課題研究bレポート

加納基晴

定理 1. 近似定理

 (Ω, \mathscr{F}, P) を確率空間, X_1, X_2, \ldots を確率変数列とする.

 $\forall A_1 \in \sigma(\mathbf{X}), \forall \varepsilon > 0$ に対して、ある $n \in \mathbb{N}, A_2 \in \mathcal{F}(X_1, X_2, \dots, X_n)$ が存在して $P(A_1 \triangle A_2) \leq 0$ となる. (ただし $A \triangle B := (A - B) \cup (B - A)$)

Proof.

 $\forall A_1 \in \sigma(\mathbf{X}), \forall \varepsilon > 0$ を固定する.

$$\mathscr{F}_0 = \bigcup_{n \in \mathbb{N}} \sigma(X_1, X_2, \dots, X_n), \ \mathcal{C} = \{A \in \mathcal{F} | \ \forall \varepsilon > 0 \ \$$
に対して、 $^\exists B \in \mathscr{F}_0 \ \ s.t. \ P(A \triangle B) \leq \varepsilon \} \$ と定める.

 $\mathscr{F}_0 \subset \mathscr{C}$ は明らかだから, \mathscr{C} が σ 加法族であることを示せば, $\sigma(\mathscr{F}_0) \subset \mathscr{C}$ で, $\sigma(\mathscr{F}_0) = \sigma(\mathbf{X})$ であることから, $A_1 \in \sigma(\mathbf{X}) \subset \mathcal{C}$ なので、 $^{\exists}A_2 \in \mathscr{F}_0$ s.t. $P(A_1 \triangle A_2) \leq \varepsilon$ となり、定理が成立するのがわかる.

- e が σ 加法族であること示す.
 - (i) $\Omega \in \mathcal{C}$ (: $\Omega \in \mathscr{F}_0$)
 - (ii) $\forall A \in \mathcal{C}$ に対して、 $A^c \in \mathcal{C}$
 - $: \forall \varepsilon > 0$ を固定する. このとき $B \in \mathcal{F}_0$ が取れて, $P(A \triangle B) \leq \varepsilon$ となる. \mathcal{F}_0 の定め方から, $B^c \in \mathcal{F}_0$ であって, $P(A^c \triangle B^c) = P((A^c \cap B) \cup (A \cap B^c)) = P((B - A) \cup (A - B)) = P(A \triangle B) \le \varepsilon$ $A^c \in \mathcal{C}$
 - $(iii) \ ^\forall \{A_n\}_{n\in\mathbb{N}} \subset \mathfrak{C}, \forall \varepsilon>0 \ \text{εL$ 3.} \ \{B_n\}_{n\in\mathbb{N}} \subset \mathfrak{F}_0 \ \text{ε} \ P(A_n\triangle B_n) \leq \frac{\varepsilon}{2^{n+1}} \ \text{L} \ \text{ζ 3 L 5 L L 5}.$

また、測度の上からの連続性から ある $N\in\mathbb{N}$ が取れて、 $P(\bigcup_{n=N+1}^{\infty}A_n)\leq \frac{\varepsilon}{2}$ となる.

ここで、
$$\bigcup_{n=1}^{N} B_n \triangle \bigcup_{n=1}^{\infty} A_n \subset (\bigcup_{n=1}^{N} B_n \triangle A_n) \cup \bigcup_{n=N+1}^{\infty} A_n$$
 を示せれば、単調性と劣加法性から、 $P(\bigcup_{n=1}^{N} B_n \triangle \bigcup_{n=1}^{\infty} A_n) \leq P((\bigcup_{n=1}^{N} B_n \triangle A_n) \cup \bigcup_{n=N+1}^{\infty} A_n) \leq \sum_{n=1}^{N} P(B_n \triangle A_n) + P(\bigcup_{n=N+1}^{\infty} A_n)$

$$n=1$$
 $n=1$ $n=1$ $n=1$ $n=N+1$ $n=1$ n

•
$$\bigcup_{n=1}^{N} B_n \triangle \bigcup_{n=1}^{\infty} A_n \subset (\bigcup_{n=1}^{N} B_n \triangle A_n) \cup \bigcup_{n=1}^{\infty} A_n$$
 を示す.

