(Q2)

Theorem. Let $\mathbb{F} = \{a + b\sqrt{11} | a, b \in \mathbb{Q}\}$, where $+, \cdot$ are defined by:

$$(a+b\sqrt{11}) + (c+d\sqrt{11}) = (a+b) + (c+d)\sqrt{11}$$
$$(a+b)\sqrt{11} \cdot (c+d\sqrt{11}) = (ac+11bd) + (ad+bc)\sqrt{11}$$

Applying the properties of \mathbb{Q} , \mathbb{F} is a field.

Proof. We prove \mathbb{F} is a field by verifying all the field axioms one by one.

Associativity

$$\begin{aligned} (a+b\sqrt{11}) + \left[(c+d\sqrt{11}) + (f+g\sqrt{11}) \right] &= (a+b\sqrt{11}) + \left[(c+f) + (d+g) \right] \sqrt{11} \\ &= \left[a + (c+f) \right] + \left[b + (d+g) \right] \sqrt{11} \\ &= \left[(a+c) + f \right] + \left[(b+d) + g \right] \sqrt{11} \\ &= \left[(a+c) + (b+d) \right] \sqrt{11} + (f+g\sqrt{11}) \\ &= \left[(a+b\sqrt{11}) + (c+d\sqrt{11}) \right] + (f+g\sqrt{11}) \end{aligned}$$

Commutativity

$$(a+b\sqrt{11}) + (c+d\sqrt{11}) = (a+c) + (b+d)\sqrt{11}$$
$$= (c+a) + (d+b)\sqrt{11}$$
$$= (c+d\sqrt{11}) + (a+b\sqrt{11})$$

Distributivity

$$(a+b\sqrt{11}) \cdot \left[(c+d\sqrt{11}) + (f+g\sqrt{11}) \right]$$

$$= (a+b\sqrt{11}) \cdot \left[(c+f) + (d+g)\sqrt{11} \right]$$

$$= [a(c+f)+11b(d+g)] + [a(d+g)+b(c+f)]\sqrt{11}$$

$$= (ac+af+11bd+11bg) + (ad+ag+bc+bf)\sqrt{11}$$

$$= [(ac+11bd) + (af+11bg)] + [(ad+bc) + (ag+bf)]\sqrt{11}$$

$$= \left[(cd+11bd) + (ad+bc)\sqrt{11} \right] + \left[(af+11bg) + (ag+bf)\sqrt{11} \right]$$

$$= (a+b\sqrt{11}) \cdot (c+d\sqrt{11}) + (a+b\sqrt{11}) \cdot (f+g\sqrt{11})$$

Identities

Let the additive identity be $0 + 0\sqrt{11}$. Then

$$(a + b\sqrt{11}) + (0 + 0\sqrt{11}) = (a + 0) + (b + 0)\sqrt{11} = a + b\sqrt{11}$$

Let the multiplicative identity be $1 + 0\sqrt{11}$. Then

$$(a + b\sqrt{11}) \cdot (1 + 0\sqrt{11}) = (a + 0) + (0 + b)\sqrt{11} = a + b\sqrt{11}$$

Inverses

Let the additive inverse be $-a - b\sqrt{11}$. Then

$$(a + b\sqrt{11}) + (-a - b\sqrt{11}) = (a - a) + (b - b)\sqrt{11} = 0 + 0\sqrt{11}$$

Let the multiplicative inverse be $\left(\frac{a}{a^2-11b^2}-\frac{b}{a^2-11b^2}\sqrt{11}\right)$. Then

$$\left(\frac{a}{a^2 - 11b^2} - \frac{b}{a^2 - 11b^2} \sqrt{11} \right) \cdot (a + b\sqrt{11})$$

$$= \left(\frac{a^2}{a^2 - 11b^2} - \frac{11b^2}{a^2 - 11b^2} \right) + \left(\frac{ab}{a^2 - 11b^2} - \frac{ab}{a^2 - 11b^2} \right) \sqrt{11}$$

$$= 1 + 0\sqrt{11}$$

Since all the field axioms have been verified, \mathbb{F} is a field.