1 Question 1.1

 $3^{1500} \mod 11$

2 Solution

$$3 \mod 11 = 3$$
 $3^2 \mod 11 = 9$
 $3^3 \mod 11 = 5$
 $3^4 \mod 11 = 4$
 $3^5 \mod 11 = 1$
 $3^6 \mod 11 = 3$
 $3^7 \mod 11 = 9$
 $3^8 \mod 11 = 5$
 $3^9 \mod 11 = 4$
 $3^{10} \mod 11 = 1$

Therefore, we suspect $3^{1500} \mod 11 = 3^{5 \times 500} \mod 11 = 1$. we can prove this with induction.

2.1 Proof by induction

To prove

$$3^{5n} \mod 11 = 1$$

Base case holds:

$$3^{1500} \mod 11 = 3^{10 \times 150} \mod 11 = 1$$

Inductive step: assume when $\mathbf{n}=\mathbf{k},$ the statement holds, then consider n=k+1

$$3^{5(k+1)} \mod 11 = 3^{5k+5} \mod 11$$

$$= 3^{5k} \times 3^5 \mod 11$$

$$= (3^{5k} \mod 11 \times 3^5 \mod 11) \mod 11$$

$$= 1 \times 1 \mod 11$$

$$= 1$$

So the statement holds for $n=k+1 \forall k \in \mathbb{Z}^+$, and by the principle of mathematical induction, $3^{5n} \mod 11 = 1$.

2.2 Alternative Solution

We can see that

```
\begin{array}{lll} 3^{1500} & \bmod \ 11 = 3^{4+8+16+64+128+256+1024} & \bmod \ 11 \\ & = 3^4 \times 3^8 \times 3^{16} \times 3^{64} \times 3^{128} \times 3^{256} \times 3^{1024} & \bmod \ 11 \\ & = (3^4 \mod 11 \times 3^8 \mod 11 \times \dots \times 3^{1024} \mod 11) \mod 11 \\ & = 1 \end{array}
```