目次

① EM アルゴリズムの例

目次

- ① EM アルゴリズムの例
 - 確率的主成分分析 (PPCA)
 - 確率的主成分分析 (PPCA) のまとめ

- 主成分分析の確率モデルによる表現
 - 主成分分析は、潜在変数を含む確率モデルの、最尤推定として導出できることを示す
 - このような主成分分析の再定式化を確率的主成分分析という
 - そして、主成分分析を行うための EM アルゴリズムを導出してみる

- 主成分分析の確率モデルによる表現
 - 主成分分析では、D 個の変数 $\{x_1, x_2, \ldots, x_D\}$ を線形に組み合わせて、 真にアクティブな M 個の変数を見いだす
 - 主部分空間に存在する潜在変数を、M 次元のベクトル z として明示的に表現する
 - D 次元のデータ x は、主部分空間内の M 次元のベクトル z から、以下のように、ガウス分布から確率的に生成されたと考える

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{W}\boldsymbol{z} + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$$
 (1)

- $D \times M$ 行列 W の列ベクトルが張る空間 (線形部分空間) は、データ空間における主部分空間に対応する
- ullet D 次ベクトル μ は、観測変数 x の平均である

• 潜在変数 z に関する事前分布 p(z) も、平均 0 で共分散行列が単位行列 I のガウス分布とする

$$p(z) = \mathcal{N}(z|\mathbf{0}, I) \tag{2}$$

- 事前分布 p(z) の平均が 0、共分散行列が I でも、一般性は失われていない
- 事前分布 p(z) として、より一般的なガウス分布を仮定しても、得られる確率モデルは結果的に等価になる
- 生成モデルの観点から、確率的主成分分析モデルを考えることができる

- 生成モデルの観点
 - 生成モデルとは、実際に観測されるデータxが、どのように生成されるかという過程を、確率分布などを使ってモデル化したものである
 - ここでは、潜在変数 z を含んだ生成モデルを考えている
- データの生成過程
 - 1 潜在変数 z_i を、事前分布 p(z) からサンプリングする
 - $oxed{2}$ z_i を使って、条件付き分布 $p(oldsymbol{x}|oldsymbol{z})$ からデータ $oldsymbol{x}_i$ をサンプリングする
- データの生成過程に関する注意点
 - D 次元の観測変数 x_i は、M 次元の潜在変数 z_i に<mark>線形変換</mark>を施したあと $(x_i = Wz_i + \mu)$ 、ガウス分布によるノイズ $(\epsilon_i \sim \mathcal{N}(\epsilon|0, \sigma^2 I))$ が加えられたものとして定義される $(x_i = Wz_i + \mu_i + \epsilon_i)$
 - ullet 観測変数 x_i の裏側には、潜在変数 z_i が潜んでいる
 - ullet 潜在変数 z_i は実際に観測できないが、 x_i の本質的な情報を表している

- パラメータ W, μ, σ^2 の最尤推定
 - ullet 観測変数 x_i の裏側には、潜在変数 z_i が対応している
 - ullet パラメータ $oldsymbol{W},oldsymbol{\mu},\sigma^2$ を通じて、 $oldsymbol{z}_i$ から観測可能な $oldsymbol{x}_i$ が生成される
 - ullet パラメータの最尤推定を行うために、尤度関数 $p(oldsymbol{x}|oldsymbol{W},oldsymbol{\mu},\sigma^2)$ を求める
 - $p(x|W,\mu,\sigma^2)$ は、x と z に関する同時分布 $p(x,z|W,\mu,\sigma^2)$ の、z に関する周辺化によって得られる

$$p(\boldsymbol{x}|\boldsymbol{W},\boldsymbol{\mu},\sigma^2) = \int p(\boldsymbol{x}|\boldsymbol{z},\boldsymbol{W},\boldsymbol{\mu},\sigma^2)p(\boldsymbol{z})d\boldsymbol{z}$$
(3)

• $p(\pmb{x}|\pmb{z},\pmb{W},\pmb{\mu},\sigma^2)$ と $p(\pmb{z})$ は、いずれもガウス分布であったので、ガウス分布に関する公式から $p(\pmb{x}|\pmb{W},\pmb{\mu},\sigma^2)$ は次のようになる

$$p(\boldsymbol{x}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma^2) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{C}) \tag{4}$$

