

# LVDS Advantages

## Chapter 2

### 2.0.0 LVDS ADVANTAGES

#### 2.1.0 LVDS ELECTRICAL CHARACTERISTICS

LVDS current-mode, low-swing outputs mean that LVDS can drive at high-speeds (up to several hundred or even thousands of Mbps over short distances). If high-speed differential design techniques are used, signal noise and electromagnetic interference (EMI) can also be reduced with LVDS because of:

1. The low output voltage swing ( $\approx 350\text{mV}$ )
2. Relatively slow edge rates,  $dV/dt \approx 0.300\text{V}/0.3\text{ns} = 1\text{V/ns}$
3. Differential (odd mode operation) so magnetic fields tend to cancel
4. "Soft" output corner transitions
5. Minimum  $I_{CC}$  spikes due to low current-mode operation

LVDS can be designed using CMOS processes, allowing LVDS to be integrated with standard digital blocks. LVDS can be used in commercial, industrial, and even military temperature ranges and operate from power supplies down to 2 volts. LVDS uses common copper PCB traces and readily available cables and connectors as transmission media, unlike fiber optics.

Presently the major limitations of LVDS are its point-to-point nature (as opposed to multipoint – see Bus LVDS) and short transmission distance (10-15m), where other technologies must presently be used.

| Advantages                     | LVDS | PECL | Optics | RS-422 | GTL | TTL |
|--------------------------------|------|------|--------|--------|-----|-----|
| Data rate up to 1Gbps          | +    | +    | +      | -      | -   | -   |
| Very low skew                  | +    | +    | +      | -      | +   | -   |
| Low dynamic power              | +    | -    | +      | -      | -   | -   |
| Cost effective                 | +    | -    | -      | +      | +   | +   |
| Low noise/EMI                  | +    | +    | +      | -      | -   | -   |
| Single power supply/reference  | +    | -    | +      | +      | -   | +   |
| Migration path to low voltage  | +    | -    | +      | -      | +   | +   |
| Simple termination             | +    | -    | -      | +      | -   | +   |
| Wide common-mode range         | -    | +    | +      | +      | -   | -   |
| Process independent            | +    | -    | +      | +      | +   | +   |
| Allows integration w/digital   | +    | -    | -      | -      | +   | +   |
| Cable breakage/splicing issues | +    | +    | -      | +      | +   | +   |
| Long distance transmission     | -    | +    | +      | +      | -   | -   |
| Industrial temp/voltage range  | +    | +    | +      | +      | +   | +   |

## 2.2.0 LVDS DRIVERS & RECEIVERS

The most basic LVDS devices are the driver and receiver. These translate TTL to LVDS and back to TTL.



*LVDS Drivers and Receivers Convert TTL to LVDS and Back to TTL.*

Drivers and receivers transmit high-speed data across distances up to 10m with very low power, noise and cost.

| Parameter            | LVDS   | PECL   | Optics | RS-422 | GTL   | TTL  |
|----------------------|--------|--------|--------|--------|-------|------|
| Output voltage swing | ±350mV | ±800mV | n/a    | ±2V    | 1.2V  | 2.4V |
| Receiver threshold   | ±100mV | ±200mV | n/a    | ±200mV | 100mV | 1.2V |
| Speed (Mbps)         | >400   | >400   | >1000  | <30    | <200  | <100 |
| Dynamic power        | Low    | High   | Low    | Low    | High  | High |
| Noise                | Low    | Low    | Low    | Low    | Med   | High |
| Cost                 | Low    | High   | High   | Low    | Low   | Low  |

The table above summarizes that only LVDS can deliver the high-speed, ultra-low power, and low cost without compromise. PECL and ECL are expensive and consume too much power. TTL/CMOS is cheap, but is noisy and burns a lot of power at high-speeds. Fiber optics are expensive and have cables and connectors which are hard to manage.



*$I_{CC}$  vs. Frequency for 5V DS90C031/032 LVDS, 41LG/LF PECL, and 26C31/32 RS-422 Devices.*

## 2.2.1 100Mbps Serial Interconnect

LVDS drivers and receivers are generally used to create serial or pseudo-serial point-to-point interconnects from 1Mbps to >400Mbps per channel. The following example summarizes the total performance and cost advantages of using LVDS over PECL or TTL for a serial 100Mbps 1 meter point-to-point link. Significantly higher data rates can be achieved for LVDS and PECL.



