

FCC TEST REPORT FCC ID: 2AA94-CX20X

Product	:	Wireless IP Camera					
Model Name	:	CB205					
Serial model	:	CB204, CB207, CA205, CA204, CA207					
Brand	:	J/A					
Report No.	ort No. : PTC19070105101E-FC01						
	ı						
		Prepared for					
		Langshixing Electronic (Shenzhen) Co., Ltd					
5/F, Tong	gac	Building A, SanlianIndustry Park, Shiyan, Baoan, Shenzhen, China					
		Prepared by					
		Dongguan Precise Testing & Certification Corp., Ltd.					
Building D, Baod	ing	Technology Park, Guangming Road 2, Guangming Community, Dongcheng District, Dongguan, Guangdong, China					

1 TEST RESULT CERTIFICATION

Applicant's name : Langshixing Electronic (Shenzhen) Co., Ltd

Address : 5/F, Tonggao Building A, SanlianIndustry Park, Shiyan, Baoan, Shenzhen,

China

Manufacture's name : Langshixing Electronic (Shenzhen) Co., Ltd

Address : 5/F, Tonggao Building A, SanlianIndustry Park, Shiyan, Baoan, Shenzhen,

China

Product name : Wireless IP Camera

Model name : CB205

Serial model : CB204, CB207, CA205, CA204, CA207

Standards : FCC CFR47 Part 15 Section 15.247

Test procedure : ANSI C63.10:2013

Test Date : July 05, 2019 to July 12, 2019

Date of Issue : July 29, 2019

Test Result : Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Leo Yang / Engineer

Leo Young

Technical Manager:

Chris Du / Manager

Contents

			Page
1	TEST RESULT CERT	TIFICATION	2
2	TEST SUMMARY		5
3	GENERAL INFORMA	ATION	6
	3.1	GENERAL DESCRIPTION OF E.U.T	6
	3.2	CHANNEL LIST	7
	3.3	TEST SITE	11
4	EQUIPMENT DURING	G TEST	12
	4.1	EQUIPMENTS LIST	12
	4.2	MEASUREMENT UNCERTAINTY	14
	4.3	DESCRIPTION OF SUPPORT UNITS	15
5	CONDUCTED EMISS	SION	16
	5.1	E.U.T. OPERATION	16
	5.2	EUT SETUP	16
	5.3	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	17
	5.4	MEASUREMENT PROCEDURE	17
	5.5	CONDUCTED EMISSION LIMIT	17
	5.6	MEASUREMENT DESCRIPTION	17
	5.7	CONDUCTED EMISSION TEST RESULT	17
6	RADIATED SPURIOU	JS EMISSIONS	20
	6.1	EUT OPERATION	20
	6.2	TEST SETUP	21
	6.3	SPECTRUM ANALYZER SETUP	22
	6.4	TEST PROCEDURE	23
	6.5	SUMMARY OF TEST RESULTS	24
7	CONDUCTED SPURI	OUS EMISSION	29
	7.1	Test Procedure	29
	7.2	TEST RESULT	29
R	RAND EDGE MEASI	IREMENT	36

14	EUT PHOTOS		59
13	TEST SETUP		57
	12.2	RESULT	56
	12.1	ANTENNA REQUIREMENT	56
12	ANTENNA APPLICATIO	N	56
	11.2	TEST RESULT	49
	11.1	TEST PROCEDURE	49
11	POWER SPECTRAL DEI	NSITY	49
	10.2	TEST RESULT	48
	10.1	TEST PROCEDURE	48
10	MAXIMUM PEAK OUTPU	JT POWER	48
	9.2	TEST RESULT	41
	9.1	TEST PROCEDURE	41
9	6DB BANDWIDTH MEAS	SUREMENT	41
	8.2	TEST RESULT	37
	8.1	TEST PROCEDURE	36

2 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	PASS
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Conducted Spurious Emission	15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Power Spectral Density	15.247(e)	PASS
Antenna Requirement	15.203	PASS
Remark:		