行列 C は次のように定義される

$$C = WW^T + \sigma^2 I \tag{5}$$

ullet 更に、潜在変数 z に関する事後分布 p(z|x) も計算できる

$$p(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{W}, \boldsymbol{\mu}, \sigma^2) = \mathcal{N}(\boldsymbol{z}|\boldsymbol{M}^{-1}\boldsymbol{W}^T(\boldsymbol{x} - \boldsymbol{\mu}), \sigma^2\boldsymbol{M}^{-1})$$
 (6)

行列 M は次のように定義される

$$\boldsymbol{M} = \boldsymbol{W}^T \boldsymbol{W} + \sigma^2 \boldsymbol{I} \tag{7}$$

• これらの式は、ガウス分布に関する次の公式を用いれば導出できる

$$p(y|x) = \mathcal{N}(y|Ax + b, D)$$
 (8)

$$p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \tag{9}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めゅ@

• p(y|x) と p(x) が上式のようなガウス分布であるとき、p(x|y) と p(y) は次のようになる

$$p(\boldsymbol{x}|\boldsymbol{y}) = \mathcal{N}\left(\boldsymbol{x}|\boldsymbol{M}\left(\boldsymbol{A}^{T}\boldsymbol{D}^{-1}(\boldsymbol{y}-\boldsymbol{b}) + \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}\right), \boldsymbol{M}\right)$$
 (10)

$$p(y) = \mathcal{N}(y|A\mu + b, D + A\Sigma A^{T})$$
(11)

$$\boldsymbol{M} = \left(\boldsymbol{A}^T \boldsymbol{D}^{-1} \boldsymbol{A} + \boldsymbol{\Sigma}^{-1}\right)^{-1} \tag{12}$$

- パラメータ μ に関する最尤推定
 - ullet N 個の観測データ $\{x_1,\ldots,x_N\}$ と、それに対応する潜在変数 $\{z_1,\ldots,z_N\}$ を考える
 - ここでの目標は、データ $\mathcal{D}=\{x_1,\ldots,x_N\}$ から、パラメータ $oldsymbol{W},oldsymbol{\mu},\sigma^2$ を最尤推定することである
 - ullet N 個のデータをまとめた行列を $oldsymbol{X}$ とする (第 i 行べクトルは $oldsymbol{x}_i^T$)
 - ullet N 個の潜在変数をまとめた行列を $oldsymbol{Z}$ とする (第 i 行べクトルは $oldsymbol{z}_i^T$)
 - 各データと潜在変数 x_i, z_i は、分布 p(x|z), p(z) から独立にサンプリングされるとする (データは i.i.d 標本であるとする)

ullet 対数尤度関数 $\ln p(oldsymbol{X}|oldsymbol{W},oldsymbol{\mu},\sigma^2)$ は次のように書ける

$$= \ln p(\boldsymbol{X}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2})$$

$$= \ln \prod_{i} p(\boldsymbol{x}_{i}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2})$$

$$= \sum_{i} \ln p(\boldsymbol{x}_{i}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2})$$

$$= \sum_{i} \ln \mathcal{N}(\boldsymbol{x}_{i}|\boldsymbol{\mu}, \boldsymbol{C})$$

$$= \sum_{i} \ln \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{|\boldsymbol{C}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} \boldsymbol{C}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu})\right)$$

$$= \sum_{i} \left(-\frac{D}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{C}| - \frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} \boldsymbol{C}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu})\right)$$

$$= -\frac{ND}{2} \ln 2\pi - \frac{N}{2} \ln |\boldsymbol{C}| - \frac{1}{2} \sum_{i} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} \boldsymbol{C}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu})$$

• 対数尤度を μ で偏微分し、0 と等置することによって、 μ の最尤解が得られる

$$\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\boldsymbol{X}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma^2)$$

$$= -\frac{1}{2} \frac{\partial}{\partial \boldsymbol{\mu}} \sum_{i} (\boldsymbol{x}_i - \boldsymbol{\mu})^T \boldsymbol{C}^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu})$$

$$= -\frac{1}{2} \sum_{i} (-2\boldsymbol{C}^{-1}) (\boldsymbol{x}_i - \boldsymbol{\mu})$$

