

Universidade Federal de Viçosa

Centro de Ciências Exatas Departamento de Matemática

MAT 140 - Cálculo I 2016/IGabarito da 4^a Lista - Derivadas e Aplicações

1. (a)
$$f'(x) = \ln x + 1$$

(b)
$$f'(x) = e^{2x} + 2xe^{2x}$$

(c)
$$f'(x) = -\frac{\ln x + 1}{x^2 \ln x}$$

(d)
$$f'(x) = \frac{\ln x \, tg \, x + x \ln x \, \sec^2 x - tg \, x}{\ln^2 x}$$

(e) $f'(x) = 3^x \ln 3 \, e^x + 3^x \, e^x$

(e)
$$f'(x) = 3^x \ln 3 e^x + 3^x e^x$$

(f)
$$f'(x) = e^x \cos x - e^x \sin x$$

(g)
$$f'(x) = e^x \arcsin x + \frac{e^x}{\sqrt{1 - x^2}}$$

(h)
$$f'(x) = \arccos x - \frac{x}{\sqrt{1-x^2}}$$

(i)
$$f'(x) = \frac{3x^2\sqrt{1-x^2} \arcsin x - x^3 - 1}{\sqrt{1-x^2} \arcsin^2 x}$$

(j)
$$f'(x) = 6x e^{3x^2+5}$$

(k)
$$f'(x) = \frac{e^x}{\sqrt{1 - e^{2x}}}$$

(1)
$$f'(x) = -\frac{x^2 + 2x + 4}{x^3 + 5x^2 + 4x}$$

(m)
$$f'(x) = 2x e^{x^2} - 4x \operatorname{sen}(x^2 + 4)$$

(n)
$$f'(x) = \frac{6x\cos(3x^2 - 5) - 2\operatorname{sen}(3x^2 - 5)}{e^{2x}}$$

(o)
$$f'(x) = \frac{\cos x - \sin x}{\sin x + \cos x}$$

(p)
$$f'(x) = \frac{x}{(x^2+1)\sqrt{\ln(x^2+1)}}$$

(q)
$$f'(x) = 2e^{2x} \arctan(3x) + \frac{3e^{2x}}{1+9x^2}$$

(r)
$$f'(x) = \frac{e^{\sqrt{2x+1}}}{\sqrt{x+1}}$$

(s)
$$f'(x) = \frac{x}{(x^2+3)\sqrt{x^2+2}}$$

(t)
$$f'(x) = \cos x \operatorname{arcsec}(3x) + \frac{\sin x}{x\sqrt{9x^2 - 1}}$$

(u)
$$f'(x) = arcsen(x^2) + \frac{2x ln(2x)}{\sqrt{1 - x^4}}$$

2. (a)
$$\frac{dy}{dx} = -\frac{x}{y}, \ y \neq 0.$$

(b)
$$\frac{dy}{dx} = -\frac{y+1}{x+1}, \ x+1 \neq 0.$$

(c)
$$\frac{dy}{dx} = \frac{y - xy \ln y}{x^2 + 3xy^3}, \ x^2 + 3xy^3 \neq 0.$$

(d)
$$\frac{dy}{dx} = 0$$

(e)
$$\frac{dy}{dx} = \frac{-3x^2 \arctan y (1+y^2)}{x^3 + \sin y (1+y^2) e^{\cos y}}, \ x^3 + \sin y (1+y^2) e^{\cos y} \neq 0$$

(f)
$$\frac{dy}{dx} = 2x e^{x^2} y$$

(g)
$$\frac{dy}{dx} = -\frac{y \sec^2(x+y)}{t a(x+y) + y \sec^2(x+y)}, \ t g(x+y) + y \sec^2(x+y) \neq 0.$$

$$\text{(h) } \frac{dy}{dx} = \frac{e^{\cos x} \operatorname{sen} x}{e^{\operatorname{sen} y} \cos y}, \ e^{\operatorname{sen} y} \cos y \neq 0.$$

- 3. (a) $y = \frac{1}{2}x \frac{3}{2}$
 - (b) $y = e^2 x$

- (c) Não existe reta tangente em $\left(1,\frac{\pi}{2}\right)$
- (d) y = 0

- 4. $g'(0) = -\frac{1}{18}$
- 5. $h'(0) = -\frac{1}{9}$
- 6. $f'''\left(\frac{\pi}{2}\right) = -3$
- 7. (a) $f^{(n)}(x) = (-1)^n n! x^{-(n+1)}$ e $f^{(n)}(2) = \frac{(-1)^n n!}{2^{n+1}}$.
 - (b) $f^{(n)}(x) = 2^n e^{2x}$ e $f^{(n)}(1) = 2^n e^2$.

