Corrigé problème 1 – CCP PSI 2013 enrichi et adapté

Partie I : Étude d'une fonction et de sa limite

I.1 Étude de la fonction f

I.1.1 La fonction $g: t \mapsto \exp(-t^2)$ est continue sur \mathbb{R} donc $f: x \mapsto \int_0^x \exp(-t^2) dt$ est la primitive de g qui s'annule en 0:

f est une fonction dérivable sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, on obtient en utilisant la parité de g et le changement de variable u = -t:

$$f(-x) = \int_0^{-x} \exp(-t^2) dt = \int_0^x e^{-u^2} (-du) = -f(x).$$

Donc f est une fonction impaire.

I.1.2 f' = g est de classe C^{∞} sur \mathbb{R} comme composée de telles fonctions, donc f est indéfiniment dérivable sur \mathbb{R} .

On note $\mathcal{P}(n)$, pour $n \in \mathbb{N}^*$, la propriété suivante :

- \ll il existe une fonction polynôme p_n , de degré n-1, telle que pour tout $x \in \mathbb{R}: f^{(n)}(x) = p_n(x) \exp(-x^2) \gg$.
- Pour tout réel $x: f'(x) = \exp(-x^2)$ donc $\mathcal{P}(1)$ est vraie : on a $p_1: x \mapsto 1$, qui est bien une une fonction polynôme de degré 0.
- Soit $n \in \mathbb{N}^*$. On suppose $\mathcal{P}(n)$ vraie. On obtient alors pour tout x:

$$f^{(n+1)}(x) = f^{(n)'}(x) = [p'_n(x) - 2xp_n(x)] \exp(-x^2).$$

En notant $p_{n+1}: x \mapsto p'_n(x) - 2xp_n(x)$ on a bien une fonction polynôme de degré n donc $\mathcal{P}(n+1)$ est vraie

Par récurrence, on a montré que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}^*$.

I.1.3 f est impaire et en dérivant n fois la relation $\ll \forall x \in \mathbb{R}, f(x) = -f(-x) \gg \text{ on obtient}$ $\ll \forall x \in \mathbb{R}, f^{(n)}(x) = (-1)^{n+1} f^{(n)}(-x) \gg \text{donc}$

 p_n est paire (respectivement impaire) quand n est impair (respectivement pair).

I.1.4 La fonction $g: t \mapsto \exp(-t^2)$ est continue positive sur $\mathbb R$.

Pour $t \ge 1$, $t \le t^2$ donc $0 \le \exp(-t^2) \le \exp(-t)$, or $t \mapsto \exp(-t)$ est intégrable sur $[1, +\infty[$ donc par comparaison de fonctions positives g est intégrable sur $[1, +\infty[$ donc sur $[0, +\infty[$.

Par conséquent, l'intégrale $\int_0^{+\infty} e^{-t^2} dt$ est convergente, c'est-à-dire que f admet une limite finie en $+\infty$ (notée Δ).

I.2 Développement en série de f

I.2.1 On connaît le développement en série entière de la fonction exponentielle (rayon de convergence $+\infty$):

$$\forall x \in \mathbb{R} , \exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}.$$

Donc pour tout réel x:

$$f(x) = \int_0^x \exp(-t^2) dt = \int_0^x \sum_{n=0}^{+\infty} \frac{(-t^2)^n}{n!} dt = \int_0^x \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} t^{2n} dt$$

On sait d'après le cours qu'une série entière converge normalement donc uniformément sur tout segment inclus dans son intervalle ouvert de convergence; ici, la série entière $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} t^{2n}$ est de rayon de convergence infini, donc converge uniformément sur le segment [0,x] (ou [x,0]). On peut donc dans le calcul précédent intervertir somme et intégrale :

$$\forall x \in \mathbb{R} , f(x) = \sum_{n=0}^{+\infty} \int_0^x \frac{(-1)^n}{n!} t^{2n} dt = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{n!(2n+1)}.$$

Rem : on pouvait aller un peu plus rapidement en évoquant directement le théorème sur la primitivation d'une série entière, que j'ai en fait redémontré ici!

