Pooled Cross-Sections and Panel Data Models

Applied Econometrics for Researchers, PhD Vera Rocha, CBS-SI, vr.si@cbs.dk
30th November 2022

Agenda for today

- 1. Pooled cross-sections vs. panel data
- 2. The value of pooled cross-sections & panel data for policy analysis <u>(only brief intro, more on this next week)</u>
- 3. Two-period panel data and extensions
- 4. First-differences model
- 5. Fixed and random effects estimators
- 6. Examples along the way (including in Stata)

Key readings:

- Wooldridge, Introductory econometrics, a modern approach, Chapters 13 & 14
- For guidance on R, check Cunningham, Mixtape, Chapter 8 on Panel Data

Introducing a time dimension:

Cross-sectional data (so far)

- Observing many subjects drawn <u>independently</u> from the population
- Observing them at the <u>same point in</u> <u>time</u>

Time-series data (not our focus)

- Observing the same "subject" (e.g., country)
- Over <u>multiple periods</u>

CELEBRATING 100 YEARS COPENHAGEN BUSINESS SCHOOL

Pooled cross-sections

- Observing many subjects drawn
 <u>independently</u> from the population
- Observed at a number of different points in time; <u>only one observation per subject</u>

Panel/Longitudinal data

- Observing many subjects drawn <u>independently</u> from the population
- Observed at a number of different points
 in time; following subjects over time

Cross-sections, Pooled Cross-sections & Panels

Cross-Section: Observations in a given period (*t*) for subjects (e.g., firms, individuals, households, countries, ... – ideally a random sample from the population):

$$(y_{it}, x_{it1}, x_{it2}, x_{it3}, ..., x_{itk})$$
 with $i = 1, 2, ..., n$ [t could be omitted]

Extending this to a **2-period case**:

Period 1: $(y_{i1}, x_{i11}, x_{i12}, x_{i13}, ..., x_{i1k})$

Period 2: $(y_{i2}, x_{i21}, x_{i22}, x_{i23}, ..., x_{i2k})$

- If individuals in Period 1 ≠ individuals in Period 2: Independent & Pooled Cross-Sections
- If individuals in Period 1 = individuals in Period 2: Panel Data

Pooling Cross-sections across Time

Pooling independent cross-sections for two periods:

Period 1: $(y_{i1}, x_{i11}, x_{i12}, x_{i13}, ..., x_{i1k})$; Period 2: $(y_{i2}, x_{i21}, x_{i22}, x_{i23}, ..., x_{i2k})$

Three possible approaches:

1. Estimate a joint model, ignoring the time dimension (pooling)

Increased sample size

We could test: $\widehat{\beta_1} = \widehat{\beta_2}$

$$Y = X\beta + u \rightarrow \hat{\beta} pooled$$

2. Use the cross-sections separately (no pooling)

$$t = 2$$
: $Y = X\beta_2 + u \rightarrow \widehat{\beta_2}$

t = 1: $Y = X\beta_1 + u \rightarrow \widehat{\beta_1}$ t = 2: $Y = X\beta_2 + u \rightarrow \widehat{\beta_2}$

Possibly most interesting

Combine cross-sections but allow certain coefficients to differ between periods (partial pooling) – possibly convenient in case of structural change

Adding Time Dummies to the Regression

If 2 periods: a **dummy variable** d2 = 1 if period = 2 (and 0 otherwise) captures specificities of each period:

$$y_i = \beta_0 + \delta_0 \frac{d2_i}{d2_i} + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + u_i,$$

i = 1, 2, ..., n (and not necessarily the same in the two periods)

- The constant term is then allowed to change between period 1 and 2
- Other coefficients can also change between periods if interacted with the time dummy d2
- Example: Has the return to education changed over time?

$$\log(wage)_i = \beta_0 + \delta_0 \frac{d2_i}{d2_i} + \beta_1 educ_i + \delta_1 \frac{d2_i}{d2_i} \cdot educ_i + \dots + u_i$$

• Test H_0 : $\delta_1 = 0$

Note: If multiple periods, we could add dummies for all of them, and use the first period as reference.

