Estatística Experimental Aplicada à Engenharia Florestal com R

Do experimento à decisão

Seu Nome

2025-08-14

Table of contents

1	Estatística Experimental Aplicada à Engenharia Florestal com R					
2	Bem-vindo(a)!					
3	Módulo 1 – Introdução e Motivação					
	3.1	Cenário inicial	5			
	3.2	Objetivos de Aprendizagem	5			
	3.3	Ambiente de Trabalho: Google Colab (R)	6			
	3.4	Contexto Florestal Aplicado	6			
	3.5	Conceitos-Chave	7			
	3.6	Exemplo Prático no R	7			
	3.7	Interpretação dos Resultados	8			
	3.8	Exercício Final Aplicado	9			
4	Untit	led	10			
5	5 Untitled					
6	cap04-comparacoes					
7	Untit	iled	13			
8	8 Untitled					
g	Untit	led	15			

1 Estatística Experimental Aplicada à Engenharia Florestal com R

Do experimento à decisão

2 Bem-vindo(a)!

Este ebook foi criado para estudantes de **Engenharia Florestal** que desejam aprender **Estatística Experimental** usando o software **R** de forma prática e contextualizada.

Note

Como usar este ebook:

Cada capítulo traz conceitos-chave, exemplos aplicados e scripts R prontos para execução. Use os **datasets fornecidos** e siga as orientações passo a passo.

Ferramenta recomendada: Google Colab (ambiente R) ou RStudio.

3 Módulo 1 – Introdução e Motivação

(Módulo 1 – Semana 1)		

3.1 Cenário inicial

Imagine que você está iniciando a disciplina de **Estatística Experimental** e nunca utilizou o R antes. Agora, pense que você trabalha como engenheiro(a) florestal em um viveiro que produz mudas para **restauração de áreas degradadas**. Um fornecedor oferece um novo substrato "revolucionário" que promete aumentar o crescimento das mudas em **20**%.

Você precisa decidir se vale a pena trocar o substrato atual — mas como saber se essa promessa é real ou apenas marketing?

É aqui que a **Estatística Experimental** entra em cena: ela permite **planejar** um teste, **coletar** dados e **analisar** resultados para concluir, com segurança, se a diferença observada é de fato causada pelo tratamento ou apenas fruto do acaso.

3.2 Objetivos de Aprendizagem

Ao final deste capítulo, você será capaz de:

- Diferenciar estudo observacional de experimento controlado.
- Reconhecer a importância da experimentação na Engenharia Florestal.
- Criar e interpretar seu **primeiro gráfico no R**, usando o Google Colab.

3.3 Ambiente de Trabalho: Google Colab (R)

Passos iniciais (para estudantes):

- 1. Acesse https://colab.research.google.com e entre com sua conta Google.
- 2. Ambiente de execução \rightarrow Alterar tipo de ambiente de execução \rightarrow Linguagem: R.
- 3. No painel lateral (ícone de pasta), faça upload de:
- crescimento_mudas.csv
- cedrela_irrigacao.csv'

Note

Instalação de pacotes no Colab (rode apenas no Colab): O bloco abaixo não é executado ao compilar o ebook (serve apenas para consulta). No Colab, selecione a célula e rode-a.

```
# Instalação no Colab (rode manualmente lá, se necessário)
options(repos = "https://cloud.r-project.org")
install.packages(c("readr","ggplot2","dplyr","agricolae","emmeans","multcompView"))
```

3.4 Contexto Florestal Aplicado

Na Engenharia Florestal, decisões técnicas e econômicas dependem de dados:

- Escolha de espécies ou clones para plantio comercial.
- Determinação da melhor época de semeadura.
- Avaliação de técnicas de manejo (podas, desbastes, irrigação).
- Seleção de métodos de controle fitossanitário.

Essas decisões não podem se basear apenas em **experiência** ou **intuição** — precisam ser sustentadas por **evidências experimentais** obtidas em experimentos bem planejados.

3.5 Conceitos-Chave

- Experimento investigação planejada, com manipulação de fatores (ex.: tipo de adubação) e observação dos efeitos em variáveis de interesse (ex.: altura das mudas).
- Estudo observacional coleta de dados sem manipular variáveis; útil para levantar hipóteses, mas com menos capacidade de inferir causalidade.
- Tratamento combinação específica de condições aplicadas às unidades experimentais.
- Unidade experimental menor porção física ou biológica à qual se aplica um tratamento (ex.: uma muda, uma parcela de campo).

3.6 Exemplo Prático no R

Vamos visualizar dados de crescimento de mudas sob três tratamentos diferentes de substrato.

i Note

Usando no Colab: Após fazer upload do CSV, troque o caminho por "/content/nome_do_arquivo.csv". No ebook/Quarto local, mantenha o caminho relativo dados/nome_do_arquivo.csv.

```
# Carregar pacotes sem mensagens de inicialização
suppressPackageStartupMessages({
    library(readr)
    library(ggplot2)
})

# Ebook/Quarto (caminho relativo)
dados <- read_csv("dados/crescimento_mudas.csv", show_col_types = FALSE)

# Para Colab, use:
# dados <- read_csv("/content/crescimento_mudas.csv", show_col_types = FALSE)

# Visualizar amostra (sem mensagens de leitura)
head(dados)</pre>
```

A tibble: 6 x 6

	ID	Tratamento	${\tt Altura_cm}$	${\tt Diametro_mm}$	${\tt Biomassa_g}$	Dias_pos_semeadura
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Substrato_A_01	${\tt Substrato_A}$	12.3	3.5	9.13	80
2	${\tt Substrato_A_02}$	${\tt Substrato_A}$	21.0	4	13.0	82
3	${\tt Substrato_A_03}$	${\tt Substrato_A}$	16.7	3.94	12.0	92
4	${\tt Substrato_A_04}$	${\tt Substrato_A}$	16.6	3.81	10.2	83
5	${\tt Substrato_A_05}$	${\tt Substrato_A}$	19.5	3.97	15.3	97
6	Substrato_A_06	${\tt Substrato_A}$	16.1	4	11.1	80

Crescimento de mudas sob diferentes substratos

3.7 Interpretação dos Resultados

O boxplot mostra a distribuição das alturas em cada tratamento.

- Podemos observar diferenças visuais entre os grupos.
- Atenção: diferenças visíveis não significam que sejam estatisticamente significativas
 aprenderemos a verificar isso com ANOVA nos próximos capítulos.
- Mesmo sem análise estatística, já é possível levantar hipóteses.

3.8 Exercício Final Aplicado

Você recebeu dados de um experimento de irrigação em mudas de *Cedrela fissilis*, com três regimes hídricos (**Baixo**, **Médio**, **Alto**).

Note

No Colab: após o upload, use "/content/cedrela_irrigacao.csv".

Tarefas:

- 1. Importe o arquivo no R.
- 2. Crie um boxplot para comparar as alturas entre os regimes de irrigação.
- 3. Escreva uma breve interpretação visual (2 a 3 frases) sobre o padrão observado.

? Tip

Dica para o relatório (Colab): Inclua no notebook:

- O código (com caminho /content/...)
- O gráfico
- A interpretação em texto

Assim, você já inicia o relatório final da disciplina desde a primeira semana.

6 cap04-comparacoes