Ethics ENDSEM

MODULE 2-

Core Ethical Frameworks in Research

The professor likely started by contrasting **two foundational moral theories** used to assess ethical decisions in research:

1. Utilitarianis "The ends justify the means."

- Focuses on **outcomes** or **consequences**.
- An action is ethical if it maximizes happiness or minimizes harm for the greatest number.
- Example: If deceiving a few participants leads to findings that save thousands of lives, it could be justified under utilitarian ethics.
- Limitation: Can lead to **overriding individual rights** for the sake of the "greater good."

2.Deontolog "The means matter, not just the ends."

- Focuses on duties, rules, and principles, regardless of outcome.
- An act is wrong if it violates moral rules, even if it has good consequences.
- Example: Deceiving or harming participants is unethical *regardless* of the outcome.
- Rooted in Kantian ethics: people must be treated as ends in themselves, not means to an end.

The Belmont Principles

These were developed in response to past ethical failures and guide all modern human subjects research:

1. Respect for Persons

- Requires informed consent, autonomy, and respect for individual decisions.
- Example of violation: Tuskegee Study participants were not informed or treated with dignity.

2. Beneficence

- Researchers must maximize benefits and minimize harm.
- This isn't just about physical harm psychological and social harm count too.

3. Justice

- Fair distribution of research benefits and burdens.
- You can't exploit certain groups (e.g., poor, racial minorities) just because it's easier.

Historical Case Studies: Why They Still Matter

Tuskegee Syphilis Study

- African American men were deceived and denied treatment for decades.
- Violated all 3 Belmont principles.
- Led to massive distrust in the medical system.

Tearoom Trade Study (Laud Humphreys)

- Secretly observed men in public restrooms, tracked their license plates, and later interviewed them under false pretenses.
- Respect for persons was violated no informed consent, deception was involved.
- **Privacy** was disregarded, even though identities were protected.

BUT... It raised important questions in sociology and inspired new methods. This shows how **ethical and scientific value** can sometimes be in tension — a central

issue in ethics!

Psychochemical Experiments / Mind Control

- Military studies (e.g., giving soldiers or psychiatric patients LSD) without consent.
- **Respect for persons**: No autonomy or informed choice.
- Beneficence: Caused harm with little scientific value.
- **Justice**: Often targeted vulnerable populations.

Key Modern Concepts the Professor May Have Emphasized

Informed Consent vs. Implicit Consent

- Explicit informed consent = Participants fully understand what they're agreeing to.
- Implicit = Based on context, e.g., using public data.
- Modern ethical debates (like in Facebook's emotional contagion study) explore where the line should be.

Subject vs. Participant

- "Subject" implies passivity or lack of agency.
- "Participant" suggests someone who consents and collaborates in the research.
- Ethical language matters it reflects how we view people's autonomy.

Anticipating → Doing → Disseminating

This timeline was likely emphasized to encourage students to ask:

- 1. Are we planning this research ethically?
- 2. Are we conducting it ethically?

- 3. Are we sharing it in a way that respects people and promotes fairness? The professor likely wanted you to:
- Learn how to **critically examine research** from multiple ethical angles.
- Realize that **not all ethical dilemmas are clear-cut**.
- Understand that intent does not always excuse impact.
- Recognize that ethics evolves what was once acceptable may not be today.'

The Tea Room Trade Study:

- Studied anonymous sexual encounters between men in public restrooms (called "tearooms").
- Humphreys secretly acted as a lookout to observe behavior.
- He recorded license plate numbers and later tracked down participants interviewing them at their homes under a false pretense (claiming to do a general health survey), often without disclosing his role in the original setting.

The Ethical Statement

"Especially when informed consent cannot be obtained in human-subject research, the benefits of the study should outweigh the harm of any invasion of privacy." —

Jouhki et al., 2016

This means:

- In **exceptional cases**, when you **can't ask for consent** (because it might bias results or reveal sensitive behavior),
- You must show that:
 - The scientific or social benefit is high, and
 - The potential harm or violation of privacy is minimal or justified.

This reflects **utilitarian reasoning** — weighing **potential good** against **ethical costs**.

- **No informed consent** participants didn't know they were part of a study.
- **Deception** in both observation and follow-up interviews.
- Tracking license plates and visiting homes felt intrusive.
- Potential **emotional or reputational harm** if identities were ever revealed.

The Facebook Emotional Contagion Study

In 2014, Facebook conducted a massive social experiment to test whether **emotions can be transferred** ("emotional contagion") by **manipulating what users** saw in their news feeds

- 689,003 users had their news feeds curated for 1 week.
- Posts were filtered to increase or decrease exposure to positive or negative emotional content.
- A **linguistic analysis software** examined the users' responses no human read their posts.
- Cornell University analyzed the data, but the study didn't go through Cornell's IRB (ethics review).

1.Informed Consent

- Facebook claimed that accepting the user agreement was enough.
- BUT: Users were not explicitly informed, nor given the opportunity to opt out or debriefed after.
- This raises questions about what "consent" really means especially in digital environments.

2. Manipulation

- Users' emotions were influenced without their awareness.
- If companies do this for **profit or control**, is it different from academic researchers doing it for **knowledge**?

