WHAT IS CLAIMED IS:

1		1. A	A method of forming an intravascular device, comprising the steps
2	of:		
3		mountin	g an expanded PTFE liner over a first mandrel portion;
4		winding	a reinforcing layer over the expanded PTFE liner after the
5	mounting step	; and	
6		applying	g a first jacket over the reinforcing layer and expanded PTFE liner
7	after the wind	ing and m	nounting steps.
1		2.	The method of claim 1, further comprising the steps of:
2		covering	g the jacket, reinforcing layer and expanded PTFE liner with a
3	shrink tube;		
4		fusing tl	he coating layer to the expanded PTFE liner to form an integrated
5	structure; and		
6		removin	ng the shrink tube after the fusing step.
1		3.	The method of claim 1, wherein:
2		the appl	ying step is carried out by positioning a tube of material over the
3	reinforcing la	yer.	
1		4.	The method of claim 1, further comprising the steps of:
2		position	ning an etched PTFE liner over a second mandrel portion; and
3		the win	ding step is carried out with the reinforcing layer being wound over
4	the etched PT	FE liner;	and
5		the app	lying step is carried out with the jacket layer being positioned over
6	the reinforcin	g layer aı	nd the etched PTFE liner after the winding step.
1		5.	The method of claim 4, wherein:
2		the app	lying steps are carried out with the jacket layer having a first jacket
3	section and a	second ja	acket section, the first jacket section being positioned over the
4	expanded PT	FE liner a	and the second jacket section being positioned over the etched
5	PTFE liner, t	he first ja	cket section having a durometer which is at least 30D less than the
6	second jacket	section.	

The method of claim 5, wherein:

6.

2	the applying steps are carried out with the first jacket section having a
3	durometer which is at least 40D less than the second jacket section.
l	7. The method of claim 1, wherein:
2	the positioning steps are carried out with the expanded PTFE liner having
3	a porosity of 8-10 microns.
1	8. The method of claim 4, wherein:
2	the first mandrel portion and second mandrel portion are part of the same
3	mandrel.
1	9. The method of claim 1, further comprising the step of:
2	inverting an end of the expanded PTFE liner at a distal end.
1	10. The method of claim 9, wherein:
2	the inverting step is carried out to form an inverted portion of the
3	expanded PTFE liner which extends longitudinally at least 0.5 mm from a distal end of
4	the reinforcing element.
1	11. An intravascular device, comprising:
2	a liner layer having a first liner section, the first liner section being made
3	of expanded PTFE;
4	a reinforcing layer wound over the liner layer; and
5	a jacket positioned over the reinforcing layer and fused with the liner
6	layer.
1	12. The device of claim 11, wherein:
2	the liner has a second liner section, the second liner section being made of
3	a material which is stiffer than the expanded PTFE of the first liner section.
1	13. The device of claim 12, wherein:
2	the second liner section is made of etched PTFE.
1	14. The device of claim 13, wherein:
2	the expanded PTFE has a porosity of 8-10 microns.

1	15. An intravascular device for accessing small diameter, fortuous
2	vessels, comprising:
3	a shaft having a stiffness transition zone, the stiffness transition zone
4	extending 20 to 30 cm from the distal end, the stiffness of the device increasing no more
5	than 600% over any 4 cm portion of the stiffness transition zone; and
6	at least one lumen extending through the shaft.
1	16. The device of claim 15, wherein:
2	the stiffness of the device increases no more than 500% over any 4 cm
3	portion of the stiffness transition zone.
1	17. The device of claim 15 wherein:
2	the shaft has a liner portion which lines the at least one lumen, the liner
3	portion comprising expanded PTFE.
1	18. The device of claim 17, wherein:
2	the liner portion also comprises etched PTFE.
1	19. The device of claim 15, wherein:
2	the lumen has a cross-sectional area through the distal portion of 0.77 to
3	7.1 mm2.
1	20. The device of claim 15, wherein:
2	the lumen has a cross-sectional area through the proximal portion of 1.7 to
3	2.9 mm2.
1	21. The device of claim 15, wherein:
2	the stiffness transition zone coincides with at least a portion of an
3	intermediate, tapered region of the lumen.
1	22. The device of claim 21, wherein:
2	the proximal portion has a constant cross-sectional area;
3	the distal portion has a constant cross-sectional area; and
4	the intermediate section is tapered and extends between the proximal and
5	distal portions.

