Теория функции комплексного переменного

Конспект по 2 курсу специальности «прикладная математика» (лектор А. А. Леваков)

Содержание

1	Комплексные числа.	4
2	Комплексные функции.	7
3	Предел функции комплексного переменного. Непрерывные функции комплексного переменного.	10
4	Дифференцирование комплексных функций.	14
5	Сопряженно-гармонические функции.	17
6	Кривые.	18
7	Интегрируемые функции комплексного переменного.	19
8	Геометрический смысл модуля и аргумента производкой комплексной функции.	21
9	Интегральная теорема Коши.	23
10	Следствия из интегральной теоремы Коши.	24
11	Первообразная. Интеграл с переменным верхним пределом.	26
12	Интегральная формула Коши.	28
13	Степенные ряды.	29
14	Почленное дифференцирование комплексного степенного ряда.	31
15	Регулярные функции.	33
16	Следствия из критерия регулярности.	34
17	Разложение функций в степенной ряд.	35
18	Теорема единственности.	36
19	Нули регулярной функции.	37
20	Ряд Лорана.	38
21	Аналитическое продолжение.	41
22	Особые точки.	42
23	Полюсы, существенно особые точки.	43
24	Особая точка $z=\infty$.	45
2 5	Основная теорема алгебры.	46
26	Вычеты.	46

27 Вычет в точке $z=\infty$.	48
28 Основная теорема теории вычетов.	49
29 Вычисление интегралов вида $\int\limits_0^{2\pi} R(\cos x,\sin x)dx, \int\limits_{-\infty}^{+\infty} R(x)dx.$	50
30 Вычисление интегралов вида $\int\limits_{-\infty}^{+\infty} R(x) \cdot e^{i\alpha x} dx, \alpha > 0.$	53
31 Оригиналы и изображеня. Преобразование Лапласа.	55
32 Теорема о регулярности преобразования Лапласа.	56
33 Свойства преобразования Лапласа.	58
34 Применение преобразования Лапласа.	60

1 Комплексные числа.

• Под множеством комплесных чисел $\mathbb C$ понимают множество упорядоченных пар (a,b) вещественных чисел таких, что на этом множестве введены 3 операции

1.
$$(a_1, b_1) = (a_2, b_2) \iff a_1 = a_2, b_1 = b_2;$$

2.
$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2);$$

3.
$$(a_1, b_1) \cdot (a_2, b_2) = (a_1a_2 - b_1b_2, a_1b_2 + a_2b_1);$$

Комплексное число обычно обозначается символом z.

Между множеством комплесных чисел и множеством точек ДПСК существует взаимнооднозначное соответствие.

• Плоскость с выбранной на ней ДПСК, на которой изображаются комплексные числа, называется комплексной плоскостью.

Также существует взаимнооднозначное соответствие между множеством комплексных чисел и множеством векторов.

На множестве комплексных чисел $(0,1)\cdot(0,1)=(-1,0)=-1$. То есть среди комплексных чисел есть такое число (0,1)=i, что $i^2=1$.

• Точки, соответствующие комплексным числам (0,b) лежат на оси у. Тогда (0,b)=bi, а ось у называется **мнимой**.

Возьмем произвольное комплексное число (a, b).

$$(a,b) = (a,0) + (0,b) = a + (b,0) \cdot (0,1) = a + bi.$$

Следовательно, любое комплексное число можно записать в виде z = a + bi.

• Такая форма записи комплексного числа называется **алгебраической формой за**nucu.

Как правило, будем записывать комплексные числа в алгебраической форме.

• Число $\sqrt{a^2 + b^2} = |z|$ называется **модулем** комплексного числа.

Геометрически это расстояние от начала координат до точки, соответствующей комплексному числу.

4

• Угол, который образует вектор к числу z с осью x называется **аргументом** комплексного числа u обозначается $\varphi = \arg(z)$.

Причем, если вращение вектора от оси x против часовой стрелки, то аргумент считаем положительным. Иначе отрицательным.

Если ϕ — аргумент, то числа $\phi + 2\pi k$, $k \in \mathbb{Z}$ также являются аргументами (то есть аргумент определен неоднозначно). Обозначаем

- $Arg(z) = \varphi + 2\pi k$ все значения аргумента;
- $\arg(z) = \varphi$ одно значение аргумента.

Чаще всего $\varphi \in (-\pi; \pi]$. Но иногда удобно считать, что $\varphi \in [0; 2\pi)$.

ullet Это фиксированное значение $\arg(z)$ аргумента называется **главным значением аргумента** комплексного числа.

Таким образом, $a = |z| \cos \varphi$, $b = |z| \sin \varphi$. Тогда можно записать

$$z = a + bi = |z| \cdot (\cos \varphi + i \sin \varphi).$$

• Такая форма записи комплексного числа называется **тригонометрической формой** записи.

Введем функцию $e^{i\phi}$ опеределенную на множестве $\mathbb R$ и принимающую значения в множестве $\mathbb C$ по формуле

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$
.

Используя эту функцию, можем записать комплексное число в виде

$$z = a + bi = |z| \cdot e^{i\varphi}$$
.

• Tакая форма записи комплексного числа называется **экспоненциальной формой за-**nucu.

Покажем, что функция $e^{i\phi}$ обладает свойствами экспоненты:

1.
$$e^{i\varphi_1} \cdot e^{i\varphi_2} = e^{i(\varphi_1 + \varphi_2)}$$
.

$$\begin{split} e^{i\phi_1}\cdot e^{i\phi_2} &= (\cos\phi_1,\sin\phi_1)\cdot(\cos\phi_2,\sin\phi_2) = \\ &= (\cos\phi_1\cos\phi_2 - \sin\phi_1\sin\phi_2,\ \cos\phi_1\sin\phi_2 + \sin\phi_1\cos\phi_2) = \\ &= (\cos(\phi_1+\phi_2),\ \sin(\phi_1+\phi_2)) = e^{i(\phi_1+\phi_2)}. \end{split}$$

2.
$$\frac{e^{i\varphi_1}}{e^{i\varphi_2}} = e^{i(\varphi_1 - \varphi_2)}$$
.

 \boxtimes

3.
$$(e^{i\varphi})^n = e^{in\varphi}, n \in \mathbb{N}$$
.

Возьмем комплексную плоскость и обозначим на ней 2 комплексных числа и соответствующие им радиус-векторы. Построим параллелограмм на этих векторах и возьмем его диагональ. Комплексное число, соответствующее этой диагонали, имеет вид $z_3=(a_1+a_2,b_1+b_2)$, то есть является суммой комплексных чисел z_1 и z_2 .

Разность комплексных чисел $z_1 - z_2 = z_1 + (-z_2)$ определяется вектором, который является второй диагональю параллеограмма построенного на векторах z_1 и z_2 .

Из графиков следует свойство

$$||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|.$$

Из свойств комплексных чисел

$$z_1 \cdot z_2 = |z_1| \cdot e^{i\varphi_1} \cdot |z_2| \cdot e^{i\varphi_2} = |z_1| \cdot |z_2| \cdot e^{i(\varphi_1 + \varphi_2)}.$$

$$\frac{z_1}{z_2} = \frac{|z_1| \cdot e^{i\varphi_1}}{|z_2| \cdot e^{i\varphi_2}} = \frac{|z_1|}{|z_2|} \cdot e^{i(\varphi_1 - \varphi_2)}.$$

Отсюда вытекает, что

1.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
, $\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$.

2.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}, \quad \arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2).$$

• Если число z=a+bi — комплексное число, то число $\overline{z}=a-bi$ называется **сопряженным** к комплексному числу z.

Тогда $z \cdot \overline{z} = a^2 + b^2 = |z|^2$. Из свойств множества комплексных чисел

$$z_1 = z_2 \iff a_1 = a_2, \ b_1 = b_2.$$

В экспоненциальной форме

$$|z_1| \cdot e^{i\varphi_1} = |z_2| \cdot e^{i\varphi_2} \iff |z_1| = |z_2|, \arg(z_1) = \arg(z_2) + 2\pi k, \ k \in \mathbb{Z}.$$

• Корнем n-ой степени комплексного числа z называется такое число ζ , что $\zeta^n=z$. Обозначение: $\sqrt[n]{z}$.

Пусть $z=|z|\cdot e^{i\varphi},\ \zeta=|\zeta|\cdot e^{i\varphi_1}.$ Тогда

$$(|\zeta| \cdot e^{i\varphi_1})^n = |z| \cdot e^{i\varphi}.$$

$$|\zeta|^n \cdot e^{in\varphi_1} = |z| \cdot e^{i\varphi}.$$

Тогда получаем

$$|\zeta|^n = |z| \Rightarrow |\zeta| = |z|^{\frac{1}{n}}.$$

$$n\varphi_1 = \varphi + 2\pi k, \ k \in \mathbb{Z} \Rightarrow \varphi_1 = \frac{\varphi + 2\pi k}{n}.$$

Значит

$$\zeta = |z|^{\frac{1}{n}} \cdot e^{i\frac{\varphi + 2\pi k}{n}}.$$

При k=0 получаем z_0 ,

$$k=1\rightarrow z_1$$

$$k=2 \rightarrow z_2$$

. . .

$$k=n-1 \rightarrow z_{n-1}$$

$$k=n\rightarrow z_0$$
.

Следовательно, корень n-ой степени из любого ненулевого комплексного числа имеет ровно n различных значений. То есть $\sqrt[n]{z}=\zeta_k$ и

$$\zeta_k = |z|^{\frac{1}{n}} \cdot e^{i\frac{(\arg z + 2\pi k)}{n}}, \quad k = 0, 1, \dots, n - 1.$$

2 Комплексные функции.

Пусть $D \subseteq \mathbb{R}$, $f: D \to \mathbb{C}$.

• Функция $w=f(t),\ t\in D\in\mathbb{R}$ называется комплекснозначной функцией.

Запишем в алгебраической форме:

$$w = u(t) + i \cdot v(t), \quad \text{Re}(w) = u(t) \in \mathbb{R}, \text{ Im}(w) = v(t) \in \mathbb{R}.$$

Производная и интеграл для таких функций определяются аналогично вещественным функциям:

$$w'(t) = u'(t) + i \cdot v'(t).$$

$$\int_{a}^{b} w(t)dt = \int_{a}^{b} u(t)dt + i \cdot \int_{a}^{b} v(t)dt.$$

Рассмотрим функцию $w=e^{it},\,t\in[0;2\pi).$ Ее можно представить как $e^{it}=\cos t+i\cdot\sin t.$ Тогда производная от этой функции равна

$$(e^{it})' = -\sin t + i \cdot \cos t = i \cdot (\cos t + i \cdot \sin t) = ie^{it}.$$

Пусть $f: D \to \mathbb{C}, D \in \mathbb{C}$.

ullet Функция $w=f(z),\,z\in D\in\mathbb{C}\,$ называется комплексной функцией.

Это же определение можно сформулировать иначе.

• Пусть заданы множества $D \in \mathbb{C}$ и $L \in \mathbb{C}$ и правило $D \xrightarrow{f} L$, которое каждому значению $z \in D$ ставит в соответствие одно или несколько значений $w \in L$. Это мы и будем понимать под комплексной функцией..

Функцию, ставящую в соответствие одно значение, будем называть **однозначной**. Аналогично, если два значения, то **двузначной**. Если неизвестно сколько значений, то **многозначной**.

Например, графически двузначная функция будет изображаться таким образом

Рассмотрим примеры комлексных функций:

- 1. w = az + b, $a, b \in \mathbb{C}$ линейная функция;
- 2. $w = az^2 + bz + c$, $a, b, c \in \mathbb{C} \kappa вадратичная функция;$
- 3. $w = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0, \forall a_i \in \mathbb{C}, n \in \mathbb{N} nonuhom n-oй степени;$

Каждый полином n-ой степени имеет ровно n корней с учетом кратности.

4. $w = \sqrt{z}$:

Решением этой функции является множество таких $\zeta^2=z$, где

$$\zeta = |z|^{\frac{1}{2}} \cdot e^{i\frac{\arg z + 2\pi k}{2}}, \quad k = 0, 1.$$

Тогда $\zeta_1=|z|^{\frac{1}{2}}\cdot e^{i\frac{\arg z}{2}},$ $\zeta_2=-|z|^{\frac{1}{2}}\cdot e^{i\frac{\arg z}{2}}.$ Следовательно, $w=\sqrt{z}$ — двузначная функция.

Графически это можно изобразить как

Функции $w_1 = |z|^{\frac{1}{2}} \cdot e^{i\frac{\arg z}{2}}, \ w_2 = -|z|^{\frac{1}{2}} \cdot e^{i\frac{\arg z}{2}}$ являются однозначными. Их также называют **ветвями** двузначной функции $w = \sqrt{z}$.

5. $w = e^z - \kappa o m n n e \kappa c h a s s \kappa c n o h e h m a;$

$$e^z = e^{x+iy} = e^x(\cos y + i \cdot \sin y) = e^x \cos y + i \cdot e^x \sin y$$

то есть $\operatorname{Re}(e^z) = e^x \cos y$, $\operatorname{Im}(e^x) = e^x \sin y$. Если z = x, $e^z = e^x$.

