²³Na nuclear spin-lattice relaxation studies of Na₂Ni₂TeO₆

$Y. Itoh^1$

¹Department of Physics, Graduate School of Science, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku Kyoto 603-8555, Japan (Dated: April 14, 2015)

We report on $^{23}\mathrm{Na}$ NMR studies of a honeycomb lattice antiferromagnet $\mathrm{Na_2Ni_2TeO_6}$ by $^{23}\mathrm{Na}$ nuclear spin-echo techniques. The $^{23}\mathrm{Na}$ nuclear spin-lattice relaxation rate $1/^{23}T_1$ exhibits critical divergence near a Néel temperature $T_\mathrm{N}=26$ K, a narrow critical region, and a critical exponent w=0.34 in $1/^{23}T_1\propto (T/T_\mathrm{N}$ - $1)^{-w}$ for $\mathrm{Na_2Ni_2TeO_6}$, and $T_\mathrm{N}=18$ K for $\mathrm{Na_2(Ni_{0.5}Cu_{0.5})_2TeO_6}$. Although the uniform magnetic susceptibility of $\mathrm{Na_2Ni_2TeO_6}$ exhibits a broad maximum at 35 K characteristic of low dimensional spin systems, the NMR results indicate three dimensional critical phenomenon around the Néel temperature.

PACS numbers:

I. INTRODUCTION

Na₂Ni₂TeO₆ is a quasi-two dimensional honeycomb lattice antiferromagnet [1–3]. The crystal structure of Na₂Ni₂TeO₆ consists of the stacking of Na and $(Ni/Te)O_6$ layers $(P6_3/mcm)$ [2, 3]. The Néel temperature of $T_{\rm N} \approx 27$ K was estimated from measurements of specific heat and the derivative of uniform magnetic susceptibility [3]. The magnetic susceptibility takes a broad maximum around 34 K [2, 3]. The Weiss temperature of $\theta = -32$ K and the superexchange interaction of $J/k_{\rm B} =$ - 45 K were estimated from the analysis of Curie-Weiss law fit and a high temperature series expansion [3]. Although the Ni^{2+} ion must carry a local moment of S=1 on the honeycomb lattice, the large effective moment $\mu_{\rm eff} = 3.446 \mu_{\rm B}$ could not be explained by spin S=1with a g-factor of g = 2 [3]. The g-factor must be larger than 2 [2], or a Ni³⁺ ion and the intermediate state might be realized because of the tunable valence of Te⁴⁺ and Te^{6+} [3].

Spin frustration effects on a honeycomb lattice have renewed our interests, since the discovery of a possible spin liquid state in a spin-3/2 antiferromagnet [4]. Various magnetic ground states are competitive with each other on the honeycomb lattice [5].

In this paper, we report on 23 Na NMR studies of Na₂Ni₂TeO₆ and Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆ polycrystalline samples. Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆ still belongs to the same space group $P6_3/mcm$ as Na₂Ni₂TeO₆ [2, 6]. For the Cu substitution, we expected a possible enhancement of quantum effects from S=1 to 1/2. Since the solubility limit in the honeycomb lattice Na₂(Ni_{1-x}Cu_x)₂TeO₆ is about x=0.6 [6], we selected the half Cu-substituted sample being away from the phase boundary. We observed three dimensional critical phenomenon in the 23 Na nuclear spin-lattice relaxation rate $1/^{23}T_1$ near $T_N=26$ K for Na₂Ni₂TeO₆ and $T_N=18$ K for Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆. The broad maximum of uniform magnetic susceptibility is not the onset of magnetic long range ordering. In the antiferromagnetic state

of Na₂Ni₂TeO₆, we observed $1/^{23}T_1 \propto T^3$ which indicates conventional spin-wave scattering.

