Language Independent End-to-End Architecture For Joint Language and Speech Recognition (2017)

Watanabe, S.; Hori, T.; Hershey, J.R.

Motivation / Goal

Recognize multiple languages at the same time

- Two tasks: identify language AND recognize speech (simultaneously)
- ▶ Use a single model for 10 languages (EN, JP, CH, DE, ES, FR, IT, NL, PT, RU)
- Find out if transfer learning between languages work
- ► End to end: Directly train sequence to sequence, no lexicon, phoneme pronounciation maps, or manual alignment

Problems

- ► How to input audio?
 - ightarrow Spectral features of audio frames (e.g. in 20ms segments)

Problems

- How to input audio?
 - \rightarrow Spectral features of audio frames (e.g. in 20ms segments)
- ► How to output text?
 - (a) word embeddings (word2vec) (would need fixed dictionary)
 - (b) characters (one-hot)
 - ▶ Different char sets for languages (abc, äàąå, 漢字, , ひらがな)
 - ▶ Just unify all character sets (5500 total)

Problems

- ► How to input audio?
 - \rightarrow Spectral features of audio frames (e.g. in 20ms segments)
- How to output text?
 - (a) word embeddings (word2vec) (would need fixed dictionary)
 - (b) characters (one-hot)
 - ▶ Different char sets for languages (abc, äàąå, 漢字, , ひらがな)
 - Just unify all character sets (5500 total)
- How to output language id?
 - (a) separate one-hot output
 - (b) as a special character: "[EN] Hello" or "[CH] 你好"

Model overview

Model overview

Figure 1: Model overview (from the paper)

Model overview

Figure 2: Model overview (from the paper)

Simple Model overview

- 1. Input: Basically a spectrogram as a 2D image
- 2. Encoder (CNN + LSTM)
- 3. Decoder
 - 3.1 Soft Attention for each input frame to each output character
 - 3.2 LSTM Layer
- 4. Output
 - ▶ N characters from union of all languages (one-hot / softmax)

Input

(Ab)use of image processing pipeline - input formatted like a RGB image x=time, y=feature index

- ▶ first channel: spectral features
- > second channel: delta spectral features
- third channel: deltadelta spectral features

Encoder - VGG Net Architecture

Encoder - VGG Net Architecture - First six layers

Figure 4: VGG Net - first 6 layers

Encoder - Bidirectional LSTM layer

320 cells for each direction ightarrow 640 outputs per time step (\mathbf{h}_t)

Figure 5: Bidirectional LSTM

Decoder (Attention-based)

```
Input: \mathbf{x}_1, \dots, \mathbf{x}_t
Output: c_1, \dots, c_t
```

- 1. Encode whole sequence to $\mathbf{h}_1, \dots, \mathbf{h}_t$ (via VGG+BLSTM)
- 2. Calculate soft attention weights a_{lt} , based on
 - (a) $a_{(l-1)t}$ (attention on same input for previous output)
 - (b) current encoded state \mathbf{h}_t
 - (c) previous hidden decoder state \mathbf{q}_{l-1}

Decoder (Attention-based)

```
Input: \mathbf{x}_1, \dots, \mathbf{x}_t
Output: c_1, \dots, c_t
```

- 1. Encode whole sequence to $\mathbf{h}_1, \dots, \mathbf{h}_t$ (via VGG+BLSTM)
- 2. Calculate soft attention weights a_{lt} , based on
 - (a) $a_{(l-1)t}$ (attention on same input for previous output)
 - (b) current encoded state \mathbf{h}_t
 - (c) previous hidden decoder state \mathbf{q}_{l-1}
- 3. Sum encoded state with soft alignment: $\mathbf{r}_l = \sum_t a_{lt} \mathbf{h}_t$
- 4. $\mathsf{Decoder} = \mathsf{Softmax}(\mathsf{FC}(\mathsf{LSTM}(\mathbf{r}_l, \mathbf{q}_{l-1}, c_{l-1})))$

Problems with this simple model

- ▶ Pure temporal attention too flexible, allows nonsensical alignments
 - ▶ Intuition: In MT word order can change, in ASR it can not
- ► Languages must be implicitly modeled

Additions to the simple model

Problem 1: "Pure temporal attention too flexible"

Add a second, Parallel Decoder with CTC

- 1. Input (same as before)
- 2. Encoder (same as before)
- 3. Decoder softmax layer per time step (converts 640 outputs from BLSTM \rightarrow N characters)
- 4. \rightarrow One output character per input frame, using CTC Loss

Problem: output sequence shorter than input sequence

lacktriangle First, add blank character "-" to set. e.g. HELLO lacktriangle $\{H,E,L,O,-\}$

