

مجاناً ومضموناً

حمل الان

المراجعة رقم (1)

اختبار شهر مارس

Date : / /

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

Lesson (4) : Determinants

second order

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$$

Ex:1 Find the value of the following determinant :

a) $\begin{vmatrix} 2 & 5 \\ 3 & 8 \end{vmatrix}$

b) $\begin{vmatrix} 4 & -7 \\ 2 & 6 \end{vmatrix}$

c) $\begin{vmatrix} 5 & 4 \\ -3 & -2 \end{vmatrix}$

d) $\begin{vmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{vmatrix}$

Third order

$$\begin{aligned} |A| &= \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & j \end{vmatrix} = a \begin{vmatrix} e & f \\ h & j \end{vmatrix} - b \begin{vmatrix} d & f \\ g & j \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ &= -a \begin{vmatrix} e & f \\ h & j \end{vmatrix} + b \begin{vmatrix} d & f \\ g & j \end{vmatrix} - c \begin{vmatrix} d & e \\ g & h \end{vmatrix} \end{aligned}$$

Ex:2 Find the value of the following determinant :

a) $\begin{vmatrix} 4 & -1 & 3 \\ 0 & 5 & -2 \\ 0 & -3 & -1 \end{vmatrix}$

b) $\begin{vmatrix} -1 & 2 & 5 \\ 0 & 3 & -2 \\ 0 & 0 & 6 \end{vmatrix}$

Another method

$$\begin{vmatrix} a & b & c \\ d & e & l \\ m & n & k \end{vmatrix} \xrightarrow{\text{Repeat the first two}} \begin{vmatrix} a & b & c & a & b \\ d & e & l & d & e \\ m & n & k & m & n \end{vmatrix}$$

$$S1 = aek + blm + cdn$$

$$S2 = bdk + aln + cem$$

Then the value of the determinant is $S = S1 - S2$

➤ Remark :

(1) The triangular matrix:

It is a square matrix in which elements above or below principal diagonal are zeroes

$$\text{Ex)} \begin{pmatrix} a & 0 \\ c & d \end{pmatrix}, \begin{pmatrix} a & b & c \\ 0 & e & l \\ 0 & 0 & k \end{pmatrix}$$

$$\text{Its determinant} = \begin{vmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{vmatrix} = a_{11} \times a_{22}$$

$$\text{And } \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11} \times a_{22} \times a_{33}$$

(2) Finding the area of triangle using determinants:

If ΔABC in which $A(x_1, y_1), B(x_2, y_2)$ and $C(x_3, y_3)$

Then the area of triangle ABC = $\frac{1}{2} |A|$ where $A = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$

Steps:

a) Find $A = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$

b) Area = $\frac{1}{2} |A|$

Note: use elements of the 3rd column because it is easier

(3) To prove that three points are collinear:

The three points $(x_1, y_1), (x_2, y_2)$ and $C(x_3, y_3)$ are collinear if

$$A = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \text{zero}$$

➤ Cramer's rule

First: solving a system of linear equations of two variables:

To solve the two equations $ax + by = m$ and $cx + dy = n$ follow the steps:

1) Find the three determinants Δ , Δ_x and Δ_y where

$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}, \Delta_x = \begin{vmatrix} m & b \\ n & d \end{vmatrix}, \Delta_y = \begin{vmatrix} a & m \\ c & n \end{vmatrix}, \Delta \neq 0$$

2) To find the value of x, y

$$x = \frac{\Delta_x}{\Delta}, y = \frac{\Delta_y}{\Delta}$$

Note: If $\Delta = 0$ then the system has no solution

Second: solving a system of linear equations of three variables:

To solve the two equations $a_1x + b_1y + c_1z = m$, $a_2x + b_2y + c_2z = n$ and $a_3x + b_3y + c_3z = k$ follow the steps:

1) Find the four determinants Δ , Δ_x , Δ_y and Δ_z where

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}, \Delta_x = \begin{vmatrix} m & b_1 & c_1 \\ n & b_2 & c_2 \\ k & b_3 & c_3 \end{vmatrix}, \Delta_y = \begin{vmatrix} a_1 & m & c_1 \\ a_2 & n & c_2 \\ a_3 & k & c_3 \end{vmatrix}$$

$$\Delta_z = \begin{vmatrix} a_1 & b_1 & m \\ a_2 & b_2 & n \\ a_3 & b_3 & k \end{vmatrix}, \Delta \neq 0$$

2) To find the value of x, y and z

$$x = \frac{\Delta_x}{\Delta}, y = \frac{\Delta_y}{\Delta}, z = \frac{\Delta_z}{\Delta}$$

Date : / /

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

Ex:3 solve the equation :

$$\begin{vmatrix} x & 0 & 1 \\ 8 & 1-x & -x \\ x & -1 & 1+x \end{vmatrix} = 0$$

.....
.....
.....
.....
.....

Ex:4 Find the area of a triangle whose vertices are

X(1,2) ,Y(3,-4) and Z(-2,3)

.....
.....
.....
.....
.....

DM

Determinant
of a
Matrix

$| A | = ?$
(Part 1)

Date : / /

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

Sheet 4

1 Find the value of each of the following determinants :

(1)
$$\begin{vmatrix} 7 & 5 \\ 3 & 2 \end{vmatrix}$$

(2)
$$\begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix}$$

(3)
$$\begin{vmatrix} -2 & -2 \\ 4 & 0 \end{vmatrix}$$

2 Prove that :

(1)
$$\begin{vmatrix} 2x & -1 \\ 2 & 3x \end{vmatrix} + \begin{vmatrix} 3 & 6x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 13 \\ -2 & -7 \end{vmatrix}$$

(2)
$$\begin{vmatrix} \csc \theta & \cot^2 \theta \\ 1 & \csc \theta \end{vmatrix} \times \begin{vmatrix} 2 & -3 \\ 5 & -7 \end{vmatrix} = 1$$

3 Find the value of each of the following determinants

(1)
$$\begin{vmatrix} 1 & 2 & 3 \\ -1 & 4 & 4 \\ 0 & 7 & 8 \end{vmatrix}$$

(2)
$$\begin{vmatrix} 0 & 42 & 3 \\ 2 & 18 & 7 \\ 0 & 28 & 3 \end{vmatrix}$$

Date : / /

4 Solve each of the following equations

(1) $\begin{vmatrix} 2 & 1 \\ 4 & x \end{vmatrix} = 0$
.....
.....

(2) $\begin{vmatrix} x & -1 \\ 2 & x \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 2 & x \end{vmatrix} = 2$
.....
.....

(3) $\begin{vmatrix} 0 & -1 & x \\ x & 4 & 3 \\ 2 & 1 & 2 \end{vmatrix} = 10$
.....

5 Find using determinants the area of the triangle :

(1) A (2 , 4) , B (-2 , 4) , C (0 , -2)

(2) X (3 , 3) , Y (-4 , 2) , Z (1 , -4)

.....
.....
.....
.....
.....

6 Use determinants to prove that each of the following points are collinear :

(1) **7** (3 , 5) , (4 , -1) , (5 , -7)

(2) (3 , 2) , (-1 , 0) , (-5 , -2)

.....
.....
.....
.....

