

planetmath.org

Math for the people, by the people.

theorems on continuation

Canonical name TheoremsOnContinuation

Date of creation 2013-03-22 17:59:51 Last modified on 2013-03-22 17:59:51

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 10

Author pahio (2872)
Entry type Theorem
Classification msc 12J20
Classification msc 13A18
Classification msc 13F30
Classification msc 11R99

Synonym theorems on continuations of exponents

Theorem 1. When ν_0 is an exponent valuation of the field k and K/k is a finite field extension, ν_0 has a continuation to the extension field K.

Theorem 2. If the http://planetmath.org/ExtensionFielddegree of the field extension K/k is n and ν_0 is an arbitrary http://planetmath.org/ExponentValuation2ex of k, then ν_0 has at most n continuations to the extension field K.

Theorem 3. Let ν_0 be an exponent valuation of the field k and \mathfrak{o} the ring of the exponent ν_0 . Let K/k be a finite extension and \mathfrak{O} the integral closure of \mathfrak{o} in K. If ν_1, \ldots, ν_m are all different continuations of ν_0 to the field K and $\mathfrak{O}_1, \ldots, \mathfrak{O}_m$ http://planetmath.org/RingOfExponenttheir rings, then

$$\mathfrak{O} = \bigcap_{i=1}^m \mathfrak{O}_i.$$

The proofs of those theorems are found in [1], which is available also in Russian (original), English and French.

Corollary. The ring \mathfrak{O} (of theorem 3) is a UFD. The exponents of K, which are determined by the pairwise coprime prime elements of \mathfrak{O} , coincide with the continuations ν_1, \ldots, ν_m of ν_0 . If π_1, \ldots, π_m are the pairwise coprime prime elements of \mathfrak{O} such that $\nu_i(\pi_1) = 1$ for all i's and if the prime element p of the ring \mathfrak{o} has the

$$p = \varepsilon \pi_1^{e_1} \cdots \pi_m^{e_m}$$

with ε a unit of \mathfrak{O} , then e_i is the ramification index of the exponent ν_i with respect to ν_0 (i = 1, ..., m).

References

[1] S. Borewicz & I. Safarevic: Zahlentheorie. Birkhäuser Verlag. Basel und Stuttgart (1966).