

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

1 SYSTEM AND METHOD FOR TRELLIS DECODING IN A
MULTI-PAIR TRANSCEIVER SYSTEM

CROSS REFERENCE TO RELATED APPLICATIONS

5 The present application claims priority on the basis of the following provisional applications: Serial Number 60/130,616 entitled "Multi-Pair Gigabit Ethernet Transceiver" filed on April 22, 1999, Serial Number 60/116,946 entitled "Multiple Decision Feedback Equalizer" filed on January 20, 1999, and Serial Number
10 60/108,319 entitled "Gigabit Ethernet Transceiver" filed on November 13, 1998.

The present application is related to the following co-pending applications filed on the same day as the present application and assigned to the same assignee, the contents of
15 each of which are herein incorporated by reference: Serial Number _____ entitled "High-Speed Decoder for a Multi-Pair Gigabit Transceiver", Serial Number _____ entitled "Multi-Pair Transceiver Decoder System with Low Computation Slicer", Serial Number _____ entitled "System and Method for High Speed Decoding
20 and ISI Compensation in a Multi-Pair Transceiver System".

FIELD OF THE INVENTION

The present invention relates generally to methods and systems for decoding signals encoded with a multi-state encoding
25 scheme in a high-speed communication system and, more particularly, the invention relates to a method and a system for decoding the trellis code specified in the IEEE 802.3ab standard for Gigabit Ethernet (1000BASE-T) with a minimum of computational complexity and propagation delays in the logic circuits.
30

DESCRIPTION OF THE RELATED ART

In recent years, local area network (LAN) applications have become more and more prevalent as a means for providing local interconnect between personal computer systems, work stations and
35 servers. Because of the breadth of its installed base, the

1 10BASE-T implementation of Ethernet remains the most pervasive
if not the dominant, network technology for LANs. However, as
the need to exchange information becomes more and more
imperative, and as the scope and size of the information being
5 exchanged increases, higher and higher speeds (greater bandwidth)
are required from network interconnect technologies. Among the
highspeed LAN technologies currently available, fast Ethernet,
commonly termed 100BASE-T, has emerged as the clear technological
choice. Fast Ethernet technology provides a smooth, non-
10 disruptive evolution from the 10 megabit per second (Mbps)
performance of 10BASE-T applications to the 100 Mbps performance
of 100BASE-T. The growing use of 100BASE-T interconnections
between servers and desktops is creating a definite need for an
even higher speed network technology at the backbone and server
15 level.

One of the more suitable solutions to this need has been proposed in the IEEE 802.3ab standard for gigabit ethernet, also termed 1000BASE-T. Gigabit ethernet is defined as able to provide 1 gigabit per second (Gbps) bandwidth in combination with the simplicity of an ethernet architecture, at a lower cost than other technologies of comparable speed. Moreover, gigabit ethernet offers a smooth, seamless upgrade path for present 10BASE-T or 100BASE-T ethernet installations.

In order to obtain the requisite gigabit performance levels,
25 gigabit ethernet transceivers are interconnected with a multi-pair transmission channel architecture. In particular, transceivers are interconnected using four separate pairs of twisted Category-5 copper wires. Gigabit communication, in practice, involves the simultaneous, parallel transmission of information signals, with each signal conveying information at a rate of 250 megabits per second (Mb/s). Simultaneous, parallel transmission of four information signals over four twisted wire pairs poses substantial challenges to bidirectional communication transceivers, even though the data rate on any one wire pair is
30 "only" 250 Mbps.

1 In particular, the gigabit ethernet standard requires that
 digital information being processed for transmission be
 symbolically represented in accordance with a five-level pulse
 amplitude modulation scheme (PAM-5) and encoded in accordance
5 with an 8-state Trellis coding methodology. Coded information
 is then communicated over a multi-dimensional parallel
 transmission channel to a designated receiver, where the original
 information must be extracted (demodulated) from a multi-level
 signal. In gigabit Ethernet, it is important to note that it is
10 the concatenation of signal samples received simultaneously on
 all four twisted pair lines of the channel that defines a symbol.
 Thus, demodulator/decoder architectures must be implemented with
 a degree of computational complexity that allows them to
 accommodate not only the "state width" of Trellis coded signals,
15 but also the "dimensional depth" represented by the transmission
 channel.

Computational complexity is not the only challenge presented to modern gigabit capable communication devices. A perhaps greater challenge is that the complex computations required to
20 process "deep" and "wide" signal representations must be performed in an almost vanishingly small period of time. For example, in gigabit applications, each of the four-dimensional signal samples, formed by the four signals received simultaneously over the four twisted wire pairs, must be
25 efficiently decoded within a particular allocated symbol time window of about 8 nanoseconds.

Successfully accomplishing the multitude of sequential processing operations required to decode gigabit signal samples within an 8 nanosecond window requires that the switching
30 capabilities of the integrated circuit technology from which the transceiver is constructed be pushed to almost its fundamental limits. If performed in conventional fashion, sequential signal processing operations necessary for signal decoding and demodulation would result in a propagation delay through the
35 logic circuits that would exceed the clock period, rendering the

1 transceiver circuit non-functional. Fundamentally, then, the
challenge imposed by timing constraints must be addressed if
gigabit Ethernet is to retain its viability and achieve the same
reputation for accurate and robust operation enjoyed by its
5 10BASE-T and 100BASE-T siblings.

In addition to the challenges imposed by decoding and
demodulating multilevel signal samples, transceiver systems must
also be able to deal with intersymbol interference (ISI)
introduced by transmission channel artifacts as well as by
10 modulation and pulse shaping components in the transmission path
of a remote transceiver system. During the demodulation and
decoding process of Trellis coded information, ISI components are
introduced by either means must also be considered and
compensated, further expanding the computational complexity and
15 thus, system latency of the transceiver system. Without a
transceiver system capable of efficient, high-speed signal
decoding as well as simultaneous ISI compensation, gigabit
ethernet would likely not remain a viable concept.

20 SUMMARY OF THE INVENTION

The present invention is directed to a system and method for
decoding information signals modulated in accordance with a
multi-level modulation scheme and encoded in accordance with a
multi-state encoding scheme by computing a distance between a
25 received word from a codeword included in a plurality of code-
subsets. Codewords are formed from a concatenation of symbols
from a multi-level alphabet, with the symbols selected from two
disjoint symbol-subsets X and Y. A received word is represented
by L inputs, with L representing the number of dimensions of a
30 multi-dimensional communication channel. Each of the L inputs
uniquely corresponds to one of the L dimensions.

A set of 1-dimensional (1D) errors is produced from the L
inputs, with each of the 1D errors representing a distance metric
between a respective one of the L inputs and a symbol in one of
35 the two disjoint symbol-subsets. 1D errors are combined in order

1 to produce a set of L-dimensional errors such that each of the
L-dimensional errors represents a distance between the received
word and a nearest codeword in one of the code-subsets.

5 In one embodiment of the invention, each of the L inputs is
sliced with respect to each of the two disjoint symbol-subsets
X and Y in order to produce a set of X-based errors, a set of
Y-based errors and corresponding sets of X-based and Y-based
decisions. The sets of X-based and Y-based errors form the set
10 of 1D errors, while the sets of X-based and Y-based decisions
form a set of 1D decisions. Each of the X-based and Y-based
decisions corresponds to a symbol, in a corresponding symbol
subset, closest in distance (value) to one of the L inputs. Each
of the 1D errors represents a distance metric between a
corresponding 1D decision and the respective one of the L inputs.

15 In another embodiment of the invention, each of the L inputs
are sliced with respect to each of the two disjoint symbol
subsets X and Y in order to produce a set of 1D decisions. Each
of the L inputs is further sliced with respect to a symbol-set
including all of the symbols of the two disjoint symbol-subsets
20 in order to produce a set of hard decisions. The X-based and Y-
based 1D decisions are combined with a set of hard decisions in
order to produce a set of 1D errors, with each of the 1D errors
representing a distance metric between a corresponding 1D
decision and a respective one of the L inputs.

25 In one embodiment of the present invention, 1-dimensional
errors are combined in a first set of adders in order to produce
a set of 2-dimensional errors. A second set of adders combines
the 2-dimensional errors in order to produce intermediate
L-dimensional errors, with the intermediate L-dimensional errors
30 being arranged into pairs of errors such that the pairs of errors
correspond one-to-one to the code-subsets. A minimum-select
module determines a minimum for each of the pairs of errors.
Once determined, the minima are defined as the L-dimensional
errors.

1 In a particular aspect of the invention, the decoding system
and method is implemented in a bidirectional communication system
in which transceivers are coupled together over a four twisted
wire pair transmission channel. In this embodiment, L equals
5 four and each of the wire pairs corresponds to one of the L
inputs. Signals transmitted and received over the four twisted
wire pair transmission channel are encoded in accordance with a
multi-state trellis encoding architecture.

10 BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the present invention will be more fully understood when considered with respect to the following detailed description, appended claims and accompanying drawings, wherein:

15 FIG. 1 is a simplified, semi-schematic block diagram of a high-speed bidirectional communication system exemplified by two transceivers configured to communicate over multiple twisted-pair wiring channels.

20 FIG. 2 is a simplified, semi-schematic block diagram of a bidirectional communication transceiver system, constructed in accordance with the present invention.

FIG. 3 is a simplified, semi-schematic block diagram of an exemplary trellis encoder.

25 FIG. 4A illustrates an exemplary PAM-5 constellation and the one-dimensional symbol-subset partitioning.

FIG. 4B illustrates the eight 4D code-subsets constructed from the one-dimensional symbol-subset partitioning of the constellation of FIG. 4A.

FIG. 5 illustrates the trellis diagram for the code.

30 FIG. 6 is a simplified, semi-schematic block diagram of an exemplary trellis decoder, including a Viterbi decoder, in accordance with the invention, suitable for decoding signals coded by the exemplary trellis encoder of FIG. 3.

1 FIG. 7 is a simplified block diagram of a first exemplary embodiment of a structural analog of a 1D slicing function as might be implemented in the Viterbi decoder of FIG. 6.

5 FIG. 8 is a simplified block diagram of a second exemplary embodiment of a structural analog of a 1D slicing function as might be implemented in the Viterbi decoder of FIG. 6.

10 FIG. 9 is a simplified block diagram of a 2D error term generation machine, illustrating the generation of 2D square error terms from the 1D square error terms developed by the exemplary slicers of FIGs. 7 or 8.

FIG. 10 is a simplified block diagram of a 4D error term generation machine, illustrating the generation of 4D square error terms and the generation of extended path metrics for the 4 extended paths outgoing from state 0.

15 FIG. 11 is a simplified block diagram of a 4D symbol generation machine.

FIG. 12 illustrates the selection of the best path incoming to state 0.

20 FIG. 13 is a semi-schematic block diagram illustrating the internal arrangement of a portion of the path memory module of FIG. 6.

25 FIG. 14 is a block diagram illustrating the computation of the final decision and the tentative decisions in the path memory module based on the 4D symbols stored in the path memory for each state.

FIG. 15 is a detailed diagram illustrating the processing of the outputs $V_0^{(i)}$, $V_1^{(i)}$, with $i=0, \dots, 7$, and V_{0F} , V_{1F} , V_{2F} of the path memory module of FIG. 6.

