Demonstrações por Indução

2020/2021

Princípio de Indução Matemática - intuição

Suponhamos que existe uma linha infinita de pessoas, numeradas 1, 2, 3, ... e que cada pessoa foi instruída do seguinte: "Se alguma coisa lhe for segredada ao ouvido, segrede o mesmo à pessoa à sua frente (cujo número é maior)". O que acontece se for algo for segredado à pessoa 1? 1 vai contar a 2, 2 vai contar a 3, 3 vai contar a 4, e assim sucessivamente todas as pessoas vão conhecer o segredo!

Princípio de Indução Matemática - intuição

Suponhamos que existe uma linha infinita de pessoas, numeradas 1, 2, 3, ... e que cada pessoa foi instruída do seguinte: "Se alguma coisa lhe for segredada ao ouvido, segrede o mesmo à pessoa à sua frente (cujo número é maior)". O que acontece se for algo for segredado à pessoa 1? 1 vai contar a 2, 2 vai contar a 3, 3 vai contar a 4, e assim sucessivamente todas as pessoas vão conhecer o segredo!

De igual forma, suponhamos que alinhamos um número infinito de peças de dominó, tais que se qualquer peça de dominó cair, então a seguinte também cai. O que acontece se derrubarmos a primeira peça? As peças caem todas.

Sejam $n_0 \in \mathbb{Z}$ e $S = \{ n \in \mathbb{Z} \mid n \ge n_0 \}$, e suponhamos que P(n) abrevia a condição "o inteiro n satisfaz a condição P".

Sejam $n_0 \in \mathbb{Z}$ e $S = \{ n \in \mathbb{Z} \mid n \ge n_0 \}$, e suponhamos que P(n) abrevia a condição "o inteiro n satisfaz a condição P". Se se verificarem as condições seguintes,

• $P(n_0)$ (i.e. a condição P verifica-se para n_0);

Sejam $n_0 \in \mathbb{Z}$ e $S = \{ n \in \mathbb{Z} \mid n \ge n_0 \}$, e suponhamos que P(n) abrevia a condição "o inteiro n satisfaz a condição P". Se se verificarem as condições seguintes,

- $P(n_0)$ (i.e. a condição P verifica-se para n_0);
- para todo o inteiro $n \ge n_0$, P(n) implica P(n + 1);

Sejam $n_0 \in \mathbb{Z}$ e $S = \{ n \in \mathbb{Z} \mid n \ge n_0 \}$, e suponhamos que P(n) abrevia a condição "o inteiro n satisfaz a condição P". Se se verificarem as condições seguintes,

- $P(n_0)$ (i.e. a condição P verifica-se para n_0);
- para todo o inteiro $n \ge n_0$, P(n) implica P(n+1); então temos P(n) para todo $n \ge n_0$, i.e. para todo $n \in S$.

Sejam $n_0 \in \mathbb{Z}$ e $S = \{ n \in \mathbb{Z} \mid n \ge n_0 \}$, e suponhamos que P(n) abrevia a condição "o inteiro n satisfaz a condição P". Se se verificarem as condições seguintes,

- $P(n_0)$ (i.e. a condição P verifica-se para n_0);
- para todo o inteiro $n \ge n_0$, P(n) implica P(n+1); então temos P(n) para todo $n \ge n_0$, i.e. para todo $n \in S$.

CB: À condição $P(n_0)$ chamamos geralmente **caso base**,

Sejam $n_0 \in \mathbb{Z}$ e $S = \{ n \in \mathbb{Z} \mid n \ge n_0 \}$, e suponhamos que P(n) abrevia a condição "o inteiro n satisfaz a condição P". Se se verificarem as condições seguintes,

- $P(n_0)$ (i.e. a condição P verifica-se para n_0);
- para todo o inteiro $n \ge n_0$, P(n) implica P(n+1); então temos P(n) para todo $n \ge n_0$, i.e. para todo $n \in S$.

CB: À condição $P(n_0)$ chamamos geralmente **caso base**,

H: e a $\forall n \geq n_0 \ [P(n) \Rightarrow P(n+1)]$ condição de hereditariedade ou passo de indução.

• Começamos por provar que o predicado é válido para o menor elemento de S (0 se $S = \mathbb{N}$).

- Começamos por provar que o predicado é válido para o menor elemento de S (0 se $S = \mathbb{N}$).
- Depois provamos que se o predicado é válido para um elemento n então também é válido para o próximo elemento no conjunto, i.e. n + 1.

