Week 7

Schedule

- Quiz 3:
 - Individual (30 mins)
 - Team (25 mins)
- Review & discuss Lab 6 (5 mins)
- Assignment 1 review (5 mins)
- Introduction to Lab 7 (5 mins)
- Work on Lab 7 Exercise (≈1 hours)
- Assignment 2 intro & demos in Mechatronics Lab (≈45 mins)

ı

Overview of Week 7: Quiz 3

- In total worth 5%
- Individual quiz
 - worth 4%
 - will go from lab start time for 30 minutes
 - 10 questions (approx. 1 question from each category)
 - No talking
- Group quiz
 - worth 1%
 - will start immediately after the individual quiz
 - will go for 25 minutes
 - Groups of 3 people or less
 - 20 questions (approx. 2 question from each category)
 - Lots of talking within group

Question Categories

- Collision Checking
 - Hint: can use LinePlaneIntersection.m in lab 5
- Create 5DOF Planar
- Distance Sense Distance to Puma End Effector
- Lab Assignment 1
- Point In Puma End Effector Coordinate Frame
- Puma Ikine
- Puma Distance To Wall Along Z
- Safety (x2 questions)
- Sawyer

Quiz password

Individual

Team

Lab Assignment 1 Update (1)

- Finished/uploaded marks/comments for Lab Assignment 1 Report
- Why is the naming of files so strange?
 - Many people calling it UR10. It is a UR3.
 - Leaving some of the original toolbox files DabPrintNozzleTool.ply so delete unnecessary all files.
 - Some calling Sawyer as their main then calling UR10 or UR3
- Try and stay away from using global variables, even though it works -they are hard to protect
- When using a GUI keep data in the figure handle, or even better in a class handle. Note when figure is close data is lost.
- You shouldn't need two different classes for the two sawyers.
 - Create two instance of the same class twice move both of the separately
 - That is what < handle is for on the top line</p>

Lab Assignment 1 Update (2)

- Many noticed that the animation took the a long time (GUIDE for those who didn't)
 - For better simulation you could either go to a lower level language (Rviz using OGRE)
 - Do tricks in matlab like reduce the pause in animate or do less animation plots (only every now and again or after a certain tic
 - Make the number of triangles for your parts and your robot smaller
- Some discovered ikcon as an alternative to ikine and used it to good effect. If not, check it out.
- In future, please don't hand in the robot toolbox, it's hard to find the new code. For the next assignments please do not blend to two.
- There are various ways to create the robot model.
 - I like incorporating it in a class since it promotes reusability.
 - It is possible to just include the code for DH parameters in line.

Review of Lab 6 Question 1: Ray casting in 3D

- What shape can we make with 3 points $[p_1, p_2, p_3]$?
 - A triangle
- How can I find the normal to the triangle?
 - Cross product $(p_1-p_2) \times (p_3-p_2)$
- How to get the angle (in radians) between two lines?
 - Arcosine of dot product
 - $\bullet \ \theta = arccos((p_1 p_2) \cdot (p_3 p_2))$
- How to rotate a set of points around a vector
 - o tr = makehgtform('axisrotate',rotationAxis,rotationRadians);
- What happens if you don't bring the points back to around the origin?

Review of Lab 6 Question 2: Point in an Elipsoid

$$\left(\frac{x-x_c}{r_x}\right)^2 + \left(\frac{y-y_c}{r_y}\right)^2 + \left(\frac{z-z_c}{r_z}\right)^2 = 1$$

- Given the parameters of an ellipsoid, how can we know if a point is <u>inside</u> the ellipsoid?
 - Algebraic distance less than 1
- Given the parameters of an ellipsoid, how can we know if a point is <u>outside</u> the ellipsoid?
 - Algebraic greater than 1

Review of Lab 6 Question 3: Joint Interpolation

```
% 3.1
steps = 50;
mdl planar2;
                                               % Load 2-Link Planar Robot
% 3.2
T1 = [eye(3) [1.5 1 0]'; zeros(1,3) 1]; % First pose
T2 = [eye(3) [1.5 -1 0]'; zeros(1,3) 1]; % Second pose
% 3.3
M = [1 \ 1 \ zeros(1,4)];
                                               % Masking Matrix
q1 = p2.ikine(T1, [0 0], M);
                                               % Solve for joint angles
q2 = p2.ikine(T2, [0 0], M);
                                               % Solve for joint angles
p2.plot(q1, 'trail', 'r-');
pause (3)
% 3.4
qMatrix = jtraj(q1,q2,steps);
p2.plot(qMatrix, 'trail', 'r-');
```

The Jacobian is a *nonlinear* mapping from joint-space to Cartesian-space

$$\dot{\mathbf{x}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}$$

Linear joint-space trajectories from the Inverse Kinematics results in non-linear end-effector velocities.

