Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Estatística

Primeiro relatório da disciplina de demografia II - Roraima

Gabriel de Jesus Pereira

Sumário

1	Intro	odução		2
2	Met	odologi	ia	3
	2.1	_	ção dos dados	3
	2.2		sos computacionais	3
	2.3	Métod	os para estimação da cobertura de nascidos vivos	3
		2.3.1	Razão de sexo dos nascimentos (RSN)	3
		2.3.2	Método que utiliza a equação básica do crescimento populacional .	4
		2.3.3	Método que faz uso das taxas de fecundidade	4
		2.3.4	Método que faz uso da informação do SINASC e do IBGE	5
	2.4	Métod	os para estimação da cobertura de óbito	5
		2.4.1	Método que faz uso da equação básica do crescimento populacional	5
		2.4.2	Método da Equação do Balanço de Crescimento de Brass	6
		2.4.3	Método de Hill	6
		2.4.4	Método de Leadermann para redistribuição	7
3	Resi	ultado		9
	3.1	Result	ado da estimação de cobertura de nascimentos	9
		3.1.1	Razão de Sexo dos Nascimentos (RSN)	9
		3.1.2	Método que utiliza a equação básica do crescimento populacional .	9
		3.1.3	Método que faz uso das taxas de fecundidade	10
		3.1.4	Método que faz uso dos dados do IBGE e SINASC	11
	3.2	Result	ados da estimação de cobertura de óbitos	11
		3.2.1	Método que utiliza a equação básica do crescimento populacional .	11
		3.2.2	Método da equação do balanço de crescimento de Brass	11
		3.2.3	Método de Hill	14
		3.2.4	Método de Leadermann	15
4	Con	clusão		20

1 Introdução

Roraima é o estado menos populoso do Brasil, localizado na região Norte e caracterizado por uma extensa área territorial, baixa densidade demográfica e significativa presença de populações indígenas. Sua dinâmica demográfica é influenciada por fatores como migração, crescimento populacional e acesso a serviços de saúde.

Neste estudo, será realizada uma análise da cobertura de nascidos vivos e de óbitos no estado, utilizando diferentes técnicas demográficas. Algumas das abordagens baseiam-se na equação básica do crescimento populacional e na taxa de fecundidade, além da aplicação dos métodos de Brass, Hill e Leadermann para redistribuição de óbitos mal definidos. Essas técnicas permitem avaliar a qualidade dos registros vitais e fornecer estimativas mais precisas sobre a dinâmica populacional de Roraima.

2 Metodologia

2.1 Obtenção dos dados

Os dados demográficos utilizados neste estudo foram obtidos de duas fontes principais. As informações sobre a população por faixa etária foram extraídas do TABNET, uma ferramenta desenvolvida pelo DATASUS. O TABNET é um tabulador genérico de domínio público que facilita a organização e consulta rápida de dados conforme os critérios definidos, enquanto o DATASUS fornece informações essenciais para a análise da saúde pública e variáveis demográficas, contribuindo para a formulação de políticas e programas de saúde. Alguns dos dados também foram obtidos a partir do sistema Sidra, como é o caso dos dados populacionais e de óbitos por faixa etária.

2.2 Recursos computacionais

As análises apresentadas neste estudo foram realizadas utilizando a linguagem de programação Python (VAN ROSSUM; DRAKE JR, 1995), com o auxílio da biblioteca Pandas (TEAM, 2020) para manipulação de dados e da biblioteca Matplotlib para visualização gráfica (HUNTER, 2007). Os documentos do relatório foram elaborados com o Quarto (ALLAIRE; DERVIEUX, 2024), um sistema de escrita e publicação científica. Todo o código-fonte utilizado nas análises está disponível no GitHub.

2.3 Métodos para estimação da cobertura de nascidos vivos

A estimação do número de nascidos vivos é essencial para a análise demográfica e epidemiológica, especialmente em contextos onde há subnotificação ou inconsistências nos registros civis. Diversos métodos podem ser utilizados para avaliar a cobertura dos nascimentos, como comparações entre fontes de dados, modelagem estatística e ajustes baseados em fatores demográficos. Nesta seção, serão apresentadas as principais técnicas utilizadas para essa estimação.

2.3.1 Razão de sexo dos nascimentos (RSN)

A Razão de Sexo dos Nascimentos (RSN) é um indicador que expressa a relação entre o número de nascidos vivos do sexo masculino e feminino em uma população. Geralmente, espera-se que essa razão esteja em torno de 105, indicando um leve predomínio de nascimentos masculinos sobre os femininos.

O cálculo da RSN é feito pela seguinte fórmula:

$$RSN = \frac{N_M}{N_F} \times 100,$$

em que N_M representa o número de nascidos vivos do sexo masculino e N_F do sexo

feminino.

Valores significativamente diferentes do esperado podem indicar problemas na qualidade dos dados, como erros de registro ou subnotificação diferenciada por sexo.

Os limites do intervalo de confiança a 95% podem ser calculados a partir da seguinte expressão:

$$[x,y] = p_M \pm 1,96 \sqrt{\frac{p_M p_F}{n}},$$

em que n é o número total de nascimentos, p_M é a proporção de nascidos vivos do sexo masculino e p_F do sexo feminino.

Por fim, para verificar se a qualidade de registro de nascimentos é boa, basta verificar se o resultado das relações de sexo está incluso no intervalo [a, b]:

$$a = \frac{x}{1-x} \times 100 \text{ e } b = \frac{y}{1-y} \times 100.$$

Esse método foi utilizado apenas para os anos de 2010 e 2020, com dados obtidos do SINASC.

