

AD-A193 749

ELECTROLYTE EFFECTS ON THE CYCLIC VOLTAMMETRY OF TCNO  
(TETRACYANOQUINODIM. (U) UTAH UNIV SALT LAKE CITY DEPT  
OF CHEMISTRY S PONS ET AL. 30 JUL 86 TR-64

1/1

UNCLASSIFIED

N00014-83-K-0478

F/G 7/3

NL





MICROCOPY RESOLUTION TEST CHART  
ORFAU C STANDARDS-1963-A

DTIC FILE COPY

4

AD-A193 749

OFFICE OF NAVAL RESEARCH

Contract N00014-83-K-0470-P00003

Task No. NR 359-718

TECHNICAL REPORT # 64

Electrolyte Effects on the Cyclic Voltammetry of TCNQ and TCNE

By

Stanley Pons, S. Khoo, J. Foley

Prepared for Publication in  
Journal of Electroanalytical Chemistry

University of Utah  
Department of Chemistry  
Salt Lake City, Utah 84112

DTIC  
SELECTED  
APR 13 1988  
S D  
8 H

July 30, 1986

Reproduction in whole or in part is permitted for  
any purpose of the United States Government.

This document has been approved for public release  
and sale; its distribution is unlimited.

88 4 12 363

| REPORT DOCUMENTATION PAGE                                                                                                                   |                       | READ INSTRUCTIONS BEFORE COMPLETING FORM                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|
| 1. REPORT NUMBER<br>64                                                                                                                      | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER                                                      |
| 4. TITLE (and Subtitle)<br>Electrolyte Effects on the Cyclic Voltammetry of TCNQ and TCNE                                                   |                       | 5. TYPE OF REPORT & PERIOD COVERED<br>Technical Report # 64                        |
| 7. AUTHOR(s)<br>Stanley Pons, S. Khoo, J. Foley                                                                                             |                       | 6. PERFORMING ORG. REPORT NUMBER<br>N00014-83-K-0470-P0003                         |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>University of Utah<br>Department of Chemistry<br>Salt Lake City, UT 84112                    |                       | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br>Task No. NR 359-718 |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Office of Naval Research<br>Chemistry Program - Chemistry Code 472<br>Arlington, Virginia 22217  |                       | 12. REPORT DATE<br>July 30, 1986                                                   |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                 |                       | 13. NUMBER OF PAGES                                                                |
|                                                                                                                                             |                       | 15. SECURITY CLASS. (of this report)<br>Unclassified                               |
|                                                                                                                                             |                       | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                         |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>This document has been approved for public release and sale; its distribution unlimited. |                       |                                                                                    |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                  |                       |                                                                                    |
| 18. SUPPLEMENTARY NOTES                                                                                                                     |                       |                                                                                    |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>TCNE, TCNQ, Cyclic Voltammetry                        |                       |                                                                                    |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>The electrochemistry of TCNQ and TCNE is discussed.    |                       |                                                                                    |

*Electrochemical Chem.*

ELECTROLYTE EFFECTS ON THE  
CYCLIC VOLTAMMETRY OF  
TCNQ AND TCNE

S.B. Khoo\*, John. K. Foley, and Stanley Pons\*\*  
Department of Chemistry  
University of Utah  
Salt Lake City, UT 84112

\*Present address: Department of Chemistry  
National University of Singapore  
Kent Ridge  
Singapore 0511

\*\* To whom correspondence should be addressed.

## INTRODUCTION

In aprotic solvents the electrochemical reduction of tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) takes place in two distinct one-electron steps;



A radical anion is formed in the first step, and at much more negative potentials a further electron transfer takes place to form a dianion. The first reduction step of TCNE and both reduction steps of TCNQ are very fast [1-5]. The radical anions and dianions are stable in aprotic and oxygen-free solutions [1,6,7], except that the dianions and neutral molecules can repropionate to form two radical anions.



In this note we report a study by cyclic voltammetry of the reductions of TCNQ and TCNE to their radical anions and dianions at platinum and glassy carbon electrodes in acetonitrile. We emphasize the effect of different supporting electrolyte cations on the voltammetry because (a) there exists the possibility of ion-pairing between the dianions and small cations [8-15], and (b) it appears that the rates of some electron transfer reactions depend on supporting electrolyte [6,10,16-26]. For example, at a platinum electrode in acetonitrile, the voltammetric wave at 100 mV s<sup>-1</sup> for reduction of TCNE<sup>2-</sup> to TCNE<sup>2-</sup> is reversible with LiClO<sub>4</sub> as the supporting electrolyte [16,17], but quasireversible with tetra-n-butylammonium perchlorate (TBAP) [6] or tetra-n-butylammonium fluoroborate (TBAF) [16] as supporting electrolyte.

## EXPERIMENTAL

### Cells and instrumentation

A standard three-electrode cell was used. The reference electrode was a silver wire in contact with an acetonitrile solution of  $\text{AgNO}_3$  (0.01 M) and 0.1 M of the same supporting electrolyte as in the cell. The secondary electrode material was platinum. Working electrodes were fabricated from platinum and carbon; the platinum electrode was a wire sealed into glass and the carbon electrode was a glassy carbon disc made by sealing a piece of glassy carbon rod (3 mm diameter, Tokai) into glass tubing with epoxy and polishing the end to a mirror finish with alumina on a polishing cloth. The areas of the two electrodes were found from current-time transients taken during the diffusion-controlled reduction of anthracene in acetonitrile. From the Cottrell equation, taking the diffusion coefficient of anthracene in acetonitrile to be  $2.55 \times 10^{-5} \text{ cm}^2\text{s}^{-1}$  [27], the area of the platinum wire was found to be  $0.227(\pm 0.016) \text{ cm}^2$  and that of the glassy carbon disc was found to be  $0.094(\pm 0.005) \text{ cm}^2$ .

The potential of the working electrode with respect to the reference electrode was controlled with a HiTek DT2101 potentiostat and a HiTek PPR1 waveform generator. Cyclic voltammograms were recorded on a Linseis LX1000 chart recorder. Positive feedback was used to reduce the iR drop between the tip of the Luggin capillary and the working electrode; in no experiment was the scan rate greater than  $600 \text{ mV s}^{-1}$ , and under these circumstances it was estimated that the iR loss was no more than the error in reading potentials from the recorded voltammograms ( $\pm 5 \text{ mV}$ ).

|                    |                         |
|--------------------|-------------------------|
| Distribution /     |                         |
| Availability Codes |                         |
| Dist               | Avail and/or<br>Special |



Before each experiment the solution was deaerated by bubbling purified nitrogen through the cell. All experiments were carried out at room temperature, which was  $23.0(\pm 0.5)^\circ\text{C}$ . All potentials in this paper are given with respect to the  $\text{Ag}/\text{Ag}^+$  (0.01 M) reference electrode, unless otherwise stated.

