

Week 4:

Logical Effort Theory (for Gate Sizing)

Prof. Dejan Markovic UCLA

Week 4 Agenda

- The Concept of Logical Effort
- Buffer Chain Example
- Multi-Stage Logic Networks

2

The Concept of Logical Effort

Instead of running lots of simulations

Simplified: (almost) back-of-envelope calculations for speed performance

Basic concept:

- Delay =
$$R_{gate}(C_{load} + C_{self}) = R_{gate}C_{load} + R_{gate}C_{self}$$
- Logical Effort basic equation: $d = f + p$
• d is the delay (normalized)

- f is known as the effort delay.
- p is known as the parasitic delay.

-
$$d = Delay/C = (R_{gate}C_{load} + R_{gate}C_{self})/R_0C_0$$

- Normalized to the delay of a FO-1 inverter (no self load)

 R INV
- With $R_0 = R_{qate}$, d = fanout + normalized parasitic.
- So f is essentially equivalent to fanout.
- d is a measure that is <u>independent of process</u>, <u>voltage</u>, <u>temp</u>.

The Logical Effort Way of Thinking...

• Gate delay we used up to now:

Another way to write this formula is:

Cin

Now Normalize the Delay $(\tau = ?)$

Strategy: normalize to a time constant of an inverter

Approach 1: normalize to fictitious "technology time constant"

Approach 2: normalize to intrinsic delay of inverter

$$\frac{Delay}{t_{p0,INV}} = \underbrace{\frac{\tau_{gate}}{t_{p0,INV}}} \left(\gamma_{gate} + \frac{C_{out}}{C_{in,gate}} \right) \quad \text{tpo=RINV-Cint}$$

Both formulations exist in the literature <u>We use approach 1</u> from the original logical effort theory (Doesn't really matter – it's just a normalization constant)

Normalized Delay

Strategy: normalize to a time constant of an inverter

Approach 1: normalize to fictitious "technology time constant"

$$\frac{Delay}{\tau_{INV}} = \frac{\tau_{gate}}{\tau_{INV}} \left(\gamma_{gate} + \frac{C_{out}}{C_{in,gate}} \right)$$

- Normalized delay: $d = g \cdot (\gamma_{aate} + h)$

$$d = g \cdot h + p \cdot \gamma$$

gh – **load** (size dependent) • Even simpler: $d = g \cdot h + p \cdot \gamma$ py – parasitic (size independent)

Logical effort terms

Logical effort (g)

$$g = \frac{R_{gate} \cdot C_{in,gate}}{R_{INV} \cdot C_{in,INV}}$$
 $h = \frac{C_{out}}{C_{in,gate}}$ $p = \frac{C_{par,gate}}{C_{par,INV}}$

Electrical fanout (h)

$$h = \frac{C_{out}}{C_{in,gate}}$$

Parasitic effort (p)

$$p = \frac{C_{par,gate}}{C_{par,INV}}$$

The Meaning of Logical Effort Terms: Summary

Logical effort terms

Logical effort (g)

Electrical fanout (h)

$$h = \frac{C_{out}}{C_{cont}}$$

Parasitic effort (p)

$$g = \frac{R_{gate} \cdot C_{in,gate}}{R_{INV} \cdot C_{in,INV}} \qquad h = \frac{C_{out}}{C_{in,gate}} \qquad p = \frac{C_{par,gate}}{C_{nar,INV}}$$

Intuition

- Logical effort (g)
 - R_{on} ratio for equal C_{in} (or, equivalently, C_{in} ratio for equal R_{on})

$$g = \frac{C_{in,gate}}{C_{in,INV}}$$

- Electrical fanout (h)
 - C_{out} / C_{in} ratio (gate cap only, diffusion counts in the p term)
- Parasitic effort (p)
 - Ratio of parasitic capacitances for equal R_{on}

Calibrating the Model

The values for g and p can be extracted from simulation

- Because, $d = g^*h + p^*\gamma$
- Simulating the delay of the gate for different loads
 - Drive itself with different multiplication factor
- Extract τ using inverter with no self-loading (AS, AD, PS, PD = 0)
- Vary the inputs (and rise/fall) for different g and p

Typical Simulation Data (*)

(*) assumes $\gamma = 1$

9

 $d_{gate} = g \cdot h + p \cdot \gamma = effort delay + parasitic delay$

Computing Logical Effort: g

g is an unitless inherent characteristic of the gate

- Not a function of size of the gate
- It is a function of the construction of the gate
 (connection and relative size between transistors)
- An indication of the "cost" of implementing the function.