Date : / /

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

■ Solve each of the following systems of linear equations by Cramer's rule :

(1) $2x - 3y = 5$, $3x + 4y = -1$

(2) $x + 3y = 5$, $2x + 5y = 8$

.....
.....
.....
.....
.....
.....
.....

Solve each of the following systems of linear equations by Cramer's rule :

(1) **■** $2x + y - 2z = 10$, $3x + 2y + 2z = 1$, $5x + 4y + 3z = 4$

.....
.....
.....
.....
.....
.....

Date ://

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

Lesson (5) : Multiplicative inverse of a matrix

If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ Then $A^{-1} = \frac{1}{\Delta} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ $AA^{-1} = A^{-1}A = I$
 $\Delta \neq 0$

1] Show the matrix which have multiplicative inverse :

a) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

b) $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$

c) $\begin{pmatrix} 3 & 3 \\ 1 & 1 \end{pmatrix}$

d) $\begin{pmatrix} 2 & 6 \\ -1 & 3 \end{pmatrix}$

e) $\begin{pmatrix} -1 & 0 \\ 3 & 4 \end{pmatrix}$

f) $\begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix}$

2] what is the real values of a which make each of the following matrices has A multiplicative inverse :

a) $\begin{pmatrix} a & 1 \\ 6 & 3 \end{pmatrix}$

b) $\begin{pmatrix} a & 9 \\ 4 & a \end{pmatrix}$

Date : / /

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

3] if : $X = \begin{pmatrix} 1 & x \\ 0 & -x \end{pmatrix}$ prove that : $X^{-1} = X$

4] solve each of the following system using the matrices :

a) $3x+2y=5$, $2x+y=3$

b) $2x-7y=3$, $x-3y=2$

Date : / /

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

Sheet 5

- 1** Show the matrices which have multiplicative inverse and the matrices which have not multiplicative inverse in the following , and find it if it is existed :

$$(1) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad | \quad (2) \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \quad | \quad (3) \begin{pmatrix} 3 & 3 \\ 1 & 1 \end{pmatrix}$$

- 2]** Find the real values of x which make the matrix $\begin{pmatrix} x & 27 \\ 3 & x \end{pmatrix}$ have no multiplicative inverse.

- 3]** If $X = \begin{pmatrix} 1 & x \\ 0 & -1 \end{pmatrix}$, prove that : $X^{-1} = X$

Date : / /

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

4] If $A = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$ and $AB = \begin{pmatrix} 4 & -2 \\ 0 & 7 \end{pmatrix}$, find the matrix B

.....
.....
.....
.....
.....

5] Solve each system of the following linear equations using the matrices :

(1) $3x + 2y = 5$, $2x + y = 3$ | (2) $2x - 7y = 3$, $x - 3y = 2$

.....
.....
.....
.....
.....

Lesson (3)

Solving the right-angled triangle

1 Find the value of each of X and y in each of the following figures :

(1)

(2)

(3)

2 Find the value of each of the angles α and β in degree measure in each of the following figures :

(1)

(2)

(3)

3 ABC is a right-angled triangle at B. Find AB to one decimal , if :

(1) $m(\angle C) = 32^\circ 18'$ and $AC = 25 \text{ cm}$.

Date : / /

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

Sheet (3)

1 ABC is a right-angled triangle at B. Find AB to one decimal , if :

1 m ($\angle C$) = $54^\circ 13'$ and BC = 20 cm.

« 27.7 cm. »

.....
.....
.....

2 ABC is a right-angled triangle at B. Find m ($\angle C$) to the nearest minute , if :

1 BC = 54 cm. and AC = 88 cm.

« $52^\circ 9'$ »

.....
.....
.....

3 Solve the triangle ABC which is right-angled at B approximating the measures of angles to the nearest degree and the lengths of sides to the nearest cm. where :

(1) AB = 4 cm , BC = 6 cm.

| (2) AB = 12.5 cm , BC = 17.6 cm.

.....
.....
.....

Lesson (4)

Angles of elevation and angles of depression

Angle of elevation

If a person looked from the point A to an object at the point B above his horizontal sight , then the included angle between the horizontal ray \overrightarrow{AC} and the seeing ray to above \overrightarrow{AB} is called the elevation angle of B with respect to A

i.e. $\angle CAB$ is the elevation angle of B with respect to A

Angle of depression

If a person looked from the point B to an object at the point A down his horizontal sight , then the included angle between the horizontal ray \overrightarrow{BD} and the seeing ray to down \overrightarrow{BA} is called the depression angle of A with respect to B

i.e. $\angle DBA$ is the depression angle of A with respect to B

Sheet (4)

- 1 From a point 8 metres apart from the base of a tree , it was found that the measure of the elevation angle of the top of the tree is 22°
 Find the height of the tree to the nearest hundredth.

« 3.23 m. »

Date ://

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

- 2 A man found that the measure of the angle of elevation of the top of a tower , at a distance of 50 m. from its base , is $39^{\circ} 21'$ Find the height of the tower. « 41 m. »

.....
.....
.....
.....
.....

- 3 The length of the thread of a kite is 42 metres. If the measure of the angle which the thread makes with the horizontal ground equals 63° , find to the nearest metre the height of the kite from the surface of the ground.

« 37 m. »

.....
.....
.....
.....

- 4 A person observed , from the top of a hill 2.56 km. high , a point on the ground. He found its depression angle measure was 63° . Find the distance between the point and the observer to the nearest metre.

« 2873 m. »

.....
.....
.....
.....

Lesson (5)

The Circular sector

The circular sector: is a part of the surface of the circle bounded by two radii and an arc .

Area of the circular sector = $\frac{1}{2} r^2 \theta^{\text{rad}}$ (where θ is the angle of the sector, r is the radius of the circle)

Example

- 1 Find the area of the circular sector in which the length of the radius of its circle is 10cm and the measure of its angle is 1.2^{rad}

Solution

Formula:

$$\text{Area of the circular sector} = \frac{1}{2} r^2 \theta^{\text{rad}}$$

Substituting $r = 10$, $\theta^{\text{rad}} = 1.2^{\text{rad}}$:

$$= \frac{1}{2} (10)^2 \times 1.2 = 60 \text{ cm}^2$$

Remember

Relation between the degree measure and the radian measure is:

$$\frac{\theta^{\text{rad}}}{\pi} = \frac{x^{\circ}}{180^{\circ}}$$

Example

- 2 A circular sector in which the length of the radius of its circle equals 16cm, and the measure of its angle equals 120° , find its area to the nearest square centimetre .

Solution

Formula:

$$\text{area of the sector} = \frac{x^{\circ}}{360^{\circ}} \times \pi r^2$$

Substituting $r = 16$, $x^{\circ} = 120^{\circ}$:

$$= \frac{120^{\circ}}{360^{\circ}} \times \pi (16)^2 \simeq 268 \text{ cm}^2$$

1 Find in terms of π the area of the shaded part in each of the following figures:

A**B****C****D**

2 Find to the nearest cm^2 the area of a circular sector , where the measure of its central angle is 30° and the radius of its circle is of length 3.5 cm.

