How do we measure speed?

Average velocity over the interval
$$\begin{bmatrix} 0, 15 \end{bmatrix}$$
 $= \frac{100m}{15s} = \frac{\Delta s}{\Delta t} = \frac{s(15) - s(0)}{15 - 0}$

How do we measure speed?

×	3	4	5
S(X)	25	30	40

Note: final - initial

Average velocity over the interval
$$[a, b] = \frac{\Delta s}{\Delta t} = \frac{s(b) - s(a)}{b - a}$$

Average rate of change

Find the average velocity on the interval [4, 5]

At t = 4???

velocity

instantaneous rate of change

Average rate of change = $\frac{\Delta y}{\Delta x}$ quotient of differences

= Slope of secant line over the interval (a, a + h)

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
Instantaneous rate of change

When Q(a + h, f(a + h)) approaches to P: secant line \rightarrow tangent line

the slope of secant line → the slope of ____tangent line

Notation of the Derivative

Derivative of a function:
$$f'(x) = y' = \frac{dy}{dx} = \frac{d}{dx}(f(x))$$

At point
$$x = a$$
: $f'(a) = y'(a) = \left[\frac{dy}{dx}\right]_{x=a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

Find a function f and a number a such that
$$f'(a) = \lim_{h \to 0} \frac{\sin\left(\frac{\pi}{6} + h\right) - \frac{1}{2}}{h}$$

The Existence of a Derivative

Recall:

•
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 ~ a limit of the difference quotient

The existence of a limit \sim left-hand limit = right-hand limit = L

$$f'(a)$$
 is defined $\leftrightarrow \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists $\leftrightarrow \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = L$

left-hand derivative right-hand derivative

Differentiable & Continuous

f is differentiable at x=a

f is continuous at x=a

When the function is not differentiable at x = a...

f'(x) DNE: Infinity

f'(x) DNE: Jump "corner"

"The graph has a vertical tangent."

Not continuous at x = a

continuous at x = a

Not continuous

Derivative of Power Function

$$\Leftrightarrow$$
 Constant Rule $\frac{d}{dx}(k) =$

$$\Rightarrow$$
 Power Rule $\frac{d}{dx}(x^n) = nx^{n-1}$

Use the definition $(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h})$ to find the derivative of $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} \frac{2x + h}{1}$$

$$= 2x$$

Q3. Find the derivative of
$$f(x) = x^3 - 2x + \frac{1}{x} + 5$$
 at $x = 2$

Q4.
$$\lim_{h\to 0} \frac{(3+h)^4-81}{h} = ?$$

Hint:
$$\lim_{h\to 0} \frac{(3+h)^4-81}{h} = f'(c)$$
 What is $f(x)$? $c = ?$

Derivatives of piecewise functions

Example. Find the derivative of
$$f(x) = \begin{cases} x + 3, x \le 0 \\ 3 - 2x, x > 0 \end{cases}$$

$$f'(x) = \begin{cases} 1, x < 0 \\ -2, x > 0 \end{cases}$$

Q5. Let f be the function defined by
$$f(x) = \begin{cases} mx^2 - 2, x \le 1 \\ k\sqrt{x}, x > 1 \end{cases}$$

If f is differentiable at x = 1, what are the values of k and m?

f is continuous at x = 1

Tangent Line & Normal Line

Review. Point-slope equation

A linear equation

- slope m
- passes through the point (x_0, y_0)

$$y - y_0 = m(x - x_0)$$

$$y - f(a) = f'(a)(x - a)$$

tangent line at x = a

- Slope: f'(a)
- Passes: P(a, f(a))

$$y - f(a) = -\frac{1}{f'(a)}(x - a)$$

normal line at x = a

- Slope: $-\frac{1}{f'(a)}$
- Passes: P(a, f(a))

Q6. Write the equation of the tangent line and normal line to the graph of $y = x - \frac{x^2}{10}$ at the point $(4, \frac{12}{5})$

Which of the following is an equation of the line tangent to the graph of $f(x) = x^2 - x$ at the point where f'(x) = 3?

- (A) y = 3x 2
- (B) y = 3x + 2
- (C) y = 3x 4
- (D) y = 3x + 4

If 2x + 3y = 4 is an equation of the line normal to the graph of f at the point (-1,2), then f'(-1) =

(A)
$$-\frac{2}{3}$$

(B)
$$\frac{1}{\sqrt{2}}$$

(C)
$$\sqrt{2}$$

(D)
$$\frac{3}{2}$$

If 2x - y = k is an equation of the line normal to the graph of $f(x) = x^4 - x$, then k = 1

(A)
$$\frac{23}{16}$$

(B)
$$\frac{13}{18}$$

(C)
$$\frac{15}{16}$$

(D)
$$\frac{9}{8}$$

A curve has slope $2x + x^{-2}$ at each point (x, y) on the curve. Which of the following is an equation for this curve if it passes through the point (1,3)?

