Tipos abstractos de datos básicos

Algoritmos y Estructuras de Datos II, DC, UBA.

Índice

1. TA	AD Bool	2
2. TA	AD NAT	3
3. TA	AD Int	4
4. T	$\mathbf{AD} \mathbf{TUPLA} (lpha_1, \ldots, lpha_n)$	5
5. TA	AD SECUENCIA (α)	5
6. TA	AD CONJUNTO(α)	6
7. T A	AD MULTICONJUNTO (α)	8
8. TA	AD Arreglo dimensionable (α)	9
9. TA	AD PILA (α)	9
10.TA	AD $Cola(\alpha)$	10
11.T	AD ÁRBOL BINARIO (α)	11
12.T A	AD DICCIONARIO (CLAVE, SIGNIFICADO)	12
13.T A	AD Cola de prioridad (α)	13

1. TAD BOOL

```
TAD BOOL
       géneros
                            bool
       exporta
                            bool, generadores, observadores, \neg, \lor, \land, \Rightarrow, \lor<sub>L</sub>, \land<sub>L</sub>, \Rightarrow<sub>L</sub>, \beta
       igual dad\ observacional
                            ((true =_{obs} true) \land (false =_{obs} false) \land \neg (true =_{obs} false) \land \neg (false =_{obs} true))
       generadores
                                                                           \longrightarrow bool
          true
          false
                                                                           \longrightarrow bool
       otras operaciones
          if • then • else • fi : bool \times \alpha \times \alpha \longrightarrow \alpha
                                              : bool
                                                                          \longrightarrow bool
                                              : bool \times bool
                                                                          \longrightarrow bool
                                              : bool \times bool
                                                                           \longrightarrow bool
                                              : bool \times bool
                                                                           \longrightarrow bool
                                              : bool \times bool
                                                                           \longrightarrow bool
                                              : bool \times bool
                                                                          \longrightarrow bool
          \bullet \wedge_{\scriptscriptstyle L} \bullet
          ullet \Rightarrow_{\scriptscriptstyle L} ullet
                                              : bool \times bool
                                                                          \longrightarrow bool
          \beta (\bullet)
                                              : bool
                                                                           \longrightarrow nat
                            \forall x, y: bool, \forall a, b: \alpha
       axiomas
          if true then a else b fi
          if false then a else b fi
                                                          \equiv b
                                                           \equiv if x then false else true fi
          \neg x
          x \vee y
                                                           \equiv if x then (if y then true else true fi) else y fi
                                                           \equiv if x then y else (if y then false else false fi) fi
          x \wedge y
                                                           \equiv \neg x \lor y
          x \Rightarrow y
                                                           \equiv if x then true else y fi
          x \vee_{\scriptscriptstyle L} y
                                                           \equiv if x then y else false fi
          x \wedge_{\scriptscriptstyle L} y
          x \Rightarrow_{\text{\tiny L}} y
                                                           \equiv \neg x \vee_{\mathsf{L}} y
                                                           \equiv if x then 1 else 0 fi
          \beta(x)
```

Fin TAD

2. TAD NAT

```
\mathbf{TAD} Nat
```

géneros nat

exporta nat, generadores, observadores, $+, -, \times, <, \le$, mín, máx

usa Bool

igualdad observacional

$$(\forall n, m : \mathrm{nat}) \ \left(n =_{\mathrm{obs}} m \Longleftrightarrow \begin{pmatrix} (n = 0? =_{\mathrm{obs}} m = 0?) \land_{\mathrm{L}} \\ (\neg (n = 0?) \Rightarrow_{\mathrm{L}} (\mathrm{pred}(n) =_{\mathrm{obs}} \mathrm{pred}(m))) \end{pmatrix} \right)$$

observadores básicos

ullet = 0? : nat \longrightarrow bool pred : nat n \longrightarrow nat $\{\neg(n=0?)\}$

generadores

 $\begin{array}{cccc} 0 & : & \longrightarrow & \mathrm{nat} \\ & & & \\ \mathrm{suc} & : & \mathrm{nat} & & \longrightarrow & \mathrm{nat} \end{array}$

otras operaciones

ullet + ullet : nat imes nat \longrightarrow nat \cdots nat $m \times n$ nat

 $\bullet \leq \bullet$: nat \times nat \longrightarrow bool mín : nat \times nat \longrightarrow nat

 $\begin{array}{cccc}
\text{max} & : & \text{nat} \times \text{nat} & \longrightarrow & \text{nat} \\
\text{máx} & : & \text{nat} \times \text{nat} & \longrightarrow & \text{nat}
\end{array}$

axiomas $\forall n, m$: nat

0 = 0? $\equiv \text{true}$

suc(n) = 0? \equiv false

 $\operatorname{pred}(\operatorname{suc}(n)) \equiv n$

n+m \equiv if m=0? then n else suc(n + pred(m)) fi

n-m \equiv if m=0? then n else pred(n) - pred(m) fi

 $n \times m$ \equiv if m = 0? then 0 else $n \times \operatorname{pred}(m) + n$ fi

 $n \leq m \qquad \qquad \equiv \ n < m \vee n = m$

 $\min(n, m) \equiv \mathbf{if} \ m < n \ \mathbf{then} \ m \ \mathbf{else} \ n \ \mathbf{fi}$

 $máx(n, m) \equiv if m < n then n else m fi$

Fin TAD

3. TAD INT

-n < +m

 \equiv true

```
\mathbf{TAD} Int
      géneros
                        int
      exporta
                        int, generadores, observadores, +, -, \times, <, \le, mín, máx
                        Nat
      usa
      igualdad observacional
                        (\forall n, m : \text{int}) \ (n =_{\text{obs}} m \iff (\text{negativo?}(n) =_{\text{obs}} \text{negativo}(m) \land |n| =_{\text{obs}} |m|))
      observadores básicos
        negativo? : int
                                         \longrightarrow bool
        •
                     : int
                                         \longrightarrow nat
      generadores
                       : nat
                                         \longrightarrow int
                                                                                                                                           \{\neg(n=0?)\}
                       : nat n
                                         \longrightarrow int
      otras operaciones
                       : int \times int
                                       \longrightarrow int
                       : int \times int
                                       \longrightarrow int
                      : int \times int
                                       \longrightarrow int
                      : int \times int
                                       \longrightarrow bool
                      : int \times int
                                       \longrightarrow bool
         \bullet \leq \bullet
                       : int \times int
         mín
                       : \ \operatorname{int} \times \operatorname{int} \ \longrightarrow \ \operatorname{int}
         máx
                       \forall n, m : \text{nat}, \forall x, y : \text{int}
      axiomas
         negativo?(+n) \equiv false
         negativo?(-n) \equiv true
         |+n|
                              \equiv n
         |-n|
                              \equiv n
                              \equiv +(n + m)
         +n + +m
                              \equiv if m \leq n then +(n-m) else -(m-n) fi
         +n+-m
                              \equiv if n \leq m then +(m-n) else -(n-m) fi
         -n + +m
                              \equiv -(n + m)
         -n + -m
                              \equiv if n = 0? then x else x + -n fi
         x - +n
                              \equiv x + +n
         x - -n
                              \equiv +(n \times m)
         +n \times +m
                              \equiv if n = 0? then +0 else -(n \times m) fi
         +n \times -m
                              \equiv if m = 0? then +0 else -(n \times m) fi
         -n \times +m
                              \equiv +(n \times m)
         -n \times -m
                              \equiv n < m
         +n < +m
         +n < -m
                              \equiv false
```

$$-n < -m$$
 $\equiv m < n$ $x \le y$ $\equiv x < y \lor x = y$ $\min(x,y)$ $\equiv \text{if } x < y \text{ then } x \text{ else } y \text{ fi}$ $\max(x,y)$ $\equiv \text{if } x < y \text{ then } y \text{ else } x \text{ fi}$

4. TAD TUPLA($\alpha_1, \ldots, \alpha_n$)

TAD TUPLA($\alpha_1, \ldots, \alpha_n$)

igualdad observacional

$$(\forall t, t' : \text{tupla}(\alpha_1, \dots, \alpha_n)) \ (t =_{\text{obs}} t' \iff (\pi_1(t) =_{\text{obs}} \pi_1(t') \land \dots \land \pi_n(t) =_{\text{obs}} \pi_n(t')))$$

parámetros formales

géneros $\alpha_1, \ldots, \alpha_n$

géneros tupla $(\alpha_1, \ldots, \alpha_n)$

exporta tupla, generadores, observadores

observadores básicos

 ${\bf generadores}$

$$\langle \bullet, \dots, \bullet \rangle$$
 : $\alpha_1 \times \dots \times \alpha_n \longrightarrow \text{tupla}(\alpha_1, \dots, \alpha_n)$

axiomas $\forall a_1 : \alpha_1 \dots \forall a_n : \alpha_n$ $\pi_1(\langle a_1, \dots, a_n \rangle) \equiv a_1$

: ≡:

 $\pi_n(\langle a_1, \dots, a_n \rangle) \equiv a_n$

Fin TAD

5. TAD SECUENCIA(α)

TAD SECUENCIA(α)

igualdad observacional

$$(\forall s, s' : \operatorname{secu}(\alpha)) \quad \left(s =_{\operatorname{obs}} s' \Longleftrightarrow \begin{pmatrix} \operatorname{vac\'ia?}(s) =_{\operatorname{obs}} \operatorname{vac\'ia?}(s') \wedge_{\operatorname{L}} \\ (\neg \operatorname{vac\'ia?}(s) \Rightarrow_{\operatorname{L}} (\operatorname{prim}(s) =_{\operatorname{obs}} \operatorname{prim}(s') \wedge \operatorname{fin}(s) =_{\operatorname{obs}} \end{pmatrix} \right)$$

parámetros formales

```
géneros
                                            \alpha
géneros
                      secu(\alpha)
                      secu(\alpha), generadores, observadores, &, \circ, ult, com, long, está?
exporta
                      BOOL, NAT
observadores básicos
                                                    \longrightarrow bool
   vacía? : secu(\alpha)
   prim : secu(\alpha) s
                                                    \longrightarrow \alpha
                                                                                                                                                                \{\neg \operatorname{vacía}(s)\}
              : secu(\alpha) s
                                                                                                                                                                 \{\neg \operatorname{vacía}?(s)\}
   fin
                                                    \longrightarrow \sec u(\alpha)
generadores
   <>
                                                    \longrightarrow \sec u(\alpha)
   • • • : \alpha \times \operatorname{secu}(\alpha)
                                                    \longrightarrow \sec u(\alpha)
otras operaciones
   \bullet \circ \bullet : \operatorname{secu}(\alpha) \times \alpha
                                                    \longrightarrow \operatorname{secu}(\alpha)
   • & • : \operatorname{secu}(\alpha) \times \operatorname{secu}(\alpha) \longrightarrow \operatorname{secu}(\alpha)
              : secu(\alpha) s
                                                                                                                                                                \{\neg \operatorname{vacía}?(s)\}
   ult
            : secu(\alpha) s
                                                                                                                                                                 \{\neg \operatorname{vacía}?(s)\}
   com
                                                    \longrightarrow \operatorname{secu}(\alpha)
   long
             : secu(\alpha)
                                                    \longrightarrow nat
   está? : \alpha \times \operatorname{secu}(\alpha)
                                                    \longrightarrow bool
                     \forall s, t: \operatorname{secu}(\alpha), \forall e: \alpha
axiomas
   vacía?(<>) \equiv true
   vacía?(e \bullet s) \equiv false
   prim(e \bullet s) \equiv e
   fin(e \bullet s)
   s \circ e
                         \equiv if vacía?(s) then e \bullet <> else prim(s) \bullet (fin(s) \circ e) fi
                         \equiv if vacía?(s) then t else prim(s) • (fin(s) & t) fi
   s \& t
   \mathrm{ult}(s)
                         \equiv if vacía?(fin(s)) then prim(s) else ult(fin(s)) fi
                         \equiv if vacía?(fin(s)) then \ll else prim(s) \bullet com(fin(s)) fi
   com(s)
   long(s)
                         \equiv if vacía?(s) then 0 else 1 + long(fin(s)) fi
                         \equiv \neg \operatorname{vacía}(s) \wedge_{\operatorname{L}} (e = \operatorname{prim}(s) \vee \operatorname{está}(e, \operatorname{fin}(s)))
   está?(e, s)
```

TAD Conjunto(α) 6.

```
TAD CONJUNTO(\alpha)
```

```
igualdad observacional
                       (\forall c, c' : \operatorname{conj}(\alpha)) \ (c =_{\operatorname{obs}} c' \iff ((\forall a : \alpha)(a \in c =_{\operatorname{obs}} a \in c')))
parámetros formales
```

