Data Collection and Preprocessing Phase

Date	4th June 2024
Team ID	LTVIP2025TMID43915
Project Title	Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques.
Maximum Marks	

Data Exploration and Preprocessing Template

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions

Section	De	scri	ptio	n												
	949		ws ×	: 39 col		5										
Data Overview		S.NO	Age	Duration of alcohol consumption(years)	alcohol consumption (quarters/day)	тсн	HDL	Hemoglobin (g/dl)	PCV (%)	RBC (million cells/microliter)	MCV (femtoliters/cell)		Basophils (%)	Platelet Count (lakhs/mm)	Direct (mg/dl)	Indirect (mg/dl)
	count	950.000000	950.000000	950.000000	950.000000	591.000000	582.000000	950.000000	920.000000	398.000000	941.000000		901.000000	950.000000	950.000000	895.000000
	mean	475.500000	50.632632	20.606316	5.158947	197.544839	35.486254	10.263979	33.810000	3.390704	87.651435	-	0.498557	475.130042	4.040737	2.457542
	std	274.385677	8.808272	7.980664	22.908785	26.694968	7.982057	1.942300	5.751592	0.937089	13.844181	66	0.712546	6515.406159	2.757443	1.093691
	min	1.000000	32.000000	4.000000	1.000000	100.000000	25.000000	4.000000	12.000000	1.000000	60.000000	100	0.000000	0.520000	0.800000	0.200000
	25%	238.250000	44.000000	15.000000	2.000000	180.000000	30.000000	9.000000	30.000000	2.825000	78.000000		0.000000	1.200000	2.700000	2.000000
	50%	475.500000	50.000000	20.000000	2.000000	194.000000	35.000000	10.000000	35.000000	3.500000	87.000000		0.000000	1.420000	3.700000	
	75%	712.750000	57.000000	26.000000	3.000000	210.000000	38.000000	11.500000	38.000000	4.000000	94.000000	100	1.000000	1.700000	4.200000	3.000000
	max	950.000000	80.000000	45.000000	180.000000	296.000000	81.000000	15.900000	48.000000	5.700000	126.000000	100	4.000000	90000.000000	25.000000	6.600000

Data Preprocessing Code Screenshots

	S.NO	Age	Gender	Place(location where the patient lives)	Duration of alcohol consumption(years)	Quantity of alcohol consumption (quarters/day)	Type of alcohol consumed	Hepatitis B infection	Hepatitis C infection	Diabetes Result	Blood pressure (mmhg)	Obesity	Family history of cirrhosis/ hereditary	тсн	TG	LDL	HDL	Hemoglobin (g/dl)	PCI (%
0	1	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0	12.0	40.
1	2	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0	9.2	40.
2	3	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	no	no	205.0	115	120	35.0	10.2	40
3	4	55	male	rural	12	2	branded liquor	negative	negative	NO	138/90	no	no	NaN	NaN	NaN	NaN	7.2	40
4	5	55	female	rural	12	2	branded liquor	negative	negative	YES	138/90	no	no	205.0	115	120	35.0	10.2	40.

