1 Model

We begin with a general model that encapsulates many of the works we will discuss. For an input \mathbf{x} , we want to predict a response \mathbf{y}^* . Our prediction is a function f_{θ} of \mathbf{x} . The function f_{θ} is parameterized by θ . We will consider models of the form

$$f_{\theta}(\mathbf{x}) = y_{\theta} \left(\sum_{i} \alpha_{\theta}^{(i)} \phi_{\theta}^{(i)}(\mathbf{x}) \right). \tag{1}$$

Here, \mathbf{x} is an L-dimensional real vector and \mathbf{y}^* is an M-dimensional real vector. The ϕ_i are basis functions that map from \mathbb{R}^L to \mathbb{R}^K , and the α_i are real scalars. Additionally, the sum over i need not be finite. The coefficients α_i may depend on \mathbf{x} and our parameters θ , but we suppress the former dependence for notational simplicity. The function y_{θ} maps from \mathbb{R}^K to \mathbb{R}^M and is parameterized by θ as well.

We will consider a penalized mean squared error loss function

$$\mathcal{L}(\theta) = \frac{1}{2} \mathbb{E}_{\mathbf{x}, \mathbf{y}^*} \left[\|\mathbf{y}^* - f_{\theta}(\mathbf{x})\|_2^2 \right] + \lambda p(\{\alpha^{(i)}\}_i, \theta).$$
 (2)

Our penalty function p serves to induce sparseness in the coefficients α_i , and perhaps also regularize the parameters θ .

We will show how this model encapsulates the works we are interested in understanding.

2 Ingrosso et al. (2022)

The model in Ingrosso et al. (2022) sets M = 1, uses linear basis functions, and sets y_{θ} to be the mean function after applying a nonlinearity. That is,

$$\sum_{i} \alpha_{\theta}^{(i)} \phi_{\theta}^{(i)}(\mathbf{x}) = \Theta \mathbf{x} + b_{\theta} \tag{3}$$

$$y_{\theta}(\mathbf{x}) = \frac{1}{K} \mathbf{1}^{\top} \sigma(\mathbf{x}). \tag{4}$$

Here, Θ is a $K \times L$ matrix, b_{θ} is a K-dimensional vector, and σ is a nonlinear function applied elementwise. It seems that in much of their work, b_{θ} is fixed at -1 or 0. I still need to confirm experimentally that this does not affect the results.

In this work, we also ignore the penalty term. I believe that our gradient update is of the form

$$a$$
 (5)

3 Data Model

We assume that our data is generated by the following model. It is parameterized by the length of the input, $L \in \mathbb{N}$. It is also parameterized by a scale parameter $\xi \leq L$. We construct data $\{X_l\}_l \subseteq \{0,1\}^L$ as follows:

- 1. Sample integers $l^* \sim \text{Uniform}[1, L]$ (starting position) and $T \sim \text{Uniform}[1, \xi)$ (length of pulse).
- 2. For $0 \le i \le T$, set $X_{l^*+i \pmod{L}} = 1$, and set all other X_l to 0.
- 3. Return the sequence $\{X_l\}_l$.

Now, we derive the conditional probability $p_{11} \triangleq \mathbb{P}(X_a = 1 \mid X_b = 1)$. For now, assume $d \triangleq b - a > 0$. If $d \geq \xi$, then $p_{11} = 0$. So, assume $d < \xi$.

Now, we count the number of values of T that result in both X_a and X_b being in the pulse for a given l^* . WLOG, assume a = 0. For $1 \le l^* \le d$, the range of values for T that results in both X_a and X_b being in the pulse is given by

$$L - l^* \le T < \xi. \tag{6}$$

Thus, the number of values for T in this case is $\max(\xi - L + l^*, 0)$.

For $d < l^* \le L$, the values of T that result in both X_a and X_b being in the pulse is given by

$$L - (l^* - d) \le T < \xi. \tag{7}$$

So, the number of values for T in this case is $\max(\xi - (L - (l^* - d)), 0) = \max(\xi - L + l^* - d, 0)$.

Note that the first max condition is at least zero when $l^* \geq L - \xi$. This yields a sum over $\max(L - \xi, 1) \leq l^* \leq d$. Similarly, the second max condition is at least zero when $l^* \geq L - \xi + d$. This yields a sum over $\max(L - \xi + d, d + 1) \leq l^* \leq L$. Note that the first term dominates in both of these new max statements when $\xi \leq L - 1$. So, let us assume this is the case.

Now, we want to find the total number of values of T that result in both X_a and X_b being in the pulse.

$$T_1 = \sum_{L-\xi \le l^* \le d} (\xi - L + l^*) \tag{8}$$

$$T_2 = \sum_{L-\xi+d < l^* < L} (\xi - L + l^* - d) = \sum_{L-\xi < t < L-d} (\xi - L + t).$$
(9)

We compute T_1 as,

$$T_1 = \left[(\xi - L)(d - L + \xi + 1) + \frac{d(d+1)}{2} - \frac{(L-\xi)(L-\xi - 1)}{2} \right] \mathbb{1}(d \ge L - \xi).$$

Next, we compute T_2 as,

$$T_2 = \left[(\xi - d + 1)(\xi - L) + \frac{(L - d)(L - d + 1)}{2} - \frac{(L - \xi)(L - \xi - 1)}{2} \right] \mathbb{1}(d \le \xi).$$