$$= \boldsymbol{C}^{-1} \sum_{i} (\boldsymbol{x}_i - \boldsymbol{\mu})$$

$$= 0$$

これより μ の最尤解は以下のようになる

$$\mu = \frac{1}{N} \sum_{i} x_i \tag{13}$$

40.40.45.45. 5 000

- パラメータ W, σ^2 に関する最尤推定
 - ullet 対数尤度を $oldsymbol{W}, \sigma^2$ について微分することは形式上は可能である
 - ullet 但し、 $oldsymbol{W}, \sigma^2$ が行列 $oldsymbol{C}$ の中に入れ子になっている
 - ullet 従って、 $oldsymbol{W},\sigma^2$ の厳密な閉形式の解を得ることは、複雑かつ困難である
 - そこで、パラメータ $oldsymbol{W},\sigma^2$ を求めるための $oldsymbol{\mathsf{EM}}$ アルゴリズム</mark>を導出したい
 - EM アルゴリズムは、潜在変数を含む確率モデルについて、パラメータ の最尤推定を行うための一般的な枠組みを提供する

- EM アルゴリズムによる主成分分析の導出
 - ullet 完全データ対数尤度関数 $\ln p(oldsymbol{X},oldsymbol{Z}|oldsymbol{W},oldsymbol{\mu},\sigma^2)$ は次のようになる

$$\ln p(\boldsymbol{X}, \boldsymbol{Z}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2})$$

$$= \ln \prod_{i} p(\boldsymbol{x}_{i}, \boldsymbol{z}_{i}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2})$$

$$= \sum_{i} \ln p(\boldsymbol{x}_{i}, \boldsymbol{z}_{i}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2})$$

$$= \sum_{i} \ln p(\boldsymbol{x}_{i}|\boldsymbol{z}_{i}, \boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2}) p(\boldsymbol{z}_{i})$$

$$= \sum_{i} \ln \mathcal{N}(\boldsymbol{x}_{i}|\boldsymbol{W}\boldsymbol{z}_{i} + \boldsymbol{\mu}, \sigma^{2}\boldsymbol{I}) \mathcal{N}(\boldsymbol{z}_{i}|\boldsymbol{0}, \boldsymbol{I})$$

$$= \sum_{i} (\ln \mathcal{N}(\boldsymbol{x}_{i}|\boldsymbol{W}\boldsymbol{z}_{i} + \boldsymbol{\mu}, \sigma^{2}\boldsymbol{I}) + \ln \mathcal{N}(\boldsymbol{z}_{i}|\boldsymbol{0}, \boldsymbol{I}))$$
(14)

第1項 $\ln \mathcal{N}(oldsymbol{x}_i|oldsymbol{W}oldsymbol{z}_i+oldsymbol{\mu},\sigma^2oldsymbol{I})$ は次のようになる

$$\ln \mathcal{N}(\boldsymbol{x}_{i}|\boldsymbol{W}\boldsymbol{z}_{i} + \boldsymbol{\mu}, \sigma^{2}\boldsymbol{I})$$

$$= \ln \left(\frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{|\sigma^{2}\boldsymbol{I}|^{\frac{1}{2}}} \right)$$

$$= \exp \left(-\frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{W}\boldsymbol{z}_{i} - \boldsymbol{\mu})^{T} (\sigma^{2}\boldsymbol{I})^{-1} (\boldsymbol{x}_{i} - \boldsymbol{W}\boldsymbol{z}_{i} - \boldsymbol{\mu})\right)$$

$$= -\frac{D}{2} \ln 2\pi - \frac{1}{2} \ln |\sigma^{2}\boldsymbol{I}| - \frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{W}\boldsymbol{z}_{i} - \boldsymbol{\mu})^{T} (\sigma^{2}\boldsymbol{I})^{-1} (\boldsymbol{x}_{i} - \boldsymbol{W}\boldsymbol{z}_{i} - \boldsymbol{\mu})$$

$$= -\frac{D}{2} \ln 2\pi - \frac{D}{2} \ln \sigma^{2} - \frac{1}{2\sigma^{2}} (\boldsymbol{x}_{i} - \boldsymbol{W}\boldsymbol{z}_{i} - \boldsymbol{\mu})^{T} (\boldsymbol{x}_{i} - \boldsymbol{W}\boldsymbol{z}_{i} - \boldsymbol{\mu})$$

