Authentication: Are you who you say you are?

Access Control

Access control for physical security

- Access control for computer security involves restricted access to computer system resources
 - File systems
 - Cloud computers
 - High performance computers
 - ...
- Another foundation of computer security, other than crypto

Two parts of access control

- Authentication: Are you who you say you are?
 - Determine whether access is allowed
 - Authenticate human to machine
 - Or authenticate machine to machine
 - Authentication over network is different than local machine
- Authorization: Are you allowed to do that?
 - Once you have access, what can you do?
 - Enforces limits on actions
- Note: "access control" often used as synonym for authorization

Are You Who You Say You Are?

- How to authenticate human to a machine?
- Can be based on...
 - Something you know
 - For example, a password
 - Something you have
 - For example, a ATM card or smartcard
 - Something you are
 - For example, your fingerprint

Something You Know

- Passwords
 - Computer can verify that you know, and something nobody else can guess—even with access to unlimited computing resources
- Lots of things act as passwords!
 - PIN
 - Social security number
 - Mother's maiden name
 - Date of birth
 - Name of your pet, etc.

Why Passwords?

- Why is "something you know" more popular than "something you have" and "something you are"?
- Cost: passwords are free
 - ID card/biometric device cost money
- Convenience: easier for admin to reset pwd than to issue a new thumb

An ideal password

- Something that you know
- Something that your computer can verify that you know
- Something that something nobody else can guess

But these standards are difficult to meet in reality

Keys vs Passwords

- Crypto keys
- Suppose key is 64 bits
- Then 2⁶⁴ keys
- Choose key at random...
- ...then attacker must try about 2⁶³ keys

Passwords

- Suppose passwords are 8 characters, and 256 different characters
- Then $256^8 = 2^{64}$ pwds
- Users do not select passwords at random
- Attacker has far less than 2⁶³ pwds to try (dictionary attack)

Good and Bad Passwords

- Bad passwords
 - frank
 - Fido
 - password
 - **4444**
 - Pikachu
 - **1**0251960
 - AustinStamp

- Good Passwords?
 - •jflej(43j-EmmL+y
 - **•**09864376537263
 - B1ngh@mt0n
 - FSa7Yago

Passphrase: Four score and seven years ago

Most common passwords in 2023

Rank	Password	Time taken to crack	Number of times used
1	123456	< 1 Second	4,524,867
2	admin	< 1 Second	4,008,850
3	12345678	< 1 Second	1,371,152
4	123456789	< 1 Second	1,213,047
5	1234	< 1 Second	969,811
6	12345	< 1 Second	728,414
7	password	< 1 Second	710,321
8	123	< 1 Second	528,086
9	Aa123456	< 1 Second	319,725
10	1234567890	< 1 Second	302,709

Attacks on Passwords

- Attacker could...
 - Target one particular account
 - Target any account on system
 - Target any account on any system
 - Attempt denial of service (DoS) attack
- Common attack path
 - Outsider → normal user → administrator
 - attempt to upgrade level of privilege
 - May only require one weak password!

Password Retry

- Suppose system locks after 3 bad passwords. How long should it lock?
 - 5 seconds
 - •Insufficient to deter an automatic attack
 - 5 minutes
 - DOS
 - Admin manually resets

Password File?

- Bad idea to store passwords in a file
- But we need to verify passwords, how?
- Symmetric key crypto? Public key crypto? Crypto hash?
- Cryptographic solution: hash the pwd
 - Store y = h(password)
 - Can verify entered password by hashing
 - If Trudy obtains "password file," she does not obtain passwords
- But Trudy can try a forward search
 - •Guess x and check whether y = h(x)

Dictionary Attack – Forward Search

- Trudy pre-computes h(x) for all x in a dictionary of common passwords
- Suppose Trudy gets access to password file containing hashed passwords
 - She only needs to compare hashes to her precomputed dictionary
 - After one-time work, actual attack is trivial
- Can we prevent this attack? Or at least make attacker's job more difficult?

Salt

- Hash password with salt
- Choose random salt s for each user and compute y = h(password, s)
 and store (s,y) in the password file
- Append salt to each password before hash
- Note: The salt s is not secret
- Easy to verify salted password
- But Trudy must re-compute dictionary hashes for each user
 - Lots more work for Trudy!