Chemicals.

Reagent grade lithium and sodium perchlorates were recrystallized twice from triply distilled water. Tetra-n-butylammonium fluoroborate (TBAF) was prepared according to the method of Lund and Iverson [28] and recrystallized from methylene chloride and ice-cooled anhydrous ether and then from methylene chloride and distilled water. Tetraethylammonium perchlorate (TEAP) (Eastman, reagent grade) was recrystallized twice from triply distilled water. Reagent grade TCNE (Eastman) was recrystallized twice from chlorobenzene. Reagent grade TCNQ (Eastman) was recrystallized twice from acetonitrile [29]. The dried crystals of TCNE melted at  $200-201^\circ\text{C}$  and those of TCNQ melted at  $294-295^\circ\text{C}$ , in agreement with literature values [4]. Acetonitrile (Caledon HPLC grade, water content nominally 0.005%) was dried over Woelm neutral alumina (Supergrade I) before use.

## RESULTS

### Reduction of TCNQ

Cyclic voltammograms were run for acetonitrile solutions of TCNQ (1 mM) at platinum and glassy carbon electrodes, using TBAF, TEAP, NaClO<sub>4</sub> and LiClO<sub>4</sub> as supporting electrolytes. The sweep rate,  $\nu$ , was varied between 25 mV s<sup>-1</sup> and 500 mV s<sup>-1</sup>. Figure 1 shows representative cyclic voltammograms run at the carbon electrode. The voltammograms run at platinum were similar. Peak potentials,  $E_{pc}$  and  $E_{pa}$ , and peak separations,  $\Delta E_p$ , for the first and second reduction waves are given in Table 1.

At these sweep rates the first reduction wave of all seven systems showed simple reversible behavior according to the usual criteria: the cathodic and anodic peak potentials were independent of sweep rate and were separated by 60 to 70 mV, which is close to the theoretical value of 59 mV for a reversible one-electron reduction; the ratio of the anodic to cathodic peak currents,  $i_{pa}/i_{pc}$ , was close to 1.0 for all systems; the ratio  $i_{pc}/\nu^{1/2}$  was approximately independent of sweep rate  $\nu$ . The cathodic and anodic peak potentials were independent of electrode material and electrolyte, and the half-wave potential,  $E_{1/2}$ , was about -0.11 V. From the Randles-Sevcik equation for a reversible process

$$i_{pc} = 2.69 \times 10^5 n^{3/2} A C_0 D_0^{1/2} \nu^{1/2} \quad (4)$$

the diffusion coefficient,  $D_0$ , of TCNQ was measured at  $1.6(\pm 0.2) \times 10^{-5}$  cm<sup>2</sup> s<sup>-1</sup>. This value was independent of the supporting

electrolyte and agrees quite well with the value of  $1.42 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$  measured by Sharp [6].

When considering the second reduction wave of TCNQ we assume that the homogeneous reportionation reaction (3) can be ignored and that therefore the half-wave potentials measured from the second wave are those for the  $\text{TCNQ}^\cdot/\text{TCNQ}^{2\cdot}$  couple. This is rigorously true only if the diffusion coefficients of TCNQ,  $\text{TCNQ}^\cdot$ , and  $\text{TCNQ}^{2\cdot}$  are equal and if the second wave is reversible: under these circumstances reaction (3) has no effect on the current [30] but if the second electron transfer is slow then the effect of reaction (3) is to reduce the current [31]. For the systems discussed here, however, with slow sweep rates and well separated voltammetric waves, it is likely that at potentials in the second wave the amount of neutral TCNQ or TCNE close to the electrode has decreased to a very small value, in which case, irrespective of equality of diffusion coefficients or the rate of heterogeneous electron transfer, reaction (3) does not take place sufficiently close to the electrode to affect the current.

The second reduction wave also fulfilled the above criteria for reversibility. For example, the cathodic and anodic peak potentials were independent of sweep rate and electrode material and were 60 to 70 mV apart. From equation (4), ignoring reportionation, the diffusion coefficient of  $\text{TCNQ}^\cdot$  was measured as  $1.4(\pm 0.2) \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ , a value slightly lower than that of TCNQ.

An important difference between the first and second waves, however, was that the peak potentials of the second wave were dependent upon the supporting electrolyte. The half-wave potentials of the

second electron-transfer were -0.66 V with TBAF (0.1 M) and TEAP (0.1 M) as supporting electrolytes, -0.63 V with NaClO<sub>4</sub> (0.1 M), and -0.52 V with LiClO<sub>4</sub> (0.1 M). We attribute this to ion-pairing between the dianion formed in the second wave and alkali metal cations. Such an interaction would lower the free energy of the electron-transfer reaction by stabilizing the product of the reaction, and the reduction would take then place at less negative potentials. The positive shift in half-wave potential should increase with the strength of ion-pairing and with the concentration of ion-pairing cations [11-15]. Indeed TCNQ solutions with mixtures of TBAF and MCIO<sub>4</sub> as electrolyte showed this behaviour; there were two reversible waves as before, and the more negative one shifted positive as the metal cation concentration was increased.

#### Reduction of TCNE

Cyclic voltammograms of 1.00 mM solutions of TCNE with TEAP, TBAF, LiClO<sub>4</sub>, and NaClO<sub>4</sub> as supporting electrolytes were run at sweep rates ranging from 25 mV s<sup>-1</sup> to 600 mV s<sup>-1</sup> at the platinum and glassy carbon electrodes. Figure 2 shows representative cyclic voltammograms run at the carbon electrode. Peak potentials and peak separations for both reduction waves are given in Table 2. For all eight systems the first reduction wave showed reversible behavior and the half-wave potential was about -0.07 V. The diffusion coefficient of TCNE was calculated from equation (4) to be  $1.9(\pm 0.2) \times 10^{-5}$  cm<sup>2</sup> s<sup>-1</sup>. This value, which was independent of electrolyte, agrees well with the literature value of  $1.91 \times 10^{-5}$  cm<sup>2</sup> s<sup>-1</sup> [4].

From Figure 2 and Table 2 it is apparent that, unlike the second reduction wave of TCNQ, the second reduction wave of TCNE is not reversible for all supporting electrolytes and the peak potentials are not independent of electrode material. The four supporting electrolytes fall into two groups; NaClO<sub>4</sub> and LiClO<sub>4</sub> give nearly reversible behavior which is independent of the electrode material, while TBAF and TEAP give irreversible behavior and the irreversibility is greater at a platinum electrode than at a carbon electrode. In addition, the peak potentials become less negative as the radius of the cation of the supporting electrolyte decreases, indicating that contact ion-pairs are formed between TCNE<sup>2-</sup> and the electrolyte cation, just as for TCNQ<sup>2-</sup>. (Once again we assume that the repropportionation reaction can be ignored, either because the diffusion coefficients of TCNE, TCNE<sup>-</sup>, and TCNE<sup>2-</sup> are equal and the second wave is reversible, or because there is no neutral TCNE close to the electrode at potentials in the second wave and the only process taking place is reduction of TCNE<sup>-</sup> to TCNE<sup>2-</sup>. The validity of this assumption was checked by interrupting the sweep for 60s at a potential between the two waves, and it was found that this did not affect the peak potentials of the second wave).

In the presence of NaClO<sub>4</sub> and LiClO<sub>4</sub> the peak potentials of the second reduction wave were independent of electrode material. The peak separations were not far from the 59 mV expected for a reversible one-electron process and not very dependent on sweep rate. At the platinum electrode  $i_{pa}/i_{pc}$  values for the second wave were close to 1.0 with NaClO<sub>4</sub> and LiClO<sub>4</sub> as electrolytes. At the carbon electrode

$i_{pa}/i_{pc}$  was 1.0 when  $\text{NaClO}_4$  was the electrolyte, but varied with sweep rate (from 1.29 at  $50 \text{ mV s}^{-1}$  to 1.52 at  $300 \text{ mV s}^{-1}$ ) when  $\text{LiClO}_4$  was the electrolyte. The ratio  $i_{pc}/\nu^{\frac{1}{2}}$  was approximately constant at different sweep rates and 10-15% smaller than for the first wave.

In the presence of TBAP and TEAP the separation between the anodic and cathodic peaks of the second wave was much larger than 59 mV and increased with increasing sweep rate, indicative of an irreversible process. Furthermore, the electron transfer was more irreversible in the presence of TBAP than in the presence of TEAP and more irreversible at the platinum electrode than at the carbon electrode. The ratio  $i_{pc}/\nu^{\frac{1}{2}}$  was roughly constant and again 10-15% lower than the value for the first wave. In the presence of TBAP and TEAP the electrode kinetics of the second wave are slow enough to allow the standard heterogeneous rate constant,  $k_s$ , to be determined for the reduction of  $\text{TCNE}^-$ . For the systems TBAP/C, TEAP/C, and TEA/Pt,  $k_s$  was calculated from the variation of peak separation,  $\Delta E_p$ , with sweep rate,  $\nu$ , using the method of Nicholson [32] for a quasi-reversible electron transfer reaction. The resulting  $k_s$  values are shown in Table 3. (These values did not vary significantly with sweep rate). The second wave of the TBAP/Pt system was assumed to be completely irreversible and the relationship between cathodic half-peak potential and sweep rate for an irreversible electron-transfer reaction (equation (5)) was used [33].

$$E_{p/2} = E^\circ + (RT/\alpha nF) \left( \ln(k_s/D_0^{\frac{1}{2}}) + \frac{1}{2}\ln(RT/\alpha nF) + 1.077 - \frac{1}{2}\ln \nu \right) \quad (5)$$

(The half-peak potential,  $E_{p/2}$ , was measured instead of  $E_p$  because the

wave was rather broad).  $E_p/2$  was plotted against  $\ln \nu$ . The slope gave the cathodic charge-transfer coefficient  $\alpha = 0.35$ . The intercept gave  $k_s = 7 \times 10^{-6} \text{ cm s}^{-1}$ , assuming that  $E^{\circ}$ , the standard potential of the irreversible  $\text{TCNE}^-/\text{TCNE}^{2-}$  couple in TBAF/acetonitrile, was equal to the half-wave potential of the quasi-reversible couple in TEAP/acetonitrile, which was -1.05 V. (This assumes negligible ion-pairing between  $\text{TEA}^+$  and  $\text{TCNE}^{2-}$ , which seems reasonable in view of the lack of ion-pairing between  $\text{TEA}^+$  and  $\text{TCNQ}^{2-}$ ).

Reduction of TCNE in the presence of mixed electrolytes gave more complicated behavior than did reduction of TCNQ (Figure 3). As can be seen from this figure, the reduction of TCNE was not affected by mixtures of different supporting electrolytes and different electrode materials; the criteria for electrochemical reversibility were still obeyed by the first wave. Reduction of  $\text{TCNE}^-$  in mixed electrolytes, however, showed sharp symmetric waves at both electrodes suggestive of adsorption or phase deposition processes. For example, with 0.095 M TBAF and 0.005 M  $\text{LiClO}_4$  at a platinum electrode, the reverse wave at -0.8 V appeared to be an adsorption peak. For 0.05 M TEAP and 0.05 M  $\text{LiClO}_4$  at platinum, the reverse wave also appeared to be an adsorption peak, but was shifted positive to -0.2 V. In the case of 0.05 M TBAF and 0.05 M  $\text{LiClO}_4$  at carbon, a prepeak was observed on the forward sweep and the reverse wave was again quite sharp. Such adsorption or deposition did not appear to occur in the reductions of TCNQ and  $\text{TCNQ}^-$ .

### DISCUSSION

The half-wave potentials, taken to be the mean of the cathodic and anodic peak potentials, for the reductions of TCNQ and TCNE are summarized in Table 3. This Table also shows the standard heterogeneous rate constants for the reduction of  $\text{TCNQ}^{\cdot-}$  and  $\text{TCNE}^{\cdot-}$  at carbon and platinum, and the rate constants at platinum after a Frumkin correction [34] for the potential drop  $\phi_2$  between the outer Helmholtz plane (OHP) and the solution. The charge density on the electrode, necessary to calculate  $\phi_2$ , was found for  $\text{LiClO}_4$  and  $\text{NaClO}_4$  in acetonitrile at platinum by integrating capacitance-potential curves from reference [35] between the potential of zero charge (pzc) and the half-wave potential. (For platinum in acetonitrile the pzc is -0.42 V vs.  $\text{Ag}/\text{Ag}^+(0.01 \text{ M})$  [35] and at high concentrations (~ 0.1 M) the capacitance is constant at  $3 \mu\text{F cm}^{-2}$  between the pzc and potentials used here). Frumkin corrections for the other electrolytes were assumed to be the same as for  $\text{LiClO}_4$  and  $\text{NaClO}_4$ , though they may in fact be somewhat less.

#### Half-wave potentials

The half-wave potentials of the first reduction waves of both TCNQ and TCNE are independent of electrolyte, indicating that alkali metal cations do not form strong ion pairs with either  $\text{TCNQ}^{\cdot-}$  or  $\text{TCNE}^{\cdot-}$  in acetonitrile.

