#### **BOE – WEEK 2 ASSIGNMENT**

# Terro's real estate agency

### **Objective (Task):**

Your job, as an auditor, is to analyse the magnitude of each variable to which it can affect the price of a house in a particular locality.

To do the analysis, you are expected to solve these questions:

# 1) Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation.

| AVG_PRICE          |             |
|--------------------|-------------|
|                    |             |
| Mean               | 22.53280632 |
| Standard Error     | 0.408861147 |
| Median             | 21.2        |
| Mode               | 50          |
| Standard Deviation | 9.197104087 |
| Sample Variance    | 84.58672359 |
| Kurtosis           | 1.495196944 |
| Skewness           | 1.108098408 |
| Range              | 45          |
| Minimum            | 5           |
| Maximum            | 50          |
| Sum                | 11401.6     |
| Count              | 506         |

By taking descriptive Statistics (Summary Statistics) we can able to get the summary of the data given significant to the price of the house:

- 1) The average (Mean) price of the house is \$ 22,532.
- 2) Median value (mid value) is \$ 21,200.
- 3) Price range of the house lies between 5 to 50.
- 4) The Skewness is 1.108 which indicates it's a positive skewness.

| AVG_ROOM           |             |
|--------------------|-------------|
|                    |             |
| Mean               | 6.284634387 |
| Standard Error     | 0.031235142 |
| Median             | 6.2085      |
| Mode               | 5.713       |
| Standard Deviation | 0.702617143 |
| Sample Variance    | 0.49367085  |
| Kurtosis           | 1.891500366 |
| Skewness           | 0.403612133 |
| Range              | 5.219       |
| Minimum            | 3.561       |
| Maximum            | 8.78        |
| Sum                | 3180.025    |
| Count              | 506         |

- 1) The Average (Mean) of the average room is 6.284.
- 2) Median value is 6.208.
- 3) Mode (Most frequent value) of the Average\_room is 5.71.

| TAX                |              |
|--------------------|--------------|
|                    |              |
| Mean               | 408.2371542  |
| Standard Error     | 7.492388692  |
| Median             | 330          |
| Mode               | 666          |
| Standard Deviation | 168.5371161  |
| Sample Variance    | 28404.75949  |
| Kurtosis           | -1.142407992 |
| Skewness           | 0.669955942  |
| Range              | 524          |
| Minimum            | 187          |
| Maximum            | 711          |
| Sum                | 206568       |
| Count              | 506          |

- 1) The Average (Mean) of the Tax is 408.27.
- 2) Median value is 330.
- 3) The tax range varies between 187 to 711.

| AGE                |              |
|--------------------|--------------|
|                    |              |
| Mean               | 68.57490119  |
| Standard Error     | 1.251369525  |
| Median             | 77.5         |
| Mode               | 100          |
| Standard Deviation | 28.14886141  |
| Sample Variance    | 792.3583985  |
| Kurtosis           | -0.967715594 |
| Skewness           | -0.59896264  |
| Range              | 97.1         |
| Minimum            | 2.9          |
| Maximum            | 100          |
| Sum                | 34698.9      |
| Count              | 506          |

- 1) The Average (Mean) of Age is 68.574.
- 2) Median value is 77.5.
- 3) The Skewness is -0.598 Negative skewness.

| CRIME_RATE         |              |
|--------------------|--------------|
|                    |              |
| Mean               | 4.871976285  |
| Standard Error     | 0.129860152  |
| Median             | 4.82         |
| Mode               | 3.43         |
| Standard Deviation | 2.921131892  |
| Sample Variance    | 8.533011532  |
| Kurtosis           | -1.189122464 |
| Skewness           | 0.021728079  |
| Range              | 9.95         |
| Minimum            | 0.04         |
| Maximum            | 9.99         |
| Sum                | 2465.22      |
| Count              | 506          |

- 1) The average crime rate is 4.87.
- 2) Median value is 4.82.
- 3) The Mode value is 3.43.

### 2) Plot a histogram of the Avg\_Price variable. What do you infer?



**Inference:** By plotting a histogram for the avg\_Price variable, we can stat that the average\_Price of the house is Positively skewed, the most of the houses price ranges between 17 to 25.