Case study: Linux password

- /etc/passwd: stores the password file
- /etc/shadow: readable only from the root account
 - root:\$1\$Etg2ExUZ\$F9NTP7omafhKIlqaBMqng1:15651:0:99999:7:::
 - \$1 = MD5 hashing algorithm
 - \$2 = Blowfish algorithm
 - \$2a= eksblowfish algorithm
 - \$5 = SHA-256 algorithm
 - \$6 = SHA-512 algorithm
 - \$Etg2ExUZ → Salt = 'Etg2ExUZ'
 - \$F9NTP7omafhKllqaBMqng1 → hashed value of (salt + user password)
- Run: openssl passwd -1 -salt Etg2ExUZ redhat
 - \$1\$Etg2ExUZ\$F9NTP7omafhKIlqaBMqng1

Other Password Issues

- Too many passwords to remember
 - Results in password reuse; Why is this a problem?
 - Password manager software
 - Master key to reveal other passwords
- Failure to change default passwords
- Social engineering by, say, claiming to be admin
 - 34% of users would give away, and 70% if offered a candy bar
- Error logs may contain "almost" passwords
- Bugs, keystroke logging, spyware, etc.
- Who suffers from bad password?
 - Login password (company) vs ATM PIN (only yourself)

Password Cracking Tools

- Popular password cracking tools
 - Password Crackers
 - Password Portal
 - L0phtCrack and LC4 (Windows)
 - John the Ripper (Unix)
 - Come with preconfigured dictionaries
- Admins should use these tools to test for weak passwords since attackers will
- Good articles on password cracking
 - Passwords Conerstone of Computer Security
 - Passwords revealed by sweet deal

The bottom line...

- Password cracking is too easy
 - One weak password may break security
 - Users choose bad passwords
 - Social engineering attacks, etc.
- Trudy has (almost) all of the advantages
- Passwords are a BIG security problem
 - And will continue to be a big problem

Biometrics: authentication based on something you are

Quiz

- Which of the following best describes the purpose of adding a salt to a password before hashing?
 - A) To encrypt the password, making it unreadable to unauthorized users.
 - B) To ensure that the hash output for the same password is different even if the password is used by multiple users, thereby guarding against forward search attacks.
 - C) To speed up the password authentication process by adding additional data to the password.
 - D) To compress the password into a smaller format for easier storage.

Quiz

- What is true about hashing a password p with salt s?
 - A)Salt s is used as the key to encrypt password p
 - B)Salt s is public and stored along with hashed password p
 - C) The salt s is kept secret in the same way as the password p, ensuring both are secure from unauthorized access.
 - D)Salt s makes password p taste salty

Quiz

- What is the primary reason passwords are hashed before being stored in a database?
 - A) To compress the passwords, reducing the amount of storage space required.
 - B) To encrypt the password so that it can be easily decrypted by the system for authentication.
 - C) To transform the passwords into a fixed-size string of characters, regardless of the password's length.
 - D) To ensure that even if the database is compromised, the actual passwords are not easily retrievable by attackers.

Recap: Are You Who You Say You Are?

- How to authenticate human to a machine?
- Can be based on...
 - Something you know
 - For example, a password
 - Something you have
 - For example, a ATM card or smartcard
 - Something you are
 - For example, your fingerprint

Something You Are

- Biometric
 - "You are your key"
- Examples
 - Fingerprint
 - Handwritten signature
 - Facial recognition
 - Speech recognition
 - Gait (walking) recognition
 - Many more!

Why Biometrics?

- More secure replacement for passwords
- Cheap and reliable biometrics needed
 - Today, an active area of research
- Biometrics are used in security today
 - Thumbprint mouse
 - Palm print for secure entry
 - Fingerprint to unlock car door, etc.
 - Facial recognition to unlock phones
- Biometrics are getting increasingly popular

Ideal Biometric

- Universal applies to (almost) everyone
 - Most ppl have readable fingerprints
 - In reality, no biometric applies to everyone
- Distinguishing distinguish with certainty
 - In reality, cannot hope for 100% certainty
 - Some with lower error rates
- Permanent physical characteristic being measured never changes
 - In reality, OK if it to remains valid for long time
- Collectable easy to collect required data
 - Depends on whether subjects are cooperative
- Also, safe, user-friendly, etc., etc.

Biometric Modes

- Identification Who goes there?
 - Compare one-to-many
 - Example: The FBI fingerprint database
 - Suspicious fingerprint compared to millions of fingerprint
- Authentication Are you who you say you are?
 - Compare one-to-one
 - Example: Fingerprint unlock phones
- Identification problem is more difficult
 - More "random" matches since more comparisons
- We are interested in authentication

Enrollment vs Recognition

- Enrollment phase
 - Subject's biometric info put into database
 - Must carefully measure the required info
 - OK if slow and repeated measurement needed
 - Must be very precise
 - May be weak point of many biometric
 - difficult to obtain results that are comparable to those obtained under lab conditions
- Recognition phase
 - Biometric detection, when used in practice
 - Must be quick and simple
 - But must be reasonably accurate

Cooperative Subjects?

