Colleagues In Trading Seminar

17 Feb 2007

John Ehlers 805-927-3065 ehlers@mesasoftware.com

mesasoftware.com eMiniZ.com IndiceZ.com ISignals.com

ENGINEERS ARE AS

$$\frac{1}{\sqrt{2\pi\sigma}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

AS ANYONE

Fibanacci Ratios

	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P
1	FIBANACCI															RATIO
2	1	1	2	3	5	8	13	21	34	55	89	144	233	377		0.618037
3	2	19	21	40	61	101	162	263	425	688	1113	1801	2914	4715		0.618028
4	В	S		171												
5																
6	4															

Patterns

- Thousands of patterns have been catalogued
 - Double Bottom, Head & Shoulder, Flags, Pennants, etc.
 - All are anecdotal or within the probability of chance
- Tune your TV to an unused channel and stare at the screen intently
 - I guarantee you will see patterns formed out of pure noise
- If seeing is believing, check out <u>www.mesasoftware.com/optical.htm</u>
 - Very interesting optical illusions

Wave Synthesis

Sinewaves are the primitives to synthesize more complex waves

wave = SIN(F*T) - SIN(2*F*T)/2 + SIN(3*F*T)/3

Combined Waveform: Elliott Wave?

Why not just deal with measurable primitives?

Momentum Functions

CONCLUSIONS:

- 1. Momentum can NEVER lead the function
- 2. Momentum is always more disjoint (noisy)

Moving Averages

CONCLUSIONS:

- 1. Moving Averages smooth the function
- 2. Moving Averages Lag by the center of gravity of the observation window
- 3. Using Moving Averages is always a tradeoff between smoothing and lag

Relating Lag to the EMA Constant

An EMA is calculated as:

```
g(z) = \alpha^* f(z) + (1 - \alpha)^* g(z - 1)
where g() is the output
f() is the input
z \text{ is the incrementing variable}
```

Assume the following for a trend mode

- f() increments by 1 for each step of z
 - has a value of "i" on the "i th" day
- k is the output lag

$$i - k = \alpha^* i + (1 - \alpha)^* (i - k - 1)$$

= $\alpha^* i + (i - k) - 1 - \alpha^* i + \alpha^* (k + 1)$
 $0 = \alpha^* (k + 1) - 1$
Then $k = 1/\alpha - 1$ OR $\alpha = 1/(k + 1)$

Relationship of Lag and EMA Constant

<u>α</u> <u>k (Lag)</u>	
<u>α</u> <u>k (Lag)</u> .5 1	
.4 1.5	
.3 2.33	
.25	
.2	
.1	
.05 19	

• Small α cannot be used for short term analysis due to excessive lag

Concept of Predictive Filters

 In the trend mode price difference is directly related to time lag

- Procedure to generate a predictive line:
 - Take an EMA of price
 - Take the difference (delta) between the price and its EMA
 - Form the predictor by adding delta to the price
 - equivalent to adding 2*delta to EMA

Simple Predictive Trading System

- Rules:
 - Buy when Predictor crosses EMA from bottom to top
 - Sell when Predictor crosses EMA from top to bottom
- Usually produces too many whipsaws to be practical
- Crossover ALWAYS happens after the turning point

Drunkard's Walk

- Position as the random variable
- Results in Diffusion Equation

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2}$$

- Momentum as the random variable
- Results in Telegrapher's Equation

$$\frac{\partial^2 P}{\partial t^2} + \frac{1}{T} \frac{\partial P}{\partial t} = C \frac{\partial^2 P}{\partial x^2}$$

Efficient Market

- Meandering river is a real-world example of the Drunkard's walk
 - Random over a long stretch
 - Coherent in a short stretch
- Hurst Exponent converges to 0.5 over several different spans
 - However I used it to create an adaptive moving average based on fractals over a short span (FRAMA)

