Méthodes par ensemble

Introduction à l'apprentissage automatique – GIF-4101 / GIF-7005

Professeur : Christian Gagné

Semaine 11

11.1 Notions d'ensemble

Méthodes par ensemble

- Théorème du no free lunch
 - Aucun algorithme d'apprentissage n'est supérieur aux autres pour tous problèmes
- Arguments statistiques pour l'utilisation d'ensembles
 - Moyenne d'un ensemble d'échantillons plus fiable que valeur d'un seul échantillon
 - Éliminer la variance en moyennant les décisions d'ensemble
 - Retire le bruit des décisions individuelles des classifieurs
- Plusieurs têtes valent mieux qu'une
 - Méthodes par votes
 - Codes à correction d'erreurs
 - Échantillonnage dynamique de données ou de caractéristiques
 - Mixtures d'experts

Théorème du jury de Condorcet

- Quelle est la probabilité qu'un jury obtienne une décision à majorité qui soit correcte?
 - Deux décisions possibles : décision correcte ou décision erronée
 - Chaque jury a une probabilité p de prendre une décision correcte
 - Lorsque la probabilité p > 1/2, la probabilité de décision correcte du jury tend vers 1 avec un très grand nombre de participants au jury
 - Inversemement, avec une probabilité p < 1/2, la probabilité de décision du jury correcte est réduite par l'augmentation de la taille du jury
 - Suppose que les votes sont indépendants et identiquement distribués (iid)
- Proposé par le Marquis de Condorcet en 1785
 - Justification mathématique de la démocratie, étudiée en science politique

Approches pour création d'ensembles

- Différents algorithmes d'apprentissage
 - Différentes hypothèses sur les données (biais et variance)
- Différents hyperparamètres
 - Nombre de neurones/couches cachées
 - Nombre de voisins
 - Type de matrice de covariance
- Différentes représentations
 - Différentes mesures/capteurs
 - Différentes caractéristiques (forêt aléatoire, random subspaces)
- Différents jeux de données d'entraînement
 - Échantillonnages aléatoires des données (bagging)
 - Échantillonnages selon données mal classées (boosting)

Complexité, combinaison, formalisation

- Complexité des classifieurs de base
 - Classifieurs de base n'ont pas à être très précis individuellement
 - La simplicité est souvent préférable à la performance
 - Diversité dans le classement, spécialisation dans certains domaines
 - Si les erreurs des classifieurs sont iid

$$\lim_{L o \infty} E_{\it ensemble} o E_{\it Bayes}$$

- Approches pour combinaisons
 - Combinaisons d'experts multiples (parallèle)
 - Votes, mixtures d'experts, stacked generalization
 - Combinaisons multi étages (série)
 - Classifieurs d'étages suivants appelés seulement lorsque doutes aux étages précédents (classifieurs en cascade)
- Formalisation des méthodes par ensemble

$$\bar{h}(\boldsymbol{x}|\boldsymbol{\Phi}) = f(h_1(\boldsymbol{x}), h_2(\boldsymbol{x}), \dots, h_L(\boldsymbol{x})|\boldsymbol{\Phi})$$

11.2 Votes et combinaison bayésienne

Votes

- Méthode des votes
 - Assigner à la classe la plus fréquente parmi les réponses des classifieurs de base
- ullet Formulation générale : pondérer chaque vote par un facteur w_j

$$ar{\mathrm{h}}(\mathbf{x}) = \sum_{j=1}^L w_j \mathrm{h}_j(\mathbf{x}), \quad ext{où } w_j \geq 0, \ orall j \ ext{et} \ \sum_j w_j = 1$$

- Modèle linéaire de combinaison parallèle
- Dans le cas de vote simple, $w_i = 1/L$
- Poids peuvent représenter la confiance dans chaque classifieur

Combinaison de modèles bayésiens

• Modèle bayésien de combinaison

$$P(C_i|\mathbf{x}) = \sum_{\forall \mathcal{M}_j} P(C_i|\mathbf{x},\mathcal{M}_j)P(\mathcal{M}_j)$$

- $w_j = P(\mathcal{M}_j)$ et $h_j(\mathbf{x}) = P(C_i|\mathbf{x},\mathcal{M}_j)$
- ullet Vote simple est le cas de probabilités a priori égales, $P(\mathcal{M}_j)=1/L$

