

- OECD. OECD guidelines for the testing of chemicals Number 214, Honeybee acute toxicity tests. 1998; 1:7.
- OEPP/EPPO. Environmental risk assessment scheme for plant protection products. Side-effects on honeybees. Bull OEPP/EPPO. 2010; 40:323–31.
- 28. Pain J. Note technique nouveau modèle de cagettes expérimentales pour le maintien d'abeilles et captivité. Ann Abeille. 1966; 9(1):71–6.
- Sokolowski MBC, Moine M, Naassila M. "Beetrack": A software for 2D open field locomotion analysis in honey bees. J Neurosci Meth. 2012; 207(2):211–7. doi: 10.1016/j.jneumeth.2012.03.006 PMID: ISI:000305669300010.
- Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM. Mixed Effects Models and Extensions in Ecology With R: Springer-Verlag New York; 2009.
- 31. R Development Core Team. R: A Language and Environment for Statistical Computing. Computing RFfS, editor. Vienna, Austria2014.
- Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol. 2007; 52:81–106. PMID: 16842032.
- Delabie J, Bos C, Fonta C, Masson C. Toxic and repellent effects of cypermethrin on the honeybee: Laboratory, glasshouse and field experiments. Pesticide Science. 1985; 16(4):409–15. doi: 10.1002/ps.2780160417
- 34. Poquet Y, Bodin L, Tchamitchian M, Fusellier M, Giroud B, Lafay F, et al. A pragmatic approach to assess the exposure of the honey bee (Apis mellifera) when subjected to pesticide spray. PLoS One. 2014; 9(11):e113728. Epub 2014/11/21. doi: 10.1371/journal.pone.0113728 PONE-D-14-36042 [pii]. PMID: 25412103; PubMed Central PMCID: PMC4239102.
- Dahlgren L, Johnson RM, Siegfried BD, Ellis MD. Comparative toxicity of acaricides to honey bee (Hymenoptera: Apidae) workers and queens. J Econ Entomol. 2012; 105(6):1895–902. Epub 2013/01/30. PMID: 23356051.
- U.S. Environmental Protection Agency. ECOTOXicology Database System. Version 4.0. Available: http://www.epagov/ecotox/. 2015.
- Collet C. Excitation-contraction coupling in skeletal muscle fibers from adult domestic honeybee. Pflugers Arch. 2009; 458(3):601–12. Epub 2009/02/10. doi: 10.1007/s00424-009-0642-6 PMID: 19198873.
- 38. Collet C, Belzunces L. Excitable properties of adult skeletal muscle fibres from the honeybee Apis mellifera. J Exp Biol. 2007; 210(3):454–64. doi: 10.1242/jeb.02667
- 39. Kadala A, Charreton M, Jakob I, Cens T, Rousset M, Chahine M, et al. Pyrethroids differentially alter voltage-gated sodium channels from the honeybee central olfactory neurons. PLoS One. 2014; 9(11): e112194. Epub 2014/11/13. doi: 10.1371/journal.pone.0112194 PONE-D-14-28292 [pii]. PMID: 25390654; PubMed Central PMCID: PMC4229128.
- 40. Kadala A, Charreton M, Jakob I, Le Conte Y, Collet C. A use-dependent sodium current modification induced by type I pyrethroid insecticides in honeybee antennal olfactory receptor neurons. Neurotoxicology. 2011; 32(3):320–30. Epub 2011/03/08. doi: 10.1016/j.neuro.2011.02.007 S0161-813X(11) 00044-1 [pii]. PMID: 21377491.
- Du Y, Nomura Y, Satar G, Hu Z, Nauen R, He SY, et al. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc Natl Acad Sci U S A. 2013; 110(29):11785–90. Epub 2013/07/04. doi: 10.1073/pnas.1305118110 [pii]. PMID: 23821746; PubMed Central PMCID: PMC3718148.
- O'Reilly AO, Khambay BP, Williamson MS, Field LM, Wallace BA, Davies TG. Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem J. 2006; 396(2):255–63. Epub 2006/02/16. doi: BJ20051925 [pii] doi: 10.1042/BJ20051925 PMID: 16475981; PubMed Central PMCID: PMC1462714.
- 43. Gosselin-Badaroudine P, Moreau A, Delemotte L, Cens T, Collet C, Rousset M, et al. Characterization of the honeybee AmNav1 channel and tools to assess the toxicity of insecticides. Scientific Reports. 2015;in press.
- **44.** Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, et al. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology. 2002; 171(1):3–59. PMID: 11812616.
- 45. Shafer TJ, Meyer DA. Effects of pyrethroids on voltage-sensitive calcium channels: a critical evaluation of strengths, weaknesses, data needs, and relationship to assessment of cumulative neurotoxicity. Toxicology and Applied Pharmacology. 2004; 196(2):303–18. PMID: 15081275
- 46. Cens T, Rousset M, Collet C, Charreton M, Garnery L, Le Conte Y, et al. Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels. Insect biochemistry

- and molecular biology. 2015; 58:12–27. doi: <u>10.1016/j.ibmb.2015.01.005</u> PMID: ISI:000350711000002.
- 47. Cens T, Rousset M, Collet C, Raymond V, Demares F, Quintavalle A, et al. Characterization of the first honeybee Ca2+ channel subunit reveals two novel species- and splicing-specific modes of regulation of channel inactivation. Pflugers Arch. 2013; 465(7):985–96. Epub 2013/04/17. doi: 10.1007/s00424-013-1223-2 PMID: 23588376.
- Gu G- G, Singh S. Pharmacological analysis of heartbeat in Drosophila. Journal of Neurobiology. 1995; 28(3):269–80. doi: 10.1002/neu.480280302 PMID: 8568510
- 49. Papaefthimiou C, Theophilidis G. The Cardiotoxic Action of the Pyrethroid Insecticide Deltamethrin, the Azole Fungicide Prochloraz, and Their Synergy on the Semi-Isolated Heart of the Bee Apis mellifera macedonica. Pesticide Biochemistry and Physiology. 2001; 69(2):77–91.
- Iwasa T, Motoyama N, Ambrose JT, Roe RM. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 2004; 23(5):371–8. doi: 10.1016/j.cropro.2003. 08.018 PMID: ISI:000220524200001.
- Barbara GS, Zube C, Rybak J, Gauthier M, Grunewald B. Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005; 191(9):823–36. PMID: 16044331.
- Barbara GS, Grunewald B, Paute S, Gauthier M, Raymond-Delpech V. Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invert Neurosci. 2008; 8 (1):19–29. PMID: 18004599.
- Deglise P, Grunewald B, Gauthier M. The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett. 2002; 321(1–2):13–6. Epub 2002/03/02. doi: S0304394001024004 [pii]. PMID: <u>11872245</u>.
- 54. Palmer MJ, Moffat C, Saranzewa N, Harvey J, Wright GA, Connolly CN. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat Commun. 2013; 4:1634. Epub 2013/03/29. doi: 10.1038/ncomms2648 pii]. PMID: 23535655; PubMed Central PMCID: PMC3621900.
- 55. Gauthier M. State of the art on insect nicotinic acetylcholine receptor function in learning and memory. Adv Exp Med Biol. 2010; 683:97–115. Epub 2010/08/27. PMID: 20737792.
- 56. Maze IS, Wright GA, Mustard JA. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera). Journal of Insect Physiology. 2006; 52(11–12):1243–53. doi: http://dx.doi.org/10.1016/j.jinsphys.2006.09.006. PMID: 17070538
- Decourtye A, Devillers J. Ecotoxicity of neonicotinoid insecticides to bees. Adv Exp Med Biol. 2010; 683:85–95. Epub 2010/08/27. PMID: 20737791.
- 58. Henry M, Bertrand C, Le Feon V, Requier F, Odoux JF, Aupinel P, et al. Pesticide risk assessment in free-ranging bees is weather and landscape dependent. Nat Commun. 2014; 5:4359. Epub 2014/07/11. doi: 10.1038/ncomms5359 [pii]. PMID: 25008773.
- 59. Kaneko H. Pyrethroids: Mammalian Metabolism and Toxicity. Journal of Agricultural and Food Chemistry. 2011; 59(7):2786–91. doi: 10.1021/jf102567z PMID: 21133409