Change in Coefficients across Time: Example

. tab y85

у85	Freq.	Percent	Cum.
0	550 534	50.74 49.26	50.74 100.00
Total	1.084	100.00	

Two pooled cross-sections: different individuals surveyed in 1978 & 1985

. reg lwage y85 educ y85educ female y85fem exper expersq union

	Source	SS	df	MS	Number of obs	=	1,084
-					F(8, 1075)	=	99.80
	Model	135.992074	8	16.9990092	Prob > F	=	0.0000
	Residual	183.099094	1,075	.170324738	R-squared	=	0.4262
-					Adj R-squared	=	0.4219
	Total	319.091167	1,083	.29463635	Root MSE	=	.4127

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
у85	.1178062	.1237817	0.95	0.341	125075	.3606874
educ	.0747209	.0066764	11.19	0.000	.0616206	.0878212
y85educ	.0184605	.0093542	1.97	0.049	.000106	.036815
female	3167086	.0366215	-8.65	0.000	3885663	244851
y85fem	.085052	.051309	1.66	0.098	0156251	.185729
exper	.0295843	.0035673	8.29	0.000	.0225846	.036584
expersq	0003994	.0000775	-5.15	0.000	0005516	0002473
union	.2021319	.0302945	6.67	0.000	.1426888	.2615749
_cons	. 4589329	.0934485	4.91	0.000	.2755707	.642295

- The return to education in 1978 is estimated to be \approx 7.5%, being 1.8% **higher** in 1985 (i.e. return to education in 1985 is \approx 0.075+0.018 \approx 9%).
- Gender wage gap of \approx 27% in 1978 [100*(exp(-0.317)-1)%], with a tendency to decrease later (marginally in significance). GWG = 21% in 1985.

Structural Change across Time

If we allow all coefficients to change over time:

$$y_{i} = \beta_{0} + \delta_{0}d2_{i} + \beta_{1}x_{i1} + \delta_{1}d2_{i}x_{i1} + \beta_{2}x_{i2} + \delta_{2}d2_{i}x_{i2} + \dots + \beta_{k}x_{ik} + \delta_{k}d2_{i}x_{ik} + u_{i}$$

- F-test for $\delta_0 = \delta_1 = \dots = \delta_k = 0$
- Same logic of a Chow-test to determine whether a multiple regression function differs across two groups
- Maybe better to keep cross-sections separate?

Policy Analysis with Pooled Cross-sections

- Pooled cross-sections can be useful for evaluating the impact of certain events or policy interventions
- Two cross-sectional datasets may be enough if collected before and after the occurrence of the event/intervention
- Event or policy intervention must be a "natural (or a quasi-) experiment"
 - Control Group not affected by the policy change/event/intervention
 - Treatment Group affected by the policy change/event/intervention
- Key ingredients for a difference-in-differences analysis
 - Treated vs. Control group difference
 - Time difference

$$\log(durat) = \beta_0 + \delta_0 after + \beta_1 highearn + \delta_1 after \cdot highearn + controls + u$$

- 2 pooled cross-sections, different years
- y [log(durat)]: length of time (in weeks) that an injured worker receives workers' compensation
- d2 [after]: dummy=1 once the cap on weekly earnings covered by workers' compensation was raised
- dT [highearn]: dummy=1 for high-income workers; 0 for low-income workers
- To what extent more generous workers' compensation causes people to stay out of work longer (everything else constant)?

Example: Diff-in-Diff with Pooled Cross-sections

- af change is statistically insignificant
 → the increase in the earnings cap has no effect on duration for low-income workers (δ₀)
- High-income earners had already ≈ 15% longer time on workers' compensation before the policy change (β₁)
- The average length of time on workers' compensation for high earners increased by further \approx 22% due to the increase in earnings cap. (δ_1)

. reg ldurat afchnge highearn afhigh highearn male married manuf construc head neck

