Протокол лабораторной работы №7 «Исследование запыленности воздуха в производственных помещениях»

Группа: 5912 Студенты: Козиров 19 Кархоник Б. А., Ман ДО. Тысе порт Д.В. Lane И.К., Кори в К.А.	
Вариант №1	(ПОДПИСЬ ПРЕПОДАВАТЕЛЯ) Of 04.2020 (ДАТА)
 заполняется при проведении измерений. рассчитывается компьютером на основании показаний пылемеров. 	(4414)

Измерение массовой концентрации аэрозоля (таблица №1

Тип № пылемера измерения		Показания пылемеров, п ₀ , мг/ м ³	Среднее значение показаний п _{ср} , мг/м ³	Интервал между измерениями, мин
Приз-2	1	0,19		5
	2	0,21	0,2	
ПРИМА-01 2 3	1	0,17		5
	2	0,19	018	5
	3	0,18		
икп-4	1	0,16		5
	2	0,18	017	5
	3	0,17		

Измерение счетной концентрации аэрозоля пылемером АЗ-5 (таблица №2)

	-	THE RESPOSITION 1	ibilicate pom 113-2	(таолица жед)	
Количество частиц N(d >dнгр), шт.	Интервал диаметров, мкм	Средний диаметр <i>i</i> -го интервала, di , мкм	Количество частиц в <i>i</i> —ом интервале, <i>ni</i> , шт.	Доля частиц, ni / N	Накопленная доля частиц, $F(d)$
24000	0,4-0,5	0,45	Company of the Party of the Par	0164	0.16667
20000	0,5-0,6	0.55		THE RESERVE TO SHARE THE PARTY OF THE PARTY	94166 F
14000	0,6-0,7	0,65			0.98333
400	0,7-0,8	0,75	300		0.99583
100	0,8-0,9	0,85	100		1.00000
0	0,9-1,0	0,95	0	THE RESERVE OF THE PERSON NAMED IN	1,00000
0	1,0-1,5	1,25	0	The state of the s	1,00000
0	1,5-2,0	1,75	1 0	THE RESERVE OF THE PARTY OF THE	1.00000
0	2,0-4,0	3,0	(2		100000
0	4,0-7,0		The second secon		
0			0		1,00000
0			6		1,00000
	Количество частиц N(d > dнгр), шт. 24000 20000 14000 400 100 0 0 0 0 0 0 0 0 0 0 0	Количество частиц N(d > dнгр), шт. 24000 0,4-0,5 20000 0,5-0,6 14000 0,6-0,7 400 0,7-0,8 100 0,8-0,9 0 0,9-1,0 0 1,0-1,5 0 1,0-1,5 0 2,0-4,0 0 4,0-7,0 0 7,0-10,0	Количество частиц N(d > dнгр), шт. Интервал диаметров, мкм Средний диаметр i-го интервала, di , мкм 24000 0,4-0,5 0,45 20000 0,5-0,6 0.55 14000 0,6-0,7 0,65 400 0,7-0,8 0,75 100 0,8-0,9 0,85 0 0,9-1,0 0,95 0 1,0-1,5 1,25 0 2,0-4,0 3,0 0 4,0-7,0 5,5 0 7,0-10,0 8,5	Количество частиц N(d > dнгр), шт. Интервал диаметров, мкм Средний диаметр i-го интервала, di , мкм Количество частиц в i-ом интервале, ni , шт. 24000 0,4-0,5 0,45 4000 20000 0,5-0,6 0.55 6000 14000 0,6-0,7 0,65 /3 600 400 0,7-0,8 0,75 300 100 0,8-0,9 0,85 100 0 0,9-1,0 0,95 0 0 1,0-1,5 1,25 0 0 2,0-4,0 3,0 0 0 4,0-7,0 5,5 0 0 7,0-10,0 8,5 0	частиц N(d >dнгр), шт. диаметров, мкм диаметр i-го интервала, di, мкм частиц в i-ом интервале, ni, шт. частиц, ni IN 24000 0,4-0,5 0,45 4000 9/64 20000 0,5-0,6 0.55 6000 9.250 14000 0,6-0,7 0,65 /3 600 9.564 400 0,7-0,8 0,75 300 09/3 100 0,8-0,9 0,85 100 0,84 0 0,9-1,0 0,95 0 0,000 0 1,0-1,5 1,25 0 0,000 0 2,0-4,0 3,0 0 0,000 0 4,0-7,0 5,5 0 0,000 0 7,0-10,0 8,5 0 9,000

 $d_o = 6,565^-$ - среднегеометрический диаметр частиц;

ПРИ ОФОРМЛЕНИИ ОТЧЕТА ВЫ ДОЛЖНЫ

- 1. Рассчитать «средние» диаметры аэрозольных частиц.
- 2. Оценить результаты экспериментального исследования запыленности, сравнить их с санитарными и технологическими нормами, приведенными в методическом пособии.
- 3. Привести выводы по результатам исследования и рекомендации по уменьшению запыленности.

