Class 8: Mini Project

Idara Ibekwe: A16865157

About

In today's lab we will work with fine needle aspiration (FNA) of a breast mass from the University of Wisconsin

Data Import

```
fna.data= "WisconsinCancer(1).csv"
wisc.df <- read.csv("WisconsinCancer (1).csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis radio	ıs_mean	${\tt texture_mean}$	perimeter_mean	n area_mea	n
842302	M	17.99	10.38	122.80	1001.	0
842517	M	20.57	17.77	132.90	1326.	0
84300903	M	19.69	21.25	130.00	1203.	0
84348301	M	11.42	20.38	77.58	386.	1
84358402	M	20.29	14.34	135.10	1297.	0
843786	M	12.45	15.70	82.57	7 477.	1
	smoothness_mean	n compa	ctness_mean co	oncavity_mean o	concave.po	ints_mean
842302	0.11840)	0.27760	0.3001		0.14710
842517	0.08474	1	0.07864	0.0869		0.07017
84300903	0.10960)	0.15990	0.1974		0.12790
84348301	0.14250)	0.28390	0.2414		0.10520
84358402	0.10030)	0.13280	0.1980		0.10430
843786	0.12780)	0.17000	0.1578		0.08089
	symmetry_mean	fractal	_dimension_mea	an radius_se te	exture_se	perimeter_se
842302	0.2419		0.0787	71 1.0950	0.9053	8.589
842517	0.1812		0.0566	0.5435	0.7339	3.398
84300903	0.2069		0.0599	99 0.7456	0.7869	4.585
84348301	0.2597		0.0974	14 0.4956	1.1560	3.445

84358402	0.1809		0.05883		0.7813	5.438
843786	0.2087		0.07613		0.8902	2.217
0.40000	-	-	compactness_se	• –	-	_
842302		.006399	0.04904			0.01587
		.005225	0.01308			0.01340
84300903		.006150	0.04006			0.02058
84348301		.009110	0.07458			0.01867
84358402		.011490	0.02461			0.01885
843786		.007510	0.03345			0.01137
0.4.0.0.0	• • -	actal_di	mension_se rad	-	_	
842302	0.03003		0.006193	25.38	17.33	
842517	0.01389		0.003532	24.99	23.41	
84300903	0.02250		0.004571	23.57	25.53	
84348301			0.009208	14.91	26.50	
84358402	0.01756		0.005115	22.54	16.67	
843786	0.02165	•	0.005082	15.47	23.75	
0.40000	_		orst smoothnes	_		
842302	184.6		19.0	0.1622	0.665	
842517	158.8		56.0	0.1238	0.186	
84300903	152.5		09.0	0.1444	0.424	
84348301	98.8		67.7	0.2098	0.866	
84358402	152.2		75.0	0.1374	0.205	
843786	103.4		41.6	0.1791	0.524	19
040200	0.711		e.points_worst 0.2654	•		
842302 842517	0.711		0.2654			
84300903	0.241		0.1860			
84348301	0.430		0.2430			
84358402	0.400		0.1625			
843786	0.535		0.1741			
043700	fractal_dimens			0.09	00	
842302	iractar_armens	0.1189				
842517		0.0890				
84300903		0.0875				
84348301		0.1730				
84358402		0.0767				
843786		0.1244				
		·				

Q1. How many observations/patients/individuals/samples are in this dataset? 569 observations

Q2. How many Observations have a malignant diagnosis

```
sum(wisc.df$diagnosis == "M")
[1] 212
     212
     Q3. How many variable/features in the data are suffixed with mean
  ncol(wisc.df)
[1] 31
  colnames(wisc.df)
 [1] "diagnosis"
                                 "radius_mean"
 [3] "texture_mean"
                                 "perimeter_mean"
 [5] "area_mean"
                                 "smoothness_mean"
 [7] "compactness_mean"
                                 "concavity_mean"
 [9] "concave.points_mean"
                                 "symmetry_mean"
[11] "fractal_dimension_mean"
                                 "radius_se"
[13] "texture_se"
                                 "perimeter_se"
[15] "area_se"
                                 "smoothness_se"
[17] "compactness_se"
                                 "concavity se"
[19] "concave.points_se"
                                 "symmetry_se"
[21] "fractal_dimension_se"
                                 "radius_worst"
[23] "texture_worst"
                                 "perimeter_worst"
[25] "area_worst"
                                 "smoothness_worst"
[27] "compactness_worst"
                                 "concavity_worst"
[29] "concave.points_worst"
                                 "symmetry_worst"
[31] "fractal_dimension_worst"
  inds <- grep("_mean", colnames(wisc.df))</pre>
  length(inds)
[1] 10
  grep("_mean", colnames(wisc.df), value=T)
```

```
[1] "radius_mean" "texture_mean" "perimeter_mean" [4] "area_mean" "smoothness_mean" "compactness_mean" [7] "concavity_mean" "concave.points_mean" "symmetry_mean"
```

[10] "fractal_dimension_mean"

##Initial Analysis

Before analysis I want to take out the expert diagnoses column (a.k.a the answer) from our dataset.