- Começamos por provar que o predicado é válido para o menor elemento de S (0 se S = N).
- Depois provamos que se o predicado é válido para um elemento n então também é válido para o próximo elemento no conjunto, i.e. n + 1.

Logo:

 Como é válido para o primeiro elemento então é válido para o segundo.

- Começamos por provar que o predicado é válido para o menor elemento de S (0 se S = N).
- Depois provamos que se o predicado é válido para um elemento n então também é válido para o próximo elemento no conjunto, i.e. n + 1.

Logo:

- Como é válido para o primeiro elemento então é válido para o segundo.
- Como é válido para o segundo elemento então é válido para o terceiro.

- Começamos por provar que o predicado é válido para o menor elemento de S (0 se S = N).
- Depois provamos que se o predicado é válido para um elemento n então também é válido para o próximo elemento no conjunto, i.e. n + 1.

Logo:

- Como é válido para o primeiro elemento então é válido para o segundo.
- Como é válido para o segundo elemento então é válido para o terceiro.
- Como é válido para o terceiro elemento então é válido para o quarto.
- . . .

Supondo que queremos demonstrar por indução que uma propriedade P se verifica para todo $n \in S = \{ n \in \mathbb{Z} \mid n \geq n_0 \}$. Procedemos da seguinte forma:

 Enunciamos o método de prova. Por exemplo, "Prosseguimos por indução."

- Enunciamos o método de prova. Por exemplo, "Prosseguimos por indução."
- 2. Demonstramos a "base de indução": $P(n_0)$. Ou seja, que P se verifica para o primeiro elemento do conjunto S.

- Enunciamos o método de prova. Por exemplo, "Prosseguimos por indução."
- 2. Demonstramos a "base de indução": $P(n_0)$. Ou seja, que P se verifica para o primeiro elemento do conjunto S.
- 3. Assumimos a "hipótese de indução": P(n) para um qualquer inteiro $n \ge n_0$. Ou seja, assumimos que a propriedade se verifica para um inteiro $n \ge n_0$.

- Enunciamos o método de prova. Por exemplo, "Prosseguimos por indução."
- 2. Demonstramos a "base de indução": $P(n_0)$. Ou seja, que P se verifica para o primeiro elemento do conjunto S.
- 3. Assumimos a "hipótese de indução": P(n) para um qualquer inteiro $n \ge n_0$. Ou seja, assumimos que a propriedade se verifica para um inteiro $n \ge n_0$.
- 4. Demonstramos, usando a hipótese de indução, que a propriedade P se verifica para n + 1, ou seja, P(n + 1).

- Enunciamos o método de prova. Por exemplo, "Prosseguimos por indução."
- 2. Demonstramos a "base de indução": $P(n_0)$. Ou seja, que P se verifica para o primeiro elemento do conjunto S.
- 3. Assumimos a "hipótese de indução": P(n) para um qualquer inteiro $n \ge n_0$. Ou seja, assumimos que a propriedade se verifica para um inteiro $n \ge n_0$.
- 4. Demonstramos, usando a hipótese de indução, que a propriedade P se verifica para n + 1, ou seja, P(n + 1).
- 5. Concluir a prova.

- Enunciamos o método de prova. Por exemplo, "Prosseguimos por indução."
- 2. Demonstramos a "base de indução": $P(n_0)$. Ou seja, que P se verifica para o primeiro elemento do conjunto S.
- 3. Assumimos a "hipótese de indução": P(n) para um qualquer inteiro $n \ge n_0$. Ou seja, assumimos que a propriedade se verifica para um inteiro $n \ge n_0$.
- 4. Demonstramos, usando a hipótese de indução, que a propriedade P se verifica para n + 1, ou seja, P(n + 1).
- 5. Concluir a prova.

Indução Matemática: exemplo

Vamos mostrar que

$$\forall n \in \mathbb{N} \quad \sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

Indução Matemática: exemplo

Vamos mostrar que

$$\forall n \in \mathbb{N} \quad \sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

• Começamos por provar o caso base, i.e. $\sum_{i=0}^{0} i = \frac{0(0+1)}{2}$

Indução Matemática: exemplo

Vamos mostrar que

$$\forall n \in \mathbb{N} \quad \sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

- Começamos por provar o caso base, i.e. $\sum_{i=0}^{0} i = \frac{0(0+1)}{2}$
- De seguida tomamos um inteiro $n \ge 0$ e suponhamos P(n):

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

 Usando um método de prova directa (veremos mais à frente) provamos P(n+1):

$$\sum_{i=2}^{n+1} i = \frac{(n+1)((n+1)+1)}{2},$$

podendo para isso usar a hipótese de indução P(n).

