

Discrete vs Continuous data

Discrete distribution

A statistical distribution used for Discrete data

Continuous distribution

A statistical distribution used for Continuous data

Discrete distribution

A statistical distribution used for Discrete data

Continuous distribution

A statistical distribution used for Continuous data

Normal Distribution (the Bell curve)

Discrete distribution

A statistical distribution used for Discrete data

Continuous distribution

A statistical distribution used for Continuous data

Normal Distribution (the Bell curve)

... a continuous distribution

What is it?

What is it?

It is a rule that assigns probabilities to various possible values that a random variable takes when it is being approximated by a particular statistical distribution.

is called the

Probability Mass Function (pmf)

... in the context of discrete data

Outcome of toss	Probability
Heads	0.5
Tails	0.5

Outcome of toss	Probability
Heads	0.5
Tails	0.5

Outcome of toss	Probability
Heads	0.5
Tails	0.5

Outcome of toss	Probability	
Heads	0.5	
Tails	0.5	
	 Total = 1.0	

Random variable	Outcome of toss	Probability
	Heads	0.5
	Tails	0.5
	'	 Total = 1.0

Outcome of roll	Probability
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

	ı	
(Random) — variable	Outcome of roll	Probability
	1	1/6
	2	1/6
	3	1/6
	4	1/6
	5	1/6
	6	1/6

Random variable	Outcome of roll	Probabili	ty
	1	1/6]
	2	1/6	
	3	1/6	Probabilities bound
	4	1/6	between 0 and 1
	5	1/6	
	6	1/6 -	J

It is easy to write down the pmf of,

... a Coin toss

... roll of a Dice


```
It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice
```


It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution

It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution


```
It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice
```

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution

```
customers of arriving
```



```
It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice
```

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution

```
\frac{\text{customers}}{\text{arriving}} \longrightarrow 0 \quad 1 \quad 2
```



```
It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice
```

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution

```
customers \longrightarrow 0 1 2 3
```



```
It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice
```

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution

```
\frac{\text{customers}}{\text{arriving}} \longrightarrow 0 \quad 1 \quad 2 \quad 3 \quad 4
```



```
It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice
```

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution

```
customers \rightarrow 0 1 2 3 4 5
```


It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice

Number of customers arriving at the checkout counter of a grocery store in an hour

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution

customers arriving

0

2

3

4

5

6


```
It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice
```

Number of customers arriving at the checkout counter of a grocery store in an hour

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution

```
customers arriving
```


0

2

3

4

5

5


```
It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice
```

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution

```
customers \rightarrow 0 1 2 3 4 5 6 ...
```


It is easy to write down the pmf of,
... a Coin toss
... roll of a Dice

Number of customers arriving at the checkout counter of a grocery store in an hour

- approximate this process using a statistical distribution
- use the pmf of that statistical distribution

zero probability between 4 and 5

Probability Mass Function is called the **Probability Density Function**

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

(heights of men and women)

Probability(height = 5' 2") = ?

Probability Mass Function is called the **Probability Density Function**

It is a rule that assigns probabilities to various possible values that a random variable takes.

Probability of a particular outcome is always zero

Probability of a particular outcome is always **zero** ...

Probability of a particular outcome is always **zero** ...

... hence we always consider ranges of outcomes

• What is the probability that someone's height is **between 5'2" and 5'5"**?

Probability of a particular outcome is always **zero** ...

- What is the probability that someone's height is **between 5'2" and 5'5"**?
- What is the probability that someone's height is less than 5' feet?

Probability of a particular outcome is always **zero** ...

- What is the probability that someone's height is **between 5'2" and 5'5"**?
- What is the probability that someone's height is less than 5' feet?
- What is the probability that someone's height is greater than 5' feet?

Probability of a particular outcome is always **zero** ...

- What is the probability that someone's height is **between 5'2" and 5'5"**?
- What is the probability that someone's height is less than 5' feet?
- What is the probability that someone's height is greater than 5' feet?
- ...
- ...

Plot of probability Density Function

Plot of probability Density Function

Plot of probability Density Function

Prob(Height
$$< 5'$$
) = ?

Prob(Height
$$< 5'$$
) = ?

Prob(Height > 5' 10") = ?

Prob(Height =
$$5'$$
) = 0