$$\bullet \bigcup_{n=1}^{N} B_{n} \triangle \bigcup_{n=1}^{\infty} A_{n} \subset (\bigcup_{n=1}^{N} B_{n} \triangle A_{n}) \cup \bigcup_{n=N+1}^{\infty} A_{n} \stackrel{\star}{\sim} \overrightarrow{\pi} \stackrel{\star}{\Rightarrow}.$$

$$\therefore \omega \in \bigcup_{n=1}^{N} B_{n} \triangle \bigcup_{n=1}^{\infty} A_{n} \Leftrightarrow (\omega \in \bigcup_{n=1}^{N} B_{n} - \bigcup_{n=1}^{\infty} A_{n}) \vee (\omega \in \bigcup_{n=1}^{\infty} A_{n} - \bigcup_{n=1}^{N} B_{n})$$

$$\Leftrightarrow (\omega \in \bigcup_{n=1}^{N} B_{n} \cap \bigcap_{n=1}^{\infty} A_{n}^{c}) \vee (\omega \in (\bigcup_{n=1}^{\infty} A_{n} \cap \bigcap_{n=1}^{N} B_{n}^{c}) \cup (\bigcup_{n=N+1}^{\infty} A_{n} \cap \bigcap_{n=1}^{N} B_{n}^{c}))$$

定理 2. Kolmogorov zero-one law

 X_1, X_2, \dots を独立な確率変数とする.この時, $E \in \delta$ であるとすれば P(E) は 0, 1 のいずれかの値をとる.

Proof.

 $\forall E \in \delta$ をとる. $E \in \sigma(\mathbf{X})$ 、であるから、定理 1 により各 $n \in \mathbb{N}$ に対して、ある $E_n \in \sigma(X_1, X_2, \ldots, X_n)$ が取れて $P(E \triangle E_n) \to 0$ となる.このことから $P(E_n) \to P(E)$ 、

 $P(E_n \cup E) \to P(E)$ がわかる.

•.•

 \bullet $P(E_n) \to P(E)$

 $P(E_n) \leq P((E_n-E) \cup E) \leq P(E_n-E) + P(E)$ から $P(E_n) - P(E) \leq P(E_n-E) \leq P(E_n \triangle E) \rightarrow 0 \ (n \rightarrow \infty)$. 同様にして $P(E) - P(E_n) \leq P(E-E_n) \leq P(E_n \triangle E) \rightarrow 0$ がわかる.

 \bullet $P(E_n \cup E) \to P(E)$

 $P(E \cup E_n) < P((E_n - E) \cup E) < P(E_n - E) + P(E) < P(E_n \triangle E) + P(E)$ から

 $P(E \cup E_n) - P(E) \le P(E_n \triangle E) \to 0 \ (n \to \infty)$.また, $E \subset (E \cup E_n) \cup (E \triangle E_n)$ だから $P(E) - P(E \cup E_n) \le P(E \triangle E_n) \to 0 \ (n \to \infty)$

この時, $E \in \delta$ だから, $E \in \sigma(X_{n+1}, X_{n+2}, \dots)$ である.つまり, $E \triangleright E_n$ は独立であることがわかる.

 $P(E \cap E_n) = P(E)P(E_n)$ であり.

各辺で
$$n \to \infty$$
 とすれば、 $P(E) = P(E)^2$ であるから、 $P(E) = 0.1$ となることがわかった.

補題 3. Borel-Ccantelli Lamma

 $(\mathbf{I}),\,\{A_n\}_{n\in\mathbb{N}}\in\mathfrak{F}$ について, $\sum_{n=1}^{\infty}P(A_n)<\infty$ ならば, $P(A_n\ i.o.)=0$ が成立する.

$$(\mathbf{II}),\,\{A_n\}_{n\in\mathbb{N}}\in\mathfrak{F}$$
 について, $\{A_n\}_{n\in\mathbb{N}}$ が独立かつ, $\sum_{n=1}^{\infty}P(A_n)=\infty$ ならば, $P(A_n\ i.o.)=1$ が成立する.

Proof.

 (\mathbf{I})

 $P(A_n \ i.o.) = P(\lim_{m \to \infty} \bigcup_{n=-\infty}^{\infty} A_n) = \lim_{m \to \infty} P(\bigcup_{n=-\infty}^{\infty} A_n) \le \lim_{m \to \infty} (\sum_{n=-\infty}^{\infty} P(A_n))$ (∵ 二つ目の等号は測度の連続

$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
 であるから $\lim_{m \to \infty} (\sum_{n=m}^{\infty} P(A_n)) = 0$ ∴ $P(A_n \ i.o.) = 0$ (II)

 $\forall m \in \mathbb{N}$ に対して、 $P(\bigcap^{\infty}A_n{}^c)=0$ を示せば、 $P((A_n\ i.o.)^c)=P(\bigcup_{n \in \mathbb{N}}\bigcap^{\infty}A_n{}^c)=\lim_{m \to \infty}P(\bigcap_{n = m}^{\infty}A_n{}^c)=\lim_{n \to$ 0, つまり $P(A_n \ i.o.) = 1$ がわかる.

