

Data Structure and Algorithms [CO2003]

Graph

Lecturer: Nguyen Huynh-Tuong, PhD. & Duc-Dung Nguyen, PhD.

Contact: {htnguyen;nddung}@hcmut.edu.vn

Faculty of Computer Science and Engineering Hochiminh city University of Technology

Contents

- 1. Graph definition
- 2. Depth-First Search
- 3. Breath-First Search

Outcomes

- L.O.7.1 Depict the following concepts: connected graph, disconnected graph, direct/undirect graph, etc.
- L.O.7.2 Depict storage structures for graph and describe graph using pseudocode in the
 cases of using adjacency matric and adjacency list.
- L.O.7.3 List necessary methods supplied for graph, and describe them using pseudocode.
- L.O.7.4 Depict basic traversal methods step-by-step (depth first and bread-first).
- L.O.7.5 Implement storage structures for graphs using C/C++.
- L.O.7.6 Implement basic traversal methods using C/C++.
- L.O.7.7 Depict the working steps of Dijkstra and Prim step-by-step.

Definition

A graph G is defined by

- a set of vertices V(G)
- a set of edges (or arcs) $E(G) \subseteq [V(G)]^2$

Graph captures/represents the abtract relations between objets (vertices).

Definition

A graph G is defined by

- a set of vertices V(G)
- ullet a set of edges (or arcs) $E(G)\subseteq [V(G)]^2$

Graph captures/represents the abtract relations between objets (vertices).

Definition

A graph G is defined by

- a set of vertices V(G)
- ullet a set of edges (or arcs) $E(G)\subseteq [V(G)]^2$

Graph captures/represents the abtract relations between objets (vertices).

Adjacency matrices

Give the graph defined by the following adjacency matrices.

1	A	B	C	D	E
A	0	0	1	1	0
$\begin{bmatrix} B \\ C \end{bmatrix}$	0	0	0	1	0
C	1	0	0	1	0
D	1	1	1	0	1
E	0	0	0	1	0

		\boldsymbol{A}	B	C	D	E
4		1		1	1	0
A	XXX	T	0	1	1	0
$B \subset C$		0	0	0	0	0
C		1	0	0	0	0
D		1	1	1	0	1
E		1	0	0	0	0

Incidence matrice

Define incidence matrice of the following graph.

Graph G = (V, E) with adjacency lists Adj

- class Vertex
- Integer id, name, color, ..
- end
- class AdjList
- vertex [] I, ..
- Integer nVertice (number of adjacent vertice)
- end
- class Graph
- VerticeList [] g;
- end

Graph G = (V, E) with adjacency lists Adj

- class Vertex
- Integer id, name, color, ...
- end
- class AdjList
- vertex [] I, ..
- Integer nVertice (number of adjacent vertice)
- end
- class Graph
- VerticeList [] g;
- end

Find all adjacency neighbors of a vertex \boldsymbol{u}

- 1. Input: Graph g,
- 2. for

Graph G = (V, E) with adjacency lists/matrix Adj

DFS(G)

- 1. for each vertice u of V do
- 2. $\operatorname{color}[u] \leftarrow \mathbf{W} \text{ ("White")}$
- 3. $p[u] \leftarrow null$
- 4. time $\leftarrow 0$
- 5. for each vertex u of V do
- 6. if color[u] = W then
- 7. DFSVisit(Adj, u)

Graph G = (V, E) with adjacency lists/matrix Adj

DFS(G)

- 1. for each vertice u of V do
- 2. $\operatorname{color}[u] \leftarrow \mathbf{W} \text{ ("White")}$
- 3. $p[u] \leftarrow null$
- 4. time $\leftarrow 0$
- 5. for each vertex u of V do
- 6. if color[u] = W then
- DFSVisit(Adj, u)

DFSVisit(Adj, u)

- 1. $\operatorname{color}[\mathbf{u}] \leftarrow \mathbf{G}$ ("Gray")
- 2. $d[u] \leftarrow time \leftarrow time + 1$
- 3. for each v of Adilul do
- if color[v] = W then
- 5. $p[v] \leftarrow u$
 - DFSVisit(Adj, v)
- 7. $color[u] \leftarrow B$ ("Black")
- 8. $f[u] \leftarrow time \leftarrow time + 1$

Node	p[v]	d[v]	f[v]
A	null		
X	null	1	
H	null	N K	
Y	null		
E	null		
G	null	\mathbb{Z}	
P	null		
M	null		
J	null		K/X

Node	p[v]	d[v]	f[v]
A	null	1	
X	null	1	
H	null	N K	
Y	null		
E	null		
G	null	7) (
P	null		
M	null		
J	null	\downarrow	\mathbb{N}/\mathbb{N}

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	null	N K	
Y	null	_	
E	null		
E G	null	7) (
P	null		
M	null		
J	null		

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	null		
Y	null	_	
E G	null		
G	X	3	
P	null		
M	null		
J	null		

