5

Problem R-12M (C₁₀H₀₉NO). You are asked to interpret the coupled ¹³C NMR spectrum of an oxazoline.

(a) Which carbon are we looking at? _____C³

(b) Analyze the spectrum, report all coupling constants in the standard format (${}^{n}J_{X-Y} = 00.0 \text{ Hz}$).

tdd,
$$J = 146, 8, 3$$

$$^{1}J_{C-H} = 146 \text{ Hz}$$

$$^{3}J_{C-H}$$
 (trans) = 8 Hz

$$^{3}J_{C-H}$$
 (cis) = 3 Hz

(c) The spectrum below is of the same compound with one H replaced by D. Where is the deuterium? Place it on the structure, and explain briefly.

Only the small cis $^3J_{\text{C-H}}$ remains in the deuterated compound, so the trans proton must have been replaced by deuterium. The C-D coupling would be only about 1.3 Hz. so is not detectable at this resolution.

(d) What is the proton NMR frequency of the spectrometer they were using? _____497 MHz

1 ppm = 125 Hz in the 13 C NMR spectrum, so the 13 C frequency is 125 MHz. Thus the proton frequency is 125x(100/25.14) = 497.2 MHz

5

Problem R-310 (C₁₁H₁₀Cl₂F₂). Interpret the 56.4 MHz ¹⁹F NMR spectrum below (CCl₄ solvent). Determine the chemical shifts of the fluorines, and estimate the various coupling constants. Consider conformations of the cyclobutane ring (*J. Am. Chem. Soc.* **1962**, *84*, 2935).

Problem R-308 (C₈H₁₀). Below is the ³H NMR spectrum of the ethyl region of randomly tritium (³H) labeled ethylbenzene. Interpret the splitting pattern. Note: <1% of the molecules are labeled (Tiers,G. V. D.; Brown, C. A.; Jackson, R. A.; Lahr, T. N. J. Am. Chem. Soc. 1964, 86, 2526-7).

Problem R-309 (C₉H₁₄NOP). Interpret the 100 MHz ¹H NMR spectrum below. The phenyl region is not shown. {³¹P} signifies decoupling of the phosphorus signal (*Org. Magn. Res..* **1980**, *13*, 165)

Problem R-311 (C₆H₂D₄). Assign the peaks in the ¹³C NMR spectrum below. The spectrum is not ¹H decoupled. Estimate the coupling constants (*J. Am. Chem. Soc.* **1967**, *88*, 2967).

ANSWER

There are four kinds of carbons in this molecule

H
$$^{1}J_{CH} = 159 \text{ Hz}$$
H $^{2}J_{CH} = 1.0 \text{ Hz}$
H $^{3}J_{CH} = 7.4 \text{ Hz}$
H $^{4}J_{CH} = -1.1 \text{ Hz}$

C-1: The only significant coupling is $^1J_{\rm CD}$ = 23 Hz. The $^2J_{\rm CH}$ will be 1 Hz, too small to resolve

C-2: These carbons will be a double intensity dd, with $^{1}J_{CH}$ = 159 Hz and $^{3}J_{CH}$ = 7 Hz. There will also be a $^{3}J_{CD}$ of about 1Hz, too small to resolve

C-3: These will be a double intensity 1:1:1 triplet of 1:1:1 triplets, $^1J_{\rm CD}$ = 23 Hz and $^3J_{\rm CD}$ = 1 Hz

C-4: Carbon 4 will be a 1:1:1 triplet of 1:2:1 triplets, $^{1}J_{CD}$ = 23 Hz and $^{3}J_{CH}$ = 7 Hz the outer lines of the triplets are too small to be visible

These outer triplet peaks will be approximately 1/16 of the intensity of the central peaks, hence not detectable at this signal to noise. The central lines are superimposed on C-1 and C-3.

