

SmartSens™ SC1345 数据手册

SC1345

应用

- 智能家用摄像头
- 安防监控系统
- 可移动设备相机
- 视频电话会议设备
- 行车记录仪

特性

- 高灵敏度
- 高信噪比
- 低功耗
- 16 x 模拟增益,32 x 数字增益
- 外部控制帧率及多传感器同步
- 水平/垂直窗口调整
- I²C 接口寄存器编程

关键指标 (典型值)

- 分辨率: 100万
- 像素阵列: 1288H x 728V
- 像素尺寸: 2.7 µm x 2.7 µm
- 镜头光学尺寸: 1/4.5"
- 最大图像传输速率:
 - 1280H x 720V@60fps 10bit
- 输出接口:
 - 10/8-bit 1Lane MIPI
 - 10-bit DVP
- 输出格式: RAW RGB
- CRA: 15°
- 灵敏度: 4200 mV/lux•s
- 动态范围: 70 dB
- 信噪比: 38 dB
- 工作温度范围: -30°C~+85°C
- 最佳工作温度范围: -20℃~+60℃
- 电源电压:
 - Analog = 2.8V ± 0.1V
 - Digital = 1.8V ± 0.1V
 - \blacksquare I/O = 1.8V ± 0.1V
- 封装: 29-pin CSP
- 封装尺寸: 4.11 mm x 2.874 mm
- ESD 等级:
 - HBM: Classification 2
 - CDM: Classification C3

目录

目	录		3
冬	片索引		4
表	格索引		5
1.	系统	描述	6
	1.1.	芯片概述	6
	1.2.	系统框架	6
	1.3.	引脚描述	7
	1.4.	芯片初始化	9
	1.4.1		9
	1.4.2	下电时序	
	1.4.3		
	1.4.4	复位模式	
	1.5.	配置接口	11
			13
	1.7.	数据接口	13
	1.7.1	DVP	
	1.7.2	MIPI	
	1.8.	锁相环	
2.			
	2.2.	AEC/AGC	
	2.2.1	AEC/AGC 的控制策略	ý
	2.2.2	AEC/AGC 控制寄存器	<i>异说明</i>
	2.2.3	AGC 控制寄存器说明	月20
	2.3.	GROUP_HOLD	26
	2.4.	视频输出模式	26
	2.4.1	读取顺序	26
	2.4.2	输出窗口	27
	2.5.	帧率计算	28
	2.6.	测试模式	28
3.	电气	恃性	29
4.	光学	恃性	31
	4.1.	QE 曲线	31
	4.2.	主光线入射角(CRA)	31
5.	封装	信息	32
6.	版本	变更记录	34

图片索引

图	1-1 SC1345 结构图	6
图	1-2 典型应用示意图	7
图	1-3 SC1345 封装引脚图	8
图	1-4 上电时序图	9
图	1-5 下电时序图	10
图	1-6 I ² C 接口时序	12
图	1-7 DVP 时序	13
图	1-8 MIPI 接口示意图	14
	1-9 MIPI 底层数据包示意图	
	1-10 MIPI 长/短数据包结构示意图	
图	1-11 MIPI 1lane 模式数据包传输示意图	15
	1-12 MIPI 数据包 DI 结构	
图	1-13 PLL 控制示意图	16
图	2-1 Slave Mode 时序图	17
图	2-2 Slave Mode 曝光实现图	18
图	2-1 像素阵列图一	26
	2-2 像素阵列图二	
	2-3 镜像和倒置实例	
	2-6 测试模式	
	3-1 外部时钟(EXTCLK)波形图	
图	4-1 SC1345 光谱曲线	31
图	4-2 CRA Curve	31
图	5-1 SC1345 封装示意图	32
S	naitseins	

表格索引

表	1-1 SC1345 引脚描述	7
表	1-2 睡眠模式控制寄存器	10
表	1-3 软复位控制寄存器	11
表	1-4 I ² C 接口时序详细参数	12
表	1-5 SENSOR ID 寄存器	13
表	1-6 DVP 同步调整寄存器	14
表	1-7 MIPI 数据类型	16
表	1-8 MIPI 调整寄存器	16
		18
表	2-2 增益/曝光的手动控制寄存器	19
表	2-3 增益寄存器控制	20
		21
表	2-5 数字 gain 值控制寄存器	23
		26
表	2-8 镜像和倒置模式控制寄存器	27
		27
		28
		28
		29
表	3-2 直流电气特性	29
表	3-3 交流特性(TA=25℃,AVDD=2.8V,DC	OVDD=1.8V)30
表	5-1 封装尺寸表	32
S	Maritseins	

1. 系统描述

1.1. 芯片概述

SC1345 是监控相机领域先进的数字 CMOS 图像传感器,最高支持 1280H x 720V@60fps的传输速率。SC1345输出raw格式图像,有效像素窗口为1288H x 728V,支持复杂的片上操作——例如窗口化、水平镜像、垂直倒置等。

SC1345 可以通过标准的 I2C 接口进行配置。

SC1345 可以通过 FSYNC 引脚实现外部控制曝光。

1.2. 系统框架

图 1-1展示了SC1345图像传感器的功能模块。图 1-2展示了一个典型的应用示例。

Block Diagram

图 1-1 SC1345 结构图

图 1-2 典型应用示意图

1.3. 引脚描述

表 1-1 列出了 SC1345 图像传感器的引脚信息及相关描述。

序号 编号 信号名 引脚类型 描述 1 Α1 **LREF** 输出 DVP 行同步 **EXTCLK** 输入 时钟输入 2 A2 АЗ SCL 输入 I2C 时钟线 3 4 输出 DVP 输出 bit[5] A4 D5 Power Down 信号输入(内置上拉电阻,低电位有效) 5 A5 **PWDNB** 输入 **AVDD** 电源 2.8V 模拟电源 6 A6 7 В1 DVDD 电源 1.8V 数字电源 输入时作为外部帧同步信号 B2 **FSYNC** 输入/输出 8 输出时作为 DVP 帧同步信号 输入/输出 ВЗ SDA I2C 数据线(open drain) 9 10 D6 输出 В4 DVP 输出 bit[6] 11 B5 **XSHUTDN** 输入 复位信号输入(内置上拉电阻,低电位有效) 12 **AGND** 地线 模拟地 B6 13 C1 **PCLK** 输出 DVP 时钟

