

Introduction to Computational Science and Engineering

<u>Help</u> sar

sandipan_dey >

Course

Progress

<u>Dates</u>

Discussion

MO Index

☆ Course / 8 Initial Value Problems, Python Classes, ... / 8.6 Linear scalar IVP and expon...

Next >

Discussions

All posts sorted by recent activity

8.6.2 Example: Coffee cooling in a cup

☐ Bookmark this page

Previous

MO2.4

MO2.5

Recall the model equation for coffee cooling in a cup as given in Equation (8.40). By changing the state variable to be the difference in temperature between T_c and T_{out} , we can recover the linear scalar IVP of Equation (8.48). Define $T_{\mathrm{diff}}\left(t\right)\equiv T_c\left(t\right)-T_{\mathrm{out}}$. Note that,

$$rac{\mathrm{d}T_{\mathrm{diff}}}{\mathrm{d}t} = rac{\mathrm{d}T_c}{\mathrm{d}t}$$

Then Equation (8.40) can be written as,

$$rac{\mathrm{d}T_{\mathrm{diff}}}{\mathrm{d}t} = -rac{hA}{m_c c_c}T_{\mathrm{diff}}$$
 (8.52)

which is the form of the linear scalar IVP with $u=T_{\rm diff}$ and $\lambda=-hA/\left(m_cc_c\right)$. Since $\lambda<0$, then the temperature difference will decrease exponentially as t increases, i.e.

(0 52)

(8.51)

Previous

Next >

2/3

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Blog

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>