Learning from Labeled and Unlabeled Vertices in Networks 网络中标记和未标记顶点的学习

KDD, 2017

Wei Ye (University of Vienna)

table of Contents

- 1.what is wvGN (weighted-vote Geometric Neighbor classier)
- 2.GCD to jump out local optima
- 3.experiment result

Definition 3.1. Geometric One-hop Neighborhood. The geometric one-hop neighbors of a vertex v_i is defined as a set \mathcal{N}_i^1 which contains those vertex v_j which can be reached by a random walker from v_i in one step. The geometric one-hop neighborhood is defined as a set $\mathcal{N}^1 = \bigcup_{i=1}^l \mathcal{N}_i^1$.

Definition 3.2. Geometric m-hop Neighborhood. The geometric m-hop neighbors of a vertex v_i is defined as a set \mathcal{N}_i^m which contains those vertex v_j which can be reached by a random walker from v_i in m steps. The geometric m-hop neighborhood is defined as a set $\mathcal{N}^m = \bigcup_{i=1}^l \mathcal{N}_i^m$.

The affinity matrix

of vertices is denoted by $A \in \mathbb{R}^{n \times n}$ with $a_{i,j} = a_{j,i}, a_{i,i} = 0$. The degree matrix D is a diagonal matrix associated with A with $d_{i,i} = \sum_j a_{j,i}$. The random walk transition matrix P is defined as $D^{-1}A$.

We denote a vertex v_q in the geometric one-hop neighborhood \mathcal{N}^1 by p_q which is the q^{th} row of the transition matrix P

$$f(\mathbf{p}_q) = \mathbf{p}_q \cdot \mathbf{w}^{\mathsf{T}} + b \tag{1}$$

$$y_q = sign(f(\mathbf{p}_q)) = sign(\mathbf{p}_q \cdot \mathbf{w}^{\mathsf{T}} + b) \tag{2}$$

Equation (1) does not take the neighborhood relationship into concideration to classify vertices in networks, which would lead to the deterioration of the classifier.

use a weighted-vote strategy

$$f(\mathbf{p}_{q}) = \mathbf{p}_{q} \cdot \mathbf{w}^{\mathsf{T}} + b > 0$$

$$y_{q} = 1$$

$$\text{if } \frac{\sum_{i \in \mathcal{N}_{q}^{1}} a_{i,q} f(\mathbf{p}_{i})}{\sum_{i \in \mathcal{N}_{q}^{1}} a_{i,q}} \ge +1$$

$$(3)$$

$$f(\mathbf{p}_q) = \mathbf{p}_q \cdot \mathbf{w}^{\mathsf{T}} + b < 0$$

$$y_q = -1$$

$$\text{if } \frac{\sum_{i \in \mathcal{N}_q^1} a_{i,q} f(\mathbf{p}_i)}{\sum_{i \in \mathcal{N}_q^1} a_{i,q}} \le -1$$

$$(4)$$

$$y_{q} \cdot \frac{\sum_{i \in \mathcal{N}_{q}^{1}} a_{i,q}(\mathbf{p}_{i} \cdot \mathbf{w}^{\mathsf{T}} + b)}{\sum_{i \in \mathcal{N}_{q}^{1}} a_{i,q}} \ge 1$$

$$\Rightarrow y_{q} \cdot \left(\frac{\sum_{i \in \mathcal{N}_{q}^{1}} a_{i,q} \cdot \mathbf{p}_{i}}{d_{q,q}} \cdot \mathbf{w}^{\mathsf{T}} + b\right) \ge 1$$

$$\Rightarrow y_{q} \cdot \left(\frac{\mathbf{a}_{q} \cdot \mathbf{P}}{d_{q,q}} \cdot \mathbf{w}^{\mathsf{T}} + b\right) \ge 1$$

$$\Rightarrow y_{q} \cdot \left(\mathbf{p}_{q} \cdot \mathbf{P} \cdot \mathbf{w}^{\mathsf{T}} + b\right) \ge 1$$

$$\Rightarrow y_{q} \cdot \left(\mathbf{p}_{q} \cdot \mathbf{P} \cdot \mathbf{w}^{\mathsf{T}} + b\right) \ge 1$$

$$(5)$$

what is the label of the vertex v5?

