SSN COLLEGE OF ENGINEERING AFFILIATED TO ANNA UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UCS2404 - DATABASE MANAGEMENT SYSTEM

MINI PROJECT <u>TITLE - RAILWAY MANAGEMENT SYSTEM</u>

PROJECT MEMBERS

3122215001037 – Jaanus Sri K G 3122215001039 – Tejaswi Kakarla 3122215001051 – Mega V

IDENTIFIED FUNCTIONAL DEPENDENCIES (FDs):

USER

User_ID \longrightarrow F_Name

User_ID ---> L_Name

 $User_ID \longrightarrow Age$

User_ID ── Gender

User_ID ---> Address

User_ID ---> Mobile_no

User_ID, Address ——>Mobile_no

TRAIN

 $Tr_no \longrightarrow Tr_name$

Tr_no ---> Capacity

Tr_no ---> Source

 $Tr_no \longrightarrow Dest$

 $Tr_no \longrightarrow S_Time$

 $Tr_no \longrightarrow Dest_Time$

 $Tr_no \longrightarrow St_no$

 $St_no \longrightarrow St_name$

St_no ---> Arr_Time

St_no ---> Dept_Time

TICKET

Ticket_ID ----> No_of_passengers

 $Ticket_ID \longrightarrow User_ID$

Ticket_ID → PNR_No

{Tr_no, Ticket_ID} → PNR_No

 $Ticket_ID \longrightarrow Tr_no$

Ticket_ID ---> Ticket_Status

 $\{PNR \ No, Tr \ no\} \longrightarrow Ticket \ Status$

Ticket_ID → Res_Date

Ticket_ID ── Book_Date

PAYMENT

Payment_ID --- Ticket_ID

Payment_ID ---> Amount

NORMALIZATION:

1NF:

Disallows composite attributes, multivalued attributes and nested relations (attributes whose values for an individual tuple are non-atomic)

2NF:

- 1) Prime attribute: An attribute that is member of the primary key K
- 2) Full functional dependency: a FD Y -> Z where removal of any attribute from Y means the FD does not hold any more
- 3) A relation schema R is in second normal form (2NF) if every non-prime attribute A in R is fully functionally dependent on the primary key

3NF:

- 1) Transitive functional dependency: a FD $X \rightarrow Z$ that can be derived from two FDs $X \rightarrow Y$ and $Y \rightarrow Z$
- 2) A relation schema R is in third normal form (3NF) if it is in 2NF and no non-prime attribute A in R is transitively dependent on the primary key

BCNF:

1) A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever an FD X -> A holds in R, then X is a super key of R

USER

User_ID	F_Name	L_Name	Age	Gender	Address	Mobile_no
	l i			1		

User (User ID, F name, L Name, Age, Gender, Address, Mobile No)

R (A, B, C, D, E, F, G)

$$FD's = \{A -> B, A -> C, A -> D, A -> E, A -> F, A -> G, AF -> G\}$$

A -> BCDEFG

 $AF \rightarrow G$

Minimal Set of FD'S:

To check whether A -> BCDEFG is need or not

Closure, $\{A\}^+ = \{A, B, C, D, E, F, G\}$

Ignore the FD A -> BCDEFG and Find the closure

$$\{A\}^+ = \{A\}$$

The FD A -> BCDEFG is needed

To check whether A F -> G is need or not

Closure,
$$\{AF\}^+ = \{A, F, B, C, D, E, G\}$$

Ignore the FD A F -> G and Find the closure

$$\{AF\}^+ = \{A, F, B, C, D, E, G\}$$

FD: AF -> G is not needed

Minimal Set of FD's: { A -> BCDEFG }

 $FD'S = \{ User_ID -> F_Name \ , User_ID -> L_Name \ , User_ID -> Age \ , User_ID -> Gender \ , User_ID -> Address \ , User_ID -> Mobile_no \ \}$

To Find the Candidate Key

$$\{ABCDEFG\}^+ = \{A, B, C, D, E, F, G\}$$

Based on the Fds, we can remove the attributes from candidate key. If we remove then

$$\{A\}^+ = \{A, B, C, D, E, F, G\}$$

Here there is no proper subset for a closure. So { A } is a Candidate Key

Candidate Key CK { User_ID }

Prime Attributes PA { User_ID }

Non-Prime Attributes NPA { F_name, L_Name, Age, Gender, Address, Mobile_No}

1NF: The User table contains multivalued attribute (address).

