Project Report

Rushikesh K Khankar

Analysis of Sales Report of a Clothes Manufacturing Outlet

Background and Objective:

A high-end fashion retail store is looking to expand its products. It wants to understand the market and find the current trends in the industry. It has a database of all products with attributes, such as style, material, season, and the sales of the products over a period of two months.

Domain: Retail

Dataset Description:

There are two files provided, and the detailed description of each is given below:

Attribute	Description
Dress_ID	A unique identifier for each dress
Style	Style of dress can belong to one of 12 styles, including casuals, novelty, etc.
Price	Price category of the dress (low, average, medium, high, and very high)
Rating	A number between 0 and 5, specifying the rating of the dress
Size	Size of the dress (small, medium, large, XL, and free)
Season	Season category of the dress, i.e., summer, spring, etc
Neckline	Type of neckline, for example, V-neck, collar, etc
Sleeve length	Length of the sleeve—full, three-quarters, etc
Waistline	The waistline of the dress
Material	The material of the dress, for example, silk, cotton, etc
Fabric type	Fabric type of dress
Decoration	The decoration of the dress, like ruffles, embroidery, etc
Pattern Type	Pattern type of the dress—dot, animal print, etc
Recommendation	A binary value suggesting a recommendation (1) or not (0)

The remaining columns depict the sales for each dress on a particular date. Date ranges from 29/8/2013 to 12/10/2013, and the sales are registered for alternative days.

Analysis Tasks:

The goals of this project are:

- To automate the process of recommendations, the store needs to analyze the given attributes of the product, like the style, season, etc., and come up with a model to predict the recommendation of products (in binary output – 0 or 1) accordingly.
 - In order to stock the inventory, the store wants to analyze the sales data and predict the trend of total sales for each dress for an extended period of three more alternative days.
- To decide the pricing for various upcoming clothes, they
 wish to find how the style, season, and material affect
 the sales of a dress and if the style of the dress is more
 influential than its price.
- Also, to increase sales, the management wants to analyze the attributes of dresses and find which are the leading factors affecting the sale of a dress.
- To regularize the rating procedure and find its efficiency, the store wants to find if the rating of the dress affects the total sales

1. Project Motivation

The aim of this project to analysis of sales report of a Clothes Manufacturing Outlet. . And achieve the following goals:

- 1. Build a classifier for dress recommendation prediction.
- 2. Show the effect of dress attributes on the product price.

2. Installation

- R
- R Libraries:
 - readxl
 - o plyr
 - caTools
 - 。e1071
 - caret
 - randomForest

3. Data

The dataset was provided from **Simplilearn** platform.

4. Implementation

In this project, we built three classifier for dress recommendation prediction by use of Naive Bayes, Random Forest, and Support Vector Machine. Also, we used a Linear regression model to show the effect of dress attributes on the product price.

5. Result

The details of the results show in the code.

Im(total_sales ~ Style + Season + Material + Price)


```
My Code:{Solution}
> setwd("/Users/rushikeshkhankar/Desktop/R/1555052405_datasets")
> getwd()
[1] "/Users/rushikeshkhankar"
> library(e1071)
> library(caret)
Loading required package: lattice
Attaching package: 'caret'
The following object is masked from 'package:purrr':
  lift
> library(readxl)
> library(plyr)
> library(caTools)
> library(randomForest)
> AttDS <- read_excel("Desktop/R/1555052405_datasets/Attribute DataSet.xlsx")
> Dress_Sales <- read_excel("Desktop/R/1555052405_datasets/Dress Sales.xlsx")
> View(AttDS)
> View(Dress_Sales)
> #remove dress id column
> AttDS_ = AttDS[2:14]
> Dress_Sales_ = Dress_Sales[2:24]
> View(Dress_Sales)
> #values checking
> #Style
> AttDS_$Style[AttDS_$Style == 'sexy'] = 'Sexy'
> #Price
> AttDS_$Price[AttDS_$Price == 'low'] = 'Low'
> AttDS_$Price[AttDS_$Price == 'high'] = 'High'
> #Size
> AttDS_$Size[AttDS_$Size == 's'] = 'S'
```

```
> AttDS_$Size[AttDS_$Size == 'small'] = 'S'
> #Season
> AttDS $Season[AttDS $Season == 'spring'] = 'Spring'
> AttDS $Season[AttDS $Season == 'summer'] = 'Summer'
> AttDS_$Season[AttDS_$Season == 'Automn'] = 'Autumn'
> AttDS_$Season[AttDS_$Season == 'winter'] = 'Winter'
> #NeckLine
> AttDS_$NeckLine[AttDS_$NeckLine == 'sweetheart'] = 'Sweetheart'
> #SleeveLenght
> AttDS_$SleeveLength[AttDS_$SleeveLength == 'sleevless'] = 'sleeveless'
> AttDS_$SleeveLength[AttDS_$SleeveLength == 'sleeevless'] = 'sleeveless'
> AttDS_$SleeveLength[AttDS_$SleeveLength == 'threequater'] = 'threequarter'
> AttDS_$SleeveLength[AttDS_$SleeveLength == 'thressqatar'] = 'threequarter'
> AttDS $SleeveLength[AttDS $SleeveLength == 'urndowncollor'] = 'turndowncollor'
> #Decoration
> AttDS_$Decoration[AttDS_$Decoration == 'embroidary'] = 'embroidery'
> AttDS_$Decoration[AttDS_$Decoration == 'sequined'] = 'sequins'
> AttDS_$Decoration[AttDS_$Decoration == 'ruched'] = 'ruche'
> AttDS_$Decoration[AttDS_$Decoration == 'none'] = 'null'
> #Pattern Type
> AttDS_$`Pattern Type`[AttDS_$`Pattern Type` == 'none'] = 'null'
> AttDS_$`Pattern Type`[AttDS_$`Pattern Type` == 'leapord'] = 'leopard'
> #factoring
> AttDS_$Style = factor(AttDS_$Style,
                levels = c('bohemian', 'Brief', 'Casual', 'cute', 'fashion', 'Flare', 'Novelty', 'OL', 'party',
'Sexy','vintage', 'work'),
               labels = c(0,1,2,3,4,5,6,7,8,9,10,11))
> AttDS_$Price = factor(AttDS_$Price,
                 levels = c('Low','Medium', 'Average','High','very-high'),
+
                 labels = c(0,1,2,3,4))
> AttDS_$Size = factor(AttDS_$Size,
                 levels = c('free', 'L', 'M', 'S', 'XL'),
+
                 labels = c(0,1,2,3,4))
> AttDS_$Season = factor(AttDS_$Season,
                  levels = c('Autumn', 'Spring', 'Summer', 'Winter'),
```

```
+
                                     labels = c(0,1,2,3)
> AttDS $NeckLine = factor(AttDS $NeckLine,
                                       levels = c("o-neck","v-neck","boat-neck","peterpan-
collor", "ruffled", "turndowncollor", "slash-neck", "mandarin-collor", "open", "sqare-collor", "Sweetheart",
"Scoop", "halter", "backless", "bowneck", "NULL"),
                                       labels = c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
+
> AttDS_$SleeveLength = factor(AttDS_$SleeveLength,
                                             levels = c("sleevless", "Petal", "full", "butterfly"
+
,"short","threequarter","halfsleeve","cap-sleeves","turndowncollor","capsleeves","half","NULL" ),
                                             labels = c(0,1,2,3,4,5,6,7,8,9,10,11)
> AttDS_$waiseline = factor(AttDS_$waiseline,
                                        levels = c("empire", "natural", "null", "princess", "dropped"),
+
                                        labels = c(0,1,2,3,4))
+
> AttDS_$Material = factor(AttDS_$Material,
                                       levels =
c("null", "microfiber", "polyster", "silk", "chiffonfabric", "cotton", "nylon", "other", "milksilk", "linen", "rayon", "ly
cra", "mix", "acrylic", "spandex", "lace", "modal", "cashmere", "viscos", "knitting", "sill", "wool", "model", "shiff
on"),
+
                                       labels = c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23))
> AttDS_$FabricType = factor(AttDS_$FabricType,
                                          levels =
