Study Notes March 19, 2011 Kenneth Chu

1 One-parameter families of random variables

Let $I \subset \mathbb{R}$ be an interval in \mathbb{R} . Let $Y|_x : (\Omega, p) \longrightarrow \mathbb{R}$ be a family of random variables, parametrized by $x \in I \subset \mathbb{R}$, defined on the probability set (Ω, p) .

The regression function of the family $Y|_x$ is defined as follows:

$$I \longrightarrow \mathbb{R} : x \longmapsto E(Y|_x).$$

The regression curve of the family $Y|_x$ is the graph of the regression function.

For each fixed $x \in \mathbb{R}$, let $f_{Y|x}(y)$ denote the probability distribution of $Y|_x$.

2 The Simple Linear Model

A one-parameter family $\{Y|_x\}_{x\in I}$ of random variables is called a *simple linear model* if the following conditions are satisfied:

1. There exists $\beta_0, \beta_1, \sigma \in \mathbb{R}$, with $\sigma > 0$, such that $Y|_x \sim \mathcal{N}(\beta_0 + \beta_1 x, \sigma^2)$, for each $x \in I$. In other words,

$$f_{Y|x}(y) = f_{Y|x}(y; \beta_0, \beta_1, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{y-\beta_0-\beta_1x}{\sigma})^2}$$

2. For any $x_1, x_2 \in I$ with $x_1 \neq x_2$, we have that $Y|_{x_1}$ and $Y|_{x_2}$ are independent random variables.

3 The maximum likelihood estimators of the parameters β_0 , β_1 , and σ^2 of the Simple Linear Model

Suppose $\{Y|_x\}_{x\in I}$ is a simple linear model, with parameters β_0 , β_1 , and σ^2 . Let $x_1, x_2, \ldots, x_n \in I$ be distinct. The *likelihood function* of the observations $Y_1 := Y|_{x_1}, Y_2 := Y|_{x_2}, \ldots, Y_n := Y|_{x_n}$ is defined as follows:

$$L(\beta_0, \beta_1, \sigma; y_1, \dots, y_n) := f_{Y|x_1}(y_1) \cdot f_{Y|x_2}(y_2) \cdot \dots \cdot f_{Y|x_n}(y_n) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \cdot \prod_{i=1}^n e^{-\frac{1}{2}\left(\frac{y_i - \beta_0 - \beta_1 x_i}{\sigma}\right)^2}$$

Theorem 3.1

The maximum likelihood estimators for β_0 , β_1 , and σ^2 of the simple linear model $\{Y|_x\}_{x\in I}$ based on the observations $Y_1:=Y|_{x_1}, Y_2:=Y|_{x_2}, \ldots, Y_n:=Y|_{x_n}$ are given respectively by:

$$\widehat{\beta_{1}} = \frac{n\left(\sum_{i=1}^{n} x_{i} Y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \cdots = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) Y_{i}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$\widehat{\beta_{0}} = \overline{Y} - \widehat{\beta_{1}} \overline{x} = \left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right) - \widehat{\beta_{1}} \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right), \text{ where } \overline{x} := \frac{1}{n} \sum_{i=1}^{n} x_{i}, \overline{Y} := \frac{1}{n} \sum_{i=1}^{n} Y|_{x_{i}} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$

$$\widehat{\sigma^{2}} = \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \widehat{Y}_{i}\right)^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \widehat{\beta_{0}} - \widehat{\beta_{1}} x_{i}\right)^{2}$$

Proof

$$-2\log L = -2\log L(\beta_0, \beta_1, \sigma; y_1, \dots, y_n) = n \cdot \log(2\pi) + n \cdot \log(\sigma^2) + \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

Study Notes March 19, 2011 Kenneth Chu

Hence, setting the partial derivatives of $-2 \log L$ with respect to β_0 , β_1 , and σ^2 to zero yields:

$$0 = \frac{\partial(-2\log L)}{\partial\beta_0} = \frac{2}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) (-1) = -\frac{2}{\sigma^2} \left\{ \left(\sum_{i=1}^n y_i \right) - n \beta_0 - \beta_1 \left(\sum_{i=1}^n x_i \right) \right\}$$

$$0 = \frac{\partial(-2\log L)}{\partial\beta_1} = \frac{2}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) (-x_i) = -\frac{2}{\sigma^2} \left\{ \left(\sum_{i=1}^n x_i y_i \right) - \beta_0 \left(\sum_{i=1}^n x_i \right) - \beta_1 \left(\sum_{i=1}^n x_i^2 \right) \right\}$$

$$0 = \frac{\partial(-2\log L)}{\partial\sigma^2} = \frac{n}{\sigma^2} - \frac{1}{(\sigma^2)^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

Then, $\left(\sum_{i=1}^{n} x_i\right) \times \text{(first equation)} - n \times \text{(second equation) yields:}$

$$\beta_1 \left\{ n \left(\sum_{i=1}^n x_i^2 \right) - \left(\sum_{i=1}^n x_i \right)^2 \right\} - \left\{ n \left(\sum_{i=1}^n x_i y_i \right) - \left(\sum_{i=1}^n x_i \right) \left(\sum_{i=1}^n y_i \right) \right\} = 0,$$

which gives the expression for $\widehat{\beta}_1$. Substituting this expression for $\widehat{\beta}_1$ into the first equation immediately yields the expression for $\widehat{\beta}_0$. Substituting the expressions for $\widehat{\beta}_0$ and $\widehat{\beta}_1$ into the third equation yields that for $\widehat{\sigma}^2$.

Theorem 3.2 The following are true:

• $\widehat{\beta_0}$ is normally distributed with

$$E(\widehat{\beta_0}) = \beta_0$$
 and $Var(\widehat{\beta_0}) = \sigma^2 \left(\frac{\frac{1}{n} \sum_{i=1}^n x_i^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)$

• $\widehat{\beta_1}$ is normally distributed with

$$E(\widehat{\beta_1}) = \beta_1$$
 and $Var(\widehat{\beta_1}) = \sigma^2 \left(\frac{1}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)$

- $\widehat{\beta_1}$, $\widehat{\sigma^2}$, and $\overline{Y} := \frac{1}{n} \sum_{i=1}^n Y_i$ are mutually independent random variables.
- Corollary $\widehat{\sigma^2}$ and $\widehat{Y}|_x := \widehat{\beta}_0 + \widehat{\beta}_1 x = \overline{Y} + \widehat{\beta}_1 (x \overline{x})$ are independent random variables.
- \bullet $\widehat{Y}|_{x} := \widehat{\beta}_{0} + \widehat{\beta}_{1} \cdot x$ is normally distributed with

$$E(\widehat{Y}|_x) = \beta_0 + \beta_1 x$$
 and $Var(\widehat{Y}|_x) = \sigma^2 \left(\frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right)$

$$\bullet \ S^2 := \frac{n}{n-2} \cdot \widehat{\sigma^2} = \frac{1}{n-2} \sum_{i=1}^n \left(Y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \right)^2 \quad \text{is an unbiased estimator for σ^2, and } \\ \left(\frac{n}{\sigma^2} \right) \cdot \widehat{\sigma^2} \ = \ \frac{(n-2)S^2}{\sigma^2} \ = \ \frac{1}{\sigma^2} \sum_{i=1}^n \left(Y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \right)^2 \quad \text{has a χ^2-distribution with $n-2$ degrees of freedom.}$$

Study Notes March 19, 2011 Kenneth Chu

References