Quantum Mechanics for Mathematician

 $March\ 10,\ 2020$

Contents

1	A r	eview of Classical Mechanics	2				
	1.1	Lagrangian formalism	2				
	1.2	Hamiltonian formalism	2				
	1.3	States	5				
	1.4	Liouville's theorem	5				
Notation							
	1. Local coordinate $q = (q_1, q_n)$ on a smooth n -dimensional manifold M are the Cartesian coordinates on $\varphi(U) \subset \mathbb{R}^n$, where (U, φ) is the coordinate chart on M . For $f: U \to \mathbb{R}^n$, we denote $f \circ \varphi^{-1}(q_1,, q_n)$ by $f(q)$						
	2. I	Denote by $\mathcal{A}^*(M) = \bigoplus_{k=0}^n \mathcal{A}^k(M)$ the graded algebra of smooth differential forms on M with respect to wedge product and by $d_k : \mathcal{A}^k(M) \to \mathcal{A}^{k+1}(M)$ the de Rham differential (a graded derivation of $\mathcal{A}^*(M)$ of degree 1)	је				

Chapter 1

A review of Classical Mechanics

Week 1

1.1 Lagrangian formalism

1.2 Hamiltonian formalism

Definition 1. Algebra of Classical Mechanics.

Generally, for all mechanical system, all of the observable are smooth function of $p = (p_1, ..., p_n)$, $q = (q_1, ..., q_n)$. We have commutative algebra $\mathcal{A} = \mathcal{A}_{cl} = C^{\infty}(\mathbb{R}^{2n})$, $f \in \mathcal{A}_{cl} : (q, p) \to \mathbb{R}$

Definition 2. Hamilton Equation of Motion.

$$\dot{q} = \frac{\partial H}{\partial p}, \dot{p} = -\frac{\partial H}{\partial q} \tag{1.2.1}$$

where $H = H(q, p) : \mathbb{R}^{2n} \to \mathbb{R}$. Cauchy problem of coupled PEDs with initial condition $q|_{t=0} = q_0$, $p|_{t=0} = p_0$ with (q_0, p_0) in \mathbb{R}^{2n} space.

By assumption : There is unique global solution defined for all $t \in \mathbb{R}$: $\begin{cases} p = q(q_0, p_0, t) \\ p = q(q_0, p_0, t) \end{cases}$

In short, $\mu=(q,p)\in\mathcal{M}=\mathbb{R}^{2n}$ is an orbit in \mathcal{M} (a Hamiltonian phase flow generated by Hamiltonian vector field V in phase space $\mathcal{M}=T^*N$ or cotangent bundle of configuration space) such that $\dot{\mu}=V(\mu)=(\dot{q},\dot{p})(\mu)=\left(\frac{\partial H}{\partial p},-\frac{\partial H}{\partial q}\right)$

Time reversible: $t \to -t$, $p \to -p$ and $q \to -q$ such that the form of the equation doesn't change (Loschmidt's paradox) No: heat equation $\partial_t u = \Delta u$ limited by 2nd Law of Thermodynamics Yes: $\partial_t u = -i(\Delta + V)u$

Definition 3. The Hamiltonian generate one parameter Abelian group of diffeomorphisms (index by time $t \in \mathbb{R}$) of transformation

$$G_t: \mathcal{M} \to \mathcal{M} (\forall t \in \mathbb{R})$$

of phase space in to itself.

$$G_{t_1} \circ G_{t_1} = G_{t_1 + t_2} \tag{1.2.2}$$

$$G_{t_0} = id_{\mathcal{M}} \tag{1.2.3}$$

$$G_t^{-1} = G_{-t} (1.2.4)$$

By definition, $\mu(t) = G_t \mu$ is the solution with initial condition $\mu(0) = G_0 \mu$. By construction, uniqueness of solution to Cauchy problem for Hamiltonian equation. In return, G_t generates a family of transformation U_t of Algebra $\mathcal{A} = \mathcal{A}_{cl}$ of classical observation of solution such that for $\forall f \in \mathcal{A}_{cl} = C_{\mathbb{R}}^{\infty}(\mathcal{M}), \ \forall \mu \in \mathcal{M}, \ \forall t \in \mathbb{R}$

$$(U_t f)(\mu) = f_t(\mu) = f(G_t \mu)$$
 (1.2.5)

Note that $f_t \in \mathcal{A}_{cl}$, $f_t(q_0, p_0) = f_t(\mu_0) = f(q(q_0, p_0, t), p(q_0, p_0, t))$

$$f_{t+s}\left(\mu\right) = f_t\left(G_s\mu\right)$$

Thus

$$\frac{\partial}{\partial s} \left. f_t \left(G_s \mu \right) \right|_{s=0} = \nabla f_t (\mu) V(\mu) = \left(\frac{\partial f_t}{\partial q} \frac{\partial H}{\partial p} - \frac{\partial f_t}{\partial p} \frac{\partial H}{\partial q} \right) (\mu) = X_H (f_t) (\mu)$$