Рассмотрим уравнение $w_0 = e^z$, $w_0 \neq 0$.

$$\begin{array}{ccc} w_0 = |w_0| \cdot e^{i \arg w_0}, & |w_0| = e^x, \\ e^z = e^x \cdot e^{iy} = e^x \cdot e^{i \arg z}; & \Longrightarrow & y = \arg z + 2\pi k, \ k \in \mathbb{Z}. \end{array}$$

Отсюда $x=\ln |w_0|,\ y=\arg z+2\pi k,\ k\in\mathbb{Z}.$ Тогда множество решений уравнения $w_0=e^z$ имеет вид

$$z = \ln|w_0| + i \cdot (\arg z + 2\pi k).$$

6. $w = \operatorname{Ln} z = \ln |z| + i \cdot (\arg z + 2\pi k), k \in \mathbb{Z} - комплексный логарифм;$

Если z=x>0, то при k=0 получим $\ln z=\ln |z|+i\arg z$ — главное значение (ветвь) $\operatorname{Ln} z$. Эта функция совпадает с вещественной $\ln x$.

Из двух предудыщих рассмотренных функций вытекает, что во множестве комплексных чисел уравнение $e^z = -1$ имеет множество решений $\text{Ln}(-1) = i \cdot (\pi + 2\pi k), k \in \mathbb{Z}$.

7. $w=z^{\alpha}, \ \alpha \in \mathbb{C}-c$ тепенная функция с любым показателем;

Причем $z^{\alpha} = e^{\alpha \operatorname{Ln} z}$ при $z \neq 0$.

8. $w = \sin z$, $w = \cos z - \kappa$ омплексные синус и косинус соответственно;

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

9

Проверим, что при z = x получим $\sin z = \sin x$:

$$\sin z = \frac{e^{ix} - e^{-ix}}{2i} = \frac{\cos x + i \sin x - \cos x + i \sin x}{2i} = \sin x.$$

Комплексные синус и косинус являются 2π -периодическими функциями.

Все формулы для вещественных синуса и косинуса выполняются и для комплексных. Например,

$$\cos^2 z + \sin^2 z = \left(\frac{e^{iz} + e^{-iz}}{2}\right)^2 + \left(\frac{e^{iz} - e^{-iz}}{2i}\right)^2 = \frac{e^{2iz} + e^{-2iz} + 2}{4} + \frac{e^{2iz} + e^{-2iz} - 2}{-4} = 1.$$

Аналогично доказываются

 $\cos^2 z - \sin^2 z = \cos 2z$, $2\sin z \cos z = \sin 2z$, $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \sin z_2 \cos z_1$ и так далее.

ПРИМЕР. Найдем, чему равно z в уравнении $\cos z = A$.

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = [e^{iz} = t] = \frac{t + \frac{1}{t}}{2} = A \quad \Rightarrow \quad t^2 - 2At + 1 = 0.$$

Отсюда

$$t = \frac{2A + \sqrt{4A^2 - 4}}{2} = A + \sqrt{A^2 - 1}.$$

Тогда

$$e^{iz} = A + \sqrt{A^2 - 1}.$$

Следовательно,

$$iz = \operatorname{Ln}(A + \sqrt{A^2 - 1}) \quad \Rightarrow \quad z = -i\operatorname{Ln}(A + \sqrt{A^2 - 1}).$$

Функция

$$w=-i\cdot {\rm Ln}(z+\sqrt{z^2-1})={
m Arccos}\,z-$$
 комплексный арккосинус.

Аналогично можно вывести функцию

$$w=-i\cdot \operatorname{Ln}(iz+\sqrt{1-z^2})=\operatorname{Arcsin} z$$
 — комплексный арксинус.

3 Предел функции комплексного переменного. Непрерывные функции комплексного переменного.

- Последовательность (z_n) , где все члены $z_n \in \mathbb{C}$, называется комплексной последовательностью.
- Число $a \in \mathbb{C}$ называется **пределом последовательности** (z_n) , если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall n \geqslant \delta(\varepsilon) \Rightarrow |z_n - a| \leqslant \varepsilon.$$

Геометрически это множество точек плоскости таких, что $|z-a|=\varepsilon$ (расстояние от точки z до точки a), то есть это окружность радиуса ε с центром с точке a. Обозначается $C(a,\varepsilon)$.

Если $|z-a|\leqslant \varepsilon$, то это круг с границей радиуса ε с центром с точке a. Обозначается $\overline{B}(a,\varepsilon)$.

Если $|z-a|<\varepsilon$, то это круг без границы радиуса ε с центром с точке a. Обозначается $B(a,\varepsilon)$.

Говорят, $B(a,\varepsilon)-\varepsilon$ -окрестность точки a. $\overline{B}(a,\varepsilon)$ — замкнутая ε -окрестность точки a.

Таким образом, число $a \in \mathbb{C}$ — предел последовательности, если $\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0$ такое, что все члены последовательности z_n с номерами \geqslant чем $\delta(\varepsilon)$ лежат в замкнутой ε -окрестности числа a.

Говорят, что $(z_n) \underset{n \to \infty}{\longrightarrow} \infty$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall n \geqslant \delta(\varepsilon) \Rightarrow |z_n| \geqslant \varepsilon,$$

то есть если $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$ такое, что все члены последовательности z лежат вне ε -окрестности числа a, или $z_n \notin B(a, \varepsilon)$.

Дополним множество комплексных чисел $\mathbb C$ еще одним числом $z=\infty.$

• Множество комплексных чисел, дополненных числом $z = \infty$, называется расширенным множеством комплексных чисел.

Множество таких z, что $|z| > \varepsilon$, изображается графически (рис. слева)

и называется окрестностью бесконечности.

• Комлексная плоскость, дополненная точкой $z = \infty$, называется **расширенной ком- плексной плоскостью**.

Рассмотрим (z_n) , где все члены записываются в алгебраической форме: $z_n = x_n + i \cdot y_n$, $x_n, y_n \in \mathbb{R}$.

Теорема.
$$z_n \xrightarrow[n\to\infty]{} a = a_1 + i \cdot a_2 \iff x_n \xrightarrow[n\to\infty]{} a_1, \ y_n \xrightarrow[n\to\infty]{} a_2.$$

 $\spadesuit \Rightarrow$) $z_n \xrightarrow[n \to \infty]{} a$, это значит, что

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall n \geqslant \delta(\varepsilon) \Rightarrow |z_n - a| \leqslant \varepsilon.$$

то есть
$$|z|>y,\,|z|>x,$$
 то
$$|x_n-a_1|\leqslant |z_n-a|\leqslant \varepsilon,$$

$$|y_n-a_2|\leqslant |z_n-a|\leqslant \varepsilon.$$
 Это означает, что $x_n \underset{n\to\infty}{\longrightarrow} a_1$ $y_n \underset{n\to\infty}{\longrightarrow} a_2$.

 \boxtimes

$$\Leftarrow$$
) $x_n \xrightarrow[n \to \infty]{} a_1$, это значит, что $y_n \xrightarrow[n \to \infty]{} a_2$,

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall n \geqslant \delta_1(\varepsilon) \Rightarrow |x_n - a_1| \leqslant \varepsilon,$$

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall n \geqslant \delta_2(\varepsilon) \Rightarrow |y_n - a_2| \leqslant \varepsilon.$$

Тогда

$$|z_n - a| = \sqrt{(x_n - a_1)^2 + (y_n - a_2)^2} \leqslant \sqrt{2}\varepsilon, \quad \forall n \geqslant \max\{\delta_1(\varepsilon), \delta_2(\varepsilon)\},$$

а это и есть $z_n \underset{n \to \infty}{\longrightarrow} a$ по M-лемме для последовательностей.

Замечание. Если члены последовательности записаны в экспоненциальной форме $z_n = \rho_n e^{i\phi_n}$, то $z_n \underset{n \to \infty}{\longrightarrow} a = \rho e^{i\phi_0} \not\Leftrightarrow \rho_n \underset{n \to \infty}{\longrightarrow} \rho$, $\phi_n \underset{n \to \infty}{\longrightarrow} \phi_0$, так как ϕ_n определено неоднозначно. Выполняется только

$$\rho_n \xrightarrow[n \to \infty]{} \rho, \ \varphi_n \xrightarrow[n \to \infty]{} \varphi_0 \Longrightarrow z_n \xrightarrow[n \to \infty]{} a = \rho e^{i\varphi_0}.$$

Рассмотрим функцию $w=f(z),\,z\in D\subseteq\mathbb{C}.$ Любую функцию можно записать как

$$w = f(z) = f(x+i\cdot y) = u(x,y) + i\cdot v(x,y), \quad u(x,y) \in \operatorname{Re}(f(z)), v(x,y) \in \operatorname{Im}(f(z)),$$

где u(x,y) и v(x,y) — вещественные $\Phi 2\Pi$.

Пусть точка z_0 — вутрення точка множества D.

- ullet Множесство $D \setminus \{z_0\}$ называется **проколотой окрестностью** точки z_0 .
- Число $A \in \mathbb{C}$ называется **пределом функции** f(z) при $z \to z_0$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ \forall z : 0 < |z - z_0| \leqslant \delta(\varepsilon) \Rightarrow |f(z) - A| \leqslant \varepsilon.$$

То есть $\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0$ такое, что для всех z из проколотой δ -окрестности точки z_0 функция f(z) принимает значения в ε -окрестности числа A. Пишут $\lim_{z \to z_0} f(z) = A$, или $f(z) \underset{z \to z_0}{\longrightarrow} A$.

Когда мы говорим о пределе функции, мы рассматриваем лишь однозначные функции.

Число A может быть и ∞ . Пусть $A=\infty$, тогда $f\underset{z\to\infty}{\longrightarrow}\infty$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall z : |z| \geqslant \delta(\varepsilon) \Rightarrow |f(z)| \geqslant \varepsilon.$$

Теорема.
$$f(z) \underset{z \to z_0}{\longrightarrow} A = B + i \cdot D \Longleftrightarrow u(x,y) \underset{y \to y_0}{\longrightarrow} B, \ v(x,y) \underset{y \to y_0}{\longrightarrow} D.$$

Пусть z_0 — предельная точка множества D, а w = f(z).

ullet Число A-npeden функции f(z) $npu\ z o z_0$ вдоль множества $D,\ ecnu$

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ \forall z \in D \setminus \{z_0\} : 0 < |z - z_0| \leqslant \delta(\varepsilon) \Rightarrow |f(z) - A| \leqslant \varepsilon.$$

Тогда пишут $\lim_{\substack{z \to z_0 \\ z \in D}} f(z) = A$.

Свойства предела функции:

- 1. Единственность. Предел функции, если он существует, определен однозначно.
- 2. Если $f(z) \underset{z \to z_0}{\longrightarrow} A \in \mathbb{C}$, то функция ограничена в некоторой проколотой окрестности точки z_0 .
- 3. $Ecnu \lim_{z \to z_0} f(z) = A, \lim_{z \to z_0} f(z) = B, A, B \in \mathbb{C}, mo$

(a)
$$\lim_{z \to z_0} \left(f(z) + g(z) \right) = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z);$$

(b)
$$\lim_{z \to z_0} \Big(f(z) \cdot g(z) \Big) = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z);$$

(c)
$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}$$
, $echu \lim_{z \to z_0} g(z) \neq 0$.

Пишем $f(z) \underset{z \to z_0}{\sim} g(z)$, если $\lim_{z \to z_0} \frac{f(z)}{g(z)} = 1$.

Пишем
$$f(z) = o(g(z))$$
, если $\lim_{z \to z_0} \frac{f(z)}{g(z)} = 0$.

При вычислении пределов функцию можно также заменить на эквивалентную ей.

Рассмотрим функцию w = f(z) определенную в окрестности точки $z_0 \in D$ (внутренняя точка).

ullet Функцию f(z) называют **непрерывной в точке** z_0 , если

$$\lim_{z \to z_0} f(z) = f(z_0).$$

• Если точка $z_0 \in D$ является предельной, то при $\lim_{z \to z_0} f(z) = f(z_0)$ функция f непрерывна в точке z_0 вдоль множества D.

Любую функцию можно записать в виде

$$w = f(z) = u(x, y) + i \cdot v(x, y).$$

Функция f(z) непрерывна в точке $z_0 \iff u(x,y), v(x,y)$ непрерывны в точке (x_0,y_0) , где $x_0+i\cdot y_0=z_0$ (следует из определения).

Свойства непрерывных функций:

- 1. (a) f(z) + g(z) непрерывна;
 - (b) $f(z) \cdot g(z)$ непрерывна;
 - (c) $\frac{f(z)}{g(z)}$ непрерывна $(g(z) \neq 0)$,

если функции f(z) и g(z) непрерывны в точке z.

- 2. Если w = F(z), $z = \varphi(\zeta)$, причем $\varphi(\zeta)$ непрерывна в точке ζ_0 , а F(z) непрерывна в точке $z_0 = \varphi(\zeta_0)$, то $F(\varphi(\zeta))$ непрерывна в точке ζ_0 (композиция непрерывных функций является функцией непрерывной).
- 3. (Теорема Кантора.)

Непрерывная на компакте D функция w=f(z) равномерно непрерывна, то есть

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ \forall z', z'' \in D : |z' - z''| \leqslant \delta(\varepsilon) \Rightarrow |f(z') - f(z'')| \leqslant \varepsilon.$$

4 Дифференцирование комплексных функций.