 $c \subseteq d$

 $\equiv c \cap d = c$

```
géneros
                                                     \alpha
géneros
                          conj(\alpha)
exporta
                          \operatorname{conj}(\alpha), generadores, observadores, \emptyset?, \cup, \cap, \#, \bullet - \{\bullet\}, dameUno, \operatorname{sinUno}, \subseteq, \bullet - \bullet
                          BOOL, NAT
observadores básicos
                         : \alpha \times \operatorname{conj}(\alpha)
                                                                    \longrightarrow bool
    ullet \in ullet
generadores
    Ø
                                                                    \longrightarrow \operatorname{conj}(\alpha)
    Ag
                      : \alpha \times \operatorname{conj}(\alpha)
                                                                    \longrightarrow \operatorname{conj}(\alpha)
otras operaciones
    Ø?
                        : conj(\alpha)
                                                                    \longrightarrow bool
    vacio?
                       : conj(\alpha)
                                                                    \longrightarrow bool
    \{\bullet,\ldots,\bullet\}:\alpha\times\ldots\times\alpha
                                                                    \longrightarrow \operatorname{conj}(\alpha)
                     : conj(\alpha)
                                                                    \longrightarrow nat
    \bullet - \{\bullet\} : conj(\alpha) \times \alpha
                                                                    \longrightarrow \operatorname{conj}(\alpha)
    • \cup • : \operatorname{conj}(\alpha) \times \operatorname{conj}(\alpha) \longrightarrow \operatorname{conj}(\alpha)
                     : \operatorname{conj}(\alpha) \times \operatorname{conj}(\alpha) \longrightarrow \operatorname{conj}(\alpha)
    dameUno : conj(\alpha) c
                                                                                                                                                                                                         \{\neg\emptyset?(c)\}
                                                                    \longrightarrow \alpha
    \sin Uno : conj(\alpha) c
                                                                    \longrightarrow \operatorname{conj}(\alpha)
                                                                                                                                                                                                         \{\neg\emptyset?(c)\}
    \bullet \subseteq \bullet : \operatorname{conj}(\alpha) \times \operatorname{conj}(\alpha) \longrightarrow \operatorname{bool}
                       : \operatorname{conj}(\alpha) \times \operatorname{conj}(\alpha) \longrightarrow \operatorname{conj}(\alpha)
axiomas
                         \forall c, d: \operatorname{conj}(\alpha), \forall a, b: \alpha
    a \in \emptyset
                                       \equiv false
    a \in Ag(b, c)
                                       \equiv (a=b) \lor (a \in c)
    \emptyset?(\emptyset)
                                       ≡ true
    \emptyset? (Ag(b, c))
                                       \equiv false
    vacio?(\emptyset)
                                       \equiv \emptyset?(\emptyset)
    vacio?(Ag(b, c)) \equiv \emptyset?(Ag(b, c))
    \#(\emptyset)
                                       \equiv 0
                                  \equiv 1 + \#(c - \{a\})
    \#(\mathrm{Ag}(a, c))
                                    \equiv \operatorname{Ag}(a_n, ..., \operatorname{Ag}(a_1, \emptyset))
    \{a_1, \ldots, a_n\}
    c - \{a\}
                                       \equiv c - Ag(a, \emptyset)
    \emptyset \cup c
                                       \equiv c
    Ag(a, c) \cup d
                                      \equiv \operatorname{Ag}(a, c \cup d)
    \emptyset \cap c
                                        \equiv \emptyset
                                       \equiv if a \in d then Ag(a, c \cap d) else c \cap d fi
    Ag(a, c) \cap d
    dameUno(c) \in c \equiv true
                                       \equiv c - \{dameUno(c)\}
    \sin \operatorname{Uno}(c)
```

```
\emptyset - c
Ag(a, c) - d
              \equiv if a \in d then c-d else Ag(a, c-d) fi
```

