

Signali i sustavi

Auditorne vježbe 2.

Zadatak 1. Što se događa ako se na multiplikator dovedu neharmonijski periodički signali?

- Takvi signali mogu se prikazati Fourierovim redom.
- Radi pojednostavljenja, pretpostavit ćemo da se oba signala mogu prikazati kosinusnim dijelom Fourierovog reda:
 - Neka su svi koeficijenti uz sinuse jednaki nuli,
 - tj. oba signala neka su parne funkcije.

Zadatak 1. nastavak

$$x_1(t)$$
 $y(t)$
 $x_2(t)$

$$x_1(t) = \sum_{n=0}^{\infty} a_n \cos n \omega t,$$

$$x_2(t) = \sum_{m=0}^{\infty} b_m \cos m\Omega$$

$$y(t) = x_1(t) \cdot x_2(t)$$

$$= \sum_{n} \sum_{n} \frac{a_n b_n}{2} \left[\cos(n\omega - m\Omega)t + \cos(n\omega + m\Omega)t \right]$$

U izlaznom signalu miješanjem su nastale frekvencije:

$$\omega_{n,m} = |n\omega \pm m\Omega| \quad \forall n, m \in \mathbb{Z}.$$

Zadatak 2. Što se događa ako se na ulaz nelinearnog funkcijskog bloka dovede harmonijski signal

- $x(i) = a \cdot \cos \omega t$,
- y = f(x), f nelinearna funkcija po x.
- Nelinearnu funkciju f(x) možemo razviti u Taylorov red oko nule:

$$f(x) = f(0) + f'(0)X + \dots + \frac{1}{n!}f^{(n)}(0) \cdot X^{(n)} + \dots$$

Zadatak 2. nastavak

$$y(t) = f(0) + f'(0) \cdot a \cos \omega t + \frac{1}{2!} f''(0) \cdot a^2 \cos^2 \omega t + \cdots$$

$$y(t) = \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(0) \cdot a^k \cos^k \omega t$$

$$\cos^2 \alpha = \frac{1}{2} (1 + \cos 2\alpha),$$
 $\cos^3 \alpha = \frac{1}{4} (3\cos \alpha + \cos 3\alpha).$

$$y(t) = \sum_{k=0}^{\infty} z_k \cos k\omega t.$$

 $k\omega$ - harmonijske frekvencije, ω - osnovna frekv.

Zadatak 3. Potrebno je projektirati sustav za demodulaciju signala koristeći množilo

$$x_1(t)$$
 y_1
 $N.P.$
 $y(t)$
 y_1
 y_1
 y_2
 y_1
 y_2
 y_3
 y_4
 y_4
 y_5
 y_5

$$y_1 = x_1 \cdot x_2$$

=
$$[(1 + m \cos \omega_m t) \cos \omega t] \cos \omega t$$

$$= 1/2 \cdot (1 + m \cos \omega_{\rm m} t) +$$

+
$$1/2 \cdot \cos 2\omega t (1 + m \cos \iota_m t)$$
.

Nakon niskopropusnog filtra:

$$y(t) = 1/2 \cdot (1 + \text{m cos } \omega_{\text{m}} t) \equiv a(t)$$
.

Zadatak 3. nastavak

• U frekvencijskoj domeni to izgleda ovako:

• Primjer komunikacije putem amplitudne modulacije:

Zadatak 4. Potrebno je projektirati sustav za demodulaciju signala koristeći prag

■ Prag

$$y = \begin{cases} 0 & x < 0, \\ x & x \ge 0 \text{ ili} \end{cases}$$
$$y = \max(0, x).$$

Zadatak 4. nastavak

• $x(t) = (1 + m \cos(\omega_m t)) \cos(\omega t)$.

- Iza praga.
- Iza niskog propusta.

Aproksimacija U/I karakteristike linearnim segmentima

ulazno/izlazna karakteristika

lacktriangle Izlaz y(t) u trenutku t ovisi samo o vrijednosti ulaznog signala x(t) u trenutku t, dakle:

$$y(t) = f(x(t))$$

SI			acija U. segmer	/I karakteristike ntima
x –	$-a_0$	<u></u> −a ₁	<u>−a₂</u>	<u>−a₃</u>
	$ otin u_0 $	$\bigcup_{i=1}^{n} u_i$	$\bigcup_{i=1}^{n} u_2$	$ otin u_3 $
	v_0	v_1	v_2	$\diamond v_3$
	A_0	A_1	A_2	A_3
	ϕz_0	ϕz_1	$\diamond z_2$	$\diamond z_3$
v –		$-\!$		<u>_</u>

Aproksimacija U/I karakteristike zesoi linearnim segmentima

- Prema slici je: $u_0 = x a_0$ $u_1 = x - a_1$
- Neka je $a_0 < a_1 < a_2 < a_3$.
- Tada je $u_0 > u_1 > u_2 > u_3$.