Biais et variance

- Biais et variance dans les ensembles de classifieurs à deux classes
 - h_j sont iid, avec espérance $\mathbb{E}[h_j]$ et variance $Var(h_j)$

$$\mathbb{E}[\bar{\mathbf{h}}] = \mathbb{E}\left[\sum_{j=1}^{L} \frac{1}{L} \mathbf{h}_{j}\right] = \frac{1}{L} L \mathbb{E}[\mathbf{h}_{j}] = \mathbb{E}[\mathbf{h}_{j}]$$

$$\operatorname{Var}(\bar{\mathbf{h}}) = \operatorname{Var}\left(\sum_{j=1}^{L} \frac{1}{L} \mathbf{h}_{j}\right) = \frac{1}{L^{2}} L \operatorname{Var}(\mathbf{h}_{j}) = \frac{1}{L} \operatorname{Var}(\mathbf{h}_{j})$$

- Variance diminue lorsque le nombre de voteurs indépendants L augmente
 - Avec ensembles, on peut donc réduire la variance sans affecter le biais
 - Erreur quadratique est d'autant réduite

Diversité et corrélation négative

• Variance d'ensembles, cas général

$$\operatorname{Var}(\bar{\mathbf{h}}) = \frac{1}{L^2} \operatorname{Var} \left(\sum_{j} \mathbf{h}_{j} \right) = \frac{1}{L^2} \left[\sum_{j} \operatorname{Var} \left(\mathbf{h}_{j} \right) + 2 \sum_{j} \sum_{i>j} \operatorname{Cov}(\mathbf{h}_{j}, \mathbf{h}_{i}) \right]$$

- Réduction supplémentaire de la variance avec voteurs corrélés négativement
- Erreur quadratique peut être réduite, pourvu que la corrélation négative n'affecte pas le biais de l'ensemble
- Diversité dans les réponses des classifieurs d'ensemble
 - Objectif dans la formation d'ensemble : obtenir des classifieurs ne faisant pas les mêmes erreurs
 - Cas limite d'ensemble sans diversité : L copies du même classifieur

11.3 Matrices de décision et codes à correction d'erreur

Matrice de décision

Classement multi classes avec ensembles, avec vote pondéré

$$\bar{\mathbf{h}}_i(\mathbf{x}) = \sum_j w_{i,j} \mathbf{h}_{j,i}(\mathbf{x})$$

- Matrice de décision ${f W}$: valeurs des poids $w_{i,j}$
- Matrice de décision pour classement un contre tous (exemple avec L=K=4)

$$\mathbf{W} = \begin{bmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & +1 & -1 \\ -1 & -1 & -1 & +1 \end{bmatrix}$$

- Ambiguïté lorsque mauvaise décision d'un classifieur de base
 - Deux valeurs $\bar{\mathbf{h}}_i(\mathbf{x}) = 0$
 - Similarité trop élevée entre les codes (faible distance de Hamming)

Ensembles avec redondance

• Matrice de décision pour décisions par paires (exemple avec K=4, L=K(K-1)/2=6)

$$\mathbf{W} = \left[\begin{array}{ccccccccc} +1 & +1 & +1 & 0 & 0 & 0 \\ -1 & 0 & 0 & +1 & +1 & 0 \\ 0 & -1 & 0 & -1 & 0 & +1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{array} \right]$$

- Valeur de $w_{i,j} = 0$ signifie que la décision est ignorée
- Erreur d'un classifieur de base n'implique pas nécessairement une ambiguïté
- Valeur L croît quadratiquement selon K
- Généralisation de l'approche : codes à correction d'erreur
 - Utiliser une matrice de décision **W** de taille *L* préétablie
 - Distance de Hamming entre lignes est maximisée

Codes à correction d'erreur

- Codes à correction d'erreur (CCE)
 - Avec K classes, il y a $2^{(K-1)} 1$ problèmes à deux classes différents
 - Diversité de discriminants : colonnes différentes
 - Correction d'erreur : composantes différentes pour une ligne
- Exemple de matrice avec CCE (K = 4 et L = 9)

- Différence (distance de Hamming) minimale de d = 5 entre chaque paire de lignes
 - Tolère donc jusqu'à $\left\lfloor \frac{d-1}{2} \right\rfloor = \left\lfloor \frac{5-1}{2} \right\rfloor = 2$ erreurs de classifieurs de base
- Choix de la classe selon $\bar{\mathbf{h}}_i(\mathbf{x})$ maximum
- ullet Valeur $ar{\mathrm{h}}_i(\mathbf{x})$ normalisée dans [0,1] peut être interprétée comme une probabilité
- Choix des valeurs W en partie arbitraires, certaines dichotomies peuvent être plus difficiles que d'autres

