Практическая работа № 6

Построение доверительных интервалов для оценки средней генеральной совокупности

Оценка генеральной средней:

1. Случай большого объема выборки $(n \ge 30)$:

$$\bar{X} - \frac{t_{\gamma}\sigma}{\sqrt{n}} < m < \bar{X} + \frac{t_{\gamma}\sigma}{\sqrt{n}},$$

где t_{γ} находится из отношения $\Phi(t_{\gamma}) = \frac{1+\gamma}{2}$, $\Phi(x)$ — функция распределения нормального закона.

2. Случай малого объема выборки ($n \le 30$):

$$\bar{X} - t_{\frac{\gamma+1}{2}}(n-1)\frac{s}{\sqrt{n}} < m < \bar{X} + t_{\frac{\gamma+1}{2}}(n-1)\frac{s}{\sqrt{n}},$$

где $t_{\frac{\gamma+1}{2}}(n-1)$ — квантиль распределения Стьюдента порядка $\frac{1+\gamma}{2}$ с (n-1) степенью свободы (см. прил. 2); s — исправленное среднее квадратическое отклонение.

Оценка генеральной дисперсии:

$$\frac{nS^2}{\chi^2_{\frac{1+\gamma}{2}}(n-1)} < \sigma^2 < \frac{nS^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)},$$

где $\chi_{\frac{1+\gamma}{2}}^2(n-1)$ и $\chi_{\frac{1-\gamma}{2}}^2(n-1)$ — квантили распределения χ^2 Пирсона порядков $\frac{1+\gamma}{2}$ и $\frac{1-\gamma}{2}$ соответственно с (n-1) степенью свободы (см. прил. 3).

Пример 1

Из генеральной совокупности извлечена выборка объемом n = 10:

Построить доверительный интервал для оценки средней при $\gamma = 0.95$.

Решение. В данном случае объем выборки мал и нужно использовать формулу

$$\bar{X} - t_{\frac{\gamma+1}{2}}(n-1)\frac{s}{\sqrt{n}} < m < \bar{X} + t_{\frac{\gamma+1}{2}}(n-1)\frac{s}{\sqrt{n}}.$$

В примере практически все частоты значений признака имеют значения единицы, поэтому используем формулу простых средних $\bar{X} = \frac{\sum x_i}{n}$:

$$\bar{X} = \frac{162+151+161+170+167+164+166+164+173+172}{10} = 165,$$

$$D(X) = \frac{\sum x_i^2}{n} - \bar{X}^2,$$

$$\sum x_i^2 = 162^2 + 151^2 + 161^2 + 170^2 + 167^2 + 164^2 + 166^2 + 164^2 + 173^2 + 172^2 = 272616,$$

$$D(X) = \frac{272616}{10} - 165^2 = 27261,6 - 27225 = 36,6.$$

Исправленное среднее квадратическое отклонение связано с дисперсией следующим соотношением: $s^2 = \frac{n}{n-1} \cdot D(X)$,

$$s^2 = \frac{10}{10-1} \cdot 36,6 \approx 40,67, \qquad s = \sqrt{40,67} \approx 6,38.$$

Далее по таблице квантилей распределения Стьюдента (см. прил. 2) находим квантиль $t_{\frac{\gamma+1}{2}}(n-1)$:

$$\gamma$$
 = 0,95, n = 10, $\frac{1+\gamma}{2}$ = 0,975 , $t_{0,975}(9)$ = 2,262, подставляем:
$$165 - 2,262 \cdot \frac{6,38}{\sqrt{10}} < m < 165 - 2,262 \cdot \frac{6,38}{\sqrt{10}}.$$

Получаем доверительный интервал: 160,43 < m < 169,57.

Пример 2

Известна следующая информация о выборке:

$$n = 72$$
; $\sum x_i = 1267,2$; $\sum x_i^2 = 22536$.

Построить доверительный интервал для оценки средней при $\gamma = 0.99$.

Решение. В данном случае объем выборки велик, используем формулу

$$\bar{X} - \frac{t_{\gamma}\sigma}{\sqrt{n}} < m < \bar{X} + \frac{t_{\gamma}\sigma}{\sqrt{n}}$$
.

