Generative Adversarial Networks

2017.02.28

최건호

01

Basic Concept

- Generative
- Adversarial
- Networks

02

Models

- DCGAN
- InfoGAN
- CGAN
- CycleGAN
- PGGAN

03

GAN Hacks

- Input
- Loss
- Normalizing
- z sampling
- etc.

Generative Adversarial Networks

Generative Adversarial Networks

What I cannot create, I do not understand.

— Richard P. Feynman —

Generative Model은 스스로 데이터를 생성해내는 모델. 어떤 데이터를 보고 분류하는 것 보다 그 데이터를 만들어 -내는 것이 더 어려움. ex) GAN, VAE

What I cannot create, I do not understand.

- Richard P. Feynman —

Generative Adversarial Networks

What I cannot create, I do not understand.

— Richard P. Feynman —

ex) MNIST

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Generator: 전체 값이 최소가 되는 G를 찾아야 하기 때문에 1 - D(G(z))값이 작아야 함. 즉, G가 만들어낸 데이터에 대해 D가 1(real data)라고 판단하도록 학습.

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Generator: 전체 값이 최소가 되는 G를 찾아야 하기 때문에 1 - D(G(z))값이 작아야 함. 즉, G가 만들어낸 데이터에 대해 D가 1(real data)라고 판단하도록 학습.

Discriminator: 전체 값이 최대가 되는 D를 찾아야 하기 때문에 진짜 데이터 x -에 대해서는 1(real data)을 출력하고 D(G(z))에 대해서는 0을 출력하도록 학습.

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

$$\max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

$$\max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

D, G에 대해서 분리

$$\max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log \underline{D(\boldsymbol{x})}] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - \underline{D(G(\boldsymbol{z}))})].$$

Best case: 0+0=0

Worst case: $-\infty + (-\infty) = -\infty$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

$$\min_{C} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

D, G에 대해서 분리

$$\min_{G} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

0

1

Best case: -∞

Worst case: 0

$$\max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} V(D, G) = \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

$$\max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} V(D, G) = \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

사실 $\log (1 - D(G(z)))$ 를 최소화하는것은 $\log (D(G(z)))$ 를 maximize 하는것과 같음 같은 의미지만 후자의 gradient값들이 더 크기 때문에 학습이 더 잘됨

$$\max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log \underline{D(\boldsymbol{x})}] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - \underline{D(G(\boldsymbol{z}))})].$$

$$\max_{G} V(D, G) = \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (\underline{D(G(\boldsymbol{z}))})].$$

$$\max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log \underline{D(\boldsymbol{x})}] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - \underline{D(G(\boldsymbol{z}))})].$$

$$\max_{G} V(D, G) = \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (\underline{D(G(\boldsymbol{z}))})].$$

label이 0 또는 1이기 때문에 구현할 때는 binary cross entropy loss 사용

class torch.nn.BCELoss(weight=None, size_average=True) [source]

Creates a criterion that measures the Binary Cross Entropy between the target and the output:

$$loss(o,t) = -1/n \sum_i (t[i] * log(o[i]) + (1-t[i]) * log(1-o[i]))$$

학습이 잘 되면 Discriminator의 결과값은 0.5로 수렴하게 됨 결과값이 0.5라는 것은 진짜인지 아닌지 구별이 불가능한 상태

학습이 잘 되면 Discriminator의 결과값은 0.5로 수렴하게 됨 결과값이 0.5라는 것은 진짜인지 아닌지 구별이 불가능한 상태

하지만 이 값만으로는 Generator가 잘 학습해서 속이는 것인지 아니면 Discriminator가 아직 구분을 잘 못하는 것인지 알 수 없음

학습이 잘 되면 Discriminator의 결과값은 0.5로 수렴하게 됨 결과값이 0.5라는 것은 진짜인지 아닌지 구별이 불가능한 상태

하지만 이 값만으로는 Generator가 잘 학습해서 속이는 것인지 아니면 Discriminator가 아직 구분을 잘 못하는 것인지 알 수 없음

아직까지는 general metric 이 없어서 눈 discriminator가 사용됨

```
class Generator(nn.Module):
    def init (self):
        super(Generator, self). init ()
        self.layer1 = nn.Linear(100,7*7*256)
        self.layer2 = nn.Sequential(OrderedDict([
                ('conv1', nn.ConvTranspose2d(256,128,3,2,1,1)),
                ('relu1', nn.LeakyReLU()),
                ('bn1', nn.BatchNorm2d(128)),
                ('conv2', nn.ConvTranspose2d(128,64,3,1,1)),
                ('relu2', nn.LeakyReLU()),
                ('bn2', nn.BatchNorm2d(64))
            1))
        self.layer3 = nn.Sequential(OrderedDict([
                ('conv3',nn.ConvTranspose2d(64,16,3,1,1)),
                ('relu3',nn.LeakyReLU()),
                ('bn3',nn.BatchNorm2d(16)),
                ('conv4',nn.ConvTranspose2d(16,1,3,2,1,1)),
                ('relu4',nn.LeakyReLU())
            1))
    def forward(self,z):
        out = self.layer1(z)
        out = out.view(batch_size//num_gpus,256,7,7)
        out = self.layer2(out)
        out = self.layer3(out)
        return out
```

size 100인 Noise z에서 7*7*256 크기로 늘림

```
class Generator(nn.Module):
    def init (self):
        super(Generator self) init ()
        self.layer1 = nn.Linear(100,7*7*256)
        self.layer2 = nn.Sequential(OrderedDict([
                ('conv1', nn.ConvTranspose2d(256,128,3,2,1,1)),
                ('relu1', nn.LeakyReLU()),
                ('bn1', nn.BatchNorm2d(128)),
                ('conv2', nn.ConvTranspose2d(128,64,3,1,1)),
                ('relu2', nn.LeakyReLU()),
                ('bn2', nn.BatchNorm2d(64))
            1))
        self.layer3 = nn.Sequential(OrderedDict([
                ('conv3',nn.ConvTranspose2d(64,16,3,1,1)),
                ('relu3',nn.LeakyReLU()),
                ('bn3',nn.BatchNorm2d(16)),
                ('conv4',nn.ConvTranspose2d(16,1,3,2,1,1)),
                ('relu4',nn.LeakyReLU())
            1))
    def forward(self,z):
        out = self.layer1(z)
        out = out.view(batch size//num gpus,256,7,7)
        out = self.layer2(out)
        out = self.layer3(out)
        return out
```

size 100인 Noise z에서 7*7*256 크기로 늘림

Autoencoder였으면 decoder 부분에 해당하는 generator

```
class Generator(nn.Module):
    def init (self):
        super(Generator self) init ()
        self.layer1 = nn.Linear(100,7*7*256)
        self.layer2 = nn.Sequential(OrderedDict()
                ('conv1', nn.ConvTranspose2d(256,128,3,2,1,1)),
                ('relu1', nn.LeakyReLU()),
                ('bn1', nn.BatchNorm2d(128)),
                ('conv2', nn.ConvTranspose2d(128,64,3,1,1)),
                ('relu2', nn.LeakyReLU()),
                ('bn2', nn.BatchNorm2d(64))
            1))
        self.layer3 = nn.Sequential(OrderedDict([
                ('conv3',nn.ConvTranspose2d(64,16,3,1,1)),
                ('relu3',nn.LeakyReLU()),
                ('bn3',nn.BatchNorm2d(16)),
                ('conv4',nn.ConvTranspose2d(16,1,3,2,1,1)),
                ('relu4',nn.LeakyReLU())
            1))
    def forward(self,z):
        out = self.layer1(z)
        out = out.view(batch size//num gpus,256,7,7)
        out = self.layer2(out)
        out = self.layer3(out)
        return out
```

