FCC TEST REPORT

For

In-wall dimmer

Model Number: ZB3001(45857)

FCC ID: U2ZZB3001

Report Number : WT138003204

Test Laboratory : Shenzhen Academy of Metrology and Quality Inspection

National Digital Electronic Product Testing Center

Site Location : No.4 TongFa Road, Xili Town, Nanshan District,

Shenzhen, China

Tel : 0086-755-86009898

Fax : 0086-755-86009898-31396

Web: www.smq.com.cn

Test report declaration

Applicant : SHEENWAY ASIA LTD.

Address : Room1313, 13/F., AustinTower, 22-26AustinAvenu, TsimSha

Tsui, Kowloon. Hong Kong. China

Manufacturer : KONIG ELECTRONIC (HUIZHOU) LTD.

Address : 2-Plant, East Lake Side, QingTang, Lian He Village, Shui Kou,

Hui Cheng District, Huizhou, GuangDong, China.

Factory : KONIG ELECTRONIC (HUIZHOU) LTD.

Address : 2-Plant, East Lake Side, QingTang, Lian He Village, Shui Kou,

Hui Cheng District, Huizhou, GuangDong, China.

EUT : In-wall dimmer

Description

Model No : ZB3001(45857)

FCC ID : U2ZZB3001

Test Standards:

FCC Part 15 15.207, 15.209, 15.247 (2012)

ANSI C63.4: 2009

The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the maximum emissions from the EUT. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2009) and the energy emitted by the sample EUT tested as described in this report is in compliance with FCC Rules Part 15.207, 15.209 and 15.247.

The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory.

Project Engineer:	1933 B	Date:	Nov.20,2013
	(Chen Qichun)		
Checked by:	起多年	Date:	Nov.20,2013
	(Yang Dongping)		
Approved by:	(Yang Dongping) 本本人	Date:	Nov.20,2013
	(Lin Bin)		

Report No.:WT138003204 Page 2 of 35

TABLE OF CONTENTS

TEST	REPO	RT DECLARATION	.2
1.	TEST	RESULTS SUMMARY	.5
2.	GENE	RAL INFORMATION	.6
	2.1.	Report information	.6
	2.2.	Laboratory Accreditation and Relationship to Customer	.6
	2.3.	Measurement Uncertainty	.7
3.	PROD	OUCT DESCRIPTION	.8
	3.1.	EUT Description	.8
	3.2.	Related Submittal(s) / Grant (s)	.8
	3.3.	Block Diagram of EUT Configuration	.9
	3.4.	Operating Condition of EUT	.9
	3.5.	Support Equipment List	10
	3.6.	Test Conditions	10
	3.7.	Special Accessories	10
	3.8.	Equipment Modifications	10
4.	TEST	EQUIPMENT USED	11
5.	6DB B	SANDWIDTH MEASUREMENT1	12
	5.1.	Limits of 6dB Bandwidth Measurement	12
	5.2.	Test Procedure	12
	5.3.	Test Setup	12
	5.4.	Test Data	13
6.	MAXIN	MUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT	15
	6.1.	Limits of Maximum Peak Conducted Output Power Measurement	15
	6.2.	Test Procedure	15
	6.3.	Test Data	15
7.	MAXIN	MUM POWER SPECTRAL DENSITY LEVEL MEASUREMENT	17
	7.1.	Limits of Maximum Power Spectral Density Level Measurement	17
	7.2.	Test Procedure	17
	7.3.	Test Data	17
8.	COND	OUCTED BANDEDGE AND SPURIOUS MEASURMENT	19

	8.1.	Limits of Conducted Band Edge and Spurious Measurement	19
	8.2.	Test Procedure	19
	8.3.	Test Data	20
9.	RADIA	ATED BAND EDGE AND SPURIOUS MEASUREMENT	24
	9.1.	Limits of Radiated Band Edge And Spurious Measurement	24
	9.2.	TEST PROCEDURE	24
	9.3.	Test Data	24
10.	CONE	DUCTED EMISSION TEST FOR AC POWER PORT MEASUREMENT	31
	10.1.	Test Standard and Limit	31
	10.2.	Test Procedure	31
	10.3.	Test Arrangement	31
	10.4.	Test Data	32
11.	ANTE	NNA REQUIREMENTS	35
	11.1.	Applicable requirements	35
	11.2.	Antenna Connector	35
	11.3.	Antenna Gain	35

1. TEST RESULTS SUMMARY

Table 1 Test Results Summary

Test Items	FCC Rules	Test Results
6dB DTS bandwidth measurement	15.247 (a) (2)	Pass
Maximum Peak Conducted Power	15.247 (b) (3)	Pass
Maximum Power Spectral Density Level	15.247 (3)	Pass
Conducted Band Edge and Spurious	15.247 (d)	Pass
	15.247 (d)	
Radiated Band Edge and Spurious	15.209	Pass
	15.205	
Conducted emission test for AC power port	15.207	Pass
Antenna Requirement	15.203	Pass

Remark: " N/A" means " Not applicable."

Report No.:WT138003204 Page 5 of 35

2. GENERAL INFORMATION

2.1. Report information

- 2.1.1.This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment.
- 2.1.2.The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.
- 2.1.3.Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so.

2.2. Laboratory Accreditation and Relationship to Customer

The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in their facilities located at No.4 TongFa Road, Xili Town, Nanshan District, Shenzhen, China. At the time of testing, Laboratory is accredited by the following organizations:

China National Accreditation Service for Conformity Assessment (CNAS) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is CNAS L0579.

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number are 446246 806614 994606(semi anechoic chamber).

The Laboratory is registered to perform emission tests with Industry Canada (IC), and the registration number is 11177A.

TUV Rhineland accredits the Laboratory for conformance to IEC and EN standards, the registration number is E2024086Z02.

Report No.:WT138003204 Page 6 of 35

2.3. Measurement Uncertainty

Conducted Emission
9kHz~30MHz 3.5dB

Radiated Emission

30MHz~1000MHz 4.5dB

1GHz~25GHz 4.6dB

Report No.:WT138003204 Page 7 of 35

3. PRODUCT DESCRIPTION

3.1.EUT Description

Description : In-wall dimmer

Manufacturer : KONIG ELECTRONIC (HUIZHOU) LTD.

Model Number : ZB3001(45857)

Rated Input : AC 120V/60Hz

Power supply : AC 120V/60Hz

Operate Frequency : 2.405GHz~2.480GHz

Modulation : DSSS (O-QPSK)

Data Rate (Mbps) : 250kbps

Antenna Designation : Monopole antenna (Integrated)

Table 2 Working Frequency List

Channel	Center	Channel	Center
	Frequency(MHz)		Frequency(MHz)
11	2405	19	2445
12	2410	20	2450
13	2415	21	2455
14	2420	22	2460
15	2425	23	2465
16	2430	24	2470
17	2435	25	2475
18	2440	26	2480

3.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: U2ZZB3001, filing to comply with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules.

Report No.:WT138003204 Page 8 of 35

3.3. Block Diagram of EUT Configuration

Figure 1 EUT setup

3.4. Operating Condition of EUT

Worst-case mode and channel used for power line conducted emissions was the mode and channel with the highest output power.

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Date Rate	Channel	
Maximum Peak Conducted Power	TX	250 kbps	11, 18, 24, 25, 26	
6dB DTS bandwidth	TV	250 khna	11, 18, 24, 25, 26	
Power Spectral Density	TX	250 kbps		
Spurious Emission	TX	250 kbps	11, 18, 24, 25, 26	
Band Edge	TX	250 kbps	11, 25, 26	
Conducted emission test for AC	TV	OEO Ishma		
power port	TX	250 kbps		

Report No.:WT138003204 Page 9 of 35

3.5. Support Equipment List

Table 3 Support Equipment List

Name	Model No	S/N	Manufacturer	FCC Approval

3.6. Test Conditions

Date of test: Nov.04, 2013-Nov.15, 2013

Date of EUT Receive: Oct.22, 2013

Temperature: 20-21 °C

Relative Humidity: 53-59%

3.7. Special Accessories

Not available for this EUT intended for grant.