The half-wave potentials of the second waves show that both  $\text{TCNQ}^{2-}$  and  $\text{TCNE}^{2-}$  are stabilized by ion pairing with alkali metal cations; when the large organic cations of the supporting electrolyte are

replaced by  $\text{Na}^+$  or  $\text{Li}^+$  there is a positive shift in  $E_{1/2}$  as  $\Delta G^\circ$  for reaction (2) becomes more negative. Both dianions are stabilized by  $\text{Li}^+$  more than by  $\text{Na}^+$ ; this indicates that contact ion-pairs rather than solvent-separated ion-pairs are formed. The shifts in  $E_{1/2}$  due to ion pairing are larger for the  $\text{TCNE}^-/\text{TCNE}^{2-}$  couple than for the  $\text{TCNQ}^-/\text{TCNQ}^{2-}$  couple, as expected from the smaller size of  $\text{TCNE}^{2-}$ .

$E_{1/2}$  for reduction of TCNE is only slightly less negative than  $E_{1/2}$  for reduction of TCNQ, in agreement with literature data [36] but, for a given electrolyte,  $E_{1/2}$  for  $\text{TCNE}^-$  reduction is considerably more negative than  $E_{1/2}$  for  $\text{TCNQ}^-$  reduction. Presumably repulsion between the two extra electrons is greater in  $\text{TCNE}^{2-}$  than in the larger pi-system of  $\text{TCNQ}^{2-}$ .

#### Rate Constants

The first reduction steps were reversible in all electrolytes and at both electrode materials. The largest peak separation at 100 mV s<sup>-1</sup> sweep rate was 72 mV, which means that  $k_s$  for the first electron transfer was greater than  $3 \times 10^{-2}$  cm s<sup>-1</sup> in all cases. This is consistent with Sharp's data for platinum ( $k_s = 0.260$  cm s<sup>-1</sup> for TCNQ reduction and  $k_s = 0.159$  cm s<sup>-1</sup> for TCNE reduction [5]), but not with his data for carbon ( $k_s = 0.0035$  cm s<sup>-1</sup> for TCNQ reduction and  $k_s = 0.0021$  cm s<sup>-1</sup> for TCNE reduction [4]). The discrepancy might arise from the different types of carbon used; glassy carbon in this work and wax-impregnated graphite in reference [4].

The rate constants for  $\text{TCNQ}^-$  reduction in the presence of TEAP and TBAF are faster than the corresponding rate constants for  $\text{TCNE}^-$

reduction even after the differences in  $\phi_2$  potentials are taken into account. This might be due to a high inner reorganization energy for formation of  $\text{TCNE}^{2-}$  if the dianion is not planar [6].

Increasing cation size decreases the standard rate constant for reduction of  $\text{TCNE}^-$ . This has also been observed for reductions in several other aprotic systems [10,19-26]. Several explanations for such behaviour are possible. One possibility is blockage of the electrode surface, for example by specific adsorption of tetraalkylammonium cations, or by strong adsorption of  $\text{TCNE}^-$  or  $\text{TCNE}^{2-}$  in the presence of TBAF and TEAP, or by deposition of tetraalkylammonium salts of  $\text{TCNE}^{2-}$ . This seems unlikely, however, because voltammograms of mixtures of TCNE and anthracene in the presence of TBAF show reversible reduction of anthracene at potentials more negative than the irreversible second wave of TCNE, and likewise voltammograms of mixtures of TCNE and TCNQ in the presence of TBAF showed reversible reduction of  $\text{TCNQ}^-$  at potentials between the two waves of TCNE. Furthermore, with pure TEAP or TBAF as electrolytes no direct evidence for adsorption of the anion or dianion (such as prepeaks on the forward sweep, sharp peaks on the reverse sweep [37]) was observable (Figure 2).

It is probable, then, that the reduction processes observed here are all simple outer sphere electron transfers. Ion-pairing with the electrolyte cation might play a role in keeping the TCNE dianion planar, thereby reducing the reorganization energy for its formation, but it is difficult to envisage exactly how this could occur. It is more likely, as proposed for similar systems [10,19,23-25], that the

cation effect arises from a variation in the position of the outer Helmholtz plane (OHP) with cation size, which can affect the rate of an outer sphere electron transfer reaction in a number of ways.

#### Effect of OHP Position

The outer Helmholtz plane is the plane of closest approach of electrolyte ions to the electrode surface. According to the simple GCS model [34], there is a linear potential drop across the inner layer between the metal and OHP, if there is no specific adsorption, and a roughly exponential potential drop across the diffuse part of the double layer between the OHP and the bulk solution. At potentials well negative of the pzc nearly all of the ions at the OHP will be cations, and therefore the electrode-OHP distance will increase with size of the cation. It is usually assumed that electron transfer takes place with the reactant at the OHP. (The Frumkin correction depends upon this assumption).

Russel and Jaenicke [10,19] have attributed the effect of increasing cation size to decrease in electrostatic interaction between the reacting species and its image charge in the electrode, which would increase the outer sphere reorganization energy for electron transfer. Others have suggested, however, that image forces are negligible because of screening by electrolyte between the reactant and electrode [38,39], and there is some experimental evidence for this [40,41].

Fawcett [23,25] and Corrigan and Evans [24], have pointed out that the reaction site need not be at the OHP, but might be anywhere in the inner layer or diffuse layer. Assuming the potential of the metal and

of the OHP to be fixed, at potentials negative of the pzc the potential  $\phi_r$  at this reaction site must become more negative, and hence the rate of reduction lower, with increasing metal-OHP distance.

Another possibility is nonadiabaticity. Any electron transfer must become non-adiabatic when the electrode-reactant separation is large enough, and for non-adiabatic homogeneous electron transfers there is considerable evidence that the rate of electron transfer decreases exponentially with increasing separation of the reactants [42-44]. In fact it appears that most homogeneous electron transfer reactions between transition metal complexes are either marginally or completely nonadiabatic [42-44]. If this is also true for reactions at electrodes, as suggested by Hupp and Weaver [45-47], then approximately

$$k_s = k_{s0} \exp[-\gamma(r-r_0)] \quad (6)$$

where  $r$  is the electrode-reactant separation,  $r_0$  is the value of  $r$  at the plane of closest approach of the reactant, and  $k_{s0}$  is the value of  $k_s$  at this point. The coefficient  $\gamma$  has been estimated to lie in the range  $1-2 \text{ A}^{-1}$  [42-44].

Clearly if a nonadiabatic electron transfer takes place at the OHP the probability of electron transfer should decrease with increasing distance between the metal and the OHP. Differences in electron transfer rates between Cr(III) complexes have been explained in a similar manner by one complex being able to approach more closely than another to the electrode surface [47]. In practice, the reaction site (or range of sites) is expected to be the result of a compromise

between the effects of potential distribution in the double layer and slower electron transfer rates as the separation between the electrode and the reaction site increases; a high value of  $\gamma$  would force most of the electron transfers to take place very close to the electrode where  $\phi_r$  is more negative, also leading to low rate constants.

