SO SIMPLE, YET SO EFFECTIVE

Ottavia M. Epifania University of Trento ottavia.epifania@unitn.it

Beyond Summer School

May, 30, 2025

How it started:

A random lesson by Professor Pastore on Generalized Linear Mixed Effects Models

How it started:

A random lesson by Professor Pastore on Generalized Linear Mixed Effects Models

How it ended:

Fully-crossed structures

Psychological Methods

© 2024 American Psychological Association ISSN: 1082-989X

https://doi.org/10.1037/met0000708

A Guided Tutorial on Linear Mixed-Effects Models for the Analysis of Accuracies and Response Times in Experiments With Fully Crossed Design

> Ottavia M. Epifania, Pasquale Anselmi, and Egidio Robusto Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova

https://doi.org/10.1037/met0000708

FULLY-CROSSED STRUCTURES

THE END

00

An example: The SNARC effect

 $-\infty$ $+\infty$

Small numbers: Perceived on the left Large numbers: Perceived on the right

An example: The SNARC effect

A sample of small numbers:

1, 2, 3, 4

A sample of large numbers:

6, 7, 8, 9

Two conditions:

The "natural" one (so-called *compatible* condition)

An example: The SNARC effect

A sample of small numbers:

1, 2, 3, 4

A sample of large numbers:

6, 7, 8, 9

Two conditions:

The "natural" one (so-called *compatible* condition)

The "innatural" one (so-called *incompatible* condition)

AN EXAMPLE: THE SNARC EFFECT

$$t = \{1, 2, \dots, T\}$$
: Number of trials (condition \times stimulus \times respondent)

		Small Numbers			Large Numbers				
	Condition	1	2	3	4	6	7	8	9
Jane	Compatible	y_{cj1}	y_{cj2}	y_{cj3}	y_{cj4}	y_{cj6}	y_{cj7}	y_{cj8}	$\sum_{t=1}^{T} y_{cj}/T$
	Incompatible	y_{ij1}	y_{ij2}	y_{ij3}	y_{ij4}	y_{ij6}	y_{ij7}	y_{ij8}	$\sum_{t=1}^{T} y_{ij}/T$
Mario	Compatible	y_{cm1}	y_{cm2}	y_{cm3}	y_{cm4}	y_{cm6}	y_{cm7}	y_{cm8}	$\sum_{t=1}^{T} y_{cm}/T$
	Incompatible	y_{im1}	y_{im2}	y_{im3}	y_{im4}	y_{im6}	y_{im7}	y_{im8}	$\sum_{t=1}^{T} y_{im}/T$

Scoring

Person-level scores

$$s_p = \frac{\bar{X}_{p, \text{comp}} - \bar{X}_{p, \text{inc}}}{s d_{\text{pooled}}}$$

SCORING

Person-level scores

$$s_p = \frac{\bar{X}_{p, \text{comp}} - \bar{X}_{p, \text{inc}}}{s d_{\text{pooled}}}$$

Advantages

Ease of computation Ease of interpretation SCORING

Person-level scores

$$s_p = \frac{\bar{X}_{p, \text{comp}} - \bar{X}_{p, \text{inc}}}{s d_{\text{pooled}}}$$

Advantages

Ease of computation Ease of interpretation

- Being slow (less accurate) in one condition = being fast (or more accurate) in the opposite one: 0 means absence of bias
- 2 All stimuli have the same impact (fixed effects)

The issue

A long tradition

i Respondents are random factors

Sampled from a larger population

Need for acknowledging the sampling variability

Results can be generalized to other respondents belonging to the same population

The issue

A long tradition

i Respondents are random factors

Sampled from a larger population

Need for acknowledging the sampling variability

Results can be generalized to other respondents belonging to the same population

i Stimuli/items are fixed factors

Taken to be entire population

There is no sampling variability

There is no need to generalize the results because the stimuli are the population

The issue

With long lasting consequences

- Generalization of the results is impaired
- Error variance everywhere, left free to bias everything
- The information at the stimulus level is lost

THE ISSUE

With long lasting consequences

- Generalization of the results is impaired
- Error variance everywhere, left free to bias everything
- The information at the stimulus level is lost

 \sum

Linear Mixed Effects Models

 ψ

Rasch model

THE ISSUE

With long lasting consequences

- Generalization of the results is impaired
- Error variance everywhere, left free to bias everything
- The information at the stimulus level is lost

 \sum

Linear Mixed Effects Models

 ψ

Rasch model

Rasch-like parametrization estimated with Linear Mixed Effects Models

Sample-level differences:

Compatible and incompatible can be defined *a priori* (SNARC effect)

Individual differences:

Compatible and incompatible are defined within each respondent (Implicit Association Test)

THE END 00

Real Data

A CLASSIC OF PSYCHOMETRICS

$$P(x_{ps} = 1 | \theta_p, b_s) = \frac{\exp(\theta_p - b_z)}{1 + \exp(\theta_p - b_z)}$$

 θ_n : Latent trait of person p

 b_s : "challenging" power of stimulus s

FULLY-CROSSED STRUCTURES

Logit link function g:

$$g(\eta_{ps}) = \log\left(\frac{\mu_{ps}}{1-\mu_{ps}}\right)$$

Inverse g^{-1}

$$g^{-1} = \frac{\exp(\eta_{ps})}{1 + \exp(\eta_{ps})}$$

RASCH-LIKE PARAMETRIZATION OF RESPONSE TIMES

The log-normal model

$$E(t_{ps}|\tau_p,\delta_s) = \delta_s - \tau_p + \varepsilon$$

 au_p : the speed of person p

 $\delta_s {:}\,$ the time intensity of stimulus s

RASCH-LIKE PARAMETRIZATION OF RESPONSE TIMES

The log-normal model

$$E(t_{ps}|\tau_p,\delta_s) = \delta_s - \tau_p + \varepsilon$$

 au_p : the speed of person p

 $\delta_s {:}\,$ the time intensity of stimulus s

A linear model with an identity function!

Rasch

$$P(x_{ps}=1) = \frac{\exp(\theta_p - b_z)}{1 + \exp(\theta_p - b_z)}$$

i Log-normal

$$E(t_{ps}|\tau_p,\delta_s) = \delta_s - \tau_p + \varepsilon$$

GLM (inverse function)

$$P(x_{ps} = 1) = \frac{\exp(\theta_p + b_s)}{1 + \exp(\theta_p + b_s)}$$

$$E(t_{ps}|\tau_p,\delta_s) = \delta_s + \tau_p + \varepsilon$$

REAL DATA THE END 00

RANDOM FACTORS AND EFFECTS

Real data

$$\eta = \mathbf{X}\beta$$

 \mathbf{X} : Model Matrix

 β : Coefficients

The end

Real Data

$$\eta = \mathbf{X}\beta$$

X: Model Matrix

 β : Coefficients

Needs to be extended:

$$\eta = \mathbf{X}\beta + \mathbf{Z}d$$

 $d\!:$ Random effects associated to the random factors in Z ... Not model parameters! Best Linear Unbiased Predictors

 Γ : Parameters estimated for the random factors in the model (variances and

Random structures

The maximal model

Address all the possible sources of random variability that can be expected

RANDOM STRUCTURES

The maximal model

Address all the possible sources of random variability that can be expected. The models that are useful for ones aim.

Random Structures

The maximal model

Address all the possible sources of random variability that can be expected

The models that are useful for ones aim

Common goal: Investigate the changes in the performance of the respondents between the associative conditions

Random structures

The maximal model

Address all the possible sources of random variability that can be expected

The models that are useful for ones aim

Common goal: Investigate the changes in the performance of the respondents between the associative conditions

Less common: Investigate the changes in the functioning of the stimuli between the associative conditions

RANDOM STRUCTURES

Preliminarities

Index	Meaning	Variable
$p = 1, \dots, P$ $s = 1, \dots, S$ $c \in \{0, 1\}$ i	Respondent Stimulus Associative condition Trial	respondents stimuli condition

Accuracy: GLMM y = [0, 1]

 $\begin{array}{c} \text{Log-time response} \\ \text{LMM} \\ y = [0, +\infty) \text{ (log-transformed)} \end{array}$

$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

RANDOM FACTORS AND EFFECTS

Model 1

Fully-crossed structures

i Mathematical Notation

$$y = \beta_c X_c + \alpha_p[i] + \alpha_s[i]$$

1me4 notation

y ~ 0 + condition + (1|stimuli) + (1|respondents)

A CLASSIC OF PSYCHOMETRICS

	GLMM	LMM
respondents	θ_p	$ au_p$
stimuli	b_s	δ_s

Real Data

THE END

Model 2

i Mathematical Notation

$$y = \beta_c X_c + \alpha_p[i] + \beta_s[i] c_i$$

1me4 notation

Rasch-like parametrization

	GLMM	LMM
respondents stimuli	$\theta_p \\ b_{sc}$	$\frac{\tau_p}{\delta_{sc}}$

THE END

RANDOM FACTORS AND EFFECTS

Model 3

Fully-crossed structures

i Mathematical Notation

$$y = \beta_c X_c + \beta_p[i] c_i + \alpha_s[i]$$

1me4 notation

y ~ 0 + condition + (1|stimuli) + (0+condition|respondents)

A CLASSIC OF PSYCHOMETRICS

	GLMM	LMM
respondents stimuli	$\begin{matrix}\theta_{pc}\\b_s\end{matrix}$	$\begin{matrix}\tau_{pc}\\\delta_s\end{matrix}$

Real Data

THE END

RANDOM STRUCTURES

All models are wrong...

Find the useful model via model comparison: AIC and BIC

The lower the value, the better the model

AIC, BIC, and model complexity:

Total number of parameters: β and Γ NOT the levels in d

Model 2 and Model 3: Same complexity, different focus

The chosen model is the least wrong model *given the models considered*: Relativity applies everywhere

REAL DATA

The Implicit Association Test

12 Object stimuli

Fully-crossed structures

White people faces

Black people faces

THE END

16 Attribute stimuli

Positive attributes Good, laughter, pleasure, glory, peace, happy, joy, love Negative attributes
Evil, bad, horrible, terrible, nasty, pain, failure, hate

REAL DATA

```
# install package for fitting lmms
install.packages("lme4")
# nice plots :)
install.packages("ggplot2")
library(lme4)
library(ggplot2)
```

The data

```
respondent condition stimuli accuracy latency
           1 Whitegood
                           hate
                                             1224
           1 Whitegood
                        bf14
                                             5160
           1 Whitegood laughter
                                             1214
           1 Whitegood
                           bf56
                                             1143
5
           1 Whitegood
                           evil
                                              827
6
           1 Whitegood
                            wf3
                                             1859
```

Number of trials \times condition \times respondent:

table(data\$respondent, data\$condition)

	Whitebad	Whitegood
1	60	60
2	60	60
3	60	60
4	60	60
5	60	60
6	60	60

GLMMs for accuracy

```
Model 1: y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{p[i]} + \alpha_{s[i]})
accuracy1 = glmer(accuracy ~ 0 + condition + (1|stimuli) + (1|respondent),
                     data = data.
                     family = "binomial")
Model 2: y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{p[i]} + \beta_{s[i]}c_i)
accuracy2 = glmer(accuracy ~ 0 + condition + (0 + condition|stimuli) +
                        (1 respondent),
                     data = data.
                     family = "binomial")
Model 3: y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{s[i]} + \beta_{p[i]}c_i)
accuracy3 = glmer(accuracy ~ 0 + condition + (1|stimuli) +
                        (0 + condition respondent),
                     data = data.
                     family = "binomial")
```

LMMs for log-time responses

data = data,
REML = FALSE)

```
\begin{aligned} &\text{Model 1: } y_i = \alpha + \beta_c X_c + \alpha_{p[i]} + \alpha_{s[i]} + \varepsilon_i \\ &\text{logtime1 = lmer(log(latency) ~ 0 + condition + (1|stimuli) + (1|respondent),} \\ &\text{data = data,} \\ &\text{REML = FALSE)} \end{aligned} &\text{Model 2: } y_i = \alpha + \beta_c X_c + \alpha_{p[i]} + \beta_{s[i]} c_i + \varepsilon_i \\ &\text{logtime2 = lmer(log(latency) ~ 0 + condition + (0 + condition|stimuli) + (1|respondent),} \end{aligned}
```

```
Model 3: y_i = \alpha + \beta_c X_c + \alpha_{s[i]} + \beta_{p[i]} c_i + \varepsilon_i logtime3 = lmer(log(latency) ~ 0 + condition + (1|stimuli) + (0 + condition|respondent), data = data, REML = FALSE)
```

Model comparison

GLMMs

Data: data

The use of the anova() function is just for the convenience of having all the information on the same page!

anova(accuracy1, accuracy2, accuracy3)

4□ > 4回 > 4 = > 4 = > = √0 0 ○

A Classic of Psychometrics BANDOM FACTORS AND EFFECTS Fully-crossed structures Real Data THE END 00000000000000000

Model Comparison

LMMs

Data: data

Important!

The use of the anova() function is just for the convenience of having all the information on the same page!

4D > 4A > 4 = > 4 = > = 900

anova(logtime1, logtime2, logtime3)

```
Models.
logtime1: log(latency) ~ 0 + condition + (1 | stimuli) + (1 | respondent)
logtime2: log(latency) ~ 0 + condition + (0 + condition | stimuli) + (1 | respondent)
logtime3: log(latency) ~ 0 + condition + (1 | stimuli) + (0 + condition | respondent)
               AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
        npar
logtime1 5 6073.2 6108.0 -3031.6 6063.2
logtime2 7 6061.4 6110.2 -3023.7 6047.4 15.743 2 0.0003815 ***
logtime3 7 5657.2 5705.9 -2821.6 5643.2 404.249 0
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Model comparison

Useful Models:

The IAT effect is mostly due to variations in the *stimuli functioning* between conditions, while the performance of the respondents seems unaltered

Results should be interpreted together!

LMMs $\it Model~3$ $\it au_{
m WGBB}$ and $\it au_{
m BGWB}$ $\it au_{
m o}$

The IAT effect is mostly due to variations in the *performance of the respondents* between conditions, while the functioning of the stimuli appears not affected

Rasch-like estimates

 θ_p

RASCH-LIKE ESTIMATES

$b_{\rm WGBB}$ and $b_{\rm WGBB}$

Rasch-like estimates

Log-normal estimates

τ_{WGBB} and τ_{BGWB}

Log-normal estimates

Log-normal estimates

 δ

THE END

- The best model depends on the other models... sometimes useful, never right
- The sky is the limit... but do not over complicate things

The end o●

- The best model depends on the other models... sometimes useful, never right
- The sky is the limit... but do not over complicate things

HOWEVER

Time and accuracy are independent from one another, pretty bold assumption

THE END