II. EXPERIMENTS

Powder samples of Na₂Ni₂TeO₆ have been synthesized by a conventional solid-state reaction method. Appropriate amounts of NiO, TeO₆ and Na₂CO₃ were mixed, palletized and fired a few times at 800 - 860°C and finally at 900°C for 24 hours in air. The products were confirmed to be in a single phase from measurements of powder X-ray diffraction patterns. Magnetic susceptibility χ at 1.0 T was measured by a superconducting quantum interference device (SQUID) magnetometer. Powder samples of Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆ were previously synthesized and characterized [6].

A phase-coherent-type pulsed spectrometer was utilized to perform the 23 Na NMR (nuclear spin I=3/2) experiments in an external magnetic field of 7.4847 T. The NMR frequency spectra were obtained from Fourier

FIG. 1: Uniform magnetic susceptibility χ of Na₂Ni₂TeO₆ and Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆. Solid curves are the results from least squares fits by a Curie-Weiss law.

transformation of the ²³Na nuclear spin-echoes. The ²³Na nuclear spin-lattice relaxation curves ²³ $p(t) = 1 - E(t)/E(\infty)$ (recovery curves) were obtained by an inversion recovery technique as a function of time t after an inversion pulse, where the nuclear spin-echoes E(t), $E(\infty)[\equiv E(10T_1)]$ and t were recorded.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Uniform magnetic susceptibility

Figure 1 shows uniform magnetic susceptibility χ of Na₂Ni₂TeO₆ and Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆. The solid curves are the results from least squares fits by a Curie-Weiss law. We estimated the Weiss temperature $\theta=-27$ K and the effective moment $\mu_{\rm eff}=3.4\mu_{\rm B}$ for Na₂Ni₂TeO₆, which agree with the previous report [3], and $\theta=-35$ K and $\mu_{\rm eff}=2.5\mu_{\rm B}$ for Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆. If the g-factor is g=2, then S=1 and S=1/2 lead to $\mu_{\rm eff}=2.83\mu_{\rm B}$ and $1.73\mu_{\rm B}$, respectively. χ deviates below about 100 K from the Curie-Weiss law and takes a broad maximum at 35 K in Na₂Ni₂TeO₆. χ drops below about 20 K in Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆.

B. NMR spectrum and recovery curves

FIG. 2: (a) Fourier-transformed $^{23}{\rm Na}$ NMR spectrum at 84.670 MHz and at 300 K. (b) $^{23}{\rm Na}$ nuclear spin-lattice relaxation curves $^{23}p(t)$ at a central frequency. Solid curves are the results from least squares fits by eq. (1).

Figure 2(a) shows the Fourier-transformed spectrum of 23 Na spin-echoes at a Larmor frequency of 84.670 MHz and at 300 K. The central transition line of $Iz=1/2 \leftrightarrow -1/2$ is affected by a nuclear quadrupole interaction [7]. The linewidth is about 150 kHz. The precise value of the Knight shift could not be determined within the present studies.

Figure 2(b) shows the recovery curves $^{23}p(t)$ with varying temperature. The solid curves are the results from

least-squares fits by a theoretical multi-exponential function for a central transition line $(I_z = 1/2 \leftrightarrow -1/2)$

$$^{23}p(t) = p(0)\{0.1e^{-t/^{23}T_1} + 0.9e^{-6t/^{23}T_1}\},$$
 (1)

where p(0) and a ²³Na nuclear spin-lattice relaxation time ²³ T_1 are fit parameters. The theoretical function of eq. (1) well reproduces the experimental recovery data. Thus, the assignment of the exciting spectrum to the central transition line is justified a posteriori, too.

C. Na₂Ni₂TeO₆

FIG. 3: (a) $1/^{23}T_1$ and uniform magnetic susceptibility χ against temperature. $1/^{23}T_1$ shows a critical divergence near $T_{\rm N}=26\sim26.5$ K and levels off above about 100 K. The broken line indicates $1/^{23}T_{1\infty}=88$ s⁻¹. (b) $1/^{23}T_1$ and χ against temperature in enlarged scales. Solid curves are visual guides.

Figures 3(a) and (b) show $1/^{23}T_1$ and uniform magnetic susceptibility χ against temperature. $1/^{23}T_1$ takes $1/^{23}T_{1\infty}=88~{\rm s}^{-1}$ above about 100 K and shows a divergence at $26\sim26.5$ K which can be assigned to the Néel temperature $T_{\rm N}$. Thus, the broad maximum of the magnetic susceptibility χ at 35 K is not due to the antiferromagnetic long range ordering but due to a low dimensional short range correlation developing on the honeycomb lattice antiferromagnets [8]. The result is consistent with the specific heat measurements [3].

FIG. 4: (a) $1/^{23}T_1$ against temperature. The solid curve is the result from a least squares fit by eq. (2). The Néel temperature and the critical exponent were estimated to be $T_{\rm N}=26.24~{\rm K}$ and w=0.34, respectively. (b) Log-log plots of normalized $(1/^{23}T_1)/(1/^{23}T_{1\infty})$ against reduced temperature $|T-T_{\rm N}|/T_{\rm N}$. Closed and open triangles are $1/^{23}T_1$ above and below $T_{\rm N}$, respectively. The solid line indicates the result from a least squares fit by eq. (2).

Figure 4(a) shows $1/^{23}T_1$ against temperature and the result (the solid curve) from a least-squares fit by

$$\frac{1}{^{23}T_1} = \frac{C}{^{23}T_{1\infty}} \frac{1}{|T/T_N - 1|^w},\tag{2}$$

where a constant C, a Néel temperature $T_{\rm N}$, and a critical exponent w are fit parameters. The fitting results were $T_{\rm N}=26.24~{\rm K}$ and w=0.34.

A mean field theory for a three dimensional isotropic Heisenberg antiferromagnet gives w=1/2 [9]. A dynamic scaling theory gives w=1/3 for a three dimensional isotropic Heisenberg model [10] and w=2/3 for a three dimensional uniaxial anisotropic Heisenberg model [11]. The exponent of w=0.34 indicates that Na₂Ni₂TeO₆ in the critical region is described by a three dimensional dynamical spin susceptibility. In passing, CuO exhibits a similar w=0.33, a broad maximum in χ at 540 K, and $T_{\rm N}=230$ K [12].

Figure 4(b) shows log-log plots of normalized $(1/^{23}T_1)/(1/^{23}T_{1\infty})$ against reduced temperature

FIG. 5: (a) $1/^{23}T_1$ against temperature for Na₂Ni₂TeO₆ and Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆. The broken lines indicate $1/^{23}T_{1\infty}=88$ and 57 s⁻¹. (b) Log-log plots of normalized $(1/^{23}T_1)/(1/^{23}T_{1\infty})$ against reduced temperature $|T-T_{\rm N}|/T_{\rm N}$ for Na₂Ni₂TeO₆ ($T_{\rm N}=26.24$ K) and Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆ ($T_{\rm N}=18$ K). The solid line is eq. (2) with the critical exponent of w=0.34.

 $|T - T_N|/T_N$. The solid line indicates the result from a least squares fit by eq. (2).

The onset of increase in the NMR relaxation rate near $T_{\rm N}$ empirically categorizes critical regions. The region of $|T-T_{\rm N}|/T_{\rm N} \leq 10$ has been assigned to the renormalized classical regime with a divergent magnetic correlation length toward T=0 K [13]. The region of $|T-T_{\rm N}|/T_{\rm N} \leq 1.0$ has been assigned to the three dimensional critical regime with a divergent magnetic correlation length toward $T_{\rm N}$. Thus, the narrow critical region of $|T-T_{\rm N}|/T_{\rm N} \leq 1$ also empirically categorizes Na₂Ni₂TeO₆ to the three dimensional critical regime.

At high temperatures of $T \gg J$, the spin system is in the exchange narrowing limit. Then, $1/^{23}T_1$ is expressed by

$$\frac{1}{^{23}T_{1\infty}} = \sqrt{2\pi} \frac{S(S+1)}{3} \frac{z_n {2^3 \gamma_n A}^2}{\omega_{ex}},$$
 (3)

$$\omega_{ex}^2 = \frac{2}{3}S(S+1)z\left(\frac{J}{\hbar}\right)^2,\tag{4}$$

FIG. 6: Log-log plots of $1/^{23}T_1$ against temperature for Na₂Ni₂TeO₆ and Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆. A broken line indicates a function of eq. (5). Solid curves are visual guides.

where $^{23}\gamma_n/2\pi=11.262$ MHz/T is the 23 Na nuclear gyromagnetic ratio, A is a hyperfine coupling constant, and ω_{ex} is an exchange frequency [14]. z_n is the number of Ni ions nearby a 23 Na nuclear. z is the number of the nearest neighbor Ni ions. Assuming J=45 K, [3] S=1, and z=3, we obtained $\omega_{ex}=12\times10^{12}$ s⁻¹. From eq. (3) with $1/^{23}T_{1\infty}=88$ s⁻¹, we derived the hyperfine coupling constant A=2.0 kOe/ $\mu_{\rm B}$, which is nearly the same as that of Na₃Cu₂SbO₆ [15].

D. $Na_2(Ni_{0.5}Cu_{0.5})_2TeO_6$

Figure 5(a) shows $1/^{23}T_1$ against temperature for Na₂Ni₂TeO₆ and Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆. For the half substitution of Cu for Ni, $1/^{23}T_{1\infty}$ and $T_{\rm N}$ decrease to 57 s⁻¹ and 18 K, respectively. Extrapolating linearly $T_{\rm N}$ with $\Delta T_{\rm N}=$ - 8 K per half Cu to full Cu substitution, one may infer $T_{\rm N}=$ 10 K of a hypothetical spin-1/2 honeycomb lattice Na₂Cu₂TeO₆," although actual Na₂Cu₂TeO₆ is known to be monoclinic and an alternating spin chain system [16, 17].

Figure 5(b) shows log-log plots of normalized $(1/^{23}T_1)/(1/^{23}T_{1\infty})$ against reduced temperature $|T-T_{\rm N}|/T_{\rm N}$ for Na₂Ni₂TeO₆ ($T_{\rm N}=26.24$ K) and Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆ ($T_{\rm N}=18$ K). The solid line indicates eq. (2) with the critical exponent of w=1

0.34. The critical region of $Na_2(Ni_{0.5}Cu_{0.5})_2TeO_6$ is still narrow as the same as that of $Na_2Ni_2TeO_6$. Simply, T_N decreases. No dimensional crossover is observed.

E. Below T_N

Figure 6 shows log-log plots of $1/^{23}T_1$ against temperature for Na₂Ni₂TeO₆ and Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆. With cooling down below $T_{\rm N}$, $1/^{23}T_1$ rapidly decreases. The broken line indicates a T^3 function as a visual guide. In conventional antiferromagnetic states, the nuclear spin transitions are caused by Raman scattering and three magnon scattering [18]. Then, $1/T_1$ is expressed by

$$\frac{1}{T_1} \propto \left(\frac{T}{T_N}\right)^3 \tag{5}$$

in a temperature range of $T_{\rm N} > T \gg T_{AE}$, where T_{AE} corresponds to an energy gap in the spin wave spectrum [18]. The energy gap is due to a crystalline anisotropy field. The rapid drop of $1/^{23}T_1$ below $T_{\rm N}$ results from the suppression of low energy excitations by the energy gap. Below T_{AE} , an activation-type temperature dependence should be observed in $1/T_1$. Since no activation behavior was observed down to 5 K, one may estimate $T_{AE} < 5$ K.

IV. CONCLUSIONS

In conclusion, we found three dimensional critical phenomenon near $T_{\rm N}=26~{\rm K}$ for Na₂Ni₂TeO₆ and $T_{\rm N}=18~{\rm K}$ for Na₂(Ni_{0.5}Cu_{0.5})₂TeO₆ from measurements of the ²³Na nuclear spin-lattice relaxation rate $1/^{23}T_1$. We have analyzed the NMR results by Ni²⁺ with S=1 and obtained sound values of parameters for Na₂Ni₂TeO₆. We attribute the deviation from the Curie-Weiss law and the broad maximum of uniform magnetic susceptibility to two dimensional spin-spin correlation on a honeycomb lattice.

The author thanks M. Isobe (Max Planck Institute) for X-ray diffraction measurements, K. Morimoto, C. Michioka, K. Yoshimura (Kyoto University) for sample preparation and characterization at an early stage.

V. REFERENCES

Y. Miura, R. Hirai, Y. Kobayashi and M. Sato: J. Phys. Soc. Jpn. 75 (2006) 084707.

^[2] R. Berthelot, W. Schmidt, A. W. Sleight and M. A. Subramanian: J. Solid State Chem. **196** (2012) 225.

^[3] R. Sankar, I. P. Muthuselvam, G. J. Shu, W. T. Chen, S. K. Karna, R. Jayavel and F. C. Chou: CrystEngComm.

¹⁶ (2014) 10791.

^[4] O. Smirnova, M. Azuma, N. Kumada, Y. Kusano, M. Matsuda, Y. Shimakawa, T. Takei, Y. Yonesaki and N. Kinomura: J. Am. Chem. Soc. 131 (2009) 8313.

^[5] J. B. Fouet, P. Sindzingre and C. Lhuillier: Eur. Phys. J. B 20 (2001) 241.

- [6] K. Morimoto, Y. Itoh, C. Michioka, M. Kato and K. Yoshimura: J. Magn. Magn. Mater. **310** (2007) 1254. Na₂(Ni_{1-x}Cu_x)₂TeO₆ with $0 \le x \le 0.60$ belongs to the space group $P6_3/mcm$, while Na₂(Cu_{1-x}Ni_x)₂TeO₆ with $0 \le x \le 0.05$ belongs to the space group C2/m (unpublished works).
- [7] A. Abragam, *Principles of Nuclear Magnetism*, Oxford University Press, Oxford (1961).
- [8] N. Onishi, K. Oka, M. Azuma, Y. Shimakawa, Y. Motome, T. Taniguchi, M. Hiraishi, M. Miyazaki, T. Masuda, A. Koda, K. M. Kojima and R. Kadono: Phys. Rev. B 85 (2012) 184412.
- [9] T. Moriya: Prog. Theor. Phys. **28** (1962) 371.
- [10] B. I. Halperin and P. C. Hohenberg: Phys. Rev. Lett. 19 (1967) 700.
- [11] E. Riedel and F. Wegner: Phys. Rev. Lett. **24** (1970)

- 730.
- [12] Y. Itoh, T. Imai, T. Shimizu, T. Tsuda, H. Yasuoka and Y. Ueda: J. Phys. Soc. Jpn. 59 (1990) 1143.
- [13] Y. Itoh, C. Michioka, K. Yoshimura, K. Nakajima and H. Sato: J. Phys. Soc. Jpn. 78 (2009) 023705.
- [14] T. Moriya: Prog. Theor. Phys. 16 (1956) 641.
- [15] C. N. Kuo, T. S. Jian and C. S. Lue: J. Alloys Com. 531 (2012) 1.
- [16] J. Xu, A. Assoud, N. Soheilnia, S. Derakhshan, H. L. Cuthbert, J. E. Greedan, M. H. Whangbo and H. Kleinke: Inorg. Chem. 44 (2005) 5042.
- [17] K. Morimoto, Y. Itoh, K. Yoshimura, M. Kato and K. Hirota: J. Phys. Soc. Jpn. 75 (2006) 083709.
- [18] D. Beeman and P. Pincus: Phys. Rev. **166** (1968) 359.