

# **Digital Logic**

#### Lecture 1

2<sup>nd</sup> Stage
Computer Science Department
Faculty of Science
Soran University

## **Topics covered**

- ♦ Introduction
- ♦ Digital and Analog
- ♦ Advantages of Digital Techniques
- ♦ Digital Circuits
- ♦ Number Systems
- ♦ Conversion Among Bases

## **Digital Logic**



- ♦ Definition of Digital Logic
  - Digital logic consists of binary variables and a set of logical operations.
  - The variables are designated by letters of the alphabet, such as *A*, *B*, *C*, *x*, *y*, *z*, etc., with each variable having two and only two distinct possible values: 1 and 0,

## **Digital and Analog**

**Digital vs. Analog Waveforms** 





Digital: only assumes discrete values





Analog: values vary over a broad range continuously

## **Advantages of Digital Techniques**



- Digital systems are generally easier to design.
- Information storage is easy.
- Accuracy and precision are greater.
- Operation can be programmed.
- Digital circuits are less effected by noise.
- More digital circuitry can be fabricated on IC chips.

## **Limitations of Digital Techniques**

زانکوی سـوّران SORAN UNIVERSITY

- The real world is mainly analog.
- To deal with analog inputs, three steps must be followed:
  - Convert the real-world analog inputs to digital form (analog-to-digital converter, ADC)
  - Process (operate on) the digital information
  - Convert the digital output back to real-world analog form (digital-to-analog converter, DAC)





## **Digital Circuits**

- زانکوی سوّران SORAN UNIVERSITY
- Digital circuits are designed to produce output voltages that fall within the prescribed 0 and 1 voltage ranges.
- A digital circuit responds to an input's binary level (0 or 1) and not to its actual voltage.
- The manner in which a digital circuit responds to an input is referred to as the circuit's logic.
- Each type of digital circuit obeys a certain set of logic rules.
- For this reason, digital circuits are also called logic circuits.



## **Digital Integrated Circuits**

- زانکوی سـوّران SORAN UNIVERSITY
- Almost all of the digital circuits used in modern digital systems are integrated circuits (ICs).
- Several fabrication technologies are used:
  - TTL
  - CMOS
  - NMOS
  - ECL







| System           | Base | Symbols             |
|------------------|------|---------------------|
| Decimal          | 10   | 0, 1, 9             |
| Binary           | 2    | 0, 1                |
| Octal            | 8    | 0, 1, 7             |
| Hexa-<br>decimal | 16   | 0, 1, 9,<br>A, B, F |

# **Common Number Systems**



| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 0       | 0      | 0     | 0                |
| 1       | 1      | 1     | 1                |
| 2       | 10     | 2     | 2                |
| 3       | 11     | 3     | 3                |
| 4       | 100    | 4     | 4                |
| 5       | 101    | 5     | 5                |
| 6       | 110    | 6     | 6                |
| 7       | 111    | 7     | 7                |

## **Common Number Systems**



| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 8       | 1000   | 10    | 8                |
| 9       | 1001   | 11    | 9                |
| 10      | 1010   | 12    | A                |
| 11      | 1011   | 13    | В                |
| 12      | 1100   | 14    | C                |
| 13      | 1101   | 15    | D                |
| 14      | 1110   | 16    | Е                |
| 15      | 1111   | 17    | F                |

## **Conversion among bases**





# **Decimal to Binary**





## **Decimal to Binary**



$$125_{10} = (?)_2$$



# **Binary to Decimal**





## **Binary to Decimal**



$$101011_{2} = (?)_{10}$$

#### **Decimal to Octal**





Binary

Hexadecimal

#### **Decimal to Octal**



$$1234_{10} = (?)_8$$



#### **Octal to Decimal**





#### **Octal to Decimal**



$$724_{8} = (?)_{10}$$

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$ 
 $7 \times 8^2 = 448$ 

#### **Decimal to Hexadecimal**





#### **Decimal to Hexadecimal**



$$1234_{10} = (?)_{16}$$



#### **Hexadecimal to Decimal**





#### **Hexadecimal to Decimal**



$$ABC_{16} = ()_{10}$$

## **Binary to Octal**





## **Binary to Octal**



$$1011010111_2 = (?)_8$$



 $1011010111_2 = 1327_8$ 

## **Octal to Binary**





## **Octal to Binary**



$$705_8 = (?)_2$$



$$705_8 = 111000101_2$$

## **Binary to Hexadecimal**





## **Binary to Hexadecimal**



$$1010111011_2 = (?)_{16}$$



$$1010111011_2 = 2BB_{16}$$

## **Hexadecimal to Binary**





## **Hexadecimal to Binary**



$$10AF_{16} = (?)_2$$



 $10AF_{16} = 0001000010101111_2$ 

#### **Octal to Hexadecimal**





#### **Octal to Hexadecimal**



$$1076_8 = (?)_{16}$$



$$1076_8 = 23E_{16}$$

#### **Hexadecimal to Octal**





#### **Hexadecimal to Octal**



$$1F0C_{16} = (?)_{8}$$



$$1F0C_{16} = 17414_8$$

#### Homework 1



#### Convert the following numbers

A) 
$$(CDC)_{16} = (?)_8$$
 (show your work)

B) 
$$(7165)_{8} = (?)_{16}$$
 (show your work)

C) 
$$(1101\ 0110)_{2} = (?)_{10}$$
 (show your work)

D) 
$$(984)_{10} = (?)_2$$
 (show your work)

Deadline: October 7, 2022 @ 11:59 PM

# Number Systems Continues.....