Пусть w = f(z) определена в окрестности точки z_0 . Построим приращение

$$\Delta f = f(z_0 + \Delta z) - f(z_0).$$

• Производной комплексной функции называется предел (если он конечен)

$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = f'(z_0) = f'(z)|_{z=z_0}.$$

Тогда будем говорить, что комплексная функция имеет конечную производную.

• Функцию w=f(z) называют **дифференцируемой** в точке z_0 , если $\exists A \in \mathbb{C}$:

$$\Delta f = A \cdot \Delta z + o(\Delta z).$$

Первый критерий дифференцируемости функции. Фукнция f(z) дифференцируема в точке $z_0 \iff$ она имеет конечную производную в этой точке $f'(z_0)$.

 \spadesuit \Rightarrow) Поскольку $\Delta f = A \cdot \Delta z + o(\Delta z)$, то

$$\frac{\Delta f}{\Delta z} = A + \frac{o(\Delta z)}{\Delta z}.$$

Переходим к пределу при $\Delta z \to 0$:

$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = A \Rightarrow f'(z_0) = A.$$

 \Leftarrow) $\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = f'(z_0)$. Отсюда

$$\lim_{\Delta z \to 0} \left(\frac{\Delta f}{\Delta z} - f'(z_0) \right) = 0;$$

$$\frac{\Delta f}{\Delta z} - f'(z_0) = o(1);$$

$$\Delta f = f'(z_0) \cdot \Delta z + \Delta z \cdot o(1) = f'(z_0) \cdot \Delta z + o(\Delta z),$$

то есть функция дифференцируема в точке z_0 .

Замечание. $o(\Delta z) = o(|\Delta z|)$, докажем это.

$$o(\Delta z) = \alpha(\Delta z) \Rightarrow \lim_{\Delta z \to 0} \frac{\alpha(\Delta z)}{\Delta z} = 0;$$
 (*)

 \boxtimes

$$o(|\Delta z|) = \alpha(|\Delta z|) \Rightarrow \lim_{\Delta z \to 0} \frac{\alpha(|\Delta z|)}{|\Delta z|} = 0.$$
 (**)

Tог ∂a

$$\lim_{\Delta z \to 0} \frac{\alpha(\Delta z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\alpha(\Delta z)}{\Delta z} \cdot \frac{\Delta z}{|\Delta z|} = 0.$$

Соответственно, если выполняется (*), то выполняется u (**), u наоборот. Из этого следует, что дифференциал можно также записать в виде

$$\Delta f = A \cdot \Delta z + o(|\Delta z|).$$

Второй критерий дифференцируемости функции. Функция $f(z) = u(x,y) + i \cdot v(x,y)$ дифференцируема в точке $z_0 = x_0 + i \cdot y_0 \iff$

- 1. функции u(x,y), v(x,y) дифференцируемы в точке (x_0,y_0) ;
- 2. выполняются условия Коши-Римана: в точке (x_0, y_0)

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Причем

$$f'(z)|_{z=z_0} = \frac{\partial u}{\partial x}\Big|_{(x_0,y_0)} + i \cdot \frac{\partial v}{\partial x}\Big|_{(x_0,y_0)}.$$

 $\spadesuit \Rightarrow \Delta f = A \cdot \Delta z + o(\Delta z)$, где

$$A = B_1 + i \cdot B_2,$$

$$\Delta f = \Delta u + i \cdot \Delta v,$$

$$\Delta z = \Delta x + i \cdot \Delta y,$$

$$o(\Delta z) = \varepsilon_1 + i \cdot \varepsilon_2.$$

Тогда

$$\Delta f = \Delta u + i \cdot \Delta v = (B_1 + i \cdot B_2)(\Delta x + i \cdot \Delta y) + \varepsilon_1 + i \cdot \varepsilon_2.$$

Приравняем вещественные и мнимые части

$$\Delta u = B_1 \Delta x - B_2 \Delta y + \varepsilon_1, \quad \Delta v = B_2 \Delta x + B_1 \Delta y + \varepsilon_2;$$

причем $|\varepsilon_1| \leq |o(\Delta z)|, |\varepsilon_1| = o(|\Delta z|) = o(\sqrt{(\Delta x)^2 + (\Delta y)^2}).$ Аналогично $|\varepsilon_2| = o(\sqrt{(\Delta x)^2 + (\Delta y)^2}).$ Подставим и получим

$$\Delta u = B_1 \Delta x - B_2 \Delta y + o(\sqrt{(\Delta x)^2 + (\Delta y)^2}), \quad \Delta v = B_2 \Delta x + B_1 \Delta y + o(\sqrt{(\Delta x)^2 + (\Delta y)^2}).$$

Вспомним, что

Функция f(x,y) называется дифференцируемой в точке (x_0,y_0) , если $\exists A,D\in\mathbb{R}$:

$$\Delta f = A \cdot \Delta x + D \cdot \Delta y + o(\sqrt{(\Delta x)^2 + (\Delta y)^2}),$$

 $nричем A = f'_x, D = f'_y.$

Тогда u(x,y) является дифференцируемой в точке (x_0,y_0) и

$$\frac{\partial u}{\partial x} = B_1, \quad \frac{\partial u}{\partial y} = -B_2.$$

Но v(x,y) также является дифференцируемой в точке (x_0,y_0) и

$$\frac{\partial v}{\partial x} = B_2, \quad \frac{\partial v}{\partial y} = B_1.$$

Следовательно,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

 \Leftarrow) Для доказательства все рассуждения проведем в обратном порядке. Так как u(x,y) и v(x,y) дифференцируемы в точке (x_0,y_0) , то в этой точке

$$\Delta u = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + o_1(\sqrt{(\Delta x)^2 + (\Delta y)^2}),$$

$$\Delta v = \frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + o_2(\sqrt{(\Delta x)^2 + (\Delta y)^2}).$$

Тогда

$$\Delta f = \left(\frac{\partial u}{\partial x} \Delta x + i \cdot \frac{\partial v}{\partial x} \Delta x\right) + \left(-\frac{\partial v}{\partial x} \Delta y + i \cdot \frac{\partial u}{\partial x} \Delta y\right) + \underbrace{o_1(\sqrt{(\Delta x)^2 + (\Delta y)^2}) + o_2(\sqrt{(\Delta x)^2 + (\Delta y)^2})}_{o(\Delta z)} = \underbrace{\frac{\partial u}{\partial x} \left(\Delta x + i \cdot \Delta y\right) + i \cdot \frac{\partial v}{\partial x} \left(\Delta x + i \cdot \Delta y\right)}_{\Delta z} + o(\Delta z) = \left(\frac{\partial u}{\partial x} + i \cdot \frac{\partial v}{\partial x}\right) \cdot \Delta z + o(\Delta z).$$

Следовательно, f(z) дифференцируема в точке z_0 , а

$$f'(z_0) = \frac{\partial u}{\partial x}\Big|_{(x_0, y_0)} + i \cdot \frac{\partial v}{\partial x}\Big|_{(x_0, y_0)}.$$

Все производные от комплексных функций определяются аналогично вещественным функциям.

• Функция называется **дифференцируемой в области** D, если она дифференцируема в каждой точке этой области.

Свойства производных комплексных функций:

- 1. Пусть f(z) и g(z) функции дифференцируемые в точке z_0 . Тогда
 - (a) $(f(z) \pm g(z))' = f'(z) \pm g'(z);$
 - (b) $(f(g) \cdot g(z))' = f'(z) \cdot g(z) + f(z) \cdot g'(z);$

(c)
$$\left(\frac{f(z)}{g(z)}\right)' = \frac{f'(z) \cdot g(z) - f(z) \cdot g'(z)}{g^2(z)}$$
, если $g(z_0) \neq 0$.

Все эти функции дифференцируемые в точке z_0 .

2. Если функция w = f(z) дифференцируема в точке z_0 , а $z = h(\zeta)$ дифференцируема в точке ζ_0 , причем $h(\zeta_0) = z_0$, то

$$(f(h(\zeta)))'\Big|_{\zeta_0} = f'(z_0) \cdot h'(\zeta_0).$$

Так как производная и первый критерий дифференцирования совпадают с соответствующими утверждениями для вещественных функций, то и доказательства данных свойств совпадают с доказательствами соответствующих свойств для вещественных функций.

5 Сопряженно-гармонические функции.

Рассмотрим соотношение для вещественной функции u = u(x, y)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0. {1}$$

- Уравнение (1) называется **уравнением Лапласа** для функции u(x,y).
- Любая функция определенная в некоторой области и удовлетворяющая уравнению Лапласа в этой области называется **гармонической** функцией.

Рассмотрим функцию w = f(z) дифференцируемую в области D. Тогда $f(z) = u(x,y) + i \cdot v(x,y)$ и выполняются условия Коши-Римана

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Позже будет показано, что дифференцируемая в области функция является дважды непрерывно дифференцируемой. Из этого вытекает, что функции u(x,y) и v(x,y) дважды непрерывно дифференцируемы в области D. Получим

$$u''_{xy} = v''_{y^2}, \quad u''_{yx} = -v''_{x^2}.$$

По теореме о смешанных производных $u''_{xy} = u''_{yx}$. Следовательно,

$$v_{y^2}'' = -v_{x^2}'' \Rightarrow v_{x^2}'' + v_{y^2}'' = 0,$$

то есть функция v(x,y) гармоническая. Аналогично получим, что функция u(x,y) также является гармонической. То есть, если комплексная функция дифференцируема, то вещественная и мнимая части этой функции — гармонические функции.

• Пара гармонических функций u(x,y) и v(x,y) в области D называется сопряженногармонической, если u(x,y) и v(x,y) — вещественная и мнимая части дифференцируемой в области D функции $f(z) = u(x,y) + i \cdot v(x,y)$.

Зная одну из двух сопряженно-гармонических функций, всегда можно найти вторую.

Используя теорему о независимости КРИ-2 от пути интегрирования, покажем, что выражение

$$-\frac{\partial u}{\partial y}dx + \frac{\partial u}{\partial x}dy$$

удовлетворяет условию Эйлера. Примем $P(x,y) = -u'_y$, $Q(x,y) = u'_x$. Тогда

$$P'_y = -u''_{y^2}, \quad Q'x = u''_{x^2}.$$

А условие

$$-u_{y^2}'' = u_{x^2}''$$

выполняется, так как функция u(x,y) удовлетворяет уравнению Лапласа. Следовательно, $\exists v(x,y) = -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy \text{ такая, что } v_x' = -u_y', \ v_y' = u_x'.$

6 Кривые.

Пусть задана непрерывная комплекснозначная функция $z=z(t),\,t\in[a,b].$ Тогда можно выделить вещественную и мнимую части

$$z(t) = x(t) + i \cdot y(t).$$

• Множесство точек комплексной плоскости с координатами z(t) при $t \in [a,b]$ называется кривой, а уравнение z = z(t) называется комплекснозначным параметрическим уравнением кривой.

Рассмотрим луч, выходящий из начала координат.

Покажем, что это кривая и найдем ее комплекснозначное параметрическое уравнение. Пусть $\phi \in (0; \frac{\pi}{2})$ и параметрическое уравнение

$$\begin{cases} x = t, \\ y = \operatorname{tg} \varphi \cdot t; \end{cases} \quad t \in [0; +\infty)$$

Тогда параметрическое комплекснозначное уравнение имеет вид

$$z = t + i \cdot \operatorname{tg} \varphi \cdot t$$
 или $z = t \cdot (\cos \varphi + i \cdot \sin \varphi), t \in [0; +\infty).$

Рассмотрим окружность радиуса R с центром в начале координат. Ее параметрическое уравнение имеет вид

$$\begin{cases} x = R \cdot \cos \varphi, \\ y = R \cdot \sin \varphi; \end{cases} \qquad \varphi \in [0; 2\pi].$$

Параметрическое комплекснозначное уравнение в таком случае имеет вид

$$z(\varphi) = R \cdot (\cos \varphi + i \cdot \sin \varphi) = Re^{i\varphi}, \quad \varphi \in [0; 2\pi].$$

• Кривая называется гладкой, если функция z(t) непрерывно дифференцируема на [a,b] и $|\dot{z}(t)| \neq 0 \ \forall t \in [a,b].$

Кривую без точек самопересечения будем называть **простой**. Длина простой гладкой кривой определяется формулой

дл.
$$l = \int\limits_a^b |\dot{z}(t)| dt.$$

Пусть задана гладкая кривая

$$l: z = z(t) = x(t) + i \cdot y(t), \ t \in [a, b].$$

И пусть эта кривая ориентирована. К этой кривой проведена касательная через точку M_0 и параллельный ей вектор a, причем, так как $\dot{z}(t)=\dot{x}(t)+i\cdot\dot{y}(t)$, его координаты $a(\dot{x}(t),\dot{y}(t))$. Тогда угол $\phi=\arg\dot{z}(t)$ — это угол между касательной (вектором a) и осью x.

7 Интегрируемые функции комплексного переменного.

 Π усть l — гладкая кривая, имеющая комплекснозначное параметрическое уравнение

$$l: z(t) = x(t) + i \cdot y(t), \ t \in [a, b].$$

И пусть на кривой l задана функция однозначная f(z).

• Тогда интеграл от комплекснозначной функции

$$\int_{a}^{b} f(z(t)) \cdot \dot{z}(t)dt := \int_{b}^{a} f(z)dz$$

называется **интегралом от комплексной функции** $f(z) = u(x,y) + i \cdot v(x,y)$.

