Resistive Wall Mode

R. Fitzpatrick^a

Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin TX 78712, USA

I. VACUUM SOLUTION

A. Normalization

Let all lengths be normalized to the major radius of the magnetic axis, R_0 . Let all magnetic field-strengths be normalized to the toroidal magnetic field-strength at the magnetic axis, B_0 .

B. Toroidal Coordinates

Let μ , η , ϕ be toroidal coordinates such that

$$R = \frac{\sinh \mu}{\cosh \mu - \cos \eta},\tag{1}$$

$$Z = \frac{\sin \eta}{\cosh \mu - \cos \eta},\tag{2}$$

where R, ϕ , Z are cylindrical coordinates. The scale-factors of the toroidal coordinate system are

$$h_{\mu} = h_{\eta} = \frac{1}{\cosh \mu - \cos \eta} = h,\tag{3}$$

$$h_{\phi} = \frac{\sinh \mu}{\cosh \mu - \cos \eta} = h \sinh \mu. \tag{4}$$

C. Perturbed Magnetic Field

The perturbed magnetic field in the vacuum region is written

$$\mathbf{b} = i \nabla \left[V(\mu, \eta) e^{-i n \phi} \right], \tag{5}$$

a rfitzp@utexas.edu

where

$$\nabla^{2}V = (z - \cos \eta)^{3} \left\{ \frac{\partial}{\partial z} \left[\frac{z^{2} - 1}{z - \cos \eta} \frac{\partial V}{\partial z} \right] + \frac{\partial}{\partial \eta} \left[\frac{1}{z - \cos \eta} \frac{\partial V}{\partial \eta} \right] - \frac{n^{2} V}{(z^{2} - 1)(z - \cos \eta)} \right\} = 0.$$
 (6)

Here, $z = \cosh \mu$.

Let

$$f_z = z^2 - 1, (7)$$

$$f_{\eta} = (z - \cos \eta)^{1/2}.\tag{8}$$

It follows that

$$\frac{df_z}{dz} = 2z, (9)$$

$$\frac{\partial f_{\eta}}{\partial z} = \frac{1}{2f_{\eta}},\tag{10}$$

$$\frac{\partial f_{\eta}}{\partial \eta} = \frac{\sin \eta}{2 f_{\eta}}.\tag{11}$$

Let

$$V(z,\eta) = \sum_{m} f_{\eta} F_{m}(z) e^{-i m \eta}.$$
 (12)

Then, taking the sum and eikonal as read, and letting '=d/dz, we get

$$\frac{\partial V}{\partial z} = \frac{F_m}{2 f_\eta} + f_\eta F_m',\tag{13}$$

$$\frac{\partial}{\partial z} \left(\frac{f_z}{f_\eta^2} \frac{\partial V}{\partial z} \right) = \frac{\partial}{\partial z} \left(\frac{f_z F_m}{2 f_\eta^3} + \frac{f_z F_m'}{f_\eta} \right) = \frac{z F_m}{f_\eta^3} - \frac{3 f_z F_m}{4 f_\eta^5} + \frac{f_z F_m'}{2 f_\eta^3} + \frac{2 z F_m'}{f_\eta} - \frac{f_z F_m'}{2 f_\eta^3} + \frac{f_z F_m''}{f_\eta} \right) \\
= \frac{z F_m}{f_\eta^3} - \frac{3 (z^2 - 1) F_m}{4 f_\eta^5} + \frac{2 z F_m'}{f_\eta} + \frac{(z^2 - 1) F_m''}{f_\eta}, \tag{14}$$

$$\frac{\partial V}{\partial \eta} = \frac{\sin \eta \, F_m}{2 \, f_\eta} - \mathrm{i} \, m f_\eta \, F_m,\tag{15}$$

