

INTERNATIONAL COLLEGE OF PHARMACEUTICAL INNOVATION

国际创新药学院

Class Pharm, BioPharm

Course Fundamentals of Medicinal & Pharmaceutical Chemistry

Code FUNCHEM.6

Title Redox Reactions: Energy-Producing Reactions at the

Molecular Level of Life

Lecturer Prof. Xinchen Teng

Date 2024-10-23

RECOMMENDED READING

- General Chemistry The Essential Concepts by Chang and Goldsby (7th edition)
 - Section 4.4 Oxidation reduction reactions
 - Section 19.1 Redox Reaction

FUNCHEM.6 Learning Outcomes

- Define 'oxidation', 'reduction', 'oxidising agent', 'reducing agent', 'redox reaction' and 'oxidation number'.
- Discuss the importance of redox reactions in the human body.
- Recall rules to assign oxidation numbers (free elements, molecules and ions). Recall exceptions to the rules.
- Demonstrate method of balancing redox equations.

Redox Reactions

Energy producing reactions at the molecular level of life.

Energy is required for <u>3 major purposes</u>:

Muscle contraction and other cellular movements

Active transport of molecules and ions

Synthesis of macromolecules and other biomolecules from simple precursors

The ATP – ADP cycle

the fundamental way of energy exchange in biological systems

Oxidation of food

Oxidation in Redox Reaction

Oxidation occurs when a molecule:

Loses electrons

Loses hydrogen

Gains oxygen

If a molecule undergoes oxidation, it has been oxidized and it is said to be the **reducing agent**

Reduction in Redox Reaction

Reduction occurs when a molecule does any of the following:

Gains electrons Gains hydrogen Loses oxygen

If a molecule undergoes reduction, it has been reduced and it is said to be the **oxidizing agent**

Oxidation and Reduction reactions always take place simultaneously

Oxidation-reduction Reactions

$$Zn(s) + CuSO_4(aq) \longrightarrow ZnSO_4(aq) + Cu(s)$$

Oxidation half-reaction

Reduction half-reaction

The number of e⁻ lost by the reducing agent = the number of electrons gained by the oxidising agent.

Oxidation Numbers

To keep track of electrons in redox reactions

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$

Oxidation number (also called oxidation state) is the charge an atom would have in a molecule or ionic compound if electrons were transferred completely.

Rules to assign oxidation numbers

Rules To Assign Oxidation Number Must Be Applied In Order!

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.

Na, Be, K, Pb,
$$H_2$$
, O_2 , $P_4 = 0$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

Li⁺, Li =
$$+1$$
; Fe³⁺, Fe = $+3$; O²⁻, O = -2

- 3. The oxidation number of hydrogen is +1 *except* when it is bonded to metals in binary compounds. In these cases, its oxidation number is -1.
- 4. The oxidation number of oxygen is **usually** -2. In H_2O_2 and O_2^{2-} it is -1.
- 5. Group IA metals are +1, IIA metals are +2 and fluorine is always -1.
- 6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion.
- 7. Oxidation numbers do not have to be integers. The oxidation number of oxygen in the superoxide ion, O_2^- , is $-\frac{1}{2}$.

Some Oxidation States

The Breakdown Of Glucose In The Body To Produce Energy

The Breakdown Of Glucose In The Body To Produce Energy

Oxidation of glucose (C₆H₁₂O₆) to CO₂ and the reduction of oxygen to water

Balancing Redox Reactions in Acids by Half-reaction Method

e.g.
$$Fe^{2+} + Cr_2O_7^{2-} \longrightarrow Fe^{3+} + Cr^{3+}$$

1. Determine what is oxidised and what is reduced.

$$Fe^{2+} + Cr_2O_7^{2-} \longrightarrow Fe^{3+} + Cr^{3+}$$

(+2) (+6) (+3) (+3)