```
diagnosis <- as.factor(wisc.df$diagnosis)
head(diagnosis)</pre>
```

[1] M M M M M M M Levels: B M

```
wisc.data <- wisc.df[,-1]</pre>
```

##CLustering

We can try kmeans() clustering first

```
km <- kmeans(wisc.data, centers=2)
km$cluster</pre>
```

842302	842517	84300903	84348301	84358402	843786	844359	84458202
1	1	1	2	1	2	1	2
844981	84501001	845636	84610002	846226	846381	84667401	84799002
2	2	2	1	1	2	2	2
848406	84862001	849014	8510426	8510653	8510824	8511133	851509
2	1	1	2	2	2	2	1
852552	852631	852763	852781	852973	853201	853401	853612
1	1	2	1	1	1	1	2
85382601	854002	854039	854253	854268	854941	855133	855138
1	1	1	1	2	2	2	2
855167	855563	855625	856106	85638502	857010	85713702	85715
2	2	1	2	2	1	2	2
857155	857156	857343	857373	857374	857392	857438	85759902
2	2	2	2	2	1	2	2
857637	857793	857810	858477	858970	858981	858986	859196
1	2	2	2	2	2	2	2

85922302	859283	859464	859465	859471	859487	859575	859711
2	2		2	2			
859717	859983	8610175	8610404	8610629	8610637	8610862	8610908
1	2	2	1	2	1	1	2
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
2	2	1	1	2	1	2	1
861597	861598	861648	861799	861853	862009	862028	86208
2	2	2	2	2	2	2	1
86211	862261	862485	862548	862717	862722	862965	862980
2	2	2	2	2	2	2	2
862989	863030	863031	863270	86355	864018	864033	86408
2	2	2	2	1	2	2	2
86409	864292	864496	864685	864726	864729	864877	865128
2	2	2	2	2	2	1	1
865137	86517	865423	865432	865468	86561	866083	866203
2	1	1	2	2	2	2	1
866458	866674	866714	8670	86730502	867387	867739	868202
2	1	2	2	2	2	1	2
868223	868682	868826	868871	868999	869104	869218	869224
2	2	2	2	2	1	2	2
869254	869476	869691	86973701	86973702	869931	871001501	871001502
2	2	2	2	2	2	2	2
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
2	2	2	2	1	2	2	2
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
2	1	1	2	1	2	2	1
8712766	8712853	87139402	87163	87164	871641	871642	872113
1	2	2	2	2	2	2	2
872608	87281702	873357	873586	873592	873593	873701	873843
2	2	-		1			
873885	874158	874217		874662	874839	874858	875093
2	2	1	2	2	2	2	2
875099	875263	87556202	875878			877486	877500
2	2		2	2			2
877501	877989	878796	87880	87930	879523		
2		1					
8810158	8810436	881046502					
2	2						
8811523	8811779	8811842					
2			1				
8813129		88147101					
2		2					
88203002	88206102	882488	88249602	88299702	883263	883270	88330202

2	1	2	2	1	1	2	1
88350402	883539	883852		884180	884437		
2	2	2	2	1	2	2	2
88466802	884689	884948	88518501	885429	8860702	886226	886452
2	2	1	2	1	1	1	2
88649001	886776	887181	88725602	887549	888264	888570	889403
1	2	1	2	1	1	1	2
889719	88995002	8910251	8910499	8910506	8910720	8910721	8910748
1	1	2	2	2	2	2	2
8910988	8910996	8911163				8911800	
1	2	1	2	2	1	2	2
8912049	8912055	89122	8912280	8912284	8912521	8912909	8913
1		1			2		2
		89143602					
2	2	2	2	2			
891936		892214					
2	2		2		2		2
89296		89344					
2	2	2	2				
89382602	893988	894047					
2	2	2					2
894604		894855					
2	1	2	1	2			
8953902		896839					
2	2			2			1
897604		897880					
2	1	2	1		_	2	_
89864002		898678					
2	2	2					2
899987							901034301
1	2	2	2			2	
901034302		9010598					
							2
_							901303
1	1			1			
							90251
2		2					
							903483
2		2					2
							904357
1	1		2				2
							905190
1	2	2	2	2	2	2	2

90524101	905501	905502	905520	905539	905557	905680	905686
1	2	2	2	2	2	2	2
905978	90602302	906024	906290	906539	906564	906616	906878
2	1	2	2	2	2	2	2
907145	907367	907409	90745	90769601	90769602	907914	907915
2	2	2	2	2	2	2	2
908194	908445	908469			909220	909231	909410
1	1	2	2	2	2	2	2
909411	909445	90944601	909777	9110127	9110720	9110732	9110944
2	1	2	2	1	2	1	2
911150	911157302	9111596	9111805	9111843	911201	911202	9112085
2	1	2	1	2	2	2	2
9112366	9112367	9112594	9112712	911296201	911296202	9113156	911320501
2	2	2	2	1	1	2	2
911320502	9113239	9113455	9113514	9113538	911366	9113778	9113816
2	2	2	2	1	2	2	2
911384	9113846	911391	911408	911654	911673	911685	911916
2	2	2	2	2	2	2	2
912193	91227	912519	912558	912600	913063	913102	913505
2	2	2	2	2	2	2	1
913512	913535	91376701	91376702	914062	914101	914102	914333
2	2	2	1	1	2	2	2
914366	914580	914769	91485	914862	91504	91505	915143
2	2	1	1	2	2	2	1
915186	915276	91544001	91544002	915452	915460	91550	915664
2	2	2	2	2	2	2	2
915691	915940	91594602	916221	916799	916838	917062	917080
2	2	2	2	1	1	2	2
917092	91762702	91789	917896	917897	91805	91813701	91813702
2	1	2	2	2	2	2	2
918192	918465		91903901	91903902	91930402		
2	2	2	2			2	1
91979701	919812			921385			922296
2	2	2	2	2	2	2	2
922297	922576	922577	922840	923169	923465	923748	923780
2	2	2	2	2	2	2	2
924084	924342	924632	924934	924964	925236	925277	925291
2					2		
	925311						
2	2	2	1	1	1	2	1
92751							
2							