« 3 cm^2 approximately »

3 Find the area of the circular sector in which the length of the radius of its circle is 10 cm. and the measure of its angle is 1.2^rad

« 60 cm^2 »

Sheet (5)

1 Choose the correct answer from the given ones :

- (1) The area of the circular sector =
- (a) $\frac{1}{2} l r^2$ (b) $\frac{1}{2} r \theta^{\text{rad}}$
 (c) the area of the circle $\times \frac{\theta^{\text{rad}}}{2\pi}$ (d) the area of the circle $\times \frac{x^\circ}{180^\circ}$
- (2) The area of a sector whose arc is of length 10 cm. and the length of the diameter of its circle = 10 cm. equals
- (a) 50 cm² (b) 25 cm² (c) 12.5 cm² (d) 100 cm²
- (3) The area of the circular sector in which the measure of its angle is 1.2^{rad} and the length of the radius of its circle is 4 cm. equals
- (a) 4.8 cm² (b) 9.6 cm² (c) 12.8 cm² (d) 19.6 cm²
- (4) The perimeter of the circular sector in which the length of its arc is 4 cm. and the length of the diameter of its circle is 10 cm. equals
- (a) 14 cm. (b) 20 cm. (c) 30 cm. (d) 40 cm.
- (5) The area of the circular sector in which the measure of its angle is 120° , the length of the radius of its circle is 3 cm. equals
- (a) 3π cm² (b) 6π cm² (c) 9π cm² (d) 12π cm²
- (6) The area of the circular sector in which , its perimeter is 12 cm. , length of its arc is 6 cm. equals
- (a) 6 cm² (b) 9 cm² (c) 12 cm² (d) 18 cm²
- (7) If the perimeter of a sector is 8 cm. and its arc is of length 2 cm. , then its circle is of radius length
- (a) 6 cm. (b) 2 cm. (c) 3 cm. (d) 4 cm.
- (8) The arc of a sector is of length 3 cm. and the area of this sector is 15 cm² , then its circle radius is of length
- (a) 5 cm. (b) 10 cm. (c) 2.5 cm. (d) 15 cm.
- (9) The perimeter of a sector is 44 cm. Its circle is of radius length 14 cm. , then the length of the arc of the sector =
- (a) 16 cm. (b) 8 cm. (c) 32 cm. (d) 4 cm.
- (10) If the area of the circular sector equals 110 cm² , the measure of its angle equals 2.2^{rad} , then the length of the radius of its circle equals
- (a) 2 cm. (b) 5 cm. (c) 10 cm. (d) 20 cm.

Lesson (3)**Operation On Vectors**

First Adding vectors geometrically

1] the triangle rule :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

2] the parallelogram rule :

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

3] the median rule:

$$\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AD}$$

Second

Subtracting two vectors geometrically

$$\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$$

$$\overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

Example

In the quadrilateral ABCD , prove that :

$$(1) \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AD} \quad | \quad (2) \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{DC} + \overrightarrow{AD}$$

.....
.....
.....

Sheet (3)

1 Complete :

- 1 if : $\vec{A} = (-1,5)$, $\vec{B} = (2,1)$,then $\|\overrightarrow{AB}\| = \dots$
- 2 if : $\vec{A} = (4,-2)$, $\overrightarrow{AB} = (3,5)$, then $\vec{B} = \dots$
- 3 if : M is a midpoint of \overline{XY} ,then $\overrightarrow{XM} + \overrightarrow{YM} = \dots$
- 4 if : ABC is a triangle ,then $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \dots$
- 5 if : ABC is a triangle ,then $\overrightarrow{AB} - \overrightarrow{CB} = \dots$, $\overrightarrow{BA} - \overrightarrow{BC} = \dots$

**2 ABCD is a trapezium in which in which $\overline{AD} \parallel \overline{BC}$, E is the midpoint of \overline{AB}
F is the midpoint of \overline{DC} .**

prove that : $\overrightarrow{AD} + \overrightarrow{BC} = 2 \overrightarrow{EF}$

.....
.....
.....

3 ABCD is a quadrilateral in which : $\overrightarrow{BC} = 3 \overrightarrow{AD}$. prove that :

a) ABCD is a trapezium

b) $\overrightarrow{AC} + \overrightarrow{BD} = 4 \overrightarrow{EF}$

.....
.....
.....

4 ABCDEF is regular hexagon prove that :

$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AE} + \overrightarrow{AF} = 2 \overrightarrow{AD}$$

.....

Lesson (4)

Application on Vectors

First Geometric applications

We know that if $\overrightarrow{AB} = k \overrightarrow{DC}$, $k \neq 0$, then \overrightarrow{AB} and \overrightarrow{DC} are :

- carried by the same straight line

I.e. : A , B , C , D are collinear.

or

- carried by two parallel straight lines

I.e. : $\overleftrightarrow{AB} \parallel \overleftrightarrow{DC}$

Remark

If ABCD is a quadrilateral in which $\overrightarrow{AB} = k \overrightarrow{DC}$, $k \neq 0$, then

$\overleftrightarrow{AB} \parallel \overleftrightarrow{DC}$, $\| \overrightarrow{AB} \| = |k| \| \overrightarrow{DC} \|$ and vice versa.

Example

Use vectors to prove that : the points A (1, 4), B(-1, -2), C(2, -3) are vertices of right angled triangle at B.

.....

Example

Use the vectors to prove that: the points A (3, 4), B(1, -1), C(-4, -3), D(2, 2) are vertices of a rhombus.

.....

Second Physical applications

1 The resultant force

- The force :** is a vector passes through a given point and acts along a straight line.
- The force :** is represented by a directed line segment and it is drawn by a suitable drawing scale.

For example :

- 1 A force of magnitude $F_1 = 10$ Newton acts in the East direction.

$$\vec{F}_1 = 10 \vec{e}$$

\vec{F}_1 is represented by a directed line segment of length 2 cm.

Remember that :

- Consider \vec{e} a unit vector in the East direction.
- Choose a suitable drawing scale "Each 5 Newton is represented on drawing by 1 cm".

Example

If the forces: $\vec{F}_1 = 2 \vec{i} + \vec{j}$, $\vec{F}_2 = \vec{i} + 7 \vec{j}$, $\vec{F}_3 = \vec{i} - 5 \vec{j}$ act on a particle, Calculate the magnitude and direction of their resultant (forces are measured in Newton).

$$\vec{V}_{BA} = \vec{V}_B - \vec{V}_A$$

Relative Velocity

Example

A car (A) moves on a straight road with speed 70 km/h, A car (B) moves on the same road with speed 90 km/h. Find the relative velocity of car (A) with respect to car (B) when:

- The two cars move in the same direction.
- The two cars move in the opposite direction.

.....
.....
.....

Sheet (4)

First

Geometry

1

ABCD is a parallelogram ,E is a midpoint of AB

F is a midpoint of DC

Prove that : DEBF is a parallelogram

2

ABCD is a quadrilateral , if $\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{DC}$ prove that :

ABCD is a parallelogram

3

using vectors prove that : A(3,4) , B(1,-1) , C(-4,-3) , D(-2,2)

are vertices of a rhombus

4

using vectors prove that : A(1,3) , B(6, 1) , C(4,-4) , D(-1,-2)

are vertices of a square and find its area.

