Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

Analog II

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

18. März 2017

Startpunkt digitaler Output

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

- .6. --- ..

```
Blink Beispiel: File \rightarrow Examples \rightarrow Basics \rightarrow Blink
void setup() {
  pinMode(13, OUTPUT);
void loop() {
  digitalWrite(13, HIGH);
  delay(1000);
  digitalWrite(13, LOW);
  delay(1000);
```

Setup

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

pinMode(pin, modus) wählt für den Pin mit Nummer pin eine von drei Betriebsarten:

- OUTPUT: wird für Ausgabe verwendet, z.B. um LEDs zu schalten oder mit anderen Microcontrollern zu sprechen.
- INPUT: Die Spannung am Pin kann gelesen werden.
- INPUT_PULLUP: Wie INPUT, aber der Pin wird intern auf die Versorgunsspannung gezogen.

digitalWrite und delay

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

Digital II

digitalWrite(pin, zustand) setzt bei einem auf Output gestellten Pin die Ausgangsspannung:

- 0 Volt für LOW
- 5 Volt für HIGH (oder was auch immer die aktuelle Versorgungsspannung ist)

delay(ms) tut ms Millisekunden lang nichts.

Andere Blink Muster

Blinkenlights Workshop

Stephan Messlinger, /alentin Ochs

Digital Out

Analog Ou

Digital In

Analog Ir

Zwei Sekunden lang an, eine halbe aus.

Andere Blink Muster

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

Analog I

Zwei Sekunden lang an, eine halbe aus.

```
digitalWrite(13, HIGH);
delay(2000);
digitalWrite(13, LOW);
delay(500);
```

Blinkenlights Workshop

Stephan Messlinger, /alentin Ochs

Digital Out

Analog Ou

Digital In

Analog Ir

Was passiert, wenn man die Zeiten ganz niedrig setzt?

Blinkenlights Workshop

Stephan Messlinger, /alentin Ochs

Digital Out

Analog Out

Digital In

Analog I

Was passiert, wenn man die Zeiten ganz niedrig setzt?

ightarrow Man sieht kein Blinken mehr

Blinkenlights Workshop

Stephan Messlinger, /alentin Ochs

Digital Out

Analog Ou

Digital In

Analog

Was passiert, wenn man die Zeiten ganz niedrig setzt?

→ Man sieht kein Blinken mehr

Was passiert, wenn die Zeitverhältnisse geändert werden?

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

Analog

Was passiert, wenn man die Zeiten ganz niedrig setzt?

→ Man sieht kein Blinken mehr

Was passiert, wenn die Zeitverhältnisse geändert werden?

 \rightarrow Dimmen

analogWrite

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

. . .

analogWrite(pin, wert) schaltet den Pin
automatisch an und aus, mit variablen An-/Aus-Zeiten

- \rightarrow Pulsweitenmodulation
 - Frequenz: Etwa 490 Hz
 - Wertebereich: 0 bis 255
 - Nur auf Pins 3, 5, 6, 9, 10, und 11.
 - Die PWM Pins sind auf dem Arduino mit ~ markiert.

PWM Funktionsweise: Zähler + Vergleich

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

Analog I

PWM, Schwellwert 128

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

Analog

PWM, Schwellwert 16

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

Analog I

Einfacher PWM Code

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

Analog I

```
void setup() {
  pinMode(11, OUTPUT);
void loop() {
  // Zeit seit Beginn des Programms
  unsigned long time = millis();
  // Berechne eine Sägezahn mit 0.1 Hz
  int value = 255 * time / 4000;
  // Verwende den Wert als Schwellwert
  analogWrite(11, value);
```

PWM Frequenz

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

. . .

