Worksheet3a in R.

Mamerto F. Gonzales Jr.

2022-10-10

#Worksheet for R Programming

Instructions:

Use RStudio or the RStudio Cloud accomplish this worksheet. Save the R script as RWorksheet_lastname#3a.R. On your own GitHub repository, push the R script, the Rmd file, as well as this pdf worksheet to the repo you have created before. Do not forget to comment your Git repo on our VLE Accomplish this worksheet by answering the questions being asked and writing the code manually.

Reminder To create a chunk of codes, you need to indicate this structure Figure 1: R Chunk You can add chunk options if you want, like: — echo: Whether to echo the source code in the output document (someone may not prefer reading your smart source code but only results).

Example: "' $\{r \text{ name, echo} = TRUE\}\$ - collapse: Whether to merge text output and source code into a single code block in the output. This is mostly cosmetic: collapse = TRUE makes the output more compact, since the R source code and its text output are displayed in a single output block. The default collapse = FALSE means R expressions and their text output are separated into different blocks Chunk options in knitr are documented in (https://yihui.name/knitr/options) or you can see the R Mardown: The Definititive Guide for the whole document of R Markdown

##Using Vectors #1. There is a built-in vector LETTERS contains the uppercase letters of the alphabet and letters which contains the lowercase letters of the alphabet. LETTERS ## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" ## [20] "T" "U" "V" "W" "X" "Y" "Z" letters ## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" ## [20] "t" "u" "v" "w" "x" "y" "z"

LETTERS

```
## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" ## [20] "T" "U" "V" "W" "X" "Y" "Z"
```

letters

```
## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" ## [20] "t" "u" "v" "w" "x" "y" "z"
```

Based on the above vector LETTERS:

a. You need to produce a vector that contains the first 11 letters.

LETTERS[1:11]

```
## [1] "A" "B" "C" "D" "E" "F" "G" "H" "T" "J" "K"
```

b. Produce a vector that contains the odd numbered letters.

```
letters[1:26 %% 2!= 0]
```

```
## [1] "a" "c" "e" "g" "i" "k" "m" "o" "q" "s" "u" "w" "v"
```

```
letters
```

```
## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
## [20] "t" "u" "v" "w" "x" "v" "z"
```

c. Produce a vector that contains the vowels

```
vowels <- LETTERS [c(1,5,9,15,21)]
vowels</pre>
```

```
## [1] "A" "E" "I" "O" "U"
```

Based on the above vector letters: d. Produce a vector that contains the last 5 lowercase letters.

```
letters[21:26]
```

```
## [1] "u" "v" "w" "x" "y" "z"
```

e. Produce a vector that contains letters between 15 to 24 letters in lowercase.

```
letters[15:24]
```

```
## [1] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x"
```

- 2. Create a vector with the average temperatures in April for Tuguegarao City, Manila, Iloilo City, Tacloban, Samal Island, and Davao City. The average temperatures in Celcius are 42, 39, 34, 34, 30, and 27 degrees.
- a. What is the R code and its result for creating a character vector for the city/town of Tuguegarao City, Manila, Iloilo City, Tacloban, Samal Island, and Davao City? Name the object as city. The names should follow the same order as in the instruction.

```
## [1] "Tuguegarao City" "Manila" "Iloilo City" "Tacloban"
## [5] "Samal Island" "Davao City"
```

b. The average temperatures in Celcius are 42, 39, 34, 34, 30, and 27 degrees. Name the object as temp. Write the R code and its output. Numbers should also follow what is in the instruction.

```
temp <- c(42,39,34,34,30,27)
temp
```

```
## [1] 42 39 34 34 30 27
```

c. Associate the temperature temp with the city by using names() function. What is the R code and its result?

```
names(temp) <- city
temp</pre>
```

```
## Tuguegarao City Manila Iloilo City Tacloban Samal Island
## 42 39 34 34 30
## Davao City
## 27
```

d. From the answer in c, what is the content of index 5 and index 6? What is its R code?

```
temp[5:6]
```

```
## Samal Island Davao City
```

30 27

e. From the answer in d, what is the content of index 5 and index 6? What is its R code?

temp[5:6]

```
## Samal Island Davao City
## 30 27
```

3 Using Matrices • Matrix can be created by specifying the rows and columns. # row = 2

```
 \begin{array}{l} {\rm matrix}(c(5,6,7,4,3,2,1,2,3,7,8,9), nrow = 2) \ \#\# \ [,1] \ [,2] \ [,3] \ [,4] \ [,5] \ [,6] \ \#\# \ [1,] \ 5 \ 7 \ 3 \ 1 \ 3 \ 8 \ \#\# \ [2,] \ 6 \ 4 \ 2 \ 2 \ 7 \ 9 \\ \# \ row = 3 \ {\rm and} \ {\rm column} = 2 \\ \end{array}
```

matrix(data = c(3,4,5,6,7,8),3,2) ## [,1] [,2] ## [1,] 3 6 ## [2,] 4 7 ## [3,] 5 8 # creating a diagonal matrix where x value will always be 1

```
\operatorname{diag}(1,\operatorname{nrow} = 6,\operatorname{ncol} = 5) \ \#\# \ [,1] \ [,2] \ [,3] \ [,4] \ [,5] \ \#\# \ [1,] \ 1 \ 0 \ 0 \ 0 \ 0 \ \#\# \ [2,] \ 0 \ 1 \ 0 \ 0 \ 0 \ \#\# \ [3,] \ 0 \ 0 \ 1 \ 0 \ \#\# \ [4,] \ 0 \ 0 \ 0 \ 1 \ 0 \ \#\# \ [6,] \ 0 \ 0 \ 0 \ 0 \ 0
```

