RECEIVED CENTRAL FAX CENTER

IN THE CLAIMS

SEP 0 7 2006

Please amend the claims as indicated:

•	٨,	(cuire	siiuy aii.	rended) All apparatus for use in a borenoie for electrical imaging
2		durin	g rotary	drilling comprising:
3		(a)	a resis	stivity sensor having an offset from a wall of the borehole that is
4			greate	er then a specified minimum value, the resistivity sensor including
5			(<u>A</u>)	a current electrode which conveys a measured current into the
6				formation, and
7			<u>(B)</u>	a measure electrode spaced apart from said current electrode, and
8			(C)	a processor which determines from a voltage of the measure
9				electrode and the measure current an indication of a resistivity of
10				the earth formation:
11		(b)	an ori	entation sensor making a measurement of a toolface angle of said
12			appara	atus during continued rotation thereof; and
13		(c)	a devi	ce which maintains said resistivity sensor at said offset.
14				
1	2.	cance	led.	
2				
1	3.	(curre	ntly am	ended) The apparatus of claim 1 wherein said resistivity sensor is
2		moun	ted on g	ne of (i) a pad, (ii) a rib, and (iii) a stabilizer.
3				·
1	4.	cance	led	
2				

1.	5.	canceled
2		
1	6.	(currently amended) The apparatus of claim 1 wherein said resistivity sensor
2		further comprises
3		(i) a current electrode which conveys a measure current into said formation
4		through a conducting fluid, and
5 .		(ii) at least one guard electrode proximate to said current electrode for
6		maintaining focusing of said measure current.
7		
1	7.	(original) The apparatus of claim 6 wherein said at least one guard electrode
2		focuses said measure current in a direction substantially normal to said borehol
3		wall.
4		
1	8.	(original) The apparatus of claim 7 wherein said at least one guard electrode
2		surrounds said measure electrode and maintains a focusing of said measure
3		current in a flushed zone of said formation.
4		
1	9.	canceled.
2		
1	10.	(original) The apparatus of claim 6 wherein said at least one guard electrode
2		comprises a plurality of guard electrodes that create substantially spherical
3	•	equipotential surfaces
1		

2	11.	canceled
3		
ì	12.	(original) The apparatus of claim 8 further comprising monitor electrodes to
2		support the focusing in the presence of non negligible contact impedances.
3		
1	13.	(original) he apparatus of claim 9 further comprising monitor electrodes to
2		support the focusing in the presence of non negligible contact impedances.
3		
1	14.	(original) The apparatus of claim 8 wherein further comprising a pad that
2		substantially circumscribes said apparatus, said pad carrying said sensor thereon
3		
1	15.	(original) The apparatus of claim 14 further comprising monitor electrodes to
2		support the focusing in the presence of non negligible contact impedances.
3		
1	16.	(previously presented) The apparatus of claim 8 further comprising a controller
2		which maintains a substantially constant power consumption by said
3		electrodes.
4		
1	17.	canceled
2		
1	18.	canceled
2		
1	19.	canceled

7 '06

2 1 20. (currently amended) The apparatus of claim 1 wherein said orientation sensor is 2 selected from the group consisting of comprises (i) a magnetometer, and (ii) an 3 accelerometer. 4 1 21. canceled 2 1 22. canceled 2 1. 23. canceled 2 1 24. (original) The apparatus of claim 1 wherein said borehole is filled with a 2 substantially nonconducting fluid and wherein said resistivity sensor is 3 capacitively coupled to said earth formation. 4 1 25. (original) The apparatus of claim 24 wherein said resistivity sensor makes 2 measurements at a plurality of different frequencies. 3 1 26. canceled 2 1 27. canceled. 2 28. canceled

2 Į 29. canceled 2 1 30. canceled. 2 1 31. canceled 2 1 32. canceled 2 1 33. canceled 2 1 34 (withdrawn) A system for use in a borehole for determining a resistivity 2 parameter during drilling of a borehole in an earth formation comprising: 3 (a) a bottom hole assembly (BHA) including 4 a resistivity subassembly having a resistivity sensor with an offset (i) 5 from a wall of the borehole that is greater than a specified minimum value during rotation of the BHA; 6 7 (ii) an orientation sensor on said subassembly which makes a 8 measurement of a toolface angle of said subassembly during 9 continued rotation thereof; and 10 (ii) a device which maintains said resistivity sensor at said offset. 11 (b) a processor which determines said resistivity parameter from 12 measurements made by said resistivity sensor;

