

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/813,846	03/30/2004	Jonathan J. Hull	20412-08369	6040
76137	7590	04/10/2009		
RICOH/FENWICK			EXAMINER	
SILICON VALLEY CENTER			RODRIGUEZ, LENNIN R	
801 CALIFORNIA STREET				
MOUNTAIN VIEW, CA 94041			ART UNIT	PAPER NUMBER
			2625	
		NOTIFICATION DATE	DELIVERY MODE	
		04/10/2009	ELECTRONIC	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

PTOC@FENWICK.COM
gsueoka@fenwick.com
nmorad@fenwick.com

Office Action Summary	Application No. 10/813,846	Applicant(s) HULL ET AL.
	Examiner LENNIN R. RODRIGUEZ	Art Unit 2625

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED. (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(o).

Status

- 1) Responsive to communication(s) filed on 12 December 2008.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1,4-19,21-31 and 33-43 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1,4-19,21-31 and 33-43 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date 9/2/2008, 1/8/2009, 3/27/2009
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date _____
- 5) Notice of Informal Patent Application
 6) Other: _____

DETAILED ACTION

Response to Arguments

1. Applicant's arguments, see pages 9 and 10 of the Remarks, filed 12/2/2008, with respect to the rejection(s) of claim(s) 1 and 31 under 35 U.S.C. 103(a) have been fully considered and are persuasive. Therefore, the rejection has been withdrawn. However, upon further consideration, a new ground(s) of rejection is made in view of Sugiyama et al. (US 5,633,723) and Fujita et al. (US 5,111,285).

Continued Examination Under 37 CFR 1.114

2. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 12/02/2008 has been entered.

Claim Rejections - 35 USC § 103

3. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action.

4. Claims 1, 13, 15-19, 21-31 and 38-41 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sugiyama et al. (US 5,633,723) in view of Fujita et al. (US 5,111,285) and Lynch et al. (US 7,174,151).

(1) regarding claims 1 and 31:

Sugiyama '723 discloses a printer (Fig. 1 and column 2, line 62-63) for printing time-based media from a media feed (column 3, line 11-16), the printer comprising:

a media receiver (signal processor 11 in Fig. 1) for receiving and outputting the media feed of time-based media (column 3, lines 15-23, where the video signals are received, then submitted to a process and outputted to a memory);

a content-based processing logic (12-13, 15-17, 26 and 28-29 in Fig. 1, all this elements together form the equivalent of the processing logic) coupled to the media receiver (11 in Fig. 1, as you can see it is clearly couple by virtue of connections represented by arrows), the content-based processing logic processing the media feed to generate an electronic representation (column 3, lines 28-38, where the system generates an image after the processing to a monitor, being interpreted as electronic representation) and a printable representation of the media feed (column 5, line 63 through column 6, line 18, where by selecting the print key 23, the system generates a printed version of the media feed);

a first output device (monitor 20 in fig. 1) in communication with the content-based processing logic (as seen in fig. 1 all the elements are in communication with one another) to receive the electronic representation (column 3, lines 31-34, where the monitor receives the electronic data from the selector 17), the first output device

producing a corresponding electronic output from the received electronic representation of the media feed that is distinct from the received electronic representation (column 3, lines 28-38, where the system generates an image after some processing to a monitor, being interpreted as electronic representation, meaning it is not the same received representation); and

a second output device (thermal head 33) in communication with the content-based processing logic (as seen in fig. 1 all the elements are in communication with one another) to receive the printable representation, the second output device producing a corresponding printed output from the printable representation of the media feed (column 5, line 63 through column 6, line 18, where by selecting the print key 23, the system generates a printed version of the media feed).

Sugiyama '723 discloses all the subject matter as described above except that the media feed is a broadcast media feed;

However, Fujita '285 teaches that the media feed is a broadcast media feed (column 1, lines 6-11, where it specifically states that a video printer is well capable of receiving a continuous video signal (broadcast signal));

Having a system of Sugiyama '723 reference and then given the well-established teaching of Fujita '285 reference, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the printer of Sugiyama '723 to include that the media feed is a broadcast media feed as taught by Fujita '285 because it is desired to print a high quality image form a video signal corresponding to a desired scene (column 2, lines 12-16).

