数学分析 II 习题课讲义 (2025 春)

龚诚欣

gongchengxin@pku.edu.cn

2025年2月26日

目录

	第 1 次习题课: 定积分的基本概念与可积性 1.1 问题	2
	1.2 解答	
2	致谢····································	3

1 第 1 次习题课: 定积分的基本概念与可积性

1.1 问题

- 1. $\lim_{n \to +\infty} \frac{a_n}{n^{\alpha}} = 1, \alpha > 0, \ \ \ \ \ \lim_{n \to +\infty} \frac{1}{n^{1+\alpha}} (a_1 + a_2 + \dots + a_n).$
- 2. 设函数 f(x) 在区间 [a,b] 上有界, 试证明 $f(x) \in R[a,b]$ 的充要条件是: $\forall \varepsilon > 0$, $\exists [a,b]$ 上满足以下条件的连续函数 g(x) 和 h(x): (1) $g(x) \leq f(x) \leq h(x)$, $\forall x \in [a,b]$; (2) $\int_{a}^{b} [h(x) g(x)] dx < \varepsilon$.
- 3. 函数 $g(x) \in R[a,b], f(u) \in C[A,B]$, 这里 A,B 分别是 g(x) 在区间 [a,b] 的上下确界. 证明 $f(g(x)) \in R[a,b]$.
- 4. 函数 $f(x) \in R[a,b]$, 证明存在点 $x_0 \in (a,b)$ 使得 f(x) 在 x_0 处连续.
- 5. 函数 $f(x) \in R[a,b]$, 且 $\forall x \in [a,b]$ 有 f(x) > 0. 证明 $\int_a^b f(x) dx > 0$.
- 6. 函数 f(x) 在 \mathbb{R} 上有定义,且在任何有限闭区间上可积. 证明对于任意的 [a,b], $\lim_{h\to 0}\int_a^b [f(x+h)-f(x)]\mathrm{d}x=0$.
- 7. (Hölder 不等式). 非负函数 $f(x), g(x) \in R[a, b], p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$. 证明 $\int_a^b f(x)g(x) dx \le \left(\int_a^b f^p(x)\right)^{\frac{1}{p}} \left(\int_a^b g^q(x)\right)^{\frac{1}{q}}$. (编者注: 本题实际上是 $||f||_p ||g||_q \ge ||fg||_1$.)

[一个简单应用, 留作思考题] $0 < q \le p \le s \le \infty$, 那么存在 $\theta \in [0,1]$ 使得 $\frac{1}{p} = \frac{\theta}{q} + \frac{1-\theta}{s}$. 证明 $\|f\|_p \le \|f\|_q^{\theta} \|f\|_s^{1-\theta}$.

8. (Minkowski 不等式). 同上题条件, 证明 $\left(\int_{a}^{b} (f+g)^{p}(x) dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} f^{p}(x) dx\right)^{\frac{1}{p}} + \left(\int_{a}^{b} g^{q}(x) dx\right)^{\frac{1}{q}}$. (编者注: 本题实际上是 $||f||_{p} + ||g||_{p} \geq ||f+g||_{p}$, 这表明 L_{p} 空间是赋范线性空间.)

■ 自由选讲.

- 9. f(x) 在 [a,b] 的每一点处的极限都是 0, 证明 $f(x) \in R[a,b]$ 且 $\int_a^b f(x) dx = 0$.
- 10. 已知 (0,1) 上的单调函数 f(x) 满足 $\lim_{n\to+\infty}\sum_{k=1}^{n-1}\frac{1}{n}f\left(\frac{k}{n}\right)$ 存在,问是否有 $f(x)\in R[0,1]$?
- 11. 计算极限 $\lim_{n \to +\infty} \frac{[1^{\alpha} + 3^{\alpha} + \dots + (2n+1)^{\alpha}]^{\beta+1}}{[2^{\beta} + 4^{\beta} + \dots + (2n)^{\beta}]^{\alpha+1}}.$
- 12. $n \in \mathbb{N}_+, f(x) \in C[a,b], \int_a^b x^k f(x) dx = 0, k = 0, 1, \dots, n$. 证明 f(x) 在 (a,b) 内至少有 n+1 个零点.

