23 MAY 2013 LINEAR ALG & MULTIVARIABLE CALC

16.1 GRADIENT/DIRECTIONAL DERIVATIVE

Definition 1 (Directional Derivative). The directional derivative of a function $f: \mathcal{D}^n \to \mathbf{R}$ at $\mathbf{a} \in \mathcal{D}^n$ in the direction of the nonzero vector $\mathbf{v} \in \mathbf{R}^n$ is:

$$D_{v} f(a) := \lim_{h \to 0} \frac{f(a + hv/||v||) - f(a)}{h}$$

Note 1. The vector $v/\|v\|$ is the unit vector in the direction of the (nonzero, by assumption) vector v.

Example 1 (Licata 9.2). Compute the directional derivative of $f(x, y) = \frac{1}{xy}$ at a = (1, 2) in the direction of $v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ using the definition.

Solution. The unit vector in the direction of v is

$$\frac{v}{\|v\|} = \frac{\left[\frac{2}{3}\right]}{\sqrt{2^2 + 3^2}} = \left[\frac{2/\sqrt{13}}{3/\sqrt{13}}\right]$$

By definition:

$$D_{f} f(a) = \lim_{h \to 0} \frac{f\left(1 + h\frac{2}{\sqrt{13}}, 2 + h\frac{3}{\sqrt{13}}\right) - f(1, 2)}{h}$$

$$= \lim_{h \to 0} \frac{\left[\left(1 + h\frac{2}{\sqrt{13}}\right)\left(2 + h\frac{3}{\sqrt{13}}\right)\right]^{-1} - 2^{-1}}{h}$$

$$= \lim_{h \to 0} \frac{2 - \left(1 + h\frac{2}{\sqrt{13}}\right)\left(2 + h\frac{3}{\sqrt{13}}\right)}{h2\left(1 + h\frac{2}{\sqrt{13}}\right)\left(2 + h\frac{3}{\sqrt{13}}\right)}$$

$$= \lim_{h \to 0} \frac{-h\frac{4}{\sqrt{13}} - h\frac{3}{\sqrt{13}} - h^{2}\frac{6}{13}}{h2\left(1 + h\frac{2}{\sqrt{13}}\right)\left(2 + h\frac{3}{\sqrt{13}}\right)}$$

$$= \lim_{h \to 0} \frac{-\frac{4}{\sqrt{13}} - \frac{3}{\sqrt{13}} - h\frac{6}{13}}{2\left(1 + h\frac{2}{\sqrt{13}}\right)\left(2 + h\frac{3}{\sqrt{13}}\right)}$$

$$= \frac{-\frac{7}{\sqrt{13}}}{2(1)(2)} = -\frac{7}{4\sqrt{13}}$$

When the directional derivative $D_v f(a)$ exists, it is a number (scalar) that indicates the rate of change of f at a in the direction of v. Directional derivative generalizes partial derivative because $\frac{\partial f}{\partial x_i}(a) = D_{e_i} f(a)$. Conversely, the partial derivatives $\frac{\partial f}{\partial x_1}(a), \ldots, \frac{\partial f}{\partial x_n}(a)$ determine the directional derivative $D_{e_i} f(a)$ for any v through what is called the gradient ∇f .

Definition 2 (Gradient). The gradient of the function $f: \mathcal{D}^n \to \mathbf{R}$ at \mathbf{a} is:

$$\nabla f(a) := \begin{bmatrix} \frac{\partial_{x_1} f(a)}{\partial_{x_2} f(a)} \\ \vdots \\ \frac{\partial_{x_n} f(a)}{\partial_{x_n} f(a)} \end{bmatrix}$$

Note 2. Note that for a scalar function $f: \mathcal{D}^n \to \mathbb{R}, \nabla f(a) = D f(a)^T$.

The relationship between directional derivatives and the gradient is the following proposition.

Proposition 1. For a scalar function $f: \mathcal{D}^n \to \mathbb{R}$, a vector $a \in \mathcal{D}^n$, and a nonzero vector v in \mathbb{R}^n :

$$D_{v} f(a) = \nabla f(a) \cdot \frac{v}{\|v\|}$$

The proposition is useful both computationally and theoretically:

- Computational: Find a directional derivative using the gradient (and dot product).
- Theoretical: Maximize/minimize the directional derivative.