(A)
$$y = 2x^2 + \frac{1}{x}$$

(B)
$$y = x^2 - \frac{1}{x} + 3$$

(C)
$$y = x^2 + \frac{1}{x} + 1$$

(D)
$$y = x^2 - \frac{2}{x^2} + 4$$

Chain Rule

If y=f(u) and u=g(x) are both differentiable functions, then y=f(g(x)) is differentiable and

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

 \Rightarrow If y=f(u), u=g(w), and w=h(x) are all differentiable functions, then

y=f(g(h(x))) is differentiable and
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dw} \cdot \frac{dw}{dx}$$

$$\frac{d}{dx}[f(g(h(x)))] = f'(g(h(x)))g'(h(x))h'(x)$$

Q11. Find *y*' for
$$y = \sqrt{1 + x^2}$$

Q12. Find y' for
$$y = (2x^3 - 2x^2)^4$$

Q13. Find *y*' for
$$y = \sqrt{x^4 - 2x + 5}$$

Q14. Find
$$h''(x)$$
 for $h(x) = f(x^3)$

nth Derivative
$$f^n(x) = \frac{d^n y}{dx^n} = y^{(n)}(x)$$

Q15. If
$$f(x) = \frac{1}{6}x^3 + 24\sqrt{x}$$
, find $f'(x)$, $f''(x)$, $f'''(x)$, and $f'''(9)$

The Product Rule

If f and g are both differentiable, then $\frac{d}{dx}[f(x)g(x)] = f'g + g'f$

$$\lim_{h\to 0} \frac{f(x+h)\cdot g(x+h)-f(x)\cdot g(x)}{h}$$

$$=\lim_{h\to 0}\frac{f(x+h)\cdot g(x+h)-f(x+h)\cdot g(x)+f(x+h)\cdot g(x)-f(x)\cdot g(x)}{h}$$

$$=\lim_{h\to 0}\frac{[f(x+h)\cdot g(x+h)-f(x+h)\cdot g(x)]+[f(x+h)\cdot g(x)-f(x)\cdot g(x)]}{h}$$

The Quotient Rule

$$= \lim_{h \to 0} \frac{f(x+h) \cdot [g(x+h) - g(x)] + g(x) \cdot [f(x+h) - f(x)]}{h} = g'f + f'g$$

If f and g are both differentiable, then $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{d}{dx} \left[f(x) \cdot \frac{1}{g(x)} \right]$

$$= f \cdot \frac{d}{dx} \left[\frac{1}{g} \right] + \frac{df}{dx} \cdot \frac{1}{g}$$

$$= f \cdot \left(-\frac{g'}{g^2} \right) + f' \cdot \frac{1}{g(x)}$$

$$= \frac{-f \cdot g' + f' \cdot g}{g^2}$$

Q16. Differentiate the function $f(x) = (x^3 - 7)(x^2 - 4x)$

Q17. Differentiate the function $f(x) = \frac{3x^2 - x}{\sqrt{x}}$

If f, g, and h are functions that is everywhere differentiable, then the derivative of $\frac{f}{g \cdot h}$ is

(A)
$$\frac{g h f' - f g' h'}{g h}$$

(B)
$$\frac{g h f' - f g h' - f h g'}{g h}$$

(C)
$$\frac{g h f' - f g h' - f g'h}{g^2 h^2}$$

(D)
$$\frac{g h f' - f g h' + f h g'}{g^2 h^2}$$

Q19. Differentiate the function $f(x) = (3x^3 - 2x)(2x - 1)(5x + 10)$

Derivatives of Logarithm Function

Review: Properties of logarithm

$$ln xy = \ln x + \ln y$$

$$\ln \frac{x}{y} = \ln x - \ln y$$

$$ln x^p = p ln x$$

$$e^{\ln x} = x$$

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Derivatives of Logarithm Function