3.8. Equipment Modifications

Not available for this EUT intended for grant.

Report No.:WT138003204 Page 10 of 35

4. TEST EQUIPMENT USED

Table 4 Test Equipment

No.	Equipment	Manufacturer	Model No.	Last Cal.	Cal. Interval
SB3319	EMI Test Receiver	Rohde & Schwarz	ESCS30	Jan.21,2013	1 Year
SB4357	AMN	Rohde & Schwarz	ENV216	Jan.21,2013	1 Year
SB8501/09	EMI Test Receiver	Rohde & Schwarz	ESU40	May.17, 2013	1 Year
SB9060	Spectrum analyzer	Rohde & Schwarz	FSQ40	May.17, 2013	1 Year
SB3955	Broadband antenna	SCHWARZBECK	VULB9163	Jan.21, 2013	1 Year
SB8501/01	Horn Antenna	Rohde & Schwarz	HF907	May.14, 2013	1 Year
SB8501/10	Horn Antenna	Rohde & Schwarz	3160-09	May.14, 2013	3 Years
SB8501/12	Horn Antenna	Rohde & Schwarz	3160-10	May.14, 2013	3 Years
SB8501/17	Preamplifier	Rohde & Schwarz	SCU-18	May.14, 2013	1 Year
SB8501/16	Preamplifier	Rohde & Schwarz	SCU-26	May.14, 2013	1 Year
SB9059	Preamplifier	Rohde & Schwarz	SCU-40	May.14, 2013	1 Year

Report No.:WT138003204 Page 11 of 35

5. 6DB BANDWIDTH MEASUREMENT

5.1. Limits of 6dB Bandwidth Measurement

CFR 47 (FCC) part 15.247 (a) (2) and 558074 D01 DTS Meas Guidance v03r01

5.2. Test Procedure

The transmitter output was connected to the spectrum analyzer.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 x RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3. Test Setup

Report No.:WT138003204 Page 12 of 35

5.4. Test Data

Table 5 6dB Bandwidth Test Data

CHANNEL	6dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
11 (2405MHz)	1.619	Pass
18 (2440MHz)	1.587	Pass
24 (2470MHz)	1.603	Pass
25 (2475MHz)	1.587	Pass
26 (2480MHz)	1.603	Pass

Date: 6.NOV.2013 14:12:57 Date: 6.NOV.2013 14:23:04

Report No.:WT138003204 Page 13 of 35

Date: 6.NOV.2013 14:26:07 Date: 6.NOV.2013 14:29:47

Date: 6.NOV.2013 14:41:13

Report No.:WT138003204 Page 14 of 35

6. MAXIMUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT

6.1. Limits of Maximum Peak Conducted Output Power Measurement

CFR 47 (FCC) part 15.247 (b) (3) and 558074 D01 DTS Meas Guidance v03r01

6.2. Test Procedure

The transmitter output was connected to the spectrum analyzer.

- a) Set the RBW = 3 MHz
- b) Set the VBW \geq 3 x RBW
- c) Set the span \geq 3 x RBW
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

6.3. Test Data

Table 6 Maximum Peak Conducted Output Power Test Data

CHANNEL			
FREQUENCY	Meas. Level (Cond.) [dBm]	Limit [dBm]	Result
(MHz)			
11 (2405MHz)	15.1	< 30	Pass
18 (2440MHz)	15.5	< 30	Pass
24 (2470MHz)	15.6	< 30	Pass
25 (2475MHz)	7.9	< 30	Pass
26 (2480MHz)	-44.8	< 30	Pass

