Contents

	Pref	ace	page x
	Par	t I Data and error analysis	1
1	Intr	oduction	3
2	The	presentation of physical quantities with their inaccuracies	5
	2.1	How to report a series of measurements	5
	2.2	How to represent numbers	9
	2.3	How to express inaccuracies	10
	2.4	Reporting units	13
	2.5	Graphical presentation of experimental data	14
3	Erre	ors: classification and propagation	18
	3.1	Classification of errors	18
	3.2	Error propagation	19
4	Probability distributions		27
	4.1	Introduction	27
	4.2	Properties of probability distributions	29
	4.3	The binomial distribution	32
	4.4	The Poisson distribution	36
	4.5	The normal distribution	37
	4.6	The central limit theorem	41
	4.7	Other distributions	42
5	Processing of experimental data		53
	5.1	The distribution function of a data series	54
	5.2	The average and the mean squared deviation	
		of a data series	57
	5.3	Estimates for mean and variance	58
	5.4	Accuracy of mean and Student's t-distribution	59

vii

viii	CONTENTS

	5.5 Accuracy of variance	60
	5.6 Handling data with unequal weights	61
	5.7 Robust estimates	63
6	Graphical handling of data with errors	71
	6.1 Introduction	71
	6.2 Linearization of functions	73
	6.3 Graphical estimates of the accuracy of parameters	77
	6.4 Using calibration	78
7	Fitting functions to data	84
	7.1 Introduction	84
	7.2 Linear regression	87
	7.3 General least-squares fit	92
	7.4 The chi-squared test	95
	7.5 Accuracy of the parameters	98
	7.6 F-test on significance of the fit	106
8	Back to Bayes: knowledge as a probability distribution	111
	8.1 Direct and inverse probabilities	111
	8.2 Enter Bayes	112
	8.3 Choosing the prior	114
	8.4 Three examples of Bayesian inference	114
	8.5 Conclusion	121
	References	123
	Answers to exercises	125
	Part II Appendices	133
A1	Combining uncertainties	135
A2	Systematic deviations due to random errors	138
A3	Characteristic function	141
A4	From binomial to normal distributions	143
	A4.1 The binomial distribution	143
	A4.2 The multinomial distribution	144
	A4.3 The Poisson distribution	145
	A4.4 The normal distribution	146

CONTENTS	ix

A5	Central limit theorem	148
A6	Estimation of the variance	151
A7	Standard deviation of the mean	154
A8	Weight factors when variances are not equal	158
A9	Least-squares fitting	160
	A9.1 How do you find the best parameters a and b	
	in $y \approx ax + b$?	160
	A9.2 General linear regression	161
	A9.3 SSQ as a function of the parameters	162
	A9.4 Covariances of the parameters	163
	Part III Python codes	167
	Part IV Scientific data	197
	Chi-squared distribution	199
	F-distribution	201
	Least-squares fitting	203
	Normal distribution	205
	Physical constants	209
	Probability distributions	211
	Student's t-distribution	213
	Units	215
	Index	220