Therefore, the evolution of any function of μ satisfies

$$\frac{df_t}{dt} = \{H, f\} = \frac{\partial H}{\partial p} \frac{\partial f_t}{\partial q} - \frac{\partial H}{\partial q} \frac{\partial f_t}{\partial p} = X_H(f_t)$$
(1.2.6)

with initial condition $f_t(q,p)|_{t=0}=f(q.p)$, where $\{\ ,\ \}$ denotes the Poisson Bracket and $X_H=\frac{\partial H}{\partial p}\frac{\partial}{\partial q}-\frac{\partial H}{\partial q}\frac{\partial}{\partial p}$ is a vector field generated by Hamiltonian. This means that the Cauchy problem for the time evolution of observable f (given by U_t) has a unique solution

$$f_t(q_0, p_0) = f(q(q_0, p_0, t), p(q_0, p_0, t))$$
 i.e. $f_t(\mu) = f(\mu(t)) = f(G_t\mu)$

and not only the generalized coordinate (q, p) but also the observable f(q, p) evolve with time.

Summary: The states of classical system is determined by a representative point in phase space $\mu = (q, p) \in \mathcal{M} = \mathbb{R}^{2n}$, which is an orbit in \mathcal{M} (a flow generated by Hamiltonian vector field V in phase space \mathcal{M}) such that $\dot{\mu} = V(\mu) =$ $(\dot{q},\dot{p})(\mu) = \left(\frac{\partial H}{\partial p}, -\frac{\partial H}{\partial q}\right)$. The evolution of any observable $f: \mathbb{R} \to \mathcal{A}_{cl}$ is governed by the solution of Hamiltonian equation

$$\frac{df_t}{dt} = \{H, f\} \quad subjected \ to \ f_t|_{t=0} = f_0$$

Dictionary:	CM	QM	
Observable	f	A	self-adjoint operator in Hilbert space ¹
States	ω	Ψ	
Time envolve	f_t with $\frac{df_t}{dt} = \{H, f\}$	$A(t)$ with $\frac{dA(t)}{dt} = [H, A(t)]_{\hbar}$	$\{A,B\} \stackrel{\hbar \to 0}{\longleftarrow} \frac{i}{\hbar} [A,B]_{\hbar}$

Table 1.1: Dictionary of CM and QM

Mathematical Structure: Symplectic manifold

- A symplectic manifold is a $C^{\infty}(M)$ equipped with a differential 2-form Ω that is $\operatorname{closed}(d\Omega=0)$ and point-wise non-degenerate, i.e. for each $p \in M$ and $V \in T_pM$, $\Omega(V, W) = 0$ for all $W \in T_pM$ only when W = 0.
- Non-degeneracy forces the dimension of M to be even dim(M) = 2n
- The symplectic form Ω gives an identification of 1-forms with a vector fields (ensured by non-degeneracy). Namely, if ϕ is a1-form, the corresponding Vector field is defined by

$$\Omega(X, Y_{\phi}) = \phi(X)$$

for all vector fields. In particular, when $f \in C^{\infty}(M)$, $X_{df} = X_f$ is called Hamiltonian vector field of f s.t. $\Omega(X, Y_f) = X_f$ df(X) = X(f)

• The poisson bracket of two smooth function f, g is

$$\{f,g\} = \Omega\left(X_f, X_g\right) = X_f\left(g\right) = -X_g\left(f\right)$$

which makes $C^{\infty}(M)$ into a Lie algebra.

• Jacobi identity is a consequence of $d\Omega = 0$, and the correspondence $\pi : f \mapsto X_f$ is a Lie algebra homomorphism: $\pi \{f, g\} = \{\pi(f), \pi(g)\}\$

$$X_{\{f,g\}}h = \{\{f,g\}\,,h\} = -\,\{\{g,h\}\,,f\} - \{\{h,f\}\,,g\} = X_fX_gh - X_gX_fh = [X_f,X_g]\,h$$

$$1\mathcal{L}^2 = \Big\{\psi:\mathbb{R}^N \to \mathbb{C}|\int_{\mathbb{R}^N} |\psi(x)|^2 < \infty\Big\}$$

$${}^{1}\mathcal{L}^{2} = \left\{ \psi : \mathbb{R}^{N} \to \mathbb{C} | \int_{\mathbb{R}^{N}} |\psi(x)|^{2} < \infty \right\}$$