Problem R-82E (C₁₆H₃₀Sn). Consider carefully the ¹H NMR spectrum of R-82E shown on the next page (the compound contains a tri-n-butyltin group, tin is tetravalent).

(a) DBE?___3 What is the structure of R-82E?

(b) Explain the origin and shape of the multiplets at δ 6.05 and 6.6.

Sn has two main spin 1/2 isotopes (the third one is not abundant enough to detect in these spectra:

Thus each peak will have two pairs of satellites, one set due to ¹¹⁷Sn and one to ¹¹⁹Sn

(c) Determine (approximately) <u>all</u> coupling constants that can be obtained from the spectrum. Identify them in the form ${}^4J_{XY} = Z$ Hz. Label your structure so that it is clear which atom you are referring to.

3
J (H^A- 117 Sn) = 107 Hz
 3 J (H^B- 117 Sn) = 52 Hz
 3 J (H^A- 119 Sn) = 113 Hz
 3 J (H^B- 119 Sn) = 54 Hz
 5 J_{AC} ca 0.5 Hz
 2 J_{AB} = 4 Hz
 5 J_{BC} = 1 Hz
 2 J_{BA} = 4 Hz
 4 J(H^C-Sn) = 14 Hz

$$\frac{\gamma (^{119}\text{Sn})}{\gamma (^{117}\text{Sn})} = \frac{37.28}{35.63} = 1.046$$

Thus get two sets of satellites, differing by ca 4% in J

Problem R-28D (C₁₃H₁₄O₂) 500 MHz ¹H NMR in CDCl₃ Source: Wilds/C. Fry (C82)

Assign all protons in this molecule, using the 500 MHz ¹H NMR spectrum, and the 300 MHz COSY spectrum. The 300 MHz ¹H spectrum is also provided. Explain specifically why some of the peaks are more complicated in the 300 compared to the 500 MHz spectrum. Draw a conformation, and label with chemical shifts.

Problem R-08I ($C_4H_6O_5$). The 100 MHz NMR spectrum of malic acid in D_2O is shown below.

(a) Do a mathematically accurate analysis of this spectrum. If there are two solutions, report them both. Show

a coupling tree.

15

$C_{+}=(6+4)/2$ $\Delta v_{ab}+=\delta_{+}=s$ $C_{+}\pm \Delta \delta_{+}/2=s$	qrt((8-2)	(6-4))	= 6.6	
$c_{.}=(5+3)/2 = 264.98$ $\Delta v_{ab}^{-} = \delta_{.} = sqrt((7-1)(5-3)) = 3.8$ $c_{.} \pm \Delta \delta / 2 = 266.9 = 263.1$				

	Solution 1	Solution
J_AB	16.7	16.7
J_AX	4.2	0.4
J_{BX}	7.0	10.8
ν_{A}	264.8	262.9
ν_{B}	259.6	261.5
$\Delta \nu_{\text{AB}}$	5.2	1.4
δ_{A}	2.65	2.63
δ_{B}	2.59	2.61

Intensity Calculation

Solution 1

Φ 1+ = 0.5 arcsin(J_{AB}/2D+) = 34.2 Φ 1- = 0.5 arcsin(J_{AB}/2D-) = 38.6

$$i_{10} = i_{11} = 0.994$$

 $i_{14} = i_{15} = 0.006$

Solution 2

$$\Phi_2$$
+ = Φ 1 = 34.2

$$\Phi_2$$
- = 90 - Φ 1- = 51.4

$$i_{10} = i_{11} = 0.913$$

$$i_{14} = i_{15} = 0.087$$

(b) If you are proposing two solutions, suggest at least one criterion which allows you to identify the correct one.

In both solutions the signs are appropriate for a ³J, although magnitude is better for solution 1 (vicinal couplings of 0.4 Hz in an acyclic CH-CH₂ system probably are never seen).

The intensity calculation predicts 9% size for the extra peaks 14 and 15, and these should have been clearly visible in the spectrum