To approximate a straight line with Inverse Kinematics, we need to discretise the trajectory in to more and more points

More points = more inverse kinematic calculations = more computational cost

Review of Lab 6 Question 3: Resolved Motion Rate Control

```
% 3.6
x1 = [1.5 1]';
x2 = [1.5 -1]';
deltaT = 0.05;
                                                  % Discrete time step
% 3.7
x = zeros(2, steps);
s = lspb(0,1,steps);
                                                  % Create interpolation scalar
for i = 1:steps
                                                 % Create trajectory in x-y plane
   x(:,i) = x1*(1-s(i)) + s(i)*x2;
end
% 3.8
qMatrix = nan(steps,2);
% 3.9
qMatrix(1,:) = p2.ikine(T1,[0 0],M); % Solve for joint angles
% 3.10
for i = 1:steps-1
                                                 % Calculate velocity at discrete time step
   xdot = (x(:,i+1) - x(:,i))/deltaT;
   J = p2.jacob0(qMatrix(i,:));
                                                  % Get the Jacobian at the current state
                                                  % Take only first 2 rows
   J = J(1:2,:);
                                                  % Solve velocities via RMRC
   qdot = inv(J)*xdot;
   qMatrix(i+1,:) = qMatrix(i,:) + deltaT*qdot'; % Update next joint state
end
p2.plot(qMatrix,'trail','r-');
```

Lab 7 Exercise Question 1 3-Link Planar Manipulator

Forward kinematics:

Q1 Derive 3-link Jacobian and use Matlab symbolic solver

```
% 1.2 From the derived Jacobian equation
syms 11 12 13 x y phi q1 q2 q3 Jq;

x = 11*cos(q1) + 12*cos(q1+q2) + 12*cos(q1+q2+q3);
y = 11*sin(q1) + 12*sin(q1+q2) + 12*sin(q1+q2+q3);
phi = q1 + q2 + q3;

% Compute the Jacobian
Jq = [diff(x,q1),diff(x,q2),diff(x,q3) ...
; diff(y,q1),diff(y,q2),diff(y,q3) ...
; diff(phi,q1),diff(phi,q2),diff(phi,q3)];
```

Subs and confirmation

```
% 1.3 Solve for the link lengths being 1
JqForLength1 = subs(subs(Jq,l1,1),l2,1),l3,1)
% 1.4 Solve for all joint angles being 0. By observation x velocity is 0
subs(subs(JqForLength1,q1,0),q2,0),q3,0)
% Confirm this by using the toolbox
mdl_planar3;
Load 2-Link Planar Robot
p3.jacob0([0,0,0])
```

Lab 7 Exercise Question 2: Dealing with Singularities

- What is a singularity?
 - Where you loose 1 or more degrees of freedom of movement due to the joint state
- Students: give an example with your own arm
- How can we check if we are near a singularity?
 - The velocity gets high
 - The manipulability measure gets low
- How can we work out the manipulability?
 - sqrt(det(J*J'));
- What does the ellipsoid show?
 - \circ $J(q)J(q)^T$

Lab 7 Exercise Question 2: Dealing with Singularities

%% 2.1 Load a 2-Link planar robot, and assign parameters for the simulation

```
mdl planar2;
t = ...;
steps = \dots ;
deltaT = t/steps;
deltaTheta = 4*pi/steps; % Small angle change
x = zeros(2, steps);
m = zeros(1, steps);
errorValue = zeros(2,steps); % For recording velocity error
```

```
% Load 2-Link Planar Robot
                              % Total time in seconds (try 5 sec)
                              % No. of steps (try 100)
                             % Discrete time step
qMatrix = zeros(steps, 2); % Assign memory for joint angles
                   % Assign memory for trajectory
                   % For recording measure of manipulability
```

```
%% 2.2 Create a trajectory
for i = 1:steps
   x(:,i) = [1.5*\cos(\text{deltaTheta*}i) + 0.45*\cos(\text{deltaTheta*}i)]
             1.5*sin(deltaTheta*i) + 0.45*cos(deltaTheta*i);
end
%% 2.3 Create the Transformation Matrix, solve the joint angles
T = [eye(3) [x(:,1);0]; zeros(1,3) 1];
qMatrix(1,:) = p2.ikine(T,[0 0],M);
%% 2.4 Use Resolved Motion Rate Control to solve joint velocities
for i = 1:steps-1
   T = ...; % End-effector transform at current joint state
   xdot = ...; % Calculate velocity at discrete time step
   J = ...; % Get the Jacobian at the current state (use jacob0)
   J = J(1:2,:); % Take only first 2 rows
   m(:,i) = sqrt(det(J*J')); % Measure of Manipulability
   qdot = ....; % Solve velocities via RMRC
   errorValue(:,i) = ...; % Velocity error
   qMatrix(i+1,:) = ...; % Update next joint state
end
```