Problem: output sequence shorter than input sequence

- lacktriangle First, add blank character "-" to set. e.g. HELLO $ightarrow \{H,E,L,O,-\}$
- Inference: Remove duplicates: HHHH-EEEEEEEE-LL-LLL----000000 \rightarrow H-E-L-LO \rightarrow HELLO

Problem: output sequence shorter than input sequence

- lacksquare First, add blank character "-" to set. e.g. HELLO $ightarrow \{H,E,L,O,-\}$
- Inference: Remove duplicates: HHHH-EEEEEEEE-LL-LLL----OOOOOO ightarrow H-E-L-O ightarrow HELLO
- ightharpoonup Training: HELLO ightharpoonup H-E-L-O ightharpoonup all combinations of char duplications are ok

Problem: output sequence shorter than input sequence

- lacktriangle First, add blank character "-" to set. e.g. HELLO $ightarrow \{H,E,L,O,-\}$
- Inference: Remove duplicates: HHHH-EEEEEEEE-LL-LLL----OOOOOO ightarrow H-E-L-O ightarrow HELLO
- lacktriangle Training: HELLO ightarrow H-E-L-L-O ightarrow all combinations of char duplications are ok
- Efficient computation using Viterbi / forward-backward algorithm
- Loss = log of GT probability
- $\rightarrow \text{ Enforces monotonic alignment}$

Problem 2: "Languages must be implicitly modeled"

Add a RNN-I M

- ▶ Model distribution of character sequences in languages (ignores input speech)
- ► Trained seperately

Combine both decoders + RNN-LM

Figure 6: Hybrid CTC/attention-based end-to-end architecture (RNN-LM not shown)

Final loss function

$$\mathcal{L}_{\mathsf{MTL}} = \lambda \log p_{\mathsf{ctc}}(C|X) + (1-\lambda) \log p_{\mathsf{att}}(C|X) + \gamma \log p_{\mathsf{rnnlm}}(C)$$

$$\lambda = 0.5, \gamma = 0.1$$

Training / Inference

- AdaDelta optimization, 15 epochs
- ▶ Inference via beam search on attention output weighted by loss function

Results

Results

	Language-dependent 4BLSTM	7lang 4BLSTM	7lang CNN-7BLSTM	7lang CNN-7BLSTM RNN-LM	10lang CNN-7BLSTM RNN-LM
Avg. 7 langs	22.7	20.3	18.9	18.3	16.6

Figure 7: Character Error Rates (abbrev.)

- ► VGG-CNN improves it (by 7%)
- ► RNN-LM improves it (by 3%)
- ▶ Adding data in other languages improves it (by 9%)

Language Confusion Matrix

		CH	EN	JP	DE	ES	FR	IT	NL	RU	PT
	train_dev	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CH	dev	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	test_eval92	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EN	test_dev93	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	eval1_jpn	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	eval2_jpn	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JP	eval3_jpn	0.0	0.0	99.9	0.0	0.0	0.0	0.1	0.0	0.0	0.0
	et_de	0.0	0.0	0.0	99.7	0.0	0.0	0.0	0.3	0.0	0.0
DE	dt_de	0.0	0.0	0.0	99.7	0.0	0.0	0.0	0.3	0.0	0.0
	dt_es	0.0	0.0	0.0	0.0	67.9	0.0	31.9	0.0	0.0	0.2
ES	et_es	0.0	0.0	0.0	0.1	91.1	0.0	8.4	0.1	0.0	0.2
	dt_fr	0.0	0.0	0.0	0.1	0.0	99.4	0.0	0.2	0.0	0.3
FR	et_fr	0.0	0.0	0.0	0.1	0.0	99.5	0.0	0.1	0.0	0.3
	dt_it	0.0	0.0	0.0	0.0	0.3	0.4	99.1	0.0	0.0	0.3
IT	et_it	0.0	0.0	0.0	0.0	0.4	0.4	98.3	0.2	0.1	0.7
	dt_nl	0.0	0.0	0.0	1.3	0.0	0.1	0.1	97.2	0.0	1.3
NL	et_nl	0.0	0.0	0.0	1.0	0.0	0.2	0.2	97.6	0.0	0.9
	dt_ru	0.2	0.0	0.0	0.0	0.2	0.6	0.5	0.0	97.9	0.8
RU	et_ru	0.0	0.0	0.0	0.2	0.2	0.3	4.3	0.0	94.7	0.3
	dt_pt	0.0	0.0	0.0	0.3	0.3	2.6	1.7	3.4	0.6	91.2
PT	et_pt	0.0	0.3	0.0	0.3	0.0	0.0	3.9	3.6	0.3	91.5

Figure 8: Language identification (LID) accuracies/error rates (%). The diagonal elements correspond to the LID accuracies while the offdiagonal elements correspond to the LID error rates