Rate constants for the reduction of TCNE<sup>-</sup> in the presence of LiClO<sub>4</sub> and NaClO<sub>4</sub> were faster than those in the presence of TBAF or TEAP. Presumably this means that the OHP is very close to the electrode in the alkali perchlorate electrolytes, as one would expect from the small crystal radii of the cations, and this must outweigh the decrease in electron transfer rate usually observed when strong ion pairing with cations takes place [10,19,26].

#### Effect of Electrode Material

The rate constants for TCNE<sup>-</sup> reduction are higher at carbon than at platinum (Table 3). This is unlikely to be due simply to less negative values of  $\phi_2$  at the carbon electrode since those at platinum are already very small. The cause is probably different solvent adsorption on the two materials. Electron transfers in acetonitrile have been found to be faster at mercury than at platinum, and blockage of the platinum surface by adsorbed acetonitrile was suggested as one possibility [24]. There is strong evidence, both from capacitance measurements [35] and from in-situ infrared spectra [48], that a platinum surface in acetonitrile is covered with a layer of chemisorbed acetonitrile molecules, while this does not appear to be the case for mercury electrodes [49,50]. If acetonitrile is not strongly adsorbed

on carbon, as seems likely, the same argument might apply here. It is probable, however, that the OHP at carbon is closer to the electrode surface than is the OHP at platinum, because the electrolyte ions are prevented from reaching the platinum surface by the chemisorbed layer. Then any of the above arguments for slower electron transfer with increasing electrode-OHP distance would apply here also.

CONCLUSIONS

(1) TCNE<sup>2-</sup> and TCNQ<sup>2-</sup> form strongly bound contact ion pairs with alkali metal cations in acetonitrile, while TCNE<sup>-</sup> and TCNQ<sup>-</sup> do not. Ion pairing is stronger for Li<sup>+</sup> than for Na<sup>+</sup> and stronger for TCNE<sup>2-</sup> than for TCNQ<sup>2-</sup>.

(2) The standard heterogeneous rate constant for reduction of TCNE<sup>-</sup> decreases as the size of the electrolyte cation increases, and is larger at carbon than at platinum. Both of these effects are probably due to a dependence of electron transfer rate on the metal-OHP separation, which may be at least partly the result of nonadiabatic electron transfer. The reductions of TCNQ, TCNQ<sup>-</sup>, and TCNE are reversible up to 500 mV s<sup>-1</sup>, which argues for a high inner reorganization energy in the reduction of TCNE<sup>-</sup>. These conclusions are rather tentative in view of the relative lack of information about the double layer at these electrodes in acetonitrile. More information will be obtained by measurement of all the rate constants for these systems.

**Acknowledgement**

We thank the Office of Naval Research, Washington, D.C. for support of this work.

References

1. M.R. Suchanski and R.P. Van Duyne J. Am. Chem. Soc. 98 (1976) 250.
2. M.E. Peover Trans. Faraday Soc. 60 (1964) 417.
3. M.E. Peover Trans. Faraday Soc. 58 (1962) 2370.
4. M. Sharp Electrochim. Acta 21 (1976) 973.
5. M. Sharp J. Electroanal. Chem. 88 (1978) 193.
6. D.L. Jeanmaire, M.R. Suchanski and R.P. Van Duyne J. Am. Chem. Soc. 97 (1975) 1699.
7. D.L. Jeanmaire and R.P. Van Duyne J. Am. Chem. Soc. 98 (1976) 4029.
8. S. Pons, S.B. Khoo, J. Janata, S.W. Feldberg, J.K. Foley and A.S. Hinman Electrochim. Acta 30 (1985) 569.
9. S.B. Khoo, S. Pons, J. Janata, S.W. Feldberg, J.K. Foley and A.S. Hinman Electrochim. Acta 30 (1985) 575.
10. C. Russel and W. Jaenicke J. Electroanal. Chem. 199 (1986) 139.
11. T. Nagaoka, S. Okazaki and T. Fujinaga J. Electroanal. Chem. 133 (1982) 89.
12. M.E. Peover and J.D. Davies J. Electroanal. Chem. 6 (1963) 46.
13. J.S. Jaworski and M.K. Kalinowski J. Electroanal. Chem. 76 (1977) 301.
14. A. Lasia and M.K. Kalinowski J. Electroanal. Chem. 36 (1972) 511.
15. T. Nagaoka and S. Okazaki J. Electroanal. Chem. 158 (1983) 139.
16. S. Pons, S.B. Khoo, A. Bewick, M. Datta, J.J. Smith, A.S. Hinman and G. Zachmann J. Phys. Chem. 88 (1984) 3575.
17. J.E. Mulvaney, R.J. Cramer and H.K. Hall, Jr. J. Polymer Sci. 21 (1983) 209.
18. C. Russel and W. Jaenicke Z. Phys. Chem., NF, 139 (1984) 97.
19. C. Russel and W. Jaenicke J. Electroanal. Chem. 180 (1984) 205.
20. B.S. Jensen, A. Ronlan and V.D. Parker Acta Chem. Scand. B 29 (1975) 394.

21. A.J. Fry, C.S. Hutchins and L.L. Chung J. Am. Chem. Soc. 97 (1975) 591.
22. B.S. Jensen and V.D. Parker J. Am. Chem. Soc. 97 (1975) 5211
23. A. Baranski and W.R. Fawcett J. Electroanal. Chem. 100 (1979) 185.
24. D.A. Corrigan and D.H. Evans J. Electroanal. Chem. 106 (1980) 287.
25. W.R. Fawcett and A. Lasia J. Phys. Chem. 89 (1985) 5695.
26. W.R. Fawcett and A. Lasia J. Phys. Chem. 82 (1978) 1114.
27. A.J. Fry, Synthetic Organic Electrochemistry, Harper and Row, New York, 1972, p. 72.
28. H. Lund and P. Iverson in Organic Electrochemistry, M. Baizer, Ed., Marcel Dekker, New York, 1969, p.57.
29. A.R. Siedle, G.A. Candela and J.F. Finnegan Inorg. Chim. Acta 35 (1979) 125.
30. J. Jacq Electrochim. Acta 12 (1967) 311.
31. I. Ruzic and D.E. Smith J. Electroanal. Chem. 58 (1975) 145.
32. R.S. Nicholson Anal. Chem. 37 (1965) 1351.
33. Equation (21) was obtained by combining equations (6.3.10) and (6.3.11) in A.J. Bard and L.R. Faulkner "Electrochemical Methods", Wiley, New York, 1980.
34. A.J. Bard and L.R. Faulkner "Electrochemical Methods", Wiley, New York, 1980, Chapter 12.
35. O.A. Petrii and I.G. Khomchenko J. Electroanal. Chem. 106 (1980) 277.
36. L.R. Melby, R.T. Hardner, W.R. Hertler, W. Mahler, R.E. Benson and W.E. Mochel J. Am. Chem. Soc. 84 (1962) 3374.
37. R.H. Wopshall and I. Shain Anal. Chem. 39 (1967) 1514.
38. J.M. Hale in "Reactions of Molecules at Electrodes", (Ed) N.S. Hush, p.229, Wiley, Interscience, 1971.
39. N.S. Hush Electrochim. Acta 13 (1968) 1005.
40. M.E. Peover, reference 46, p.259.
41. H. Kojima and A.J. Bard J. Am. Chem. Soc. 97 (1975) 6317.