Sugiyama '723 and Fujita '285 disclose all the subject matter as described above except a content-based processing logic for monitoring the media feed of time-based media to detect an occurrence of an event within the broadcast media feed.

However, Lynch '151 teaches a content-based processing logic for monitoring the media feed of time-based media to detect an occurrence of an event within the broadcast media feed (column 3, lines 8-11, where the broadcast signal it is being monitored).

Having a system of Sugiyama '723 and Fujita '285 and then given the well-established teaching of Lynch '151 reference, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the printer of Lynch '151 to include a content-based processing logic for monitoring the media feed of time-based media to detect an occurrence of an event within the broadcast media feed as taught by Lynch '151 because it is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(2) regarding claim 13:

Sugiyama '723 further discloses wherein the content-based processing logic extracts data from the media feed responsive to detecting the occurrence of the event (column 3, lines 20-33, where there is data being extracted from a video frame).

(3) regarding claims 15 and 38:

Sugiyama '723 further discloses wherein the content-based processing logic extracts key frames from a video feed (column 3, lines 20-33, where there is data being extracted from a video frame).

(4) regarding claims 16 and 39:

Sugiyama '723 discloses all the subject matter as described above except the content-based processing logic broadcasting a video feed responsive to detecting the occurrence of the event.

However, Lynch '151 teaches the content-based processing logic broadcasting a video feed responsive to detecting the occurrence of the event (column 6, lines 51-54, where the message could be a video).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made that the content-based processing logic broadcasting a video feed responsive to detecting the occurrence of the event as taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(5) regarding claims 17 and 40:

Sugiyama '723 discloses all the subject matter as described above except the processing logic broadcasting an audio feed on a speaker responsive to detecting the occurrence of the event.

However, Lynch '151 teaches the processing logic broadcasting an audio feed on a speaker responsive to detecting the occurrence of the event (column 3, lines 1-15, where the broadcast signal it is being monitored, for producing an audio feed).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made that the processing logic broadcasting an audio feed on a speaker responsive to detecting the occurrence of the event as taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(6) regarding claim 18:

Sugiyama '723 discloses all the subject matter as described above except wherein the media feed comprises live media feed.

However, Fujita '285 teaches wherein the media feed comprises live media feed (column 1, lines 6-11, where it specifically states that a video printer is well capable of receiving a television signal (live signal));

Having a system of Sugiyama '723 reference and then given the well-established teaching of Fujita '285 reference, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the printer of Sugiyama '723 to include that the media feed is a broadcast media feed as taught by Fujita '285 because it is desired to print a high quality image from a video signal corresponding to a desired scene (column 2, lines 12-16).

(7) regarding claim 19:

Sugiyama '723 further discloses a media recorder for recording the media feed (12 in Fig. 1).

(8) regarding claim 21:

Sugiyama '723 discloses all the subject matter as described above except wherein the event comprises a coded signal embedded in the media feed.

However, Lynch '151 teaches wherein the event comprises a coded signal embedded in the media feed (column 1, lines 39-46, where an encoder is encoding a signal into the broadcast).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the event comprises a coded signal embedded in the media feed as taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(9) regarding claim 22:

Sugiyama '723 discloses all the subject matter as described above except wherein the coded signal corresponds to an EAS alert.

However, Lynch '151 teaches wherein the coded signal corresponds to an EAS alert (column 1, lines 47-55).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the coded signal corresponds to an EAS alert as taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(10) regarding claim 23:

Sugiyama '723 discloses all the subject matter as described above except wherein the coded Signal corresponds to a NWS alert.

However, Lynch '151 teaches wherein the coded Signal corresponds to a NWS alert (column 1, lines 20-24, where the NWS uses this system).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the coded Signal corresponds to a NWS alert as taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(11) regarding claim 24:

Sugiyama '723 discloses all the subject matter as described above except wherein the coded signal corresponds to an EBS alert.

However, Lynch '151 teaches wherein the coded signal corresponds to an EBS alert (column 1, lines 14-16, where previously the EBS used this broadcast system).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the coded signal corresponds to an EBS alert as taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(12) regarding claims 25 and 41:

Sugiyama '723 discloses all the subject matter as described above except a decoder for decoding coded signal.

