Задачи за графи

Светослав Богданов

В този файл съм натрупал разни задачи за графи, които ми харесват. Мързяло ме е да пиша съвсем чисти решения, затова тези, които ги има, да се приемат по-скоро като обяснения.

1 Обикновени графи.

Задача 1. Нека G = (V, E) е граф. Да се докаже, че:

a)
$$\sum_{v \in V} \deg(v) = 2m;$$

б) броят на върховете от нечетна степен е четно число.

Задача 2. Нека G=(V,E) е граф и $n\geq 6$. Да се докаже, че G има 3-клика или 3-антиклика.

Задача 3. Нека G = (V, E) е свързан граф. Да се докаже, че всеки два най-дълги пътя в G имат общ връх.

Задача 4. Нека G = (V, E) е граф и $\deg(v) > 1$ е изпълнено за всеки $v \in V$. Да се докаже, че G е цикличен.

Решение. От условието става ясно, че $n \geq 3$ и дължината на всеки най-дълъг път е поне 3. Нека $p = v_1, (v_1, v_2), v_2, (v_2, v_3), v_3, \ldots, v_k, (v_k, v_{k+1}), v_{k+1}$ е най-дълъг път в G. Тъй като $\deg(v_1) > 1$, то има такъв $x \in V$, че $x \neq v_2$ и $(x, v_1) \in E$. Ясно е, че x непременно е някой от $v_3, \ldots, v_k, v_{k+1}$, защото в противен случай пътят $x, (x, v_1), p$ е по-дълъг от p, което е абсурд. Значи G е цикличен.

Задача 5. Да се докаже, че всеки граф G=(V,E) с $|V|\geq 3$ и $|E|\geq |V|$ е цикличен.

Решение. Доказваме със силна индукция по броя на върховете. Базата е за всеки граф с 3 върха и поне 3 ребра. Всеки такъв граф е пълен, поради което всички негови върхове са от степен, по-голяма от 1, и значи той е цикличен. Индуктивното предположение е, че има такова естествено число $n \geq 3$, че всеки граф G = (V, E) с $3 \leq |V| \leq n$ и $|E| \geq |V|$ е цикличен. Вземаме едно такова n. ИП е за n+1. Нека G = (V, E) е граф с |V| = n+1 и $|E| \geq |V|$. Възможни са два случая:

- 1. G е свързан. Тук ни се иска да вземем кой да е негов подграф с k върха и поне k ребра, след което да приложим ИП врху него. В общия случай въобще не можем да твърдим, че такъв подграф изобщо съществува, затова ще разгледаме нови два случая, първият от които е, че $\deg(v)>1$ е в сила за всеки $v\in V$. Тогава ни е ясно, че G е цикличен. Другият случай е този, в който има $v\in V$ с $\deg(v)\leq 1$. Тъй като G е свързан, няма връх от степен 0. Нека $v_0\in V$, като $\deg(v)=1$. Тогава $G-v_0$ е подграф на G с n върха и поне n ребра. Прилагаме ИП за него и сме готови.
- $2.\ G$ не е свързан. Тогава той непременно има свързана компонента с k върха и поне k ребра. Ако допуснем противното и съберем бройките на ребрата от компонентите, сборът излиза по-малък от броя на върховете в G, което е абсурд. Тъй като ребрата на компонентата са поне колкото върховете, ясно е, че върховете ѝ са поне 3. Вземаме коя да е такава компонента и прилагаме ИП за нея.

Задача 6. Нека G = (V, E) е несвързан граф. Да се докаже, че \overline{G} е свързан.

Решение. Нека $v, w \in V$. Възможни са следните два случая:

- 1. v и w са в една и съща свързана компонента на G. Тогава има $x \in V$, намиращ се в различна свързана компонента. Значи между v и x няма ребро, нито има ребро между x и w в G. Следователно $(v,x) \in \overline{E}$ и $(x,w) \in \overline{E}$, така че v,(v,x),x,(x,w),w е път между v и w в \overline{G} .
- 2. v и w са в различни свързани компоненти. Тогава между v и w няма път в G, а значи няма и ребро между тях в G. Следователно $(v,w)\in \overline{E}$, така че v,(v,w),w е път между v и w в \overline{G}

Задача 7. Нека G = (V, E) е граф, а v_0 е негов неизолиран връх и има единствен най-дълъг път с край v_0 . Нека x е другият край на този път. Да се докаже, че $\deg(x)$ е нечетно.

