NWCG FIRELINE HANDBOOK APPENDIX B FIRE BEHAVIOR

APRIL, 2006 PMS 410-2 NFES 2165

Additional copies of this publication may be ordered from:

National Interagency Fire Center ATTN: Supply 3833 S. Development Avenue Boise, Idaho 83705

Order NFES 2165

CONTENTS

PURPOSE4
FIRE BEHAVIOR WORKSHEETS
INPUT 0-Projection Point
INPUT 1—Selecting a Fuel Model 10 Fire Behavior Fuel Model Key 12 Fire Behavior Fuel Model Descriptions 16 Grass Group 16 Shrub Group 17 Timber Litter Group 18 Logging Slash Group 19 Table 1—Description of Fuel Models 21
Table 1—Description of Fuel Models
INPUT 2-Fine Dead Fuel Moisture (1-H FDFM)
Table 4—Dead Fuel Moisture Content Corrections, Day (0800-1759) February, March, April, August, September, October
Table 5-Fine Dead Fuel Moisture Content Corrections, Day (0800-1759) November, December, January 28
INPUT 3-Live Fuel Moisture (LFM) Fuel Models
2, 4, 5, 7 and 10
Table 6-Live Fuel (Foliage) Moisture Content %
INPUT 4-Midflame Windspeed (MFWS)
Midflame Windspeed Based on Overstory
Table 7–Wind Adjustment Table
Table 8–Modified Beaufort Scale for Estimating 20-Foot Windspeed
INPUT 5-Slope (SLP)
Slope Determination Process
Table 9-Map Scale Conversion Factors

CONTENTS (continued)

INPUT 6-Effective Windspeed (EWS)	. 37
FIRE BEHAVIOR OUTPUTS	
OUTPUT 1-Rate of Spread	. 38
OUTPUT 2-Heat Per Unit Area	
OUTPUT 3-Fireline Intensity	. 38
OUTPUT 4-Flame Length	
OUTPUT 5-Spread Distance	
OUTPUT 6/7-Projected Fire Perimeter and Area	. 40
Table 10-Perimeter Estimations for Point Source Fires	
Table 11–Area Estimations for Point Source Fires Diagram 2: Approximate Fire Shapes for Various	44
Effective Windspeeds	. 47
OUTPUT 8-Maximum Spotting Distance	. 48
Nomogram 1-Flame Height	. 50
Nomogram 2-Flame Duration	51
Nomogram 3-Ratio of Lofted Firebrand Height to	
Flame Height	
Nomogram 4-Maximum Spotting Distance	. 53
OUTPUT 9-Probability of Ignition	. 54
Table 12–Probability of Ignition Table	. 55
INTERPRETATION OF FIRE BEHAVIOR INFORMATION	
Table 13-Fire Severity Related to Fuel Moisture Chart	. 56
Diagram 3: Fire Behavior Characteristics Chart	
(Light Fuel)	. 57
Diagram 4: Fire Behavior Characteristics Chart	
(Heavy Fuel)	. 58
Table 14-Fire Suppression Interpretations	. 59
SAFETY AND FIRE BEHAVIOR	
Look Up/Look Down/Look Around	61
Tables 15 through 78 – Rate of Spread and Flame	
Length Tables by Fuel Type and Percent Slope	: 63

PURPOSE

The purpose of this appendix is to provide some basic fire behavior information that will enable a person with a moderate level of fire behavior training (Introduction to Wildland Fire Behavior Calculations, S-390) to predict and calculate some basic elements of fire behavior and fire size.

Information in this appendix will provide the qualified user with the means to:

- Predict rate of spread (ROS) and flame length (FL) for each Fire Behavior Fuel Model based on the 1-hour timelag dead fuel moisture, live fuel moisture for Fuel Models 2, 4, 5, 7 and 10, midflame windspeed and percent slope.
- Estimate the area and perimeter of a fire, given inputs of spread distance (rate of spread x time) and midflame windspeed.
- Predict maximum spotting distance and probability of ignition.
- Provide worksheets for fire behavior prediction.

The Fire Behavior Worksheet is on page B-5. Other worksheets that help track fire behavior input and output date (Fine Dead Fuel Moisture/Probability of Ignition, Wind Adjustment, Slope, Map-Spread, Size, Spotting, and Map-Spot) are provided on pages B-6 through B-9. Pages B-10 through B-37 go over the six required input items on the Fire Behavior Worksheet and B-38 through B-55 cover the output items.

It is imperative that the user of information contained in this appendix know the assumptions, limitations, and appropriate uses of fire behavior prediction models and is able to recognize how environmental factors and processes affect fire behavior predictions and safety.

