Федеральное государственное автономное образовательное учреждение высшего образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э.БАУМАНА» (МГТУ им. Н.Э. Баумана)

Автоматизация обработки отчётов об ошибках в программном обеспечении с помощью больших языковых моделей

Студент: Гунько Н.М.

Научный руководитель: Витюков Ф.А.

Москва, 2025

## Содержание доклада

- 1. Введение
- 2. Структура баг-репорта
- 3. Проблемы и актуальность
- 4. Сравнение языковых моделей
- 5. Программная реализация и тестирование
- 6. Анализ результатов
- 7. Заключение

#### Цель и выполненные задачи

**Основной целью** работы является разработка программного решения для автоматизации обработки отчётов об ошибках (баг-репортов) в программном обеспечении (ПО) с использованием современных крупных языковых моделей и анализа их эффективности для оптимизации процессов технической поддержки.

#### Выполненные задачи:

- Исследовать и описать структуру баг-репортов, выделить основные компоненты, необходимые для эффективного анализа обращений.
- Выполнить сравнительный анализ современных крупных языковых моделей (GPT-4, Claude, DeepSeek, Grok) с целью выбора наиболее подходящей.
- Разработать архитектуру и программную реализацию автоматизирующей программы-прослойки (АПП), интегрированной с системой Intradesc.
- Провести тестирование и отладку программного решения на реальных обращениях.
- Проанализировать результаты тестирования, оценить стоимость и практическую применимость разработанного решения.

## Основные требования к структуре баг-репорта

 Баг-репорт
 представляет
 собой структурированную
 форму
 данных, используемую
 для
 фиксации
 и документирования
 информации
 об обнаруженных
 дефектах
 или
 ошибках
 в ПО.

Полная структура баг-репорта необходима для эффективного устранения ошибок:

- позволяет точно воспроизвести проблему;
- обеспечивает полноту данных для анализа;
- минимизирует коммуникационные потери;
- ускоряет исправление недочетов и тестирование ПО.



# Структура баг-репорта

7. Приоритет и статус

# Проблемы обработки баг-репортов в ПО

- Рост количества пользовательских баг-репортов в крупных системах.
- Низкое качество некоторых отчетов об ошибках: неполное описание возникшей проблемы, отсутствие ключевой информации.
- Ручная проверка полноты обращений, а также уточнение информации занимает значительное время и ресурсы службы поддержки.

#### Актуальность темы

- Развитие крупных языковых моделей (LLM) открывает возможности смыслового анализа текстов без жёстких правил.
- Применение LLM позволяет автоматически выявлять недостающие элементы обращения и формулировать уточняющие комментарии.
- Актуально в условиях необходимости повышения эффективности поддержки и сокращения времени обработки заявок.

## Крупные языковые модели

**Крупная языковая модель** (англ. Large Language Model, LLM) — это искусственная нейронная сеть, обученная на масштабных текстовых корпусах с целью обработки, понимания и генерации текстов на естественном языке.

Большинство современных LLM реализованы на основе архитектуры трансформеров.

Ключевые характеристики LLM:

- Большое число параметров (от сотен миллионов до триллионов), обеспечивающее высокий уровень обобщения.
- Обучение на разнообразных источниках естественного языка, включая документы, диалоги, код, статьи и др.
- Способность выполнять широкий круг задач: генерация текста, перевод, логический вывод, анализ структуры, семантический поиск, ответы на вопросы и др.

В данной работе использованы модели: GPT-4, Claude, DeepSeek и Grok.

## Крупные языковые модели

Упомянутые модели – это современные LLM, обученные на огромных объемах текстовых данных.



- Обладают высоким уровнем контекстного понимания и логического анализа.
- Подходят для задач семантической интерпретации и выявления неполноты в пользовательских баг-репортов.

Выбраны для исследования как одни из **наиболее продвинутых** и **востребованных** на рынке LLM.