Vamos demonstrar por indução que, para todo o número natural n: $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

• Caso base: Para n = 0 temos $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.

- Caso base: Para n = 0 temos $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.
- Passo de indução: Seja $n \ge 0$ e suponhamos que $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$. Queremos mostrar $\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}$.

- Caso base: Para n = 0 temos $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.
- Passo de indução: Seja $n \ge 0$ e suponhamos que $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$. Queremos mostrar $\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}$.

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + \sum_{i=n+1}^{n+1} i$$
 (propriedade dos somatórios)

- Caso base: Para n = 0 temos $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.
- Passo de indução: Seja $n \ge 0$ e suponhamos que $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$. Queremos mostrar $\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}$.

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + \sum_{i=n+1}^{n+1} i \text{ (propriedade dos somatórios)}$$
$$= \sum_{i=0}^{n} i + n + 1$$

- Caso base: Para n = 0 temos $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.
- Passo de indução: Seja $n \ge 0$ e suponhamos que $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$. Queremos mostrar $\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}$.

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + \sum_{i=n+1}^{n+1} i \text{ (propriedade dos somatórios)}$$

$$= \sum_{i=0}^{n} i + n + 1$$

$$= \frac{n(n+1)}{2} + (n+1) \text{ (usando a hipótese de indução}$$

- Caso base: Para n = 0 temos $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.
- Passo de indução: Seja $n \ge 0$ e suponhamos que $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$. Queremos mostrar $\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}$.

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + \sum_{i=n+1}^{n+1} i \text{ (propriedade dos somatórios)}$$

$$= \sum_{i=0}^{n} i + n + 1$$

$$= \frac{n(n+1)}{2} + (n+1) \text{ (usando a hipótese de indução}$$

$$= \frac{n(n+1)+2(n+1)}{2} \text{ (por manipulação algébrica)}$$

- Caso base: Para n = 0 temos $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.
- Passo de indução: Seja $n \ge 0$ e suponhamos que $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$. Queremos mostrar $\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}$.

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + \sum_{i=n+1}^{n+1} i \text{ (propriedade dos somatórios)}$$

$$= \sum_{i=0}^{n} i + n + 1$$

$$= \frac{n(n+1)}{2} + (n+1) \text{ (usando a hipótese de indução}$$

$$= \frac{n(n+1)+2(n+1)}{2} \text{ (por manipulação algébrica)}$$

$$= \frac{(n+1)((n+1)+1)}{2}$$

Vamos demonstrar por indução que, para todo o número natural n: $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

- Caso base: Para n = 0 temos $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.
- Passo de indução: Seja $n \ge 0$ e suponhamos que $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$. Queremos mostrar $\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}$.

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + \sum_{i=n+1}^{n+1} i \text{ (propriedade dos somatórios)}$$

$$= \sum_{i=0}^{n} i + n + 1$$

$$= \frac{n(n+1)}{2} + (n+1) \text{ (usando a hipótese de indução}$$

$$= \frac{n(n+1)+2(n+1)}{2} \text{ (por manipulação algébrica)}$$

$$= \frac{(n+1)((n+1)+1)}{2}$$

Logo, para qualquer $n \in \mathbb{N}$, $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Indução Matemática: exemplo II

Teorema: Qualquer potência inteira positiva de 3 é ímpar.

Indução Matemática: exemplo II

Teorema: Qualquer potência inteira positiva de 3 é ímpar. *Prova:* Queremos mostrar que para qualquer $n \ge 1$ se tem $3^n = 2l + 1$, para algum $l \in \mathbb{N}$. Prosseguimos por indução.

Indução Matemática: exemplo II

Teorema: Qualquer potência inteira positiva de 3 é ímpar. *Prova:* Queremos mostrar que para qualquer $n \ge 1$ se tem $3^n = 2l + 1$, para algum $l \in \mathbb{N}$. Prosseguimos por indução.

• Caso base: para n = 1 temos $3 = 2 \cdot 1 + 1$, o que verifica a propriedade.