So, we need to decompose the address into several attributes.

USER

User_ID	F_Name	L_Name	Age	Gender	City	State	Pin	Mobile_no

FDs for User Table { User_ID -> F_Name , User_ID -> L_Name , User_ID -> Age , User_ID -> Gender, User_ID -> Mobile_no , User_ID -> Pin , Pin -> { City ,State} }

2NF: We need to check if there is any FD where the non-prime attribute is not fully functional dependent or in other words we have to find if there are any partial dependencies

Here there is no proper subset for a candidate key.

Here, there are no partially dependencies which means fully dependencies exists. So User Relation satisfy the 2NF

3NF: To check transitive dependencies (NPA -> NPA) in the relation.

 $\label{local_problem} User_ID -> F_Name \ , User_ID -> Age \ , User_ID -> Gender \ \, , User_ID -> Mobile_no \ \, , User_ID -> Pin \ , Pin -> \{ \ City \ , State \}$

Prime Attributes PA { User_ID }

Non-Prime Attributes NPA $\{F_name, L_Name, Age, Gender, Address, Mobile_No, City, State, Pin\}$

We can observe that City and State attributes are derived from Pin which is Non-Prime attribute

So, here transitive dependencies exist. The User table does not satisfy the 3NF. So we divide the new User_Address table with the attributes City, State and Pin as a Primary Or Candidate Key

USER

User_ID	F_Name	L_Name	Age	Gender	Pin	Mobile_no

FD'S Set For USER Table { User_ID -> F_Name , User_ID -> L_Name , User_ID -> Age , User_ID -> Gender , User_ID -> Mobile_no , User_ID -> Pin }

USER_ADDRESS

<u>Pin</u>	City	State

FD'S Set For USER ADDRESS Table : Pin -> { City, State}

BCNF:

To check whether all the attributes are derived from the candidate Key or Super key

```
\label{eq:User_ID} User\_ID -> F\_Name \;, User\_ID -> Age \;, User\_ID -> Gender \;\;, User\_ID -> Mobile\_no \;\; User\_ID -> Pin
```

We can observe that all the non-prime attributes are derived from the Super Key attribute(Super key exists in the left side of all the FD's)

So User table satisfy the BCNF

USER_ADDRESS

<u>Pin</u>	City	State

USER_ADDRESS (Pin, CITY, STATE)

USER_ADDRESS (A, B, C)

FD'S Set For User Address Table {Pin -> {City, State}}

Candidate Key, CK { Pin }⁺ = { Pin, City, State }

Prime Attributes PA {Pin}

Non-Prime Attributes NPA {City, State }

We can observe that all the non-prime attributes are derived from the Prime attribute.

So here no transitive dependencies exist. The USER_ADDRESS table satisfies the 3NF

BCNF:

To check whether all the attributes are derived from the candidate Key or Super key

Pin -> {City, State}

We can observe that all the non-prime attributes are derived from the Super Key attribute (Super key exists in the left side of all the FD's)

So USER_ADDRESS table satisfy the BCNF

TRAIN

<u>Tr_n</u>	Tr_Nam	Ca	Sourc	Des	S_Tim	Dest_Tim	St_n	St_Nam	Arr_tim	Dept_tim
<u>o</u>	e	p	e	t	e	e	<u>o</u>	e	e	e

 $TRAIN\ (Tr_no\ ,Tr_Name\ ,Cap\ ,Source\ ,Dest\ ,S_Time\ ,Dest_Time\ ,St_no\ ,St_Name\ ,Arr_Time\ ,Dept_Time\)$

TRAIN (A, B, C, D, E, F, G, H, I, J, K)

 $FD's = \{ A -> B , A -> C , A -> D , A -> E , A -> F , A -> G , AE -> G , AD -> F , AH -> I , AH -> J , AH -> K \}$

A -> BCDEFG

 $AE \rightarrow G$

AD->F

AH -> IJK

Minimal Set of FD'S:

To check whether A -> BCDEFG is need or not

Closure, $\{A\}^+ = \{A, B, C, D, E, F, G\}$

Ignore the FD A -> BCDEFG and Find the closure

 $\{A\}^+ = \{A\}$

FD: A -> BCDEFG is needed

To check whether AE -> G is need or not

Closure, $\{AE\}^+ = \{A, E, B, C, D, F, G\}$

Ignore the FD A F -> G and Find the closure

 $\{AF\}^+ = \{A, E, B, C, D, F, G\}$

FD: $AE \rightarrow G$ is not needed

To check whether AD->F is need or not

Closure, $\{AD\}^+ = \{A, D, B, C, E, G, F\}$

Ignore the FD A $F \rightarrow G$ and Find the closure

 $\{AD\}^+ = \{A, D, B, C, E, G, F\}$

FD: AD -> F is not needed

To check whether AH -> IJK is need or not

Closure, $\{AH\}^+ = \{A, B, C, D, E, F, G, H, I, J, K\}$

Ignore the FD AH -> IJK and Find the closure

$$\{AH\}^+ = \{A, B, C, D, E, F, G, H\}$$

The FD AH -> IJK is needed

Minimal Set of FD's: { A -> BCDEFG, H -> IJK }

 $FD'S = \{ Tr_no \rightarrow Tr_name \ , Tr_no \rightarrow Cap \ , Tr_no \rightarrow Source \ , Tr_no \rightarrow Dest \ , Tr_no \rightarrow S_Time \ , Tr_no \rightarrow Dest_Time \ , \{Tr_no, St_no \} \rightarrow St_Name \ , \{Tr_no, St_no \} \rightarrow Arr_Time \ , \{Tr_no, St_no \} \rightarrow Dept_Time \ \}$

Find the Candidate Key for the Relation TRAIN

```
\{ABCDEFGHIJK\}^{+} = \{A, B, C, D, E, F, G, H, I, J, K\}
```

Based on the Fds, we can remove the attributes from candidate key. If we remove then

$$\{AH\}^+ = \{A, H, B, C, D, E, F, G, I, J, K\}$$

Here there is no proper subset for a closure. So { A } is a Candidate Key

Candidate Key CK { Tr_no, St_no }

Prime Attributes PA { Tr_no, St_no }

Non-Prime Attributes NPA { Tr_Name , Cap , Source , Dest , S_Time , Dest_Time , St_Name , Arr_Time, Dept_Time }

1NF: The User table contains no multivalued attribute. So it satisfy the 1NF

2NF: We need to check if there is any FD where the non-prime attribute is not fully functional dependent or in other words we have to find if there are any partial dependencies

```
{ Tr_no } ^+ ={ Tr_Name , Cap , Source , Dest , S_Time , Dest_Time } 
{ St_no } ^+ ={ }
```

Here there is one partially dependency that means fully dependencies exists. So TRAIN Relation does not satisfy 2NF. So we have to decompose the relation into two Relations

TRAIN (Tr_no, Tr_Name, Cap, Source, Dest, S_Time, Dest_Time)

 $FD'S = \{ Tr_no \rightarrow Tr_name \ , Tr_no \rightarrow name \ , Tr_no \rightarrow Cap \ , Tr_no \rightarrow Source \ , Tr_no \rightarrow Dest \ , Tr_no \rightarrow S_Time \ , Tr_no \rightarrow Dest_Time \ , \\ \}$

Candidate Key CK = { Tr_no }⁺ = { Tr_Name, Cap, Source, Dest, S_Time, Dest_Time}

STATION (St_no, St_Name, Arr_Time, Dept_Time)

 $FD'S = \{ \{Tr \ no, St \ no \} -> St_Name, \{Tr_no, St_no\} -> Arr_Time, \{Tr_no, St_no\} -> Dept_Time \} \}$

Candidate Key CK = { Tr_no, St_no }⁺ = { Tr_no, St_no, St_Name , Arr_Time , Dept_Time }

TRAIN

Tr_no	Tr_Name	Cap	Source	Dest	S_Time	Dest_Time

STATION

<u>Tr_no</u>	St_no	St_Name	Arr_Time	Dept_Time

3NF: To check transitive dependencies (NPA -> NPA) in the relation.

