## Ejercicio 7. Considere el siguiente problema de programación lineal:

$$\max z = c_1 x_1 + c_2 x_2 s.a : 2x_1 + 3x_2 \le b_1 x_1 - x_2 \le b_2 x_1, x_2 \ge 0$$

con  $c_1 = 1$ ,  $c_2 = 3$ ,  $b_1 = 6$  y  $b_2 = 2$ .

- a) Aplique el algoritmo Simplex para encontrar el óptimo.
- b) ¿En qué intervalo puede moverse  $c_1$  y que el óptimo siga siendo el mismo?
- c) ¿En qué intervalo puede moverse  $b_1$  y que el óptimo siga siendo el mismo?
- d) Formule el problema dual del problema original y encuentre el óptimo del dual utilizando el Teorema de Holgura Complementaria.
- e) Suponga que  $b_1$  aumenta de 6 a 6.5, ¿en cuánto mejora la función objetivo?
- f) Suponga que  $b_2$  aumenta de 2 a 3, ¿en cuánto mejora la función objetivo?



|  | (a) | Que  | en el | lho   | rer C | .,             |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|--|-----|------|-------|-------|-------|----------------|-------|------------------|---------------------------|---------|----------|-------|------|------|-------|------|------|-------|-------|-----|
|  |     |      |       |       |       |                | t     | t                | 2-1 B                     | (0      |          |       |      |      |       |      |      |       |       |     |
|  |     |      | ***   | i mo  | the M |                | اند ا |                  | B-1A                      |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           | ) =>?   | _        |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           | > =>/   |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                | В     | = 3              | 0                         | ) ~     | , B      | ے ا   | 1/3  | 0)   |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       | 1-2              | 11/                       |         |          | \     | 1/3  | 1/   |       |      |      |       |       |     |
|  |     |      |       |       |       |                | B     | = (              | 2 1                       |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  | 1 C                       |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         | ,        | -1    | // \ |      |       |      |      |       |       |     |
|  |     | ,    |       |       |       | -1,            |       | ,                |                           |         |          | 2/3   | 1/3  | ) ,  |       |      |      |       |       |     |
|  |     | (C1. | 0) -  | 13,   | 0)    | B-1            | \_ =  | (C.,             | o)-                       | (3,0)   | ) (      | 5/3   | 1/31 | = (( | (1,0) | - (2 | 2,1) | ) = ( | C1-2, | -1) |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     | ->   | Para  | . que | Dé    | Thins          | ) N   | ga 1             | nends                     | s Splin | _<br>uu9 | C, -2 | 2 (0 | → (  | 7,52  |      |      |       |       |     |
|  |     |      |       | (     |       |                | (     | 3                |                           | 0       |          |       |      |      | 1     |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      | 1.    |       |       |                | 6.    | 000              | 20                        |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      | · Oha | Conc  | eis   | W1 =           |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  | † <u>/</u> / <sub>2</sub> |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       | 3              | - C1  | $\chi_{\perp}$ + | -3 plz                    |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       | x <sub>2</sub> | = 2 - | 2/3              | X1 - /                    | bω,     |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  | 2×1 - 1/2                 |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           | (1-M)   |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       | 2.6              | //                        | I-m     | 1        |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |
|  |     |      |       |       |       |                |       |                  |                           |         |          |       |      |      |       |      |      |       |       |     |