Loading Data

```
df('TcH')=df('TcH')=df('TcH').mean())
df('Not)]=df('Not)',fillna(df('Not)',mean())
df('Not)]=df('Not)',fillna(df('Not)',mean())
df('Not (million cells/microliter)')=df('Not (million cells/microliter)').mean())
df('Not (ficograms/cell)')=df('Not (femtoliters/cell)').fillna(df('Not (femtoliters/cell)').mean())
df('Not (ficograms/cell)')=df('Not (femtoliters/cell)').fillna(df('Not (ficograms/cell)').mean())
df('Not (grams/declliter)')=df('Not (grams/declliter)').fillna(df('Not (grams/declliter)').mean())
df('Not (grams/declliter)')=df('Not (grams/declliter)').fillna(df('Not (grams/declliter)').mean())
df('Not (grams/declliter)').fillna(df('Not (grams/declliter)').mean())
df('Not (grams/declliter)').fillna(df('Not (grams/declliter)').mean())
df('Not (grams/declliter)').fillna(df('Not (grams/declliter)').mean())
df('Sason)his (%)')=df('Sason)his (%)',fillna(df('Not (grams/declliter)').mean())
df('Sason)his (grams/declliter)',fillna(df('Not (grams/declliter)').mean())
df('Sason)his (grams/declliter)',fillna(df('Not (grams/declliter)').mean())
df('Sason)his (grams/declliter)',fillna(df('Not (grams/declliter)').mean()
df('Sason)his (grams/declliter)',fillna(df('Not (
                                                                                                                                                                              df['TCH']=df['TCH'].fillna(df['TCH'].mean())
Handling Missing Data
                                                                                                                                                                              df['A/G Ratio']=df['A/G Ratio'].fillna(df['A/G Ratio'].mode()[0])
                                                                                                                                                                                                                                         from sklearn.preprocessing import StandardScaler
                                                                                                                                                                                                                                         sc = StandardScaler()
                                                                                                                                                                                                                                        x_train = sc.fit_transform(x_train)
#x_test = sc.transform(x_test)
                                                                                                                                                                                                                                         x_train
                                                                                                                                                                                                                            array([[ 2.44060333, -1.84159498, 1.29329571, ..., 1.08599342,
                                                                                                                                                                                                                                                      4.92959302, 6.81450659],
[ 0.15458485, 0.50365769, 1.29329571, ..., -0.83331467, -0.20286021, -0.14674577],
                                                                                                                                                                                                                                                      [-1.44562809, 0.50365769, 1.29329571, ..., 0.49543709, -0.20286021, -0.14674577],
                                                                                                                                                                                                                                                      [ 0.72608947, 0.50365769, -0.76458992, ..., 0.27397846,
                                                                                                                                                                                                                                                     [ 0.7268947, 0.50365769, -0.76458992, ..., 0.2737846, -0.20286021, -0.14674577], [ 0.49748762, -1.84159498, -0.76458992, ..., 2.61774893, -0.20286021, -0.14674577], [ 0.15458485, 0.50365769, -0.76458992, ..., 0.20015892, -0.20286021, -0.14674577]])
Data Transformation
                                                                                                                                                                                                                                                          from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
                                                                                                                                                                                                                                                            for column in df.columns:
                                                                                                                                                                                                                                                                            # Check if the column has categorical data
                                                                                                                                                                                                                                                                           if df[column].dtype == 'object':
    # Perform label encoding
                                                                                                                                                                                                                                                                                         df[column] = le.fit_transform(df[column])
```

```
categorical features = df.select dtypes(include=[np.object])
                                                                                                                                                      categorical features.columns
                                                                                                                                         Index(['Gender', 'Place(location where the patient lives)',
                                                                                                                                                                      'Type of alcohol consumed', 'Hepatitis B infection',
                                                                                                                                                                    'Hepatitis C infection', 'Diabetes Result', 'Blood pressure (mmhg)',
                                                                                                                                                                    'Obesity', 'Family history of cirrhosis/ hereditary', 'TG', 'LDL',
                                                                                                                                                                    'Total Bilirubin
                                                                                                                                                                                                                                         (mg/dl)', 'A/G Ratio',
                                                                                                                                                                    'USG Abdomen (diffuse liver or not)', 'Outcome'],
                                                                                                                                                                dtype='object')
                                                                                                                                                     numeric_features = df.select_dtypes(include=[np.number])
                                                                                                                                                     numeric_features.columns
Feature Engineering
                                                                                                                                         Index(['S.NO', 'Age', 'Duration of alcohol consumption(years)',
                                                                                                                                                                    'Quantity of alcohol consumption (quarters/day)', 'TCH', 'HDL',
                                                                                                                                                                    'Hemoglobin (g/dl)', 'PCV (%)', 'RBC (million cells/microliter)', % \left( \frac{1}{2}\right) =\frac{1}{2}\left( \frac{1}{2}\right) +\frac{1}{2}\left( \frac{1}{2}\right) +\frac{1}{2}\left(
                                                                                                                                                                   'MCV (femtoliters/cell)', 'MCH (picograms/cell)', 'MCHC (grams/deciliter)', 'Total Count', 'Polymorphs (%)',
                                                                                                                                                                    'Lymphocytes (%)', 'Monocytes (%)', 'Eosinophils (%)',
                                                                                                                                                                    'Basophils (%)', 'Platelet Count (lakhs/mm)', 'Direct (mg/dl)',
                                                                                                                                                                    'Indirect
                                                                                                                                                                                                                      (mg/dl)', 'Total Protein (g/dl)', 'Albumin
                                                                                                                                                                                                                                                                                                                                                                                                     (g/dl)',
                                                                                                                                                                    'Globulin (g/dl)', 'AL.Phosphatase
                                                                                                                                                                                                                                                                                                                        (U/L)', 'SGOT/AST
                                                                                                                                                                                                                                                                                                                                                                                                             (U/L)',
                                                                                                                                                                    'SGPT/ALT (U/L)'],
                                                                                                                                                                dtype='object')
                                                                                                                                                       # Save the cleaned and processed DataFrame to a CSV file
                                                                                                                                                      df.to_csv('cleaned_data.csv', index=False)
                                                                                                                                                     df.head()
                                                                                                                                                                                                                                                                                                  Quantity of
                                                                                                                                                                                              Place(location Duration of alcohol
                                                                                                                                                                                                                                                                                                                                                                                                Blood
                                                                                                                                                                                                                                                                                                                                        Type of
                                                                                                                                                                                                                                                                                                                                                              Diabetes
                                                                                                                                                                                                                                                                                                          alcohol
                                                                                                                                                                                                                                                                                                                                                                                        pressure Obesity
                                                                                                                                                        Age Gender
                                                                                                                                                                                                       where the
                                                                                                                                                                                                                                                                                                                                        alcohol
                                                                                                                                                                                                                                    consumption(years)
                                                                                                                                                                                                                                                                                             consumption
                                                                                                                                                                                                                                                                                                                                                                      Result
                                                                                                                                                                                                                                                                                                                                                                                           (mmhg)
                                                                                                                                                                                                                                                                                          (quarters/day)
Save Processed Data
                                                                                                                                                0 55.0
                                                                                                                                                                                                                                                                                                                                                                                                        32
                                                                                                                                                     55.0
                                                                                                                                                                                                                                                                          12.0
                                                                                                                                                                                                                                                                                                                     2.0
                                                                                                                                                                                                                                                                                                                                                      2
                                                                                                                                                       55.0
                                                                                                                                                                                                                                                                           12.0
                                                                                                                                                                                                                                                                                                                                                                                                        32
                                                                                                                                                                                                                                                                                                                                                                                                                                   0
                                                                                                                                                                                                                                                                                                                      2.0
                                                                                                                                                                                                                                                                           12.0
                                                                                                                                                                                                                                                                                                                     2.0
                                                                                                                                                                                                                                                                                                                                                      2
                                                                                                                                                                                                                                                                                                                                                                                                       32
                                                                                                                                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                              3 55.0
                                                                                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                                4 550
                                                                                                                                                                                                                                                                           120
                                                                                                                                                                                                                                                                                                                      20
                                                                                                                                                                                                                                                                                                                                                                                                        32
```