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	G	4	
Y	null	_	
$E \ G$	null		
G	X	3	
P	null		~ V
M	null		
J	null		K / A

	Node	p[v]	d[v]	f[v]
	A	null	1	
96	X	A	2	
4	H	G	4	
	Y	null	_	
<	E	H	5	
	$E \ G$	X	3	
	P	null		
1	M	null		
1	J	null		

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	G	4	
Y	null	_	
$E \ G$	H	5	
G	X	3	
P	null		- N
M	E	6	
J	null		K/A

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	G	4	
Y	null	_	
E	\mathcal{H}	5	
$egin{array}{c} E \ G \end{array}$	X	3	
P	null		X 3
M	E	6	
J	M	7	K/A

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	G	4	
Y	null	_	
E	\mathcal{H}	5	
G	X	3	
P	null		
M	E	6	
J	M	7	8

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	G	4	
Y	null	_	
E	H	5	
G P	X	3	
P	null		
M	E	6	9
J	M	7	8

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	G	4	
Y	E	10	
E	H	5	
G P	X	3	
P	null		
M	E	6	9
J	M	7	8

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	G	4	
Y	E	10	11
E	H	5	
\overline{G}	X	3	
P	null		
M	E	6	9
J	M	7	8

)	Node	p[v]	d[v]	f[v]
	A	null	1	
K	X	A	2	
	H	G	4	
	Y	E	10	11
(E	H	5	12
	G	X	3	
	P	null		
Į.	M	E	6	9
Y	J	M	7	8

	Node	p[v]	d[v]	f[v]
	A	null	1	
K	X	A	2	
<	H	G	4	
	Y	E	10	11
4	E	H	5	12
	G	X	3	
	P	H	13	
l	M	E	6	9
V	J	M	7	8

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	G	4	
Y	E	10	11
E	H	5	12
G	X	3	
P	H	13	14
M	E	6	9
J	M	7	8

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	
H	G	4	15
Y	E	10	11
E	H	5	12
G	X	3	
P	H	13	14
M	E	6	9
J	M	7	8

Node	$e \mid p[v]$	d[v]	f[v]
A	null	1	
X	A	2	
H	G	4	15
Y	E	10	11
E	H	5	12
G	X	3	16
P	H	13	14
M	E	6	9
J	M	7	8

Node	p[v]	d[v]	f[v]
A	null	1	
X	A	2	17
H	G	4	15
Y	E	10	11
E	H	5	12
G	X	3	16
P	H	13	14
M	E	6	9
J	M	7	8

Node	p[v]	d[v]	f[v]
A	null	1	18
X	A	2	17
H	G	4	15
Y	E	10	11
E	H	5	12
G	X	3	16
P	H	13	14
M	E	6	9
J	M	7	8

Graph G = (V, E) with adjacency lists/matrix Adj

DFS(G)

- 1. for each vertice u of V do
- 2. $\operatorname{color}[u] \leftarrow \mathbf{W} \text{ ("White")}$
- 3. $p[u] \leftarrow null$
- 4. time $\leftarrow 0$
- 5. for each vertex u of V do
- 6. if color[u] = W then
- 7. DFSVisit(Adj, u)

Graph G = (V, E) with adjacency lists/matrix Adj

DFS(G)

- 1. for each vertice u of V do
- 2. $\operatorname{color}[u] \leftarrow \mathbf{W} \text{ ("White")}$
- 3. $p[u] \leftarrow null$
- 4. time $\leftarrow 0$
- 5. for each vertex u of V do
- 6. if color[u] = W then
- DFSVisit(Adj, u)

DFSVisit(Adj, u)

- 1. $\operatorname{color}[\mathbf{u}] \leftarrow \mathbf{G}$ ("Gray")
- 2. $d[u] \leftarrow time \leftarrow time + 1$
- 3. for each v of Adilul do
- if color[v] = W then
- 5. $p[v] \leftarrow u$
 - DFSVisit(Adj, v)
 - 7. $color[u] \leftarrow B$ ("Black")
- 8. $f[u] \leftarrow time \leftarrow time + 1$

Exerxise

1. Implement DFS algorithm in C/C++ by using adjacency matrice/lists and incident matrice.

Exerxise

- 1. Implement DFS algorithm in C/C++ by using adjacency matrice/lists and incident matrice.
- 2. Calculate complexity of each implementation and determine the best implementation.