Следовательно,

$$\int_{a}^{b} f(z(t)) \cdot \dot{z}(t) dt = \int_{a}^{b} \left(u(x(t), y(t)) + i \cdot v(x(t), y(t)) \right) \cdot \left(\dot{x}(t) + i \cdot \dot{y}(t) \right) dt =$$

$$= \int_{a}^{b} (u\dot{x} - v\dot{y}) dt + i \cdot \int_{a}^{b} (u\dot{y} + v\dot{x}) dt = \int_{l}^{b} u dx - v dy + i \cdot \int_{l}^{l} v dx + u dy.$$

Отсюда

$$\int_{I} f(z)dz = \int_{I} udx - vdy + i \cdot \int_{I} vdx + udy.$$

Свойства интеграла комплексного переменного:

1. Линейность.

$$\int_{I} (\alpha f(z) + \beta g(z))dz = \alpha \int_{I} f(z)dz + \beta \int_{I} g(z)dz.$$

 $2. \ Aduumu$ вность.

Есди кривая l кусочно-гладкая состоящая из кривых $l_{i-1} \stackrel{\frown}{l_i}$, то по определению

$$\int_{l} f(z)dz := \sum_{i} \int_{\substack{l: \ l \neq i}} f(z)dz.$$

Если кривая l состоит из кривых $l_{j-1} l_j, j = \overline{1,m},$ то по определению

$$\int_{l} f(z)dz := \sum_{j} \int_{\substack{1 \ l_{j-1}l_{j}}} f(z)dz.$$

3. Рассмотрим кусочно-гладкий путь $l: z = z(t), t \in [a,b]$. Тогда будем обозначать его через l^+ . В свою очередь, путь $l^-: z = z(a+b-t), t \in [a,b]$ будем называть противоположно ориентированным по отношению к исходному пути.

При замене ориентации пути на противоположную интеграл комплексного переменного меняет знак.

$$\int_{I^{+}} f(z)dz = -\int_{I^{-}} f(z)dz.$$

4. Оценки интеграла комплексного переменного.

(a)
$$\left| \int_{l} f(z)dz \right| \leq \int_{l} |f(z)|ds - \text{KPM-1}.$$

$$\begin{split} \Big| \int\limits_l f(z)dz \Big| &= \Big| \int\limits_a^b f(z(t)) \cdot \dot{z}(t)dt \Big| \leqslant \Big| \int\limits_a^b |f(z(t))| \cdot |\dot{z}(t)|dt \Big| = \\ &= \int\limits_a^b |u(x(t),y(t)) + i \cdot v(x(t),y(t))| \cdot \sqrt{\dot{x}^2 + \dot{y}^2} dt = \\ &= \left[\text{сведение KРИ-1 к определенному интегралу} \right] = \int\limits_l |f(z)| ds. \end{split}$$

 \boxtimes

(b)
$$\left| \int_{l} f(z)dz \right| \leqslant M \cdot \text{дл.} l$$
, где $M = \sup_{z \in l} |f(z)|$.
 $\blacklozenge \left| \int_{l} f(z)dz \right| \leqslant M \cdot \int_{l} ds = M \cdot \text{дл.} l$

8 Геометрический смысл модуля и аргумента производкой комплексной функции.

Рассмотрим функцию w=f(z) такую, что $f'(z_0)=\lim_{\Delta z\to 0}\frac{\Delta f}{\Delta z}$. И рассмотрим гладкую кривую $l:z=z(t),\,t\in[a,b]$. Образом этой кривой будет кривая $L:w=f(z(t)),\,t\in[a,b]$.

Обозначим $\varphi = \arg \dot{z}(t_0)$, где $t_0 \in [a,b]$, угол между касательной к кривой в точке $z_0 = z(t_0)$ и осью x. Найдем угол ψ (угол между касательной к образу кривой в точке $w_0 = f(z(t_0))$). Так как

$$\left(f(z(t)) \right)' \Big|_{t=t_0} = f'(z_0) \cdot z'(t_0),$$

ТО

$$\psi = \arg(f'(z_0) \cdot z'(t_0)) = \arg z'(t_0) + \arg f'(z_0) = \varphi + \arg f'(z_0).$$

То есть ψ — это угол, на который повернулась касательная к кривой при переходе к образу (при условии, что $f'(z_0) \neq 0$).

Если функция f(z) дифференцируема в точке z_0 и $f'(z_0) \neq 0$, то при действии функции углы между кривыми сохраняются.

Рассмотрим окружность

Причем $|z-z_0|=|\Delta z|$ — точки, лежащие на окружности. Тогда

$$\frac{\Delta f}{\Delta z} = f'(z_0) + o(1), \quad f'(z_0) = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z}.$$

Тогда при действии функции f(z) образом окружности будет замкнутая кривая, которая необязательно является окружностью.

При этом

$$|\Delta f| \approx |f'(z_0)| \cdot |\Delta z|.$$

Тогда с точностью до o(1) получится окружность радиуса $\rho \cdot |f'(z_0)|$, однако при действии функции окружность изменится.

• Предел $\lim_{\Delta z \to 0} \frac{|\Delta f|}{|\Delta z|}$ называется коэффициентом растяжения плоскости в точке z_0 при действии функции w = f(z).

Следовательно, $|f'(z_0)|$ — коэффициент растяжения плоскости в точке z_0 при действии функции w = f(z).

Пусть D — область в плоскости z, а K — образ этой области при действии функции $w = f(z) = u(x,y) + i \cdot v(x,y), (x,y) \in D$.

Предположим, что отображение $\begin{cases} u=u(x,y),\\ v=v(x,y) \end{cases}$ — диффеоморфное отображение области D и области K. Тогда пл. $K=\iint\limits_{D}|\mathcal{I}|dxdy$, где \mathcal{I} — якобиан

$$\mathcal{I} = \begin{vmatrix} u_x' & u_y' \\ v_x' & v_y' \end{vmatrix}.$$

Пусть w=f(z) — функция дифференцируема в некоторой области $D_1\supseteq D$ и $f'(z)\neq 0$ $\forall z\in D_1$. Так как функция дифференцируема, то выполняются условия Коши-Римана, то есть $u'_x=v'_y,\ u'_y=-v'_x$. Таким образом,

$$\mathcal{I} = u'_x v'_y - u'_y v'_x = (u'_x)^2 + (v'_x)^2 = [f'(z) = u'_x + i \cdot v'_x] = |f'(z)|^2.$$

Тогда

пл.
$$K = \iint_D |f'(z)|^2 dx dy$$
.

9 Интегральная теорема Коши.

Теорема. Если функция w = f(z) дифференцируема в односвязной области D, то \forall замкнутой кусочно-гладкой кривой l лежащей в области D

$$\int_{l} f(z)dz = 0.$$

igoplus Если функция $f(z) = u(x,y) + i \cdot v(x,y)$ дифференцируема, то она непрерывно дифференцируема в области D (доказательство этого утверждения приведем позже). То есть функции u(x,y), v(x,y) непрерывно дифференцируемы в области D. Тогда

$$\int_{l} f(z)dz = \int_{l} (udx - vdy) + i \cdot \int_{l} (vdx + udy) =$$

= [по теореме о независимости КРИ-2 от пути интегрирования] = 0.

Проверим выполнение условий примененной теоремы:

$$-\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x},$$

а это условия Коши-Римана. По второму критерию дифференцируемости они выполняются, следовательно, выполняется теорема о независимости КРИ-2 от пути интегрирования. \boxtimes

10 Следствия из интегральной теоремы Коши.

Следствия.

1. Если функция w = f(z) дифференцируема в односвязной области D, то интеграл $\int_{z}^{z} f(z)dz$ не зависит от формы кривой, лежащей в области D.

Какую бы кривую мы не взяли, интегралы по l_1 и по l_2 будут совпадать.

2. Если кривая l_1 получена из кривой l_0 путем непрерывной деформации, не выводящей из области D, и начало и конец этих кривых совпадают, а функция w=f(z) дифференцируема в этой области, то

$$\int_{l_1} f(z)dz = \int_{l_0} f(z)dz.$$

Причем область необязательно односвязная.

♦ Всегда можно выбрать область D_1 , которая односвязная и лежит в области D, такую, что l_1 и l_0 лежат в области D_1 . Тогда получаем утверждение из следствия 1.

24

- Неодносвязная область, ограниченная простой кусочно-гладкой кривой l_0 и простыми непересекающимися кусочно-гладкими кривыми $l_1,\ l_2,\ \ldots,\ l_k,$ лежащими внутри кривой l_0 и ориентированными так, чтобы область оставалась справа, называется стандартной многосвязной областью.
- 3. Если функция w = f(z) дифференцируемая в некоторой области D, содержит стандартную многосвязную область, то

$$\int_{l_0} f(z)dz + \sum_{i=1}^{k} \int_{l_i} f(z)dz = 0.$$

♦ Проведем разрезы, соединяющие кривую l_0 с кривыми l_1, l_2, \ldots, l_k .

Рассмотрим кривую Γ , образовавшуюся из кривых $l_0, l_1, \gamma_{11}, \gamma_{21}, \ldots, l_k, \gamma_{k1}, \gamma_{k1}$, и область ограниченную кривой Γ . Эта область односвязная. Функция w=f(z) будем дифференцируема в этой области. Тогда по интегральной теореме Коши

$$\int_{\Gamma} f(z)dz = 0 = \int_{l_0} f(z)dz + \int_{l_1} f(z)dz + \dots + \int_{l_k} f(z)dz + \int_{\underbrace{\gamma_{11}}} f(z)dz + \int_{\underbrace{\gamma_{12}}} f(z)dz + \dots + \int_{\underbrace{\gamma_{k1}}} f(z)dz + \int_{\underbrace{\gamma_{k2}}} f(z)dz = \int_{l_0} f(z)dz + \sum_{i=1}^k \int_{l_i} f(z)dz.$$

 \boxtimes

Замечание. Если в следствии 3 все кривые считать ориентированными так, что указанная область D, ограниченная этими кривыми, остается слева, то

$$\int_{l_0} f(z)dz = \sum_{i=1}^k \int_{l_i} f(z)dz.$$

4. Если функция w = f(z) дифференцируема в области D, а l_0 и $l_1 - d$ ве замкнутые кусочно-гладкие простые непересекающиеся кривые ориентированные так, что области ограниченные этими кривыми остаются слева, такие, что множество, лежащее между этими кривыми принадлежит области D, то

$$\int_{l_0} f(z)dz = \int_{l_1} f(z)dz.$$

♦ Вытекает из замечания к следствию 3.

Также последнее следствие можно сформулировать следующим образом. Интеграл от дифференцируемой в области функции не меняется при деформации кривой, невыводящей кривую из области D.

11 Первообразная. Интеграл с переменным верхним пределом.

Пусть функция w = f(z) задана в области $D \subseteq \mathbb{C}$.

ullet Функция F(z) заданная в области D называется **первообразной** для функции f(z), если

$$F'(z) = f(z), \quad \forall z \in D.$$

Если функция f(z) задана в области D и интеграл $\int\limits_l f(z)dz$ не зависит от формы кривой, лежащей в области D, то можно построить однозначную функцию $F(z)=\int\limits_{z_0}^z f(\zeta)d\zeta$, где z_0 — некоторая фиксированная точка из D, а z — произвольная точка из D ($\int\limits_{z_0}^z f(\zeta)d\zeta$ — интеграл по кривой, соединяющей точки z_0 и z).

Функция

$$F(z) = \int_{z_0}^{z} f(\zeta) d\zeta$$

называется интегралом с переменным верхним пределом.

Теорема (о первообразной). Если функция f(z) дифференцируема в односвязной области D, то функция $F(z) = \int\limits_{z_0}^z f(\zeta) d\zeta$ является первообразной в области D для функции f(z).

lacktriangle Возможность построения однозначной функции F(z) вытекает из следствия 1 интегральной теоремы Коши. Необходимо доказать, что $\forall z \in D \ F'(z) = f(z)$. Возьмем точки $z, z + \Delta z \in D$. Тогда

$$F'(z) = \lim_{\Delta z \to 0} \frac{\Delta F(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\int\limits_{z_0}^{z + \Delta z} f(\zeta) d\zeta - \int\limits_{z_0}^{z} f(\zeta) d\zeta}{\Delta z} = \lim_{\Delta z \to 0} \frac{\int\limits_{z_0}^{z + \Delta z} f(\zeta) d\zeta}{\Delta z} = \lim_{\Delta z \to 0} \frac{\int\limits_{z_0}^{z + \Delta z} f(\zeta) d\zeta}{\Delta z} = \lim_{\Delta z \to 0} \frac{\int\limits_{z_0}^{z + \Delta z} f(\zeta) d\zeta}{\Delta z}$$

$$F'(z) - f(z) = \lim_{\Delta z \to 0} \left(\frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(\zeta) d\zeta - f(z) \right) = \lim_{\Delta z \to 0} \left(\frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(\zeta) d\zeta - \frac{f(z)}{\Delta z} \int_{z}^{z + \Delta z} d\zeta \right) =$$

$$= \lim_{\Delta z \to 0} \frac{1}{\Delta z} \int_{z}^{z + \Delta z} \left(f(\zeta) - f(z) \right) d\zeta = \left[\frac{1}{|\Delta z|} \cdot \left| \int_{z}^{z + \Delta z} \left(f(\zeta) - f(z) \right) d\zeta \right| \leqslant \left[\frac{1}{|\Delta z|} \cdot \left| \int_{z}^{z + \Delta z} \left(f(\zeta) - f(z) \right) d\zeta \right| \right]$$

функция дифференцируема, следовательно, непрерывна в точке z, то есть

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ \forall \zeta : |\zeta - z| \leqslant \delta(\varepsilon) \Rightarrow |f(\zeta) - f(z)| \leqslant \varepsilon \Big] \leqslant \frac{1}{\Delta z} \varepsilon \cdot |\Delta z| = \varepsilon \Big] = 0.$$

Замечание. Если $F_1(z)$ и $F_2(z)$ — две первообразные для функции f(z) в односвязной области D, то $F_1(z) - F_2(z) = C \in \mathbb{C}$.