c ("chiffon","null","broadcloth","jersey","other","batik","satin","flannel","worsted","woolen","poplin","dobline ("chiffon","null","broadcloth","jersey","other","batik","satin","flannel","worsted","woolen","poplin","dobline ("chiffon","null","broadcloth","jersey","other","batik","satin","flannel","worsted","woolen","poplin","dobline ("chiffon","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth","broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth",broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broadcloth,broa
by", "knitted", "tulle", "organza", "lace", "Corduroy", "terry"),
                                          labels = c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)
> AttDS_$Decoration = factor(AttDS_$Decoration,
c("ruffles", "null", "embroidary", "bow", "lace", "beading", "sashes", "hollowout", "pockets", "sequined"
,"applique","button","Tiered","rivet","feathers","flowers","pearls","pleat","crystal","ruched","draped","ta
ssel", "plain", "cascading"),
                                          labels = c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)
> AttDS $`Pattern Type` = factor(AttDS $`Pattern Type`,
c("animal", "print", "dot", "solid", "null", "patchwork", "striped", "geometric", "plaid", "leopard", "floral", "charac
ter", "splice", "leapord", "none"),
                                               labels = c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14))
> AttDS_$Recommendation = sapply(AttDS_$Recommendation, factor)
> #count of missing values in attribset dataset
> colSums(is.na(AttDS ))
           Style
                                 Price
                                                       Rating
                                                                                 Size
                                                                                                     Season
                                                                                                                             NeckLine SleeveLength
```

```
2
        0
                  2
                                       0
                                                           1
                                                                    232
   waiseline
                 Material
                            FabricType
                                           Decoration Pattern Type Recommendation
        1
                  1
                            20
                                       23
                                                  1
                                                            0
> #create the function
> getmode <- function(v) {
+ uniqv <- unique(v)
+ uniqv[which.max(tabulate(match(v, uniqv)))]
+ }
> #Fill missing values with mode
> AttDS_$Price[is.na(AttDS_$Price) == TRUE] <- getmode(AttDS_$Price)
> AttDS_$Season[is.na(AttDS_$Season) == TRUE] <- getmode(AttDS_$Season)
> AttDS_$NeckLine[is.na(AttDS_$NeckLine) == TRUE] <- getmode(AttDS_$NeckLine)
> AttDS_$waiseline[is.na(AttDS_$waiseline) == TRUE] <- getmode(AttDS_$waiseline)
> AttDS $Material[is.na(AttDS $Material) == TRUE] <- getmode(AttDS $Material)
> AttDS $FabricType[is.na(AttDS $FabricType) == TRUE] <- getmode(AttDS $FabricType)
> AttDS_$Decoration[is.na(AttDS_$Decoration) == TRUE] <- getmode(AttDS_$Decoration)
> AttDS_$`Pattern Type`[is.na(AttDS_$`Pattern Type`) == TRUE] <- getmode(AttDS_$`Pattern
Type')
> AttDS_data <- data.frame(AttDS_)
> str(AttDS_)
tibble [500 \times 13] (S3: tbl df/tbl/data.frame)
$ Style
             : Factor w/ 12 levels "0", "1", "2", "3", ..: 10 3 11 2 4 1 3 7 6 1 ...
$ Price
             : Factor w/ 5 levels "0", "1", "2", "3", ...: 1 1 4 3 1 1 3 3 3 1 ...
             : num [1:500] 4.6 0 0 4.6 4.5 0 0 0 0 0 ...
$ Rating
$ Size
             : Factor w/ 5 levels "0","1","2","3",...: 3 2 2 2 3 3 5 1 1 1 ...
$ Season
               : Factor w/ 4 levels "0", "1", "2", "3": 3 3 1 2 3 3 3 1 2 3 ...
$ NeckLine
               : Factor w/ 16 levels "0","1","2","3",..: 1 1 1 1 1 1 2 1 1 2 2 ...
$ SleeveLength: Factor w/ 12 levels "0", "1", "2", "3", ...: NA 2 3 3 4 NA 3 5 5 NA ...
             : Factor w/ 5 levels "0","1","2","3",..: 1 2 2 2 2 1 3 2 1 2 ...
$ waiseline
              : Factor w/ 24 levels "0","1","2","3",..: 1 2 3 4 5 1 6 3 6 7 ...
$ Material
$ FabricType : Factor w/ 18 levels "0", "1", "2", "3", ...: 1 2 2 1 1 2 2 3 3 1 ...
$ Decoration : Factor w/ 24 levels "0", "1", "2", "3", ...: 1 1 2 2 4 2 2 5 6 2 ...
