Curso: Procesamiento Electrónico de Potencia TRANSFORMADOR MONOFÁSICO

Ing. Sergio A. Morales Hernández

Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Semestre 2021

AGENDA

1 TRANSFORMADOR MONOFÁSICO REAL

AGENDA

1 TRANSFORMADOR MONOFÁSICO REAL

DETERMINACIÓN PARÁMETROS

AGENDA

1 TRANSFORMADOR MONOFÁSICO REAL

DETERMINACIÓN PARÁMETROS

PRUEBAS

• El transformador monofásico real presentará pérdidas de energía.

- El transformador monofásico real presentará pérdidas de energía.
- Hay pérdidas en los bobinados y también en el núcleo.

- El transformador monofásico real presentará pérdidas de energía.
- Hay pérdidas en los bobinados y también en el núcleo.
- En los bobinados tenemos pérdidas por la resistividad de los conductores y pérdidas por los flujos que se producen en las bobinas, pero que no hacen sus recorridos dentro del material (flujos de dispersión o Φ_d).

- El transformador monofásico real presentará pérdidas de energía.
- Hay pérdidas en los bobinados y también en el núcleo.
- En los bobinados tenemos pérdidas por la resistividad de los conductores y pérdidas por los flujos que se producen en las bobinas, pero que no hacen sus recorridos dentro del material (flujos de dispersión o Φ_d).
- En el núcleo habrá pérdidas por corrientes parásitas y por histéresis.

El transformador se puede modelar con el circuito mostrado.

- El transformador se puede modelar con el circuito mostrado.
- Las resistencias del primario y secundario $(R_1 \ y \ R_2)$ representan la resistividad de dichos bobinados.

- El transformador se puede modelar con el circuito mostrado.
- Las resistencias del primario y secundario $(R_1 \ y \ R_2)$ representan la resistividad de dichos bobinados.
- ullet Las inductancias L_1 y L_2 representan los flujos de dispersión.

- El transformador se puede modelar con el circuito mostrado.
- Las resistencias del primario y secundario $(R_1 \ y \ R_2)$ representan la resistividad de dichos bobinados.
- Las inductancias L_1 y L_2 representan los flujos de dispersión.
- Las pérdidas por corrientes parásitas se representan con la conductancia g_c .

- El transformador se puede modelar con el circuito mostrado.
- Las resistencias del primario y secundario $(R_1 \ y \ R_2)$ representan la resistividad de dichos bobinados.
- Las inductancias L_1 y L_2 representan los flujos de dispersión.
- Las pérdidas por corrientes parásitas se representan con la conductancia g_c .
- Las pérdidas por el efecto de histéresis se representan con la admitancia Y_m .

- El transformador se puede modelar con el circuito mostrado.
- Las resistencias del primario y secundario $(R_1 \ y \ R_2)$ representan la resistividad de dichos bobinados.
- Las inductancias L_1 y L_2 representan los flujos de dispersión.
- Las pérdidas por corrientes parásitas se representan con la conductancia g_c .
- Las pérdidas por el efecto de histéresis se representan con la admitancia Y_m .
- Veamos qué sucede cuando se le conecta una carga en el secundario.

- Tenemos una carga conectada al transformador.
- Dicha carga es la impedancia Z_L .

- Tenemos una carga conectada al transformador.
- Dicha carga es la impedancia Z_L .
- El transformador tiene una relación de $a = \frac{e_1}{e_2}$

• Se dibujan los fasores $v_2(t)$ e $i_2(t)$.

- Se dibujan los fasores $v_2(t)$ e $i_2(t)$.
- El desfase entre ambos es Θ .

- Se dibujan los fasores $v_2(t)$ e $i_2(t)$.
- El desfase entre ambos es Θ .
- Luego se dibujan las caídas de tensión.

- Se dibujan los fasores $v_2(t)$ e $i_2(t)$.
- El desfase entre ambos es Θ .
- Luego se dibujan las caídas de tensión.

- Se dibujan los fasores $v_2(t)$ e $i_2(t)$.
- El desfase entre ambos es Θ .
- Luego se dibujan las caídas de tensión.
- Por último, se dibuja el fasor $e_2(t)$.

ullet Se hará primero una sumatoria de corrientes en el núcleo.