Remember: Increase in O.N. = oxidation

Reduction in O.N. = reduction

Fe 2+ : oxidised

 $Cr_2O_7^{2-}$: reduced

$$Fe^{2+} + Cr_2O_7^{2-} \longrightarrow Fe^{3+} + Cr^{3+}$$

2. Write the two half-reactions and balance all the atoms other than O and H in each half-reaction

Oxidation: $Fe^{2+} \longrightarrow Fe^{3+}$

Reduction: $Cr_2O_7^{2-} \longrightarrow 2 Cr^{3+}$

3. For reactions in acidic medium, add H₂O to balance O atoms and H⁺ to balance H atoms

Oxidation:
$$Fe^{2+}$$
 \longrightarrow Fe^{3+}

Reduction:

In an acidic medium, we add 7H₂O molecules to the right side of the arrow to balance the O atoms

$$Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$$

To balance the H atoms, we add 14H+ on the left side

$$Cr_2O_7^{2-} + 14 H^+ \longrightarrow 2Cr^{3+} + 7 H_2O$$

4. Add electrons to each half-reaction to balance the charge

Oxidation:

$$Fe^{2+}$$
 \rightarrow Fe^{3+} $+$ e^{-}

Reduction:

There are now 12 positive charges on the left side and only 6 positive charges on the right. Therefore, we add 6 electrons on the left

5. Must have same number of electrons in each half-reaction

Fe²⁺
$$\longrightarrow$$
 Fe³⁺ + e⁻ X 6

Cr₂O₇²⁻ + 14 H⁺ + 6 e⁻ \longrightarrow 2 Cr³⁺ + 7 H₂O

6 Fe²⁺ \longrightarrow 6 Fe³⁺ + 6 e⁻

Cr₂O₇²⁻ + 14 H⁺ + 6 e⁻ \longrightarrow 2 Cr³⁺ + 7 H₂O

6. Add the two half-reactions. The e on both sides must cancel

$$6 \text{ Fe}^{2+} \longrightarrow 6 \text{ Fe}^{3+} + 6 \text{ e}^{-}$$

$$Cr_2O_7^{2-} + 14 \text{ H}^+ + 6 \text{ e}^{-} \longrightarrow 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O}$$

$$6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ \longrightarrow 6 \text{ Fe}^{3+} + 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O}$$

(Check Atoms & Charges)

Try this one!

1. Determine what is oxidised and what is reduced.

- 1. Fe^{2+} Fe³⁺ Oxidation
- 2. MnO_4 Reduction

2. Write the two half-reactions and balance all the atoms other than O and H in each half-reaction

1.
$$Fe^{2+}$$
 Fe³⁺ Oxidation

2.
$$MnO_4$$
 Reduction

3. For reactions in acidic medium, add H₂O to balance O atoms and H⁺ to balance H atoms

1.
$$Fe^{2+}$$
 \longrightarrow Fe^{3+}

2.
$$MnO_4^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$$

4. Add electrons to each half-reaction to balance the charge

1.
$$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$$

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$

5. Must have same number of electrons in each half-reaction, and add the two half-reaction up

1.
$$\times 5$$
 5 Fe²⁺ \longrightarrow 5 Fe³⁺ + 5 e⁻⁷

2.
$$MnO_4^- + 8 H^+ + 5 e^- \longrightarrow Mn^{2+} + 4H_2O$$

$$5 \text{ Fe}^{2+} + \text{MnO}_4^{-} + 8 \text{ H}^+ \longrightarrow 5 \text{ Fe}^{3+} + \text{Mn}^{2+} + 4 \text{ H}_2\text{O}$$

Balancing Redox Reactions in Bases by Half-reaction Method

1. Write the two half-reactions and balance all the atoms other than O and H in each half-reaction

2. Add H₂O to balance O atoms and H⁺ to balance H atoms

Oxidation:

To balance the O atoms, add one H₂O molecule on the left

To balance the H atoms, add two H+ ions on the right

$$CN^- + H_2O \longrightarrow CNO^- + 2H^+$$

Reduction:

To balance the O atoms, add two H₂O molecule on the right.