2.3.2 Método que utiliza a equação básica do crescimento populacional

O método que utiliza a equação básica do crescimento populacional é bastante simples, principalmente por assumir que a popuação é fechada. Dessa forma, a estimativa de nascidos vivos será expresso pela equação:

$$N_t = P_n - P_0 + O_t$$

em que P_n são os nascidos vivos no instante $n, P_{\{0\}}$ no instante inicial e O_t os óbitos no período de estudo.

A partir dessa expressão, estima-se a cobertura dos nascimentos da seguinte forma:

$$\text{Cobertura dos nascimentos} = \frac{\text{Nascimentos registrados}\left(t\right)}{\text{Nascimentos esperados}\left(t\right)} \times 100$$

Para esse método foi considerado os dados obtidos fornecidos pelo SIM e pelo Registro Civil, para anos entre 2010 e 2020.

2.3.3 Método que faz uso das taxas de fecundidade

Neste método serão utilizadas as taxas de fecundidade do estado de Roraima. Para estimar a cobertura nesse método, será utilizada a seguinte expressão:

$$C_{i} = \frac{NV_{obs}\left(i\right)}{NV_{est}\left(i\right)},$$

em que $NV_{obs}(i)$ é o total de nascidos vivos observados na região i e $NV_{est}(i)$ é o total de nascidos vivos estimados na região i.

Para encontrar a estimativa dos nascidos vivos $NV_{est}(i)$, será utilizado a taxa de fecundidade do estado de Roraima, que pode ser encontrado a partir da seguinte expressão:

$$NV_{est} = \sum_{j=15}^{49} TEF_{j}\left(i\right) \times TM_{j},$$

em que $TEF_j(i)$ é a taxa específica de fecundidade na faixa etária quinquenal j da região i e TM_j é o total de mulheres na faixa etária quinquenal j da região j.

Esse método foi aplicado apenas para os anos de 2000 e 2010, com dados obtidos pelo TABNET.

2.3.4 Método que faz uso da informação do SINASC e do IBGE

Aqui são utilizadas as estimativas de nascidos vivos fornecidos pelo IBGE e os nascidos vivos fornecidos pelo SINASC. Por fim, para estimar a cobertura, basta calcular utilizar a seguinte expressão:

$$C_{i} = \frac{NV_{obs}\left(i\right)}{NV_{est}\left(i\right)}$$

2.4 Métodos para estimação da cobertura de óbito

A cobertura dos óbitos refere-se à proporção de mortes registradas em relação ao total de óbitos ocorridos em uma população. Em contextos onde há subnotificação ou falhas nos sistemas de informação, diferentes métodos são empregados para estimar a verdadeira magnitude da mortalidade.

Entre as principais abordagens utilizadas, destacam-se os métodos demográficos indiretos, como o método de Brass, que utiliza informações da estrutura etária da população e da mortalidade infantil para estimar a cobertura. Além disso, comparações entre diferentes bases de dados, modelagem estatística e técnicas de reconciliação de fontes são amplamente empregadas para corrigir deficiências nos registros.

Esses métodos são fundamentais para garantir a confiabilidade dos indicadores de mortalidade e subsidiar políticas públicas voltadas à saúde e ao planejamento populacional. Além disso, esse método foi aplicado apenas para os anos de 2010 e 2020.

2.4.1 Método que faz uso da equação básica do crescimento populacional

De forma semelhante ao método de cobertura de nascidos vivos que faz uso da equação básica do crescimento populacional, para estimar os óbitos, basta isolar a sua componente:

$$O_t = N_t + P_0 - P_n$$

Por fim, para estimar a cobertura de óbitos, utiliza-se a seguinte expressão:

$$\text{Cobertura dos \'obitos} = \frac{\text{\'Obitos registrados}\left(t\right)}{\text{\'Obitos esperados}\left(t\right)} \times 100$$

A cobertura foi estimada apenas para o ano de 2010, utilizando-se de dados do SINASC, SIM e do censo seu cálculo.

2.4.2 Método da Equação do Balanço de Crescimento de Brass

Esse método avalia a cobertura de óbitos da população a partir dos cinco anos de idade. Para fazer sua aplicação, é necessário considerar a população estável, a cobertura de óbitos é constante por idade a partir dos 5 anos e as distribuições por idade da população não devem conter erros de declaração.

Nesse método é utilizado uma regressão linear, a partir da qual será estimada o fator de correção dos óbitos (k), a taxa de crescimento da população estável (r). Dessa forma, essa regressão linear terá a seguinte relação:

$$\frac{N(a)}{N(a+)} = r + k \frac{D^{'}(a+)}{N(a+)},$$

em que N(a) é a população exata na idade a, N(a+) o somatório de pessoas que estão na idade exata até um limite de idades w qualquer e $D^{'}(a+)$ são os óbitos registrados e afetados por erros na idade a+.

Após o ajuste da regressão linear, a cobertura dos óbitos será dada por:

$$C = \frac{1}{k},$$

em que se o fator de correção for k>1 implica em sub-registro e k<1 implica em sobre-registro.

O método de Brass foi considerado apenas para o ano de 2010 e 2020, para cada um dos sexos.