Given a desired end-effector velocity, invert the Jacobian to get the joint velocities

The differential kinematics describes a system of m equations with n unknowns.

When m = n, there is 1 unique solution.

When m < n, there are *infinite solutions*. Also, the Jacobian is *not* square. It can't be inverted easily. (We'll consider this later). For a square Jacobian:

$$J(\mathbf{q}) \in \mathbb{R}^{m \times n}$$
, $m = n$

$$\dot{\mathbf{x}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}$$

$$\dot{\mathbf{q}} = \mathbf{J}(\mathbf{q})^{-1}\dot{\mathbf{x}}$$

$$\begin{bmatrix} \dot{q}_1 \\ \vdots \\ \dot{q}_6 \end{bmatrix} = \mathbf{J}(\mathbf{q})^{-1} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\varphi} \\ \dot{\theta} \\ \dot{\varphi} \end{bmatrix}$$

Linear velocities at each time step are easily computed using a discrete-time derivative

$$\mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix}, \mathbf{p} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$$

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \\ \dot{\mathbf{z}} \end{bmatrix} = \frac{1}{\Delta t} (\mathbf{p}(t+1) - \mathbf{p}(t))$$

Angular velocities must be derived from the Rotation Matrix

$$\mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix}, \mathbf{R} \in \mathbb{SO}(3)$$

$$\mathbf{R}\mathbf{R}^{\mathrm{T}} = \mathbf{I}$$

$$\frac{d\mathbf{R}}{dt} = \dot{\mathbf{R}}\mathbf{R}^{\mathrm{T}} + \mathbf{R}\dot{\mathbf{R}}^{\mathrm{T}} = \mathbf{0}$$

$$\dot{\mathbf{R}}\mathbf{R}^{\mathrm{T}} = -\mathbf{R}\dot{\mathbf{R}}^{\mathrm{T}}$$

For simplicity, assume $\mathbf{R} = \mathbf{I}$, then:

$$\mathbf{R} = -\mathbf{R}^{\mathrm{T}}$$

$$\begin{bmatrix} 0 & -\dot{\phi} & \dot{\theta} \\ \dot{\phi} & 0 & -\dot{\phi} \\ -\dot{\theta} & \dot{\phi} & 0 \end{bmatrix} = -\begin{bmatrix} 0 & -\dot{\phi} & \dot{\theta} \\ \dot{\phi} & 0 & -\dot{\phi} \\ -\dot{\theta} & \dot{\phi} & 0 \end{bmatrix}^{\mathrm{T}}$$

The roll, pitch, yaw velocities $[\dot{\phi} \quad \dot{\theta} \quad \dot{\phi}]$ skew symmetric

For the general case:

$$\dot{\mathbf{R}} = \underline{\mathbf{S}(\boldsymbol{\omega})}\mathbf{R}$$

$$\mathbf{\omega} = [\dot{\varphi} \quad \dot{\theta} \quad \dot{\varphi}]^{\mathrm{T}}$$

 $S(\cdot)$ is the skew-symmetric matrix operator.

$$\mathbf{R}(\mathsf{t}+1) = \mathbf{R}(\mathsf{t}) + \Delta \mathsf{t} \dot{\mathbf{R}}$$

$$\mathbf{S}(\boldsymbol{\omega})\mathbf{R} = \Delta t^{-1} (\mathbf{R}(t+1) - \mathbf{R}(t))$$

$$S(\boldsymbol{\omega}) = \Delta t^{-1} (\mathbf{R}(t+1) - \mathbf{R}(t)) \mathbf{R}(t)^{\mathrm{T}}$$

$$5(\omega) = \Delta t^{-1} \left(\mathbf{R}(t+1) \cdot \mathbf{R}(t) \right) \mathbf{R}(t)$$

$$5(\omega) = \Delta t^{-1} \left(\mathbf{R}(t+1) \mathbf{R}(t)^{\mathrm{T}} - \mathbf{I} \right)$$

