kNNR	Best	Basic	Inv	Caruana	SWRSC	SWRSCX	WCH SCH
automobile	27.27(6)	21.45(4)	21.30(3)	21.21(2)	23.90(5)	19.88 (1)	22.74 10.55
fertility	109.07(6)	101.31(4)	100.51(3)	99.24 (1)	99.78(2)	102.26(5)	96.75 64.73
flow	102.86(6)	84.46(2)	84.47(3)	85.59(4)	87.29(5)	59.15 (1)	80.75 62.41
forest	141.64(6)	106.44(5)	106.20(4)	104.40(3)	98.52 (1)	99.68(2)	102.86 93.19
servo	55.11(6)	55.02(5)	54.85(4)	53.48(3)	51.09(2)	50.50 (1)	45.65 38.28
slump	111.84(6)	89.82(5)	89.62(4)	88.58(3)	86.77(2)	82.35(1)	85.79 61.18
traffic	39.66(5)	33.76(4)	33.64(3)	33.31(2)	32.15(1)	39.83(6)	31.26 22.37
$wine_red$	110.39(6)	81.05(2)	81.30(3)	82.56(5)	81.38(4)	65.27(1)	84.53 48.46
wine_white	96.76(6)	80.21(4)	80.10(3)	81.00(5)	80.07(2)	66.40(1)	83.37 44.14
Avg. Rank	(5.89)	(3.89)	(3.33)	(3.11)	(2.67)	(2.11)	
Ridge	Best	Basic		Caruana	SWRSC	SWRSCX	WCH SCH
automobile	20.00(6)	17.91(4)	17.84(3)	16.92(2)	18.22(5)	16.23 (1)	17.86 9.73
fertility		103.18(4)	103.17(3)	102.67(2)	95.22(1)	103.98(5)	102.43 97.38
flow	66.89(6)	66.62(5)	66.61(4)	66.07(3)	65.42(2)	57.15(1)	65.71 64.60
forest	99.44(4)	99.57(5)	99.57(6)	99.38(3)	98.36(1)	99.20(2)	99.31 98.02
servo	62.27(3)	62.34(5)	62.34(4)	62.44(6)	61.05(1)	61.10(2)	61.90 61.50
slump	87.71(6)	87.23(5)	87.23(4)	86.97(3)	85.62(2)	79.15(1)	86.28 84.09
traffic	41.28(6)	40.65(5)	40.63(4)	39.81(3)	38.31(2)	36.18 (1)	39.61 38,42
$wine_red$	69.12(6)	65.55(5)	65.52(4)	64.87(2)	64.82(1)	64.90(3)	64.83 54.53
wine_white	78.12(6)	73.82(5)	73.77(4)	72.98(3)	72.93(2)	72.83(1)	72.92 62.92
Avg. Rank	(5.44)	(4.78)	(4.00)	(3.00)	(1.89)	(1.89)	
Lasso	Best	Basic	Inv	Caruana	SWRSC	SWRSCX	WCH SCH
automobile	18.45(2)	18.49(3)	18.49(4)	18.54(5)	19.39(6)	16.44 (1)	18.40 18.24
fertility	92.95(3)	92.77(1)	92.78(2)	92.95(3)	93.07(5)	96.93(6)	92.48 90.07
flow	66.66(6)	65.99(5)	65.99(4)	65.66(3)	64.99(2)	57.16(1)	65.21 64.12
forest	99.65(6)	99.58(4)	99.58(5)	99.54(3)	98.27(1)	99.33(2)	99.45 99.09
servo	102.02(6)	75.89(5)	73.02(4)	64.29(3)	59.63(2)	56.87 (1)	60.14 52.34
slump	86.85(6)	86.43(5)	86.43(4)	86.02(3)	84.90(2)	79.17(1)	85.75 83.52
traffic	40.24(5)	36.86(4)	36.80(3)	35.72(2)	34.86(1)	43.84(6)	35.05 31.64
$wine_red$	96.71(6)	89.09(5)	88.21(4)	83.54(3)	75.67(2)	65.63(1)	78.50 68.64
wine_white	95.58(6)	88.34(5)	87.83(4)	84.48(3)	81.56(2)	73.74(1)	82.62 72.14
Avg. Rank		(4.11)	(3.78)	(3.17)	(2.56)	(2.22)	
SVR	Best	Basic	Inv	Caruana	SWRSC	SWRSCX	WCH SCH
automobile	114.30(6)	112.36(5)	107.23(4)	91.12(3)	76.54(2)	16.10 (1)	83.74 82.48
fertility	184.62(6)	110.73(5)	104.17(4)	94.79(1)	101.98(3)	101.94(2)	88.94 52.49
flow	106.54(6)	103.90(5)	103.80(4)	97.96(3)	91.07(2)	58.82 (1)	92.25 75.72
forest	101.04(6)	99.98(5)	99.95(4)	98.07(1)	98.38(2)	99.69(3)	97.60 95.49
servo	117.03(6)	72.74(5)	57.21(4)	25.58(3)	23.37 (1)	24.23(2)	21.51 16.47
slump	116.65(6)	110.74(5)	110.34(4)	100.51(3)	95.55(2)	78.91 (1)	98.18 75.27
traffic	89.38(6)	70.80(5)	66.98(4)	51.34(3)	50.80(2)	41.93 (1)	47.88 24.81
$wine_red$	123.91(6)	81.37(5)	79.89(4)	71.25(3)	71.02(2)	60.34 (1)	73.97 32,04
wine_white		75.29(5)	74.84(4)	69.32(2)	70.17(3)	61.62 (1)	71,50 38.45
Avg. Rank	(6.00)	(5.00)	(4.00)	(2.44)	(2.11)	(1.44)	

Table 9: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), simple average (Basic), the inverse of the error (Inv), Caruana method (Caruana) and non-hyperparametric stepwise regression adaptation with stop criterion adding features (SWRSCX) or not (SWRSC), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the PSO sampling strategy. The scores for the cheating approaches WCH and SCH are also shown, but they were not included in the computation of the Friedman ranks.