表 1-1 SC1345 引脚描述

C2

D3(MCN)

输出

14

DVP 输出 bit[3] / MIPI 时钟负极信号

SC1345

序号	编号	信号名	引脚类型	描述
15	C3	D4 (MCP)	输出	DVP 输出 bit[4] / MIPI 时钟正极信号
16	C4	D9 (MDP)	输出	DVP 输出 bit[9] / MIPI 数据正极信号
17	C5	DVDD	电源	1.8V 数字电源
18	C6	NC	-	-
19	D1	D0	输出	DVP 输出 bit[0]
20	D2	D1	输出	DVP 输出 bit[1]
21	D3	DOVDD	电源	1.8V IO 电源
22	D4	D8 (MDN)	输出	DVP 输出 bit[8] / MIPI 数据负极信号
23	D5	DOGND	地线	IO地
24	D6	VREF1	输出	内部参考电压(外接电容至 AGND)
25	E1	DOGND	地线	IO地
26	E2	D2	输出	DVP 输出 bit[2]
27	E3	DVDD	电源	1.8V 数字电源
28	E4	D7	输出	DVP 输出 bit[7]
29	E6	VREFN	输出	内部参考电压(外接电容至 AGND)

Top View

图 1-3 SC1345 封装引脚图

1.4. 芯片初始化

1.4.1. 上电时序

在上电过程中,具体上电时序要求如下:

图 1-4 上电时序图

注: T1≥0ms, T2≥0ms, T3≥0ms, T4≥0ms, T5≥4ms。

1.4.2. 下电时序

在下电过程中,具体下电时序要求如下:

图 1-5 下电时序图

注: T0≥6EXTCLKs, T1≥0, T2≥0, T3≥0, T4≥0, T5≥0。

1.4.3. 睡眠模式

睡眠模式下, SC1345 停止输出图像数据流, 工作在低功耗状态, 保持当前寄存器值。 SC1345 提供两种方式进入睡眠模式:

- 1) 将 PWDNB 拉低,此时不支持 I2C 读写;
 - 2) 将寄存器 16'h0100[0]写入 0,此时支持 I2C 读写。

表 1-2 睡眠模式控制寄存器

功能	寄存器地址	默认值	描述
			Bit[0]: manual sleep mode ctrl
软睡眠模式使能	16'h0100	8'h0	1~sleep mode disable
			0~ sleep mode enable

1.4.4. 复位模式

复位模式下,SC1345 停止输出图像数据流,工作在低功耗状态,重置所有寄存器,SC1345 提供两种方式进入复位模式:

- 1) 将 XSHUTDN 拉低,此时不支持 I²C 读写;
- 2) 将寄存器 16'h0103[0]写入 1, 此复位模式持续 150ns。

表 1-3 软复位控制寄存器

功能	寄存器地址	默认值	描述	
软复位使能	16'h0103	8'h0	Bit[0]: soft reset	

1.5. 配置接口

SC1345 控制寄存器通过标准的 I2C 总线进行读写, 其设备地址为 7'h30。

消息类型: 16-bit 地址、8-bit 数据和 7-bit 设备地址

S	Slave Address	R/W	Α		ub ss[15:8]	Α	A		Sub ess[7:0]	Α	data	A/Ã	Р
	I ² C 读操作												
S	Slave Address 0	Addr	Sub ess[A [15:8]	Sub Address[7:0]	А	Sr	Slave address	1	A da	ta Ã	Р
	I ² C 写操作			-0//									
S	Slave Address	0	А	Sı Addres	ub ss[15:8]	А	А		Sub ess[7:0]	Α	data	A/Ã	Р
	从机至	刂主机		S: 起始条	件 A:	答复							
	主机至	小 从机		P: 终止条	件 Ã:	拒绝	答复						
方向取决于具体操作 Sr: 重复起始条件													

I²C 时序

图 1-6 I²C 接口时序

表 1-4 I²C 接口时序详细参数

Cumbal	Downwater	Standard	d-mode	Fast-r	I I mid	
Symbol	Parameter Parameter	Min	Max	Min	Max	Unit
F _{scl}	SCL clock frequency	0	100	0	400	kHz
$T_{hd;STA}$	hold time (repeated) START condition	4.0	-	0.6	-	μS
T_{low}	LOW period of the SCL clock	4.7	-	1.3	-	μS
T_{high}	HIGH period of the SCL clock	4.0	-	0.6	-	μS
T _{su;STA}	set-up time for a repeated START condition	4.7	-	0.6	-	μS
$T_{hd;DAT}$	T _{hd;DAT} data hold time		-	0	-	μS
T _{su;DAT}	data set-up time	250	-	100	-	ns
t _r	rise time of both SDA and SCL signals	-	1000	20	300	ns
t _f	fall time of both SDA and SCL signals	-	300	20	300	ns
T _{su;STO}	set-up time for STOP condition	4.0	-	0.6	-	μS
T_buf	bus free time between a STOP and START condition	4.7	-	1.3	-	μS
$T_{vd;DAT}$	T _{vd;DAT} data valid time		3.45	-	0.9	μS
$T_{vd;ACK}$	data valid acknowledge time	-	3.45	-	0.9	μS
T_{sp}	pulse width of spikes that must be suppressed by the input filter	-	-	0	50	-

注:判断上升沿起始或下降沿终止的电平阈值为30%;判断上升沿终止或下降沿起始的阈值为70%。

1.6. Sensor ID

表 1-5 SENSOR ID 寄存器

功能	寄存器地址	默认值	描述
SENSOR ID 高位	16'h3107	8'hda	SENSOR ID[15:8]
SENSOR ID 低位	16'h3108	8'h23	SENSOR ID[7:0]

1.7. 数据接口

SC1345 提供两种数据接口: DVP、MIPI。

1.7.1. DVP

SC1345 支持并行视频端口(DVP),输出 10-bit 并行数据。做输入时的 FSYNC 脉冲信号表示新一帧数据的开始,LREF 表示数据行同步信号,PCLK 表示输出数据时钟。下图是 DVP 时序示意图。

图 1-7 DVP 时序

注:

- 1) T_{PCLK}表示 PCLK 的周期;
- 2) L2F_dly 表示最后的 LREF 下降沿至 FSYNC 上升沿间时延;
- 3) F2L_dly 表示 FSYNC 下降沿至第一条 LREF 上升沿间时延;
- 4) LINE width 表示一行宽度,由寄存器{16h'320c,16'h320d}控制;
- 5) FSYNC width 默认值为一行宽度,以 1 行为单位,由寄存器 16'h3d01 调节。

丰	1_6	D\/D	同非调	整寄存器
11	1-0	DVF	그旦/// //	管可什品

功能	寄存器地址	默认值	描述
			Bit[2]: FSYNC output en
FSYNC 输出使能	16'h300a	8'h20	1~FSYNC as output PAD
			0~FSYNC as input PAD
FSYNC 信号宽度	16'h3d01	8'h01	FSYNC length
			Bit[2]: LREF polarity
DVP 信号极性	16'h3d08	8'h01	Bit[1]: FSYNC polarity
			Bit[0]: PCLK polarity
PAD 驱动能力	16'h3641	8'h00	Bit[1:0]: adjust PAD driver capability
PCLK 延迟	16'h3640	8'h00	Bit[1:0]: PCLK DLY 2ns/step

1.7.2. MIPI

SC1345 提供串行视频端口(MIPI)。SC1345 MIPI 接口支持 8/10bit, 1lane 串行输出, 传输速率推荐不大于 1.0Gbps。下图 MIPI 数据接口示意图。

图 1-8 MIPI 接口示意图

下图是 MIPI 底层数据包的简略示意图,其中分别展示了一个短数据包和长数据包的传输过程。

图 1-9 MIPI 底层数据包示意图

图 1-10 展示了 MIPI 长、短数据包结构示意图。其中数据标识 DI(Data Identifier)用来区分不同的数据包类型。图 1-11 展示了 MIPI 工作在 1lane 模式下的数据包传输示意图。图 1-12 中,DI 包括两部分,分别是虚拟通道 (VC) 和数据类型 (DT)。默认情况下,Sensor给出的 MIPI 数据 VC 值都是 0,而 DT 值如表 1-7 所示。

图 1-10 MIPI 长/短数据包结构示意图

图 1-11 MIPI 1lane 模式数据包传输示意图

图 1-12 MIPI 数据包 DI 结构

表 1-7 MIPI 数据类型

DT	描述		
6'h00	帧起始短包		
6'h01	帧结束短包		
6'h02	行起始短包		
6'h03	行结束短包		
6'h2a	8-bit 模式下数据长包		
6'h2b 10-bit 模式下数据长包			

表 1-8 MIPI 调整寄存器

功能	寄存器地址	默认值	描述
MIPI 输出数据模式	16'h3031	8'h0a	Bit[3:0]: MIPI bit mode 4'h8~ raw8 mode 4'ha~ raw10 mode
PHY 数据模式	16'h3037	8'h20	Bit[6:5]: phy bit mode 2'h0~ 8bit mode 2'h1~ 10bit mode
MIPI clock 设置	16'h303f	8'h01	Bit[7]: pclk sel 1'h0~ sel MIPI_pclk 1'b1~ sel DVP_pclk
MIPI 数据使能	16'h4603	8'h00	Bit[0]: MIPI read 1'h1∼ disable 1'h0∼ enable
MIPI LP 驱动	16'h3651	8'h7d	Bit[2:1]: MIPI LP 驱动能力调整,默认 3'h1
MIPI Lane 0 延时	16'h3652	8'h00	Bit[3]: lane1 相位反向,默认 1'h0 Bit[2:0]: lane1 延时,40ps/step,默认 3'h0
MIPI Lane 1 延时	16'h3652	8'h00	Bit[7]: lane0 相位反向,默认 1'h0 Bit[6:4]: lane0 延时,40ps/step,默认 3'h0
MIPI Clock 延时	16'h3654	8'h00	Bit[3]: 时钟反向,默认 1'h0 Bit[2:0]: 时钟延时,40ps/step,默认 3'h0

1.8. 锁相环

SC1345的PLL模块允许的输入时钟频率范围为6~40MHz,其中VCO输出频率(Fvco)的范围为400MHz-1200MHz。PLL结构示意图如下图所示。

图 1-13 PLL 控制示意图

2. 功能介绍

2.1. SLAVE MODE

Slave Mode 是主控芯片通过 FSYNC 信号触发帧读出,以达到多个 sensor 同步成像的工作模式。

当 SC1345 工作在 Slave Mode 时,主控芯片通过 FSYNC 引脚控制图像数据输出,并以此决定图像帧率,具体时序如下图:

Slave Mode 工作流程

- 1) 当 SC1345 工作在 Slave Mode 时, 芯片自动进入 Active State 状态, 等待 FSYNC 触发;
- 2) FSYNC 触发上升沿有效, FSYNC 高电平持续时间不小于 4 个 EXTCLK 周期;
- 3) 当 FSYNC 触发后,芯片进入 RB Rows, RB Rows 是有效数据读出之前的等待时间,由寄存器控制,以行为单位;
- 4) Active Rows 时读出芯片图像数据,由寄存器控制,以行为单位;
- 5) Blank Rows 时读出芯片图像数据之后的消隐时间,由寄存器控制,以行为单位;
 - 6) Active State 时芯片等待下一次 FSYNC 触发, Active State 应尽量小,建议为 0;
 - 7) FSYNC 上升沿间隔为一帧时间, FSYNC 上升沿间隔允许有 40ns 偏差。

注:

- 1) 只有当 SC1345 处于 Active State 时, FSYNC 触发才有效;
- 2) Sensor 会提前 40ns 退出 Blank Rows 进入 Active State。

SC1345 Slave mode 下的曝光实现如下图:

图 2-2 Slave Mode 曝光实现图

注:

- 1) Row Reset 开始曝光操作,Row Readout 开始前结束曝光操作,曝光包括 Active State 时间;
- 2) VTS 表示帧长, VTS= RB Rows + Active Rows + Blank Rows;
- 3) Active State 时,芯片停止输出及停止 Row reset 操作,如图 2-2 所示,会导致一帧图像 Row 1~Row e 行 与 Row (e+1)~Row n 行的曝光时间不同,Row 1~Row e 行的曝光时间比 Row (e+1)~Row n 行的曝光时间 大,多出的时间为 Active State time,为避免这种曝光差异,要求外部精确控制 FSYNC,使 Active State 控制在 40ns 以内,保证一帧内的每行曝光时间基本一致;
- 4) 当 RB Rows 大于曝光时间时,注释 3)中帧内曝光时间不一致的情况便不会出现,一帧内的每行曝光时间一致,此时 FSYNC 引脚可实现同步曝光。