*100Mbps Board-to-Board Link*

### 100Mbps Serial Bitstream

| Performance Estimate              |                                    |                     |                     |                     |
|-----------------------------------|------------------------------------|---------------------|---------------------|---------------------|
| Characteristic                    | Parameter                          | LVDS                | TTL                 | PECL                |
| Speed                             | Application Data Rate (Mbps)       | 100                 | 100                 | 100                 |
|                                   | Max Capability per Channel (Mbps)  | 400                 | 100                 | 400                 |
| Power Consumption                 | Dynamic (mA) (@ 50MHz)             | Low                 | High                | Medium              |
|                                   | Static (mA)                        | 8                   | 10                  | 48                  |
| Noise                             | Low EMI                            | +++                 | ---                 | ++                  |
|                                   | Low Bounce                         | +++                 | ---                 | ++                  |
| <b>Relative System Cost</b>       | <b>Total</b>                       | <b>4.05</b>         | <b>3.30</b>         | <b>6.10</b>         |
| Cost Estimate                     |                                    |                     |                     |                     |
| Subsystem                         | Parameter                          | LVDS                | TTL                 | PECL                |
| General                           | Single-Ended or Differential       | Differential        | Single-Ended        | Differential        |
|                                   | TTL Bus Width                      | 1                   | 1                   | 1                   |
|                                   | TTL Bus Speed (MHz)                | 50                  | 50                  | 50                  |
|                                   | # Master Boards                    | 1                   | 1                   | 1                   |
|                                   | # Slave Boards                     | 1                   | 1                   | 1                   |
| Transceivers                      | Description                        | DS90LV017A/018A     | 74LVT125            | 10ELT20/21          |
|                                   | # Drivers/Board (Master Board)     | 1                   | 1                   | 1                   |
|                                   | # Rec/Board (Peripheral Board)     | 1                   | 1                   | 1                   |
|                                   | Unit Cost                          | 0.70                | 0.55                | 2.00                |
|                                   | <b>Silicon Cost per Board</b>      | <b>1.40</b>         | <b>1.10</b>         | <b>4.00</b>         |
| Termination                       | Voltage                            | None                | None                | None                |
|                                   | # Termination Regulators           | 0                   | 0                   | 0                   |
|                                   | Unit Cost                          | 0.00                | 0.00                | 0                   |
|                                   | # Termination Resistors            | 1                   | 2                   | 2                   |
|                                   | Unit Cost                          | 0.05                | 0.05                | 0.05                |
|                                   | # Termination Capacitors           | 0                   | 0                   | 0                   |
|                                   | Unit Cost                          | 0.00                | 0.00                | 0.00                |
| <b>Total Termination Cost</b>     |                                    | <b>0.05</b>         | <b>0.10</b>         | <b>0.10</b>         |
| Transmission Medium               | Cable Type                         | 2 Pair CAT3         | 2 Pair CAT3         | 2 Pair CAT3         |
|                                   | Distance                           | 1m                  | 1m                  | 1m                  |
|                                   | #Conductors                        | 2                   | 2                   | 2                   |
|                                   | #Cables                            | 1                   | 1                   | 1                   |
|                                   | Connector Type                     | 4-pin Wire to Board | 4-pin Wire to Board | 4-pin Wire to Board |
|                                   | Unit Cable+Connector Assembly Cost | 2.00                | 2.00                | 2.00                |
|                                   | <b>Total Media Cost</b>            | <b>2.00</b>         | <b>2.00</b>         | <b>2.00</b>         |
| <b>Total Relative System Cost</b> |                                    | <b>3.45</b>         | <b>3.20</b>         | <b>6.10</b>         |

*Performance and Cost Estimates*

The preceding example shows that LVDS provides a high-speed link with minimal noise, power, and cost. LVDS also creates an easy migration path to higher speeds, lower supply voltages, and higher integration than the other do not.

### 2.3.0 LVDS CHANNEL LINK SERIALIZERS

The speed of the LVDS line drivers and receivers is limited by how fast the TTL signals can be switched. Therefore, National has introduced a family of Channel Link serializers and deserializers. Instead of using one LVDS channel for every TTL channel, the Channel Link devices send multiple TTL channels through every LVDS channel thereby matching the speed of LVDS to that of TTL.