Решение. Ще докажем, че $\deg(x) = 1$. Нека $p = v_0, (v_0, v_1), v_1, \ldots, v_k, (v_k, x), x$ е въпросният най-дълъг път. Допускаме, че $\deg(x) > 1$. Тогава има такъв $y \in V$, че $y \neq v_k$ и $(x, y) \in E$. Нека $y \in V$ е такъв. Възможни са следните два случая:

- 1. y не е никой от v_0, v_1, \ldots, v_k . Тогава p, (x, y), y е по-дълъг път с начало v_0 .
- 2. y е някой от v_0, v_1, \ldots, v_k . Б.о.о. считаме, че е v_0 . Тогава имаме втори най-дълъг път с начало v_0 , който е $v_0, (v_0, x), x, (x, v_k), v_k, \ldots, v_2, (v_2, v_1), v_1$.

И в двата случая стигаме до абсурд. Следователно $\deg(x) = 1$ и значи е нечетно.

Задача 8. Нека G = (V, E) е граф, в който няма цикли с дължина 3 и всеки два несъседни върха имат точно два общи съседа. Да се докаже, че G е регулярен, т.е. всички негови върхове са от еднавка степен.

Решение. Ще докажем, че степените на всяка двойка върхове са равни. Нека v и w са произволни върхове на G. Възможни са следните два случая:

1. $(v, w) \in E$. Нека v_1, v_2, \ldots, v_k са всички съседи на v, различни от w, а w_1, w_2, \ldots, w_ℓ са всички съседи на w, различни от v. Допускаме, че $\deg(v) \neq \deg(w)$. Тогава $k \neq \ell$. Б.о.о. считаме, че $k > \ell$. Разглеждаме как v_1 е свързан с w. Това разсъждение също важи за v_2, \ldots, v_k . Ясно е, че $(v_1, w) \notin E$, тъй като това би означавало, че в G има цикъл с дължина 3. Значи v_1 и w имат точно два общи съседа, единият от които е v. Другият непременно е някой от w_1, w_2, \ldots, w_ℓ , тъй като това са всички останали съседи на w. Щом $k > \ell$, има такива $1 \leq r < s \leq k$ и $1 \leq t \leq \ell$, че $(v_r, w_t) \in E$ и $(v_s, w_t) \in E$. Б.о.о. считаме, че такива са v_1, v_2 и w_1 . Тогава v и w_1 имат три общи съседа, които са v_1, v_2 и w. Това е абсурд. Следователно $\deg(v) = \deg(w)$.

2. $(v, w) \notin E$. Тогава v и w имат точно два общи съседа. Нека x е кой да е от тях. Тогава от предния случай получаваме $\deg(v) = \deg(x) = \deg(w)$.

Задача 9. Нека G=(V,E) е граф. Да се докаже, че G е двуделен тогава и само тогава, когато няма нечетни цикли.

Решение. \Longrightarrow Нека G е двуделен и $\{V_1,V_2\}$ е такова разбиване на V, че за всяко $(v_1,v_2)\in V$ е в сила $v_1\in V_1$ и $v_2\in V_2$, т.е. V_1 и V_2 са дялове на V. Допускаме, че в G има нечетен цикъл и нека $v_1,(v_1,v_2),v_2,\ldots,v_{2k+1},(v_{2k+1},v_1),v_1$ е такъв. Приемаме, че $v_1\in V_1$, и лесно виждаме как това ни води до абсурд.