Geometric m-hop Neighborhood

In the geometric m-hop neighborhood \mathcal{N}_i^m , v_q is denoted by \mathbf{p}_q^m which is the q-th row of the transition matrix \mathbf{P}^m . If we replace \mathbf{p}_q in the Inequality (5) with \mathbf{p}_q^m , we have:

$$y_{q} \cdot \frac{\sum_{i \in \mathcal{N}_{q}^{m}} a_{i,q}(\mathbf{p}_{i}^{m} \cdot \mathbf{w}^{\top} + b)}{\sum_{i \in \mathcal{N}_{q}^{m}} a_{i,q}} \ge 1$$

$$\Rightarrow y_{q} \cdot \left(\frac{\sum_{i \in \mathcal{N}_{q}^{m}} a_{i,q} \cdot \mathbf{p}_{i}^{m}}{d_{q,q}} \cdot \mathbf{w}^{\top} + b\right) \ge 1$$

$$\Rightarrow y_{q} \cdot \left(\frac{\mathbf{a}_{q} \cdot \mathbf{P}^{m}}{d_{q,q}} \cdot \mathbf{w}^{\top} + b\right) \ge 1$$

$$\Rightarrow y_{q} \cdot \left(\mathbf{p}_{q} \cdot \mathbf{P}^{m} \cdot \mathbf{w}^{\top} + b\right) \ge 1$$

$$\Rightarrow y_{q} \cdot \left(\mathbf{p}_{q}^{m} \cdot \mathbf{P} \cdot \mathbf{w}^{\top} + b\right) \ge 1$$

$$\Rightarrow y_{q} \cdot \left(\mathbf{p}_{q}^{m+1} \cdot \mathbf{w}^{\top} + b\right) \ge 1$$

where \mathbf{p}_q^{m+1} is the representation of v_q in the geometric (m+1)-hop neighborhood.

Similar to SVM,add a slack variable

Unconstrained SVM problem

$$\min_{\mathbf{w}, b} \ \frac{1}{2} \mathbf{w} \cdot \mathbf{w}^{\mathsf{T}} + \frac{\alpha}{l} \sum_{q=1}^{l} \max(1 - y_q \cdot f(\mathbf{x}_q), 0)^2$$
 (8)

represent the vertex
$$v_q$$
 by $\mathbf{x}_q = \mathbf{p}_q^2 + \cdots + \mathbf{p}_q^{m+1} = \mathbf{p}_q \cdot (\mathbf{P} + \cdots + \mathbf{P}^m)$.

$$\min_{\mathbf{w}} F(\mathbf{w}) = \frac{\lambda}{2} (\mathbf{w} \odot \mathbf{d}) (\mathbf{w} \odot \mathbf{d})^{\mathsf{T}} + \frac{\alpha}{l} \sum_{q=1}^{l} \max(1 - y_q \mathbf{x}_q \mathbf{w}^{\mathsf{T}}, 0)^2$$
(9)

 \mathbf{x}_q as $\left[\mathbf{x}_q, 1\right]$ and w as $\left[\mathbf{w}, b\right]$.

a dampening factor at each hop

the m^{th} hop is defined as $\rho^m/m!$,

$$\mathbf{x}_q = \left[\mathbf{p}_q \cdot \left(\frac{\rho^1}{1!}\mathbf{P} + \dots + \frac{\rho^m}{m!}\mathbf{P}^m\right), 1\right],$$

$$\mathbf{d} = \left[diag(\mathbf{D}^{-\frac{1}{2}})^{\intercal}, 1 \right]$$

⊙ means the Hadamard product,

How to jump out local optima? (GCD)

- 1.GD(Gradient Decent)
- 2.CD(Coordinate Decent)
- What is Coordinate Decent?

• For
$$f(X)$$
, $X^{(k-1)} \longrightarrow X^{(k)}$ $x_1^{(k)} \in \underset{x_1}{\operatorname{argmin}} f(x_1, x_2^{(k-1)}, x_3^{(k-1)}, \dots x_n^{(k-1)})$ $x_2^{(k)} \in \underset{x_2}{\operatorname{argmin}} f(x_1^{(k)}, x_2, x_3^{(k-1)}, \dots x_n^{(k-1)})$ $x_3^{(k)} \in \underset{x_2}{\operatorname{argmin}} f(x_1^{(k)}, x_2^{(k)}, x_3, \dots x_n^{(k-1)})$...
$$x_n^{(k)} \in \underset{x_2}{\operatorname{argmin}} f(x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, \dots x_n)$$
 502188 每一次我们解决了 $x_i^{(k)}$,我们都会使用新的值。