I.2.2 D'une part en utilisant **I.1.2** en x = 0, on a $p_n(0) = f^{(n)}(0)$.

D'autre part le développement précédent montre que f est développable en série entière au voisinage de 0 (avec un rayon de convergence infini) donc f coïncide avec la somme de sa série de Taylor $\sum_{k=0}^{+\infty} \frac{f^{(k)}(0)}{k!} x^k$.

Par unicité du développement en série entière, on obtient :

$$p_{2n}(0) = 0$$
 et $p_{2n+1}(0) = (-1)^n \frac{(2n)!}{n!}$.

I.3 Les intégrales de Wallis

I.3.1

I.3.1.a La fonction $x \mapsto \cos^n x$ étant continue positive et non nulle sur $[0, \frac{\pi}{2}]$, son intégrale sur $[0, \frac{\pi}{2}]$ est strictement positive (théorème du cours).

Un calcul immédiat donne $W_0 = \frac{\pi}{2}$ et $W_1 = 1$.

I.3.1.b Une intégration par parties donne, pour $n \ge 2$:

$$W_n = \underbrace{\left[\cos^{n-1} x \sin x\right]_0^{\frac{\pi}{2}}}_{=0} + (n-1) \int_0^{\frac{\pi}{2}} \cos^{n-2} x \underbrace{\sin^2 x}_{=1-\cos^2 x} dx = (n-1)(W_{n-2} - W_n)$$

d'où $\overline{nW_n = (n-1)W_{n-2}}$.

I.3.1.c En multipliant par W_{n-1} on obtient pour $n \ge 2$:

$$nW_nW_{n-1} = (n-1)W_{n-1}W_{n-2}$$

c'est-à-dire que la suite $(nW_nW_{n-1})_{n\in\mathbb{N}^*}$ est constante, donc pour tout $n\geqslant 1$, $nW_nW_{n-1}=W_1W_0=\frac{\pi}{2}$.

I.3.2

- **I.3.2.a** Si $p \in \mathbb{N}$ et $x \in [0, \frac{\pi}{2}]$, alors $\cos^{p+1} x \leq \cos^p x$ et donc $W_{p+1} \leq W_p$: la suite $(W_p)_{p \in \mathbb{N}}$ est décroissante. En utilisant la question **I.3.1.b**: $nW_n = (n-1)W_{n-2} \geq (n-1)W_{n-1}$, donc en divisant par W_{n-1} qui est strictement positif on obtient $\frac{n-1}{n} \leq \frac{W_n}{W_{n-1}} \leq 1$.
- **I.3.2.b** D'après ce qui précède, $\lim_{n\to\infty}\frac{W_n}{W_{n-1}}=1$, donc $W_n\sim W_{n-1}$ et d'après la relation $W_nW_{n-1}=\frac{\pi}{2n}$, on déduit que $W_n^2\sim\frac{\pi}{2}n$ et comme $W_n>0$, alors $W_n\sim\sqrt{\frac{\pi}{2n}}$.

I.4 Calcul de Δ

I.4.1 Il suffit d'étudier la fonction $u \mapsto e^u - 1 - u$ (décroissante sur \mathbb{R}_- et croissante sur \mathbb{R}_+) pour voir qu'elle est toujours positive :

pour tout réel
$$u$$
, on a $e^u \ge 1 + u$.

 $\mathbf{I.4.2}$ Soit n un entier naturel non nul.

D'après la relation précédente appliqué à -u on a pour $u \le 1: 0 \le 1-u \le \mathrm{e}^{-u}$, on élève ensuite à la puissance $n: \boxed{(1-u)^n \le \mathrm{e}^{-nu} \text{ si } u \le 1.}$

D'après la relation précédente appliqué à u on a pour $u > -1: 0 < 1 + u \le e^u$, on élève ensuite à la puissance $-n: e^{-nu} \le \frac{1}{(1+u)^n}$ si u > -1.

