PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05~255816

(43)Date of publication of application: 05.10.1993

(51)Int.CI.

C22C 38/00

C21D 8/00

C21D 9/46

(21)Application number: 04-087547

(22)Date of filing:

12.03.1992

(71)Applicant:

NKK CORP

(72)Inventor:

ISHIJIMA SATOSHI

HARADA KOZO SAKIYAMA TETSUO ABE TAKASHI **UCHINO KAORU**

(54) MANUFACTURE OF FERRITIC STAINLESS STEEL EXCELLENT IN WORKABILITY AND THIN STEEL SHEET THEREOF

(57)Abstract:

PURPOSE: To provide the method for manufacturing ferritic stainless steel excellent in

workability and a thin steel strip or like thereof.

CONSTITUTION: This ferritic stainless steel contains oxide inclusions of 1 to $3\mu m$ by 50 to 200 pieces /mm2 and the inclusions of >8µm by ≤5 pieces /mm2. The hot rolled steel strip of this steel is annealed and pickled and is rolled by a continuous cold rolling mill having a work roll of 400mm diameter by ≥50% of the total draft to manufacture the objective ferritic stainless thin steel sheet.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision

of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(11)特許出願公開番号

特開平5-255816

(43)公開日 平成5年(1993)10月5日

(51) Int. Cl. 5

識別記号

FΙ

C22C 38/00

302

Z

C21D 8/00

D 7412-4K

9/46

R

審査請求 未請求 請求項の数3 (全11頁)

(21)出願番号

特願平4-87547

(22)出願日

平成4年(1992)3月12日

(71)出顧人 000004123

日本鋼管株式会社

東京都千代田区丸の内一丁目1番2号

(72)発明者 石島 聡

東京都千代田区丸の内一丁目1番2号 日

本鋼管株式会社内

(72)発明者 原田 耕造

東京都千代田区丸の内一丁目1番2号 日

本鋼管株式会社内

(72)発明者 崎山 哲雄

東京都千代田区丸の内一丁目1番2号 日

本鋼管株式会社内

(74)代理人 弁理士 白川 一一

最終頁に続く

(54)【発明の名称】加工性の優れたフェライト系ステンレス鋼およびその薄鋼板の製造方法

(57)【要約】

【目的】 加工性の優れたフェライト系ステンレス鋼及びその薄鋼帯等の薄鋼板の製造方法を提供する。

【構成】 1~3μm の酸化系介在物を50~200 個/mm² 含有し3μm 超の介在物数を5個/mm²以下としたフェライト系ステンレス鋼。該鋼の熱延鋼帯を焼鈍酸洗し全圧下量の50%以上を400mm 以上の直径のワークロールを有する連続型冷間圧延機で圧延するフェライト系ステンレス薄鋼板の製造方法。

【特許請求の範囲】

【請求項1】 1~3μmの酸化物系介在物を50~2 0 0個/mm¹ 含有し3μm を超える介在物数を5個/mm 以下としたことを特徴とするフェライト系ステンレス 鋼。

i

【請求項2】 1~3 μm の酸化物系介在物を50~2 00個/mm¹ 含有し3μm を超える介在物数を5個/mm * 以下としたフェライト系ステンレス鋼熱延鋼帯を焼鈍 酸洗し、全圧下量の50%以上を400㎜以上の直径の ワークロールを有する連続型冷間圧延機で圧延すること 10 を特徴とする加工性に優れたフェライト系ステンレス薄 鋼板の製造方法。

【請求項3】 請求項2に記載の製造方法を実施するに 当って、全圧下量の50%以上を400㎜以上の直径の ワークロールを有する連続型冷間圧延機で圧延する冷間 圧延工程において、1回ないし2回の中間焼鈍を施すこ とを特徴とする加工性に優れたフェライト系ステンレス 薄鋼板の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は加工性の優れたフェライ ト系ステンレス鋼およびその薄鋼帯などの薄鋼板の製造 方法に関するものである。

[0002]

