General Physics II RLC 电路的串联谐振

刘思昀 SLST 2022522011

Wednesday 22nd May, 2024

1 测量 RLC 串联谐振谐振曲线

1.1 测量谐振曲线

选取 $R=10\Omega$,连接 RLC 串联电路,先固定信号源输出电压为 1.00V,随后将示波器 切换到 XY 模式(李萨如图形),调节信号源频率,直到示波器上出现一条直线,此时找到 RLC 电路的谐振频率为 $v_0=79.000kHz$ 。

将示波器切换到 YT 模式,调节信号源输出电压,直到示波器上显示整个电路两端的电压为 $U_i=1.00V$,记录电阻 R 的输出电压 $U_R=696mV$

之后,改变信号源的频率,每次调节频率后,都需通过调整信号源输出电压,使得示波器上显示整个电路两端的电压为 $U_i = 1.00V$,然后记录电阻R的输出电压,得到数据如下:

频率 (kHz)	输出电压UR (mV)	频率 (kHz)	输出电压UR (mV)
10.000	32.4	140.000	208
20.000	64.0	150.000	184
30.000	104	160.000	168
40.000	156	170.000	132
50.000	232	180.000	124
60.000	380	190.000	120
70.000	606	200.000	108
80.000	696	220.000	102
90.000	552	240.000	88
100.000	408	260.000	82
110.000	320	280.000	74
120.000	256	300.000	72
130.000	224		

图 1: 不同频率下电阻 R 上的输出电压

用平滑曲线连接各个数据点得到谐振曲线如下:

取 $U_R = \frac{U_{R_{max}}}{\sqrt{2}}$,得到半功率电频率 v_1 和 v_2 ,计算与与光滑曲线的交点。 实现代码如下:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import make_interp_spline
from scipy.optimize import fsolve
```

```
x = np.array([10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,220,240
                                                 ,260,280,300])
y = np.array([32.4,64,104,156,232,380,606,696,552,408,320,256,224,208,184,168,132,124,120,
                                                108,102,88,82,74,72])
x_smooth = np.linspace(x.min(), x.max(), 500)
spl = make_interp_spline(x, y, k=3)
y_smooth = spl(x_smooth)
max_y = np.max(y_smooth)
max_x = x_smooth[np.argmax(y_smooth)]
level = max_y / np.sqrt(2)
\begin{tabular}{ll} \textbf{def} & find\_intersections(x\_smooth, y\_smooth, level): \\ \end{tabular}
    intersections = []
    for i in range(len(x_smooth) - 1):
        if (y_smooth[i] - level) * (y_smooth[i + 1] - level) < 0:</pre>
            x_intersect = fsolve(lambda x: spl(x) - level, x_smooth[i])
            intersections.append(x_intersect[0])
    return intersections
intersections = find_intersections(x_smooth, y_smooth, level)
plt.plot(x_smooth, y_smooth, label='Smooth Curve')
plt.plot(max_x, max_y, 'ro', label='Maximum Point')
plt.axhline(level, color='r', linestyle='--', label=f'y = {level:.2f}')
for intersect in intersections:
   plt.plot(intersect, level, 'go')
plt.legend()
plt.show()
print("Maximum point: (", max_x, ",", max_y, ")")
print("Intersections with level line:", intersections)
```


图 2: 10Ω 电阻的 RLC 串联电路

得到半功率频率点为 (65.014, 494.44), (93.481, 494.44),最大值点为 (78.577, 699.238)

故 $v_1 = 65.914kHz$, $v_2 = 93.481kHz$, $v_0 = 78.577kHz$

谐振频率可写作为: $v_0 = \frac{1}{2\pi\sqrt{LC}}$

该 RLC 电路中, $L=0.1mH, C=0.047\mu F$,可以计算得 $v_0=73.412kHz$

实验值的误差为:

$$\delta = \frac{78.577 - 73.412}{73.412} = +7.04\%$$

1.2 计算损耗电阻阻值

对于谐振频率点的 U_i 和 U_R ,有

$$\frac{U_i}{R + R_L} = \frac{U_R}{R}$$

故损耗电阻阻值有:

$$R_L = \frac{U_i R}{U_R} - R_L$$

实验中, $U_i=1.00V, U_R=699.238mV, R=10\Omega$, 得到 $R_L=4.30\Omega$

1.3 计算品质因素

Q 值表征电路选频性能的优劣,也可以标志电路中储存能量与每个周期内消耗能量之比,将两个 Q 值分别记为 Q_1,Q_2

$$Q_1 = \frac{v_0}{v_2 - v_1} = 2.85$$

$$Q_2 = \frac{\omega_0 L}{R + R_L} = \frac{2\pi v_0 L}{R + R_L} = 3.45$$

图 3: 半功率频率点

2 改变电阻阻值再次测量 RLC 串联谐振谐振曲线

2.1 测量谐振曲线

选取 $R = 100\Omega$,连接 RLC 串联电路,先固定信号源输出电压为 1.00V,随后将示波器切换到 XY 模式(李萨如图形),调节信号源频率,直到示波器上出现一条直线,此时找到 RLC 电路的谐振频率为 $v_0 = 80.000kHz$ 。

将示波器切换到 YT 模式,调节信号源输出电压,直到示波器上显示整个电路两端的电压为 $U_i=1.00V$,记录电阻 R 的输出电压 $U_R=960mV$

之后,改变信号源的频率,每次调节频率后,都需通过调整信号源输出电压,使得示波器上显示整个电路两端的电压为 $U_i = 1.00V$,然后记录电阻R的输出电压,得到数据如下:

用平滑曲线连接各个数据点得到谐振曲线如下: 实现代码同上,只更改了添加实验数据点的部分(如下):

