

Nonlinear Filtering with Brenier Optimal Transport Maps

Mohammad Al-Jarrah, Niyizhen "Jenny" Jin, Bamdad Hosseini, Amirhossein Taghvaei The Forty-first International Conference on Machine Learning (ICML), Vienna, Austria, July, 2024

Motivation: Climate forecasting

- **Hidden state:** Temperature field of the atmosphere
- Measurements: Surface observations from automated weather stations at ground level over land and from weather buoys at sea
- Problem: Predict the temperature of the atmosphere for a given location and time.

Mathmatical formulation of the filtering problem

Dynamical system:

- State process: $X_k \in \mathbb{R}^n$
- Observation process: $Y_k \in \mathbb{R}^m$

Problem:

Given: $\{Y_1, ..., Y_k\}$

Find posterior dist.: $\pi_k(\cdot) = P(X_k \in \cdot \mid Y_1, \dots, Y_k)$

Particle filter and the curse of dimensionality

Particle filter methodology

- Approximate π_k with weighted empirical distribution of particles
- Apply the update rule to the particles and weights

$$X_{k+1}^i = a(\cdot|X_k^i), \quad w_{k+1}^i \propto h(Y_{k+1}|X_{k+1}^i)$$

Properties:

- \bullet Exact in the limit as number of particles goes to ∞
- Suffer from weight degeneracy as the dimension increases

Transport/coupling view point

Transport approach: update particle with a transport map T from π_k to π_{k+1}

Method: Optimal transport formulation of the Bayes' law

Bayes' Law: $P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y} = T(\cdot; Y)_{\#} P_X$

where *T* is the solution to

$$\max_{f \in c\text{-Concave}_X} \min_{T \in \mathcal{M}(P_X \otimes P_Y)} \mathbb{E}\left[f(X, Y) - f(T(\overline{X}, Y), Y) + \frac{1}{2} \|T(\overline{X}, Y) - \overline{X}\|^2 \right] \tag{*}$$

Properties:

- Only requires samples $(X_i, Y_i) \sim \mathbf{P}_{XY}$ (data-driven / simulation-based)
- Enable construction of "approximate" posterior distribution
- Allow application of ML tools (Stochastic optimization and Neural Networks)

Illustrative example with a likelihood degenerate model

$$Y = \frac{1}{2}X^2 + \sqrt{0.04} \cdot W, \quad W \sim \mathcal{N}(0, 1)$$

Goal: Compute the conditional distribution of *X* given *Y*

Existence and consistency analysis

Assume:

- \bullet P_X is absolutely continuous and has a finite second moment
- The posterior $P_{X|Y=y}$ admits a density with respect to the Lebesgue measure $\forall y$

Then:

- There exists a unique pair $(\overline{f}, \overline{T})$ solves (*)
- The map $\overline{T}(\cdot, y)$ is the OT map from π to $P_{X|Y=y}$ for a.e. y.

Error analysis

Assume:

- The same assumptions above hold,
- Let (f, T) be a possibly non-optimal pair with an optimality gap $\epsilon(f, T)$.
- Assume $x \mapsto \frac{1}{2} ||x||^2 f(x, y)$ is α -strongly convex in x for all y.

Then:

$$\mathbb{E}\left[\|T(\overline{X},Y)-\overline{T}(\overline{X},Y)\|^2\right]\leq \frac{4}{\alpha}\epsilon(f,T).$$

Optimal Transport Particle Filter Algorithm

Input: Initial particles $\{X_0^i\}_{i=1}^N$, observation signal $\{Y_t\}_{t=1}^{t_f}$, and $a(x \mid x'), h(y \mid x)$ kernels **Initialize:** initialize neural net f, T according to block architecture **for** t = 1 to t_f **do**

Propagation: $X_{t|t-1}^{i} \sim a(. \mid X_{t-1}^{i})$ and $Y_{t}^{i} \sim h(. \mid X_{t|t-1}^{i})$

Optimization: Update the weight parameters of f, T throughout a gradient ascent-descent procedure for (*)

Conditioning: Update particles $X_t^i = T(X_{t|t-1}^i, Y_t), \forall i = 1, ... N$.

end for

Output: Particles $\{X_t^i\}_{i=1}^N$ for $t = 0, \dots, t_f$.

Neural net f, T architectures

Numerical result: Bimodal dynamic example

Numerical result: Lorenz 63 model

Dynamical system Lorenz 63 model with observing the first and third states.

Numerical result: Lorenz 96 model

Dynamical system Lorenz 96 model with observing every other two states.

Numerical result: Image in-painting on MNIST

Future directions of research

- Explore alternative architectures to increase efficiency
- Verification of the algorithm on real-world applications
- Application for decision-making under uncertainty

Acknowledgement and GitHub page

Financial support from the National Science Foundation (NSF) EPCN-2318977, and DMS-2208535 are gratefully acknowledged.

