Projections in free product C*-algebras, II

Kenneth J. Dykema and Mikael Rørdam 22 August, 1999

Abstract

Let (A, φ) be the reduced free product of infinitely many C*-algebras $(A_{\iota}, \varphi_{\iota})$ with respect to faithful states. Assume that the A_{ι} are not too small, in a specific sense. If φ is a trace then the positive cone of $K_0(A)$ is determined entirely by $K_0(\varphi)$. If, furthermore, the image of $K_0(\varphi)$ is dense in \mathbb{R} , then A has real rank zero. On the other hand, if φ is not a trace then A is simple and purely infinite.

Introduction

Let I be a set having at least two elements and, for every $\iota \in I$, let A_{ι} be a unital C*-algebra with a state, φ_{ι} , whose GNS representation is faithful. Their reduced free product,

$$(A,\varphi) = \underset{\iota \in I}{*} (A_{\iota}, \varphi_{\iota}) \tag{1}$$

was introduced by Voiculescu [20] and independently (in a more restricted way) by Avitzour [1]. Thus A is a unital C*-algebra with canonical, injective, unital *-homomorphisms, $\pi_{\iota} \colon A_{\iota} \to A$, and φ is a state on A such that $\varphi \circ \pi_{\iota} = \varphi_{\iota}$ for all ι . It is the natural construction in Voiculescu's free probability theory (see [21]), and Voiculescu's theory has been vital to the study of these C*-algebras.

In [12], for reduced free product C*-algebras A as in (1), when all the φ_{ι} are faithful, we investigated projections in A and the related topic of positive elements in $K_0(A)$. The behaviour we discovered, under mild conditions specifying that the A_{ι} are not too small, depended broadly on whether φ is a trace, (i.e. on whether all the φ_{ι} are traces). If φ is a not trace then by [12] A is properly infinite. It remained open whether A must be purely infinite. (Some special classes of reduced free product C*-algebras have in [13] and [9] been shown to be purely infinite.) When φ is a trace, then it follows from [12] that

for every element, x, of the subgroup, G, of $K_0(A)$ generated by $\bigcup_{\iota \in I} K_0(\pi_\iota)(K_0(A_\iota))$, if $K_0(\varphi)(x) > 0$ then $x \geq 0$ and if $0 < K_0(\varphi)(x) < 1$ then there is a projection $p \in A$ such that $x = [p]_0$. By work of E. Germain [14], [15], [16], if each A_ι is an amenable C*-algebra then $K_0(A) = G$ and G can be found from the groups $K_0(A_\iota)$ by using exact sequences, (and by taking inductive limits if I is infinite); hence under the hypothesis of amenability, we used Germain's results to give a complete characterization of the positive cone of $K_0(A)$ and of its elements corresponding to projections in A.

In the present paper we investigate similar questions for reduced free product C*algebras, (1), when I is infinite and when, for infinitely many $\iota \in I$, there is a unitary, $u \in A_{\iota}$ such that $\varphi_{\iota}(u) = 0$. We show that in this case, if φ is not a trace then Ais purely infinite and simple. If φ is a trace then, although we do not know in general
if the subgroup G described above exhausts $K_0(A)$, we nonetheless show that for every $x \in K_0(A)$, if $K_0(\varphi)(x) > 0$ then $x \geq 0$; furthermore, we show that if $x \in K_0(A)$ and if $0 < K_0(\varphi)(x) < 1$ then there is a projection $p \in A$ such that $x = [p]_0$. We also show that
if the image of $K_0(\varphi)$ is dense in \mathbb{R} then A has real rank zero.

The real rank of a C*-algebra, A, is denoted RR(A) and was invented by L.G. Brown and G.K. Pedersen [4]. Of particular interest is the case RR(A) = 0, which is defined, for a unital C*-algebra A, to mean that the invertible self-adjoint elements are dense in the set of all self-adjoint elements of A. If φ is a faithful state on an infinite dimensional, simple C*-algebra A, then a necessary condition for RR(A) = 0 is that there be projections, p, in A such that $\varphi(p)$ is arbitrarily small and positive; hence in particular, the image of $K_0(\varphi)$ must be dense in \mathbb{R} . We show that this condition is sufficient when A is a reduced free product of infinitely many algebras, as above, and when φ is a trace. (Moreover, when φ is not a trace then A is purely infinite, so by a result of S. Zhang [22], A has real rank zero.)

