Análisis de la confiabilidad de redes hasta Ancho de Banda de 800G

Impacto a los límites de SNR comparado a BER para tranceptores coherentes y no coherentes

1 Introducción

2
De que depende el
Bit Error Rate?

3 Examinador externo 4 Temperatura

5Distancias

6Take Aways

- **BER** = Bit Error Rate
- SNR = Signal-to-Noise-Ratio
- La conveniencia de utilizar decibeles para mostrar valores muy grandes y pequeños
- (e)SNR vs OSNR:
 electrico contra óptico

POV - Datos

$$BER = \frac{bits \ malos}{Numero \ total \ de \ bits}$$

DigitalSignalProcessor

2019

lab setup

rcon 800G DD, disipador de calor y un ventilador

DUTs* son

- 1. 100G QSFP28 Single Lambda DR 500m
- 2. 100G QSFP28 Single Lambda ER 40km
- 3. 400G QSFP-DD Coherent ZR low power
- 4. 400G QSFP-DD LR4 10km
- 5. 400G **QSFP112** DR4 500m
- 6.800G QSFP-DD DR8 500m

Ojo con los atenuadores, si usas cables cortos!

PORQUE: alto riesgo dañar los fotodiodos.

2. Tambor de cable

Shopping List:

1. Transceptor

3. Attenuadores

Q.13S1HG.40 cálculo de la atenuación

fiber length + attenuator	cable (0.35 dB/km)	used attenuator
2 meter	about 0 dB	11 dB
10 km	3.5 dB	11 dB
20 km	7 dB	11 dB
30 km	10.5 dB	5 dB
40 km	14 dB	2 dB
50 km	17.5 dB	2 dB

Al menos **11dB** es necesario para evitar daños

100G BER y atenuación

longitud + attenuador	Intensida d TX (dBm)	Intensidad RX (dBm)
2 m 11 dB	+ 4.8	- 7.1
10 km 11 dB	+ 4.8	- 10.0
20 km 11 dB	+ 4.8	- 13.4
30 km 5 dB	+ 4.8	- 11.9
40 km 2 dB	+ 4.8	- 11.1
50 km 2 dB	+ 4.8	- 14.6

IEEE 802.3db BER - máx. 2.4x10-4

Q.13S1HG.40

Discutiendo el valor BER de máx. 2.4x10⁻⁴ b/s

Valor PreFEC:

$$BER = \frac{N_e}{B \Delta T}$$

- Asumir que N_e = 100 errores, B = 100 Gbps y BER = 1.0x10⁻¹² b/s
 - El gating time ΔT serán aprox. 16 min
 - Pero con BER = 2.4×10^{-4} b/s obtendrás $\Delta T = 4 \mu s$!

désvan

Separación detallada

El DD coherente con ventilación

Longitud	Intensidad TX (dBm)	Intensidad RX (dBm)
2 m	-10.0	-10.2
10 km	-10.0	-11.7
20 km	-10.0	-13.1
30 km	-10.0	-14.9
40 km	-10.0	-16.7
50 km	-10.0	-18.5
60 km	-10.0	-20.9

OIF BER Intervalo: 1.5x10⁻⁴ to 1.3x10⁻²

Source [13]

El DD coherente sin ventilación

Longitud	Intensidad TX (dBm)	Intensidad RX (dBm)
2 m	-10.0	-9.2
10 km	-10.0	-11.6
20 km	-10.0	-13.3
30 km	-10.0	-15.0
40 km	-10.0	-16.7
50 km	-10.0	-18.6

OIF BER Intervalo: 1.0x10⁻⁴ to 1.0x10⁻²

Nota: Ejemplo con 2 metros de fibra

Nota: Ejemplo con 2 metros de fibra

Nota: Ejemplo con 2 metro de fibra

¿Qué pasa con el BER, si mantengo la temperatura constante?

Alcanzando despues de

Ejemplo con Q.13S1HG.05, 2m de cáble y un ventilador con disipador de

El experimento completo corrió por

Note: KP4 FEC

¿Es posible recuperar el BER inicial?

¡10 veces peor!

Ejemplo con Q.13S1HG.05

Transceiver Monitor 47.5 23.650 3 × 10 -1 45.0 23.625 mi python ₩ 42.5 23.600 € 23.575 23.550 ₹ 37.5 23.525 23.475 175 200 225 QSFP28 DR flexbox5 2m jumper 22.05.2025

Demo vivo

Comportamiento con SFP+ hasta ~250°C

- El BER con tranceptores de detección directa (DDT, gris) depende tanto de temperatura como la longitud de fibra
- Ojo: El BER medido en realidad es un promedio móvil
- No hay tanto margen entre LOS y High Alarm
- Transceptores coherentes benefician más de las diferentes propiedades de luz, pero también requieren un DSP con más propiedades -> Recuperación de la señal
- El cambio de temperatura no afecta tanto el BER en caso de transceptores coherentes. La influencia viene principalmente de la longitud
- Los valores BER especificados están definidos en IEEE802.3df para estas diapositivas. Para DDT: Si tu BER está en buen rango OSNR no será tu enemigo

take aways

FLUX AI: "Chinese take away box from a restaurant filled with noodles" !!!

- El BER con tranceptores de detección directa (DDT, gris) depende tanto de temperatura como la longitud de fibra
- Ojo: El BER medido en realidad es un promedio móvil
- No hay tanto margen entre LOS y High Alarm
- Transceptores coherentes benefician más de las diferentes propiedades de luz, pero también requieren un DSP con más propiedades -> Recuperación de la señal
- El cambio de temperatura no afecta tanto el BER en caso de transceptores coherentes. La influencia viene principalmente de la longitud
- Los valores BER especificados están definidos en IEEE802.3df para estas diapositivas. Para DDT: Si tu BER está en buen rango OSNR no será tu enemigo

take aways

FLUX AI: "Chinese restaurant take away box filled with tranceivers" !!!

Muchas gracias

thomas.weible@flexoptix.net gerhard.stein@flexoptix.net

Literatura:

- 1. SFF-8024, SFF Module Management Reference Code Tables, Rev. 4.10, November 24th of 2022
- 2. Rotary optical encoder model, https://commons.wikimedia.org/wiki/File:Encoder.jpg by Rrudzik (accessed Mar. 2024)
- 3. Everything You Need to Know About Complex Optical Modulation, Keysight (accessed Nov. 2024)
- 4. Fibre Sensing with and for Optical Networks, Ezra Ip et al., ECOC 2024 (Sept. 2024)
- 5. First Field Demonstration of Hollow-Core Fibre Supporting
- 6. Distributed Acoustic Sensing and DWDM Transmission, Ezra lp et al., ECOC 2024 (Sept 2024)
- 7. Acoustic Sensing with Correlation and Coherent Detection using an Integrated Coherent Transceiver, André Sandmann et al., ADTRAN-ADVA (May 2023)
- 8. Fiber Optic Communications, Gerd Keiser, ISBN 978-981-33-4667-3 (Newton Center, MA 2021)
- 9. Understanding EVM, Paul Denisowki, Rhode&Schwarz, https://cdn.rohde-schwarz.com.cn/pws/dl_downloads/premium_dl_pdm_downloads/3683_8038_52/Understanding-EVM_wp_en_3683-8038-52_v0100.pdf, Version 01.00 (accessed Nov 2024)
- 10. Understanding FEC and Its Implementation in Cisco Optics, https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/implementation-optics-wp.html, (May 13, 2022)
- 11. IEEE Standard for Ethernet, Amendment 3: Physical Layer Specifications and Management Parameters for 100 Gb/s,200 Gb/s, and 400 Gb/s Operation over Optical Fiber Using 100 Gb/s Signaling, (802.3db-2022)
- 12. IEEE Standard for Ethernet, Amendment 9: Media Access Control Parameters for 800 Gb/s and Physical Layers and Management Parameters for 400 Gb/s and 800 Gb/s Operation, (802.3df-2024)
- 13. OIF-400ZR-02.0, Implementation Agreement 400ZR, www.oiforum.com (November 3, 2022)
- 14. Smiley from the sMirC-series. Hot, https://commons.wikimedia.org/wiki/File:SMirC-hot.svg
- 15. Common Management Interface Specification 5, (CMIS) (November 2021)
- 16. Electrical Interface Optic Type Data rate FEC Standard Clause, Cisco (November 2024)