size 100인 Noise z에서 7*7*256 크기로 늘림

Autoencoder였으면 decoder 부분에 해당하는 generator

nn.Sequential 안에 layer 이름을 지정할 수 있게 OrderedDict를 사용함

```
class Generator(nn.Module):
    def init (self):
        super(Generator self) init ()
        self.layer1 = nn.Linear(100,7*7*256)
        self.layer2 = nn.Sequential(OrderedDict()
                ('conv1', nn.ConvTranspose2d(256,128,3,2,1,1)),
                ('relu1', nn.LeakyReLU()),
                ('bn1', nn.BatchNorm2d(128)),
                ('conv2', nn.ConvTranspose2d(128,64,3,1,1)),
                ('relu2', nn.LeakyReLU()),
                ('bn2', nn.BatchNorm2d(64))
            1))
        self.layer3 = nn.Sequential(OrderedDict([
                ('conv3',nn.ConvTranspose2d(64,16,3,1,1)),
                ('relu3',nn.LeakyReLU()),
                ('bn3',nn.BatchNorm2d(16)),
                ('conv4',nn.ConvTranspose2d(16,1,3,2,1,1)),
                ('relu4',nn.LeakyReLU())
            1))
    def forward(self,z):
        out = self.layer1(z)
        out = out.view(batch size//num gpus,256,7,7)
        out = self.layer2(out)
        out = self.layer3(out)
        return out
```

size 100인 Noise z에서 7*7*256 크기로 늘림

Autoencoder였으면 decoder 부분에 해당하는 generator

nn.Sequential 안에 layer 이름을 지정할 수 있게 OrderedDict를 사용함

형태에 관한 건 뒤에 DCGAN에서 추가적인 설명이 있음

```
class Generator(nn.Module):
    def init (self):
        super(Generator self) init ()
        self.layer1 = nn.Linear(100,7*7*256)
        self.layer2 = nn.Sequential(OrderedDict()
                ('conv1', nn.ConvTranspose2d(256,128,3,2,1,1)),
                ('relu1', nn.LeakyReLU()),
                ('bn1', nn.BatchNorm2d(128)),
                ('conv2', nn.ConvTranspose2d(128,64,3,1,1)),
                ('relu2', nn.LeakyReLU()),
                ('bn2', nn.BatchNorm2d(64))
            1))
        self.layer3 = nn.Sequential(OrderedDict([
                ('conv3',nn.ConvTranspose2d(64,16,3,1,1)),
                ('relu3',nn.LeakyReLU()),
                ('bn3',nn.BatchNorm2d(16)),
                ('conv4',nn.ConvTranspose2d(16,1,3,2,1,1)),
                ('relu4',nn.LeakyReLU())
            1))
    def forward(self,z):
        out = self.layer1(z)
        out = out.view(batch size//num gpus,256,7,7)
        out = self.layer2(out)
        out = self.layer3(out)
        return out
```

```
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.layer1 = nn.Sequential(OrderedDict([
                ('conv1',nn.Conv2d(1,16,3,padding=1)),
                ('relu1',nn.LeakyReLU()),
                ('bn1',nn.BatchNorm2d(16)),
                ('conv2',nn.Conv2d(16,32,3,padding=1)), # batch x 32 x 28 x 28
                ('relu2',nn.LeakyReLU()),
                ('bn2',nn.BatchNorm2d(32)),
                ('max1',nn.MaxPool2d(2,2)) # batch x 32 x 14 x 14
            1))
        self.layer2 = nn.Sequential(OrderedDict([
                ('conv3',nn.Conv2d(32,64,3,padding=1)), # batch x 64 x 14 x 14
                ('relu3',nn.LeakyReLU()),
                ('bn3',nn.BatchNorm2d(64)),
                ('max2',nn.MaxPool2d(2,2)),
                ('conv4',nn.Conv2d(64,128,3,padding=1)), # batch x 128 x 7 x 7
                ('relu4',nn.LeakyReLU())
            1))
        self.fc = nn.Sequential(
                nn.Linear(128*7*7,1),
                nn.Sigmoid()
    def forward(self,x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.view(batch size//num gpus, -1)
        out = self.fc(out)
        return out
```

