

Chapitre 4 : Processus de Décision de Markov (MDP)

Mohamed Anis BEN LASMAR

A.U.2024-2025

Introduction aux MDPs

Définition: Un MDP formalise un environnement pour l'apprentissage par renforcement où l'environnement est totalement observable.

- L'état actuel contient toute l'information nécessaire.
- Exemple: Tous les problèmes de RL peuvent être modélisés par le MDP.

Propriété de Markov

Définition : Un état S_t est Markov si et seulement si :

$$P(S_{t+1}|S_t) = P(S_{t+1}|S_1, ..., S_t)$$

Conséquences :

- L'historique peut être oublié après la connaissance de l'état actuel.
- Les transitions sont définies par une matrice de probabilités.

Exemple: Student Markov Chain

Figure: Student Markov Chain

Exemple: Student Markov Chain

Processus de Récompense de Markov

Definitin

Un Processus de Recompense de Markov est un processus de Markov avec des récompenses. Il est défini par l'uplet (S, P, R, γ) .

- S est l'espace d'état.
- ullet P est la matrice de transition.
- \mathcal{R} est la fonction de recompense $\mathcal{R}_s = E[\mathcal{R}_{t+1}|\mathcal{S}_t = s]$.
- ullet γ est un facteur d'actualisation. $\gamma \in [0,1]$

Processus de Récompense de Markov - Exem

Definitin

Un Processus de Recompense de Markov est un processus de Markov avec des récompenses. Il est défini par l'uplet (S, P, R, γ) .

- S est l'espace d'état.
- ullet P est la matrice de transition.
- \mathcal{R} est la fonction de recompense $\mathcal{R}_s = E[\mathcal{R}_{t+1}|\mathcal{S}_t = s]$.
- ullet γ est un facteur d'actualisation. $\gamma \in [0,1]$

Le rendement

Definitin

Le rendement G_t est la recompense totale actualisée à partir du pas de temps t.

$$G_t = \mathcal{R}_{t+1} + \gamma \mathcal{R}_t + 2 + \ldots = \sum_{k=0}^{\infty} \gamma^k \mathcal{R}_{t+k+1}$$

- $\gamma \in [0,1]$ est la valeur actuelle des recompenses futures.
- La valeur des recompenses recues \mathcal{R} après k+1 pas est $\gamma^k \mathcal{R}$.
- Cela valorise la recompense immédiate par rapport à la recompense différée:

Pourquoi actualiser (discount)?

La plupart des processus de récompense et de décision de Markov sont actualisés. Pourquoi ?

- Mathématiquement pratique pour actualiser les récompenses.
- Permet d'éviter des retours infinis dans les processus de Markov cycliques.
- L'incertitude sur le futur peut ne pas être pleinement représentée.
- Si la récompense est financière, les récompenses immédiates peuvent générer plus d'intérêts que celles différées.
- Le comportement humain/animal montre une préférence pour les récompenses immédiates.
- Il est parfois possible d'utiliser des processus de récompense de Markov non actualisés (i.e. $\gamma=1$), par exemple si toutes les séquences se terminent.

La fonction valeur

La fonction de valeur v(s) donne la valeur à long terme de l'état s.

Définition

La fonction de valeur d'état v(s) d'un processus de récompense de Markov (MRP) est le retour espéré en partant de l'état s:

$$v(s) = \mathbb{E}\left[G_t \mid S_t = s\right] \tag{1}$$

Exemple: Retours pour le MRP étudiant

Exemples de retours pour le MRP étudiant : En commençant à partir de $S_1=C1$ avec $\gamma=\frac{1}{2}$

$$G_1 = R_2 + \gamma R_3 + \dots + \gamma^{T-2} R_T \tag{2}$$

$$v_{1} = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 10 * \frac{1}{8} = -2.25$$

$$v_{1} = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} = -3.125$$

$$v_{1} = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 1 * \frac{1}{8} - 2 * \frac{1}{16} \dots = -3.41$$

$$v_{1} = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} \dots = -3.20$$

Exemple :La fonction de valeur d'état pour le MRP étudiant

Exemple :La fonction de valeur d'état pour le MRP étudiant

Exemple :La fonction de valeur d'état pour le MRP étudiant

Equation de Bellman pour les processus MRP

La fonction de valeur peut être décomposée en deux parties :

- Récompense immédiate R_{t+1}
- Valeur actualisée de l'état successeur $\gamma v(S_{t+1})$

$$v(s) = \mathbb{E} [G_t \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$

Equation de Bellman pour les processus MRP

$$v(s) = \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s\right]$$

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'} v(s')$$

Equation de Bellman pour les processus MRP

Equation de Bellman - Forme matricielle

L'équation de Bellman peut être exprimée de manière concise en utilisant des matrices :

$$\mathbf{v} = \mathcal{R} + \gamma \mathcal{P} \mathbf{v}$$

où v est un vecteur colonne avec une entrée par état :

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & \ddots & \vdots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

Résolution de l'Equation de Bellman

- L'équation de Bellman est une équation linéaire.
- Elle peut être résolue directement :

$$\mathbf{v} = \mathcal{R} + \gamma \mathcal{P} \mathbf{v}$$

$$(I - \gamma \mathcal{P})\mathbf{v} = \mathcal{R}$$

$$\mathbf{v} = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- La complexité computationnelle est de $\mathcal{O}(n^3)$ pour n états.
- La solution directe est uniquement possible pour de petits MRP.
- Il existe plusieurs méthodes itératives pour les grands MRP, par exemple :
 - Programmation dynamique.
 - Évaluation Monte-Carlo.
 - Apprentissage par différence temporelle (Temporal-Difference Learning).

Chapitre 4 : Processus de Décision de Markov (MDP)

Mohamed Anis BEN LASMAR

A.U.2024-2025