Hierarchical Winning Approaches to RoboCup Soccer Simulation Challenge

Aijun Bai

UC Berkeley

Dec 12, 2016

Outline

1 Introduction to RoboCup 2D

- 2 MAXQ Based Hierarchical Online Planning
- 3 Concurrent Hierarchical Reinforcement Learning
- 4 Summary and Future Work

Overview

- MAXQ based hierarchical online planning for large MDPs
 - AAMAS (Bai et al., 2012b)
 - RoboCup Symposium (Bai et al., 2012a, 2013b)
 - ACM Transactions (Bai et al., 2015)
- Thomson sampling based MCTS for MDPs and POMDPs
 - NIPS (Bai et al., 2013a)
 - ICAPS (Bai et al., 2014b; Zhang et al., 2015)
- State and action abstractions for MDPs
 - IJCAI (Bai et al., 2016)

RoboCup Soccer Simulation 2D

Figure 1: WrightEagle (my team) v.s. Helios

What Makes RoboCup 2D Interesting/Challenging?

- Key Features:
 - Abstractions made by the simulator
 - High-level planning and learning
 - No need to handle low-level robotics
- Key Challenges:
 - Fully distributed multi-agent stochastic game
 - Continuous state, action and observation spaces
 - * A good testbed for many real world problems

Ball and Player States

- State: $[s_b, s_1, s_2, \dots, s_{22}]$
 - Ball State
 - * Position, Velocity
 - Player State
 - * Position, Velocity
 - * Body Angle, Neck Angle, Stamina, ...

Primitive Actions

Parameterized actions

- Dash(dir, power)
- TurnBody(angle)
- TurnNeck(angle)
- Kick(dir, power)
- Tackle(dir)
- $\ Catch(dir) \ [{\rm for \ goalie}]$

The Physics

- Dash(dir, power)
 - Moves the player
 - Exposed to noise
 - Costs some stamina
 - If stamina is too low: can not move at full speed

The Observation Model

RoboCup 2D in Action

Figure 2: WrightEagle (my team) v.s. Helios

A Multi-Agent Formulation

A partially observable stochastic game (POSG) formulation:

- Agents: $1, 2, \dots, 22$
- Joint state: $\mathbf{s} = [s_b, s_1, s_2, \dots, s_{22}]$
- Joint action: $\mathbf{a} = [a_1, a_2, \dots, a_{22}]$
- $\bullet \ \, \text{Observation:} \ \, \mathbf{o} = [landmarks, ball, players, \dots]$
- Transition function: $T(\mathbf{s'} \mid \mathbf{s}, \mathbf{a}) \in [0, 1]$
- Observation function: $\Omega_i(\mathbf{o} \mid \mathbf{s}) \in [0, 1]$
- Reward function: $R_i(\mathbf{s}, \mathbf{a})$

which is practically intractable!

Converting to Single-Agent Problem

- Large number of agents involved: 22
 - Belief regression
- Assume teammates/opponents are part of the environment
 - Unpredictable/adaptive/learning
 - Stochastic policies
 - Belief states

Future Belief Prediction

Figure 3: Player 4 planning a 10-cycle pass to player 5 at $t\,$

Future Belief Prediction (Cont'd)

Figure 4: Predicted future state at t+10

Particle Filtering based Belief Update

Figure 5: Belief visualization

- Particle filtering over sets for multi-object tracking
 - AAAI fall symposium (Bai et al., 2014a)

A Single-Agent Formulation

- An MDP formulation:
 - Joint belief: $\mathbf{b} = [b_b, b_1, b_2, \dots, b_{22}]$
 - Action: $a \in \{Dash(\cdot, \cdot), Kick(\cdot, \cdot), TurnBody(\cdot), \dots\}$
 - Transition function: $T(\mathbf{b}' \mid \mathbf{b}, a) \in [0, 1]$
 - Reward function: $R(\mathbf{b}, a)$

