Llista de problemes 5

Víctor Ballester Ribó NIU: 1570866

Anàlisi Harmònica Grau en Matemàtiques Universitat Autònoma de Barcelona Abril de 2023

Exercici 1. Sigui $T \in \mathcal{D}^*(\mathbb{R})$. Demostreu que $xT = 0 \iff T = C\delta$, per una certa constant C. Resoleu l'equació diferencial distribucional $(xT)' = \mathbf{1}_{(0,\infty)}$.

Resolució. Resolem l'equació diferencial. Observem que $\mathbf{1}_{(0,\infty)}$ és una solució particular de l'equació diferencial. Per tant, per la linealitat de la derivada tenim que $(xT-x\mathbf{1}_{(0,\infty)})'=0$. Per l'exercici 3 de la llista anterior tenim que $xT-x\mathbf{1}_{(0,\infty)}=C_1$. És a dir, (usant que $xp.v.(\frac{1}{x})=1$) tenim que:

$$x\left(T - \mathbf{1}_{(0,\infty)} - C_1 \text{p.v.}\left(\frac{1}{x}\right)\right) = 0$$

Ara justifiquem que si xS=0, amb $S\in \mathcal{D}^*(\mathbb{R})$, aleshores $S=C\delta_0$. Sigui $\phi\in \mathcal{D}(\mathbb{R})$ tal que $\phi(0)=0$. Aleshores $\varphi:=\frac{\phi}{x}\in \mathcal{D}(\mathbb{R})$ i tenim que:

$$\langle S, \phi \rangle = \langle S, x\varphi \rangle = \langle xS, \varphi \rangle = 0$$

Ara sigui $\psi \in \mathcal{D}(\mathbb{R})$ qualsevol i $\omega \in \mathcal{D}(\mathbb{R})$ tal que $\omega(0) = 1$. Aleshores $\phi := \psi - \psi(0)\omega \in \mathcal{D}(\mathbb{R})$ i satisfà $\phi(0) = 0$. Per tant, per la linealitat de S i usant el demostrat prèviament, tenim que:

$$T(\psi) = \langle T, \psi \rangle = \psi(0) \langle T, \omega \rangle =: \psi(0) C = C \delta_0(\psi)$$

És a dir, $T = C\delta_0$. Per tant, en el nostre cas:

$$T = \mathbf{1}_{(0,\infty)} + C_1 \text{p.v.} \left(\frac{1}{x}\right) + C_2 \delta_0$$

És evident que si $S = C\delta_0$ aleshores xS = 0 ja que:

$$\langle Cx\delta_0, \phi \rangle = C\langle \delta_0, x\phi \rangle = C \cdot 0 \cdot \phi(0) = 0$$

Exercici 2. Proveu que tota distribució té una primitiva. És a dir, donada $T \in \mathcal{D}(\mathbb{R})$, $\exists S \in \mathcal{D}(\mathbb{R})$ tal que T = S'.

Resolució. Sigui $\phi \in \mathcal{D}(\mathbb{R})$ tal que $\int_{-\infty}^{+\infty} \phi(x) dx = 0$. Aleshores ja vam veure a la llista passada que $\exists \psi \in \mathcal{D}(\mathbb{R})$ tal que $\phi = \psi'$. Per tant, triem S tal que:

$$\langle S, \phi \rangle = \langle S, \psi' \rangle = -\langle S', \psi \rangle = -\langle T, \psi \rangle$$

Observem que amb aquesta definició de S tenim que:

$$\langle S', \phi \rangle = -\langle S, \phi' \rangle = -(-\langle T, \psi' \rangle) = \langle T, \phi \rangle$$

