

Home Credit Analysis

Kelompok 2 : **CONEXUS**

- 1. Abrar Hidayat
- 2. Anggun Dwi
- 3. Benedict Caesario
- 4. Bramantyo Raka (Ketua)
- 5. Pra Setiawan Silaen
- 6. Siti Nur Afifah
- 7. Tommy Septians

Team Member

Tommy Septians

Data Scientist

Bramantyo Raka Project Leader

Siti Nur Afifah

- Business
- Intelligence

Abrar Hidayat Data Analyst

Pra Setiawan Silaen
Business Intelligence

Anggun Dwi
Data Scientist

Benedict Caesario

Data Scientist

Table of Contents

HOME CREDIT

Perusahaan pembiayaan berbasis teknologi

Semakin tinggi jumlah pemohon pinjaman, semakin besar potensi keuntungan bagi Home Credit.

10 Provinsi dengan Utang Pinjol Terbesar September 2024, Jawa Barat Teratas

Data keuangan calon debitur sering kali terbatas, tidak terstruktur, atau tidak mencerminkan risiko kemampuan bayar di masa depan (Rahmah, 2016)

Akibatnya, proses pengambilan keputusan menjadi lambat dan berpotensi meningkatkan risiko kerugian karena kredit macet.

Nilai dan Rasio Kredit Macet Pinjol di Indonesia (Januari 2022-Juni 2023)

Bagaimana cara meminimalkan risiko kerugian dan meningkatkan efisiensi pada home credit?

Meminimalkan risiko kerugian dan meningkatkan efisiensi operasional dalam proses pemberian kredit

Membuat model machine learning yang mampu memprediksi kemampuan nasabah untuk melunasi pinjaman

Business Metrics

Default Rate

EDA

Exploratory Data Analysis

HOME **CREDIT**

Home Credit Dataset

❖ Descriptive Statistic

	Columns Name	Tipe Data	Null Values	Numerik (Outlier) Kategori(top/mode)	
1	application_train	/	3	5	8
2	bureau		7	10	-
3	credit_card_balance		22	20	-
4	installments_payments		2	6	-
5	POS_CASH_balance		2	4	-
6	previous_application		16	5	-

***** Univariate Analysis

	Numerik				Kategori	
Dataset	Skewness		Outlier	Jumlah Column	Frekuensi Tidak	
	Negatif	Normal	Positif	(column)	seimbang	seimbang
application_train	-	-	5	5	8	8
bureau	2	2	10	11	-	-
credit_card_balance	1	2	19	20	16	-
installments_payments	2	-	4	5	-	-
POS_CASH_balance	-	-	4	4	2	1
previous_application	3	2	8	8	6	2

1	Visualisasi lebih lanjut (ex: heatmap)	data understanding
2	data cleaning to identify	outliersmissing values
3	features transformation	on data skewed
4	features engineering	increase feature insight

❖ Multivariate Analysis

Dataset	Correlation				
Dataset	≥ 0.7	0.5 ≤ corr < 0.7	0.3 ≤ <u>corr</u> < 0.5	<u>corr</u> < 0.3	
application train	3	-	-	18	
bureau	7	2	1	95	
credit card balance	14	6	22	189	
installments payments	2	-	1	18	
POS CASH balance	4	-	1	73	
previous application	7	5	16	203	

1	Korelasi antar fitur dan label	 hubungan non-linier skala unit yang berbeda skewed distribution atau adanya outliers
2	Korelasi antar fitur-fitur	terdapat korelasi kuat, sedang, dan lemah

Business Insight

Insight

- · Cash loans dominan:
 - > Mayoritas pelanggan cenderung memilih cash loans
- Revolving Loans:
- ➤ Jumlah kredit lebih rendah dibandingkan cash loans
- Secara keseluruhan nasabah yang gagal bayar jumlah kreditnya lebih rendah

Recommendation

- Cash Loans
 - > Pertimbangkan untuk meningkatkan jumlah max pinjaman bagi nasabah dengan risiko rendah
- Revolving Loans
 - ➤Pertimbangkan untuk penawaran batas kredit lebih besar bagi nasabah yang punya rekam jejak pembayaran baik.
- Program edukasi keuangan
 - >Membantu mengelola pembayaran cicilan

Business Insight

Insight

- Status perkawinan mempengaruhi jumlah kredit
- Secara keseluruhan, target 0 cenderung memiliki jumlah kredit lebih tinggi dibandingkan target 1, tanpa memandang status keluarga

Recommendation

- Untuk pola pembayaran yang baik, pertimbangkan untuk penawaran insentif, seperti bunga lebih rendah atau produk refinancing
- · Optimasi penawaran atau penyesuaian produk:
- ➤ Produk layanan yang disesuaikan dengan status perkawinan
 - √ produk kredit jangka pendek untuk lajang
 - ✓ produk pinjaman untuk perumahan
- Pengembangan produk lainnya yang dapat memenuhi kebutuhan spesifik dari segmen-segmen tersebut.