11.4 Bagging, random subspaces

et forêts aléatoires

Bagging et random subspaces

- Bagging : ensemble de classifieurs entraînés sur ensembles de données légèrement différents
 - ullet Chaque classifieur de base entraîné sur ensemble \mathcal{X}_j
 - \mathcal{X}_j : tirage **avec remise** de N données dans \mathcal{X}
 - Remise : plusieurs exemplaires de certaines données, absence de certaines autres
 - Idéalement, classifieurs de base devraient être instables
 - Algorithme d'entraînement instable : pour jeux de données légèrement différents, donne des classifieurs avec comportements différents
 - Stable : k-plus proches voisins, classement paramétrique
 - Instable : perceptron multicouche, condensation de Hart
 - En général, algorithmes instables ont une grande variance
- Random subspaces
 - Générer chaque classifieur de base par un échantillonnage aléatoire d'un sous-ensemble de caractéristiques

Arbres de décision

- Arbres de décision
 - Séparation hiérarchique (récursive) de l'espace d'entrée
 - Chaque nœud de l'arbre est un test sur valeur avec issues discrète
 - Effectue une division de plus en plus fine de l'espace d'entrée
- Propriétés des arbres de décision
 - Construction descendante (top-down) des arbres selon critère de performance (ex. entropie)
 - Élagage (pruning) permet réduire sur-spécialisation
 - Utile pour extraire des règles de décision interprétables

Arbres de décision

 $Par\ Stephen\ Milborrow,\ CC-SA\ 4.0,\ https://commons.wikimedia.org/wiki/File: Cart_tree_kyphosis.png.$

Forêt aléatoire

- Problème avec arbres de décision pour classement
 - Classifieurs à biais faible et variance élevée
 - Ce qui implique risque élevé de sur-apprentissage (même si élagage est utilisé)
- Solution : faire ensemble d'arbres
 - Moyennage permet de garder biais faible tout en réduisant variance d'ensemble
 - Mais ensemble doit comporter diversité d'arbres
- Générer arbres « aléatoires » avec bagging et random subspaces
 - Pour apprendre chaque nœud, utiliser sous-ensembles de données et de variables différents
- Ensemble d'arbres aléatoires correspond à une forêt aléatoire
 - Moyenner décisions des arbres
 - Variance sur les décisions est un bon indicateur de la confiance de l'ensemble

11.5 Boosting

Boosting

- Bagging : nécessite des algorithmes instables
 - Diversité générée passivement
- Boosting : générer activement de nouveaux classifieurs à partir des données difficiles pour les classifieurs actuels
 - 1. Diviser aléatoirement le jeu de données en trois $(\mathcal{X}_1,\ \mathcal{X}_2\ \text{et}\ \mathcal{X}_3)$
 - 2. Entraı̂ner classifieur h_1 sur \mathcal{X}_1
 - 3. Évaluer données \mathcal{X}_2 avec h_1 , utiliser données mal classées et un nombre égal de données bien classées pour former \mathcal{X}_2'
 - 4. Entraı̂ner classifieur h_2 sur \mathcal{X}_2'
 - 5. Évaluer données \mathcal{X}_3 avec h_1 et h_2 , utiliser données où h_1 et h_2 en désaccord pour former \mathcal{X}_3'
 - 6. Entraı̂ner classifieur h_3 sur \mathcal{X}_3'
- \bullet Évaluer classement de données : tester données avec h_1 et $\mathrm{h}_2,$ si désaccord utiliser décision de h_3
- Améliore les performances, mais requiert de très grands jeux de données

AdaBoost

- AdaBoost (adaptive boosting) : réutiliser le même jeu de données pour les classifieurs de base
 - Contrairement au boosting classique, ne requiert pas de très grands jeux de données
 - Peut générer un nombre arbitrairement élevé de classifieurs
- AdaBoost.M1 : la probabilité d'échantillonner une donnée change en fonction des erreurs des classifieurs de base
 - Initialement, $p_1^t = 1/N$, t = 1, ..., N
 - Échantillonner jeu \mathcal{X}_j à partir de \mathcal{X} selon probabilités p_i^t
 - Entraı̂ner classifieur h_j avec \mathcal{X}_j
 - Si taux d'erreur de h_j supérieur à $\epsilon_j > 0,5$, interrompre l'algorithme, $\epsilon_j = \sum_t p_j^t \ell_{0-1}(r^t, h_j(\mathbf{x}^t))$
 - ullet Calculer les probabilités p_{j+1}^t selon le classement de ${\mathcal X}$ avec ${
 m h}_j$
 - Répéter pour générer les L classifieurs de base