1 Comparison between positive elements and projections

Most of this section is a reformulation of results from [19]. The proof of Theorem 1.5 below is almost identical to the proof of [19, Theorem 7.2], but the statements of these two theorems are quite different.

We recall the notion of comparison of positive elements as introduced by J. Cuntz in [5] and [6] (see also [19]). Let A be a C*-algebra, and let a, b be positive elements in A.

Then $a \lesssim b$ will mean that there exists a sequence $\{x_n\}_{n\in\mathbb{N}}$ in A with

$$\lim_{n \to \infty} \|a - x_n b x_n^*\| = 0.$$

If $p, q \in A$ are projections, then the definition above of $p \lesssim q$ agrees with the usual definition: $p = vv^*$ and $v^*v \leq q$ for some partial isometry $v \in A$.

If A is unital, and if φ is a state on A, then define $D_{\varphi} \colon A^+ \to [0,1]$ by

$$D_{\varphi}(a) = \lim_{\varepsilon \to 0^+} \varphi(f_{\varepsilon}(a)),$$

where $f_{\varepsilon} \colon \mathbb{R}^+ \to [0,1]$ is the continuous function, which is zero on $[0,\varepsilon/2]$, linear on $[\varepsilon/2,\varepsilon]$, and equal to 1 on $[\varepsilon,\infty)$. If φ is a trace, then D_{φ} is a dimension function (in the sense of Cuntz, [6]). Notice that $D_{\varphi}(p) = \varphi(p)$ for all projections $p \in A$.

We shall use the following facts:

$$f_{2\varepsilon}(a) \le f_{\delta}(f_{\varepsilon}(a)) \le f_{\varepsilon/2}(a), \qquad f_{\varepsilon/2}(a)f_{\varepsilon}(a) = f_{\varepsilon}(a),$$
 (2)

when $\varepsilon > 0$ and $0 < \delta \le 1/2$, and, consequently, $D_{\varphi}(f_{\varepsilon}(a)) \le \varphi(f_{\varepsilon/2}(a))$. Moreover, if $0 \le a \le 1$, then $\varphi(a) \le D_{\varphi}(a)$. Recall from [18] that the *stable rank* of a unital C*-algebra A is equal to 1 if and only if the set invertible elements of A is dense in A.

Lemma 1.1 Let A be a C^* -algebra of stable rank one, let B be a hereditary subalgebra of A, let a be a positive element in B, and let q be a projection in B such that $a \lesssim q$. Then for each $\varepsilon > 0$ there is a projection $p \in B$ such that $f_{\varepsilon}(a) \leq p \sim q$.

Proof: Observe first that the comparisons $a \lesssim p$ and $p \sim q$ are independent of whether they are relative to A, B, or \tilde{B} , where \tilde{B} denotes the C*-algebra obtained by adjoining a unit to B. If follows from [18] and [3] that if A has stable rank one, then so do B and \tilde{B} . By [19, Proposition 2.4], there is for each $\varepsilon > 0$ a unitary u in \tilde{B} with $uf_{\varepsilon}(a)u^* \in q\tilde{B}q$ (= qBq). Put $p = u^*qu$. Then p is as desired. \square

Lemma 1.2 Let A be a C^* -algebra, let a be a positive element in A, and let p be a projection in A. Then the following are equivalent:

- (i) $p \leq a$,
- (ii) $p = xax^*$ for some $x \in A$,

(iii) p is equivalent to some projection in the hereditary subalgebra of A generated by a.

Proof: (i) \Rightarrow (ii). If $p \lesssim a$, then $||p - yay^*|| < 1/2$ for some $y \in A$. Hence $pyay^*p$ is invertible (and positive) in pAp, and therefore $p = zpyay^*pz^*$ for some $z \in pAp$.

- (ii) \Rightarrow (iii). Put $u = xa^{1/2}$. Then $uu^* = p$, and hence u is a partial isometry. Put $q = u^*u = a^{1/2}x^*xa^{1/2}$. Then q is a projection in the hereditary subalgebra generated by a, and $q \sim p$.
- (iii) \Rightarrow (i). Assume q is a projection in the hereditary subalgebra generated by a, and that $q \sim p$. Then there exists an $n \in \mathbb{N}$ such that $||q a^{1/n}qa^{1/n}|| < 1/2$. It follows that $qa^{1/n}qa^{1/n}q$ and, consequently, $qa^{2/n}q$, are invertible in qAq. Therefore $q = rqa^{2/n}qr^*$ for some $r \in qAq$. This shows that $p \sim q \lesssim a^{2/n} \lesssim a$. \square

Lemma 1.3 ([19, Proposition 2.2]) Let A be a unital C^* -algebra, let a, b be positive elements in A, and let $\varepsilon > 0$. If $||a - b|| < \varepsilon$, then $f_{\varepsilon}(a) \lesssim b$.