Discriminator도 그냥 일반적인 형태.

```
class Discriminator(nn.Module):
    def init (self):
        super(Discriminator.self). init ()
        self.layer1 = nn.Sequential(OrderedDict()
                ('conv1',nn.Conv2d(1,16,3,padding=1)),
                ('relu1',nn.LeakyReLU()),
                ('bn1',nn.BatchNorm2d(16)),
                ('conv2',nn.Conv2d(16,32,3,padding=1)), # batch x 32 x 28 x 28
                ('relu2',nn.LeakyReLU()),
                ('bn2',nn.BatchNorm2d(32)),
                ('max1',nn.MaxPool2d(2,2))  # batch x 32 x 14 x 14
        self.layer2 = nn.Sequential(OrderedDict([
                ('conv3',nn.Conv2d(32,64,3,padding=1)), # batch x 64 x 14 x 14
                ('relu3',nn.LeakyReLU()),
                ('bn3',nn.BatchNorm2d(64)),
                ('max2',nn.MaxPool2d(2,2)),
                ('conv4',nn.Conv2d(64,128,3,padding=1)), # batch x 128 x 7 x 7
                ('relu4',nn.LeakyReLU())
        self.fc = nn.Sequential(
                nn.Linear(128*7*7,1),
                nn.Sigmoid()
    def forward(self,x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.view(batch size//num gpus, -1)
        out = self.fc(out)
        return out
```

Discriminator도 그냥 일반적인 형태.

출력 값이 하나이고 0에서 1 값을 가지기 때문에 마지막에 sigmoid를 추가함

```
class Discriminator(nn.Module):
    def init (self):
        super(Discriminator.self). init ()
        self.layer1 = nn.Sequential(OrderedDict()
                ('conv1',nn.Conv2d(1,16,3,padding=1)),
                ('relu1',nn.LeakyReLU()),
                ('bn1',nn.BatchNorm2d(16)),
                ('conv2',nn.Conv2d(16,32,3,padding=1)), # batch x 32 x 28 x 28
                ('relu2',nn.LeakyReLU()),
                ('bn2',nn.BatchNorm2d(32)),
                ('max1',nn.MaxPool2d(2,2))  # batch x 32 x 14 x 14
        self.layer2 = nn.Sequential(OrderedDict([
                ('conv3',nn.Conv2d(32,64,3,padding=1)), # batch x 64 x 14 x 14
                ('relu3',nn.LeakyReLU()),
                ('bn3',nn.BatchNorm2d(64)),
                ('max2',nn.MaxPool2d(2,2)),
                ('conv4',nn.Conv2d(64,128,3,padding=1)),  # batch x 128 x 7 x 7
                ('relu4',nn.LeakyReLU())
        self.fc = nn.Sequential(
                nn.Linear(128*7*7,1),
                nn.Sigmoid()
    def forward(self,x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.view(batch size//num gpus, -1)
        out = self.fc(out)
        return out
```

```
generator = nn.DataParallel(Generator()).cuda()
discriminator = nn.DataParallel(Discriminator()).cuda()
loss func = nn.BCELoss()
gen optim = torch.optim.Adam(generator.parameters(), Lr=learning rate)
dis optim = torch.optim.Adam(discriminator.parameters(), Lr=learning rate)
ones_label = Variable(torch.ones(batch_size,1)).cuda()
zeros label = Variable(torch.zeros(batch size,1)).cuda()
# model restore
   generator, discriminator = torch.load('./model/vanilla_gan.pkl')
   print("\n-----\n")
except:
   print("\n-----\n")
```

nn.DataParallel() 함수를 사용 해 Multi-GPU에 모델을 올려서 학습

```
generator = nn.DataParallel(Generator()).cuda()
discriminator = nn.DataParallel(Discriminator()).cuda()
loss func = nn.BCELoss()
gen optim = torch.optim.Adam(generator.parameters(), Lr=learning rate)
dis optim = torch.optim.Adam(discriminator.parameters(), tr=learning rate)
ones_label = Variable(torch.ones(batch_size,1)).cuda()
zeros label = Variable(torch.zeros(batch size,1)).cuda()
# model restore
   generator, discriminator = torch.load('./model/vanilla gan.pkl')
   print("\n-----\n")
except:
   print("\n-----\n")
```

