

DEFINIZIONE

Il numero reale x_0 è un **punto di accumulazione** di A, sottoinsieme di \mathbb{R} , se ogni intorno completo di x_0 contiene infiniti punti di A.

ESEMPIO

$$A = \{ \times \in \mathbb{R} \mid \times = \frac{1}{m} \quad \text{neN} \setminus \{0\} \} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \}$$

DEFINIZIONE

Sia x_0 appartenente a un sottoinsieme A di \mathbb{R} . x_0 è un **punto isolato** di A se esiste almeno un intorno I di x_0 che non contiene altri elementi di A diversi da x_0 .

A =
$$\{x \in \mathbb{R} \mid x = \frac{1}{m}, w \in \mathbb{N} \setminus \{0\} \}$$
 contine sols PW71 15CA71
Un internalls von contine punti isoloti

- Autummumus

Tubli gli altri punti (quelli di]1, 2[) sono di arcumlosione opportenenti ad A.

DEFINIZIONE

Limite $+\infty$ per x che tende a x_0 Sia f(x) una funzione definita in un intervallo [a; b], escluso al più il punto x_0 interno ad [a; b]. f(x) tende a $+\infty$ per x che tende a x_0 quando per ogni numero reale positivo M si può determinare un intorno completo I di x_0 tale che

per ogni x appartenente a I e diverso da x_0 .

Si scrive: $\lim_{x \to x_0} f(x) = +\infty$.

Osserviamo che il $\lim_{x \to x_0} f(x) = l$ esiste se e solo se esistono entrambi i limiti destro e sinistro e coincidono:

$$\lim_{x \to x_0} f(x) = l \quad \leftrightarrow \quad \lim_{x \to x_0^+} f(x) = l \quad \land \quad \lim_{x \to x_0^-} f(x) = l.$$