However, Lynch '151 teaches a decoder for decoding coded signal (column 1, lines 44-46, where at the audience location the signal is decoded)

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made that a decoder for decoding coded signal as taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(13) regarding claim 26:

Sugiyama '723 discloses all the subject matter as described above except wherein the coded signal comprises a digital data embedded in the media feed.

However, Lynch '151 teaches wherein the coded signal comprises a digital data embedded in the media feed (column 1, lines 39-44, where the signal encoded is digital).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the coded signal comprises a digital data embedded in the media feed as taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(14) regarding claim 27:

Sugiyama '723 discloses all the subject matter as described above except wherein the coded signal comprises a tone sequence embedded in the media feed.

However, Lynch '151 teaches wherein the coded signal comprises a tone sequence embedded in the media feed (column 6, lines 51-54).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the coded signal comprises a tone sequence embedded in the media feed as taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(15) regarding claim 28:

Sugiyama '723 further discloses all the subject matter as described above except wherein the event comprises an appearance of an image in the media feed (column 6, lines 19-26, single image frame).

(16) regarding claim 29:

Sugiyama '723 discloses all the subject matter as described above except wherein the media feed comprises an audio stream.

However, Lynch '151 teaches wherein the media feed comprises an audio stream (column 1, lines 6-9, where there is audio data being transmitted).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the media feed comprises an audio stream as taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

(17) regarding claim 30:

Sugiyama '723 discloses all the subject matter as described above except wherein the media feed comprises a video stream.

However, Lynch '151 teaches wherein the media feed comprises a video stream (column 6, lines 51-54, where the message could be a video).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the media feed comprises a video stream as

taught by Lynch '151 in the system of Sugiyama '723. It is very important to advertisers and media distributors that they receive comprehensive audience measurement information. Therefore, any interruption in the identification of a program signal that an audience is exposed to should be minimized (column 1, lines 60-64).

5. Claims 4 and 5 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sugiyama et al. (US 5,633,723), Fujita et al. (US 5,111,285) and Lynch et al. (US 7,174,151) as applied to claim 1 above, and further in view of Wendelken (US 6,193,658).

(1) regarding claim 4:

Sugiyama '723, Fujita '285 and Lynch '151 disclose all the subject matter as described above except wherein the printed output is generated in a video paper format.

However, Wendelken '658 teaches wherein the printed output is generated in a video paper format (column 6, lines 32-34, it is implied that it is in that format too).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the printed output is generated in a video paper format as taught by Wendelken '658 in the system of Sugiyama '723, Fujita '285 and Lynch '151. Thus, video paper is one of several useful means for generating a permanent record of video image data (column 6, lines 32-34).

(2) regarding claim 5:

Sugiyama '723, Fujita '285 and Lynch '1518 disclose all the subject matter as described above except wherein the printed output is generated in an audio paper format.

However, Wendelken '658 teaches wherein the printed output is generated in an audio paper format (column 6, lines 32-34, where videos have audio integrated, it is implied that it is in that format too).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the printed output is generated in an audio paper format as taught by Wendelken '658 in the system of Sugiyama '723, Fujita '285 and Lynch '151. Thus, audio paper is one of several useful means for generating a permanent record of audio image data (column 6, lines 32-34).

6. Claims 6-8, 11 and 33-34 rejected under 35 U.S.C. 103(a) as being unpatentable over Sugiyama et al. (US 5,633,723), Fujita et al. (US 5,111,285) and Lynch et al. (US 7,174,151) as applied to claims above, and further in view of Ito (US 7,151,613).

(1) regarding claims 6 and 33:

Sugiyama '723, Fujita '285 and Lynch '151 disclose all the subject matter as described above except wherein the electronic representation comprises an email message.

However, Ito '613 teaches wherein the electronic representation comprises an email message (column 6, lines 50-53, where the messages can be outputted by e-mail messages).

Having a system of Sugiyama '723, Fujita '285 and Lynch '151 and then given the well-established teaching of Ito '613 reference, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the printer of Sugiyama '723, Fujita '285 and Lynch '151 to include wherein the electronic

representation comprises an email message as taught by Ito '613 because it will send messages to the senders according to the presentation method previously set, thus informing the user of an event using various methods.