- Se hará primero una sumatoria de corrientes en el núcleo.
- Dichas corrientes son i_{Y_m} , i_{g_c} , i_{Φ} e i'_2 .

- Se hará primero una sumatoria de corrientes en el núcleo.
- Dichas corrientes son i_{Y_m} , i_{g_c} , i_{Φ} e i'_2 .
- La corriente i'_2 tiene el mismo desfase que i_2 .

- Se hará primero una sumatoria de corrientes en el núcleo.
- Dichas corrientes son i_{Y_m} , i_{g_c} , i_{Φ} e i'_2 .
- La corriente i_2' tiene el mismo desfase que i_2 .
- El resultado de esta sumatoria sería $i_1(t)$.

 Se ha analizado, hasta el momento, la utilidad del circuito equivalente del transformador monofásico.

- Se ha analizado, hasta el momento, la utilidad del circuito equivalente del transformador monofásico.
- Para poder desarrollar simulaciones, tanto matemáticas como mediante circuitos eléctricos, es necesario conocer los valores de los elementos pasivos que representan a esta máquina.

- Se ha analizado, hasta el momento, la utilidad del circuito equivalente del transformador monofásico.
- Para poder desarrollar simulaciones, tanto matemáticas como mediante circuitos eléctricos, es necesario conocer los valores de los elementos pasivos que representan a esta máquina.
- En ambos casos, matemática o circuitos, el transformador ideal se puede sustituir mediante el parámetro de la relación de transformación.
 Con ello se obtiene una muy buena aproximación.

- Se ha analizado, hasta el momento, la utilidad del circuito equivalente del transformador monofásico.
- Para poder desarrollar simulaciones, tanto matemáticas como mediante circuitos eléctricos, es necesario conocer los valores de los elementos pasivos que representan a esta máquina.
- En ambos casos, matemática o circuitos, el transformador ideal se puede sustituir mediante el parámetro de la relación de transformación.
 Con ello se obtiene una muy buena aproximación.
- Hay dos tipos de pruebas que permiten encontrar los para el circuito equivalente: de corto circuito y circuito abierto.

- Se ha analizado, hasta el momento, la utilidad del circuito equivalente del transformador monofásico.
- Para poder desarrollar simulaciones, tanto matemáticas como mediante circuitos eléctricos, es necesario conocer los valores de los elementos pasivos que representan a esta máquina.
- En ambos casos, matemática o circuitos, el transformador ideal se puede sustituir mediante el parámetro de la relación de transformación.
 Con ello se obtiene una muy buena aproximación.
- Hay dos tipos de pruebas que permiten encontrar los para el circuito equivalente: de corto circuito y circuito abierto.
- Vamos a plantear ambas pruebas.

PRUEBA DE CIRCUITO ABIERTO

 En la prueba de circuito abierto (OC), se debe colocar un amperímetro, un vatímetro y un voltímetro, todos en el primario, así como un voltímetro en el secundario.

PRUEBA DE CIRCUITO ABIERTO

- En la prueba de circuito abierto (OC), se debe colocar un amperímetro, un vatímetro y un voltímetro, todos en el primario, así como un voltímetro en el secundario.
- Se aplicará el voltaje **nominal** al primario.

PRUEBA DE CIRCUITO ABIERTO

- En la prueba de circuito abierto (OC), se debe colocar un amperímetro, un vatímetro y un voltímetro, todos en el primario, así como un voltímetro en el secundario.
- Se aplicará el voltaje **nominal** al primario.
- Al estar el transformador sin carga, la potencia que se mida será la correspondiente a la necesaria para establecer un campo magnético dentro del núcleo.

PRUEBA DE CIRCUITO ABIERTO

- En la prueba de circuito abierto (OC), se debe colocar un amperímetro, un vatímetro y un voltímetro, todos en el primario, así como un voltímetro en el secundario.
- Se aplicará el voltaje **nominal** al primario.
- Al estar el transformador sin carga, la potencia que se mida será la correspondiente a la necesaria para establecer un campo magnético dentro del núcleo.
- Por lo tanto, se estarán determinando los parámetros de pérdidas en el núcleo, a saber b_m y g_c .