次 2-1 Stave Indue 江東町 打布						
功能	寄存器地址	默认值	描述			
	1		Bit[1]: Slave mode 使能控制			
Slave mode enable	16'h3222	8'h00	1~slave mode			
C			0~master mode			
Merge enable	16'h3225	8'h10	Bit[4]: Active Rows Blank Rows merge			
Weige enable	10113223	01110	enable			
			Bit[2]: FSYNC output en			
FSYNC OEN	16'h300a	8'h20	1~ FSYNC as output PAD			
			0~FSYNC as input PAD			
RB rows	{16'h3230,16'h3231}	16'h0004	Rows Before Read 控制寄存器			
Active Rows,			Active Rows + Blank Rows, = VTS - RB			
Blank Rows	-	-	Rows			
VTS	{16'h320e,16'h320f}	16'h02ee	帧长			

表 2-1 Slave mode 控制寄存器

2.2. AEC/AGC

AEC/AGC 都是基于亮度进行调节的, AEC 调节曝光时间, AGC 调节增益值, 最终 使图像亮度落在设定亮度阈值范围内。

2.2.1. AEC/AGC 的控制策略

SC1345 本身没有 AEC 功能,需要通过后端平台实现 AEC/AGC。在整个 AEC/AGC 过程中,不是独立的调整 sensor 的曝光时间或者增益,调整策略为:曝光时间优先,曝光时间已经最长无法继续调整时,调整增益。

以图像过暗的情况为例,调控的先后顺序为:

- 1) 不开启任何增益,直到曝光时间达到上限;
- 2) 曝光时间达到上限后,再开始调用自动增益控制。需要明确指出的是,增益开启,将直接导致平均噪声呈倍数放大;而曝光时间加大,则有助于提升信噪比。

反之, 当图像过亮时,则优先关闭增益,当所有增益关闭,图像仍旧过亮,则降低曝 光时间。

曝光时间与增益是一个交互的调节体系,在调试的时候,应该综合考虑。

2.2.2. AEC/AGC 控制寄存器说明

AEC/AGC 的控制寄存器如表 2-2 所示。

表 2-2 增益/曝光的手动控制寄存器

功能	寄存器地址	说明	调节步长	最小值	最大值
曝光时间	{16'h3e01[7:0],	手动曝光时间.	1	0	2*{16'h320e,16'h320f} - 'd8
·秦儿时 [中]	16'h3e02[7:4]}	丁四聚几时间.	Ţ	U	2 {1011320e,10113201} - uo

AEC 控制说明如下:

- 1) AEC 的调节步长为半行时间,半行时间为一行时间除以 2,一行时间计算方法参考 2.6 章节;
- 1) 曝光时间及增益都是在第一帧(第 N 帧)写入,第三帧(第 N+2 帧)生效。
- 2) 曝光时间及增益的写入点:线性模式下建议在帧开始之后写入。

2.2.3. AGC 控制寄存器说明

AGC 的控制寄存器如下表所示。

表 2-3 增益寄存器控制

世 士	ANA GAIN	ANA FINE GAIN	DIG GAIN	DIG FINE GAIN
模式	register	register	register	register
线性模式	16'h3e08	16'h3e09	16'h3e06	16'h3e07

SC1345 AGC 控制方法如下:

模拟 gain 值如表 2-4 所示,数字 gain 值如表 2-5 所示。一般情况下,优先调节模拟 onlindential gain 值,模拟 gain 调节到上限时,如果要继续增大图像亮度,可以调节数字 gain 值。 SC1345 的 DIG FINE GAIN 的精度为 1/128,表 2-5 以 1/32 的精度为例,列出了 DIG FINE

表 2-4 模拟 gain 值控制寄存器

ANA	ANA	GAIN	dB	ANA	ANIA FINE	GAIN	dB
GAIN	FINE	Value	Value	GAIN	ANA FINE	Value	Value
8'h03	8'h20	1.0000	0.000	8'h07	8'h24	2.2500	7.044
8'h03	8'h21	1.0313	0.267	8'h07	8'h25	2.3125	7.282
8'h03	8'h22	1.0625	0.527	8'h07	8'h26	2.3750	7.513
8'h03	8'h23	1.0938	0.778	8'h07	8'h27	2.4375	7.739
8'h03	8'h24	1.1250	1.023	8'h07	8'h28	2.5000	7.959
8'h03	8'h25	1.1563	1.261	8'h07	8'h29	2.5625	8.173
8'h03	8'h26	1.1875	1.493	8'h07	8'h2a	2.6250	8.383
8'h03	8'h27	1.2188	1.718	8'h07	8'h2b	2.6875	8.587
8'h03	8'h28	1.2500	1.938	8'h07	8'h2c	2.7500	8.787
8'h03	8'h29	1.2813	2.153	8'h07	8'h2d	2.8125	8.982
8'h03	8'h2a	1.3125	2.362	8'h07	8'h2e	2.8750	9.173
8'h03	8'h2b	1.3438	2.566	8'h07	8'h2f	2.9375	9.360
8'h03	8'h2c	1.3750	2.766	8'h07	8'h30	3.0000	9.542
8'h03	8'h2d	1.4063	2.961	8'h07	8'h31	3.0625	9.722
8'h03	8'h2e	1.4375	3.152	8'h07	8'h32	3.1250	9.897
8'h03	8'h2f	1.4688	3.339	8'h07	8'h33	3.1875	10.069
8'h03	8'h30	1.5000	3.522	8'h07	8'h34	3.2500	10.238
8'h03	8'h31	1.5313	3.701	8'h07	8'h35	3.3125	10.403
8'h03	8'h32	1.5625	3.876	8'h07	8'h36	3.3750	10.565
8'h03	8'h33	1.5938	4.048	8'h07	8'h37	3.4375	10.725
8'h03	8'h34	1.6250	4.217	8'h07	8'h38	3.5000	10.881
8'h03	8'h35	1.6563	4.383	8'h07	8'h39	3.5625	11.035
8'h03	8'h36	1.6875	4.545	8'h07	8'h3a	3.6250	11.186
8'h03	8'h37	1.7188	4.704	8'h07	8'h3b	3.6875	11.335
8'h03	8'h38	1.7500	4.861	8'h07	8'h3c	3.7500	11.481
8'h03	8'h39	1.7813	5.014	8'h07	8'h3d	3.8125	11.624
8'h03	8'h3a	1.8125	5.166	8'h07	8'h3e	3.8750	11.765
8'h03	8'h3b	1.8438	5.314	8'h07	8'h3f	3.9375	11.904
8'h03	8'h3c	1.8750	5.460	8'h0f	8'h20	4.0000	12.041
8'h03	8'h3d	1.9063	5.604	8'h0f	8'h21	4.1250	12.308
8'h03	8'h3e	1.9375	5.745	8'h0f	8'h22	4.2500	12.568
8'h03	8'h3f	1.9688	5.884	8'h0f	8'h23	4.3750	12.820
8'h07	8'h20	2.0000	6.021	8'h0f	8'h24	4.5000	13.064
8'h07	8'h21	2.0625	6.288	8'h0f	8'h25	4.6250	13.302
8'h07	8'h22	2.1250	6.547	8'h0f	8'h26	4.7500	13.534
8'h07	8'h23	2.1875	6.799	8'h0f	8'h27	4.8750	13.759