Procedure:

- Choose an input.
- 2. Find total device width driven by that input.
- Find W_P, the pull-up device width of a single device that has equivalent drive strength as a gate's pull-up of that input.
- 4. For a reference inverter with Equal Rise/Fall, $\beta = \mu$, with W_P from Step 3, determine the total gate widths of the inverter devices.
- 5. Divide Step 2 by Step 4 to determine g_{up}.
- 6. Repeat Steps 3-5 for pull-down device for g_{down}.
 - The two g's would only be different if β of gate is not μ .

Calculating Logical Effort – Simple Example

DEF: Logical effort is the ratio of the <u>input capacitance</u> to the input capacitance of an inverter delivering the same output current

Another Example

Common assumptions

- C_{gate} proportional to Device Width
- R_{gate} inversely proportional to Device Width.
- For a NOR gate
 - $\beta = \mu = 3$
 - Units are not so important

- Equivalent inverter
 - $-W_{P}:W_{N}=6:2$
 - $-C_{GINV} = 8$
- NOR gate input capacitance

$$- C_{G_NOR} = 14$$

$$- Logical Effort = 7/4$$

$$\frac{21}{12} = \frac{7}{4}$$

Caveat: don't get confused with absolute transistor sizing!

Calculating Parasitic Effort – Simple Example

DEF: Parasitic delay is the ratio of <u>intrinsic capacitance</u> at the output and intrinsic capacitance at the output of an equivalent inverter

Calculating Parasitic Effort – Another Example

- Typically given since it depends on C_{diffusion} of a gate
- Example: assume $C_{S/D}=0.5C_G=0.5C_O$ (% = 0.5)
 - For an inverter $C_{self}/C_{inv} = p_{INV} = 0.5 = 1.5$
 - Higher C_{S/D}/C_G results in larger p (penalizing delay more).
 - C_{S/D}/C_G is often close to 1

Caveat: & is part of PINU (8#1)

Calculating p Including Series Stacking

What about the intermediate nodes?

- One way to account for them is to use an "effective" p.
- For example: NOR pull up of B input

•
$$R_{NOR} = 2*R_{PMOS}$$
. Self-loading
• Delay = $(R_{NOR}/2)*C_1 + R_{NOR}*C_2 + R_{NOR}*C_{load}$

- $p_{BUP} = [(R_{NOR}/2)*C_1 + R_{NOR}*C_2]/(R_{inv}*C_{inv})$ (where $R_{inv} = R_{gate}$)
- $p_{BUP} = (C_1/2 + C_2)/C_{inv}$

Using
$$C_{S/D} = 0.5C_G$$

$$C_1 = 6C_o$$
 (shared)

$$C_2 = 8C_0$$

$$p_{BUP} = 11/4$$

Note: this increased accuracy requires different p's for different input AND pull up/down.

EE115C model: simplify by ignoring these nodes

Generalize N-input NAND

N-NOR: $C_{in} \sim 2N + 1$ N-NAND: $C_{in} \sim 2 + N$

N-NOR: $C_{par} \sim 3N$ N-NAND: $C_{par} \sim 3N$

Output load = 3N

- N size-2 PMOS=2N
- 1 size-N NMOS = N
- Intermediate load = N (shared)
- Total pull down delay
 - $T = R(3NC_o) + sum(i=1-N-1)\{(iR/N)*NC_o\}$
 - d (norm) = 3N + (N²/2 N/2)
 - $p = (N^2/2 N/2)$
 - Proportional to N²!!!

This is bad news for long stacks

- Even worse for PMOS (NOR)
- Reality is even worse since C_{GS} makes each intermediate node capacitance > NC_o

A Catalog of Gates

Gata Type	g for Different number of inputs					
Gate Type	1	2	3	4	5	n
Inverter	1					
NAND		4/3	5/3	6/3	7/3	(n+2)/3
NOR		5/3	7/3	9/3	11/3	(2n+1)/3
Multiplexer		2	2	2	2	2
XOR,XNOR		4	12	32		
Gate Type				Parasitic delay		
Inverter				p _{inv}		
n-input NAND				np _{inv}		
n-input NOR				np _{inv}		
n-way Multiplexer				2np _{inv}		
2-input XOR,XNOR (sym)				n2 ⁿ⁻¹ p _{inv}		

- $\beta = \mu = 2$
- Mux is tri-state inverters shorted together.
- XOR assumes that input is bundled (a,a')
- p_{INV} ~ 1
- p_{GATE} in this table does not include intermediate nodes.

