Data Science for Engineers

WEEK 4 ASSIGNMENT

1) Let
$$f(x) = x^3 + 6x^2 - 3x - 5$$
. Select the correct options from the following:

$$-2+\sqrt{5}$$
 will give the maximum for $f(x)$.

$$-2 + \sqrt{5}$$
 will give the minimum for $f(x)$.

The stationary points for
$$f(x)$$
 are $-2 + \sqrt{5}$ and $-2 - \sqrt{5}$.

The stationary points for f(x) are -4 and 0.

$$\int_{1}^{2} (2x) = 34^{2} + 122 - 3$$

$$J^{1}(x) = 0$$

$$x^{2} + 2x - 1 = 0$$

$$x_{1} = -2 + \sqrt{5}$$

$$x_{2} = -2 + \sqrt{5}$$

$$\int ||(\mathbf{n})| = 6\mathbf{n} + 12$$

$$\int ||(\mathbf{n})| = 6\mathbf{n} + 12$$

$$\int ||(\mathbf{n})| = 6 \left(-2 + \sqrt{3}\right) + 12$$

$$= 6\sqrt{5} - 7 \text{ with}$$
The stationary points for $f(x)$ are $-2 + \sqrt{5}$ and $-2 - \sqrt{5}$.
$$\int ||(\mathbf{n})| = 6\sqrt{5} - 7 \text{ with}$$

$$\int ||(\mathbf{n})| = 6\sqrt{5} - 7 \text{ with}$$

Use the following information to answer Q2 and Q3.

Consider the following optimization problem:

$$\max_{x \in \mathbb{R}} f(x)$$

, where

$$f(x) = x^4 + 7x^3 + 5x^2 - 17x + 3$$

Let x^* be the maximizer of f(x).

$$4x^3 + 21x^2 + 10x - 17 = 0$$

$$12x^2 + 42x + 10 = 0$$

$$12x^2 + 42x + 10 > 0$$

$$12x^2 + 42x + 10 < 0$$

Accepted Answers:
$$12x^2 + 42x + 10 < 0$$

$$f''(0.662) = 12 \times (0.662)^{2} + 42 \times 0.662 + 10 = 43$$

$$f''(0.432) = -74.59 < 0$$

$$f''(-4.48) = -419 < 0$$

- 3) Find the value of x^* .
 - -4.48
 - 0.66
 - 1.43
 - 4.45

Accepted Answers: -1.43

$$f(-1.43) = -1.43$$
 mark

$$f(-4.48) = -47.07$$

4) Let $f(x)=2\sin x, 0\leq x\leq 2\pi$. Select the correct options from the following:

 π is the global minimum of f(x).

 $\frac{3\pi}{2}$ is the global minimum of f(x).

Accepted Answers: $\dfrac{\pi}{2}$ is the global maximum of f(x). $\dfrac{3\pi}{2}$ is the global minimum of f(x).

Let
$$f(x) = 2x_1^2 + 3x_1x_2 + 3x_2^2 + x_1 + 3x_2$$
.

 $\nabla f = \begin{cases} \frac{\partial f}{\partial n_1} \\ \frac{\partial f}{\partial n_2} \end{cases} = \begin{cases} 4n_1 + 3n_2 + 1 \\ 3n_1 + 6n_2 + 3 \end{cases}$

5) Find the gradient for f(x).

$$egin{aligned} igordent & igordent f = egin{bmatrix} 4x_1 + 3x_2 + 1 \ 3x_1 + 6x_2 + 3 \end{bmatrix} \ igordent & igordent f = egin{bmatrix} 3x_1 + 6x_2 + 3 \ 4x_1 + 3x_2 + 1 \end{bmatrix} \ igordent & igordent f = egin{bmatrix} 4x_1 + 3x_2 \ 3x_1 + 6x_2 \end{bmatrix} \ igordent & igordent & igordent f = egin{bmatrix} 4x_2 + 3x_1 + 1 \ 3x_2 + 3x_1 + 1 \end{bmatrix} \end{aligned}$$

