea culorilor

Culoarea calculată pentru fiecare eșantion este adunată la o variabilă de acumulare pentru pixelul respectiv. Procesul se repetă pentru toate eșantioanele asociate pixelului, iar apoi media acestora este calculată pentru a obține culoarea finală a pixelului.

```
_device__ vec3 color(const ray& r, hitable** world, curandState* local_rand_state) {
  ray cur_ray = r;
  vec3 cur_attenuation = vec3(1.0, 1.0, 1.0);
  int depth = 50;
  for (int i = 0; i < depth; i++) {
      hit_record rec;
      if ((*world)->hit(cur_ray, 0.001f, FLT_MAX, rec)) {
          ray scattered;
          vec3 attenuation;
          if (rec.mat_ptr->scatter(cur_ray, rec, attenuation, scattered, local_rand_state)) {
              cur_attenuation *= attenuation;
              cur_ray = scattered;
          else {
              return vec3(0.0, 0.0, 0.0);
      else {
          vec3 unit_direction = unit_vector(cur_ray.direction);
          float t = 0.5f * (unit_direction.y() + 1.0f);
          vec3 c = (1.0f - t) * vec3(1.0, 1.0, 1.0) + t * vec3(0.5, 0.7, 1.0);
          return cur_attenuation * c;
```

Imaginea 1. Funția de calcul a culorii

După ce toți pixelii sunt procesați, imaginea finală este obținută prin combinarea culorilor calculate pentru fiecare pixel. Această imagine poate fi apoi salvată sau afișată, oferind rezultatul final al întregului proces de ray tracing.

Prin această abordare, funcția "render" îmbină concepte precum anti-aliasing, ray tracing și gestionarea culorilor pentru a produce o imagine finală care să reflecte iluminarea și proprietățile materialelor dintr-o scenă tridimensională.

1.3 Analiza complexității

1.3.1 Complexitatea operațiilor

Ray tracing-ul implică un număr semnificativ de operații complexe, cum ar fi intersecții ray-sferă, calculul culorilor și gestionarea umbrelor. Aceste operații au o complexitate individuală ridicată, iar numărul total de operații crește odată cu complexitatea scenei (numărul de obiecte, iluminarea, materialele).

1.3.2 Paralelizarea pe GPU

GPU-urile sunt dispozitive specializate pentru executarea eficientă a unui număr mare de operații în paralel, beneficiind de arhitecturi precum CUDA cores. Paralelizarea pe GPU aduce un avantaj semnificativ în contextul ray tracing-ului, permitând efectuarea simultană a mai multor intersecții și calculări de iluminare pentru diverse raze de lumină. Această metodă distribuie sarcinile de calcul pe un număr extins de unități de procesare, accelerând în mod substanțial procesul de generare a imaginilor.

1.3.3 Numărul de pixeli si eșantioane

Numărul de pixeli în imagine și numărul de eșantioane luate pentru fiecare pixel influențează direct complexitatea algoritmului. Cu cât există mai mulți pixeli sau eșantioane, cu atât crește numărul total de raze care trebuie urmărite și calculate.

Pe GPU, această creștere poate fi gestionată eficient prin împărțirea sarcinilor între diferite blocuri și fire de execuție, iar GPU-ul poate profita de paralelismul oferit de acestea.

1.3.4 Scalabilitate si optimizări

Paralelizarea pe GPU aduce beneficii semnificative în termeni de scalabilitate. Cu cât există mai multe nuclee pe GPU, cu atât mai multe operații pot fi efectuate simultan.

Optimizările specifice GPU-urilor, precum memoria partajată și cache-ul, pot fi exploatate pentru a minimiza timpul de acces la date și pentru a optimiza comunicarea între nucleele de procesare.

1.3.5 Memorie si transferul de date

Eficiența în gestionarea memoriei este crucială. Transferul eficient al datelor între CPU și GPU, precum și gestionarea memoriei GPU, influențează performanța generală. Utilizarea memoriei partajate sau cache-ului poate reduce timpul de acces și poate îmbunătăți eficiența memoriei, în special pentru datele care sunt frecvent utilizate.