I.4.3 Soit n un entier naturel non nul.

Pour $x \in [0,1]$, on a $x^2 \le 1$ donc d'après la première des inégalités précédentes : $(1-x^2)^n \le e^{-nx^2}$ puis

 $\int_0^1 (1-x^2)^n \, \mathrm{d}x \leqslant \int_0^1 \mathrm{e}^{-nx^2} \, \mathrm{d}x \leqslant \int_0^{+\infty} \mathrm{e}^{-nx^2} \, \mathrm{d}x \ (\text{car } \exp(-nx^2) \geqslant 0). \text{ Cette dernière intégrale a bien}$ un sens pour des raisons similaires à celles exposées en I.1.4 (ou par comparaison à $\frac{1}{x^{2n}}$ en $+\infty$).

Par ailleurs la seconde relation du **I.4.3.** donne puisque $x^2 > -1$ (!) : $e^{-nx^2} \leqslant \frac{1}{(1+x^2)^n}$ relation

que l'on peut intégrer car l'intégrale $\int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^n}$ converge (par comparaison à $\frac{1}{x^2}$ en $+\infty$). D'où

$$\int_0^1 (1 - x^2)^n \, dx \le \int_0^{+\infty} e^{-nx^2} \, dx \le \int_0^{+\infty} \frac{dx}{(1 + x^2)^n} \, .$$

I.4.4 En utilisant le changement de variable $x = \sin \theta$ ($\theta \mapsto \sin \theta$ est de classe \mathcal{C}^1 sur $[0, \pi/2]$):

$$\int_0^1 (1-x^2)^n dx = \int_0^{\pi/2} (1-\sin^2\theta)^n \cos\theta d\theta = \int_0^{\pi/2} \cos^{2n+1}\theta d\theta = W_{2n+1};$$

Avec le changement de variable $x = \frac{1}{\sqrt{n}}u$ (changement affine donc de classe \mathscr{C}^1 et bijectif de \mathbb{R}_+ sur \mathbb{R}_+):

$$\int_{0}^{+\infty} e^{-nx^{2}} dx = \int_{0}^{+\infty} e^{-u^{2}} \frac{1}{\sqrt{n}} du = \frac{\Delta}{\sqrt{n}};$$

et avec le changement de variable $x = \tan \theta$ (de classe \mathcal{C}^1 sur $[0, \pi/2]$, bijectif de $[0, \pi/2]$ sur $[0, +\infty[$):

$$\int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^n} = \int_0^{\pi/2} (\cos^2 \theta)^n \frac{1}{\cos^2 \theta} \, \mathrm{d}\theta = W_{2n-2} \,.$$

La relation du **I.3.3** sécrit donc pour tout $n \in \mathbb{N}^*$

$$W_{2n+1} \leqslant \frac{\Delta}{\sqrt{n}} \leqslant W_{2n-2}.$$

On a démontré en **I.3.2.b** que $W_n \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2n}}$, donc on obtient $W_{2n+1} \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2(2n+1)}} \underset{+\infty}{\sim} \frac{\sqrt{\pi}}{2\sqrt{n}}$ puis $\lim_{\substack{n \to +\infty \\ \text{ot be valour do l'intégrale de Causs in } } \sqrt{n}W_{2n-2} = \frac{\sqrt{\pi}}{2} \text{ donc par passage à la limite } \frac{\sqrt{\pi}}{2} \leqslant \Delta \leqslant \frac{\sqrt{\pi}}{2}$

