Thompson Sampling for Ad Optimization

Introduction

Thompson Sampling is a Bayesian approach to solving the multi-armed bandit problem, where the objective is to maximize the total reward by balancing exploration and exploitation. In this example, we use Thompson Sampling to optimize the selection of advertisements based on their click-through rates (CTR).

Code Explanation

Importing Libraries

First, we import the necessary libraries: numpy for numerical operations, pandas for data manipulation and analysis, matplotlib.pyplot for plotting, and random for generating random numbers.

```
python
Copy code
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import random
```

Loading the Dataset

We load the dataset containing the click-through rates (CTR) of different ads. Each row in the dataset represents a round, and each column represents an ad.

```
python
Copy code
dataset = pd.read csv('Ads CTR.csv')
```

Initializing Parameters

Several parameters are initialized:

- **Total Rounds**: The total number of rounds (iterations).
- **Total Ads**: The total number of ads.
- **selected_ads**: A list to store the index of the selected ad in each round.
- **reward_zero_counts**: A list to store the number of times each ad received a reward of 0 (not clicked).
- **reward_one_counts**: A list to store the number of times each ad received a reward of 1 (clicked).
- **total_reward**: A variable to store the cumulative reward.

```
python
Copy code
Total_Rounds = 1000
Total Ads = 10
```

```
selected_ads = []
reward_zero_counts = [0] * Total_Ads
reward_one_counts = [0] * Total_Ads
total reward = 0
```

Thompson Sampling Algorithm

Loop Over Each Round

We start a loop that iterates over each round (from 0 to Total_Rounds-1). For each round:

- current ad is initialized to 0 to store the index of the selected ad.
- max_random_value is initialized to 0 to store the highest beta value among all ads in the current round.

```
python
Copy code
for n in range(0, Total_Rounds):
    current_ad = 0
    max_random_value = 0
```

Loop Over Each Ad

For each ad, we generate a random beta value using the betavariate function from the random module. The beta distribution parameters are reward_one_counts[i] + 1 and reward_zero_counts[i] + 1. We compare the generated beta value with max_random_value. If it is higher, we update max_random_value and set current_ad to the current ad index i.

```
python
Copy code
    for i in range(0, Total_Ads):
        random_beta = random.betavariate(reward_one_counts[i] + 1,
reward_zero_counts[i] + 1)
        if random_beta > max_random_value:
            max_random_value = random_beta
            current ad = i
```

Selecting the Ad and Updating Rewards

After selecting the ad with the highest beta value, we append the selected ad index to selected_ads. We get the reward of the selected ad from the dataset for the current round. We update the reward_one_counts or reward_zero_counts list based on the received reward. We update the total_reward by adding the received reward.

```
python
Copy code
    selected_ads.append(current_ad)
    current_reward = dataset.values[n, current_ad]
    if current_reward == 1:
        reward_one_counts[current_ad] += 1
    else:
        reward_zero_counts[current_ad] += 1
    total reward += current reward
```

Visualization

Finally, we plot a histogram of the ad selections to visualize how often each ad was selected over the rounds.

```
python
Copy code
plt.hist(selected_ads)
plt.title('Histogram of ad selections')
plt.xlabel('Ads')
plt.ylabel('Number of times each ad was selected')
plt.show()
```

Detailed Explanation of the First Few Iterations

Round 1

Iteration:

```
n = 0 assume there is only 3 ads
```

Sample θi from Beta distribution for each ad i:

```
    For ad 0: θ0 = Beta(1, 1) ≈ 0.75 (random draw)
    For ad 1: θ1 = Beta(1, 1) ≈ 0.60 (random draw)
    For ad 2: θ2 = Beta(1, 1) ≈ 0.45 (random draw)
```

Select the ad with the highest θi :

• Ad 0

Update:

- Suppose the reward for ad 0 is 1 (i.e., user clicked the ad)
- Update counts:
 - \circ Number_of_rewards_1 = [1, 0, 0]
 - \circ Number_of_rewards_0 = [0, 0, 0]
- Update total reward:
 - \circ total reward = 1
- Store selected ad:
 - \circ ads_selected = [0]

Round 2

Iteration:

Sample θi from Beta distribution for each ad i:

- For ad 0: θ 0 = Beta(2, 1) \approx 0.90 (random draw)
- For ad 1: θ 1 = Beta(1, 1) \approx 0.50 (random draw)
- For ad 2: θ 2 = Beta(1, 1) \approx 0.65 (random draw)

Select the ad with the highest θi :

• Ad 0

Update:

- Suppose the reward for ad 0 is 0 (i.e., user did not click the ad)
- Update counts:
 - \circ Number_of_rewards_1 = [1, 0, 0]
 - \circ Number_of_rewards_0 = [1, 0, 0]
- Total reward remains the same:
 - \circ total reward = 1
- Store selected ad:
 - \circ ads_selected = [0, 0]

Round 3

Iteration:

n = 2

Sample θi from Beta distribution for each ad i:

- For ad 0: θ 0 = Beta(2, 2) \approx 0.55 (random draw)
- For ad 1: θ 1 = Beta(1, 1) \approx 0.70 (random draw)
- For ad 2: θ 2 = Beta(1, 1) \approx 0.40 (random draw)

Select the ad with the highest θi :

Ad 1

Update:

- Suppose the reward for ad 1 is 1
- Update counts:
 - \circ Number_of_rewards_1 = [1, 1, 0]
 - \circ Number of rewards 0 = [1, 0, 0]
- Update total reward:
 - \circ total_reward = 2

- Store selected ad:
 - \circ ads_selected = [0, 0, 1]

Round 4

Iteration:

n = 3

Sample θi from Beta distribution for each ad i:

- For ad 0: θ 0 = Beta(2, 2) \approx 0.60 (random draw)
- For ad 1: θ 1 = Beta(2, 1) \approx 0.85 (random draw)
- For ad 2: $\theta 2 = \text{Beta}(1, 1) \approx 0.50$ (random draw)

Select the ad with the highest θi :

• Ad 1

Update:

- Suppose the reward for ad 1 is 0
- Update counts:
 - \circ Number_of_rewards_1 = [1, 1, 0]
 - \circ Number_of_rewards_0 = [1, 1, 0]
- Total reward remains the same:
 - \circ total_reward = 2
- Store selected ad:
 - \circ ads_selected = [0, 0, 1, 1]

Summary after 4 Rounds

- Ad 0 has been selected twice, with rewards [1, 0].
- Ad 1 has been selected twice, with rewards [1, 0].
- Ad 2 has not been selected yet.

The algorithm continues in this manner, balancing exploration and exploitation by sampling from the Beta distribution and updating beliefs based on observed rewards.