Let f_1, f_2, g_1, g_2 be functions from \mathbb{Z}^+ to \mathbb{Z}^+ , and suppose that $f_1 \in O(g_1)$ and $f_2 \in O(g_2)$.

- (a) Show that $f_1 + f_2 \in O(g_1 + g_2)$.
- (b) Show that $f_1 \cdot f_2 \in O(g_1 \cdot g_2)$.

Solution.

Since $f_1 \in O(g_1)$, there exist positive constants c_1, n_1 such that

$$0 \le f_1(n) \le c_1 g_1(n)$$
 for all $n \ge n_1$.

Similarly, since $f_2 \in O(g_2)$, there exist positive constants c_2, n_2 such that

$$0 \le f_2(n) \le c_2 g_2(n)$$
 for all $n \ge n_2$.

(a) It suffices to show that there exist positive constants c, n_0 such that

$$0 \le f_1(n) + f_2(n) \le cg_1(n) + cg_2(n)$$
 for all $n \ge n_0$.

Let $c = \max(c_1, c_2)$ and $n_0 = \max(n_1, n_2)$.

From the definition of max, $c \ge c_1, c_2$ and $n_0 \ge n_1, n_2$.

If $n \ge n_0$, then $n \ge n_1$, thus $0 \le f_1(n) \le c_1 g_1(n)$ for all $n \ge n_0$.

Similarly $0 \le f_2(n) \le c_2 g_2(n)$ for all $n \ge n_0$.

Adding gives $0 \le f_1(n) + f_2(n) \le c_1 g_1(n) + c_2 g_2(n)$ for all $n \ge n_0$.

Since $c \ge c_1, c_2$, we deduce that $c_1g_1(n) \le cg_1(n)$ and $c_2g_2(n) \le cg_2(n)$.

Therefore $0 \le f_1(n) + f_2(n) \le cg_1(n) + cg_2(n)$ for all $n \ge n_0$, as required.

(b) It suffices to show that there exist positive constants c, n_0 such that

$$0 \le f_1(n) \cdot f_2(n) \le cg_1(n) \cdot g_2(n)$$
 for all $n \ge n_0$.

Let $c = c_1 \cdot c_2$ and $n_0 = \max(n_1, n_2)$.

Like in part (a), $0 \le f_1(n) \le c_1 g_1(n)$ and $0 \le f_2(n) \le c_2 g_2(n)$ for all $n \ge n_0$.

As $f_1, f_2, g_1, g_2, c_1, c_2$ are all positive, multiplying gives a valid result.

Thus $0 \le f_1(n) \cdot f_2(n) \le c_1 g_1(n) \cdot c_2 g_2(n) \le c g_1(n) \cdot g_2(n)$ for all $n \ge n_0$, as required.