$$= -\frac{D}{2} \ln (2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) + \frac{1}{2\sigma^{2}} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu})$$

$$\frac{1}{\sigma^{2}} (\boldsymbol{W}\boldsymbol{z}_{i})^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) - \frac{1}{2\sigma^{2}} (\boldsymbol{W}\boldsymbol{z}_{i})^{T} (\boldsymbol{W}\boldsymbol{z}_{i})$$

$$= -\frac{D}{2} \ln(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) + \frac{1}{\sigma^{2}} \boldsymbol{z}_{i}^{T} \boldsymbol{W}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) - \frac{1}{2\sigma^{2}} \boldsymbol{z}_{i}^{T} \boldsymbol{W}^{T} \boldsymbol{W} \boldsymbol{z}_{i}$$

$$= -\frac{D}{2} \ln(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} ||\boldsymbol{x}_{i} - \boldsymbol{\mu}||^{2} + \frac{1}{\sigma^{2}} \boldsymbol{z}_{i}^{T} \boldsymbol{W}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) - \frac{1}{2\sigma^{2}} \operatorname{Tr} (\boldsymbol{z}_{i}^{T} \boldsymbol{W}^{T} \boldsymbol{W} \boldsymbol{z}_{i})$$

$$= -\frac{D}{2} \ln(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} ||\boldsymbol{x}_{i} - \boldsymbol{\mu}||^{2} + \frac{1}{\sigma^{2}} \boldsymbol{z}_{i}^{T} \boldsymbol{W}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) - \frac{1}{2\sigma^{2}} \operatorname{Tr} (\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T} \boldsymbol{W}^{T} \boldsymbol{W})$$
(15)

第2項 $\ln \mathcal{N}(z_i|\mathbf{0}, \boldsymbol{I})$ は次のようになる

$$\ln \mathcal{N}(oldsymbol{z}_i|oldsymbol{0},oldsymbol{I})$$

$$= \ln\left(\frac{1}{(2\pi)^{\frac{M}{2}}}\exp\left(-\frac{1}{2}\boldsymbol{z}_{i}^{T}\boldsymbol{z}_{i}\right)\right)$$

$$= -\frac{M}{2}\ln 2\pi - \frac{1}{2}\boldsymbol{z}_{i}^{T}\boldsymbol{z}_{i}$$

$$= -\frac{M}{2}\ln 2\pi - \frac{1}{2}\operatorname{Tr}\left(\boldsymbol{z}_{i}^{T}\boldsymbol{z}_{i}\right)$$

$$= -\frac{M}{2}\ln 2\pi - \frac{1}{2}\operatorname{Tr}\left(\boldsymbol{z}_{i}\boldsymbol{z}_{i}^{T}\right)$$
(16)

これより $\ln p(oldsymbol{X}, oldsymbol{Z} | oldsymbol{W}, oldsymbol{\mu}, \sigma^2)$ は次のようになる

$$\begin{aligned} & & \ln p(\boldsymbol{X}, \boldsymbol{Z} | \boldsymbol{W}, \boldsymbol{\mu}, \sigma^2) \\ & = & \sum_{i} \left(\ln \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{W} \boldsymbol{z}_i + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I}) + \ln \mathcal{N}(\boldsymbol{z}_i | \boldsymbol{0}, \boldsymbol{I}) \right) \\ & = & \sum_{i} \left\{ -\frac{D}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} ||\boldsymbol{x}_i - \boldsymbol{\mu}||^2 + \right. \end{aligned}$$

$$\frac{1}{\sigma^{2}} \boldsymbol{z}_{i}^{T} \boldsymbol{W}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) - \frac{1}{2\sigma^{2}} \operatorname{Tr} \left(\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T} \boldsymbol{W}^{T} \boldsymbol{W} \right) - \frac{M}{2} \ln 2\pi - \frac{1}{2} \operatorname{Tr} \left(\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T} \right) \right\} \tag{17}$$

