CLAIMS

We claim:

1. A compound of formula I:

or a pharmaceutically acceptable salt or mixtures thereof,

wherein R¹ is selected from -(L)_mR, -(L)_mAr¹, or -(L)_mCy¹; L is an optionally substituted C₁₋₆ alkylidene chain wherein up to two non-adjacent methylene units of L are optionally replaced by O, NR, NRCO, NRCS, NRCONR, NRCSNR, NRCO₂, CO, CO₂, CONR, CSNR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O); m is 0 or 1; Ar¹ is an optionally substituted aryl group selected from a 3-8 membered monocyclic or an 8-10 membered bicyclic ring having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; and Cy¹ is an optionally substituted group selected from a 3-7-membered saturated or partially unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10-membered saturated or partially unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein Ar¹ and Cy¹ are each independently optionally substituted with up to five substituents selected from Z-RY; wherein Z is a bond or is a C₁-C₆ alkylidene chain wherein up to two nonadjacent methylene units of Z are optionally replaced by CO, CO₂, COCO, CONR, CSNR, OCONR, NRNR, NRNRCO, NRCO, NRCS, NRCO2, NRCONR, NRCSNR, SO, SO2, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; and each occurrence of R^Y is independently selected from R', halogen, NO₂, CN, OR', SR', N(R')₂, NR'C(O)R', NR'C(S)R', NR'C(O)N(R')₂, NR'C(S)N(R')₂, NR'CO₂R', C(O)R', CO₂R', OC(O)R', C(O)N(R')₂, C(S)N(R')₂, OC(O)N(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂N(R')₂, C(O)C(O)R', or $C(O)CH_2C(O)R'$;

 R^2 is selected from halogen, NO₂, CN, -SR, -N(R)₂, -(T)_nR, or -(T)_nAr² wherein T is an optionally substituted C₁₋₄ alkylidene chain wherein up to two non-adjacent

methylene units of T are optionally replaced by O, NR, NRCO, NRCS, NRCONR, NRCSNR, NRCO₂, CO, CO₂, CONR, CSNR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O); n is 0 or 1; Ar² is an optionally substituted aryl group selected from a 5-6 membered monocyclic or an 8-10 membered bicyclic ring having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur wherein Ar² is independently optionally substituted with up to five substituents selected from Q-R^X; wherein Q is a bond or is a C₁-C₆ alkylidene chain wherein up to two non-adjacent methylene units of Q are optionally replaced by CO, CO₂, COCO, CONR, CSNR, OCONR, NRNR, NRNRCO, NRCO, NRCS, NRCO₂, NRCONR, NRCSNR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; and each occurrence of R^X is independently selected from R', halogen, NO₂, CN, OR', SR', N(R')₂, NR'C(O)R', NR'C(S)R', NR'C(O)N(R')₂, NR'C(S)N(R')₂, NR'CO₂R', C(O)R', CO₂R', OC(O)R', C(O)N(R')₂, C(S)N(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂N(R')₂, C(O)C(O)R', or C(O)CH₂C(O)R';

 R^3 is hydrogen or an optionally substituted $C_{1\text{-}4}$ aliphatic group;

X is selected from a valence bond, O, S, or NR;

 R^4 is selected from -R, -(U)_iAr³, or -(U)_iCy³; U is an optionally substituted C₁₋₆ alkylidene chain wherein up to two non-adjacent methylene units of U are optionally replaced by O, NR, NRCO, NRCS, NRCONR, NRCSNR, NRCO2, CO, CO2, CONR, CSNR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O); i is 0 or 1; Ar³ is an optionally substituted aryl group selected from a 3-8 membered monocyclic or an 8-10 membered bicyclic ring having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; and Cy³ is an optionally substituted group selected from a 3-7membered saturated or partially unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10-membered saturated or partially unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein Ar³ and Cy³ are each independently optionally substituted with up to five substituents selected from Y-R^Z; wherein Y is a bond or is a C₁-C₆ alkylidene chain wherein up to two non-adjacent methylene units of Y are optionally replaced by CO, CO₂, COCO, CONR, CSNR, OCONR, NRNR, NRNRCO, NRCO, NRCS, NRCO₂, NRCONR, NRCSNR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; and each occurrence of R^Z is independently selected from R', halogen, NO₂, CN, OR', SR', N(R')₂, NR'C(O)R', NR'C(S)R', NR'C(O)N(R')₂, NR'C(S)N(R')₂, NR'CO₂R',