- Caso base: para n = 1 temos $3 = 2 \cdot 1 + 1$, o que verifica a propriedade.
- Passo de indução: Seja $n \ge 1$ e suponhamos que 3^n é ímpar (ou seja $3^n = 2l + 1$, para algum $l \in \mathbb{N}$). Queremos demonstrar que 3^{n+1} também é ímpar:

- Caso base: para n = 1 temos $3 = 2 \cdot 1 + 1$, o que verifica a propriedade.
- Passo de indução: Seja n ≥ 1 e suponhamos que 3ⁿ é ímpar (ou seja 3ⁿ = 2l + 1, para algum l ∈ N). Queremos demonstrar que 3ⁿ⁺¹ também é ímpar:

$$3^{n+1} = 3 \cdot 3^n$$

- Caso base: para n = 1 temos $3 = 2 \cdot 1 + 1$, o que verifica a propriedade.
- Passo de indução: Seja $n \ge 1$ e suponhamos que 3^n é ímpar (ou seja $3^n = 2l + 1$, para algum $l \in \mathbb{N}$). Queremos demonstrar que 3^{n+1} também é ímpar:

$$3^{n+1} = 3 \cdot 3^n$$

= $3(2l+1)$ (hipótese de indução)

- Caso base: para n = 1 temos $3 = 2 \cdot 1 + 1$, o que verifica a propriedade.
- Passo de indução: Seja $n \ge 1$ e suponhamos que 3^n é ímpar (ou seja $3^n = 2l + 1$, para algum $l \in \mathbb{N}$). Queremos demonstrar que 3^{n+1} também é ímpar:

```
3^{n+1} = 3 \cdot 3^n
= 3(2l + 1) (hipótese de indução)
= 2(3l + 1) + 1.
```

Teorema: Qualquer potência inteira positiva de 3 é ímpar. *Prova:* Queremos mostrar que para qualquer $n \ge 1$ se tem $3^n = 2l + 1$, para algum $l \in \mathbb{N}$. Prosseguimos por indução.

- Caso base: para n = 1 temos $3 = 2 \cdot 1 + 1$, o que verifica a propriedade.
- Passo de indução: Seja $n \ge 1$ e suponhamos que 3^n é ímpar (ou seja $3^n = 2l + 1$, para algum $l \in \mathbb{N}$). Queremos demonstrar que 3^{n+1} também é ímpar:

$$3^{n+1} = 3 \cdot 3^n$$

= 3(2*l* + 1) (hipótese de indução)
= 2(3*l* + 1) + 1.

Como $3l + 1 \in \mathbb{N}$ concluimos que 3^{n+1} é ímpar, o que termina a demonstração.

Exercícios:

- Mostre que $\sum_{i=0}^{n} r^i = \frac{r^{n+1}-1}{r-1}$, para todo o inteiro $n \ge 0$ e todo o r real excepto 1.
- Mostre que para todo o inteiro n ≥ 1, 2²ⁿ 1 é divisível por 3.
- Mostre que para todo o inteiro $n \ge 3$, $2n + 1 \le 2^n$.
- Considere a sucessão a₁, a₂, a₃,... definida por:

$$a_1 = 1$$

 $a_2 = 3$
 $a_n = a_{n-2} + 2a_{n-1}, n \ge 3$

- Determine os valores de a_3 , a_4 , a_5 , a_6 e a_7 .
- Mostre que $\forall n \geq 1$, a_n é um inteiro positivo ímpar.

A regra de inferência é ligeiramente modificada:

A regra de inferência é ligeiramente modificada:

• Se $P(n_0)$ se verifica, e

A regra de inferência é ligeiramente modificada:

- Se $P(n_0)$ se verifica, e
- Se $P(n_0)$, $P(n_0 + 1)$, ..., P(n) se verificam (para um n arbitrário), implica que P(n + 1) se verifica

A regra de inferência é ligeiramente modificada:

- Se $P(n_0)$ se verifica, e
- Se $P(n_0)$, $P(n_0 + 1)$, ..., P(n) se verificam (para um n arbitrário), implica que P(n + 1) se verifica

```
então \forall n \geq n_0 P(n).
```

A regra de inferência é ligeiramente modificada:

- Se $P(n_0)$ se verifica, e
- Se $P(n_0)$, $P(n_0 + 1)$, ..., P(n) se verificam (para um n arbitrário), implica que P(n + 1) se verifica

então
$$\forall n \geq n_0 P(n)$$
.

As hipóteses são:

CB:
$$P(n_0)$$

$$\mathsf{H}\colon\,\forall n\geq n_0\;[(\forall k,n_0\leq k\leq n,P(k))\;\Rightarrow P(n+1)].$$

A regra de inferência é ligeiramente modificada:

- Se $P(n_0)$ se verifica, e
- Se $P(n_0)$, $P(n_0 + 1)$, ..., P(n) se verificam (para um n arbitrário), implica que P(n + 1) se verifica

então
$$\forall n \geq n_0 P(n)$$
.