- μは、全データの平均として得られることが分かっている
- 従って、 μ は既知であるとして、 \bar{x} と書くことにする
- 潜在変数の事後分布 $p(\mathbf{Z}|\mathbf{X},\mathbf{W},\boldsymbol{\mu},\sigma^2)$ に関する期待値を取ると、次のようになる ($\mathbb{E}\left[\cdot\right]$ は、事後分布による期待値を表す)

$$\mathbb{E}\left[\ln p(\boldsymbol{X}, \boldsymbol{Z}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2})\right]$$

$$= \sum_{i} \left\{-\frac{D}{2} \ln(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}||\boldsymbol{x}_{i} - \boldsymbol{\mu}||^{2} + \frac{1}{\sigma^{2}} \mathbb{E}\left[\boldsymbol{z}_{i}\right]^{T} \boldsymbol{W}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) - \frac{1}{2\sigma^{2}} \operatorname{Tr}\left(\mathbb{E}\left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right] \boldsymbol{W}^{T} \boldsymbol{W}\right) - \frac{M}{2} \ln 2\pi - \frac{1}{2} \operatorname{Tr}\left(\mathbb{E}\left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right]\right)\right\}$$
(18)

• 事後分布は以下のようであった $(oldsymbol{M} = oldsymbol{W}^T oldsymbol{W} + \sigma^2 oldsymbol{I})$

$$p(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{W}, \boldsymbol{\mu}, \sigma^2) = \mathcal{N}(\boldsymbol{z}|\boldsymbol{M}^{-1}\boldsymbol{W}^T(\boldsymbol{x} - \boldsymbol{\mu}), \sigma^2\boldsymbol{M}^{-1})$$
(19)

ullet これより $\mathbb{E}[oldsymbol{z}_i]$ と $\mathbb{E}\left[oldsymbol{z}_ioldsymbol{z}_i^T
ight]$ は次のようになる

$$\mathbb{E}\left[\boldsymbol{z}_{i}\right] = \boldsymbol{M}^{-1}\boldsymbol{W}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right) \tag{20}$$

$$\mathbb{E}\left[\boldsymbol{z}_{i}\boldsymbol{z}_{i}^{T}\right] = \sigma^{2}\boldsymbol{M}^{-1} + \mathbb{E}\left[\boldsymbol{z}_{i}\right]\mathbb{E}\left[\boldsymbol{z}_{i}\right]^{T}$$
(21)

- ullet $\mathbb{E}\left[oldsymbol{z}_{i}oldsymbol{z}_{i}^{T}
 ight]$ は、 $\mathbb{E}\left[oldsymbol{z}_{i}oldsymbol{z}_{i}^{T}
 ight]=\operatorname{cov}\left[oldsymbol{z}_{i}
 ight]+\mathbb{E}\left[oldsymbol{z}_{i}
 ight]\mathbb{E}\left[oldsymbol{z}_{i}
 ight]^{T}$ から得られる
- ullet $\operatorname{cov}\left[z
 ight]$ は、確率変数 z の共分散行列を意味する
- ullet $oxed{\mathsf{E}}$ ステップで計算するのは、 $\mathbb{E}\left[z_i
 ight]$ と $\mathbb{E}\left[z_iz_i^T
 ight]$ の 2 つである
- ullet これらの値は、古いパラメータ $M,W,m{\mu},\sigma^2$ を使って計算される
- \mathbf{M} ステップでは、上記の期待値 $\mathbb{E}\left[\ln p(\pmb{X},\pmb{Z}|\pmb{W},\pmb{\mu},\sigma^2)\right]$ を、各パラメータ \pmb{W},σ^2 について最大化する

- ullet 期待値を最大化するような、 $oldsymbol{W}, \sigma^2$ の計算式は $oldsymbol{lpha}$ 易に導出できる
- ullet W について偏微分し、0 と等置すると次のようになる

$$\frac{\partial}{\partial \boldsymbol{W}} \mathbb{E} \left[\ln p(\boldsymbol{X}, \boldsymbol{Z} | \boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2}) \right]
= \frac{\partial}{\partial \boldsymbol{W}} \sum_{i} \left\{ \frac{1}{\sigma^{2}} \mathbb{E} \left[\boldsymbol{z}_{i} \right]^{T} \boldsymbol{W}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) - \frac{1}{2\sigma^{2}} \operatorname{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T} \right] \boldsymbol{W}^{T} \boldsymbol{W} \right) \right\}
= \frac{1}{2\sigma^{2}} \sum_{i} \frac{\partial}{\partial \boldsymbol{W}} \left\{ 2\mathbb{E} \left[\boldsymbol{z}_{i} \right]^{T} \boldsymbol{W}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) - \operatorname{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T} \right] \boldsymbol{W}^{T} \boldsymbol{W} \right) \right\}
= -\frac{1}{2\sigma^{2}} \sum_{i} \frac{\partial}{\partial \boldsymbol{W}} \left\{ 2 \operatorname{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \right]^{T} \boldsymbol{W}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \right) - \operatorname{Tr} \left(\boldsymbol{W} \mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T} \right] \boldsymbol{W}^{T} \right) \right\}
= -\frac{1}{2\sigma^{2}} \sum_{i} \frac{\partial}{\partial \boldsymbol{W}} \left\{ 2 \operatorname{Tr} \left(\boldsymbol{W}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \mathbb{E} \left[\boldsymbol{z}_{i} \right]^{T} \right) -$$