1.2 解答

$$1. \ \forall \varepsilon > 0, \exists N, \forall n > N, n^{\alpha}(1-\varepsilon) < a_n < n^{\alpha}(1+\varepsilon). \ \text{从而当 } n \ \text{足够大时}, \ \frac{1}{n^{1+\alpha}}(1^{\alpha}+2^{\alpha}+\cdots+N^{\alpha}) < \varepsilon, \frac{1}{n^{1+\alpha}}(a_1+a_2+\cdots+a_N) < \varepsilon, \left|\frac{1}{n^{1+\alpha}}[(a_{N+1}-(N+1)^{\alpha})+\cdots+(a_n-n^{\alpha})]\right| \leq \frac{\varepsilon}{n^{1+\alpha}}[(N+1)^{\alpha}+\cdots+n^{\alpha}] \leq \frac{\varepsilon}{n^{1+\alpha}}\sum_{i=1}^{n}i^{\alpha} = \frac{\varepsilon}{n}\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{\alpha} \leq \frac{\varepsilon}{n^{1+\alpha}}\left[(n+1)^{\alpha}+\cdots+n^{\alpha}\right] \leq \frac{\varepsilon}{n^{1+\alpha}}\left[(n+1)^{\alpha}+\cdots+n^{\alpha}\right]$$

$$\varepsilon \int_{0}^{1} x^{\alpha} dx + \varepsilon = \frac{\varepsilon}{\alpha + 1} + \varepsilon \le 2\varepsilon. \quad \dot{\mathbf{z}} 意味着 \left| \frac{1}{n^{1 + \alpha}} \left(\sum_{i=1}^{n} a_{i} - \sum_{i=1}^{n} i^{\alpha} \right) \right| \le 4\varepsilon \Rightarrow 原极限 = \lim_{n \to +\infty} \frac{1}{n^{1 + \alpha}} \sum_{i=1}^{n} i^{\alpha} = \frac{1}{\alpha + 1}.$$

2. 必要性:
$$f(x) \in R[a,b] \Rightarrow \forall \varepsilon > 0, \exists$$
 分割 $\Delta : a = x_0 < x_1 < \dots < x_n = b$ s.t. $\sum_{i=1}^n \omega_i(x_i - x_{i-1}) < \frac{\varepsilon}{2} \Rightarrow \exists$ 阶梯函数

$$s_1(x), s_2(x) 满足 s_1(x) \leq f(x) \leq s_2(x) 且 \int_a^b [s_2(x) - s_1(x)] \mathrm{d}x < \frac{\varepsilon}{2} \Rightarrow \exists 连续函数 g(x), h(x) 满足 g(x) \leq f(x) \leq h(x)$$
 且 $\int_a^b [h(x) - g(x)] < \varepsilon$.

充分性:
$$g(x)$$
 连续, $\int_a^b [h(x) - g(x)] dx < \frac{\varepsilon}{4} \Rightarrow \exists$ 分割 $\Delta : a = x_0 < x_1 < \dots < x_n = b$ s.t. $\sum_{i=1}^n \sup_{x \in [x_{i-1}, x_i]} \{h(x) - g(x)\}(x_i - x_i)$

$$|x_{i-1}| < \frac{\varepsilon}{2}$$
 且 $\sum_{i=1}^n w_i^g(x_i - x_{i-1}) < \frac{\varepsilon}{2}$. 在此分割下, $\sum_{i=1}^n w_i^f(x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_i, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} h(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} h(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} h(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\inf_{x \in [x_i, x_i]} h(x) - \inf_{x \in [x_i, x_i]} h(x) \right] (x_i - x_{i-1})$

$$\sum_{i=1}^{n} \left[\sup_{x \in [x_{i-1}, x_i]} \{h(x) - g(x)\} + w_i^g \right] (x_i - x_{i-1}) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

3. 用 Lebesgue 定理显然. 如不用 Lebesgue 定理, 则 $\forall \delta > 0, \exists \tau > 0 \text{ s.t. } \forall |x - x'| < \tau, |f(x) - f(x')| < \delta.$ 从而 $\forall \varepsilon > 0,$ $\exists \ \, \exists \ \, \Delta: a = x_0 < x_1 < \dots < x_n = b \text{ s.t. } \sum_{w_i^g > \tau} (x_i - x_{i-1}) < \varepsilon. \ \, 因为 \left\{ [x_{i-1}, x_i] : w_i^{f \circ g} > \delta \right\} \subset \left\{ [x_{i-1}, x_i] : w_i^g > \tau \right\}, \, \mathcal{M}$

而
$$\sum_{w^{f \circ g} > \delta} (x_i - x_{i-1}) \le \sum_{w^g_i > \tau} (x_i - x_{i-1}) < \varepsilon$$
, 即 $f \circ g$ 可积.

