Workshop: Machine Learning Processing for Wearable Data in Healthcare

Classification and Regression Cases in Rehabilitation Event Detection

Dr Diego Paez Mehdi Ejtehadi, Yanke Li, Bertram Fuchs

WS Day 1: Feature Extraction in Healthcare Data for ML Modelling

Content and Learning Outcomes:

- Healthcare monitoring and data in the rehabilitation process.
- Introduction to learning from patient data.
 - Classification algorithms: Basics of boundaries and similarity metrics in latent spaces (reduced dimensions)
- Time series data preprocessing and classification methods
 - Preprocessing steps: Imputation, Labelling check,
- Tutorial with multimodal time-series data in activities of daily living.
 - Introduction to the dataset scai-sensei
 - Pre-processing steps: .
 - Toolbox for feature extraction
 - Decisions in pre-processing (windowing, normalization, quality)

17 June 2024 Dr Diego Paez

WS Day 2:

Evaluation Metrics for Acceptable Machine Learning

Content and Learning Outcomes:

- Data-driven model principles: Bias variance trade-off, model training, and generalization. Yanke Li
- 2. An introduction to data quality assessment and model evaluation metrics with a focus on explainability, robustness and generalization. Diego Paez
- 3. Tutorial for model training and feature selection methods in time-series
 - 1. Feature Selection Methods
 - 2. Building Classification Models

17 June 2024 Dr Diego Paez

WS Day 3:

Learning Interpretability and Explainability Metrics

Content and Learning Outcomes:

- 1. Transparency and Explainability in AI for Healthcare
- 2. Causal feature selection in time series (Markov Blanket) as an explainability method for Robust transferability across datasets. Yanke Li
- 3. Tutorial for explainable methods in classification:
 - 1. LIME
 - 2. SHAP Values
- 4. Presentations by groups:
 - 1. Model results, explainability and generalization

17 June 2024 Dr Diego Paez

Group Building and Environment Setting

ADL Detection - N2N-video-based

Fine-tuned Slow-fast Network

Dataset

Dataset	
Classes	12
Participants	3 wheelchair + 21 healthy
Total Videos	485
Videos per Class	
Self Propulsion	46
Assisted Propulsion	54
Transfer	36
Using Phone	74
Talking	85
Washing Hands	30
Arm Raises	30
Using Computer	45
Eating	38
Resting	34
Changing Clothes	16
Pressure Relief	31

Unobtrusive Sensing for ADLs Monitoring

M. Ejtehadi, S. Amrein, I. Eriks-Hogland, R. Riener, and D. Paez-Granados. "Learning Activities of Daily Living from Unobtrusive Multi-modal Wearable Sensors: Towards Monitoring Outpatient Rehabilitation". In:

IEEE International Conference on Robotics and Rehabilitation. Sept. 2023.

https://doi.org/10.1109/ICORR58425.2023.10304743

Unobtrusive Sensing

Patient Monitoring

Time (s) →

Self Propulsion on inclined Ramp

Tutorial: Coding Tasks

Sensors & Classes

- What devices are useful to each class?
- What is the expected frequency of each activity?

Label	Device Name
A1	sensomative_bottom
A2	sensomative_back
В	zurichmove_wheel
С	cosinuss_ear
D	vivalink_patch
Е	corsano_wrist
F	NOT USED
G	NOT USED

Arm Raises Pressure Relief

Exercise

Leisure

Assisted Propulsion

Self

Mobility

Washing Hands

Changing Clothes

Self Care

Talking

Eating

Social

Transfer

Resting

Transfer

- What activities can you classify?
- What level of confidence can you achieve?
- What is the expected frequency of each activity?

Number	Class Name
0	calmness
1	selfpropulsion
2	armraises
3	transfer
4	usingphone
5	talking
6	Washinghands
7	eating
8	assistedprop
9	usingcomputer
10	changingclothes
11	pressurerelief

