Week 5: Complexity Sells Better

Response by: Benjamin (aqn9yv, dlb2ru, ht6xd, iad4de, jmn4fms, lw7jz)

Problem 1 Little-o

(a) Prove that for any function f, $f \notin o(f)$.

Proof.

$$f \in o(f) \iff \forall c > 0, \exists n_0 \text{ such that } \forall n \in \mathbb{N} \text{ where } n > n_0, f(n) < c \cdot f(n)$$

Thus, it is sufficient to provide a counterexample where, for some c > 0, $f(n) \ge c \cdot f(n)$.

Choose c = 1.

In this case, $\forall n \in \mathbb{N}$, $f(n) < 1 \cdot f(n)$ is never true, since f(n) = f(n).

- $\implies \exists c > 0 \text{ such that } f(n) < c \cdot f(n) \text{ is false}$
- $\implies \exists c > 0 \text{ such that } f(n) \ge c \cdot f(n)$
- $\implies f(n) \notin o(f(n))$

П

(b) Prove that $n \in o(n \log n)$.

Proof. Assume $log_b n$ has arbitrary base b. Let c > 0 an arbitrary constant.

$$n < c \cdot n \cdot \log(n)$$

$$\iff 1 < c \cdot \log(n)$$

$$\iff \frac{1}{c} < \log(n)$$

$$\iff b^{\frac{1}{c}} < n$$

$$\iff n > b^{\frac{1}{c}}$$

Thus, choose $n_0 \in \mathbb{N}$ such that $n_0 > b^{\frac{1}{c}}$ for arbitrary b, c.

$$\implies \forall n \in \mathbb{N}, n \geq n_0, n > b^{\frac{1}{c}}$$

$$\implies \forall n \in \mathbb{N}, n \geq n_0, n < c \cdot n \log n$$
, as seen above

 $\implies \exists n_0, \text{ such that } \forall c > 0, n < c \cdot n \log n$

 $\implies n \in o(n \log n)$