Artificial Intelligence: Introduction to Neural Networks

Perceptron, Backpropagation

Today

- Neural Networks
 - Perceptrons
 - Backpropagation

Neural Networks

- Radically different approach to reasoning and learning
- Inspired by biology
 - the neurons in the human brain
- Set of many simple processing units (neurons) connected together
- Behavior of each neuron is very simple
 - but a collection of neurons can have sophisticated behavior and can be used for complex tasks
- In a neural network, the behavior depends on weights on the connection between the neurons
- The weights will be learned given training data

Biological Neurons

Human brain =

- 100 billion neurons
- each neuron may be connected to 10,000 other neurons
- passing signals to each other via 1,000 trillion synapses

A neuron is made of:

- Dendrites: filaments that provide input to the neuron
- Axon: sends an output signal
- Synapses: connection with other synapses neurons releases neurotransmitters to other neurons

Behavior of a Neuron

- A neuron receives inputs from its neighbors
- If enough inputs are received at the same time:
 - the neuron is activated
 - and fires an output to its neighbors
- Repeated firings across a synapse increases its sensitivity and the future likelihood of its firing
- If a particular stimulus repeatedly causes activity in a group of neurons, they become strongly associated

Today

- Neural NetwoPerceptrons

 - Backpropagation

- Sources of Feature Vector x
 - Encoded image
 - Tabulated data
 - Embedded words
 - **...**

columns = attributes for those observations

I I				
Player	Minutes	Points	Rebounds	Assists
Α	41	20	6	5
В	30	29	7	6
С	22	7	7	2
D	26	3	3	9
E	20	19	8	0
F	9	6	14	14
G	14	22	8	3
1	22	36	0	9
J	34	8	1	3

- Sources of Feature Vector x
 - Encoded image
 - Tabulated data
 - Embedded words
- $N^2 \times 1$

source: Luger (2005)

- Sources of Feature Vector x
 - Encoded image
 - Tabulated data
 - Embedded words

source: Luger (2005)

- Sources of Feature Vector x
 - Encoded image
 - Tabulated data
 - Embedded words

source: Luger (2005)

$$\sum_{i=1}^{N} w_i x_i$$

$$\sum_{i=1}^{N} w_i x_i + b_j$$

$$y_j = f\left(\sum_{i=1}^N w_i x_i + b_j\right)$$

$$y_j = f\left(\sum_{i=1}^N w_i x_i + b_j\right) = f\left(w^T x + b_j\right)$$

$$\underline{y} = f\left(W^T \underline{x} + \underline{b}\right)$$

 \underline{x} : input feature vector $N \times 1$ \underline{y} : input feature vector $M \times 1$ \overline{W} : weight matrix $M \times N$ \underline{b} : bias vector $M \times 1$ $f(\cdot)$: activation function

$$\underbrace{-\underline{x}_1} = f\left(W_0^T \underline{x} + \underline{b}_0\right)$$

$$\underline{x}_1 = f\left(W_0^T \underline{x} + \underline{b}_0\right)$$

$$\underline{y} = f\left(W_1^T \underline{x}_1 + \underline{b}_1\right)$$

Fully Connected (FC) Network

- First layer design: map input feature vector into smaller vector

- First layer design: activate features using non-linear activation

$$[\underline{x}_1]_{128 \times 1} = f\left(W_0^T \underline{x} + \underline{b}_0\right)$$

- Second layer design: map input feature vector into #Classes

- Second layer design: no activation is required

Quiz: What is the #Learnable Parameters?

