Anna University / Affiliated colleges DC Member 3: SARAVANAN.S Sri Venkateswara College of engineering, Chennai. PUBLICATIONS IN INTERNATIONAL JOURNALS

S.No	Author(s)	Title of Paper	Year, Name of the Journal, Volume No, Page Numbers
1	S.Saravanan G.Nagarajan G.L.N.Rao S.Sampath	Feasibility Study Of Crude Rice Bran Oil As A Diesel Substitute In a DI-CI Engine Without Modifications.	(2007) Energy for Sustainable Development ;Vol.11, No. 3 pp 83-92 (Impact factor.2.360)
2	G.L.N.Rao S.Saravanan S.Sampath K.Rajagopal	Combustion And Emission Characteristics Of Diesel Engine Fuelled With Rice Bran Oil methyl Ester And Its Diesel Blends	(2008) Thermal Science Vol. 12, No. 1, pp 139-150 (Impact factor :0.407)
3	S.Saravanan G.Nagarajan G.L.N.Rao	Effect of FFA of Crude Rice Bran Oil on the Properties of Diesel Blends	(2008) Journal of American Oil chemists Society; Vol. 85 .No 8 .pp 663-666 (Impact factor :1.803)
4	S.Saravanan G.Nagarajan G.L.N.Rao	High FFA Crude Rice Bran Oil-A Renewable Feedstock For Sustainable Energy And Environment	(2008) Clean,Vol.36 No. (10-11), pp 835-839 (Impact factor :1.838)
5	G.L.N.Rao S.Saravanan	Role of Biofuels in a Sustainable Environment –A Technical Study	(2008) Clean, Vol.36 No. (10-11) pp 830 -834 (Impact factor :1.838)
6	S.Saravanan G.Nagarajan G.L.N.Rao	Comparison of Combustion Characteristics of Crude Rice Bran Oil Methyl Ester with Diesel as a CI Engine Fuel	Journal of Biobased Materials and Bioenergy, Vol.3, No 1, pp 32-36 (Impact factor :1.402)
7	G.L.N.Rao S.Saravanan P.Selva Ilavarasi	The comparative analysis of diesel engine combustion and emission parameters fuelled with palm oil methyl esters and its diesel blends	(2009) Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, pp.70-82 (Impact factor: 0.225)
8	G.L.N.Rao S.Saravanan P.Selva Ilavarasi G.Devasagayam	Combustion Analysis Of DI Diesel Engine When Fuelled With Sunflower Methyl Ester And Its Diesel Blends	(2009) International Journal of. Vehicle Design, Vol. 50, Nos. 1/2/3/4,pp 289-303 (Impact factor: 0.48)
9	S.Saravanan G.Nagarajan G.L.N.Rao	Feasibility analysis of crude rice bran oil methyl ester blend as a stationary and automotive diesel engine fuel	(2009) Energy for Sustainable Devpt., Vol.13 No 1 pp.52-55 (Impact factor :2.360)