 \Leftarrow Нека в G няма нечетни цикли. Вземаме си $v \in V$ и по него ще си построим дялове. Дефинираме множествата от върхове $V_1 = \{w \in V \mid \delta(v, w) \text{ е четно}\}$ и $V_2 = \{w \in V \mid \delta(v, w) \text{ е нечетно}\}$. Очевидно $V_2 = V \setminus V_1$. Значи $\{V_1, V_2\}$ е разбиване на V. Нека $(x, y) \in E$ и да допуснем, че $x, y \in V_1$. Нека p и q са съответно най-къс път между v и x и най-къс път между v и y. Непременно p и q имат поне един общ връх (такъв е v). Вземаме възможно най-близкия до x и y връх, който е общ за p и q. Нека той се казва w. Нека p' е подпътят на p между v и w, а q' е подпътят на q между v и v. Очевидно v и v са най-къси (в противен случай нито v нито v щяха да са най-къси) и значи са с равни дължини. Нека v е подпътият на v между v и v

Задача 10. За всеки $p, q \in \mathbb{N}^+$ дефинираме графа

$$G_{p \times q} = (I_p \times I_q, \{((i, j), (k, \ell)) \mid |i - k| + |j - \ell| = 1\}).$$

Да се докаже, че ако p и q са нечетни, то $G_{p\times q}$ не е хамилтонов.

Решение. Тези графи са двуделни. Дялове са например $V_1 = \{(i,j) \mid i+j \ e \ четно\}$ и $V_2 = \{(i,j) \mid i+j \ e \ нечетно\}$. Ако p и q са нечетни, то pq също е нечетно. Всеки хамилтонов цикъл ще е с нечетна дължина, което ще е абсурд, защото в двуделните графи няма нечетни цикли.

Задача 11. Нека G = (V, E) е граф, в който никои 4 върха не индуцират $K_{1,3}$ и $\Delta(G) \geq 5$. Да се докаже, че в G има цикъл с дължина 6.

Решение. Нека v е връх на G от възможно най-висока степен. Тогава $\deg(v) \geq 5$. Нека v_1, v_2, v_3, v_4 и v_5 са произволни пет съседа на v. Непременно поне три двойки от тези пет върха са свързани посредством ребро. След като се види това, е лесно да се построи цикъл с дължина 6, като се използват тези 6 върха.

Задача 12. Нека G=(V,E) е граф с 6 върха и 9 ребра, в който няма цикли с дължина 3. Да се докаже, че $G\cong K_{3,3}$.

Решение.

Задача 13. Нека G = (V, E) е граф с точно k свързани компоненти. Да се намери (с доказателство) възможно най-високата стойност на m.

Решение. Хипотезата ни е, че m достига максималната си стойност, когато една от свързаните компоненти има n-k+1 върха и е пълна, а всички останали са с по един връх. Тази стойност очевидно е $\binom{n-k+1}{2}$ и сега ще го докажем. Нека свързаните компоненти са G_1, G_2, \ldots, G_k и имат съответно по n_1, n_2, \ldots, n_k върха и са пълни, т.е. всичките им възможни ребра ги има. Приемаме, че има две свързани компоненти с повече от един връх. Вземаме първите две по брой върхове. Да си мислим, че това са G_1 и G_2 . Значи $n_1 > 1$ и $n_2 > 1$. Броят на ребрата при тази конфигурация е $\sum_{i=1}^k \binom{n_i}{2}$ и означаваме този брой с c_1 . Да си мислим също, че G_1 е първа по брой върхове. Нека видим какво ще стане, ако прехвърлим $n_2 - 1$ върха от G_2 в G_1 и добавим всички нужни ребра, за да остане G_1 пълна. Броят на ребрата в новата конфигурация е $\binom{n_1+n_2-1}{2}+\binom{1}{2}+\sum_{i=3}^k \binom{n_i}{2}$. Този брой го означаваме с c_2 . Лесно се проверява, че $c_2-c_1\geq 0$. Освен това с тази процедура от всяка конфигурация достигаме до тази, за която ставаше дума, докато развивахме хипотезата. А последното неравенство показва, че при прилагането ѝ не изчезват ребра, а само могат да се появяват.

2 Дървета.

