ELEC 207 Instrumentation and Control

8 – Displacement Transducers (2)

Dr Roberto Ferrero

Email: Roberto.Ferrero@liverpool.ac.uk

Telephone: 0151 7946613

Office: Room 506, EEE A block

Inductive transducers

Principle of operation

The principle of operation of inductive transducers relies on variable magnetic coupling between coils:

- There are two main types of inductive transducers:
 - Linear Variable Differential Transformer (LVDT);
 - Rotary Variable Differential Transformer (RVDT).

Linear variable differential transformer

Physical structure

The LVDT consists of:

- Three coils:
 - One central coil acting as the primary circuit of a transformer;
 - Two outer coils acting as the secondary circuit;
- A movable core, used to sense displacement;
- AC voltage source applied to the primary coil.

Linear variable differential transformer

Principle of operation (1)

The two secondary circuits are in series, but with **opposite directions**:

- When the core is in the central position, the magnetic coupling with the two secondary circuits is the same and it induces opposite voltages:
 - The overall voltage measured on the secondary circuits is zero;
- When the core is moved, an unbalance appears:
 - An AC voltage is detected on the secondary circuit.

Linear variable differential transformer

Principle of operation (2)

- The **magnitude** of the output voltage V_0 is proportional to the displacement;
- The **phase** of the output voltage V_0 provides the direction of displacement.

Rotary variable differential transformer

Principle of operation

The principle of operation of the RVDT is similar to the LVDT:

- The main difference is that in the RVDT the core rotates within the coils instead of moving longitudinally:
 - A voltage is induced on the secondary circuit depending on the angular position of the core.

Rotary ferromagnetic core

Optical transducers

Application to rotation measurements

Optical transducers are often employed to measure **rotation angles**, e.g. in a motor:

- A typical transducer consists of a light source, a light detector and one or two circular disks placed between the source and the detector;
- This type of transducer allows a digital output, without requiring an analogto-digital converter:
 - \triangleright No light = 0, light = 1;
- There are two types of transducers:
 - Incremental: it measures only a change in the rotation angle;
 - > **Absolute**: it measures an absolute angle.

Incremental encoder

Principle of operation (1)

Incremental encoder

Principle of operation (2)

An incremental encoder is usually composed of two disks:

- A fixed disk has one window, which is aligned to the light source;
- A rotating disk has two tracks of windows cut into it, and light detectors are aligned to each track:
 - When the disk rotates, light pulses are recorded through the two windows;
 - Pulses from the outer track are counted by a counter to determine the magnitude of the angular displacement from the starting position;
 - Pulses from the inner track are used to determine the direction of rotation.

Absolute encoder

Principle of operation

In an absolute encoder, the digital output is encoded in the rotating disk, by using **several tracks** (and several light detectors):

- The measurement is absolute because there is a unique binary code associated with each angle;
- The standard binary code could cause large errors in case of tracks misalignment:
 - This problem is solved by using the gray code.

Rotating disc with four tracks (binary code)

Absolute encoder

Gray code

With the gray code, only one binary digit changes from one sector to the following one:

Decimal	Binary	Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100

Rotating disc with four tracks (Gray code)

Incremental and absolute encoders

Advantages and disadvantages

Incremental encoders:

- Are simpler and less expensive;
- Have a resolution which depends on the number of windows in the tracks;
- Do not provide an absolute measurement, so are subject to errors in case of missed pulses;
- They are therefore more suitable for speed measurements than for angular position measurements.

Absolute encoders:

- Are more complex and more expensive;
- Have a resolution which depends on the number of tracks (and detectors);
- Provide an absolute measurement, so are potentially more accurate for angular position measurements.

References

Textbook: Principles of Measurement Systems, 4th ed.

For further explanation about the points covered in this lecture, please refer to the following chapters and sections in the **Bentley** textbook:

- Chapter 8, Sec. 8.3: Inductive sensing elements;
- Chapter 15, Sec. 15.6.2: Modulation of intensity by transmission medium [in optical measurement systems].

NOTE: Topics not covered in the lecture are not required for the exam.

References

Textbook: Measurement and Instrumentation, 2nd ed.

For further explanation about the points covered in this lecture, please refer to the following chapters and sections in the **Morris-Langari** textbook:

- Chapter 19, Sec. 19.2.2: Linear variable differential transformer;
- Chapter 20, Sec. 20.2.2: Rotational differential transformer;
- Chapter 20, Sec. 20.2.3: Incremental shaft encoders;
- Chapter 20, Sec. 20.2.4: Coded-disk shaft encoders.

NOTE: Topics not covered in the lecture are not required for the exam.