【従来の技術】従来フェライト系ステンレス薄鋼板は厨 房機器や家電機器などに広く利用されており、このよう な用途においては加工性と共に美麗さが要求されている が、苛酷な深絞り加工では割れが発生し高度なプレス加 工には適用できなかった。このようなことから超深絞り 用フェライト系ステンレス鋼板として極低炭素でTi、Nb 30 を添加したフェライト系ステンレス鋼板が例えば特開昭 58-104185号、特公平2-7391号に開示されている。即 ち、特開昭58-104185号は (C+N) を0.04%とし、 (Nb+Ti) を10×(C+N)以上複合添加したもので ある。また、特公平2-7391号はC:0.02~0.03 %、N≦0.02%とし、Tiを6×(C+N)以上添加し たものである。

[0003] 特公昭50-14965号公報においては クロム系ステンレス鋼に関し、リジングを少なくするた めに溶鋼中で分解可能な周期律表の第VI族あるいは第VI 40 1 族金属の酸化物ないし該金属酸化物を含有する化合物 または混合物を添加することが提案されている。

[0004] 低炭素冷延鋼板において大径ロールで圧延 を行なうと、せん断変形量が小さくなり r 値に有効な集 合組織が発達し加工性が向上することは良く知られてい る。これをフェライト系ステンレス薄鋼板に応用する試 みが、例えば特公平2-27412 号や特公平2-14122 号 に開示されている。特公平2-27412 号ではAlを0.08 ~0.5%含有させることにより熱延板焼鈍を省略し、中

すると加工性が向上するとしている。特公平2-14122 号 は直径150㎜以上の大径ロールで全圧下量の60%以 上を圧延しさらに小径ロールで圧延すると加工性が向上 するとしている。

[0005]

(2)

【発明が解決しようとする課題】特開昭58-104185号、 特公平2-7391号に開示されているように成分調整のみを 行ない、極低炭素鋼にTi、Nbを添加したフェライト系ス テンレス鋼板は、固溶C、Nの低下によりある程度の加 工性向上は認められるが、Ti、Nb添加によるコスト上昇 やプレス成形後のリジングの発生などの問題点がある。 [0006] 前記した特開昭50-14965号公報に よるものは耐リジング性をよくすることが可能であると しても酸化物系介在物の粒度およびその量を制御するも のでないからその他の特性については従来の一般技術に おけると同様に該介在物の増加は好ましくない傾向を示 し、また溶鋼における該酸化物の浮上性が大きいため有 効な量を添加することが容易でなく、更にはスラブ位置 での不均一性が増大し部分的欠陥を生じ易いなどの不利 20 がある。

【0007】一方、低炭素冷延鋼板において一般化して いる大径ロール圧延による加工性向上技術をフェライト 系ステンレス薄鋼板に応用しようとする技術において は、フェライト系ステンレスの固溶しているC、N濃度 が高く冷延焼鈍後の集合組織変化が低炭素冷延鋼板と同 様にならないために加工性の向上は得られなかった。特 公平2-27412 号や特公平2-14122 号に開示されている タンデム型冷間圧延機を利用する試みは、SUS430に Al を添加し熱延板焼鈍を省略したものや通常の SUS430 に 適用しているため、固溶C、Nの濃度が十分に低減して いないので、加工性の向上はわずかである。

【0008】なおステンレス鋼板などにおいては前記の ような加工性(rm 値:rm = r,s/2+r。/4+r ,。/4) と共に加工時に鋼板の表面に縞模様の発生(リ ジング)が少ないことや表面疵の少ないことなどが共に 枢要であって、これらの各要請を有効に満足させること が困難である。

[0009]

【課題を解決するための手段】本発明は上記したような 従来のものにおける技術的課題を解消することについて 検討を重ね、従来においてはできるだけ減少すべく高清 浄化が図られている介在物について、特に3 μm 以下の 微細介在物に注目し、この従来においては注目されるこ とのなかった特定範囲の介在物を特定量範囲に制御する ことにより、フェライト系ステンレスのr値が高く且つ 安定して得られ、特に大径ロールで圧延することにより 好ましく増大せしめ得ることを初めて見出した。又これ 、により、Ti、Nb添加によるコスト上昇を招くことなし に、加工性の優れたフェライト系ステンレス鋼板をタン 間焼鈍前の冷間圧延を500㎜以上の大径ロールを使用 50 デム型の冷間圧延機を利用して生産性を向上させて提供 3

することに成功したものであって、以下の如くである。 【0010】(1) $1\sim3~\mu$ m の酸化物系介在物を $50\sim200$ 個/mi 含有し $3~\mu$ m を超える介在物数を5個/mi 以下としたことを特徴とするフェライト系ステンレス鋼。