Coherent Behavior Example

Therefore: ma = -kx

dx/dt = v

dv/dt = a

Therefore: $a = d^2x / dt^2$

And: $m*d^2x / dt^2 = -kx$

Assume: $x = Sin(\omega t)$

Then: $dx/dt = \omega^*Cos(\omega t)$

 $d^2x/dt^2 = -\omega^{2*}Sin(\omega t)$

Assumption is true if: $\omega^2 = k/m$

CONCLUSION: One can create a leading function by taking a derivative when the market is coherent (in a cycle mode).

i.e. Cosine(x) leads Sine(x)

Many Indicators Assume a Normal Probability Distribution

- Example CCI
 - by Donald Lambert in Oct 1980 Futures Magazine
- CCI = (Peak Deviation) / (.015* Mean Deviation)
- Why .015?
 - Because 1 / .015 = 66.7
 - 66.7% is (approximately) one standard deviation
 - IF THE PROBABILITY DENSITY FUNCTION IS NORMAL

What are Probability Density Functions?

A PDF can be created by making the waveform with beads on parallel horizontal wires. Then, turn the frame sideways to see how the beads stack up.

A Square Wave only has two values

A Square Wave is untradeable with conventional Indicators because the switch to the other value has occurred before action can be taken

A Sinewave PDF is not much different from a Squarewave PDF

Real Probabilities are NOT Gaussian

Probability Distribution of a 10 Bar Channel Over 15 years of Treasury Bond data

Probability Distribution of a 30 Bar Channel Over 15 years of Treasury Bond data

A Phasor Describes a Cycle

- Cycle Amplitude (Pythagorean Theorem)
 Amplitude² = (InPhase)² + (Quadrature)²
- Phase Angle = ArcTan(Quadrature / InPhase)
- Cycle Period when Σ Phase Angles = 360°

Sinewave Indicator Advantages

- Line crossings give advance warning of cyclic turning points
- Advancing phase does not increase noise
- Indicator can be "tweaked" using theoretical waveforms
- No false whipsaws when the market is in a trend mode

Cycle Measurement Techniques

Convert Amplitude to Color so spectrum can be plotted in sync with prices

MESA8 Spectral Estimate (standard against which other techniques will be measured)

FFT

Constraints:

- Data is a representative sample of an infinitely long wave
- Data must be stationary over the sample time span
- Must have an integer number of cycles in the time span

Assume a 64 day time span

- Longest cycle period is 64 days
- Next longest is 64 / 2 = 32 days
- Next longest is 64 / 3 = 21.3 days
- Next longest is 64 / 4 = 16 days
- Result is poor resolution gaps between measured cycles

FFT (continued)

Paradox:

- The only way to increase resolution is to increase the data length
- Increased data length makes realization of the stationarity constraint highly unlikely
 - 256 data points are required to realize a 1 bar resolution for a 16 bar cycle (right where we want to work)

Conclusion:

FFT measurements are not suitable for market analysis

Slidling DFT

- Requires spacing of spectral lines just like a FFT
- Therefore the resolution of a Sliding DFT is too poor to be used for trading

Frequency Discriminators

- I described 3 different discriminators in "Rocket Science for Traders"
- Measure phase differences between successive samples
 - For example $\Delta\theta$ = 36 degrees describes a 10 bar cycle period
 - Discriminators respond rapidly to frequency changes
- Problem: long cycles have a small change in phase per sample
 - For example 40 Bar cycle phase change is only 9 degrees
 - Result: Long signal cycles are swamped by noise
- I no longer recommend Frequency Discriminators

Pisarenko Harmonic Decomposition

 Similar to Phase Discriminators except that autocorrelation is used to reduce noise

Decimation does not improve cycle measurements

Chirped Z Transform (CZT)

Goertzel

- Used to detect two-tone phone dial codes
- Depends on LMS convergence

Goertzel measurements do not converge on market data

Griffiths

Griffiths is a sliding algorithm that also depends on LMS convergence

No kewpie doll for accuracy

DFT

Discrete Fourier Transform (DFT) has poor resolution

MUSIC

MUltiple Signal Identification and Classification (MUSIC)