FIRE BEHAVIOR WORKSHEET

NAI DAI			FIRE PRED SPEC TIME		
PRC			PROJ TIME FROM		_TO
INP	UT				
0	PP	PROJECTION	N POINT		
1	MODEL#	FUEL MODE	L NUMB (1-13)		
2	1H-FDFM	FINE DEAD	FUEL MOIST, %		
3	LFM	LIVE FUEL N	MOISTURE, %		
4	MFWS	MIDFLAME	WINDSPD, mi/h		
5	SLP	SLOPE, %			
6	EWS	EFFECTIVE	WNDSPD, mi/h		
	<u> </u>				
1	ROS	RATE OF SP	READ, ch/h		
2	HA	HEAT PER U Btu/sq ft	INIT AREA,		
3	FLI	FIRELINE IN Btu/ft/s	TENSITY,		
4	FL	FLAME LEN	IGTH, ft		
5	SD	SPREAD DIS	,		
6	PER	PERIMETER	, ch		
7	AC	AREA, ac			
8	SPOT	MAX SPOTT MAP DIST S	TING DIST, mi POT, in	_	
9	PIG	PROB OF IG	NITION, %		

FINE DEAD FUEL MOISTURE/PROBABILITY OF IGNITION WORKSHEET

INI	PUT				
0	PP	PROJECTION POINT			
1	D	DAY TIME CALCULATION	<u>D</u>	<u>D</u>	<u>D</u>
2	DB	DRY BULB TEMP. °F			
3	WB	WET BULB TEMP. °F			
4	DP	DEW POINT, °F			
5	RH	RELATIVE HUMIDITY, %			
6	RFM	REFERENCE FUEL MOIST, % (TABLE 2)			
7	MO	MONTH			
8	SH	UNSHADED (U) SHADED (S)	<u>U/S</u>	<u>U/S</u>	<u>U/S</u>
9	Т	TIME			
9	1	TIME			
10	СН	ELEVATION CHANGE	<u>B/L/A</u>	<u>B/L/A</u>	<u>B/L/A</u>
	_		<u>B/L/A</u>	—— <u>B/L/A</u>	 B/L/A
	_	ELEVATION CHANGE $B = 1000' \text{ to } 2000' \text{ below site}$ $L = \pm 1000' \text{ of site location}$	 B/L/A	<u>B/L/A</u>	B/I./A
10	СН	ELEVATION CHANGE $B = 1000'$ to 2000' below site $L = \pm 1000'$ of site location $A = 1000'$ to 2000' above site	B/L/A	B/L/A	B/L/A
10	CH	ELEVATION CHANGE $B = 1000'$ to 2000' below site $L = \pm 1000'$ of site location $A = 1000'$ to 2000' above site ASPECT, (N, E, S, W)	<u>B/L/A</u>	<u>B/I./A</u>	<u>B/I./A</u>
10 11 12 13	CH ASP SLP	ELEVATION CHANGE $B = 1000'$ to 2000' below site $L = \pm 1000'$ of site location $A = 1000'$ to 2000' above site ASPECT, (N, E, S, W) SLOPE % FUEL MOIST CORRECT, %	B/L/A	<u>B/L/A</u>	B/I./A
10 11 12 13	ASP SLP FMC	ELEVATION CHANGE $B = 1000'$ to 2000' below site $L = \pm 1000'$ of site location $A = 1000'$ to 2000' above site ASPECT, (N, E, S, W) SLOPE % FUEL MOIST CORRECT, %		B/L/A	B/I./A

B-6

WIND ADJUSTMENT WORKSHEET

TNT	PUT		
0	PP	PROJECTION POINT	
1	20' W	20-FT WINDSPEED, mi/h	
2	MODEL #	FUEL MODEL # (1-13)	
3	SHLTR	WIND SHELTERING	
		1=Unsheltered 2=Partially Sheltered 3=Fully Sheltered, Open 4=Fully Sheltered, Closed	
4	WAF	WIND ADJUST FACTOR (TABLE 7)	
<u>OU</u> 1		MIDFLAME WNDSPD, mi/h line 1 x line 4)	
		SLOPE WORKSHEET	
INI	PUT		
0	PP	PROJECTION POINT	
1	CON INT	CONTOUR INTERVAL	
2	SLC	MAP SCALE	
3	CF	CONVERSION FACTOR, ft/in	
4	# INTVLS	# CONTOUR INTERVALS	
5	RISE	RISE IN ELEVATION	
6	MD	MAP DISTANCE, in (Between Points)	
7	HZGD	HORIZ GROUND DIST, ft	
QU	TPUT		
1	SLP%	SLOPE, %	

COMPLETING THE FIRE BEHAVIOR WORKSHEET

INPUT 0: Projection Point (PP)

Assign a number or letter to designate the projection point location and enter as Input 0 on the Fire Behavior Worksheet on page B-5.

