Глава I ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

§ 1. Кинематика

В задачах данного раздела необходимо, прежде чем приступать к числовым расчетам, представить все величины в единицах системы СИ. Если в задаче приведена графическая зависимость нескольких величин от какой-либо одной и при этом все кривые изображены на одном графике, то по оси у задаются условные единицы.

1.1. Первую половину времени своего движения автомобиль двигался со скоростью $v_1 = 80 \text{ км/ч}$, а вторую половину времени — со скоростью $v_2 = 40 \text{ км/ч}$. Какова средняя скорость \overline{v} движения автомобиля?

Решенис:

Средняя скорость определяется выражением: $\overline{v} = \frac{s}{t}$, где

$$s=s_1+s_2=v_1\frac{t}{2}+v_2\frac{t}{2}$$
, т.к. $t_1=t_2=\frac{t}{2}$. Т.е. $s=\frac{t}{2}(v_1+v_2)$, отсюда: $\overline{v}=\frac{t(v_1+v_2)}{2t}=\frac{v_1+v_2}{2}$, $\overline{v}=60$ км/ч.

1.2. Первую половину своего пути автомобиль двигался со скоростью $v_1 = 80$ км/ч, а вторую половину пути — со скоростью $v_2 = 40$ км/ч. Какова средняя скорость \overline{v} движения автомобиля?

Решение:

Средняя скорость определяется выражением: $\bar{v} = \frac{s}{t} - (1)$,

где
$$t=t_1+t_2$$
; $s_1=s_2=\frac{s}{2}$. Тогда $t_1=\frac{s}{2v_1}$; $t_2=\frac{s}{2v_2}$, откуда

$$t = \frac{s(v_1 + v_2)}{2v_1v_2} - (2). \quad \Pi$$
одставляя (2) в (1), получим:
$$\overline{v} = \frac{s \cdot 2v_1v_2}{s(v_1 + v_2)} = \frac{2v_1v_2}{v_1 + v_2}, \quad \overline{v} = \frac{2 \cdot 80 \cdot 40}{80 + 40} \approx 53,3 \text{ км/ч}.$$

1.3. Пароход идет по реке от пункта A до пункта B со скоростью $v_1 = 10$ км/ч, а обратно – со скоростью $v_2 = 16$ км/ч. Найти среднюю скорость \overline{v} парохода и скорость u течения реки.

Решение:

Средняя скорость
$$\overline{v} = \frac{s}{t} - (1)$$
, где $t = t_1 + t_2$, а $s_1 = s_2 = \frac{s}{2}$. Тогда $t_1 = \frac{s}{2v_1}$ и $t_2 = \frac{s}{2v_2}$, откуда $t = \frac{s(v_1 + v_2)}{2v_1v_2} - (2)$. Подставляя (2) в (1), получим: $\overline{v} = \frac{s \cdot 2v_1v_2}{s(v_1 + v_2)} = \frac{2v_1v_2}{v_1 + v_2}$ или $\overline{v} = 12,3$ км/ч. При движении вниз по течению $\overline{v} = v_1 + u$, а при движении вверх по течению $\overline{v} = v_2 - u$. Приравняем правые части уравнений и выразим $u: v_1 + u = v_2 - u$, $2u = v_2 - v_1$, $u = \frac{v_2 - v_1}{2}$; $u = 3$ км/ч.

1.4. Найти скорость v относительно берега реки: а) лодки, идущей по течению; б) лодки, идущей против течения; в) лодки, идущей под углом $\alpha = 90^\circ$ к течению. Скорость течения реки u = 1 м/c, скорость лодки относительно воды $v_0 = 2 \text{ м/c}$.

Решение:

а) $\vec{v} = \vec{v}_0 + \vec{u}$, или в проа) $\vec{v} = \vec{v_0} + \vec{u}$, или в про-екции на ось x: $\vec{v} = \vec{v_0} + \vec{u}$, $\vec{v_0}$ \vec или в проекции на ось х:

 $v = v_0 - u = 1$ м/с. в) $\vec{v} = \vec{v}_0 + \vec{u}$, сложив вектора по правилу треугольников, получим: $v = \sqrt{v_0^2 + u^2} = \sqrt{4 + 1} = \sqrt{5} \approx 2,24$ м/с.

1.5. Самолет летит относительно воздуха со скоростью $v_6 = 800 \, \mathrm{кm/v}$. Ветер дует с запада на восток со скоростью $u = 15 \, \mathrm{m/c}$. С какой скоростью v самолет будет двигаться относительно земли и под каким углом α к меридиану надо держать курс, чтобы перемещение было: а) на юг; б) на север; в) на запад; г) на восток?