$$\forall m \in \mathbb{N}$$
 を固定する. $\{A_n\}_{n \in \mathbb{N}}$ は独立なので $P(\bigcap_{n=m}^{\infty} A_n{}^c) = \prod_{n=m}^{\infty} P(A_n{}^c) = \prod_{n=m}^{\infty} (1 - P(A_n))$ である. ここで $\log (1-x) \le -x \ (0 \le x \le 1)$ を使うと、 $\log (\prod_{n=m}^{\infty} (1 - P(A_n))) = \sum_{n=m}^{\infty} \log (1 - P(A_n)) \le -x$

.ここで
$$\log{(1-x)} \leq -x \ (0 \leq x \leq 1)$$
 を使うと、 $\log{(\prod_{n=m}^{\infty}(1-P(A_n)))} = \sum_{n=m}^{\infty}\log{(1-P(A_n))} \leq n$

$$-\sum_{n=m}^{\infty}P(A_n)=-\infty$$
. よって $P(\bigcap_{n=m}^{\infty}A_n{}^c)=0 \ (^{orall}m\in\mathbb{N})$ が示せた.

いくつか応用例を挙げる.

(例 1) コイントスを考える. $\mathbf s$ を長さ $\mathbf k$ の $\mathbf H$, $\mathbf T$ (表, 裏) が要素の列とする. $A_n = \{\omega \; ; (\omega_n, \dots, \omega_{n+k-1}) = \mathbf s\}$ と定める.

命題 **4.** $P(A_n i.o.) = 1$

Proof. $B_1=\{\omega\;;(\omega_1,\ldots,\omega_k)=\mathbf{s}\}, B_2=\{\omega\;;(\omega_{k+1},\ldots,\omega_{2k})=\mathbf{s}\},\;\ldots\;$ とおく. このとき, $\{B_n\}_{n\in\mathbb{N}}$ は 独立となる.また、 $\{B_n\ i.o.\}\subset \{A_n\ i.o.\}$ である $(: B_l=A_{(l-1)k+1})$. $P(B_n)=P(B_1)=rac{1}{2^k}>0$ なので $\sum P(B_n) = \infty$. 以上のことから定理 $3(\mathbf{II})$ を使うと, $P(B_n \ i.o.) = 1 \leq P(A_n \ i.o.)$ $\therefore P(A_n \ i.o.) = 1$

(例 2) 再び、コイントスを考える.
$$Y_i(\omega) = \left\{ \begin{array}{ll} 1 & (\omega_i \vec{m} \; H \; \text{のとき}) \\ -1 & (\omega_i \vec{m} \; T \; \text{のとき}) \end{array} \right., Z_n = Y_1 + \cdots + Y_n \; \text{と定める}.$$

命題 5. $P(Head) \neq \frac{1}{2}$ とする. このとき $P(Z_n = 0 \ i.o.) = 0$ となる.

Proof.

P(Head) = p とおく.

 $\sum_{n=0}^{\infty} P(Z_n=0) < \infty$ であることが示せれば、定理 $3(\mathbf{I})$ から $P(Z_n=0 \ i.o.)=0$ がわかる. Stirling の近似 $^{n=1}$ 公式から、十分大きい n に対して、 $_{2n}C_n=2^{2n}\frac{1+\delta_n}{\sqrt{\pi n}}$ (ただし $\delta_n\downarrow 0$) であり、また、 $p\neq\frac{1}{2}$ なので $2^2p(1-p)<1$ より、ある $0<\lambda<1$ が存在して $2^2p(1-p)<\frac{1}{\lambda}2^2p(1-p)<1$ となる. $\delta_n\downarrow 0$ だから十分大きい n に対して は $\delta_n < \frac{\lambda}{2^2 p(1-p)} - 1$ が成立する.

以上で
$$N \in \mathbb{N}$$
 を, $n \ge N$ で $P(Z_{2n}) =_{2n} C_n p^n (1-p)^n = 2^{2n} \frac{1+\delta_n}{\sqrt{\pi n}} p^n (1-p)^n$ かつ $\delta_n < \frac{\lambda}{2^2 p (1-p)} - 1$ を満たすようにとる. $a_n = 2^{2n} \frac{1+\delta_n}{\sqrt{\pi n}} p^n (1-p)^n$ とおく. $n \ge N$ において $\frac{a_{n+1}}{a_n} = 2^2 \frac{1+\delta_{n+1}}{1+\delta_n} \sqrt{\frac{n}{n+1}}$ $p(1-p) \le 2^2 \sqrt{\frac{n}{n+1}} \frac{\lambda}{2^2 p (1-p)} p (1-p) = \lambda \sqrt{\frac{n}{n+1}} \le \lambda$ だから, $a_{n+1} \le (1-\lambda)a_n \le \dots \le (1-\lambda)^{n+1-N} a_N$

