Compte Rendu TD3

pakpake

Février 2020

Exercice 2

Question 4

$$f(n) = n$$
 ; $g(n) = \log^2(n)$

On utilise la formule des limites usuelles pour les logarithmes :

$$\lim_{n\to +\infty}\frac{ln^\alpha(n)}{n^\beta}=0$$

Ainsi, $\forall \alpha, \beta \geq 0$, on a

$$ln^{\alpha}(n) = \mathcal{O}(n^{\beta})$$

Dans notre cas, on choisit $\alpha = 2$ et $\beta = 1$.

A la constante près du changement de base des logarithmes, on a :

$$\log^2(n) = \mathcal{O}(n)$$

$$g(n) = \mathcal{O}(f(n))$$

Question 5

$$f(n) = n \log(n) + n$$
 ; $g(n) = \log(n)$

$$\lim_{n \to +\infty} \frac{\log(n)}{n \log(n) + n} = \lim_{n \to +\infty} \frac{\log(n)}{n \log(n)} = \lim_{n \to +\infty} \frac{1}{n} = 0$$

Donc

$$\log(n) = \mathcal{O}(n\log(n) + n)$$

Donc

$$g(n) = \mathcal{O}f(n)$$

Question 6

$$f(n) = 10$$
 ; $g(n) = \log(10)$

D'après la définition, on a :

$$\exists c, \exists n_0, \forall n \ge n_0 \qquad f(n) \le c.g(n)$$
$$10 \le 10 \log(10)$$

Donc,

$$f(n) = \mathcal{O}(g(n))$$

De même,

$$\log(10) \le 10$$

Donc,

$$g(n) = \mathcal{O}(f(n))$$