

FIRST PRELIMINARY AMENDMENT

November 16, 2001

TO THE ASSISTANT COMMISSIONER FOR PATENTS:

In the Claims:

Please add the following new claims.

23. A method, comprising:

forming a first layer of spin-on glass on a substrate;

depositing a first dielectric on the first layer;

forming a second layer of spin-on glass on the first dielectric; and planarizing the second layer of spin-on glass.

- 24. The method of claim 23 wherein forming the first layer of spin-on glass comprises depositing a siloxane-based spin-on glass on the substrate.
- 25. The method of claim 23 wherein forming the first layer of spin-on glass comprises depositing a polyimide spin-on glass on the substrate.
- 26. The method of claim 23 wherein forming the first layer of spin-on glass comprises depositing a polymethylmethacrylate spin-on glass on the substrate.
- 27. The method of claim 23 wherein forming the first layer of spin-on glass comprises curing the first layer at 425°C.
 - 28. The method of claim 23, further comprising:

forming a second dielectric on the substrate before forming the first layer of spin-on glass; and

forming the first layer of spin-on glass on the second dielectric.