1. Find vertice set accessible from a vertex s

- 1. Find vertice set accessible from a vertex s
- 2. Determine topological order in an acyclic graph

- 1. Find vertice set accessible from a vertex s
- 2. Determine topological order in an acyclic graph
- 3. Calculate number of connected components in a directed graph

- 1. Find vertice set accessible from a vertex s
- 2. Determine topological order in an acyclic graph
- 3. Calculate number of connected components in a directed graph
- 4. Determine whether there exists a cycle in graph

- 1. Find vertice set accessible from a vertex s
- 2. Determine topological order in an acyclic graph
- 3. Calculate number of connected components in a directed graph
- 4. Determine whether there exists a cycle in graph
- 5. Verify whether the graph is bipartite

- 1. Find vertice set accessible from a vertex s
- 2. Determine topological order in an acyclic graph
- 3. Calculate number of connected components in a directed graph
- 4. Determine whether there exists a cycle in graph
- 5. Verify whether the graph is bipartite
- 6. Identify articulation points

Existence of a cycle in a graph

DFS(G)

- 1. for each vertex u of V do
- 2. $\operatorname{color}[u] \leftarrow \mathbf{W}$ ("White")
- 3. $parent[u] \leftarrow null$
- 4. time $\leftarrow 0$
- 5. for each vertex u of V do
- 6. if color[u] = W then
- 7. DFSVisit(Adj, u)

Existence of a cycle in a graph

DFS(G)

- 1. for each vertex u of V do
- 2. $\operatorname{color}[u] \leftarrow \mathbf{W} \text{ ("White")}$
- $parent[u] \leftarrow null$
- 4. time $\leftarrow 0$
- 5. for each vertex u of V do
- 6. if color[u] = W then
- DFSVisit(Adj, u)

DFSVisit(Adj. u)

- 1. $\operatorname{color}[\mathbf{u}] \leftarrow \mathbf{G}$ ("Gray")
- 2. $d[u] \leftarrow temps \leftarrow temps + 1$
- 3. for each vertex v of Adj[u] do
- if couleur[v] = W then
- 5. $p[v] \leftarrow u$
- 6. DFSVisit(Adj, v)
- if $(\operatorname{color}[v] = \mathbf{G}) \& (p[u] \neq v)$ then
- There exists a cycle here!
- 9. $\operatorname{color}[\mathbf{u}] \leftarrow \mathbf{B}$ ("Black")
- 10. $f[u] \leftarrow time \leftarrow time + 1$

Graph G = (V, E) with adjacency lists/matrix Adj

BFS(G)

- 1. create a queue Q
- 2. for each vertex u of V do
- $color[u] \leftarrow W ("White")$
- 4. $p[u] \leftarrow null$
- 5. time $\leftarrow 0$
- 6. for each vertex u of V do
- if color[u] = W then
- 8. Q.EnQueue(u)
- 9. $color[u] \leftarrow G ("Gray")$
- 10. $d[u] \leftarrow time \leftarrow time + 1$
- BFSVisit(Adj, Q) 11.

Graph G = (V, E) with adjacency lists/matrix Adj

BFS(G)

- 1. create a queue Q
- 2. for each vertex u of V do
- $color[u] \leftarrow W ("White")$
- 4. $p[u] \leftarrow null$
- 5. time $\leftarrow 0$
- 6. for each vertex u of V do
- if color[u] = W then
- 8. Q.EnQueue(u)
- 9. $color[u] \leftarrow G ("Gray")$
- $d[u] \leftarrow time \leftarrow time + 1$ 10.
- 11. BFSVisit(Adj. Q)

BFSVisit(Adj, Q)

- 1. while (Q is not null) do
- $u \leftarrow Q.front()$
- for each v of Adj[u] do
- if color[v] = W then
- $color[v] \leftarrow G;$
- $p[v] \leftarrow u$
- $d[v] \leftarrow time \leftarrow time + 1$
- Q.EnQueue(v)
- 9. Q.DeQueue()
- 10. color[u] ← B ("Black")
- $f[u] \leftarrow time \leftarrow time + 1$ 11.

Graph G = (V, E) with adjacency lists/matrix Adj is bipartite?

BFS(G)

- 1. create a queue Q
- 2. for each vertex u of V do
- 3. $\operatorname{color}[u] \leftarrow \mathbf{W} \text{ ("White")}$
- 4. $p[u] \leftarrow null$
- 5. time $\leftarrow 0$
- 6. for each vertex u of V do
- if color[u] = W then
- Q.EnQueue(u)
- 9. $color[u] \leftarrow G ("Grav")$
- 10. $X[u] \leftarrow 0$
- 11. $d[u] \leftarrow time \leftarrow time + 1$
- 12. if (BFSVisit(Adj, Q) = 'N' then
 - return 'N

BFSVisit(Adj. Q)

- 1. while (Q is not null) do
- $u \leftarrow Q$.front() 3. for each v of Adj[u] do
- 4. if color[v] = W then
- $color[v] \leftarrow G$:
- $p[v] \leftarrow u$
- 7. if (X[u]=0) then X[v]=1 else X[v]=0
 - $d[v] \leftarrow time \leftarrow time + 1$ Q.DeQueue()
- 10. else if (X[u]=X[v]) return 'N'
- 11. Q.EnQueue(v)

9.

- $color[u] \leftarrow B ("Black")$ 12.
- 13. $f[u] \leftarrow time \leftarrow time + 1$ Data Structure and Algorithms [CO2003]