Thus, the total number of values of T that result in both X_a and X_b being in the pulse is

$$T_1 + T_2 = \begin{cases} (\xi - d + 1)(\xi - L) + \frac{(L - d)(L - d + 1)}{2} - \frac{(L - \xi)(L - \xi - 1)}{2} & d \le \xi, L - \xi + 1 \\ d^2 - dL + \frac{L^2}{2} + \frac{L}{2} - (L - \xi)(\xi + 1) & L - \xi \le d \le \xi \\ (\xi - L)(d - L + \xi + 1) + \frac{d(d + 1)}{2} - \frac{(L - \xi)(L - \xi - 1)}{2} & d \ge L - \xi, \xi + 1 \end{cases}$$

There are $\xi - 1$ possible values for T and L values for l^* . Recall we sample T and l^* uniformly and independently. Thus, the probability that $X_b = 1$ given $X_a = 1$ is

$$p_{11} = \frac{T_1 + T_2}{(\xi - 1)L} = \frac{d^2 - dL + \frac{L^2}{2} + \frac{L}{2} - (L - \xi)(\xi + 1)}{(\xi - 1)L}.$$
 (10)

Note that we assumed $\xi \leq L-1$. However, we can check that the above expression is still valid when $\xi = L$. (Check Desmos. Otherwise, an exercise left to the reader.) It also satisfies the "sanity check" that it is minimized at $x = \frac{L}{2}$.

4 Nonlinear Gaussian Process

We now consider the nonlinear Gaussian process (NLGP) data model. Define a covariance matrix C with entries $C_{ij} = \exp(-(i-j)^2/\xi^2)$ for $i, j \in [L]$. Let $Z = [Z_1, \ldots, Z_L] \sim \mathcal{N}(0, C)$. Then, Z is a Gaussian process with covariance C. Consider a nonlinearity ψ . We specifically consider the error function, $\psi(z) = \operatorname{erf}(z/\sqrt{2})$. Define $X_i = \psi(gZ_i)$ for $i \in [L]$ and some g > 0. Then, X is a nonlinear Gaussian process (NLGP).

Now, we will compute the moments of X. Each X_i clearly has mean zero. To compute higher moments, we will need to employ some handy properties of the error function. Assume Z_1 and Z_2 have covariance ρ . First, note

$$\mathbb{E}[X_1 X_2] = \mathbb{E}_{X_1} \left[\mathbb{E}_{X_2} \left[X_1 X_2 \mid X_1 \right] \right]$$
 Law of Total Expectation (11)

$$= \mathbb{E}_{X_1} \left[X_1 \, \mathbb{E}_{X_2} \left[X_2 \mid Z_1 \right] \right]. \qquad \qquad \psi \text{ invertible}$$
 (12)

Now, we compute the inner expectation.

$$\mathbb{E}_{X_2} [X_2 \mid Z_1] = \mathbb{E}_{Z_2} [\psi(gZ_2) \mid Z_1]$$
(13)

$$= \int_{-\infty}^{\infty} \operatorname{erf}\left(\frac{gz}{\sqrt{2}}\right) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(z-\mu)^2} dz \qquad \mu = \rho Z_1, \sigma^2 = 1 - \rho^2$$
 (14)

$$=\operatorname{erf}\left(\frac{g\mu/\sqrt{2}}{\sqrt{1+g^2\sigma^2}}\right) \tag{15}$$

$$= \operatorname{erf}\left(\frac{\rho g}{\sqrt{2(1+g^2(1-\rho^2))}}Z_1\right). \tag{16}$$

Now, the outer expectation

$$\mathbb{E}_{X_1} \left[X_1 \operatorname{erf} \left(\frac{\rho g}{\sqrt{2(1 + g^2(1 - \rho^2))}} Z_1 \right) \right] \tag{17}$$

$$= \mathbb{E}_{Z_1} \left[\operatorname{erf} \left(\frac{gZ_1}{\sqrt{2}} \right) \operatorname{erf} \left(\frac{\rho g}{\sqrt{2(1 + g^2(1 - \rho^2))}} Z_1 \right) \right]$$
 (18)

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} \operatorname{erf}\left(\frac{g}{\sqrt{2}z}\right) \operatorname{erf}\left(\frac{\rho g}{\sqrt{2(1+g^2(1-\rho^2))}}z\right) dz \tag{19}$$

$$= \frac{2}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{1}{2}z^2} \operatorname{erf}\left(\frac{g}{\sqrt{2}}z\right) \operatorname{erf}\left(\frac{\rho g}{\sqrt{2(1+g^2(1-\rho^2))}}z\right) dz \qquad \text{integrand is even}$$
 (20)

$$= \frac{2}{\pi} \tan^{-1} \left(\frac{\frac{g}{\sqrt{2}} \cdot \frac{\rho g}{\sqrt{2(1+g^2(1-\rho^2))}}}{\sqrt{\frac{1}{2} \left(\frac{g^2}{2} + \frac{\rho^2 g^2}{2(1+g^2(1-\rho^2))} + \frac{1}{2}\right)}} \right)$$
Prudnikov et al. (1990)

$$= \frac{2}{\pi} \sin^{-1} \left(\frac{g^2}{1+q^2} \rho \right).$$
 I promise (22)

We use the same idea to compute a third-order moment,

$$\mathbb{E}[X_1 X_2 X_3] = \mathbb{E}_{X_1} \left[\mathbb{E}_{X_2} \left[\mathbb{E}_{X_3} \left[X_1 X_2 X_3 \mid X_2 \right] \mid X_2 \right] \right]$$
 Law of Total Expectation (23)

$$= \mathbb{E}_{X_1} \left[X_1 \, \mathbb{E}_{X_2} \left[X_2 \, \mathbb{E}_{X_2} \left[X_3 \, | \, X_2 \right] \, | \, X_2 \right] \right]. \tag{24}$$

Note that $Z_3 \mid Z_1, Z_2 \sim \mathcal{N}$ ()