【0011】(2) 1~3μmの酸化物系介在物を50~200個/mm¹ 含有し3μm を超える介在物数を5個/mm¹ 以下としたフェライト系ステンレス鋼熱延鋼帯を焼鈍酸洗し、全圧下量の50%以上を400mm以上の直径のワークロールを有する連続型冷間圧延機で圧延する 10ことを特徴とする加工性に優れたフェライト系ステンレス薄鋼帯及び薄鋼板の製造方法。

【0012】(3) 前記(2)項に記載の製造方法を実施するに当って、全圧下量の50%以上を400㎜以上の直径のワークロールを有する連続型冷間圧延機で圧延する冷間圧延工程において、1回ないし2回の中間焼鈍を施すことを特徴とする加工性に優れたフェライト系ステンレス薄鋼帯及び薄鋼板の製造方法。

【作用】上記したような本発明について更に説明すると、 SUS430 に代表されるフェライト系ステンレス鋼板

[0013]

は0.04~0.08%C、0.03~0.06%Nを含有する のが一般的で、かなりの量のC、Nが固溶している。 r 値を向上させるためには固溶C、Nがあるレベル以下で あることが必要である。Ti、Nbを含まないフェライト系 ステンレス鋼板においては固溶C、N量を低減すること はかなり困難であり、これらの元素を含ませたものでも C、Nを完全に固着することは現実的に難しい。本発明 者らはこのような背景から、従来とは異なる視点からの 在物の微細分散が極めて有効であることを見いだした。 【0014】即ち、ロール径を、70mm、350mm、お よび400㎜と580㎜に変化させると共に全圧下量7 5%で圧延した場合において、 rm と表面欠陥率に及ぼ す1~3μm の酸化物系介在物数の影響を図1に要約し て示すが、ロール系の如何でそれなりに異なるにして も、介在物数が50個/㎜ 以上でrm 値が1.1~1.6 6以上のように50個/mm 以下の場合の0.93~1.4 4よりも相当に高い優れた加工性を有することがわか る。つまり、熱間圧延後の鋼帯において1~3μπの微 細な酸化物系介在物は固溶C、N濃度を低下させるもの と推定され、冷延焼鈍後に優れた加工性を付与させるた めには50個/mi 以上必要であって安定した加工性が 得られる。然し過剰に含有させることは技術的に困難で あるとともに疵の原因になって表面不良を来すことから 200個/mi 以下とした。なお3μm を超える粗大な 介在物は熱冷延時の疵の原因となるので5個/mm²以下 とした。また1μm 未満の極微細介在物については正確 に計数すること自体が極めて困難であると共に1~3μ

あるから制御範囲外とした。

(3)

40

【0015】つまり、本発明者等がこのようなフェライト系ステンレス鋼における酸化物系介在物に関して仔細に検討を重ねた結果によると、 $1\sim 3~\mu m$ の微細な酸化物系介在物は、熱延及び焼鈍時に再結晶の核、炭窒化物の析出サイトとなり再結晶粒を微細にするとともに、炭窒化物を微細に分散させ、固溶 C、N濃度を低下させ、加工性を向上させる。斯かる作用は介在物径による影響があり、介在物径が大きいほど効果は大きくなるが、前記したように粗大な介在物は表面疵の原因となるので3 μm を超える介在物は5個/m m 以下とした。また、微細な酸化物系介在物は熱延冷延工程を経ても変形しにくいため、 $1\sim 3~\mu m$ の酸化物系介在物の適量存在は曲げ性や疲労特性を劣化させることはない。これらの結果として前記図1に示したように圧延条件如何に拘わらず、卓越した加工性を安定して得しめることができる。

【0016】介在物径が大きくなり、あるいは1~3μ mの微細介在物であってもその数が多くなると表面疵の発生原因となり、従って加工性向上と表面特性の劣化防 20 止を共に達成するためには前記の範囲に限定することが必要である。

は0.04~0.08%C、0.03~0.06%Nを含有するのが一般的で、かなりの量のC、Nが固溶している。 r値を向上させるためには固溶C、Nがあるレベル以下であることが必要である。 Ti、Nbを含まないフェライト系ステンレス鋼板においては固溶C、N量を低減することはかなり困難であり、これらの元素を含ませたものでもC、Nを完全に固着することは現実的に難しい。本発明者らはこのような背景から、従来とは異なる視点からの検討を行った結果、固溶C、N量の低減には酸化物系介在物の微細分散が極めて有効であることを見いだした。 [0014] 即ち、ロール径を、70㎜、350㎜、および400㎜と580㎜に変化させると共に全圧下量75%で圧延した場合において、rmと表面欠陥率に及ぼまた。 このの14 に対した場合において、rmと表面欠陥率に及ぼないるのでは数の影響を図1に更知。