• Con los valores medidos con la instrumentación, se tendrá que:

• Con los valores medidos con la instrumentación, se tendrá que:

• Con los valores medidos con la instrumentación, se tendrá que:

$$y_{oc} = \frac{i_{oc_1}(t)}{v_{oc_1}(t)}$$

• Con los valores medidos con la instrumentación, se tendrá que:

$$y_{oc} = \frac{i_{oc_1}(t)}{v_{oc_1}(t)}$$

• Con los valores medidos con la instrumentación, se tendrá que:

$$y_{oc} = \frac{i_{oc_1}(t)}{v_{oc_1}(t)}$$

• Con los valores medidos con la instrumentación, se tendrá que:

$$y_{oc} = \frac{i_{oc_1}(t)}{v_{oc_1}(t)}$$

$$g_c = \frac{p_{oc_1}(t)}{v_{oc_1}^2(t)}$$

• Con los valores medidos con la instrumentación, se tendrá que:

$$y_{oc} = \frac{i_{oc_1}(t)}{v_{oc_1}(t)}$$

• Donde la admitancia $y_{oc} = g_c + jb_m$. Por otro lado:

$$g_c = \frac{p_{oc_1}(t)}{v_{oc_1}^2(t)}$$

• Y tendríamos que $b_m = -\sqrt{y_{oc}^2 - g_c^2}$.

• Con los valores medidos con la instrumentación, se tendrá que:

$$y_{oc} = \frac{i_{oc_1}(t)}{v_{oc_1}(t)}$$

$$g_c = \frac{p_{oc_1}(t)}{v_{oc_1}^2(t)}$$

- Y tendríamos que $b_m = -\sqrt{y_{oc}^2 g_c^2}$.
- ¿Qué representa el signo negativo?

• En esta prueba (SC), se colocan un amperímetro, un vatímetro y un voltímetro en el primario, y un amperímetro en el secundario.

- En esta prueba (SC), se colocan un amperímetro, un vatímetro y un voltímetro en el primario, y un amperímetro en el secundario.
- Se aplicará una corriente tal en el primario, que produzca en el secundario la corriente nominal.

- En esta prueba (SC), se colocan un amperímetro, un vatímetro y un voltímetro en el primario, y un amperímetro en el secundario.
- Se aplicará una corriente tal en el primario, que produzca en el secundario la corriente nominal.
- El transformador estará con la carga máxima, por lo que se necesitará una tensión de poca magnitud, provocando que el efecto de pérdidas en el núcleo sean despreciables.

- En esta prueba (SC), se colocan un amperímetro, un vatímetro y un voltímetro en el primario, y un amperímetro en el secundario.
- Se aplicará una corriente tal en el primario, que produzca en el secundario la corriente nominal.
- El transformador estará con la carga máxima, por lo que se necesitará una tensión de poca magnitud, provocando que el efecto de pérdidas en el núcleo sean despreciables.
- De esta forma se podrán determinar los parámetros de ambos bobinados, a saber, resistencia de los conductores y reluctancias de dispersión.

Con las mediciones tendremos:

Con las mediciones tendremos:

• Con las mediciones tendremos:

$$Z_{eq_1} = rac{v_{sc_1}(t)}{i_{sc_1}(t)}$$

• Con las mediciones tendremos:

$$Z_{eq_1} = \frac{v_{sc_1}(t)}{i_{sc_1}(t)}$$

$$R_{eq_1} = \frac{p_{sc_1}(t)}{i_{sc_1}^2(t)}$$

Con las mediciones tendremos:

$$Z_{eq_1} = rac{v_{sc_1}(t)}{i_{sc_1}(t)}$$
 $R_{eq_1} = rac{
ho_{sc_1}(t)}{i_{sc_1}^2(t)}$ $X_{eq_1} = \sqrt{Z_{eq_1}^2 - R_{eq_1}^2}$

• Con las mediciones tendremos:

$$Z_{eq_1} = rac{v_{sc_1}(t)}{i_{sc_1}(t)}$$
 $R_{eq_1} = rac{p_{sc_1}(t)}{i_{sc_1}^2(t)}$
 $X_{eq_1} = \sqrt{Z_{eq_1}^2 - R_{eq_1}^2}$

• Y realizando aproximaciones, se tendría que: $R_1 = \frac{R_{eq_1}}{2}$, $R_2 = \frac{R_{eq_1}}{2a^2}$, $X_{\ell_1} = \frac{X_{eq_1}}{2}$ y $X_{\ell_2} = \frac{X_{eq_1}}{2a^2}$.

