ÁLGEBRA LINEAL Y ESTRUCTURAS MATEMÁTICAS

Convocatoria Extraordinaria Septiembre 2014.

(15/09/2014)

Ejercicio 1. Sean A y B dos conjuntos. Entonces podemos asegurar que el conjunto $A \setminus (A \setminus B)$ es igual a:

- a) A.
- b) B.
- c) $A \cap B$.
- d) $A \cup B$.

Ejercicio 2. Sean $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$. El cardinal de $\mathcal{P}(A \times B)$ es:

- a) 12^2 .
- b) 2^{7} .
- c) 2^{12} .
- d) 12¹².

Ejercicio 3. Sean a y b dos números reales tales que a < b. Sea $f : [0, 1] \rightarrow [a, b]$ la aplicación dada por

$$f(x) = a + (b - a)x$$

Entonces:

- a) f es inyectiva y sobreyectiva.
- b) f no es inyectiva, pero sí es sobreyectiva.
- c) f es inyectiva pero no sobreyectiva.
- d) f no es ni inyectiva ni sobreyectiva.

Ejercicio 4. Dada la relación binaria definida sobre $\mathbb R$ por

$$xRy \text{ si } |x - y| \le 1$$

- a) R no es reflexiva.
- b) R no es simétrica.
- c) R no es transitiva.
- d) R es una relación de equivalencia.

Ejercicio 5. ¿Cuántos números de exactamente tres cifras existen cuyos dígitos pueden ser 0, 1, 2 ó 3?

- a) 48.
- b) 64.
- c) 81.
- d) 16.

Ejercicio 6. El número de formas distintas en que podemos repartir 11 bolas iguales en 3 cajas distintas en cada una de las cuales cabe un máximo de 5 bolas es:

- a) 956, es decir, $11^3 3 \cdot 5^3$.
- b) 165, es decir, $\binom{11}{3}$.
- c) 15, es decir, $\binom{13}{2} 3 \cdot \binom{7}{2}$.
- d) 135, es decir, $\binom{11}{3} 3 \cdot \binom{5}{3}$.

Ejercicio 7. El número de divisores positivos del número $5^2 \cdot 6^5 \cdot 8^6 \cdot 9^4$ es:

- a) 24 · 14 · 3.
- b) $(5^2 5) \cdot (6^5 6^4) \cdot (8^6 8^5) \cdot (9^4 9^3)$.
- c) $3 \cdot 6 \cdot 7 \cdot 5$.
- d) $2 \cdot 5 \cdot 6 \cdot 4$.

Ejercicio 8. Dado el sistema de congruencias

$$\begin{cases} 15x \equiv 7 \mod 16 \\ 10x \equiv 14 \mod 28 \end{cases}$$

- (a) No tiene solución.
- (b) Tiene solución, pero ninguna entre 0 y 100.
- (c) Tiene exactamente una solución entre 0 y 100.
- (d) Tiene exactamente dos soluciones entre 0 y 100.

Ejercicio 9. Sea $a=15^{1357}$. La congruencia $ax\equiv 3 \mod 13$ tiene como solución a:

- a) x = 1.
- b) x = 2.
- c) x = 4.
- d) x = 8.

Ejercicio 10. En el cuerpo $A = \mathbb{Z}_2[x]_{x^3+x+1}$ el elemento x^2+x+1 es igual a:

- a) x^4 .
- b) x^5 .
- c) x^6 .
- d) x^7 .

Ejercicio 11. Sea $p(x) = x^5 + x^4 + x^3 + 4x^2 + 3 \in \mathbb{Z}_5[x]$. Entonces p(x) es igual a:

- a) $(x+2)^2 \cdot (x+3) \cdot (x+4)^2$.
- b) $(x+2)^2 \cdot (x+3)^2 \cdot (x+4)$.
- c) $(x+2) \cdot (x+3)^2 \cdot (x+4)^2$.
- d) $(x+2)^3 \cdot (x+3) \cdot (x+4)$.

Ejercicio 12. ¿Para cuántos valores $c \in \mathbb{N}$ tales que 10 < c < 20 tiene solución la ecuación diofántica

$$84x + 990y = c$$
?

a) 2.

- b) 5.
- c) 7.
- d) 9.