10	S.Saravanan G.Nagarajan G.L.N.Rao	Effect of blending crude rice bran oil methyl ester with diesel on properties as CI engine fuel	(2009) Journal of the Energy Institute; Vol .82. No.3. pp 185-187 (Impact factor: 0.659)
11	S.Saravanan G.Nagarajan G.L.N.Rao S.Sampath	Combustion characteristics of a stationary diesel engine fuelled with a blend of crude rice bran oil methyl ester and diesel	(2010) ENERGY,35: pp: 94–100 (Impact factor :4.159)
12	S.Saravanan G.Nagarajan G.L.N.Rao S.Sampath	Biodiesel production from high FFA crude rice bran oil and investigation on its properties as CI engine fuel	(2009) Int. J. Oil, Gas and Coal Technology ,Vol. 2, No. 4, pp::389-398 (Impact factor :0.225)
13	S.Saravanan G.Nagarajan G.L.N.Rao	Investigation on a non-edible vegetable oil in sustaining the energy and environment as a CI engine fuel	(2010) Journal of renewable and sustainable energy, Vol.2, Article No:013108 (Impact factor :1.5)
14	S.Saravanan G.Nagarajan S.Sampath	Multi response optimization of NOx emission of a stationary diesel engine	(2010) Fuel,Vol.89; pp:3235–3240 (Impact factor :3.406)
15	S.Saravanan G.Nagarajan G.L.N.Rao S.Sampath	Role of a biodiesel blend in sustaining the energy and environment as a CI engine fuel	(2011) International Journal of Energy and Environment Vol.2, No. 1, pp.179-190
16	S.Saravanan G.Nagarajan R.Ramanujam S.Sampath	Controlling NOx Emission of Crude Rice Bran Oil Blend for Sustainable Environment	(2011) Clean,39 (6),515-521 (Impact factor :1.412)
17	S.Saravanan G.Nagarajan S.Sampath	Investigation on combustion characteristics of crude rice bran oil methyl ester blend as a heavy duty automotive engine fuel	(2011) Int. J. Oil, Gas and Coal Technology, Vol. 4, No.3, pp. 282-295 (Impact factor :0.225)
18	S.Saravanan G.Nagarajan R.Ramanujam S.Sampath	Application Of Taguchi's Orthogonal Array In Reducing The NO _x Emission Of A Stationary Diesel Engine	(2011) Int. J. Oil, Gas and Coal Technology, Vol. 4, No. 4, pp. 398-409 (Impact factor :0.225)
19	S.Saravanan G.Nagarajan S.Sampath	Optimization of a Stationary Diesel Engine Fuelled With Crude Rice Bran Oil Methyl Ester Using The Taguchi Method	(2011) ASME Journal of Engg for Gas Turbines and power, Vol. 133 / 124501,1-4

			(Impact factor :0.679)
20	S.Saravanan G.Nagarajan S.Sampath	Effect Of Single Double Bond In The Fatty Acid Profile Of Biodiesel On Its Properties As A CI Engine Fuel	(2011) International Journal of Energy and Environment Vol. 2, No. 6,pp.1141-1146
21	S.Saravanan G.Nagarajan S.Sampath	Comparison of Blends of Conventional Diesel Fuel and CRBO Containing High Levels of FFA in a DI Diesel Engine	(2012) Int. J. Alternative Propulsion Vol. 2, No. 2,pp. 109-124
22	S.Saravanan G.Nagarajan S.Sampath	Multi Response Optimization in Emission Control of CI Engine Fuelled With Crude Rice Bran Oil Blend	(2012) Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, pp.106-120, (Impact factor :0.225)
23	S.Saravanan G.Nagarajan S.Sampath	Multi Response Optimization Of NO _x Emission Of A Stationary Diesel Engine Fuelled With Crude Rice Bran Oil Methyl Ester	(2012) Journal of oil, gas, science and Technology, Vol. 67, No. 3, pp. 491-501 (Impact factor:1.389)
24	S.Saravanan G.Nagarajan S.Sampath	Effect of EGR on Emission Characteristics of Crude Rice Bran Oil Blend As A CI Engine Fuel at Higher Injection Pressure	(2012) International journal of contemporary science and Engineering Vol 2, No 1-2, pp. 53-63
25	S.Saravanan G.Nagarajan S.Anand S.Sampath	Correlation For Thermal NOx Formation In CI Engine Fuelled With Diesel and Biodiesel	(2012) Energy,Vol.42, No.2, pp. 401-410 (Impact factor :4.159)
26	S.Saravanan G.Nagarajan S.Sampath	Application of Taguchi's Orthogonal Array in Multi Response Optimization of NOx Emission of Crude Rice Bran Oil Methyl Ester Blend as a CI Engine Fuel	(2012)
27	S.Saravanan G.Nagarajan S.Sampath	Combustion Analysis of HCV Engine With CRBME	(2012) IIRE International Journal of Renewable Energy Vol. 7, No. 2, 39-48
28	S.Saravanan G.Nagarajan S.Sampath	Combined Effect of Injection Timing, EGR and Injection Pressure in NOx Control of a Stationary Diesel Engine Fuelled With Crude Rice Bran Oil Methyl	(2013) Fuel,Vol.89; pp:3235–3240 (Impact factor :3.406)