13		(c) a device which drills said borehole; and
14		(d) conveyance device which conveys said BHA into said borehole.
15	,	
1	35.	(withdrawn) The system of claim 34 wherein said device for drilling said borehole
2		comprises a drill bit.
3		
1	36.	(withdrawn) The system of claim 34 wherein said conveyance device comprises
2		a drill string.
3		
1	37.	(withdrawn) The system of claim 34 wherein said processor is part of said BHA.
2		
1	38.	(withdrawn)The system of claim 34 wherein said processor includes a
2		memory device which stores at least a subset of measurements made by said
3		resistivity sensor.
4		
1	39.	(withdrawn) The system of claim 34 wherein said resistivity sensor comprises a
2		galvanic sensor.
3		
1	40.	(withdrawn) The system of claim 39 wherein said sensor furthercomprises
2		(i) a current electrode which conveys a measure current into said formation
3		through a conducting fluid, and
4		(ii) at least one guard electrode proximate to said current electrode which
5		maintains focusing of said measure current.

6 1 41. (withdrawn) The system of claim 40 wherein said processor maintains a 2 substantially constant power consumption by said electrodes. 3 1 42. (withdrawn) The system of claim 34 wherein said orientation sensor comprises a 2 magnetometer. 3 1 43. (withdrawn) The system of claim 34 wherein said orientation sensor comprises an 2 accelerometer. 3 1 44. (withdrawn) The system of claim 34 wherein said device comprises a stabilizer. 2 1 45. (withdrawn) The system of claim 34 wherein said device comprises a steerable 2 rib. 3 1 46. (withdrawn) The system of claim 34 wherein said borehole is filled with a 2 substantially nonconducting fluid and wherein said resistivity sensor is 3 capacitively coupled to said earth formation. 4 (withdrawn) The system of claim 46 wherein said resistivity sensor makes 1 47. 2 measurements at a plurality of different frequencies. 3

Į	48.	(withdrawn) The system of claim 34 wherein said borehole includes a
2		substantially non-conducting fluid therein and wherein said resistivity sensor
3		conveys a measure current into said formation using capacitive coupling.
4		
1	49.	(withdrawn) The system of claim 34 wherein said resistivity sensor further
2		comprises a shielded dipole.
3		
1	50 .	(withdrawn) The system of claim 34 wherein said resistivity sensor further
2		comprises a directionally sensitive induction logging tool.
3		
1	51.	(withdrawn) The system of claim 50 wherein said directionally sensitive induction
2		logging tool comprises a quadrupole transmitter.
3		
1	52 .	(withdrawn) The system of claim 34 wherein said resistivity sensor further
2		comprises a radio frequency microwave transmitter
3		
1	53.	(withdrawn) The system of claim 34 wherein said resistivity parameter comprises
2		a resistivity image of said borehole.
3		
1	54.	(withdrawn) A method of determining a parameter of an earth formation during
2		formation of a borehole in said earth formation by a device on a bottom hole
3		assembly (BHA), the method comprising:

10/657,870

3

current into said formation through a conducting fluid, and

4		(11)	using at least one guard electrode proximate to said current electrode for
5			maintaining focusing of said measure current.
6			
1	60.	(withd	drawn) The method of claim 59 further comprising using said at least one
2		guard	electrode for focusing said measure current in a direction substantially
3		погта	l to a borehole wall.
4			
1	61.	(withd	lrawn) The method of claim 60 wherein said at least one guard electrode
2		surrou	ands said measure electrode and maintains a focusing of said measure
3		curren	at in a flushed zone of said formation.
4			
1	62.	(with	drawn) The method of claim 59 further comprising using said at least one
2		guard	electrode for creating substantially spherical equipotential surfaces
3			
1	63.	(withd	lrawn) The method of claim 54 further comprising:
2		(i)	using a current electrode of said resistivity sensor for conveying a measur
3			current into said formation,
4		(ii)	measuring a voltage of a measure electrode spaced apart from said curren
5			electrode; and
6		(iii)	using said processor for determining from a voltage of said measure
7			electrode and said measure current said resistivity parameter.

