Name: Key

Directions:

- You have 60 minutes to complete this exam.
- No graphing calculators are allowed.
- You are allowed one hand-written sheet (two sided is ok) of notes on regular 8.5-11 paper.
- You must show ALL your work.
- Leave answers in EXACT FORM or record up to 2 DECIMAL PLACES.
- If you have any questions, raise your hand.

Question	Points	Score
1	10	
2	15	
3	20	
4	15	
Total:	60	

1. (a) (5 points) Solve for
$$x$$
.

$$2^{x^2} = 8^{x+6}.$$

Apply In
$$x^{2} \ln(2) = (x+6)(\ln(8))$$
 $x^{2} = (x+6)(\frac{\ln(8)}{\ln(2)}) = 3$
 $x^{2} = 3x + 18$
 $x^{2} - 3x - 18 = 0$
 $(x-6)(x+3) = 0$
 $x = 6$
 $x = -3$

(b) (5 points) Graph the following function. Label both asymptotes and the point you use to determine orientation.

$$f(x) = \frac{-2x+5}{2x-4}.$$

Page 2

- 2. A time-destroying dictator has ordered the destruction of every watch, clock, calendar and sundial. Using your quick wit, you devise a clever device to keep track of time. Your invention involved setting aside 2000g of Temporium, a mildly radioactive compound with a half life of 112 days, in a controlled environment.
 - (a) (5 points) Write a function W(t), which returns the weight of the Temporium after t days. Carefully state the domain and range.

state the domain and range.

$$V(0) = A_0 b^2 = 2000$$

$$V(t) = 2000 \left(\frac{1}{2}\right)^{1/2}$$

(b) (5 points) Finish your radioactive clock by inverting the function from part (a). Explain in words what this function does (i.e., what is the input? What is the output?). As usual, carefully state the domain and range.

the domain and range.

$$V = 2000(z) \text{ fit } Z$$

$$\left(\frac{1}{z}\right)^{\frac{1}{2}} = \frac{W}{2000}$$

Apply $\ln \frac{t}{11Z} \ln(z) = \ln(\frac{W}{200})$

(c) (5 points) Rumors of your secret clock land you in jail, but it was never discovered. You escape after what feels like ages, and go to your clock to discover that 50mg of Temporium remain. How long has it been? (NOTE: 1g = 1000mg)

$$50 \text{ mg} = .05 \text{g}$$

 $f(W) = t(.05) = 112 \frac{\ln(.05/2000)}{\ln(1/2)}$
 $= 1712.22 \text{ days}.$

(c) (5 points) Graph |f(x)|, and write its multipart rule. What is the domain and range?

(d) (5 points) Graph f(|x|) and write its multipart rule. What is the domain and range?

$$S(NI) = \begin{cases} Sin \times O \leq X \leq 2T \\ Sin(-X) - 2T \leq X \leq O \end{cases} R : -1 \leq y \leq y$$

Problem 4 3×108-6+6 a > 3 × 108 0 (0,100) => == 100 => 5=100d (2) (2, 100,000) => 6×10°+ 15 = 100000 => 6×10°+b = 200000 +d 6.108+100b=200 aw +d 999000 = 6 108-20000 d= 6.108-2000 7- 59900 b=100d= 600900.4004-3.1086 +600400 40 + + 6004.004

L - 3 × 108 (b) v (t)= D: 10050 = 3×108 (c) A) 2º (98.105) = 19.6754 mins 2º1(3.6.10°)=72.9211 mins 72-9211-19.6754 = 53.2452 53.2957 mns