SC1345

ANA	ANA	GAIN	dB	ANA		GAIN	dB
GAIN	FINE	Value	Value	GAIN	ANA FINE	Value	Value
8'h0f	8'h28	5.0000	13.979	8'h1f	8'h24	9.0000	19.085
8'h0f	8'h29	5.1250	14.194	8'h1f	8'h25	9.2500	19.323
8'h0f	8'h2a	5.2500	14.403	8'h1f	8'h26	9.5000	19.554
8'h0f	8'h2b	5.3750	14.608	8'h1f	8'h27	9.7500	19.780
8'h0f	8'h2c	5.5000	14.807	8'h1f	8'h28	10.0000	20.000
8'h0f	8'h2d	5.6250	15.002	8'h1f	8'h29	10.2500	20.214
8'h0f	8'h2e	5.7500	15.193	8'h1f	8'h2a	10.5000	20.424
8'h0f	8'h2f	5.8750	15.380	8'h1f	8'h2b	10.7500	20.628
8'h0f	8'h30	6.0000	15.563	8'h1f	8'h2c	11.0000	20.828
8'h0f	8'h31	6.1250	15.742	8'h1f	8'h2d	11.2500	21.023
8'h0f	8'h32	6.2500	15.918	8'h1f	8'h2e	11.5000	21.214
8'h0f	8'h33	6.3750	16.090	8'h1f	8'h2f	11.7500	21.401
8'h0f	8'h34	6.5000	16.258	8'h1f	8'h30	12.0000	21.584
8'h0f	8'h35	6.6250	16.424	8'h1f	8'h31	12.2500	21.763
8'h0f	8'h36	6.7500	16.586	8'h1f	8'h32	12.5000	21.938
8'h0f	8'h37	6.8750	16.745	8'h1f	8'h33	12.7500	22.110
8'h0f	8'h38	7.0000	16.902	8'h1f	8'h34	13.0000	22.279
8'h0f	8'h39	7.1250	17.056	8'h1f	8'h35	13.2500	22.444
8'h0f	8'h3a	7.2500	17.207	8'h1f	8'h36	13.5000	22.607
8'h0f	8'h3b	7.3750	17.355	8'h1f	8'h37	13.7500	22.766
8'h0f	8'h3c	7.5000	17.501	8'h1f	8'h38	14.0000	22.923
8'h0f	8'h3d	7.6250	17.645	8'h1f	8'h39	14.2500	23.076
8'h0f	8'h3e	7.7500	17.786	8'h1f	8'h3a	14.5000	23.227
8'h0f	8'h3f	7.8750	17.925	8'h1f	8'h3b	14.7500	23.376
8'h1f	8'h20	8.0000	18.062	8'h1f	8'h3c	15.0000	23.522
8'h1f	8'h21	8.2500	18.329	8'h1f	8'h3d	15.2500	23.665
8'h1f	8'h22	8.5000	18.588	8'h1f	8'h3e	15.5000	23.807
8'h1f	8'h23	8.7500	18.840	8'h1f	8'h3f	15.7500	23.946

表 2-5 数字 gain 值控制寄存器

		<i>1</i>	₹ 2-5 数字 ga⊪	11月12円可行	「拍		
DIG	DIG FINE	GAIN	dB	DIG	DIG FINE	GAIN	dB
GAIN	GAIN	S/III	Value	GAIN	GAIN	S/AII C	Value
8'h00	8'h80	1.0000	0.000	8'h01	8'h90	2.2500	7.044
8'h00	8'h84	1.0313	0.267	8'h01	8'h94	2.3125	7.282
8'h00	8'h88	1.0625	0.527	8'h01	8'h98	2.3750	7.513
8'h00	8'h8C	1.0938	0.778	8'h01	8'h9C	2.4375	7.739
8'h00	8'h90	1.1250	1.023	8'h01	8'hA0	2.5000	7.959
8'h00	8'h94	1.1563	1.261	8'h01	8'hA4	2.5625	8.173
8'h00	8'h98	1.1875	1.493	8'h01	8'hA8	2.6250	8.383
8'h00	8'h9C	1.2188	1.718	8'h01	8'hAC	2.6875	8.587
8'h00	8'hA0	1.2500	1.938	8'h01	8'hB0	2.7500	8.787
8'h00	8'hA4	1.2813	2.153	8'h01	8'hB4	2.8125	8.982
8'h00	8'hA8	1.3125	2.362	8'h01	8'hB8	2.8750	9.173
8'h00	8'hAC	1.3438	2.566	8'h01	8'hBC	2.9375	9.360
8'h00	8'hB0	1.3750	2.766	8'h01	8'hC0	3.0000	9.542
8'h00	8'hB4	1.4063	2.961	8'h01	8'hC4	3.0625	9.722
8'h00	8'hB8	1.4375	3.152	8'h01	8'hC8	3.1250	9.897
8'h00	8'hBC	1.4688	3.339	8'h01	8'hCC	3.1875	10.069
8'h00	8'hC0	1.5000	3.522	8'h01	8'hD0	3.2500	10.238
8'h00	8'hC4	1.5313	3.701	8'h01	8'hD4	3.3125	10.403
8'h00	8'hC8	1.5625	3.876	8'h01	8'hD8	3.3750	10.565
8'h00	8'hCC	1.5938	4.048	8'h01	8'hDC	3.4375	10.725
8'h00	8'hD0	1.6250	4.217	8'h01	8'hE0	3.5000	10.881
8'h00	8'hD4	1.6563	4.383	8'h01	8'hE4	3.5625	11.035
8'h00	8'hD8	1.6875	4.545	8'h01	8'hE8	3.6250	11.186
8'h00	8'hDC	1.7188	4.704	8'h01	8'hEC	3.6875	11.335
8'h00	8'hE0	1.7500	4.861	8'h01	8'hF0	3.7500	11.481
8'h00	8'hE4	1.7813	5.014	8'h01	8'hF4	3.8125	11.624
8'h00	8'hE8	1.8125	5.166	8'h01	8'hF8	3.8750	11.765
8'h00	8'hEC	1.8438	5.314	8'h01	8'hFC	3.9375	11.904
8'h00	8'hF0	1.8750	5.460	8'h03	8'h80	4.0000	12.041
8'h00	8'hF4	1.9063	5.604	8'h03	8'h84	4.1250	12.308
8'h00	8'hF8	1.9375	5.745	8'h03	8'h88	4.2500	12.568
8'h00	8'hFC	1.9688	5.884	8'h03	8'h8C	4.3750	12.820
8'h01	8'h80	2.0000	6.021	8'h03	8'h90	4.5000	13.064
8'h01	8'h84	2.0625	6.288	8'h03	8'h94	4.6250	13.302
8'h01	8'h88	2.1250	6.547	8'h03	8'h98	4.7500	13.534
8'h01	8'h8C	2.1875	6.799	8'h03	8'h9C	4.8750	13.759

