AL/EQ-TR-1996-0040

UNITED STATES AIR FORCE ARMSTRONG LABORATORY

Demonstration of Radiofrequency Soil Decontamination: Volume I

Clifton F. Blanchard, Chesley R. Lyon, and Laura H. Whitt

Halliburton NUS Environmental Corporation 800 Oak Ridge Turnpike
Oak Ridge, Tennessee 37830

October 1996

19970714 094

Approved for public release; distribution is unlimited.

Environics Directorate Environmental Risk Management Division 139 Barnes Drive Tyndall Air Force Base FL 32403-5323

NOTICES

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any employees, nor any of their contractors, subcontractors, or their employees, make any warranty, expressed or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor, or subcontractor thereof.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed by the Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS) where it will be available to the general public, including roreign nationals.

This report has been reviewed and is approved for publication.

JEFFAEY A STINSON, Capt, USAF, BSC

Project Officer

ALLAN M. WEINER, Lt Col, USAF Chief, Site Remediation Division

trans!

DRAFT SF 298

1. Report Date (de August 1996	d-mm-yy)	2. Rep Final	oort Type				(from to) ember 1994
Title & subtitle •monstration of Vol I, Technical E	-	-	Soil Decontamina ol I of III)	ation:	1	ntract or G 5-90-D-4011	
					5b. Pro	gram Elen	nent # 78008F
6. Author(s) Clifton F. Blanch	ard Chasley	Plyo	n and Laura H \	Mhitt	5c. Pro	ject# 37	'88
	ira, Oriesicy	it. Lyo	n, and Laura m. 1	vviiitt	5d. Tas	sk#	
					5e. Wo	rk Unit #	3073
7. Performing Org Halliburton NUS I 800 Oak Ridge Tu Oak Ridge, Tenno	Environment Irnpike					8. Perforn	ning Organization Report #
9. Sponsoring/Mo	atory Enviro					10. Monito USAF	or Acronym
Site Remediation 139 Barnes Drive Tyndall Air Force	, Suite 2	2403-532	23				or Report # -1996-0040
13. Supplementa	y Notes						
and development essentially a head for the demonstration runoff from a was developed by the 1994, a technique was demonstrate about 150 degree	of Radio Francisco of Radio of two step of	equenc oil vapo patente n, oils, ch Instit by KAI nately 1	ey Soil Decontamer extraction project techniques. The and lubricants a tute using an arr. Technologies, Ir 120 tons of soil was a so	nination cess. S The site nd solv ay of el nc. usin vere hea	. Radio ite S-1 a is a form ent stor ectrode g a sing ated dur	frequency at Kelly Air mer sump t rage and tra s placed in le applicate ing each d	orida, has supported the research soil decontamination is Force Base, Texas, was selected that collected spills and surface ansfer area. In 1993, a technique the soil was demonstrated. In or placed in a vertical borehole emonstration to a temperature of
15. Subject Term	s Radio Fre	quency	Soil Heating, So	il Vapo	r Extrac	tion	
Security Classific		, 1		19. Lin of Abs	nitation tract	20. # of Pages	21. Responsible Person (Name and Telephone #)
'S. Report classified	17. Abstrac Unclassifie	1	8. This Page Inclassified	Unlimi	ted	137	Capt Jeffrey A. Stinson (904) 283-6254
1	I					.	

i (The reverse of this page is blank)

PREFACE

This report was prepared by Halliburton NUS Environmental Corporation, 800 Oak Ridge Turnpike, Oak Ridge, TN 37830 under contract F33615-90-D-4011 for the Armstrong Laboratory Environics Directorate (AL/EQW) (formerly the Air Force Engineering and Services Center), Tyndall AFB, FL 32403-5323.

This final report summarizes the project's Phase I efforts for a field demonstration of the IIT Research Institute's (IITRI) tri-plate capacitor and the KAI Technologies, Inc.'s (KAI) antenna radio frequency heating (RFH) techniques for the enhancement of soil vapor extraction (SVE) for the in situ decontamination of soils.

The work was performed between June 1992 and December 1994. The AL/EQW technical project officers were Mr. Paul F. Carpenter (during the initial stage of the project) and Capt Jeffrey A. Stinson (during the latter stage of the project).

EXECUTIVE SUMMARY

The United States Air Force developed the Installation Restoration Program to assess past hazardous waste disposal and spill sites and prepare remedial actions consistent with the National Contingency Plan for those sites that pose a threat to human health or the environment. Within that program the Site Remediation Division of the Environics Directorate of the Air Force's Armstrong Laboratory at Tyndall AFB, Florida, has supported the research and development of Radio Frequency Soil Decontamination.

Armstrong Laboratory was sufficiently encouraged by the early test results in sandy soils at Tyndall AFB, Florida, and Volk Field, Wisconsin, to pursue larger-scale demonstrations in tight soils that are more difficult to treat. In September 1991, the Air Force Center for Environmental Excellence at Brooks AFB, Texas, contracted Halliburton NUS Environmental Corporation (now Brown & Root Environmental) to conduct pilot scale demonstrations of two different, patented, radio frequency heating techniques at Site S-1 at Kelly AFB, Texas.

The project was divided into three phases the Preplanning Phase, Phase I, and Phase II. The Preplanning Phase, completed in September 1992, included literature review, conceptual cost estimations, design plans and specifications preparation and review, and publication of a final report documenting the results. Phase I included two integrated pilot tests and the preparation of this final technical report evaluating the results of Phase I and the conceptual planning of Phase II. Phase II will include the complete planning and design of a full-scale commercial demonstration of radio frequency soil decontamination.

Radio frequency soil decontamination is essentially a heat-assisted vapor extraction process. Radio frequency energy applied to the soil causes polar molecules, including water and many organic compounds, to vibrate. This vibrational energy is lost as heat. The resulting rise in soil temperature vaporizes both water and contaminants, which may then be removed by application of a vacuum. Extracted vapors may be treated by a variety of methods, depending on the site and the nature of the contaminants. Vapors extracted during the demonstrations at Site S-1 were burned in a flare.

Two types of radio frequency soil heating were demonstrated at Site S-1 from January to August 1993 and 1994. In 1993, a technique developed by the IIT Research Institute that uses a series of exciter and ground electrodes placed in the soil was demonstrated. This technique was tested previously at Air Force sites. In 1994, a technique developed by KAI Technologies, Inc. which uses

D47119412 · V

an antenna-like device that may be placed in a vertical or horizontal borehole was demonstrated. Halliburton NUS Environmental Corporation provided site preparation services, the vapor extraction system, and supervised and coordinated all other aspects of the demonstrations.

Armstrong Laboratory, Kelly AFB, and the US Department of Energy have contributed funds and guidance for the work completed to date which includes the Preplanning Phase and Phase I. In addition, the Phase I demonstrations are part of the US Environmental Protection Agency's Superfund Innovative Technology Evaluation Program.

Halliburton NUS Environmental Corporation concludes that data gathered during the pilot demonstrations is invaluable to the development of radio frequency heating for the enhancement of soil vapor extraction and can be used to design a commercial scale system and implement remedial activities in accordance with United States Air Force procedures. From lessons learned during the Site S-1 demonstrations, criteria for technology implementation have become apparent that allow the selection of a site better suited to the unique physical and chemical phenomenon inherent in the process. To date only six field tests have been completed. These tests have addressed situations with a wide variance of soil and contaminant characteristics. A phased approach is recommended which would include more demonstrations to plug data gaps and define unknowns followed by commercial scale application. A smaller site with a simpler (more homogenous) soil and contaminant matrix, relative to Site S-1, would simplify the evaluation of results and better define technology applicability.

D47119412 Vi

Table of Contents

Section	Title	Page
A. BACKGROUND		. 2
II. DEMONSTRATION OBJECTIVES		. 4
A. REGIONAL SETTING . 1. Geography 2. Geology 3. Hydrology B. SITE S-1 1. Location 2. Site History . 3. Topography and 4. Geology 5. Hydrology	Drainage	. 66 . 66 . 77 . 77 . 79
A PROCESS DESCRIPTION		. 13
A. TREATABILITY OF S-1 RANGE ORGANICS 1. SOIL SAMPLE DE 2. Treatability S 3. Experimental A 4. Experimental E 5. Experimental E HEATING SYSTEM DESI	ATION	. 22 . 22 . 22 . 25 . 27
2. Estimate of He 3. System Design 4. Electrode Arra 5. RF Shield . 6. Vapor and Gas	Volume	. 33 . 36 . 41 . 41
VI. DEMONSTRATION OPERATION A. SYSTEM START UP. B. CHRONOLOGY OF EVEN		. 51 . 51

	•						TH. FT		÷. ::::::::::::::::::::::::::::::::::::	_					
	c.	DATA	RECORDED A	ND PAR	AMETER	S MO	TINC	ORE	D	•		•	•	•	52
		1.	RF Power T	eliver	v Svst	em:						•	•		-52
		2.	Soil Tempe	rature	Data					•				• , .	53
		3.	Vapor Coll	ection	and T	reat	men	t S	yst	em			•		53
		_	•												
VII.	DE	MONSTRA	TION TEST	DATA .									•		55
	Α.	SOIL	TEMPEDATTE	בדעת ש					_						55
		1.	Summary . Excitor Ro									•			55
		2.	Excitor Ro	w Temp	eratur	es .			•						59
		2													
		4.	Thermowell	Tempe:	rature	s.			_						ככ
		E	Temperatur	e Outs	ide th	e Ai	rrav		_	_					63
		6	Temperatur	e Duri	na Coo	1 Do	own								63
		7.	Spatial Te	mperati	ire Di	stri	ibut	ion	s						63
	в.	יי. אמאר	SIS OF SOI	T. FOR '	TOTAL	PETE	COLE	TIM	HYL	RO	CAR	BOI	NS		68
	ь.	1.	Pre-Demons	tration	n Soil	San	mple	s .							
		2.	Post-Demon	etratio	on Soi	1 Sa	ampl	es.	•	-					75
		3.	Removal of	COLTACT.	JII DO1	<u>.</u> D	Xp. 4.		•	•	• •	•	•	•	80
	_	J.	Removal of ER INJECTIO	יאי ביצטביו או ביצטביו	· · · · · · · · · · · · · · · · · · ·	• •	•	• •	•	•	• •	•	•		
	C.		Materials	DAG ECC	.inmen	+ .	• •	• •	•	•	• •	•	•	•	86
		1	Procedure	and Eq	TTDIIICII	form	 nina	• •	th.	•	· т	· r=c	י יםי	•	
		2.	Procedure	LOI	LET	TOT	urng		C11.	_		Lat		•	87
		3.	Experiment Trace Inje	ation	Decult	· ·	• •	• •	•	•	• •	•	•	• .	89
	D.	5. prpe	RICAL DATA	CCION .	Kesuic	.	• •	• •	•	•	• •	•	•	•	91
	ט.	1.		Perfor	nance	• '	• •	• •	•	•	• •	•	•	•	91
		2.	RF Emissic	ne Mon	itorin	α'	• •	• •	•	•	• •	•	•	•	
		۷.	Kr EMISSIC	MIS MOM	LCOLIN	9 .	• •		. •	•	• •.	•	•	•	
77TT	C	ONCLUS	CONTC											_	100
ATTT.		ONCLOS.	REMOVAL	• • •	• • •	•	• •	• •	•	•	• •	•	•	•	
	Α.	COTT	TEMPERATUR	יים בים	• • •	• '	• •	• •	•	•	• •	•	•	•	
	B. C.	ODED.	TEMPERATOR ATION OF TH	in on n	ייייייייייייייייייייייייייייייייייייי	CV	· crrM	• •	•	•	• •	•	•	•	102
	C.	OPER	ALLON OF IF	ie kr n	EMITING	יוני	7 1 1111	•	•	•	• •	•	•	•	102
T 32		TI COMME	TO A THE CASE												103
IX.	R	ECOMME!	DATIONS .	• • •	• • •	•	• •	• •	•	•	• •	•	•	•	100
Y	ח	EFFREN	ידיפ												105

TITLE APPENDIX Α SUMMARY OF LOG BOOK ENTRIES FOR RF HEATING 105 B C SOIL TEMPERATURE DATA 111 ELECTRICAL DATA 174 Ď OPERATING DATA 198 E F G PARTICLE SIZE DISTRIBUTION 213 SOIL VAPOR ANALYTICAL SUMMARY 218 DEWATERING SYSTEM 220 Н SEMI VOLATILE ORGANICS 226 BASE/NEUTRAL/ACID EXTRACTABLES Ι 232 J TCLP ANALYSIS 237 COST SUMMARY Κ 246

List of Figures

Figur	re Title		P	age
1	Location Map for Site S-1		•	. 3
^	0;+a 0-1	•	•	
_	Ambiet a Tllwatration of the RE Process	•	•	
4	demonstral Block Diagram of the RF Process			7.0
5	dail normonbility at a Fillerion of Pole Datuiation .	•		
6	coil Treatability Experimental Set UD	•	•	20
7	Surface-Level Plan View OI the Array	•	•	J 2
8	Conceptual Layout of the Demonstration System	•	•	34
9	Vertical Sections AA. BB. CC of			
	Electrode Array	•	•	36
10	- DD of the Array Mear			
10	Soil Surface		•	39
11	Typical Section EE: Electrode Interconnection			
	in Ground Pows A and C	•	•	
12	RF Shield			41
13	Vapor Collection Manifold		•	43
14	Thermogouple Locations in Plane AA			45
15	Thermocouple Locations Plane BB			46
16	Thermocouple Locations Plane BB			47
17	Traign Thermocouples Installation Within			
1 /	Electrodes			48
18	Grantage Isral Diam View of the Attav			
10	Electrode and Thermowell Locations			49
19	Electrode Hole and Thermowell Layout			56
20	Average Temperature in the Array			57
21	Excitor Row Average Temperature			
22	Ground Rows Average Temperature	_		
	Average Thermowell Temperature vs. Time	•	•	62
23	Outside Thermowell (TW7) Temperatures			
24	a and David Assessment Homporature			
25	(Since 12:00 hr., June 3, 1993)	_		65
26				-
26	Delinition of vertical riancs for		_	66
0.7	Definition of Vertical Planes for Temperature Distribution	•	•	
27	Plane TRANS (Depth: 1 ft)			67
0.0	Plane TRANS (Depth: 1 1t/	•	•	0.
28	Transverse Temperature Distribution in			69
	Plane TRANS (Depth: 10-12 ft)	•	•	0,5
29	Transverse Temperature Distribution in			70
	Plane TRANS (Depth: 20-24 ft)	•	•	, 0
30	Pre and Post Demonstration TPH Concentration in			83
	Electrode Row A as a Function of Depth	•	•	03
31	Pre- and Post-Demonstration TPH Concentration in			84
	Electrode Row B as a Function of Depth	•	•	04

List of Figures

Figur	Title					Pa	age
	Pre- and Post-Demonstration TPH Concentration is Electrode Row C as a Function of Depth	•					85
33	Gas Sampling Scheme for the Tracer Experiment	•	•	•	•	•	88
2.4	Input Power Level Vs Time		•	•	•	•	92
35	Cumulative RF Energy Vs Time	•	•	•	•	•	93
36	(Percent of Capacity)	•				•	94
37	Kelly AFB; Site S-1 Array Input Impedance Tracking			•			96
38	Kelly AFB; Site S-1 Array Input Impedance Tracking						97

List of Figures

Numbe	Title				Page
B-1	Surface-Level Plan View of the Array Showing Electrode and Thermowell Locations				
D-T	Thermough Locations		•	•	. B-2
B-2	Excitor Electrode B1 Temperature		•	•	B-32
	Described Plactrode R2 Temperature		•	•	
B-3	Excitor Electrode B3 Temperature				D-24
B-4	- 'a Disabrodo DA Temperariire		•	•	ב כ
B-5	Ground Row A Temperatures (1-ft Depth)				B-36
B-6	Ground Row A Temperatures (12-ft Depth)				B-37
B-7	Ground Row A Temperatures (12 16 Depth) Ground Row A Temperatures (24-ft Depth)				B-38
B-8	Ground Row A Temperatures (24-1t Depth)	•	•	-	B-39
B-9	Ground Row A Temperatures (29-ft Depth)	• •	•	•	
B-10	Ground Row C Temperatures (1-ft Depth)		•	•	B-41
	grand Det C Temperatures (1)-IF Deben)		•	•	70 . 47
	a Dec. C Momporatures (V4-TE Depen)		•	•	7 42
	a I ber a memberstures (29-II Debil)			•	D- 4 3
	mbarrature vs Time (1-II Deptn) .		•		D-44
D	The amount of Tomporature VS. Time (24-It Debtil)			•	D-40
	m	1 - 1	•	•	<u> </u>
D 10	Tomperature Outside the Heated Array (Debth 24)	エレノ	•	•	D-40
B_19	Temperature Outside the Heated Array (Depth 29	ft)		•	B-49
B-20					
	Diana IONG (Depth 1 ft)			•	B-50
B-21	Longitudinal Temperature Distribution in				
ט בב	Plane LONG (Depth 10-12 ft)				B-51
D 22	Longitudinal Temperature Distribution in				
D-22	Longitudinal Temperature Distribution in Plane LONG (Depth 10-12 ft)				B-52
	Flane Hone (Bepen 20 11 11)				
B-23	Longitudinal Temperature Distribution in Plane LNGU (Depth 1 ft)				B-53
D 04	Taneitudinal Townersture Distribution in				
B-24	Longitudinal lemperature distribution in			_	B-54
	Plane midd (Depth 12 10)				
B-25	Longitudinal Temperature Distribution in Plane LNGU (Depth 12 ft)			_	B-55
	Plane Lingu (Depth 24 It)	•		-	
B-26	Plane TRNV (Depth 1 ft)				B-56
	Plane IRNV (Deolh I IL)	• •	• •	•	ט ט
B-27	Transverse Temperature Distribution in				D. 57
	Plane TRNV (Depth 12 ft)	•	• •	•	ו כים
B-28	Transverse Temperature Distribution in				D [0
	Plane TRNV (Depth 24 ft)	•	• •	•	8-20
B-29	Transverse Temperature Distribution in				
	Plane TRNS (Depth 1 ft)	•	• •	•	B-59
B-30	Transverse Temperature distribution in				
	Plane TRNS (Depth 10-12 ft)	•		•	B-60

List of Tables

Table	Title Title	Pag	ŗe
1	Organic Compounds Detected in Soils, Site S-1, Kelly AFB, Texas	-	.1
2	n 111 Doint Boduction		.9
3	Theoretical Energy Required to Heat Soll to 150°C	. 2	21
4	midla careening and Lab. Analysis of Core		_
•	samples Obtained on 10-19-94, site S-1, Kelly AFB	. 2	23
5	Concentration (µg/kg) of Semi-Volatiles in		_
	Porings SB-16 to SB-18	. 2	4
6	— · 1/1/2- D-manimontal Conditions		
	and Results	. 2	9
7	Calculation of TPH Removal During	_	
	Calculation of TPH Removal During Treatability Study	. 3	0
8	CLACETONE ATTAV IIIMENSIONS-DOSIGNOG VDI		
	Implemented	. 3	8
9	Thermocouple Distribution Inside Electrodes	. 4	2
10	Chronology of Selected Events	. =	2
11	Determination of Moisture in Pre-Demonstration		
	Soil Samples	. 7	71
12	Determination of TPH in Pre-Demonstration	_	
	Soil Samples	. /	72
13	Determination of TPH in Pre-Demonstration		
•	Soil Samples QA/QC Samples		74
14	Spike Recovery	. 7	76 77
15	Results of Duplicate Analysis	. /	′ ′
16	Post Demonstration Soil Analysis for TPH		
•	By California Method and Moisture by	-	78
	Weight Loss in Oven	•	31
17	Summary of TPH Analysis Done at IITRI, ppm		90
18	Results of Tracer Injection Experiment		99
19	RFI Safety Measurements Near/Far-Field	. 3	77
A-1	Summary of Logbook Entries		A-2
B-1	Ground Electrodes and Outside Thermowell (TW7)		
0	Temperature (Recorded Manually)		B-3
B-2	Temperature in Thermowells (Outside Thermowell		
	TW7 in Table B-1		B-9
B-3	Temperature in Excitor Electrodes	1	B-1:
B-4	Ground Electrode and Outside Thermowell Temperature		
- •	(Recorded by Data Logger)		B-20
C-1	Operating Data Electrical	1	C-3

I. INTRODUCTION

The purpose of this document is to present the results of the in situ radio frequency heating soil decontamination experiment performed at Kelly Air Force Base, Site S-1, San Antonio, Texas. The heating portion of the experiment was performed from April 3, 1993 to June 3, 1993.

A number of different organizations were involved in this project. These were:

- HALLIBURTON NUS: USAF's prime contractor in charge of the demonstration project.
- IIT Research Institute: Subcontractor to HALLIBURTON NUS; technology developer and operator of the in situ heating system; analysis of soil for diesel range petroleum hydrocarbons.
- USEPA SITE Program Office: Technology evaluation and assessment including the analysis of soil samples for contaminant concentration.
- SAIC: USEPA's contractor for SITE program.

A. BACKGROUND

IIT Research Institute (IITRI) has been working with HQ AFCESA/RAVW, Tyndall Air Force Base for many years to develop the RF technology for in situ soil decontamination. The RF technology was originally conceived and developed for uniform heating of large volumes of earth formations for in situ fuel recovery. The technology was modified for soil decontamination purposes. IITRI had a number of contracts over the past years from U.S. Air Force, U.S. Environmental Protection Agency (EPA), and U.S. Department of Energy (DOE) to develop various aspects of the technology.

The radio frequency (RF) soil decontamination technology is based on in situ heating of soil through dissipation of electromagnetic energy in the RF band to volatilize the contaminants followed by collection and treatment of the effluent. The RF technology requires two major subsystems: the RF heating system and the effluent containment collection, and treatment (ECCT) system. The RF heating system includes the electrode array and the RF shield, RF power source, and matching network; the ECCT system includes the vapor barrier, vapor collection system, blower, and the vapor treatment system (VTS).

Energy is applied to the soil by energizing an array of electrodes placed in bore holes drilled through the contaminated soil. The electrodes are fabricated from copper and aluminum tubing or pipe. Selected electrodes are perforated and also connected to a vacuum system for the collection of the vaporized contaminants, water vapor and air. A vapor barrier and a RF shield is placed on top of the electrode array. The vapor barrier is needed to prevent emissions of the vaporized contaminants from the heated surface of the soil. The RF shield is needed to reduce RF emissions to low levels so that to avoid RF interference with other electronic systems and also to reduce RF emissions to safe levels.

B. SITE HISTORY

The demonstration experiment was conducted at Site S-1, located near the northern boundary of Kelly Air Force Base (AFB), Texas. This site was used as an intermediate storage area for wastes to be reclaimed off-base. The waste liquids were stored in storage tanks. Mixed solvents, carbon cleaning compounds, petroleum oils and lubricants (POL) were handled at the storage area. The soil is contaminated due to waste spills that occurred during waste transfer and storage tank overflow. The spilled material accumulated in a sump at the bottom of a nearby depression in the ground. The site was used from 1960 to 1973. It is reported that the depression was back filled with fill material after site operations were terminated. Figure 1 illustrates the general location of the site on Kelly AFB.

C. PROJECT BACKGROUND

Work was initiated by IITRI on this project on November 2, 1992. Prior to this, IITRI had completed a bench scale treatability study (Reference 2a) to determine the feasibility of the removal of diesel range TPH from Site S-1 soil. In the same project (Reference 2b), the design of a demonstration system based on 120 kW of input RF power was made. Subsequently, the design was revised in this project for an input power level of 40 kW in order to allow the demonstration to be done with IITRI's RF power source.

Figure 1. Location ap for Site S-1.

II. DEMONSTRATION OBJECTIVES

The main objectives of the field demonstration test were the following:

- Obtain a greater than 90 percent removal efficiency from the soil for the following four semi-volatile organic compounds: 2-methynaphthalene, naphthalene, 2,4,6trichlorophenol, and 2-methylphenol
- Obtain greater than 95 percent removal efficiency from the soil for the following four volatile organic compounds: benzene, toluene, ethylbenzene, and chlorobenzene
- Obtain greater than 90 percent removal of the diesel range total petroleum hydrocarbons (TPH).
- Measure the removal of three ring PAHs, bis(2ethylhexyl)phthlate and other semi-volatiles found at the site.

It was planned to heat the soil to an average temperature of 150° C. This treatment temperature was selected based on the results of a laboratory treatability study in which the removal of diesel range organics from samples of site S-1 soil was studied.

The RF in situ soil decontamination process was tested by heating a soil volume of dimensions: 17.5 ft long, 10 ft wide and 20 ft deep. In the original design the depth of the heated zone was 24 ft, but this was changed during system installation. The change was necessary because ground water table was shallower than expected.

This project was accomplished by performing the following 13 tasks:

Task 1:	Scale Down Design and Document	(C06770)
Task 2:	Revise Work Plan and Schedule	(C06773)
Task 3:	Review Health and Safety Plan	(C06774)
Task 4:	Review of Sampling and Analysis Plan	(C06775)
Task 5:	Assist in Obtaining Permits	(C06771)
Task 6:	Procurement and Equipment Fabrication	(C06772)
Task 7:	System Installation	(C06776)
Task 8:	Start up and Shakedown of System	(C06778)
Task 9:	Perform Demonstration and Cool Down	(C06779)
Task 10:	Decontamination and Demobilization	(C06786)

Task 11:	Review Data, Cost Analysis and Write	(C06781)
	Final Report	(000000)
	Attend Meetings Analyze Pre-Demonstration Soil Samples	(C06782) (C06784)

III. SITE DESCRIPTION1

A. REGIONAL SETTING

1. Geography

Kelly AFB lies in the western portion of the Gulf Coastal Plain, a gently undulating prairie with elevations ranging from 450 feet to approximately 700 feet above the National Geodetic Vertical Datum (NGVD). The plain slopes to the Southeast toward the Gulf of Mexico. Elevations at Kelly AFB vary from 730 to 620 feet above NGVD. Lower elevations lie along Leon Creek at the southern boundary of the base.

The San Antonio area lies within two distinct physiographic regions, the Edwards Plateau section of the Great Plains Province and the western Gulf Coastal Plain. The southwest-northeast trending Balcones Escarpment divides the two regions. The plateau serves as a recharge area for surface waters flowing to aquifers and streams extending through the San Antonio area.

2. Geology

The region surrounding Kelly AFB is underlain by Quaternary alluvium over a thick stratigraphic sequence of Cretaceous sediments. The alluvium consists of mixtures of clay, silt, and gravel. These deposits are typically 10 to 35 feet thick. The Cretaceous unit is the Navarro Group clay. The Navarro Group clay and other limestone and shale units form a thick sequence between the alluvium and the underlying Edwards Group limestone.

3. Hydrology

Surface Drainage

Surface runoff at Site S-1 drains eastward to Apache Creek, approximately 2.5 miles away. Apache Creek flows into San Pedro Creek, which in turn flows into the San Antonio River.

Groundwater

Kelly AFB lies above two groundwater aquifers. The uppermost aquifer lies within the lower strata of the Quaternary alluvium. Although this aquifer is capable of providing potable

¹Material in this Section is taken from Preplanning Report for the Demonstration of Radio Frequency Soil Decontamination -- Site S-1, HALLIBURTON NUS, USAF Contract No. F33615-90-D-4011, Delivery Order No. 0007, November 1993.

water, the quality and quantity are variable and questionable. The second aquifer is contained within the Edwards Group and is separated from the first aquifer by the Navarro Clay. The Texas Legislature established the Edwards Aquifer Underground Water District in 1959 to provide for the systematic planning and protection of groundwater in this aquifer. The EPA designated the Edwards a sole source aquifer in 1975 (40 CFR 149).

B. SITE S-1

1. Location

Site S-1 lies in the northern part of Kelly AFB, immediately south of Growdon Drive, north of West Thompson Drive, and west of a railroad spur near Building 1592.

2. Site History

Site S-1 served as an interim storage area for wastes to be reclaimed off base from the early 1960s to 1973. The western two-thirds of the site served as a temporary storage for electrical transformers and scrap metal. Liquid wastes, including mixed solvents and POLs were stored in above-ground tanks. Any spillage that occurred during storage, loading, and unloading flowed into a low area near the tanks. The site was later regraded after the abandonment and removal of the tanks.

Investigators observed a circular depression on old aerial photographs and investigated it as a possible dump site. No landfill material was found, and the depression area and a sump located within the depression were leveled with fill material. This waste oil sump is shown Figure 2 as a northwest - southeast trending region covering an area of approximately 40 by 150 feet. Further drilling has revealed a northwest-southeast-trending extension of the sump on the northeast side of the site.

3. Topography and Drainage

Site S-1 is generally flat, with surface elevations ranging from 690 to 691 feet above NGVD. Gravel covers the area over the former sump, but grass covers most of the remainder of the site. Rainfall at the site is likely to pool on the surface because of the slight topographic relief and low infiltration rates.

4. Geology

The alluvial material at Site S-1 consists of an upper layer of dark brown to black clay typically 7 feet thick overlying either a reddish brown silty clay or a clayey gravel, sand/gravel unit. The reddish brown silty clay lies in the southeast corner of the

Figure 2. Site S-1.

site and is usually 7 to 10 feet thick. The coarse-grained unit underlying the remainder of the site consists of surrounded to subangular limestone and chert.

Results from two grain size analyses of the sand and gravel unit collected from a boring adjacent to Site S-1 (APO2) show that the alluvial aquifer is approximately 40% sand, 40% gravel, and 20% fine-grained material. These results as well as other geotechnical samples collected at Kelly AFB demonstrate a significant variability in the porosity and permeability of the alluvium.

Much of the alluvium was removed and replaced by fill material in the former depression area. The fill material is dark brown to black gravely clay with occasional zones of sand and silt covering an area approximately 150 by 300 feet. The depth ranges from 0 feet at the edge of the sump to 25 feet at its center. Large limestone and chert gravels up to 3 inches in diameter inhibited recovery during drilling throughout most of the unit.

The regional aquitard, the Navarro Group clay, lies 28 to 33 feet below the former depression area. Under Site S-1, the Navarro clay is a mottled, orange-brown to gray, stiff, plastic clay with crude laminae. A few borings have revealed silty horizons within the clay.

5. Hydrology

Water level measurements recorded between mid-1989 and late1990 indicate that the direction of groundwater flow is towards the
northeast. The water table beneath the site ranged from 25 to 30
feet below the surface, with a saturated aquifer thickness of 3 to
6 ft. The maximum water level fluctuation observed in the vicinity
of Site S-1 was 3.25 ft. Northeast of the site, water level
measurements made on April 30, 1992 indicated that groundwater
gradient was 0.016 ft/ft, much higher than the 0.003 ft/ft gradient
found immediately downgradient of the site. A local high are in
the Navarro clay in combination with a groundwater mound effect
appears to be the cause for the steep gradient across the sump.

6. Levels and Extent of Contamination

Soils

Site S-1 analytical results show significant contamination in the location of the former sump. The contamination consists of polychlorinated biphenyls (PCBs) in surface soils (9,000 $\mu \mathrm{g/kg})$ and volatile organic compounds (VOCs) and semivolatile organics in the subsurface. The compound groups most prevalent in the subsurface are halogenated benzenes, methyl phenols, phthalates, and polynuclear aromatic hydrocarbons (PAHs).

Compounds with the highest concentrations in the soil are 1,2-dichlorobenzene (1,200,000 $\mu g/kg$) and 1,4-dichlorobenzene (720,000 $\mu g/kg$). Table 1 shows the maximum concentration of each VOC and semivolatile compound detected by fixed-base or field laboratory analysis.

Horizontally, the contamination at Site S-1 is largely confined to a 110 by 120-foot area surrounding the sump. Vertically, most of the organic contamination in the soil lies in a 10 to 15-foot thick horizon 17 to 33 feet below the surface in boring S1B10 and S1B11. Although surface staining is evident in aerial photographs, little contamination is found above a depth of 10 feet. Another zone of contamination, isolated from the lower unit, was detected in boring S1B08 at a depth of approximately 12 feet. The lower extent of the contamination in this isolated area could not be determined because of poor sample recovery.

Table	1.	ic Compounds	Organic Compounds Detected in Soils,	Site	S-1, Kelly AFB,	Texas	
Volatile Organics	Chemical Formula	Notecutar Veight	Boiling Point at 1 atm., ("C)	Specific Gravity	Temperature at which Vapor Pressure is 1 mm Hg (°C)	Vapor Pressure at 20°C (mm Hg)	Naximum Concentration (µg/kg)
1,2-Dichlorobenzene	C ₆ H ₄ Cl ₂	147.01	180	1.3048	20	1	5,100
1,4-Dichlorobenzene	C _e H ₄ Cl ₂	147.01	174	1.2475	<50	9.0	5,100
1,3-Dichlorobenzene	C ₆ H ₄ Cl ₂	147.01	173	1.2884	12.1	2 (25 deg)	1,800
Styrene	C _B H _B	104.2	145	0.9060	-7	2	1,100
Ethylbenzene	C ₈ H ₁₀	106.2	136	0.8670	-9.8	7.1	2,700
Chlorobenzene	C _e H ₆ Cl	112.6	132	1.1058	-13	6	3,200
2-Hexanone	C ₆ H ₁₂ O	100.2	128	0.8113	7.7	2	32
Tetrachloroethene	ביכן	165.8	121	1.6227	-20.6	14	7
Toluene	C,H ₈	92.2	111	0.8669	-26.7	22	6,800
Trichloroethene	C ₂ HCl ₃	131.4	87	1.4642	-43.8	57.8	12
Benzene	C _e H _e	78.1	80	0.8787	-36.7	76	1,200
2-Butanone	C,H ₀ O	72.1	80	0.8054	-48.3	77.5	53
1,1,1-Trichloroethane	C2H3Cl3	133.4	7.4	1.3390	-52	100	72
Vinyl Acetate	C4H6O2	86.1	72	0.9317	-48	83	7
Chloroform	CHCl3	119.4	62	1.4832	-58	160	17
Trans-1,2-Dichloroethene	C2H2Cl2	6.96	87	1.2565	-65.4	265	200
Methylene Chloride	CH2C1,	84.9	40	1.3266	-70	348.9	130

Table 1. 0	Organic Compounds Detected in Soils,	ounds Detec	ted in Soil	Site	S-1, Kelly AFB, To	Texas (Continued)	
Semi-Volatile Organics/PCBs	Chemical Formula	Molecular Leight	Boiling Point at 1 atm., (°C)	Specific Gravity	Temperature at which Vapor Pressure is 1 mm Hg (°C)	Vapor Pressure at 20°C (mm Hg)	Maximum Concentration (#g/kg)
Aroclor-1260	Varies	≈370	385 - 420	1.5660		6E-5 (25 deg)	6,700
Benzoperylene	C22H12	276.3	>500			1.0E-10 (25 deg)	230
Indeno-(1,2,3)-Pyrene	C22H12	276.3	536			1.0E-10 (25 deg)	190
Dibenzo Anthracene	C22H14	278.4	524	1.2820		1.00E-10	160
Benzo Pyrene	C20H12	252.3	495	1.3510		5.00E-07	06£
Benzo Fluoranthene	C ₂₀ H ₁₂	252.3	480			5.00E-07	002
Chrysene	C ₁₈ H ₁₂	228.3	448	1.2740		6.30E-07	280
Benzo Anthracene	C ₁₈ H ₁₂	282.3	439	1.2740		2.00E-09	520
Pyrene	C ₁₆ H ₁₀	202.3	393	1.2710		2.5E-6 (25 deg)	076
Fluoranthene	C ₁₆ H ₁₀	202.3	375	1.2520		5.00E-06	000'6
Anthracene	C14H10	178.2	340	1.2830	145	2.00E-04	130
Pentanthrene	C14010	178.2	340	0.9800	118.2	2.10E-04	920
Acena Phthylene	C12H12	152.2	265	0.8988		2.90E-02	20
2,4,6-Trichlorophenol	C _e H ₃ Cl ₃ O	197.5	246	1.4900	76.5	1.7E-2 (25 deg)	100,000
2-Methlynaohthalene	C,1H10	142	241	1.0058			12,000
Di-n-Octyl Phthalate	C24H3904	390.6	220	0.9900		1.4E-4 (25 deg)	2,800
Naphthalene	C ₁₀ H _B	128.2	218	1.0253	52.6	5.40E-02	10,000
Bis(2-Ethylhexyl)-Phthalate	C24H38O4	390.6	218	0.9843		2.00E-07	57,000
2,4-Dimethylphenol	C ₆ H ₁₀ O	122.2	212	0.9650	51.8	6.20E-02	2,400
2,6-Dimethylphenol	C ₀ H ₁₀ O	122.2	203	0.8600	58		2,200
2-Methyphenol	C,H ₀ O	108.1	191	1.0273	38.2	0,3 (25 deg)	8, 100
Phenol	C ₈ H ₆ O	94.11	182	1.0722	40.1	0.2	3,200

IV TECHNOLOGY DESCRIPTION

A. PROCESS DESCRIPTION

In situ radio frequency (RF) heating and soil decontamination is a two-step process. These steps are: heating of soil to the treatment temperature, and recovery and treatment of the volatilized contaminants. Once the soil temperature is elevated above 40° to 50° C, these two steps work simultaneously.

In situ heating is accomplished by energizing an array of electrodes emplaced in bore holes drilled through the soil. The electrode array is supplied with electromagnetic (EM) energy in the RF band, typically between 2 and 13 MHz. The actual operating frequency is selected from the available ISM band frequencies in the above range. Typically three rows of electrodes are utilized. The two outer rows are called the guard electrodes and they serve to confine the energy to a well defined volume of the soil. The center row is called the excitor row. Figure 3 is an illustration of the in situ RF heating process depicting the electrode rows and the vapor collection system.

In RF heating, mechanism of heat generation is similar to that the microwave oven. Electrical energy is dissipated volumetrically and converted to thermal energy due the absorption of EM energy by moisture and soil. The primary mechanism of energy absorption is the rotational and vibrational displacement and physical distortion of dipoles induced in polar molecules. dielectric properties of soil determine the amount of RF power that can be dissipated in the soil. These properties are the relative dielectric constant (ϵ_r) and the loss tangent. The loss tangent, $\tan(\delta)$ is defined as $\sigma/(\omega\epsilon_o\epsilon_r)$ where σ is the apparent conductivity, ω is the frequency of the applied electric field, radians/sec, and $\epsilon_{\rm o}$ is the permittivity of free space, and it equals 8.85 x 10^{-12} farads/meter. All the dielectric properties are a function of soil temperature, the frequency of the applied field and the composition of the major components. The amount of RF power dissipated in the soil is directly related to the frequency of the applied electric field, square of the amplitude, the relative dielectric constant and the loss tangent.

Due to its volumetric nature, the process does not depend upon conductive transport of thermal energy, even though thermal conduction does occur. With an appropriate array design and operating strategy, it is theoretically possible to obtain uniform heating of the soil volume enclosed within the two outer rows of the excitor array.

IN SITU Radio Frequency Soil Decontamination Process

Figure 3. Artist's Illustration of the RF Process.

As the soil heats up, the soil moisture and the organic contaminants begin to vaporize and they will eventually boil depending upon the final temperature and their boiling points. The vaporized and boiled materials are removed from the soil matrix by applying a vacuum to gas collection points. These points are vented electrodes placed in the array used to heat the soil. The preferred location of the gas collection electrodes is in the middle of the electrode array. This is the best location because the temperature rises first and reaches a higher level in the central row of electrodes. Collection of hot vapors from the central electrode row at high operating temperatures is however, technically challenging, because collection piping must be non-metallic and poses suitable dielectric insulating properties so as to prevent arcing and radiation of RF energy.

Vapors may also be collected from the surface of the heated zone as well as from the two outer rows of the electrode array. Collection from the two outer rows poses less electrical design challenges because metallic piping may be used here. Gases and vapors produced in the soil volume will also rise directly to the surface due to diffusion, and buoyancy. These may be collected at the surface by means of horizontal perforated gas collection lines placed on the surface of the soil. Depending upon their positioning these lines may be made from metal.

A vapor containment barrier is needed to prevent emissions from the heated soil surface. Typically this barrier must possess high temperature operating characteristics, be impermeable to organic vapors, and must be a suitable dielectric insulator. An elastomeric material like silicon rubber sheets can be used.

Figure 4 is a conceptual block diagram depicting the RF process. Electrical energy from the utility grid is converted to the high frequency electromagnetic energy by a RF power source. This source can be a modified radio transmitter, an amplifier or an oscillator. RF power sources can be trailer mounted for easy transportation to the waste sites. The output of the RF power source is conveyed to a matching network which optimizes the transfer of power between the source and the load. The load comprises of the electrode array along with the soil.

The recovered gas stream may need treatment prior to discharge to the environment. The type of treatment and clean-up required depends on the nature, concentration and total amount of contaminants present in the gas stream. Any proven technology for the clean up of the vent gas stream may be used, provided it can be built in transportable trailer mounted modules. Several options for gas treatment are available:

• Open release of dilute streams of hydrocarbons

Figure 4. Conceptual Block Diagram of the RF Process

- Cooling, condensation, carbon treatment
- Incineration
- Catalytic incineration
- Appropriate combination of above

During the in situ heating of soil several different phenomena occur which help in the vaporization and recovery of the contaminants. First, there is the development of effective permeability to gas flow in the soil matrix. Second there is the increased sweep of air and steam through the treatment zone and third, there is the possibility of steam distillation reducing the boiling point of a multi-phase mixture of organic and aqueous phases.

The effective permeability to air flow increases as the soil water is removed by evaporation and boiling, the vacated pore space becomes available for the flow of steam, vapors and air.

As the permeability to gas flow increases, a sweep of air or steam can be easily established in the soil to help facilitate the removal of organic vapors which are in the soil pore space. The air flow is induced in the soil by the application of vacuum. The steam flow is created by the applied vacuum and boiling of native soil moisture present in the heated volume and of any new water entering the heated zone from the surrounding soil. For some combinations of soil types and contaminants the effect of steam flow may be more beneficial in the removal of the contaminants from the soil matrix than an equivalent flow rate of air.

Figure 5 is a graph depicting the increased permeability to the flow of nitrogen gas in a small sample of clayey soil packed inside a cylindrical device for measuring permeability. The figure illustrates that as the pore saturation of water is reduced, the permeability to air flow increases. It does not matter how the water is removed from the soil pores. Data for two operating modes is presented. In the first, the soil moisture is removed at elevated temperature by heating the core. In the second operating mode, the soil moisture was removed by a nitrogen sweep through the core which was maintained at room temperature. The first operating mode is of course faster in obtaining the permeability change.

Steam distillation of organic liquids such as benzene, xylene, etc. occurs when a mixture of the organic liquid and water is brought to a boil under condition where two or more liquid phases co-exits. Under these conditions, the mixture boils at a lower temperature than that of either of the two phases when present alone. The mixture boils when the partial pressure of all the vapor phase components above the mixture equals 760mm Hg or the prevailing atmospheric pressure. In a multi-liquid-phase mixture, each liquid phase exerts its own vapor pressure, which contributes

Effective Permeability to nitrogen, millidarcy

Soil Permeability as a Function of Pore Saturation Figure 5.

TABLE 2. BOILING POINT REDUCTION (Steam Distillation Conditions)

Contaminant	Normal B.P., °C	Mixture B.P., °C	Steam/ Contaminant lb/lb
1,1,1 Tricholoroethane	74.1	64.4	0.04
Benzene	80.1	68.3	0.09
Toluene	110.6	83.9	0.24
Tetrachloroethylene	120.8	87.7	0.19
Bromoform	150.0	94.3	0.31
Hexachloroethane	186.0	98.7	1.57
Pentadecane	270.5	99.95	30.10

each liquid phase exerts its own vapor pressure, which contributes to the total pressure above the liquid surface. Due to this reason the mixture boils at a temperature less than that of either of the liquid phases present. Table 2 lists the pure component and the mixture boiling points when several common environmental contaminants are subjected to steam distillation conditions.

B. ENERGY REQUIREMENTS

The theoretical amount of thermal energy required to heat soil depends upon the following factors:

- Initial soil temperature
- Final treatment temperature
- Initial Soil moisture content
- Initial hydrocarbon content
- Thermal properties of moist and dry soil

The actual amount of thermal energy needed for the heating of soil depends upon the factors listed above and heat loss. Heat loss from the heated volume can occur in the following ways:

- conduction from the heated soil surface
- conduction from the sides and bottom of the heated block of soil
- heating of any air flowing through the hot zone
- convection and radiation from the heated surface

system and gets converted to steam represents an additional heat load, the economic penalty may be off set by the beneficial aspects of steam sweep on the removal of the contaminants from the soil. In any event, the rate of water intrusion has to be limited to reasonable level such that the power source can provide the necessary extra energy, otherwise the entire volume will not reach the desired temperature or else experience a temperature drop.

In a prior study (Reference 1) the heat loss from the first three mechanism listed above was estimated for heating of large blocks of soil to a depth of 20 ft. In this study approximately 1 acre of soil was heated at the same time using a large RF power source with heating time ranging from 0.25 to 0.5 year. Under such conditions it was estimated that the actual energy required can be 25 percent higher due to heat loss, than the theoretical amount needed.

The additional energy required due to water intrusion was not considered because it is a site specific variable and water intrusion may be controlled by other means. On the other hand it is almost impractical to reduce heat losses due to conduction while operating under in situ conditions.

Table 3 gives an estimate of the theoretical amount of thermal energy needed for heating up one ton of soil to a temperature of 150° C. The following assumptions were made: the soil contains 10 to 20 percent initial moisture, initial contaminant concentration average contaminant latent heat of vaporization of 200 Btu/lb; and no water intrusion. Table 3 shows that when the soil contains 10 percent water, 60 percent of the theoretical energy is required to boil the water. When the soil contains 20 percent initial water, 75 percent of the theoretical energy is required to boil the water. The energy needed to heat the soil after accounting for the conductive heat losses may be estimated from Table 3 by adding 25 percent to the amounts shown. thermal energy needed is in the range of 120 to 190 kWh/ton of soil heated. The amount of RF energy required to heat the soil is also equal to the above estimate due to extremely low losses for RF transmission and 100 percent conversion from RF to thermal energy.

The amount of AC power needed from the utility to heat the soil is a function of the RF power requirements and the AC to RF conversion efficiency of the RF power source. The conversion efficiency ranges from 45 to 65 percent depending upon the type and design of the RF power source. Older, tube-based RF transmitters like IITRI's 40 kW unit, have a conversion efficiency of about 45 percent. Modern tube units have an efficiency ranging from 60 to

TABLE 3. THEORETICAL ENERGY REQUIRED TO HEAT SOIL TO 150° C

	Soil Moisture, %					
	1	0%	20%			
	Btu/ton	kWh/ton	Btu/ton	kWh/ton		
Sensible heat required to reach 100° C	88,200	25.84	88,200	25.84		
Heat Required to boil water	194,000	56.84	388,000	113.68		
Heat required to boil contaminants	4,000	1.17	4,000	1.17		
Heat required to raise temperature from 100° to 150° C	40,050	11.73	35,550	10.42		
Total Heat Required	326,250	95.58	515,750	151.11		

design of the RF power source. Older, tube-based RF transmitters like IITRI's 40 kW unit, have a conversion efficiency of about 45 percent. Modern tube units have an efficiency ranging from 60 to 65 percent. Future solid state units are projected to have conversion efficiency in the range of 70 to 75 percent.

The above discussion does not allow for the AC power requirements of the vapor treatment system. These requirements are estimated to be low, of the order of 10 percent of that needed for heating soil.

V. SYSTEM DESIGN AND INSTALLATION

The system as designed and implemented in the field at Site S-1 is described in this section. The purpose of this design was to heat soil to an average temperature of 150°C in order to meet the objectives listed in Section 2. The temperature of 150°C was selected based on the removal of diesel range organics observed during the soil treatability study done by IITRI in a prior project (Reference 2). The results of the treatability study are also summarized below.

A. TREATABILITY OF S-1 SOIL FOR THE REMOVAL OF DIESEL RANGE ORGANICS

1. SOIL SAMPLE DESCRIPTION

Three new bore holes were made by HALLIBURTON NUS on October 19, 1991, at the southeastern corner of site S-1. Two of these bore holes were on the center line of the pit while one was outside. Continuous coring was done during the drilling of these bore holes by means of a hollow stem auger drill. Table 4 summarizes the core recoveries, field OVA readings, HALLIBURTON NUS' analysis for TPH from selected core intervals, etc. Soil needed for the treatability study was selected from the samples sent to IITRI. In Table 4 the core sample used for each of the five experiments is also indicated by means of the experiment number.

Table 5 provides a list of other contaminants found in the new borings. As the data in Tables 4 and 5 show, TPH with a concentration of up to 980 ppm is by far the most abundant contaminant present in the soil samples analyzed for this study. Other contaminants listed in Table 5 are present at levels which are approximately one thousandth the concentration of TPH. The results from the samples obtained from SB-16 show that the concentrations are considerably lower 5 to 6 ft outside the original estimated location of the sump boundary. Thus SB-16 may indeed be outside the original boundary and also outside the zone of current contamination. The field demonstration should be performed in the southern edge of the sump, near the location of borings SB-17 and SB-18.

2. Treatability Study Objectives and Approach

Soil treatability experiments were performed to determine the required treatment conditions for the removal of petroleum hydrocarbons found in soils obtained from borings made in Site S-1, Kelly AFB. The main focus of the study was to determine the

FIELD SCREENING AND LAB. ANALYSIS OF CORE SAMPLES OBTAINED ON 10/19/91, SITE S-1, KELLY AFB
(All results in ppm) TABLE 4.

ı									
(All results in ppm)	SB-16	Reco very ft	1.9	4.5	0.8	0.4	0.0	0.8	0.0
		OVA	30- 80	5-80	0	15	_	0-2	-
		Moist %	12.2	9.2	NA	NA .	ı	NA	1
		mdd Hal	<20	<20	NA	NA	ı	NA	ı
	SB-18	Reco very ft	4 Exp5	4.6 Exp4	5 Exp2	1.5 Exp3	2.5	2	Э
		OVA ppm	300-700	100- 1000+	300- 1000+	200-300	500-700	700	10-100
		Moist	19.5	24.7	26.7	NA	15.7	NA	22.1
		mdd HdI	<20	<20	<20	NA	110	NA	<20
	SB-17	Reco very ft	4.5	1	1.0	2.0 Exp1	0.8	0.0	0.0
		OVA ppm	40- 700	20	10-40	200- 300	40	-	1
	57	Moist	20.3	NA	NA	8.5	NA	-	1
		TPH	400	NA	NA	086	NA NA	1	ı
		Depth Interval	2-7	7-12	12-17	17-22	22-27	27-32	32-37

Total petroleum hydrocarbons as analyzed by HALLIBURTON NUS. Field measurement for hydrocarbons
Not Analyzed
No Sample Recovery TPH: OVA: NA:

TABLE 5. CONCENTRATION ($\mu g/kg$) OF SEMI-VOLATILES IN BORINGS SB-16 TO SB-18

	SB-16	SB-17		SB-18	
Chemical Name	2-7′	2-7′	2-7′	22- 27'	32- 37'
1,2,4-trichlorobenzene				190	
1,2-dichlorobenzene				3600	230
1,3-dichlorobenzene		200		1600	
1,4-dichlorobenzene		1100		9300	·
2-methylnaphthalene		2300		4400	
Benzo(a)anthracene	170				
Benzo(b)fluoranthene	260				
bis(2- ethylhexyl)phthalate		13000	640	1800	
Di-n-butylphthalate		200	250		
Fluoranthene	430	300			
Naphthalene		140			
Phenanthrene		200			
Pyrene	350				
Solids, wt %	87.8	79.7	80.5	84.3	77.7

Blank cells indicate the contaminant was below its quantitation limit

In SB-16, 7-12 ft all were below quantitation limit In SB-17, 17-22 ft all were below quantitation limit In SB-18, 7-12, and 12-17 all were below quantitation

limit

temperature and time conditions necessary to remove at least 90 percent of the total petroleum hydrocarbons (TPH) as analyzed by the California DHS method (Reference 3) for TPH.

The analytical method allows for determination of TPH as gasoline or as diesel. In this study the TPH was reported as diesel to determine the condition necessary for the removal of higher boiling components represented by diesel. Most of the hydrocarbons in diesel contain nine to 21 carbon atoms. They are primarily straight and branched chain alkanes, alkyl benzenes and The boiling point range of the straight chain alkanes is in the range of 150°-376°C; the lowest boiling branched chain alkane in diesel boils at 306°C; the alkyl benzenes boil in the range of 80° to 255°C, and the PAHs boil in the range of 218°C to greater than 500°C. Thus most of the diesel components can be classified Based on previous treatability studies as semi-volatiles. performed by IITRI on clayey soils it is anticipated that lower boiling volatile organics would have even better removal efficiency under the same conditions that give greater than 90 percent removal for diesel range TPH.

The laboratory approach to the treatability study attempts to simulate the temperature and gas flow conditions that occur in situ. This approach was developed at IITRI over the last five years and was used to develop conditions for the successful field experiment at Volk ANGB (Reference 4). The treatability experiments were performed by packing the clayey soils of Site S-1 into a 1.5-in. diameter pipe. The soil column was heated with externally wrapped heating tapes. Gas flow was simulated by injecting at a controlled rate either nitrogen or superheated steam at the base of the soil column.

Under in situ conditions, as soil is heated and the native moisture is removed from the soil pores, the effective permeability to gas flow increases. Thus a gas and steam sweeping action is established in the heated zone due to the vacuum imposed for the collection of the contaminant gases, vapors and steam. The gas and steam sweep thus established helps to increase the rate of contaminant removal from the soil matrix. In the laboratory this sweeping action is simulated by injection of nitrogen, air or steam at the base of the soil column.

3. Experimental Apparatus

The treatability experiments were performed by heating a column of soil packed into a 1.5-in. diameter stainless steel pipe. The soil inside the pipe was heated by means of heating tapes wound around the pipe. Thermocouples were used to measure the temperature of the soil inside the pipe. The experimental set up is illustrated in Figure 6. The hot gases and vapors formed upon

Figure 6. Soil Treatability Experimental Set Up

heating the soil pass through a heated vapor tube into a water cooled condenser. The outlet of the condenser is connected to a chilled condensate receiver wherein all the liquids formed in the condenser are collected. The uncondensed gases leaving the condensate receiver were passed through a wet test meter.

The soil column was equipped with an injection port at the bottom through which a selected gas (air or nitrogen) or superheated steam was introduced into the soil column to simulate the gas sweep established in the soil upon in situ heating and collection of the produced gases and vapors. The volume of uncondensed gas leaving the chilled condensate receiver was measured by means of a wet test meter as shown in Figure 2. When nitrogen or air was injected at the base of the column it was assumed that the uncondensed gas leaving the receiver was 100% v/v air or nitrogen. Superheated steam was made by pumping deionized water at a controlled rate through a heat traced tubing. The amount of water pumped through the soil column was determined by weighing the water reservoir.

4. Experimental Procedure

The cleaned stainless steel reactor was packed with soil core samples sent to IITRI by HALLIBURTON NUS. Only core samples obtained from the two bore holes made inside the pit were used in the treatability study. In all experiments soil obtained from a single core interval (5 ft length of core) was packed into the reactor. As the reactor was being packed, soil samples were taken for TPH analysis and transferred to a clean glass jar. In some cases, the collected soil sample was split into two portions, one of which was spiked with a solution of known concentration of diesel in carbon disulfide. The jar was sealed with a teflon lined cap and refrigerated pending analysis.

After packing the reactor with soil, the column was connected to the vapor condenser, the wet test meter and the gas injection system as shown in Figure 6. The experiment was begun by heating the column of soil while passing nitrogen or air through the column. During this phase of the experiment native water present in the soil was recovered along with the condensed contaminant vapors in the chilled receiver. Once the recovery of the native soil moisture had ceased (determined by visual observation in the glass condenser) then the nitrogen or air flow was stopped, and the condensate receiver was replaced with a new one. Steam injection was now begun. The temperature of steam entering the base of the soil column was measured and adjusted to match the average temperature of the soil in the column.

Once the final soil temperature was attained, the soil was maintained at the temperature for a period of 100 to 380 hours (the

soak period). During the soaking period the flow of sweep gas was maintained at a constant rate.

At the end of the soaking period steam injection was terminated and nitrogen was re-injected at the base of the column. The purpose of nitrogen injection was to remove all residual steam from the column. The experiment was then terminated and the soil was allowed to cool down to room temperature. During this period the reactor was kept vented to the condenser and the condensate recovery system.

Once the soil had cooled to room temperature, the reactor was opened and the soil was transferred to a clean 1-gallon glass jar. The jar was sealed and tumbled on a roller table for a period of 20 min. A sample of the treated soil was obtained from the gallon jar and transferred to a sample jar. In some experiments two samples were obtained, one of which was spiked with a solution of known concentration of diesel in carbon disulfide.

5. Experimental Results and Conclusions

Five soil treatability experiments were performed. The experimental conditions and TPH concentration in soil are shown in Table 6. The TPH removal calculation is summarized in Table 7. Detailed information regarding each experiment along with temperature profiles are provided in Reference 2. The data shown in Tables 6 and 7 are based on TPH analysis performed by IITRI.

The data in Table 6 indicate that in 2 of the 5 experiments the soil did not have significant amount of TPH contamination as compared to the other samples from the site. Results from the other three experiments show that TPH can be reduced to the range of 60 to 230 ppm depending upon the treatment condition. Thus increasing treatment temperature from 113° to 150°C has a significant effect on the final concentration of the soil. Due to the long residence time in the field, the actual removal of the TPH under field conditions is expected to be even higher than that seen in the laboratory.

The results of Experiments 1 to 3 indicate that with the specific combination of contaminants and the soil matrix there is no effect of the type of sweep gas (steam/nitrogen versus nitrogen alone) on the residual concentration of the TPH. In Experiment 2 a low percent removal was attained due to the low initial concentration of the TPH in the soil. Table 7 is a summary of the removal calculations which take into account the change in soil moisture upon heating.

The calculations summarized in Table 7 are based on a mass balance for TPH and moisture. The basis for performing the mass

	ntration m	Final	227.7	70	59.1	94	11.5	. 13
ID RESULTS	TPH Concentration ppm	Initial	3124	198	198	2740	59.9	18.2
TABLE 6. SOIL TREATABILITY EXPERIMENTAL CONDITIONS AND RESULTS	Water	Injection g/min	4.6	5.2		0.0	0.0	0.5
Y EXPERIMENTAL	Nitrogen/	Air . Sweep	Nitrogen	Nitrogen		Nitrogen	Air	Nitrogen
L TREATABILIT	Soak	Time hr	122	118		102	112	388
TABLE 6. SOI	Soak	Temperature C	113	150		151	153	112
		Expt. No.	1	7		3	4	S

soil from boring SB-17, 17-22 ft depth
soil from boring SB-18, 12-17 ft depth. Three different treated samples were
analyzed. First line provides the results of the first sample and the second
line gives the average of the other two.
soil from boring SB-18, 17-22 ft depth
soil from boring SB-18, 7-12 ft depth
soil from boring SB-18, 2-7 ft depth Expt 1: Expt 2: Expt 3: Expt 4: Expt 5:

CALCULATION OF TPH REMOVAL DURING TREATABILITY STUDY (Basis: 100 gm of Initial Soil) TABLE 7.

Expt. IN INITIAL SOIL IN FINAL SOIL TPH μg/gm								
TPH Conc. Moisture \$\frac{1}{8}\$ μg/gm \$\frac	E ?	ITINI NI	AL SOIL		IN FINA	L SOIL	Ē	
3124.0 9.1% 227.7 0.1% 291747.8 198.0 26.8% 70.0 0.0% 14677.0 198.0 26.8% 70.0 0.0% 15474.8 2740.0 15.1% 94.0 0.0% 266044.4 59.9 23.4% 11.5 0.0% 5109.2 18.2 16.6% 13.0 2.8% 704.3 Initial Soil average of two analysis: 3371, and 2877 provides the results of the first samples were analyzed. First provides the results of the other two samples. The second line the average results of the other two samples. Initial Soil analyzed two ways: by dilution for low level calibration: 2270 μg/gm and by hi level calibration curve and no dilution: 2740 μg/Use hi level result.	BXPC. No.	TPH Conc. $\mu g/gm$	Moisture %		TPH Conc. µg/gm	Moisture %	TPH REMOVED µg	FERCENT REMOVAL
198.0 26.8% 70.0 0.0% 14677.0 198.0 26.8% 59.1 0.0% 15474.8 2740.0 15.1% 94.0 0.0% 266044.4 59.9 23.4% 11.5 0.0% 5109.2 18.2 16.6% 13.0 2.8% 704.3 Initial Soil average of two analysis: 3371, and 2877 μg/gm Three different treated soil samples were analyzed. First provides the results of the first sample. The second line the average results of the other two samples. The second line calibration: 2270 μg/gm and by hi level calibration curve and no dilution: 2740 μg/Use hi level result.	1	3124.0	9.18		227.7	0.1%	291747.8	93.4
198.0 26.8% 59.1 0.0% 15474.8 2740.0 15.1% 94.0 0.0% 266044.4 59.9 23.4% 11.5 0.0% 5109.2 18.2 16.6% 13.0 2.8% 704.3 Three different treated soil samples were analyzed. The second line the average results of the first sample. The second line the average results of the other two samples. Initial Soil analyzed two ways: by dilution for low level calibration: 2270 μg/gm and by hi level calibration curve and no dilution: 2740 μg/gm level result.	2	198.0	26.8\$		70.0	0.0	14677.0	74.1
2740.0 15.1% 94.0 0.0% 266044.4 11.5 18.2 16.6% 11.5 0.0% 5109.2 18.2 16.6% 13.0 2.8% 704.3 μg/gm Three different treated soil samples were analyzed. First provides the results of the first sample. The second line the average results of the other two samples. The second line the average results of the other two samples. Initial Soil analyzed two ways: by dilution for low level calibration: 2270 μg/gm and by hi level calibration curve and no dilution: 2740 μg/Use hi level result.	2	198.0	26.8%		59.1	0.0%	15474.8	78.2
18.2 16.6\$ 18.2 16.6\$ 13.0 2.8\$ 704.3 Initial Soil average of two analysis: 3371, and 2877 Three different treated soil samples were analyzed. First provides the results of the first sample. The second line the average results of the other two samples. Initial Soil analyzed two ways: by dilution for low level calibration: 2270 μg/gm and by hi level calibration curve and no dilution: 2740 μg/Use hi level result.	3		15.1\$		94.0	0.0%	266044.4	97.1
Initial Soil average of two analysis: 3371, and 2877 Three different treated soil samples were analyzed. First provides the results of the first sample. The second line the average results of the other two samples. Initial Soil analyzed two ways: by dilution for low level calibration: 2270 \mug/gm and by hi level calibration curve and no dilution: 2740 \mug/Use hi level result.	4	•	23.4%		11.5	0.0%	5109.2	85.3
Initial Soil average of two analysis: 3371, and 2877 µg/gm Three different treated soil samples were analyzed. First provides the results of the first sample. The second line the average results of the other two samples. Initial Soil analyzed two ways: by dilution for low level calibration: 2270 µg/gm and by hi level calibration curve and no dilution: 2740 µg/Use hi level result.	S		16.6%		13.0	2.8\$	704.3	38.7
Initial Soil average of two analysis: 3371, and 2877 µg/gm Three different treated soil samples were analyzed. First provides the results of the first sample. The second line the average results of the other two samples. Initial Soil analyzed two ways: by dilution for low level calibration: 2270 µg/gm and by hi level calibration curve and no dilution: 2740 µg/Use hi level result.								
Three different treated soil samples were analyzed. First provides the results of the first sample. The second line the average results of the other two samples. Initial Soil analyzed two ways: by dilution for low level calibration: 2270 µg/gm and by hi level calibration curve and no dilution: 2740 µg/Use hi level result.	Expt 1	Initial µg/gm			two analyв	is: 3371,	and 2877	
Init cali and Use	Expt 2		er he	ated s of of	soil sampl the first the other t	were a nple. sample	alyzed. Fi	rst line line gives
	Expt 3	Init cali and Use	Soil analyz ion: $2270~\mu$ i level cal evel result	ed t g/gm ibra	wo ways: by tion curve	dilution and no dil	for low levution: 2740	rel) μg/gm.

balance was 100 gm of initial soil. Consider, as an example, 100 gm of initial soil used in Experiment 1. The soil contains 312,400 μ g of TPH, 9.1 gm of moisture, and 90.59 gm of solids. The 90.59 gm of solids (considered as inert) remain unchanged upon heating, but the moisture content reduces to 0.1% and the TPH concentration reduces to 227.7 μ g/gm. Thus, in the final soil, solids represent 99.88% of the total residual mass. The residual mass of final soil is 90.70 gm. Thus the amount of TPH present in 90.7 gm of final soil is 20,652 μ g. The amount of TPH removed from the initial soil is (312,400-20,652)=291,748 μ g. Therefore, the removal of TPH, expressed as a percentage of initial TPH present in 100 gm of soil is (291,748/312,400)*100=93.4 percent.

B. HEATING SYSTEM DESIGN

1. Design Heated Volume

The volume of the soil heated by the RF process is determined by the dimensions and geometry of the electrode array because the soil between the two outer electrode rows is heated. demonstration the size of the heated volume was limited by the size of the available RF power source, which was 40 kW. The soil was heated by installing an array of electrodes in the soil. The electrodes were installed in vertical bore holes drilled in three parallel rows. Figure 7 is a plan view of the electrode array implemented for the demonstration at Site S-1. The length of the two outer rows of electrodes (Rows A and C) is 17.5 ft and length of the Excitor row (Row B) is 7.5 ft. The depth of the two outer rows was 29 ft while the depth of the Excitor row was 20 ft. heated volume will be determined by the geometry of the electrode array. As discussed above, the two outer rows are both longer and deeper than the central row. This was done to contain the fringing RF fields that emanate from the ends of the excitor row. Thus the volume that is expected to be heated is larger than the length and depth of the excitor row but less than the depth and length of the two outer rows. The width of the heated zone is equal to the separation of the two outer rows, that is 10 ft.

The length expected to be heated is equal to the length of the excitor row plus 66 percent of the row separation at each end. This gives an effective heated length of (7.5+0.66*5*2)=14.1 ft. Similarly, the expected depth of the heated zone is equal to the depth of the excitor row plus 66 percent of the row separation below the tips of the excitor electrodes. This gives a heated depth of (20+0.66*5)=23.3 ft. This gives a heated zone volume of approximately 3,285 cu. ft or 122 cu. yd.

Surface-Level Plan View of the Array (Electrode Locations Shown by •) Figure 7.

Thus the volume that the electrode array was expected to heat has a dimensions of:

Width: 10 ft Length: 14.1 ft Depth: 23.3 ft

2. Estimate of Heating Time

Previously, the energy required to heat one ton of soil was estimated as a function of soil moisture content. The RF energy varied between 120 to 190 kW-hr/ton of soil when the soil moisture varied between 10 to 20 percent. The soil moisture content at site S-1 varied between 9 to 26 percent. The heating time for the soil may be estimated by using the higher value for energy requirement corresponding to a moisture content of 20 percent.

The weight of the soil volume which is expected to be heated is approximately 165 tons. Thus the energy required is 31,350 kW-hr. If the RF power source works continuously at the rated output of 40 kW, it will take 33 days to heat the soil to the desired temperature of 150°C. But because the source will not operate at its rated capacity nor will it work continuously, the actual time required will be longer than 33 days.

A practical operating rate of the power source might be in the range of 70 to 80 percent of its rated capacity, or 28 to 32 kW. It was planned to shut down the RF power source three times every 24 hours to take temperature measurements. Each shut down was expected to last 30 to 60 mins. Thus power feed interruptions of 1.5 to 3 hrs in every 24-hr period were planned. Thus the energy output per day from the power source after accounting for planned interruptions and operating rate is 590 to 720 kW-hr/day. Thus a practical heating time for the soil treatment zone would be 44 to 54 days.

3. System Design Overview

Implementation of the RF technology for soil remediation requires two major subsystems; the RF heating system, and the effluent containment, collection, and treatment (ECCT) system. The RF heating system's purpose is to heat the soil to the required temperature range in the most efficient manner possible. The main components of the RF heating system are the RF power source, the coaxial transmission line, the matching network, the electrode array, the RF shield and RF chokes. The purpose of the ECCT system is to collect and treat the effluents generated during decontamination of soil in an environmentally benign and efficient manner.

A conceptual layout of the RF system configuration is shown in Figure 8. This figure shows all the major components of the heating system and how they are configured in the overall system. The electrode array determines the size of the volume heated by the process. The electrode array had three rows of vertically emplaced electrodes. The width of the array was 10 ft, length 17.5 ft and depth of 20 to 29 ft. The depth of the central row of electrodes was 20 ft while that of the outer rows was 29 ft. A RF shield was placed over the electrode array to mitigate RF radiation from the heated zone. The RF power was generated by the RF power source and conveyed over a co-axial cable to the array through two matching networks and a RF choke. The purpose of the matching networks was to optimize power transfer from the source to the array. networks contain active and/or passive inductive and capacitive components which were adjusted during heating to optimize power transfer.

A vapor barrier is shown in the plan view. The purpose of the vapor barrier is to help control fugitive emissions from the site and to control the infiltration of air into the heated zone from the surface. The upper surface of the vapor barrier was covered with a thermal insulation blanket to minimize heat loss.

Gas collection lines leave the array and convey the hot gases to an on site vapor treatment system. Hot gases comprise of air, steam and vaporized contaminants present in the soil. Gases are collected from four places by means of application of a vacuum: the two outer rows of electrodes and from two horizontal perforated lines placed on the surface below the vapor barrier. A RF choke is used on the gas pipeline leaving the system to prevent the conduction of RF currents along the surface of the pipeline.

The temperature of the soil was measured by means of thermocouples mounted inside the electrodes and by periodically inserting fiber optic temperature measurement probes into thermowells. The thermocouple cables leaving the two outer rows of electrodes were connected to a data logger. The thermocouples in the excitor row and the fiber optic thermometer in the thermowells were read after shutting down the RF power.

The vapor treatment system utilized in this demonstration consisted of a propane flare in which the entire collected gas stream was burnt. The vacuum required for the collection and transport of the gases was provided by means of compressed air ejectors. The motive air used for the operation of the ejectors was mixed with the collected gases.

Conceptual Layout of the Demonstration System. Figure 8.

4. Electrode Array Design

Figure 7 (Page 32) is the surface level plan view of the electrode array. It shows the three rows of electrodes and their spacing. The three vertical sections AA, BB and CC of the array are displayed in Figure 9. In this figure the dotted lines show two ground rows of electrodes, in the electrodes A1,C1,...,A8,C8. The depth of these electrodes was 29 ft. All of these electrodes except the ones at the four corners were perforated and connected to the gas collection system. The bottoms of these electrodes were capped. All the electrodes in the two ground rows were made from 2-in. diameter schedule 40 aluminum pipe. At the top the perforated ground electrodes were connected with each other within a row to form a gas collection manifold. Thermocouples were placed inside selected electrodes to obtain temperature data.

The excitor electrode of Section BB are illustrated by the solid lines in Figure 9. There were four excitor electrodes. The two outer electrodes were 3 in. dia. Type K copper tube and the two inner electrodes were 2 in. diameter type K copper tube. The depth of these electrodes was 20 ft. The tops of these electrodes were connected together by means of copper tube and Tees. A single RF feed line of 3 in. diameter was provided to the excitor electrode manifold. At the bottom of the excitor electrodes a brass sphere was welded to the electrode in order to increase the surface area of the tips of the electrodes in order to reduce the current density concentration at the tips. The sphere at the bottom of electrodes B1 and B4 had a diameter of 5.5 in. The sphere at the bottom of electrodes B2 and B3 had a diameter of 4.5 in. None of these electrodes were used for gas collection.

All the boreholes were drilled by means of hollow stem augers which were required to obtain undisturbed core samples of the soil while drilling for the electrode bore holes. As a result the ID of the bore hole was considerably larger than the OD of the electrodes. The annular gap had to be backfilled with either native material or else another material having similar clay, silt and sand levels. The soil borings obtained from the site contained large pieces of gravel mixed with plastic clay which was difficult to re-insert in the annular space between the electrode and the borehole. So the bore holes were backfilled with a mixture of clay and red "ball park sand". The clay was obtained from a materials yard and the sand was obtained from a local sand pit. The mixture was four volumes of the sand to one volume of the clay.

Figure 9 illustrates the outline of the RF shield which was made from corrugated aluminum sheeting curved to form a semi-circular cylinder of diameter 9 ft. The shield is described in another section later.

Figure 9. Vertical Sections ., BB, CC of Electrode Array.

TABLE 8. ELECTRODE ARRAY DIMENSIONS -- DESIGNED VS. IMPLEMENTED

Dimension	Planned	Implemented
Depth of outer rows, ft	29	29
Depth of center row, ft	24	20
Length of the outer rows, ft	17.5	17.5
Length of the center row, ft	7.5	7.5
Separation of two outer rows, ft	10	10

The design of the electrode array was changed in the field after the bore holes were drilled and the water table was discovered to be shallower than anticipated. The original design of the array required the excitor electrodes to be 24 ft deep. But the depth of the electrodes was reduced when the shallow water table was discovered. Table 8 compares the original dimensions of the array to that actually implemented.

Figure 10 illustrates a typical Section DD of the array. This figure shows the construction of the array near the surface. The drawing illustrates the locations of: the horizontal gas collection line place on the surface, the pea gravel fill, the contaminated soil overpack, the aluminum bus bar connecting the outer electrodes, the extended ground plane wire mesh, the vapor barrier, the thermal insulation and the bentonite-filled trench to make a seal between the soil surface and the vapor barrier.

Figure 11 illustrates a typical section EE. This view illustrates the interconnection of any two adjacent gas-collecting electrodes in the two outer rows. The tops of most of the electrodes in the ground row were connected to the branch leg of a Tee. The straight runs of the Tees were interconnected by means of short pieces of flexible silicone rubber hose clamped to pipe nipples threaded into the Tee.

A short piece of aluminum angle was also welded to each Tee. These were welded such that they bent towards the outside of the array. The electric bus bar was bolted to each of these angles to

Transverse Section DD of the Array Near Soil Surface. Figure 10.

Figure 11. Typical Section EE: Electrode Interconnection in Ground Rows A and C.

provide the current path from electrode to electrode. The bus bar was made from a strip of aluminum sheeting 2.5 ft long, and 3 in. wide.

5. RF Shield

Figure 12 illustrates the RF shield. The RF shield consisted of a semi-circular cylinder lying on its side. It was made by screwing together in the field pre-curved sheets of corrugated aluminum. The finished length of the shield was approximately 22 ft; 9 ft diameter. The ends of the cylinder were made from aluminum sheet. The height of the shield was 4.5 ft. Means of continuously venting the interior of the shield were provided. The vented air was passed through activated carbon drums.

6. Vapor and Gas Collection Lines

Figure 13 illustrates the network of pipes used to collect hot gases from the soil surface and at depth. The main gas line was split into four legs, each with its own ball valve and a vacuum gauge. The gases were collected from two perforated horizontal surface gas collection lines as well as from each of the two outer electrode rows. The surface gas collection lines were made from aluminum pipe. All lines were heat traced once they left the heated soil area. The ball valves were provided to adjust the vacuum level in each leg of the collection system.

7. Temperature Instrumentation

The soil temperature was measured by means of thermocouples attached to the inner walls of selected thermocouples and by inserting fiber optic thermometers into thermowells installed in bore holes located between the electrode rows.

Table 9 gives the distribution of the electrodes which were installed inside the electrodes. In both the ground row electrodes the thermocouples were installed at a depth of 1, 12, 24, and 29 ft. In the excitor row the thermocouples were installed at a depth of 1, 10, 20 ft.

In the original design the location of the thermocouples was selected to provide temperature data at four horizons of interest below the soil surface. These horizons were: the 1-ft depth, the mid point of the excitor electrodes, the tips of the excitor electrodes and the tips of the ground electrodes. However, during field installation of the electrode array the design of the excitor electrodes had to be changed because a shallow water table was encountered, contrary to expectations. At this time it was not possible to change the location of the thermocouples already

Figure 12. RF Shield (Stage #1 matcher enclosed under arch)

Figure 13. Vapor Collection Manifold.

TABLE 9. THERMOCOUPLE DISTRIBUTION INSIDE ELECTRODES

	Ground Row A	Ground Row B	Excitor Row C
No. of Thermocouples	11	16	12
Electrodes with T/Cs	A2,A3,A4	C1,C2,C3,C4,C6	B1,B2,B3,B4
Total No. of Electrodes	8	8	4
Depths of T/Cs, ft	1, 12, 24, 29	1, 12, 24, 29	1, 10, 20

installed in the ground electrodes. Thus the four temperature measurement horizons are not true horizontal planes as is evident from Table 9.

The location of the thermocouples in the array is presented graphically in Figures 14 through 16. The thermocouple location is marked with a X. Figure 17 illustrates the method of thermocouple attachment to the electrode wall. All thermocouples were Type K with a 1/16 in. SS 304 sheath. The junctions were ungrounded. The sheaths on these thermocouples were long enough so that the transition from sheath to wire occurred above ground. The thermocouple wires were run inside conduit to minimize RF pick up. A separate conduit was not necessary. For the excitor electrodes the thermocouple sheaths were run inside the tubular RF bus supplying power to the center row. For the two ground rows the thermocouples were run inside the vapor collection conduit attached to the tops of the ground electrodes.

All the thermocouples from the ground electrodes were connected at the surface to a data logger through a multiplexer. Data was recorded by the data logger once every 4 hours. The data were available for inspection on a PC screen which was refreshed every 2 min. The measurement of temperature in the excitor row required the RF power to be switched off. Then the thermocouple wires were plugged into a hand held thermometer and the temperature of the 12 measurement points in the excitor electrodes was manually entered into the project log book. These readings were taken once every 8 to 12 hours.

Temperature of the soil in the region between the electrodes was taken by inserting a fiber optic probe into thermowells placed

Figure 14. Thermocol Locations in Plane AA.

Figure 15. Thermocouple Locations Plane BB.

Figure 16. Thermocour Locations in Plane CC.

Figure 17. Typical Thermocouple Installation Within Electrode.

Surface-Level Plan View of the Array. Electrode (•) and Thermowell (▲) Locations. Figure 18.

Figure 18 shows the locations of the seven in bore holes. thermowells marked TW1 through TW7. In each thermowell location a bundle of teflon tubes sealed at the bottom was placed in a borehole. The tubes in the bundle were of different lengths so that the temperature could be measured as a function of depth. In TW1 through TW6 there were six tubes in each bundle. These tubes were installed such that their bottoms terminated at depths of 1, 12, 24, 29, 31 and 34 ft below the heated surface. These depths were selected to correspond to the depths of thermocouples in the electrodes. These thermowells had two additional depths of 31 and 34 ft. to investigate what effect if any there was below the electrode array. Thermowell TW7 had three tubes installed at depths of 12, 24 and 29 ft. Thermowell TW7 was installed Thermowell TW7 was installed approximately 3 ft outside the array directly opposite electrode The temperature at the bottom of each tube was measured by inserting the fiber optic probe in each tube one at a time. The bottoms of each plugged tube was filled with a small amount of silicone oil to help facilitate temperature equilibration between the thermowell and the fiber optic probe. The fiber optic temperature measurements of all the thermowells were made and recorded once every 24 hours. However, four probes were left in selected thermowells and these could be measured whenever desired. Measurements taken by fiber optic probes do not require shutting down of the RF power.

VI. DEMONSTRATION OPERATION

A. SYSTEM START UP

The RF heating system was turned on at Noon on April 3, 1993. Prior to this time, the vapor collection system had been operational for several days, collecting gases and vapors from the soil volume which was at ambient temperature. Initially power to the array was applied at low levels in the range of 0-5 kW. During this time the system was stabilized and measurements of radiated E (electric) and H (magnetic) fields were made in the vicinity of the demonstration system. The purpose of these measurements was to ensure that there were no unsafe levels of radiated fields. Another set of measurements was made at the low input power level for assessing near and far field radio frequency interference (RFI).

The input power was gradually increased over the next two days until on April 5, 55 hours after start up, the input power reached the rated capacity of power source. After attaining the rated power operation, additional measurements were made to assure that there was no radio frequency interference as a result of the demonstration project. RFI measurements were made near the test site, and at distances of 0.5 and 1 mile from the array.

The safety measurements were made at least three times every day during the course of the demonstration.

B. CHRONOLOGY OF EVENTS

Table 10 summarizes the highlights of the demonstration experiment. A detailed summary of events culled from the project log books is presented in Appendix A. The central volume of soil between electrodes (A3,C3,C6,A6) reached an average temperature of 100°C in the period April 22 to April 24, 1993. The average temperature in this zone reached the target temperature of 150°C by May 15, 1993. However, on May 18, 1993, RF power matching difficulties were encountered which were to stay with us for the remaining duration of the experiment. As it will be discussed in Section 7, these were due to extreme hot spots located in the excitor row which caused melting of the copper electrodes. As the temperature data will show, no substantial increase in temperature of the heated zone occurred after the matching difficulties started.

Attempt to continue heating of the soil after May 18 were made in the hope of maximizing the volume of soil inside the array which gets heated to 150°C. The heating experiment was terminated on June 3, at Noon.

Table 10. Chronology of Selected Events

Date	Event
4/3/93	Started Heating
4/6/93	Excitor Row reaches 99° C
4/19/93	Excitor Row reaches 100° C
4/22 to 4/24/93	Central volume defined by (A3,C3,C6,A6) reaches an average temp. of 100° C
5/6 to 5/11/93	Temperature at measurement point B2A started increasing faster than the other points. 253° C on 5/6; 740° C on 5/11
5/15/93	Central volume defined by (A3,C3,C6,A6) reaches an average temp. of 150° C
5/18/93	RF power matching difficulties start
5/30/93	Tracer injection experiment was performed
6/3/93	Heating was terminated

C. DATA RECORDED AND PARAMETERS MONITORED

1. RF Power Delivery System:

During the course of the demonstration project the following measurements were made regarding the operation of the RF system:

- Forward and reflected power at the array (upstream of the Stage 1 matcher)
- Net input power was calculated by difference of the forward and reflected power
- Vector voltmeter reading: V_a, V_b and phase angle
- Forward and reflected power as measured at the output of the RF power source

The above measurements were recorded in the project log book at least once every 2 to 3 hours of operation

The following parameters were monitored by the operators:

- Settings on the RF power amplifier
- Reflected and forward power as measured at the power

source with suitable adjustments to the Stage 2 matching network to maintain zero reflected power

Monitoring of the vector voltmeter readings

The above parameters were monitored on a semi-continuous basis. All the necessary gauges and controls were arrayed at the operator's work bench.

Once in every 8 hour shift, the operator would survey the RF equipment with a portable E and H field probe to assure that any radiation from the equipment was at safe levels.

2. Soil Temperature Data

The following measurements were made once in 24 hours:

Measurement of the thermowell temperature by manually inserting fiber optic probes into each thermowell. There were six thermowell locations inside the electrode array each containing 6 thermowells. One thermowell was outside the array and its temperature was monitored by the data logger.

The following measurements were made once every 8 to 12 hours:

Measurement of the temperature from the 12 thermocouples installed in the excitor electrode row. These measurements were made during shift changes after shutting down the RF power input to the soil.

The following measurements were made once every 4 hours:

• The thermocouples in the two outer row of electrode, the ground rows, were logged automatically by the data logger once every four hours. This included the measurement of thermowell TW7 temperatures also In addition, the operator manually wrote down the temperature readings from the PC display once every 2 to 3 hours.

In addition to the above measurements, the ground row temperatures were monitored on a semi-continuous basis from the PC display where the data was updated every 2 minutes.

3. Vapor Collection and Treatment System

This system was operated and maintained by HALLIBURTON NUS personnel. However, the following data were also recorded by IITRI personnel:

Vacuum level in each of the four legs of the gas

collection system

- Total flow rate exiting the ejectors and entering the flare
- Flow rate and pressure of compressed air supplied to the ejector system
- Vacuum at the inlet of the ejectors
- Temperature of the heat traced vapor collection lines

VII. DEMONSTRATION TEST DATA

A. SOIL TEMPERATURE DATA

1. Summary

As mentioned in Section 6, in situ heating of the soil was begun on April 3, 1993. Power was initially applied to soil at 16:40 hours. The center row of electrodes reached a temperature of 99°C by April 6 and it reached 150°C by April 19. Figure 19 illustrates the electrode array showing the location of the electrodes and thermowells. Thermocouples were attached to the inner walls of many electrodes to measure temperature as explained in detail in Section 5.

Figure 20 illustrates the average soil temperature within two zones of the electrode array. These zones are referred to as Volume I and Volume II. Volume I is the soil contained within the two outer electrode rows and the center row of electrodes, defined by electrodes (A3, C3, C6, A6). As Figure 20 shows, the average soil temperature in Volume I exceeded 150°C for a number of days. In fact the average in this zone peaked at approximately 280°C. The reason for the high average temperature in this volume was the presence of extreme hot spots that developed along the center row of electrodes which melted the copper tube used for the fabrication of the electrodes. Melting point of copper is 1083°C. As will be shown later, there were large temperature non-uniformities in the transverse direction. For example, while the temperature in the center row reached copper's melting point, the temperature in the two ground rows did not exceed 110°C.

It is estimated that the region defined as Volume I is approximately 56 cu. yd. It should be noted that due to the large temperature range within this zone, every temperature measuring point was not at 150°C. It is estimated that 34 cu. yd. of soil was heated such that every measurement point within it achieved and maintained 150°C for long period (>100 hours) of time.

Figure 19 illustrates a second region of soil called Volume II. This area of the array is outside the central row of electrodes and it is bounded by electrodes (A1,C1,C2,A2). It was anticipated that the energy dissipation in this area would be reduced, and, as anticipated, the average temperature of Volume II was less, in the range of 60° to 70°C. It is estimated that Volume II is 18.5 cu. yd. However, due to symmetry considerations, there is another volume of similar size at the opposite end of the array (bounded by electrodes A7,C7,C8,A8) which probably experienced a similar temperature history. There were no temperature measurement points in the opposite end of the array. Thus total volume where

AVERAGE TEMPERATURE IN THE ARRAY, C

Vol

the average temperature was in the range of 60°C to 70°C is estimated to be 37 cu. yd.

There is an intermediate temperature region between Volumes I and II where the average temperature was in the range of 70° to 150°C. It was estimated that the volume of soil where every measurement point equalled or exceeded 100°C is 93 cu. yd. This was estimated by the data presented in the spatial temperature distribution plots presented in a later section herein and in Appendix B.

As mentioned above, there was clear evidence that the copper electrodes in the central row melted due to very high temperatures achieved in this row. Copper melts at 1083°C. Evidence of fused electrodes was recovered during post demonstration demobilization activities from each of the four electrode bore holes B1 to B4. An the complete temperature data presented examination of Appendix B shows that the melting point of copper was first exceeded at the bottom of electrode B2, as measured by thermocouple B2C. This occurred sometime between May 19 and May 20. The other two measurement points in electrode B2 exceeded the melting point of copper between May 25 and May 26. During the same time, temperature point B3B and B1C also reached or exceeded the melting point of copper. It should be noted that of the 12 temperature measuring points within the center row, only five points reached the melting point of copper and one other fell just short of it by 20°C.

The evidence obtained from the field indicated that every excitor electrode melted. Each of the locations of these electrodes was redrilled with a hollow stem auger. From each hole, electrode pieces were recovered. However, no hole yielded an amount of copper sufficient to account for all the material in an electrode. Due to this it is likely that nearly complete melting of all four electrodes took place. From each hole, nearly intact top section of the electrode was recovered. These varied in length from 6 in. to 24 in.

It is also possible that the thermocouples lost their accuracy once the temperature exceeded 899°C, which is the continuous-duty temperature rating of the thermocouples used in this field experiment. This rating is imposed by the design of the SS 304 sheath used with the Type K, Chromel-Alumel thermocouples used in the field. The chromel alumel thermocouple itself may be used with high temperature sheaths, for measuring temperatures up to 1260°C. SS304 melts in a temperature range of 1400 to 1454°C so it is unlikely that a total failure of the thermocouple sheath occurred.

One possible reason for the overheating of the electrodes in the center row of electrodes was the close proximity of the electrode tips to the water table. This is a possible reason because RF fields will hunt out and concentrate towards water or other polar fluid if present in the vicinity.

The actual depth to water table inside the heated volume during the course of heating is unknown. However, during site preparation activities, four dewatering wells were installed at the four corners of the array area, outside the perimeter of the vapor barrier. There was a water table monitoring point inside the array. One of the electrode bore holes was used for this purpose until it became necessary to remove the piezometer in order to complete the array. The dewatering wells were operated continuously (barring brief shut downs for maintenance and one power failure) in an attempt to keep the water level depressed.

Water level measurements were made in the central piezometer in the period February 2, 1993 to February 11, 1993. Water level was in the range of 22.47 ft to 23.84 ft below ground surface. In the above mentioned time period water table levels decreased by approximately 1 to 1.5 ft. Dewatering wells were operational during this period.

2. Excitor Row Temperatures

Figure 21 illustrates the average temperature in the excitor (Center row) row of electrodes as a function of time and depth. The temperature was measured in each electrode at three depths-1 ft, 10 and at the bottom, at approximately 19.5 ft (shown as 20 ft in the Figures). Complete temperature data of the excitor electrodes is presented in Appendix B along with additional graphs.

3. Ground Row Temperatures

Figure 22 illustrates the average temperature of the thermocouples inserted in ground row electrodes. The data is presented as a function of time and depth of insertion. The graph also shows the average of those thermocouples measurement points which were opposite the excitor electrodes B1 to B4. As the graph shows, the average temperature of the ground row measurement points did not exceed 100°C. Although the average was maintained in the temperature range of 85 to 90°C for long period of time. There was one measurement point in electrode A4 which exceeded 100°C. Complete data tables and additional graphs of temperature for the ground electrodes are presented in Appendix B.

4. Thermowell Temperatures

Figure 23 illustrates the average temperature as measured in the six thermowells located inside the array. There was a seventh thermowell located outside the array, opposite electrode C4.

Excitor Row Average Temperature Figure 21

Ground Rows Average Temperature Figure 22

Average Thermowell Temperature vs. Time Figure 23

Figure 19 illustrates the thermowell locations. A detail description of the thermowells was presented in Section 5. As the data show, the average thermocouple temperature at a depth of 1-ft reached 140°C towards the end of the demonstration. Similarly the average at the 12 foot level reached 130 to 140°C range. The 24-foot level reached approximately 50°C. During the course of the test, attempts were made to make measurements at a depth of 20 ft in a thermowell which was inserted to a depth of 24 ft. These data show that the average temperature at the 20 ft level reached almost 130°C. It should be noted that these averages include measurements made in TW1 which is on the edge of the array and it consistently showed temperatures much less than the other thermocouples. TW3 was the other thermowell inside the array to exhibit lower temperatures.

Additional temperature data from the thermowells is presented in Appendix B.

5. Temperature Outside the Array

There was one thermowell, TW7, which was placed in a bore hole three feet outside Ground Row C. This hole was located opposite electrode C4. This thermowell had measurement points at depths of 12, 24, and 29 ft. The data is presented as a function of time and depth in Figure 24. At a depth of 12 ft, a maximum temperature of approximately 65°C was achieved. At a depth of 24 ft. the temperature was on the range of 35 to 40°C at the time of shut down. Appendix B illustrates curves in which the temperature in TW7 is compared with the temperature inside the nearest electrode, C4.

6. Temperature During Cool Down

Figure 25 illustrates the average temperature of the two ground rows as a function of depth and time during cool down. As the curves show, the soil cooling rate was quite small despite the continued operation of the vacuum extraction system.

7. Spatial Temperature Distributions

The spatial temperature distribution in five different vertical planes intersecting the electrode array was plotted. Figure 26 defines the locations of the five vertical planes. These were labelled: LONG, LNGU, TRANS, TRNS, and TRNV. The first two are longitudinal vertical planes aligned with the length of the array. The other three are transverse vertical planes, aligned with the width of the array. For illustrative purposes, the spatial distribution as a function of time for plane TRANS is presented here. The remaining distributions are presented in Appendix B.

Figure 24
OUTSIDE THERMOWELL (TW7) TEMPERATURES
(All Depths)

♦ TW7D, 29 ft

TW7C, 24 ft

Temperature, C

Figure 25 Ground Rows Average Temperature

48 **8** Figure 26. Definition of Vertical Planes for Temperature Distribution (Plan) **●**₹ 16 ြ • LONG 3 ខ • 2 Array Length, ft 8 2 2 TW7 TWS TW6 ω 3 22 Z 9 TRNS TW4 3 **5** 8 TW2 TWS 8 2 N M ठ ●₹ ņ N 4- ∞ 9 Array Width, ft

Figure 27 illustrates the spatial temperature distribution in transverse plane labelled TRANS. This is the central plane running perpendicular to the length of the array and it intersects all three rows. Figure 27 shows the temperature profile at a depth of 1 ft. As indicated earlier, ground row temperature at C4 did not exceed 100°C. Temperature at A4 did exceed 100°C towards the end of the experiment. The data shown in this and other spatial distribution figures were selected at approximately one week intervals, after the first day of operation. It should be noted that after 1085 hours, operating difficulties were noted relating to the stability of the electrical match between the load impedance and the impedance of the power source. Temperature at many measurement points decreased after this time, even though attempts were made to continue power input to the soil.

Figure 28 illustrates the transverse temperature distribution at a depth of 10 to 12 ft. B2 was the only measurement point at a depth of 10 ft; all others were at 12 ft. This figure shows the high temperature attained by thermocouple B2B at 1250 hours after start of the demonstration. Figure 29 illustrates the transverse temperature distribution in a depth range of 20 to 24 ft. It should be noted that in this figure, the only measurement point at 20 ft was that in electrode B2, all others were at 24 ft.