*National's Channel Link Serializers/Deserializers can Dramatically Reduce the Size (and Cost) of Cables and Connectors.*

Using fewer channels to convey data also means power and noise can be lower. The biggest advantage, however, is the significant reduction of cable and connector size. Since cables and connectors are usually quite expensive compared to silicon, dramatic cost savings can be achieved. Channel Link chipsets reduce cable size by up to 80%, reducing cable costs by as much as 50%. Plus, smaller cables are more flexible and user-friendly.

LVDS Channel Link serializer/deserializer devices take the inherent high-speed low power, noise, and cost advantages of LVDS and capitalize on the slow speed of TTL to generate significant benefits. For a small increase in silicon cost, Channel Link products can dramatically reduce total system costs and improve total system performance. Therefore, the total system should be evaluated if the true advantages are to be quantified. The following sections summarizes the cost and performance benefits of using Channel Link devices.

### 2.2.1 1Gbps 16-bit Interconnect

National's Channel Link serializers/deserializers take the benefits of LVDS (high-speed and low power, noise, and cost) and add serialization to further reduce cable, connector, and PCB size and cost. Channel Link is a great solution for high-speed data bus extension when the overhead of protocols is not desired. The following example compares the total performance and cost of moving a 16-bit 66MHz bus across 1 meter of cable using the 3V 66MHz 21-bit DS90CR215/216 Channel Link devices versus other solutions. Driving TTL signals over 1 meter of distance may be very risky due to the limited tolerance to noise (<400mV) and also transmission line problems generated by the TTL driver.