$$\int_0^{+\infty} e^{-t^2} dt = \Delta = \frac{\sqrt{\pi}}{2}.$$

Partie II: Étude de deux fonctions

II.1 Étude de la fonction h

II.1.1 Soit b un réel. $t \mapsto \cos(2bt) \exp(-t^2)$ est continue sur $[0, +\infty [$ et pour tout $t \in [0, +\infty [$, $|\cos(2bt)\exp(-t^2)| \le \exp(-t^2)$. On a vu que $t \mapsto \exp(-t^2)$ était intégrable sur $[0, +\infty[$ donc $t \mapsto \cos(2bt)\exp(-t^2)$ est intégrable $[0, +\infty[$ par comparaison de fonctions positives d'où la convergence absolue, pour tout réel b, de l'intégrale :

$$h(b) = \int_0^{+\infty} \cos(2bt) \exp(-t^2) dt.$$

- **II.1.2** On applique ici le théorème sur la dérivée d'une intégrale à paramètre. Notons $g(b,t) = \cos(2bt) \exp(-t^2)$ pour $(b,t) \in \mathbb{R} \times \mathbb{R}_+$. Vérifions les hypothèses de ce théorème :
 - Pour tout réel b la fonction $t\mapsto g(b,t)$ est continue sur \mathbb{R}_+ et y est intégrable comme cela a été vu
 - Pour tout $t \in \mathbb{R}_+$, la fonction $b \mapsto g(b,t)$ est dérivable et $\frac{\partial g}{\partial b}(b,t) = -2t\sin(2bt)\exp(-t^2)$ est continue par rapport à b et à t.

3/6

 $-\forall (b,t) \in \mathbb{R} \times \mathbb{R}_+$, $\left| \frac{\partial g}{\partial b}(b,t) \right| \leq 2t \exp(-t^2)$ qui est une fonction continue sur \mathbb{R}_+ et intégrable (par comparaison à $\frac{1}{t^2}$ en $+\infty$).

Le théorème du cours permet alors d'affirmer que h est de classe \mathscr{C}^1 sur $\mathbb R$ et que

$$\forall b \in \mathbb{R} , h'(b) = \int_0^{+\infty} -2t \sin(2bt) \exp(-t^2) dt.$$

II.1.3 On intègre par parties l'intégrale précédente, en prenant $u'(t) = -2t \exp(-t^2)$ et $v(t) = \sin(2bt)$ soit, pour tout réel b:

$$h'(b) = \int_0^{+\infty} -2t \sin(2bt) \exp(-t^2) dt = \underbrace{\left[\sin(2bt) \exp(-t^2)\right]_{t=0}^{t=+\infty}} -2b \int_0^{+\infty} \cos(2bt) \exp(-t^2) dt$$

l'intégration par parties étant justifié par le fait que $\lim_{t\to +\infty} \sin(2bt) \exp(-t^2)$ existe, et vaut 0 (puisque la fonction sin est bornée). On a donc la relation :

$$\forall b \in \mathbb{R} , h'(b) = -2bh(b).$$

II.1.4 La résolution de cette équation différentielle ne pose pas de problème : il existe une constante C telle que, pour tout réel b on ait : $h(b) = Ce^{-b^2}$. Puis $C = h(0) = \int_0^{+\infty} e^{-t^2} dt = \Delta$ et finalement :

$$\forall b \in \mathbb{R} , h(b) = \frac{\sqrt{\pi}}{2} \exp(-b^2).$$

II.2 Étude de la fonction φ

II.2.1 On utilise ici le théorème de continuité d'une intégrale à paramètre :

- Pour t > 0 fixé, $x \mapsto e^{-t^2 \frac{x^2}{t^2}}$ est continue sur \mathbb{R} .
- Pour tout x réel, $t \mapsto e^{-t^2 \frac{x^2}{t^2}}$ est continue sur $]0, +\infty[$.
- Pour tout réel x et pour tout t > 0, $0 ≤ e^{-t^2 \frac{x^2}{t^2}} ≤ e^{-t^2}$, et la fonction $t \mapsto e^{-t^2}$ est continue et intégrable sur \mathbb{R}_+ , donc l'hypothèse de domination est vérifiée, et finalement :

$$\varphi: x \mapsto \int_0^{+\infty} \exp\left(-t^2 - \frac{x^2}{t^2}\right) dt$$
 est continue sur \mathbb{R} et est paire (évident).

