Group 28

Kandula Revanth (21CS10035) Pola Gnana Shekar (21CS10052)

Control signals used:

- readIn: controls reading of next instruction
 - 1 read next instruction
 - 0 don't read
- ❖ MuxAlu1: select between regA and PC instruction
 - 1 select regA
 - 0 select PC
- MuxAlu2: select between regB and immediate value
 - 1 select regB
 - 0 select imm
- writeDM: write to Data Memory
 - 1 write to Data Memory
 - 0 don't write
- readDM: read from Data Memory
 - 1 read from Data Memory
 - 0 don't read
- muxWB: select between AluOut and value from LMD
 - 1 select AluOut
 - 0 select value from LMD
- writeReg: controls write action in register bank
 - 1 write to register
 - 0 don't write
- rst: resets all the values
 - 1 reset all
 - 0 no need to reset
- branch: used to select type of branching (BR / BMI / BPL / BZ) 000 - No branching

001 - BR

010 - BMI

011 - BPL

100 - BZ

❖ aluFunc: used to select the arithmetic operation that to be performed.

0000 - ADD

0001 - SUB

0010 - NOT

0011 - AND

0100 - OR

0101 - XOR

0110 - SLL

0111 - SRL

1000 - SRA

Control Signal Table:

	readin	MuxAl u1	MuxAl u2	writeD M	readD M	muxW B	writeRe g	rst	branch	aluFun c
ADD	1	1	1	0	0	1	1	0	000	0000
SUB	1	1	1	0	0	1	1	0	000	0001
NOT	1	1	1	0	0	1	1	0	000	0010
AND	1	1	1	0	0	1	1	0	000	0011
OR	1	1	1	0	0	1	1	0	000	0100
XOR	1	1	1	0	0	1	1	0	000	0101
SLL	1	1	1	0	0	1	1	0	000	0110
SRL	1	1	1	0	0	1	1	0	000	0111
SRA	1	1	1	0	0	1	1	0	000	1000
ADDI	1	1	0	0	0	1	1	0	000	0000
SUBI	1	1	0	0	0	1	1	0	000	0001

NOTI	1	1	0	0	0	1	1	0	000	0010
ANDI	1	1	0	0	0	1	1	0	000	0011
ORI	1	1	0	0	0	1	1	0	000	0100
XORI	1	1	0	0	0	1	1	0	000	0101
SLLI	1	1	0	0	0	1	1	0	000	0110
SRLI	1	1	0	0	0	1	1	0	000	0111
LD	1	1	0	0	1	0	1	0	000	0000
ST	1	1	0	1	0	0	0	0	000	0000
LDSP	1	1	0	0	1	0	1	0	000	0000
STSP	1	1	0	1	0	0	0	0	000	0000
BR	1	0	0	0	0	0	0	0	001	0000
ВМі	1	0	0	0	0	0	0	0	010	0000
BPL	1	0	0	0	0	0	0	0	011	0000
BZ	1	0	0	0	0	0	0	0	100	0000
PUSH	1	1	0	1	0	0	1	0	000	0001
POP	1	1	0	0	1	0	1	0	000	0000
CALL	1	1	0	1	0	0	1	0	000	0001
RET	1	1	0	0	1	0	1	0	000	0000
MOVE	1	1	0	0	0	1	1	0	000	0000
NOP	1	0	0	0	0	0	0	0	000	0000
HALT	0	0	0	0	0	0	0	1	000	0000

RTL instruction Table:

Instruction	RTL micro operations	Control Signals
ADD	 Source and Destination registers obtained from 32 bit Instruction. 	- - MuxAlu1,MuxAlu2

	T	
	 Select the reg1 and reg2 as operands Perform addition using aluFunc signal. Select AluOut to write back. Write back in register bank 	aluFuncmuxWBwriteReg
ADDI	 Source and Destination registers and immediate value obtained from 32 bit Instruction. Select the reg1 and imm as operands Perform addition using aluFunc signal. Select AluOut to write back. Write back in register bank 	MuxAlu1,MuxAlu2 - aluFunc - muxWB - writeReg
LD	 Obtain source and Destination register from 32-bit instruction. Read from data memory Load from LMD for write back Perform write back in register bank. 	- - readDM - muxWB - writeReg
ST	 Obtain source and destination register from 32-bit instruction. write to data memory 	- writeDM
ВМІ	 Source register and offset are obtained from instruction. Branch if less than zero is selected using branch Update PC according to the condition. 	- branch
MOVE	 Dest and src registers are obtained from instruction. Perform add operation with one operand as src register and zero register. Select aluOut for write back. Perform write back. 	MuxAlu1,MuxAlu2aluFuncmuxWBwriteReg
CALL	 Immediate value from instruction. Perform add operation to the PC and 4. Store it in stack mem Perform addition of PC and offset Update this as next PC. 	- writeDm
RET	Perform read from stack mem.Update this to PC.	- readDM

Data Path:

