

Nota técnica

ANADEM - Modelo digital do terreno para a América do Sul

Resumo Os modelos digitais de elevação (MDEs) desempenham um papel fundamental em diversas aplicações, incluindo estudos hidrológicos e hidrodinâmicos. Contudo, os principais conjuntos de dados globais de elevação disponíveis apresentam valores de elevações influenciados pela altura e cobertura da vegetação, o que compromete a acurácia dos modelos na representação da superfície do terreno. O presente sumário executivo apresenta o modelo ANADEM, um modelo digital do terreno (MDT) que representa a topografia sem o efeito da vegetação, obtido a partir do processamento do modelo Copernicus DEM GLO-30, com a remoção de viés utilizando técnicas de aprendizado e máquina a partir da combinação de dados altimétricos derivados da missão GEDI (Global Forest Canopy Height) e dados da missão Landsat-8. O MDT ANADEM foi processado para toda a América do Sul e está disponível gratuitamente para uso. A validação foi realizada com dados de altimetria ICESat-2, e a performance foi comparada com os principais modelos digitais de superfície disponíveis globalmente. Os resultados demonstraram que o MDT ANADEM apresenta erros similares ou inferiores aos apresentados pelos demais MDTs disponíveis globalmente. O modelo ANADEM desenvolvido nesta pesquisa apresenta grande potencial para aplicação desde escalas regionais até continentais.

1. Introdução

Modelos digitais de Elevação (MDEs) são dados essenciais em diferentes aplicações, principalmente em simulações hidrológicas e hidrodinâmicas, análises de vulnerabilidade do terreno, como em casos de inundações e deslizamentos, entre outras aplicações. A acurácia dos MDE's é diretamente influenciada pela presença da vegetação na superfície, visto que grande parte dos sensores utilizados para a medição da elevação do terreno geram resultados com influência da altura e densidade do dossel. Nesse sentido, diferentes estudos buscaram soluções para a remoção do viés ocasionado pela vegetação, entre os quais metodologias recentes baseadas em aprendizado de máquina possibilitaram o uso de um número expressivo de informações para estimar o viés causados pela vegetação.

Em escala regional, considerando a indisponibilidade de MDEs corrigidos para o efeito da vegetação, associada à evolução das técnicas de aprendizado de máquinas e ao amplo acesso a bases de dados de sensoriamento remoto, como dados das missões Landsat e Sentinel, permitiu o desenvolvimento de um modelo digital do terreno (MDT) para a América do Sul, com foco no Brasil.

O ANADEM foi desenvolvido em parceria entre o Instituto de Pesquisas Hidráulicas (IPH) da Universidade Federal do Rio Grande do Sul (UFRGS) e a Agência Nacional das Águas e Saneamento Básico (ANA) através do Termo de Execução Descentralizada (TED) COOPERAÇÃO EM TECNOLOGIAS PARA ANÁLISES HIDROLÓGICAS EM ESCALA NACIONAL, com vigência entre janeiro de 2022 e março de 2024.

2. Metodologia

A metodologia de geração do MDT ANADEM incluiu diferentes bancos de dados de sensoriamento remoto. Imagens multiespectrais dos satélites Landsat-8 (sensor OLI) e do Sentinel-2 (sensor MSI) foram utilizadas para a determinação de índices que evidenciam as respostas espectrais da vegetação, desde áreas com intensa densidade do dossel até solo exposto. Os índices para estimar o viés causado pela vegetação incluem EVI (Enhanced Vegetation Index), NDMI (Normalized Difference Moisture Index), MSR (Modified Simple Ratio) e MSAVI (Modified Soil Adjusted Vegetation Index). A informação da altura da vegetação foi obtida a partir dos dados do sensor GEDI (Global Ecosystem Dynamics Investigation)

para a coleção L2A (https://doi.org/10.5067/GEDI/GEDI02 A.002). A estimativa do viés gerado pela vegetação foi realizada utilizando a informação de altura relativa (RH) equivalente ao percentual de 90%.

