## Série 5

**1.** Voici la représentation de la suite définie par  $a_n = \frac{n+2}{n}$ ,  $n \in \mathbb{N}^*$ .



a) Soit  $N(\varepsilon) \in \mathbb{N}^*$  tel que  $n \ge N(\varepsilon) \Rightarrow |a_n - 1| < \varepsilon$ .

Déterminer graphiquement  $N(\varepsilon)$  dans les trois cas suivants :

i) 
$$\varepsilon = \frac{1}{2}$$
,

ii) 
$$\varepsilon = \frac{1}{4}$$
,

iii) 
$$\varepsilon = \frac{1}{8}$$

- b) Démontrer à l'aide de la définition que  $\lim_{n\to\infty} a_n = 1$ .
- 2. Déterminer le terme général des suites dont on donne les premiers termes, puis calculer leur limite, si elle existe.

a) 
$$(a_n): 4, \frac{7}{3}, 2, \frac{13}{7}, \frac{16}{9}, \frac{19}{11}, \frac{22}{13}, \cdots$$

b) 
$$(b_n): \frac{1}{2}, \frac{4}{5}, \frac{7}{10}, \frac{10}{17}, \frac{1}{2}, \frac{16}{37}, \frac{19}{50}, \cdots$$

c) 
$$(c_n)$$
:  $\frac{2}{3}$ ,  $0$ ,  $\frac{4}{15}$ ,  $0$ ,  $\frac{6}{35}$ ,  $0$ ,  $\frac{8}{63}$ ,  $0$ ,  $\frac{10}{99}$ , ...

d) 
$$(d_n)$$
: 5,  $\frac{5}{3}$ ,  $\frac{5}{7}$ ,  $\frac{1}{3}$ ,  $\frac{5}{31}$ ,  $\frac{5}{63}$ ,  $\frac{5}{127}$ ,  $\frac{1}{51}$ ,  $\frac{5}{511}$ , ...

**3.** Calculer les limites, si elles existent, des suites définies par les termes généraux suivants :

a) 
$$a_n = \frac{1+2+\cdots+n}{n^2+n+1}$$
,

b) 
$$b_n = \frac{3(n+2)! + 2(n+1)!}{(n+3)!}$$
,

c) 
$$c_n = (-1)^n \sin(\frac{n\pi}{2})$$
.

**4.** On considère la suite  $(a_n)$  définie par récurrence de la façon suivante :

$$a_{n+1} = 3 - \frac{2}{a_n}, \quad a_1 = 3, \quad n \in \mathbb{N}^*.$$

Déterminer le terme général de la suite  $(a_n)$ , démontrer ce résultat par récurrence, puis calculer, si elle existe, la limite de cette suite.

5. A l'aide du théorème des deux gendarmes, étudier la convergence de ces deux suites.

a) 
$$a_n = \frac{\sqrt{n^2 + 1}}{n}$$
,  $n \in \mathbb{N}^*$ ,

a) 
$$a_n = \frac{\sqrt{n^2 + 1}}{n}$$
,  $n \in \mathbb{N}^*$ , b)  $b_n = \frac{\sin(\frac{n\pi}{2})}{(n+1)^2}$ ,  $n \in \mathbb{N}^*$ .

- **6.** On considère la suite  $(a_n)$  définie par son terme général  $a_n = \sqrt{1 + \frac{1}{n}}$ ,  $n \in \mathbb{N}^*$ . En utilisant la définition de la limite d'une suite, montrer que  $(a_n)$  converge vers a = 1.
- 7. Exercice facultatif

Soient  $(a_n)$  et  $(b_n)$  deux suites convergentes. Démontrer l'implication suivante :

$$\lim_{n \to \infty} a_n = a \quad \text{et} \quad \lim_{n \to \infty} b_n = b \qquad \Rightarrow \qquad \lim_{n \to \infty} (a_n + b_n) = a + b.$$

Réponses de la série 5

**2.** a) 
$$a = \lim_{n \to \infty} a_n = \frac{3}{2}$$
.

c) 
$$c = \lim_{n \to \infty} c_n = 0$$
.

b) 
$$b = \lim_{n \to \infty} b_n = 0$$
.

$$d) d = \lim_{n \to \infty} d_n = 0.$$

**3.** 
$$a_n = \frac{2^{n+1}-1}{2^n-1}, \qquad \lim_{n\to\infty} a_n = 2.$$

**4.** a) 
$$a = \lim_{n \to \infty} a_n = \frac{1}{2}$$
.

b) 
$$b = \lim_{n \to \infty} b_n = 0$$
.

c) La suite  $(c_n)$  diverge.

5. a) 
$$a = \lim_{n \to \infty} a_n = 1$$
.

b) 
$$b = \lim_{n \to \infty} b_n = 0$$
.