Homological Algebra Problem Sets

Problem Set 3

D. Zack Garza

D. Zack Garza University of Georgia dzackgarza@gmail.com

 $Last\ updated \hbox{:}\ 2021\hbox{-}02\hbox{-}24$

Table of Contents

Contents

Tab	ole of Contents	2
1	Wednesday, February 17	3

Table of Contents

1 Wednesday, February 17

Problem 1.0.1 (Prove Corollary 2.3.2)

For R a PID, show that an R-module A is divisible if and only if A is injective.

Recall that a module is divisible if and only if for every $r \neq 0 \in R$ and every $a \in A$, we have a = br for some $b \in A$.

Solution:

Note: we'll assume R is commutative, and since R is a domain, it has no nonzero zero divisors and thus all elements $r \in R$ are left-cancelable.

 \implies : Suppose A is divisible, we then want to show every R-module morphism of the following form lifts, where we regard the ideal J and the ring R as R-modules:

Link to Diagram

Since R is a PID, we have J = jR for some $j \in \overline{R}$, so it suffices to produce lifts of the following form:

Link to Diagram

Consider $f(j) \in A$. Since A is divisible, we have A = jA, so we can write $f(j) = j\mathbf{a}'$ for some $\mathbf{a}' \in A$. Using R-linearity and the fact that j is left-cancelable, we have

$$jf(1_R) = f(j) = j\mathbf{a}' \implies f(1_R) = \mathbf{a}'.$$

Thus we can set

$$\tilde{f}: R \to A$$

$$1_R \mapsto \mathbf{a}'.$$

and extending R-linearly yields a well-defined R-module morphism. Moreover, the diagram commutes by construction, since $\iota(1_R) = 1_R$.

 \Leftarrow : Suppose $A \in R$ -Mod is injective, where by Baer's criterion we equivalently have a lift of the following form for every $J \subseteq R$:

Link to Diagram

Let $j \in R$ be a nonzero element that is not a zero-divisor, we then want to show that A = jA, i.e. that for every $\mathbf{a} \in A$, there is a $\mathbf{a}' \in A$ such that $\mathbf{a} = j\mathbf{a}'$. Fixing $\mathbf{a} \in A$, define a map $f_a : J \to A$ in the following way: for $x \in J$, use the fact that $\langle j \rangle \coloneqq jR$ to first write x = jr for some $r \in R$, and then set $f_a(x) = f_a(jr) \coloneqq r\mathbf{a}$. To summarize, we have

$$f_a: J = jR \to R$$

 $x = jr \mapsto r\mathbf{a}.$

By injectivity, we can take the inclusion $jR \hookrightarrow R$ and get a lift:

Link to Diagram

We can now use the fact that

$$r\mathbf{a} = f_a(jr)$$

$$= \tilde{f}_a(\iota(jr))$$

$$= \tilde{f}_a(jr)$$

$$= jr\tilde{f}_a(1_R) \qquad \text{using R-linearity and $j,r \in R$}$$

$$= rj\tilde{f}_a(1_R) \qquad \text{since R is commutative}$$

$$\implies \mathbf{a} = j\tilde{f}_a(1_R) \in jA,$$

where in the last step we have canceled an r on the left. So in the definition of divisibility, we can take

$$\mathbf{a}' \coloneqq \tilde{f}_a(1_R),$$

and letting a range over all elements of A yields the desired result.

Problem 1.0.2 (Calculating Ext Groups) Calculate $\operatorname{Ext}_{\mathbb{Z}}^{i}(\mathbb{Z}/p,\mathbb{Z}/q)$ for distinct primes p,q.

Claim: For any $m \in \mathbb{Z}$,

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}/n.$$

Proof(?).