 Tr_no -> Tr_name , Tr_no -> name , Tr_no -> Cap , Tr_no -> Source , Tr_no -> Dest , Tr_no -> Dest , Tr_no -> Dest , Tr_no -> Tr_no -

Prime Attributes PA { Tr_no }

Non-Prime Attributes NPA { Tr_name, Cap, Source, Dest, S_Time, Dest_Time }

We can observe that all the non-prime attributes are derived from Tr_no which is Prime attribute. So Here there is no transitivity dependencies. Therefore Relation TRAIN Follows the 3NF

BCNF:

Tr_no -> { Tr_name, Cap, Source, Dest, S_Time, Dest_Time }

To check whether all the attributes are derived from the candidate Key or Super key

We can observe that all the non-prime attributes are derived from the Super Key attribute(Super key exists in the left side of all the FD's)

So TRAIN relation satisfy the BCNF

STATION (Tr_no, St_no, St_Name, Arr_Time, Dept_Time)

STATION

Tr_no	St_no	St_Name	Arr_Time	Dept_Time

 $FD'S = \{ \{Tr \ no, St \ no\} \rightarrow St_Name, \{ Tr_no, St_no\} \rightarrow Arr_Time, \{ Tr_no, St_no \} \rightarrow Dept_Time \} \}$

Candidate Key CK = {Tr_no, St_no}⁺ = { St_Name, Arr_Time, Dept_Time }

Prime Attributes PA {Tr_no, St_no}

Non-Prime Attributes NPA {St_Name, Arr_Time, Dept_Time}

2NF: We need to check if there is any FD where the non-prime attribute is not fully functional dependent or in other words we have to find if there are any partial dependencies

Here there is no proper subset for a candidate key.

Here there is no partially dependencies that means fully dependencies exists. So STATION Relation satisfy the 2NF

3NF: To check transitive dependencies (NPA -> NPA) in the relation.

$$\{Tr_no, St_no\} \rightarrow St_no\} \rightarrow St_no\} \rightarrow Arr_Time, \{Tr_no, St_no\} \rightarrow Dept_Time$$

We can observe that all the non-prime attributes are derived from St_no and Tr_no which is Prime attribute. So here, there are no transitivity dependencies. Therefore Relation STATION Follows the 3NF

BCNF:

To check whether all the attributes are derived from the candidate Key or Super key

We can observe that all the non-prime attributes are derived from the Super Key attribute(Super key exists in the left side of all the FD's)

So STATION relation satisfy the BCNF

TICKET

Tickte_ID	No_of_Passengers	User_ID	PNR_No	Tr_no	Ticket_status	Res_date	Book_date

TICKET (Ticket_ID, No_of_Passengers, User-ID, Tr_no, Ticket_Status, Res_date, Book_date)

TICKET (A, B, C, D, E, F, G, H)

$$FD'S = \{ A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, A \rightarrow F, A \rightarrow G, A \rightarrow H, DG \rightarrow E, AH \rightarrow F \}$$

A -> BCDEFG

 $DE \rightarrow F$

 $AG \rightarrow F$

Minimal Set of FD's:

To check whether A -> BCDEFG is need or not

Closure: $\{A\}^+ = \{A, B, C, D, E, F, G\}$

Ignore the FD A -> BCDEFG and Find the closure

 ${A}^+ = {A}$

FD: A -> BCDEFG is needed

```
To check whether DE -> F is need or not
Closure : \{DE\}^+ = \{D, E, F\}
Ignore the FD: CD -> E and Find the closure
\{DE\}^+ = \{D, E\}
FD: DE -> F is needed
To check whether AH -> F is need or not
Closure, \{AH\}^+ = \{A, H, F, B, C, D, E, G\}
Ignore the FD A D -> E and Find the closure
\{AG\}^+ = \{A, H, F, B, C, D, E, G\}
FD: AH -> F is not needed
Minimal Set of FD's = \{A \rightarrow BCDEFG, DE \rightarrow F\}
FDs = { Ticket_ID -> No_Of_Passengers, Ticket_ID -> User_ID, Ticket_ID -> PNR_No, Ticket_ID
-> Tr No, Ticket ID -> Ticket Status, Ticket ID -> Res date,
Ticket_ID -> Book_date, { PNR_No, Tr_No -> Ticket_Status } }
Find the Candidate Key
\{Ticket\_ID\}^+ = \{No\_of\_Passengers, User\_ID \ , Tr\_no \ , Ticket\_Status \ , Res\_date \ , Book\_date \ \}
Candidate Key CK { Ticket_ID } + = { No_of_Passengers, User-ID , Tr_no , Ticket_Status, Res_date
, Book_date }
Prime Attributes
                              { Ticket ID }
                      PA
Non-Prime Attributes NPA
                               { No_of_Passengers, User-ID, Tr_no, Ticket_Status, Res_date,
```

1NF: The User table contains no multivalued attribute. So it satisfy the 1NF

2NF: We need to check if there is any FD where the non-prime attribute is not fully functional dependent or in other words we have to find if there are any partial dependencies

Here there is no proper subset for a candidate key.

Book date }

Here there is no partially dependencies that means fully dependencies exists. So TICKET Relation satisfy the 2NF

3NF: To check transitive dependencies (NPA -> NPA) in the relation.

```
Ticket_ID -> { No_Of_Passengers , UserID , PNR_No , Tr_No , Ticket_Status ,Res_date ,Book_date } { PNR_No }-> {Tr_No ,Ticket_Status }
```

We can observe that Ticket_ID which is Prime attribute derived the { No_Of_Passengers , UserID , PNR_No , Tr_No , Ticket_Status ,Res_date ,Book_date } which are non-Prime attribute. So Here there is no transitivity dependencies.

But the { PNR_No } which is non-prime attributes derived the Ticket_Status and Tr_No which are non-prime attribute. So Here there is transitivity dependencies. So it is on non 3NF So we have to Decompose the Relation into Two Relation

```
TICKET_BOOK (Ticket_ID, No_Of_Passengers, User_ID, PNR_No, Tr_No ,Res_date ,Book_date )
```

Ticket_ID -> No_Of_Passengers , Ticket_ID -> User_ID , Ticket_ID -> PNR_No , Ticket_ID -> Tr_No , Ticket_ID -> Res_date , Ticket_ID -> Book_date

TICKET_STATUS (PNR_No, Tr_No , Ticket-Status)

```
{ PNR_No }-> { Tr_No , Ticket_Status }
```

TICKET_BOOK

Ticket_ID	No_Of_Passengers	User_ID	PNR_No	Tr_No	Res_Date	Book_Date	U_Source	U_Dest

TICKET STATUS

PNR_No	Tr_No	Ticket_Status

BCNF:

To check whether all the attributes are derived from the candidate Key or Super key

We can observe that all the non-prime attributes are derived from the Super Key attribute (Super key exists in the left side of all the FD's)

So TICKET_BOOK relation satisfy the BCNF

TICKET_STATUS

PNR_No	Tr_No	Ticket_Status

```
{ PNR_No }-> { Tr_No , Ticket_Status }
```

Candidate Key CK { PNR_No } = { Tr_no , Ticket_Status }

Prime Attributes PA { PNR_No }

Non-Prime Attributes NPA { Tr_no , Ticket_Status }

3NF: To check transitive dependencies (NPA -> NPA) in the relation.

We can observe that PNR_No which is Prime attribute derived the { Tr_No, Ticket_Status, } which are non-Prime attribute. So here, there is no transitivity dependencies. The Relation Ticket_Status satisfy the 3NF.