Ara sigui $\varphi \in \mathcal{D}(\mathbb{R})$ qualsevol i sigui $\omega \in \mathcal{D}(\mathbb{R})$ tal que $\int_{-\infty}^{+\infty} \omega(x) \, \mathrm{d}x = 1$. Aleshores tenim que $\phi := \varphi - \int_{-\infty}^{+\infty} \varphi(x) \, \mathrm{d}x \, \omega \in \mathcal{D}(\mathbb{R})$ i integra 0. Per tant, pel vist anteriorment, si $\psi(t) = \int_{-\infty}^{t} \varphi(x) \, \mathrm{d}x - \int_{-\infty}^{+\infty} \varphi(x) \, \mathrm{d}x \int_{-\infty}^{t} \omega(x) \, \mathrm{d}x$, aleshores $\psi \in \mathcal{D}(\mathbb{R})$ i podem definir S com:

$$\langle S, \varphi \rangle := -\left\langle T, \int_{-\infty}^{\cdot} \varphi(x) \, \mathrm{d}x - \int_{-\infty}^{+\infty} \varphi(x) \, \mathrm{d}x \int_{-\infty}^{\cdot} \omega(x) \, \mathrm{d}x \right\rangle + \int_{-\infty}^{+\infty} \varphi(x) \, \mathrm{d}x \, \langle T, \omega \rangle$$

Observem que tenim:

$$\langle S', \varphi \rangle = -\langle S, \varphi' \rangle = \left\langle T, \varphi - \int_{-\infty}^{+\infty} \varphi'(x) \, \mathrm{d}x \, \omega \right\rangle + \int_{-\infty}^{+\infty} \varphi'(x) \, \mathrm{d}x \, \langle T, \omega \rangle = \langle T, \varphi \rangle$$

Víctor Ballester NIU: 1570866

Exercici 3. Sigui $f \in C^1(\mathbb{R} \setminus \{(a_n)\})$ amb (a_n) una successió tal que $\lim_{n \to \infty} |a_n| = \infty$ i a_n són salts d'alçada s_n , llavors:

$$T_f' = T_{f'\mathbf{1}_{\mathbb{R}\setminus\{(a_n)\}}} + \sum_{n=1}^{\infty} s_n \delta_{a_n}$$

Resolució. Com que la successió (a_n) és tal que $\lim_{n \to \infty} |a_n| = \infty$, entre dos punts x < y reals no podem tenir infinits punts de la successió. Per tant, podem considerar la partició en intervals (I_k) , donats per $I_k = (a_{n_k}, a_{n_{k+1}})$ que ens dona la successió entre dos termes (no necessàriament consecutius) de la successió. Aleshores, si $\varphi \in \mathcal{D}(\mathbb{R})$, tenim que:

$$\langle T'_f, \varphi \rangle = -\langle T_f, \varphi' \rangle = -\int_{-\infty}^{+\infty} f(x)\varphi'(x) \, \mathrm{d}x = -\sum_{k=1}^{\infty} \int_{I_k} f(x)\varphi'(x) \, \mathrm{d}x = \sum_{k=1}^{\infty} \left(f(a_{n_k}^+)\varphi(a_{n_k}) - f(a_{n_{k+1}}^-)\varphi(a_{n_{k+1}}) \right) + \sum_{k=1}^{\infty} \int_{I_k} f'(x)\varphi(x) \, \mathrm{d}x = \sum_{n=1}^{\infty} s_n\varphi(a_n) + T_{f'\mathbf{1}_{\mathbb{R}\setminus\{(a_n)\}}}(\varphi)$$

on hem pogut reordenar perquè la suma és finita, ja que φ té suport compacte. Per tant:

$$T_f' = T_{f'\mathbf{1}_{\mathbb{R}\setminus\{(a_n)\}}} + \sum_{n=1}^{\infty} s_n \delta_{a_n}$$

Exercici 4. Sigui $f(x) = e^x$. Demostreu que T_f no defineix un funcional continu de $\mathcal{S}(\mathbb{R})$ a \mathbb{C} i que per tant no tota funció localment integrable defineix una distribució temperada.

Resolució. Clarament f és localment integrable. Ara considerem

$$\varphi(x) = e^{\frac{-x^2}{\sqrt{1+x^2}}}$$

Tenim que $\varphi \in \mathcal{D}(\mathbb{R})$ per ser composició de funcions de $\mathcal{D}(\mathbb{R})$. A més, com que $\varphi \sim e^{-|x|}$ per $|x| \gg 1$, tenim que $\varphi \in \mathcal{S}(\mathbb{R})$. D'altra banda:

$$\langle T_f, \varphi \rangle = \int_{-\infty}^{\infty} e^{x - \frac{x^2}{\sqrt{1+x^2}}} dx \ge \int_{0}^{\infty} e^{x - \frac{x^2}{\sqrt{1+x^2}}} dx$$

Només cal estudiar la convergència a l'infinit. Tenim que $\lim_{x\to\infty} x - \frac{x^2}{\sqrt{1+x^2}} = 0$. Per tant, l'integrant no tendeix a zero i la integral divergeix.