Source	SS	df	MS	Number of obs	=	6,824
Model	346.049473	9	38.4499415	F(9, 6814) Prob > F	=	0.0000
Residual	11227.9331	6,814	1.64777416	R-squared Adi R-squared	=	0.0299
Total	11573.9826	6,823	1.69631871	Root MSE	=	1.2837

ldurat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
afchnge	.0226262	.039981	0.57	0.571	055749	.1010013
highearn	.1512806	.047027	3.22	0.001	.059093	.2434682
afhigh_highearn	.2237872	.0637635	3.51	0.000	.0987909	.3487836
male	1208571	.0405547	-2.98	0.003	2003569	0413573
married	.1227717	.0351384	3.49	0.000	.0538895	.1916539
manuf	1110681	.0359758	-3.09	0.002	1815919	0405443
construc	.2110412	.046122	4.58	0.000	.1206276	.3014547
head	47542	.0824976	-5.76	0.000	6371411	3136989
neck	.2774732	.1215091	2.28	0.022	.0392774	.5156691
_cons	1.240535	.0458285	27.07	0.000	1.150697	1.330373

Note: Control variables can significantly affect the "treatment effect"! (Recall matching lecture)

Panel Data: Two-Period Case

Same *n* subjects observed in period 1 and period 2.

- Period 1: $(y_{i1}, x_{i11}, x_{i12}, x_{i13}, ..., x_{i1k})$ - Period 2: $(y_{i2}, x_{i21}, x_{i22}, x_{i23}, ..., x_{i2k})$ N subjects = 2*N observations (balanced panel)

Period 2 can be years (months, weeks, ...) after period 1

i can correspond to persons, firms, households, countries, regions...

Also known as longitudinal data.

Consider simplest case: One regressor. We want to estimate the **causal effect** of *x* on *y*, keeping all else equal.

Back to Unobserved Effects

Model (example): $y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 x_{it} + \boldsymbol{a_i} + u_{it}$

Time dummy: $d2_t$ takes the same value for all subjects ("macro effect")

Composite error term: $v_{it} = a_i + u_{it}$

Unobserved "fixed effect" a_i (unobserved heterogeneity):

- Time invariant
- Specific to each subject (firm, person, county...)
- All factors that affect y_{it} that do not change over time

Idiosyncratic error u_{it} :

Varies randomly across both subjects and time: The "usual" error term

Is (pooled) OLS an option?

Note that we now have a composite error term: $v_{it} = a_i + u_{it}$

In order for **pooled OLS** to produce a consistent estimate of β_1 , it is required that:

$$cov(x_{it}, v_{it}) = 0$$

and this now implies $cov(x_{it}, a_i) = 0$ too!

It is no longer enough to satisfy $cov(x_{it}, u_{it}) = 0$.

Back to "omitted variable bias" or "heterogeneity bias"

It is anyway
recommended to
use clusteredrobust s.e. when
using pooled
OLS!

Solution: Panel Structure!

Repeated observations of the same subjects offers a solution:

- First-differences (FD) estimator
- T = 1: $y_{i1} = \beta_0 + \beta_1 x_{i1} + a_i + u_{i1}$
- T = 2: $y_{i2} = (\beta_0 + \delta_0) + \beta_1 x_{i2} + \alpha_i + u_{i2}$

Recall the returns to education example: a_i can capture unobserved (permanent) ability

- Subtracting the first from the second:
- $\Delta y_i = \delta_0 + \beta_1 \Delta x_i + \Delta u_i \rightarrow$ we get rid of a_i ; OLS should now be consistent, as soon as

$$cov(\Delta x_i, \Delta u_i) = 0$$

Any problems with this approach?

- We cannot estimate the parameters of time invariant variables (e.g., gender; and even time-varying variables that do not vary within the time period covered, e.g., education?)
- An alternative might be to interact these variables with time dummies or other time-varying variables.
- Panel data might also be difficult to obtain especially through surveys.
- Country-level registers might be an (amazing) alternative.
- Still: with a 2-period panel we can control for unobserved effects → not possible in standard cross-sections (omitted variable bias)

Policy Analysis (again) with Panel Data

- Panel data can be (even more) useful for policy analysis than repeated crosssections
- Individuals/firms often **self-select** into the treatment/program (*recall endogeneity lecture bias due to <u>self-selection into treatment</u>)*
- ...or they are assigned to the program based on (unobserved) characteristics that could be related to the outcome variable.
- Assume a number of individuals go through the "program" in period 2, but some do not.
- Define a "treatment" dummy: $treat_{i,1} = 1/0$, for treated/control individuals

$$y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 treat_{it} + \frac{a_i}{a_i} + u_{it}$$

a_i captures time invariant characteristics, including those that could affect self-selection (or assignment) into the treatment/program

Policy Analysis (now) with First-Differences

First-difference the previous model and use OLS to estimate:

$$\Delta y_i = \delta_0 + \beta_1 \Delta treat_i + \Delta u_i$$

But because the treatment happens only in period 2:

$$\Delta treat_i = treat_{i2}$$

$$\widehat{\beta_1} = \overline{\Delta y}_{Treated} - \overline{\Delta y}_{Control}$$

Difference over time is now within the same individual.

