

PCS 3115 – Sistemas Digitais I

<u>Circuitos Sequenciais:</u> Registradores De Deslocamento

EAD – Ensino A Distância

Parte II:

Linear Feedback Shift Registers – LFSRs.

Aula: 23 – Data: 10/06 (Q)

Prof. Dr. Marco Túlio Carvalho de Andrade

versão: 2.0 (Maio/2020)

- Linear Feedback Shift Register (LFSR) Um LFSR é um Registrador com Realimentação Linear, ou seja, realimenta uma Função Linear das saídas para a Entrada Série.
- Sabe-se da Teoria de Corpos [Evariste Galois –
 1.832] que quando a função de realimentação é
 uma Função Booleana que só utiliza operadores
 OU-EXCLUSIVO, se a função for escolhida de
 maneira apropriada, o contador LFSR resultante
 terá uma sequência principal de 2ⁿ 1 Estados
 (onde n = número de Flip-Flop's).

- Teoria de Corpos Qualquer que seja n, existe pelo menos uma equação de realimentação linear que faz o contador passar por uma sequência de 2ⁿ – 1 (sequência de máximo comprimento) estados diferentes de ZERO, antes de repetir algum Estado.
- Aplicações Códigos para transmissão de dados, criptografia, geração de sequências pseudo-aleatórias semelhante a um embaralhamento das palavras de código (Scrambler), detecção de erros na recepção de códigos.

 Diagrama do Bloco Básico genérico do registrador deslocador a ser utilizado:

 Linear Feedback Shift Register (LFSR) – Funções lineares (só usam "X-OR") com 2ⁿ – 1 estados na única sequência principal. Onde: "n" é o número de Flip-Flops e "⊕" a operação "X-OR".

n Função n Função 2: $X_2 = X_1 \oplus X_0$ 6: $X_6 = X_1 \oplus X_0$ 3: $X_3 = X_1 \oplus X_0$ 7: $X_7 = X_3 \oplus X_0$ 4: $X_4 = X_1 \oplus X_0$ 8: $X_8 = X_4 \oplus X_3 \oplus X_2 \oplus X_0$ 5: $X_5 = X_2 \oplus X_0$ 12: $X_{12} = X_6 \oplus X_4 \oplus X_1 \oplus X_0$

Estrutura de um LFSR de n bits, genérico:

Estrutura de um LFSR de n bits, genérico:

 Estrutura de LFSR, n = 2 bits – Função linear com 2² – 1 estados na sequência principal:

Linear Feedback Shift Register (LFSR) –
 Sequência principal de 2² – 1 estados:

 Estrutura de LFSR, n = 3 bits – Função linear com 2³ – 1 estados na sequência principal:

 Linear Feedback Shift Register (LFSR) – Sequência principal de 2³ – 1 estados:

$$n = 3$$
; Função $X_1 \oplus X_0$
 $Q_2 \quad Q_1 \quad Q_0$
 $0 \quad 0 \quad 5$
 $1 \quad 0 \quad 0 \quad 1$
 $2 \quad 1 \quad 0 \quad 0$
 $3 \quad 0 \quad 1 \quad 0$
 $4 \quad 1 \quad 0 \quad 1$
 $5 \quad 1 \quad 1 \quad 0$
 $6 \quad 1 \quad 1 \quad 1$
 $7 \quad 0 \quad 1 \quad 1$

Estrutura de um LFSR de 8 bits:

TX codificada ("embaralhada") – Pré-definidos:
 Polinômio gerador "X₁ ⊕ X₀" e semente = "001".

TX e RX: Função $X_1 \oplus X_0$; Semente = "001";

TX: Mensagem Secreta = "101".

RX – Ações: Carrega a semente = (001)₂; faz pulsar o clock (011)₂ vezes.

RX – **Ações**: Carrega a **semente** = $(001)_2$; faz pulsar o clock $(011)_2$ vezes.

TX propõe Troca de Semente — Pré-definidos:
 Polinômio gerador "X₁ ⊕ X₀" e procedimento.

TX e RX: Função X₁⊕X₀; Troca de Semente;

TX: Definição do Estado Referência = "101".

• RX processa Troca de Semente — Pré-definidos: Polinômio gerador " $X_1 \oplus X_0$ " e procedimento.

TX e RX: Função X₁⊕X₀; Troca de Semente;

RX: Carregar o Estado Referência = "101".

Houston ...

We have a problem!!!

Em RX o LFSR no modo deslocador à direita não funciona!

- Mas no modo deslocador à esquerda funciona!
- Podemos resolver o problema com este recurso?
- Se sim, usa-se a mesma função de realimentação?
- Utiliza-se o mesmo procedimento de decifração?
- Lembrar que em TX e RX, aplicando o procedimento de geração e decifração das mensagens, percorremos os Estados no mesmo sentido ("embaralhando" os dados) com deslocamento à direita!
- E se em RX usarmos um procedimento de decifração das mensagens percorrendo os Estados no sentido contrário ("desembaralhando" os dados) com deslocamento à esquerda?

LFSR de n bits, deslocamento à esquerda:

 RX, Troca de Semente – Plano B: Adaptação para deslocamento à esquerda!

RX: Plano B: Adaptação para deslocamento à esquerda!

Tabela de Transição de Estados para deslocamento à esquerda!

	Q_2	Q_1	Q_0	Q_2^*	Q_1^*	Q_0	= ESE
0	0	0	0	0	0	X	
4	1	0	1	0	1	0	
3	0	1	0	1	0	0	
2	1	0	0	0	0	1	
1	0	0	1	0	1	1	
7	0	1	1	1	1	1	
6	1	1	1	1	1	0	
5	1	1	0	1	0	1	

LFSRs – RX

✓ Mapas de karnaugh.

 RX, Troca de Semente – Plano B: Adaptação para deslocamento à esquerda!

