General Algorithm of Hamming code -

The Hamming Code is simply the use of extra parity bits to allow the identification of an error.

- 1. Write the bit positions starting from 1 in binary form (1, 10, 11, 100, etc).
- 2. All the bit positions that are a power of 2 are marked as parity bits (1, 2, 4, 8, etc).
- 3. All the other bit positions are marked as data bits.
- 4. Each data bit is included in a unique set of parity bits, as determined its bit position in binary form.
 - **a.** Parity bit 1 covers all the bits positions whose binary representation includes a 1 in the least significant

position (1, 3, 5, 7, 9, 11, etc).

b. Parity bit 2 covers all the bits positions whose binary representation includes a 1 in the second position from

the least significant bit (2, 3, 6, 7, 10, 11, etc).

c. Parity bit 4 covers all the bits positions whose binary representation includes a 1 in the third position from

the least significant bit (4–7, 12–15, 20–23, etc).

d. Parity bit 8 covers all the bits positions whose binary representation includes a 1 in the fourth position from

the least significant bit bits (8–15, 24–31, 40–47, etc).

- **e.** In general, each parity bit covers all bits where the bitwise AND of the parity position and the bit position is non-zero.
- 5. Since we check for even parity set a parity bit to 1 if the total number of ones in the positions it checks is odd.
- 6. Set a parity bit to 0 if the total number of ones in the positions it checks is even.

Position	R8	R4	R2	R1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1

R1 -> 1,3,5,7,9,11

R2 -> 2,3,6,7,10,11

R3 -> 4,5,6,7

R4 -> 8,9,10,11