1.3.6 Tipuri de obiecte si materiale

Complexitatea scenei, inclusiv tipurile de obiecte și materialele utilizate, afectează timpul de calcul. Materialele care necesită calcule mai complexe pentru iluminare sau umbre pot adăuga un nivel suplimentar de complexitate.

În ansamblu, paralelizarea pe GPU în cadrul algoritmului de ray tracing aduce un avantaj semnificativ în gestionarea complexității operațiunilor și permite o accelerare eficientă a generării imaginilor în comparație cu implementările pe CPU, mai ales în cazul scenelor mari și complexe.

1.4 Aplicații și produse pe piață

1.4.1 Produse și jocuri

Multe produse și jocuri de top utilizează ray tracing cu accelerare pe GPU pentru a oferi imagini realiste și detaliate. Exemple includ jocuri precum "Cyberpunk 2077" și "Minecraft" cu path tracing, precum și software de modelare 3D ca "Blender" sau "Autodesk Maya".

1.4.2 Industria filmului și designului

În industria filmului, ray tracing-ul pe GPU este utilizat pentru a crea efecte vizuale spectaculoase în filme precum "The Mandalorian". În domeniul designului, aplicații precum "KeyShot" beneficiază de accelerarea GPU-ului pentru randarea fotorealistică a modelelor.

2. Implementare

2.1 Abordare naivă / inițială

Abordarea naivă pentru paralelizarea ray tracing-ului pe GPU constă în a aloca fiecărui fir de execuție CUDA o sarcină independentă de calcul. Fiecare fir de execuție este responsabil pentru generarea culorilor unui pixel specific din imaginea finală, prin urmărirea unui număr de raze de lumină asociate acelui pixel. Această abordare simplă, dar eficientă în contextul scenei de test, implică divizarea imaginii în blocuri și fire de execuție CUDA.

2.1.1 Kernel-ul create world

Kernel-ul create_world inițializează o scenă 3D cu sfere și alte obiecte folosind o abordare naivă, rulând pe un singur bloc și un fir de execuție CUDA. Datele necesare sunt alocate în memoria GPU folosind cudaMalloc, iar procesul implică:

- Crearea unui obiect sferă în centrul scenei și adăugarea de sfere mici în jurul acesteia, fiecare cu propriile caracteristici (poziție, rază, material).
- Materialele sunt atribuite aleator, iar alegerea tipului de material pentru fiecare sferă este influențată de un factor aleator.
- Parametrii camerei sunt setați pentru controlul perspectivelor.
- Alocarea datelor se face folosind cudaMalloc pentru a permite accesul concurent și eficient al fiecărui fir de executie CUDA la structurile de date relevante.

```
_global__ void create_world(hitable** d_list, hitable** d_world, camera** d_camera, int nx, int ny, curandState* rand_state) {
    if (threadIdx.x == 0 && blockIdx.x == 0) {
        curandState local_rand_state = *rand_state;
d_list[0] = new sphere(vec3(0, -1000.0, -1), 1000,
             new lambertian(vec3(0.5, 0.5, 0.5)));
         for (int a = -11; a < 11; a++)
             for (int b = -11; b < 11; b++) {
                   float choose_mat = RND;
                   vec3 center(a + RND, 0.2, b + RND);
                  if (choose_mat < 0.8f) {
                       d_list[i++] = new sphere(center, 0.2,
                             new lambertian(vec3(RND * RND, RND * RND, RND * RND)));
                   else if (choose_mat < 0.95f) {
                        d_list[i++] = new sphere(center, 0.2,
    new metal(vec3(0.5f * (1.0f + RND), 0.5f * (1.0f + RND)), 0.5f * (1.0f + RND)), 0.5f * (1.0f + RND));
                      d_list[i++] = new sphere(center, 0.2, new dielectric(1.5));
        d_list[i++] = new sphere(vec3(0, 1, 0), 1.0, new dielectric(1.5));
d_list[i++] = new sphere(vec3(-4, 1, 0), 1.0, new lambertian(vec3(0.4, 0.2, 0.1)));
d_list[i++] = new sphere(vec3(4, 1, 0), 1.0, new metal(vec3(0.7, 0.6, 0.5), 0.0));
         *rand_state = local_rand_state;
         *d_world = new hitable_list(d_list, 22 * 22 + 1 + 3);
        vec3 lookfrom(13, 2, 3);
vec3 lookat(0, 0, 0);
         float dist_to_focus = 10.0; (lookfrom - lookat).length();
         float aperture = 0.1;
         *d_camera = new camera(lookfrom,
              lookat,
             30.0,
float(nx) / float(ny),
              dist_to_focus);
```