OLS estimator is consistent as soon as $cov(treat_i, \Delta u_i) = 0$

Policy Analysis using FD: Example

$$scrap_{it} = \beta_0 + \delta_0 y88_t + \beta_1 grant_{it} + a_i + u_{it}, \qquad t = 1987,1988$$

- **Scrap** rate of firm i in year t refers to the % items that must be scrapped due to defects (if lower ⇔ "higher productivity")
- Grant is a binary indicator = 1 for firms that received a job training grant in 1988
- a_i contains factors such as average employees' ability, capital, managerial skills: roughly constant over a 2-year period and possibly correlated with both "grant" and "scrap rate"
- Taking the first differences (1988-1987) we eliminate a_i

$$\Delta scrap_i = \delta_0 + \beta_1 \Delta grant_i + \Delta u_i$$

& note that in this case

$$\Delta grant_i = grant_{i,1988}$$

Policy Analysis using FD: Example

```
sort fcode year
```

by fcode: gen fd_lscrap = lscrap[_n]-lscrap[_n-1]

by fcode: gen fd grant = grant[n]-grant[n-1]

reg fd_lscrap fd_grant if year == 1988

. reg fd_lscrap fd_grant if year == 1988

	Source	SS	df	MS	Number of obs	=	54
-					F(1, 52)	=	3.74
	Model	1.23795555	1	1.23795555	Prob > F	=	0.0585
	Residual	17.1971834	52	.330715065	R-squared	=	0.0672
-					Adj R-squared	=	0.0492
	Total	18.4351389	53	.34783281	Root MSE	=	.57508

fd_lscrap	Coef. Std.	Err. t	P> t	[95% Conf.	Interval]
fd_grant _cons	3170579 .1638 0574357 :097				.0117816 .1376223

Not strictly necessary since for 1987 these variables will be missing

Summary for variables: fd_lscrap by categories of: grant

mean	grant
0574357 3744936	0 / 1
1689931	Total

Note: Controls could matter!

$$\widehat{\beta_1} = \overline{\Delta y}_{Treated} - \overline{\Delta y}_{Control}$$

$$-0.3171 = -0.3745 - (-0.0574)$$

Because the treatment occurs in t=2!

20

Comparing FD with Pooled OLS

Running a "pooled OLS" instead:

$$scrap_{it} = \beta_0 + \delta_0 d2_t + \beta_1 grant_{it} + a_i + u_{it}$$

Source	SS	df	MS	Number of obs	=	108
				F(2, 105)	=	0.18
Model	.810536031	2	.405268016	Prob > F	=	0.8378
Residual	240.098945	105	2.28665662	R-squared	=	0.0034
				Adj R-squared	=	-0.0156
Total	240.909481	107	2.25149048	Root MSE	=	1.5122
lscrap	Coef.	Std. Err.	t	P> t [95% Co	nf.	Interval]
d2	1889081	.3281441	-0.58	0.566839557	2	.461741
grant	.0566004	.43091	0.13	0.896797814	5	.9110152
_cons	.597434	.2057802	2.90	0.005 .189409	9	1.005458

- Can we trust OLS estimates? Remember that a_i is included in the error term, and possibly correlated with *grant*.
- The difference between OLS and FD estimates indicate this correlation is indeed present, and that firms with lower-ability workers (or firms of lower quality on average) are more likely to receive the grant/subsidy (as expected)

Panel Data with T > 2

First-differences can still be applied as before – we could difference adjacent periods and with that eliminate a_i ... [note that we lose the 1st period!]

...but there are more efficient approaches for this case: Within-estimation (also called Least Squares Dummy Variable (LSDV) estimation)

Logic: A dummy for each individual

- Omit the intercept in the regression
- Allow each individual to have a different intercept

How to implement the **fixed-effects model**?