		Ester	
29	S.Saravanan G.Nagarajan S.Sampath	Combined Effect of Injection Timing, EGR and Injection Pressure in Reducing the NOx Emission of a Biodiesel Blend	(2014) International Journal of Sustainable Energy Volume 33(2): 2014 Pp:386-389 (Impact factor :0.395)
30	S. Saravanan Sankar Chandrasekar	Predictive Equations for Viscosity and Cetane Number of Biodiesel	(2013) German Journal Of Renewable And Sustainable Energy Research, Vol. 1, No1 pp. 23-28
31	S.Saravanan	Simultaneous reduction of NOx and smoke emission of CI engine fuelled with biodiesel	(2013) IIRE International Journal of Renewable energy, Vol. 8, No. 2, pp.59-66
32	S.Saravanan G.Nagarajan S.Sampat h	Correlation for Ignition Delay of CI Engine Fuelled with Diesel and Biodiesel	(2014) International Journal of Green Energy, 11:5,542-557 (Impact factor :1.469)
33	S.Saravanan G.L.N.Rao	Effect Of EGR on Performance and Emission Characteristics of Diesel Engine at Advanced Injection Timing	(2014) Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 3, pp.335-345 (Impact factor :0.225)
34	S.Saravanan G.Nagarajan G.L.N.Rao S.Sampath	Theoretical And Experimental Investigation On Effect Of Injection Timing On No _x Emission Of Biodiesel Blend	(2014) Energy, Vol. 66, No. 3 216-221 (Impact factor :4.159)
35	S.Saravanan G.Nagarajan	Comparison Of Influencing Factors Of Diesel With Crude Rice Bran Oil Methyl Ester In Multi Response Optimization Of No _x Emission	(2014) Ain Shams Engineering Journal, 5,1241-1248
36	S.Saravanan	Effect of Higher Injection Pressure on Performance and Emission Characteristics of A Stationary Diesel Engine at Retarded Injection Timing	(2015) Int. J. Oil, Gas and Coal Technology Vol. 10, No. 1, 115-124 (Impact factor :0.225)
37	S.Saravanan	Effect of EGR at Advanced Injection Timing on Combustion Characteristics of Diesel Engine	(2015) Alexandria Engineering Journal, 54, pp. 339–342

38	B.Rajesh Kumar S.Saravanan	Effect of Exhaust Gas Recirculation (EGR) on Performance and Emissions of a Constant Speed DI Diesel Engine Fueled with Pentanol/diesel Blends	(2015) Fuel, 160; pp 217–226 (Impact factor :3.406)
39	B.Rajesh Kumar S.Saravanan	Effects of iso-butanol/diesel and n-pentanol/diesel blends on performance and emissions of a DI diesel engine under premixed LTC (low temperature combustion) mode	(2016) Fuel, 170 (2016) 49–59 (Impact factor :3.406)
40	B.Rajesh Kumar S.Saravanan	Effect of Isobutanol Addition to Diesel Fuel on Performance and Emissions of a DI Diesel Engine with Exhaust Gas Recirculation (EGR)	(2016) Proceedings of IMECHE, Part A-Journal of Power and Energy, 2016, Vol. 230(1) 112–125 (Impact factor :0.5)
41	B.Rajesh Kumar S.Saravanan	Use of higher alcohol biofuels in diesel engines: A review	(2016) RenewableandSustainable EnergyReviews; 60: 84–115 (Impact factor :5.901)
42	B.Rajesh Kumar S.Saravanan	Partially premixed low temperature combustion using dimethyl carbonate (DMC) in a DI diesel engine for favorable smoke/NOx emissions	(2016) Fuel: 180: 396–406 (Impact factor :3.406)
43	B. Rajesh Kumar S. Saravanan D. Rana V. Anish A. Nagendran	Effect of a sustainable biofuel – n-octanol – on the combustion, performance and emissions of a DI diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes	(2016) Energy Conversion and Management; 118: 275–286 (Impact factor :4.8)
44	B. Rajesh Kumar S. Saravanan D. Rana A. Nagendran	A comparative analysis on combustion and emissions of some next generation higheralcohol/diesel blends in a directinjection diesel engine	(2016) Energy Conversion and Management; 119: 246–256 (Impact factor :4.8)
45	B. Rajesh Kumar S. Saravanan D. Rana A. Nagendran	Effect of lignin-derived cyclohexanol on combustion, performance and emissions of a direct-injection agricultural diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes	(2016) Fuel; 181: 630–642 (Impact factor :3.406)