5

ABCD is a trapezium , AD//BC

$$AD = \frac{1}{2} BC, \overrightarrow{AB} = \vec{N}, \overrightarrow{AD} = \vec{M}$$

a) Express in term of \vec{M} and \vec{N} each of the following :

$$\overrightarrow{BC}, \overrightarrow{AC}, \overrightarrow{DC}, \overrightarrow{DB}$$

b) if : $X \in \overrightarrow{AC}$ where $AX = \frac{1}{3} \times AC$

prove that : the point D , X and B are collinear .

Date ://

Second Physical application

1 Complete:

- 1 If: $\vec{F}_1 = i - 3j$, $\vec{F}_2 = 3i - j$ act on a particle, then the norm of the resultant =N
- 2 If: $\vec{F}_1 = (a,b)$, $\vec{F}_2 = -3i + 4j$ act on a particle and the system is in equilibrium , then a =, b =
- 3 If: $\vec{V}_A = 12 \vec{e}$, $\vec{V}_B = 8 \vec{e}$, then $\vec{V}_{AB} = \dots$
- 4 If: $\vec{V}_A = 120 \vec{e}$, $\vec{V}_B = -80 \vec{e}$, then $\vec{V}_{BA} = \dots$, $\vec{V}_{AB} = \dots$
- 5 If: $\vec{V}_{AB} = 75 \vec{e}$, $\vec{V}_A = -60 \vec{e}$, then $\vec{V}_{BA} = \dots$, $\vec{V}_B = \dots$

2 Find the resultant force \vec{F} acting in each of the following:

Date ://

- 3** In each of the following, the two forces \vec{F}_1 and \vec{F}_2 act at a particle. Show the magnitude and the direction of the resultant of each two forces:

- 1** $F_1 = 15$ newtons acts in the east direction,
 $F_2 = 40$ newtons acts in the west direction.
- 2** $F_1 = 34$ gm.wt. acts in the north east direction,
 $F_2 = 34$ gm.wt. acts in the south west direction.
- 3** $F_1 = 50$ dyne acts in 60° west of the north direction,
 $F_2 = 50$ dyne acts in 30° south of the east direction.
- 4** $F_1 = 30$ newtons acts in 20° east of the north direction ,
 $F_2 = 30$ newtons acts in 70° north of the east direction.

- 4** Forces $\vec{F}_1 = 7\mathbf{i} - 5\mathbf{j}$, $\vec{F}_2 = a\mathbf{i} + 3\mathbf{j}$, $\vec{F}_3 = -4\mathbf{i} + (b-3)\mathbf{j}$, find the values of a and b if:

- (1) The system of forces are in equilibrium.
- (2) The resultant of the forces = $-5\mathbf{j}$

Lesson (1)

Division of a line segment

First: Finding the Coordinates of the point of division of a line segment by a certain ratio:

1- Internal division

If $C \in \overrightarrow{AB}$, then point C

divides \overrightarrow{AB} internally by the ratio $m_2 : m_1$

where $\frac{m_2}{m_1} > 0$ then $\frac{AC}{CB} = \frac{m_2}{m_1}$

and for the two directed segments $\overrightarrow{AC}, \overrightarrow{CB}$

The same direction i.e.: $m_1 \times \overrightarrow{AC} = m_2 \times \overrightarrow{CB}$

Let $A(x_1, y_1), B(x_2, y_2)$ and $C(x, y)$

figure (1)

Then

$$\overrightarrow{r} (m_1 + m_2) = m_1 \overrightarrow{r}_1 + m_2 \overrightarrow{r}_2$$

i.e.:

$$\overrightarrow{r} = \frac{m_1 \overrightarrow{r}_1 + m_2 \overrightarrow{r}_2}{m_1 + m_2}$$

which is called the vector form

Example

- 1 If $A(2, -1), B(-3, 4)$, find the coordinates of point C which divides \overrightarrow{AB} internally by the ratio $3 : 2$ in the vector form.

Solution

Let $C(x, y)$

$$\because A(2, -1) \quad \therefore \overrightarrow{r}_1 = (2, -1) \quad , \quad \because B(-3, 4) \quad \therefore \overrightarrow{r}_2 = (-3, 4)$$

$$m_2 : m_1 = 3 : 2$$

$$\therefore \overrightarrow{r} = \frac{m_1 \overrightarrow{r}_1 + m_2 \overrightarrow{r}_2}{m_1 + m_2}$$

$$\therefore \overrightarrow{r} = \frac{2(2, -1) + 3(-3, 4)}{2+3} = \frac{(4, -2) + (-9, 12)}{5} = \frac{(-5, 10)}{5} = (-1, 2)$$

\therefore The coordinates of point C are $(-1, 2)$

Date ://

Cartesian form:

$$(x, y) = \frac{m_1(x_1, y_1) + m_2(x_2, y_2)}{m_1 + m_2} = \frac{(m_1 x_1 + m_2 x_2, m_1 y_1 + m_2 y_2)}{m_1 + m_2}$$

From that we get: $(x, y) = \left(\frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}, \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2} \right)$

Example

- ② Solve the previous example using the Cartesian form.

Solution

$$(x, y) = \left(\frac{2 \times 2 + 3 \times -3}{2 + 3}, \frac{2 \times -1 + 3 \times 4}{2 + 3} \right) = (-1, 2)$$

2- External division

If $C \in \overrightarrow{AB}$, $C \notin \overline{AB}$, then C divides \overrightarrow{AB} externally by the ratio $m_2 : m_1$, where $\frac{m_2}{m_1} < 0$ then one of the two values m_1 or m_2 is positive and the other is negative, then the following figure illustrates that there are two probabilities:

Example

- ③ If $A(2, 0)$, $B(1, -1)$, find the coordinates of point C which divides \overrightarrow{AB} externally by the ratio $5 : 4$.

Solution

$$\because \overrightarrow{r_1} = (2, 0), \overrightarrow{r_2} = (1, -1)$$

$$, m_2 : m_1 = 5 : -4 \therefore \frac{m_2}{m_1} < 0 \text{ negative}$$

$$, \overrightarrow{r} = \frac{m_1 \overrightarrow{r_1} + m_2 \overrightarrow{r_2}}{m_1 + m_2}$$

$$\therefore \overrightarrow{r} = \frac{-4(2, 0) + 5(1, -1)}{-4 + 5}$$

$$\overrightarrow{r} = (-8 + 5, 0 - 5) = (-3, -5)$$

by substituting

mathematical formula for the rule

by distributing

by adding and simplifying

\therefore The coordinates of point C are $(-3, -5)$

Cartesian form:

$$(x, y) = \left(\frac{-4 \times 2 + 5 \times 1}{-4 + 5}, \frac{-4 \times 0 + 5 \times -1}{-4 + 5} \right) \\ = (-3, -5)$$

Date : / /

Notice that:

If C is the midpoint of \overrightarrow{AB} where A (x_1, y_1) , B (x_2, y_2)
then: $m_1 = m_2 = m$ then

$$\vec{r} = \frac{\vec{r}_1 + \vec{r}_2}{2}$$

Vector form

$$(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)$$

Cartesian form

Second : Finding the ratio of Division

If point C divides \overrightarrow{AB} by the ratio $m_2 : m_1$ and:

- 1- The ratio of division $\frac{m_2}{m_1} > 0$ then the division is internal.
- 2- The ratio of division $\frac{m_2}{m_1} < 0$ then the division is external.