Then extract the angular velocities:

$$\dot{\Phi} = S_{32}$$

$$\dot{\theta} = S_{13}$$

$$\dot{\phi} = S_{21}$$

Inverse Kinematics vs Resolved Motion Rate Control (RMRC)

		Inverse Kinematics	Resolved Motion Rate Control		
	Trajectory space	Joint d	Cartesian 🔾	_	
~	Derivation of joint motion	Pre-planned	Real-time		
	Task Suitability	Point-to-pointPick-and-placeDiscrete	Continuous time trajectories (infinite points)		
	Joint Limit Avoidance	Easy Unin 515 Unex	Hard with fully-actuated Easy with redundancy	- m=h m <n)<="" td=""><td>C</td></n>	C
	Static obstacle avoidance	Easy	Hard	_	
	Dynamic obstacle avoidance	None	Possible! (But tricky)	_	
	Optimal joint configurations	Not really?	Yes	_	
	Singularities (More on this later)	No	Yes 🙁	_	

Summary

 Get the linear end-effector velocities using a discrete time derivative

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \\ \dot{\mathbf{z}} \end{bmatrix} = \frac{1}{\Delta t} (\mathbf{p}(t+1) - \mathbf{p}(t))$$

 Get the angular end-effector velocities from the rotation matrix

$$S(\boldsymbol{\omega}) = \frac{1}{\Lambda t} (\mathbf{R}(t+1)\mathbf{R}(t)^{\mathrm{T}} - \mathbf{I})$$

The time-derivative of the rotation matrix is skewsymmetric

$$\dot{\mathbf{R}} = \mathbf{S}(\boldsymbol{\omega})\mathbf{R}$$

$$= \begin{bmatrix} 0 & -\dot{\boldsymbol{\varphi}} & \dot{\boldsymbol{\theta}} \\ \dot{\boldsymbol{\varphi}} & 0 & -\dot{\boldsymbol{\varphi}} \\ -\dot{\boldsymbol{\theta}} & \dot{\boldsymbol{\varphi}} & 0 \end{bmatrix} \mathbf{R}$$

- Invert the Jacobian to find the appropriate joint velocities
 - Scale down all joint velocities proportionally if they exceed the motor capability
 - The direction of the velocity vector is preserved

$$\dot{\mathbf{q}} = \mathbf{J}(\mathbf{q})^{-1}\dot{\mathbf{x}}$$

The choice of Inverse Kinematics or Resolved Motion Rate Control depends on the task you're trying to achieve

Q3 Depth Images

- Download the sequence of depth images, "imageData.mat" on UTSOnline captured with an XTion Pro
- Load, plot, play with the sensor data
- Necessary to understand if you want to incorporate depth image sensors in your assignment

Note/slides from the textbook

- Textbook readings (Week 6) :
 - Chapter 7.5,7.6 (pages 158–163): "Advanced Topics" and "Application: Drawing"

Although it is better to read the textbook, some notes (in slide format) have been summarised below

Joint Angle Offsets

- The joint coordinate offset provides a mechanism to set an arbitrary configuration for the zero joint coordinate case.
- The offset vector, q_0 , is added to the user specified joint angles before any kinematic or dynamic function is invoked, for example

$$\xi = \mathcal{K}(q + q_0)$$

Inverse kinematics: $q = K^{-1}(\xi) - q_0$

Determining Denavit-Hartenberg Parameters

Fig. 7.14.

Puma 560 robot coordinate frames.

a Standard Denavit-Hartenberg link coordinate frames for Puma in the zeroangle pose (Corke 1996b);

b alternative approach showing the sequence of elementary transforms from base to tip.

Rotations are about the axes shown as dashed lines (Corke 2007)

Modified Denavit-Hartenberg Notation

According to Craig's convention the link transform matrix is $j - 1_{A_j} = R_z(\alpha_{j-1})T_x(\alpha_{j-1})R_z(\theta_j)T_z(d_j)$ denoted by Craig as $j - \frac{1}{j}A$.

Modified Denavit-Hartenberg Notation (continued...)