Imaginea 2. Kernel-ul create_world

2.1.2 Kernel-ul render_init

Kernel-ul de inițializare alocă pentru fiecare pixel un stadiu de generație a numerelor aleatoare. Această inițializare a numerelor aleatoare este esențială pentru diversificarea direcțiilor razelor de lumină în cadrul scenei.

```
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = threadIdx.y + blockIdx.y * blockDim.y;
if ((i >= max_x) || (j >= max_y)) return;
int pixel_index = j * max_x + i;
curand_init(2024 + pixel_index, 0, 0, &rand_state[pixel_index]);
}
```

Imaginea 3. Kernel-ul render init

2.1.3 Kernel-ul render

Kernel-ul render primește parametri precum dimensiunile imaginii, numărul de eșantioane per pixel și o referință la camera și scenă. Fiecare fir de execuție CUDA este responsabil pentru un pixel al imaginii și efectuează un buclu pentru a estima culoarea pixelului prin urmărirea mai multor raze de lumină. Coordonatele pixelilor și parametrii de eșantionare sunt utilizați pentru a genera razele de lumină asociate. Culorile estimate pentru fiecare rază sunt acumulate, iar rezultatul este normalizat la final și stocat în buffer-ul de imagine, reprezentat de vectorul vec3* fb.

Este important de menționat că fb este alocat în memoria GPU (Graphic Processing Unit) și, după finalizarea kernel-ului, acesta va fi transferat în memoria CPU (Central Processing Unit) pentru a putea fi utilizat ulterior. Acest proces de transfer poate fi realizat prin intermediul funcției cudaMemcpy pentru a asigura sincronizarea și accesul corect la rezultatele calculate pe dispozitivul GPU.

```
_global__ void render(vec3* fb, int max_x, int max_y, int ns,
   camera** cam, hitable** world, curandState* rand_state) {
   int i = threadIdx.x + blockIdx.x * blockDim.x;
   int j = threadIdx.y + blockIdx.y * blockDim.y;
   if ((i >= max_x) || (j >= max_y)) return;
   int pixel_index = j * max_x + i;
   curandState local_rand_state = rand_state[pixel_index];
   vec3 col(0, 0, 0);
   for (int s = 0; s < ns; s++) {
       float u = float(i + curand_uniform(&local_rand_state)) / float(max_x);
       float v = float(j + curand_uniform(&local_rand_state)) / float(max_y);
       ray r = (*cam)->get_ray(u, v, &local_rand_state);
       col += color(r, world, &local_rand_state);
   rand_state[pixel_index] = local_rand_state;
   col /= float(ns);
   col[0] = sqrt(col[0]);
   col[1] = sqrt(col[1]);
   col[2] = sqrt(col[2]);
   fb[pixel_index] = col;
```

Imaginea 4. Kernel-ul render

2.1.4 Kernel-ul free world

Kernel-ul de eliberare a memoriei pentru obiectele create în scenă este, de asemenea, simplu și rulează pe un singur bloc și fir de execuție CUDA.

```
g_global__ void free_world(hitable** d_list, hitable** d_world, camera** d_camera) {
    for (int i = 0; i < 22 * 22 + 1 + 3; i++) {
        delete ((sphere*)d_list[i])->mat_ptr;
        delete d_list[i];
    }
    delete* d_world;
    delete* d_camera;
}
```

Imaginea 5. Kernel-ul free_world

2.2 Optimizare 1 (Shared Memory)

În urma analizei aplicației cu ajutorul NSight, au fost identificate anumite aspecte deficitare ale kernel-ului de render, care contribuiau semnificativ la timpul total de rulare al aplicației. În vederea optimizării, s-au aplicat modificări semnificative asupra kernel-ului, focalizându-se în special pe utilizarea memoriei shared pentru stocarea datelor comune precum camera, obiectele din lume și starea locală a generatorului de numere aleatorii.