#Learnable Parameters = 784x128 + 128 + 128x10 + 10 = 101,770

Apply Softmax regression model to map output classes in range between [0,1]

Fully Connected NN: Error-Gradient Backpropagation

- To train NN, the gradient of error-loss is calculated with respect to each learnable parameter in the network

$$\frac{\partial \epsilon}{\partial w_{0,i,j}}, \frac{\partial \epsilon}{\partial b_{0,j}}, \frac{\partial \epsilon}{\partial w_{1,i,j}}, \frac{\partial \epsilon}{\partial b_{1,j}}$$

FACULTY OF APPLIED SCIENCE & ENGINEERING

Fully Connected NN: Error-Gradient Backpropagation

- To train NN, the gradient of error-loss is calculated with respect to each learnable parameter in the network

$$\frac{\partial \epsilon}{\partial w_{0,i,j}}, \frac{\partial \epsilon}{\partial b_{0,j}}, \frac{\partial \epsilon}{\partial w_{1,i,j}}, \frac{\partial \epsilon}{\partial b_{1,j}}$$

Rumelhart et al., 1986 introduced Backpropagation for training NN

- Error gradients are used to update the network parameters in iterative minimization using gradient descent

e.g.
$$w_{0,i,j}^{k+1} \leftarrow w_{0,i,j}^k - \eta \frac{\partial \epsilon}{\partial w_{0,i,j}^{k+1}}$$

Fully Connected NN: Error-Gradient Backpropagation

- To train NN, the gradient of error-loss is calculated with respect to each learnable parameter in the network

$$\frac{\partial \epsilon}{\partial w_{0,i,j}}, \frac{\partial \epsilon}{\partial b_{0,j}}, \frac{\partial \epsilon}{\partial w_{1,i,j}}, \frac{\partial \epsilon}{\partial b_{1,j}}$$

 Error gradients are used to update the network parameters in iterative minimization using gradient descent

e.g.
$$w_{0,i,j}^{k+1} \leftarrow w_{0,i,j}^k - \eta \frac{\partial \epsilon}{\partial w_{0,i,j}^{k+1}}$$

Fully Connected NN: Error-Gradient Backpropagation

- To train NN, the gradient of error-loss is calculated with respect to each learnable parameter in the network

```
iteration p = 0
                                                for p in group['params']:
 \overline{\partial w_{0,i,j}} , \overline{\partial b_0}
                                                    if p.grad is None:
                                                        iteration p += 1
                                                    d p = p.grad.data
                                                    if weight_decay != 0:
Error gradien
                                                        d p.add (weight decay, p.data)
                                                   if momentum != 0:
iterative mini
                                                        param_state = self.state[p]
                                                        if 'momentum buffer' not in param state:
                                                            buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
                                                            buf = param state['momentum buffer']
                                                            buf.mul_(momentum).add_(1 - dampening, d_p)
                                                        if nesterov:
                                                            d_p = d_p.add(momentum, buf)
                                                            d p = buf
                                                    p.data.add (-group['lr'], d_p)
                                           return loss
```

- Classification sub-module

$$\epsilon(\hat{y}, t) = -\sum_{k=1}^{10} t_k \ln \hat{y}_k = -\underline{t}^T \ln \underline{\hat{y}}$$

- Classification sub-module

$$\epsilon(\hat{y}, t) = -\sum_{k=1}^{10} t_k \ln \hat{y}_k = -\underline{t}^T \ln \underline{\hat{y}}$$

$$\frac{\partial \epsilon}{\partial \hat{y}_j} = -\frac{t_j}{\hat{y}_j}$$

- Probability sub-module

$$\hat{y}_j = \frac{\exp y_j}{\sum_{k=1}^{10} \exp y_k}$$

- Probability sub-module

$$\hat{y}_j = \frac{\exp y_j}{\sum_{k=1}^{10} \exp y_k}$$

$$\frac{\partial \epsilon}{\partial y_j} = \frac{\partial \epsilon}{\partial \hat{y}_j} \cdot \frac{\partial \hat{y}_j}{\partial y_j} = \frac{\partial \epsilon}{\partial \hat{y}_j} \cdot \hat{y}_j \cdot (1 - \hat{y}_j)$$

