Elective Module: Advanced ML Techniques

Chapter 1 Linear Regression

Consider the given data

• How to predict the <u>SALES</u>, as a function

of ADVERTISHIG

		Sales		
/		(Million	Advertising)
	Year	Euro)	(Million Euro)	/-
	1	651	23	
	2	762	26	
	3	856	30	
	4	1,063	34	
	5	1,190	43	\
	6	1,298	48	/
	7	1,421	52	(
	8	1,440	57	1
	9	1,518	58	

- Consider the given data
- How to predict the Sales, as a function of Advertising

	Sales (Million	Advertising
Year	Euro)	(Million Euro)
1	651	23
2	762	26
3	856	30
4	1,063	34
5	1,190	43
6	1,298	48
7	1,421	52
8	1,440	57
9	1,518	58

- Linear Regression

 REGRESSION is an ML technique...
 - which precisely addresses this problem

			Hoi	v to predict sal
•		Sales (Million		y to predict sal given advertis
	Year	Euro)	(Million Euro)	-
	1	651	23	
	2	762	26	
	3	856	30	
	4	1,063	34	
	5	1,190	43	
	6	1,298	48	
	7	1,421	52	
	8	1,440	57	
	9	1,518	58	

- Regression is an ML technique...
 - which precisely addresses this problem

	Sales	
	(Million	Advertising
Year	Euro)	(Million Euro)
1	651	23
2	762	26
3	856	30
4	1,063	34
5	1,190	43
6	1,298	48
7	1,421	52
8	1,440	57
9	1,518	58

 Regression: Algorithm to predict a <u>RESPONSE</u> variable...

• based on a set of REGRESS DR or EXPLANATORY VARIABLE.

	Sales	
Year		Advertising (Million Euro)
1	651	23
2	762	26
3	856	30
4	1,063	34
5	1,190	43
6	1,298	48
7	1,421	52
8	1,440	57
9	1,518	58

Regression: Algorithm to <u>predict a response</u> variable...

 based on a set of regressors or explanatory variables

Regressor

	Sale	- 1/
	(Million	Advertising
Year	Euro)	(Million Euro)
1	651	23
2	762	26
3	856	30
4	1,063	34
5	1,190	43
6	1,298	48
7	1,421	52
8	1,440	57
9	1,518	58

• In general the regressor $\overline{\mathbf{X}}$ can be an n -dimensional vector

• x_1 is the cost of TV advertising

• x_2 is the cost of **Radio advertising** and so on....

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

Regression: Other Examples

Facebook

• Example 1

• y(k) = Price of particular stock at

time k x(k) - Price at time k $x_1(k), x_2(k), \dots, x_N(k): \text{ Prices of Pastvalues}.$ related stocks at time k AUTO REGRESSION

x_- Microsoft x_- Google x_- Amazon)
Regressors.

Regression: Other Examples Ruponil

Example 2

- y(k) =Sales of SUVat time k
 - $x_1(k), x_2(k), ..., x_N(k)$: Sales of bikes/ cars at time k, average income...

- The outputs y(k) can be predicted...
 - Using a linear combination of regressors or explanatory variables

$$x_i(k)$$
 Linear combination

$$y(k) = h_0 + h_1 x_1(k) + h_2 x_2(k) + \cdots$$

Linear model.

Linear Regression Model $= \left[\left[\chi_{1}(k) \chi_{2}(k) \cdots \chi_{n}(k) \right] \right]$ $y(k) = \bar{\chi}^{T}(k)\bar{h} + \epsilon(k)$

Linear Regression Model

$$\overline{\chi}(k) = \begin{bmatrix} \chi_1(k) \\ \chi_2(k) \\ \vdots \\ \chi_n(k) \end{bmatrix}$$

$$\begin{bmatrix} h_0 \\ \vdots \\ h_n \end{bmatrix}$$

$$\overline{\chi}^{T}(k) = \left[1 \chi_{I}(k) \chi_{2}(k) \dots \chi_{n}(k) \right]$$

$$\underline{\chi}^{T}(k) = \left[1 \chi_{I}(k) \chi_{2}(k) \dots \chi_{n}(k) \right]$$

$$\underline{\chi}^{T}(k) = \overline{\chi}^{T}(k) h + \underline{C}(k)$$

$$\underline{\chi}^{T}(k) = \overline{\chi}^{T}(k) h + \underline{C}(k)$$

Linear Regression Model

$$y(k)$$

$$= h_0 + h_1 x_1(k) + \dots + h_n x_n(k) + \epsilon(k)$$

$$= [1] x_1(k) x_2(k) \dots x_n(k)] \begin{bmatrix} h_0 \\ h_1 \\ \vdots \\ h_n \end{bmatrix} + \epsilon(k)$$

$$y(k) = \bar{\mathbf{x}}^T(k)\bar{\mathbf{h}} + \epsilon(k)$$

$$y(k) = \bar{\mathbf{x}}^T(k)\bar{\mathbf{h}} + \epsilon(k)$$

- This is termed Liment Regression
 North, has are termed the

Regression coefficients

Learn Regression. Machine Learning (ML).