TAD MULTICONJUNTO (α) 7.

```
TAD MULTICONJUNTO(\alpha)
```

 $\emptyset \cup c$

 $\equiv c$

```
igualdad observacional
                      (\forall c, c' : \text{multiconj}(\alpha)) \ (c =_{\text{obs}} c' \iff ((\forall a : \alpha)(\#(a, c) =_{\text{obs}} \#(a, c'))))
parámetros formales
                      géneros
                                             \alpha
géneros
                      \operatorname{multiconj}(\alpha)
exporta
                      multiconj(\alpha), generadores, observadores, \in, \emptyset?, \#, \cup, \cap, \in, \bullet – { \bullet }, dameUno, sinUno
                      BOOL, NAT
usa
observadores básicos
                     : \alpha \times \text{multiconj}(\alpha)
                                                                            \longrightarrow nat
generadores
   \emptyset
                                                                            \longrightarrow multiconj(\alpha)
                                                                            \longrightarrow multiconj(\alpha)
                    : \alpha \times \text{multiconj}(\alpha)
otras operaciones
                    : \alpha \times \text{multiconj}(\alpha)
   ullet \in ullet
                                                                            \longrightarrow bool
   \emptyset?
                    : \operatorname{multiconj}(\alpha)
                                                                            \longrightarrow bool
                    : \operatorname{multiconj}(\alpha)
                                                                            \longrightarrow nat
   • -\{\bullet\} : multiconj(\alpha) \times \alpha
                                                                            \longrightarrow multiconj(\alpha)
                    : \operatorname{multiconj}(\alpha) \times \operatorname{multiconj}(\alpha) \longrightarrow \operatorname{multiconj}(\alpha)
                     : \operatorname{multiconj}(\alpha) \times \operatorname{multiconj}(\alpha) \longrightarrow \operatorname{multiconj}(\alpha)
   dameUno : multiconj(\alpha) c
                                                                                                                                                                            \{\neg\emptyset?(c)\}
                                                                            \longrightarrow \alpha
   \sin Uno
                                                                            \longrightarrow multiconj(\alpha)
                                                                                                                                                                            \{\neg\emptyset?(c)\}
                    : multiconj(\alpha) c
axiomas
                      \forall c, d: multiconj(\alpha), \forall a, b: \alpha
   \#(a,\emptyset)
   \#(a, \operatorname{Ag}(b, c))
                                   \equiv if a = b then 1 else 0 fi + \#(a, c)
   a \in c
                                   \equiv \#(a, c) > 0
   \emptyset?(\emptyset)
                                   ≡ true
   \emptyset? (Ag(a, c))
                                   \equiv false
   \#(\emptyset)
                                   \equiv 0
   \#(\mathrm{Ag}(a, c))
                                   \equiv 1 + \#(c)
   \emptyset - \{a\}
                                   \equiv \emptyset
   Ag(a, c) - \{b\} \equiv if a = b then c else Ag(a, c - \{b\}) fi
```

```
Ag(a, c) \cup d
                   \equiv Ag(a, c \cup d)
\emptyset \cap c
Ag(a, c) \cap d
                         \equiv if a \in d then Ag(a, c \cap (d - \{a\})) else c \cap d fi
dameUno(c) \in c \equiv true
                         \equiv c - \{\operatorname{dameUno}(c)\}
\sin \operatorname{Uno}(c)
```

TAD ARREGLO DIMENSIONABLE (α) 8.

TAD ARREGLO DIMENSIONABLE (α)

igualdad observacional

$$(\forall a, a' : \operatorname{ad}(\alpha)) \ \left(a =_{\operatorname{obs}} a' \Longleftrightarrow \begin{pmatrix} \operatorname{tam}(a) =_{\operatorname{obs}} \operatorname{tam}(a') \land \\ (\forall n : \operatorname{nat})(\operatorname{definido?}(a, n) =_{\operatorname{obs}} \operatorname{definido?}(a', n) \land \\ (\operatorname{definido?}(a, n) \Rightarrow a[n] =_{\operatorname{obs}} a'[n])) \end{pmatrix} \right)$$

parámetros formales

géneros

géneros $ad(\alpha)$

exporta $ad(\alpha)$, generadores, observadores

usa BOOL, NAT

observadores básicos

 $: ad(\alpha)$ $_{\mathrm{tam}}$ \rightarrow nat definido? : $ad(\alpha) \times nat$ \rightarrow bool

: $ad(\alpha) \ a \times nat \ n$ • •

 $\{definido?(a, n)\}$

generadores

crearArreglo : nat $\longrightarrow ad(\alpha)$ $\bullet \ [\bullet] \leftarrow \bullet : ad(\alpha) \ a \times nat \ n \times \alpha \longrightarrow ad(\alpha)$ ${n < \tan(a)}$

axiomas $\forall a: ad(\alpha), \forall e: \alpha, \forall n, m: nat$

tam(crearArreglo(n)) $\equiv n$ $tam(a [n] \leftarrow e)$ $\equiv \tan(a)$ $definido(crearArreglo(n), m)) \equiv false$ $definido(a [n] \leftarrow e, m)$ $\equiv n = m \vee \text{definido}?(a, m)$

 $(a [n] \leftarrow e) [m]$ \equiv if n=m then e else a [m] fi

Fin TAD

9. TAD PILA(α)

TAD PILA(α)