B. ANALYSIS OF SOIL FOR TOTAL PETROLEUM HYDROCARBONS

Soil samples obtained from the field by HALLIBURTON NUS were handed over to SAIC, USEPA's contractor for analysis. However, IITRI also performed analysis on the samples using the California DHS method for the analysis of Total Petroleum Hydrocarbons (TPH) expressed as diesel range organics. This was done so that the results may be compared with the results of the Bench scale studies done by IITRI.

The soil samples were shipped to IITRI in coolers after SAIC had finished its analyses of the soil sample. Thus there was a long storage period for these samples, much more than the customary 14 days allowed by many QA/QC procedures. Storage in IITRI was in the original jars which were kept in a refrigerator.

1. Pre-Demonstration Soil Samples

The soil was analyzed by means of methylene chloride extraction followed by extract concentration and analysis of the concentrate by a GC/FID. A solution of diesel in methylene chloride was used to prepare a multi-point calibration curve for the instrument.

Tables 11, 12, and 13 summarize the results of Soil moisture determination, TPH analysis and QA/QC sample analysis,

TABLE 11. DETERMINATION OF MOISTURE IN PRE-DEMONSTRATION SOIL SAMPLES

		0	Domth		
	Sample	Sample	Depth	Percent	
Reference	Hole	Depth	interva! ft	Water	Comment
No.	Location	Code	<u> </u>	vvate:	Odimion
1	EA01	U0406	4-6	22.0%	
2	EA01	U0406	4-6	20.4%	Duplicate of No. 1 above
3	EA02	U1214	12-14	26.5%	
4	EA03	U0204	2-4	19.9%	
5	EA03	U1618	16-18	15.9%	
6	EA04	U0002	0-2	17.2%	
7	EA04	U2022	20-22	11.0%	
8	EA05	U2224	22-24	10.7%	
9	EA07	U0810	8-10	20.7%	
10	EA07	U1214	12-14	26.4%	
11	EA08	U1416	14-16	23.6%	
12	EA08	U2830	28-30	10.1%	
13	EB01	U0002	0-2	21.1%	
14	EB01	U1214	12-14	27.1%	
15	EB02	U0406	4-6	21.5%	
16	EB02	U0810	8-10	20.3%	
17	EB03	U0204	2-4	16.2%	
18	EB03	U0204	2-4	18.9%	Duplicate of No. 17 abov
19	EB03	U1012	10-12	19.3%	·
20	EB04	U1416	14-16	21.0%	
21	EB04	U2022	20-22	16.8%	
22	EC02	U0608	6-8	22.9%	
23	EC02	U2022	20-22	8.9%	
24	EC03	U0002	0-2	22.0%	
25	EC03	U1820	18-20	24.2%	
26	EC03	U2224	22-24	9.0%	
27	EC03	U2224	22-24	9.9%	Duplicate of No. 26 abov
28	EC05	U1012	10-12	11.0%	•
29	EC05	U1012	10-12	11.5%	Duplicate of No. 28 abov
30	EC06	U0204	2-4	18.2%	•
31	EC06	U1820	18-20	20.6%	
32	EC07	U0406	4-6	16.0%	
33	EC07	U0406	4-6	20.0%	Duplicate of No. 32 abov
34	EC08	U0406	4-6	20.0%	•
35	EC08	U0406	4-6	16.4%	Duplicate of No. 34 abov
36	EC08	U1416	14-16	19.7%	
37	EC08	U2224	22-24	9.8%	
38	TW01	U1416	14-16	22.0%	
39	TW02	U0406	4-6	19.6%	
40	TW02	U1416	14-16	25.7%	
41	TW02	U1416	14-16	23.4%	Duplicate of No. 40 abov

TABLE 12. DETERMINATION OF TPH IN PRE-DEMONSTRATION SOIL SAMPLES

Depth Lorenth Sample Batch In soil		al cm e Q	Series P	4	Gas Chromatograph	graph	TPH Conc.	TPH Cone.	No. of	Was Extract	
Location Code 4-6 MC-23 6 as received dry basis EA02 U1214 12-14 MC-23 6 4-6 MC-23 6 4-6 MC-21 6 326 EA02 U1214 12-14 MC-28 7 240 326 817 817 817 817 817 817 817 817 817 817 817 817 817 817 817 817 818 8128 8128 8128 8128 8128 817 817 817 817 817 817 817 817 817 817 817 817 817 817 818 817 818 817 818 817 818 818 818 818 817 818	ference	HoH	O though			Daten		e u	Peaks in	Olluted?	Comments
EAO2 U1214 12-14 MC-28 7 240 326	Š	Location	\$ O	•	<u>.</u>	2	mdd .	Edd .		Yes/ No	
EA02 U1214 12-14 MC-28 7 240 326 EA03 U0204 2-4 MC-35 8 30 37 EA03 U1618 16-18 MC-4plke dil 3 6695 8317 EA04 U2022 20-22 MC-27 7 13 15 EA04 U2022 20-22 MC-20 G 2443 2746 EA04 U2022 20-22 MC-30 G 2428 2727 EA04 U2022 20-22 MC-7dll 2 2554 2805 EA05 U1214 12-14 MC-14R 6 2318 2805 EA07 U1214 12-14 MC-14R 7 78 96 EA08 U1416 14-16 <th>-</th> <th>EA01</th> <th>00400</th> <th>9-7</th> <th>MC-23</th> <th>•</th> <th>47</th> <th>ory batus 01</th> <th>renge 90 15</th> <th>z</th> <th></th>	-	EA01	00400	9-7	MC-23	•	47	ory batus 01	renge 90 15	z	
EA03 U0204 2-4 MC-35 8 30 37 EA03 U1618 16-18 MC-4mHe dH 3 6805 8317 EA04 U0002 0-2 MC-20 6 2443 2746 EA04 U2022 20-22 MC-20 6 2443 2746 EA04 U2022 20-22 MC-20 6 2423 2727 EA04 U2022 20-22 MC-20m 6 2423 2727 EA04 U2022 20-22 MC-76HE 6 2423 2727 EA04 U2022 20-22 MC-74H 2 2883 2805 EA07 U1214 12-14 MC-14HE 7 N.D. N.D. EA07 U1214 12-14 MC-14HE 7 413 400 EA08 U1416 14-16 MC-26 7 413 400 EB01 U0002 0-2 MC-36 1 10	•	EA02	U1214	12-14	MC-28	7	240	326	5	z	
EA03 U1618 16-18 MC-4 pplke dit 3 6993 8317 EA04 U0002 0-2 MC-27 7 13 15 EA04 U2022 20-22 MC-20 6 2443 2746 EA04 U2022 20-22 MC-20 6 2428 2727 EA04 U2022 20-22 MC-20 6 2428 2727 EA04 U2022 20-22 MC-20 6 2428 2727 EA05 U2224 22-24 MC-7dil 2 2554 2860 EA07 U1214 12-14 MC-14RE 7 7 8 96 EA07 U1214 12-14 MC-14RE 7 N.D. N.D. EA08 U1416 14-16 MC-3 7 413 460 EB01 U0002 0-2 MC-20 7 413 460 EB02 U0406 4-6 MC-6 1 65 82 EB02 U0406 4-6 MC-8 3 39 53 EB02 U0406 4-6 MC-8 7 187 234 EB03 U0204 2-4 MC-1 3 N.D. N.D. EB04 U1416 14-16 MC-15 5 821 EB05 U0406 4-6 MC-6 1 1039 EB05 U0406 4-6 MC-8 3 3927 3751 EB04 U1416 14-16 MC-15 5 821 1039	•	EA03	U0204	2-4	MC-35	45	Ş		;	3	
EA03 U1618 16-18 MC-4dH 3 6835 8128 EA04 U2022 20-22 MC-20 6 2443 2746 EA04 U2022 20-22 MC-20 6 2443 2746 EA04 U2022 20-22 MC-20RE 6 2443 2746 EA04 U2022 20-22 MC-20RE 6 2443 2746 EA04 U2022 20-22 MC-38 6 2318 2727 EA04 U2022 20-22 MC-7dH 2 2554 2860 EA05 U1214 12-14 MC-7H 6 21 7 EA07 U1214 12-14 MC-14RE 7 N.D. N.D. EA08 U1214 12-14 MC-34 8 27 35 EA08 U1214 12-14 MC-37 8 329 417 EB01 U0202 2-2 MC-37 8 171	10	EA03	U1618	10 - 18 M	_	•	200	21.0	è :	Z >	
EA04 U0002 0-2 MC-27 7 13 15 EA04 U2022 20-22 MC-20R 6 2428 2727 EA04 U2022 20-22 MC-20R 6 2428 2727 EA04 U2022 20-22 MC-20R 6 2428 2727 EA05 U2224 22-24 MC-7dll 2 2554 2860 EA05 U1214 12-14 MC-14R 6 12 17 EA07 U1214 12-14 MC-14R 6 12 17 EA07 U1214 12-14 MC-14R 7 N.D. N.D. EA07 U1214 12-14 MC-14R 7 N.D. N.D. EA08 U1416 14-16 MC-37 8 329 417 EB01 U0002 0-2 MC-3 3 329 417 EB02 U0406 4-6 MC-3 3 329 417<	10	EA03	_	16-18	MC-4dH		6835	8128	8 KG	- >-	MC-4 + Spike of 1 ml of 2.06 mg/ml
EA04 U2022 20-22 MC-20 6 2443 2746 EA04 U2022 20-22 MC-20R 6 2443 2746 EA04 U2022 20-22 MC-20R 6 2426 2727 EA05 U2224 22-24 MC-7dll 2 2554 2860 EA07 U1214 12-14 MC-14R 6 21 2 EA07 U1214 12-14 MC-14R 6 12 17 EA07 U1214 12-14 MC-14R 7 N.D. N.D. EA08 U1416 14-16 MC-14R 7 N.D. N.D. EA07 U1214 12-14 MC-14R 7 N.D. N.D. EA08 U1416 14-16 MC-29 7 413 460 EB01 U0002 0-2 MC-37 8 329 417 EB02 U0406 4-6 MC-8 3 359 <t< td=""><td>•</td><td>EA04</td><td>U0002</td><td>0-2</td><td>MC-27</td><td>^</td><td></td><td>=</td><td>\$</td><td>:</td><td></td></t<>	•	EA04	U0002	0-2	MC-27	^		=	\$:	
EA04 U2022 20-22 MC-20RE 6 2428 2777 EA05 U2022 20-22 MC-36 6 2428 2777 EA05 U20224 22-24 MC-7dll 2 2554 2860 EA07 U1214 12-14 MC-14RE 7 78 98 EA07 U1214 12-14 MC-14RE 7 N.D. N.D. EA07 U1214 12-14 MC-14RE 7 N.D. N.D. EA07 U1214 12-14 MC-14RE 7 N.D. N.D. EA08 U1214 12-14 MC-34 8 27 35 EA08 U1216 14-16 MC-29 7 417 40 EB01 U0002 0-2 MC-29 7 417 218 EB02 U0406 4-6 MC-6 7 187 218 EB03 U0504 4-6 MC-7 6 3027 <t< td=""><td>~</td><td>EA04</td><td>U2022</td><td>20-22</td><td>MC-20</td><td>•</td><td>2443</td><td>9776</td><td>2 6</td><td>z</td><td></td></t<>	~	EA04	U2022	20-22	MC-20	•	2443	9776	2 6	z	
EA04 U2022 20-22 MC-38 8 2318 2605 EA05 U2224 22-24 MC-7dil 2 2554 2605 EA07 U1214 12-14 MC-14 B 8 12 29 EA07 U1214 12-14 MC-14RE 7 7 78 98 EA07 U1214 12-14 MC-14RE 7 N.D. N.D. N.D. EA07 U1214 12-14 MC-14RE 7 N.D. N.D. N.D. EA08 U1416 14-16 MC-24 8 27 35 400 EA08 U1416 14-16 MC-29 7 413 400 EB01 U10002 0-2 MC-37 8 329 417 EB02 U0406 4-6 MC-6 3 7 187 218 EB02 U0406 4-6 MC-8 3 7 187 234 EB03	7	EA04	U2022	20-22	MC-20RE	•	2426	9737	ò •	z	
EA05 U2224 22-24 MC-7dll 2 2554 2860 EA07 U0810 8-10 MC-31 7 78 98 EA07 U1214 12-14 MC-14RE 6 12 17 EA07 U1214 12-14 MC-14RE 7 N.D. N.D. EA08 U1416 14-16 MC-34 6 27 45 EA08 U1416 14-16 MC-29 7 413 460 EB01 U0002 0-2 MC-29 7 413 460 EB01 U0002 0-2 MC-34 8 329 417 EB02 U0409 4-6 MC-8 3 39 83 EB02 U0409 4-6 MC-8 7 187 218 EB03 U0409 4-6 MC-8 7 187 218 EB03 U050 2-4 MC-8 7 187 234	^	EA04	U2022	20-22	MC-38	•	2318	2605	8 8	zz	MC-20 reinjected Duplicate of MC-20
EA07 U0810 8-10 MC-14 5 21 29 EA07 U1214 12-14 MC-14RE 6 12 17 EA07 U1214 12-14 MC-14RE 7 N.D. N.D. EA08 U1214 12-14 MC-34 8 27 35 EA08 U1416 14-16 MC-29 7 413 400 EA08 U1416 14-16 MC-29 7 413 400 EB01 U0002 0-2 MC-29 7 413 400 EB02 U0409 4-6 MC-8 3 329 417 EB02 U0409 4-6 MC-8 3 39 53 EB02 U0409 4-6 MC-8 7 187 218 EB02 U0409 4-6 MC-24 6 3027 3751 EB03 U1416 14-16 MC-15 5 3027 3751	•	EA05	U2224	22-24	MC-74	~	2554	2860	80	>	
EA07 U1214 12-14 MC-14F 5 21 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	۰	EA07	00810	- 10	10 m	•	;	8	1	;	
EA07 U1214 12-14 MC-14RE 6 12 17 EA07 U1214 12-14 MC-14RE 7 N.D. N.D. N.D. N.D. Second U2830 28-30 MC-34 8 27 35 400 EB01 U1214 12-14 MC-8 3 329 417 EB02 U0406 4-6 MC-6 1 65 82 EB02 U0406 4-6 MC-6 1 65 82 EB02 U0406 4-6 MC-6 1 65 82 EB02 U0406 4-6 MC-6 1 187 234 EB02 U0416 14-16 MC-15 5 821 1039 EB04 U1416 14-16 MC-15 5 821 1039	•	EA07		12-14	MC-14	. NG	2 5	S &	9 C	z :	
EA07 U1214 12-14 MC-14RE 7 N.D. N.D. EA08 U1416 14-16 MC-34 6 27 45 EA08 U2630 28-30 MC-29 7 413 460 EB01 U0002 0-2 MC-37 8 329 417 EB01 U1214 12-14 MC-8 3 39 53 EB02 U0406 4-6 MC-6 1 05 82 EB02 U0406 4-6 MC-26 7 187 234 EB02 U0606 4-6 MC-16 7 187 234 EB03 U1012 10-12 MC-24 6 3027 3751 EB04 U1416 14-16 MC-15 5 821 1039	2	EA07	U1214	12-14	MC-14RE	•	-		7 6	z:	
EA08 U1416 14-16 MC-34 8 27 35 EA08 U2830 28-30 MC-29 7 413 460 EB01 U0002 0-2 MC-37 8 329 417 EB01 U1214 12-14 MC-8 3 39 53 EB02 U0406 4-6 MC-6 1 05 82 EB02 U0409 4-6 MC-26 7 187 234 EB02 U0810 8-10 MC-26 7 187 234 EB03 U1012 10-12 MC-14 6 3027 3751 EB04 U1416 14-16 MC-15 5 821 1039	0	EA07	U1214	12-14	MC-14RE	^	N.	Ž	35	z z	MC - 14 rein ected
EAOS U1210 14-10 MC-34 8 27 35 400 EB01 U0002 0-2 MC-37 8 329 417 400 EB01 U1214 12-14 MC-8 3 39 53 53 EB02 U0406 4-6 MC-6 1 65 82 EB02 U0406 4-0 MC-26 7 187 218 EB02 U0810 8-10 MC-26 7 187 234 EB03 U1012 10-12 MC-15 5 821 1039 EB04 U1416 14-16 MC-15 5 821 1039	:	640		•		•	,			:	
EB01 U0002 0-2 MC-29 7 413 460 EB01 U1214 12-14 MC-8 3 329 417 EB02 U0406 4-6 MC-0 1 05 82 EB02 U0406 4-6 MC-26 7 187 218 EB03 U0204 2-4 MC-1 3 N.D. N.D. EB03 U1012 10-12 MC-24 6 3027 3751 EB04 U1416 14-16 MC-15 5 821 1039	: ;			91-14	MC-34	•	27	99	Q	z	
EB01 U0002 0-2 MC-37 8 329 417 EB02 U0408 4-6 MC-8 1 65 82 EB02 U0408 4-6 MC-9 7 187 218 EB02 U0408 4-0 MC-26 7 187 218 EB03 U0204 2-4 MC-1 3 N.D. N.D. EB03 U1012 10-12 MC-15 5 821 1039 EB04 U1416 14-16 MC-15 5 821 1039	N	EAUS	02830	28-30	MC-29	~	413	460	92	z	
EB02 U0406 4-6 MC-6 1 65 82 82 EB02 U0406 4-6 MC-6 1 65 82 82 82 82 82 82 82 82 82 82 82 82 82	13	EBO1	U0002	0-2	MC-37	•	320	417	5	2	
EB02 U0406 4-6 MC-6 1 65 82 EB02 U0406 4-6 MC39 9 171 218 EB02 U0810 8-10 MC-26 7 187 234 EB03 U0204 2-4 MC-1 3 N.D. N.D. EB03 U1012 10-12 MC-14 6 3027 3751 EB04 U1416 14-16 MC-15 5 821 1039	-	E801	01214	12-14	MC-8	•	30	26	8	z	
EB02 U0406 4-6 MC39 9 171 218 EB02 U0810 8-10 MC-26 7 187 234 EB03 U0204 2-4 MC-1 3 N.D. N.D. EB03 U1012 10-12 MC-24 6 3027 3751 EB04 U1416 14-16 MC-15 5 821 1039	15	EB02	00408	9-4	MC-6	-	Š	•	:	:	
EB02 U0810 8-10 MC-26 7 187 214 EB03 U0204 2-4 MC-1 3 N.D. N.D. EB03 U1012 10-12 MC-24 6 3027 3751 EB04 U1416 14-16 MC-15 5 821 1039	15	EB02	00400	0-4	MC30	۰ ۵	6 5	70 6	è :	z	
EB03 U0204 2-4 MC-1 3 N.D. N.D. EB03 U1012 10-12 MC-24 6 3027 3751 EB04 U1416 14-16 MC-15 5 821 1039	₽	EB02	U0810	8-10	MC-28	^	187	234	\$ \$	zz	MC-6+splie: 1.0 and of 1.92 ang/ord
EB04 U1416 14-16 MC-15 5 821 1030	11	E803	U0204	2-4	MC-1	•	2	2	8	;	
EB04 U1416 14-16 MC-15 5 821 1039	2	EB03	U1012	10-12	MC-24	•	3027	3751	2 7	zz	
E804 (1202) 20_23 MC_48 # 46.5	2	E804	U1416	14-16	MC - 15		821	1030	2	;	
	2	EB04	U2022	20-22	MC-18	•	1040	126	* •	z :	
20-22 MC-18 6 1049 1281	21	E804	U2022	20-22	MC-18	•	1040	1281	? :	z	
EB04 U2022 20-22 MC-40 8 1490	51	EB04	U2022	20-22	MC-40	•	1490	1701	0 6	z:	•

N.D.: None Detected Shaded Results: In these the TPH area response was less than or equal to Average method blank area + three times standard deviation of the blanks

RE: Extract reinjected, Duplicate: duplicate extraction/injection; dit: extract was diluted

TABLE 12. DETERMINATION OF TPH IN PRE-DEMONSTRATION SOIL SAMPLES

Sample Sample Sample Daph					otemority and	4	TOTION				
Hole Depth Inferval No. As secoled dry bails Political Politic		Sample	Sample	Denth	Semple	4	Cone.	LTH Cone.	No. of	Was Extract	
FCO2	Reference	P C	die	Interior I					Peaks in	Olluted?	
EC02 U0608 6-8 MC-2 1 351 455 64 N 3 EC02 U0608 6-8 MC-32 1 443 64 N 4 C022 20-22 MC-32 8 2947 244 39 N 5 EC03 U0602 0-2 MC-210L 7 9239 7237 50 N 5 EC03 U1620 18-20 MC-210L 7 9239 7470 50 N 5 EC03 U1622 22-24 MC-50UP 2 4287 4400 58 Y 5 EC03 U1622 22-24 MC-50UP 2 4287 4400 58 Y 5 EC03 U1612 10-12 MC-50UP 2 4287 4400 58 Y 6 EC03 U1612 10-12 MC-50UP 2 4287 4400 58 Y 6	No.	Location	9 00	=	Ö	2	mdd .	E dd		Yes/ No	
EC02 U0608 6-8 MC-2RE 1 351 455 64 N 2 EC02 U0608 6-8 MC-2RE 2 341 443 61 N 4 2 20-22 MC-2RE 2 2597 2852 58 N 4 603 U1620 18-20 MC-101 4 36 N 4 39 N 5 EC03 U1620 18-20 MC-21011 7 6239 770 90 N N 5 EC03 U1620 18-20 MC-31011 7 6239 7710 69 N </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>OLY DESIG</th> <th>Mange</th> <th></th> <th></th>								OLY DESIG	Mange		
ECO2 U0606 6-8 MC-2RE 2 341 443 61 NA 4 ECO2 U2022 20-22 MC-2RE 2 341 443 61 NA 5 ECO3 U1820 18-20 MC-21DIL 7 6239 12164 55 NA 5 ECO3 U1820 18-20 MC-21DIL 7 6239 17164 55 NA 6 ECO3 U1820 18-20 MC-21DIL 7 6239 17164 55 NA 8 ECO3 U2224 22-24 MC-3DIP 2 4287 4710 55 Y 8 ECO3 U1624 22-24 MC-5DIP 2 403 443 55 Y 8 ECO3 U1624 22-24 MC-5DIP 2 403 443 55 Y 8 ECO3 U1624 22-24 MC-5DIP 2 403 443 55 <td>22</td> <td>EC02</td> <td>00000</td> <td>8-0</td> <td>MC-2</td> <td>-</td> <td>1351</td> <td>***</td> <td>•</td> <td>2</td> <td></td>	22	EC02	00000	8-0	MC-2	-	1351	***	•	2	
ECO2 U2022 20-22 MC-32 8 2597 2852 58 N 4 ECO3 U0002 0-2 MC-21 4 44 30 N 5 ECO3 U1820 18-20 MC-21 6 5499 7257 50 N 6 ECO3 U1820 18-20 MC-21 DIL 7 6239 12194 55 N 8 ECO3 U2224 22-24 MC-3 DIL 7 6239 12194 55 N 9 ECO3 U2224 22-24 MC-3 DIL 2 2644 4400 56 Y 9 ECO3 U1012 10-12 MC-3 DIL 2 2644 4400 56 Y 1 ECO3 U1012 MC-3 DIL 2 2644 4400 56 Y 1 ECO3 U1012 MC-3 DIL 2 4033 623 7 4430 56 Y <	22	EC03	0000	9-0	MC-2RE	~	341	677	5	2 2	
EC03 U0002 0-2 MC-12 4 34 44 39 N 5 EC03 U1820 18-20 MC-21 DIL 7 8236 7257 50 N 6 EC03 U1824 22-24 MC-21 DIL 7 8236 7710 56 Y 8 EC03 U2224 22-24 MC-5 DUP. 2 4807 4400 58 Y 8 EC03 U2224 22-24 MC-5 DUP. 2 4003 4443 58 Y 9 EC03 U1012 10-12 MC-5 DUP. 2 4003 4443 58 Y 9 EC03 U1012 10-12 MC-5 DUP. 2 4003 4443 58 Y 9 EC05 U1012 MC-302 3 865 HI Y Y 9 U102 MC-302 3 865 HI Y Y Y Y Y	23	EC02	U2022	20-22	MC-32	•	2597	2852		2 2	MC-Z reinjected
EC03 U0002 0 - 2 MC - 12 4 34 44 39 N 5 EC03 U1820 18 - 20 MC - 21 DIL 7 9239 12194 55 γ 6 C03 U2224 22 - 24 MC - 5 DIP 2 4287 4710 58 γ 8 EC03 U2224 22 - 24 MC - 5 DIP 2 4287 4710 58 γ 8 EC03 U1224 22 - 24 MC - 5 DIP 2 4287 4413 58 γ 9 EC03 U1012 10 - 12 MC - 5 DIP 2 4287 4410 58 γ 9 EC03 U1012 10 - 12 MC - 5 DIP 2 4003 4413 58 γ 1 EC05 U1012 10 - 12 MC - 30 PIP 2 4003 4143 58 γ 1 EC05 U1012 MC - 30 PIP 3 805 907	,								3	2	
ECO3 U1820 18-20 MC-21 0 5499 7257 50 N 5 ECO3 U2224 22-24 MC-31 DIL 7 9299 12194 55 Y 8 ECO3 U2224 22-24 MC-5 DUP 2 2494 4400 56 Y 8 ECO3 U2224 22-24 MC-5 DUP 2 2403 4443 56 Y 9 ECO3 U1012 10-12 MC-5 DUP 2 3964 4400 56 Y 1 ECO3 U1012 10-12 MC-5 DUP 2 3964 4400 56 Y 1 ECO3 U1012 10-12 MC-3 DUP 2 4003 4443 56 Y 1 ECO5 U1012 MC-3 DUP 2 4003 4443 56 Y 1 ECO5 U1012 MC-3 DUP 2 403 53 N 1	\$2	EC03	U0002	0-2	MC-12	•	36	7	ç	2	
EC03 U1820 18-20 MC-21 DIL 7 9230 12194 50 7 6 EC03 U2224 22-24 MC-5 DUP. 2 4287 4710 56 7 8 EC03 U2224 22-24 MC-5 DUP. 2 4287 4710 56 7 8 EC03 U1012 10-12 MC-5 DUP. 2 4003 4443 56 7 8 EC05 U1012 10-12 MC-30LP. 2 403 972 86 7 8 EC05 U1012 10-12 MC-3dH 3 805 972 80 7 8 EC05 U1012 10-12 MC-3dH 9 914 9 9 9 9 9 9 9 7 9 8 0 7 8 8 3 8 N N 9 9 9 9 9 9 N N N N N N N N	22	EC03	U1820	18-20	MC-21	•	2400	7287		2 2	
EC03 U2224 22-24 MC-5 DUP. 2 4287 4710 509 Y EC03 U2224 22-24 MC-5 DUP. 2 4287 4710 509 Y EC03 U2224 22-24 MC-5 DUP. 2 4003 4443 568 Y EC05 U1012 10-12 MC-5 DUP. 2 4003 4443 568 Y EC05 U1012 10-12 MC-3D2 3 906 1119 91 Y EC05 U1012 10-12 MC-3D1 3 906 1119 91 Y EC05 U1012 10-12 MC-3D1 3 906 1119 91 Y EC05 U1012 10-12 MC-3D1 7 68 83 N EC06 U10204 2-4 MC-3D1 9 3126 393 N EC06 U1820 18-20 MC-3D1 9 3148 393 <td>25</td> <td>EC03</td> <td>U1820</td> <td>18-20</td> <td>MC-21 DIL</td> <td>~</td> <td>9239</td> <td>70161</td> <td></td> <td>z ;</td> <td></td>	25	EC03	U1820	18-20	MC-21 DIL	~	9239	70161		z ;	
EC03 U2224 22-24 MC-5 DUP. 2 2604 4410 688 Y EC03 U2224 22-24 MC-5 DUP. 2 2064 440 68 Y EC05 U1012 10-12 MC-5 DUP. 2 4003 4440 68 Y EC05 U1012 10-12 MC-5 DUP. 2 4003 4440 68 Y EC05 U1012 10-12 MC-5 DUP. 2 4003 4440 68 Y EC05 U1012 10-12 MC-3 dH 3 606 1119 91 Y EC05 U1012 10-12 MC-3 dH 3 606 61 Y EC06 U1012 10-12 MC-3 dH 10 862 806 61 Y EC06 U1020 18-20 MC-3 dH 10 8148 308 8 N EC06 U1020 18-20 MC-3 dH 10	56	EC03	U2224	22-24	Z-07		7007	1017	e e	- ;	
EC03 U(2224) 22-24 MC-3 DUP. 2 Jobst 4400 588 Y EC05 U1012 10-12 MC-3DUP. 2 4003 4443 588 Y EC05 U1012 10-12 MC-3DUP. 2 4003 6119 91 Y EC05 U1012 10-12 MC-3DUP. 3 662 61 Y EC06 U1012 10-12 MC-3DUP. 3 662 61 7 EC06 U1012 10-12 MC-3DUP. 3 66 62 Y EC06 U1022 16-20 MC-3DUP. 6 66 67 Y EC06 U1012 <td>50</td> <td>EC03</td> <td>U2224</td> <td>22-24</td> <td>MC-54</td> <td>• •</td> <td>1024</td> <td></td> <td>2</td> <td>></td> <td></td>	50	EC03	U2224	22-24	MC-54	• •	1024		2	>	
ECOS U1012 10-12 MC-3D 3 865 672 56 N ECOS U1012 10-12 MC-3D 3 865 672 50 N ECOS U1012 10-12 MC-3D 3 862 696 6119 Y ECOS U1012 10-12 MC-3D 7 68 83 38 N ECOS U1012 10-12 MC-30 7 68 83 38 N ECOS U1020 2-4 MC-30 7 68 83 38 N ECOS U1020 2-4 MC-30 7 68 83 38 N ECOS U1020 2-4 MC-33 8 3126 3938 N N ECOS U1040 4-6 MC-3348 10 3228 4066 54 Y ECOS U10406 4-6 MC-10 5 26 31	56	EC03	16994	20-06		•	1000	20	200	>	MC-5 duplicated
ECOS U1012 10-12 MC-3 D2 3 865 972 50 N ECOS U1012 10-12 MC-3D2 3 865 969 1119 61 Y ECOS U1012 10-12 MC-3dH 3 862 969 62 Y ECOS U1012 10-12 MC-3dH 3 862 969 62 Y ECOS U10204 2-4 MC-30 7 68 83 36 N ECOS U10204 2-4 MC-33 8 3128 3993 85 N ECOS U1620 18-20 MC-33H 10 3228 4066 54 Y ECOS U1620 4-6 MC-33H 10 3228 4066 54 Y ECOS U1646 4-6 MC-16 5 26 31 N N ECOS U1646 14-16 MC-17 6 <					MC-50Cr.	~	4003	4443	80	>	Reinfaction of MC-5 duplicate
ECOS U1012 10-12 MC-302 3 696 1119 61 Y ECOS U1012 10-12 MC-34 3 66 61 Y ECOS U1012 10-12 MC-34 3 60 62 Y ECOS U1012 10-12 MC-34 3 60 62 Y ECOS U10204 2-4 MC-30 7 68 63 80 N ECOS U10204 16-20 MC-33R 10 3126 3038 85 N ECOS U1020 16-20 MC-33R 10 3228 4066 54 Y ECOS U1020 4-6 MC-33R 10 3228 4066 54 Y ECOS U10406 4-6 MC-16 5 20 25 31 N ECOS U10406 4-6 MC-17 6 52 65 44 N <t< td=""><td>28</td><td>EC05</td><td>U1012</td><td>10-12</td><td>L'UN</td><td>•</td><td></td><td></td><td>į</td><td>:</td><td></td></t<>	28	EC05	U1012	10-12	L'UN	•			į	:	
ECOS U1012 10-12 MC-314 3 862 969 62 Y ECOS U1012 10-12 MC-23 6 463 969 62 Y ECOS U1012 10-12 MC-23 6 463 952 Y ECOS U10204 2-4 MC-30 7 68 83 38 N ECOS U10204 18-20 MC-33HE 9 3146 3963 87 N ECOS U1020 18-20 MC-33HE 9 3146 3963 87 N ECOS U1020 4-6 MC-33HE 10 3226 4066 84 Y ECOS U10406 4-6 MC-16 5 26 31 N ECOS U10406 4-6 MC-17 6 52 65 44 N ECOS U10416 14-16 MC-17 6 50 646 646	28	FC03	11013			, (000	972	8	z	
ECOS U1012 10-12 MC-3d 3 662 660 622 Y ECOS U1012 10-12 MC-3d 7 68 63 35 38 N ECOS U1620 16-20 MC-3d 7 68 63 36 N ECOS U1620 16-20 MC-33FE 9 3146 3043 65 N ECOS U1620 16-20 MC-33FE 9 3146 3065 67 N ECOS U1620 16-20 MC-33FE 9 3146 3065 67 Y ECOS U1620 4-6 MC-16 5 26 31 N Y ECOS U1416 14-16 MC-17 6 52 05 44 N ECOS U1416 14-16 MC-17 4 1045 2156 52 N ECOS U1416 14-16 MC-22 6 <td< td=""><td></td><td></td><td></td><td>71-01</td><td>MC-302</td><td>7</td><td>8</td><td>===</td><td>5</td><td>></td><td>MC-3 diluted X 22 2</td></td<>				71-01	MC-302	7	8	===	5	>	MC-3 diluted X 22 2
ECOS U1012 10-12 MC-25 6 463 523 38 N ECOS U10204 2-4 MC-30 7 68 83 36 N ECOS U1020 18-20 MC-33R 9 3148 3948 65 N ECOS U1020 18-20 MC-33R 10 3228 4066 54 Y ECOS U1020 18-20 MC-33R 10 3228 4066 54 Y ECOS U10406 4-6 MC-16 5 26 31 N ECOS U1416 14-16 MC-17 6 52 65 44 N ECOS U1416 14-16 MC-17 6 52 65 44 N ECOS U1416 14-16 MC-17 6 52 65 44 N ECOS U1416 14-16 MC-22 0 4 1845 215	8 8	500	21012	10-12	MC-3 di	•	962	000	62	>	110 - 3 dilitara X 4 4 4
ECO6 U0204 2-4 MC-30 7 68 83 36 N ECO6 U1620 16-20 MC-33 R 9 3148 3038 65 N ECO6 U1620 16-20 MC-33R 10 3148 3065 65 N ECO6 U1620 16-20 MC-33R 10 3226 4060 64 Y ECO6 U1620 4-0 MC-16 5 26 31 N ECO7 U0406 4-0 MC-16 5 20 25 31 N ECO8 U1416 14-16 MC-17 6 52 65 44 N ECO8 U1416 14-16 MC-17 6 52 65 44 N ECO8 U1416 14-16 MC-17 6 504 646 58 N TW01 U1416 14-16 MC-22 6 504 646 573 </td <td>R</td> <td>EC03</td> <td>U1012</td> <td>10-12</td> <td>MC-25</td> <td>•</td> <td>463</td> <td>523</td> <td>8</td> <td>· z</td> <td>MC - 3 dentions</td>	R	EC03	U1012	10-12	MC-25	•	463	523	8	· z	MC - 3 dentions
ECOS U0204 2-4 MC-30 7 68 83 36 N ECOS U1820 18-20 MC-33 8 3126 3938 65 N ECOS U1820 18-20 MC-33HE 9 3146 3963 65 N ECOS U1820 18-20 MC-33HE 9 3146 3965 67 N ECOS U1820 18-20 MC-16 5 26 31 N ECOS U1416 14-16 MC-16 5 20 25 31 N ECOS U1416 14-16 MC-17 6 52 65 44 N ECOS U1416 14-16 MC-17 6 52 65 44 N ECOS U1416 14-16 MC-22 6 504 646 55 N TWO U1416 14-16 MC-22 6 504 646 573<										:	
ECOS U1820 18-20 MC-33 8 3126 3038 55 N ECOS U1820 18-20 MC-33H 10 3226 4066 57 N ECOS U1820 18-20 MC-16 5 26 31 N Y ECOS U0406 4-6 MC-16 5 26 31 N ECOS U1416 14-16 MC-17 6 52 65 44 N ECOS U1416 14-16 MC-17 6 52 65 44 N ECOS U1416 14-16 MC-17 6 52 65 N ECOS U1416 14-16 MC-22 6 504 646 52 N TW01 U1416 14-16 MC-22 6 504 646 58 N TW02 U1416 14-16 MC-11 4 426 573 49 N	ဓ	EC08	C0204	2-4	MC-30	^	6	E	;	:	
ECOS U1820 18-20 MC-33RE 9 3148 3095 95 N ECOS U1820 18-20 MC-33dH 10 3228 4066 54 Y ECOS U0406 4-6 MC-16 5 26 31 N ECOS U1416 14-16 MC-19 5 ND. ND. 41 N ECOS U1416 14-16 MC-17 6 52 05 44 N ECOS U1416 14-16 MC-10 4 1645 2156 52 N TW01 U1416 14-16 MC-22 6 504 646 58 N TW02 U1416 14-16 MC-36 8 426 573 49 N	3	EC06	U1820	18-20	MC-33	-	3126		9 :	2 7	
ECOG U1820 18-20 MC-16 5 26 31 35 N ECO7 U0406 4-6 MC-16 5 26 31 N EC08 U1416 14-16 MC-19 5 20 25 31 N EC08 U1416 14-16 MC-17 6 52 65 44 N EC08 U1416 14-16 MC-17 6 52 65 44 N EC08 U1416 14-16 MC-10 4 1945 2156 52 N TW01 U1416 14-16 MC-22 6 504 646 58 N TW02 U0406 4-6 MC-11 4 1945 5156 52 N TW02 U1416 14-16 MC-22 6 504 646 58 N	Ë	EC06	U1820	18-20	MC-33BF	• •			n (z	
EC07 U0406 4-6 MC-16 5 26 31 35 N EC08 U1416 14-16 MC-16 5 20 25 31 N EC08 U1416 14-16 MC-17 6 52 65 44 N EC08 U1416 14-16 MC-17 6 52 65 44 N EC08 U1416 14-16 MC-17 6 52 65 44 N TW01 U1416 14-16 MC-22 6 504 646 58 N TW02 U0406 4-6 MC-11 4 31 39 N TW02 U1416 14-16 MC-36 6 426 573 49 N	3	ECOG	11820	4 - 90		• ;	9 1	CDAC	24	z	MC-33 reinjected
EC07 U0406 4-6 MC-16 5 26 31 N EC08 U0406 4-6 MC-19 5 20 25 31 N EC08 U1416 14-16 MC-9 3 ND. ND. 41 N EC08 U1416 14-16 MC-17 6 52 65 44 N EC08 U1416 14-16 MC-10 4 1945 2156 52 N TW01 U1416 14-16 MC-22 6 504 646 58 N TW02 U046 4-6 MC-11 4 31 39 N TW02 U1416 14-16 MC-16 426 573 49 N) 				2	3228	4066	3	>	MC-33 diluted
ECOS U0406 4-6 MC-19 5 20 25 31 N ECOS U1416 14-16 MC-17 6 52 05 44 N ECOS U1416 14-16 MC-17 6 52 05 44 N ECOS U2224 22-24 MC-10 4 1645 2156 52 N TW01 U1416 14-16 MC-22 6 504 646 58 N TW02 U0406 4-6 MC-11 4 31 39 35 N TW02 U1416 14-16 MC-36 8 426 573 49 N	32	EC07	00408	9 • •	MC-16	*0	50	₩.	98	z	
ECOS U1416 14-16 MC-9 3 N.D. N.D. 41 N ECOS U1416 14-16 MC-17 6 52 65 44 N ECOS U2224 22-24 MC-17 6 52 65 44 N TW01 U1416 14-16 MC-22 6 504 646 58 N TW02 U0406 4-6 MC-11 4 31 39 35 N TW02 U1416 14-16 MC-36 8 426 573 49 N	ĕ	EC08	00408	1	MC-16	•	8	;	;		
ECO8 U1416 14-16 MC-17 6 52 N.C. 41 N.C. 42 N.	96	EC08	U1416	14-10	- CA		2 2	8 9	.	z	
ECO8 U2224 22-24 MG-10 4 1945 2156 52 N TWO! U1416 14-16 MG-22 6 504 646 58 N TWO2 U0406 4-6 MG-11 4 31 39 35 N TWO2 U1416 14-16 MG-36 8 426 573 49 N	38	ECOS	01418	14-18	MC_11	•	i	Z	=	z	
TW01 U1416 14-16 MC-12 6 504 646 58 N TW02 U0406 4-6 MC-11 4 31 39 35 N TW02 U1416 14-16 MC-36 6 426 573 49 N	37		10001			•	26	2	;	z	Duplicate of MC - 0
TW01 U1416 14-16 MC-22 G 504 646 58 TW02 U0406 4-6 MC-11 4 31 39 35 TW02 U1416 14-16 MC-36 8 426 573 49	5		02224	1 2 - 22	MC-10	•	1945	2156	92	z	
TW02 U0406 4-6 MC-11 4 31 39 35 TW02 U1416 14-16 MC-36 8 426 573 49	86	TW01		14-10	MC-22	•	204	444	:	•	
TW02 U0406 4-6 MC-11 4 31 39 35 TW02 U1416 14-16 MC-36 B 426 573 49					ı	ı		5	0	Z	
1W02 U1416 14-16 MC-36 8 426 573 49	e e	TW02	U0406	9	MC-11	•	5	30	6	2	
•	Ş	1 20%	01418	14-10	MC-36	•	426	573	4	: z	

N.D.: None Detected Shaded Resulte: In these the TPH area response was less than or equal to Average method blank area + three times standard deviation of the blanks

RE: Extract reinjected, Duplicate: duplicate extraction/injection; dil: extract was diluted

TABLE 13. DETERMINATION OF TPH IN PRE-DEMONSTRATION SOIL SAMPLES QA/QC SAMPLES

Gas Chromatograph	TPH Conc.	TPH Conc.		
Ba	in sample	in sample		Comments
No. No	mg/ml	mg/ml	Error	
	As Analyzed	Actual	%	
KQA-1 3	4.33	4.12	5. %	OA/OC Capture Institute In
KQA-2 3	2.18	2.13	% C	OA/OC Control Sample for Checking of GC
MCMB-2 3	N.D.	0	e i	Mothed Bird, 4751
MC-13 4	0.04	0		Mothed Dient (1PH Area: 14,151)
KQA-3 4	5.78	5.52	4 8%	OA/OC Control Completed (1PH Area: 18,033)
KQA-4 4	2.95	2.76	%0.7 %0.7	OA/OC Control Sample for Checking of GC
KQA-4 5	2.84	2.76	860	OA/OC Control Sample for Checking of GC
KQA-3 6	5.60	5.52	1.4%	OA/OC Control Sample for Checking of GC
KQA-4 6	2.81	2.76	% 6.	OA/OC Control Sample for Checking of GC
KQA-F 7	1.91	1.93	1.0%	OA/OC Control Sample for Checking of GC
KQA-3 7	5.78	5.52	4.7%	OA/OC Control Sample for Checking of GC
KQA-F 9	1.94	1.93	% % %	OA/OC Control Sample for Checking of GC
KQA-3	5.62	5.52	- - - - - - - - - - - - - - - - - - -	OA/OC Control Sample for Checking of GC
MC-43 10	0.33			Mothor Diagramme for Checking of GC
MC-41 10	0.04	c	:	Mother Diagram with spike: 1 ml. of 7.638 mg/ml
MC-42 10	0.25	•	c c	Method Blank with spike (1PH Area: 20,020)
				mgm Ze. 1 of 1.92 mg/m

N.D.: None Detected R: Spike recovery calculation made separately in Table 14

respectively. Thirty four different samples were analyzed. The results show that the soil concentration varies from less than 35 ppm to 9200 ppm (as received). On a dry basis the concentration ranges from less than 44 to 12,200 ppm. In a number of samples it was observed that there were compounds present, outside the diesel window, towards the higher boiling end. These have not been included in the reported results. There were eight samples in which the concentration (as received) was in the range of 12 to 34 ppm. In these eight samples, the TPH area count is within 3 standard deviations of the area count of the method blanks.

Table 14 is a summary of the spiked sample analyses. Two types of spiked samples were analyzed. First, the soil as received from the field was spiked with a known amount of TPH. Then the spiked soil was extracted and the extract analyzed on the GC/FID. The results were compared (through a mass balance on TPH) with the results of the unspiked field soil to determine the percent recovery. The percent recovery ranged between 200 and 320 percent. It should be noted that the TPH concentration reported in Table 12 has not been corrected by the recovery efficiency.

In the second type of spiking experiment, a method blank was spiked with a known amount of TPH (Table 14). The recovery was calculated by a mass balance on TPH. The mass balance was done by a comparison of TPH mass in unspiked method blank versus the spiked method blank. The recovery of TPH from spiking of the method blanks was in the range of 103 to 130 percent.

Table 15 is a summary of sample duplicates. Four samples were extracted and analyzed in duplicate. The relative percentage difference (RPD) ranges from 2.5 to 100 percent. The low concentration sample gave the 100 percent RPD. In four cases, the prepared extract was injected twice into the GC/FID to test the reproducibility of the instrument. The RPD was in the range of 0.4 to 1.5 percent. In one case, a low concentration (less than 21 ppm) sample was injected three times which yielded a relative standard deviation of 96 percent.

2. Post-Demonstration Soil Samples

The post demonstration soil samples were analyzed in a similar manner as the pre-demonstration soil samples. Even these samples had a long storage period as mentioned earlier.

Twenty one post-demonstration soil samples were analyzed by the California DHS method. The result of these analyses are presented in Table 16. The concentrations of soil moisture and TPH are presented in the table.

TABLE 14. SPIKE RECOVERY

RECOVERY OF TPH SPIKE'S FROM SOIL

Ref. No.	Sample Nos.	TPH Conc. in Soil as Received ppm	Amount Spiked Equivalent, ppm	Total TPH Conc. in Spiked Soil ppm	Spike Recovery %
5	MC-4 MC-4 spike,dil	6835	50	6995	320
15	MC-6 MC-39	65	46.2	171	229
21	MC-18 MC-40	1049	218	1490	202

RECOVERY OF TPH SPIKE FROM METHOD BLANKS

	Total TPH mg	Recovery %	
Unspiked Method Blank:	0.4	·	
Method Blank + 1.92 mg spike	2.5	130	
Method Blank + 7.64 mg spike	8.25	103	

TABLE 15. RESULTS OF DUPLICATE ANALYSIS

RESULTS OF DUPLICATE EXTRACTIONS/GC ANALYSIS

Sample	TPH Conc. as received	Sample	TPH Conc. as received	Sample	TPH Conc. as received	Sample	TPH Conc. as received
No.	ppm	No.	ppm	No.	ppm	No.	ppm
MC-5 MC-5dup	4287 3984	MC-25 MC-3	463 906	MC-20 MC-38	2435 2318	MC-9 MC-17	0 52
Average R.P.D	4156 3.7%		686 32.0%		2377 2.5%		26 100.0%

RESULTS OF DUPLICATE GC INJECTIONS

	TPH Conc.		TPH Conc. as received		PH Conc. is received		TPH Conc. as received		TPH Conc.
Sample No.	ppm	Sample No.	ppm	Sample No.	ppm	Sample No.	ppm	Sample No.	ррп
MC-20 MC-20RE	2443 2426	MC-2 MC-2RE	351 341	MC-5DUP MC-5DUPRE	3964 4003	MC-33 MC-33RE	3126 3148	MC-14 MC-14RE MC-14RE	21 12 0
Average R.P.D	2434.5 0.4%		346 1.5%		3983.5 0.5%		3137 0.4%		11

Rex: Duplicate Extraction of soil, Dup: duplicate Injection; Dil: extract diluted

TABLE 16. POST DEMONSTRATION SOIL ANALYSIS FOR TPH BY CALIFORNIA METHOD AND MOISTURE BY WEIGHT LOSS IN OVEN (Preliminary Results Subject to Review and Correction)

Comments											F150 spiked with 17.1 mg of TPH																	F131-1 spiked with 31 mg TPH		••		
Ę										;	F150 apike																	F131-18				
No. of Was Extract sats in Diluted? Diesel Yes/No Range	z	z	z	>	z	> :	>	z	z	z	z >	-	z	>	>	z	z	z	z	z	z	z	z	z	z		z				z	_
Conc. No. of W in soll Peaks in ppm Diesel / basis Range	0	8	2	88	Q	35	\$	4	30	31	8 8	3	8	\$	37	\$		82	8			8		9				₽	\$	35		
TPH Conc. in soil F ppm dry basis	134	443	8838	6003	2000	1727	2002	=	5	201	1216	1240	1786	672	<u> </u>	288	2	121	482	*	5	2	7	1	5	9	\$	350	•	112	202	315
TPH Conc. T in soil ppm as received	128	96	6706	6685	2407	1622	2502	9	=	ž	1213	1241	1753	9	1162	27.0	8	123	\$	*	\$	8	T	1	5	5	7	348	₹	101	273	8
PH Conc. T in extract mg/ml	0.01	8	50.10	80.08	15.45	10.03	15.48	0.0	000	5.31	0.70	10.01	14.76	8.30 8.30	0.70	2.28	2.0	0.82	2.03	9.0	0.36	0.24	0.41	0.05	0.13	0.44	0.40	3.01	0.03	0.73	2.00	2.21
Regression TPH Conc. TPH Conc. Reference in estact in soil, mg/mi ppm as received	05/06/04 NSMSTR01	NSMSTRO1	NSMSTR03	NSCAL.00	NSMSTR01	NSCAL 04	NSMSTR03	NSCAL 05	NSCAL 10	NSMSTROI	NSMSTR01	NSMSTROS	NSCAL05	NSCAL 06	NSMSTROG	NSCAL05	NSCAL05	NSCAL08	NSCAL05	NSCAL06	NSMSTR03	NSCAL08	NSMSTR03	NSCAL08	NSCAL08	NSMSTR03	NSMSTR03	NSMSTR03	NSCAL06	NSCAL 07	NSCAL 06	NACAN TO
Date Injected	05/06/04	05/06/04	05/20/04	05/25/04	05/06/94	05/00/04	05/21/04	05/10/94	05/27/94	05/00/04	05/00/04	05/21/04	05/10/04	05/11/04	05/21/04	09/10/04	05/10/04	05/11/04	05/10/04	05/11/04	05/20/94	05/11/84	05/22/94	05/11/04	05/11/04	05/20/04	05/20/94	05/21/04	05/11/04	05/12/04	05/11/04	10/27/04
Gas Chromatograp Sample File No. No.	Final20	Final21	Final143	Final 182	Final19	Final27	Final 156	Final40	Final 195	Fine123		Final 155	Final42	Firm 151	Final157	Final43	Fine141	Final50	Final39	Final52	Finel145	Final53	Final 163	Fine158	Finatet	Final 144	Final 148	Final149	Final 50	Finel75	Fire 160	u
Gas Chro Sample No.	F120	F116	F. 38	4% F138DL	7. 85	F860H	FB6DH	Ī	5% FONDUP	F156	F150S	4% F150SDI	F121	F121DH	9% F121DH	F175	F177	F176	F155	F13	F13Rex	F107	3% F107Rex	F12	F30	F39Rex	F131-1	F131-29			£	
Į į	5.0%	18.7%	23.4×	23.4%	A1.0		6. 1 X	6.5%				7	5.	5	 \$	3.0%	938	3.0%	#.7x	0.5%	0.5%	0.3%	0.3%	0.2% .:	0.4%	7 7.0	0.4%	% 7 0	2.8%	80 m	~	•
ample Depth Perc Depth Interval Wa Code ft	9-0	14-16	14-16	14-16	18-20	18-20	18-20	0-2	0-2	20-22	20-22	20-22	22-23	22-23	22-23	18-20	1 -10	12-14	14-16	0-2		=	16-18	4-6	2-4	2-4	2-4	2-4	=	14-16		
Sample Depth Code	0000	U1418	C1416	U1416	01820	01820	01820	1,0002	10002	U2022	U2022	U2022	U2223	U2223	U2223	U1820	0190	U1214	U1418	00002			U1618	00400	C0204		1020	2000		01618		
Sample Sample Hole Depth Location Code	EA01A	EA02A	EA02A	EA02A	EA03A	EAGSA	EA03A	FAD4A	EADAA	EAGAA	EAOAA	EAOMA	EA05A	EAOSA	EAOSA	EADBA	FA07A	EA07A	EADBA	EBOIA	EBO1A	EBOTA	EB01A	EB02A	EB03A	EB03A	EBOSA	EBO3A	EBOSA	EB04A	EBO4A	

3. Removal of TPH

A comparison of the post test and pretest concentration of DRO was done. This is summarized in the attached Table 17. Figure 19 (Page 56) is a plan view of the electrode array which helps to elucidate the various comparisons made in Table 17. Table 17 summarizes the average concentration of DRO TPH as a function of heated soil zones. There are four zones based upon which the comparison was made.

The first zone is the entire heated volume to a depth of less than or equal to 24 ft; in this zone the average concentration in the defined volume was calculated by considering all valid analytical results.

The second zone is defined by the area enclosed by the four corner electrodes A1, C1, C8, A8 and a depth less than or equal to 20 ft. Only valid analytical results for samples which were obtained from this volume were averaged.

The third zone is defined by the area enclosed by the central electrodes A3, C3, C6, A6 and a depth less than or equal to 24 ft.

The fourth zone is defined by the area bounded by the central electrodes A3, C3, C6, A6 and a depth less than or equal to 20 ft. As Table 17 illustrates, the highest removal was obtained in the central zone to a depth of 24 ft or less. In this zone the removal of DRO TPH was 67 to 69 percent. As the volume is enlarged to include the entire surface area (defined by A1,C1,C8,A8) the removal drops to 23 to 29 percent to a depth of 24 ft or less. A review of the soil samples taken from the lateral Volume II indicates that in this region the concentration of the soil may have increased. A similar increase may have occurred in the corresponding volume at the opposite end of the array. This cannot be definitely concluded due to lack of paired before and after samples of soil from this region of the array.

The above data are presented in terms of two depth ranges because the central row of electrodes, the excitor row had a depth of 20 ft and the two outer rows had a depth of 29 ft. The central row was originally designed for a depth of 24 ft. Its depth was decreased in the field because a shallow water table was encountered in the depth interval of 19 to 24 ft. A corresponding depth reduction of the two outer rows was not done due to time and logistics constraints. The heated depth extends below the bottom of the excitor electrodes. This heating is caused by electric fields fringing below the central row of electrodes. It is estimated that fringing fields could extend the heating effect by an additional depth equal to 50 to 60 percent of row separation (that is 2.5 to 3 ft more).

TABLE 17.	ļ	ARY OF 1	PH ANAL	SUMMARY OF TPH ANALYSIS DONE	AT IITRI,	TRI, PPM	1	
		Pre-Demo	Pre-Demonstration	uo		Post-Demonstration	onstra(ton
Volume	u	ıĸ	82	R.S.D.	u	IX	8	R.S.D.
Total, for all depths	33	1518	2636	174	33	1077	2131	198
For volume defined by (A1, C1, C8, A8) Depth s20'	26	1280	2866	224	28	984	2261	230
For volume defined by (A1,C1,C2,A2) Depth s24'(Volume II)	7	706	975	138	8	2405	3495	145
For volume defined by (A1,C1,C2,A2) Depth \$20'	9	348	257	74	7	2348	3771	161
For volume defined by (A3, C3, C6, A6) depths <24'	18	2347	3300	141	17	730	1467	201
For volume defined by (A3, C3, C6, A6) depths <20'	14	2208	3707	168	14	717	1610	225

The data were presented in terms of two areal zones because the maximum temperature rise was confined to the central zone as defined by electrodes A3, C3, C6, A6.

A graphical comparison of the soil concentrations before and after the demonstration experiment was made. The data for samples obtained from ground row A is shown in Figure 30. A two-dimensional pattern is revealed regarding the distribution of sampling points. This pattern may have biased the results for the following reasons:

- It is known that the concentration of TPH increased with depth, and that it was higher in the depth interval of 12 to 25 ft. As the figure shows, deep samples were taken below the 20 ft zone (below the bottoms of the excitor electrodes).
- There were no samples taken in the middle of the heated zone, that is, the zone defined by Electrodes A3 to A6 and depth interval of 2 to 20 ft. This was the area of highest temperature increase in Ground Row A.
- Samples taken at depth may be confounded by the presence of the water table for depths larger than 24 ft.

Based on the comparison of the post test and pre-test average concentration, there was no removal of TPH in the vertical plane defined by ground row A. The average pre-test concentration in this plane was 1340 ppm and the post test average was 1478 ppm.

Figure 31 illustrates the distribution of contaminant concentration in the vertical plane represented by the excitor row electrodes. This plane includes the two thermowells TW1 and TW2. The location of sampling points are such that no obvious pattern can be discerned from Figure 31, which is the desired random distribution of the sampling points. The average pre-test concentration of TPH in this plane was 809 ppm. The average post test concentration was 710 ppm if all the data are included. There is one post test sample which seems to increase the post test average from 127 ppm to 710 ppm. This is the sample in TW1 from the depth interval of 14 to 16 ft. The analyzed concentration is in excess of three standard deviations of the average of the remaining samples.

Figure 32 illustrates the concentration profile for TPH in the vertical plane represented by ground row C. The distribution of sampling point locations does not reveal any pattern, which was the desired outcome. The average concentration of all the pre-test samples was 2271 ppm. The average of all the post-test samples was 1079 ppm, which represents a concentration decrease of

Figure 30. Pre and Post Demonstration TPH Concentration in Electrode Row A as a Function of Depth

Figure 31. Pre- and Post-Demonstration TPH Concentration in Electrode Row B as a Function of Depth · Outside 3 standard deviations of the average of all the other post-test samples in this plane

Figure 32. Pre- and Post-Demonstration TPH Concentration in Electrode Row C as a Function of Depth

approximately 53 percent. If the samples taken below the depth of 20 ft are removed then concentration decrease is approximately 63 percent.

C. TRACER INJECTION EXPERIMENT

Towards the end of the heating portion of the demonstration a tracer experiment was done to show that soil fluids were moving into the heated zone. The tracer experiment was performed on May 30, 1993 between 9:00 and 15:30 hrs. The results of the tracer experiment are summarized here along with a description of the procedures.

Halon 2402, dibromotetrafluoroethane, was used as a chemical tracer. The tracer was injected outside the heated array, in cool soil at a depth of 7 feet. The injection point was located on a center line approximately 9 ft from the western edge of the array. The distance from the center of the array was approximately 14 ft. The soil temperature at the injection point was 32.3°C. The tracer was injected into a 0.25-in. O.D. copper tubing which was placed in a bore hole at the time of system installation. After introduction into the copper tube the tube opening was closed to prevent the escape of the tracer. The raw gases leaving the heated zone were sampled and analyzed for the presence of Halon 2402. A gas chromatograph equipped with an electron capture detector was used for the analysis. The purpose of the tracer experiment was to prove that the tracer moves into the heated zone. Thus only qualitative analysis was performed.

1. Materials and Equipment

Halon 2402 is a liquid at ambient temperature, boiling at 47.3°C. The liquid density is 135 lb/cu. ft. at 70° F. The vapor specific gravity is 8.97 (Air =1).

A Packard gas chromatograph, Model 427 equipped with a Nickel -63 electron capture detector was used for the analysis of Halon 2402. A stainless steel column, 1/8 in O.D. packed with 80/100 mesh Porapak Q was used for separation. The column was purchased from Altech. The GC operating conditions were: Injector temperature 220°C; oven temperature 220°C; detector temperature 230°C; carrier gas zero grade nitrogen supplied at a head pressure of 60 psig which gives a flow rate of approximately 20 ml/min.

Gas tight syringes were used to inject the gas sample into the GC. The retention time of Halon 2402 was in the range of 1.6 to 1.65 minutes. It was found by injecting the gas from the head space of a vial containing pure Halon 2402.

After the injection of the halon tracer into the soil the raw gases leaving the soil were sampled and analyzed for the presence of Halon 2402. The sampling system is illustrated in Figure 1 and the procedure is described below.

2. Procedure for Performing the Tracer Experiment

The overall procedure for performing the tracer experiment has four part:

- Set up of GC and confirmation of Halon 2402 peak elution time.
- Set up of a raw gas sampling train
- Collection of preliminary and background data and information prior to tracer injection
- Collection of gas samples and their analysis after tracer injection

Set Up of GC and Determination of Elution Time

The ECD GC was set up and several injections were made to determine the elution time of the Halon tracer. The base line was verified to be clean after the tracer peak had eluted. When injecting room air the chromatogram showed a response for air and then had a clean baseline. The sensitivity of the detector should was set in the medium range, about 3 to 4. The retention time of Halon 2402 was in the range of 1.6 to 1.65 minutes.

Gas Sampling Equipment and Procedure

Figure 33 illustrates the method of setting up the gas sampling train. The gas sample point for the tracer study was the same point on the ejector system where Halliburton personnel had been taking samples for volatile and semi-volatile analysis. But existing tygon tubing was replaced with 0.25 in. O.D. teflon tubing. The sample was conveyed to a glass flask in which any water droplets in the line were separated. The outlet port of the flask was connected to a diaphragm pump. A Thomas pump was used. This pump has a teflon-lined rubber diaphragm. This is a positive displacement pump and will generate high pressure if the outlet is blocked or restricted.

The outlet of the pump was connected to valve V1. The line leaving V1 was connected to a Tee. Valve V2 was connected to the branch leg of the Tee. The run-leg of the Tee was connected to teflon tubing which was connected to the glass gas sampling bottle by means of a short length of tygon tubing.

Figure 33. Gas Sampling Scheme for the Tracer Experiment

The line leaving from the branch leg of the Tee was connected to Valve V2. The line leaving valve V2 was submerged in 10 in. of water. This line was made from tygon hose. The purpose of this line was to allow the filling of the gas sample bottle under pressure of 10 in. of water.

The gas sample train was started and used in the following manner:

First the pressure was set as follows:

• With valve V1 open, valve V2 was cracked open. Stop cock C1 was closed. Pump was turned on. Valve V2 was adjusted so that the air just bubbled out of the submerged tubing.

Gas was sampled as follows:

With the pump running as above, stop cocks C1 and C2 were turned on. Gas was flushed through the gas sample bottle for about min. Then stop cock C2 was closed followed by stop cock C1. Pump was switched off. The sample bottle was labelled with date and time.

Sampling the Gas Bottle for GC Injection

A rubber septa was attached on one outlet end of the filled gas sample bottle. The stop cock at the same end was opened. The gas was sampled with the syringe needle inserted through the septa. After removing sample the stop cock was closed.

Collection of background information prior to tracer injection:

- Insert a thermocouple into the tracer injection well (0.25 in tubing) and measure the temperature and the depth of the hole. CAUTION: RF power must be switched off while inserting and using the thermocouple.
- Before injecting the trace the following operating conditions were recorded:
 - * All the RF power input parameters
 - * All the data from the vapor collection system.

Injection of tracer

A 5 ml. syringe was filled with the liquid tracer and it was injected into the copper tracer injection tubing inserted in the ground. The time and date were recorded. The copper injection tubing was capped.

Immediately after the injection of the tracer a gas sample was taken. New gas samples were taken after every 15 minutes until 120 minutes had elapsed.

Prior to reuse, the gas sample bottles were thoroughly flushed out and cleaned. The cleanliness of the sample bottle was verified by analyzing a sample taken from the bottle after it had been flushed.

3. Trace Injection Results

The results of the gas samples analyzed for the presence of the tracer gas in the raw gas stream collected from the heated soil zone are presented in Table 18.

TABLE 18. RESULTS OF TRACER INJECTION EXPERIMENT

Finder				IVERE 10.	ALSOLIS 01	RESOLIS OF INACEN INSCRION EATENTIES	· caren		
Sample G.C. Sampling Time Time Volume Area Rs No. Run No. Start Finish min. min. ml. Response No. Run No. Start Finish min. ml. Response No. Run No. Start Finish min. ml. Response No. Run No. Start Finish min. min. ml. Response No. Run No. Ro. No.							Sample		Normalized
Sample G.C. Sampling Time Time Volume Area Response No. Run No. Start Finish min. mil. Response * 17 . 0.05 1,442,000 3 18 09:07 09:10 4.5 0.05 1,128,900 4 19 09:27 09:15 20.1 777,460 5 20 09:59 10:02 36.5 0.1 777,460 6 21 10:25 10:02 36.5 0.1 707,970 7 22 Estimated 110 0.1 1,575,500 9 24 11:32 11:35 149.5 0.1 1,575,500 10 25 12:02 11:35 149.5 0.1 1,359,100 9 25 12:32 12:35 209.5 0.1 1,356,300 11 26 13:11 13:14 12:5 0.2 1,276,800 1	Tracer		,			Elapsed	Injection		Area
Wo. Run No. Start Finish min. ml. Response * 17 0.05 1,442,000 4 19 09:32 09:35 20.5 1,128,900 5 20 09:59 10:02 56.5 0.1 707,460 6 21 10:23 10:02 56.5 0.1 707,970 7 22 Estimated 110 0.1 707,970 8 24 11:32 11:35 149.5 0.1 800,460 9 25 12:02 17:05 0.1 707,970 707,970 10 26 11:32 11:35 149.5 0.1 1,575,500 9 25 12:02 12:05 179.5 0.1 1,575,500 10 26 12:32 12:05 10.5 0.1 1,575,500 11 28 13:11 13:14 12:5 0.1 1,356,300 12 29 <	Injection	Sample	G.C.	Sampling	1 Time	Time	Volume	Area	Response per
* 17 3 18 09:07 09:10 4.5 0.05 1,442,000 4 19 09:32 09:35 29.5 0.1 777,460 5 20 09:32 10:02 56.5 0.1 777,460 6 21 10:23 10:26 80.5 0.1 777,460 7 22 Estimated 110 0.1 1,575,500 9 24 11:35 149.5 0.1 779,330 9 25 12:02 177.5 0.1 779,330 10 26 12:32 12:35 209.5 0.1 1,535,100 11 27 13:11 13:14 12.5 0.1 1,359,100 12 29 13:29 13:28 26.5 0.2 1,276,800 13 30 13:50 14:15 73:5 0.2 1,276,800 15 31 14:42 14:45 103:5 0.2	Time	No.	Run No.	Start	Finish	min.	al.	Response	ml. sample
+ 17 3 18 09:07 09:10 4.5 0.05 1,128,000 4 19 09:32 09:35 29.5 0.1 797,460 5 20 09:59 10:26 56.5 0.1 797,460 6 21 10:25 56.5 0.1 797,500 7 22 Estimated 110 0.1 1,575,500 8 24 11:32 11:35 140.5 0.1 1,575,500 9 25 12:02 12:05 170.5 0.1 1,575,500 9 26 12:32 12:05 170.5 0.1 1,575,500 10 26 12:32 12:35 100.5 0.1 1,575,500 11 27 13:11 13:14 12:5 0.1 1,359,100 12 28 13:11 13:14 12:5 0.2 1,276,800 13 14:42 14:45 12:5 0.2 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
3 18 09:07 09:10 4.5 0.05 1,128,900 4 19 09:32 09:35 29.5 0.1 797,460 5 20 09:59 10:26 56.5 0.1 797,460 6 21 10:23 10:26 80.5 0.1 707,970 7 22 Estimated 110 0.1 1,575,500 9 24 11:32 11:35 149.5 0.1 1,575,500 9 25 12:02 12:05 179.5 0.1 1,575,500 10 26 12:32 12:05 179.5 0.1 1,575,500 11 26 12:32 12:35 209.5 0.1 1,359,100 11 28 13:11 13:14 12:5 0.1 1,356,300 12 29 13:25 13:26 26.5 0.2 1,276,800 14 31 14:12 14:15 12:2 0.2 <t< th=""><th>5/30/93</th><th>*</th><th>17</th><th></th><th></th><th></th><th>0.05</th><th>1,442,000</th><th>28,840,000</th></t<>	5/30/93	*	17				0.05	1,442,000	28,840,000
4 19 09:32 09:35 29:5 0.1 797,460 5 20 09:59 10:02 56.5 0.1 567,310 6 21 10:23 10:26 80.5 0.1 707,970 7 22 Estimated 110 0.1 1,575,500 9 24 11:32 149.5 0.1 1,575,500 10 25 12:02 17:35 0.1 799,350 10 26 12:32 12:35 200.5 0.1 1,359,100 11 26 13:11 13:14 12.5 0.1 1,359,100 12 29 13:11 13:14 12.5 0.1 1,356,300 12 29 13:25 13:28 26.5 0.2 1,276,800 13 14:12 14:15 14:45 10:2 0.2 1,276,800 14 31 14:42 14:45 103.5 0.2 110,760,000	9:04	m	81	20:60	09:10	4.5	0.05	1,128,900	22,578,000
5 20 09:59 10:02 56.5 0.1 567,310 6 21 10:23 10:26 80.5 0.1 707,970 8 24 11:32 11:35 149.5 0.1 1,575,500 9 24 11:32 12:35 179.5 0.1 779,350 10 26 12:32 12:35 209.5 0.1 779,350 11 26 13:11 13:14 12.5 0.1 1,359,100 12 29 13:21 13:14 12.5 0.1 1,359,100 13 30 13:25 13:26 0.2 0.1 1,359,100 14 31 14:12 12.5 0.1 1,359,300 15 30 13:25 13:26 26.5 0.2 1,276,800 16 31 14:42 14:45 103.5 0.2 110,760,000 16 37 15:06 127.5 0.2 159,270,000		4	6	09:32	09:35	29.5	0.1	797,460	7,974,600
6 21 10:23 10:26 80.5 0.1 707,970 7 22 Estimated 110 0.1 1,575,500 9 24 11:32 11:35 149.5 0.1 880,460 9 25 12:02 12:05 179.5 0.1 799,350 10 26 12:32 12:35 209.5 0.1 1,359,100 11 26 13:11 13:14 12.5 0.1 1,359,100 12 29 13:15 13:14 12.5 0.1 1,356,300 13 30 13:50 13:53 26.5 0.2 1,276,800 14 31 14:12 14:15 73:5 0.2 1526,480 15 32 14:42 14:45 103:5 0.2 110,760,000 15 33 14:42 14:45 103:5 0.2 159,270,000 16 37 15:06 127:5 0.2 8,217,600 <th></th> <td>2</td> <td>23</td> <td>09:59</td> <td>10:02</td> <td>5.6.5</td> <td>0.1</td> <td>567,310</td> <td>5,673,100</td>		2	23	09:59	10:02	5.6.5	0.1	567,310	5,673,100
7 22 Estimated 110 0.1 1,575,500 8 24 11;32 11;35 149.5 0.1 880,460 9 25 12:02 12:05 179.5 0.1 779,350 10 26 12:32 12:35 269.5 0.1 1,359,100 11 27 13:11 13:14 12.5 0.1 1,356,300 12 29 13:15 13:14 12.5 0.1 1,356,300 12 29 13:25 13:26 26.5 0.2 1,276,800 13 14:42 14:45 103.5 0.2 15.76,800 15 31 14:45 103.5 0.2 110,760,000 16 37 15:06 15:75 0.2 159,270,000 16 37 15:06 157.5 0.2 159,17,600		•	21	10:23	10:26	80.5	0.1	707,970	7,079,700
6 24 11:32 11:35 149.5 0.1 880,460 9 25 12:02 12:05 179.5 0.1 779,350 10 26 12:32 12:35 209.5 0.1 1,359,100 11 27 13:11 13:14 12.5 0.1 1,359,100 12 28 13:11 13:14 12.5 0.1 1,356,300 12 29 13:25 13:28 26.5 0.1 1,276,800 13 30 13:50 13:53 51.5 0.2 1,276,800 14 31 14:45 16:45 103.5 0.2 10.2 626,480 15 32 14:45 16:45 103.5 0.2 110,760,000 16 37 15:06 15:09 127.5 0.2 159,270,000 16 37 15:06 15:09 127.5 0.2 159,277,600		7	22		Estimated	110	0.1	1,575,500	15,755,000
9 25 12:02 12:35 179.5 0.1 799,350 10 26 12:32 12:35 209.5 0.1 1,359,100 11 27 13:11 13:14 12.5 0.1 1,356,300 12 28 13:11 13:14 12.5 0.1 1,356,300 12 29 13:25 13:26 26.5 0.2 1,276,800 13 30 13:50 13:53 51.5 0.2 1,276,800 14 31 14:12 14:15 73.5 0.2 626,480 15 32 14:42 14:45 103.5 0.2 110,760,000 15 33 14:42 14:45 103.5 0.2 159,270,000 16 37 15:06 15:09 127.5 0.2 8,217,600		•	72	11:32	11:35	149.5	0.1	880,460	8,804,600
10 26 12:32 12:35 209.5 0.1 1,359,100 11 27 13:11 13:14 12.5 0.1 1,356,300 12 29 13:25 13:26 26.5 0.2 1,276,800 13 30 13:50 13:53 51.5 0.2 1,276,800 14 31 14:12 14:15 73.5 0.2 626,480 15 32 14:45 103.5 0.2 110,760,000 15 33 14:42 14:45 103.5 0.2 159,270,000 16 37 15:06 15:09 127.5 0.2 8,217,600		٥	\$2	12:02	12:05	179.5	0.1	799,350	7,993,500
11 27 13:11 13:14 12.5 0.1 1,356,300 12 28 13:11 13:14 12.5 0.1 1,356,300 12 29 13:25 13:28 26.5 0.2 1,276,800 14 31 14:12 14:15 73.5 0.2 626,480 15 32 14:42 14:45 103.5 0.2 110,760,000 16 37 15:06 15:09 127.5 0.2 8,217,600		0	92	12:32	12:35	209.5	0.1	1,359,100	13,591,000
11 28 13:11 13:14 12.5 0.1 1,356,300 12 29 13:25 13:28 26.5 0.2 1,276,800 13 30 13:50 13:53 51.5 0.2 1,276,800 14 31 14:12 14:15 73.5 0.2 626,480 15 32 14:42 14:45 103.5 0.2 110,760,000 15 33 14:42 14:45 103.5 0.2 159,270,000 16 37 15:06 15:09 127.5 0.2 8,217,600									
11 28 13:11 13:14 12.5 0.1 1,356,300 12 29 13:25 13:28 26.5 0.2 1,276,800 13 30 13:50 13:53 51.5 0.2 0.2 0 14 31 14:12 14:15 73.5 0.2 626,480 15 32 14:42 14:45 103.5 0.2 110,760,000 15 33 14:42 14:45 103.5 0.2 159,270,000 16 37 15:06 15:09 127.5 0.2 8,217,600	5/30/93	=	22	13:11	13:14	12.5	0.1	0	0
29 13:28 26.5 0.2 1,276,800 30 13:50 13:53 51.5 0.2 0 31 14:12 14:15 73.5 0.2 626,480 32 14:42 14:45 103.5 0.2 110,760,000 33 14:42 14:45 103.5 0.2 159,270,000 37 15:06 15:09 127.5 0.2 8,217,600	13:00	=	28	13:11	13:14	12.5	0.1	1,356,300	13,563,000
30 13:50 13:53 51.5 0.2 0 31 14:12 14:15 73.5 0.2 626,480 32 14:42 14:45 103.5 0.2 110,760,000 33 14:42 14:45 103.5 0.2 159,270,000 37 15:06 15:09 127.5 0.2 8,217,600		12	62	13:25	13:28	5.92	0.2	1,276,800	6,384,000
31 14:12 14:15 73.5 0.2 626,480 32 14:42 14:45 103.5 0.2 110,760,000 33 14:42 14:45 103.5 0.2 159,270,000 37 15:06 15:09 127.5 0.2 8,217,600		13	30	13:50	13:53	51.5	0.2	0	
32 14:42 14:45 103.5 0.2 110,760,000 33 14:42 14:45 103.5 0.2 159,270,000 37 15:06 15:09 127.5 0.2 8,217,600		1,4	31	14:12	14:15	73.5	0.2	626,480	3,132,400
33 14:42 14:45 103.5 0.2 159,270,000 37 15:06 15:09 127.5 0.2 8,217,600		15	32	14:42	14:45	103.5	0.2	110,760,000	553,800,000
37 15:06 15:09 127.5 0.2 8,217,600		15	33	14:42	14:45	103.5	0.2	159,270,000	796,350,000
		16	37	15:06	15:09	127.5	0.2	8,217,600	41,088,000

Blank sample comprising of the atmospheric air at the site

Halon 2402 was first injected into the injection well at 09:00 hrs on May 30, 1993. Approximately 5 ml. of the tracer was injected. The first sample of raw gas from the vapor collection system was obtained between 09:07 and 09:10 hrs. Additional samples were obtained every 15 to 20 minutes. A sample of the gas was injected into the GC/ECD and the peak elution time and peak area were noted. The data are summarized in Table 18. As shown by the results of samples 3 through 10 the presence of tracer in the raw gas stream could not be conclusively proven although it appears that sample 7 had increased levels of the tracer.

One reason that the tracer response was so low is that we had injected insufficient amount of the tracer and it was getting diluted by the air and gases flowing into the vapor collection system. Thus another larger injection of the tracer was made later the same day at 13:00 hrs four hours after the first injection. Twenty five ml. of the liquid tracer was injected. A large increase in the GC response was observed for sample number 15 which was taken approximately 104 minutes after the second tracer injection.

These results show that the liquid tracer injected outside of the heated zone migrated inside and was collected by the vapor collection system. Because of the way the experiment was done, it is not possible to rule out the fact that the observed increase of the tracer concentration in the gas samples may have been due to the first tracer injection and not the second. If this is indeed the case, then the tracer could have taken as long as 5 hr and 40 minutes to be collected by the vapor collection system.

D. ELECTRICAL DATA

1. RF System Performance

The operational performance of the RF heating system used for the Kelly AFB demonstration test was evaluated by monitoring the RF power delivered and absorbed by the array, by tracking the electrode array's input impedance and by continuously adjusting the matching network to achieve the most efficient energy delivery between the source and the array. Figures 34, 35, and 36 illustrate the applied or input RF power to the array, the cumulative RF energy delivered, and the effective RF power source utilization, respectively, as function of time.

Both the forward and reflected RF power at the output of the RF power source were continuously monitored throughout the test. Additionally, the forward and reflected RF power was monitored at the input to the stage 1 matching network, adjacent to the array. By periodically adjusting the variable components of the stage 2 matching network, the reflected power to the RF power source was

Figure 36

minimized or maintained at zero. Finally, by recording the measurements obtained from the IITRI designed in-line impedance meter, changes in trends in the input impedance to the electrode array were tracked as a function of time. By monitoring the trends in this impedance, a qualitative assessment of the performance of the RF heating system was performed.

During the operation of the test it was determined that the use of the single RF frequency of 6.78 MHz would be sufficient. All subsequent RF data is for a fundamental applied frequency of 6.78 MHz. Figure 37 illustrates a calculated Smith chart representation of the array's input impedance as would be measured at the soil surface, if possible, as a function of time for the first 33 days of the demonstration test. During this period of the test, the track of the array's input impedance appears, for the most part, as would be expected for the RF heating of this specific triplate array. Figure 38 shows a calculated Smith chart representation of the array's input impedance at the soil surface for the final month of the test. The erratic pattern indicates that major impedance variations were occurring within the triplate array throughout the majority of the final two to three weeks of the heating.

2. RF Emissions Monitoring

Near and far-field electromagnetic field measurements were made at and around the test area. Near-field refers to the immediate vicinity of the test site (within ~15 feet of the array); far-field refers to locations 100 to 1600 meters from the test site. All far-field locations were selected in consultation with Kelly AFB communication personnel. The purpose of these measurements was to ensure that any radiated RF power levels were below permissible FCC and Air Force standards, that no interference was generated with base communications, and that no personnel safety problem areas existed.

These measurements were made in two different phases. The first phase or series of measurements were conducted before the initiation of the actual test by applying low RF power levels (~5 kW) to the electrode array and monitoring both near and far-field radio frequency interference (RFI) electric field intensity values in order to identify any potential problem areas. The second series of measurements were conducted during the test. These near and far-field RFI measurements were made while full power was being applied to the electrode array. Ambient field levels were measured by momentarily turning the RF source off to the electrode array at each measurement point or location.

Figure 8, previously illustrated an overview of the Kelly AFB; Site S-1 demonstration test layout. RFI safety measurements were

Kelly AFB; Site S-1 Array Input Impedance Tracking

Figure 37. Kelly AFB; Site S-1.

Kelly AFB; Site S-1 Array Input Impedance Tracking

Figure 38. Kelly AFB; Site S-1.

conducted periodically during the test throughout the area shown in the figure. These safety measurements consisted of recording the RF power density as measured by a hand held RF field strength or exposure probe. The maximum measured RF power density was found just below the 6 % inch coax RF choke. The maximum value recorded at full power (40 kW applied to the array) was 0.16 mW/cm² which is less than 1% of the maximum permissible exposure limit (19.6 mW/cm² at 6.78 MHz) as identified by IEEE C95.1-1991 (Reference 5). There were no measurable RF power densities within the area except in the proximity of conducting materials. The average RF power density measured within 6 inches of the coaxial transmission lines was 4 $\mu\text{W}/\text{cm}^2$. This represents 0.02% of the permissible limit.

Table 19 contains the maximum measured electric field strengths for both near and far-field RFI safety measurements. Also illustrated in this table are the appropriate limits identified by the Institute of Electrical and Electronic Engineers (IEEE) and accepted by the American National Standards Institute (ANSI) and the National Institute of Occupational Safety and Health (NIOSH) for near-field continuous exposure to electric fields at this frequency of operation. The maximum measured electric field strength of 40 mV/m at a distance of 10 meters is more than three orders of magnitude below the minimum of these two ratings. In addition, no electromagnetic interference was experienced by any of the air base communication staff throughout the duration of the demonstration.

No out-of-band electric field strengths were measurable at frequencies that were not, themselves, ISM band frequencies. Out-of-band refers to measurements at frequencies other than the operating or fundamental frequency directly generated as part of its operation (harmonics, spurious radiation, etc.).

The fact that all RFI measurements, near and far-field met personnel safety limits and were within permissible standards, indicates that more than sufficient efforts were employed during the design, fabrication and installation of this demonstration test to insure adequate site personnel safety and not pose any interference to the surrounding community.

TABLE 19. RFI SAFETY MEASUREMENTS NEAR/FAR-FIELD (APPLIED FREQUENCY = 6.78 MHz, APPLIED POWER = 40 KW)

Distance from Array (meters)	Electric Field Strength (millivolts/meter)	Personnel Continuous Electric Fie Stand (Volts/	Exposure ld Strength ards
(meters)	(MIIIIVOIOS) MCCCI)	IEEE/ANSI	NIOSH
10	40.0	121.5	192.
100	1.30		
400	0.071		
800	0.126		
1600	0.016		

VIII. CONCLUSIONS

A. TPH REMOVAL

In the central row of electrodes, the excitor Row B, high removal of TPH was observed due to the high temperature achieved in this row. The residual concentration of TPH in this row was in the range of 4 to 112 ppm. Higher concentrations were observed below the tips of the excitor electrodes (305 ppm) and towards the edges of the row where the temperature was lower. Thus, in thermowell TW2 the concentration range was 48 to 417 ppm and in TW1 it was 263 to 6543 ppm. The high reading in TW1 is probably an outlier as explained in Section VII. The average temperature in the excitor row ranged from 125°C to 650°C (Figure 21). The average temperature in this row was in the range of 125 to 150°C from 200 to approximately 700 hours of elapsed time. After 700 hours, the temperatures at the tips of the excitor electrodes shot up and so did the average.

The results of the Bench Scale Treatability study (Reference 2a) had shown that treatment at a temperature of 150°C with a residence time of 100 hours was sufficient to reduce the TPH concentration to 60 to 90 ppm. The percent removal depends upon the initial concentration of soil and it ranged from 75 to 97 percent in the laboratory studies. Thus, the residual concentrations observed in Row B were consistent with the results of the treatability study.

Comparison of the initial and final concentrations of samples obtained from Row B indicate that there was a 84 percent reduction of TPH concentration. We have omitted the outlier in this calculation. If all the data points are considered, including the outlier, then the reduction in TPH concentration is only 12 percent.

The residual concentration of TPH in ground Row C was in the range of 5 to 5700 ppm. There were 12 post demonstration soil samples. Of these 2 were in the depth range of 20 to 24 ft which is below the tips of the excitor electrodes and they may have also been very close to, if not below the water table surface. These two samples had a concentration of 2800 to 2840 ppm. The average temperature in ground rows A and C at a depth of 24 foot did not exceed 45 to 50 °C (Figure 22). Thus the above results are not surprising considering the sample locations and the temperature history.

There were another two samples, in the depth range of 18 to 20 ft, with residual TPH concentration in the range of 1100 to 5700 ppm. There are no temperature data in the depth range of 18 to 20 ft. But by interpolating between data of depth ranges 12 and

24 ft, one can see that the temperature in the depth range of 18 to 20 ft was in the range of 45° to 70°C.

The remaining 8 samples of Ground Row C were from the depth range of 0 to 16 ft. with a residual TPH concentration in the range of 5 to 210 ppm with an average of 64 ppm. The initial concentration of these 8 locations was in the range of 25 to 896 ppm with an average of 221 ppm. Thus, the percentage removal in the 0 to 18 ft depth interval of Row C was 70 percent. If all the samples of Row C are considered in the calculations of initial and residual average concentrations then the following results are obtained: Initial average concentration: 2271 ppm, and final average concentration: 1079 ppm for a reduction of 52.5 percent.

The concentration data for ground Row A is more difficult to interpret because of the way the sampling points happen to fall in relation to the water table, and the extent of the heated zone. It was pointed out earlier that most of the samples were taken from area where the temperature rise was inadequate or else they were taken close to the water table. The average concentration of all the 11 pre-demonstration soil samples in Row A was 1340 ppm. average of all 10 post-demonstration soil samples was 1478, indicating either that the TPH was not removed or it increased In both Rows A and C the hottest soil region was opposite electrodes in positions 3 to 6, that is A3 to A6, etc. In Row A, there were only 3 post demonstration samples from these electrodes, of which two were in the depth interval of 18 to 20 ft. where the temperature rise was inadequate to remove TPH. there were 7 post-demonstration samples taken from locations which were either too deep or else were in the fringe area where the temperature rise was insufficient.

The results of the soil sample analysis when considered in relation to the sample location and the temperature history support the conclusion that where ever the soil was heated to a temperature range of 150°C, low residual concentration of TPH was obtained.

B. SOIL TEMPERATURE RISE

As illustrated by the data presented in the figures of Section VII it is clear that the central row of electrodes were abnormally overheated whereas there was severe under heating of zones further removed from the central row of electrodes. The design goal was to heat 122 cu. yd. to a temperature of 150°C. The results show the following:

 Volume of soil where every measurement point exceeded 100°C for long (>100 hr) periods of time was estimated to be 90 cu. yd.

- volume of soil where the average temperature was >150°C was estimated to be 56 cu. yd. But volume within which every measurement point exceeded 150°C was 34 cu. yd.
- Volume of soil where the average temperature was in the range of 60° to 70°C was 37 cu. yd.

These results indicate that the desired volume of soil did not reach the temperature objective of 150°C. The main reason for this was the melting of electrode due to their close proximity to the water table.

The high temperature to which the soil was heated may have contributed to some oxidation of contaminants present in the soil. IITRI has no data to prove or disprove this hypothesis, but it is a reasonable one to make.

C. OPERATION OF THE RF HEATING SYSTEM

After May 18, 1993, sustained operation of the RF power source became difficult. The analysis of data and information now available show clearly that this was due to the high temperature achieved in the central row which led to the melting of the electrodes. Prior to this time the RF system performed quite well considering that the RF power source was 40 to 45 years old and it exhibited signs of age as evidenced by frequent short circuiting due to insulation failure and rectifier problems. However, the matching networks and instrumentation all performed as expected.

It is probable that the electrodes melted due to their close proximity to the water table. But depth of water table below the heated zone is not known in the time period that the demonstration was performed. Due to the design of the array, it was not possible to monitor the water table location. However, water table depth was monitored prior to completion of the electrode array. These data indicate that the water table was 2.5 ft to 3.5 ft below the tips of the excitor electrode in February 1993. The water table level was controlled by means of four dewatering wells that pumped continuously during system installation and operation. It is known that the pumps were able to reduce the water table depth by 1 to 1.5 ft during the nine days ending February 11, 1993.

The measurements of radiated power levels indicated that there were no RFI problems. Safety measurements made in the immediate vicinity of the RF equipment indicated safe levels of E and H fields.

IX. RECOMMENDATIONS

In light of the results of the field demonstration the following recommendations are made:

- Develop, through engineering analysis, sound and reliable criteria which dictate the proximity of the electrode tips and the water table
- For sites which have a shallow water table, means of measuring, while heating, the depth of the water table below the electrode array must be incorporated in the design of the array.
- A review of the impedance data plotted on Smith charts indicates that there were clues developing prior to May 18, 1993, which may have been indicative of the problems which we were to experience in the future. An engineering analysis should be done to catalogue such clues so that the system operating personnel can be alert to the possible mal-operation of the system.
- An analysis of the radiation measurements from the heated zone indicate that the RF shield may have been over designed. Future demonstrations should evaluate other simpler alternatives for the shield design.
- Temperature of the thermowells was measured by means of fiber optic probes. These probes were found to work reliably at temperatures below 200°C. However, for higher temperatures the probes failed due to material failure. Alternative probes should be sought.
- The RF system does not lend itself to an elegant and economical way of measuring temperature of the soil between the two outer rows of electrodes. Due to this reason, thermocouples were inserted inside the excitor electrodes and thermowells were installed. Thermocouples inside the excitor electrodes were read by switching off the RF power. The reason is that no electrical conductor may leave the heated area when the RF power is on. Recent developments in fiber optic tele-metering should be investigated to develop a continuous temperature logging system for both soil and electrode temperatures.
- Means of recovering hot gases and vapors from the excitor electrode row or other central area of the array should be developed. When hot vapors are collected from the

ground rows, they cool and some fraction of these may condense there, depending upon the local temperature and the dew point.

X. REFERENCES

- Cost Study of In Situ RF Heating for Treatment of Hazardous Substances. IITRI Project No. C06558 Final Report. Rockwell International Sub-contract No. N256045ZKX, Prime Contract No. 68-03-3014. August 1982
- 2a. Dev, H., Bajzek, T., and Bridges, J. Bench Scale Treatability Study and Soil Dielectric Property Measurements. Halliburton NUS Environmental Corporation, Sub-contract No. 91-D-40111-1018, IITRI Report No. C06754. June 1992
- 2b. Dev, H., Bajzek, T., and Bridges, J. Radio Frequency Soil Decontamination Demonstration Project, Site S-1, Kelly AFB; Demonstration System Design. Halliburton NUS Environmental Corporation, Sub-contract No. 91-D-4011I-1018, IITRI Report No. C06754. July 1992
- 3. Recommended DHS Analytical Methods, Appendix D: Analytical Procedures in Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Clean Up and Underground Storage Tank Closure, October 1989. State of California Leaking Underground Fuel Tank Task Force, State Water Resources Control Board.
- 4. Dev H., et al. In Situ Decontamination by Radio Frequency Heating -- Field Test. IIT Research Institute. Final Report C06666/C06676. USAF HQ AFESC/RDV, Tyndall AFB. ESL report number ESL-TR-88-62. NTIS Number ADA221186.
- 5. IEEE C95.1-1991, IEEE Standard for Safety levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standards Coordinating Committee 28, Non-Ionizing Radiation Hazards, April 27, 1992.

Appendix A

SUMMARY OF LOG BOOK ENTRIES FOR RF HEATING

Appendix A

SUMMARY OF LOG BOOK ENTRIES FOR RF HEATING

Table A-1 summarizes the high lights of the log book entries made by the shift operators during the in situ RF heating experiment. These entries pertain to the operation of the RF power source and the thermal data logging system. It should be noted that the experiment was performed with a 40 kW power source which is at least 45 years old and is prone to breakdowns related to age.