Example

- 4) If A (5, 2), B (2, -1) , find the ratio by which \overrightarrow{AB} is divided by the points of intersection of \overrightarrow{AB} with the two axes, showing the type of division in each case, then find the coordinates of the division point.

Solution

First: let the x-axis intersects \overrightarrow{AB} at point C (x, 0)

$$\text{where } \frac{AC}{CB} = \frac{m_2}{m_1} \quad \text{then: } y = \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2}$$

$$\therefore 0 = \frac{m_1 (2) + m_2 (-1)}{m_1 + m_2} = \frac{2m_1 - m_2}{m_1 + m_2}$$

$$\therefore 2m_1 = m_2 \quad \therefore \frac{m_2}{m_1} = \frac{2}{1} \quad (\text{ratio of division})$$

$$\therefore \frac{m_2}{m_1} > 0$$

\therefore The division is internal by the ratio 2 : 1

$$\therefore \text{The coordinates are } C \left(\frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}, 0 \right) = \left(\frac{1 \times 5 + 2 \times 2}{1 + 2}, 0 \right) \\ = (3, 0)$$

Second: The straight line intersects the y-axis at point D

Let the coordinates of D be (0, y)

$$\text{where } \frac{AD}{DB} = \frac{m_2}{m_1} \quad \text{then } x = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

$$\therefore 0 = \frac{m_1 \times 5 + m_2 \times 2}{m_1 + m_2}$$

$$\therefore 2m_2 = -5m_1 \quad \therefore \frac{m_2}{m_1} = -\frac{5}{2} \quad (\text{ratio of division})$$

$$\therefore \frac{m_2}{m_1} < 0$$

\therefore The division is external by the ratio 5 : 2

$$\text{The coordinates of the point D are } (0, y) = \left(0, \frac{-2 \times 2 + 5 \times -1}{-2 + 5} \right) \\ \therefore (0, -3)$$

Sheet (1)

1 Complete the following :

- (1) If $A = (3, 6)$, $B = (-7, 4)$, then the midpoint of $\overline{AB} = (\dots, \dots)$
- (2) If M is the point of intersection of the two diagonals of the parallelogram ABCD where $A = (3, 7)$, $C = (-3, 1)$, then $M = (\dots, \dots)$
- (3) If the point $(3, 6)$ is the midpoint of \overline{AB} where $A = (-3, 7)$, then the point $B = (\dots, \dots)$
- (4) In the opposite figure :

\overline{AD} is a median in ΔABC , M is the point of intersection of its medians where $A = (0, 8)$, $B = (3, 2)$, $C = (-3, 5)$, then the point $D = (\dots, \dots)$
 the point $M = (\dots, \dots)$

- 2 If $A = (-3, -7)$, $B = (4, 0)$, find the coordinates of the point C which divides \overrightarrow{AB} by the ratio 5 : 2 internally. « (2, -2) »
-

- 3 If $A = (0, -3)$, $B = (3, 6)$, find the coordinates of the point C which divides \overrightarrow{BA} internally by the ratio 1 : 2 « (2, 3) »
-

- 4 If $A = (4, 3)$, $B = (-3, 5)$, find the point $C \in \overleftrightarrow{AB}$ where $3AC = 5CB$
-

Lesson (2)

Equation of straight line

Equation of the straight line given a point belonging to it and a direction vector to it

First: Vector form

$$\vec{r} = \vec{A} + K \vec{u}$$

Example

- 1 Write the vector equation of the straight line which passes through point (2, -3) and its direction vector is (1, 2).

Solution

Let the straight line pass through point A (2, -3) and $\vec{u} = (1, 2)$

$$\therefore \vec{r} = \vec{A} + K \vec{u} \quad \text{vector form of the equation of the straight line.}$$

$$\therefore \text{The vector equation of the straight line is } \vec{r} = (2, -3) + K(1, 2).$$

Second: The parametric equations

The vector equation is $\vec{r} = \vec{A} + K \vec{u}$

$$x = x_1 + k a, \quad y = y_1 + kb$$

Third : Cartesian Equation

Eliminating K from the parametric equations : $x = x_1 + ka, \quad y = y_1 + kb$

$$\text{We get the equation: } \frac{x - x_1}{a} = \frac{y - y_1}{b} \quad \text{i.e.: } \frac{b}{a} = \frac{y - y_1}{x - x_1}$$

$$\text{Put } \frac{b}{a} = m \text{ (where } m \text{ is the slope of the line), then the equation becomes in the form: } m = \frac{y - y_1}{x - x_1}$$

Example

- 3 Find the Cartesian equation of the straight line which passes through the point (3, -4) and its direction vector is (2, -1)

Solution

$$m = \frac{-1}{2}$$

$$\text{Slope of the line } m = \frac{b}{a}$$

$$m = \frac{y - y_1}{x - x_1}$$

equation of the line given its slope and a point belonging to it.

$$\frac{-1}{2} = \frac{y - (-4)}{x - 3}$$

$$m = \frac{-1}{2}, \quad x_1 = 3, \quad y_1 = -4$$

$$2y + 8 = -x + 3$$

Product of means = product of extremes.

$$x + 2y + 5 = 0$$

general form.

Date : / /

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

Sheet (2)

Find the equation of the S.t line

- 1 Passing through $(1, 3)$ and its slope = $-\frac{2}{3}$

.....
.....

- 2 Passing through the point $(3, -2)$ and its slope is -2

.....
.....
.....

- 3 Passing through the two points $(3, 1)$ and $(5, 4)$

.....
.....
.....

- 4 Passing through the point $(0, -5)$ and makes with the positive direction of X – axis an angle of measure 135° .

.....
.....
.....

- 5 Passing through the point $(-2, 1)$ and parallel to the straight line

$$\vec{r} = (2, -3) + k(1, 0)$$

.....
.....

Lesson (3)

The angle between two

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \text{ where } m_1 m_2 \neq -1$$

- 1 Find the measure of the acute angle between the two straight lines whose equations are
 $3x - 4y - 11 = 0$, $x + 7y + 5 = 0$

 Solution

A We find the slope of each straight line:

$$m_1 = \frac{-3}{-4} = \frac{3}{4}$$

slope of the first line

$$m_2 = \frac{-1}{7}$$

slope of the second line

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

Formula

$$\tan \theta = \left| \frac{\frac{3}{4} - (-\frac{1}{7})}{1 + \frac{3}{4}(-\frac{1}{7})} \right| \quad \text{substituting the values of } m_1, m_2$$

$$= \left| \frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{28}} \right| = \left| \frac{\frac{21+4}{28}}{\frac{28-3}{28}} \right| = 1$$

$$\left| \frac{3}{2} + \frac{1}{2} \right| = \left| \frac{21+4}{12} \right|$$

$$= \left| \frac{4 + 7}{1 - \frac{3}{28}} \right| = \left| \frac{28}{28 - 3} \right| = 1$$

$$\theta = 45^\circ$$

Remember

Slope of the straight

line whose equation

$$ax + by + c = 0$$

equals $\frac{a}{b}$

Date : / /

مدارس جيل ٢٠٠٠ للغات
Geel 2000 Language Schools

Sheet (3)