$ Pattern Type: Factor w/ 15 levels "0", "1", "2", "3", ...: 1 1 2 2 3 2 4 5 4 5 ...
$ Recommendation: Factor w/ 2 levels "1", "0": 1 2 2 1 2 2 2 2 1 1 ...
> Dress Sales = rename(Dress Sales , c('41314'='2/9/2013'))
```

```
> Dress Sales = rename(Dress Sales , c('41373'='4/9/2013'))
> Dress Sales = rename(Dress Sales , c('41434'='6/9/2013'))
> Dress Sales = rename(Dress Sales , c('41495'='8/9/2013'))
> Dress Sales = rename(Dress Sales , c('41556'='10/9/2013'))
> Dress_Sales_ = rename(Dress_Sales_, c('41617'='12/9/2013'))
> Dress_Sales_ = rename(Dress_Sales_, c('41315'='2/10/2013'))
> Dress_Sales_ = rename(Dress_Sales_, c('41374'='4/10/2013'))
> Dress_Sales_ = rename(Dress_Sales_, c('41435'='6/10/2013'))
> Dress Sales = rename(Dress Sales , c('40400'='8/10/2013'))
> Dress_Sales_ = rename(Dress_Sales_, c('41557'='10/10/2013'))
> Dress_Sales_ = rename(Dress_Sales_, c('41618'='12/10/2013'))
> #Covert all variable types to numeric
> Dress_Sales_ <- as.data.frame(apply(Dress_Sales_, 2, as.numeric))
Warning messages:
1: In apply(Dress Sales , 2, as.numeric): NAs introduced by coercion
2: In apply(Dress_Sales_, 2, as.numeric): NAs introduced by coercion
3: In apply(Dress_Sales_, 2, as.numeric): NAs introduced by coercion
4: In apply(Dress_Sales_, 2, as.numeric): NAs introduced by coercion
5: In apply(Dress_Sales_, 2, as.numeric): NAs introduced by coercion
6: In apply(Dress_Sales_, 2, as.numeric): NAs introduced by coercion
> #Mean row
> Dress_Sales_ = as.matrix(Dress_Sales_)
> k <- which(is.na(Dress_Sales_), arr.ind = TRUE)
> Dress_Sales_[k] <- rowMeans(Dress_Sales_, na.rm = TRUE)[k[,1]]
> Dress_Sales_ = as.data.frame(Dress_Sales_)
> #sum all values on row on (total sales)
> Dress_Sales_$total_sales = rowSums(Dress_Sales_)
> head(Dress_Sales_)
 29/8/2013 31/8/2013 2/9/2013 4/9/2013 6/9/2013 8/9/2013 10/9/2013 12/9/2013 14/9/2013
16/9/2013 18/9/2013
    2114
             2274
                    2491
                            2660
                                    2727
                                            2887
                                                    2930
                                                            3119
                                                                     3204
                                                                             3277
                                                                                     3321
2
     151
             275
                    570
                           750
                                  813
                                         1066
                                                 1164
                                                         1558
                                                                  1756
                                                                          1878
                                                                                  1985
3
      6
                  7
                        7
                              8
                                    8
                                           9
                                                 10
                                                        10
                                                               10
                                                                      10
4
     1005
             1128
                    1326
                            1455
                                    1507
                                            1621
                                                    1637
                                                            1723
                                                                     1746
                                                                             1783
                                                                                     1796
5
     996
            1175
                    1304
                            1396
                                   1432
                                           1559
                                                   1570
                                                            1638
                                                                    1655
                                                                            1681
                                                                                     1743
```