Ejercicio 13. Sea $A = \begin{pmatrix} x & 0 & 0 & y \\ 0 & x & y & 0 \\ 0 & y & x & 0 \\ y & 0 & 0 & x \end{pmatrix}$. El determinante de A vale:

- a) $(x y)^4$.
- b) $(x^2 y^2)^2$.
- c) $x^4 y^4$.
- d) 0.

Ejercicio 14. Dado el sistema de ecuaciones con coeficientes en \mathbb{Z}_7 :

$$\begin{cases} 6x + 5y + 3z + 6t = 1 \\ 2x + 6y + 4z + 6t = 1 \\ 3x + 5y + 2t = 3 \end{cases}$$

- a) La solución es $\left\{ \begin{array}{lll} x&=&1&+&6\lambda\\ y&=&4&+&2\lambda\\ z&=&&\lambda\\ t&=&4 \end{array} \right.$
- b) La solución es $\begin{cases} x = 1 + 4\lambda \\ y = 2 + 5\lambda \\ z = 3 + 6\lambda \\ t = \lambda \end{cases}$ c) La solución es $\begin{cases} x = 0 \\ y = 6 \\ z = 1 \\ t = 4 \end{cases}$
- d) No tiene solución.

Ejercicio 15. Sean $B_1 = \{u_1, u_2\}$ y $B_2 = \{v_1, v_2\}$ dos bases de un espacio vectorial. Sabemos que $v_1 = \{v_1, v_2\}$ $3u_1 - 2u_2$ y que $v_2 = 2u_1 - u_2$. Sea $w = u_1 - u_2$. Entonces, las coordenadas de w en la base B_2 son:

- a) (5,3).
- b) (-3, -5).
- c) (1,-1).
- d) (-1,1).

Ejercicio 16. Sea U el subespacio de $(\mathbb{Z}_5)^3$ generado por los vectores (2,1,3) y (3,3,3). Y sea W el subespacio de $(\mathbb{Z}_5)^3$ generado por (1,1,4) y (2,4,4). Entonces una base de $U \cap W$ es:

- a) $\{(2,1,3)\}.$
- b) $\{(3,2,4),(1,4,3)\}.$
- c) $\{(2,3,1)\}.$
- d) $\{(4,1,2),(1,1,4)\}.$

Ejercicio 17. ¿Cuál de los siguientes subconjuntos es un subespacio vectorial de \mathbb{Q}^3 :

a)
$$\{(x, y, z) \in \mathbb{Q}^3 : x + y = 11\}.$$

b)
$$\{(x, y, z) \in \mathbb{Q}^3 : x + 2y + z = 0\}.$$

c)
$$\{(x, y, z) \in \mathbb{Q}^3 : x^2 = y^2\}.$$

d)
$$\{(a, a + 2, 0) : a \in \mathbb{Q}\}.$$

Ejercicio 18. De una aplicación lineal $f:(\mathbb{Z}_5)^3\to(\mathbb{Z}_5)^3$ se sabe que f(1,2,4)=(3,2,1) y f(3,2,2)=(1,1,1). Entonces:

a)
$$f(0,4,0) = (1,0,4)$$
.

- b) Los datos que nos dan no nos permiten calcular f(0, 4, 0).
- c) f(0,4,0) = (3,0,2).
- d) No existe ninguna aplicación lineal satisfaciendo las condiciones dadas.

Ejercicio 19. Sea $f: \mathbb{Q}^3 \to \mathbb{Q}^3$ la aplicación lineal dada por:

$$f(x, y, z) = (x + z, x + y, 2x + y + z)$$

Entonces las ecuaciones cartesianas (o implícitas) de Im(f) son:

- a) Puesto que dim(Im(f)) = 3 no tiene ecuaciones cartesianas.
- b) x + z = 0.

c)
$$\begin{cases} x + y = 0 \\ x + z = 0 \end{cases}$$
.

d)
$$x + y - z = 0$$
.

Ejercicio 20. Sea
$$A = \begin{pmatrix} 2 & 4 & 1 \\ 1 & 2 & 0 \\ 2 & 3 & 3 \end{pmatrix} \in M_3(\mathbb{Z}_5)$$
. Entonces:

- a) A tiene dos valores propios y es diagonalizable.
- b) A tiene tres valores propios y no es diagonalizable.
- c) A tiene tres valores propios y es diagonalizable.
- d) A tiene dos valores propios y no es diagonalizable.

(4) 15 de Septiembre de 2014