Mathematical Structure: Symplectic manifold

- Darboux theorem: for any point in a symplectic manifold M, $\exists (U_x, \varphi)$ where $\varphi(x) = (q^1, q^n, p_1, p_\mu)$ s.t. $\Omega = dp_\mu \wedge dq^\mu$. The coordinate system with this property is called canonical.
- Canonical transformation (symplectomorphism): a diffeomorphism $G_t: M \to M$ that preserves the symplectic structure. Then its infinitesimal generator, the vector field defined by $X(f_t) = \frac{d}{ds} f_t \circ G_s|_{s=0}$ satisfies $L_X \Omega = 0$. (In fact $X = X_H$ which can be seen from equation (1.2.6))
- $L_{X_H}\Omega = L_{X_H}dp_{\mu} \wedge dq^{\mu} + dp_{\mu} \wedge L_{X_H}dq^{\mu} = d\left(L_{X_H}p_{\mu}\right) \wedge dq^{\mu} + dp_{\mu} \wedge d\left(L_{X_H}q^{\mu}\right) = -d\left(\frac{\partial H}{\partial q^{\mu}}\right) \wedge dq^{\mu} + dp_{\mu} \wedge d\left(\frac{\partial H}{\partial p_{\mu}}\right) = -d^2H = 0$. In reverse, if $L_X\Omega = 0$, then $L_X\Omega = (i_Xd + di_X)\Omega = di_X\Omega = 0 \Longrightarrow i_X\Omega = df$ which means there exists H s.t. $L_{X_H}\Omega = 0$
- Hamiltonian vector field are precisely the infinitesimal generators for canonical transformations.

Week 2

Preview: In QM, the evolution equation is

$$\frac{dA_t}{dt} = [H, A_t]$$

where $t \to A_t, \mathbb{R} \to \mathcal{A}_{qm} = \{\text{unbounded self-adjonint operator in Hilbert space}\}$, H is the Hamiltonian operator and $[A,B] = i/\hbar \, (AB - BA)$ is the commutator of $A,B \in \mathcal{A}_{qm}$

Definition 4. Self-adjoint: $A^* = A$ which satisfies $(AB)^* = B^*A^* = BA$, but $[A, B]^* = -i/\hbar (BA - AB) = [A, B]$ which preserves the algebra.

Properties of PB $\{\cdot,\cdot\}$: $\mathcal{A}_{cl} \times \mathcal{A}_{cl} \to \mathcal{A}_{cl}$, $(f,g) \mapsto \{f,g\}$

- 1. Bilinear
- 2. Skew-symmetry
- 3. Jacobian Identity
- 4. Leibniz rule: $\{f,gh\} = \{f,g\}h + g\{f,h\}$, i.e. $\{,\}$ is the derivation of the algebra \mathcal{A}_{cl} in each variable.

Proof. (4) Define $\{f,g\} = X_f g$, where X_f is the first order differential operator (vector field), i.e. $X_f = \frac{\partial f}{\partial p} \frac{\partial}{\partial q} - \frac{\partial f}{\partial q} \frac{\partial}{\partial p}$. Now its clear that X_f is a derivation on \mathcal{A}_{cl} such that $X_f(gh) = (X_f g)h + g(X_f h)$

Exercise 5. Show that $[X_f, X_g] = X_f X_g - X_g X_f$, $[X_f, X_g] h = X_{\{f,g\}} h = \{\{f,g\}, h\}$. Then derive Jacobian Identity. Claim 6. Algebra property of $A_{cl} = C^{\infty}(M)$ which is equipped with $\{\}_{PB}$

- \mathcal{A}_{cl} is a real vector space.
- \mathcal{A}_{cl} is Lie algebra with the operation $\{\}_{PB}$ i.e. the properties of Lie bracket holds
- The last two operation, i.e. the product in \mathcal{A}_{cl} and the Lie product $\{f,g\}$ are connected via the Leibniz rule 4. which states that $\{\}_{PB}$ is a deviation in each variable

Claim 7. Classical dynamics:

The algebra \mathcal{A}_{cl} of classical observables exists a distinguished element $H = H(p,q) \in C^{\infty}(M)$, the rule of which is to describe the time evolution $t \to A_t, \mathbb{R} \to \mathcal{A}_{qm}$ of any classical observable. The evolution is governed by $\frac{df_t}{dt} = \{H, f\}$ with initial condition $f_t(q,p)|_{t=0} = f(q,p)$.

Finally, recall the definition of $U_t: \mathcal{A}_{cl} \to \mathcal{A}_{cl}$, $(U_t f)(\mu) = f_t(\mu)$ for $\forall f \in \mathcal{A}_{cl} = C^{\infty}(M)$. Then, its easy to check that U_t is an automorphism of the algebra \mathcal{A}_{cl} , i.e.

- U_t is linear
- $U_t(fg) = U_t(f) U_t(g)$
- U_t is invertible (i.e. U_t is bijective) and $U_t^{-1} = U_{-t}$

1.3 States

1.4 Liouville's theorem