Решение:

- а) $\vec{v} = \vec{v}_0 + \vec{u}$, или в скалярном виде: $v_0 = \sqrt{v^2 u^2}$. Подставляя числовые данные и учитывая, что u = 15 м/c = 54 км/ч, получаем $v_0 = 798 \text{ км/ч}$. Из рисунка видно, что $v = v_0 \cos \alpha$; $\cos \alpha = v/v_0$; $\cos \alpha = 0.998$; $\alpha \approx 4^\circ$. Курс на юго-запад.
- б) $\vec{v} = \vec{v}_0 + \vec{u}$, или в скалярном виде: $v_0 = \sqrt{v^2 u^2}$ или $v_0 = 798$ км/ч. Поскольку $v = v_0 \cos \alpha$, то $\cos \alpha = v / v_0$; $\cos \alpha = 0.998$; $\alpha \approx 4^\circ$. Курс на северо-запад.
- в) $\vec{v} = \vec{v}_0 + \vec{u}$, или в проекции на ось x: $v = v_0 u$; v = 800 54 = 746 км/ч. Курс на запад.
- г) $\vec{v} = \vec{v}_0 + \vec{u}$, или в проекции на ось x: $v = v_0 + u$; v = 800 + 54 = 854 км/ч. Курс на восток.
- **1.6.** Самолет летит от пункта A до пункта B, расположенного на расстоянии l=300 км к востоку. Найти продолжительность t полета, если: а) ветра нет; б) ветер дует с юга на север; в) ветер

дует с запада на восток. Скорость ветра $u = 20 \,\text{м/c}$, скорость самолета относительно воздуха $v_0 = 600 \text{ км/ч}$?

Решение:

а)
$$t = \frac{l}{v_0}$$
; $t = 0.5 \,\mathrm{u}$;

б) $v_0^2 = \left(\frac{l}{t}\right)^2 + u^2$, отсюда найдем
$$t = \sqrt{\frac{l^2}{v_0^2 - u^2}}$$
 или $t = 0.504 \,\mathrm{u} = \frac{e}{A}$

$$= 30.2 \,\mathrm{MuH}$$
;

в) $t = \frac{l}{v_0 + u}$; $t = \frac{300}{672} = 0.45 \,\mathrm{u} = 26.8 \,\mathrm{MuH}$.

1.7. Лодка движется перпендикулярно к берегу со скоростью v = 7.2 км/ч. Течение относит ее на расстояние l = 150 м вниз по реке. Найти скорость u течения реки и время t, затраченное на переправу через реку. Ширина реки L = 0.5 км.

Решение:

Движение лодки относительно реки выражается формулой: L = vt, отку-

лодка переместилась относительно

да $t = \frac{L}{v} = 250 \text{ c.}$ За это же время t

берега на расстояние l, причем скорость лодки относительно берега равна скорости реки, тогда $u = \frac{l}{r}$; u = 0.6 м/c.

1.8. Тело, брошенное вертикально вверх, вернулось на землю через время t = 3 с. Какова была начальная скорость v_0 тела и на какую высоту h оно поднялось?

Решение.

Запишем уравнения кинематики в проекциях на ось $y: y(t) = v_0 t - \frac{1}{2}$ и $v(t_1) = h$; наивысшей точке подъема имеем $y(t_1) = h$; $v(t_1) = 0$, т. е. $h = v_0 t_1 - q t_1^2 / 2$ и $0 = v_0 - q t_1$, где $t_1 = \frac{t}{2}$ — время подъема. Откуда $v_0 = q t_1$,

 $v_0=rac{qt}{2}\,,\,\,h=qt_1^2-rac{qt_1^2}{2}=rac{qt_1^2}{2}\,;\,\,h=rac{qt^2}{8}\,.$ Подставляя числовые данные, получим $v_0 = 14.7 \text{ м/c}$; $h \approx 11 \text{ м}$.

1.9. Камень бросили вертикально вверх на высоту $h_0 = 10 \text{ м}$. Через какое время t он упадет на землю? На какую высоту hподнимется камень, если начальную скорость камня увеличить вдвое?

Решение:

Воспользуемся решением задачи 1.8 и запишем систему уравнений:
$$\begin{pmatrix} h_0 = v_0 t_1 - \frac{q t_1}{2} & -(1), \\ 0 = v_0 - q t_1 & -(2), \text{ откуда} \\ t = 2t_1 & -(3), \end{pmatrix} \begin{cases} v_0 = \frac{q t}{2} & -(4), \\ h_0 = \frac{q t^2}{8} & -(5). \end{cases}$$

Тогда из (5) $t = \sqrt{\frac{8h_0}{\sigma}}$, отсюда t = 2.9 с. Из (2) $t_1 = \frac{v_0}{\sigma}$. Следовательно, если v_0 увеличится в 2 раза, время подъема также увеличится в 2 раза. Из (1) $h = 2v_0 \cdot 2t_1 - \frac{q4t_1^2}{2}$; $h = 4\left(v_0 t_1 - \frac{q t_1^2}{2}\right) = 4h_0 = 40 \text{ M}.$

1.10. С аэростата, находящегося на высоте h = 300 м, упал камень. Через какое время t камень достигнет земли, если: а) аэростат поднимается со скоростью v = 5 м/с; б) аэростат опускается со скоростью v = 5 м/с; в) аэростат неподвижен?

