31-4 THE SERIES RLC CIRCUIT

Learning Objectives

After reading this module, you should be able to . . .

- **31.32** Draw the schematic diagram of a series *RLC* circuit.
- 31.33 Identify the conditions for a mainly inductive circuit, a mainly capacitive circuit, and a resonant circuit.
- **31.34** For a mainly inductive circuit, a mainly capacitive circuit, and a resonant circuit, sketch graphs for voltage v(t) and current i(t) and sketch phasor diagrams, indicating leading, lagging, or resonance.
- **31.35** Calculate impedance Z.
- **31.36** Apply the relationship between current amplitude I, impedance Z, and emf amplitude \mathscr{C}_m .
- **31.37** Apply the relationships between phase constant ϕ and voltage amplitudes V_L and V_C , and also between

- phase constant ϕ , resistance R, and reactances X_L and X_C .
- 31.38 Identify the values of the phase constant φ corresponding to a mainly inductive circuit, a mainly capacitive circuit, and a resonant circuit.
- **31.39** For resonance, apply the relationship between the driving angular frequency ω_d , the natural angular frequency ω_1 the inductance L, and the capacitance C.
- **31.40** Sketch a graph of current amplitude versus the ratio ω_d/ω_t identifying the portions corresponding to a mainly inductive circuit, a mainly capacitive circuit, and a resonant circuit and indicating what happens to the curve for an increase in the resistance.

Key Ideas

• For a series RLC circuit with an external emf given by

$$\mathscr{E} = \mathscr{E}_m \sin \omega_d t,$$

and current given by

$$i = I\sin(\omega_d t - \phi),$$

the current amplitude is given by

$$I = \frac{\mathscr{E}_m}{\sqrt{R^2 + (X_L - X_C)^2}}$$

$$= \frac{\mathscr{E}_m}{\sqrt{R^2 + (\omega_d L - 1/\omega_d C)^2}} \quad \text{(current amplitude)}.$$

• The phase constant is given by

$$\tan \phi = \frac{X_L - X_C}{R}$$
 (phase constant).

• The impedance Z of the circuit is

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 (impedance).

ullet We relate the current amplitude and the impedance with $I=\mathcal{E}_m/Z.$

• The current amplitude I is maximum ($I=\mathcal{E}_m/R$) when the driving angular frequency ω_d equals the natural angular frequency ω of the circuit, a condition known as resonance. Then $X_C=X_L,\,\phi=0$, and the current is in phase with the emf.

The Series **RLC** Circuit

We are now ready to apply the alternating emf of Eq. 31-28,

$$\mathscr{E} = \mathscr{E}_m \sin \omega_d t \quad \text{(applied emf)},\tag{31-55}$$

to the full RLC circuit of Fig. 31-7. Because R, L, and C are in series, the same current

$$i = I\sin(\omega_d t - \phi) \tag{31-56}$$

is driven in all three of them. We wish to find the current amplitude I and the phase constant ϕ and to investigate how these quantities depend on the driving angular frequency ω_d . The solution is simplified by the use of phasor diagrams as introduced for the three basic circuits of Module 31-3: capacitive load, inductive load, and resistive load. In particular we shall make use of how the voltage phasor is related to the current phasor for each of those basic circuits. We shall find that series RLC circuits can be separated into three types: mainly capacitive circuits, mainly inductive circuits, and circuits that are in resonance.

The Current Amplitude

We start with Fig. 31-14*a*, which shows the phasor representing the current of Eq. 31-56 at an arbitrary time *t*. The length of the phasor is the current amplitude *I*, the projection of the phasor on the vertical axis is the current *i* at time *t*, and the angle of rotation of the phasor is the phase $\omega_d t - \phi$ of the current at time *t*.

Figure 31-14b shows the phasors representing the voltages across R, L, and C at the same time t. Each phasor is oriented relative to the angle of rotation of current phasor I in Fig. 31-14a, based on the information in Table 31-2:

Resistor: Here current and voltage are in phase; so the angle of rotation of voltage phasor V_R is the same as that of phasor I.