(2) regarding claims 7 and 34:

Sugiyama '723, Fujita '285 and Lynch '151 disclose all the subject matter as described above except the content-based processing logic generating a network message responsive to detecting the occurrence the event.

However, Ito '613 teaches the content-based processing logic generating a network message responsive to detecting the occurrence the event (column 2, lines 3-8, where a message is being created (electronic representation) depending on the result of the determination of the controller and the messages are transmitted through a network 300).

Having a system of Sugiyama '723, Fujita '285 and Lynch '151 and then given the well-established teaching of Ito '613 reference, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the printer of Sugiyama '723, Fujita '285 and Lynch '151 to include the content-based processing logic generating a network message responsive to detecting the occurrence the event as taught by Ito '613 because it will send messages to the senders according to the presentation method previously set, thus informing the user of an event using various methods.

(3) regarding claim 8:

Sugiyama '723, Fujita '285 and Lynch '151 disclose all the subject matter as described above except wherein the network message comprises an email message.

However, Ito '613 teaches wherein the network message comprises an email message (column 6, lines 50-53, where the messages can be outputted by e-mail messages).

Having a system of Sugiyama '723, Fujita '285 and Lynch '151 and then given the well-established teaching of Ito '613 reference, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the printer of Sugiyama '723, Fujita '285 and Lynch '151 to include wherein the network message comprises an email message as taught by Ito '613 because it will send messages to the senders according to the presentation method previously set, thus informing the user of an event using various methods.

(4) regarding claim 11:

Sugiyama '723, Fujita '285 and Lynch '151 disclose all the subject matter as described above except wherein the content-based processing logic is user-programmable to indicate a response to be generated.

However, Ito '613 teaches wherein the content-based processing logic is user-programmable to indicate a response to be generated (column 6, lines 34-45, where the user can select what type of notification to send to each sender).

Having a system of Sugiyama '723, Fujita '285 and Lynch '151 and then given the well-established teaching of Ito '613 reference, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the printer of

Sugiyama '723, Fujita '285 and Lynch '151 to include wherein the content-based processing logic is user-programmable to indicate a response to be generated as taught by Ito '613 because it will send messages to the senders according to the presentation method previously set, thus informing the user of an event using various methods.

7. Claim 9 is rejected under 35 U.S.C. 103(a) as being unpatentable over Sugiyama et al. (US 5,633,723), Fujita et al. (US 5,111,285), Lynch et al. (US 7,174,151) and Ito (US 7,151,613) as applied to claims above, and further in view of Merchant et al. (US 5,581,366).

Sugiyama '723, Fujita '285, Lynch '151 and Ito '613 disclose all the subject matter as described above except wherein the network message comprises a paging message.

However, Merchant '366 teaches wherein the network message comprises a paging message (column 1, lines 53-64, where a paging message is being generated).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the network message comprises a paging message as taught by Merchant '366 in the system of Sugiyama '723, Fujita '285, Lynch '151 and Ito '613. With this a person not located close by the system being monitored can still receive a message about the status of the system.

8. Claims 10 and 35 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sugiyama et al. (US 5,633,723), Fujita et al. (US 5,111,285) and Lynch et al. (US 7,174,151) as applied to claims above, and further in view of Farrell et al. (US 5,717,841).

(1) regarding claims 10 and 35:

Sugiyama '723, Fujita '285 and Lynch '151 disclose all the subject matter as described above except wherein the content-based processing logic is user-programmable to indicate the event to be monitored.

However, Farrell '841 teaches wherein the content-based processing logic is user-programmable to indicate the event to be monitored (column 7, lines 29-39, where the user can define a series of events to be monitored).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the content-based processing logic is user-programmable to indicate the event to be monitored as taught by Farrell '841 in the system of Sugiyama '723, Fujita '285 and Lynch '151. With this the user of the system would have control on which events he/she wants to be monitored by the processing logic.

9. Claims 12 and 36 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sugiyama et al. (US 5,633,723), Fujita et al. (US 5,111,285) and Lynch et al. (US 7,174,151) as applied to claims above, and further in view of Huberman et al. (US 6,115,718).

