PHYSICS

RETROALIMENTACIÓ

PHYSICS

Determine el momento que genera la fuerza F = 50N respecto al punto A , en la barra mostrada.

RESOLUCIÓN:

Tomando como punto de giro a A El sentido de rotación es anti horario, entonces el momento de F es positivo:

$$M_A^F = + F.d$$

$$M_A^F = +50N.5m$$

$$M_A^F = + 250 \text{ N.m}$$

2

Determine el momento resultante sobre la barra homogénea de 4m de longitud y 10kg de masa, respecto al punto O.

RESOLUCIÓN:

Realizamos el DCL de la $+ \le$ barra: $F = 40N \land$

Calculamos el momento resultante respecto de O :

$$M_O^R = M_O^N + M_O^{Fg} + M_O^F$$

 $M_0^R = 0N - 100N.2m + 40N.4m = -40Nm$

$$M_O^R = -40 \mathrm{Nm}$$

HELICO | RETROALIMENTACIÓN

Determine el módulo de la fuerza F aplicada a la barra homogénea de 8kg para que se mantenga horizontal.

RESOLUCIÓN:

Realizamos el DCL de la barra

Tomando momentos respecto al punto O y de la segunda condición de equilibrio mecánico:

$$\sum M_O^F = \sum M_O^F$$
 $M_O^{F_E} + M_O^{F_g} = M_O^F$
 $0 + 80N.4m = F.5m$
 $F = 64N$

RPTA: F = 64N

El auto realiza un MRU según el gráfico. Determine el tiempo t.

RESOLUCIÓN:

Como es un MRU. Se cumple:

$$V_{AB} = V_{BC}$$

$$\frac{12m}{t} = \frac{48m}{8s}$$

$$t = 2 s$$

RPTA:t=2s

Determine la distancia que recorre A cuando se encuentra con B si ambos realizan MRU.

RESOLUCIÓN:

Se trata de tiempo de encuentro

Primero hallamos el tiempo de encuentro:

$$t_e = \frac{200m}{30m/s + 20m/s}$$

 $t_e = 4 s$

La distancia que recorre A será:

$$d_A = v_A \times t_e$$

 $d_A = 30 \text{ m/s} \times 4s$
 $d_A = 120 \text{ m}$

RPTA: 120 m

Se muestran dos autos con MRU; a partir del instante mostrado determine la distancia que recorre B cuando es alcanzado por A

RESOLUCIÓN:

Se trata de un alcance

Hallamos el tiempo de alcance : t_a

$$t_a = \frac{200m}{25m/s - 15m/s}$$

$$t_a = 20 s$$

Finalmente:

$$d_B = v_B \cdot t_a$$

$$d_B = 15 \text{m/s} \times 20 \text{s}$$

$$d_{B} = 300 m$$

RPTA: 300 m

El móvil que se muestra realiza un MRUV ; determine la rapidez que presenta en el punto B, si al desplazarse desde A hacia B transcurren 4s

RESOLUCIÓN:

Como la \vec{v} y la \vec{a} tiene la misma dirección Se trata de un movimiento acelerado

$$v_f = v_o + a.t$$

$$v_B = v_A + a.t$$

$$v_B = 10 \text{m/s} + 3 \text{m/s}^2.4 \text{s}$$

$$v_B = 22 \text{ m/s}$$

RPTA: 22 m/s

El móvil que se muestra experimenta un MRUV con una aceleración de -2îm/s².

Determine el intervalo de tiempo que tarda en ir de A hacia B

RESOLUCIÓN:

Como la \vec{v} y la \vec{a} tienen direcciones opuestas , se trata de un movimiento desacelerado

Entonces:
$$v_f = v_0$$
 - a.t
 $10\text{m/s} = 30 \text{ m/s} - 2\text{m/s}^2$.t
 2m/s^2 .t = 30 m/s - 10m/s
 2m/s^2 .t = 20 m/s
 $t = 10 \text{ s}$

RPTA: 10 s

Un móvil realiza un MRUV. En un instante presenta una rapidez de 5m/s y luego de 10 s su rapidez es 15 m/s. Determine la distancia que recorre en dicho intervalo.

RESOLUCIÓN:

$$d = \left(\frac{v_0 + v_f}{2}\right)t$$

d =
$$(\frac{5m/s + 15m/s}{2}).10s$$

 $d = 100 \, \text{m}$

RPTA: 100 m

10

Los avestruces son aves terrestre que gracias a sus poderosas patas adquieren gran rapidez.

Si en determinado momento, esta ave logra duplicar su rapidez en 18 s para recorrer 270 m, determine su rapidez inicial si este realiza un MRUV.

RESOLUCIÓN:

d =
$$(\frac{v_0 + v_f}{2})$$
t
270 m = $(\frac{v + 2v}{2})$.18s
v = 10 m/s

RPTA: 10 m/s