42. N. Sutin and B.S. Brunschwig ACS Symp. Ser. 198 (1982) 105.
43. M.D. Newton ACS Symp. Ser. 198 (1982) 255.
44. M.D. Newton and N. Sutin Ann. Rev. Phys. Chem. 35 (1984) 437.
45. J.T. Hupp and M.J. Weaver J. Electroanal. Chem. 152 (1983) 1.
46. J.T. Hupp, H.Y. Liu, J.K. Farmer, T. Gennet and M.J. Weaver  
J. Electroanal. Chem. 168 (1984) 313.
47. J.T. Hupp and M.J. Weaver J. Phys. Chem. 88 (1984) 1463.
48. T. Davidson, S. Pons, A. Bewick and P.P. Schmidt J. Electroanal. Chem. (1981) 237.
49. R.Gambert and H. Baumgartel J. Electroanal. Chem. 183 (1985) 315.
50. W.R. Fawcett and R.O. Loufty Can. J. Chem. 51 (1972) 230.

Figure Legends

Figure 1. Cyclic voltammograms for reduction of TCNQ (1.00 mM in acetonitrile, 0.1 M supporting electrolyte) at glassy carbon with different supporting electrolytes.  
Sweep rate 100 mV s<sup>-1</sup>.

Figure 2. Cyclic voltammograms for reduction of TCNE (1.00 mM in acetonitrile, 0.1 M supporting electrolyte) at glassy carbon with different supporting electrolytes.  
Sweep rate 100 mV s<sup>-1</sup>.

Figure 3. Cyclic voltammograms for reduction of TCNE (1.00 mM in acetonitrile) with mixtures of supporting electrolytes.  
(i) Pt electrode, 0.095 M TBAF + 0.005 M LiClO<sub>4</sub>  
(ii) Pt electrode, 0.05 M TEAP + 0.05 M LiClO<sub>4</sub>  
(iii) C electrode, 0.05 M TBAF + 0.05 M LiClO<sub>4</sub>  
All at 100 mV s<sup>-1</sup>.

Table 1: Peak potentials and peak separations for the first and second reduction waves of TCNQ (1.00 mM) at 100 mV s<sup>-1</sup>.

| Electrode | Electrolyte        | First Wave              |                         |                         | Second Wave             |                         |                         |
|-----------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|           |                    | -E <sub>pc</sub><br>(V) | -E <sub>pa</sub><br>(V) | ΔE <sub>p</sub><br>(mV) | -E <sub>pc</sub><br>(V) | -E <sub>pa</sub><br>(V) | ΔE <sub>p</sub><br>(mV) |
| Carbon    | TBAF               | 0.140                   | 0.072                   | 68                      | 0.691                   | 0.627                   | 64                      |
|           | NaClO <sub>4</sub> | 0.146                   | 0.080                   | 66                      | 0.659                   | 0.597                   | 62                      |
|           | LiClO <sub>4</sub> | 0.146                   | 0.082                   | 64                      | 0.551                   | 0.490                   | 61                      |
| Platinum  | TBAF               | 0.140                   | 0.077                   | 63                      | 0.695                   | 0.628                   | 70                      |
|           | TEAP               | 0.144                   | 0.079                   | 65                      | 0.695                   | 0.629                   | 66                      |
|           | NaClO <sub>4</sub> | 0.145                   | 0.072                   | 67                      | 0.660                   | 0.592                   | 68                      |
|           | LiClO <sub>4</sub> | 0.140                   | 0.078                   | 68                      | 0.558                   | 0.498                   | 60                      |

**Table 2:** Peak potentials and peak separations for the first and second reduction waves of TCNE (1.00 mM) at 100 mV s<sup>-1</sup>.

| Electrode | Electrolyte        | First Wave              |                         |                         | Second Wave             |                         |                         |
|-----------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|           |                    | -E <sub>pc</sub><br>(V) | -E <sub>pa</sub><br>(V) | ΔE <sub>p</sub><br>(mV) | -E <sub>pc</sub><br>(V) | -E <sub>pa</sub><br>(V) | ΔE <sub>p</sub><br>(mV) |
| Carbon    | TBAF               | 0.091                   | 0.020                   | 71                      | 1.290                   | 0.890                   | 400                     |
|           | TEAP               | 0.102                   | 0.040                   | 59                      | 1.092                   | 0.988                   | 94                      |
|           | NaClO <sub>4</sub> | 0.102                   | 0.041                   | 61                      | 0.981                   | 0.909                   | 72                      |
|           | LiClO <sub>4</sub> | 0.114                   | 0.052                   | 62                      | 0.840                   | 0.753                   | 87                      |
| Platinum  | TBAF               | 0.110                   | 0.038                   | 72                      | 1.625                   | 1.100                   | 525                     |
|           | TEAP               | 0.105                   | 0.042                   | 63                      | 1.264                   | 0.967                   | 297                     |
|           | NaClO <sub>4</sub> | 0.110                   | 0.042                   | 68                      | 0.980                   | 0.907                   | 73                      |
|           | LiClO <sub>4</sub> | 0.108                   | 0.045                   | 63                      | 0.833                   | 0.756                   | 77                      |

Table 3: Thermodynamic and kinetic data for reduction of TCNQ and TCNE: half-wave potentials for first reduction waves and second reduction waves, and standard heterogeneous rate constants for second reduction wave at carbon ( $k_s^C$ ), platinum ( $k_s^{Pt}$ ), and platinum after correction for double layer effects ( $k_s^{Pt,cor}$ ).

