Fundamentos Lógicos y Algebraicos

Satisfaction, Models, Validity

Departamento de Sistemas Informáticos y Computación (DSIC) Universidad Politécnica de Valencia (UPV)

> Salvador Lucas http://slucas.webs.upv.es/

Máster en Ingeniería y Tecnología de Sistemas Software (MITSS)

The truth value of logic formulas depends on the interpretation (and valuation mapping)

Interp.	Domain	$\mathtt{homer}^{\mathcal{A}_i}$	$[exttt{philosopher(homer)}]^{\mathcal{I}_i}_lpha$
$\overline{\mathcal{I}_1}$	\mathcal{A}_1	1	$false \ (\mathfrak{D} \notin \{ \mathfrak{D}, \mathfrak{D} \} = philosopher^{\mathcal{I}_1})$
\mathcal{I}_2	${\cal A}_1$	**	$false \ (\mathfrak{D} \notin \{ \mathfrak{D}, \mathfrak{D} \} = philosopher^{\mathcal{I}_2})$
\mathcal{I}_3	\mathcal{A}_2	<u>&</u>	$true \ (\climate{1}{2} \in \{\climate{1}{2}\} = philosopher^{\mathcal{I}_3})$

In general, we need to consider different "degrees of truth"!

- Satisfiability
- 2 True and false formulas. Model
- 3 True and false sentences in an interpretation
- 4 Validity
- 5 A hierarchy of truth
- 6 Logical consequence

Definition (Satisfaction)

A valuation mapping α satisfies a formula F in an interpretation $\mathcal I$ iff $[F]_{\alpha}^{\mathcal I}=$ true.

Interp.	$\alpha(x)$	$\alpha(y)$	$[exttt{teacherOf}(exttt{x,y})]^{\mathcal{I}_i}_lpha$
\mathcal{I}_1	8	9	true $((0, 2) \notin \{(0, 2)\})$
\mathcal{I}_1	9	9	$false\;((\mathfrak{D},\mathfrak{D})\notin\{(\mathfrak{D},\mathfrak{D})\})$
\mathcal{I}_2	9	9	$true\;((\mathfrak{D},\mathfrak{D})\in\{(\mathfrak{D},\boldsymbol{\emptyset}),(\mathfrak{D},\mathfrak{D}),(\boldsymbol{\emptyset},\mathfrak{D})\})$

Accordingly, teacherOf(x,y) is

- satisfied by \mathcal{I}_1 if $\alpha(x) = \emptyset$ and $\alpha(y) = \emptyset$.
- not satisfied by \mathcal{I}_1 if $\alpha(x) = \mathfrak{D}$ and $\alpha(y) = \mathfrak{D}$, but
- satisfied by \mathcal{I}_2 if $\alpha(x) = \mathfrak{P}$ and $\alpha(y) = \mathfrak{Q}$.

Satisfiability

A formula F is satisfiable iff there is an interpretation \mathcal{I} and a valuation mapping α such that $[F]_{\alpha}^{\mathcal{I}} = \text{true}$. Otherwise, it is unsatisfiable.

Example

- teacherOf(x,y) is satisfiable (e.g., use \mathcal{I}_1 or \mathcal{I}_2)
- $philosopher(x) \land \neg philosopher(x)$ is (obviously) *unsatisfiable*.

True and false formulas (for an interpretation \mathcal{I})

A formula F is *true* for \mathcal{I} iff for *all valuations* α , $[F]_{\alpha}^{\mathcal{I}} = \text{true}$.

We say that F is false for \mathcal{I} iff for all valuations α , $[F]_{\alpha}^{\mathcal{I}} = \text{false}$.

A formula F is true in \mathcal{I} iff its negation $\neg F$ is false in \mathcal{I}

Formulas that are *neither true nor false* for a given interpretation For instance, teacherOf(x,y)

- is *not* true in \mathcal{I}_1 because $\alpha(x) = \mathfrak{P}$ and $\alpha(y) = \mathfrak{P}$ makes it *false*; but,
- it is *not* false in \mathcal{I}_1 because $\alpha(x) = \mathbb{R}$ and $\alpha(y) = \mathbb{R}$ makes it *true*.

Model of a formula F

An interpretation \mathcal{I} is a *model* of F (written $\mathcal{I} \models F$) if F is *true* in \mathcal{I}

We cannot say $\mathcal{I}_1 \models \mathtt{teacherOf}(\mathtt{x},\mathtt{y})$ nor $\mathcal{I}_1 \models \neg\mathtt{teacherOf}(\mathtt{x},\mathtt{y})$

Due to the quantification of *all* variables, valuations α play *no role* in the interpretation of *sentences*

Thus, we often write $F^{\mathcal{I}}$ instead of $[F]_{\alpha}^{\mathcal{I}}$ for sentences F

Given an interpretation $\mathcal I$ and a sentence F, either $F^{\mathcal I}$ or $(\neg F)^{\mathcal I}$ is true. Equivalently, either $\mathcal I \models F$ or $\mathcal I \models \neg F$ holds

Such a truth value depends on the interpretation.

Consider $F = (\forall x)(\exists y)(\mathtt{philosopher}(x) \Rightarrow \mathtt{teacherOf}(y, x))$, i.e., all philosophers have been taught by somebody.

- $F^{\mathcal{I}_1} =$ false (e.g., in \mathcal{I}_1 nobody taught Socrates, who is a philosopher).
- $F^{\mathcal{I}_2} = true$ (in \mathcal{I}_2 , Socrates and Plato were taught by Homer).

Validity

A formula F is *logically valid* (written $\models F$) if it is true for *every interpretation* (i.e., $\mathcal{I} \models F$ holds for every interpretation \mathcal{I}).

A formula F is *contradictory* iff it is false for *every interpretation* \mathcal{I} .

Validity by refutation

F is valid (resp. contradictory) iff $\neg F$ is unsatisfiable (resp. valid)

Hierarchy of truth in first-order formulas				
F is	depends on	Example		
Satisfiable	${\cal I}$ and $lpha$	teacherOf(y,x)		
True	${\cal I}$	$(\forall x)(\exists y)(\texttt{philosopher}(x) \Rightarrow \texttt{teacherOf}(y,x))$		
Valid	-	$(\forall x)(\mathtt{philosopher}(x) \lor \neg \mathtt{philosopher}(x))$		

Definition (Model of a set of formulas)

An interpretation \mathcal{I} is a model of a set of formulas Φ (written $\mathcal{I} \models \Phi$) if \mathcal{I} is a model of each formula F in Φ , i.e., for all $F \in \Phi$, we have $\mathcal{I} \models F$

Definition (Logical consequence)

A formula F is a *logical consequence* of a set of formulas Φ (written $\Phi \models F$) if every model of Φ is also a model of F.

Equivalently, if $\Phi \cup \{\neg F\}$ is *unsatisfiable*, i.e., $\Phi \cup \{\neg F\}$ has *no model*

Example (Logical consequence)

We have

 $isPhilosopher(plato), (\forall x) isPhilosopher(x) \Rightarrow isClever(x) \models isClever(plato)$

Fine! But, how to *check* this *in practice*? (!?)

References

Chin-Liang Chang and Richard Char-Tung Lee.

Symbolic Logic and Mechanical Theorem Proving.

Academic Press, 1973.

Alan G. Hamilton.

Lógica para matemáticos.

Paraninfo, 1981.

Elliot Mendelson.

Introduction to Mathematical Logic. Fourth edition.

Chapman & Hall, 1997.