Теорема (формула Ньютона-Лейбница). Если f(z) дифференцируема в односвязной области $D,\ mo$

$$\int_{z_0}^{z_1} f(\zeta)d\zeta = G(z)\Big|_{z_0}^{z_1},$$

где G(z) — некоторая первообразная для функции f(z).

♦ Пусть

$$\int_{z_0}^{z} f(\zeta)d\zeta = F(z).$$

Полагаем в этом равенстве $z = z_1$. Тогда

$$\int_{z_0}^{z_1} f(\zeta)d\zeta = F(z_1) = F(z_1) - F(z_0) = G(z)\Big|_{z_0}^{z_1}.$$

Формула интегрирования по частям. Если u(z), v(z) - dse непрерывно дифференцируемые в односвязной области D функции, то

$$\int_{z_0}^{z_1} u(z)dv(z) = u(z) \cdot v(z) \Big|_{z_0}^{z_1} - \int_{z_0}^{z_1} v(z)du(z).$$

12 Интегральная формула Коши.

Теорема. Если функция f(z) дифференцируема в односвязной области D и l- замкнутая кусочно-гладкая простая кривая лежащая в D, z_0- точка лежащая внутри l, то

$$\int_{1} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0).$$

Возьмем окружность $C(z_0, \rho)$ с $\rho > 0$ таким, что окружность находится в области D. По следствию 2 из интегральной теоремы Коши

$$\int_{l} \frac{f(z)}{z - z_{0}} dz = \int_{C(z_{0}, \rho)} \frac{f(z)}{z - z_{0}} dz.$$

$$\int_{l} \frac{f(z)}{z - z_{0}} dz = \int_{C(z_{0}, \rho)} \frac{f(z) - f(z_{0}) + f(z_{0})}{z - z_{0}} dz = \int_{C(z_{0}, \rho)} \frac{f(z) - f(z_{0})}{z - z_{0}} dz + f(z_{0}) \int_{C(z_{0}, \rho)} \frac{dz}{z - z_{0}} = I_{1} + f(z_{0}) \cdot 2\pi i.$$

Покажем, что $I_1 = 0$. Функция f(z) непрерывна в точке z_0 , то есть

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \forall z : |z - z_0| \leqslant \delta(\varepsilon) \Rightarrow |f(z) - f(z_0)| \leqslant \varepsilon.$$

Считаем, что $\rho \leqslant \delta(\varepsilon)$. Оценим $|I_1|$:

$$|I_1| \leqslant \int\limits_{C(z_0,\rho)} \left| \frac{f(z) - f(z_0)}{z - z_0} ds \right| \leqslant \varepsilon \int\limits_{C(z_0,\rho)} \frac{ds}{\rho} = 2\pi \varepsilon.$$

Интеграл I_1 не зависит от радиуса ρ . Следовательно, $|I_1|\leqslant 2\pi\varepsilon,\, \forall \varepsilon>0.$ Отсюда $I_1=0.$ Тогда

$$\int_{1} \frac{f(z)}{z - z_0} dz = f(z_0) \cdot 2\pi i.$$

 \boxtimes

Следствие. Если функция f(z) дифференцируема в области D (необязательно односвязной) и $l, l_1 - d$ ве простые замкнутые кусочно-гладкие кривые, лежащие в D, l_1 лежит внутри l, f(z) дифференцируема в области, ограниченной кривыми l и l_1, z_0 лежит между кривыми l и l_1, mo

$$\int_{l} \frac{f(z)}{z - z_0} dz - \int_{l_1} \frac{f(z)}{z - z_0} dz = f(z_0) \cdot 2\pi i.$$

♦ Соединим кривые l и l_1 кривыми γ_1^+, γ_1^- . Построим кривую Γ , состоящую из кривых l, $l_1, \gamma_1^+, \gamma_1^-$. Тогда

$$\int_{\Gamma} \frac{f(z)}{z - z_0} dz = f(z_0) \cdot 2\pi i = \int_{I} \frac{f(z)}{z - z_0} dz - \int_{I_1} \frac{f(z)}{z - z_0} dz.$$

Следствие. Если функция f(z) дифференцируема в односвязной области D, l- простая замкнутая кусочно-гладкая кривая, z_0- точка, не лежащая на кривой l, то

$$\int_{z} \frac{f(z)}{z - z_0} dz = \begin{cases} 0, & ecnu \ z_0 \text{ не лежит внутри } l, \\ 2\pi i f(z_0), & ecnu \ z_0 \subset l. \end{cases}$$

◆ Верхнее равенство вытекает из интегральной теоремы Коши. Нижнее равенство вытекает из интегральной формулы Коши.

13 Степенные ряды.

- Pяд $\sum_{n=0}^{\infty} c_n$, $c_n \in \mathbb{C}$ называется комплексным числовым рядом.
- ullet Число $P_n = \sum\limits_{k=0}^n c_k$ называется **частичной суммой комплексного числового ря-** $oldsymbol{\partial} a.$
- Если $\exists \lim_{n \to \infty} P_n = P \in \mathbb{C}$, то комплексный числовой ряд называется **сходящимся**, а число P называтеся **суммой ряда**.

Всегда можно записать $c_n=a_n+ib_n$, где $a_n,\,b_n\in\mathbb{R}$. Тогда ряд $\sum\limits_{n=0}^{\infty}c_n$ сходится \Longleftrightarrow ряды $\sum\limits_{n=0}^{\infty}a_n$ и $\sum\limits_{n=0}^{\infty}b_n$ сходятся.

- Ряд $\sum_{n=0}^{\infty} c_n$ сходится абсолютно, если сходится ряд $\sum_{n=0}^{\infty} |c_n|$.
- Ряд $\sum_{n=0}^{\infty} c_n$ сходится условно, если расходится ряд $\sum_{n=0}^{\infty} |c_n|$, но ряд $\sum_{n=0}^{\infty} c_n$ сходится.
- Ряд $\sum_{n=0}^{\infty} c_n(z)$, где $c_n(z)$ комплексная функция определенная на множестве D, называется функциональным комплексным рядом. Множество точек $z \in \mathbb{C}$ таких, что ряд $\sum_{n=0}^{\infty} c_n(z)$ сходится называется множеством схоидмости ряда.

Пусть D_1 — множество сходимости ряда $\sum_{n=0}^{\infty} c_n$. Тогда

$$\forall z \in D_1, \ \forall \varepsilon > 0, \ \exists \delta(\varepsilon, z) : \forall n \geqslant \delta(\varepsilon, z) \Rightarrow \Big| \sum_{k=n+1}^{\infty} c_k(z) \Big| \leqslant \varepsilon$$

— условие поточечной сходимости. Если выполняется условие

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon) : \forall n \geqslant \delta(\varepsilon), \ \forall z \in D_1 \Rightarrow \Big| \sum_{k=n+1}^{\infty} c_k(z) \Big| \leqslant \varepsilon,$$

то ряд $\sum_{n=0}^{\infty} c_n(z)$ является равномерно сходящимся на D_1 .

Теорема (о почленном интегрировании функционального ряда). Если члены ряда $\sum_{n=0}^{\infty} c_n(z)$ непрерывны в области D_0 и ряд $\sum_{n=0}^{\infty} c_n(z)$ сходится равномерно на некотором множестве $\overline{D} \subset D_0$, а кривая $l \in \overline{D}$, то возможно почленное интегрирование функционального ряда

$$\int_{l} \sum_{n=0}^{\infty} c_n(z) dz = \sum_{n=0}^{\infty} \int_{l} c_n(z) dz.$$

- ↓ Доказательство вытекает из соответствующей теоремы для вещественных функциональных рядов и определения интеграла от комплексной функции.
- ullet Ряд $\sum_{n=0}^{\infty}c_n\cdot(t-t_0)^n$, где $c_n\in\mathbb{C}$, называется комплексным степенным рядом.

С помощью замены $t-t_0=z$ комплексный степенной ряд можно привести к виду $\sum\limits_{n=0}^{\infty}c_nz^n.$

Множество сходимостей комплексного степенного ряда не пусто, так как содержит по крайней мере одну точку z=0.

Лемма (Абеля). Если комплексный степенной ряд $\sum_{n=0}^{\infty} c_n z^n$ сходится в точке $z_0 \neq 0$, то он сходится абсолютно в круге $|z| < |z_0|$ и сходится равномерно в любом круге $|z| \leqslant \rho$, где $\rho < |z_0|$.

igoplusРяд $\sum\limits_{n=0}^{\infty}c_nz_0^n$ сходится, то есть $c_nz_0^n \underset{n \to \infty}{\longrightarrow} 0$. Следовательно, $|c_nz_0^n| \underset{n \to \infty}{\longrightarrow} 0$. Тогда $\exists M>0:$ $|c_nz_0^n| \leqslant M$.

Рассмотрим ряд из модулей $\sum_{n=0}^{\infty} |c_n z^n| = \sum_{n=0}^{\infty} |c_n z_0^n| \cdot \left| \frac{z}{z_0} \right|^n$.

Докажем, абсолютную сходимость.

$$|c_n z_0^n| \cdot \left| \frac{z}{z_0} \right|^{\leqslant} M \frac{|z|^n}{|z_0|^n}.$$

Если $|z| \leqslant |z_0|$, то $\left|\frac{z}{z_0}\right| < 1$. Тогда ряд $\sum_{n=0}^{\infty} M \left|\frac{z}{z_0}\right|^n$ сходится. Следовательно, ряд $\sum_{n=0}^{\infty} c_n z^n$ сходится абсолютно в круге $B(0,|z_0|)$.

Докажем равномерную сходимость.

$$|c_n z^n| \leqslant M \cdot \frac{\rho^n}{|z_0|^n} = Mq^n.$$

Так как $q = \frac{\rho}{|z_0|}$, то ряд $\sum_{n=0}^{\infty} Mq^n$ сходится, следовательно, ряд $\sum_{n=0}^{\infty} c_n z^n$ равномерно сходится в круге $B(0,\rho)$ по признаку Вейерштрасса.

Пусть L — множество сходимостей комплексного степенного ряда.

• Число $\sup_{z\in L}|z|=R$ называется $\operatorname{\textit{paduycom}}$ сходимости комплексного степенного ряда.

Из леммы Абеля следует, что комплексный степенной ряд сходится в круге |z| < R и расходится на множестве |z| > R. На окружности |z| = R комплексный степенной ряд может быть как сходящимся, так и расходящимся.

Для нахождения радиуса сходимости можно использовать формулу Коши-Адамара

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|c_n|}}.$$

14 Почленное дифференцирование комплексного степенного ряда.

Теорема (о почленном дифференцировании степенного ряда). Если комплексный степенной ряд $\sum_{n=0}^{\infty} c_n z^n$ имеет радиус сходимости R>0, то функция $f(z)=\sum_{n=0}^{\infty} c_n z^n$ является бесконечно дифференцируемой в круге |z|< R и т-ая производная имеет вид

$$f^{(m)}(z) = \sum_{n=m}^{\infty} c_n \cdot n \cdot (n-1) \dots (n-m+1) \cdot z^{n-m}, \ |z| < R, \forall m \in \mathbb{N}.$$

lacktriangle Рассмотрим ряд $S(z) = \sum_{n=1}^{\infty} c_n \cdot n \cdot z^{n-1}$. Из формулы Коши-Адамара следует, что радиус сходимости этого ряда равен

$$R_1 = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{n \cdot |c_n|}}} = R.$$

Следовательно, ряд, сходящийся в функции, S(z) имеет тот же радиус сходимости, что и ряд, сходящийся к f(z).

Возьмем окружность радиуса $\rho < R$. Тогда в круге $\overline{B}(0,\rho)$ ряд $\sum_{n=1}^{\infty} c_n \cdot n \cdot z^{n-1}$ сходится равномерно по лемме Абеля. Возьмем произвольную точку z и кривую γ , которая лежит в круге радиуса ρ и соединяет точку z с началом координат. Тогда интеграл $\int\limits_{\gamma} z^{n-1} dz$ не зависит от кривой интегрирования, так как функция z^{n-1} дифференцируема на всей плоскости.