igualdad observacional

```
(\forall p, p': \mathrm{pila}(\alpha)) \ \left(p =_{\mathrm{obs}} p' \Longleftrightarrow \begin{pmatrix} \mathrm{vacía?}(p) =_{\mathrm{obs}} \mathrm{vacía?}(p')) \ \wedge_{\mathrm{L}} \ (\neg \ \mathrm{vacía?}(p) \Rightarrow_{\mathrm{L}} \\ (\mathrm{tope}(p) =_{\mathrm{obs}} \mathrm{tope}(p') \ \wedge \ \mathrm{desapilar}(p) =_{\mathrm{obs}} \mathrm{desapilar}(p')) \end{pmatrix} \right)
parámetros formales
                          géneros
                                                     \alpha
géneros
                          pila(\alpha)
                          pila(\alpha), generadores, observadores, tamaño
exporta
                          BOOL, NAT
usa
observadores básicos
    vacía?
                        : pila(\alpha)
                                                        \longrightarrow bool
                                                                                                                                                                                                  \{\neg \operatorname{vacía}(p)\}
                        : pila(\alpha) p
    tope
    desapilar : pila(\alpha) p
                                                        \longrightarrow \operatorname{pila}(\alpha)
                                                                                                                                                                                                  \{\neg \operatorname{vacía}(p)\}
generadores
    vacía
                                                       \longrightarrow \operatorname{pila}(\alpha)
    apilar
                       : \alpha \times \operatorname{pila}(\alpha) \longrightarrow \operatorname{pila}(\alpha)
otras operaciones
    tamaño
                      : pila(\alpha)
                                                        \longrightarrow nat
                          \forall p: pila(\alpha), \forall e: \alpha
axiomas
    vacía? (vacía)
                                                    = true
    vacía?(apilar(e,p))
                                                    \equiv false
    tope(apilar(e,p))
                                                    \equiv e
```

10. TAD COLA(α)

desapilar(apilar(e,p))

tamaño(p)

TAD Cola(α)

igualdad observacional

$$(\forall c, c' : \operatorname{cola}(\alpha)) \quad \left(c =_{\operatorname{obs}} c' \Longleftrightarrow \begin{pmatrix} \operatorname{vac\'ia?}(c) =_{\operatorname{obs}} \operatorname{vac\'ia?}(c') \wedge_{\operatorname{L}} \\ (\neg \operatorname{vac\'ia?}(c) \Rightarrow_{\operatorname{L}} (\operatorname{pr\'oximo}(c) =_{\operatorname{obs}} \operatorname{pr\'oximo}(c') \wedge \\ \operatorname{desencolar}(c) =_{\operatorname{obs}} \operatorname{desencolar}(c')) \end{pmatrix} \right)$$

 \equiv if vacía?(p) then 0 else 1 + tamaño(desapilar(p)) fi

parámetros formales

géneros α

géneros $cola(\alpha)$

exporta $cola(\alpha)$, generadores, observadores, tamaño

usa Bool, Nat

observadores básicos

vacía? : $\operatorname{cola}(\alpha) \longrightarrow \operatorname{bool}$ próximo : $\operatorname{cola}(\alpha) c \longrightarrow \alpha$ $\{\neg \operatorname{vacía}(c)\}$

postorder : $ab(\alpha)$

```
\{\neg \text{ vacía}?(c)\}
           desencolar : cola(\alpha) c
                                                         \longrightarrow \operatorname{cola}(\alpha)
       generadores
           vacía
                                                           \rightarrow \operatorname{cola}(\alpha)
                              : \alpha \times \operatorname{cola}(\alpha) \longrightarrow \operatorname{cola}(\alpha)
           encolar
       otras operaciones
                              : cola(\alpha)
           tamaño
                                                         \longrightarrow nat
                              \forall c: cola(\alpha), \forall e: \alpha
       axiomas
           vacía? (vacía)
                                                        ≡ true
           vacía?(encolar(e,c))
                                                        \equiv false
           \operatorname{pr\'oximo}(\operatorname{encolar}(e,c))
                                                        \equiv if vacia?(c) then e else próximo(c) fi
           desencolar(encolar(e,c))
                                                        \equiv if vacía?(c) then vacía else encolar(e, desencolar(c)) fi
                                                        \equiv if vacía?(c) then 0 else 1 + tamaño(desencolar(c)) fi
           tamaño(c)
Fin TAD
             TAD ÁRBOL BINARIO(\alpha)
11.
TAD ÁRBOL BINARIO(\alpha)
       igualdad observacional
                              (\forall a, a' : \mathrm{ab}(\alpha)) \ \left( a =_{\mathrm{obs}} a' \Longleftrightarrow \begin{pmatrix} \mathrm{nil}?(a) =_{\mathrm{obs}} \mathrm{nil}?(a') \wedge_{\mathtt{L}} (\neg \ \mathrm{nil}?(a) \Rightarrow_{\mathtt{L}} (\mathrm{raiz}(a) =_{\mathrm{obs}} \mathrm{raiz}(a')) \\ \wedge \ \mathrm{izq}(a) =_{\mathrm{obs}} \mathrm{izq}(a') \wedge \det(a) =_{\mathrm{obs}} \det(a')) \end{pmatrix} \right)
       parámetros formales
                              géneros
       géneros
                              ab(\alpha)
       exporta
                              ab(\alpha), generadores, observadores, tamaño, altura, tamaño, inorder, preorder, postorder
       usa
                              BOOL, NAT, SECUENCIA(\alpha)
       observadores básicos
           nil?
                             : ab(\alpha)
                                                                     \longrightarrow bool
                             : ab(\alpha) a
                                                                                                                                                                               \{\neg \operatorname{nil}?(a)\}
           raiz
                                                                     \rightarrow \alpha
                                                                    \longrightarrow ab(\alpha)
                                                                                                                                                                               \{\neg \operatorname{nil}?(a)\}
           izq
                            : ab(\alpha) a
           der
                             : ab(\alpha) a
                                                                    \longrightarrow ab(\alpha)
                                                                                                                                                                               \{\neg \operatorname{nil}?(a)\}
       generadores
           nil
                                                                    \longrightarrow ab(\alpha)
           bin
                            : ab(\alpha) \times \alpha \times ab(\alpha) \longrightarrow ab(\alpha)
       otras operaciones
           altura
                            : ab(\alpha)
                                                                        \rightarrow nat
           tama\tilde{n}o
                            = ab(\alpha)
                                                                        \rightarrow nat
           inorder
                            : ab(\alpha)
                                                                     \longrightarrow \sec u(\alpha)
           preorder : ab(\alpha)
                                                                     \longrightarrow \sec u(\alpha)
```