GD

$$F'(\mathbf{w}) = \lambda \mathbf{w} \odot \mathbf{d} - \frac{2\alpha}{l} \sum_{j \in \mathbb{I}(\mathbf{w})} y_j \mathbf{x}_j b_j(\mathbf{w})$$
 (10)

where $b_j(\mathbf{w}) = 1 - y_j \mathbf{x}_j \mathbf{w}^{\mathsf{T}}$ and $\mathbb{I}(\mathbf{w}) = \{j | b_j(\mathbf{w}) > 0\}$. We iteratively update \mathbf{w} as follows:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t F'(\mathbf{w}^t) \tag{11}$$

where η_t is the learning rate at the t^{th} iteration and is chosen from $\{1, \beta, \beta^2, \dots\}$ by a line search.

The last w in GD is the first w in CD

$\mathsf{C}\mathsf{D}$

sequence $\{\mathbf w^t\}$ $(t=0,1,2,\ldots)$. At each iteration, $\mathbf w^{t+1}$ is produced by sequentially updating each entry of $\mathbf w^t$ with other entries fixed. The process produces a sequence of vectors $\mathbf w^{t,i}$ $(i=1,\ldots,n+1)$, such that $\mathbf w^{t,0}=\mathbf w^t$, $\mathbf w^{t,n+1}=\mathbf w^{t+1}$ and

$$\mathbf{w}^{t,i} = [w_1^{t+1}, \dots, w_i^{t+1}, w_{i+1}^t, \dots, w_{n+1}^t]$$

Updating $\mathbf{w}^{t,i}$ to $\mathbf{w}^{t,i+1}$ becomes the following one-variable sub-problem:

$$\min_{z} F_{i}(\mathbf{w}_{1}^{t+1}, \dots, \mathbf{w}_{i}^{t+1}, \mathbf{w}_{i+1}^{t} + z, \mathbf{w}_{i+2}^{t}, \dots, \mathbf{w}_{n+1}^{t})$$

$$\equiv \min_{z} F_{i}(\mathbf{w}^{t,i} + z\mathbf{e}_{i})$$

$$= \min_{z} \frac{\lambda}{2} \left((\mathbf{w}^{t,i} + z\mathbf{e}_{i}) \odot \mathbf{d} \right) \left((\mathbf{w}^{t,i} + z\mathbf{e}_{i}) \odot \mathbf{d} \right)^{\mathsf{T}}$$

$$+ \frac{\alpha}{l} \sum_{j \in \mathbb{I}(\mathbf{w}^{t,i} + z\mathbf{e}_{i})} (b_{j}(\mathbf{w}^{t,i} + z\mathbf{e}_{i}))^{2}$$
(12)

where $e_i \in \mathbb{R}^{1 \times (n+1)}$ is a vector with the i^{th} entry 1 and all other entries 0.

The first derivative of (12) with respect to z is:

$$F_i'(z) = \lambda \left(\mathbf{w}_i^{t,i} + z \right) \cdot \mathbf{d}_i - \frac{2\alpha}{l} \sum_{j \in \mathbb{I}(\mathbf{w}^{t,i} + z\mathbf{e}_i)} (y_j x_{j,i} (b_j(\mathbf{w}^{t,i} + z\mathbf{e}_i))$$
(13)

As pointed out in [4], $F_i(z)$ is not twice differentiable at some j, where $b_j(\mathbf{w}^{t,i} + z\mathbf{e}_i) = 0$. Following [4, 19], we define the generalized second derivative of (12) with respect to z as:

$$F_i''(z) = \lambda \mathbf{d}_i + \frac{2\alpha}{l} \sum_{j \in \mathbb{I}(\mathbf{w}^{t,i} + z\mathbf{e}_i)} x_{j,i}^2$$
 (14)

The Newton direction at a given z is $\frac{F_i'(z)}{F_i''(z)}$. We start from z=0 and apply a line search $z=z-\eta_i\frac{F_i'(z)}{F_i''(z)}$ until $F_i(z-\eta_i\frac{F_i'(z)}{F_i''(z)})< F_i(z)$, where η_i is the learning rate for the i^{th} element and is chosen from $\{1,\beta,\beta^2,\dots\}$.