Example #1: Ring Oscillator

Estimate the frequency of an *N*-stage ring oscillator:

Logical Effort:

$$g = 1$$

Electrical Effort:

$$h = C_{out}/C_{in} = 1$$

 $d = g \cdot h + p = 2$

Parasitic Delay:

$$p = p_{inv} = 1$$

Stage Delay:

$$f_{OSC} = \frac{1}{2Nd\tau} = \frac{1}{4N\tau}$$

gpdk090:

$$t_{\text{stage}} = 13ps (TT)$$

Example #2: Fanout-of-4 (FO4) Inverter

Estimate the delay of a fanout-of-4 (FO4) inverter:

Logical Effort:

$$g = 1$$

Electrical Effort:

$$h = C_{out}/C_{in} = 4$$

<u>gpdk090:</u>

 $t_{FO4} = 33ps (TT)$

19

Parasitic Delay:

$$p = p_{inv} = 1$$

Stage Delay:

$$d = g \cdot h + p = 5$$

Summary

- Delay and/or power of a logic network depend significantly on the relative sizes of logic gates (not transistors within a gate)
- Inverter buffering is a simple example of the analysis
 - The analysis leads to ~FO4 as being optimal fanout for driving larger C loads
- To generalize analysis of delay, we introduce logical effort
 - Delay normalized by inverter delay, d = gh + pγ
 - g and p are characteristics of a logic gate that depends on its structure and does not depend on gate size.
 - May have different g's and p's for different inputs and pull-up / pull-down
 - Simplify by using g_{AVG} and ignoring C's of intermediate nodes
 - Once a table of g's and p's are created for the catalog of gates, delay can be calculated quickly and easily
- Next, we will look at how to size a network instead of just analyzing it

Week 4 Agenda

The Concept of Logical Effort

Buffer Chain Example

Multi-Stage Logic Networks

Logical Effort Applied to Inverter Chain

In

Out

$$t_{p} = t_{p1} + t_{p2} + \dots + t_{pN}$$

$$t_{pj} \sim \mathbf{R}_{gate,unit} \mathbf{C}_{in,gate,unit} \left(\gamma + \frac{\mathbf{C}_{gin,j+1}}{\mathbf{C}_{gin,j}} \right)$$

$$t_{p} = \sum_{j=1}^{N} t_{p,j} = \tau \sum_{i=1}^{N} \left(\gamma + \frac{\mathbf{C}_{gin,j+1}}{\mathbf{C}_{gin,i}} \right), \quad \mathbf{C}_{gin,N+1} = \mathbf{C}_{L}$$

Optimal Tapering for Given N

- ullet Delay equation has N-1 unknowns, $C_{gin,2}$... $C_{gin,N}$
- Minimize the delay, find N-1 partial derivatives
- Result: $C_{gin,j+1}$ / $C_{gin,j} = C_{gin,j}$ / $C_{gin,j-1}$
- Size of each stage is the geometric mean of two neighbors:

$$C_{gin,j} = \sqrt{C_{gin,j-1} \cdot C_{gin,j+1}}$$

- Each stage has the same fanout, $C_{\it out}$ / $C_{\it in}$
- Each stage has the same delay

Optimum Delay and Number of Stages

When each stage is sized by f and has same fanout f:

$$f^N = F = C_L / C_{gin,1}$$

Effective fanout of each stage:

$$f = \sqrt[N]{F}$$

Minimum path delay:

$$t_p = N \tau \left(\gamma + \sqrt[N]{F} \right)$$

Toy Example: Gate Sizing

 C_L/C_1 has to be evenly distributed across N=3 stages:

$$f = \sqrt[3]{8} = 2$$

$$D = 3 \times (2 + 8)$$

Next Question: Optimum Number of Stages?

• For a given C_L and given C_m find optimal sizing f

$$C_{L} = F \cdot C_{in} = f^{N}C_{in} \text{ with } N = \frac{\ln F}{\ln f}$$

$$t_{p} = N\tau \left(F^{1/N} + \gamma\right) = \frac{t_{p0} \ln F}{\gamma} \left(\frac{f}{\ln f} + \frac{\gamma}{\ln f}\right)$$

$$\frac{\partial t_{p}}{\partial f} = \frac{t_{p0} \ln F}{\gamma} \cdot \frac{\ln f - 1 - \gamma/f}{\ln^{2} f} = 0$$

