Uebungsblatt 06 - Theoretische Informatik 2

Kügler, Lennart - Informatik - 5236372 l.kuegler@tu-braunschweig.de

Rausch, Moritz - Informatik - 5155947 moritz.rausch@tu-braunschweig.de

Schäfer, Maximilian - Elektrotechnik - 4763431 maximilian.schaefer@tu-braunschweig.de

Viradia, Yash - Informatik - 5275038 y.viradia@tu-braunschweig.de

10.07.2023

Korr	ınler	ren	L																
Sei	L,	$\in P$	1	M	DTM) m	A	∠(M₁)=L)									
EnJe	lle	M ₁ '	, .	Lem	ah.	sen/h	earde	und	abl	ehren	lı I	v.Vä	,le	in the second	\mathcal{M}_{2}	ve.J.	moch	Ą	
EnJe	den.	L	(M)	!) :	= L ₁) I'													
\mathcal{M}_{η}^{1}	ha	1 - 0	L'e	al.	1/ a	Lon	Mac.	14	in	M	0	al m	1/) J	. F	P			
				Ju			0				, ,					·			

Idee: Wir betrachten ein Wort we wo. W1. - Wk als einen Graphen.

$$(\omega_0 \cdot \xi)_{-} - (\omega_1)_{-} - (\omega_2)_{-} - (\omega_n)_{-}$$

Für je zwei Knoten $\{w_i, w_j \mid i < k^2\}$ führen wir eine Kante $w_i \rightarrow w_j$, falls das Teilwort w_{i+1} ... w_j in L ist. Wir benutzen w_0 ah einen besonderen Knoten, der für das leen wort steht $(w_0 = \mathcal{E}, w_1 - w_k \in \Sigma)$.

Beh: W∈ L* gdw. es gibt einen Pfad von wo nach Wk in Graphen.

Bew:

"=>" Sei welt, dann Zerlegung w= V1. V2..... Vm mit Viel, oder we E. Betrachte i = {1, -m}

Fall 1: WEE: Der dazugehörige Graph ist wo.
Trivialerweise wo von wo aus erreichbar

Fall 2: $(w = v_1.v_2. -.v_m, v_i \neq \epsilon, v_i \in L, für i \in \{1, -., m3\})$

Die einzelnen v_i 's haben die Form $V_i = W_{n_i}, W_{n_{i+1}}$ Wl; mit $N_{1} \ge 1$

li +1 = ni+1 (izm) 1111

Da $V_{i+1} \in L$ ist, $W_{n+1} = W_{i+1} \in L$, also $W_{i+1} = W_{i+1} \in L$

und nach Konstruktion des Geraphen gibt es Kank (W1;, W1;+1)

(Vi: 1 si sm) Betracht 1 si m.

Außerdem $v_i \in L$ $v_1 = w_1 - w_1$. Dann gibt es die Kante (w_0, w_1)

Damit ist wo -> W.1 -> -- -> W.1 = Wk ein Pfad im Graphen von wo nach wk.

Wenn es ein Pfacl $w_0 \longrightarrow^\infty w_k$ gibt, dann können wir entlang benutzten der benutzten Kanton zerlegen und erhalten eine Zerlegung $w=v_1-v_m$ mit $v_i\in L$ für $i\in\{1,\dots,m\}$

Nun lässt sich DTM M bauen, die L* in Polyzeit erkennt.

Konstruiere Graph &

 $O(n^2)$ Knoton, je Kante in time ML(n) berechnen.

Führe PATH auf & aus. Benötigt Polyzeit

time M (n) ~ O(n2). time ML(n) + poly(n)

Konstruktion

PATH

PATHENL, NLSP, PATH in Plosbar 7

Vesex-Covering konn mit einem Polymonialgest Verifigierer gelost werden. Pazu wind als Zertifikat eine Menge SEV mit 151=k geraten. Der Verifigier prieft, ob fir jede e € E, e= {v, w} mis v, w € V voder w in I liegt. Das ülegnifen ist zeillich polynomiell bentränkt, da für jede Korse 5 zwei met duchlarfon werder muss und 151 ≤ [V] ist. Da VC sich duch einen Polynomialyis - Verifizieer löser lisses, liest es land Theorem 11.8 in NP

()			
	(1)	VALIDITY & CONP (=> VALIDITY & NP	
		VALIDITY kann mit einem Polynomialzeit-Veritizierer gelört	
		werden:	
		· Erselle Ze tifikat: rok eine Beleguy de Variable, von 4	
		rak eine Belegay de Variable, von 4	
		· Seke die Belegung ein und überrüfe, ab y wah ist	
		Dies kann nichtlekoministisch für jede mözliche Belogung ausgeführt werden. Die kann nichtlekoministisch für jede mözliche Belogung ausgeführt werden. Die kann nichtlekoministisch für jede mözliche Belogung ausgeführt werden.	
		JA q fir eine de Belegningen falsir, abzeptiet die NTM, ist q fii alle	
		Belegugen wahr, lehnt sie ab.	
		Lant Theorem 11.8 light VALIDITY dodwich in NP	
		und VALIDITY somit in CONP	
	(2)		
	(2)		
		op ist enfiellbor (=> 7 p let keine Tautologie	
		Marcia Cata VALIDITY	
		Also gibt es eine fedulation of von SAT auf VALIDITY:	
		$f(\varphi) = \neg \varphi$	
		=> GAT < log VALIDITY	
		Da SAT NP-vollstandig ist, gilt für alle LENP	