6 4 5 11 13 13 13 16 18 19 20 20

20/9/2013 22/9/2013 24/9/2013 26/9/2013 28/9/2013 30/9/2013 2/10/2013 4/10/2013 6/10/2013 8/10/2013

1	3386	3479	3554	362	24	3706	3746	3795	3832	3897	3923
2	2106	2454	2710	294	12	3258	3354	3475	3654	3911	4024
3	10	11	11	11	11	11	11	11	11	11	
4	1812	1845	1878	189	92	1914	1924	1929	1941	1952	1955
5	1824	1919	2032	215	56	2252	2312	2387	2459	2544	2614
6	21	22	25	25	26	26	26	26	27	27	

10/10/2013 12/10/2013 total_sales

- 1 3985 4048 75979 2 4125 4277 52256
- 3 11 11 223
- 4 1959 1963 39691
- 5 2693 2736 44077
- 6 27 27 457
- > #merge data
- > merged_data <- data.frame(AttDS_, Dress_Sales_)
- > merged_data

Style Price Rating Size Season NeckLine SleeveLength waiseline Material FabricType Decoration

1	9	0	4.6	2	2	0	<na></na>	0	0	0	0
2	2	0	0.0	1	2	0	1	1	1	1	0
3	10	3	0.0	1	0	0	2	1	2	1	1
4	1	2	4.6	1	1	0	2	1	3	0	1
5	3	0	4.5	2	2	0	3	1	4	0	3
6	0	0	0.0	2	2	1	<na></na>	0	0	1	1
7	2	2	0.0	4	2	0	2	2	5	1	1
8	6	2	0.0	0	0	0	4	1	2	2	4
9	5	2	0.0	0	1	1	4	0	5	2	5
10	0	0	0.0	0	2	1	<na></na>	1	6	0	1
11	8	2	5.0	0	2	0	2	1	2	2	4
12	5	2	0.0	0	1	1	4	2	6	1	1
13	9	0	4.7	2	3	0	5	2	0	0	4
14	10	2	4.8	2	2	0	4	0	5	3	1
15	2	0	5.0	2	2	2	4	2	5	1	6

16	2	0	0.0	0	3	2	2	2	7	4	4
17	3	2	4.7	1	1	0	4	2	5	1	6
18	0	1	5.0	0	0	0	2	1	0	1	7
19	1	2	0.0	2	3	3	5	1	5	1	1
20	9	2	5.0	2	0	0	<na></na>	0	8	1	1
21	9	2	4.5	1	0	0	2	2	5	1	5
22	2	0	4.3	2	2	0	<na></na>	1	0	0	1
23	1	0	4.0	4	2	1	4	1	5	1	8
24	9	2	4.7	3	2	1	<na></na>	0	5	1	1
25	9	2	0.0	0	0	1	<na></na>	1	2	1	4
26	9	2	0.0	2	0	0	<na></na>	0	5	2	1
27	9	2	4.7	2	1	0	<na></na>	1	0	1	1

Pattern.Type Recommendation X29.8.2013 X31.8.2013 X2.9.2013 X4.9.2013 X6.9.2013 X8.9.2013 X10.9.2013

1	0	1	2114	2274	2491	1 266	60	2727	2887	2930
2	0	0	151	275	570	750	8	13 ′	1066	1164
3	1	0	6	7	7	7	8	8	9	
4	1	1	1005	1128	1326	6 145	55	1507	1621	1637
5	2	0	996	1175	1304	139	6	1432	1559	1570
6	1	0	4	5	11	13	13	13	16	
7	3	0	45	61	131	165	17	6 2	09 2	216
8	4	0	4	13	55	73	76	89	94	
9	3	1	5	6	10	12	13	15	16	
10	4	1	9	11	12	12	12	12	12	
11	3	0	15	28	42	49	49	55	5 56	;
12	0	0	23	38	54	59	65	72	2 77	•
13	1	1	1235	1333	147	1 15	68	1602	1722	1756
14	0	1	2498	2545	262	7 26	56	2669	2738	2769
15	3	0	22	28	40	43	44	45	5 45	5
16	4	0	4	8	19	25	26	31	35	
17	3	1	1587	1669	172	9 17	64	1782	1817	1833
18	5	1	10	13	17	17	17	17	7 17	•
19	5	0	2	4	10	11	11	12	12	
20	4	1	122	143	243	279	2	299	322	331
21	3	0	104	106	142	163	1	71	192	196