Fig. 7.15. Definition of modified Denavit and Hartenberg link parameters. The colors red and blue denote all things associated with links *j*–1 and *j* respectively. The numbers circles represent the order in which the elementary transforms are applied

Application: Drawing

• Fig. 7.16. The letter 'E' drawn with a 10-point path. Markers show the via points and solid lines the motion segments

Note/slides from the textbook

- Textbook readings (Week 7) :
 - Sections 8.1,8.2 (pages 171-188): "Velocity Relationships" and "Resolved-Rate Motion Control"
- Although it is better to read the textbook, some notes (in slide format) have been summarised below

Manipulator Jacobian

 Using the homogeneous transformation representation of pose we can approximate its derivative with respect to joint coordinates by a first-order difference

$$\frac{dT}{dq} \approx \frac{t(q+\delta_q) - T(q)}{\delta_q}$$

and recalling the definition of *T* from Eq. 2.19 we can write

$$\frac{dT}{dq} \approx \frac{1}{\delta_q} \begin{bmatrix} R(q + \delta_q) - T(q) & \delta_x \\ \delta_y & \delta_z \\ 0 & 0 \end{bmatrix}$$

Manipulator Jacobian (continued...)

• Fig. 8.1.

Puma robot in its nominal pose qn. The end-effector z-axis points in the world x-direction, and the x-axis points downward

Manipulator Jacobian (continued...)

Now we consider the top-left 3 \times 3 submatrix of the matrix in Eq. 8.1 and multiply it by $\frac{\delta_q}{\delta_t}$ to achieve a first-order approximation to the derivative of R

$$R \approx \left[\frac{R(q + \dot{\delta}_q) - R(q)}{\delta_q} \right] \frac{\delta_q}{\delta_t}$$

Recalling an earlier definition of the derivative of an orthonormal rotation matrix Eq. 3.4 we write

$$S(w)R \approx \left[\frac{R(q + \delta_q) - R(q)}{\delta_q}\right] \dot{q}_I$$
$$S(w)R \approx \left[\frac{R(q + \delta_q) - R(q)}{\delta_q}R^T\right] \dot{q}_I$$

 from which we find a relationship between end-effector angular velocity and joint velocity

$$w \approx vex \left[\frac{R(q + \delta_q) - R(q)}{\delta_q} R^T \right] \dot{q}_I$$
 And finally we write:
$$\begin{bmatrix} w_x \\ w_y \\ w_z \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \dot{q}_2$$

Transforming Velocities between Coordinate Frames

Consider two frames {A} and {B} related by

$$A_{T_B} = \begin{bmatrix} A_{R_B} & A_{T_B} \\ 0 & 1 \end{bmatrix}$$

- then the spatial velocity of a point with respect to frame
- {A} can be expressed relative to frame {B} by $B_V = B_{J_A}A_V$ where the Jacobian $B_{J_A} = J_V(A_{T_B}) = \begin{bmatrix} B_{R_A} & 0_{3\times 3} \\ 0_{3\times 3} & B_{R_A} \end{bmatrix}$ is a 6 \times 6 matrix and a function of the relative orientation
- For the case where we know the velocity of the origin of frame {A} attached to a rigid body, and we want to determine the velocity of the origin of frame {B} attached to the same body, the Jacobian becomes

$$B_{J_A} = \bar{J}_V(A_{T_B}) = \begin{bmatrix} B_{R_A} & -B_{R_A}S(A_{T_B}) \\ 0_{3\times 3} & B_{R_A} \end{bmatrix}$$

Jacobian in the End-Effector Coordinate Frame

The code for the two Jacobian methods reveals that jacob0 discussed earlier is actually based on jacobn with a velocity transformation from the end-effector frame to the world frame based on the inverse of the T6 matrix. Starting with Eq. 8.3 we write

$$\begin{aligned} \theta_v &= \theta_{J_N} N_v \\ &= \begin{bmatrix} 0_{R_N} & 0_{3\times 3} \\ 0_{3\times 3} & 0_{R_N} \end{bmatrix} N_{J(q)\dot{q}} \\ &= 0_{J(q)\dot{q}} \end{aligned}$$