SC1345

DIG	DIG FINE		dB	DIG	DIG FINE		dB
GAIN	GAIN	GAIN	Value	GAIN	GAIN	GAIN	Value
8'h03	8'hA0	5.0000	13.979	8'h07	8'hB4	11.2500	21.023
8'h03	8'hA4	5.1250	14.194	8'h07	8'hB8	11.5000	21.214
8'h03	8'hA8	5.2500	14.403	8'h07	8'hBC	11.7500	21.401
8'h03	8'hAC	5.3750	14.608	8'h07	8'hC0	12.0000	21.584
8'h03	8'hB0	5.5000	14.807	8'h07	8'hC4	12.2500	21.763
8'h03	8'hB4	5.6250	15.002	8'h07	8'hC8	12.5000	21.938
8'h03	8'hB8	5.7500	15.193	8'h07	8'hCC	12.7500	22.110
8'h03	8'hBC	5.8750	15.380	8'h07	8'hD0	13.0000	22.279
8'h03	8'hC0	6.0000	15.563	8'h07	8'hD4	13.2500	22.444
8'h03	8'hC4	6.1250	15.742	8'h07	8'hD8	13.5000	22.607
8'h03	8'hC8	6.2500	15.918	8'h07	8'hDC	13.7500	22.766
8'h03	8'hCC	6.3750	16.090	8'h07	8'hE0	14.0000	22.923
8'h03	8'hD0	6.5000	16.258	8'h07	8'hE4	14.2500	23.076
8'h03	8'hD4	6.6250	16.424	8'h07	8'hE8	14.5000	23.227
8'h03	8'hD8	6.7500	16.586	8'h07	8'hEC	14.7500	23.376
8'h03	8'hDC	6.8750	16.745	8'h07	8'hF0	15.0000	23.522
8'h03	8'hE0	7.0000	16.902	8'h07	8'hF4	15.2500	23.665
8'h03	8'hE4	7.1250	17.056	8'h07	8'hF8	15.5000	23.807
8'h03	8'hE8	7.2500	17.207	8'h07	8'hFC	15.7500	23.946
8'h03	8'hEC	7.3750	17.355	8'h0f	8'h80	16.0000	24.082
8'h03	8'hF0	7.5000	17.501	8'h0f	8'h84	16.5000	24.350
8'h03	8'hF4	7.6250	17.645	8'h0f	8'h88	17.0000	24.609
8'h03	8'hF8	7.7500	17.786	8'h0f	8'h8C	17.5000	24.861
8'h03	8'hFC	7.8750	17.925	8'h0f	8'h90	18.0000	25.105
8'h07	8'h80	8.0000	18.062	8'h0f	8'h94	18.5000	25.343
8'h07	8'h84	8.2500	18.329	8'h0f	8'h98	19.0000	25.575
8'h07	8'h88	8.5000	18.588	8'h0f	8'h9C	19.5000	25.801
8'h07	8'h8C	8.7500	18.840	8'h0f	8'hA0	20.0000	26.021
8'h07	8'h90	9.0000	19.085	8'h0f	8'hA4	20.5000	26.235
8'h07	8'h94	9.2500	19.323	8'h0f	8'hA8	21.0000	26.444
8'h07	8'h98	9.5000	19.554	8'h0f	8'hAC	21.5000	26.649
8'h07	8'h9C	9.7500	19.780	8'h0f	8'hB0	22.0000	26.848
8'h07	8'hA0	10.0000	20.000	8'h0f	8'hB4	22.5000	27.044
8'h07	8'hA4	10.2500	20.214	8'h0f	8'hB8	23.0000	27.235
8'h07	8'hA8	10.5000	20.424	8'h0f	8'hBC	23.5000	27.421
8'h07	8'hAC	10.7500	20.628	8'h0f	8'hC0	24.0000	27.604
8'h07	8'hB0	11.0000	20.828	8'h0f	8'hC4	24.5000	27.783

Company Confidential 数据手册

SC1345

8'h0f 8'h0f	GAIN	GAIN	dB Value	DIG GAIN	DIG FINE GAIN	GAIN	dB Value
	8'hC8	25.0000	27.959	8'h0f	8'hE4	28.5000	29.097
	8'hCC	25.5000	28.131	8'h0f	8'hE8	29.0000	29.248
8'h0f	8'hD0	26.0000	28.299	8'h0f	8'hEC	29.5000	29.396
8'h0f	8'hD4	26.5000	28.465	8'h0f	8'hF0	30.0000	29.542
8'h0f	8'hD8	27.0000	28.627	8'h0f	8'hF4	30.5000	29.686
8'h0f	8'hDC	27.5000	28.787	8'h0f	8'hF8	31.0000	29.827
8'h0f	8'hE0	28.0000	28.943	8'h0f	8'hFC	31.5000	29.966
			ONII	eni			