1 Find the measure of the acute angle between the two straight lines whose slopes are :

(1) $\frac{-3}{4}, -7$

(2) $\frac{1}{2}, \frac{2}{9}$

(3) $\frac{3}{4}, -\frac{2}{3}$

2 Find the measure of the acute angle between each of the following pairs of straight lines :

(1) $L_1: \vec{r} = (0, -2) + k(3, -1)$, $L_2: \vec{r} = (0, 5) + k(2, 1)$

(2) $L_1: \vec{r} = k(1, 0)$, $L_2: \vec{r} = (3, -2) + k(1, -2)$

(3) $L_1: \vec{r} = (0, 1) + k(1, 1)$, $L_2: 2x - y - 3 = 0$

(4) $L_1: 2x + 3y = 15$, $L_2: \vec{r} = (-2, -1) + k(1, -3)$

كيفية طباعة صفحات معينة من ملف معين مثل ازاي نطبع الصفحات من صفحة 4 الى صفحة 9

خطوة 1

خطوة 2

خطوة 3

كتابة الصفحات
المراد طباعتها
نكتب رقم 4 ثم
نكتب الشرطة
دي - ثم نكتب 9

خطوة 4

اخيار نوع الورق

خطوة 5

اخيار A4

خطوة 6

مجاناً ومضموناً

حمل الان

المراجعة رقم (2)

اختبار شهر مارس

Basic concepts secondary one

For April test

First Algebra: -

➤ Matrix Transpose:

- $(A^t)^t = A$
- If $A = A^t$ then A is called symmetric matrix
- If $A = -A^t$ then A is called skew symmetric

Transpose of product of two matrices

$$(AB)^t = B^t A^t$$

Determinants

➤ To find the value of the second order determinant

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

To find the value of 3rd order determinant: $\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$

□ Applications on determinants

Finding the area of triangle using determinants:

If ΔABC in which $A(x_1, y_1), B(x_2, y_2)$ and $C(x_3, y_3)$

Then the area of triangle ABC = $\frac{1}{2} |A|$ where $A = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$

To prove that three points are collinear:

The three points $(x_1, y_1), (x_2, y_2)$ and $C(x_3, y_3)$ are collinear if

$$A = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \text{zero}$$

Solving a system of linear equations (Cramer's rule)

To solve the two equations $ax + by = m$ and $cx + dy = n$ follow the steps:

- 1) Find the three determinants $\Delta, \Delta x$ and Δy where

$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}, \Delta x = \begin{vmatrix} m & b \\ n & d \end{vmatrix}, \Delta y = \begin{vmatrix} a & m \\ c & n \end{vmatrix},$$

- 2) To find the value of x, y where $x = \frac{\Delta_x}{\Delta}, y = \frac{\Delta_y}{\Delta} \quad \Delta \neq 0$

Note: If $\Delta = 0$ then the system has no solution

MULTIPLICATIVE INVERSE OF MATRIX

The multiplicative inverse of the matrix A is A^{-1} where $AA^{-1} = I$ and this is not possible for all matrices

- The matrix A has a multiplicative inverse if $\Delta = |A| \neq 0$

To find the multiplicative inverse of the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$1) \text{ Find } \Delta = |A| \neq 0 \quad 2) \text{ Then } A^{-1} = \frac{1}{\Delta} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

- **Second Geometry**

- The norm of the vector:

It is the length of the line segment represents it

If $\vec{A} = (x, y)$ then $\|\vec{A}\| = \sqrt{x^2 + y^2}$

- The unit vector: it is a vector whose norm is unity

- Zero vector: is denoted by $\vec{0} = (0, 0)$ and its norm = zero and has no direction

- Different forms of the vector

- (1) Polar form

The polar form of $\vec{A} = (\|\vec{A}\|, \theta)$ where θ is the angle with positive direction of x-axis

- (2) Cartesian form

$$\overrightarrow{OA} = (x, y) = (\|\vec{A}\| \cos \theta, \|\vec{A}\| \sin \theta)$$

Where $x = \|\vec{A}\| \cos \theta$ and $y = \|\vec{A}\| \sin \theta$

- Equivalent vectors

The two vectors are equivalent if they have the same norm and the same direction

Remark :

$$\vec{AB} \neq \vec{BA} \text{ but } \vec{AB} = -\vec{BA}$$

- The fundamental unit vector:

If $\vec{A} = (x, y)$ then $\vec{A} = x\vec{i} + y\vec{j}$

Parallel and perpendicular vectors

If $\vec{A} = (x_1, y_1)$ and $\vec{B} = (x_2, y_2)$ are two vectors then:

a) If $\vec{A} // \vec{B}$

Slope of \vec{A} = slope of \vec{B}

$$\tan \theta_1 = \tan \theta_2$$

$$\frac{y_1}{x_1} = \frac{y_2}{x_2}$$

$$x_1 y_2 = x_2 y_1$$

$$x_1 y_2 - x_2 y_1 = 0$$

b) If $\vec{A} \perp \vec{B}$

Slope of \vec{A} \times slope of $\vec{B} = -1$

$$\tan \theta_1 \times \tan \theta_2 = -1$$

$$\frac{y_1}{x_1} \times \frac{y_2}{x_2} = -1$$

$$x_1 x_2 = -y_1 y_2$$

$$x_1 x_2 + y_1 y_2 = 0$$

Addition

First: triangle rule

$$\vec{AB} + \vec{BC} = \vec{AC}$$

$$\vec{AB} = -\vec{BA} \text{ where } \vec{AB} + \vec{BA} = \vec{0}$$

from Parallelogram rule In ΔABC

$$\text{if } \vec{AD} \text{ is a median then } \vec{AB} + \vec{AC} = 2\vec{AD}$$

➤ The resultant force:

The resultant force of some forces F_1, F_2, F_3, \dots

$$\text{Is } F = F_1 + F_2 + F_3 + \dots$$

The relative velocity

The relative velocity of A with respect of B is \vec{V}_{AB} where $\vec{V}_{AB} = \vec{V}_A - \vec{V}_B$

➤ If the two bodies A and B move in opposite direction, then:

$$\vec{V}_{AB} = \vec{V}_A - (-\vec{V}_B) = \vec{V}_A + \vec{V}_B$$

Division of line segment

The mid-point:

If $A(x_1, y_1)$ and $B(x_2, y_2)$ and C divides \overline{AB} into two equal parts then

$$C = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} \right)$$

To find the point of division

if the division Internally, If the division
internally externally:

Equation of straight line

□ The general form of the equation of straight line is $ax + by + c = 0$

□ The slope of straight line m :

a) From two points: $A(x_1, y_1), B(x_2, y_2)$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

b) From the angle θ : $m = \tan \theta$

c) From the equation:

➤ If x and y in one side Then $m = \frac{-\text{coefficient } x}{\text{coefficient } y}$

The straight line whose equation is $y = mx$ pass through the origin point

- If $L_1 // L_2$ then $m_1 = m_2$
- If $L_1 \perp L_2$ then $m_1 \times m_2 = -1$

□ Forming the equation of straight line

1) **Vector equation:** $\vec{r} = \vec{A} + k\vec{u}$ or $(x, y) = (x_1, y_1) + k(a, b)$

2) **The two Parametric equation:** from the vector form we can deduce the two parametric equations which are:

$$x = x_1 + ka, y = y_1 + kb$$

3) **The Cartesian equation:** $y - y_1 = m(x - x_1)$ where $m = \frac{b}{a}$

And it is called the general equation of straight line.

