Disjoint Sets

Partition

En Partition (disjunkt opdeling) af en mængde S er en samling ikke-tomme delmængder A_i , $i=1,\ldots,k$ som er disjunkte og tilsammen udgør S:

$$A_i \neq \emptyset$$
 for alle i
 $A_i \cap A_j = \emptyset$ for $i \neq j$
 $A_1 \cup A_2 \cup \cdots \cup A_k = S$

Eksempel:

 $\{a,b,e\}$, $\{f\}$, $\{c,d,g,h\}$ er en partition af $\{a,b,c,d,e,f,g,h\}$

Disjoint Sets operationer

Disjunkte mængder (partition) som datastruktur? Følgende er en samling operationer, som har vist sig relevante i anvendelser (anvendelser senere i kurset):

```
Make-Set(x):
```

Opret $\{x\}$ som en mængde.

UNION(x, y):

Slå
$$\{a, b, c, ..., x\}$$
 og $\{h, i, j, ..., y\}$ sammen til $\{a, b, c, ..., x, h, i, j, ..., y\}$.

FIND-SET(x):

Returner en ID for mængden indeholdende x.

NB: Vi har ingen krav til ID'en. Skal blot være den samme for alle x i samme mængde, således at vi kan checke om to elementer x og y ligger i samme mængde.

Datastruktur for Disjoint Sets via lænkede lister

Hver mængde er en lænket liste af elementer, liste-header er ID for mængde:

- ightharpoonup FIND-SET(x): returner pointer til header.
- ▶ Make-Set(x): opret ny liste.
- ▶ UNION(x, y): slå lister sammen, behold én header, ændrer alle header-pointere i den anden liste.

Datastruktur for Disjoint Sets via lænkede lister

Køretid (n er antal elementer, dvs. antal MAKE-SETs udført)?

- ► FIND-SET(x): returner pointer til header: O(1).
- ▶ Make-Set(x): opret ny liste: O(1).
- ▶ UNION(x, y): slå lister sammen, behold én header, ændre alle header-pointere i den anden liste: O(n).

Naiv analyse: n MAKE-SET, op til n-1 UNION, og m FIND-SET koster $O(m+n^2)$.

Datastruktur for Disjoint Sets via lænkede lister

- ► FIND-SET(x): returner pointer til header: O(1).
- ▶ Make-Set(x): opret ny liste: O(1).
- ▶ UNION(x, y): slå lister sammen, behold header af længste liste, ændre alle header-pointere i korteste liste: O(n).

Observér at nu gælder: en knude kan kun ændre sin header-pointer $\log n$ gange, da størrelsen af dens mængde hver gang vokser mindst en faktor to $(1 \cdot 2^k \le n \Leftrightarrow k \le \log n)$.

Så bedre analyse: n MAKE-SET, op til n-1 UNION, og m FIND-SET koster $O(m+n\log n)$.

Datastruktur for Disjoint Sets via træer

Hver mængde er et træ med elementer i knuder, rod er ID for mængde:

- ► FIND-SET(x): gå til rod.
- ▶ Make-Set(x): opret nyt træ.
- ▶ UNION(x, y): gør rod af ét træ til barn af andet træ.

Datastruktur for Disjoint Sets via træer

Union by rank og path compression (se bog afsnit 21.3 eller koden nedenfor for definition) \Rightarrow meget tæt på O(m+n) tid. Mere præcist $O(m \cdot \alpha(n))$, hvor $\alpha(n)$ er en meget langtsomt voksende funktion (defineret i afsnit 21.4, som ikke er pensum).

Analyse: i et senere kursus på datalogistudiet.

Datastruktur for Disjoint Sets via træer

Pseudokode (med union by rank og path compression) er simpel:

```
MAKE-SET(x)
                        UNION(x, y)
                          LINK(FIND-SET(x), FIND-SET(y))
  x.p = x
  x.rank = 0
                FIND-SET(x)
                  if x \neq x.p
                      x.p = \text{FIND-Set}(x.p)
                  return x.p
Link(x, y)
 if x.rank > y.rank
     v.p = x
 else x.p = y
     // If equal ranks, choose y as parent and increment its rank.
     if x.rank == y.rank
         v.rank = v.rank + 1
```