Lemma 1.4 Let A be a unital C^* -algebra, and let \mathfrak{A} be a dense unital *-subalgebra of A. Suppose that for each positive element $a \in \mathfrak{A}$ and each $\varepsilon > 0$ there is a projection $p \in A$ and $0 < \delta < \varepsilon$ such that $f_{\varepsilon}(a) \leq p \leq f_{\delta}(a)$. Then RR(A) = 0.

Proof: To show that RR(A) = 0 it will suffice (by [4]) to show that all self-adjoint elements in the dense *-subalgebra \mathfrak{A} can be approximated by invertible self-adjoint elements.

Let a be a self-adjoint element in \mathfrak{A} , and write $a = a_+ - a_-$. For each $n \in \mathbb{N}$ find $\delta_n > 0$ and projections p_n, q_n in A such that

$$f_{1/n}(a_+) \le p_n \le f_{\delta_n}(a_+), \qquad f_{1/n}(a_-) \le q_n \le f_{\delta_n}(a_-).$$

Then $p_n \perp q_n$, $p_n a_+ p_n \to a_+$, and $q_n a_- q_n \to a_-$. Set

$$b_n = (p_n a_+ p_n + \frac{1}{n} p_n) - (q_n a_- q_n + \frac{1}{n} q_n) + \frac{1}{n} (1 - p_n - q_n).$$

Then each b_n is invertible and self-adjoint, and $b_n \to a$. \square

Let \mathcal{Q} be a compact convex subset of the state space of a unital C*-algebra A, and let $\mathrm{Aff}(\mathcal{Q})$ denote the real vector space of all affine continuous functions $\mathcal{Q} \to \mathbb{R}$. Equip this space with the strict ordering, i.e., $f \geq 0$ if f = 0 or if $f(\varphi) > 0$ for all $\varphi \in \mathcal{Q}$, and, in turn, with the topology induced by this ordering. All self-adjoint elements $a \in A$ induce

an element $\hat{a} \in \text{Aff}(\mathcal{Q})$ through the formula $\hat{a}(\varphi) = \varphi(a)$. We will consider the interval [0,1] of $\text{Aff}(\mathcal{Q})$, defined by

$$[0,1] = \{ f \in Aff(Q) \mid 0 \le f \le 1 \}.$$

Theorem 1.5 Let A be a unital C^* -algebra, let \mathcal{Q} be a compact convex subset of the state space of A, let Π be a subset of the set of projections in A, and let \mathfrak{A} be a dense *-subalgebra of A, which is closed under continuous function calculus (on its normal elements).

Assume that each state in Q is faithful on \mathfrak{A} , and that the following comparison properties hold for all positive elements $a \in \mathfrak{A}$ and for all projections $p \in \Pi$:

- (α) if $D_{\varphi}(a) < \varphi(p)$ for all $\varphi \in \mathcal{Q}$, then $a \lesssim p$,
- (β) if $\varphi(p) < D_{\varphi}(a)$ for all $\varphi \in \mathcal{Q}$, then $p \lesssim a$, and
- (γ) the subset of Aff(\mathcal{Q}) induced by Π is dense in the interval [0,1] of Aff(\mathcal{Q}).

It follows that

- (i) if sr(A) = 1, then RR(A) = 0, and
- (ii) if all nonzero projections in Π are infinite and full, then A is simple and purely infinite.

Proof: (i). We show that the conditions in Lemma 1.4 are satisfied. So let $a \in \mathfrak{A}$ be a positive element, and let $\varepsilon > 0$. We must find $0 < \delta < \varepsilon$ and a projection $p \in A$ with $f_{\varepsilon}(a) \leq p \leq f_{\delta}(a)$.

If $\operatorname{sp}(a) \cap (\varepsilon/8, \varepsilon/4) = \emptyset$, then $p = f_{\varepsilon/8}(a)$ and $\delta = \varepsilon/8$ will be as desired.