30 FIG. 16 shows the word lengths used in one embodiment of this invention.

FIG. 17 shows an exemplary lookup table suitable for use in computing squared one-dimensional error terms.

FIGS. 18A and 18B are an exemplary look-up table which describes the computation of the decisions and squared errors for

- 1 both the X and Y subsets directly from one component of the 4D
Viterbi input of the 1D slicers of FIG. 7.

DETAILED DESCRIPTION OF THE INVENTION

- 5 In the context of an exemplary integrated circuit-type bidirectional communication system, the present invention might be characterized as a system and method for accommodating efficient, high speed decoding of signal samples encoded according to the trellis code specified in the IEEE 802.3ab 10 standard (also termed 1000BASE-T standard).

As will be understood by one having skill in the art, high speed data transmission is often limited by the ability of decoder systems to quickly, accurately and effectively process a transmitted symbol within a given time period. In a 1000BASE-T application (aptly termed gigabit) for example, the symbol decode period is typically taken to be approximately 8 nanoseconds. Pertinent to any discussion of symbol decoding is the realization that 1000BASE-T systems are layered to receive 4-dimensional (4D) signals (each signal corresponding to a respective one of four twisted pair cables) with each of the 4-dimensional signals represented by five analog levels. Accordingly, the decoder circuitry portions of transceiver demodulation blocks require a multiplicity of operational steps to be taken in order to effectively decode each symbol. Such a multiplicity of operations is computationally complex and often pushes the switching speeds of integrated circuit transistors which make up the computational blocks to their fundamental limits.

In accordance with the present invention, a transceiver decoder is able to substantially reduce the computational complexity of symbol decoding, and thus avoid substantial amounts of propagation delay (i.e., increase operational speed), by making use of truncated (or partial) representations of various quantities that make up the decoding/ISI compensation process.

Sample slicing is performed in a manner such that one-dimensional (1D) square error terms are developed in a

1 representation having, at most, three bits if the terms signify
5 a Euclidian distance, and one bit if the terms signify a Hamming
distance. Truncated 1D error term representation significantly
reduces subsequent error processing complexity because of the
fewer number of bits.

Likewise, ISI compensation of sample signals, prior to
Viterbi decoding, is performed in a DFE, operatively responsive
to tentative decisions made by the Viterbi. Use of tentative
decisions, instead of a Viterbi's final decision, reduces system
10 latency by a factor directly related to the path memory sequence
distance between the tentative decision used, and the final
decision, i.e., if there are N steps in the path memory from
input to final decision output, and latency is a function of N,
forcing the DFE with a tentative decision at step N-6 causes
15 latency to become a function of N-6. A trade-off between latency
reduction and accuracy may be made by choosing a tentative
decision step either closer to the final decision point or closer
to the initial point.

Computations associated with removing impairments due to
20 intersymbol interference (ISI) are substantially simplified, in
accordance with the present invention, by a combination of
techniques that involves the recognition that intersymbol
interference results from two primary causes, a partial response
pulse shaping filter in a transmitter and from the
25 characteristics of a unshielded twisted pair transmission
channel. During the initial start-up, ISI impairments are
processed in independent portions of electronic circuitry, with
ISI caused by a partial response pulse shaping filter being
compensated in an inverse partial response filter in a
30 feedforward equalizer (FFE) at system startup, and ISI caused by
transmission channel characteristics compensated by a decision
feedback equalizer (DFE) operating in conjunction with a multiple
35 decision feedback equalizer (MDFE) stage to provide ISI pre-
compensated signals (representing a symbol) to a decoder stage
for symbolic decode. Performing the computations necessary for

1 ISI cancellation in a bifurcated manner allows for fast DFE convergence as well as assists a transceiver in achieving fast acquisition in a robust and reliable manner. After the start-up, all ISI is compensated by the combination of the DFE and MDFE.

5 In order to appreciate the advantages of the present invention, it will be beneficial to describe the invention in the context of an exemplary bidirectional communication device, such as a gigabit ethernet transceiver. The particular exemplary implementation chosen is depicted in FIG. 1, which is a
10 simplified block diagram of a multi-pair communication system operating in conformance with the IEEE 802.3ab standard for one gigabit (Gb/s) Ethernet full-duplex communication over four twisted pairs of Category-5 copper wires.

The communication system illustrated in FIG. 1 is
15 represented as a point-to-point system, in order to simplify the explanation, and includes two main transceiver blocks 102 and 104, coupled together with four twisted-pair cables. Each of the wire pairs is coupled between the transceiver blocks through a respective one of four line interface circuits 106 and
20 communicate information developed by respective ones of four transmitter/receiver circuits (constituent transceivers) 108 coupled between respective interface circuits and a physical coding sublayer (PCS) block 110. Four constituent transceivers 108 are capable of operating simultaneously at 250 megabits per
25 second (Mb/s), and are coupled through respective interface circuits to facilitate full-duplex bidirectional operation. Thus, one Gb/s communication throughput of each of the transceiver blocks 102 and 104 is achieved by using four 250 Mb/s (125 Megabaud at 2 bits per symbol) constituent transceivers 108
30 for each of the transceiver blocks and four twisted pairs of copper cables to connect the two transceivers together.

The exemplary communication system of FIG. 1 has a superficial resemblance to a 100BASE-T4 system, but is configured to operate at 10 times the bit rate. As such, it should be
35 understood that certain system performance characteristics, such

1 as sampling rates and the like, will be consequently higher
causing lengthy and complex computations to be performed during
increasingly shorter periods of time. At gigabit data rates over
potentially noisy channels, a proportionately greater degree of
5 signal processing is required in many instances to ensure an
adequate degree of signal fidelity and quality.

FIG. 2 is a simplified block diagram of the functional architecture and internal construction of an exemplary transceiver block, indicated generally at 200, such as
10 transceiver 102 of FIG. 1. Since the illustrated transceiver application relates to gigabit ethernet transmission, the transceiver will be referred to as the "gigabit transceiver".
For ease of illustration and description, FIG. 2 shows only one
15 of the four 250 Mb/s constituent transceivers which are operating simultaneously (termed herein 4-D operation). However, since the operation of the four constituent transceivers are necessarily interrelated, certain blocks in the signal lines in the exemplary embodiment of FIG. 2 perform and carry 4-dimensional (4-D) functions and 4-D signals, respectively. By 4-D, it is meant
20 that the data from the four constituent transceivers are used simultaneously. In order to clarify signal relationships in FIG. 2, thin lines correspond to 1-dimensional functions or signals (i.e., relating to only a single transceiver), and thick lines correspond to 4-D functions or signals (relating to all
25 four transceivers).

With reference to FIG. 2, the gigabit transceiver 200 includes a Gigabit Medium Independent Interface (GMII) block 202, a Physical Coding Sublayer (PCS) block 204, a pulse shaping filter 206, a digital-to-analog (D/A) converter 208, a line
30 interface block 210, a highpass filter 212, a programmable gain amplifier (PGA) 214, an analog-to-digital (A/D) converter 216, an automatic gain control block 220, a timing recovery block 222, a pair-swap multiplexer block 224, a demodulator 226, an offset canceler 228, a near-end crosstalk (NEXT) canceler block 230
35 having three NEXT cancelers, and an echo canceler 232. The

1 gigabit transceiver 200 also includes an A/D first-in-first-out
buffer (FIFO) 218 to facilitate proper transfer of data from the
analog clock region to the receive clock region, and a FIFO block
234 to facilitate proper transfer of data from the transmit clock
5 region to the receive clock region. The gigabit transceiver 200
can optionally include a filter to cancel far-end crosstalk noise
(FEXT canceler).

On the transmit path, the transmit section of the GMII block
202 receives data from a Media Access Control (MAC) module (not
10 shown in FIG. 2) and passes the digital data to the transmit
section 204T of the PCS block 204 via a FIFO 201 in byte-wide
format at the rate of 125 MHz . The FIFO 201 is essentially a
synchronization buffer device and is provided to ensure proper
data transfer from the MAC layer to the Physical Coding (PHY)
15 layer, since the transmit clock of the PHY layer is not
necessarily synchronized with the clock of the MAC layer. This
small FIFO 201 can be constructed with from three to five memory
cells to accommodate the elasticity requirement which is a
function of frame size and frequency offset.

20 The transmit section 204T of the PCS block 204 performs
scrambling and coding of the data and other control functions.
Transmit section 204T of the PCS block 204 generates four 1D
symbols, one for each of the four constituent transceivers. The
1D symbol generated for the constituent transceiver depicted in
25 FIG. 2 is filtered by a partial response pulse shaping filter 206
so that the radiated emission of the output of the transceiver
may fall within the EMI requirements of the Federal
Communications Commission. The pulse shaping filter 206 is
constructed with a transfer function $0.75 + 0.25z^{-1}$, such that the
30 power spectrum of the output of the transceiver falls below the
power spectrum of a 100Base-Tx signal. The 100Base-Tx is a
widely used and accepted Fast Ethernet standard for 100 Mb/s
operation on two pairs of category-5 twisted pair cables. The
output of the pulse shaping filter 206 is converted to an analog
35 signal by the D/A converter 208 operating at 125 MHz. The analog

- 1 signal passes through the line interface block 210, and is placed
on the corresponding twisted pair cable for communication to a
remote receiver.

On the receive path, the line interface block 210 receives
5 an analog signal from the twisted pair cable. The received
analog signal is preconditioned by a highpass filter 212 and a
programmable gain amplifier (PGA) 214 before being converted to
a digital signal by the A/D converter 216 operating at a sampling
rate of 125 MHz. Sample timing of the A/D converter 216 is
10 controlled by the output of a timing recovery block 222
controlled, in turn, by decision and error signals from a
demodulator 226. The resulting digital signal is properly
transferred from the analog clock region to the receive clock
region by an A/D FIFO 218, an output of which is also used by an
15 automatic gain control circuit 220 to control the operation of
the PGA 214.

The output of the A/D FIFO 218, along with the outputs from
the A/D FIFOs of the other three constituent transceivers are
inputted to a pair-swap multiplexer block 224. The pair-swap
20 multiplexer block 224 is operatively responsive to a 4D pair-swap
control signal, asserted by the receive section 204R of PCS block
204, to sort out the 4 input signals and send the correct signals
to the respective demodulators of the 4 constituent transceivers.
Since the coding scheme used for the gigabit transceivers 102,
25 104 (referring to FIG. 1) is based on the fact that each twisted
pair of wire corresponds to a 1D constellation, and that the four
twisted pairs, collectively, form a 4D constellation, for symbol
decoding to function properly, each of the four twisted pairs
must be uniquely identified with one of the four dimensions. Any
30 undetected swapping of the four pairs would necessarily result
in erroneous decoding. Although described as performed by the
receive section 204R of PCS block 204 and the pair-swap
multiplexer block 224, in the exemplary embodiment of FIG. 2, the
pair-swapping control might alternatively be performed by the
35 demodulator 226.

