Section 2.9

Dimension and Rank

Coefficients of Basis Vectors

Recall: a **basis** of a subspace V is a set of vectors that *spans* V and is *linearly independent*.

Coefficients of Basis Vectors

Recall: a **basis** of a subspace V is a set of vectors that *spans* V and is *linearly independent*.

Lemma like a theorem, but less important

Coefficients of Basis Vectors

Recall: a **basis** of a subspace V is a set of vectors that *spans* V and is *linearly independent*.

Lemma like a theorem, but less important

If $\mathcal{B}=\{v_1,v_2,\ldots,v_m\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

$$x = c_1v_1 + c_2v_2 + \cdots + c_mv_m$$

for unique coefficients c_1, c_2, \ldots, c_m .

The unit coordinate vectors e_1, e_2, \ldots, e_n form a basis for \mathbf{R}^n . Any vector is a unique linear combination of the e_i :

$$v = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 3e_1 + 5e_2 - 2e_3.$$

The unit coordinate vectors e_1, e_2, \ldots, e_n form a basis for \mathbb{R}^n . Any vector is a unique linear combination of the e_i :

$$v = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 3e_1 + 5e_2 - 2e_3.$$

Observe: the coordinates of v are exactly the coefficients of e_1, e_2, e_3 .

The unit coordinate vectors e_1, e_2, \ldots, e_n form a basis for \mathbf{R}^n . Any vector is a unique linear combination of the e_i :

$$v = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 3e_1 + 5e_2 - 2e_3.$$

Observe: the coordinates of v are exactly the coefficients of e_1, e_2, e_3 .

We can go backwards: given any basis \mathcal{B} , we interpret the coefficients of a linear combination as "coordinates" with respect to \mathcal{B} .

The unit coordinate vectors e_1, e_2, \ldots, e_n form a basis for \mathbb{R}^n . Any vector is a unique linear combination of the e_i :

$$v = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 3e_1 + 5e_2 - 2e_3.$$

Observe: the coordinates of v are exactly the coefficients of e_1, e_2, e_3 .

We can go backwards: given any basis \mathcal{B} , we interpret the coefficients of a linear combination as "coordinates" with respect to \mathcal{B} .

Definition

Let $\mathcal{B} = \{v_1, v_2, \ldots, v_m\}$ be a basis of a subspace V. Any vector x in V can be written uniquely as a linear combination $x = c_1v_1 + c_2v_2 + \cdots + c_mv_m$. The coefficients c_1, c_2, \ldots, c_m are the **coordinates of** x **with respect to** \mathcal{B} . The \mathcal{B} -coordinate vector of x is the vector

$$[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} \quad \text{in } \mathbf{R}^m.$$

Let
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathcal{B} = \{v_1, v_2\}$, $V = \mathsf{Span}\{v_1, v_2\}$.

Let
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathcal{B} = \{v_1, v_2\}, \quad \ V = \mathsf{Span}\{v_1, v_2\}.$$

Verify that \mathcal{B} is a basis:

Let
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathcal{B} = \{v_1, v_2\}, \quad \ V = \mathsf{Span}\{v_1, v_2\}.$$

Verify that ${\cal B}$ is a basis:

Question: If
$$[x]_{\mathcal{B}} = \binom{5}{2}$$
, then what is x ?

Let
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathcal{B} = \{v_1, v_2\}, \quad \ V = \mathsf{Span}\{v_1, v_2\}.$$

Verify that ${\cal B}$ is a basis:

Question: If
$$[x]_{\mathcal{B}} = \binom{5}{2}$$
, then what is x?

Question: Find the
$$\mathcal{B}$$
-coordinates of $x = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$.

Let
$$v_1 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 8 \\ 6 \end{pmatrix}$, $V = \mathsf{Span}\{v_1, v_2, v_3\}$.

Let
$$v_1 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 8 \\ 6 \end{pmatrix}$, $V = \mathsf{Span}\{v_1, v_2, v_3\}$.

Question: Find a basis for V.