σ = 0,060 - среднеквадратическое отклонение логарифмов диаметров частиц.

ЦЕЛЬ РАБОТЫ:

Ознакомление с вредным воздействием аэрозольного загрязнения воздушной среды на организм человека, с влиянием на качество и надежность электронных изделий и приборов, с санитарными и технологическими нормами на содержание пыли в воздухе рабочей зоны, изучение методов и приборов для измерения концентрации и дисперсного состава пыли в производственных помещениях.

1. ОПИСАНИЕ ВРЕДНОГО ДЕЙСТВИЯ ПЫЛИ НА ОРГАНИЗМ ЧЕЛОВЕКА

Промышленной пылью называются мельчайшие частицы твердых веществ, способные длительное время находиться в воздухе во взвешенном состоянии. Источниками пылеобразования в производственных условиях являются все технологические процессы, связанные с дроблением, истиранием, просеиванием, перемешиванием, сортировкой, и транспортировкой измельченных материалов.

Дисперсная система, состоящая из смеси газов и твердых частиц, называется аэрозолем. Слой пылевых частиц, осевших на ограждающую поверхность производственных помещений и на оборудование, называют аэрозолем. В виде аэрогеля пыль горючих материалов проявляет пожароопасные, а в виде аэрозоля – взрывоопасные свойства.

Присутствие пыли в промышленной атмосфере затрудняет дыханием и вызывает ускоренную утомляемость работающих. Ухудшая видимость на рабочих местах, повышенная запыленность атмосферы провоцирует возникновенние травмоопасных ситуаций. Загрязняя кожные покровы и слизистые оболочки глаз, пыль является причиной профзаболеваний кожи и зрительных органов. Промышленная пыль может вызвать возникновением или обострение заболеваний верхних дыхательных путей, которые являются предвестниками или первоначальной фазой более тяжелых легочных заболеваний.

Разные виды пыли могут оказывать на организм различное действие:

- 1. фиброгенное (кварцевая, породная);
- 2. токсическое (марганцевая, свинцовая);
- 3. нетоксичное (древесная, мучная);
- 4. раздражающее (известковое, щелочная);
- 5. биологическое (микроорганизмы, споры);
- 6. аллергическое (шерстяная, синтетическая);
- 7. канцерогенное (сажа,асбест);
- 8. ионизирующее (пыль урана, радия).

Степень воздействия промышленной пыли на организм зависит от:

- 1. химического состава и происхождения;
- 2. концентрации и времени воздействия;
- 3. размеров и формы пылевых частиц;
- 4. растворимости в физиологических жидкостях;
- 5. радиоактивности;
- 6. электрозаряженности пылинок;
- 7. индивидуальных особенностей организма;
- 8. сочетания с воздействием других факторов условий труда.

По конечному повреждающему действию производственных аэрозоли можно разделить на аэрозоли преимущественно фиброгенного действия (воздействия на легочную ткань) и аэрозоли, оказывающие преимущественно общетоксическое, раздражающее, канцерогенное, мутагенное воздействие, а также влияющие на репродуктинвную функцию.

При оценке неблагоприятного воздействия пыли самыми вредными из них следует считать три фактора — массу пыли (концентрацию в мг/м3 воздуха), пылевую нагрузку на органы дыхания и химический состав пыли. Затем следует такие факторы как растворимость, дисперность. Чем больше пыли (аэрозоли) попадает в организм(в легкие, на кожу, на слизистые оболочки глаз,носа) и длительнее время их влияния, тем сильнее ее негативное воздействие. Концентрации пыли в воздухе очень изменчивы и зависят не только от интенсивности технологического процесса, степени изношенности и укрытия оборудования, воды и перерабатываемого материала, вентиляции, но и от времени года, подвижности и влажности воздуха, влажности обрабатываемого материала, объема помещения и пр. Чем выше концентрация пыли в воздухе производственных предприятий, тем чаще возникают профессиональные заболевания легких-пневмокониозов (от греч. Pheumoh — легкое и kohia-пыль). После увеличения содержания пыл в воздухе более 1000 мг/м3 эта зависимость не прослеживаются.