Unul dintre principalele aspecte deficitare identificate era traficul intens către memorie și accesul ineficient la date pentru fiecare bloc de thread-uri în timpul execuției kernel-ului de render. Pentru a remedia această problemă, s-a implementat memoria shared, care a dus la o reducere semnificativă a timpului de acces la date. Această memorie partajată a fost utilizată pentru stocarea eficientă a informațiilor despre cameră, obiecte și starea generatorului de numere aleatorii, permițând thread-urilor dintr-un bloc să colaboreze în cadrul aceleiași zone de memorie locale.

O altă problemă observată și optimizată a fost copierea redundantă a datelor referitoare la cameră și obiectele din lume pentru fiecare bloc de thread-uri. Această operație, efectuată inițial de fiecare thread, a fost mutată într-un singur thread al blocului respectiv. Această modificare a eliminat repetarea aceleiași operații costisitoare de către fiecare thread, contribuind la o eficiență sporită în gestionarea datelor comune.

Prin aceste optimizări, s-a reușit să se reducă semnificativ timpul total de rulare al kernelului de render, asigurând o execuție mai eficientă a aplicației în contextul tehnologiei CUDA.

```
// shared camera
__shared__ camera shared_cam;
__shared__ world shared_world;
__shared__ sphere shared_objects[488];

if (threadIdx.x == 0 && threadIdx.y == 0) {
    copy_camera(&shared_cam, cam);

    shared_world.size = worldd->size;
    shared_world.objects = shared_objects;

    for (int i = 0; i < shared_world.size; ++i) {
        shared_objects[i] = worldd->objects[i];
    }

__syncthreads();
```

Figura 6. Optimizarea 1 asupra Kernel-ului render

2.3 Optimizarea 2 (Multi-stream)

În urma analizei detaliate a aplicației cu NSight, am identificat zone de îmbunătățire în kernel-ul de render și potențiale căi de optimizare. Am observat că o porțiune importantă a timpului total de rulare era dedicată execuției kernel-ului de render. Pentru a aborda această problemă, am implementat și utilizat mai multe fluxuri (streams) CUDA în cadrul aplicației.

Scopul acestei optimizări a fost de a îmbunătăți paralelismul și de a distribui mai eficient sarcinile de calcul. În acest sens, fiecare flux CUDA a fost configurat să proceseze un segment specific al imaginii finale, permițând procesarea simultană a acestor segmente.

```
// Create streams
int num_streams_height = 1; // Number of streams along height
int num_streams_width = 4; // Number of streams along width
int total_streams = num_streams_height * num_streams_width;
cudaStream_t* streams = new cudaStream_t[total_streams];
for (int i = 0; i < total_streams; ++i) {
   cudaStreamCreate(&streams[i]);
// Determine segment sizes
int segmentSizeHeight = ny / num_streams_height;
int segmentSizeWidth = nx / num_streams_width;
for (int h = 0; h < num_streams_height; ++h) {
    for (int w = 0; w < num_streams_width; ++w) {
        int streamIdx = h * num_streams_width + w;
        int startRow = h * segmentSizeHeight;
        int endRow = (h + 1) * segmentSizeHeight;
        if (h == num_streams_height - 1) endRow = ny;
        int startCol = w * segmentSizeWidth;
        int endCol = (w + 1) * segmentSizeWidth;
        if (w == num_streams_width - 1) endCol = nx;
        // Calculate blocks for this segment
        dim3 segment_blocks(
            (endCol - startCol + tile_size_x - 1) / tile_size_x,
(endRow - startRow + tile_size_y - 1) / tile_size_y);
        render <<< segment_blocks, threads, 0, streams[streamIdx] >> > (
            d_image_pixels, nx, ny, ns, d_camera, d_world,
            startRow, endRow, startCol, endCol, d_rand_state_pixels);
```

Figura 7. Optimizarea 2 asupra execuției Kernel-ului render

Deși ne așteptam la o îmbunătățire semnificativă a performanței datorită acestei optimizări, rezultatele au fost sub așteptări. Analiza ulterioară a arătat că, în cazul aplicației noastre, nu avem citiri și scrieri multiple între host și device, ceea ce limita beneficiile acestei abordări. Astfel, timpul de execuție nu s-a îmbunătățit aproape deloc. Această situație subliniază importanța unei analize aprofundate a particularităților aplicației înainte de a implementa optimizări, deoarece impactul lor poate varia în funcție de specificul operațiilor efectuate.

