TP2 SAD - Marin Mrabet	Pt		A E	3 C	D	Note	
I. Régulation de pression simple boucle (10 pts)							
1 Donner le schéma électrique correspondant au cahier des charges.	1	Α				1	
2 Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	Α				1	
3 Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.	1	Α				1	
Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).	1	Α				1	
5 Régler la boucle de régulation, en utilisant la méthode de Ziegler & Nichols. On choisira un correcteur PID.	4	Α				4	
6 Enregistrer la réponse de la mesure X à un échelon de consigne W.	2	Α				2	
II. Régulation à partage d'échelle (10 pts)							
1 Rappeler le fonctionnement d'une boucle de régulation à partage d'échelle.	1	В				0,75	
2 Représenter graphiquement la relation entre Y1 la commande de la vanne V1 et la sortie Y du régulateur.	1	Α				1	
3 Représenter graphiquement la relation entre Y2 la commande de la vanne V2 et la sortie Y du régulateur.	1	Α				1	
4 Programmer le régulateur pour obtenir le fonctionnement de la régulation conformément au schéma TI ci-dessus.	2	D	П			0,1	
5 Régler la boucle de régulation utilisant la méthode par approches successives.	2	D				0,1	
6 Enregistrer la reponse des commandes Y1 et Y2 a une variation de la consigne w permettant l'ouverture des deux	2	D				0,1	
Expliquez l'intérêt d'une régulation à partage d'échelle en vous aidant de vos enregistrements. Citez un autre exemple pratique.	1	D				0,05	
I Provided:		Not	e: 1	3 1	/20		

Note: 13,1/20

Marin cira2

Mrabet

TP2 SAD

I. Régulation de pression simple boucle

1/Donner le schéma électrique correspondant au cahier des charges.

2/Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

Entrée

TagName	01M01_04		LIN Name	01M01_04	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mΑ
			LR_in	4.00	mA
HiHi	100.0	%	Al	0.00	mΑ
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			

PID

TagName	PID		LIN Name	PID	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO		Alditio		
			HAA	100.0	%
₽V	0.0	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	0.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	90
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	01101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00000000	
HR_OP	100.0	%	ModeAct	00000000	

Sortie

TagName	02P01_04		LIN Name	02P01_04	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
→OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	mA
			LR_out	4.00	mΑ
Out	0.0	%	AO	0.00	mA
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

3/Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.

Pour op=50% pv=49,54%

4/Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).

Quand Op augmente Pv augmente aussi en déduit que le régulateur et inverse et le procéde direct

5/Régler la boucle de régulation, en utilisant la méthode de <u>Ziegler & Nichols</u>. On choisira un correcteur PID.

Delta X = 82-18=64%

Delta Y = 42-37=5%

Avec PID Mixte:

Xp=8

Avec un PID:

Tc=3s

 $Xp=1,7\times Xpc=1,7*8=13,6$

Ti=84*Tc/Xpc = 84*3/8 = 31.5 s

Td=7.5*Tc/Xpc = 7.5*3/8 = 2.8 s

TimeBase	Secs	
XP	13.6	%
TI	31.50	
TD	2.80	

6/Enregistrer la réponse de la mesure X à un échelon de consigne W.

Td=13,6 Ti=31,50 Xp=2,80 -PID.OP -PID.PV -PID.SL

Xp=15 Ti=0 Td=0

-

II. Régulation à partage d'échelle

1/Rappeler le fonctionnement d'une boucle de régulation à partage d'échelle.

La régulation partage d'échelle est fait pour contrôler deux organes de réglage avec un seul régulateur

2/Représenter graphiquement la relation entre Y1 la commande de la vanne V1 et la sortie Y du régulateur.

3/Représenter graphiquement la relation entre Y2 la commande de la vanne V2 et la sortie Y du régulateur.

4/Programmer le régulateur pour obtenir le fonctionnement de la régulation conformément au schéma TI ci-dessus.

100
80
60
40
20
0
20
40
60
80
100

Bloc ADD2 1: f(x)=ax+b,

A=-100/20=-2

B=100 donc

On a f(x)=-2x+100

Bloc ADD2 2:

Sachant
$$f(x)=ax+b$$

 $f(70)=2*70+b$

Donc
$$f(x)=140+b=20$$

TagName	additionneur 2	
Туре	ADD2	
Task	3 (110ms)	
PV_1	0.0	%
K_1	1.000	
PV_2	0.0	%
K_2	1.000	
OP	0.0	%
HL_OP	100.0	%
LL_OP	0.0	%

TagName	Additionneur 1	
Туре	ADD2	
Task	3 (110ms)	
PV_1	0.0	%
K_1	1.000	
PV_2	0.0	%
K_2	1.000	
OP	0.0	%
HL_OP	100.0	%
LL_OP	0.0	%

5/Régler la boucle de régulation utilisant la méthode par approches successives.

JSP

6/Enregistrer la réponse des commandes Y1 et Y2 à une variation de la consigne W permettant l'ouverture des deux vannes.

JCVD

7/Expliquez l'intérêt d'une régulation à partage d'échelle en vous aidant de vos enregistrements. Citez un autre exemple pratique.

JCVD

Nous pouvons utiliser cette méthode lorsque nous voulons utiliser deux organes de réglages avec un seul régulateur, pour le même système. C'est souvent utilisé quand il y a une entrer et une sortie de débit dans un seul réservoir pour une régulation de pression.