As hipóteses são:

CB: $P(n_0)$

H:
$$\forall n \geq n_0 \ [(\forall k, n_0 \leq k \leq n, P(k)) \Rightarrow P(n+1)].$$

As duas regras são equivalentes, no entanto algumas vezes a indução forte é de mais fácil aplicação.

Teorema: Qualquer inteiro positivo maior do que 1 pode ser escrito como um produto de primos.

Teorema: Qualquer inteiro positivo maior do que 1 pode ser escrito como um produto de primos.

Prova: A prova prossegue por indução forte:

 Caso base, n = 2: como 2 é um número primo, a propriedade verifica-se.

Teorema: Qualquer inteiro positivo maior do que 1 pode ser escrito como um produto de primos.

- Caso base, n = 2: como 2 é um número primo, a propriedade verifica-se.
- Passo de indução: Vamos assumir que a propriedade se verifica para todos os inteiros entre 2 e n.

Teorema: Qualquer inteiro positivo maior do que 1 pode ser escrito como um produto de primos.

- Caso base, n = 2: como 2 é um número primo, a propriedade verifica-se.
- Passo de indução: Vamos assumir que a propriedade se verifica para todos os inteiros entre 2 e n. Se n + 1 é um número primo então a propriedade verifica-se trivialmente.

Teorema: Qualquer inteiro positivo maior do que 1 pode ser escrito como um produto de primos.

- Caso base, n = 2: como 2 é um número primo, a propriedade verifica-se.
- Passo de indução: Vamos assumir que a propriedade se verifica para todos os inteiros entre 2 e n. Se n + 1 é um número primo então a propriedade verifica-se trivialmente. Caso contrário, n + 1 tem um divisor diferente de 1 e n + 1.

Teorema: Qualquer inteiro positivo maior do que 1 pode ser escrito como um produto de primos.

- Caso base, n = 2: como 2 é um número primo, a propriedade verifica-se.
- Passo de indução: Vamos assumir que a propriedade se verifica para todos os inteiros entre 2 e n. Se n + 1 é um número primo então a propriedade verifica-se trivialmente. Caso contrário, n + 1 tem um divisor diferente de 1 e n + 1. Logo n + 1 = a ⋅ b, com 2 ≤ a, b ≤ n.

Teorema: Qualquer inteiro positivo maior do que 1 pode ser escrito como um produto de primos.

- Caso base, n = 2: como 2 é um número primo, a propriedade verifica-se.
- Passo de indução: Vamos assumir que a propriedade se verifica para todos os inteiros entre 2 e n. Se n + 1 é um número primo então a propriedade verifica-se trivialmente. Caso contrário, n + 1 tem um divisor diferente de 1 e n + 1. Logo n + 1 = a ⋅ b, com 2 ≤ a, b ≤ n. Por hipótese de indução, ambos a e b podem ser escritos como um produto de primos,

Teorema: Qualquer inteiro positivo maior do que 1 pode ser escrito como um produto de primos.

- Caso base, n = 2: como 2 é um número primo, a propriedade verifica-se.
- Passo de indução: Vamos assumir que a propriedade se verifica para todos os inteiros entre 2 e n. Se n + 1 é um número primo então a propriedade verifica-se trivialmente. Caso contrário, n + 1 tem um divisor diferente de 1 e n + 1. Logo n + 1 = a ⋅ b, com 2 ≤ a, b ≤ n. Por hipótese de indução, ambos a e b podem ser escritos como um produto de primos, logo também o seu produto pode ser expresso como um produto de primos.

Teorema: Qualquer inteiro positivo maior do que 1 pode ser escrito como um produto de primos.

Prova: A prova prossegue por indução forte:

- Caso base, n = 2: como 2 é um número primo, a propriedade verifica-se.
- Passo de indução: Vamos assumir que a propriedade se verifica para todos os inteiros entre 2 e n. Se n + 1 é um número primo então a propriedade verifica-se trivialmente. Caso contrário, n + 1 tem um divisor diferente de 1 e n + 1. Logo n + 1 = a ⋅ b, com 2 ≤ a, b ≤ n. Por hipótese de indução, ambos a e b podem ser escritos como um produto de primos, logo também o seu produto pode ser expresso como um produto de primos.

Logo, verifica-se por indução, que qualquer inteiro positivo maior do que 1 pode ser escrito como um produto de primos.