➤Utilitarianism

- The study caused minimal or no direct harm, and the data could be useful for improving platforms.
- Might be justified if it leads to better understanding of behavior (i.e., greatest good for most people). Such people starting to vote, making people happier, people starting to donate organs

➤Deontology

- Violated informed consent and autonomy participants had no idea they were being manipulated.
- Even if the outcome was minor, the method was ethically wrong.

> privacy ethics

- Just because data is **public or accessible** doesn't mean it's okay to use it **without notice or consent**.
- Access ≠ Ethical permission
- In academia, researchers follow strict ethical review protocols.

- Private companies often **don't follow the same standards**, even when collaborating with universities.
- Raises the ethical dilemma: Whose ethics prevail? Corporate? Academic?

PLANNING AND ANTICIPATION:

- conflict of interest
- mentoring
- judgin value of the research

What is a Conflict of Interest?

A conflict of interest happens when:

- You are supposed to make a fair and objective decision (e.g., in research or peer review), but
- You have a **personal or financial interest** that could influence your judgment (even unintentionally).

Example: You're reviewing a paper written by a friend, or you're offered money/gifts by someone connected to the research.

Why This Matters in the Planning Phase:

- 1. **Planning is when choices are made** about what questions to ask, how to run the study, who to work with, etc.
- If a scientist already has a conflict of interest at this stage, those decisions
 can be biased and that can ruin the quality and integrity of the whole
 research.
- 3. **Even small things**, like gifts or favors, can unconsciously affect your thinking and behavior, **even if you don't realize it**.

Judging the value of the Research-

Key Ethical Questions Scientists Must Ask:

- Is the research genuinely useful or valuable?
- Who will benefit from the results? (Just the researcher? A company? Society?)
- Could it have harmful side effects (e.g., misused technology, environmental damage)?
- Are the reasons for doing it morally justifiable? (e.g., is it okay to do research just for fame, profit, or military use?)

Why This Matters:

- Scientists often need funding (from the government, companies, or donors), and funds are limited.
- This creates pressure to exaggerate the importance of their work to get support.
- But this raises ethical issues: Are they being honest? Or overselling?
- There's a fine line between **reasonable optimism** and **unjustified hype**.

DOING RESEARCH -

1. Objectivity, Inferences & Data Management

- Define valid inferences clearly; avoid cherry-picking data.
- Identify and treat outliers properly don't discard them to fit expectations.
- Avoid questionable statistics, image manipulations, or incorrect referencing.
- Never cite papers without reading them this compromises intellectual honesty.

2.Biases

• Biases are often **unconscious**, hard to detect, and can become **normalized**.

- Not all biases are unethical some are just untested hypotheses (e.g., early craniometry).
- But when based on racist, patriarchal, or discriminatory assumptions, biases can be dangerous and unjustifiable.

3.Self-Deception

- A major threat to ethical science not fraud, but the danger of wishful thinking.
- You might unknowingly see what you want to see.
- **Example:** Neuroscientists interpreting ambiguous fMRI results to fit expected theories.
- Ethical research emphasizes **methodological integrity** over "right answers".

Remember: The process matters more than the outcome.

4. Trust and Scientific Community

- Science is **collaborative** each discovery builds on past work.
- If prior research is careless or dishonest, it **corrupts the whole knowledge** system.
- We rely on each other so ethical responsibility is collective, not just personal.

5. Values Embedded in Research Design

- Models, variables, and metrics aren't neutral.
- Choosing what to measure and how to measure it reflects values and priorities.

DISSEMINATION:

- haring research findings is essential to the scientific process.
- Involves peer review, authorship, credit allocation, and metrics for evaluating scientific work.
- Created **peer review** to ensure priority and quality.
- Peer-reviewed journals became a mechanism to reward authors (via citations) and disseminate reliable knowledge.

laws & Concerns:

- **Insufficient review time** (especially in conferences).
- No real incentives for reviewers.
- Bias and conflict of interest (e.g., stealing ideas).
- Lack of accountability or confidentiality breaches.
- Questions about who qualifies as a "peer" (PhD students? nonexper

Issues:

- First authorship disputes, especially when mentors claim it.
- Collaborative projects make responsibility unclear.
- Misconduct accountability: who is to blame in large teams?

Self-Citation:

Acceptable only when relevant, not to inflate metrics.

? Fundamental Questions:

- Who deserves credit?
- Should all authors be held accountable for the full paper?

Common Metrics:

- **Number of publications**: easy to count but doesn't show quality.
- **Citation index**: better, but doesn't explain why someone is cited.

Anticipating research raises issues about the appropriate roles of mentors, identifying potential conflicts of interest, and asking substantive questions about the value of the proposed work.

Doing research involves upholding the standards of objectivity. This means upholding norms of honesty, carefulness, and open-mindedness in the interpretation and management of data and critically evaluating assumptions that might be built into research designs. Objectivity is threatened by bias and self-deception and is dependent on trust.

Disseminating research poses questions about peerreview and quality control, authorship and allocation of credit, and the appropriate role for intellectual property rights in scientific research. As a globalizing enterprise, scientific research is engaged in a dynamic tensio between diverse local practices and standard, universa principles.