N/A: Not Applicable

3 General Information

3.1 General Description of E.U.T.

Product Name	:	Wireless IP Camera	
Model Name	:	CB205	
		CB204, CB207, CA205, CA204, CA207 CXXXX(X representative A~Z or 0~9)	
Specification	:	802.11b/g/n HT20/n HT40	
Operation Frequency	:	2412-2462MHz for 802.11b/g; 2412-2462MHz for 802.11n(HT20); 2422-2452MHz for 802.11n(HT40);	
Number of Channel	:	11 channels for 802.11b/g; 11 channels for 802.11n(HT20); 7 channels for 802.11n(HT40);	
Type of Modulation		DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;	
Antenna installation	:	External Antenna	
Antenna Gain	:	0 dBi	
Power supply	÷	For Adapter: Model: BI12T-120100-I Input: 100-240V~50/60Hz 0.5A Output: 12.0 V == 1.0 A	
Hardware Version	:	N/A	
Software Version	:	N/A	

Note: The samples are the same except different model include model name, main processor, image sensor and appearance. So CB205 was selected for full tested.

3.2 Channel List

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS8) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for 802.11 b/g/n (HT20):

Channal	Frequency	Channel	Frequency	Channel	Frequency
Channel	(MHz)	Charmer	(MHz)	Chaine	(MHz)
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447		

Frequency and Channel list for 802.11 n (HT40):

Channel	Frequency	Channel	Frequency	Channel	Frequency
	(MHz)		(MHz)	Charine	(MHz)
3	2422	5	2432	8	2447
4	2427	6	2437	9	2452
		7	2442		

Test Frequency and Channel for 802.11 b/g/n (HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462

Test Frequency and channel for 802.11 n (HT40):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel	(MHz)	Charine	(MHz)		(MHz)
3	2422	6	2437	9	2452

The maximum duty cycle as following table:

Test Mode	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle(%)
802.11b	100	100	100%
802.11g	100	100	100%
802.11n(HT20)	100	100	100%
802.11n(HT40)	100	100	100%

Test Plots:

802.11b

802.11g

802.11n(HT20)

802.11n(HT40)

3.3 Test Site

Dongguan Precise Testing & Certification Corp., Ltd.

Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong,

China

FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A-1

4 Equipment During Test

4.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
MXG Signal Analyzer	Agilent	N9020A	MY56070279	10Hz-30GHz	Sep. 19, 2019
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Sep. 19, 2019
Power Meter	Anritsu	ML2495A	0949003	300MHz-40GHz	Sep. 19, 2019
Power Sensor	Anritsu	MA2411B	0917017	300MHz-40GHz	Sep. 19, 2019

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radiated Emissions(Test Frequency from 9KHz-18GHz)

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep.19, 2019
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Sep.19, 2019
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	25MHz-2GHz	Sep.19, 2019
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	1MHz-1GHz	Sep.19, 2019
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Sep.19, 2019
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Sep.19, 2019
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	1GHz-18GHz	Sep.19, 2019
Power Amplifier	LUNAR EM	LNA1G18-40	J10100000081	1GHz-26.5GHz	Sep.19, 2019
Horn Antenna	SCHWARZBECK	BBHA 9170	9170-181	14GHz-40GHz	Sep.25, 2019
Amplifier	SCHWARZBECK	BBV 9721	9721-205	18GHz-40GHz	Sep.19, 2019
Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	Sep.19, 2019
RF Cable	R&S	R204	R21X	1GHz-40GHz	Sep.19, 2019

Conducted Emissions

Name of Equipment	me of Equipment Manufacturer		Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 19, 2019
Artificial Mains Network	Rohde&Schwarz	L2-16B	000WX31025	9KHz-300MHz	Sep. 19, 2019
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	9KHz-300MHz	Sep. 19, 2019

4.2 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted	±2.2dB
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB

4.3 Description of Support Units

Equipment	Model No.	Series No.
	Model: BI12T-120100-I	
Adapter	Input: 100-240V~50/60Hz 0.5A	N/A
	Output: 12.0 V == 1.0 A	

5 Conducted Emission

Test Requirement: : FCC CFR 47 Part 15 Section 15.207

Test Method : ANSI C63.10: 2013

Test Result : PASS

Frequency Range : 150kHz to 30MHz

Class/Severity : Class B

5.1 E.U.T. Operation

Operating Environment:

Temperature : 24.5 °C

Humidity : 50 % RH

Atmospheric Pressure : 101.12kPa

5.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

5.3 Test SET-UP (Block Diagram of Configuration)

5.4 Measurement Procedure

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

5.5 Conducted Emission Limit

Conducted Emission

Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56	56-46	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note:

- 1. The lower limit shall apply at the transition frequencies
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

5.7 Conducted Emission Test Result

Pass.

