INFO-F-302, Cours d'Informatique Fondamentale

Emmanuel Filiot Département d'Informatique Faculté des Sciences Université Libre de Bruxelles

Année académique 2020-2021

38 Comment tester la satisfaisabilité d'une formule?

38 Comment tester la satisfaisabilité d'une formule?

- on a vu la méthode des tables de vérité : tester toutes les interprétations de propositions jusqu'à ce qu'on en trouve une qui satisfait la formule
- problème : quelle est la complexité d'un tel algorithme? combien d'interprétations faut-il tester si la formule contient n propositions?

38 Comment tester la satisfaisabilité d'une formule?

- on a vu la méthode des tables de vérité : tester toutes les interprétations de propositions jusqu'à ce qu'on en trouve une qui satisfait la formule
- problème : quelle est la complexité d'un tel algorithme? combien d'interprétations faut-il tester si la formule contient n propositions?
- ▶ il faut essayer, dans le pire des cas (c'est à dire le cas où la formule n'est pas satisfaisable), 2ⁿ interprétations : cet algorithme a donc une complexité exponentielle dans le nombre de propositions
- ce n'est pas raisonnable pour les applications que nous allons aborder, car nous allons générer des formules contenant plusieurs centaines de propositions.
- ▶ nous allons maintenant étudier un algorithme "plus intelligent" : la méthode des tableaux sémantiques.

2 Tableaux sémantiques

C'est un algorithme pour établir la satisfaisabilité de formules de la logique propositionnelle.

On a besoin d'une nouvelle définition :

Définition

Un littéral est une proposition x ou la négation d'une proposition $\neg x$.

3 Tableaux sémantiques : exemple

Considérons la formule $\phi = x \wedge (\neg y \vee \neg x)$

Essayons de construire systématiquement une fonction d'interprétation ${\it V}$ telle que

$$\llbracket \phi \rrbracket_V = 1$$

Par définition on a

$$\llbracket \phi \rrbracket_V = 1$$

$$\llbracket x \rrbracket_V = 1 \quad \text{et} \quad \llbracket \neg y \lor \neg x \rrbracket_V = 1$$

☐ Tableaux sémantiques

et

$$\begin{split} \llbracket \neg y \vee \neg x \rrbracket_V &= 1 \\ \frac{\mathbf{ssi}}{\llbracket \neg y \rrbracket_V = 1} & \underline{\mathbf{ou}} & \llbracket \neg x \rrbracket_V = 1 \end{split}$$

et donc,

Pour ϕ , on construit la fonction d'interprétation V de la façon suivante :

- ► V(x) = 1;
- ► V(y) = 0.

et on a bien que $V \models \phi$.

5 Tableaux sémantiques

- ▶ Un ensemble S de littéraux est satisfaisable <u>ssi</u> il ne contient pas une paire de *littéraux complémentaires*. Par exemple, $\{x, \neg y\}$ est satisfaisable alors que $\{x, \neg x\}$ ne l'est pas.
- Nous avons réduit le problème de satisfaction de ϕ à un problème de satisfaction d'ensembles de littéraux : ϕ est satisfaisable ssi $\{x, \neg y\}$ est satisfaisable ou $\{x, \neg x\}$ est satisfaisable.

Lableaux sémantiques

6 Tableaux sémantiques

Un autre exemple : $\phi = (x \lor y) \land (\neg x \land \neg y)$. Par définition, on a

$$\llbracket \phi \rrbracket_V = 1$$

$$\underbrace{\text{SSi}}_{\llbracket x \vee y \rrbracket_V = 1} \underbrace{\text{et}}_{\llbracket \neg x \wedge \neg y \rrbracket_V = 1}$$

et donc,

$$\label{eq:continuous_potential} \begin{split} \llbracket \phi \rrbracket_V &= 1 \\ \frac{\mathsf{SSi}}{\llbracket x \vee y \rrbracket_V = 1} \ \underline{\mathsf{et}} \ \llbracket \neg x \rrbracket_V = 1 \ \underline{\mathsf{et}} \ \llbracket \neg y \rrbracket_V = 1 \end{split}$$

et donc,

7 Tableaux sémantiques

et donc,

$$\phi$$
 est satisfaisable
 $\frac{\text{ssi}}{\{x, \neg x, \neg y\}}$ est satisfaisable
ou $\{y, \neg x, \neg y\}$ est satisfaisable.

