

Digital Signal Processing

share your talent. move the world.

ewout bergsma.

Last Time: LTI Systems

- LTI Systems
 - 3 properties
 - Do you remember them?

Last Time: Discrete Time Unit Impulse

$$\delta[n] = \left\{ egin{array}{ll} 1, & n=0 \ 0, & n
eq 0 \end{array}
ight.$$

Last Time: Discrete Time Impulse Response

Questions?

Convolution

share your talent. move the world.

ewout bergsma.

Simple!

... Steady ...

Excuse me?!

Convolution!

$$x[n] \ast h[n] = y[n]$$

Convolution?

Convolution

$$x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Snippets of video have been removed due to copyright.
Please refer to the link below, it has everything and more than what was in the slides during class.

$$x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

 $x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$

 $x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$

Continuous Time Convolution

$$x(t)*h(t) = \int_{-\infty}^{\infty} x(au) h(x- au) \, d au$$

$$x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Exercises!