【0018】また、本発明では前記したようなフェライト系ステンレス鋼板の製造法として特定ロールを用いると共にその組合わせ圧延を提案するもので、前述した図1のように介在物数が一定の条件下においても70mmおよび350mmのロール径の場合においてはrm 値が相当に異なり、例えば $1\sim3\mu$ の酸化物系介在物数が50個/m の場合において、ロール径70mmでrm が1.10、350mmでrmが1.18程度であるのに対し、ロール径400mmでは<math>rmが1.38程度と大幅に高くなり、ロール径580mmでは<math>rmが $1.44程度である。<math>1\sim3\mu$ mの介在物が $100\sim200$ 個/m では前記各ロールの場合に以下の如くである。

とした。また $1~\mu$ m 未満の極微細介在物については正確 ロール径 7~0m : rm 1.~2~0 \sim 1.~2~4 に計数すること自体が極めて困難であると共に $1~\sim3~\mu$ ロール径 3~5~0m : rm 1.~2~9 \sim 1.~2~5~1.~3~8 m のものを制御することによって実質的な制御も可能で 50 ロール径 4~0~0m : rm 1.~4~5~1.~5~8

(4)

5

ロール径580㎜ : rm 1.63~1.66

して得ることができる。

【0019】即ちロール径が大となるに従い、前述した ような介在物存在下で r 値をそれなりに向上し得るとし ても、このロール径が350㎜から400㎜となること によって大幅なr値の向上が得られ、400m以上のロ ールを用いることによって好ましい加工性の向上を安定

[0020] 又本発明によるものは同じくその製造法と して大径ロールと小径ロールを併用して圧延することが 大径ロール圧延の割合との関係を示すが、大径ロール圧 延が50%以上において優れた rm を得しめることは明 らかである。また、1~3μmの酸化物系介在物数が3 7個/mm²では大径ロールの圧延割合が増加しても rm の向上は僅かであるのに対し、この介在物数が67個/ mm² となることにより50%附近で急激な rm向上が得 られ、介在物数との間に密接な関係が確認される。

【0021】更に図4には380~580㎜の各大径口 ールと径70㎜の小径ロールにより75%の全圧下量に 対し各々50%の圧延を行った際の、rm に及ぼす大径 20 ロール径の影響を要約して示したが、380mmでは70 mmの場合と殆ど変化がないのに対し、400mmでrm が 大幅に向上し、特に介在物数が67個/mm'以上におい て著しい向上が認められ、介在物数との関係において大 径ロール圧下による rm が1.48以上と向上の大きいこ とは図3とも相俟って明らかである。

【0022】本発明では熱間圧延後、焼鈍酸洗した冷延 用素材に r 値に有効な集合組織を付与させるために全圧 下量の50%以上を400m以上の直径のワークロール を有する連続型の冷間圧延機で圧延を行なう。ロール径 30 が大きくなると板中心部の歪み量が増大し再結晶を促進 させるが、このときは前記介在物が存在すると板中心部 での有効歪み量が増大し、再結晶後の(111)面集合 組織が強く形成されるものと推定されるが、介在物が大 きさおよび量において夫々制御された条件下では斯様な 作用を得しめるワークロール径も亦影響するものの如く で、400㎜以上において好ましい r 値などの向上がも

たらされる。400m未満の直径のワークロールでは r 値に有効な集合組織の集積が乏しく、全圧下量に対する 大径ロールの圧延の割合が50%未満では加工性に有利 な集合組織の発達が十分ではないので、全圧下量の50 %以上を400㎜以上の直径のワークロールで圧延する こととした。