nn.DataParallel() 함수를 사용 해 Multi-GPU에 모델을 올려서 학습

```
generator = nn.DataParallel(Generator()).cuda()
discriminator = nn.DataParallel(Discriminator()).cuda()
loss func = nn.BCELoss()
gen optim = torch.optim.Adam(generator.parameters(), Lr=learning rate)
dis optim = torch.optim.Adam(discriminator.parameters(), tr=learning rate)
ones label = Variable(torch.ones(batch size,1)).cuda()
zeros label = Variable(torch.zeros(batch size,1)).cuda()
# model restore
   generator, discriminator = torch.load('./model/vanilla gan.pkl')
   print("\n-----\n")
except:
   print("\n-----\n")
```

nn.DataParallel() 함수를 사용 해 Multi-GPU에 모델을 올려서 학습

라벨로 사용할 0과 1값 생성

```
generator = nn.DataParallel(Generator()).cuda()
discriminator = nn.DataParallel(Discriminator()).cuda()
loss func = nn.BCELoss()
gen optim = torch.optim.Adam(generator.parameters(), Lr=learning rate)
dis optim = torch.optim.Adam(discriminator.parameters(), tr=learning rate)
ones label = Variable(torch.ones(batch size,1)).cuda()
zeros label = Variable(torch.zeros(batch size,1)).cuda()
# model restore
   generator, discriminator = torch.load('./model/vanilla gan.pkl')
   print("\n-----\n")
except:
   print("\n-----\n")
```

nn.DataParallel() 함수를 사용 해 Multi-GPU에 모델을 올려서 학습

라벨로 사용할 0과 1값 생성

학습된 모델 불러오는 부분

```
generator = nn.DataParallel(Generator()).cuda()
discriminator = nn.DataParallel(Discriminator()).cuda()
loss func = nn.BCELoss()
gen optim = torch.optim.Adam(generator.parameters(), Lr=learning rate)
dis optim = torch.optim.Adam(discriminator.parameters(), tr=learning rate)
ones label = Variable(torch.ones(batch size,1)).cuda()
zeros label = Variable(torch.zeros(batch size,1)).cuda()
# model restore
   generator, discriminator = torch.load('./model/vanilla gan.pkl')
   print("\n-----\n")
except:
   print("\n-----\n")
```

```
for i in range(epoch):
   for j,(image,label) in enumerate(train loader):
       image = Variable(image).cuda()
       z = Variable(torch.rand(batch_size,100)).cuda()
       gen optim.zero grad()
       gen fake = generator.forward(z)
       dis fake = discriminator.forward(gen fake)
       gen loss = torch.sum(loss func(dis fake,ones label))
       gen loss.backward(retain variables=True)
       gen optim.step()
       dis optim.zero grad()
       dis real = discriminator.forward(image)
       dis loss = torch.sum(loss func(dis fake,zeros label))+torch.sum(loss func(dis real,ones label))
       dis loss.backward()
       dis optim.step()
   if i % 5 == 0:
       torch.save([generator,discriminator],'./model/vanilla_gan.pkl')
   print("{}th iteration gen loss: {} dis loss: {}".format(i,gen loss.data,dis loss.data))
   v_utils.save_image(gen_fake.data[0:20],"./gan_result/gen_{}.png".format(i), nrow=5)
```

매번 새로운 noise를 생성해 서 generate

```
for i in range(epoch):
   for j,(image,label) in enumerate(train loader):
       image = Variable(image).cuda()
       z = Variable(torch.rand(batch_size,100)).cuda()
       gen optim.zero grad()
       gen fake = generator.forward(z)
       dis fake = discriminator.forward(gen fake)
       gen loss = torch.sum(loss func(dis fake,ones label))
       gen loss.backward(retain variables=True)
       gen optim.step()
       dis optim.zero grad()
       dis real = discriminator.forward(image)
       dis loss = torch.sum(loss func(dis fake,zeros label))+torch.sum(loss func(dis real,ones label))
       dis loss.backward()
       dis optim.step()
   if i % 5 == 0:
       torch.save([generator,discriminator],'./model/vanilla_gan.pkl')
   print("{}th iteration gen loss: {} dis loss: {}".format(i,gen loss.data,dis loss.data))
   v_utils.save_image(gen_fake.data[0:20],"./gan_result/gen_{}.png".format(i), nrow=5)
```