Решение:

Решаем задачу относительно неподвижной системы отсчета — земли. Тогда скорость камня в начальный момент времени относительно земли $\vec{v}_{\text{отн}}$ равна сумме скоростей: камня относительно аэростата $\vec{v}_{\text{отн}} = 0$ и скорости v аэростата относительно земли, т.е. $\vec{v}_{\text{отн}} = 0 + \vec{v}$.

Таким образом, при t = 0 скорость камня равна скорости аэростата. В первый момент времени камень, имея начальную скорость v, полетит вверх и за время t_1 поднимется на высоту $h_1 = \frac{gt_1^2}{2}$ — (1) (см задачу 1.8). Остановившись в верхней точке, он полетит вниз и за время t_2 преодолеет расстояние $h + h_1 = \frac{gt_2^2}{2}$ — (2). Общее время $t = t_1 + t_2$ — (3). При движении вверх скорость $v = gt_1$, откуда $t_1 = \frac{v}{g}$ — (4). Подставив (4) в (1), получим $h_1 = \frac{v^2}{(2\sigma)}$. Преобразуем уравнение (2): $h + \frac{v^2}{2\sigma} = \frac{gt_2^2}{2}$. Отсюда $t_2 = \frac{\sqrt{2gh + v^2}}{\sigma}$ — (5). Подставив (4) и (5) в (3), получим $t = \frac{\left(v + \sqrt{2gh + v^2}\right)}{g}$; $t \approx 8.4$ с.

Уравнение движения камня:

$$h = vt + \frac{gt^2}{2} \qquad \text{или} \qquad \frac{gt^2}{2} + vt - h = 0.$$

Решим квадратное уравнение относительно t: $D = v^2 + 2gh$;

$$t = \left(-v \pm \sqrt{v^2 + 2gh}\right)/g$$
. Величина t должна быть положительна.

следовательно: $t \approx 7,3$ с.

Уравнение движения камня: $h = \frac{gt^2}{2}$, откуда $t = \sqrt{2h/g}$, $t \approx 7.8$ с.

1.11. Тело брошено вертикально вверх с начальной скоростью $v_0 = 9.8$ м/с. Построить график зависимости высоты h и скорости v от времени t для интервала $0 \le t \le 2$ с через 0.2с.

Решение:

Зависимость скорости и высоты от времени выражается следующими формулами: $v = v_0 - gt$;

$$h = v_0 t - \frac{gt^2}{2}$$
. Для задан-

ного интервала составим таблицу и построим график.

t, c	0	0,2	0,4	0,6	0,8	1	1,2	1,4	1,6	1,8	2
V, M/C	9,8	7,8	5,9	3,9	2,0	0	-2,0	-3,9	-5,9	-7,8	-9,8
Н, м	0	1,8	3,1	4,1	4,7	4,9	4,7	4,1	3,1	1,8	0

1.12. Тело падает с высоты $h = 19,6 \,\mathrm{m}$ с начальной скоростью $v_0 = 0$. Какой путь пройдет тело за первую и последнюю 0,1c своего движения?

Решение:

За первую 0,1 с движения тело пройдет путь $h_1 = gt_1^2/2$; $h_1 = 0.049 \,\mathrm{M}$. Весь путь $h = gt^2/2$ тело пройдет за время $t = \sqrt{\frac{2h}{g}}$; $t = \sqrt{\frac{2 \cdot 19.6}{9.8}} = 2 \text{ c.}$

За последнюю 0,1 с движения тело пройдет путь $h_3 = h - h_2$, где h_2 — путь, пройденный телом за время $t_2 = t - 0.1$. Так как $h_2 = \frac{gt_2^2}{2}$, h_2 h_3 h_4 $h_2 = \frac{g(t - 0.1)^2}{2}$, то путь $h_3 = h - \frac{g(t - 0.1)^2}{2}$; $h_3 = 19.6 - \frac{9.8(2-0.1)^2}{2} = 1.9 \text{ m}.$

1.13. Тело падает с высоты h = 19,6 м с начальной скоростью $v_0 = 0$. За какое время тело пройдет первый и последний 1 м своего пути?