Review: Properties of logarithm

$$ln xy = \ln x + \ln y$$

$$ln x^p = p ln x$$

$$\log_a b = \frac{\log_c b}{\log_c a}$$

$$\log_a x = \frac{\ln x}{\ln a} = \frac{1}{\ln a} \cdot \ln x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\log_{\mathrm{a}}x) = \frac{1}{\ln a} \cdot \frac{1}{x}$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h} = \lim_{h \to 0} \frac{\ln \frac{x+h}{x}}{h} = \lim_{h \to 0} \frac{\ln(1+\frac{h}{x})}{\frac{h}{x} \cdot x} = \lim_{h \to 0} \frac{\frac{x}{h} \cdot 1}{x} = \lim_{h \to 0} \frac{\ln(1+\frac{h}{x})}{x} = \lim_{h \to 0} \frac{\ln(1+\frac{h}{x})^{\overline{h}}}{x} = \frac{1}{x} \lim_{u \to 0} \ln(1+u)^{\frac{1}{u}} = e$$

$$\lim_{u \to 0} (1+u)^{\frac{1}{u}} = e$$

Find y' if
$$y = \frac{\ln}{x^2}$$

Derivatives of Exponential Function

$$\frac{\mathrm{d}}{\mathrm{d}x}(a^x) = a^x \cdot \ln a$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$$

$$y = a^x$$

$$\ln y = x \ln a$$

$$\frac{d}{dx}(\ln y) = \frac{d}{dx}(x \ln a)$$

$$\frac{1}{v}y' = \ln a$$

$$y' = \ln a \cdot y = \ln a \cdot a^x$$

Find y' if
$$y = x^{\ln x}$$

$$\ln y = \ln x \ln x = (\ln x)^2$$

$$\frac{d}{dx}(\ln y) = \frac{d}{dx}((\ln x)^2)$$

$$\frac{1}{y}y' = 2\ln x \cdot \frac{1}{x}$$

$$y' = 2\ln x \cdot \frac{1}{x} \cdot x^{\ln x}$$

$$y = e^{\ln x} = e^{\ln x \cdot \ln x} = e^{(\ln x)^2}$$

$$y' = \frac{d}{dx}(e^{(\ln x)^2}) = e^{(\ln x)^2} \cdot 2\ln x \cdot \frac{1}{x}$$

Q22. Find y' if $y = 3^{x^2 - x}$

Implicit Differentiation

- \Leftrightarrow Explicit functions y=f(x): expresses y explicitly in terms of x
- \Rightarrow Implicit functions: we are unable to solve for y as a function of x.

$$y^2 + 3x = 6xy$$
 $\frac{d}{dx}[y^2 + 3x] = \frac{d}{dx}[6xy]$

Guidelines:

$$2yy' + 3 = 6y + 6xy'$$

- 1. Differentiate both sides of equation with respect to x 2yy' 6xy' = 6y 3
- 2. Collect the term $\frac{dy}{dx}$ on the left side and move all other terms to the right
- 3. Solve for $\frac{dy}{dx}$

$$y'(2y - 6x) = 6y - 3$$
 $y' = \frac{6y - 3}{2y - 6x}$

Implicit Differentiation

$$y^2 + 3x = 6xy y' = \frac{6y - 3}{2y - 6x}$$

- \Rightarrow The tangent line is horizontal when $\frac{dy}{dx} =$
- \Rightarrow The tangent line is vertical when the $\frac{\text{Denominator}}{2y 6x}$ of $\frac{dy}{dx}$ is 0

Q23. Find $\frac{dy}{dx}$ if $y^2 = x^2 - \cos xy$

Q24. Consider the curve defined by $x^3 + y^3 = 4xy + 1$

(1) Find
$$\frac{dy}{dx}$$

(2) Write an equation for line tangent to the curve at the point (2,1)

Q25. Consider the curve defined by $x^3 + y^3 - 6xy = 0$

- (1) Find $\frac{dy}{dx}$
- (2) Find the x-coordinates of each point on the curve where the tangent line is horizontal
- (3) Find the y-coordinates of each point on the curve where the tangent line is vertical

Derivatives of Trigonometric Function

$$\frac{d}{dx}(\sin x) = \frac{d}{dx}(\cos x) =$$

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cdot \cosh + \sinh \cdot \cos x - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x (\cosh - 1) + \sinh \cdot \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \frac{1 - \cosh}{h} + \lim_{h \to 0} \frac{\sinh}{h} \cdot \cos x}{h}$$

$$= \sin x \cdot \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{h} + \cos x = \sin x \cdot 0 + \cos x = \cos x$$

Derivatives of Trigonometric Function

$$\frac{d}{dx}(\sin x) = \frac{d}{dx}(\cos x) =$$

$$\frac{d}{dx}(\tan x) = \frac{d}{dx}(\cot x) =$$

$$\frac{d}{dx}(\sec x) = \frac{d}{dx}(\csc x) =$$

$$\frac{d}{dx}(\tan x) = \frac{d}{dx} \left(\frac{\sin x}{\cos x}\right)$$
 Quotient Rule

$$\frac{d}{dx}(\sec x) = \frac{d}{dx}(\frac{1}{\cos x})$$
 Quotient Rule / Chain Rule

