```
In[*]:= SetOptions[SelectedNotebook[],
         PrintingStyleEnvironment → "Printout", ShowSyntaxStyles → True]
 In[0]:= << Notation`</pre>
 In[•]:= (* Simplify the notation for the
         formulas: index vectors based on a subscript notation *)
        Notation \begin{bmatrix} x_n \\  \end{bmatrix} \Leftrightarrow x_{[n]}
 In[:]:= d = 1.0; (* Equilibrium bond length *)
        \alpha = Reverse@{13.00773, 1.962079, 0.444529, 0.1219492} & /@Range[1, 2] // Flatten
Out[0]=
        \{0.121949, 0.444529, 1.96208, 13.0077, 0.121949, 0.444529, 1.96208, 13.0077\}
 In[0]:= atomsPts = {{0, 0, 0}, {d, 0, 0}}; (* Atomic positions *)
        Z = Partition[Table[#, {n, 1, 4}] & /@ atomsPts // Flatten, 3]
         (* Array of positions for the coefficients \alpha *)
Out[0]=
        \{\{0,0,0\},\{0,0,0\},\{0,0,0\},\{0,0,0\},
         \{1., 0, 0\}, \{1., 0, 0\}, \{1., 0, 0\}, \{1., 0, 0\}\}
 ln[\cdot]:= K = Array \left[ Exp \left[ -\frac{\alpha_{\#1} \alpha_{\#2}}{\alpha_{\#1} + \alpha_{\#2}} Norm \left[ Z_{\#1} - Z_{\#2} \right]^2 \right] \&, \{8, 8\} \right]; (* Coefficients matrix <math>K_{p,q} *)
        #[K] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}
Out[0]=
                                                                                                       0.940847
                                                                                                       0.90874
                                                                               1.
                                                                                                       0.891533
                                                                                                       0.886197
        {True,
                                                   0.940847 0.90874 0.891533 0.886197
                                                    0.90874 0.800704 0.695991 0.650613
                                                                                                           1.
                                                   0.891533 0.695991 0.374921 0.181789
                                                                                                           1.
                                                   0.886197 0.650613 0.181789 0.00149764
                                                                                                           1.
 In[*]:= R = Array \left[ \frac{\alpha_{\#1} \ Z_{\#1} + \alpha_{\#2} \ Z_{\#2}}{\alpha_{\#1} + \alpha_{\#2}} \ \&, \{8, 8\} \right]; (* Distances matrix R_{p,q} \ *)
        #[R] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}
```

Out[•]=

In[*]:= S = Array
$$\left[\left(\frac{\pi}{\alpha_{\#I} + \alpha_{\#2}} \right)^{3/2} K_{\#I,\#2} \&, \{8, 8\} \right]; (* Overlap matrix $S_{p,q} *)$$$

#[S] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}

46.2287	13.0602	1.85084	0.117043	43.494
13.0602	6.64247	1.49148	0.112858	11.868
1.85084	1.49148	0.716317	0.0961392	1.6500
0.117043	0.112858	0.0961392	0.0419641	0.1037
43.4941	11.8683	1.65009	0.103723	46.228
11.8683	5.31865	1.03805	0.0734269	13.060
1.65009	1.03805	0.268562	0.017477	1.8508
0.103723	0.0734269	0.017477	0.000062847	0.1170

$$In\{*\}:= T = Array \left[\frac{\alpha_{\#1} \ \alpha_{\#2}}{\alpha_{\#1} + \alpha_{\#2}} \ \left(3 - 2 \ \frac{\alpha_{\#1} \ \alpha_{\#2}}{\alpha_{\#1} + \alpha_{\#2}} \ Norm[Z_{\#1} - Z_{\#2}]^2 \right) S_{\#1,\#2} \&, \{8, 8\} \right];$$

(* Kinetic energy matrix $T_{p,q}$ *)

#[T] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}

Out[0]=

(8.45632	3.74945	0.637503	0.042422	7.6
	3.74945	4.42916	1.62162	0.145532	3.
	0.637503	1.62162	2.1082	0.491726	0.5
	0.042422	0.145532	0.491726	0.818786	0.03
	7.63269	3.1899	0.524852	0.0345662	8.4
	3.1899	3.02094	0.85594	0.0675523	3.7
	0.524852	0.85594	0.273461	-0.0122114	0.6
	0.0345662	0.0675523	-0.0122114	-0.00409065	0.0

$$In[\circ]:= V = Total@Table \Big[Array \Big[If \Big[Norm[R_{\sharp 1},_{\sharp 2} - U] == 0 \,, \, -\frac{2\,\pi}{\alpha_{\sharp 1} + \alpha_{\sharp 2}} \, K_{\sharp 1},_{\sharp 2} \,, \\ -S_{\sharp 1},_{\sharp 2} \, \frac{1}{Norm[R_{\sharp 1},_{\sharp 2} - U]} \, Erf \Big[\sqrt{\alpha_{\sharp 1} + \alpha_{\sharp 2}} \, Norm[R_{\sharp 1},_{\sharp 2} - U] \Big] \Big] \, \&, \, \{8, \, 8\} \Big], \\ \{U, \, atomsPts\} \Big] \, ; \, (* \, Potential \, energy \, matrix \, V_{p,q} \, *)$$

