

Postgres-XC

July 12th, 2011 Koichi Suzuki NTT DATA INTELLILINK CORPORATION

Overview of Postgres-XC

Symmetric PostgreSQL cluster

- No Master
- No Slave
 - No READ ONLY slaves
 - Every node can issue both READ/WRITE
- Transparent Transaction Management

Now Version 0.9.5

· Generally available next calendar year

PostgreSQL Master/Slave with Log Shipping

Postgres-XC Symmetric Cluster

Partitioned/Repliated Tables

Server Configuration and GTM-Proxy

Scalability

Current Status

- Now V 0.9.5 is available
- License changed to PostgreSQL license
 - Free to bring outcome back to PostgreSQL

GTM: Key for Transaction Transparency

- Consistent Transaction ID (GXID) throughout the system
- Provide global snapshot for consistent visibility from any server

Requirements Since Last Year ...

Solution for GTM as SPOF

· GTM Standby

Support same SQL statements as original PostgreSQL

- Functions
- · Views
- · Cross-node joins
- · Role/User/Tablespace
- · Transparent DDLs
- Many others

Other High Availability Feature such as

- · Data Node Standby
- · Consistent Backup and Recovery

Flexible Node Configuration

· On-line addition/Removal

GTM Standby Requirements

Online Promote and Reconnect

- Invisible from applications
 - Can be visible from GTM-Proxy
- Transactions should be able to continue to run

GTM-Standby: Current Status

- Infrastructure Available: V 0.9.5
- Improvement in progress
 - Connect to GTM at anytime
 - At present, GTM-Standby should be the first to connect to GTM
 - Get rid of any chance of backup information loss
 - Backup first
 - · Negotiate the last message at reconnect
 - Performance
 - Backup grouping and decrease response
- Improvement scheduled at the next release

Analyze incoming statements

Determine which datanodes are to be involved

Compose Local Statement for each Datanode

Datanode handle the local statement.

· Result to the coordinator

Analyze incoming statements

Determine which datanodes are to be involved

 Compose Local Statement for each Datanode Datanode handle the local statement.

· Result to the coordinator

Analyze incoming statements

Determine which datanodes are to be involved

 Compose Local Statement for each Datanode Datanode handle the local statement.

· Result to the coordinator

Analyze incoming statements

Determine which datanodes are to be involved

 Compose Local Statement for each Datanode Datanode handle the local statement.

· Result to the coordinator

Optimizing Statements (V 0.9.5)

Push-down as many clause as possAZible

- Join
- WHERE Clause
- Aggregate
- Functions (when used in WHERE clause)
- Column projection

Uses the following information

- If each table is replicated or partitioned
- Partition key
- Partition algorism (Hash/Modulo/Round Robin)

Future Improvement

Candidate

- Use statistic info.
- · Use Semi-Join to determine joining rows
- · Direct join tuple transfer among datanodes
- · Much more ···

XC Optimization Examples (Join-1)

Both Tables Are Replicated

XC Optimization Examples (Join-2)

- Replicated Table and Partitioned Table
 - Cannot determine which datanode to go

XC Optimization Examples (Join-3)

- Replicated Table and Partitioned Table
 - Can determine which datanode to go from WHERE clause

XC Optimization Examples (Join-4)

- Partitioned Table and Partitioned Table
 - Both Join columns are distribution (partitioning) column
 - Where clause can determine which datanode to go

XC Optimization Examples (Join-5)

- Partitioned Table and Partitioned Table
 - Both Join columns are distribution (partitioning) column

XC Optimization Examples (Join-6)

- Partitioned Table and Partitioned Table
 - One of Join columns are not distribution (partitioning) column

XC Statement Handling Summary

- Now can handle wide variety of PostgreSQL statement.
- Still in progress
 - HAVING
 - PREPARE, EXECUTE, CURSOR
 - Eliminate restrictions
 - WITH/WITH RECURSIVE
 - General Subqueries
 - Functions with more than one statement
 - SELECT INTO (CREATE TABLE AS)
 - Triggers
 - Temp tables
- Challenges
 - Global constraint
 - More Optimization
 - More Parallelism
- Miscellaneous
 - LISTEN/NOTIFY/UNLISTEN

Backup and Recovery (PITR) Requirement

- Transaction status should be consistent
 - Each transaction must be either:
 - Committed in all the involved node
 - Running or aborted in all the involved node
- Write such timing in WALs of all the coordinators and datanodes.
- Application can provide such timing as "BARRIER"
 - CREATE BARRIER barrier_id
 - · Wait partially-committed-transactions completes commit,
 - Block other transaction's commit,
 - Write BARRIER record to WALs of all the coordinators/datanodes.
 - When running PITR, specify barrier_id in recovery.conf

Demonstration

Further Development Topics/Schedule (1)

- Support more variety of statements:
 - HAVING, PREPARE, EXECUTE, CURSOR, TRIGGER
 - By the end of this year
 - SAVEPOINT
 - Multi-statement planner for WITH, WITH RECURSIVE, general functions, general subqueries, SELECT INTO, CREATE TABLE AS
 - By the end of this year

Further Development Topics/Schedule (2)

- Datanode high-availability
 - Backup with synchronous streaming replication
 - Synchronous replication needed to maintain data integrity among datanodes.
- Cluster operation
 - Online server addition/removal
- Challenging
 - Global constraint
 - Unique/Reference integrity among partition,
 - Exclusion constraint among partition
 - LOB
- Others needs additional test
 - dblink
 - SQL/MED

Postgres-XC to PostgreSQL

- Snapshot cloning
 - Parallel pg_dump
 - Parallel query execution (local/cluster)
- SQL/MED extension
 - Column projection pushdown
 - Join pushdown
 - Function pushdown
- Federation
 - Materialization
 - Cross-node join
 - Cross-node aggregation

Many candidate features.

Need more members for quick actions.

New Developer Wanted

- Writing Code
 - New distributed/parallel query handling/optimization
 - HA capabilities
 - Utilities
 - Installation
 - Configuration
 - Operation
 - Bug fixes
 - Back port to PostgreSQL
- Build
 - Creating binaries/distribution packages
- Test
 - Performance evaluation with various benchmarks
 - Finding bugs
 - New feature proposals
- Pilot application
 - Practical applications

Project resources

- Development site
 - http://sourceforge.net/projects/postgres-xc/
 - http://sourceforge.net/apps/mediawiki/postgres-xc/
- Project home
 - http://postgres-xc.sourceforge.net/
- Mailing List
 - http://postgres-xc.sourceforge.net/mailinglist.html

Contact us

Thank you very much!

Koichi Suzuki NTT DATA INTELLILINK Corporation

Pacific Marks Tsukishima,1-15-7, Tsukishima, Chuo-ku, Tokyo 104-0052, Japan

TEL: +81 3 5843 6800

E-mail: koichi@intellilink.co.jp

koichi.szk@gmail.com

URL: http://www.intellilink.co.jp/ *only in Japanese

Copyright © 2011 NTT DATA INTELLILINK CORPORATION

Global IT Innovator

NTT DATA GROUP