➤ Finding the equation of straight line given the intercepted parts of the two axes

If the given is the two intersection points with x-axis and y-axis are $(a, 0)$ and $(0, b)$ then the equation is: $\frac{x}{a} + \frac{y}{b} = 1$

➤ Third Trigonometry

➤ Trigonometric identity:

□ Basic trigonometric identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

□ From the unit circle:

$$x^2 + y^2 = 1 \text{ then } \sin^2 \theta + \cos^2 \theta = 1$$

$$\text{Then : } \sin^2 \theta = 1 - \cos^2 \theta \quad \cos^2 \theta = 1 - \sin^2 \theta$$

Dividing by $\cos^2 \theta$

$$\tan^2 \theta + 1 = \sec^2 \theta$$

$$\csc^2 \theta = 1 + \cot^2 \theta$$

□ finding the general solution

Steps:

- Determine the quadrant
- Find the angle “shift”
- Add $2\pi n$ in case of sin and cos

Add πn in case of tan and cot

Very important remarks

$$\left. \begin{array}{l} \sin \alpha = \cos \beta \\ \sec \alpha = \csc \beta \\ \sec \alpha = \csc \beta \end{array} \right\} \alpha + \beta = 90$$

And for the general solution:

$$\left. \begin{array}{l} \sin \alpha = \cos \beta \\ \sec \alpha = \csc \beta \end{array} \right\} \alpha \pm \beta = 90 + 2\pi n$$

REVISION

1-	$(X^t)^t - X = \dots$	<input checked="" type="radio"/> (a) O	(b) X	(c) $2X$	(d) zero
2-	If $3^{\sin \theta} = 1$, where $\theta \in [0, 2\pi]$, then $\theta = \dots$ °	(a) 45	(b) 90	<input checked="" type="radio"/> (c) 180	(d) 270
3-	If $X + \begin{pmatrix} 3 & -2 \\ 5 & 0 \end{pmatrix} = O$, then $X = \dots$	<input checked="" type="radio"/> (a) $\begin{pmatrix} -3 & 2 \\ -5 & 0 \end{pmatrix}$	(b) $\begin{pmatrix} 3 & 5 \\ -2 & 0 \end{pmatrix}$	(c) $\begin{pmatrix} 0 & 2 \\ -5 & 3 \end{pmatrix}$	(d) $\begin{pmatrix} -3 & -2 \\ -5 & 0 \end{pmatrix}$
4-	The value of the determinant $\begin{vmatrix} 4 & 0 & 0 \\ 7 & 2 & 0 \\ 1 & 5 & 1 \end{vmatrix} = \dots$	(a) 1	(b) 2	<input checked="" type="radio"/> (c) 4	<input checked="" type="radio"/> (d) 8
5-	If $\vec{X} = \vec{O}$, $\vec{X} = (a - 3, b + 5)$, then $a + b = \dots$	<input checked="" type="radio"/> (a) -2	(b) 2	(c) 8	(d) 15
6-	If $k \parallel 4 \vec{A} \parallel = \parallel -3 \vec{A} \parallel$, then $k = \dots$	<input checked="" type="radio"/> (a) $\frac{3}{4}$	(b) $\frac{4}{3}$	(c) 1	(d) 12
7-	In the Cartesian coordinates plane, if $\vec{OA} = (6, 6\sqrt{3})$, then its polar form is \dots	<input checked="" type="radio"/> (a) $(12, \frac{\pi}{3})$	(b) $(12, \frac{\pi}{6})$	(c) $(6, \frac{\pi}{3})$	(d) $(6, \frac{\pi}{6})$
8-	If $\vec{A} = (3, 4)$, $\vec{B} = (k, -8)$ and $\vec{A} \parallel \vec{B}$, then $k = \dots$	<input checked="" type="radio"/> (a) -6	(b) 3	(c) 4	(d) 6
9-	The matrix $(3 \ 2 \ 1)$ is of order \dots	(a) 2×1	(b) 3×2	<input checked="" type="radio"/> (c) 1×3	(d) 3×1
10-	If $\vec{C} = (5, 1)$, $\vec{D} = (-2, 4)$, then $\parallel \vec{C} + \frac{1}{2} \vec{D} \parallel = \dots$	(a) 25	(b) 7	<input checked="" type="radio"/> (c) 5	(d) 1

11-	$\overrightarrow{AB} - \overrightarrow{BA} = \dots$	(a) zero	<input checked="" type="radio"/> 2 \overrightarrow{AB}	(c) 2 \overrightarrow{BA}	(d) \overrightarrow{O}
12-	The value of the expression : $5 \cos \theta \times 3 \sec \theta = \dots$	(a) 1	(b) 2	(c) 8	<input checked="" type="radio"/> 15
13-	If the product of the two matrices $A \times B = I$ and the matrix $A = \begin{pmatrix} 2 & 3 \\ 5 & 8 \end{pmatrix}$, then the matrix $B = \dots$	(a) $\begin{pmatrix} 2 & 3 \\ 5 & 8 \end{pmatrix}$	(b) $\begin{pmatrix} 8 & 5 \\ 3 & 2 \end{pmatrix}$	<input checked="" type="radio"/> $\begin{pmatrix} 8 & -3 \\ -5 & 2 \end{pmatrix}$	(d) $\begin{pmatrix} -2 & 5 \\ 3 & -8 \end{pmatrix}$
14-	If $\overrightarrow{A} = (3, 5)$, $\overrightarrow{B} = (4, 6)$, then $\ -2 \overrightarrow{A} + 3 \overrightarrow{B} \ = \dots$	(a) 6	(b) 8	<input checked="" type="radio"/> 10	(d) 14
15-	The slope of the straight line perpendicular to the line with equation : $\overline{r} = (-3, 4) + k(2, 5)$ equals \dots	(a) $-\frac{4}{3}$	<input checked="" type="radio"/> $-\frac{2}{5}$	(c) $\frac{3}{4}$	(d) $\frac{5}{2}$
16-	The simplest form of the expression : $\frac{\cot^2 \theta - \csc^2 \theta}{\cot \theta}$ is \dots	(a) -1	(b) $\cot \theta - \csc^2 \theta$	(c) $-\cot \theta$	<input checked="" type="radio"/> $-\tan \theta$
17-	If $\begin{vmatrix} 2 & 0 & 0 \\ 4 & x & 0 \\ -3 & 36 & x \end{vmatrix} = 50$, then $x = \dots$	(a) ± 6	<input checked="" type="radio"/> ± 5	(c) 6	(d) 25
18-	The value of x which makes the matrix $\begin{pmatrix} 6 & 2 \\ x-4 & -4 \end{pmatrix}$ has no multiplicative inverse is \dots	<input checked="" type="radio"/> -8	(b) -10	(c) 8	(d) 10
19-	If $\overrightarrow{AB} = (3, -4)$, $\overrightarrow{BC} = (2, 1)$, then $\overrightarrow{CA} = \dots$	(a) (1, -5)	(b) (5, -3)	(c) (-3, 5)	<input checked="" type="radio"/> (-5, 3)
20-	The ratio that the x -axis divides \overrightarrow{BA} where $A(3, 2)$, $B(5, 6)$ equals \dots	(a) 3 : 5 internally.	(b) 5 : 3 externally.	(c) 1 : 3 internally.	<input checked="" type="radio"/> 3 : 1 externally.

