2 72

Definition

$$C$$
 heißt Klon auf $A:\iff (i)\forall n\in\mathbb{N}\setminus\{0\}\forall i\in\{1,...,n\}:\pi_i^{(n)}\in C$
$$(ii)f_1,f_2,...,f_k:A^n\to A,g:A^k\to A\in C$$

$$\implies g\circ_{n,k}(f_1,...,f_k)=g(f_1(a_1,...,a_n),...,f_k(a_1,...,a_n))\in C$$

gesucht: 3 Klone C auf $A := \{1, ..., k\}$ mit $A^A \subseteq C$, wobei $k \ge 3$.

 $C_a := \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{ f : A^n \to A | \exists i \in \{1, ..., n\} \exists \tilde{f} \in A^A : f(x_1, ..., x_n) = \tilde{f}(x_i) \}$

- Sei $\pi_i^{(n)}$ eine beliebige Projektion. $\pi_i^{(n)} \in C_a$, da für $\tilde{f} = id$ gilt $f(x_1, ..., x_n) = x_i$.
- Sei $f_1,...,f_k,g\in C_c$ (mit Stelligkeiten wie oben beschrieben) beliebig. Nennen wir $h:=g\circ_{n,k}(f_1,...,f_k)$.

$$g(x_1,...,x_k) = \tilde{g}(x_i)$$

$$f_1(x_1,...,x_n) = \tilde{f}_1(x_j)$$

$$\vdots$$

$$f_k(x_1,...,x_n) = \tilde{f}_k(x_l)$$

$$\implies h(x_1,...,x_n) = \tilde{g}(\tilde{f}_i(x_l)) \in C_a$$

– Für n=1 ist $f:A\to A$ mit $f=\tilde{f}$ beliebig in C_a .

$$C_b := \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{f : A^n \to A\}$$

- Alle Projektionen $\pi_i^{(n)}$ liegen in der Menge aller Funktionen von A^n nach A.
- Alle beliebigen Verknüpfungen von Funktionen liegen in der Menge alller Funktionen von \mathbb{A}^n nach A Widerspruch!.
- Alle A^A liegen in der Menge aller Funktionen von A^1 nach A.

$$C_c := C_a \cup \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{ f : A^n \to A | f \text{ ist nicht surjektiv} \}$$

- Wir haben schon gezeigt, dass alle Projektionen $\pi_i^{(n)} \in C_a$. Gemeinsam mit $C_a \subseteq C_c$ ergibt das $\pi_i^{(n)} \in C_c$.
- Sei $f_1,...,f_k,g\in C_c$ (mit Stelligkeiten wie oben beschrieben) beliebig. Nennen wir $h:=g\circ_{n,k}(f_1,...,f_k)$.

Falls g eine nicht surjektive Funktion ist, ist klarerweise auch h nicht surjektiv und somit $h \in C_c$. Sonst gilt $g \in C_a$ und somit $\exists \tilde{g}: A \to A \exists i \in \{1,...,k\} | g(x_1,...,x_k) = \tilde{g}(x_i). \implies h = \tilde{g}(f_i(x_1,...,x_n))$. Falls auch $f_i \in C_a$ so haben wir bereits gezeigt, dass $h \in C_a$. Anderenfalls ist h nicht surjektiv, da f_i nicht surjektiv ist. – Wir haben schon gezeigt, dass $A^A \subseteq C_a \subseteq C_c$.

Nun müssen wir zeigen, dass es sich um drei unterschiedliche Klone handelt.

$$f: A^2 \to A$$
$$(a,b) \mapsto ((a+b)mod|A|) + 1$$

f liegt (klarerweise) in C_b . Angenommen f liegt in $C_a \implies f(a,b) = \tilde{f}(a) \lor f(a,b) = \tilde{f}(b)$. o.B.d.A $f(a,b) = \tilde{f}(a)$.

$$f(1,1)=3 \implies \tilde{f}(1)=3$$

$$f(1,2)=1 \text{ falls } |A|=3 \text{ und 4 falls } |A|>3 \implies \tilde{f}(1)\neq 3 \text{ Widerspruch!}$$

Also $C_a \neq C_b$.

f ist surjektiv, da man mit $\{(1,l): l \in \{1,...,k\}\}$ alle Elemente in A erreichen kann. Also $f \notin C_c$ und somit $C_b \neq C_c$.

$$g: A^2 \to A$$

 $(a, b) \mapsto 1 \text{ falls } a = b \text{ und } 2 \text{ sonst}$

Die Funktion g ist offensichtlich nicht surjektiv $(3 \notin g(A))$ also $g \in C_c$. Angenommen g liegt in $C_a \implies g(a,b) = \tilde{g}(a) \vee g(a,b) = \tilde{g}(b)$. o.B.d.A $g(a,b) = \tilde{g}(a)$.

$$g(1,1) = 1 \implies \tilde{g}(1) = 1$$

 $g(1,2) = 2 \implies \tilde{g}(1) = 2$ Widerspruch!

Also $C_a \neq C_b$.