II.2.2 On utilise maintenant le théorème de dérivabilité d'une intégrale à paramètre :

- L'hypothèse : pour tout réel $x \ t \mapsto e^{-t^2 \frac{x^2}{t^2}}$ est continue et intégrable sur $]0, +\infty[$ a déjà été vérifiée.
- $-\frac{\partial}{\partial x}(e^{-t^2-\frac{x^2}{t^2}}) = -\frac{2x}{t^2}e^{-t^2-x^2/t^2} \text{ existe pour tout réel } x \text{ et tout } t > 0.$
- pour t > 0 fixé, $x \mapsto -\frac{2x}{t^2} e^{-t^2 \frac{x^2}{t^2}}$ est continue sur \mathbb{R}_+^* ;
- pour tout réel $x>0,\ t\mapsto -\frac{2x}{t^2}{\rm e}^{-t^2-\frac{x^2}{t^2}}$ est continue sur] $0,+\infty$ [
- Hypothèse de domination locale : soit $[a,b] \subset \mathbb{R}_+^*$; pour $x \in [a,b]$ on a

$$\forall t > 0, \quad 0 \leqslant \left| -\frac{2x}{t^2} e^{-t^2 - \frac{x^2}{t^2}} \right| \leqslant \frac{2b}{t^2} e^{-t^2 - \frac{a^2}{t^2}}.$$

On montre facilement que $t\mapsto \frac{2b}{t^2}\mathrm{e}^{-t^2-\frac{a^2}{t^2}}$ est intégrable sur $]0,+\infty[$: elle est continue positive sur $]0,+\infty[$, prolongeable par continuité en t=0 (limite nulle par croissance comparée) et dominée pour $t\geqslant 1$ par $2b\mathrm{e}^{-t^2}...$ Le théorème du cours permet donc de conclure :

 φ est de classe \mathcal{C}^1 sur le segment [a,b].

Ceci étant valable sur tout segment de] $0, +\infty$ [, φ est de classe \mathcal{C}^1 sur] $0, +\infty$ [.

II.2.3 Pour x > 0, $\varphi'(x) = \int_0^{+\infty} -\frac{2x}{t^2} \mathrm{e}^{-t^2 - \frac{x^2}{t^2}} \mathrm{d}t$. On pose $u = \frac{x}{t}$ (l'application $t \mapsto \frac{x}{t}$ est une bijection de classe \mathscr{C}^1 de \mathbb{R}_+^* sur \mathbb{R}_+^*). Avec $\mathrm{d}u = -\frac{x}{t^2} \mathrm{d}t$ on obtient :

$$\varphi'(x) = -2 \int_0^{+\infty} e^{-x^2/u^2 - u^2} du$$
 soit $\varphi'(x) = -2\varphi(x)$.

II.2.4 La résolution de cette équation différentielle donne $\varphi(x) = K \exp(-2x)$ pour x > 0 avec K constante. Or φ est continue sur $\mathbb R$ donc $K = \lim_{0^+} \varphi = \varphi(0) = \sqrt{\pi}/2$.

Enfin, par parité, on obtient :
$$\forall x \in \mathbb{R} , \ \varphi(x) = \frac{\sqrt{\pi}}{2} \exp(-2|x|)$$
.

Partie III: Calcul d'une intégrale

III.1 Étude de la fonction ψ

III.1.1 Pour tout $x \in \mathbb{R}$, on a pour tout $t \geqslant 0$, $\frac{|\cos(2xt)|}{1+t^2} \leqslant \frac{1}{1+t^2}$; or $t \mapsto \frac{1}{1+t^2}$ est intégrable sur $[0,+\infty[$, on montre alors à l'aide du théorème de continuité (j'ai ici passé les détails) que

$$x \mapsto \psi(x) = \int_0^{+\infty} \frac{\cos(2xt)}{1+t^2} dt$$

définit une fonction ψ continue sur $\mathbb R$ qui par ailleurs est clairement paire.

