Tensor Products of Pointed Sets

December 24, 2023

 ${\tt 008P}$. This chapter contains some material on tensor products of pointed sets.

Contents

1	Bilinear Morphisms of Pointed Sets			
		Left Bilinear Morphisms of Pointed Sets		
	1.2	Right Bilinear Morphisms of Pointed Sets	6	
	1.3	Bilinear Morphisms of Pointed Sets		
2	Tensors and Cotensors of Pointed Sets by Sets			
	2.1	Tensors of Pointed Sets by Sets		
	2.2	Cotensors of Pointed Sets by Sets	٢	
3	The	e Left Tensor Product of Pointed Sets	6	
	3.1	Foundations	(
	3.2	The Skew Associator	8	
	3.3	The Skew Left Unitor	(
	3.4	The Skew Right Unitor	(
	3.5	The Left-Skew Monoidal Category Structure on Pointed Sets	1(
4	The Right Tensor Product of Pointed Sets		11	
	4.1	Foundations		
	4.2	The Skew Associator	12	
	4.3	The Skew Left Unitor	13	
	4.4	The Skew Right Unitor		
	4.5	The Right-Skew Monoidal Category Structure on Pointed Sets.		
5	Smash Products of Pointed Sets			
	5.1	Foundations	16	

A Other Chapters...... 22

008Q 1 Bilinear Morphisms of Pointed Sets

008R 1.1 Left Bilinear Morphisms of Pointed Sets

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

0088 Definition 1.1.1.1. A left bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: (X \times Y, (x_0, y_0)) \to (Z, z_0)$$

satisfying the following condition:^{1,2}

 (\star) Left Unital Bilinearity. The diagram

commutes, i.e. for each $y \in Y$, we have

$$f(x_0, y) = z_0.$$

008T Definition 1.1.1.2. The set of left bilinear morphisms of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is the set $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathsf{L}}(X \times Y, Z)$ defined by

$$\operatorname{Hom}^{\otimes, \mathbf{L}}_{\operatorname{\mathsf{Sets}}_*}(X\times Y, Z) \stackrel{\scriptscriptstyle\rm def}{=} \{f \in \operatorname{\mathsf{Sets}}_*(A\times B, C) \mid f \text{ is left bilinear}\}.$$

$$f(x_0, y) = z_0$$

for each $y \in Y$.

 $^{^{1}}Slogan: f$ is left bilinear if it preserves basepoints in its first argument.

 $^{^{2}}$ Succinctly, f is bilinear if we have

008U 1.2 Right Bilinear Morphisms of Pointed Sets

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

OOSV Definition 1.2.1.1. A right bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: (X \times Y, (x_0, y_0)) \to (Z, z_0)$$

satisfying the following condition:^{3,4}

 (\star) Right Unital Bilinearity. The diagram

commutes, i.e. for each $x \in X$, we have

$$f(x, y_0) = z_0$$
.

008W Definition 1.2.1.2. The set of right bilinear morphisms of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is the set $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathsf{R}}(X \times Y, Z)$ defined by

$$\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes,\mathbf{R}}(X\times Y,Z)\stackrel{\scriptscriptstyle\rm def}{=}\{f\in\mathsf{Sets}_*(A\times B,C)\mid f\text{ is right bilinear}\}.$$

008X 1.3 Bilinear Morphisms of Pointed Sets

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

008Y Definition 1.3.1.1. A bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: (X \times Y, (x_0, y_0)) \to (Z, z_0)$$

that is both left bilinear and right bilinear.

$$f(x, y_0) = z_0$$

³Slogan: f is right bilinear if it preserves basepoints in its second argument.

 $^{^4}$ Succinctly, f is bilinear if we have

008Z Remark 1.3.1.2. In detail, a bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: (X \times Y, (x_0, y_0)) \to (Z, z_0)$$

satisfying the following conditions:^{5,6}

1. Left Unital Bilinearity. The diagram

commutes, i.e. for each $y \in Y$, we have

$$f(x_0, y) = z_0.$$

2. Right Unital Bilinearity. The diagram

commutes, i.e. for each $x \in X$, we have

$$f(x, y_0) = z_0.$$

for each $x \in X$.

$$f(x_0, y) = z_0,$$

$$f(x, y_0) = z_0$$

⁵Slogan: f is bilinear if it preserves basepoints in each argument.

 $^{^6}$ Succinctly, f is bilinear if we have

0090 Definition 1.3.1.3. The set of bilinear morphisms of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is the set $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y, Z)$ defined by

$$\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y, Z) \stackrel{\text{def}}{=} \{ f \in \mathsf{Sets}_*(A \times B, C) \mid f \text{ is bilinear} \}.$$

- ⁰⁰⁹¹ 2 Tensors and Cotensors of Pointed Sets by Sets
- 0092 2.1 Tensors of Pointed Sets by Sets

Let (X, x_0) be a pointed set and let A be a set.

- **Definition 2.1.1.1.** The **tensor of** (X, x_0) **by** A is the pointed set $A \odot (X, x_0)$ satisfying the following universal property:
 - (UP) We have a bijection

$$\mathsf{Sets}_*(A \odot X, K) \cong \mathsf{Sets}(A, \mathsf{Sets}_*(X, K)),$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$.

Remark 2.1.1.2. The tensor of (X, x_0) by A satisfies the following universal property:

$$\mathsf{Sets}_*(A \odot X, K) \cong \mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times X, K),$$

where $\mathsf{Sets}^{\otimes}_{\mathbb{E}_0}(A \times X, K)$ is the set defined by

$$\mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A\times X,K) \stackrel{\mathrm{def}}{=} \bigg\{ f \in \mathsf{Sets}(A\times X,K) \ \bigg| \ \begin{array}{l} \text{for each } a \in A, \ \text{we} \\ \text{have } f(a,x_0) = k_0 \end{array} \bigg\}.$$

- **Construction 2.1.1.3.** Concretely, the **tensor of** (X, x_0) **by** A is the pointed set $A \odot (X, x_0)$ consisting of
 - The Underlying Set. The set $A \odot X$ given by

$$A \odot X \cong \bigvee_{a \in A} (X, x_0);$$

- The Basepoint. The point $[x_0]$ of $\bigvee_{a \in A} (X, x_0)$.
- 0096 2.2 Cotensors of Pointed Sets by Sets

Let (X, x_0) be a pointed set and let A be a set.

for each $x \in X$ and each $y \in Y$.

- **Definition 2.2.1.1.** The **cotensor of** (X, x_0) **by** A is the pointed set $A \cap (X, x_0)$ satisfying the following universal property:
 - (**UP**) We have a bijection

$$\mathsf{Sets}_*(K, A \cap X) \cong \mathsf{Sets}(A, \mathbf{Sets}_*(K, X)),$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$.

Remark 2.2.1.2. The cotensor of (X, x_0) by A satisfies the following universal property:

$$\mathsf{Sets}_*(K,A \pitchfork X) \cong \mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times K,X),$$

where $\mathsf{Sets}^\otimes_{\mathbb{E}_0}(A\times K,X)$ is the set defined by

$$\mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times K, X) \stackrel{\text{def}}{=} \bigg\{ f \in \mathsf{Sets}(A \times K, X) \ \bigg| \ \begin{array}{l} \text{for each } a \in A, \ \text{we} \\ \text{have} \ f(a, k_0) = x_0 \end{array} \bigg\}.$$

- Construction 2.2.1.3. Concretely, the cotensor of (X, x_0) by A is the pointed set $A \cap (X, x_0)$ consisting of
 - The Underlying Set. The set $A \cap X$ given by

$$A \pitchfork X \cong \bigwedge_{a \in A} (X, x_0);$$

- The Basepoint. The point $[(x_0, x_0, x_0, \ldots)]$ of $\bigwedge_{a \in A} (X, x_0)$.
- 009A 3 The Left Tensor Product of Pointed Sets
- 009B 3.1 Foundations

Let (X, x_0) and (Y, y_0) be pointed sets.

OUNCE Definition 3.1.1.1. The **left tensor product of pointed sets** is the functor

$$\lhd_{\mathsf{Sets}_*} \colon \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

defined as the composition

$$\mathsf{Sets}_* \times \mathsf{Sets}_* \xrightarrow{\mathsf{id} \times \overline{\bowtie}} \mathsf{Sets}_* \times \mathsf{Sets} \xrightarrow{\beta^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}, \mathsf{Sets}} \mathsf{Sets} \times \mathsf{Sets}_* \xrightarrow{\odot} \mathsf{Sets}_*$$

009D Remark 3.1.1.2. The left tensor product of pointed sets satisfies the following universal property:⁷

$$\mathsf{Sets}_*(X \lhd_{\mathsf{Sets}_*} Y, Z) \cong \mathsf{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathrm{L}}(X \times Y, Z).$$

- **Remark 3.1.1.3.** In detail, the **left tensor product of** (X, x_0) **and** (Y, y_0) is the pointed set $(X \triangleleft_{\mathsf{Sets}_*} Y, [x_0])$ consisting of⁸
 - The Underlying Set. The set $X \triangleleft_{\mathsf{Sets}_*} Y$ defined by

$$X \lhd_{\mathsf{Sets}_*} Y \stackrel{\text{def}}{=} |Y| \odot X$$

$$\cong \bigvee_{y \in Y} (X, x_0);$$

- The Underlying Basepoint. The point $[x_0]$ of $\bigvee_{y \in Y} (X, x_0)$.
- 009F Proposition 3.1.1.4. Let (X, x_0) and (Y, y_0) be pointed sets.
- 009G 1. Functoriality. The assignments $X,Y,(X,Y)\mapsto X\lhd_{\mathsf{Sets}_*}Y$ define functors

$$\begin{split} X \lhd_{\mathsf{Sets}_*} -\colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ - \lhd_{\mathsf{Sets}_*} Y \colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ -_1 \lhd_{\mathsf{Sets}_*} -_2 \colon \mathsf{Sets}_* &\times \mathsf{Sets}_* &\to \mathsf{Sets}_*. \end{split}$$

Proof. Item 1, Functoriality: Omitted.

$$f^{\dagger}(x_0, y) = z_0$$

for each $y \in Y$.

⁸ Further Notation: We write $x \triangleleft_{\mathsf{Sets}_*} y$ for the image of (x,y) under the map

$$X\times Y\to \underbrace{X \lhd_{\mathsf{Sets}_*} Y}_{\cong \bigvee_{y\in Y}(X,x_0)}.$$

sending (x,y) to the element $x \in X$ in the yth copy of X in $\bigvee_{y \in Y} (X,x_0)$. Note that we have

$$x_0 \triangleleft_{\mathsf{Sets}_*} y = x_0 \triangleleft_{\mathsf{Sets}_*} y',$$

for each $y, y' \in Y$.

⁷Namely, a pointed map $f\colon X \lhd_{\mathsf{Sets}_*} Y \to Z$ is the same as a map $f^\dagger\colon X\times Y \to Z$ such that

009H 3.2 The Skew Associator

Definition 3.2.1.1. The skew associator of the left tensor product of pointed sets is the natural isomorphism

$$\alpha^{\mathsf{Sets}_*, \lhd} \colon \lhd_{\mathsf{Sets}_*} \circ (\lhd_{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*}) \stackrel{\cong}{\Longrightarrow} \lhd_{\mathsf{Sets}_*} \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \lhd_{\mathsf{Sets}_*}),$$

whose component

$$\alpha_{X \ Y \ Z}^{\mathsf{Sets}_*, \lhd} \colon (X \lhd_{\mathsf{Sets}_*} Y) \lhd_{\mathsf{Sets}_*} Z \xrightarrow{\cong} X \lhd_{\mathsf{Sets}_*} (Y \lhd_{\mathsf{Sets}_*} Z)$$

at (X, Y, Z) is given by the composition⁹

$$\begin{array}{c} (X \lhd_{\mathsf{Sets}_*} Y) \lhd_{\mathsf{Sets}_*} Z \stackrel{\mathrm{def}}{=} |Z| \odot (X \lhd_{\mathsf{Sets}_*} Y) \\ \stackrel{\mathrm{def}}{=} |Z| \odot (|Y| \odot X) \\ \cong \bigvee_{z \in Z} (|Y| \odot X, [x_0]) \\ \stackrel{\mathrm{def}}{=} \bigvee_{z \in Z} (\bigvee_{y \in Y} (X, x_0)) \\ \cong \bigvee_{(z,y) \in \bigvee_{z \in Z} (Y, y_0)} (X, x_0) \\ \stackrel{\mathrm{def}}{=} \bigvee_{(z,y) \in |Z| \odot Y} (X, x_0) \\ \cong ||Z| \odot Y| \odot X \\ \stackrel{\mathrm{def}}{=} |Y \lhd_{\mathsf{Sets}_*} Z| \odot X \\ \stackrel{\mathrm{def}}{=} X \lhd_{\mathsf{Sets}_*} (Y \lhd_{\mathsf{Sets}_*} Z), \end{array}$$

where the isomorphism

$$\bigvee_{z \in Z} \left(\bigvee_{y \in Y} (X, x_0) \right) \cong \bigvee_{(y, z) \in \bigvee_{z \in Z} (Y, y_0)} (X, x_0)$$

is given by $[(z,(y,x))] \mapsto [((z,y),x)].$

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*, \lhd}((x \lhd_{\mathsf{Sets}_*} y) \lhd_{\mathsf{Sets}_*} z) \stackrel{\mathrm{def}}{=} x \lhd_{\mathsf{Sets}_*} (y \lhd_{\mathsf{Sets}_*} z)$$

for each $(x \triangleleft_{\mathsf{Sets}_*} y) \triangleleft_{\mathsf{Sets}_*} z \in (X \triangleleft_{\mathsf{Sets}_*} Y) \triangleleft_{\mathsf{Sets}_*} Z$.

⁹In other words, $\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\triangleleft}$ acts on elements as

009K 3.3 The Skew Left Unitor

Definition 3.3.1.1. The skew left united of the left tensor product of pointed sets is the natural transformation

$$\lambda^{\mathsf{Sets}_*, \triangleleft} : \triangleleft_{\mathsf{Sets}_*} \circ (\not \Vdash^{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*}) \Longrightarrow \mathrm{id}_{\mathsf{Sets}_*},$$

whose component

$$\lambda_X^{\mathsf{Sets}_*,\lhd} \colon S^0 \lhd_{\mathsf{Sets}_*} X \to X$$

at X is given by the composition 10

$$S^0 \lhd_{\mathsf{Sets}_*} X \cong |X| \odot S^0$$

$$\cong \bigvee_{x \in X} S^0$$

$$\to X$$

where $\bigvee_{x \in X} S^0 \to X$ is the map given by

$$(x,0)\mapsto x,$$

$$(x,1) \mapsto x$$
.

3.4 The Skew Right Unitor

Definition 3.4221. The skew right unitor of the left tensor product of pointed sets is the natural transformation

$$\rho^{\mathsf{Sets}_*, \lhd} \colon \mathrm{id}_{\mathsf{Sets}_*} \Longrightarrow \lhd_{\mathsf{Sets}_*} \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \not \Vdash^{\mathsf{Sets}_*}),$$

whose component

$$\rho_X^{\mathsf{Sets}_*,\lhd} \colon X \to X \lhd_{\mathsf{Sets}_*} S^0$$

$$\begin{split} &\lambda_X^{\mathsf{Sets}_*,\lhd}(x \lhd_{\mathsf{Sets}_*} 0) \stackrel{\scriptscriptstyle \mathrm{def}}{=} x, \\ &\lambda_X^{\mathsf{Sets}_*,\lhd}(x \lhd_{\mathsf{Sets}_*} 1) \stackrel{\scriptscriptstyle \mathrm{def}}{=} x, \end{split}$$

for each $x \in X$.

9M

 $^{^{10} \}mathrm{In}$ other words, $\lambda_X^{\mathsf{Sets}_*, \lhd}$ acts on elements as

at X is given by the composition 11

$$\begin{split} X \to X \vee X \\ &\cong |S^0| \odot X \\ &\cong S^0 \lhd_{\mathsf{Sets}_*} X, \end{split}$$

where $X \to X \vee X$ is the map sending X to the first factor of X in $X \vee X$.

3.5 The Left-Skew Monoidal Category Structure on Pointed 809P Sets

009Q Proposition 3.5.1.1. The category Sets_{*} admits a left-skew monoidal category structure consisting of 12

• The Skew Monoidal Product. The left tensor product functor

$$\triangleleft_{\mathsf{Sets}_*} : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*,$$

of Proposition 3.1.1.4;

• The Skew Monoidal Unit. The functor

$$\mathbb{F}^{\mathsf{Sets}_*} \colon \mathsf{pt} \to \mathsf{Sets}_*$$

defined by

$$\not\Vdash_{\mathsf{Sets}_*} \stackrel{\text{def}}{=} S^0;$$

• The Skew Associators. The natural isomorphism

$$\alpha^{\mathsf{Sets}_*, \lhd} \colon \lhd_{\mathsf{Sets}_*} \circ (\lhd_{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*}) \stackrel{\cong}{\Longrightarrow} \lhd_{\mathsf{Sets}_*} \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \lhd_{\mathsf{Sets}_*}),$$
 of Definition 3.2.1.1;

• The Skew Left Unitors. The natural transformation

$$\lambda^{\mathsf{Sets}_*,\lhd} \colon \lhd_{\mathsf{Sets}_*} \circ (\not \Vdash^{\mathsf{Sets}_*} \times \operatorname{id}_{\mathsf{Sets}_*}) \Longrightarrow \operatorname{id}_{\mathsf{Sets}_*},$$

of Definition 3.3.1.1;

$$\rho_X^{\mathsf{Sets}_*,\lhd}(x) \stackrel{\mathrm{def}}{=} x \lhd_{\mathsf{Sets}_*} 0$$

for each $x \in X$.

¹¹In other words, $\rho_X^{\mathsf{Sets}_*, \triangleleft}$ acts on elements as

¹²Note in particular that, differently from general left-skew monoidal categories, the

• The Skew Right Unitors. The natural transformation

$$\rho^{\mathsf{Sets}_*, \lhd} \colon \mathrm{id}_{\mathsf{Sets}_*} \Longrightarrow \lhd_{\mathsf{Sets}_*} \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \nvDash^{\mathsf{Sets}_*}),$$

of Definition 3.4.1.1.

Proof. Omitted.

The Right Tensor Product of Pointed Sets 009R

009S 4.1**Foundations**

Let (X, x_0) and (Y, y_0) be pointed sets.

Definition 4.1.1.1. The right tensor product of pointed sets is the functor

$$\rhd_{\mathsf{Sets}_*} \colon \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

defined as the composition

$$\mathsf{Sets}_* \times \mathsf{Sets}_* \xrightarrow{\overline{\bowtie} \times \mathsf{id}} \mathsf{Sets} \times \mathsf{Sets}_* \xrightarrow{\odot} \mathsf{Sets}_*.$$

Remark 4.1.1.2. The right tensor product of pointed sets satisfies the following universal property: 13

$$\mathsf{Sets}_*(X \rhd_{\mathsf{Sets}_*} Y, Z) \cong \mathsf{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathsf{R}}(X \times Y, Z).$$

Remark 4.1.1.3. In detail, the right tensor product of (X, x_0) and (Y, y_0) is the pointed set $(X \triangleright_{\mathsf{Sets}_*} Y, [y_0])$ consisting of ¹⁴

skew associator of $(\mathsf{Sets}_*, \lhd_{\mathsf{Sets}_*}, S^0)$ is a natural isomorphism.

13 Namely, a pointed map $f \colon X \lhd_{\mathsf{Sets}_*} Y \to Z$ is the same as a map $f^\dagger \colon X \times Y \to Z$ such that

$$f^{\dagger}(x, y_0) = z_0$$

for each $y \in Y$.

¹⁴ Further Notation: We write $x \triangleright_{\mathsf{Sets}_*} y$ for the image of (x,y) under the map

$$X\times Y\to \underbrace{X\rhd_{\mathsf{Sets}_*}Y}_{\cong \bigvee_{x\in X}(Y,y_0)}.$$

sending (x,y) to the element $y \in Y$ in the xth copy of Y in $\bigvee_{x \in X} (Y,y_0)$. Note that we have

$$x \rhd_{\mathsf{Sets}_*} y_0 = x' \rhd_{\mathsf{Sets}_*} y_0,$$

for each $x, x' \in X$.

• The Underlying Set. The set $X \rhd_{\mathsf{Sets}_*} Y$ defined by

$$\begin{split} X \rhd_{\mathsf{Sets}_*} Y &\stackrel{\text{def}}{=} |X| \odot Y \\ &\cong \bigvee_{x \in X} (Y, y_0); \end{split}$$

- The Underlying Basepoint. The point $[y_0]$ of $\bigvee_{x \in X} (Y, y_0)$.
- **Proposition 4.1.1.4.** Let (X, x_0) and (Y, y_0) be pointed sets.
- 009X 1. Functoriality. The assignments $X,Y,(X,Y)\mapsto X\rhd_{\mathsf{Sets}_*} Y$ define functors

$$\begin{split} X \rhd_{\mathsf{Sets}_*} -\colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ - \rhd_{\mathsf{Sets}_*} Y \colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ -_1 \rhd_{\mathsf{Sets}_*} -_2 \colon \mathsf{Sets}_* &\times \mathsf{Sets}_* &\to \mathsf{Sets}_*. \end{split}$$

Proof. Item 1, Functoriality: Omitted.

- 009Y 4.2 The Skew Associator
- OO9Z Definition 4.2.1.1. The skew associator of the right tensor product of pointed sets is the natural isomorphism

$$\alpha^{\mathsf{Sets}_*, \triangleright} : \rhd_{\mathsf{Sets}_*} \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \rhd_{\mathsf{Sets}_*}) \stackrel{\cong}{\Longrightarrow} \rhd_{\mathsf{Sets}_*} \circ (\rhd_{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*}),$$

whose component

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\rhd} \colon X \rhd_{\mathsf{Sets}_*} (Y \rhd_{\mathsf{Sets}_*} Z) \xrightarrow{\cong} (X \rhd_{\mathsf{Sets}_*} Y) \rhd_{\mathsf{Sets}_*} Z$$

at (X, Y, Z) is given by the composition 15

$$\begin{split} X\rhd_{\mathsf{Sets}_*} (Y\rhd_{\mathsf{Sets}_*} Z) &\stackrel{\mathrm{def}}{=} |X|\odot (Y\rhd_{\mathsf{Sets}_*} Z) \\ &\stackrel{\mathrm{def}}{=} |X|\odot (|Y|\odot Z) \\ &\cong |X|\odot (\bigvee_{y\in Y} (Z,z_0)) \\ &\cong \bigvee_{x\in X} (\bigvee_{y\in Y} (Z,z_0)) \\ &\cong \bigvee_{(x,y)\in\bigvee_{x\in X} (Y,y_0)} (Z,z_0) \\ &\cong \left|\bigvee_{x\in X} (Y,y_0)\right|\odot Z \\ &\stackrel{\mathrm{def}}{=} |X\odot Y|\odot Z \\ &\stackrel{\mathrm{def}}{=} |X\rhd_{\mathsf{Sets}_*} Y|\odot Z \\ &\stackrel{\mathrm{def}}{=} (X\rhd_{\mathsf{Sets}_*} Y)\rhd_{\mathsf{Sets}_*} Z \end{split}$$

where the isomorphism

$$\bigvee_{x \in X} (\bigvee_{y \in Y} (Z, z_0)) \cong \bigvee_{(x,y) \in \bigvee_{x \in X} (Y, y_0)} (Z, z_0)$$

is given by $[(x,(y,z))] \mapsto [((x,y),z)].$

00A0 4.3 The Skew Left Unitor

OOA1 Definition 4.3.1.1. The skew left unitor of the right tensor product of pointed sets is the natural transformation

$$\lambda^{\mathsf{Sets}_*, \rhd} \colon \mathrm{id}_{\mathsf{Sets}_*} \Longrightarrow \rhd_{\mathsf{Sets}_*} \circ (\not \bowtie^{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*}),$$

whose component

$$\lambda_X^{\mathsf{Sets}_*,\rhd} \colon X \to S^0 \rhd_{\mathsf{Sets}_*} X$$

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\rhd}(x\rhd_{\mathsf{Sets}_*}(y\rhd_{\mathsf{Sets}_*}z)) \stackrel{\scriptscriptstyle{\det}}{=} (x\rhd_{\mathsf{Sets}_*}y)\rhd_{\mathsf{Sets}_*}z$$

for each $x \rhd_{\mathsf{Sets}_*} (y \rhd_{\mathsf{Sets}_*} z) \in X \rhd_{\mathsf{Sets}_*} (Y \rhd_{\mathsf{Sets}_*} Z)$.

¹⁵In other words, $\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\triangleright}$ acts on elements as

at X is given by the composition 16

$$\begin{split} X \to X \vee X \\ &\cong |S^0| \odot X \\ &\cong S^0 \rhd_{\mathsf{Sets}_*} X, \end{split}$$

where $X \to X \vee X$ is the map sending X to the first factor of X in $X \vee X$.

00A2 4.4 The Skew Right Unitor

OOA3 Definition 4.4.1.1. The skew right unitor of the right tensor product of pointed sets is the natural transformation

$$\rho^{\mathsf{Sets}_*, \triangleright} : \rhd_{\mathsf{Sets}_*} \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \not \Vdash^{\mathsf{Sets}_*}) \Longrightarrow \mathrm{id}_{\mathsf{Sets}_*},$$

whose component¹⁷

$$\rho_X^{\mathsf{Sets}_*, \rhd} \colon X \rhd_{\mathsf{Sets}_*} S^0 \to X$$

at X is given by the composition

$$\begin{split} X \rhd_{\mathsf{Sets}_*} S^0 &\cong |X| \odot S^0 \\ &\cong \bigvee_{x \in X} S^0 \\ &\to X \end{split}$$

where $\bigvee_{x \in X} S^0 \to X$ is the map given by

$$(x,0) \mapsto x,$$

 $(x,1) \mapsto x.$

$$\lambda_X^{\mathsf{Sets}_*, \rhd}(x) \stackrel{\text{def}}{=} 0 \rhd_{\mathsf{Sets}_*} x$$

for each $x \in X$.

¹⁷In other words, $\rho_X^{\mathsf{Sets}_*,\triangleright}$ acts on elements as

$$\begin{split} &\rho_X^{\mathsf{Sets}_*, \rhd}(x \rhd_{\mathsf{Sets}_*} 0) \stackrel{\text{def}}{=} x, \\ &\rho_X^{\mathsf{Sets}_*, \rhd}(x \rhd_{\mathsf{Sets}_*} 1) \stackrel{\text{def}}{=} x \end{split}$$

for each $x \in X$.

¹⁶In other words, $\lambda_X^{\mathsf{Sets}_*, \triangleright}$ acts on elements as

4.5 The Right-Skew Monoidal Category Structure on Pointed Sets

- OOA5 Proposition 4.5.1.1. The category Sets_{*} admits a right-skew monoidal category structure consisting of 18
 - The Skew Monoidal Product. The right tensor product functor

$$\triangleright_{\mathsf{Sets}_*} : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*,$$

of Item 1;

• The Skew Monoidal Unit. The functor

$$\mathbb{F}^{\mathsf{Sets}_*} \colon \mathsf{pt} \to \mathsf{Sets}_*$$

defined by

$$\mathbb{F}_{\mathsf{Sets}_*} \stackrel{\text{def}}{=} S^0;$$

• The Skew Associators. The natural isomorphism

$$\alpha^{\mathsf{Sets}_*, \triangleright} : \rhd_{\mathsf{Sets}_*} \circ (\rhd_{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*}) \stackrel{\cong}{\Longrightarrow} \rhd_{\mathsf{Sets}_*} \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \rhd_{\mathsf{Sets}_*}),$$
of Definition 4.2.1.1;

• The Skew Left Unitors. The natural transformation

$$\lambda^{\mathsf{Sets}_*,\triangleright} \colon \mathrm{id}_{\mathsf{Sets}_*} \Longrightarrow \rhd_{\mathsf{Sets}_*} \circ (\not \Vdash^{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*}),$$

of Definition 3.3.1.1;

• The Skew Right Unitors. The natural transformation

$$\rho^{\mathsf{Sets}_*, \rhd} \colon \rhd_{\mathsf{Sets}_*} \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \mathbb{1}^{\mathsf{Sets}_*}) \Longrightarrow \mathrm{id}_{\mathsf{Sets}_*},$$

of Definition 3.4.1.1.

Proof. Omitted.

00A6 5 Smash Products of Pointed Sets

¹⁸Note in particular that, differently from general right-skew monoidal categories, the

30A7 5.1 Foundations

Let (X, x_0) and (Y, y_0) be pointed sets.

OOA8 Definition 5.1.1.1. The smash product of (X, x_0) and $(Y, y_0)^{19}$ is the pointed set $X \wedge Y^{20}$ such that we have a bijection

$$\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y, Z),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$.

- 00A9 Remark 5.1.1.2. In detail, the smash product of (X, x_0) and (Y, y_0) is the pair $((X \wedge Y, [(x_0, y_0)]), \iota)$ consisting of
 - A pointed set $(X \wedge Y, [(x_0, y_0)]);$
 - A bilinear morphism of pointed sets $\iota: (X \times Y, (x_0, y_0)) \to X \wedge Y;$

satisfying the following universal property:

- (UP) Given another such pair $((Z, z_0), f)$ consisting of
 - A pointed set (Z, z_0) ;
 - A bilinear morphism of pointed sets $f: (X \times Y, (x_0, y_0)) \to X \wedge Y$;

there exists a unique morphism of pointed sets $X \wedge Y \xrightarrow{\exists !} Z$ making the diagram

commute.

skew associator of $(\mathsf{Sets}_*, \triangleright_{\mathsf{Sets}_*}, S^0)$ is a natural isomorphism.

¹⁹ Further Terminology: Also called the **tensor product of** \mathbb{F}_1 -modules of (X, x_0) and (Y, y_0) or the **tensor product of** (X, x_0) and (Y, y_0) over \mathbb{F}_1 .

²⁰ Further Notation: Also written $X \otimes_{\mathbb{F}_1} Y$.

Construction 5.1.1.3. Concretely, the smash product of (X, x_0) and (Y, y_0) is the pointed set $(X \wedge Y, [(x_0, y_0)])$ consisting of 21

• The Underlying Set. The set $X \wedge Y$ defined by

where \sim is the equivalence relation of $X \times Y$ obtained by declaring $(x,y) \sim (x',y')$ iff $(x,y),(x',y') \in X \vee Y$, i.e. by declaring

$$(x_0, y) \sim (x_0, y'),$$

 $(x, y_0) \sim (x', y_0)$

for all $x \in X$ and all $y \in Y$;

• The Basepoint. The element $[(x_0, y_0)]$ of $X \wedge Y$ given by the equivalence class of (x_0, y_0) under the equivalence relation \sim on $X \times Y$.

Proof. Clear.
$$\Box$$

- **Example 5.1.1.4.** Here are some examples of smash products of pointed sets.
 - 1. Smashing With S^0 . For any pointed set X, we have isomorphisms of pointed sets

$$S^0 \wedge X \cong X,$$
$$X \wedge S^0 \cong X.$$

$$X \times Y \twoheadrightarrow \underbrace{\frac{X \times Y}{X \vee Y}}_{\stackrel{\text{def}}{=} X \wedge Y}$$

Note that we have

$$x \wedge y_0 = x' \wedge y_0,$$

$$x_0 \wedge y = x_0 \wedge y'$$

for each $x, x' \in X$ and each $y, y' \in Y$.

²¹ Further Notation: We write $x \wedge y$ for the image of (x,y) under the quotient map

- **OOAC** Proposition 5.1.1.5. Let (X, x_0) and (Y, y_0) be pointed sets.
- 00AD 1. Functoriality. The assignments $(X, x_0), (Y, y_0), ((X, x_0), (Y, y_0)) \mapsto X \wedge Y$ define functors

$$\begin{split} X \wedge -\colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ - \wedge Y \colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ -_1 \wedge -_2 \colon \mathsf{Sets}_* &\times \mathsf{Sets}_* &\to \mathsf{Sets}_*. \end{split}$$

00AE 2. Adjointness. We have adjunctions

$$(X \land - \dashv \mathbf{Sets}_*(X, -)) \colon \ \ \underbrace{\mathsf{Sets}_*}_{X \land -} \underbrace{\mathsf{Sets}_*}_{Sets_*(X, -)} \mathsf{Sets}_*,$$

$$(- \land Y \dashv \mathbf{Sets}_*(Y, -)) \colon \ \ \underbrace{\mathsf{Sets}_*}_{Sets_*(Y, -)} \underbrace{\mathsf{Sets}_*}_{Sets_*(Y, -)} \mathsf{Sets}_*,$$

witnessed by bijections

$$\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Sets}_*(X, \mathbf{Sets}_*(Y, Z)),$$

$$\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Sets}_*(X, \mathbf{Sets}_*(A, Z)),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$, which internalise to isomorphisms of pointed sets

$$\begin{aligned} \mathbf{Sets}_*(X \wedge Y, Z) &\cong \mathbf{Sets}_*(X, \mathbf{Sets}_*(Y, Z)), \\ \mathbf{Sets}_*(X \wedge Y, Z) &\cong \mathbf{Sets}_*(X, \mathbf{Sets}_*(A, Z)), \end{aligned}$$

again natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*).$

- 00AF 3. Closed Symmetric Monoidality. The quadruple ($\mathsf{Sets}_*, \wedge, S^0, \mathsf{Sets}_*$) is a closed symmetric monoidal category.
- 00AG 4. Morphisms From the Monoidal Unit. We have a bijection of sets²²

$$\mathsf{Sets}_*(S^0,X) \cong X,$$

忘:
$$\mathsf{Sets}_* \to \mathsf{Sets}$$

defined on objects by sending a pointed set to its underlying set is corepresentable by S^0 .

²²In other words, the forgetful functor

natural in $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$, internalising also to an isomorphism of pointed sets

$$\mathbf{Sets}_*(S^0, X) \cong (X, x_0),$$

again natural in $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$.

5. Symmetric Strong Monoidality With Respect to Free Pointed Sets. The free pointed set functor of Pointed Sets, Item 1 of Proposition 4.2.1.2 has a symmetric strong monoidal structure

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\times} \colon X^+ \wedge Y^+ \xrightarrow{\cong} (X \times Y)^+,$$
$$(-)_{\mathbb{H}}^{+,\times} \colon S^0 \xrightarrow{\cong} \mathrm{pt}^+,$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

6. Distributivity Over Wedge Sums. We have isomorphisms of pointed sets

$$X \wedge (Y \vee Z) \cong (X \wedge Y) \vee (X \wedge Z),$$

$$(X \vee Y) \wedge Z \cong (X \wedge Z) \vee (Y \wedge Z),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*).$

- 7. Universal Property I. The symmetric monoidal structure on the category Sets* is uniquely determined by the following requirements:
 - (a) Two-Sided Preservation of Colimits. The smash product

$$\wedge : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

of Sets* preserves colimits separately in each variable.

- (b) The Unit Object Is S^0 . We have $\mathbb{1}_{\mathsf{Sets}_*} = S^0$.
- 8. Universal Property II. The symmetric monoidal structure on the category Sets* is the unique symmetric monoidal structure on Sets* such that the free pointed set functor

$$(-)^+ \colon \mathsf{Sets} \to \mathsf{Sets}_*$$

admits a symmetric monoidal structure.

9. Existence of Monoidal Diagonals. The triple $(\mathsf{Sets}_*, \wedge, S^0)$ is a monoidal category with diagonals:

(a) Monoidal Diagonals. The natural transformation

$$\Delta \colon \mathrm{id}_{\mathsf{Sets}_*} \Longrightarrow \wedge \circ \Delta^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}, \qquad \begin{matrix} \mathsf{Sets}_* & \overset{\mathrm{id}_{\mathsf{Sets}_*}}{\bigvee} & \mathsf{Sets}_* \\ \Delta^{\mathsf{Cats}_2} & & \downarrow & \wedge \\ \Delta^{\mathsf{Cats}_2} & & \downarrow & \wedge \\ \mathsf{Sets}_* & \times \mathsf{Sets}_*. \end{matrix}$$

whose component

$$\Delta_X \colon (X, x_0) \to (X \land X, [(x_0, x_0)])$$

at $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by the composition

$$(X, x_0) \xrightarrow{\Delta_X} (X \times X, (x_0, x_0))$$

$$\longrightarrow (\frac{X \times X}{X \vee X}, [(x_0, x_0)])$$

$$\stackrel{\text{def}}{=} (X \wedge X, [(x_0, x_0)])$$

in Sets*, is a monoidal natural transformation:

i. Naturality. For each morphism $f: X \to Y$ of pointed sets, the diagram

$$X \xrightarrow{f} Y$$

$$\Delta_X \downarrow \qquad \qquad \downarrow \Delta_Y$$

$$X \wedge X \xrightarrow{f \wedge f} Y \wedge Y$$

commutes.

ii. Compatibility With Strong Monoidality Constraints. For each $(X, x_0), (Y, y_0) \in \text{Obj}(\mathsf{Sets}_*)$, the diagram

$$X \wedge Y \xrightarrow{\Delta_X \wedge \Delta_Y} (X \wedge X) \wedge (Y \wedge Y)$$

$$\parallel \qquad \qquad \vdots$$

$$X \wedge Y \xrightarrow{\Delta_{X \wedge Y}} (X \wedge Y) \wedge (X \wedge Y)$$

commutes.

iii. Compatibility With Strong Unitality Constraints. The diagram

$$S^{0} \\ \parallel \qquad (\lambda_{S^{0}}^{\mathsf{Sets}*})^{-1} = (\rho_{S^{0}}^{\mathsf{Sets}*})^{-1} \\ S^{0} \xrightarrow{\Delta_{S^{0}}} S^{0} \wedge S^{0}$$

commutes.

(b) The Diagonal of the Unit. The component

$$\Delta^{\mathsf{Sets}_*}_{S^0} \colon S^0 \xrightarrow{\cong} S^0 \wedge S^0$$

of the diagonal natural transformation of Sets_* at S^0 is an isomorphism.

00AN 10. Comonoids in Sets_{*}. The symmetric monoidal functor

$$((-)^+,(-)^{+,\times},(-)^{+,\times}_{\not\vdash})\colon (\mathsf{Sets},\times,\mathrm{pt})\to (\mathsf{Sets}_*,\wedge,S^0),$$

of Pointed Sets, Item 4 of Proposition 4.2.1.2 lifts to an equivalence of categories

$$\begin{aligned} \mathsf{CoMon}(\mathsf{Sets}_*, \wedge, S^0) &\overset{\scriptscriptstyle{\mathrm{eq.}}}{\cong} \mathsf{CoMon}(\mathsf{Sets}, \times, \mathrm{pt}) \\ &\cong \mathsf{Sets}. \end{aligned}$$

Proof. Item 1, Functoriality: Omitted.

Item 2, Adjointness: Omitted.

Item 3, Closed Symmetric Monoidality: Omitted.

Item 4, Morphisms From the Monoidal Unit: Omitted.

Item 5, Symmetric Strong Monoidality With Respect to Free Pointed Sets: Omitted.

Item 6, Distributivity Over Wedge Sums: This follows from Item 3, Monoidal Categories, ?? of ??, and the fact that \vee is the coproduct in Sets_{*}.

Item 7, Universal Property I: Omitted.

Item 8, Universal Property II: See [GGN15, Theorem 5.1].

Item 9, Existence of Monoidal Diagonals: Omitted.

Item 10, Comonoids in Sets_{*}: See [PS19, Lemma 2.4].

Appendices

A Other Chapters

Internal Category Theory

A Other Chapters	
Sets	19. Internal Categories
1. Sets	Cyclic Stuff
2. Constructions With Sets	20. The Cycle Category
3. Pointed Sets	Cubical Stuff
4. Tensor Products of Pointed Sets	21. The Cube Category
5. Relations	Globular Stuff
6. Spans	22. The Globe Category
7. Posets	Cellular Stuff
Indexed and Fibred Sets	23. The Cell Category
7. Indexed Sets	Monoids
8. Fibred Sets	24. Monoids
9. Un/Straightening for Indexed	25. Constructions With Monoids
and Fibred Sets	Monoids With Zero
Category Theory	26. Monoids With Zero
11. Categories	27. Constructions With Monoids With Zero
12. Types of Morphisms in Categories	Groups
13. Adjunctions and the Yoneda	28. Groups
Lemma	29. Constructions With Groups
14. Constructions With Categories	Hyper Algebra
15. Kan Extensions	30. Hypermonoids
Bicategories	31. Hypergroups
17. Bicategories	32. Hypersemirings and Hyperrings
18. Internal Adjunctions	33. Quantales

Near-Rings

- 34. Near-Semirings
- 35. Near-Rings

Real Analysis

- 36. Real Analysis in One Variable
- 37. Real Analysis in Several Variables

Measure Theory

- 38. Measurable Spaces
- 39. Measures and Integration

Probability Theory

39. Probability Theory

Stochastic Analysis

- 40. Stochastic Processes, Martingales, and Brownian Motion
- 41. Itô Calculus
- 42. Stochastic Differential Equations

Differential Geometry

43. Topological and Smooth Manifolds

Schemes

44. Schemes