Basic Electrical and Electronics Engineering

Module 4

Module 4 Digital Systems

Lecture 4 Topics to be covered

- HALF ADDER
- FULL ADDER

Half Adder

Half Adder: is a combinational circuit that performs the addition of two bits, this circuit needs two binary inputs and two binary outputs.

Inputs		Outputs	
X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
Truth table			

Where **S** is the sum and **C** is the carry.

$${S = X \oplus Y \\ C = XY}$$
2 (Using XOR and AND Gates)

Half Adder Truth Table:

Inputs		Outputs	
X	\mathbf{Y}	S	C-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S(X,Y) = \Sigma (1,2)$$

$$S = X'Y + XY'$$

$$S = X \oplus Y$$

C-out(x, y, C-in) =
$$\Sigma$$
 (3)
C-out = XY

For Sum

$$Sum = \overline{AB} + \overline{AB}$$
$$= A \oplus B$$

$$\begin{cases}
\mathbf{S} = \overline{\mathbf{X}}\mathbf{Y} + \mathbf{X}\overline{\mathbf{Y}} \\
\mathbf{C} = \mathbf{X}\mathbf{Y}
\end{cases}$$
 (Using sum of product form)

XOR (Exclusive OR) Gate

$$Z = X'Y + XY'$$

$$X \longrightarrow X \longrightarrow Z = X \oplus Y$$

$$Z = X \oplus Y$$

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

$$\begin{cases} \mathbf{S} = \mathbf{X} \oplus \mathbf{Y} \\ \mathbf{C} = \mathbf{X} \mathbf{Y} \end{cases}$$

2 (Using XOR and AND Gates)

Full Adder

Full Adder is a combinational circuit that performs the addition of three bits (two significant bits and previous carry).

- It consists of *three inputs and two outputs*, two inputs are the bits to be added, the third input represents the carry form the previous position.
- The full adder is usually a component in a cascade of adders, which add 8, 16, etc, binary numbers.

Full Adder Truth Table

Inputs		Outputs		
X	Y	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
Truth table for the full adder				

- ➤ The S output is equal to 1 when only one input is equal to 1 or when all three inputs are equal to 1.
- The C_{out} output has a carry 1 if two or three inputs are equal to 1.
- ➤ The Karnaugh maps and the simplified expression are shown in the following figures:

Full Adder Truth Table

Inputs Outputs

X	\mathbf{Y}	C-in	S	C-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1_1_	1

 $S(X,Y, C-in) = \Sigma (1,2,4,7)$ C-out(x, y, C-in) = $\Sigma (3,5,6,7)$

S = X'Y'(C-in) + X'Y(C-in)' + XY'(C-in)' + XY(C-in) $S = X \oplus Y \oplus (C-in)$

C-out = XY + X(C-in) + Y(C-in)

$$\begin{cases} S = \overline{X} \, \overline{Y} C_{in} + \overline{X} \overline{Y} \overline{C_{in}} + X \overline{Y} \, \overline{C_{in}} + X Y C_{in} \\ C_{out} = X Y + X C_{in} + Y C_{in} \end{cases}$$

$$1 \begin{cases} Sum \ of \ products \end{cases}$$

The *logic diagrams* for the full adder implemented in *sum-of-products* form are the following:

It can also be implemented using two half adders and one OR gate (using XOR gates).

(S = C. $\bigoplus (X \bigoplus V)$

$$\begin{cases}
S = C_{in} \oplus (X \oplus Y) \\
C_{out} = C_{in} \cdot (X \oplus Y) + XY
\end{cases}$$

Proof:

The sum:

$$S = \overline{X} \, \overline{Y} C_{in} + \overline{X} Y \overline{C_{in}} + X \overline{Y} \, \overline{C_{in}} + X Y C_{in}$$

$$= \overline{C_{in}} (\overline{X} Y + X \overline{Y}) + C_{in} (\overline{X} \, \overline{Y} + X Y)$$

$$= \overline{C_{in}} (\overline{X} Y + X \overline{Y}) + C_{in} (\overline{X} Y + X \overline{Y})$$

$$S = C_{in} \oplus (X \oplus Y)$$

The carry output:

$$C_{out} = \overline{X}YC_{in} + X\overline{Y}C_{in} + XYC_{in} + XY\overline{C_{in}}$$

$$= C_{in}(\overline{X}Y + X\overline{Y}) + XY(C_{in} + \overline{C_{in}})$$

$$C_{out} = C_{in} \cdot (X \oplus Y) + XY$$