```
x = np.array([10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,220,240,260,280,300])
y = np.array([296,520,688,792,840,888,920,960,960,960,920,920,920,880,880,820,800,800,760,760,720,680,660,600,600])
```

取 $U_R = \frac{U_{R_{max}}}{\sqrt{2}}$, 得到半功率电频率 v_1 和 v_2 , 计算与与光滑曲线的交点。 得到半功率频率点为 (29.519,681.30), (238.812,681.30),最大值点为 (96.593,963.508) 故 $v_1 = 29.519kHz$, $v_2 = 238.812kHz$, $v_0 = 96.593kHz$ 根据前一部分,可以计算得 $v_0 = 96.593kHz$

频率 (kHz)	输出电压UR (mV)	频率 (kHz)	输出电压UR (mV)
10.000	296	140.000	880
20.000	520	150.000	880
30.000	688	160.000	820
40.000	792	170.000	800
50.000	840	180.000	800
60.000	888	190.000	760
70.000	920	200.000	760
80.000	960	220.000	720
90.000	960	240.000	680
100.000	960	260.000	660
110.000	920	280.000	600
120.000	920	300.000	600
130.000	920		

图 4: 不同频率下电阻 R 上的输出电压

图 5: 100Ω 电阻的 RLC 串联电路

图 6: 半功率频率点

实验值的误差为:

$$\delta = \frac{96.593 - 73.412}{73.412} = +31.58\%$$

2.2 计算损耗电阻阻值

损耗电阻阻值有:

$$R_L = \frac{U_i R}{U_R} - R_L$$

实验中, $U_i=1.00V, U_R=963.508mV, R=100\Omega$, 得到 $R_L=3.79\Omega$

2.3 计算品质因素

Q 值表征电路选频性能的优劣,也可以标志电路中储存能量与每个周期内消耗能量之比,将两个 Q 值分别记为 Q_1,Q_2

$$Q_1 = \frac{v_0}{v_2 - v_1} = 0.46$$

$$Q_2 = \frac{\omega_0 L}{R + R_L} = \frac{2\pi v_0 L}{R + R_L} = 0.58$$

3 分析与讨论

1. 理论谐振频率与实验测量谐振频率的误差分析

- 实际电感和电容器的标称值可能与其真实值存在偏差。温度变化对电感和电容值的影响可能导致谐振频率的偏移。
- 频率的测量和示波器的读数精度也会影响结果,例如频率调节的精度有限,示波器的分辨率也是有限的。
- 在实际情况中,电感线圈的电阻以及电容的漏电阻都会影响谐振频率,导致测量值与理论值不一致。
- 本实验中,7% 左右的误差由于上述原因造成,在可以接受的范围内。
 - 2. 两种方法计算品质因素 Q 得到的结果不同
- 根据频带宽度计算的 Q_1 , 测量的精度和曲线拟合的准确性会直接影响计算结果。若谐振曲线的两侧不对称或测量数据有误差,都会导致 Q 值计算不准确。在取 $R=100\Omega$ 时,谐振曲线两侧尤其不对称。
- 根据电路中各个参数计算的 Q_2 ,在理论上是准确的,然而实际电路中的损耗电阻 R_L 以及其他非理想因素也会影响计算结果。
 - 3. 选取不同的 $R(10\Omega, 100\Omega)$ 导致的差异
- 电阻 R 的大小直接影响谐振曲线的形状。较大的电阻会使谐振曲线变得平缓,谐振频率偏移更明显,Q 值变小;较小的电阻则会使谐振曲线更尖锐,Q 值较大。
- 实际应用中,如果需要更高的 Q 值(更好的选频性能),则需要选择阻值较小的电阻;如果对电路的稳定性和功率损耗有较高要求,则需要权衡选择适中的电阻值。
 - 4. 该实验中整体的误差来源
- 系统误差: 电感、电容和电阻的标称值与实际值之间的差异
- 随机误差: 信号源输出频率和电压的精度, 示波器的测量精度和读数误差
- 测量误差: 信号源输出的不稳定性