III.1.2
$$\psi(0) = \int_0^{+\infty} \frac{1}{1+t^2} dt = \lim_{x \to +\infty} \arctan(x) - 0 = \frac{\pi}{2}.$$

III.2 On peut voir $j_p(x)$ comme une intégrale à paramètre mais en fait elle se calcule :

$$j_p(x) = \int_0^p y \exp(-(1+x^2)y^2) \, \mathrm{d}y = \left[-\frac{\exp(-(1+x^2)y^2)}{2(1+x^2)} \right]_{y=0}^{y=p} = \frac{1 - \exp(-(1+x^2)p^2)}{2(1+x^2)}$$

Sous cette forme il est clair que j_p est continue sur $\mathbb R$ et que pour x fixé $\lim_{p\to +\infty} j_p(x) = \frac{1}{2(1+x^2)}$.

III.3
$$k_n(y) = \int_0^n y \exp(-y^2 x^2) \cos(2ax) dx = y \int_0^n \exp(-y^2 x^2) \cos(2ax) dx$$
.

Soit $n \in \mathbb{N}^*$. On applique là encore le théorème de continuité d'une intégrale à paramètre pour démontrer la continuité de k_n :

- Pour x fixé, $y \mapsto y \exp(-y^2x^2)\cos(2ax)$ est continue sur \mathbb{R}^+ ;
- pour $y \ge 0$, $x \mapsto y \exp(-y^2 x^2) \cos(2ax)$ est continue sur [0, n];
- soit $[0, \beta]$ un segment de \mathbb{R}^+ , on a pour $y \in [0, \beta]$ la domination $|y \exp(-y^2 x^2) \cos(2ax)| \leq \beta$ qui est une fonction constante donc continue et intégrable sur le segment [0, n].

On peut donc conclure : $(k_n)_{n\in\mathbb{N}^*}$ est une suite de fonctions continues sur \mathbb{R}^+ .

Pour la convergence simple, on distingue deux cas :

- si $y = 0, k_n(0) = 0 \to 0$
- si y > 0, $x \mapsto \exp(-y^2x^2)\cos(2ax)$ est intégrable sur $[0, +\infty[$ car elle y est continue et c'est un $o(\frac{1}{x^2})$ quand $x \to +\infty$ donc

$$k_n(y) \underset{n \to +\infty}{\longrightarrow} \int_0^{+\infty} y \exp(-y^2 x^2) \cos(2ax) dx$$
. En posant alors $u = xy$:

$$\int_0^{+\infty} y \exp(-y^2 x^2) \cos(2ax) \, \mathrm{d}x = \int_0^{+\infty} y \exp(-u^2) \cos\left(2\frac{a}{y}u\right) \frac{1}{y} \mathrm{d}u = h\left(\frac{a}{y}\right) = \frac{\sqrt{\pi}}{2} \exp\left(-\frac{a^2}{y^2}\right).$$

En conclusion:

 $(k_n)_{n\in\mathbb{N}^*}$ est une suite de fonctions continues qui converge simplement sur \mathbb{R}^+ et sa limite simple est la fonction $y\longmapsto \begin{cases} \frac{\sqrt{\pi}}{2}\exp\left(-\frac{a^2}{y^2}\right) & si \quad y>0\\ 0 & si \quad y=0 \end{cases}$.

III.4 Soit $u_{n,p} = \int_0^n j_p(x) \cos(2ax) dx$ avec $n \in \mathbb{N}^*$ et $p \in \mathbb{N}^*$.