```
table(km$cluster)

1  2
131 438

Cross-table

table(km$cluster, diagnosis)

diagnosis
    B     M
1    1 130
2 356 82
```

Let's try hclust() the key input required for hclust() is a distance matrix as produced by the dist() function.

```
hc <- hclust(dist(wisc.data))</pre>
```

I can make a tree like figure

plot(hc)

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

PCA

Do we need to scale the data?

We can look at the sd of each column (original variable)

4:	++	
radius_mean	texture_mean	perimeter_mean
4	4	24
area_mean	${\tt smoothness_mean}$	${\tt compactness_mean}$
352	0	0
concavity_mean	concave.points_mean	symmetry_mean
0	0	0
fractal_dimension_mean	radius_se	texture_se
0	0	1
perimeter_se	area_se	smoothness_se
2	45	0
compactness_se	concavity_se	concave.points_se
0	0	0
symmetry_se	fractal_dimension_se	radius_worst
0	0	5

```
texture_worst perimeter_worst area_worst
6 34 569
smoothness_worst concavity_worst
0 0 0
concave.points_worst symmetry_worst fractal_dimension_worst
0 0 0
```

Yes we need to scale. We will run prcomp() with scale=True().

```
wisc.pr <- prcomp(wisc.data,scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427\ 0.6324\ 0.72636\ 0.79239\ 0.84734\ 0.88759\ 0.91010
                                         PC10
                           PC8
                                  PC9
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Generate our main PCA plot (score plot, PC1 vs PC2 plot)

```
library(ggplot2)
res <- as.data.frame(wisc.pr$x)</pre>
```

```
ggplot(res) +
  aes(PC1, PC2, col=diagnosis) +
  geom_point()
```


Combining methods

Clustering on PCA results

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method= "ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership factor I need to "cut" the tree with the ${\tt cutree}$ () function.

```
grps <- cutree(hc, k=2)

Q. How many patients in each group?

table(grps)

grps
1 2
203 366

plot(res$PC1, res$PC2, col=grps)</pre>
```


Prediction

We can use our PCA result (model) to do predictions, that is take new unseen data and project it onto our new PC variables

```
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                     PC5
                                                                PC6
     2.576616 -3.135913
                         1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                     0.8193031
           PC8
                     PC9
                                PC10
                                          PC11
                                                    PC12
                                                              PC13
                                                                       PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                     PC16
                                 PC17
                                             PC18
                                                         PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
                     PC22
                                 PC23
                                            PC24
                                                        PC25
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121
                                                             0.078884581
```

```
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238

PC27 PC28 PC29 PC30

[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029

[2,] -0.001134152 0.09638361 0.002795349 -0.019015820

plot(res$PC1, res$PC2, col=grps)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2],labels=c(1,2), col="white")
```


Summary

Principle component analysis (PCA) is a super useful method for analyzing large data sets. It works by finding new variables (PCs) that capture the most variance from the original variables in your data set.