## 16-Bit Cable Interconnect

| Performance Estimate              |                                      |                      |                        |                        |                     |                  |
|-----------------------------------|--------------------------------------|----------------------|------------------------|------------------------|---------------------|------------------|
| Characteristic                    | Parameter                            | Channel Link         | TTL                    | GTL                    | ECL                 | Fibre Channel    |
| <b>Speed</b>                      | Application Data Rate (Mbps)         | 1056                 | 1056                   | 1056                   | 1056                | 1056             |
|                                   | Max Capability per Channel (Mbps)    | 462                  | 100                    | 150                    | 800                 | 800              |
| <b>Power Consumption</b>          | Dynamic (mA) (@ 66MHz)               | 180                  | 300                    | 500                    | 300                 | ?                |
|                                   | Static (mA) (Outputs Disabled)       | 0.02 (Power Dn)      | 1                      | 50                     | 50                  | 135              |
| <b>Noise</b>                      | Low EMI                              | +++                  | ---                    | --                     | +                   | +++              |
|                                   | Low Bounce                           | +++                  | ---                    | --                     | ++                  | +++              |
| <b>Ergonomics</b>                 | Compact System Size                  | +++                  | --                     | --                     | ---                 | +++              |
|                                   | Compact Transmission Medium Size     | +++                  | -                      | +                      | +                   | +++              |
|                                   | Low Weight                           | +++                  | -                      | -                      | -                   | +++              |
| <b>Relative System Cost</b>       | <b>Total</b>                         | <b>25.50</b>         | <b>55.80</b>           | <b>58.80</b>           | <b>71.80</b>        | <b>77.60</b>     |
| Cost Estimate                     |                                      |                      |                        |                        |                     |                  |
| Subsystem                         | Parameter                            | Channel Link         | TTL                    | GTL                    | ECL                 | Fibre Channel    |
| <b>General</b>                    | Single-Ended or Differential         | Differential         | Single-Ended           | Single-Ended           | Differential        | Differential ECL |
|                                   | TTL Bus Width                        | 16                   | 16                     | 16                     | 16                  | 16               |
|                                   | TTL Bus Speed (MHz)                  | 66                   | 66                     | 66                     | 66                  | 66               |
|                                   | Multiplexed Scheme?                  | Yes                  | No                     | No                     | No                  | Yes              |
|                                   | # Master Boards                      | 1                    | 1                      | 1                      | 1                   | 1                |
|                                   | # Slave Boards                       | 1                    | 1                      | 1                      | 1                   | 1                |
| <b>Transceivers</b>               | Description                          | 3V 21:4 Channel Link | ALVT 16-Bit            | GTL 18-Bit             | 9-Bit Translators   | Fibre Channel    |
|                                   | # Drivers/Board (Master Board)       | 1                    | 1                      | 1                      | 2                   | 1                |
|                                   | # Rec/Board (Peripheral Board)       | 1                    | 1                      | 1                      | 2                   | 1                |
|                                   | Unit Cost                            | 3.70                 | 2.40                   | 3.25                   | 5.00                | 20.00            |
|                                   | <b>Silicon Cost per Board</b>        | <b>7.40</b>          | <b>4.80</b>            | <b>6.50</b>            | <b>20.00</b>        | <b>40.00</b>     |
| <b>PC Board</b>                   | Layers                               | 4                    | 12                     | 12                     | 12                  | 12               |
|                                   | Size (Normalized)                    | 1.15                 | 1                      | 1.15                   | 15.63               | 11.97            |
|                                   | <b>Total Additional PCB Cost</b>     | <b>0.00</b>          | <b>15.00</b>           | <b>15.00</b>           | <b>15.00</b>        | <b>15.00</b>     |
| <b>Termination</b>                | Voltage                              | None                 | None                   | 1.5V                   | 2.1V                | 3.0V             |
|                                   | # Termination Regulators             | 0                    | 0                      | 1                      | 1                   | 1                |
|                                   | Unit Cost                            | 0.00                 | 0.00                   | 1.00                   | 1.00                | 1.00             |
|                                   | # Termination Resistors              | 10                   | 16                     | 16                     | 16                  | 32               |
|                                   | Unit Cost                            | 0.05                 | 0.05                   | 0.05                   | 0.05                | 0.05             |
|                                   | # Termination Capacitors             | 0                    | 0                      | 0                      | 0                   | 0                |
|                                   | Unit Cost                            | 0.00                 | 0.00                   | 0.00                   | 0.00                | 0.00             |
| <b>Total Termination Cost</b>     |                                      | <b>0.50</b>          | <b>0.80</b>            | <b>1.80</b>            | <b>1.80</b>         | <b>2.60</b>      |
| <b>Transmission Medium</b>        | Cable Type                           | SCSI2<br>CAT3 Cable  | Shielded<br>Flat Cable | Shielded<br>Flat Cable | SCSI2<br>CAT3 Cable | CAT5 Cable       |
|                                   | Distance                             | 2m                   | 2m                     | 2m                     | 2m                  | 2m               |
|                                   | #Data+Clock Conductors               | 8                    | 17                     | 17                     | 34                  | 2                |
|                                   | #Power+Ground Conductors             | 4                    | 10                     | 10                     | 15                  | 2                |
|                                   | #Cables                              | 1                    | 1                      | 1                      | 1                   | 1                |
|                                   | Connector Type                       | 0.050 D - 20         | D - 37                 | D - 37                 | 0.050 D - 50        | DB-9             |
|                                   | Unit Cable+Connector Assembly Cost   | 20.00                | 30.00                  | 30.00                  | 30.00               | 15.00            |
|                                   | <b>Total Media Cost</b>              | <b>15.00</b>         | <b>30.00</b>           | <b>30.00</b>           | <b>30.00</b>        | <b>15.00</b>     |
| <b>Power Supply</b>               | Special Supply Voltages              | 0                    | 0                      | 1.5V                   | 2.1V                | 3.0V             |
|                                   | Power Supply Size (Normalized)       | 1                    | 1.3                    | 1.2                    | 1.2                 | 1.2              |
|                                   | <b>Total Add'l Power Supply Cost</b> | <b>0.00</b>          | <b>5.00</b>            | <b>5.00</b>            | <b>5.00</b>         | <b>5.00</b>      |
| <b>Total Relative System Cost</b> |                                      | <b>22.90</b>         | <b>55.60</b>           | <b>58.30</b>           | <b>71.80</b>        | <b>77.60</b>     |

Performance and Cost Estimates

## 2.2.2 1.4Gbps 56-Bit Backplane

In some large datacom and telecom systems, it is necessary to construct a very large, high-speed backplane. There is generally an inverse relationship between the size of a backplane and its maximum speed. In other words, if you try to make a backplane too large, the heavy loading will severely hamper backplane speed and make power and noise a big problem. Therefore, connecting or extending smaller backplanes via a high-speed cable interconnect is often the only solution. The previous examples illustrates how Channel Link may be used to accomplish this over cable. The cost benefits of using Channel Link to shrink cable and connector costs are clear. What would happen, however, if Channel Link were used to form or extend a backplane using a PCB as the medium. The following examples shows how Channel Link can reduce the size and number of layers of the printed circuit board transmission medium in the same way as Channel Link reduces the size and cost of cables.



