Sparse Overcomplete Word Vector Representations

Manaal Faruqui Yulia Tsvetkov Dani Yogatama Chris Dyer Noah A. Smith

読む人:中路紘平

スマートニュース株式会社

どんな人が書いたの?

- 第一著者: Manaal Faruqui@CMU
 - Noah Smithの研究室
 - 2015年だけで、ACL, NAACL, EMNLP に 1stで通してる(ACLとNAACLは2本)
 - 最近はword vector representationが多い

本論文の概要

- word2vecなどで作られた低次元密ベクトルを、 高次元疎ベクトルに変換する
- 既存タスクでの精度向上や、解釈しやすくなる などのメリットが得られる

こういうイメージ

この論文を選んだ理由

- 高次元かつスパースな表現に魅力を感じた
 - 脳は明らかに高次元かつスパース
 - スパースならCPUで扱いやすい
- skip-gramの正則化は難しいが、本論文ではその目的を達成している

提案手法の概要

- 低次元ベクトルは既存手法で与えられる
- 目的関数を最適化することで高次元ベクトルを 作り出す
 - 提案手法A: 高次元疎ベクトル
 - 提案手法B: **高次元疎バイナリベクトル**

用字

X: 低次元密ベクトル, L×V行列

A: 高次元疎ベクトル, K×V行列

D: 変換(?)行列, L×K行列

x i: Xのi列目の列ベクトル

提案手法A

● 目的関数は以下

$$\underset{\mathbf{D}, \mathbf{A}}{\arg\min} \sum_{i=1}^{V} \|\mathbf{x}_{i} - \mathbf{D}\mathbf{a}_{i}\|_{2}^{2} + \lambda \|\mathbf{a}_{i}\|_{1} + \tau \|\mathbf{D}\|_{2}^{2}$$

● 最適化はAdaGrad + RDA

提案手法B

● 目的関数は以下

$$\underset{\mathbf{D} \in \mathbb{R}_{>0}^{L \times K}, \mathbf{A} \in \mathbb{R}_{>0}^{K \times V}}{\operatorname{arg \, min}} \sum_{i=1}^{V} \|\mathbf{x}_{i} - \mathbf{D}\mathbf{a}_{i}\|_{2}^{2} + \lambda \|\mathbf{a}_{i}\|_{1} + \tau \|\mathbf{D}\|_{2}^{2}$$

- ただし、aの各要素は0 or 1
- 混合整数計画問題なのでそのまま解けない

提案手法Bの最適化

- 0,1の制約はとりあえず外す
- AdaGrad + RDAで最適化
 - 値が負になりそうな場合は0にクリップする
- v > 0の項はあとで全部1に丸める

実験概要

- 以下のタスクで性能を評価
 - a. Word Similarity
 - b. Sentiment Analysis
 - c. Question Classification (TREC)
 - d. 20 Newsgroup Dataset
 - e. NP bracketing (NP)
- ※b,c,dでは単語ベクトルの平均を素性とした

次元数の設定

- K = {10L, 20L} で実験し、development setで 性能が高い方を選んだ
 - 4種類中3種類が10Lになった
- % Sparsel \$\ddot{91}% \sim 98%
 - 具体的な計算方法は不明

実験結果

Vectors		SimLex	Senti.	TREC	Sports	Comp.	Relig.	NP	Average
		Corr.	Acc.	Acc.	Acc.	Acc.	Acc.	Acc.	
Glove	\mathbf{X}	36.9	77.7	76.2	95.9	79.7	86.7	77.9	76.2
	${f A}$	38.9	81.4	81.5	96.3	87.0	88.8	82.3	79.4
	\mathbf{B}	39.7	81.0	81.2	95.7	84.6	87.4	81.6	78.7
SG	X	43.6	81.5	77.8	97.1	80.2	85.9	80.1	78.0
	${f A}$	41.7	82.7	81.2	98.2	84.5	86.5	81.6	79.4
	\mathbf{B}	42.8	81.6	81.6	95.2	86.5	88.0	82.9	79.8
GC	X	9.7	68.3	64.6	75.1	60.5	76.0	79.4	61.9
	${f A}$	12.0	73.3	77.6	77.0	68.3	81.0	81.2	67.2
	${f B}$	18.7	73.6	79.2	79.7	70.5	79.6	79.4	68.6
Multi	\mathbf{X}	28.7	75.5	63.8	83.6	64.3	81.8	79.2	68.1
	${f A}$	28.1	78.6	79.2	93.9	78.2	84.5	81.1	74.8
	${f B}$	28.7	77.6	82.0	94.7	81.4	85.6	81.9	75.9

考察

- 多くのタスクで提案手法の性能がよい
 - 元のベクトルよりも性能がよい
- SimirarityとNP Bracketingでは、提案手法Aと Bはほぼ互角
 - これ以外の実験は個人的には信用しづらい...
 - 元の低次元ベクトルよりはほぼ確実によくなる

解釈性についての実験

実験概要:5つの単語を提示し、そこから仲間はずれの単語を人間に選んでもらう

- 提示する単語は以下のように決定する
 - 分散表現のi次元目の値が大きなものを4つ、値が小さなものを1つ

実験結果

Vectors	A 1	A2	A3	Avg.	IAA	κ
X	61	53	56	57	70	0.40
\mathbf{A}	71	70	72	71	77	0.45

- 元のベクトルよりも正解率が大幅に向上
- Inter Annotator Agreementも7ポイント向上

まとめ

- **低次元で密**な分散表現を**高次元で疎**な分散表現へと変換する方法を提案した
- 変換後の分散表現が良い性能を示すことをいく つかの実験で示した

感想•疑問

- 提案手法Aではデータ量はあまり減ってない
- 性能向上はそれほど大きくはないのでは
 - 大幅に上がってるのは、そもそも実験が適当だからでは?
- word intrusionの実験で結果が良くなっているというのは何を示唆しているのか?