MA 515 Homework 4

Zheming Gao

October 14, 2017

Problem 1

Proof. $\{T_n\}_{n\in\mathbb{N}}$ is a sequence of uniformly bounded linear operators and it satisfies

$$\lim_{n \to +\infty} T_n(x) := T(x)$$

for any $x \in X$. Now we want to show T is a bounded linear operator. First, T is linear because the limit operation on T_n preserves the linearity of T_n . Also, $\mathcal{D}(T)$ is X, which yields that T is a linear operator from X to Y.

Next we need to show T is bounded, or more precisely, $||T||_{\infty} \leq M$. Since $||T_n||_{\infty} < M$, we know for any $||x||_X = 1$, $||T_n(x)||_Y < M$. Hence,

$$\lim_{n \to +\infty} ||T_n(x)|| = ||T(x)|| \leqslant M.$$

which implies $\sup_{||x||_X=1}||T(x)||\leqslant M,$ i.e., $||T||_\infty\leqslant M.$

Problem 2

Proof. First we need to show that Λ is bounded. Take arbitrarily $x = \{x_n\}_{n \in \mathbb{N}} \in \ell^{\infty}$, and there exists M > 0 such that $|x_i| \leq M$ for any $i \geq 0$. Therefore,

$$\begin{split} ||\Lambda(x)||_{\ell^{\infty}} &= ||y||_{\ell^{\infty}} = \sup_{i \geqslant 1} |y_i| \\ &= \sup_{i \geqslant 1} \left| \frac{x_1 + \dots + x_i}{i} \right| \\ &\leqslant \sup_{i \geqslant 1} \left| \frac{\sum_{j=1}^i |x_j|}{i} \right| \leqslant M. \end{split}$$

Hence, $||\Lambda||_{\infty} = \sup_{||x||_{\ell^{\infty}}=1} ||\Lambda(x)||_{\ell^{\infty}} \leqslant M$.

Next we need to find the value of $||\Lambda||_{\infty}$. From the definition,

$$||\Lambda||_{\infty} = \sup_{||x||_{\ell^{\infty}}=1} ||\Lambda(x)||_{\ell^{\infty}} = \sup_{||x||_{\ell^{\infty}}=1} \sup_{i\geqslant 1} \left| \frac{x_1+\cdots+x_i}{i} \right|.$$

Also, $||x||_{\ell^{\infty}} = 1$ implies $|x_j| \leq 1, \forall j \geq 1$. Hence,

$$\sup_{\|x\|_{\ell^{\infty}=1}} \sup_{i\geqslant 1} \left| \frac{x_1+\cdots+x_i}{i} \right| = \sup_{i\geqslant 1} \frac{i\cdot 1}{i} = 1.$$

Hence, $||\Lambda||_{\infty} = 1$.

Problem 3

Problem 4

Proof. We want to show $||T_n(x_n) - T(x)||_Y \to 0$ as $n \to +\infty$. By triangle inequality,

$$||T_n(x_n) - T(x)||_Y \leqslant ||T_n(x_n) - T(x_n)||_Y + ||T(x_n) - T(x)||_Y \leqslant ||T_n(x_n) - T(x_n)||_Y + ||T||_{\infty} ||x_n - x||_X.$$

and we know $||x_n - x|| \to 0$ as $n \to +\infty$. Hence, it is enough to show that $||T_n(x_n) - T(x_n)||_Y \to 0$ as $n \to +\infty$.

 $\forall x_m \in X, m = 1, 2, \dots, \lim_{n \to +\infty} ||T_n(x_m) - T(x_m)|| = 0 \text{ since } \{T_n\} \text{ converges to } T.$ Hence, we have

$$\lim_{m \to +\infty} \lim_{n \to +\infty} ||T_n(x_m) - T(x_m)|| = 0.$$

This implies $||T_n(x_n) - T(x_n)||_Y \to 0$ because $\{||T_n(x_n) - T(x_n)||\}_{n \in \mathbb{N}}$ is a subsequence of $\{||T_n(x_m) - T(x_m)||\}_{m,n \in \mathbb{N}}$.

In conclusion, $\lim_{n\to+\infty} ||T_n(x_n) - T(x_n)|| = 0.$