2.4.3 Método de Hill

O método de Hill é uma abordagem utilizada para estimar a cobertura de óbitos. Ele se baseia em três pressupostos: a cobertura de cada censo é a mesma para todas as idades; a completude dos registros de óbitos é uniforme para todas as idades acima de um limite mínimo; e a população é fechada. Diferentemente de outros métodos, a estabilidade populacional não é um requisito nesse caso.

Para seu cálculo, são necessários dados sobre o número de indivíduos, organizados em grupos etários de cinco em cinco anos, incluindo o intervalo aberto a+ (com aa sendo a idade mais avançada possível), em dois momentos no tempo (geralmente dois anos censitários). Além disso, é necessário o número de óbitos ocorridos nessa população, também agrupados em intervalos etários quinquenais e no intervalo aberto a+, durante o período intercensitário.

O primeiro passo é estimar as taxas de natalidade e de mortalidade parciais e, para isso, é preciso acumular a população e o número de mortes para as idades x em diante. Assim, no caso da população, a seguinte equação é usada:

$$N(x+) = \sum_{y=x}^{A-5} {}_{5}N_{y} + {}_{\infty}N_{A}$$

em que A é a idade no início do intervalo aberto.

O segundo passo é calcular o número de pessoas-anos vividos, que pode ser calculado da seguinte forma:

$$PYL(x+) = (t_2 - t_1) \left({_{\infty}N_x(t_1) \times_{\infty} N_x(t_2)} \right)^{1/2}$$

em que t_1 é o ano do primeiro censo e t_2 é o ano do segundo censo.

No terceiro passo, deve-se calcular o número de pessoas que passaram para a idade x, que é estimada como a média geométrica dos números em uma coorte em tempos t_1 e t_2 dividido por 5, multiplicado pelo comprimento do período entre os censos, em anos, usando a seguinte fórmula:

$$N(x) = \frac{t}{5} \left({}_5N_{x-5} \left(t_1 \right) \times_5 N_{x-5} \left(t_2 \right) \right)^{1/2}$$

Após o terceiro passo, deve-se calcular taxas parciais de natalidade, mortalidade e crescimento, as quais podem ser calculadas a partir das seguintes equações:

$$\begin{split} b\left(x+\right) &= \frac{N\left(x\right)}{PYL\left(x+\right)} \\ d\left(x+\right) &= \frac{D\left(x+\right)}{PYL\left(x+\right)} \\ r\left(x+\right) &= \frac{\infty N_x\left(t_2\right) -_{\infty} N_x\left(t_1\right)}{PYL\left(x+\right)}, \end{split}$$

Por último, basta ajustar uma regressão linear, utilizando $d\left(x+\right)$ como variável independente e $r\left(x+\right)$ como variável dependente. Após o ajuste, será estimado o intercepto a e o coeficiente b, que serão utilizados para estimar um valor k_1 e k_2 e da cobertura final. Para estimar a cobertura, deve-se verificar se $k_1/k_2=e^{a(t_2-t_1)}<1$. Caso essa condição seja satisfeita, assume-se que k_2 é igual a 1 e a cobertura estimada será $c=e^{a(t_2-t_1)}/b$. Caso contrário, a cobertura estimada será $c=e^{-a(t_2-t_1)}/b$.

Esse método foi aplicado utilizando os dados do censo de 2010 e 2022, para o estado de Roraima. No caso dos óbitos, foram utilizados os dados disponibilizados pelo SIM.

O método de Hill foi utilizado utilizando-se de dados do censo de 2010 e 2022 e dados fornecidos pelo Registro Civil.

2.4.4 Método de Leadermann para redistribuição

O método de Leadermann é uma abordagem utilizada para redistribuir óbitos classificados com causas mal definidas entre categorias específicas de mortalidade. Essa técnica busca minimizar o impacto da subnotificação e da imprecisão nos registros, permitindo uma estimativa mais fiel da estrutura de mortalidade de uma população.

A redistribuição é feita com base na suposição de que a proporção de óbitos por causas definidas segue um padrão semelhante ao dos óbitos mal definidosa. Assim, os óbitos mal classificados são redistribuídos proporcionalmente entre as categorias bem definidas, considerando a estrutura observada nos registros mais completos. Isso é feito utilizando-se uma regressão linear

A equação de redistribuição dos óbitos por causas mal definidas para uma determinada área é dada por:

$$O_j = Y_j - X\beta_j$$

em que O_j são os óbitos redistribuídos da causa $j,\,Y_j$ os óbitos observados da causa $j,\,\beta_j$ é o fator de redistribuição da causa j e X são os óbitos da causa mal definida.

O método de Leadermann foi utilizado apenas para o ano de 2022.

3 Resultado

3.1 Resultado da estimação de cobertura de nascimentos

Nesta seção serão apresentadas cada uma das técnicas utilizadas para analisar e estimar a cobertura dos nascidos vivos. O primeiro deles será o RSN, depois o método de estimação utilizando a equação do crescimento populacional, o que o utiliza as taxas de fecundidade e por último o que utiliza as estimativas do IBGE e os dados do SINASC.

3.1.1 Razão de Sexo dos Nascimentos (RSN)

A abaixo apresenta os valores da Razão de Sexo dos Nascimentos (RSN) para os anos de 2010 e 2020. Esse indicador expressa a relação entre os nascidos vivos do sexo masculino e feminino, sendo esperado um valor em torno de 105 em condições normais.