III.4.1 On utilise ici le théorème de convergence dominée :

- $x \mapsto j_p(x)\cos(2ax)$ est continue sur [0,n];
- la suite de fonction (j_p) converge simplement sur [0, n] et sa limite simple est la fonction $x \mapsto \frac{1}{2(1+x^2)}$, continue sur [0, n];
- domination : pour tout $p \in \mathbb{N}^*$ et pour $x \in [0, n]$, $|j_p(x)\cos(2ax)| \leq \frac{1}{2(1+x^2)} \leq 1$, qui est une fonction constante donc continue et intégrable sur [0, n].

D'après le théorème de convergence dominée

$$\lim_{p \to +\infty} u_{n,p} = \int_0^n \frac{1}{2(1+x^2)} \cos(2ax) \, dx.$$

III.4.2
$$u_{n,p} = \int_0^n j_p(x) \cos(2ax) dx = \int_0^n \left(\int_0^p y \exp(-(1+x^2)y^2) \cos(2ax) dy \right) dx.$$

Or $(x,y) \mapsto y \exp(-(1+x^2)y^2) \cos(2ax)$ est continue sur le pavé $[0,n] \times [0,p]$ donc par le théorème de Fubini :

$$u_{n,p} = \int_0^p \left(\int_0^n y \exp(-(1+x^2)y^2) \cos(2ax) \, dx \right) \, dy = \int_0^p k_n(y) \exp(-y^2) \, dy.$$

III.5 La fonction $y \mapsto k_n(y) \exp(-y^2)$ est continue sur $[0, +\infty [$. Pour $y \ge 0$

$$|k_n(y)| = \left| \int_0^n y \exp(-y^2 x^2) \cos(2ax) \, \mathrm{d}x \right| \leqslant y \int_0^n 1 \, \mathrm{d}x = ny$$

donc $|k_n(y) \exp(-y^2)| \leq ny \exp(-y^2)$ ce qui montre l'intégrabilité sur $[0, +\infty[$.

III.6 D'après III.4 et III.5, pour tout $n \in \mathbb{N}^*$, on obtient en passant à la limite quand p tend vers $+\infty$:

$$\frac{1}{2} \int_0^n \frac{1}{1+x^2} \cos(2ax) \, dx = \int_0^{+\infty} k_n(y) \exp(-y^2) \, dy$$

On passe maintenant à la limite quand $n \to +\infty$ à nouveau avec le théorème de convergence dominée. On pose $f_n(y) = k_n(y) \exp(-y^2)$:

- l'intégrabilité des f_n a été vue au III.5;
- la convergence simple se déduit de III.3 : (f_n) est une suite de fonctions continues qui converge simplement sur \mathbb{R}^+ et sa limite simple est la fonction $y \mapsto \begin{cases} \frac{\sqrt{\pi}}{2} \exp\left(-\frac{a^2}{y^2} y^2\right) & si \quad y > 0 \\ 0 & si \quad y = 0 \end{cases}$.
- domination : pour tout $n \in \mathbb{N}^*$, pour tout $y \geqslant 0$, on a $0 \leqslant |f_n(y)| \leqslant \exp(-y^2) \int_0^n y \exp(-y^2 x^2) dx$ d'où

$$0 \leqslant |f_n(y)| \leqslant \exp(-y^2) \int_0^{+\infty} y \exp(-y^2 x^2) \, \mathrm{d}x = \exp(-y^2) \int_0^{+\infty} \exp(-u^2) \, \mathrm{d}u = \exp(-y^2) \Delta$$

et la fonction dominante $y \mapsto \Delta \exp(-y^2)$ est continue et intégrable sur $[0, +\infty[$.

On obtient ainsi:

$$\psi(a) = \int_0^{+\infty} \frac{1}{1+x^2} \cos(2ax) \, dx = 2 \int_0^{+\infty} \frac{\sqrt{\pi}}{2} \exp\left(-\frac{a^2}{y^2} - y^2\right) \, dy = \sqrt{\pi} \, \varphi(a)$$

soit en d'autres termes :

$$\forall x \in \mathbb{R}, \qquad \psi(x) = \sqrt{\pi} \, \varphi(x) = \frac{\pi}{2} \exp(-2|x|).$$