[4]Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. 2008. Coordinate descent method for large-scale I2-loss linear support vector machines. Journal of Machine Learning Research 9, Jul (2008), 1369–1398.

Complexity analysis.

• Assume that a network has n vertices and r edges, I is the number of the labeled vertices,k is the number of w elements.

$$O(n \cdot (r + k \cdot l)).$$

Experiment

• Network1 has 100 into two classes (3 is 21.

Figure 4: Classification results on Network1. The two labeled vertices are in black and the misclassified vertices are in red. Subcaption: Method (Micro-F1, Macro-F1).

Table 1: Classification results on Network1 with the varying number of labeled vertices (#LV) in each class.

	Micro-F1 (%)						Macro-F1 (%)					
#LV	1	2	3	4	5	1	2	3	4	5		
wvGN	98.7±0.7	98.9±0.3	99.3±0.5	99.0±0.3	99.2±0.5	98.6±0.7	98.8±0.4	99.2±0.6	98.9±0.3	99.2±0.5		
wvGN (full)	98.7±0.5	98.8 ± 0.7	99.3±0.5	99.0±0.6	99.2±0.5	98.6±0.5	98.7 ± 0.7	99.2±0.6	98.9 ± 0.7	99.2±0.6		
node2vec	96.9±0.5	94.5 ± 6.0	94.8±5.1	94.5±5.6	94.2 ± 5.4	96.7±0.5	94.3±5.9	94.6±5.1	94.2±5.5	94.0 ± 5.4		
Deepwalk	74.6±26.7	75.6 ± 20.7	77.8±18.9	75.9 ± 20.1	79.6 ± 12.0	74.3±26.9	74.5 ± 22.4	77.0±19.9	75.0 ± 21.2	78.7±12.4		
SNBC	85.6±15.6	81.2±17.4	71.4±10.7	71.3 ± 10.5	74.9 ± 10.3	84.0±16.6	80.9 ± 17.8	70.9 ± 10.8	70.5 ± 10.6	73.8±10.0		
wvRN	77.9±19.2	66.6±18.5	76.3±21.1	86.7±17.7	92.6 ± 7.3	71.5±25.2	55.1±24.0	70.8±25.7	84.3 ± 20.4	91.7±8.2		
SCRN	77.3±22.4	74.2 ± 21.8	81.2±17.2	86.3±13.6	90.2±10.6	66.6±32.3	61.0±31.8	73.5±25.6	80.6±21.5	87.0±16.2		
SocDim	55.2±9.9	52.0±8.5	53.7±5.8	57.2±6.2	60.0 ± 6.3	51.8±10.2	49.7 ± 7.5	52.4±4.6	54.9±5.8	58.4 ± 5.4		
HeatKernel	82.4±19.8	68.8±20.0	78.6±21.2	88.2±16.3	90.9±11.9	77.7±25.9	57.9±26.1	73.8±25.8	86.6±18.0	90.2±12.3		
LGC	60.4±18.6	55.6±18.3	60.5±21.9	62.1±22.1	62.4±17.0	45.1±22.4	39.5±19.7	47.5±26.4	46.9 ± 27.0	45.1±20.1		
TSVM	37.8±0	37.5 ± 0	37.2 ± 0	37.0 ± 0	36.7 ± 0	27.4±0	27.3 ± 0	27.1 ± 0	27.0 ± 0	26.8 ± 0		
LapSVM	51.9±9.4	52.9±8.8	56.0±8.5	58.2±14.4	65.1±12.8	41.6±8.9	45.6±9.9	49.7±8.2	52.9±16.7	62.4±12.4		

• Network2 has 1 three classes (1 degree is 10.

Figure 5: Classification results on Network2. The three labeled vertices are in black and the misclassified vertices are in red. Subcaption: Method (Micro-F1, Macro-F1).

nich are grouped into /ely). average

Table 2: Classification results on Network2 with the varying number of labeled vertices (#LV) in each class.

		Micro-F1 (%)	Macro-F1 (%)							
#LV	1	2	3	4	5	1	2	3	4	5
wvGN	66.7±11.4	71.8±11.0	77.3±14.5	89.0±2.7	88.9±2.5	67.7±12.2	73.3±11.6	79.1±15.0	90.9±2.5	90.9±2.1
wvGN (full)	67.4±10.1	79.9±7.6	69.6±15.8	86.3±3.5	84.1±5.8	68.1±10.4	82.3 ± 7.1	71.4±15.1	87.7±4.2	85.3±6.0
node2vec	60.4±9.7	70.5 ± 7.3	61.8±11.5	67.9±10.9	67.9±10.9	58.9±12.3	71.8±8.2	61.2±12.6	67.8±12.3	67.8±12.3
Deepwalk	42.4±7.4	46.5 ± 7.1	42.9±12.6	51.2±5.9	51.2±5.9	40.7±7.2	45.2 ± 6.8	41.7±11.7	48.5 ± 5.8	48.5±5.8
SNBC	35.8±6.7	45.5±12.8	48.7 ± 12.3	56.0±5.0	57.2 ± 4.8	35.3±12.0	43.8±13.1	46.0±13.9	56.7±5.8	57.9±4.9
wvRN	45.0±12.1	56.0±15.7	56.9±11.3	68.1±7.5	68.1±7.5	36.2±13.9	49.4±17.8	53.9±14.9	64.8±11.6	64.8±11.6
SCRN	45.9±14.6	50.3±14.8	57.3±10.3	57.2±4.8	65.2 ± 10.3	36.3±16.4	39.7±18.3	50.1±15.2	57.9 ± 4.9	58.7±17.4
SocDim	31.0±7.9	37.0 ± 7.6	42.9 ± 7.2	44.5 ± 4.7	44.5 ± 4.7	29.1±6.7	35.4±6.5	41.3 ± 6.7	42.1±5.2	42.1±5.2
HeatKernel	48.3±10.1	57.3±16.4	55.3±12.6	65.1±8.0	65.1±8.0	40.2±14.5	52.2±17.7	52.5±14.7	59.6±12.0	59.6±12.0
LGC	31.2±5.1	31.3 ± 4.7	31.5 ± 8.0	35.2 ± 4.8	35.2 ± 4.8	29.6±3.5	29.0±3.6	28.4 ± 6.7	32.1±3.8	32.1 ± 3.8
TSVM	54.2±5.0	64.6 ± 7.5	51.7 ± 4.1	52.0 ± 4.9	52.0 ± 4.9	53.5±5.0	64.7 ± 6.7	51.4±4.1	51.7±4.9	51.7±4.9
LapSVM	37.6±13.2	49.4±10.7	58.3±10.5	63.1±8.5	63.1±8.5	23.4±8.6	39.1±11.2	56.9±12.3	66.0±7.9	66.0±7.9

- For the real-world data, we use four popular relational datasets
- CoRA, PubMed, IMDb, Wikipedia

Table 3: Classification results on CoRA (#vertices: 24,519, #edges: 92,207, #classes: 10) with the varying percent of labeled vertices (%LV). N/A means the results are not available because the algorithm is not finished in one week.

	Micro-F1 (%)						Macro-F1 (%)					
%LV	1%	3%	5%	7%	9%	1%	3%	5%	7%	9%		
wvGN	62.8±2.8	71.6±0.9	74.2±0.6	75.4±0.5	75.8±0.4	52.8±2.0	63.0±1.0	66.1±1.0	67.7±0.6	68.3±0.8		
node2vec	49.7±15.4	50.3±7.3	50.4±7.7	54.2±7.5	54.8±8.0	42.2±10.0	43.3 ± 6.5	46.4±5.9	49.2±5.3	50.7 ± 7.0		
Deepwalk	23.2±1.6	16.5±1.9	18.8 ± 1.4	24.1±0.2	26.7 ± 0.9	15.0±0.5	14.5 ± 1.2	16.9 ± 1.0	20.0 ± 0.1	21.6 ± 0.7		
SNBC	50.1±2.6	63.0 ± 1.1	66.5±0.9	68.0±0.9	68.2±0.9	27.2±2.4	49.2 ± 2.1	54.4±0.1	57.3±1.5	57.8±1.0		
wvRN	65.2 ± 1.4	70.0 ± 0.7	72.1±0.5	73.2±0.6	74.3 ± 0.3	52.5±2.2	59.3±1.0	61.9±0.8	63.7±0.6	64.9 ± 0.6		
SCRN	64.3±1.9	70.3 ± 0.7	72.6 ± 0.4	73.6 ± 0.4	74.6 ± 0.3	50.8±3.0	59.2±0.9	62.2±0.7	63.9±0.5	65.2±0.5		
SocDim	49.3±0.9	55.6±0.5	59.6±0.6	62.5±0.8	63.6±0.4	27.8±1.3	44.8 ± 0.8	49.9±0.9	53.4±1.2	54.8 ± 0.8		
HeatKernel	64.3±2.0	69.6±0.7	72.0 ± 0.5	73.1±0.6	74.2 ± 0.2	51.7±3.1	59.1±1.0	62.0±0.9	63.7±0.6	64.9 ± 0.4		
LGC	47.4±2.6	48.7 ± 2.5	48.6 ± 1.8	48.7 ± 2.0	48.5 ± 1.7	23.1±0.3	24.5±2.9	23.1±2.7	23.3±1.6	22.3±2.3		
TSVM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
LapSVM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		

Table 4: Classification results on PubMed (#vertices: 19,717, #edges: 44,324, #classes: 3) with the varying percent of labeled vertices (%LV).

		I	Micro-F1 (%))		Macro-F1 (%)					
%LV	1%	3%	5%	7%	9%	1%	3%	5%	7%	9%	
wvGN	63.0±5.7	75.8±1.2	78.4±0.8	79.0±0.6	79.8±0.5	59.5±6.4	73.9±1.1	76.7±1.0	77.3±0.8	78.2±0.5	
node2vec	64.0±4.0	63.2±6.1	64.5±5.5	65.6±5.7	61.1±6.2	61.8±4.5	69.5±8.1	61.6±6.8	62.7±6.8	57.4±7.4	
Deepwalk	33.2±1.4	35.0 ± 1.0	35.2 ± 0.8	35.5 ± 0.8	36.1±0.9	32.7±1.2	34.5 ± 0.9	34.7 ± 0.9	35.0 ± 0.6	35.7±0.9	
SNBC	52.1±7.2	71.3±1.8	72.3±0.6	78.4±0.6	79.5 ± 0.5	44.2±10.0	68.0±1.5	73.7±1.0	76.3±1.0	77.7±0.6	
wvRN	35.8±0.8	35.9±0.5	35.9 ± 0.4	35.9±0.3	36.0 ± 0.3	33.2±0.3	33.5 ± 0.3	33.3 ± 0.4	33.4±0.3	33.3 ± 0.2	
SCRN	36.4±0.9	36.2±0.3	36.3±0.5	36.2±0.3	36.2 ± 0.3	33.1±0.3	33.6 ± 0.2	33.4±0.4	33.4±0.4	33.3 ± 0.3	
SocDim	42.6±1.6	47.6±1.9	51.5±1.2	55.2±2.1	57.3±1.7	37.7±3.2	43.3 ± 4.1	47.7±3.1	53.1±3.3	55.4±2.2	
HeatKernel	67.9±2.4	73.3±1.1	76.5±0.6	77.7±0.6	78.8 ± 0.4	65.9±2.4	71.8 ± 1.0	75.0±0.6	76.4±0.7	77.5 ± 0.4	
LGC	62.2±10.0	71.5±6.3	75.6±2.3	76.6±1.6	76.6 ± 1.7	56.8±11.9	68.9±0	72.7 ± 3.1	74.1±1.8	74.1±1.8	
TSVM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
LapSVM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Table 5: Classification results on IMDB (#vertices: 19,359, #edges: 362,079, #classes: 21) with the varying percent of labeled vertices (%LV).