Weak learner

- Boosting et AdaBoost ne nécessitent pas de classifieurs très précis
 - Weak learner: algorithme ayant une probabilité d'erreur de moins de 1/2 en deux classes (mieux qu'un classement aléatoire) et relativement instable (variations soutenues dans le classement)
 - Utiliser des weak learners permet une bonne diversité dans le classement
- Souches de décision : weak learner couramment utilisé avec AdaBoost
 - Décisions basées sur un seuil appliqué à une seule dimension

$$h(\mathbf{x}|\theta,\upsilon,\gamma) = \operatorname{sgn}(\theta(\mathbf{x}_{\gamma}-\upsilon)), \quad \theta \in \{-1,1\}, \ \gamma \in \{1,\ldots,D\}, \ \upsilon \in \mathbb{R}$$

• Entraînement déterministe de souches de décisions

$$\begin{split} \tilde{x}_j^k &= & x_j^t \mid \tilde{x}_j^1 \leq \tilde{x}_j^2 \leq \dots \leq \tilde{x}_j^{k-1} \leq x_j^t \leq \tilde{x}_k^{k+1} \leq \dots \leq \tilde{x}_j^N \\ v_j^k &= & 0.5(\tilde{x}_j^k + \tilde{x}_j^{k+1}), \ k = 1, \dots, N-1 \\ \mathcal{A}_j &= & \left\{ (s_j, v_j^k, j) \mid \forall s_j \in \{-1, 1\}, \ \forall k \in \{1, \dots, N-1\} \right\} \\ \mathcal{A} &= & \mathcal{A}_1 + \mathcal{A}_2 + \dots + \mathcal{A}_D \\ (\theta, v, \gamma) &= & \underset{(s_j, u_j^k, j) \in \mathcal{A}}{\operatorname{argmin}} E(h(\cdot|s_j, u_j^k, j)|\mathcal{X}) \end{split}$$

Erreurs avec AdaBoost

Algorithme AdaBoost

- 1. Initialiser les probabilités de chaque donnée, $p_1^t = 1/N$, $t = 1, \dots, N$
- 2. Pour chaque classifieur de base $j = 1, \dots, L$:
 - 2.1 Échantillonner jeu \mathcal{X}_j à partir de \mathcal{X} selon probabilités p_i^t
 - 2.2 Entraı̂ner classifieur \mathbf{h}_j avec jeu \mathcal{X}_j
 - 2.3 Calculer l'erreur du classifieur, $\epsilon_j = \sum_t p_j^t \ell_{0-1}(r^t, \mathbf{h}_j(\mathbf{x}^t))$
 - 2.4 Si erreur $\epsilon_j>0.5$, alors L=j-1 et arrêter l'algorithme
 - 2.5 Calculer $\beta_j = \frac{\epsilon_j}{1 \epsilon_j}$
 - 2.6 Calculer les nouvelles probabilités p_{i+1}^t

$$ho_{j+1}^t = rac{q_j^t}{\sum_s q_j^s}, \quad q_j^t = \left\{ egin{array}{ll} eta_j oldsymbol{
ho}_j^t & ext{si } \mathrm{h}_j(\mathbf{x}^t) = r^t \ oldsymbol{
ho}_j^t & ext{autrement} \end{array}
ight., \quad t = 1, \ldots, \mathcal{N}$$

Évaluation du classement d'une donnée :
$$\bar{\mathbf{h}}(\mathbf{x}) = \sum_{j=1}^{L} \left(\log \frac{1}{\beta_j} \right) \mathbf{h}_j(\mathbf{x})$$

Exemple avec AdaBoost

Maximisation des marges avec AdaBoost

- AdaBoost maximise les marges pour le classement
 - Apprentissage avec probabilités plus fortes pour les données difficiles à classer
 - Données difficiles : données dans la marge
 - ullet $ar{\mathbf{h}}_i$ est le résultat d'un vote pondéré

$$\bar{\mathbf{h}}_i = \frac{\text{votes pour classe } i - \text{votes contre classe } i}{\text{nombre total de votes}}$$

- ullet Avec grand nombre de classifieurs, $ar{\mathrm{h}}_i(\mathbf{x}) o 1$ si $\mathbf{x} \in \mathcal{C}_i$ et $ar{\mathrm{h}}_i(\mathbf{x}) o -1$ autrement
- Larges marges ⇒ meilleure généralisation
- Nombreuses variantes de boosting
 - LPBoost : apprendre les $\alpha_j = \log \frac{1}{\beta_j}$ par programmation linéaire
 - À chaque génération de classifieur de base, réapprend les α_j de tous les classifieurs actuels
 - Nombreux parallèles à faire avec les SVM

