การทดลองที่ 7

เรื่อง ปรากฏการณ์โฟโตอิเล็กทริก

วัตถุประสงค์

- 1. เพื่อศึกษาลักษณะของปรากฏการณ์โฟโตอิเล็กทริก
- 2. เพื่อหาความสัมพันธ์ของความเข้มและความถี่ของแสงที่มีผลต่อปรากฏกาณ์โฟโตอิเล็กทริก

ทฤษฎี

ปรากฏการณ์ โฟโตอิเล็กทริก (Photoelectric Effect) เป็นปรากฏการณ์เมื่อแสงที่มีค่าความยาวคลื่นหรือ ความถี่ค่าๆหนึ่งตกกระทบโลหะหรือตัวกลางและทำให้อนุภาคที่มีค่าประจุเกิดจากการหลุดออกจากโลหะนั้นๆ ซึ่งปรากฏการณ์นี้เป็นปรากฏการณ์ที่ช่วยในการอธิบายลักษณะของแสงที่นอกจากประพฤติตัวในลักษณะคลื่น แล้วยังสามารถพิจารณาในลักษณะกลุ่มก้อนของพลังงานได้

ปรากฏการณ์ โฟ โตอิเล็กทริกถูกค้นพบในปี พ.ศ. 2430 โดย ไฮน์ริช รูด็อล์ฟ แฮทซ์ นักฟิสิกส์ชาว แอรมัน ซึ่งเขาได้สังเกตเห็นว่าแสงเมื่อตกกระทบโลหะจะมือนุภาคที่มีค่าประจุหลุดออกมา และในปี พ.ศ. 2441 ทอมสันนักฟิสิกส์ชาวอังกฤษได้ทำการทดลองเพื่อหาอัตราส่วนระหว่างประจุต่อมวลของอนุภาค และพบว่ามีค่า เท่ากับประจุของอิเล็กตรอน จึงเรียกอนุภาคนั้นว่า โฟโตอิเล็กตรอน (Photoelectron) ซึ่งมีค่าพลังงานจลน์

$$E_k = eV_s \tag{1.1}$$

เมื่อ $V_{_{\rm S}}$ คือความต่างศักย์หยุดยั้ง (stopping potential)

ซึ่งในการทคลองของทอมสันสามารถได้ผลการทคลองได้ ดังนี้

- -เมื่อให้ความเข้มของแสงเพิ่มมากขึ้นพบว่า จำนวนของโฟโตอิเล็กตรอน มีจำนวนเพิ่มมากขึ้นตาม
- -โฟโตอิเล็กตรอนจะเกิดเมื่อ ความถี่ของแสงที่ตกกระทบโลหะมีค่าอย่างน้อยเท่ากับความถี่ขีดเริ่ม
- -ค่าพลังงานจลน์ขึ้นกับความถี่ของแสง ไม่ขึ้นกับความเข้มของแสงที่ตกกระทบ

แต่จากผลการทดลองของทอมสันพบว่า ไม่สามารถอธิบายผลการทดลองโดยการพิจารณาแสงเป็นคลื่น ได้ครบถ้วน ซึ่งต่อมาไอน์สไตน์ ได้เป็นผู้ที่สามารถอธิบายปรากฏการณ์โฟโตอิเล็กทริกได้ครบถ้วน ด้วยการ พิจารณาแสงเป็นก้อนพลังงงานหรือที่เรียกว่า โฟตอน (Photon) โดยที่โฟตอนมีค่าพลังงานเท่ากับ

$$E = hf (1.2)$$

เมื่อ h คือ ค่าคงที่ของพลังค์ $6.625 \times 10^{-34} \, \mathrm{J.s}$ f คือ ความถี่ของแสงที่ตกกระทบโหละ

เมื่อโฟตอนตกกระทบโลหะ จะเกิดการถ่ายเทพลังงานระหว่างโฟตอนและอิเล็กตรอนของโลหะ ซึ่งการการที่จะ ทำให้อิเล็กตรอนหลุดออกมาจากโหละต้องมีการถ่ายเทค่าพลังงานให้มากกว่าค่าพลังงานที่ยึดเหนี่ยวอิเล็กตรอน ของโลหะไว้ที่เรียกว่า ฟังค์ชันงาน (work function; W) ดังนั้นค่าพลังงานจลน์ของอิเล็กตรอนสามารถคำนวณ ได้จาก

$$E_{k(max)} = hf-W ag{1.3}$$

รูปที่ 1.1 ชุดทดลองปรากฏการณ์ โฟโตอิเล็กทริก

อุปกรณ์

- 1. ชุดทดลองปรากฏการณ์โฟโตอิเล็กทริก
- 2. หลอด LED ที่มีความยาวคลื่นต่างกัน

- เครื่อง
- 5 หลอด

วิธีทำการทดลอง

ตอนที่ 1 หาค่าความสัมพันธ์ระหว่างศักย์หยุดยั้ง (V) กับความเข้มแสง (%)