22	3	0	856	967	1057	7	1109	1124	1173	119	98	
23	3	0	145	189	219)	229	229	233	233		
24	3	1	1292	1319) 140	05	1479	1512	1578	15	592	
25	5	0	2	3	4	4	4	5	5			
26	1	0	6	7	15	19	9 19) 19	20			
27	3	1	986	1048	122	24	1358	1401	1571	16	512	
	2.9.2013 9.2013	X14.9.20)13 X16.	9.2013 X	(18.9.20	013	X20.9.2	013 X22	.9.2013	X24.9.	2013 X26.9.201	3
1	3119	3204	3277	3321	338	86	3479	355	4 362	24	3706	
2	1558	1756	1878	1985	210	06	2454	271	0 29	42	3258	
3	10	10	10	10	10	11	11	11	11			
4	1723	1746	1783	1796	18′	12	1845	187	8 189	92	1914	
5	1638	1655	1681	1743	182	24	1919	203	2 21	56	2252	
6	18	19	20	20	21	22	25	5 25	26			
7	251	262	289	295	325		353	379	400	417		
8	117	121	125	135	142		150	160	165	169		
9	17	17	19	21	25	27	27	7 28	3 29			
10	13	13	13	13	14	14	4 1	4 1	4 14	4		
11	65	66	68	68	78	89	9 9	3 9	8 10	6		
12	90	102	106	117	122		133	153	162	170		
13	1906	1994	2077	210	5 21	92	2284	239	95 24	23	2537	
14	2934	3001	3068	3125	5 32	239	3339	344	15 35	61	3667	
15	49	50	51	51	52	53	3 5	2 5	2 52	2		
16	45	48	58	74	88	97	7 12	20 1	32 1	58		
17	1898	1909	1954	2005	5 20	96	2120	216	3 22	41	2301	
18	17	17	17	17	18	18	3 1	8 1	9 19	9		
19	12	13	13	13	13	13	3 1	3 1	3 10	6		
20	381	401	413	442	458		470	496	517	539)	
21	227	247	258	264	285		291	316	244	365	;	
22	1248	1284	1300	1326	5 13	866	1388	3 143	31 14	82	1533	
23	233	233	233	233	233		233	233	233	233	}	
24	1671	1689	1738	1778	3 18	320	1905	5 196	62 19	46	2077	
25	5	5	5	5 5	5 ;	5	5	5	5			
26	22	22	23	23	24	25	5 2	5 2	6 26	6		
07	4700	4050	4004	00.4		4 =	004	, ,,,,			0500	

27 1762 1852 1901 2041 2115 2217 2358 2452 2580

1	3746	3705	3833	3897	3	1023	308	25	4048	75979
2	3354			3911					4277	
3	11	11	11	11	11	11		11	223	
4	1924	1929	1941	1952	1	955	195	59	1963	39691
5	2312	2387	2459	2544	2	2614	269	93	2736	44077
6	26	26	26	27	27	27		27	457	
7	424	445	462	474	494	4	503	5	552	7328
8	172	196	212	224	24	1	252	2	263	3248
9	29	29	29	29	29	29		33	494	
10	14	14	14	14	14	14	4	14	300)
11	114	119	124	128	13	80	133		138	1911
12	172	176	181	185	18	88	195	2	202	2842
13	2580	2645	2704	2748	3 :	2813	29	14	2979	49983
14	3680	3745	3842	3952	2 :	3999	40	77	4170	75346
15	52	52	52	52	52	53	3	53	109	5
16	163	174	182	195	20)4	213	2	220	2319
17	2325	2375	2421	2479	9 :	2492	25	12	2526	47998
18	19	19	19	19	19	19	9	19	40	1
19	16	17	17	17	17	17	7	17	299	9
20	542	562	575	596	60)2	621	(644	9998
21	368	369	370	372	37	74	375	;	376	6175
22	1564	1572	1621	1682	2	1699	17	26	1761	31467
23	233	233	234	235	23	35	236	2	236	5216
24	2095	2115	2179	2243	3 2	2286	23	14	2352	42347
25	5	5	5	5 5	5	5	5		107	
26	27	27	28	28	29	29	9	29	518	3
27	2621	2678	2792	2882	2 :	2923	29	95	3071	48440

[reached 'max' / getOption("max.print") -- omitted 473 rows]

> str(merged_data)

'data.frame': 500 obs. of 37 variables:

\$ Style : Factor w/ 12 levels "0","1","2","3",..: 10 3 11 2 4 1 3 7 6 1 ...

