SC 617

Quiz-Week4

Gyandev Satyaram Gupta, 190100051

1. Comment on definiteness, radial unboundedness and decrescent properties

Solution: i. $V(x) = \frac{x^2}{1+x^2}$

 $V(t,0) = 0, \forall t \in \mathbb{R}^+$

Choose $\phi(x) = \frac{x^2}{1+x^2}$ and $\exists \phi \in \kappa$ such that $V(t,x) \geq \phi(|x|) \ \forall t \in \mathbb{R}^+ \ \forall x \in \mathbb{B}_r$

So its a Positive Definiteness

Because $V(x) \leq 1$ one cannot find a function $\phi(|x|) \in KR$ to satisfy $V(x) \geq 1$ $\phi(|x|) \forall x \in \mathbb{R}$. Hence, V is not radially unbounded

Choose $\phi(x) = x^2$ and $\exists \phi \in \kappa$ such that $V(t,x) < \phi(|x|) \ \forall t \in \mathbb{R}^+ \ \forall x \in \mathbb{B}_r$

Hence it is decrescent

ii. $V(x_1, x_2) = \frac{x_1^2}{2} + \frac{x_2^4}{2}$ $V(t, 0) = 0, \forall t \in \mathbb{R}^+$ Change (1)

Choose $\phi(x) = \frac{x^2}{4}$ and $\exists \phi \in \kappa$ such that $V(t, x) \geq \phi(|x|) \ \forall t \in \mathbb{R}^+ \ \forall x \in \mathbb{B}_r$

So its a Positive Definiteness Choose $\phi(x) = \frac{x^2}{4}$ and $\exists \phi(|x|) \in KR$ to satisfy $V(x) \geq \phi(|x|) \forall x \in \mathbb{R}^n$. Hence, V is radially unbounded

Choose $\phi(x) = x^4$ and $\exists \phi \in \kappa$ such that $V(t, x) \leq \phi(|x|) \ \forall t \in \mathbb{R}^+ \ \forall x \in \mathbb{B}_r$ Hence it is decrescent

iii. $V(x_1,x_2)=\frac{x_1^2}{1+t}+x_2^2$ $V(t,0)=0, \forall t\in\mathbb{R}^+$ Choose $\phi(x)=\frac{x^2}{4}$ and $\exists \phi\in\kappa$ such that $V(t,x)\geq\phi(|x|)\ \forall t\in\mathbb{R}^+\ \forall x\in\mathbb{B}_r$

So its a Positive Definiteness

Choose $\phi(x) = \frac{x^2}{4}$ and $\exists \phi(|x|) \in KR$ to satisfy $V(x) \ge \phi(|x|) \forall x \in \mathbb{R}^n$. Hence, V is radially unbounded

Choose $\phi(x) = x^4$ and $\exists \phi \in \kappa$ such that $V(t, x) \leq \phi(|x|) \ \forall t \in \mathbb{R}^+ \ \forall x \in \mathbb{B}_r$ Hence it is decrescent

iv. $V(x_1, x_2) = k(1 - \cos(x_1)) + \frac{x_2^4}{2}$ $V(t, 0) = 0, \forall t \in \mathbb{R}^+ \text{ and assuming } K > 0$ $V(t, 0) = 0, \forall t \in \mathbb{R}^+ \text{ and assuming } K > 0$

So its a Positive Definiteness

V is not radially unbounded because as $x \to \infty$ V is not tending to ∞ due to $1 - cos x_1$ term oscillates between 0 and 2 when $x_2 = 0$, and, $x_1 \to \infty$

Choose $\phi(x) = x^4 + 2K$ and $\exists \phi \in \kappa$ such that $V(t, x) \leq \phi(|x|) \ \forall t \in \mathbb{R}^+ \ \forall x \in \mathbb{B}_r$ Hence it is decrescent

 $v.V(x_1, x_2) = x_1^2 + tanh^2(x_2)$ where $tanh^2(x_2) = (\frac{e^{x_2}-1}{e^{x_2}+1})^2$ $V(t,0) = 0, \forall t \in \mathbb{R}^+$

Since $V(x_1, x_2) > 0 \ \forall x \in \mathbb{R}^n - \{0\}$

So its a Positive Definiteness

V is not radially unbounded because as $x \to \infty$ V is not tending to ∞ due to $\frac{e^{x_2}-1}{e^{x_2}+1}$ term has a finite limit when $x_1=0, and, x_2\to \infty$

Choose $\phi(x) = x^2$ and $\exists \phi \in \kappa$ such that $V(t, x) \leq \phi(|x|) \ \forall t \in \mathbb{R}^+ \ \forall x \in \mathbb{B}_r$. Hence it is decrescent

2. State a Lyapunov Instability Theorem? 1

Solution: We have $x_e = 0$ and let $V: D \to \mathbb{R}$ having following properties

i.
$$V(0) = 0$$

ii. $\exists x_0 \in \mathbb{R}^n$, arbitarily close to x_e , such that $V(x_0) > 0$

iii. $\dot{V} > 0, \forall x \in U$, where the set $U = \{x \in D : ||x|| \le \epsilon \text{ and } V(x) > 0\}$

Then we can say that its unstable

3. Use above theorem to prove that the given system is unstable for c>0.

$$\dot{x}_1 = x_2 + cx_1(x_1^2 + x_2^2)$$

$$\dot{x}_2 = -x_1 + cx_2(x_1^2 + x_2^2)$$

Solution:

$$\dot{x}_1 = x_2 + cx_1(x_1^2 + x_2^2)$$

$$\dot{x}_2 = -x_1 + cx_2(x_1^2 + x_2^2)$$

Choose $V(x_1, x_2) = x_1^2 + x_2^2$

i. So we have V(0) = 0

ii. Now take a point $||x - x_e|| = ||x|| < \epsilon$ where $\epsilon > 0$ and $x \in \mathbb{R}^2$ we also have $V(x) = x_1^2 + x_2^2 > 0$ which is always positive other than at 0

iii. $\dot{V} = c(x_1 + x_2)^2 > 0 \ \forall x$ in set U, here set U describes the set of $\mathbb{R}^2 \setminus 0$ points Hence the system is unstable

 $^{^{1}} https://nptel.ac.in/content/storage2/courses/101108047/module13/Lecture\%2031.pdf$