9. Функции от случайных величин. Моменты случайных величин.

Пример 1. Рассмотрим случайную величину, распределение которой задано таблицей.

ξ	-2	-1	0	1	2
p_k	0,1	0,2	0,2	0,4	0,1

Необходимо построить распределения случайных величин

$$\eta = \frac{\xi - 0.2}{1.166}$$
 , $\delta = \xi^2$, $\gamma = \sin\left(\frac{\pi}{2}\xi\right)$

и вычислить для них математические ожидания.

Для первой случайной величины δ непосредственные вычисления дают таблицу

η	-1,887	-1,029	-0,172	0,686	1,544	Εδ
p_k	0,1	0,2	0,2	0,4	0,1	0

Здесь каждому значению η соответствует ровно одно значение ξ (вероятности не изменяются): $P\{\eta=-1{,}887\}=P\{\xi=-2\}=0{,}1$.

Но для случайной величины δ два разных значения ξ отображаются в одно значение δ , поэтому вероятности суммируются:

$$P\{\delta = 4\} = P\{\xi = -2\} + P\{\xi = 2\} = 0.2$$
,

в итоге получается распределение

δ	4	1	0	Εη
p_k	0,2	0,6	0,2	1,4

Третье преобразование также приводит к объединению событий и суммированию вероятностей:

γ	-1	0	1	Εγ
p_k	0,2	0,4	0,4	0,2

В правых столбцах подсчитаны математические ожидания новых случайных величин; исходная ξ имеет математическое ожидание $E\xi=0.2$.

Таким образом, для дискретной случайной величины можно пользоваться формулой математического ожидания

$$Ef(\xi) = \sum_{k} p_{k} f(x_{k})$$
.

Пусть теперь случайная величина ξ имеет непрерывное распределение с плотностью $p_{\xi}(x)$ и задана функция f(x); необходимо построить распределение случайной величины $\eta = f(\xi)$. Рассмотрим сначала два простых примера.

Пример 2. Линейное преобразование случайной величины: $\eta = a + b\xi$, a – любое число, b – положительное. Функция распределения для η получается из определения:

$$F_{\eta}(x) = P\{\eta \le x\} = P\{a + b\xi \le x\} = P\left\{\xi \le \frac{x - a}{h}\right\} = F_{\xi}\left(\frac{x - a}{h}\right);$$

взяв производную, получим плотность распределения:

$$p_{\eta}(x) = \frac{d}{dx} F_{\eta}(x) = \frac{1}{h} F_{\xi}' \left(\frac{x-a}{h} b \right) = \frac{1}{h} p_{\xi} \left(\frac{x-a}{h} \right)$$

(докажите, что если b может принимать отрицательные значения, то в этой формуле множитель $\frac{1}{b}$ следует заменить на $\frac{1}{|b|}$).

Пусть ξ имеет равномерное распределение на интервале $[x_1, x_2]$, то есть,

$$p_{\xi}(x) = \begin{cases} \frac{1}{x_2 - x_1}, x \in [x_1, x_2] \\ 0, & x \notin [x_1, x_2] \end{cases}$$

рассмотрим линейное преобразование

$$\eta = \frac{\xi - x_1}{x_2 - x_1}$$

и применив полученную выше формулу с $a = -\frac{x_1}{x_2 - x_1}$, $b = \frac{1}{x_2 - x_1}$, получим равномерное распределение на интервале [0,1],

$$p_{\eta}(x) = \begin{cases} 1, x \in [0,1] \\ 0, x \notin [0,1] \end{cases}$$

(стандартное равномерное).

Пример 3. Рассмотрим квадратичное преобразование случайной величины: $\eta = \xi^2$, тогда функция распределения для η :

$$F_{\eta}(x) = P\{\eta \le x\} = P\{\xi^2 \le x\} = P\{|\xi| \le \sqrt{x}\} =$$

$$= P\{-\sqrt{x} \le \xi \le \sqrt{x}\} = P\{\xi \le \sqrt{x}\} - P\{\xi \le -\sqrt{x}\} = F_{\xi}(\sqrt{x}) - F_{\xi}(-\sqrt{x})$$

Вычисляя от нее производную, получаем плотность распределения:

$$p_{\eta}(x) = \frac{1}{2\sqrt{x}} \left[p_{\xi}(\sqrt{x}) + p_{\xi}(-\sqrt{x}) \right]$$

K примеру, если ξ имеет экспоненциальное распределение, то

$$p_{\xi^2}(x) = \frac{\lambda e^{-\lambda\sqrt{x}}}{2\sqrt{x}}, \qquad x \ge 0.$$

Следующее свойство играет большую роль во многих рассуждениях в теории вероятностей и статистике.

Лемма 1. Пусть непрерывная случайная величина ξ имеет монотонную функцию распределения F(x). Тогда случайная величина $\eta = F(\xi)$ равномерно распределена на [0,1].

Доказательство. Область значений η следует из общих свойств функции распределения. Если F(x) строго монотонна, то существует обратная функция $F^{-1}(x)$. Пусть $x \in [0,1]$, тогда

$$P\{\eta \le x\} = P\{F(\xi) \le x\} = P\{\xi \le F^{-1}(x)\} = F(F^{-1}(x)) = x.$$

Что и требовалось. ■

Следствие. Это утверждение можно переформулировать и таким образом: если случайная величина η равномерно распределена на [0,1], то $\xi = F^{-1}(\eta)$ распределена согласно F(x).

Теорема 1. Пусть случайная величина ξ имеет непрерывное распределение с плотностью $p_{\xi}(x)$ и функция f(x) - монотонно возрастающая, дифференцируемая. Тогда распределение случайной величины $\eta = f(\xi)$ абсолютно непрерывно, ее функция распределения есть

$$F_{\eta}(x) = F_{\xi}(f^{-1}(x)),$$

где f^{-1} - функция, обратная к f; плотность распределения η дается формулой

$$p_{\eta}(x) = p_{\xi}(g(x))g'(x); \tag{1}$$

здесь обозначено $g(x) = f^{-1}(x)$. Математическое ожидание η может быть вычислено по формуле:

$$E\eta = Ef(\xi) = \int_{-\infty}^{\infty} f(x) \, p_{\xi}(x) dx \,. \tag{2}$$

Доказательство. Учитывая монотонность функции f , стандартными выкладками получаем,

$$F_n(x) = P\{\eta \le x\} = P\{f(\xi) \le x\} = P\{\xi \le f^{-1}(x)\} = P\{\xi \le g(x)\} = F_{\xi}(g(x)),$$

(обратная функция также является монотонной); дифференцируя, получаем формулу (1) для плотности. Математическое ожидание η равно

$$E\eta = \int_{-\infty}^{\infty} x \, p_{\eta}(x) dx = \int_{-\infty}^{\infty} x \, p_{\xi}(g(x)) g'(x) dx;$$

сделав замену переменной y = g(x), преобразуем интеграл:

$$\int_{-\infty}^{\infty} g^{-1}(y) p_{\xi}(y) g'(x) dx = \int_{-\infty}^{\infty} f(y) p_{\xi}(y) dy$$

что и требовалось. ■

Следствие. Из этой теоремы получаем свойство математического ожидания:

$$E(a + b\xi) = a + bE\xi$$

(см. Пример 2).

Числовые характеристики случайных величин

Определение. Моментом k-го порядка (k=1,2,3...) случайной величины ξ называется

$$m_k = E\xi^k .$$

Для дискретной случайной величины

$$m_k = \sum_i x_i^k \, p_i$$

для непрерывной

$$m_k = \int_{-\infty}^{\infty} x^k \, p(x) dx$$

Центральным моментом k - го порядка называется $\mu_k = E(\xi - E\xi)^k = E(\xi - m_1)^k$; обычные моменты m_k , в отличие от центральных, называют начальными.

Упражнение 1. Доказать формулу, связывающую начальные и центральные моменты:

$$\mu_n = \sum_{k=0}^n (-1)^k C_n^k m_1^k m_{n-k}.$$

Наиболее часто применяется центральный момент второго порядка, который называется дисперсия:

$$D(\xi) = E(\xi - E\xi)^2.$$

Обозначив математическое ожидание (первый момент) $m=m_1=E\xi$, преобразуем выражение для дисперсии:

$$D(\xi) = E(\xi - m)^2 = E(\xi^2 - 2\xi m + m^2) = E\xi^2 - 2m^2 + m^2;$$

таким образом, мы получили формулу, удобную для вычисления дисперсии:

$$D(\xi) = E\xi^2 - (E\xi)^2$$

(средний квадрат минус квадрат среднего).

Пример 4. Бинарная случайная величина (**распределение Бернулли**). Пусть $P\{\xi=1\}=p, P\{\xi=0\}=1-p;$ математическое ожидание такой случайной величины равно $E\xi=p,$ поскольку ξ^2 имеет такое же распределение, что и ξ , то $E\xi^2=p$, откуда

$$D(\xi) = p - p^2 = p(1 - p) = pq.$$

Пример 5. Геометрическое распределение: (см. параграф 7):

$$E\xi^{2} = \sum_{k=1}^{\infty} k^{2} q^{k-1} p = p \sum_{k=1}^{\infty} k(k-1+1) q^{k-1} =$$

$$= pq \sum_{k=1}^{\infty} k(k-1) q^{k-2} + p \sum_{k=1}^{\infty} k q^{k-1};$$

второе слагаемое здесь есть ранее уже вычисленное математическое ожидание геометрического распределения, $E\xi=\frac{1}{p}$. Первое слагаемое преобразуем к сумме геометрической прогрессии:

$$pq\sum_{k=1}^{\infty}k(k-1)q^{k-2}=pq\left(\frac{1}{1-q}\right)^{\prime\prime}=pq\frac{2(1-q)}{(1-q)^4}=\frac{2(1-p)}{p^2};$$

собирая найденные выражения, получаем,

$$D(\xi) = \frac{2(1-p)}{p^2} + \frac{1}{p} - \frac{1}{p^2} = \frac{1-p}{p^2}.$$

Упражнение 2. (а) Вычислить дисперсию биномиального распределения (используя свойства биномиальных коэффициентов, аналогично тому, как было сделано при вычислении математического ожидания, см. Параграф 8); ответ: *прq*. (б) Вычислить дисперсию для распределения Пуассона; ответ: λ.

При линейном преобразовании

$$\eta = a + b\xi$$

математическое ожидание ведет себя как линейная функция,

$$E(a+b\xi)=a+b\cdot E\xi.$$

Как при этом изменяется дисперсия?

$$D(\eta) = E(a + b\xi - (a + b \cdot E\xi))^2 = b^2 E(\xi - E\xi)^2 = b^2 D(\xi);$$

следовательно, дисперсия не зависит от сдвига a и она пропорциональна квадрату масштабного множителя b.

Часто будет применяться такой вариант линейного преобразования:

$$\eta = \frac{\xi - E\xi}{\sigma},$$

где $\sigma = \sqrt{D(\xi)}$ называется **среднеквадратичным отклонением**. Для этого преобразования, как легко проверить, $E\eta = 0$, $D(\eta) = 1$. Именно таким образом связаны ξ и η в Примере 1.

Пример 6. Найдем дисперсию для равномерного распределения на интервале [a,b] (см. Параграф 6). Здесь пригодятся формулы, полученные для линейного преобразования. Пусть ξ равномерно распределена на [0,1], тогда

$$\eta = a + (b - a)\xi$$

равномерно распределена на [a,b] (см. Параграф 9). Как было показано ранее, $E\xi=\frac{1}{2}$, а дисперсию легко вычислить:

$$E\xi^2 = \int_0^1 x^2 dx = \frac{1}{3}, D(\xi) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12};$$

применяя формулы линейных преобразований, получаем,

$$E\eta = a + (b-a)\frac{1}{2} = \frac{a+b}{2}, \qquad D(\eta) = \frac{(b-a)^2}{12}.$$

Пример 7. Рассмотрим геометрический смысл дисперсии. Аналогично Примеру 8.6., возьмем дискретную случайную величину, принимающую два значения:

$$P\{\xi = x_1\} = p_1 = p, \qquad P\{\xi = x_2\} = p_2 = 1 - p = q;$$

для нее

$$E\xi = x_1p + x_2(1-p),$$

а дисперсия равна

$$D(\xi) = x_1^2 p + x_2^2 (1 - p) - (x_1 p + x_2 (1 - p))^2 =$$

$$= x_1^2 p + x_2^2 q - x_1^2 p^2 - x_2^2 q^2 - 2x_1 x_2 p q = p q (x_1 - x_2)^2.$$

Хорошо видно, что дисперсия измеряет разброс значений случайной величины. Точно так же можно пояснить и для непрерывного распределения: если математическое ожидание имеет смысл центра тяжести (см. Пример 8.6.), то физический аналог дисперсии – это момент инерции, чем больше удалены массы от центра тяжести, тем больше момент инерции.

Лемма 2. (Свойство оптимальности математического ожидания). Среднеквадратичный разброс значений случайной величины относительно ее математического ожидания меньше, чем среднеквадратичный разброс относительно любого другого значения: для любого с справедливо неравенство

$$E(\xi - c)^2 \ge E(\xi - E\xi)^2.$$

Доказательство. Действительно, обозначая $m = E\xi$, запишем,

$$E(\xi - c)^{2} = E(\xi - m + m - c)^{2} =$$

$$= E(\xi - m)^{2} + 2E(\xi - m)(m - c) + E(m - c)^{2} =$$

$$= E(\xi - E\xi)^{2} + E(m - c)^{2} \ge E(\xi - E\xi)^{2}$$

Существуют другие числовые характеристики, измеряющие различные свойства распределений: коэффициент асимметрии

$$\frac{\mu_3}{\mu_2^{3/2}} = \frac{E(\xi - E\xi)^3}{(E(\xi - E\xi)^2)^{3/2}} = \frac{E(\xi - E\xi)^3}{\sigma^3},$$

коэффициент эксцесса

$$\frac{\mu_4}{\mu_2^2} - 3 = \frac{E(\xi - E\xi)^4}{(E(\xi - E\xi)^2)^2} - 3 = \frac{m_4}{\sigma^4} - 3,$$

здесь $\sigma = \sqrt{D(\xi)}$. Асимметрия измеряет несимметричность плотности распределения относительно среднего, а эксцесс — показатель островершинности плотности распределения (положителен для островершинных распределений, отрицателен для плосковершинных).

Упражнение 3. На рисунке показаны две плотности распределений, которые естественно назвать левосторонним и правосторонним треугольными распределениями.

Рисунок. 10.1. Треугольные распределения

Уравнение плотности y = p(x) совпадает в данном случае с уравнением прямой для гипотенузы каждого треугольника: $y = c_1 + c_2 x$. Необходимо найти коэффициенты c_1 , c_2 для обеих плотностей (коэффициенты однозначно определяются параметрами a, b), вывести формулы для плотностей и функций распределения, вычислить математическое ожидание, дисперсию, асимметрию и эксцесс. Обратить внимание, как эти характеристики зависят от параметров a, b.