For
$$\gamma = 0$$
, $f = e$, $N = \ln F$

$$f = \exp(1 + \gamma/f)$$

$$f = \exp(1 + \gamma/f)$$

Optimum Effective Fanout f

• Optimum f for given process defined by γ

$$f = \exp(1 + \gamma/f)$$

Impact of Self-Loading on tp

Normalized Delay Function of *F*

$$t_p = Nt_{p0} \left(1 + \sqrt[N]{F} / \gamma \right) \qquad (\gamma = 1)$$

10 11 8.3 8.3 100 101 22 16.5 1000 1001 65 24.8	F	Unbuffered	Two Stage	Inverter Chain
1000 1001 65 24.8	10	11	8.3	8.3
	100	101	22	16.5
10,000 10,001 202 / 22.1	1000	1001	65 ₩	24.8
10,000	10,000	10,001	202 -	33.1

Textbook: page 210

Example: Buffer Design

What About Power Consumption (and Area?)

Example: $C_L = 20 \text{pF}$; $C_i = 50 \text{fF} \rightarrow N = 6$

Fixed: 20pF

Overhead: 11.66pF !!!

Delay vs. Area and Power

Week 4 Agenda

The Concept of Logical Effort

Buffer Chain Example

Multi-Stage Logic Networks

Generalization for Multistage Networks

$$Delay = \sum_{i=1}^{N} (p_i + g_i \cdot h_i)$$

Stage effort: $f_i = g_i \cdot h_i$

Path electrical effort: $H_{path} = C_{out}/C_{in}$

Path logical effort: $G_{path} = g_1 g_2 ... g_N$

Branching effort: $B_{path} = b_1 b_2 ... b_N$

Path effort = $G_{path} \cdot H_{path} \cdot B_{path}$

Path delay $D = \Sigma D_i = \Sigma P_i + \Sigma G_i \cdot H_i$

Forget this for now

Optimum Effort per Stage

When each stage bears the same effort:

$$f^{N} = \prod_{i} g \cdot h = PathEffort$$
$$f = \sqrt[N]{PathEffort}$$

Fanout of each stage: $h_i = f/g_i$

Complex gates should drive smaller load!!!

Minimum path delay

$$D_{min} = \sum (g_i \cdot h_i + p_i) = N \cdot f + P$$

Example: A Random Multi-stage Network

Delay of a multi-stage network = sum of stage delays

Path Effort Delay

$$D_F = \sum_i f_i$$

Path Parasitic Delay

$$P = \sum_{i} p_{i}$$

Total Path Delay

$$D = \sum_{i} d_{i} = D_{F} + P$$

$$f_1 = 4$$

$$f_2 = 3.33$$

$$f_3 = 3.33$$

$$D_F = 10.66, P = 6$$

$$D = 16.66 (\tau \text{ delays})$$

Gate Sizing Example

First Compute Path Effort

Path Effort =
$$F = \Pi g \cdot h$$

= $1(\frac{x}{10}) \times \frac{5}{3}(\frac{y}{x}) \times \frac{4}{3}(\frac{z}{y}) \times 1(\frac{20}{z}) = \frac{40}{9}$

The optimal stage effort is:

$$f^* = g \cdot h = (\frac{40}{9})^{1/4} = 1.45$$

Gate Sizing Example (Cont.)

We can now size the gates:

$$z = 1 \cdot \frac{20}{1.45} = 13.8$$

$$x = \frac{5}{3} \cdot \frac{y}{1.45} = 14.5$$

$$y = \frac{4}{3} \cdot \frac{z}{1.45} = 12.7$$

$$C_{in} = 1 \cdot \frac{x}{1.45} = 10$$

$$C_{in} = g \cdot \frac{C_{out}}{f^*}$$

◆ The total normalized delay is (assuming P_{inv}=1):

$$D = 4SE * + \sum P = \underbrace{4 \cdot 1.45}_{\times \times} + \underbrace{(1 + 2 + 2 + 1)}_{\times \times} = \underbrace{11.8}_{\times \times}$$

Add Branching Effort

Branching effort:

$$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$$

Branching Example #1

Introduce new kind of effort to account for branching:

$$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}} = \frac{15 + 15}{15} = 2$$

$$B = \prod b_i$$

Now we can compute the path effort:

• Path Effort:
$$H = \prod g \cdot h \cdot b$$

Multistage Networks with Branching

General Logical Effort formulation

$$Delay = \sum_{i=1}^{N} (p_i + g_i \cdot h_i)$$

Stage effort: $f_i = g_i \cdot b_i \cdot h_i$

Path electrical effort: $H_{path} = C_{out}/C_{in}$

Path logical effort: $G_{path} = g_1 g_2 ... g_N$

Branching effort: $B_{path} = b_1 b_2 ... b_N$

Path effort
$$\neq F_{path} = G_{path} \cdot H_{path} \cdot B_{path}$$

Branching

Path delay
$$D = \sum D_i = \sum P_i + \sum G_i \cdot H_i$$

Branching Example #2

branching

w/o bran.

$$f_1 = 8$$

 $f_1 = 4$

$$f_2 = 6.66$$

 $f_2 = 3.33$

$$f_3 = 3.33$$
 $f_3 = 3.33$

$$f_3 = 3.33$$

For circuits with branching:

- G_{PATH} is the same = 3
- H_{PATH} is the same = 15
- (F_{PATH} differs)
 - $h_1 = 24/4 = 6$, $h_2 = 60/12 = 5$, $h_3 = 2$
 - $F_{PATH} = 4/3 * 6 * 4/3 * 5 * 5/3 * 2 = 177.8$

F is no longer GH

- New F_{PATH} with branching $\{F_{PATH} = GBH\}$

Branching Example #3: Gate Delays

• Delay of the path from A to B where $\beta = \mu = 2$ and $p_{INV} = 1$

$$g_{G1} = 4/3, p_{G1} = 2, C_{IN G1} = 8$$

$$g_{G2} = 5/3$$
, $p_{G2} = 2$, $C_{IN G2} = 15$

$$g_{G3} = 4$$
, $p_{G3} = 4$, $C_{IN G3} = 30$

$$- C_{IN G4} = 15$$

$$-h_{G1} = (C_{IN G2} + C_{IN G3})/C_{IN G1} = 5.625, h_{G2} = C_{IN G4}/C_{IN G2} = 1$$

$$- d_{G1} = g_{G1}h_{G1} + p_{G1} = 9.5$$

$$- d_{G2} = g_{G2}h_{G2} + p_{G2} = 3.66$$

$$-$$
 Delay = 13.16

Normalized

Branching Example #4

Select gate sizes y and z to minimize delay from A to B

Logical Effort:

$$G = (4/3)^3$$

Electrical Effort:

$$H = C_{out}/C_{in} = 9$$

Branching Effort:

$$B = 2.3 = 6$$

$$PE = G \cdot H \cdot B = 128$$

Best Stage Effort:

$$f = PE^{1/3} \approx 5$$

Delay:

$$D = 3.5 + 3.2 = 21$$

Work backward for sizes:

$$z = \frac{9C \cdot (4/3)}{5} = 2.4C$$

$$y = \frac{3z \cdot (4/3)}{5} = 1.9C$$

Sizing Example with Branching

- Size the gates for optimum delay
- Once the path effort is determined, it is quite easy to determine the appropriate gate sizes
 - Start from the output of a path
 - Work backwards to the input

- $C_{in_i} = \frac{C_{out_i}g_i}{f_{opt}}$
- Check your work if the input is the same as the specification

Branches: Same # Stages, Different Loads

- Example: two paths with the same number of stages but different loads
 - Optimal system has all paths with equal delay
 - Branching for path 1, b = $1+\alpha$
 - Assumption is that p₁ ~ p₂

$$\begin{split} D_1 &= D_2 \\ N \sqrt[N]{F_1} + p_1 &= N \sqrt[N]{F_2} + p_2 \\ F_1 &= \frac{B_1 G_1 C_{out1}}{C_{in1}} = F_2 = \frac{B_2 G_2 C_{out2}}{C_{in2}} \\ \frac{C_{in2}}{C_{in1}} &= \alpha = \frac{B_2 G_2 C_{out2}}{B_1 G_1 C_{out1}} \end{split}$$

Summary: Logical Effort "Design Flow"

- Compute the path effort: Path Effort = ☐ LE·FO·B
- Find the best number of stages: N* ~ log₄(PathEffort)
- Working from either end, determine gate sizes:

$$C_{in} = g \cdot b \cdot \frac{C_{out}}{f^*}$$

Reference: Sutherland, Sproull, Harris, "Logical Effort," (Morgan-Kaufmann 1999)

Handling Wires & Fixed Loads

$$Delay = \sum_{i=1}^{N} \left(p_i + g_i \cdot \left(h_i + \frac{C_{Wi+1}}{C_i} \right) \right)$$

Multi-level Logic: What is Best?

y = 0.5

Assumes first stage has same Ron as unit inverter