- ▶ Only fed with a single language utterance at a time
 - ▶ maybe we want to allow switching? (append utterances from different languages)

- ▶ Only fed with a single language utterance at a time
 - maybe we want to allow switching? (append utterances from different languages)
- Uniform random parameter initialization with [-0.1, 0.1] seems statistically unsound? (use Xavier / Hu)

- Only fed with a single language utterance at a time
 - maybe we want to allow switching? (append utterances from different languages)
- ▶ Uniform random parameter initialization with [-0.1, 0.1] seems statistically unsound? (use Xavier / Hu)
- Input feature convolution is weird
 - ▶ [...] we used 40-dimensional filterbank features with 3-dimensional pitch features
 - redundancy (delta, deltadelta)

- Only fed with a single language utterance at a time
 - maybe we want to allow switching? (append utterances from different languages)
- ▶ Uniform random parameter initialization with [-0.1, 0.1] seems statistically unsound? (use Xavier / Hu)
- Input feature convolution is weird
 - ▶ [...] we used 40-dimensional filterbank features with 3-dimensional pitch features
 - redundancy (delta, deltadelta)
- ▶ Unbalanced language sets (500h CH, 2.9h PR)
- Same latin characters are used for multiple languages, while others (RU, CH, JP) get their own character set
 - ► Try transliterating them to Latin?

Future Work (Opinion)

- ▶ Does not work online (without complete input utterance)
 - ▶ Bidirectional LSTM in encoder
 - Could try one directional, but Language ID would completely break
 - aggregate limited number of future frames (e.g. add 500ms latency between input and output)
 - Attention does not work in realtime
 - CTC should work online

Thank you for your attention

Full Results Table

			Language-dependent	7lang	7lang	7lang	10lang
			4BLSTM	4BLSTM	CNN-7BLSTM	CNN-7BLSTM	CNN-7BLSTN
						RNN-LM	RNN-LM
HKUST	СН	train_dev	40.1	43.9	40.5	40.2	32.0
HKUSI	СП	dev	40.4	4BLSTM 4BLSTM CNN-7BLSTM CNN-7BLSTM 40.1 43.9 40.5 40.2 40.4 43.6 40.5 40.0 9.4 9.6 7.7 7.0 7.4 7.3 5.6 5.1 13.5 14.3 12.4 11.9 10.8 10.8 9.0 8.5 23.2 24.9 22.0 21.4 6.6 7.4 5.7 5.4 5.2 7.4 5.8 5.5 50.9 28.1 31.9 31.5 50.8 29.6 34.7 34.4 27.7 25.0 22.0 21.0 26.5 23.5 21.2 20.3 14.3 14.3 11.8 11.1 14.3 14.4 12.0 11.2 27.0 25.5 47.8 49.4 49.4 49.4 49.4 56.9 52.2 22.7 20.3 18.9 18.3	40.0	31.0	
WSJ	EN	dev93	9.4	9.6	7.7	CNN-7BLSTM RNN-LM 40.2 40.0 7.0 5.1 11.9 8.5 21.4 5.4 5.5 31.5 34.4 21.0 20.3 11.1 11.2	9.7
W 33	EN	eval92	7.4	7.3	5.6	5.1	7.4
		eval1		14.3			10.2
CSJ	JP	eval2		10.8		8.5	7.2
		eval3	23.2	24.9	22.0	21.4	8.7
	DE	dev	6.6	7.4	5.7	5.4	7.3
	DE	eval	5.2	7.4	5.8	5.5	7.3
	ES	dev	50.9	28.1	31.9	31.5	25.8
		eval	50.8	29.6	34.7	34.4	26.7
	FR	dev	27.7	25.0	22.0	21.0	24.1
		eval	26.5	23.5	21.2	20.3	23.2
Voxforge	IT	dev	14.3	14.3	11.8	11.1	13.8
voxioige	11	eval	14.3	14.4	12.0	11.2	14.1
	NL	dev	27.0				23.2
	NL	eval					22.4
	RU	dev					45.0
		eval					43.2
	PT -	dev					35.5
		eval	52.2				31.9
Avg.	7 langs		22.7	20.3	18.9	18.3	16.6
Avg.	10 langs		27.4				21.4

Related Work

- Multilingual Speech Recognition With A Single End-To-End Model (Shubham Toshniwal, Google)
 - separate output for language id
 - only on 9 indian languages, hard to compare
- ► Hybrid CTC/Attention Architecture for End-to-End Speech Recognition (Watanabe et al. 2017)
 - ▶ Same as this paper except only one language and more detailed

WHO WOULD WIN?

decades of research on Feature extraction, Dynamic time warping, HMMs, Language modeling

one deepy boi

Solving universal speech recognition

By Random Author, Big Company, Random other Guy

we literally just throw an LSTM at it.