

Course Information

雲端計算系統與實務

Tien-Fu Chen

Dept. of Computer Science and Information Engineering

National Chiao Tung Univ.

陳添福 Contact Information

□ Email: tfchen@cs.nctu.edu.tw

□ Office: 424 工程三館

□ Telephone: 03-5712121 ext 54818

□ Fax: 03-5721490

Course Info and Lecture Slides on E3

□ Google Calendar: ESD2016

陳添福 教授

□ 學歷

- 1979~1983 台灣大學 資訊工程系, BS
- 1988~1993 美國U. of Washington, Seattle, MS and PhD

□ 經歷

2010~迄今 國立交通大學 教授

2010~迄今 中央研究院資訊所 合聘研究員1993~2009 國立中正大學 副教授/教授

- 2003 美國Intel Visiting Professor

□ 擔任職務

- 國家高速網路與計算中心 副主任
- 研華-交大 物聯網智慧系統研究中心 Embedded IoT PaaS Lab 主任
- 聯發科-交大創新研究中心 副主任

□ 負責計畫

- 科技部深耕計畫四年計畫:

產業用物聯網基礎技術: 大規模資料收集分析平台與產業智慧PaaS系統

- 聯發科研究中心:

計算平台技術:適合低電壓省電系統之穿戴式應用記憶體架構

- 研華交大 物聯網研究中心

IoT Smart Gateway 系統架構技術

Embedded System Design

info-3

T.-F. Chen@NCTU CSIE

TA Contact Information

- □ TA: Lab @工程三館447
- 蔡奉格 <u>fonger.tsai@gmail.com</u>
- 劉彥麟 <u>andycom12000@gmail.com</u>

□ 討論區:

- All Q&A will be on 討論區 (please share any info)
- No repeated questions

Lecture

Selected topics from textbooks

- Server Architecture
- System software
- Cloud management
- Virtual machines
- Container/docker

Referenced books

- Cloud Computing Bible, Software, Barrie Sosinsky
- Cloud computing: Principles and Paradigms Tools, edited by Rajkumar Buyya, James Broberg, Andrzej Goscinski
- Handbook of Cloud Computing, Editors: Furht, Borko, Escalante, Armando
- VMware vSphere 5.1 Clustering Deepdive, Duncan, Frank Denneman
- Microsoft System Center Deploying Hyper-V with Software-Defined Storage & Networking
- Microsoft Azure Essentials- Azure Machine Learning

CLOUD COMPUTING

Principles and Paradigms

Cloud Computing

Embedded System Design info- 5

Lectures and Labs (I)

Date	Lab	Overview	Lab work
9/12	First week	Take a break	
week 2	Server Architecture	 Overview and Development Tools Multicore Architectures Foundations of Shared Memory Basic profiling tools 	Profiling tool
week 2~3	Overview of Cloud Computing	System conceptResource managementService management	
week 3~4	IaaS Introduction to VMware	 Foundations of vSphere Private cloud by vSphere Virtualization Kernel CPU overhead Memory contention IO storage resource 	VMware monitor

Lectures and Labs (II)

Date	Lab	Overview	Lab work
week 5~7	Software-defined datacenter: OpenStack	 OpenStack overview Compute and storage nodes Performance monitor Virtualization management 	OpenStack tool
week 8~9	PaaS Container, docker	 Docker overview Container system and limitation VM vs Container comparison 	Container lab
week 10~12	SaaS Case Design	 IoT data processing on the private cloud Big data processing API service management Project organization 	Project by team

Embedded System Design

info-7

T.-F. Chen@NCTU CSIE

Your Score is based on ...

- □ Lab X 4 \Rightarrow 15% x 4 = 60 %
 - Lab assignments for hands-on experiences on cloud systems
 - 2 students working as a team
- □ Final project → 40%
- □ 作業報告撰寫格式如下: (min 2 pages)
 - 作業名稱
 - 系統設計架構
 - 設計模組分析
 - 設計結果與功能說明
 - 遭遇困難與解決方法
 - 作業心得討論

Cloud computing = commodity service

Utility Computing

- Water, gas, and electricity are provided to every home and business as commodity services
 - You get connected to the utility companies' "public" infrastructure
 - You get these utility services on-demand
 - And you pay-as-you use
- Utility Computing is doing same for computing resources (processing power, bandwidth, data storage, and enterprise software services)

-John McCarthy, MIT Centennial in 1961

Embedded System Design

info-9

T.-F. Chen@NCTU CSIE

What are those buzzwords?

- □ loT
- Cloud computing
- Big data
- Data mining
- □ <u>智慧城市</u>、智慧交通、智慧建築、智慧XX

Recent news

- □ ARM 擴大成立新竹晶片設計中心,立足台灣產業鏈地位 發展物聯網方案 (news)
 - ARM 在2014宣布將成立新竹 CPU 設計中心,專門負責物聯網晶片 Cortex-M。ARM 立足台灣發揮台灣產業鏈關鍵地位,發展物聯網方案,並且持續招兵買馬,預計 CPU 設計部分將超過百人。
- □ PK 英特爾,台積電攜手安謀搶資料中心大餅
 - ARM瞄準數據中心與高效能運算(HPC)市場,與台積電聯手針對 尖端7納米FinFET製程進行合作。ARM平台發展出可靠並統一的 軟體支援,才能更快被HPC社群接納。
 - 原文網址:https://read01.com/4dzzn4.html
- □ AMD 推出 ARM 晶片爭奪英特爾市場
- □ 物聯網三商機 五年內爆發(udn產經news)
- □ 物聯網開啟臺灣兆元商機(簡立峰Google 台灣董事總經理)
 - 物聯網三大商機健康照護、智能管理、智慧製造將在五年內爆發 ,以智慧製造成長最快,也是台廠機會所在,預估2020年產值上 看1,332億美元(約新台幣4.37兆元)

Embedded System Design

info-11

T.-F. Chen@NCTU CSIE

Amazon:亞馬遜的創新從網路書店,變身資訊服務公司

- □ 成長速度快到看不到車尾燈,AWS 雲端服務榮登亞馬 遜最新金雞母
- □ 彈性運算雲(Elastic Compute Cloud EC2)是亞馬遜雲端服務 (AWS)是最重要的服務,讓其他公司可以彈性租用自己所需要的運算能力;客戶名單包括美太空總署、美公共電視、哈佛醫學院等!藉著分享自家豐富的資料與零售軟體,亞馬遜不停地擴大版圖合作
- □ 德意志銀行預測亞馬遜領先其主要競爭對手 Microsoft Azure 雲端服務 10 倍左右的差距。