Please refer to the following pages.

Line-AC 120V/60Hz

		Cable	CLAMP	Receiver	Emission		Over	
No.	Freq	Loss	Factor	Reading	Level	Limit	Limit	Remark
	MHz	dB	dB	dBpW ~	dBpW	dBpW	dB	
1.	0.158	0.22	9.51	21.59	31.32	55.56	-24.24	Average
2.	0.158	0.22	9.51	31.32	41.05	65.56	-24.51	QP
3.	0.505	0.43	9.78	26.79	37.00	46.00	-9.00	Average
4.	0.505	0.43	9.78	34.65	44.86	56.00	-11.14	QP -
5.	0.621	0.44	9.79	32.25	42.48	46.00	-3.52	Average
6.	0.621	0.44	9.79	41.65	51.88	56.00	-4.12	QP -
7.	1.016	0.46	9.82	25.42	35.70	46.00	-10.30	Average
8.	1.016	0.46	9.82	32.63	42.91	56.00	-13.09	QP -
9.	11.498	0.56	9.98	26.64	37.18	50.00	-12.82	Average
10.	11.498	0.56	9.98	35.63	46.17	60.00	-13.83	QP -
11.	26.001	0.52	9.90	17.13	27.55	50.00	-22.45	Average
12.	26.001	0.52	9.90	26.46	36.88	60.00	-23.12	QP -

Neutral-AC 120V/60Hz

No.	Freq MHz	Cable Loss dB	CLAMP Factor dB	Receiver Reading dBpW	Emission Level dBpW	Limit dBpW	O∨er Limit dB	Remark
1.	0.158	0.22	9.54	19.93	29.69	55.56	-25.87	Average
2.	0.158	0.22	9.54	30.52	40.28	65.56	-25.28	QP _
3.	0.627	0.44	9.82	31.90	42.16	46.00	-3.84	Average
4.	0.627	0.44	9.82	39.45	49.71	56.00	-6.29	QP -
5.	0.989	0.46	9.85	23.26	33.57	46.00	-12.43	Average
6.	0.989	0.46	9.85	31.96	42.27	56.00	-13.73	QP -
7.	1.734	0.47	9.87	22.04	32.38	46.00	-13.62	Average
8.	1.734	0.47	9.87	29.60	39.94	56.00	-16.06	QP -
9.	9.705	0.56	10.00	16.60	27.16	50.00	-22.84	Average
10.	9.705	0.56	10.00	27.65	38.21	60.00	-21.79	QP
11.	12.784	0.56	10.05	19.90	30.51	50.00	-19.49	Average
12.	12.784	0.56	10.05	29.58	40.19	60.00	-19.81	QP -

6 Radiated Spurious Emissions

Test Requirement : FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method : ANSI C63.10:2013

Test Result : PASS
Measurement Distance : 3m

Limit : See the follow table

	Field Strer	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

6.1 EUT Operation

Operating Environment:

Temperature: : $24.5 \, ^{\circ}\text{C}$ Humidity: : $47 \, ^{\circ}\text{RH}$ Atmospheric Pressure: : $101.12 \, ^{\circ}\text{kPa}$

Test Voltage : AC 120V/60Hz

6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz

6.3 Spectrum Analyzer Setup

Below 30MHz							
IF Bandwidth	: 10kHz						
Resolution Bandwidth	:	10kHz					
Video Bandwidth	:	10kHz					
30MHz ~ 1GHz							
Detector	:	PK	QP				
Resolution Bandwidth	:	100kHz	120kHz				
Video Bandwidth	:	300kHz	300kHz				
Above 1GHz							
Detector	:	PK	AV				
Resolution Bandwidth	:	1MHz	1MHz				
Video Bandwidth	:	3MHz	10Hz				

6.4 Test Procedure

- 1. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane, And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
- 8. The test above 1GHz must be use the fully anechoic room, and the test below 1GHz use the half anechoic room

6.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
				>20

Note:

The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz

All the modulation modes were tested the data of the worst mode (TX 802.11b Low Channel) are recorded in the following pages and the others modulation methods do not exceed the limits.

Please refer to the following test plots:

Antenna Polarization: Horizontal

No.	Freq MHz	Cable Loss dB		Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	78.139	2.85	9.17	40.52	30.30	22.24	40.00	-17.76	QP
2.	86.200	3.02	8.83	41.28	30.34	22.79	40.00	-17.21	QP
3.	140.835	3.86	13.41	34.69	30.51	21.45	43.50	-22.05	QP
4.	199.986	4.46	10.38	44.96	30.63	29.17	43.50	-14.33	QP
5.	372.005	5.53	14.69	37.29	30.85	26.66	46.00	-19.34	QP
6.	463.970	5.91	16.59	32.68	30.92	24.26	46.00	-21.74	QP

Remark: Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Antenna Polarization: Vertical

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	O∨er Limit dB	Remark
1.	80.927	2.91	8.75	54.21	30.32	35.55	40.00	-4.45	QP QP
2.	153.739	4.01	13.89	45.40	30.54	32.76	43.50	-10.74	QP
3.	214.514	4.58	10.66	46.84	30.65	31.43	43.50	-12.07	QP
4.	300.367	5.16	13.20	41.14	30.77	28.73	46.00	-17.27	QP
5.	373.311	5.54	14.72	39.75	30.85	29.16	46.00	-16.84	QP
6.	501.179	6.04	17.08	40.18	30.95	32.35	46.00	-13.65	QP

Remark: Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Test Frequency: From 1GHz to 18GHz

Low Channel (2412MHz) Worst case 802.11b

			v Onamici	(Z+1ZIVII 12	,	0000 002.	110		
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4824	35.69	AV	V	35.16	10.55	40.05	41.35	54	-12.65
4824	36.15	AV	Н	35.16	10.55	40.05	41.81	54	-12.19
4824	41.45	PK	V	35.16	10.55	40.05	47.11	74	-26.89
4824	46.22	PK	Н	35.16	10.55	40.05	51.88	74	-22.12
16884	34.28	AV	V	35.39	10.58	39.42	40.83	54	-13.17
16884	35.02	AV	Н	35.39	10.58	39.42	41.57	54	-12.43
16884	46.82	PK	V	35.39	10.58	39.42	53.37	74	-20.63
16884	48.12	PK	Н	35.39	10.58	39.42	54.67	74	-19.33

Middle Channel (2437MHz) Worst case 802.11b

Whate Sharmer (2407 Whiz) Worst 6436 662.116											
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin		
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)		
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)				
						(dB)					
4874	36.15	AV	V	35.18	10.58	40.07	41.84	54	-12.16		
4874	37.22	AV	Н	35.18	10.58	40.07	42.91	54	-11.09		
4874	45.92	PK	V	35.18	10.58	40.07	51.61	74	-22.39		
4874	48.17	PK	Н	35.18	10.58	40.07	53.86	74	-20.14		
17059	35.04	AV	V	35.42	10.62	39.16	41.92	54	-12.08		
17059	36.62	AV	Н	35.42	10.62	39.16	43.5	54	-10.5		
17059	46.92	PK	V	35.42	10.62	39.16	53.8	74	-20.2		
17059	47.15	PK	Н	35.42	10.62	39.16	54.03	74	-19.97		