Report No.:WT138003204 Page 15 of 35

Report No.:WT138003204 Page 16 of 35

7. MAXIMUM POWER SPECTRAL DENSITY LEVEL MEASUREMENT

7.1. Limits of Maximum Power Spectral Density Level Measurement

CFR 47 (FCC) part 15.247 (e) and 558074 D01 DTS Meas Guidance v03r01

7.2. Test Procedure

The transmitter output was connected to the spectrum analyzer.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW ≥ 3RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.3. Test Data

Table 7 Maximum Power Spectral Density Level Test Data

CHANNEL FREQUENCY	PSD [dBm]	Limit [dBm]	Result
(MHz)			
11 (2405MHz)	-0.3	8	Pass
18 (2440MHz)	0.7	8	Pass
24 (2470MHz)	0.9	8	Pass
25 (2475MHz)	-6.8	8	Pass
26 (2480MHz)	-59.8	8	Pass

Report No.:WT138003204 Page 17 of 35

Report No.:WT138003204 Page 18 of 35

8. CONDUCTED BANDEDGE AND SPURIOUS MEASURMENT

8.1. Limits of Conducted Band Edge and Spurious Measurement

CFR 47 (FCC) part 15.247 (d) and 558074 D01 DTS Meas Guidance v03r01

8.2. Test Procedure

The transmitter output was connected to the spectrum analyzer.

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Emission level measurement

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Ensure that the number of measurement points ≥ span/RBW
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level.

Report No.:WT138003204 Page 19 of 35

8.3. Test Data

Channel 11

Report No.:WT138003204 Page 20 of 35

Channel 18

Channel 24

Report No.:WT138003204 Page 21 of 35

Channel 25

Report No.:WT138003204 Page 22 of 35

Channel 26

Report No.:WT138003204 Page 23 of 35

9. RADIATED BAND EDGE AND SPURIOUS MEASUREMENT

9.1. Limits of Radiated Band Edge And Spurious Measurement

CFR 47 (FCC) part 15.247 (d) and 558074 D01 DTS Meas Guidance v03r01

9.2. TEST PROCEDURE

- 1. The testing follows the guidelines in ANSI C63.10-2009.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. Use the following spectrum analyzer settings:
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Set RBW=100 kHz for f < 1 GHz; VBW >= RBW; Sweep = auto; Detector function = peak; Trace = max hold;
- (3) Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. Set RBW = 1 MHz, VBW= 10Hz for f > 1 GHz for AV measurement.

9.3. Test Data

Report No.:WT138003204 Page 24 of 35

Table 8 Radiated Emission Test Data

Model No.: ZB3001(45857)

Test mode:	Test mode: TX, Channel 11							
Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dB µ V)	Emission Level dB (µ V/m)	Limits dB (µ V/m)	EUT axes	Note
4808.991	Vertical	-39.4	34.0	55.9	50.5	74	Х	Harmonics PK
4808.991	Vertical	-39.4	34.0	47.0	41.6	54	Х	Harmonics AV
7213.413	Vertical	-38.3	35.6	56.5	53.8	74	Х	Harmonics PK
7213.413	Vertical	-38.3	35.6	45.7	43.0	54	х	Harmonics AV
10996.500	Vertical	-35.1	37.2	53.4	55.5	74	Х	Harmonics PK
10996.500	Vertical	-35.1	37.2	39.5	41.6	54	Х	Harmonics AV
4810.976	Horizontal	-39.4	34.0	57.0	51.6	74	Х	Harmonics PK
4810.976	Horizontal	-39.4	34.0	47.9	42.5	54	Х	Harmonics AV

Table 9 Radiated Emission Test Data

Model No.: ZB3001(45857)

Test mode: TX Channel 18

Test mode: TX, Channel 18									
Frequency	Polarization	Correction	Antenna	Reading	Emission	Limits dB	EUT	Note	
(MHz)		Factor	Factor	Value	Level	(µ V/m)	axes		
		(dB)	(dB/m)	(dB μ V)	dB (μ V/m)				
4881.003	Vertical	-39.4	34.0	55.4	50.0	74	Х	Harmonics PK	
4881.003	Vertical	-39.4	34.0	46.0	40.6	54	Х	Harmonics AV	
7321.363	Vertical	-38.1	35.6	58.9	56.4	74	Х	Harmonics PK	
7321.363	Vertical	-38.1	35.6	48.6	46.1	54	Х	Harmonics AV	
4880.888	Horizontal	-39.4	34.0	56.7	51.3	74	X	Harmonics PK	
4880.888	Horizontal	-39.4	34.0	47.5	42.1	54	X	Harmonics AV	