1	23. The device of claim 15, wherein:
2	the distal portion has an expanded PTFE liner; and
3	the proximal portion has an etched PTFE liner.
1	24. The device of claim 15, wherein:
2	the distal portion has a wall thickness of 0.004 to 0.007 inch.
1	25. The device of claim 15, wherein:
2	the proximal portion has a wall thickness of between 0.003 to 0.013 inch.
1	26. The device of claim 15, wherein:
2	the distal portion is formed by a liner, at least one reinforcing element, and
3	a jacket over the liner and the reinforcing element, the jacket having a first section, a
4	second section, and a third section, the first section having a durometer which is at least
5	13D less than the third section, the second section having a durometer between the first
6	and third sections, the first and third sections being separated by a longitudinal distance of
7	10 cm or less.
1	27. The device of claim 26, wherein:
2	the first and third sections are separated by a longitudinal distance of 8 cm
3	or less.
1	28. The device of claim 26, wherein:
2	the shaft has a fourth section which is positioned next to the third section,
3	the first section having a durometer which is at least 25D less than the fourth section, the
4	first section being separated from the fourth section by a longitudinal distance of 15 cm o
5	less.
1	29. The device of claim 28, wherein:
2	the positioning step is carried out with the first section being separated
3	from the fourth section by a longitudinal distance of 10 cm or less.
1	30. A method of advancing an intravascular device into small diameter
2	tortuous vessels, comprising the steps of:
3	providing a catheter having a lumen extending therethrough, the lumen
4	having a cross-sectional size of 0.77 to 7.1 mm ² :

5		intro	ducing the catheter into the patient vascular system; and	
6		advar	ncing the catheter through vessels having a diameter of 3 mm to 5 mm	
7	without advar	ncing tl	he catheter over a guidewire.	
1		31.	The method of claim 30, wherein:	
2		the ac	dvancing step being carried out with the catheter having an open end	
3	at the distal e	nd.		
1		32.	The method of claim 30, wherein:	
2		the p	roviding step is carried out with the lumen having a cross-sectional	
3	size of 1.7 to	2.9 mn	n2.	
1		33.	The method of claim 30, wherein:	
2		the p	roviding step is carried out with the catheter having a constant	
3	diameter prox	diameter proximal portion, a tapered intermediate portion, and a constant diameter distal		
4	portion.			
1		34.	The method of claim 30, wherein:	
2		the p	roviding step is carried out with the catheter having a stiffness	
3	transition zon	one from 20-40 cm from the distal end, the stiffness of the catheter increasing		
4	by no more th	nan 600	0% over any 4 cm length through the stiffness transition zone.	
1		35.	A method of forming an intravascular device, comprising the steps	
2	of:			
3		provi	ding a mandrel;	
4		mour	nting a first liner on the mandrel;	
5		wind	ing a reinforcing layer over the first liner;	
6		posit	ioning a first jacket, a second jacket and a third jacket over the	
7	reinforcing la	yer, th	e second jacket being positioned between the first and third jackets,	
8	the first jacke	t havir	ng a durometer which is at least 13D less than the third jacket, the	
9	second jacket	havin	g a durometer between the first and third jackets; and	
10		fusin	g at least the first, second and third jackets to the liner to encase the	
11	reinforcing la	yer be	tween the first liner and the first, second and third jackets.	
1		36.	The method of claim 35, wherein:	

2	the positioning step is carried out with the first jacket navir	ig a durometer
3	of at least 15 D less than the third jacket.	
1	37. The method of claim 35, wherein:	
2	the first and third jackets are separated by a longitudinal di	stance of 10 cm
3	3 or less.	
1	38. The method of claim 37, wherein:	
2	the first and third jackets are separated by a longitudinal di	stance of 8 cm
3	3 or less.	
1	The method of claim 38, wherein:	
2	the first and third jackets are separated by a longitudinal di	stance of 5 cm
3	3 or less.	
1	1 40. The method of claim 35, wherein:	
2	the positioning step is carried out with a fourth jacket which	h is positioned
3	next to the third jacket, the first jacket having a durometer which is at least	st 25D less than
4	4 the fourth jacket.	
1	1 41. The method of claim 40, wherein:	
2	2 the positioning step is carried out with the first jacket bein	g separated from
3	3 the fourth jacket by a longitudinal distance of 15 cm or less.	
1	1 42. The method of claim 40 wherein:	
2	2 the positioning step is carried out with the first jacket bein	g separated from
3	3 the fourth jacket by a longitudinal distance of 10 cm or less.	
1	1 43. The method of claim 35, wherein:	•
2	2 the positioning step is carried out with a fifth jacket which	is positioned
3	3 next to the fourth jacket, the first jacket having a durometer which is at le	ast 28D less
4	4 than the fourth jacket.	
1	1 44. The method of claim 43, wherein:	
2	2 the positioning step is carried out with the first jacket being	g separated from
3	3 the fifth jacket by a longitudinal distance 20 cm or less.	