Следовательно,

$$\int\limits_{\gamma} z^{n-1} dz = \int\limits_{0}^{z} \zeta^{n-1} d\zeta = \frac{z^{n}}{n}.$$

Ряд $\sum_{n=0}^{\infty} c_n \cdot n \cdot z^{n-1}$ сходится равномерно на кривой γ . Тогда по теореме о почленном интегрировании

$$\int_{1}^{\infty} \sum_{n=0}^{\infty} c_n \cdot n \cdot z^{n-1} dz = \sum_{n=1}^{\infty} c_n \cdot n \cdot \frac{z^n}{n} = \sum_{n=1}^{\infty} c_n z^n = f(z) - c_0.$$

Причем интеграл слева не зависит от кривой интегрирования, следовательно

$$\int_{0}^{z} S(\zeta)d\zeta = f(z) - c_0. \tag{1}$$

Используя доказательство теоремы о первообразной, можно доказать, что $\int\limits_0^z S(\zeta) d\zeta$ — первообразная для функции f'(z).

Из равенства (1) получаем, что функция f(z) является первообразной для функции S(z). Значит f'(z) = S(z). Отсюда функция f(z) является дифференцируемой в круге $B(0, \rho)$. А так как ρ можно вызять сколь угодно близким к R, то функция f(z) дифференцируема в круге B(0,R). Тогда

$$f'(z) = \sum_{n=1}^{\infty} c_n \cdot n \cdot z^{n-1}.$$

Повторяя аналогичные рассуждения к функции f'(z), можно показать, что через (m-1) шагов получим

$$f^{(m)}(z) = \sum_{n=m}^{\infty} c_n \cdot n \cdot (n-1) \dots (n-m+1) \cdot z^{n-m}.$$

Следствие. Если сходится ряд $\sum_{n=1}^{\infty} c_n (z-z_0)^n = f(z)$ и его радиус сходимости R>0, то

$$c_n = \frac{f^{(n)}(z_0)}{n!}.$$

lacktriangled Полагаем $z=z_0$. Следовательно $c_0=f(z_0)$. Продифференцируем функцию f'(z) и получим

$$f'(z) = \sum_{n=1}^{\infty} c_n \cdot n \cdot (z - z_0)^{n-1}.$$

Пусть $z=z_0$, тогда $f'(z_0)=c_1\cdot 1$. Аналогичные действия проделаем (m-1) раз. Тогда

$$f^{(m)}(z_0) = c_m \cdot 1 \cdot 2 \cdot \dots \cdot m = c_m \cdot m!.$$

Отсюда

$$c_m = \frac{f^{(m)}(z_0)}{m!}.$$

ullet Ряд $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ называется **рядом Тейлора** для комплексной функции f(z).

Из следствия вытекает, что если комплексная функция представима комплексным степенным рядом, то она разложима в ряд Тейлора.

Следствие (единственность разложения функции в степенной ряд). Если функция

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$

 $e \kappa pyre |z-z_0| < R, R \neq 0, mo c_n = b_n.$

15 Регулярные функции.

ullet Функция f(z) называется **регулярной в точке** z_0 , если

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, \quad \forall z : |z - z_0| < R, \ R > 0.$$

То есть, иным словами, функция регулярна в точке z_0 , если она разложима в степенной ряд по степеням $(z-z_0)$, сходящийся к функции f(z) в некоторой окрестности точки z_0 .

• Функция называется **регулярной в области**, если она регулярна в каждой точке этой области.

Теорема (критерий регулярности функции в области). Функция f(z) регулярна в области $D \iff \phi$ ункция f(z) дифференцируема в области D.

- ♦ ⇒) Если функция регулярна в области, то она разложима в степенной ряд в этой области. А сумма комплексного степенного ряда функция дифференцируема по теореме о почленном дифференцировании степенного ряда.
- \Leftarrow) Возьмем в области D окружность $C(z_0, \rho)$ таким образом, чтобы она целиком лежала в области D. И возьмем произвольную точку z.

Функция f(z) дифференцируема в области D, значит дифференцируема и в окружности $C(z_0, \rho)$. По интегральной формуле Коши.

$$f(z) = \frac{1}{2\pi i} \int_{C(z_0, \rho)} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Разложим в степенной ряд функцию $\frac{1}{\zeta - z}$ по степеням $z - z_0$:

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0 + z_0 - z} = \frac{1}{(\zeta - z_0)(1 - \frac{z - z_0}{\zeta - z_0})} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^n},$$

Причем $\frac{|z-z_0|}{|\zeta-z_0|} < 1$. И пусть $\zeta \in C(z_0, \rho)$. Следовательно, ряд $\sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(\zeta-z_0)^n}$ сходится равномерно на окружности $C(z_0, \rho)$ по признаку Вейерштрасса.

Таким образом, ряд

$$\frac{f(\zeta)}{\zeta - z} = \sum_{n=0}^{\infty} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$

также сходится равномерно на окружности $C(z_0, \rho)$.

Проинтегрируем последнее равенство по окружности $C(z_0, \rho)$ и домножим обе части уравнения на $\frac{1}{2\pi i}$. Тогда

$$\frac{1}{2\pi i} \int_{C(z_0,\rho)} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \left(\int_{C(z_0,\rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) (z - z_0)^n = \sum_{n=0}^{\infty} c_n (z - z_0)^n,$$

где

$$c_n = \frac{1}{2\pi i} \int_{C(z_0, \rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta.$$

Таким образом,

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, \quad c_n = \frac{1}{2\pi i} \int_{C(z_0, \rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \quad \forall z \in B(z_0, \rho).$$

16 Следствия из критерия регулярности.

Следствия.

- 1. Если функция дифференцируема в области, то она бесконечно дифференцируема в этой области.
 - ◆ Если функция дифференцируема в области, то она регулярна в этой области.
 Следовательно, она является суммой сходящегося степенного ряда в окрестности каждой точки. А сумма степенного ряда функция бесконечно дифференцируемая.
- 2. Радиус сходимости ряда

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{C(z_0, \rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) (z - z_0)^n$$

 \boxtimes

равен расстоянию от точки z_0 до границы области D.

Замечание. Из критерия регулярности также вытекает способ исследования функции на регулярность в области. Причем сумма, разность, произведение и частное двух регулярных функций — функция регулярная. Если функция f(z) регулярна в области D, а функция F(w) регулярна в области, содержащей множество значений функции f, то функция F(f(z)) регулярна в области D. Следовательно, исследование функции на регулярность в области равносильно исследованию на дифференцируемость в области.

3. Если функция f(z) регулярна в области D, то справедлива **обобщенная инте-** гральная формула Komu

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{C(z_0, \rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \quad \forall z_0 \in D.$$

lacktriangle Если функция регулярна, то она разложима в степенной ряд $f(z)=\sum\limits_{n=0}^{\infty}c_n(z-z_0)^n$ в круге $|z-z_0|<
ho,\
ho>0.$ Тогда

$$c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{C(z_0,\rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta.$$

4. Если функция f(z) регулярна в точке z_0 , то она регулярна в некоторой окрестности точки z_0 .

• Если функция f(z) регулярна в точке z_0 , то ее можно представить степенным рядом $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ в круге $|z-z_0| < \rho$, $\rho > 0$. По теореме о почленном дифференцировании степенного ряда функция f(z) дифференцируема в круге $|z-z_0| < \rho$. Следовательно, по критерию регулярности она регулярна в этом круге.

17 Разложение функций в степенной ряд.

Пусть функция f(z) регулярна в точке z_0 . Тогда ее можно представить рядом Тейлора

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

в круге $|z-z_0|<\rho,\ \rho>0.$ Тогда справедливы следующие разложения элементарных функций в ряд Тейлора:

1.
$$e^z = 1 + \frac{z}{1!} + \ldots + \frac{z^n}{n!} + \ldots = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad |z| < \infty;$$

2.
$$\sin z = z - \frac{z^3}{3!} + \ldots + \frac{(-1)^n z^{2n+1}}{(2n+1)!} + \ldots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \quad |z| < \infty;$$

3.
$$\cos z = 1 - \frac{z^2}{2!} + \ldots + \frac{(-1)^n z^{2n}}{(2n)!} + \ldots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}, \quad |z| < \infty;$$

 \boxtimes

4.
$$\sin z = z + \frac{z^3}{3!} + \ldots + \frac{z^{2n+1}}{(2n+1)!} + \ldots = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}, \quad |z| < \infty;$$

5. ch
$$z = 1 + \frac{z^2}{2!} + \ldots + \frac{z^{2n}}{(2n)!} + \ldots = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, \quad |z| < \infty;$$

6.
$$\ln(1+z) = z - \frac{z^2}{2!} + \ldots + \frac{(-1)^{n-1}z^n}{n} + \ldots = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}z^n}{n}, \quad |z| < 1.$$

Для функций $(1+z)^{\mu}$, $\mu \in \mathbb{C}$ и $\operatorname{Ln}(1+z)$ разложение мы не сможем найти, так как эти функции определены неоднозначно.

Свойства степенных рядов: Если функция f(z) разложима в степенной ряд $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ в круге $|z-z_0| < \rho_1$, а $g(z) = \sum_{n=0}^{\infty} b_n (z-z_0)^n$ в $|z-z_0| < \rho_2$, то

1.
$$\alpha f(z) + \beta g(z) = \sum_{n=0}^{\infty} (\alpha c_n + \beta b_n) \cdot (z - z_0)^n$$
, $|z - z_0| < \rho_3 = \min\{\rho_1, \rho_2\}$;

2.
$$f(z) \cdot g(z) = \sum_{n=0}^{\infty} d_n (z - z_0)^n$$
, $d_n = \sum_{k=0}^n c_k b_{n-k}$, $|z - z_0| < \rho_3$.

18 Теорема единственности.

Лемма. Если функция f(z) регулярна в области D и точка z_0 — нуль функции, то есть $f(z_0) = 0$, то существует окрестность точки z_0 , в которой $f(z) \equiv 0$, или в этой окрестности нет других нулей функции f(z).

♦ Если функция регулярна, то ее можно разложить в сходящийся степенной ряд

$$f(z) = c_0 + c_1 \cdot (z - z_0) + \dots + c_n \cdot (z - z_0)^n + \dots, \quad |z - z_0| < \rho.$$

Так как $f(z_0)=0$, то $c_0=0$. Следовательно, $c_i=0$, $\forall i\geqslant 1$. Тогда $f(z)\equiv 0$ в окружности $|z-z_0|<\rho$. Пусть среди c_i -ых есть ненулевой коэффициент и пусть c_n — это первый ненулевой коэффициент. Тогда

$$f(z) = c_n \cdot (z - z_0)^n + c_{n+1} \cdot (z - z_0)^{n+1} + \dots = (z - z_0)^n \cdot (c_n + c_{n+1} \cdot (z - z_0) + \dots), \quad |z - z_0| < \rho.$$

Пусть

$$g(z) = c_n + c_{n+1} \cdot (z - z_0) + \dots,$$

причем $g(z_0) = c_n \neq 0$. Функция g(z) также регулярная, следовательно, она непрерывная. По теореме о стабилизации знака $g(z) \neq 0$ в $|z - z_0| > \rho_1$, где $\rho_1 > 0$, но необязательно совпадает с ρ . Следовательно, функция g(z) не имеет нулей.

Теорема (единственности). Если функция f(z) регулярна в ограниченной области D и последовательность z_n , $n = 1, 2, \ldots -$ нули функции f, то есть $f(z_n) = 0$, $\forall n$, и $z_n \underset{n \to \infty}{\longrightarrow} a \in D$, то $f(z) \equiv 0$ в области D.

 $igoplus \Phi$ ункция f(z) регулярна в ограниченной области D, значит и в точке a, тогда в любой окрестности точки a есть нули функции f(z). По лемме $f(z) \equiv 0$ в круге с центром в точке a, то есть $|z-a| < \rho_1$. Берем произвольную точку z из области D и соединим ее с точкой a кривой b : b = b = b = b . Кривая лежит в области b — Пусть расстояние от кривой b до границы области b — равно

$$d(l, \partial D) = \rho > 0.$$

Покроем кривую l конечным числом кругов радиуса ρ с центрами в последовательных точках $z_1 = a, z_2, \ldots, z_n = z$. Таким образом, все круги лежат в области D, а центр каждого j+1-го круга лежит внутри j-го круга, $j=\overline{1,n-1}$.

Так как $\rho_1 > \rho$, то круг радиуса ρ_1 с центром в a содержит первый покрывающий круг. Следовательно, в первом круге $f(z) \equiv 0$ по ранее доказанной лемме. Аналогично во втором круге $f(z) \equiv 0$, поскольку центр второго круга лежит внутри первого. Продолжим эти рассуждения до тех пор, пока не придем к точке z. Тогда $f(z) \equiv 0$ в области D.

Следствие. Пусть функции f(z) и g(z) регулярны в области D и в точках последовательности z_n , $n=1,2,\ldots$ функции f и g совпадают, то есть $f(z_n)=g(z_n)$, $\forall n,u$ $z_n \underset{n\to\infty}{\longrightarrow} a \in D$. Тогда $f(z)\equiv g(z)$ в области D.

• Рассмотрим функцию h(z) = f(z) - g(z). Тогда $h(z_n) = 0$. По теореме единственности $h(z) \equiv 0$ в области D. Следовательно, функции f(z) и g(z) совпадают в области D.

Следствие. Если функции f(z) и g(z) регулярны в области D и f(z) = g(z) в некоторой подобласти D_1 области D (или f(z) = g(z) на некоторой гладной кривой из D), то $f(z) \equiv g(z)$ в области D.

19 Нули регулярной функции.

Пусть функция f(z) регулярна в области D.

ullet Если $f(z_0)=0$, то точка z_0 называется **нулем функции**.