Assume now that $\operatorname{sp}(a) \cap (\varepsilon/8, \varepsilon/4) \neq \emptyset$. Then $0 \leq \varphi(f_{\varepsilon/4}(a)) < \varphi(f_{\varepsilon/8}(a)) \leq 1$ for all $\varphi \in \mathcal{Q}$ because each such φ is assumed to be faithful on \mathfrak{A} . Since Π is dense in the interval [0,1] of $\operatorname{Aff}(\mathcal{Q})$ there is $q \in \Pi$ with $\varphi(f_{\varepsilon/4}(a)) < \varphi(q) < \varphi(f_{\varepsilon/8}(a))$ for all $\varphi \in \mathcal{Q}$. By (2),

$$D_{\varphi}(f_{\varepsilon/2}(a)) \le \varphi(f_{\varepsilon/4}(a)) < \varphi(q) < \varphi(f_{\varepsilon/8}(a)) \le D_{\varphi}(f_{\varepsilon/8}(a)).$$

By assumptions (α) and (β) this implies that $f_{\varepsilon/2}(a) \lesssim q \lesssim f_{\varepsilon/8}(a)$.

From Lemma 1.2 there is a projection r in the hereditary subalgebra, B, generated by $f_{\varepsilon/8}(a)$ such that $q \sim r$. By Lemma 1.1 there is a projection $p \in B$ such that $f_{1/2}(f_{\varepsilon/2}(a)) \leq$

p (and $p \sim r$). By (2), this entails that $f_{\varepsilon}(a) \leq p \leq f_{\varepsilon/16}(a)$. The claim is therefore proved with $\delta = \varepsilon/16$.

(ii). If each non-zero hereditary subalgebra of A contains a full element, then A must be simple. If, moreover, each such hereditary subalgebra contains an infinite projection, then A is purely infinite and simple (c.f. Cuntz' definition of purely infinite simple C*-algebras in [7]). It therefore suffices to show that each non-zero hereditary subalgebra of A contains an infinite full projection.

Let B be a non-zero hereditary subalgebra of A, and let b be a positive element in B with ||b|| = 1. Find a positive element $a \in \mathfrak{A}$ with ||a - b|| < 1/2. Since each $\varphi \in \mathcal{Q}$ is faithful, since $f_{1/2}(a) \neq 0$, and since Π is dense in the interval [0,1] of $\mathrm{Aff}(\mathcal{Q})$, there is $q \in \Pi$ with $\varphi(q) < \varphi(f_{1/2}(a))$ for all $\varphi \in \mathcal{Q}$. This implies that $\varphi(q) < D_{\varphi}(f_{1/2}(a))$ for all $\varphi \in \mathcal{Q}$, and by assumption (β) we get $q \lesssim f_{1/2}(a)$. Using Lemma 1.3 we obtain that $q \lesssim b$, and Lemma 1.2 finally implies that there is a projection p in the hereditary subalgebra of A generated by b (which is contained in B, so that $p \in B$) such that $p \sim q$. Since q is infinite and full, so is p, and the proof is complete. \square

2 Application to reduced free products of C*-algebras

Throughout this section, we consider a reduced free product of C*-algebras,

$$(A,\varphi) = \underset{\iota \in I}{*} (A_{\iota}, \varphi_{\iota}), \tag{3}$$

where I is an infinite set, where each φ_{ι} is a faithful state and where for infinitely many $\iota \in I$ there is a unitary $u \in A_{\iota}$ with $\varphi_{\iota}(u) = 0$. It follows from [8] that φ is faithful on A.

Avitzour's result [1] gives that A is simple if, for example, φ is a trace. Indeed, by partitioning the set I into two suitable subsets, A can be viewed as a reduced free product,

$$(A, \varphi) = (B_1, \psi_1) * (B_2, \psi_2),$$

such that there are unitaries, $u \in B_1$ and $v, w \in B_2$ satisfying that $\psi_1(u) = 0 = \psi_2(v) = \psi_2(w)$ and that v and w are *-free; hence also $\psi_2(v^*w) = 0$. (Avitzour's result also applies in somewhat more general instances.) In addition, if φ is a trace then by [10] the stable rank of A is equal to 1.