Example 2 (Licata 9.6). Compute the directional derivative of $f(x, y) = \frac{1}{xy}$ at a = (1, 2) in the direction of $v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ using the gradient.

Solution. The gradient is

$$\nabla f(1,2) = \begin{bmatrix} -(x^2y)^{-1} \\ -(xy^2)^{-1} \end{bmatrix} \Big|_{(x,y)=(1,2)} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{4} \end{bmatrix}$$

and the unit vector in the direction of v is

$$\frac{v}{\|v\|} = \frac{\begin{bmatrix} 2\\3 \end{bmatrix}}{\sqrt{2^2 + 3^2}} = \frac{1}{\sqrt{13}} \begin{bmatrix} 2\\3 \end{bmatrix}$$

so the desired direction derivative is:

$$D_{v} f(a) = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{4} \end{bmatrix} \cdot \left(\frac{1}{\sqrt{13}} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right) = -\frac{7}{4\sqrt{13}}$$

Let's explore the theoretical use of the proposition in more detail. If $\nabla f(a)$ and $v/\|v\|$ have angle θ between them, then

$$D_{v} f(a) = \nabla f(a) \cdot \frac{v}{\|v\|} = \|\nabla f(a)\| \cos \theta$$

since v/||v|| has length 1. Therefore:

- $-\|\nabla f(a)\| \le D_v f(a) \le \|\nabla f(a)\|$ for all nonzero vectors v in \mathbb{R}^n
- $D_v f(a)$ is smallest (equal to $-\|\nabla f(a)\|$) when v and $\nabla f(a)$ are anti-parallel
- $D_v f(a)$ is largest (equal to $\|\nabla f(a)\|$) when v and $\nabla f(a)$ are parallel

Here are two more properties of the gradient:

- $D_v f(a)$ is zero when v and $\nabla f(a)$ are orthogonal
- For a in the height c level set $S = f^{-1}(c)$ of f, $\nabla f(a)$ is orthogonal to the tangent space¹⁾ of S at a.
 - In particular, for any curve $C \subseteq S = f^{-1}(c)$ passing through a, the tangent line to C at a is orthogonal to $\nabla f(a)$.
 - Said differently, if $I \subseteq \mathbf{R}$ is an interval and $g: I \to \mathbf{R}^n$ is a parametrized curve with $g(I) \subseteq S = f^{-1}(c)$, then g'(t) and $\nabla f(g(t))$ are orthogonal for all $t \in I$.

1) tangent space is the term used for a "tangent plane" that is not necessarily 2dimensional

16.2 (LOCAL) EXTREMA OF MULTIVARIATE FUNCTIONS

Definition 3. Let $f: \mathcal{D}^n \to \mathbf{R}$ be a function, and let a be a point in \mathcal{D}^n .

- f has a local minimum²⁾ at a if there is $\varepsilon > 0$ so that $f(x) \ge f(a)$ for all x in \mathcal{D}^n satisfying $||x a|| < \varepsilon$.
- 2) plural of minimum is minima
- f has a local maximum³⁾ at a if there is $\varepsilon > 0$ so that $f(x) \le f(a)$ for all x in \mathcal{D}^n satisfying $||x a|| < \varepsilon$.
- 3) plural of maximum is maxima
- f has a *local extremum*⁴⁾ at a if f has either a local minimum or a local maximum at a.
- 4) plural of extremum is extrema

Definition 4. Let $f: \mathcal{D}^n \to \mathbf{R}$ be a function. A point a in \mathcal{D}^n is a *critical point of* f if one of the following is true:

(i) f is not differentiable

(ii)
$$\nabla f(a) = 0$$

It is not always easy to check if a multivariable function is differentiable. (What is the definition of differentiability for multivariable functions?⁵⁾ The function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by:

$$f(x,y) = \begin{cases} x^2 y / (x^4 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is *not differentiable at* (0,0) despite the fact that $\partial_x f$ and $\partial_y f$ both exist everywhere, even at the origin: $\nabla f(0,0) = \mathbf{0}$).