C(O)R', CO₂R', OC(O)R', C(O)N(R')₂, C(S)N(R')₂, OC(O)N(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂N(R')₂, C(O)C(O)R', or C(O)CH₂C(O)R'; or

wherein R⁴ and R, taken together with the nitrogen form an optionally substituted 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

each occurrence of R is independently selected from hydrogen or an optionally substituted C_{1-6} aliphatic group, or two R on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur; and

each occurrence of R' is independently selected from hydrogen or an optionally substituted group selected from C_{1-6} aliphatic, C_{6-10} aryl, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 3-10 ring atoms, or wherein two R on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur,

provided that:

- a) when X is NR; R, R^3 , and R^4 are each hydrogen; R^2 is - $(T)_nR$ wherein n is 0 and R is hydrogen; and R^1 is - $(L)_mAr^1$ wherein m is 0; then Ar^1 is not:
 - i) 4-Cl or 4-OMe phenyl; or
 - ii) 3-CF₃ phenyl;
- b) when X is NR; R and R^3 are each hydrogen; R^2 is -(T)_nR wherein n is 0 and R is hydrogen; R^4 is 2-phenyl-4-quinazolinyl; and R^1 is -(L)_mAr¹ wherein m is 0; then Ar¹ is not:
- i) phenyl, 3-OMe phenyl, 4-OMe phenyl, 2,4-diCl phenyl, 4-Cl phenyl, 3-CF₃ phenyl, or 4-OPh phenyl;
- c) when X is NR; R and R^3 are each hydrogen; R^2 is - $(T)_nR$ wherein n is 0 and R is hydrogen; R^4 is 2-(2-trifluoromethyl-phenyl)-4-quinazolinyl; and R^1 is - $(L)_mAr^1$ wherein m is 0; then Ar^1 is not phenyl.
- d) when X is a valence bond; R^4 is hydrogen; R^3 is CH_3 ; R^2 is either chloro or hydrogen; and R^1 is $-(L)_mAr^1$ wherein m is 0, then Ar^1 is not 3-trifluoromethyl phenyl or 2-fluoro-5-trifluoromethyl phenyl.
- e) when X is a valence bond; R⁴ is methyl; R³ is hydrogen; and R² is cyano, then R¹ is not phenyl.

- f) when X is a valence bond; R^4 is methyl; R^2 is $-(T)_nR$ wherein n is 0 and R is hydrogen; R^3 is hydrogen; and R^1 is $-(L)_mAr^1$ wherein m is 0; then Ar^1 is not 4-tolyl.
- g) 2-[2,4-bis(1,1-dimethylpropyl)phenoxy]-N-[4-[1,6-dihydro-3-methyl-7-(4-nitrophenoxy)-6-oxo-5H-pyrazolo[4,3-c]pyridazin-5-yl]phenyl]-butanamide is excluded.
- h) 2-[2,4-bis(1,1-dimethylpropyl)phenoxy]-N-[4-[5,6-dihydro-6-oxo-5-(2-pyridinyl)-1H-pyrazolo[4,3-c]pyridazin-3-yl]phenyl]-acetamide; and N-[4-[5-(4-chlorophenyl)-5,6-dihydro-6-oxo-1H-pyrazolo[4,3-c]pyridazin-3-yl]phenyl]-2-[4-(1,1,3,3-tetramethylbutyl)phenoxy]-butanamide are
- 2. The compound according to claim 1, wherein R^1 is $-(L)_m A r^1$ and $A r^1$ is selected from one of the following groups:

both excluded.

$$(ZR^{Y})_{y} \ \sqrt{(R^{Y}Z)} \ \sqrt{(ZR^{Y})_{y}} \$$

3. The compound according to claim 2, wherein Ar¹ is selected from one of the following groups:

$$(ZR^{Y})_{y} \qquad (ZR^{Y})_{y} \qquad (ZR^$$

4. The compound according to claim 3, wherein Ar¹ is selected from one of the following groups:

5. The compound according to claim 2, wherein R^1 is $-(L)_m$ - Ar^1 , m is 1 and compounds have the formula IA-3:

6. The compound according to claim 2, wherein Ar¹ is phenyl with 0-5 occurrences of ZR^Y and compounds have the formula **IA-1-5**:

IA-1-5

7. The compound according to claim 1, wherein R^1 is $-(L)_m$ - Cy^1 and compounds have the formula IA-2:

IA-2

8. The compound according to claim 7, wherein Cy¹ is selected from one of the following groups:

9. The compound according to claim 2, wherein L is an optionally substituted C₁₋₆ straight or branched alkylidene chain wherein one methylene unit of L is optionally replaced by O, NR, NRCO, NRCS, NRCONR, NRCSNR, NRCO₂, CO, CO₂, CONR, CSNR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O) and m is 1.

- 10. The compound according to claim 9, wherein L is an optionally substituted C₁₋₆ straight or branched alkylidene chain wherein one methylene unit of L is optionally replaced by CO, CO₂, CONR, CSNR, SO₂NR, and m is 1.
- 11. The compound according to claim 1, wherein R¹ is -(L)_mR, L is an optionally substituted C₁₋₆ straight or branched alkylidene chain wherein one methylene unit of L is optionally replaced by O, NR, NRCO, NRCS, NRCONR, NRCSNR, NRCO₂, CO, CO₂, CONR, CSNR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O), R is an optionally substituted C₁₋₆ aliphatic group and m is 1.
- 12. The compound according to claim 1, wherein R^2 is selected from halogen, NO_2 , CN, -SR, $-N(R)_2$, or $-(T)_nR$, wherein R is selected from hydrogen or an optionally substituted C_{1-6} aliphatic group, or two R on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- 13. The compound according to claim 12, wherein R^2 is selected from -N(R)₂, or -(T)_nR, wherein n is 0, and R is selected from hydrogen or an optionally substituted C₁₋₆ aliphatic group.
- 14. The compound according to claim 13, wherein R^2 is - $(T)_nR$, wherein n is 0, and R is selected from hydrogen, CH_3 , or CF_3 .
- 15. The compound according to claim 1, wherein R^2 is - $(T)_nR$, wherein n is 0, R is hydrogen, and compounds have the formula **IB**:

IB

16. The compound according to claim 1, wherein R³ is hydrogen, methyl, ethyl, propyl, or isopropyl.

- 17. The compound according to claim 16, wherein R³ is hydrogen or methyl.
- 18. The compound according to claim 1, wherein R³ is hydrogen and compounds have the formula IC:

- 19. The compound according to claim 1, wherein X is selected from a valence bond or NR.
- 20. The compound according to claim 19, wherein X is NR and R is hydrogen.
- 21. The compound according to claim 1, wherein X is NR, R is hydrogen, and compounds have the formula **ID**:

22. The compound according to claim 1, wherein X is OR⁴ and compounds have the formula **IE**:

IE

23. The compound according to claim 1, wherein X is SR⁴ and compounds have the formula **IF**:

24. The compound according to claim 1, wherein X is NR, R is hydrogen, R^4 is $-(U)_iAr^3$ and compounds have the formula **IG**:

25. The compound according to claim 1, wherein R^4 is $-(U)_jAr^3$ and Ar^3 is selected from one of the following groups:

26. The compound according to claim 25, wherein Ar³ is selected from one of the following groups:

27. The compound according to claim 26, wherein Ar³ is selected from one of the following groups:

28. The compound according to claim 1, wherein R^4 is $-(U)_jAr^3$ and compounds have one of the following formulas:

29. The compound according to claim 1, wherein X is NR, R is hydrogen, R^4 is $-(U)_jCy^3$ and compounds have the formula IG-1:

IG-1

30. The compound according to claim 29, wherein Cy³ is selected from one of the following groups:

31. The compound according to claim 1, wherein X is NR, R and R⁴ are hydrogen, and compounds have the formula IL:

$$\begin{array}{cccc}
R^3 & R^2 \\
N & N & N \\
N & N & R^1
\end{array}$$
IL

32. The compound according to claim 1, wherein X is a valence bond and compounds have the formula **IM**:

- 33. The compound according to claim 1, wherein R^4 is R and R is an optionally substituted C_{1-6} aliphatic group.
- 34. The compound according to claim 1, wherein y is 0-5, and Ar¹ and Cy¹ are independently substituted with 0-5 occurrences of ZR^Y.
- 35. The compound according to claim 1, wherein y is 0-5, and Ar³ and Cy³ are independently substituted with 0-5 occurrences of YR².