Capacitor: Here current leads voltage by 90° ; so the angle of rotation of voltage phasor V_C is 90° less than that of phasor I.

Inductor: Here current lags voltage by 90° ; so the angle of rotation of voltage phasor v_L is 90° greater than that of phasor I.

Figure 31-14b also shows the instantaneous voltages v_R , v_C , and v_L across R, C, and L at time t; those voltages are the projections of the corresponding phasors on the vertical axis of the figure.

Figure 31-14c shows the phasor representing the applied emf of Eq. 31-55. The length of the phasor is the emf amplitude \mathcal{E}_m , the projection of the phasor on the vertical axis is the emf \mathcal{E} at time t, and the angle of rotation of the phasor is the phase $\omega_d t$ of the emf at time t.

From the loop rule we know that at any instant the sum of the voltages v_R , v_C , and v_L is equal to the applied emf \mathscr{E} :

$$\mathscr{E} = \nu_R + \nu_C + \nu_L. \tag{31-57}$$

This ϕ is the angle

between I and the

driving emf.

(d)

Thus, at time t the projection $\mathscr E$ in Fig. 31-14c is equal to the algebraic sum of the projections v_R , v_C , and v_L in Fig. 31-14b. In fact, as the phasors rotate together, this equality always holds. This means that phasor $\mathscr E_m$ in Fig. 31-14c must be equal to the vector sum of the three voltage phasors V_R , V_C , and V_L in Fig. 31-14b.

That requirement is indicated in Fig. 31-14d, where phasor \mathscr{E}_m is drawn as the sum of phasors V_R , V_L , and V_C . Because phasors V_L and V_C have opposite directions in the figure, we simplify the vector sum by first combining V_L and V_C to form the single phasor $V_L - V_C$. Then we combine that single phasor with V_R to find the net phasor. Again, the net phasor must coincide with phasor \mathscr{E}_m , as shown.

This is behind

/ by 90°.

Figure 31-14 (a) A phasor representing the alternating current in the driven RLC circuit of Fig. 31-7 at time t. The amplitude I, the instantaneous value i, and the phase $(\omega_d t - \phi)$ are shown. (b) Phasors representing the voltages across the inductor, resistor, and capacitor, oriented with respect to the current phasor in (a). (c) A phasor representing the alternating emf that drives the current of (a). (d) The emf phasor is equal to the vector sum of the three voltage phasors of (b). Here, voltage phasors V_L and V_C have been added vectorially to yield their net phasor $(V_L - V_C)$.

Both triangles in Fig. 31-14d are right triangles. Applying the Pythagorean theorem to either one yields

$$\mathcal{E}_m^2 = V_R^2 + (V_L - V_C)^2. \tag{31-58}$$

From the voltage amplitude information displayed in the rightmost column of Table 31-2, we can rewrite this as

$$\mathcal{E}_m^2 = (IR)^2 + (IX_L - IX_C)^2, \tag{31-59}$$

and then rearrange it to the form

$$I = \frac{\mathcal{E}_m}{\sqrt{R^2 + (X_L - X_C)^2}}.$$
 (31-60)

The denominator in Eq. 31-60 is called the **impedance** Z of the circuit for the driving angular frequency ω_d :

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 (impedance defined). (31-61)

We can then write Eq. 31-60 as

$$I = \frac{\mathscr{C}_m}{Z}. (31-62)$$

If we substitute for $X_{\mathcal{C}}$ and $X_{\mathcal{L}}$ from Eqs. 31-39 and 31-49, we can write Eq. 31-60 more explicitly as

$$I = \frac{\mathscr{E}_m}{\sqrt{R^2 + (\omega_d L - 1/\omega_d C)^2}} \quad \text{(current amplitude)}. \tag{31-63}$$

We have now accomplished half our goal: We have obtained an expression for the current amplitude I in terms of the sinusoidal driving emf and the circuit elements in a series RLC circuit.

The value of I depends on the difference between $\omega_d L$ and $1/\omega_d C$ in Eq. 31-63 or, equivalently, the difference between X_L and X_C in Eq. 31-60. In either equation, it does not matter which of the two quantities is greater because the difference is always squared.