$$\begin{split} &\sum_{n=1}^{\infty} P(Z_{2n}=0) = \sum_{n=1}^{N} P(Z_{2n}=0) + \sum_{n=N+1}^{\infty} P(Z_{2n}=0) \leq \sum_{n=1}^{N} P(Z_{2n}=0) + \sum_{n=N+1}^{\infty} \lambda^{n-N} a_{N} \\ &\leq \sum_{n=1}^{N} P(Z_{2n}=0) + a_{N} \sum_{n=1}^{\infty} \lambda^{n} = \sum_{n=1}^{N} P(Z_{2n}=0) + a_{N} \frac{\lambda}{1-\lambda} < \infty \ (\because \ 0 < \lambda < 1) \end{split}$$
 以上で $\sum_{n=1}^{\infty} P(Z_{n}=0) = \sum_{n=1}^{\infty} P(Z_{2n}=0) < \infty$ がかかった.

定理 6. $P(Head) = \frac{1}{2}$ とする. このとき $P(Z_n = 0 \ i.o.) = 1$ となる.

Proof.

$$n_1 < n_2 < \dots$$
 の自然数列とする.また,各 $k \in \mathbb{N}$ に対して, $n_k < m_k < n_{k+1}$ となるように $m_1 < m_2 < \dots$ をとる. $C_k = \{Y_{n_k+1} + \dots + Y_{m_k} \le -n_k\} \cap \{Y_{m_k+1} + \dots + Y_{n_{k+1}} \ge m_k\}$ と定める. $Y_i = -1, 1$ だから $-n \le Z_n \le n$ となることを使うと, $\omega \in C_k$ に対して, $Z_{m_k}(\omega) = (Y_1 + \dots + Y_{m_k})(\omega) = (Y_1 + \dots + Y_{n_k})(\omega) + (Y_{n_k+1} + \dots + Y_{m_k})(\omega) \le n_k - n_k = 0$ また $Z_{n_{k+1}}(\omega) = (Y_1 + \dots + Y_{m_k})(\omega) + (Y_{m_k+1} + \dots + Y_{n_{k+1}})(\omega) \ge -m_k + m_k = 0$ よって, $\omega \in C_k$ に対して $Z_{m_k}(\omega) \le 0$ であり, $Z_{n_{k+1}}(\omega) \ge 0$ であり。 $Z_{n_k}(\omega) \le 0$ であり, $Z_{n_k}(\omega) \le 0$ であり。 $Z_{n_k}(\omega) \le 0$ であり。 $Z_{n_k}(\omega) \ge 0$ でかり。 $Z_{n_k}(\omega) \ge 0$ でかり。

$$\{C_n \ i.o.\} = \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} C_k \subset \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} \bigcup_{n=n_k+1}^{n-n_k+1} \{Z_n = 0\} \subset \bigcap_{m=1}^{\infty} \bigcup_{n=n_m+1}^{\infty} \{Z_n = 0\} = \{Z_n = 0 \ i.o.\}$$

$$\sum_{n=1}^{\infty} P(C_n) = \infty$$
 となるような自然数列 $\{n_k\}, \{m_k\}$ が取れることを示せばよい.

 $\stackrel{n=1}{ullet} \ ^{\forall} lpha \in (0,1), \ ^{\forall} k \in \mathbb{N}$ に対して、 $^{\exists} \varphi(k) \geq 1 \ s.t. \ P(|Z_{\varphi(k)}| < k) \leq lpha$ となる.

$$j) \to 0 \ (n \to \infty)$$
 となる. よって, $\varphi(k)$ を $\sum_{|j| < k} P(Z_{\varphi(k)} = j) \le \alpha$ となるように取れる. [証明終り]

 $\forall \alpha \in (0,1), \forall k \in \mathbb{N}$ を固定する. $\{\varphi(k)\}_{k \in \mathbb{N}}$ を上で示したものと同様にとる. n_k, m_k を $n_1 = 1$, $m_k = n_k + \varphi(n_k), \ n_{k+1} = m_k + \varphi(m_k) \ \text{2.3}$

$$P(C_k) = P(Y_{n_k+1} + \dots + Y_{m_k} \le -n_k) P(Y_{m_k+1} + \dots + Y_{n_{k+1}} \ge m_k)$$
(∵ $\{Y_i\}_{i \in \mathbb{N}}$ は独立) $P(Head) = \frac{1}{2}$ であるから、対象性を使うと

$$P(|Y_{n_k+1} + \dots + Y_{m_k}| \ge n_k) = 2P(Y_{n_k+1} + \dots + Y_{m_k} \le -n_k)$$

$$P(|Y_{m_k+1}+\cdots+Y_{n_{k+1}}|\geq m_k)=2P(Y_{m_k+1}+\cdots+Y_{n_{k+1}}\geq m_k)$$
 となるから,