6

【0023】即ち、大径ロール圧延ではせん断歪み量が 小さく(100) 面等のr値を低下させる再結晶集合組 織の発達を抑制し、r値に有効な(111)面を強く発 でき、図3には前記したような rm と全圧下量に対する 10 達させる。一般のフェライト系ステンレス鋼板において も同様のことが言えるが、固溶C、N濃度が高い場合は 低炭素冷延鋼板に比べると大径ロール圧延の効果は小さ い。本発明においては1~3μmの酸化物系介在物が熱 延及び焼鈍時に再結晶の核、炭窒化物の析出サイトとな り再結晶粒を微細にするとともに、炭窒化物を微細分散 させ、固溶C、N濃度を低下させるために大径ロール圧 延によるr値向上を低炭素冷延鋼板なみに得ることがで きる。なお、酸化物系介在物は熱延冷延工程を経ても変 形しにくいため、3μω以下の酸化物系介在物は曲げ性 や疲労特性を劣化させることがないことは前記の如くで ある。

> 【0024】また、本発明における酸化物系介在物は、 このように熱延冷延工程を経ても変形しにくいものであ ることから熱延板、冷延板の何れにおいてもその規定な いし範囲は共通するものであって、実際の製品について 検討した結果においてもその数および大きさは熱延板と 冷延板において殆んど差がなかった。

[0025]

【実施例】

(実施例1) 上記したような本発明によるものの具体的 実施例について説明すると、本発明者等は次の表1に示 すような介在物レベルを種々調整した SUS430 鋼を溶製 し、常法により熱間圧延を行ない板厚 3㎜の熱延板とし た。

[0026]

【表1】

Q

解種 符号 解種 1~3 μm 超 1~3 μm 超 2 μm 超 欠陥率 (3)		7	1				8					
解種 符号 解種 1・3 μm 超 1・3 μm 超 2・3 μm	-							冷	総合			
↓ B ↓ 72 4 69 2 0 1.17 6.5 ↓ C ↓ 85 0 88 1 0 1.18 6.3 ↓ D ↓ 102 2 107 2 0 1.20 6.7 ↓ E ↓ 153 1 149 0 0 1.23 6.5 ↓ F ↓ 164 3 161 2 0 1.22 6.5 ↓ G ↓ 190 4 182 3 0 1.24 6.6 比較期 H ↓ 15 2 18 3 0 0.92 8.3 ↓ I ↓ 17 3 19 2 0 0.93 8.1 ↓ J ↓ 25 2 28 0 0 0.94 8.6 ↓ K ↓ 35 7 31 8 13 0.95 8.2 ↓ L ↓ 37 1 39 3 0 0.95 8.1 ↓ M ↓ 155 7 147 9 11 1.24 6.6 ↓ N ↓ 185 6 193 7 10 1.23 6.3 ↓ O ↓ 210 3 235 2 7 1.25 6.4 ↓ P ↓ 213 0 201 2 5 1.24 6.3	鋼種	鋼種 符号		1~3 μm 3 μm i					m		評価	
↓ C ↓ 85 0 88 1 0 1.18 6.3 ↓ D ↓ 102 2 107 2 0 1.20 6.7 ↓ E ↓ 153 1 149 0 0 1.23 6.5 ↓ F ↓ 164 3 161 2 0 1.22 6.5 ↓ G ↓ 190 4 182 3 0 1.24 6.6 比較網 H ↓ 15 2 18 3 0 0.92 8.3 ↓ I ↓ 17 3 19 2 0 0.93 8.1 ↓ J ↓ 25 2 28 0 0 0.94 8.6 ↓ K ↓ 35 7 31 8 13 0.95 8.2 ↓ L ↓ 37 1 39 3 0 0.95 8.1 ↓ M ↓ 155 7 147 9 11 1.24 6.6 ↓ N ↓ 185 6 193 7 10 1.23 6.3 ↓ O ↓ 210 3 235 2 7 1.25 6.4 ↓ P ↓ 213 0 201 2 5 1.24 6.3	発明網	A	SUS430	67	1	7 1	0	0	1.15	6.5	0	
↓ D ↓ 102 2 107 2 0 120 6.7 ↓ E ↓ 153 1 149 0 0 123 6.5 ↓ F ↓ 164 3 161 2 0 1.22 6.5 ↓ G ↓ 190 4 182 3 0 1.24 6.6 比較期 H ↓ 15 2 18 3 0 0.92 8.3 ↓ I ↓ 17 3 19 2 0 0.93 8.1 ↓ J ↓ 25 2 28 0 0 0.94 8.6 ↓ K ↓ 35 7 31 8 13 0.95 8.2 ↓ L ↓ 37 1 39 3 0 0.95 8.1 ↓ M ↓ 155 7 147 9 11 1.24 6.6 ↓ N ↓ 185 6 193 7 10 1.23 6.3 ↓ O ↓ 210 3 235 2 7 1.25 6.4 ↓ P ↓ 213 0 201 2 5 1.24 6.3	ţ	В	+	7 2	4	6 9	2	0	1.17	6. 5	0	
↓ E ↓ 153 1 149 0 0 123 6.5 ↓ F ↓ 164 3 161 2 0 1.22 6.5 ↓ G ↓ 190 4 182 3 0 1.24 6.6 比較明 H ↓ 15 2 18 3 0 0.92 8.3 ↓ I ↓ 17 3 19 2 0 0.93 8.1 ↓ J ↓ 25 2 28 0 0 0.94 8.6 ↓ K ↓ 35 7 31 8 13 0.95 8.2 ↓ L ↓ 37 1 39 3 0 0.95 8.1 ↓ M ↓ 155 7 147 9 11 1.24 6.6 ↓ N ↓ 185 6 193 7 10 1.23 6.3 ↓ O ↓ 210 3 235 2 7 1.25 6.4 ↓ P ↓ 213 0 201 2 5 1.24 6.3	1	С	ļ	8 5	0	88	1	0	1.18	6. 3	0	
↓ F ↓ 164 3 161 2 0 1.22 6.5 ↓ G ↓ 190 4 182 3 0 1.24 6.6 比較期 H ↓ 15 2 18 3 0 0.92 8.3 ↓ I ↓ 17 3 19 2 0 0.93 8.1 ↓ J ↓ 25 2 28 0 0 0.94 8.6 ↓ K ↓ 35 7 31 8 13 0.95 8.2 ↓ L ↓ 37 1 39 3 0 0.95 8.1 ↓ M ↓ 155 7 147 9 11 1.24 6.6 ↓ N ↓ 185 6 193 7 10 1.23 6.3 ↓ O ↓ 210 3 235 2 7 1.25 6.4 ↓ P ↓ 213 0 201 2 5 1.24 6.3	ļ	D	1	102	2	107	2	0	1.20	6. 7	0	
G 190 4 182 3 0 1.24 6.6 比較調 H 15 2 18 3 0 0.92 8.3 1 1 1 17 3 19 2 0 0.93 8.1 1 J 25 2 28 0 0 0.94 8.6 1 K 35 7 31 8 13 0.95 8.2 1 L 37 1 39 3 0 0.95 8.1 1 1 1 1 1 1 1 1 1	ļ	E	1	153	1	149	0	0	1,23	6. 5	0	
出数器 H ↓ 15 2 18 3 0 0.92 8.3 ↓ I ↓ 17 3 19 2 0 0.93 8.1 ↓ J ↓ 25 2 28 0 0 0.94 8.6 ↓ K ↓ 35 7 31 8 13 0.95 8.2 ↓ L ↓ 37 1 39 3 0 0.95 8.1 ↓ M ↓ 155 7 147 9 11 1.24 6.6 ↓ N ↓ 185 6 193 7 10 1.23 6.3 ↓ O ↓ 210 3 235 2 7 1.25 6.4 ↓ P ↓ 213 0 201 2 5 1.24 6.3	ł	F	ţ	164	3	161	2	0	1. 2 2	6. 5	0	
I I I 17 3 19 2 0 0.93 8.1 I J I 25 2 28 0 0 0.94 8.6 I K I 35 7 31 8 13 0.95 8.2 I L I 37 1 39 3 0 0.95 8.1 I M I 155 7 147 9 11 1.24 6.6 I N I 185 6 193 7 10 1.23 6.3 I O I 210 3 235 2 7 1.25 6.4 I P I 213 0 201 2 5 1.24 6.3	1	G	ł	190	4	1 B 2	3	. 0	1.24	6.6	0	
Image: Line Figure 1 or 1	比較鋼	Н	1	1 5	2	18	3	0	0.92	8.3	x	
Image: Logical content of the conte	ŧ	I	ţ	17	3	19	2	0	0.93	8.1	×	
Image: Lower control of the control	4	J	1	2 5	2	28	0	0	0.94	8.6	×	
Image: Line State of the property of the prop	1	K	į.	3 5	7	3 1	8	13	0.95	8.2	хх	
Image: Control of the property of the propert	1	L	1	3 7	1	3 9	3	0	0.95	8.1	×	
Image: Control of the control of t	4	М	ļ	155	7	147	9	11	1. 2 4	6.6	×	
↓ P ↓ 213 0 201 2 5 1.24 6.3	1	N	Į.	185	6	193	7	10	1. 2 3	6.3	×	
	1	0	ļ ļ	210	3	2 3 5	2	7	1. 2 5	6. 4	×	
↓ Q ↓ 231 3 244 4 6 1.25 6.3	1	P	ļ	213	0	201	2	5	1.24	6. 3	×	
	#	Q	 	2 3 1	3	2 4 4	4	6	1.25	6. 3	×	

(5)

【0027】前記したような各鋼は、830℃、4時間 均熱の熱延板焼鈍及び酸洗後、径70㎜のワークロール で全圧下量75%の冷間圧延を行い、830℃で2分間 の焼鈍をなし、1%調圧後r値とリジングの測定を行っ た。リジングは15%歪みを与えた圧延方向の引張試験 片の幅方向の粗さを測定しRzで評価した。また調圧後の コイル表面における介在物性の疵を測定することにより 製品コイル欠陥率を求めた。鋼A~Gが本発明の規定を 40 満足する鋼であり、鋼H~Qが比較鋼である。

【0028】即ち、前記表1から明らかなように本発明 鋼であるA~Gはrm 1.15以上、リジング高さ6.7μ m 以下と良好な加工性を示している。また、製品コイル 欠陥率は0%であり、その表面状態は全く問題がないの で総合評価を"〇"として表した。一方、比較鋼H~L では1~3μm の介在物数が本発明の下限値を下回って いるため、rm0.95以下、リジング高さ8.1 μm 以上と 加工性が劣っている。また、比較鋼K、M、Nでは3μ m を超える介在物数が、また比較鋼 $O\sim Q$ では $1\sim 3~\mu~50$ □ の介在物数が本発明規定の範囲外であるため、製品コ イル欠陥率は5%を超え表面性状が劣っている。このよ うに比較鋼H~J、L~Qはフェライト系ステンレスの 重要な特性である加工性あるいは表面性状のどちらかに 問題があるので、総合評価を"×"とし、比較鋼Kにお いては加工性、表面性状の両方に問題があるので総合評 価を"××"とした。

【0029】 (実施例2) 次に、前記した本発明網A、 E、G、比較鋼Lについて、次の表2、表3に示す条件 で熱延板焼鈍、冷間圧延と一部830℃で2分間の中間 焼鈍を行ない冷延板とした後、830℃で2分間の焼鈍 を行ない1%調圧後r値とリジングの測定を行った結果 は表2、表3に併せて示す如くである。即ち表2は本発 明方法の規定を満足するものであり、表3は本発明の規 定を満足していないものである。

[0030]

【表2】

[0031] 【表3】

		H								
会压下量 特延板熔飽	会圧下量 熱延板焼鈍	恒		中間	八一口(国)	ル係 B)	全圧下量(割合	に対する (%)	E	プンジラグング
(%)			PC	12.8°E	V	В	ロールA	ロールA ロールB		(m m)
数法 E 830℃4時間均熱 75	時間均熱	75		兼	320	70	50	50	1. 29	6.1
→ ₩	→	→		→	400	1	40	60	1. 27	57.8

【0032】即ち、表2から明らかなように $1\sim3\mu$ mの酸化物系介在物数を $50\sim200$ 個 $/m^3$ 含有した本発明鋼A、E、Gを、全圧下量の50%以上を直径400mm以上のワークロールで圧延する本発明法により製造した方法 $1\sim3$ 、5、7、 $9\sim13$ はrm1.45以上、リジング高さ6.0 μ m 以下と表1に示した径70mmのロールにより圧延したものよりもさらに良好な加工性を示す。

【0033】一方、方法4、6、8では1~3μmの酸 10 化物系介在物数が本発明法の下限値より少ない比較鋼Lを用いているため、rm1.2以下と低く加工性が劣っている。また方法14、15においては鋼としては発明鋼Eを用いているが、製造法が本発明を満足していないので、加工性の向上は殆どない。