 $\longrightarrow \sec u(\alpha)$

```
esHoja?
                     = ab(\alpha)
                                                      \longrightarrow bool
      axiomas
                       \forall a, b: ab(\alpha), \forall e: \alpha
        nil?(nil)
                                  \equiv true
        nil?(bin(a,e,b))
                                  \equiv false
        raiz(bin(a,e,b))
        izq(bin(a,e,b))
        der(bin(a,e,b))
                                  \equiv b
        altura(a)
                                  \equiv if nil?(a) then 0 else 1 + máx(altura(izq(a)), altura(der(a))) fi
                                  \equiv if nil?(a) then 0 else 1 + tamaño(izq(a)) + tamaño(der(a)) fi
        tamaño(a)
                                  \equiv if nil?(a) then \ll else inorder(izq(a)) & (raiz(a) • inorder(der(a))) fi
        inorder(a)
                                  \equiv if nil?(a) then \ll else (raiz(a) • preorder(izq(a))) & preorder(der(a)) fi
        preorder(a)
        postorder(a)
                                  \equiv if nil?(a) then \ll else postorder(izq(a)) & (postorder(der(a)) \circ raiz(a)) fi
         esHoja?(a)
                                  \equiv if nil?(a) then false else (nil?(izq(a)) \wedge nil?(der(a))) fi
Fin TAD
          TAD DICCIONARIO (CLAVE, SIGNIFICADO)
12.
TAD DICCIONARIO (CLAVE, SIGNIFICADO)
      igualdad observacional
                       (\forall d, d': \mathrm{dicc}(\kappa, \sigma)) \ \left( d =_{\mathrm{obs}} d' \Longleftrightarrow \begin{pmatrix} (\forall c: \kappa) (\mathrm{def?}(c, d) =_{\mathrm{obs}} \mathrm{def?}(c, d') \wedge_{\mathrm{L}} \\ (\mathrm{def?}(c, d) \Rightarrow_{\mathrm{L}} \mathrm{obtener}(c, d) =_{\mathrm{obs}} \mathrm{obtener}(c, d'))) \end{pmatrix} \right)
      parámetros formales
                                         clave, significado
                       géneros
      géneros
                       dicc(clave, significado)
      exporta
                       dicc(clave, significado), generadores, observadores, borrar, claves
      usa
                       BOOL, NAT, CONJUNTO(CLAVE)
      observadores básicos
                    : clave \times dicc(clave, significado)
                                                                                    \longrightarrow bool
         obtener : clave c \times \text{dicc}(\text{clave, significado}) d
                                                                                     \rightarrow significado
                                                                                                                                        \{\operatorname{def}?(c,d)\}
      generadores
                                                                                    \longrightarrow dicc(clave, significado)
         vacío
        definir : clave \times significado \times dicc(clave, significado) \longrightarrow dicc(clave, significado)
      otras operaciones
        borrar : clave c \times \text{dicc}(\text{clave, significado}) d
                                                                                   \longrightarrow dicc(clave, significado)
                                                                                                                                         \{\operatorname{def}?(c,d)\}
                    : dicc(clave, significado)
                                                                                    \longrightarrow conj(clave)
                       \forall d: dicc(clave, significado), \forall c, k: clave, \forall s: significado
      axiomas
        def?(c, vacio)
                                             \equiv false
                                             \equiv c = k \vee \text{def}?(c, d)
        def?(c, definir(k, s, d))
```