Химические свойства пыли, включая аэрозоли металлов, определяют их избирательную фиброгенность, токсичность и другие направленные воздействия на организм. Так, аэрозоли марганца, ртути в первую очередь оказывают неблагоприятное воздействие на центральную нервную систему организма, аэрозоль железа и бериллия — на легочную ткань, а аэрозоль хрома, никеля и кобальта, обладая аллергическими свойствами, приводит к развитию бронхиальной астмы, дерматита.

Вредное влияние пыли зависит от ее растворимости в тканевых жидкостях организма. Быстрорастворимая пыль (мучная, сахарная), а следовательно, и быстро выводимая из организма, оказывает меньшее повреждающее воздействие. Пыль, плохо растворимая в жидкостях, надолго задерживается в организме, приводя к возникновению различных заболеваний, в первую очередь органов дыхания. К такому виду относятся пыль кварца, силикатсодержащая и текстильная (хлопковая, льняная) пыль. Плохая растворимость диоксида кремния, с одной стороны — увеличивает ее общетоксического действие, в частности на печень. Твердость пыли и форма пылинок не имеют особого значения как критерий ее повреждающего действия.

Размер аэрозольных частиц определяет их способность проникать в дыхательные пути и задерживаться там. Наибольшую опасность для легких человека представляет частицы мелкодисперной пыли размером 0,2-0,5 мкм, которые проникают в глубокие дыхательные пути, в альвеолы, частично или полностью растворяются в лимфе и, поступая в кровь, вызывают интоксикацию. Частицы размером 10 мкм осаждаются в верхних дыхательных путях и практических не достигают альвеол легких.

Пылинки с большой поверхностью имеют свойство поглощать из окружающей среды химические соединения, микроорганизмы и продукты их жизнедеятельности. Образующаяся, например, пылегазовая смесь может приводить к возникновению острых отравлений.

На практике воздействие пыли на человека сопровождается неблагоприятными влиянием других вредный факторов, что усиливает ее негативное действие. Так, вследствие усиления дыхательной функции при физических перегрузках увеличивается масса пыли, попадающая в органы дыхания. Проникающие при этом в организм газообразные соединения также усиливают свой токсический эффект.

2.ФУНКЦИОНАЛЬНЫЕ СХЕМЫ ПРИБОРОВ, ИСПОЛЬЗУЕМЫХ В РАБОТЕ:

- 1 рисунок Функциональная схема концентратометра ПРИЗ-2
- 2 рисунок Функциональная схема пылемера ИКП-4
- 3 рисунок Внешний вид пылемера ПРИМА-01

3.РАСЧЕТНЫЕ ФОРМУЛЫ:

Расчет среднего значения диаметра аэрозольных частиц

Для логарифмически нормального закона:

- 1. $d_{10}=d_0*\exp(\sigma^2/2M^2)$ -средний арифметический;
- 2. $d_{20}=d_0*\exp(\sigma^2/M^2)$ -средний квадратичный;
- 3. $d_{30}=d_0*\exp(3\sigma^2/2M^2)$ -средний кубический.

Где:

- d_i среднее значение диаметра аэрозольных частиц;
- σ^2 среднеквадратическое отклонение логарифмов диаметров частиц;
- d₀ среднегеометрический диаметр частиц;
- М коэффициент перехода от натуральных логарифмов к десятичным, равный 0,4343

4.РЕЗУЛЬТАТ РАСЧЕТА:

```
\begin{split} &d_{10} = d_0 * exp(\sigma^2/2M^2) =_{0.565} * e((0,060^2)/(2*0,4343^2) = 0,570 \\ &d_{20} = d_0 * exp(\sigma^2/M^2) =_{0.565} * e((0,060^2)/(0,4343^2) = 0,576 \\ &d_{30} = d_0 * exp(3\sigma^2/2M^2) =_{0.565} * e((3*0,060^2)/(2*0,4343^2) = 0,581 \end{split}
```

выводы:

- 1 Все три прибора показали отсутствие превышения ПДК (2мг/м³ для алюминия), что позволяет сделать вывод об удовлетворительном состояние воздуха в помещении.
- 2. Поскольку наибольшие значения получены при измерении концентрации аэрозоля в наиболее труднодоступных местах помещения, а значения снятые в основной части находятся в пределах нормы, можно заключить, что помещение удовлетворяет санитарным нормам, но требует более тщательной уборки.