Софтуерно осигуряване на качеството: Въведение

QA, тестване, бъгове, принципи на тестване, процес на тестване

СофтУни Преподавателски екип

Софтуерен университет

http://softuni.bg

Съдържание

- 1. Какво означава софтуерно осигуряване на качеството (SQA)?
- 2. Какво означава софтуерно тестване?
- 3. Софтуерни дефекти (бъгове)
- 4. Сравнение между **Ръчно** тестване и **Автоматизирано** тестване
- 5. Седем принципа в тестването
- 6. Тест **сценарии** и тест **случаи** (Test **Scenarios** and Test **Cases**)

Какво означава софтуерно осигуряване на качеството?

Какво означава софтуерно тестване?

Софтуерно осигуряване на качеството (SQA)

- Какво е софтуерно осигуряване на качеството (SQA / QA)?
 - SQA има за цел да гарантира, че софтуерът се държи според очакванията
 - SQA е методология за проверка на съответствието на софтуера спрямо изискванията
 - По-голяма част от работата на QA е софтуерното тестване: ръчно и автоматизирано
 - Софтуерните дефекти (бъгове) се докладват и проследяват чрез системи за проследяване на дефекти (bug tracking systems)
 - Процесът по софтуерно осигуряване на качеството се изпълнява от QA инженери

Софтуерно осигуряване на качеството (SQA)

- По-голяма част от QA работата е софтуерното тестване
 - Ръчно тестване (кликни и провери резултатите)
 - Автоматизирано тестване (QA автоматизация посредством скриптове)

Непрекъсната интеграция и непрекъснато внедряване (CI / CD pipeline)

- Автоматизирано изграждане и обновяване в тестова среда (build and deploy)
- Автоматизирано изпълнение на тестове
- Известяване (notification) / доклад (report)

Софтуерно тестване

- Софтуерното тестване е начин:
 - За оценка на качеството на софтуера
 - Да се провери дали софтуерът отговаря на определени изисквания и да се открият бъгове
 - Да се намали риска от повреда на софтуера при неговото използване
- Процесът по анализиране на софтуерен продукт включва:
 - Откриване на разликите между разработеният софтуер и разписаните спецификации
 - Оценка на функционалностите на софтуерния продукт

Цели на тестването

- Основни цели на тестването
 - Предотвратяване на дефекти
 - Верификация на посочените изисквания
 - Верификация на очакваното поведение на софтуера
 - Да се намали нивото на риск от възможен софтуерен провал
 - Да предоставя информация на заинтересованите страни
 - Да спомага за спазването на договорни, законови или регулаторни изисквания

Процесът на софтуерно тестване

 Тестването проверява дали разработеният софтуер отговаря на изискванията

- Тестването има за цел да открие и докладва дефекти (bugs)
- Процесът по софтуерно тестване включва:
 - Планиране на тестването: какво, кога, как?
 - Дизайн на тестването: тест сценарии и тест случаи
 - Настройка на тестовата среда: инсталиране, конфигуриране, подготовка на тестови данни, ...
 - Реализация на тестовете: изпълнение на тестовете
 - Отчет на тестването: регистриране на резултатите от теста и откритите бъгове

Софтуерни дефекти (Bugs)

Грешки, дефекти, бъгове и неизправности

Софтуерни дефекти

- Хората допускат грешки (пропуски)
- Грешките водят до дефекти
 - Дефектите са бъгове в програмния код или грешки в изискванията / дизайна / друго
- Ако дефектът бъде активиран, това може да доведе до неизправност
 - Не успява да изпълни това, което се очаква / изпълнява грешни неща
- Човешки грешки (пропуски) Дефекти в софтуера (bugs) Неизправности при изпълнение/неправилно поведение
- QA / софтуерното тестване цели да намери дефектите
 - Автоматизираното тестване и Непрекъсната интеграция/внедряване (CI / CD) намаляват дефектите

Грешка / Дефект / Неизправност

Програмна грешка

- Добавяне на функция, която работи коректно, с изключение на 5 + 3 = 7 (скрита/латентна грешка)
- Активирана грешка -> ефективен дефект/бъг
 Извикване на функция "добавяне", чрез 5 + 3
 - Резултат 7 в някаква променлива (вместо 8)
- Неизправност отклонение в поведението на системата
 - Насрочване на среща в 7:00 сутринта, вместо в 8:00 сутринта