- Including a "thousand" dummy variables
 - Drawback of this approach?
 - Alternative way? Data transformation...

Data Transformation for FE Estimation

- Like in FD estimation, we transform the data to remove the unobserved effect a_i prior to any estimation.
- Note that any constant explanatory variables (e.g., gender), will also be lost along with a_i .
- Suppose that for each "individual" i in our data:

$$y_{it} = a_i + \beta x_{it} + u_{it} \tag{1}$$

• For each "individual" i, we can average this equation over time:

$$\bar{y}_i = a_i + \beta \bar{x}_i + \bar{u}_i \tag{2}$$

- Subtracting (2) from (1): $y_{it} \bar{y}_i = \beta(x_{it} \bar{x}_i) + (u_{it} \bar{u}_i)$ a_i is dropped!
- OLS model on: $\ddot{y}_{it} = \beta \ddot{x}_{it} + \ddot{u}_{it}$ [no intercept!]
- OLS on time-demeaned data → fixed effects (or within) estimator; consistent and unbiased if all the x variables are exogenous

Fixed Effects versus Random Effects

Fixed Effects

- Allows for arbitrary correlation between a_i and the explanatory variables in any time period
- Does not affect consistency of the estimates since the data transformation eliminates a_i
- Drawback: no estimates for timeinvariant regressors (they are included in a_i)
- Intercepts capture individual heterogeneity (a single intercept refers to the average across all \hat{a}_i)

Random Effects

- DOES NOT allow for arbitrary correlation between a_i and the explanatory variables in any time period
- Why? a_i keeps being part of the error term!
- Consistent only if $cov(a_i, x_{it}) = 0$
- Advantage: coefficients of timeinvariant regressors can be estimated; also more efficient (saving degrees of freedom)

Hausman Test compares the two estimators. A rejection under Hausman test implies that RE key assumption is false, and we then use FE.

Random Effects Model

$$y_{it} = \beta_0 + (time\ dummies) + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + \boldsymbol{a_i} + u_{it}$$

Back to the **composite error term**: $v_{it} = a_i + u_{it}$

Remember that RE assumes no correlation between x and a_i

- Key assumption: $cov(a_i, x_{kij}) = 0$, t = 1, 2, ..., T; j = 1, 2, ..., k
- Data are still transformed, such that the equation being estimated is:

$$y_{it}-\theta\bar{y}_i=\beta_0(1-\theta)+\beta_1(x_{1it}-\theta\bar{x}_1)+\cdots+(v_{it}-\theta\bar{v}_i)$$
 where
$$\theta=1-\frac{\sigma_u}{\sqrt{\sigma_u^2+T\sigma_a^2}}$$

- The closer is $\hat{\theta}$ to zero (one), the closer will RE estimates be to pooled OLS (FE).
- The closer is $\hat{\theta}$ to zero, the less important is the unobserved effect a_i .

Between Estimator vs. Within Estimator

Note that in panel data we have two kinds of variations

- Variation from observation to observation within a single ellipse (within individuals)
- Variation in observations from ellipse to ellipse (between individuals)

FE estimator: within estimator

OLS: between estimator (cross-sectional equation)

RE estimator: a (matrix-) weighted average of the two

• Random Effects = Fixed effects (within) + λ *between

$$\lambda = \frac{\sigma_u^2}{\sigma_u^2 + T\sigma_a^2}$$

Random Effects' Take-Aways:

- **Extra efficiency** associated with the RE estimator
 - Using information from both the within and the between estimators
- Estimating coefficients of time-invariant variables
 - Varying between ellipses (recall previous diagram)
- ★ Biased when there is correlation between explanatory variables and the composite error term
 - Between estimator is biased

Panel Data in Stata

What do panel data look like? How to reshape them?