INPUT 1: Fuel Model (Model #)

- Using the guidelines below, proceed through the fuel model key and descriptions which follow and select a fuel model and enter as Input 1 on the Fire Behavior Worksheet on page B-5.
- Determine the primary carrier of fire.
- Determine which stratum of the surface fuels is most likely to carry the spreading fire (grass, needle litter, leaves, logging slash, etc.).
- Determine the appropriate fuel group/general vegetation type;
 i.e., Grass (Models 1-3), Shrub (Models 4-7), Timber Litter (Models 8-10), or Logging Slash (Models 11-13).
- Using the fuel model key, determine the appropriate fuel model.
- Go to the fuel model description and determine if it fits.
- If yes, use it and enter into Input 1 on the Fire Behavior Worksheet.
- If no, find another that more closely fits your situation.
- The fuel models used here are those used by Albini (1976)¹ to develop the nomograms published in his paper Estimating Wildfire Behavior and Effects. There are 13 models which are called the Fire Behavior Fuel Models.

¹ Albini Frank A.; Estimating Wildfire Behavior and Effects. Gen. Tech. Report INT-30; 1976.

B-10

They are tuned to the fine fuels that carry the fire and thus describe the conditions at the head of the fire or the flaming front. These models are designed to give predictions for fire spread at a steady rate. It is important to recognize that rate of spread (ROS) and flame length (FL) predictions are estimates and the actual ROS and FL may vary considerably from the predicted.

Assessment of fire behavior is simpler if a single fuel model is
used to describe the fuels in the area. In fact, as experience is
gained by observation of fires and estimating their behavior, it
is possible to pick the fuel model not only by its description of
physical vegetation, but also by its known fire behavior
characteristics.

Examples: The fire may be in timbered area, but the timber is relatively open and dead grass, not needle litter, is the stratum carrying the fire. In this case, Fuel Model 2, which is not listed as a timber model, should be considered, or

In the same area if the grass is sparse and there is no wind or slope, the needle litter would be the stratum carrying the fire and Fuel Model 9 would be the better choice.

- Determine the general depth and compactness of the fuel. This
 information will be needed when using the fuel model key.
 There are very important considerations when matching fuels,
 particularly in the grass and timber types.
- Determine which fuel models are present and what their influence on fire behavior is expected to be.

Example: Green fuel may be present, but will it play a significant role in fire behavior? Large fuels may be present, but are they sound, or decaying and breaking up? Do they have limbs and twigs attached or are they bare cylinders? Look for the fine fuels and choose a model that represents their depth, compactness, and to some extent, the amount of live fuel and its contribution to fire. Do not be restricted by the model name or the original intended application.

FIRE BEHAVIOR FUEL MODEL KEY1

- I. PRIMARY CARRIER OF THE FIRE IS GRASS. Expected rate of spread is moderate to high, with low to moderate fireline intensity (flame length).
 - A. Grass is fine structured, generally below knee level, and cured or primarily dead. Grass is essentially continuous. SEE THE DESCRIPTION OF MODEL 1.
 - B. Grass is coarse structured, above knee level (averaging about 3 ft.) and is difficult to walk through. SEE THE DESCRIPTION OF MODEL 3.
 - C. Grass is usually under an open timber or brush overstory. Litter from the overstory is involved, but grass carries the fire. Expected spread rate is slower than Fuel Model 1 and intensity is less than Fuel Model 3. SEE THE DESCRIPTION OF MODEL 2.

· Grass Group

Fuel Model 1 (1 foot deep) Fire spread is governed by the fine herbaceous fuels that have cured or are nearly cured. Fires are surface fires that move rapidly through cured grass and associated material. Very little shrub or timber is present, generally less than one-third of the area.

Grasslands and savanna are represented along with stubble, grass-tundra, and grass-shrub combinations that meet the above area constraint. Annual and perennial grasses are included in this fuel model.

Fuel Model 2 (1 foot deep) Fire spread is primarily through the fine herbaceous fuels, either curing or dead. These are surface fires where the herbaceous material, besides litter and dead-down stemwood from the open shrub or timer overstory, contribute to the fire intensity. Open shrub lands and pine stands or scrub oak stands that cover 1/3 to 2/3 of the area may generally fit this model but may include clumps of fuels that generate higher intensities and may produce firebrands. Some pinyon-juniper may be in this model.

Fuel Model 3 (2.5 feet deep) Fires in this fuel are the most intense of the grass group and display high rates of spread under the influence of wind. The fire may be driven into the upper heights of the grass stand by the wind and cross over standing water. Stands are tall, averaging about 3 feet, but considerable variation may occur. Approximately one-third or more of the stand is considered dead or cured and maintains the fire.

