Method Comparison: Reduced Rank Regression and Supervised CP

Jiaxin Hu

May 17, 2021

1 Reduced Rank Regression (rrreg)

Model Let $Y \in \mathbb{R}^{n \times q}$ denote the response and $X \in \mathbb{R}^{n \times p}$ denote the predictor. We have rrreg model as

$$\mathbb{E}[\boldsymbol{Y}] = f(\boldsymbol{X}\boldsymbol{C}),$$

where C is the regression coefficients with low rank assumption. Given a tensor observation $\mathcal{Y} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ and feature matrix $X \in \mathbb{R}^{d_3 \times p_3}$, we have rrreg model

$$Unfold_3(\mathcal{Y}) = f(\mathbf{X} \ Unfold_3(\mathcal{B})),$$

where $\mathcal{B} \in \mathbb{R}^{d_1 \times d_2 \times p_3}$ is the coefficient tensor.

Simulation results Sanity check

2 Supervised CP

Model

Let $\mathcal{Y} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ denote the tensor observation and $\boldsymbol{X} \in \mathbb{R}^{d_1 \times p}$ denote the feature matrix.

$$\mathcal{Y} = [U, V_2, V_3] + \mathcal{E}, \quad U = XB + \mathcal{F},$$

where $[\boldsymbol{U}, \boldsymbol{V}_2, \boldsymbol{V}_3]$ denote the CP decomposition with factor matrices $\boldsymbol{U} \in \mathbb{R}^{d_1 \times R}, \boldsymbol{V}_2 \in \mathbb{R}^{d_2 \times R}, \boldsymbol{V}_3 \in \mathbb{R}^{d_3 \times R}$ and CP rank $R, \boldsymbol{B} \in \mathbb{R}^{p \times R}$ is the coefficient matrix between \boldsymbol{U} and \boldsymbol{Y} , and $\boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{F}}$ are noise tensors.

Figure 1: Comparison between our STD method and Mreg method versus the number of available informative modes. We consider rank $\mathbf{r} = (3, 3, 3)(\text{low})$, $\mathbf{r} = (4, 5, 6)(\text{high})$, and signal $\alpha = 3(\text{low})$, $\alpha = 6(\text{high})$.

Figure 2: Comparison between our STD method and Mreg method versus the number of available informative modes. We consider rank $\mathbf{r} = (3,3,3)(\text{low})$, $\mathbf{r} = (4,5,6)(\text{high})$, and signal $\alpha = 3(\text{low})$, $\alpha = 6(\text{high})$.

Figure 3: Comparison between our STD method and Mreg method versus the sample size. We consider rank $\mathbf{r} = (3, 3, 3)(\text{low})$, $\mathbf{r} = (4, 5, 6)(\text{high})$, and signal $\alpha = 3(\text{low})$, $\alpha = 6(\text{high})$.

Figure 4: Comparison between our STD method and Mreg method versus the sample size. We consider rank $\mathbf{r} = (3, 3, 3)(\text{low})$, $\mathbf{r} = (4, 5, 6)(\text{high})$, and signal $\alpha = 3(\text{low})$, $\alpha = 6(\text{high})$.

Figure 5: Data generated by rrreg.

Figure 6: Data generated by rrreg.

Figure 7: Comparison between our STD method and Mreg method versus the number of available informative modes. We consider rank $\mathbf{r} = (3,3,3)(\text{low})$, $\mathbf{r} = (4,5,6)(\text{high})$, and signal $\alpha = 3(\text{low})$, $\alpha = 6(\text{high})$.

Figure 8: Comparison between our STD method and Mreg method versus the number of available informative modes. We consider rank $\mathbf{r} = (3, 3, 3)(\text{low})$, $\mathbf{r} = (4, 5, 6)(\text{high})$, and signal $\alpha = 3(\text{low})$, $\alpha = 6(\text{high})$.

Figure 9: Comparison between our STD method and Mreg method versus the sample size. We consider rank $\mathbf{r} = (3, 3, 3)(\text{low})$, $\mathbf{r} = (4, 5, 6)(\text{high})$, and signal $\alpha = 3(\text{low})$, $\alpha = 6(\text{high})$.

Figure 10: Comparison between our STD method and Mreg method versus the sample size. We consider rank r = (3, 3, 3)(low), r = (4, 5, 6)(high), and signal $\alpha = 3(\text{low})$, $\alpha = 6(\text{high})$.