The K_0 -group, $K_0(D)$, of a C*-algebra D is equipped with a positive cone and a scale

defined respectively by

$$K_0(D)^+ = \{ [p]_0 \mid p \in \operatorname{Proj}(D \otimes \mathcal{K}) \},$$

$$\Sigma(D) = \{ [p]_0 \mid p \in \operatorname{Proj}(D) \},$$

where $\operatorname{Proj}(D)$ is the set of projection in D, and where $[\cdot]_0$: $\operatorname{Proj}(D \otimes \mathcal{K}) \to K_0(D)$ is the canonical map from which K_0 is defined. The positive cone gives rise to an ordering on $K_0(D)$ by $x \leq y$ if $y - x \in K_0(D)^+$, and x < y if $y - x \in K_0(D)^+ \setminus \{0\}$. Each (positive) trace φ on D induces a positive group-homomorphism $K_0(\varphi) \colon K_0(D) \to \mathbb{R}$ which satisfies $K_0(\varphi)([p]_0) = \varphi(p)$ for $p \in \operatorname{Proj}(D)$, and $K_0(\varphi)([p]_0) = (\varphi \otimes \operatorname{Tr}_n)(p)$ for $p \in \operatorname{Proj}(D \otimes M_n(\mathbb{C}))$, where Tr_n is the (unnormalized) trace on $M_n(\mathbb{C})$. The ordered abelian group $(K_0(D), K_0(D)^+)$ is called weakly unperforated if nx > 0 for some $n \in \mathbb{N}$ and some $x \in K_0(D)$ implies that $x \geq 0$.

Theorem 2.1 Let

$$(A,\varphi) = \underset{\iota \in I}{*} (A_{\iota}, \varphi_{\iota})$$

be the reduced free product C^* -algebra, where each A_{ι} is a unital C^* -algebra, φ_{ι} is a faithful state on A_{ι} , the index set I is infinite, and infinitely many A_{ι} contain a unitary in the kernel of φ_{ι} .

If φ is a trace (which is the case if all φ_{ι} are traces), then

- (i) whenever $p, q \in A \otimes M_n(\mathbb{C})$ are projections such that $(\varphi \otimes \operatorname{Tr}_n)(p) < (\varphi \otimes \operatorname{Tr}_n)(q)$, it follows that $p \lesssim q$;
- (ii) the positive cone and the scale of $K_0(A)$ are given by

$$K_0(A)^+ = \{0\} \cup \{x \in K_0(D) \mid 0 < K_0(\varphi)(x)\},$$

$$\Sigma(A) = \{0, 1\} \cup \{x \in K_0(D) \mid 0 < K_0(\varphi)(x) < 1\},$$

and, as a consequence, $(K_0(A), K_0(A)^+)$ is weakly unperforated;

(iii) RR(A) = 0 if and only if $K_0(\varphi)(K_0(A))$ is dense in \mathbb{R} .

If φ is not a trace (i.e., if at least one φ_{ι} is not a trace), then A is simple and purely infinite.

Proof: We consider, for every finite subset $F \subseteq I$, the C*-subalgebra, \mathfrak{A}_F , of A generated by $\bigcup_{\iota \in F} \pi_{\iota}(A_{\iota})$, and we let $\mathfrak{A} = \bigcup_{F \ll I} \mathfrak{A}_F$, where the union is over all finite subsets of

I. Note that \mathfrak{A} is a dense, unital *-subalgebra of A that is closed under the continuous functional calculus.

Suppose that φ is a trace, let $n \in \mathbb{N}$ and let $p, q \in A \otimes M_n(\mathbb{C})$ be projections with $(\varphi \otimes \operatorname{Tr}_n)(p) < (\varphi \otimes \operatorname{Tr}_n)(q)$. Using the density of \mathfrak{A} in A and continuous functional calculus, we find a finite subset F of I and projections $\tilde{p}, \tilde{q} \in \mathfrak{A}_F \otimes M_n(\mathbb{C})$ such that $\|\tilde{p}-p\| < 1$ and $\|\tilde{q}-q\| < 1$. This implies $\tilde{p} \sim p$ and $\tilde{q} \sim q$. There are n^2 distinct elements $\iota(1), \iota(2), \ldots, \iota(n^2) \in I \setminus F$ with unitaries $u_k \in A_{\iota(k)}$ such that $\varphi_{\iota(k)}(u_k) = 0$. Let B be the C*-algebra generated by $\{u_1, u_2, \ldots, u_{n^2}\}$. Note that B and \mathfrak{A}_F are free. Then as in the proof of Proposition 3.3 of [12], from the unitaries $u_1, u_2, \ldots, u_{n^2}$ we can construct a Haar unitary, $v \in B \otimes M_n(\mathbb{C})$ such that $\{v\}$ and $\mathfrak{A}_F \otimes M_n(\mathbb{C})$ are *-free (with respect to the tracial state $\varphi \otimes (\frac{1}{n} \operatorname{Tr}_n)$). Now $\tilde{q} \sim v^* \tilde{q} v$ and the pair \tilde{p} and $v^* \tilde{q} v$ is free; moreover, $(\varphi \otimes \operatorname{Tr}_n)(v^* \tilde{q} v) = (\varphi \otimes \operatorname{Tr}_n)(\tilde{q})$. So by Proposition 1.1 of [12], $v^* \tilde{q} v$ is equivalent to a subprojection, r, of \tilde{p} ; hence $q \lesssim p$. We have thus proved (i).