4. 由 $f(x) \in R[a,b]$ 知存在 $[a_1,b_1] \subset (a,b)$, 使得 $w^f_{[a_1,b_1]} < 1$. 同样的道理, 由 $f(x) \in R[a_1,b_1]$ 知存在 $[a_2,b_2] \subset (a_1,b_1)$ 使得 $w_{[a_2,b_2]}^f < \frac{1}{2}$. 依此类推,存在一系列闭区间套满足于 $w_{[a_n,b_n]}^f < \frac{1}{n}$,只需取 $x_0 \in \bigcap_{n=1}^{+\infty} [a_n,b_n]$ 即可.

5. 由 4 题知存在连续点 $x_0 \in (a,b)$, 因此 $\exists \delta > 0$ s.t. $\forall x \in [x_0 - \delta, x_0 + \delta] \subset [a,b], f(x) > \frac{f(x_0)}{2}$. 从而 $\int_{a}^{b} f(x) dx \ge \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x)$

$$\int_{x_0-\delta}^{x_0+\delta} f(x) dx \ge f(x_0)\delta > 0.$$

6. $\forall \varepsilon > 0$, 存在连续函数 g(x) 满足 $\int_{a-1}^{b+1} |f(x) - g(x)| \mathrm{d}x < \frac{\varepsilon}{3}$. 因此 $\left| \int_{a}^{b} [f(x+h) - f(x)] \mathrm{d}x \right| \le \left| \int_{a}^{b} [f(x+h) - g(x+h)] \mathrm{d}x \right| + \varepsilon$

 $\left| \int_{a}^{b} [g(x+h) - g(x)] dx \right| + \left| \int_{a}^{b} [g(x) - f(x)] dx \right| \le 2 \int_{a-1}^{b+1} |f(x) - g(x)| dx + \int_{a}^{b} |g(x+h) - g(x)| dx. \text{ in } -3 \text{ in } 3 \text{ in$

 $\exists H>0 \text{ s.t. } \forall x,x'\in[a-1,b+1], |x-x'|< H, |g(x)-g(x')|<\frac{\varepsilon}{3(b-a)}. \text{ } 取 \text{ } h< H \text{ } 知 \text{ } \text{RHS}<\varepsilon. \text{ } 这意味着原极限为 0.$

7. WLOG $\left(\int_a^b f^p(x) dx\right)^{\frac{1}{p}} = \left(\int_a^b g^q(x) dx\right)^{\frac{1}{q}} = 1$, 则原命题的结论可改写为 $\int_a^b f(x)g(x) dx \le 1$. 由 $\ln x$ 的凹性, 我

们有 $\alpha \ln a + (1-\alpha) \ln b \le \ln(\alpha a + (1-\alpha)b) \Leftrightarrow a^{\alpha}b^{1-\alpha} \le \alpha a + (1-\alpha)b.$ $\diamondsuit \alpha = \frac{1}{n}, 1-\alpha = \frac{1}{a}, a = x^p, b = y^q \Rightarrow xy \le xy \le xy$

$$\frac{x^p}{p} + \frac{y^q}{q} \Rightarrow \int_a^b f(x)g(x)\mathrm{d}x \leq \int_a^b \left(\frac{f(x)^p}{p} + \frac{g(x)^q}{q}\right)\mathrm{d}x = \frac{1}{p} + \frac{1}{q} = 1.$$
 (编者注: 本题也可将积分离散化后使用离散版本的 Hölder 不等式.)