For "nice" functions, we may use the following, easier, test to find the critical points.

Proposition 2. Let $f: \mathcal{D}^n \to \mathbb{R}$ be a function such that for each a in \mathcal{D}^n , either:

- $\nabla f(a)$ is does not exist or
- $\nabla f(x)$ is defined near a and continuous at a

Then a point a in \mathcal{D}^n is a critical point of f if and only if one of the following is true:

(i) $\nabla f(a)$ does not exist or

(ii)
$$\nabla f(a) = 0$$

Proposition 3 (First Derivative Test). If $f: \mathcal{D}^n \to \mathbf{R}$ has a local extremum as a in \mathcal{D}^n , then a is either a critical point of f or a "boundary point" of \mathcal{D}^n .

Note 3. Not every critical point must be a local extremum. We even give a name to a special type of critical point that is not a local extremum.

Definition 5. We call a point a a saddle point if:

- (i) f is differentiable and
- (ii) $\nabla f(a) = 0$

but a is not a local extremum of f.

For "nice" functions, we may use the following, easier, test to find the saddle points.

5) For general maps $\mathcal{D}^n \to \mathbf{R}^m$, the definition of differentiability involves a remainder term and a certain limit. In this case, when m=1, differentiability at a is equivalent to the existence of $\nabla f(a)$ and the identity $\lim_{x\to a} [f(x) - f(a) - \nabla f(a) \cdot (x-a)] = 0$.

Proposition 4. Let $f: \mathcal{D}^n \to \mathbf{R}$ be a function such that for each a in \mathcal{D}^n , either:

- $\nabla f(a)$ is does not exist or
- $\nabla f(x)$ is defined near a and continuous at a

Then a point a in \mathcal{D}^n is a saddle point for f if and only if $\nabla f(a) = 0$ but but a is not a local extremum of f.

Proposition 5 (Second Derivative Test). Let $f: \mathcal{D}^n \to \mathbb{R}$ be a function, and assume a is a point in \mathcal{D}^n such that:

- $\nabla f(a) = 0$
- H $f(x) = [\partial_{x_i} \partial_{x_j} f(x)]$ has entries that are continuous at a

Then:

- $x^{T}[H f(a)]x$ is positive definite $\Rightarrow f$ has a local minimum at a
- $x^{T}[H f(a)]x$ is negative definite $\Rightarrow f$ has a local maximum at a
- $x^{T}[H f(a)]x$ is indefinite $\Rightarrow f$ has a saddle point at a

The Second Derivative Test is indeterminate in the semidefinite cases.

Example 3 (Licata 12.5). Let $f(x, y) = (\cos x)(\ln y)$.

- (a) Show that $(\frac{\pi}{2}, 1)$ is a critical point of f.
- (b) Compute H $f(\frac{\pi}{2}, 1)$.
- (c) Classify $(\frac{\pi}{2}, 1)$ as a local minimum, a local maximum, or a saddle point.

Solution.

- (a) The gradient is $\nabla f\left(\frac{\pi}{2},1\right) = \begin{bmatrix} (-\sin x)(\ln y) \\ (\cos x)(1/y) \end{bmatrix}\Big|_{(x,y)=(\pi/2,1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ so $\left(\frac{\pi}{2},1\right)$ is a critical point of f.
- (b) The Hessian is:

$$\mathsf{H}\,f\big(\tfrac{\pi}{2},1\big) = \left[\begin{smallmatrix} (-\cos x)(\ln y) & (-\sin x)(1/y) \\ (-\sin x)(1/y) & (\cos x)(-1/y^2) \end{smallmatrix} \right] \Big|_{(x,y)=(\pi/2,1)} = \left[\begin{smallmatrix} 0 & -1 \\ -1 & 0 \end{smallmatrix} \right]$$

(c) The determinant of $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ is negative (equal to -1) so the quadratic form associated to the Hessian matrix at $(\frac{\pi}{2}, 1)$ is indefinite. Therefore $(\frac{\pi}{2}, 1)$ is a saddle point for f.