### 3) Compute the covariance matrix. Share your observations.

|            | CRIME_RATE   | AGE          | INDUS        | NOX          | DISTANCE     | TAX          | PTRATIO      | AVG_ROOM     | LSTAT        | AVG_PRICE   |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|
| CRIME_RATE | 8.516147873  |              |              |              |              |              |              |              |              |             |
| AGE        | 0.562915215  | 790.7924728  |              |              |              |              |              |              |              |             |
| INDUS      | -0.110215175 | 124.2678282  | 46.97142974  |              |              |              |              |              |              |             |
| NOX        | 0.000625308  | 2.381211931  | 0.605873943  | 0.013401099  |              |              |              |              |              |             |
| DISTANCE   | -0.229860488 | 111.5499555  | 35.47971449  | 0.615710224  | 75.66653127  |              |              |              |              |             |
| TAX        | -8.229322439 | 2397.941723  | 831.7133331  | 13.02050236  | 1333.116741  | 28348.6236   |              |              |              |             |
| PTRATIO    | 0.068168906  | 15.90542545  | 5.680854782  | 0.047303654  | 8.74340249   | 167.8208221  | 4.677726296  |              |              |             |
| AVG_ROOM   | 0.056117778  | -4.74253803  | -1.884225427 | -0.024554826 | -1.281277391 | -34.51510104 | -0.539694518 | 0.492695216  |              |             |
| LSTAT      | -0.882680362 | 120.8384405  | 29.52181125  | 0.487979871  | 30.32539213  | 653.4206174  | 5.771300243  | -3.073654967 | 50.89397935  |             |
| AVG_PRICE  | 1.16201224   | -97.39615288 | -30.46050499 | -0.454512407 | -30.50083035 | -724.8204284 | -10.09067561 | 4.484565552  | -48.35179219 | 84.41955616 |

#### **Observations:**

## Positively related values

- 1) Crime rate & Avg Price 1.162.
- 2) Avg\_Room & Avg\_Price 4.484.

By taking Covariance matrix, we can observe that only these 2 relations mentioned above has positive relation with each other rest of the variable have negative relation with Avg\_Price.

- 4) Create a correlation matrix of all the variables (Use Data analysis tool pack).a) Which are the top 3 positively correlated pairs and b) Which are the top 3 negatively correlated pairs
- a) Which are the top 3 positively correlated pairs and
- b) Which are the top 3 negatively correlated pairs.

|            | CRIME_RATE   | AGE                         | INDUS                     | NOX                         | DISTANCE                    | TAX                         | PTRATIO                     | AVG_ROOM                   | LSTAT                       | AVG_PRICE |
|------------|--------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|-----------|
| CRIME_RATE | 1            |                             |                           |                             |                             |                             |                             |                            |                             |           |
| AGE        | 0.006859463  | 1                           |                           |                             |                             |                             |                             |                            |                             |           |
| INDUS      | -0.005510651 | 0.644778511                 | 1                         |                             |                             |                             |                             |                            |                             |           |
| NOX        | 0.001850982  | 0.731470104                 | 0.7636514 <mark>47</mark> | 1                           |                             |                             |                             |                            |                             |           |
| DISTANCE   | -0.009055049 | 0.456022452                 | <b>0.59512</b> 9275       | 0.611440563                 | 1                           |                             |                             |                            |                             |           |
| TAX        | -0.016748522 | 0.50 <mark>6455</mark> 594  | 0.72076018                | 0. <b>56802</b> 32          | 0.910228189                 | 1                           |                             |                            |                             |           |
| PTRATIO    | 0.010800586  | 0.26 <mark>15</mark> 15012  | <b>0.383</b> 247556       | 0.188932677                 | 0.46 <mark>4741</mark> 179  | 0.46 <mark>085</mark> 3035  | 1                           |                            |                             |           |
| AVG_ROOM   | 0.02739616   | -0.240264931                | <b>-0</b> .391675853      | -0. <mark>30</mark> 2188188 | -0.2 <mark>0</mark> 9846668 | -0. <mark>29</mark> 2047833 | -0 <mark>.35</mark> 5501495 | 1                          |                             |           |
| LSTAT      | -0.042398321 | 0.602338529                 | 0.603799716               | 0.590878921                 | 0.48 <mark>8676</mark> 335  | 0.54 <mark>3993</mark> 412  | 0.374044317                 | -0.613808272               | 1                           |           |
| AVG_PRICE  | 0.043337871  | -0 <mark>.37</mark> 6954565 | 0.48372516                | -0 <mark>.42</mark> 7320772 | -0 <mark>.38</mark> 1626231 | - <mark>0.46</mark> 8535934 | - <mark>0.50</mark> 7786686 | 0.69 <mark>53599</mark> 47 | -0.7 <mark>3</mark> 7662726 | 1         |