Поскольку суммы уже даны по условию, объем вычислений сокращается.

$$\bar{X} = \frac{\sum x_i}{n} = \frac{1267,2}{72} = 17,6,$$

$$\sigma^2 = \frac{\sum (x_i - \bar{X})^2}{n} = \frac{\sum x_i^2}{n} - \bar{X}^2 = \frac{22536}{72} - 17,6^2 = 313 - 309,76 = 3,24,$$

$$\sigma = \sqrt{3,24} = 1,8.$$

По заданной доверительной вероятности γ и таблице распределения нормального закона $\Phi(x)$ (см. прил. 1) определяем t_{γ} : $\Phi(t_{\nu}) = \frac{1+\gamma}{2}$.

 $\Phi(t_{\gamma}) = \frac{1+0.99}{2} = 0.995$, по таблице (см. прил. 1) $t_{\gamma} = 2.575$, подставляем:

$$17,6 - \frac{2,575 \cdot 1,8}{\sqrt{72}} < m < 17,6 - \frac{2,575 \cdot 1,8}{\sqrt{72}}.$$
$$17,05 < m < 18,15.$$

Задание 1

- 1. После очень дождливой ночи на лужайке было обнаружено 12 дождевых червей. Их длины, см:
 - 9,5 9,5 11,2 10,6 9,9 11,1 10,9 9,8 10,1 10,2 10,9 11,0
 - 2. Дана выборка:
 - 3,6 3,9 4,5 3,8 4,4 4,9 4,2 3,8
- 3. Уровень грамотности населения в 15 выбранных развивающихся африканских странах, %:
- 63,4 64,5 57,1 51,7 40,1 37,7 45,8 54,9 35,9 31,0 35,5 19,2 13,6 31,4 40,1
 - 4. Масса 13 шайб, г:
 - 154 152 146 161 148 153 159 160 154 146 150 155 161
 - 5. Рост шести полицейских, см:
 - 180 176 179 181 183 179
 - 6. Дана выборка:
 - 0,30 0,28 0,27 0,33 0,35 0,33 0,27 0,31 0,37 0,29
- 7. Доля учащихся среди молодежи в 15 выбранных развитых странах мира к середине 90-х гг., %:
 - 79 86 87 90 82 88 73 91 94 92 100 83 96 89 78
- Десять пачек определенных сортов печенья выбраны случайным образом и взвешены. Их массы, г:
- 396,8 400,0 397,6 392,1 401,0 392,9 400,8 400,6 399,6 397,3
- Пятнадцать студентов на физическом практикуме экспериментально измеряли величину ускорения свободного падения. Были получены следующие результаты:
- 9,806 9,807 9,810 9,802 9,805 9,806 9,804 9,811 9,801 9,804 9,805 9,809 9,807
- Выборка из 12 кусков розового мыла была взвещена. Вес оказался следующим, г:

174 164 182 169 171 187 176 177 168 171 180 175

Построить доверительный интервал для оценки генеральной средней при заданной доверительной вероятности γ.

Номер	Номер	.,	Номер	Номер	.,
варианта	задания	γ	варианта	задания	γ
1	1	0,9	11	1	0,95
2	2	0,95	12	2	0,99
3	3	0,9	13	3	0,95
4	4	0,99	14	4	0,9
5	5	0,95	15	5	0,9
6	6	0,9	16	6	0,99
7	7	0,99	17	7	0,95
8	8	0,95	18	8	0,9
9	9	0,9	19	9	0,95
10	10	0,99	20	10	0,9

Известна следующая информация о выборке:

1.
$$n = 100$$
, $\bar{X} = 76$, $\sigma = 12$.

2.
$$n = 150$$
, $\overline{X} = 748$, $\sigma = 3.6$.

3.
$$n = 100$$
, $\overline{X} = 82$, $\sum x_i^2 = 686800$.

4.
$$n = 150$$
, $\sum x_i = 1623$, $\sum x_i^2 = 17814,36$.

5.
$$n = 100$$
, $\sum x_i = 1119$, $\sum x_i^2 = 12585,61$.

6.
$$n = 64$$
, $\sum x_i = 5452.8$, $\sum (x_i - \bar{X})^2 = 973.44$.

7.
$$n = 80$$
, $\bar{X} = 69$, $\sigma = 4$.

8.
$$n = 250$$
, $\sum x_i = 43205$, $\sum x_i^2 = 7469107$.

9.
$$n = 72$$
, $\sum x_i = 1267, 2$, $\sum x_i^2 = 22536$.

10.
$$n = 64$$
, $\sum x_i = 1008$, $\sum (x_i - \bar{X})^2 = 172.8$.

Построить доверительный интервал для оценки генеральной редней при заданной доверительной вероятности γ.