1 Demodulator 226 receives the particular received signal 2 intended for it from the pair-swap multiplexer block 224, and functions to demodulate and decode the signal prior to directing the decoded symbols to the PCS layer 204 for transfer to the MAC.
5 The demodulator 226 includes a multi-component feedforward equalizer (FFE) 26, having its output coupled to a de-skew memory circuit 36 and a trellis decoder 38. The FFE 26 is multi-component in the sense that it includes a pulse shaping filter 28, a programmable inverse partial response (IPR) filter 30, a
10 summing device 32, and an adaptive gain stage 34. Functionally, the FFE 26 might be characterized as a least-mean-squares (LMS) type adaptive filter which performs channel equalization as described in the following.

Pulse shaping filter 28 is coupled to receive an input signal 2 from the pair swap MUX 224 and functions to generate a precursor to the input signal 2. Used for timing recovery, the precursor might be aptly described as a zero-crossing inserted at a precursor position of the signal. Such a zero-crossing assists a timing recovery circuit in determining phase relationships between signals, by giving the timing recovery circuit an accurately determinable signal transition point for use as a reference. The pulse shaping filter 28 can be placed anywhere before the decoder block 38. In the exemplary embodiment of FIG. 2, the pulse shaping filter 28 is positioned 20 at the input of the FFE 26.
25

The pulse shaping filter 28 transfer function may be represented by a function of the form $-\gamma z^{-1}$, with γ equal to 1/16 for short cables (less than 80 meters) and 1/8 for long cables (more than 80 m). The determination of the length of a
30 cable is based on the gain of the coarse PGA section 14 of the PGA 214.

A programmable inverse partial response (IPR) filter 30 is coupled to receive the output of the pulse shaping filter 28, and functions to compensate the ISI introduced by the partial
35 response pulse shaping in the transmitter section of the remote

1 transceiver which transmitted the analog equivalent of the
digital signal 2. The IPR filter 30 transfer function may be
represented by a function of the form $1/(1+Kz^{-1})$ and may also be
described as dynamic. In particular, the filter's K value is
5 dynamically varied from an initial non-zero setting, valid at
system start-up, to a final setting. K may take any positive
value strictly less than 1. In the illustrated embodiment, K
might take on a value of about 0.484375 during startup, and be
dynamically ramped down to zero after convergence of the decision
10 feedback equalizer included inside the trellis decoder 38.

The foregoing is particularly advantageous in high-speed
data recovery systems, since by compensating the transmitter
induced ISI at start-up, prior to decoding, it reduces the amount
of processing required by the decoder to that required only for
15 compensating transmission channel induced ISI. This "bifurcated"
or divided ISI compensation process allows for fast acquisition
in a robust and reliable manner. After DFE convergence, noise
enhancement in the feedforward equalizer 26 is avoided by
dynamically ramping the feedback gain factor K of the IPR filter
20 30 to zero, effectively removing the filter from the active
computational path.

A summing device 32 subtracts from the output of the IPR
filter 30 the signals received from the offset canceler 228, the
NEXT cancelers 230, and the echo canceler 232. The offset
25 canceler 228 is an adaptive filter which generates an estimate
of the offset introduced at the analog front end which includes
the PGA 214 and the A/D converter 216. Likewise, the three NEXT
cancelers 230 are adaptive filters used for modeling the NEXT
impairments in the received signal caused by the symbols sent by
30 the three local transmitters of the other three constituent
transceivers. The impairments are due to a near-end crosstalk
mechanism between the pairs of cables. Since each receiver has
access to the data transmitted by the other three local
transmitters, it is possible to nearly replicate the NEXT
35 impairments through filtering. Referring to FIG. 2, the three

1 NEXT cancelers 230 filter the signals sent by the PCS block 204
to the other three local transmitters and produce three signals
replicating the respective NEXT impairments. By subtracting
these three signals from the output of the IPR filter 30, the
5 NEXT impairments are approximately canceled.

Due to the bi-directional nature of the channel, each local transmitter causes an echo impairment on the received signal of the local receiver with which it is paired to form a constituent transceiver. The echo canceler 232 is an adaptive filter used
10 for modeling the echo impairment. The echo canceler 232 filters the signal sent by the PCS block 204 to the local transmitter associated with the receiver, and produces a replica of the echo impairment. By subtracting this replica signal from the output of the IPR filter 30, the echo impairment is approximately
15 canceled.

Following NEXT, echo and offset cancellation, the signal is coupled to an adaptive gain stage 34 which functions to fine tune the gain of the signal path using a zero-forcing LMS algorithm. Since this adaptive gain stage 34 trains on the basis of errors
20 of the adaptive offset, NEXT and echo cancellation filters 228, 230 and 232 respectively, it provides a more accurate signal gain than the PGA 214.

The output of the adaptive gain stage 34, which is also the output of the FFE 26, is inputted to a de-skew memory 36. The
25 de-skew memory 36 is a four-dimensional function block, i.e., it also receives the outputs of the three FFEs of the other three constituent transceivers as well as the output of FFE 26 illustrated in FIG. 2. There may be a relative skew in the outputs of the 4 FFEs, which are the 4 signal samples
30 representing the 4 symbols to be decoded. This relative skew can be up to 50 nanoseconds, and is due to the variations in the way
the copper wire pairs are twisted. In order to correctly decode
the four symbols, the four signal samples must be properly aligned. The de-skew memory is responsive to a 4D de-skew
35 control signal asserted by the PCS block 204 to de-skew and align

1 the four signal samples received from the four FFEs. The four
5 de-skewed signal samples are then directed to the trellis decoder
38 for decoding.

10 Data received at the local transceiver was encoded, prior
5 to transmission by a remote transceiver, using an 8-state four-
dimensional trellis code. In the absence of inter-symbol
interference (ISI), a proper 8-state Viterbi decoder would
provide optimal decoding of this code. However, in the case of
15 Gigabit Ethernet, the Category-5 twisted pair cable introduces
a significant amount of ISI. In addition, as was described above
in connection with the FFE stage 26, the partial response filter
of the remote transmitter on the other end of the communication
channel also contributes a certain component of ISI. Therefore,
during nominal operation, the trellis decoder 38 must decode both
15 the trellis code and compensate for at least transmission channel
induced ISI, at a substantially high computational rate,
corresponding to a symbol rate of about 125 Mhz.

20 In the illustrated embodiment of the gigabit transceiver of
FIG. 2, the trellis decoder 38 suitably includes an 8-state
Viterbi decoder for symbol decoding, and incorporates circuitry
which implements a decision-feedback sequence estimation approach
in order to compensate the ISI components perturbing the signal
which represents transmitted symbols. The 4D output 40 of the
25 trellis decoder 38 is provided to the receive section 204R of the
PCS block. The receive section 204R of PCS block de-scrambles
and further decodes the symbol stream and then passes the decoded
packets and idle stream to the receive section of the GMII block
202 for transfer to the MAC module.

30 The 4D outputs 42 and 44, which represent the error and
tentative decision signals defined by the decoder, respectively,
are provided to the timing recovery block 222, whose output
controls the sampling time of the A/D converter 216. One of the
four components of the error 42 and one of the four components
of the tentative decision 44 correspond to the signal stream
35 pertinent to the particular receiver section, illustrated in FIG.

1 2, and are provided to the adaptive gain stage 34 to adjust the
gain of the signal path.

5 The component 42A of the 4D error 42, which corresponds to
the receiver shown in FIG. 2, is further provided to the
adaptation circuitry of each of the adaptive offset, NEXT and
echo cancellation filters 228, 230, 232. Adaptation circuitry
evaluates the content of the error component and, initially,
adapts the filter's training process to develop suitable filter
coefficient values. During nominal operation, adaptation
10 circuitry monitors the error component and provides periodic
updates to the filter coefficients in response thereto.

15 As implemented in the exemplary Ethernet gigabit
transceiver, the trellis decoder 38 functions to decode symbols
that have been encoded in accordance with the trellis code
specified in the IEEE 802.3ab standard (1000BASE-T, or gigabit).
As mentioned above, information signals are communicated between
transceivers at a symbol rate of about 125 Mhz, on each of the
pairs of twisted copper cables that make up the transmission
channel. In accordance with established Ethernet communication
20 protocols, information signals are modulated for transmission in
accordance with a 5-level Pulse Amplitude Modulation (PAM-5)
modulation scheme. Thus, since information signals are
represented by five amplitude levels, it will be understood that
symbols can be expressed in a three bit representation on each
25 twisted wire pair.

30 Turning now to FIGs. 4A and 4B, an exemplary PAM-5
constellation is depicted in FIG. 4A which also depicts the one-
dimensional symbol subset partitioning within the constellation.
As illustrated in FIG. 4A, the constellation is a representation
of five amplitude levels, +2, +1, 0, -1, -2, in decreasing order.
Symbol subset partitioning occurs by dividing the five levels
35 into two 1D subsets, X and Y, and assigning X and Y subset
designations to the five levels on an alternating basis. Thus
+2, 0 and -2 are assigned to the Y subset; +1 and -1 are assigned

1 to the X subset. The partitioning could, of course, be reversed,
with +1 and -1 being assigned a Y designation.

5 It should be recognized that although the X and Y subsets represent different absolute amplitude levels, the vector
distance between neighboring amplitudes within the subsets are
the same, i.e., two (2). The X subset therefore includes
amplitude level designations which differ by a value of two, (-1,
+1), as does the Y subset (-2, 0, +2). This partitioning offers
certain advantages to slicer circuitry in a decoder, as will be
10 developed further below.

In FIG. 4B, the 1D subsets have been combined into 4D
subsets representing the four twisted pairs of the transmission
channel. Since 1D subset definition is binary (X:Y) and there
are four wire pairs, there are sixteen possible combinations of
15 4D subsets. These sixteen possible combinations are assigned
into eight 4D subsets, s0 to s7 inclusive, in accordance with a
trellis coding scheme. Each of the 4D subsets (also termed code
subsets) are constructed of a union of two complementary 4D sub-
subsets, e.g., code-subset three (identified as s3) is the union
20 of sub-subset X:X:Y:X and its complementary image Y:Y:X:Y.

Data being processed for transmission is encoded using the
above described 4-dimensional (4D) 8-state trellis code, in an
encoder circuit, such as illustrated in the exemplary block
diagram of FIG. 3, according to an encoding algorithm specified
25 in the 1000BASE-T standard. Referring to FIG. 3, an exemplary
encoder 300, which is commonly provided in the transmit PCS
portion of a gigabit transceiver, might be represented in
simplified form as a convolutional encoder 302 in combination
with a signal mapper 304. Data received by the transmit PCS from
30 the MAC module via the transmit gigabit medium independent
interface are encoded with control data and scrambled, resulting
in an eight bit data word represented by input bits D₀ through D₇,
which are introduced to the signal mapper 304 of the encoder 300
at a data rate of about 125 MHz. The two least significant bits,
35 D₀ and D₁, are also inputted, in parallel fashion, into a

- 1 convolutional encoder 302, implemented as a linear feedback shift register, in order to generate a redundancy bit C which is a necessary condition for the provision of the coding gain of the code.
- 5 As described above, the convolutional encoder 302 is a linear feedback shift register, constructed of three delay elements 303, 304 and 305 (conventionally denoted by z^{-1}) interspersed with and separated by two summing circuits 307 and 308 which function to combine the two least significant bits 10 (LSBs), D_0 and D_1 , of the input word with the output of the first and second delay elements, 303 and 304 respectively. The two time sequences formed by the streams of the two LSBs are convolved with the coefficients of the linear feedback shift register to produce the time sequence of the redundancy bit C.
- 15 Thus, the convolutional encoder might be viewed as a state machine.

