Билет 12

тема: "Теорема Коши об интеграле по замкнутому контуру. Интеграл Коши. Ряд Тейлора"

Интегрирование ФКП и свойства интегралов

Интегралом от функции комплексного переменного по дуге $\cup AB$ линии L называется предел последовательности интегральных сумм:

$$\int_{\cup AB} f(z) dz = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k) \triangle z_k$$

где ξ_k — точка, произвольно выбранная на дуге $\cup z_{k-1}z_k$ разбиения кривой; $\triangle z_k$ — приращение аргумента функции на этом участке разбиения, $\lambda = \max_k |\triangle z_k|$ - шаг разбиения; $\triangle z_k$ — длина хорды, соединяющей концы дуги $\cup z_{k-1}z_k$.

Свойства интегралов

1.
$$\int_{\cup AB} f(z) dz = -\int_{\cup BA} f(z) dz$$

2.
$$\cup AB = L$$

$$\int_{L} cf(z)dz = c \int_{L} f(z)dz$$

3.
$$\int_{L} [f_1(z) + f_2(z)] dz = \int_{L} f_1(z) dz + \int_{L} f_2(z) dz$$

4. Если
$$L = L_1 + L_2$$
; $\int\limits_L f(z) \mathrm{d}z = \int\limits_{L_1} f(z) \mathrm{d}z + \int\limits_{L_2} f(z) \mathrm{d}z$

5. Если ФКП яв-ся ограниченной функцией, т.е. |f(z)| < M, где $M = max\{f(z)\}, \forall z \in L$, то контурный интеграл ограничен следующим значением $|\int\limits_L f(z)\mathrm{d}z| \le M \times L$, где L - длина линии

Теорема Коши для односвязной области

Если функция f(z) аналитичнав односвязной области D и непрерывная в замкнутой области \overline{D} , то интеграл от f(z), взятый вдоль границы C этой области, равен нулю:

$$\int_C f(z) dz = 0 \tag{9}$$

Доказательство

Предположим, что C - "звездный" контур, т.е. \exists точка z_0 такая, что \forall луч с вершиной в этой точке пересекает C в одной и только одной точке. Без ограничения общности можно предполагать, что $z_0=0$ (это достигается сдвигом плоскости z), тогда кривую C можно задать уравнением $z=r(\varphi)e^{i\varphi}$, где $r(\varphi)$ - однозначная φ -я .

 C_λ - контур, определяемый уравнением $\xi=\lambda z=\lambda r(\varphi)e^{i\varphi}$, $0<\lambda<1$ (рис.19). Т.к. C_λ лежит внутри D, то по теореме Коши

$$\int_{C_{\lambda}} f(\xi) d\xi = 0 \qquad (10)$$

Но когда точка ζ описывает C_{λ} , точка $z = \frac{1}{\lambda} \zeta$ описывает C, поэтому равенство (10) можно переписать в виде

$$\int_{C} f(\lambda z) d(\lambda z) = \lambda \int_{C} f(\lambda z) dz = 0$$

и, следовательно,

$$\int_{C} f(z) dz = \int_{C} \{f(z) - f(\lambda z)\} dz. \tag{11}$$

Так как функция f(z) равномерно непрерывна в \bar{D} (см. п. 5), то для любого $\varepsilon>0$ можно найти $\delta>0$ так, что для любой пары точек z, ζ , удовлетворяющих неравенству $|z-\zeta|<\delta$, будет справедливо неравенство

$$|f(z) - f(\zeta)| < \varepsilon.$$
 (12)

Пусть l — длина контура C и $R = \max r(\phi)$; возьмем $\lambda > 1 - \frac{\delta}{R}$, тогда для любой пары точек z и $\zeta = \lambda z$ будем иметь $|z - \zeta| = (1 - \lambda) |z| \leqslant \frac{\delta}{R} |z| \leqslant \delta$, следовательно, будет выполняться (12) и из (11) получим:

$$\left|\int\limits_C f(z)\,dz\right| < l\varepsilon.$$

Так как здесь ε сколь угодно мало и интеграл не зависит от ε , то этот интеграл равен 0. Для звездных контуров теорема доказана.