Let
$$v_1 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 8 \\ 6 \end{pmatrix}$, $V = \mathsf{Span}\{v_1, v_2, v_3\}$.

Question: Find a basis for V.

Question: Find the
$$\mathcal{B}$$
-coordinates of $x = \begin{pmatrix} 4 \\ 11 \\ 8 \end{pmatrix}$.

Bases as Coordinate Systems Summary

If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V and x is in V, then

$$= \{v_1, v_2, \dots, v_m\} \text{ is a basis for a subspace } V \text{ and } x \text{ is in } V,$$

$$\begin{bmatrix} [x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} & \text{means} & x = c_1v_1 + c_2v_2 + \dots + c_mv_m. \end{bmatrix}$$

Bases as Coordinate Systems Summary

If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V and x is in V, then

$$[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} \quad \text{means} \quad x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m.$$

Finding the $\mathcal{B}\text{-coordinates}$ for x means solving the vector equation

$$x = c_1v_1 + c_2v_2 + \cdots + c_mv_m$$

in the unknowns c_1, c_2, \ldots, c_m .

Bases as Coordinate Systems Summary

If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V and x is in V, then

$$\begin{bmatrix} [x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} \quad \text{means} \quad x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m.$$

Finding the $\mathcal{B}\text{-coordinates}$ for x means solving the vector equation

$$x = c_1v_1 + c_2v_2 + \cdots + c_mv_m$$

in the unknowns c_1, c_2, \ldots, c_m . This (usually) means row reducing the augmented matrix

$$\begin{pmatrix} | & | & & | & | \\ v_1 & v_2 & \cdots & v_m & x \\ | & | & & | & | \end{pmatrix}.$$

If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V and x is in V, then

$$\begin{bmatrix} [x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} \quad \text{means} \quad x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m.$$

Finding the \mathcal{B} -coordinates for x means solving the vector equation

$$x = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m$$

in the unknowns c_1, c_2, \ldots, c_m . This (usually) means row reducing the augmented matrix

$$\begin{pmatrix} | & | & & | & | \\ v_1 & v_2 & \cdots & v_m & x \\ | & | & & | & | \end{pmatrix}.$$

Question: What happens if you try to find the \mathcal{B} -coordinates of x not in V?

Bases as Coordinate Systems Picture

Let

$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
 $v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$

These form a basis $\ensuremath{\mathcal{B}}$ for the plane

$$V = \mathsf{Span}\{v_1, v_2\}$$

in \mathbf{R}^3 .

Bases as Coordinate Systems Picture

Let

$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

These form a basis ${\cal B}$ for the plane

$$V = \mathsf{Span}\{v_1, v_2\}$$

in \mathbb{R}^3 .

Question: Estimate the \mathcal{B} -coordinates of these vectors:

$$[u_1]_{\mathcal{B}} =$$

$$[u_2]_{\mathcal{B}} =$$

$$[u_3]_{\mathcal{B}} =$$

$$[u_4]_{\mathcal{B}} =$$

Let

$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

These form a basis ${\cal B}$ for the plane

$$V = \mathsf{Span}\{v_1, v_2\}$$

in \mathbf{R}^3 .

Question: Estimate the \mathcal{B} -coordinates of these vectors:

$$[\mathbf{u}_1]_{\mathcal{B}} = [\mathbf{u}_2]_{\mathcal{B}} = [\mathbf{u}_3]_{\mathcal{B}} = [\mathbf{u}_4]_{\mathcal{B}} =$$

Remark

Many of you want to think of a plane in \mathbb{R}^3 as "being" \mathbb{R}^2 . Choosing a basis \mathcal{B} and using \mathcal{B} -coordinates is one way to make sense of that. But remember that the coordinates are the coefficients of a linear combination of the basis vectors.

Recall:

▶ The **dimension** of a subspace V is the number of vectors in a basis for V.

- ▶ The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the

- ▶ The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.