The signal mapper 304 maps the 9 bits (D_0 - D_7 and C) into a particular 4-dimensional constellation point. Each of the four dimensions uniquely corresponds to one of the four twisted wire 20 pairs. In each dimension, the possible symbols are from the symbol set $\{-2, -1, 0, +1, +2\}$. The symbol set is partitioned into two disjoint symbol subsets X and Y, with $X=\{-1, +1\}$ and $Y=\{-2, 0, +2\}$, as described above and shown in FIG. 4A.

Referring to FIG. 4B, the eight code subsets s0 through s7 25 define the constellation of the code in the signal space. Each of the code subsets is formed by the union of two code sub-subsets, each of the code sub-subsets being formed by 4D patterns obtained from concatenation of symbols taken from the symbol 30 subsets X and Y. For example, the code subset s0 is formed by the union of the 4D patterns from the 4D code sub-subsets XXXX and YYYY. It should be noted that the distance between any two arbitrary even (respectively, odd) code-subsets is $\sqrt{2}$. It should be further noted that each of the code subsets is able to define at least 72 constellation points. However, only 64 35 constellation points in each code subset are recognized as

1 codewords of the trellis code specified in the 1000BASE-T
standard.

5 This reduced constellation is termed the pruned constellation. Hereinafter, the term "codeword" is used to
indicate a 4D symbol that belongs to the pruned constellation.
A valid codeword is part of a valid path in the trellis diagram.

10 Referring now to FIG. 3 and with reference to FIGs. 4A and
4B, in operation, the signal mapper 304 uses the 3 bits D_1 , D_0 and
C to select one of the code subsets $s_0 - s_7$, and uses the 6 MSB
bits of the input signal, $D_2 - D_6$, to select one of 64 particular
points in the selected code subset. These 64 particular points
of the selected coded subset correspond to codewords of the
trellis code. The signal mapper 304 outputs the selected 4D
constellation point 306 which will be placed on the four twisted
15 wire pairs after pulse shape filtering and digital-to-analog
conversion.

20 FIG. 5 shows the trellis diagram for the trellis code
specified in the 1000BASE-T standard. In the trellis diagram,
each vertical column of nodes represents the possible states that
the encoder 300 (FIG. 3) can assume at a point in time. It is
noted that the states of the encoder 300 are dictated by the
states of the convolutional encoder 302 (FIG. 3). Since the
convolutional encoder 302 has three delay elements, there are
25 eight distinct states. Successive columns of nodes represent the
possible states that might be defined by the convolutional
encoder state machine at successive points in time.

Referring to FIG. 5, the eight distinct states of the
encoder 300 are identified by numerals 0 through 7, inclusive.
From any given current state, each subsequent transmitted 4D
30 symbol must correspond to a transition of the encoder 300 from
the given state to a permissible successor state. For example,
from the current state 0 (respectively, from current states 2,
4, 6), a transmitted 4D symbol taken from the code subset s_0
corresponds to a transition to the successor state 0
35 (respectively, to successor states 1, 2 or 3). Similarly, from

1 current state 0, a transmitted 4D symbol taken from code subset
s2 (respectively, code subsets s4, s6) corresponds to a
transition to successor state 1 (respectively, successor states
2, 3).

5 Familiarity with the trellis diagram of FIG. 5, illustrates
that from any even state (i.e., states 0, 2, 4 or 6), valid
transitions can only be made to certain ones of the successor
states, i.e., states 0, 1, 2 or 3. From any odd state (states
10 1, 3, 5 or 7), valid transitions can only be made to the
remaining successor states, i.e., states 4, 5, 6 or 7. Each
transition in the trellis diagram, also called a branch, may be
thought of as being characterized by the predecessor state (the
state it leaves), the successor state (the state it enters) and
15 the corresponding transmitted 4D symbol. A valid sequence of
states is represented by a path through the trellis which follows
the above noted rules. A valid sequence of states corresponds
to a valid sequence of transmitted 4D symbols.

At the receiving end of the communication channel, the
trellis decoder 38 uses the methodology represented by the
20 trellis diagram of FIG. 5 to decode a sequence of received signal
samples into their symbolic representation, in accordance with
the well known Viterbi algorithm. A traditional Viterbi decoder
processes information signals iteratively, on an information
frame by information frame basis (in the Gigabit Ethernet case,
25 each information frame is a 4D received signal sample
corresponding to a 4D symbol), tracing through a trellis diagram
corresponding to the one used by the encoder, in an attempt to
emulate the encoder's behavior. At any particular frame time,
30 the encoder is not instantaneously aware of which node (or state)
the encoder has reached, thus, it does not try to decode the node
at that particular frame time. Instead, given the received
sequence of signal samples, the decoder calculates the most
likely path to every node and determines the distance between
each of such paths and the received sequence in order to
35 determine a quantity called the path metric.

1 In the next frame time, the decoder determines the most
likely path to each of the new nodes of that frame time. To get
to any one of the new nodes, a path must pass through one of the
old nodes. Possible paths to each new node are obtained by
5 extending to this new node each of the old paths that are allowed
to be thus extended, as specified by the trellis diagram. In the
trellis diagram of FIG. 5, there are four possible paths to each
new node. For each new node, the extended path with the smallest
path metric is selected as the most likely path to this new node.

10 By continuing the above path-extending process, the decoder
determines a set of surviving paths to the set of nodes at the
nth frame time. If all of the paths pass through the same node
at the first frame time, then the traditional decoder knows which
most likely node the encoder entered at the first frame time,
15 regardless of which node the encoder entered at the nth frame
time. In other words, the decoder knows how to decode the
received information associated with the first frame time, even
though it has not yet made a decision for the received
information associated with the nth frame time. At the nth frame
20 time, the traditional decoder examines all surviving paths to see
if they pass through the same first branch in the first frame
time. If they do, then the valid symbol associated with this
first branch is outputted by the decoder as the decoded
information frame for the first frame time. Then, the decoder
25 drops the first frame and takes in a new frame for the next
iteration. Again, if all surviving paths pass through the same
node of the oldest surviving frame, then this information frame
is decoded. The decoder continues this frame-by-frame decoding
process indefinitely so long as information is received.

30 The number of symbols that the decoder can store is called
the decoding-window width. The decoder must have a decoding
window width large enough to ensure that a well-defined decision
will almost always be made at a frame time. As discussed later
in connection with FIGs. 13 and 14, the decoding window width of
35 the trellis decoder 38 of FIG. 2 is 10 symbols. This length of

1 the decoding window is selected based on results of computer simulation of the trellis decoder 38.

A decoding failure occurs when not all of the surviving paths to the set of nodes at frame time n pass through a common first branch at frame time 0. In such a case, the traditional decoder would defer making a decision and would continue tracing deeper in the trellis. This would cause unacceptable latency for a high-speed system such as the gigabit Ethernet transceiver. Unlike the traditional decoder, the trellis decoder 38 of the present invention does not check whether the surviving paths pass through a common first branch. Rather, the trellis decoder, in accordance with the invention, makes an assumption that the surviving paths at frame time n pass through such a branch, and outputs a decision for frame time 0 on the basis of that assumption. If this decision is incorrect, the trellis decoder 38 will necessarily output a few additional incorrect decisions based on the initial perturbation, but will soon recover due to the nature of the particular relationship between the code and the characteristics of the transmission channel. It should, further, be noted that this potential error introduction source is relatively trivial in actual practice, since the assumption made by the trellis decoder 38 that all the surviving paths at frame time n pass through a common first branch at frame time 0 is a correct one to a very high statistical probability.

25 FIG. 6 is a simplified block diagram of the construction details of an exemplary trellis decoder such as described in connection with FIG. 2. The exemplary trellis decoder (again indicated generally at 38) is constructed to include a multiple decision feedback equalizer (MDFE) 602, Viterbi decoder circuitry 30 604, a path metrics module 606, a path memory module 608, a select logic 610, and a decision feedback equalizer 612. In general, a Viterbi decoder is often thought of as including the path metrics module and the path memory module. However, because of the unique arrangement and functional operation of the elements of the exemplary trellis decoder 38, the functional

1 element which performs the slicing operation will be referred to herein as Viterbi decoder circuitry, a Viterbi decoder, or colloquially a Viterbi.

5 The Viterbi decoder circuitry 604 performs 4D slicing of signals received at the Viterbi inputs 614, and computes the branch metrics. A branch metric, as the term is used herein, is well known and refers to an elemental path between neighboring Trellis nodes. A plurality of branch metrics will thus be understood to make up a path metric. An extended path metric
10 will be understood to refer to a path metric, which is extended by a next branch metric to thereby form an extension to the path. Based on the branch metrics and the previous path metrics information 618 received from the path metrics module 606, the Viterbi decoder 604 extends the paths and computes the extended
15 path metrics 620 which are returned to the path metrics module 606. The Viterbi decoder 604 selects the best path incoming to each of the eight states, updates the path memory stored in the path memory module 608 and the path metrics stored in the path metrics module 606.

20 In the traditional Viterbi decoding algorithm, the inputs to a decoder are the same for all the states of the code. Thus, a traditional Viterbi decoder would have only one 4D input for a 4D 8-state code. In contrast, and in accordance with the present invention, the inputs 614 to the Viterbi decoder 604 are
25 different for each of the eight states. This is the result of the fact the Viterbi inputs 614 are defined by feedback signals generated by the MDFE 602 and are different for each of the eight paths (one path per state) of the Viterbi decoder 604, as will be discussed later.

30 There are eight Viterbi inputs 614 and eight Viterbi decisions 616, each corresponding to a respective one of the eight states of the code. Each of the eight Viterbi inputs 614, and each of the decision outputs 618, is a 4-dimensional vector whose four components are the Viterbi inputs and decision outputs
35 for the four constituent transceivers, respectively. In other

1 words, the four components of each of the eight Viterbi inputs
614 are associated with the four pairs of the Category-5 cable.
The four components are a received word that corresponds to a
valid codeword. From the foregoing, it should be understood that
5 detection (decoding, demodulation, and the like) of information
signals in a gigabit system is inherently computationally
intensive. When it is further realized that received information
must be detected at a very high speed and in the presence of ISI
channel impairments, the difficulty in achieving robust and
10 reliable signal detection will become apparent.

In accordance with the present invention, the Viterbi
decoder 604 detects a non-binary word by first producing a set
of one-dimensional (1D) decisions and a corresponding set of 1D
errors from the 4D inputs. By combining the 1D decisions with
15 the 1D errors, the decoder produces a set of 4D decisions and a
corresponding set of 4D errors. Hereinafter, this generation of
4D decisions and errors from the 4D inputs is referred to as 4D
slicing. Each of the 1D errors represents the distance metric
between one 1D component of the eight 4D-inputs and a symbol in
20 one of the two disjoint symbol-subsets X, Y. Each of the 4D
errors is the distance between the received word and the
corresponding 4D decision which is a codeword nearest to the
received word with respect to one of the code-subsets s_i , where
 $i=0,..7$.

25 4D errors may also be characterized as the branch metrics
in the Viterbi algorithm. The branch metrics are added to the
previous values of path metrics 618 received from the path
metrics module 606 to form the extended path metrics 620 which
are then stored in the path metrics module 606, replacing the
30 previous path metrics. For any one given state of the eight
states of the code, there are four incoming paths. For a given
state, the Viterbi decoder 604 selects the best path, i.e., the
path having the lowest metric of the four paths incoming to that
state, and discards the other three paths. The best path is
35 saved in the path memory module 608. The metric associated with

1 the best path is stored in the path metrics module 606, replacing
the previous value of the path metric stored in that module.

5 In the following, the 4D slicing function of the Viterbi
decoder 604 will be described in detail. 4D slicing may be
described as being performed in three sequential steps. In a
first step, a set of 1D decisions and corresponding 1D errors are
generated from the 4D Viterbi inputs. Next, the 1D decisions and
1D errors are combined to form a set of 2D decisions and
corresponding 2D errors. Finally, the 2D decisions and 2D errors
10 are combined to form 4D decisions and corresponding 4D errors.

15 FIG. 7 is a simplified, conceptual block diagram of a first
exemplary embodiment of a 1D slicing function such as might be
implemented by the Viterbi decoder 604 of FIG. 6. Referring to
FIG. 7, a 1D component 702 of the eight 4D Viterbi inputs (614
of FIG. 6) is sliced, i.e., detected, in parallel fashion, by a
pair of 1D slicers 704 and 706 with respect to the X and Y
symbol-subsets. Each slicer 704 and 706 outputs a respective 1D
decision 708 and 710 with respect to the appropriate respective
symbol-subset X, Y and an associated squared error value 712 and
20 714. Each 1D decision 708 or 710 is the symbol which is closest
to the 1D input 702 in the appropriate symbol-subset X and Y,
respectively. The squared error values 712 and 714 each
represent the square of the difference between the 1D input 702
and their respective 1D decisions 708 and 710.

25 The 1D slicing function shown in FIG. 7 is performed for all
four constituent transceivers and for all eight states of the
trellis code in order to produce one pair of 1D decisions per
transceiver and per state. Thus, the Viterbi decoder 604 has a
total of 32 pairs of 1D slicers disposed in a manner identical
30 to the pair of slicers 704, 706 illustrated in FIG. 7.

FIG. 8 is a simplified block diagram of a second exemplary
embodiment of circuitry capable of implementing a 1D slicing
function suitable for incorporation in the Viterbi decoder 604
of FIG. 5. Referring to FIG. 8, the 1D component 702 of the
35 eight 4D Viterbi inputs is sliced, i.e., detected, by a first

1 pair of 1D slicers 704 and 706, with respect to the X and Y
symbol-subsets, and also by a 5-level slicer 805 with respect to
the symbol set which represents the five levels (+2, +1, 0, -1,
-2) of the constellation, i.e., a union of the X and Y symbol-
5 subsets. As in the previous case described in connection with
FIG. 7, the slicers 704 and 706 output 1D decisions 708 and 710.
The 1D decision 708 is the symbol which is nearest the 1D input
702 in the symbol-subset X, while 1D decision 710 corresponds to
the symbol which is nearest the 1D input 702 in the symbol-subset
10 Y. The output 807 of the 5-level slicer 805 corresponds to the
particular one of the five constellation symbols which is
determined to be closest to the 1D input 702.

The difference between each decision 708 and 710 and the 5-
level slicer output 807 is processed, in a manner to be described
15 in greater detail below, to generate respective quasi-squared
error terms 812 and 814. In contrast to the 1D error terms 712,
714 obtained with the first exemplary embodiment of a 1D slicer
depicted in FIG. 7, the 1D error terms 812, 814 generated by the
exemplary embodiment of FIG. 8 are more easily adapted to
20 discerning relative differences between a 1D decision and a 1D
Viterbi input.

In particular, the slicer embodiment of FIG. 7 may be viewed
as performing a "soft decode", with 1D error terms 712 and 714
represented by Euclidian metrics. The slicer embodiment depicted
25 in FIG. 8 may be viewed as performing a "hard decode", with its
respective 1D error terms 812 and 814 expressed in Hamming
metrics (i.e., 1 or 0). Thus, there is less ambiguity as to
whether the 1D Viterbi input is closer to the X symbol subset or
to the Y symbol subset. Furthermore, Hamming metrics can be
30 expressed in a fewer number of bits, than Euclidian metrics,
resulting in a system that is substantially less computationally
complex and substantially faster.

In the exemplary embodiment of FIG. 8, error terms are
generated by combining the output of the five level slicer 805
35 with the outputs of the 1D slicers 704 and 706 in respective

1 adder circuits 809A and 809B. The outputs of the adders are
2 directed to respective squared magnitude blocks 811A and 811B
3 which generate the binary squared error terms 812 and 814,
4 respectively.

5 Implementation of squared error terms by use of circuit
6 elements such as adders 809A, 809B and the magnitude squared
7 blocks 811A, 811B is done for descriptive convenience and
8 conceptual illustration purposes only. In practice, squared
9 error term definition is implemented with a look-up table that
10 contains possible values for error-X and error-Y for a given set
11 of decision-X, decision-Y and Viterbi input values. The look-up
12 table can be implemented with a read-only-memory device or
13 alternatively, a random logic device or PLA. Examples of look-up
14 tables, suitable for use in practice of the present invention,
15 are illustrated in FIGs. 17, 18A and 18B.

The 1D slicing function exemplified in FIG. 8 is performed
for all four constituent transceivers and for all eight states
of the trellis code in order to produce one pair of 1D decisions
per transceiver and per state. Thus, the Viterbi decoder 604 has
a total of thirty two pairs of 1D slicers that correspond to the
pair of slicers 704, 706, and thirty two 5-level slicers that
correspond to the 5-level slicer 805 of FIG. 8.

Each of the 1D errors is represented by substantially fewer
bits than each 1D component of the 4D inputs. For example, in
the embodiment of FIG. 7, the 1D component of the 4D Viterbi
input is represented by 5 bits, while the 1D error is represented
by 2 or 3 bits. Traditionally, proper soft decision decoding of
such a trellis code would require that the distance metric
(Euclidean distance) be represented by 6 to 8 bits. One
advantageous feature of the present invention is that only 2 or
3 bits are required for the distance metric in soft decision
decoding of this trellis code.

In the embodiment of FIG. 8, the 1D error can be represented
by just 1 bit. It is noted that, since the 1D error is
represented by 1 bit, the distance metric used in this trellis

1 decoding is no longer the Euclidean distance, which is usually
associated with trellis decoding, but is instead the Hamming
distance, which is usually associated with hard decision decoding
of binary codewords. This is another particularly advantageous
5 feature of the present invention.

FIG. 9 is a block diagram illustrating the generation of the
2D errors from the 1D errors for twisted pairs A and B
(corresponding to constituent transceivers A and B). Since the
generation of errors is similar for twisted pairs C and D, this
10 discussion will only concern itself with the A:B 2D case. It
will be understood that the discussion is equally applicable to
the C:D 2D case with the appropriate change in notation.
Referring to FIG. 9, 1D error signals 712A, 712B, 714A, 714B
might be produced by the exemplary 1D slicing functional blocks
15 shown in FIGs. 7 or 8. The 1D error term signal 712A (or
respectively, 712B) is obtained by slicing, with respect to
symbol-subset X, the 1D component of the 4D Viterbi input, which
corresponds to pair A (or respectively, pair B). The 1D error
term 714A (respectively, 714B) is obtained by slicing, with
20 respect to symbol-subset Y, the 1D component of the 4D Viterbi
input, which corresponds to pair A (respectively, B). The 1D
errors 712A, 712B, 714A, 714B are added according to all possible
combinations (XX, XY, YX and YY) to produce 2D error terms 902AB,
904AB, 906AB, 908AB for pairs A and B. Similarly, the 1D errors
25 712C, 712D, 714C, 714D (not shown) are added according to the
four different symbol-subset combinations XX, XY, YX and YY) to
produce corresponding 2D error terms for wire pairs C and D.

FIG. 10 is a block diagram illustrating the generation of
the 4D errors and extended path metrics for the four extended
30 paths outgoing from state 0. Referring to FIG. 10, the 2D errors
902AB, 902CD, 904AB, 904CD, 906AB, 906CD, 908AB, 908CD are added
in pairs according to eight different combinations to produce
eight intermediate 4D errors 1002, 1004, 1006, 1008, 1010, 1012,
1014, 1016. For example, the 2D error 902AB, which is the
35 squared error with respect to XX from pairs A and B, are added

1 to the 2D error 902CD, which is the squared error with respect
to XX from pairs C and D, to form the intermediate 4D error 1002
which is the squared error with respect to sub-subset XXXX for
pairs A, B, C and D. Similarly, the intermediate 4D error 1004
5 which corresponds to the squared error with respect to sub-subset
YYYY is formed from the 2D errors 908AB and 908CD.

The eight intermediate 4D errors are grouped in pairs to correspond to the code subsets s0, s2, s4 and s6 represented in FIG. 4B. For example, the intermediate 4D errors 1002 and 1004
10 are grouped together to correspond to the code subset s0 which is formed by the union of the XXXX and YYYY sub-subsets. From each pair of intermediate 4D errors, the one with the lowest value is selected (the other one being discarded) in order to provide the branch metric of a transition in the trellis diagram
15 from state 0 to a subsequent state. It is noted that, according to the trellis diagram, transitions from an even state (i.e., 0, 2, 4 and 6) are only allowed to be to the states 0, 1, 2 and 3, and transitions from an odd state (i.e., 1, 3, 5 and 7) are only allowed to be to the states 4, 5, 6 and 7. Each of the index
20 signals 1026, 1028, 1030, 1032 indicates which of the 2 sub-subsets the selected intermediate 4D error corresponds to. The branch metrics 1018, 1020, 1022, 1024 are the branch metrics for the transitions in the trellis diagram of FIG. 5 associated with code-subsets s0, s2, s4 and s6 respectively, from state 0 to
25 states 0, 1, 2 and 3, respectively. The branch metrics are added to the previous path metric 1000 for state 0 in order to produce the extended path metrics 1034, 1036, 1038, 1040 of the four extended paths outgoing from state 0 to states 0, 1, 2 and 3, respectively.

30 Associated with the eight intermediate 4D errors 1002, 1004,
1006, 1008, 1010, 1012, 1014, 1016 are the 4D decisions which are
formed from the 1D decisions made by one of the exemplary slicer
embodiments of FIG. 7 or 8. Associated with the branch metrics
1018, 1020, 1022, 1024 are the 4D symbols derived by selecting
35 the 4D decisions using the index outputs 1026, 1028, 1030, 1032.

1 FIG. 11 shows the generation of the 4D symbols associated
with the branch metrics 1018, 1020, 1022, 1024. Referring to
FIG. 11, the 1D decisions 708A, 708B, 708C, 708D are the 1D
decisions with respect to symbol-subset X (as shown in FIG. 7)
5 for constituent transceivers A, B, C, D, respectively, and the
1D decisions 714A, 714B, 714C, 714D are the 1D decisions with
respect to symbol-subset Y for constituent transceivers A, B, C
and D, respectively. The 1D decisions are concatenated according
to the combinations which correspond to a left or right hand
10 portion of the code subsets s0, s2, s4 and s6, as depicted in
FIG. 4B. For example, the 1D decisions 708A, 708B, 708C, 708D
are concatenated to correspond to the left hand portion, XXXX,
of the code subset s0. The 4D decisions are grouped in pairs to
correspond to the union of symbol-subset portions making up the
15 code subsets s0, s2, s4 and s6. In particular, the 4D decisions
1102 and 1104 are grouped together to correspond to the code
subset s0 which is formed by the union of the XXXX and YYYY
subset portions.

Referring to FIG. 11, the pairs of 4D decisions are inputted
20 to the multiplexers 1120, 1122, 1124, 1126 which receive the
index signals 1026, 1028, 1030, 1032 (FIG. 10) as select signals.
Each of the multiplexers selects from a pair of the 4D decisions,
the 4D decision which corresponds to the sub-subset indicated by
the corresponding index signal and outputs the selected 4D
25 decision as the 4D symbol for the branch whose branch metric is
associated with the index signal. The 4D symbols 1130, 1132,
1134, 1136 correspond to the transitions in the trellis diagram
of FIG. 5 associated with code-subsets s0, s2, s4 and s6
respectively, from state 0 to states 0, 1, 2 and 3, respectively.
30 Each of the 4D symbols 1130, 1132, 1134, 1136 is the codeword in
the corresponding code-subset (s0, s2, s4 and s6) which is
closest to the 4D Viterbi input for state 0 (there is a 4D
Viterbi input for each state). The associated branch metric
35 (FIG. 10) is the 4D squared distance between the codeword and the
4D Viterbi input for state 0.

1 FIG. 12 illustrates the selection of the best path incoming
to state 0. The extended path metrics of the four paths incoming
to state 0 from states 0, 2, 4 and 6 are inputted to the
comparator module 1202 which selects the best path, i.e., the
5 path with the lowest path metric, and outputs the Path 0 Select
signal 1206 as an indicator of this path selection, and the
associated path metric 1204.

10 The procedure described above for processing a 4D Viterbi
input for state 0 of the code to obtain four branch metrics, four
extended path metrics, and four corresponding 4D symbols is
similar for the other states. For each of the other states, the
selection of the best path from the four incoming paths to that
state is also similar to the procedure described in connection
with FIG. 12.

15 The above discussion of the computation of the branch
metrics, illustrated by FIG. 7 through 11, is an exemplary
application of the method for slicing (detecting) a received L-
dimensional word and for computing the distance of the received
L-dimensional word from a codeword, for the particular case where
20 L is equal to 4.

25 In general terms, i.e., for any value of L greater than 2,
the method can be described as follows. The codewords of the
trellis code are constellation points chosen from 2^{L-1} code-
subsets. A codeword is a concatenation of L symbols selected
from two disjoint symbol-subsets and is a constellation point
belonging to one of the 2^{L-1} code-subsets. At the receiver, L
inputs are received, each of the L inputs uniquely corresponding
to one of the L dimensions. The received word is formed by the
L inputs. To detect the received word, 2^{L-1} identical input sets
30 are formed by assigning the same L inputs to each of the 2^{L-1}
input sets. Each of the L inputs of each of the 2^{L-1} input sets
is sliced with respect to each of the two disjoint symbol-subsets
to produce an error set of $2L$ one-dimensional errors for each of
the 2^{L-1} code-subsets. For the particular case of the trellis
35 code of the type described by the trellis diagram of FIG. 5, the

1 one-dimensional errors are combined within each of the 2^{L-1} error
sets to produce 2^{L-2} L-dimensional errors for the corresponding
code-subset such that each of the 2^{L-2} L-dimensional errors is a
distance between the received word and one of the codewords in
5 the corresponding code-subset.

One embodiment of this combining operation can be described as follows. First, the $2L$ one-dimensional errors are combined to produce $2L$ two-dimensional errors (FIG. 9). Then, the $2L$ two-dimensional errors are combined to produce 2^L intermediate L-dimensional errors which are arranged into 2^{L-1} pairs of errors such that these pairs of errors correspond one-to-one to the 2^{L-1} code-subsets (FIG. 10, signals 1002 through 1016). A minimum is selected for each of the 2^{L-1} pairs of errors (FIG. 10, signals 1026, 1028, 1030, 1032). These minima are the 2^{L-1} L-dimensional errors. Due to the constraints on transitions from one state to a successor state, as shown in the trellis diagram of FIG. 5, only half of the 2^{L-1} L-dimensional errors correspond to allowed transitions in the trellis diagram. These 2^{L-2} L-dimensional errors are associated with 2^{L-2} L-dimensional decisions. Each of 10 the 2^{L-2} L-dimensional decisions is a codeword closest in distance to the received word (the distance being represented by one of 15 the 2^{L-2} L-dimensional errors), the codeword being in one of half of the 2^{L-1} code-subsets, i.e., in one of 2^{L-2} code-subsets of the 20 2^{L-1} code-subsets (due to the particular constraint of the trellis 25 code described by the trellis diagram of FIG. 5).

It is important to note that the details of the combining operation on the $2L$ one-dimensional errors to produce the final L-dimensional errors and the number of the final L-dimensional errors are functions of a particular trellis code. In other 30 words, they vary depending on the particular trellis code.

FIG. 13 illustrates the construction of the path memory module 608 as implemented in the embodiment of FIG. 6. The path memory module 608 includes a path memory for each of the eight paths. In the illustrated embodiment of the invention, the path 35 memory for each path is implemented as a register stack, ten

1 levels in depth. At each level, a 4D symbol is stored in a
register. The number of path memory levels is chosen as a
tradeoff between receiver latency and detection accuracy. FIG.
5 13 only shows the path memory for path 0 and continues with the
example discussed in FIGs. 7-12. FIG. 13 illustrates how the 4D
10 decision for the path 0 is stored in the path memory module 608,
and how the Path 0 Select signal, i.e., the information about
which one of the four incoming extended paths to state 0 was
selected, is used in the corresponding path memory to force
merging of the paths at all depth levels (levels 0 through 9) in
the path memory.

Referring to FIG. 13, each of the ten levels of the path
memory includes a 4-to-1 multiplexer (4:1 MUX) and a register to
store a 4D decision. The registers are numbered according to
15 their depth levels. For example, register 0 is at depth level
0. The Path 0 Select signal 1206 (FIG. 12) is used as the select
input for the 4:1 MUXes 1302, 1304, 1306, . . . , 1320. The 4D
decisions 1130, 1132, 1134, 1136 (FIG. 11) are inputted to the
4:1 MUX 1302 which selects one of the four 4D decisions based on
20 the Path 0 select signal 1206 and stores it in the register 0 of
path 0. One symbol period later, the register 0 of path 0
outputs the selected 4D decision to the 4:1 MUX 1304. The other
three 4D decisions inputted to the 4:1 MUX 1304 are from the
25 registers 0 of paths 2, 4, and 6. Based on the Path 0 Select
signal 1206, the 4:1 MUX 1304 selects one of the four 4D
decisions and stores it in the register 1 of path 0. One symbol
period later, the register 1 of path 0 outputs the selected 4D
decision to the 4:1 MUX 1306. The other three 4D decisions
inputted to the 4:1 MUX 1306 are from the registers 1 of paths
30 2, 4, and 6. Based on the Path 0 Select signal 1206, the 4:1 MUX
1306 selects one of the four 4D decisions and stores it in the
register 2 of path 0. This procedure continues for levels 3
through 9 of the path memory for path 0. During continuous
35 operation, ten 4D symbols representing path 0 are stored in
registers 0 through 9 of the path memory for path 0.

1 Similarly to path 0, each of the paths 1 though 7 is stored
as ten 4D symbols in the registers of the corresponding path
memory. The connections between the MUX of one path and
registers of different paths follows the trellis diagram of FIG.
5 2. For example, the MUX at level k for path 1 receives as inputs
the outputs of the registers at level k-1 for paths 1, 3, 5, 7,
and the MUX at level k for path 2 receives as inputs the outputs
of the registers at level k-1 for paths 0, 2, 4, 6.

10 FIG. 14 is a block diagram illustrating the computation of
the final decision and the tentative decisions in the path memory
module 608 based on the 4D symbols stored in the path memory for
each state. At each iteration of the Viterbi algorithm, the best
15 of the eight states, i.e., the one associated with the path
having the lowest path metric, is selected, and the 4D symbol
from the associated path stored at the last level of the path
memory is selected as the final decision 40 (FIG. 6). Symbols
15 at lower depth levels are selected as tentative decisions, which
are used to feed the delay line of the DFE 612 (FIG. 6).

20 Referring to FIG. 14, the path metrics 1402 of the eight
states, obtained from the procedure of FIG. 12, are inputted to
the comparator module 1406 which selects the one with the lowest
value and provides an indicator 1401 of this selection to the
select inputs of the 8-to-1 multiplexers (8:1 MUXes) 1402, 1404,
25 1406, ..., 1420, which are located at path memory depth levels 0
through 9, respectively. Each of the 8:1 MUXes receives eight
4D symbols outputted from corresponding registers for the eight
paths, the corresponding registers being located at the same
depth level as the MUX, and selects one of the eight 4D symbols
30 to output, based on the select signal 1401. The outputs of the
8:1 MUXes located at depth levels 0 through 9 are V_0 , V_1 , V_2 , ...,
 V_9 , respectively.

In the illustrated embodiment, one set of eight signals,
output by the first register set (the register 0 set) to the
first MUX 1402, is also taken off as a set of eight outputs,
35 denoted V_0^i and provided to the MDFE (602 of FIG. 6) as a select

1 signal which is used in a manner to be described below. Although
only the first register set is illustrated as providing outputs
to the DFE, the invention contemplates the second, or even higher
order, register sets also providing similar outputs. In cases
5 where multiple register sets provide outputs, these are
identified by the register set depth order as a subscript, as in
 V_1^i , and the like.

In the illustrated embodiment, the MUX outputs V_0 , V_1 , V_2 are
delayed by one unit of time, and are then provided as the
10 tentative decisions V_{0F} , V_{1F} , V_{2F} to the DFE 612. The number of the
outputs V_i to be used as tentative decisions depends on the
required accuracy and speed of decoding operation. After further
delay, the output V_0 of the first MUX 1402 is also provided as
the 4D tentative decision 44 (FIG. 2) to the Feedforward
15 Equalizers 26 of the four constituent transceivers and the timing
recovery block 222 (FIG. 2). The 4D symbol V_{9F} , which is the
output V_9 of the 8:1 MUX 1420 delayed by one time unit, is
provided as the final decision 40 to the receive section of the
PCS 204R (FIG. 2).

20 The following is the discussion on how outputs V_0^i , V_1^i , V_{0F} ,
 V_{1F} , V_{2F} of the path memory module 608 might be used in the select
logic 610, the MDFE 602, and the DFE 612 (FIG. 6).

25 FIG. 15 is a block level diagram of the ISI compensation
portion of the decoder, including construction and operational
details of the DFE and MDFE circuitry (612 and 602 of FIG. 6,
respectively). The ISI compensation embodiment depicted in FIG.
15 is adapted to receive signal samples from the deskew memory
(36 of FIG. 2) and provide ISI compensated signal samples to the
Viterbi (slicer) for decoding. The embodiment illustrated in
30 FIG. 15 includes the Viterbi block 1502 (which includes the
Viterbi decoder 604, the path metrics module 606 and the path
memory module 608), the select logic 610, the MDFE 602 and the
DFE 612.

The MDFE 602 computes an independent feedback signal for
35 each of the paths stored in the path memory module 608. These

1 feedback signals represent different hypotheses for the
intersymbol interference component present in the input 37 (FIGs.
2 and 6) to the trellis decoder 38. The different hypotheses for
the intersymbol interference component correspond to the
5 different hypotheses about the previous symbols which are
represented by the different paths of the Viterbi decoder.

The Viterbi algorithm tests these hypotheses and identifies
the most likely one. It is an essential aspect of the Viterbi
algorithm to postpone this identifying decision until there is
10 enough information to minimize the probability of error in the
decision. In the meantime, all the possibilities are kept open.
Ideally, the MDFE block would use the entire path memory to
compute the different feedback signals using the entire length
of the path memory. In practice, this is not possible because
15 this would lead to unacceptable complexity. By "unacceptable",
it is meant requiring a very large number of components and an
extremely complex interconnection pattern.

Therefore, in the exemplary embodiment, the part of the
feedback signal computation that is performed on a per-path basis
20 is limited to the two most recent symbols stored in register set
0 and register set 1 of all paths in the path memory module 608,
namely V_0^i and V_1^i with $i=0, \dots, 7$, indicating the path. For
symbols older than two periods, a hard decision is forced, and
only one replica of a "tail" component of the intersymbol
25 interference is computed. This results in some marginal loss of
performance, but is more than adequately compensated for by a
simpler system implementation.

The DFE 612 computes this "tail" component of the
intersymbol interference, based on the tentative decisions V_{0F} ,
30 V_{1F} , and V_{2F} . The reason for using three different tentative
decisions is that the reliability of the decisions increases with
the increasing depth into the path memory. For example, V_{1F} is
a more reliable version of V_{0F} delayed by one symbol period. In
the absence of errors, V_{1F} would be always equal to a delayed
35 version of V_{0F} . In the presence of errors, V_{1F} is different from

1 V_{0F} , and the probability of V_{1F} being in error is lower than the
probability of V_{0F} being in error. Similarly, V_{2F} is a more
reliable delayed version of V_{1F} .

Referring to FIG. 15, the DFE 612 is a filter having 33
5 coefficients c_0 through c_{32} corresponding to 33 taps and a delay
line 1504. The delay line is constructed of sequentially
disposed summing junctions and delay elements, such as registers,
as is well understood in the art of filter design. In the
10 illustrated embodiment, the coefficients of the DFE 612 are
updated once every four symbol periods, i.e., 32 nanoseconds, in
well known fashion, using the well known Least Mean Squares
algorithm, based on a decision input 1505 from the Viterbi block
and an error input 42dfe.

The symbols V_{0F} , V_{1F} , and V_{2F} are "jammed", meaning inputted
15 at various locations, into the delay line 1504 of the DFE 612.
Based on these symbols, the DFE 612 produces an intersymbol
interference (ISI) replica portion associated with all previous
symbols except the two most recent (since it was derived without
using the first two taps of the DFE 612). The ISI replica
20 portion is subtracted from the output 37 of the deskew memory
block 36 to produce the signal 1508 which is then fed to the MDFE
block. The signal 1508 is denoted as the "tail" component in
FIG. 6. In the illustrated embodiment, the DFE 612 has 33 taps,
numbered from 0 through 32, and the tail component 1508 is
25 associated with taps 2 through 32. As shown in FIG. 15, due to
a circuit layout reason, the tail component 1508 is obtained in
two steps. First, the ISI replica associated with taps 3 through
32 is subtracted from the deskew memory output 37 to produce an
intermediate signal 1507. Then, the ISI replica associated with
30 the tap 2 is subtracted from the intermediate signal 1507 to
produce the tail component 1508.

The DFE 612 also computes the ISI replica 1510 associated
with the two most recent symbols, based on tentative decisions
35 V_{0F} , V_{1F} , and V_{2F} . This ISI replica 1510 is subtracted from a
delayed version of the output 37 of the deskew memory block 36

1 to provide a soft decision 43. The tentative decision V_{0F} is
subtracted from the soft decision 43 in order to provide an error
signal 42. Error signal 42 is further processed into several
additional representations, identified as 42enc, 42ph and 42dfe.
5 The error 42enc is provided to the echo cancelers and NEXT
cancelers of the constituent transceivers. The error 42ph is
provided to the FFEs 26 (FIG. 2) of the four constituent
transceivers and the timing recovery block 222. The error 42dfe
is directed to the DFE 612, where it is used for the adaptive
10 updating of the coefficients of the DFE together with the last
tentative decision V_{2F} from the Viterbi block 1502. The tentative
decision 44 shown in FIG. 6 is a delayed version of V_{0F} . The soft
decision 43 is outputted to a test interface for display
purposes.

15 The DFE 612 provides the tail component 1508 and the values
of the two "initial" coefficients C_0 and C_1 to the MDFE 602. The
MDFE 602 computes eight different replicas of the ISI associated
with the first two coefficients of the DFE 612. Each of these
20 ISI replicas corresponds to a different path in the path memory
module 608. This computation is part of the so-called "critical
path" of the trellis decoder 38, in other words, the sequence of
computations that must be completed in a single symbol period.
At the speed of operation of the Gigabit Ethernet transceivers,
the symbol period is 8 nanoseconds. All the challenging
25 computations for 4D slicing, branch metrics, path extensions,
selection of best path, and update of path memory must be
completed within one symbol period. In addition, before these
computations can even begin, the MDFE 602 must have completed the
computation of the eight 4D Viterbi inputs 614 (FIG. 6) which
30 involves computing the ISI replicas and subtracting them from the
output 37 of the de-skew memory block 36 (FIG. 2). This
bottleneck in the computations is very difficult to resolve. The
system of the present invention allows the computations to be
carried out smoothly in the allocated time.

1 Referring to FIG. 15, the MDFE 602 provides ISI compensation
to received signal samples, provided by the deskew memory (37 of
FIG. 2) before providing them, in turn, to the input of the
Viterbi block 1502. ISI compensation is performed by subtracting
5 a multiplicity of derived ISI replica components from a received
signal sample so as to develop a multiplicity of signals that,
together, represents various expressions of ISI compensation that
might be associated with any arbitrary symbol. One of the ISI
compensated arbitrary symbolic representations is then chosen,
10 based on two tentative decisions made by the Viterbi block, as
the input signal sample to the Viterbi.

Since the symbols under consideration belong to a PAM-5
alphabet, they can be expressed in one of only 5 possible values
(-2, -1, 0, +1, +2). Representations of these five values are
15 stored in a convolution engine 1511, where they are convolved
with the values of the first two filter coefficients C_0 and C_1 of
the DFE 612. Because there are two coefficient values and five
level representations, the convolution engine 1511 necessarily
gives a twenty five value result that might be expressed as $(a_i C_0$
20 $+ b_j C_1)$, with C_0 and C_1 representing the coefficients, and with a_i
and b_j representing the level expressions (with $i=1,2,3,4,5$ and
 $j=1,2,3,4,5$ ranging independently).

These twenty five values are negatively combined with the
tail component 1508 received from the DFE 612. The tail
25 component 1508 is a signal sample from which a partial ISI
component associated with taps 2 through 32 of the DFE 612 has
been subtracted. In effect, the MDFE 602 is operating on a
partially ISI compensated (pre-compensated) signal sample. Each
30 of the twenty five pre-computed values is subtracted from the
partially compensated signal sample in a respective one of a
stack of twenty five summing junctions. The MDFE then saturates
the twenty five results to make them fit in a predetermined
range. This saturation process is done to reduce the number of
bits of each of the 1D components of the Viterbi input 614 in
35 order to facilitate lookup table computations of branch metrics.

1 The MDFE 602 then stores the resultant ISI compensated signal
samples in a stack of twenty five registers, which makes the
samples available to a 25:1 MUX for input sample selection. One
5 of the contents of the twenty five registers will correspond to
a component of a 4D Viterbi input with the ISI correctly
cancelled, provided that there was no decision error (meaning the
hard decision regarding the best path forced upon taps 2 through
32 of the DFE 612) in the computation of the tail component. In
the absence of noise, this particular value will coincide with
10 one of the ideal 5-level symbol values (i.e., -2, -1, 0, 1, 2).
In practice, there will always be noise, so this value will be
in general different than any of the ideal symbol values.

This ISI compensation scheme can be expanded to accommodate
any number of symbolic levels. If signal processing were
15 performed on PAM-7 signals, for example, the convolution engine
1511 would output forty nine values, i.e., a_i and b_j would range
from 1 to 7. Error rate could be reduced, i.e., performance
could be improved, at the expense of greater system complexity,
by increasing the number of DFE coefficients inputted to the
20 convolution engine 1511. The reason for this improvement is that
the forced hard decision (regarding the best path forced upon
taps 2 through 32 of the DFE 612) that goes into the "tail"
computation is delayed. If C_2 were added to the process, and the
symbols are again expressed in a PAM-5 alphabet, the convolution
25 engine 1511 would output one hundred twenty five (125) values.
Error rate is reduced by decreasing the tail component
computation, but at the expense of now requiring 125 summing
junctions and registers, and a 125:1 MUX.

It is important to note that, as inputs to the DFE 612, the
30 tentative decisions V_{0F} , V_{1F} , V_{2F} are time sequences, and not just
instantaneous isolated symbols. If there is no error in the
tentative decision sequence V_{0F} , then the time sequence V_{2F} will
be the same as the time sequence V_{1F} delayed by one time unit, and
the same as the time sequence V_{0F} delayed by two time units.
35 However, due to occasional decision error in the time sequence

1 V_{0F} , which may have been corrected by the more reliable time
sequence V_{1F} or V_{2F} , time sequences V_{1F} and V_{2F} may not exactly
correspond to time-shifted versions of time sequence V_{0F} . For
this reason, instead of using just one sequence V_{0F} , all three
5 sequences V_{0F} , V_{1F} and V_{2F} are used as inputs to the DFE 612.
Although this implementation is essentially equivalent to
convolving V_{0F} with all the DFE's coefficients when there is no
decision error in V_{0F} , it has the added advantage of reducing the
probability of introducing a decision error into the DFE 612.
10 It is noted that other tentative decision sequences along the
depth of the path memory 608 may be used instead of the sequences
 V_{0F} , V_{1F} and V_{2F} .