\$ Price : Factor w/ 5 levels "0", "1", "2", "3",...: 1 1 4 3 1 1 3 3 3 1 ...

\$ Rating : num 4.6 0 0 4.6 4.5 0 0 0 0 0 ...

```
$ Size
           : Factor w/ 5 levels "0","1","2","3",..: 3 2 2 2 3 3 5 1 1 1 ...
$ Season
             : Factor w/ 4 levels "0", "1", "2", "3": 3 3 1 2 3 3 3 1 2 3 ...
$ NeckLine : Factor w/ 16 levels "0", "1", "2", "3", ...: 1 1 1 1 1 2 1 1 2 2 ...
$ SleeveLength: Factor w/ 12 levels "0", "1", "2", "3", ...: NA 2 3 3 4 NA 3 5 5 NA ...
$ waiseline : Factor w/ 5 levels "0","1","2","3",..: 1 2 2 2 2 1 3 2 1 2 ...
           : Factor w/ 24 levels "0","1","2","3",..: 1 2 3 4 5 1 6 3 6 7 ...
$ Material
$ FabricType : Factor w/ 18 levels "0", "1", "2", "3", ...: 1 2 2 1 1 2 2 3 3 1 ...
$ Decoration : Factor w/ 24 levels "0", "1", "2", "3", ...: 1 1 2 2 4 2 2 5 6 2 ...
$ Pattern.Type: Factor w/ 15 levels "0", "1", "2", "3", ...: 1 1 2 2 3 2 4 5 4 5 ...
$ Recommendation: Factor w/ 2 levels "1", "0": 1 2 2 1 2 2 2 2 1 1 ...
$ X29.8.2013 : num 2114 151 6 1005 996 ...
$ X31.8.2013 : num 2274 275 7 1128 1175 ...
$ X2.9.2013 : num 2491 570 7 1326 1304 ...
$ X4.9.2013 : num 2660 750 7 1455 1396 ...
$ X6.9.2013 : num 2727 813 8 1507 1432 ...
$ X8.9.2013 : num 2887 1066 8 1621 1559 ...
$ X10.9.2013 : num 2930 1164 9 1637 1570 ...
$ X12.9.2013 : num 3119 1558 10 1723 1638 ...
$ X14.9.2013 : num 3204 1756 10 1746 1655 ...
$ X16.9.2013 : num 3277 1878 10 1783 1681 ...
$ X18.9.2013 : num 3321 1985 10 1796 1743 ...
$ X20.9.2013 : num 3386 2106 10 1812 1824 ...
$ X22.9.2013 : num 3479 2454 11 1845 1919 ...
$ X24.9.2013 : num 3554 2710 11 1878 2032 ...
$ X26.9.2013 : num 3624 2942 11 1892 2156 ...
$ X28.9.2013 : num 3706 3258 11 1914 2252 ...
$ X30.9.2013 : num 3746 3354 11 1924 2312 ...
$ X2.10.2013 : num 3795 3475 11 1929 2387 ...
$ X4.10.2013 : num 3832 3654 11 1941 2459 ...
$ X6.10.2013 : num 3897 3911 11 1952 2544 ...
$ X8.10.2013 : num 3923 4024 11 1955 2614 ...
$ X10.10.2013 : num 3985 4125 11 1959 2693 ...
$ X12.10.2013 : num 4048 4277 11 1963 2736 ...
```

\$ total_sales : num 75979 52256 223 39691 44077 ...

```
> #splitting dataset
```

- > set.seed(100)
- > spl = sample.split(merged_data\$Recommendation, SplitRatio = 0.7)
- > train = subset(merged_data, spl==TRUE)
- > test = subset(merged_data, spl==FALSE)
- > print(dim(train)); print(dim(test))
- [1] 350 37
- [1] 150 37
- > #Naive Bayes Model
- > #build model
- > Naive_Model = naiveBayes(Recommendation ~., data = train)
- > #Create Confusion Matrix
- > confusionMatrix(train\$Recommendation, predict(Naive_Model, train), positive = '1')

Confusion Matrix and Statistics

Reference

Prediction 1 0

1 108 39

0 70 133

Accuracy: 0.6886

95% CI: (0.6372, 0.7367)