Solving the Resulting MDP in Realtime

Exact solution is still intractable:

- The curse of dimensionality
 - Continuous high-dimensional (belief) state space
 - Continuous action space
- The curse of history
 - Long looking-ahead horizon: 6000 steps for a game
 - Sparse reward function
 - * +/-1 for teammate/opponent score

Approximate Solutions

My Proposals:

- Hierarchical online planning
 - Perform a tree search from the current state within a reachable subspace consistent with a task structure
- Concurrent hierarchical reinforcement learning
 - Write a partial policy for each agent
 - Jointly learn an optimal completion for partial policies
 - An ongoing project

Hierarchical Decomposition

- Exploit hierarchical structure of a task
- Introduce macro actions/options/skills
 - In contrast with primitive actions
- Fundamental theory: Semi-MDP
 - Options: $o \in \mathcal{O}$
 - Multi-step transition function: $T(s', N \mid s, o) \in [0, 1]$
 - Hierarchical policy: $\pi(s) \in \mathcal{O}$
 - Fast planning and learning on an option basis

MAXQ Hierarchical Decomposition

- Decompose an MDP into a tree of sub-MDPs (Dietterich, 1999)
 - $M = \{M_0, M_1, \dots, M_n\}$
 - $M_i = \langle S_i, G_i, A_i, R_i \rangle$
 - **1** Active states S_i
 - **2** Goal states G_i
 - 3 Available actions A_i
 - $oldsymbol{4}$ Local reward function R_i
 - Solving M_0 solves the original MDP M
 - Hierarchical policy $\pi = \{\pi_0, \pi_1, \dots, \pi_n\}$

Figure 6: MAXQ hierarchy

MAXQ Hierarchical Decomposition: An Example

Figure 7: A 4-Room domain

Figure 8: MAXQ task graph

MAXQ Value Function Decomposition

• Value function V^* of optimal π^* satisfies

$$V^*(i,s) = \begin{cases} R(s,i) & \text{if } M_i \text{ is primitive} \\ \max_{a \in A_i} Q^*(i,s,a) & \text{otherwise} \end{cases}$$

$$Q^*(i,s,a) = V^*(a,s) + \sum_{s \in N} \Pr(s',N \mid s,a) V^*(i,s')$$
(2)

- Transition function: $Pr(s', N \mid s, a)$
 - Marginalized: $\Pr(s' \mid s, a) = \sum_{N} \Pr(s', N \mid s, a)$
 - * Terminating distribution

MAXQ based Online Planning: MAXQ-OP

• For non-primitive subtasks

$$V^*(i,s) \approx \max_{a \in A_i} \left\{ V^*(a,s) + \sum_{s'} \Pr(s' \mid s, a) V^*(i,s') \right\}$$
 (3)

• Introduce search depth array d, maximal search depth array D and heuristic function H(i,s)

$$V(i,s,d) \approx \begin{cases} H(i,s) & \text{if } d[i] \ge D[i] \\ \max_{a \in A_i} \{V(a,s,d) + \\ \sum_{s'} \Pr(s' \mid s,a) V(i,s',d[i] \leftarrow d[i]+1) \} & \text{otherwise} \end{cases}$$

$$\tag{4}$$

• Call $V(0,s,[0,0,\ldots,0])$ to find the value of s in task M_0

MAXQ-OP on Benchmark: The Taxi Problem

- States: $25 \times 5 \times 4 = 400$
 - 1 Taxi location: (x, y)
 - 2 Passenger location: R, Y, B, G and In
 - 3 Destination location: R, Y, B, G
- Actions: 6
 - 1 North, South, East, West
 - 2 Pickup, Putdown
- Probability 0.8 of failure

Figure 9: Taxi domain

Empirical Results in the Taxi Problem

Figure 10: Task graph for Taxi

Table 1: Empirical results in Taxi

Algorithm	Avg. Reward*	1	Online Time (ms)
MAXQ-OP	3.93 ± 0.16	-	0.20 ± 0.16
LRTDP	3.71 ± 0.15	-	64.88 ± 3.71
AOT	3.80 ± 0.16		41.26 ± 2.37
UCT	-23.10 ± 0.84	-	102.20 ± 4.24

^{*}The upper bound of Average Rewards is 4.01 ± 0.15 .

