Part 2: Mathematical Preliminaries

Instructor: Ma, Jun

School of Economics, Renmin University of China

March 12, 2018

Complex Numbers

Definition 1 (Complex Numbers)

A complex number is an ordered pair of real numbers (x_1,x_2) , where x_1 is called the real part and x_2 is called the imaginary part. We denote the field of complex numbers by \mathbb{C} . For $x=(x_1,x_2)\in\mathbb{C}$ and $y=(y_1,y_2)\in\mathbb{C}$, $x+y=(x_1+y_1,x_2+y_2)$, the same as "addition" in \mathbb{R}^2 . \mathbb{C} can be viewed as \mathbb{R}^2 endowed with a "multiplication" rule. A "multiplication" is a map from $\mathbb{C}\times\mathbb{C}$ to \mathbb{C} that is commutative $(x\cdot y=y\cdot x)$ and associative $((x\cdot y)\cdot z=x\cdot (y\cdot z))$. There exists a unique multiplication rule that is both commutative and associative:

$$x \cdot y = (x_1y_1 - x_2y_2, x_1y_2 + x_2y_1).$$

Notice that one can find that a division rule is also defined:

$$\frac{x}{y} = \frac{1}{y_1^2 + y_2^2} \begin{bmatrix} y_1 & y_2 \\ -y_2 & y_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{y_1^2 + y_2^2} \begin{bmatrix} x_1 y_1 + x_2 y_2 \\ x_2 y_1 - x_1 y_2 \end{bmatrix}.$$

Complex Numbers

Definition 2 (Modulus)

The "absolute value" or the "modulus" of a complex number x, denoted by |x|, is

$$|x| \coloneqq \sqrt{x_1^2 + x_2^2}.$$

Notice that this is the same as the Euclidean norm of (x_1, x_2) as a pair of real numbers. The "distance" of two complex numbers is just |x - y|. So \mathbb{C} is topologically equivalent to \mathbb{R}^2 .

Remark 3

Note that complex numbers of the form $(x_1, 0)$ are called real numbers.

Imaginary Unit

Definition 4 (Imaginary Unit)

The complex number (0,1) is called the imaginary unit, denoted by i. Then we usually let $x_1 + ix_2$ denote a complex number (x_1, x_2) . Note that by the rule of multiplication $i^2 = (0,1)(0,1) = (-1,0)$.

Definition 5

The complex conjugate of $x=x_1+\mathrm{i} x_2$ is $\overline{x}=x_1-\mathrm{i} x_2$. Note that now we have $|x|=\sqrt{x\cdot\overline{x}}$ for all $x\in\mathbb{C}$.

Complex Exponential

Definition 6 (Complex Exponential)

For a complex number $x = x_1 + ix_2$, its exponential, denoted by $\exp(x)$ or e^x , is defined as

$$\exp\left(x\right) = \exp\left(x_1 + \mathrm{i} x_2\right) = \exp\left(x_1\right) \left\{\cos\left(x_2\right) + \mathrm{i} \cdot \sin\left(x_2\right)\right\}.$$

Remark 7

It can be verified using trigonometric identities that

$$\exp(x) \exp(y) = \exp(x + y), \ \forall (x, y) \in \mathbb{C}^2 \text{ and}$$

 $\exp(x)^n = \exp(nx), \ \forall x \in \mathbb{C}.$

If x is purely imaginary, i.e., x is of the form $(0, x_2)$,

$$|\exp(ix_2)| = |\cos(x_2) + i \cdot \sin(x_2)| = \sqrt{\cos(x_2)^2 + \sin(x_2)^2} = 1.$$

Complex Exponential

Remark 8 (Polar Representation of Complex Numbers)

For any $x_1 + ix_2 \in \mathbb{C}$, let $r := |x_1 + ix_2|$ and $\theta := \arctan\left(\frac{x_2}{x_1}\right)$.

Then $(x_1 + ix_2) = r \cdot \exp(i\theta)$.

Remark 9 (Power Series Expansion)

For all $x \in \mathbb{C}$,

$$\exp\left(x\right) = \sum_{j=0}^{\infty} \frac{x^{j}}{j!},$$

where the right hand side converges absolutely and is equal to the left hand side.

Remark 10

For all $x \in \mathbb{C}$,

$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = \exp\left(x\right).$$

Fundamental Theorem of Algebra

Theorem 11 Let $c_0, c_1, ..., c_n$ be n complex numbers. The polynomial

$$c_0 + c_1 x + \cdots + c_n x^n$$

has n roots in \mathbb{C} .