Analytical Jacobian

Consider the case of roll-pitch-yaw angles $\Gamma = (\theta_r, \theta_p, \theta_y)$ for which the rotation matrix is $R = R_x(\theta_r)R_y(\theta_p)R_z(\theta_y)$

$$= \begin{bmatrix} c\theta_p c\theta_y & -c\theta_p s\theta_y & s\theta_p \\ c\theta_r s\theta_y + c\theta_y s\theta_p s\theta_r & s\theta_p s\theta_r s\theta_y + c\theta_r c\theta_y & -c\theta_p s\theta_y \\ s\theta_r s\theta_y - c\theta_r c\theta_y s\theta_p & c\theta_r s\theta_p s\theta_y + c\theta_y s\theta_r & c\theta_p c\theta_r \end{bmatrix}$$

where we use the shorthand $c\theta$ and $s\theta$ to mean $\cos\theta$ and $\sin\theta$ respectively. With some tedium we can write the derivative $\frac{1}{2}$

$$\dot{R} = S(\omega)R$$

we can solve for ω in terms of roll-pitch-yaw angles and rates to obtain

$$\begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} s\theta_p\theta_y + \dot{\theta}_r \\ c\theta_ps\theta_r\theta_y + c\theta_r & \dot{\theta}_p \\ c\theta_pc\theta_r\dot{\theta}_y + s\theta_r\dot{\theta}_p \end{bmatrix}$$

which can be factored as

$$\omega = \begin{bmatrix} 1 & 0 & s\theta_p \\ 0 & c\theta_r & c\theta_p s\theta_r \\ 0 & s\theta_r & c\theta_p c\theta_r \end{bmatrix} \begin{bmatrix} \dot{\theta}_r \\ \dot{\theta}_p \\ \dot{\theta}_y \end{bmatrix}$$

and written concisely as: $\omega = B(\Gamma)\dot{\Gamma}$

Jacobian Condition and Manipulability

Consider the set of joint velocities with a unit norm $q^Tq = 1$ which lie on the surface of a hypersphere in the *N*-dimensional joint velocity space. Substituting Eq. 8.6 we can write $v^T(J(q)J(q)^T)^{-1}v = 1$ which is the equation of points on the surface of a 6-dimensional ellipsoid in the endeffector velocity space.

Jacobian Condition and Manipulability (continued...)

Fig. 8.2. End-effector velocity ellipsoids.

a Translational velocity ellipsoid for the nominal pose;
b rotational velocity ellipsoid for a near singular pose, the ellipsoid is an elliptical plate

Resolved-Rate Motion Control

- The approach just described, based purely on integration, suffers from an accumulation of error which we observed as the unwanted x- and z-direction motion in Fig. 8.4a.
- We can eliminate this by changing the algorithm to a closed-loop form based on the difference between the desired and actual pose

$$q^*\langle k \rangle = J(q\langle k \rangle)^{-1}(\xi^*\langle k \rangle \ominus \mathcal{K}(q\langle k \rangle))$$
$$q^*\langle k+1 \rangle = q\langle k \rangle + K_p \delta_t \dot{q}^*\langle k \rangle$$

- where K_p is a proportional gain
- the input is now the desired pose $\xi^*\langle k \rangle$ as a function of time rather than V^*

Resolved-Rate Motion Control (continued...)

Fig. 8.5. The
Simulink® model
sl_rrmc2 for
closed-loop
resolved-rate
motion control
with circular endeffector motion

Jacobian Singularity

Fig. 8.6. Schematic of Jacobian, vand for different cases of N. The dotted areas represent matrix regions that could be deleted in order to create a square subsystem capable of solution

Jacobian Singularity (continued...)

- The pseudo-inverse of the Jacobian J^+ has the property that $J^+J=1$
 - just as the inverse does, and is defined as $J^+ = (J^T J)^{-1} J^T$
 - The solution: $q = J(q)^+v$ provides a least squares solution for which $|J_{\dot{q}} v|$ is the smallest.

Jacobian for Under-Actuated Robot

We have to confront the reality that we have *only* two degrees of freedom which we will use to control just v_x and v_{ν} .

$$\begin{bmatrix} v_{x} \\ v_{y} \\ \hline v_{z} \\ \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} = \begin{bmatrix} J_{xy} \\ J_{0} \end{bmatrix} \begin{bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \end{bmatrix}$$

- and taking the top partition, the first two rows, we write $\begin{bmatrix} v_x \\ v_y \end{bmatrix} = J_{xy} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix}$
- where J_{xy} is a 2×2 matrix. we invert this $\begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = J_{xy}^{-1} \begin{bmatrix} v_x \\ v_y \end{bmatrix}$