•		-
-	_	

TABLE A-1. SUMMARY OF LOGBOOK ENTRIES		mber Page Individual Summary of Logobook Entry	0583 4 Bajzek Recorded warming of the exciter row thermocouple jacks in the plexiglass housing. Estimated temperature 40°C.	Suchanek Heard loud noises from the power source FR7-6.	0583 6 Jones Start full power RFI measurements.	0583 8 Suchanek RF wave form has modulation. Rectifier tube changed.	0583 9 Suchanek Lost power. Sam called. Down for 75 minutes.	Thermocouple connectors for excitor T/C are hot. Tried shielding with Teflon. Plug for BIA is turning black.	10 Teffon does not help reduce heating of T/C plugs. Teffon removed.	11 Jones FRJ-T has been down for 4 hours. Switching interlock system to the new power source. Sparking observed at the rear of the third cabinet of FR7-6. Teflon shield applied.	0583 13 Jones Match is moving more rapidly than before.	13 Jones Reflected power moved up to 500 watts in a period of 10 minutes.	17 Tumarkin Arcing under rectifier sockets. Short in C1585 air type capacitor.	16 Kunstmanas HNUS equipment lost power. Power (RF) off. Waited 1-hr. after HNUS power was restored before powering up with RF.	16 Kunstmanas Arcing in transmitter. Shut down.	DS83 19 Kunstmanas Problems with transmitter.	DS83 20 Arcing in the transmitter.	DS83 20 Arcing in the transmitter.	Transmitter was shut down because power dropped "radically" 35 to 31 kW then to 20 kW.	Transmitter tripped off. Circuit breaker tripped. Interlock light on. Breaker reset. Could not find open interlock switch. At 9:08 p.m. light off on its own.	1583 22 Interlock opened somewhere. Bypassed. Resume power input to array.
								10	01								20	20	20	22	22
	Logboc	Number	30583	30583	30583	30583	30583	30583	30583	30583	30583	30583	30583 2875 (D)	30583	30583	30583 D2875	30583	30583	30583	30583	30583
·		T RUC	21:00	17:55	13:10	02:42	00:25		15:00	23:00		14:50	17:09	90:00	06:40	19:51	11:26	08:10	1:28	20:29	00:10
	į	Date	04-04-93	04-05-03	04-06-93	04-08-93	04-09-93	04-10-93	04-10-93	04-11-93	04-14-93	04-14-93	04-17-93	04-18-93	04-18-93	04-20-93	04-21-93	04-22-93	04-22-93	04-23-93	04-24-93

					TABLE A-1. SUMMARY OF LOGBOOK ENTRIES
		Logbook)ok		
Date	Time	Number	Page	Individual	Summary of Logbook Entry
04-24-93	20:56	30583	23		Arcing in transmitter. Shutdown. Restarted. Sam investigated.
04-25-93	02:40	30583	23	Suchanek	Over-voltage trip. Shut down. Could not restart. PA motorized switch banged with screwdriver handle. Restarted OK.
04-25-93	09:35	30583	24	Tumarkin	Shut down to repair the motor driven PA high-voltage breaker.
04-26-93	00:10	30583	24		Tripped rectified tube was replaced. Down for 80 minutes.
04-26-93	15:25	30583	24		Watt-hour meter on HNUS transformer was repaired. Reads 0000).
04-27-93	15:45	30583	25		Read watt hour meter: 1,737.5 kW hr. = 71.41 kW.
04-28-93	11:05	30585	-		Wave form is "wavy". High voltage rectifier tube out.
04-29-93	02:20	30585	-		Arcing in transmitter, rear of 3rd cabinet.
04-29-93	08:20	30585	2		Hard rain. Ponding of water.
04-30-93		30585	3		Fog. Lots of moisture in air.
04-30-93		30583			Shut down for changes to matching network. Removed bullet capacitor. Change internal capacitor.
05-01-93	03:30	30585	3	Suchanek	Waveform has a ripple. Replaced 2 rectifier tubes. Down for 3 hrs.
05-01-93	05:15	30585	3		Rich reported that excitor T/C connector for B1A crumbled.
6-10-90	10:10	30585	4	Tumarkin	Tested new transmitter into dummy load.
05-01-93	16:50	30585	4	Tumarkin Jones	Restarted after shut down. T/C wining was removed and pulled back from the plexi-glass housing. Now the exciter electrode T/C wing has been wound and tied to the center conductor inside the dog house.
05-01-93	17:45	30585	4	Jones	Transmitter tripped. Small amount of smoke.
05-02-93	11:15	30585	\$		Power down from 11:15 to 00:15 a.m.
05-03-93	07:40	30585	\$		Excitor T/C plugs were replaced.
05-05-93	04:05	30585	9		Very heavy rain. Rained all day till about 6 p.m. 6" rainfall at San Antonio airport.
05-06-93			9	Dev	During morning excitor T/C measurement B2A was 253°C. Vapor barrier temperature near TWI bundle was 120°C.
05-06-93	23:06	30585	7		One T/C in excitor row, B2A, over 300°C.

					TABLE A-1. SUMMARY OF LOGBOOK ENTRIES	
	i	Logbook	ok			
Date	l ime	Number	Page	Individual	Summary of Logbook Entry	
05-08-93	00:20	30585	8	Tumarkin	Transmitter down for 3 hrs., 45 minutes.	
05-09-93	15:15	30585	&	Dev	Temperature of vapor barrier was measured. $T=119^{\circ}C$ under thermal insulation blanket 18" north of electrode B2. $T=72^{\circ}C$ on exposed vapor barrier at B2. (Thermal blanket on top of B2 removed at some prior time.)	•
05-10-93	15:20	30585	6		Vapor barrier temperature above B2 - 78°C. 1' north of B2, under blanket 120°C.	
05-11-93	07:20	30585	6		Vapor barrier temperature about the same as the measurement shown in line above.	
05-11-93	15:25	30585 D2877	10		B2A was 741.5°C @ 15:25.	
05-11-93	15:30	30585	6		Vapor barrier temperature above B2 : 78°C 1' foot north: 128°C; 2 ft. north 100°C.	15:25, 05-11-93 B2A - 742°C.
05-11-93	16:30	30585	02	Asc	Power down. Power down for ≈ 12 hrs. Resume power to soil at 03:55 hrs. 05-12-93.	
05-12-93	03:55	30585	10	Asc	Power on.	
05-12-93	23:00	30585	10		Vapor barrier temperature 60°C (exposed surface) 125°C under blanket, 2 ft. north.	$22:55, 05-12-93 B2A = 869^{\circ}C.$
05-13-93	15:20	30585	=		Vapor barrier temperature 50°C on exposed surface. 120°C under blanket 2 ft. north	15:09, 05-13-93 B2A = 895°C.
05-13-93	23:07	30585	11		Vapor barrier, exposed surface 59°C. 2 ft. north, under blanket 119°C. Power tripped. Resume at 01:40. Ran at 10 kW prior to 1:40, while waiting for Sam.	
05-18-93	11:15	30585	14		High winds; very heavy rain; power in trailer is flickering.	
05-18-93	17:05	30585	14		Reflected power meter moving up and down. Matching network adjusted many times for match.	Max temp. in exciter row = 835°C @ B2A, 15:12 hrs.
05-18-93	18:00	30585	14		Transmitter shut down. Reflected power increased to 4 kW. Called Sam.	
05-19-93	19:00	30585	15	Suchanek	Running at 35 kW. Constant adjustment of match for the last 4 hours.	B2C had no reading at 22:51 hrs, 5-19; B3C unstable.
05-20-93	06:25	D2877	17		Power turned off	B2C, 5/20, 0708 was 1330°C
05-20-93	18:30	30585	15	Suchanek	Power on at 20 kW. (Power was off from 06:25 to 18:30 hrs).	į
05-20-93	20:00	30585	15		Many adjustments necessary to match. ~ every 5 minutes.	
05-20-93	21:15	30585	15		Stable	
05-20-93	23:45				Reflected power jumped to 1 kW. Decreased power to 10 kW.	

					TABLE A-1. SUMMARY OF LOGBOOK ENTRIES	
į	į	Logbook	ok			
Date	en I	Number	Page	Individual	Summary of Logbook Entry	
05-21-93	01:10	30585	15	Dev	Reduced power to 10 kW from 20. Reflected power 0 to 1 kW. Phase angle fluctuations.	
05-21-93	05:30	30585	15	Dev	Power increased to 15 kW.	
05-21-93	13:15	30585	91	Tumarkin	Match is very unstable. Power at 15 kW.	
05-21-93		30585	91		Reference to restarting power time?	
05-22-93	~06:50	30585	91	Kunstmanas	Spent the whole shift gradually bringing power up to 39 kW.	
05-22-93	17:20	30585	91		Thunderstorm, heavy, but short duration.	
05-23-93	05:30	30585	11		Heavy rain for about 30 minutes.	
05-23-93	07:30	30585	17		Heavy rain. Dog house an island. Radio reports 7" of rain.	
05-23-93	20:00	30585	17		Large increase in reflected power, up to 3.8 kW refl. matched to zero. Large change in vector voltmeter readings. Rain ends at 18:00 hrs.	
05-24-93	17:30	30585	17		Power decreased to 20 kW. Reflected power fluctuating.	
05-24-93	22:15	30585	18	Sabato	Stable at 20 kW so tried to increase power up to 25. Became unstable. Backed off to 20 kW.	
05-25-93		30585	18		While at 21 kW reached the limit on capacitor C1. Backed down to 15 kW.	BIC = 1070°C, 5-25-93, 23:08 hr.
05-26-93	09:50	30585	81		Do not increase power beyond 7 kW per Dev.	B3C = 1018 @ 5.26.93, 07:22 hr.
05-28-93		30585	61		New instructions from Dev	
05-28-93		30585	61		New instructions from Dev	
05-28-93		30585	61		Transmitter down form 16:10 to 18:40 hr.	
05-29-93	00:55	30585	19		Reflected power jumped to 2 kW. Then 40 kW circuit breaker tripped. Restarted; rematched; stable.	B4C - no reading, 5-29-93, 13:00 hrs.
05-30-93		30585	20		Very hard rain. Very windy. No entries in logbook C30585 for 6-1-93 or 6-2-93.	
06-03-93	11:00	30585	20		Safety measurements were made prior to shut down.	
06-03-93	12;00	30585	20		RF power off.	

APPENDIX B

SOIL TEMPERATURE DATA

Appendix B

SOIL TEMPERATURE DATA

This appendix contains four tables which have temperature data obtained during the field demonstration:

Table B-1 has temperature data from the two outer rows of electrodes and the outside thermowell TW7.

Table B-2 has temperature data from all the thermowells which were inside the heated zone.

Table B-3 has temperature data measured by thermocouples installed inside the four center row electrodes, the excitor electrodes.

Table B-4 has the temperature data from the data logger. These temperatures were measured in the ground row electrodes and the outside thermowell TW7

The physical location of all the temperature measurement points can be found by referring to the attached Figure B-1, which is a plan view of the electrode array showing the electrode and thermowell numbering system. The temperature measurement point have a number designation composed of two parts: the first part is the number of the electrode or the thermowell. T second part is the depth code. A typical measurement point designation in the excitor row is of the type B1A, B3C, B4B etc. B1A refers to a measurement point in the B1 electrode at a depth 1-ft, which has a depth code of A. B3C means electrode B3 at a depth of 19 ft which has a depth code of C. Similar numbering system is used for temperature measurement points in the two ground rows and the thermowells. The following table defines the depth codes.

Depth Code Letter	Ground Rows A & C	Excitor Row B	<u>Thermowells</u>
A B C	1 ft 12 ft 24 ft	1 ft 10 ft 19 ft	1 ft 12 ft 24 ft
D	29 ft		29 ft
E			31 ft
F			34 ft

Table B-1 Ground Electrodes and Outside Thermowell (TW7) Temperature (Recorded Manually)

2	Time	E	ACA	ASA	A4A	CSA	€	C4A	A2B	A3B	A4B	9 5	22	2	Ş	268	AZC	7
a D		<u> </u>	<u>ئ</u> ا	{ -	=	H-1	- -	1-FT.	12-ft	12-ft	12-ft	12-FT	12-ft	12-ft	12-FT.	12-FT	24-h	24-h
May	Maximum Temp.	<	79	99	112	82	86	95	94	95	96	68	84	66	88	91	45	45
04/03/93	16:40	000																
04/03/93	17:00	0.33	17.9	18.2	18.1	18.2	18.5	18.8	19.5	19.8	19.5	19.1	19.0	19.8	19.8	21.0	21.7	218
04/04/93	17:10	24 50	19.7	21.0	22.7	19.6	21.6	23.3	19.4	19.8	19.4	18.9	18.9	19.7	19.7	20.9	21.8	21.
04/05/93	00:01	50.33	23.9	25 9	32.4	22 8	27.6	32.7	19.4	19.6	19.3	19.0	19.2	19.9	199	50.9	21.8	515
04/06/93	17:30	72.83	. 27.8	30 5	40.4	25.7	32.5	37.4	961	20.1	19.9	19.1	19.3	203	20.4	21.3	21.9	55
04/07/93		101.50	32.5	36 5	49.2	29.8	38.0	43.8	19.9	20.7	20.8	19.1	19.4	21.2	21.5	22.1	22.0	55 :
04/08/93		124.67	35.6	41.4	54.1	33.3	433	49.9	20 4	21.6	22.0	19.3	20.2	22.5	23.4	23.3	22.2	55
04/09/93		149.00	37.7	45.2	58.4	36.1	47.6	54.2	21.0	22.8	24.3	19.6	21.0	24.6	26.6	25.1	22.3	25 .
04/10/93		169.08	39.2	47.7	2'09	37.7	50.9	56.8	21.8	24.1	27.0	19.7	21.6	26.6	30.2	56.9	22.3	22
04/11/93		193.50	1.14	50.5	62.5	40.3	54.0	58.9	23.0	26.4	20.7	20.2	23.2	29.7	350	29.7	22.7	22
04/12/93		210.18	42.7	53.2	65.3	45.0	57.2	61.6	24.3	28 8	34.7	20.9	24.9	33.1	39.2	32.8	22.7	23
04/13/93		227.08	43.3	543	683	45.6	58.5	62.7	24 8	29.8	36.6	21.4	253	34 5	40.9	33.8	22.6	23
04/14/93		253.25	44.9	57.1	68.3	44.3	61.2	64.4	26.5	32.9	41.6	22.2	27.2	38.6	46.0	36 9	22.8	23
04/15/93		278.33	45.9	59 0	69 5	45.7	62.8	. 65.4	28.7	36.3	46.9	23.0	29.6	42.7	50.9	40.4	23.1	23
04/16/93		304.08	46.6	59.3	1.69	46.3	63.6	0.99	31.0	40.4	52.9	24.4	32.6	47.1	56.1	42.5	23.2	24
04/17/93		327.82	47.0	60.0	69 5	46.9	64.0		33.2	43.6	57.4	25.3	35.0	51.7	61.6	453	23.4	24
04/18/93		351.13	47.3	60.4	68.6	47.0	63.5	64.7	35.5	47.0	61.0	56.6	97.0	28.2	66.4	48 2		24
04/19/93		374.00	48.4	61.9	707	486	65.2	66.3	37.7	50.4	65.0	27.9	39 4	0.09	73.0	49 9	23 9	24
04/20/93		400.10	49.7	63.4	72.2	50.3	2.99	67.2	402	54.1	69.3	29.4	423	64.3	786	52 5	23 7	24
04/21/93		424.33	50.1	63.9	73.0	51.8	2 99	999	43.1	57.6	72.9	31.2	45.2	68.4	81.5	538	24 1	25
04/22/93	93:18	448 63	50.7	65.9	73.2	52.7	6.99	69.3	456	60.9	758	32.9	477	71.5	838	562	24.4	52
04/23/93	00:90	471.33	51.5	63.5	74.5	548		70.5	48.0	63.7	780	34.5	50 1	746	198	57.8	24 8	56
04/24/93	09:15	496.58	52.6	65 1	992	565		71.4	50.3	929	80.5	36.0	526	477	969	62.4	24 9	5.2
04/25/93	06:42	518.03	54.2	65.7	789	58.6	73.0	73.9	52.6	69 2	92.7	37.6	55 1	79.8	916	619	253	56
04/26/93	07:15	542.58	57.4	68.0	81.4	6 09	78.2	76.4	55 2	71.6	84.8	39.7	28 1	81.6	93 1	648	25 8	27
04/27/93		570.42	59 4	6 99	86 4	63.3	81.3	820	57.8	750	87.2	41.7	60 7	85.4	953	9 99	260	2
04/28/93	00.80	591.33	61.8	6 2 9	91.0	65 6	90 2	83.7	009	77.2	98 2	435	62.2	1.06	96 2	67.2	26 5	5
04/29/93		615.67	63.0	70.4	95.5	68.1	96 1	853	624	79.4	89 7	45.4	653	98.5	96 3	0 69	27.1	2
04/30/93		640 33	63.6	713	86 2	688	947	815	646	823	928	47.2	9 / 9	95.5	87.9		27.1	5
05/01/93	11:36	666.93	63.6	70 1	82.9	69 3	88 4	76.1	0 99	84 1	956	48.7	989	88 7	0 0 ö		27 6	<i>خ</i>
05/02/93	09:50	688 67	61.4	67.4	78.1	67.1	83.1	72.4	2 99	82.9	85 4	206	69 7	836	85 1		28 2	J.
05/03/93	12:21	715 68	62.0	733	80 5	68 1	0 68	750	67.5	85.7	0 06	51.1	693	90 2	879	66 2	283	÷.
05/04/93		743.32	65.2	845	830	71.2	919	2.08	702	89 2	92.1	528	713	93 2	912	683	29.2	-
05/05/93		758.48	67.3	82.8	838	728	94.1	63 2	7.1.7	90 4	92 4	53.8	727	95 5	92 5	8 69	29 5	
05/06/93		783 53	689	82.1	836	759		85 7	738	918	924	553	74 1	946	918	701		•
05/07/93	21:05	820.42	70.8	79	86.2	75.7		88 4	763	929	945	57.4	764	950	92 1	716	30.4	25.
05/08/93	18:12	841.53	70.6	768	84.2	76.4		880	167	92 1	93 4	583	768	93 2	668	705	30.4	-
05/09/93	06:04	853.40	72.0	77.5	858	17.7	94.1	893	780	930	944	29 0	774	94.7	918	73.1	30.8	35.6
05/10/93	10.11	881.52	73.5	79.6	1.98	60.3		908	798	938	949	60 4	785	94 2	88.8	740	31.0	1.1.

Table B-1 Ground Electrodes and Outside Thermowell (TW7) Temperature (Recorded Manually) [Continued]

Time Maximum Temp 09:14 12:24 09:30 04:00 09:21 15:43 15:43 15:43 15:43 15:43 11:54 10:16 10:17 10:16 10:												!	,	1		9
Maximum Temp. 09:14 12:24 09:30 04:00 09:21 15:43 16:43 16:43 16:43 16:43 16:48 16:	A2A	A3A	A4A	C2A	C3A	C4A	A2B	A3B	A4B	C18	C28	C3B	C48	C68	VSC S	A3C
Maximum Temp. 12:24 09:30 04:00 09:30 09:21 15:43 15:43 15:43 15:43 16:43 11:54 11:54 11:54 11:40 11:40 11:40 11:40 10:25 11:40 11:40 11:40 10:48 11:40 11:4	=	1-1	1-t	1F1	1-1	1-FT.	12-ft	12-ft	12-ft	12-FT	12-h	12-ft	12-FT.	12-FT	24-R	24-II
22.24 99.20 99.20 99.20 99.21 15.43 10.153 10.153 10.154 11.	29	98	112	92	98	95	84	95	96	68	84	66	96	16	42	\$
1224 0620 0621 1545 1554 0622 1058 0153 1058 1154 1154 1154 1150 0620 0620	75.2	80.9	87.3	815	95.0	91.5	80.8	93.5	95.1	61.7	79.3	94.5	92.6	73.1	31.3	33 7
15.43 15.43 15.43 15.43 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.17 10.18 10.19	73.5	78.7	82.6	74.2	92.3	7.78	79.9	92.1	92.1	62.1	79.4	92.0	68.3	74.5	31.6	33 8
9400 9621 1543 1543 1055 1055 1055 1154 1154 1154 1050 1050	75.3	030	86.4	78.2	95.0	88.5	80.8	93.8	94.5	63.2	0.16	94.8	92.2	78.9	326	34 7
23.27 23.27 23.28 23.28 23.28 23.28 23.28 23.28 23.28 23.28 23.28 23.28 23.30 23.30 23.30 23.30 23.30 23.28 23.30 23.28 23.30 24.28 25.30 26.28 26.30	78.3	82.4	986	78.0	94.1	68.9	81.8	94.2	94.1	64.0	7.10	94.1	86.8	75.2	33.2	353
15.43 23.24 23.24 23.24 10.48 11.54 11.54 11.54 10.10 09.12 09.13 09.25 09.27	77.4	0.40	88.3	78.1	950	0.68	82.4	92.3	95.5	64.6	62.3	94.7	92.9	75.4	33.2	36 1
23.27 23.58 23.24 23.24 23.24 11.54 11.54 11.50 23.30 11.20 23.30 11.20 23.30 11.40 23.30 23.20	78.2	846	0.68	77.8	94.8	89.6	82.9	95.0	95.7	65.5	62.7	94.4	93.9	81.2	34.1	370
03.50 01.53 01.53 23.24 23.24 11.54 11.54 19.20 09.12 09.13 09.13 09.27	703	85.8	006	80.3	95.4	668	83.2	94.7	96.2	1.79	83.5	95.5	95.6	88.5	35.6	36 4
23:58 23:24 23:58 10:48 11:54 11:54 19:20 09:12 09:14 09:27	78.6	95.5	89.4	79.1	97.9	1.69	84.4	95.0	96.2	67.3	63.7	94.6	93.7	906	35.6	98 9
23:58 23:24 22:06 11:54 11:54 19:20 09:12 09:14 09:27	77.7	83.5	87.3	78.0	93.5	87.3	83.0	93.2	94.2	8.79	84.1	93.6	91.2	84.5	36.4	36
23.24 10.48 10.48 11.54 19.10 19.20 09.12 09.30 11.40 09.25	75.9	82.2	85.6	76.3	92.9	84.1	91.6	91.8	92.2	67.9	91.2	93.1	0.68	79.0	37.2	401
22.00 10.48 11.54 11.54 19.10 09.12 09.30 11.40 09.25 09.25	72.2	80.1	83.8	73.3	90.2	61.9	9.62	85.3	9.06	67.9	78.7	91.2	86.1	78.8	37.8	406
10:48 11:54 11:50 19:10 09:12 05:48 05:48 05:48 05:48 05:27	20.9	77.7	82.1	67.3	6:06	82.2	78.1	68.9	5.06	67.9	9.62	91.2	87.7	75.9	38.8	419
11:54 19:20 19:20 09:12 09:14 05:48 09:30 11:40 09:25	71.4	78.5	60.7	70.2	7.06	81.8	17.7	88.9	88.7	67.6	78.6	91.4	85.4	75.5	38 2	424
19:10 21:30 19:20 09:12 09:14 09:30 11:40 09:25 09:27	71.4	80.2	796	69.7	88 9	80.7	0.87	85.6	1,78	87.8	79.5	89.2	86.1	70.5	39.4	428
21:30 19:20 09:12 09:19 09:30 11:40 09:25 09:27	710	8 62	81.1	70.4	88.8	81.0	77.4	85.8	1.90	9.79	79.7	99.4	86.2	701	39.6	429
19:20 09:12 05:48 09:30 11:40 09:25 08:00	69 1	77.0	82.4	69.1	87.1	80.5	75.9	85.4	82.6	2.79	78.8	88.1	83.8	72.5	40.5	436
09:12 09:19 05:48 09:30 11:40 09:25 09:27	66.5	74.3	83.4	64.6	85.4	79.3	74.0	63.7	0.08	9 99	77.6	86.6	65.9	713	40.4	436
09:19 05:48 09:30 11:40 09:25 09:27	65.6	73.7	84.5	63.1	84.6	77.9	73.7	80.2	78.7	2.89	77.3	85.9	826	67.6	40.7	4
05:48 09:30 11:40 09:25 08:00	63.7	72.8	693	6.09	63.7	77.5	72.7	82.5	77.8	68.1	764	85.1	81.8	71.2	412	4 4 4
09:30 11:40 09:25 06:00	626	71.4	93.6	6.09	91.9	77.3	72.1	81.8	7.97	65.6	763	83.3	83.1	790	41.5	445
09:25	618	70.8	98 7	80.8	61.3	0.77	71.3	81.4	75.9	65.0	75.6	83.1	833	734	41.7	449
09:25	62.0	70.3	103 0	61.5	803	76.1	70.5	60.7	76.4	64.2	746	82.2	83.1	77 4	41.6	448
09:27	61.9	70.8	106 0	61.1	7.67	753	70.1	80.3	764	64.1	74.3	818	820	678	418	450
09:27	629	72.2	110.2	63.3	788	77.3	700	80 5	78.1	63.8	740	81.3	827	705	422	45.3
	62.7	73.0	1120	63.0	780	77.3	8 69	80.5	0.19	63.7	734	2 08	83 8	73	42.1	454
5	7 (2		1121	f. 2 f.	77.4	763	69.2	79.8	80.3	63	72.9	80.2	81.2	726	41.7	448
0/03/93 12:00 1459:33	1.20	2		3		!	!		•							

Table B-1 Ground Electrodes and Outside Thermowell (TW7) Temperature (Recorded Manually) [Continued]

Max 04/03/93 04/04/93 04/05/93	E	E	A4C	210	CSC	ပ္ပင္ပ	CAC	A3D	A4D	C2D	C3D	<u>5</u>	09 09	TW7B	TW7C	DVVD
	2		24-11	24-ft	24-ft	24-ft	24-R	29-ft	29-ft	29-ft	29-ft	29 ft	29 - ft	12-11	24-ft	29-ft
04/03/93 04/03/93 04/04/93	Maximum Temp>	D>	49	42	49	52	49	32	34	32	33	35	8	62	39	28
04/03/93 04/04/93 04/05/93	16:40	0.00														
04/04/93	17:00	0.33	21.9	21.5	21.6	21.7	21.8	21.9	21.9	21.9	21.9	21.8	21.9			
04/05/93	17:10	24.50	21.9	21.4	21.5	21.6	21.6	21.9	21.9	21.8	21.8	21.6	21.8			
	10:00	50.33	21.6	21.5	21.4	21.4	21.5	21.7	21.7	21.7	21.6	21.5	21.7			
04/06/93	17:30	72.83	22.3	21.6	21.6	21.8	21.8	21.9	21.9	21.9	21.9	21.8	21.9			
04/07/93	22:10	101.50	22.2	21.5	21.4	21.6	21.7	21.8	21.8	21.7	21.7	21.6	21.8			
04/06/93	21:20	124.67	22.2	21.6	21.6	21.6	21.7	21.8	218	21.8	21.8	21.5	21.6			
04/09/93	21:40	149.00	22.4	21.6	21.6	21.7	21.8	21.8	21.8	21.7	21.7	21.5	21.6			
04/10/93	17:45	169.08	22.7	215	21.7	21.6	22.0	21.8	21.8	21.6	21.6	21.4	21.6			
04/11/93	18:10	193.50	23.0	21.7	21.9	22.1	22.5	21.9	21.8	21.7	21.6	21.5	21.7	20.1	21.6	21.6
04/12/93	16:51	218.18	23.3	21.8	22.2	22.4	22.8	21.8	21.8	21.7	21.6	21.6	21.7	20.7	21.6	21.4
04/13/93	03:45	227.08	23.4	21.9	22.4	22.8	23.2	21.8	22.0	21.9	21.9	21.8	21.9		22.0	
04/14/93	05:55	253.25	23.8	22.0	22.8	23.2	23.6	21.9	22.1	21.9	22.0	21.9	21.9		22.1	21.7
04/15/93	00:20	278.33	24.0	22.1	22.8	23.4	24.0	21.9	22.1	21.9	21.9	21.8	218	23.0	22.1	
04/16/93	08:45	304.08	24.8	22 3	23.4	24.2	24.7	22.1	22.2	22.2	22.2	21.9	21.8		22.7	21.0
04/17/93	08:29	327.82	24.8	22.3	23.3	24.2	24.7	22.0	22.1	22.0	22.0	21.8	21.6		22 4	
04/18/93	07:48	351.13	25.1	22.5	23 5	24.5	25.2	22.1	22.3	22.1	22.1	22.0	21.9		22.6	
04/19/93	06:40	374.00	25.4	22.8	23.9	24.9	25 8	22 2	22.4	22.0	22.1	22.1	. 22.1	28.6	22 8	
04/20/93	08:46	400.10	25.7	229	24.2	25.3	26.3	22.2	22.5	22.1	22.3	22.2	22.1		23.1	
04/21/93	00:60	424.33	26.2	23.3	24.8	26.1	27.0	22.3	22.6	22.3	22.4	22.2	22.1	32.4	23.5	
04/22/93	91:60	448.63	26.7	23.4	25 2	26 8	280	22.5	22.7	22.4	22.6	22.3	22.1		23.7	
04/23/93	00:00	471.33	27.1	23.8	258	27.4	28.7	22.6	22 9	22.5	22.7	22.5	223		240	
04/24/93	09:15	496.58	27.4	240	260	27.9	29.6	22.6	22.9	223	22.6	22.4	22 6		243	
04/25/93	06:42	518.03	27.6	24.3	263	28.4	30.2	22.7	23 1	22 6	22.8	22.8	22.7			22 2
04/26/93	07:15	542.58	28.4	24.8	27.1	29.4	31.6	22.9	23 2	22.7	23.1	23.1	. 229			
04/27/93	11:05	570.42	29.1	25.0	27.7	30.3	32.9	22.9	23.4	22.7	23.1	23 1	22 9	43.7	25 7	
04/28/93	00:00	591.33	29.6	25.5	28.3	31.3	34.0	230	23 4	22 9	233	23.3	23 1			
04/29/93	08:20	615.67	30.0	26.1	29.2	326	35.2	23.1	236	23.0	233	23.5	23 4			
04/30/93	00:60	640.33	30.7	26 4	306	33 7	36.5	23.1	23 7	233	238	23.5	23 1			
05/01/93	11:36	666.93	31.1	268	31.4	34.3	37.1	23 2	23.8	23.3	239	238	23 5	49 6	28 6	
05/02/93	09:50	688.67	31.9	27.7	316	35.2	37.7	23.7	243	23.9	24 5	243	238		28 8	
05/03/93	12:21	715.68	32.1	27.7	31.8	35.1	37.0	23.6	243	238	24 5	24 4	239			
05/04/93	15:59	743.32	32.7	286	326	35.6	37.2	24 2	249	24.4	25.0	25 1	24 7	51.4		
05/05/93	07:09	758.48	33.0	28.8	329	35.7	37.1	24 2	250	24 5	25 1	25 2	250	52.5	298	
05/06/93	08:12	783.53	33.6	29.4	34.1	36.0	37.2	24.5	25.3	24.8	25 4	25 5	. 253	53 1		
05/07/93	21:05	820.42	34.1	30 0	36.9	36 2	37.3	24.8	25.6	25.0	25 6	25.7	25.7	543	303	
05/06/93	18:12	64153	34.3	30.2	36 4	363	37.2	24.8	25.7	25.2	25.7	25.7	258	546		
05/09/93	96:04	853.40	34.9	30.4	366	36.1	37.6	250	25 9	25.3	25.7	259	260	55.1		
05/10/93	10:11	881.52	35.7	306	35.9	37.3	37.9	25.0	259	25.4	26 1	259	259	55 7	30 8	23
05/10/43		893 30	35.8	30.9	35.7	37.0	37.9	25 1	۲,	25.4	25 9	258	262	56 2	30 5	23

=

Table B-1 Ground Electrodes and Outside Thermowell (TW7) Temperature (Recorded Manually) [Continued]

Date Maxin		Ciapsed	•	(Ç	000	Ç	0.4	440	5,5	C ₂	Ç	Ca	H/WI	TW7C	G/WI
	Time	E.	¥	S	2	ည (၁	د) (2 4	2 6	3	5 6	3		4-40	, 00
Maxir			24 – ft	24-ft	24-ft	24-11	24-II	29−n	79-E	n-62	11-67	11-62	11-62	11-21	11.65	1
	Market Temp	7 1 1 6	9	42	49	52	67	35	34	32	33	32	30	95	8	2
60/11/100	3	004 57	36.6	31.0	36.2	37.8	38.5	25.2	26.1	25.7	26.4	26.0	25.9	56.3	31.1	24.0
56/11/50		20.4.00	9.00	900	35.6	37.9	38.8	25.5	26.4	25.7	26.3	26.4	26.3	56.8	31.2	24.1
56/21/50	12.24	200	9 6		36.4	8 60	39.6	25.6	26.6	26.0	28.7	26.4	26.4	57.5	31.6	24.2
05/13/93	3	80.208	0.75	5 6	7.96	30.0	40.2	26.1	27.2	26.3	26.8	26.9	27.2	58.2	31.8	24.3
05/14/93	04:00	971.33	000	2 6				28.2	27.4	26.5	27.2	28.9	27.0	58.7	32.0	24.4
05/15/93	09:21	1000.68	39.6	32.3	0 1	5. G.	5.0	y 6		6 90	27.0	27.0	27.5	59.6	326	24 6
05/16/93	15:43	1031.05	40.9	32.7	37.4	60.6	42.2	50.3	1.12	5.00	2.5	4 6		0.50		2 7 6
05/17/93	23:27	1062.78	42.8	33.9	38.7	42.9	4 5	26.9	28.4	5.92	0.72	70.0	20.5	0.0	r 1	2 6
05/18/03	8	1073.17	43.3	33.8	39.3	43.4	45.1	27.1	28.5	27.2	28.1	28.1	28.1	61.0	33.7	S
05/10/03	0.53	1089 22	43.8	34.5	39.6	44.1	46.0	27.4	28.7	27.2	28.1	28.3	28.2	61.6	33.8	25.
06/61/00	93.66	111130	44.7	35.1	40.6	45.1	46.9	27.6	29.1	27.5	28.4	28.5	28.2	61.8	34.3	52
	30.00	113473	45.0	35.5	41.2	46.0	47.4	27.9	29 5	27.0	28.7	28.9	28.4	61.8	349	25.
Se/02/c0 1 1			48.1	36.6	42.9	47.4	48.4	28.6	30.3	28.4	29.4	29.6	289	62.0	37.8	58
	3.4	20101		37.1	43.1	47.9	48.6	28.7	30.3	28.5	29.6	29.7	28 9	61.7	37.5	56.
02/22/20		121023	47.1	37.7	45.8	48.9	48.8	28.8	30.6	28.6	29.8	29.8	28.9	61.1	37.4	56.
03/24/33		12.850	7.4	37.8	47.4	49.1	48.9	29.1	30.8	28.9	29.9	30.0	293	61.0	37.2	56,
02/24/93	2 6	1220.30		2 20	48.0	60	49.0	29.5	31.3	29.3	30.4	30.4	29 6	60.0	37.3	56
56/52/50	8.5	50.7571			. 4	90.0	48.9	29.6	31.3	29.4	30.5	30.4	29 5	60.2	37.2	26
05/26/93	2.5	12/4.6/	2 4 5	- a	- W		707	8 6%	31.6	29.8	30.8	30.5	29 3	0.09	37.6	56
05/27/93	2.60	1200.33	•	404	48.4		49.1	30.2	32.0	30.2	31.2	30.7	29 6	59.7	37.6	56
02/20/33	2 6	1312.03	9	41.2	48.3	9 15	49.1	30.5	32.3	30.4	31.4	31.0	30.2	596	37.8	56
56/62/00	00.00	1333.13			48.3	0	49.3	30.8	32.8	30.8	31.9	31.3	30.2	59 4	38 4	27
05/05/50	5.5	1300.03	7 6	9 6	48.1		48.8	31.1	32.9	31.0	32.0	31.4	30.2	58.4	38.3	27
05/31/93	2	1307.00	40.4	42.2	48.2	51.2	486	31.3	33.1	31.2	32.1	31.2	299	58.4	383	27
06/01/93	2.50	1400.73	7.07	42.4	484	1 15	48.8	31.8	33.7	31.7	32.5	31.8	30.4	58.7	38.7	27
06/02/93	3 6	1431.33		42.3	48.3	51.1	48.8	32.2	33.9	32.2	33	32	303	583	389	28 1
56/50/00	13.61	1100.10			47.6	2	48.2	31.0	33.8	31.8	32.7	31.7	30.2	28	38 5	27

=

IIT Receases Inchitute

Ξ.

Table B-1 Ground Electrodes and Outside Thermowell (TW7) Temperature (Recorded Manually) [Continued]

																													_					_	_	_		_				•
	Grand	Average	72		20.0	20.8	22.6	24.2	26.1	27.8	29.4	30.7	32.5	34.2	35.0	36.8	38.6	40.2	40.4	43.7	44.6	46.3	47.7	49.1	50 5	52.2	53 5	555	57.5	29.4	61.6	612	909	588	6 09	63 4	64 5	65.0	1.99	65	99	67
res	Opposite	Excitors, All	77		20.1	21.2	23.5	25.5	27.8	29.9	32.1	33 8	36.0	36.3	39.3	41.6	43.8	45.8	45.4	48.9	51.0	53.1	54.5	260	27.6	59.4	60.7	628	65.1	67.3	69.7	68 4	6 99	59.4	67.1	70.1	71.1	71.1	71.8	708	71.9	124
Average Temperatures	24-foot	-	47		21.7	21.7	21.6	21.9	21.6	21.9	22.0	22.1	22.4	22.6	22.8	23.1	23.3	23.8	23.8	24.2	24.5	24.7	25.2	25.7	26.2	26.6	27.0	27.7	28.4	29.0	29.8	30.5	31.1	318	31.7	32.4	32.6	33.1	338	33 9	34 1	34.5
Average	12-foot		20		1.19.7	19.6	197	20.0	20.6	21.6	23.1	24.7	27.2	29.6	30.9	34.0	37.3	40.9	44.2	47.2	50.4	538	26.7	59.3	61.6	64.4	66.3	989	71.2	73.1	75.8	75.7	75.5	749	760	786	799	80.5	82.0	81.4	62.7	83.1
	1 - foot		97		10.3	21.3	27.6	32.4	38.3	42.9	46.5	46.6	51.2	53.7	54.7	58.7	58.1	58.5	57.5	58.6	60.2	61.6	62.1	62.6	642	65.6	67.4	70.4	73.2	76.8	79.7	17.7	75.1	71.6	74.7	79.4	81.2	81.7	82.4	81.4	827	8.4.3
Elapsed	TI O		np	00:0	0.33	24.50	50.33	72.83	101.50	124.67	149.00	169.08	193.50	218.18	227.08	253.25	278.33	304.08	327.82	351.13	374.00	400.10	424.33	448 63	471.33	496.58	518.03	542.58	570 42	591.33	615.67	640.33	666 93	688.67	715.68	743 32	758 48	783 53	820 42	841.53	853.40	50 + 50
	Tine		Maximum Temp	16:40	17:00	17:10	19:00	17:30	22:10	21:20	21:40	17:45	18:10	16:51	03:45	05:55	07:00	08:45	06:29	07:48	06:40	08:46	00:60	09:18	08:00	09:15	06:42	07:15	11:05	00:00	08:50	00:60	11:36	09:50	12:21	15:59	07:09	08:12	21:05	18:12	06:04	
	Date		2	04/03/93	04/03/93	04/04/93	04/05/93	04/06/93	04/07/93	04/06/93	04/09/93	04/10/93	04/11/93	04/12/93	04/13/93	04/14/93	04/15/93	04/16/93	04/17/93	04/18/93	04/19/93	04/20/93	04/21/93	04/22/93	04/23/93	04/24/93	04/25/93	04/26/93	04/27/93	04/28/93	04/29/93	04/30/93	05/01/93	05/05/93	05/03/93	05/04/93	05/05/93	05/06/93	05/07/93	05/08/93	05/09/93	50,007,00

Ξ.

Table B-1 Ground Electrodes and Outside Thermowell (TW7) Temperature (Recorded Manually) [Continued]

		Elapsed		Averag	Average Temperatures	tures	
Date	Tage	Time	1-foot	12-foot	24-foot	Opposite Excitors, All	Grand
Ž	Maximum Temo	no>	18	99	47	77	72
05/11/93	41.00	904.57	85.2	93.8	35.0	73.1	68.0
05/12/93	12:24	931.73	81.5	. 82.6	35.1	71.4	66.4
05/13/93	06:60	952.83	94.4	04 9	35.9	73.7	68.4
05/14/93	04:00	971.33	64.4	84.0	36.4	73.0	68.2
05/15/93	09:21	1000.68	85.3	65.0	37.0	74.1	69.1
05/16/93	15:43	1031.05	65.7	86.4	37.9	75.3	70.0
05/17/93	23:27	1062.78	86.8	87.7	39.5	7.8.7	7.1.4
05/18/93	09:20	1073.17	86.7	98.2	39.9	77.2	71.7
05/19/93	01:53	1069.22	84.6	86.5	40.5	75.5	20.6
19/93	23:58	1111.30	82.8	84.5	4.14	74.4	69.6
05/20/93	23:24	1134.73	80.3	62.3	41.9	72.8	68.2
05/22/93	22:00	1181.33	78.5	62.5	43.2	73.1	69.2
723/93	10:48	1194.13	78.9	81.7	43.4	72.9	69.1
24/93	11:54	1219.23	78.4	90.5	44.4	72.0	67.6
724/93	19:10	1226 50	7.87	80.3	44.7	72.0	68.0
125/93	21:30	1252.83	17.4	79.4	45.4		67.5
726/93	19:20	1274.67	75.6	77.9	45.4		66.4
127/93	09:12	1288.53	74.9	766	45.9		65.9
/28/93	09:10	1312.65	74.7	7.87	46.2		62.9
129/93	05:48	1333.13	74.7	77.2	46.3	70.9	68.2
730/93	06:60	1360.83	75.1	76.1	46.6	7.07	99
131/93	11:40	1387.00	75.5	76.1	46.4	71.0	0.99
01/93	09:25	1408.75	75.7	74.6	46.5	70.2	65.5
02/93	00:00	1431.33	77.5	75.1	46.7	71.2	66.3
06/03/93	09:27	1456.78	17.77	75.7	46.7	71.8	9 99
16/UJ/93	12.00	1459.33	77.3	74.9	46.1	71.1	0.99

Table B-2 Temperature in Thermowells (Outside Thermowell TW7
 in Table B-1)

TW3-20	20-11	87.4																																								
06-5WT	20-tt	117.4																																•								
00-1WT	20-ft	68.8																																								
A7WT	12-ft	EAR																									. •		_	_	•	ı.	_	•	6	r.	6	0	0	80		8
E SANT	12-ft	208.2				AA	9	2	2	20.0	0. 6	0 0	7.67	9 6	256	- 6	7 00	7 00	9 6	7.66	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	700	700		5 6	2	100 2	101.7	1113	111.1	1118	1115	1107	108 4	1123	115	108	106 0	1240	126		137
מאאר	12-ft	201.3								240	0.24	57.2	57.0	040		5.50	0.00	0.00	9 6	7.06	0.00	3	101	900	0.66	100	107 6	1087	111.6	111.3	110.7	109 5	1086	106 7	1112	1146	117.3	1200	1260	1269		138.8
0777	12-R	167.5							č	22.0	0.00	36.5	1.44.	0.2.0	00.0	9.5	0 4	0.00	7 (9.00	9 9	7 0	7 60	7 6	€ 20 € 20	6 7 9	98.3	98 2	1158	983	978	9 96	926	942	97.5	100 2	101 5	107.0	1110	1144	1202	127.3
Cont	12-#	110.6					,	1.6	0	20.0	22 0	256	200	32.5	39.5	0.54	 	27.7	5. CC	C.10	7.00	9 6 6	7 2.4	0.00	8.07 8.7.6	6 7 9	98.1	97.9	7.66	98 1	938	93 2	92.1	206	94 1	958	953	0 96	97.0	968	98.6	101.7
1	17-#	126					•	1.61	i	21.0	30.0	32.3	36.0	41.5	2.68.2	52.2	02.0	0.10	0.00	869	0.57	0.10	90.0	5 6	2.6	67.0	6.79	7.76	99.2	97.6	93.5	93.4	92.3	92.3	956	1.96	1.96	980	0.66	99 4	9 66	103.0
	12.4 13.4	7 66	2				50	19.2	19.0	19.0	20.0	20.6	21.9	23.6	27.0	28.6	T OS	4.55 6.54 6.54 6.54 6.54 6.54 6.54 6.54	35.1	38.1	£04	0.00	40.0	0 4	0.7	04.0	5.00	62.2	66.1	67.2	700	702	722	69 B	72.2	748	76 1	790	0.18	91.4	832	A7 A
	TW6A TW7A	180 6 FRR					6.71	24.8	45.0	62.0	72.0	81.7	900	95.6	0.76	0.76	97.2	98.3 E	7.96	103.0	107.4	1104	110.4	990	116.4	121.7	126.0	129.4	132.4	134.4	135 3	135.7	135.7	132.4	1368	139.9	139.9	121.0	1260	120.0		0.04
	TW5A	243	2					29.4	98.0	77.0	0.10	88.2	95.9	95.5	96.5	101.1	102.9		116.7			131.1	135.2		137.3		140.5			153.1	153.4	156 7	1588	158.1	159.9	161.5	154 7	164.0	161.0	155.5		168 1
	- W4A	105 1	200					25.7	20.0	65.0	76.0	828	99.5	93.5	96.5	96.4	7.96	0.86	98.5	97.8	98.7	99.5	101.0	102.3	103.8	1 801	001	200	127.8	117.6	120.5	122.7	123 2	120.7	125.5	128.7	130 7	132.0	134.0	140.2	136.1	
	¥€Æ.	n-1	200					24.7	47.0	59.0	67.0	71.8	74.1	16.8	788	82.3	82.0	0.08	92.6	988	95.1	963	96.4	92.1	92.0	1.00	0 6	0.76	. EQ	97.1	930	923	92 1	888	93.6	0.96	92.3	98.0	0.66	99.4	966	
	TW2A		123					36.4	75.0	85.0	0.50	87.6	69.3	6:06	91.7	93.8	94.7	97.8	99.7	9.66	101.6	104.3	105.9	104.9	108.0	108.6	60:	1147	0.61	118.3	115.4	105 5	111.9	107.4	111.6	114.6	115.7	0.66	1000	6 86	99.5	
	A Y	H-1	103.1				17.9	34.7	72.0	79.0	0.10	83.1	82.6	82.1	78.4	78.5	78.0	77.0	77.2	73.9	74.5	76.2	77.5	75.8	76.2	78.3	90.0		0.40 0.40	89.7	90	83.3	82.2	77.3	82.8	85.9	628	85.0	910	919	0 96	
Elapsed	Time		ηρ>	0.00	3.42	4.08	2.33	23.33	50.83	71.33	98 33	122.58	147.33	171.25	220.08	243.33	267.75	292.33	310.08	342.67	362.57	386.00	410.17	434.22	458.57	484.75	507.33	532.17	50000	500.23	625 92	651.33	675 83	699 92	724 00	746.47	773 83	796 33	R21 07	843.40	BGR 45	000
	Time		Maximum Temp.	16:40	20:05	20:45	19:00	16:00	19:30	16:00	19:00	19:15	20:00	19:55	20:45	20:00	20:25	21:00	14:45	23:20	19:14	18:40	16:50	18:53	19:14	21:25	20:00	20:30	20.30	18.35	20.00	20:00	20.30	20:35	20.40	1909	22.30	21.00	21.44	20:04	21.07	,
	Date		ž	04/03/93	04/03/93	04/03/93	04/03/93	04/04/93	04/05/93	04/06/93	04/07/93	04/06/93	04/09/93	04/10/93	04/12/93	04/13/93	04/14/93	04/15/93	04/16/93	04/17/93	04/18/93	04/19/93	04/20/93	04/21/93	04/22/93	04/23/93	04/24/93	04/25/93	04/25/93	04/21/93	04/20/32	04/30/93	05/01/93	05/05/03	05/03/03	05/07/33	05/05/03	05/06/93	05/00/50	05/08/93	15/00/50	02/02/07

-

Table B-2 Temperature in Thermowells (Outside Thermowell TW7 in Table B-1) [Continued]

TW3-20 20-ft 87.4							78	9 9	001	7.67	78	756	71.6	85 1	844	1 98	86 9	87.4	1 2 9												
TW2-20 20-ft 117.4							20	6 20	62.4	68.2	92	79.8		110.7	92.3	117.4	101.5	109 4	102.3												
TW1-20 20-ft 68.8		,					6 7 3	2.4.5	1.00	28.7	56.4	56.8	57.8	64 4	59.2	63.2	65.4	68 8	61.4												
1 12-ft 2 EAR	ļ					n c		n :	c ·	œ	0	•	-	o		e e	o o	2	· 64	و		0		ļ			1.		2.4	61	23
TW6B 12-ft 206.2		143	147	1		2	10.		156.	157.	158	165	171	184	189	195	199	208	201	200		2	203				S	ä	200	2019	ŏ
TW5B 12-ft 201.3	46.71	145.5	150.2	1001	4.60	0.001	136.0	158.0	159.3	160.8	161.6	168.8		187.4	194.0	2013															
TW4B 12-ft 167.5	7 101	133.4	137.0		- 65	9.09.	137.4	133.0	130.7	128.1	140.4	142.6	143.5	148.6	146.2	1520	157.9	165.9	150.8	150.0	187.5	9									
TW3B 12-ft	200	106.6		2 2	0.40	104.9	100.5	101.6	103.7	110.6	98.7	2 66	986	8 80	9 9	1.001	9101	1037				2		•	9 1	101.5	100.6	100	99 4	983	96.4
TW2B 12-ft		104.0	2.00	2.00	5.00	115.7	112.8	113.7	113.9	115.4	114.6	114.0) : :	8 00	4 404	4.60.4	20.4	F. 22.	200.0	0.434		123.3			124.3	123.9	121.1	120 4	1198	1168	1155
12-ft	2	4.00	0.50	5.19 5.19	92.3	93.7	90:3	90.6	90.1	666	1 98	848	8.58	0.00	7.50	F 00 0	90.2	90.7	6	D 6	920	5.10		1	80.3	80.3	78.8	79.3	78.2	77.5	76.3
1-# 1-#		152.4	151.4	151.9	151.0	150.0	147.3	148.0	147.6	145.4	1403	7 7	137.0	2001	6.11.	138.9	126.9	140.7	140.5	146.0	151.0	156.5	160.5	162.9	165.8	174.9	180.1	180 6	180.0	178.6	176.8
1-f	243	166.4	164.0	164.2	164.0	163.4	158.0	158.7	158.2	155.2	7 07 •		5.4.0		153.6	140.5	157.6	6.101	140.6	145.1	152.6	1290	139.4	173.0	175.9	191.0	243.0	237.8	227.1	218.6	2140
TW4A 1-ft	195.1	141.4	139.2	141.0	141.6	142.4	136.6	139.6	138.1	0 46.4	2 4 4 5	50.0	122.0	121.3	125.6	126.0	129.6	134.7	141.8	157.5	144.1	178.6			193.3	195.1	175.4	170.6	0.834	162.8	156.8
TW3A 1-ft	104.7	103.8	104.1	104.3	104.7	104.4	100.0	2 66	800) () (2.08	0.06	2.99	940	98.6	89.5	6:06	93.0	97.6	67.7	91.6			938	96.6	. KO	200	9 6	5 90	95.1
TW2A 1-R	129	104.0	104.4	1198	128.2	129.0	125.9	128.2	125.4		6.121	1.5.1	6.601		112.2	6.76	100.3	102.1	102.3	100.6	103.0	101.2			101.6	4 101			201	10/ 5	101.1
TW1A 1-R	103.1	103.1	100.0	102.1	101.7	102.9	60	1 80	2 2	2	5	83.0	78.4	77.4	68.2	72.1	71.1	70.4	70.3	64.7	64.0	64.7			62.4	F C 3	2 6	3	7 (0.00	9.69
Elapsed	V	915.50	939.33	963.62	987.67	101233	1038 17	2000	0.00	1004.03	1107.33	1133.42	1156.50	1172.25	1204.75	1215.33	1227.50	1250.33	1275.75	1291.52	1306.33	1323 67	1330.83	1342.33	1147 17		1370.00	1394.03	1403.00	141833	1459.83
Tã.	Maximum Temp>	20:10	20:00	20:17	20.00	0.10	30.00	3 5	27.55	21:30	8 8	22:05	21:10	12:55	21:25	00:00	20:10	19:00	20:25	12:11	03:00	20:50	03:30	15:00	05.01		07.81	19:30	03:40	19:00	12:30
Date	2	05/11/93	05/12/93	05/13/93	05/14/03	C6/41/30	56/51/50	56/01/00	05/11/93	05/16/93	05/19/93	05/20/93	05/21/93	05/22/93	05/23/93	05/24/93	05/24/93	05/25/93	05/26/93	05/27/93	05/28/93	05/28/93	05/29/93	05/29/93	06/20/03	Celesico	56/05/50	05/31/93	06/01/93	06/01/93	06/02/93

Table B-2 Temperature in Thermowells (Outside Thermowell TW7 in Table B-1) [Continued]

	E E	Elapsed	06-2WT	TW5-20	TW6-20	DIWI	DKWI.	TW3C	DWAC	SWL	TWAC		Average Termographics	eraturos.	CLANT	CiWI	COMIT
			2	20 - F	20 - ft	24-h	24-h	24-ft	24-h	24-R	24-R	1-Foot	12-Foot	20-foot	24-Foot 24-ft	29−π	29-1
2	Maximum Temp.		196.5	233.7	204.6	63.3	60.4	80.2	90.1	89	65.4	144	142	133	59 ERR	37.5	37.6
04/03/93	16:40	0.00															
04/03/93	20:02	3.42		€													
04/03/93	20:45	₩.08															
04/03/93	19:00	2.33				50.9											
04/04/93	16:00	23.33						٠				50	19				
04/05/93	19:30	50.83										59	19				
04/06/93	16:00	71.33										71	22				
04/07/93	19:00	96.33										11	31				
04/08/93	19:15	122.50									21.6	8	38		22		
04/09/93	20:00	147.33									22.3	29	47		22		
04/10/93	19:55	171.25							22.8		23.2	68	54		23		
04/12/93	20:45	220.08										8	9				
04/13/93	5 0:00	243.33				21.8	23.5	22.7	24.1	26.1	25.0	95	64		24		
04/14/93	20:25	267.75						22.7	24.6		25.3	83	67		24		
04/15/93	21:00	292.33						23.7	25.6		26.5	8	71		52		
04/16/93	14:45	310.08				22.8	24.4	24.1	26.2	28.2	27.3	16	78		56		
04/17/93	23:20	342.67				22.8	24.5	24.1	26.5	28.7	27.6	66	78		56		
04/18/93	19:14	362.57				23.1	25.4	24.9	27.6	29.4	28.7	101	9		27		
04/19/93	18:40	386.00				23.6	26.0	25.4	28.4	30.2	29.5	103	63		27		
04/20/93	18:50	410.17				23.5	26.0	55.6	28.7	30.6	300	104	86		27	21.6	21.9
04/21/93	18:53	434.22				23.7	26.8	260	29.8	31.3	31.0	103	86		28		
04/22/93	19:14	458 57				24.0	27.3	26.7	30.8	32.2	32.3	105	87		62		
04/23/93	21:25	484.75				24.4	27.8	27.4	31.7	33.1	33.5	109	8		S	21.6	22 0
04/24/93	5 0:00	507.33				24.8	286	29.7	32.9	34.5	346	110	92		31	21.7	22 1
04/25/93	20:20	532.17				566	296	290	343	35.8	36.3	112	94		32	22 0	22.4
04/26/93	5 0:30	555.83				256	30.2	29.7	35.5	36.5	373	114	94		32	21.9	22.3
04/27/93	20:55	580.25				27.0	32.0	31.3		38.2	396	119	101		34		
04/28/93	18:35	601.92				26.8	31.6	31.5	38.4	38.3	40.1	118	16		34	22.7	22 9
04/29/93	18:35	625.92				27 6	319	31.9	39.0	38.6	41.1	110	96		35		22 3
04/30/93	20:00	651.33				27.4	32.5	330	39.7	39 1	41.9	116	96		36	21.7	22.3
05/01/93	20:30	675.83				28.6	333	33 8	410	402	425	117	95		37	22 6	22 8
05/02/93	20:35	699.92				28 0	33.6	33 9	40 B	40.4	42.5	114	94		37	219	23 0
05/03/93	20:40	724.00				28.8	34.0	34.3	412	40.6	423	118	26		37	22.5	236
05/04/93	19:08	746.47				29.3	343	356	409	1.1	42.1	121	5		37	23 2	23 9
05/05/93	22:30	773.83				58.6	34.0	34.7	406	450	45.0	119	66		37	22 2	23.4
05/06/93	21:00	796.33				30.0	35.0	360	410	44.0	430	117	101		38	230	250
05/07/93	21:44	821.07				30.0	37.0	360	420	46.0	430	119	106		39	240	26.0
05/08/93	20:04	843.40				31.1	36.7	37.2	426	46.4	44.3	118	108		4 0	240	25 5
05/09/93	21:07	868.45				31.7	37.7	378	433			100	5		38	27.1	29 1
05/10/93	.	891.75				34.3	40.4	40 5	<i>;</i>	52.1	48.2	127	116		44	~	27.7

122

Table B-2 Temperature in Thermowells (Outside Thermowell TW7 in Table B-1) [Continued]

TW2D	11-62	27.0									37.3										325			33		- 4	3				20
O WID	1-6Z	6/5	28.2	28.3	28.9	29 6	29.7	28.3			29.4	29.9									200	7.67		37.		- 400	9			S	908
	`\	59 EHH	46	7	4 8	4 9	51	49	51	25	54	7	54	25	20	20	50	22	6												
peratures	20-1001	133							8	8	96	66	102		133	122	116	<u> </u>	133												
Average Temperatures	12-Foot	142	119	120	123	125	128	125	126	126	127	127	129	125	134	137	142	134	138	132	90.	120									
		144	129	127	131	132	132	128	126	128	125	118	=	106	109	10	113	116	115	21.	- 6	2		•	707	5:	144	142	140	138	136
TW6C	24-11	65.4	50.3	51.5	53.0	54.7	56.9	55.0	57.4	59.7	6.19	61.4	62.0	62.5	63.3	63.5	65.4														
TWSC	24-ft	69	55.0	56.2	58.4	60.2	62.0	4.19	63.7	66.1	68.0	66.8	66.7		6.89	67.6															
TW4C	24-ft	90.1	48.4	49.3	50.7	52.2	54.4	52.4	54.4	56.7	58.4	580	58.8	59.0	62.6	63.3	65.6	68.5	8.69		1	85.0			3					•	
TW3C	24-ft	206	42.3	42.8	44.1	45.3	48.2	43.3	. .	45.8	47.1		47.7	47.1	20.0	50.2	52.6	58.3	58.5	56.6		57.3			20	58.0	26.7	56.5	58.5	55.2	
TW2C	24-N	60.4	42.6	43.5	44.6	45.9	45.8	44.7	48.6	47.4	48.4	46.3	48.8		51.6	53.3	56.1	50.2	60.4	54.5	!	29.5		1	28.7	59.2	57.4				
TWIC	24-ft	63.3	36.0	36.7	37.3	4 6	7 0	2 6	900	37.7	38.4	37.9	38.2	38.8	39.4	40.0	41.9	44.2	46.1	44.3		63.3		;	57.6	46.8	45.8	30.4	46.1		45.2
TW6-20	20-1	204.6							6	103.6	113.8	119.5	128.3	90.2	175.7	148.7	165.7		204.6												
TW5-20	20-ft	233.7							104	129.7	137.4	163.4	178.1		233.7	201.6															
TW4-20	20-1	196.5							7 80	9	67.0		9 6	7 68	128.4	147.2	7 871	186.2	196.5												
Elapsed	!	1 6	018	00.00	20.00	203.02	10.100	1012.33	1036.17	1039.70	1004:03	1133.43	1158.50	1172.25	1204 75	1215 33	1227.50	1250.33	127575	1291.52	1306.33	1323.67	1330.83	1342.33	1347.17	1370.80	1394.83	1403.00	1418.33	1442 33	000011
Ē	•	Maximum Temo	100 HOLES	20.10	20:02	20:17	20:20	21:00	20:50	20.22	8.5	30.55	21:10	10.55	30:10	60.00	3 5	10.00	20.02	12:11	03:00	20:20	03:30	15:00	19:50	19:28	19:30	03:40	19:00	19:00	
d d	E C	77		58/11/60	05/12/93	05/13/93	05/14/93	05/15/93	05/16/93	05/17/93	05/18/93	02/18/83	05/20/83	05/21/93	03/22/33	05/23/93	05/24/93	05/24/93	05/25/20	05/27/93	05/28/93	05/28/93	05/29/93	05/29/93	05/29/93	05/30/93	05/31/93	06/01/93	06/01/93	06/02/93	

=

Temperature in Thermowells (Outside Thermowell TW7 in Table B-1) [Continued] Table B-2

22.4 22.4 22.3	Time	Time	DEWT	TW4D	DWSD	DYWT COWT	TWIE	TW2E	TW3E	TW4E	TWSE	TW6E	TW7E	TWIF	TW2F	TW3F	1W4F
219 22.4 22.4 22.3 220 221 22.9 21.7 21.1 21.8 22.1 221 222 22.2 22.2 22.2 22.2 22.2		1	29-ft	29-1	29-ft	29-ft 29-ft	31-1	31-E	31-1	31-15	31 - IE	33.2	FBB	26.5	EBB	ERR	ERB
219 22.4 22.3 21.5 21.6 21.7 22.1 22.9 22.1 22.9 22.3 22.3 22.3 22.3 22.3 22.3 22.3	ز او	î	80.5	37.7	36.2	39.1 EHR	(8)	61.0	2	2		-					
219 224 224 223 217 229 221 221 222 222 223 223 223 235 235 231 223 235 247 247 248 241 241 241 241 223 224 245 245 242 242 242 245 245 244 241 241 223 225 245 245 245 245 245 245 245 245 245		0.00															
21.9 22.4 22.4 22.3 22.9 21.7 22.9 22.3 22.2 22.3 22.3 22.3 22.3 22.3		3.42		·;													
21.9 22.4 22.4 22.3 22.0 23.1 22.9 22.1 22.9 22.2 23.1 22.9 22.3 23.2 23.2 21.5 21.9 21.7 22.1 22.3 24.7 23.8 23.7 21.1 21.8 22.2 23.9 25.6 25.0 25.3 21.1 21.8 22.2 23.9 25.6 25.0 25.3 21.1 21.8 22.1 23.9 25.6 25.0 25.3 21.3 21.1 21.8 22.1 23.9 25.6 25.0 25.3 21.3 21.1 21.8 22.1 23.9 25.6 25.0 25.3 21.3 22.1 22.1 23.9 25.6 25.0 25.3 21.5 21.8 22.4 23.9 25.0 25.0 25.3 21.5 21.8 22.4 23.9 25.0 25.0 25.3 21.5 21.8 22.4 23.9 25.0 25.0 25.0 25.3 21.5 21.8 22.4 23.9 25.0 25.0 25.0 25.3 21.5 21.8 22.4 23.9 25.0 25.0 25.0 25.3 21.5 21.8 22.4 23.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25		4.08															
21.9 22.4 22.4 22.3 22.0 22.1 22.9 22.1 22.9 21.5 21.8 21.8 22.2 23.5 23.2 21.5 21.8 21.8 22.3 23.5 23.2 21.5 21.8 21.8 23.9 23.5 24.2 24.2 24.2 24.2 24.2 24.3 21.1 21.8 22.1 23.9 23.5 23.0 23.0 23.0 23.5 21.5 21.8 22.1 23.9 25.5 25.1 24.9 24.9 24.9 24.9 24.9 22.1 23.9 25.5 25.1 24.9 22.9 22.9 23.9 25.5 25.1 27.9 22.5 22.1 23.9 25.5 25.1 27.9 22.5 22.1 23.9 25.5 25.1 27.9 22.5 22.1 23.9 25.5 25.1 27.9 22.5 22.1 23.9 25.5 25.1 27.9 22.5 22.1 23.9 25.5 25.1 27.9 22.5 22.1 23.9 25.5 25.1 27.9 22.5 22.1 23.9 25.5 25.1 27.9 22.5 22.1 23.9 25.5 25.1 27.9 27.1 23.9 25.5 25.1 27.9 27.1		2.33						•						21.1			
220 22.4 22.4 22.3 21.7 22.9 22.0 22.1 22.9 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.0 22.1 22.1		23.33															
219 224 224 223 220 23.1 229 224 23.5 23.2 21.5 21.8 21.0 225 23.3 2.3 2.3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1		50.83															
220 22.4 22.4 22.3 22.9 21.7 22.1 22.0 22.2 22.0 22.2 22.0 22.2 22.0 22.2 22.0 22.3 22.0 22.3 22.3		71.33															
21.9 22.4 22.4 22.3 21.7 22.9 22.7 22.1 22.0 22.2 22.2 22.3 22.2 22.3 22.3 22.3		98.33															
219 22.4 22.4 22.3 220 231 22.9 221 232 24 23.5 223 24 23 24.2 223 24.2 224 23.5 225 24.2 225 24.2 227 24.2 228 24.7 229 24.7 23 24.2 23 24.2 23 24.2 23 24.2 23 24.2 23 24.2 24 2 24.2 25 25 25 25 25 25 25 25 25 25 25 25 25 2		122.58															
21.9 22.4 22.4 22.3 22.0 23.1 22.9 21.7 22.0 23.1 22.9 21.7 22.0 23.5 23.2 21.5 21.8 22.3 23.6 23.3 21.5 21.9 22.9 24.7 23.6 23.7 21.1 21.0 23.1 24.2 24.2 24.1 21.1 22.1 23.6 25.1 24.9 24.4 21.1 22.1 23.6 25.1 24.9 24.9 24.1 22.1 23.6 25.1 25.9 24.9 24.1 22.1 24.9 25.6 25.0 26.0 26.0 26.0 25.0 26.0 26.0 26.0 26.0 26.0 25.5 27.1 27.3 27.1 27.5 25.5 27.1 27.3 27.5 27.5 25.5 26.0 26.0 26.0 26.0 26.0 25.5 27.1 27.5 27.5 27.5 25.5 27.1 27.5 27.5 25.5 27.1 27.5 27.5 25.6 26.0 26.0 26.0 26.0 <		147.33															
21.9 22.4 22.3 220 23.1 22.9 22.0 23.1 22.9 22.4 23.5 23.2 21.5 22.4 23.5 23.2 21.6 22.3 24.7 23.6 23.3 21.1 22.9 24.7 24.2 24.1 21.1 23.0 24.7 24.2 21.1 22.1 23.6 24.7 24.9 24.1 21.1 23.6 25.1 24.9 24.9 22.1 23.6 25.1 25.3 22.5 22.1 24.9 25.5 25.1 25.3 22.5 25.0 26.0 26.0 26.0 26.0 25.1 27.1 27.3 27.1 25.5 27.1 27.3 27.1 25.5 27.1 27.3 27.5 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 27.1 27.5 27.1 27.5 28.5 27.1 27.5 27.1 27.1 27.5 27.1 27.5 28.5 27.1 27.1 27.1 28.5 27.1 <td></td> <td>171.25</td> <td></td>		171.25															
220 22.4 22.4 22.3 22.9 21.7 22.1 22.9 22.3 22.2 22.3 22.5 22.5 22.5 22.5 22.5		220.08															
21.9 22.4 22.4 22.3 21.7 22.1 22.0 23.1 22.8 21.5 21.8 22.1 22.4 23.5 23.2 21.5 21.8 22.1 22.3 24.7 23.6 23.7 21.1 21.8 22.1 23.9 24.7 23.6 23.7 21.1 21.8 22.2 23.0 24.7 24.2 24.2 24.2 22.1 23.2 23.1 24.5 24.4 21.1 22.1 22.1 22.1 23.2 24.5 24.4 21.1 22.1 22.1 22.1 23.0 25.1 24.9 24.4 21.1 22.1 22.1 23.0 25.1 25.3 22.5 22.5 22.1 22.1 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 <td></td> <td>243.33</td> <td></td>		243.33															
21.9 22.4 22.4 22.3 21.7 22.1 22.0 23.1 22.9 21.7 22.1 22.4 23.5 23.2 21.5 21.6 22.1 22.3 23.5 23.3 21.1 21.8 22.1 22.3 24.7 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.4 21.1 22.1		287 75															
21.9 22.4 22.4 22.3 21.7 22.1 22.0 22.9 21.5 21.8 21.7 22.1 22.0 23.1 22.9 21.5 21.8 21.0 22.1 22.4 23.5 23.3 21.5 21.8 21.9 22.1 22.3 24.7 23.6 23.3 21.1 21.9 22.2 23.9 24.7 24.2 24.2 21.1 21.9 22.1 23.0 24.2 24.2 21.1 22.2 22.1 23.0 25.5 24.9 24.9 22.1 22.1 23.0 25.5 25.1 25.3 22.5 22.1 25.0 26.0 26.0 26.0 26.0 28.0 28.0 28.0 25.5 27.1 27.3 27.1 27.5 27.4 27.1 27.5 27.0 25.5 27.1 27.5 27.0 28.0 28.0 28.0 28.0		202 33															
21.9 22.4 22.3 21.7 22.1 22.0 23.1 22.9 21.7 22.1 22.4 23.5 23.2 21.5 21.6 22.1 22.4 23.5 23.2 21.5 21.8 22.1 22.3 24.7 23.8 23.7 21.1 21.8 22.2 23.9 24.2 24.2 24.4 21.1 21.8 22.1 23.1 24.2 24.4 21.1 21.8 22.1 22.1 23.2 24.5 24.4 21.1 21.8 22.1 22.1 23.0 24.9 24.9 21.1 22.1 22.1 22.1 24.9 25.0 25.3 22.5 22.4 22.1 22.4 25.0 25.0 25.3 22.5 22.4 22.1 22.4 25.0 25.0 25.0 25.0 22.5 22.4 22.4 25.0 25.0 25.0 25.0		595.33															
21.9 22.4 22.4 22.3 220 23.1 22.9 21.7 22.1 220 23.1 22.6 21.5 21.6 22.1 22.4 23.5 23.2 21.5 21.6 22.1 22.3 23.5 23.2 21.1 21.6 22.1 22.9 24.7 23.6 23.7 21.1 21.6 22.2 23.9 24.2 24.2 24.2 24.2 24.2 22.1 23.1 25.1 24.9 21.1 21.9 22.1 22.1 23.9 25.1 24.9 21.1 21.1 22.1 22.1 23.9 25.5 25.1 25.3 22.5 22.1 22.1 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 27.1 27.1 27.5 27.1 27.5 27.1 27.5 27.1 27.5 27.1 27.5		310.00															
22.0 22.4 22.3 21.7 22.9 21.7 22.1 22.0 23.1 22.6 23.5 23.2 21.5 21.8 22.1 22.4 23.5 23.3 21.5 21.6 21.8 21.8 22.3 23.5 23.3 21.1 21.8 22.1 22.9 24.7 23.8 23.7 21.1 21.8 22.2 23.9 24.2 24.2 24.4 21.1 22.1 22.1 23.6 25.0 25.9 25.9 22.5 22.1 22.1 24.9 25.6 25.0 25.3 21.5 21.8 22.1 25.0 25.0 25.0 25.3 21.5 22.5 22.1 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 27.1 27.5 27.1 27.5 27.1 27.5 27.1 27.5 27.1		342.67															
22.0 22.4 22.3 21.5 21.7 22.1 22.0 23.1 22.8 21.5 21.8 22.1 22.4 23.5 23.2 21.5 21.8 22.1 22.9 23.5 23.3 21.1 21.8 22.1 22.9 24.7 23.6 23.7 21.1 21.8 22.2 23.9 24.2 24.2 24.2 24.2 24.2 22.2 23.9 24.5 24.9 24.9 21.1 21.8 22.1 23.9 25.6 25.0 25.9 21.1 21.8 22.1 23.9 25.6 25.0 25.9 22.5 22.1 22.4 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.1 27.3 27.1 27.5 27.1 27.5 25.1 27.1 27.5		362.57															
220 224 229 21.7 22.1 220 23.5 22.8 21.5 21.8 22.1 22.4 23.5 23.2 21.5 21.8 22.1 22.3 23.5 23.2 21.1 21.8 23.2 22.9 24.7 23.6 23.7 21.1 21.8 23.2 23.9 24.7 24.2 24.1 21.1 22.1 22.1 23.0 24.5 24.4 21.1 22.1 22.1 23.0 25.0 25.0 25.3 22.5 22.1 23.0 25.0 25.0 25.3 22.5 22.1 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 25.0 26.0		386.00			,	,											
22.0 22.9 21.7 22.1 22.0 23.1 22.6 23.2 21.5 21.8 22.3 23.5 23.3 21.6 23.3 22.9 24.7 23.6 23.3 21.1 21.8 23.3 24.2 24.2 24.2 24.2 24.2 23.3 24.2 24.2 24.4 21.1 21.8 22.2 23.3 24.5 24.4 21.1 21.8 22.1 23.6 25.1 24.9 24.9 24.9 24.9 24.9 24.9 24.9 24.9 24.9 25.0 26.0 26.0 26.0 26.0 26.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 26.0 26.0 26.0 26.0 26.0 25.5 27.1 27.1 27.1 25.5 27.1 27.3 27.4 25.5 26.0 26.0 26.0 26.0 25.5 27.1 27.1 27.1 25.5 27.1 27.1 27.1 25.5 27.1 27.1 27.1 25.5 27.1 27.1 27.1 <		410.17	21.9	22.4	22.4	22.3											
220 229 21.7 22.1 220 23.1 22 6 23.5 23.2 21.5 21.8 22.1 22.4 23.5 23.2 23.5 23.2 21.8 21.8 22.1 22.3 24.7 23.8 23.7 21.1 21.8 22.2 23.2 23.3 24.2 24.2 24.4 21.1 21.8 22.1 23.1 23.6 24.5 24.4 21.1 22.1 22.1 22.1 23.6 25.1 24.9 24.9 24.9 24.9 22.1 23.6 25.0 25.3 22.5 21.8 22.1 22.1 24.9 25.0 25.3 21.5 21.6 22.4 22.1 25.0 25.0 25.3 21.5 21.6 22.4 22.1 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 25.5 27.1 27.5		434.22															
220 229 21,7 220 231 229 21,5 21,8 22,4 235 232 21,5 21,8 21,8 22,3 23,5 23,7 21,1 21,1 21,1 23,2 24,2 24,2 24,2 24,2 24,2 23,2 24,2 24,2 21,1 22,1 23,2 24,5 24,4 21,1 22,1 23,6 25,1 24,9 21,1 22,1 24,9 24,9 24,9 22,1 25,0 26,0 26,0 26,0 26,0 25,0 26,0 26,0 26,0 26,0 25,0 26,0 26,0 26,0 26,0 25,0 26,0 26,0 26,0 26,0 25,0 27,1 27,1 27,1 25,1 27,1 27,1 27,1 26,1 27,1 27,1 27,1 26,1 27,1 27,1 27,1 26,1 27,1 27,1 27,1 27,1 27,2 27,1 27,1 28,1 27,1 27,1 27,1 28,1 27,1 27,2 27,1 <td></td> <td>458.57</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>;</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		458.57							;								
22.0 23.1 22.8 21.5 21.8 21.8 21.8 22.4 23.5 23.2 21.5 21.8 21.8 21.8 22.3 23.6 23.3 21.1 21.8 22.2 23.2 22.9 24.7 24.2 24.2 21.1 21.8 22.2 23.3 24.5 24.4 21.1 22.1 22.1 23.6 25.1 24.9 24.9 22.1 22.1 24.9 25.6 25.0 25.3 22.5 24.4 25.0 25.1 25.3 21.5 21.8 22.4 25.0 26.0 26.0 26.0 26.0 26.0 25.0 26.0 26.0 26.0 26.0 26.0 25.5 27.1 27.3 27.1 27.5 26.1 27.5 27.5 27.5 26.1 27.5 27.5 27.5 26.1 27.5 27.5 27.5 27.5 27.5 28.1 27.5 27.5 28.1 27.5 27.5 28.1 27.5 27.5		484.75	220			52 9			21.7			ć					
22.4 23.5 23.2 21.5 21.8 21.8 22.3 23.6 23.3 21.1 21.8 23.2 22.9 24.7 23.8 23.7 21.1 21.8 22.2 23.9 24.5 24.9 24.9 24.9 22.1 23.9 25.1 24.9 24.9 22.1 23.9 25.5 25.1 25.3 22.5 23.9 25.0 25.3 21.5 21.8 22.4 25.0 26.0 26.0 26.0 26.0 26.0 25.0 26.0 26.0 26.0 23.0 23.0 25.5 27.1 27.3 27.1 27.5 26.9 37.7 27.5 27.5		507.33	22.0		23.1	22 0				;		22.1					
22.3 23.6 23.3 22.9 24.7 23.8 23.7 21.1 23.3 24.2 24.2 24.2 22.2 23.3 24.2 24.4 21.1 22.1 23.6 25.1 24.9 24.9 22.1 23.9 25.5 25.3 22.5 23.9 25.5 25.1 25.3 22.5 23.9 25.0 26.0 26.0 26.0 25.0 26.0 26.0 26.0 23.0 25.1 27.1 27.1 27.5 28.9 37.7 37.5		532.17	22.4		23.5	23.2	21.5	21.8		21.8							
235 23,9 24,7 23,8 23,7 21,1 23,3 24,2 24,2 24,2 24,2 23,3 24,2 24,2 24,2 24,2 23,2 24,5 24,4 21,1 22,1 23,6 25,1 24,9 24,9 24,9 24,9 25,6 25,3 22,5 24,9 25,5 25,3 21,5 21,8 25,0 26,0 26,0 26,0 25,0 26,0 26,0 26,0 25,0 26,0 26,0 23,0 25,0 27,1 27,3 27,1 27,5		555.83	22.3		23.6	23.3											
23 5 23 7 21.1 23 2 23 3 24.7 23 8 23.7 21.1 22 2 23 3 24.5 24.2 24.2 21.1 22.1 23 2 24.5 24.4 21.1 22.1 22.1 23 6 25.1 24.9 24.9 24.9 24.9 24 9 25.0 25.3 22.5 22.1 24 9 25.0 25.3 21.5 21.8 22.4 25 0 26 0 26 0 26 0 20.5 20.5 25 0 26 0 26 0 26 0 23.0 23.0 25 5 27 1 27 3 27 3 27 5 28 1 27 5 27 5 27 5		580.25															
23 5 22 9 24.7 23 6 23 3 24.2 24 2 23 44.5 24 4 24 5 24 5 24 4 21.1 25 6 25 6 25 0 25 3 22 5 25 7 24 5 24 4 21.1 25 8 25 1 24 9 24 9 24 9 24 9 24 9 25 2 24 2 21 22 5 25 0 25 6 25 0 25 3 21 5 21 8 22 4 25 0 26 0 26 0 26 0 26 0 26 0 26 0 26 0		601.92															
22.9 24.7 23.7 21.1 23.3 24.2 24.2 22.2 22.1 23.3 24.5 24.4 21.1 22.1 22.1 23.6 24.5 24.4 21.1 22.1 22.1 23.6 25.6 25.9 24.9 24.9 22.5 24.9 25.6 25.3 21.5 21.8 22.4 25.0 26.0 26.0 26.0 23.0 23.0 25.5 27.1 27.3 27.5 28.1 27.5 27.5		625.92		23 5								6					
23.3 24.2 24.2 22.2 23.2 24.5 24.4 21.1 22.1 23.6 25.1 24.9 21.1 22.1 23.6 25.1 25.3 22.5 23.9 25.5 25.1 25.3 21.5 25.0 26.0 26.0 26.0 23.0 25.0 26.0 26.0 23.0 23.0 25.5 27.1 27.5 28.1 29.7 30.1 27.5		651.33	22.9	24.7	238	23.7	21.1					23.2					
23 2 24 5 24 4 21.1 22.1 23 6 25 1 24 9 24 9 24 9 24 9 25 6 25 3 22 5 23 9 25 5 25 1 25 3 21 5 25 0 26 0 26 0 26 0 23 0 25 5 27 1 27 3 27 1 25 5 37 7 27 5 28 1 29 7 30 1 27 6		675 83	23.3	24.2	24.2	24.2		21.8	22.2			22.1					
236 25.1 24.9 24.9 24.9 25.6 25.3 22.5 23.9 25.5 25.1 25.3 21.5 25.0 26.0 26.0 23.0 23.0 25.0 26.0 28.0 23.0 23.0 25.5 27.1 27.3 27.1 28.1 29.7 30.1 27.5		699.92	23 2	24.5	24.5	24.4	21.1		22.1								
249 256 250 253 225 239 255 251 253 21.5 218 250 260 260 260 230 250 260 280 260 230 255 27.1 27.3 27.1 265 37.5 27.5 281 297 30.1 27.5		724 00	236	25.1	24.9	24.9											
239 255 25.1 253 21.6 218 250 250 260 260 260 260 28.0 29.0 23.0 25.5 27.1 27.3 27.1 27.5 28.1 29.7 30.1 27.6		746.47	24.9	25 6	25.0	25.3	22.5										
250 260 260 260 250 260 280 280 255 27.1 27.3 27.1 259 375 20.5 281 297 30.1 27.5		773 83	23 9	25 5	25.1	253	21.5	218	22.4								
25.0 26.0 28.0 26.0 23.0 25.5 27.1 27.3 27.1 25.9 37.5 27.5 27.5 28.1 29.7 30.1 27.6		796 33	250	26.0	26.0	26 0											
25.5 27.1 27.3 25.9 37.5 28.1 29.7 30.1		821.07	25.0	26.0	28.0	26.0	23.0		230								
25.9 37.5 30.1		843 40	25.5	27.1	27.3	27.1											
28.1 29.7 30.1		BAR 45	25.0	37.5		27.5											
		2000	- 40	20.7	30.1	27.6											

Ξ.

Table B-2 Temperature in Thermowells (Outside Thermowell TW7 in Table B-1) [Continued]

Part Part																		
Marituri	į	į	Elapsed	C5/57	OAWT.	O?WT	OZWI GAWI	TWIE	TW2E	TW3E	TW4E	TWSE	TW6E	TW7E	TWIF	TW2F	TW3F	TW4F
Makingary Temp 1—5 106 237 362 391 ERH 231 218 ERH 232 ERH ERH 232 ERH ERH 232 ERH ERH 233 234 233	Cate	Ē		20 1 02	29-t	2 2 − 82	29-ft 29-ft	31-R	31-ft	31-ft	31-1	31-ft	31-h	31-ft	34-ft	34-1	34-ft	34-ft
20:10 915.50 29.6 31.4 32.1 31.3 20:17 903.32 29.9 31.6 32.5 31.6 20:17 903.82 30.4 32.3 31.6 32.5 31.6 20:17 903.82 30.4 32.3 33.2 33.2 32.3 32.3 20.2 21:00 101.23 31.0 32.8 32.7 28.1 28.1 28.2 28.1 28.2 28.1 28.2 28.1 28.2 28.1 28.2 31.2 28.2 28.2 31.2 32.3 33.2	Ma	ximum Tem	7D>	80.5	37.7	36.2	39.1 ERR	28.1	21.8	23	21.0	ERR	23.2	ERA	26.5	ERR	EAR	EH
20,00 699,33 229 -318 245 20,20 696,56 304 323 339 223 20,20 907,67 310 323 333 233 323 20,20 1006,17 264 333 323 332 246 20,20 1006,17 264 333 323 332 246 20,20 1007,33 295 356 370 362 39.1 21,10 107,33 295 37,7 362 39.1 39.1 21,12 107,15 30.5 37,7 36.2 39.1 39.1 21,12 107,15 30.5 37,7 36.2 39.1 39.1 20,10 125,39 32.6 37.7 36.2 39.1 39.1 20,10 125,39 32.6 37.7 36.2 39.1 39.1 20,10 125,39 32.6 37.7 36.2 39.1 39.1 2	05/11/93	20:10	915.50	29.6	31.4	32.1	31.3											
20:17 963 62 30.4 32.3 33.3 21:00 101.33 31.0 32.4 33.2 21:00 101.33 31.0 33.2 33.2 20:50 103617 26.4 33.3 32.3 33.2 20:50 103617 26.4 33.3 32.3 33.2 20:50 104.63 35.6 35.6 37.0 37.7 36.2 39.1 20:00 107.33 29.5 35.6 37.0 39.1 39.2 39.1 39.2 39.1 39.2 39.1 39.2 39.1 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2	12/93	20:00	939.33	59.9	31.9	32.5	31.8								,			
20:20 997 67 31.0 32.8 32.7 28.1 20:50 1012 33 31.3 33.2 37.7 28.1 20:50 1038 17 28.4 33.3 32.3 32.2 20:50 1038 17 28.4 33.2 33.2 33.2 20:50 1038 70 28.4 33.3 32.3 33.2 20:00 1133 42 30.5 37.7 36.2 39.1 21:25 1133 42 30.5 37.7 36.2 39.1 21:25 1124 52 30.4 37.7 36.2 39.1 20:10 1275 5 30.4 30.2 30.1 30.1 20:10 1275 75 32.8 32.8 32.8 32.8 20:20 132.6 32.1 32.1 32.1 32.1 20:20 132.6 32.8 32.8 32.8 32.8 20:20 132.6 32.1 32.1 32.1 32.1 19:20	13/93	20:17	963.62	30.4	32.3	33.3	32.3											
21:00 1012.33 31.3 33.2 38.1 20:50 108617 28.4 33.3 32.3 38.2 20:50 108483 29.5 35.6 35.6 37.0 21:00 1107.33 29.5 37.7 36.2 39.1 22:00 1107.53 20.5 37.7 36.2 39.1 21:00 125.33 30.6 37.7 36.2 39.1 20:00 125.33 32.6 32.6 32.6 19:00 125.33 32.1 32.1 20:00 125.33 32.1 32.1 20:00 130.63 32.1 32.1 19:00 134.23 33.2 33.2 19:20 134.23 33.2 33.2 19:00 146.33 33.2 33.2 19:00 146.33 33.2 33.2 19:00 146.33 33.2 32.6	14/93	20:50	967.67	31.0	32.8	33.8	32.7		:									
20:50 1036.17 28.4 33.3 32.3 20:22 1059.70 35.6 35.6 20:00 1107.33 29.5 35.6 35.6 20:00 1107.23 30.5 37.7 36.2 21:10 1156.50 37.7 36.2 21:25 1172.25 37.7 36.2 21:25 1172.25 37.7 36.2 21:25 1172.25 37.7 36.2 21:25 1172.25 37.7 36.2 21:25 1172.25 37.7 36.2 21:25 1172.25 37.7 36.2 21:25 1172.25 37.7 36.2 21:25 1172.25 37.7 36.2 21:25 120.47.5 32.6 37.7 36.2 20:20 1250.33 32.6 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.2 32.2 32	15/93	21:00	1012.33	31.3	33.2		37.7	28.1							26.5			
20:22 1059.70 21:30 1084.83 20:00 1107.33 29.5 35.6 22:05 1133.42 30.5 37.7 36.2 21:10 1156.50 37.7 36.2 21:25 1172.25 37.7 36.2 21:25 1204.75 37.7 36.2 20:10 1227.50 37.7 36.2 20:10 1227.50 32.6 32.6 19:00 1250.33 32.6 32.1 20:20 130.63 32.1 32.1 20:20 130.63 32.1 32.1 20:30 130.83 33.2 33.2 19:30 1418.33 33.2 33.2 19:00 1418.33 1459.63	16/93	20:50	1036.17	28.4	33.3	32.3	33.2											
21:30 1084.83 20:00 1107.33 29.5 35.6 35.6 22:00 1107.34 30.5 37.7 36.2 21:10 1156.50 12:25 1172.25 21:25 1204.75 08:00 1215.33 20:20 1275.50 19:00 1205.33 20:20 1306.33 20:20 1306.33 20:20 1306.33 20:20 1306.33 20:20 1306.33 20:20 1306.33 20:20 1306.33 20:20 1306.33 20:20 1342.33 19:00 1448.33 19:00 1459.83	05/17/93	20:55	1059.70															
20:00 1107.33 29.5 35.6 35.6 22:05 1133.42 30.5 37.7 36.2 21:10 1156.50 37.7 36.2 21:25 1472.5 37.7 36.2 21:25 1204.75 36.2 37.7 36.2 21:25 1204.75 36.2 37.7 36.2 20:10 127.50 32.6 32.6 19:00 130.63 32.1 32.1 20:20 130.63 32.1 32.1 20:20 130.63 32.1 32.1 19:20 134.23 33.2 33.2 19:20 1418.33 33.2 33.2 19:20 1418.33 33.2 33.2 19:20 1459.63 33.2 33.2	05/16/93	21:30	1064.83															
22:05 1133.42 30.5 37.7 36.2 21:10 1156.50 1172.25 21:25 1204.75 60:00 1215.33 20:10 1255.33 20:25 1275.75 20:25 1275.75 20:25 1275.75 20:25 1275.75 20:25 1275.75 20:25 1275.75 20:25 1275.75 20:25 1275.75 20:25 1275.75 20:25 1370.83 20:25 1370.80 33.8 19:26 1370.80 33.8 19:26 1370.80 33.8 19:20 14418.33 19:00 14418.33 19:00 1459.83 112:30 1459.83	05/19/93	20:00	1107.33	29.5	35.6	35.6	37.0											
21:10 1156.50 12:55 1172.25 20:10 1215.33 20:10 1227.50 19:00 1250.33 20:25 1275.75 12:11 1291.52 03:00 1306.33 20:20 1323.67 03:30 1330.83 19:50 1342.33 19:28 1370.80 19:30 1448.33 12:30 1459.83	05/20/93	22:05	1133.42	30.5	37.7	36.2	1.60											
12:55 1172.25 20:10 1227.50 20:10 1227.50 19:00 1225.33 20:25 127.57 12:11 1291.52 03:00 1306.33 20:20 1323.67 03:30 1323.67 19:50 1342.33 19:26 1370.80 19:30 1346.33 19:30 1448.33 12:30 1459.83	21/93	21:10	1156.50															
21:25 1204.75 06:00 1215.33 20:10 1227.50 19:00 1250.33 20:25 1275.75 12:11 1291.52 03:00 1306.33 20:20 1308.33 15:00 1308.33 19:50 1347.17 19:28 1370.80 19:30 1394.83 19:30 1448.33 12:30 1428.83	05/22/93	12:55	1172.25															
06:00 121533 20:10 1227.50 19:00 1220.33 20:25 177.75 12:11 1291.52 03:00 1306.33 20:20 1323.67 03:30 1330.63 15:00 1342.33 19:50 1342.33 19:30 1394.83 19:00 1418.33 12:30 142.33	05/23/93	21:25	1204.75															
20:10 1227.50 19:00 1250.33 20:25 1275.75 12:11 1291.52 03:00 1306.33 20:20 1323.67 03:30 1342.33 19:50 1342.33 19:30 1394.83 19:00 1448.33 12:30 1459.83	05/24/93	00:00	1215.33															
19:00 1250:33 20:25 1275.75 12:11 1291:52 03:00 1306:33 20:20 1320:63 15:00 130:63 19:20 130:63 19:20 130:60 19:30 1394:63 19:00 144:63 12:30 1459:63	24/93	20:10	1227.50															
20:25 1275.75 12:11 1291.52 03:00 1306.33 20:20 1323.67 03:30 1323.67 15:00 1342.33 19:26 1370.80 19:30 1394.63 03:40 1403.00 19:00 1418.33 12:30 1459.83	25/93	19:00	1250.33															
12:11 1291.52 03:00 1306.33 20:20 1323.67 03:30 1320.63 15:00 1342.33 19:26 1370.80 19:30 1394.63 03:40 1403.00 19:00 1418.33 12:30 1459.63	26/93	20:52	1275.75															
03:00 1306:33 20:20 1323.67 03:30 1323.63 15:00 1347.17 19:26 1370.80 19:30 1394.83 03:40 1403.00 19:00 1418.33 12:30 1459.83	27/93	12:11	1291.52	32.6														
20:20 1323.67 03:30 13:30.83 15:00 1342.33 19:20 1347.17 19:28 1370.80 19:30 1418.33 19:00 1442.33 12:30 1459.83	26/93	03:00	1306.33															
03:30 1330.83 15:00 1342.33 19:26 1347.17 19:28 1370.80 19:30 1394.83 19:00 1448.33 12:30 1459.83	28/93	2 0:50	1323.67	32.1											•			
15:00 1342:33 19:50 1347:17 19:28 1370:80 19:30 1394.83 03:40 1403:00 19:00 1442:33 12:30 1459:83	29/93	03:30	1330.83															
19:50 1347.17 19:28 1370.80 19:30 1394.83 03:40 1403.00 19:00 1418.33 12:30 1459.83	29/93	15:00	1342.33															
19:26 1370.60 19:30 1394.63 19:30 1403.00 19:00 1442.33 12:30 1459.63	29/93	19:50	1347.17	60.5														
19:30 1394.63 03:40 1403.00 19:00 1418.33 19:00 1442.33 12:30 1459.63	30/93	19:28	1370.80	33.8														
03:40 19:00 12:30	31/93	19:30	1394.83	33.2														
19:00 19:00 12:30	01/93	03:40	1403.00											,				
19:00	01/93	19:00	1418.33											,				
12:30	02/93	19:00	1442.33															
	03/93	12:30	1459.63															

Table B-2 Temperature in Thermowells (Outside Thermowell TW7 in Table B-1) [Continued]

Date Time Time <th< th=""><th></th><th></th><th> </th><th>Elapsed</th><th></th><th>r contract</th><th>į</th><th></th></th<>				Elapsed		r contract	į	
04/03/93 16:40 0.00 04/03/93 20:05 3.42 04/03/93 20:05 3.42 04/03/93 20:05 3.42 04/03/93 19:00 2.33 04/03/93 19:00 2.33 04/03/93 19:00 20:33 04/03/93 19:00 20:33 04/03/93 19:00 20:33 04/03/93 19:00 20:33 04/03/93 19:00 20:33 04/12/93 20:00 147.33 04/13/93 20:45 220:08 04/13/93 20:45 220:08 04/13/93 20:45 220:08 04/13/93 20:00 243:33 04/13/93 10:14 30:08 04/13/93 10:14 30:08 04/13/93 10:14 45:8:57 04/13/93 10:14 45:8:57 04/13/93 10:14 45:8:57 04/23/93 20:00 55:03 04/26/93		Date	e E	Ē	14. A.	34-F	34-1	
04/03/93 16:40 0.00 04/03/93 20:05 3.42 04/03/93 20:05 3.42 04/03/93 19:00 23:33 04/05/93 19:00 23:33 04/05/93 19:00 23:33 04/05/93 19:00 71:33 04/06/93 19:00 71:33 04/10/93 19:00 147:33 04/10/93 19:00 147:33 04/14/93 20:00 242:33 04/14/93 20:00 243:33 04/14/93 20:00 243:33 04/14/93 20:00 243:33 04/14/93 20:00 243:33 04/14/93 20:00 243:33 04/14/93 20:00 243:33 04/15/93 19:14 362:57 04/15/93 19:14 362:57 04/15/93 19:14 458:57 04/25/93 19:14 458:57 04/25/93 19:14 458:57 04/25/93 19:14 458:57 04/25/93 19:14 458:57 04/25/93 19:14 458:57 04/25/93 19:14 458:57 04/25/93 19:14 458:57 04/25/93 20:30 651:33 05/05/93 20:30 675:83 05/05/93 20:30 675:83 05/05/93 20:30 675:83 05/05/93 20:30 773:83 05/05/93 20:30 773:83 05/05/93 20:30 05/05/93 21:00 796:33 05/05/93 21:07		Ma	ximum Ten		EBB	21.1	EAR	
04/03/93 20:05 3.42 04/03/93 20:05 3.42 04/03/93 20:05 3.42 04/03/93 20:05 3.42 04/03/93 20:05 3.42 04/03/93 19:00 23:33 04/04/93 19:00 23:33 04/04/93 19:00 71:33 04/06/93 19:00 71:33 04/06/93 19:00 71:33 04/06/93 19:05 14:00 80:33 04/10/93 19:05 20:00 147:33 04/11/93 20:00 292:33 04/14/93 20:00 292:33 04/14/93 20:00 292:33 04/14/93 20:00 292:33 04/14/93 20:00 292:33 04/14/93 19:14 362:57 04/16/93 19:15 04/24/93 19:15 04/24/93 20:00 50:03 05:03 04/24/93 20:00 50:03 05:03 04/26/93 20:00 50:03 05:03 06/26/93 19:35 60:03 06/26/93 20:00 65:1:33 06/26/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:33 06/02/93 20:00 65:1:00 06/06/93 20:00 65:1:00 06/06/93 20:00 65:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 66:1:00 06/06/93 20:00 06/06/93 20:00 66:1:00 06/06/93 20:00 06/06/93	-		9	1				
04/03/93 20:05 3.42 04/03/93 20:05 3.42 04/03/93 18:00 23:33 04/05/93 18:00 23:33 04/05/93 18:00 23:33 04/05/93 18:00 23:33 04/05/93 18:00 24:33 04/05/93 18:15 122:56 04/09/93 18:15 17:25 04/13/93 20:00 147:33 04/14/93 20:00 24:33 04/14/93 20:00 24:33 04/14/93 20:00 24:33 04/15/93 20:00 24:33 04/15/93 18:16 31:00 04/20/93 18:50 44:22 04/20/93 18:50 44:22 04/20/93 18:50 44:22 04/20/93 18:50 44:22 04/20/93 18:50 50:33 04/25/93 20:00 50:33 04/26/93 20:00 50:33 04/26/93 20:00 65:1:33 04/26/93 20:00 65:1:33 05/05/93 20:00 773:83 05/05/93 21:00 796:33 05/05/93 21:00 796:33 05/05/93 21:00 796:33 05/05/93 21:00 796:33 05/09/93 21:00 796:33 05/09/93 21:00 796:33 05/09/93 21:00 796:33 05/09/93 21:00 796:34 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07		04/03/93	10.40	3		•		
04/03/93 20:45 4.00 04/03/93 19:00 23.33 04/05/93 19:00 23.33 04/05/93 19:00 20:83 04/06/93 19:00 20:83 04/06/93 19:00 171.33 04/06/93 20:00 147.33 04/12/93 20:05 147.25 04/12/93 20:05 243.33 04/14/93 20:05 243.33 04/14/93 20:05 243.33 04/14/93 20:05 243.33 04/16/93 19:14 362.57 04/16/93 19:14 362.57 04/26/93 19:14 458.57 04/26/93 19:14 458.57 04/26/93 19:14 458.57 04/26/93 19:14 458.57 04/26/93 19:14 458.57 04/26/93 20:05 552.83 04/26/93 19:14 458.57 04/26/93 20:00 651.33 05/04/93 19:00 724.00 05/04/93 19:00 724.00 05/04/93 20:00 773.83 05/05/93 20:00 773.83 05/05/93 20:00 773.83 05/05/93 20:00 773.83 05/05/93 20:00 773.83 05/05/93 20:00 773.83 05/05/93 20:00 773.83		04/03/93	20:02	3.42		,		
04/03/93 19:00 2:33 21 04/04/93 19:00 2:33 04/04/93 19:00 2:33 04/05/93 19:00 2:33 04/05/93 19:00 71:33 04/05/93 19:00 147:33 04/12/93 20:00 147:33 04/12/93 20:00 243:33 04/12/93 20:00 243:33 04/12/93 20:00 243:33 04/15/93 20:00 243:33 04/15/93 19:14 362:57 04/15/93 19:14 362:57 04/22/93 19:14 362:57 04/22/93 19:14 362:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 19:14 458:57 04/22/93 20:20 552:30 05/07/93 20:30 675:83 05/07/93 20:30 675:83 05/07/93 20:30 675:83 05/07/93 20:30 478:33 05/05/93 21:00 796:33 05/09/93 21:07 868:45 05/10/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07 05/09/93 21:07		04/03/93	20:45	108		;		
04/04/93 16:00 04/05/93 16:00 04/06/93 16:00 04/06/93 16:00 04/10/93 19:15 04/10/93 19:15 04/14/93 20:00 04/14/93 20:00 04/14/93 20:00 04/14/93 20:00 04/14/93 16:50 04/14/93 16:50 04/15/93 16:14 04/15/93 16:50 04/22/93 16:50 04/22/93 16:50 04/22/93 16:50 04/22/93 16:50 04/22/93 16:35 04/26/93 20:00 05/02/93 16:35 04/26/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30		04/03/93	19 :00	2.33		21.1		
04/05/93 19:30 04/06/93 19:30 04/06/93 19:00 04/06/93 19:15 04/10/93 19:15 04/11/93 20:00 04/11/93 20:05 04/11/93 20:05 04/11/93 20:05 04/11/93 19:14 04/12/93 19:14 04/12/93 19:14 04/12/93 19:14 04/12/93 19:14 04/12/93 19:14 04/12/93 19:14 04/12/93 19:15 04/12/93 20:30 04/12/93 20:30 04/12/93 20:30 04/12/93 20:30 04/12/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30		04/04/93	16:00	23.33				
04/06/93 16:00 04/07/93 16:00 04/07/93 19:15 04/12/93 20:00 04/12/93 20:00 04/14/93 20:05 04/14/93 20:05 04/14/93 20:05 04/14/93 20:05 04/12/93 16:14 04/22/93 16:14 04/22/93 16:25 04/22/93 16:25 04/22/93 16:35 04/22/93 16:35 04/26/93 20:00 04/26/93 20:00 04/26/93 20:00 04/26/93 20:00 05/02/93 16:35 04/26/93 20:00 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30		04/05/93	19:30	50.83				
04/07/93 19:00 04/09/93 19:05 04/12/93 20:05 04/12/93 20:05 04/12/93 20:05 04/13/93 20:05 04/13/93 20:05 04/14/93 20:05 04/16/93 14:45 04/18/93 14:45 04/18/93 14:45 04/18/93 14:45 04/18/93 14:45 04/18/93 14:45 04/18/93 14:45 04/18/93 14:45 04/18/93 16:50 04/18/93 16:50 04/18/93 16:35 04/28/93 16:35 04/28/93 16:35 04/28/93 16:35 04/28/93 16:35 04/28/93 16:35 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 21:00 05/08/93 21:00		04/06/93	16:00	71.33				
04/09/93 19:15 04/09/93 19:15 04/10/93 20:05 04/14/93 20:05 04/14/93 20:05 04/14/93 20:05 04/14/93 20:05 04/14/93 20:05 04/16/93 19:14 04/19/93 19:14 04/22/93 19:14 04/22/93 19:14 04/22/93 19:15 04/22/93 19:15 04/22/93 19:15 04/22/93 19:25 04/22/93 19:25 04/22/93 20:30 04/22/93 19:06 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30		04/07/93	19:00	96.33				
04/09/93 20:00 04/10/93 10:55 04/11/93 20:05 04/11/93 20:05 04/15/93 20:05 04/16/93 20:05 04/16/93 10:14 04/19/93 10:14 04/21/93 10:14 04/22/93 10:14 04/22/93 10:14 04/22/93 10:15 04/22/93 10:15 04/22/93 10:25 04/26/93 20:00 04/22/93 20:00 04/22/93 20:00 04/22/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00		04/08/93	19:15	122.58				
04/10/93 18:55 04/12/93 20:45 04/15/93 20:00 04/15/93 20:00 04/15/93 20:00 04/16/93 14:45 04/16/93 18:14 04/16/93 18:14 04/20/93 18:14 04/20/93 18:53 04/22/93 18:53 04/22/93 20:00 04/22/93 20:00 04/22/93 20:00 04/22/93 20:00 04/22/93 20:00 04/22/93 20:00 04/22/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00 05/02/93 20:00		04/09/93	20:00 20:00	147.33				
04/12/93 20:45 04/13/93 20:05 04/14/93 20:00 04/14/93 20:00 04/16/93 14:45 04/19/93 14:45 04/19/93 18:14 04/22/93 18:14 04/22/93 18:50 04/22/93 18:50 04/22/93 18:50 04/22/93 18:50 04/22/93 18:50 04/22/93 18:35 04/26/93 20:30 04/26/93 18:35 04/26/93 18:35 04/26/93 18:35 04/26/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30	1	04/10/93	19:55	171.25				
04/13/93 20:00 04/14/93 20:05 04/16/93 20:25 04/16/93 14:45 04/16/93 14:45 04/16/93 14:45 04/16/93 16:14 04/16/93 16:14 04/16/93 16:14 04/16/93 16:50 04/22/93 16:50 04/22/93 20:00 04/26/93 20:00 04/26/93 20:00 04/26/93 16:35 04/26/93 16:35 04/26/93 16:35 04/26/93 16:35 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30 05/02/93 20:30	2.6	04/12/93	20:45	220.08				
20.25 21.00 23.12 23.12 20.12 20.12 20.12 20.13	5	04/13/93	20.00	243.33				
2100 14.45 19.14 19.14 19.15 20.00 2		04/14/93	20:25	267.75				
23:20 23:20 16:14 16:50 16:50 20:00 20:00 20:50 20:00 20:30 20 20:30 20:30 20:30 20:30 20:30 20:30 20:30 20:30 20:30 20:30 20:30 20:30 20:30 20 20:30 20:30 20:30 20:30 20:30 20:30		04/15/93	21:00	292.33				
23.20 18:14 18:50 19:53 20:50 20 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20		04/16/93	14:45	310.08				
18:14 18:40 18:50 19:14 19:14 19:05 20:00		04/17/93	23:20	342.67				
18:50 18:50 19:15 20:00		04/16/93	19:14	362.57				
18:50 19:53 20:00		04/19/93	18:40	386.00				
18:53 20:50 20 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20:50 20		04/20/93	18:50	410.17				
2000 2000 2000 2000 2000 2000 2000 200		04/21/93	10:53	434.22				
21:25 20:00 20:50 20:50 20:50 20:50 20:30 20:40		04/22/93	19:14	458.57				
20:00 20:30 20:30 20:30 20:30 20:30 20:30 20:30 20:40 40:40 40 40:40 40 40 40:40 40 40 40 40 40 40 40 40 40 40 40 40 4		04/23/93	21:25	484.75				
20.50 20.50 20.50 20.50 20.00		04/24/93	20:00	507.33				
20:30 20:55 18:35 18:35 20:30 20:30 20:30 20:40 21:00 21:00 21:00 21:00		04/25/93	20:50	532.17				
20.55 18.35 18.35 20.00 20.30 20.40 19.08 21.00 21.00 21.00		04/26/93	20:30	555.83				
18:35 16:35 20:00 20:30 20:30 20:40 21:00 21:00 21:00 21:00		04/27/93	20:55	580.25				
18:35 20:30 20:30 20:30 20:40 19:08 21:00 21:00 21:00 21:00		04/28/93	18:35	601.92				
20:00 20:30 20:30 20:30 119:00 21:00 21:00 21:00 21:00		04/29/93	18:35	625.92				
2030 2030 2030 1908 2230 2130 2134 2107		04/30/93	20:00	651.33				
20:35 20:40 19:08 21:30 21:00 21:44 20:04		05/01/93	20:30	675.83				
20.40 19.08 22.30 21.00 21.44 20.04		05/02/93	20:35	699.92				
19:08 22:30 21:00 21:44 21:07		05/03/93	20:40	724.00				
22.30 21.00 21.44 20.04		05/04/93	19:00	746 47				
21:00 796 21:44 621 20:04 843 21:07 868		05/05/93	22:30	773.83				
21:44 621 20:04 843 21:07 869		05/06/93	21:00	796.33				
20:04 843 21:07 868		05/07/93	21:44	621.07				
21:07		05/06/93	20:04	843.40				
		05/09/93	21:07	868.45				
		05/10/93		891.75				

Ξ

Ξ.

Table B-2 Temperature in Thermowells (Outside Thermowell TW7 in Table B-1) {Continued}

915.50 916.50 917.50 917.23 917.67 917.25	Time
	Maximum Temp.
	20:10
	20:00
1.17 1.17 1.18 1.18 1.18 1.18 1.18 1.18	
5.33 1.42 1.42 1.55 5.33 5.33 5.33 5.33 5.33 5.33 5.33	20:50
1,17 1,193 1,42 1,42 1,42 1,43 1,43 1,43 1,43 1,43 1,43 1,43 1,43	21:00 101
770 183 183 175 175 175 150 152 183 183 183 183 183 183 183 183 183 183	20:50 103
183 5.50 5.33 5.33 5.33 5.33 5.33 5.33 5.3	20:22 105
.33 2.25 2.25 2.33 2.33 2.33 3.67 2.33 3.00 4.63 3.00 3.00 3.00 3.00 3.00 3.00	21:30 108
3.42 5.25 5.33 5.33 5.75 5.33 5.33 3.67 5.83 3.00 8.33 8.33 8.33 8.33 8.33	_
250 1.75 5.33 5.33 5.33 5.33 5.33 5.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	22:05 113
2.25 5.33 5.33 5.75 5.33 5.33 5.33 7.17 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	_
1.75 5.33 5.33 5.75 5.33 5.33 5.33 5.33 5	12:55 117
5.33 5.75 5.75 5.75 5.33 5.33 5.33 5.33	21:25 120
7.50 5.23 5.63 5.63 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60	08:00 121
5.33 5.75 5.33 5.63 5.80 5.80 5.80 5.83 5.83 6.83 6.83 6.83	20:10 122
5.75 3.67 3.67 2.33 7.17 3.00 3.30 5.33 9.83	19:00 125
1.52 9.33 9.64 9.83 9.80 9.83 9.83	20:25 127
533 - 233 -	12:11 129
367 233 233 200 300 233 983	_
233 2.147 2.80 3.00 8.33 9.83	=
2.33 7.17 4.63 3.00 6.33 9.63 9.63	-
7.17 0.80 3.00 8.33 2.33 9.83	-
0.80 4.83 5.00 6.33 9.83	_
4.63 3.00 8.33 9.83	19:26 137
3.00 8.33 2.33 9.83	19:30 135
8.33 2.33 9.83	03:40 140
2,33 9.83	19:00
9.83	19:00
	12:30 14:

Table B-3 Temperature in Excitor Electrodes

Average Temperature	10-Foot 20-Foot Overall		ş	23	19 22	19 22	19 22	19 22	19 21	19 21	17 20	16 20	18 20	16 20	19 21	20 21	22 22	25 23	32 20	37 20. 59	50 20	74 35	82 43		90	104 62	130 67	135 67	140 68	141 . 67	136 81	100	132 68	15.0	25	131 92	133 94	
B4C	19-ft 1-foot	840 021.1																		20.3																		
B 3C		978.3			£1.7															661															1137		1177	
81C 82C	19-ft f-61		l																	20.1																	865 947	,
848 6	10-ft 19								5 5											17.6																		
838		838 1 1280		2			19.3				10.0		17.9					194							289											140 4 134 1		٥
818 628	N-01 N-01	B1B B2B		20		_		6		₹ ,	16.3	- •		. «	. •		•	25.6 24	6	51.9 27.4	m (100 0		₹.	6	.		1350	, wh	•	0			9	•	•	m (
B4A	#- -	130 t	1.000	&	24.4	22.6	21.3	27.6	30.0	33.0	33.9	72.0	27.0	9 6	25.5	0.69	71.6	74.7	77.0	80.4	65.4	2 2	1040	1126	128.7	137.5	086	1720	1797	1788	166 0	168.0	162.6	164 1	158.9	163 5		- 79
B2A B3A	#- I	82A 83A		20	44.0 42.0			56.8 50.4				0 26 0011		124.0								0 66 605						1650 161.0	6.101 2.01			154.6 154.0			155.9 153.4	_		1516 1622
81A 8;	•		433.2	20	55.3										127.0								0001						152.4						_	1504	S.	
Elapsed			ηρ >	8	3.42	9 0.4	8	16.08	17.63	19 83	21.88	24.33	26.33	28.33	30.33	32.33	24.55	38.33	40.33	42.33	44.33	46 33	53 33	56.03	61.33	63.33	20.00	77.33	81.33	65.33	20 YO	101.33	109.33	122 33	131.33	141.08	145 83	
1 1		1	Maximum Temp.	97.91	20.05	20:45	22:40	99	10:30	12:30	14:33	17:00	00.6	2	2300	8 8	3 8	200	00	5	13:00	15:00	22:00	3 2	8	08:00	14:40	25:00	95.00	8 6	2 2	2 2 3	8 8	00.61	8	13:45		

Table B-3 Temperature in Excitor Electrodes (Continued)

Time Maximum Temp> 04/10/93 20:33 171:86 04/11/93 12:42 188:03 04/11/93 22:00 197:39 04/13/93 06:00 229:33 04/14/93 06:00 229:33 04/14/93 06:00 229:33 04/14/93 06:00 252:33		•	1 - B B3A	=-	•								- foot	to-Foot		
Maximum Temp. – 20:33 12:42 22:00 13:15 06:00 06:00 06:00 06:00		::	B3A		E-0	10 - ft	10-ft	10-B	19-h	19-B	19-A	19-4		5	20 - Foot	Overall
Maximum Temp. – 20:33 12:42 22:00 13:15 06:00 06:00 06:00 06:00		B2A	;	B4A	818	828	838	848	91C	82C	830	84C				
20:33 12:42 22:00 22:00 13:15 13:15 06:00 06:00 06:00		1150	464.2	330.1	725.4	1304	1280	1008.1	170	1330	2/8.3	1021.1				
2033 12.42 22.00 13.15 13.15 06.00 05.00 05.00			•	7 397		1403	6 163	125.4	83.7	94.5	116.7	80.2	162	132		130
12:42 22:00 65:00 95:00 95:00		100.5	0.701		5.5	200	132.6	127.1	83.7	95.4	115.3	84.9	163	133		130
22:00 43:15 05:00 05:00 05:00 05:00	- •	6.70	7.60	7.50	2 6	0.621	1213	117.0	72.6	85.1	100.0	75.1	150	123		119
08:00 08:00 08:00 08:00 08:00		0.961	2 2		2.53		127.4	123.2	78.8	1.16	108.1	63.1	159	130		126
8 6 8 8	201	163.7	0.761	107.0	134.7	0.00	132.8	128.4	96.1	95.7	111.9	6.06	165	134		132
0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		0 6 6		132	0 76 1	138.3	134.2	130.2	92.3	97.8	112.2	94.8	168	134		13
8 8		178.4	0.00	176.3	136.3	0.041	136.0	132.9	97.2	103.6	114.5	97.5	172	137		137
	165.6	# 0/ F	1728	182.4	138.7		136.5	137.1	106.5	111.2	115.7	100.5	176	139		Ξ
			174.8	185.2	140.7	141.6	139.9	139.1	116.9	115.1	117.2	103.2	179	0		÷
0000		27.5	170.0	179.1	139.1	138.6	137.1	138.3	112.3	111.6	1142	98.5	* <u>-</u>	138		2
		185.3	178.5	192.4	143.9	141.7	142.0	142.6	127.9	132.6	1362	123.2	¥	143		152
		188.2	180.7	196.2	1468	141.3	143.3	144.9	136.5	1.1	1440	131.5	187	144		156
11:35		188 5	180 7	194.9	1498	141.0	143.4	145.9	144.4	143.2	1459	132.7	187	145		158
00.90		1.89.7	181.7	196.6	151.5	142.0	144.2	147.3	1496	142.2	1499	136.2	20 5	9		2 3
90		1898	182.2	197.4	152.5	7.1.4	145.6	- 70	153.6	148.1	152.7	138.8	90	<u>:</u> :		0 9
00:90		190.3	1828	196.8	154.4	140.8	14.8	148.6	157.1	B 0 7	8 2 6 3 4	139.5	8 5			9
04/25/93 06:00 517.33		193.5	184.6	199.5	159.6	911.0	146.5	c. [6]	9 9 9		200			2 -		-
06:00	3 182.9	192.8	183.7	197.5	6.191	9 1 4 1 6	148.7	152.1	0.0	156.6	1881	151	5	25.		171
		196.4	187.2	5015	0 691	0.75	2.0	133.4	100.0	1 24 7	1691	622	193	156		- 1
08:30	_	197.1	167.4	201.2	173.2	6791	900	1,001	213.4	158.2	1762	161.5	195	159		17
8:80		1993	50	100			158.4	1683	211.1	146.5	1689	157.7	194	164		
0::0		196.4		7001	2001	28.5	162.0	162.4	194.9	135.2	1629	1426	188	167		17
0:3	163.1	200	155.9	173.7		136.5	162.7	157.7	!	130 6	158 5	127.6	170	152	138	1.5
05/02/93 21:00 100:43	7791	2 2 2	50.5	1720	171.2	138.2	1648	159.8	1838	1300	1569	131.7	165	159		5
	-	2013	155.5	175.3	1763	1418	1715	164.3	1946	139 5	168 5	1401	175	163		15
2 50		2139	158.6	177 9	180.3	1436	1762	166.9	201.5	147.7	1783	1452	9	167		-
23.00		233.4	157.1	1790	178.0	1459	180.9	170.3	206 3	1533	1883	149.4	187	691		2:
07:00		252.8	155 5	178.1	177.6	146.3	1815	170.7	206.7	154.5	1904	1494	80	169		2 :
15:50		283.4	158.9	178.1	177.7	1466	1830	1709	207.6	1.661	1953	9 6 7	/61	97		= :
23:05		304.7	158 5	179.1	179.7	1480	1847	172.1	209.3	1716	203 0	151.2	203	<u> </u>		<u> </u>
07:10		326.7	157.9	179.6	1798	1492	186 5	1733	2116	1833	2124	2 661	208	172		- :
15:30		339.7	159.0	179.2	1789	1499	187.4	173.7	211.7	186 8	2175	154.5	211	172		761
22.53	_	351.9	1588	1798	179.0	151.2	1890	174.5	213.5	193.4	224 5	1567	214	173		
00.20		356.9	157.8	1789	177.9	152.4	1892	1748	213.9	1945	227.4	158 7	215	7		26.1
15.25		332 8	156.7	174.6	173	1524	186 5	172.6	2068	185 5	2181	3 5	207	171		
23.00		355.1	157.3	1768	175.7	153.9	190 \$	174.5	212.7	1939	238 7	159.4	213	- 7	201	195
8.2		368	157.7	177.3	176.5	155.7	192.7	1756	2156	1975	237 1	162 5	217	175		138
91.91		3759	158.8	1765	178	1563	193 \$	175.7	217.1	1986	240 7	164	219	175	•	200

Table B-3 Temperature in Excitor Electrodes (Continued)

Hart	F	Elapsed	4:0	₩2	A:A	848	ä	828	838	848	B	B2C	B 3C	B4C		Average	Average Temperature	
1444 920 944 944 944 944 946					-	<u> </u>	4-0	#- # -	¥-01	10-01	#-61	1-61 1-61	19-1	19-A		10 - Foot	20 - Fool	Overall
150		Time	. B	B2A	B3A	B49	818	828	838	848	BIC	B2C	B3C	84C				
162.4 205.6 1591 177.4 176.9 158.1 195.3 177.4 210.2 201.2 246 166.6 222 177 200 162.9 160.0 196.2 177.6 220.5 220.1 247.6 171.4 210.2 210.5 221.5 227.6 150.0 177.1 181.3 200.6 173.6 220.5 221.1 227.6 160.0 247 177.4 277.1 177.1 181.3 200.6 100.2 204.5 277.4 177.4 277.7 177.1 181.3 200.6 100.2 207.8 227.4 177.1 277.8 197.1 197.8 277.4 277.4 274.4 177.1 270.8 277.1 277.4	٥	^-	433.2	1.50	464.2	330.1	725.4	1304	1260	1008.1	1170	1330	976.3	1021.1				1
1844 385	4					;			6 10 1	7,22		6 100	246	158.6	222	177	208	202
1622 1512 1514 176 162 102 104 175 2213 2213 2275 1714 242 179 211 1581 2126 1525 1660 1753 1731 1844 1756 2001 1921 2275 1701 247 175 197 1581 1512 1526 1754 1703 1747 1812 2006 1802 2015 2123 277 1702 2017 213 214 1581 1512 1540 1703 1717 1812 2006 1802 2016 2123 2134 1702 213 187 214 1581 1582 1580 1703 1775 2064 1802 2123 2134 1702 213 187 213 1582 1586 1703 1775 2064 2016 2123 2134 1715 2134 1702 2134 1583 1584 1586 1703 1715 2064 2016 2123 2134 2139 1921 239 193 214 1584 1586 1596 1595 1957 2016 2022 2133 2276 1901 2314 2314 2314 1585 1584 1585 1587 2108 2328 2036 2133 2234 2314 2314 2314 2314 2314 1584 1584 1585 1587 2108 2328 2036 2133 2314		870.50	104	365 8	- 60	• // /	200	1.00.1	0.00		3000	100	0 476		224	174	210	203
166.1 617.6 152.6 152.9 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 177.1 181.3 2.006 179.2 277.2 277.2 277.2 170.2 277.		878.50	162.9	398.3	157.4	6.97	162.9	2	2.06.	0	221.0	204 8	247.0	717	242	179	511	211
1864 1545 1059 1031 1813 2006 1902 2034 2374 244 171 343 184 215 219 2		902.58	162.1	472.6	9 00	0.07	1/3.1	2 4 4 4	7 701	175.0	208.1	1921	227.6	18081	247	175	161	207
18.7 18.6 17.7 192		926.33	1.001	012.0	155.4	6 0 0	177		200	179.6	209.4	237.4	244	171	343	184	215	247
155 (156) 177 (156) 177 (176) 2044 2046 182 (156) 175 (156) 177 (176		930.47	5.0		154.7	5 6 9 1	1747	192.6	200.6	180 2	207.6	262.9	2363	170.6	335	187	519	247
167.2 66.0 6 156.6 170.7 176.2 206.3 212.1 168.4 226.7 168.4 226.7 168.4 226.7 168.4 226.7 168.4 226.7 168.4 226.7 168.4 226.7 168.4 226.7 168.4 226.7 44.2 269.9 179.7 195.8 168.4 226.7 44.2 269.9 168.4 226.7 44.2 269.9 223.7 45.2 269.1 226.7 46.2 269.9 223.7 269.9 223.7 269.9 223.7 269.9 223.7 269.9 277.7 46.2 216.8 130.9 237.7 234.2 237.7 234.2 234.2 237.7 234.2 234.		908 57	65	871.2	1568	1709	177.5	206.4	204.6	1826	212.9	353.1	2438	176.2	340	193	247	260
157.2 659.9 156 169 179.5 184.4 200.4 186.4 227.9 528.1 421.9 182.8 339 198 343 156.6 679.6 154.9 165.7 165.7 226.6 223.7 445.2 850.9 201.1 280 202. 223.7 445.2 850.9 201.1 280 202. 223.7 445.2 850.9 201.1 280 202. 223.7 445.2 850.9 201.1 280 202. 223.7 465.2 850.9 201.1 280 202.2 216.9 462.7 206.0 223.7 462.7 223.7 462.7 224.7 462.7 224.7 462.7 224.7 475.2 196.7 477.7 317.		1022.88	161.2	9098	156.6	170.7	178.2	206.3	212.1	183.8	216.9	775.5	257.6	1.00.1	337	195	358	297
156 679 6 154 9 160 6 167 9 195.7 256 1 168 1 226 7 445.2 850 9 201.1 286 202 2 431 156 155 158 7 158 4 155 5 158 7 158 6 158 7 158 7 158 6 158 7 158 7 158 7 158 7 158 7 158 7 158 7 158 7 158 7 158 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 7 158 8 200 8 277 8 270 8 277 7 270 8 270 8 277 8 270 8 277 8 270 8 277 8 270 8 277 8 270 8 270 8 270 8 270 8 270 8 <		1062.33	167.2	629.9	158	169	1795	194.4	230.4	186.4	227.9	528.1	4219	192.8	339	198	343	293
156 651 B 156 d 155 B 156 F 210 B 225 B 223 F 155 B 157 B 1		1086 83	158.6	6796	1549	160 6	167.9	195.7	256.1	188.1	226.7	445.2	820.9	201.1	288	202	431	307
152.3 614.6 154.6 153.6 223.6 376.6 202.2 218.9 1330 234		1110.17	156	6518	158.4	155 5	158 7	210.8	325.8	203.6	223.7				260	225	224	249
147.5 148.6 145.1 147.3 208.6 277.7 195.6 211.6 237 234 207 224 157.3 636.5 147 142.5 145.2 233.3 596.8 209.5 215.7 834.2 237 234 207 277 157.3 636.5 147 147.2 156.6 323.3 596.8 296.2 891.2 337 277 319 427 183.1 156.5 152.2 172.2 984.4 862.4 275.8 244.2 856.2 891.2 337 485 596 597.2 337 485 556 577 556 557 556 579 556 579 556 579 556 579 556 579 556 579 556 579 556 576 576 576 576 576 576 576 576 556 577 570 577 411 803 771 571 571<		1118 47	152.3	614.8	154	151.6	153.0	223.6	3766	202.2	218.9	1330			268	239	11	358
157.3 636.5 147 142.5 145.2 323.3 596.8 209.5 215.7 834.5 230.6 271 319 427 164.7 600.2 145.4 147.3 156.6 976.3 254 230.8 7194 976.3 334.2 337 552 566 171.5 983.4 163.5 173.2 984.4 275.8 244.2 656.2 891.2 337 357 566 579 566 171.5 983.4 168.7 168.8 27.1 273.8 895.7 847.6 551.2 314.3 337 485 559 776 220.8 176 477 865 563 776 220.8 176 177 865 563 776 550 220.8 176 485 563 776 220 220.8 176 177 860 860 560 580 580 776 480 580 580 580 580 580		1128.75	147.5	494.5	148.6	145.1	147.3	208 6	277.7	1958	211.6			237	234	201	224	221
1847 680.2 154 147.3 156 6 820 976.3 254 230.8 719.4 876.3 334.2 337 552 566 171.5 983.4 163.5 152.2 172.2 984.4 882.4 275.8 244.2 865.2 339.5 366 579 596 171.5 983.4 168.7 172.1 860.6 272.1 170.0 867.0 334.6 367.0 379 596 220.6 1150.0 206.0 152.0 496.5 1170.0 161.0 555.0 295.1 437 602 771 227.4 1055.2 206.1 155.0 1174.0 1236.0 284.7 1170.0 861.9 555.0 295.1 437 602 771 227.4 1055.2 216.6 1174.0 1236.0 296.0 474.7 130.5 141 80.3 771 227.4 1055.2 216.8 950.0 474.7 140.6 440.0 </td <td></td> <td>1158 42</td> <td>157.3</td> <td>636.5</td> <td>147</td> <td>142.5</td> <td>145.2</td> <td>323.3</td> <td>5968</td> <td>209.5</td> <td>2157</td> <td></td> <td>834 5</td> <td>230 6</td> <td>271</td> <td>919</td> <td>451</td> <td>331</td>		1158 42	157.3	636.5	147	142.5	145.2	323.3	5968	209.5	2157		834 5	230 6	271	919	451	331
17.5 963.4 163.5 172.2 984.4 862.4 275.6 244.2 656.2 891.2 399.5 366 579 596 163.1 163.6 146.3 213.1 660.1 572.1 273.6 895.7 847.6 551.2 314.3 337 465 556 212.6 912.9 166.7 150.8 224.7 1069.8 647.2 893.9 346.6 563 776 227.4 150.5 226.6 150.9 134.0 1119.0 224.7 1070.0 861.8 555.0 295.1 437 802 776 227.4 1055.2 206.1 155.9 1174.0 1136.0 286.7 1170.0 861.8 555.0 295.1 411 803 701 227.4 1055.2 206.1 155.9 1220.0 295.0 507.0 275.7 411 803 701 228.1 155.9 165.9 1220.0 206.1 406.7 40		118192	1847	880.2	154	147.3	1586	950	976.3	254	230.8	719.4	9783	334.2	337	552	566	485
183.1 667.8 168.8 148.3 213.1 680.1 572.1 273.8 695.7 647.6 551.2 314.3 337 465 652 212.8 912.9 166.7 150.5 329.7 796.3 840.6 284.7 1069.8 647.2 839 346.6 366 563 776 226.6 1150.0 152.0 496.5 1174.0 1174.0 861.9 555.0 294.1 437 437 437 402 771 227.4 1055.2 219.8 156.9 726.0 1174.0 296.1 995.0 576.7 411 803 701 227.4 1055.2 219.8 156.9 165.3 1220.0 306.1 865.2 806.7 483.0 57.8 440 651 686 298.1 229.3 166.3 165.0 1220.0 306.1 865.6 439.5 87.8 440 651 696 298.1 229.3 166.3		1208 42	171.5	983.4	163.5	152.2	1722	984.4	882.4	275.8	2442	858 2	891.2	399.5	368	579	598	515
212.6 912.9 166.7 150.5 329.7 796.3 840.6 284.7 1069.8 847.2 839 346.6 366 563 776 230.6 1150.0 206.0 152.0 496.5 1034.0 1119.0 284.7 1170.0 861.9 555.0 225.1 437 802 721 227.4 1055.2 208.1 151.6 1174.0 1230.0 280.4 995.0 507.0 275.7 411 803 701 227.4 1055.2 229.3 165.3 165.3 1220.0 308.1 885.2 806.7 483.0 578.6 440 651 688 299.1 220.3 165.3 165.3 165.3 1220.0 308.1 885.2 806.7 483.0 578.6 440 651 688 299.1 220.3 166.3 155.0 1220.0 308.1 805.0 136.6 439.5 878 430 594 593 594 593		1210 25	183.1	847.8	1688	148.3	213.1	660.1	572.1	273.8	895.7	8476	551.2	314.3	337	485	652	491
236.6 1150.0 206.0 152.0 496.5 1304.0 1119.0 284.7 1170.0 861.9 555.0 295.1 437 802 721 237.4 1055.2 208.1 151.5 1174.0 1238.0 222.5 1028.0 995.0 507.0 275.7 411 803 701 244.9 895.2 229.0 473.7 473.5 411 803 701 805 606 430 701 803 701 805 805 805 430 878.6 440 651 606 606 430 701 803 701 803 701 805 805 803 701 803		1254 47	212.8	912.9	186.7	150 5	329 7	796.3	840.6	284.7	1069.8	847.2	839	346.6	366	583	776	568
227.4 1055.2 208.1 151.5 517.6 1174.0 1238.0 282.5 1028.0 995.0 507.0 275.7 411 803 701 244.9 895.2 219.6 156.9 1280.0 290.4 997.2 950.0 474.7 330.5 379 822 686 433.2 926.0 229.5 165.3 129.5 856.9 1220.0 302.8 468.6 439.5 873.6 232 235 594 238.1 229.3 169.3 165.0 120.0 302.8 468.6 439.5 873.6 232 235 594 238.1 468.6 439.5 873.6 273 272 502 502 502 502 502 502 502 502 502 502 502 502 502 502 503 503 503 503 503 503 503 503 503 503 503 503 503 503 5		1278.25	236.6	1150.0	208.0	152.0	498.5	1304 0	1119.0	284.7	1170.0	861.9	555.0	295.1	437	805	721	653
2449 6952 2198 156.9 725.4 993.3 1280.0 290.4 997.2 950.0 474.7 330.5 379 822 686 433.2 928.0 222.5 165.3 219.5 856.9 1220.0 308.1 865.2 806.7 483.0 578.6 440 651 608 298.1 229.1 169.3 166.3 302.8 468.6 439.5 873.6 232 235 594 238.1 468.6 439.5 873.6 237 235 594 258.1 250.7 178.4 155.0 1120.0 605.6 996.0 328.2 337 505.3 571 502 248.0 468.7 248.7 468.6 439.5 679.6 570.0 571 502 572 502 502 502 502 502 502 502 502 502 502 502 502 502 502 502 502 502 <		1286.35	227.4	1055.2	208.1	151 5	517.6	11740	12380	282.5	1028 0	9950	507.0	2757	Ę	803	201	638
4312 928.0 222.5 165.3 219.5 856.9 1220.0 308.1 885.2 806.7 483.0 578.8 440 651 608 298.1 229.3 169.3 166.3 302.8 302.8 468.6 439.5 873.6 232 235 594 238.1 223.7 178.4 155.0 120.0 369.6 363.1 405.8 637.9 213 272 502 251.1 895.7 218.3 155.0 1120.0 605.6 996.0 328.2 396.9 387.1 56.7 59.3 248.0 241.1 330.1 154.0 1008.1 1008.1 34.7 194.6 356 371		1310 43	244.9	895.2	2198	156.9	725 4	993.3	12800	290.4	997.2	9500	4747	330 5	379	822	989	630
296.1 229.3 169.3 166.3 302.8 468.6 439.5 873.6 232 235 594 238.1 223.7 178.4 155.0 388.6 603.0 363.1 405.8 637.9 213 272 502 251.1 895.7 218.3 155.0 1120.0 605.6 996.0 328.2 367.9 237 553 251.1 895.7 218.3 155.0 1120.0 1008.1 328.2 337.7 194.6 356 376 271 248.0 464.2 121.8 630.0 347.7 194.6 356 376 271		88 7661	433.2	9280	232 5	165.3	2195	856.9	1220.0	308.1	885.2	806.7	4830	5788	40	651	688	593
236.1 223.7 178.4 155.0 368.6 603.0 363.1 405.6 637.9 213 272 502 251.1 695.7 218.3 181.8 155.0 1120.0 605.6 996.0 378.2 396.9 509.0 387 627 563 218.2 241.1 330.1 154.9 1008.1 36.4 1021.1 264 562 873 224.0 34.0 34.7 194.6 356 376 271		1358.87	2081	1	229.3	169.3	1663			302 8		468.6	439 5	8736	232	235	594	368
251.1 695.7 218.3 181.8 155.0 1120.0 605.6 996.0 328.2 396.9 609.0 38.7 62.7 58.3 2198 241.1 330.1 154.9 1008.1 324.6 1021.1 264 562 673 246 347.7 194.6 356 376 271		130.00	238 1		223.7	178.4	1550			388 6	603 0	363.1	4058	637.9	213	272	205	355
2198 2411 3301 1549 1008.1 3246 1021.1 264 562 673 248 246 356 376 271		1404.33	2511	895.7	218.3	181.8	1550	1120.0		605 6	0.966	328 2	396 9	0 609	387	627	583	523
2460 464.2 121.8 630.0 347.7 194.6 356 376 271		1429 17	2010		241.1	330 1	154.9			1008.1		324 6		1021.1	264	582	673	-
		1450 45	0.00		464.2	!	121.8		630.0			347.7		1946	356	376	271	33

Ξ

Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) Table B-4

	C08	1.08	210	21 1	21 1	213	210	9 02	210	- 12	213	210	8 0 2	20 3	20 5	50 0	210	210	210	210	213	218	21.5	7 12	218	218	215	22.1	22.2	ر 17	27.6	17.1	27.6	
	C40	31.0	21.0	210	21.0	22 0	21.0	21 6	21.7	21.7	218	21.7	21.6	213	213	\$ 12	21.7	21 8	217	217	8 1.	218	21 7	21 2	21.7	218	<u>.</u>	218	51.0	211	21	21 \$	2 0	
	C4C	40 4	21.0	21 0	21.8	21.8	6.15	21.8		21.0	5 1 9	21.8	21 0	21 8	213	21.4	217	217	21.0	21 B	21 8	31 B	21.7	21 8	.	217	21 7	21.7	21 7	51.0	3 1.	21 8	7 1 2	
	C48	. 66 3	101	20.0	20 0	1.02	200	10.7	10.7	200	20 0	0 0	•	10 2	•	20 1	200	200	200	201	50 4	20 B	208	20 7	50 0	210	20 6	21 6	21 0	5 - 2	72 1	220	22 \$	
	CAA	92.1	18.6	9 01	0	20 1	20 3	21.1	23.7	25.0	27.1	5 1 0	29 8	20 0	9	33.1	34 1	35.1	33.1	36 0	37.2	36.0	38 8	30 4	40 2	=	=	432	#	;	404	40	47.3	
	C3D	32.7	21.0	21.8	21.9	21.0	22.0	21.7	21.7	21.8	21.8	1	21.6	9 1 8	215	21 0	21.8	217	21.8	21.9	21 0	21 9	21.7	21 8	218	21	21 0	217	217	218	218	217	2.0	
	င်ဒင	92.0	21.7	21.7	21.1	21.8	21.9	21.0	21.5	21.0	21.7	21.6	21.0	21.5	21.3	514	21.6	21 8	21.7	218	2.	21 0	21 8	21.7	21.7	21 7	51.6	21 0	21 8	51.9	218	21.7	21 6	
	238	98.5	19.8	•		200	20.0		9	0.0	0 0	10.0	10.1	102	10.3	200	•	10 0		0	202	20 4	\$ 02	20 2	20 6	50 8	20 4	212	212	7 7	21 0	21 5	2.	
	C3A	96.3	18.4	=	18 2	5	10.7	20.1	21.7	23 2	23 9	24.4	24 9	25.3	26 5	27.9	28 9	29 9	30 4	- :	32.3	33.1	340	3, 6	35.4	36 1	96	37 6	38.4	38.0	401	9 0 7	:	
	22	91.0	21.6	21.0	21.0	22.0	22.0	21.0	21.7	21.0	21 0	51.0	21.6	21 4	21 \$	21 0	21 8	21.8	2: 8	21 9	218	51.0	5 1 8	21 7	21 8	218	21 5	217	217		21 6	21 8	21 0	
	CZC	46.7	21.6	21.7	21.0	21.7	21.0	21.5	21.5	21.6	21.7	21.6	21.6	21.4	21.2	21.4	21.6	21.5	21.6	21.7	21.7	21 8	21.5	21 0	21 7	218	213	21 5	21 5	217	21 6	21 6	21 5	
	C28	4.7	<u> </u>	10 2	10 2	19.2	10.2	18.7	=	19.2	19.2	. 0.	=		1.5	10.4	103	10.2	- 01	101	10.4	10 5	10.5	10 4	103	2	18 0	19 5	101	10	197	101	5 0 2	
	CZA	82.0	3	:	16.0	=======================================	:	18.7	19.5	20 5	20.7	20.8	20.0	20 9	21.0	22 0	23.5	23.8	24.2	24 5	25 5	26 3	26 \$	27 3	27 8	28 5	28 1	29 5	30 0	30 3	30 0	30 8	9 6	
	5	42.6	21.5	21.7	21.7	21.8	21.4	2.3	21.5	21.7	21.7	21.5	21.5	20.0	21.0	21.5	21.6	21.5	21.5	21.4	21.7	21 8	21.5	21 \$	21.5	21 6	210	21 0	21.5	21.5	216	212	213	
	5	7	=	10.3	19.2			=	=	=	10.2	=	1.0	=	18.5	=	180	•	:	190	19 2	19 2	103	10 2	19 2	-		10 2	•	19.2	10 2		•	
	000	30.5	2	22.1	22.0	22.1	21 0	917	21.7	21.9	21.0	21.0	21.7	21.2	213	21.0	21.9	21.6	21.7	21.7	210	21.9	218	217	218	218	21.3	218	21.7	21.7	218	21.5	21.5	
	TW70	21.7	21.0	21.0	22 0	22.0	22.0	21.0	21.7	21.7	21 8	21.8	21.7	21.4	21.4	21.5	21.7	21.7	21 8	21.7	21 8	2: 8	21 8	21.7	217	21.7	21.4	210	218	217	21.	217	6 21.0	
	TW7C	38.7	ءَ	21.7	21.8	21.7	21.0	21.5	21.6	216	21.6	21 6	21.5	7 12	21.3	213	21 5	21.6	217	21.7	217	2.	21.5	216	21.0	21 6	216	215	215	1 21.7	216	21.6	21.0	
	TW78	95 0	1 5	=	=	:	-	19.2	=	10.3	10.7	10.3	19 2	=	11.7	5.0	103	19.2	10.2	102	103	10.1	•	10.1	10.4	-		•	103	103	0 0		10:	
	A4D		°	21.8	22.0	22.0	22 0	21.7	21.	21.0	22.0	21.0	218	21.5	21.6	21.7	21.1	21.6	21	21.9	22.0	2 2	7	2 2	2 -	3 211	1.2	1 21	2 21	- T	2	7	3 21.	
	¥¢	1	ءً	22 0	22.0	22.1	22.1	2	21.0	22.0	22.0	22 0	22.0	21.1	21.7	21.1	5 22 1	1 22 (. 22	1 22.1	22	22	22	22	25	22	22	22	22	22	22	22	. 22	
	A48	1	=	=	=		18.7		10 5	10.1	10.5	18.	103	•	192	10.1	=	105	197	10.	0 0 0	0 02 1	7 202	0 203	1 20 4	2 20 5	20 5	8 207	8 20 8	1 21.2	1 21.4	4 21.5	1 21.8	
	¥\$¥	1			10.1	•	:	20 5	12.1	24.8	0 26.0	1.72	28.1	5 290	30 8	32.8	0 34.3	1 35.7	38.	38.1	9.66 0	41.4	9 42 7	*	9 45.1	0 462	9 46 8	1 48 6	100	50 1	1.12	51.4	.7 52.1	
	A30	1			2	1 22 1	1 22.1	7 216	9 21 9	9 22 0	0 22 0	0 219	0 21.0	8 215	21.6		0 219	7	1 218	0 219	2 22 0	2 22 0	2 21.9	1 218	1 219	3 210	0 21.6	2 218	1 21.8	3 216	3 21.8	0 216	.1 21.7	
	B A3C	i	5	0 22 0				21.7	8 21.9	21.0	9 22 0	1 22.0	91.0		5 21.6		0 22 0	9 22 0	9 22.1	1 22.0	2 22 2	2 22 2	2 22 2	4 22 1	4 22.1	20 5 22 3	4 22 0	20.7 22.2	20 8 22.1	21 0 22 3	21.1 22.3			
	A38	1	•					100		101	10 9	10 1	:		25.0 18.5		27.2 19.9	10.0	28.5 19.9	29.1 20 1		31.2 20.2	32.0 20.2	32 8 20.4	33 6 20 4	34 \$ 20	34 4 20 4	36 0 20	36 8 20		38 4 21			
	A3A	1						21.5 19.7	21.8 21.1	22.0 22.4			21.8 23 8				22.0 27	21.8 27.8		_		210 31	210 32	21 8 32	21 9 33	22 0 34	214 34	22 0 38	219 38	21 0 37	22 0 38			
	A28 A2C	1								18.6 22								10 5 21		18 6 21		10 0 21		19.8 21	19 8 21	19 8 22	10 4. 21	19 0 27						
	424	1								20.0								25 6 11		267 11		28.4 11		29 8 16	30 4 11	31 1 11	31.1 16	32 2 11						
,		1																						13.3	87.3	01.3	653 3	10.0						
	u	=				_																							-	_				
	1																							3 04 00	3 08 00	3 12 00	00 91							
	ć				04/04/04	04/04/93		04/04/93	04/04/93	04/04/93	E0/20/40	04/05/93	04/05/83	04/04/03	04/05/83	04/05/83	04/06/93	04/06/93	04/06/93	04/06/93	04/00/93	04/06/93	04/07/93	04/01/93	04/07/93	04/07/93	04/01/93	04/07/93	04/08/93	04/08/93	04/06/93	04/08/93	04/06/93	
			131																															

Ξ

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

C68	-	1:	212	238	23 7	24 0	24 4	24.4	24.0	23.4	25.7	52 5	- 58	20 G	27.5	270	28 4	28 7	202	200	30 0	30 \$	3.0	-	-	33.0	330		3.8		•	35.1	35 7	<u>.</u>	
ŭ 0 1 0		1	21.12	2				_		_		en .			•	•			_		21 0	5 T 0	21 7	217		21 5		210			218	21.8	21.0	5.0	
	ļ	1.	_	N 0,		~	_						_	~		~					22 8			22 9		22 0				232	23 3	233	23 5	23 \$	
9 0		1.	~	•									_	•	•	_	•	_	•	•	35.5	_						e	0 =	÷ 7	121	- 5	-	4.7	
A C48	- 98.3		•			-		47	_			.	~	_	•	~			•	•	20.4		~	80 8	2 09	2 1 2	eo 	62 4	9 Z B	0 2 0	63.1	63 5	0 7 0	-	
. 4	.7 92		\$	8	7.		•		•					21.6			-				217			_		•		22 0		22 0	212	51.9	22 0	22 0	
00 02	0 32.7		2	21.0 21	21.7		22.1 21	21.8 21	21.5 21					21.0 2			~				33 2	22 6 .	₩.	vn	_	•		22 0	55 9	23 0	230	1 62	23.1	232	
38 C3C	5 52	ľ	_		•	~	23 3 23	23 6 2	24.4 2													30.6			_	32 6	33 \$	34.0	34.6	135 1	35.4	36.3	37.0	37.6	
.A C38	30 0		-	43 9 22	440 22	••	45.2 2:	•				~		502 2							34.5	34.7	55.4	•	0			1 95		28 0	2 6 5	80 65	90 5	909	
C3A			•		-		_							\$		217 5		_	•	•	218		21.8		o	•				21.0	21.7	21.0	22 0	21 0	
C20	91.0	- 1	7	21.0	7 21.8	21.8	9 21.8	.6 21.	.6 21.			_		21.7 21		22.0 2					22.2	22 4 2	222	~	22 5 2	_	•	m	.	5 0	22 4	22 5	22.7	22 7	
020 80	ŀ	ı	~	3 21.8	3 21.7	.4 21.8	.1 21.8	3 21.6	9 21.0			21.3 21		21.3 21		22.3 21	•			22 7 2:	23 8 2	236 2	230 2	240 2							257 2	28 4 .	. 28 7		
C28	}	١	0 20	.02	6 20.3	20.4	7 20.1	4 20	02 /	-	36 5 21		36 4 21	37.1 21		36 9 27	39.1 22.	39 1 22	39 3 22	30 4 2	40 9 2	409 2	41.1	411	411 2			42 6 2	~	42.0 2	42.6	5 5 5	0	-	
C C2A			7. 33	.7 33.	. 33	21.6 33	21.4 33.7	21.2 34	21.7 35.7	21.9 38.	21.6 36	21.5 36.	21.0 30	21.3 37		21.7 34	21.7 39	215 30	21 5 36	21.4 30	22 0 4(21 0 40	218 4	217 4	21 0 4			22 0 4	21.9 4	22 0 4	216 4	22 0	22 1	22 0	
0.0			.4 21.7	4 21.7	10.4 21.0	10.4 21	10.3 21	10.1	19.5 21	10.7 21	10.7 21	19.6 21	19.8	•	19 0 2	20 1 2	2002	2002	202	2002	20 \$ 2	207 2	207 2	207 2	208 2		2 2 12	213 2	21 4 2	21.5	213		•		
9	ĺ		6 .	10.4		_		21.5 18	21.7 11	21.8 11	11.8.11	•	_	21.4 10		21.7 20	21 8 20	21.6 2	21.7 2	21.8 2	218 2	210 2	217 2	216 2	218 2	215 2	22 0 22	22 0 22	218	219 2	2. 8 . 2		22 0 22	22 0	
9	1		12 1	1 21.6	.12 1.7	12 1	12	•			21.6 21	16 21.	12 9.12	21.5	15 21.		216 2	218 2	219 2	216 2	21.6 2	219 2	21.7 2	216 2	218 2	215 2	216 2	218 2	219 2	218 2	21.6	21.8	21.8	· ·	
7 5	ł		.5 21.	.7 21	21.6 21.0	21.8 21		5 21	3 21.	21.5 21.	21.6 21	21 8 21	22.0 21	215 2	21.4 21	15 21	21 0 2	21.7 2	22.0 2	21 0 2	21.5 2	21.9 2	217 2	218 2	22 0 22	218 2	218 2	22 0 2	22 1 23	22 1 2	219 2	22 0 22	22 0 %	, 222	
	1		2 21	6 21.7		19 5 21	19.2 21	12 21	15 21	~			•	e n	100 2	2002	2002	104 2	19.8	100 2	202	206 2	20.5 2	206 2	206 2	20 4 2	210 2	21 1 2	212	213	210 2	31 5	21.8	•	
91				=	21 0 19	21.0 19	21.7 19	21.7 10	21 8 19	21.0 10	21 9 19	21.8 10	21.0 19	21.7 10	21.8	21.0 2	21.0	21.7	21.8	21.9 1	210 2	22 0 22	219 2	218 2	22 1 2	218 2	22 1 2	22 1 2	22.1	22.1	21 8 2	22 0 22	22 1	22 2	
9			22 3 21.0	22.6 22	22.5 21	22 7 21	22 8 21	22 4 21		22 0 22	22.7 2	22 7 2	23 1 2		1	-	22 0 22	230 2	232 2	230 2	22 9 2	2333	23 2 2	232 2	23 5 2	232 2							23 0	-	
	06.6 48.7		22 0 22	22 8 22	22.7 22	23 3 27	23 7 23	23 8 23		24.7 2	25 2 2:	25 8 2:	20 0 2	28.7 22	27.2 22	27.0 22	2 5 82	202	30 0 2	30 5 2	30 8 2	319 2	32 4 2	332 2	339 2	343 2	35 0 2	360 2	36 7	37.5	38.1		39.7	£0 \$	
			53.7 22	54 0 22	55 1 22	55 8 2:	56.1 2:	56 9 2:		58 8 2	59.2	59 6 2	50 4 2	60 2 2	61.1	62.0 2	12.4 2	82.6 2	62.0	615	62 6 3	62 7 3	63.2 3	63.8 3	63.9	647	989	7 90	. 0 4	67.4	97.6	~ 10	-	0 00	
	32.0 112.2			22.0 5	21.0 5:	21 0 5	217 5	21.7 5		220 5	210 5	218 5	219 5	217 6	210	218	•	217	218	218	220	220	21.0	21.0	21.0	21 8	22 1	22 0	22 0	22 0	21.8	22 0	1 22	1 22	
	45 4 33		12 6 22	22 \$ 23	22 3 2	22 5 22	22 4 2	22 3 2		22 8 2	22 0 22	22 6 2	22 8 22	22 8 22	22 8 2	22 7 22	22.7 2	22 8 2	22 0 2	22 7 2	22 8 22	230 2	22.0 2	230 2	23.1. 2	22 9 1	232	232	23.1	23 2	23 2	23 3	23 5		
	A30		21 0 2	21 0 2	22 0 23		22 4 2			23.1 2	23 3 2	235 2	241 2	240 2	24.4 2	248 2	25 1 2	25 5 2	260 2	26 1 2	206 2	27.1	27.3	27.8 3	282	28 5	28.9	29 5	20 0	30.4	900	- 1		32.3	
	A3A 6.0		- 1	42 0 2	_					457 2	46 1 2	40 5 2	466 2	47.1 2	48 4 2	480 2		49 8 2	50 1 2	40 6 2	50 6		51.6	510	\$2.1	52.5	53.5	540	7 75	34	34.6				
•	A2C 42.3		7 7 22								22.3		22.0		22.5				22 2	22.3	22 6	_	22 0	22 5	22.7	22 4	230	22 0	22 8	22 8	22.5	22.0	230	230	
	A28		20.5	•							21.3 2	21 4 2	21.9		22.0 2						23.3					240	24.7	24 8							
	A2A		35.3												386 2						7 17				42.0	42.3	42.0	43.2	+ C+				_	. ~	
	١,		2																		-					215.3	219.3	223 3					243.3	•	
₩.	1.5		l			-																												8	
			20.00											٠												16 8	3 20 00	8 8							
	Oate		04/06/83	60/00/10						04/10/03	04/10/93	04/10/83	04/10/93	04/10/83	04/10/63	04/11/03	04/11/93	04/11/03	04/11/03	04/11/83	04/11/03	04/12/83	04/12/93	04/12/93	04/12/93	04/12/93	04/12/93	04/13/93	04/13/93	04/13/93	04/13/93	04/13/83	04/17/03	04/14/93	
1	,			_	•	•		•	13				_						_																

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

CeB	-	1:	28.4	1 1	37.1	37.6	38 5	39 2	30.6							42 3	42 6	42.8	43.2	440	† 3 6	4.5	13.4	\$ \$	0 04	413	490	410	÷	-	42.5	20	30.0	\$0.4	<u>-</u>	
C40 C	•			•	1.7	0.1	=	•	•							21 8	2 I B	22 0	21 8	210	1 22	22 0	519	210	21 6	210			22 0	21 0	-	22 0	22.2	22 0	1 22	
040	<u>.</u>		•	30	36 2	2 9 6 2	23.7 2	240 2						0	24.3	24 4	24.5	24 5	24 4	24.4	24 8	24 8	24 0	24 8	24 9	24 8	220	23 2	25 4	23.4	253	25 4	25 6	25 7	258	
C48	9	١		3 5 23	5.9 23		18 0 2	407 2	-	, .			, (D			295	_	57.5	28 9	20 0	9 0 2	0 -	1 20	63.2	7	95.2		7 00	9 9	7 20	60	71.2	72 3	114	
C4A C	2	1	-	1.4	1 4	50 47					,		· ·		N		0.50		9.50	2 90	0 7 0	- 99	- 99	- 99	0 90		65.5	9 7		0.7	65.4	620	99 3	5 9	0	
C3D C	7 92		_	0.0	1.0	7 65	1.0	2.0 65			, (•		220 6	22 1	•	•	22.1	520	1 22	22 0	51.0	22 0	22 1	22 0	22 1	22 2	21.9	1 22	2 2 2	22 2	122 1	
C3C	32		~	72 27	1.3 21	1.1	1.2 2.1	3.4 22		, .	,			-	_	23 7 2	23 8 2	240 2	237 2	238	242	2 5 2	24.3	- 2	242	24 1	24.4	7 7	24 8	24 8	24.5	24 6	24 8	24.0	250	
C38 C	5.	ł	12 23	1 23	130.1	23	1.0 23	1.7 23		, (9 6	•	•	16 4	17.0	17.5			203	9	21.7	22 4	52 B	54.3	920	55 7	56 3	295	57 0	58.3	29 0	90 G	803	
C3A C	5		E	ਲ ਵ	¥.	2.0 39	•	*				•			•	920	63 5 4	\$ 69	63.6	7 178	63 1	93.0	-	0.7	0 7 0	9 2 8	63 6	63.5	93 0	63.6	0 7 0	9 7 9	65 2	65 2	65.5	
C2D	8			0.0		1.7 62	9	0 2			•	-	-			22 0 0	22 0 0	22 0	218	220	22 0	22 0 (520	51.9		22 0	22 0	22 0	22 1	22 0	51.0	22 1	22 2	22 0	1 22	
)))	46.7 31		22	1.7 22	12 13	22.7 21	22.8 2	22.8 22				22.6	22.6	•	_	23.1 2	23.1 2	23 2 2	22.0 2	23.1 2	233	23.2	23 4	23 2	23 2	23 3	23 \$		23 7	23 8	23 5	23 7	111	23 8	24 0	
C28 C	~		27.1 22	7.5 22.	27.0 22.	28.1 2:				n (•		N,	31.6	32 3 2	326 2	32.7	33.1	34.1		34.7	35.1	35 2	94.0	35.9	36.3	36 7	37.1	30	37.5	38 6	38 9	39 2	30 0	
C2A C	2.0 84		14.4 23	14 6 27	4.4	19.2	_				_		•	9	•	991	163	191	19.4	47.2		0 07	410	40 6	+ 0 +	47.3	47.5	47.3	47.1	0 9	47.5	•	41 5	:	.	
C1C	42.6 42		22.1 4	22.1 4	•	•	72.4	•		,	_	•	·	22 3	, , , ,	22.2	. 228	22.2	22.0	22 5	\$ 22	22.4	22 \$	72 4	1 22	22 0	22 0	22 7	22.7	22 4	22 4	230	6.22	22 8	22 6	
0 0	7 7 10		22.2	22.3 2	22 2 2	22.4 2			•	_	 N		_	23 0	24.0	240	212	24.2	24.4	24 8	25 1	252	25 4	23.4	25 5	1 92	28 3	20 5	20 7	28.7	28 8	27.5	27.7	27 8	280	
CeD	30.5		22.0 2	22.0 2	21.7					21.0			21.5	22 0	22 0	22 0	21 0	8.15	21.7	22 0	1.22	22.0	9.12	22.0	21.7	22 0	22 1	22 0	21 9	21.7	218	22 2	2 2 2	22 1	1 22	
TW7D	27.7		21.7	21.8	21.6					21.7	21.7	21.5	21 4	21.7	21.7	21.7	21.8	21.8	21 5	21 6	21 8	21.7	21.7	216	21 \$	21 7	9 1 2	21 8	217	217	21 5	21.7	1.2	21.7	51 8	
TW7C TV	38.7		22.2	22.2	22.1	22.0		: :	2 22	22 2	22.2	22 2	1 22	1.22	22 2	22 2	22 4	22 6	222	22 3	\$ 22	22 \$	22 \$	75 4	22 5	22 4	\$ 22	32 8	22.7	3 2 8	22 0	22.7	22.7	22.9	22 9	
T 87WT	92.0		22.0	22 2	22.0	, , ,			9.22	230	23.1	22 8	23.1	23 6	24.0	24.1	24 3	2 4 2	24 5	24 9	252	25 4	25 0	256	25.0	20 4	26 6	569	27.1	270	27.3	280	283	28 4	28 7	
A40 T	33.6		2 22	22.2	2 t B				27.2	17.1	17.1	21 8	21 6	22.2	22 2	222	22 2	22 2	122	22 2	22 3	22.3	22 3	22 2	1 22	22 3	22 3	22 3	22 3	22 1	22 1	22 4	22 5	22 4	72 4	
¥ç	48.7		23.8	23 6	3.1.6				7	24.2	24.2	24.1	240	240	24 4	24 4	24 6	24 5	24 4	24.5	24.7	248	248	24.7	24 9	24.8	250	250	252	252	250	252	25 3	25 4	25 5	
Ş.	9 9 8		41.4	42.1	73.7		? :		45.5	+	47.2	•		48.5	20 6	51.4	52.4	\$3.3	53.7	348	55 8	36 S	57.4	57.9	58 7	50 5	60 1	60 51	61 2	7.10	62.1	6 2 8	63	7	65 3	
44	112.2		28	6					• •	69 7	60	000	69 2	40.7	:	60	69 2	=	•	69	8	60	80	90	4	:	0 69	0 69	68 7	5	0 80	5	70.0	70.5	70 •	
A30	1		0 22	22.1		: :		22	22 1	1.22	22.0	21.7	21.8	22 0	22 2	22.1	22 0	22.1	21 9	22 1	22 2	22.1	22.2	22.1	21 0	22 2	222	22 2	2 2 2	22 1	22.0	22.3	22.3	22 2	22.3	
A30	\$		2	23.5			53 4	23 6	23 6	23 6	23.7	23 \$	23 4	23.7	23 8	23.0	23 0	23.0	23 6	24.0	24	24.1	24.2	24	340	24 2	24.3	24.4	24 5	243	24 2	24 \$	24 0	24 6	24.7	
818	8.8		2		; ;	7	7	•	35.5	36 0	36 5	30	37.1	38 0	38.8	7.00	40	60	404	=	62.5	-	13.7	7	=	453	5	9	47.2	47.5	47.9	7	•	•	50 5	
\$	2		97.0			7.76	27.	200	98	59.1	38	7	58 5	59.3	80 8	90	98		8	9	8 0 8	8	80 2	9	98	20	609	90.3	8	90	60 3				95 0	
•	₹ 2		2	:		7.27	230	23 4	23.3	23.2	23.1	22.7	22.8	23.2	23 5	23.3	23.2	152	2 5 2		2		2	23.5	23.1	23.7	23.7	23 6	23.7	232	23.4			23.7	23.7	
•	2 2		1			27.0	27.4	21.0	28.3	28.5	28 8	28 7	28.0	20.7	30 3	90	5						; ;													
:			١			5	12.	-	•	40.1	46.0	45	45	40.5	;																			Ī		
Elapsed	E .				K 22.	258.3	263.3	207.3	271.3	275.3	270.3	263.3	287.3	201.3	205.3	906							13.		335.3	338.3	343.3	347.3	351.3	355.3	350	163	367.3	371.3	375.3	
	Maximum Temp		8	3 3	8	12:00	8	20.00	8	04.00	80	2:00	16.00	20 00	00	8 8	3 8	3 2	3 8	3 5	8	3 3	3 8	3 2	8	20 00	00	00	00	12 00	90	9000	8 8	8	8	
	ole Ma				04/14/83			3 04/1403	04/15/83	04/15/83	04/15/93	04/15/93	04/15/83										24/11/20	58/11/20		04/11/403	04/16/83	04/18/93	04/16/93	04/19/0		20/01/20	04/19/93	04/19/93	04/19/93	
	1			3	2	5	5	5	2	4	2		7	-			5	3		3		3	3		3	,			5	3		3	5 8	70	3	

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

Ces		118	51 B	52 4	513	52.7	53.1	34 3	54.3	54.2	52 B	34.3	54.4	54.3	95.0	55.7	\$ 8 \$	55.8	35 B	5 / 5	5	99	97.0	57.6	58.9	28.0	9.0	808	1 66	6.1	0 2	•	•
Q.	31.0	21.9	21.0	22.0	22.3	22 2	1.22	22.3	1 22	22 4	22 4	22 8	22.5	22 3	22 1	22 3	22 4	22 4	22 4	22 4	1 22	25 2	22 5	22 5	22 0	22 3	22 3	22 \$	22 7	22 7	\$ 2 8	121	32 4
Ų U	10.4	25.0	25.7	29.7	28 1	28 1	20 4	28 7	26 5	26 5	20 0	298	27.1	27.0	27.1	27.1	27.5	27 6	27.9	27 8	279	27.7	203	28 7	28.7	28 7	286	28 5	2 62	20 4	29 9	29 6	`
87	96 3	73.8	7.	78.1	17.1	77.8	787	70 4	700	10.7	0 0	9		8 0 4	•	7.	82 3	82 2	82 8	7	:	•		85.8	80 2	100	100	87.0	=	*	89 2	2	2 06
47	92.1	6.89	66.7	97.4	97.8	97.4	97.4	0	4 00	87.2	99 1	8 99	7	700	94 3	89 2	90	670	8 / 9	67.2	65 5	1 /9	97.5	- 80	98	80	8 90	60	30	70 6	71.2	7	72 5
C30	32.7	222	22 0	22 0	22 3	22.2	22 3	22 \$	22 2	22.4	22 4	22.5	9 22	22 4	22 3	12 4	7.2	22.4	22 7	22 8	22 3	22 3	22 \$	22 8	22 8	22 \$	22 4	22 \$	22 7	22 7	22 7	22 8	22 5
ပ္သင္	62.0	25.1	24 8	24 0	25 3	25.2	25.4	25.0	25.5	25.4	25 8	23 8	26 2	260	25 9	25 0	203	20 4	20 7	28 7	28 4	26.4	26 9	26 9	27 3	272	27 1	1 12	27.6	27.8	27 8	279	27 6
638	5.80	9 0.4	1	97.7	63 0	63 6	04.3	92.1	65.3	90.5	67.4	0.0	88.5	0 0	90 0	60	20 \$	70 9	71 8	71.8	72.3	73.1	737	740	74.7	74.4	750	75.9	76 5	76	77.1	* 1.4	77.3
C3A	96.3	95.5	93 4	2 99	9	9	99	67.7	90	07.0	66.3	4 9 4	99	85 6	6.4.5	66 3	90	400	67.3	67 1	99	87.2	68 0	808	707	900	60 0	70 0	70 \$	710	212	71.3	70
C2D	31.0	22.1	21.0	122	22 2	22 2	22.2	22.3	22 0	77.4	22.3	22.4	22 5	22 2	22 1	22 3	22 3	22 3	22 0	22 3	22 1	22 2	22 3	22 4	22 B	22 3	22 2	22 5	22 0	22 \$	22 4	22 \$	22 2
CZC	49.7	24.1	23.0	23.9	24.2	24.1	24.3	5.15	242	24.3	24.5	24.0	24 8	24 5	24 5	24 5	24.0	24.0	252	25 1	24 0	250	25 3	25 4	25 8	256	256	25 9	280	1 92	28 1	26 2	25 9
C28	84.7	39.3	30	41.2	41.5	•	42.4	42 0	42.0	\$	÷	450	43 3	45 2	45.7	40 7	47.2	47.0	47.0	47 0	47.9	#	403	49 7	50	49 7	50 4	51.4	51.0	52.1	52 6	25	53.1
C2A	8 2.0	÷.	1.1	20.0	=	8	20 6	20 6	50	8	910	51.7	51.7	513	20 3	512	97 0	82 8	53.3	92 B	5.	52.4	53.0	54 1	55 0	2 4 2	94	35.4	295	28	56.0	56 5	55.5
010	42.0	22.5	22.5	23.1	23.0	230	23.0	23.1	22 0	23.3	23.4	23 (23 4	230	230	23.3	23.5	23 \$	23 6	23 3	11 (2	23 6	23 8	23 8	23.9	23 5	23 5	240	34 1	24 1	24 0	24.1	23
20	*	2	21.2	21.0	28.0	29.2	28.5	58.9	20.7	30.3	30.0	31.0	31.3	31.1	31.2	21.7	32.3	32.4	33.0	32.7	32 9	33 2	33 6	34.2	34.5	34 2	348	35 0	35 0	35	39.0	36 2	36.3
080	30.5	2	21.6	22.2	22.3	22.2	22.1	22.3	22.1	22.4	22.5	22.4	22.3	22 2	22.2	22 4	22.5	22 4	22.3	22.2	22 2	22.4	22 5	22 5	22 4	22.1	22 2	22.4	22 0	22 7	22 5	22 0	22
TW70	27.7	2.7	21.5	21.5	22.0	21.0	21.0	22.1	21.8	21.0	21.0	22.0	21.8	219	21.8	21.6	51.0	21.	21 0	22 0	21 6	21 8	218	21 8	22 0	216	21.7	21.8	22 0	1 22 1	22 0	1 22 0	_
TW7C		ŝ	22.8	22 7	230	23 1	23 1	23 \$	23.3	23.2	23.3	23 \$	23 5	23 4	23 \$	23 2	23 5	23 5	23 6	23 9	23.5	23 \$	23 6	23 9	242	240	23 9	238	1 242	74.4	243	24.5	243
TW 78		2	28.8	29.5	20.0	30.1	30 5	90	30.4	31.3	31.8	32.2	32.4	32.4	32 6	33.2	33	340	343	34.1	34.6	350	356	1 35 9	302	380	36 5	9 370	0 37 6	0 376	38.1	38.1	9 34 2
440		ž	22.3	22.4	22	22 5	22 5	22.0	22.5	1 22 7	22.7	22.	22 8	22 5	22 0	22 0	1 22 1	1 22 7	1 22 0	7 22 6	5 22 8	4 22 7	1 22 8	9 22 6	2 23 0	22 (0 22 7	22	23	23	22	22	5 22
A	1	2	25.4	253	25.7	1257	25 8	28.1	25 8	25 0	20 1	28.	20 4	26 1	26.1	26	58	28	1 26	28	2,	92	\$	2	27	27	27	1 27	8 27	27	12 1	0 27	2 27
746		2	663		17.0	:	. 60	70.2	10.5	71.0	7 71.0	2 72.2	3 72 0	5 732	1 730	3 73 8	8 742	2 749	6 75 (0 760	5 760	4 755	7 766	0 . 77.2	0 24 0	4 783	5 78 5	2 79	7 70	7 . 80.	2	=	
44	-	5	707	3 71.5	1 72.2	11.	12.	\$ 72.6	3 72 4	12.7	5 72.7	5 732	5 733	22	3 71.1	5 723	72	5 732	6 736	4 730	72	73	5 737	5 740	7 746	3 744	4 745	6 752	7 757	6 757	6 76.1	7 786	82
A30	1	5 22.1	3 22 1	1 22 3	1 22.4	1 22.2	22.3	1 22 5	0 22.3	22 4	2 22.5	2 22 5	4 22 5	0 22 3	22.3	1 22 5	5 22.5	22	22	22	4 22 3	5 22 4	7 22 5	1 22 5	9 22.7	7 22 3	7 22 4	9 22 6	1 22 7	2 22.6	2 22	2 22.7	1 22.
A30	1	٦	4 24.5	1 24 6	24 0	5 24 6	1 24 8	25 1	2 24 0	7 24 0	5 25 2	2 25 2	7 254	9 250	2 25 2	1 25 1	0 25 5	0 25.5	1 25.7	0 25 6	3 25 4	7 25 5	6 25 7	1 25 8	7 25 0	1 25 7	2 25 7	0 25 9	7 26 1	1 262	5 26 2	9 26.2	4 20 1
828	1	910	91.4	92 1	3 52 0	5 53 5	7 54.1	54.9	4 55 2	2 55.7	1 56 5	2 57.2	1 57 7	3 57.8	2 58 2	0 50	2 59 6	2 600	3 60 6	0 10	.0 01.3	5 61.7	1 62	5 63 1	63 6 63 7	63 3 63 8	636 642	0 69 0 19	647 657	99 8 10	680 665	1 00 9	
43	1	=	5 62.0	1 62.0	23 0 033	23 0 03 5	24.0 63.7	24.1 63.0	23.0 63.4	243 64.2	24.4 64.1	244 64.2	24.3 64.1	23.8 63.3	24 0 82.2	24.3 63.0	24 6 83 2	24 5 63 2	24 8 63 3	24.3 62.9	24.3 61.8	24 6 62	24.7 63.1	248 635	24 8 63	24 3 63	24 5 63	_	25.1 04	250 64	25 0 65	21.1 65 1	24 9 64
A28 A2G	1	37.8 23.4	38.3 23.5	30 1 24 1	30 5 23	30 0 23	40.4 24	40.9 24	40 9 23	41.7 24	42.3 24	42.8 24	43.1 24	430 23	43.2 24	44.1 24	44.7 24	45 1 24	45 7 24	45 5 24	45 7 20	46 4 24	47.1 24	47.4 20	480 20	47.8 24	48 2 24	49 0 25	19 6 2:	49.9 2	503 2	50 0 2	20 8 05
¥ 464	1	48.4	10 9 94	40 2 30	48.4 36	40 5 34	49.7 40	50.0	9.04	50.3 41	50 2 43	50 3 42	502 4	10.0	40 0 4	502 4	50.5	50 \$ 4	50 8 4	50.5	502	50 5 40	51.0 4	51.3	51.4 41	513 4	51.4	51.8	52.2	53 5	52.7 5	52 7 5	52.7 5
	i i	378.3		387.3 4	301.3	395.3 4	308.3 4	403.3	407.3	411.3 &	4153 &	418.3 &	423.3 5	427.3 4	431.3	4353 &	438.3 5	443.3 5	447.3 5	451.3 5	455.3 5	459.3 \$	463.3 5	467.3 5	471.3 \$	475.3 5	4783 5	463.3 5	487.3 5	401.3	105.3 5	100 3 5	•
	♣	ļ						_	-													-	-	-							•	•	8
į	Maulmo	200					00:00		16.00		8	04:00	8	12.00	•	20:00	8	8.7	80	12.80	5 8	20 00	00 00	94 00	80	12 00	16.00	20 00	8	8	80	12 00	00 61
å		04/19/93	04/16/93	04/19/83	04/20/83	04/20/83		304/20/83	04/20/83	04/20/83	04/21/93	04/21/83	04/21/83	04/21/93	04/21/93	04/21/93	. 04/22/93	04/22/83	04/23/93	04/25/93	04/22/93	04/25/93	04/23/93	04/23/93	04/23/93	04/23/93	04/23/93	04/23/93	04/24/93	04/24/93	04/24/03	04/24/93	04/24/93

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

C 68	1 00	• •	62 2	63.2	615	98 0	040	630	95.4	0 7 0		0 7 0	1 59	2 99	9 2 8	1 90	69 7	8 60	2 99	0 99	8 60	1 /9	87.2	954	9 / 9	0 80	• 40	0 69	69 2	8 7 8	2 69	8 / 8	0 40
C4D C	31.9	2.6	22.0	0.22	22 9	22 7	22.7	22 0	23 2	23 1	23 1	230	22 7	22 9	230	23.3	23 3	23.2	212	23 3	23.3	233	23.4	23 \$	23 5	236	23 6	23 5	23.4	23.7	23 6	23 5	23 5
C4C C	49.4 3	29.5	30 0	30 2 3	00.0	906	900	• 00	31.2	31.4	21.7	916	31.7	31.7	32.2	97.6	32.0	330	33.0	33 3	33 6	33.0	2	34.3	;	34.6	350	35.1	35 2	35.7	35.7	33.0	1 96
C 48	96.3	9 0	8.08	5.10		5 00	5	6.20	8 Z	02.7	93.3	033	9 0	6 5 9	04 4	1 50	95 2	95 4	93.4	- 98	1 50	0 90	69 3	93 \$	9.9.2	2 90		2 90	98	3	0 7 0	•	93 0
C4A C	92.1 9	2.4	73.2	73.6	742 8	736	74.3	73.1	750	763	20.5		77.7	78.0	70.0		5	12 2	9 2 8	13 4	13.4	936	3 9		=	:	5 0	7 5	=	16 2	13 \$	1 2 1	2 .
Cab	32.7 0	22.7	22 9 7	22 9 7	22.0 1	22.8	22 0 7	22.0	23.1	23.1	232	230	22.9	22 0	230	23 2	23 2	1 62	23 2	233	23 3	23 3	23.4	23 5	23 6	23 6	23 6	23 5	23.4	23 7	23 5	238	23 0
030	\$2.0 3	7.9 2	28.3 2	28 4 2	28 5 2	28.7	28 6 7	28 8	20 1 2	20 4 ;	20 6 3	29 5	20 2	20 4	30 0	30 3	30 4	30 4	30 3	30.7	31.1	91.3	31.6	31.6	9 .	1 20	32.4	32 \$	32 \$	32.0	32.0	33 0	33 2
C38 C	8 8 9	78.7	701	79.6 2	0.0	0.01	80.3		0.11	82.0	1.2.1	9.20	82.8	• • •			15.2	85.0	9 5 9	8 9	87.0	1 91	80 3	1 50	0 7 0	0 7 0	5 16	98 9	0 86	97.8	5	2	\$ 98
C3A C	66.3	72.2	72.8	73.3	3.6	73.3	7.57	5.0	79.2	=	5 77	9 9 4	77.1	28 5	70 1	8 O S	\$ 0 2	:	8 5 5	•	7 98	89 2	900	9	93.8	7	95.7	0 00	96 3	953	1 50	1 50	95 3
C2D	91.0	12.5	12.7	12.6	22.7	22.5	52.5	22.7	52.0		23.0	22.7	22 5	22.7	122	22 9	22 B	22 8	22 0	230	230	230	230	23 2	2 2 2	232	23 3	212	230	23 3	23.0	1 62	23 2
220	48.7	28.2	26.3	20.3	26.5	26.5	28.4	26.8	28.8	27.1	27.4	1.72	26.0	27.2	27.4	27.7	27.8	27.7	27.0	28 0	28.3	28.3	28.5	28 5	28 6	28 8	29.1	1 82	20,1	20 7	29 7	20 0	30 0
C28	1.7	24.0	54.5	94.9	232	35.3	55 8	999	97.4	57.4	58 2	57.9	58.3	50 3	20 8	60.3	9 09	• 00	1.10	0 1 0	1.29	8 2 9	630	62.7	83 \$	0	•	6 5	65 2	92 8	0 90	4 99	:
VZ2	95.0	98.8	57.0	58 5	98.6	57.7	58 5	58.0	0.00	60.7	• 09	60.7	80.0	61.7	95 0	63 2	63 4	633	63 7	94.1	44	653	65 4	9 5 6	66 2	9 90	8 7 8	2 89	88 \$	2 99	000	66 7	7.78
25	42.6	:	24.4	24.4	24.4	24.2	24.2	24.7	24.0	24.0	9 42	24.0	24.4	24.0	25.0	1 52	23.1	250	25.1	7.52	25.4	25.5	25 6	25 6	25.7	25 9	25.9	25 9	280	26.1	26 0	2 92	20 3
85	7	9 8	37.2	37.5	37.7	37.8	38.1	38.6	39.2	39.5	36.0	30	39 8	404	410	*	9 : 9	4.1	• =	42.5	42.9	432	43 \$	43.4	:	5 5 5	=	-	45 3	45 7	\$	46.2	40 S
080	30.5	872	22.6	22.8	22.7	22 5	22.6	8.22	1 62	230	8.22	22.8	22.7	22 8	22 0	1.02	230	230	230	232	23.1	1.02	23 2	232	23 3	23 4	23 4	233	23 3	23 \$	233	232	23 4
TW7D	27.7	2	2.22	22.2	22.2	21.9	21.0	22 0	22.3	22.3	22.2	27.2	21.0	21 0	1 22	22.2	2 2 2	22 2	22 2	22 3	22 2	22 2	22.3	22.5	22 4	22 3	22 0	22 4	2 2 2	22 8	22 3	22 3	22 2
TW7C T	38.7	~ ~	24 6	24.5	24 8	24.7	24.0	24.0	250	25.1	25 3	25.4	252	25 0	253	25 6	25.7	182	25 0	25.7	260	1 92	2 9 2	2 9 2	263	263	26.6	50 6	26 5	28 8	29 0	29 0	28 6
T 8/W1	92.0	:	30.3	30.6	39 9	39 8	40 2	40.	=	9.	42 0	=	41.0	42.5	131	7.0	1	43.0	43.0	11 5	=	45 -	\$	45 5	45 9	49 2	9 9	•	47.0	÷	=	:	:
A40 1	33.0	្តំ	23.2	23 2	232	22 0	23.1	23 2	23.4	23 4	23 3	23	23.1	23 2	233	23 4	23 4	233	23 4	23 4	23 \$	23 5	23 6	23.7	23.7	23.7	23.8	23 6	23 5	23	23 0	23 6	23 7
¥ç	*	:	111	27.8	87.8	280	98	28 1	28.3	28 5	28.7	7 12	28 5	21.4	28 8	29	28	29.1	29 1	29 3	20 5	20 5	29 7	29 7	208	29	30.1	30.0	300	30 4	30 -	303	30 3
948	90.0	=	1.2	7 28	12.7	82.8	85.9	=	4 2	87.8	920	2	950	93	0 98	86 7	87 0	87.2	87 .0	87.4	87.5	8	11.2	2 88	=	00	50 7	100	10	80.2	8	=	.
444	112.2	:	78.5	78.4	70.4	78 8	70 0	40 7	0	2.13		12 2	13.2		83.0	H .7	0	:	:	10.7		2	0.0	4.10		9 2 8	8	94.3	7.0	2.5	5		9
A30	32.0	2	22.8	22 6	22 8	22.6	22.8	22	22.9	22.9	230	22 8	22 7	22 8	22 8	230	22 9	22	22 0	23 1	23.0	230	23 1	23.2	23.2	23 2	232	23 2	230	232	23.1	23.1	23 2
A 3C	45.4	263	20 5	26 5	26 5	26 5	20 5	20	208	27.1	272	27 0	270	27.2	27.3	27.4	27.5	27.4	27 \$	27.0	27.8	27.8	21.0	28 0	28 0	28 1	28 3	28.3	212	28 5	28.4	28.5	28.8
A38	95.5	.78	88.5	0 00	60		6.00	70 6	71.2	7.3	72.1	69	72.4	73.1	73.7	740	~	75.0	75.4	76.0	763	75.1	77.2	750	113	7.1.7	78.4	78.4	78.8	0	603	90	11.2
43	1	88	85 2	65.5	93.8	70.2	65 3	65 7	65 3	0 5 0	65 8	71.0	65.4	99	67.5	9.0		800	87.4	67.9	97.0	70.3	67.0	73.5	711.7	72.7	71.4	72.0	72.5	70 \$	9	70	70.3
Y 30		ž			252	25.1	25.3	25.7	25.7	25	25 0	23 8	29.5	25 9	20.1	26.1	260	260	20 1	203	20.4	20 4	20	20 5	26 5	26.7	26.0	20	270	270	209	270	27.1
A28	1	1	92.0			52.8	53.3	94.0	9 7 6	55.0	55 4	55 2	55.5	56 2	56.	57.3	57.7	978	2	58 9	59 2	20	009	90.3	60 7	61 2	5	62 0	62.2	95.8	95	63.1	63.7
434	1.	54.2		94.0		53.7	54.5	65 0	55.4	98	87.8	38	56.2	97.0	58 7	59.9	58.0	30 00	30	90 3	61.0	9	-	-	9.1	61.7	63.5	63.3	63 2	62.8	64.2	939	63
Elapsed	Temp.	5.78	911.3	\$15.3	616.3	823.3	527.3	531.3	535.3	536.3	843.3	947.3	551.3	555.3	559 3	563.3	567.3	\$71.3	575.3	576.3	583.3	547.3	501.3	595.3	599.3	603.3	607.3	611.3	0153		623.3	627.3	631.3
į	Maximum Temp	20.02	8	00.00	00.00	12.00	8	20:00	00:00	04:00	00 80	12:00	18:00	20.00	80:00	04:00	80	12:00	16.00	20:00	80.00	94	86	12.00	16.00	20 00	00.00	04.00	08.00	22 80	16.00	20.00	8:08
ć		04/24/03	04/25/03	04/25/03		13	5	04/25/63	04/26/93	04/26/93	04/26/93	04/26/93	04/26/83	04/26/93	04/27/93	04/27/93	04/27/83	04/27/93	04/27/93	04/27/83	04/28/93	04/28/83	04/28/93	04/26/93	04/28/93	04/28/93	04/29/93	04/29/93	04/29/93	04/29/93	04/29/93	04/29/93	04/30/93

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

A2A A2B A2C A3A A3B	04.2 42.3 86.3	64.0 64.0 27.2 70.4 81.6	64.7 27.5	04.7 27.5	930	840 654 27.8 747 629	04.3 65.7 27.7 72.8 63.4	04.2 06.0 27.6 71.9 83.8	64.0 66.1 27.8 70 8 84.0	84.1 656 27.7 699 842	635 656 27.9 70.0 846	62.3 66.6 28.2 698 84.5	83.1 668 284 696 642	61.0 060 285 063 837	01.2 06.9 20.6 07.6 03.2	60 5 66.4 28 2 67.0 80 9	60 6 66 6 284 87.4 82.4	010 608 287 88.7 E30	62.2 67.4 28.9 701 83.5		034 681 291 710 858	62.3 67.7 265 729 658	01.9 67.2 285 759 863	62.7 68.5 290 78.6 87.0	83.7 693 292 807 878	04,3 69.5 291 82.4 88.3	645 898 292 831 888	046 701 291 839 881	65 5 70 3 29 2 84 6 69 1	65.2 70.8 284 856 895	658 712 294 859 898	66 5 71.6 294" 860 90	67.8 719 296 858 90
A3C A3D	45 4 32.0	1 207 23.1 0	29.0 23.4	28 8 23 4	29 0 23 4	29 0 23 3	29 2 23 4	20 3 23 4	29 4 23 4	204 232	20 5 23 4	20 5 23 4	29 9 23 8	20 8 23 8	30 0 23 6	20 0 23 0	30 0 23.7	20 0 23 7	30 4 23.9	30 4 23 9	30 8 24 1	30 2 23 6	30 2 23 6	30 3 23 8	30 8 24 0	30 8 24 0	30 8 24 0	30 8 24.1	310 241	30 8 24 2	310 242	1 311 242	5 31.1 243
A4A A48 A4	2	06 3 62.3 3	16 4 92.8 3	85 9 92.0 3	04.2 02.7 3	64.7 83.1 3	853 835 3	150 834 3	836 92.8 1	83.1 92.6 1	82.7 920 3	82.0 894	1 66 808	786 870	78 854 :	77.2 45.2	77.7 667	7.8 8 87.7	79.6 89.0	100	10.7 804	80 8 903	812 908	82 2 90 9	82 8 91 5	83 1 91 9	110 110	831 920	1.26 1.58	63 6 92 0	84 2 92 3	84.6 92.5	63 6 92.4
C A4D	7 33 0	30 \$ 23.7	30.8 23.8	30 6 24 0	30 0 23 8	30 7 23.8	11.0 23.0	11.2 24.1	11.2 24.0	11.1 23.0	11.3 241	11.1 24.1	11.6 244	31.8 243	318 244	31.7 24.2	31.7 24.3	31.7 24.4	32 2 24 8	32.1 246	32.7 24.7	32.1 24.3	32 0 24 3	31 9 24 5	32 4 247	32.5 248	32 6 24 8	32 8 24 8	32 7 24 9	32 6 250	32 8 24 9	330 250	330 250
TW78 TW7C	62.0 38.7	48.8 28.4	40 1 28.4	40 1 20 3	49.2 28.3	10.4 28.1	40.7 28.3	40 0 28 5	50 0 28 8	49.7 28.5	49.8 28.7	50 1 28 5	50 5 28 8	50 8 28 9	50 8 29 0	50 3 29 0	504 292	50 7 28.8	51.1 203	51.1 29.3	51 2 29 5	50 5 28 4	50 5 29 0	50 9 29 0	514 294	514 296	514 296	51 5 29 8	515 291	51.7 29.4	51.9 29.3	92 0 28	52.3 29.
TW70	27.7	22.3	22.4	22.6	22.7	22.5	22.3	22.5	22 0 22	22.4	22 5	22.4	23.0	22.7	22 0	22 8	22 8	22 8	52.9	22 0	212	8 22	9 22 0	1 22 1	23.1	1 23 1	0 231	1 23 4	233	2 52 1	7 23 4	1 23 4	1 23 4
C80 C18	30.5 64.4	23.4 46.8	23.4 47.3	23 8 47.5	23.5 47.0	23 6 48.0	23.7 48.4	23.7 48.0	23.7 48.0	23.5 40.7	23.7 49.0	238 495	24.1 500	238 502	24.0 50.6	23.8 50.4	23 9 50 4	24.2 50.8	24.4 51.2	24.3 51.4	244 519	24.1 51.2	240 511	244 516	247 522	24 6 52 3	24 0 52 9	248 526	24 8 52 7	25 0 53 1	24 0 53 3	250 536	25 1 53 (
010	42.6	26.4	20.7	26.7	20.0	20.7	26.0	27.0	27.1	56 9	27.0	27.4	27.6	1.12	1 27.0	1 27 4	27.6	1 27.0	1.82	1 282	28.5	27.0	1.75	8 283	2 28 5	3 28 4	\$ 28 \$	8 28 5	7 285	1 28 7	3 28 8	9 29 8	9 28 9
C2A C	1	5 8	0 0 0	0 00	0 89	99.5		6.00	70.0	663	68.2	0.0	99.2	0.00	6.3	66 3	65 6	7 00	8 99	99	98 3	-	1.78	:	101	707	9 0 2	111	211	71.0	72 3	72 8	730
C2B C2	1.7	67.2 30.	67.7 30.	68 1 30.	68.1 31	3	68.7 31	08.0	6 7 3		98.9	69 5 3	808	90 5 3		605 3	88 8 3		704 3			_	_	70.4		3.0	212	71.3	713	72.1	72.3	12 5	72 8
CZC CZD	48.7 31.9	202 4.0	3.8 23.5	3.6 23.4	31,3 23 5	31.2 23.4	31.2 23.4	31.4 23 5	31.5 23.5	31.4 23.4	31.7 23.0	31.5 23	31.0 23 (31.7 23	31.6 23 (31.2 23	31.1 23	31.2 23	31.7 24	31.7 24	32 4 24	31 9 24	23	32 0 24 0	1 0	32 8 24	32 7 24	32 8 24	32.7 24	32 8 24	32 8 24	32 9 24	33.1 24
C3A	96.3	\$		1 83 4	920	0.10	4 91.3	800	5 11.4	•	1.78	9 9 9	9 857	7 845	1 1 1	1 12 4	7 835	8 8 8	1 873	0 17	0 68	0	7 89 1	0	. 2 90 3	12 910	2 80	3 61	3 61	14 92 6	11 930	1.4 93	15
C38	96.5	2 88	93.8	942	95.8	92 4	-	8		10.7	1.7.	87.5	82 9	85.1	14 2	82 6	95 0	15 8	:	0		80 5	•	-		02.7	9 923	3 92 9	9 93 2	9 9 9	0 044	0 95 0	2 956
င္၁င	52.0	š	33.6	33 7	34 0	33.8	34.2	343	34.5	34.3	34.0	34.3	34	34.0	35.1	35 0	34.8	34.	35 3	35.2	35.7	35 2	1 50	34.0	35 5	35 6	35 6	35.0	35.0	35.5	35.7	35.7	35.
C3D	32.7	23.6	23 0	23 0	23.0	23.7	23.9	23 0	24.0	23 0	24.1	23 0	243	24 3	24.4	54 4	243	243	24 0	24 5	24 0	24 6	243	24.4	24 8	248	24 8	24 0	250	24 0	249	25.1	152
¥\$0	92.1	2.03	2 08	78 •	17.8	77.	77 @	77.0	76 5	75 6	75.5	150	7:	73 5	72 8	730	72.3	732	73.0	740	74.3	75.1	7.8.7	78.6	77 8	789	79.3	80 1	40 7	5 1 8	82 2	82.8	13 4
C48	96.3	2.0	92.1 3	92.5	200	2 00	1.7	5.19	7 0	204	9 0	- 01	67.0	9 9	8 2	536	:	85 7	- 1	*	:	0	87.4	80	600	603	00	8	2 10	5 16		02 1	8 20
040	40.4	38.2	2 9 90	38 7 2	370 2	36.8 2	37.1 2	37.3 2			37.2	37 0	37.7	37.6	37.8	37.5	37.4	37.2	37.6	37.5	37.6	37.2	37.1	36 8	37.3	37.3	37.3	37.3	37.2	37.0	37.1	37.2	37.2
C4D C68	•	236 66	23 7 68	23 9 64	23 8 66	23.7 67	23 0 67	230 64		-	0 1	40 4	24 5 5	24.3 5	24.5	24.4 5	243 0	244 0	247 6	240 6	248 0	245	243 6	24 5 (240	240	250	250	23.1	1 52	25.1	252	25.3
8	=	:	:	613	0	7.5	9 /	•	9	653	0	90	20 4	288	57.7	58.7	-	8 2 8	0.4	. 60	917	66 3	9 2 9	6.9	94 1	97.5	•	9 4 9	67.3	1 10	506	96 3	6.

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

C4C C4D C68	31.0		4 25 5	4 25 4	-	37.1 253 695	37 2 25 4 70 8	37.4 256 698	37 1 25 4 68 9	36 8 25 3 68 3	367 253 679	37.2 25.5 69.2	37.1 254 710	37 3 25 6 60 9	37 3 25 7 71 6	37 0 25 8 70 4	37 2 25 7 72 5	37 3 25 6 72 3	37 3 256 730	37 5 25 8 68 0	37.3 25.8 66.7	37 2 25 7 69 4	37 3 28 0 72 0	37 6 25 9 72 3	37 6 25 8 71 1	37 8 28 0 70 7	37 6 260 730	374 257 718	37.5 25.9 73.4	380 262 77 5	38 1 26 2 74 4	38.2 26.2 71	38 0 28 1 78 0
C48	1			1 92.2	1 92.1	0.20	0 20	5.19	1.19	0 013	9 97.4	1 90.7	9 10 6	000	010	0 0	3 920	6 912	9 923	• • •	904	877 908	183 911	187 191		893 917	17 912	1 10 11	31 912	15 893	0 0 02 7	90 9 84 5	803 875
C3D C4A	1		13 143	5.3	13	12 84	3.3 8.5	25.4 85	25 4 86	25.2 85	25 2 66	25 4 07 1	25.3 87.3	25 5 87.	25 7 87	25 5 17	25 6 88	25 5 88 6	25 5 88 9	25 # 86 4	25 8 87	25 7 87	25.0 00	25 8 84	25 8 89	259 80	260 89	25.8 89	25 9 90	26 1 90	26 2 90	263 0	26 1 9
: :: ::	1			38 0 25	35 9 25	35 8 25.	35 0 25	36.1 2	35 9 2	35.8 2	35 5 2	380 2	35.9 2	36.2	363 2	36 1 2	363 2	36.3	36 4 2	38.6	38 4	36.3	36.5	30 6	36.8	37.0	36.	36.7	30 7	37.2	37.2	37.5	37.2
C38	İ		~	65.3			8.18	• •	~ 7	7			0 5 0	:	• •	94 5	:	7	1 50	;	92.3	92.7	93 8	94 2	•	2 5	7	94 2	94.5	0 70	2.5	:	6
C3A	1		94.1	5	94 .1	-	2.10	:	93 9	93.5	93.	0	012	04 2	94 2	0	-	1.10	6 3	03 7	0 2 0	1 20	93 -	93 5	93.6	9 0	939	93 7	- 70	94 \$	3	•	950
C20	31.0		24.7	24.7	24 0	24 0	24 6	24.8	24.7	24 0	24.7	24 B	24 7	24 8	25 1	250	250	250	25 1	25 1	2 5 2	25 1	253	253	25.3	25 4	25 4	252	25 4	258	25 8	25 8	25 5
CSC	48.7		33.3	33.4	33.8	33.0	33.8	34.2	97.0	35.7	38.0	30 5	37.1	37.1	37.6	37.0	37.5	38.6	37.3	36 0	36 5	36 4	37 0	366	36 6	36 5	36 2	36.1	38	5 363	36 2	363	35.7
C28	ì		73.0	72.8	73.1	733	733	74.1	74.1	747	75 1	75.5	75.8	75 9	75 5	760	78 4	765	7 9 7	70	1 78 4	5 766	77.2	1 77 1	11.4	7 77	77.4	3 77 5	4 780	3 78	1 787	0 781	0 78
C2A			0 73.8	2 77.0	177.1	10.4	7.9.7	1 78.2	74.1	2 73.7	5 742	748	74.0	9 755	73.1	0 752	0 756	0 759	1 78 4	1 70	1 78	2	3 767	4 77.1	11	5 787	4 780	5 783	1 78.4		0	•	80
20	1	١	3 280	\$ 29.	. 29.1	. 28.	.0. 20.	4 20	3	3 29	7 20	9 29	3 20	56.7 28	28	56 9 30	57.3 30.0	.5 30 0	57.7 30.1	54 0 30.1	58 0 30 1	11 302	9 30	30	00 00	59 2 30	59 2 30	59.2 30	59 6 30	80 1 30	603 30	10 7 31	60 1 30
000	-		12 54	3.4 54	25.2 54.	25 2 54.	25.2 55.	25 4 95	25.1 55	25 2 55	25 4 55	29 5 55	25 5 56	25 0 56	25 6 56	257 50	25 7 57	25.7 57.	25.8 57	258 54	25.7 54	25.7 58	28 0 58	26 0 58	25 9 58	260 5	26 1 5	25 9 5	282 5	264 6	264 6	261 0	26.1 6
1W70 C			23.7 25	23.4 25	23.4 25	23 4 2	23.4 2	23 6 2	23 5 23	23.3	23 2 2	23 7 2	234 2	23 7 2	23 7 2	23 5 2	23 7 2	237 2	237 2	23 8 2	23 8 2	237 2	239 2	24.1 2	23 8 2	24.1 2	23 9 2	237 2	23 8 2	242 3		242	240
TW7C TW			30.1	30.0	30 0	20.7 2	300	30 3	30 2 3	30 0	20 0 2	30 2 3	30 1 2	30 4	30 \$ 2	30 2	30.3	30.3	30 4	30 4	30 \$	30 8	30 5	30 6	30 6	30	30 6	30 6	30 8	30.9	900	0 10	30 9
TW78 T	0.29		52.4	82.6	92 0	95.8	9 2 0	53 2	52 6	52.9	53 2	53 6	53.7	53.0	53.7	94 0	2 15	54.3	54.5	34 6	24 4	54 5	54 0	1 55	55 2	55 3	55 2	1 55	55 4	9 55	28 0	56 1	55 7
A	3		25.2	25.3	25.2	25 2	25 2	25 3	2 5 2	2 5 2	25 3	25 4	18 4	25.4	25 5	256	25 6	25 5	256	25 7	23 7	25 7	25 9	25 8	25 8	259	26 0	25 9	200	262	202	282	26.1
A 40			333	33.4	33.2	33.4	33.4	33.7	33 5	33.5	33.4	33.7	33.7	310	34.0	33 8	34	34.2	34.3	34.5	34.4	34.4	34 6	34.7	34.0	35.0	350	35.0	35.0	35.5	35.7	39 0	35.7
874	1	1	92.4	62.5	92.2	92.1	62.3	92 4	62.3	91.0	92.3	9.20	933	63 0	94.2	1.10	94.5	9 4 6	0 80	949	93.4	6 63 3	1 03 6	9 63 9	1 04 1	04.3	0 943	943	7	70	1.05.1	1 69 1	1 95 2
*	-		1 83 2	5 83 2	3 83 2	10.2	1 60	5 836	5 83.1	3 633	5 84 1		5 \$50	7 85 4	7 854	88.7	1.98	7 862	7 86	1 103	:	1 112	1 1.7	0 \$50	9 65 5	1 85 0	0 88 0	9 85 8	•	3 86 9	3 87.1	1	2 07.1
9	1		72	31.4 24.5	31.3 24.3	31.3 24.4	31 4 24 4	31 0 24 5	31 4 24 5	31.5 243	31.3 24.5	31.7 248	31.6 24.5	31 9 24 7	319 247	1 24 8	1 0 24 8	24.7	24.7	32.3 24.8	32 2 24 8	32.3 24.8	24 25 1	2 6 250	2 0 24 9	2 8 25	9 25	32 7 24 9	32.7 251	33.2 25.3	33 2 253	33 4 25 4	33 1 25 2
•	A36 A3		3.0	010	91.1	013 31	916 31	10 8 10	11 31	91.7 31	92 0 31	92 3 31	02.4 31	92.5 31	92 8 31	92.5 31	92.7 31	92 8 32	93 1 32	92 8 32	91 8 32	92 0 32	26 5 32	92 8 32	83 0 32	93 0 32	93 2 32	93 ()2	93 3 32	935 33	019 33	93 6 33	937 3:
	A3A		8.5	85.2	•				• • • •	79.9	799 9	79.8	795 0	79.3	79.0	789 0	78.0	78.8	787 0	78.0	766 9	76.9	77.3	77.5	77.4	77 0 9	77.0	77.0	78 4 9	78.6	707	808	1.1
	22 4		7.02	202				20.5	20 5	20 7	20 6	300	100	500	30 0	30 2	30 3	30.3	30 4	30 \$	30.3	30 6	20.7	30 7	30.7	30 8	100	30	31.0	51.3	31.3	31.4	30
;	75g		72.0	72.7	72.8	73.2	73.4	23.0	73.0	7.0	73.8	75.1	75.4	75.3	75.0	70.1	766	78.4	11.11	77.2	77.0	77.1	27.5	77.1	78.1	78.3	78.3	786	790	703	79.1	7.0.7	7
	424 s		8	7.70	=	:			5	*	0.00	8 00	70.4	70.8	70.0	70 2	70 6	71.8	71.0	71.0	70.0	70.4	70.	71.5	71.8	72.0	720	71.8	72.3	730			73.7
	Time Time		00 763.3	00 707.3								00 798.3	00 803.3		00 811.3	.00 815.3				631.3	.00 \$35.3	00 838.3	00 843.3	00 647.3	00 851.3	00 855.3	00 858 3	00 8633	00 867.3				
	Date Time		05/05/93 12:00	05/05/83 18:00																05/08/83 08.00			05/06/93 20.00		03/09/93 04 00	02/09/93 08 00	05/08/93 12:00		05/09/83 20:00				

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

į	٠ و	- 0	756	74 6	76 5	720	74 3	75.3	68 5	63.2	0 7	732	73 5	70 0		70 3	737	73.0	733	74.2	770	7.15	75 8	12 9	7.6 3	78.4	* ! .	78 5	5	77.2			E 03	6 07
	1		25 0	2 92	26 3	28 4	2 92	202	20 1	20 4	26 6	200	20 9	20 5	20 0	20 8	20 7	20 8	20 7	266	20 0	20 0	20 0	270	26 7	26 6	26 7	270	27.1	272	270	26 9	27.0	27.3
	,	40.4	37.7	38.3	38.5	38.8	7 10	38 4	38.1	38 8	30.0	30 2	38 9	30.1	39 0	30 5	30 5	30	30 5	30 8	39 6	004	Q	4 0	-	40 2	40	40 7	\$	=	=	=	Ę	:
		96.3	930	93.1	93 6	9 2 9	92 2	9 2 8	6 1 3	6	-	50	00	90 3	2 \$1	9	=	92 3	85 2	95 9	6	930	92 1	110	92.4	20	93 5	93.3	93.0	60	032	93.4		
	١	92.1	1.19	1.7	92.1	:	5	5	2 08	0	0	1.7	1 1	67.0	5	=	0 6	10 2	2 68	2 58	ŝ	•	48 7	8	10	88	88	10 2	2	6	8	19 2	60	2
		32.7	25.9	2.82	20 3	26 7	20 3	202	1.92	26 4	26 5	26 8	26.5	26 5	28 5	28 7	26 6	50.0	26 7	28 6	26 6	20 8	26 9	272	20 B	28 7	26 7	270	27.1	27 4	27 1	27 0	58 9	27.2
	,	92.0	36.0	37.4	37.7	36 0	97.0	37.5	37.2	37.	38 0	38 9	38.1	30.0	37.	7 70	38 5	31.9	38 6	38.5	9 0	39 0	39	39 6	39 2	39	39 0	39 8	29 7	403	38.8	39.8	30	0
į	25	8.5	95.3	9.50	93 4	1.16	7	-	93.0	8 5.0	91.0	7	92.1	93.0	3	5	5	920	:	ž	:	•	84 2	7	93 7	93	64	70	95 3	95.4	2 4 0	2.5	95.2	95 4
		00 3	95.0	95.4	920	95 3	950	950	030	0 2 0	0.00	5	92 4	03 2	93	7	2	950	:	ž	2 4	5	20	9 7 0	04 5	-	3	3	95 3	95.4	93	4 4	95 3	92
		31.0	25.4	25 7	25 6	28 0	25 6	25.5	25 6	29 8	25 9	262	25 8	258	28 0	200	26 1	203	260	25 0	1 92	292	2 9 2	5 92	28 1	260	20 1	263	26 4	20 7	26 3	2 9 2	26 4	26 5
	-	48.7	35.5	98 0	36.1	36.5	35.0	35.0	35 6	36.1	36.1	36.4	35.8	35.7	33.0	36 3	36.3	36 0	36 2	1.90	1.96	30 6	38 7	37.1	36 4	36 4	36 4	36.9	36 9	37.4	37.0	36.8	36	37 3
	-	17.7	79.0	78.5	79.7	70.8	191	70 2	79 6	70 4	10 2	0 0	70.4	7.0.7	10.4	80.0	1.2	¥.7	●.0	0 0	609	5 =	1.7	=	=		1 1	82.5	82 7	82 8	82 1	6 2 9		
	-	92.0	1.0		0.20	0 2 0	0.18	10.7	8 0 5	1.08	77.3	76.3	74.4	70.4	75 8	77.1	77.8	77.0	76 6	:	0 0	78.6	78 0	77.8	78 4	78 2	=	78.1	78 0	78.5	11.4	75 8	111	2 3
	CIC	42.0	20.7	31.1	31.2	31.4	30.9	30 0	31.1	31.4	31.5	31.6	31.0	31.2	31.5	7.16	31 8	32.0	31.4	31.6	31.9	32 1	32.1	32 4	31.7	31.7	32 2	32 5	32 5	32 7	32.2	32 2	32.7	32 0
	20	7	2	61.2	81.5	0 2 0	7.	8.19	9.19	62.3	8 2 9	62.4	62.3	62.3	82 8	930	63.2	63.5	63 1	63 1	63.4	63 6	94 0	7	63 7	63.7	=	9 7 9		92 5	9 7 0	•	65.1	93 8
	200	30.5	2 82	79 7	9 92	26.4	2 9 2	26 3	202	26 4	28 4	20 4	26 5	26.7	26 0	27.0	27.0	26 8	28 8	26 8	27.1	27.0	27.1	27.0	26 9	28.9	272	27 4	27 5	27.3	272	272	27 6	27.7
	TW70	27.7	23.7	24.0	2 4 2	24.3	1.42	24.0	23 6	240	24.3	21 1	24.2	24.3	2 4 2	24.3	242	5 1 2	24 3	242	24.1	24 3	24.4	24 7	7 72	242	24 1	24 4	24 \$	24.7	24 4	24 3	24 3	:
1	TW7C T	38.7	30.4	30 0	31.1	9.10	3: 2	3.1	30 \$	30 •	31.3	31.0	31.4	31 6	31.2	9.10	31 5	9:	31.7	31.0	31.3	31.5	31.7	32 2	32 1	3 5	31.8	32 0	32 1	32 \$	32.1	32 2	32 0	32 3
	TW78 1	95.0	56.0	36.5	92	36.8	2 96	30 4	56 7	57.2	57.3	57.3	86 8	57.1	57.4	57.8	57.8	57.0	57.5	57 6	57.9	58.3	58.4	58 5	97.9	58 1	58.5	58.9	59 1	59 1	58.7	58.8	20 2	50.7
	VQ.	93	20.1	28.3	20 5	28 6	202	28.4	26 4	9 92	26 6	16 8	26 5	28 8	20 8	28 8	27.0	27.0	20 8	269	27.0	27.1	27.2	27.3	27 0	27.1	212	27.4	27.4	27.6	27 3	27.4	27.5	27.7
	¥Ç	:	8	38.1	36 5	36 8	36.4	38.6	36 2	30 8	38.0	37.4	37.0	37.1	37.2	37.6	37.7	38.1	37.7	37.9	37 9	38.4	=	30	38.5	36.	38.7	39 2	39 4	30	39.6	39 7	39	4 0 5
	A48	2	:	95.1	95.5	• 2	93.0	- 50	030	1.28	91 2	92 1	92 2	92.7	930	03 7	7	9 7 8	•	0 7 0	7.10	*	9	3	9 7 0	9 7 8	94.7	1 50	95 4	93	95 \$	95.6	9 2 6	9
	444	112 2	=	17.	:	87.8	:	17.2		-	3	:	85.8	8 0	=	15 2	858	•	90	:	1. 4	87.2	9 9	\$ 92	7 98	20	1.1	88 1	8 5	=	98 9	=	60	18.7
	A30	32 0	٦	25.4	25 4	25.7	25 3	25 3	253	25 5	25 6	25 9	25 5	25 7	25.0	25 8	25 9	280	25 8	25 7	25 9	260	26 1	28 2	259	25.9	280	262	26 2	20 4	282	28 1	28 3	26.5
	A3C	45.4	ŝ	33.6	33 7	5	33.6	33	33.5	340	34.2	34.5	7	34.3	34 3	34.7	34.7	35	34.7	350	3	353	35.3	35 8	35 3	35 4	35.4	35.9	38.0	36 \$	38.1	38 2	36 2	98
	A3B	5.5	:	=	2	:	7 20	9 2	9 2 8	=	90 \$	•		92 5	930	111	0	7	94.2	3	0 7 0	2 3	8 2 8	2	3	94.5	200	69	95 1	28	950	•	952	8 8
	A3A	2	2	=	950	=	=	12.4	00	9		7.0	78.	78.0	0	=	=	82.3	=	=	=	12	12 0	85.8	1.7	-	5	-	14.2	=	17	5	=	85.5
	A2C	42.3	3	5	31.7	-	31.2	31.5	31.7	32.0	32.1	32.2	31.7	32.1	32 3	32 \$	32.7	32.7	32.2	32 \$	32.7	33	5	332	32.8	32.8	333	33.6	33.6	33.1	33.3	333	34.0	34.
	A2B	2.2	:	0			0	=	60	9 0	80 2	102	7.0	0.1	10	100	808	797	1.1		=	0.0	=	=	81.3	1.7	12.1	80 2	12.4	8 2 8	808	5	930	000
	AZA	200	2					74.7	74.4	73.8	73.3	73.8	73.7	73.0		74.0	75.7	7.0	75.	753	78.1	76 5	760	7.8.7	78.2	78.2	77.1	77.5	77.2	77 9	17.2	112	77.5	7
Elapsed	Ë	-dwe	2	809.3		609.3	607.3	911.3	915.3	919	623.3	027.3	631.3	035.3	939.3	0433	847.3	051.3	055.3	959 3	963.3	967.3	871.3	6793	8783	8833	987.3	8013	9053	999 3	1003	1007.3	1011.3	S F 1
	Time	Maximum Temp	20.00	8	9	00	12.00	90.0	30:00	8	8	00.00	12:00	8	20.00	80.00	04:00	00:00	12:00	8	20 00	8:00	8	00 00	12 00	8	20 00	8	04:00	80	12.00	8	20 00	8
	Oat.		10/1/01	05/11/83	66/11/80	04/11/03	05/11/83	05/11/03	05/11/03	05/12/93	05/12/83	05/12/93	05/15/83	05/12/83	05/12/03	05/13/03	05/13/83	05/13/83	05/13/03	05/13/03	05/13/93	05/14/93	05/14/93	05/14/93	05/14/93	05/14/93	05/14/93	05/15/03	05/15/93	05/15/93	05/15/93	05/15/93	05/15/93	05/16/93
I			8	20	2	5 6	9	8	80		38		30	0.50	80	80	80	\$0	\$0		\$0	30	30	0.5	, 0 %	Š	05,	30	Š	ò	Š	9	9	8

Ę-.

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

																		_	_	_	_				.	_	~	78 4	784	744	•	~	-	•	Ξ
C68	2	1	2	14 7	=	=	-	0	=	123	14.3	1 5 7	87.9	8	•	=	-	•	2	1 80 7		4 78	3 82 9	3 813	2	2	7 77 2		•		7 79	6.7	0 73	2 79	
040	31.0		27.4	27.5	27.4	27.2	27.4	27.6	27.7	27.6	27.7	27 6	27.7	27.9	27.9	280	28 1	28 3	282	28 3	28 5	28	283	- 28	92 9	28	2 287	6 28 9	1 28	0 28	1 28	5 28	0 20	0 20	
Ų Č	40.4		45.0	42.3	45.2	42 2	42.2	43.0	6.57		13.7	43.8	13.7	4.0	44.7	151	\$	45.7	45.4	45 9	46 2	•	7 9	•	•		7	7	•	0 47	•	-	7	7	
C48	86.3		:	:	93.7	93.6	17.7	60			63	2	3	=	*	9	93.5	933	0 2 0	8	91.3	17.2	8	60	2	=	603	Č \$\$ 0	1 87.2		9	2 87.1	2	:	
C4A	92.1		80.2	5 0.0	2	2		9	ş	8	00	80	200	2	00	0	8	80 7	88	1 1	1.7.1	90	150	83 7	82.9	82.7	62 3	-	8	79.	:		0	9	
C3D	32.7		27.3	27.5	27.4	27.2	27.3	27.5		, ,	27.8	27.5	27.0	27.7	27 8	280	27 9	28 2	28 0	.	26.3	28 4	28 3	282	29 3	28 4	28 6	28.9	28.4	28.5	28.6	28	38.0	20	
င္သင္	52.0		40.6	1.1	6 .1	0.14	07		:		3	-	42.2	42.0	430	43.3	43.5	13	43.5	44.2	;	=	:	*	*	45 2	45.4	70	45 3	45 3	45.0	40	40	\$	
C38	5 5		93.6	95.4	2	5.5	0.5				: :		95.4	93.5	95.7	1 50	95.7		94.5	939	93.7	93.5	930	930	93 6	93 2	930	92 4	81 2	8	0	6 10	-	=	
C3A	96.3		1.50	92 6	93	=	. 5					7	95 2	50	9.50	1 50	95 5	0.0	2	93 7	93.5	93.3	930	92 9	933	0 2 0	92 7	92 2	00	8	600	00	0	6	
020	31.0		26.6	20 8	28 8	26 4	20.0			20.5		26.7	20	27.0	27.0	27.1	27.2	27.2	27 1	272	27.3	27 5	27.4	272	27.5	27 5	27.5	28 0	27.3	27.9	27 7	27 6	27.9	202	
CZC	1.0		37.5	37.7	37.5	37.4								38.7	30.0	30.2	303	39.3	30 2	39	30	40 2	00	30 7	Q	40	•	7	\$ 0	40 7	40 0	413	7	43 1	
C28	:		9.58	9 2	30	7.2								9		:	7.7	63.5	3	=	83.8	13 7	90	81.2	00	6.19	•	90	7.87	79 6	400	7	79 6	797	
CZA	82.0		:	78.7		2			2 0.	2					70.0				7 8 9	78.3	77.0	77.2	112	77.3	789	766	76.4	75.5	74.5	73 8	737	732	72 3	720	
010	2		32.0	200		;		9 9	n n	93			;		2		7	2	36	34.5	34.7	34.7	34.3	34.2	34.7	35.1	35 2	35.5	34.0	35 0	35 3	356	35 7	35	
200			120					D	7 00	99	2 3							7 (2			0		67.7	67.5	1.70	0 89		:	97.4	97.4	67.7	67.9	9 7 9	88	
CeD	5		:	37.6			9	2/2	28.0	28	2	9 9		:						28 2		210	28 0	28 0	28.3	282	28 3	28.2	27 8	28 1			21 5	28 4	
TW70			2					7.7	24 7	24 0	2	24.0								25.2		3 2	25.2	25.2	25 1	25 3	25 3	25 6	25 0	25 4	75.3	25 5	25 9		
24.00		•	5		, ;	25		32.5	32 6	33.0	33.	33.2		,		7	3 5	;	; ;	; ;		; ;	. 76	34.2	7	34.3	34.0	34.0	34.3	34	7	70	35		
-		0.70		;	2		0 0	0.0	90	3	9	8	9	2 3											•	-	0.10	62.0	61.2		=	=	-	5	
;		2.0			8.72	27.6	27.7	27.0	28.1	==	282	20			28.3	58 4										29 1			21.9	203	700	502	20	20	
:	₹	Ì				?	0.5	007	41.5	4.1	420	42.1	\$ ·	7 2 5	42 8	430					;					44 7									
•	2	2			2	2	9 S	• •	9	8	96 3	2 8		2	9	9		2 94		2 2															
;	ž į	112.2		3	=	=	2		•	00	:	20	2	2	8	0	2	2	20							5.5									}
	79	32 0		26.5	28.7	78 4	20 4	26 6	26.7	26 7	20 0	36 8	26 6	9	27.0	27.0	27.1	27.3																	
	22	45.4		90	37.0	36	37.1	37.1	37.5	37.7	38.0	37.0	=		36 5	9 80	-	90	39 2	9	6 6 7	9 1	66	2	2 0	•									
	25	63.5		93.4	93.5	:	93 1	95.2	93.0	95.5	95.4	933	1.	93	953	93 4	-	95 3	930	00	9 2	0.0			6 6						•				
	ş			*	13.2	፤	6 5 5	85.5	15.4	13.0	9	9 2 8	153	13.0	6.3	9 2 0	13 7	856	Ξ	-	-	83 2	2	23	2							7.07			;
	720	42.3		34.3	34.3	34.0	34.2	34.6	34.0	35.0	35.1	350	35.1	35.3	35 6	35.7	35	36 5	35.7	363	90	38 7	28.7	96	n 6										
	A28	=		13.4	23	5	12.7	=	83.0	95.0	8	:	2	13.5	•	84.2	13.	110	Ξ	2	12.1	12	12 7	-										70.7	2
	YZY	70 5		78.5	783	78.2	77.0	78.5	78	79.7	78.0	=	78.5		7.	78.4		79.5	78		77.0	77.													2
Elapsed	Time	- dwa		1018.3	1023.3	1027.3	1031.3	1035.3	1038.3	1043.3	1047.3	1051.3	1055.3	1059.3	1063.3	1047.3	1071.3	1075.3	1079.3	1083.3	1087.3	1091.3	1095.3	1000.3	1103.3	1107.3	====	11153	=======================================	1123.3	1127.3	1131.3	1139.3	1138.3	
_	Time	Maximum Temp		8	80	12:00	8:0	20.00	8	00.00	8	12:00	16.00	20.00	80.00	04:00	00 00	12:00	16.00	20:00	8	04:00	8	15:00	8	20.00	8	8	8	12:00	8	8 02	8	8 8	8
	Ost.	3		05/16/93	05/16/93	05/16/83	05/16/93		08/11/00	05/17/83	05/17/93	05/17/03	05/11/03	05/17/93	05/18/93	05/16/93	05/18/93	05/18/93	05/16/93	05/18/93	05/19/93	05/10/93	05/19/93	05/19/93	05/10/03	05/19/93	05/20/93	05/20/83	05/20/93	05/20/93	05/20/93	05/20/93	05/21/93	05/21/03	05/21/93
				60	30	05/	9	2		3 2 13			60	0.5	050	050	050	05/	05/	08/	95	\$	9	05	Š.	5 0	ő	SO.	0.5	6	80	8	6	5	ö
											-																								

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

Part	Elapsed Time A2A A2B A2C	Maximum Temp 76.5 84.2 42.3 86.3 85.5 45.4 32.0	0.75 4.55 0.08 0.08 0.75 5.48 0.87	12.00 1147.3 70.3 78.2 37.5 76.6 66.3 40.6 27.0	18 00 1151.3 70.1 77.8 37.7 78 2 85 8 40 8 28.1	20:00 1155.3 70:0 77.9 38:1 78.7 85:4 40.8 28.3	00:00 1159.3 89.7 77.8 384 78.8 857 41.3 284	04:00 11833 481 779 384 788 856 414 284 82.0	08:00 1167.3 68.1 78.1 38.6 78.8 86.7 41.6 28.5 82.3	12.00 1171.3 69.0 77.9 38.1 77.9 87.1 414 284	16 00 1175 3 691 77.9 38.4 77.7 67.5 413 28.5 82.4	20.00 1170.3 712 781 388 77.2 888 418 286 82.3	00:00 1183,3 70 9 78 4 38,9 78 1 69 1 42 0 28 7 82.0	04:00 1187.3 70.7 78.5 39.0 78.5 88.5 42.2 28.7 81.7	08:00 1191.3 71.7 78.5 39.2 79.2 88.2 42.4 28.8 81.2	12:00 1185.3 71.8 78.3 39.5 78.9 89.2 42.6 28.9 80.7	16.00 1196.3 71.8 77.6 39.8 78.8 89.4 42.6 28.9 80.5	20 00 1203 3 71.4 78 0 39 4 78 9 87 5 42 5 28 7 79 8	00 00 1207.3 71.9 78.5 39.7 78.7 69.2 42.9 29.0 79.9	04 00 1211.3 72.2 78.7 39.8 79.4 89.2 43.1 29.1 79.8	08 00 1215.3 72.1 78 4 30 9 79 8 88 4 431 291	12:00 12:19:3 71:5 780 394 602 649 429 269	20 00 1227,3 710 775 360 798 873 430 290	06 06 1231.3 71.1 77.2 40.1 78 6 87 0 43 2 29 2	04.00 12353 707 772 403 788 868 434 294	08.00 1238.3 70.3 78.8 40.2 78.3 86.8 43.5 29.4 80	12 00 12433 69 6 763 39 77.7 860 432 292 61	16.00 1247.3 69.3 75.9 40.0 77.2 85.9 43.2 29.4 81	20:00 1231.3 691 75.9 40.4 77.1 84.9 43.4 29.4 62	00 00 1255 3 68 9 75 6 40.7 77.0 65 2 43 7 29 7	04 00 1258 3 880 75 9 40 7 78 7 84 8 438 29.7	08:00 1283.3 67.9 75.4 40.7 76.3 84.8 43.9 29.8 83	12:00 1267.3 67.6 74.7 40.5 75.3 84.4 43.7 29.6 i	18 00 ** 1 87 2 74 3 404 754 837 438 29.7
No.	Elapsed Time A2A A2B A2C	76.5 84.2 42.3 86.3 85.5 45.4 32.0	0.75 4.55 0.08 0.08 0.75 5.48 0.07	1147.3 70.3 78.2 37.5 76.6 86.3 40.6 27.9	1151,3 70.1 77.8 37.7 76.2 85.8 40.8 28.1	1155.3 70.0 77.9 381 78.7 654 406 28.3	1159.3 49.7 77.8 38.4 78.8 65.7 41.3 28.4	11633 681 779 384 788 856 414 284 820	1167.3 66.1 78.1 306 76.8 867 416 28.5 82.3	1171.3 69.0 77.9 38.1 77.9 67.1 414 284	11753 691 77.9 38.4 77.7 67.5 413 28.5 82.4	1170.3 712 781 368 77.2 888 418 286 82.3	1183.3 709 784 38.9 781 891 420 287 82.0	1187.3 70.7 78.5 39.0 78.5 88.5 42.2 28.7 81.7	1191.3 71.7 78.5 39.2 79.2 86.2 42.4 28.8 81.2	1185.3 71.8 78.3 39.5 78.9 89.2 42.6 28.9 80.7	1196.3 71.6 77.6 399 788 894 428 289 80.5	12033 71.4 780 394 789 875 425 287 798	1207.3 71.8 78.5 39.7 78.7 89.2 42.9 29.0 76.9	1211.3 72.2 78.7 39.8 79.4 89.2 43.1 29.1 79.8	1215.3 72.1 784 399 798 884 431 291	1219.3 71.5 780 394 802 849 429 289	1227,3 710 775 398 798 873 430 290	1231,3 71.1 77.2 40.1 79.6 87.0 43.2 29.2	12353 707 772 403 788 868 434 294	1238.3 70.3 76.8 40.2 78.3 86.8 43.5 29.4 80	12433 696 763 399 77,7 860 432 292 61	1247.3 683 759 400 77.2 858 432 294 81	1251.3 691 75.9 40.4 77.1 849 434 294 62	1255 3 68 9 75 6 40.7 77.0 652 437 297	1258 3 68 0 75 9 40 7 76 7 84 9 43 8 29.7	1203.3 07.9 75.4 40.7 76.3 84.8 43.9 29.8 83	1267.3 67.6 74.7 40.5 75.3 84.4 43.7 20.6	1 3 67 2 743 404 754 637 436 297
No.	A2A A2B A2C	76.5 84.2 42.3 86.3 85.5 45.4 32.0	0.75 4.55 0.08 0.08 0.75 5.48 0.07	3 70.3 78.2 37.5 76.6 86.3 40.6 27.9	70.1 77.8 37.7 76.2 85.9 40.8 28.1	70.0 77.9 381 78.7 654 406 28.3	00.7 77.8 384 788 857 41.3 284	881 77 0 384 788 856 414 284 82.0	86.1 76.1 306 78.8 86.7 416 28.5 82.3	69.0 77.9 38.1 77.9 67.1 414 284	881 77.9 38.4 77.7 87.5 41.3 28.5 82.4	712 781 388 77.2 888 418 286 82.3	709 764 38.9 761 691 420 267 62.0	70.7 78.5 390 785 885 42.2 28.7 81.7	71.7 78 5 39 2 79 2 88 2 42 4 28 8 81.2	71.8 78.3 39.5 78.9 89.2 42.6 28.9 80.7	71.8 77.6 394 788 894 428 289 80.5	71.4 780 394 789 875 425 287 798	71.9 78.5 39.7 78.7 89.2 42.9 29.0 79.9	72.2 78.7 39.8 79.4 89.2 43.1 29.1 79.8	72.1 784 389 788 884 431 291	71.5 780 394 802 849 424 289	710 775 398 798 873 430 290	71.1 77.2 40.1 79.6 87.0 43.2 29.2	707 772 403 788 868 434 294	703 768 40.2 783 868 435 294 80	696 763 399 77.7 860 432 292 61	683 759 400 77.2 858 432 294 81	881 75.9 40.4 77.1 849 434 294 82	689 756 40.7 77.0 652 437 297	080 759 407 767 849 438 297	67.9 754 40.7 763 848 439 298 83	67.6 74.7 40.5 75.3 84.4 43.7 29.6 (67.2 743 404 754 637 436 29.7
1. 1. 1. 1. 1. 1. 1. 1.	A28 A2C	A28 A2C A3A A3B A3C A3C A3C	0.75 4.54 6.69 6.98 6.54 5.48	78.2 37.5 76.6 86.3 40.6 27.9	77.8 37.7 76.2 85.9 40.8 28.1	77.9 381 78.7 854 408 28.3	77.8 384 788 857 41.3 284	77 0 384 788 856 414 264 82.0	781 386 788 867 416 285 823	77.9 38.1 77.9 87.1 414 284	77.9 38.4 77.7 87.5 41.3 28.5 82.4	78 1 38 8 77.2 88 41 8 28 6 82.3	784 38.9 78.1 89.1 42.0 28.7 82.0	78.5 390 785 885 422 287 81.7	78 5 39 2 70 2 88 2 42 4 28 8 81.2	783 395 789 892 426 289 807	77.6 39.8 78.8 89.4 42.8 28.9 80.5	780 394 789 875 425 287 798	78.5 39.7 78.7 89.2 42.9 29.0 79.9	787 398 794 892 431 291 798	784 309 708 884 431 201	780 394 802 849 429 289	77 5 300 798 873 430 290	77.2 40.1 796 870 432 292	77 2 40 3 78 8 88 434 294	768 40.2 78.3 86.8 43.5 29.4 80	763 399 77,7 860 432 292 81	759 400 77.2 858 432 294 81	75.9 40.4 77.1 84.9 43.4 29.4 82	75 8 40.7 77.0 65.2 43.7 29.7	759 407 767 849 438 29.7	754 40.7 763 848 439 298 83	74.7 40.5 75.3 84.4 43.7 20.6	743 404 754 837 438 29.7
Name	4 30	42.3 86.3 65.5 45.4 32.0	42.3 66.3 63.4 34.0	37.5 766 663 406 279	37.7 76.2 85.8 40.8 28.1	381 76.7 654 406 28.3	384 788 857 41.3 284	384 788 856 414 284 82.0	386 788 867 416 285 823	38.1 77.9 87.1 414 284	38.4 77.7 87.5 41.3 28.5 82.4	36 8 77.2 68 41 0 28 6 62.3	4 38.9 78.1 89.1 42.0 28.7 82.0	5 390 785 885 422 287 81,7	5 392 792 882 424 288 81.2	39 5 78 9 89 2 42 6 28 9 80 7	398 788 894 426 289 80.5	394 789 875 425 287 798	36.7 78.7 89.2 42.9 29.0 79.9	398 794 892 431 291 798	4 309 708 884 431 201	394 802 849 429 289	300 798 873 430 290	40.1 796 870 432 292	40 3 78 8 86 8 43 4 29 4	40.2 783 868 435 294 80	399 77.7 860 432 292 81	40 0 77.2 85 6 43 2 29 4 81	40.4 77.1 849 434 294 82	40.7 77.0 85.2 43.7 29.7	407 767 849 438 29.7	40.7 763 848 439 298 83	40 5 75 3 84.4 437 296	40 4 75,4 83 7 43 8 29.7
14 15 15 15 15 15 15 15		86.3 85.5 45.4 32.0	95.1 65.5 65.6	76 663 406 279	78 2 858 408 28.1	78.7 854 408 28.3	78 8 8 4 4 3 28 4	788 856 414 284 82.0	788 867 416 285 823	77.9 87.1 414 284	77.7 87.5 41.3 28.5 82.4	77.2 888 418 286 82.3	78 1 89 1 42 0 28 7 82.0	78 88 42 287 81.7	79 2 66 2 42 4 28 6 81.2	789 892 426 289 807	788 894 428 288 80.5	789 875 425 287 798	78 7 89 2 42 8 29 0 78 9	794 892 431 291 798	79 8 88 4 43 1 29 1	802 849 429 289 787 874 427 289	79 8 87 3 430 290	79 6 87 0 43 2 29 2	788 868 434 294	78 3 86 8 43 5 29 4 80	77,7 860 432 292 81	77.2 858 432 284 81	77.1 849 434 294 82	7 77.0 652 437 297	7 767 849 438 29.7	763 848 439 298 83	5 753 84.4 437 296	75.4 637 436 29.7
14 15 15 15 15 15 15 15	<	85 5 45.4 32.0	25. 55.	863 406 279	85 8 40 8 28.1	154 40 6 28.3	05.7 41.3 20.4	85 6 41 4 28 4 82.0	867 416 285 823	87.1 414 284	87.5 41.3 28.5 82.4	888 418 286 82.3	891 420 287 82.0	88 5 42 2 28 7 81.7	88 2 42 4 28 8 81.2	89 2 42 6 28 9 80 7	89 4 42 6 28 9 80.5	87 5 42 5 28 7 79 8	69 2 42 9 29 0 79 9	892 431 291 798	88 4 43 1 20 1	616 428 288	87.3 430 290	87 0 43 2 29 2	86 8 43 4 29 4	868 435 294 80	860 432 292 81	858 432 284 81	84 9 43 4 29 4 82	65 2 437 297	84 9 43 8 29.7	848 439 298 83	84.4 43.7 29.6	83 7 43 6 29.7
Name	KA	45.4 32.0	13.4	40 6 27 9	40 8 28.1	40 6 28.3	41.3 28.4	41 4 28 4 82.0	41 6 28 5 82 3	411 284	3 413 285 82.4	41 0 20 6 02.3	1 42 0 28 7 82.0	5 42.2 28.7 81.7	42 4 20 0 01.2	42 6 28 9 80 7	42 6 28 8 80.5	42 8 20 7 79 8	42 8 28 0 78 8	431 291 794	43 1 20 1	42.9 28.9	430 290	0 432 292	8 434 294	8 435 294 80	0 412 292 61	6 432 284 81	43 4 29 4 82	437 297	43.8 29.7	43 9 29 8 83	43.7 29.6	7 436 29.7
		32.0	36.0	27.0	28.1	28.3	28 4	28 4 82.0	24 5 12 3	787	28 5 82.4	1 286 82.3	28 7 82.0	28.7 81.7	20 0 01.2	28 9 80 7	28 9 80.5	20 7 70 8	200 700	201 708	20 1	4 1 2	2002	28 2	29 4	29 4 80	29 2 81	29 4 81	4 294 82	7 29 7	1 29.7	9 298 83	7 296	4 29.7
1. 1. 1. 1. 1. 1. 1. 1.		1		-				82.0	8 2 3		5 82.4	6 12.3	0.2.0	7.18	2.18	40 7	\$0.5	70	70 0	70.						=	=	-	7			=		
Main		(~		-	•	•	-			~	-									_			~	~	=	9		•	~	53	2.3	3	~	•
Mail				2	\$	8	3	8	8	8	8	=	-	٠,		_	_		-	_	•		. 🛎	•	=	•	•	•	•	•	•		-	
Main			1	ı								•																		_		_	-	
		1	1	ı		2			_	_					-													_		•	•			
				-		_			-	•		_ m		-	•			_	_	_	•		. ~		~	_	0	~	~	-			•	•
14. 14.				_		•				~	N		۰			•	•	-	•		s	. .			~			_		•	۰	•		-
CAD CAD <td></td> <td>•</td> <td></td> <td>_</td> <td>4 25</td> <td>1 25</td> <td></td> <td></td> <td>20</td> <td>52</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>~</td> <td>~</td> <td>•</td> <td></td> <td>~</td> <td>7.6 20</td> <td></td>		•		_	4 25	1 25			20	52	_	_							•						-			~	~	•		~	7.6 20	
C1B C1C C2A C2B C2C C3D C3B C3C C3D C3A C3B C3C C3C C3D C3C C3D C4A C3D C3C C3D C4C C4D C4C C4C <td></td> <td>İ</td> <td></td> <td>ä</td> <td></td> <td>\$ 28</td> <td></td> <td></td> <td></td> <td></td> <td>••</td> <td>•</td> <td></td> <td></td> <td>~</td> <td>~</td> <td>3 29</td> <td></td> <td>~</td> <td></td> <td>200</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>-</td> <td>.</td> <td></td> <td>•</td> <td>~</td> <td>1</td> <td>•</td>		İ		ä		\$ 28					••	•			~	~	3 29		~		200				•			-	.		•	~	1	•
		1		7 67		Ī	7 67.	7		•	_	•			_	_	~	-	=	2	- n (_	=			_	_			_	'n	
C2A C2B C3C C3D C3A C3D C3C C3D C4A C4B C4C C4D C4C C4C C4C C4D C4C C4C <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4 36.2</td> <td>4 36.2</td> <td>96.</td> <td>95</td> <td>•</td> <td>3 36</td> <td>98</td> <td>8</td> <td></td> <td>37</td> <td>37</td> <td></td> <td>97</td> <td>2</td> <td>= ;</td> <td>, 6</td> <td>•</td> <td>_</td> <td>~</td> <td></td> <td>=</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>~</td> <td>_</td>							4 36.2	4 36.2	96.	95	•	3 36	98	8		37	37		97	2	= ;	, 6	•	_	~		=				•		~	_
C2B C2C C2D C3A C3B C3C C3C <td>!</td> <td>2</td> <td></td> <td>71.3</td> <td>71.1</td> <td>71.6</td> <td>104</td> <td>70.5</td> <td>11.2</td> <td>•</td> <td>1 70 4</td> <td>_</td> <td>8</td> <td>2</td> <td>- 70</td> <td>3 70</td> <td>2</td> <td>9</td> <td>2</td> <td>2</td> <td>0 4</td> <td></td> <td>_</td> <td>2</td> <td>•</td> <td>•</td> <td>2 08</td> <td>9</td> <td>:</td> <td>_</td> <td>~</td> <td>-</td> <td>_</td> <td></td>	!	2		71.3	71.1	71.6	104	70.5	11.2	•	1 70 4	_	8	2	- 70	3 70	2	9	2	2	0 4		_	2	•	•	2 08	9	:	_	~	-	_	
48.7 31.9 66.3 62.0 C35			- 1		78 6	70.0	79.1			200	70.7	2			0		2	2	7		~ •				2	2	•	~	_	_				
C2D C3A C3B C3C C3D C4A C4B C4C C4C <td></td> <td>}</td> <td>- 1</td> <td>41.8</td> <td>4.1</td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td>-</td> <td></td> <td>7</td> <td>\$</td> <td>•</td> <td>-</td> <td></td> <td>\$</td> <td>-</td> <td>= :</td> <td>; ;</td> <td>7</td> <td>÷</td> <td></td> <td>‡</td> <td>2</td> <td>-</td> <td>7</td> <td></td> <td>•</td> <td></td> <td>£</td> <td>7</td> <td>-</td>		}	- 1	41.8	4.1		•	•	•		-		7	\$	•	-		\$	-	= :	; ;	7	÷		‡	2	-	7		•		£	7	-
C3A C3B C3C C3D C4A C4B C4C C4B C4C C4B C4C C4B C4C C4B C4C C4B C4C C4B T4 310 80.2 80.3 40.3 28.0 78.8 85.0 47.4 28.0 80.2 80.3 40.2 20.0 78.8 85.0 47.4 28.0 80.4 80.3 40.3 28.0 78.8 80.8 47.7 28.0 80.4 80.3 47.0 28.2 78.6 80.8 47.7 28.2 80.4 80.3 47.0 28.2 78.4 80.3 47.0 28.2 80.4 90.4 48.8 29.3 78.4 80.3 47.0 28.2 78.4 48.0 29.3 80.6 91.1 47.7 28.2 28.2 47.0 28.2 28.2 47.0 28.2 28.2 48.0 29.2 48.0 48.0 48.0 <				27.0	27.8	28.0			28	28	202	28.4	28	28	28	28			5	8 2	7 28	*		20	4 20	°.	0 29	23	3 20	_		~	~	_
C3B C3C C3D C4A C4B C4C C4D 08.5 37.0 32.7 P2.1 P6.3 49.4 31.9 90.3 46.2 29.0 79.8 85.9 47.4 29.9 90.3 46.7 29.2 79.8 86.9 47.9 29.9 90.3 46.7 29.2 79.8 86.9 47.9 29.9 90.3 46.7 29.2 79.8 86.9 47.9 29.9 90.3 47.0 29.2 79.8 86.9 47.9 29.9 90.4 46.8 29.3 78.5 86.2 48.7 29.9 90.5 47.0 29.3 78.5 86.2 48.7 29.9 90.1 47.7 29.9 87.7 48.7 29.9 90.1 47.7 29.9 87.9 48.9 29.9 90.1 47.7 29.9 87.9 48.9 29.9 90.1 48.7 29.9 87.9 48.9 29.9 90.1 48.7 29.9 87.9 48.9 29.9 90.1 48.7 29.9 87.9 48.9 29.9 90.1 48.9 29.9 81.9 87.9 48.9 29.9 90.2 48.9 29.9 81.9 84.9 48.9 30.9 90.3 48.9 29.9 81.9 84.9 48.9 30.9 90.4 48.9 29.9 81.9 84.9 48.9 30.9 90.5 48.9 29.9 81.9 84.9 48.9 30.9 90.6 49.9 30.3 80.6 84.8 48.9 30.9 90.8 49.9 30.3 80.9 84.4 48.9 30.9 90.8 49.9 30.9 81.9 84.9 49.9 30.9 90.8 49.9 30.9 81.9 84.9 49.9 30.9 90.8 49.9 30.9 80.9 84.4 48.9 30.9 90.8 49.9 30.9 80.9 84.4 48.9 30.9 90.8 49.9 30.9 80.9 84.4 48.9 30.9 90.8 49.9 30.9 80.9 84.4 48.9 30.9 90.8 49.9 30.9 80.9 84.4 48.9 30.9 90.8 49.9 30.9 80.9 84.4 48.9 30.9 90.8 49.9 30.9 80.9 84.4 48.9 30.9 90.8 49.9 30.9 80.9 84.4 48.9 30.9 90.8 49.9 30.9 80.9 84.4 48.9 30.9 90.8 49.9 30.9 40.9 30.9 40.9 30.9 90.8 49.9 30.9 40.9 30.9 40.9 30.9 90.8 49.9 30.9 40.9 30.9 40.9 30.9 90.8 49.9 30.9 40.9 30.9 40.9 30.9 90.8 40.9 40.9 40.9 40.9 30.9 90.8 40.9 40.9 40.9 40.9 30.9 90.8 40.9 40.9 40.9 40.9 40.9 90.8 40.9 40.9 40.9 40.9 40.9 90.8 40.9 40.9 40.9 40	i	i		80 5	0	2			2	2		=				8		00		_	= :		:		~	=	-	*	~	-	.			·
C3C C3D C4A C4B C4C C4D C4D <td>C38</td> <td>5.80</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>8</td> <td>8</td> <td></td> <td></td> <td>=</td> <td>5</td> <td></td> <td>=</td> <td></td> <td><u>.</u></td> <td></td> <td></td> <td>: 2</td> <td>•</td> <td></td> <td></td> <td></td> <td>_</td> <td>=</td> <td>•</td> <td></td> <td>=</td> <td></td> <td>2</td> <td>_</td>	C38	5.80						0	0	8	8			=	5		=		<u>.</u>			: 2	•				_	=	•		=		2	_
C3D C4A C4B C4C C4D C4D <td>င္အင</td> <td></td> <td></td> <td>46.3</td> <td>46.2</td> <td>F0 7</td> <td>16.7</td> <td>47.0</td> <td>410</td> <td>9</td> <td>•</td> <td></td> <td></td> <td>+</td> <td>4</td> <td>=</td> <td></td> <td>•</td> <td></td> <td>= :</td> <td>\$;</td> <td>; ;</td> <td></td> <td></td> <td>\$</td> <td>301</td> <td>301</td> <td>Ş</td> <td>20.</td> <td>50.</td> <td>-</td> <td>50</td> <td></td> <td></td>	င္အင			46.3	46.2	F 0 7	16.7	47.0	410	9	•			+	4	=		•		= :	\$;	; ;			\$	301	301	Ş	20.	50.	-	50		
C4A C4B CAC C4D 92.1 96.3 49.4 31.9 79.8 85.6 47.4 29.0 79.8 86.9 47.9 29.0 79.6 86.9 47.9 29.4 79.6 86.0 47.9 29.4 78.5 86.3 48.0 29.3 78.5 86.2 48.0 29.3 82.7 87.4 48.4 29.4 81.9 87.7 48.4 29.6 81.9 87.7 48.6 29.8 81.9 87.7 48.6 29.8 81.9 87.7 48.6 29.8 81.9 87.7 48.6 29.8 81.9 87.7 48.6 29.8 81.9 87.6 48.9 30.0 81.9 87.6 48.9 30.0 81.9 87.6 48.9 30.0 81.0 87.8 49.1 30.0	C3O	32.7			200	200	29 2	202	28 3							20 7			2	5	8	. 2	20 8	S	ê			õ	ş	2				
6.48 C4C C4D 6.59 47.4 20.1 6.60 47.4 20.1 6.60 47.4 20.1 6.60 47.4 20.1 6.60 47.4 20.1 6.60 48.2 20.2 6.71 48.2 20.2 6.71 48.2 20.2 6.71 48.6 20.0 6.71 48.6 20.0 6.72 48.0 20.0 6.73 48.0 20.0 6.74 48.0 20.0 6.75 48.	440	92.1		79.8	79 0	70	700							12 2	-		-			= :	= =	2	=			0	0	8	•	0	=	0	•	2
47.6 C4C C4D 47.4 20 1 47.6 20 0 47.6 20 0 47.6 20 0 48.7 20 0 48.8 20 0 48.	85										99 7			2	17.7	- 2	97.0		e e e	•	<u>.</u>				ä	-	12	3	_			_	_	2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200			47.4	478															0		; ;	4:	\$	\$		\$	7 ,		•	6	5		•
	C40	1 2		28 8	20.0	20	20 4				20 4	20 7						20	8	g :	000	20.0	20	30	30	303				30.5	30		E	ន

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

																																			= -
	880	-	1:		20 6	0 80	68 7	0 69	0 7 0	94.5	99 3	400 7	70.3	72.2	74.4	135	728	749	110	778	75.2	137	132	74.3	72 0	72 \$	70.5	68 7	730	12.1	13.4	77.0	710	90 2	•
	- 1	91.0		-	_		30 8	30 4	30.3		•	30 6	30 0	30 6	30 \$	310	31.1	31.1	1 16	31.1	30 6	30 0	31 2	31.3	31.5	31 4	-	31 2	7	9 5	31.5	31.3	31.5	7 16	<u>.</u>
	-	-		•	30.	¥ 3 0	181	48.7 3	48 6 3	48.7		~	=	-		101	10 3	6 5	40 3	10	:		40 2	49 3	40	403	÷	•	- 49	49 2	‡ 9	78	8		0
	200	3		•	4				6	793 4	•	12.2	•	82.4	, 6 21	1 61	63.3	13.4	- 6	82 B	9 2 8	1 2 1	8 0	83.2	83 5	82 4	82 7	82 7	83,2	633	9 0	82 9	83 2	83 4	4 3 5
	A C48	2	١	- n	6	6 83	.3	08 9	10 62		17.2	77.2	175	8 211	769	77.1	17.2 (77.2	17.3	17.1	17.4	27.5	17.4	11.1	77.5	18.2	78.2	75.0	9 92	703	782	78.1	20 5		76 J
•	D C4A	7 82	1	•	78	31.0 78	31.0 78	30 8 77	30 7 78	30 8 76	31.2 77	31.1	31.2 7	31.2 7	30 0 7	313 7	31.5	31.5	31.6	7.16	31.3	31.4	31.7	31.7	32 0	31.0	31.7	31.7	÷	32 0	32 2	32.1	32.1		32 2
	CS	.0		7 30	2 30		51.5	51.0 30	50 9 3(51.1	51.6 3	51.6 3	51.7	51.7	51.0 3	51.6	51.8	916	51.8	\$ 1.8	512	51.4	5.	516	52 0	9 5	513	1 15	31 5	51.0	51.8	51.4	51.3	215	5
	B C3C	5 52		8	9.	16.7 51.	_	•		85.3 \$	15.4 5	8.2.5	15.2 5	9 7 8	84.5	14.7	643	0.1	# C#	13.2	85.0	8 33	13 3	13.2	83.5	8 2 8	12 2	82 5	12 7	12 1	12 7	12 2	1 2 1	8 2 8	9 2 9
	A C3B	3 98.5		.0	•	~	•	.1		-			130	13.3	827 8	8 8 8	1 21	12.1	820	81.8		812	7	7	117		9 08	0	7 0	• 0	6 0 8	103	£ 0	£ 0.	0
	C3A	2		6 85	1 15	9	•				2 83		~	N	۰	30 3	30.5	30 5	30 5	30 5	30 3	30 5	30 7	30.7	31.0	30 8	30 6	9 00	31.0	31.1	31.3	31.0	1 16	31.3	31.4
	C20	7 31.0		3 20	5 20	92 9	7 30		_	3 20	.6 30	90	30	48.3 30	30		w)	48.3	48.3 3	483 3	47.6 3	460	48.3		48.6	48.5	0 84	0		:	48 7	48 2	18	48.3	48 5
) C2C	=		0 48	=	7	-			-	48.6		76 8 46.	79.2 48	78.3 47	76.7 46				en		760 4			•	~	1 0 7 /	754	73.4	754	75.3	74.5	74.5	74.0	75.0
	C28	H 7		78.0	7 78.0							1 77.1								_		61 2 7			•	4	599 7	606 7	010	613 7			2 2 6	8 2 8	92 4
	CZA			9 65	1 04.7			, .		. ~																			42.4	•	12 8	0 24	0 24	1 2	42.0
	010	1		Š			\$					·																•			•				5 7 2
	813	İ		•						, «																									505
	90	1		2						•							-									, .			. ~					7.4	27 5
	TW7D			2																			, ,			, ,		, .			, w			36.3	
	14.70	18		1				2	87.3												, ,	, ,						, .		, <u>-</u>			, •	. ~	•
		82.0	!	1	3 3		2 :											n •				, ,				32.4 51									
		1				_		_	_	.	9.10						923			26 684	76 2 34														
		7				7.	•		•	-	•																		, ,				• •		ın ın
				ı				20.		-				_	•	-	-																		
			771	1	_	:		:	:				_	_	_									_			_	_ `			ν .		101 216	• • •	
		ı	32.0	١				30.1	29.7									~	_																
		- 1	•	١	?	•		142	43.0	1 43.7	2 440	:		4.5	;	•	2 448	=	: -			7 7												• • • •	
		j.	50		:	1 63.2	1 137	1 830	1 12 7	9 29		9 29 6			2 82.3	9.1.0	2 29 8	1	8 82.1	9 820		7 11.4	2 81.5	2 817		_									
		- 1			74.5	74.2	73.	73.7	12.0	8 71.8	72.3	12.3	3 72.6	12.0	0 72.2	2 71.0		11.7	9.11.6	912		70.7	.0 71.2	.0 71.2	11.11							42.2			423 7
		- 1	42.3		•	0.14	0.14	1	40.5	1 40.5	0.11	11.3	6 4 3	41.4	41.0	2 41.2	5 41.6	41.0	3 41.6	1.4.6	41.3	3 41.2	11.1	9.11.0	6.14 8.					71.2 42	71.1	712 43			200
		ı	1 14.2		7	5 74.3	74.1	73.8	73.2	72.8	3 732	2 733	2 730	9 72 9	7 72.4	3 722	12.5	9 72.4	6 72.3	6 72.1	4 71.8	3 71.3	3 71.6	2 71.9	2 71.6	11 71.7	9 71.3	\$ 70	7 70				62.0 70		62 0 70 62 1 70
	_	A2A	- 79.5		90	1 86.5	1 66.2	1 65.7	*	:	643	1 642	3 642	3 63.9	3 03.7	3 63.3	3 62.8	9 02.0	3 62.0	3 62.6	3 62.4	3 62.3	3 62 3	3 62.2	3 62.2	3 62.1	9 10 6	3 615	.3 61.7	9 01.8	.3 82.1	3 62 4			
	Elapsed	TH.	- de		1275.3	1270.3	1283.3	1287.3	1291.3	1209.3	1200.3	1303.3	1307.3	1311.3	1315.3	1310.3	1323.3	1327.3	1331.3	1335.3	1330.3	1343.3	1347.3	1351.3	1355 3	1350 3	1363.3	1367.3	1371.3	13793	1379.3	13833	1387.3		13953
	-	Time	Maximum Tomp		20:00	80.08	94.00	00.00	12:00	16.00	20.00	80.00	04:00	80	12:00	91	20 00	90.00	04:00	00:00	12:00	16.00	20:00	8	94 00	8	12 00	16 00	20 00	8	04.00	00	12.00	5 8	8 8
		Oate	3		3					20/2	7/93	05/26/93	05/26/93	05/28/93	05/28/93	05/28/83	05/28/93	05/28/83	05/29/83	05/29/93	05/28/83	02/58/03	05/29/83	05/30/93	05/30/93	05/30/83	05/30/93	05/30/93	05/30/93	05/31/83	05/31/03	05/31/93	05/31/83	05/31/93	05/31/03
		٥			05/26/83	05/27/03	05/27/93	04/27/83	1	41	05/27/93	05/2	02/20	05/2	03/5	05/2	05/2	03/2	5/50	05/2	05/2	05/2	05/2	05/3			05/1	0.57	05/1	.750	.70	.750	.X	80	\$ 80 80
									•	, 1			•																						

Table B-4 Ground Electrode and Outside Thermowell Temperatures (Recorded by Data Logger) [Continued]

C 68	- 0	١		•	69 7	60 3	40 4	97.	600	20 5	609	70 2	73.3	73.4	733	121	72 6
0,0	91.0			<u>.</u>	31.5	• •		7.16	21.7	• :	91.6	918	916	-	3.0	3 6	31.7
ນ ນ•ູນ	40.4			0.0		48.7				:	7	7	0.8	<u>:</u>	*	5 2	78 2
C 88	6 9 9			0.0	40.4	82.6		82.8			. 0 .	•	85 G	62.0	30	8.2 B	2.1
04¥	_			75.0	756	•		110	17.2	77.3	770	170 1	17.2	7.11	77.3	2 11	78.3
C3D	32.7 02.	Г		32.9 7	32.2	32.3 7	32.2	32.4 7	32.9	32.5	32.5	32.3	32.4	32.5	926	32.7	32.7
C3C	52.0 3	1		51.6	51.2	50.9	50.6	51.5	91.0	51.1	20 6	50.4	503	90.0	90 9	20	
C38 C	S 80	1		82.2	81.3	• 0	61.3	8.11	7.1		7.0	5 01	1.1	0.18	•	9.0	2 0 2
C3A	6 2 6	١.		503	703	79.0	78.0	70.0	78.0	78.8	78.2	77.7	77.0	78.0	77.0	9 / /	17.4
CZD C	•			31.7	31.2 7	31.3	31.3	31.5	31.6	31.7	31.0	31.3	910	31.7	31.0	•	31.8
CZC	48.7 31		•	.7	1.11	40.0	48.0	48.4	48.3	484	48.2 3	47.0	17.6	. 0 11	47.0	• 2	9.7.
CZB	14.7 41			7.0	13.0	3.0	743 4	1.1.4	143 4	4 0 1/	73.4	73.1	730	73.0	73.0	730 4	72.
CZA	0.20	1		61.7	7. 0.18	12.2	7 0.01	13.4 7	83.2 7	13.3 7	62.8 7	63.0 7	132 7	63.2 7	630 7	7 2.50	02 5 7
010	1	1	1.20 0.24	42.6	6.11		12.2	42.5	12.4	42.4	0 0.11	6 8.13	12.2	12.3	42.3	12.2	-
0 0 10		1	-	87.8	93.0	83 6 4	13.0	• 0.1	13.0	13.1	13.4	83.1	13.4	635	838	635	930
000	Ì	ı	30.3	30.3	30 2 6:	30.3	30.3	30.4	30.5	30.4	30 1	30 0	30.4	30 5	30 5	30.3	30.2
		1	27.3	27.5	27.3 3	27.5	27.3	27.5 3	27.5 3	27.7 3	27.5 3	27.3 3	27.4 3	27.6 3	27.7	27.7	27.5
7C TW7D	1	١	31.6	38.7 2	38.4 2	31.5	380 2	38.6 2	38 6 2	38.7 2	2 1 10	38 3 2	380 2	36 5 2	386 2		38.5
78 TW7C		ı	7	•	58.3 30	58.3 30	58.4 3	58.8	587 3	58 7 3	58.1	57.0 3	58.3 3	58 5 3	58.6 3	58 4 3	\$60 3
A4D TW78		1	37.4	33.4 51	33 2 50	33.5 50	33 3	33.6 5	33.7 \$	33.7 5	335 5	335 5	33 7 5	338 5	33 9 5	338 8	33.8 \$
400		١	_	48.7 3:	48.2	48 2 33	47.9	48.3	48.4 3		48.1	47.9 3	47.0 3	48.2	483 3	46.3	
4	1	1	78.4 48.4	78.7	4 .00	77.2 4	78 8	77.7	77.8 4	78.1	77.9 4	17.7	784 4	79.8	10 3	101	603
•	1	1	108.3	106 5 7	106.7	7 0.701	108 5 7	109 3 7	100 8 7	1102 7	110.2	110.1	111.3 7	111.0 7	1122	111.3	1.2.1
4	-		31.6	31 8 10	31.4 10	01	31 6 10	31.8 10	31 8 10	31.8	31.7 11	316 11	31.8 11	32 0 11	32 0 11	32 0 11	31.0
,	1		45.2	45 4 3		450 3		45 2 3	45.1 3	453 3		447 3	44.8	45.1 3	45 1 3	45 1 3	44.8
•			80.5	8ó3 4	10.2	10.4	10.2	40 5 4	* * 0 *	808	000	79.9	000	102 4	102	802	70 8
	1 '		71.4	71.3	105	71.4	71.6	72.2	72.3	72.2	72.0	737 7	74.4	72.0	73.1	73.1	730 7
:	1	١	42.3	42.3 7	41.0		12.1	42.3	42.3			41.8	42.2	42.2	42.3		41.7
•			70.0	70.6	7		•	70.2	70.2	700	6 6 6	1 09	9 09	1 10			40 2
	i i		0.20	1.7	• • •		12.5	63.0	62 8 7	62.0	62.7		02.0	93.0	12.4		92.4
	i i		1403.3	1407.3		_	1410.3	_	1427.3						1451.3	_	1458.3
Elapsed	Ilmom Temp																
	Maximu		94:00	80													15:00
	O E		06/10/93	06/01/93	04/01/83	06/01/83	06/01/83	06/02/83	06/02/83	06/02/83	06/02/93	06/02/83	06/02/93	06/03/93	06/03/93	06/03/83	06/03/93
	'		, 0	0	. 0				1								3

Excitor Electrode B1 Temperature

Temperature, C (Thousands)

B2 Temperature Figure B-3 Excitor Electrode

Temperature, C (Thousands)

Temperature Excitor Electrode B3

Temperature, C (Thousands)

Excitor Electrode B4 Temperature Figure B-5

Temperature, C (Thousands)

Figure B-6
GROUND ROW A (EAST ROW) TEMPERATURES
(1-ft Depth)

A4A

GROUND ROW A (EAST ROW) TEMPERATURES (12-ft Depth) **A**3B (Thousands) Elapsed Time, hr 0.8 9.0 A2B 0.5 0.4 0.2 0 80 70 09 20 20 90 40 30 100 10

Temperature, C

Temperature,

Figure B-9
GROUND ROW A (EAST ROW) TEMPERATURES
(29-ft Depth) A4D (Thousands). Elapsed Time, hr 0.8 0.7 9.0 A3D 0.5 0.4 0.3 0.2 0.1 0 28 26 34 32 30 25 24 35 33 29 22 27 23 31

120 Temperature, C

GROUND ROW C (WEST ROW) TEMPERATURES (1-ft Depth) Figure B-10 20 80 70 20 10 90 9 40 110 100 30

Temperature, C

(Thousands) Elapsed Time, hr

0.6

0.4

0.2

C4A

C2A

Temperature, C

GROUND ROW C (WEST ROW) TEMPERATURES (24-11 Depth) C2C C4C (Thousands) Elapsed Time, hr 0.8 9.0 C1C C3C**\rightarrow** 0.4 0.2 30 50 40 35 25 20 45 55

Temperature,

GROUND ROW C (WEST ROW) TEMPERATURES (29-ft Depth) C3D090 (Thousands) Elapsed Time, hr 0.8 Figure B-13 0.7 9.0 C4D 0.5 0 0.4 0.3 0.2 0.1 0 33 28 26 34 29 20

Thermowell Temperature vs. Time (1-foot depth) Figure B-14

Thermowell Temperature vs. Time TW2B TW5B (12-foot depth) (Thousands) Elapsed Time 0.8 Figure B-15 9.0 TW1B TW4B 4 0.4 0.2 0.1 0 200 100 20 180 9 160 80 220 140 120 40 0

Thermowell Temperature vs. Time (24-foot depth)

Temperature, C

Figure B-17 . Temperature Outside the Heated Array 0.9 TW7B, 3-ft outside (Depth of 12 ft) (Thousands) Elapsed Time, hr 0.8 Row C 0.7 9.0 0.5 0.4 0.2 0.1 20 80 70 9 40 30 20 90 100 10

Temperature,

Figure B-18 Temperature Outside the Heated Array (Depth of 24 ft)

Temperature Outside the Heated Array (Depth of 29 ft, Near Ambient Temp.) Figure B-19

Figure B-22. Longitudinal Temperature Distribution in Plane LONG (Depth: 20-24 ft) **B**4 12 **B**3 ∞ Distance, ft **B**2 9 8 171 hr 343 hr 507 hr 676 hr 843 hr 1012 hr 1085 hr 1250 hr TW2 --A------⊟---TW1 1100 1000 009 500 700 900 800 400 300 200 100 Temperature, C

LONGZOI

Figure B-24. Longitudinal Temperature Distribution in Plane LNGU 1250 hr 1418 hr 1085 hr 1012 hr 843 hr ω Distance, ft (Depth: 12 ft) c3 \overline{c} Temperature, C

90 Figure B-25. Longitudinal Temperature Distribution in Plane LNGU (Depth: 24 ft) 1012 hr 1085 hr 1250 hr 1418 hr \Im င္ပ \ddot{c} \overline{c} 9 50 Temperature, C

UNGULAT

Figure B-26. Transverse Temperature Distribution in Plane TRNV **A2** ∞ Distance, ft (Depth: 1 ft) **TW3** 8 130 120 110 90 Temperature, C

THEVOIL

Figure B-27. Transverse Temperature Distribution in Plane TRNV တ 1012 hr 1085 hr 1250 hr 1418 hr 24 hr 171 hr 343 hr 507 hr 676 hr 843 hr $\boldsymbol{\omega}$ 9 Distance, ft TW2 2 (Depth: 12 ft) က TW3 2 80100 110 90 9 50 20 120 80 70 40 30 Temperature, C

TPMV121

Figure B-28. Transverse Temperature Distribution in Plane TRNV **A**2 တ 1085 hr 1250 hr 1418 hr 1012 hr ∞ ဖ Distance, ft (Depth: 24 ft) 2 က TW3 C5 30 50 9 20 40 Temperature, C

TPM5011 Figure B-29. Transverse Temperature Distribution in Plane TRNS တ ∞ 9 Distance, ft 2 <u>m</u> (Depth: 1 ft) TW4 1012 hr 1085 hr 1250 hr 1418 hr S ₽_ ဗ္ဗ 260 210 10 160 9 Temperature, C

APPENDIX C
ELECTRICAL DATA

APPENDIX C

ELECTRICAL DATA

The electrical data and logbook entries regarding the performance of the RF power source and other observations concerning the load are summarized in this memo. Detailed information is available in the log-books. There are two tables entitled: Operating Data -- Electrical and Summary of Log Book Entries.

The table entitled Operating Data -- Electrical provides the electrical operating data for the heating experiment. The following data are tabulated:

- Date and Time
- Forward and Reflected power as measured at the array
- Net input power obtained as the difference of the forward and reflected power measured at the array
- Elapsed time in hours from the beginning of the experiment
- Equivalent days of operation at 40-kW.
- Elapsed calendar days of operation
- found by dividing Power source utilization factor, percent; equivalent days at 40-kW by the calendar days.
- VSWR estimated by equation (1) below. Also see Note 1 below. Vector Voltmeter readings, Va and Vb in mV.
- Magnitude of impedance calculated from equation (2) below
- Phase angle as measured by the vector voltmeter
- Magnitude of real and imaginary portions of the impedance as calculated by Equations (3a) and (3b) below.

$$VSWR = \frac{1 + \sqrt{\frac{Refl}{Forward}}}{1 - \sqrt{\frac{Refl}{Forward}}}$$
(1)

$$Z, ohms = 31.98\left(\frac{Va}{Vb}\right) \tag{2}$$

$$Z_{real} = Z \cos\left(\frac{\pi}{180} \left(-\phi\right)\right) \tag{3a}$$

$$Z_{img} = Z \sin\left(\frac{\pi}{180} \left(-\phi\right)\right) \tag{3b}$$

where:

Refl: Reflected power measured at array Forward: Forward power measured at array

 ϕ : phase angle measured by Vector voltmeter

Va, Vb: Vector voltmeter readings, mV

NOTE 1: On May 22, it was observed that there was a large discrepancy between the net input power as measured at the array versus that measured at the power source. This is marked on page 22 of the table containing electrical data (between two horizontal lines). From this point onwards, the forward and reflected data tabulated in this table is from measurements made at the power source. Due to this reason, subsequent VSWR calculations are 1 or very close to 1 unless there was significant reflected power at the power source.

Table C-1 Operating Data -- Electrical

			A Across		Flanced	Folliv	Flansed	Source		Vector Voltmeter	Imeter			1	
	TIME	ī .⊆ A	rower at Airay in kW	Power	Time	Days at	Days	5	VSWR	s S	٩ :	7	Angle	Z	2 Vaccinem
DATE	Ę	Forw.	Refl.	in KW	hours	40 KW		%) E)	EIU0	nedree	1	milagiila y
		1	1	1	6	0	S		4.8	13.0	9.2	45.2	-70.5	15.1	
03-Apr	16 40))			¥	7 7	13.0	00	45.2	7.07-	14.9	
03-Apr					3.4			2 1	ב ב	9	; i	FBB		FRA	
03 – Apr					3.4		0.7	<u>1</u> 2						H H	
03-Apr					6.1			x	ij	1	(ָרָ לָּיִי ביילי	7	45.0	
03 - An	22 46			5.70	6.1		0.3	8	4.7	12.5	6. 6.	44.9	-/0.2	2.61	
04 – Apr	2 50	_				0.0		= :	4.9					, H	FRR
04-Apr	2 51							E (H			ב מ מ מ		H H	
04 - Apr	3 10	0.0						10	H S			ב ממי		H H	
04-Apr	3 11	10.0						2 ;	4, 4	404	0	42.2	-719	13.5	
04 - Apr	8 39	_						- •	4. C	12.0		n n)	EBB	
04 - Apr	9 40						0.7	- 1	ב ב נ נ					FRR	
04 – Apr	8 54							2 7	H.	•	10 5	43.7	-719	13.6	41.6
04 - Apr	8 55							_ •	4 u	-		FRR	2	EBB	
04 - Apr								- •				E B B		FAR	
04 Apr	10 30							2 (ב כ ב ב ב ב	0	404	43.0	-719	13.4	
04 - Apr	10 39). 0	- •	L 4		2.4	FRR)	EBB	
04 - Apr	10 40	_							- c					FBB	
04 - Apr	14 29	_						•			106	43.4	-722	13.3	
04 - Apr	14 30							•		-	2.0	1.0.1 1.0.1	i	FRR	
04 - Apr	14 4	4 0.0										FRA		EBB	ERR
04-Apr	14 45	ın												FR	
04 – Apr	15 29	9 20.0						- '			0	, 43.7	-718	13.7	
04 – Apr	15 3(0 41.5						- 1		7.07	D O	13.7	0.	E G	
04 - Apr	16 59	9 43.0										ב מ ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב			
04 - Anr	17 (0.0						_			•	ָרָ לְּיִלְּיִלְּיִילְיִילְיִילְיִילְיִילְיִ	1		
04 - Apr	1	5 0.0	0.0	0.00	24.4	0.2	1.0	_	ш	25.8	18.9	43.7	0.17-	13.0	41.4
04 - Apr	17 (6 43.0				0.5	- -	18	5.0		•	רבע טעי	707	15.1	
04 – Apr	18 59				26.3	0.5	-	21	4 .	25.0	7.01		t.02	2	

Table C-1 Operating Data -- Electrical (Continued)

		1	Power at Array	Input	Elapsed	Equiv.	Elapsed	Source		Vector Voltmeter	Itmeter				
	TIME		<u></u>	Power	Time	Days at	Days	Days Utilization	VSWR	Va	ş	7	Angle	7	7
DATE	ie E	Forw.	Refl.	in kW	hours	40 KW		%		JE /	Α V	ohm	degree	Real	Real Imaginary
05Apr		l .	10.8	22.20	40.3	0.5	1.7	32	3.7			ERR		EAR	FAR
05Apr			0.0	0.00	40.3	0.5	1.7	32	EAR	22.1	15.5	45.6	-68.8	16.5	42.5
05~Apr	6		0.0	0.00	40.5	0.5	1.7	32	ERR			ERR	}	EBB	FBB
05-Apr			10.8	22.20	40.5	0.5	1.7	32	3.7			ERR		EBB	FBB
05-Apr			10.8	22.20	41.4	9.0	1.7	33	3.7			EAR		EBB	FRR
05Apr			15.0	34.00	41.6	9.0	1.7	33	3.5	27.5	18.5	47.5	9.79-	18.1	44.0
05-Apr	10 59	49.0	15.0	34.00	42.3	9.0	1.8	34	3.5			EHR		EBR	ERR
05-Apr	= :		0.0	0.00	42.3	9.0	1.8	34	ERR	27.6	18.3	48.2	-67.1	18.8	44.4
05-Apr			0.0	0.00	42.7	9.0	1 .8	34	EAR			EHR		ERR	ERR
05-Apr			16.2	35.80	42.7	9.0	1.8	34	3.5	27.8	18.7	47.5	67.9	17.9	-44.0
05-Apr	12 59		14.0	36.00	44.3	0.7	1.8	36	3.2			ERR		ERR	ERR
05-Apr			0.0	0.00	44.3	0.7	1.8	36	ERR	27.2	17.8	48.9	-66.1	19.8	44 7
05-Apr			0.0	0.00	44.5	0.7	1.9	36	EHH			EAR		FRA	FBB
05-Apr			14.0	36.00	44.5	0.7	1.9	36	3.2			ERR		EBB	EBB
05~Apr			11.9	32.90	46.3	0.7	1.9	38	3.1			ERR		EHH	FRR
05-Apr			0.0	0.00	46.3	0.7	1.9	38	ERR	26.2	17.2	48.7	~63.0	22.1	43.4
05~Apr			0.0	0.00	46.5	0.7	1.9	37	ERR			ERR		FB	FRR
05Apr			11.9	32.90	46.5	0.7	1.9	37	3.1			EAR		FRR	H H
05-Apr			11.9	32.90	47.3	0.8	2.0	38	3.1			EAR		FRR	FRR
05-Apr			0.0	0.00	47.3	0.8	2.0	38	ERR			EAR		FBR	, H
05-Apr	16 19		0.0	0.00	47.7	0.8	2.0	38	EAR			ERR		ERR	EBB
05-Apr			12.0	34.00	47.7	0.8	2.0	38	3.1	26.0	17.5	47.5	-63.3	21.3	42.4
05-Apr			12.0	34.00	49.3	0.8	2.1	40	3.1			, EAR		EAR	FRR
05-Apr			0.0	0.00	49.3	0.8	2.1	40	EAR	24.9	15.7	50.7	-52.6	30 B	403
05Apr			0.0	0.00	49.4	0.8	2.1	39	ERR			EAR		FBB	FBB
05-Apr			8.5	33.50	49.4	0.8	2.1	39	2.6			ERR		FRR	
05-Apr			8.5	33.50	51.3	0.9	2.1	4	2.6			ERR		FRB	EDB
05-Apr			0.0	0.00	51.3	0.9	2.1	41	EAR			EAR		EAR	FRR
															; j

Table C-1 Operating Data -- Electrical (Continued)

	7	lmaginary ्रिहे	ERR	- -																			ERR				ERR	EAR		
	7	Real	EAR	ERR	EHH	EHH	ERR	30.5	30.7	ERR	ERH	ERR	ERR	31.8	ERR	ERR	ERR	32.3	ERR	ERR	ERR	32.8	EHR	EAR	ERR	33.1	ERR	ERR	ERA	33.3
	Angle	degree						-52.7	-53.0					-52.0				-50.5				-49.2				-47.5				-46.4
	Z	mho	ERR	ERR	ERR	ERR	ERR	50.3	51.0	ERR	ERR	ERR	ERR	51.7	ERR	ERR	ERR	50.8	ERR	ERR	ERR	50.3	EAR	ERR	, ERR	49.0	ERR	ERR	EAR	48.3
oltmeter	Ş	» VE						18.2	18.0					17.7				17.5				17.5				17.3				17.0
Vector Voltmeter	Va	E >						28.6	28.7					28.6				27.8				27.5				26.5				25.7
	VSWR		ERR	5.6	5.6	ERR	EAR	5.6	5.6	ERR	ERR	5.6	5.6	ERR	ERR	5.6	2.5	ERR	EBB	2.5	2.4	EAR	ERR	2.4	2.4	EBB	ERR	2.4	2.3	ERR
Source	Days Utilization	%	41	41	43	43	42	42	43	43	43	43	45	45	45	45	47	47	46	46	48	48	48	48	49	49	49	49	51	51
Elapsed	Days	•	2.1	2.1	2.5	2.2	2.3	2.3	2.3	2.3	2.3	2.3	2.4	2.4	2.4	2.4	2.5	2.5	2.5	2.5	5.6	5.6	5.6	5.6	2.6	5.6	5.6	2.6	2.7	2.7
Equiv.	Days at	40 KW	6.0	0.9	6.0	0.9	6.0	0.9	1.0	1.0	0.1	1.0		Ξ:	-	=	=	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.3	1.3	1.3	1 .3	4.	4.
Elapsed		hours	51.4	51.4	53.3	53.3	54.5	54.5	55.3	55.3	55.6	55.6	57.3	57.3	57.5	57.5	59.3	59.3	59.6	59.6	61.3	61.3	. 61.6	61.6	63.3	63.3	63.5	63.5	65.3	65.3
Input	Power	in KW	0.00	33.50	33.50	0.00	0.00	45.00	45.00	0.00	0.00	45.00	45.00	0.00	0.00	45.00	41.00	0.00	0.00	41.00	41.80	0.00	0.00	41.80	39.80	0.00	0.00	39.80	40.80	0.00
Power at Array	⊗	Refl.	0.0	8.5	8.5	0.0	0.0	10.0	10.0	0.0	0.0	10.0	10.0	0.0	0.0	10.0	9.0	0.0	0.0	9.0	8.2	0.0	0.0	8.5	8.5	0.0	0.0	8.5	7.2	0.0
Power	in KW	Forw.	ı																				0.0				0.0	48.0	48.0	0.0
	TIME	Ē Ē	20 5							0	0 15	0 16	1 59	2	2 10	2 11	3 59	4	4 15	4 16			6 15				8 10		9 59	10 0
		DATE	05-Apr	05-Apr	05Apr	05-Apr	05-Apr	05-Apr	05-Apr	06-Apr	06-Apr	06Apr	06-Apr	06Apr	06-Apr	06-Apr	06-Apr	06~Apr	06-Apr	06-Apr	1	06Apr	ŧ	1	06-Apr	ľ		Ţ.	06-Apr	06-Apr

Table C-1 Operating Data -- Electrical (Continued)

										1	10,000				
		Power at Array	It Array	<u>Input</u>	Elapsed	Equiv.	Elapsed	Source		vector vontmeter	rmeter ::	t	4	r	٢
	TIME	in KW	≥	Power	Time	Days at	Days L	Days Utilization VSWR	VSWR	۸a	<u>م</u>	7	Angle		۷.
DATE	hr mi	Forw.	Refl.	in kW	hours	40 KW		%)E	Д Уш	eho E	degree	Real Im	maginary
06-Apr	10 8	1	0.0	0.00	65.5	1.4	2.7	20	ERR			ERR	,	EAR	EAR
06-Anr			7.2	7	65.5	4.1	2.7	20	2.3			ERR		ERR	H
06 Anr			6.5		67.3	1.5	2.8	52	2.2			EAR		EBB	EAR
06 Apr			0.0		67.3	1.5	2.8	52	ERR	25.5	16.2	50.3	-45.4	35.3	35.8
06-Apr	12 9	0.0	0.0	0.00	67.5	1.5	2.8	52	ERR			EAR		ERR	EHH H
O6-Apr			6.5		67.5	1.5	2.8	52	2.5			EHB		ERR	H
06 - Apr	14 39		6.5		70.0	1.6	2.9	53	2.5			ERR		ERR	ERR
06 - Apr	14 40		0.0		70.0	1.6	2.9	23	ERR			EAR		ERR	EHH
06-Apr	14 50		0.0		70.2	1.6	2.9	53	EHH			ERR		EHH	H S
06-Apr			6.8		70.2	_	5.9	53	2.2	24.3	16.5	47.1	-44.9	33.4	33.2
06-Apr	15 30		6.5		70.8	_	3.0	54	2.5	25.3	16.3	49.6	-43.7	35.9	34.3
06-Apr			6.5		73.3	1.7	3.1	52	2.5			ERR		HH	I (
06-Apr			0.0		73.3	1.7	3.1	52	ERR			EAR		EHR	EHH
06-Apr	18 5		0.0	0.00	73.4	•	3.1	52	ERR			ERR		EAR	ERR
06-Apr			6.5		73.4	_	3.1	52	2.5			EAR	!	ERR	HH
			6.5		77.3	1.8	3.5	22	2.5	25.2	16.4	49.1	-44.5	35.0	34.4
			0.0		77.3	•	3.5	57	ERR			ERR		ERR	ERR
	22 5		0.0		77.4	•	3.5	27	EAR			ERR		ERR	EAR
			6.5		77.4	1.8	3.5	27	2.5			ERR		EHH	H
07 – Apr			6.5		81.3	2.0	3.4	29	2.5			ERR		EHH	HH
07 – Apr	2		0.0		81.3	2.0	3.4	29	ERR	25.2	16.6	48.5	-44.5	34.6	34.0
07 Apr			0.0	0.00	81.5	2.0	3.4	29	EAR			ERR		ERR	EAR
07-Apr			6.5	•	81.5	2.0	3.4	59	2.5			, EAR		ERR	ERR
07 – Apr			6.4		85.3	2.5	3.6	61	2.5			ERR		EAR	EAR
07Apr	9		0.0		85.3	2.5	3.6	61	ERR	25.0	16.7	47.9	944.2	-34.3	33.4
07 – Apr	9	0.0	0.0		85.5	2.2	3.6	9	EAR			EAR		ERR	ERR
07 – Apr	9		6.5	39.50	85.5	2.2	3.6	8	2.5			ERR		EHR	H.
07 Apr	8 29	_	9.9		87.8	2.3	3.7	61	2.2			ERR		EAR	ERR

Table C-1 Operating Data -- Electrical (Continued)

	TIME		Power at Array in kW	Input Power	Elapsed Time	Equiv. Days at	Elapsed Days	apsed Source Days Utilization	VSWR	Vector Voltmeter Va Vb	tmeter Vb	2	Angle	7	7
DATE	Ē.	Forw.	Refl.	in kW	hours	40 KW		%)	>	ELICO	degree		ilagii iai y
07 – Apr	1	1	0.0	ı.	87.8	2.3	3.7	61	ı			ERR		EAR	ERR
07 – Apr			0.0	0.00		2.3	3.7	61				ERR	•	HH.	H G
07 – Apr	8 37		9.9		88.0	2.3	3.7	61		24.7	16.7	47.3	-44.9	33.5	33.4
07 - Apr			9.9		92.4	2.4	3.9	63				ERR		ERR	ERH
07 - Apr	13	0.0	0.0		92.4	2.4	3.9	63				ERR		ERR	EHH
07 – Apr	13 14	0.0	0.0		92.6	2.4	3.9	63				ERR		EAR	EAR
07 – Apr	_		7.5		92.6	2.4	3.9	63		25.7	16.8	48.9	-47.6	33.0	36.1
07 – Anr			7.5		93.9	2.5	3.9	64		25.4	16.5	49.2	-47.9	33.0	36.5
07 - Anr	16.55		7.5		96.3	2.6	4.0	64				ERR		ERR	ERR
07 - Anr	17		0.0		96.3	2.6	4.0	64				EBB		ERR	ERR
07 - Apr	17 7		0.0		96.5	2.6	4.0	64		25.4	16.4	49.5	-47.3	33.6	36.4
07 - Apr	17 8		7.5		96.5	2.6	4.0	64				ERR		ERR	EAR
07 – Apr			7.2		98.6	2.7	4.1	65		25.6	16.2	50.5	-46.7	34.7	36.8
07 – Apr	21 52	2 46.2	7.0	39.20	101.2	2.8	4.2	99	2.3	25.9	16.2	51.1	-46.1	35.5	36.8
07 – Apr			7.0		101.3	2.8	4.2	99				ERR		EAR	EBB
07 – Apr			0.0		101.3	2.8	4.2	99				ERR		EAR	EAR
07 – Apr			0.0		101.4	2.8	4.2	99				ERR		ERR	EHH
07 – Apr			7.0		101.4	2.8	4.2	99		26.0	16.2	51.3	-46.6	35.3	37.3
08-Apr			7.0		106.1	3.0	4.4	29				EAR		ERR	EAR
08-Apr	2 45		0.0		106.1	3.0	4.4	29				ERR		EAR	EHH
08-Apr			0.0		. 106.8	3.0	4.5	29				ERR		EBB	. ERR
08-Apr	33		6.5	39	106.8	3.0	4.5	29				ERR		EAR	EAR
08-Apr			6.5	33	109.3	3.1	4.6	89				, ERR		EAR	EHH
08 – Apr			0.0	0		3.1	4.6	68				EAR		ERA	ERH
08 – Apr	2 9		0.0		109.5	3.1	4.6	29		28.0	15.5	57.8	-47.0	39.4	42.3
08 - Apr			6.5	39	109.5	3.1	4.6	29				ERR		ERR	ERA
- 1			6.9	39		3.2	4.6	68	2.3	27.3	15.5	56.3	-48.4	37.4	42.1
08-Apr	11 0	0 47.0	7.0	40	114.3	3.3	4.8	69	2.3	27.1	15.3	56.6	-47.5	38.3	41.8

Table C-1 Operating Data -- Electrical (Continued)

	TIME		Power at Array in kW	Power	Elapsed Time	Equiv. Davs at	Elapsed Days I	apsed source Days Utilization	VSWR	vector voitmeter Va Vb	Imerer Vb	2	Angle	Z	Z
DATE	hr mi	P _O	Refl.	in kW	hours	40 kW		%		> E	JII/	mho	degree	Ξ.	maginary
08-Apr	11 26	3 47.0	7.0	40.00	114.8	3.3	4.8	69	2.3			ERR		ERR	ERR
08 - Apr	11 27		0.0	0.00	114.8	3.3	4.8	69	ERR			ERR		ERR	EAR
08-Apr	11 41	0.0	0.0	0.00	115.0	3.3	4.8	69	ERR			ERR		ERR	EBB
- 1	11 42	2 44.2	7.0	37.20	115.0	3.3	4.8	69	2.3	26.8	15.0	57.1	-48.1	38.2	42.5
	13 30		7.0	39.50	116.8	3.4	4.9	69	2.3	27.3	15.2	57.4	-48.1	38.4	42.8
08-Apr	14 25		7.0	39.00	117.8	3.4	4.9	69	2.3	27.3	12.1	57.8	-48.1	38.6	43.0
- 1	15 44	1 46.0	7.0	39.00	119.1	3.5	5.0	20	2.3			ERR		EAR	EAR
08-Apr	15 45		0.0	0.00	119.1	3.5	5.0	2	EAR			ERR		ERR	EBB
08 – Apr	15 59	_	0.0	0.00	119.3	3.5	5.0	20	EAR			ERR		EAR	EBB
08-Apr	16 0	_	7.2	37.80	119.3	3.5	5.0	70	2.3	27.6	15.2	58.1	-47.2	39.5	42.6
08-Apr	u,		7.2	37.80	122.3	3.6	5.1	2	2.3			ERR		ERR	EHH
08-Apr			0	0	122.3	3.5	5.1	69	EHH			ERR		ERR	EAR
08-Apr			0	0	122.4	3.5	5.1	69	ERR			ERR		ERR	ERR
08-Apr			7.0	38.00	122.4	3.6	5.1	70	2.3	27.6	15.0	58.8	-47.2	40.0	43.2
09-Apr	0 29		7.0	38.00	127.8	3.8	5.3	71	2.3			ERR		EBB	ERR
09 – Apr			0.0	0.00	127.8	3.7	5.3	69	ERR			ERR		ERR	EAR
09-Apr			0.0	0.00	129.3	3.5	5.4	65	EBB			ERR		ERR	ERR
09-Apr			7.0	41.00	129.4	3.7	5.4	99	2.5			ERR		ERR	EAR
09-Apr	4	_	7.0	41.00	131.3	3.9	5.5	72	2.5	28.7	15.2	60.4	-47.8	40.6	44.7
09 – Apr	4		0.0	0.00	131.4	3.9	5.5	71	ERR			ERR		ERR	EAR
09 – Apr	4		0.0	0.00	131.4	3.7	5.5	29	ERR			ERR		ERR	ERA
09-Apr	4	7 48.0	7.0	41.00	131.5	3.6	5.5	65	2.5			ERR		ERR	EAR
- 1	6	_	7.0	43.00	136.3	4.2	5.7	73	2.5	28.0	14.7	6.09	-48.4	40.4	45.6
09-Apr	10 55	_	7.0	41.00	138.3	4.3	5.8	74	2.2	27.5	14.4	61.1	-48.2	40.7	45.5
- 1	13 43		7.0	41.00	141.1	4.4	5.9	74	2.2			ERR		ERR	EAR
- 1	10 44		0.0	0.00	138.1	4.3	5.8	75	EAR	27.8	14.4	61.7	-48.4	41.0	46.2
09-Apr	10 53	_	0.0	0.00	138.2	4.3	5.8	75	EAA			ERR		ERR	EAR
09-Apr	10 55		7.0	41.00	138.3	4.3	5.8	75	2.2			ERR		ERR	EAR

Table C-1 Operating Data -- Electrical (Continued)

7	maginary	ERR	ERR	ERR	EAR	45.5	EBB	ERH	ERR	ERR	45.8	44.6	44.1	ERR	EAR	40.3	EAR	ERR	40.5	ERR	FBB	EBB	43.7	412	FRR	Fran	T D D	. H	41.4
7	<u>.</u>	ERR	ERR	ERR	ERR	40.4	ERR	ERR	ERR	EAR	41.7	44.0	44.8	EAR	EHR	48.0	ERR	EAR	44.8	EAR	ERR	ERR	47.9	45.8	ERR	FBB	FRR	EBB:	45.8
Angle	degree					-48.4					-47.7	-45.4	-44.6			-40.0			-42.1				-42.4	-42.0					-42.1
Z	Euo	ERR	ERR	ERR	ERR	6.09	ERR	ERR	ERR	ERR	62.0	62.6	62.9	ERR	ERR	62.7	ERR	ERH	60.3	ERR	ERR	ERR	64.9	, 61.6	ERR	ERR	EAR	ERR	61.8
Itmeter Vb	È					14.4					14.5	14.5	14.5			14.7			15.0				14.0	14.7					14.5
Vector Voltmeter	È					27.4					28.1	28.4	28.5			28.8			28.3				28.4	28.3					28.0
VSWR		2.2	EHH	EHR	2.2	2.2	2.2	ERH	ERR	2.5	2.5	2.5	2.5	2.5	ERR	EAR	2.5	2.1	2.1	2.7	ERR	EBB	2.1	2.2	2.2	EAR	ERR	2.2	2.2
apsed Source Days Utilization	,	74	73	74	73	74	74	74	74	74	74	75	75	75	75	75	75	9/	77	77	77	22	11	11	78	78	78	78	78
Elapsed Days		5.9	5.9	5.9	5.9	0.9	6.1	6.1	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.4	6.4	6.5	6.7	6.8	6.8	6.8	6.8	6.9	7.0	7.0	7.0	7.0	7.0
Equiv. Days at	40 KW	4.4	4.3	4.4	4.3	4.5	4.5	4.5	4.5	4.5	4.6	4.7	4.8	4.8	4.8	4.8	4.8	4 9.	5.5	5.5	5.5	5.2	5.5	5.3	5.4	5.4	5.4	5.4	5.5
-	Sinonis	141.6			141.8	144.9	145.8	145.8	145.9	145.9	148.5	150.3	152.8	154.3	154.4	154.5	154.5	156.3	161.4	163.0	163.0	163.2	163.3	165.7	167.0	167.0	167.1	167.1	168.9
Input Power	III KVV	41.00	0.00	0.00	41.10	39.70	39.70	0.00	0.00	39.70	40.00	40.00	39.80	39.80	0.00	0.00	39.80	40.00	43.00	43.00	0.00	0.00	42.50	41.50	41.50	0.00	0.00	41.50	40.50
Power at Array in kW		7.0	0.0	0.0	6.9	6.8	6.8	0.0	0.0	6.8	6.2	6.2	6.2	6.2	0.0	0.0	6.2	0.9	6.5	6.5	0.0	0.0	6.5	6.5	6.5	0.0	0.0	6.5	6.5
Power at A in kW	V	48.0	0.0	0.0	48.0	46.5	46.5	0.0	0.0	46.5	46.2	46.2	46.0	46.0	0.0	0.0	46.0	46.0	49.5	49.5	0.0	0.0	49.0	48.0	48.0	0.0	0.0	48.0	47.0
TIME		14 14	14 15	14 29	14 30			18 30		18 35				ဝ	ъ Т	3 ==	3 12		10	11 33	- 49	= 3	11 55			15 39	15 44	15 45	17 36
DATE	באור	09Apr	09Apr	09Apr	09-Apr	09-Apr	09-Apr	09Apr	09-Apr	09-Apr	09Apr	09-Apr	10-Apr	10Apr	10Apr	10-Apr	10-Apr	10-Apr	10-Apr	10-Apr	10-Apr	10-Apr	10-Apr	10-Apr	10Apr	10-Apr	10-Apr	10-Apr	10-Apr

Table C-1 Operating Data -- Electrical (Continued)

My hours 40 kW % % 2.1 My hours 40 kW % % 2.2 My hours 40 kW % % 2.2 My 170.7 5.6 7.1 78 2.2 My 170.7 5.6 7.2 78 ERR My 172.0 5.6 7.2 78 ERR My 172.0 5.6 7.2 78 ERR My 172.0 5.6 7.2 78 ERR My 172.0 5.6 7.2 78 ERR My 172.0 5.6 7.2 78 ERR My 172.0 5.6 7.2 78 ERR My 172.0 5.6 7.2 78 ERR My 172.0 5.6 7.2 78 ERR My 172.0 5.6 7.2 78 ERR My 172.0 5.6 7.2 78 ERR My 172.0 5.6 7.3 79 ERR My 183 5.8 7.3 79 ERR My 181.3 5.9 7.5 79 ERR My 181.3 6.0 7.6 79 ERR My 181.3 6.0 7.6 79 ERR My 181.3 6.0 7.6 79 ERR My 181.3 6.0 7.6 79 ERR My 181.3 6.0 7.6 79 ERR My 181.3 6.0 7.6 79 ERR My 181.3 6.0 7.6 79 ERR My 181.3 6.0 7.6 79 ERR My 181.3 6.0 7.6 79 ERR My 182.0 6.3 7.8 80 ERR My 192.0 6.3 80 78 ERR My 192.0 6.3 80 78 ERR					
Forw. Reff. in kW hours 40kW % 47.0 6.2 40.80 170.7 5.6 7.1 78 46.5 6.2 40.30 171.9 5.6 7.2 78 0.0 0.0 172.0 5.6 7.2 78 46.5 6.2 40.30 172.0 5.6 7.2 78 46.5 6.2 40.30 172.0 5.6 7.2 78 46.5 6.2 40.30 172.0 5.6 7.2 78 46.0 5.9 40.10 175.5 5.8 7.3 79 46.0 5.9 40.10 175.5 5.8 7.3 79 46.0 5.9 40.10 175.5 5.8 7.3 79 46.0 5.9 40.10 175.5 5.8 7.3 79 46.0 5.9 40.10 175.5 5.8 7.3 79 48.0 6.2 <td< th=""><th>VSWR</th><th></th><th>Z A</th><th></th><th>Z</th></td<>	VSWR		Z A		Z
23 47.0 6.2 40.80 170.7 5.6 7.1 78 32 46.5 6.2 40.30 171.9 5.6 7.2 78 33 0.0 0.0 0.00 172.0 5.6 7.2 78 34 46.5 6.2 40.30 172.0 5.6 7.2 78 38 46.5 6.2 40.30 172.0 5.6 7.2 78 38 46.5 6.2 40.30 172.0 5.6 7.2 78 13 46.5 6.2 40.30 172.0 5.6 7.2 78 10 0.0 0.0 175.3 5.7 7.3 79 14 0.0 0.0 175.5 5.8 7.3 79 15 46.0 5.9 40.10 175.5 5.8 7.3 79 16 0.0 0.0 175.5 5.8 7.3 79 17		mV mV		degree	Real Imaginary
32 46.5 6.2 40.30 171.9 5.6 7.2 78 33 0.0 0.00 172.0 5.6 7.2 78 34 0.0 0.00 172.0 5.6 7.2 78 38 46.5 6.2 40.30 172.0 5.6 7.2 78 13 46.5 6.2 40.30 173.6 5.7 7.2 78 13 46.5 6.2 40.30 173.6 5.7 7.2 78 14 0.0 0.0 175.3 5.7 7.2 78 14 0.0 0.0 175.5 5.8 7.3 79 15 46.0 5.9 40.10 175.5 5.8 7.3 79 15 46.0 5.9 40.10 175.5 5.8 7.3 79 16 0.0 0.00 175.5 5.8 7.3 79 17 48.0 18.1 <td></td> <td>.6 14.4</td> <td>63.5</td> <td>-44.4</td> <td></td>		.6 14.4	63.5	-44.4	
33 0.0 0.00 171.9 5.6 7.2 78 34 46.5 6.2 40.30 172.0 5.6 7.2 78 38 46.5 6.2 40.30 172.0 5.6 7.2 78 13 46.5 6.2 40.30 172.0 5.6 7.2 78 13 46.5 6.2 40.30 175.5 5.8 7.3 79 10 47.0 6.2 40.10 175.5 5.8 7.3 79 10 0.0 0.00 175.5 5.8 7.3 79 14 0.0 0.00 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 16 40.0 0.00 170.3 5.8 7.4 <t>78 17 48.0<</t>			ERR		ERR ERR
37 0.0 0.00 172.0 5.6 7.2 78 38 46.5 6.2 40.30 172.0 5.6 7.2 78 13 46.5 6.2 40.30 172.0 5.6 7.2 78 0 47.0 6.2 40.80 175.5 5.8 7.3 79 10 0.0 0.00 175.5 5.8 7.3 79 10 0.0 0.00 175.5 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 16 0.0 0.00 175.6 5.8 7.3 79 17 46.0 5.9 40.10 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.3 5.8 7.4 79 180 6.0 </td <td></td> <td></td> <td>EAR</td> <td></td> <td></td>			EAR		
38 46.5 6.2 40.30 172.0 5.6 7.2 78 13 46.5 6.2 40.30 175.3 5.7 7.3 79 9 46.0 5.9 40.10 175.5 5.8 7.3 79 10 0.0 0.0 175.5 5.8 7.3 79 14 0.0 0.0 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 0 48.0 5.9 40.20 178.3 5.9 7.5 79 10 48.0 6.2 41.80 181.3 6.0 7.6 79 10 48.0 6.2 41.80 181.3 6.0 7.6 79			ERR		
13 46.5 6.2 40.30 173.6 5.7 7.2 78 0 47.0 6.2 40.80 175.3 5.7 7.3 79 9 46.0 5.9 40.10 175.5 5.8 7.3 79 10 0.0 0.0 0.00 175.6 5.8 7.3 79 14 0.0 0.0 0.00 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 0 47.0 5.8 41.20 177.3 5.8 7.4 79 0 48.0 5.9 40.10 175.3 5.9 7.5 79 0 48.0 6.0 42.00 179.3 5.9 7.5 79 54 48.0 6.2 41.80 181.3 6.0 7.6 79 59 0.0 0.0 0.0 181.3 6.0			ERR		ERR ERR
0 47.0 6.2 40.80 175.3 5.7 7.3 79 9 46.0 5.9 40.10 175.5 5.8 7.3 79 10 0.0 0.0 0.00 175.6 5.8 7.3 79 14 0.0 0.0 0.00 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 0 47.0 5.8 41.20 177.3 5.8 7.4 79 0 48.0 5.9 40.10 175.6 5.8 7.4 79 0 48.0 5.9 42.20 178.3 5.8 7.4 79 0 48.0 6.2 41.80 180.3 5.9 7.5 79 54 48.0 6.2 41.80 181.2 6.0 7.6 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 53 48.0 6.2 41.80 181.3 6.0 7.6 79 30 49.0 6.5 42.50 186.8 6.3 7.8	2.2				
9 46.0 5.9 40.10 175.5 5.8 7.3 79 10 0.0 0.0 0.00 175.6 5.8 7.3 79 14 0.0 0.0 0.00 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 0 47.0 5.8 41.20 177.3 5.8 7.4 78 0 48.0 5.8 42.20 178.3 5.8 7.4 79 0 48.0 6.0 42.00 178.3 5.8 7.4 79 0 48.0 6.2 41.80 180.3 5.9 7.5 79 54 48.0 6.2 41.80 181.2 6.0 7.6 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 0.00 181.3 6.0 7.6 79 53 48.0 6.2 41.80 186.8 6.2 7.8 80 30 49.0 6.5 42.50 186.8 6.3		14.3		-41.6	
10 0.0 0.0 0.00 175.5 5.8 7.3 79 14 0.0 0.0 0.00 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 0 47.0 5.8 41.20 177.3 5.8 7.4 79 0 48.0 5.9 40.0 178.3 5.9 7.4 79 0 48.0 6.0 42.20 178.3 5.9 7.5 79 0 48.0 6.2 41.80 180.3 5.9 7.5 79 54 48.0 6.2 41.80 181.2 6.0 7.6 79 55 0.0 0.0 10.0 181.3 6.0 7.6 79 59 0.0 0.0 181.3 6.0 7.6 79 50 48.0 6.2 41.80 185.2 6.1 7.6 79 50 49.0 6.2 41.80 186.8 6.3 7.8 <					
14 0.0 0.0 0.00 175.6 5.8 7.3 79 15 46.0 5.9 40.10 175.6 5.8 7.3 79 0 47.0 5.8 41.20 177.3 5.8 7.4 79 0 48.0 5.8 42.20 178.3 5.9 7.4 79 0 48.0 6.0 42.20 178.3 5.9 7.5 79 0 48.0 6.2 41.80 180.3 5.9 7.5 79 0 48.0 6.2 41.80 181.2 6.0 7.6 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 181.3 6.0 7.6 79 50 48.0 6.2 41.80 185.2 6.1 7.7 79 50 49.0 6.2 41.80 187.9 6.3 7.8 80 30 49.0 6.5 42.50 186.9 6.3 7.8			ERR		
15 46.0 5.9 40.10 175.6 5.8 7.3 79 0 47.0 5.8 41.20 177.3 5.8 7.4 78 0 48.0 5.8 42.20 178.3 5.8 7.4 79 0 48.0 6.0 42.20 178.3 5.9 7.5 79 0 48.0 6.2 41.80 180.3 5.9 7.5 79 54 48.0 6.2 41.80 181.2 6.0 7.6 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 181.3 6.0 7.6 79 50 48.0 6.2 41.80 185.2 6.1 7.7 79 50 49.0 6.2 41.80 187.9 6.3 7.8 80 30 49.0 6.5 42.50 187.9 6.3 7.8 80 49 0.0 0.0 198.0 6.3 7.8 80 </td <td></td> <td></td> <td>ERR</td> <td></td> <td></td>			ERR		
0 47.0 5.8 41.20 177.3 5.8 7.4 78 0 48.0 5.8 42.20 178.3 5.8 7.4 79 0 48.0 6.0 42.00 179.3 5.9 7.5 79 54 48.0 6.2 41.80 180.3 5.9 7.5 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 181.3 6.0 7.6 79 50 48.0 6.2 41.80 185.2 6.1 7.7 79 50 49.0 6.5 42.50 186.8 6.2 7.8 80 30 49.0 6.5 42.50 187.9 6.3 7.8 80 13 0.0 0.0 0.00 191.6 6.3 8.0 78 14 47.8 6.0 41.80 192.0 6.3 8.0 76	2.1		ERR		
0 48.0 5.8 42.20 178.3 5.8 7.4 79 0 48.0 6.0 42.00 179.3 5.9 7.5 79 54 48.0 6.2 41.80 181.2 6.0 7.6 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 181.3 6.0 7.6 79 59 0.0 0.00 181.3 6.0 7.6 79 50 48.0 6.2 41.80 181.3 6.0 7.6 79 53 48.0 6.2 41.80 185.2 6.1 7.7 79 30 49.0 6.5 42.50 186.8 6.2 7.8 80 34 49.0 6.5 42.50 187.9 6.3 7.8 80 13 0.0 0.0 198.0 6.3 8.0 78 14	2.1	•			
0 48.0 6.0 42.00 179.3 5.9 7.5 79 0 48.0 6.2 41.80 180.3 5.9 7.5 79 54 48.0 6.2 41.80 181.2 6.0 7.6 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 0.00 181.3 6.0 7.6 79 0 48.0 6.2 41.80 181.3 6.0 7.6 79 53 48.0 6.2 41.80 185.2 6.1 7.7 79 30 49.0 6.5 42.50 186.8 6.2 7.8 80 37 0.0 0.0 0.00 188.0 6.3 7.8 80 13 0.0 0.0 0.00 191.6 6.3 8.0 78 47.8 6.0 41.80 192.0 6.3 8.0 78 43 47.8 6.0 41.80 195.1 6.4 8.1 79	2.1	•			
0 48.0 6.2 41.80 180.3 5.9 7.5 79 54 48.0 6.2 41.80 181.2 6.0 7.6 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 0.00 181.3 6.0 7.6 79 50 48.0 6.2 41.80 181.3 6.0 7.6 79 53 48.0 6.2 41.80 185.2 6.1 7.7 79 30 49.0 6.5 42.50 186.8 6.2 7.8 80 37 0.0 0.0 0.00 188.0 6.3 7.8 80 13 0.0 0.0 0.00 191.6 6.3 8.0 78 47.8 6.0 41.80 192.0 6.3 8.0 78 43 47.8 6.0 41.80 195.1 6.4 8.1 79		.6 14.4		-43.5	
54 48.0 6.2 41.80 181.2 6.0 7.6 79 55 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 0.00 181.3 6.0 7.6 79 60 48.0 6.2 41.80 181.3 6.0 7.6 79 53 48.0 6.2 41.80 185.2 6.1 7.7 79 30 49.0 6.5 42.50 186.8 6.2 7.8 80 37 0.0 0.0 0.00 188.0 6.3 7.8 80 13 0.0 0.0 0.00 191.6 6.3 8.0 78 14 47.8 6.0 41.80 192.0 6.3 8.0 78 47.8 6.0 41.80 195.1 6.4 8.1 79	2.1	•			
55 0.0 0.0 0.00 181.3 6.0 7.6 79 59 0.0 0.0 0.00 181.3 6.0 7.6 79 53 48.0 6.2 41.80 185.2 6.1 7.7 79 30 49.0 6.5 42.50 186.8 6.2 7.8 80 36 49.0 6.5 42.50 187.9 6.3 7.8 80 37 0.0 0.0 0.00 191.6 6.3 7.8 80 13 0.0 0.0 191.6 6.3 80 78 47.8 6.0 41.80 192.0 6.3 80 78 43 47.8 6.0 41.80 195.1 6.4 81 79			ERR		
59 0.0 0.0 0.00 181.3 6.0 7.6 79 0 48.0 6.2 41.80 181.3 6.0 7.6 79 53 48.0 6.2 41.80 185.2 6.1 7.7 79 30 49.0 6.5 42.50 186.8 6.2 7.8 80 36 49.0 6.5 42.50 187.9 6.3 7.8 80 37 0.0 0.0 0.00 191.6 6.3 7.8 80 14 47.8 6.0 41.80 192.0 6.3 8.0 78 43 47.8 6.0 41.80 195.1 6.4 8.1 79			EAR		
0 48.0 6.2 41.80 181.3 6.0 7.6 79 53 48.0 6.2 41.80 185.2 6.1 7.7 79 30 49.0 6.5 42.50 186.8 6.2 7.8 80 36 49.0 6.5 42.50 187.9 6.3 7.8 80 37 0.0 0.0 0.00 188.0 6.3 7.8 80 13 0.0 0.0 0.00 191.6 6.3 80 78 14 47.8 6.0 41.80 192.0 6.3 80 78 43 47.8 6.0 41.80 195.1 6.4 81 79 44 5.6 6.0 41.80 195.1 6.4 81 79	ERR		ERR		ERR ERR
53 48.0 6.2 41.80 185.2 6.1 7.7 7.9 30 49.0 6.5 42.50 186.8 6.2 7.8 80 36 49.0 6.5 42.50 187.9 6.3 7.8 80 37 0.0 0.00 191.6 6.3 7.8 80 13 0.0 0.0 191.6 6.3 8.0 78 14 47.8 6.0 41.80 192.0 6.3 8.0 78 43 47.8 6.0 41.80 195.1 6.4 8.1 79 44 6.0 41.80 195.1 6.4 8.1 79	2.1	29.8 14.4		-43.2	
30 49.0 6.5 42.50 186.8 6.2 7.8 80 36 49.0 6.5 42.50 187.9 6.3 7.8 80 37 0.0 0.0 0.00 191.6 6.3 7.8 80 13 0.0 0.0 191.6 6.3 8.0 78 14 47.8 6.0 41.80 192.0 6.3 8.0 78 43 47.8 6.0 41.80 195.1 6.4 8.1 79 44 6.0 41.80 195.1 6.4 8.1 79	2.1				
36 49.0 6.5 42.50 187.9 6.3 7.8 80 37 0.0 0.0 0.00 191.6 6.3 8.0 78 13 0.0 0.0 0.00 191.6 6.3 8.0 78 14 47.8 6.0 41.80 191.6 6.3 8.0 78 39 47.8 6.0 41.80 192.0 6.3 8.0 78 43 47.8 6.0 41.80 195.1 6.4 8.1 79	2.1				
37 0.0 0.0 0.00 188.0 6.3 7.8 80 13 0.0 0.0 0.00 191.6 6.3 8.0 78 14 47.8 6.0 41.80 191.6 6.3 8.0 78 39 47.8 6.0 41.80 192.0 6.3 8.0 78 43 47.8 6.0 41.80 195.1 6.4 8.1 79 44 6.0 6.0 6.0 6.0 6.0 6.0 6.0			ERR		
13 0.0 0.0 0.00 191.6 6.3 8.0 78 14 47.8 6.0 41.80 191.6 6.3 8.0 78 39 47.8 6.0 41.80 192.0 6.3 8.0 78 43 47.8 6.0 41.80 195.1 6.4 8.1 79 44 6.0 41.8 6.0 41.8 6.0 41.8 6.0			, ERR		
14 47.8 6.0 41.80 191.6 6.3 8.0 78 39 47.8 6.0 41.80 192.0 6.3 8.0 78 43 47.8 6.0 41.80 195.1 6.4 8.1 79 44 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0			ERR		
39 47.8 6.0 41.80 192.0 6.3 8.0 78 43 47.8 6.0 41.80 195.1 6.4 8.1 79			ERR		
43 47.8 6.0 41.80 195.1 6.4 8.1 79	2.1	28.3 13.3		-41.7	
77 00 00 000 1051 64 01 70			EAR		
44 0.0 0.0 0.00 195.1 6.4 8.1 /9			EAR		

Table C-1 Operating Data -- Electrical (Continued)

Topos Color of the color of th			Power	Array	100	Flancad	Ž,	Flancod	003.100		0/10400/	10000				
mi Forw. Felfil in KW hours 40 kW % mV ohm degree Regine		TIME	<u>5</u>	<u>`</u>	_	Time	Days at	Days t	Jtilization		record vo	q.	7	Angle	N	Z
33 47.5 61 41.40 194.9 6.4 8.1 79 2.1 ERR 16 0.0 0.0 0.0 197.3 6.5 8.2 79 2.1 ERR ERR 10 0.0 0.0 197.5 6.5 8.2 79 2.1 ERR ERR 11 47.5 6.1 41.40 197.5 6.5 8.2 78 2.1 ERR ERR 2.1 47.5 6.1 41.40 197.5 6.5 8.2 78 ERR ERR <th>Ē</th> <th>-</th> <th>5</th> <th>Refl</th> <th>in kW</th> <th>hours</th> <th>40 kW</th> <th>ı</th> <th>%</th> <th></th> <th>» V</th> <th>)E</th> <th>ohm</th> <th>degree</th> <th>Real Im</th> <th>maginary</th>	Ē	-	5	Refl	in kW	hours	40 kW	ı	%		» V) E	ohm	degree	Real Im	maginary
59 475 61 4140 197.3 6.5 8.2 79 2.1 ERR ERR 1 0.0 0.0 0.00 197.5 6.5 8.2 79 ERR ERR ERR 2 0.0 0.0 197.5 6.5 8.2 78 2.1 ERR ERR 2 1.1 47.5 6.1 41.40 197.5 6.5 8.2 78 2.1 ERR ERR 2 1.1 47.5 6.1 41.40 197.7 6.5 8.2 78 2.1 ERR ERR 2 1.1 47.5 6.1 41.40 197.7 6.5 8.2 78 ERR		_		6.1	41.40	194.9	6.4	8.1	79	2.1			ERR		EAR	ERR
0 0.0 0.0 0.0 197.3 6.5 8.2 79 ERR ERR ERR 10 0.0 0.0 0.00 197.5 6.5 8.2 78 ERR ERR 20 47.5 6.1 41.40 197.7 6.5 8.2 78 ERR ERR 20 47.5 6.1 41.40 197.7 6.5 8.2 78 ERR ERR 43 0.0 0.0 198.1 6.5 8.3 78 ERR ERR 44 47.8 6.0 41.80 198.8 6.5 8.3 78 ERR ERR 44 47.8 6.0 41.80 198.8 6.5 8.3 78 2.1 29.7 13.3 71.7 -40.8 40 48.0 6.2 41.80 199.8 6.5 8.3 79 2.1 29.7 13.3 71.4 40.8 40 48.0 <td< td=""><td>.4</td><td></td><td></td><td>6.1</td><td>41.40</td><td>197.3</td><td>6.5</td><td>8.2</td><td>79</td><td>2.1</td><td></td><td></td><td>ERR</td><td></td><td>ERR</td><td>ERR</td></td<>	.4			6.1	41.40	197.3	6.5	8.2	79	2.1			ERR		ERR	ERR
10 0.0 0.00 0.90 197.5 6.5 8.2 78 ERR ERR 20 47.5 6.1 41.40 197.5 6.5 8.2 78 2.1 ERR ERR 20 47.5 6.1 41.40 197.5 6.5 8.2 78 ERR ERR ERR 43 0.0 0.0 198.1 6.5 8.3 78 ERR ERR ERR 44 4.7.8 6.0 41.80 198.1 6.5 8.3 78 2.1 29.7 13.3 17.7 -40.8 40 4.0 6.0 41.80 198.1 6.5 8.3 78 2.1 29.7 13.3 17.7 -40.8 40 48.0 6.2 41.80 20.1 6.6 8.4 79 2.1 29.7 13.2 77.7 -40.8 40 48.0 6.2 41.80 20.1 6.6 8.4 79	W	_	_	0.0	0.00		6.5	8.2	79	ERR			ERR		ERR	EAR
11 47.5 6.1 41.40 197.5 6.5 8.2 78 2.1 ERR 20 47.5 6.1 41.40 197.7 6.5 8.2 78 ERR ERR ERR 43 0.0 0.0 198.7 6.5 8.2 78 ERR ERR ERR 44 47.8 6.0 41.80 198.1 6.5 8.3 78 2.1 29.6 13.2 71.7 -40.8 44 47.8 6.0 41.80 198.6 6.5 8.3 78 2.1 29.6 13.2 71.7 -40.8 10 47.8 6.0 41.80 198.6 6.5 8.3 79 2.1 29.7 13.3 -41.4 10 48.0 6.2 41.80 20.3 6.7 8.5 79 2.1 29.7 13.3 71.4 -42.2 14 48.0 6.2 41.80 20.3 6.6 8.4	CA		0.0	0.0	000	197.5	6.5	8.2	78	ERR			EAR		ERR	ERR
20 47.5 6.1 41.40 197.7 6.5 8.2 78 ERR A1.90 A1.90 A2.2 A1.40 A1.40 A1.80 A1.	CV		47.5	6.1	41.40	197.5	6.5	8.2	78	2.1			ERR		ERR	EBB
11 0.0 0.0 197.5 6.5 8.2 78 ERR ERR ERR ERR 43 0.0 0.0 1981 6.5 8.3 78 ERR ERR ERR 44 47.8 6.0 41.80 1981 6.5 8.3 78 2.1 29.6 13.2 71.7 -40.8 10 47.8 6.0 41.80 1996 6.5 8.3 79 2.1 29.7 13.3 -41.8 40 48.0 6.2 41.80 201.0 6.6 8.4 79 2.1 29.7 13.4 70.9 -41.9 10 48.0 6.2 41.80 202.3 6.6 8.4 79 2.1 29.7 13.2 71.4 -42.2 10 48.0 6.2 41.80 203.3 6.7 8.5 79 2.1 29.7 13.2 72.1 -40.8 20 0.0 0.0 203.3 </td <td>CA</td> <td></td> <td>47.5</td> <td>6.1</td> <td>41.40</td> <td>197.7</td> <td>6.5</td> <td>8.2</td> <td>78</td> <td>2.1</td> <td></td> <td></td> <td>ERR</td> <td></td> <td>ERR</td> <td>EBB</td>	CA		47.5	6.1	41.40	197.7	6.5	8.2	78	2.1			ERR		ERR	EBB
43 0.0 0.0 198.1 6.5 8.3 78 EHR ERR 44 47.8 6.0 41.80 198.1 6.5 8.3 78 2.1 29.6 13.2 71.7 -40.8 44 47.8 6.0 41.80 198.6 6.5 8.3 78 2.1 29.7 13.3 13.3 -41.4 30 47.8 6.0 41.80 199.8 6.5 8.4 79 2.1 29.7 13.3 71.4 -42.2 40 48.0 6.2 41.80 20.3 6.7 8.5 79 2.1 29.7 13.3 71.4 -42.2 4.0 6.2 41.80 20.3 6.7 8.5 79 2.1 29.7 13.3 71.4 -42.2 2.0 0.0 0.00 20.3 6.7 8.5 79 2.1 29.7 13.2 71.4 -42.2 2.0 0.0 0.0 <t< td=""><td>CV</td><td></td><td></td><td>0.0</td><td>0.00</td><td>197.5</td><td>6.5</td><td>8.2</td><td>78</td><td>EAR</td><td></td><td></td><td>EHH</td><td></td><td>ERR</td><td>EBB</td></t<>	CV			0.0	0.00	197.5	6.5	8.2	78	EAR			EHH		ERR	EBB
44 47.8 6.0 41.80 198.1 6.5 8.3 78 2.1 ERR 10 47.8 6.0 41.80 198.5 6.5 8.3 78 2.1 29.6 13.2 71.7 -40.8 10 47.8 6.0 41.80 199.8 6.5 8.3 79 2.1 29.7 13.3 71.4 -40.8 48.0 6.2 41.80 202.3 6.6 8.4 79 2.1 29.7 13.2 71.4 -42.2 0 48.0 6.2 41.80 203.3 6.7 8.5 79 2.1 29.7 13.2 71.4 -42.2 19 48.0 6.2 41.80 203.7 6.7 8.5 79 21 29.7 13.2 72.0 -42.1 20 0.0 0.00 203.7 6.7 8.5 79 21 29.7 13.2 72.0 -42.1 67 8.5 79	N			0.0	0.00	198.1	6.5	8.3	78	ERR			ERR		EAR	EAR
1 0 47.8 6.0 41.80 198.5 6.5 8.3 78 2.1 29.6 13.2 71.7 -40.8 30 47.8 6.0 41.80 199.8 6.5 8.3 79 2.1 29.7 13.3 17.7 -40.8 40 48.0 6.2 41.80 201.0 6.6 8.4 79 2.1 29.7 13.3 71.4 -42.2 1 0 48.0 6.2 41.80 203.3 6.7 8.5 79 2.1 29.7 13.3 71.4 -42.2 1 0 48.0 6.2 41.80 203.3 6.7 8.5 79 2.1 29.7 13.2 77.4 -42.2 2 0 0.0 6.0 203.3 6.7 8.5 79 ERR ERR ERR 2 0 0.0 6.0 6.0 8.5 79 2.1 29.7 13.2 77.1 -40.8 2 0 0.0 6.0 8.0 7.9 ERR ERR ERR 79 2.1 29.7 13.2 77.1	N			6.0	41.80	198.1	6.5	8.3	78	2.1			ERR		ERR	ERR
30 47.8 6.0 41.80 199.8 6.5 8.3 79 2.1 29.7 13.3 -41.4 40 48.0 6.2 41.80 201.0 6.6 8.4 79 2.1 29.7 13.4 70.9 -41.9 0 48.0 6.2 41.80 202.3 6.6 8.4 79 2.1 29.7 13.3 71.4 -42.2 0 48.0 6.2 41.80 203.7 6.7 8.5 79 2.1 29.7 13.2 72.0 -42.1 20 48.0 6.2 41.80 203.7 6.7 8.5 79 2.1 29.7 13.2 72.0 -42.1 21 48.0 6.2 41.80 203.8 6.7 8.5 79 2.1 29.7 13.2 72.1 -41.1 22 48.0 6.2 41.80 204.3 6.7 8.5 79 2.1 29.7 13.1 72.1	N			6.0	41.80	198.5	6.5	8.3	78	2.1	29.6	13.2	71.7	-40.8	54.3	46.9
40 48.0 6.2 41.80 201.0 6.6 8.4 79 2.1 29.7 13.4 70.9 -41.9 0 48.0 6.2 41.80 202.3 6.6 8.4 79 2.1 29.7 13.3 71.4 -42.2 1 48.0 6.2 41.80 203.7 6.7 8.5 79 2.1 29.7 13.3 77.4 -42.2 20 0.0 6.2 41.80 203.7 6.7 8.5 79 EHR ERR 21 48.0 6.2 41.80 203.8 6.7 8.5 79 ERR ERR 24 48.0 6.2 41.80 203.8 6.7 8.5 79 2.1 29.9 13.1 73.0 -41.1 24 48.0 6.2 41.80 203.8 6.7 8.5 79 2.1 29.9 13.1 73.0 -41.1 48.0 6.2 41.80		_		0.9	41.80	199.8	6.5	8.3	79	2.1	29.7	13.3	13.3	-41.4	10.0	8.8
0 48.0 6.2 41.80 202.3 6.6 8.4 79 2.1 29.7 13.3 71.4 -42.2 19 48.0 6.2 41.80 203.3 6.7 8.5 79 2.1 29.7 13.2 72.0 -42.1 20 0.0 6.2 41.80 203.7 6.7 8.5 79 2.1 29.7 13.2 72.0 -42.1 20 0.0 0.0 203.7 6.7 8.5 79 2.1 ERR ERR 27 0.0 0.0 203.8 6.7 8.5 79 2.1 ERR ERR 28 48.0 6.2 41.80 204.3 6.7 8.5 79 2.1 ERR ERR 0 48.0 6.2 41.80 204.3 6.7 8.6 79 2.1 29.9 13.1 73.0 -41.1 0 48.0 6.2 41.80 205.3 6.8 8.6 79 2.1 29.9 13.1 73.4 -42.0 0 48.0 6.2 41.80 205		1 40		6.2	41.80	201.0	6.6	8.4	79	2.1	29.7	13.4	70.9	-41.9	52.8	47.3
0 48.0 6.2 41.80 203.3 6.7 8.5 79 2.1 29.7 13.2 72.0 -42.1 20 0.0 6.2 41.80 203.7 6.7 8.5 79 2.1 29.7 13.2 72.0 -42.1 20 0.0 0.0 203.7 6.7 8.5 79 EHR EHR EHR 27 0.0 0.0 203.8 6.7 8.5 79 2.1 20.0 EHR EHR 28 48.0 6.2 41.80 203.8 6.7 8.5 79 2.1 20.9 13.1 72.1 -41.1 29 6.2 41.80 204.3 6.7 8.6 79 2.1 29.9 13.1 73.0 -42.2 0 48.0 6.2 41.80 206.3 6.8 8.6 79 2.1 29.5 13.0 72.2 -42.0 25 48.0 6.2 41.80		0		6.2	41.80	202.3	9.9	8.4	79	2.1	29.7	13.3	71.4	-42.2	52.9	48.0
19 48.0 6.2 41.80 203.7 6.7 8.5 79 2.1 ERR ERR 20 0.0 0.0 203.7 6.7 8.5 79 ERR ERR 27 0.0 0.0 203.8 6.7 8.5 79 2.1 ERR ERR 28 48.0 6.2 41.80 204.3 6.7 8.5 79 2.1 ERR ERR 0 48.0 6.2 41.80 204.3 6.7 8.5 79 2.1 29.9 13.1 72.1 -41.0 0 48.0 6.2 41.80 206.3 6.8 8.6 79 2.1 29.9 13.1 72.1 -42.0 0 46.0 6.0 40.00 206.3 6.8 8.6 79 2.1 29.9 13.1 72.4 -42.0 25 48.0 6.2 41.80 208.3 6.9 8.7 80 ERR	-	4		6.2	41.80	203.3	6.7	8.5	79	2.1	29.7	13.2	72.0	-42.1	53.4	48.2
20 0.0 0.0 0.00 203.7 6.7 8.5 79 ERR ERR 27 0.0 0.0 203.8 6.7 8.5 79 2.1 ERR 28 48.0 6.2 41.80 204.3 6.7 8.5 79 2.1 30.0 13.3 72.1 -41.1 0 48.0 6.2 41.80 204.3 6.7 8.5 79 2.1 29.9 13.1 73.0 -41.0 0 48.0 6.2 41.80 205.3 6.8 8.6 79 2.1 29.9 13.1 73.0 -41.0 0 48.0 6.0 40.00 206.3 6.8 8.6 79 2.1 29.9 13.1 73.0 -42.0 0 46.0 6.0 40.00 206.3 6.9 8.7 80 2.1 29.9 13.0 72.6 -42.0 25 48.0 6.2 41.80 208	-	4 19		6.2	41.80	203.7	6.7	8.5	79	2.1			ERR		EAR	ERR
27 0.0 0.0 20.3 6.7 8.5 79 ERR ERR 28 48.0 6.2 41.80 20.3 6.7 8.5 79 2.1 30.0 13.3 72.1 -41.1 0 48.0 6.2 41.80 204.3 6.7 8.5 79 2.1 29.9 13.1 73.0 -41.0 0 48.0 6.2 41.80 206.3 6.8 8.6 79 2.1 29.9 13.1 73.0 -41.0 0 48.0 6.2 41.80 206.3 6.8 8.6 79 2.1 29.9 13.1 73.0 -42.2 0 48.0 6.2 41.80 207.3 6.9 8.7 80 2.1 29.8 13.2 72.2 -42.0 25 48.0 6.2 41.80 208.9 6.9 8.7 80 ERR 33 0.0 0.0 20.0 20.0 6.9<	-	4 20		0.0	000	203.7	6.7	8.5	79	EAR			EAR		ERR	ERR
28 48.0 6.2 41.80 203.8 6.7 8.5 79 2.1 30.0 13.3 72.1 -41.1 0 48.0 6.2 41.80 204.3 6.7 8.5 79 2.1 29.9 13.1 73.0 -41.0 0 48.0 6.2 41.80 205.3 6.8 8.6 79 2.1 29.5 13.0 72.6 -42.2 0 46.0 6.0 40.00 206.3 6.8 8.6 79 2.1 29.5 13.0 72.6 -42.2 0 48.0 6.2 41.80 207.3 6.9 8.7 80 2.1 29.8 13.2 72.2 -42.0 25 48.0 6.2 41.80 208.9 6.9 8.7 80 ERR 6.9 8.7 80 ERR 39 0.0 0.0 200.8 6.9 8.7 79 ERR 30.0 13.1 73.2 <t></t>	-	4 27		0.0	0.00	203.8	6.7	8.5	29	EAR			ERR		EAR	EAR
0 48.0 6.2 41.80 204.3 6.7 8.5 79 2.1 30.0 13.3 72.1 -41.1 0 48.0 6.2 41.80 205.3 6.8 8.6 79 2.1 29.9 13.1 73.0 -41.0 0 46.0 6.0 40.00 206.3 6.8 8.6 79 2.1 29.9 13.0 72.6 -42.2 0 48.0 6.2 41.80 207.3 6.9 8.7 80 2.1 29.8 13.2 72.2 -42.0 25 48.0 6.2 41.80 208.8 6.9 8.7 80 2.1 30.0 12.9 74.4 -40.9 32 48.0 6.2 41.80 208.9 6.9 8.7 80 ERR ERR 33 0.0 0.0 200.8 6.9 8.7 79 ERR 30.0 13.1 73.2 -40.2 30 <td< td=""><td>-</td><td>4 28</td><td></td><td>6.2</td><td>41.80</td><td>203.8</td><td>6.7</td><td>8.5</td><td>79</td><td>2.1</td><td></td><td></td><td>ERR</td><td></td><td>ERR</td><td>ERR</td></td<>	-	4 28		6.2	41.80	203.8	6.7	8.5	79	2.1			ERR		ERR	ERR
0 48.0 6.2 41.80 205.3 6.8 8.6 79 2.1 29.9 13.1 73.0 -41.0 0 46.0 6.0 40.00 206.3 6.8 8.6 79 2.1 29.5 13.0 72.6 -42.2 0 48.0 6.2 41.80 207.3 6.9 8.6 79 2.1 29.8 13.2 72.2 -42.0 25 48.0 6.2 41.80 208.8 6.9 8.7 80 2.1 30.0 12.9 74.4 -40.9 32 48.0 6.2 41.80 208.9 6.9 8.7 80 ERR ERR 33 0.0 0.0 208.9 6.9 8.7 79 ERR 30.0 13.1 73.2 -40.2 29 0.0 0.0 209.8 6.9 8.7 79 ERR 30.0 13.1 73.2 -40.2 30 48.0		2		6.2	41.80	204.3	6.7	8.5	79	2.1	30.0	13.3	72.1	-41.1	54.4	47.4
0 46.0 6.0 40.00 206.3 6.8 8.6 79 2.1 29.5 13.0 72.6 -42.2 0 48.0 6.2 41.80 207.3 6.9 8.6 79 2.1 29.8 13.2 72.2 -42.0 25 48.0 6.2 41.80 208.9 6.9 8.7 80 2.1 30.0 12.9 , 74.4 -40.9 32 48.0 6.2 41.80 208.9 6.9 8.7 80 ERR ERR 33 0.0 0.0 0.00 208.9 6.9 8.7 79 ERR 30.0 13.1 73.2 -40.2 30 48.0 6.2 41.80 209.8 6.9 8.7 79 ERR 30.0 13.1 73.2 -40.2 4 47.5 6.0 41.50 212.6 7.0 8.9 80 2.1 ERR	- '	9		6.2	41.80	205.3	6.8	9.6	79	2.1	59.9	13.1	73.0	-41.0	55.1	47.9
0 48.0 6.2 41.80 207.3 6.9 8.6 79 2.1 29.8 13.2 72.2 -42.0 25 48.0 6.2 41.80 208.9 6.9 8.7 80 2.1 30.0 12.9 74.4 -40.9 32 48.0 6.2 41.80 208.9 6.9 8.7 80 ENR ERR 33 0.0 0.0 0.0 208.9 6.9 8.7 79 ENR 30.0 13.1 73.2 -40.2 30 48.0 6.2 41.80 209.8 6.9 8.7 79 ENR 30.0 13.1 73.2 -40.2 4 47.5 6.0 41.50 212.6 7.0 8.9 80 2.1 ERR		0 /	46.0	0.9	40.00	206.3	6.8	8.6	79	2.1	29.5	13.0	72.6	-42.2	53.8	48.7
25 48.0 6.2 41.80 208.8 6.9 8.7 80 2.1 30.0 12.9 , 74.4 -40.9 32 48.0 6.2 41.80 208.9 6.9 8.7 80 2.1 ERR 33 0.0 0.0 0.00 208.8 6.9 8.7 79 ERR 30.0 13.1 73.2 -40.2 30 48.0 6.2 41.80 209.8 6.9 8.7 79 2.1 ERR 14 47.5 6.0 41.50 212.6 7.0 8.9 80 2.1 ERR	•	0 ;	48.0	6.2	41.80	207.3	6.9	8.6	79	2.1	29.8	13.2	72.2	-42.0	53.7	48.3
32 48.0 6.2 41.80 208.9 6.9 8.7 80 2.1 EHR 33 0.0 0.0 0.00 208.9 6.9 8.7 80 ERH 29 0.0 0.0 0.00 209.8 6.9 8.7 79 EHR 30.0 13.1 73.2 -40.2 30 48.0 6.2 41.80 209.8 6.9 8.7 79 2.1 EHR 14 47.5 6.0 41.50 212.6 7.0 8.9 80 2.1 EHR	_,	9 25	48.0	6.2	41.80	208.8	6.9	8.7	80	2.1	30.0	12.9	, 74.4	-40.9	56.2	4B 7
33 0.0 0.0 0.00 208.9 6.9 8.7 80 ERR 20.0 13.1 73.2 -40.2 29 0.0 0.0 0.00 209.8 6.9 8.7 79 ERR 30.0 13.1 73.2 -40.2 30 48.0 6.2 41.80 209.8 6.9 8.7 79 2.1 ERR 77.5 6.0 41.50 212.6 7.0 8.9 80 2.1 ERR	~,	_	48.0	6.2	41.80	208.9	6.9	8.7	8	2.1			ERR		FRR	FRR
29 0.0 0.0 0.00 209.8 6.9 8.7 79 ERR 30.0 13.1 73.2 -40.2 30 48.0 6.2 41.80 209.8 6.9 8.7 79 2.1 ERR 14.50 212.6 7.0 8.9 80 2.1 ERR	-,		0.0	0.0		208.9	6.9	8.7	8	ERR			ERR		FRR	FAR
30 48.0 6.2 41.80 209.8 6.9 8.7 79 2.1 EAR 14 47.5 6.0 41.50 212.6 7.0 8.9 80 2.1 EAR	=		0.0	0.0	0.00	209.8	6.9	8.7	79	ERR	30.0	13.1	73.2	-402	55.9	47.3
14 47.5 6.0 41.50 212.6 7.0 8.9 80 2.1 EAR	=		48.0	6.2	41.80	209.8	6.9	8.7	79	2.1			EHH		FRB	5.74 C. A.A.
	=		47.5	0.9	41.50	212.6	7.0	8.9	8	2.1			ERR		FAR	FBR

Table C-1 Operating Data -- Electrical (Continued)

		Power at Array	It Array	Input	Elapsed	Equiv.	Elapsed	Source		Vector Voltmeter	ltmeter				
	TIME	in KW	` *		Time	Days at	Days	Days Utilization	VSWR	Va	Q.	Z	Angle	Z	7
DATE	je Bi	Forw.	Refl.	in kW	hours	40 KW	•	%		Э Ш	Jm	myo	degree	Réal Ilmaginary	naginary
12Apr	1	١.	0.0	0.00	212.6	7.0	8.9	8	EBB			EAR		EAR	ERR
12-Apr	13 27	_	0.0	0.00	212.8	7.0	8.9	79	ERR			EAR		ERR	ERR
12-Apr	13 28	47.5	0.9	41.50	212.8	7.0	8.9	79	2.1	29.3	13.0	72.1	-39.0	56.0	45.4
12-Apr	-		6.2	41.30	215.1	7.1	9.0	80	2.1	29.1	12.9	72.1	-39.5	55.7	45.9
12-Apr	18 10		6.2	40.30	217.5	7.2	9.1	8	2.2	29.5	12.8	73.7	9.66-	56.8	47.0
12-Apr	19 42	46.0	0.9	40.00	219.0	7.3	9.1	80	2.1			ERR		ERR	ERR
12Apr			0.0	0.00	219.1	7.3	9.1	8	ERR			ERR		ERR	ERR
12-Apr			0.0	0.00	219.1	7.3	9.1	8	ERR			ERR		ERR	EAR
12Apr			6.2	40.80	219.1	7.3	9.1	8	2.1			ERR		ERR	EBB
12Apr	22 0		6.2	40.80	221.3	7.4	9.5	8	2.1	30.2	12.8	75.5	-40.0	57:8	48.5
12-Apr			6.5	41.50	223.1	7.5	9.3	80	2.5	30.5	12.8	76.2	-39.8	58.5	48.8
13Apr			6.2	41.80	225.3	7.6	9.4	81	2.1	30.5	12.8	76.2	-39.9	58.5	48.9
-			6.2	41.80	227.3	7.7	9.5	8	2.1	30.5	12.7	76.8	-39.8	59.0	49.2
13Apr			6.2	41.80	229.3	7.7	9.6	81	2.1			ERR		ERR	ERR
13-Apr			0.0	0.00	229.3	7.6	9.6	79	EAR			ERR		ERR	ERR
13-Apr			0.0	0.00	229.4	7.6	9.6	8	ERR			EAR		EAR	ERR
13-Apr	9		6.2	41.80	229.4	7.8	9.6	8	2.1			ERR		ERR	ERR
13-Apr			6.2	41.80	229.5	7.8	9.6	81	2.1	30.5	12.7	76.8	-39.5	59.3	48.9
13-Apr			6.5	41.50	237.4	8.1	6.6	85	2.2	30.0	12.2	78.6	9.66-	9.09	50.1
13~Apr			0.0	0.00	237.4	8.1	6.6	85	ERR			ERR		ERR	ERR
13-Apr	14 11		0.0	0.00	237.5	8.1	6.6	85	ERR			EAR		ERR	EAR
1			6.5	41.50	237.5	9.1	6.6	85	2.2			EAR		ERR	EAR
1	16 2		6.5	40.50	239.4	8.2	10.0	85	2.2	30.5	12.3	, 79.3	-38.4	62.1	49.3
Ť			6.5	40.00	244.2	8.4	10.2	82	2.5	30.5	12.1	90.6	-38.4	63.2	50.1
13-Apr	20 53		0.0	0.00	244.2	8.4	10.2	85	ERR			ERR		ERR	EAR
1			0.0	0.00	244.3	8.4	10.2	82	ERR			ERR		EAR	FBB
13-Apr	20 58		6.5	40.00	244.3	8.4	10.2	85	2.2			ERR		ERR	ERR
1	0	46.5	6.5	40.00	247.3	8.4	10.3	82	2.2	30.8	12.0	82.1	-38.3	64.4	50.9

Table C-1 Operating Data -- Electrical (Continued)

		Power at Array	t Array	Input	Elapsed	Equiv.	Elapsed	Source		Vector Voltmeter	Itmeter			1	
	TIME	in kW	` *	Power	Time	Days at	Days	Days Utilization	VSWR	۲a	٩	7	Angle		7
DATE	بة E	Forw.	Refl.	in kW	hours	40 KW		%		Æ	ΣE	ohm	degree	Reall maginary	ıginary
14-Apr	2 0		6.5	40.00	249.3	8.6	10.4	83	2.2	31.0	12.0	82.6	-38.2	64.9	51.1
14-Apr	N N	0.0	0.0	0.00	249.4	8.5	10.4	85	ERR			ERR		ERR	EAR
14-Apr	2		0.0	0.00	249.5	8.6	10.4		EAR			EAR		ERR	EAR
14 – Apr	8		6.5	40.00	249.5	8.5	10.4		2.5			ERR		ERR	ERR
- 1	4 59		6.5	40.00	252.3	8.7	10.5		2.5			ERR		ERR	ERR
14 – Apr	2		0.0	0.00	252.3	8.5	10.5		ERR			ERR		ERR	ERR
14 – Apr	2		0.0	0.00	252.4	8.7	10.5		EAR			ERH		ERR	EBB
14-Apr	5		6.5	40.00	252.5	8.6	10.5		2.5	30.9	12.0	82.3	-37.4	65.4	20.0
14-Apr	9 49		6.3	.40.70	257.2	8.8	10.7		2.5			ERR		ERR	ERR
14-Apr	9 50		0.0	0.00	257.2	8.7	10.7		ERR			ERR		ERR	EAR
14-Apr	9 57		0.0	0.00	257.3	8.8	10.7		ERR			EHR		ERH	EHH
14-Apr	9 58		6.3	40.70	257.3	8.7	10.7		2.5			EAR		EAR	EBB
14-Apr	_		6.3	40.70	266.7	9.0	1.1		2.2			ERR		ERR	EHH
14-Apr	19 21		0.0	0.00	266.7	8.9	Ξ.		ERR			ERR		EAR	EAR
14-Apr	_		0.0	<u>ර</u> ුල	266.8	9.0	1.1		EAR			EBB		ERR	EBB
14-Apr	19 26		6.3	40.70	266.8	8.9	11.1		2.5			EAR		EAR	EBB
15-Apr	0		7.0	41.00	271.3	9.1	11.3		2.2	32.5	12.0	82.8	-35.6	8.69	20.0
15-Apr	3 59		7.0	41.00	275.3	9.4	11.5		2.5			ERR		ERR	ERR
15-Apr	4		0.0	0.00	275.3	9.1	11.5		ERR	32.1	12.0	85.5	-35.4	2.69	49.6
15-Apr	4	0.0	0.0	0.00	275.4	9.4	11.5		EAR			ERA		EAR	EBB
15-Apr	4	48.0	7.0	41.00	275.4	9.1	11.5		2.5			ERR		ERR	EHR
15-Apr	10 15		7.3	44.70	281.6	9.6	11.7	82	2.5	32.0	11.5	89.0	-36.3	71.7	52.7
15-Apr	11 2		7.3	44.70	282.4	9.5	11.8		2.5			, ERR		EBB	·ERR
15-Apr	1 3	0.0	0.0	0.00	282.4	9.6	11.8		EAR			EAR		EBB	EAR
15-Apr	11 10	0.0	0.0	0.00	282.5	9.5	11.8		ERR			ERR		EBB	ERR
15-Apr	11 11	50.0	7.3	42.70	282.5	9.6	11.8	81	2.5	32.0	11.4	83.8	-35.6	73.0	52.3
15-Apr	20 18	1 49.0	7.4	41.60	291.6	9.7	12.2		2.3	32.1	11.2	91.7	-34.9	75.2	52.4
15-Apr	20 15	0.0	0.0	0.00	291.7	9.8	12.2	81	EAR			ERR		ERR	ERR

Table C-1 Operating Data -- Electrical (Continued)

		Po	Power at Array	Input	Elapsed	Equiv.	Elapsed	Source		Vector Voltmeter	Imeter			18 Sept. 11	
	TIME		in KW	Power	Time	Days at	Days	Days Utilization	VSWR	Va	φ	7	Angle	Ζ	Z
DATE	Ę	Po	w. Refl.		hours	40 KW	i	%		A V	/ E	ohm	degree	Real In	maginary
15-Apr	•	ł		0.00	291.7	9.7	12.2	79	ERR			ERR		ERR	EAR
15-Apr	50 50			4	291.7	9.8	12.2	9	2.3			ERR		ERR	ERR
15-Apr					293.0	9.7	12.2	79	2.3	32.5	11.3	92.0	-34.7	75.6	52.4
16-Apr	0				295.3	6.6	12.3	81	2.3	33.0	11.7	90.2	-34.7	74.2	51.3
16-Apr	2				297.3	6.6	12.4	80	2.3	33.2	11.7	90.7	-34.6	74.7	51.5
16-Apr					299.3	10.1	12.5	18	2.3	33.2	11.7	90.7	-34.2	75.1	51.0
16-Apr	ဖ	0 50			. 301.3	10.1	12.6	8	2.3	33.3	11.7	91.0	-34.3	75.2	51.3
16-Apr					302.5	10.3	12.6	81	2.3	33.8	11.5	94.0	-34.0	77.9	52.6
16-Apr	9				305.3	10.2	12.7	8	2.3			EAR		ERR	EBB
16-Apr					308.4	10.4	12.8	81	ERR			ERR		ERR	ERR
16-Apr	13				308.6	10.3	12.9	80	EAR			EAR		ERR	ERR
16-Apr					308.6	10.4	12.9	81	2.3	33.0	11.0	95.9	-34.0	79.5	53.6
16-Apr					314.4	10.3	13.1	79	EAR			EAR		ERR	ERR
16-Apr					314.6	10.5	13.1	80	ERR			ERR		ERR	EAR
16-Apr					314.6	10.3	13.1	79	2.3	33.9	11.2	96.8	-34.7	9.62	55.1
16-Apr					316.9	10.6	13.2	80	2.3	34.0	11.0	98.8	-34.8	81.2	56.4
16-Apr					318.4	10.4	13.3	78	EAR			ERR		ERR	EAR
17 Apr					319.6	10.6	13.3	80	EHH			ERR		EBR	EAR
17 – Apr					319.6	10.4	13.3	78	2.4			EHH		ERR	ERR
17-Apr					321.3	10.7	13.4	80	2.4	33.2	11.7	2'06	-34.6	74.7	51.5
17 – Apr	Ω Ω	20 52.0	.0 8.8	43.20	327.7	10.8	13.7	79	2.4			ERR		ERR	ERR
17 – Apr					333.7	11.2	13.9	81	2.4			ERR		ERR	EHR
17 – Apr					335.4	==	14.0	80	2.4			, EAR		ERR	EAA
17Apr					336.4	11.3	14.0	81	2.4			ERR		ERR	EAR
17 – Apr				0.00	336.4	=	14.0	80	ERR			ERR		ERR	EAR
17 – Apr					341.0	11.4	14.2	80	ERR			ERR		ERR	EAR
17-Apr				43.00	341.0	11.2	14.2	79	2.4	35.0	11.1	100.8	-31.2	86.3	52.2
18-Apr	0	5 52			343.4	11.5	14.3	80	2.4	35.0	11.0	101.8	-31.2	87.0	52.7

Table C-1 Operating Data -- Electrical (Continued)

Fow. Fower Time Days at Days at Days Utilization Unitable Value			Power a	Power at Array	Input	Elapsed	Equiv.	Elapsed	Source		Vector Voltmeter	Itmeter				
n mi Form Fort mov 10 10 <		TIME	Ē		Power	Φ	Days at	Days		VSWR	۸a	٩	Z	Angle	N	7
0 6 0.0 0.0 3434 11.3 14.3 79 ERR ERR 1 38 0.0 0.0 0.0 3450 11.5 14.4 80 ERR ERR 1 38 2.0 0.0 0.00 3450 11.5 14.4 80 ERR ERR 10 10 52.5 9.5 43.00 3450 11.3 14.4 79 2.4 35.0 11.0 10.18 12 25 54.0 9.9 44.10 355.8 11.8 14.4 80 2.5 35.0 11.0 10.18 20 1.5 9.9 44.10 365.8 11.8 14.4 80 2.5 35.0 11.0 10.18 20 1.00 43.00 365.9 12.2 15.1 80 2.5 36.0 11.0 10.18 20 1.00 43.00 365.0 12.2 15.2 18.1 26.36.	<u>ب</u>	Ē	Forw.	Reff.	io KW	hours	40 KW		%		Æ)E	ohm	degree	Real Imaginary	aginary
1 38 0.0 0.0 0.00 3450 11.5 14.4 80 ERR 1 39 5.2.0 9.0 43.00 345.0 11.3 14.4 79 2.4 35.0 11.0 100.8 1 0 10 52.5 9.5 43.00 345.0 11.7 14.7 80 2.5 35.0 11.1 100.8 2 0 1 52.0 9.0 43.00 363.4 12.2 15.2 81 2.6 35.0 11.1 100.8 2 0 1 52.0 10.0 43.00 363.4 12.2 15.2 81 2.6 36.0 11.0 100.8 2 0 1 52.0 10.0 42.00 363.7 12.4 15.2 81 2.6 36.0 11.0 40.0 100.8 40.0 100.8 40.0 100.8 40.0 100.8 40.0 100.8 40.0 100.8 40.0 100.8 40.0 100.8 40.0 100.8 40.0 100.8 <td></td> <td>9 0</td> <td></td> <td>0.0</td> <td>0.00</td> <td></td> <td>11.3</td> <td>14.3</td> <td>79</td> <td>ERA</td> <td></td> <td></td> <td>ERR</td> <td></td> <td>ERR</td> <td>ERR</td>		9 0		0.0	0.00		11.3	14.3	79	ERA			ERR		ERR	ERR
1 39 52.0 9.0 43.00 345.0 11.3 14.4 79 2.4 35.0 11.0 10.18 10 10 52.5 3.5 9.4.300 353.5 11.7 14.7 80 2.5 35.0 11.1 100.8 20 1 53.0 10.0 43.00 363.4 12.2 15.1 80 2.5 35.0 11.0 100.8 22 36 52.0 10.0 42.00 365.9 12.3 15.2 81 2.6 36.0 11.0 103.2 22 36 52.0 10.0 42.00 366.9 12.3 15.2 81 2.6 36.0 11.0 103.2 1 2 50.0 10.0 42.00 368.7 12.4 15.4 81 2.6 36.0 11.0 40.7 1 3 15 6.0 10.0 42.00 368.7 12.4 15.9 81 ERR ERR 1 3 16 0.0 0.0 360.9 12.3 15.9 81 ERR ERR		- 88		0.0	0.00		11.5	14.4	80	EAR			ERR		ERR	ERR
10 52.5 9.5 43.00 353.5 11.7 14.7 80 2.5 35.0 11.1 100.8 12 55.40 9.9 44.10 355.8 11.8 14.8 80 2.5 34.6 11.2 96.8 22 36 52.0 10.0 42.00 365.9 12.2 15.1 80 2.5 35.5 11.0 103.2 2.2 36.0 11.0 103.2 103.2 12.2 15.2 80.0 11.0 103.2 103.2 12.2 15.2 80.0 11.0 103.2 103.2 12.2 13.0 11.0 103.2 103.2 103.2 11.0 103.2 11.0 103.2 11.0 103.2 11.0 103.2 11.0 103.2 11.0 103.2 11.0 103.2 11.0 103.2 103.2 103.2 103.2 103.2 103.2 103.2 103.2 103.2 103.2 103.2 103.2 103.2 103.2 103.2 <td></td> <td></td> <td></td> <td>9.0</td> <td>43.00</td> <td></td> <td>11.3</td> <td>14.4</td> <td>79</td> <td>2.4</td> <td>35.0</td> <td>11.0</td> <td>101.8</td> <td>-31.2</td> <td>87.0</td> <td>52.7</td>				9.0	43.00		11.3	14.4	79	2.4	35.0	11.0	101.8	-31.2	87.0	52.7
12 25 54.0 9.9 44.10 355.8 11.8 14.8 80 2.5 34.6 11.2 98.8 20 1 53.0 10.0 43.00 365.9 12.2 15.1 80 2.5 35.5 11.0 103.2 2 22 22 35.5 11.0 40.32 36.9 12.3 15.2 36.0 11.0 40.0 36.0 12.4 15.4 81 2.6 36.0 11.0 104.7 - 43.2 40.0 10.0 44.00 36.0 12.9 15.9 81 2.6 36.0 11.0 40.7 - 43.2 40.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 11.0 40.0 10.0 30.0 30.0 10.0 40.0 10.0 30.0 30.0 11.0 40.0 11.0 40.0 10.0 <td></td> <td></td> <td></td> <td>9.5</td> <td>43.00</td> <td></td> <td>11.7</td> <td>14.7</td> <td>8</td> <td>2.5</td> <td>35.0</td> <td>11.1</td> <td>100.8</td> <td>-31.7</td> <td>85.8</td> <td>53.0</td>				9.5	43.00		11.7	14.7	8	2.5	35.0	11.1	100.8	-31.7	85.8	53.0
20 1 53.0 10.0 43.00 363.4 12.2 15.1 80 2.5 35.5 11.0 103.2 22 36 52.0 10.0 42.00 368.9 12.3 15.2 81 2.6 36.0 11.0 -33.2 1 20 52.0 10.0 42.00 368.9 12.6 15.6 81 2.6 36.0 11.0 -33.2 13 15 56.0 11.0 44.00 380.6 12.8 15.9 81 ERR ERR ERR 13 16 0.0 0.0 381.9 12.8 15.9 81 ERR ERR 14 35 54.0 11.0 44.00 386.6 13.0 16.1 81 2.6 35.5 10.4 10.4 19 26 55.0 11.0 44.00 386.6 13.0 16.1 81 ERR ERR 19 26 50.0 <td< td=""><td></td><td></td><td></td><td>6.6</td><td>44.10</td><td></td><td>11.8</td><td>14.8</td><td>80</td><td>2.5</td><td>34.6</td><td>11.2</td><td>98.8</td><td>-32.0</td><td>83.8</td><td>52.4</td></td<>				6.6	44.10		11.8	14.8	80	2.5	34.6	11.2	98.8	-32.0	83.8	52.4
22 36 52.0 10.0 42.00 365.9 12.3 15.2 81 2.6 36.0 11.0 -33.2 1 20 52.0 10.0 42.00 368.7 12.4 15.4 81 2.6 36.0 11.0 104.7 -104.7 13 16 0.0 10.0 44.00 373.8 12.6 15.9 81 2.6 36.0 11.0 104.7 -104.7 13 16 0.0 0.0 380.6 12.8 15.9 81 ERR ERR ERR 14 36 0.0 0.0 380.0 381.9 12.8 15.9 81 ERR ERR 14 35 54.0 11.0 44.00 386.7 13.0 16.1 81 2.6 35.5 10.4 109.2 19 13 56.0 11.0 44.00 386.8 13.1 16.1 81 2.6 35.5 10.4 109.2				10.0	43.00		12.2	15.1	80	2.5	35.5	11.0	103.2	-33.2	86.4	56.5
1 20 52.0 10.0 42.00 368.7 12.4 15.4 81 2.6 36.0 11.0 104.7 13.6 10.0 44.00 373.8 12.6 15.6 81 2.5 36.0 11.0 104.7 11.0 45.00 380.6 12.9 15.9 81 ERR	•			10.0	45.00	365.9	12.3	15.2	18	5.6	36.0	11.0	-33.2		-33.2	0.0
6 30 54.0 10.0 44.00 373.8 12.6 15.6 81 2.5 36.0 11.0 104.7 13 15 56.0 11.0 45.00 380.6 12.9 15.9 81 ERR ERR 13 15 56.0 11.0 45.00 380.6 12.8 15.9 81 ERR ERR 14 34 0.0 0.0 0.00 381.9 12.8 15.9 81 ERR ERR 18 25.0 11.0 44.00 386.6 13.0 16.1 81 ERR ERR 19 15 16.0 81 ERR ERR ERR ERR 19 15.0 10.0 0.00 386.6 13.1 16.1 81 ERR ERR 19 26.5 10.0 0.00 386.8 13.1 16.1 81 ERR ERR 19 26.0 10.0 0.00				10.0	45.00	368.7	12.4	15.4	81	5.6	36.0	11.0	104.7	-33.4	87.4	57.6
13 15 56.0 11.0 45.00 380.6 12.9 15.9 82 2.6 35.9 10.4 110.4 13 16 0.0 0.0 380.6 12.8 15.9 81 ERR ERR 14 35 54.0 11.0 43.00 381.9 12.8 15.9 81 2.6 35.5 10.4 1092 19 25 54.0 11.0 44.00 386.6 13.1 16.1 81 ERR ERR 19 14 0.0 0.0 386.6 13.1 16.1 81 ERR ERR 19 25 0.0 0.0 0.00 386.8 13.1 16.1 81 ERR ERR 19 25 0.0 0.0 0.00 386.8 13.1 16.1 81 ERR ERR 19 26 0.0 0.0 386.8 13.1 16.1 81 ERR ERR				10.0	. 44.00	373.8	12.6	15.6	81	2.5	36.0	11.0	104.7	-33.0	87.8	57.0
13 16 0.0 0.0 380.6 12.8 15.9 81 EAR ERR 14 34 0.0 0.0 381.9 13.0 15.9 81 EAR ERR 14 35 54.0 11.0 43.00 381.9 12.8 15.9 81 2.6 35.5 10.4 109.2 ERR 19 13 55.0 11.0 44.00 386.6 13.0 16.1 81 2.6 35.5 10.4 109.2 ERR 19 14 0.0 0.0 386.6 13.1 16.1 81 ERR ERR 19 25 0.0 0.0 386.8 13.1 16.1 81 ERR ERR 19 26 55.0 11.2 43.80 386.8 13.1 16.1 81 2.6 36.1 10.4 111.0 22 27 54.0 11.2 42.80 389.8 13.7 16.7 82 2.7 37.5 10.0 114.1 11.1				11.0	42.00	380.6	12.9	15.9	85	5.6	35.9	10.4	110.4	-34.8	90.6	63.0
14 34 0.0 0.0 381.9 13.0 15.9 81 ERR 14 35 54.0 11.0 43.00 381.9 12.8 15.9 81 2.6 ERR 18 25 54.0 11.0 44.00 385.7 13.0 16.1 81 2.6 35.5 10.4 109.2 19 14 0.0 0.0 386.6 13.0 16.1 81 ERR ERR 19 25 0.0 0.0 386.8 13.1 16.1 81 ERR ERR 19 26 55.0 11.2 43.80 386.8 13.1 16.1 81 ERR ERR 22 27 54.0 11.2 42.80 389.8 13.1 16.2 81 2.7 37.1 10.4 114.1 22 27 54.0 11.2 43.00 389.8 13.7 16.7 82 2.7 37.5 10.0 114.1 13 34 57.0 12.3 44.70	. –	3 16		0.0	0.00	380.6	12.8	15.9	18	ERR			ERR		ERR	ERA
14 35 54.0 11.0 43.00 381.9 12.8 15.9 81 2.6 35.5 10.4 109.2 18 23 55.0 11.0 44.00 386.6 13.0 16.1 81 2.6 35.5 10.4 109.2 19 13 55.0 11.0 44.00 386.6 13.0 16.1 81 ERR ERR 19 14 0.0 0.0 0.00 386.8 13.1 16.1 81 ERR ERR 19 25 0.0 0.0 0.00 386.8 13.1 16.1 81 2.6 36.1 10.4 111.0 22 27 54.0 11.2 43.80 386.8 13.1 16.2 81 2.7 37.1 10.4 114.1 22 27 54.0 11.2 42.80 389.8 13.7 16.7 82 2.7 37.5 10.0 119.9 13 34 57.0 12.3 44.70 404.9 13.8 16.9 82 ERR 13 45 57.0 12.5 44.50 40.5 13.8 16.9 82 2.8 37.9 11.1 10	•-	4 34		0.0	0.00	381.9	13.0	15.9	81	ERR			ERR		EHH	EAR
18 23 55.0 11.0 44.00 385.7 13.0 16.1 81 2.6 35.5 10.4 109.2 19 13 55.0 11.0 44.00 386.6 13.1 16.1 81 ERR ERR 19 14 0.0 0.00 386.6 13.1 16.1 81 ERR ERR 19 25 0.0 0.0 386.8 13.1 16.1 81 ERR ERR 22 27 54.0 11.2 42.80 389.8 13.1 16.2 81 2.7 37.1 10.4 114.1 22 27 54.0 11.2 42.80 389.8 13.7 16.7 82 2.7 37.5 10.0 114.1 13 34 57.0 12.3 44.70 404.9 13.8 16.9 82 ERR 13 45 57.0 12.5 44.50 405.1 13.8 16.9	•-	4 35		11.0	43.00	381.9	12.8	15.9	81	5.6			ERR		ERR	EBB
19 13 55.0 11.0 44.00 386.6 13.0 16.1 81 ERR ERR 19 14 0.0 0.0 0.00 386.8 13.1 16.1 81 ERR ERR 19 25 0.0 0.0 0.00 386.8 13.1 16.1 81 2.6 36.1 10.4 111.0 22 27 54.0 11.2 42.80 389.8 13.1 16.2 81 2.7 37.1 10.4 114.1 22 27 54.0 11.2 42.80 389.8 13.7 16.7 82 2.7 37.5 10.0 119.9 22 27 54.0 11.2 42.80 399.8 13.7 16.7 82 2.7 37.5 10.0 119.9 13 34 57.0 12.0 44.00 399.8 13.7 16.9 82 ERR 13 35 57.0 12.5 44.50 404.9 13.8 16.9 82 ERR 13 45 57.0 12.5 44.50 405.1 13.8 16.9 82 2.8 37.9 11.1 109.2 19 50 60.0 0.0 0.0 411.2 13.9 <td< td=""><td></td><td>8 23</td><td></td><td>11.0</td><td>44.00</td><td>385.7</td><td>13.0</td><td>16.1</td><td>18</td><td>5.6</td><td>35.5</td><td>10.4</td><td>109.2</td><td>-34.8</td><td>9.68</td><td>62.3</td></td<>		8 23		11.0	44.00	385.7	13.0	16.1	18	5.6	35.5	10.4	109.2	-34.8	9.68	62.3
19 14 0.0 0.00 386.6 13.1 16.1 81 ERR ERR 19 25 0.0 0.00 386.8 13.0 16.1 81 ERR ERR 19 26 55.0 11.2 43.80 386.8 13.1 16.1 81 2.6 36.1 10.4 111.0 22 27 54.0 11.2 42.80 389.8 13.7 16.7 82 2.7 37.1 10.4 114.1 22 27 54.0 11.2 42.80 389.8 13.7 16.7 82 2.7 37.5 10.0 119.9 13 34 57.0 12.3 44.70 404.9 13.8 16.9 82 ERR ERR 13 45 57.0 12.5 44.50 404.9 13.8 16.9 82 ERR 13 45 57.0 12.5 44.50 405.1 13.8 16.9 82 ERR 13 45 57.0 12.5 44.50 405.1 13.9 17.1 81 ERR	'	9 13		1.0	44.00	386.6	13.0	16.1	81	5.6			ERR		ERR	EAR
19 25 0.0 0.00 386.8 13.0 16.1 81 ERR 19 26 55.0 11.2 43.80 386.8 13.1 16.1 81 2.6 36.1 10.4 111.0 22 27 54.0 11.2 42.80 389.8 13.1 16.2 81 2.7 37.1 10.4 114.1 8 30 56.0 12.0 44.00 399.8 13.7 16.7 82 2.7 37.5 10.0 119.9 13 34 57.0 12.3 44.70 404.9 13.8 16.9 82 ERR ERR 13 45 57.0 12.5 44.50 405.1 13.8 16.9 82 ERR ERR 13 45 57.0 12.5 44.50 405.1 13.8 16.9 82 2.8 37.9 11.1 109.2 19 50 56.0 12.8 43.20 411.2 13.9 17.1 81 ERR 20 29 0.0 0.0 0.00 411.2 13.9 17.2 81 ERR 2	•			0.0	0.00	386.6	13.1	16.1	81	ERR			EAR		ERR	EHH
19 26 55.0 11.2 43.80 386.8 13.1 16.1 81 2.6 36.1 10.4 111.0 22 27 54.0 11.2 42.80 389.8 13.1 16.2 81 2.7 37.1 10.4 114.1 8 30 56.0 12.0 44.00 399.8 13.7 16.7 82 2.7 37.5 10.0 119.9 13 34 57.0 12.3 44.70 404.9 13.8 16.9 82 ERR 13 45 0.0 0.0 404.9 13.8 16.9 82 ERR 13 45 57.0 12.5 44.50 405.1 13.8 16.9 82 ERR 13 45 57.0 12.5 44.50 405.1 13.8 16.9 82 2.8 37.9 11.1 109.2 19 50 56.0 12.8 43.20 411.2 13.9 17.1 81 ERR 20 29 0.0 0.0 411.2 13.9 17.2 81 ERR 20 29 0.0 0.0 411.8 13.9 17.2 81 2.8 38.5 11.0 111.9				0.0	0.00	386.8	13.0	16.1	81	ERA			ERR		EAR	EBB
22 27 54.0 11.2 42.80 389.8 13.1 16.2 81 2.7 37.1 10.4 114.1 8 30 56.0 12.0 44.00 399.8 13.7 16.7 82 2.7 37.5 10.0 119.9 13 34 57.0 12.3 44.70 404.9 13.8 16.9 82 2.7 87.5 10.0 119.9 13 35 0.0 0.0 0.00 404.9 13.8 16.9 82 ERR ERR 13 45 57.0 12.5 44.50 405.1 13.8 16.9 82 2.8 37.9 11.1 109.2 19 50 56.0 12.8 43.20 411.2 13.9 17.1 81 ERR 20 29 0.0 0.0 411.2 13.9 17.2 81 ERR 20 29 0.0 0.0 411.8 13.9 17.2 81 2.8 38.5 11.0 111.9				11.2	43.80	386.8	13.1	16.1	81	5.6	36.1	10.4	111.0	-35.1	80.8	63.8
8 30 56.0 12.0 44.00 399.8 13.7 16.7 82 2.7 37.5 10.0 119.9 - 13 34 57.0 12.3 44.70 404.9 13.8 16.9 82 2.7 37.5 10.0 119.9 - 13 35 0.0 0.0 0.00 404.9 13.8 16.9 82 ERR ERR 13 44 0.0 0.0 0.00 405.1 13.8 16.9 82 ERR . ERR 13 45 57.0 12.5 44.50 405.1 13.8 16.9 82 2.8 37.9 11.1 109.2 19 50 56.0 12.8 43.20 411.2 13.9 17.1 81 ERR 20 29 0.0 0.0 0.00 411.2 13.9 17.2 81 ERR 20 30 57.0 13.0 44.00 411.8 13.9 17.2 81 2.8 38.5 11.0 111.9				11.2	45.80	389.8	13.1	16.2	81	2.7	37.1	10.4	114.1	-35.5	92.9	66.2
34 57.0 12.3 44.70 404.9 13.8 16.9 82 2.7 EHR 35 0.0 0.0 404.9 13.8 16.9 82 EHR EHR 44 0.0 0.0 405.1 13.8 16.9 82 ERR , ERR 45 57.0 12.5 44.50 405.1 13.8 16.9 82 2.8 37.9 11.1 109.2 50 56.0 12.8 43.20 411.2 13.9 17.1 81 ERR 51 0.0 0.0 0.00 411.2 13.9 17.1 81 ERR 29 0.0 0.0 0.00 411.8 13.9 17.2 81 ERR 50 0.0 0.0 441.0 411.8 13.9 17.2 81 ERR 50 0.0 0.0 441.0 411.8 13.9 17.2 81 ERR				12.0	44.00	399.8	13.7	16.7	85	2.7	37.5	10.0	119.9	-37.5	95.1	73.0
35 0.0 0.0 0.00 404.9 13.8 16.9 82 ERR 44 0.0 0.0 0.00 405.1 13.8 16.9 82 2.8 37.9 11.1 109.2 - 45 57.0 12.5 44.50 405.1 13.8 16.9 82 2.8 37.9 11.1 109.2 - 50 56.0 12.8 43.20 411.2 13.9 17.1 81 ERR 51 0.0 0.0 0.00 411.2 13.9 17.2 81 ERR 29 0.0 0.0 0.00 411.8 13.9 17.2 81 ERR 30 57.0 13.0 44.00 411.8 13.9 17.2 81 2.8 38.5 11.0 111.9	_			12.3	44.70	404.9	13.8	16.9	85	2.7			ERR		ERR	ERR
44 0.0 0.0 405.1 13.8 16.9 82 ERR , ERR 45 57.0 12.5 44.50 405.1 13.8 16.9 82 2.8 37.9 11.1 109.2 - 50 56.0 12.8 43.20 411.2 13.9 17.1 81 ERR 51 0.0 0.0 0.00 411.2 13.9 17.2 81 ERR 29 0.0 0.0 0.00 411.8 13.9 17.2 81 ERR 30 57.0 13.0 44.00 411.8 13.9 17.2 81 2.8 38.5 11.0 111.9	_			0.0	0.00	404.9	13.8	16.9	85	EAR			ERR		EAR	FRR
45 57.0 12.5 44.50 405.1 13.8 16.9 82 2.8 37.9 11.1 109.2 - 50 56.0 12.8 43.20 411.2 13.9 17.1 81 ERR 51 0.0 0.0 0.00 411.2 13.9 17.1 81 ERR 29 0.0 0.0 0.00 411.8 13.9 17.2 81 ERR 30 57.0 13.0 44.00 411.8 13.9 17.2 81 2.8 38.5 11.0 111.9	_			0.0	0.00	405.1	13.8	16.9	85	ERR			, ERR		EAR	EAR
50 56.0 12.8 43.20 411.2 13.9 17.1 81 2.8 38.3 11.0 111.3 - 51 0.0 0.0 0.00 411.2 13.9 17.1 81 ERR ERR 29 0.0 0.0 0.00 411.8 13.9 17.2 81 ERR ERR 30 57.0 13.0 44.00 411.8 13.9 17.2 81 2.8 38.5 11.0 111.9 -	_		57.0	12.5	44.50	405.1	13.8	16.9	82	2.8	37.9	11.1	109.2	-35.6	88.8	63.6
51 0.0 0.0 0.00 411.2 13.9 17.1 81 ERR 29 0.0 0.0 0.00 411.8 13.9 17.2 81 ERR ERR 30 57.0 13.0 44.00 411.8 13.9 17.2 81 2.8 38.5 11.0 111.9	_		56.0	12.8	43.20	411.2	13.9	17.1	91	2.8	38.3	11.0	111.3	-32.0	94 4	59.0
29 0.0 0.0 0.00 411.8 13.9 17.2 81 ERR 30 57.0 13.0 44.00 411.8 13.9 17.2 81 2.8 38.5 11.0 111.9	_		0.0	0.0	0.00	411.2	13.9	17.1	81	ERR			ERR		FRR	FRR
30 57.0 13.0 44.00 411.8 13.9 17.2 81 2.8 38.5 11.0 111.9	W		0.0	0.0	0.00	411.8	13.9	17.2	81	ERH			EAR		EBB	FRR
	N		57.0	13.0	44.00	411.8	13.9	17.2	81	2.8	38.5	11.0	111.9	-31.9	95.0	59 1

Table C-1 Operating Data -- Electrical (Continued)

		Douge of Array	Acres	4100	Flancad	Fortis	Flanced	Source		Vector Voltmeter	tmeter				
	TIME	in kW	ξ.×		Time	Days at	Days	Days Utilization	VSWR	Va	δ	7	Angle	7	7
DATE	Þr Bi	Forw.	Refl	in kW	hours	40 KW	•	%		λ N	λ V	mqo	degree	E .	Imagi
20-Apr	21 39	1_	13.0	44.00		14.0	17.2	81	2.8			ERR		ERR	ERR
20-Apr	21 40		0.0	0.00		14.0	17.2	8	ERR			ERR		ERR	
21 – Apr			0.0	0.00		14.0	17.3	18	EAR			ERR		ERR	
21 - Apr	0 55		13.0	45.00		14.1	17.3	81	2.8	39.1	10.0	125.0	-32.7	105.2	
21 – Apr	9	58.6	13.0	45.60	421.3	14.2	17.6	81	2.8		11.0	113.4	-38.1	89.2	
21Apr	11 19		13.0	45.00		14.5	17.8	82	2.8			EBB		ERR	
21 – Apr	11 20		0.0	0.00		14.3	17.8	80	ERR			ERR		ERR	
21 – Apr	16 29		0.0	0.00		14.7	18.0	18	ERR			ERR		ERR	
21 – Apr	16 30		13.0	43.00	431.8	14.4	18.0	80	2.9	38.1	9.7	125.6	-38.5	98.3	
21-Apr	19 43		13.5	44.00	435.1	14.7	18.1	81	2.9		6.6	126.0	-38.8	98:2	
21 – Apr			13.5	44.00	435.3	14.6	18.1	80	2.9			ERR		ERR	
21 – Apr	20 0		0.0	0.00	435.3	14.7	18.1	81	ERR			ERR		ERR	
21 - Apr			0.0	0.00	439.3	14.7	18.3	80	ERR			ERR		ERR	
21 - Apr			14.0	46.00	415.3	14.3	17.3	82	2.9	40.0	10.0	127.9	-38.5	100.1	
22-Apr			13.5	42.50	448.6	14.9	18.7	80	2.9		9.6	126.6	-40.7	96.0	
22-Apr	10 40		13.4	41.60	450.0	15.8	18.8	84	2.9		9.4	127.6	-41.0	96.3	
22-Apr			13.4	41.60	452.8	15.1	18.9	80	2.9			ERR		ERR	
22-Apr	13 28		0.0	0.00	452.8	15.9	18.9	84	ERR			ERR		ERR	
22-Apr			0.0	0.00	457.5	15.2	19.1	79	ERR			EAR		ERR	
22 Apr	18 10		15.0	45.00	457.5	16.0	19.1	84	3.0		9.7	130.2	-40.8	986	
23 – Apr	1 30		15.0	45.00	464.8	15.3	19.4	79	3.0	41.0	10.0	131.1	-41.6	98.0	
23-Apr	9 40		16.6	48.40		16.8	19.7	85	3.0		10.0	127.9	-42.7	94.0	
23 - Apr	12 19		16.6	48.40	475.7	15.9	19.8	80	3.0			, ERR		ERR	
23 - Apr			0.0	0.00	475.7	16.8	19.8	85	EAR			ERR		ERR	
- 1	13 19		0.0	0.00	476.7	15.9	19.9	80	ERR			ERR		ERR	
- 1			16.0	45.00	476.7	16.9	19.9	82	3.1	39.5	9.6	131.6	-44.6	93.7	92.4
- 1	0 10	0.49	17.5	46.50	487.5	16.1	20.3	79	3.2		10.0	134.0	-44.0	96.4	
24 – Apr	0 28		17.5	46.50		17.4	20.3	98	3.2			ERR		ERR	EAR

Table C-1 Operating Data -- Electrical (Continued)

		Power at Array	t Array	Input	Elapsed	Equiv.	Elapsed	Source		Vector Voltmeter	tmeter			40.000000	
	TIME	in kW	≥	Power	Time	Days at	Days	Days Utilization	VSWR	۸a	٩	Z	Angle	N	7
DATE	Ē Ĕ	Forw.	Reff.	in kW	hours	40 kW		%		m V	УE	mho	degree	Real Ima	Imaginary
24-Apr	-		0.0	0.00	488.3	16.2	20.3	79	ERR			ERR		ERR	ERR
24 – Apr	- 54		0.0	0.00	489.2	17.4	20.4	98	ERR			ERR		ERR	ERR
24 Apr	1 55		17.5	46.50	489.3	16.2	20.4	79	3.2			EAR		ERR	ERR
24 – Apr			17.9	46.10	500.4	17.7	20.9	92	3.2			ERR		ERR	ERR
24 – Apr	13 5		0.0	0.00	500.4	16.5	20.9	79	ERA			ERR		ERR	ERR
24-Apr	13 29	0.0	0.0	0.00	500.8	17.7	20.9	92	ERR			ERR		ERR	ERR
24-Apr	13 30		18.5	47.50	500.8	16.5	20.9	79	3.3	41.2	9.6	134.4	-46.1	. 93.2	6.96
24-Apr			18.2	45.80	509.9	17.9	21.2	84	3.3	45.0	9.8	137.1	-47.2	93.1	100.6
25-Apr	2 39		18.5	45.50	514.0	17.1	21.4	8	3.3			ERR		ERR	ERR
25-Apr			0.0	0.00	514.0	18.0	21.4	84	EHH			EAR		EAR	ERR
25-Apr			0.0	0.00	514.2	17.1	21.4	80	ERA			ERR		ERR	ERR
25-Apr	2 20		18.5	43.50	514.2	18.0	21.4	84	3.4			ERR		EHR	ERR
25-Apr			19.0	45.00	520.9	17.3	21.7	8	3.4	41.8	6.6	135.0	-47.5	91.2	966
25-Apr			0.0	0.00	520.9	18.2	21.7	84	EAR			ERR		ERR	ERR
25-Apr	_		0.0	0.00	523.2	17.3	21.8	79	EAR			ERR		ERR	EHH
25-Apr			19.1	45.90	523.3	18.2	21.8	84	3.4	41.9	10.0	134.0	-47.5	90.5	98.8
25-Apr			19.2	45.80	532.1	17.5	22.2	79	3.4	41.0	10.0	131.1	-48.5	86.9	98.2
25 - Apr	20 45		0.0	0.00	532.1	18.5	22.2	83	ERR			ERR		ERR	EAR
25-Apr			0.0	0.00	532.9	17.5	22.2	79	ERR			ERR		EAR	EAR
25-Apr			19.2	45.80	532.9	18.5	22.2	83	3.4			ERR		ERR	ERR
1	6 0		20.0	46.00	535.5	17.6	22.3	79	3.4			ERR		ERR	ERR
1	0 10		0.0	0.00	535.5	18.5	22.3	83	ERR			ERA		ERR	ERR
26Apr	1 29		0.0	0.00	536.8	17.6	22.4	79	ERR			ERR		ERR	EAR
1			20.0	46.00	536.8	18.6	22.4	83	3.4			ERH		ERR	ERR
T.	12 55		21.0	48.00	548.3	17.9	22.8	78	3.5	43.5	14.1	98.7	-39.5	76.1	62.8
F			21.0	48.00	549.5	19.2	22.9	84	3.5			ERR		ERR	ERR
26 – Apr		0.0	0.0	0.00	549.5	18.0	22.9	78	ERR			ERR		EBB	FRR
26 – Apr	14 21		0.0	0.00	549.7	19.2	22.9	84	ERR			ERR		ERR	ERR
															į

Table C-1 Operating Data -- Electrical (Continued)

	7	al Imaginary				FRA				•					·							·	•	•	·	•				
		Real	74	76	E E		HH	75	74.	82	FR	I I	H H	. 6	. 08	79.	FB				74	7.3	63	20.5	6.1	. 4	7 0	ב ע		
	Angle	degree	-390	-404	į			-42.0	-42.6	-53.5				-536	-542	-55.0)))				-567	929-	-615	-63.2	-617	- 0 79				Č
	7	mho	95.7	6 66	ERR	ERR	EAR	101.4	100.5	138.6	EAR	EAR	ERR	137.4	137.1	138.9	FRB	FRA	FRB	ERR	135.8	134.3	133.7	132.3	129.0	124 B	FBB	FBB	FAR	46.3
Vector Voltmeter	o S	> E	14.2	13.7				13.5	14.0	10.5				10.5	10.5	10.5					10.9	11.0	11.1	11.6	11.9	124	i			14.5
Vector V	۸a	Æ	42.5	42.8				42.8	44.0	45.5	•			45.1	45.0	45.6					46.3	46.2	46.4	48.0	48.0	48 4				21.0
	VSWR		3.5	3.5	ERR	ERR																				4.9	4	FAR	ERR	1.2
Source	Days Utilization	%	78	84	78	83	78	83	79	8	79	84	79	84	79	85	8	84	80	84	79	85	80	98	8	98	8	98	8	98
Elapsed	Days		22.9	23.1	23.1	23.2	23.5	23.2	23.4	23.8	23.9	23.9	23.9	23.9	24.2	24.6	24.8	24.8	24.8	24.8	25.2	25.3	25.9	26.1	26.3	26.6	26.8	26.8	26.9	26.9
	Days at		18.0	19.3	18.1	19.4	18.1	19.4	18.4	20.1	18.9	20.1	19.0	20.1	19.1	20.8	19.7	20.9	19.7	20.9	20.0	21.5	20.7	22.3	21.2	23.0	21.7	23.0	21.7	23.1
Elapsed	Time	hours	549.7	555.3	555.4	556.4	556.4	557.1	562.3	571.8	573.8	573.8	574.0	574.0	579.8	589.9	594.4	594.4	595.2	595.3	602.9	608.3	621.8	625.8	631.9	639.2	642.3	642.3	644.9	644.9
1.	-	E K																											0.00	
Power at Array	₹	Heg.	ĺ																										0.0	
	t	For.	1																										0.0	
19 412	⊒	Ē	•			21 4			က	12 30	14 29		14 39				11 4	11 5		11 55									13 34	
	1	DAIE	26-Apr	26-Apr	26-Apr	26-Apr	26-Apr	26-Apr	27 – Apr	27Apr	27 – Apr	27 Apr	27 Apr	27Apr	27 – Apr	28-Apr	28-Apr	28-Apr	28Apr	28-Apr	28-Apr	29 – Apr	29 – Apr	29-Apr	30Apr	30-Apr	30-Apr	30-Apr	30-Apr	30-Apr

Table C-1 Operating Data -- Electrical (Continued)

	1	g Q	It Array	1	Elapsed	Equiv.	Elapsed	Source		Vector Voltmeter	Itmeter				
	IME		نـ ' ج	Power	Time	Days at	Days	Days Utilization VSWR	VSWR	۸a	Λb	Z	Angle	N	2
DAIE	Ē	FoX.	E E	E K	hours	40 kW		%		м Уш	ΛE	ohm	degree	Real	Imaginary
30-Apr	21 30	38.0	0.3	37.70	652.8	21.9	27.2	8	1.2	20.5	14.0	46 B	0.0	46.8	c
1-May	-		0.3		656.3	23.5	27.3	98	1.2	20.0	14.0	45.7	0.5	40.0 7 7.0	y c
1 – May	7 50		0.4		663.2	22.3	27.6	81	5	200	14.5	44.1	9. C	1.01	-0.2 2.0
1-May	10 49		0.4		666.2	23.9	27.8	98	2)	FRR	9	14.	0.00
1-May	10 50		0.0		666.2	22.4	27.8	18	EAR			FRR		בים ממי	ב ממ ב ב ב
1-May	11 9		0.0		666.5	23.9	27.8	98	EAR			HAR HAR		בים מים מים	ב ב ב ב
1-May	11 10		9.0	38.40	666.5	22.4	27.8	81	6.	19.6	14.6	42.9	-	429	L C C
1-May	14 29		9.0		669.8	. 24.0	27.9	98	1.3	19.4	14.5	42.8	0	42.B	10.1
ı-May					8.699	22.4	27.9	80	ERR			ERR)	FRB	200
					672.2	24.0	28.0	98	EAR			FRR			ב כ ב ב ב
	16 50	40.0			672.2	22.5	28.0	80	2.1	20.2	15.9	40.6	30.0	35.2	-203
		39.0			691.3	24.4	28.8	85	2.1	19.4	16.8	36.9	20 B	30.00	50.3
2-May	21 47	43.0			701.1	23.6	29.5	81	2.2	20.2	19.2	33.6	71.8	32.0 10.5	10.4
3∽May	_	43.0			703.6	24.8	29.3	85	2.5		<u> </u>	FAR		E0.3	0.25-0
3-May	_	0.0			703.6	23.6	29.3	81	ERR			FBB		ב מ ב ב	ב נו ב נו
3-May		0.0		0.00	704.2	24.8	29.3	82	EAR			FR			
Мау	0 55	44.0		38.00	704.3	23.6	29.3	81	2.5			FRB		EBD	ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב
May		44.0		37.50	711.7	25.0	29.7	84	2.2	20.4	18.8	34.7	35.0	ב מל	HHH +
-May		44.0		37.75	718.4	24.2	29.9	81	22	: !) ;	FBB	9	20.4 7.00	9.9.1 9.01
- May	5 5	0.0	0.0	0.00	718.4	25.1	29.9	84	ERB			FRA		ב ני ני	H C
-May		0.0		0.00	718.7	24.2	29.9	81	ERR			FRA			HHH
- May	15 20	41.0		34.40	718.7	25.1	29.9	84	23	19.6	18.3	6 76	2 20	ההם	HH
May		45.0		35.50	734.3	24.5	30.6	80	i c	<u> </u>	2	24.3 GBB	93.0	27.9	-19.9
4-May	0 2	0.0		0.00	734.3	25.4	30.6	83	FRR					H G	EHH
4-May	7 34	0.0		00.0	734.9	24.5	30.6	80	FRR					HHH	HHH
May		43.6		36.60	734.9	25.4	30.6	83	6	20.6	t at	26.0	,	HH	EHH
4-May 1	18 18	44.0	7.7	36.30	745.6	24.7	31.1	8	9 6	20.0	10.4 7.01	30.2	30.4	29.1	-21.5
4-May 2	3 32	45.0	8.4	36.60	750.9	26.0	31.3	83 83	2.5	21.2	18.7	36.3	36.0	29.2	-21.2
											•)	-	57.3	-23.8

Table C-1 Operating Data -- Electrical (Continued)

		Power at Array	Array.	t icon	Flancod	100	Flanced	00000		10000	1				
	TIMAG		אר באי	in par		Lydely.	Liapsed	aoinos		vector voitmeter	irmeter	1			1
DATE	hr mi	Ľ.	Refl.	in KW	hours	Days al 40 kW	Uays	Days Unitation vown %	HAACA	m \a	2 Y	7 myo	Angle degree	P. P. P. P. P. P. P. P. P. P. P. P. P. P	2 Imaginary
5-May	=		8	39 10	7624	25.4	31.8	8	26	21.0	10.0	25.2	0 34	0 30	0 20
5-May	17 55		0	36 50	7603	26.7	20.00	8 8) [9 6		9 6	0.00	23.0	0.62-
6-May	. +		, C	36.00	776 A	25.0	30.4	8	, a	2 C	0.60	50.0 0.00	44.0 0.11	25.4	-24.6
Mari	- c		2 ;	02.50	0.077	6.0.0	32.4	8	i v	2.12	20.2	33.0	47.0	22.9	-24.5
o-May	ָ מ		0.1	35.50	783.4	27.2	32.6	83	29	21.6	20.0	34.5	49.5	22.4	~26.3
6May	22 37		12.6	35.40	798.0	26.7	33.2	80	3.1	21.9	20.6	34.0	47.0	23.2	-24.9
7-May	-		13.0	35.50	800.8	27.9	33.4	84	3.1	21.9	20.5	34.2	47.5	23.1	-252
7-May	7		13.0	35.50	806.4	27.0	33.6	8	3.1			ERR		ERR	ERR
7-May	7		0.0	0.00	806.5	28.0	33.6	83	ERR			EAA		ERR	EBB
7-Мау	7 25		0.0	0.00	806.8	27.0	33.6	8	ERR			EAR		ERR	FRR
7-May			13.3	40.20	806.8	28.0	33.6	83	3.0	21.8	20.5	34.0	43.0	24.9	-23.2
7-May	20 28		14.0	39.00	819.8	27.3	34.2	80	3.1	21.7	21.0	33.0	42.0	24.6	-22.1
8-Мау			14.9	40.10	825.8	28.8	34.4	84	3.2	22.3	21.9	32.6	43.0	23.8	-222
8Мау	6 59		15.0	40.00	830.3	27.7	34.6	80	3.2			ERR	l •	FRR	FRR
- 1			0.0	0.00	830.3	28.9	34.6	84	ERR			ERR		FRA	FAR
8-May	10 44		0.0	0.00	834.1	27.8	34.8	8	ERR			ERR		ERR	ERR
8-May			16.1	40.40	834.1	29.0	34.8	83	3.3	22.6	21.5	33.6	51.5	20.9	-263
8-May			16.1	40.40	838.2	27.9	34.9	80	3.3			EAR		FRR	FBR
8-May	14 55		0.0	0.00	838.3	29.1	34.9	83	ERR			ERR		ERR	FRR
1	15 36	0.0	0.0	0.00	838.9	27.9	35.0	8	ERR			ERR		ERR	EBB
1			16.0	39.00	839.0	29.1	35.0	83	3.3	22.5	21.5	33.5	52.0	20.6	-26.4
9−May	0 10		16.5	39.50	847.5	28.1	35.3	80	3.4	22.8	21.8	33.4	52.0	20.6	-26.4
9-May			17.0	40.00	853.7	29.7	35.6	83	3.4	23.5	22.1	33.6	52.3	20.5	-26.6
9-May	21 50		18.0	38.40	869.2	29.0	36.2	80	3.6	22.8	22.7	, 32.1	55.2	18.3	-264
10-May			19.0	39.00	872.4	30.5	36.4	94	3.7	23.3	23.2	32.1	55.7	18.1	-265
10-May	21 56		20.0	39.90	893.3	29.9	37.2	8	3.7	23.7	26.0	29.2	57.3	15.7	-245
11 – May	-		21.0	4.00	832.8	31.4	37.3	84	3.8	24.3	26.5	29.3	56.9	16.0	-24 F
11 – May	0	63.0	21.9	41.10	903.3	30.4	37.6	81	3.9	24.4	23.6	33.1	57.6	17.71	-279
11-May	16 0	54.5	18.7	35.80	911.3	32.0	38.0	84	3.8	23.9	23.8	32.1	53.3	19.2	-25.7

Table C-1 Operating Data -- Electrical (Continued)

		Power :	Power at Array	Input	Elapsed	Equiv.	Elapsed	Source		Vector Voltmeter	Itmeter			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	TIME	in KW	.×	Power	Φ	Days at	Days	Days Utilization	VSWR	۸a	δ	Z	Angle	Ŋ	7
DATE	Ę Bi	Forw.	Refl	in KW	hours	40 KW	•	%		Æ	MV	mho	degree	Real	Imaginary
11-May	16 29		18.7	35.80	911.8	30.7	38.0	81	3.8			ERR		ERR	ERR
11-May	16 30		0.0	0.00	911.8	32.1	38.0	84	ERH			ERR		ERR	EAR
12-May			24.5	39.50		31.2	38.5	18	4.2	25.6	24.8	33.0	61.8	15.6	-29.1
12-May	12 18		20.5	38.50	931.6	32.5	38.8	84	3.9	23.1	22.8	32.4	56.0	18.1	-26.9
12-May			19.0	36.50	939.3	31.8	39.1	81	3.8	22.3	22.0	32.4	53.9	19.1	-26.2
13-May			17.5	39.00	945.3	33.0	39.4	84	3.5	22.5	22.2	32.4	52.9	19.6	-25.9
13May	13 20		12.5	40.00	956.7	32.5	39.9	82	5.9	50.6	21.1	31.2	47.1	21.3	-22.9
13-May			14.0	37.50	965.3	33.8	40.2	84	3.2	20.7	21.0	31.5	47.3	21.4	-23.2
14-May			15.0	39.00	971.3	33.1	40.5	82	3.2	21.4	21.7	31.5	48.6	20.9	-23.7
14-May	15 55		14.3	37.20	983.3	34.5	41.0	. 84	3.2	20.4	21.0	31.1	46.6	21.3	-22.6
14-May			14.3	38.20	989.3	33.8	41.2	82	3.2	20.8	21.2	31.4	46.0	21.8	-22.6
15-May			13.0	39.20	992.0	34.8	41.3	84	3.0	21.2	21.5	31.5	47.2	21.4	-23.1
15-May			14.5	37.70	998.0	34.2	41.6	82	3.2	21.1	21.6	31.2	46.9	21.3	-22.8
15-May			15.2	40.80	939.8	35.2	41.7	84	3.2	20.6	21.5	30.6	46.0	21.3	-22.0
15-May	11 44		15.2	40.80	1003.1	34.4	41.8	82	3.2			EAR		ERA	EAR
15May	11 45		0.0	0.00	1003.1	35.2	41.8	84	EAR			ERR		ERR	ERR
15-May			0.0	0.00	1003.4	34.4	41.8	82	EAA			EAR		ERR	ERR
15-May	12 5		15.1	38.90	1003.4	35.3	41.8	84	3.5	20.5	21.2	30.9	46.4	21.3	-22.4
15-May			15.0	37.00	1013.1	34.6	42.2	82	3.3	20.4	21.3	30.6	47.3	20.8	-22.5
16-May	- 5		15.2	37.80	1016.4	35.8	42.4	84	3.3	20.9	21.7	30.8	46.8	21.1	-22.5
16-May			15.2	37.80	1019.4	34.8	42.5	82	3.3	20.2	20.9	30.9	43.6	22.4	-21.3
16-May			9.4	38.60		36.1	42.7	85	5.6	18.1	19.4	29.8	36.7	23.9	-17.8
16-May	20 2		8.5	37.50		35.4	43.1	82	2.5	18.0	19.3	, 29.8	34.5	24.6	-16.9
16-May			8.5	37.50	1037.0	36.6	43.2	85	2.5	18.1	19.3	30.0	34.0	24.9	-16.8
17 – May	0 28		8.3	37.70		35.6	43.3	82	2.5	18.2	19.3	30.2	34.0	25.0	-16.9
- !			7.4	38.80		37.0	43.7	85	2.3	18.0	19.0	30.3	30.0	26.2	-15.1
17-May	12 0	0.0	0.0	0.00	1051.3	35.8	43.8	82	EAR			ERR		ERR	ERR
Ţ			0.0	0.00		37.1	43.8	85	EAR			ERR		ERR	EBB
															l

Table C-1 Operating Data -- Electrical (Continued)

		Dower	Power at Array Innert	I I I I	Flansad	Forgiv	Flansed	Source		Vector Voltmeter	tmeter				
	TIME		in KW	Power	Time	Days at	Days	Days Utilization	VSWR	Va	ş	7	Angle	7	Z 4,44
DATE	Ħ Ē	For	Refl.	in kW	hours	40 kW	•	%		УШ /	УE	myo	degree	Real	maginary
17-May	12 35	5 45.6		37.70	1051.9	35.8	43.8	82	2.4			ERR		EAR	EAR
17-May				0.00	1054.4	37.1	43.9	84	EAR			ERR		ERR	ERR
17-May	15 34			0.00	1054.9	35.9	44.0	82	ERR			ERR		ERR	ERR
17 - May	15 39	5 45.0		37.50	1054.9	37.1	44.0	84	2.4			ERR		ERR	ERR
17-May				36.50	1060.3	36.0	44.2	81	2.4	17.3	18.8	29.4	29.5	25.6	-14.5
18-May	4 35			37.50	1067.9	37.6	44.5	85	2.2	16.6	18.5	28.7	23.1	26.4	-11.3
18-May				38.00	1069.3	36.4	44.6	82	2.2	16.8	18.5	29.0	22.1	56.9	-10.9
18-May				39.00	1072.1	37.8	44.7	82	2.2	16.9	18.8	28.7	23.0	26.5	-11.2
18-May	U			38.10	1076.8	36.7	44.9	82	2.0	17.0	18.1	30.0	17.6	28.6	-9.1
18-May		0 41.8		37.80	1079.3	38.1	45.0	82	1.9	16.9	17.2	31.4	15.7	30.5	-8.5
18-May	23 40			15.50	1087.0	36.9	45.3	82	2.5	20.4	7.5	87.0	33.5	72.5	-48.0
18-May	23 55			0.00	1087.3	38.2	45.3	8	ERR			EAR		ERR	ERR
19-May	1 15			0.00	1088.6	36.9	45.4	18	EAR			EAR		ERR	EAR
19-May	1 15			20.30	1088.6	38.2	45.4	84	1.4			EAR		ERR	ERR
19-May	5 58			20.70	1093.3	37.0	45.6	81	1.5	20.3	8.0	81.1	-1.0	81.1	4.4
19-May	7 55			21.20	1095.3	38.4	45.6	84	1.5	20.0	7.8	82.0	-0.1	82.0	0.1
19-May	2	0 35.5		33.50	1097.3	37.1	45.7	81	1.6	25.1	9.4	85.4	16.0	82.1	-23.5
19-May	=	1 34.0		33.20	1098.5	38.5	45.8	84	1.4	23.4	6.6	75.6	-2.4	75.5	3.2
19-May	14 13	3 33.0		32.30	1101.6	37.3	45.9	81	1.3	22.3	10.0	71.3	-4.0	71.1	5.0
19-May				37.20	1101.7	38.6	45.9	84	1.3	24.0	10.8	71.1	-3.4	70.9	4.2
19-May	15 23			36.00	1102.7	37.3	45.9	81	<u>_</u> დ	23.0	11.4	64.5	-7.8	63.9	8.8
19-May	17 (0.38.0		37.20	1104.3	38.7	46.0	84	1.3	24.0	10.0	76.8	3.5	9'9'	-4.7
19May	19 (0.38.0		35.50	1106.3	37.4	46.1	81	1.7	25.0	11.8	, 67.8	15.0	65.4	-17.5
19-May) 8	0 42.5	6.5	36.00	1107.3	38.8	46.1	84	2.3	26.5	13.3	63.7	43.0	46.6	-43.5
19-May	23 55	5 33.0		30.00	1111.3	37.6	46.3	81	1.9	21.5	12.7	54.1	32.0	45.9	-28.7
20-May	4 2			20.00	1115.7	39.1	46.5	84	2.8	22.0	10.5	0.79	46.0	46.5	-48.2
20-May				7.00	1117.2	37.7	46.5	81	1.0	23.0	5.7	129.0	64.0	56.6	-116.0
20-May	6 25			0.00	1117.8	39.1	46.6	84	ERR			EAR		ERR	ERR

Table C-1 Operating Data -- Electrical (Continued)

		Power at Array	Arrav	Inout	Elapsed	Equiv.	Elapsed	Source	>	Vector Voltmeter	tmeter				
	TME		1	Power		Days at	Days U		VSWR	٧a	٩	7	Angle	Z	7
DATE	F. III	For	Refl.	in kW		40 KW	•			λ N	Jm V	ohm	degree	Real Imaginary	aginary
Web.	7 30	31.0	15.0	16.00	11188	37.7	46.6	<u>8</u>	5.6	29.0	9.0	103.0	63.5	46.0	-92.2
20 - May	- 1		2	800	1118.9	39.1	46.6	84	EAR			ERR		EAR	EAR
20 - May	- # - #		0 0	0.0	128	37.8	47.1	8	EHR			EAR		ERR	ERR
	18.30	120	000	10.00	1129.8	39.1	47.1	83	2.4	16.0	5.5	93.0	30.5	80.2	-47.2
- 1	18 53		36	20.40	1130.2	37.8	47.1	8	2.3	22.3	6.7	90.3	30.1	78.1	-45.3
ı	0 25		30	19.50	1135.8	39.2	47.3	83	2.2	21.7	8.4	82.6	29.5	71.9	-40.7
21 – May	1 18		0.0	10.00	1136.6	37.9	47.4	8	1.0	11.5	0.9	61.3	0.0	61.3	0.0
- 1	3 31		7	9.90	1138.9	39.3	47.5	83	1.9	15.5	9.6	88.5	24.7	80.4	-37.0
21 – Mav	52	_	1.0	10.00	1140.7	38.0	47.5	8	1.9	14.7	0.9	78.4	23.0	72.1	-30.6
21 – May	5 30	16.0	1.5	14.50	1140.8	39.3	47.5	83	1.9	17.6	7.2	78.2	23.5	71.7	-31.2
21 – Mav	8 15		2.1	20.90	1143.6	38.0	47.6	8	1.9	20.4	8.4	7.77	25.3	70.2	-33.2
l.	8 55	10.0	0.0	10.00	1144.3	39.3	47.7	83	1.0	11.3	9.9	54.8	-5.0	54.5	4.8
21 – Mav	9 28		6	15.10	1144.8	38.0	47.7	8	2.0	18.0	10.0	57.6	25.9	51.8	-25.1
21 - May	13 15		0.3	15.70	1148.6	39.4	47.9	85	1.3	13.0	9.8	48.3	4.0	48.2	-3.4
21 - May			2.5	19.50	1158.4	38.3	48.3	79	2.0	17.1	11.0	49.7	-40.0	38.1	32.0
22 - May	0 49	1	7.3	24.70	1160.2	39.6	48.3	82	2.8	29.5	5.9	159.9	-33.3	133.6	87.8
22 – May		46.0	16.0		1161.3	38.4	48.4	79	3.9	38.0	0.9	202.5	-51.8	125.3	159.2
22 - May	4 18		22.0		1163.6	39.8	48.5	83	3.7	45.0	8.0	179.9	-56.4	99.5	149.8
22-May	١.		0.0		1167.0	38.6	48.6	79	1.0	48.0	8.2	187.2	-54.5	108.7	152.4
22-May	12 20	30.0	0.0	30.00	1171.7	40.1	48.8	85	1.0	46.0	9.7	151.7	-54.3	88.5	123.2
22-May	16 25		0.0	35.00	1175.8	38.9	49.0	79	1.0	49.5	8.4	188.2	-53.7	111.4	151.7
22-May	21 24		0.1	34.90	1180.7	40.4	49.2	85	-	51.8	8.3	199.6	-54.5	115.9	162.5
22-May		_	0.1	37.90	1182.8	39.1	49.3	79	Ξ.	51.0	8.6	, 189.6	-50.6	120.4	146.5
23 – May		39.8	0.1	39.70	1184.6	40.5	49.4	82	-	54.2	8.8	197.0	-53.9	116.1	159.1
23-May	5 26	37.0	0.1	36.90	1188.8	39.4	49.5	79	Ξ:	51.0	8.0	203.9	-48.2	135.9	152.0
23 - May	20 8	0.96	0.0	36.00	1203.5	41.3	50.1	82	1.0	46.1	10.4	141.8	-59.0	73.0	121.5
24-May	9	10.0	0.1	9.90	1213.3	40.0	50.6	79	1.2			ERR		ERR	ERF
24 - May	6 43	3 15.0	0.0	15.00	1214.1	41.6	50.6	82	1.0	8.1	13.0	19.9	-5.0	19.9	1.7
•															

APPENDIX D

		7.5	Ť							r	
!		Inlet	1				Mixed	Mixed	Mixed		Vapor
·		Air	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
		Flow	Pres	Temp	(in		Flow	Press	Temp		
D-4-	T:	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
Date	Time	**************		**************	200000000000000000000000000000000000000			000000000000000000000000000000000000000		remp (r)	
4/3/93	15:30	70	66	90	12	17	170	0.4	65		100
	16:35										
	18:25	70		90	13	17	170	0.6	65		100
	20:25	70		85	13	16	170	0.5	65		100
	23:10	70		85	13	18	170	0.4	68		100
4/4/93	1:30	70		88	13	18	180	0.6	60	ļ	110
	4:30	70		87	13	18	180	0.6	60	<u> </u>	110
	6:25	70		86	13	18	180	0.5	60		110
	9:27	70		85	13	18	180	0.5	66		110
	11:45	70		90	13	18	180	0.5	66		110
	14:30	70		91	13	17	180	0.5	80		110
	16:30	70		90	13	18	180	0.6	80		110
	18:40	70		90	13	17	180	0.5	80	ļ	110
	20:30	70		90	12	16	180	0.4	65		110
	22:30	70		88	12	17	180	0.5	65		110
4/5/93	0:32	70		88	12	16	180	0.6	70		110
ļI	2:25	70		91	12	16	180	0.7	70		110
	4:29	70	67	90	12	16	180	0.7	67		-110
	6:27	70		90	11	16	180	0.7	67 70		110
	8:30	70		93	11	16 16	180	0.5	70	ļ	110
	10:30	65		105	11	16	190	0.6	90	56	115
	11:40	75 70		105	11	16	190	0.5	90	70	120
	13:35	70 70		115	10	15	190	0.5	110	70	120
	15:40 17:30	65		120	10	15	190	0.5	100	74	125
	19:30	65		120	10	15	190	0.4	90		125
	23:30	70	78	111	10	15	190	0.6	81		120
4/6/93	1:30	70	78	111	10	15	180	0.6	84		110
170700	3:30	70		112	10	14	190	0.6	84		120
	5:30	70	78	113	10	14	190	0.5	85		120
	7:30	70	78	115	10	14	180	0.5	90	56	110
	9:35	70	78	115	10	15	180	0.6	90	70	110
	11:30	70	78	116	10	15	180	0.5	90	72	110
	13:28	71	79	120	11	14	179	0.5	91	74	108
	16:00	71	78	120	10	14	180	0.4	90	74	109
	18:00	70	79	120	10	14	180	0.5	90	70	110
	20:00	70	78	120	9	14	180	0.5	90	68	110
	22:00	70	79	119	9	14	190	0.5	85	68	120
4/7/93	0:01	70		119	9	14	180	0.6	91	67	110
	1:55	70		119	9	14	180	0.6	91	67	110
	4:00	70	78	119	8	14	190	0.5	94	67	120
	6:05	70		120	9	14	180	0.5	94	66	110
	8:00	70		121	9	14	180	0.5	100	70	110
	10:00	70		121	9	14	180	0.6	100	72	110
	12:02	69		120	10	14	180	0.5	100	62	111
	13:55	70		130	12	17	190	0.6	110	80	120
	15:55	70		139	12	17	190	0.6	115	82	120
ļļ	18:00	70		140	12	17	180	0.5	110	74	110
	20:00	70		135	12	16	190	0.5	110	65	120
1/0/0	22:00	69	79	135	12	16	185	0.6	110	64	116
4/8/94	0:02	70		134	12	16	190	0.5	100	62	120
	2:00	70		133	12	16	190	0.5	105	62	120
ļ	4:00	70		131	12	15	190	0.5	104	63	120
	6:00	70 70		129	12	16	180	0.5	103	62	110
L	8:00	70	78	129	12	15	190	0.6	103	62	120

	-	Inlet					Mixed	Mixed	Mixed		Vapor
		Ai <u>r</u>	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
		Flow-	Pres	Temp	(in		Flow	Press	Temp		
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
	10:00	70	78	130	12	16	190	0.6	105	74	120
	12:00	65	78	137	12	16	190	0.6	110	82	125
	14:00	65	78	140	12	16	190	0.6	110	86	125
	16:00	70	78	140	12	16	190	0.6	115	82	120
	18:00	70	78	140	11	17	190	0.5	110	70	120
ļ	20:00	70 70	78 78	138 140	11 12	15 17	190 190	0.5 0.6	115 110	68 62	120 120
4/9/94	22:00 0:01	70	78	135	11	15	190	0.6	107	56	120
4/9/94	2:00	70	78 78	132	11	15	180	0.6	104	53	110
	4:00	70	78	131	11	15	190	0.6	104	50	120
	6:00	70	78	131	11	15	190	0.6	105	48	120
	8:00	70	78	131	11	15	190	0.6	105	72	120
	10:00	70	78	130	11	15	190	0.5	110		120
	12:05	70	78	135	11	15	190	0.5	110		120
	14:00	70	78	142	12	16	195	0.4	120	95	125
	16:00	70 70	78	145	12 11	16 16	195 195	0.4	118		125 - 125
	18:00	70 70	78 78	146 147	11	16	195	0.4 0.4	118 118	78	-120
 	20:00 22:00	70 75	78 78	147	11	16	190	0.4	115	70	115
4/10/94	0:01	75 75	78	145	11	15	190	0.5	113	57	115
47 1070 1	2:00	75	78	142	11	15	180	0.5	113	52	105
	4:04	75	78	139	11	15	180	0.5	113	49	105
	6:00	75	78	139	11	15	193	0.5	113	48	118
	8:00	70	78	139	11	15	195	0.4	120	70	125
	10:00	70	78	140	11	15	195	0.4	125		125
	12:00	70	78	143	11	15	195	0.4	125		125
	14:00 16:00	70 70	78 78	147 150	11 11	15 15	195 195	0.4	130 125	88	125 125
	18:00	70	78	151	11	15	195	0.4	121	00	125
	20:00	70	78	151	11	15	195	0.4	120		125
	22:00	70	78	149	11	15	190	0.4	115		120
4/11/93	0:01	70	78	145	11	15	180	0.5	117	68	110
	2:00	70	78	143	11	15	180	0.5	117	68	110
	4:00	70		143	11	15	180	0.4	117	64	110
	6:00	70	78	144	10	15	180	0.4	120	62	110
ļ	8:00	70		145	10	15 15	190	0.4	120	59	120
	10:00 12:00	70 70		146 150	10 10	15 15	190 190	0.4 0.4	125 130	72 76	120 120
 	14:00	70		155	11	15	190	0.4	130	10	120
	16:00	70		154	12	15	190	0.5	130		120
	18:00	6 9	78	155	12	15	195	0.4	125	82	126
	20:00	66	78	145	10	15	195	0.4	115	78	129
	22:00	68		145	11	15	190	0.5	120	76	122
4/12/93	0:01	64		142	11	15	180	0.4	111	69	116
	2:00	63		142	11	15	180	0.4	113	68	117
	4:00	65 65		143	11	15	180	0.4	115	68	115
	6:00 8:00	65 65		144 145	10 10	15 15	185 190	0.4 0.4	115 120	67	120 125
 	10:00	65		145		15	190	0.4	125		125
	12:00	65		145	10	15	190	0.4	125	78	125
	14:00		,,	, ,0	,,,	10		0.4	120		120
	16:00	71		155	10	14	197	0.4	125	88	126
	18:00	71		155	11	14	195	0.4	120	82	124
	20:00	71	88	150		14	195	0.4	120	78	124
	22:00	70	88	145	10	14	200	0.4	120	72	130

		1,000								r	
		inlet					Mixed	Mixed	Mixed		Vapor
		Air	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
		Flow	Pres	Temp	(in		Flow	Press	Temp		
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
***************************************	300000000000000000000000000000000000000		000000000000000000000000000000000000000	200000000000000000000000000000000000000							
4/13/93	0:01	70	88	146	10	14 14	190 190	0.4 0.4	116 118	70 70	120 115
<u> </u>	2:00	75 75	88	146 147	10 10	14	190	0.4	120		115
	4:00	75 75	88 88	147	10	14	190	0.4	120	70	115
	6:00 8:00	75	88	147	10	14	195	0.4	125	70	120
	10:00	75	88	148	10	14	195	0.4	120		120
	12:00	75	88	148	10	14	195	0.4	120		120
	14:00	80	88	150	10	14	195	0.4	125		115
	16:00	80	88	150	10	14	195	0.4	120		115
	18:00	80	89	150	11	14	195	0.4	118	78	115
	20:00	78	87	150	10	14	195	0.4	120	72	117
	22:00	80	86	150	10	14	200	0.4	120	70	120
4/14/93	0:01	78	87	148	9	14	190	0.4	118	70	112
7, 17/33	2:00	78	86	149	10	14	190	0.4	120	70	112
	4:00	78	87	148	9	13	190	0.4	118	69	112
	6:00	78	88	149	9	13	190	0.4	120	68	112
	8:00	70	88	149	9	13	190	0.4	120		120
	10:00	75	88	150	10	13	190	0.4	120		115
	12:00	75	88	150	10	14	190	0.4	125		115
	14:00	75	90	150	10	14	195	0.4	125		120
	16:00	75	89	150	10	14	196	0.4	124	86	121
	18:00	80	89	150	9	13	197	0.4	125	76	117
	20:00	80	89	151	10	14	195	0.4	125	60	115
	22:00	75	89	145	10	14	200	0.4	115	53	125
4/15/93	0:01	75	88	145	9	13	195	0.4	112	49	120
	2:00	75	88	145	9	13	195	0.4	112	49	120
	4:00	75	89	144	9	13	195	0.4	113	48	120
	6:00	70	90	144	9	13	200	0.4	114	45	130
	8:00	75	90	145	9	13	200	0.4	115		125
	10:00	75	89	146	9	13	200	0.4	115		125
	12:00	75	90	150	9	13	200	0.4	117		125
	14:00	75	90	152	9	13	200	0.4	120		125
	16:00	70	90	156	9	13	200	0.4	120	86	130
	18:00	70	90	155	9	13	200	0.4	120	75	130
	20:00	75	90	155	9	13	200	0.4	120	72	125
111212	22:00	75	90	155	9	13	200	0.4	120	60	125
4/16/93	0:01	80	90	145	. 9	13	200	0.4	115	58	120 120
ļ	2:00	80	89	145	9	13	200	0.4 0.4	114 115	53 50	120
	4:00	80 - 80	89 89	144 144	9	13 13	200 200	0.4	115	49	120
 	6:00 8:00	80	89	144	9	13	200	0.4	115	64	120
 	10:00	80	89	145	9	13	200	0.4	115	04	120
 	12:00	80	90	150	9	13	200	0.4	120	78	120
 	14:00	80	90	150	9	13	200	0.4	120	70	120
	16:00	80	89	150	8	13	200	0.4	120	80	120
\vdash	18:00	80	89	150	8	12	200	0.4	120	72	120
 	20:00	75	88	145	8	12	200	0.4	115	66	125
 	22:00	75	89	145	8	12	200	0.4	115	60	125
4/17/93	0:01	70	88	143	8	12	200	0.4	110	60	130
7,1,733	2:00	75	87	140	8	12	195	0.4	110	58	120
	4:00	75	87	142	8	12	195	0.4	110	58	120
. .	6:00	70	87	142	8	12	195	0.5	111	59	125
	8:00	70	88	142	8	12	195	0.4	112	65	125
	10:00	70	8	146	8	13	195	0.5	115	- 33	125
	12:00	70	88	144	8	15	195	0.4	115		125
·	00							<u> </u>			0

		7.									, , , , , , , , , , , , , , , , , , ,
		Inlet	¯				Mixed	Mixed	Mixed		Vapor
		Air	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
		Flow	Pres	Temp	(in	ŭ	Flow	Press	Temp		
			1			(: 14/-4\			•	Tamm (E)	(COEM)
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
	14:00	70	88	146	8	16	200	0.4	120	88	130
	16:00	70	89	150	8	16	200	0.4	120	88	130
	18:00	70	88	150	9	16	200	0.4	125	89	130
	20:00	75	88	143	8	16	200	0.4	120	69	125
<u> </u>	22:00	75	87	135	8	16	200	0.4	105	68	125
4/18/93	0:01	73	- 07	100			200	U. ¬	100		120
4/10/33	1:10	75	87	133	8	16	200	0.4	104	64	125
\vdash	2:00	75	87	137	8	16	200	0.4	105	63	125
	4:00	75	88	137	8	16	200	0.4	106	61	125
		70	88	138	8	16	200	0.4	108	62	130
	6:00	70				16		0.4	110	65	
	8:00		88	140	8		200				130
	10:00	70	88	141	8	16	200	0.4	111	68	130
	12:00	70	88	146	8	16	200	0.4	116	75	130
	14:00	70	88	147	8	16	200	0.4	120	92	130
	16:00	70	89	150	8	16	200	0.4	120	92	130
	18:00	70	88	150	8	16	200	0.4	120	88	130
	20:00	70	89	150	8	16	200	0.4	120	80	'130
	22:00	70	86	140	8	115	200	0.4	110	75	130
4/19/93	0:01	70	87	139	8	15	195	0.4	110	66	125
	2:00	70	87	139	8	15	195	0.4	110	66	125
	4:00	70	87	139	8	15	200	0.4	110	66	130
	6:00	65	87	139	8	15	200	0.4	111	66	135
	8:00	65	88	142	8	15	200	0.4	111		135
	10:00	65	89	145	8	15	200	0.4	113		135
	12:00	70	88	149	8	15	200	0.4	120		130
	14:00	70	88	151	8	15	200	0.4	120		130
	16:00	70	88	150	8	15	200	0.4	120	88	130
	18:00	70	88	150	8	15	200	0.4	118	85	130
	20:00	70	87	149	8	15	200	0.4	115	82	130
	22:00	70	88	144	8	15	200	0.4	110	70	130
4/20/93	0:01	65	86	142	8	15	195	0.4	110	69	130
	2:00	65	87	143	8	15	200	0.4	113	70	135
	4:00	60	87	144	8	15	200	0.4	114	70	140
	6:00	60	87	144	8	15	200	0.4	114	68	140
	8:00	60	88	145	8	15	200	0.4	115	70	140
	10:00	60	88	145	8	15	200	0.4		70	140
	12:00			145	8	15	200	0.4		72	140
	14:00		88	145	8	15	200	0.4	115	78	140
	16:00	60		139	8	15	200	0.4	115	78	140
	18:00			140		15	200	0.4	115		140
	20:00		89	145	8	15	200	0.4	120	70	120
	22:00	80	89	140	8	15	200	0.4	110	62	120
4/21/93	0:01	80	89	138	8	15	200	0.4	107	60	120
	2:00	80	88	135		15	200	0.4	105	57	120
	4:00	80	88	135		15	200	0.4	106	54	120
	6:00	78	88	135	8	15	200	0.4	106	54	122
	8:00	79	88	135	8	15	200	0.4	108	57	121
	10:00	80	89	137	8	15	200	0.4	111	60	120
	12:00	75	89	143		15	200	0.4	115	75	125
	14:00	75	89	142	8	16	200	0.4	111	75	125
	16:00	65	90	145	8	16	200	0.4	110	76	135
<u> </u>	18:00		90	145		16	200	0.4	110	76	135
	20:00	65	90	145		16		0.4			
							200		110	72	135
4/22/04	22:00	65	90	145	8	15	200	0.4	107		135
4/22/94	0:01	90	88	136	8	15	200	0.4	104	59	110

			- <u>-</u>							гт	* 17
		Inlet					Mixed	Mixed	Mixed		Vapor
		Air	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
		Flow	Pres	Temp	(in		Flow	Press	Temp		
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
***************************************	2:00	90	89	137	8	15	200	0.4	106	54	110
	4:00	90	89	137	8	15	200	0.4	106	50	110
	6:00	90	88	137	8	15	200	0.4	106		110
	8:00	90	88	137	8	15	200	0.4	110	60	110
	10:00	90	88	139	8	15	200	0.4	115 115	70 72	110 115
	12:00	85	88	145	8	15 16	200 200	0.4 0.4	115	75	130
L	14:00	70	87	145	8	16	200	0.4	115		125
	16:00	75 70	87 87	143 142	8	16	200	0.4	115	75	130
 	18:00 20:00	80	88	142	8	16	200	0.4	115	72	120
 	22:00	85	86	142	8	16	200	0.4	115	70	115
	24:00	85	86	140	8	16	200	0.4	110	67	115
4/23/93	2:00	90	84	135	8	15	200	0.4	110		110
	4:00	90	84	135	8	15	200	0.4	105		110
	6:00	90	84	134	8	15	200	0.4	105		110
	8:00	90	84	137	8	15	200	0.4	105	66	110 115
	10:00	85	84	142	8	15 15	200 200	0.4 0.4	110 115		125
	12:00	75 75	85 84	146 145	8	15	200	0.4	115		125
	14:00 16:00	75 85	85	145	8	15	200	0.4	114		115
-	18:00	85	84	146	8	15	190	0.4	112		105
\vdash	20:00	80	84	143	8	15	190	0.4	108	78	110
	22:00	80	84	138	8	15	195	0.4	102		115
	24:00	85	84	140	. 8	15	200	0.4	100	70	115
4/24/93	2:00	85	84	140	8	15	200	0.4	100		115
	4:00	85	84	142	8	15	200	0.4	100		115
	6:00	85	84	140	8	15 15	200 200	0.4 0.4	100 105	66 70	115 115
	8:00	85	84	142 142	8 8	15	200	0.4	110		120
	10:00 12:00	80 80	84 84	143	8	15	200	0.4	110		120
	14:00	80	84	145	8	15	200	0.4	110		120
	16:08	80	85	149	7	15	190	0.4	117	80	110
	18:00	· 85	85	150	7	15	200	0.4	114		115
	20:00	80	84	145	7	15	200	0.4	109		120
	22:00	80	84	139		15	200	0.4	105		120
	24:00	80		140		15			100		120
4/25/93	2:00			142		15		0.4 0.4	100 100		125 130
ļ	4:00			143 145		15 15			100		130
	6:00 8:00			145		15			110		130
	10:00		83	147		15			110		130
 	12:00			146		16			115		135
	14:00			148		16	200	0.4	120	85	130
	16:00	70	85	151	8	16	190	0.4	121		
	18:00	75	85	151					117		
	20:00			147					111		
	22:00			141					105		
4/00/00	24:00							0.4	105 105		
4/26/93	2:00								105		130
	4:00 6:00	70									130
	8:00			141							
1	10:00										130
	12:00				7.5	15	200	0.4	115	83	130
	14:00								118	90	135

		Inlet	-				Mixed	Mixed	Mixed		Vapor
		Air	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
		Flow	Pres	Temp	(in	_	Flow	Press	Temp		
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
>>>>	16:00	70	87	153	8	15	200	0.4	117	80	130
	18:00	70	87	153	8	15	200	0.4	110	80	130
	20:00	80		149	8	15	200	0.4	111	76	120
	22:00	75	86	142	8	15	200	0.4	106	71	125
	24:00	70		142	7.5	15	200	0.4	105	66	130
4/27/93	2:00	70	84	141	7.5	15	200	0.4	105	64	130
	4:00	8	84	145	7.5	15	200	0.4	105	60	192
	6:00 8:00	75 75	86 85	145 141	7.5 7.5	15 15	200 200	0.4 0.4	103 110	60	125
	10:00	75 75	85	14	7.5	15	200	0.4	110	62 70	125 125
	12:00	75	85	147	7.5	15	200	0.4	115	70	125
	14:00	75	85	145	7.5	15	200	0.4	115	76	125
	16:00	75	85	146	7.5	15	200	0.4	115	76	125
	18:00	71	85	148	7.5	15	200	0.4	111	72	129
	20:00	70	84	145	7.5	15	200	0.4	105	68	130
	22:00	75	84	140	7.5	15	200	0.4	105	68	125
	24:00	75	84	143	7.5	15	200	0.4	105	66	- 125
4/28/93	2:00	75	84	143	7.5	15	200	0.4	105	65	125
	4:00	75 75	84	145	7.5	15	200	0.4	104	64	125
	6:00	75	84	145	7.5	15	200	0.4	107	64	125
	8:00 10:00	· 75 70	84 84	145 145	7.5	15	200	0.4	111	65	125
h	12:00	70 70	84	145	7.5 7.5	15 15	200 200	0.4	111 109	70 72	130
	14:00	70	84	145	7.5	15	200	0.4	110	76	130 130
 	16:00	70	84	147	7.5	15	200	0.4	112	71	130
	18:00	70	84	148	7.5	15	200	0.4	112	72	130
	20:00	70	84	148	7.5	15	200	0.4	111	71	130
	22:00	70	84	147	7.5	15	200	0.4	110	70	130
	24:00	70	84	147	7.5	15	200	0.4	108	70	130
4/29/93	2:00	70	84	148	7.5	15	200	0.4	107	68	130
ļl	4:00	70	84	149	7.5	15	200	0.4	105	67	130
	6:00	70	85	150	7.5	15	200	0.4	105	66	130
	8:00 10:00	69 70	85 84	145	7.5	15	200	0.4	108	70	131
 	12:00	70	84	155 160	7.5 7.5	15	200	0.4	140	72	130
 	14:00	70	85	170	8.5	15 16	200 200	0.4	145 140	68	130
	16:00	70	84	167	8.5	16	200	0.4	135	68 62	130 130
	18:00	70	84	166	8.5	16	195	0.4	135	63	125
	20:00	70	85	165	8.5	16	200	0.4	135	63	130
	22:00	70	85	164	8.5	16	200	0.4	137	62	130
	24:00	70	86	165	8.5	16	200	0.4	140	62	130
4/30/93	2:00	70	- 85	165	8.5	16	200	0.4	140	61	130
	4:00	70	85	163	8.5	16	200	0.4	139	60	130
	6:00	70	85	165	8.5	16	200	0.4	140	60	130
	8:00	70	85	160	8.5	16	200	0.4	135	58	130
	10:00 12:00	70 65	84	160	8.5	16	200	0.4	140	70	130
	14:00	68	84 84	160 160	8.5 8.5	16	200	0.4	135	69	135
- 	16:00	70	85	160	8.5	16 16	200 200	0.4	130 135	68	132
	18:00	67	84	160	8.5	16	200	0.4	133	72 66	130 133
	20:00	63	84	159	8.5	16	200	0.4	135	64	133
	22:00	63	84	158	8.5	16	200	0.4	132	63	137
	24:00	65	84	160	8.5	16	200	0.4	134	62	135
5/1/93	2:00	65	84	160	8.5	16	200	0.4	135	61	135
	4:00	65	84	160	8.5	16	200	0.4	140	62	135

T	———	Inlet	<u> </u>				Mixed	Mixed	Mixed		Vapor
İ		1	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
i		Flow	Pres	Temp	(in		Flow	Press	Temp		
D-4-	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
Date	Time		(0.000000000000000000000000000000000000	000000000000000000000000000000000000000	300000000000000000000000000000000000000	0.0000000000000000000000000000000000000	200	0.4	140	62	140
	6:00	60	84 84	160 156	9 8.5	16 16	200	0.4	130	63	140
	8:00 10:00	60 60	84	155	8.5	16	200	0.4	130	64	140
	12:00	60	84	160	8.5	16.5	200	0.4	131	73	140
	14:00	60	84	161	8.5	16	200	0.4	135	78	140
	16:00	60	84	163	8.5	16.5	200	0.4	135	82	140
	18:00	63	84	163	8.5	16	200	0.4	130	80 77	137 137
	20:00	63		158	8.5	16	200	0.4	125 110		140
	22:00	60		155	8	16	200	0.4 0.4	110		140
	24:00	60	84	153	8	16 16	200 200	0.4	109	70	140
5/2/93	2:00	60	84	152 150	8.5	16	200	0.4	109	60	140
	4:00	60 60	84 84	149	8.5	16	200	0.4	109	60	140
	6:00 8:00	60	85	149	8.5		200	0.4	110	57	140
	10:00	60	85	149	8.5	16	200	0.4	115	68	140
	12:00	60		148	8.5	16	200	0.4	115		140
	14:00	63	84	150	8.5		200	0.4	120		137
	16:00	60		153	8.5		200	0.4	125		140 140
	18:00	60		155	8.5		200	0.4	120 120		140
	20:00	60		155	8.5		200 200	0.4	120		140
	22:00	60		150 150	8.5 8.5		200	0.4	120		140
5/0/00	24:00	60 60		150	8.5			0.4	121		140
5/3/93	2:00 4:00	60		150	8			0.4	120		140
	6:00	60		151	8			0.4	120		140
	8:00	60		150	8	16		0.4	120		140
	10:00		88	155	8			0.4	120		140
	12:00			160					125 130		140 140
	14:00							0.4	130		120
	16:00			163 163	8				130		125
ļ	18:00								125		120
	20:00 22:00								124		120
	24:00								125		120
5/4/93	2:00			152	8	- 15			125		120
0	4:00				8	15			122		113
	6:00	86								64	114
	8:00										115 115
	10:00										115
	12:00										
-	14:00 16:00										115
	18:00								130	78	116
 	20:00					16	200	0.4	125	76	
	22:00			155	8	16	200				
	24:00	85	5 87	157							
5/5/93											
	4:00										
	6:00										
 	8:00										
 	10:00 12:00										
	14:00								139	5 60	111
—	16:00					16	200	0.4	13	7 60	
	18:00							0.4	13	5 60	111

			Ī-						301	r	
		inlet-					Mixed	Mixed	Mixed		Vapor
		Air	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
		Flow	Pres	Temp	(in		Flow	Press	Temp		
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
200000000000000000000000000000000000000	20:00	90	88	157	0.5	16	200				
-	20:00 22:00	89 88	87	155	8.5 8.5	16 16	200 200	0.4	135	60	111
	24:00	88	87	156	8.5	16	200	0.4 0.4	130 130	- 60	112
5/6/93	2:00	88	86	155	8	16	200	0.4	127	60 59	112
3/0/33	4:00	88	85	155	8	16	200	0.4	130	59	112
	6:00	87	86	160	8	16	200	0.4	135	60	112 113
	8:00	90	86	158	8	16	200	0.4	130	63	110
	10:00	85	87	161	8	15	200	0.4	130	68	115
	12:00	85	88	165	8	15	200	0.4	135	75	115
	14:00	90	87	164	8.5	16	200	0.4	135	77	, 110
	16:00	90	87	165	8	16	200	0.4	137	80	110
	18:00	90	87	164	8	16	200	0.4	137	80	110
	20:00	87	87	162	8	16	200	0.4	130	78	113
	22:00	87	87	162	8	16	200	0.4	130	78	113
	24:00	87	87	161	8	16	200	0.4	130	70	113
5/7/93	2:00	85	87	160	8	16	200	0.4	130	68	115
	4:00	85	86	160	8	16	200	0.4	130	68	115
	6:00	85	86	161	` 8	16	200	0.4	132	68	115
	8:00	85	86	160	8	16	200	0.4	132	69	115
	10:00	80	86	160	8	16	200	0.4	130	70	120
	12:00	75	86	162	8	16	200	0.4	127	79	125
	14:00	75	86	162	8	16	200	0.5	126	77	125
	16:00	75	86	162	8	15	200	0.5	125	69	125
	18:00	80	84	160	8	15	200	0.5	125	65	120
	20:00	80	86	160	8	15	200	0.4	125	65	120
	22:00	85	86	160	8	15	200	0.4	125	64	115
510100	24:00	85	86	160	8	15	200	0.4	130	62	115
5/8/93	2:00	85 85	87	160	8	15	200	0.4	125	62	115
	4:00	85	86	161	8	15	200	0.4	130	62	115
	6:00	85	86	158	8	15	200	0.4	130	62	115
	8:00 10:00	85	86 86	158 156	8	15	200	0.4	124	64	115
	12:00		86	157	8	15 15	200	0.5	124	68	200
	14:00		86	159	8	15	200	0.5	123	71	200
	16:00		86	160	8	15	200	0.5	123 125	73	200
	18:00		86	159	8	15	200	0.5	125	71 69	200 200
	20:00		86	159	8	15	200	0.4	123	67	200
	22:00		_ 86	160	8	15	200	0.4	125	67	200
	24:00		86	160	8	15	200	0.4	125	67	200
5/9/93	2:00		- 86	160	8	15	200	0.4	130	66	200
	4:00		86	157	8	15	200	0.4	130	64	200
	6:00		- 86	155	8	15	200	0.4	130	64	200
	8:00		86	157	8	15	200	0.4	121	65	200
\Box	10:00		86	157	8	15	200	0.4	122	68	200
I	12:00		86	159	8	15	200	0.4	124	70	200
	14:00		87	163	8	16	200	0.4	127	74	200
 	16:00		87	164	8	16	200	0.4	127	77	200
	18:00		87	164	8	16	200	0.4	127	77	200
ļ	20:00		87	163	8	16	200	0.4	125	73	200
	22:00		87	159	8	16	200	0.4	110	65	200
E (40 /00	24:00		86	155	8	15	200	0.4	115	58	200
5/10/93	2:00		87	155	8	15	200	0.4	120	56	200
 	4:00		87	155	8	15	200	0.4	120	56	200
	6:00		86	152	8	15	200	0.4	120	56	200
	8:00		87	154	8	15	200	0.4	120	57	200

	r 1	Inlet			f		Mixed	Mixed	Mixad	Ι	Vanar
į		4.5	-			.	Mixed		Mixed		Vapor
		Air	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
		Flow	Pres	Temp	(in		Flow	Press	Temp		
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
X8000000000000000000000000000000000000	10:00		88	156	8	15	210	0.4	121	64	210
	12:00	80	88	159	8	15	210	0.4	123	68	130
	14:00	85	89	163	8	15	210	0.4	125	71	125
	16:00	85	89	163	8	15	210	0.4	125	72	125
	18:00	80	90	165	8	15	210	0.4	127	74	130
	20:00	80	90	165	8	15	205	0.4	127	70	125
	22:00	80	88	160	8	15	205	0.4	127	68	125
-	24:00	80	88	159	8	15	205	0.4	125	50	125
5/11/93	2:00	80	88	160	8	15	210	0.4	125	50	130
	4:00	82	88	160	8	15	210	0.4	125	52	128
	6:00	80	88	155	8	15	210	0.4	120	54	130
	8:40	75	87	156	8	15	210	0.4	120	65	135
	10:00	75	88	158	8	15	210	0.4	121	72	135
	12:00	75	88	160	8	15	210	0.4	123	79	135
	14:00	80	89	162	7	15	210	0.4	124	82	130
	16:00	60	90	162	7	15	210	0.4	125	84	.150
	18:00	70	90	162	7	15	200	0.4	125	84	i130
	20:00	80	90	163	7	15	200	0.4	125	78	120
	22:00	80	88	161		15	200	0.4	123	70	120
54000	24:00	- 00	87	157	7	15	200	0.4	120	66	200
5/12/93	2:00	80	87	159	7	15	200	0.4	122	64	120
	4:00	80	87 87	152	7.5	15	205	0.4	110	64	125
	6:00 8:00	81 80	88	155 153	7.5	15 15	205	0.4	115 115	65	124
	12:45	80	89	160	8 8	15	210 210	0.4	118	69 82	130
	14:00	80	89	161	8	15	210	0.4	118	80	130 130
	16:00	75	90	160	7	15	210	0.4	120	81	135
	18:00	75	90	162	8	15	210	0.4	120	78	135
	20:00	80	88	160	8	15	210	0.4	120	76	130
	22:00	80	88	155	8	15	210	0.4	120	72	130
	24:00	80	88	154	8	15	210	0.4	122	70	130
5/13/93	2:00	80	88	155	7.5	15	210	0.4	120	62	130
	4:00	80	87	154	7.5	15	210	0.4	119	56	130
	6:00	80	87	155	7.5	15	210	0.4	120	56	130
	8:00	80	86	153	8	15	210	0.4	116	66	130
	10:00	75	84	158	8	15	210	0.4	119	78	135
	12:00	75	84	162	8	15	210	0.4	121	82	135
	14:00		85	165	8	15	210	0.4	121	80	135
	16:00	75	- 88	166	8	15	210	0.4	125	84	135
	18:00	70	88	166	8	15	210	0.4	125	84	140
 	20:00	80	88	165	8	15	210	0.4	125	76	130
 	22:00	80	87	163	8	15	210	0.4	120	70	130
5/14/02	24:00	80	83	159	7.5	15	210	0.4	120	64	130
5/14/93	2:00 4:00	80 80	84	160	7.5	15	210	0.4	120	63	130
 	6:00	80	84 84	155 155	7.5 7.5	15 15	205	0.4	115	62	125
 	8:00	80	84	155	7.5	15	205 210	0.4	115 116	58 73 ·	125
 	10:00	85	84	158	7	15	210	0.4	120	73 77	130 125
	12:00	80	86	164	8	15	210	0.4	121	86	130
	14:00	70	86	165	8	15	210	0.4	126	89	140
	16:00	70	87	165	8	15	210	0.4	128	89	140
	18:00	65	86	165	8	15	210	0.4	130	85	145
	20:00	80	85	163	8	15	210	0.4	125	80	130
	22:00	80	84	160	8	15	210	0.4	120	74	130
	24:00	90	84	157	8	15	210	0.4	110	69	120
		1			<u>-</u>		- 17	U.7	- 1101	091	120

		Inlet-					Mixed	Mixed	Mixed		Vapor
		Air	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
		Flow	Pres	Temp	(in		Flow	Press	Temp		
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
5/15/93	2:00	90	84	156	8	15	210	0.4	110	64	120
5/15/93	4:00	90	84	156	8	15	210	0.4	110	62	120
	6:00	90	84	156	8	15	210	0.4	110	60	120
	8:00	80	84	156	7	15	210	0.4	117	77	130
	10:00	75	85	160	7	15	210	0.4	120	87	135
	12:00	80	85	165	7	15	210	0.4	122	88	130
	14:00	80	86	165	7	15	210	0.4	127	91	130
	16:00	80	86	165	7	15	210	0.4	129	89	130
	18:00	70	87	165	7	15	210	0.4	130 127	88	140
	20:00	70	86	165 155	7	15 15	210 210	0.4 0.4	127	80 76	140 125
	22:00	85 80	84 84	155	7	15	210	0.4	115	70	130
5/16/93	24:00 2:00	85	84	154	7	15	210	0.4	115		125
0, 10,30	4:00	85	84	155	7	15	210	0.4	115	65	125
	6:00	85	83	155	7	15	210	0.4	115	63	125
	8:00	80	83	155	7	15	210	0.4	115	68	130
	10:00	80	84	157	7	15	210	0.4	119	76	. 130
	12:00	80	85	161	7	15	210	0.4	121	83	-130
	14:00	85	86	163	7	15	210	0.4	125	86	125
	16:00	85	86	165	7	15	210	0.4	125	88	125
	18:00	80	86	165	7	15	210	0.4	125	88	130
	20:00	80	84	160	7	15	210	0.4	120	80	130
	22:00	80 80	84 84	157 155	7	15 15	210 210	0.4 0.4	120 120	76 70	130 130
5/17/93	24:00 2:00	80	85	158	7	15	210	0.4	120	68	130
3/1//33	4:00	80	84	155	7	15	210	0.4	115	68	130
	6:00	80	84	154	7	15	210	0.4	118	70	130
	8:00	80	84	154	7	15	210	0.4	115	70	130
	10:00	80	85	155	7	15	210	0.4	118	73	130
	12:00	80	86	161	7	15	210	0.4	120	80	130
<u></u>	14:00	85	88	165	7	15	210	0.4			125
	16:00	80	86	159	7	15	210	0.4	122	88	130
L	18:00	80	87	160	7	15	210	0.4	125	85	130
	20:00	80 83	88 84	160 155	7	15 15	210 210	0.4	123 120	82 76	130 127
	22:00 24:00	80	84	154	7	15	210	0.4 0.4	115	73	130
5/18/93	2:00			156		15	210	0.4	117		130
2. 10,00	4:00	. 80	83	154	7	14	210	0.4	113	64	130
	6:00	80	84	154	7	15	210	0.4	115	63	130
	8:00	80	- 84	157	7	15	210	0.4	120	67	130
	10:00	85	84	160	7	15	210	0.4	120	65	125
	12:00	80	- 84	150	. 7	15	210	0.4	115	65	130
	14:00	80	85	155	7	15	210	0.4	120	78	130
———	16:00	80	85	155	7	15	210	0.4	120	82	130
	18:00 20:00	80 80	86 86	165 161	7	15 15	210 210	0.4 0.4	125 120	80 76	130
	22:00	80	86	160	7	15	210	0.4	115	76 76	130 130
	24:00	80	85	155	7	15	210	0.4	115	65	130
5/19/93	2:00	80	84	150	7	15	210	0.4	113	62	130
	4:00	80	84	150	7	15	210	0.4	111	60	130
	6:00	80	85	149	7	15	210	0.4	110	57	130
	8:00	80	85	150	7	15	210	0.4	115	70	130
	10:00	80	56	150	7	15	180	0.4	115	70	100
	12:00	80	46	155	7	14	160	0.4	120	70	80
	14:00	80	46	160	7	15	160	0.4	120	76	80

		7.5	- -	Т			Mixed	Mixed	Mixed		Vapor
		In[et	¯				Mixed			A L ! a A	
	1	Air	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	Flow
		Flow-	Pres	Temp	(in		Flow	Press	Temp		
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
	****************	20000000000000000000000000000000000000		160	7	14	160	0.4	115	74	105
	16:00	55 60	45 46	160	7	14	160	0.4	125	74	100
	18:00	60	46	155	7	15	160	0.4	120	70	100
<u> </u>	20:00	60	45	152	7	14	160	0.4	110	64	100
<u> </u>	22:00 24:00	65	46	151	7	14	160	0.4	114	59	95
E (20/02)	2:00	65	46	149	7	14	160	0.4	114	55	95
5/20/93	4:00	70	46	148	7	14	160	0.4	112	53	90
 	6:00	65	46	147	7	14	160	0.4	112	52	95
 	8:00	60	46	148	7	14	155	0.4	110	60	95
 	10:00	60	45	150	7	14	155	0.4	110	63	95
 	12:00	60	46	152	7	14	157	0.4	115	70	97
 	14:00	55	46	155	7	14	160	0.4	115	76	105
	16:00	55	46	154	7	14	160	0.4	115	76	105
	18:00	56	46	155	7	14	160	0.4	115	74	104
	20:00	60	46	152	7	14	160	0.4	115	69	100
	22:00	55	44	148	7	14	160	0.4	110	66	105
	24:00	55	44	144	7	14	160	0.4	108	61	105
5/21/93	2:00	55	44	144	7	13	160	0.4	108	58	105
	4:00	55	44	144	7	13	160	0.4	108	54	;105
	6:00	55	44	144	7	14	160	0.4	107	. 53	:105
	8:00	55	44	144	7	14	160	0.4	106		105
	10:00	55		145	7		160	0.4	110		105
	12:00	55		148	7	14	160	0.4	112		105
	14:00	55		151	7	15	160	0.4	115		105
	16:00	60		152	7	15	160	0.4	115	76 76	100 100
	18:00	60		150	7	14	160	0.4	120		100
	20:00	55		147	7	14	160	0.4	115 115		105
	22:00	55		145		14 13	160 160	0.4 0.4	104		100
	24:00	60		142	7 7	13	160	0.4	105		100
5/22/93	2:00					13	160	0.4	105		100
	4:00	60			7	13	160	0.4	105		100
	6:00	60					160	0.4	105		100
	8:00	60						0.4	110		100
	10:00 12:00	60 60						0.4	110		100
	14:00							0.4			100
	16:00										
	18:00							0.4			
-	20:00							0.5	110	61	100
	22:00							0.5		62	100
	24:00							0.5	119		105
5/23/93	2:00						160				
	4:00				8	14	160				100
	6:19				8	14	160				105
	8:15			145	8	14					100
	10:00	60	48								100
	12:00	60	48								100
	14:00	60									100
	16:00										100
	18:00										
	20:00										
	22:00										
	24:00										115
5/24/93											
1	4:00	60	48	152	3	14	170	0.4	120	54	1 110

		Inlet					Mixed	Mixed	Mixed	ĺ	Vapor
			Indak Ala	.,,,,,,,	Cunting	Discharge				Ambient	Flow
	ŀ		Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor	Vapor	Ambient	FIOW
		Flow	Pres	Temp	(in		Flow	Press	Temp		
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
T	6:00	60	48	152	8	14	170	0.4	120	54	110
	8:00	60	48	152	8	14	170	0.4	120	60	110
	10:00	60	46	155	8	14	180	0.4	125	65	120
	12:00	80	92	157	8	15	210	0.4	125	68	130
	14:00	75	90	157	8	15	210	0.4	125		135
	16:00	75	90	158	8	15	210	0.4	120	70	135
	18:00	78	91	158	8	15	211	0.4	120	68	133
	20:00	75	92	155	8	15	210	0.4	116	67	135
	22:00	80	91	154	8	15	210	0.4	120		130
	24:00	75	92	153	8	15	220	0.4	115	60	145
5/25/93	2:00	80	93	153	8	15	230	0.4	115	56	150
	4:00	80	93	151	8	15	230	0.4	114	55	150
	6:00	80	93	151	8	15	230	0.4	114	54	150
	8:00	80	92	152	8	15	230	0.4	115		150
	10:00	75	92	154	8	15	230	0.4	120	68	155
	12:00	80	92	155	8	15	230	0.4	122	70	150
	14:00	80	94	155	8	15	220	0.4	120	74	140
	16:00	80	85	156	8	15	210 210	0.4	120 120	75 76	-,130
	18:00	80	84	154	8 8	15		0.4 0.4	115	70	130
	20:00	80	84 84	153 150	8	15 15	210 210	0.4	115	66	130 135
 	22:00	75 75	84	149	8	15	220	0.4	113		145
5/26/93	24:00 2:00	75	84	149	8	15	220	0.4	113	61	145
3/20/93	4:00	75 75	84	15	8	15	220	0.4	114	60	145
 	6:00	75 75	84	149	. 8	15	220	0.4	113	60	145
	8:00	75	86	150	8	15	220	0.4	115		145
	10:00	75	86	151	8	15	220	0.4	115	68	145
	12:00	75	86	151	8	16	220	0.4	117	70	145
	14:00	75	86	155	8	16	220	0.4	117	72	145
	16:00	75	86	155	8	16	220	0.4	116	74	145
	18:00	75	86	152	8	16	220	0.4	115	72	145
	20:00	70	86	150	8	16	220	0.4	115	68	150
	22:00	75	86	150	8	16	220	0.4	113		145
	24:00	75	84	148	8	15	220	0.4	111		145
5/27/93	2:00	75	84	148	8	15	220	0.4	110	61	145
	4:00	75	85	147	8	15	220	0.4	110	59	145
	6:00	78.		147	8				110		
	8:00	75 75	86	150	8	15	220	0.4	112	62	145
	10:00	75	86	150	8	15	220	0.4	115		145
	12:00	75 75	87	155	8	16	220	0.4	115		145
	14:00 16:00	75 - 75	87 88	155 154	8	16 16	220 220	0.4 0.4	120 118		145 145
	18:00	72	88	154	8	16	220	0.4	118		145
 	20:00	75	85	150	8	15	215	0.4	110		140
-	22:00	75 75	84	150	8	15	220	0.4	112		145
	24:00	75	85	147	8	15	220	0.4	108		145
5/28/93	2:00	75	86	147	8	15		0.4	107		145
5.25,00	4:00	75	85	147	8	15		0.4	106		145
	6:00	75	85	147	8	15		0.4	106		145
	8:00	70	85	148	8	15	210	0.4	105		140
	10:00	70	85	150	8	15	210	0.4	108		140
	12:00	75	87	156	8	16			115		140
	14:00	75	86	159	8	16		0.4	118		
	16:00	75	86	150	8	15			112		
	18:00	75	85	150		15			111		

Date Time CFM Open Press Flow Press Flow Press Pre			1 To A	·				Mixed	Mixed	Mixed		Vapor
			Inlet	[C4'	Disabassa	1	i		Ambiant	
				r_ I	-		Discharge		- 1	•	Ambient	FIOW
20,00										•		
22:00	Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
22:00	***************************************	20:00	75	86	150	8	16	220	0.5			145
5/29/93 2:00 75 86 150 8 15 220 0.4 110 60 145		22:00										150
4.00		24:00										
6:00 75 84 150 8 15 220 0.4 108 60 145	5/29/93											
8,00												
10:00												
12:00												
14:00	-											
16:00												
18:00 76 86 160 8 166 220 0.4 122 76 145												
20:00												145
22:00			75		157	8	155	220	0.5	120	80	145
6/30/93 2:00 75 84 152 8 15 220 0.4 115 72 145 6:00 75 82 152 8 15 220 0.4 113 68 145 8:00 75 84 150 8 15 220 0.4 110 64 145 10:00 75 86 155 8 16 220 0.4 110 67 145 12:00 75 86 158 8 16 220 0.4 110 67 145 12:00 75 86 158 8 16 220 0.4 130 77 145 16:00 75 86 165 8 16 220 0.4 135 82 145 18:00 75 86 165 8 16 220 0.4 135 82 145 20:00 75		22:00	70	84								
4:00 75 82 152 8 15 220 0.4 113 68 145 6:00 75 84 150 8 15 220 0.4 110 64 145 8:00 75 84 150 8 15 220 0.4 110 65 145 10:00 75 86 155 8 16 220 0.4 110 67 114 11:00 75 86 155 8 16 220 0.4 110 67 145 12:00 75 86 155 8 16 220 0.4 110 67 145 14:00 75 87 165 8 16 220 0.4 130 77 145 16:00 75 86 165 8 16 220 0.4 130 77 145 16:00 75 86 165 8 16 220 0.4 135 76 145 18:00 75 86 165 8 16 220 0.4 135 76 145 18:00 75 86 165 8 16 220 0.4 135 76 145 18:00 75 86 165 8 16 220 0.4 135 76 145 18:00 75 84 160 8 16 220 0.4 120 72 145 22:00 75 84 160 8 16 220 0.4 120 72 145 22:00 75 84 150 8 16 220 0.4 120 70 145 22:00 75 86 155 8 16 220 0.4 120 70 145 37 37 37 37 37 37 37 3		24:00										
6:00 75 84 150 8 15 220 0.4 110 64 :145 8:00 75 84 150 8 15 220 0.4 110 65 145 10:00 75 86 158 8 16 220 0.4 110 67 :145 12:00 75 86 158 8 16 220 0.4 114 70 145 14:00 75 86 165 8 16 220 0.4 130 77 145 16:00 75 86 165 8 16 220 0.4 135 76 145 18:00 75 86 165 8 16 220 0.4 120 72 145 20:00 75 84 160 8 16 220 0.4 120 72 145 22:00 75 86	5/30/93		75 ==									
8:00 75												
10:00												
12:00												
14:00												
16:00			75									
18:00										135	82	
22:00 75 84 160 8 16 220 0.4 120 70 145 24:00 75 84 158 8 16 220 0.4 120 68 145 5/31/93 2:00 75 86 155 8 16 220 0.4 115 65 145 4:00 75 86 152 8 16 220 0.4 113 60 145 6:00 75 86 150 8 16 220 0.4 110 60 145 8:00 75 86 155 8 16 220 0.4 110 64 145 10:00 75 87 160 8 16 220 0.4 110 64 145 12:00 60 46 164 8 16 120 0.4 130 83 130 15:00 60			75	86	165	8			0.4			145
24:00 75 84 158 8 16 220 0.4 120 68 145 5/31/93 2:00 75 86 155 8 16 220 0.4 115 65 145 4:00 75 86 152 8 16 220 0.4 113 60 145 6:00 75 86 150 8 16 220 0.4 110 60 145 8:00 75 86 155 8 16 220 0.4 110 64 145 10:00 75 87 160 8 16 220 0.4 110 74 145 11:00 60 46 164 8 16 190 0.4 130 83 130 16:00 60 46 165 8 16 190 0.4 130 82 130 18:00 60												145
5/31/93 2:00 75 86 155 8 16 220 0.4 115 65 145 4:00 75 86 152 8 16 220 0.4 110 60 145 6:00 75 86 150 8 16 220 0.4 110 60 145 8:00 75 86 155 8 16 220 0.4 110 64 145 10:00 75 87 160 8 16 220 0.4 110 74 145 12:00 60 46 164 8 16 185 0.4 125 82 125 14:00 60 46 165 8 16 189 0.4 130 83 130 18:00 60 46 164 8 16 190 0.4 130 82 130 20:00 60												
4:00												
6:00 75 86 150 8 16 220 0.4 110 60 145 8:00 75 86 155 8 16 220 0.4 110 64 145 10:00 75 87 160 8 16 220 0.4 110 74 145 12:00 60 46 164 8 16 120 0.4 110 74 145 12:00 60 46 165 8 16 190 0.4 130 83 130 16:00 60 46 165 8 16 190 0.4 130 85 130 18:00 60 46 164 8 16 190 0.4 115 76 130 20:00 60 46 161 8 16 190 0.4 117 68 130 21:00 60 46	5/31/93											
8:00 75 86 155 8 16 220 0.4 110 64 145 10:00 75 87 160 8 16 220 0.4 110 74 145 12:00 60 46 164 8 16 185 0.4 125 82 125 14:00 60 46 165 8 16 190 0.4 130 83 130 16:00 60 46 165 8 16 190 0.4 130 83 130 18:00 60 46 164 8 16 190 0.4 130 82 130 20:00 60 45 161 8 16 190 0.4 117 68 130 22:00 60 46 155 8 16 190 0.4 117 68 130 6/1/93 2:00 60			75									
10:00												
12:00												
14:00 60 46 165 8 16 190 0.4 130 83 130 16:00 60 46 165 8 16 190 0.4 130 85 130 18:00 60 46 164 8 16 190 0.4 130 82 130 20:00 60 45 161 8 16 190 0.4 115 76 130 22:00 _60 46 165 8 16 190 0.4 117 68 130 24:00 60 46 155 8 16 190 0.4 117 68 130 6/1/93 2:00 60 46 155 8 16 190 0.4 115 66 130 6/1/93 2:00 60 46 155 8 16 190 0.4 110 62 130 8:00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>125</td>												125
16:00									0.4	130	83	130
20:00 60 45 161 8 16 190 0.4 115 76 130 22:00 60 46 161 8 16 190 0.4 117 68 130 24:00 60 46 155 8 16 190 0.4 115 66 130 6/1/93 2:00 60 46 155 8 16 190 0.4 113 64 125 4:00 60 46 155 8 16 190 0.4 110 62 130 6:00 60 46 155 8 16 190 0.4 110 62 130 8:00 60 46 151 7 16 190 0.4 110 64 130 10:00 60 44 159 7 16 190 0.4 115 72 130 12:00 60												
22:00 60 46 161 8 16 190 0.4 117 68 130 24:00 60 46 155 8 16 190 0.4 115 66 130 6/1/93 2:00 60 46 155 8 16 185 0.4 113 64 125 4:00 60 46 155 8 16 190 0.4 110 62 130 6:00 60 46 150 7 16 190 0.4 110 62 130 8:00 60 46 151 7 16 190 0.4 110 64 130 10:00 60 44 159 7 16 190 0.4 115 72 130 12:00 60 44 160 8 16 190 0.4 118 76 130 14:00 70												
24:00 60 46 155 8 16 190 0.4 115 66 130 6/1/93 2:00 60 46 155 8 16 185 0.4 113 64 125 4:00 60 46 155 8 16 190 0.4 110 62 130 6:00 60 46 150 7 16 190 0.4 105 60 130 8:00 60 46 151 7 16 190 0.4 110 64 130 10:00 60 44 159 7 16 190 0.4 115 72 130 12:00 60 44 160 8 16 190 0.4 115 72 130 12:00 70 44 165 8 15 190 0.4 118 76 130 16:00 70						8	16					
6/1/93 2:00 60 46 155 8 16 185 0.4 113 64 125 4:00 60 46 155 8 16 190 0.4 110 62 130 6:00 60 46 150 7 16 190 0.4 105 60 130 8:00 60 46 151 7 16 190 0.4 110 64 130 10:00 60 44 159 7 16 190 0.4 115 72 130 12:00 60 44 160 8 16 190 0.4 118 76 130 14:00 70 44 165 8 15 190 0.4 125 76 120 18:00 70 44 164 8 15 180 0.5 124 78 110 22:00 60												
4:00 60 46 155 8 16 190 0.4 110 62 130 6:00 60 46 150 7 16 190 0.4 105 60 130 8:00 60 46 151 7 16 190 0.4 110 64 130 10:00 60 44 159 7 16 190 0.4 115 72 130 12:00 60 44 160 8 16 190 0.4 118 76 130 12:00 60 44 160 8 15 190 0.4 118 76 130 14:00 70 44 165 8 15 190 0.4 125 76 120 18:00 70 44 164 8 15 180 0.5 117 76 110 20:00 70 44	6/1/02											
6:00 60 46 150 7 16 190 0.4 105 60 130 8:00 60 46 151 7 16 190 0.4 110 64 130 10:00 60 44 159 7 16 190 0.4 115 72 130 12:00 60 44 160 8 16 190 0.4 118 76 130 14:00 70 44 165 8 15 190 0.4 125 76 120 16:00 70 46 165 8 15 180 0.5 124 78 110 18:00 70 44 164 8 15 180 0.5 117 76 110 20:00 70 44 160 7 14 170 0.5 113 73 100 22:00 60 44	0/1/93											
8:00 60 46 151 7 16 190 0.4 110 64 130 10:00 60 44 159 7 16 190 0.4 115 72 130 12:00 60 44 160 8 16 190 0.4 118 76 130 14:00 70 44 165 8 15 190 0.4 125 76 120 16:00 70 46 165 8 15 180 0.5 124 78 110 18:00 70 44 164 8 15 180 0.5 117 76 110 20:00 70 44 160 7 14 170 0.5 113 73 100 22:00 60 44 158 7 14 170 0.5 112 69 110 6/2/93 2:00 60												130
10:00 60 44 159 7 16 190 0.4 115 72 130 12:00 60 44 160 8 16 190 0.4 118 76 130 14:00 70 44 165 8 15 190 0.4 125 76 120 16:00 70 46 165 8 15 180 0.5 124 78 110 18:00 70 44 164 8 15 180 0.5 117 76 110 20:00 70 44 160 7 14 170 0.5 113 73 100 22:00 60 44 158 7 14 170 0.5 112 69 110 6/2/93 2:00 60 45 154 7 15 170 0.4 110 65 110 4:00 70												130
12:00 60 44 160 8 16 190 0.4 118 76 130 14:00 70 44 165 8 15 190 0.4 125 76 120 16:00 70 46 165 8 15 180 0.5 124 78 110 18:00 70 44 164 8 15 180 0.5 117 76 110 20:00 70 44 160 7 14 170 0.5 113 73 100 22:00 60 44 158 7 14 170 0.5 112 69 110 24:00 60 44 155 7 15 170 0.5 112 67 110 6/2/93 2:00 60 45 154 7 15 170 0.4 10 65 110 6:00 70				44	159	7	16	190	0.4	115	72	130
16:00 70 46 165 8 15 180 0.5 124 78 110 18:00 70 44 164 8 15 180 0.5 117 76 110 20:00 70 44 160 7 14 170 0.5 113 73 100 22:00 60 44 158 7 14 170 0.5 112 69 110 24:00 60 44 155 7 15 170 0.5 112 67 110 6/2/93 2:00 60 45 154 7 15 170 0.4 110 65 110 4:00 70 44 152 7 15 170 0.4 108 62 100 6:00 70 44 152 7 15 170 0.4 105 60 100		12:00	60									130
18:00 70 44 164 8 15 180 0.5 117 76 110 20:00 70 44 160 7 14 170 0.5 113 73 100 22:00 60 44 158 7 14 170 0.5 112 69 110 24:00 60 44 155 7 15 170 0.5 112 67 110 6/2/93 2:00 60 45 154 7 15 170 0.4 110 65 110 4:00 70 44 152 7 15 170 0.4 108 62 100 6:00 70 44 152 7 15 170 0.4 105 60 100												120
20:00 70 44 160 7 14 170 0.5 113 73 100 22:00 60 44 158 7 14 170 0.5 112 69 110 24:00 60 44 155 7 15 170 0.5 112 67 110 6/2/93 2:00 60 45 154 7 15 170 0.4 110 65 110 4:00 70 44 152 7 15 170 0.4 108 62 100 6:00 70 44 152 7 15 170 0.4 105 60 100												
22:00 60 44 158 7 14 170 0.5 112 69 110 24:00 60 44 155 7 15 170 0.5 112 67 110 6/2/93 2:00 60 45 154 7 15 170 0.4 110 65 110 4:00 70 44 152 7 15 170 0.4 108 62 100 6:00 70 44 152 7 15 170 0.4 105 60 100												
24:00 60 44 155 7 15 170 0.5 112 67 110 6/2/93 2:00 60 45 154 7 15 170 0.4 110 65 110 4:00 70 44 152 7 15 170 0.4 108 62 100 6:00 70 44 152 7 15 170 0.4 105 60 100	 											
6/2/93 2:00 60 45 154 7 15 170 0.4 110 65 110 4:00 70 44 152 7 15 170 0.4 108 62 100 6:00 70 44 152 7 15 170 0.4 105 60 100	-											
4:00 70 44 152 7 15 170 0.4 108 62 100 6:00 70 44 152 7 15 170 0.4 105 60 100	6/2/93											110
6:00 70 44 152 7 15 170 0.4 105 60 100												100
					152	7	15					100
									0.4			115

Т		Inlet	·				Mixed	Mixed	Mixed		Vapor
		₹.	" 		Custian	Discharge			Vapor	Ambient	-
		Air	Inlet Air	Vapor	Suction	Discharge	Vapor	Vapor		Ambient	Flow
	İ	Flow	Pres	Temp	(in		Flow	Press	Temp]	
Date	Time	(CFM)	(psi)	(F)	Water)	(in Water)	(CFM)	(psi)	(F)	Temp (F)	(SCFM)
	10:00	70	44	155	7	15	190	0.4	110	74	120
	12:00	70	45	160	7.5	15	190	0.4	120	80	120
	14:00	70	45	163	7.5	15	190	0.4	130		120
	16:00	70	45	164	7	15	180	0.5	130	83	110
	18:00	70	45	164	7	14	180	0.5	125	84	110
	20:00	70	45	162	7	14	180	0.4	114	79	110
	22:00	70	44	137	7	14	180	0.4	110	73	110
	24:00	70	44	155	7	14	180	0.4	110	70	110
6/3/93	2:00	70	44	153	7	14	180	0.4	110	68	110
	4:00	70	44	151	7	14	180	0.4	108	66	110
ļl	6:00	70	45	150	7	14	170	0.4	105	64	100
	8:00	70	45	155	7	14	180	0.4	105	68	110
	10:00	70 70	45	155	7	14	185	0.4	110	72	115
	12:00 14:00	70 70	44 44	162 165	7	15 15	200 200	0.4 0.4	128 130	80 84	130 130
	16:00	70	86	165	8	16	210	0.4	130	85	135
6/4/93	8:00	70	88	155	8	15	240	0.4	100	69	. 170
5,4,33	9:00	70	88	153	. 8	15	240	0.4	105	73	-,170
6/5/93	9:00	70	88	145	8	15	240	0.4	100	72	170
6/6/93	8:30	70	88	145	8	15	240	0.4	100	71	170
6/7/93	9:26	70	88	145	8	16	240	0.4	103	69	170
6/8/93	9:00	70	84	144	8	15	240	0.4	100	70	170
6/9/93	8:45	70	84	144	7.5	15	240	0.4	100	74	170
6/10/93	8:51	70	84	141	7.5	15	240	0.4	100	70	170
6/11/93	8:10	70	84	143	7	15	240	0.4	96	76	170
6/12/93	8:05	70	84	143	7.5	15	240	0.4	97	74	170
6/13/93	8:00	70	84	147	7.5	16	240	0.4	99	74	170
6/14/93	7:25	70	84	144	7.5	16	240	0.4	95	71	170
6/15/93	7:35	70	85	145	8	16	240	0.4	105	72	170
6/16/93	9:45	70	87	156	7.5	16	250	0.3	112	82	180
6/17/93	9:00	70	86	148	7.5	16	240	0.4	96	73	170
6/18/93	9:10	76 70	84 84	142 144	7.5 7.5	16 16	230	0.4	98	73	154
6/19/93 6/20/93	10:41 9:05	70	84	141	7.5 7.5	16	240 220	0.4 0.5	100 92	78 72	170 150
6/21/93	8:05	70	84	141	7.5	16	230	0.5	93	74	160
6/22/93	7:10	70	84	142		16	230	0.5	95	73	160
6/23/93	8:15	70	84	140	7.5 7.5	16	220	0.4	98	7.5	150
6/24/93	7:35	70	84	140	7.5	16	230	0.5	94	74	160
6/25/93	7:25	70		138	7.5	16	230	0.5	90	77	160
6/26/93	7:35	70	84	138	7.5	16	230	0.4	91	69	160
6/27/93	9:35	70	84	140	7.5	16	230	0.4	100	80	160
6/28/93	7:35	70	84	137	7.5	16	230	0.4	94	76	160
6/29/93	7:25	70	84	138	7.5	16	230	0.4	93	79	160
6/30/93	8:15	50	42	136	6.5	13	150	0.6	96	80	100
7/1/93	8:10	60	44	135	7	15	170	0.5	98	80	110
7/2/93	7:12	60	44	136	7	15	170	0.4	98		110
7/3/93	11:15	60	44	145	7	15	170	0.5	102	90	. 110
7/4/93	11:20	60 5.5	42	140	7	15	170	0.4	99	80	110
7/5/93	10:10	55	44	137	14	20	170	0.4	100		115
7/6/93	8:10	60	44	140	13	19	170	0.5	99		110
7/7/93 7/8/93	8:00	55 55	42	135	13	20	170	0.4	99	75	115
7/9/93	8:10 6:30	55 55	44	135 135	13	19	170	0.4	99	80	115
7/10/93	9:45	55 55	44 44	135	13 13	19	170	0.4	99	77	115
7/10/93	11:30	55 55		135	13	20 20	170	0.4	99		115
1111193	11.30	55	44	135	13		170	0.4	99	95	115

Doto	Time	Inlet Air Flow- (CFM)	Inlet Air Pres (psi)	Vapor Temp (F)	Suction (in Water)	Discharge (in Water)	Mixed Vapor Flow (CFM)	Mixed Vapor Press (psi)	Mixed Vapor Temp (F)	Ambient	Vapor Flow (SCFM)
Date	Time	(CFIII)	*****	000000000000000000000000000000000000000			30/70/2007		000000000000000000000000000000000000000		445
7/12/93	8:00	55	44	135	13	19	170	0.4	99		115
7/13/93	7:45			80					78		
7/14/93	8:14			79					76		
7/15/93	6:25			78					79		
7/16/93	8:00			79					79		
7/17/93	8:00			81					79		70
7/21/93	8:10	30	0.3	127	5	4	100	0.4	94		70
7/22/93	8:15	30		129	4	4	95	0.4	93		65 65
7/23/93	7:45	30	3.5	126	4	4	95	0.4	90		65 65
7/24/93			5	128	4	4	95	0.4	96		65
7/25/93	9:15	30	4	127	4	4	75	0.4	97		45
7/26/93		30	6	125	4	4	75	0.4	89		45
7/27/93	7:55	30	6	126	4	4	75	0.4	90		45
7/28/93		30	6	122	4	4	75	0.4	90		45
7/29/93			6	131	4	4	60	0.4	94		30
7/30/93			8	131	4	4	75	0.4	93		45
7/31/93			8	132	4	4	75	0.4	95		45
8/1/93			7	131	4	4	70	0.4	94		. 40
8/2/93			7	128	4	4	75	0.4	89	78	45

Science Applications International Corporation

An Employee-Owned Company

May 27, 1993

Mr. Cliff Blanchard Halliburton NUS Environmental Corporation 800 Oak Ridge Turnpike Jackson Plaza, C-200 Oak Ridge, Tennessee 37830

RE: EPA Contract No. 68-C0-0048, WA 0-44

SAIC Project No. 01-0832-07-2249-014

Dear Mr. Blanchard:

Please find the enclosed four tables summarizing grain size distribution within the test plot. ASTM D422 was the procedure used for mechanical sieving, and specific gravity tests were conducted following procedure ASTM D845-83.

Tables 1-3 show the particle size distribution summary along the three plan-view cross sections A1-A8, TW1-B4, and C1-C8, respectively. Table 4 presents particle size data on selected samples which further subdivide the fines into silt and clay percentages, and present specific gravities. As a convenience, the particle sizes shown in Tables 1-3 are listed in order of descending percentage of the total, the dominant size listed first.

If you have any questions regarding this information, please do not hesitate to call me at (513) 723-2600, extension 2610.

Sincerely,

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

Jim/Rawe

Nork Assignment Hanager

Encls.

b3.binchrd4.ttr

TABLE 1. PARTICLE SIZE DISTRIBUTION - CROSS SECTION A1-A8

Notes:

Approximate start of gravel zone.

__ Navarro Clay

G = Gravel

S = Sand

F = Fines (silt and clay)

Percentages have been rounded to whole numbers

Results are from one test

Pesuits are the average of two tests, one from a sample sleeve and the other from a bagged sample

TABLE 2. PARTICLE SIZE DISTRIBUTION - CROSS SECTION TW1-B4

		Particle Size (Distribution by	Soil Boring	(% by weight)	d
Sample Interval Depth BLS (ft)	TW1	TW2	B1	B2	B3	B4
0 - 2			S-39 ^d F-36 G-35		S-40 ⁵	٦
2 - 4	1		_		G-38 F-22	
4 - 6	F-29 G-34 S-27	F-41 S-30 G-29		F-56 ⁵ S-38 G-6		
6 - 8					-	
8 - 10				G-67 ⁵ S-25 F-8		,
10 - 12	: :				G-50° S-26 F-24	
12 - 14			S-54° F-27 G-19	F-78 ² S-18 G-4	,	:
14 - 16	S-51 ⁵ F-35 G-14	F-41 ⁵ S-33 G-19				
16 - 18				-		S-51 ^b F-27 G-22
18 - 20			-			
20 - 22						G-37° F-35 S-28
22 - 24			-			G-86° F-10 S-4
24 - 26		G-92 ^b S-6 F-2				
26 - 28			G-93° S-6 F-1			
28 - 30						
30 - 32	-					
32 - 34	,*		_			
34 - 36		F-75 ^{0,8} S-17 G-8				

Notes:

- a. Percentages have been rounded to whole numbers
- Results are from one test
- Results are the average of two tests, one from a sample
- d Results are the average of samples from two separate sleeves and one bag sample.
- The 75% includes 51% silt and clay and 24% of unaccountable solids that did not settle out of

- -- Approximate start of gravel zone.
 --- Navarro Clay
- G = Gravel
- S = Sand
- F = Fines (silt and clay)

TABLE 3. PARTICLE SIZE DISTRIBUTION - CROSS SECTION C1-C8

Notes:

- Percentages have been rounded to whole numbers
- b Results are from one test
- Results are the average of two tests, one from a sample sleeve and the other from a bagged sample
- Approximate start of gravel zone.
- ____ Navarro Clay

Silt clay

- G = Gravel
- S = Sand

F =

TABLE 4. Particle Size Distribution and Specific Gravities of Selected Tests Samples

	Sample	PARTI	CLE SIZE (% by	y weight)*		Cassifia
Boring No.	Interval - BLS (ft.)	Gravei	Sand	Sit	Clay	Specific Gravity
A3	2-4	45	36	1	9	2.51
A4	20-22	74	17	5	4	2.55
A8	14-16	26	25	31	18	2.43
B1	0-2	48	30	13	9	2.42
B2	12-14	34 ^b	17°	20 ^b	29 ^b	2.32
B3	10-12	50	26	11	13	2.41
B4	20-22	37	28	17	18	2.53
СЗ	0-2	30	21	22	27	2.52
СЗ	22-24	79	15	3	3	2.62
C5	10-12	41	34	15	10	2.54
TW1	4-6	34	26	24	16	2.49
TW2	4-6	29	30	24	17	2.51_
TW2	14-16	19	33	26	22	2.24
TW3	35-36	8	17	75 includ. co	olloids	2.34

a Percentages have been rounded off to whole numbers and are adjusted where rounding off did not result in a sum of 100%.

b Percentages are the average of one sleeve sample and one bagged sample.

APPENDIX F

Table A.7. - Soil Vapor Analytical Summary IITRI Demonstration

											300
Chemica	TPH	Benzene	Chloro-	Ethyl	Toluene	Xylene		PCE	Acetone	2-	Vinyl
(mg/m3)			Benzene	benzene		total	Chloride			Butanone	Acetate
Date											
3/30/93	190.00	1.15	5.00	0.14	0.39	0.20	0.23				2.90
3/30/93	220.00	0.37	4.80	0.09	0.79	0.14	0.29				5.50
3/31/93	250.00	2.80		0.18		0.19	0.10	0.02			2.50
4/1/93	2.50	0.04	2.80	0.02		0.10	0.01				0.02
4/2/93	1.00	2.20	8.50	0.29	0.55	0.38	0.04	1.20	0.26		1.80
4/3/93	210.00	0.65	7.00	0.22	0.50	0.02	0.02	0.60	0.13		1.90
4/3/93		0.93	8.00	0.22	0.46	0.21	0.01	0.61			4.10
4/4/93	100.00	0.98	7.30	0.22	0.61	0.30	0.02	0.98			2.70
4/4/93	220.00	1.10	3.00	0.24	0.70	0.22	0.02	1.20			2.10
4/5/93	1.00		4.20	0.15	0.28	0.19	0.02	0.60	0.13		0.90
4/5/93		0.02	2.90	0.02	0.02	0.05		0.02	0.04		
4/6/93	5.00		0.05								
4/6/93		0.04	1.50		0.01	0.10		0.02	0.04		
4/7/93	15.00	0.40	0.66		0.01						0.24
4/8/93	1.80	0.03	1.50			0.10				0.08	0.31
4/8/93	0.60	0.16	0.85		0.02						0.09
4/9/93	6.10	0.07	3.60	0.04	0.03	0.05		0.10		1	0.02
4/9/93		0.75	14.00	0.35	0.04	0.60		0.29			5.00
4/10/93	1.10	0.01	0.09						0.07		0.01
4/10/93		0.11	0.55	,	0.02					0.26	0.13
4/11/93	34.00	0.90	0.08	0.09				0.08		0.02	3.30
4/12/93	1.30	0.07								0.47	0.18
4/12/93		0.33	7.50		0.05	0.21		0.07	7.50	1.70	0.46
4/13/93	11.00	0.42	2.40		0.05			0.03		4.00	1.10
4/14/93	0.01										
4/14/93	0.13										
4/15/93	0.02										
4/16/93	0.06										
4/16/93					0.04						
4/17/93	0.16				0.03	0.02					
4/18/93					0.01						
4/18/93	0.02				0.02	0.01					
4/19/93	0.05							0.02			
4/19/93					0.01	0.01			0.07		
4/20/93	0.08	0.01			0.02	0.01			0.02		
4/20/93					0.01			11 Part of the part			
4/21/93	0.09							· · · · · · · · · · · · · · · · · · ·			
4/22/93	0.09	4									
4/23/93	0.02										
4/24/93	0.08										
4/25/93	0.80										0.01
4/26/93	0.09										
4/26/93	1				0.01	0.01					
4/27/93	0.10										
4/28/93	0.14										
4/29/93	0.05										
4/30/93	0.12	0.01			0.05						
5/1/93	0.11				0.01						***************************************
5/2/93	0.07									· · · · · · · · · · · · · · · · · · ·	
5/3/93	0.02	0.01		-	0.03	0.02					
5/3/93	0.04	0.16	0.05	0.02	0.11						
5/4/93		0.01			0.01	0.01					
5/6/93	6.30	0.16	0.08		0.12	0.02		0.06			
	1 .	0.05			0.04				0.47		
5/7/93		0.001			0.0 1				0. 11 1		

Table A.7. - Soil Vapor Analytical Summary IITRI Demonstration

Chemical	TPH	Benzane	Chloro-	Ethyl	Toluene	Xylene	Vinyl	PCE	Acetone	2-	Vinyl
(mg/m3)		Delizare	Benzen e	benzene		total	Chloride			Butanone	Acetate
5/8/93	0.02	4.5	0.01						0.36		
5/9/93	7.00										
5/9/93	0.04		0.03		0.01						
5/10/93	0.91	0.08	0.09	0.05	0.09					0.01	
5/11/93	7.10										
5/11/93	4.90										
5/12/93	45.00	0.19	0.12		0.07			0.01	32.00		0.50
5/14/93	98.00	3.20	3.60		2.30					13.00	
5/15/93	10.00	0.69			0.21				20.00	,,,,,,	0.78
5/16/93	0.72	0.05			0.02				4.60		0.09
5/17/93	10.00	0.44			0.20						0.62
5/18/93	57.00	2.70	0.50	0.31	1.10	0.04	21.00		4.80	0.10	1.60
5/20/93	0.12	0.01								0.01	
5/21/93	0.18				0.03	0.02		0.01	0.01	0.01	
5/22/93	0.13	0.03	0.07	0.01	0.01				26.00	0.47	0.11
5/23/93	0.12										
5/24/93	93.00	3.90	0.05	0.05	3.40	0.17		0.06	19.00	0.07	0.09
5/25/93	0.35	0.02	0.01		0.02	0.01			0.01		
5/26/93	2.00	0.25	0.06	0.02	0.24	0.11				0.03	0.10
5/27/93	87.00	2.30	0.60	0.10	2.40	0.30		0.08			0.75
5/28/93	0.58	0.05	0.01		0.02				0.01	0.01	
5/29/93	0.12		0.01						0.01		<u>:</u>
6/1/93	0.34		0.01		0.02			Ť		0.01	
6/2/93	0.10								0.06		
6/3/93	0.17	0.01	0.14		0.03		0.01		0.07	0.02	
6/4/93	0.02	0.02	0.03		0.01			0.03	0.07	0.03	
6/5/93	0.12	0.01	0.03	0.08	0.04	0.05				0.01	
6/6/93	4.20	0.37			0.01				0.90	0.09	0.27
6/7/93	0.02		0.01						0.01		
6/8/93	0.09			0.06	0.19	0.02					
6/9/93	0.06									0.02	0.05
6/10/93	ND									0.22	0.06
6/12/93	ND				0.19					0.13	
6/14/93	ND				0.02				0.22	0.30	0.26
6/16/93	0.04								0.05	0.26	0.01
6/18/93	0.56									0.05	0.39
6/20/93	0.19									0.02	
6/22/93	0.28					T					

APPENDIX G

DEWATERING SYSTEM

I. INTRODUCTION

The IITRI demonstration began in January 1993 with site preparation and the installation of a dewatering system around the demonstration area at Site S-1. The dewatering system was necessary to keep groundwater levels 5 feet below the bottom tip of the excitor electrodes. Initial water levels in January 1993 indicated the water table at approximately 22.4 feet below the surface. The top of the water table needed to be drawn down to a depth of approximately 24 feet or more below the surface. The dewatering system consisted of four dewatering wells six inches in diameter. One existing well (S1PW04) and three newly installed wells (DW01, DW02, and DW03) were used (Figure G -1).

II. INSTALLATION

Installation of the three new dewatering wells was completed on January 28, 1993. DW01 was drilled to a depth of 42.5 feet and set at 39.8 feet. DW02 was drilled to a depth of 40 feet and set at 38 feet. DW03 was drilled to a depth of 35 feet and set at 35 feet. These dewatering wells were installed in a 14-inch diameter borehole with 20 feet of PVC screen 6 inches in diameter and a sump at the bottom. A sandpack was added and a bentonite seal was installed above the sandpack. Well S1PW04 had been installed in 1991 during a previous investigation to a depth of 38.9 feet with 14.5 feet of 6-inch diameter PVC screen. All dewatering wells were developed by using a surge block and a pump to remove suspended solids.

After well development the dewatering system was installed. The dewatering system consisted of ejectors in the wells, air lines from the electric air compressor and control panel located in a shed adjacent to the site office trailer, water lines leading from the wells to a "Frac" or storage tank located along the east side of the demonstration site. The dewatering system was installed during the end of January and the first part of February (see Figure 2).