Accepted Answers:

$$abla f = \left[egin{array}{l} 4x_1 + 3x_2 + 1 \ 3x_1 + 6x_2 + 3 \end{array}
ight]$$

Let
$$f(x) = 2x_1^2 + 3x_1x_2 + 3x_2^2 + x_1 + 3x_2$$
.

$$\nabla f = 4x_1 + 3x_2 + 1 = 0$$

$$3x_1 + 6x_2 + 3$$

- 6) Find the stationary point for f(x).
 - 0.6, 0.4
 - -0.6, -0.4
 - 0.2, -0.6
 - 0.2, 0.6

$$\frac{34}{3n_1} = 4n_1 + 3n_2 + 1 = 0$$

$$\frac{34}{3n_2} = 3n_1 + 6n_2 + 3 = 0$$

$$\frac{n_1}{2n_2} = \frac{n_1}{2n_2} = \frac{n_2}{2n_2} = \frac{n_2}{$$

Accepted Answers: 0.2, -0.6

$$\nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1^2} \\ \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1^2} \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 3 & 6 \end{bmatrix}$$

Let
$$f(x) = 2x_1^2 + 3x_1x_2 + 3x_2^2 + x_1 + 3x_2$$
.

7) Find the Hessian matrix for f(x).

$$igtriangledown^2 f = egin{bmatrix} 2 & 3 \ 3 & 6 \end{bmatrix}$$

$$abla^2 f = \left[egin{matrix} 3 & 3 \ 3 & 3 \end{smallmatrix}
ight]$$

$$abla^2 f = egin{bmatrix} 4 & 3 \ 3 & 6 \end{bmatrix}$$

$$\bigtriangledown^2 f = \left[egin{matrix} 6 & 3 \ 3 & 4 \end{matrix}
ight]$$

Accepted Answers:

$$abla^2 f = \begin{bmatrix} 4 & 3 \\ 3 & 6 \end{bmatrix}$$

Let
$$f(x) = 2x_1^2 + 3x_1x_2 + 3x_2^2 + x_1 + 3x_2$$
.

- 8) The stationary point obtained in Q6 is a
 - maxima
 - minima
 - osaddle point

Accepted Answers: minima

- 9) Let $f(x_1, x_2) = 4x_1^2 4x_1x_2 + 2x_2^2$. Select the correct options from the following:
 - (2, 4) is a stationary point of f(x).

(0,0) is a stationary point of f(x).

V

The Hessian matrix $\nabla^2 f$ is positive definite.

The Hessian matrix $\nabla^2 f$ is not positive definite.

$$\nabla \int = 8x_1 - 4x_2$$
$$-4x_1 + 4x_2$$

$$\nabla^{2}f = \begin{bmatrix} 8 & -4 \\ -4 & 4 \end{bmatrix}$$

Accepted Answers:

(0, 0) is a stationary point of f(x).

The Hessian matrix $\nabla^2 f$ is positive definite.

10) In optimization problem, the function that we want to optimize is called
O Decision function
Constraints function
Optimal function
Objective function

Accepted Answers: Objective function 11) The optimization problem $\min_x f(x)$ can also be written as $\max_x f(x)$.

Accepted Answers: False

12) In the gradient descent algorithm, the step size should always be same for each iteration.
○ True
○ False

Accepted Answers: False

Extra Questions

Answer questions 1 to 4 using the given objective function $f(x) = 3x^4 - 2x^3 - 3x^2 + 6$

1) The first order necessary condition for either maxima or minima of f(x) is

$$6x^3 - 3x^2 - 6x = 0$$
 $12x^3 - 6x^2 - 6x = 0$
 $12x^3 - 9x^2 - 6x = 0$

None of these

Answer questions 1 to 4 using the given objective function $f(x) = 3x^4 - 2x^3 - 3x^2 + 6$

1) Solution: b)