11.6 Autres modèles de combinaison

Mixture d'experts

- Mixture d'experts
 - Classifieurs-experts spécialisés sur certains aspects du problème
 - Travaillent en parallèle, avec fonction de routage pondérant les décisions selon l'expertise
 - Similaire au vote pondéré, mais avec pondération non constante

$$\bar{\mathbf{h}}(\mathbf{x}) = \sum_{j=1}^{L} w_j(\mathbf{x}) \mathbf{h}_j(\mathbf{x})$$

- Spécialisation dans différentes régions de l'espace réduit corrélation
- Génère donc des experts biaisés, mais négativement corrélés
 - Implique une réduction globale de la variance, donc de l'erreur
- Fonction de routage peut être non linéaire (ex. perceptron multicouche)
 - Peut réduire le biais, au risque d'augmenter la variance (sur apprentissage)

Mixtures d'experts

Stacked generalization

- Stacked generalization : système à deux étages
 - Premier étage : classifieurs de base fonctionnant en parallèle
 - Deuxième étage : système de combinaison associant sortie des classifieurs de base avec étiquette désirée

$$\bar{\mathbf{h}}(\mathbf{x}) = \mathbf{h}_{\textit{comb}}(\mathbf{h}_1(\mathbf{x}), \mathbf{h}_2(\mathbf{x}), \dots, \mathbf{h}_L(\mathbf{x}))$$

- Système de combinaison : classifieur standard
 - Apprend comment les classifieurs de base font des erreurs
 - Entraînement du système de combinaison doit se faire sur données non vues par les classifieurs de base
 - Permet d'estimer et de corriger les biais des classifieurs de base

Stacked generalization

Classifieurs en cascade

- Classifieurs en cascade : séquence de classifieurs de base
 - Passage d'un étage à l'autre si le classifieur k a une confiance faible en son classement, $w_j(\mathbf{x}) < \theta_j$

$$ar{\mathrm{h}}(\mathbf{x}) = \mathrm{h}_j(\mathbf{x}) \quad \mathrm{si} \ w_j(\mathbf{x}) \geq heta_j \ \mathrm{et} \ w_k(\mathbf{x}) < heta_k, \ orall k < j$$

- Confiance $w_j(\mathbf{x})$ peut correspondre à la probabilité a posteriori $P(C_i|\mathbf{x})$ du classifieur
- Seuil sur la confiance θ_j devrait être élevé (taux de rejet élevé) pour les premiers étages
- Entraînement d'une cascade
 - Classifieur h_1 entraîné avec $\mathcal{X}_1 = \mathcal{X}$
 - ullet Jeu \mathcal{X}_{j+1} est formé des rejets de \mathcal{X}_j avec classifieur \mathbf{h}_j
 - ullet Classifieur \mathbf{h}_{j+1} entraîné avec jeu \mathcal{X}_{j+1}
- Classifieurs de base de complexités croissantes
 - Classifieurs simples (peu coûteux) gèrent la plupart des cas
 - Classifieurs complexes (coûteux) sur les derniers étages gèrent les cas difficiles

Classifieurs en cascade

Surproduction et sélection

- $\bar{\mathbf{h}}(\mathbf{x}|\Phi) = f(\mathbf{h}_1(\mathbf{x}), \mathbf{h}_2(\mathbf{x}), \dots, \mathbf{h}_L(\mathbf{x})|\Phi)$: métaclassifieur
 - Chaque classifieur $h_i(\mathbf{x})$ peut être vu comme une caractéristique (ou une fonction de base) du méta classifieur
- Surproduction et sélection
 - Générer une vaste variété de classifieurs candidats
 - Ex. méthode des random subspaces
 - Sélectionner un sous-ensemble de ces classifieurs pour former l'ensemble final
- Sélection possible par les méthodes de sélection de caractéristiques
 - Sélection séquentielle vorace avant
 - Sélection séquentielle vorace arrière
 - Algorithmes évolutionnaires multiobjectifs

11.7 Ensembles dans scikit-learn

Scikit-learn

- ensemble.BaggingClassifier: plusieurs variantes de *Bagging* de classifieurs, incluant *random subspaces*
- ensemble.RandomForestClassifier : forêt aléatoire pour le classement
- ensemble.AdaBoostClassifier : variantes AdaBoost.SAMME de l'algorithme AdaBoost
- ensemble.VotingClassifier : vote de classifieurs, incluant vote à majorité et somme pondérées des probabilités
- multiclass.OutputCodeClassifier : combinaison de classifieurs avec un code pour la décision, pouvant être un code à correction d'erreur