#[V] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}

Out[0]=

1	-49.5733	-20.4017	-4.78952	-0.595591	- 47
ı	-20.4017	-12.4983	-4.06016	-0.579931	- 19
ı	-4.78952	-4.06016	-2.31383	-0.515863	-4.
ı	-0.595591	-0.579931	-0.515863	-0.283481	- 0 .
ı	-47.5078	-19.0125	-4.33849	-0.528623	-45
ı	-19.0125	-10.5321	-2.948	-0.378339	- 26
ı	-4.33849	-2.948	-0.900982	-0.0903486	-4.
	-0.528623	-0.378339	-0.0903486	-0.00025131	-0.

In[0]:= H = T + V;

#[H] & /@ {SymmetricMatrixQ, ArrayPlot, MatrixForm}

Out[0]=


```
-41.117
           -16.6522 -4.15202
                                 -0.553169
                                             - 39
-16.6522
          -8.06909
                     -2.43854
                                 -0.434398
                                             - 15
                                -0.0241367
-4.15202
          -2.43854 -0.205623
                                             -3.
-0.553169 -0.434398 -0.0241367
                                 0.535304
                                            -0.
-39.8751
          -15.8226
                     -3.81364
                                 -0.494057
                                             - 4
-15.8226
          -7.51116
                     -2.09206
                                 -0.310786
                                             - 16
-3.81364
          -2.09206
                    -0.627521
                                 -0.10256
                                             -4.
-0.494057 - 0.310786 - 0.10256
                                -0.00434196 - 0.
```

$$\label{eq:line_sigma} \begin{split} & \text{In[*]:= Q = Array} \Big[S_{\text{HI},\text{H3}} \, S_{\text{H2},\text{H4}} \, \text{If} \Big[\text{Norm} \big[R_{\text{HI},\text{H3}} - R_{\text{H2},\text{H4}} \big] == 0 \,, \, \frac{2}{\sqrt{\pi}} \, \, \sqrt{\frac{\left(\alpha_{\text{HI}} + \alpha_{\text{H3}}\right) \, \left(\alpha_{\text{H2}} + \alpha_{\text{H4}}\right)}{\alpha_{\text{HI}} + \alpha_{\text{H3}} + \alpha_{\text{H2}} + \alpha_{\text{H4}}}} \, \, , \\ & \frac{1}{\text{Norm} \big[R_{\text{HI},\text{H3}} - R_{\text{H2},\text{H4}} \big]} \, \, \text{Erf} \Big[\, \sqrt{\frac{\left(\alpha_{\text{HI}} + \alpha_{\text{H3}}\right) \, \left(\alpha_{\text{H2}} + \alpha_{\text{H4}}\right)}{\alpha_{\text{HI}} + \alpha_{\text{H3}} + \alpha_{\text{H2}} + \alpha_{\text{H4}}}} \, \, \, \text{Norm} \big[R_{\text{HI},\text{H3}} - R_{\text{H2},\text{H4}} \big] \, \Big] \, \, \big\} \, , \\ & \left\{ 8 \,, \,$$


```
In[*]:= P = ConstantArray[0., {8, 8}];
       #[P] & /@ {ArrayPlot, MatrixForm}
Out[0]=
                                        0. 0. 0. 0. 0. 0. 0. 0.
                                        0. 0. 0. 0. 0. 0. 0. 0.
                                        0. 0. 0. 0. 0. 0. 0. 0.
                                        0. 0. 0. 0. 0. 0. 0. 0.
                                        0. 0. 0. 0. 0. 0. 0. 0.
                                        0. 0. 0. 0. 0. 0. 0. 0.
 In\{*\}:= G = Array \left[ \sum_{r=1}^{8} \sum_{s=1}^{8} P_{r,s} \left( 2 Q_{\#I,r,\#2,s} - Q_{\#I,r,s,\#2} \right) \&, \{8,8\} \right] (* G_{p,q} \text{ matrix } *);
       #[G] & /@ {ArrayPlot, MatrixForm}
Out[0]=
                                        0. 0. 0. 0. 0. 0. 0. 0.
                                        0. 0. 0. 0. 0. 0. 0. 0.
                                        0. 0. 0. 0. 0. 0. 0. 0.
                                        0. 0. 0. 0. 0. 0. 0. 0.
                                        0. 0. 0. 0. 0. 0. 0. 0.
                                       0. 0. 0. 0. 0. 0. 0. 0.
```

```
In[\circ]:= F = H + \frac{1}{2}G;
```