 Kay & Demeure* showed that the resolution of the Bartlett spectrum (a DFT) and a MUSIC spectrum (a MESA) are related by the transform

$$S_{MUSIC} = \frac{1}{1 - S_{Bartlett}}$$

where
$$0 \le S_{Bartlett} \le 1$$

 I use this transform to enhance the resolution of the DFT

$$S_{MUSIC} = \frac{0.01}{1 - .99 * S_{DET}}$$

^{*} Steven Kay and Cedric Demeure, "The High-Resolution Spectrum Estimator – a Subjective Entity", Proceedings IEEE, Vol 72, Dec 1984, pp1815-1816

MUSIC

DFT Chirp Response

• High Resolution DFT Accurately Measures Cycle Periods

DFT Square Wave Response

- High Resolution DFT has a quick transient response
- Chart switches between a 15 and 30 bar cycle

The Market is Fractal

- Longer cycles will always dominate
- Limit the cycle measurement to the cycle periods of interest

BandPass Filter

- Since frequency is known, a leading signal can be created from the derivative of a Bandpass filtered signal
 - From calculus: $d(Sin(\omega t) / dt = \omega^*Cos(\omega t)$
 - Therefore: Lead = (Period / 6.28318)*(BP BP[1])
- Single channel code is simple

```
Inputs:Price((H+L)/2), Period(20), Delta(.25);

Vars: gamma(0), alpha(0), beta(0), BP(0), Lead(0);

beta = Cosine(360 / Period);
gamma = 1 / Cosine(720*delta / Period);
alpha = gamma - SquareRoot(gamma*gamma - 1);
BP = .5*(1 - alpha)*(Price - Price[2]) + beta*(1 + alpha)*BP[1] - alpha*BP[2];
Lead = (Period / 6.28318)*(BP - BP [1]);

Plot1(BP,"bp");
Plot2(Lead, "lead");
```

BandPass Filter

Eliminates both high frequency and low frequency noise

 Design is a tradeoff between selectivity and transient response

BandPass Response Study

Channelized Receiver

- Uses a bank of contiguous bandpass filters
- Spacing and bandwidth are controllable
- Detect the amplitude at the output of each filter

Can use resolution enhancement transform also

How to Use Measured Cycles

Replace fixed-length parameters with dominant cycle fraction

Makes these indicators adaptive to current market conditions

Examples

- RSI: 0.5*dominant cycle

Stochastic: 0.5*dominant cycle

- CCI: dominant cycle

- MACD: 0.5*dominant cycle & dominant cycle

By definition, trends have low cycle content

 Cycle peaks or valleys can be used to pick the best entry in the direction of the trend

Adaptive Strategy Improvement

Fixed-Length RSI (and length optimized)

Equity Curve Line - @ES.D Daily(10/08/01 13:15 - 10/06/06 13:15)

Trends

- Slope is constant across one full cycle period
 - This defines a trend for me

 I model the market as an "instantaneous trendline" plus the dominant cycle

dominant cycle

- Best to trade the trend if the slope is greater than the cycle peak-to-peak amplitude
- Trends can also be defined on the basis of cycle length for mode-switching strategies

Strategy Design

- KISS
- Base strategy on some sound principle
- Establish orthogonal parameters
- Use at least 30 trades per parameter in testing
 - Minimizes curve-fitting
- ALWAYS evaluate using out-of-sample tests
- Optimize on percent profitable trades
 - (in TradeStation)
 - Better to optimize on (ProfitFactor) * (% Profitable)

Voting Systems

- Systems that have voting components can be effective
 - Example: Elder's Triple Screen System
- System components should be uncorrelated to avoid weighted votes
 - RSI and Stochastic are highly correlated, for example
 - A moving average and oscillator tend to be uncorrelated
 - 5:1 time spread is adequate to use the same indicator in two timeframes to produce a valid vote

Trading Your IRA

- Cannot sell short or trade Futures in most IRAs
- Create "synthetic" shorts and longs using options
 - In the money options have a delta = 1 (theoretically, 0.8 practically)
 - In the money option is better than having a built-in stop loss
 - You cannot lose more than you paid for the option
 - A worthless option can possibly be revived before expiration
 - Options produce leverage
 - A \$4 option on a \$130 index gives 0.8*(130/4) = 26:1 leverage
- Trade ProShares for 2X leverage both long and short
 - www.lSignals.com will soon be available to do this

```
QLD Ultra QQQ
SSO Ultra S&P500
DDM Ultra DOW30
MVV Ultra MidCap 400
UWM Ultra Russell
```