490 Hz sind bei schnellen Bewegungen sichtbar. Bestimmung der Frequenz: Taktfrequenz / Vorteiler / Zählergröße

- Taktfrequenz: 16 MHz
- Zählergröße:
 - 256 für Pins 5 und 6
 - 510 für 3, 9, 10, 11

PWM Vorteiler: Timer 0, Pins 5 und 6

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

Einstellung	Teiler	Frequenz
0×01	1	62500
0×02	8	7813
0×03	64	977
0×04	256	244
0×05	1024	61

Einstellen durch

TCCROB = (TCCROB & Ob111111000) | Einstellung

PWM Vorteiler: Timer 1, Pins 9 und 10

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

Einstellung	Teiler	Frequenz
0×01	1	31373
0×02	8	3921
0×03	64	490
0×04	256	123
0×05	1024	31

Einstellen durch

TCCR1B = (TCCR0B & Ob111111000) | Einstellung

PWM Vorteiler: Timer 2, Pins 11 und 3

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

Einstellung	Teiler	Frequenz
0×01	1	31373
0×02	8	3921
0x03	32	980
0×04	64	490
0×05	128	245
0×06	256	123
0×07	1024	31

Einstellen durch

TCCR2B = (TCCR2B & Ob11111000) | Einstellung

Vorsicht

Blinkenlights Workshop

Messlinger

Analog Out

Frequenzänderung beeinflusst nicht nur LEDs, sondern alles, was an dem Timer hängt! Servos, Tonerzeugung, etc.

Besonders wichtig: Timer 0 für millis() und delay(). Standardvorteiler: 64. Bei Änderungen Zeiten entsprechend anpassen (Vervierfachen bei 256...)

Startpunkt digitaler Input

Blinkenlights Workshop

Stephan Messlinger, /alentin Ochs

Digital Or

Analog Ou

Digital In

Button Beispiel: File \rightarrow Examples \rightarrow Digital \rightarrow Button Geht nicht nur mit einfachen Schaltern und Tastern, sondern auch z.B. einer Lichtschranke oder Reed-Schaltern.

digitalRead

Blinkenlights Workshop

Stepnan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Digital In

Ŭ

digitalRead(pin):

- HIGH falls Spannung an pin etwa 2.6 V oder höher
- LOW falls Spannung an pin 2.1 V oder tiefer
- Nur bei 5 V Versorgungsspannung, sonst andere Werte

Schaltplanvarianten

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Ou

Digital In

Analog In

Unterbrechbare Abläufe starten (1)

Blinkenlights Workshop

Stephan Messlinger, Valentin Och

Digital Ou

Analog Out

Digital In

Digital II

```
unsigned long button_time = 0;
bool running = false;
void loop() {
  if(digitalRead(button_pin) == HIGH) {
    running = true;
    button_time = millis();
  if(running) {
    running = do_stuff(millis() - start_time);
```

Unterbrechbare Abläufe starten (2)

Blinkenlights Workshop

Stephan Messlinger, Valentin Oct

Digital Out

Analog Out

Digital In

Ŭ

```
bool do_stuff(unsigned long time_point)
  if(time_point < 100) {
    digitalWrite(led_pin, HIGH);
 } else if(time_point < 200) {</pre>
    digitalWrite(led_pin, LOW);
 } else if(time_point < 1000) {</pre>
    digitalWrite(led_pin, HIGH);
  } else {
    return false;
  return true;
```

Prellen

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Digital In

- -

Entprellen

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Allulog Ou

Digital In

- .

Auch: Debouncing

- Hardware Lösung: Tiefpassfilter mit Kondensator
- Software Lösung: Mehrmals Wert auslesen und warten, bis er sich nicht mehr ändert
- Hier ohne weitere Vertiefung, aber ihr wisst jetzt, wonach man suchen muss :)

Startpunkt analoger Input

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital O

Analog Ou

Digital In

Analog In

AnalogInput Beispiel: File \rightarrow Examples \rightarrow Analog \rightarrow AnalogInput

analogRead

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Digital In

Analog In

 ${\tt analogRead(pin): 0-1023\;f\"{u}r\;0-5\;Volt\;an\;Pin\;pin}.$

Kombination mit analogWrite

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Digital In

Analog In

```
void loop() {
  int value = analogRead(A0) / 4;
  analogWrite(3, value);
}
```