The inclusions \subseteq in (ii) are easy consequences of the fact that φ is faithful. Assume $x \in K_0(A)$ and that $K_0(\varphi)(x) > 0$. Since A is unital, there are $n \in \mathbb{N}$ and projections $p, q \in A \otimes M_n(\mathbb{C})$ such that $x = [p]_0 - [q]_0$. Now,

$$(\varphi \otimes \operatorname{Tr}_n)(p) - (\varphi \otimes \operatorname{Tr}_n)(q) = K_0(\varphi)(x) > 0.$$

Hence, by (i), q is equivalent to a subprojection \tilde{q} of p. Thus $x = [p - \tilde{q}]_0 \in K_0(A)^+$.

Assume next that $x \in K_0(A)$ and that $0 < K_0(\varphi)(x) < 1$. Then, by the argument above, $x = [p]_0$ for some projection $p \in A \otimes M_n(\mathbb{C})$. Let 1_A denote the unit of A, and let $e \in A \otimes M_n(\mathbb{C})$ be the diagonal projection whose upper left corner is 1_A and with all other entries equal to 0. Then $(\varphi \otimes \operatorname{Tr}_n)(p) = K_0(\varphi)(x) < 1 = (\varphi \otimes \operatorname{Tr}_n)(e)$. By (i), this implies that p is equivalent to a subprojection \tilde{p} of e. Hence $x = [\tilde{p}]_0$, and it is easily seen that $[\tilde{p}]_0 \in \Sigma(A)$.

Finally, to see that $(K_0(A), K_0(A)^+)$ is weakly unperforated, assume that $x \in K_0(A)$ and that nx > 0 for some $n \in \mathbb{N}$. Then $K_0(\varphi)(x) = \frac{1}{n}K_0(\varphi)(nx) > 0$. Hence x > 0. We have thus shown (ii).

Let

$$\Pi = \bigcup_{F \ll I} \operatorname{Proj}(\mathfrak{A}_F).$$

For the set \mathcal{Q} used in Theorem 1.5, we take the singleton $\{\varphi\}$. We now show that, regardless of whether φ is a trace or not, conditions (α) and (β) of Theorem 1.5 hold for every $p \in \Pi$ and every positive element, $a \in \mathfrak{A}$. Given a positive element $a \in \mathfrak{A}$ and given $p \in \Pi$, there

is a finite subset F of I such that $a, p \in \mathfrak{A}_F$. Let $u \in A_\iota$, for some $\iota \in I \setminus F$, be a unitary such that $\varphi_\iota(u) = 0$. Then $\{a, p\}$ and $\{u\}$ are *-free with respect to φ . Now it follows that u^*pu is a projection with $\varphi(u^*pu) = \varphi(p)$, and that u^*pu and a are free. Hence by Lemma 5.3 of [12] it follows that $a \lesssim u^*pu$ if $D_{\varphi}(a) < \varphi(p)$ and $u^*pu \lesssim a$ if $\varphi(p) < D_{\varphi}(a)$. But $u^*pu \sim p$, so (α) and (β) hold.

Suppose now that φ is a trace and that the image of $K_0(\varphi)$ is dense in \mathbb{R} , and let us show that RR(A) = 0. We will show that $\{\varphi(p) \mid p \in \Pi\}$ is dense in [0, 1], which will imply that condition (γ) of Theorem 1.5 holds. Since the image of $K_0(\varphi)$ is dense in \mathbb{R} , the intersection of this image with [0, 1] is dense in [0, 1]. By (ii), it follows that $\{\varphi(p) \mid p \in Proj(A)\}$ is dense in [0, 1]. Since \mathfrak{A} is dense in A, and using continuous functional calculus, we find for every $p \in Proj(A)$, a projection, $\tilde{p} \in \mathfrak{A}$ such that $\varphi(\tilde{p}) = \varphi(p)$. But $\tilde{p} \in \Pi$. We have shown that condition (γ) of Theorem 1.5 holds, and we have already shown that conditions (α) and (β) hold. Now using the fact that sr(A) = 1, we get from Theorem 1.5(i) that RR(A) = 0. This implies one direction of (iii), but the other direction follows from more general results. Indeed, the image of $K_0(\varphi)$ will be dense in \mathbb{R} if A contains at least one projection and if A has no minimal projections. Both of these conditions hold if RR(A) = 0, and if A is simple and infinite dimensional, as in our case.