 - (c) $\begin{cases} f^{(2n)}(x) &= (-1)^n \cos x \\ f^{(2n+1)}(x) &= (-1)^n \sin x \end{cases}$ e $f^{(50)}(0) = -1.$ (d) $\begin{cases} f^{(2n+1)}(x) &= (-1)^{n+1} 2^{2n} \sin(2x) \\ f^{(2n+2)}(x) &= (-1)^{n+1} 2^{2n+1} \cos(2x) \end{cases}$ e $f^{(10)}(0) = -2^9.$
- 8. (a) e

- (e) $e^{\frac{9}{7}}$
- (g) e^{20}

- (b) e^{3}
- (d) e
- (f) e^{2}
- 9. (a) f é crescente em $(-\infty, -1]$ e $[1, +\infty)$. f é decrescente em [-1, 0) e (0, 1].
 - (b) f é crescente para todo $x \in \mathbb{R}$.
 - (c) f é crescente em $[1, +\infty)$. f é decrescente $(-\infty, 0)$ e (0, 1].
 - (d) f é crescente em $[1, +\infty)$. f é decrescente em $(-\infty, 0)$ e (0, 1].
 - (e) f é crescente em $(-\infty, 1]$. f é decrescente em $[1, +\infty)$.
 - (f) f é crescente em $(-\infty, -1]$ e $[1, +\infty)$. f é decrescente em [-1, 0) e (0, 1].

10.

- 11. (a) f é côncava para cima em $(1, +\infty)$ e côncava para baixo em $(-\infty, 1)$. $(1, e^{-2})$ é ponto de inflexão de f.
 - (b) f é côncava para cima em $(-\sqrt{3},0)$ e $(\sqrt{3},+\infty)$ e côncava para baixo em $(-\infty,-\sqrt{3})$ e $(0,\sqrt{3})$. $\left(-\sqrt{3},-\frac{\sqrt{3}}{4}\right)$, (0,0) e $\left(\sqrt{3},\frac{\sqrt{3}}{4}\right)$ são pontos de inflexão de f.
 - (c) f é côncava para cima em $(0, +\infty)$ e côncava para baixo em $(-\infty, 0)$. f não tem ponto de inflexão.
 - (d) f é côncava para cima em todo seu domínio.
 - (e) f é côncava para cima em todo seu domínio.
 - (f) f é côncava para cima em $(-\pi,0)$ e $(\pi,2\pi)$ e côncava para baixo em $(-2\pi,-\pi)$ e $(0,\pi)$. $(-\pi,-\pi-1)$, (0,0) e $(\pi,\pi-1)$ são pontos de inflexão de f.
- 12. (a) (i) f é crescente em [-1,0] e $[1,+\infty)$ e é decrescente em $(-\infty,-1]$ e [0,1].
 - (ii) O valor máximo local de f é 3 e ocorre em x=0 e o valor mínimo local de f é 2 e ocorre em x=-1 e x=1.
 - (iii) f é côncava para baixo em $\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$ e é côncava para cima $\left(-\infty, -\frac{\sqrt{3}}{3}\right)$ e $\left(\frac{\sqrt{3}}{3}, \infty\right)$. Os pontos de inflexão de f são $\left(-\frac{\sqrt{3}}{3}, \frac{22}{9}\right)$ e $\left(\frac{\sqrt{3}}{3}, \frac{22}{9}\right)$
 - (b) (i) f é crescente em $\left[0, \frac{\pi}{4}\right]$ e $\left[\frac{5\pi}{4}, 2\pi\right]$ e é decrescente em $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$.
 - (ii) O valor máximo local de f é $\sqrt{2}$ e ocorre em $x=\frac{\pi}{4}$ e o valor mínimo local de f é $-\sqrt{2}$ e ocorre em $x=\frac{5\pi}{4}$.
 - (iii) f é côncava para baixo em $\left(0, \frac{3\pi}{4}\right)$ e $\left(\frac{7\pi}{4}, 2\pi\right)$ e é côncava para cima $\left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$. Os pontos de inflexão de f são $\left(-\frac{3\pi}{4}, 0\right)$ e $\left(\frac{7\pi}{4}, 0\right)$.
 - (c) (i) f é crescente em $\left[-\frac{1}{3}\ln 2, +\infty\right)$ e e é decrescente em $\left(-\infty, -\frac{1}{3}\ln 2\right]$.
 - (ii) O valor mínimo local de f é $2^{-\frac{1}{3}} + 2^{\frac{1}{3}}$ e ocorre em $x = -\frac{1}{3} \ln 2$. Não existe ponto de máximo local.
 - (iii) f é côncava para cima em todo seu domínio. Não existem pontos de inflexão.
 - (d) (i) f é crescente em $[0, e^2]$ e e é decrescente em $[e^2, +\infty)$.
 - (ii) O valor máximo local de $f \notin \frac{2}{e}$ e ocorre em $x = e^2$. Não existe ponto de mínimo local.

