Matematika 4 — Logika pre informatikov Teoretická úloha 3

Riešenie teoretickej časti tejto sady úloh **odovzdajte** najneskôr v pondelok **11. marca 2019 o 11:30** na prednáške.

Odovzdané riešenia musia byť **čitateľné** a mať primerane **malý** rozsah. Ohodnotené riešenia poskytneme k nahliadnutiu, ale **nevrátime** vám ich, uchovajte si kópiu. Na riešenia všetkých úloh sa vzťahujú všeobecné **pravidlá** zverejnené na adrese https://dai.fmph.uniba.sk/w/Course:Mathematics_4/sk#pravidla-uloh.

Čísla úloh v zátvorkách odkazujú do zbierky, v ktorej nájdete ďalšie úlohy na precvičovanie a vzorové riešenia: https://github.com/FMFI-UK-1-AIN-412/lpi/blob/master/teoreticke/zbierka.pdf.

Cvičenie 1. (2.4.3) Je daná teória T nad $\mathcal{V} = \{a, b, \dots, z\}^+$:

$$T = \left\{ \begin{aligned} (p \to (q \land r)), \\ ((q \to p) \lor (s \to r)), \\ (\neg p \to (\neg r \land s)) \end{aligned} \right\}$$

Zistite, či z T vyplývajú nasledovné formuly:

a)
$$((p \land q) \rightarrow r)$$
,

b)
$$((p \land q) \rightarrow s)$$
,

d)
$$((p \rightarrow r) \land (r \rightarrow p))$$
.

Cvičenie 2. (2.4.4) V prípade bankovej lúpeže inšpektor Nick Fishtrawn zaistil štyroch podozrivých Browna, Smitha, Taylora, a McDonnalda, pričom zistil nasledujúce skutočnosti:

- (A_1) Brown a Smith sú súčasne vinní, iba ak je Taylor ich spolupáchateľom.
- (A₂) Ak je Brown vinný, tak aspoň jeden z Smith, Taylor je jeho spolupáchateľom.
- (A_3) Taylor nikdy nepracuje bez McDonnalda.
- (A₄) McDonnald je vinný, ak je Brown nevinný.

Pomôžte inšpektorovi Fishtrawnovi zistiť, kto z podozrivých je určite vinný a má ho obviniť, kto je naopak určite nevinný a má ho oslobodiť, a o koho vine či nevine nemožno rozhodnúť. Svoje odpovede dokážte.

Cvičenie 3. (2.4.6) Nech X a Y sú ľubovoľné výrokové formuly, nech T je ľubovoľná výroková teória. Dokážte alebo vyvráťte:

- a) Ak $T \models \neg X$, tak $T \not\models X$.
- b) Ak $T \models (X \lor Y)$, tak $T \models X$ alebo $T \models Y$.

c) Ak $T \not\models X$ alebo $T \not\models Y$, tak $T \not\models (X \land Y)$.

Cvičenie 4. (2.5.1) Dokážte, že nasledujúce dvojice formúl, ktoré sa zvyčajne používajú na ekvivalentné úpravy formúl, sú (sémanticky) ekvivalentné:

- b) distributívnosť \land cez \lor : $(p \land (q \lor r))$ a $((p \land q) \lor (p \land r))$;
- k) de Morganovo pravidlo pre \vee : $\neg (p \vee r)$ a $(\neg p \wedge \neg r)$.

Cvičenie 5. (2.5.2) Nájdite k nasledujúcim formulám ekvivalentné formuly v CNF:

- a) $((p \rightarrow p) \rightarrow (p \rightarrow p))$,
- b) $((p \lor \neg r) \to (\neg q \land r)).$

Cvičenie 6. (2.5.3) Určte počet klauzúl vo výsledných CNF formulách z úlohy 5.

Hodnotená časť

Úloha 1. (2.4.5) V prípade lúpeže v klenotníctve predviedli na políciu troch podozrivých Adamsovú, Millsa a Doylea. Inšpektorka Fishcousová počas vyšetrovania zistila tieto skutočnosti:

- (A_1) Doyle je vinný, ak je Adamsová vinná a Mills nevinný.
- (A_2) Doyle nikdy nepracuje sám.
- (A₃) Adamsová nikdy nepracuje s Doyleom.
- (A_4) Do prípadu nie je zapletený nikto okrem Adamsovej, Millsa a Doylea a aspoň jeden z nich je vinný.

Zistite, ktorí podozriví sú určite vinní a inšpektorka ich má obviniť, ktorí sú naopak určite nevinní a inšpektorka ich musí oslobodiť, a o vine ani nevine ktorých nemožno rozhodnúť, takže budú prepustení pre nedostatok dôkazov. Svoje odpovede dokážte.

Úloha 2. (2.4.6) Nech X a Y sú ľubovoľné výrokové formuly, nech T je ľubovoľná výroková teória. Dokážte alebo vyvráťte:

- a) Ak $T \models (X \rightarrow Y)$, tak $T \not\models X$ alebo $T \models Y$.
- b) Ak $T \not\models X$ alebo $T \models Y$, tak $T \models (X \rightarrow Y)$.

Úloha 3. (2.5.2) K nasledujúcej formule nájdite ekvivalentnú formuly v CNF:

$$(((r \to q) \to (q \land \neg p)) \to (\neg (q \land r) \land (p \lor s)))$$

2