¹ Richard C. Rothermel; How to Predict the Spread and Intensity of Forest and Range Fires. Gen. Tech Report INT-143; June 1983 (NFES 1574).

² Anderson, Hal E.; Aids to Determining Fuel Models for Estimating Fire Behavior. Gen. Tech Report INT-122, 1982.

INPUT 2: Fine Dead Fuel Moisture (1-H FDFM), %

Fine Dead Fuel Moisture Content is an important input to fire behavior predictions. Fuel moisture measurements are difficult to make in the field; however, estimates can be made from measured or predicted values of dry bulb temperature and relative humidity.

Due to solar radiation differences that exist between aspect, time of year, shading, and the adiabatic difference between position on the slope, it is necessary to calculate an estimate of fuel moisture. This is necessary as the National Fire Danger Rating System (NFDRS) tables used here were developed for "worst case" conditions (summer, 1400, SW aspect, open conditions). These predictions are for fine, dead forest fuels. Heavier fuels can be estimated by other means as needed.

Temperature and humidity are predicted for a specific site (projection point) in relation to a site (site location) where dry bulb temperatures and relative humidity are measured. Since temperature and relative humidity change with elevation, it is necessary to estimate these changes between the projection point and the site location. There are tables to correct for elevation changes of 0 to 2000 feet above or below the site location, but a new site location is needed if the elevation difference between the site location and the projection point exceeds 2000 feet.

Time corrections **cannot** be made. Temperature and relative humidity must be obtained for the time in question.

The tables may be used to adjust the moisture of fuels in valley bottoms from conditions measured on the slopes above, but do not use weather data taken beneath a valley inversion and attempt to interpolate fuel moistures at drier sites upslope. The corrections are too large and uncertain, and you may get meaningless results.

To use the Fine Dead Fuel Moisture/Probability of Ignition Worksheet on page B-6, complete the following input/output items. Enter the fine dead fuel moisture as Output 1 on the Fine Dead Fuel Moisture/Probability of Ignition Worksheet and as Input 2 on the Fire Behavior Worksheet on page B-5.

INPUT

- 0 (Projection Point)—Record the number of the projection point for which a fire behavior prediction is to be made.
- I (Day Time Calculation)—Only day time calculations will be considered.
- 2 (Dry Bulb Temperature)—Dry bulb temperature is determined for the time period in question, either by measurement or forecast. The site location may or may not be at the projection point. Record temperature in degrees Fahrenheit.
- 3 (Wet Bulb Temperature)—Wet bulb temperature is determined for the time period in question, either by measurement or forecast. The site location may or may not be at the projection point. Record temperature in degrees Fahrenheit.
- 4 (Dew Point)—Record dew point for the time period in question.
- 5 (Relative Humidity)—Record relative humidity for the time period in question.
- 6 (Reference Fuel Moisture)—Go to Table 2 and determine the reference fuel moisture percent from the intersection of temperature and relative humidity (Inputs 2 and 5). Record as a percent.
- 7 (Month)—Record the appropriate month.
- 8 (Unshaded or Shaded)—Circle "U" if fine dead fuels ahead of the projection point are unshaded (<50% shading) from solar radiation due to cloud cover and/or canopy cover. Circle "S" if fine dead fuels ahead of the projection point are shaded (>50% shading) from solar radiation due to cloud and/or canopy cover.

- 9 (Time)—Record the expected time when the projection point will be used to estimate fire behavior. The temperature/RH forecast or measurement must be the same time period as the projection time period.
- 10 (Elevation Change)—Record the elevation difference between the location of the projection point and the temperature/RH site location and circle:
 - "B" if the projection point is 1000 to 2000 feet below the site location.
 - "L" if the projection point is 0 to 1000 feet above or below the site location.
 - "A" if the projection point is 1000 to 2000 feet above the site location.

If the projection point is more than 2000 feet above or below the site location, get a new forecast or reading.

- 11 (Aspect)—Record the aspect of the projection point location (north, south, east, or west).
- 12 (Slope)—Record the slope in percent (%) at the project point. (See pages B-35 and B-36 for determining percent slope.)
- 13 (Fuel Moisture Correction)—From Input Values 7 through 12 and the appropriate Daytime Correction Tables (Tables 3, 4, or 5) determine fuel moisture correction. Record in percent.

OUTPUT

 (Fine Dead Fuel Moisture)—Determine the fine dead fuel moisture by adding Input Item 6 and Input Item 13. Record as a percent.