1	45.	The method of claim 43 wherein:
2	the	positioning step is carried out with the first jacket being separated from
3	the fifth jacket by	a longitudinal distance of 15 cm or less.
1	46.	The method of claim 35, wherein:
2	the	positioning step is carried out with a sixth jacket which is positioned
3		cket, the first jacket having a durometer which is at least 40D less than
4	the sixth jacket.	
1	47	The method of claim 46, wherein:
1		
2		e positioning step is carried out with the first jacket being separated from
3	the sixth jacket by	y a longitudinal distance of 25 cm or less.
1	48	. The method of claim 46 wherein:
2	the	e positioning step is carried out with the first jacket being separated from
3	the fifth jacket by	a longitudinal distance of 20 cm or less.
1	49	An intravascular device, comprising:
2	a s	shaft having a lumen extending therethrough;
3		einforcing layer embedded in the shaft; and
4		e shaft having a first jacket, a second jacket and a third jacket covering
5		sinforcing element, the second jacket being positioned between the first
6		the first jacket having a durometer which is at least 13D less than the
7		econd jacket having a durometer between the first and third jackets.
1	50). The device of claim 49, wherein:
2		e first jacket has a durometer of at least 15 D less than the third jacket.
2	ui	o mot jacket has a darometer of at reast to 2 sees and
1	51	The device of claim 49, wherein:
2	th	e first and third jackets are separated by a longitudinal distance of 10 cm
3	or less.	
1	52	2. The device of claim 49, wherein:
2		ne first and third jackets are separated by a longitudinal distance of 8 cm
3	or less.	- · · · · · · · · · · · · · · · · · · ·

1	-	53.	The device of claim 52, wherein:
2	t	he first	and third jackets are separated by a longitudinal distance of 5 cm
3	or less.		
1	:	54.	The device of claim 49, wherein:
2	t	he shai	thas a fourth jacket which is positioned next to the third jacket, the
3	first jacket havi	ng a du	rometer which is at least 25D less than the fourth jacket.
1	:	55.	The device of claim 54, wherein:
2	1	the first	jacket being separated from the fourth jacket by a longitudinal
3	distance of 15 c	m or le	ess.
1		56.	The device of claim 54 wherein:
2		the firs	t jacket is separated from the fourth jacket by a longitudinal
3	distance of 10 d	em or le	ess.
1		57.	The device of claim 49, wherein:
2		the sha	ft has a fifth jacket which is positioned next to the fourth jacket, the
3	first jacket hav	ing a dı	irometer which is at least 28D less than the fourth jacket.
1 .		58.	The device of claim 57, wherein:
2		the firs	t jacket is separated from the fifth jacket by a longitudinal distance
3	20 cm or less.		
1		59.	The device of claim 57 wherein:
2		the firs	t jacket is separated from the fifth jacket by a longitudinal distance
3	of 15 cm or les	SS.	
1		60.	The device of claim 49, wherein:
2		the sha	off has a sixth jacket which is positioned next to the fifth jacket, the
3	first jacket hav	ing a d	urometer which is at least 40D less than the sixth jacket.
1		61.	The device of claim 60, wherein:
2		the firs	st jacket is separated from the sixth jacket by a longitudinal distance
3	of 25 cm or les	SS.	·
1		62.	The device of claim 60 wherein:

2		the fir	st jacket is separated from the sixth jacket by a longitudinal distance	
3	of 20 cm or le	SS.		
1		63.	The device of claim 49, wherein:	
2		the rei	inforcing layer has a braided portion, the braided portion having a	
3	first section, a	secono	section and a third section, the first section has a pic which is at	
4	least 15 more	than th	e third section	
1		64.	The device of claim 63, wherein:	
2		the th	ird section is separated from the first section by no more than 15 cm.	
1		65.	The device of claim 63, wherein:	
2		the th	ird section is separated from the first section by no more than 10 cm.	
1		66.	The device of claim 63, wherein:	
2		the re	inforcing layer has a fourth section, the first section has a pic which	
3	is at least 30 p	is at least 30 pics more than the fourth section, the first section being separated from the		
4	fourth section	by no	more than 20 cm.	
1		67.	The device of claim 66, wherein:	
2, .		the fi	rst section is separated by the fourth section by no more than 15 cm.	
1		68.	An intravascular device for accessing small, tortuous vessels,	
2	comprising:			
3		a sha	ft having at least four sections of varying stiffness, the shaft	
4	becoming mo	ore stiff	proximally; and	
5		a lum	nen extending through the shaft.	
1		69.	The device of claim 68, wherein:	
2		the sl	haft is formed by a liner, a reinforcing layer, and a jacket, the	
3	reinforcing la	ayer be	ing positioned between the liner and jacket.	
1		70.	The device of claim 69, wherein:	
2		the a	t least four sections of varying stiffness are provided by varying the	
3	durometer of	the jac	eket and a spacing between windings of the reinforcing layer.	
1		71	The device of claim 69, wherein:	

2	the shaft has at least five sections of varying stiffness.		
1	72. The device of claim 69, wherein:		
2	the shaft has at least six sections of varying stiffness.		
1	73. A method of advancing a catheter through small, tortuous vessels,		
2	comprising the steps:		
3	providing a catheter having a proximal portion and a distal portion, the		
4	distal portion extending at least 10 cm from the distal end and the proximal portion		
5	extending within 40 cm from the distal end or closer, the proximal portion being at least		
6	20 times stiffer than the distal portion, the catheter having a lumen with the lumen along		
7	the distal portion having a diameter of 0.040 to 0.060 inch;		
8	introducing the catheter into a patient; and		
9	advancing the catheter through the patient's vasculature to a desired site.		
1	74. The method of claim 73, wherein:		
2	the providing step is carried out with the proximal portion being at least 40		
3	times stiffer than the distal portion.		
1	75. The method of claim 73, wherein:		
2 .	the providing step is carried out with the proximal portion being at least 60		
3	times stiffer than the distal portion.		
1	76. The method of claim 73, wherein:		
2	the providing step is carried out with the lumen along the proximal portion		
3	having an inner diameter of 0.070 to 0.010 inch.		
1	77. The method of claim 72, wherein:		
2	the advancing step is carried out with the distal portion being advanced		
3	through to the desired site without the aid of a guidewire.		
1	78. A method of advancing a catheter into small diameter vessels,		
2	comprising the steps of:		
3	providing a catheter having a distal portion and a proximal portion, the		
4	catheter also having a lumen extending through the proximal and distal portions, the		
5	lumen along the distal portion having an inner diameter of 0.040 to 0.050 inch;		

6	introducing the catheter into a patient's vascular system; and				
7	advancing the catheter through vessels having a size of less than 5 mm				
8	without the aid o	of a gui	idewire.		
1	7	9. <i>'</i>	The method of claim 77, wherein:		
2	tl	ne prov	riding step is carried out with the distal portion extending at least		
3	10 cm from a dis	stal en	d and the proximal portion extending within 40 cm from the distal		
4	end or closer.				
1	8	0.	The method of claim 78, wherein:		
2	tl	he prox	kimal portion has a stiffness which is at least 40 times stiffer than		
3	the proximal portion.				
1	8	31.	The method of claim 78, wherein:		
2	tl	he proz	kimal portion has a stiffness which is at least 60 times stiffer than		
3	the proximal portion.				
1	8	32.	The method of claim 77, wherein:		
2	ti	he pro	viding step is carried out with the lumen along the proximal portion		
3	having an inner	diame	ter of 0.070 to 0.100 inch.		
1	8	33.	The method of claim 77, wherein:		
2	t	he adv	ancing step is carried out with the distal portion being advanced		
3	through vessels	having	g a size of less than 4 mm.		
1		84.	A method of forming a catheter, comprising the steps of:		
2	I	providi	ng a liner layer;		
3	1	wrappi	ng a reinforcing layer over the liner;		
4	I	positio	ning a jacket over the reinforcing layer, the jacket having a plurality		
5	of jacket section	ns incr	easing in flexural modulus at least 25 times from a distal section to		
6	a proximal sect	ion.			
1	;	85.	The method of claim 83, wherein:		
2	1	the pos	sitioning step is carried out with the jacket sections increasing in		
3	flexural modul	us at le	ast 40 times.		
1		86.	The method of claim 83, wherein:		

- 2 the positioning step is carried out with increase in flexural modulus
- 3 occurring over a length of at least 15 cm.