Para a estimativa do viés causado pela vegetação, foi utilizado o algoritmo de decisão de TreeBoost disponibilizado na plataforma $Google\ Earth\ Engine$, e baseado no modelo de mesmo nome disponível na plataforma aberta SMILE ($Statistical\ Machine\ Intelligence\ and\ Learning\ Engine$). A aplicação do modelo TreeBoost ocorreu em grades de 5 x 5 graus para toda América do Sul, utilizando 50 mil amostras, e 250 árvores de decisão por grade. Após a obtenção do viés causado pela vegetação ($BIAS_{vegetação}$), foi realizada uma etapa de correção de viés de acordo com a fração de cobertura vegetal (fvc), assumindo que o erro no MDS de referência ($MDS_{copernicus}$) é proporcional à fvc. Dessa forma, o modelo foi obtido através da $Equação\ 1$.

$$MDT_{ANADEM} = MDS_{copernicus} - BIAS_{vegetação} * fvc$$
 (1)

O fluxograma de processamento dos dados para obtenção do ANADEM para toda a América do Sul é apresentado na **Figura 1**.

Figura 1. Fluxograma de processamento dos dados de sensoriamento remoto para obtenção do modelo digital do terreno ANADEM para toda a América do Sul.

3. Validação do modelo

Comparado aos dados altimétricos ICESat-2, o ANADEM, apresentou uma redução de viés de 85% em relação ao COPDEM. Além disso, o impacto da melhoria se apresentou mais expressivo em áreas de maior cobertura vegetal, como apresentado na **Figura 2**, onde verifica-se que o COPDEM apresenta proporcionalidade do viés com a densidade da vegetação, e consequentemente com a altura do dossel, enquanto o ANADEM apresenta erros relativamente mais baixos para toda a superfície. Resultados detalhados de validação no ANADEM no Brasil e na América do Sul serão apresentados no relatório final do projeto e em artigo científico a ser submetido para publicação após o término do prazo vigência do TED.

Figura 2. Melhoria da representação da elevação do terreno pelo ANADEM em relação ao COPDEM, discretizado em função da densidade da vegetação, em comparação com dados de altimetria ICESAT-2.

4. Forma de acesso e download dos dados

Atualmente o ANADEM pode ser acessado diretamente em ambientes de computação em nuvem do Google Earth Engine, com a utilização do assetID: 'projects/et-brasil/assets/anadem/v018'.

Para download dos dados, o ANADEM também pode ser baixado para a América do Sul em tiles organizados conforme o *Military Grid Reference System* (MGRS) no formato geotiff.

- Endereço para download: https://www.ufrgs.br/hge/anadem-modelo-digital-de-terreno-mdt/
- Resolução espacial dos dados: 30 metros.
- Sistema de referência de coordenadas:
 - Horizontal: WGS1984 (EPSG:4326)
 - Vertical: EGM2008 (EPSG:3855).

5. Isenção de responsabilidade

O ANADEM encontra-se em uma versão em desenvolvimento com acesso público na forma "como está" e "conforme disponível", não oferecendo representações ou garantias de qualquer tipo sobre o material disponibilizado. Portanto, certifique-se que o uso dos dados esteja de acordo com as limitações relacionadas às condições do modelo, incluindo limitações relativas à resolução espacial e acurácia vertical e horizontal. Em caso de verificação de erros ou incertezas associadas a metodologia adotada, por favor entre em contato com a equipe de desenvolvimento.

6. Equipe de desenvolvimento

Agência Nacional de Águas e Saneamento Básico

Alexandre de Amorim Teixeira (e-mail: alexandre.amorim@ana.gov.br)

Instituto de Pesquisas Hidráulicas

- Anderson Ruhoff (e-mail: <u>anderson.ruhoff@ufrgs.br</u>)
- Bruno Comini de Andrade (e-mail: <u>bruno.comini@ufrgs.br</u>)
- Leonardo Laipelt dos Santos (e-mail: <u>leonardo.laipelt@ufrgs.br</u>)

Como citar este documento

AGÊNCIA NACIONAL DE ÁGUAS E SANEAMENTO BÁSICO (Brasil); UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Nota técnica: ANADEM – Modelo digital do terreno para a América do Sul. [Brasília: Porto Alegre], [2023].