Now suppose that φ is not a trace, and let us show that A is purely infinite and simple. Let F be a finite subset of I such that for at least three distinct $\iota \in F$ there is a unitary $u \in A_{\iota}$ satisfying $\varphi_{\iota}(u) = 0$, and such that for some $\iota \in F$, φ_{ι} is not a trace. Then by Theorem 4 of [12], the unit is a properly infinite projection in \mathfrak{A}_{F} . Let $\Pi' \subseteq \Pi$ be the set of all full, properly infinite projections in \mathfrak{A} . We have already shown that conditions (α) and (β) are satisfied for every $a \in \mathfrak{A}$ and every $p \in \Pi'$. Since 1 is a properly infinite projection in some \mathfrak{A}_{F} , using Lemma 2.2 below we get that $\{\varphi(p) \mid p \in \Pi'\}$ is dense in [0,1], so condition (γ) is satisfied. Tautologically, each $p \in \Pi'$ is infinite and full. Hence by Theorem 1.5(ii), A is purely infinite and simple. \square

Lemma 2.2 Let A be a unital C*-algebra in which 1 is properly infinite and let φ be a state on A. Then for every $t \in \mathbb{R}$, $0 < t \le 1$, there is a projection $p \in A$ such that $p \sim 1$ and $\varphi(p) = t$.

Proof: Using that 1 is properly infinite, we find isometries, v_1, v_2, \ldots in A whose range projections are mutually orthogonal. These generate a unital C*-subalgebra of A isomorphic to the Cuntz algebra \mathcal{O}_{∞} . By Cuntz's paper [7], it follows that if $p, q \in \operatorname{Proj}(\mathcal{O}_{\infty}) \setminus \{0, 1\}$ and if $[p]_0 = [q]_0$ in $K_0(\mathcal{O}_{\infty})$ then p is homotopic to q. (Indeed, it follows that $p \sim q$ and $1-p \sim 1-q$, hence p is unitarily similar to q. But the unitary group of \mathcal{O}_{∞} is connected.)

Now let $\varepsilon > 0$. For some n we must have $\varphi(v_n v_n^*) < \varepsilon$; let $p = v_n v_n^*$. Then $q \stackrel{\text{def}}{=} 1 - v_n (1 - p) v_n^*$ is a projection in \mathcal{O}_{∞} with $[q]_0 = [1]_0$, and $\varphi(q) > 1 - \varepsilon$. Thus there is a continuous path r_t in $\text{Proj}(\mathcal{O}_{\infty})$ such that $r_0 = p$ and $r_1 = q$. We have that $r_t \sim 1$ for all t and $\{\varphi(r_t) \mid t \in [0,1]\} \supseteq (\varepsilon, 1 - \varepsilon)$. \square

Let us now state a straightforward application of Theorem 2.1 to reduced group C*-algebras. For a group, G, taken with the discrete topology, the reduced group C*-algebra of G, denoted $C^*_{\text{red}}(G)$, is the C*-algebra generated by the left regular representation of G. The canonical tracial state, τ_G , is the vector state for the characteristic function of the identity element of G. The following corollary was cited in [11], where also a partial converse was included.

Corollary 2.3 Let I be an infinite set and let

$$G = \underset{\iota \in I}{*} G_{\iota}$$

be the free product of nontrivial groups, G_{ι} . Suppose that G has finite subgroups of arbitrarily large order. Then

$$RR(C^*_{red}(G)) = 0.$$

Proof: We have

$$(C^*_{\mathrm{red}}(G), \tau_G) \cong \underset{\iota \in I}{*} (C^*_{\mathrm{red}}(G_{\iota}), \tau_{G_{\iota}}).$$

If x is a nontrivial element of G_{ι} then the left translation operator, $\lambda_{x} \in C^{*}_{red}(G_{\iota})$ is a unitary and $\tau_{G_{\iota}}(\lambda_{x}) = 0$. In order to apply Theorem 2.1, it is thus sufficient to show that $C^{*}_{red}(G)$ contains projections whose traces (under τ_{G}) are arbitrarily small and positive. But this is clear, since for a finite group H, $C^{*}_{red}(H)$ contains projections of trace 1/|H|. \square

It follows easily from the Kurosh Subgroup Theorem for free products of groups, (see page 178 of [17]), that G has finite subgroups of arbitrarily high order only if for every positive integer n there is $\iota \in I$ such that G_{ι} has a finite subgroup of order greater than n.