Characteristic Function

Definition 12 (Characteristic Function)

For a d-dimensional random vector $\pmb{X},$ its characteristic function, usually denoted by $\phi_{\pmb{X}},$ is

$$\phi_{\pmb{X}}\left(t
ight) \coloneqq \mathrm{E}\left[\exp\left(\mathrm{i}t^{\mathrm{T}}\pmb{X}
ight)
ight] = \mathrm{E}\left[\cos\left(t^{\mathrm{T}}\pmb{X}
ight)
ight] + \mathrm{i}\cdot\mathrm{E}\left[\sin\left(t^{\mathrm{T}}\pmb{X}
ight)
ight].$$

Note that $\phi_{\mathbf{X}}$ is \mathbb{C} -valued.

Remark 13

Result 1: For two random variables, $\phi_X = \phi_Y$ if and only if $F_X = F_Y$. Result 2: Let $X_1, X_2, ...$ be a sequence of random variables. Let X another random variable. If for all $t \in \mathbb{R}$, $\phi_{X_n}(t) \stackrel{n \to \infty}{\longrightarrow} \phi_X(t)$, then $X_n \to_d X$.

Part 2: Mathematical Preliminaries

Instructor: Ma, Jun

School of Economics, Renmin University of China

March 12, 2018

- ▶ A Hilbert space has a similar geometry like Euclidean spaces $(\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3, ...)$.
- ► A Hilbert space could have more complicated elements than real numbers/vectors, but also has concepts of orthogonality and projection.

Definition 1 (Real Vector Space)

A real vector space is a set \mathcal{V} , endowed with an "addition" operation, $+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$, i.e., for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$, $\mathbf{x} + \mathbf{y} \in \mathcal{V}$, and a "scalar multiplication", i.e. $\cdot: \mathbb{R} \times \mathcal{V} \to \mathcal{V}$, for all $c \in \mathbb{R}$, $\mathbf{x} \in \mathcal{V}$, $c \cdot \mathbf{x} \in \mathcal{V}$.

Definition 2 (Inner Product Space)

A real vector space \mathcal{H} is called an inner product space if it is endowed with a map $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$, which satisfies (1). $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$, for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{H}$, (2). $\langle \boldsymbol{x} + \boldsymbol{z}, \boldsymbol{y} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \langle \boldsymbol{z}, \boldsymbol{y} \rangle$, for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{H}$, (3). $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$ for all $\alpha \in \mathbb{R}$, $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{H}$, (4). $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ and $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$.

Examples

- 1. $\mathcal{H} = \mathbb{R}^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$, where $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$.
- 2. Given a probability space (Ω, \mathscr{F}, P) , $\mathcal{H} = \{X : \Omega \to \mathbb{R} : E[X^2] < \infty\}$. i.e. the random variables with finite variances, $\langle X, Y \rangle = E[XY]$. We use $\mathcal{L}^2(\Omega, \mathscr{F}, P)$ to denote such a space.
- 3. Let $\mathcal{L}_0^2(\Omega, \mathscr{F}, P)$ denote the subset of $\mathcal{L}^2(\Omega, \mathscr{F}, P)$ including the random variables X with E[X] = 0. $\mathcal{L}_0^2(\Omega, \mathscr{F}, P)$ is subspace of $\mathcal{L}^2(\Omega, \mathscr{F}, P)$.

Proposition 3 (Cauchy-Schwarz Inequality)

Let \mathcal{H} be an inner product space, the for all $\mathbf{x}, \mathbf{y} \in \mathcal{H}$, $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}$. A special case is the Cauchy-Schwarz inequality from probability theory: $|\mathrm{E}\left[XY\right]| \leq \sqrt{\mathrm{E}\left[X^2\right]} \sqrt{\mathrm{E}\left[Y^2\right]}$, for $\mathcal{H} = \mathcal{L}^2\left(\Omega, \mathscr{F}, \mathrm{P}\right)$.

Definition 4 (Norm)

An inner product $\langle \cdot, \cdot \rangle$ induces a "norm" for \mathcal{H} , i.e., measure of the "length" of a vector. Let $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. Then $\|\cdot\|$ satisfies (1).

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$
, i.e., triangle inequality. (2).

$$\|\alpha \cdot \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
, for all $\alpha \in \mathbb{R}$, for all $\mathbf{x} \in \mathcal{H}$. (3). $\|\mathbf{x}\| \ge 0$ and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$.

Definition 5 (Convergence)

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathcal{H} . We say that x_n converges to x if $\|x_n - x\| \to 0$, as $n \to \infty$. $\|x - y\|$ measures the distance between x and y.