Какво може да доведе до дефекти / бъгове? (1)

- Причини за грешки на програмиста/тестващия могат да бъдат:
 - Липса на време
 - Недостатъчно добро обучение
 - Сложен код
 - Сложна инфраструктура
 - Променящите се технологии

Примери

- Примери за липса на време
 - За написването на дадена функция са необходими 10 минути
 - Разрешеното време е 2 минути
 - По-висока вероятност да се допусне грешка

- Примери за недостатъчно добро обучение
 - В софтуера трябва да се имплементира физична формула
 - Разработчикът не разбира формулата
 - Лошо/неправилно изпълнение
 - Кодът прави нещо друго

Какво може да доведе до дефекти / бъгове? (2)

- Организационни фактори
 - Неефективна комуникация (недоразумение)
 - Неясно дефинирани изисквания

- Условия на околната среда
 - Електронни полета, магнетизъм, радиация, замърсяване и др.
 - Биха могли да повлияят на състоянието на хардуера
 - Неправилна софтуерна среда (напр. грешен IP адрес)
- Пример за неясно дефинирани изисквания:
 - "Софтуерът трябва да бъде лесен за използване."

Какво може да доведе до дефекти / бъгове? (3)

- Други причини за бъгове:
 - Неправилна конфигурация или неизправност в производствената или тестовата среда

- Некоректни тестови данни
 - Правилен тест, който дава отрицателен резултат
 - Грешен тест, който дава положителен резултат
- Некачествени тестове
- Невалидни очаквани резултати

Примери

- Пример за некоректни тест данни
 - Тестващия регистрира потребителско име "*john123*"
 - Не връща базата данни в първоначалния ѝ вид
 - Втори тестващ се опитва да изпълни същия тест
 - Регистрацията е неуспешна заради дублиране, т.е. коректен тест дава отрицателен резултат
- Неправилна конфигурация на производствената среда
 - Деактивирана функция "изпращане на имейл" на хостинг сървъра
 - Потребител се регистрира, но не получава потвърждаващ имейл

Пагубни софтуерни дефекти

Тежки загуби, причинени от софтуерни дефекти

Фатални софтуерни бъгове (1)

Катастрофата на Марс Клаймат Орбитър (1998)

- Предназначен за изучаване на марсианския климат, атмосфера и повърхност
- Очаквано трябва да се намира на 140 150 км от планетата
- Достига 57 км и бива разрушен от налягането
- Загуба: \$125 милиона
- Причини: използване на грешни мерни единици (имперски спрямо посочените от НАСА)

Фатални софтуерни бъгове (2)

Медицинският ускорител Therac-25 (1985-1987)

- Неизправност в машина за радиационно облъчване на раково болни
- Смъртоносни дози радиация са приложени на трима пациенти, други трима са били тежко ранени
- Причина: софтуерът сумира некоректно грешките, заради пропуск в алгоритъма за проверка

Фатални софтуерни бъгове (3)

Космическата сонда Маринър 1 (1962)

- Маринър 1 е първият космически кораб от американската програма Маринър
- Проектиран да изследва Венера
- Неправилно приложение на насочващите команди
- Унищожен 5 минути след изстрелването
- Загуба: \$18.2 милиона
- Причина: приликата на горната черта с тире ('¬' вместо '-')

Фатални софтуерни бъгове (4)

Еърбъс A300-600R на Китайските Авиолинии (1994)

- Разбива се и се запалва по време на кацане на летището в Нагоя
- Загуба: **\$40** милиона + **264 човешки живота**
- Причина: пилотска грешка и липса на препоръчаната актуализация на софтуера (тъй като Китайските авиолинии преценяват, че "не е спешно")

Фатални софтуерни бъгове (5)

Ариана 5, полет 501 (1996)

- Най-новата безпилотна ракета за изстрелване на сателити в Европа
- Унищожена 36,7 секунди след изстрелването
- Загуба: \$8 милиона. Носи сателит на стойност \$500 милиона долара
- Причина: софтуерът се опитва да побере 64битово число в 16-битово пространство
- Видео: https://youtu.be/qnHn8W1Em6E