Пусть теперь C — произвольная кусочно-гладкая кривая. Если C имеет точки возврата, то мы выбросим из области D круги малого радиуса ε с центрами в этих точках, так, чтобы граница полученной области D_{ε} уже не имела таких точек (рис. 20). Проводя внутри D_{ε} конечное число линий γ_k ($k=1,2,\ldots,m$), эту область можно, очевидно, разбить на части D_k , ограниченные звездными линиями C_k ($k=1,2,\ldots,n$)*). По доказанному выше,

^{*)} Легко видеть, что отрезок кусочно-гладкой кривой в достаточно малой окрестности ее точки, не являющейся точкой возврата, представляет собой звездную кривую. В окрестности же точки возврата кривая может и не быть звездной (например, кривая, составленная из ветвей парабол $y=x^2$ и $y=2x^2$, для которых $x\geqslant 0$, в окрестности точки z=0).

интеграл вдоль \forall линии C_k равен нулю:

$$\int_{C_k} f(z) dz = 0 \qquad \text{(k=0,1,2,...,n)}$$
 (13)

Предположим, что линии C_k проходятся в одном, например положительном направлении, и сложим все уравнения (13). Т.к. у нас каждая линия γ_k проходится дважды и притом в противоположных направлениях, то все интегралы вдоль γ_k взаимно сокращаются. Остальные части границ C_k составляют границу C_ε области D_ε и \Rightarrow интеграл вдоль этой границы равен нулю:

$$\int_{C_{\varepsilon}} f(z) \mathrm{d}z = 0$$

Остается показать, что равен нулю интеграл вдоль границы С области D; но это следует немедленно из того, что С и C_{ε} отличаются лишь на конечное чилсо малых дуг и т.к. ф-я f(z) ограничена, то ее интеграл вдоль этих дуг также мал. Таким образом, интеграл вдоль С сколь угодно мало отличается от интеграла вдоль C_{ε} , который равен 0, и \Rightarrow сам равен нулю.

Теорема Коши для многосвязной области

Для многосвязных областей Теорема Коши, вообще говоря не верна. В самом деле, ф-я f(z)=1/z аналитична всюду в кольце $\frac{1}{2}<|z|<2$, однако интегралы от -1 до 1 вдоль верхней и нижней половин окружности $|\mathbf{z}|=1$ отличаются друг от друга. Действительно, вдоль верхней полуокружности C_1 , где $z=e^{i\varphi},\,0<\varphi<\pi$, имеем:

$$\int_{C_1} \frac{dz}{z} = \int_{\pi}^{0} \frac{ie^{i\varphi}d\varphi}{e^{i\varphi}} = -i\pi,$$

а вдоль нижней полуокружности C_2 , где $z=e^{i\varphi},\,-\pi<\varphi<0$:

$$\int_{C_1} \frac{dz}{z} = \int_{-\pi}^{0} \frac{ie^{i\varphi}d\varphi}{e^{i\varphi}} = i\pi.$$

Для обозначения интеграла от а до b вдоль пути C в многосвязной области мы будем поэтому иногда употреблять символ

$$\int_{a^{C}}^{b} f(z)dz. \tag{1}$$

Если в многосвязной области кривые C_1 и C_2 с общими концами расположены так, что ограничивают одну односвязную область, принадлежащую D, то интегралы вдоль кривых равны. Следовательно значение интеграла от аналитической функции в многосвязной области D не изменяется, если контур интегрирования непрерывно

деформируется так, что его концы остаются неподвижными и он все время остается внутри D.

Пусть в многосвязной области D даны точки a и b и простая *) кривая C_0 , их соединяющая. Пусть C — любая другая кривая, соединяющая эти точки (рис. 21,a). Согласно только что сделанному замечанию можно, не изменяя величины интеграла, деформировать кривую C в другую, лежащую в области D кривую C, состоящую из: 1) кривой C_0 , которая вместе с C_0

Рис. 21.

ограничивает односвязную область, принадлежащую D; 2) совокупности простых замкнутых кривых γ_k ($k=1, 2, \ldots, m$), каждая из которых содержит внутри себя одну связную часть границы D (рис. $21, \delta$). При этом кривые γ_k могут проходиться несколько раз и в различных направлениях (на рис. $21, \delta$ кривая γ_1 проходится трижды по часовой стрелке, а γ_2 — один раз против часовой стрелки). Для удобства мы условимся обозначать через γ_k ($k=1, 2, \ldots, m$) кривые, проходимые против часовой стрелки; кроме того, мы введем еще кривые γ_k ($k=m+1, \ldots, n$), окружающие связные части границы области D и не входящие в состав C (как γ_3 на рис. $21, \delta$).