TABLE 2: Reference Fuel Moisture, Day (0800-1959)

	2	<u>=</u>	13	F		13	ם	
	\$-\$	·	<u>r-1</u>	=	<u>c-</u> :	₽	[]	
	흥교홍	(FT)	=	=	-	13	-1	
	£ →£	13		드	=	=	=	
	S → #	=	=	=	2	ű)	=	ಜ್ಞರೆ
	£ -£		2	2	0)	Q1 -	9	GO TO TABLE 3, 4, OR 5 FOR FUEL MOISTURE CONTENT CORRECTIONS. NOTE: When using Tables 3, 4, and 5: B = 1000-2000 feet below the site focation. L = 0.4000 feet above in below the site focation. A = 1000-2000 feet above be site focation.
	2 L #	2	2	6	6	6	ā-	FUEL MONSTURE CONTENT CORRECT for using Tables 3, 4, and 5. B = 1000-2000 feet below the site formion. L = 0-1000 feet above in below the site for A = 1000-2000 feet above the site formion.
	38	<u>a</u>	œ	o	э с ;	œ	æg	SNT C To site l low the
rcent)	इ -इ	\$7	\$	æ	æ	æ	=	NOTE: When using Tables 3, 4, and 5; When using Tables 3, 4, and 5; B = 1000.2010 feet below the L = 0.4000 feet above in below A = 1000.2000 feet above the
Relative Humidity (Percent	- 53 - 59	=	sie /	=	<u>ac</u>	¥		LIRE C 53.5, 4. fred b
Humix	ह —इ	==		-	-	r-		101ST 12480 12480 12480 12580 12680
Lilive	5 - 4	æ	r~	i	<u>. </u>	L		161. N
R	9 →#	g	F~	ģ	Ų	9	÷	S S S S S S S S S S S S S S S S S S S
	<u> </u>	2	va .	Ş	M.	ৰ'ঃ	15"	OR SI NOTE
	유교류	₹1.	le ^e j	w.,	35.	+	-	# #
With the second second	ม≕ย	Ner?s	brj	XV°).	7	7	-	IMBLI
a a a a a a a a a a a a a a a a a a a	ষ⊸ষ	-p	49	:Mgr		# * F ₂	en.	.010
ALC: NO.	5 -6	अस्	(PT	tast.	er	ተቀ	r.	5
and a second second	≐ →≖	T 1	ri,	r-t	e i	eret	7	
100000000000000000000000000000000000000	л — Ф	~ }.	ri ri	F-1	L	_ :	Ц	
	0		-	_	_			
	ed de	10-24	SF OX	50.69	3	8 <u>2</u>	+604	

TABLE 3: Dead Fuel Moisture Content Corrections, Day (0800-1959) May, June, July

		~		+	7	•	г	m		r-a		1	عِيا	ur:	٠.,
	£00₽		היין	-	al.	un.	r-,	-	477	гa	and and	Vi	ıς	lr.	7
İ	1	2	r i	~	أحنة		r a	C4	ri	-		7		wj.	- F
		ج.	_	r-u	r -1	-	-	es)	_			isjan j	40	i _P 2	ų,
	<0000 1000 1000 1000 1000 1000 1000 100	_	1	ra	_	1		_		Ú	1000	-	_	+	-
ILIS	36	201	1	1		1			0	0	οá	-	-	9	<u>ب</u>
HH			_	r.	_	3	_				FUE	.j.			
FAC	4		_								CE	_			Н
SUR	<001		0		_	_	Û	_		Ó	RFA		7	P#1	٠
0	od rasasson	Œ	Ũ	1	0	1	Û	0	n	0	ាន រ	ابئ	T,	ť	444
DINC		4	_	ŗά	_	-	_	-	1	Ţ	0.01	#	7	ŧ	4
SHA	<007	Г	0	-	0	0	0	Ī	0	1.1	ligyi	3	3		3
50%		8	D	-	0	(n	0	0	Û	1	1831	امبر	Į,	pr-1	"
HAN		₹	_	- 1	-	1		2	1	†	MOF	\$	UF3	1972	ψ'n
INSHADED - LESS THAN 50% SHADING OF SURFACE FUELS	<0001	_	_	7	_		-	_	_	1	SHADED - 50% OR MORE SHADING OF SURFACE FUELS	4	4	7	7
		m	_	_	<u> </u>	0	_	_	_	Č	- 5th	m	Ę	E	
ADEL		۲.	**	7	en	77	۳		#	9	OED.	¥٦	ur:	c	Q.
NSH	<00080	٦	1	7	٠,	7		, -1	~ ~	5	SHA	i, it i	्री	+	_ا مپ
-	0	=	ri	m	7	1.1	ť	r)	2	के		4	7	#	4
	2do[5%		00.0	31+	05-0	-1E	0.30	+ 6	0:-0	+IE		lla l	lin l	l II I	all
	Aspect		z		Э		50		М			z	H	ß	3≛

B-26

INPUT 3: Live Fuel Moisture (LFM), %

Live fuel moisture (foliage moisture) is required for Fire Behavior Models 2, 4, 5, 7 and 10. If data are unavailable for estimating live fuel moisture, the following rough estimates (Table 6) can be used. Enter the live fuel moisture for Fire Models 2, 4, 5, 7 and 10 as Input 3 on the Fire behavior Worksheet on page B-5.