High Channel (2462MHz) Worst case 802.11b

Trigit Charinet (24021VIII2) Worst case 602.11b										
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin	
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)	
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)			
						(dB)				
4924	36.32	AV	V	35.26	10.54	40.01	42.11	54	-11.89	
4924	37.12	AV	Н	35.26	10.54	40.01	42.91	54	-11.09	
4924	46.58	PK	V	35.26	10.54	40.01	52.37	74	-21.63	
4924	49.67	PK	Н	35.26	10.54	40.01	55.46	74	-18.54	
17234	35.24	AV	V	35.67	10.66	39.04	42.53	54	-11.47	
17234	36.72	AV	Н	35.67	10.66	39.04	44.01	54	-9.99	
17234	47.12	PK	V	35.67	10.66	39.04	54.41	74	-19.59	
17234	48.67	PK	Н	35.67	10.66	39.04	55.96	74	-18.04	

Note:

- 1. The testing has been conformed to 10*2462MHz=24620MHz.
- 2. All other emissions more than 30dB below the limit.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier. Emission Level = Reading + Factor Margin=Emission Level-Limit
- 4. X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

Test Frequency: From 18GHz to 25GHz

The measurements were more than 20dB below the limit and not reported.

7 Conducted Spurious Emission

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based

on the use of RMS averaging over a time interval, as permitted under

paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated

emission limits specified in §15.209(a) (see §15.205(c)).

7.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

7.2 Test Result

802.11 b Low Channel

Middle Channel

802.11g Low Channel

High Channel

802.11n-HT20 Low Channel

Middle Channel

High Channel

802.11n-HT40

Low Channel

High Channel

8 Band Edge Measurement

Test Requirement : Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section

15.205(c)).

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated

measurement, provided the transmitter demonstrates compliance with the

peak conducted power limits. If the transmitter complies with the

conducted power limits based on the use of RMS averaging over a time

interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission

as defined in §15.205(a), must also comply with the radiated el

limits specified in §15.209(a) (see §15.205(c)).

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

9 6dB Bandwidth Measurement

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Systems using digital modulation techniques may operate in the 902-928

Test Limit MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB

bandwidth shall be at least 500 kHz.

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum:

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

Modulation	Bandwidth(MHz)			Limit
	Low Channel	Middle Channel	High Channel	LIIIII
802.11b	9.92	9.92	9.52	≥500kHz
802.11g	16.32	16.32	16.32	≥500kHz
802.11n-HT20	17.20	17.12	17.04	≥500kHz
802.11n-HT40	35.52	35.68	35.20	≥500kHz

802.11b Middle Channel

802.11b High Channel

802.11g Low Channel

802.11g Middle Channel

802.11g High Channel

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

802.11n-HT20 High Channel

802.11n-HT40 Low Channel

802.11n-HT40 Middle Channel

802.11n-HT40 High Channel

10 Maximum Peak Output Power

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247 (b)(3), For systems using digital modulation in the 902-

928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output

power.

10.1 Test Procedure

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Modulation	Maximum Peak Output Power (dBm)			Limit
	Low Channel	Middle Channel	High Channel	Limit
802.11b	12.86	12.75	12.63	1W(30dBm)
802.11g	12.12	12.03	12.10	1W(30dBm)
802.11n-HT20	10.58	10.36	10.22	1W(30dBm)
802.11n-HT40	9.62	9.56	9.34	1W(30dBm)

11 Power Spectral density

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247(f) The power spectral density conducted from the

intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during

any time interval of continuous transmission.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz, Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Modulation	Power	Limit		
	Low Channel	Middle Channel	High Channel	LIIIII
802.11b	-11.26	-11.94	-11.47	8dBm/3kHz
802.11g	-12.50	-12.17	-12.30	8dBm/3kHz
802.11n-HT20	-12.14	-13.36	-12.96	8dBm/3kHz
802.11n-HT40	-11.89	-16.89	-13.27	8dBm/3kHz

802.11b Low Channel

802.11b Middle Channel

802.11b High Channel

802.11g Low Channel

802.11g Middle Channel

802.11g High Channel

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

802.11n-HT20 High Channel

802.11n-HT40 Low Channel

802.11n-HT40 Middle Channel

802.11n-HT40 High Channel

12 Antenna Application

12.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

12.2 Result

The EUT'S antenna, permanent attached antenna, is internal External Antenna. The antenna's gain is 0 dBi and meets the requirement.

13 Test Setup

Radiated Spurious Emissions From 30MHz-1000MHz

14 EUT Photos

******THE END REPORT*****