Введем обозначения

$$\Gamma_k = \int_{\gamma_k} f(z) dz \qquad (k = 1, 2, \ldots, n); \tag{2}$$

при непрерывной деформации γ_h , при которой эти кривые остаются внутри D, интегралы (2) не изменяются, следовательно, величины Γ_k определяются лишь функцией f(z) и областью D. Пусть N_k — целые числа, указывающие, сколько раз и в каком направлении проходится γ_k в составе кривой \tilde{C} ; эти числа могут быть положительными, отрицательными или равными нулю

^{*)} То есть без точек самопересечения.

По предыдущему и свойствам интегралов имеем:

$$\int_{a^{C}}^{b} f(z)dz = \int_{a^{C}}^{b} f(z)dz = \int_{a^{C_0}}^{b} f(z)dz + N_1\Gamma_1 + N_2\Gamma_2 + \dots + N_n\Gamma_n.$$
 (3)

 Γ_k - периоды интеграла от функции f(z) в многосвязной области D.

Заметим.

Теореме Коши предыдущего пункта можно придать иной смысл так, чтоб она оставалась справедливой и для многосвязных областей. Пусть

функция f(z) аналитична в многосвязной области D, ограниченной кривыми C_0 , C_1 , ..., C_n (рис. 23), и непрерывна в \bar{D} . Проведем разрезы $\gamma_1, \ldots, \gamma_n$, обращающие D в односвязную область D^* , и обозначим через С* границу этой области — кривую, состоящую из участков кривых C_h и кривых γ_h , причем последние про-

Рис. 23.

Функция f(z) аналитична в односвязной области D^* и непрерывна в \bar{D}^* ; следовательно, по теореме 5 предыдущего пункта и свойствам интегралов (9) и (10) п. 11.

$$\int_{C^*} f(z) dz = \int_{C_0} f(z) dz + \sum_{k=1}^n \int_{C_k} f(z) dz = 0$$
(8)

(интегралы вдоль γ_k взаимно сокращаются, а остальная часть C^* совпадает с $\sum_{k=0}^n C_k$). При этом мы должны считать, что кривые C_0 и C_1 , C_2 , ..., C_n проходятся так, чтобы область D оставалась все время с одной стороны (например, на рис. 23 - слева). Таким образом, для областей любой связности теорема Коши справедлива в следующей форме:

Teopema. Если функция f(z) аналитична в области D и непрерывна в Б, то ее интеграл вдоль границы этой области. проходимой так, что область D все время остается с одной стороны, равен нулю.

Примеры

Вычислить
$$\oint\limits_C \frac{dz}{z}$$
, где C - окружность $|z|=1$

Ответ: $2\pi i$

Ответ:
$$2\pi$$
1 Вычислить $\oint\limits_C \frac{dz}{z}$, где C - граница области $1<|z|<2$

Otbet: $\frac{4}{3}$

Интегральная формула Коши

Пусть функция $f(z) \in O(D) \cap C(D)$ (аналитична в замкнутой области D (односвязной или многосвязной)), где ∂D - кусочно гладкая. Тогда

$$f(z) = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(\xi)d\xi}{\xi - z}.$$

Доказательство

z - фиксируем. $z \in D$

$$\varphi(\xi) = \frac{1}{2\pi i} \frac{f(\xi)}{\xi - z}$$

$$f \in O(D)$$

$$f - z \in O(C)$$

$$\varphi \in O(D \setminus \{z\})$$

$$\overline{V} = \{ |\xi - z| \le \varepsilon \}$$

$$\overline{V} \cap \partial D = \emptyset$$

$$\varphi \in O(D \setminus \overline{V}), \, \partial D \cup \{|z - \xi| = \varepsilon\}$$

$$\oint_{\partial(D\cup\overline{V})} \varphi(\xi) \mathrm{d}\xi = 0 \; ; \oint_{\partial D} - \oint_{|\xi-z|=\varepsilon} = 0$$

$$f(z) = \frac{1}{2\pi i} \oint\limits_{\partial D} \frac{f(\xi)d\xi}{\xi - z} = \frac{1}{2\pi i} \oint\limits_{|\xi - z| = \varepsilon} \frac{f(\xi)d\xi}{\xi - z} = \frac{1}{2\pi i} \oint\limits_{|\xi - z| = \varepsilon} \frac{f(\xi) - f(z)d\xi}{\xi - z} + \frac{1}{2\pi i} \oint\limits_{|\xi - z| = \varepsilon} \frac{f(z)d\xi}{\xi - z}$$

$$f(\xi)-f(z) \rightrightarrows 0 \Rightarrow rac{1}{2\pi i} \oint\limits_{|\xi-z|=arepsilon} rac{f(\xi)-f(z)d\xi}{\xi-z} o 0$$
 при $arepsilon o 0.$

$$\oint\limits_{|\xi-z|=\varepsilon} \tfrac{|d\xi|}{\xi-z} = \tfrac{1}{\varepsilon} \oint\limits_{|\xi-z|=\varepsilon} |d\xi| = \tfrac{2\pi\varepsilon}{\varepsilon} \; \blacksquare$$