Comparing to Non-Hierarchical Online Planning

- Non-hierarchical online planning algorithms
 - Use only primitive actions to grow search tree
 - Search path:

$$[s_1 \to s_2 \to s_3 \to \cdots \to s_H] \leadsto g \tag{5}$$

- MAXQ-OP algorithm
 - Use primitive and macro actions to grow search tree
 - Search path:

$$[s_1 \to \cdots \to s_{H_1}] \leadsto [g_1/s_1' \to \cdots \to s_{H_2}'] \leadsto [g_2/s_1'' \to \cdots \to s_{H_3}''] \cdots \leadsto g \quad (6)$$

 MAXQ-OP can search much deeper by exploiting the task structure

MAXQ Decomposition for RoboCup 2D

Figure 11: MAXQ based hierarchical decomposition in WrightEagle

Hierarchical Online Planning in WrightEagle

Rule-based system:

• Hierarchical planning:

```
\begin{aligned} & \text{PlanAttack()} \; \{ \\ & \dots \\ & \text{shoot} \leftarrow \text{PlanShoot()} \\ & \text{pass} \leftarrow \text{PlanPass()} \\ & \text{dribble} \leftarrow \text{PlanDrrible()} \\ & \dots \\ & \text{return} \; \max\{\text{shoot, pass,} \\ & \text{dribble,} \dots \} \\ & \} \end{aligned}
```

MAXQ-OP in WrightEagle

- Task hierarchy
 - Value function decomposition
- Terminating distribution approximation
 - Success and failure probabilities
- Heuristic tree search
- Local reward functions

Figure 12: Search in shoot

Hierarchical Planning for Pass Behavior

Figure 13: Hierarchical planning for pass behavior

Monte Carlo Tree Search

- Transitions as explicit distributions $\Pr(s' \mid s, a)$ are not available
- Sampling rules $s' \sim \Pr(s' \mid s, a)$ are clearly defined by the simulator
- Monte-Carlo tree search w/ state abstraction
- Low-level skills: NavTo, KickTo, . . .

Figure 14: Search tree in NavTo

Terminating Distribution Estimation - An Example

- $\Pr(s_{goal} \mid s, KickTo(t)) \approx (1 p_1) \times p_2$ - $p_1 = \Pr(s_{caught} \mid s, KickTo(t))$
 - $p_2 = \Pr(s_{in} \mid s, KickTo(t))$

Figure 15: A shoot scenario

Terminating Distribution Estimation - An Example (Cont'd)

Figure 16: $Pr(s_{in} \mid s, KickTo(t))$

Figure 17: $\Pr(s_{caught} \mid s, KickTo(t)) \approx \max_{p} f(t_b(p, s) - t_g(p, s) \mid p)$

Heuristic Evaluation

Figure 18: A heuristic function based on ball position

The Idea of Virtual Agent

- The state is augmented with a virtual agent index which is transferred among teammates
 - The teammate controlling the ball
- Search tree is grown from the perspective of the virtual agent
 - Player 5 is doing decision-making
 - * A search tree with player 5 as the virtual agent at the root node
 - * Player 5 passes the ball to player 7
 - Player 7 becomes the virtual agent for the subtree thereof

Achievements

WrightEagle team (from Univ. of Sci. & Tech. of China):

- Started work on RoboCup 2D since 2006
- Became the main contributor since 2009
- Won 5 world champions: 2009, 2011, 2013, 2014 and 2015
- Published on NIPS, AAMAS, ICAPS, RoboCup, etc.
- More information:
 - https://en.wikipedia.org/wiki/RoboCup_2D_ Soccer_Simulation_League
 - http://www.wrighteagle.org/2d/