2.3. GROUP_HOLD

SC1345 具有 Group hold 功能, Group hold 指的是把寄存器打包在一帧特定时刻生效的功能。SC1345 最多支持 10 个寄存器打包;支持帧延迟写入功能,延迟帧数由寄存器控制。

使用方法: 寄存器 16'h3812 写 8'h00,需要打包生效的寄存器写入对应值,寄存器 16'h3812 写 8'h30。

注:

- 1) 需要打包生效的寄存器最多支持 10 个;
- 2) 打包生效的时刻为 16'h3812 写 8'h30 之后第一个帧内生效时刻(帧延迟为 0 时), 帧内生效时刻由寄存器 {16'h3235,16'h3236}控制, {16'h3235,16'h3236}=16'h0 时表示帧开始。

		· · · · · · · · · · · · · · · · · · ·
功能	寄存器名	描述 描述
帧内生效时刻	{16'h3235,16'h3236}	帧内生效时刻,以行为单位,当该值等于0时表示帧开始
帧延迟控制	16'h3802	Bit[7:0]: 帧延迟控制,生效时间帧延迟控制,写0表示不做帧延迟,写1表示一帧延迟

表 2-6 Group hold 控制寄存器

2.4. 视频输出模式

2.4.1. 读取顺序

下图提供了芯片工作的时候,第一个读取的 pixel 位置,以及整个 array 的结构示意图。此图是在 A1pin 脚置于左上方的时候得到(top view)。

图 2-3 像素阵列图一

图 2-4 给出了 first pixel 的数据颜色格式。

图 2-4 像素阵列图二

SC1345 提供镜像模式和倒置模式。前者会水平颠倒传感器的数据读出顺序;而后者会垂直颠倒传感器的读出顺序。如图 2-5 所示。

表 2-7 镜像和倒置模式控制寄存器

功能	寄存器地址	默认值	描述
镜像模式	16'h3221	8'h00	Bit[2:1]: mirror ctrl 2'b00~mirror off 2'b11~mirror on
倒置模式	16'h3221	8'h00	Bit[6:5]: flip ctrl 2'b00~flip off 2'b11~flip on

2.4.2. 输出窗口

表 2-8 输出窗口寄存器

地址	寄存器名	描述
16'h3208	窗口宽度	Bit[7:0]: 输出窗口宽度的高八位
16'h3209	窗口宽度	Bit[7:0]: 输出窗口宽度的低八位
16'h320a	窗口高度	Bit[7:0]: 输出窗口高度的高八位
16'h320b	窗口高度	Bit[7:0]: 输出窗口高度的低八位
16'h3210	列起始	Bit[7:0]: 输出窗口列起始位置的高八位
16'h3211	列起始	Bit[7:0]: 输出窗口列起始位置的低八位
16'h3212	行起始	Bit[7:0]: 输出窗口行起始位置的高八位
16'h3213	行起始	Bit[7:0]: 输出窗口行起始位置的低八位

2.5. 帧率计算

SC1345 帧率由 FAE 提供,在此给出一种简单的计算一行时间的方法:

一行时间=1/(帧率*帧长)。

表 2-9 帧率相关寄存器

功能	寄存器地址	默认值	描述
帧长	{16'h320e[6:0],16'h320f}	16'h02ee	帧长={16'h320e[7:0],16'h320f}

2.6. 测试模式

为方便测试, SC1345 提供一种灰度递增测试模式, 如下图所示。

图 2-6 测试模式

表 2-10 测试模式控制寄存器

功能	寄存器地址	寄存器值	默认值	描述
~0	•			Bit[3]: incremental pattern enable
	16'h4501[3]	1'b1	0xa4	0~ normal image
灰度渐变模式				1~ incremental pattern
外及研又供 以				Bit[6]: blc auto enable
	16'h3902[6]	1'b0	0xc5	0~ manual BLC
				1~auto BLC

3. 电气特性

表 3-1 绝对最大额定值

项目	符号	绝对最大额定值范围	单位
模拟电源电压	V_{AVDD}	-0.3~3.4	V
I/O 电源电压	V _{DOVDD}	-0.3~2.2	V
数字电源电压	$V_{ extsf{DVDD}}$	-0.3~2.2	V
I/O 输入电压	Vı	-0.3~V _{DOVDD} +0.3	V
I/O 输出电压	Vo	-0.3~V _{DOVDD} +0.3	V
工作温度	T _{OPR}	-30~+85	°C
最佳工作温度	T _{SPEC}	-20~+60	°C
贮存温度	T _{STG}	-40~+85	°C

表 3-2 直流电气特性

项目	符号	最小值	典型值	最大值	单位
电源			. /		
模拟电源电压	V _{AVDD}	2.7	2.8	2.9	V
I/O 供电电压	V_{DOVDD}	1.7	1.8	1.9	V
数字电源	V_{DVDD}	1.7	1.8	1.9	V
电流(工作电流*1	线性模式 60f	ps MIPI 1-lane ou	tput)		
模拟电源电流	I _{AVDD}	- ८५८	TBD	-	mA
I/O 电源电流	I _{DOVDD}	-	TBD	-	mA
数字电源电流	I _{DVDD}		TBD	-	mA
总功耗	Power (*)	() ·	TBD	-	mW
数字输入					
输入低电平	VIL	_	-	0.3 x DOVDD	V
输入高电平	ViH	0.7 x DOVDD	-	-	V
输入电容	Cin	-	-	10	pF
数字输出(25pF #	示准负载)				
输出高电平	Vон	0.9 x DOVDD	-	-	V
输出低电平	Vol	-	-	0.1 x DOVDD	V
串行接口输入(SO	CL 和 SDA)				
输入低电平	VIL	- 0.5	0	0.3 x DOVDD	V
输入高电平	Vін	0.7 x DOVDD	DOVDD	DOVDD+0.5	V

注: *1 工作电流: (典型值) 工作电压 2.8V/1.8V/1.8V, T_j=25°C;