1.4Gbps Backplane Using Point-to-Point Channel Links

### 56-Bit Backplane

| Performance Estimate                              |                                   |                |               |               |                |                |
|---------------------------------------------------|-----------------------------------|----------------|---------------|---------------|----------------|----------------|
| Characteristic                                    | Parameter                         | Channel Link   | TTL           | GTL/BTL       | ECL            | Fibre Channel  |
| <b>Speed</b>                                      | Application Data Rate (Mbps)      | 1400           | 1400          | 1400          | 1400           | 1400           |
|                                                   | Max Capability per Channel (Mbps) | 462            | 100           | 150           | 800            | 800            |
| <b>Power Consumption</b><br>(Loaded Tx/Rx's only) | Dynamic (mA) (@ 50MHz)            | 2600           | 10000         | 6000          | 16000          | ?              |
|                                                   | Static (mA)                       | 0.4 (Power on) | 40            | 1840          | 3402           | 3818           |
| <b>Noise</b>                                      | Low EMI                           | +++            | ---           | +             | +              | ++             |
|                                                   | Low Bounce                        | +++            | ---           | +             | +              | ++             |
| <b>Ergonomics</b>                                 | Compact System Size               | ++             | +             | +             | +              | ++             |
|                                                   | Compact Transmission Medium Size  | ++             | -             | +             | +              | ++             |
|                                                   | Fans?                             | No             | No            | No            | Yes            | Yes            |
|                                                   | Low Weight                        | +++            | -             | -             | -              | +++            |
| <b>Relative System</b>                            | <b>Cost Per Board</b>             | <b>51.05</b>   | <b>66.12</b>  | <b>75.04</b>  | <b>191.04</b>  | <b>574.22</b>  |
|                                                   | <b>Total</b>                      | <b>510.50</b>  | <b>661.20</b> | <b>750.40</b> | <b>1910.40</b> | <b>5742.20</b> |