Номер варианта	Номер задания	γ	Номер варианта	Номер задания	γ
1	1	0,99	11	1	0,9
2	2	0,9	12	2	0,95
3	3	0,98	13	3	0,99
4	4	0,96	14	4	0,99
5	5	0,9	15	5	0,96
6	6	0,97	16	6	0,9
7	7	0,95	17	7	0,99
8	8	0,99	18	8	0,9
9	9	0,9	19	9	0,95
10	10	0,95	20	10	0,9

ПРИЛОЖЕНИЕ 1

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ НОРМАЛЬНОГО ЗАКОНА

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5717	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706

Окончание таблицы

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9883	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998

КВАНТИЛИ РАСПРЕДЕЛЕНИЯ СТЬЮДЕНТА

$$s_n(x) = \frac{1}{\sqrt{\pi n}} \cdot \frac{\Gamma\left(\frac{n+1}{n}\right)}{\Gamma\left(\frac{n}{2}\right)} \cdot \left(1 + \frac{x^2}{2}\right)^{-\frac{n+1}{2}}, \quad S_n(x) = \frac{1}{\sqrt{\pi n}} \cdot \frac{\Gamma\left(\frac{n+1}{n}\right)}{\Gamma\left(\frac{n}{2}\right)} \cdot \int_{-\infty}^{x} \left(1 + \frac{u^2}{n}\right)^{-\frac{n+1}{2}} du.$$

n p	0,750	0,900	0,950	0,975	0,990	0,995	0,999
1	1,000	3,078	6,314	12,706	31,821	63,657	318
2	0,816	1,886	2,920	4,303	6,965	9,925	22,3
3	0,765	1,638	2,353	3,182	4,541	5,841	10,2
4	0,741	1,533	2,132	2,776	3,747	4,604	7,173
5	0,727	1,476	2,015	2,571	3,365	4,032	5,893
6	0,718	1,440	1,943	2,447	3,143	3,707	5,208
7	0,711	1,415	1,895	2,365	2,998	3,499	4,785
8	0,706	1,397	1,860	2,306	2,896	3,355	4,501
9	0,703	1,383	1,833	2,262	2,821	3,250	4,297
10	0,700	1,372	1,812	2,228	2,764	3,169	4,144
11	0,697	1,363	1,796	2,201	2,718	3,106	4,025
12	0,695	1,356	1,782	2,179	2,681	3,055	3,930
13	0,694	1,350	1,771	2,160	2,650	3,012	3,852
14	0,692	1,345	1,761	2,145	2,624	2,977	3,787
15	0,691	1,341	1,753	2,131	2,602	2,947	3,733
16	0,690	1,337	1,746	2,120	2,583	2,921	3,686
17	0,689	1,333	1,740	2,110	2,567	2,898	3,646
18	0,688	1,330	1,734	2,101	2,552	2,878	3,610
19	0,688	1,328	1,729	2,093	2,539	2,861	3,579
20	0,687	1,325	1,725	2,086	2,528	2,845	3,552
21	0,686	1,323	1,721	2,080	2,518	2,831	3,527
22	0,686	1,321	1,717	2,074	2,508	2,819	3,505

Окончание таблицы

n p	0,750	0,900	0,950	0,975	0,990	0,995	0,999
23	0,685	1,319	1,714	2,069	2,500	2,807	3,485
24	0,685	1,318	1,711	2,064	2,492	2,797	3,467
25	0,684	1,316	1,708	2,060	2,485	2,787	3,450
26	0,684	1,315	1,706	2,056	2,479	2,779	3,435
27	0,684	1,314	1,703	2,052	2,473	2,771	3,421
28	0,683	1,313	1,701	2,048	2,467	2,763	3,408
29	0,683	1,311	1,699	2,045	2,462	2,756	3,396
30	0,683	1,310	1,697	2,042	2,457	2,750	3,385
40	0,681	1,303	1,684	2,021	2,423	2,704	3,307
60	0,679	1,296	1,671	2,000	2,390	2,660	3,232
120	0,677	1,289	1,658	1,980	2,358	2,617	3,160
∞	0,674	1,282	1,645	1,960	2,326	2,576	3,090

КВАНТИЛИ РАСПРЕДЕЛЕНИЯ ПИРСОНА

n/p	0,005	0,010	0,025	0,05	0,10	0,20	0,30	0,70	0,80	0,90	0,95	0,975	0,990	0,995	0,999
1	0.0^4393	0.0^3157	0.0^3982	0.0^2393	0,0158	0,0642	0,148	1,07	1,64	2,71	3,84	5,02	6,63	7,88	10,8
2	0,0100	0,0201	0,0506	0,103	0,211	0,446	0,713	2,41	3,22	4,61	5,99	7,38	9,21	10,6	13,8
3	0,0717	0,115	0,216	0,352	0,584	1,00	1,42	3,67	4,64	6,25	7,81	9,35	11,3	12,8	16,3
4	0,207	0,297	0,484	0,711	1,06	1,65	2,19	4,88	5,99	7,78	9,49	11,1	13,3	14,9	18,5
5	0,412	0,554	0,831	1,15	1,61	2,34	3,00	6,06	7,29	9,24	11,1	12,8	15,1	16,7	20,5
6	0,676	0,872	1,24	1,64	2,20	3,07	3,83	7,23	8,56	10,6	12,6	14,4	16,8	18,5	22,5
7	0,989	1,24	1,69	2,17	2,83	3,82	4,67	8,38	9,80	12,0	14,1	16,0	18,5	20,3	24,3
8	1,34	1,65	2,18	2,73	3,49	4,59	5,53	9,52	11,0	13,4	15,5	17,5	20,1	22,0	26,1
9	1,73	2,09	2,70	3,33	4,17	5,38	6,39	10,7	12,2	14,7	16,9	19,0	21,7	23,6	27,9

n / p	0,005	0,010	0,025	0,05	0,10	0,20	0,30	0,70	0,80	0,90	0,95	0,975	0,990	0,995	0,999
10	2,16	2,56	3,25	3,94	4,87	6,18	7,27	11,8	13,4	16,0	18,3	20,5	23,2	25,2	29,6
11	2,60	3,05	3,82	4,57	5,58	6,99	8,15	12,9	14,6	17,3	19,7	21,9	24,7	26,8	31,3
12	3,07	3,57	4,40	5,23	6,30	7,81	9,03	14,0	15,8	18,5	21,0	23,3	26,2	28,3	32,9
13	3,57	4,11	5,01	5,89	7,04	8,63	9,93	15,1	17,0	19,8	22,4	24,7	27,7	29,8	34,5
14	4,07	4,66	5,63	6,57	7,79	9,47	10,8	16,2	18,2	21,1	23,7	26,1	29,1	31,3	36,1
15	4,60	5,23	6,26	7,26	8,55	10,3	11,7	17,3	19,3	22,3	25,0	27,5	30,6	32,8	37,7
16	5,14	5,81	6,91	7,96	9,31	11,2	12,6	18,4	20,5	23,5	26,3	28,8	32,0	34,3	39,3
17	5,70	6,41	7,56	8,67	10,1	12,0	13,5	19,5	21,6	24,8	27,6	30,2	33,4	35,7	40,8
18	6,26	7,01	8,23	9,39	10,9	12,9	14,4	20,6	22,8	26,0	28,9	31,5	34,8	37,2	42,3
19	6,84	7,63	8,91	10,1	11,7	13,7	15,4	21,7	23,9	27,2	30,1	32,9	36,2	38,6	43,8
20	7,43	8,26	9,59	10,9	12,4	14,6	16,3	22,8	25,0	28,4	31,4	34,2	37,6	40,0	45,3
21	8,03	8,90	10,3	11,6	13,2	15,4	17,2	23,9	26,9	29,6	32,7	35,5	38,9	41,4	46,8
22	8,64	9,54	11,0	12,3	14,0	16,3	18,1	24,9	27,3	30,8	33,9	36,8	40,3	24,8	48,3
23	9,26	10,2	11,7	13,1	14,8	17,2	19,0	26,0	28,4	32,0	35,2	38,1	41,6	44,2	49,7
24	9,89	10,9	12,4	13,8	15,7	18,1	19,9	27,1	29,6	33,2	36,4	39,4	43,0	45,6	51,2
25	10,5	11,5	13,1	14,6	16,5	18,9	20,9	28,2	30,7	34,4	37,7	40,6	44,3	46,9	52,6
26	11,2	12,2	13,8	15,4	17,3	19,8	21,8	29,2	31,8	35,6	38,9	41,9	45,6	48,3	54,1
27	11,8	12,9	14,6	16,2	18,1	20,7	22,7	30,3	32,9	36,7	40,1	43,2	47,0	49,6	55,5
28	12,5	13,6	15,3	16,9	18,9	21,6	23,6	31,4	34,0	37,9	41,3	44,5	48,3	51,0	56,9
29	13,1	14,3	16,0	17,7	19,8	22,5	24,6	32,5	35,1	39,1	42,6	45,7	49,6	52,3	58,3
30	13,8	15,0	16,8	18,5	20,6	23,4	25,5	33,5	36,3	40,3	43,8	47,0	50,9	53,7	59,7
35	17,2	18,5	20,6	22,5	24,8	27,8	30,2	38,9	41,8	46,1	49,8	53,2	57,3	60,3	66,6
40	20,7	22,2	24,4	26,5	29,1	32,3	34,9	44,2	47,3	51,8	55,8	59,3	63,7	66,8	73,4
45	24,3	25,9	28,4	30,6	33,4	36,9	39,6	49,5	52,7	57,5	61,7	65,4	70,0	73,2	80,1
50	28,0	29,7	32,4	34,8	37,7	41,4	44,3	54,7	58,2	63,2	67,5	71,4	76,2	79,5	86,7
75	47,2	49,5	52,9	56,1	59,8	64,5	68,1	80,9	85,1	91,1	96,2	100,8	106,4	110,3	118,6
100	67,3	70,1	74,2	77,9	82,4	87,9	92,1	106,9	111,7	118,5	124,3	129,6	135,6	140,2	149,4