BCNF:

To check whether all the attributes are derived from the candidate Key or Super key

We can observe that all the non-prime attributes are derived from the Super Key attribute(Super key exists in the left side of all the FD's)

So TICKET_STATUS relation satisfy the BCNF

PAYMENT

Payment_ID	Ticket_ID	Amount

PAYMENT (Payment_ID , Ticket_ID , Amount)

PAYMENT (A, B, C)

$$FD's = \{A -> B, A -> C, B -> A, AC -> B, AB -> C\}$$

 $A \rightarrow BC$

B -> A

 $AC \rightarrow B$

 $AB \rightarrow C$

Minimal Set of FD'S:

To check whether A -> BC is need or not

Closure,
$$\{A\}^+ = \{A, B, C\}$$

Ignore the FD A -> BC and Find the closure

$$\{A\}^+ = \{A\}$$

The FD A -> BCDEFG is needed

To check whether B -> A is need or not

Closure, $\{B\}^+ = \{B, A, C\}$

Ignore the FD A D -> E and Find the closure

$$\{B\}^+ = \{B,C,A\}$$

The FD B \rightarrow A is not needed

To check whether AC -> B is need or not

Closure, $\{AC\}^+ = \{A, C, B\}$

Ignore the FD AC -> B and Find the closure

$$\{B\}^+ = \{A,C,B\}$$

The FD $AC \rightarrow B$ is not needed

To check whether AB -> C is need or not

Closure, $\{AB\}^+ = \{A, B, C\}$

Ignore the FD AB -> C and Find the closure

$$\{AB\}^+ = \{A, B, C\}$$

The FD AB -> C is not needed

Minimal FD's = $\{A \rightarrow BC \}$

FD'S = { Payment_ID -> Ticket_ID , Payment_ID -> Amount }

Find the Candidate Key

Candidate Key Ck { Payment_ID } + = { Ticket_Id , Amount }

Prime Attributes PA { Payment_ID }

Non-Prime Attributes NPA { Ticket_ID , Amount }

1NF: The User table contains no multi-valued attributes. So it satisfies 1NF.

2NF: We need to check if there is any FD where the non-prime attribute is not fully functional dependent or in other words we have to find if there are any partial dependencies.

Here there is no proper subset for a candidate key.

Here, there are no partially dependencies which means fully dependencies exists. So PAYMENT Relation satisfy the 2NF

3NF: To check transitive dependencies (NPA -> NPA) in the relation.

Payment_ID -> Ticket_ID , Payment_ID -> Amount

We can observe that Payment_ID which is Prime attribute derived the { Ticket_ID , Amount } which are non-Prime attribute. So Here there is no transitivity dependencies. The Relation PAYMENT satisfy the 3NF.

BCNF:

To check whether all the attributes are derived from the candidate Key or Super key

We can observe that all the non-prime attributes are derived from the Super Key attribute (Super key exists in the left side of all the FD's)

So PAYMENT relation satisfy the BCNF

FINAL RELATIONS:

USER

User_ID	F_Name	L_Name	Age	Gender	Pin	Mobile_no

USER_ADDRESS

<u>Pin</u>	City	State

TRAIN

<u>Tr_no</u>	Tr_Name	Cap	Source	Dest	S_Time	Dest_Time

STATION

Tr_no St_no	St_Name	Arr_Time	Dept_Time
-------------	---------	----------	-----------

TICKET_BOOK

Ticket_ID	No_Of_Passengers	User_ID	PNR_No	Tr_No	Res_Date	Book_Date	U_Source	U_Dest

TICKET_STATUS

PNR_No	Tr_No	Ticket_Status

PAYMENT Payment ID Ticket_ID Amount FINAL SCHEMA DIAGRAM

USER

FINAL **ER – DIAGRAM** AFTER NORMALIZATION

FDs AFTER NORMALIZATION **USER** F_Name | L_Name | Gender Pin Mobile_no User_ID Age **USER_ADDRESS** <u>Pin</u> City State **TRAIN** Tr_Name Cap Source Dest S_Time Dest_Time Tr_no **STATION** St_no St_Name Arr_Time Dept_Time Tr_no TICKET_BOOK <u>Ticket_ID</u> No_Of_Passengers User_ID | PNR_No Tr_No | Res_Date Book_Date U_Source U_Dest TICKET STATUS PNR_No Tr_No Ticket_Status **PAYMENT** Payment_ID Ticket_ID Amount THUS WE HAVE DEVELOPED A RAIWAY MANAGEMENT SYSTEM WITH THE HELP OF NORMALIZATION OF RELATIONS.