Поскольку функция f(z) регулярна, ее можно представить в виде

$$f(z) = c_0 + c_1(z - z_0) + \ldots + c_n(z - z_0)^n + \ldots, |z - z_0| < \rho.$$

Отсюда $f(z_0) = c_0$. Из леммы к теореме единственности нули регулярной функции изолированы, то есть существует окрестность точки z_0 , в которой $f(z_0) \equiv 0$ либо нет других нулей у функции. Пусть c_n — первый ненулевой коэффициент функции, то есть $c_0 = \ldots = c_{n-1} = 0, c_n \neq 0$.

ullet Индекс n первого ненулевого коэффициента c_n называется **порядком нуля**.

Следовательно,

$$f(z) = c_n(z-z_0)^n + c_{n+1}(z-z_0)^{n+1} + \ldots = (z-z_0)^n(c_n+c_{n+1}(z-z_0)+\ldots) = (z-z_0)^n h(z),$$
 где $h(z)$ — регулярная функция, причем $h(z_0) \neq 0$.

Теорема (первая теорема о порядке нуля). *Точка* $z_0 - нуль порядка <math>n \iff f(z) = (z - z_0)^n h(z), \ h(z_0) \neq 0.$

Теорема (вторая теорема о порядке нуля). *Число* n - nopядок нуля регулярной функции $\iff f^{(n)}(z_0) \neq 0, \ f^{(i)}(z_0) = 0, \ \forall i = \overline{0, n-1}.$

20 Ряд Лорана.

• Рядом Лорана называется ряд вида

$$\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n = \ldots + c_{-n} (z-z_0)^{-n} + \ldots + c_{-1} (z-z_0)^{-1} + c_0 + c_1 (z-z_0) + \ldots + c_n (z-z_0)^n + \ldots, \ c_i \in \mathbb{C}.$$

Обозначим $I_1 = \sum_{n=-\infty}^{-1} c_n (z-z_0)^n$, $I_2 = \sum_{n=0}^{\infty} c_n (z-z_0)^n$. Ряд I_2 является степенным рядом.

А ряд I_1 сводится к степенному ряду с помощью замены $t=\frac{1}{z-z_0}$: $\sum_{n=-\infty}^{-1}c_nt^{-n}=\sum_{n=1}^{\infty}c_{-n}t^n$.

• Ряд Лорана называется **сходящимся**, если сходятся ряды I_1 и I_2 .

Ряд I_2 имеет область сходимости $|z-z_0| < R$, где R — радиус сходимости.

Ряд I_1 сводится к степенному ряду, который имеет радиус сходимости ρ . Тогда область сходимости ряда I_1 будет $\left|\frac{1}{z-z_0}\right| < \rho$. Отсюда $|z-z_0| > 1/\rho = r$. Тогда область сходимости ряда Лорана выглядит следующим образом:

Если r < R, то область сходимости ряда Лорана — кольцо $r < |z - z_0| < R$.

Теорема (о представлении регулярной в кольце функции рядом Лорана). Если функция f(z) регулярна в кольце $0 \le r < |z - z_0| < R$, то эта функция является суммой ряда Лорана, то есть

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n,$$

с коэффициентами

$$c_n = \frac{1}{2\pi i} \int_{C(z_0,\rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \quad r < \rho < R.$$

• Обозначим через K кольцо $r < |z - z_0| < R$. Рассмотрим кривые Γ и γ , лежащие в кольце K. Возьмем произвольную точку $z \in K$, лежащую между кривыми Γ и γ .

По следствию 1 из интегральной формулы Коши

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Рассмотрим интеграл по Г. По критерию регулярности

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} c_n (z - z_0)^n.$$

Отсюда

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta.$$

Рассмотрим интеграл по γ . Разложим в степенной ряд функцию $-\frac{1}{\zeta-z}$ по степеням $z-z_0$:

$$-\frac{1}{\zeta - z} = -\frac{1}{\zeta - z_0 + z_0 - z} = \frac{1}{(z - z_0) - (\zeta - z_0)} = \frac{1}{(z - z_0)(1 - \frac{\zeta - z_0}{z - z_0})} =$$

$$= \sum_{n=0}^{\infty} \frac{(\zeta - z_0)^n}{(z - z_0)^{n+1}} = [n+1 = -k] = \sum_{k=-1}^{-\infty} \frac{(z - z_0)^k}{(\zeta - z_0)^{k+1}}.$$

Полученный ряд сходится равномерно на окружности γ (это следует из леммы Абеля). Тогда ряд

$$-\frac{f(\zeta)}{\zeta - z} = \sum_{k=-1}^{-\infty} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} \cdot (z - z_0)^k$$

также сходится равномерно на окружности γ . А так как γ — это компакт и функция $f(\zeta)$ непрерывна на этом компакте, то функция $f(\zeta)$ ограничена. Почленно проинтегрируем этот ряд:

$$-\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \sum_{n = -1}^{-\infty} \left(\int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) \cdot (z - z_0)^n = \sum_{n = -1}^{-\infty} c_n (z - z_0)^n,$$

где

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \cdot d\zeta.$$

Таким образом, ряд Лорана имеет вид

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) (z - z_0)^n + \sum_{n=-1}^{-\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) \cdot (z - z_0)^n.$$

Возьмем окружность радиуса ρ . Обе кривые γ и Γ можно деформировать в эту окружность. Следовательно, вместо γ и Γ можно взять окружность радиуса ρ .

Тогда ряд Лорана можно записать в виде

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n,$$

с коэффициентами

$$c_n = \frac{1}{2\pi i} \int_{C(z_0,0)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta.$$

Оценка для коэффициентов ряда Лорана.

Пусть
$$M = \max_{z \in C(z_0, \rho)} |f(z)|$$
. Тогда

$$|c_n| = \frac{1}{|2\pi i|} \cdot \Big| \int\limits_{C(z_0,\rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \Big| \leqslant \frac{M}{2\pi} \int\limits_{C(z_0,\rho)} \frac{ds}{\rho^{n+1}} = \frac{M}{2\pi} \cdot \frac{ds}{\rho^{n+1}} \cdot 2\pi \rho = \frac{M}{\rho^n}, \forall n \in \mathbb{Z}.$$

 \boxtimes

Следствие (единственность разложения регулярной в кольце функции в ряд Лорана). Если функция f(z) разложения в кольце $\rho < |z-z_0| < R$ в ряд Лорана, то это разложение единственно.

♦ От противного. Пусть существует 2 разложения в ряд Лорана:

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n = \sum_{n=-\infty}^{+\infty} b_n (z-z_0)^n, \quad \rho < |z-z_0| < R.$$

Домножим это уравнение на $(z-z_0)^{-m-1}$:

$$\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^{n-m-1} = \sum_{n=-\infty}^{+\infty} b_n (z-z_0)^{n-m-1}.$$

Оба разложения сходятся равномерно на $C(z_0, R_0)$, $\rho < R_0 < R$. Почленно проинтегрируем полученное равенство:

$$\sum_{n=-\infty}^{+\infty} c_n \int_{C(z_0,R_0)} (z-z_0)^{n-m-1} dz = \sum_{n=-\infty}^{+\infty} b_n \int_{C(z_0,R_0)} (z-z_0)^{n-m-1} dz,$$

$$\int_{C(z_0,R_0)} (z-z_0)^{n-m-1} dz = \begin{cases} 0, & n-m-1 \neq -1, \\ 2\pi i, & n-m-1 = -1. \end{cases}$$

Если n - m - 1 = -1, то n = m, следовательно,

$$\sum_{n=-\infty}^{+\infty} c_n \cdot 2\pi i = \sum_{n=-\infty}^{+\infty} b_n \cdot 2\pi i \Rightarrow c_n = b_n, \ \forall m \in \mathbb{Z}.$$

21 Аналитическое продолжение.

Пусть задана функция $f:E \to \mathbb{C},\, E \subset D,$ где D — произвольная область, и задана функция $F:D \to \mathbb{C}.$

• Функция F(z) называется **аналитическим продолжением функции** f(z) из множества E в область D, если $F(z) = f(z) \ \forall z \in E$, а F(z) — регулярная в D функция.

Теорема (о единственности аналитического продолжения). Если множество E содержит последовательность точек $z_n \underset{n \to \infty}{\longrightarrow} a \in E, z_i \neq z_j \ \forall i,j,\ f(z) - \phi$ ункция заданная на E и D — область содержащая множество E, то существует единственное аналитическое продолжение функции f(z) в области D.

♦ Пусть существуют 2 аналитических продолжения функции f(z) - F(z) и G(z). Тогда $F(z_n) = G(z_n) \ \forall n$ и $z_n \xrightarrow[n \to \infty]{} a \in E, \ z_i \neq z_j \ \forall i,j$. Тогда из теоремы о единственности $F(z) = G(z) \ \forall z \in D$.

22 Особые точки.

Пусть $B(z_0,R)$ — круг $|z-z_0| < R$. Будем обозначать

$$B^{o}(z_0,R)$$

— проколотая R-окрестность точки z_0 (то есть круг $B(z_0,R)$ без точки z_0 или кольцо $0<|z-z_0|< R$).

• Точка z_0 называется **особой точкой** для функции f(z), если $\exists B^o(z_0, \rho)$, $\rho > 0$, в которой функция f(z) регулярная.

По теореме о разложении регулярной функции в кольце функцию f(z) можно представить в виде ряда Лорана

$$f(z) = \dots + c_{-n}(z - z_0)^{-n} + \dots + c_{-1}(z - z_0)^{-1} + c_0 + c_1(z - z_0) + \dots + c_n(z - z_0)^{n} + \dots$$

Сумму

$$\sum_{n=-\infty}^{-1} = \ldots + c_{-n}(z-z_0)^{-n} + \ldots + c_{-1}(z-z_0)^{-1}$$

в разложении функции в ряд Лорана будем называть **главной частью ряда Лорана**, а сумму

$$\sum_{n=0}^{+\infty} = c_0 + c_1(z - z_0) + \ldots + c_n(z - z_0)^n + \ldots$$

— правильной частью ряда Лорана.

Будем различать 3 типа особых точек:

- 1. устранимая особая точка;
- 2. non wc;
- 3. существенно особая точка.
- ullet Особая точка функции f(z) называется **устранимой особой точкой**, если

$$\exists \lim_{z \to z_0} f(z) = A \in \mathbb{C}.$$

ullet Особая точка функции f(z) называется **полюсом**, если

$$\exists \lim_{z \to z_0} f(z) = \infty.$$

ullet Особая точка функции f(z) называется **существенно особой точкой**, если

$$\exists \lim_{z \to z_0} f(z).$$

Теорема (об устранимой особой точке). Точка $z_0 - y$ странимая особая точка функции $f(z) \iff$ главная часть разложения функции в ряд Лорана тождественно равна нулю.

 \spadesuit \Rightarrow) Рассмотрим функцию f(z) такую, что z_0 для нее — устранимая особая точка. Докажем, что главная часть в разложении в ряд Лорана отсутствует. Берем ряд Лорана

$$f(z) = \dots + c_{-n}(z - z_0)^{-n} + \dots + c_{-1}(z - z_0)^{-1} + c_0 + c_1(z - z_0) + \dots + c_n(z - z_0)^n + \dots$$

Точка z_0 — устранимая особая точка, следовательно, $\exists \lim_{z \to z_0} f(z) = A \in \mathbb{C} \Rightarrow функция <math>f(z)$ ограничена, то есть $\exists M : |f(z)| \leq M$ в круге $0 < |z - z_0| < \rho_1$. Воспользуемся неравенством для коэффициентов ряда Лорана:

$$|c_n| \le \frac{M}{R_0^n}, \ M = \max_{z \in C(z_0, \rho)} |f(z)|,$$

где $0 < R_0 < \rho_1$. Тогда $|c_{-n}| \leq MR_0^n$, но R_0 может быть сколь угодно близким к 0. Тогда, если $R_0 \to 0$, то $MR_0^n \to 0$, следовательно, $c_{-n} = 0$, то есть все коэффициенты главной части ряда Лорана равны нулю, значит, главная часть равна нулю.

 \Leftarrow) Пусть главная часть разложения в ряд Лорана функции f(z) отсутствует, то есть в круге $0<|z-z_0|<\rho$

$$f(z) = c_0 + c_1(z - z_0) + \ldots + c_n(z - z_0)^n + \ldots$$

Берем функцию

$$g(z) = c_0 + c_1(z - z_0) + \ldots + c_n(z - z_0)^n + \ldots$$

Тогда f(z) = g(z) в кольце $0 < |z - z_0| < \rho$. И функция g(z) определена и непрерывна в круге $|z - z_0| < \rho$ (в то время как f(z) может быть и не определена). Следовательно,

$$g(z_0) = A = \lim_{z \to z_0} g(z) = \lim_{z \to z_0} f(z).$$

Замечание. При доказательстве теоремы мы использовали ограниченность функции f(z) в некоторой окрестности точки z_0 . Поэтому теорема остается справедливой, если условие существования конечного предела заменить ограниченностью функции f в окрестности точки z_0 .

23 Полюсы, существенно особые точки.

