

ANÁLISIS DE ALGORITMOS Y TEORÍA DE AUTÓMATAS

Cod. 620508

Profesor: Nelson Contreras Oliva

Clase 1: Introducción

Descripción

• Asignatura teórico-practico que entrega los fundamentos de las Ciencias de la computación, que permiten al alumno discriminar las potencialidades y limitaciones de los computadores, métodos y lenguajes computacionales.

Resultados de Aprendizaje

- 1. Reconocer lenguajes regulares y sus representaciones en forma de autómatas finitos y expresiones regulares para aplicarlos a situaciones prácticas.
- Utilizar representaciones en forma de autómatas de pila y gramáticas libres del contexto para aplicar la teoría de parsing.
- 3. Analizar los lenguajes decidibles y aceptables para comprender que existen problemas que no se pueden resolver por computador.

Resultados de Aprendizaje

- 4. Utilizar Máquinas de Turing como modelo de computación para determinar si un problema se puede resolver con los computadores actuales.
- 5. Manejar el concepto de NP-completitud para determinar las clases de problemas existentes.

¿Como lo haremos?

- Resolver problemas de programación utilizando lenguajes de programación y modelado de acuerdo a reglas y estándares existentes, y aplicando estrategias que aseguren la generación de soluciones eficientes.
- Construir aplicaciones de software, probando su funcionalidad y eficiencia, mediante el uso de arquitecturas, modelos, patrones, técnicas y herramientas de programación pertinentes para distintas plataformas.

Resumen de Unidades Programáticas

- Nociones Matemáticas
- Alfabetos y Lenguajes
- Lenguajes Regulares
- Lenguajes Libres de Contexto
- Máquinas de Turing
- Computabilidad
- Complejidad Computacional

Evaluación del curso

Evaluaciones	Tipo	Ponderación	Fechas
Certamen 1	Certamen	30%	15 - Mayo
Certamen 2	Certamen	35%	19 - Junio
Promedio Tareas	Tareas(2)	20%	24 - Julio
Promedio Test	Test(3)	15%	Por Confirmar

NF = C1*0,3 + C2*0,35 + Pta*0,2 + Pte*0,15

Introducción

¿ Por qué estudiamos teoría de autómatas?

La teoría de autómatas estudia las máquinas o dispositivos abstractos con capacidad de computación.

- 1930 Alan Turing. Estudio de lo que pueden hacer las máquinas (capacidad computacional).
- 1940-1950 estudio de los autómatas finitos como representación de redes neuronales (modelización de las funciones cerebrales)
- 1950 N. Chomsky . Estudio de las gramáticas formales
- 1969 Cook. Separa los problemas que son computacionalmente eficientes de los que no lo son

Autómatas Finitos

Los autómatas finitos son modelo útiles en hardware y software.

Algunos ejemplos son:

- Software para diseñar y verificar el comportamiento de circuitos digitales.
- Analizador léxico de un compilador (identifica y clasifica las palabras del lenguaje: identificadores, literales, operadores..)
- Software para explorar grandes porciones de texto (colección de páginas Web) búsqueda de palabras, frases, etc..
- Software para verificación de sistemas con un número finito de estados diferentes: protocolos de comunicación o seguridad.

Otras Representaciones

Gramáticas: Son modelos muy útiles para desarrollar software destinado a procesar datos con estructuras recursivas (analizador sintáctico).

Ejemplo:

$$\begin{array}{ccc} E & \rightarrow & E + E \\ E & \rightarrow & E * E \\ E & \rightarrow & \mathrm{ident} \end{array}$$

Expresiones Regulares: expresan patrones de cadenas que pueden ser descritos mediante autómatas finitos

Ejemplo: En entornos Unix representa patrones de texto como: Naiq SA

$$[A - Z][a - z] * [][A - Z][A - Z]$$

Teoría de Conjuntos

Un **conjunto** es la reunión en un todo de objetos bien definidos y diferenciables entre si, que se llaman elementos del mismo.

Si a es un elemento del conjunto A se denota con la *relación de pertenencia* $a \in A$. En caso contrario, si a no es un elemento de A se denota $a \notin A$.

$$A = \{a1, a2, ... a6\}, a1 \in A, a8 \not\in A.$$

Se dice que A está contenido en B (también que A es un *subconjunto* de B o que A es una parte de B), y se denota $A \subseteq B$, si todo elemento de A lo es también de B, es decir, $a \in A \Rightarrow a \in B$.

Dos conjuntos A y B se dicen *iguales*, y se denota A = B, si simultáneamente A \subseteq B y B \subseteq A; esto equivale a decir que tienen los mismos elementos (o también la misma propiedad característica).

Teoría de Conjuntos

Para cualquier conjunto A se verifica que $\varnothing \subseteq A$ y $A \subseteq A$; $B \subseteq A$ es un *subconjunto propio* de A si $A \neq \varnothing$ y $B \neq A$.

El conjunto formado por todos los subconjuntos de uno dado A se llama *partes* de A, y se denota \wp (A).

Entonces, la relación $B \subseteq A$ es equivalente a decir $B \in \wp(A)$.

Ejemplos:

Si $A = \{a,b\}$ entonces \wp $(A) = \{\varnothing, \{a\}, \{b\}, A\}$. Si $a \in A$ entonces $\{a\} \in \wp$ (A).

Si $A \in \mathcal{D}$ (U), a la diferencia U – A se le llama **complementario** de A respecto de U, y se denota abreviadamente por A' (U se supone fijado de antemano).

Operaciones entre Conjuntos

Se llama **unión** de dos conjuntos A y B al conjunto formado por objetos que son elementos de A o de B, es decir: $A \cup B := \{ x \mid x \in A \lor x \in B \}$.

Se llama **intersección** de dos conjuntos A y B al conjunto formado por objetos que son elementos de A y de B, es decir: $A \cap B := \{x \mid x \in A \land x \in B\}.$

Dados dos conjuntos A y B, se llama **diferencia** al conjunto $A - B := \{a \in A \mid a \notin B\}$.

Asimismo, se llama **diferencia simétrica** entre A y B al conjunto A \triangle B := (A – B) \cup (B – A).

Dados dos conjuntos A y B, se define el **producto cartesiano** de ambos como el conjunto de pares ordenados: A x B := $\{ (a,b) : a \in A \land b \in B \}$

Diagramas de Venn