Report No.:WT138003204 Page 25 of 35

Table 10 Radiated Emission Test Data

Model No.: ZB3001(45857)

Test mode: TX. Channel 24

Test mode: TX, Channel 24									
Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dB µ V)	Emission Level dB (µ V/m)	Limits dB (µ V/m)	EUT axes	Note	
4938.988	Vertical	-39.5	34.0	55.3	49.8	74	х	Harmonics PK	
4938.998	Vertical	-39.5	34.0	45.4	39.9	54	Х	Harmonics AV	
7411.485	Vertical	-37.6	35.6	59.2	57.2	74	Х	Harmonics PK	
7411.485	Vertical	-37.6	35.6	48.9	46.9	54	X	Harmonics AV	
4940.974	Horizontal	-39.5	34.0	57.5	52.0	74	Х	Harmonics PK	
4940.974	Horizontal	-39.5	34.0	48.1	42.6	54	Х	Harmonics AV	
7411.727	Horizontal	-37.6	35.6	60.6	58.6	74	Х	Harmonics PK	
7411.727	Horizontal	-37.6	35.6	49.9	47.9	54	Х	Harmonics AV	

Table 11 Radiated Emission Test Data

Model No.: ZB3001(45857)

Test mode: TX, Channel 25

Tool mode.	17t, Grianner							
Frequency	Polarization	Correction	Antenna	Reading	Emission	Limits dB	EUT	Note
(MHz)		Factor	Factor	Value	Level	(µ V/m)	axes	
		(dB)	(dB/m)	(dB µ V)	dB (μ V/m)			

Report No.:WT138003204 Page 26 of 35

Table 12 Radiated Emission Test Data

Model No.: ZB3001(45857)

Test mode: TX, Channel 26

Frequency	Polarization	Correction	Antenna	Reading	Emission	Limits dB	EUT	Note	
(MHz)		Factor	Factor	Value	Level	(μ V/m)	axes		
		(dB)	(dB/m)	(dB μ V)	dB (μ V/m)				

Note: 1. Emission level(dBuV/m)=Reading Value(dBuV) + Correction Factor(dB)+Antenna Factor (dB/m)

- 2. Correction Factor(dB) = Cable Factor (dB)+Amplifier Factor(dB)
- 3. No other spurious and harmonic emissions were reported greater than listed emissions above table.

Report No.:WT138003204 Page 27 of 35

Band Edge

Radiated Emission

EUT Information

EUT Model Name: ZB3001(45857)
Operation mode: CH11 TX
Test Voltage:
Comment:

FCC Electric Field Strength 2.4GHz Bandedge-PK

Radiated Emission

EUT Information

EUT Model Name: ZB3001(45857)
Operation mode: CH11 TX
Test Voltage:
Comment:

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT138003204 Page 28 of 35

Radiated Emission

EUT Information

Comment:

EUT Model Name: ZB3001(45857)
Operation mode: CH25 TX
Test Voltage:

FCC Electric Field Strength 2.4GHz Bandedge-PK

Radiated Emission

EUT Information

EUT Model Name: ZB3001(45857) Operation mode: CH25 TX

Test Voltage: Comment:

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT138003204 Page 29 of 35

Radiated Emission

EUT Information

EUT Model Name: ZB3001(45857)
Operation mode: CH26 TX
Test Voltage:

Comment:

FCC Electric Field Strength 2.4GHz Bandedge-PK

Radiated Emission

EUT Information

EUT Model Name: ZB3001(45857) Operation mode: CH26 TX

Test Voltage: Comment:

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT138003204 Page 30 of 35

10. CONDUCTED EMISSION TEST FOR AC POWER PORT MEASUREMENT

10.1.Test Standard and Limit

10.1.1.Test Standard FCC Part 15 15.207

10.1.2.Test Limit

Table 13 Conducted Disturbance Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)					
Frequency	Quasi-peak Level	Average Level				
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

^{*} Decreasing linearly with logarithm of the frequency

10.2.Test Procedure

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.). An EMI test receiver (R&S Test Receiver ESCS30) is used to test the emissions from both sides of AC line. According to the requirements in Section 7 and 13 of ANSI C63.4-2009.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

10.3.Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

Report No.:WT138003204 Page 31 of 35

^{*} The lower limit shall apply at the transition frequency.

10.4.Test Data

The emissions don't show in below are too low against the limits. Refer to the test curves.

Table 14 Conducted Disturbance Test Data

Model No.:								
Test mode: T	X, Worst-ca	se						
			Line					
_	QP		A۱	/	QP	AV	- ,	
Frequency	Level Limit		Level	Limit	Reading	Reading Reading	Factor	
MHz	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	
0.150	64.6	66	47.8	56	54.9	38.1	9.7	
0.166	62.1	65.2	47.5	55.2	52.4	37.8	9.7	
0.187	58.7	64.2	46.4	54.2	49.0	36.7	9.7	
0.199	57.4	63.7	45.3	53.7	47.7	35.6	9.7	
0.222	54.3	62.7	44.2	52.7	44.6	34.5	9.7	
0.254	50.5	61.6	43.1	51.6	40.8	33.4	9.7	
0.286	47.8	60.6	41.2	50.6	38.1	31.5	9.7	
0.322	44.9	59.7	38.9	49.7	35.2	29.2	9.7	
0.371	40.4	58.5	35.5	48.5	30.7	25.8	9.7	
0.546	39.8	56	36.3	46	30.0	26.5	9.8	
			Neutra	al				
F	QP		A۱	/	QP	AV	Fastan	
Frequency	Level	Limit	Level	Limit	Reading	Reading	Factor	
MHz	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	
0.150	64.9	66	47.9	56	55.2	38.2	9.7	
0.160	63.6	65.5	48.1	55.5	53.9	38.4	9.7	
0.181	60.1	64.4	46.9	54.4	50.4	37.2	9.7	
0.195	57.7	63.8	45.5	53.8	48.0	35.8	9.7	
0.237	52.4	62.2	43.7	52.2	42.7	34.0	9.7	
0.271	49.4	61.1	41.7	51.1	39.7	32.0	9.7	
0.318	46.0	59.8	38.9	49.8	36.3	29.2	9.7	
0.373	41.9	58.4	35.4	48.4	32.2	25.7	9.7	
0.404	39.2	57.8	29.8	47.8	29.5	20.1	9.7	
0.543	40.2	56	36.4	46	30.4	26.6	9.8	

REMARKS: 1. Emission level(dBuV)=Read Value(dBuV) + Correction Factor(dB)

Report No.:WT138003204 Page 32 of 35

^{2.} Correction Factor(dB) =LISN Factor (dB) + Cable Factor (dB)+Limiter Factor(dB)

^{3.} The other emission levels were very low against the limit.

Conducted Disturbance

EUT: Op Cond: Test Spec: Comment: ZB3001(45857) TX L AC 120V/60Hz

Report No.:WT138003204 Page 33 of 35

Conducted Disturbance

EUT: Op Cond: Test Spec: Comment: ZB3001(45857) TX N AC 120V/60Hz

Report No.:WT138003204 Page 34 of 35

11. ANTENNA REQUIREMENTS

11.1.Applicable requirements

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

11.2.Antenna Connector

The EUT has not external antenna connector and built in monopole antenna which is integrated inside the enclosure.

11.3.Antenna Gain

The antenna gain of EUT is less than 6 dBi.

Report No.:WT138003204 Page 35 of 35