QID UltraShort QQQ
SDS UltraShort S&P500
DXD UltraShort Dow30
MZZ UltraShort MidCap 400
TWM UltraShort Russell

How to Optimize Strategies

- Start with orthogonal parameters
- Optimize one parameter at a time
- View Strategy Optimization Report
 - Display should be a gentle "mound" around the optimal parameter value
 - An "erratic" display shows the parameter is not optimizing anything – just different performance for different parameter values
- Iterate optimization through the parameter set to reduce optimization time
 - This is called a "hillclimb" optimization
 - If the parameter values change much your parameters are not orthogonal

Portfolio Diversification

- All issues within the portfolio should be uncorrelated to reduce risk
- If so, each doubling of issues reduces variation from mean equity growth by .707
- Portfolio reaches a point of diminishing returns
 - 4 issues cuts variance in half
 - 16 issues cuts variance in half again
 - 64 issues required to reduce variance by half again
- Better strategy is to trade indices to get the benefit of their averaging

Monte Carlo Analysis

- Shows statistics of a large number of trades
 - Enables the use of recent, more relevant trades
- Enables statistical evaluation of risk and reward/risk ratio

Trading System Evaluation

- Profit Factor and % Profitable Trades are all you need to know to evaluate trading systems
- These are analogous to Payout and Probability of Winning in gaming

Glossary:

```
$W = gross winnings

#W = number of winning trades

$L = gross losses (usually normalized to 1)

#L = number of winning trades

PF = Profit Factor = $W / $L

% = Percent Winning Trades {(1-%) = Percent Losing Trades} ....as fractions
```

Some Interesting Relationships

AveTrade = T

$$\frac{AveWin}{AveLoss} = \frac{\$W/\#W}{\$L/\#W}$$

$$= \frac{\$W}{\$L} \frac{\#L}{\#W}$$

$$= PF \frac{\#L}{\#W} \frac{(\#W + \#L)}{(\#W + \#L)}$$

$$= PF \frac{(1 - \%)}{\%}$$

$$= \frac{\$W - \$L}{\#W + \#L}$$

$$= \frac{\$W}{\#W + \#L} - \frac{\$L}{\#W + \#L}$$

$$= \frac{PF}{1 + \#L/\#W} - \frac{\$L}{\#L(\#W/\#L + 1)}$$

$$and, \sin ce \frac{L}{\#L} = 1$$

$$= \frac{PF}{\frac{1}{\%}} - \frac{1}{\frac{1}{(1-\%)}}$$

$$= PF\% - (1-\%)$$

Breakeven occurs when T = 0. In this case:

$$1 = \%(PF + 1)$$

$$PF = \frac{1}{\%} - 1$$

$$PF_{BREAKEVEN} = \frac{1 - \%}{\%}$$

=%(PF+1)-1

Weighted Average Trade

$$T \frac{AveWin}{AveLoss} = TW$$

$$= (\%(PF - 1) \left(\frac{PF(1 - \%)}{\%}\right)$$

$$= PF((PF + 1) - \frac{1}{\%})(1 - \%)$$

$$= PF(PF(1 - \%) - (\% + \frac{1}{\%}) + 2)$$

Optimize by setting that derivative to zero (zero slope at the inflection point). Doing this, we get:

$$0 = -PF - 1 + \frac{1}{\%}^{2}$$

so that

$$\%_{OPTIMUM} = \frac{1}{\sqrt{1 + PF}}$$

Consecutive Losing Trades

- Probability of a losing trade is (1-%)
- Probability of a second losing trade is (1-%)²
- Probability of N consecutive losing trades is (1-%)^N
- A good trading system has, say, 60% winners
 - Therefore it has 40% losing trades
 - q = 0.4
- $q = r + 2r^2 + 3r^3 + 4r^4 + 5r^5 + \dots$
- If q = 0.4 then r = 0.2349
- Probability of getting 4 losers in a row is 4r⁴=0.0122
- If you trade 50 times per year, the probability of getting 4 losers in a row is 60.9%
 - That's almost a promise it will happen

