Functional Analysis

Ikhan Choi

September 23, 2021

Contents

I	Topological vector spaces	2
1	Locally convex spaces	3
2	Banach spaces	4
II	Weak topologies	6
3	Weak* topologies	7
4	The Krein-Milman theorem	8
III	Spectral theory	9
5	Compact operators	10
6	Nuclear operators	11
7	Unbounded operators	12
IV	Operator algebras	13
8	Banach algebras	14
9	C* algebras	15
10	Von Neumann algebras	16

Part I Topological vector spaces

Locally convex spaces

Banach spaces

- **2.1.** Let (T_n) be a sequence in B(X,Y). If T_n coverges then $||T_n||$ is bounded by the uniform boundedness principle.
- **2.2.** We show that there is no projection from ℓ^{∞} onto c_0 .
- (a) Show that a Banach space *X* is isometrically isomorphic to a Hilbert space if there is a bounded linear projection on every closed subspace of *X*.
- **2.3** (Bounded below maps in Banach spaces). Let $T: X \to Y$ be a bounded linear map between Banach spaces. Show that the following statements are equivalent:
- (a) It is bounded below.
- (b) It is injective and has closed range.
- (c) It is a isometric isomorphism onto its image.
- **2.4** (Bounded below maps in Hilbert spaces). Let $T: H \to K$ be a bounded linear operator between Hilbert spaces. Show that the following statements are equivalent:
- (a) It is bounded below.
- (b) It has a left inverse.
- (c) Its adjoint has right inverse.
- (d) The product T^*T is invertible.

In particular, a normal operator in B(H) is bounded below if and only if it is invertible.

- **2.5** (Injectivity and surjectivity of dual map). Let $T: X \to Y$ be a bounded linear operator between Banach spaces and $T^*: Y^* \to X^*$ be its dual.
- (a) Show that T^* is injective if and only if T has dense range.
- (b) Show that T^* is surjective if and only if T is bounded below.
- **2.6.** For $T \in B(H)$, we have an obvious fact $(\operatorname{im} T)^{\perp} = \ker T^*$. If T is normal, then the kernel of T and T^* are equal.
- (a) Show that if *T* is surjective bounded operator, then *T* is invertible.
- **2.7** (Schur's property of ℓ^1). .
- **2.8.** Let $\varphi: L^{\infty}([0,1]) \to \ell^{\infty}(\mathbb{N})$ be an isometric isomorphism. Suppose φ is realised as a sequence of bounded linear functionals on L^{∞} .
- (a) Show that $\varphi^*(\ell^1) \subset L^1$ where ℓ^1 and L^1 are considered as closed linear subspaces of $(\ell^{\infty})^*$ and $(L^{\infty})^*$ respectively.
- (b) Show that φ^* is indeed an isometric isomorphism, and deduce φ cannot be realised as bounded linear functionals on L^{∞} .

Part II Weak topologies

Weak* topologies

- **3.1** (Predual correspondence). Let X be a Banach space and Z be a linear subspace of X^* . Define $\varphi: X \to Z^*$ as the restriction of the dual map of inclusion $Z \subset X^*$.
- (a) Show that if φ is an isometric isomorphism, then closed ball of X is compact Hausdorff in $\sigma(X,Z)$.
- (b) Show that the converse holds by using Goldstine's theorem.
- **3.2.** Let *X* be a closed subspace of a Banach space *Y* and

$$i: X \to Y$$

the inclusion. Suppose X and Y have preduals X_* and Y_* respectively. Let

$$j := i^*|_{Y} : Y_* \rightarrow Z \subset X^*$$

where $Z := i^*(Y_*)^-$. Then we can show

$$i^*: Z^* \subset X^{**} \to Y$$

coincides with i on $X \cap Z^*$. From the existence of X_* we have $X^{**} \to X$, which is restricted to define a map $k: Z^* \to X$.

$$X \xrightarrow{i} Y$$

$$X^{**} \longrightarrow Z^{*}$$

We can show *k* is an isomorphism so that we have

$$X_* \cong Y_*/Y_* \cap \ker(i^*).$$

The Krein-Milman theorem

Part III Spectral theory

Compact operators

Nuclear operators

Unbounded operators

Part IV Operator algebras

Chapter 8
Banach algebras

C* algebras

- **9.1** (Operator monotonicity of square and commitativity). Let \mathcal{A} be a C^* -algebra in which the square function is operator monotone, that is, $0 \le a \le b$ implies $a^2 \le b^2$ for any positive elements a and b in \mathcal{A} . We are going to show that \mathcal{A} is necessarily commutative. Let a and b denote arbitrary positive elements of \mathcal{A} .
- (a) Show that $ab + ba \ge 0$.
- (b) Let ab = c + id where c and d are self adjoints. Show that $d^2 \le c^2$.
- (c) Suppose $\lambda > 0$ satisfies $\lambda d^2 \le c^2$. Show that $c^2 d^2 + d^2 c^2 2\lambda d^4 \ge 0$.
- (d) Show that $\lambda (cd + dc)^2 \le (c^2 d^2)^2$.
- (e) Show that $\sqrt{\lambda^2 + 2\lambda 1} \cdot d^2 \le c^2$ and deduce d = 0.
- (f) Extend the result for general exponent: A is commitative if $f(x) = x^{\beta}$ is operator monotone for $\beta > 1$.
- **9.2** (Compact left multiplications and SOT). Let T_n be a sequence of bounded linear operators on a Hilbert space that converges in SOT. For compact K, T_nK converges in norm, but KT_n generally does not unless T is self-adjoint.
- 9.3 (Injective *-homomorphism is an isometry).

Chapter 10 Von Neumann algebras