Tentative decisions, developed by the Viterbi, are taken
from selected locations in the path memory 608 and "jammed" into
15 the DFE 612 at various locations along its computational path.
In the illustrated embodiment (FIG. 15), the tentative decision
sequence V_{0F} is convolved with the DFE's coefficients C_0 through
 C_3 , the sequence V_{1F} is convolved with the DFE's coefficients C_4
and C_5 , and the sequence V_{2F} is convolved with the DFE's
20 coefficients C_6 through C_{32} . It is noted that, since the partial
ISI component that is subtracted from the deskew memory output
37 to form the signal 1508 is essentially taken (in two steps as
described above) from tap 2 of the DFE 612, this partial ISI
component is associated with the DFE's coefficients C_2 through
25 C_{32} . It is also noted that, in another embodiment, instead of
using the two-step computation, this partial ISI component can
be directly taken from the DFE 612 at point 1515 and subtracted
from signal 37 to form signal 1508.

It is noted that the sequences V_{0F} , V_{1F} , V_{2F} correspond to a
30 hard decision regarding the choice of the best path among the
eight paths (path i is the path ending at state i). Thus, the
partial ISI component associated with the DFE's coefficients C_2
through C_{32} is the result of forcing a hard decision on the group
of higher ordered coefficients of the DFE 612. The underlying
35 reason for computing only one partial ISI signal instead of eight

1 complete ISI signals for the eight states (as done
conventionally) is to save in computational complexity and to
avoid timing problems. In effect, the combination of the DFE and
the MDFE of the present invention can be thought of as performing
5 the functions of a group of eight different conventional DFES
having the same tap coefficients except for the first two tap
coefficients.

For each state, there remains to determine which path to use
for the remaining two coefficients in a very short interval of
10 time (about 16 nanoseconds). This is done by the use of the
convolution engine 1511 and the MDFE 602. It is noted that the
convolution engine 1511 can be implemented as an integral part
of the MDFE 602. It is also noted that, for each constituent
15 transceiver, i.e., for each 1D component of the Viterbi input 614
(the Viterbi input 614 is practically eight 4D Viterbi inputs),
there is only one convolution engine 1511 for all the eight
states but there are eight replicas of the select logic 610 and
eight replicas of the MUX 1512.

The convolution engine 1511 computes all the possible values
20 for the ISI associated with the coefficients C_0 and C_1 . There are
only twenty five possible values, since this ISI is a convolution
of these two coefficients with a decision sequence of length 2,
and each decision in the sequence can only have five values (-2,
-1, 0, +1, +2). Only one of these twenty five values is a
25 correct value for this ISI. These twenty five hypotheses of ISI
are then provided to the MDFE 602.

In the MDFE 602, the twenty five possible values of ISI are
subtracted from the partial ISI compensated signal 1508 using a
set of adders connected in parallel. The resulting signals are
30 then saturated to fit in a predetermined range, using a set of
saturators. The saturated results are then stored in a set of
twenty five registers. Provided that there was no decision error
regarding the best path (among the eight paths) forced upon taps
2 through 32 of the DFE 612, one of the twenty five registers

1 would contain one 1D component of the Viterbi input 614 with the
ISI correctly cancelled for one of the eight states.

For each of the eight states, the generation of the Viterbi input is limited to selecting the correct value out of these 25
5 possible values. This is done, for each of the eight states, using a 25-to-1 multiplexer 1512 whose select input is the output
of the select logic 610. The select logic 610 receives $V_0^{(i)}$ and
 $V_1^{(i)}$ ($i=0, \dots, 7$) for a particular state i from the path memory
module 608 of the Viterbi block 1502. The select logic 610 uses
10 a pre-computed lookup table to determine the value of the select signal 622A based on the values of $V_0^{(i)}$ and $V_1^{(i)}$ for the particular
state i . The select signal 622A is one component of the 8-component select signal 622 shown in FIG. 6. Based on the select
signal 622A, the 25-to-1 multiplexer 1512 selects one of the
15 contents of the twenty five registers as a 1D component of the Viterbi input 614 for the corresponding state i .

FIG. 15 only shows the select logic and the 25-to-1 multiplexer for one state and for one constituent transceiver. There are identical select logics and 25-to-1 multiplexers for
20 the eight states and for each constituent transceiver. In other words, the computation of the 25 values is done only once for all the eight states, but the 25:1 MUX and the select logic are replicated eight times, one for each state. The input 614 to the Viterbi decoder 604 is, as a practical matter, eight 4D Viterbi
25 inputs.

In the case of the DFE, however, only a single DFE is contemplated for practice of the invention. In contrast to alternative systems where eight DFEs are required, one for each of the eight states imposed by the trellis encoding scheme, a
30 single DFE is sufficient since the decision as to which path among the eight is the probable best was made in the Viterbi block and forced to the DFE as a tentative decision. State status is maintained at the Viterbi decoder input by controlling the MDFE output with the state specific signals developed by the
35 8 select logics (610 of FIG. 6) in response to the eight state

1 specific signals V_0^i and V_1^i , $i=0,\dots,7$, from the path memory
module (608 of FIG. 6). Although identified as a singular DFE,
it will be understood that the 4D architectural requirements of
the system means that the DFE is also 4D. Each of the four
5 dimensions (twisted pairs) will exhibit their own independent
contributions to ISI and these should be dealt with accordingly.
Thus, the DFE is singular, with respect to state architecture,
when its 4D nature is taken into account.

In the architecture of the system of the present invention,
10 the Viterbi input computation becomes a very small part of the
critical path since the multiplexers have extremely low delay due
largely to the placement of the 25 registers between the 25:1
multiplexer and the saturators. If a register is placed at the
input to the MDFE 602, then the 25 registers would not be needed.
15 However, this would cause the Viterbi input computation to be a
larger part of the critical path due to the delays caused by the
adders and saturators. Thus, by using 25 registers at a location
proximate to the MDFE output instead of using one register
located at the input of the MDFE, the critical path of the MDFE
20 and the Viterbi decoder is broken up into 2 approximately
balanced components. This architecture makes it possible to meet
the very demanding timing requirements of the Gigabit Ethernet
transceiver.

Another advantageous factor in achieving high-speed
25 operation for the trellis decoder 38 is the use of heavily
truncated representations for the metrics of the Viterbi decoder.
Although this may result in a mathematically non-zero decrease
in theoretical performance, the resulting vestigial precision is
nevertheless quite sufficient to support healthy error margins.
30 Moreover, the use of heavily truncated representations for the
metrics of the Viterbi decoder greatly assists in achieving the
requisite high operational speeds in a gigabit environment. In
addition, the reduced precision facilitates the use of random
logic or simple lookup tables to compute the squared errors,

1 i.e., the distance metrics, consequently reducing the use of
valuable silicon real estate for merely ancillary circuitry.

5 FIG. 16 shows the word lengths used in one embodiment of the
Viterbi decoder of this invention. In FIG. 16, the word lengths
are denoted by S or U followed by two numbers separated by a
period. The first number indicates the total number of bits in
the word length. The second number indicates the number of bits
after the decimal point. The letter S denotes a signed number,
while the letter U denotes an unsigned number. For example, each
10 1D component of the 4D Viterbi input is a signed 5-bit number
having 3 bits after the decimal point.

15 FIG. 17 shows an exemplary lookup table that can be used to
compute the squared 1-dimensional errors. The logic function
described by this table can be implemented using read-only-memory
devices, random logic circuitry or PLA circuitry. Logic design
techniques well known to a person of ordinary skill in the art
can be used to implement the logic function described by the
table of FIG. 17 in random logic.

20 FIGs. 18A and 18B provide a more complete table describing
the computation of the decisions and squared errors for both the
X and Y subsets directly from one component of the 4D Viterbi
input to the 1D slicers (FIG. 7). This table completely
specifies the operation of the slicers of FIG. 7.

25 An exemplary demodulator including a high speed decoder has
been described and includes various components that facilitate
robust and accurate acquisition and decoding of PAM-5
constellation signals at speeds consistent with gigabit
operation. Symbol decoding, including ISI compensation, is
accurately performed in a symbol period of about 8 ns, by a
30 transceiver demodulator circuit constructed in a manner so as to
first, bifurcate the ISI compensation function between an FFE,
operating to compensate partial response pulse shaping filter
(remote transmitter) induced ISI, and a decoder operating to
compensate ISI perturbations induced by transmission channel
35 characteristics, and second, by bifurcating critical path

1 computations into substantially balanced first and second portions, the first portion including computations performed in a DFE and MDFE element and a second portion including computations performed in a Viterbi decoder.

5 The DFE element is further advantageous in that it is implemented as only a single conceptual DFE (taking into account its 4D nature) rather than an eight element stack, each of which defines a multi-dimensional input to an eight-state Viterbi. The DFE is "stuffed", at particular chosen locations, by the first
10 several stages of a sequential, multi-stage tentative decision path memory module, so as to develop a set of "tail" coefficient values in the DFE which, taken together, represent the algebraic sum of a truncated set of DFE coefficients C_2 to C_{32} . A received symbol, represented by a five level constellation, is convolved
15 with the remaining two DFE coefficients, C_0 and C_1 , which are taken to represent the transmission channel induced ISI.

As deskewed signals enter the decoder, the previous symbol, convolved with the DFE coefficients C_3 to C_{32} , is first subtracted therefrom. Then the previous symbol convolved with C_2 is
20 subtracted and the resultant (intermediate) symbol is directed to the MDFE. This resultant signal might be described as the receive symbol with partial ISI introduced by previous symbols subtracted. In the MDFE, all possible convolutions of the primary coefficients, C_0 and C_1 , with the possible symbol values,
25 is subtracted from the intermediate symbol to provide a receive symbol without perturbations induced by ISI.

It will be evident to one having skill in the art that although the transceiver has been described in the context of a trellis encoded, PAM-5 signal representation, communicated over
30 a multi-pair transmission channel, the invention is not limited to any particular communication technique. Specifically, the decoder architecture and signal processing methodology in accord with the invention is suitable for use with any form of communication in which the symbolic content of the communication
35 is represented by multi-level signals. The invention, indeed,

1 becomes particularly appropriate as the number of signal levels
increases.

5 Neither is the invention limited to signals encoded in accordance with a 4D, eight-state, trellis methodology. Trellis encoding forces the system to be constructed so as to accommodate the eight states inherent in the trellis methodology. Other coding methodologies and architectures are expressly contemplated by the invention and can be implemented by making the proper modifications to an alternative coding architecture's "state
10 width", as will be apparent to a skilled integrated circuit transceiver designer. Likewise, the "dimensional depth", 1D, 2D, 4D.... for example, may be suitably increased, or decreased to accommodate different forms of transmission channel implementations. As in the case of increasing signal level
15 representations, the systems and methods of the invention are particularly suitable for channels with increased "depth", such as six, eight, or even higher numbers, of twisted pair cabling, single conductor cabling, parallel wireless channels, and the like.

20 While certain exemplary embodiments have been described in detail and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention. It will thus be recognized that various modifications may be made to the
25 illustrated and other embodiments of the invention described above, without departing from the broad inventive scope thereof. It will be understood, therefore, that the invention is not limited to the particular embodiments or arrangements disclosed, but is rather intended to cover any changes, adaptations or
30 modifications which are within the scope and spirit of the invention as defined by the appended claims.