Derivatives of Trigonometric Function

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \cdot \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cdot \cot x$$

Q26. Find
$$\frac{dy}{dx}$$
 for $y = x^2 \sin x + 2x \cos x$

Q27. Find
$$\frac{dy}{dx}$$
 for $y = lnx \tan x - x^3 \sec x$

Q28. Find y' for $y = \sin x^2$

Q29. Find y' for
$$y = \csc \frac{1}{x}$$

Q30. Find y' for $y = \tan^2(x^3)$

Q31. Find y' for $y = \sin^2(-3x^2 - 1)$

Q32. Differentiate $y = \ln \frac{x^2}{(x+1)^2}$

Derivative of an inverse function

Properties of inverse function

$$f(f^{-1}(x)) = \underline{x} , x \in \underline{range\ of\ f}$$
$$f^{-1}(f(x)) = \underline{x} , x \in \underline{domain\ of\ f}$$

$$\frac{d}{dx}[f(f^{-1}(x))] = \frac{d}{dx}[x] = 1$$

$$f'(f^{-1}(x)) \cdot \frac{\mathsf{d}}{\mathsf{dx}} [f^{-1}(x)] = 1$$

$$y = f^{-1}(x) \iff x = f(y)$$

$$y' = \frac{\Delta y}{\Delta x} \leftrightarrow x' = \frac{\Delta x}{\Delta y} = f'(y)$$

$$y' = \frac{1}{f'(y)} = \frac{1}{f'(f^{-1}(x))}$$

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(\mathbf{x}))}$$

Q33. Let
$$f(2) = 5$$
 and $f'(2) = \frac{1}{4}$, find $(f^{-1})'(5)$

Derivative of Inverse Trigonometric Functions

$$\frac{d}{dx}(\sin^{-1}x) = \underline{\qquad} \frac{d}{dx}(\cos^{-1}x) = \underline{\qquad}$$

$$\frac{d}{dx}(\tan^{-1}x) = \underline{\qquad} \frac{d}{dx}(\cot^{-1}x) = \underline{\qquad}$$

$$\frac{d}{dx}(\sec^{-1}x) = \underline{\qquad} \frac{d}{dx}(\csc^{-1}x) = \underline{\qquad}$$

$$\sin^{-1} x = \alpha \iff \sin \alpha = x$$

$$f = \sin \qquad f' = \cos$$

$$(f^{-1})' = \frac{1}{\cos \alpha} = \frac{1}{\sqrt{1 - x^2}}$$

Derivative of Inverse Trigonometric Functions

$$\frac{d}{dx}(\sin^{-1}x) = \frac{\frac{1}{\sqrt{1-x^2}}}{\frac{1}{dx}} \frac{d}{dx}(\cos^{-1}x) = \frac{-\frac{1}{\sqrt{1-x^2}}}{\frac{1}{1+x^2}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{\frac{1}{1+x^2}}{\frac{1}{dx}} \frac{d}{dx}(\cot^{-1}x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\sec^{-1}x) = x\sqrt{x^2-1} \frac{d}{dx}(\csc^{-1}x) = x\sqrt{x^2-1}$$

Q34. Differentiate $y = x \tan^{-1} x$

Q35. Differentiate
$$y = \frac{1}{\cos^{-1} x}$$

Q36. Differentiate $y = \arctan \sqrt{x}$

Q37. Differentiate $y = 5 \arcsin 3x$

Approximating a derivative

If a function f is defined by a table of values, then the approximation values of its derivatives at b can be obtained from the average rate of change using values that are close to b.

x	•••	а	•••	b	•••	с	
f(x)		f(a)		f(b)	•••	f(c)	

For a < b < c, $f'(b) \approx \frac{f(c) - f(b)}{c - b} \text{ or }$ $f'(b) \approx \frac{f(b) - f(a)}{b - a} \text{ or }$ $f'(b) \approx \frac{f(c) - f(a)}{c - a}.$

The temperature of the water in a coffee cup is a differentiable function F of time t. The table below shows the temperature of coffee in a cup as recorded every 3 minutes over 12minute period.

t	0	3	6	9	12
F(t)	205	197	192	186	181

(a) Use data from the table to find an approximation for F'(6)?

(b) The rate at which the water temperature decrease for $0 \le t \le 12$ is modeled by $F(t) = 120 + 85e^{-0.03t}$ degrees per minute. Find F'(6) using the given model.