Tabela 3.1: Resultados da Razão de sexo dos nascimentos para o ano de 2010 e 2020

Ano	Masculino	Feminino	RSN	total	X	У	a	b
2010	4990	4748	105,097	9738	0,507	0,518	102,974	107,265
2020	7075	6684	$105,\!850$	13759	0,510	0,519	104,044	107,688

Em 2010, a RSN foi de 105,097, indicando que para cada 100 meninas nasceram aproximadamente 105 meninos. Já em 2020, esse valor aumentou para 105,850, sugerindo um leve crescimento na proporção de nascimentos masculinos em relação aos femininos. Além disso, ao observar o intervalo [a,b], tem-se que há uma boa qualidade no registro dos dados, pois os valores estimados da RSN estão contidos dentro do intervalo.

3.1.2 Método que utiliza a equação básica do crescimento populacional

Para o método que utiliza a equação básica do crescimento populacional, foi estimado um nascimento esperado de 137299, bastante próximo ao valor observado no período de $N_{\rm observado} = 128467$. Além disso, o óbito total estimado no período foi de $O_t = 24778$.

Tabela 3.2

Ano	Óbito	População	nascimento_esperado	С
2020	3580	563000	137299	93,567
2010	1640	450479	137299	93,567

Por fim, a estimativa final da cobertura foi de 93,567%, o que indica um valor de cobertura bastante alto pelo método que utiliza a equação do crescimento populacional.

3.1.3 Método que faz uso das taxas de fecundidade

Comparado ao método que utiliza a equação básica do crescimento populacional, o que faz uso das taxas de fecundidade entrega respostas bem melhores. Por exemplo, o número de nascidos vivos estimados de 2000 foi de 10897,410 e o de 2010 foi de 11088,013, bastante próximo de seus valores observados (9744 e 9738, respectivamente).

Tabela 3.3

Faixa etária	Mulheres_2000	Mulheres_2010	TFE_2000	TFE_2010	NV_2000	NV_2010	C_2000	C_2010
15 a 19 anos	20760	25260	0,159	0,111	10897,410	11088,013	0,894	0,878
20 a 24 anos	16294	21788	0,214	0,150	10897,410	11088,013	0,894	0,878
25 a 29 anos	13430	21792	0,167	0,121	10897,410	11088,013	0,894	0,878
30 a 34 anos	11606	18669	0,100	0,081	10897,410	11088,013	0,894	0,878
35 a 39 anos	10175	14839	0,055	0,045	10897,410	11088,013	0,894	0,878
40 a 44 anos	7926	12269	0,018	0,015	10897,410	11088,013	0,894	0,878
45 a 49 anos	5710	10379	0,002	0,002	10897,410	11088,013	0,894	0,878

Com o resultado da cobertura estimada, tem-se uma cobertura de 89.4% no ano de 2000 e de 87.8% no ano de 2010, o que indica de fato uma boa cobertura de nascidos vivos, utilizando o método de estimação que faz uso das taxas de fecundidade.

3.1.4 Método que faz uso dos dados do IBGE e SINASC

Por último, o método que utiliza os nascidos vivos estimados do IBGE e dos valores observados de nascidos vivos do SINASC, foi o que apresentou os melhores resultados para estimação da cobertura de nascidos vivos.

Tabela 3.4

Ano IBGE SINASC Cobertura

2020 13991 13760 0,983
2010 10686 9738 0,911

Para a cobertura de 2020, foi estimado um valor de 98,3% para o ano de 2020 e de 91,1% para o ano de 2010.

3.2 Resultados da estimação de cobertura de óbitos

Agora serão apresentadas cada uma das técnicas utilizadas para analisar e estimar a cobertura dos óbitos. O primeiro deles será o método que utiliza a equação básica do crescimento populacional, depois o método de Brass, o que utiliza o método de Hill e, por útlimo, o método de Leadermann para redistribuição de óbitos mal definidos.

3.2.1 Método que utiliza a equação básica do crescimento populacional

A cobertura estimada pelo método que utiliza a equação básica do crescimento populacional não apresentou boas estimativas, tendo obtido uma estimativa para a cobertura de -80,3534%, indicando que o método subestimou os óbitos, principalmente devido ao crescimento da população obtido no ano de 2010. Para o seu cálculo, foi utilizado os nascidos vivos totais no período de 2000 a 2010 ($N_t=106618$) e os óbitos totais observados no período ($O_t=15640$).

Tabela 3.5

Ano População obito_estimado C

2010 450479 -19464 -80,353473
2000 324397 -19464 -80,353473

3.2.2 Método da equação do balanço de crescimento de Brass

Pelo método de Brass e considerando os dois anos para cada sexo, observa-se, pelo fator de correção k, um sub-registro da cobertura de óbitos, pois todos os fatores de correção estão acima de 1 (k > 1).

Tabela 3.6: Método de Brass para homens.