| Substrate | Cation           | $-E_{\frac{1}{2}}^{(1)}$<br>(V) | $-E_{\frac{1}{2}}^{(2)}$<br>(V) | $k_s^C$<br>(cm s <sup>-1</sup> ) | $k_s^{Pt}$<br>(cm s <sup>-1</sup> ) | $k_s^{Pt,cor}$<br>(cm s <sup>-1</sup> ) |
|-----------|------------------|---------------------------------|---------------------------------|----------------------------------|-------------------------------------|-----------------------------------------|
| TCNQ      | TBA <sup>+</sup> | -0.11                           | -0.66                           | reversible <sup>a</sup>          | reversible                          | >0.08                                   |
|           | TEA <sup>+</sup> | -0.11                           | -0.66                           | reversible                       | reversible                          | >0.08                                   |
|           | Na <sup>+</sup>  | -0.11                           | -0.63                           | reversible                       | reversible                          | >0.06                                   |
|           | Li <sup>+</sup>  | -0.11                           | -0.52                           | reversible                       | reversible                          | >0.05                                   |
| TCNE      | TBA <sup>+</sup> | -0.07                           | -1.05 <sup>b</sup>              | $1.1 \times 10^{-3}$             | $0.7 \times 10^{-5}$                | $6 \times 10^{-5}$                      |
|           | TEA <sup>+</sup> | -0.07                           | -1.05                           | $1.0 \times 10^{-2}$             | $1.5 \times 10^{-3}$                | 0.01                                    |
|           | Na <sup>+</sup>  | -0.07                           | -0.94                           | reversible                       | reversible                          | >0.18                                   |
|           | Li <sup>+</sup>  | -0.07                           | -0.79                           | reversible                       | reversible                          | >0.10                                   |

a.  $k_s > 3 \times 10^{-2}$  cm s<sup>-1</sup> for reversible systems

b. assumed equal to  $E_{1/2}$  for TCNE/TEAP system







DL/413/83/01  
GEN/413-2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

|                                                                                                                              | No.<br><u>Copies</u> |                                                                                                                | No.<br><u>Copies</u> |
|------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|----------------------|
| Office of Naval Research<br>Attn: Code 413<br>800 N. Quincy Street<br>Arlington, Virginia 22217                              | 2                    | Dr. David Young<br>Code 334<br>NORDA<br>NSTL, Mississippi 39529                                                | 1                    |
| Dr. Bernard Douda<br>Naval Weapons Support Center<br>Code 5042<br>Crane, Indiana 47522                                       | 1                    | Naval Weapons Center<br>Attn: Dr. Ron Atkins<br>Chemistry Division<br>China Lake, California 93555             | 1                    |
| Commander, Naval Air Systems<br>Command<br>Attn: Code 310C (H. Rosenwasser)<br>Washington, D.C. 20360                        | 1                    | Scientific Advisor<br>Commandant of the Marine Corps<br>Code RD-1<br>Washington, D.C. 20380                    | 1                    |
| Naval Civil Engineering Laboratory<br>Attn: Dr. R. W. Drisko<br>Port Hueneme, California 93401                               | 1                    | U.S. Army Research Office<br>Attn: CRD-AA-IP<br>P.O. Box 12211<br>Research Triangle Park, NC 27709             | 1                    |
| Defense Technical Information Center<br>Building 5, Cameron Station<br>Alexandria, Virginia 22314                            | 12                   | Mr. John Boyle<br>Materials Branch<br>Naval Ship Engineering Center<br>Philadelphia, Pennsylvania 19112        | 1                    |
| DTNSRDC<br>Attn: Dr. G. Bosmajian<br>Applied Chemistry Division<br>Annapolis, Maryland 21401                                 | 1                    | Naval Ocean Systems Center<br>Attn: Dr. S. Yamamoto<br>Marine Sciences Division<br>San Diego, California 91232 | 1                    |
| Dr. William Tolles<br>Superintendent<br>Chemistry Division, Code 6100<br>Naval Research Laboratory<br>Washington, D.C. 20375 | 1                    |                                                                                                                |                      |

DL/413/83/01  
359/413-2

ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delahay  
Department of Chemistry  
New York University  
New York, New York 10003

Dr. P. J. Hendra  
Department of Chemistry  
University of Southampton  
Southampton SO9 5NH  
United Kingdom

Dr. J. Driscoll  
Lockheed Palo Alto Research  
Laboratory  
3251 Hanover Street  
Palo Alto, California 94304

Dr. D. N. Bennion  
Department of Chemical Engineering  
Brigham Young University  
Provo, Utah 84602

Dr. R. A. Marcus  
Department of Chemistry  
California Institute of Technology  
Pasadena, California 91125

Dr. J. J. Auburn  
Bell Laboratories  
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1  
NASA-Lewis  
21000 Brookpark Road  
Cleveland, Ohio 44135

Dr. P. P. Schmidt  
Department of Chemistry  
Oakland University  
Rochester, Michigan 48063

Dr. Manfred Breiter  
Institut fur Technische Elektrochemie  
Technischen Universität Wien  
9 Getreidemarkt, 1160 Wien  
AUSTRIA

Dr. E. Yeager  
Department of Chemistry  
Case Western Reserve University  
Cleveland, Ohio 44106

Dr. C. E. Mueller  
The Electrochemistry Branch  
Naval Surface Weapons Center  
White Oak Laboratory  
Silver Spring, Maryland 20910

Dr. Sam Perone  
Chemistry & Materials  
Science Department  
Lawrence Livermore National Laboratory  
Livermore, California 94550

Dr. Royce W. Murray  
Department of Chemistry  
University of North Carolina  
Chapel Hill, North Carolina 27514

Dr. B. Brummer  
EIC Incorporated  
111 Downey Street  
Norwood, Massachusetts 02062

Dr. Adam Heller  
Bell Laboratories  
Murray Hill, New Jersey 07974

Dr. A. B. Ellis  
Chemistry Department  
University of Wisconsin  
Madison, Wisconsin 53706

Library  
Duracell, Inc.  
Burlington, Massachusetts 01803

Electrochimica Corporation  
20 Kelly Court  
Menlo Park, California 94025-1418

ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. M. Wrighton  
Chemistry Department  
Massachusetts Institute  
of Technology  
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons  
Department of Chemistry  
University of Utah  
Salt Lake City, Utah 84112

Donald E. Mains  
Naval Weapons Support Center  
Electrochemical Power Sources Division  
Crane, Indiana 47522

S. Ruby  
DOE (STOR)  
Room 5E036 Forrestal Bldg., CE-14  
Washington, D.C. 20595

Dr. A. J. Bard  
Department of Chemistry  
University of Texas  
Austin, Texas 78712

Dr. Janet Osteryoung  
Department of Chemistry  
State University of New York  
Buffalo, New York 14214

Dr. Donald W. Ernst  
Naval Surface Weapons Center  
Code R-33  
White Oak Laboratory  
Silver Spring, Maryland 20910

Mr. James R. Moden  
Naval Underwater Systems Center  
Code 3632  
Newport, Rhode Island 02840

Dr. Bernard Spielvogel  
U.S. Army Research Office  
P.O. Box 12211  
Research Triangle Park, NC 27709