TABLE 6: Live Fuel (Foliage) Maisture Content (Percent)

Moisture	Stage of Vegetative Development
Content (%)	Stage of vegetative Development
300	Fresh foliage, annuals developing early in the growing cycle.
200	Maturing foliage, still developing, with full turger.
100	Mature foliage, new growth complete and comparable to older perennial foliage.
50	Entering dormancy, coloration starting, some leaves may have dropped from stem.
30	Completely cured, treat as dead fuel.

INPUT 4: Midflame Windspeed (MFWS), mi/h

Midflame wind is the wind which acts directly on the flaming fire front at the level of one half the flame height. Fire generated convective winds must be ignored.

You may take wind readings directly with a handheld anemometer or other measuring device; however, the readings must be taken far enough upwind of the fire to ensure that the wind is not influenced by convective indrafts.

If you choose to use a weather forecast to estimate windspeeds, you must determine whether the forecast is for 20-foot windspeeds or midflame windspeeds.

When midflame winds are forecast, enter them directly in Input 4 of the Fire Behavior Worksheet.

If the 20-foot winds are forecast (which they usually are), the midflame windspeed must be calculated. Use the Wind Adjustment Worksheet on page B-7 and complete the following Input and Output Values.

Enter midflame windspeed as Output 1 on the Wind Adjustment Worksheet and as Input 4 on the Fire Behavior Worksheet on page B-5.

INPUT

- 0 (Projection Pint)—Record the number of the projection point for which a fire behavior prediction is to be made.
- (20-foot Windspeed)—Enter the 20-foot windspeed provided in the Special Weather Forecast.
- 2 (Fuel Model Number)—Enter one of the 13 FBPS fuel models.
- 3 (Wind Sheltering)—Using Diagram 1 on page B-32, determine whether fuels are: 1) unsheltered, 2) partially sheltered, 3) fully sheltered (open) or 4) fully sheltered (closed).
- 4 (Wind Adjustment Factor)—Using Table 7 on page B-33, select the appropriate adjustment factor for the specific fuel and sheltering condition.

OUTPUT

1 (Midflame Windspeed)—Multiply Input 1 x Input 4 on the Wind Adjustment Worksheet for the midflame windspeed.

Remember, for basic point source predictions the wind should be blowing within ± 30 degrees of upslope.

Exposure Exposure ERED FUI ad directly: r sparse Fuel beneath it gs or clean it idges wh i	Wind Adjustment Table Fire! A Model A ILS: 4 In the 13 In 12 In the 1, 3, 5, 6, 11, 12 In the (2, 7) cuts; (8, 9, 10)* ere In the Models All Fuel In Models In Models	26) is 26) is 3 in the contract of the contrac
PARTIALLY SHELTERED FUELS: Fuel beneath patchy timber where it is not well sheltered; fuel beneath standing timber at midslope or higher on a mountain with who blowing directly at the slope.	All Fuel Models	0.3
FULLY SHELTERED FUELS: Fuel sheltered beneath standing timber on flat or gentle slope or near base of mountain with steep slopes.	All Fuel Models	Open Stands 0.2 Dense Stands 0.1
Fuels usually partially sheltered. Fruels usually fully sheltered.		

FIRE BEHAVIOR OUTPUTS

Determine the Fire Behavior Output Items (1-9) listed below and enter them on the Fire Behavior Worksheet on page B-5.

OUTPUT 1: Rate of Spread (ROS), ch/h

Using the upper right quadrant (left vertical axis) of the nomogram and input items recorded on the Fire Behavior Worksheet, determine rate of spread. Tables 15 through 78 can also be used to approximate rate of spread.

OUTPUT 2: Heat per Unit Area (HA), Btu/sq ft

Using the upper right quadrant of the nomogram, determine heat per unit area from the lower axis.

OUTPUT 3: Fireline Intensity (FLI), Btu/ft/s

Using the upper right quadrant of the nomogram, determine fireline intensity along the curved lines.

OUTPUT 4: Flame Length (FL), ft

Using the upper right quadrant of the nomogram, determine the flame length along the curved lines. Flame length can also be approximated using Tables 15 through 78.

OUTPUT 5: Spread Distance (SD), ch

Rate of spread (Output 1) on the Fire Behavior Worksheet, multiplied by the hours in which a fire spreads at that rate, equals spread distance. Convert to map distance using the Map-Spread Worksheet as outlined on page 39.