- (iii) f é côncava para cima em $(e^{\frac{8}{3}}, +\infty)$ e é côncava para baixo em $(0, e^{\frac{8}{3}})$. $\left(e^{\frac{8}{3}}, -\frac{8}{3}e^{-\frac{4}{3}}\right)$ é ponto de inflexão de f.
- 13. (a) $D(f) = \mathbb{R} \setminus \{-1\}$.
 - Interseções: (0,0).
 - Assíntota vertical: x = -1 e assíntota horizontal: y = 1.
 - f não possui pontos críticos.
 - f é crescente em $(\infty, -1)$ e $(-1, +\infty)$.
 - \bullet f não possui extremos relativos.
 - f é côncava para cima em $(\infty, -1)$ e é côncava para baixo em $(-1, +\infty)$.
 - Não existe ponto de inflexão.

- (b) $D(f) = \mathbb{R} \setminus \{-3, 3\}.$
 - Interseções: (0,0).
 - \bullet Assíntotas verticais: x=-3e x=3e assíntota horizontal: y=0.
 - f não possui pontos críticos.
 - f é crescente em $(\infty, -3)$, (-3, 3) e $(3, +\infty)$.
 - \bullet f não possui extremos relativos.
 - f é côncava para cima em (0,3) e $(3,+\infty)$ e é côncava para baixo em $(-\infty,-3)$ e (-3,0).
 - (0,0) é ponto de inflexão de f.

- (c) \bullet $D(f) = \mathbb{R}^*$.
 - Interseções: $(\sqrt[3]{2}, 0)$.
 - Assíntota vertical: x = 0. Não existe assíntota horizontal.
 - (-1,3) é ponto crítico de f.
 - f é crescente em (-1,0) e $(0,+\infty)$ e é decrescente em $(-\infty,-1)$.
 - (-1,3) é ponto de mínimo relativo de f.
 - f é côncava para cima em $(-\infty,0)$ e $(\sqrt[3]{2},+\infty)$ e é côncava para baixo em $(0,\sqrt[3]{2})$.
 - $(\sqrt[3]{2}, 0)$ é ponto de inflexão de f.

- (d) \bullet $D(f) = \mathbb{R} \setminus \{2\}.$
 - Interseções: (-4,0), (0,4) e (4,0).
 - Assíntota vertical: x=2. Assíntota horizontal: y=-1.
 - $\left(8, -\frac{4}{3}\right)$ é ponto crítico de f.

- f é crescente em $(\infty, 2)$ e $(8, +\infty)$ e é decrescente em (2, 8).
- $\left(8, -\frac{4}{3}\right)$ é ponto de mínimo relativo de f.
- f é côncava para cima em $(-\infty, 2)$ e (2, 11) e é côncava para baixo em $(11, +\infty)$.
- $\left(11, -\frac{35}{27}\right)$ é ponto de inflexão de f.

