Continuous Distributions

Beta
$$α > 0$$
 $β > 0$ $μ = \frac{\Gamma(α + β)}{\Gamma(α)\Gamma(β)}x^{α-1}(1 - x)^{β-1}, 0 < x < 1$ $μ = \frac{α}{α + β}, σ^2 = \frac{αβ}{(α + β + 1)(α + β)^2}$

Chi-square $χ^2(r)$ $r = 1, 2, ...$ $M(t) = \frac{1}{(1 - 2t)^{r/2}}, t < \frac{1}{2}$ $μ = r, σ^2 = 2r$

Exponential $θ > 0$ $M(t) = \frac{1}{1 - θt}, t < \frac{1}{θ}$ $μ = θ, σ^2 = θ^2$

Gamma $α > 0$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < ∞$ $M(t) = \frac{1}{(1 - θt)^α}x^{α-1}e^{-x/θ}, 0 < x < \infty$ $M(t) =$