The current that we have been describing in this module is the *steady-state current* that occurs after the alternating emf has been applied for some time. When the emf is first applied to a circuit, a brief *transient current* occurs. Its duration (before settling down into the steady-state current) is determined by the time constants $\tau_L = L/R$ and $\tau_C = RC$ as the inductive and capacitive elements "turn on." This transient current can, for example, destroy a motor on start-up if it is not properly taken into account in the motor's circuit design.

The Phase Constant

From the right-hand phasor triangle in Fig. 31-14d and from Table 31-2 we can write

$$\tan \phi = \frac{V_L - V_C}{V_R} = \frac{IX_L - IX_C}{IR},$$
(31-64)

which gives us

$$\tan \phi = \frac{X_L - X_C}{R} \quad \text{(phase constant)}. \tag{31-65}$$

This is the other half of our goal: an equation for the phase constant ϕ in the sinusoidally driven series RLC circuit of Fig. 31-7. In essence, it gives us three dif-

ferent results for the phase constant, depending on the relative values of the reactances X_L and X_C :

- $X_L > X_C$: The circuit is said to be *more inductive than capacitive*. Equation 31-65 tells us that ϕ is positive for such a circuit, which means that phasor I rotates behind phasor \mathscr{E}_m (Fig. 31-15a). A plot of \mathscr{E} and i versus time is like that in Fig. 31-15a0. (Figures 31-14a2 and a3 were drawn assuming a4.)
- $X_C > X_L$: The circuit is said to be *more capacitive than inductive*. Equation 31-65 tells us that ϕ is negative for such a circuit, which means that phasor I rotates ahead of phasor \mathcal{E}_m (Fig. 31-15c). A plot of \mathcal{E} and i versus time is like that in Fig. 31-15d.
- $X_C = X_L$: The circuit is said to be in *resonance*, a state that is discussed next. Equation 31-65 tells us that $\phi = 0^\circ$ for such a circuit, which means that phasors \mathscr{E}_m and I rotate together (Fig. 31-15e). A plot of \mathscr{E} and i versus time is like that in Fig. 31-15f.

As illustration, let us reconsider two extreme circuits: In the *purely inductive circuit* of Fig. 31-12, where X_L is nonzero and $X_C = R = 0$, Eq. 31-65 tells us that the circuit's phase constant is $\phi = +90^{\circ}$ (the greatest value of ϕ), consistent with Fig. 31-13b. In the *purely capacitive circuit* of Fig. 31-10, where X_C is nonzero and $X_L = R = 0$, Eq. 31-65 tells us that the circuit's phase constant is $\phi = -90^{\circ}$ (the least value of ϕ), consistent with Fig. 31-11b.

Resonance

Equation 31-63 gives the current amplitude I in an RLC circuit as a function of the driving angular frequency ω_d of the external alternating emf. For a given resistance R, that amplitude is a maximum when the quantity $\omega_d L - 1/\omega_d C$ in the

Figure 31-15 Phasor diagrams and graphs of the alternating emf $\mathscr E$ and current i for the driven RLC circuit of Fig. 31-7. In the phasor diagram of (a) and the graph of (b), the current i lags the driving emf $\mathscr E$ and the current's phase constant ϕ is positive. In (c) and (d), the current i leads the driving emf $\mathscr E$ and its phase constant ϕ is negative. In (e) and (f), the current i is in phase with the driving emf $\mathscr E$ and its phase constant ϕ and its phase constant ϕ is zero.

denominator is zero—that is, when

or

$$\omega_d L = \frac{1}{\omega_d C}$$

$$\omega_d = \frac{1}{\sqrt{LC}} \quad \text{(maximum } I\text{)}. \tag{31-66}$$

Because the natural angular frequency ω of the RLC circuit is also equal to $1/\sqrt{LC}$, the maximum value of I occurs when the driving angular frequency matches the natural angular frequency—that is, at resonance. Thus, in an RLC circuit, resonance and maximum current amplitude I occur when

$$\omega_d = \omega = \frac{1}{\sqrt{LC}}$$
 (resonance). (31-67)

Resonance Curves. Figure 31-16 shows three *resonance curves* for sinusoidally driven oscillations in three series RLC circuits differing only in R. Each curve peaks at its maximum current amplitude I when the ratio ω_d/ω is 1.00, but the maximum value of I decreases with increasing R. (The maximum I is always \mathcal{E}_m/R ; to see why, combine Eqs. 31-61 and 31-62.) In addition, the curves increase in width (measured in Fig. 31-16 at half the maximum value of I) with increasing R.