21-	If $\vec{A} = (-9, 3)$, $\vec{B} = (-2, 27)$, then $\ \vec{AB}\ = \dots$	(a) 13 (b) 15 (c) 20	<input checked="" type="radio"/> 25
22-	The point which divides \overline{AB} where $A(5, -6)$, $B(-1, 3)$ with ratio 1 : 2 internally is	(a) (0, 0) (b) (3, 3) (c) (-3, -3)	<input checked="" type="radio"/> (3, -3)
23-	If $\vec{v_A} = 70\hat{i}$, $\vec{v_B} = -20\hat{i}$, then $\vec{v_{AB}} = \dots \hat{i}$	(a) -90 (b) -50 (c) 50	<input checked="" type="radio"/> 90
24-	$(\sin \theta + \cos \theta)^2 - 2 \sin \theta \cos \theta = \dots$	(a) zero (b) $\sin \theta$ (c) 1 (d) $\cos \theta$	<input checked="" type="radio"/> 1
25-	If $\vec{A} = (k, 2)$, $\vec{B} = 2\hat{i} - \hat{j}$, and $\vec{A} \perp \vec{B}$, then $k = \dots$	(a) 1 (b) -1 (c) ± 1 (d) zero	<input checked="" type="radio"/> 1
26-	The polar form of the vector $\vec{A} = -3\hat{j}$ is	(a) $(-3, \frac{\pi}{2})$ (b) $(3, \frac{\pi}{2})$ (c) $(-3, \frac{3\pi}{2})$ (d) $(3, \frac{3\pi}{2})$	<input checked="" type="radio"/> (3, $\frac{3\pi}{2}$)
27-	If $\ 2k\vec{A}\ = \ -2\vec{A}\ $ where $\vec{A} \neq \vec{0}$, then value of $k = \dots$	(a) 1 (b) -1 (c) ± 1 (d) zero	<input checked="" type="radio"/> ± 1
28-	If the matrix A of order 2×3 and the matrix B of order 3×3 , then the matrix AB of order	(a) 2×2 (b) 3×3 (c) 3×2	<input checked="" type="radio"/> 2×3
29-	If $\tan \theta = 3$, then $\sec^2 \theta = \dots$	(a) 9 (b) 10 (c) -10 (d) 0.9	<input checked="" type="radio"/> 10
30-	$3 \tan \theta \cot \theta + 2 \sin \theta \csc \theta + \cos \theta \sec \theta = \dots$	(a) 1 (b) 3 (c) 5	<input checked="" type="radio"/> 6
31-	If X is a matrix where $X \times \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$, then $X = \dots$	(a) $\begin{pmatrix} 1 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	<input checked="" type="radio"/> I (d) (1)

32-	By using determinants , then the area of triangle ABC in which : $A(-4, -2)$, $B(0, 3)$, $C(0, 0)$ equal		
	(a) - 6	(b) 12	(c) - 12
33-	If $\vec{A} = (6\sqrt{2}, \frac{3\pi}{4})$ position vector of the point A , then $A =$		
	(a) (6, -6)	(b) (-6, 6)	(c) (6, 6)
34-	If $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a skew matrix , then $b + c =$		
	(a) 2 a	(b) 2 d	(c) 2
35-	ABCD is parallelogram in which : $A = (7, -2)$, $B = (15, 4)$, $C = (9, 6)$, then the coordinates of the point D =		
	(a) (1, 0)	(b) (0, 1)	(c) (-1, 0)
36-	The point of intersection of medians (concurrent) to the ΔABC in which $A = (3, 2)$, $B = (1, -2)$, $C = (-1, 6)$ is		
	(a) (-1, 2)	(b) (1, 2)	(c) (1, -2)
37-	If O is the zero matrix of order 2×2 , then the number of its elements =		
	(a) zero	(b) \emptyset	(c) 2
38-	The solution set of the equation $\sqrt{3} \tan \theta = 1$, $90^\circ < \theta < 270^\circ$ is		
	(a) $\{30^\circ\}$	(b) $\{150^\circ\}$	(c) $\{210^\circ\}$
39-	If $A = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $B = (2 \ 3)$, then $BA =$		
	(a) (-4)	(b) (4)	(c) $\begin{pmatrix} 2 & 3 \\ -4 & -6 \end{pmatrix}$
			(d) $\begin{pmatrix} 2 & -4 \\ 3 & -6 \end{pmatrix}$

40-	If $B^t A^t = \begin{pmatrix} 2 & 1 \\ -3 & 0 \end{pmatrix}$, then $(AB)^t = \dots$	<input checked="" type="radio"/> (a) $\begin{pmatrix} 2 & 1 \\ -3 & 0 \end{pmatrix}$	(b) $\begin{pmatrix} 2 & -3 \\ 1 & 0 \end{pmatrix}$	(c) $\begin{pmatrix} -3 & 2 \\ 0 & 1 \end{pmatrix}$	(d) $\begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$
41-	If $\sin^2 \theta + \cos^2 \theta + \tan^2 \theta = \dots$	(a) 1	<input checked="" type="radio"/> sec ² θ	(c) cot ² θ	(d) tan ² θ
42-	In ΔABC , $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \dots$	(a) \mathbf{O}	<input checked="" type="radio"/> $\overrightarrow{0}$	(c) zero	(d) \overrightarrow{A}
43-	If $\overrightarrow{A} = (l, -3)$, $\overrightarrow{B} = (2, -2)$, $\overrightarrow{A} \perp \overrightarrow{B}$, then $l = \dots$	(a) 3	<input checked="" type="radio"/> -3	(c) $\frac{1}{3}$	(d) $-\frac{1}{3}$
44-	If $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a skew matrix, then $b + c = \dots$	(a) $2a$	(b) $2d$	<input checked="" type="radio"/> (c) 2	<input checked="" type="radio"/> (d) 0
45-	$(\sin \theta + \cos \theta)^2 - 2 \sin \theta \cos \theta = \dots$	(a) zero	(b) sin θ	<input checked="" type="radio"/> (c) 1	(d) cos θ
46-	If $\overrightarrow{v_A} = 70 \hat{i}$, $\overrightarrow{v_B} = -20 \hat{i}$, then $\overrightarrow{v_{AB}} = \dots \hat{i}$	(a) -90	(b) -50	(c) 50	<input checked="" type="radio"/> (d) 90
47-	From the top of a tower, its height is 80 m., an observer measures the depression angle of a car lies on the same plane of the tower base and it was $32^\circ 18'$, then the distance between the car and the tower base equals	(a) 50.6 m.	(b) 42.7 m.	<input checked="" type="radio"/> (c) 126.5 m.	(d) 149.7 m.

كيفية طباعة صفحات معينة من ملف معين مثل ازاي نطبع الصفحات من صفحة 4 الى صفحة 9

خطوة 1

خطوة 2

خطوة 3

كتابة الصفحات
المراد طباعتها
نكتب رقم 4 ثم
نكتب الشرطة
دي - ثم نكتب 9

خطوة 4

اخيار نوع الورق

خطوة 5

اخيار A4

خطوة 6