- ightharpoonup The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix *A* is given by the pivot columns.
- ▶ A basis for the null space of A is given by the

- ightharpoonup The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix *A* is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Recall:

- ightharpoonup The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Definition

The rank of a matrix A, written $\operatorname{rank} A$, is the dimension of the column space $\operatorname{Col} A$.

Recall:

- ▶ The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Definition

The rank of a matrix A, written $\operatorname{rank} A$, is the dimension of the column space $\operatorname{Col} A$.

Observe:

rank A = dim Col A =

Recall:

- ▶ The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Definition

The **rank** of a matrix A, written rank A, is the dimension of the column space Col A.

Observe:

rank A = dim Col A = the number of columns with pivots

Recall:

- ▶ The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Definition

The rank of a matrix A, written $\operatorname{rank} A$, is the dimension of the column space $\operatorname{Col} A$.

Observe:

```
\operatorname{rank} A = \operatorname{dim} \operatorname{Col} A = \operatorname{the} \operatorname{number} \operatorname{of} \operatorname{columns} \operatorname{with} \operatorname{pivots} \operatorname{dim} \operatorname{Nul} A =
```

Recall:

- ▶ The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Definition

The **rank** of a matrix A, written rank A, is the dimension of the column space Col A.

Observe:

```
rank A = \dim \operatorname{Col} A = \operatorname{the} number of columns with pivots \dim \operatorname{Nul} A = \operatorname{the} number of free variables
```

Recall:

- ▶ The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Definition

The **rank** of a matrix A, written rank A, is the dimension of the column space Col A.

Observe:

```
rank A = \dim \operatorname{Col} A = \text{the number of columns with pivots}
\dim \operatorname{Nul} A = \text{the number of free variables}
= \text{the number of columns without pivots.}
```

Recall:

- ightharpoonup The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Definition

The **rank** of a matrix A, written rank A, is the dimension of the column space Col A.

Observe:

```
rank A = \dim \operatorname{Col} A = \operatorname{the} number of columns with pivots \dim \operatorname{Nul} A = \operatorname{the} \text{ number of free variables}= \operatorname{the} \text{ number of columns without pivots.}
```

Rank Theorem

If A is an $m \times n$ matrix, then

$$\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A =$$

Recall:

- ▶ The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Definition

The **rank** of a matrix A, written rank A, is the dimension of the column space Col A.

Observe:

```
rank A = \dim \operatorname{Col} A = \operatorname{the} number of columns with pivots \dim \operatorname{Nul} A = \operatorname{the} \text{ number of free variables}= \operatorname{the} \text{ number of columns without pivots.}
```

Rank Theorem

If A is an $m \times n$ matrix, then

rank $A + \dim \text{Nul } A = n = \text{the number of columns of } A$.

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{\mathsf{rref}} \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The Rank Theorem

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
basis of Col A

The Rank Theorem

Poll

Let A and B be 3×3 matrices. Suppose that rank(A) = 2 and rank(B) = 2. Is it possible that AB = 0? Why or why not?

Let A and B be 3×3 matrices. Suppose that ${\rm rank}(A) = 2$ and ${\rm rank}(B) = 2$. Is it possible that AB = 0? Why or why not?

If AB = 0, then ABx = 0 for every x in \mathbb{R}^3 .

Let A and B be 3×3 matrices. Suppose that rank(A) = 2 and rank(B) = 2. Is it possible that AB = 0? Why or why not?

If AB = 0, then ABx = 0 for every x in \mathbb{R}^3 .

This means A(Bx) = 0, so Bx is in Nul A.

Let A and B be 3×3 matrices. Suppose that $\mathrm{rank}(A) = 2$ and $\mathrm{rank}(B) = 2$. Is it possible that AB = 0? Why or why not?

If AB = 0, then ABx = 0 for every x in \mathbf{R}^3 .

This means A(Bx) = 0, so Bx is in Nul A.

This is true for every x, so Col B is contained in Nul A.

Let A and B be 3×3 matrices. Suppose that rank(A)=2 and rank(B)=2. Is it possible that AB=0? Why or why not?