- 36. The compound according to claim 1, wherein y is 0, and Ar¹ is unsubstituted.
- 37. The compound according to claim 1, wherein ZR^Y and YR^Z groups are each independently halogen, NO₂, CN, or an optionally substituted group selected from C₁₋₄ aliphatic, aryl, aralkyl, -N(R')₂, -CH₂N(R')₂, -OR', -CH₂OR', -SR', -CH₂SR', -COOR', or -S(O)₂N(R')₂.
- 38. The compound of claim 30, wherein ZR^Y and YR^Z groups are each independently Cl, CF_3 , NO_2 , $-S(O)_2N(R')_2$ or an optionally substituted group selected from $C_{1.4}$ alkoxy, phenyl, phenyloxy, benzyl, or benzyloxy.
- 39. The compound according to claim 1, wherein R^1 is $-(L)_m A r^1$, m is 0 or 1, $A r^1$ is phenyl optionally substituted with 0-5 occurrences of ZR^Y , and compounds have one of the following formulas IIA or IIA-1:

40. The compound according to claim 1, wherein R^2 is - $(T)_nR$, wherein n is 0 and R is hydrogen, R^1 is - $(L)_mAr^1$, wherein m is 0 or 1, Ar^1 is phenyl optionally substituted with 0-3 occurrences of ZR^Y , and compounds have one of the following formulas IIB or IIB-1:

41. The compound according to claim 1, wherein R^2 is $-(T)_nR$, wherein n is 0 and R is hydrogen, R^3 is hydrogen, R^1 is $-(L)_mAr^1$ wherein m is 0 or 1, Ar^1 is phenyl optionally substituted with 0-5 occurrences of ZR^Y , and compounds have one of the following formulas IIC or IIC-1:

42. The compound according to claim 1, wherein R^3 is hydrogen, R^2 is - $(T)_nR$, wherein n is 0 and R is hydrogen, X is NR, R^1 is - $(L)_mAr^1$ wherein m is 0 or 1, Ar^1 is phenyl optionally substituted with 0-5 occurrences of ZR^Y , and compounds have one of the following formulas IID or IID-1:

43. The compound according to claim 1, wherein R^3 is hydrogen, R^2 is - $(T)_nR$, wherein n is 0 and R is hydrogen, R^1 is - $(L)_mAr^1$ wherein m is 0 or 1, Ar^1 is phenyl optionally substituted with 0-5 occurrences of ZR^Y , and compounds have one of the following formulas IIE, IIE-1, IIF, IIF-1, IIG, or IIG-1:

44. The compound according to claim 1, wherein R^3 is hydrogen, R^2 is - $(T)_nR$, wherein n is 0 and R is hydrogen, X is NH, R^1 is - $(L)_mAr^1$ wherein m is 0 or 1, Ar^1 is phenyl optionally substituted with 0-5 occurrences of ZR^Y , and compounds have one of the following formulas IIIE, IIIE-1, IIIF, IIIF-1, IIIG, or IIIG-1:

45. The compound according to claim 1, wherein R^3 and R^4 are hydrogen, wherein R^2 is - $(T)_nR$, wherein n is 0 and R is hydrogen, X is NR, Ar^1 is optionally substituted phenyl, R^1 is - $(L)_mAr^1$, and compounds have one of the following formulas IIH or IIH-1:

$$H_{2N} \longrightarrow H_{2N} \longrightarrow H$$

46. The compound according to claim 1, wherein R^3 and R^4 are hydrogen, wherein R^2 is -(T)_nR, wherein n is 0 and R is hydrogen, X is a valence bond, Ar^1 is optionally substituted phenyl, R^1 is -(L)_m Ar^1 , and compounds have one of the following formulas IIJ or IIJ-1:

- 47. The compound according to any one of claims 39-46, wherein Ar¹ is phenyl optionally substituted with 0-5 occurrences of ZR^Y or wherein Ar¹ is pyridyl optionally substituted with 0-3 occurrences of ZR^Y.
- 48. The compound according to claim 47, wherein m is 0 or m is 1 and L is CH_2 ; y is 0-3; and each occurrence of ZR^Y is independently halogen, NO_2 , CN, or an optionally substituted group selected from C_{1-4} aliphatic, aryl, aralkyl, $-N(R')_2$, $-CH_2N(R')_2$, -OR', $-CH_2OR'$, -SR', $-CH_2SR'$, -COOR', or $-S(O)_2N(R')_2$.
- 49. The compound according to claim 48, wherein each occurrence of ZR^Y is independently Cl, CF₃, NO₂, -S(O)₂N(R')₂ or an optionally substituted group selected from C₁₋₄ alkoxy, phenyl, phenyloxy, benzyl, or benzyloxy.
- 50. The compound according to any one of claims 24-28, wherein Ar³ is phenyl or quinazolyl optionally substituted with 0-5 occurrences of YR^Z or wherein Ar³ is pyridyl or pyrimidinyl optionally substituted with 0-3 occurrences of YR^Z.
- 51. The compound according to claim 50, wherein j is 0 or 1 and U is CH_2 ; X is NH; m is 0 or 1 and L is CH_2 ; y is 0-3; and each occurrence of YR^Z are each independently halogen, NO₂, CN, or an optionally substituted group selected from C_{1-4} alkyl, aryl, aralkyl, $-N(R')_2$, $-CH_2N(R')_2$, -OR', $-CH_2OR'$, -SR', $-CH_2SR'$, -COOR', or $-S(O)_2N(R')_2$.
- 52. The compound according to claim 1, selected from one of the following compounds:

- 53. A pharmaceutically acceptable composition comprising a compound according to claim 1, and a pharmaceutically acceptable carrier, adjuvent, or vehicle.
- 54. The composition according to claim 53, additionally comprising an additional therapeutic agent selected from a treatment for Alzheimer's Disease (AD), a treatment for Parkinson's Disease, an agent for treating Multiple Sclerosis (MS), a treatment for asthma, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating stroke, an agent for treating cardiovascular disease, an anti-psychotic agent, or an agent for treating diabetes.
- 55. A method of inhibiting GSK-3 kinase activity in a biological sample, comprising the step of contacting said biological sample with:
 - a) a composition according to claim 53; or
 - b) a compound according to claim 1.
- 56. A method of inhibiting GSK-3 kinase activity in a patient, comprising the step of administering to said patient:
 - a) a composition according to claim 53; or
 - b) a compound according to claim 1.
- 57. A method of treating an autoimmune disease, an inflammatory disease, a metabolic disorder, a psychiatric disorder, diabetes, an angiogenic disorder, tauopothy, a neurological or neurodegenerative disorder, a spinal cord injury, glaucoma, baldness, or a cardiovascular disease, in a patient in need thereof, comprising administering to said patient a composition according to claim 53.

- 58. The method according to claim 57, wherein said disease, disorder, or condition is selected from allergy, asthma, diabetes, Alzheimer's disease, Huntington's disease, Parkinson's disease, AIDS-associated dementia, amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease), multiple sclerosis (MS), an injury due to head trauma, schizophrenia, anxiety, bipolar disorder, tauopothy, a spinal cord or peripheral nerve injury, myocardial infarction, cardiomyocyte hypertrophy, glaucoma, attention deficit disorder (ADD), depression, a sleep disorder, reperfusion/ischemia, stroke, an angiogenic disorder, or baldness.
- 59. The method according to claim 58, wherein said disease, disorder, or condition is stroke.
- 60. The method according to claim 58, wherein said disease, disorder, or condition is Alzheimer's disease.
- 61. The method according to claim 57, wherein said disorder is a neurological or neurodegenerative disorder.
- 62. A method of decreasing sperm motility in a male patient comprising administering to said patient a composition according to claim 53.
- 63. The method according to claim 57, comprising the additional step of administering to said patient an additional therapeutic agent selected from a treatment for Alzheimer's Disease (AD), a treatment for Parkinson's Disease, an agent for treating Multiple Sclerosis (MS), a treatment for asthma, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating stroke, an agent for treating cardiovascular disease, an anti-psychotic agent, or an agent for treating diabetes, wherein:

said additional therapeutic agent is appropriate for the disease being treated; and said additional therapeutic agent is administered together with said composition as a single dosage form or separately from said composition as part of a multiple dosage form.