O jogo das cartas: Considere um jogo em que dois jogadores removem alternadamente um número arbitrário, mas não nulo, de cartas de uma de duas pilhas (de cartas) inicialmente não vazias. O jogador que remover a ultima carta ganha o jogo. Mostre que, se as duas pilhas contiverem inicialmente o mesmo numero de cartas, então o segundo jogador tem uma estratégia que lhe garante a vitoria do jogo.

Exercício

Considere o conjunto ${\mathcal F}$ de fórmulas do cálculo proposicional definidas pelas regras seguintes:

- qualquer variável proposicional p é uma fórmula em \mathcal{F} ;
- se $\alpha, \beta \in \mathcal{F}$, então $(\neg \alpha) \in \mathcal{F}$ e $(\alpha \to \beta) \in \mathcal{F}$.

Exercício

Considere o conjunto $\mathcal F$ de fórmulas do cálculo proposicional definidas pelas regras seguintes:

- qualquer variável proposicional p é uma fórmula em \mathcal{F} ;
- se $\alpha, \beta \in \mathcal{F}$, então $(\neg \alpha) \in \mathcal{F}$ e $(\alpha \to \beta) \in \mathcal{F}$.

Denotamos por $|\alpha|$, por $|\alpha|_{\to}$ e por $|\alpha|_{\it var}$ respectivamente o número de símbolos em α (váriaveis proposicionais, implicações, negações e parênteses), o número de implicações em α e o número de variáveis proposicionais em α .

Exercício

Considere o conjunto $\mathcal F$ de fórmulas do cálculo proposicional definidas pelas regras seguintes:

- qualquer variável proposicional p é uma fórmula em \mathcal{F} ;
- se $\alpha, \beta \in \mathcal{F}$, então $(\neg \alpha) \in \mathcal{F}$ e $(\alpha \to \beta) \in \mathcal{F}$.

Denotamos por $|\alpha|$, por $|\alpha|_{\to}$ e por $|\alpha|_{\it var}$ respectivamente o número de símbolos em α (váriaveis proposicionais, implicações, negações e parênteses), o número de implicações em α e o número de variáveis proposicionais em α .

Mostre por indução sobre $n=|\alpha|$ que para qualquer fórmula α de comprimento $n=|\alpha|\geq 1$ se tem $|\alpha|_{\it var}=|\alpha|_{\to}+1$.

Raciocínio equacional

Para simplificar expressões matemáticas podemos usar igualdades algébricas como regras de reescrita.

Este tipo manipulação chama-se raciocínio equacional.

Algumas igualdades algébricas

$$x + y = y + x$$
 comutatividade de + $x * y = y * x$ comutatividade de * $x + (y + z) = (x + y) + z$ associatividade de + $x * (y * z) = (x * y) * z$ associatividade de * $x * (y + z) = x * y + x * z$ distributividade de * sobre +

Podemos substituir os lados esquerdos pelos lados direitos ou vice-versa.

$$(x+y)*(x+y)$$

$$(x + y) * (x + y)$$
 {distributividade}
= $(x + y) * x + (x + y) * y$

$$(x + y) * (x + y)$$
 {distributividade}
= $(x + y) * x + (x + y) * y$ {comutatividade de *}
= $x * (x + y) + (x + y) * y$

$$(x + y) * (x + y)$$
 {distributividade}
= $(x + y) * x + (x + y) * y$ {comutatividade de *}
= $x * (x + y) + (x + y) * y$ {distributividade}
= $x * x + x * y + (x + y) * y$

```
(x + y) * (x + y) {distributividade}

= (x + y) * x + (x + y) * y {comutatividade de *}

= x * (x + y) + (x + y) * y {distributividade}

= x * x + x * y + (x + y) * y {comutatividade de *}

= x * x + x * y + y * (x + y)
```

```
(x + y) * (x + y) {distributividade}

= (x + y) * x + (x + y) * y {comutatividade de *}

= x * (x + y) + (x + y) * y {distributividade}

= x * x + x * y + (x + y) * y {comutatividade de *}

= x * x + x * y + y * (x + y) {distributividade}

= x * x + x * y + y * (x + y)
```

```
(x + y) * (x + y) {distributividade}

= (x + y) * x + (x + y) * y {comutatividade de *}

= x * (x + y) + (x + y) * y {distributividade}

= x * x + x * y + (x + y) * y {comutatividade de *}

= x * x + x * y + y * (x + y) {distributividade}

= x * x + x * y + y * x + y * y {comutatividade de *}

= x * x + x * y + x * y + y * y
```

```
(x + y) * (x + y)
                                        {distributividade}
                                   {comutatividade de *}
= (x + y) * x + (x + y) * y
= X * (X + Y) + (X + Y) * Y
                                        {distributividade}
= x * x + x * y + (x + y) * y
                                   {comutatividade de *}
= X * X + X * Y + Y * (X + Y)
                                        {distributividade}
                                   {comutatividade de *}
= X * X + X * V + V * X + V * V
                                        {distributividade}
= X * X + X * V + X * V + V * V
= x * x + (1 + 1) * x * y + y * y
```

```
(x + y) * (x + y)
                                        {distributividade}
= (x + y) * x + (x + y) * y
                                   {comutatividade de *}
= x * (x + y) + (x + y) * y
                                        {distributividade}
= x * x + x * y + (x + y) * y
                                   {comutatividade de *}
                                        {distributividade}
= X * X + X * Y + Y * (X + Y)
                                   {comutatividade de *}
= X * X + X * V + V * X + V * V
                                        {distributividade}
= X * X + X * V + X * V + V * V
                                           {abreviaturas}
= x * x + (1 + 1) * x * y + y * y
= x^2 + 2xy + y^2
```