Dr. Aaron Fletcher  
Naval Weapons Center  
Code 3852  
China Lake, California 93555

Dr. M. M. Nicholson  
Electronics Research Center  
Rockwell International  
3370 Miraloma Avenue  
Anaheim, California

Dr. Michael J. Weaver  
Department of Chemistry  
Purdue University  
West Lafayette, Indiana 47907

Dr. R. David Rauh  
EIC Laboratories, Inc.  
111 Downey Street  
Norwood, Massachusetts 02062

Dr. Aaron Wold  
Department of Chemistry  
Brown University  
Providence, Rhode Island 02192

Dr. Martin Fleischmann  
Department of Chemistry  
University of Southampton  
Southampton SO9 5NH ENGLAND

Dr. R. A. Osteryoung  
Department of Chemistry  
State University of New York  
Buffalo, New York 14214

Dr. John Wilkes  
Air Force Office of Scientific  
Research  
Bolling AFB  
Washington, D.C. 20332

Dr. R. Nowak  
Naval Research Laboratory  
Code 6171  
Washington, D.C. 20375

Dr. D. F. Shriver  
Department of Chemistry  
Northwestern University  
Evanston, Illinois 60201

ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Hector D. Abruna  
Department of Chemistry  
Cornell University  
Ithaca, New York 14853

Dr. A. B. P. Lever  
Chemistry Department  
York University  
Downsview, Ontario M3J1P3

Dr. Stanislaw Szpak  
Naval Ocean Systems Center  
Code 633, Bayside  
San Diego, California 95152

Dr. Gregory Farrington  
Department of Materials Science  
and Engineering  
University of Pennsylvania  
Philadelphia, Pennsylvania 19104

M. L. Robertson  
Manager, Electrochemical  
and Power Sources Division  
Naval Weapons Support Center  
Crane, Indiana 47522

Dr. T. Marks  
Department of Chemistry  
Northwestern University  
Evanston, Illinois 60201

Dr. Micha Tomkiewicz  
Department of Physics  
Brooklyn College  
Brooklyn, New York 11210

Dr. Lesser Blum  
Department of Physics  
University of Puerto Rico  
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II  
IBM Corporation  
5600 Cottle Road  
San Jose, California 95193

Dr. Nathan Lewis  
Department of Chemistry  
Stanford University  
Stanford, California 94305

Dr. D. H. Whitmore  
Department of Materials Science  
Northwestern University  
Evanston, Illinois 60201

Dr. Alan Bewick  
Department of Chemistry  
The University of Southampton  
Southampton, SO9 5NH ENGLAND

Dr. E. Anderson  
NAVSEA-56Z33 NC #4  
2541 Jefferson Davis Highway  
Arlington, Virginia 20362

Dr. Bruce Dunn  
Department of Engineering &  
Applied Science  
University of California  
Los Angeles, California 90024

Dr. Elton Cairns  
Energy & Environment Division  
Lawrence Berkeley Laboratory  
University of California  
Berkeley, California 94720

Dr. Richard Pollard  
Department of Chemical Engineering  
University of Houston  
Houston, Texas 77004

Dr. M. Philpott  
IBM Corporation  
5600 Cottle Road  
San Jose, California 95193

Dr. Donald Sandstrom  
Boeing Aerospace Co.  
P.O. Box 3999  
Seattle, Washington 98124

Dr. Carl Kannewurf  
Department of Electrical Engineering  
and Computer Science  
Northwestern University  
Evanston, Illinois 60201

Dr. Joel Harris  
Department of Chemistry  
University of Utah  
Salt Lake City, Utah 84112

DL/413/83/01  
359/413-2

ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Robert Somoano  
Jet Propulsion Laboratory  
California Institute of Technology  
Pasadena, California 91103

Dr. Johann A. Joebstl  
USA Mobility Equipment R&D Command  
DRDME-EC  
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambrus  
NASA Headquarters  
M.S. RTS-6  
Washington, D.C. 20546

Dr. Albert R. Landgrebe  
U.S. Department of Energy  
M.S. 68025 Forrestal Building  
Washington, D.C. 20595

Dr. J. J. Brophy  
Department of Physics  
University of Utah  
Salt Lake City, Utah 84112

Dr. Charles Martin  
Department of Chemistry  
Texas A&M University  
College Station, Texas 77843

Dr. H. Tachikawa  
Department of Chemistry  
Jackson State University  
Jackson, Mississippi 39217

Dr. Theodore Beck  
Electrochemical Technology Corp.  
3935 Leary Way N.W.  
Seattle, Washington 98107

Dr. Farrell Lytle  
Boeing Engineering and  
Construction Engineers  
P.O. Box 3707  
Seattle, Washington 98124

Dr. Robert Gotscholl  
U.S. Department of Energy  
MS G-226  
Washington, D.C. 20545

Dr. Edward Fletcher  
Department of Mechanical Engineering  
University of Minnesota  
Minneapolis, Minnesota 55455

Dr. John Fontanella  
Department of Physics  
U.S. Naval Academy  
Annapolis, Maryland 21402

Dr. Martha Greenblatt  
Department of Chemistry  
Rutgers University  
New Brunswick, New Jersey 08903

Dr. John Wasson  
Syntheco, Inc.  
Rte 6 - Industrial Pike Road  
Gastonia, North Carolina 28052

Dr. Walter Roth  
Department of Physics  
State University of New York  
Albany, New York 12222

Dr. Anthony Sammells  
Eltron Research Inc.  
4260 Westbrook Drive, Suite 111  
Aurora, Illinois 60505

Dr. C. A. Angell  
Department of Chemistry  
Purdue University  
West Lafayette, Indiana 47907

Dr. Thomas Davis  
Polymer Science and Standards  
Division  
National Bureau of Standards  
Washington, D.C. 20234

Ms. Wendy Parkhurst  
Naval Surface Weapons Center R-33  
R-33  
Silver Spring, Maryland 20910

DL/413/83/01  
359/413-2

ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. John Owen  
Department of Chemistry and  
Applied Chemistry  
University of Salford  
Salford M5 4WT ENGLAND

Dr. Boone Owens  
Department of Chemical Engineering  
and Materials Science  
University of Minnesota  
Minneapolis, Minnesota 55455

Dr. J. O. Thomas  
University of Uppsala  
Institute of Chemistry  
Box 531  
S-751 21 Uppsala, Sweden

Dr. O. Stafssudd  
Department of Electrical Engineering  
University of California  
Los Angeles, California 90024

Dr. S. G. Greenbaum  
Department of Physics  
Hunter College of CUNY  
New York, New York 10021

Dr. Menahem Anderman  
W.R. Grace & Co.  
Columbia, Maryland 20144

END

DATE

FILMED

7-88

Dtic