|    | Cells               | Top 3 +vely correlation        |  |
|----|---------------------|--------------------------------|--|
| 1) | Tax & Distance      | 0.910228189                    |  |
| 2) | NOX & Indus         | 0.763651447                    |  |
| 3) | NOX & Age           | 0.731470104                    |  |
|    |                     |                                |  |
|    | Cells               | <b>Top 3 -vely Correlation</b> |  |
| 1) | Avg_Price & Lstat   | -0.737662726                   |  |
| 2) | Lstat & Avg_Room    | -0.613808272                   |  |
| 3) | Avg_Price & PTRatio | -0.507786686                   |  |

- The cells which are highlighted in Yellow are top 3 positively correlated.
- The cells which are highlighted in Green are top 3 negatively correlated.
- 5) Build an initial regression model with AVG\_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot.
- a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and the Residual plot?
- b) Is LSTAT variable significant for the analysis based on your model?

| Regression Statistics |             |  |  |
|-----------------------|-------------|--|--|
| Multiple R            | 0.737662726 |  |  |
| R Square              | 0.544146298 |  |  |
| Adjusted R Square     | 0.543241826 |  |  |
| Standard Error        | 6.215760405 |  |  |
| Observations          | 506         |  |  |

|           | Coefficients | P-value     |
|-----------|--------------|-------------|
| Intercept | 34.55384088  | 3.7431E-236 |
| LSTAT     | -0.95004935  | 5.0811E-88  |



#### 5a)

- In regression statistics we get the Adjusted R Square value as 0.5432 which stats that the value is lesser than 1 but not closer to 1.
- The R Square value is 0.54 which stats that the variance is 54.5% in the Avg\_Price.
- The LSTAT Residual plot is formed in a randomized manner and
- The Coefficient for the intercept is 34.55 and Lstat is -0.95
- The P-value for regression statistics for Avg\_Price is less than 0.05 which stats that we can consider this as a pattern for further purpose.

#### 5b)

- The significance of the LSTAT is near to zero and not 0, The P-value of the Lstat is less than 0.05.
- So, the LSTAT variable is significant and retained for the analysis.
- 6) Build a new Regression model including LSTAT and AVG\_ROOM together as independent variables and AVG\_PRICE as dependent variable.
- a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG\_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/Undercharging?

| Regression Statistics |             |  |  |
|-----------------------|-------------|--|--|
| Multiple R            | 0.799100498 |  |  |
| R Square              | 0.638561606 |  |  |
| Adjusted R Square     | 0.637124475 |  |  |
| Standard Error        | 5.540257367 |  |  |
| Observations          | 506         |  |  |

|           | Coefficients | P-value     |
|-----------|--------------|-------------|
| Intercept | -1.358272812 | 0.668764941 |
| AVG_ROOM  | 5.094787984  | 3.47226E-27 |
| LSTAT     | -0.642358334 | 6.66937E-41 |

#### **Regression Equation**

The average price of the new House is \$21,470

- The company coated price value is 30000, but the average price according to the predicted value is 21470.
- which shows a massive difference between prices.
- Therefore, The Company is Overcharging.

b) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain.

- The Adjusted R Square value is 0.6371.
- The Adjusted R Square value of the previous model is 0.5432.
- This shows that while adding Avg\_Room in the model, there is a 10% variance in the Avg\_Price.

