Introduction to Cryptography Exercise Week 3

Dr. Patrick Struck patrick.struck@uni.kn Leon Weingarten leon.weingarten@uni.kn

Jonah Herr jonah.herr@uni.kn

Exercise 1.

- (a) Prove that the Vigenère cipher using (fixed) period t is perfectly secret when used to encrypt messages of length t, and when the key is only used once.
- (b) Prove (without using Theorem 2.11) that the Vigenère cipher is not perfectly indistinguishable for messages of length 4 when period t=3 is used.

Exercise 2.

Prove that, by redefining the key space, we may assume that Enc is deterministic without changing $\Pr[C=c\mid M=m]$.

Hint: Move the randomness out of Enc.

Exercise 3.

Let $\mathcal{M} = \{a, b\}, \mathcal{K} = \{K_1, K_2, K_3, K_4, K_5\}$ and $\mathcal{C} = \{1, 2, 3, 4, 5\}$. Further, suppose the encryption function is represented by the following encryption matrix:

	a	b
K_1	1	2
K_2	2	3
K_3	3	1
K_4	4	5
K_5	5	4

For example, using key K_2 , b is encrypted to 3. Now choose two positive real numbers α and β such that $\alpha + \beta = 1$, and define $\Pr[K_1] = \Pr[K_2] = \Pr[K_3] = \alpha/3$ and $\Pr[K_4] = \Pr[K_5] = \beta/2$.

Prove that this cryptosystem achieves perfect secrecy.

Exercise* 4.

Let $\epsilon > 0$ be a constant. Say an encryption scheme is ϵ -perfectly secret if for every adversary \mathcal{A} it holds that

$$\Pr[\mathrm{PrivK}^{\mathrm{eav}}_{\mathcal{A},\Pi} = 1] \leq \frac{1}{2} + \epsilon.$$

Consider a variant of the one-time pad where $\mathcal{M} = \{0,1\}^{\ell}$ and the key is chosen uniformly from an arbitrary set $\mathcal{K} \subseteq \{0,1\}^{\ell}$ with $|\mathcal{K}| = (1-\epsilon) \cdot 2^{\ell}$; encryption and decryption are otherwise the same.

Prove that this scheme is $\left(\frac{\epsilon}{2(1-\epsilon)}\right)$ -perfectly secret when $\epsilon \leq \frac{1}{2}$.

Hint: Consider a toy example to get an idea of how this could work. What message/ciphertext-pairs are possible?