46	B. Rajesh Kumar S. Saravanan D. Rana A. Nagendran	Use of some advanced biofuels for overcoming smoke/NOx trade-off in a light-duty DI diesel engine	(2016) Renewable Energy;96: 687-699 (Impact factor :3.4)
47	B. Rajesh Kumar S. Saravanan D. Rana A. Nagendran	Combined effect of injection timing and exhaust gas recirculation (EGR) on performance and emissions of a DI diesel engine fuelled with nextgeneration advanced biofuel – diesel blends using response surface methodology	(2016) Energy Conversion and Management 123 470–486 (Impact factor :4.8)
48	B. Rajesh Kumar T. Muthukkumar V. Krishnamoorthy S. Saravanan	A comparative evaluation and optimization of performance and emission characteristics of a DI diesel engine fueled with n-propanol/diesel, nbutanol/diesel and n-pentanol/diesel blends using response surface methodology	(2016) RSC Advances 6, 61869-61890 (Impact factor :3.289)
49	S.Saravanan B.Rajesh Kumar	Application of an enhanced Taguchi method for simultaneous reduction of smoke and NOx emissions using oxygenated additives and retarded injection timing in a stationary diesel engine	(2016) Journal of the Brazilian Society of Mechanical Sciences and Engineering 38 (7),1893–1906 (Impact factor :0.963)
50	S.Saravanan G.Nagarajan G.L.N.Rao	Factors Influencing NO _x Emission of a Stationary Diesel Engine Fuelled With Crude Rice Bran Oil Methyl Ester Blend –Taguchi Approach	(2016) International Journal of Sustainable Engineering 9 (3); Pages 182-188
51	Damodharan, D., Sathiyagnanam, A.P., Rana, D., Kumar, B.R. and Saravanan, S	Extraction and characterization of waste plastic oil (WPO) with the effect of n-butanol addition on the performance and emissions of a DI diesel engine fueled with WPO/diesel blends.	(2017) Energy Conversion and Management, 131 (1);117–126 (Impact factor :4.8)
52	R. Dhanasekaran V. Krishnamoorthy , D. Rana, S. Saravanan , A. Nagendran , B. Rajesh Kumar	A sustainable and eco-friendly fueling approach for direct-injection diesel engines using restaurant yellow grease and n-pentanol in blends with diesel fuel	(2017) Fuel 193 419–431 (Impact factor :3.406)

53	B. Rajesh Kumar S. Saravanan, Balaji Sethuramasamyraj D. Rana	Screening oxygenates for favorable NOx/smoke trade-off in a DI diesel engine using multi response optimization	(2017) Fuel 199, PP. 670–683 (Impact factor :4.601)
54	S. Saravanan B. Rajesh Kumar A. Varadharajan D. Rana , Balaji Sethuramasamyraj G. Lakshmi Narayana rao	Optimization of DI diesel engine parameters fueled with iso-butanol/diesel blends – Response surface methodology approach	Fuel 203 (2017) 658–670 (Impact factor :4.601)
55	J Ravikumar S Saravanan	Performance and emission analysis on blends of diesel, restaurant yellow grease and n-pentanol in direct-injection diesel engine	Environmental Science and Pollution Research Impact factor :2.760 2017 Feb;24(6):5381-5390
56	B. Rajesh Kumar S. Saravanan	Diesel reformulation using bioderived propanol to control toxic emissions from a light-duty agricultural diesel engine	Environmental Science and Pollution Research Impact factor :2.760 2017 Jul;24(20):16725-16734
57	Melvin Victor De Poures, A.P. Sathiyagnanam, D. Rana, B. Rajesh Kumar S. Saravanan	1-Hexanol as a sustainable biofuel in DI diesel engines and its effect on combustion and emissions under the influence of injection timing and exhaust gas recirculation (EGR)	Applied Thermal Engineering 113 (2017) 1505–1513 (Impact factor :3.771)
58	V. Krishnamoorthy, R. Dhanasekaran, D. Rana, S. Saravanan, B. Rajesh Kumar	A comparative assessment of ternary blends of three bio-alcohols with waste cooking oil and diesel for optimum emissions and performance in a CI engine using response surface methodology	Energy Conversion and Management 156 (2018), pp: 337-357 (Impact factor :5.589)
59	D. Damodharana, A.P. Sathiyagnanam, D. Rana, B. Rajesh Kumar, S. Saravanan	Combined influence of injection timing and EGR on combustion, performanceandemissionsofDIdiese lenginefueledwithneatwaste plastic oil	Energy Conversion and Management 161,(2018):pp294–305 (Impact factor: 5.589)
60	B. Rajesh Kumar, S. Saravanan	Prediction of emissions and performance of a diesel engine fueled with n-octanol/diesel blends using response surface methodology	Journal of Cleaner Production 184 (2018) 423e439 (Impact factor: 5.589)
61	D. Damodharan, A.P. Sathiyagnanam, D.	Effective utilization of waste plastic oil in a direct injection diesel engine using high carbon alcohols	Energy Conversion and Management 166,(2018):pp.81–97