$$\frac{\partial}{\partial \eta} \left(\frac{1}{f_{\eta}^{2}} \frac{\partial V}{\partial \eta} \right) = \frac{\partial}{\partial \eta} \left(\frac{\sin \eta F_{m}}{2 f_{\eta}^{3}} - \frac{\mathrm{i} m F_{m}}{f_{\eta}} \right) = \frac{\cos \eta F_{m}}{2 f_{\eta}^{3}} - \frac{3 \sin^{2} \eta F_{m}}{4 f_{\eta}^{5}} - \frac{\mathrm{i} m \sin \eta F_{m}}{2 f_{\eta}^{3}} + \frac{\mathrm{i} m \sin \eta F_{m}}{2 f_{\eta}^{3}} - \frac{m^{2} F_{m}}{f_{\eta}}$$

$$= \frac{\cos \eta F_{m}}{2 f_{\eta}^{3}} - \frac{3 \sin^{2} \eta F_{m}}{4 f_{\eta}^{5}} - \frac{m^{2} F_{m}}{f_{\eta}}, \tag{16}$$

$$-\frac{n^2 V}{f_z f_\eta^2} = -\frac{n^2 F_m}{(z^2 - 1) f_\eta}. (17)$$

Thus,

$$0 = \frac{\partial}{\partial z} \left(\frac{f_z}{f_\eta^2} \frac{\partial V}{\partial z} \right) + \frac{\partial}{\partial \eta} \left(\frac{1}{f_\eta^2} \frac{\partial V}{\partial \eta} \right) - \frac{n^2 V}{f_z f_\eta^2}$$

$$= \frac{z F_m}{f_\eta^3} - \frac{3 (z^2 - 1) F_m}{4 f_\eta^5} + \frac{2 z F_m'}{f_\eta} + \frac{(z^2 - 1) F_m''}{f_\eta}$$

$$+ \frac{\cos \eta F_m}{2 f_\eta^3} - \frac{3 \sin^2 \eta F_m}{4 f_\eta^5} - \frac{m^2 F_m}{f_\eta} - \frac{n^2 F_m}{(z^2 - 1) f_\eta}$$

$$= \frac{1}{f_\eta} \left[(z^2 - 1) F_m'' + 2 z F_m' + \left(\frac{1}{4} - m^2 \right) F_m - \frac{n^2 F_m}{z^2 - 1} \right]. \tag{18}$$

The most general solution of the previous equation is

$$F_m(z) = p_m P_{m-1/2}^n(z) + q_m Q_{m-1/2}^n(z), \tag{19}$$

where p_m and q_m are arbitrary complex coefficients. Note that

$$P_{-m-1/2}^{n}(z) = P_{m-1/2}^{n}(z), (20)$$

$$Q_{-m-1/2}^{n}(z) = Q_{m-1/2}^{n}(z), (21)$$

SO

$$F_m(z) = p_m P_{|m|-1/2}^n(z) + q_m Q_{|m|-1/2}^n(z),$$
(22)

D. Toroidal Electromagnetic Angular Momentum Flux

The outward flux of toroidal angular momentum across a constant-z surface is

$$T_{\phi}(z) = -\oint \oint \mathcal{J} b_{\phi} b^{\mu} d\eta d\phi, \qquad (23)$$

where

$$\mathcal{J} = (\nabla \mu \times \nabla \eta \cdot \nabla \phi)^{-1} = h^3 \sinh \mu. \tag{24}$$

Now,

$$b^{\mu} = \mathbf{b} \cdot \nabla \mu = i \frac{\partial V}{\partial \mu} |\nabla \mu|^2 = i \frac{\sinh \mu}{h^2} \frac{\partial V}{\partial z}, \tag{25}$$

$$b^{\phi} = \mathcal{J} \, \nabla \mu \times \nabla \eta \cdot \nabla V = n \, V, \tag{26}$$