Faixa etária	Óbitos	População	N(a)	N(a+)	D'(a+)	у	X
0 a 4 anos	56	24319	nan	228859	1000	nan	0.004370

Faixa etária	Óbitos	População	N(a)	N(a+)	D'(a+)	у	Х
5 a 9 anos	6	25254	5060	204540	944	0.024738	0.004615
10 a 14 anos	8	26321	5556	179286	938	0.030990	0.005232
15 a 19 anos	40	23737	5179	152965	930	0.033857	0.006080
20 a 24 anos	57	21828	4286	129228	890	0.033166	0.006887
25 a 29 anos	53	21398	4576	107400	833	0.042607	0.007756
30 a 34 anos	70	18326	4282	86002	780	0.049790	0.009070
35 a 39 anos	51	14909	3362	67676	710	0.049678	0.010491
40 a 44 anos	48	13039	3097	52767	659	0.058692	0.012489
45 a 49 anos	58	11142	2568	39728	611	0.064640	0.015380
50 a 54 anos	73	8831	2099	28586	553	0.073428	0.019345
55 a 59 anos	75	6719	1486	19755	480	0.075221	0.024298
60 a 64 anos	64	4942	1289	13036	405	0.098880	0.031068
65 a 69 anos	62	3213	885	8094	341	0.109340	0.042130
70 a 74 anos	75	2200	628	4881	279	0.128662	0.057160
75 a 79 anos	55	1334	320	2681	204	0.119358	0.076091
80 anos e mais	149	1347	nan	1347	149	nan	0.110616
0 a 4 anos	112	32994	nan	320392	1869	nan	0.005833
5 a 9 anos	7	32530	6559	287398	1757	0.022822	0.006113
10 a 14 anos	12	29925	6140	254868	1750	0.024091	0.006866
15 a 19 anos	43	28873	5911	224943	1738	0.026278	0.007726
20 a 24 anos	77	29360	5892	196070	1695	0.030050	0.008645
25 a 29 anos	96	27568	5884	166710	1618	0.035295	0.009705
30 a 34 anos	73	24602	5614	139142	1522	0.040347	0.010938
35 a 39 anos	114	24419	5071	114540	1449	0.044273	0.012651
40 a 44 anos	98	21464	5154	90121	1335	0.057190	0.014813
45 a 49 anos	98	16924	3700	68657	1237	0.053891	0.018017
50 a 54 anos	102	14317	3372	51733	1139	0.065181	0.022017
55 a 59 anos	129	11850	2487	37416	1037	0.066469	0.027715
60 a 64 anos	171	9086	2150	25566	908	0.084096	0.035516
65 a 69 anos	158	6857	1662	16480	737	0.100850	0.044721
70 a 74 anos	168	4576	1189	9623	579	0.123558	0.060168
75 a 79 anos	139	2570	688	5047	411	0.136319	0.081435
80 anos e mais	272	2477	nan	2477	272	nan	0.109810

Tabela 3.7: Método de Brass para mulheres.

Faixa etária	Óbitos	População	N(a)	N(a+)	D'(a+)	У	X
0 a 4 anos	53	23284	nan	221620	576	nan	0.002599
5 a 9 anos	4	24113	4804	198336	523	0.024222	0.002637
10 a 14 anos	5	25590	5431	174223	519	0.031173	0.002979
15 a 19 anos	13	23250	5025	148633	514	0.033808	0.003458
20 a 24 anos	18	21788	4295	125383	501	0.034255	0.003996
25 a 29 anos	27	21792	4422	103595	483	0.042685	0.004662
30 a 34 anos	20	18669	4309	81803	456	0.052675	0.005574
35 a 39 anos	16	14839	3294	63134	436	0.052175	0.006906

Faixa etária	Óbitos	População	N(a)	N(a+)	D'(a+)	У	X
40 a 44 anos	20	12269	2866	48295	420	0.059344	0.008697
45 a 49 anos	29	10379	2331	36026	400	0.064703	0.011103
50 a 54 anos	36	8087	1917	25647	371	0.074746	0.014466
55 a 59 anos	43	5928	1372	17560	335	0.078132	0.019077
60 a 64 anos	48	4131	1050	11632	292	0.090268	0.025103
65 a 69 anos	47	2793	735	7501	244	0.097987	0.032529
70 a 74 anos	42	1960	544	4708	197	0.115548	0.041844
75 a 79 anos	42	1241	310	2748	155	0.112809	0.056405
80 anos e mais	113	1507	nan	1507	113	nan	0.074983
0 a 4 anos	82	31758	nan	316315	1060	nan	0.003351
5 a 9 anos	4	30713	6225	284557	978	0.021876	0.003437
10 a 14 anos	18	28288	5818	253844	974	0.022920	0.003837
15 a 19 anos	18	28002	5473	225556	956	0.024264	0.004238
20 a 24 anos	29	29351	5831	197554	938	0.029516	0.004748
25 a 29 anos	27	28132	6083	168203	909	0.036165	0.005404
30 a 34 anos	30	25129	5688	140071	882	0.040608	0.006297
35 a 39 anos	46	24524	5163	114942	852	0.044918	0.007412
40 a 44 anos	43	22316	5341	90418	806	0.059070	0.008914
45 a 49 anos	44	17520	4003	68102	763	0.058779	0.011204
50 a 54 anos	66	14070	3187	50582	719	0.063007	0.014215
55 a 59 anos	72	11618	2512	36512	653	0.068799	0.017885
60 a 64 anos	69	8999	2067	24894	581	0.083032	0.023339
65 a 69 anos	87	6525	1576	15895	512	0.099151	0.032211
70 a 74 anos	76	4154	1029	9370	425	0.109819	0.045358
75 a 79 anos	101	2479	584	5216	349	0.111963	0.066910
80 anos e mais	248	2737	nan	2737	248	nan	0.090610

Tabela 3.8

Ano	Sexo	k	r	\mathbb{R}^2	C = 1/k
2010	homens	1,474515	0,033951	0,862382	0,678189
2010	mulheres	1,702502	$0,\!037126$	0,868452	0,587371
2022	homens	1,582704	0,021985	0,954212	0,631830
2022	mulheres	1,542196	0,032000	0,825744	0,648426

Além disso, a maioria das coberturas estimadas ficaram próximas de 60%, o que indica, pelo método de Brass, uma cobertura deficiente, para os dois sexos. Embora isso tenha sido um padrão para os dois sexos e anos considerados, o ano de 2010, considerando o sexo masculino, foi o que apresentou a maior cobertura, próximo de 68%.