Aproksimacija U/I karakteristike linearnim segmentima

 Svaki blok prag uzrokuje lom ulazno/izlazne karakteristike. Lomovi su u točkama:

$$u_1 = 0$$

$$u_2 = 0$$

$$u_3 = 0$$

$$x = a_1$$

$$x = a_2$$

$$x = a_3$$

Aproksimacija U/I karakteristike linearnim segmentima

■ Točke loma određuju linearne segmente:

$-\infty < x < a_1$	$a_1 \le x < a_2$	$a_2 \le x < a_3$	$a_3 \le x < \infty$
$v_1 = v_2 = v_3 = 0$	$v_2 = v_3 = 0$	$v_3 = 0$	

Aproksimacija U/I karakteristike linearnim segmentima

$a_3 \le x < \infty$				
$z_0 = A_0 \left(x - a_0 \right)$				
$z_1 = A_1 \left(x - a_1 \right)$				
$z_2 = A_2 \left(x - a_2 \right)$				
$z_3 = A_3 \left(x - a_3 \right)$				
$y = A_0 (x - a_0) +$				
$A_1(x-a_1) +$				
$A_2(x-a_2) +$				
$A_3\left(x-a_3\right)$				

Aproksimacija U/I karakteristike linearnim segmentima

- a_1 , a_2 i a_3 su točke loma (promjena nagiba).
- a_0 nije točka loma.

20

Pravila spajanja:

- 1. Nije dozvoljeno spajanje izlaza funkcijskih blokova.
- 2. Svaki ulaz u funkcijski blok mora biti spojen na izlaz nekog funkcijskog bloka ili predstavlja ulaz u cijeli sustav.
- 3. Izlaz samo jednog funkcijskog bloka je izlaz iz sustava.

Zadatak 7. Realizirati funkcijski blok za ZESOI množenje

• Treba realizirati blok za množenje korištenjem bloka za kvadriranje (realiziran aproksimacijom U/I karakteristike).

$$x_1 x_2 = \frac{1}{4} ((x_1 + x_2)^2 - (x_1 - x_2)^2)$$

Podjela bezmemorijskih kontinuiranih sustava:

- 1. Eksplicitni sustavi su sustavi za koje se može napraviti sortirana spojna lista.
- 2. Implicitni sustavi su sustavi za koje se ne može napraviti sortirana spojna lista (sustavi s povratnom vezom).

Zadatak 8. Za zadani sustav napisati i sortirati spojnu listu.

element spojne liste

spojna lista

sortirana spojna lista

g:i,hh : i f: x

f: xi:f

i:f

h:ig:i,h

Zadatak 8. Za zadane sustave napisati i sortirati spojnu listu.

ZESOI Zadatak 8a. Rješenje

spojna lista sortirana spojna lista

g:f,hf: xh:fh:ff: x

g : f, h

Spojna lista se može sortirati te je zadani sustav eksplicitni sustav.

ZESOI Zadatak 8b. Rješenje

spojna lista sortirana spojna lista ne postoji f: x, g

g:fh : f Spojna lista se ne može sortirati te je zadani sustav implicitni sustav.

Zadatak 10. Treba realizirati sustav koji će kao izlaz dati kvocijent dvaju ulaza koristeći množilo,, zbrajalo i pojačalo

 Neka su ulazi u sustav x₁ i x₂ i neka je traženi kvocijent $y = x_2 / x_1$.

spojna lista

 Σ : x_2 , Π $\Pi: x_1, \Omega$ $\Omega: \Sigma$

Spojna lista se ne može sortirati te je sustav implicitan.

Zasol Zadatak 10. Prekidanje petlje

• Prekinimo petlju uvođenjem q = Q umjesto Ω , gdje je q dodatni ulaz u sustav

spojna lista

 $\Pi: x_1, q$ Σ : x_2 , Π $Q:\Sigma$

y:Q

Spojna lista je sortirana lista pa je ovakav sustav eksplicitan.