매번 새로운 noise를 생성해 서 generate

discriminator 통과해서 1과 의 BCE loss 계산 및 업데이트

```
for i in range(epoch):
   for j,(image,label) in enumerate(train loader):
       image = Variable(image).cuda()
       z = Variable(torch.rand(batch_size,100)).cuda()
       gen optim.zero grad()
       gen fake = generator.forward(z)
       dis fake = discriminator.forward(gen fake)
       gen loss = torch.sum(loss func(dis fake,ones label))
       gen loss.backward(retain variables=True)
       gen optim.step()
       dis_optim.zero_grad()
       dis real = discriminator.forward(image)
       dis loss = torch.sum(loss func(dis fake,zeros label))+torch.sum(loss func(dis real,ones label))
       dis loss.backward()
       dis optim.step()
   if i % 5 == 0:
       torch.save([generator,discriminator],'./model/vanilla_gan.pkl')
   print("{}th iteration gen loss: {} dis loss: {}".format(i,gen loss.data,dis loss.data))
   v_utils.save_image(gen_fake.data[0:20],"./gan_result/gen_{}.png".format(i), nrow=5)
```

매번 새로운 noise를 생성해 서 generate

discriminator 통과해서 1과 의 BCE loss 계산 및 업데이트

실제 데이터와 가짜 데이터 가지고 discriminator 통과해서 이번엔 fake는 0, real은 1로 계산 및 업데이트

```
for i in range(epoch):
   for j,(image,label) in enumerate(train loader):
       image = Variable(image).cuda()
       z = Variable(torch.rand(batch_size,100)).cuda()
       gen optim.zero grad()
       gen fake = generator.forward(z)
       dis fake = discriminator.forward(gen fake)
       gen loss = torch.sum(loss func(dis fake,ones label))
       gen_loss.backward(retain_variables=True)
       gen optim.step()
       dis_optim.zero_grad()
       dis real = discriminator.forward(image)
       dis loss = torch.sum(loss func(dis fake,zeros label))+torch.sum(loss func(dis real,ones label))
       dis loss.backward()
       dis optim.step()
   if i % 5 == 0:
       torch.save([generator,discriminator],'./model/vanilla_gan.pkl')
   print("{}th iteration gen_loss: {} dis_loss: {}".format(i,gen_loss.data,dis_loss.data))
   v utils.save image(gen fake.data[0:20],"./gan result/gen {}.png".format(i), nrow=5)
```


Mode collapse

Oscillation

Mode collapse

서로 다른 노이즈 값들로 generate 해도 하나의 mode로 수렴하는 현상

네트워크가 다양한 실제 이미지 같은 결과를 내기를 기대하는데 그럴 싸한 이미지만 만들어냄

Oscillation

GAN output들이 목표 카테고리가 여러 가지일 경우 왔다 갔다 하면 서 다양한 결과값들을 만들어 내고 하나에 수렴하지 못하는 경우

이러한 문제들이 있긴 하지만 잘될 땐 또 잘됨

Real Images

GAN Images

이러한 문제들이 있긴 하지만 잘될 땐 또 잘됨

VAE generated images

GAN Images

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

- Pooling 제거하고 Strided Convolution으로 대체
- Batch Normalization 사용
- Fully Connected Layer 제거
- Generator에는 ReLU, 마지막단에만 Tanh
- Discriminator에는 LeakyReLU(0.2)

1 epoch 결과

5 epoch 결과

모델이 그냥 외운 것 아닌가?

모델이 그냥 외운 것 아닌가?

확인을 어떻게 하지?

모델이 그냥 외운 것 아닌가?

확인을 어떻게 하지?

z를 interpolation하면서 어떻게 변하나 확인해보자 만약에 급격하게 확 변하면 외운 것이고 아니면 어떤 의미를 이해한 것으로 판단할 수 있다!