HOME CREDIT

Handling Missing Values

Dataset	Metode Penanganan	
application_train	Imputasi Mean / Median, Modus	
previous_application	Imputasi Median, Modus	
POS_CASH_balance	Imputasi Mean	
installments_payments	Imputasi Median	
credit_card_balance	Imputasi Median	
bureau	Imputasi Median	

Handling Duplicated Data

Dataset	Metode Penanganan
application_train	-
previous_application	-
POS_CASH_balance	-
installments_payments	-
credit_card_balance	-
bureau	-

Handle Outliers

Dataset	Metode Penanganan	
application_train	Trimming (Inter Quartile Range)	
previous_application	Trimming (Inter Quartile Range)	
POS_CASH_balance	Trimming (Inter Quartile Range)	
installments_payments	Trimming (Inter Quartile Range)	
credit_card_balance	Trimming (Inter Quartile Range)	
bureau	Trimming (Inter Quartile Range)	

Aggregation

Dataset	Jenis Agregasi	
previous_application	Modus	
POS_CASH_balance	Max, Min, Mean, Sum	
installments_payments	Mean	
credit_card_balance	Mean	
bureau	Mean	
bureau_balance	Mean	

Dataset	Metode		
application_train	Logarithmic Transformation		
previous_application	Normalization, Standardization, Logarithmic Transformation		
POS_CASH_balance	Logarithmic Transformation		
installments_payments	Standardization, Logarithmic Transformation		
credit_card_balance	Logarithmic Transformation		
bureau	Yeo-Johnson Transformation		

Feature Encoding

Dataset	Metode	
application_train	Label Encoding	
previous_application	One Hot Encoding	
POS_CASH_balance	One Hot Encoding	
installments_payments	-	
credit_card_balance	One Hot Encoding	
bureau	Ordinal Encoding, Frequency Encoding	

Handle Class Imbalance

Pada dataset utama yaitu application_train, perlu dilakukan penanganan Imbalance Class dengan menggunakan metode undersampling.

Feature Selection

Dataset	Banyak Kolom Awal	Jumlah Fitur yang Dipilih
application_train	120	65
previous_application	35	3
POS_CASH_balance	6	4
installments_payments	6	5
credit_card_balance	20	15
bureau	15	13
bureau_balance	2	1

*** Feature Extraction**

- NUM_DOCUMENTS
 Total dokumen yang dilampirkan
- IS_WEEKEND_APPR_PROCESS_STAR
 T
 Apakah aplikasi diproses saat akhir
 pekan atau bukan
- EXT_SOURCE_MEAN
 Rata-rata nilai sumber eksternal

HOME CREDIT

Metrics Evaluation

$$Recall = \frac{True\ Positives\ (TP)}{True\ Positives\ (TP) + False\ Negatives\ (FN)}$$

Recall mengukur seberapa baik model dalam mengidentifikasi target positif.

Dimana, target: menentukan nasabah yang default/gagal bayar.

Maka,

True Positives (TP): Data yang benar-benar default (1) dan diprediksi sebagai default (1) oleh model.

False Negatives (FN): Data yang memiliki default (1), tetapi diprediksi sebagai tidak default (0) oleh model.

Model Machine Learning

Logistic Regression

Model yang digunakan untuk memprediksi **nilai kontinu (regresi)** berdasarkan hubungan linear antara **variabel independen (fitur)** dan **variabel dependen (target)**.