SO

$$T_{\phi}(z) = -\frac{\mathrm{i} n \pi}{2} \oint \frac{z^{2} - 1}{z - \cos \eta} \left(\frac{\partial V}{\partial z} V^{*} - \frac{\partial V^{*}}{\partial z} V \right) d\eta$$

$$= -\mathrm{i} n \pi^{2} \sum_{m} (z^{2} - 1) \left(\frac{dF_{m}}{dz} F_{m}^{*} - \frac{dF_{m}^{*}}{dz} F_{m} \right)$$

$$= -\mathrm{i} n \pi^{2} \sum_{m} (p_{m} q_{m}^{*} - q_{m} p_{m}^{*}) (z^{2} - 1) \left(\frac{dP_{|m|-1/2}^{n}}{dz} Q_{|m|-1/2}^{n} - \frac{dQ_{|m|-1/2}^{n}}{dz} P_{|m|-1/2}^{n} \right)$$

$$= \mathrm{i} n \pi^{2} \sum_{m} (p_{m} q_{m}^{*} - q_{m} p_{m}^{*}) (z^{2} - 1) \mathcal{W}[P_{|m|-1/2}^{n}, Q_{|m|-1/2}^{n}]. \tag{27}$$

But,

$$W[P_{|m|-1/2}^n, Q_{|m|-1/2}^n] = \frac{(-1)^n}{1 - z^2} \frac{\Gamma(1/2 + n + |m|)}{\Gamma(1/2 - n + m)},$$
(28)

SO

$$T_{\phi}(z) = 2\pi^{2} n (-1)^{n} \frac{\Gamma(1/2 + n + |m|)}{\Gamma(1/2 - n + m)} \operatorname{Im}(p_{m} q_{m}^{*}).$$
 (29)

II. WALL PHYSICS

A. Resistive Wall

Let the resistive wall extend from $z = z_w$ to $z = z_w - d_w$, where d_w is a constant. The physical wall thickness is

$$d(\eta) = \frac{d_w}{|\nabla z|} = \frac{h_w(\eta) d_w}{(z_w^2 - 1)^{1/2}},\tag{30}$$

where

$$h_w(\eta) = \frac{1}{z_w - \cos \eta}. (31)$$

Let the conductivity of the wall material vary as

$$\sigma(\eta) = \frac{\sigma_w \left(z_w^2 - 1\right)}{h_w^2(\eta)},\tag{32}$$

where σ_w is a constant. It follows that $\sigma d^2 = \sigma_w d_w^2$.

B. Wall Matching Conditions

If we write

$$\mathbf{b} = \nabla \times \mathbf{A} \tag{33}$$

in the vacuum region then the boundary conditions at the wall are

$$\mathbf{n}_w \times \mathbf{A}|_{z_{w-}} = \frac{1}{\cosh \lambda} \left. \mathbf{n}_w \times \mathbf{A} \right|_{z_{w+}} \tag{34}$$

$$\mathbf{n}_{w} \times (\nabla \times \mathbf{A})|_{z_{w+}} = -\frac{\lambda \tanh \lambda (z_{w}^{2} - 1)^{1/2}}{h_{w} d_{w}} \mathbf{n}_{w} \times (\mathbf{n}_{w} \times \mathbf{A})|_{z_{w+}} + \frac{\mathbf{n}_{w} \times (\nabla \times \mathbf{A})|_{z_{w-}}}{\cosh \lambda},$$
(35)

$$\lambda = \sqrt{\mu_0 R_0^2 \sigma_w d_w^2 \gamma},\tag{36}$$

where γ is the growth-rate. Here, $\mathbf{n}_w = -\mathbf{e}_{\mu}$ is an outward unit normal vector to the wall. Now,

$$\nabla \times \mathbf{A} = \frac{1}{h^2 \sinh \mu} \left(\frac{\partial \hat{A}_{\phi}}{\partial \eta} - \frac{\partial \hat{A}_{\eta}}{\partial \phi} \right) \mathbf{e}_{\mu} + \frac{1}{h^2 \sinh \mu} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu} \right) \mathbf{e}_{\eta} + \frac{1}{h^2} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta} \right) \mathbf{e}_{\phi}, \tag{37}$$