Note that there is an injection

$$1 \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n, \mathbb{Q}/\mathbb{Z}) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Q}/\mathbb{Z}),$$

which follows from the fact that there is a SES

$$1 \to \mathbb{Z} \xrightarrow{x \mapsto nx} \mathbb{Z} \xrightarrow{\pi_n} \mathbb{Z}/n \to 1$$

where π_m is the canonical quotient morphism, and applying the left-exact contravariant functor $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n,\mathbb{Q}/\mathbb{Z})$ yields the first exact sequence above. We use this to identify the former as a submodule of the latter, and note that for any \mathbb{Z} -module morphism $\mathbb{Z} \xrightarrow{f} \mathbb{Q}/\mathbb{Z}$,

- 1. Since \mathbb{Z} is a free \mathbb{Z} -module with generator 1, f is entirely determined by f(1), and
- 2. f descends to a map $\tilde{f}: \mathbb{Z}/n \to \mathbb{Q}/\mathbb{Z}$ if and only if $f(n) \in \mathbb{Z}$, i.e. f(n) = [0] is in the equivalence class of zero in the quotient, and so

$$[1] = [0] = f(n) = nf(1).$$

Using this injection, we can identify the submodule $\text{Hom}(\mathbb{Z}/n, \mathbb{Q}/\mathbb{Z})$ as all of those morphism $\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ which descend to make the following diagram commute.

Link to Diagram

To characterize these, it suffices to determine all of the possible images f(1). Moreover, we can restrict our attention to coset representatives in the interval $[0,1) \cap \mathbb{Q} \subseteq \mathbb{R}$, where we want to find all $q := f(1) \in [0,1)$ such that nq = 1. A complete list of n such representatives is given by

$$q \in \left\{0, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}\right\}.$$

Setting $f_i(1) := \left[\frac{i}{n}\right]$ (where we take the equivalence class mod \mathbb{Z}) yields n distinct morphisms $f_i : \mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ that descend to $\tilde{f}_i : \mathbb{Z}/n \to \mathbb{Q}/\mathbb{Z}$. We can define a map

$$\Psi: \mathbb{Z} \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n, \mathbb{Q}/\mathbb{Z})$$

 $i \mapsto f_i,$

and using the fact that if $i = i' \pmod{n}$, write i' = i + kn for some $k \in \mathbb{Z}$, then

$$f_{i'}(1) = f_{i+kn}(1) = \left[\frac{i+kn}{n}\right] = \left[\frac{i}{n} + k\right] = \left[\frac{i}{n}\right] = f_i(1),$$

since $k \in \mathbb{Z}$, so by the first isomorphism theorem Ψ descends to an isomorphism

$$\tilde{\Psi}: \mathbb{Z}/n \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n, \mathbb{Q}/\mathbb{Z}).$$

Claim 2: \mathbb{Q}/\mathbb{Z} is an injective object in \mathbb{Z} -modules.

Proof (?).

By the previous exercise, it suffices to show that \mathbb{Q}/\mathbb{Z} is divisible. More generally, if any group G is divisible and $N \leq G$ is a normal subgroup, then G/N will be divisible. This follows from the fact that if $\bar{a}, \bar{b} \in G/N$ and $n \in \mathbb{Z}$, we can write $\bar{a} = a + N$ and $\bar{b} = b + N$ for some coset representatives, use divisibility to write a = nb, and then compute

$$\bar{a} = a + N = (nb) + N := n(b+N) = n\bar{b}.$$

That $\mathbb Q$ is divisible is a straightforward check: let $n \in \mathbb Z$ and $a \in \mathbb Q$, we then want a $b \in \mathbb Q$ such that a = nb, and $b \coloneqq \frac{a}{n} \in \mathbb Q$ works. Since $\mathbb Q$ is an abelian group, $\mathbb Z$ is automatically normal, and the result follows.