없던 창문이 생겨남

TV가 창문으로 변함

Vector Arithmetic이 가능하다!

이런 Interpolation도 가능하다!

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$$

$$\begin{split} \min_{G} \max_{D} V(D,G) &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]. \\ &\qquad \qquad \qquad \qquad \\ \min_{G} \max_{D} V(D,G) &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z}|\boldsymbol{y})))]. \end{split}$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

$$\lim_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$$

y가 label

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$$

$$\mathbf{y} > \mathbf{y}$$
 label

이미지를 생성할 때 class 라벨을 z와 함께 전달

$$\min_{G}\max_{D}V(D,G)=\mathbb{E}_{oldsymbol{x}\sim p_{\mathrm{data}}(oldsymbol{x})}[\log D(oldsymbol{x})]+\mathbb{E}_{oldsymbol{z}\sim p_{z}(oldsymbol{z})}[\log (1-D(G(oldsymbol{z})))].$$
 $\min_{G}\max_{D}V(D,G)=\mathbb{E}_{oldsymbol{x}\sim p_{\mathrm{data}}(oldsymbol{x})}[\log D(oldsymbol{x}|oldsymbol{y})]+\mathbb{E}_{oldsymbol{z}\sim p_{z}(oldsymbol{z})}[\log (1-D(G(oldsymbol{z}|oldsymbol{y})))].$
 y 가 label Discriminator 에도class 라벨을 z 와 함께 전달 이미지를 생성할 때 class 라벨을 z 와 함께 전달

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$$

Figure 2: Generated MNIST digits, each row conditioned on one label

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$$

Figure 2: Generated MNIST digits, each row conditioned on one label

꼭 label이 있어야 가능한 건가?

(a) Varying c_1 on InfoGAN (Digit type)

(b) Varying c_1 on regular GAN (No clear meaning)

(c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)

(d) Varying c_3 from -2 to 2 on InfoGAN (Width)

Unsupervised Learning으로 카테고리나 기울어진 정도, 두께를 찾을 수 있다!

기존의 GAN

+

Generator에 넣은 c가 Discriminator를 통과 -해도 남아있게 만들자

CGAN은 생성 및 구분 시 label을 추가 정보로만 제공했다면

ACGAN은 Auxiliary Classifier를 추가하여 클래스를 구분하게 만듦

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and SSIM are shown in brackets. $[4 \times \text{upscaling}]$

Mode collapse가 일어나는 GAN의 특성이 오히려 장점이 된 케이스

Generative Adversarial Text to Image Synthesis

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding $\varphi(t)$ is used by both generator and discriminator. It is projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

a group of people on skis stand on the snow.

a table with many plates of food and drinks

two giraffe standing next to each other in a forest.

a large blue octopus kite flies above the people having fun at the beach.

a man in a wet suit riding a surfboard on a wave.

two plates of food that include beans, guacamole and rice.

a green plant that is growing out of the ground.

there is only one horse in the grassy field.

a pitcher is about to throw the ball to the batter.

a picture of a very clean living room.

a sheep standing in a open grass field.

a toilet in a small room with a window and unfinished walls.

텍스트가 들어오면 해당 문장에 맞는 이미지를 생성해내는 conditional GAN

Positive examples

Real or fake pair?

G tries to synthesize fake images that fool **D**

D tries to identify the fakes

Negative examples

Figure 3: Two choices for the architecture of the generator. The "U-Net" [34] is an encoder-decoder with skip connections between mirrored layers in the encoder and decoder stacks.

입력으로 이미지를 받기 때문에 Generator -가 Encoder-Decoder 형식을 가짐

Pair가 있던 pix2pix과 달리 Unpaired Image to Image Translation

DiscoGAN

CycleGAN

https://youtu.be/XOxxPcy5Gr4?t=1m21s

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spatial resolution of 4×4 pixels. As the training advances, we incrementally add layers to G and D, thus increasing the spatial resolution of the generated images. All existing layers remain trainable throughout the process. Here $N\times N$ refers to convolutional layers operating on $N\times N$ spatial resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.

Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the new layers smoothly. This example illustrates the transition from 16×16 images (a) to 32×32 images (c). During the transition (b) we treat the layers that operate on the higher resolution like a residual block, whose weight α increases linearly from 0 to 1. Here $2\times$ and $0.5\times$ refer to doubling and halving the image resolution using nearest neighbor filtering and average pooling, respectively. The toRGB represents a layer that projects feature vectors to RGB colors and fromRGB does the reverse; both use 1×1 convolutions. When training the discriminator, we feed in real images that are downscaled to match the current resolution of the network. During a resolution transition, we interpolate between two resolutions of the real images, similarly to how the generator output combines two resolutions.

소개한 예시 외에도 엄청 많음

Papers

Theory & Machine Learning

- A Connection between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models [arXiv]
- A General Retraining Framework for Scalable Adversarial Classification [Paper]
- Activation Maximization Generative Adversarial Nets [arXiv]
- AdaGAN: Boosting Generative Models [arXiv]
- Adversarial Autoencoders [arXiv]
- Adversarial Discriminative Domain Adaptation [arXiv]
- Adversarial Generator-Encoder Networks [arXiv]
- Adversarial Feature Learning [arXiv] [Code]
- · Adversarially Learned Inference [arXiv] [Code]
- AE-GAN: adversarial eliminating with GAN [arXiv]
- An Adversarial Regularisation for Semi-Supervised Training of Structured Output Neural Networks [arXiv]
- · Associative Adversarial Networks [arXiv]
- · Autoencoding beyond pixels using a learned similarity metric [arXiv]
- Bayesian Conditional Generative Adverserial Networks [arXiv]
- Bayesian GAN [arXiv]
- BEGAN: Boundary Equilibrium Generative Adversarial Networks [Paper] [arXiv] [Code]
- Binary Generative Adversarial Networks for Image Retrieval [arXiv]
- Boundary-Seeking Generative Adversarial Networks [arXiv] [Code]
- · CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training [arXiv]
- Comparison of Maximum Likelihood and GAN-based training of Real NVPs [arXiv]
- Conditional CycleGAN for Attribute Guided Face Image Generation [arXiv]
- Conditional Generative Adversarial Nets [arXiv] [Code]

- LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation [arXiv]
- MAGAN: Margin Adaptation for Generative Adversarial Networks [arXiv] [Code]
- Maximum-Likelihood Augmented Discrete Generative Adversarial Networks [arXiv]
- McGan: Mean and Covariance Feature Matching GAN [arXiv]
- Message Passing Multi-Agent GANs [arXiv]
- Mode Regularized Generative Adversarial Networks [arXiv] [Code]
- Multi-Agent Diverse Generative Adversarial Networks [arXiv]
- Multi-Generator Gernerative Adversarial Nets [arXiv]
- Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models [arXiv]
- On the effect of Batch Normalization and Weight Normalization in Generative Adversarial Networks [arXiv]
- On the Quantitative Analysis of Decoder-Based Generative Models [arXiv]
- · Optimizing the Latent Space of Generative Networks [arXiv]
- PixelGAN Autoencoders [arXiv]
- SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation [arXiv]
- SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient [arXiv]
- Simple Black-Box Adversarial Perturbations for Deep Networks [Paper]
- Softmax GAN [arXiv]
- Stabilizing Training of Generative Adversarial Networks through Regularization [arXiv]
- Stacked Generative Adversarial Networks [arXiv]
- Statistics of Deep Generated Images [arXiv]
- The Cramer Distance as a Solution to Biased Wasserstein Gradients [arXiv]
- Towards Understanding Adversarial Learning for Joint Distribution Matching [arXiv]
- Training generative neural networks via Maximum Mean Discrepancy optimization [arXiv]
- Triple Generative Adversarial Nets [arXiv]
- Unrolled Generative Adversarial Networks [arXiv]
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [arXiv] [Code] [Code] [Code] [Code] [Code]
- Wasserstein GAN [arXiv] [Code] [Code]

Q&A