$$\begin{split} P(C_k) &= \tfrac{1}{4} P(|Y_{n_k+1} + \dots + Y_{m_k}| \geq n_k) P(\left|Y_{m_k+1} + \dots + Y_{n_{k+1}}\right| \geq m_k) \;, \{Y_i\}_{i \in \mathbb{N}} \; \text{の同一分布性から} \\ &= \tfrac{1}{4} P(|Y_1 + \dots + Y_{m_k - n_k}| \geq n_k) P(\left|Y_1 + \dots + Y_{n_{k+1} - m_k}\right| \geq m_k) \;, \varphi(k) \; \text{の定め方から}, \\ &= \tfrac{1}{4} P(\left|Y_1 + \dots + Y_{\varphi(n_k)}\right| \geq n_k) P(\left|Y_1 + \dots + Y_{\varphi(m_k)}\right| \geq m_k) \geq \tfrac{1}{4} (1 - \alpha)^2 \\ &\because \sum_{|j| < k} P(Z_{\varphi(k)} = j) \underbrace{= \qquad \qquad P(\bigcup_{|j| < k} Z_{\varphi(k)} = j) = P(\left|Y_1 + \dots + Y_{\varphi(k)}\right| < k) \leq \alpha \; \text{なので} \end{split}$$

$$\begin{split} &P(\left|Y_1+\dots+Y_{\varphi(k)}\right|\geq k)\geq 1-\alpha\\ \text{以上で} &\sum_{k=1}^{\infty}P(C_k)\geq \sum_{k=1}^{\infty}\frac{1}{4}(1-\alpha)^2=\infty\ \texttt{となって},\ P(Z_n=0\ i.o.)=1\ \text{が示せた}. \end{split}$$

定理 7. X_1, X_2, \ldots を独立確率変数とする.

このとき,

$$\sum_{k=1}^{n} X_k$$
 が確率収束する $\Leftrightarrow \sum_{k=1}^{n} X_k$ が概収束する が成立する.

まず、補題を示す.

補題 8. $N\in\mathbb{N}$ を固定する. X_1,X_2,\ldots,X_N を独立確率変数とし, $S_n=X_1+\cdots+X_n$ とおく.

$$orall lpha > 0$$
 に対して、 $\sup_{1 \leq j \leq N} P(|S_N - S_j| > \alpha) = c < 1$ となるとき、
$$P(\sup_{1 \leq j \leq N} |S_j| > 2\alpha) \leq \frac{1}{1-c} P(|S_N| > \alpha)$$
 となる.

$$P(\sup_{1 \le j \le N} |S_j| > 2\alpha) \le \frac{1}{1 - c} P(|S_N| > \alpha)$$
 となる

Proof.

$$j^*(\omega)$$
 を $|S_j(\omega)| > 2\alpha$ となる $1 \leq j \leq N$ で一番小さいものとする. 存在しないときは 0 とする. ここで $\bigcup_{1 \leq j \leq N} \{j^* = j\} = \emptyset$ であるとき $P(\sup_{1 \leq j \leq N} |S_j| > 2\alpha) = 0$ なので, $P(\sup_{1 \leq j \leq N} |S_j| > 2\alpha) = 0 \leq \frac{1}{1-c} P(|S_N| > 2\alpha)$

$$\alpha$$
) が成立する. よって, $\bigcup_{1 \leq j \leq N} \{j^* = j\} \neq \emptyset$ のときを考える.

$$P(|S_N| > \alpha, \sup_{1 \le j \le N} |S_j| > 2\alpha) = \sum_{j=1}^N P(|S_N| > \alpha, j^* = j) \ge \sum_{j=1}^N P(|S_N - S_j| \le \alpha, j^* = j)$$

 $\omega \in ($ 左辺) とすれば, $1 \leq \exists j \leq N \ s.t. \ j^*(\omega) = k$ だから $|S_k(\omega)| > 2\alpha$ なので $\sup_{1 \leq j \leq N} |S_j| \geq |S_k(\omega)| > 2\alpha$ となって、 $\omega \in (右辺)$

 (\supset)

 $\omega \in$ (右辺) とすれば、 $\sup_{1 \leq i \leq N} |S_j(\omega)| > 2\alpha$ であるから、 $\exists \{k_1, k_2, \dots, k_K\} \subset \{1, 2, \dots, N\}$ s.t.

 $|S_{k_m}| > 2 \alpha \ (m=1,2,\ldots,K)$ となる. $j^{**}(\omega) = \min \{k_1,k_2,\ldots,k_K\}$ とすれば $j^*(\omega) = j^{**}(\omega)$ となるか $S_{\alpha,\omega} \in (左辺)$ となる.

• 各 k \in $\{1,2,\ldots,N\}$ に対して, $\{|S_N|>\alpha\}\cap\{j^*=j\}\supset\{|S_N-S_i|\leq\alpha\}\cap\{j^*=j\}$ となるのを示せば 2つ目の不等号が示せる.

 $\mathbf{k} \in \{1, 2, ..., N\}$ を固定しておく. $\omega \in (右辺)$ をとる. $|S_N(\omega) - S_j(\omega)| \le \alpha$ かつ $j^*(\omega) = j$ であるから,

$$|S_j(\omega)| - |S_N(\omega)| \leq \alpha \text{ find } |S_j(\omega)| > 2\alpha \Leftrightarrow |S_j(\omega)| - \alpha \leq |S_N(\omega)| \text{ find } |S_j(\omega)| > 2\alpha$$

$$\Rightarrow 2\alpha - \alpha = \alpha < |S_N(\omega)|$$

以上で $\{|S_N| > \alpha\} \cap \{j^* = j\} \supset \{|S_N - S_j| \le \alpha\} \cap \{j^* = j\}$

$$\{j^* = j\} = (\bigcap_{j=1}^{j-1} \{|S_k| > 2\alpha\}^c) \cap \{|S_j| > 2\alpha\} \text{ α}, \{j^* = j\} \in \sigma(X_1, \dots, X_j),$$

 $\{|S_N-S_j| \stackrel{\kappa=1}{\leq} \alpha\} \in \sigma(X_{j+1},\ldots,X_N)$ であるから, $\{j^*=j\}$ と $\{|S_N-S_j| \leq \alpha\}$ は独立. 仮定から $P(|S_N - S_i| > \alpha) \le c \text{ to OC } 1 - P(|S_N - S_i| > \alpha) = P(|S_N - S_i| \le \alpha) \ge 1 - c$

$$\sum_{j=1}^{N} P(|S_N - S_j| \le \alpha, \ j^* = j) = \sum_{j=1}^{N} P(|S_N - S_j| \le \alpha) P(j^* = j) \ge (1 - c) \sum_{j=1}^{N} P(j^* = j)$$

$$= (1 - c) P(\sup_{1 \le j \le N} |S_j| > 2\alpha)$$

$$(1 - c) P(\sup_{1 \le j \le N} |S_j| > 2\alpha) \le \sum_{j=1}^{N} P(|S_N - S_j| \le \alpha, \ j^* = j) \le P(|S_N| > \alpha, \ \sup_{1 \le j \le N} |S_j| > 2\alpha)$$

$$\le P(|S_N| > \alpha) \quad \therefore P(\sup_{1 \le j \le N} |S_j| > 2\alpha) \le \frac{1}{1 - c} P(|S_N| > \alpha)$$

補題8を使って、定理7の証明をする.

Proof.

(←) 概収束するならば確率収束するので成立する.

$$(\Rightarrow)\sum_{k=1}^n X_k$$
 は確率収束するとする.ここで $\sum_{k=1}^n X_k$ が概収束しないと仮定する.(背理法) ここで実数列 $\{s_n\}$ が収束しないとすれば $\{s_n\}$ は Cauchy 列でないので

$$^\exists arepsilon > 0 \ s.t. \ ^orall N \in \mathbb{N}, \ ^orall n, m \geq N \wedge |s_n - s_m| > arepsilon$$
 であるから,

$$\exists \varepsilon > 0 \ s.t. \ \forall m \in \mathbb{N}, \ \sup_{n > m} |s_n - s_m| > \varepsilon$$
 となる. $\sum_{k=1}^n X_k$ はほとんど確実に Cauchy 列でないから,

$$\exists \varepsilon > 0, \ \exists \delta \in (0,1] \ s.t. \ \left[\forall m \in \mathbb{N}, \ P\left(\sup_{n>m} |\sum_{k=1}^n X_k - \sum_{k=1}^m X_k| > \varepsilon \right) \geq \delta \right]$$
 となる. この $\varepsilon, \ \delta$ を固定する.

$$\sum_{k=1}^{n} X_k$$
 は確率収束するので $\sum_{k=1}^{N} X_k - \sum_{k=1}^{m} X_k \stackrel{P}{ o} 0$ となる.

よって, ある
$$M \in \mathbb{N}$$
 が存在して, $\forall m,\ N \geq M\ (m < N)$ に対して, $P\left(\left|\sum_{k=m+1}^{N} X_k\right| > \frac{\varepsilon}{2}\right) < 1$ で,

$$P\left(\left|\sum_{k=m+1}^{N}X_{k}\right|>rac{arepsilon}{2}
ight)
ightarrow 0\ (m,\ N
ightarrow\infty)$$
 この $m,\ N$ を固定する.

$$C_{m,N} = \sup_{m < n \leq N} P\left(\left|\sum_{k=n}^{N} X_k\right| > \frac{\varepsilon}{2}\right)$$
 とおくと, $C_{m,N} < 1$ かつ $C_{m,N} \to 0$ $(m, N \to \infty)$ となる. ここで補題 8 を使うと,

$$P\left(\sup_{m < n \leq N} \left| \sum_{k=m+1}^{n} X_k \right| > \varepsilon \right) \leq \frac{1}{1 - C_{m,N}} P\left(\left| \sum_{k=m+1}^{N} X_k \right| > \frac{\varepsilon}{2} \right) \text{ とかけて, まず } N \rightarrow \infty \text{ とすると,}$$

単調性から,
$$\lim_{N \to \infty} P\left(\sup_{m < n \le N} \left| \sum_{k=m+1}^{n} X_k \right| > \varepsilon \right) = P\left(\lim_{N \to \infty} \sup_{m < n \le N} \left| \sum_{k=m+1}^{n} X_k \right| > \varepsilon \right) = P\left(\sup_{m < n} \left| \sum_{k=m+1}^{n} X_k \right| > \varepsilon \right)$$

$$\leq \lim_{N \to \infty} \frac{1}{1 - C_{m,N}} P\left(\left| \sum_{k=m+1}^N X_k \right| > \frac{\varepsilon}{2} \right), \ \lim_{m \to \infty} \lim_{N \to \infty} \frac{1}{1 - C_{m,N}} P\left(\left| \sum_{k=m+1}^N X_k \right| > \frac{\varepsilon}{2} \right) \not \stackrel{\text{the b}}{\sim} ,$$

$$\lim_{m \to \infty} P\left(\sup_{m < n} \left| \sum_{k=m+1}^n X_k \right| > \varepsilon \right) = 0 \ \text{これは}^{\,\,\forall} m \in \mathbb{N}, \ P\left(\sup_{n > m} \left| \sum_{k=1}^n X_k - \sum_{k=1}^m X_k \right| > \varepsilon \right) \ge \delta > 0 \ \text{に矛盾する}.$$
 背理法により $\sum_{k=1}^n X_k$ は概収束することがわかった.

系 9.

$$E[X_k]=0 \ (^orall k\in \mathbb{N}), \ \sum_{k=1}^\infty E[X_k^2]<\infty$$
 とする. このとき $\sum_{k=1}^n X_k$ は確率収束する.

Proof.

$$X_1, X_2, \dots$$
 は独立なので, $\sum_{k=1}^n X_k$ が確率収束することを示せば定理 8 から $\sum_{k=1}^n X_k$ は確率収束する.

$$\sum_{k=1}^{\infty} E[X_k^2] = s^2$$
 (ただし $s \ge 0$) とする. $\forall \varepsilon > 0$ に対して Chebyshev の不等式から

$$\begin{split} & P\left(\left|\sum_{k=1}^{n}X_{k}-s\right|>\varepsilon\right) \leq \frac{1}{\varepsilon^{2}}E\left[\left|\sum_{k=1}^{n}X_{k}-s\right|^{2}\right] \ \, \text{となる}. \ E\left[\left|\sum_{k=1}^{n}X_{k}-s\right|^{2}\right] \to 0 \ (n\to\infty) \ \text{を示したい}. \\ & E\left[\left|\sum_{k=1}^{n}X_{k}-s\right|^{2}\right] = E\left[\left|\sum_{k=1}^{n}X_{k}\right|^{2}\right] - 2sE\left[\sum_{k=1}^{n}X_{k}\right] + s^{2} \\ & = E\left[\sum_{k=1}^{n}X_{k}^{2} + 2\sum_{i < j}X_{i}X_{j}\right] - 2sE\left[\sum_{k=1}^{n}X_{k}\right] + s^{2} \ \, \text{ここで}, X_{1}, X_{2}, \dots \ \text{は独立だから} \\ & \sum_{i < j}E\left[X_{i}X_{j}\right] = \sum_{i < j}E\left[X_{i}\right]E\left[X_{j}\right] \ \text{が成立する}. \ \, \text{また} \ \, E[X_{k}] = 0 \ (\forall k \in \mathbb{N}) \ \text{なので} \\ & = \sum_{k=1}^{n}E\left[X_{k}^{2}\right] - 2s\sum_{k=1}^{n}E\left[X_{k}\right] + s^{2} \to s^{2} - 2s^{2} + s^{2} = 0 \ (n\to\infty) \\ & \sum_{i < j}X_{k} \ \, \text{が確率収束することがわかったので} \sum_{i < j}X_{k} \ \, \text{は確率収束する}. \end{split}$$

定理 10. 独立確率変数に対する大数の法則

$$X_1,X_2,\dots$$
 を独立確率変数とする. $E\left[X_k\right]=0,\; E\left[X_k^2\right]<\infty\;\left(orall k\in\mathbb{N}
ight)$ であるとする. 正数列 $\{b_n\}_{n\in\mathbb{N}}$ が $b_n\uparrow\infty$ かつ $\sum_{k=1}^\infty E\left[rac{X_k^2}{b_k^2}
ight]<\infty$ を満たすとき, $rac{X_1+\dots+X_n}{b_n}\stackrel{a.s.}{\longrightarrow}0$ が成立する.

証明の前に一つ補題を示す.

補題 11. Kronecker's Lemma

$$x_1,x_2,\dots$$
 を $\sum_{k=1}^n x_k \to s < \infty$ を満たす実数列とする. このとき, $b_n \uparrow \infty$ となる整数列 $\{b_n\}_{n \in \mathbb{N}}$ が取れて, $\frac{1}{b_n} \sum_{k=1}^n b_k x_k \to 0$ となる.

Proof

$$r_n = \sum_{k=n+1}^{\infty} x_k, \ r_0 = s \ \texttt{とおく.} \ \texttt{このとき} \ x_n = r_{n-1} - r_n, \ n = 1, 2, \dots \ \texttt{また}, \sum_{k=1}^n b_k x_k = \sum_{k=n+1}^n b_k (r_{k-1} - r_k) = \sum_{k=1}^{n-1} b_{k+1} r_k - \sum_{k=1}^n b_k r_k = \sum_{k=1}^{n-1} (b_{k+1} - b_k) r_k + b_1 s - b_n r_n \ \texttt{となるから}$$

$$\left|\sum_{k=1}^n b_k x_k\right| \leq \sum_{k=1}^{n-1} (b_{k+1} - b_k) |r_k| + b_1 |s| + b_n |r_n| \quad (:: 三角不等式, \, b_n \, \text{は単調増加なので} \, b_{n+1} - b_n \geq 0)$$
 ここで $\forall \varepsilon > 0$ をとる. $\sum_{k=1}^\infty x_k \, \text{は収束するから} \, r_k \, \text{の定め方から} \, N \in \mathbb{N} \, \text{を} \, \forall n \geq N \, \text{に対して}, \, |r_k| \leq \varepsilon \, \text{となるように取れる.} \, \text{この N を固定する.} \, \tilde{r} := \max\{|r_1|, \dots, |r_{N-1}|, \varepsilon\} \, \text{とする.} \, n > N \, \text{において},$
$$\sum_{k=1}^{n-1} (b_{k+1} - b_k) |r_k| \leq \sum_{k=1}^{N-1} (b_{k+1} - b_k) |r_k| + \varepsilon \sum_{k=N}^{n-1} (b_{k+1} - b_k) \leq \tilde{r}(b_N - b_1) + \varepsilon (b_n - b_N) \, \text{よって}$$

$$\left|\frac{\sum_{k=1}^n b_k x_k}{b_n}\right| \leq \frac{1}{b_n} (\tilde{r}(b_N - b_1) + \varepsilon (b_n - b_N) + b_1 |s| + b_n \varepsilon) \rightarrow \varepsilon \, \text{つま b} \, \lim_{n \to \infty} \left|\frac{\sum_{k=1}^n b_k x_k}{b_n}\right| \leq \varepsilon \, \text{となるから}$$

$$\lim_{n \to \infty} \left|\frac{\sum_{k=1}^n b_k x_k}{b_n}\right| \leq \varepsilon \, \text{がわかった.} \, \text{ここで} \, \varepsilon \downarrow 0 \, \text{とすれば}, \\ \frac{1}{b_n} \sum_{k=1}^n b_k x_k \rightarrow 0 \, \text{が示された.} \right| \square$$

この補題を使って定理10を証明する.

Proof.

Kronecker's Lemma により、
$$\sum_{k=1}^n \frac{X_k}{b_k}$$
 がほとんど確実に収束すれば、 $\frac{1}{b_k}\sum_{k=1}^n b_k \frac{X_k}{b_k} = \frac{1}{b_k}\sum_{k=1}^n X_k \xrightarrow{a.s.} 0$ となる。 仮定から、 X_1, X_2, \ldots は独立確率変数, $E\left[\frac{X_k}{b_k}\right] = 0$ 、 $\sum_{k=1}^\infty E\left[\frac{X_k^2}{b_k^2}\right] < \infty$ であるから、系 9 から $\sum_{k=1}^n \frac{X_k}{b_k}$ は概 収束する。 $\therefore \frac{X_1 + \cdots + X_n}{b_n} \xrightarrow{a.s.} 0$

定理 12. X_1, X_2, \ldots を L_d $(d \ge 0)$ 上に分布する確率変数列とする. このとき L_d に含まれる状態は全て再帰的または全て非再帰的である.

Proof.