where

$$\hat{A}_{\mu} = h A_{\mu},\tag{38}$$

$$\hat{A}_{\eta} = h A_{\eta}, \tag{39}$$

$$\hat{A}_{\phi} = h \sinh \mu A_{\phi}. \tag{40}$$

Furthermore,

$$\mathbf{n}_w \times \mathbf{A} = -\mathbf{e}_\mu \times \mathbf{A} = A_\phi \, \mathbf{e}_\eta - A_\eta \, \mathbf{e}_\phi, \tag{41}$$

$$\mathbf{n}_w \times (\mathbf{n}_w \times \mathbf{A}) = -\mathbf{e}_\mu \times (\mathbf{n}_w \times \mathbf{A}) = -A_\eta \, \mathbf{e}_\eta - A_\phi \, \mathbf{e}_\phi, \tag{42}$$

$$\mathbf{n}_{w} \times (\nabla \times \mathbf{A}) = -\mathbf{e}_{\mu} \times (\nabla \times \mathbf{A}) = \frac{1}{h^{2}} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta} \right) \mathbf{e}_{\eta} - \frac{1}{h^{2} \sinh \mu} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu} \right) \mathbf{e}_{\phi}.$$

$$(43)$$

Thus, the wall matching conditions become

$$\left. \hat{A}_{\eta} \right|_{z_{w-}} = \frac{1}{\cosh \lambda} \left. \hat{A}_{\eta} \right|_{z_{w+}},\tag{44}$$

$$\left. \hat{A}_{\phi} \right|_{z_{w+}} = \frac{1}{\cosh \lambda} \left. \hat{A}_{\phi} \right|_{z_{w-}},\tag{45}$$

$$\left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta}\right)_{z_{w+}} = \frac{\lambda \tanh \lambda (z_{w}^{2} - 1)^{1/2}}{d_{w}} \hat{A}_{\eta}\Big|_{z_{w+}} + \frac{1}{\cosh \lambda} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta}\right)_{z_{w-}},$$
(46)

$$\left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu}\right)_{z_{m+}} = -\frac{\lambda \tanh \lambda (z_w^2 - 1)^{1/2}}{d_w} \left.\hat{A}_{\phi}\right|_{\mu_{w+}} + \frac{1}{\cosh \lambda} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu}\right)_{z_{m-}}.$$
(47)

Let

$$C(z,\eta,\phi) = \frac{\partial \hat{A}_{\eta}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \eta}.$$
 (48)

The wall matching conditions reduce to

$$C(z_{w-}, \eta, \phi) = \frac{1}{\cosh \lambda} C(z_{w+}, \eta, \phi), \tag{49}$$

$$\frac{\partial C(z_{w+}, \eta, \phi)}{\partial z} = \frac{\lambda \tanh \lambda}{d_w} C(z_{w+}, \eta, \phi) + \frac{1}{\cosh \lambda} \frac{\partial C(z_{w-}, \eta, \phi)}{\partial z}.$$
 (50)

However, if

$$\mathbf{b} = i \,\nabla V = \nabla \times \mathbf{A} \tag{51}$$

then

$$C = -i h \sinh \mu \frac{\partial V}{\partial \mu} = -i h (z^2 - 1) \frac{\partial V}{\partial z}.$$
 (52)

Thus,

$$C = -i \frac{z^2 - 1}{z - \cos \eta} \sum_{m} \left[\frac{F_m}{2 (z - \cos \eta)^{1/2}} + (z - \cos \eta)^{1/2} \frac{dF_m}{dz} \right] e^{-i (m \eta + n \phi)}, \tag{53}$$

$$\frac{\partial C}{\partial z} = -i \sum_{m} \left[\frac{(3/4) \sin^2 \eta}{(z - \cos \eta)^{5/4}} - \frac{(1/2) \cos \eta}{(z - \cos \eta)^{3/2}} + \frac{m^2 + n^2/(z^2 - 1)}{(z - \cos \eta)^{1/2}} \right] F_m e^{-i(m\eta + n\phi)}.$$
 (54)

It follows that

$$\sum_{m} \left[\frac{F_m}{2} + (z - \cos \eta) \frac{dF_m}{dz} \right] e^{-i m \eta}$$
 (55)