UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

EXAMEN: Tarea 2 (parte I)

PROFESORA: Karina G. Buendía y José Dosal

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:

Ejercicio 1 Sea $f: \mathcal{X} \to \mathcal{Y}$ una función. Demuestra que $F: \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{Y})$ y $G: \mathcal{P}(\mathcal{Y}) \to \mathcal{P}(\mathcal{X})$ definidas como: F(A) = f(A) y $G(A) = f^{-1}(A)$, son funciones.

Ejercicio 2 Sean $f: A \to C$ y $g: A \to B$ funciones. Demostrar que existe una función $h: B \to C$ tal que $f = h \circ g$ si y solo si para cada $x, y \in A$ g(x) = g(y) implica f(x) = f(y).

Ejercicio 3 Sean $A \neq \emptyset$ y $B \neq \emptyset$ conjuntos. Para cualquier conjunto C y cualesquiera funciones $f_1: C \to A$ y $f_2: C \to B$ existe una única función $f: C \to A \times B$ tal que $f_1 = p_1 \circ f$ y $f_2 = p_2 \circ f$. (Las funciones f_1 y f_2 se denominan funciones coordenadas)

Ejercicio 4 Demuestra que si $I \neq \emptyset$ y algún $A_{\alpha} = \emptyset$ si y solo si $\prod_{\alpha \in I} A_{\alpha} = \emptyset$.

Ejercicio 5 Sea $I \neq \emptyset$ un conjunto de índices. Considera dos familias indizadas $\{A_{\alpha}\}_{\alpha \in I}$ y $\{B_{\alpha}\}_{\alpha \in I}$. Demuestra lo siguiente:

1. Si $A_{\alpha} \subseteq B_{\alpha}$ para cada $\alpha \in I$, entonces

$$\prod_{\alpha\in I}A_\alpha\subseteq\prod_{\alpha\in I}B_\alpha$$

.

2. El recíproco de (a) se cumple si $\prod_{\alpha \in I} A_\alpha \neq \emptyset$