Решение: Первый 1 м пути тело пройдет за время
$$h_1$$
 \overrightarrow{v} \downarrow \overrightarrow{g} $t_1 = \sqrt{\frac{2h_1}{g}}$, где $h_1 = 1$ м, таким образом h_2 h $t_1 = \sqrt{\frac{2\cdot 1}{9.8}} = 0.45 \, \text{с.}$ Общее время падения t_3 $t = \sqrt{\frac{2h}{g}}$; $t = \sqrt{\frac{2\cdot 19.6}{9.8}} = 2 \, \text{с.}$ Последний 1 м своего пути тело пройдет за время $t_3 = t - t_2$, где t_2 — время прохождения

пути
$$h_2=h-h_3$$
, а $h_3=1\,\mathrm{m}$. Т.к. $t_2=\sqrt{\frac{2h_2}{g}}$, $t_2=\sqrt{\frac{2(h-h_1)}{g}}$ то время $t_3=t-\sqrt{\frac{2(h-h_1)}{g}}$; $t_3=0.05\,\mathrm{c}$.

1.14. Свободно падающее тело в последнюю секунду движения проходит половину всего пути. С какой высоты h падает тело и каково время t его падения?

Решение:

Обозначим половину пути за
$$S$$
, тогда $h=2S$ — (1). Уравнение движения тела: $h=gt^2/2$ — (2). Вторая половина пути $S=vt_2+\frac{gt_2^2}{2}$, где $v=g(t-t_2)$; $t_2=1c$. Тогда $S=gt_2(t-t_2)+gt_2^2/2$ или, с учетом (1), $h=2gt_2(t-t_2)+gt_2^2$ — (3). Приравняем (2) и (3): $\frac{gt^2}{2}=2gt_2(t-t_2)+gt_2^2$. Умножив обе части уравнения на 2, разделив на g и раскрыв скобки, получим: $t^2=4t_2t-4t_2^2+2t_2^2$. Для удобства вычислений подставим значение t_2 : $t^2-4t+2=0$. Решим квадратное уравнение. $D=8$; $t=\frac{4\pm\sqrt{8}}{2}$; значение $t=0,6$ — не соответствует условию задачи, тогда $t=3,4$ с; $h=5\cdot3,4^2=57$ м.

1.15. Тело $\hat{1}$ орошено вертикально вверх с начальной скоростью v_0 , тело 2 падает с высоты h без начальной скорости. Найти зависимость расстояния l между телами 1 и 2 от времени t, если известно, что тела начали двигаться одновременно.

Решение:

Пусть тела 1 и 2 одинаковы, тогда время движения тела 1 до верхней точки подъема равно времени падения тела 2. Путь, пройденный телом 1: $h_1 = v_0 t - g t^2 / 2$ — (1); путь, пройденный телом 2 : $h_2 = g t^2 / 2$ — (2). Расстояние между телами $l = h - (h_1 + h_2)$. Сложив (1) и (2), получим $h_1 + h_2 = v_0 t$, тогда $l = h - v_0 t$.

1.16. Расстояние между двумя станциями метрополитена l=1,5 км. Первую половину этого расстояния поезд проходит равноускоренно, вторую — равнозамедленно с тем же по модулю ускорением. Максимальная скорость поезда v=50 км/ч. Найти ускорение a и время t движения поезда между станциями.

Решение:

 $1/2=at_1^2/2$ — при равноускоренном движении поезда. $1/2=vt_2-at_2^2/2$ — при его равнозамедленном движении. Общее время движения $t=t_1+t_2$. Максимальная скорость $v=at_1=at_2$, следовательно $t_1=t_2$. Весь путь $1=\frac{at_1^2}{2}+vt_1-\frac{at_2^2}{2}$. Отсюда $t_1=\frac{l}{v}$; $v=50\,\mathrm{km/y}=13,9\,\mathrm{m/c}$; $t_1=108\,\mathrm{c}=1,8\,\mathrm{muh}$; $t=3,6\,\mathrm{muh}$. $a=\frac{v}{t_1}$; $a=0,13\,\mathrm{m/c}^2$.

Для решения данной задачи можно также воспользоваться графическим методом. Построим график зависимости скорости поезда от времени. Путь равен площади под кривой или сумме площадей треугольников $0At_1$ и t_1At . Таким образом $l = v_{max}t_1/2 + v_{max}t_2/2$;

$$l=rac{1}{2}
u_{max} (t_1+t_2); \quad l=rac{1}{2}
u_{max} t$$
 . Откуда $t=rac{2l}{
u_{max}} pprox 3,6$ мин; $a=tg lpha = rac{
u_{max}}{t/2} pprox 0,13 \, ext{m/c}^2$.

