INTRODUCTION

Uses of Computer Networks

- Business Applications
- □ Home Applications
- Mobile Users
- □ Social Issues

Business Applications of Networks

The client-server model involves requests and replies.

Network Applications

- Access to remote information
- Person-to-person communication
- Interactive entertainment
- Electronic commerce

Types of Network Applications

□ Some forms of e-commerce.

Tag	Full name	Example		
B2C	Business-to-consumer	Ordering books on-line		
B2B	Business-to-business	Car manufacturer ordering tires from supplier		
G2C	Government-to-consumer	Government distributing tax forms electronically		
C2C	Consumer-to-consumer	Auctioning second-hand products on-line		
P2P	Peer-to-peer	File sharing		

Typical Mobile Network Users

 Combinations of wireless networks and mobile computing.

Wireless Mobile		Applications		
No	No	Desktop computers in offices		
No	Yes	A notebook computer used in a hotel room		
Yes	No	Networks in older, unwired buildings		
Yes	Yes	Portable office; PDA for store inventory		

Network Hardware

- Local Area Networks
- Metropolitan Area Networks
- Wide Area Networks
- Wireless Networks
- □ Home Networks
- Internetworks

Broadcast Networks

- Types of transmission technology
 - Broadcast links
 - ■Point-to-point links

Broadcast Networks - Definitions

Classification of interconnected processors by scale.

Interprocessor distance	Processors located in same	Example	
1 m	Square meter	Personal area network	
10 m	Room		
100 m	Building	Local area network	
1 km Campus			
10 km	City	Metropolitan area network	
100 km	Country		
1000 km	Continent	├ Wide area network	
10,000 km	Planet	The Internet	

Local Area Networks

- □ Two broadcast networks
 - (a) Bus
 - (b) Ring

Metropolitan Area Networks

A metropolitan area network based on cable TV.

Wide Area Networks

A stream of packets from sender to receiver.

Wireless Networks

- Categories of wireless networks:
 - **■**System interconnection
 - ■Wireless LANs
 - ■Wireless WANs

Types of Wireless Networks

- (a) Bluetooth configuration
- (b) Wireless LAN

Home Network Categories - IoT

- Computers (desktop PC, PDA, shared peripherals)
- Entertainment (TV, DVD, VCR, camera, stereo, MP3)
- Telecomm (telephone, cell phone, intercom, fax)
- Appliances (microwave, fridge, clock, furnace, aircon)
- □ Telemetry (utility meter, burglar alarm, babycam).

Network Software

- Protocol Hierarchies
- Design Issues for the Layers
- Connection-Oriented and Connectionless Services
- Service Primitives
- The Relationship of Services to Protocols

Network Software Protocol Hierarchies

Layers, protocols, and interfaces.

Protocol Hierarchies (2)

The philosopher-translator-secretary architecture.

Protocol Hierarchies (3)

 Example information flow supporting virtual communication in layer 5.

Design Issues for the Layers

- Addressing
- Error Control
- Flow Control
- Multiplexing
- Routing

Connection-Oriented and Connectionless Services

□ Six different types of service.

Connectionoriented

Connectionless

	Service	Example
	Reliable message stream	Sequence of pages
> -	Reliable byte stream	Remote login
	Unreliable connection	Digitized voice
	Unreliable datagram	Electronic junk mail
	Acknowledged datagram	Registered mail
	Request-reply	Database query

Service Primitives

Primitive	Meaning		
LISTEN	Block waiting for an incoming connection		
CONNECT	Establish a connection with a waiting peer		
RECEIVE	Block waiting for an incoming message		
SEND	Send a message to the peer		
DISCONNECT	Terminate a connection		

□ Five service primitives for implementing a simple connection-oriented service.

Service Primitives (2)

 Packets sent in a simple client-server interaction on a connection-oriented network.

Services to Protocols Relationship

The relationship between a service and a protocol.

Reference Models

- The OSI Reference Model
- The TCP/IP Reference Model
- A Comparison of OSI and TCP/IP
- A Critique of the OSI Model and Protocols
- A Critique of the TCP/IP Reference Model

Reference Models - OSI

Reference Models - TCP/IP

Comparing OSI and TCP/IP Models

- Concepts central to the OSI model
 - Services
 - Interfaces
 - Protocols

A Critique of the OSI Model and Protocols

- Why OSI did not take over the world
 - ■Bad timing
 - Bad technology
 - ■Bad implementations
 - Bad politics

Bad Timing

A Critique of the TCP/IP Reference Model

□ Problems:

- Service, interface, and protocol not distinguished
- Not a general model
- Host-to-network "layer" not really a layer
- No mention of physical and data link layers
- Minor protocols deeply entrenched, hard to replace

Hybrid Model

5	Application layer
4	Transport layer
3	Network layer
2	Data link layer
1	Physical layer

Example Networks

The Internet

Connection-Oriented Networks:
 X.25, Frame Relay, and ATM

Ethernet

Wireless LANs: 802:11

The ARPANET

- (a) Structure of the telephone system.
- (b) Baran's proposed distributed switching system.

Internet Usage

- Traditional applications
 - ■E-mail
 - ■News, RSS feeds & Twitter etc
 - ■Remote login
 - □File transfer

Architecture of the Internet

Overview of the Internet.

ATM Virtual Circuits

□ A virtual circuit.

Ethernet

□ Architecture of the original Ethernet.

Types of Wireless LANs

- (a) Wireless networking with a base station.
- □ (b) Ad hoc networking.

Wireless LANs - Range

The range of a single radio may not cover the entire system.

Complex Wireless LANs

□ A multicell 802.11 network.

Network Standardization

- Who's Who in the Telecommunications World
- Who's Who in the International Standards World
- Who's Who in the Internet Standards World

ITU

- Main sectors
 - Radiocommunications
 - Telecommunications Standardization
 - Development
- Classes of Members
 - National governments
 - Sector members
 - Associate members
 - Regulatory agencies

IEEE 802 Standards

Number	Topic			
802.1	Overview and architecture of LANs			
802.2 ↓	Logical link control			
802.3 *	Ethernet			
802.4 ↓	Token bus (was briefly used in manufacturing plants)			
802.5	Token ring (IBM's entry into the LAN world)			
802.6 ↓	Dual queue dual bus (early metropolitan area network)			
802.7 ↓	Technical advisory group on broadband technologies			
802.8 †	Technical advisory group on fiber optic technologies			
802.9 ↓	lsochronous LANs (for real-time applications)			
802.10↓	Virtual LANs and security			
802.11 *	Wireless LANs			
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)			
802.13	Unlucky number. Nobody wanted it			
802.14↓	Cable modems (defunct: an industry consortium got there first)			
802.15 *	Personal area networks (Bluetooth)			
802.16 *	Broadband wireless			
802.17	Resilient packet ring			

Metric Units

Exp.	Explicit	Prefix	Exp.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10 ⁻⁶	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 -12	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 -21	0.00000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 -24	0.0000000000000000000000000000000000000	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

□ The principal metric prefixes.