8. 曲 Hölder 不等式, $\int_a^b (f+g)^p dx = \int_a^b (f+g)^{p-1} f dx + \int_a^b (f+g)^{p-1} g dx \le \left(\int_a^b (f+g)^{(p-1)q} dx \right)^q \left(\int_a^b f^p dx \right)^p + C(f+g)^{p-1} f dx = \int_a^b (f+g)^{p-1} f dx + \int_a^b (f+g)^{p-1} g dx \le \left(\int_a^b (f+g)^{(p-1)q} dx \right)^q \left(\int_a^b f^p dx \right)^p + C(f+g)^{p-1} f dx$

$$\left(\int_a^b (f+g)^{(p-1)q} \mathrm{d}x\right)^{\frac{1}{q}} \left(\int_a^b g^p \mathrm{d}x\right)^{\frac{1}{p}} = \left(\int_a^b (f+g)^p \mathrm{d}x\right)^{\frac{1}{q}} \left(\left(\int_a^b f^p \mathrm{d}x\right)^{\frac{1}{p}} + \left(\int_a^b g^p \mathrm{d}x\right)^{\frac{1}{p}}\right).$$
 然后消去相同因子.

9. 由聚点原理知 f(x) 有界. 其次 $\forall \varepsilon > 0$, $\forall x \in [a,b]$, $\exists \delta_x > 0$, s.t. $\omega_{U_0(x,\delta_x)} < \varepsilon$. 开覆盖 $\bigcup_{x \in [a,b]} (x - \delta_x, x + \delta_x) \supset [a,b]$, 因此存在两两无包含关系的有限子覆盖 $\bigcup_{i=1}^n (x_i - \delta_i, x_i + \delta_i) \supset [a,b]$. 不妨设 $a \leq x_1 < \cdots < x_n \leq b$. 取分割点 $y_0 = a, y_i \in (x_i - \delta_i, x_i + \delta_i) \cap (x_{i+1} - \delta_{i+1}, x_i + \delta_{i+1}), y_n = b.$ 对于这个分割 (修改 $\{x_i\}_{i=1}^n$ 处的值), $\sum \omega_i \Delta x_i < \varepsilon(b-a)$,

因此有可积性. 由于 $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx \le \sum_{i=1}^n \int_{u_{i-1}}^{u_i} |f(x)| dx \le \varepsilon (b-a)$, 由 ε 的任意性知 $\int_a^b f(x) dx = 0$.

10. 考虑
$$f(x) = \tan\left(\pi x - \frac{\pi}{2}\right)$$
. $\lim_{n \to +\infty} \sum_{k=1}^{n-1} \frac{1}{n} f\left(\frac{k}{n}\right) = 0$, 但是 $\int_0^1 f(x) dx$ 不存在.

11.
$$\mathbb{R} \vec{\mathbf{x}} = 2^{\alpha-\beta} \frac{\left[\frac{2}{n} \left(\frac{1}{n}\right)^{\alpha} + \frac{2}{n} \left(\frac{3}{n}\right)^{\alpha} + \dots + \frac{2}{n} \left(\frac{2n+1}{n}\right)^{\alpha}\right]^{\beta+1}}{\left[\frac{2}{n} \left(\frac{2}{n}\right)^{\beta} + \frac{2}{n} \left(\frac{4}{n}\right)^{\beta} + \dots + \frac{2}{n} \left(\frac{2n}{n}\right)^{\beta}\right]^{\alpha+1}} \xrightarrow{\mathbb{R} \mathbb{R} \mathbb{R} \times \mathbb{R}} 2^{\alpha-\beta} \frac{\left(\int_{0}^{2} x^{\alpha} dx\right)^{\beta+1}}{\left(\int_{0}^{2} x^{\beta} dx\right)^{\alpha+1}} = 2^{\alpha-\beta} \frac{(\beta+1)^{\alpha+1}}{(\alpha+1)^{\beta+1}}.$$

12. $\int_{a}^{b} f(x) dx = 0 \Rightarrow$ 存在至少 1 个零点, 记为 x_1 . $\int_{a}^{b} (x - x_1) f(x) dx = 0 \Rightarrow$ 存在至少 2 个零点, 记另一个为 x_2 . 依 此类推, $\int_a^b \left| \prod_{i=1}^n (x - x_i) \right| f(x) dx = 0 \Rightarrow 存在至少 n + 1 个零点.$

致谢 2

感谢北京大学数学科学学院的王冠香教授和刘培东教授, 他们教会了笔者数学分析的基本知识, 他们的课件和讲义也成 为了笔者的重要参考. 感谢选修 2025 春数学分析 II 习题课 9 班的全体同学, 他们提供了很多有意思的做法和反馈.