- FC Layer sub-module

$$y_j = \sum_{k=1}^{128} W_{1,k,j} x_k + b_{1,j}$$

- FC Layer sub-module

$$y_j = \sum_{k=1}^{128} W_{1,k,j} x_k + b_{1,j}$$

$$\frac{\partial \epsilon}{\partial b_{1,i}} = \frac{\partial \epsilon}{\partial y_j} \cdot \frac{\partial y_j}{\partial b_{1,i}} = \frac{\partial \epsilon}{\partial y_j} \cdot 1$$

- FC Layer sub-module

$$y_j = \sum_{k=1}^{128} W_{1,k,j} x_k + b_{1,j}$$

$$\frac{\partial \epsilon}{\partial b_{1,i}} = \frac{\partial \epsilon}{\partial y_j} \cdot \frac{\partial y_j}{\partial b_{1,i}} = \frac{\partial \epsilon}{\partial y_j} \cdot 1$$

$$\frac{\partial \epsilon}{\partial W_{1,i,j}} = \frac{\partial \epsilon}{\partial y_j} \cdot \frac{\partial y_j}{\partial W_{1,i,j}} = \frac{\partial \epsilon}{\partial y_j} \cdot x_i$$

 $b_{1,i}$

 $\overline{\partial b_{1,i}}$

- FC Layer sub-module

$$y_j = \sum_{k=1}^{128} W_{1,k,j} x_k + b_{1,j}$$

$$\frac{\partial \epsilon}{\partial b_{1,i}} = \frac{\partial \epsilon}{\partial y_i} \cdot \frac{\partial y_j}{\partial b_{1,i}} = \frac{\partial \epsilon}{\partial y_j} \cdot 1$$

$$\frac{\partial \epsilon}{\partial W_{1,i,j}} = \frac{\partial \epsilon}{\partial y_j} \cdot \frac{\partial y_j}{\partial W_{1,i,j}} = \frac{\partial \epsilon}{\partial y_j} \cdot x_i$$

$$\frac{\partial \epsilon}{\partial x_i} = \frac{\partial \epsilon}{\partial y_j} \cdot \frac{\partial y_j}{\partial x_i} = \frac{\partial \epsilon}{\partial y_j} \cdot W_{1,i,j}$$

 $\overline{\partial b_{1,i}}$

 $b_{1,i}$

Applications of Neural Networks

- Handwritten digit recognition
 - Training set = set of handwritten digits (0...9)
 - Task: given a bitmap, determine what digit it represents
 - Input: 1 feature for each pixel of the bitmap
 - Output: 1 output unit for each possible character (only 1 should be activated)
 - After training, network should work for fonts (handwriting) never encountered
 - Related pattern recognition applications:
 - recognize postal codes
 - recognize signatures
 - **...**

Applications of Neural Networks

- Speech synthesis
 - Learning to pronounce English words
 - Difficult task for a rule-based system because English pronunciation is highly irregular
 - Examples:
 - letter "c" can be pronounced [k] (cat) or [s] (cents)
 - Woman vs Women
 - □ NETtalk:
 - uses the context and the letters around a letter to learn how to pronounce a letter
 - Input: letter and its surrounding letters
 - Output: phoneme

NETtalk Architecture

Ex: $a cat \rightarrow c is pronounced K$

- Network is made of 3 layers of units
- input unit corresponds to a 7 character window in the text
- each position in the window is represented by 29 input units
 (26 letters + 3 for punctuation and spaces)
- 26 output units one for each possible phoneme

Listen to the output through iterations: https://www.youtube.com/watch?v=gakJlr36ecE

source: Luger (2005)

Neural Networks

Disadvantage:

 result is not easy to understand by humans (set of weights compared to decision tree)... it is a black box

Advantage:

 robust to noise in the input (small changes in input do not normally cause a change in output) and graceful degradation

Today

- Introduction to Neural Networks
 - Perceptrons
 - Backpropagation

THE END!