Sprawozdanie 0

Układy elektroniczne - Laboratoria

Temat laboratoriów:

A-0. Pomiary Stałoprądowe

WFiIS AGH 14.03.2021

Łukasz Wajda

1. Cel ćwiczenia

Celem ćwiczenia było poznanie obsługi podstawowych zasilaczy napięcia stałego oraz zrozumienie możliwości i ograniczeń miernika uniwersalnych wielkości elektrycznych. Mieliśmy za zadanie, także zmierzyć podstawowe wielkości elektryczne (napięcie, natężenie, moc czynna) dla różnych konfiguracją połączeń szeregowych i równoległych odbiorników a wyniki opracowaliśmy korzystając z prawa Ohma oraz prawa Kirchhoffa. Do zbudowania podstawowych schematów elektrycznych używano uniwersalnej płytki stykowej, rezystorów do montażu przewlekanego THT oraz urządzeń pomiarowych t.j.:

- zasilacz laboratoryjny model E3630A firmy Agilent,
- zasilacz laboratoryjny model E3631A firmy Agilent,
- miernik uniwersalny 34401A firmy Agilent,
- ręczny miernik uniwersalny U1272A firmy Agilent.

2. Przebieg ćwiczenia

- 1. Zmierzenie, za pomocą multimetru napięcia i płynącego przez oporniki natężenia. Wykorzystanie wyników do określenia rezystancji poszczególnych oporników.
- 2. Zmierzenie rezystancji wcześniej wykorzystanych oporników oraz porównanie jej z poprzednimi wynikami.
- 3. Zbudowanie prostego dzielnika napięciowego i wykonanie pomiarów napięcia na każdym z rezystorów.
- 4. Zbudowanie prostego dzielnika prądowego i wykonanie pomiarów prądowych na każdym z rezystorów.
- 5. Wyznaczenie mocy czynnej dla rezystora R1.

3. Wyniki

3.1. Pomiary prądu i napięcia przepływającego przez pojedyncze rezystory

Na samym początku ćwiczeni zbudowaliśmy obwód pomiarowy na płytce stykowej zgodnie ze schematem poniżej, wykorzystując zasilacz napięcia stałego, amperomierz i badany rezystor. Elementy łączyliśmy za pomocą przewodów. Zgodnie z poleceniem ustawiliśmy napięcie i zmierzyliśmy prąd przepływający przez nasz rezystor R1 oraz napięcie na jego końcach następnie powtórzyliśmy te operacje dla 6 rożnych wartości U1. Czynności powtórzono dla rezystora R2.

Rys 1. Schematy do pomiaru napięcia i prądu na pojedynczym rezystorze (schemat do pomiaru małych rezystancji).

Tabela 1: Pomiary prądu i napięcia na pierwszym rezystorze

Napięcie zasilacza [V]	Napięcie wydzielane na rezystorze [V]	Prąd przepływający przez rezystor [mA]
1	0,9858	0,9963
2	1,9733	1,9943
3	2,9600	2,9925
4	3,9450	3,9913
5	4,9320	4,9905
6	5,9180	5,9887

Rys.2 Wykres zależności napięcia od prądu na pierwszym rezystorze

Tabela 2: Pomiary prądu na drugim rezystorze

Napięcie zasilacza	Napięcie wydzielane	ane Prąd przepływający przez rezystor	
[V]	na rezystorze		
	[V]	[mA]	
1	0,9971	0,5044	
2	1,9943	1,0097	
3	2,9910	1,5148	
4	3,9895	2,0205	
5	4,9612	2,5257	
6	5,9860	3,0324	

Rys. 3: Wykres zależności napięcia od prądu na drugim rezystorze

Korzystając z prawa Ohma (wzór (1)) oraz parametrów regresji liniowej (wzór (2))

$$U = RI \tag{1}$$

$$U = a \cdot I + b \tag{2}$$

gdzie:

R – rezystancja [Ohm]

U – napięcie [V]

I - natężenie prądu [A]

a – współczynnik kierunkowy [Ohm]

b – wyraz wolny [V]

można wyliczyć rezystancje poszczególnych oporników, wyniki przedstawione zostały w tabeli 4.

Tabela 4: Rezystancja rezystorów zgodna z oznaczeniami i wyliczona z regresji

Rezystor	Współczynnik a prostej(rezystancja) [kΩ]	Rezystancja określona przez producenta [kΩ]
R1	0,987	1 ±5%
R2	1,969	2 ±5%

Wyliczone rezystancje są, po uwzględnieniu niepewności, zgodne z tymi określonymi przez producenta.

3.2. Pomiar rezystancji miernikiem wartości elektrycznych

Korzystając z miernika rezystancji dokonaliśmy pomiarów 2 rezystorów wykorzystanych w punkcie 3.1. Otrzymane wartości zostały przedstawione w tabeli 5.

Tabela 5: Porównanie rezystancji zmierzonej miernikiem oraz wyliczonej w 3.1

Lp.	Rezystancja określona przez producenta [kΩ]	Rezystancja wskazywana przez miernik [kΩ]	Rezystancja wyliczona w punkcie 3.1 [kΩ]
1	1 ±5%	0,983	0,987
2	2 ±5%	1,958	1,969

Wyniki uzyskane przez miernik rezystancji zawierają się w określonej przez producenta tolerancji. Są także bardzo zbliżone do tych wyliczonych w punkcie 3.1.