To make physical sense of Fig. 31-16, consider how the reactances X_L and X_C change as we increase the driving angular frequency ω_d , starting with a value much less than the natural frequency ω . For small ω_d , reactance X_L (= $\omega_d L$) is small and reactance X_C (= $1/\omega_d C$) is large. Thus, the circuit is mainly capacitive and the impedance is dominated by the large X_C , which keeps the current low.

As we increase ω_d , reactance X_C remains dominant but decreases while reactance X_L increases. The decrease in X_C decreases the impedance, allowing the current to increase, as we see on the left side of any resonance curve in Fig. 31-16. When the increasing X_L and the decreasing X_C reach equal values, the current is greatest and the circuit is in resonance, with $\omega_d = \omega$.

As we continue to increase ω_d , the increasing reactance X_L becomes progressively more dominant over the decreasing reactance X_C . The impedance increases because of X_L and the current decreases, as on the right side of any resonance curve in Fig. 31-16. In summary, then: The low-angular-frequency side of a resonance curve is dominated by the capacitor's reactance, the high-angular-frequency side is dominated by the inductor's reactance, and resonance occurs in the middle.

Checkpoint 6

Here are the capacitive reactance and inductive reactance, respectively, for three sinusoidally driven series RLC circuits: (1) 50Ω , 100Ω ; (2) 100Ω , 50Ω ; (3) 50Ω , 50Ω .

(a) For each, does the current lead or lag the applied emf, or are the two in phase?

Sample Problem 31.06 Current amplitude, impedance, and phase constant

In Fig. 31-7, let $R=200~\Omega$, $C=15.0~\mu\text{F}$, L=230~mH, $f_d=60.0~\text{Hz}$, and $\mathscr{E}_m=36.0~\text{V}$. (These parameters are those used in the earlier sample problems.)

(a) What is the current amplitude I?

KEY IDEA

The current amplitude I depends on the amplitude \mathcal{E}_m of the driving emf and on the impedance Z of the circuit, according to Eq. 31-62 $(I = \mathcal{E}_m/Z)$.

Calculations: So, we need to find Z, which depends on resistance R, capacitive reactance X_C , and inductive reactance X_L . The circuit's resistance is the given resistance R. Its capacitive reactance is due to the given capacitance and, from an earlier sample problem, $X_C = 177~\Omega$. Its inductive reactance is due to the given inductance and, from another sample problem, $X_L = 86.7~\Omega$. Thus, the circuit's impedance is

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$= \sqrt{(200 \Omega)^2 + (86.7 \Omega - 177 \Omega)^2}$$

$$= 219 \Omega.$$

We then find

$$I = \frac{\mathscr{E}_m}{Z} = \frac{36.0 \text{ V}}{219 \Omega} = 0.164 \text{ A}.$$
 (Answer)

(b) What is the phase constant ϕ of the current in the circuit relative to the driving emf?

KEY IDEA

The phase constant depends on the inductive reactance, the capacitive reactance, and the resistance of the circuit, according to Eq. 31-65.

Calculation: Solving Eq. 31-65 for ϕ leads to

$$\phi = \tan^{-1} \frac{X_L - X_C}{R} = \tan^{-1} \frac{86.7 \Omega - 177 \Omega}{200 \Omega}$$
$$= -24.3^{\circ} = -0.424 \text{ rad.}$$
 (Answer)

The negative phase constant is consistent with the fact that the load is mainly capacitive; that is, $X_C > X_L$. In the common mnemonic for driven series RLC circuits, this circuit is an ICE circuit—the current leads the driving emf.