- (e) $\bullet D(f) = \{x \in \mathbb{R} / x \le -2 \text{ ou } x \ge 2\}.$
 - \bullet Interseções: (-2,0)e(0,2.)
 - Não existem assíntotas verticais e horizontais.
 - \bullet (-2,0)e (2,0)são pontos críticos de f.
 - f é crescente em $(-\infty,2)$ e $(8,+\infty)$ e é decrescente em (2,8).
 - $\bullet \ f$ não possui extremos relativos.
 - \bullet fé côncava para baixo em $(-\infty,-2)$ e $(2,+\infty).$
 - Não existe ponto de inflexão.

- (f) \bullet $D(f) = \mathbb{R}$.
 - Interseção: (0,1).
 - \bullet Não existem assínto
tas verticais. y=0é assínto
ta horizontal ao gráfico de f.
 - (0,1) é ponto crítico de f.
 - f é crescente em $(-\infty,0)$ e é decrescente em $(0,+\infty)$.
 - (0,1) é máximo relativo de f.
 - f é côncava para cima em $\left(-\infty, -\frac{\sqrt{2}}{2}\right)$ e $\left(-\frac{\sqrt{2}}{2}, +\infty\right)$ e é côcava para baixo em

$$\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right).$$

• $\left(-\frac{\sqrt{2}}{2}, e^{-\frac{1}{2}}\right) \left(-\frac{\sqrt{2}}{2}, e^{-\frac{1}{2}}\right)$ são pontos de inflexão de f.

- (g) \bullet $D(f) = \mathbb{R}^*$.
 - Interseções: pelo Teorema do Valor Intermediário, o gráfico f intersecta o eixo x em $c \in \left[-\frac{3}{2}, -1\right]$.
 - \bullet x=0é a
asíntota vertical ao gráfico de f.Não existem assínto
tas horizontais.
 - (1,1) é ponto crítico de f.

- f é crescente em $(-\infty,0)$ e $(1,+\infty)$ e é decrescente em (0,1).
- (1,1) é mínimo relativo de f.
- f é côncava para cima em $(-\infty,0)$ e (0,3) e é côncava para baixo em $(3,+\infty)$.
- $\left(3, \frac{25}{9}\right)$ é ponto de inflexão de f.

- 14. (a) f é crescente em $(-\infty, -5]$, [-4, 0) e $(0, +\infty)$ e onde é decrescente em [-5, -4].
 - (b) a reta tangente ao gráfico de f é horizontal em x = -4 e $x = -\frac{3}{2}$.
 - (c) (-5,2) é ponto de máximo relativo de f e (-4,1) é ponto de mínimo relativo de f.
 - (d) f é côncava para cima em $(-\infty, -5)$, (-5, -3) e $\left(-\frac{3}{2}, 0\right)$ e é côncava para baixo em $\left(-3, -\frac{3}{2}\right)$ e $(0, +\infty)$.
 - (e) (-3,3) e $\left(-\frac{3}{2},4\right)$ são pontos de inflexão de f.
 - (f) x=0 é assíntota vertical e y=0 é assíntota horizontal ao gráfico de f.

(g)

- 15. Sugestão: Aplique os teoremas do valor intermediário e de Rolle.
- 16. Sugestão: Aplique o teorema do valor médio.
- 17. Sugestão: Aplique o teorema do valor médio.

18.

- 19. O trânsito é mais rápido às 14 horas e é mais lento às 17 horas.
- 20. O percurso mais econômico é estender o fio $1800\,m$ por terra e o restante por água.
- 21. O maior rendimento é de R\$ 125.000, 00.
- 22. $\left(-\sqrt{\frac{3}{2}},\frac{3}{2}\right)$ e $\left(\sqrt{\frac{3}{2}},\frac{3}{2}\right)$ são os pontos sobre a curva $y=x^2$ mais próximos do ponto P=(0,2).
- 23. O retângulo de maior área que pode ser inscrito no círculo de raio 3 é o quadrado de lado $3\sqrt{2}$.
- 24. Os quadrados a serem recortados devem ter 2cm de lado para que o volume da caixa seja o maior possível.
- 25. Correção no enunciado: volume fixo

A quantidade de material utilizada na fabricação da lata será mínima quando a razão entre a altura e o raio da base for 2.