$$\operatorname{Tr}\left(\boldsymbol{W}\mathbb{E}\left[\boldsymbol{z}_{i}\boldsymbol{z}_{i}^{T}\right]\boldsymbol{W}^{T}\right)\right\}$$

$$= -\frac{1}{2\sigma^{2}}\sum_{i}\left(2\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\mathbb{E}\left[\boldsymbol{z}_{i}\right]^{T}-\boldsymbol{W}\left(\mathbb{E}\left[\boldsymbol{z}_{i}\boldsymbol{z}_{i}^{T}\right]+\mathbb{E}\left[\boldsymbol{z}_{i}\boldsymbol{z}_{i}^{T}\right]^{T}\right)\right)$$

$$= -\frac{1}{2\sigma^{2}}\sum_{i}\left(2\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\mathbb{E}\left[\boldsymbol{z}_{i}\right]^{T}-2\boldsymbol{W}\mathbb{E}\left[\boldsymbol{z}_{i}\boldsymbol{z}_{i}^{T}\right]\right)$$

$$= 0$$

• ここで、行列に関するトレースの微分の公式を用いた

$$\frac{\partial}{\partial \mathbf{A}} \operatorname{Tr} (\mathbf{A} \mathbf{B}) = \mathbf{B}^T \tag{22}$$

$$\frac{\partial}{\partial \mathbf{A}} \operatorname{Tr} \left(\mathbf{A}^T \mathbf{B} \right) = \mathbf{B} \tag{23}$$

$$\frac{\partial}{\partial \mathbf{A}} \operatorname{Tr} \left(\mathbf{A}^T \mathbf{B} \mathbf{A} \right) = \left(\mathbf{B} + \mathbf{B}^T \right) \mathbf{A} \tag{24}$$

$$\frac{\partial}{\partial \mathbf{A}} \operatorname{Tr} \left(\mathbf{A} \mathbf{B} \mathbf{A}^T \right) = \mathbf{A} \left(\mathbf{B} + \mathbf{B}^T \right) \tag{25}$$

上式をパラメータ W について解く

$$-\frac{1}{2\sigma^{2}} \sum_{i} \left(2 \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \mathbb{E} \left[\boldsymbol{z}_{i} \right]^{T} - 2 \boldsymbol{W} \mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T} \right] \right) = 0$$

$$\Rightarrow \boldsymbol{W} \left(\sum_{i} \mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T} \right] \right) = \sum_{i} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \mathbb{E} \left[\boldsymbol{z}_{i} \right]^{T}$$

$$\Rightarrow \boldsymbol{W} = \left(\sum_{i} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \mathbb{E} \left[\boldsymbol{z}_{i} \right]^{T} \right) \left(\sum_{i} \mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T} \right] \right)^{-1}$$
(26)

ullet これより、パラメータ W の更新式は次のようになる

$$oldsymbol{W}_{ ext{new}} \leftarrow \left(\sum_{i} \left(oldsymbol{x}_{i} - ar{oldsymbol{x}}
ight) \mathbb{E}\left[oldsymbol{z}_{i}
ight]^{T}\right) \left(\sum_{i} \mathbb{E}\left[oldsymbol{z}_{i} oldsymbol{z}_{i}^{T}
ight]\right)^{-1}$$
 (27)