7) Build another Regression model with all variables where AVG\_PRICE alone be the Dependent Variable and all the other variables are independent.

Interpret the output in terms of adjusted R square, coefficient, and Intercept values. Explain the significance of each independent variable with respect to AVG\_PRICE.

| Regression Statistics |             |  |  |
|-----------------------|-------------|--|--|
| Multiple R            | 0.832978824 |  |  |
| R Square              | 0.69385372  |  |  |
| Adjusted R Square     | 0.688298647 |  |  |
| Standard Error        | 5.1347635   |  |  |
| Observations          | 506         |  |  |

|            | Coefficients | P-value     |
|------------|--------------|-------------|
| Intercept  | 29.24131526  | 2.53978E-09 |
| CRIME_RATE | 0.048725141  | 0.534657201 |
| AGE        | 0.032770689  | 0.012670437 |
| INDUS      | 0.130551399  | 0.03912086  |
| NOX        | -10.3211828  | 0.008293859 |
| DISTANCE   | 0.261093575  | 0.000137546 |
| TAX        | -0.01440119  | 0.000251247 |
| PTRATIO    | -1.074305348 | 6.58642E-15 |
| AVG_ROOM   | 4.125409152  | 3.89287E-19 |
| LSTAT      | -0.603486589 | 8.91071E-27 |

- The Adjusted R Square value of this model has 0.6882
- The Adjusted R Square value of the previous model has 0.6371 with LSTAT and AVG Room.
- Comparatively this model has more variance to analyse the data and the adjusted r square of this model has more.
- The P-value of the Crime Rate is only more than 0.05, other than that every other p-values are significant.
- The intercept value is 29.241.

# 8) Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:

| Regression Statistics |             |  |
|-----------------------|-------------|--|
| Multiple R            | 0.832835773 |  |
| R Square              | 0.693615426 |  |
| Adjusted R Square     | 0.688683682 |  |
| Standard Error        | 5.131591113 |  |
| Observations          | 506         |  |

| Coefficients |          | P-value  |
|--------------|----------|----------|
| Intercept    | 29.42847 | 1.85E-09 |
| AGE          | 0.032935 | 0.012163 |
| INDUS        | 0.13071  | 0.038762 |
| NOX          | -10.2727 | 0.008546 |
| DISTANCE     | 0.261506 | 0.000133 |
| TAX          | -0.01445 | 0.000236 |
| PTRATIO      | -1.0717  | 7.08E-15 |
| AVG_ROO      | 4.125469 | 3.69E-19 |
| LSTAT        | -0.60516 | 5.42E-27 |

#### a) Interpret the output of this model.

- The intercept value is 29.42
- The Adjusted R Square of this model is 0.688 with the variance of Avg\_Price.
- All the variables in this model are significant. The Adjusted R Square is closer to 1 (With a decent).
- The final value of the Avg\_house will be 29.42, when all the independent variable is 0.

# b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?

- The Adjusted R Square of this model is 0.6886 and for the previous model is 0.6882.
- Comparatively the value of the Adjusted R Square is just slightly up and not highly varied, and the significant variable stats to consideration with the P-value.
- On considering both the models, this model performs better according to the value of the Adjusted R Square.

# c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?

- While sorting the values of the coefficient in ascending order, The Nox & Avg\_Price are negatively Related to each other.
- This states that is the value of the NOX Increases, then the Avg\_Price of the house decreases.
- Every 1 unit of Nox value increases, the value of Avg\_price decreases to 10.27.

#### d) Write the regression equation from this model.

- Y = 29.4285 + 0.0329 \* X1 + 0.1307 \* X2 + -10.2727 \* X3 + 0.2615 \* X4 0.0144 \* X5 1.0717 \* X6 + 4.1254 \* X7 0.6051 \* X8.
- Y = Interface + Age \* X1 + Indus \* X2 + NOX \* X3 + Distance \* X4 + Tax \* X5 + PTRatio \* X6 + Avg\_Room \* X7 + LSTAT \* X8.