Raciocínio equacional sobre programas I

Podemos mostrar propriedades de programas usando definições de funções como regras de re-escrita.

Raciocínio equacional sobre programas II

Vamos mostrar que

reverse
$$[x] = [x]$$

usando as definições seguintes:

```
reverse [] = [] (reverse.1)

reverse (x:xs) = reverse xs ++ [x] (reverse.2)

[] ++ ys = ys (++.1)

(x:xs) ++ ys = x:(xs++ys) (++.2)
```

Começamos pelo lado esquerdo:

reverse [x]

Começamos pelo lado esquerdo:

```
reverse [x]
{notação de listas}
= reverse (x:[])
```

Começamos pelo lado esquerdo:

```
reverse [x]
{notação de listas}
= reverse (x:[])
{reverse.2}
= reverse [] ++ [x]
```

Começamos pelo lado esquerdo:

Começamos pelo lado esquerdo:

```
reverse [x]
    {notação de listas}
= reverse (x:[])
    {reverse.2}
= reverse [] ++ [x]
    {reverse.1}
= [] ++ [x]
    {++.1}
= [x]
```

Obtemos a expressão do lado direito.

Porquê provar propriedades de programas?

- Verificação formal da correcção
 - 1. provar propriedades universais
 - 2. garantia de resultados correctos para *quaisquer* valores
 - 3. garantia de terminação e ausência de erros
- Simplificação e transformação
 - 1. transformar programas usando igualdades
 - 2. sintetizar programas apartir de requisitos (especificações)
 - 3. obter um programa eficiente a partir de um mais simples

"Testing shows the presence, not the absence of bugs."
— E. Disjkstra

Porquê em Haskell?

Podemos usar raciocínio equacional sobre programas Haskell porque são definidos por *equações*.

Por contraposição: programas imperativos são definidos por sequências de instruções – não são equações.

Exemplo

Após a instrução

```
n = n+1; // em C,C++,Java...
```

não podemos substituir n por n+1 — trata-se duma atribuição e não duma equação.

Recursão e indução

Em programação usamos recursão para definir funções sobre números naturais, listas, etc.

Além de raciocínio equacional, necessitamos de indução matemática para provar propriedades dessas funções.

usando indução sobre n.

```
length :: [a] -> Int
length[] = 0
                                                 (length.1)
                                                 (length.2)
length (x:xs) = 1 + length xs
replicate :: Int -> a -> [a]
replicate 0 x = []
                                               (replicate.1)
replicate n x | n>0
    = x : replicate (n-1) x
                                               (replicate.2)
Vamos mostrar
          length (replicate n \times n) = n
```

Caso base

length (replicate 0 x) = 0

Caso base

```
length (replicate 0 x) = 0
```

length (replicate 0 x)

Caso base

```
length (replicate 0 x) = 0
length (replicate 0 x)
= {replicate.1}
length []
```