obtener(c, definir(k, s, d)) \equiv if c = k then s else obtener(c, d) fi

```
\begin{array}{lll} \operatorname{borrar}(c,\operatorname{definir}(k,\,s,\,d)) & \equiv & \operatorname{\bf if}\ c = k & \operatorname{\bf then} \\ & & \operatorname{\bf if}\ \operatorname{def}?(c,d) & \operatorname{\bf then}\ \operatorname{borrar}(c,d) & \operatorname{\bf else}\ d & \operatorname{\bf fi} \\ & & \operatorname{\bf else} \\ & & \operatorname{\bf definir}(k,\,s,\operatorname{borrar}(c,\,d)) & \\ & \operatorname{\bf fi} \\ & \operatorname{\bf claves}(\operatorname{vac\'io}) & \equiv & \emptyset \\ & \operatorname{\bf claves}(\operatorname{\bf definir}(c,s,d)) & \equiv & \operatorname{Ag}(c,\operatorname{\bf claves}(d)) & \end{array}
```

13. TAD COLA DE PRIORIDAD (α)

TAD COLA DE PRIORIDAD (α)

```
igualdad observacional
```

$$(\forall c, c' : \operatorname{colaPrior}(\alpha)) \ \left(c =_{\operatorname{obs}} c' \Longleftrightarrow \begin{pmatrix} \operatorname{vac\'ia?}(c) =_{\operatorname{obs}} \operatorname{vac\'ia?}(c') \land_{\operatorname{L}} \\ (\neg \operatorname{vac\'ia?}(c) \Rightarrow_{\operatorname{L}} (\operatorname{pr\'oximo}(c) =_{\operatorname{obs}} \operatorname{pr\'oximo}(c') \land \\ \operatorname{desencolar}(c) =_{\operatorname{obs}} \operatorname{desencolar}(c')) \end{pmatrix} \right)$$

parámetros formales

géneros c

operaciones $\bullet < \bullet : \alpha \times \alpha \longrightarrow bool$

Relación de orden total estricto¹

géneros $colaPrior(\alpha)$

exporta cola $Prior(\alpha)$, generadores, observadores

usa Bool

observadores básicos

generadores

vacía : \longrightarrow cola $\operatorname{Prior}(\alpha)$ encolar : $\alpha \times \operatorname{cola}\operatorname{Prior}(\alpha) \longrightarrow \operatorname{cola}\operatorname{Prior}(\alpha)$

axiomas $\forall c: \text{colaPrior}(\alpha), \forall e: \alpha$

 $\begin{array}{lll} {\rm vac\'a?(vac\'a)} & & \equiv & {\rm true} \\ {\rm vac\'a?(encolar}(e,\,c)) & & \equiv & {\rm false} \\ \end{array}$

 $\operatorname{pr\'oximo}(\operatorname{encolar}(e,\,c)) \qquad \equiv \quad \mathbf{if} \ \operatorname{vac\'ia?}(c) \ \lor_{\scriptscriptstyle L} \ \operatorname{proximo}(c) < e \quad \mathbf{then} \quad e \quad \mathbf{else} \quad \operatorname{pr\'oximo}(c) \quad \mathbf{fi}$

 $\operatorname{desencolar}(\operatorname{encolar}(e, \, c)) \ \equiv \ \operatorname{\mathbf{if}} \ \operatorname{vac\'a?}(c) \ \vee_{\scriptscriptstyle{\mathrm{L}}} \ \operatorname{proximo}(c) < e \ \operatorname{\mathbf{then}} \ c \ \operatorname{\mathbf{else}} \ \operatorname{encolar}(e, \operatorname{\mathbf{desencolar}}(c)) \ \operatorname{\mathbf{fi}}$

Fin TAD

Antirreflexividad: $\neg \ a < a$ para todo $a : \alpha$

 $\begin{tabular}{ll} \bf Antisimetría: } (a < b \ \Rightarrow \ \neg \ b < a) \ {\rm para \ todo} \ a,b:\alpha, \ a \neq b \\ \bf Transitividad: \ ((a < b \land b < c) \ \Rightarrow \ a < c) \ {\rm para \ todo} \ a,b,c:\alpha \\ \hline \end{tabular}$

Totalidad: $(a < b \lor b < a)$ para todo $a, b : \alpha$

 $^{^{1}\}mathrm{Una}$ relación es un orden total estricto cuando se cumple: