Project - 4 (DATASET: Breast Cancer Prediction)

In [1]:

```
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

In [2]:

#Reading the data
df=pd.read_csv(r"C:\Users\mural\Downloads\BreastCancerPrediction.csv")
df

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothr			
0	842302	М	17.99	10.38	122.80	1001.0				
1	842517	М	20.57	17.77	132.90	1326.0				
2	84300903	М	19.69	21.25	130.00	1203.0				
3	84348301	М	11.42	20.38	77.58	386.1				
4	84358402	М	20.29	14.34	135.10	1297.0				
564	926424	М	21.56	22.39	142.00	1479.0				
565	926682	М	20.13	28.25	131.20	1261.0				
566	926954	М	16.60	28.08	108.30	858.1				
567	927241	М	20.60	29.33	140.10	1265.0				
568	92751	В	7.76	24.54	47.92	181.0				
569 rows × 33 columns										

DATA CLEANING AND PREPROCESSING

In [3]:

df.head()

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 33 columns

→

In [4]:

df.head()

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	M	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 33 columns

→

In [5]:

```
#checking for null values
df.isnull().sum()
```

Out[5]:

id 0 diagnosis 0 radius_mean 0 0 texture_mean perimeter_mean 0 0 area_mean ${\tt smoothness_mean}$ 0 0 compactness_mean 0 concavity_mean concave points_mean 0 symmetry_mean 0 0 fractal_dimension_mean radius_se 0 texture_se 0 perimeter_se 0 area_se 0 0 smoothness_se compactness_se 0 0 concavity_se concave points_se 0 0 symmetry_se 0 fractal_dimension_se 0 radius_worst 0 texture_worst perimeter_worst 0 area_worst 0 smoothness_worst 0 0 compactness_worst concavity_worst 0 0 concave points_worst 0 symmetry_worst fractal_dimension_worst 0 Unnamed: 32 569 dtype: int64

In [6]:

```
#Checking for duplicate values
df.duplicated().sum()
```

Out[6]:

0

In [7]:

df.shape

Out[7]:

(569, 33)

In [8]:

df.describe()

Out[8]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness _.		
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.0		
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.0		
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.0		
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.0		
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.0		
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.0		
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.1		
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.1		
8 rows × 32 columns								
4								

In [9]:

df.sum()

Out[9]:

```
17281572
id
085
diagnosis
                               Μ...
                                                                              8038.
radius_mean
429
                                                                               1097
texture_mean
5.81
perimeter_mean 0.38 10]:
                                                                               5233
                                                                               37263
@Ifasmafter(df["radius_mean"],df["texture_mean"])
plt.xlabel("radius_mean")
STOOTHSEE ("Texture_mean")
829
                                                                                 54.
compactness_mean 002
                                                                               59.37
                                                                              50.526
fex€@vitw_mean')
     40
     35
     30
  texture mean
     25
     20
     15
     10
                     10
                                     15
                                                     20
                                                                     25
                                       radius mean
593
texture worst from sklearn.cluster import KMeans km=KMeans() perimeter_worst km 1.63
                                                                              9257.
                                                                               1461
                                                                              6103
area worst
Out[11]:
1.8
                                                                               50105
smeathness_worst
                                                                               75.31
in a Jupyter environment, please rerun this cell to show the HTML representation or
trust the notebook.
Om GitHub, the HTML representation is unable to render, please try loading this դրձ գր
with nbviewer.org.
```

concave points_worst

symmetry_worst

941

65.210

165.

```
#Pactal_dimension_worst 47.76

517
y predicted=km.fit_predict(df[["radius_mean","texture_mean"]])
Unnamed: 32
y predicted
```

dtype: object
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(

Out[12]:

```
array([3, 4, 4, 7, 4, 3, 4, 1, 5, 5, 1, 1, 2, 5, 5, 6, 1, 1, 4, 3, 3, 0,
       3, 2, 1, 3, 1, 4, 5, 3, 2, 7, 2, 2, 1, 1, 1, 7, 5, 1, 5, 5, 2, 1,
       5, 4, 7, 7, 0, 5, 5, 3, 7, 4, 1, 7, 4, 1, 7, 0, 0, 7, 5, 0, 5, 5,
       7, 7, 7, 3, 4, 0, 2, 3, 7, 1, 0, 3, 2, 7, 5, 3, 2, 2, 0, 4,
       5, 3, 5, 1, 3, 7, 1, 2, 7, 7, 0, 1, 5, 0, 7, 7, 7, 3, 7, 7, 4, 5,
       7, 5, 1, 7, 0, 5, 0, 3, 1, 4, 0, 4, 4, 0, 3, 3, 5, 4, 3, 2, 0, 1,
       1, 3, 4, 5, 7, 0, 3, 0, 0, 1, 7, 3, 0, 0, 7, 1, 3, 7, 5, 7, 0, 0,
       3, 7, 1, 1, 0, 0, 7, 4, 4, 5, 4, 1, 0, 1, 2, 3, 0, 1, 3, 0,
       7, 1, 5, 0, 4, 2, 1, 0, 1, 0, 4, 7, 7, 3, 5, 5, 7, 6, 5, 3, 5, 4,
       4, 1, 7, 1, 2, 5, 7, 3, 7, 1, 5, 3, 4, 7, 4, 2, 5, 3, 7, 7, 4, 2,
       3, 3, 7, 1, 3, 3, 0, 3, 5, 5, 1, 6, 6, 2, 0, 1, 2, 4, 6, 6, 3, 0,
       7, 5, 2, 7, 7, 0, 5, 0, 2, 7, 4, 3, 4, 3, 2, 3, 1, 6, 2, 1, 1, 1,
       1, 2, 7, 5, 3, 7, 3, 0, 4, 0, 2, 7, 0, 4, 7, 3, 2, 0, 4, 1, 3, 7,
       5, 0, 7, 7, 1, 1, 3, 7, 0, 3, 0, 7, 1, 5, 4, 7, 2, 7, 7, 5, 3, 0,
       0, 0, 7, 3, 0, 0, 7, 7, 0, 4, 7, 7, 0, 4, 0, 4, 0, 7, 3, 7,
       3, 7, 7, 0, 7, 1, 3, 4, 7, 2, 3, 7, 0, 4, 0, 0, 7, 3, 0, 0, 7, 1,
       4, 5, 0, 7, 7, 3, 0, 7, 7, 5, 7, 1, 3, 4, 2, 7, 4, 4, 1, 3, 4, 4,
       3, 3, 7, 6, 3, 7, 0, 0, 5, 7, 3, 5, 0, 3, 0, 2, 0, 7, 1, 4, 7, 3,
       7, 7, 0, 7, 4, 0, 7, 3, 0, 7, 3, 5, 4, 7, 7,
                                                    7, 5, 1, 6,
                                                                5, 5,
       0, 5, 7, 3, 0, 1, 7, 5, 0, 5, 7, 7, 1, 7, 4, 4, 3, 1, 7, 3, 1, 3,
       7, 2, 3, 7, 4, 5, 2, 3, 1, 4, 5, 2, 6, 3, 7, 6, 6, 5, 5, 6, 2, 2,
       6, 7, 7, 1, 1, 7, 2, 7, 7, 6, 3, 6, 0, 3, 1, 3, 0, 1, 7, 1, 3, 3,
       3, 3, 3, 4, 7, 1, 5, 3, 4, 0, 1, 1, 7, 7, 4, 4, 3, 5, 3, 4, 0, 0,
       7, 7, 3, 5, 0, 3, 1, 3, 1, 7, 4, 4, 7, 3, 0, 4, 7, 7, 0, 0, 7, 0,
       3, 0, 7, 7, 3, 4, 7, 4, 5, 5, 5, 5, 0, 5, 5, 6, 1, 5, 7, 7, 7, 5,
       5, 5, 6, 5, 6, 6, 7, 6, 5, 5, 6, 6, 6, 2, 4, 2, 6, 2, 5])
```

In [13]:

```
df["cluster"]=y_predicted
df.head()
```

Out[13]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 34 columns

```
→
```

In [14]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="red")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[14]:

Text(0, 0.5, 'texture_mean')

In [15]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["texture_mean"]])
df["texture_mean"]=scaler.transform(df[["texture_mean"]])
df.head()
```

Out[15]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	0.022658	122.80	1001.0	
1	842517	М	20.57	0.272574	132.90	1326.0	
2	84300903	М	19.69	0.390260	130.00	1203.0	
3	84348301	М	11.42	0.360839	77.58	386.1	
4	84358402	М	20.29	0.156578	135.10	1297.0	

5 rows × 34 columns

→

In [16]:

```
scaler.fit(df[["radius_mean"]])
df["radius_mean"]=scaler.transform(df[["radius_mean"]])
df.head()
```

Out[16]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	0.521037	0.022658	122.80	1001.0	
1	842517	М	0.643144	0.272574	132.90	1326.0	
2	84300903	М	0.601496	0.390260	130.00	1203.0	
3	84348301	М	0.210090	0.360839	77.58	386.1	
4	84358402	М	0.629893	0.156578	135.10	1297.0	

5 rows × 34 columns

→

In [17]:

```
y_predicted=km.fit_predict(df[["radius_mean","texture_mean"]])
y_predicted
```