Solution:

We'll follow the procedure outlined in Weibel:

- Define the contravariant functor $F(\cdot) := \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/p, \cdot)$, then noting that it is left-exact, it has right-derived functors.
- Find an injective resolution I of \mathbb{Z}/q .
- Write F(I) as a new (not necessarily exact) chain complex.
- Compute $\operatorname{Ext}^i_{\mathbb{Z}}(\mathbb{Z}/p,\mathbb{Z}/q) := R^i F(\mathbb{Z}/q) := H^i(F(\mathbb{Z}/q)).$

We can first take the following injective resolution:

$$1 \longrightarrow \mathbb{Z}/q \xrightarrow{d^{-1}} \mathbb{Q}/\mathbb{Z} \xrightarrow{d^0} \mathbb{Q}/\mathbb{Z} \xrightarrow{d^1} 1$$
$$[1]_q \longrightarrow \left[\frac{1}{q}\right]$$

$$[x] \longrightarrow [qx]$$

Link to Diagram

This is a chain complex by construction, since $d^2([1]_q) = \left[q\left(\frac{1}{q}\right)\right] = [1] = [0]$. We now delete the augmentation and apply $F(\cdot)$:

$$1 \longrightarrow I^0 \coloneqq \mathbb{Q}/\mathbb{Z} \xrightarrow{d^0} I^1 \coloneqq \mathbb{Q}/\mathbb{Z} \xrightarrow{d^1} 1$$

$$\downarrow F(\cdot) \downarrow F(\cdot) \downarrow$$

Link to Diagram

Here we immediately simplify by applying the isomorphism from the earlier claim. Noting that $d^0(x) := qx$ was multiplication by q, we have $\partial^0(f) = d^0 \circ f$ is post-composition by the multiplication by q map, and $\tilde{\partial}^0$ similarly becomes multiplication by q.

We now take homology:

$$\operatorname{Ext}^1(\mathbb{Z}/p,\mathbb{Z}/q) := R^0 F(\mathbb{Z}/p) := \frac{\ker \partial^1}{\operatorname{im} \partial^0} = .$$

Problem 1.0.3 (Weibel 2.3.2)

For
$$A \in \mathbf{Ab}$$
, define $I(A) := \bigoplus_{f \in \mathrm{Hom}_{\mathbf{Ab}}(A, \mathbb{Q}/\mathbb{Z})} \mathbb{Q}/\mathbb{Z}$, and let $e_A : A \to I(A)$. Show that e_A is

injective.

Hint: if $a \in A$, find a map $f : a\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ with $f(a) \neq 0$ and extend this to a map $f' : A \to \mathbb{Q}/\mathbb{Z}$.

Problem 1.0.4 (Weibel 2.4.2)

If $U: \mathcal{B} \to \mathcal{C}$ is an exact functor, show that

$$U(L_iF) \cong L_i(UF).$$

Problem 1.0.5 (Weibel 2.4.3)

If $0 \to M \to P \to A \to 0$ is exact with P projective or F-acyclic, show that

$$L_iF(A) \cong L_{i-1}FM$$
 $i \ge 2.$

Show that $L_{m+1}F(A)$ is the kernel of $F(M_m) \to F(P_m)$. Conclude that if $P \to A$ is an F-acyclic resolution of A, then $L_iF(A) = H_i(F(P))$.

$Problem 1.0.6 ext{ (Weibel 2.5.2)}$

Show that the following are equivalent:

- a. A is a projective R-module.
- b. $\operatorname{Hom}_R(\,\cdot\,,A)$ is an exact functor.
- c. $\operatorname{Ext}_R^{i\neq 0}(A,B)=0$ and for all B, i.e. A is $\operatorname{Hom}_R(\,\cdot\,,B)$ -acyclic for all B.
- d. $\operatorname{Ext}_R^1(A,B)$ vanishes for all B.

Problem 1.0.7 (Weibel 2.6.4)

Show that colim is left adjoint to Δ , and conclude that colim is right-exact when when \mathcal{A} is abelian and colim exists. Show that the pushout, i.e. $\bullet \leftarrow \bullet \rightarrow \bullet$, is not an exact functor on \mathbf{Ab} .