(1) regarding claims 12 and 36

Sugiyama '723, Fujita '285 and Lynch '151 disclose all the subject matter as described above except wherein the content-based processing logic extracts data from a web page responsive to detecting the occurrence of the event.

However, Huberman '718 teaches wherein the content-based processing logic extracts data from a web page responsive to detecting the occurrence of the event (column 4, lines 59-62, where data is being extracted from Web pages).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made wherein the content-based processing logic extracts data from a web page responsive to detecting the occurrence of the event as taught by Huberman '718 in the system of Ito Sugiyama '723, Fujita '285 and Lynch '151. With this it would improve the performance of the system, since it is connected to a network that gives it access to web pages of information all over the world.

10. Claims 14 and 37 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sugiyama et al. (US 5,633,723), Fujita et al. (US 5,111,285), Sugiyama '723, Fujita '285 and Lynch '151 as applied to claims above, and further in view of Najeh (US 5,343,251).

(1) regarding claims 14 and 37:

Sugiyama '723, Fujita '285 and Lynch '151 disclose all the subject matter as described above except wherein the content-based processing logic extracts close caption text from the media feed.

However, Najeh '251 teaches wherein the content-based processing logic extracts close caption text from the media feed (column 3, lines 19-45, where the extractor among other parameters extracts close caption).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made that the content-based processing logic extracts close caption

text from the media feed as taught by Najeh '251 in the system of Sugiyama '723, Fujita '285 and Lynch '151. This information can be used to classify the input types as disclosed in column 5, lines 29-63, thus improving the performance.

11. Claims 42 and 43 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sugiyama et al. (US 5,633,723), Fujita et al. (US 5,111,285) and Lynch et al. (US 7,174,151) as applied to claims above, and further in view of Patton (US 2002/0101343).

(1) regarding claim 42:

Sugiyama '723, Fujita '285 and Lynch '151 disclose all the subject matter as described above except wherein the media receiver comprises a receiving means selected from a group of an antenna, a satellite dish, and a cable line.

However, Patton '343 teaches wherein the media receiver comprises a receiving means selected from a group of an antenna (paragraph [0013], lines 6-11), a satellite dish, and a cable line.

Having a system of Sugiyama '723, Fujita '285 and Lynch '151 and then given the well-established teaching of Patton '343 reference, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the printer of Sugiyama '723, Fujita '285 and Lynch '151 to include that the media receiver comprises a receiving means selected from a group of an antenna, a satellite dish, and a cable line as taught by Patton '343 because the desired wireless device receives a signal from a searching wireless device. An indicator on the desired wireless device is then activated in a unique identification pattern that may be recognized by the user of

the searching wireless device to verify that the desired wireless device is receiving the signal from the searching wireless device (paragraph [0007]), allowing flexibility in the range of the printer.

(2) regarding claim 43:

Ito '613, Imai '898 and Wendelken '658 disclose all the subject matter as described above except wherein the media receiver is adapted to receive media signals at multiple frequencies simultaneously.

However, Patton '343 teaches wherein the media receiver is adapted to receive media signals at multiple frequencies simultaneously (paragraph [0013], lines 6-11).

Having a system of Ito '613, Imai '898 and Wendelken '658 and then given the well-established teaching of Patton '343 reference, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the printer of Ito '613, Imai '898 and Wendelken '658 to include that the media receiver is adapted to receive media signals at multiple frequencies simultaneously as taught by Patton '343 because the desired wireless device receives a signal from a searching wireless device. An indicator on the desired wireless device is then activated in a unique identification pattern that may be recognized by the user of the searching wireless device to verify that the desired wireless device is receiving the signal from the searching wireless device (paragraph [0007]), allowing flexibility in the range of the printer.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to LENNIN R. RODRIGUEZ whose telephone number is (571)270-1678. The examiner can normally be reached on Monday - Thursday 7:30am - 6:00pm EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, King Poon can be reached on (571) 272-7440. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/King Y. Poon/
Supervisory Patent Examiner, Art Unit 2625

/Lennin R Rodriguez/
Examiner, Art Unit 2625