1. จัดอุปกรณ์การทดลองตามรูปที่ 1.2

รูปที่ 1.2 การจัดอุปกรณ์การทดลอง

- 2. ต่อหลอด LED สีแดง (611 nm) เข้ากับตัวเครื่อง
- 3. ปรับความเข้มแสงที่ปุ่มปรับความเข้มให้มีค่าความเข้มแสงที่ 25 %
- 4. ค่อยๆปรับค่ากระแสไฟฟ้าจนได้ค่ากระแสไฟฟ้าเป็นศูนย์ (สามารถปรับปุ่มปรับละเอียดช่วยในการ ปรับค่าได้)
 - 5. อ่านค่าศักย์หยุดยั้งจากโวลต์มิเตอร์ บันทึกผลลงในตารางบันทึกผลการทดลองตอนที่ 1
 - 6. เปลี่ยนค่าความเข้มแสงตามตารางบันทึกผลตอนที่ 1

ตอนที่ 2 หาค่าความสัมพันธ์ระหว่างค่าศักย์หยุดยั้งและความถิ่งองแสง

- 1. จัดอุปกรณ์การทดลองตามรูปที่ 1.2
- 2. ต่อหลอด LED สีแดง (611 nm) เข้ากับตัวเครื่อง
- 3. ปรับความเข้มแสงที่ปุ่มปรับความเข้มให้มีค่าความเข้มแสงที่ 75 % ใช้ความเข้มแสงนี้ตลอดการ ทดลอง
 - 4. คำนวณค่าความถิ่งองแสงจากสมการ $v = f \lambda$ กำหนดให้ $v = 3x10^8 \text{ m/s}$
- 5. ค่อยๆปรับค่ากระแสไฟฟ้าจนได้ค่ากระแสไฟฟ้าเป็นศูนย์ (สามารถปรับปุ่มปรับละเอียดช่วยในการ ปรับค่าได้)
 - 6. อ่านค่าศักย์หยุดยั้งจากโวลต์มิเตอร์ บันทึกผลลงในตารางบันทึกผลการทดลองตอนที่ 2
 - 7. เปลี่ยนหลอด LED ตามค่าความยาวคลื่นที่กำหนดให้ในตารางบันทึกผลตอนที่ 2
 - 8. เขียนกราฟความสัมพันธ์ระหว่างศักย์หยุดยั้ง (แกน y) กับความถี่ของแสง (แกน x)

บันทึกผลการทดลองที่ 7 ปรากฏการณ์โฟโตอิเล็กทริก

ตอนที่ 1 หาค่าความสัมพันธ์ระหว่างศักย์หยุคยั้ง (V) กับความเข้มแสง (%)

สีแดง (611 nm)		เฉลี่ย		
ความเข้มของแสง %	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เมเบ
25	0.072	0.072	0.072	0.072
35	0.072	0.072	0.072	0.072
55	0.072	0.072	0.072	0.072
65	0.072	0.072	0.072	0.072

ตอนที่ 2 หาค่าความสัมพันธ์ระหว่างค่าศักย์หยุดยั้งและความถิ่ของแสง

ความยาวคลื่น (λ)	ความถี่แสง (f)	ค่าศักย์หยุดยั้ง $\mathbf{V}_{_{\mathbf{S}}}(\mathbf{V})$			เฉลี่ย
(nm)	(Hz)	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	- 814610
611	4-9 100 × 10 14	0.072	0.072	0.072	0.072
588	5.1020×10 ¹⁴	0.154	0.154	0.154	0.154
525	5.714321014	0.472	0.472	0.472	0.472
505	5.9406×10 ¹⁴	0.514	0.514	0.514	0.514
472	6.3559×10 ¹⁴	0.653	0.653	0.653	0.653

วิธีการคำนวณ

สรุปและวิจารณ์ผลการทดลอง