- Long data vs. wide data
- reshape command

Set your data for panel data analysis

- xtset id time
- Describe with xtsum

(Linear) Panel data estimation commands

- Regression: xtreg (options fe or re)
- Note that there are other commands for binary dependent variables! (out of our scope)
- Can be combined with other methods (e.g., IV or run panel data models on a matched sample)

Example: Back to wages!

nlswork.dta

US women, 14-46 during the 1968-1988

Let's see the effects of schooling, age, experience, tenure, race, and area of residence on their wages

- Data structure and description
- Compare different estimators

Panel Data Format

. list idcode year ln wage grade age ttl exp in 1/24

	idcode	year	ln_wage	grade	age	ttl_exp
1.	1	70	1.451214	12	18	1.083333
2.	1	71	1.02862	12	19	1.275641
3.	1	72	1.589977	12	20	2.25641
4.	1	73	1.780273	12	21	2.314102
5.	1	75	1.777012	12	23	2.775641
6.	1	77	1.778681	12	25	3.775641
7.	1	78	2.493976	12	26	3.852564
8.	1	80	2.551715	12	28	5.294872
9.	1	83	2.420261	12	31	5.294872
10.	1	85	2.614172	12	33	7.160256
11.	1	87	2.536374	12	35	8.98718
12.	1	88	2.462927	12	37	10.33333
13.	2	71	1.360348	12	19	.7115384
14.	2	72	1.206198	12	20	1.134615
15.	2	73	1.549883	12	21	1.461538
16.	2	75	1.832581	12	23	2.211539
17.	2	77	1.726721	12	25	3.211539
18.	2	78	1.68991	12	26	4.211538
19.	2	80	1.726964	12	28	6.096154
20.	2	82	1.808289	12	30	7.666667
21.	2	83	1.863417	12	31	8.583333
22.	2	85	1.789367	12	33	10.17949
23.	2	87	1.84653	12	35	12.17949
24.	2	88	1.856449	12	37	13.62179

- Data are already in the long form (desirable for estimation)
 - i.e., first observation is for individual 1 in year 1; second observation is for individual 1 in year 2
- Unbalanced panel! Why?
- Any time-invariant variables? Implications?
- Remember to declare your data as a panel: xtset idcode year

Panel Data Format

- 4711 individuals
- 15 years
- But not everyone appears is all years (unbalanced panel)
- In principle it has to do with random missing data (testable)
 - Let's assume so here
 - In the future take potential attrition bias into consideration if needed

. xtdescribe

Distribution of T_i:	min	5%	25%	50%	75%	95%	max
	1	1	3	5	9	13	15

	Freq.	Percent	Cum.	Pattern
_	136	2.89	2.89	1
	114	2.42	5.31	1
	89	1.89	7.20	1.11
	87	1.85	9.04	11
	86	1.83	10.87	111111.1.11.1.11.1
	61	1.29	12.16	11.1.11
	56	1.19	13.35	11
	54	1.15	14.50	1.1.11
	54	1.15	15.64	1.11.1.11.11
	3974	84.36	100.00	(other patterns)
	4711	100.00		XXXXXX.X.XX.XX.XX

Within vs. Between Variation

. xtsum idcode year ln wage grade age ttl exp

Variable		Mean	Std. Dev.	Min	Max	Observat	ions
idcode	overall	2601.284	1487.359	1	5159	N = 2	8534
	between		1487.57	1	5159	n =	4711
	within		0	2601.284	2601.284	T-bar = 6.0	5689
year	overall	77.95865	6.383879	68	88	N = 2	8534
	between		5.156521	68	88	n =	4711
	within		5.138271	63.79198	92.70865	T-bar = 6.0	5689
ln wage	overall	1.674907	. 4780935	0	5.263916	N = 2	8534
	between		.424569	0	3.912023	n =	4711
	within		.29266	4077221	4.78367	T-bar = 6.0	5689
grade	overall	12.53259	2.323905	0	18	N = 2	8532
-	between		2.566536	0	18	n =	4709
	within		0	12.53259	12.53259	T-bar = 6.0	5904
age	overall	29.04511	6.700584	14	46	N = 2	8510
aye	between	29.04311	5.485756	14	45		4710
			5.16945	14.79511	43.79511	T-bar = 6.0	
	within		3.16945	14.79511	43.79511	1-bar = 6.0	5308
ttl_exp	overall	6.215316	4.652117	0	28.88461	N = 2	8534
_	between		3.724221	0	24.7062	n =	4711
	within		3.484133	-9.642671	20.38091	T-bar = 6.0	5689

- Total variation can be decomposed into within variation (over time for each individual) and between variation (across individuals)
- Time-invariant variables have zero within variation: consequences for FE estimation?