ПРОВЕРКА ГИПОТЕЗЫ СОГЛАСИЯ С ПОМОЩЬЮ КРИТЕРИЯ χ2 ПИРСОНА

Пример. После обследования 757 экземпляров аппаратуры получены данные об ее отказах (за 1000 ч работы):

Число отказов, i	0	1	2	3	4	5
Количество случаев, в которых наблюдалось і отка-	427	235	72	21	1	1
30B, n _i						

При заданном уровне значимости $\alpha = 0.01$ проверить гипотезу о том, что число отказов имеет распределение Пуассона.

Решение. Прежде всего нужно оценить параметр λ распределения Пуассона. Как известно, точечной оценкой параметра λ является выборочное среднее:

$$\widehat{\lambda} = \overline{X}$$
. Вычисляем $\overline{X} = \frac{0.427 + 1.235 + 2.72 + 3.21 + 4.1 + 5.1}{757} = \frac{451}{757} \approx 0,6$.

Следовательно, берем $\hat{\lambda} = \overline{X} = 0,6$. Далее, используя закон распределения Пуассона, вычисляем теоретические вероятности p_i по формуле

$$p_i = \frac{\hat{\lambda}^i}{i!} \cdot e^{-\hat{\lambda}}.$$

Теоретические частоты определяются следующим образом: $n_i^* = n \cdot p_i$, полученные величины теоретических частот округляем до целых.

Результаты вычислений оформим в виде таблицы:

	T		
i	n_i	p_i	n_i^*
0	427	0,54881	416
1	235	0,32929	249
2	72	0,09879	75
3	21	0,01976	15
4	1	0,00296	2
5	1	0,00036	0
Сумма	757	_	757

Видно, что для последних строк таблицы не выполнено условие $n \cdot p_i \ge 5$; в данном случае для его выполнения нужно объединить последние три строки. В итоге таблица примет следующий вид:

i	n_i	n_i^*	$\frac{(n_i - n_i^*)^2}{n_i^*}$
0	427	416	0,291
1	235	249	0,787
2	72	75	0,120
≥3	23	17	2,18
Сумма	757	757	$\chi^2_{\text{набл.}} = 3,316$

Суммируя элементы последнего столбца, получаем $\chi^2_{\text{набл.}} = \sum \frac{(n_i - n_i^*)^2}{n_i^*}.$

По заданному уровню значимости $\alpha=0.01$ и таблице квантилей распределения χ^2 (см. прил. 3) находим квантиль порядка $1-\alpha$ с k-l-1 степенью свободы и определяем $\chi^2_{\text{критич.}}=\chi^2_{1-\alpha}(k-l-1)$. Параметр k равен числу групп после объединения малочисленных групп: k=4, параметр l равен числу неизвестных параметров, от ко-

торых зависит распределение; для распределения Пуассона l=1. Получаем k-l-1=4-1-1=2, далее $1-\alpha=1-0.01=0.99$. Таким образом,

$$\chi_{1-\alpha}^2(k-l-1) = \chi_{0.99}^2(2) = 9.21.$$

Сравниваем: $\chi^2_{\text{набл.}} = 3,316 < \chi^2_{\text{критич.}} = 9,21$. Наблюдаемое значение меньше критического, следовательно, гипотеза о распределении числа отказов по закону Пуассона принимается.

