

Comparing Different Feature
Extraction Methods:
Pneumonia, X-ray images,
and SVMs

#### **Motivation**

- Chest x-rays are a diagnostic tool to detect signs of pneumonia
- Overworked doctors, lack of radiologists in rural areas





# **Chest x-rays**

- Training images:
  - Normal: 1341 images ( Label: 0)
  - Pneumonia: 1341 images (label: 1)
- Test images:
  - Normal: 234 images
  - Pneumonia: 390 images



#### Resize Image

# Increase contrast (adaptive histogram equalization)

#### **Feature Extraction**



26 features/image for LBP

729 features/image for HOG

18 features/image for

GLCM

SCALE









### **Local Binary Pattern**

• LBPs compute a *local* representation of texture. Local representation is constructed by comparing each pixel with its surrounding neighborhood of pixels.

#### • Steps:

- Convert to grayscale image.
- Calculate the LBP mask.
- Calculate the LBP Histogram and normalize it.

LBP uniformity
Uniform: if *at most* two *0-1* or *1-0* transition s example, 00001000 (2 transitions)
Non-Uniform: 01010010

• p + 1 uniform patterns:

(six *0-1* or *1-0* transitions)

• p + 2 final dimensionality of the histogram (p+1 bins for uniform pattern, all non uniform patterns in one bin)

Top:r=3 p=26 Bottom: r=1

n-2

### **Local Binary Pattern**





# Histogram of Oriented Gradients (HOGs)

- HOGs are a feature descriptor that has been widely and successfully used for object detection
- It represents objects as a single feature vectors as opposed to a set of feature vectors where each represent a segment of the image.

It's computed by sliding window detector over an image, where a

HOG descriptor is a computed for each position.







#### **HOGs Step by Step**

- Using an 25x 25 pixel detection or cell (yellow), we compute the gradient vector or edge orientations at each pixel
- This generate 25x25 gradients vectors which are then represented as a histogram
- 3. Each cell is then split into angular bins, where each bins

corresponds to a gradient direction.

 As it stores gradients magnitudes, it relatively immune to deformations



# Gray Level Co-occurrence Matrix

- Tabulation of how often different combinations of pixel brightness values (gray levels) occur in an image.
- Result is a 256x256x1x4 matrix levels x levels x number of distances x number of angles.
- Properties of the resulting matrix are used for feature extraction after normalization.



### Results



|                        | 0 (True<br>Normal) | 1 (True<br>Pneumonia) |
|------------------------|--------------------|-----------------------|
| 0 (False Normal)       | 134                | 6                     |
| 1 (False<br>Pneumonia) | 100                | 384                   |

#### References:

- Slide 2:
  - o Image: <a href="https://www.istockphoto.com/vector/senior-man-having-pneumonia-gm613235796-105823791">https://www.istockphoto.com/vector/senior-man-having-pneumonia-gm613235796-105823791</a>.
  - Statistics on Pneumonia (spoken):
     <a href="https://www.thoracic.org/patients/patient-resources/resources/top-pneumonia-facts.pdf">https://www.thoracic.org/patients/patient-resources/resources/top-pneumonia-facts.pdf</a>
- Slide 3: Image (Figure S6): <a href="https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5#fig6">https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5#fig6</a>
- Slide 4:
  - The image showing RBF SVM with different gamma values is from <a href="https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496">https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496</a>
  - All other images were generated by us over the course of the workflow.
- Slide 6:
  - http://hanzratech.in/2015/05/30/local-binary-patterns.html
  - <a href="https://www.pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opency/">https://www.pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opency/</a>
- Slide 7: Left-most image:
  - https://circuitdigest.com/tutorial/real-life-object-detection-using-opency-python-detecting-objects-in-live-video
  - All other images were generated by us over the course of the workflow.
- Slide 9: Top image: <a href="https://www.mathworks.com/help/images/specify-offset-used-in-glcm-calculation.html">https://www.researchgate.net/figure/Haralick-texture-features-are-calculated-from-the-gray-level-co-occurrence-matrix-GLCM fig1 330550795</a>