Within-estimation

OLS on the demeaned data vs FE on the original data

. * Run an OLS on the demeaned data:

. reg new_ln_wage new_grade new_age new_age_sq new_tenure new_ten_sq new_race2

note: new_grade omitted because of collinearity note: new_race2 omitted because of collinearity note: new race3 omitted because of collinearity

Source	SS	df	MS	Number of obs		28,091
				F(6, 28084)	=	817.54
Model	356.514127	6	59.4190212	Prob > F	=	0.0000
Residual	2041.15265	28,084	.072680268	R-squared	=	0.1487
				Adj R-squared	=	0.1485
Total	2397.66678	28,090	.085356596	Root MSE	=	.26959

new_ln_wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
new_grade	0	(omitted)				
new_age	.0419553	.0026101	16.07	0.000	.0368394	.0470711
new_age_sq	0004994	.0000432	-11.55	0.000	0005841	0004147
new_tenure	.0409226	.0014907	27.45	0.000	.0380008	.0438444
new ten sq	0014496	.0000968	-14.97	0.000	0016394	0012599
new_race2	0	(omitted)				
new race3	0	(omitted)				
new not smsa	0933711	.0088227	-10.58	0.000	110664	0760782
new_south	0618201	.0101196	-6.11	0.000	081655	0419853
_cons	.0004568	.0016085	0.28	0.776	002696	.0036097

Note the difference in the constant term – meaning? Missing coefficients for some variables – why?

Different s.e.! → note the difference in the degrees of freedom of the 2 models (why?)

. xtreg ln wag	ge grade age	age sq tenu	re ten sq	race2 ra	ce3 not sm:	sa s	south, fe
note: grade or	mitted becaus	e of colline	earity -		_		
note: race2 or	mitted becaus	e of colline	earity				
note: race3 or	mitted becaus	e of colline	earity				
Fixed-effects	(within) reg	ression		Number	of obs	=	28,09
Group variable	e: idcode			Number	of groups	=	4,69
R-sq:				Obs per	group:		
within =	= 0.1492				min	=	
between =	= 0.3051				avg	=	6.
overall =	= 0.2266				max	=	1
				F(6,233	88)	=	683.3
				Prob >			
corr(u_i, Xb)	= 0.2232			Prob >	F	=	0.000
corr(u_i, Xb)	= 0.2232			Prob >	F	=	0.000
corr(u_i, Xb)	Ι	Std. Err.	t				
	Coef.	Std. Err.	t				
ln_wage	Coef.	(omitted)				nf.	Interval
ln_wage	Coef.	(omitted) .0028583	14.69	P> t	[95% Co	nf.	Interval
ln_wage grade age	Coef. 0 .0419768	(omitted) .0028583 .0000473	14.69 -10.56	P> t 0.000 0.000	[95% Con	nf.	.047579
ln_wage grade age age_sq	Coef. 0 .04197680004996 .040913	(omitted) .0028583 .0000473	14.69 -10.56 25.09	P> t 0.000 0.000 0.000	.036374: 000592	nf. 3 4	.047579 000406 .044108
ln_wage grade age age_sq tenure	Coef. 0 .04197680004996 .040913	(omitted) .0028583 .0000473 .0016304	14.69 -10.56 25.09	P> t 0.000 0.000 0.000	.036374: 000592: .037717:	nf. 3 4	.047579 000406 .044108
ln_wage grade age age_sq tenure ten sq	Coef. 0 .04197680004996 .0409130014494	(omitted) .0028583 .0000473 .0016304 .0001059	14.69 -10.56 25.09	P> t 0.000 0.000 0.000	.036374: 000592: .037717:	nf. 3 4	.047579 000406 .044108
ln_wage grade age age_sq tenure ten sq race2	0 .04197680004996 .0409130014494 0	(omitted) .0028583 .0000473 .0016304 .0001059 (omitted)	14.69 -10.56 25.09 -13.69	P> t 0.000 0.000 0.000	.036374: 000592: .037717: 001656:	nf. 3 4 3	.047579 000406 .044108 001241
ln_wage grade age age_sq tenure ten sq race2 race3	Coef. 0 .04197680004996 .0409130014494 0 00934057	(omitted) .0028583 .0000473 .0016304 .0001059 (omitted) (omitted)	14.69 -10.56 25.09 -13.69	P> t 0.000 0.000 0.000 0.000	.036374:000592037717:001656:	nf. 3 4 3	.047579 000406 .044108 001241
ln_wage grade age age_sq tenure ten sq race2 race3 not_smsa	Coef. 0 .04197680004996 .0409130014494 0 00934057	(omitted) .0028583 .0000473 .0016304 .0001059 (omitted) (omitted) .009664 .0110836	14.69 -10.56 25.09 -13.69	P> t 0.000 0.000 0.000 0.000 0.000	.036374:000592037717:001656:	nf. 33 4 33 9	.047579 000406 .044108 001241 074463 040964
ln_wage grade age age_sq tenure ten sq race2 race3 not_smsa south	Coef. 0 .04197680004996 .0409130014494 0 00934057062689	(omitted) .0028583 .0000473 .0016304 .0001059 (omitted) (omitted) .009664 .0110836	14.69 -10.56 25.09 -13.69	P> t 0.000 0.000 0.000 0.000 0.000	.036374:000592: .037717:001656:112347:084413:	nf. 33 4 33 9	Interval .047579000406 .044108001241074463040964
ln_wage grade age_age_sq tenure ten sq race2 race3 not_smsa south _cons	0 .04197680004996 .0409130014494 0 00934057062689 .8601684	(omitted) .0028583 .0000473 .0016304 .0001059 (omitted) (omitted) .009664 .0110836	14.69 -10.56 25.09 -13.69	P> t 0.000 0.000 0.000 0.000 0.000	.036374:000592: .037717:001656:112347:084413:	nf. 33 4 33 9	.047579 000406 .044108 001241 074463 040964