【0034】(実施例3) SUS430LX、SUS410L、 SUS4444 鋼について、前記した実施例2の SUS430 鋼と同様に介在物レベルを種々調整し、冷延板を製造して加工性及び表面性状を調査した結果は次の表4に示す如くである。

20 【0035】 【表4】

111

13																4	
433	多牌 和启		0	0	×	×	×	0	0	×	×	×	0	0	×	×	×
供	ロジング	南さ (μ四)	6. 4	5.9	8.3	6.3	6.6	5.8	5. 7	7. 3	5.5	5. 7	7. 2	7. 0	8.8	6.9	7. 1
冷延板の特性	Ę		1.65	1.67	1.29	1.64	1.69	1.44	1.47	1.10	1.45	1.43	1.48	1.50	1.12	1.48	1.51
处	関型ロイル	欠陥率 (%)	0	0	0	1 5	7	0	0	0	1 3	9	0	0	0	1 2	7
.物系介在	n.)	3 μm 超	2	0	1	8	3	0	2	0	1 0	1	0	2	1	1 1	2
熟延板の酸化物系介在	物数(個/甲	$1 \sim 3 \mu n$	107	163	46	103	2 1 2	6 9	191	44	103	215	6.7	191	4.2	181	802
物系介在	n-,	3 4四超	2	1	1	1 0	2	1	2	0	8	3	1	2	0	6	2
冷延板の酸化物系介在	で (個/回	$1 \sim 3 \mu \mathrm{m}$	103	175	4.3	9 T	215	7.3	183	4.7	9 5	2 2 5	7.5	183	3.9	162	216
鋼種			SUS430LX	→	→	->	-	SUS410L	→	→	->	- > .	SUS444	7	Ŷ	↑	→
1	存む		×	S	۲	n	>	∌	×	¥	2	A 2	B 2	C 2	D 2	E 2	F 2
	知		発明鋼	-	比較鑑	-	-	発明網	→	比較絕	→	→	発明鋼	→	比較鋼	→	→

【0036】つまり、表4の結果によると、鋼種の如何 によりそれなりに変化することは当然であるが、同じ鋼 種内で比較すると、発明鋼R、Sは比較鋼Tよりも、発 明鋼W、Xは比較鋼Yよりも、発明鋼B2、C2は比較 40 鋼D2よりもrm が高く優れた加工性を有することがわ かる。また、比較鋼U、Z、E2では3μm を超える介 在物数が、また比較鋼V、A2、F2では1~3μmの 介在物数が本発明規定の範囲外であるため、製品コイル 欠陥率は5%を超え表面性状が劣っている。

[0037]

【発明の効果】以上説明したように本発明によれば酸化 物系介在物の技術的実態を解明して加工性に優れたフェ ライト系ステンレス鋼板を適切に提供し得るものであ り、また斯かる介在物の制御された条件下で特定の大径 50 7個/mm 、および発明鋼の67個/mm と153個/

ロールで圧延することによりさらに優れた加工性を付与 させ、しかも耐リジング性や耐疵付き性をも良好として 生産性良く製造できるものであって、工業的にその効果 の大きい発明である。

【図面の簡単な説明】

【図1】1~3 μm の酸化物系介在物数と rm 及び表面 欠陥率の関係を示した図表であって、冷間圧延率は75 %である。

【図2】塩基度による1~3μm および3μm 超の酸化 物系介在物数の関係を示したものである。

【図3】大径ロールと径70mmの小径ロールで組合わせ 圧延を行った際の冷間圧延率と rm の関係を示した図表 であって、1~3 μm の酸化物系介在物数は比較鋼の3

 m^{2} 、全圧下量に対する大径ロールでの圧延の割合は 20 \sim 100%の範囲で行なった結果を要約して示すものである。

【図4】大径ロールと径70mmの小径ロールの組合わせ 圧延を行った際の大径ロールの径とrm の関係を示した ものであって、 $1\sim3~\mu m$ の酸化物系介在物数は比較鋼 の37個/mm'、および発明鋼の67個/mm'と153個/mm'、全圧下量に対する大径ロールでの圧延の割合は50%で行ったものである。なおこれら図1~図4に関して記載された酸化物系介在物数は冷延板についてのものである。

【図1】

【図4】

全圧下量に対する直径 400 mmのワークロールでの 圧延割合 (%)

60

40

フロントページの続き

(72)発明者 阿部 隆

東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内

0.8

20

(72)発明者 内野 薫

80

100

東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内