Caso base

```
length (replicate 0 x) = 0

length (replicate 0 x)

= {replicate.1}
  length []

= {length.1}
  0
```

```
Hipótese: length (replicate n x) = n

Tese: length (replicate (1+n) x) = 1+n
```

```
Hipótese: length (replicate n x) = n

Tese: length (replicate (1+n) x) = 1+n

length (replicate (1+n) x)
```

```
Hipótese: length (replicate n x) = n
   Tese: length (replicate (1+n) x) = 1+n
   length (replicate (1+n) x)
= {replicate.2}
   length (x : replicate n x)
```

```
Hipótese: length (replicate n x) = n
   Tese: length (replicate (1+n) x) = 1+n

length (replicate (1+n) x)

= {replicate.2}
  length (x : replicate n x)

= {length.2}
  1 + length (replicate n x)
```

```
Hipotese: length (replicate n x) = n
   Tese: length (replicate (1+n) \times x = 1+n
  length (replicate (1+n) x)
= {replicate.2}
  length (x : replicate n x)
= {length.2}
  1 + length (replicate n x)
= {hipótese de indução}
  1 + n
```

Indução sobre listas

Também podemos provar propriedades usando indução sobre o comprimento das listas.

$$\begin{array}{c}
P([]) \\
P(xs) \implies P(x:xs) \quad \text{para todo } x, xs \\
\hline
P(xs) \quad \text{para todo } xs
\end{array}$$

Nota: propriedades de listas finitas!

Vamos mostrar que

$$xs ++ [] = xs$$

por indução sobre xs.

O caso base é trivial:

O caso base é trivial:

```
Hipótese: xs ++ [] = xs

Tese: (x:xs) ++ [] = (x:xs)
```

O caso base é trivial:

```
[] ++ [] = [] {++.1}
```

```
Hipótese: xs ++ [] = xs

Tese: (x:xs) ++ [] = (x:xs)
(x:xs) ++ []
```

O caso base é trivial:

```
[] ++ [] = [] {++.1}
```

```
Hipótese: xs ++ [] = xs

Tese: (x:xs) ++ [] = (x:xs)
(x:xs) ++ []

= {++.2}
x: (xs ++ [])
```

O caso base é trivial:

```
[] ++ [] = [] {++.1}
```

```
Hipótese: xs ++ [] = xs

Tese: (x:xs) ++ [] = (x:xs)
(x:xs) ++ []

= {++.2}
x: (xs ++ [])

= {hipótese de indução}
x:xs
```

Mostrar

```
reverse (reverse xs) = xs
por indução sobre xs.
```

```
Caso base: reverse (reverse [])
```

Caso base:

```
reverse (reverse [])
= {reverse.1 interior}
reverse []
```

Caso base:

```
reverse (reverse [])
= {reverse.1 interior}
reverse []
= {reverse.1}
```

Caso indutivo.

```
Hipótese: reverse (reverse xs) = xs
  Tese: reverse (reverse (x:xs)) = x:xs
  reverse (reverse (x:xs))
```

Caso indutivo.

```
Hipótese: reverse (reverse xs) = xs
  Tese: reverse (reverse (x:xs)) = x:xs
  reverse (reverse (x:xs))
= {reverse.2 interior}
  reverse (reverse xs ++ [x])
```

Caso indutivo.

Necessitamos de um resultado auxiliar para continuar!

Dois lemas auxiliares

Distributividade de reverse sobre ++

Atenção à inversão da ordem dos argumentos!

Para provar o lema acima, necessitamos de mostrar:

Associatividade de ++

$$(xs ++ ys) ++ zs = xs ++ (ys ++ zs)$$

Exercício: provar estes lemas usando indução.

```
reverse (reverse (x:xs))
= {reverse.2 interior}
reverse (reverse xs ++ [x])
```

```
reverse (reverse (x:xs))
= {reverse.2 interior}
reverse (reverse xs ++ [x])
= {distributividade reverse/++}
reverse [x] ++ reverse (reverse xs)
```

```
reverse (reverse (x:xs))
= {reverse.2 interior}
reverse (reverse xs ++ [x])
= {distributividade reverse/++}
reverse [x] ++ reverse (reverse xs)
= {reverse.2, reverse.1}
[x] ++ reverse (reverse xs)
```

```
reverse (reverse (x:xs))
= {reverse.2 interior}
  reverse (reverse xs ++ [x])
= {distributividade reverse/++}
  reverse [x] ++ reverse (reverse xs)
= {reverse.2, reverse.1}
  [x] ++ reverse (reverse xs)
= {hipótese de indução}
  [x] ++ xs
```

```
reverse (reverse (x:xs))
= {reverse.2 interior}
  reverse (reverse xs ++ [x])
= {distributividade reverse/++}
  reverse [x] ++ reverse (reverse xs)
= {reverse.2, reverse.1}
  [x] ++ reverse (reverse xs)
= {hipótese de indução}
  [x] ++ xs
= {++.2, ++.1}
  x:xs
```