Performance Estimate

| Cost Estimate                               |                                      |                        |                        |                        |                        |                        |
|---------------------------------------------|--------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Subsystem                                   | Parameter                            | Channel Link           | TTL                    | GTL/BTL                | ECL                    | Fibre Channel          |
| <b>General</b>                              | Single-Ended or Differential         | Differential           | Single-Ended           | Single-Ended           | Single-Ended           | Differential           |
|                                             | TTL Bus Width                        | 56                     | 56                     | 56                     | 56                     | 56                     |
|                                             | TTL Bus Speed (MHz)                  | 50                     | 50                     | 50                     | 50                     | 50                     |
|                                             | Multiplexed Scheme?                  | Yes                    | No                     | No                     | No                     | Yes                    |
|                                             | Number Tributary Boards              | 10                     | 10                     | 10                     | 10                     | 10                     |
|                                             | Number Channels in Link              | 10                     | 56                     | 56                     | 56                     | 14                     |
|                                             | Number Conductors (Data)             | 20                     | 56                     | 56                     | 56                     | 28                     |
| <b>Transceivers</b>                         | Number Conductors (CLK)              | 1                      | 1                      | 1                      | 1                      | 1                      |
|                                             | Description                          | 28:5<br>Channel Link   | LVT<br>16-Bit          | GTL<br>18-Bit          | 9-Bit                  | Fibre<br>Channel       |
|                                             | # Transceivers/Board (Trib Board)    | 4                      | 4                      | 4                      | 14                     | 14                     |
|                                             | # Transceivers/Board (Ctrlr Board)   | 4                      | 4                      | 4                      | 14                     | 14                     |
|                                             | Unit Cost                            | 3.70                   | 2.40                   | 3.25                   | 5.00                   | 20.00                  |
|                                             | <b>Silicon Cost per Board</b>        | <b>29.60</b>           | <b>19.20</b>           | <b>26.00</b>           | <b>140.00</b>          | <b>560.00</b>          |
|                                             | <b>Total Additional PCB Cost</b>     | <b>0.00</b>            | <b>100.00</b>          | <b>100.00</b>          | <b>150.00</b>          | <b>50.00</b>           |
| <b>PC Board</b>                             | Layers                               | 12                     | 26                     | 26                     | 26                     | 12                     |
|                                             | Size (Normalized)                    | 1.15                   | 1                      | 1.15                   | 15.63                  | 11.97                  |
|                                             | <b>Total Additional PCB Cost</b>     | <b>0.00</b>            | <b>100.00</b>          | <b>100.00</b>          | <b>150.00</b>          | <b>50.00</b>           |
|                                             | Voltage                              | None                   | None                   | 1.5V                   | 2.1V                   | 3.0V                   |
|                                             | Number Termination Regulators        | 0                      | 0                      | 14                     | 14                     | 14                     |
|                                             | Unit Cost                            | 0.00                   | 0.00                   | 1.00                   | 1.00                   | 1.00                   |
|                                             | Number Termination Resistors         | 10                     | 224                    | 128                    | 128                    | 14                     |
| <b>Termination</b>                          | Unit Cost                            | 0.05                   | 0.05                   | 0.05                   | 0.05                   | 0.05                   |
|                                             | Number Termination Capacitors        | 0                      | 0                      | 0                      | 0                      | 0                      |
|                                             | Unit Cost                            | 0.00                   | 0.00                   | 0.00                   | 0.00                   | 0.00                   |
|                                             | <b>Total Termination Cost</b>        | <b>0.50</b>            | <b>11.20</b>           | <b>20.40</b>           | <b>20.40</b>           | <b>14.70</b>           |
|                                             | Type                                 | PCB Trace<br>Backplane |
|                                             | Distance                             | <1m                    | <1m                    | <1m                    | <1m                    | <1m                    |
|                                             | Layers                               | 12                     | 26                     | 26                     | 26                     | 12                     |
| <b>Transmission Medium</b>                  | Size (Normalized)                    | 1                      | 1                      | 1                      | 1                      | 1                      |
|                                             | Number Media                         | 1                      | 1                      | 1                      | 1                      | 1                      |
|                                             | Additional Media Cost                | 0.00                   | 200.00                 | 200.00                 | 200.00                 | 0.00                   |
|                                             | <b>Total Add'l Trans. Media Cost</b> | <b>0.00</b>            | <b>200.00</b>          | <b>200.00</b>          | <b>200.00</b>          | <b>0.00</b>            |
|                                             | Connector Type                       | Header                 | VME                    | VME                    | VME                    | Header                 |
|                                             | Number Pins (Data+ CLK)              | 21                     | 57                     | 57                     | 57                     | 29                     |
|                                             | Number Pins (Power/GND)              | 5                      | 38                     | 38                     | 7                      | 7                      |
| <b>Connectors</b>                           | Total Connector Pins                 | 26                     | 96                     | 96                     | 64                     | 36                     |
|                                             | Number Connector Pairs               | 1                      | 1                      | 1                      | 1                      | 1                      |
|                                             | Cost of Pair                         | 3.00                   | 10.00                  | 10.00                  | 8.00                   | 3.75                   |
|                                             | <b>Connector Cost per Board</b>      | <b>3.00</b>            | <b>10.00</b>           | <b>10.00</b>           | <b>8.00</b>            | <b>3.75</b>            |
|                                             | Special Supply Voltages              | 0                      | 0                      | 1.5V                   | 2.1V                   | 3.0V                   |
|                                             | Power Supply Size (Normalized)       | 1                      | 1.5                    | 1.5                    | 1.7                    | 1.4                    |
|                                             | <b>Total Add'l Power Supply Cost</b> | <b>0.00</b>            | <b>50.00</b>           | <b>50.00</b>           | <b>60.00</b>           | <b>40.00</b>           |
| <b>Total Relative System Cost Per Board</b> |                                      | <b>49.21</b>           | <b>66.64</b>           | <b>74.84</b>           | <b>191.04</b>          | <b>574.22</b>          |
| <b>Total Relative System Cost</b>           |                                      | <b>492.10</b>          | <b>666.40</b>          | <b>748.40</b>          | <b>1910.40</b>         | <b>5742.20</b>         |

*Cost Estimate*

## NOTES

