CNNs auf Graphen

30. November 2016

1 Einleitung

• Anwendungsfälle:

- 1. Aus einer Menge von Graphen soll eine Funktion für Klassifizierungs- oder Regressionsprobleme gelernt werden, die auf nicht bekannte Graphen angewendet werden kann
- 2. lerne Graph-Repräsentationen, um auf Graph-Eigenschaften (fehlende Kanten, Knoteneigenschaften) unbekannter Graphen zu schließen

• Graphrepräsentation:

- Graphen können gerichtet oder ungerichtet sein
- Graphen können zyklisch sein
- Graphen können mehrere unterschiedliche Kantentypen besitzen (mehrere Perceptive-Field-Layer)
- Graphen können mehrere diskrete oder kontinuierliche Werte an ihren Knoten haben
- Methode berechnet lokal verbundene Nachbarschaften der Graphen und benutzt sie als die Receptive Fields des CNN
- die Methode kann für Graphen mit gewichteten Kanten erweitert werden

• <u>Idee</u>: repräsentiere Bilder als Graph

- ein Bild kann als Graph repräsentiert werden, indem die Knoten jeweils einen Pixel repräsentieren und es eine Kante zwischen zwei Knoten gibt, wenn deren Pixel benachbart sind
- die lokale Nachbarschaft eines Pixels wird repräsentiert als ein Quadrat um den Punkt (hier 3×3)
- Aus der Nachbarschaft kann ein Merkmal ermittelt werden
- üblicherweise gibt es keine räumliche Anordnung einer Graph-Repräsentation

• Probleme:

- 1. Welche Nachbarschaften um welche Knoten und in welcher Reihenfolge bilden die Receptive Fields?
- 2. Wie können die einzelnen Nachbarschafts-Graphen in einem Vektor repräsentiert werden (Normalisierung)?

• Verfahren:

- 1. bestimme eine Knoten-Auswahl inklusive Reihenfolge
- 2. bestimme den Nachbarschafts-Graphen um diesen Knoten mit genau k Knoten
- 3. normalisiere die Nachbarschafts-Graphen
- 4. füttere sie in ein CNN

2 Grundlagen

- Graph G = (V, E) mit $V = \{v_1, \dots, v_n\}$ und $E \subseteq V \times V$, wobei n Anzahl der Knoten und m Anzahl der Kanten
- Adjazenzmatrix A mit Größe $n \times n$, wobei $A_{i,j} = 1$, falls eine Kante von v_i nach v_j existiert (sonst 0) $\Rightarrow v_i$ und v_j sind adjazent
- ein Weg ist eine Sequenz von Knoten, bei der benachbarte Knoten adjazent sind
- d(u,v) beschreibt die minimale Distanz zwischen von u nach v
- $N_1(v)$ beschreibt die 1-Nachbarschaft um einen Knoten, d.h. alle Knoten die adjazent sind zu v

2.1 Beschriftung und Partitionierung

- \bullet eine Graph-Beschriftung $l:V\to S$ bildet einen Knoten auf eine sortierbare Einheit ab
- induziert ein Ranking $r: V \to \{1, \dots, |V|\}$ mit r(u) < r(v) genau dann, wenn l(u) > l(v)
- falls l injektiv, dann gibt es eine totale Ordnung der Knoten in G und eine eindeutige Adjazenzmatrix A^l , bei der die Knoten die Position r(v) haben
- eine Graph-Beschriftung induziert eine Partionierung $\{V_1, \dots V_k\}$ mit $u, v \in V_i$ falls l(u) = l(v)

3 Lernen von Graphen

3.1 Knotenauswahl

- Auswahl an Knoten, für die ein Receptive Field erstellt werden soll
- Sortierung soll dem Verfahren von Bildern nahekommen, d.h. Knoten mit ähnlichen strukturellen Merkmalen sollen auch in der Vektorrepräsentation nah beieinanderliegen
- Graph-Beschreibung l Metriken:
 - Betweenness centrality:
 - * $g(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$
 - * σ_{st} beschreibt die Anzahl an kürzesten Pfaden von s nach t ist und σ_{st} die Anzahl dieser Pfade, die durch v gehen

- Eigenvector centrality:

- * Google's PageRank ist eine Variante der Eigenvector centrality
- * G = (V, E) mit Adjazenzmatrix A, sodass $a_{v,t} = 1$, falls eine Kante von v nach t existiert
- * relative Centrality von v: $x_v = \frac{1}{\lambda} \sum_{t \in N(v)} x_t = \frac{1}{\lambda} \sum_{t \in Ga_{v,t}} x_t$
- * kann als Eigenwertproblem formuliert werden: $Ax = \lambda x$
- * zusätzliche Einschränkung: alle Werte des Eigenvektors x sollen nicht-negativ sein \Rightarrow bestimme größten Eigenwert $\lambda \Rightarrow$ eindeutig

- Degree centrality:

- * Grad der Knoten, d.h. Anzahl adjazenter Knoten (gewichtet: Auswärtsgrad Einwärtsgrad)
- Closeness centrality:
 - * durchschnittliche Länge zwischen dem Knoten und allen anderen Knoten
 - * je zentraler ein Knoten ist, umso näher sind alle anderen Knoten
 - * $C(x) = \frac{1}{\sum_{y} d(y,x)}$
 - * kann sich für gerichtete Graphen stark unterscheiden (hohe Closeness für ausgehende Kanten, geringe Closeness für eingehene Kanten)
- Weisfeiler-Lehman Algorithmus
- Page-Rank
- eventuell werden diese Metriken garnicht benötigt, da wir ja eine räumliche Struktur unseres Graphen besitzen!
- \bullet Gegeben: Graph-Beschreibung l, Abstand s, Anzahl w an Reciptive Fields
- 1. sortiere die Knoten auf Basis von l
- 2. iteriere über die sortierte Knotenmenge mit Abständen s, bis w Knoten ausgewählt wurden

es werden anscheinend mehrere Metriken benutzt, wie werden diese kombiniert?

3.2 Nachbarschaftssuche

- ullet Gegeben: Knoten v, Größe k des Receptive Fields
- 1. setze initiale Knotenmenge N auf v
- 2. wiederhole bis |N| > k:
 - a) berechne für alle Knoten i in N die Nachbarschaften $N_1(i)$ und füge sie zu N hinzu
- Bemerkung: im Allgemein gilt $|N| \neq k$

3.3 Normalisierung

- Aus einem Nachbarschaftsgraphen soll ein Receptive Field konstruiert werden
- \bullet Knoten werden anhand eines Graph-Labelings l sortiert
 - ein Receptive Field für die Knoten (Größe k) und ein Receptive Field für die Kanten (Größe $k \times k$)
 - jedes Knoten- oder Kantenattribut wird in einem Receptive Field abgespeichert (z.B. Farbe)
- Gegeben: Menge von Graphen $\mathcal G$ mit k Knoten, Distanzmetriken für $k\times k$ Matrizen d_A und Graphen d_G für k Knoten
 - d_A , z.B. Hamming-Abstand: $d_A(x,y) = |\{j \in \{1,...,N\}| x_j \neq y_j\}|$
 - Beispiel: 12345 und 13344 \rightarrow 2
 - $-d_G$: z.B. Edit distance
- Optimierungsproblem über l: $\min_l \sum_{G \in \mathcal{G}} \sum_{G' \in \mathcal{G}} (d_A(A^l(G), A^l(G') d_g(G, G')))$
- \bullet \Rightarrow für beliebige Graphen G und G' soll die Ähnlichkeit dieser Graphen gleich der Ähnlichkeit der Graphen im Vektorraum sein (basierend auf den Adjazenzmatrizen der Graphen)
- \Rightarrow Problem is NP-schwer
- <u>Alternative</u>: wähle aus einer Menge von Labelings die beste zu einer gegebenen Menge von Graphen
 - $\{(G_1,G_1'),\ldots,(G_N,G_N')$ eine zufällge Auswahl an Graphpaaren von $\mathcal G$
 - wähle das Labeling lso, dass $\sum_{i=1}^N \frac{d_A(A^l(G_i),A^l(G_i'))}{N}$ minimal
- ullet Labelings werden nur berechnet für Knoten gleicher Distanz zum Startknoten v
- Labelings sind im Allgemeinen nicht injektiv ⇒ sortiere anhand lexikographischer maximaler Adjazenzmatrizen

4 Auswertung

- CNNs mit Bildern können identisch über CNNs mit Graphen dargestellt werden
- Methode funktioniert teilweise deutlich besser als State-of-the-Art Graph-Kerne (z.B. bei Klasifizierungsproblemen)

5 Zukünftige Arbeiten

- gewichtete Kanten (oder allgemeiner Graphen mit Kanteneigenschaften)
- Graphen auf andere Netze übertragen, z.B. RNNs
- kombiniere unterschiedliche Receptive Field-Größen