BUILDING RECOMMENDATION ENGINES IN PYTHON

Rob O'Callaghan
Director of Data

Finding similar users

User ID	Item ID	Review
User 1	Item 1	©
User 1	Item 4	
User 2	Item 2	
User 2	Item 4	©
User 3	Item 1	©
User 3	Item 4	

Finding similar users

User ID	Item ID	Review
User 1	Item 1	<u></u>
User 1	Item 4	
User 2	Item 2	
User 2	Item 4	©
User 3	Item 1	© □-(}
User 3	Item 4	

Working with real data

user_ratings DataFrame:

User	Book	Rating
User_233	The Great Gatsby	3.0
User_651	The Catcher in the Rye	5.0
User_131	The Lord of the Rings	3.0
User_965	The Great Gatsby	4.0
User_651	Fifty Shades of Grey	4.0
•••	•••	•••

Pivoting our data

title	The Great Gatsby	The Catcher in the Rye	Fifty Shades of Grey
User			
User_233	3.0	NaN	NaN
User_651	NaN	5.0	4.0
User_965	4.0	3.0	NaN
• • •	• • •	•••	• • •

Data sparsity

```
title
         The Great Gatsby
                            The Catcher in the Rye
                                                      Fifty Shades of Grey
User
User_233
                      3.0
                                                 NaN
                                                                         NaN
User_651
                      NaN
                                                                         4.0
                                                 5.0
User_965
                       4.0
                                                 3.0
                                                                         NaN
```

```
print(user_ratings_pivot.dropna())
```

```
Empty DataFrame
Columns: ["The Great Gatsby", "The Catcher in the Rye", "Fifty Shades of Grey"]
Index: []
```

```
title
          The Great Gatsby
                            The Catcher in the Rye
                                                        Fifty Shades of Grey
User
User_233
                      3.0
                                                 NaN
                                                                         NaN
User_651
                       NaN
                                                 5.0
                                                                         4.0
User_965
                       4.0
                                                 3.0
                                                                         NaN
```

```
print(user_ratings_pivot["User_651"].fillna(0))
```

User_651	0.0	5.0	4.0


```
avg_ratings = user_ratings_pivot.mean(axis=1)
user_ratings_pivot = user_ratings_pivot.sub(avg_ratings, axis=0)
print(user_ratings_pivot)
```

title	The Great Gatsby	The Catcher in the Rye	Fifty Shades of Grey	
User				
User_233	0.0	NaN	NaN	
User_651	NaN	0.5	-0.5	
User_965	0.5	-0.5	NaN	
• • •	•••	•••	•••	


```
user_ratings_pivot.fillna(0)
```

title	The Great Gatsby	The Catcher in the Rye	Fifty Shades of Grey
User			
User_233	0.0	0.0	0.0
User_651	0.0	0.5	-0.5
User_965	0.5	-0.5	0.0
• • •	• • •	• • •	• • •

Let's practice!

BUILDING RECOMMENDATION ENGINES IN PYTHON

Finding similarities

BUILDING RECOMMENDATION ENGINES IN PYTHON

Rob O'Callaghan
Director of Data

Item-based recommendations

Item-based recommendations

Item-based recommendations

User-based to item-based

User-based to item-based

User-based to item-based

```
print(user_ratings_pivot):
```

```
book_ratings_pivot = user_ratings_pivot.T
print(book_ratings_pivot)
```

User_	_233	User_651	User_965
The Great Gatsby	0.0	0.0	0.5
The Catcher in the Rye	0.0	0.5	-0.5
Fifty Shades of Grey	0.0	-0.5	0.0

book_ratings_pivot:

User_	_233	User_651	User_965	
The Great Gatsby	0.0	0.0	0.5	
The Catcher in the Rye	0.0	0.5	-0.5	
Fifty Shades of Grey	0.0	-0.5	0.0	

0.43

-0.64

The Great Gatsby	The Catcher in the Rye	Fifty Shades of Grey
The Great Gatsby 1.0	0.0	-0.3
The Catcher in the Rye 0.0	1.0	-0.5
Fifty Shades of Grey -0.3	-0.5	1.0
• • • • • • • • • • • • • • • • • • • •	•••	•••

```
cosine_similarity_series = cosine_similarity_df.loc['The Hobbit']
ordered_similarities = cosine_similarity_series.sort_values(ascending=False)
print(ordered_similarities)
```

```
The Hobbit 1.00
Lord of the Rings 0.43
The Silmarillion 0.37
...
```


Let's practice!