221 G-1

FIGURE A.8.-2 DEWATERING SYSTEM SCHEMATIC IITRI DEMONSTRATION SITE S-1, KELLY AFB

III. OPERATION

Dewatering began on February 2, 1993, using wells DW03 and S1PW04. Wells DW01 and DW02 came on line a few days later and the pumping levels were adjusted to match recharge in the wells. The dewatering system was turned off on February 13, 1993, to allow the aquifer to recharge to equilibrium before a test was performed to see how quickly and to what depth the water table could be lowered. Table G .-1 illustrates the results of the dewatering system during this test. When the dewatering system was turned off the water level at temporary well PW03 was 24.5 below the surface and rose to 22.6 feet below the surface before the system was turned on again on February 15. The dewatering system was able to lower the water table in the demonstration area 1.9 feet in twenty-four hours. PW03 was installed on January 28, 1993, to collect water levels in the demonstration area to determine the effectiveness of the dewatering system in lowering the water table. PW03 was abandoned on February 22, 1993, prior to the ITRI demonstration startup. From the results of the test it was concluded that the dewatering system would be able to keep the water table lowered 5 feet below the excitor electrodes. Water levels from PW03 and wells adjacent to the demonstration site are provided in Table A.8.-1.

Water removed by the dewatering system was collected in a holding tank at the site and transported to the Kelly AFB EPCF for treatment. Initially the water was collected in a tanker truck and transported to the EPCF in the tanker truck. Beginning in April 1993 the water was collected in a frac tank then transferred to a tanker truck for transport to the EPCF.

IV. CONCLUSIONS

Volumes of water, average pumping rates, rainfall, and water transport data during the period of the IITRI demonstration are provided in Table G.-2. Average pumping rates ranged from 0.79 gpm to 3.79 gpm during the demonstration. Variations in pumping rates can be attributed to various factors including precipitation, evaporation, recharge of the aquifer, and the nearby pond at the fuel tank farm to the east of the demonstration site. The dewatering system was able to draw the water table at the demonstration site down to a level of approximately 24.5 feet during a pump test in February 1993. The goal was to be able to draw the water table down to approximately 5 feet below the bottom of the exciter electrodes which was at a depth of approximately 20 feet. Actual water levels during the demonstration may have been even lower due to the continual dewatering over a longer period of time.

Date	Time				W	ell Numi	рег			·
	• • • • • • • • • • • • • • • • • • • •	PW03	PW04	DW01	DW02	DW03	TW09	TW10	TW11	TW12
1/30/93	2:15 PM			23.74	22.4	23.17				
2/2/93	7:30 AM	22.47	24.63	23.80	22.58	23.28	24.39	23.80	23.66	23.92
2/2/93	9:15 AM	22.75	35.35		25.97			23.85	23.83	
2/2/93	12:30 PM	23.47	32.83		25.78			23.85	23.85	
2/2/93	1:20 PM	23.11				i				
2/2/93	3:20 PM	23.45								
2/3/93	6:43 PM	23.78	34.99	29.78	28.27	24.17	24.43	23.95	24.07	26.28
2/3/93	1:15 PM		34.89		27.8			23.95	24.14	26.21
2/3/93	6:30 PM	22.41	33.55		27.78			23.88	24.23	26.14
2/4/93	7:30 AM	23.7		30.02	27.75			23.96	24.4	26.09
2/4/93	12:40 PM	22.9	34.95	29.91	27.69	24.18	24.49	23.97	24.35	26.11
2/4/93	4:00 PM	23.84		29.74	28.02			24	24.54	26.08
2/7/93	1:30 PM	23.44						23.92	24.24	25.76
2/7/93	5:38 PM	23.47								
2/8/93	6:46 AM	23.6								
2/8/93	1:10 PM	23.35								
2/8/93	6:14 PM	23.46							24.67	25.39
2/9/93	8:08 AM	22.85						24.1	24.45	24.21
2/9/93	10:50 AM	22.98						24.13	24.22	24.67
2/9/93	12:50 PM	23.12							24.28	25
2/9/93	4:35 PM	23.46							24.14	25.73
2/10/93	8:35 AM	20.59						24.16	24.22	24.12
2/10/93	1:55 AM	22.08						24.1	24.27	25.52
2/11/93	8:10 AM	23.26				23.73		24.13	24.23	25.69
2/11/93	1:00 PM	23.47				25.64		24.15	24.25	25.67
2/12/93	2:00 PM	24.8							24.3	26.8
2/13/93	7:30 AM	24.5								
2/13/93	1:00 PM	24.5								25.96
2/15/93	8:30 AM	22.6								
2/16/93	8:30-AM	24.4								
2/16/93	2:00 PM	24.6								
2/18/93	7:30 AM	24.71								
2/19/93	7:55 AM	24.68								

		Quantity		Gallons	Rainfall	Average
ltem	Date	(gal)	Days	per day	(in)	gpm
March		\= -/			2.21	
Start-up	4/3/94	0			0.19	
Water Hauling	4/12/93	16,000	9		0.25	1.23
Water Hauling	4/19/93	16,000	7		0	1.59
Water Hauling	4/28/93	16,000	9		0	1.23
April		48,000	25	1920	0.44	1.33
Water Hauling	5/5/93	8,000	7		3.91	0.79
Water Hauling	5/8/93	16,000	3		0	3.70
Water Hauling	5/14/93	16,000	6		0	1.85
Water Hauling	5/18/93	5,460	4		0.06	0.95
Water Hauling	5/19/93	5,460	1		0	3.79
Water Hauling	5/25/93	18,000	6		3.01	2.08
Water Hauling	5/31/93	14,000	6		1.14	1.62
May		82,920	33	2513	8.12	1.74
Water Hauling	6/5/93	12,000	5		0	1.67
Water Hauling	6/10/93	18,000	5		0.28	2.50
Water Hauling	6/16/93	18,000	6	-	3.3	2.08
Water Hauling	6/22/93	12,000	6		1.29	1.39
Water Hauling	6/25/93	12,000	3		0.33	2.78
. Water Hauling	6/28/93	12,000	3		0.73	2.78
June		84,000	28	3000	5.93	2.08
Water Hauling	7/2/93	12,000	4		0	2.08
Water Hauling	7/6/93	12,000	4		0	2.08
Water Hauling	7/13/93	18,000	7		0	1.79
Water Hauling	7/16/93	6,000	3		0	1.39
Water Hauling	7/23/93	6,000	7		0	0.60
Water Hauling	7/27/93	18,000	4		0	3.13
July		72,000	29	2483	0	1.72
Water Hauling	8/6/93	18,000	10		0	1.25
Water Hauling	8/23/93	21,000	17	L		0.86
August		39,000	27	1444		1.00
TOTAL		325,920	115	2834	16.70	1.38
,						

PRECISION ANALYTICS, INC.

N.E. 2345 Hopkins Court • Pullman, WA 99163 TEL. (509) 332-0928

May 4, 1993

Page 1 of 6

SA-ALC/PKOE 1288 Growdon Road, Bldg. 1585 Kelly AFB, TX 78241-5318

Attn: JoAnn Hernandez

Laboratory Reference Samples: 3117KAB1, 3117KAB2

Report number: KAB3117

Customer Reference CALL #93-36

Samples: \$1-3109-01, \$1-3109-02

Date samples received: 4/20/93

All analyses are performed by approved methodologies whenever applicable. Deviations, modifications and/or substitutions with more stringent EPA methodologies are sometimes necessary owing to the variety of matrices being analyzed.

A Concentration Value of U indicates a compound could not be detected in the sample above the lower quantitation limit printed in the Detection Limit column.

If you have any questions regarding the enclosed laboratory results, please include the above laboratory sample and report numbers in all correspondence.

Respectfully,

Michael McMillan, Ph.D.

michael mobile

Chemist

Precision Analytics, Inc.

Report Number: KAB3117

Pg 2 of 6

8020

Chemist: McMillan

Client Sample ID: \$1-3109-01

Lab Sample Number: 3117KAB1

Date completed: 5/4/93

Sample type: Water Method: EPA 8020

Item Number	Compound	Detection Limit μg/L (ppb)	Concentration µg/L (ppb)
1	Benzene	5	1319
2	Toluene	5	195
3	Ethylbenzene	5	41
4	Xylene l	5	15
5	Xylene II	5	48
6	Chlorobenzene	5	5747
7	1,2-dichlorobenzene	5	2700
8	1,3-dichlorobenzene	5	230
9	1,4-dichlorobenzene	5	964

Report Number: KAB3117

Pg 3 of 6

Semi-Volatile Organics

Chemist: McMillan

Client Sample ID: S1-3109-02 Lab Sample Number: 3117KAB2 Date completed. 5/4/93 Sample type. Water Method: EPA 8270

Item		Detection Limit	Concentration
Number	Compound	μg/L (ppb)	μᾶ√Γ (bbp)
1	2-Fluorophenol	S	
2	Phenol-d,	\$	
3	bis(2-Chloroethyl)Ether	660	U
4	1,4-Dichlorobenzene-d,	*	
5	2-Chlorophenol-d ₄	S	 .j
6	2-Chlorophenol	660	U
7	1,3-Dichlorobenzene	660	85
8	1,4-Dichlorobenzene	660	265
9	1,2-Dichlorobenzene	660	555
10	2-Methylphenol	660	43.7
11	Phenol	660	U
12	bis(2-Chloroisopropyl)Ether	660	U
13	Benzyl Alchohol	1,300	U
14	3-Methylphenol	660	U
15	4-Methylphenol	660	16
16	N-nitroso-Di-n-propylamine	660	U
17	Nitrobenzene-d,	\$	
18	Hexachloroethane	660	Ŭ
19	Nitrobenzene	660	U
20	2-Nitrophenol	660	U
21	Isophorone	660	U
22	2,4-Dimethyphenol	660	22
23	Benzoic Acid	3,300	U
24	bis(2-Chloroethoxy)methane	660	U
25	2,4-Dichlorophenol	660	·U

Precision Analytics, Inc.

Report Number: KAB3117 Pg 4 of 6 Semi-Volatile Organics (cont.)

Client Sample ID: SA-3109-02 Lab Sample Number: 3117KAB2

Item Number	Compound	Detection Limit μg/L (ppb)	Concentration µg/L (ppb)
26	Naphthalene-ds	*	
27	1,2,4-Trichlorobenzene	660	6
28	Naphthalene	660	84
29	4-Chloroaniline	1,300	U
30	Hexachlorobutadiene	660	U
31	2-Methylnaphthalene	660	U
32	4-Chloro-3-Methylphenol	1,300	U
33	Hexachlorocyclopentadiene	660	U
34	2,4,6-Trichlorophenol	660	U
35	2,4,5-Trichlorophenol	660	U
36	2-Fluorobiphenyl	\$	
37	2-Nitroaniline	3,300	U
38	2-Chloronaphthalene	660	U
39	Dimethyl Phthalate	660	U
40	2,6-Dinitrotoluene	660	U
41	Acenaphthylene	660	U
42	3-Nitroaniline	3,300	U
43	Acenaphthene-d ₁₀	*	
44	2,4-Dinitrophenol	3,300	U
45	Dibenzofuran	660	υ
46	Acenaphthene	660	U
47	4-Nitrophenol	3,300	U
48	2,4-Dinitrotoluene	660	U
49	Diethyl phthalate	660	υ
50	4,6-Dinitro-2-methylphenol	3,300	U

Report Number: KAB3117

Pg 5 of 6

Semi-Volatile Organics (cont.)

Client Sample ID: SA-3109-02

Lab Sample Number: 3117KAB2

ltem Number	Compound	Detection Limit µg/L (ppb)	Concentration µg/L (ppb)
51	4-Nitroaniline	ND	U
52	Fluorene	660	U
53	4-Chlorophenyl phenyl ether	660	U ·
54	N-nitrosodiphenylamine	660	U
55	Diphenyldiazene	660	U
56	2,4,6-Tribromophenol	\$	** `;
57	4-Bromophenyl phenyl ether	660	· U
58	Hexachlorobenzene	660	U
59	Pentachlorophenol	3,300	U
60	Phenanthrene	660	U
61	Phenanthrene-d ₁₀	*	
62 ·	Anthracene	660	U
63	Di-n-Butylphthalate	660	Ŭ
64	Fluoranthene	660	U
65	Pyrene	660	U
66	4-Terphenyl-d ₁₄	\$	
67	Chrysene	660	U
68	Butyl benzyl phthalate	660	U
69	3,3'-Dichlorobenzidine	1,300	U
70	Perylene-d ₁₂	*	
71	Benzo(a)Anthracene	660	U
72	bis(2-ethylhexyl)Phthalate	660	υ
73	Benzo(a)pyrene	. 660	U
74	Di-n-octyl Phthalate	660	U
75	Dibenz(a h)anthracene	660	U
76	Benzo(b+k)fluoranthene	660	U

Precision Analytics, Inc.

Report Number: KAB3117

Pg 6 of 6

Semi-Volatile Organics (cont.)

Client Sample ID: SA-3109-02

Lab Sample Number: 3117KAB2

Item Number	Compound	Detection Limit µg/L (ppb)	Concentration µg/L (ppb)
77	Benzo(g,h,i)perylene	660	U
78	Indeno(1,2,3-cd)pyrene	660	U
79	Chrysene-d ₁₂	*	

\$ = Surrogate

* = Internal Standard

Comment: 500 ml of sample were concentrated to 1.8 ml of organic extract; hence, effective idetection limits are .0036 of machine detection limits listed.

Report of Analysis

ring Geotechnica Materials and Environmental Endineers Geologists, Scientists and Chemists

P.O. Box 690267, San Antonio TX 78269-0287 12821 W. Golden Lane, San Antonio TX 78249 (210) 699-9090

To: Halliburton NUS Corp.

800 Oak Ridge Turnpike

Jackson Plaza, A-600

Oak Ridge, TN 37830

Attn: Cliff Blanchard

Project No.: ASE93-018-00

Task No.: 5000

Assignment No.: 3893

Contract/P.O. No.:

Date Received: 5-14-93
Page 1 of 6 Date: 6-2-93

Sample Type/Sample Loc: Water/Kelly AFB

Date Collected: 5-14-93
Date Completed: 5-27-93
Collected By: Client

TEST METHODS:

TEST	PREPARATION/DATE	ANALYSIS/DATE
Semi-Volatiles	SW 846 3510/5-17-93	SW 846 8270/5-21-93 EPA 418.1/5-18-93
Volatiles	SW 846 5030/5-17-93	SW 846 8260/5-17-93

All soil and sludge results are reported on the dry-weight basis. Methods are from EPA SW 846 and EPA 600/4-79-20 or as listed.

Earl S. Moore

Organic Section Manager

2 3 2

Raba-Kistner Consultants, Inc. (R-KCI) warrants that work will be performed in accordance with sound laboratory practice and professional standards, but makes no other warranty, expressed or implied. In the event of any error, omission or other professional negligence, the sole and exclusive responsibility of R-KCI shall be to reperform the deficient work at its own expense, and R-KCI shall have no other liability whatspever. In no event shall R-KCI be liable, whether

By Edward J. Beren

Project No.: ASE93-03
Assignment No.: 3893
Page 2 of 6 ASE93-018-00

	BASE/NEUTRAL/ACID EXTRACTABLES	Detection	3893-1
		Limit	(\$1W0514
•			931050D)
		ug/L	ug/L
			_ • • • • • • • • • • • • • • • • • • •
	Acenaphthene	10	<10
	Acenaphthylene	10	<10
	Anthracene	10	<10
	Benzo(a)anthracene	10	<10
	Benzo(b)fluoranthene	10	<10
	Benzo(k)fluoranthene	10	<10
	Benzo(a)pyrene	10	<10
	Benzo(g,h,i)perylene	10	<10
	Benzoic acid	50	140
	Benzyl alcohol	20	26
	Benzidine	10	<10
	Benzyl butyl phthalate	10	<10
	Bis(2-chloroethyl)ether	10	<10
	Bis(2-chloroethoxy)methane	10	<10
	Bis(2-ethylhexyl)phthalate	10	95
	Bis(2-chlorisopropyl)ether	10	<10
	4-Bromophenyl phenyl ether	10	<10
	4-Chloroaniline	20	<10
	2-Chloronaphthalene	20	<10
	4-Chlorophenyl phenyl ether	10	<10
	Chrysene	10	<10
	Dibenzofuran	10	<10
	Dibenzo(a,h)anthracene	10	<10
	Di-n-butyl phthalate	10	16
•	1,3-Dichlorobenzene	10	<10
	1,4-Dichlorobenzene	10	<10
	1,2-Dichlorobenzene	10	<10
	3,3'-Dichlorobenzidine	20	<20
•	Diethyl phthalate	10	<10
	Dimethyl phthalate	10	<10
	2,4-Dinitrotoluene	10	<10
	2,6-Dinitrotoluene	10	<10
	Di-n-octylphthalate	10	<10
	1,2-Diphenylhydrazine	10	<10
	Fluoranthene	10	<10
	Fluorene	10	<10
	Hexachlorobenzene	10	<10
	Hexachlorobutadiene	10	<10
	Hexachloroethane	10	<10
	Indeno(1,2,3-cd)pyrene	10	<10
	Isophorone	10	<10
	2-Methylnaphthalene	10	<10
	Naphthalene	10	<10
		- -	-10

Project No.: ASE93-018-00 Assignment No.: 3893 Page 3 of 6

2-Nitroaniline	50	<50
3-Nitroaniline	50	<50
4-Nitroaniline	50	<50
Nitrobenzene	10	<10
N-Nitrosodimethylamine	10	<10
N-Nitrosodi-n-propylamine	10	<10
N-Nitrosodiphenylamine	10	<10
Phenanthrene	10	<10
Pyrene	10	<10
1,2,4-Trichlorobenzene	10	<10
4-Chloro-3-methylphenol	20	<20
2-Chlorophenol	10	<10
2,4-Dichlorophenol	10	<10
2,4-Dimethylphenol	10	50
2,4-Dinitrophenol	50	< 50
2-Methyl-4,6-dinitrophenol	50	<50
2-Methylphenol	10	14
4-Methylphenol	10	300
2-Nitrophenol	10	<10
4-Nitrophenol	50	<50
Pentachlorophenol	50	<50
henol	10	120
2,4,6-Trichlorophenol	10	<10
2,4,5-Trichlorophenol	10	<10

Project No.: ASE93-018-00 Assignment No.: 3893 Page 4 of 6

Test Results:

3893-1 Detection Analyte (\$1W0514 931050D) Limit (mg/L) (mg/L) 5 TPH 1

2 35

Project No.: ASE93-018-00
Assignment No.: 3893
Page 5 of 6
Test Results:

Test Results:

Analyte	Detection Limit	3893-1 (\$1W0514 931050D)	3893-2 (\$W0514 931045C)
	(mg/L)	(mg/L)	(mg/L)
Acetone	1	2.4	12
Bromomethane	0.1	<0.1	1.3
2-Butanone	1	<1	<1
Carbon disulfide	1	<1	<1
Chloroethane	0.1	<0.1	<0.1
Chloroform	0.05	<0.05	<0.05
Chloromethane	0.1	<0.1	<0.1
Dichlorodifluoromethane	0.05	<0.05	<0.05
1,1-Dichloroethane	0.05	<0.05	<0.05
1,2-Dichloroethane	0.05	<0.05	<0.05
1,1-Dichloroethene	Ø. Ø5	<0.05	<0.05
cis-1,2-Dichloroethene	0.05	<0.05	<0.05
trans-1,2-Dichloroethene	0.05	<0.05	<0.05
`,2-Dichloropropane	0.05	<0.05	<0.05
hethylene chloride	0.05	<0.05	<0.05
1,1,1-Trichloroethane	0.05	<0.05	<0.05
Trichlorofluoromethane	0.05	<0.05	<0.05
Vinyl acetate	0.5	<0.5	<0.5
Vinyl chloride	0.1	<0.1	<0.1
Benzene Bromodichloromethane	0.05	<0.05	0.06
Carbon Tetrachloride	0.05 0.05	<0.05 <0.05	<0.05
2-Chloroethyl vinyl ether	0.05	<0.1	<0.05 <0.1
1,2-Dibromoethane	0.05	<0.05	
Dibromomethane	0.05	<0.05	<0.05 <0.05
1,2-Dichloroethane	0.05	<0.05	<0.05
1,2-Dichloropropane	0.05	<0.05	<0.05
1,1-Dichloropropene	0.05	<0.05	<0.05
cis-1,3-Dichloropropene	0.05	<0.05	<0.05
trans-1,3-Dichloropropene	0.05	<0.05	<0.05
Methylbutyl ether	0.05	<0.05	<0.05
4-Methyl-2-pentanone	0.50	<0.50	<0.50
Toluene	0.05	<0.05	<0.05
1,1,2-Trichloroethane	0.05	<0.05	<0.05
Trichloroethene	0.05	<0.05	<0.05
Bromoform	0.05	<0.05	<0.05
Chlorodibromomethane	0.05	<0.05	<0.05
Chlorobenzene	0.05	0.07	0.09
1,3-Dichloropropane	0.05	<0.05	<0.05
thylbenzene	0.05	<0.05	<0.05
2-Hexanone	0.50	<0.50	<0.50
Styrene	0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05	<0.05	<0.05
Tetrachloroethene .	0.05	<0.05	<0.05
Total Xylenes	0.05	<0.05	<0.05
·	2 36		-3.03

2 36

APPENDIX J

Engineers, Geologists, Chemists, Water Planners, Hygienists and Environmental Scientists

12821 W. Golden Lane P.O. Box 690287, San Antonio, TX 78269-0287 (210) 699-9090 • FAX (210) 699-6426

December 22, 1994

Ms. Laura Witt Brown & Root Environmental 800 Oak Ridge Turnpike, Suite A-600 Oak Ridge, Tennessee 37830

Doar Laura,

The samples submitted under chain-of-custody number 6756 were referenced as "soil" on the report dated 04-26-94. The samples submitted were actually carbon; however, our boilerplate default is "soil" for all solid matrices.

If you have any questions or need additional information, please contact me at 210-699-9090, extension 275.

Respectfully submitted,

RABA-KISTNER CONSULTANTS, INC.

AL Weilbacher

Director of Analytical Chemistry

Project No.: ASE93-018-00 Assignment No.: 3893 Page 6 of 6

etection	3893-1	3893-2
Limit	(\$1W0514	(\$WØ514
	931050D)	931045C)
(mg/L)	(mg/L)	(mg/L)
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
0.05	<0.05	<0.05
	Limit (mg/L) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Limit (\$1W0514 931050D) (mg/L) (mg/L) 0.05 (0.05 0.05 (0.05

Report of Analysis

Consulting Geotechnical Materials and Environmental Engineers Geologists Scientists and Chemists

FILE COPY

P.O. Box 690287, San Antonio, TX 78269-0287 12821 W. Goiden Lane, San Antonio, TX 78249 (210) 699-9090

To: Brown & Root Environmental

800 Oak Ridge Turnpike

Suite A-600

Oak Ridge, TN 37830

Attn: Cliff Blanchard

Project No: ASE94-007-00

Task No: 5000

Assignment No: 6756

Contract/P.O. No:

Date Received: 04-19-94

Page 1 of 5 Date: 04-26-94

Sample Type/Sample Loc: Soil / Kelly Air Force Base

Date Collected: 04-19-94 Date Completed: 04-26-94

Collected By: R-KCI

TEST METHODS:

TEST	PREPARATION / DATE	ANALYSIS / DATE
TCLP Extraction TCLP-ZHE TCLP-Volatiles TCLP-Semi-Volatiles	1311 / 04-21-94 1311 / 04-21-94 3510 / 04-22-94	8260 / 04-25-94 8270 / 04-25-94

laba-Kistner Consultants, Inc. (R-KCI) warrants that work will be performed accordance with sound laboratory practice and professional standards, ut makes no other warranty, expressed or implied. In the event of any error, mission or other professional negligence, the sole and exclusive responsibility R-KCI shall be to reperform the deficient work at its own expense, and R-KCI all have no other liability whatsoever. In no event shall R-KCI be liable, whether contract or tort, including negligence, for any incidental or consequential damages, this provision is in conflict with other contractural terms, it is understood that this ovision will, in all cases, prevail

Gang Sun, Ph.D. QA/QC Officer

239

(The reverse of this page is blank.)

Project No: ASE94-007-00 Assignment No: 6756 Page 2 of 5

Analyte TCLP-Semi-Volatiles	Detection Limit (mg/L)	6756-1 (KSI CD 1/2-3688) (mg/L)
1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene Hexachloroethane Nitrobenzene Pentachlorophenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol Pyridine Total cresol	0.75 0.013 0.013 0.03 0.02 3.6 0.2 5.8 0.5	<0.75 <0.013 <0.013 <0.05 <0.02 <3.6 <0.2 <5.8 <0.5 <30

Project No: ASE94-007-00
Assignment No: 6756
Page 3 of 5

TCLP-Volatiles	Detection Limit (mg/L)	6756-1 (KSI CD 1/2-3688) (mg/L)
Benzene Carbon Tetrachloride Chlorobenzene Chloroform 1,2-Dichlroethane 1,1-Dichloroethene 2-Butanone Tetrachloroethene Trichloroethene Vinyl Chloride	0.05 0.05 10 0.6 0.05 0.07 20 0.07 0.05 0.02	<0.05 <0.05 <10 <0.6 <0.05 <0.07 <20 <0.07 <0.05 <0.05 <0.05

Project No: ASE94-007-00 Assignment No: 6756 Page 4 of 5

Page 4 of 5				QA/QC FORM				
	ORIGINAL RESULT	MATRIX SPIKE AMT.	MATRIX SPIKE RECOVERY	MATRIX SPIKE DUPLICATE	OC LIMITS	RELATIVE DIFFERENCE	QC RPD	SAMPLE
	(mg/L)	(mg/L)	(%)	(%)	(%)			
1,1-Dichlo- roethene	10	100	117	128	61-145	ō	1.4	Blank
Trichlo-		6	100	111	71-120	10	14	Blank
roethene	10	001) C	121	76-127	10	11	Blank
Benzene	10	100	104	115	76-127	10	13	Blank
Toluene Chloro- benzene	10	100	127	124	75-130	2	13	Blank

Project no: ASE94-007-00
Assignment No: 6756
Page 5 of 5

			5	QA/QC FORM				
	ORIGINAL RESULT	MATRIX SPIKE AMT.	MATRIX SPIKE RECOVERY	MATRIX SPIKE DUPLICATE	QC LIMITS	RELATIVE DIFFERENCE	QC RPD	SAMPLE
	(mg/L)	(mg/L)	(%)	RECOVERY (%)	(%)		:	
Phenol	<10	200	32	17	(; ;			
2-Chloro- phenol	<10	200	9	, C	211-6	17	23	Blank
1,4-Dichloro-	, ,)	7 6	23-134	14	29	Blank
	017	100	59	51	20-124	<u>۔</u> تر	(
N-Nitroso-di. n-propylamine	<10	100	62	55		G (32	Blank
l,2,4-Trich- Lorobenzene	<10	100	67	, c	000	12	55	Blank
4-Chloro-3-			5	φ n	44-142	15	28	Blank
nethylphenol	<10	200	100	92	22-147	o	1	
Acenaphthene	<10	100	71	64	47145	o (37	Blank
-Nitrophenol	<10	200	64	64	1120 D-130	0.7	28	Blank
,4-Dinitroto- uene		0			D-132	0	47	Blank
entachloro-		001	88 80	79	39-139	11	22	Blank
	<10	200	124	114	14-176	œ	49	BLank

The second of the second

SOO DAK RIDGE TURNIKE A-1600 BROWN & ROOT EDVIRONMENTAL (615) 483 - 9900 SEND INVOICE TO KAREN SHERROD AT ABOVE ADDRESS OAK RIDGE, TU 37830 FAX RESOUTS TASAP TO: 224 SEND ORIGINAL LAB REBRET 12 SARTS huna dingliter .2047-3688-13 PCOO313 REMARKS CHAIN OF CUSTODY RECORD MR. CLIFF BLANCHARD DATE / TIME: | RECEIVED BY (SIGNAT LIAE): DATE/TIME: | RECEIVED BY(SIGNATURE): CLIFF BLANCHARD
(615) 403-2014
RAN BETTYENS
(210) 927-1118 p a CI. 0 OF RESULTS SAMPLE P.O. # G1:11 11:10 300 RELINQUISHED BY (SIGNATURE): RELINQUISHED BY (SIGNATURE): DATE / TIME: | REMARKS: TELP VORT E X NO. OF CON-TAINERS 3 RECEIVED FOR LABORATORY BY (SIGNATURE): DATE / TIME: | RECEIVED BY (SIGNATURE): KELLY AFB, TX KSI-CD1/2-3688 DATE / TIME: SITE S-1 DAJE / TIME: 5560 45/21/1 HALLIBURTON NUS Environmental SITE NAME: Corporation and Subsidiaries GRAB RELINQUISHED BY (SIGNATURE): REHINGUISHED BYRSIGNAFURE) RELINQUISHED BY (SIGNATURE) COMP X 3698 0832 STATION DATE TIME SAMPLERS (SIGNATURE) व्य/वि विवस PROJECT NO.: 10.2

APPENDIX K

12.5

TABLE IITRI COST SUMMARY - PHASE II RF SOIL DECONTAMINATION DEMONSTRATION

ITEM	UNIT COST (\$)	SUBTOTALS
RF SOURCE RF TRANSMITTERS		
RF CONTROL UNIT	242,000	\$883,852
ELECTRICITY	600,000	
RF APPLICATION	41,852	
EXCITOR ELECTRODES	71,002	£05.044
COAYIAL TRANSMISSION LINE	11,280	\$25,244
COAXIAL TRANSMISSION LINE GROUND ELECTRODES	2,300	
RF SHIELD	11,664	
	11,004	47.44
DOGHOUSE	6,664	\$7,217
MESH SCREEN	553	
MEASUREMENT/CONTROL	553	
THERMAL MEASUREMENT WELLS (TMW)		\$21,670
VACUUM MEASUREMENT WELLS (VMW)	66	
THERMOCOUPLES (TCs) AND WIRE	29	
VACUUM/PRESSURE GAUGES	3,437	
GAS CHROMATOGRAPH	138	í
VAPOR COLLECTION/TRANSFER PIPING	18,000	-
VAPOR BARRIER		\$3,541
GROUND ELECTRODE PIPING	1,492	•
HORIZONTAL EXTRACTION PIPING	1,188	
EXTRACTION MANIFOLD	363	
VAPOR EXTRACTION/TREATMENT	497	
REGENERATIVE BLOWER	1 70	\$251,700
CATOX TREATMENT UNIT	1,700	
SITE SUPPORT	250,000	
UTILITY TRUCK	05.000	\$80,050
CELLULAR TELEPHONE	35,000	
MISCELLANEOUS ODCS	4,875	í
FENCING	47,560	i i
GRAVEL	9,200	1
CONCRETE	2,500	
WASTE DISPOSAL	7,108	-4,
LIGHTS	7,108	
SUBCONTRACTOR SUPPORT	1,700	
DRILLING FOR SYSTEM INSTALL	0.100	\$190,954
IN GROUND SYSTEM ABANDONMENT	24,664	
RF CONSULTANTS	23,390	
ANALYTICAL	100,000	
LABOR	42,900	
SITE PREPARATION/SET-UP		\$477,389
TREATMENT	55,688	
SITE RESTORATION/DEMOBILIZATION	403,139	
	18,563	
ODC MARKUP	SUBTOTAL	\$1,941,617
ENGINEERING, PROCUREMENT, & PROJECT MANAGEMENT	10.60%	\$155,208
CONTENGENCY CONTENT A PROJECT MANAGEMENT	15%	\$219,634
	15%	\$219,634
	TOTAL	\$2,536,093
· K1 ·		, _ 00,000

1

CAPITAL

TABLE IITRI COST DETAILS - PHASE II RF SOIL DECONTAMINATION DEMONSTRATION

				HEAT TIME, WKS/CELL COOL TIME, WKS	8
LENG	OTH 16 OTH 32 OTH 20	GROUND TO GROUND (FT) EXCITOR ELECTRODE DEPTH (FT) GROUND ELECTRODE DEPTH (FT) VAP. BARRIER OVERLAP (FT)	20 28	TREATMENT TIME (WKS) MOB/DEMOB TIME (WKS)	20
		On	1 10		

100 POWER REQUIRED FOR SYSTEM (kW)
25 INDIVIDUAL TRANSMITTER POWER (kW)
\$55,000.00 COST PER TRANSMITTER
\$22,000.00 COST FOR TRAILER

\$242,000.00 TOTAL TRANSMITTER/TRAILER COST

RF CONTROL UNIT

HOUSED IN 40' SEMI TRAILER WITH COMPUTERIZED INSTRUMENTATION FOR THE MONITORING AND CONTROL OF RF,
ELECTRICAL, TEMPERATURE, VAPOR FLOW AND TREATMENT. THIS TRAILER WILL ALSO HOUSE THE SITE OFFICE AND

\$600,000.00 COST FOR CONTROL UNIT (EST/KAI)

ELECTRICITY

EXCITOR ELECTRODES

\$0.07 170 3,360 571,200 15 672 10,080	COST PER KILOWATT HOUR POWER USAGE IN KW/H DURING HEATING HEATING HOURS (168/WK X TREATMENT TIME) KWH USED DURING HEATING POWER USAGE IN KW/H DURING COOLING/OTHER COOLING/OTHER HOURS (168/WK X COOLING AND MOB/DEMOB TIME) KWH USED DURING COOLING/OTHER	\$41,852.16	DISPOSABLES
581,280 \$41,852.16	TOTAL KWH USED FOR PROJECT TOTAL COST FOR ELECTRICITY		
SACROSS CONTRACTOR			

RF APPLICATION

	OTTODES	
INSIDE EXCITORS	STRUCTED OF SCH 40 COPPER PIPE WITH BOTTOM PL D EXCITORS ARE 3"-DIAM. TOPPED WITH 3"/6" COPPER ORS ARE 2" DIAM. TOPPED WITH 2" x 6" x 6" COPPER TE S TIED TOGETHER BY 6" DIAM. SCH 40 COPPER PIPE D MAKE LIP 2 POWE OF TAKE	ELBOWS (90) INSET 4' FROM END OF CELL ES
12 240 \$24.00	O MAKE UP 2 ROWS OF EXCITORS (PIPE AND CAP) REC NO. OF 2" DIAM. EXCITORS = CELL LENGTH - INSET/ TOTAL LF = NO. OF EXCITORS PER CELL X DEPTH X COST PER LF FOR 2" DIAM. SCH 40 CORRER PIPE (FI	SPACING - NO. OF 3" DIAM. EXCITORS

\$24.00 \$5,760.00 \$150.00 \$1,800.00	COST FOR EACH COPPER 2"/6"/6" TEE AND BOTTOM PLUG (EST) COST FOR TEES/CAPS = EXCITORS PER CELL X COST PER TEE/PLUG
4 80 \$38.00 \$3.040 nn	NO. OF 3" DIAM. EXCITORS (PER ROW = 2) TOTAL LF = NO. OF EXCITORS PER CELL X DEPTH COST PER LF FOR 3" DIAM. SCH 40 COPPER PIPE (SAIC EST.)

\$38.00 COST PER LF FOR 3" DIAM. SCH 40 COPPER PIPE (SAIC EST.)
\$170.00 COST FOR 3" DIAM. EXCITORS = COST PER LF X TOTAL LF
COST FOR EACH COPPER 3"/6"/6" TEE AND BOTTOM PLUG (EST)
COST FOR TEES/CAPS = NO. OF EXCITORS X COST PER TEE/PLUG

		2
	\$2,300.00	CAPITAL
AVIAL TRANSM	ISSION LINE	
NOTELICIED C	ISSION LINE F 6" SCH 40 COPPER PIPE IN 3 SECTIONS TIED WITH FLANGES TO MID-POINT DE EXCITOR ELECTRODE ROW, EXTENDS 20' FROM GROUND ROW	
NSTRUCTED O	TO MID-POINT OF EXCITOR ELECTRODE ROW, EXTENDED TO	
	COPPER ELBOW (EST)	
4		
▼ ,		
· -		
400	6" DIAM. COPPER COMPATIBLE 1 B 11 TEE AND 1 ELBOW TOTAL COST = PIPE, 6 FLANGES, 1 TEE AND 1 ELBOW	
\$2,300.00	TOTAL COST = PIPE, OT B 410-04	CAPITAL
	AND ROTTOM PLUG	
ROUND ELECT	RODES RE CONSTRUCTED OF 3" DIAM. SCH 40 ALUMINUM PIPE WITH COUPLING AND BOTTOM PLUG RE CONSTRUCTED OF 3" DIAM. SCH 40 ALUMINUM PIPE WITH COUPLING AND BOTTOM PLUG RE TORRED WITH 3"2" ALUMINUM ELBOWS WITH ALUMINUM BUS BAR BRACKETS	
LL GROUNDS A	RE CONSTRUCTED OF ALLIMINUM ELBOWS WITH ALUMINUM BUS BAR BRACKETS	
INDC A		
ROUND ELECT	RE TOPPED WITH 372 RESIMBLE BARS RODES TIED TOGETHER WITH BUS BARS RODES TIED TOGETHER WITH BUS BARS RODES TIED TOGETHER WITH BUS BARS RODES TIED TOGETHER WITH BUS BARS	
ATERIALS TO	RODES TIED TOGETHER WITH BUS BARS MAKE UP 3 ROWS OF GROUNDS (PIPE, COUPLING, BOTTOM PLUG, AND ELBOW)	
ir (i Ci (ii (iii (ii i		
36	NO. OF GROUNDS = ROWS X 12	
1008		
\$8.00		
	COST FOR 3" DIAM. GROUNDS - COST TO AND POTTOM PLUG SET	
\$8,064.00	COST FOR 3" DIAM. GROUNDS = COST PER LITX TOWN PLUG SET COST FOR ALUMINUM ELBOW, COUPLING, AND BOTTOM PLUG SET COST FOR ALUMINUM ELBOW, COUPLINDS PER CELL X COST PER ELBOW/PLUG	
\$100.00	COST FOR ALUMINUM ELBOW, COUPLING, AND BOTTOM LEGGED COST FOR ELBOW/PLUG COST FOR ELBOWS/CAPS = GROUNDS PER CELL X COST PER ELBOW/PLUG	
\$3,600.00		
	RF SHIELD	
	\$6,663.78	CAPITA
	THE PROPERTY OF THE PROPERTY O	!
DOGHOUSE	OF 0.050 CORRUGATED ALUMINUM SHEETS AND 1/8" ALUMINUM END PLATES	*
CONSTRUCTED	0 OF 0.050 CORROGATED ALEMAN	i
	COST PER SQUARE FOOT OF 2.67 X 7/8 CORRUGATED ALUMINUM	
5.80	COST PER SQUARE FOOT OF 25 THE PROVINCED	
905	SQUARE FEET OF ALUMINUM SHEET REQUIRED SQUARE FEET OF ALUMINUM SHEET REQUIRED	
\$5,246.73	SQUARE FEET OF ALUMINOM SHEETING TOTAL COST FOR CORRUGATED ALUMINUM SHEETING TOTAL COST FOR CORRUGATED ALUMINUM PLATE END WALLS	
7.05	THE SOUNDE FOOT FOR ALUMINOW I DITE THE	
201	COLLABE FEET OF ALUMINUM PLATE REQUIRED	
\$1,417.05	TOTAL COST FOR ALUMINUM PLATE	
	TOTAL COST FOR DOGHOUSE	
ec 663 7X	4550 DC	DICDOCAL
\$6,663.78	\$552.96	DISPOSA
		DISPOSA
		DISPOSAE
	N DUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS	DISPOSAE
MESH SCREET EXTENDS 10' (DUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS OF REAL PERIOD OF ALUMINUM MESH	DISPOSAE
MESH SCREEN EXTENDS 10' 0	DUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS OF REAL PERIOD OF ALUMINUM MESH	DISPOSA
MESH SCREET EXTENDS 10' 0 0.32 1728	OUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED	DISPOSA
MESH SCREET EXTENDS 10' 0	DUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS OF REAL PERIOD OF ALUMINUM MESH	DISPOSA
MESH SCREET EXTENDS 10' 0 0.32 1728	OUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH	DISPOSAE
MESH SCREET EXTENDS 10' 0 0.32 1728	OUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH	
MESH SCREET EXTENDS 10' 0 0.32 1728	OUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL	DISPOSA
MESH SCREEN EXTENDS 10' (0.32 1728 \$552.96	OUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL \$65.70	
MESH SCREET EXTENDS 10' (0.32 1728 \$552.96	OUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL \$65.70	
MESH SCREET EXTENDS 10' (0.32 1728 \$552.96	OUT FROM PERIMETER OF DOGHOUSE IN ALL DIRECTIONS COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL \$65.70	
MESH SCREET EXTENDS 10' (0.32 1728 \$552.96	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL ASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL	
MESH SCREET EXTENDS 10' (0.32 1728 \$552.96	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL S65.70 CASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS	
MESH SCREET EXTENDS 10' 0 0.32 1728 \$552.96 THERMAL ME TMWs ARE C	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL S65.70 CASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS	
MESH SCREEN EXTENDS 10' 0 0.32 1728 \$552.96 THERMAL ME TMWs ARE C	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL **ASUREMENT WELLS (TMW)* ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP) LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP) LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP)	
MESH SCREET EXTENDS 10' 0 0.32 1728 \$552.96 THERMAL ME TMWs ARE C 6 180 \$7.30	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL **ASUREMENT WELLS (TMW)* ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP) LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP) LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP)	DISPOSA
MESH SCREET EXTENDS 10' 0 0.32 1728 \$552.96 THERMAL ME TMWs ARE C	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL S65.70 CASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS	
MESH SCREET EXTENDS 10' 0 0.32 1728 \$552.96 THERMAL ME TMWs ARE C 6 180 \$7.30 \$65.70	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL ASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2" AGL NO. OF TMWS LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2" STICKUP) COST PER 20 LF OF 3" DIAM. GREEN THREAD FIBERGLASS (ACT.) COST FOR TOTAL LF OF TMWS = TOTAL LF/20 X COST PER 20 LF \$28.80	DISPOSA
MESH SCREET EXTENDS 10' 0 0.32 1728 \$552.96 THERMAL ME TMWS ARE C 6 180 \$7.30 \$65.70	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL ASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2" AGL NO. OF TMWS LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2" STICKUP) COST PER 20 LF OF 3" DIAM. GREEN THREAD FIBERGLASS (ACT.) COST FOR TOTAL LF OF TMWS = TOTAL LF/20 X COST PER 20 LF \$28.80	DISPOSA
MESH SCREET EXTENDS 10' 0 0.32 1728 \$552.96 THERMAL ME TMWs ARE C 6 180 \$7.30 \$65.70	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL **ASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP) COST PER 20 LF OF 3" DIAM. GREEN THREAD FIBERGLASS (ACT.) COST FOR TOTAL LF OF TMWS = TOTAL LF/20 X COST PER 20 LF \$28.80	DISPOSA
MESH SCREET EXTENDS 10' 0 0.32 1728 \$552.96 THERMAL ME TMWs ARE C 6 180 \$7.30 \$65.70	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL ASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2" AGL NO. OF TMWS LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2" STICKUP) COST PER 20 LF OF 3" DIAM. GREEN THREAD FIBERGLASS (ACT.) COST FOR TOTAL LF OF TMWS = TOTAL LF/20 X COST PER 20 LF \$28.80	DISPOSA
MESH SCREET EXTENDS 10' (0.32 1728 \$552.96 THERMAL ME TMWS ARE C 6 180 \$7.30 \$65.70 PRESSURE 1 PMWS ARE C	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL ASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP) COST PER 20 LF OF 3" DIAM. GREEN THREAD FIBERGLASS (ACT.) COST FOR TOTAL LF OF TMWS = TOTAL LF/20 X COST PER 20 LF MEASUREMENT WELLS (PMW) CONSTRUCTED OF 1" DIA SCH 40 PVC PIPE COMPLETED 2' AGL *28.80	DISPOSA
MESH SCREET EXTENDS 10' 0 0.32 1728 \$552.96 THERMAL ME TMWS ARE C 6 180 \$7.30 \$65.70	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL ASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP) COST PER 20 LF OF 3" DIAM. GREEN THREAD FIBERGLASS (ACT.) COST FOR TOTAL LF OF TMWS = TOTAL LF/20 X COST PER 20 LF MEASUREMENT WELLS (PMW) CONSTRUCTED OF 1" DIA SCH 40 PVC PIPE COMPLETED 2' AGL *28.80	DISPOSA
MESH SCREET EXTENDS 10' (0.32 1728 \$552.96 THERMAL ME TMWS ARE C 6 180 \$7.30 \$65.70 PRESSURE 1 PMWS ARE C	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL SASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS LF OF TMWS=NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP) COST PER 20 LF OF 3" DIAM. GREEN THREAD FIBERGLASS (ACT.) COST FOR TOTAL LF OF TMWS = TOTAL LF/20 X COST PER 20 LF MEASUREMENT WELLS (PMW) CONSTRUCTED OF 1" DIA SCH 40 PVC PIPE COMPLETED 2' AGL NO. OF PMWS LF PER PMW = GROUND ELECTRODE DEPTH + 2" STICKUP LENGTH LF PER PMW = GROUND ELECTRODE DEPTH + 2" STICKUP LENGTH	DISPOSA
MESH SCREET EXTENDS 10' (0.32 1728 \$552.96 THERMAL ME TMWS ARE C 6 180 \$7.30 \$65.70 PRESSURE I PMWS ARE C	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL ASSUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP) COST PER 20 LF OF 3" DIAM. GREEN THREAD FIBERGLASS (ACT.) COST FOR TOTAL LF OF TMWS = TOTAL LF/20 X COST PER 20 LF MEASUREMENT WELLS (PMW) CONSTRUCTED OF 1" DIA SCH 40 PVC PIPE COMPLETED 2' AGL NO. OF PMWS LF PER PMW = GROUND ELECTRODE DEPTH + 2' STICKUP LENGTH LF PER PMW = GROUND ELECTRODE DEPTH + 2' STICKUP LENGTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH LF OF PMWS= NO. OF PMWS X PMW DEPTH	DISPOSA
MESH SCREET EXTENDS 10' (0.32 1728 \$552.96 THERMAL ME TMWS ARE C 6 180 \$7.30 \$65.70 PRESSURE 1 PMWS ARE C	COST PER SQUARE FOOT OF ALUMINUM MESH SQUARE FEET OF ALUMINUM MESH REQUIRED TOTAL COST FOR ALUMINUM MESH MEASUREMENT/CONTROL ASUREMENT WELLS (TMW) ONSTRUCTED OF 3" DIA GREEN THREAD FIBERGLASS PIPE COMPLETED 2' AGL NO. OF TMWS LF OF TMWS= NO. OF TMWSX (GROUND ELECTRODE DEPTH + 2' STICKUP) COST PER 20 LF OF 3" DIAM. GREEN THREAD FIBERGLASS (ACT.) COST FOR TOTAL LF OF TMWS = TOTAL LF/20 X COST PER 20 LF MEASUREMENT WELLS (PMW) CONSTRUCTED OF 1" DIA SCH 40 PVC PIPE COMPLETED 2' AGL NO. OF PMWS LF DEP RAW = GROUND ELECTRODE DEPTH + 2' STICKUP LENGTH	DISPOSA

EVERY 3R	OUPLES (TCs) AND WIRE D EXCITOR ELECTRODE IN A ROW WILL HAVE K-TYPE TCs AT 6', 12' AND 18' DEPTHS VILL COME WITH 10' OF WIRE, EXTRA WIRE AND BLUGUAGE FOR FIRM	\$3,437.12	3
TACH TO	VILL COME WITH 10' OF WIRE EXTRA WIRE AND DEVELOPE AT 6', 12' AND 18' DEPTHS	40,401.12	DISPOSA
RE REC	VILL COME WITH 10' OF WIRE, EXTRA WIRE AND PLUG/JACK FOR EACH TC REQUIRED UIRED TO EXTEND 15' FROM TOP OF EXCITOR AT GROUND LEVEL		
48	TOTAL TCs = TCs PER EXCITOR X EXACTERS PER ROW X 2 ROWS COST PER TC (EST.)		
\$19.50	COST PER TC (EST.)		
\$936.0	TOTAL TO COST = TOTAL TO Y OCCUPANT		
176	" THILE FUR ILS ALE DEDTIL - MA		
272	LF WIRE FOR DC AT 12' DEPTH = NO. OF 6' DC X 11 EXTRA FEET LF WIRE FOR DC AT 18' DEPTH = NO. OF 12' DC X 17 EXTRA FEET		
368	LF WIRE FOR DC AT 18' DEPTH = NO. OF 12' DC X 17 EXTRA FEET TOTAL LF OF EXTRA WIRE		
816	TOTAL LF OF EXTRA WIRE		
\$584.00	COST PER 1000 LE OF WIRE (FOT)		
\$2,336.0	COST FOR WIRE = TOTAL LE (4000-1) A =		
\$4.30			
48			
\$165.12	TOTAL COST FOR PLUGIJACKS = TOTAL PLUGIJACKO X		
ACHUMA	TOTAL COST FOR PLUG/JACKS = TOTAL PLUG/JACKS X COST PER X 20% DISCOUNT	(EST.)	
ACOUM/PR		(==:.,	
MONAHELI	C 0-10" AND 0-40" GAGES	\$138.00	
		¥ 700.00	CAPITA
46.00	COST PER GAUGE		
3	GAUGES REQUIRED		
\$138.00	TOTAL COST FOR GAUGES		
AS CHROW	ATOGRAPH		
ORTABLE G	RIOGRAPH		
שונואטנב פ		\$18,000.00	; RENTAL
3000.00	MONTHLY	,	KENTAL
3000.00 6.00	MONTHLY RENTAL RATE FOR PORTABLE GC	,	NENTAL
6.00	MONTHLY RENTAL RATE FOR PORTABLE GC TOTAL MONTHS NEEDED	,	, i VENIAL
		,	NEW TAL
6.00 \$18,000.00	TOTAL MONTHS NEEDED TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER BIRDING	,	ACNIAL
6.00 \$18,000.00	TOTAL MONTHS NEEDED TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING FR		AENIAL
6.00 \$18,000.00 POR BARR AYER BARR	TOTAL MONTHS NEEDED TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIFE TWO LAYERS OF THE PROPERTY OF THE PIPING		
6.00 \$18,000.00 POR BARRI AYER BARRI RRIER WILL	TOTAL MONTHS NEEDED TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 21 INSULATION EXTEND 12 BEYOND FROM	\$1,492.48	
6.00 \$18,000.00 POR BARRI AYER BARRI RRIER WILL	TOTAL MONTHS NEEDED TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 21 INSULATION EXTEND 12 BEYOND FROM		DISPOSABLE
6.00 \$18,000.00 POR BARR AYER BARI RRIER WILI SULATION V	VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS //LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP		
6.00 \$18,000.00 POR BARR AYER BARR RRIER WILL SULATION V	VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS VILL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SO. 57)		
POR BARRI AYER BARI RRIER WILI SULATION V 2240 1024	VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS VILL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20')		
6.00 \$18,000.00 POR BARR AYER BARR RRIER WILL SULATION V 2240 1024 \$0.13	VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS VILL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH + 20')		
6.00 \$18,000.00 POR BARR AYER BARF RRIER WILL SULATION V 2240 1024 \$0.13 \$0.16	VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS VILL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (FST.)	\$1,492.48	DISPOSABLE
6.00 \$18,000.00 POR BARR AYER BARF RRIER WILL ULATION V 2240 1024 \$0.13 \$0.16	VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS VILL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (FST.)	\$1,492.48	DISPOSABLE
6.00 \$18,000.00 POR BARR AYER BARF RRIER WILL ULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48	VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS VILL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 4500 SQ.	\$1,492.48	DISPOSABLE
6.00 \$18,000.00 POR BARR AYER BARR RRIER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 DUND ELEC	TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS ///LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. ITODE PIPING	\$1,492.48 FT.) X 2 BARRIER	DISPOSABLE
POR BARRAYER BARIER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 DUND ELEC	TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS VILL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. ITODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH PLACE OF A 15 A 16 A 16 A 16 A 16 A 16 A 16 A 16	\$1,492.48 FT.) X 2 BARRIER	DISPOSABLE
POR BARRAYER BARIER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 DUND ELEC	TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS VILL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. ITODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH PLACE OF A 15 A 16 A 16 A 16 A 16 A 16 A 16 A 16	\$1,492.48 FT.) X 2 BARRIER	DISPOSABLE
POR BARRAYER BARRER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 DUND ELECUR GROUNIE	TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS VILL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. ITODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH PLACE OF A 15 A 16 A 16 A 16 A 16 A 16 A 16 A 16	\$1,492.48 FT.) X 2 BARRIER	DISPOSABLE
POR BARRAYER BARIER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 DUND ELECTRO	TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS //ILL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. ITODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH BLACK 2" VACUUM HOSDE JUNCTION = TEE, 2-ADAPTERS, 2 COUPLING SETS, 2" BALL VALVE, AND 2' OF 2" VACUUM CONSTRUCTED IN TWO PIECES WITH A MIDPOINT FLANGE, AND END FLANGE	\$1,492.48 FT.) X 2 BARRIER	DISPOSABLE
6.00 \$18,000.00 POR BARR AYER BARR RRIER WILI SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 DUND ELEC R GROUNI E/ELECTRO H SECTION	TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS //LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. INTODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH BLACK 2" VACUUM HOS DE JUNCTION = TEE, 2-ADAPTERS, 2 COUPLING SETS, 2" BALL VALVE, AND 2' OF 2" VACUUM CONSTRUCTED IN TWO PIECES WITH A MIDPOINT FLANGE, AND END FLANGE COST FOR 2" FIBERGLASS TEE AND INCOME.	\$1,492.48 FT.) X 2 BARRIER	DISPOSABLE
6.00 \$18,000.00 POR BARR AYER BARR RRIER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 PUND ELEC R GROUNI E/ELECTRO H SECTION	TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS //LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH + 20') COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. IT TRODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH BLACK 2" VACUUM HOS DE JUNCTION = TEE, 2-ADAPTERS, 2 COUPLING SETS, 2" BALL VALVE, AND 2' OF 2" VACUUM CONSTRUCTED IN TWO PIECES WITH A MIDPOINT FLANGE, AND END FLANGE COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 1" FIBERGLASS TEE (VEE) COST FOR THREADED FIBERGLASS TEE (VEE)	\$1,492.48 FT.) X 2 BARRIER	DISPOSABLE
POR BARRAYER BARRER WILL BULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 DUND ELECTRO H SECTION 34.15 5.00	TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS //LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. IT TRODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH BLACK 2" VACUUM HOS DE JUNCTION = TEE, 2-ADAPTERS, 2 COUPLING SETS, 2" BALL VALVE, AND 2' OF 2" VACUUM CONSTRUCTED IN TWO PIECES WITH A MIDPOINT FLANGE, AND END FLANGE COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 2" FOR END AND END FLANGE COST FOR 2" FOR END AND END FLANGE COST FOR 2" FOR END AND END FLANGE COST FOR 2" FOR END AND END FLANGE COST FOR 2" FOR END AND END FLANGE	\$1,492.48 FT.) X 2 BARRIER	DISPOSABLE
6.00 \$18,000.00 POR BARR AYER BARR RRIER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 PUND ELEC IR GROUNI ELECTRO H SECTION 34.15 5.00 9.15	TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS ///LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. IT TRODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH BLACK 2" VACUUM HOS DE JUNCTION = TEE, 2-ADAPTERS, 2 COUPLING SETS, 2" BALL VALVE, AND 2' OF 2" VACUUM CONSTRUCTED IN TWO PIECES WITH A MIDPOINT FLANGE, AND END FLANGE COST FOR 2" FIBERGLASS TEE (VEE) COST FOR THREADED FIBERGLASS ADAPTER (VEE) COST FOR THREADED FIBERGLASS ADAPTER (VEE) COST FOR 1" COUPLING (1 MALE/1 FEMALE) (VEE)	\$1,492.48 FT.) X 2 BARRIER	DISPOSABLE
6.00 \$18,000.00 \$18,000.00 POR BARR AYER BARI RRIER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 PUND ELEC IR GROUNI ELECTRO H SECTION 34.15 5.00 9.15 2.94 19.90	TOTAL MONTHS NEEDED TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS ///LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. IT TRODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH BLACK 2" VACUUM HOSD JUNCTION = TEE, 2-ADAPTERS, 2 COUPLING SETS, 2" BALL VALVE, AND 2' OF 2" VACUUM CONSTRUCTED IN TWO PIECES WITH A MIDPOINT FLANGE, AND END FLANGE COST FOR 2" FIBERGLASS TEE (VEE) COST FOR THREADED FIBERGLASS ADAPTER (VEE) COST FOR 2" COUPLING (1 MALE/1 FEMALE) (VEE) COST FOR 2" BRONZE BALL VALVE (FESO)	\$1,492.48 FT.) X 2 BARRIER	DISPOSABLE
6.00 \$18,000.00 POR BARR AYER BARR RRIER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 DUND ELEC PR GROUNI E/ELECTRO H SECTION 34.15 5.00 9.15 2.94	TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS ///LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. IT TRODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH BLACK 2" VACUUM HOS DE JUNCTION = TEE, 2-ADAPTERS, 2 COUPLING SETS, 2" BALL VALVE, AND 2' OF 2" VACUUM CONSTRUCTED IN TWO PIECES WITH A MIDPOINT FLANGE, AND END FLANGE COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 2" COUPLING (1 MALE/1 FEMALE) (VEE) COST FOR 2" COUPLING (1 MALE/1 FEMALE) (VEE) COST FOR 2" BRONZE BALL VALVE (ESCO) COST FOR 2" FLANGE 4 FOR ATTERIOR.	\$1,492.48 FT.) X 2 BARRIER \$1,188.42 EE IM HOSE	DISPOSABLE
6.00 \$18,000.00 \$18,000.00 \$18,000.00 POR BARR AYER BARR RRIER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 PUND ELEC PR GROUNI ELECTRO H SECTION 34.15 5.00 9.15 2.94 19.90 15.50 88.23	TOTAL MONTHS NEEDED TOTAL COST FOR PORTABLE GC RENTAL VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS //LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. IT TRODE PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH BLACK 2" VACUUM HOS DE JUNCTION = TEE, 2-ADAPTERS, 2 COUPLING SETS, 2" BALL VALVE, AND 2' OF 2" VACUU CONSTRUCTED IN TWO PIECES WITH A MIDPOINT FLANGE, AND END FLANGE COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 2" FIBERGLASS ADAPTER (VEE) COST FOR 2" COUPLING (1 MALE/1 FEMALE) (VEE) COST FOR 2" BRONZE BALL VALVE (ESCO) COST FOR 2" FLANGE 15.50 (VEE) COST FOR 2" FLANGE 15.50 (VEE) COST FOR 2" FLANGE 15.50 (VEE)	\$1,492.48 FT.) X 2 BARRIER \$1,188.42 EE IM HOSE	DISPOSABLE
6.00 \$18,000.00 \$18,000.00 \$18,000.00 POR BARR AYER BARR RRIER WILL 1024 \$0.13 \$0.16 \$1,492.48 PUND ELEC R GROUNI VELECTRO H SECTION 34.15 5.00 9.15 2.94 19.90 15.50 88.23 0.26	VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS //LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST POR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. INTO PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH BLACK 2" VACUUM HOSE CONSTRUCTED IN TWO PIECES WITH A MIDPOINT FLANGE, AND END FLANGE COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 2" COUPLING (1 MALE/1 FEMALE) (VEE) COST FOR 2" BRONZE BALL VALVE (ESCO) COST FOR 2" FLANGE 15.50 (VEE) COST FOR 0NE JUNCTION (TEE, 2 ADAPTERS, 2 COUPLING SETS, BALL VALVE AND 2" OF COST FOR 2" FLANGE 15.50 (VEE)	\$1,492.48 FT.) X 2 BARRIER \$1,188.42 EE IM HOSE	DISPOSABLE
6.00 \$18,000.00 \$18,000.00 \$18,000.00 POR BARR AYER BARR RRIER WILL 1024 \$0.13 \$0.16 \$1,492.48 PUND ELEC R GROUNI FLECTROI H SECTION 34.15 5.00 9.15 2.94 19.90 15.50 88.23 0.26 28.00	VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS //LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST FOR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. INCOMPANY OF A CONSTRUCTION OF THE A COUNTY OF A COUNTY	\$1,492.48 FT.) X 2 BARRIER \$1,188.42 EE IM HOSE	DISPOSABLE
6.00 \$18,000.00 \$18,000.00 \$18,000.00 POR BARR AYER BARR RRIER WILL SULATION V 2240 1024 \$0.13 \$0.16 \$1,492.48 PUND ELEC PR GROUNI ELECTRO H SECTION 34.15 5.00 9.15 2.94 19.90 15.50 88.23	VAPOR COLLECTION/TRANSFER PIPING ER RIER, TWO LAYERS OF REINFORCED PLASTIC AND ONE LAYER OF 2" INSULATION EXTEND 12' BEYOND EDGE OF CELL IN ALL DIRECTIONS //LL COVER AREA UNDER SHIELD ONLY WITH NO OVERLAP PLASTIC BARRIER DIMENSIONS (SQ. FT) = (CELL WIDTH + 20') X (CELL LENGTH + 20') INSULATION DIMENSIONS (SQ. FT) = CELL WIDTH X CELL LENGTH COST PER SQ. FT. FOR REINFORCED PLASTIC BARRIER MATERIAL (EST.) COST PER SQ. FT. FOR 2" FIBERGLASS INSULATION (MCM CARR) COST POR BARRIER = (.13/SQ. FT. X 4320 SQ. FT.) X 2 LAYERS + (.16/SQ. FT. X 1600 SQ. INTO PIPING DELECTRODE TIED TO 2" GREEN THREAD FIBERGLASS PIPE WITH BLACK 2" VACUUM HOSE CONSTRUCTED IN TWO PIECES WITH A MIDPOINT FLANGE, AND END FLANGE COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 2" FIBERGLASS TEE (VEE) COST FOR 2" COUPLING (1 MALE/1 FEMALE) (VEE) COST FOR 2" BRONZE BALL VALVE (ESCO) COST FOR 2" FLANGE 15.50 (VEE) COST FOR 0NE JUNCTION (TEE, 2 ADAPTERS, 2 COUPLING SETS, BALL VALVE AND 2" OF COST FOR 2" FLANGE 15.50 (VEE)	\$1,492.48 FT.) X 2 BARRIER \$1,188.42 EE IM HOSE	DISPOSABLE

	•				\$362.97	CAPITAL
					4302.01	
RIZONTAL EXT	RACTION PIPING ORIZONTAL PIPING PER CELL CONSTRUCTED OF 2" ORIZONTAL PIPING PER CELL CONSTRUCTED OF 2"	" GREEN THREAD	FIBERGLASS PI	PE		
SECTIONS OF H	ORIZONTAL PIPING PER CELL CONSTRUCTED OF 2 STRUCTED IN TWO PIECES WITH A FLANGE, END CA	AP, AND 2 ELBOW	S			
D SECTIONS CONS	STRUCTED IN TWO PIECES WITH A FLANGE, END OF					
	COST FOR 2" FIBERGLASS END CAP					
		_				
15.50	COST FOR 2" FLANGE 15.50 (VEE) COST PER LF. FOR 2" GREEN THREAD FIBERGLAS:	IS PIPE				
0.26	COST PER LF. FOR 2 GREEN WAS					
9,15	COST FOR 2" SLEEVE COUPLING					
23.65	COST FOR 2" 90 DEG. ELBOW					
	WENT OF THE SECTION LENGTH (CELL WILDING TO)					
26	STIGHT OF DIDE IN FT (INDIV. SECTIONS)					
30	SLEEVE COUPLINGS PER SECTION COST FOR ONE HORIZ. EXT. SECTION (PIPE, 2 FL)	+ 00UDL	NGS 2 FLBOWS	, 1 END CAP)		
1	SLEEVE COOP ENTONIE HORIZ FXT. SECTION (PIPE, 2 FL)	ANGES, 4 COUPLI	1400, 2 2220	'		
120.99						
3	HORIZ. EXT. SECTIONS TOTAL COST = HORIZ. EXT. SECTIONS X CELLS IN	NSTALLED				
\$362.97	TOTAL COST = HORIZ, EXT. SECTIONS & GLEES III				\$497.13	CAPITAL
\$302.51					4-31.10	
	ANIEGI D					
XTRACTION M	ANIFOLD L VAPOR EXTRACTION COMPONENTS FOR TWO CE AND A POWS GROUND ELECTRODES AN	ELLS		Je.		
IFS TOGETHER AL	L VAPOR EXTRACTION COM STEEL ECTRODES AN	1D 3 HORIZ, EXTRA	ACTION SECTION	40		
OMPONENTS FOR	L VAPOR EXTRACTION COMPONENTS FOR TWO CE R 2 CELLS INCL. 3 ROWS GROUND ELECTRODES AN	RETWEEN EACH O	COMPONENT			
ANIFOLD CONSTE	R 2 CELLS INCL. 3 ROWS GROUND ELECTRODES AN R. WITH FLANGE DIVIDING EACH CELL AND VALVE E R. WITH FLANGE DIVIDING EXTRACTION COM-	ADONENTS				
ANIFOLD CONSTI	R. WITH FLANGE DIVIDING EACH CELE AND MAIN FOR MAINTENERS MANIFOLD TO INDIV. EXTRACTION COM	MPONEITIO				
LEXIBLE VACUUM	(HOSE TIES MANAGED IN THE STATE OF THE STAT					
	COST FOR 2" FLANGE 15.50 (VEE)					
15.50	COST FOR 2" FLANGE 10:00 (THREAD FIBERGLA	ASS PIPE	*			
0.26	COST FOR 2" FLANGE 15.50 (VEE) COST PER LF FOR 2" GREEN THREAD FIBERGLA					
34.15	ou FIDEDCI ASS TEE (VEE)					Í
5.00		, v = - / (EE)				ſ
	COST FOR 2" HOSE COUPLING (1 MALE) I LIMIT	(LE) (AEE)				-)
9.15	COST PER LF OF VACUUM HOSE (VEE)					
2.94	COST FOR 2" BRONZE BALL VALVE (ESCO)					Ē.
19.90						
23.65	COST FOR 2" 90 DEG. ELBOW LENGTH OF PIPE = 3 X CELL LENGTH + 10' FOR	MISC SECTIONS	i			
106	LENGTH OF PIPE = 3 X CELL LENGTH + 10 FOR	LIOPIZ EXT SEC	TIONS			
6	VALVES REQUIRED = 3 ELECTRODE ROTTO : 5		DEU			
	VALVES REQUIRED = 3 ELECTRODE ROWS 1.5 NUMBER OF 3' HOSE SECTIONS WITH 2 COUPL NUMBER OF 3' HOSE SECTIONS WITH 3 COUPL WITH 3 COUPL WITH 3 COUPL WITH 3 COUPL	LING SETS REGION	SECTIONS WITH	COUPLINGS		
6	NUMBER OF 3' HOSE SECTIONS WITH 2 COUPL TOTAL COST = PIPE, 2 FLANGES, 3 ELBOWS, 6	TEES, 6-3' HOSE	SECTION -			
\$497.13	TOTAL GOO! THE AT	POR EXTRACTI	ONTREATME	:NT		Statistics sections of the
	\/AF	DOD EXIMALLI	Outlive	1.2 2000 pt as are 1, sec.		CAPIT
essen maksas etkül süst	Y^.	POK EXTIME			24 000 80	CAFIII
	VA :	POR EXTIGUE			\$1,699.80	CAPIT
	IVE BLOWER	POR EXTINGE			\$1,699.80	CAPIII
REGENERATI	IVE BLOWER	POREATION			\$1,699.80	CAPII
REGENERATI HOUSED ON 40'	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT				\$1,699.80	(AFI)
REGENERATI HOUSED ON 40'	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT				\$1,699.80	CAFII
HOUSED ON 40'	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE				\$1,699.80	CAPII
HOUSED ON 40'	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE				\$1,699.80	CAFII
1053.00 56.80	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE				\$1,699.80	UAF11
1053.00 56.80 109.80	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER				\$1,699.80	CAFTI
1053.00 56.80 109.80 307.50	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER				\$1,699.80	UAFI)
1053.00 56.80 109.80	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER	EL R6350A-2			\$1,699.80	- T
1053.00 56.80 109.80 307.50 172.70	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI	EL R6350A-2				- T
1053.00 56.80 109.80 307.50 172.70 \$1,699.80	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI	EL R6350A-2			\$1,699.80 \$250,000.00	CAPI
1053.00 56.80 109.80 307.50 172.70 \$1,699.80	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI	EL R6350A-2		TOR,		
1053.00 56.80 109.80 307.50 172.70 \$1,699.80	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH	EL R6350A-2		TOR,		
1053.00 56.80 109.80 307.50 172.70 \$1,699.80	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH	EL R6350A-2		TOR,		- T
1053.00 56.80 109.80 307.50 172.70 \$1,699.80	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH	EL R6350A-2		TOR,		- T
1053.00 56.80 109.80 307.50 172.70 \$1,699.80	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH, 40' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A KIDIZER, AND NAOH PRECIPITATION UNIT.	EL R6350A-2 IES · I PRECIPITATIO		TOR,		
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH, 40' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A KIDIZER, AND NaOH PRECIPITATION UNIT.	EL R6350A-2 IES · I PRECIPITATIO		TOR,		
1053.00 56.80 109.80 307.50 172.70 \$1,699.80	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH, 40' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A KIDIZER, AND NaOH PRECIPITATION UNIT.	EL R6350A-2 IES - I PRECIPITATIO AIR CONDENSER, 1	DN WATER SEPARA	TOR,		CAPI
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH, 40' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A KIDIZER, AND NaOH PRECIPITATION UNIT.	EL R6350A-2 IES - I PRECIPITATIO AIR CONDENSER, 1		τοR,		CAPI
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH 40' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A KIDIZER, AND NaOH PRECIPITATION UNIT.	EL R6350A-2 IES - I PRECIPITATIO AIR CONDENSER, 1	DN WATER SEPARA	TOR,		CAPI
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX	IVE BLOWER FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH 40' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A KIDIZER, AND NaOH PRECIPITATION UNIT.	EL R6350A-2 IES - I PRECIPITATIO AIR CONDENSER, 1	DN WATER SEPARA	πoR,		CAPI
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NaOH AO' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A KIDIZER, AND NaOH PRECIPITATION UNIT. TOTAL COST FOR TRAILER-MOUNTED TREAT	EL R6350A-2 IES - I PRECIPITATIO AIR CONDENSER, 1	ON WATER SEPARA	TOR,		CAP
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NaOH AO' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A KIDIZER, AND NaOH PRECIPITATION UNIT. TOTAL COST FOR TRAILER-MOUNTED TREAT	EL R6350A-2 IES: PRECIPITATION AIR CONDENSER, VINTEMENT UNIT	DN WATER SEPARA	TOR,		CAP
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH AO' FLAT BED TRAILER. UNIT INCLUDES AMBIENT AND INCLUDE	EL R6350A-2 IES: I PRECIPITATION AIR CONDENSER, VINENT UNIT	ON WATER SEPARA ABOR HR RATE	TOR,		CAP
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH AO' FLAT BED TRAILER. UNIT INCLUDES AMBIENT AND INCLUDE	IES · I PRECIPITATIO AIR CONDENSER, ' TIMENT UNIT SALARY 60,000	ON WATER SEPARA ABOR HR RATE 28.85	TOR,		CAP
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE O TOTAL COST FOR BLOWER AND ACCESSORI OXIDATION TREATMENT UNIT WITH NAOH, 40' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A KIDIZER, AND NAOH PRECIPITATION UNIT. TOTAL COST FOR TRAILER-MOUNTED TREAT PREPERATION AND DEMOB PROJECT MANAGER (ENGR)	IES · I PRECIPITATIO AIR CONDENSER, THENT UNIT SALARY 60,000 55,000	DN WATER SEPARA ABOR HR RATE 28.85 26.44	TOR,		CAP
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE O TOTAL COST FOR BLOWER AND ACCESSORI CXIDATION TREATMENT UNIT WITH NAOH A0' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A CIDIZER, AND NAOH PRECIPITATION UNIT. TOTAL COST FOR TRAILER-MOUNTED TREAT PREPERATION AND DEMOB PROJECT MANAGER (ENGR) SR RF ENGINEER	IES · I PRECIPITATIO AIR CONDENSER, V SALARY 60,000 55,000 45,000	N WATER SEPARA HR RATE 28.85 26.44 21.63	TOR,		CAPI
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE O TOTAL COST FOR BLOWER AND ACCESSORI CXIDATION TREATMENT UNIT WITH NAOH AO' FLAT BED TRAILER. UNIT INCLUDES AMBIENT AND INCLUDES AMBIENT AND TOTAL COST FOR TRAILER-MOUNTED TREATMENT UNIT. TOTAL COST FOR TRAILER-MOUNTED TREATMENT AND AND DEMOB PROJECT MANAGER (ENGR) SR RF ENGINEER IR RF ENGINEER	IES · I PRECIPITATIO AIR CONDENSER, V SALARY 60,000 55,000 45,000	DN WATER SEPARA HR RATE 28.85 26.44 21.63 16.83	TOR,		CAP
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE O TOTAL COST FOR BLOWER AND ACCESSORI CXIDATION TREATMENT UNIT WITH NAOH A0' FLAT BED TRAILER. UNIT INCLUDES AMBIENT A CIDIZER, AND NAOH PRECIPITATION UNIT. TOTAL COST FOR TRAILER-MOUNTED TREAT PREPERATION AND DEMOB PROJECT MANAGER (ENGR) SR RF ENGINEER	IES · I PRECIPITATIO AIR CONDENSER, THENT UNIT SALARY 60,000 55,000	DN WATER SEPARA WATER SEPARA HR RATE 28.85 26.44 21.63 16.83			CAP
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE O TOTAL COST FOR BLOWER AND ACCESSORI CXIDATION TREATMENT UNIT WITH NAOH AO' FLAT BED TRAILER. UNIT INCLUDES AMBIENT AND INCLUDES AMBIENT AND TOTAL COST FOR TRAILER-MOUNTED TREATMENT UNIT. TOTAL COST FOR TRAILER-MOUNTED TREATMENT AND AND DEMOB PROJECT MANAGER (ENGR) SR RF ENGINEER IR RF ENGINEER	IES · I PRECIPITATIO AIR CONDENSER, V SALARY 60,000 55,000 45,000	DN WATER SEPARA HR RATE 28.85 26.44 21.63 16.83 93.75			CAP
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE O TOTAL COST FOR BLOWER AND ACCESSORI CXIDATION TREATMENT UNIT WITH NAOH AO' FLAT BED TRAILER. UNIT INCLUDES AMBIENT AND INCLUDES AMBIENT AND TOTAL COST FOR TRAILER-MOUNTED TREATMENT UNIT. TOTAL COST FOR TRAILER-MOUNTED TREATMENT AND AND DEMOB PROJECT MANAGER (ENGR) SR RF ENGINEER IR RF ENGINEER	IES · I PRECIPITATIO AIR CONDENSER, V SALARY 60,000 55,000 45,000	HR RATE 28.85 26.44 21.63 16.83 93.75 117.19	OVERHEAD (125%)		CAPI
1053.00 56.80 109.80 307.50 172.70 \$1,699.80 CATALYTIC HOUSED ON A CATALYTIC OX \$250,000.00	FLATBED TRAILER WITH CAT/OX UNIT REGENERATIVE BLOWER COST - GAST MODE VACUUM GAUGE MUFFLER FILTER RELIEF VALVE O TOTAL COST FOR BLOWER AND ACCESSORI CXIDATION TREATMENT UNIT WITH NAOH AO' FLAT BED TRAILER. UNIT INCLUDES AMBIENT AND INCLUDES AMBIENT AND TOTAL COST FOR TRAILER-MOUNTED TREATMENT UNIT. TOTAL COST FOR TRAILER-MOUNTED TREATMENT AND AND DEMOB PROJECT MANAGER (ENGR) SR RF ENGINEER IR RF ENGINEER	IES · I PRECIPITATIO AIR CONDENSER, V SALARY 60,000 55,000 45,000	DN WATER SEPARA HR RATE 28.85 26.44 21.63 16.83 93.75 117.19			

OPERAT	PROJECT MANAGER (ENGR) SR RF ENGINEER	SALARY	HD DATE			_
	JR RF ENGINEER JR RF ENGINEER SR FIELD TECHNICIAN SR FIELD TECHNICIAN	60,000 55,000 45,000 45,000 35,000 35,000	HR RATE 28.85 26.44 21.63 21.63 16.83 16.83 132.21 165.26 29.75	- OVERHEAD (125%) G&A (10%) CREW HOUR		5
SITE PREPARA	TION/SET-UP					
INCLUDES FENCING	G, MATERIAL RECEIPT TRAILER/SITE SETUR SI	TOTRICAL DOG			\$55,687.50	
4-MAN CREW WOR	KING 8 HR DAYS, 5 DAYS PER WEEK	ECTRICAL, DOG	HOUSE FAB.,	MISC. ACTIVITIES	7-7,007,00	LABO
6	÷					
232.03	TIME REQUIRED IN WEEKS					
40	LABOR RATE FOR 4 MAN CREW (INCLUDES AL	L INDIRECTS)				
240	CHEW HOURS PER WEEK					
\$55,687.50	TOTAL CREW HOURS REQUIRED FOR SITE PRI	EPARATION/SET	T-UP			
,.**	TOTAL COST FOR SITE PREPARATION/SET-UP					
TREATMENT						
INCLUDES RE/SVE C	DPERATION, PROJECT MANAGEMENT, AND REPO				\$403,139.42	
	TITLINGS OF THE PROPERTY OF TH				4403,139.42	LABOR
2 MEN ON SITE 24 H	OURS PER DAY 7 DAYS PER WEEK (=56 CREW H	ion 				
	THE PARTY OF ER WEEK (=36 CREW H	RS)				- [
0.1	CONTINGENCY FACTOR FOR LOST TIME					To the second of
327.22	LABOR RATE FOR 4 MAN CREW (INCLUDES ALL					unit.
56	CREW HOURS PER WEEK	INDIRECTS)				į.
20	TOTAL WEEKS OF TREATMENT					
1120	TOTAL CREW HOURS REQUIRED FOR TREATME					
3403,139.42	TOTAL COST FOR TREATMENT CREW	NT				
_						
ME KESTORATIO	ON/DEMOBILIZATION					
	TIME DECLUDED TO THE			\$	18,562.50	LABOR
2	TIME REQUIRED IN WEEKS					55/(
2 232 03		NDIRECTS)				
232.03	CABOR RATE FOR 4 MAN CREW (INCLUDES ALL I					
232.03 40	LABOR RATE FOR 4 MAN CREW (INCLUDES ALL I CREW HOURS PER WEEK					
232.03 40 80	TOTAL CREW HOURS REQUIRED FOR SITE PEST.	ODATIONISS	IRII IZATION			
232.03 40 80	TOTAL CREW HOURS REQUIRED FOR SITE PEST.	ODATIONISS	BILIZATION			
232.03 40 80	OVER HOOKS PEK WEEK	ORATION/DEMO (ATION				
232.03 40 80	TOTAL CREW HOURS REQUIRED FOR SITE PEST.	ODATIONISS		25844 . 1999 2. 1999 1.	1411 A.B. 1	

THOCKS AND	RAILERS			
JNE TON UTILITY	TRUCK WITH OVER	HEAD WINCH, HYDRAULIC LIFT, AND SMALL TRAILER	\$35,000	CAPITAL
SELLULAR TEI	LEPHONE		\$4,875.00	
^	MONTHLY RENT MONTHS NEEDE TOTAL RENTAL (V-1,073,00	SERVICES

21.10 39.84 116.10 455.00 204.00 6.00 375.00 205.00	ALUMINUM FOIL	UNIT	UNIT	EST.	\$47,559.72	DISPOSABLES
21.10 39.84 116.10 455.00 204.00 6.00 375.00	ALUMINUM FOIL	UNIT	UNIT	EST.	•	
21.10 39.84 116.10 455.00 204.00 6.00 375.00	ALUMINUM FOIL	UNIT	ONLI			
39.84 116.10 455.00 204.00 6.00 375.00	ALUMINUM FOIL	UNII	COST	QTY		
39.84 116.10 455.00 204.00 6.00 375.00	ALUMINUM FOIL		2.11	10		
39.84 116.10 455.00 204.00 6.00 375.00		ROLL	9.96	4		•
116.10 455.00 204.00 6.00 375.00	BARRIER TAPE	ROLL	11.61	10		
455.00 204.00 6.00 375.00	BOOT COVERS	PAIR	65.00	7		
204.00 6.00 375.00	CHEMICAL TOILET	HTMOM	0.68	300		
6.00 375.00	COTTON GLOVES	PAIR	3.00	2		
375.00	DECON TUB	EACH	375.00	1		
	16-GAL EYEWASH	EACH	205.00	1		
	DRAEGER PUMP	EACH	33.00	4		
132.00	DRAEGER TUBES	EACH	35.00	147	•	
5145.00	FRAC TANK RENTAL	DAY	136.55	4		
546.20	FULL FACE RESP.	EACH	5.30	10		
53.00	HARD HATS	EACH	4,929.80	1		
4929.80	HNU DETECTOR	EACH	15.77	5		
78.85	HPLC (4L)	4 L	1,253.00	1		
1253.00	LEL/O2 METER W/ ACC.	EACH		8		
	LIQUINOX DETERGENT	GAL	18.29	3		
146.32	METHANOL (4L)	4 L	28.78	4000		
86.34	MILEAGE (TRUCK)	MILE	0.50	30 30		
2000.00	MSA COMB. CARTRIDGES	EACH	2.82			
84.60		LB	0.15	4000		
600.00	NaOH	PAIR	1.13	100		
113.00	NITRILE GLOVES	EACH	5,046.00	1		
5046.00	OVA	ROLL	2.81	10		<u>.</u>
28.10	PACKING TAPE	ROLL	0.74	100		!
74.00	PAPER TOWELS	GAL.	0.63	36960		
23284.80	PROPANE (CAT/OX)	BDL	2.52	4		1
10.08	PIN FLAGS (BDL50)	EACH	5.24	40		
209.60	SAFETY GLASSES	EACH	7.20	3		
21.60	SAMPLE BOWL/TROWEL	TANK	37.10	2		
74.20	SPAN GAS (HNU)	TANK	36.04	2		
72.08	SPAN GAS (LEL/O2)	EACH	1,850.00	1		
1850.00	STEAM CLEANER	BOX	8.69	5		
43.45	SURGEONS GLOVES	BOX	6.35	20		
127.00	TRASH BAGS	EACH	2.91	36		
104.76	TYVEK COVERALLS	BOX	2.39	10		
23.90	ZIPLOCK BAGS	BOX				
A .= = = 7 7 7 1	2 TOTAL MISCELLANEOUS OF	C COST				CAPI
\$47,559.72	Z TOTAL MICOLLES				\$9,200.00	CAPI
FENCING		S WITH TWO GA	TES			
FENCE DIMENS	SIONS ARE 300' BY 200', INSTALLED	J WITH TWO OF				
11.50	COST PER LINEAR FOOT FO	OR FENCING, IN	CLUDES GATE	S		
800	TOTAL LINEAR FOOTAGE R	EQUIRED				
\$9,200.00						DISPOSA
\$3,200.00					\$2,500.00	Dioi oo.
GRAVEL		J				
USED TO REG	RADE SITE DURING RESTORATION	•				
\$2,500.0	O TOTAL COST FOR GRAVEL	(EST)			\$1,400.00	DISPOS
CONCRETE					4.77	
TRANSFORME	· ER PAD					
Trans.		TITENCING (F	ST)			
\$1,400.0	8' X 8' CONCRETE PAD WI	IH FENCING (C			\$1,700.00	DISPOS
LIGHTS					* ·*·	
PERIMETER!	LIGHTS FOR SITE SECURITY AND I	NIGHT OPERATI	ONS			
,	D EST. COST PER LIGHT IN	CHUDING PAST	AND ELECTRIC	CAL HOOKUP		
85.00	D EST. COST PER LIGHT IN	VIIRED				
20	NUMBER OF LIGHTS REC	NC				
\$1,700.	.00 TOTAL COST FOR LIGHT					

WASTE DISPO	DSAL	AT 107 -0	7
SLUDGE FROM N	AZOH PRECIPITATION UNIT, LIQUID FROM AMBIENT AIR CONDENSER, EXCESS SOIL,	\$7,107.50	SERVICES
AND MISCELLAN	EOUS (PPE, USED HOSE, ETC.)		
0.50			
2.50	COST PER MILE FOR HAZWASTE TRANSPORT (EST)		
25.00	COST FOR BULK DRUM TRANSPORT (EST)		
0.40	COST FOR INCINERATION PER POUND (EST)		
150.00	COST PER DRUM FOR HANDLING DURING INCINERATION PER POUND (EST)		
350.00	COST PER DRUMFOR LANDFILL (EST)		
300.00	COST PER DRUM FOR LANDFILL PICK-UP & HANDLING (EST)		
0.25	COST PER GALLON FOR WATER TREATMENT (EST)		
6,000	NaOH SLUDGE (LB) - (10 DRUMS)		
\$4,150	COST TO DRUM, TRANSPORT, & INCINERATE		
5,000	LIQUID (GAL)		
630	DECON WATER (GAL)		

\$1,533

3

\$1,425

TOTAL BENTONITE COST

COST TO TRANSPORT (50 MILES) & TREAT

COST TO TRANSPORT & LANDFILL

MISC. (DRUMS)

DRILLING AN	D ABANDONMENT	\$24,664.20	SERVICES
SYSTEM IN	STALL		
1.00	COST FOR 100 LB. BAG SAND BACKFILL (1 CUBIC FOOT)		: : : :
10.50	COST FOR 50 LB BAG BENTONITE CHIPS (0.79 CUBIC FEET)		
13.00	COST PER FOOT FOR BORING (4.25" HS AUGER)		
15.00	COST PER FOOT FOR BORING (8" HS AUGER)		•
100.00	COST PER HOUR FOR STANDBY, SITE RESTORATION, MISC. CREW TIME		
30.00	COST PER HOUR FOR DECON		
250.00	MOB/DEMOB RATE EACH MOBILIZATION		
30.00	COST PER BORING FOR SAMPLING		
12	GROUND ELECTRODES PER ROW		
3	GROUND ELECTRODE ROWS IN TREATMENT AREA		
30	DEPTH OF GROUND ELECTRODE BOREHOLES		
1080	TOTAL LINEAR FOOTAGE OF GROUND ELECTRODE BOREHOLES		
8	EXCITOR ELECTRODES PER ROW		
2	EXCITOR ELECTRODE ROWS IN TREATMENT AREA		
22	DEPTH OF EXCITOR ELECTRODE BOREHOLES (8' HS AUGER)	,	
352	TOTAL LF OF EXCITOR ELECTRODE BOREHOLES (8' HS AUGER)		
6	THERMAL MEASUREMENT WELLS		
180	TOTAL LF OF THERMAL MEASUREMENT WELLS (4.25' AUGER)		
8	PRESUURE MEASUREMENT WELLS		
127	TOTAL LF OF PRESSURE MEASUREMENT WELLS (4.25" AUGER)		
1432	LF OF GROUND/EXCITOR ELECTRODE BORING		
\$18,616.00	DRILLING COST AT \$15 PER FOOT		
307	LF OF PRESSURE/THERMAL MEASUREMENT WELLS		
\$3,991.00	DRILLING COST AT \$13 PER FOOT		
12	NUMBER OF BORING REQUIRING SAMPLING		
\$360.00	COST FOR SAMPLING (\$30 EACH)		
12	REQUIRED AUGER DECONS (BEFORE EACH SAMPLE AND AT END)		
1	TIME FOR EACH DECON (HRS)		
\$360	COST FOR DECON		
501	100 LB. BAGS OF SAND REQUIRED (7 BAGS PER 20' OF BORING)		
\$501.20	TOTAL SAND COST		
52	50 LB. BAGS OF BENTONITE REQUIRED (2 BAGS PER BOREHOLE) FOR INSTALLATION		
\$546.00	TOTAL BENTONITE COST		

253

к8

4	MOBILIZATIONS FOR ENTIRE TREATMENT AREA		
•	COST PER MOBILIZATION/DEMOBILIZATION		
200.00	TOTAL MOBILIZATION COST		
\$250.00			
4	STANDBY HRS (EST)		
\$400.00	COST PER HR FOR STANDBY		SERVICES
		\$23,390.00	
SYSTEM ABAN	IDONMENT (DISMANTLE)		
100.00	COST PER HR FOR RIG TIME COST OF 50 LB BAG BENTONITE CHIPS (0.79 CUBIC FEET)		
10.50	COST OF 50 LB BAG BENTONNE		
30.00	COST PER HOUR FOR DECON		
250.00	MOB/DEMOB RATE COST PER BORING FOR SAMPLING ONE AN EXCITOR FLECTRODE (PULL & BENTONITE FILL)		· ·
30.00	COST PER BORING FOR SAMPLING TIME IN HOURS TO ABANDONE AN EXCITOR ELECTRODE (PULL & BENTONITE FILL)		
2.00	TIME IN HOURS TO ABANDONE A GROUND ELECTRODE (PULL & BENTONITE FILL) TIME IN HOURS TO ABANDONE A GROUND ELECTRODE (PULL & BENTONITE FILL)		
2.50	TIME IN HOURS TO ABANDONE A GROUND CLESSTOPE & BENTONITE FILL) TIME IN HOURS TO ABANDONE A PMW OR TMW (PULL & BENTONITE FILL)		_
2.50	COST FOR EACH ABANDONMENT REPORT		-
15.00	COST FOR EACH ABANDON F (EST)		
5.00	CUBIC FT BENTONITE PER HOLE (EST)		
	NUMBER OF BORING REQUIRING SAMPLING		
10	COST FOR SAMPLING (\$30 EACH)		
\$300.00	COST FOR GAME 2005 (
40	NUMBER OF SOIL SAMPLE HOLES		
10	AVERAGE DETPH IN FT OF BOREHOLE (8" DIA)		1
12	COST OF DRILLING		<u>.</u>
\$1,800.00			<u> </u>
16	NUMBER OF EXCITOR ELECTRODES		
\$3,440	COST TO ABANDONE		•
40,			
36	NUMBER OF GROUND ELECTRODES		
\$9,540	COST TO ABANDONE		
	NUMBER OF PMW's AND TMW's EXCITOR ELECTRODES		
14	COST TO ABANDONE		
\$3,710	COST TO ABAINDOILE		
70	NUMBER OF HOLES		
76	BENTONITE COST		
\$3,990			
12	REQUIRED AUGER DECONS (BEFORE EACH SAMPLE AND AT END)		
1	TIME FOR EACH DECON (HRS)		
\$360	COST FOR DECON		
400 0			
1	MOBILIZATIONS FOR ENTIRE TREATMENT AREA		4
250.00	COST PER MOBILIZATION/DEMOBILIZATION		
\$250.00	TOTAL MOBILIZATION COST	\$42,900.00	SERVICES
		\$42,300.00	
ANALYTICAL			,
	and the second s		
SOIL	ANALYTICAL COST PER SAMPLE FOR VOCS, SVOCS, TPH, MOISTURE, AND SIEVE		
850.00	NUMBER OF SAMPLES TO BE ANALYZED (20 SOIL & 2 WATER)		
22			
100.00	- weeklo cost		
200.00	AND AND ATTICAL COST		
\$18,900.	DO TOTAL MANER 1155		
VAPOR S	TREAM		
4000.0			
4000.0	NUMBER OF SAMPLES TO BE ANALYZED (20 0012 4 2 1		
\$24,000.			
47 -1000			

TABLE 3
IITRI AMORTIZATION COST DETAILS
RF SOIL DECONTAMINATION DEMONSTRATION

42.09.04						
\$375 704	\$42,306		\$249,199	\$221,335	W1,111,004	
\$7,027	\$4,600	50% %	1	\$337.335	\$1 174 004	ΙΔΤΟΤ
\$10,000	\$0,000			00 02	\$9 200	LINCHAG
200 013	\$3 500	10%	\$7,386	\$7,000.00	\$35,000	EENCINO
\$77.759	\$25,000	10%	\$52,759	\$30,000.00	\$25,000	TRUCKS AND TRAIL FRS
\$529	\$170	70%	9359	\$50,000,00	\$250,000	CATOX TREATMENT UNIT
\$380	\$249	20%	\$101	220 06	\$1 700	BLOWER
1170	* 101	6007	6131	\$0.00	\$497	EXITACTION MANIFOLD
277	\$181	50%	\$96	\$0.00	\$363	EVTBACTION
\$908	\$594	50%	\$314	\$0.00	\$1,100	HORIZONTAL EXTRACTION DIDING
\$71	\$35	25%	\$30	\$0.00	64 400	GROUND ELECTRODE PIPING
\$0,000	* 1,000		300	00 0\$	\$138	VACCONITATION ORE GAUGES
3 330	\$1 666	25%	\$ 1.670	\$333.19	\$0,004	
\$5,839	\$2,916	25%	C76'7¢	000.20	90.00	RF SHIELD
91,101	*0.0	250/	\$2 023	\$583 20	\$11.664	GROOND ELECTRODES
61 151	\$575	25%	\$576	\$115.00	\$2,300	COOL NID ELECTROPES
\$5.647	\$2,820	25%	\$2,827	\$004.00	\$2,7,00	EXCITOR ELECTRODES
\$186,623	\$60,000	10%	\$120,023	£564.00	\$11 280	COAXIAL TRANSMISSION LINE
112,010	\$27,200	200	\$106 600	\$120,000,00	\$600,000	AT CONTROL ONLY
67E 274	UUC VC\$	10%	\$51.071	\$48,400.00	\$242,000	
COST	ANENCE COST	MAINTA	CAPITAL COST	VALUE	2001	RF TRANSMITTER
ANNUAL	ANNUAL		ANNUAL	u	COST	CAPITAL EQUIPMENT ITEM
					EOI HOMENT	