Prin această optimizare, am distribuit sarcinile de calcul între mai multe fluxuri CUDA, însă, datorită caracteristicilor specifice aplicației noastre, procesul de render nu a fost accelerat în mod semnificativ. Am folosit sincronizarea pentru a asigura corectitudinea rezultatelor și pentru a gestiona dependențele între fluxuri. În ciuda faptului că această abordare nu a condus la îmbunătățirile așteptate în timpul total de rulare al aplicației, a oferit o perspectivă valoroasă asupra eficienței optimizărilor în contextul specific al mediului CUDA.

2.4 Optimizarea 3 (Constant memory)

În urma analizei aplicației folosind NSight, am identificat oportunități de îmbunătățire a performanței kernel-ului de render prin utilizarea memoriei constante. Memorarea constantă este un tip de memorie în arhitectura CUDA care este optimizată pentru cazurile în care toate thread-urile accesează aceleași date citite, oferind astfel o reducere semnificativă a latenței de acces la date.

Am implementat memorarea constantă pentru a stoca datele camerei (camera) și ale lumii (world), care sunt frecvent accesate de toate thread-urile în timpul execuției kernel-ului de render.

Figura 8. Implementarea memorie constante

Această abordare a avut un impact pozitiv asupra performanței aplicației, reducând timpul de execuție al kernel-ului de render. Această optimizare a contribuit la accelerarea semnificativă a procesului de render, demonstrând eficacitatea utilizării memoriei constante în contextul tehnologiei CUDA pentru aplicații cu acces intens la date comune.

3. Rezultate experimentale

3.1 Detaliile dispozitivelor hardware / software utilizate

Detaliile dispozitivelor hardware/software utilizate în experimente sunt următoarele:

Nume dispozitiv	Valoare		
CPU	Ryzen 7 5800X		
GPU	RTX 2070 SUPER		
OS	Windows 11		

Tabel 1. Dispozitive hardware / software utilizate

Specificații obținute prin rularea aplicației deviceQuery.cpp din pachetul Cuda

Nume proprietate	Valoare
CUDA Driver Version / Runtime Version	12.3 / 12.3
CUDA Capability Major / Minor Version	7.5
Multiprocessors	2560 CUDA Cores
Max number of threads per multiprocessor	1024
Max number of threads per block	1024
Memory Bus Width	256-bit

Tabel 2. Specificatii CUDA

3.2 Setul de date utilizat

Seturile de date utilizate în experimente sunt caracterizate de diferite configurații de rezoluție și complexitate.

Set de date	Rezoluție (pixeli)	Eșantioane per Pixel	Raze Primare
Setul 1	500x300	50	7,500,000
Setul 2	800x600	100	48,000,000
Setul 3	1200x800	500	480,000,000

Tabel 3.1 Setul de date

Set de date	Timp GPU naiv (s)	Timp GPU Shared Memory(s)	Timp GPU Multi Streams(s)	Timp GPU Constant Memory (s)	Timp CPU (s)
Setul 1	18.843	9.573	8.723	18.324	674.412
Setul 2	102.072	59.318	58.186	95.423	3567.129
Setul 3	969.351	312.512	310.339	876.28	14730.921

Tabel 3.2 Timpi pentru setul de date

Figura 9. Compararea performanțelor de execuție GPU vs. CPU în funcție de dimensiunea setului de date

Figura 10. Compararea performanțelor de execuție GPU naiv vs. GPU optimizare 1 si GPU optimizare 2 în funcție de dimensiunea setului de date

3.3 Analiza rezultatelor

3.3.1 Timpul de rulare dedicat transferului datelor

Pentru **setul 1 de date** în care imaginea are 500x300 pixeli, cu 50 de eșantioane per pixel, timpul de copiere a vectorului tridimensional rezultat de pe device pe host este de 282us. În implementarea curentă, copierea de pe host pe device nu este relevantă, șcena fii creată în memoria globală.