亮度条件:芯片亮度达到最大亮度 1/3 时。

表 3-3 交流特性 (TA=25℃, AVDD=2.8V, DOVDD=1.8V)

项目	符号	最小值	典型值	最大值	単位
交流参数					
直流微分线性误差	DLE	-	<1	-	LSB
直流积分线性误差	ILE	-	<2	-	LSB
晶振和时钟输入					
EXTCLK 频率	fextclk	6	-	40	MHz
EXTCLK 高电平脉冲宽度	tw⊦	5	-	-	ns
EXTCLK 低电平脉冲宽度	t _{WL}	5	-	-	ns
EXTCLK 占空比	-	45	50	55	%

图 3-1 外部时钟(EXTCLK)波形图

4. 光学特性

4.1. QE 曲线

SC1345 光谱响应曲线如图 4-1 所示。

图 4-1 SC1345 光谱曲线

4.2. 主光线入射角 (CRA)

SC1345 CRA 曲线如下图所示。

图 4-2 CRA Curve

5. 封装信息

SC1345 提供 29-pin CSP 的封装, 封装尺寸图如图 5-1 所示。

Mechanical drawing

Top View(Image Side)

图 5-1 SC1345 封装示意图

注: 芯片的 Chip Center 与 Array Center(optical center)/BGA center 不重合。以 Chip Center 为原点,Array Center 和 BGA Center 为(21.16, 19.6),单位为 μm。

表 5-1 封装尺寸表

Parameter	Symbol	Nominal	Min	Max	Nominal	Min	Max
		N	lillimeters			Inches	
Package Body Dimension X	C-A	4.11	4.085	4.135	0.16181	0.16083	0.1628
Package Body Dimension Y	В	2.874	2.849	2.899	0.11315	0.11217	0.11413
Package Height	С	0.64	0.585	0.695	0.0252	0.02303	0.02736
Cavity wall height	C4	0.041	0.037	0.045	0.00161	0.00146	0.00177
Cavity wall + epoxy thickness							
(glass to the wafer bonding top	C5	0.0435	0.0385	0.0485	0.00171	0.00152	0.00191
point)							
Si Thickness	C6	0.13	0.12	0.14	0.00512	0.00472	0.00551
Glass Thickness	C3	0.3	0.29	0.31	0.01181	0.01142	0.0122
Package Body Thickness	C2	0.51	0.475	0.545	0.02008	0.0187	0.02146
Ball Height	C1	0.13	0.1	0.16	0.00512	0.00394	0.0063
Ball Diameter	SФ	0.25	0.22	0.28	0.00984	0.00866	0.01102
Total Ball Count	N	29(1NC)	-	-	-	-	-
Ball Count X axis	N1	6	-	-	-	-	-
Ball Count Y axis	N2	5	-	-	-	-	-
Pins Pitch X axis1	J1	0.655	0.645	0.665	0.02579	0.02539	0.02618

Company Confidential

数据手册

Parameter	Symbol	Nominal	Min	Max	Nominal	Min	Max
		N	lillimeters			Inches	
Pins Pitch Y axis2	J2	0.535	0.525	0.545	0.02106	0.02067	0.02146
BGA ball center to package center	Х	0.02116	-0.0038	0.0462	0	-0.00015	0.00182
offset in X-direction	^	0.02110	-0.0036	0.0402	U	-0.00013	0.00162
BGA ball center to package center	Y	0.0196	-0.0054	0.0446	0.00077	-0.00021	0.00176
offset in Y-direction	'	0.0100	0.0001	0.0110	0.00077	0.00021	0.00170
Edge to Ball Center Distance	S1	0.39634	0.3663	0.4263	0.0156	0.01442	0.01679
along X1	<u> </u>				0.0.00		
Edge to Ball Center Distance	S2	0.3474	0.3174	0.3774	0.01368	0.0125	0.01486
along Y1							
Edge to Ball Center Distance	S3	0.43866	0.4087	0.4687	0.01727	0.01609	0.01845
along X2						-	
Edge to Ball Center Distance	S4	0.3866	0.3566	0.4166	0.01522	0.01404	0.0164
along Y2							
SMaris	S	onfile					

6. 版本变更记录

0.1 初始版本 Vicky Song/2020.7.21 0.2 更新灵敏度和 QE 曲线、増加 ESD 等级 Vicky Song/2020.12.15	0.2 更新灵敏度和 QE 曲线,增加 ESD 等级 Vicky Song/2020.12.15	0.2 更新灵敏度和 QE 曲线,增加 ESD 等级 Vicky Song/2020.12.15	0.2 更新灵敏度和 QE 曲线,增加 ESD 等级 Vicky Song/2020.12.15	0.2 更新灵敏度和 QE 曲线,增加 ESD 等级 Vicky Song/2020.12.15	0.2 更新灵敏度和 QE 曲线,增加 ESD 等级 Vicky Song/2020.12.15	0.2 更新灵敏度和 QE 曲线,增加 ESD 等级 Vicky Song/2020.12.15	0.2 更新灵敏度和 QE 曲线,增加 ESD 等级 Vicky Song/2020.12.15		修改内容以及说明	Owner and date
offider High Appropriate of the control of the cont	Confidential. ADA Only	on tidential. And the contidential of the contident of	on the series of	on the state of th	on the contidential. And the contidential in the continuous contidential in the contidential in the continuous contidential in the continuous	on tidential. And American Continues of the Continues of	on tidential. And American Continues of the Continues of	0.1	初始版本	Vicky Song/2020.7.21
	Conill	Conill	Coinill Coinill	Conill	Conill	Conili	Conil	0.2	更新灵敏度和 QE 曲线,增加 ESD 等级	Vicky Song/2020.12.15
CIN'O.	9 .								Keins Collin	

联系我们:

总部:

Confidential. And Confidential. 地址:上海市徐汇区宜山路 1009 号 11 楼

电话: 021-64853570

传真: 021-64853570-8009

邮箱: sales@smartsenstech.com

网址: http://www.smartsenstech.com

美国分公司:

地址: 4340 Stevens Creek Blvd. Suite 280, San Jose, CA 95129.

Tel: +1(408)981-6626

深圳分公司:

地址:深圳市龙岗区坂田街道五和大道南星河 WORLD B 座 2908 电话: 0755-23739713

思特威技术支持邮箱:

support@smartsenstech.com