Ръчно или автоматизирано тестване

Ръчни кликвания или автоматични скриптове

Ръчно и автоматизирано тестване

• Ръчно тестване

- Тип софтуерно тестване, при което тестовете се изпълняват ръчно, без използване на автоматизирани инструменти
- Човек изпълнява тестовете стъпка по стъпка, без тест скриптове
- Тестовете се изпълняват индивидуално, един по един

Автоматизирано тестване

- Тип софтуерно тестване, при което тестовете се изпълняват автоматично чрез "структура" за автоматизация на тестове (test automation frameworks)
- Тестващите използват инструменти и скриптове, за да автоматизират повтарящи се дейности
- Включват писане на код и поддръжка на тестове

Ръчно или автоматизирано тестване

	Аспект на тестването	Ръчно	Автоматизирано
	Изпълнение на теста	Изпълнява се ръчно от QA тестери	Изпълнява се автоматично с помощта на инструменти и скриптове за автоматизация
	Ефективност на теста	Много време, по-ниска ефективност	Повече тестове за по-малко време и по-висока ефективност
	Видове дейности	Изцяло ръчни дейности	Повечето дейности могат да бъдат автоматизирани, включително реални потребителски симулации
	Покритие на тестовете	Трудно е да се гарантира задоволително покритие на тестовете	Лесно се осигурява по-голямо покритие на тестовете

Пример за ръчно тестване

http://softuni-qa-amazonaws.com/manual-qa-demo

Пример за автоматизирано тестване

https://replit.com/@SoftUniQA/QA-Automation-Demo

```
QA-Automation-Demo.py
driver = webdriver.Chrome(options=chrome_options)
driver.get("https://manual-qa-demo.softuniqa.repl.co")
sleep(3)
button = driver.find_element(By.ID, "button")
button.click()
msg = driver.find_element(By.ID, "msg")
assert msg.text == 'Button clicked'
```


Седемте принципа в тестването

Философия на софтуерното тестване

Седем принципа в тестването (1)

"Софтуерното тестване може да покаже наличието на дефекти, но не и отсъствието им"

- Тестването може да покаже наличието на дефекти
- Не може да докаже липсата на дефекти
- Подходящото тестване
 намалява вероятността за
 наличие дефекти

Седем принципа в тестването (2)

"Изчерпателното тестване е невъзможно"

- Комбинациите от входни данни и тестови условия са безкрайни
- Да се тества всичко е непостижимо
- След направена оценка на риска, приоритет имат тестовете с най-висок за ситемата риск

Седем принципа в тестването (3)

"Ранното тестване спестява време и пари"

- Дейностите по тестването трябва да започнат възможно най-рано
 - И трябва да са фокусирани върху предварително определени цели
- Колкото по-късно се открие един дефект толкова по-висока е цената!

Седем принципа в тестването (4)

"Струпване на дефекти"

- Тестването трябва да бъде подходящо насочено
 - 80% от проблемите са породени от 20% от модулите в системата
- Фокусът пада върху 20%, от които идват повечето проблеми

Седем принципа в тестването (5)

"Парадокс на пестицидите"

- Повтарянето на едни и същи тестове води до намаляване на ефективността им
 - Неоткритите по-рано дефекти остават неоткрити
- Необходима е разработка на нови и/или модифицирани тестове

Седем принципа в тестването (6)

"Тестването зависи от контекста"

- Тестовете трябва да са съобразени и подбрани в зависимост от приложението, за което ще се използват
- Софтуер изискващ високо ниво за безопасност, се тества по различен начин от този за електронна търговия

Седем принципа в тестването (7)

Заблудата "Липса на дефекти"

- Схващането, че софтуер с малък брой дефекти е успешен продукт е погрешно
- Самото намиране и отстраняване на дефекти е безсмислено, ако:
 - Изградената система е неизползваема

 Не отговаря на нуждите и очакванията на потребителите

Тест сценарии (Test Scenarios)

Истории за тестване

Тест сценарий (Test Scenarios)

- Какво е "тест сценарий"?
 - Всяка функционалност / свойство / потребителска история, която може да бъде тествана
 - Нарича се още "story under test" или "feature under test"
 - Пример: тествай формата за вход
- Защо ни е необходим?
 - Сложните системи могат да бъдат разделени на няколко тест сценария
 - Задава посоката, в която ще се тества
 - За изучаване на функционалността на програмата от край до край (endto-end functioning)