1	04.	(without awit) The method of claim of further comprising using monitor electrode
2		to support the focusing in the presence of non negligible contact impedances.
3		
1	65.	(withdrawn) The method of claim 61 further comprising using monitor electrode
2		to support the focusing in the presence of non negligible contact impedances.
3		
1	66.	(withdrawn) The method of claim 60 further comprising carrying said sensor on
2		pad that substantially circumscribes said apparatus.
3		,
1	67.	(withdrawn) The method of claim 66 further comprising using monitor electrode
2		to support the focusing in the presence of non negligible contact impedances.
3		•
1	68.	(withdrawn) The method of claim 60 further comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.
3		
l	69.	(withdrawn) The method of claim 64 further comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.
3		
1	70.	(withdrawn) The method of claim 66 further comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.
3		
1	71.	(withdrawn) The method of claim 67 further comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.

P. 14

Fax:7132668510

3 1 72. (withdrawn) The method of claim 54 wherein said orientation sensor comprises a 2 magnetometer. 3 (withdrawn) The method of claim 54 wherein said orientation sensor comprises 1 73. 2 an accelerometer. 3 1 74. (withdrawn) The method of claim 54 further comprising using a stabilizer for 2 maintaining said specified offset. 3 (withdrawn) The method of claim 54 further comprising using a steerable rib for 1 *75.* 2 maintaining said specified offset. 3 (withdrawn) The method of claim 54 further comprising: 1 76. 2 (i) using said BHA in a borehole is filled with a substantially nonconducting 3 fluid, and 4 (ii) capacitively coupling said resistivity sensor to said earth formation. 5 1 *77*. (withdrawn) The method of claim 76 further comprising using said resistivity sensor for making measurements at a plurality of different frequencies. 2 3 (withdrawn) The method of claim 76 further comprising using said resistivity 1 78. sensor for making measurements at two frequencies. 2

3		
1	7 9.	(withdrawn) The method of claim 77 further comprising using said processor for
2		performing a multi-frequency focusing of said measurements.
3		
1	80.	(withdrawn) The method of claim 54 wherein said borehole includes a
2		substantially non-conducting fluid therein.
3		
1	81.	(withdrawn) The method of claim 55 further comprising:
2		(i) using said BHA in a borehole is filled with a substantially nonconducting
3		fluid, and
4		(ii) capacitively coupling said resistivity sensor to said earth formation
5		
1	82.	(withdrawn). The method of claim 54 wherein said resistivity sensor further
2		comprises a shielded dipole.
3		
1	83.	(withdrawn) The method of claim 80 wherein said resistivity sensor further
2		comprises a shielded dipole.
3		
1	84.	(withdrawn) The method of claim 80 wherein said resistivity sensor further
2		comprises a directionally sensitive induction logging tool.
3		
1	85.	(withdrawn) The method of claim 84 wherein said directionally sensitive
2		induction logging tool comprises a quadrupole transmitter.

MADANMOSSMANSRIRAM

3

1

2

92.

(previously presented) The apparatus of claim 1 further comprising a conveyance

device which conveys the resistivity sensor into the borehole.

1	73.	Chreston	biy presented) The apparatus of claim 31 to the comprising an
2		orientati	on sensor that makes measurements of an orientation of the BHA during
3		continue	ed rotation thereof.
4 1	94.	(new) A	n apparatus for use in a borehole for electrical imaging during rotary
2		drilling	comprising:
3		(a) a	resistivity sensor having an offset from a wall of the borehole that is
4		٤	greater then a specified minimum value
5		(b) a	an orientation sensor making a measurement of a toolface angle of said
6		8	apparatus during continued rotation thereof; and
7		(c) a	a steerable rib which maintains said resistivity sensor at said offset.
8			
1	95.	(new) T	he apparatus of claim 94 wherein said resistivity sensor comprises
2		galvanio	sensor.
3			
1	97.	(new) T	he apparatus of claim 95 further comprising a controller which maintains
2		a substa	ntially constant power consumption by electrodes of said galvanic sensor
3			·
1	98.	(new) T	he apparatus of claim 94 further comprising an orientation sensor selected
2		from the	e group consisting of (i) a magnetometer, and (ii) an accelerometer.
3			·
1	99 .	(new) T	he apparatus of claim 94 wherein said borehole is filled with a