

Comparison of Pix2Pix and CycleGAN's performances for illustration colorization

Maria Alba, Berta Benet, Maria Elena Budan

1 Introduction

Image to Image translation

Task of automatically translating images from one domain to another.

Examples:

- Paintings → Images
- Edges \rightarrow Real objects
- $B&W \rightarrow Color$

Comparison

We aim to compare the Pix2Pix and CycleGAN architectures, both provided by Jun-Yan Zhu and Teasung Park.

Our project

How does each architecture fit our dataset?

We provide a set of experiments and their respective results.

1 Colorization

"Technique of adding color to black and white pictures"

2 Dataset

400 pairs of illustrations from the Victorian era:

- 1. B&W + Colored
- 2. Resized versions (256x256)
- 3. High resolution

Experiments - Dataset

3 cGAN structure

Objective function:

Loss of conditional GAN + L1 distance

Objective function

$$G^* = rg \min_{G} \max_{D} \mathcal{L}_{cGAN}(G,D) + \lambda \mathcal{L}_{L1}(G)$$

Objective of a conditional GAN

$$\mathcal{L}_{cGAN}(G,D) = \mathbb{E}_{x,y}[\log D(x,y)] + \mathbb{E}_{x,z}[\log(1-D(x,G(x,z))]$$

L1 distance

$$\mathcal{L}_{L1}(G) = \mathbb{E}_{x,y,z}[\|y-G(x,z)\|_1]$$

3 Cycle-GAN structure

Objective function:

Adversarial losses + cycle consistency loss

Objective function

$$G^*, F^* = rg \min_{G,F} \max_{D_X,D_Y} \mathcal{L}(G,F,D_X,D_Y)$$

Loss function

$$\mathcal{L}(G,F,D_X,D_Y) = \mathcal{L}_{GAN}(G,D_Y,X,Y) + \mathcal{L}_{GAN}(F,D_X,Y,X) + \lambda \mathcal{L}_{cyc}(G,F)$$

Cycle-GAN objectives

Adversarial losses

$$\mathcal{L}_{GAN}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{data}(y)}[\log D_Y(y)] + \mathbb{E}_{x \sim p_{data}(x)}[\log(1 - D_Y(G(x))]$$

$$\mathcal{L}_{GAN}(F, D_X, Y, X) = \mathbb{E}_{x \sim p_{data}(x)}[\log D_X(x)] + \mathbb{E}_{y \sim p_{data}(y)}[\log(1 - D_X(F(y))]$$

Cycle consistency loss

$$\mathcal{L}_{cyc}(G,F) = \mathbb{E}_{x \sim p_{data}(x)}[\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{data}(y)}[\|G(F(y)) - y\|_1]$$

Pix2Pix

Pairwise domain

(Needs paired images from the two corresponding domains.)

Only forward mapping

CycleGAN

Non-pairwise domain

(Works with unordered image collections.)

Forward & backward mapping

Experiments

EXPERIMENT	#1	#2	#3	#4
Model	Pix2Pix		CycleGAN	
Batch size	32	1	1	1
Training Dataset	90% 720 paired images	90% 720 paired images	45% 360 unpaired img.	90% 720 images
	- 360 colored - 360 B&W model generated	- 360 colored - 360 B&W model generated	- 180 colored - 180 B&W	- 360 colored - 360 B&W

Training time	≃ 1.5h	
# Param. Network G	54.410 M	
Losses last iter	G_GAN	0.89
	G_L1	4.721
	D_real	0.411
	D_fake	0.565

Training time	≃ 3.5h	
# Param. Network G	54.410 M	
Losses last iter	G_GAN	2.710
	G_L1	6.290
	D_real	0.180
	D_fake	0.100

Training time	≃ 5.7h (for both transf)		
# Param. Network G_A	11.378 M		
Losses last iter	D_A	0.085	
	G_A	0.438	
	cycle_A	0.714	
	idt_A	0.780	

Training time	≃ 5.7h (for both transf)		
# Param. Network G_B	11.378 M		
Losses last iter	D_B	0.134	
	G_B	0.472	
	cycle_B	1.333	
	idt_B	0.290	

Training time	≃ 5.4h (for both transf)	
# Param. Network G_A	11.378 M	
Losses last iter	D_A	0.203
	G_A	0.585
	cycle_A	1.165
	idt_A	0.723

Training time	≃ 5.4h (for both transf)	
# Param. Network G_B	11.378 M	
Losses last iter	D_B	0.218
	G_B	0.408
	cycle_B	2.180
	idt_B	0.479

5 Results

Training time

Same

Batch size Amount of data Num. of iterations

Pix2Pix converges faster but learns only one transformation

Qualitative testing

- AMT

Original pair

Pix2Pix

Original B&W

Experiment 1

Experiment 2

Original Color

Only difference between Experiment 1 and Experiment 2 is the batch size

CycleGAN: B&W → Color

Fake colored

Reconstructed

Experiment 4

CycleGAN: Color \rightarrow B&W

Reconstructed

Experiment 3

Experiment 4

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Conclusions

Original

7 References

- [1] Hoyeol, K. (2019). Victorian 400. Retrieved from https://www.kaggle.com/elibooklover/victorian 400
- [2] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, & Alexei A. Efros. (2018). Image-to-Image Translation with Conditional Adversarial Networks. Retrieved from https://arxiv.org/pdf/1611.07004.pdf
- [3] Jun-Yan Zhu, Taesung Park, Phillip Isola, & Alexei A. Efros. (2018). Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. Retrieved from https://arxiv.org/pdf/1703.10593.pdf
- [4] junyanz/pytorch-CycleGAN-and-pix2pix. (2018). Retrieved from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

Our repository:

Maria Alba, Berta Benet, Marilena Budan (2020). Comparison of Pix2Pix and CycleGAN's performances for illustration colorization. https://github.com/marilenabudan/Colorization Pix2Pix CycleGAN

Any questions?