cudaMemcpy	1	282us	282us	282us	282us	0ns
cudaMalloc	6	194.134ms	32.3557ms	14.1us	193.926ms	72.2564ms
cudaLaunchKernel	4	2.99954s	749.886ms	677.454ms	887.063ms	82.272ms
cudaGetLastError		5.7us	1.425us	900ns	2.5us	653.357ns
cudaDeviceSynchronize		19.1953s	3.83906s	27.7us	19.1644s	7.66266s
cuModuleGetLoadingMode		2us	2us	2us	2us	Ons
cuModuleGetFunction		2.0215ms	404.3us	220.3us	690.4us	202.945us
cuMemcpyDtoH_v2		254.7us	254.7us	254.7us	254.7us	0ns
cuMemAlloc_v2		358.1us	59.6833us	9.2us	184us	65.8434us
cuLibraryLoadData		15.2276ms	15.2276ms	15.2276ms	15.2276ms	0ns
cuLibraryGetModule		2.9001ms	2.9001ms	2.9001ms	2.9001ms	0ns
cuLaunchKernel		2.97936s	744.839ms	658.959ms	886.312ms	86.3613ms
culnit		57.1032ms	57.1032ms	57.1032ms	57.1032ms	Ons
cuGetProcAddress_v2	432	103.8us	240.278ns	0ns	13.2us	721.911ns
cuDriverGetVersion		1.7us	1.7us	1.7us	1.7us	0ns
cuDeviceTotalMem_v2		400ns	400ns	400ns	400ns	0ns
cuDevicePrimaryCtxRetain		193.592ms	193.592ms	193.592ms	193.592ms	0ns
cuDeviceGetUuid		200ns	200ns	200ns	200ns	0ns
cuDeviceGetName		700ns	700ns	700ns	700ns	0ns
cuDeviceGetLuid		400ns	400ns	400ns	400ns	Ons
cuDeviceGetCount		400ns	400ns	400ns	400ns	Ons
cuDeviceGetAttribute	111	13.4us	120.721ns	0ns	1.9us	231.765ns
cuDeviceGet		1.9us	1.9us	1.9us	1.9us	0ns
cuCtxSynchronize		19.1952s	3.83904s	7.5us	19.1643s	7.66266s
cuCtxSetCurrent		800ns	800ns	800ns	800ns	0ns
cuCtxPushCurrent_v2		800ns	800ns	800ns	800ns	0ns
cuCtxPopCurrent_v2		1.7us	1.7us	1.7us	1.7us	Ons
cuCtxGetDevice		200ns	200ns	200ns	200ns	Ons
cuCtxGetCurrent		2.1us	1.05us	400ns	1.7us	650ns

Figura 11. Valorile din NSight pentru primul set de date.

Pentru **setul 2 de date** în care imaginea are 800x600 pixeli, cu 100 de eșantioane per pixel, timpul de copiere a vectorului tridimensional rezultat de pe device pe host este de 687.7us.