Vu que les deux ensembles de littéraux contiennent chacun une proposition et sa négation, la formule ϕ n'est pas satisfaisable.

8 Tableaux sémantiques

L'information présente dans les développements précédents est plus facilement représentée sous forme d'un arbre :

9 Tableaux sémantiques - Remarques

- ► quand on applique le "pas de simplification" à un noeud où on sélectionne une conjonction, alors on obtient un seul fils; on appelle ces règles, des ^-règles;
- ► quand on applique le "pas de simplification" à un noeud où on sélectionnne une disjonction, alors on obtient deux fils; on appelle ces règles, des V-règles.

Lableaux sémantiques

 $\frac{1}{\sqrt{\phi_1 + \phi_2}} = \frac{1}{\sqrt{\phi_1 + \phi_2}}$

10 Règles de simplification : ∧-règles

Etant donné un ensemble S contenant une formule α , on crée un ensemble fils égal $S\setminus\{\alpha\}$ auquel on ajoute α_1 et α_2 .

α	α_1	α_2					
ϕ	ϕ						
$\phi_1 \wedge \phi_2$	ϕ_1	ϕ_2					
$\neg(\phi_1 \lor \phi_2)$	$\neg \phi_1$	$\neg \phi_2$					
$\neg (\phi_1 \rightarrow \phi_2)$	ϕ_1	$\neg \phi_2$					
$\phi_1 \leftrightarrow \phi_2$	$\phi_1 o \phi_2$	$\phi_2 o \phi_1$					
^-rèøles							

Remarque : toutes les formules α peuvent être considérées comme équivalentes à des conjonctions. Par exemple :

$$\neg(\phi_1 \lor \phi_2)$$
 est équivalent à $\neg\phi_1 \land \neg\phi_2$

11 Règles de simplification : V-règles

Etant donné un ensemble S contenant une formule β , on crée deux ensembles fils, l'un étant $(S \cup \{\beta_1\}) \setminus \beta$, et l'autre $(S \cup \{\beta_2\}) \setminus \beta$.

[β	eta_1	eta_2	(\$^\$\p\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	$\phi_1 \lor \phi_2$	ϕ_1	ϕ_2	D 16, V 102
	$\neg(\phi_1 \land \phi_2)$	$\neg \phi_1$	$\neg \phi_2$ -	/ · · · · · · · · · · · · · · · · · · ·
→	$\phi_1 o \phi_2$	$\neg \phi_1$	ϕ_2 -	⊅વ્⊸ષ્≡
	$\neg(\phi_1\leftrightarrow\phi_2)$	$\neg(\phi_1 o \phi_2)$	$\neg(\phi_2 o \phi_1)$	7¢, v ¢2
		∨-règles .		74 7 72

Remarque : toutes les formules β peuvent être considérées comme équivalentes à des disjonctions. Par exemple :

$$\neg(\phi_1 \land \phi_2)$$
 est équivalent à $\neg\phi_1 \lor \neg\phi_2$

12 Algorithme

☐ Tableaux sémantiques

L'algorithme construit à partir d'une formule ϕ un arbre noté \mathcal{T}_{ϕ} dont les noeuds sont des ensembles de formules.