Fractional Strategy Equity Growth

 Idea is to commit a fractional part of current capital to each trade rather than a fixed trade amount

In a random process the trades are:

$$E = (1 + fPF)(1 + fPF)(1 - f)....$$

So the Expectation of equity growth becomes:

$$E = (1 + fPF)^{\%} (1 - f)^{(1 - \%)}$$

Optimal f

 Optimize f by setting the derivative of Expectation to zero (zero slope)

$$\frac{dE}{df} = \%PF(1+fPF)^{(\%-1)}(1-f)^{(1-\%)} - (1+fPF)^{\%}(1-\%)(1-f)^{-\%} = 0$$

$$\%PF\left(\frac{1-f}{1+fPF}\right)^{(1-\%)} = (1-\%)\left(\frac{1+fPF}{1-f}\right)\left(\frac{1-f}{1+fPF}\right)^{(1-\%)}$$

$$\%PF = (1-\%)\left(\frac{1+fPF}{1-f}\right)$$

$$\%PF - \%fPF = 1+fPF - \% - \%fPF$$

$$\%PF + \% - 1 = fPF$$

$$f_{opt} = \frac{\%(PF+1)-1}{PF}$$

- This is exactly Ralph Vince's Optimal f
 - Kaufman formulation should use (Gross Wins) / (Gross Losses) = PF

Sharpe Ratio, etc

RMS is synonymous with 1 Sigma variation (for a Normal probability distribution)

Since Expectation is only slightly greater than unity:

$$RMS \approx \sqrt{\% * (fPF)^2 + (1 - \%) * f^2}$$

For a sufficiently large Profit Factor:

$$RMS \approx f * PF \sqrt{\%}$$

But downside variance is only $f\sqrt{1-\%}$

- Sharpe Ratio = (E-I) / σ ≈ 1 / RMS
- Trading System Simulation

Bertrand's Ballot Theorem

- If candidate A ultimately gets "a" votes and candidate B ultimately gets "b" votes (a>b), then the probability of Candidate A leading throughout the ballot counting process is (a-b) / (a+b)
- In our case, let a = %*PF and b = (1-%)

$$\frac{\% * PF - (1 - \%)}{\% * PF + (1 - \%)} = \frac{\% * (PF - 1) - 1}{\% * (PF - 1) + 1}$$

For positive Expectation

$$%*(PF-1)-1>0$$

OR

$$% > \frac{1}{PF-1}$$

- PF must be greater than 2 (even then % must be certainty)
- Conclusion: It is almost a promise your account will go underwater some time after you start trading!

SVD

- Single Value Decomposition (SVD)
- Must be done in C or BASIC
 - Generate a callable DLL in EasyLanguage
- Code is available in Numeric Recipes
- Use only the first EigenValue
 - Orthogonalizes Signal and Noise
- Sensitive to length of data used
- Still is a causal filter
 - System signals are always late
 - I have not yet been able to create a gangbusters system

Recommended Resources

- "New Trading Systems and Methods", 4th Edition
 - Perry J. Kaufman
 - John Wiley & Sons
- MCSPro (Monte Carlo Simulator)
 - Inside Edge Systems Bill Brower
 - 1000mileman@mindspring.com
 - **(203) 454-2754**
- My Websites:
 - www.mesasoftware.com
 - www.eMiniZ.com
 - www.IndiceZ.com
 - www.ISignals.com

Discount Opportunities

- 20 Percent discounts
- www.eMiniZ.com
 - Sign up for 30 day free trial using code XQP4135
- www.IndiceZ.com
 - Sign up for 30 day free trial using code XQH3065

And In Conclusion . . .

I know you believe you understood
what you think I said,
but I am not sure you realize
that what you heard is not what I meant