Name 🔻	Number of Calls	Total Duration	Average Duration	Minimum Duration	Maximum Duration	Duration Standard Deviation
cudaMemcpy		687.7us	687.7us	687.7us	687.7us	Ons
cudaMalloc		185.492ms	30.9154ms	16.5us	185.012ms	68.9141ms
cudaLaunchKernel	4	6.29233s	1.57308s	845.374ms	3.46907s	1.09976s
cudaGetLastError		5.7us	1.425us	800ns	3.2us	1.02561us
cudaDeviceSynchronize	5	10.525s	2.10501s	25.1us	10.4939s	4.19448s
cuModuleGetLoadingMode		2us	2us	2us	2us	0ns
cuModuleGetFunction	5	2.96ms	592us	200.7us	1.5406ms	499.751us
cuMemcpyDtoH_v2		659.8us	659.8us	659.8us	659.8us	0ns
cuMemAlloc_v2	6	621.7us	103.617us	11us	211.9us	75.0662us
cuLibraryLoadData		14.9126ms	14.9126ms	14.9126ms	14.9126ms	0ns
cuLibraryGetModule		3.0304ms	3.0304ms	3.0304ms	3.0304ms	0ns
cuLaunchKernel	4	6.27145s	1.56786s	827.039ms	3.46748s	1.10225s
culnit		53.9383ms	53.9383ms	53.9383ms	53.9383ms	0ns
cuGetProcAddress_v2	432	108.9us	252.083ns	0ns	13us	717.761ns
cuDriverGetVersion		1.8us	1.8us	1.8us	1.8us	0ns
cuDeviceTotalMem_v2		700ns	700ns	700ns	700ns	0ns
cuDevicePrimaryCtxRetain		184.687ms	184.687ms	184.687ms	184.687ms	0ns
cuDeviceGetUuid		200ns	200ns	200ns	200ns	0ns
cuDeviceGetName		700ns	700ns	700ns	700ns	0ns
cuDeviceGetLuid		300ns	300ns	300ns	300ns	0ns
cuDeviceGetCount		400ns	400ns	400ns	400ns	0ns
cuDeviceGetAttribute	111	13.8us	124.324ns	0ns	2.1us	241.324ns
cuDeviceGet		2us	2us	2us	2us	0ns
cuCtxSynchronize		10.5249s	2.10499s	7.2us	10.4939s	4.19447s
cuCtxSetCurrent		800ns	800ns	800ns	800ns	0ns
cuCtxPushCurrent_v2		900ns	900ns	900ns	900ns	0ns
cuCtxPopCurrent_v2		1.6us	1.6us	1.6us	1.6us	0ns
cuCtxGetDevice		200ns	200ns	200ns	200ns	0ns
cuCtxGetCurrent		2.1us	1.05us	300ns	1.8us	750ns

Figura 12. Valorile din NSight pentru al doilea set de date.

Pentru **setul 3 de date** în care imaginea are 1200x800 pixeli, cu 500 de eșantioane per pixel, timpul de copiere a vectorului tridimensional rezultat de pe device pe host este de 1.07ms.

Name ▼	Number of Calls	Total Duration	Average Duration	Minimum Duration	Maximum Duration	Duration Standard Deviation
cudaMemcpy		1.0723ms	1.0723ms	1.0723ms	1.0723ms	0ns
cudaMalloc		189.06ms	31.5101ms	14us	188.394ms	70.161ms
cudaLaunchKernel	4	2.86038s	715.096ms	608.097ms	830.512ms	84.8871ms
cudaGetLastError	4	4.5us	1.125us	600ns	2.4us	739.51ns
cudaDeviceSynchronize	5	19.7277s	3.94554s	25.6us	19.6963s	7.87538s
cuModuleGetLoadingMode		2us	2us	2us	2us	0ns
cuModuleGetFunction	5	1.9425ms	388.5us	184.7us	664.5us	198.539us
cuMemcpyDtoH_v2		1.0438ms	1.0438ms	1.0438ms	1.0438ms	0ns
cuMemAlloc_v2	6	816us	136us	8.9us	377.2us	134.335us
cuLibraryLoadData		15.0695ms	15.0695ms	15.0695ms	15.0695ms	Ons
cuLibraryGetModule		2.8474ms	2.8474ms	2.8474ms	2.8474ms	0ns
cuLaunchKernel	4	2.84057s	710.142ms	607.39ms	829.883ms	83.08ms
culnit		54.6591ms	54.6591ms	54.6591ms	54.6591ms	0ns
cuGetProcAddress_v2	432	111.2us	257.407ns	0ns	13.7us	743.329ns
cuDriverGetVersion		1.8us	1.8us	1.8us	1.8us	0ns
cuDeviceTotalMem_v2		500ns	500ns	500ns	500ns	Ons
cuDevicePrimaryCtxRetain		188.068ms	188.068ms	188.068ms	188.068ms	0ns
cuDeviceGetUuid		200ns	200ns	200ns	200ns	0ns
cuDeviceGetName		700ns	700ns	700ns	700ns	0ns
cuDeviceGetLuid		500ns	500ns	500ns	500ns	0ns
cuDeviceGetCount		500ns	500ns	500ns	500ns	0ns
cuDeviceGetAttribute	111	14.3us	128.829ns	0ns	1.9us	229.134ns
cuDeviceGet		1.9us	1.9us	1.9us	1.9us	Ons
cuCtxSynchronize		19.7276s	3.94553s	7.4us	19.6963s	7.87537s
cuCtxSetCurrent		700ns	700ns	700ns	700ns	0ns
cuCtxPushCurrent_v2		900ns	900ns	900ns	900ns	0ns
cuCtxPopCurrent_v2		1.8us	1.8us	1.8us	1.8us	0ns
cuCtxGetDevice		300ns	300ns	300ns	300ns	0ns
cuCtxGetCurrent	2	2.1us	1.05us	300ns	1.8us	750ns

