PORÓWNANIE WŁAŚCIWOŚCI I WYDAJNOŚCI SWIFT I OBJECTIVE-C

CEL

Prezentacja języka Swift i porównanie go z Objective-C

CEL

Czy Swift jest szybszy od Objective-C? Dlaczego?

WŁAŚCIWOŚCI

SWIFT VS. INNE JĘZYKI

Podstawowe cechy

Typy generyczne

Typy wartościowe i referencyjne

Domknięcia

Leniwość

Programowanie funkcyjne

Składnia

Rozszerzenia typów

SWIFT VS. OBJECTIVE-C

Bezpieczeństwo

Zarządzanie pamięcią

Składnia

Programowanie obiektowe

Sposoby na wywołanie metod

Biblioteki

TESTY WYDAJNOŚCIOWE

Przygotowano 12 testów wydajnościowych

- Przygotowano 12 testów wydajnościowych
- Większość z nich testuje wyodrębnione funkcje języka

Przetwarzanie typów napisowych

Rekurencja

Zaawansowane typy wyliczeniowe

Operacje tablicowe

Wywołania metod

- Przygotowano 12 testów wydajnościowych
- Większość z nich testuje wyodrębnione części języka
- Część z nich otrzymało alternatywne implementacje dla kilku testów

- Przygotowano 12 testów wydajnościowych
- Większość z nich testuje wyodrębnione części języka
- Część z nich otrzymało alternatywne implementacje dla kilku testów
- 7 testów zostało przeanalizowanych za pomocą narzędzia Instruments

Test	Swift/Objective-C
ArrayInsertion	-78,32%
Fibonacci	-45,84%
BubbleSort	-87,69%
BinarySearchTree - Classic/Enums/Optimized	+129,29% / +103,20% / -72,09%
DispatchMethod - Static vs Message	-75,00%
DispatchMethod - Dynamic vs Message	+112,79%
Dijkstra - Basic/Optimized	-65,33% / -5,14%
WordFrequency	+157,48%
SieveOfEratosthenes	+70,94%
CountLinesWordsChars	+7718,38%
StringConcatenation	-22,98%
RGBHistogram	-90,21%
RC4	+116,41%

Test	Swift/Objective-C
ArrayInsertion	-78,32%
Fibonacci	-45,84%
BubbleSort	-87,69%
BinarySearchTree - Classic/Enums/Optimized	+129,29% / +103,20% / -72,09%
DispatchMethod - Static vs Message	-75,00%
DispatchMethod - Dynamic vs Message	+112,79%
Dijkstra - Basic/Optimized	-65,33% / -5,14%
WordFrequency	+157,48%
SieveOfEratosthenes	+70,94%
CountLinesWordsChars	+7718,38%
StringConcatenation	-22,98%
RGBHistogram	-90,21%
RC4	+116,41%

Test	Swift/Objective-C
ArrayInsertion	-78,32%
Fibonacci	-45,84%
BubbleSort	-87,69%
BinarySearchTree - Classic/Enums/Optimized	+129,29% / +103,20% / -72,09%
DispatchMethod - Static vs Message	-75,00%
DispatchMethod - Dynamic vs Message	+112,79%
Dijkstra - Basic/Optimized	-65,33% / -5,14%
WordFrequency	+157,48%
SieveOfEratosthenes	+70,94%
CountLinesWordsChars	+7718,38%
StringConcatenation	-22,98%
RGBHistogram	-90,21%
RC4	+116,41%

Test	Swift/Objective-C
ArrayInsertion	-78,32%
Fibonacci	-45,84%
BubbleSort	-87,69%
BinarySearchTree - Classic/Enums/Optimized	+129,29% / +103,20% / -72,09%
DispatchMethod - Static vs Message	-75,00%
DispatchMethod - Dynamic vs Message	+112,79%
Dijkstra - Basic/Optimized	-65,33% / -5,14%
WordFrequency	+157,48%
SieveOfEratosthenes	+70,94%
CountLinesWordsChars	+7718,38%
StringConcatenation	-22,98%
RGBHistogram	-90,21%
RC4	+116,41%

CZY SWIFT JEST SZYBSZY OD OBJECTIVE-C?

W większości przypadków - tak.

Lepiej zoptymalizowane struktury danych

- Lepiej zoptymalizowane struktury danych
- Statyczne wywoływanie metod dużo szybsze od wywoływania przez wiadomości

- · Lepiej zoptymalizowane struktury danych
- Statyczne wywoływanie metod dużo szybsze od wywoływania przez wiadomości
- Wydajniejsza obsługa Automatic Reference Counting

- · Lepiej zoptymalizowane struktury danych
- Statyczne wywoływanie metod dużo szybsze od wywoływania przez wiadomości
- Wydajniejsza obsługa Automatic Reference Counting
- · Lepsze wsparcie dla typów prostych

KIEDY SWIFT JEST WOLNIEJSZY?

- Obsługa typu napisowego
- Możliwość łatwego wstawiania kodu w języku C do Objective-C

 Kod napisany w Swift jest w większości przypadków szybszy

- Kod napisany w Swift jest w większości przypadków szybszy
- Głównym powodem takiego stanu jest wyeliminowanie słabych punktów Objective-C

- Kod napisany w Swift jest w większości przypadków szybszy
- Głównym powodem takiego stanu jest wyeliminowanie słabych punktów Objective-C
- Nadal dużo zależy od programisty

- Kod napisany w Swift jest w większości przypadków szybszy
- Głównym powodem takiego stanu jest wyeliminowanie słabych punktów Objective-C
- Nadal dużo zależy od programisty
- Praca nie wyczerpuje tematu

DZIĘKUJĘ ZA UWAGĘ