- 1. Let $|E| < \infty$ and E_i $(i = 1, 2, \dots, m)$ be measurable subsets of E. Let $k \in \{1, 2, \dots, m\}$. Show that if every point of E belongs to at least k of E_i , then there is i such that $|E_i| \ge \frac{k}{m}|E|$. (Hint: Consider the integral $\int_E \sum_{i=1}^m \chi_{E_i}$.)
- 2. Let f be continuous and nonnegative on [a, b] where $-\infty < a < b < \infty$. Define a nondecreasing sequence of step functions $\{\phi_k\}$ on [a, b] such that $\phi_k \to f$ on [a, b], and then using the MCT theorem to show that

$$(L) \int_{[a,b]} f(x) \, dx = (R) \int_a^b f(x) \, dx.$$

3. Let $f \geq 0$ be measurable in \mathbb{R}^n . For $k = 1, 2, \dots$, define the cut-off functions

$$f_k(x) = \begin{cases} f(x) & \text{if } f(x) < k, \\ 0 & \text{if } f(x) \ge k. \end{cases}$$

Show that (i) each f_k is measurable on \mathbb{R}^n ; (ii) $\int_{\mathbb{R}^n} f_k(x) dx \to \int_{\mathbb{R}^n} f(x) dx$ as $k \to \infty$.

4. Suppose that $f \geq 0$ is continuous on (0,1] and the improper Riemann integral $(R) \int_0^1 f(x) dx = \lim_{a \to 0^+} (R) \int_a^1 f(x) dx$ exists (finite or $+\infty$). Use the results in Problems 2 and 3 to show that

$$(L) \int_{(0,1]} f(x) \, dx = (R) \int_0^1 f(x) \, dx.$$

- 5. Let f be nonnegative and measurable on a measurable set $E \subset \mathbb{R}^n$ with $|E| < \infty$.
 - (i) If $f \leq M$ a.e. on E where M > 0 is constant, then

$$\int_{E} f = \inf \sum_{j} [\sup_{x \in E_{j}} f(x)] |E_{j}|,$$

where the infimum is taken over all decompositions $E = \sum_j E_j$ of E into the union of a finite number of disjoint measurable sets E_j .

Hint: Consider the nonnegative function M - f.

(ii) Use a counter-example (e.g., $f(x) = 1/\sqrt{x}$ with E = (0, 1]) to show that (i) is false if the boundedness of f is not held.