COMP767: Reinforcement Learning

Michael Noukhovitch

Winter 2018,

Notes written from Doina Precup's lectures.

Contents

1	Introduction 3			
	1.1	Definitions	3	
	1.2	Key Factors of RL	3	
	1.3	· ·	3	
2	Bandit 3			
	2.1	Definition	3	
	2.2	Action Selection	4	
	2.3		4	
			4	
			5	
		2.3.3 Optimistic		
			5	
			5	
		8	5	
	2.4		6	
	2.5		6	
	2.0	Conclusions	J	
3	Ma	rkov Decision Processes	6	
	3.1	Markov	6	
	3.2		7	
	3.3		7	
	3.4	· ·	7	
4	Mo	nte Carlo Methods	7	
	4.1	MC Policy Evaluation	7	
	4.2		7	
		·	' 7	

1 Introduction

1.1 Definitions

Reinforcement learning is:

agent-oriented learning learning by interacting with an environment

trial and error only given delayed evaluative feedback

science of the mind one which is neither natural science nor applied technology

Framework:

- 1. agent percieves the **state** of the environment
- 2. based on the state, it chooses an action
- 3. the action gives the agent a reward
- 4. a policy aims to maximize the agent's long term expected reward

1.2 Key Factors of RL

- trial and error search
- environment is stochastic
- reward may be delayed
- balancing exploration and exploitation

1.3 Classical Challenges

- \bullet reward
- information is sequential
- delayed consequences
- balancing exploration/exploitation
- non-stationarity
- fleeting nature of time and online data

2 Bandit

2.1 Definition

One-armed bandit Simplest RL problem

- pull the lever
- get some reward

• choose the best lever!

k-armed bandit extends to k arms

- at every time step t, choose an action A_t from k possibilties
- recieve a reward R_t dependent only on the action taken (i.i.d)
- $q_*(a) = \mathbb{E}[R_t|A_t = a], \forall a \in 1, \dots k$

2.2 Action Selection

greedy the action with the current highest expected value (best one so far)exploitation choosing the greedy actionexploration choosing not the greedy action

 ε -greedy balance explore/exploit by choosing exploration (random) with probability ε

Figure 1: ϵ -greedy methods on 10-arm bandit

2.3 Learning Rules

Learn the best policy by learning the reward for an action

2.3.1 Averaging

For a single action, update the new estimate based on old estimate and step size (α) , with all actions being equal

$$Q_{n+1} = Q_n + \alpha (R_n - Q_n)$$

2.3.2 Recency-Weighted Average

stationary if the true action values DO NOT change over time

if our bandit is non-stationary, then we need to put more weight on recent samples

$$Q_{n+1} = (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i$$

2.3.3 Optimistic

Previously we assumed $Q_1(a) = 0$, but we can start optimistically (e.g. $Q_1(a) = 5$) to encourage early exploration

2.3.4 Upper Confidence Bound

Reduce exploration over time after starting confident

- estimate upper bound on true action values
- select the action with the largest upper bound

$$A_t = \operatorname*{argmax}_{a}[Q_t(a) + c\sqrt{\frac{\log t}{N_t(a)}}]$$

2.3.5 Gradient-Bandit Algorithms

Don't need to learn specific rewards, just learn the **preference** $H_t(a)$, and try and make the probability of choosing an action $\pi_t(a)$ be proportional to it.

$$\pi_t(a) \propto e^{H_t(a)}$$

$$= \frac{e^{H_t(a)}}{\sum_b e^{H_t(b)}}$$

if the reward for an action is better than average, increase its preference

$$H_{t+1} = H_t(a) + \alpha (R_t - \bar{R}_t) (1_{a=A_t} - \pi_t(a))$$

where \bar{R}_t = average R_i

2.3.6 Associative Search

associative a task where the situation/state of the agent changes the reward for an action

contextual bandit not just trial-and-error search, but also association between state and action values

full reinforcement learning trial-and-error search, association between state and action, and actions affecting the next state of the agent

2.4 Evaluations

regret the difference between best option and the one we chose $\max_a q_*(a) - q_t(a)$ expected total regret $\mathbb{E}[\sum_t \text{ regret}_t]$ (optimal for UCB, Thomson sampling) best response regret for T experimental trials after policy is fixed

2.5 Conclusions

- simple methods that can be built on
- learn from feedback
- appear to have a goal

Figure 2: bandit algorithm comparison

3 Markov Decision Processes

3.1 Markov

markov property future independent of past given present

 ${\bf markov}$ chain memoryless random process with states S and transition probabilities P, < S, P >

markov reward process markov chain with values, rewards for states R, discount factor γ

return sum of discounted rewards $G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} \dots$

value function long-term value of state s, $v(s) = E[G_t|S_t = s]$

3.2 Returns and Values

3.3 Policy Iteration

3.4 Asynchronous DP

 \bullet choose

4 Monte Carlo Methods

4.1 MC Policy Evaluation

learn $v_{\pi}(s)$ given some number of episodes under π which contain s, using the average of the rewards after visiting s

every visit MC average returns for every visit to s

first visit MC average returns for only the first visit to s (in an episode)

4.2 On-Policy MC Control

on policy learn about policy currently executing

boltzmann exploration choose with probability $\exp(-\frac{P(s)}{T})$ where T is a temperature. Over time, decrease from high T (equiprobable) to low T (biased towards best action)

4.3 Advantages

Several advantages over DP

- can learn directly from interaction with environment
- no need for full models
- no need to learn about all states
- less harmed by violating Markov property