LE MOULLEC Thomas

Ms CSIT

# Infnote - Collaboration

Task 2 (11/21/2018)

### Problem: Light nodes have limited power and storage

Solution: Merkle Tree

- Allows Merkle Proof: verify that a given input has been included in a particular data set
- Removing all superfluous branches while keeping only the ones we need to establish our proof
- Overall performance and scalability is really adapted to Infnote project



Secure verification of large data structures:

Merkel Tree

#### Merkle Tree concept



#### Merkle Tree concept



#### Merkle Tree concept



# Prev Hash Prev Hash Merkle Root Merkle Branch for TX3

#### How? – The process

- Merkle Tree by Ralph Merkle
- Merkling in Bitcoin
- Merkling in Ethereum
- Merkle Tree implementation
- Merkle Tree traversal algorithms

#### Sources:

https://people.eecs.berkeley.edu/~raluca/cs261-f15/readings/merkle.pdf

https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/

https://hackernoon.com/merkle-tree-introduction-4c44250e2da7

http://www.righto.com/2014/02/bitcoin-mining-hard-way-algorithms.html

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.9700&rep=rep1&type=pdf

#### Infnote design: Binary Merkle Tree



```
Number of Levels = log2(leaves)

Number of nodes = 1+2+4+8+\cdots+2^k

= (2^k+1)-1) / (2-1)

= 2^k+1
```

| Level | Nodes on<br>Level   | Nodes on levels up to and including this one |
|-------|---------------------|----------------------------------------------|
| 0     | 1 = 2°              | $1 = 2^{0+1} - 1$                            |
| 1     | 2 = 2 <sup>1</sup>  | $3 = 2^{1+1} - 1$                            |
| 2     | 4 = 2 <sup>2</sup>  | $7 = 2^{2+1} - 1$                            |
| 3     | 8 = 2 <sup>3</sup>  | 15 = 2 <sup>3+1</sup> -1                     |
| 4     | 16 = 2 <sup>4</sup> | 31 = 2 <sup>4+1</sup> -1                     |
| h     | 2 <sup>h</sup>      | 2 <sup>h+1</sup> -1                          |

Type of Trees: <a href="http://cs.lmu.edu/~ray/notes/orderedtrees/">http://cs.lmu.edu/~ray/notes/orderedtrees/</a>



#### Code Demonstration

• Github: <a href="https://github.com/thomas-le-moullec/bin\_merkle\_tree/">https://github.com/thomas-le-moullec/bin\_merkle\_tree/</a>

### Next step - Implementation of within Infnote Delivery Last week of the semester

- Add the update\_tree method
  - Keeping a balanced tree
- Implement the logic within the P2P network
  - E.g Node A requests branch n to Node B ...
  - Distribution of the Tree
- Handle wrong data
  - What to do?
- Check efficiency and performance (Low priority)