If AB = 0, then ABx = 0 for every x in \mathbb{R}^3 .

This means A(Bx) = 0, so Bx is in Nul A.

This is true for every x, so Col B is contained in Nul A.

But $\dim \operatorname{Nul} A=1$ and $\dim \operatorname{Col} B=2$, and a 1-dimensional space can't contain a 2-dimensional space.

Let A and B be 3×3 matrices. Suppose that rank(A)=2 and rank(B)=2. Is it possible that AB=0? Why or why not?

If AB = 0, then ABx = 0 for every x in \mathbb{R}^3 .

This means A(Bx) = 0, so Bx is in Nul A.

This is true for every x, so Col B is contained in Nul A.

But dim Nul A=1 and dim Col B=2, and a 1-dimensional space can't contain a 2-dimensional space.

Hence it can't happen.

Let A and B be 3×3 matrices. Suppose that rank(A) = 2 and rank(B) = 2. Is it possible that AB = 0? Why or why not?

If AB = 0, then ABx = 0 for every x in \mathbb{R}^3 .

This means A(Bx) = 0, so Bx is in Nul A.

This is true for every x, so Col B is contained in Nul A.

But dim Nul A=1 and dim Col B=2, and a 1-dimensional space can't contain a 2-dimensional space.

Hence it can't happen.

Basis Theorem

Let V be a subspace of dimension m. Then:

Basis Theorem

Let V be a subspace of dimension m. Then:

ightharpoonup Any m linearly independent vectors in V form a basis for V.

Basis Theorem

Let V be a subspace of dimension m. Then:

- ightharpoonup Any m linearly independent vectors in V form a basis for V.
- ▶ Any m vectors that span V form a basis for V.

Basis Theorem

Let V be a subspace of dimension m. Then:

- ightharpoonup Any m linearly independent vectors in V form a basis for V.
- ▶ Any *m* vectors that span *V* form a basis for *V*.

Upshot

If you already know that dim V=m, and you have m vectors $\mathcal{B}=\{v_1,v_2,\ldots,v_m\}$ in V, then you only have to check *one* of

Basis Theorem

Let V be a subspace of dimension m. Then:

- ightharpoonup Any m linearly independent vectors in V form a basis for V.
- ▶ Any *m* vectors that span *V* form a basis for *V*.

Upshot

If you already know that dim V=m, and you have m vectors $\mathcal{B}=\{v_1,v_2,\ldots,v_m\}$ in V, then you only have to check one of

1. \mathcal{B} is linearly independent, or

Basis Theorem

Let V be a subspace of dimension m. Then:

- ightharpoonup Any m linearly independent vectors in V form a basis for V.
- ▶ Any *m* vectors that span *V* form a basis for *V*.

Upshot

If you already know that dim V=m, and you have m vectors $\mathcal{B}=\{v_1,v_2,\ldots,v_m\}$ in V, then you only have to check one of

- 1. \mathcal{B} is linearly independent, or
- 2. \mathcal{B} spans V

Basis Theorem

Let V be a subspace of dimension m. Then:

- ightharpoonup Any m linearly independent vectors in V form a basis for V.
- ▶ Any *m* vectors that span *V* form a basis for *V*.

Upshot

If you already know that dim V=m, and you have m vectors $\mathcal{B}=\{v_1,v_2,\ldots,v_m\}$ in V, then you only have to check *one* of

- 1. \mathcal{B} is linearly independent, or
- 2. \mathcal{B} spans V

in order for ${\cal B}$ to be a basis.

The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T \colon \mathbf{R}^n \to \mathbf{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

1. A is invertible.

The Invertible Matrix Theorem

- 1. A is invertible.
 - 2. T is invertible.
 - 3. A is row equivalent to I_n .
 - 4. A has n pivots.
 - 5. Ax = 0 has only the trivial solution.
 - 6. The columns of A are linearly independent.
 - 7. T is one-to-one.

- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- 10. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.