3.2.3 Método de Hill

Aplicando o método de Hill para o sexo masculino e utilizando regressão para a estimação dos coeficientes e do intercepto no período intercensitário, obteve-se um intercepto de valor -0,06346829 (a=-0,06346829) e um coeficiente b=1,78109927. Além disso, como $\frac{k_1}{k_2}=e^{a(t_2-t_1)}=0,46690964<1$, assumiu-se $k_2=1$, resultando em $k_1=0,46690964$. Dessa forma, a estimativa final para a cobertura de óbitos do sexo masculino foi de apenas 26,2146%.

Tabela 3.9: Método de Hill para o sexo masculino.

							- para o somo n					
Faixa etária	5Dx	5N(t1)	N1(x+)	D(x+)	5N(t2)	N2(x+)	PYL	N(X)	b(x+)	d(x+)	r(x+)	b(x+) - r(x+)
0 a 4 anos	168	24319	228859	2869	32994	320392	3249421,695	nan	nan	nan	nan	nan
5 a 9 anos	13	25254	204540	2701	32530	287398	2909459,008	67503,475	0,023	0,001	0,028	-0,005
10 a 14 anos	20	26321	179286	2688	29925	254868	2565146,010	65977,128	0,026	0,001	0,029	-0,004
15 a 19 anos	83	23737	152965	2668	28873	224943	2225940,355	66161,964	0,030	0,001	0,032	-0,003
20 a 24 anos	134	21828	129228	2585	29360	196070	1910139,704	$63358,\!105$	0,033	0,001	0,035	-0,002
25 a 29 anos	149	21398	107400	2451	27568	166710	1605699,279	58873,634	0,037	0,002	0,037	-0,000
30 a 34 anos	143	18326	86002	2302	24602	139142	1312697,452	55065,938	0,042	0,002	0,040	0,001
35 a 39 anos	165	14909	67676	2159	24419	114540	1056518,671	50770,217	0,048	0,002	0,044	0,004
40 a 44 anos	146	13039	52767	1994	21464	90121	827514,189	42932,960	0,052	0,002	0,045	0,007
45 a 49 anos	156	11142	39728	1848	16924	68657	626717,770	35652,082	0,057	0,003	0,046	0,011
50 a 54 anos	175	8831	28586	1692	14317	51733	461468,193	30312,296	0,066	0,004	0,050	0,016
55 a 59 anos	204	6719	19755	1517	11850	37416	326248,438	24551,349	0,075	0,005	0,054	0,021
60 a 64 anos	235	4942	13036	1313	9086	25566	219070,961	18752,101	0,086	0,006	0,057	0,028
65 a 69 anos	220	3213	8094	1078	6857	16480	138593,049	13971,071	0,101	0,008	0,061	0,040
70 a 74 anos	243	2200	4881	858	4576	9623	82241,475	9202,580	0,112	0,010	0,058	0,054
75 a 79 anos	194	1334	2681	615	2570	5047	44141,421	5706,754	0,129	0,014	0,054	0,076
80 anos e mais	421	1347	1347	421	2477	2477	21919,369	nan	nan	nan	nan	nan

Para o sexo feminino a cobertura estimada foi um pouco maior. Após a aplicação da regressão linear, o coeficiente estimado foi b=1.1428273 e o seu intercepto foi de a=-0.0458870. Aqui também foi assumido k_2 como sendo 1, pois $k_1/k_2<1$, além de ter sido obtido $k_1=0.576577$. Por fim, a estimativa obtida para a cobertura foi de 50, 4518%, o que representa uma cobertura deficiente dos

nascidos vivos.

Tabela 3.10: Método de Hill para o sexo feminino.

Faixa etária	5Dx	5N(t1)	N1(x+)	D(x+)	5N(t2)	N2(x+)	PYL	N(X)	b(x+)	d(x+)	r(x+)	b(x+) - r(x+)
0 a 4 anos	53	23284	221620	576	31758	316315	3177207,762	nan	nan	nan	nan	nan
5 a 9 anos	4	24113	198336	523	30713	284557	2850799,395	64180,213	0,023	0,000	0,030	-0,008
10 a 14 anos	5	25590	174223	519	28288	253844	2523582,117	62681,299	0,025	0,000	0,032	-0,007
15 a 19 anos	13	23250	148633	514	28002	225556	2197182,139	64245,233	0,029	0,000	0,035	-0,006
20 a 24 anos	18	21788	125383	501	29351	197554	1888615,233	62695,183	0,033	0,000	0,038	-0,005
25 a 29 anos	27	21792	103595	483	28132	168203	1584044,990	59418,301	0,038	0,000	0,041	-0,003
30 a 34 anos	20	18669	81803	456	25129	140071	1284517,354	56162,624	0,044	0,000	0,045	-0,002
35 a 39 anos	16	14839	63134	436	24524	114942	1022238,595	51353,190	0,050	0,000	0,051	-0,000
40 a 44 anos	20	12269	48295	420	22316	90418	792975,518	43673,876	0,055	0,001	0,053	0,002
45 a 49 anos	29	10379	36026	400	17520	68102	594386,862	35187,051	0,059	0,001	0,054	0,005
50 a 54 anos	36	8087	25647	371	14070	50582	432212,707	29002,541	0,067	0,001	0,058	0,009
55 a 59 anos	43	5928	17560	335	11618	36512	303851,450	23263,264	0,077	0,001	0,062	0,014
60 a 64 anos	48	4131	11632	292	8999	24894	204200,022	17529,215	0,086	0,001	0,065	0,021
65 a 69 anos	47	2793	7501	244	6525	15895	131030,107	12460,317	0,095	0,002	0,064	0,031
70 a 74 anos	42	1960	4708	197	4154	9370	79702,009	8174,853	0,103	0,002	0,058	0,044
75 a 79 anos	42	1241	2748	155	2479	5216	45431,639	5290,266	0,116	0,003	0,054	0,062
80 anos e mais	113	1507	1507	113	2737	2737	24371,108	nan	nan	nan	nan	nan

