TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN TOÁN ỨNG DỤNG & TIN HỌC

Bài giảng

KIÉN TRÚC MÁY TÍNH

Giảng viên: Phạm Huyền Linh

Bộ môn : Toán Tin

Kiến trúc máy tính

CHUONG 3

SỐ HỌC MÁY TÍNH

(Computer Architecture)

Giảng viên: Phạm Huyền Linh

Chương 3

- 3.1. Biểu diễn số nguyên (Integer Representation)
- 3.2. Các phép tính với số nguyên (Integer Arithmetic)
- 3.3. Biểu diễn số dấu phẩy động (Floating-Point Representation)
- 3.4. Các phép tính dấu phẩy động (Floating-Point Arithmetic)

3.1. Biểu diễn số nguyên

- Số nguyên không dấu (Unsigned Integer)
- Số nguyên có dấu (Signed Integer)

Số nguyên không dấu

Biểu diễn các đại lượng luôn dương

VD: Chiều cao, cân nặng, mã ASCII

Tổng quát:

$$a_{n-1}a_{n-2} \dots a_2 a_1 a_0$$

Giá trị

$$\sum_{i=0}^{n-1} a_i 2^i$$

• Giải biểu diễn

$$[0; 2^n - 1]$$

Số nguyên không dấu 1 byte

• Bé nhất

$$0000\ 0000_2 = 0$$

• Lớn nhất

$$111111111_2 = 255 = 2^8 - 1$$

Số nguyên không dấu 1 word

• Bé nhất

$$0000\ 0000\ 0000\ 0000_2 = 0$$

• Lớn nhất

$$11111111111111111_2 = 32657 = 2^{16} - 1$$

Ví dụ

• Biểu diễn số nguyên không dấu sau bằng 8-bit

A = 35, B=132
Ta có:

$$A = 32+2+1=2^5+2^1+2^0$$

 $A = 0010\ 0011_2$
 $B=128+4=2^7+2^2$
 $B = 1000\ 0100_2$

- Xác định giá trị của các số nguyên không dấu biểu diễn bằng
 8 bit sau
 - C = 0101 1100
 - D = 1011 1110
 - $C=2^6+2^4+2^3+2^2=64+16+8+4=92$
 - $D=2^7+2^5+2^4+2^3+2^2+2^1=128+32+16+8+4+2=190$

N=8 bit

Vấn đề đặt ra:

$$-3 + 4 = 7$$

Biểu diễn nhị phân	Giá trị thập phân
0000 0000	0
0000 0001	1
0000 0010	2
••••	
1111 1110	254
1111 1111	255

Trục số học với N = 8 bit

Trục số học

Trục số học máy tính

N = 16, 32, 64 bit

- n = 16 bit
 - $0000\ 0000\ 0000\ 0000 = 0$
 -
 - 1111 1111 1111 1111 = 65535

dải biểu diễn từ $0 \rightarrow 65535 (2^{16} - 1)$:

- n = 32 bit dải biểu diễn từ $0 \rightarrow 2^{32} 1$
- n = 64 bit dải biểu diễn từ $0 \rightarrow 2^{64} 1$

3.1. Biểu diễn số nguyên

- Số nguyên không dấu (Unsigned Integer)
- Số nguyên có dấu (Signed Integer)

Một số cách biểu diễn

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation	Biased Representation
+8	_	_	1111
+7	0111	0111	1110
+6	0110	0110	1101
+5	0101	0101	1100
+4	0100	0100	1011
+3	0011	0011	1010
+2	0010	0010	1001
+1	0001	0001	1000
+0	0000	0000	0111
-0	1000	_	_
-1	1001	1111	0110
-2	1010	1110	0101
-3	1011	1101	0100
-4	1100	1100	0011
-5	1101	1011	0010
-6	1110	1010	0001
-7	1111	1001	0000
-8	_	1000	_

Số bù 9 & bù 10

- Số nhị phân A được biểu diễn bằng n bit:
 - Số bù 9: $A_1 = (10^n-1)-A$
 - Số bù 10: $A_2 = 10^n A$
- Ví dụ: A=2101 với n=4

$$A_1 = 9999 - 2101 = 7898$$

$$=>A_2 = A_1 + 1$$

Số bù 1 & bù 2

• Số nhị phân A được biểu diễn bằng n bit:

• Số bù 1:
$$A_1 = (2^n-1)-A$$

• Số bù 2:
$$A_2 = 2^n - A$$

$$=>A_2 = A_1 + 1$$

Ví dụ

- Với n = 8 bit cho $A = 0011 \ 0100$
 - Số bù 1 của $A = (2^8 1) A$ 1111 1111
 - <u>0011 0100</u> 1100 1011
 - => đảo bit của A
 - Số bù 2 của A = 2⁸ − A 1 0000 0000
 - <u>0011 0100</u> 1100 1100
 - => không có quy luật, thực hiện phức tạp

Quy tắc xác định số bù 1,2


```
Số bù 1:
                 Đảo các bit của số A
Số bù 2:
                 (Số bù 1 của A) + 1
Ví dụ:
                  0011 0100
 Số bù 1
                   1100 1011
 Số bù 2
                   1100 1100
Ta có:
                   0000 0000
 Số bù 1
                   1111 1111
 Số bù 2
                  1 0000 0000
                        (Bỏ qua bít nhớ)
    =>số bù 2 của A = -A
```

Biểu diễn số nguyên có dấu

Nguyên tắc: Dùng n bit

$$a_{n-1}a_{n-2} \dots a_2 a_1 a_0$$

$$a_{n-1} ext{: bit dấu}$$

- A>0 bit $a_{n-1}=0$, các bit còn lại biểu diễn độ lớn như số không dấu
- A < 0 bit $a_{n-1} = 1$, A được biểu diễn bởi số bù hai của số dương (-A)

Ví dụ

- Dùng 8 bit biểu diễn số nguyên có dấu sau đây:
 - A = +62 ; B = -76
- Ta có:
 - A = +62 =**0**011 1110
 - B = -76Xét số $+76 = 0100 \ 1100$ Số bù một của $= 1011 \ 0011$ + 1Số bù hai $= 1011 \ 0100$ Vậy $B = -76 = 1011 \ 0100$

N xet: $1011\ 0100_{(2)} = 180 = 256 - 76$

Giá trị

• Dạng tổng quát của số A > 0 biểu diễn n bit là:

$$A = 0a_{n-2} \dots a_2 a_1 a_0$$

Giá trị của số dương:

$$A = \sum_{i=0}^{n-2} a_i \cdot 2^i$$

Dải giá trị biểu diễn cho số dương:

$$[0,(2^{n-1}-1)]$$

Giá trị

Dạng tổng quát của số A < 0 biểu diễn n bit là:

$$A = 1a_{n-2} \dots a_2 a_1 a_0$$

Giá trị của số âm:

$$A = -2^{n-1} + \sum_{i=0}^{n-2} a_i \cdot 2^i$$

Dải giá trị biểu diễn cho số âm:

$$[-1, -2^{n-1}]$$

• Vd: $B = -76 = 1011\ 0100$

$$=-2^7+(2^5+2^4+2^2)=-128+(32+16+4)=-128+52=-76$$

Giá trị

Dạng tổng quát của số nguyên có dấu A:

$$a_{n-1}a_{n-2} \dots a_2 a_1 a_0$$

Giá trị của A được xác định:

$$A = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

Dải giá trị

$$[-(2^{n-1}),+(2^{n-1}-1)]$$

Ví dụ

- Dùng 8 bít biểu diễn số
- Khoảng giá trị
 [-2⁷, 2⁷ 1] ~ [-128,127]
- Đặc điểm:
 - Trong dãy trên có 1 số 0
 - Không biểu diễn được giá trị
 128

Giá trị thập phân	Biểu diễn bù 2
0	0000 0000
+1	0000 0001
+2	0000 0010
+126	0111 1110
+127	0111 1111
-128	1 000 0000
-127	1000 0001
-2	1 111 1110
-1	1 111 1111

Ví dụ

- Tìm giá trị của các số nguyên có dấu biểu diễn bởi mã bù 8 bit sau:
 - A = 00111101
 - B = 10100011
- Ta có:
 - $A = 2^5 + 2^4 + 2^3 + 2^2 + 2^0$
 - A= 32+16+8+4+1
 - A = 61
 - B= $-2^7+(2^5+2^1+2^0)$
 - B = -128 + (32 + 2 + 1)
 - B = -128 + 35
 - B = -93
 - B= - $(256-(2^7+2^5+2^1+2^0))$
 - B = -93

TRỤC SỐ HỌC n=8 bit

Trục số học :

Trục số học máy tính

Ví dụ

• n=16 bit: biểu diễn từ -2^{15} đến $2^{15}-1$

```
• 0000\ 0000\ 0000\ 0000 = 0
```

•
$$0000\ 0000\ 0000\ 0001 = +1$$

•

•
$$1000\ 0000\ 0000\ 0000 = -32768$$

•
$$1000\ 0000\ 0000\ 0001 = -32767$$

•

Mở rộng bit

- Số không dấu: Thêm các bit 0 vào bên trái
- Số có dấu
 - Số dương: thêm số 0 vào bên trái
 - $+18 = 0001\ 0010$ (8 bit)
 - $+18 = 0000\ 0000\ 0001\ 0010$ (16 bit)
 - Số âm: thêm số 1 vào bên trái
 - $-18 = 1110 \ 1100$ (8 bit)
 - $-18 = 1111 \ 1111 \ 1110 \ 1100$ (16 bit)

Mở rộng bit

Chứng minh:

$$A = -2^{n-1}a_{n-1} + \sum_{i=0}^{n-2} 2^{i}a_{i}$$

$$A = -2^{m-1}a_{m-1} + \sum_{i=0}^{m-2} 2^{i}a_{i}$$

$$-2^{m-1} + \sum_{i=0}^{m-2} 2^{i} a_{i} = -2^{n-1} + \sum_{i=0}^{n-2} 2^{i} a_{i}$$

$$2^{n-1} + \sum_{i=n-1}^{m-2} 2^{i} a_{i} = 2^{m-1}$$

$$1 + \sum_{i=0}^{n-2} 2^{i} + \sum_{i=n-1}^{m-2} 2^{i} a_{i} = 1 + \sum_{i=0}^{m-2} 2^{i}$$
$$\sum_{i=n-1}^{m-2} 2^{i} a_{i} = \sum_{i=n-1}^{m-2} 2^{i}$$

$$\Rightarrow a_{m-2} = \cdots = a_{n-2} = a_{n-1} = 1$$

Chương 3

- 3.1. Biểu diễn số nguyên (Integer Representation)
- 3.2. Các phép tính với số nguyên (Integer Arithmetic)
- 3.3. Biểu diễn số dấu phẩy động (Floating-Point Representation)
- 3.4. Các phép tính dấu phẩy động (Floating-Point Arithmetic)

Cộng số nguyên không dấu

- Xây dựng bộ cộng n-bit
 - $C_{out} = 0 \rightarrow \text{nhận được kết quả đúng}$
 - $C_{out} = 1 \rightarrow \text{nhận được kết quả sai}$

Cộng số nguyên không dấu

Ví dụ:

$$57 + 34 = 91$$

Đúng/sai?

Đúng/sai?

$$57 = 0011\ 1001$$
 $+ 34 = + 0010\ 0010$
 $91 = 0101\ 1011$

$$209 = 1101 0001$$
 $+ 73 = + 0100 1001$
 $282 = 1 0001 1010$

Cộng số nguyên có dấu

- Cộng hai số nguyên có dấu n-bit, Không quan tâm tới C_{out}
 - Hai số trái dấu: Kết quả luôn đúng
 - Hai số cùng dấu:
 - Kết quả đúng nếu cùng dấu với số hạng
 - Kết quả sai nếu trái dấu với hai số hạng
- Tràn số khi kết quả ngoài [-(2ⁿ⁻¹),+(2ⁿ⁻¹-1)]

Ví dụ cộng

$\begin{array}{r} 0010 = 2 \\ + \underline{1001} = -7 \\ 1011 = -5 \end{array}$ (a) M = 2 = 0010	$0101 = 5 \\ + 1110 = -2 \\ 10011 = 3$ (b) M = 5 = 0101
S = 7 = 0111	S = 2 = 0010
-S = 1001	-S = 1110
$ \begin{array}{r} 1011 = -5 \\ +1110 = -2 \\ \hline 1001 = -7 \end{array} $	$ \begin{array}{rcl} 0101 &=& 5 \\ + & 0010 &=& 2 \\ \hline 0111 &=& 7 \end{array} $
(c) $M = -5 = 1011$	(d) M = 5 = 0101
S = 2 = 0010	S = -2 = 1110
-S = 1110	-S = 0010
0111 = 7	1010 = -6
+ $0111 = 7$	+ $1100 = -4$
1110 = Overflow	10110 = Overflow
(e) $M = 7 = 0111$	(f) $M = -6 = 1010$
S = -7 = 1001	S = 4 = 0100
-S = 0111	-S = 1100

Ví dụ cộng không tràn

$$(+70)$$
 = 0100 0110
+ $(+42)$ = 0010 1010
+ 112 0111 0000 = +112

$$(+ 97)$$
 = 0110 0001
+ (-52) = 1100 1100 (+52=0011 0100)
+ 45 1 0010 1101 = +45

$$(-90)$$
 = 1010 0110 $(+90=0101\ 1010)$
+ $(+36)$ = 0010 0100
- 54 1100 1010 = -54

$$(-74)$$
 = 1011 0110 (+74=0100 1010)
+ (-30) = 1110 0010 (+30=0001 1110)
-104 1 1001 1000 = -104

Ví dụ cộng bị tràn

- **75+82**
- **(-104)+(-43)**

```
(+75) = 0100\ 1011

+(+82) = 0101\ 0010

+157 = 1001\ 1101

= -128+16+8+4+1=-99 \rightarrow sai
```

Phép đảo dấu

Bù hai số dương

Bù hai số âm

=>Phép bù 2 là phép đảo dấu số nguyên trong máy tính

Phép trừ

■ X-Y=X+(-Y)

Sơ đồ bộ cộng/trừ

OF = Overflow bit

SW = Switch (select addition or subtraction)

Figure 9.6 Block Diagram of Hardware for Addition and Subtraction

Cộng/trừ nhìn trên trục số

Nhân hai số không dấu

Nhân hai số không dấu

- Xác định các tích riêng phần
 - Bit của số nhân =0: tích riêng phần = 0
 - Bit của số nhân =1: tích riêng phần = số bị nhân
 - Tích riêng phần tiếp theo: dịch trái 1 bit so với tích trước đó
- Tích = tổng các tích riêng
- Chú ý: Nếu dùng 2n để biểu diễn tích của 2 số n bit thì không bị tràn

Lưu đồ bộ nhân

С	Α	Q	М	
0	0000	1101	1011	Initial values
0	1011 0101	1101 1110	1011 1011	Add \ First Shift \ cycle
0	0010	1111	1011	Shift } Second cycle
0	1101 0110	1111 1111	1011 1011	Add \ Third Shift \ cycle
1 0	0001 1000	1111 1111	1011 1011	Add } Fourth Shift Scycle

Bộ nhân hai số ko dấu

Nhân hai số có dấu

Ví dụ

- Nếu ta coi là 2 số không dấu thì: 11x13=143 (đ)
- Nếu ta coi là 2 số âm: (-5)x(-3)=-113 (s)

Nhân hai số có dấu

- Sử dụng giải thuật nhân không dấu
- Sử dụng giải thuật Booth

Sử dụng giải thuật nhân không dấu

- <u>Bước 1:</u> Chuyển hai thừa số thành số dương tương ứng
- Bước 2: Nhân hai số dương bằng giải thuật nhân hai số không dâu
- Bước 3: Hiệu chỉnh dấu của tích
 - Nếu hai thừa cùng dấu => Giữ nguyên kết quả bbước 2
 - Nếu hai thừa số trái dấu => Đảo dấu (Lấy bù 2)

Nhân hai số có dấu

Ví dụ

```
0011
0101
00000011
1011 \times 1 \times 2^{0}
0000000
1011 \times 0 \times 2^{1}
000011
1011 \times 1 \times 2^{2}
00000
1011 \times 0 \times 23
00001111 = 15_{10}
```

Lấy bù 2: 11110001₂=-15₁₀

- Nếu ta coi là 2 số không dấu thì: 3x5=15 (đ)
- Nếu ta coi là 2 số âm: (-5)x(3)=(-3)x(5)=-15 (lấy bù kết quả)
- Nếu là 2 số âm (-3)x(-5)=15 (đ)

Giải thuật Booth

A	Q	Q_1	М	
0000	0011	0	0111	Initial values
1001	0011	0	0111	$A \leftarrow A - M$ First
1100	1001	1	0111	Shift Scycle
1110	0100	1	0111	Shift Second cycle
0101 0010	0100 1010	1	0111 0111	$A \leftarrow A + M$ Third Shift $Cycle$
0001	0101	0	0111	Shift } Fourth cycle

- Khi dịch sang phải thì bit A_{n-1} vừa dịch, vừa giữ nguyên để bảo toán dấu
 - KQ nằm ở thanh ghi A,Q (3x7=21)

Chia hai số không dấu

Chia hai số không dấu

A	Q	
0000	0111	Initial value
0000	1110	Shift
1101		Use twos complement of 0011 for subtraction
1101	1110	Subtract
0000	1110	Restore, set $Q_0 = 0$
0001	1100	Shift
<u>1101</u>		
1110		Subtract
0001	1100	Restore, set $Q_0 = 0$
0011	1000	Shift
<u>1101</u>		
0000	1001	Subtract, set $Q_0 = 1$
0001	0010	Shift
1101		
1110		Subtract
0001	0010	Restore, set $Q_0 = 0$

Figure 9.17 Example of Restoring Twos Complement Division (7/3)

Bộ chia hai số không dấu

Chia số nguyên có dấu

- Bước 1: Chuyển số bị chia và số chia thành số dương tương ứng
- Bước 2: Sử dụng giải thuật chia không dấu để chia hai số dương ta được thương và số dư đều dương
- Bước 3: Hiệu chỉnh dấu của kết quả theo bảng sau

Số bị chia	Số chia	Thương	Số dư
dương	dương	giữ nguyên	giữ nguyên
dương	âm	đảo dấu	giữ nguyên
âm	dương	đảo dấu	đảo dấu
âm	âm	giữ nguyên	đảo dấu

Chương 3

- 3.1. Biểu diễn số nguyên (Integer Representation)
- 3.2. Các phép tính với số nguyên (Integer Arithmetic)
- 3.3. Biểu diễn số dấu phẩy động (Floating-Point Representation)
- 3.4. Các phép tính dấu phẩy động (Floating-Point Arithmetic)

Số dấu phẩy động

Tổng quát:

$$X = \pm M \times RE$$

- M: Định trị (Mantissa)
- R: Cơ số (Radix)
- E: Phần mũ (Exponent)

Chuẩn IEE754-2008

- Cơ số R=2
- Các dạng
 - 32 bit

• 64 bit

• 128 bit

Dạng 32 bit

- S là bit dấu
 - S=0-> Số dương
 - S=1-> Số âm
- e được biểu diễn là số dịch 127 của phần mũ
 - e=E+127-> Phẫn mũ E=e-127
- m là phần lẻ của phần định trị M
 - M=1.m

$$X = (-1)^{S} \times 1. m \times 2^{e^{-127}}$$

Dải giá trị dạng 32 bit

$$X = (-1)^{S} \times 1. m \times 2^{e^{-127}}$$

Ví dụ

- Xác định số thực sau:
 - - S=1-> Số âm
 - $e=1000\ 0010_2=130_{10}$ -> E=130-127=3

$$X = -1.10101100_2 \times 2^3$$

= -1101.0112 = -13.7510

Ví dụ

Biểu diễn số thực 27.75

$$X = 27.7510 = 11011.11$$

= 1.1011111×24

- S=0
- = e=4+127=131₁₀=10000011₂

 $X = 0100\ 0001\ 1101\ 1110\ 0000\ 0000\ 0000\ 0000$

Dạng 64 bit

- S là bit dấu: 1 bit
- e (11 bit) được biểu diễn là số dịch 1023 của phần mũ
 - e=E+1023-> Phẫn mũ E=e-1023
- m (52 bit) là phần lẻ của phần định trị M
 - M=1.m

$$X = (-1)^{S} \times 1. m \times 2^{e^{-1023}}$$

Giải biểu diễn:

Dạng 128 bit

- S là bit dấu: 1 bit
- e (15 bit) được biểu diễn là số dịch 16383 của phần mũ
 - e=E+16383-> Phẫn mũ E=e-16383
- m (112 bit) là phấn lẻ của phần định trị M
 - M=1.m

$$X = (-1)^{S} \times 1.m \times 2^{e^{-16383}}$$

Giải biểu diễn:

-(2-2-112)x2+16384 đến -2-163833; 2-16383 đến (2-2-112)x2+16384

Các qui ước đặc biệt

- Các bit của e và m bằng 0 thì $X = \pm 0$
- Các bít của e và m bằng 1 thì X = ±∞
- Các bít của e bằng 1, m có ít nhất 1 bit bằng 1 thì nó không biểu diễn cho số nào (NAN- not a number)

Chương 3

- 3.1. Biểu diễn số nguyên (Integer Representation)
- 3.2. Các phép tính với số nguyên (Integer Arithmetic)
- 3.3. Biểu diễn số dấu phẩy động (Floating-Point Representation)
- 3.4. Các phép tính dấu phẩy động (Floating-Point Arithmetic)

Thực hiện các phép toán dấu phẩy động

$$X_1 = M_1 \times RE^1$$
$$X_2 = M_2 \times RE^2$$

$$X_1 \times X_2 = M_1 \times M_2 \times RE^{1+E2}$$

$$X_1/X_2 = M_1/M_2 \times RE^{1+E2}$$

$$X_1 \pm X_2 = (M_1 \times R^{E1} - E2^{\pm} M_2) \times RE^2$$

$$X_1 \times X_2 = \pm M_1 \times M_2 \times RE^{1+E2} \qquad E_2 \ge E_1$$

Các khả năng tràn số

- Tràn trên số mũ (Exponent Overflow)
- Tràn dưới số mũ (Exponent Underflow)
- Tràn trên phần định trị (Mantissa Overflown)
- Tràn dưới phần định trị (Mantissa Underflow)
 Các số bị mất ở bên phải phần định trị khi hiệu chỉnh phần định trị-> Làm tròn

Phép cộng/ trừ dấu phẩy động

- Kiểm tra xem một trong các số hạng có bằng 0 hay không
- Qui đồng mũ, bằng cách hiệu chỉnh phần định trị
- Cộng/ trừ phần định trị
- Chuẩn hóa kết quả (Hiệu chỉnh phần định trị và mũ)

Thuật toán cộng/ trừ dấu phẩy động

Thuật toán nhân dấu phẩy động

Thuật toán chia dấu phẩy động

HÉT CHƯƠNG 3