Hierarchical Reinforcement Learning

Hierarchical planning:

```
\begin{split} & \text{PlanAttack()} \; \{\\ & \dots \\ & \text{shoot} \leftarrow \text{PlanShoot()} \\ & \text{pass} \leftarrow \text{PlanPass()} \\ & \text{dribble} \leftarrow \text{PlanDrrible()} \\ & \dots \\ & \text{\textbf{return } } \max \{ \text{shoot, pass,} \\ & \text{dribble, } \dots \} \end{split}
```

Hierarchical abstract machines (HAMs) (Parr & Russell, 1998):

- Write a partial program for an agent
- Leave some undetermined choice points
- Use reinforcement learning to learn an optimal completion

Partial Program

Partial program: an incomplete policy $\pi(s)$ with (many) unspecified choice states

- A hierarchical finite state machine with choice states
- Equivalently, a piece of code with choice macros

Partial Program - an Example


```
Figure 19: An FSM
```

Hierarchical Abstract Machines

- A hierarchy of partial programs
- High-level programs can call low-level programs
- Each program has its own:
 - Machine state
 - Call stack
 - Internal memory

```
M_1(State s) {
while !terminated(M_1, s) do
     \mathsf{m} \leftarrow Choose_1(\{M_2, M_3\})
    Call(m)
M_2(\mathsf{State}\;\mathsf{s})\;\{
while !terminated(M_2, s) do
    a \leftarrow Choose_2(\{a_1, a_2\})
    Action(a); s \leftarrow GetState()
```

Hierarchical Reinforcement Learning with HAMs

An agent executing a partial program:

- An MDP over joint space of environment and machine states
- An SMDP over choice points
 - Choice point: a joint state with machine state as a choice state
 - $-Q(s,m,c) \leftarrow R(s,m,c,s',m',\tau) + \gamma^{\tau}Q(s',m',c')$

Deterministic Transitions Among Choice Points

Deterministic transitions:

- $(s, [M_1, Choose_1], M_2) \rightarrow (s, [M_1, M_2, Choose_2])$
- $\bullet \ \tau = 0$
- \bullet r=0
- $Q(s, m, c) = V(s, m') = \max_{c'} Q(s, m', c')$

```
M_1(State s) {
while !terminated(M_1, s) do
     \mathsf{m} \leftarrow Choose_1(\{M_2, M_3\})
    Call(m)
M_2(\mathsf{State}\;\mathsf{s})\;\{
while !terminated(M_2, s) do
    a \leftarrow Choose_2(\{a_1, a_2\})
    Action(a); s \leftarrow GetState()
```

Concurrent Hierarchical Learning with HAMs

- Each agent has its own partial program
- Running and learning concurrently
 - $-\ Q(\mathbf{s},\mathbf{m},\mathbf{c}) \leftarrow R(\mathbf{s},\mathbf{m},\mathbf{c},\mathbf{s}',\mathbf{m}',\tau) + \gamma^{\tau}Q(\mathbf{s}',\mathbf{m}',\mathbf{c}')$
 - Share machine state and value functions
 - Make joint choices when available

Synchronization Semantics

Figure 20: Synchronization for concurrent learning

RoboCup Keepaway Task

Figure 21: A 3 vs 2 RoboCup keepaway task

- Keepers: maintain possession of the ball
- Takers: gain possession of the ball
- Assume fully communication with shared memory

HAMs for RoboCup Keepaway

Partial program for keepers:

- If fastest to intercept, intercept
- If kickable, call hold or pass
- Otherwise, call stay or move

Unspecified choice states:

- Choose({Hold, Pass})
 - Choose({PassTo1, PassTo2}), Choose({PassSpeed...})
- Choose(Stay, Move)
 - Choose({MoveToDir...}), Choose({MoveSpeed...})