Example 2.4 If

$$G = \underset{n=2}{\overset{\infty}{*}} (\mathbb{Z}/n\mathbb{Z}),$$

then $C^*_{red}(G)$ has real rank zero. Moreover, this C^* -algebra is simple, has unique tracial state, has stable rank one and is not approximately divisible.

Proof: It has real rank zero by the above corollary. It is simple and has unique tracial state by Avitzour [1]. It has stable rank one by [10]. That it is not approximately divisible follows from the argument in Example 4.8 of [2], because $C_{\text{red}}^*(G)$ is weakly dense in the group von Neumann algebra L(G), which does not have central sequences. \square

References

- [1] D. AVITZOUR, Free products of C*-algebras, Trans. Amer. Math. Soc. 271 (1982), 423-465.
- [2] B. BLACKADAR, A. KUMJIAN AND M. RØRDAM, Approximately central matrix units and the structure of noncommutative tori *K*-theory **6** (1992), 267-284.
- [3] L.G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras, *Pacific J. Math.* **71** (1977), 335-348.
- [4] L.G. Brown, G.K. Pedersen, C*-algebras of real rank zero, *J. Funct. Anal.* **99** (1991), 131-149.
- [5] J. Cuntz, The structure of multiplication and addition in simple C*-algebras, *Math. Scand.* **40** (1977), 215–233.
- [6] J. Cuntz, Dimension functions on simple C*-algebras, Math. Ann. 233 (1978), 145–153.
- [7] J. Cuntz, K-theory for certain C*-algebras, Ann. of Math. 113 (1981), 181–197.
- [8] K.J. DYKEMA, Faithfulness of free product states, J. Funct. Anal. 154 (1998), 223–229.
- [9] K.J. DYKEMA, Purely infinite simple C*-algebras arising from free product constructions, II, preprint (1997).
- [10] K.J. DYKEMA, U. HAAGERUP, M. RØRDAM, The stable rank of some free product C*-algebras Duke Math. J. 90 (1997), 95-121, correction 94 (1998), 213.
- [11] K.J. DYKEMA, P. DE LA HARPE, Some groups whose reduced C*-algebras have stable rank one, J. Math. Pures Appl. (to appear).

- [12] K.J. DYKEMA, M. RØRDAM, Projections in free product C*-algebras, Geom. Funct. Anal. 8 (1998), 1-16.
- [13] K.J. DYKEMA, M. RØRDAM, Purely infinite simple C*-algebras arising from free product constructions, *Canad. J. Math.*, **50** (1998), 323-342.
- [14] E. GERMAIN, KK-theory of reduced free product C*-algebras Duke Math. J. 82 (1996), 707-723.
- [15] E. GERMAIN, KK—theory of the full free product of unital C*—algebras J. reine angew. Math. **485** (1997), 1-10.
- [16] E. GERMAIN, Amalgamated free product of C*-algebras and KK-theory Fields Inst. Commun. 12, D. Voiculescu, ed., (1997), 89-103.
- [17] R.C. LYNDON, P.E. SCHUPP, Combinatorial Group Theory, Springer-Verlag, 1977.
- [18] M.A. RIEFFEL, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. (3), 46 (1983), 301–333.
- [19] M. RØRDAM, On the structure of simple C*-algebra tensored with a UHF-algebra, II, J. Funct. Anal. 107 (1992), 255–269.
- [20] D. VOICULESCU, Symmetries of some reduced free product C*-algebras, Operator Algebras and Their Connections with Topology and Ergodic Theory, Lecture Notes in Mathematics, vol. 1132, Springer-Verlag, 1985, 556–588.
- [21] D. Voiculescu, K.J. Dykema, A. Nica, *Free Random Variables*, CRM Monograph Series vol. 1, American Mathematical Society, 1992.
- [22] S. Zhang, Certain C*-algebras with real rank zero and their corona and multiplier algebras. I. *Pacific J. Math.* **155** (1992), 169–197.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, ODENSE UNIVERSITY, CAMPUSVEJ 55, 5230 ODENSE M, DENMARK

E-mail address: dykema@imada.ou.dk

Internet home page: www.imada.ou.dk/~dykema/

Department of Mathematics, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark

E-mail address: rordam@math.ku.dk

Internet home page: www.math.ku.dk/~rordam/