	Rana,S. Saravanan, B. Rajesh Kumar, B. Sethuramasamyraj	as oxygenated additives for cleaner emissions	(Impact factor: 5.589)
62	H Nandakumar, S Saravanan	Simulation Of Various Engine Parameters Of PPCI Engine For Nox Control	2018 IJCRT Volume 6, Issue 2 April 2018
63	R. Kaliyanasunder, S. P. Sujai Pandian& S. Saravanan	Experimental Investigatonson Of PPCI Engine Fuelled With Diesel And Butanol Blends	International Journal of Mechanical and Production Engineering Research and Development (IJMPERD Vol. 8, Special Issue 8, Aug 2018, 33-37
64	R. Dhanasekaran, S. Ganesan,B. Rajesh Kumar, S. Saravanan	Utilization of waste cooking oil in a light-duty DI diesel engine for cleaner emissions using bio-derived propanol	Fuel 235 (2019) 832–837 (Impact factor :4.601)
65	Melvin Victor De Poures, Sathiyagnanam A.P., Rana Dipak, Rajesh Kumar Babu, Saravanan Subramani , Balaji Sethuramasamyraj a & Damodharan D.	Using renewable n-octanol in a non-road diesel engine with some modifications	Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2019, Vol. 41, No. 10, 1194– 1208 (Impact factor :0.555)
66	S.Saravanan K.Paul Durai I.Meenakshi Sundaram	Comparison of Combustion Characteristics of an Automotive CRDI Engine with Conventional HCV Engine	Int. J. Oil, Gas and Coal Technology 2019, Vol 31,No.3,390-405 (Impact factor :0.563)
67	Melvin Victor De Poures, K. Gopal, A.P. Sathiyagnanam, B. Rajesh Kumar, D. Rana, S. Saravanan & D. Damodharan	Comparative account of the effects of two high carbon alcohols (C5 & C6) on combustion, performance and emission characteristics of a DI diesel engine	Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
68	B. Rajesh Kumar S. Saravanan K. Rajaram	Combined effect of oxygenates and injection timing for low emissions and high performance in a diesel engine using multi-response optimization	Alexandria Engineering Journal (2019) 58, 625–636

69	S. Saravanan R. Kaliyanasunder, B. Rajesh Kumar G. Lakshmi Narayana Rao	Effect of design parameters on performance and emissions of a CI engine operated with dieselbiodiesel- higher alcohol blends	Renewable Energy 148 (2020) 425- 436 (Impact factor :5.4)
70	S. Saravanan G.Ravi G. Lakshmi NarayanaRao	Predictive correlations for NOx and smoke emission of DI CI engine fuelled with diesel-biodiesel-higher alcohol blends-response surface methodology approach	Fuel 269 (2020) 117304 (Impact factor :5.128)
71	S. Saravanan	Prediction and optimization of engine characteristics of a DI diesel engine fueled with cyclohexanol/diesel blends	Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020, Vol. 42, No. 16, 2006– 2017 (Impact factor :0.555)
72	S. Saravanan Krishnamoorthy	Investigation on reduction in consequences of adding antioxidants into the algae biodiesel blend as a CI engine fuel	FUEL, Volume 276, 15 September 2020, 117993
73	G.Ravi S. Saravanan	Numerical optimization of design and fuel factors and development of a statistical model for the emission control of DI CI engine	Volume 281, 1 December 2020, 118656
74	S. Saravanan G.Ravi	Application of MRSN ratio and Taguchi parametric design in optimization of parameters of DI CI engine fuelled with diesel-biodiesel-higher alcohol blends	Fuel 285 (2021) 119116
75	S. Saravanan Krishnamoorthy	Optimization of injection timing and anti-oxidants for multiple responses of CI engine fuelled with algae biodiesel blend	FUEL, In press