Индивидуальные задания

При заданном уровне значимости $\alpha = 0.01$ проверить гипотезу о том, что выборка имеет распределение Пуассона.

1. Распределение числа забастовок в Великобритании, происходивших каждую неделю в течение 1948—1959 гг.:

Число забастовок в неделю	0	1	2	3	4
Количество недель	252	229	109	28	8

2. Пример Борткевича: распределение кавалеристов, погибших в течение года в армейском корпусе (отчеты 10 корпусов за 20 лет):

Число погибших	0	1	2	3	4
Число наблюдений	109	65	22	3	1

3. В выборке семян клевера встречаются семена повилики:

Число семян повилики	0	1	2	3
Число выборок	599	315	74	12

 Распределение буквы «ц» в отрывках равной величины из сочинений А.П. Чехова:

Число букв «ц»	0	1	2	3	4
Число отрывков	752	207	38	3	0

5. Имеется статистика падений немецких самолетов-снарядов в южной части Лондона во время Второй мировой войны. Вся территория разделена на 576 малых участков площадью 1/4 км²:

Число	0	1	2	3	4	5
снарядов	V			,	-	
Число	220	211	93	35	7	1
участков	229	211	/3	33	,	1

6. Число смертей в один день в возрасте 85 лет:

Число смертей в день	0	1	2	3	4	5	6	7
Число дней	364	376	218	89	33	13	2	1

 Распределение несчастных случаев с женщинами на английских оружейных заводах (за 5 недель):

Число						
несчастных	0	1	2	3	4	5
случаев						
Число женщин	447	132	42	21	3	2

 В результате обследования 150 человек были получены данные о количестве приобретаемых за месяц цветных иллюстративных журналов:

Количество журналов	0	1	2	3	4
Количество человек	91	46	8	3	2

 В результате обследования 330 человек получены данные о количестве посещений оперных театров в месяц:

Количество посещений	0	1	2	3
Количество человек	200	101	25	4

10. По результатам обследования 750 домохозяйств с детьми, имеющих среднедушевой доход менее 1500 р. в месяц (2001 г.), получены данные о количестве получаемых подписных изданий:

Число изданий	0	1	2	3	4
Число домохозяйств	451	229	58	9	3

11. По выборке 600 человек с доходом менее 1500 р. (2001 г.) имеются следующие данные о посещении драматических кружков:

Количество посещений	0	1	2	3	4
Количество человек	330	194	60	13	3

 Распределение семян сорняков в выборках семян тимофеевки (навески по четверти унции):

Число семян сорняков	0	1	2	3	4	5	6	7	8	9
Число выборок	3	17	26	16	18	9	3	5	0	1

 Повреждаемость растений яровой пшеницы личинками жука щелкуна:

Число личинок на растении	0	1	2	3	4	5
Число растений	174	110	19	9	3	2

14. Распределение фрагментов хромосом по клеткам гороха после облучения:

Число фрагментов в клетке	0	1	2	3	4	5	6
Число клеток	877	63	47	7	4	1	1

15. Распределение 1000 женщин по числу рожденных детей:

Число детей	0	1	2	3	4	5	6	7
Число женщин	232	313	260	130	52	10	2	1

16. Распределение частиц в коллоидном растворе золота, появлявшихся в поле зрения микроскопа через промежутки 1/30 мин:

Число частиц в поле зрения	0	1	2	3	4	5	6	7
Число наблюдений	112	168	130	69	32	5	1	1

17. Распределение числа зерен с двумя зародышами:

Число зерен с двумя зародышами	0	1	2	3	4	5	6
Число проб	6	24	32	18	9	6	5

18. В результате обследования 1200 женщин в возрасте 20–45 лет получены данные о частоте посещения салонов красоты (раз в месяц):

Частота посещений	0	1	2	3	4
Замужние женщины, не имеющие детей	102	236	86	20	6

19. В результате обследования 850 мужчин в возрасте 20–50 лет получены данные о частоте посещений ими спортивных залов (раз в месяц):

Частота посещений	0	1	2	3	4
Мужчины, имеющие семью	272	138	35	5	0

20. В результате обследования 850 мужчин в возрасте 20-50 лет получены данные о частоте посещений ими спортивных залов (раз в месяц):

Частота посещений	0	1	2	3	4
Мужчины, не имеющие семью	142	123	78	62	25