1.17. Поезд движется со скоростью $v_0 = 36$ км/ч. Если выключить ток, то поезд, двигаясь равнозамедленно, остановится через время t = 20 с. Каково ускорение a поезда? На каком расстоянии s до остановки надо выключить ток?

Решение:

Уравнение пути в проекции на направление движения: $s = v_0 t - a t^2 / 2$. Уравнение скорости: $v = v_0 - a t$. Т.к. v = 0, то $a = v_0 / t$; $v_0 = 36$ км/ч = 10 м/с; a = -0.5 м/с²; s = 100 м.

1.18. Поезд, двигаясь равнозамедленно, в течение времени t=1 мин уменьшает свою скорость от $v_1=40$ км/ч до $v_2=28$ км/ч. Найти ускорение a поезда и расстояние s, пройденное им за время торможения.

Решение:

Уравнение скорости: $v_2 = v_1 - at$, откуда ускорение $a = \frac{v_1 - v_2}{t} = 0,055 \,\mathrm{m/c}^2$. Путь $s = v_1 t - \frac{at^2}{2}$; $s = 567 \,\mathrm{m}$.

1.19. Поезд движется равнозамедленно, имея начальную скорость $v_0 = 54$ км/ч и ускорение a = -0.5 м/с². Через какое время t и на каком расстоянии s от начала торможения поезд остановится?

Решение:

Уравнение скорости при равнозамедленном движении: $v = v_0 - at$ — (1). Поскольку по условию ускорение уже дано со знаком «-», то из уравнения (1), с учетом v = 0, 14

имеем $v_0 = at$, отсюда $t = \frac{v_0}{a}$, где $v_0 = 54$ км/ч = 15 м/с. Подставляя числовые данные, получим t = 30 с. Путь, с учетом a < 0, найдем по формуле $S = v_0 t - at^2 / 2$; S = 225 м.

1.20. Тело 1 движется равноускоренно, имея начальную скорость v_{10} и ускорение a_1 . Одновременно с телом 1 начинает двигаться равнозамедленно тело 2, имея начальную скорость v_{20} и ускорение a_2 . Через какое время t после начала движения оба тела будут иметь одинаковую скорость?

Решение:

1.21. Тело 1 движется равноускоренно, имея начальную скорость $v_{10} = 2$ м/с и ускорение a. Через время t = 10 с после начала движения тела 1 из этой же точки начинает двигаться равноускорению тело 2, имея начальную скорость $v_{20} = 12$ м/с и то же ускорение a. Найти ускорение a, при котором тело 2 сможет догнать тело 1.

Решение:

Пусть t — время от начала движения первого тела до встречи, t_1 — время, в течение которого двигалось только тело 1 (t_1 = 10 c), t_2 — время от начала движения

второго тела до встречи; $t = t_1 + t_2$. Путь, который тела пройдут до встречи: $S = v_{10}t + at^2/2$ — (1); $S = v_{20}t_2 + at_2^2/2$ — (2). Приравняем правые части (1) и (2). $v_{10} + a(t_1 + t_2) = v_{20} + at_2$, отсюда $a = (v_{20} - v_{10})/t_1$; $a = 1 \text{ M/c}^2$.

1.22. Зависимость пройденного телом пути s от времени t дается уравнением $s = At - Bt^2 + Ct^3$, где A = 2 м/с, B = 3 м/с 2 и C = 4 м/с 3 . Найти: а) зависимость скорости v и ускорения a от времени t; б) расстояние s, пройденное телом, скорость v и ускорение a тела через время t = 2 с после начала движения. Построить график зависимости пути s, скорости v и ускорения a от времени t для интервала $0 \le t \le 3$ с через 0.5с.

Решение:

- а) Скорость тела v = dS/dt; $v = A 2Bt + 3Ct^2$; $v = 2 6t + 12t^2$ м/с. Ускорение тела a = dv/dt = -2B + 6Ct; a = -6 + 24t м/с².
- б) Расстояние, пройденное телом, $s = 2t 3t^2 + 4t^3$. Тогда через время t = 2 с имеем s = 24 м; v = 38 м/с; a = 42 м/с².

1.23. Зависимость пройденного телом пути s от времени t дается уравнением $s=A-Bt+Ct^2$, где $a=6\,\mathrm{m},~B=3\,\mathrm{m/c}$ и $C=2\,\mathrm{m/c^2}.$ Найти среднюю скорость \overline{v} и среднее ускорение \overline{a}

тела для интервала времени $1 \le t \le 4$ с. Построить график зависимости пути s, скорости v и ускорения a от времени t для интервала $0 \le t \le 5$ с через 1 с.

Решение:

Средняя скорость тела определяется соотношением $\overline{v} = \frac{\Delta s}{\Delta t}$. По условию $s = A - Bt + Ct^2$, тогда при $t_1 = 1$ с имеем $s_1 = 5$; при $t_2 = 4$ с имеем $s_2 = 26$. Отсюда $\overline{v} = 7$ м/с. Среднее ускорение $\overline{a} = \Delta \overline{v} / \Delta t$. Поскольку $v = s' = -B + 2Ct^2$, то $v_1 = 1$, $v_2 = 13$, отсюда $\overline{a} = 4$ м/с².

1.24. Зависимость пройденного телом пути s от времени t дается уравнением $s = A + Bt + Ct^2$, где A = 3 м, B = 2 м/с и C = 1 м/с². Найти среднюю скорость \overline{v} и среднее ускорение \overline{a} тела за первую, вторую и третью секунды его движения.

Решение:

Средняя скорость
$$\overline{v} = \frac{\Delta s}{\Delta t}$$
. Пусть $t_0 = 0$; $t_1 = 1$ с; $t_2 = 2$ с; $t_3 = 3$ с. Тогда $\Delta s_1 = s_1 - s_0 = \left(3 + 2t_1 + t_1^2\right) - \left(3 + 2t_0 + t_0^2\right)$; $\Delta s_1 = 2t_1 + t_1^2$; $\overline{v}_1 = \frac{\Delta s_1}{\Delta t_1} = \frac{2t_1 + t_1^2}{t_1 - t_0} = 3$ м/с. Далее, $\Delta s_2 = s_2 - s_1$; $\Delta s_2 = \left(3 + 2t_2 + t_2^2\right) - \left(3 + 2t_1 + t_1^2\right) = 2\left(t_2 - t_1\right) + t_2^2 - t_1^2$; $\overline{v}_2 = \frac{\Delta s_2}{\Delta t_2}$

$$\overline{v}_2 = \frac{2(t_2 - t_1) + t_2^2 - t_1^2}{t_2 - t_1} = 5 \,\text{м/c.} \quad \text{Аналогично} \quad \text{для} \quad \overline{v}_3 = \frac{\Delta s_3}{\Delta t_3} \,;$$

$$\overline{v}_3 = \frac{2(t_3 - t_2) + t_3^2 - t_2^2}{t_3 - t_1} = 7 \,\text{м/c.} \quad \text{Среднее ускорение} \quad \overline{a} = \frac{\Delta v}{\Delta t} \,.$$
Поскольку $v = \frac{dS}{dt} = B + 2Ct$, то $v_0 = B + 2Ct_0 = 2 \,\text{м/c};$

$$v_0 = B + 2Ct_0 = 2 \,\text{м/c}; \quad v_2 = B + 2Ct_2 = 6 \,\text{м/c}; \quad v_3 = 8 \,\text{м/c.} \quad \text{Тогда}$$

$$\overline{a}_1 = \frac{v_1 - v_0}{t_1 - t_0} = 2 \,\text{м/c}^2; \qquad \overline{a}_2 = \frac{v_2 - v_1}{t_2 - t_1} = 2 \,\text{м/c}^2; \qquad \overline{a}_3 = \frac{v_3 - v_2}{t_3 - t_2} \,;$$

$$\overline{a}_3 = 2 \,\text{м/c}^2.$$

1.25. Зависимость пройденного телом пути s от времени t дается уравнением $s = A + Bt + Ct^2 + Dt^3$, где $C = 0.14 \text{ м/c}^2$ и $D = 0.01 \text{ м/c}^3$. Через какое время t тело будет иметь ускорение $a = 1 \text{ м/c}^2$? Найти среднее ускорение \overline{a} тела за этот промежуток времени.

Решение:

Мгновенная скорость
$$v=\frac{dS}{dt}$$
. Ускорение $a=\frac{d^2S}{dt^2}$. Имеем $\frac{dS}{dt}=v=B+2Ct+3Dt^2$; $\frac{d^2S}{dt^2}=2C+6Dt$. Таким образом $a=2C+6Dt$, откуда $t=a-2C/6D$; $t=12\,\mathrm{c}$. Среднее ускорение $\overline{a}=\Delta v/\Delta t$. Поскольку $v=B+2Ct+3Dt^2$, то можно найти $\Delta v=v_1-v_0$; $\Delta t=t_1-t_0$, где $t_1=12\,\mathrm{c}$, $t_0=0$. $v_0=B+2Ct_0+3Dt_0^2$; $v_1=B+2Ct_1+3Dt_1^2$, отсюда $\Delta v=2C\times (t_1-t_0)+3D(t_1^2-t_0^2)$; $\overline{a}=\frac{2C(t_1-t_0)+3D(t_1^2-t_0^2)}{t_1-t_0}$; $\overline{a}=2C+3D(t_1-t_0)$; $\overline{a}=0.64\,\mathrm{m/c}^2$.

1.26. С башни высотой h = 25 м горизонтально брошен камень со скоростью $v_x = 15$ м/с. Какое время t камень будет в движении? На каком расстоянии l от основания башни он упадет на землю? С какой скоростью v он упадет на землю? Какой угол ϕ составит траектория камня с горизонтом в точке его падения на землю?

Решение:

Перемещение камня по вертикали $S_y = h = gt^2/2$ — (1), по горизонтали $S_x = l = v_x t$ — (2). Из уравнения (1): $t = \sqrt{2h/g}$; t = 2,26 с. Из уравнения (2): $l = v_x t$; l = 33,9 м. Скорость камня $v = \sqrt{v_x^2 + v_y^2}$. Вертикальная

составляющая скорости $v_y = gt$, следовательно, $v = \sqrt{v_x^2 + (gt)^2}$. Искомый угол φ — угол между направлениями вектора скорости \vec{v} и вектора ее горизонтальной составляющей \vec{v}_x . Из рисунка видно, что $\cos \varphi = v_x/v$; $\cos \varphi = \frac{v_x}{\sqrt{v^2 + (gt)^2}}$; $\cos \varphi = 0.56$; $\varphi \approx 56^\circ$.

1.27. Камень, брошенный горизонтально, упал на землю через время t = 0.5 с на расстоянии l = 5 м по горизонтали от места бросания. С какой высоты h брошен камень? С какой скоростью v_x он брошен? С какой скоростью он упадет на землю? Какой угол ϕ составит траектория камня с горизонтом в точке его падения на землю?

Решение:

Перемещение камня по вертикали $S_y = h = gt^2/2$ — (1), по горизонтали $S_x = l = v_x t$ — (2). Из уравнения (1)

$$h = gt^2/2$$
; $h = 1,22\,\mathrm{M}$ Из уравнения (2) имеем $v_x = l/t$; $v_x = 10\,\mathrm{M/c}$. Скорость при падении на землю $v = \sqrt{v_x^2 + v_y^2}$, где $v_y = gt$; $v = \sqrt{v_x^2 + (gt)^2}$, т.е. $v \approx 11,1\,\mathrm{M/c}$. Искомый угол φ — угол между вектором скорости v

и вектором ее горизонтальной составляющей \vec{v}_x . Из рисунка видно, что $\cos \varphi = \frac{v_x}{v}$; $\cos \varphi = 0.9$; $\varphi \approx 26^\circ$.

1.28. Мяч, брошенный горизонтально, ударяется о стенку, находящуюся на расстоянии $l=5\,\mathrm{m}$ от места бросания. Высота места удара мяча о стенку на $\Delta h=1\,\mathrm{m}$ меньше высоты h, с которой брошен мяч. С какой скоростью v_x брошен мяч? Под каким углом ϕ мяч подлетает к поверхности стенки?

Решение:

Перемещение мяча по вертикали $S_y = h = \frac{gt^2}{2}$ — (1), по горизонтали $S_x = l = v_x \times x$ $\times t$ — (2). $\cdot v_y = gt$; $v_x = l/t$. Из уравнения (1) получим $t = \sqrt{2\Delta h/g}$. Горизонтальная

составляющая скорости $v_x = l\sqrt{g} / \sqrt{2\cdot\Delta h}$; $v_x = 11,1$ м/с. Вертикальная составляющая скорости $v_y = g\sqrt{2\Delta h/g}$; $v_y = \sqrt{2g\Delta h}$. Из рисунка видно, что $tg\varphi = \frac{v_x}{v_y} = \frac{l}{2\Delta h}$; $tg\varphi = 2.5$; $\varphi \approx 68^\circ$.

1.29. Камень, брошенный горизонтально, через время t = 0.5 с после начала движения имел скорость v, в 1,5 раза большую скорости v_x в момент бросания. С какой скоростью v_x был брошен камень?

Решение:

Скорость камня \vec{v} можно разложить на вертикальную \vec{v}_y и горизонтальную \vec{v}_x составляющие. По абсолютной величине $v = \sqrt{v_x^2 + v_y^2}$ — (1), где $v_y = gt$. По условию $v = 1.5v_x$, тогда из уравнения (1): $v_x = \sqrt{v^2 - v_y^2} =$

$$=\sqrt{(1.5v_x)^2-(gt)^2}$$
— (2). Решая уравнение (2), найдем:
$$v_x^2=2.25\cdot v_x^2-(gt)^2\;;\;1.25v_x^2=(gt)^2\;;\;v_x=\frac{gt}{\sqrt{1.25}}\;;\;v_x=4.47\;\text{м/c}.$$

1.30. Камень брошен горизонтально со скоростью $v_x = 15$ м/с. Найти нормальное a_n и тангенциальное a_r ускорения камня через время t = 1 с после начала движения.

Решение:

Полное ускорение камня a = g; $a = \sqrt{a_n^2 + a_\tau^2}$. Полная скорость $v = \sqrt{v_x^2 + v_y^2}$. Из рисунка видно; что $\cos \alpha = v_x / v = a_n / g$; $\sin \alpha = v_y / v$; $\sin \alpha = a_\tau / g$. Тогда $a_n = gv_x / v$; $a_n = gv_x / \sqrt{v_x^2 + g^2 t^2}$; $a_\tau = gv_y / v$; $a_\tau = g^2 t / \sqrt{v_x^2 + g^2 t^2}$; $a_\tau \approx 8.2 \, \text{m/c}^2$, $a_\tau \approx 5.4 \, \text{m/c}^2$.

1.31. Камень брошен горизонтально со скоростью $v_x = 10$ м/с. Найти радиус кривизны R траектории камня через время t = 3 с после начала движения.

Решение:

Нормальное ускорение камня $a_n = \frac{v^2}{R}$ — (1); из рисунка видно, что $a_n = g \sin \alpha$ — (2). Из уравнения (1) $R = \frac{v^2}{a_n}$, где $v = \sqrt{v_y^2 + v_x^2}$. Кроме того, $\sin \alpha = \frac{v_x}{\sqrt{v_y^2 + v_x^2}}$;

 $v_y = gt$. Сделав соответствующие подстановки, получим

$$R = \frac{(v_y^2 + v_x^2) \cdot (\sqrt{v_y^2 + v_x^2})}{v_x g} = \frac{((gt)^2 + v_x^2) \cdot (\sqrt{(gt)^2 + v_x^2})}{v_x g};$$

$$R = 305 \text{ M}.$$

1.32. Мяч брошен со скоростью $v_0 = 10 \text{ м/c}$ под углом $\alpha = 40^{\circ}$ к горизонту. На какую высоту h поднимется мяч? На каком расстоянии l от места бросания он упадет на землю? Какое время t он будет в движении?

Решение:

Перемещение мяча по вертикали $S_y = (v_0 \sin \alpha) \cdot t -gt^2/2$ — (1). Вертикальная составляющая скорости $v_y = v_0 \sin \alpha - gt$ — (2). Перемещение мяча по

горизонтали $S_x = (v_0 \cos \alpha)t$ — (3). В момент времени 22

 $t=t_1$ имеем $S_y=h$, $v_y=0$, следовательно, из (2) получим $v_0 \sin \alpha = gt_1$ — (4), из (1): $h=\left(v_0 \sin \alpha\right) \cdot t_1 - gt_1^2/2$ — (5). Выразив из (4) t_1 и подставив в (5), получим: $t_1=\frac{v_0 \sin \alpha}{g}$; $h=\frac{v_0^2 \sin^2 \alpha}{g} - \frac{gv_0^2 \sin^2 \alpha}{2g^2} = \frac{v_0^2 - \sin^2 \alpha}{2g}$; $h\approx 2$ м. В момент времени $t=2t_1$ имеем $S_x=l$. Тогда $t=\frac{2v_0 \sin \alpha}{g}$ — (6) — полное время полета мяча; $t\approx 1,3$ с. Из уравнения (3) $l=\left(v_0 \cos \alpha\right) \cdot t$; $l\approx 10$ м.

1.33. На спортивных состязаниях в Ленинграде спортсмен толкнул ядро на расстояние $l_1 = 16.2$ м. На какое расстояние l_2 полетит такое же ядро в Ташкенте при той же начальной скорости и при том же угле наклона ее к горизонту? Ускорение свободного падения в Ленинграде $g_1 = 9.819$ м/с², в Ташкенте $g_2 = 9.801$ м/с².

Решение:

Воспользуемся формулой (6), полученной в предыдущей задаче: $t = \frac{2v_0 \sin \alpha}{g}$.

Перемещение ядра по горизонтали $s_x = l = (v_0 \cos \alpha) \cdot t$. Подставив выражение для

$$t$$
 , получим: $s_x = \frac{2v_0^2\cos\alpha\sin\alpha}{g} = \frac{v_0^2\sin2\alpha}{g}$. Тогда $l_1 = \frac{v_0^2\sin2\alpha}{g_1}$; $l_2 = \frac{v_0^2\sin2\alpha}{g_2}$. Отсюда отношение $\frac{l_1}{l_2} = \frac{g_2}{g_1}$, или $l_2 = \frac{l_1g_1}{g_2} = \frac{16.2 \cdot 9.819}{9.801} = 16.23$ м.