Jacobian for Over-Actuated Robot

- An over-actuated or redundant robot has N > 6, and a Jacobian that is wider than it is tall. In this case we rewrite Eq. 8.6 to use the left pseudo-inverse q = J(q) + v
 - which, of the infinite number of solutions possible, will yield the one for which $|\dot{q}|$ is smallest the minimum–norm solution.
 - This is remarkably useful because it allows Eq. 8.9 to be written as $q = \frac{J(q)^+ v}{end-effector\ motion} + \underbrace{NN^+ \dot{q}_{ns}}_{null-space\ motion}$
 - where the $N \times N$ matrix NN^+ projects the desired joint motion into the null-space so that it will not affect the end-effector Cartesian motion, allowing the two motions to be superimposed.

Force Relationships

concept of a spatial velocity:

$$v = (v_x, v_y, v_z, \omega_x, \omega_y, \omega_z)$$

For forces there is a spatial equivalent called a wrench $g = (f_x, f_y, f_z, m_x, m_y, m_z) \in \mathbb{R}^6$ which is a vector of forces and moments.

Transforming Wrenches between Frames

It can be used to map wrenches between coordinate frames. For the case of two frames attached to the same rigid body

$$A_g = \left(B_{J_A}\right)^T B_g$$

- where B_{J_A} is given by either Eq. 8.4 or 8.5 and is a function of the relative pose A_{T_R} frame $\{A\}$ to frame $\{B\}$.
- Note that the force transform differs from the velocity transform in using the transpose of the Jacobian and the mapping is reversed – it is from frame {B} to frame {A}.

Transforming Wrenches to Joint Space

- If the wrench is defined in the end-effector coordinate frame then we use instead $Q = N_{J(q)^T}N_g$
- Interestingly this mapping from external quantities (the wrench) to joint quantities (the generalized forces) can never be singular as it can be for velocity.

Inverse Kinematics: a General Numerical Approach

- The principle is shown in Fig. 8.7. The virtual robot is drawn solidly in its current pose and faintly in the desired pose. From the overlaid pose graph we write $\xi_E^* = \xi_E \oplus \xi_\Delta$
 - which we can rearrange as $\xi_{\Delta} = \bigcirc \xi_{E} \oplus \xi_{E}$

▶ **Fig. 8.7.** Schematic of the Numerical inverse kinematic approach, showing the current ξ_E and the desired ξ_E^* manipulator pose

Inverse Kinematics: a General Numerical Approach (continued...)

- We postulate a *special* spring between the end-effector of the two poses which is pulling (and twisting) the robot's end-effector toward the desired pose with a wrench proportional to the *difference* in pose $E_g \alpha \Delta(\xi_E, \xi_E^*)$
 - The wrench is also a 6-vector and comprises forces and moments. We write $E_g = \Upsilon^{\Delta}(\xi_E, \xi_E^*)$
 - where Υ is a constant and the current pose is computed using forward kinematics $\xi_E \langle k \rangle = \mathcal{K}(q \langle k \rangle)$
 - where $q\langle k\rangle$ is the current estimate of the inverse kinematic solution.
 - The end–effector wrench Eq. 8.14 is *resolved* to joint forces: $Q\langle k\rangle = E_{Ig\langle k\rangle^T}E_{g\langle k\rangle}$

Inverse Kinematics: a General Numerical Approach (continued...)

- We assume that the virtual robot has no joint motors only viscous dampers so the joint velocity due to the applied forces will be proportional $\dot{q}\langle k\rangle = Q\langle k\rangle/B$
 - where B is the joint damping coefficients (we assume all dampers are the same). Now we can write a discrete-time update for the joint coordinates $q\langle k+1\rangle = \alpha q\langle k\rangle + q\langle k\rangle$
 - where α is some well chosen gain.
 - In Section 7.3.3 we used a mask vector when computing the inverse kinematics of a robot with N < 6. The mask vector m can be included in Eq. 8.16 which becomes:

$$Q\langle k\rangle = N_{J(q\langle k\rangle)^T} \operatorname{diag}(m) E_{g\langle k\rangle}$$

References

- Corke PI (2007) A simple and systematic approach to assigning Denavit-Hartenberg parameters. IEEE T Robotic Autom 23(3):590-594
- Corke PI (1996b) Visual control of robots: High-performance visual servoing. Mechatronics, vol 2. Research Studies Press (John Wiley). Out of print and available at http://www.petercorke.com/bluebook