Feedback: The first order necessary condition for finding the stationary point(s) of a given function f(x) is

$$f'(x) = \frac{\delta f(x)}{\delta x} = 0$$

Differentiating the function w.r.t x and equating to 0 gives the equation

$$12x^3 - 6x^2 - 6x = 0$$

Answer questions 1 to 4 using the given objective function $f(x)=3x^4-2x^3-3x^2+6$

2) Which of the following point(s) is/are stationary point(s) of f(x)?

$$12x^3 - 6x^2 - 6x = 0$$

 $x = 0, 1, -\frac{1}{2}$

Answer questions 1 to 4 using the given objective function $f(x) = 3x^4 - 2x^3 - 3x^2 + 6$

2) Solution: a) b) c)

Feedback: Solving the equation $12x^3 - 6x^2 - 6x = 0$, one of the roots of x is 0.

This means that, $x(12x^2 - 6x - 6) = 0$. Solving for the equation $12x^2 - 6x - 6 = 0$ gives you the other 2 roots.

Solving the above equation, we get the roots x = 1, $\frac{-1}{2}$

Hence, the stationary points are x = 0, 1, $\frac{-1}{2}$

Answer questions 1 to 4 using the given objective function $f(x) = 3x^4 - 2x^3 - 3x^2 + 6$

3) The stationary point(s) which maximize(s) the value of f(x) is

$$\int_{-1}^{11}(x) = \int_{-1}^{11}(12x^{3} - 6x^{2} - 6x)$$

$$= 36x^{3} - 12x - 6$$

$$\int_{-1}^{11}(0) = -6 - 7wan$$

$$\int_{-1}^{11}(1) = 18$$

$$\int_{-1}^{11}(-\frac{1}{2}) = 36 \times \frac{1}{4} - 12x - \frac{1}{4} - 6$$

$$= 9 + 6 - 6 = 9$$

Answer questions 1 to 4 using the given objective function $f(x) = 3x^4 - 2x^3 - 3x^2 + 6$

3) Solution: b)

Feedback: The condition for a stationary point to be a local maximum is

$$f''(x) = \frac{\delta^2 f(x)}{\delta x^2} < 0$$

Differentiating the function twice w.r.t x gives us $f''(x) = 36x^2 - 12x - 6$

We can observe that by substituting the values of stationary points, we can see that the points x = 0 to satisfy the second-order sufficient condition for local maximum

Answer questions 1 to 4 using the given objective function $f(x) = 3x^4 - 2x^3 - 3x^2 + 6$

DATA SCIENCE FOR ENGINEERS | PMRF TA | NITT

4) The stationary point(s) which minimize(s) the value of f(x) is

2

1

4) Solution: a) c)

Feedback: The condition for a stationary point to be a local minimum is

$$f'''(x) = \frac{\delta^2 f(x)}{\delta x^2} > 0$$

Differentiating the function twice w.r.t x gives us $f''(x) = 36x^2 - 12x - 6$

We can observe that by substituting the values of stationary points, we can see that the points x = 1 and $x = \frac{-1}{2}$ to satisfy the second-order sufficient condition for local minimum

5) Find the minima of the function $f(x) = (x-5)^2 - 5$ using gradient search method starting from x = -6, and learning rate $\alpha = 0.5$ and choose the correct statement from the options given below

Minimum is
$$f(x) = -5$$

Minimum is f(x) = -16

x = -11 yields the minimum of the function

x = 5 yields the minimum of the function

$$f(x) = (x-5)^{\frac{1}{4}} - 5 \qquad f^{\frac{1}{4}}(x) = 3\pi - 10$$

$$= x^{2} - 10x + 25 - 5 = x^{2} - 104 + 20$$

$$x_{k+1} = x_{k} - x_{k}$$

5) Find the minima of the function $f(x) = (x-5)^2 - 5$ using gradient search method starting from x = -6, and learning rate $\alpha = 0.5$ and choose the correct statement from the options given below

5) Solution: a) d)

Feedback: The formula for finding the next search point, given the initial search point and the learning rate are

$$x_{k+1} = x_k - \alpha f'(x_k)$$

$$f'(x_k) = 2(x - 5)$$
. Substituting $x_0 = -6$, $\alpha = 0.5$, $x_1 = x_0 - \alpha \nabla f'(x_0) = -6 - 0.5 * 2 * (-6 - 5) = 5$ $x_2 = x_1 - \alpha \nabla f'(x_1) = 5 - 0.5 * 2 * (5 - 5) = 5$

Since, all iterations give the same value for x, the minimum value for x is 5.