#[F] & /@ {ArrayPlot, MatrixForm}

Out[0]=

```
-41.117
          -16.6522 -4.15202
                               -0.553169
                                           -39.8751
-16.6522
          -8.06909 -2.43854
                               -0.434398
                                           -15.8226
-4.15202
          -2.43854 - 0.205623 - 0.0241367
                                           -3.81364
-0.553169 -0.434398 -0.0241367
                                0.535304
                                           -0.494057
-39.8751
          -15.8226
                    -3.81364
                               -0.494057
                                            -41.117
-15.8226
                    -2.09206
                                           -16.6522
          -7.51116
                                -0.310786
-3.81364 - 2.09206 - 0.627521
                                -0.10256
                                           -4.15202
-0.494057 -0.310786 -0.10256 -0.00434196 -0.553169
```

```
In[\circ]:= \mathsf{matNorm}[v\_, M\_] := \frac{v}{\mathsf{Sqrt}[v.M.v]};
```

If[AllTrue[Thread[#.S.# # 1] & /@ evecs, TrueQ], Abort[], Nothing];

(* Perform a numerical divergence check *)

#[evecs] & /@ {ArrayPlot, MatrixForm}

Out[0]=


```
-0.0053109 -0.138633 -0.227877 -0.103876 -0.0053109
-0.247679 -0.290428 -0.112811 -0.0503944
                                           0.247679
0.108453
           -0.18563 -0.114518 -0.0553259
                                           0.108453
-0.480872
           0.64799
                     0.112376
                                0.07753
                                           0.480872
-0.0670001 0.421322
                     -1.13493 0.00410123 -0.0670001
0.195647
          -0.715908
                     1.35432
                               0.0142581
                                          -0.195647
0.0648705 -0.272204
                     1.03771
                                -4.39883
                                         -0.0648705
-0.0163136 0.129456 -0.793669
                               4.35218
                                          -0.0163136
```

```
In[\circ]:= \epsilon = 10^{-6} // N; (* Accuracy level *)
In[\circ]:= (* Reset before the while-loop to assert correctness *)
```

evals = ConstantArray[0., {8}];
newEvals = evals + e;

In[*]:= normDiffList = {}; (* List of the norm of the differences *)

```
ln[\cdot]:= (* While the new and previous eigenvalues are still different enough... *)
       While Norm[newEvals - evals] > \epsilon,
           AppendTo[normDiffList, Norm[newEvals - evals]];
            (* Append the norm of the difference to the normDiffList list *)
           newEvals = evals; (* Overwrite the previous eigenvalues *)
           G = Array \left[\sum_{r=1}^{8}\sum_{s=1}^{8}P_{r,s}\right] (2 Q_{\#1,r,\#2,s} - Q_{\#1,r,s,\#2}) &, {8, 8} \left[(* G_{p,q} \text{ matrix } *)\right]
           F = H + \frac{1}{2}G; (* Compute the Fock operator from the G matrix *)
           {evals, evecs} = Eigensystem[{F, S}];
            (* Calculate the eigenvalues and eigenvectors *)
           {evals, evecs} = {evals[#]], evecs[#]] &@Ordering[evals];
            (* Sort them in ascending order *)
           evecs = matNorm[#, S] & /@ evecs;
            (★ Normalize them w.r.t. the overlap matrix S ★)
           If[AllTrue[Thread[#.S.# # 1] & /@ evecs, TrueQ], Abort[], Nothing];
            (* Perform a numerical divergence check *)
            (* Calculate the density matrix from the
             eigenvector evecs<sub>1</sub> associated with the minimal eigenvalue *)
           P = 2 TensorProduct[evecs<sub>1</sub>, evecs<sub>1</sub>];
          // AbsoluteTiming // First
Out[0]=
       0.05739
 ln[\cdot]:= (* Return the first eigenvalue and the equilibrium bonding energy,
       where \frac{1}{d} is the E_{nucl} term *)
       Quantity[#, "HartreeEnergy"] & /@ \left\{\text{evals}_1, \text{Total}\left[P\left(H + \frac{1}{4} G\right), 2\right] + \frac{1}{d}\right\}
       UnitConvert[#, "Electronvolts"] & /@%
Out[0]=
       \{-0.669956 E_{h}, -1.07855 E_{h}\}
       { -18.2304 eV , -29.3488 eV }
 In[0]:= ListStepPlot[Drop[normDiffList, 1], PlotRange → Full]
        (* Measurements give 0.05 seconds for the convergence time for an SCF loop \star)
```