OUTPUT 9: Probability of Ignition (PIG), %

Use Table 12 on page B-55 and the dry bulb temperature (Input 2), shading (Input 8) and the fine dead fuel moisture (Output 1) from the Fine Dead Fuel Moisture/Probability of Ignition Worksheet to determine probability of ignition.

Enter probability of ignition as Output 2 on the worksheet. Also record it as Output 9 on the Fire Behavior Worksheet on page B-5.

	######################################
--	--

TABLE 13-Fire Severity Related to Fuel Moisture Chart

Relative	Fuel	Foel	Relative ease of chance
Humidity	Moisture	Moesture	iznition and spotting.
	11.15.517515	30000000	general burning
			conditions.
÷60	>20	>15	Very little ignition:
upoj	~ ****	21,5	some specifice may occur
			with winds above 9
			might
45-60	15-19	12-15	Low ignition hazard -
42-011	17-12	12-12	campfires become
			dangerous; glowing
		1	brands cause ignifian
			when relative bamidity
30.15	11-14	10-12	is <50 percent. Medium ignicion bazard
CHEOR	11-14	10-12	
]	- matches become
			dangerous; "ensy"
26-4/1	8-10	8.9	bearing conditions.
200-40	8-10	8.9	High ignition hazard –
			matches are dangerous;
			occasional crowning,
			spotting caused by gusty
		1	winds: "moderate"
		anne di comprene la vilence con	burning conditions.
15-30	5-7	5×7	Quick ignition, rapid
'			buildup, extensive
			crowning; any increase
			in wind causes increased
			sporting, crowning, loss
			of control; fire moves up
			bark of trees igniting
			oerial faels; long
			distance spotting in pine
			stands; dangerous
			bearing conditions.
~15	•5	<5	All secres of ignition
		Į .	dangerous: aggressive
			busing, spot fires occur
			often and spread rapidly.
			extreme fire behavior
			probable; critical
			burning conditions.

TABLE 14—Fire Suppression Interpretations¹

CAUTION: These are not guides to personal safety. Fires can be dangerous at any level of intensity. Wilson (1977) has shown that most fatalities occur in light fuels on small fires or isolated sections of large fires.

Flame	Fineline	
Length	Intensity	
(ft)	(Btts/ft/s)	Interpretations
Ŭ-4	0-100	Fires can generally be attacked at
		the head or flanks by persons
		using hand tools.
		Handline should hold the fire.
4-8	100-500	Fires are too intense for direct
		attack on the head by persons
		using hand tools.
:		Handline cannot be relied on to
		hold fire. Equipment such as
		dozers, engines, and retardant
		aircraft can be effective.
8-11	500-1,000	Fires may present serious control
	anno	problems – torching out.
		crowning, and spotting
		Control efforts at the head of the
		fire will probably be ineffective.
114	1,0004	Crowning, spotting, and major
		runs are common.
		Control efforts at the head of the
		fire are ineffective.
L		1 LIFE SIFE ILDERS STATE IN The

¹ Help in Making Fuel Management Decisions, 1975; Research Paper NC-112, USDA: Forest Service.

Tables 15 through 78—Rate of Spread and Flame Length Tables by Fuel Type and Percent Slope

NOTE: Tables 15 through 78 for ROS and FL (Output Items 1 and 4) on the Fire Behavior Worksheet reflect slope classes 0, 30, 45, 60 and 90 percent. You may use the slope class closest to the actual slope recorded (for Input Item 5) or interpolate between the slope class.

TABLE 15: FUEL MODEL 1—0% SLOPE

0									
0.	2.	4.	6.	8.	10.	12.			
Rate of Spread/Chains per Hour									
3	22	77	172	307	-446	-446			
#	18	61	135	242	*270	*270			
3	13	45	101	•136	•136	•136			
0	Q.	0	0	0	D	Q			
Flame Length/Feet									
1.3	2.5	4.5	6.4	8.4	*10.0	• i 0.0			
1.1	2.1	3.8	5.4	7.1	*7.5	•7.5			
0.9	1.7	3.0	4.3	•5.D	•5.0	•5.0			
0.0	0.0	0.0	0.0	0.0	0.0	0.0			
_	4 3 0 1.3 1.1 0.9	\$ 22 4 18 3 13 0 0 1.3 2.5 1.1 2.1 0.9 1.7	5 22 77 4 18 61 3 13 45 0 0 0 Fla 1.3 2.5 4.5 1.1 2.1 3.8 0.9 1.7 3.0	5 22 77 172 4 18 61 135 3 13 45 101 0 0 0 0 Flame Leng 1.3 2.5 4.5 6.4 1.1 2.1 3.8 5.4 0.9 1.7 3.0 4.3	5 22 77 172 307 4 18 61 135 242 3 13 45 101 +136 0 0 0 0 0 Flame Length/Feet 1.3 2.5 4.5 6.4 8.4 1.1 2.1 3.8 5.4 7.1 0.9 1.7 3.0 4.3 -5.0	S 22 77 172 307 •446 4 18 61 135 242 •270 3 13 45 101 •136 •136 0 0 0 0 0 0 Flame Length/Feet 1.3 2.5 4.5 6.4 8.4 •10.0 1.1 2.1 3.8 5.4 7.1 •7.5 0.9 1.7 3.0 4.3 •5.0 •5.0			