Function Approximation

- State: 15 dimensional feature vectors
 - $-\mathbf{s} = [f_1, f_2, \dots, f_{15}]$
 - Distances and angles
- ullet Tile coding (encode $\mathbf{s} \times \mathbf{m}$ into a huge binary vector)
 - $\mathbf{s} \times \mathbf{m} = [1000101010..0101]_{50,000} = [t_1, t_2, \dots, t_{480}]$
- Linear SARSA learning with binary features
 - $Q(\mathbf{s}, \mathbf{m}, \mathbf{c}) \approx w_{\mathbf{c}}[t_1] + w_{\mathbf{c}}[t_2] + \dots + w_{\mathbf{c}}[t_{480}]$

Demonstration: Learned Policy

- Learned policy at early stage
- Converged policy

Summary

- RoboCup soccer simulation 2D
 - A belief-MDP formulation
- A hierarchical planning approach
 - MAXQ-OP online planning
- A hierarchical learning approach
 - Concurrent reinforcement learning with HAMs

Future Work

- Hierarchical Monte Carlo planning
- Reward decomposition and reward shaping
- Coordination graph for joint choices
- Game theoretical planning/learning

References I

- Bai, A., Chen, X., MacAlpine, P., Urieli, D., Barrett, S., & Stone, P. (2012a). Wright Eagle and UT Austin Villa: RoboCup 2011 simulation league champions. In T. Roefer, N. M. Mayer, J. Savage, & U. Saranli (Eds.) RoboCup-2011: Robot Soccer World Cup XV, vol. 7416 of Lecture Notes in Artificial Intelligence. Berlin: Springer Verlag.
- Bai, A., Simmons, R., Veloso, M., & Chen, X. (2014a). Intention-aware multi-human tracking for human-robot interaction via particle filtering over sets. In 2014 AAAI Fall Symposium Series.
- Bai, A., Srivastava, S., & Russell, S. J. (2016). Markovian state and action abstractions for MDPs via hierarchical MCTS. In *Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016*, (pp. 3029–3039). URL http://www.ijcai.org/Abstract/16/430
- Bai, A., Wu, F., & Chen, X. (2012b). Online planning for large MDPs with MAXQ decomposition (extended abstract). In *Proc. of 11th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2012)*.
- Bai, A., Wu, F., & Chen, X. (2013a). Bayesian mixture modelling and inference based Thompson sampling in Monte-Carlo tree search. In Advances in Neural Information Processing Systems 26, (pp. 1646–1654).

References II

- Bai, A., Wu, F., & Chen, X. (2013b). Towards a principled solution to simulated robot soccer. In X. Chen, P. Stone, L. E. Sucar, & T. V. der Zant (Eds.) RoboCup-2012: Robot Soccer World Cup XVI, vol. 7500 of Lecture Notes in Artificial Intelligence. Berlin: Springer Verlag.
- Bai, A., Wu, F., & Chen, X. (2015). Online planning for large markov decision processes with hierarchical decomposition. ACM Transactions on Intelligent Systems and Technology (TIST), 6(4), 45.
- Bai, A., Wu, F., Zhang, Z., & Chen, X. (2014b). Thompson sampling based Monte-Carlo planning in POMDPs. In Proceedings of the 24th International Conference on Automated Planning and Scheduling (ICAPS 2014). Portsmouth, United States.
- Dietterich, T. G. (1999). Hierarchical reinforcement learning with the MAXQ value function decomposition. *Journal of Machine Learning Research*, 13(1), 63.
- Parr, R., & Russell, S. (1998). Reinforcement learning with hierarchies of machines. *Advances in neural information processing systems*, (pp. 1043–1049).
- Zhang, Z., Hsu, D., Lee, W. S., Lim, Z. W., & Bai, A. (2015). PLEASE: palm leaf search for POMDPs with large observation spaces. In *Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling*, *ICAPS 2015, Jerusalem, Israel, June 7-11, 2015.*, (pp. 249–258).