Будут ли непрерывны частные производные?

$$f(z) = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(\xi)d\xi}{(\xi-z)}$$
. z фиксируем

$$f'(z)=rac{1}{2\pi i}\oint\limits_{\partial D}rac{f(\xi)d\xi}{(\xi-z)^2},\;f'(z)$$
 - непрерывна в D

$$f''(z) = \frac{2}{2\pi i} \oint_{\partial D} \frac{f(\xi)d\xi}{(\xi-z)^3}...$$

$$f^{(n)}(z)=rac{n!}{2\pi i}\oint\limits_{\partial D}rac{f(\xi)d\xi}{(\xi-z)^{n+1}}$$
 - непрерывна $lacktriangledown$

Примеры

Пример 1. Вычислить интеграл $\oint_C \frac{e^z dz}{z(z-3)}$, где C - окружность с радиусом 3/2 и центром в точке 2.

Решение. В качестве числителя подынтегрального выражения в интегральной формуле Коши следует взять функцию $f(z) = \frac{e^z}{z}$, которая аналитична в круге, ограниченном С. Применяя интегральную формулу Коши, получим

$$\oint_C \frac{e^z dz}{z(z-3)} = \oint_C \frac{f(z)dz}{z-3} = 2\pi i f(3) = \frac{2\pi e^3 i}{3}.$$

Пример 2. Вычислить $\oint_C \frac{e^z dz}{(z-i)^3}$ где С — произвольный замкнутый контур, однократно обходящий точку і в положительном направлении.

Решение. Функция $f(z) = e^z$ аналитична в области, ограниченной контуром С и в силу формулы для производной, находим

$$\oint_C \frac{e^z dz}{(z-i)^3} = \frac{2\pi i}{2!} f''(i) = -\pi \sin 1 + i\pi \cos 1$$

Ряд Тейлора

Различают числовые и функциональные ряды. Из всевозможных функциональных рядов большое распространение имеют степенные ряды:

$$\sum_{n=0}^{\infty} c_n z^n = c_0 + c_1 z + c_2 z^2 + \dots + c_n z^n + \dots$$

Радиус сходимости К можно определить, пользуясь признаками Даламбера или Коши: $R = \lim_{n \to \infty} |\frac{c_n}{c_{n+1}}|, \ R = \lim_{n \to \infty} |\frac{1}{\sqrt[n]{|c_n|}}|$

Ряд сходится при $|\mathbf{z}| < R$, т.е. в круге радиусом R . Более общий вид степенного ряда — ряд Тейлора

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, c_n = \frac{1}{n!} f^{(n)}(z_0)$$

Кругом сходимости этого ряда является круг $|z-z_0| < R$

Примеры

Пример 1. Рассмотрим геометрическую прогрессию $\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \ldots + z^n + \ldots$ Ее круг сходимости z < 1. Внутри этого круга прогрессия сходится абсолютно, а во всяком замкнутом круге $z \le q < 1$ – равномерно. Как и в действительном анализе, сумма прогрессии внутри ее кругасходимости равна функции $\frac{1}{1-z}$.

Пример 2. Исследовать сходимость ряда $\sum_{n=0}^{\infty} \frac{(z-1)^n}{n!} = 1 + \frac{z-1}{1!} + \frac{(z-1)^2}{2!} + \dots$

Его радиус сходимости равен $R=\lim_{n\to\infty}|\frac{c_n}{c_{n+1}}|=\lim_{n\to\infty}(n+1)=\infty$

Следовательно, кругом сходимости данного ряда будет вся плоскость z

Теорема Лиувилля

Пусть f голоморфна во всей комплексной плоскости C и существует M>0 такое, что $|f(z)| \leq M$ для всех $z \in C.$

Тогда $f(z) \equiv const$

Доказательство

$$f(z) = \sum_{n=0}^{\infty} C_n z^n \Rightarrow |c_n| \le \frac{M}{r^n}$$

Устремляем $r \to \infty$, получаем, что $c_n = 0 \Rightarrow f(z) = c_0 \equiv const$