• Se tienen los siguientes datos, tomados todos en el primario. Asuma una relación de transformación a=2.

Parámetro	Prueba OC	Prueba SC
V_1	230 V	13,2 V
I_1	0,45 A	6 A
P_1	30 W	20,1 W

• Se tienen los siguientes datos, tomados todos en el primario. Asuma una relación de transformación a=2.

Parámetro	Prueba OC	Prueba SC
V_1	230 V	13,2 V
I_1	0,45 A	6 A
P_1	30 W	20,1 W

•
$$R_1 = 0.279 \,\Omega$$
, $R_2 = 0.0698 \,\Omega$, $X_{\ell_1} = 1.064 \,\Omega$, $X_{\ell_2} = 0.266 \,\Omega$.

• Se tienen los siguientes datos, tomados todos en el primario. Asuma una relación de transformación a=2.

Parámetro	Prueba OC	Prueba SC
V_1	230 V	13,2 V
I_1	0,45 A	6 A
P_1	30 W	20,1 W

- $R_1 = 0.279 \,\Omega$, $R_2 = 0.0698 \,\Omega$, $X_{\ell_1} = 1.064 \,\Omega$, $X_{\ell_2} = 0.266 \,\Omega$.
- $g_c = 0.567 \times 10^{-3} \, \text{U}, \ b_m = -1.87 \times 10^{-3} \, \text{U}.$

Encuentre la magnitud y fase de I_1 y V_1 para los siguientes tipos de carga:

- Una resistencia
- Una resistencia y una inductancia
- Una resistencia y una capacitancia

Asuma una tensión $V_2 = 85 \angle 0^{\circ} V$.

O		•
Parámetro	Prueba OC	Prueba SC
V_1	110,5 V	30,9 V
I_1	18,49 mA	12,393 mA
P_1	1,1 W	0,9 W
V_2	10,3 V	
l ₂		111,15 mA

• Se hicieron las siguientes mediciones desde el primario:

		•
Parámetro	Prueba OC	Prueba SC
V_1	110,5 V	30,9 V
I_1	18,49 mA	12,393 mA
P_1	1,1 W	0,9 W
V_2	10,3 V	
I_2		111,15 mA

• Calcule los parámetros del transformador.

		l l
Parámetro	Prueba OC	Prueba SC
V_1	110,5 V	30,9 V
I_1	18,49 mA	12,393 mA
P_1	1,1 W	0,9 W
V_2	10,3 V	
<i>I</i> ₂		111,15 mA

- Calcule los parámetros del transformador.
- Para una carga de $R_L=95\,\Omega$, y $V_L=10\,V$, calcule V_1 , I_1 (magnitud y fase) y la eficiencia para esta carga.

as signification in careful assure of primari		
Parámetro	Prueba OC	Prueba SC
V_1	110,5 V	30,9 V
I_1	18,49 mA	12,393 mA
P_1	1,1 W	0,9 W
V_2	10,3 V	
<i>I</i> ₂		111,15 mA

- Calcule los parámetros del transformador.
- Para una carga de $R_L = 95 \, \Omega$, y $V_L = 10 \, V$, calcule V_1 , I_1 (magnitud y fase) y la eficiencia para esta carga.
- $R_1 = 36,425\,\Omega$, $R_2 = 233,12\,m\Omega$, $X_{\ell_1} = 1,246\,\Omega$, $X_{\ell_2} = 7,9744\,\Omega$.

as signification in careful assure of primari		
Parámetro	Prueba OC	Prueba SC
V_1	110,5 V	30,9 V
I_1	18,49 mA	12,393 mA
P_1	1,1 W	0,9 W
V_2	10,3 V	
<i>I</i> ₂		111,15 mA

- Calcule los parámetros del transformador.
- Para una carga de $R_L = 95 \, \Omega$, y $V_L = 10 \, V$, calcule V_1 , I_1 (magnitud y fase) y la eficiencia para esta carga.
- $R_1=36,425\,\Omega$, $R_2=233,12\,m\Omega$, $X_{\ell_1}=1,246\,\Omega$, $X_{\ell_2}=7,9744\,\Omega$.
- $R_c = 11.1 k\Omega$, $X_m = 7.11 k\Omega$.