 \bullet σ^2 について偏微分し、0 と等置すると次のようになる

$$\frac{\partial}{\partial \sigma^{2}} \mathbb{E} \left[\ln p(\boldsymbol{X}, \boldsymbol{Z} | \boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2}) \right] \\
= \frac{\partial}{\partial \sigma^{2}} \sum_{i} \left\{ -\frac{D}{2} \ln(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} ||\boldsymbol{x}_{i} - \boldsymbol{\mu}||^{2} + \frac{1}{\sigma^{2}} \mathbb{E} \left[\boldsymbol{z}_{i}\right]^{T} \boldsymbol{W}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) - \frac{1}{2\sigma^{2}} \operatorname{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right] \boldsymbol{W}^{T} \boldsymbol{W} \right) \right\} \\
= \sum_{i} \left\{ -\frac{D}{2} \frac{2\pi}{2\pi\sigma^{2}} + \frac{1}{2\sigma^{4}} ||\boldsymbol{x}_{i} - \boldsymbol{\mu}||^{2} - \frac{1}{\sigma^{4}} \mathbb{E} \left[\boldsymbol{z}_{i}\right]^{T} \boldsymbol{W}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) + \frac{1}{2\sigma^{4}} \operatorname{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right] \boldsymbol{W}^{T} \boldsymbol{W} \right) \right\} \\
= -\frac{ND}{2} \frac{1}{\sigma^{2}} + \sum_{i} \left\{ \frac{1}{2\sigma^{4}} ||\boldsymbol{x}_{i} - \boldsymbol{\mu}||^{2} - \frac{1}{\sigma^{4}} \mathbb{E} \left[\boldsymbol{z}_{i}\right]^{T} \boldsymbol{W}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) + \frac{1}{2\sigma^{4}} \operatorname{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right] \boldsymbol{W}^{T} \boldsymbol{W} \right) \right\} = 0 \\
= \frac{1}{\sigma^{4}} \mathbb{E} \left[\boldsymbol{z}_{i}\right]^{T} \boldsymbol{W}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) + \frac{1}{2\sigma^{4}} \operatorname{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right] \boldsymbol{W}^{T} \boldsymbol{W} \right) \right\} = 0 \\
= \frac{1}{\sigma^{4}} \mathbb{E} \left[\boldsymbol{z}_{i}\right]^{T} \boldsymbol{W}^{T} (\boldsymbol{z}_{i} - \boldsymbol{\mu}) + \frac{1}{2\sigma^{4}} \operatorname{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right] \boldsymbol{W}^{T} \boldsymbol{W} \right) \right\} = 0$$
April 25, 2019

• 上式をパラメータ σ^2 について解く

$$-ND\sigma^{2} + \sum_{i} \left\{ ||\boldsymbol{x}_{i} - \boldsymbol{\mu}||^{2} - 2\mathbb{E} \left[\boldsymbol{z}_{i}\right]^{T} \boldsymbol{W}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}\right) + \right.$$

$$\operatorname{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right] \boldsymbol{W}^{T} \boldsymbol{W}\right) \right\} = 0$$

$$\Rightarrow \quad \sigma^{2} = \frac{1}{ND} \sum_{i} \left\{ ||\boldsymbol{x}_{i} - \boldsymbol{\mu}||^{2} - 2\mathbb{E} \left[\boldsymbol{z}_{i}\right]^{T} \boldsymbol{W}^{T} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}\right) + \right.$$

$$\operatorname{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right] \boldsymbol{W}^{T} \boldsymbol{W}\right) \right\}$$

$$(28)$$

 \bullet これより、パラメータ σ^2 の更新式は次のようになる

$$\sigma_{\text{new}}^{2} \leftarrow \frac{1}{ND} \sum_{i} \left\{ ||\boldsymbol{x}_{i} - \bar{\boldsymbol{x}}||^{2} - 2\mathbb{E} \left[\boldsymbol{z}_{i}\right]^{T} \boldsymbol{W}_{\text{new}}^{T} \left(\boldsymbol{x}_{i} - \bar{\boldsymbol{x}}\right) + \right.$$

$$\left. \text{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right] \boldsymbol{W}_{\text{new}}^{T} \boldsymbol{W}_{\text{new}} \right) \right\}$$
(29)

- 以上で、観測データ $\mathcal{D}=\{x_1,\ldots,x_N\}$ から、主成分分析のパラメータ $oldsymbol{W},\sigma^2$ を推定するための EM アルゴリズムが得られた
- M ステップのパラメータの更新では、E ステップで求めた $\mathbb{E}[z_i]$ と $\mathbb{E}\left[z_iz_i^T\right]$ を使用している
- これらの更新式を改良することで、<mark>オンライン型</mark>の EM アルゴリズムを 導出することも可能である

