Tentamen

EEM076 Elektriska Kretsar och Fält, D2

Examinator: Max Ortiz Catalan / Bo Håkansson

15 Aug 2016 kl. 14.00-18.00, sal: "Maskin"-salar

Förfrågningar: Bo Håkansson, phone: 0707853294

Lösningar: Anslås måndagen den 22 Agusti på institutionens anslagstavla, plan 5.

Resultat: Rapporteras in i Ladok

Granskning: Torsdag 1 September kl. 10.00 - 11.00, rum 3311.

Plan 3 i ED-huset (Lunnerummet),

korridor parallell med Hörsalsvägen.

Bedömning: En korrekt och välmotiverad lösning med ett tydligt angivet svar ger full poäng.

Hjälpmedel

- Typgodkänd miniräknare
- Beta Mathematics Handbook
- Physics Handbook

Betygsgränser (6 uppgifter om vardera 3 poäng).

Poäng	0-7.5	8-11	11.5-14.5	15-18
Betyg	U	3	4	5

1. Betrakta likströmsnätet i figur 1 nedan och beräkna strömmen I_x samt spänningen U_4 över resistansen R_4 .

$$R_1 = 70.0 \Omega$$
 $R_2 = 20.0 \Omega$ $R_3 = 30.0 \Omega$ $R_4 = 5.0 \Omega$ $U_0 = 5.0 V$

Figur 1.

2. Ta fram Thevenins ekvivalenta tvåpol med avseende på polerna a och b för likströmsnätet i figur 2.

$$U_0 = 25 \text{ V}$$
 $I_0 = 3.0 \text{ A}$ $R_1 = 5.0 \Omega$ $R_2 = 4.0 \Omega$

Figur 2. Tvåpol

3. Beräkna den ekvivalenta impedans Z som tvåpolen i figur 3 representerar. Antag sinusformat stationärtillstånd och vinkelfrekvensen $\omega = 25 \cdot 10^3 \, \text{rad/s}$.

Figur 3. Växelströmskrets

4. Betrakta växelströmsnätet i figur 4 nedan och beräkna strömmen $i_L(t)$ genom induktansen L. Antag sinusformat stationärtillstånd.

$$i(t) = 8.0 \cos (200t + 30^{\circ}) \text{ mA}$$
 $R_1 = 5.0 \Omega$ $R_2 = 3.0 \Omega$ $C = 1.0 \text{ mF}$ $L = 5.0 \text{ mH}$

Figur 4. Växelströmsnät

5. I figur 5 visas en förstärkarkoppling med en operationsförstärkare. Vid förstärkarens ingång (nod a) ansluts en spänningskälla med insignalen u_{in} . Antag att operationsförstärkaren är ideal.

Ta fram uttrycken för

- a) Förstärkningen u₀/ u_{in}
- b) Förstärkarens inresistens
- c) Förstärkarens utresistens

Figur 5. Förstärkare

- **6.** En sfärisk metallkula med radien *a* är fritt upphängd i luft och har den positiva totalladdningen Q.
 - a) Beräkna det elektriska fältet **E** utanför metallkulan som funktion av avståndet till kulans mitt, *r*. Både fältets storlek och riktning skall anges.
 - b) Hur stor skulle metallkulans potential vara om laddningen Q=1.5 μ C, potentialen oändligt långt bort från kulan, V ∞ = 0 och kulans radien a= 10 cm.

Du kan använda dig av följande samband i dina beräkningar:

$$\oint_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{Q_{innesl.}}{\epsilon_{0}} \qquad V(P_{2}) = \int_{P_{2}}^{P_{1}} \mathbf{E} \cdot d\mathbf{l} + V(P_{1})$$