Задача 14. Нека G = (V, E) е граф. Да се докаже, че G е дърво тогава и само тогава, когато между всеки два негови върха има точно един път.

Задача 15. Нека T = (V, E) е дърво. Да се докаже, че |E| = |V| - 1.

Решение. Или с индукция по |V|, или с индукция по построението на T.

Задача 16. Нека T=(V,E) е дърво. Да се докаже, че има такъв $v\in V$, че всеки най-дълъг път в T минава през v.

Решение. Знаем, че всеки два най-дълги пътя в граф имат общ връх. Затова ще приемем, че в T има поне три.

Задача 17. Нека T = (V, E) е дърво, v_0 е произволен негов връх, а v_1 и v_2 са такива върхове на T, че v_1 е възможно най-отдалечен от v_0 и v_2 е възможно най-отдалечен от v_1 . Да се докаже, че пътят между v_1 и v_2 е най-дълъг път в T.

Решение. Лесно е чрез допускане на противното да се докаже, че v_1 е край на някой най-дълъг път в T. Оттам, щом v_2 е възможно най-далеч от v_1 , то пътят между v_1 и v_2 е най-дълъг път в T.

Задача 18. Нека G=(V,E) е граф с $n\geq 4$ и $m\geq 2n-2$. Да се докаже, че в G има два цикъла с еднакви дължини.

Решение. За решението допускаме, че графът е свързан. Ако не е свързан, е лесно чрез допускане на противното да се покаже, че той има свързана компонента с n' върха и поне 2n'-2 ребра, така че този аргумент ще е валиден за всяка такава компонента. Разглеждаме някое покриващо дърво на G. То има n върха и n-1 ребра. Значи разстоянието между всеки два върха в това дърво е в интервала от 2 до n-1, което са n-2 възмножни стойности. Ние обаче добавяме 2n-2-(n-1)=n-1 ребра към него, за да получим истинския граф. Добавяйки ребро, свързваме два върха между които има път с разстояние d. Както отбелязахме, d може да заема n-2 различни стойности. Значи ще има разстояние d което ще се повтори, което означава, че в G има два цикъла с дължина d+1.

3 Ориентирани графи

Задача 19. Нека G = (V, E) е ориентиран граф. Да се докаже, че $\sum_{v \in V} \deg^+(v) = \sum_{v \in V} \deg^-(v)$.

Задача 20. Нека G = (V, E) е ориентиран граф и за всеки $v, w \in V$ с $v \neq w$ е изпълнено $(v, w) \in E$ или $(w, v) \in E$. Да се докаже, че в G има хамилтонов път.

Решение. Нека $p = v_1, (v_1, v_2), v_2, \dots, v_k, (v_k, v_{k+1}), v_{k+1}$ е най-дълъг път в G. Тогава той непременно е хамилтонов. Допускаме противното, което означава, че има $x \in V$, който не е част от този път. Възможни са следните два случая:

- 1. $(x, v_1) \in E$ или $(v_k, x) \in E$. Да си мислим, че се е случило първото. Тогава $x, (x, v_1), p$ е по-дълъг път, което е абсурд. Разсъжденията за другата възможност са напълно аналогични.
- 2. $(x, v_1) \notin E$ и $(v_{k+1}, x) \notin E$. Тогава от условието става ясно, че $(v_1, x) \in E$ и $(x, v_{k+1}) \in E$. Нека $i = \max\{j \mid 1 \leq j < k \land (v_j, x) \in E\}$, т.е. i е номерът на последния v_j по пътя, който сочи към x. Тогава $(x, v_{i+1}) \in E$. Е, очевидно намерихме по-дълъг път от p. Това отново е абсурд.

4 Мултиграфи

Решение. Нека G = (V, E) е мултиграф. Да се докаже, че той е ойлеров тогава и само тогава, когато всеки негов връх е от четна степен.

Решение.

Задача 21. Нека G=(V,E) е мултиграф, в който точно k върха са от нечетна степен. Да се намери (с доказателство) минималният брой ребра, които трябва да се добавят към G, за да стане той ойлеров.

Решение.