C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(

Out[17]:

```
array([0, 4, 4, 2, 4, 0, 4, 5, 5, 3, 5, 0, 6, 5, 5, 3, 5, 5, 4, 0, 0, 7,
      0, 1, 5, 4, 5, 4, 5, 4, 6, 2, 6, 6, 0, 5, 5, 2, 5, 5, 5, 2, 6, 5,
       5, 4, 7, 2, 7, 5, 2, 0, 2, 4, 5, 2, 4, 5, 2, 7, 7, 2, 5, 7, 3, 5,
       2, 2, 2, 0, 4, 7, 6, 0, 2, 5, 0, 4, 6, 2, 2, 0, 1, 6, 7, 4, 5, 6,
      5, 0, 5, 5, 0, 2, 5, 6, 2, 2, 7, 5, 3, 7, 2, 2, 2, 0, 2, 2, 1, 2,
       2, 2, 5, 2, 7, 2, 7, 0, 5, 4, 7, 4, 1, 0, 0, 0, 3, 4, 0, 6, 7, 5,
      5, 0, 4, 5, 2, 7, 0, 7, 7, 0, 2, 0, 7, 7, 2, 5, 0, 0, 5,
                                                                2, 7, 7,
      0, 2, 4, 4, 7, 7, 2, 4, 4, 5, 1, 5, 7, 4, 6, 0, 7, 5, 0, 7,
      2, 5, 5, 0, 1, 6, 5, 7, 5, 7, 4, 2, 2, 0, 5, 5, 2, 3, 5, 0, 5, 4,
      4, 5, 2, 4, 1, 5, 2, 0, 2, 4, 5, 0, 4, 2, 1, 6, 5, 0, 2, 2, 4, 6,
      0, 0, 2, 5, 0, 0, 7, 0, 3, 5, 4, 3, 3, 6, 7, 5, 1, 4, 3, 6, 0, 0,
      2, 5, 6, 2, 0, 0, 3, 7, 6, 2, 4, 4, 4, 0, 6, 0, 5, 3, 6, 6, 4, 5,
      4, 6, 2, 5, 0, 2, 0, 7, 1, 7, 6, 2, 7, 4, 0, 0, 6, 7, 4, 5, 0, 2,
      2, 0, 2, 2, 5, 5, 0, 2, 0, 0, 7, 2, 0, 2, 4, 2, 6, 2, 2, 3, 0, 7,
      0, 0, 2, 0, 0, 7, 2, 2, 7, 4, 2, 2, 7, 4, 0, 4, 7, 2, 0, 2, 5,
      0, 2, 2, 7, 2, 4, 0, 4, 2, 1, 0, 7, 7, 4, 7, 7, 2, 0, 7, 7, 2, 5,
      1, 3, 7, 2, 2, 0, 7, 2, 2, 5, 2, 4, 0, 4, 6, 2, 4, 1, 5, 0, 4, 4,
      0, 0, 2, 3, 0, 2, 7, 7, 5, 2, 0, 5, 7, 0, 7, 6, 7, 7, 5, 1, 2, 0,
      5, 2, 7, 2, 4, 7, 2, 0, 7, 2, 0, 5, 4, 2, 2, 2, 2, 5, 3, 2,
      7, 2, 2, 0, 7, 5, 2, 2, 7, 2, 2, 2, 5, 2, 4, 4, 0, 5, 2, 0, 5, 0,
      2, 6, 0, 2, 4, 3, 6, 0, 5, 4, 2, 6, 3, 0, 2, 3, 3, 3, 3, 3, 6, 1,
      3, 2, 2, 5, 5, 2, 6, 2, 2, 3, 0, 3, 7, 0, 5, 0, 7, 5, 2, 5, 0, 0,
      0, 0, 0, 4, 7, 4, 5, 0, 4, 7, 5, 5, 2, 2, 4, 4, 0, 3, 0, 1, 7, 7,
      2, 2, 0, 5, 7, 0, 5, 0, 5, 2, 4, 4, 2, 0, 7, 1, 2, 5, 7, 7, 2, 7,
      0, 7, 2, 2, 0, 4, 2, 4, 5, 3, 3, 3, 7, 3, 3, 3, 5, 5, 7, 7, 2, 3,
      2, 2, 3, 2, 3, 3, 2, 3, 5, 3, 3, 3, 3, 6, 1, 6, 6, 6, 3])
```

In [18]:

```
df["New Cluster"]=y_predicted
df.head()
```

Out[18]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	0.521037	0.022658	122.80	1001.0	
1	842517	М	0.643144	0.272574	132.90	1326.0	
2	84300903	М	0.601496	0.390260	130.00	1203.0	
3	84348301	М	0.210090	0.360839	77.58	386.1	
4	84358402	М	0.629893	0.156578	135.10	1297.0	

5 rows × 35 columns

```
→
```

In [19]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="red")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[19]:

Text(0, 0.5, 'texture_mean')

In [20]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="red")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[20]:

Text(0, 0.5, 'texture_mean')

In [22]:

```
k_rng=range(1,10)
sse=[]
```

```
In [23]:
```

```
for k in k_rng:
   km=KMeans(n_clusters=k)
    km.fit(df[["radius_mean","texture_mean"]])
    sse.append(km.inertia )
#km.inertia_ will give you the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\mural\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n init` expl
icitly to suppress the warning
```

warnings.warn(

[27.81750759504308, 14.87203295827117, 10.2527514961052, 8.48752519907283 4, 7.031082156151861, 6.052732460629174, 5.116507804943426, 4.44269210256 1712, 4.04124880202688]

Out[23]:

Text(0, 0.5, 'Sum of Squared Error')

CONCLUSION

for the given dataset we can use multiple models,for that models we get different types
that accuracies is not good so,that's why we will take it as a clustering and done with