No Information Rate: 0.5086

P-Value [Acc > NIR]: 6.449e-12

Kappa: 0.3788

Mcnemar's Test P-Value: 0.00406

Sensitivity: 0.6067

Specificity: 0.7733

Pos Pred Value: 0.7347

Neg Pred Value: 0.6552

Prevalence: 0.5086

```
Detection Rate: 0.3086
Detection Prevalence: 0.4200
 Balanced Accuracy: 0.6900
  'Positive' Class: 1
```

- > #predict test set
- > Naive_Predict = predict(Naive_Model, test)
- > table(Naive_Predict, test\$Recommendation)

```
Naive_Predict 1 0
       1 35 34
       0 28 53
```

- > #regression
- > regress_Sales = Im(formula = total_sales ~ Style+Season+Material+Price, data = train)
- > summary(regress_Sales)

Call:

```
Im(formula = total_sales ~ Style + Season + Material + Price,
  data = train)
```

Residuals:

```
Min 1Q Median
                 3Q Max
-19936 -6113 -2230 1381 108508
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)	3703.0	4044.0	0.916	0.3605
Style1	4763.6	4824.1	0.987	0.3242
Style2	2317.9	3465.8	0.669	0.5041
Style3	2543.0	4098.6	0.620	0.5354
Style4	-2163.5	13067.0	-0.166	0.8686
Style5	-4908.1	13127.9	-0.374	0.7088
Style6	152.3	6713.6	0.023	0.9819

Style8	3040.3	4162.6 0.730 0.4657
Style9	7057.2	3738.5 1.888 0.0600.
Style10	9843.9	4594.4 2.143 0.0329 *
Style11	3802.6	4893.5 0.777 0.4377
Season1	3455.8	2427.4 1.424 0.1555
Season2	761.5	2339.6 0.325 0.7450
Season3	233.9	2382.8 0.098 0.9219
Material1	12382.7	7516.0 1.648 0.1005
Material2	790.2	2243.6 0.352 0.7249
Material3	-2454.3	3316.7 -0.740 0.4599
Material4	3595.3	3141.2 1.145 0.2533
Material5	-2111.8	1884.6 -1.121 0.2633
Material6	-3568.7	5518.6 -0.647 0.5183
Material7	-2426.9	9130.3 -0.266 0.7906
Material8	-2429.2	9068.5 -0.268 0.7890
Material9	2010.3	7588.1 0.265 0.7912
Material10	-6025.8	5056.8 -1.192 0.2343
Material11	-637.5	7475.0 -0.085 0.9321
Material12	-1602.8	4285.8 -0.374 0.7087
Material13	-2853.4	7500.8 -0.380 0.7039
Material14	-7213.0	12932.0 -0.558 0.5774
Material15	-2242.1	12843.7 -0.175 0.8615
Material16	-6416.6	12731.2 -0.504 0.6146
Material17	-5257.7	9108.9 -0.577 0.5642
Material19	-1842.8	12767.8 -0.144 0.8853
Material20	-7843.1	12790.6 -0.613 0.5402
Material23	-3215.7	9269.8 -0.347 0.7289
Price1	-4172.0	3571.0 -1.168 0.2436
Price2	355.2	1627.8 0.218 0.8274
Price3	-2030.6	3912.1 -0.519 0.6041
Price4	-8335.1	4055.2 -2.055 0.0407 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12550 on 312 degrees of freedom

Multiple R-squared: 0.09296, Adjusted R-squared: -0.01461

F-statistic: 0.8642 on 37 and 312 DF, p-value: 0.6971

> plot(regress_Sales)

Hit <Return> to see next plot: #Regression (total sales n ratings)

Hit <Return> to see next plot: regress_Rating = Im(formula = total_sales ~ Rating, data = train)

Hit <Return> to see next plot: summary(regress_Rating)

Hit <Return> to see next plot: plot(regress_Rating, pch = 16, col = "blue")

Warning messages:

1: not plotting observations with leverage one:

8, 153, 162, 202, 257, 271

2: In sqrt(crit * p * (1 - hh)/hh) : NaNs produced

3: In sqrt(crit * p * (1 - hh)/hh) : NaNs produced