# Сравнение по характеристикам и метрикам

| Модель   | Архитектура                | Параметры<br>(оценка) | Контекст<br>(токенов) | ММLU<br>(знания, %) | Human Eval<br>(код. %) | GSM8K<br>(marem., %) | Творческие<br>задачи          | Эмоциональный<br>интеллект | Доступность          | Поддержка<br>локально  |
|----------|----------------------------|-----------------------|-----------------------|---------------------|------------------------|----------------------|-------------------------------|----------------------------|----------------------|------------------------|
| GPT-4    | Dense<br>Transfor<br>mer   | ~1-1.5<br>трлн        | До<br>32.768          | ~92%                | ~85%                   | ~90%                 | Очень высоко                  | Нейгрально-<br>вежливый    | Подписка<br>+<br>API | Нет                    |
| Claude   | Dense<br>Transfor<br>mer   | ~100<br>млрд          | До<br>100.000         | ~90%+               | ~83%                   | n/a                  | Очень высоко                  | Эмпатичн<br>ый             | Подписка<br>+<br>АРІ | Нет                    |
| DeepSeek | Mixture<br>-of-<br>experts | 671<br>млрд           | ~32.000               | ~90.8%              | ~85%                   | ~90.2%               | Умеренно<br>(фактичн<br>ость) | Сухой и<br>прямой          | Подписка<br>+<br>АРІ | Да<br>(DeepSeek-<br>R1 |
| Grok     | Mixture<br>-of-<br>experts | > 2<br>трлн           | До<br>128.000         | ~92.7%              | ~86.5%                 | ~89.3%               | Высоко                        | Вежливы<br>й               | Подписка             | Частично<br>(Grok-1)   |

## Архитектура программного решения



#### Место программного решения в компании



#### Баг-репорт №1 для тестирования



# Результаты работы моделей с баг-репортом №1



```
{
    "is_complete": true,
    "missing_parts": [],
    "comment_to_author": "",
    "next_action": "ok"
}
```

```
deepseek
```

```
{
    "is_complete": false,
    "missing_parts": ["Что делал пользователь?", "Что он ожидал?", "Что произошло на самом деле?", "Достаточно ли данных для воспроизведения ошибки?"],
    "comment_to_author": "Уточните, пожалуйста, какие действия вы выполняли перед возникновением ошибки. Опишите, какой результат ожидали получить и что произошло вместо этого. Также проверьте, достаточно ли данных для воспроизведения ошибки (например, указаны ли все необходимые шаги или параметры).",
    "next action": "request additional info"
```

```
Grok
```

```
{
    "is_complete": true,
    "missing_parts": [],
    "comment_to_author": "",
    "next_action": "ok"
}
```

## Баг-репорт №2 для тестирования



# Результаты работы моделей с баг-репортом №2



```
{
    "is_complete": false,
    "missing_parts": ["Что он ожидал?", "Почему это может происходить?"],
    "comment_to_author": "Пожалуйста, уточните, какого результата вы ожидали
при открытии вклада. Также, если есть предположения о причинах
возникновения ошибки, просьба их указать — это поможет в более быстром
анализе ситуации.",
    "next_action": "request_additional_info"
```



```
{
    "is_complete": true,
    "missing_parts": [],
    "comment_to_author": "",
    "next_action": "ok" |
```

```
∕ Grok
```

```
{
  "is_complete": true,
  "missing_parts": [],
  "comment_to_author": "",
  "next_action": "ok"
}
```

#### Оценка результатов анализа ответов моделей

| Критерий оценки                           | GPT-4    | DeepSeek | Grok    |  |
|-------------------------------------------|----------|----------|---------|--|
| Корректность<br>определения полноты       | Высокая  | Средняя  | Средняя |  |
| Точность выявления<br>недостающих пунктов | Высокая  | Средняя  | Средняя |  |
| Ясность и конкретность комментария        | Отличная | Средняя  | Хорошая |  |
| Практическая<br>применимость              | Высокая  | Средняя  | Средняя |  |
| Общая эффективность                       | Отличная | Хорошая  | Хорошая |  |

#### Оценка стоимости использования языковых моделей

|          | Вход           | Выход          | Примерная         |  |  |
|----------|----------------|----------------|-------------------|--|--|
| Модель   | (руб. / 1 млн. | (руб. / 1 млн. | стоимость в месяц |  |  |
|          | токенов)       | токенов)       | (руб.)            |  |  |
| GPT-4    | ~200           | ~800           | ~67               |  |  |
| Claude   | ~300           | ~1500          | ~109              |  |  |
| DeepSeek | ~28            | ~112           | ~9                |  |  |
| Grok     |                | _              | ~1500-2700        |  |  |
| SAUK     | -              | _              | (подписка)        |  |  |

Примечание – Оценка дана в рублях по среднему курсу и тарифам на 2025 год.



#### Выводы

1. ..

## Возможные направления дальнейшей работы

- 1. Развёртывание программной реализации на сервере с обеспечением фоновой обработки входящих обращений в режиме реального времени.
- 2. Расширение функциональности автоматического обработчика: анализ вложений, выделение дубликатов, приоритезация обращений, распределение по исполнителям.
- 3. Адаптация и дообучение моделей на внутреннем наборе обращений конкретной компании для повышения релевантности.