

Fundamental Theorem of Derivative Trading $\frac{Meeting \ 6}{}$

Laurs R. Leth

Department of Mathematical Sciences University of Copenhagen leth.laurs@gmail.com

25. april 2020

Model Settings (Generalized Black-Scholes)

Two assets with P-dynamics

$$dB_t = rB_t dt$$

$$dS_t = \mu_t S_t dt + \sigma_t S_t dW_t$$

• Dynamics under the EMM Q

$$dB_t = rB_t dt$$

$$dS_t = rS_t dt + \sigma_t S_t dW_t^Q$$

- The pricing measure Q is unique \sim the model is free of arbitrage and complete
- Let \mathcal{X} be the European call with maturity T and strike K, e.g., the contract function is given by $\Phi(s) = (s K)^+$.
- Moreover, let $\pi(t)$ denote the fair price of \mathcal{X} . Recall that $\pi(t)$ is on the form

$$\pi(t) = C(t, S_t)$$

where the pricing function C(t, s) is given by the Black-Scholes formula.

Δ -Hedging

• Let $h_t = (h_t^0, h_t^1)$ be a self-financing portfolio replicating \mathcal{X} , that is

$$V_T^h = \mathcal{X} \qquad P - a.s.$$

• Recall that holding the replicating portfolio is equivalent to holding \mathcal{X} , i.e.,

$$C(t, S_t) = V_t^h$$

- Δ -hedging: Let $h_t^1 = \Delta_t := C_s(t, S_t)$ which implicitly depends on σ and choose h_t^0 to fund this investment. Result: This strategy will replicate/hedge \mathcal{X} .
- It may be convenient considering the adjusted portfolio, $h_t = (h_t^0, \Delta_t, -1)$, with value process

$$V_t^h = h_t^0 B_t + \Delta_t S_t - C(t, S_t)$$

Three Volatilities...

- True model volatility at time t, σ_t
- The market implied volatility at time t, σ_t^i , given by

$$C(t, S_t; \sigma_t^i) = \hat{C}_t,$$

where \hat{C}_t denotes the observed market price at time t

- Note that $\sigma_t^i \neq \sigma_t$ may be interpreted as mispricing at time t. We are mainly interested in the 'normal' scenario: $\sigma_t^i > \sigma_t$
- Finally, the Δ-hedging trader has to pick a hedging volatility when computing Δ_t. For this choice of volatility, we will use the notation σ^h_t.
- As FTODT will show supported by Wilmott's hedge example two obvious choices for the chosen hedging volatility appear:
 - 1. Hedging with implied volatility: $\sigma_t^h = \sigma_t^i$
 - **2.** Hedging with true model volatility: $\sigma_t^h = \sigma_t$
- If reality is described by the simple BS-model, both choices will lead to volatility arbitrage

Theorem: FTODT

Assume that we sell a European option with strike K and maturity T for the market price $C(0, S_0 \sigma_0^i)$ and want to Δ -hedging this position. Let σ_t^h denote the hedging volatility chosen by the Δ -hedging trader. The **present value** of the hedging error (profit-and-loss) when holding the portfolio over [0, T] is given by

$$P\&L_T = C(0, S_0; \sigma_0^i) - C(0, S_0; \sigma_0^h) + \int_0^T e^{-rt} \frac{1}{2} ((\sigma_t^h)^2 - \sigma_t^2) S_t^2 \Gamma(t, S_t; \sigma_t^h) dt$$
(1)

- Thus the hedging error is decomposed by the upfront-premium and a path-dependent (random) integral
- Pick $\sigma_t^h = \sigma_t$ and $P\&L_T$ becomes deterministic

$$P\&L_T = C(0, S_0; \sigma_0^i) - C(0, S_0; \sigma_0)$$

• Pick $\sigma_t^h = \sigma_t^i$ and $P\&L_T$ becomes stochastic

$$P\&L_{T} = \int_{0}^{T} \frac{1}{2} e^{-rt} ((\sigma_{t}^{i})^{2} - \sigma_{t}^{2}) S_{t}^{2} \Gamma(t, S_{t}; \sigma_{t}^{i}) dt$$

• Note: Sign of hedging error depends on whether $\sigma_t^i < \sigma_t$ or $\sigma_t^i > \sigma_t$

Wilmott's Hedge Example

- Assume simple BS-model: $\sigma_t = \sigma$ for all t. Also assume that $\sigma_t^i = \sigma^i$ for all t (market implied volatility is constant).
- Suppose that $\sigma_i > \sigma$, i.e., the market price exceeds the theoretical price
- $\sigma_i \sigma$ is called the *volatility risk premium* measuring the magnitude of mispricing
- We want to reap this premium
- Intuition: The option is overpriced, so we may sell it and receive the market price $C(0, S_0, \sigma_i)$. Finally, we eliminate the risk (we have just sold an option) by Δ -hedging this position.
- According to FTODT hedging with true volatility yields the positive and deterministic profit-and-loss

$$P\&L_T = C(0, S_0; \sigma^i) - C(0, S_0; \sigma) > 0$$

since $\sigma^i > \sigma$

 ...whereas hedging with implied volatility yields the positive and stochastic profit-and-loss

$$P\&L_{T} = \frac{1}{2}e^{-rT}((\sigma^{i})^{2} - \sigma^{2})\int_{0}^{T} S_{t}^{2}\Gamma(t, S_{t}; \sigma^{i})dt$$

since $\sigma^i > \sigma$ and $\Gamma(t, S_t; \sigma^i) > 0$

Case I: Hedging with true volatility

Model parameters: $S_0 = 100, \ \mu = 0.1$ and $\sigma = 0.1$. Market parameters: $r = 0.02, \ \sigma^i = 0.2, \ K = 100$ and T = 1/4. As a result $e^{rT}(C(0, S_0; \sigma^i) - C(0, S_0; \sigma)) = 1.99$. 7/11

Case II: Hedging with Implied Volatility

Terminal hedging error is now random — but paths appear less erratic!

Proof for FTODT: Step 1

• Assume that we sell one European option and want to Δ -hedge this position. The value of the adjusted portfolio $h_t = (B_t, C_s(t, S_t; \sigma_t^h), -1)$ at time t is given by

$$V_t^h = B_t + C_s(t, S_t; \sigma_t^h) S_t - C(t, S_t; \sigma_t^i)$$

• Now, we choose to B_t such that the net position is zero, i.e.,

$$V_t^h = 0$$
 \Leftrightarrow $B_t = C(t, S_t; \sigma_t^i) - C_s(t, S_t; \sigma_t^h) S_t$

This strategy is by construction self-financing which implies

$$dV_t^h = dB_t + C_s(t, S_t; \sigma_t^h) dS_t - dC(t, S_t; \sigma_t^i)$$

= $C_s(t, S_t; \sigma_t^h) (dS_t - rS_t dt) + rC(t, S_t; \sigma_t^i) dt - dC(t, S_t; \sigma_t^i)$

Proof for FTODT: Step 2

• Firstly Ito's formula yields

$$dC(t, S_t; \sigma_t^h) = C_t(t, S_t; \sigma_t^h)dt + C_s(t, S_t; \sigma_t^h)dS_t + \frac{1}{2}C_{ss}(t, S_t; \sigma_t^h)\sigma_t^2 S_t^2 dt$$
(2)

• Furthermore, the Black-Scholes PDE implies that

$$C_t(t, S_t; \sigma_t^h) = rC(t, S_t; \sigma_t^h) - rS_tC_s(t, S_t; \sigma_t^h) - \frac{1}{2}(\sigma_t^h)^2 S_t^2 C_{ss}(t, S_t; \sigma_t^h)$$
(3)

Now substitute this guy into equation (2) to obtain

$$0 = -dC(t, S_t; \sigma_t^h) + \left(rC(t, S_t; \sigma_t^h) - rS_t C_s(t, S_t; \sigma_t^h) - \frac{1}{2} (\sigma_t^h)^2 S_t^2 C_{ss}(t, S_t; \sigma_t^h) \right) dt$$

$$+ C_s(t, S_t; \sigma_t^h) dS_t + \frac{1}{2} C_{ss}(t, S_t; \sigma_t^h) \sigma_t^2 S_t^2 dt$$

$$= -dC(t, S_t; \sigma_t^h) + C_s(t, S_t; \sigma_t^h) dS_t$$

$$+ \left(rC(t, S_t; \sigma_t^h) - rS_t C_s(t, S_t; \sigma_t^h) + \frac{1}{2} (\sigma_t^2 - (\sigma_t^h)^2) S_t^2 C_{ss}(t, S_t; \sigma_t^h) \right) dt$$

$$(4)$$

Proof for FTODT: Step 3

• Now we subtract equation (4) from dV_t^h :

$$\begin{split} dV_t^h &= dC(t, S_t; \sigma_t^h) - dC(t, S_t; S\sigma_t^i) - r(C(t, S_t; \sigma_t^h) - C(t, S_t; \sigma_t^i)) dt \\ &+ \frac{1}{2} \left((\sigma_t^h)^2 - \sigma_t^2) S_t^2 C_{ss}(t, S_t; \sigma_t^h) \right) dt \\ &= e^{rt} \left(d \left(e^{-rt} (C(t, S_t; \sigma_t^h) - C(t, S_t; \sigma_t^i)) \right) \right) \\ &+ \frac{1}{2} \left((\sigma_t^h)^2 - \sigma_t^2) S_t^2 C_{ss}(t, S_t; \sigma_t^h) \right) dt \end{split}$$

• At last the profit-and-loss from holding this portfolio is defined by $P\&L_T := \int_0^T e^{-rt} dV_t^h$:

$$\begin{split} P\&L_T &= C(t,S_t;\sigma_t^i) - C(t,S_t;\sigma_t^h) + \frac{1}{2}\int_0^T e^{-rt}((\sigma_t^h)^2 - \sigma_t^2)S_t^2\Gamma(t,S_t;\sigma_t^h)dt \\ \text{using that } C(T,S_T;\sigma_T^i) &= C(T,S_T;\sigma_T^h) = (S_T - K)^+. \end{split}$$