Momentum e Impulso

La cantidad de movimiento (momentum) es cuanto movimiento posee un cuerpo y la cantidad de fuerza necesaria para que pase a un estado de reposa y es directamente proporcional a la masa y velocidad:

$$\rightarrow p = m * \rightarrow v$$

Cuando la cantidad de movimiento varía (por aceleración) hay **impulso** es la fuerza que se ejerce durante un intervalo de tiempo y es proporcional a la fuerza y variación del tiempo:

$$\rightarrow I = \rightarrow F * \Delta t$$

Aplicando la segunda ley de newton:

$$\rightarrow F_{neta} = m * \rightarrow a$$

y usando la definición de aceleración en esta:

$$\rightarrow F = m * \frac{\Delta v}{\Delta t}$$

multiplicando ambos lados por Δt :

$$\rightarrow F * \Delta t = m * (v_f - v_i)$$

donde se obtiene que:

$$\rightarrow F * \Delta t = m * v_f - m * v_i$$

Por lo tanto:

$$\rightarrow I = \rightarrow p_2 \rightarrow p_1$$

En conclusión la variación de cantidad de movimiento (momentum) de cualquier cuerpo es igual al impulso de la fuerza que se ejerce sobre él.

$$\rightarrow I = \Delta \rightarrow p$$

Choques en una dimensión:

- Elásticos: Cuando 2 cuerpos colisionan y luego cada cuerpo sigue su movimiento de manera independiente y separada del otro, por ejemplo bolas de billar al chocar. Se conserva la energía cinética y no las deformaciones.

- Inelásticos: Cuando 2 cuerpos colisionan deformándose y cada cuerpo se une al resto generando un solo y gran cuerpo pero aun así la masa del sistema se conserva, por ejemplo cuando chocan 2 camiones. No se conserva la energía cinética pero si las deformaciones.

Conservación del Momentum Lineal: En los casos donde no existen fuerzas externas (I = 0) netas que actúan sobre los cuerpos que chocan, la cantidad de movimiento se conserva.

$$\begin{array}{lll} \rightarrow p_{sistema\ (antes)} &=& \rightarrow p_{sistema\ (despu\'es)} \\ m_1^{*} v_1^{} = m_2^{*} v_2^{} \\ &\text{Con 2 objetos:} \\ m_1^{*} v_1^{} (inicio) &+& m_2^{*} v_2^{} (inicio) &=& m_1^{*} v_1^{} (final) &+& m_2^{*} v_2^{} (final) \end{array}$$

ej: En tenis la masa de la raqueta por su velocidad, en el momento del choque con la pelota, debe ser igual a la masa de la pelota por la velocidad que esta adquiere cuando es golpeada.

Si dice	Aplicar	Considerar
Un cambio de velocidad	$I = \overrightarrow{\Delta P} = m \cdot \overrightarrow{\nabla}_{r} - m \cdot \overrightarrow{\nabla}_{r}$	Impulso no es igual que momentum. Impulso es igual al camblo de momentun, el que requiere cambio en la velocidad.
Si necesita que otra fuerza actúe sobre un objeto en la colisión	Cambia el tiempo de la colisión	Durante el cambio de momentum, la fuerza que esta actuando sobre un objeto y el tiempo transcurrido es inversamente proporcional
Gráfico Fuerza – Tiempo F = f(t)	El área bajo el gráfico me dará el impulso o el momentum $I = \overline{\Delta P} = \text{ Area }_{f-1}$	I = F-†
Choques	Conservación del momentum Elástico: $m_1 \cdot V_{1i} + m_2 \cdot V_{2i} = m_1 \cdot V_{1f} + m_2 \cdot V_{2f}$ Inelástico $m_1 \cdot V_{1i} + m_2 \cdot V_{2i} = (m_1 + m_2) \cdot V_f$	No olvidar; añadir los signos correspondientes del vector dirección en las velocidades. Esto te permite resolver la ecuación en cantidades escalares.