The Invertible Matrix Theorem

- 1. A is invertible.
 - 2. T is invertible.
 - 3. A is row equivalent to I_n .
 - 4. A has n pivots.
 - 5. Ax = 0 has only the trivial solution.
 - 6. The columns of A are linearly independent.
 - 7. T is one-to-one.

- Ax = b is consistent for all b in Rⁿ.
- 9. The columns of A span \mathbb{R}^n .
- 10. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.
- 14. The columns of A form a basis for \mathbb{R}^n .

- 1. A is invertible.
 - 2. T is invertible.
 - 3. A is row equivalent to I_n .
 - 4. A has n pivots.
 - 5. Ax = 0 has only the trivial solution.
 - 6. The columns of A are linearly independent.
 - 7. T is one-to-one.
- 14. The columns of A form a basis for \mathbb{R}^n .
- 15. Col $A = \mathbf{R}^n$.

- Ax = b is consistent for all b in Rⁿ.
- 9. The columns of A span \mathbb{R}^n .
- 10. T is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.

- 1. A is invertible.
 - 2. T is invertible.
 - 3. A is row equivalent to I_n .
 - 4. A has n pivots.
 - 5. Ax = 0 has only the trivial solution.
 - 6. The columns of A are linearly independent.
 - 7. T is one-to-one.
- 14. The columns of A form a basis for \mathbb{R}^n .
- **15**. Col $A = \mathbf{R}^n$.
- 16. $\dim \operatorname{Col} A = n$.

- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- 10. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.

- 1. A is invertible.
 - 2. T is invertible.
 - 3. A is row equivalent to I_n .
 - 4. A has n pivots.
 - 5. Ax = 0 has only the trivial solution.
 - 6. The columns of A are linearly independent.
 - 7. T is one-to-one.
- 14. The columns of A form a basis for \mathbb{R}^n .
- 15. Col $A = \mathbf{R}^n$.
- 16. dim Col A = n.
- 17. rank A = n.

- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- 10. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.

- 1. A is invertible.
 - 2. T is invertible.
 - 3. A is row equivalent to I_n .
 - 4. A has n pivots.
 - 5. Ax = 0 has only the trivial solution.
 - 6. The columns of A are linearly independent.
 - 7. T is one-to-one.
- 14. The columns of A form a basis for \mathbb{R}^n .
- 15. Col $A = \mathbf{R}^n$.
- 16. dim Col A = n.
- 17. rank A = n.
- 18. Nul $A = \{0\}$.

- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- 10. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.

- 1. A is invertible.
 - 2. T is invertible.
 - 3. A is row equivalent to I_n .
 - 4. A has n pivots.
 - 5. Ax = 0 has only the trivial solution.
 - 6. The columns of A are linearly independent.
 - 7. T is one-to-one.
- 14. The columns of A form a basis for \mathbb{R}^n .
- 15. Col $A = \mathbf{R}^n$.
- 16. dim Col A = n.
- 17. rank A = n.
- 18. Nul $A = \{0\}$.
- 19. $\dim \text{Nul } A = 0$.

- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- 10. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- A^T is invertible.

Let A be an $n \times n$ matrix, and let $T : \mathbf{R}^n \to \mathbf{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

- A is invertible.
 - 2. T is invertible.
 - 3. A is row equivalent to I_n .
 - 4. A has n pivots.
 - 5. Ax = 0 has only the trivial solution.
 - 6. The columns of A are linearly independent.
 - 7. T is one-to-one.
- 14. The columns of A form a basis for \mathbb{R}^n .
- 15. Col $A = \mathbf{R}^n$.
- 16. dim Col A = n.
- 17. $\operatorname{rank} A = n$.
- 18. Nul $A = \{0\}$.
- **19**. $\dim \text{Nul } A = 0$.

These are equivalent to the previous conditions by the Rank Theorem and the Basis Theorem.

- Ax = b is consistent for all b in Rⁿ.
- 9. The columns of A span \mathbb{R}^n .
- 10. T is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.