Figura 13. Valorile din NSight pentru al treilea set de date.

3.3.2 Estimarea accelerării implementării CUDA

Pentru a evalua eficiența implementărilor CUDA, vom analiza speedup-ul obținut în comparație cu implementarea secvențială pe CPU. Speedup-ul este calculat utilizând formula:

$$Speedup = \frac{T_{GPU}}{T_{CPU}}$$

unde T_{CPU} reprezintă timpul de execuție pe CPU, iar T_{GPU} reprezintă timpul de execuție pe GPU.

Setul de date 1:

Pixeli pe X: 500Pixeli pe Y: 300

• Număr de Sample-uri: 50

Timp de Execuție pe CPU: 674.412s
Timp de Execuție pe GPU: 18.843s

Speedup: $\frac{674.412}{18.843} \approx 35.78$

Setul de date 2:

Pixeli pe X: 800Pixeli pe Y: 600

• Număr de Sample-uri: 100

• Timp de Execuție pe CPU: 3567.129s

• Timp de Execuție pe GPU: 102.072s

Speedup: $\frac{3567.129}{102.072} \approx 34.96$

Setul de date 3:

Pixeli pe X: 1200Pixeli pe Y: 800

• Număr de Sample-uri: 500

• Timp de Execuție pe CPU: 14730.921s

• Timp de Execuție pe GPU: 969.351s

Speedup:
$$\frac{14730.921}{969.351} \approx 15.20$$

În contextul evaluării performanțelor implementărilor CUDA, așteptările inițiale au fost orientate către o optimizare semnificativă în cazul utilizării mai multor fluxuri (streams), anticipând o distribuție eficientă a sarcinilor și o reducere a timpului total de execuție. Cu toate acestea, rezultatele experimentale au evidențiat că îmbunătățirea adusă de optimizarea cu mai multe fluxuri nu a fost atât de semnificativă pe cât ne-am fi așteptat.

Într-un contrast notabil, optimizarea care a implicat utilizarea memoriei partajate (shared memory) a adus o îmbunătățire semnificativă, depășind așteptările inițiale. Această abordare a demonstrat eficacitatea în gestionarea eficientă a accesului la date și a contribuit la reducerea notabilă a timpului total de execuție.

Astfel, rezultatele experimentale au adus o surpriză, indicând că, în ciuda așteptărilor inițiale ridicate pentru optimizarea cu mai multe fluxuri, aceasta nu a fost la fel de eficientă precum optimizarea bazată pe memorie partajată. Este important să se sublinieze că variațiile pot apărea în funcție de configurația specifică a hardware-ului și de caracteristicile setului de date utilizat.

Folosind ambele optimizări si o placă video RTX 3060 am reușit să generăm o imagine 4K cu 1000 de sample-uri în 101s. De menționat că performanțele pe placa video RTX 3060 au fost mai bune decât pe RTX 2070 SUPER.

Imagini

Figura 14. Imaginea finala pentru setul 3 de date.

Bibliografie

- 1. Pharr, M., & Jakob, W. (2016). Physically Based Rendering: From Theory to Implementation (3rd ed.) https://www.pbr-book.org/
- 2. Shirley, P., & Morley, K. (2003). Realistic Ray Tracing (2nd ed.). Natick https://books.google.ro/books?id=knpN6mnhJ8QC&printsec=frontcover&hl=ro&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
- 3. CUDA Toolkit Documentation https://docs.nvidia.com/cuda/
- 4. Nvidia DLSS & GeForce RTX https://www.nvidia.com/en-us/geforce/news/nvidia-rtx-games-engines-apps/