 $\begin{array}{l} \operatorname{diag}(6) \ \#\# \ [,1] \ [,2] \ [,3] \ [,4] \ [,5] \ [,6] \ \#\# \ [1,] \ 1 \ 0 \ 0 \ 0 \ 0 \ \#\# \ [2,] \ 0 \ 1 \ 0 \ 0 \ 0 \ \#\# \ [3,] \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ \#\# \ [4,] \ 0 \ 0 \ 0 \ 1 \\ 0 \ 0 \ \#\# \ [6,] \ 0 \ 0 \ 0 \ 0 \ 1 \\ \end{array}$

- 2. Create a matrix of one to eight and eleven to fourteen with four columns and three rows.
- a. What will be the R code for the #2 question and its result?

```
M1 <- matrix(data = c(1:8,11:14),3,4)
M1
```

```
[,1] [,2] [,3] [,4]
##
## [1,]
             1
                   4
                         7
                              12
## [2,]
                   5
             2
                         8
                              13
## [3,]
             3
                   6
                        11
                              14
```

b. Multiply the matrix by two. What is its R code and its result?

M1*2

```
##
         [,1] [,2] [,3] [,4]
## [1,]
                  8
                       14
                             24
## [2,]
            4
                 10
                       16
                             26
## [3,]
            6
                 12
                       22
                             28
```

c. What is the content of row 2? What is its R code?

M1[2,]

```
## [1] 2 5 8 13
```

d. What will be the R code if you want to display the column 3 and column 4 in row 1 and row 2? What is its output?

```
M1[c(1,2),c(3,4)]
```

```
## [,1] [,2]
## [1,] 7 12
## [2,] 8 13
```

e. What is the R code is you want to display only the columns in 2 and 3, row 3? What is its output?

```
M1[c(3),c(2,3)]
```

```
## [1] 6 11
```

f. What is the R code is you want to display only the columns 4? What is its output?

```
M1[,4]
```

```
## [1] 12 13 14
```

g. Name the rows as isa, dalawa, tatlo and columns as uno, dos, tres, quatro for the matrix that was created in b.: What is its R code and corresponding output?

```
dimnames(M1) <- list(c("isa", "dalawa", "tatlo"),</pre>
                       c("uno", "dos", "tres", "quatro"))
M1
##
           uno dos tres quatro
## isa
                  4
                       7
             1
## dalawa
             2
                  5
                       8
                              13
## tatlo
             3
                  6
                      11
                              14
```

h. From the original matrix you have created in a, reshape the matrix by assigning a new dimension with dim(). New dimensions should have 2 columns and 6 rows. What will be the R code and its output?

```
dim(M1) <- c(6,2)
M1
```

```
##
         [,1] [,2]
##
   [1,]
                   7
             1
## [2,]
             2
                   8
   [3,]
             3
##
                  11
## [4,]
             4
                  12
             5
## [5,]
                  13
## [6,]
             6
                  14
```

Using Arrays • Array can have more than two dimensions by using the array() function and dim() to specify the dimensions # creates a two-dimensional array containing numbers from 1 to 24 that have 3 rows andarray_dta <- array(c(1:24), c(3,4,2)) array_dta ##, , 1 ### [,1] [,2] [,3] [,4] ## [1,] 1 4 7 10 ## [2,] 2 5 8 11 ## [3,] 3 6 9 12 #### , , 2 #### [1,1] [,2] [,3] [,4] ## [1,1] 13 16 19 22 ## [2,1] 14 17 20 23 ## [3,1] 15 18 21 24 ## checking for the dimensions ## row, column, dimension dim(array_dta) ## [1] 3 4 2 ## checking for the number of elements length(array_dta) ## [1] 24 6 • Another way to create arrays vector A <- c(1:24) ## creating an array an_Array <- array(vector A, dim = c(3,4,2)) an_Array ##, , 1 ## [1,1] [,2] [,3] [,4] ## [1,1] 14 7 10 ## [2,1] 2 5 8 11 ## [3,1] 3 6 9 12 ### #, , 2 #### [1,1] [,2] [,3] [,4] ## [1,1] 13 16 19 22 ## [2,1] 14 17 20 23 ## [3,1] 15 18 21 24 3. An array contains 1, 2, 3, 6, 7, 8, 9, 0, 3, 4, 5, 1 a. Create an array for the above numeric values. Each values will be repeated twice What will be the R code if you are to create a three-dimensional array with 4 columns and 2 rows. What will be its output?

```
arr <- c(1, 2, 3, 6, 7, 8, 9, 0, 3, 4, 5, 1)
arr
```

```
## [1] 1 2 3 6 7 8 9 0 3 4 5 1
value <- array(rep(arr, 2), dim = c(2,4,3))
value
## , , 1
##</pre>
```

```
## [,1] [,2] [,3] [,4]
## [1,] 1 3 7 9
## [2,] 2 6 8 0
##
## , , 2
```

```
[,1] [,2] [,3] [,4]
##
## [1,]
           3
                5
                      1
## [2,]
           4
                 1
                      2
##
## , , 3
##
        [,1] [,2] [,3] [,4]
## [1,]
                9
           7
                      3
## [2,]
           8
                 0
                      4
                            1
```

- b. How many dimensions do your array have?
 - There are 3 dimensions in this array
- c. Name the rows as lowercase letters and columns as uppercase letters starting from the A. The array names should be "1st-Dimensional Array", "2nd-Dimentional Array", and "3rd-Dimensional Array". What will be the R codes and its output?

```
## , , 1st-Dimensional Array
##
##
    ABCD
## a 1 3 7 9
## b 2 6 8 0
##
## , , 2nd-Dimentional Array
##
##
    ABCD
## a 3 5 1 3
## b 4 1 2 6
## , , 3rd-Dimensional Array
##
   ABCD
##
## a 7 9 3 5
## b 8 0 4 1
```