Riešenie 3. zadania

SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **110110**(postupnosti sa môžu prekrývať, v tomto prípade 1010101 je možné chápať ako dve postupnosti). Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp. LOG alebo FitBoard).

Úlohy:

- 1) V pamäťovej časti použite minimálny počet preklápacích obvodov **JK-PO**.
- 2) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 3) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 4) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 5) Riešenie vyhodnot'te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov).

Richard Németh, ID: 120976

Riešenie

Zadaná postupnosť: 110110

Prechodová tabuľka pre automat typu Moore

	Nový stav		Y	Čo je
stav	x=0	x=1		splnené?
S0	S0	S 1	0	Nič
S1	S0	S2	0	"1"
S2	S 3	S2	0	"11"
S 3	S0	S4	0	"110"
S4	S0	S5	0	"1101"
S5	S6	S2	0	"11011"
S 6	S4	S0	1	"110110"

Prechodová tabuľka pre automat typu Mealy

	Nový	stav	Y		Čo je
stav	x=0	x=1	x=0	x=1	splnené?
S0	S0	S 1	0	0	Nič
S1	S0	S2	0	0	"1"
S2	S 3	S2	0	0	"11"
S3	S0	S4	0	0	"110"
S4	S0	S5	0	0	"1101"
S5	S 3	S2	1	0	"11011"

Zostrojíme prechodový graf stavového automat typu Mealy

Prechodový graf typu Mealy (hodnota hrany reprezentuje hodnotu vstupnej premennej/hodnotu výstupnej premennej).

Kódovanie stavov

			<u>z3</u>		
		z2			
	S0	S2	S3	S1	
z1	S4	X	X	S5	

Stav	$Z_1Z_2Z_3$
S 0	000
S1	001
S2	010
S 3	011
S4	100
S5	101

Prechodová tabuľka pre automat Mealy po dosadení zakódovaných stavov

	Nový stav		Y	
stav	x=0	x=1	x=0	x=1
000	000	001	0	0
001	000	010	0	0
010	011	010	0	0
011	000	100	0	0
100	000	101	0	0
101	011	010	1	0

Budiace funkcie pre D preklápacie obvody (D-PO) a výstupná funkcia

			z3	
		z2		
	0	0	0	0
z 1	0	X	X	0
	1	X	X	0
X	0	0	1	0
-		D1		

				z3	
			z2		
		0	1	0	0
_ :	z 1	0	X	X	1
		0	X	X	1
X		0	1	0	1

			z3	
		z2		
	0	1	0	0
z 1	0	X	X	1
	1	X	X	0
X	1	0	0	0
		D3		
			z3	
		z2		
	0	0	0	0
z 1	0	X	X	1
	0	X	X	0
X	0	0	0	0
		$Y = z1 \cdot \overline{X} \cdot z$	3	

Budiace funkcie pre JK preklápacie obvody (JK-PO)

z->Z	J	K
0->0	0	X
0->1	1	X
1-> <u>0</u>	X	1
1-> 1	X	0

			Z3		
		Z2			
	0	X	X	0	
Z 1	0	X	X	1	
	0	X	X	1	
X	0	X	X	1	
$J2 = Z1 \cdot Z3 + X \cdot Z3$					

			Z3	
		Z2		
-	X	0	1	X
Z 1	X X X	X	X	X
	X	X	X	X
X	X	0	1	X
		K2 = Z3		
			72	
		70	Z3	
	F _	Z2	T	
	0	1	X	X
Z 1	0	X	X	X
	1	X	X	X
X	1	0	X	X
		$J3 = \overline{X} \cdot Z2 + X$		
			Z3	
		Z2		_
_	X	X	1	1
Z 1	X	X	X	0
	X X X	X	X	1
X	X	X	1	1
			_	
		$K3 = X + \overline{Z}$	L	

Espresso

Výstup z programu espresso je odlišný od môjho výstupu z máp. Zvolil som si radšej navrhnúť svoje riešenie v logisime, pretože mi prišlo že espresso to zbytočne skomplikovalo

.i 4 .o 6 .ilb x z1 z2 z3 .ob J1 K1 J2 K2 J3 K3 .type fr .p 16

Richard Németh, ID: 120976

0000 0-0-0-0001 0-0--1 0010 0--01-0011 0--1-1 0100 -10-0-0101 -11--0 0110 -----0111 -----1000 0-0-1-1001 0-1--1 1010 0--00-1011 1--1-1 1100 -00-1-1101 -11--1 1110 -----1111 -----.e

Espresso výstup

Espresso vystup

J1 = (x&z2&z3);

K1 = (!x) | (x&z3);

J2 = (z1&z3) | (x&z3);

K2 = (!z1&z3);

J3 = (x&!z2) | (!x&z2);

K3 = (!z1&z3) | (x&z3);

Prepis na NAND s využitím Shefferovej operácie:

$$J1 = X \cdot Z2 \cdot Z3 = (X \uparrow Z2 \uparrow Z3) \uparrow (X \uparrow Z2 \uparrow Z3)$$

$$K1 = \overline{X} + Z3 = X \uparrow (Z3 \uparrow)$$

$$J2 = Z1 \cdot Z3 + X \cdot Z3 = (Z1 \uparrow Z3) \uparrow (X \uparrow Z3)$$

$$K2 = \overline{Z3} = Z3$$

$$J3 = \overline{X} \cdot Z2 + X \cdot \overline{Z2} = ((X \uparrow) \uparrow Z2) \uparrow (X \uparrow (Z2 \uparrow))$$

$$K3 = X + \overline{Z1} = ((X \uparrow) \uparrow Z1)$$

Vyjadrenie k počtu logických členov obvodu: 13 členov NAND a 3 preklápacie obvody JK Vyjadrenie k počtu vstupov do logických členov obvodu: 40 (28 v kombinačnej časti a 12 v pamäť ovej časti).

Schéma:

Zhodnotenie

Pracoval som na zadaní s postupnosťou 110110. Najprv som si vytvoril prechodové tabuľky oboch typov. Vytvoril som prechodový graf typu Mealy. Prepísal som zadanie do Karnaughových Máp a vložil som svoje KM do programu espresso. Následne som v

Richard Németh, ID: 120976

programe logisim zostrojil obvod z mojich výsledkov. Obvod som otestoval svojou postupnosťou. Testoval som aj zlé vstupy či sa obvod vráťi do určeného stavu.