目次

- ① EM アルゴリズムの例
 - 確率的主成分分析 (PPCA)
 - 確率的主成分分析 (PPCA) のまとめ

EM アルゴリズムによる確率的主成分分析モデルの推定

- 目的は、確率的主成分分析モデルが与えられているとき、そのパラメータ (W,μ,σ^2) について、尤度関数 $\ln p(X|W,\mu,\sigma^2)$ を最大化することである
- **I** μ の決定: μ を、観測データ x の標本平均として求める (これ以降、 μ は既知として扱い、 \bar{x} と書く)

$$\mu = \bar{x} = \frac{1}{N} \sum_{i} x_i \tag{30}$$

② 初期化: パラメータ $m{W}_{
m old}, \sigma_{
m old}^2$ を適当に初期化し、対数尤度 $\ln p(m{X}|m{W}, \sigma^2)$ の初期値を計算する

3 Eステップ: 現在のパラメータを用いて、以下の量を計算する

$$\mathbb{E}\left[\boldsymbol{z}_{i}\right] = \boldsymbol{M}^{-1} \boldsymbol{W}_{\mathrm{old}}^{T} \left(\boldsymbol{x}_{i} - \bar{\boldsymbol{x}}\right) \tag{31}$$

$$\mathbb{E}\left[\boldsymbol{z}_{i}\boldsymbol{z}_{i}^{T}\right] = \sigma_{\text{old}}^{2}\boldsymbol{M}^{-1} + \mathbb{E}\left[\boldsymbol{z}_{i}\right]\mathbb{E}\left[\boldsymbol{z}_{i}\right]^{T}$$
(32)

但し

$$\boldsymbol{M} = \boldsymbol{W}_{\mathrm{old}}^{T} \boldsymbol{W}_{\mathrm{old}} + \sigma_{\mathrm{old}}^{2} \boldsymbol{I}$$
 (33)

4 M ステップ: 現在の $\mathbb{E}\left[z_i
ight]$ と $\mathbb{E}\left[z_iz_i^T
ight]$ を用いて、パラメータを更新する

$$W_{\text{new}} \leftarrow \left(\sum_{i} (\boldsymbol{x}_{i} - \bar{\boldsymbol{x}}) \mathbb{E} [\boldsymbol{z}_{i}]^{T} \right) \left(\sum_{i} \mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right]\right)^{-1}$$
(34)
$$\sigma_{\text{new}}^{2} \leftarrow \frac{1}{ND} \sum_{i} \left\{ ||\boldsymbol{x}_{i} - \bar{\boldsymbol{x}}||^{2} - 2\mathbb{E} [\boldsymbol{z}_{i}]^{T} \boldsymbol{W}_{\text{new}}^{T} (\boldsymbol{x}_{i} - \bar{\boldsymbol{x}}) + \right.$$
$$\left. \text{Tr} \left(\mathbb{E} \left[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}\right] \boldsymbol{W}_{\text{new}}^{T} \boldsymbol{W}_{\text{new}}\right) \right\}$$
(35)

5 対数尤度関数 $\ln p(\boldsymbol{X}|\boldsymbol{W},\boldsymbol{\mu},\sigma^2)$ を計算する

$$= \frac{\ln p(\boldsymbol{X}|\boldsymbol{W}, \boldsymbol{\mu}, \sigma^2)}{-\frac{ND}{2} \ln 2\pi - \frac{N}{2} \ln |\boldsymbol{C}| - \frac{1}{2} \sum_{i} (\boldsymbol{x}_i - \bar{\boldsymbol{x}})^T \boldsymbol{C}^{-1} (\boldsymbol{x}_i - \bar{\boldsymbol{x}})$$

但し

$$C = W_{\text{new}} W_{\text{new}}^T + \sigma_{\text{new}}^2 I$$
 (36)

パラメータの変化量、あるいは対数尤度の変化量をみて、収束性を判 定する

6 収束基準を満たしていなければ、(3)に戻る

$$W_{\text{old}} \leftarrow W_{\text{new}}, \quad \sigma_{\text{old}}^2 \leftarrow \sigma_{\text{new}}^2$$
 (37)

