Évolution

Chapitre 1 **Évolution**

I - Variations

- A) Variation absolue
- B) Variation relative
- C) Lorsque l'on connaît le taux de variation

II - Taux d'évolution successifs

III - Taux d'évolution réciproque

On considère une quantité ayant une valeur y_1 , exprimée dans une unité de mesure. Cette quantité est modifiée et on lui affecte une nouvelle valeur y_2 , exprimée dans la même unité de mesure.

Il y a donc une variation entre y_1 et y_2 .

I - Variations

- A) Variation absolue
- B) Variation relative
- C) Lorsque l'on connaît le taux de variation

II - Taux d'évolution successifs

III - Taux d'évolution réciproque

Définition

La variation absolue est définie par :

$$y_2 - y_1$$
.

Si ce nombre est positif, on parlera d'une **hausse** ou d'une **augmentation**. Sinon, on parlera d'une **baisse** ou d'une **diminution**.

Définition

La variation absolue est définie par :

$$y_2 - y_1$$
.

Si ce nombre est positif, on parlera d'une **hausse** ou d'une **augmentation**. Sinon, on parlera d'une **baisse** ou d'une **diminution**.

Remarque

La variation absolue est exprimée dans la même unité de mesure que la quantité.

Exemples

En Essonne: En 1990, l'Essonne comptait 1084824 habitants. En 2010, ont été comptabilisés 1215340 habitants.

En France : En 1990, la France comptait 58 040 660 habitants. En 2010, ont été comptabilisés 64 612 940 habitants.

Remarque

Évidemment, la variation absolue du nombre d'habitants en France est plus importante que celle du nombre d'habitants en Essonne.

Comment peut-on alors comparer ces deux évolutions? En Essonne, l'évolution du nombre d'habitant correspond-elle à l'évolution du nombre d'habitants en France?

I - Variations

- A) Variation absolue
- B) Variation relative
- C) Lorsque l'on connaît le taux de variation

II - Taux d'évolution successifs

III - Taux d'évolution réciproque

Exemples

• Durant les soldes, un article coûte 10 €. À la fin des soldes, l'article coûte 20 €. Le prix a doublé :

Exemples

- Durant les soldes, un article coûte 10 €. À la fin des soldes, l'article coûte 20 €. Le prix a doublé :
- Dans une station service, le Sans Plomb 95 coûte 1, 52 €. Le lendemain, le prix affiché est de 1, 52 €. Le prix n'a pas changé donc :

Évolution

Exemples

- Durant les soldes, un article coûte 10€. À la fin des soldes, l'article coûte 20€. Le prix a doublé :
- Dans une station service, le Sans Plomb 95 coûte 1, 52 €. Le lendemain, le prix affiché est de 1, 52 €. Le prix n'a pas changé donc :
- Ce matin, il y avait 60 croissants à la boulangerie. À midi, il en restait 30. Le nombre de croissants a diminué de moitié donc :

Remarque

Important!

Sauf indication contraire, on supposera maintenant et jusqu'à la fin du chapitre que $y_1 \neq 0$.

Définition

La variation relative ou taux d'évolution *t* est calculée à partir de la formule suivante :

$$t = \frac{y_2 - y_1}{y_1}.$$

Une fois encore, un nombre positif indique une augmentation et un nombre négatif indique une diminution.

Exemples

En Essonne : t =

En France : t =

Conclusion: En Essonne,

I - Variations

- A) Variation absolue
- B) Variation relative
- C) Lorsque l'on connaît le taux de variation

II - Taux d'évolution successifs

III - Taux d'évolution réciproque

Exemple

Un commerçant de meubles a vendu 125 chaises ce mois-ci. Son contrat stipule qu'il doit augmenter ses ventes d'au moins 3% chaque mois.

Combien doit-il vendre de chaises le mois prochain?

Lorsque l'on connaît le taux de variation

Bilan de l'exemple :

Propriété

Lorsque l'on passe de la valeur y_1 à la valeur y_2 avec une variation relative égale à t, on a:

$$y_2 = (1+t) \times y_1.$$

Propriété

Lorsque l'on passe de la valeur y_1 à la valeur y_2 avec une variation relative égale à t, on a:

$$y_2 = (1+t) \times y_1.$$

Démonstration.

Lorsque l'on connaît le taux de variation

Définition

Le nombre 1+t est appelé coefficient multiplicateur de y_1 à y_2 . Un coefficient supérieur à 1 traduit une augmentation, inférieur à 1 une diminution. S'il est égal à 1, il n'y a pas de variation.

Exemple

Dans une usine, le coût de production c_1 d'un objet est égal à 2 530 €.

Afin d'augmenter les bénéfices, le gérant décide de diminuer le coût de production de 2%. Quel est alors le nouveau de coût de production c_2 ?

I - Variations

- A) Variation absolue
- B) Variation relative
- C) Lorsque l'on connaît le taux de variation

II - Taux d'évolution successifs

III - Taux d'évolution réciproque

Exemple

Dans une commune, le maire décide d'augmenter les impôts locaux de 5%.

Ses conseillers lui suggèrent *d'y aller en douceur* en augmentant les impôts seulement de 2% la première année puis de 3% la seconde année.

Le maire doit-il suivre l'avis de ses conseillers?

Propriété

On considère une quantité qui évolue de y_1 à y_2 puis de y_2 à y_3 avec $y_2 \neq 0$.

On appelle t_1 le taux d'évolution de y_1 à y_2 , t_2 le taux d'évolution de y_2 à y_3 .

Le taux d'évolution global t permettant de passer de y_1 à y_3 est tel que :

$$1+t=(1+t_1)(1+t_2).$$

Propriété

On considère une quantité qui évolue de y_1 à y_2 puis de y_2 à y_3 avec $y_2 \neq 0$.

On appelle t_1 le taux d'évolution de y_1 à y_2 , t_2 le taux d'évolution de y_2 à y_3 .

Le taux d'évolution global t permettant de passer de y_1 à y_3 est tel que :

$$1+t=(1+t_1)(1+t_2).$$

Évolution

Démonstration.

Exemple

Calculons la véritable augmentation des impôts prévus par les conseillers :

I - Variations

- A) Variation absolue
- B) Variation relative
- C) Lorsque l'on connaît le taux de variation

II - Taux d'évolution successifs

III - Taux d'évolution réciproque

Exemple

Afin de faire des économies, un patron décide de baisser les salaires de 4%.

Le mois suivant, les ouvriers entrent en grève pour retrouver leur ancien salaire. Le patron accepte et décide alors d'augmenter les salaires de 4% pour qu'ils retrouvent leur valeur d'origine.

La grève doit-elle continuer?

Propriété

On considère une quantité de valeur $y_1 \neq 0$ qui passe à la valeur $y_2 \neq 0$ avec un taux égal à t.

Afin de passer de y_2 à y_1 , il faut utiliser le coefficient t' tel que :

$$1+t'=\frac{1}{1+t}.$$

Propriété

On considère une quantité de valeur $y_1 \neq 0$ qui passe à la valeur $y_2 \neq 0$ avec un taux égal à t.

Afin de passer de y_2 à y_1 , il faut utiliser le coefficient t' tel que :

$$1+t'=\frac{1}{1+t}.$$

Démonstration.

Exemple