3.2.4 Método de Leadermann

O método de Leadermann foi aplicado às microrregiões definidas pelo IBGE para o estado de Roraima, considerando as cinco principais causas de óbito, além de um grupo que engloba as demais causas. O primeiro resultado apresentado refere-se ao sexo masculino, para o qual foram registrados 57 óbitos mal definidos na região de Boa Vista, 6 no Nordeste de Roraima, 8 em Caracaraí e 9 no Sudeste de Roraima.

Como pode ser observado na tabela abaixo, ao aplicar o método de Leadermann para o sexo masculino e analisar os valores observados (Y_i) , verifica-se que a maioria dos valores estimados está bastante próxima dos valores observados. No entanto, algumas regiões apresentam

discrepâncias mais evidentes, como o Sudeste de Roraima, o Nordeste de Roraima e alguns casos específicos em outras regiões.

Tabela 3.11: Método de Leadermann para o sexo masculino.

Causas	Região	Yj	Estimado	Bj
I. Algumas doenças infecciosas e parasitárias	14001 BOA VISTA	147	146.727049	2.742623
I. Algumas doenças infecciosas e parasitárias	14002 NORDESTE DE RORAIMA	11	6.853279	2.742623
I. Algumas doenças infecciosas e parasitárias	14003 CARACARAI	13	12.338525	2.742623
I. Algumas doenças infecciosas e parasitárias	14004 SUDESTE DE RORAIMA	10	15.081148	2.742623
II. Neoplasias (tumores)	14001 BOA VISTA	195	194.780601	3.676503
II. Neoplasias (tumores)	14002 NORDESTE DE RORAIMA	11	7.278962	3.676503
II. Neoplasias (tumores)	14003 CARACARAI	14	14.631967	3.676503
II. Neoplasias (tumores)	14004 SUDESTE DE RORAIMA	15	18.308470	3.676503
IV. Doenças endócrinas nutricionais e metabólicas	14001 BOA VISTA	60	59.880328	1.050820
IV. Doenças endócrinas nutricionais e metabólicas	14002 NORDESTE DE RORAIMA	7	6.288525	1.050820
IV. Doenças endócrinas nutricionais e metabólicas	14003 CARACARAI	12	8.390164	1.050820
IV. Doenças endócrinas nutricionais e metabólicas	14004 SUDESTE DE RORAIMA	5	9.440984	1.050820
IX. Doenças do aparelho circulatório	14001 BOA VISTA	339	338.829781	6.299454
IX. Doenças do aparelho circulatório	14002 NORDESTE DE RORAIMA	24	17.557650	6.299454
IX. Doenças do aparelho circulatório	14003 CARACARAI	19	30.156557	6.299454
IX. Doenças do aparelho circulatório	14004 SUDESTE DE RORAIMA	41	36.456011	6.299454
X. Doenças do aparelho respiratório	14001 BOA VISTA	145	144.393169	2.557923
X. Doenças do aparelho respiratório	14002 NORDESTE DE RORAIMA	25	13.939071	2.557923
X. Doenças do aparelho respiratório	14003 CARACARAI	15	19.054918	2.557923
X. Doenças do aparelho respiratório	14004 SUDESTE DE RORAIMA	14	21.612842	2.557923
XI. Doenças do aparelho digestivo	14001 BOA VISTA	59	58.621311	1.003279
XI. Doenças do aparelho digestivo	14002 NORDESTE DE RORAIMA	13	7.454098	1.003279
XI. Doenças do aparelho digestivo	14003 CARACARAI	11	9.460656	1.003279
XI. Doenças do aparelho digestivo	14004 SUDESTE DE RORAIMA	3	10.463934	1.003279
Outras causas	14001 BOA VISTA	621	619.184973	11.187432
Outras causas	14002 NORDESTE DE RORAIMA	81	48.625956	11.187432

Causas	Região	Yj	Estimado	Bj
Outras causas	14003 CARACARAI	61	71.000820	11.187432
Outras causas	14004 SUDESTE DE RORAIMA	58	82.188251	11.187432

- I. Algumas doenças infecciosas e parasitárias
- II. Neoplasias (tumores)
- IV. Doenças endócrinas nutricionais e metabólicas
- IX. Doenças do aparelho circulatório
- X. Doenças do aparelho respiratório
- XI. Doenças do aparelho digestivo
- Outras causas

Figura 3.1: Método Leadermann para o sexo masculino.

