ABSTRACT OF THE DISCLOSURE

To provide a black toner having excellent charging property and transferring property against a severe environmental change. The black toner includes toner particle containing at least a binder resin, carbon black and a releasing agent, wherein: the toner particles have a weight-average particle diameter of 3.5 to 8.0 μ m; total amount of acid value and hydroxyl value of the toner is 30 to 75 mgKOH/g; average circularity of particles contained in the toner having circle-equivalent diameter of 2 μ m or more is 0.915 to 0.960; loss tangent tan δ (10³ to 10⁴ Hz) of the toner is represented by the following expression:

tan δ (10³ to 10⁴ Hz) \leq 0.0060 where the loss tangent tan δ is represented by $\varepsilon''/\varepsilon'$ where ε'' denotes dielectric loss factor and ε' denotes dielectric constant, and tan δ (10³ to 10⁴ Hz) denotes the loss tangent in a frequency range of 10³ to 10⁴ Hz; and a ratio of tan δ (10⁵ Hz) to tan δ (5 x 10⁴ Hz) is represented by the following expression:

 $1.05 \le \tan\delta \ (10^5~{\rm Hz}) \ / \ \tan\delta \ (5~x~10^4~{\rm Hz}) \le 1.40$ where $\tan\delta \ (10^5~{\rm Hz})$ denotes loss tangent at the frequency of 10^5 Hz and $\tan\delta \ (5~x~10^4~{\rm Hz})$ denotes loss tangent at the frequency of $5~x~10^4~{\rm Hz}$.