Exercici 5.

- a. Demostreu que la pinta de Dirac $T = \sum_{n \in \mathbb{Z}} \delta_n$ és una distribució temperada.
- b. Sigui $(\alpha_n) \in \mathbb{R}$ tal que per algun $m \geq 1$ $|\alpha_n| = O(|n|^m)$. Demostreu que $T = \sum_{n \in \mathbb{Z}} \alpha_n \delta_{an}$, $a \in \mathbb{R}^*$, és una distribució temperada i calculeu la seva transformada de Fourier.

Resolució.

a. La sèrie $\sum_{n\in\mathbb{Z}} \delta_n$ pensada sobre les funcions $\varphi \in \mathcal{S}(\mathbb{R})$ és absolutament convergent pel criteri M-Weierstraß. En efecte:

$$\sum_{n\in\mathbb{Z}} |\delta_n(\varphi)| = \sum_{n\in\mathbb{Z}} |\varphi(n)| = |\varphi(0)| + \sum_{n\in\mathbb{Z}\setminus\{0\}} \frac{n^2|\varphi(n)|}{n^2} \le |\varphi(0)| + \|\varphi\|_{2,0} \sum_{n\in\mathbb{Z}\setminus\{0\}} \frac{1}{n^2} < \infty$$

Per tant, podem reordenar termes i com a conseqüència T és lineal. La continuïtat, de fet, l'acabem de veure (per una proposició de classe):

$$|T(\varphi)| \le ||\varphi||_{0,0} + ||\varphi||_{2,0}C$$

on $C = \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{n^2}$. Per tant, T és una distribució temperada.

b. L'argument per veure que és distribució temperada és similar a l'anterior. Tenim convergència absoluta per M-Weierstraß:

$$\sum_{n\in\mathbb{Z}} |\alpha_n \delta_{na}(\varphi)| = \sum_{n\in\mathbb{Z}} |\alpha_n \varphi(na)| = |\alpha_0 \varphi(0)| + \frac{1}{|a|^{m+2}} \sum_{n\in\mathbb{Z}\setminus\{0\}} \frac{|\alpha_n|}{|n|^m} \frac{|na|^{m+2}|\varphi(na)|}{|n|^2} \le$$

Víctor Ballester NIU: 1570866

$$\leq |\alpha_0 \varphi(0)| + \frac{C \|\varphi\|_{m+2,0}}{|a|^{m+2}} \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{|n|^2} < \infty$$

on la constant C és la que surt de la hipòtesi de α_n . Per tant, T és lineal i contínua. Calculem la transformada de Fourier de T:

$$\langle \widehat{T}, \varphi \rangle = \langle T, \widehat{\varphi} \rangle = \sum_{n \in \mathbb{Z}} \alpha_n \widehat{\varphi}(na) = \sum_{n \in \mathbb{Z}} \alpha_n \int_{-\infty}^{\infty} e^{-2\pi i nax} \varphi(x) dx = \int_{-\infty}^{\infty} \sum_{n \in \mathbb{Z}} \alpha_n e^{-2\pi i nax} \varphi(x) dx$$

on hem pogut intercanviar la integral pel sumatori perquè $f_n(x) := \alpha_n \mathrm{e}^{-2\pi i n a x} \varphi(x)$ és integrable (perquè $\varphi \in \mathcal{S}(\mathbb{R})$) i $\sum_{n \in \mathbb{Z}} f_n(x)$ convergeix uniformement (per M-Weierstraß). Per tant, \widehat{T} és la distribució tal que $\forall \varphi \in \mathcal{S}(\mathbb{R})$:

$$\varphi \mapsto \int_{-\infty}^{\infty} \sum_{n \in \mathbb{Z}} \alpha_n e^{-2\pi i n a x} \varphi(x) dx$$