A tabela abaixo apresenta os resultados obtidos para o sexo feminino. Tanto a tabela quanto o gráfico dos valores estimados e observados indicam que os valores estimados estão muito próximos dos valores reais, exibindo um padrão semelhante ao observado para o sexo masculino.

Tabela 3.12: Método de Leadermann para o sexo feminino.

Causas	Região	Yj	Estimado	Bj
I. Algumas doenças infecciosas e parasitárias	14001 BOA VISTA	87	86.425706	2.058797
I. Algumas doenças infecciosas e parasitárias	14002 NORDESTE DE RORAIMA	10	14.367821	2.058797
I. Algumas doenças infecciosas e parasitárias	14003 CARACARAI	5	6.132634	2.058797
I. Algumas doenças infecciosas e parasitárias	14004 SUDESTE DE RORAIMA	9	4.073838	2.058797
II. Neoplasias (tumores)	14001 BOA VISTA	181	180.457156	4.402005
II. Neoplasias (tumores)	14002 NORDESTE DE RORAIMA	22	26.386964	4.402005
II. Neoplasias (tumores)	14003 CARACARAI	9	8.778943	4.402005
II. Neoplasias (tumores)	14004 SUDESTE DE RORAIMA	8	4.376937	4.402005
IV. Doenças endócrinas nutricionais e metabólicas	14001 BOA VISTA	75	74.066545	1.747949
IV. Doenças endócrinas nutricionais e metabólicas	14002 NORDESTE DE RORAIMA	5	12.888332	1.747949
IV. Doenças endócrinas nutricionais e metabólicas	14003 CARACARAI	8	5.896536	1.747949
IV. Doenças endócrinas nutricionais e metabólicas	14004 SUDESTE DE RORAIMA	9	4.148587	1.747949
IX. Doenças do aparelho circulatório	14001 BOA VISTA	196	194.354603	4.608933
IX. Doenças do aparelho circulatório	14002 NORDESTE DE RORAIMA	20	33.041933	4.608933
IX. Doenças do aparelho circulatório	14003 CARACARAI	14	14.606199	4.608933
IX. Doenças do aparelho circulatório	14004 SUDESTE DE RORAIMA	22	9.997265	4.608933
X. Doenças do aparelho respiratório	14001 BOA VISTA	92	91.471741	2.148131
X. Doenças do aparelho respiratório	14002 NORDESTE DE RORAIMA	12	16.287147	2.148131
X. Doenças do aparelho respiratório	14003 CARACARAI	8	7.694622	2.148131
X. Doenças do aparelho respiratório	14004 SUDESTE DE RORAIMA	9	5.546490	2.148131
XI. Doenças do aparelho digestivo	14001 BOA VISTA	43	43.026436	1.071103
XI. Doenças do aparelho digestivo	14002 NORDESTE DE RORAIMA	6	5.537830	1.071103
XI. Doenças do aparelho digestivo	14003 CARACARAI	0	1.253418	1.071103
XI. Doenças do aparelho digestivo	14004 SUDESTE DE RORAIMA	1	0.182315	1.071103

Causas	Região	Yj	Estimado	Bj
Outras causas	14001 BOA VISTA	280	279.254330	6.666819
Outras causas	14002 NORDESTE DE RORAIMA	39	45.915679	6.666819
Outras causas	14003 CARACARAI	24	19.248405	6.666819
Outras causas	14004 SUDESTE DE RORAIMA	14	12.581586	6.666819

- I. Algumas doenças infecciosas e parasitárias
- II. Neoplasias (tumores)
- IV. Doenças endócrinas nutricionais e metabólicas
- IX. Doenças do aparelho circulatório
- X. Doenças do aparelho respiratório
- XI. Doenças do aparelho digestivo
- Outras causas

Figura 3.2: Leadermann para o sexo feminino

4 Conclusão

Para a razão de sexo dos nascimentos no estado de Roraima, foi visto que não apresenta víes de cobertura entre os sexos dos nascimentos. Em relação aos métodos utilizados para estimação da cobertura de nascidos vivos, o que apresentou melhores resultados foi o que utiliza os dados do IBGE e SINASC, tendo obtido uma cobertura de 98,3% para o ano de 2020.

Analisando-se os métodos utilizados para estimativa da cobertura de óbitos, a maioria dos métodos não obtiveram boas estimativas, principalmente o que fez uso da equação básica de crescimento populacional, que acabou subestimando a estimativa de óbitos. O método que obteve os melhores resultados foi o de Brass, tendo sido o melhore para o ano de 2010, considerando-se o sexo masculino, embora ainda tenha sido abaixo de uma estimativa significante, próxima de 68%. Por último, analisando-se o método de Leadermann para o sexo masculino e feminino, os dois sexos apresentaram padrões bastante semelhantes para cada uma das regiões.

Referências

ALLAIRE, J.; DERVIEUX, C. quarto: R Interface to 'Quarto' Markdown Publishing System. [S.l.]: [s.n.], 2024.

HUNTER, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 2007. v. 9, n. 3, p. 90–95.

TEAM, T. Pandas Development. **pandas-dev/pandas: Pandas**. Zenodo. Disponível em: https://doi.org/10.5281/zenodo.3509134>.

VAN ROSSUM, G.; DRAKE JR, F. L. **Python reference manual**. [S.l.]: Centrum voor Wiskunde en Informatica Amsterdam, 1995.