Proposition 6 (Continuity of Norm and Inner Product)

If $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are sequences in \mathcal{H} , and $x_n \to x$ and $y_n \to y$ as $n \to \infty$, then (1). $||x_n|| \to x$ as $n \to \infty$. (2). $\langle x_n, y_m \rangle \to \langle x, y \rangle$, as $n \to \infty$ and $m \to \infty$.

Definition 7 (Cauchy Sequence)

If $\{\boldsymbol{x}_n\}_{n=1}^{\infty}$ is a sequence in \mathcal{H} , then $\{\boldsymbol{x}_n\}_{n=1}^{\infty}$ is called Cauchy if $\|\boldsymbol{x}_n-\boldsymbol{x}_m\|\to 0$, as $n\to\infty$ and $m\to\infty$. I.e., For all $\epsilon>0$, there exists some $N_{\epsilon}\in\mathbb{N}$, such that $\|\boldsymbol{x}_n-\boldsymbol{x}_m\|<\epsilon$ if $n\geq N_{\epsilon}$ and $m\geq N_{\epsilon}$.

Definition 8 (Completeness)

An inner product space \mathcal{H} is said to be complete if every Cauchy sequence has a limit in \mathcal{H} , i.e., there exists some $\mathbf{x} \in \mathcal{H}$ such that $\|\mathbf{x}_n - \mathbf{x}\| \to 0$ as $n \to \infty$.

Definition 9 (Hilbert Space)

A complete inner product space is called a Hilbert space.

Examples

- ▶ \mathbb{R}^n with $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$ is complete.
- $\blacktriangleright \mathcal{L}^2(\Omega, \mathcal{F}, P)$ is complete.
- ▶ (0,1) with $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i$ is not complete. $\{1/n\}_{n=1}^{\infty}$ is a Cauchy sequence but has no limit in (0,1).

Hilbert Space

Proposition 10 (Cauchy Criterion)

Let \mathcal{H} be a Hilbert space and $\{\mathbf{x}_n\}_{n=1}^{\infty}$ a sequence in \mathcal{H} , then $\{\mathbf{x}_n\}_{n=1}^{\infty}$ converges to some $\mathbf{x} \in \mathcal{H}$ if and only if $\{\mathbf{x}_n\}_{n=1}^{\infty}$ is Cauchy.

Definition 11 (Orthogonality)

Let \mathcal{H} be an inner product space. Then \mathbf{x} is orthogonal to \mathbf{y} (denoted as $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Proposition 12 (Pythagoras' Theorem)

Let \mathcal{H} be an inner product space, $\mathbf{x}, \mathbf{y} \in \mathcal{H}$ satisfying $\mathbf{x} \perp \mathbf{y}$, then $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.

Proposition 13 (Parallelogram Rule)

Let \mathcal{H} be an inner product space, $\mathbf{x}, \mathbf{y} \in \mathcal{H}$,

$$\|\mathbf{x} - \mathbf{y}\|^2 = 2 \|\mathbf{x}\|^2 + 2 \|\mathbf{y}\|^2 - \|\mathbf{x} + \mathbf{y}\|^2.$$

Hilbert Space Projection Theorem

Theorem 14

Let \mathcal{H} be a Hilbert space and let \mathcal{S} be a closed linear subspace. I.e., $\alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{S}$, for all $\alpha, \beta \in \mathbb{R}$ and for all $\mathbf{x}, \mathbf{y} \in \mathcal{S}$ and \mathcal{S} is a closed subset of \mathcal{H} . Then, (1). For all $\mathbf{x} \in \mathcal{H}$, there is a unique $\widehat{\mathbf{x}} \in \mathcal{S}$ such that $\|\mathbf{x} - \widehat{\mathbf{x}}\| = \inf \{\|\mathbf{y} - \mathbf{x}\| : \mathbf{y} \in \mathcal{S}\}$, i.e., $\|\mathbf{x} - \widehat{\mathbf{x}}\| \le \|\mathbf{y} - \mathbf{x}\|$, for all $\mathbf{y} \in \mathcal{S}$. (2). $\mathbf{x} - \widehat{\mathbf{x}} \perp \mathbf{y}$ for all $\mathbf{y} \in \mathcal{S}$. (3). If $\mathbf{z} \in \mathcal{S}$ satisfies $\mathbf{x} - \mathbf{z} \perp \mathbf{y}$ for all $\mathbf{y} \in \mathcal{S}$, then $\mathbf{z} = \widehat{\mathbf{x}}$. I.e., $\widehat{\mathbf{x}}$ is the only element in \mathcal{S} that satisfies $\mathbf{x} - \widehat{\mathbf{x}} \perp \mathbf{y}$, for all $\mathbf{y} \in \mathcal{S}$.