Substituting
$$x_{min} = 5$$
, $f(x_{min}) = (5 - 5)^2 - 5 = -5$

6) The gross domestic product (GDP) of a country in billion dollars following a crisis (at t=0) is given by: $G(t)=-0.196t^3+3.244t^2+9.179$ for $0 \le t \le 28$. When is the GDP highest in the given time period?

$$G(t) = \frac{-0.588}{-0.588} = 11.03$$

$$t = 0$$

$$t = 0$$

$$t = 0$$

$$G''(t) = (-0.588 \times 2) + +6.488$$
.
 $G''(0) = 6.488$
 $G''(11.03) = -6.48 \times 20 \rightarrow max$

6) The gross domestic product (GDP) of a country in billion dollars following a crisis (at t=0) is given by:

 $G(t) = -0.196t^3 + 3.244t^2 + 9.179$ for $0 \le t \le 28$. When is the GDP highest in the given time period?

6) Solution: b)

Feedback: Differentiating the function G(t) and equating it to zero gives the stationary point(s)

Solving G'(t) = 0 gives t = 11.034. Hence, the optimum value achieved by the function is at t = 11.034

7) A function is defined as: $7x^2 + 70x + 12$. Find the value of x at its stationary point.

$$x = 10$$

 $x = 0.071$

$$x = 0.071$$

$$x = -350$$

$$x = -5$$

7) A function is defined as: $7x^2 + 70x + 12$. Find the value of x at its stationary point.

7) Solution: d)

Feedback: Differentiating the function and equating it to zero gives the stationary point(s). From the given equation, it can be verified that x = -5 is a stationary point of the function

Practice Questions

- 1) Class of optimization problems WITH NO constraints are known as
 - constrained optimization problems
 - unconstrained optimization problems
 - linear constrained optimization problems
 - none of the above

2) The optimum for a function f(x) at x^* , exists if:

If the first derivative at x^* is zero

0

If the first derivative at x^* is positive

0

If the first derivative at x^* is negative

O None of the above

- When the feasibility regions defined by equality constraints and inequality constraints are compared,
 - The regions defined by both are exactly the same.
 - The region defined by the inequality constraint is greater
 - The region defined by the equality constraint is greater.
 - none of the above

4) If $f(x) = 12x^4 - 2x^3 + 9x^2 + 5$, then the first order necessary condition for either maxima or minima of f(x) is

$$24x^2 + 4x - 6 = 0$$

$$\overbrace{48x^3 - 6x^2 + 18x} = 0$$

$$\bigcirc \ 36x^3 - 2x^2 - 6x = 0$$

$$0 \\ 48x^2 - 4x - 6 = 0$$

5) The restrictions on the possible values of the solution to the optimization problem are called:
O objective functions
O cost functions
Onone

Example using R

Q: A company wants to maximize the profit for two products A and B which are sold at \$ 25 and \$ 20 respectively. There are 1800 resource units available every day and product A requires 20 units while B requires 12 units. Both of these products require a production time of 4 minutes and total available working hours are 8 in a day. What should be the production quantity for each of the products to maximize profits?

Ans:

This is a maximization problem

The objective function is to be defined:

$$\max(Sales) = \max(25y_1 + 20y_2)$$

- •y₁ is the units of Product A produced
- •y₂ is the units of Product B produced
- •y₁ and y₂ are called the decision variables
- 25 and 20 are the selling price of the products

 $20y_1 + 12y_2 \le 1800$ (Resource Constraint) $4y_1 + 4y_2 \le 8*60$ (Time constraint)