BUILDING RECOMMENDATION ENGINES IN PYTHON

Using K-nearest neighbors

BUILDING RECOMMENDATION ENGINES IN PYTHON

Rob O'Callaghan
Director of Data

Beyond similar items

K-nearest neighbors

User-user similarity

	User 001	User 002	User 003
User 001	1.0	-0.4	0.3
User 002	-0.4	1.0	-0.5
User 003	0.3	-0.5	1.0
	• • • • • • • • • • • • • • • • • • • •	•••	•••

Understanding the similarity matrix

	User 001	User 002	User 003
User 001	1.0	-0.4	0.3
User 002	-0.4	1.0	-0.5
User 003	0.3	-0.5	1.0
• • •	• • •	•••	• • •

Understanding the similarity matrix

	User 001	User 002	v User 003
User 001	1.0	-0.4	0.3
User 002	-0.4	1.0	-0.5
User 003	0.3	-0.5	1.0
• • •	•••	• • •	• • •

Understanding the similarity matrix

	User 001	v User 002	User 003
User 001	1.0	-0.4	<- 0.3
User 002	-0.4	1.0	-0.5
User 003	0.3	-0.5	1.0
• • •	• • •	• • •	• • •

Step by step KNN

```
user_similarity_series = user_similarities.loc['user_001']
ordered_similarities = user_similarity_series.sort_values(ascending=False)
nearest_neighbors = ordered_similarities[1:4].index
print(nearest_neighbors)
```

```
user_007
user_042
user_003
```

Step by step KNN

```
neighbor_ratings = user_ratings_table.reindex(nearest_neighbors)
neighbor_ratings['Catch-22'].mean()
```

3.2


```
print(user_ratings_pivot)
```

	The Great Gatsby	Catch-22	Fifty Shades of Grey
User_233	0.0	0.0	0.0
User_651	0.0	0.5	-0.5
• • •	• • •	• • •	•••

```
print(user_ratings_table)
```

	The Great Gatsby	Catch-22	Fifty Shades of Grey
User_233	NaN	NaN	NaN
User_651	NaN	5.0	4.0
• • •	•••	•••	V


```
user_ratings_pivot.drop("Catch-22", axis=1, inplace=True)
target_user_x = user_ratings_pivot.loc[["user_001"]]
print(target_user_x)
```

```
The Great Gatsby Fifty Shades of Grey Iliad
User_001 4.0 2.0 3.0
```

```
other_users_y = user_ratings_table["Catch-22"]
print(other_users_y)
```

```
[NaN, '5.0', '3.0', '4.0', '5.0' ...]
```



```
other_users_x = user_ratings_pivot[other_users_y.notnull()]
print(other_users_x)
```

```
      The Great Gatsby
      Fifty Shades of Grey
      Iliad

      User_651
      0.0
      -0.5
      -0.5

      User_442
      1.0
      0.0
      1.0

      ...
      ...
      ...
      ...
```

```
other_users_y.dropna(inplace=True)
print(other_users_y)
```

```
['5.0', '3.0', '4.0','5.0' ...]
```

```
from sklearn.neighbors import KNeighborsRegressor
user_knn = KNeighborsRegressor(metric='cosine', n_neighbors=3)
user_knn.fit(other_users_x, other_users_y)
user_user_pred = user_knn.predict(target_user_x)
print(user_user_pred)
```

3.3

```
from sklearn.neighbors import KNeighborsClassifier
user_knn = KNeighborsClassifier(metric='cosine', n_neighbors=3)
user_knn.fit(other_users_x, other_users_y)
user_user_pred = user_knn.predict(target_user_x)
print(user_user_pred)
```

3

Let's practice!

BUILDING RECOMMENDATION ENGINES IN PYTHON

Item-based or userbased

BUILDING RECOMMENDATION ENGINES IN PYTHON

Rob O'Callaghan
Director of Data

Item-based filtering

User-based filtering

Why use item-based filtering?

Pros:

- Item-based recommendations are more consistent over time
- Item-based recommendations can be easier to explain
- Item-based recommendations can be pre-calculated

Cons:

Item-based recommendations result in very obvious suggestions

Why use user-based filtering?

Pros:

• User-based recommendations can create a lot more interesting suggestions

Cons:

Generally beaten by item-based recommendations using standard metrics

Let's practice!

BUILDING RECOMMENDATION ENGINES IN PYTHON

