ECE 6470

Homework 4

Problem 1

You are synthesizing a chip composed of random logic with an average activity factor of 0.1. You are using a standard cell process with an average switching capacitance of 450 pF/mm2. Estimate the dynamic power consumption of your chip if it has an area of 70 mm2 and runs at 450 MHz at VDD=0.9V.

```
P<sub>dynamic</sub> = P<sub>switching</sub> + P<sub>shortcircuit</sub>
```

P_{shortcircuit} ≈ 0

 $P_{\text{switching}} = \alpha C V_{\text{DD}}^2 f$

```
In []: # P switching
alpha = 0.1
C_A = 450e-12 # pf/mm2
A = 70 # mm2
C = C_A * A # pf
f = 450e6
Vdd = 0.9
alpha * C * Vdd**2 * f
```

Out[]: 1.1481750000000002

 $P_{dynamic} = 1.148$

Problem 2

Determine the activity factor for the signal shown in Figure 5.34. The clock rate is 1 GHz

The activity factor is 1/2 because out of 10 clock cycles, 5 of them are high, and 5 are low.

Problem 3

Derive the switching probabilities in Table 5.1.

Gate	P _Y
AND2	$P_A P_B$
AND3	$P_A P_B P_C$
OR2	$1 - \overline{P}_A \overline{P}_B$
NAND2	1 - P _A P _B
NOR2	$\overline{P}_A \overline{P}_B$
XOR2	$P_A \overline{P}_B + \overline{P}_A P_B$

Problem 4

Construct a table similar to Table 5.2 for a 2-input NOR gate. (Assuming Vs is between A and B PMOS)

Input State	I _{sub}	Igate	I _{total}	Vx
00	11.2	0	11.2	Stack Effect
01	9.3	6.3	15.6	Vt
10	9.3	6.3	15.6	1
11	≈1	12.6	13.6	1