- Authentication cooperative subjects
- Identification uncooperative subjects
- For example, facial recognition
 - Used in Las Vegas casinos to detect known cheaters (terrorists in airports, etc.)
 - Often do not have ideal enrollment conditions
 - Subject will try to confuse recognition phase
- Cooperative subject makes it much easier
 - We are focused on authentication
 - So, subjects are generally cooperative

Biometric Errors

- Fraud rate versus insult rate
 - Fraud Trudy mis-authenticated as Alice
 - Insult Alice not authenticated as Alice
- For any biometric, can decrease fraud or insult, but other one will increase
- For example
 - 99% voiceprint match ⇒ low fraud, high insult
 - 30% voiceprint match ⇒ high fraud, low insult
- Equal error rate: rate where fraud == insult
 - A way to compare different biometrics

Fingerprint Comparison

- The widespread use of fingerprinting only became possible in 1892
 - Francis Galton developed a classification system based on "minutia" that enabled efficient searching, and he verified that fingerprints do not change over time
- Examples of different types of minutia: loops, whorls, and arches

Loop (double)

Whorl

Arch

Fingerprint: Enrollment

- Capture image of fingerprint
- Enhance image
- Identify points

Fingerprint: Recognition

- Extracted points are compared with information stored in a database
- British system: 16 points, US: not fixed
- The system then determines whether a statistical match occurs

Hand Geometry

- A popular biometric
- Measures shape of hand
 - Width of hand, fingers
 - Length of fingers, etc.
- Human hands not unique
- Hand geometry sufficient for many situations
- OK for authentication
- Not useful for ID problem

Hand Geometry

- Advantages
 - Quick 1 minute for enrollment, 5 seconds for recognition
 - Hands are symmetric
- Disadvantages
 - Cannot use on very young or very old
 - Relatively high equal error rate

Iris Patterns

- In theory, one of the best for authentication
- Iris pattern development is "chaotic"
 - minor variations lead to large differences
- Little or no genetic influence
- Different even for identical twins
- Pattern is stable through lifetime

Iris Scan

- Scanner locates iris
- Take b/w photo
- Use polar coordinates...
- 2-D wavelet transform
- Get 256-byte iris code

Measuring Iris Similarity

- Based on Hamming distance
- Define d(x,y) to be
 - # of non match bits / # of bits compared
 - d(0010,0101) = 3/4 and d(1011111,101001) = 1/3
- Compute d(x,y) on 2048-bit iris code
 - Perfect match is d(x,y) = 0
 - For same iris, expected distance is 0.08
 - At random, expect distance of 0.50
 - Accept iris scan as match if distance < 0.32</p>

Iris Scan Error Rate: 2.3 million comparisons

distance	Fraud rate	
0.29	1 in 1.3*10 ¹⁰	
0.30	1 in 1.5*10 ⁹	
0.31	1 in 1.8*10 ⁸	
0.32	1 in 2.6*10 ⁷	
0.33	1 in 4.0*10 ⁶	
0.34	1 in 6.9*10 ⁵	
0.35	1 in 1.3*10 ⁵	

Attack on Iris Scan

- Good photo of eye can be scanned
 - Attacker could use photo of eye
- Afghan woman was positively identified after 17 years by iris scan of old photo on National Geographic magazine cover in 1984
- To prevent attack, scanner could use light on the "eye" to be sure it is a "live" iris
 - increase the cost of the system
 - cost is always an issue

Equal Error Rate Comparison

- Equal error rate (EER): fraud == insult rate
- Fingerprint biometric has EER of about 5%, but cheap
- Hand geometry has EER of about 10⁻³
- In theory, iris scan has EER of about 10⁻⁶
 - But in practice, may be hard to achieve
 - Enrollment phase must be extremely accurate
- Most biometrics much worse than fingerprint!
- Biometrics useful for authentication...
 - ...but identification biometrics almost useless today

Biometrics: The Bottom Line

- Biometrics are hard to forge
- But attacker could
 - Photocopy Bob's fingerprint, eye, etc.
 - Subvert software, database, "trusted path" ...
- And how to revoke a "broken" biometric?
 - Passwords can be revoked
- Biometrics are not foolproof

Authentication based on something you have

Something You Have

- Something in your possession
- Examples include following...
 - Car key
 - Laptop computer (or MAC address)
 - Password generator
 - ATM card, smartcard, etc.
 - Your phone

Password generator

- Alice wants to authenticate herself
- Bob sends random challenge R to Alice
- Alice inputs R, PIN into passwd generator
- Password generator produce a response
- Alice sends the response to Bob

2-factor Authentication

- Requires any 2 out of 3 of
 - Something you know
 - Something you have
 - Something you are
- Examples
 - Password generator:
 - PIN(something you know)
 - Generator(something you have)
 - ATM: Card and PIN
 - Credit card: Card and signature