TABLE 20: FUEL MODEL 2—0% SLOPE										
Fact		Midflame Wind, mith								
Moisture										
%	0.	Z,	4,	6.	8.	10.	12,			
(1-Hour)										
	Rate of Spread/Chains per Hour									
3.0 120-90	3	1.1	28-31	56-62	92-102	138-152	191-211			
6.0 120-90	2	9	23-25	45-50	75-83	112-124	156-172			
9,0 120-90	2	8	20-22	40-44	66-73	99-109	137-151			
12.0 120-90	2	6	16	30-33	49-54	73-81	102-112			
15.0 120-90	•0	•Q	+3	•3	+3	•3	•3			
18.0+120-90	0	0	0	Ð	()	0	0			
	Flame Length/Feet									
3.0 120-90	2.1	3.8	6.2	8,4	10.7	12.8	14.9			
6.0 120-90	1.5	3.2	5.3	7.2	9.1	11.0	12.8			
9.0 120-90	1.7	3.0	4.8	6.6	8.4	10.0	11.6			
12.0 120-90	1.3	2.3	3.7	5.2	6.5	7.8	9.1			
15,0 120-90	•0.2	•0.3	ન ≬4	*0.5	*0.5	+0.5	+0.5			
18.0+ 120-90	0,0	0.0	0.0	0.0	0.0	0.0	0.0			
	 MEANS YOU HIT THE WIND LIMIT. 									

TABLE 21: FUEL MODEL 2—30% SLOPE											
Fuel		Midtlame Wind, mith									
Moisture											
96	0.	2.	4.	6.	8.	10.	12.				
(1-Hour)	<u> </u>										
	Rate of Spread/Chains per Hour										
3.0 120-90	9	15-17	34-37	61-68	98-109	144-159	197-218				
6.0 120-90	8	14	27-30	50-55	80-88	117-129	161-177				
9.0 120-90	7	12	24-27	44-49	70-78	103-113	141-156				
12.0 120-90	5	9	18-20	33-36	52-57	76-84	105-115				
15.0 120-90	-1	- [+ 2	•2	•2	•2	-2				
18.0÷ 120-90	0	Ü	Û	0	Ò	()	0				
		Flame Length/Feet									
3.0 120-90	3.5	4.7	6.7	8.8	10.9	13.0	15.1				
6.0 120-90	3.0	4.0	5.8	7.5	9.4	11.2	12.9				
9.0 120-90	2.8	3.7	5.3	6.9	8.6	10.2	11.8				
12.0 120-90	2.2	2.9	4.1	5.4	6.7	8.0	9.3				
15.0 120-90	*0.3	•0.3	*0 _5	•0,5	•0.5	•0.5	•0.5				
18.0* 120-90	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
		•MEANS YOU HIT THE WIND LIMIT.									

TABLE 25: FUEL MODEL 3-0% SLOPE

Fuel	Midflame Wind, mith									
Moisture (I-Hour)	0. 2. 4. 6. 8. 10.									
	Rate of Spread/Chains per Hour									
3.0	6	52	121	201	290	387	490			
6.0	5	39	89	148	214	286	361			
9.0	4	32	73	122	176	234	296			
12.0	3	28	64	107	154	206	260			
15.0	3	25	57	95	137	182	213			
18.0	2	20	47	79	114	151	194			
21.0	2	14	32	53	77	103	130			
	Flame LengilyFeet									
3.0	3.8	10.1	14.8	18.7	22.2	25_3	28.2			
6.0	3.0	8.0	11.8	14.9	17.7	20.2	22.5			
9.0	2.6	7.0	10.3	13.0	15.4	17.6	19.6			
12.0	2,4	6.5	9.5	12.1	14,3	16.3	18.2			
15.0	2.2	6.0	8.9	11.2	13.3	15.2	16.9			
18.0	2.0	5.3	7.7	9.8	11.6	13.2	14.7			
21.0	1.4	3.8	5.6	7.1	8.4	9.6	10.7			

DIAGRAM 2—Approximate Fire Shapes for Various Effective Windspeeds