- ▶ Initialisation : au départ, l'arbre ne contient qu'un seul noeud : l'ensemble $\{\phi\}$;
- ▶ Tant qu'il existe une feuille de l'arbre \digamma qui contient une formule ψ qui est simplifiable
- si toutes les feuilles de l'arbre contiennent une paire de littéraux complémentaires, alors retourner non-satisfaisable, sinon retourner satisfaisable.

13 Exemples

Toutes les feuilles (ici une seule) contiennent une paire de littéraux complémentaires (a et $\neg a$), donc la formule n'est pas satisfaisable.

14 Exemples

$$\{\underbrace{((a \lor c) \land (b \lor c)) \rightarrow (\neg b \rightarrow ((a \land b) \lor c))}\}$$

$$\{\underline{\neg ((a \lor c) \land (b \lor c))}\}$$

$$\{\underline{\neg (a \lor c)}\}$$

$$\{\neg (b \lor c)\}$$

$$\{b\}$$

$$\{(a \land b) \lor c\}$$

$$\{\neg a, \neg c\}$$

$$\{a \land b\}$$

$$\{a, b\}$$

Il existe plusieurs feuilles ne contenant pas de paire de littéraux complémentaires, la formule est donc satisfaisable.

15 Questions

Tableaux sémantiques

Soit ϕ une formule et T_{ϕ} un arbre construit avec l'algorithme précédent.

1. Si toutes les feuilles de T_{ϕ} sont satisfaisables, est-ce que cela signifie que ϕ est valide? $\phi = x$ $T_{\phi} = \int x \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{qu \cdot conhect} \int \frac{(a \cdot b \cdot c \cdot qu \cdot conhect}{$

15 Questions

Soit ϕ une formule et T_{ϕ} un arbre construit avec l'algorithme précédent.

- 1. Si toutes les feuilles de T_{ϕ} sont satisfaisables, est-ce que cela signifie que ϕ est valide ? Non : prendre par exemple $\phi = x$.
- 2. quelle est la taille maximale de T_{ϕ} (nombre de noeuds) en fonction du nombre de symboles de ϕ ?

15 Questions

Soit ϕ une formule et T_{ϕ} un arbre construit avec l'algorithme précédent.

- 1. Si toutes les feuilles de T_{ϕ} sont satisfaisables, est-ce que cela signifie que ϕ est valide? Non : prendre par exemple $\phi = x$.
- quelle est la taille maximale de T_φ (nombre de noeuds) en fonction du nombre de symboles de φ? T_φ peut avoir un nombre exponentiel de noeuds. Par exemple, prenons n ≥ 0 et φ = (x₁ ∨ y₁) ∧ (x₂ ∨ y₂) ··· ∧ (x_n ∨ y_n), alors T_φ a au moins 2ⁿ⁺¹ + n − 2 noeuds, et exactement 2ⁿ feuilles. L'algorithme a donc une complexité exponentielle en temps dans le pire cas.

Lableaux sémantiques

16 Tableaux Sémantiques : Résumé

- la méthode des tableaux sémantiques est un algorithme pour tester la satisfaisabilité d'une formule.
- elle est basée sur la construction d'un arbre par applications successives de règles de simplifications de formules (tableaux)
- les formules équivalentes à une disjonction (disjonction, implication, négation d'une conjonction, négation d'une équivalence) sont satisfaites si un des deux membres de la disjonction est satisfait : les deux choix sont représentés par du branchement (deux fils) dans l'arbre.
- les formules équivalentes à une conjonction (conjonction, équivalence, négation d'une implication et d'une disjonction) sont satisfaites si les deux membres de la conjonction sont satisfaits : un seul fils est créer dans l'arbre.
- les feuilles de l'arbres sont des ensembles de littéraux (donc non simplifiables), pour lesquels la satisfaisabilité est facile à tester (absence de littéraux complémentaires).
- dans le pire cas, l'arbre créé est exponentiellement plus grand que la formule
- pour tester la validité d'une formule, on peut tester la non satisfaisabilité de se négation par la méthode des tableaux sémantiques.