Zadatak 10. Analiza sustava

Jednadžbe sustava

$$\Pi = x_1 q$$

$$\Sigma = x_2 - \Pi$$

$$Q = A \Sigma$$

$$v = O$$

Nakon sređivanja dobivamo

$$y = A(x_2 - x_1q) = f(q, x_1, x_2)$$

 \bullet Kako znamo da je y = q = Q, konačni izraz je

$$y = A (x_2 - x_1 y) = f(y, x_1, x_2)$$

ZESOI Zadatak 10. Analiza sustava

- ullet Podijelimo $y = f(y, x_1, x_2) = A(x_2 x_1 y)$ s Ax_1 . Dobivamo $y = \frac{x_2}{y} - \frac{y^2}{y}$ $x_1 - Ax_1$
- lacktriangle Kada A teži k beskonačnosti ($A \rightarrow \infty$) dobivamo

$$y \rightarrow x_2 / x_1$$

♦ Kada je $x_1 = 0$ dobivamo

$$y = A (x_2 - x_1 y) = Ax_2$$

pa za $A \to \infty$ i $y \to \infty$. Kod stvarne realizacije za $x_1 = 0$ i za jako veliki A izlaz je ograničen naponom napajanja.

♦ Od množila smo dobili dijelilo, točnije, realizirali smo inverznu operaciju.

Zadatak 11. Realizirati sustav koji će omogućiti računanje inverzne funkcije omogućiti računanje inverzne funkcije

spojna lista

Sustav je implicitan.

◆ Jednadžbe sustava su

$$u = x - v$$
, $v = f(y)$,

$$y = A u$$

◆ Sređivanjem dobivamo

$$y = A (x - f(y))$$

što ne možemo izraziti kao eksplicitnu funkciju po x.

ZESOI Zadatak 11. Analiza sustava

lacktriangle No izraz y = A(x - f(y)) možemo izraziti kao eksplicitnu funkciju po varijabli y

$$x = f(y) + \frac{y}{A}$$

- lacktriangle Kada A teži k beskonačnosti ($A \rightarrow \infty$) dobivamo $x \to f(y)$ ili $y \to f^{-1}(x)$
- ◆ Prikazani sklop realizira inverznu funkciju funkcije f.

Sustav s povratnom vezom

jednadžbe sustava

$$u = x \pm v$$

$$v = g(y)$$
$$y = f(u)$$

- + za pozitivnu povratnu vezu
- za negativnu povratnu vezu
- ♦ Iz jednadžbi sustava slijedi izraz za x

$$x = f^{-1}(y) \mp g(y)$$

◆ Gornji izraz je inverzna prijenosna funkcija sustava.

Sustav s povratnom vezom

♦ Iz inverzne prijenosne funkcije $x = f^{-1}(y) \mp g(y)$ dobivamo

$$y = (f^{-1} \mp g)^{-1} (x) = F(x)$$

♦ Naravno, pretpostavka je da i f i F imaju inverzne funkcije. Grafički se F može pronaći i kada to nije slučaj, odnosno kada su f^{-1} i F^{-1} relacije.

ZESOI Zadatak 12. Negativna povratna veza

♦ Sustav s negativnom povratnom vezom imat će karakteristiku koja se dobije iz

$$x = f^{-1}(y) + g(y) = F^{-1}(y)$$

ZESOI Zadatak 12. Pozitivna povratna veza

◆ Sustav s pozitivnom povratnom vezom imat će karakteristiku koja se dobije iz

$$x = f^{-1}(y) - g(y) = F^{-1}(y)$$

♦ U ovom slučaju rezultat nije funkcijski blok, već je relacijski blok.

Zadatak 13. Implicitni sustav zadan relacijama

Neka su funkcije f i g

$$f(u, v) = u + v$$
$$g(u) = u^2$$

◆ Jednadžba koja opisuje sustav je

$$y = g(f(x, y)) = (x + y)^2$$

◆ Sređivanjem dobivamo

$$y^2 + (2x - 1)y + x^2 = 0$$

 \blacklozenge Realna rješenja dobivamo za diskriminantu $D \geq 0$

$$D = (2x - 1)^2 - 4x^2 \ge 0 \Rightarrow \frac{1}{4} \ge x$$

Zadatak 13. Implicitni sustav zadan relacijama

♦ Kada je ulaz $x \le \frac{1}{4}$ dobivamo dva realna rješenja. Na primjer za x = 0.125 dobivamo