To balance the H atoms, add four H+ ions on the left

$$MnO_4^- + 4H^+ \longrightarrow MnO_2 + 2H_2O$$

3. For reactions in <u>basic medium</u>, for every H⁺ ion, add an equal number of OH⁻ ions to both sides of the equation

Oxidation:
$$CN^- + H_2O + 2OH^- \longrightarrow CNO^- + 2H^+ + 2OH^-$$

Reduction:
$$MnO_4^- + 4H^+ + 4OH^- \rightarrow MnO_2 + 2H_2O + 4OH^-$$

Oxidation:
$$CN^- + H_2O + 2OH^- \longrightarrow CNO^- + 2H^+ + 2OH^-$$

Reduction: $MnO_4^- + 4H^+ + 4OH^- \longrightarrow MnO_2 + 2H_2O + 4OH^-$

4. For reactions in <u>basic medium</u>, for every H⁺ ion, add an equal number of OH⁻ ions to both sides of the equation

Oxidation: $CN^{-} + 2OH^{-} \longrightarrow CNO^{-} + H_2O$

Reduction: $MnO_4^- + 2H_2O \rightarrow MnO_2^- + 4OH^-$

5. Add electrons to each half-reaction to balance the charge

Reduction: $\frac{MnO_4^{-} + 2H_2O}{-1} \longrightarrow \frac{MnO_2 + 4OH^{-}}{-4}$ $\frac{-4}{MnO_4} + 2H_2O + 3e^{-} \longrightarrow \frac{-4}{MnO_2 + 4OH^{-}}$

6. Must have same number of electrons in each half-reaction

$$CN^{-} + 2OH^{-} \longrightarrow CNO^{-} + H_{2}O + 2e^{-}$$
 $X3$
 $MnO_{4}^{-} + 2H_{2}O + 3e^{-} \longrightarrow MnO_{2} + 4OH^{-}$ $X2$

$$3 \text{ CN}^{-} + 6 \text{ OH}^{-} \longrightarrow 3 \text{ CNO}^{-} + 3 \text{ H}_2\text{O} + 6 \text{ e}^{-}$$

$$2 \text{ MnO}_4$$
 + $4 \text{ H}_2\text{O} + 6\text{e}^ \rightarrow$ $2 \text{ MnO}_2 + 8\text{OH}^-$

6. Add the two half-reactions

$$3 \text{ CN}^{-} + 5 \text{ CH}^{-} \longrightarrow 3 \text{ CNO}^{-} + 3 \text{ H}_{2}\text{O} + 6 \text{ e}^{-}$$

$$2 \text{ MnO}_{4}^{-} + 4 \text{ H}_{2}\text{O} + 6 \text{ e}^{-} \longrightarrow 2 \text{ MnO}_{2} + 8 \text{OH}^{-}$$

$$1 \qquad \qquad 2 \text{ MnO}_{4}^{-} + 8 \text{OH}^{-}$$

$$3 \text{ CN}^{-} + 2 \text{ MnO}_{4}^{-} + \text{ H}_{2}\text{O} \longrightarrow 3 \text{ CNO}^{-} + 2 \text{ MnO}_{2} + 2 \text{OH}^{-}$$

BALANCING REDOX EQUATIONS

Reaction in Acidic Solution

- 1. Determine what is being oxidised and what is being reduced.
- 2. Write two half-reactions and balance all the atoms other than O and H in each half-reaction
- 3. Add H₂O to balance O atoms, and H⁺ to balance H atoms.
- 4. Add e⁻ to each half-reaction to balance the charge.
- 5. Must have same number of electrons in each half-reaction.
- 6. Add the two half-reactions. The e⁻ on both sides must cancel.

Reaction in Basic Solution

- 1. Determine what is being oxidised and what is being reduced.
- 2. Write two half-reactions and balance all the atoms other than O and H in each half-reaction
- 3. Add H₂O to balance O atoms, and H⁺ to balance H atoms.
- 4. For every H+ ion, add an equal number of OH⁻ ions to both sides of the equation.
- 5. Add e⁻ to each half-reaction to balance the charge.
- 6. Must have same number of electrons in each half-reaction.
- 7. Add the two half-reactions. The e⁻ on both sides must cancel.

Write a balanced ionic equation to represent the oxidation of iodide ion (I^-) by permanganate ion (MnO_4^-) in basic solution to yield molecular iodine (I_2) and manganese(IV) oxide (MnO_2).