Пример: Тест Сценарии

- Тестови сценарий 1:
 - Регистрирай се в платформа

- Тестови сценарий 2:
 - Запиши се за курс

Тест Сценарии и Тест Случаи

■ Един тест сценарий обикновено включва няколко тест случая (test cases)

(test eases)

Test Case #1

Test Case #3

User Story Test Scenario Test Case #2

- Пример:
 - Потребителска история:
 Потребителите трябва да могат да "влязат" с потребителските си данни
 - Тест сценарий : *Вход с потребител + парола*
 - Тест кейс:
 - Вход с валиден потребител + парола → успешно влизане
 - Вход с невалиден потребител + парола → грешка

Как да пишем тест сценарии?

- Запознайте се с документите с изискванията (requirements)
- Помислете за възможните потребителски действия за всяко едно изискване
- Напишете тест сценарий за всяка функционалност
 - Създайте тестове, които покриват очакваното потребителско поведение
 - Създайте тестове, които покриват неочакваното потребителско поведение
- Уверете се, че сте покрили всички изисквания
- Предайте сценариите за преглед

Тест Случаи (Test Cases)

Тестове на единична, конкретна функция

Тест случаи (Test cases)

- Какво представляват тест кейсовете?
 - Поредица от действия, реализирани с цел да проверят конкретна характеристика или функционалност (конкретна пътека за изпълнение)
 - Може да включва специфични входни и изходни условия
- Защо са ни необходими?
 - За сравнение на очакваните с действителните резултати
 - За проучване на начина на функциониране на даден софтуерен компонент с определен вход и при определени входни условия

Тест кейс

 Поредица от стъпки за проверка на правилното поведение

- Поне два тест случая за тестване на определен сценарий
 - Положителен тест
 - Отрицателен тест
- Тест случаите се състоят от:
 - Заглавие (+ незадължително описание)
 - Стъпки за изпълнение
 - Очакван резултат

Тестови случай – структура и пример

Заглавие: <заглавие на теста>

Описание: <кратък преглед>

Стъпки: <начин на

действие>

1. ..

2. ..

3. ..

Очаквани резултати:

• ...

• ..

• ...

Заглавие: Пригответе късо кафе Описание: стартирайте кафе машината, сипете вода и смляно кафе и сварете чаша кафе.

Стъпки:

- 1. Включете машината.
- 2. Поставете смес от смляно кафе в отвора за кафе.
- 3. Напълнете контейнера с вода до максимум....

Очаквани резултати:

- Процесът на варене трябва да завърши за < 50 секунди.
- Чашата за кафе трябва да побира късо горещо кафе (60 мл)....

Тестови сценарии и тестови случаи — пример 📢 Software University

- Примерен тест сценарий:
 - Регистрирайте се в платформата
- Тест кейс за този сценарий:
 - Несъществуващо, валидно потребителско име \rightarrow успех
 - Дублирано потребителско име \rightarrow грешка
 - Празно потребителско име или парола > грешка
 - Твърде дълго потребителско име → грешка
 - Невалидни знаци в потребителското име / парола → грешка

Какво научихме днес?

- Дефиниция за SQA
- Дефиниция за Софтуерно тестване
- Софтуерни дефекти / Bugs
- Ръчно и Автоматизирано тестване
- Седемте принципа в тестването
- **Тест сценарий**: тестване на потребителска история
- Тест кейс: тестване на единична функционалност

Въпроси?

Finance Academy

Диамантени партньори на СофтУни

SUPER HOSTING .BG

Образователни партньори

Лиценз

- Този курс (презентации, примери, демонстрационен код, упражнения, домашни, видео и други активи) представлява защитено авторско съдържание
- Нерегламентирано копиране, разпространение или използване е незаконно
- © СофтУни https://softuni.org
- © Софтуерен университет https://softuni.bg

Обучения в Софтуерен университет (СофтУни)

- Софтуерен университет качествено образование, професия и работа за софтуерни инженери
 - softuni.bg
- Фондация "Софтуерен университет"
 - softuni.foundation
- Софтуерен университет @ Facebook
 - facebook.com/SoftwareUniversity
- Дискусионни форуми на СофтУни
 - forum.softuni.bg