Logistic Regression					
Pre-processing	Madal Machina Lagraina	Recall			
	Model Machine Learning	Train Set	Test Set		
-	Logistic Regression	0%	0%		
Undersampling	Logistic Regression	50%	48%		
Class Weight	Logistic Regression	50%	46%		
Handling Outliers (IQR)	Logistic Regression	0%	0%		
Handling Class Imbalance (SMOTE)	Logistic Regression	0%	0%		
IQR & SMOTE	Logistic Regression	0%	0%		
IQR, SMOTE & Hyperparameter Tuning	Logistic Regression	70%	62%		

Kesimpulan: Model Logistic Regression tidak cukup baik karena hanya terbatas pada hubungan antara fitur dan target yang bersifat linear dan sederhana. Sedangkan dataset Home Credit bersifat lebih complex.

Light Gradient Boosting Machine (LGBM)

Algoritma pembelajaran mesin berbasis **gradient boosting**, yang dirancang untuk meningkatkan kecepatan dan efisiensi dibandingkan metode boosting tradisional seperti XGBoost.

Light GBM (Light Gradient Boosting Machine)					
Pre-processing	Madel Machine Learning	Recall			
	Model Machine Learning	Train Set	Test Set		
-	Light Gradient Boosting Machine	68%	3%		
Undersampling	Light Gradient Boosting Machine	100%	58%		
Class Weight	Light Gradient Boosting Machine	100%	29%		
Handling Outliers (IQR)	Light Gradient Boosting Machine	67%	4%		
Handling Class Imbalance (SMOTE)	Light Gradient Boosting Machine	93%	5%		
IQR & SMOTE	Light Gradient Boosting Machine	93%	6%		
IQR, SMOTE & Hyperparameter Tuning	Light Gradient Boosting Machine	100%	4%		

XGBoost (eXtreme Gradient Boosting)

Algoritma berbasis **gradient boosting** yang dirancang untuk menghasilkan prediksi akurat dengan memanfaatkan kombinasi banyak pohon keputusan. XGBoost sangat efektif untuk dataset besar dan aplikasi yang membutuhkan performa prediksi tinggi.

XGBoost (eXtreme Gradient Boosting)				
Pre-processing	Madal Madaina Lagurina	Recall		
	Model Machine Learning	Train Set	Test Set	
-	XGBoost (eXtreme Gradient Boosting)	100%	6%	
Undersampling	XGBoost (eXtreme Gradient Boosting)	100%	63%	
Class Weight	XGBoost (eXtreme Gradient Boosting) 100%		14%	
Handling Outliers (IQR)	XGBoost (eXtreme Gradient Boosting)	100%	6%	
Handling Class Imbalance (SMOTE)	XGBoost (eXtreme Gradient Boosting)	35%	2%	
IQR & SMOTE	XGBoost (eXtreme Gradient Boosting)	34%	5%	
IQR, SMOTE & Hyperparameter Tuning	XGBoost (eXtreme Gradient Boosting)	100%	3%	

Kesimpulan : Model **XGBOOST** dan **LGBM** tidak cukup optimal karena menghasilkan model yang overfitting dengan data latih, tetapi tidak dapat melakukan generalisasi pada data uji. Model tidak efektif untuk memprediksi kasus positif dalam data baru.

Random Forest

Random Forest adalah model machine learning yang menggunakan ensemble method, model ini akan mengkombinasikan beberapa model Decision Tree.

Pre-Processing	Recall		
	Train Set	Test Set	
-	100%	1.4%	
Handling Class Imbalance (SMOTE)	100%	5%	
Handling Class Imbalance (SMOTE) + Hyperparameter Tuning	83%	42%	
Handling Class Imbalance (Undersampling)	100%	63%	
Handling Class Imbalance (Undersampling) + Hyperparameter Tuning	67.5%	66%	

Kesimpulan : Random forest dengan handling class imbalance undersampling dan hyperparameter tuning adalah model dengan performa terbaik dari model-model yang telah dicoba.

Business Recommendation

HOME CREDIT

Recommendation Automation

Reduce Manual Workload

Minimize Risk of Decision

Manual Checking every 4 months

Recommendation Focus on False Negatives

WHY?

Failure to detect potential defaults, could lead to a harm towards the institution

HOW?

Feature importance and model parameter

HOW?

Using formula below:

$$AMT_False_Negative_Credit(\%) = \left(\frac{Total\ Kredit\ False\ Negative}{Total\ Kredit}\right) \times 100\%$$

BUSINESS INSIGHT

DAYS_INSTALLMENT, DAYS_CREDIT_UPDATE

The higher days indicates increasing of possibility of default

PAYMENT_TO_BALANCE _RATIO

The higher values indicates customer **able to** pay.

UTILIZATION_RATE

Customers who have a high utilization rate tend to have potential to default

Recommendation

Default Rate Management

Continuous Monitoring

Track credit performance

Product Strategy

Providing credit limits based on customer capabilities

Objective

Maintain a low proportion of loan defaults

Utilizing Historical Data

Detect patterns in defaulted loans in Indonesia

Formula

$$ext{Default Rate} = \left(rac{ ext{Total Kredit Default}}{ ext{Total Kredit}}
ight) imes 100\%$$

"Tujuan utama dari semua langkah ini adalah untuk meminimalisir risiko

kerugian dan meningkatkan efisiensi operasional dalam proses pemberian kredit"

— Conexus

Thank You!

Any Question?

Let's Connect!

Abrar : Abrar Hidayat

: Anggun Dwi Lestari Anggun

: Benedict C. Ben

: Bramantyo Raka Adi Nugroho Bram

: Pra Setiawan Silaen Wawan

lfa : Siti Nur Afifah : Tommy Septians Tommy

AppendixSource

1. "10 Provisi dengan Utang Pinjol Terbesar September 2024, Jawa Barat Teratas" https://databoks.katadata.co.id/keuangan/statistik/673eb7d8eba86/10-provinsidengan-utang-pinjol-terbesar-september-2024-jawa-barat-teratas

1. "Tren Kredit Macet Pinjol Meningkat Pada Semester I 2023"
https://databoks.katadata.co.id/keuangan/statistik/e691191a1332880/tren-kredit-macet-pinjol-meningkat-pada-semester-i-2023

 ST RAHMAH IB (2016). ANALISIS TEKNIK PENYELESAIAN KREDIT MACET DAN PENGARUHNYA TERHADAP LAPORAN KEUANGAN PADA BANK MANDIRI Tbk MAKASSAR. Skripsi. Universitas Muhammadiyah Makassar. https://digilibadmin.unismuh.ac.id/upload/3781-Full_Text.pdf

1. "What Can Big Data Tell Us About Loan Default, Lending Rate and Loan Amount in Financial Technology Peer-to-Peer Lending? Case of Indonesia". (2024, November). Otoritas Jasa Keuangan. https://ojk.go.id/id/data-dan-statistik/research/working-paper/Documents/OJK_WP.21.01.pdf

Appendix Source

5. "Default Rate - Overview, Formula, Importance" https://corporatefinanceinstitute.com/resources/commercial-lending/default-rate/

Appendix EDA

Insight

- · Rata-rata pendapatan meningkat seiring dengan tingkat pendidikan yang lebih tinggi.
- Kelompok berpendidikan tinggi (Higher education, Academic degree) tetap memiliki risiko default meskipun pendapatan mereka lebih tinggi. Hal ini menunjukkan bahwa pendapatan besar saja tidak selalu menjamin stabilitas finansial.

Recommendation

- Untuk peminjam dengan tingkat pendidikan rendah (Lower secondary, Secondary/special), tetapkan batas kredit yang lebih konservatif karena risiko default yang lebih sulit diprediksi berdasarkan pendapatan.
- Lakukan edukasi keuangan kepada kelompok berpendapatan tinggi namun tetap memiliki risiko default (terutama di tingkat Higher education dan Academic degree). Fokuskan pada pengelolaan utang dan stabilitas keuangan jangka panjang.
- Integrasikan tingkat pendidikan sebagai salah satu variabel penilaian risiko. Gunakan kombinasi tingkat pendidikan dan rasio pendapatan terhadap utang untuk memprediksi risiko default dengan lebih akurat..

Appendix Pre-Processing

Yeo-Johnson Transformation

Yeo-Johnson Transformation adalah teknik mengubah distribusi data agar menjadi lebih mendekati distribusi normal dengan menangani data yang mengandung nilai negatif dan nol.

$$y=\ln(x), \ ext{jika} \ \lambda=0$$

$$y=-\ln(-x),$$
jika $\lambda=0$

Langkah-langkah Yeo-Johnson Transformation:

- 1. Identifikasi apakah data mengandung nilai negatif, nol, atau positif.
- 2. Pilih parameter λ . Nilai λ dapat dipilih menggunakan metode optimasi, seperti Maximum Likelihood Estimation (MLE), untuk meminimalkan deviasi antara data yang sudah ditransformasi dengan distribusi normal.
- 3. Lakukan transformasi sesuai dengan kondisi nilai x (positif atau negatif) dan nilai λ yang dipilih.
- 4. Evaluasi distribusi data setelah transformasi untuk memastikan apakah data sudah lebih mendekati distribusi normal.

AppendixBackground/Business Recommendation

Kredit bermasalah dapat disebabkan oleh faktor internal dan eksternal. Faktor internal penyebab kredit bermasalah yaitu kebijakan perkreditan yang ekspansif penyimpangan dalam pelaksanaan prosedur perkreditan, itikad kurang baik dari pemilik, pengurus atau pegawai bank, lemahnya sistem informasi kredit bermasalah. Sedangkan faktor eksternal penyebap kredit macet adalah: kegagalan usaha debitur, pemanfaatan iklim persaingan perbankan yang tidak sehat oleh debitur serta menurunnya kegiatan ekonomi dan tingginnya suku bunga kredit. (Iswi Hariyani. 2010: 35 - 38).

Logistic Regression

Logistic Regression						
D	Model Machine	Recall		Default Rate		
Pre-processing	Learning	Train Set	Test Set	Train Set	Test Set	
-	Logistic Regression	0.00	0.00	0.01%	0.00%	
Undersampling	Logistic Regression	0.50	0.48	42.41%	36.40%	
Class Weight	Logistic Regression	0.50	0.46	36.52%	34.99%	
Handling Outliers (IQR)	Logistic Regression	0.00	0.00	0.00%	0.00%	
Handling Class Imbalance (SMOTE)	Logistic Regression	0.00	0.00	0.00%	0.00%	
IQR & SMOTE	Logistic Regression	0.00	0.00	0.00%	0.00%	
IQR, SMOTE & Hyperparameter Tuning	Logistic Regression	0.70	0.62	50.90%	35.22%	

Light Gradient Boosting Machine (LGBM)

Light GI	BM (Light	Gradient	Boostin	g Machine)

		Recall		Default Rate	
Pre-processing	Model Machine Learning	Train Set	Test Set	Train Set	Test Set
-	Light Gradient Boosting Machine	0.6878	0.03	6.69%	0.54%
Undersampling	Light Gradient Boosting Machine	1.00	0.58	39.03%	36.40%
Class Weight	Light Gradient Boosting Machine	1.00	0.29	14.31%	12.54%
Handling Outliers (IQR)	Light Gradient Boosting Machine	0.67	0.04	6.70%	1.00%
Handling Class Imbalance (SMOTE)	Light Gradient Boosting Machine	0.93	0.05	46.69%	1.67%
IQR & SMOTE	Light Gradient Boosting Machine	0.93	0.06	46.66%	1.95%
IQR, SMOTE & Hyperparameter Tuning	Light Gradient Boosting Machine	1.00	0.04	50.00%	1.36%

* XGBoost (eXtreme Gradient Boosting)

XGBoost (eXtreme Gradient Boosting)						
Pre-processing	Model Machine Learning	Recall		Default Rate		
		Train Set	Test Set	Train Set	Test Set	
-	XGBoost (eXtreme Gradient Boosting)	1.00	0.06	9.98%	1.49%	
Undersampling	XGBoost (eXtreme Gradient Boosting)	1.00	0.63	50.00%	37.85%	
Class Weight	XGBoost (eXtreme Gradient Boosting)	1.00	0.14	9.94%	5.34%	
Handling Outliers (IQR)	XGBoost (eXtreme Gradient Boosting)	1.00	0.06	10.01%	1.45%	
Handling Class Imbalance (SMOTE)	XGBoost (eXtreme Gradient Boosting)	0.35	0.02	17.52%	1.04%	
IQR & SMOTE	XGBoost (eXtreme Gradient Boosting)	0.34	0.05	16.97%	1.45%	
IQR, SMOTE & Hyperparameter Tuning	XGBoost (eXtreme Gradient Boosting)	1.00	0.03	50.00%	1.18%	

Random Forest

Best Parameter-Undersampling

```
'n_estimators': 66,
'min_samples_split': 11,
'min_samples_leaf': 11,
'max_leaf_nodes': 6,
'max_features': 'log2',
'max_depth': 28,
'criterion': 'gini'
```