- This is termed **Linear Regression**
- $h_0, h_1, ..., h_n$ are termed the Regression coefficients

Training Data

• The regression coefficients can be computed as follows

• Consider the availability of _______

Pairs;
$$(y(k), \overline{\mathbf{x}}(k))$$

• for k = 1, 2, ..., M

$$y(1)$$
 $\overline{\chi}(1)$ Training $y(2)$ $\overline{\chi}(2)$ Set

Training Data

- The regression coefficients can be computed as follows

 Training = M
- Consider the availability of training

$$\underline{\mathsf{pairs}}\left(y(k), \overline{\mathbf{x}}(k)\right) / \overline{\mathsf{x}}(k)$$

• for k = 1, 2, ..., M

$$y(k) = \overline{z}^{T}(k)\overline{h} + \overline{\varepsilon}(k)$$

Model Computation $\overline{y} = \chi h + \overline{\epsilon}$

• The training set can be expressed as

$$\begin{bmatrix}
y(1) \\
y(z) \\
= \\
\hline
z^{T}(1) \cdot h + E(1) \\
\hline
z^{T}(z) \cdot h + E(z)$$

$$y(M) = \\
\hline
x^{T}(M) \cdot h + E(M)$$

$$M\chi I$$

• The training set can be expressed as

$$\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(M) \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{x}}^{T}(1) \\ \overline{\mathbf{x}}^{T}(2) \\ \vdots \\ \overline{\mathbf{x}}^{T}(M) \end{bmatrix} \overline{\mathbf{h}} + \begin{bmatrix} \epsilon(1) \\ \epsilon(2) \\ \vdots \\ \epsilon(M) \end{bmatrix}$$

$$\downarrow \tilde{\mathbf{x}}$$

• To determine regression coefficients $\bar{\mathbf{h}}$, solve the problem

Find
$$\bar{h}$$
 which $\bar{\xi} = \bar{y} - X\bar{h}$
gives best approximation with error $= \min \|\bar{\xi}\|^2$
 $= \min \|\bar{\xi}^2(1) + \bar{\xi}^2(2) + \cdots + \bar{\xi}^2(M)$
 $= \min \|\bar{y} - X\bar{h}\|^2$

• To determine regression coefficients h, solve the problem

$$\min \left\| \frac{\mathbf{y} - \mathbf{X} \mathbf{h}}{\mathbf{\xi}} \right\|^{2}$$
 Squares (LS)

numinize square of error Least Square error

• This is termed the **least-squares** (LS) problem

• The regression coefficients are given as

$$\frac{\partial}{\partial x} = (x^T x)^{-1} x^T y$$

Formula for Regression coefficients.

• The regression coefficients are given as

$$\bar{\mathbf{h}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \bar{\mathbf{y}}$$

• The matrix $(X^TX)^{-1}X^T$ is termed as the <u>pseudo-inverse</u> of X, since

• The matrix $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is termed as the <u>pseudo-inverse</u> of \mathbf{X} , since

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X} = \mathbf{I}$$

$$\int_{\Lambda} = (X^T X)^{-1} X^T \overline{y}$$

Solve the LS problem

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$

$$\mathbf{\bar{y}} = \begin{bmatrix} -1 \\ 2 \\ -3 \\ 1 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \mathbf{\bar{y}} = \begin{bmatrix} -1 \\ 2 \\ -3 \\ 1 \end{bmatrix}$$

$$\frac{\bar{\mathbf{h}} = (\mathbf{X}^{\bar{T}}\mathbf{X})^{-1}\mathbf{X}^{T}\bar{\mathbf{y}}}{\mathbf{X}^{T}\mathbf{X}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 3 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$$

$$\bar{\mathbf{h}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \bar{\mathbf{y}}
\mathbf{X}^T \mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}
= \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$$

$$(\mathbf{X}^T \mathbf{X})^{-1} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 0 & -10 \\ -10 & 4 \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1}$$

2X2 junese

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} -d & -b \\ -c & a \end{bmatrix}$$

$$(\mathbf{X}^T\mathbf{X})^{-1} = \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix}$$

$$\bar{\mathbf{h}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \bar{\mathbf{y}} =$$

$$\begin{bmatrix}
 -1 & 30 & -10 \\
 -10 & 4
 \end{bmatrix}
 \begin{bmatrix}
 1 & 2 & 3 & 4 \\
 -2 & 3 & 4
 \end{bmatrix}
 = \begin{bmatrix}
 -1 & 20 & 10 & 0 & -10 \\
 -1 & 20 & 2 & 6
 \end{bmatrix}
 \begin{bmatrix}
 -1 & 20 & 10 & 0 & -10 \\
 -1 & 20 & 2 & 6
 \end{bmatrix}
 = \begin{bmatrix}
 -1 & 20 & 10 & 2 & 6
 \end{bmatrix}
 = \begin{bmatrix}
 -1 & 20 & 10 & 2 & 6
 \end{bmatrix}
 = \begin{bmatrix}
 -1 & 20 & 10 & 2 & 6
 \end{bmatrix}$$

$$(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\bar{\mathbf{y}}$$

$$= \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix}$$

$$= \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} -10 \\ 2 \end{bmatrix}$$

$$= \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} -10 \\ 2 \end{bmatrix}$$

Regression coefficient

Instructors may use this white area (14.5 cm / 25.4 cm) for the text. Three options provided below for the font size.

Font: Avenir (Book), Size: 32, Colour: Dark Grey

Font: Avenir (Book), Size: 28, Colour: Dark Grey

Font: Avenir (Book), Size: 24, Colour: Dark Grey

Do not use the space below.