3.3. Pomiar rozkładu napięć w dzielniku napięciowym

Następnym krokiem było znalezienie rozkładu napięć w dzielniku napięciowym składającym się z 2 rezystorów połączonych szeregowo (rys. 4)

Rys 4. Schemat pomiarowy dzielnika napięciowego

Wzór (3) pozwala obliczyć napięcie na poszczególnych rezystorach w dzielniku napięć

$$U_{x} = U \frac{R_{x}}{R_{z}} \tag{3}$$

gdzie:

Ux – napięcie na rezystorze Rx [V]

U – napięcie wejściowe [V]

Rz – rezystancja zastępcza układu [Ohm]

Rx – rezystancja rezystora x [Ohm]

W tabeli 6 zostały przedstawione teoretyczne wartości napięć wyliczone ze wzoru (3) oraz wartości napięć uzyskane poprzez pomiary miernikiem. Prąd zmierzony w tym obwodzie miał wartość I = 1,1686 mA

Tabela 6: Pomiar napięcia na rezystorach w dzielniku napięcia

Miernik	Teoretyczna wartość napięcia [V]	Zmierzona wartość napięcia [V]
U1	3,5	3,5
V1	1,1(6)	1,1683
V2	2,(3)	2,3223

Z prawa Ohma które mówi, że R=U/I otrzymujemy, że R1=999,74[Ω] oraz R2=1987,25[Ω]. A korzystają z prawa Kirchhoffa wyliczamy rezystancje zastępczą układu:

$$U1 = V1 + V2$$

$$U1 = R_Z I$$

$$R_Z I = V1 + V2$$

$$R_Z = \frac{V1 + V2}{I}$$
(4)

Otrzymaliśmy, że R=2987[Ω] wynik tej jest równy w przybliżeniu sumie rezystancji R1 i R2 R1+R2=2986,99[Ω]

Wykonane pomiary są bardzo zbliżone do wartości teoretycznych, suma napięć odłożonych na rezystorach wynosi V = 3,49 i jest zbliżona do wartości oczekiwanej z prawa Kitchhoffa.

3.4. Pomiar rozpływu prądów w dzielniku prądowym

W dalszej części ćwiczenia przygotowaliśmy obwód elektryczny zgodnie ze schematem poniżej (Rys.5). Dla ustalonej wartości prądu zasilającego I, wprowadziliśmy zasilacz w tryb pracy stałego prądu CC, ang. Constant Current Mode, a następnie odczytane wartości spadku napięć V1 i płynące przez rezystory prądy I1 oraz I2 zapisaliśmy w tabeli. Napięcie zmierzone w tym obwodzie miało wartość V1 = 3,332 V

Rys 5. Schemat pomiarowy dzielnika prądowego

Tabela 7: Pomiar napięcia na rezystorach w dzielniku napięcia

Miernik	Teoretyczna wartość prądu [mA]	Zmierzona wartość prądu [mA]
I	5	5
I1	3,(3)	3,323
I2	1,(6)	1,67

Wzór (3) pozwala obliczyć napięcie na poszczególnych rezystorach w dzielniku prądowym:

$$I_{x} = I \frac{R_{y}}{R_{z}} \tag{5}$$

gdzie:

Ix – prąd na rezystorze Rx [A]

I – prąd wejściowy [A]

Rz – suma oporników [Ohm]

Ry – rezystancja rezystora na przeciwnej gałęzi [Ohm]

Suma prądów przepływających przez gałęzie z rezystorami wynosi Is = 4,993 mA i jest zbliżona do wartości odczytanej z zasilacza 5 mA. Świadczy to o spełnieniu I prawa Kitchhoffa, które mówi że dla węzła obwodu elektrycznego suma algebraiczna natężeń prądów wpływających (+) i wypływających (-) jest równa zeru.

Z prawa Ohma otrzymujemy, że R1=999,74 $[\Omega]$ oraz R2=1987,25 $[\Omega]$. A korzystają z prawa Kirchhoffa wyliczamy rezystancje zastępczą układu

$$R_{Z} = E/I$$

$$R_{Z} = 666,4 [\Omega]$$
(6)

Wynik tej jest równy w przybliżeniu:

$$\frac{R1 * R2}{R1 + R2} = 665,13[\Omega]$$

co świadczy o poprawności dokonanych pomiarów.

3.5. Pomiar mocy czynnej

W ostatnim zadaniu na podstawie danych pomiarowych z punktu 3.1 wyliczyliśmy moc czynną rozpraszaną na rezystorze R1 jako iloczyn napięcia i prądu na danym elemencie $(P = U \cdot I)$.

Tabela 8: Pomiary dla pierwszego rezystora

Napięcie zasilacza	Napięcie wydzielane	Prąd przepływający	Moc czynna [W]
[V]	na rezystorze	przez rezystor	
	[V]	[A]	
1	0,9858	0,0009963	0,000982
2	1,9733	0,0019943	0,003935
3	2,9600	0,0029925	0,008858
4	3,9450	0,0039913	0,015746
5	4,9320	0,0049905	0,024613
6	5,9180	0,0059887	0,035441

Następnie korzystając z regresji liniowej rysujemy wykres zależności mocy od kwadratu natężenia.

Rys 6. Wykres zależność: $P = f(I^2)$.

Przekształcają wzór na moc do postaci:

$$P = U \cdot I = I^2 \cdot R \tag{6}$$

I przyrównując go ze wzorem na prostą $y = a \cdot x + b$ (gdzie b jest bliskie 0) nasze R=1k Ω , rezystancja badanego rezystora R1 odpowiada a=988,07 Ω , współczynnik kierunkowy dopasowanej liniowo prostej. Wynika z tego, że pomiary w znaczący sposób odbiegają od wzorów.