	Micro-F1 (%)					Macro-F1 (%)					
%LV	1%	3%	5%	7%	9%	1%	3%	5%	7%	9%	
wvGN	24.5±7.7	40.8±1.9	41.5±0.9	43.4±0.9	44.1±0.8	8.7±1.2	11.6±0.5	12.5±0.5	13.4±0.7	13.6±0.5	
node2vec	11.5±2.7	14.7 ± 1.1	14.1 ± 0.5	15.3 ± 1.0	18.0 ± 1.1	8.6±1.9	11.9 ± 0.4	11.7 ± 0.2	12.1 ± 0.3	12.8 ± 0.4	
Deepwalk	15.2±1.7	13.3 ± 0.7	15.9±0.2	24.8±1.9	32.8±1.2	11.2±0.6	10.7 ± 0.3	11.1±0.5	11.2±0.5	11.0 ± 0.2	
SNBC	20.3±8.3	35.8 ± 2.4	35.3 ± 1.0	34.8 ± 0.7	34.8 ± 0.8	7.6±1.5	12.3 ± 0.7	14.4 ± 0.4	15.6 ± 0.4	16.5±0.3	
wvRN	33.3±5.0	36.0 ± 0.5	36.4 ± 0.4	37.0 ± 0.3	37.4±0.3	10.0±0.7	10.4 ± 0.3	10.3 ± 0.2	10.4 ± 0.2	10.3 ± 0.2	
SCRN	33.6±6.2	36.7 ± 0.9	37.1±0.3	37.8 ± 0.4	38.0 ± 0.4	9.3±0.9	9.5 ± 0.4	9.5 ± 0.2	10.0 ± 0.3	10.0 ± 0.2	
SocDim	37.2±1.8	38.6 ± 1.2	40.3 ± 0.1	40.8 ± 0.4	41.1±0.3	7.6±0.5	8.0 ± 0.5	8.8 ± 0	9.2 ± 0.4	0.095 ± 0.003	
HeatKernel	30.8±6.8	35.6 ± 1.2	37.2±0.6	39.3±0.7	41.2±0.8	11.7±1.4	13.9±0.6	14.7 ± 0.5	15.5±0.6	16.4 ± 0.6	
LGC	37.1±4.0	39.4 ± 0.1	39.7 ± 0.1	39.9 ± 0.1	39.9±0.1	8.3±0.4	9.0 ± 0.2	9.4 ± 0.2	9.4 ± 0.1	9.5 ± 0.1	
TSVM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
LapSVM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Table 6: Classification on Wikipedia (#vertices: 4,777, #edges: 184,812, #classes: 40) with the varying percent of labeled vertices (%LV).

	Micro-F1 (%)						Macro-F1 (%)					
%LV	1%	3%	5%	7%	9%	1%	3%	5%	7%	9%		
wvGN	41.6±1.0	45.3±0.6	44.9±1.0	45.4±1.0	45.4±0.7	6.5±0.4	6.8±0.4	6.3±0.4	6.8±0.5	6.6±0.3		
node2vec	29.3±5.0	31.2±1.8	31.1 ± 2.4	31.7±2.6	34.3 ± 4.2	6.4±0.4	7.1 ± 0.2	7.6 ± 0.5	8.0 ± 0.6	8.3 ± 0.5		
deepwalk	17.7±1.5	14.0 ± 1.2	13.5 ± 1.4	13.8 ± 1.8	15.7 ± 1.8	4.2±0.4	4.1 ± 0.2	4.1 ± 0.3	4.0 ± 0.3	4.0 ± 0.2		
SNBC	41.9 ± 0.5	42.5 ± 0.4	42.4 ± 0.6	42.5±0.6	42.6 ± 0.5	4.4±0.2	4.4 ± 0.3	4.4 ± 0.5	4.5 ± 0.3	4.6 ± 0.4		
wvRN	1.6 ± 1.1	4.2 ± 2.5	7.8 ± 4.0	10.4 ± 3.5	13.0 ± 6.6	0.7 ± 0.4	1.1 ± 0.6	1.6 ± 0.5	2.0 ± 0.7	2.2 ± 0.6		
SCRN	1.7 ± 1.3	4.2 ± 2.1	8.3 ± 4.1	11.8±3.1	15.0 ± 6.2	0.7 ± 0.4	1.1 ± 0.5	1.7 ± 0.5	2.1 ± 0.5	2.4 ± 0.5		
SocDim	33.9±1.5	32.4±1.6	32.6±0.8	33.3±0.9	33.5 ± 1.0	5.6±0.2	6.4 ± 0.3	6.5 ± 0.4	6.8 ± 0.5	7.2 ± 0.4		
HeatKernel	1.3 ± 1.0	4.3 ± 3.3	7.7 ± 4.3	10.5±3.8	12.8 ± 8.7	0.6 ± 0.4	1.0 ± 0.7	1.5 ± 0.6	1.7 ± 0.6	2.0 ± 0.7		
LGC	36.7±6.5	38.9 ± 0.1	39.0 ± 0.1	39.0±0.1	39.1 ± 0.1	3.0 ± 0.3	3.0 ± 0	3.0 ± 0	3.0 ± 0	2.9 ± 0		
TSVM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
LapSVM	27.4±13.9	41.9±0.6	42.0 ± 0.6	42.2 ± 0.3	42.2 ± 0.6	2.4±0.7	4.1 ± 0.4	4.2 ± 0.3	4.3 ± 0.3	4.2 ± 0.4		

Thank you!