Individual (dummies) FE are jointly significant

Random Effects & Hausman Test

. xtreg ln_v	age grade age	age_sq tenur	e ten_sq	race2 ra	ce3 not_smsa	south, re			
Random-effec	ts GLS regress	Number	of obs =	28,091					
Group variab	le: idcode	Number	of groups =	4,697					
R-sq:		Obs per group:							
within	= 0.1472		min =	1					
betweer	= 0.4484		avg =	6.0					
overall	= 0.3461				max =	15			
				Wald at	÷2./0\ =	7006.06			
	- 0 /	- 41		Wald ch		7996.86			
corr(u_1, X)	= 0 (assume	ea)		Prob >	chi2 =	0.0000			
ln wage	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]			
					•				
grade	.0697135	.001805	38.62	0.000	.0661757	.0732512			
age	.0414789	.0027294	15.20	0.000	.0361294	.0468284			
age_so	0005217	.0000452	-11.55	0.000	0006102	0004332			
tenure	.046826	.0015529	30.15	0.000	.0437824	.0498696			
ten so	0015455	.0001017	-15.20	0.000	0017448	0013461			
race2	0520281	.0102026	-5.10	0.000	0720249	0320314			
race3	.0697214	.0412066	1.69	0.091	0110421	.1504849			
not_smsa	1335169	.0073019	-18.29	0.000	1478283	1192054			
south	0882823	.0074406	-11.86	0.000	1028656	0736989			
_cons	.0243543	.0446233	0.55	0.585	0631057	.1118144			
sigma_u	I								
sigma_e									
rho									
	.44230314	(fraction	of varian	nce due t	o u_i)				

hausman	FE	RE	
---------	----	----	--

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	FE	RE	Difference	S.E.
age	.0419768	.0414789	.0004979	.0008489
age_sq	0004996	0005217	.0000221	.0000142
tenure	.040913	.046826	005913	.0004969
ten_sq	0014494	0015455	.0000961	.0000294
not_smsa	0934057	1335169	.0401112	.0063305
south	062689	0882823	.0255933	.0082149

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(6) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 280.37 Prob>chi2 = 0.0000

Note that the comparison can only be made for coefficients that are estimated with BOTH estimators. H0: The coefficients are the same is rejected.

We reject the hypothesis that RE provides consistent estimates

Just one more week to go!