Теорема (Первая теорема о полюсе). Особая точка z_0 является полюсом функции f(z) \iff функцию f(z) можно представить в виде

$$f(z) = \frac{h(z)}{(z - z_0)^m},$$

 $rde\ h(z)\ -\ peryлярная\ e\ oкрестности\ moчки\ z_0,\ h(z_0) \neq 0,\ m\in\mathbb{N}.$

 \spadesuit \Rightarrow) Пусть функция f(z) в точке z_0 имеет полюс, значит $\lim_{z \to z_0} f(z) = \infty$.

Рассмотрим функцию $g(z)=\frac{1}{f(z)}$. Тогда существует окрестность точки z_0 такая, что $|f(z)|\geqslant 1,\ 0<|z-z_0|<\rho_1$. Тогда в этой окрестности функция g(z) ограничена и регулярна.

По замечанию из теоремы об устранимой особой точке z_0 — устранимая особая точка, то есть

$$\lim_{z \to z_0} g(z) = \lim_{z \to z_0} \frac{1}{f(z)} = 0.$$

Доопределим фунцию g(z) в точке z_0 : пусть $g(z_0)=0$. Тогда получим фунцию, у которой точка z_0 является нулем. По одной из теорем о нулях функции функция g(z) может быть представлена в виде

$$g(z) = (z - z_0)^m \cdot h_1(z).$$

Причем функция $h_1(z)$ ругелярна в окрестности точки z_0 и $h_1(z_0) \neq 0$. Тогда

$$f(z) = \frac{h(z)}{(z - z_0)^m}, \ h(z) = \frac{1}{h_1(z)},$$

 \Leftarrow) Пусть функция f(z) представима в виде

$$f(z) = \frac{h(z)}{(z - z_0)^m}.$$

 \boxtimes

Тогда $\lim_{z \to z_0} \frac{h(z)}{(z - z_0)^m} = \infty$, то есть точка z_0 — полюс.

Замечание. Число m из теоремы называется **порядком** полюса. Из доказательства следует, что порядок полюса равен порядку нуля функции $\frac{1}{f(z)}$.

Теорема (Вторая теорема о полюсе). Точка z_0 является полюсом функции $f(z) \iff$ главная часть ряда Лорана в точке z_0 содержит конечное число слагаемых.

 \spadesuit \Rightarrow) Пусть точка z_0 — полюс функции f(z), а значит этот полюс имеет порядок. Пусть число m — порядок полюса. По первой теореме о полюсе f(z) можно представить как

$$f(z) = \frac{h(z)}{(z - z_0)^m},$$

где функция h(z) регулярна в точке z_0 и $h(z_0) \neq 0$. Тогда функцию h(z) можно разложить в степенной ряд

$$h(z) = c_0 + c_1(z - z_0) + \dots = \sum_{n=0}^{\infty} c_n(z - z_0)^n, |z - z_0| < \rho_2, \quad \rho_2 > 0.$$

Причем заметим, что $c_0 \neq 0$. Тогда

$$f(z) = \frac{h(z)}{(z - z_0)^m} = \frac{c_0}{(z - z_0)^m} + \dots + \frac{c_{m-1}}{z - z_0} + c_m + c_{m+1}(z - z_0) + \dots$$
(1)

То есть в главной части разложения функции f(z) в ряд Лорана конечное число слагаемых, а порядок полюса равен количеству слагаемых в главной части.

 \Leftarrow) Пусть функция f(z) имеет вид (1). Тогда вынесем за скобки множитель $\frac{1}{(z-z_0)^m}$:

$$f(z) = \frac{1}{(z - z_0)^m} \cdot \underbrace{\left(c_0 + \ldots + \frac{c_{m-1}}{(z - z_0)^{m-1} + \ldots}\right)}_{h(z)}, \quad h(z_0) = c_0 \neq 0.$$

To есть функция f(z) представима в виде

$$f(z) = \frac{h(z)}{(z - z_0)^m}.$$

 \boxtimes

 \boxtimes

Тогда по первой теореме о полюсе точка z_0 — полюс.

Замечание. Из первой теоремы о полюсе следует, что если точка z_0 является полюсом порядка m, то

 $f(z) \underset{z \to z_0}{\sim} \frac{A}{(z - z_0)^m}, \ A \neq 0, \ h(z_0) = A.$

Теорема (о существенно особой точке). Точка z_0 является существенно особой точкой функции $f(z) \iff$ главная часть разложения функции в ряд Лорана содержит бесконечное число слагаемых.

♦ Вытекает из теоремы об устранимой особой точке и второй теоремы о полюсе.

24 Особая точка $z = \infty$.

Если функция f(z) регулярна в кольце $R < |z| < \infty$, то бесконечность считается особой точкой. Для особой точки $z = \infty$ используются те же определения, то есть определяют устранимую особую точку, полюс и существенную особую точку.

Рассмотрим функцию $g(z)=f\left(\frac{1}{z}\right)$. Функция g(z) будет регулярной в кольце $0<|z|<\frac{1}{R}$. Тогда для функции g(z) особая точка z=0. Отсюда следует разложение в ряд Лорана для функции f(z) в окрестности бесконечности:

$$f(z) = \dots + \frac{c_{-m}}{z^m} + \dots + \frac{c_{-1}}{z} + c_0 + c_1 z + \dots + c_m z^m + \dots, \quad R < |z| < \infty.$$

Заменим $t=\frac{1}{z}$ и заметим, что правильной частью является сумма

$$\ldots + \frac{c_{-m}}{z^m} + \ldots + \frac{c_{-1}}{z} + c_0$$

а главной частью — сумма

$$c_1z+\ldots+c_mz^m+\ldots$$

То есть слагаемые, которые стремятся к бесконечности при стремелении z к особой точке, образуют главную часть ряда Лорана.

Теорема (об устранимой особой точке $z = \infty$). Точка $z = \infty$ — устранимая особая точка функции $f(z) \iff$ главная часть разложения функции в ряд Лорана тождественно равна нулю.

Теорема (о полюсе $z=\infty$). Точка $z=\infty$ — полюс порядка m функции $f(z) \iff \phi$ ункция f(z) представим в виде

$$f(z) = z^m h(z),$$

где функция h(z) регулярна в окрестности точки $z=\infty$ и $h(\infty)\neq 0$.

Теорема (о существенно особой точке $z = \infty$). Точка $z = \infty$ — существенно особая точка функции $f(z) \iff$ в главной части разложения функции в ряд Лорана бесконечное число слагаемых.

25 Основная теорема алгебры.

• Функция f(z) называется **целой**, если она регулярна на \mathbb{C} .

Теорема (Лиувилля). Если функция f(z) целая $u | f(z) | \leq M \cdot |z|^m$, M = const, $m = 0, 1, 2, \ldots$ в некотором кольце $R < |z| < \infty$, то все коэффициенты $c_n = 0$ при $n = m + 1, m + 2, \ldots$, где все $c_n - \kappa$ оэффициенты разложения в ряд Лорана для функции f(z).

♦ Запишем неравенство для коэффициентов разложения в ряд Лорана:

$$|c_n| \leqslant \frac{\widetilde{M}}{R_0^n}$$
, $R < R_0$, $\widetilde{M} = \max_{|z|=R_0} |f(z)| \leqslant MR_0^m$.

Тогда

$$|c_n| \leqslant \frac{M}{R_0^n} R_0^m = M R_0^{m-n}.$$

 \boxtimes

Если n > m, то $c_n = 0$.

Следствие. Если функция f(z) целая, удовлетворяющая условиям теоремы Лиувилля, то функция f(z) является полиномом

$$f(z) = c_0 + c_1 z + \ldots + c_n z^n$$
.

Следствие. Если функция f(z) целая и она ограничена в кольце $R < |z| < \infty$, то функция $f(z) = const \forall z \in \mathbb{C}$.

Теорема (основная теорема алгебры). Любой многочлен вида

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0, \quad n \geqslant 1$$

имеет по крайней мере один корень.

lacktriangle От противного. Пусть многочлен P(z) не имеет корней. Рассмотрим функцию $f(z)=\frac{1}{P(z)}$. Эта функция целая, следовательно

$$\lim_{z \to \infty} f(z) = 0 \Rightarrow |f(z)| \leqslant M \quad \forall z \in B(0, R), \ R > 0.$$

По второму следствию f(z)=A, где A — постоянная. Следовательно, $P(z)=A_1$, где A_1 так же постоянная, что является противоречием с тем, что степень многочлена P(z) ненулевая.

26 Вычеты.

Рассмотрим функцию f(z), регулярную в кольце $0 < |z - z_0| < \rho$, $\rho > 0$. Тогда функция f(z) в этом кольце разложима в ряд Лорана

$$f(z) = \dots + c_{-n}(z - z_0)^{-n} + \dots + c_{-1}(z - z_0)^{-1} + c_0 + c_1(z - z_0) + \dots + c_n(z - z_0)^n + \dots$$

• Коэффициент c_{-1} в разложении в ряд Лорана называется вычетом функции f(z) и обозначается

$$c_{-1} = \underset{z=z_0}{\text{res}} f(z).$$

Причем

$$c_n = \frac{1}{2\pi i} \int_{C(z_0,R)} \frac{f(\zeta)}{(\zeta - z_0)^n + 1} d\zeta.$$

Ho n=-1, следовательно,

$$c_{-1} = \frac{1}{2\pi i} \int_{C(z_0,R)} f(z)dz.$$

Отсюда

$$\int_{C(z_0,R)} f(z)dz = 2\pi i \cdot \underset{z=z_0}{\text{res}} f(z).$$

Вычисление вычетов.

- 1. Если z_0 устранимая особая точка, то вычет функции равен нулю.
- 2. Если z_0 существенно особая точка, то вычет можно найти лишь разложив функцию в ряд Лорана.
- 3. Если z_0 полюс, то существуют формулы, позволяющие находить вычеты функции
 - (a) Пусть z_0 полюс первого порядка (простой полюс).

Разложение функции f(z) в ряд Лорана имеет вид

$$f(z) = \frac{c_{-1}}{(z - z_0)} + c_0 + c_1(z - z_0) + \dots + c_n(z - z_0)^n + \dots$$

Домножим уравнение на $(z-z_0)$, тогда

$$(z-z_0)\cdot f(z) = c_{-1} + c_0(z-z_0) + c_1(z-z_0)^2 + \ldots + c_n(z-z_0)^{n+1} + \ldots$$

Таким образом,

$$c_{-1} = \lim_{z \to z_0} (z - z_0) \cdot f(z) = \underset{z=z_0}{\text{res}} f(z).$$

В частном случае, если функция f(z) представима в виде $f(z) = \frac{h(z)}{g(z)}$, где h(z) и g(z) — регулярные в точке z_0 функции, $h(z_0) \neq 0$, $g(z_0) = 0$, $g'(z_0) \neq 0$. Тогда

$$\lim_{z \to z_0} \frac{h(z)}{g(z) - g(z_0)} \cdot (z - z_0) = \lim_{z \to z_0} \frac{h(z)}{\frac{g(z) - g(z_0)}{(z - z_0)}} = \frac{h(z_0)}{g'(z_0)} = \underset{z = z_0}{\text{res}} \frac{h(z)}{g(z)}.$$

(b) Пусть z_0 — полюс k-ого порядка. Тогда функцию f(z) можно разложить в ряд Лоарана

$$f(z) = \frac{c_{-k}}{(z - z_0)^k} + \frac{c_{-k-1}}{(z - z_0)^{k-1}} + \dots + \frac{c_{-1}}{(z - z_0)} + c_0 + c_1(z - z_0) + \dots$$

Домножим последнее уравнение на $(z-z_0)^k$ и получим

$$(z-z_0)^k f(z) = c_{-k} + c_{-k+1}(z-z_0) + \ldots + c_{-1}(z-z_0)^{k-1} + c_0(z-z_0)^k + \ldots$$

Вычислим (k-1)-ую производную от этого уравнения:

$$\left((z - z_0)^k f(z) \right)^{(k-1)} = (k-1)! \cdot c_{-1} + \widetilde{c_0}(z - z_0) + \dots$$

Тогда

$$\lim_{z \to z_0} \frac{\left((z - z_0)^k f(z) \right)^{(k-1)}}{(k-1)!} = c_{-1} = \underset{z = z_0}{\text{res}} f(z).$$

27 Вычет в точке $z=\infty$.

Пусть функция f(z) регулярна в кольце $R<|z|<\infty$. Тогда она разложима в ряд Лорана в этом кольце

$$f(z) = \ldots + \frac{c_{-n}}{z^n} + \ldots + \frac{c_{-1}}{z} + c_0 + c_1 z + \ldots + c_n z^n + \ldots$$

• Коэффициент $-c_{-1}$ называется вычетом функции f(z) в точке $z=\infty$, то есть

$$-c_{-1} = \underset{z=\infty}{\text{res}} f(z).$$

Опять же

$$c_{-1} = \frac{1}{2\pi i} \int_{C(0,R_0)} f(z)dz.$$

Тогда

$$\int_{C(0,R_0)} f(z)dz = -2\pi i \mathop{\rm res}_{z=\infty} f(z).$$

Возьмем противоположную ориентацию кривой интегрирования, тогда

$$\int_{C^{-}(0,R_0)} f(z)dz = 2\pi i \operatorname{res}_{z=\infty} f(z).$$

Вычисление вычетов.

Если $z=\infty$ — устранимая особая точка, то разложение в ряд Лорана функции f(z) имеет вид

$$f(z) = c_0 + \frac{c_{-1}}{z} + \ldots + \frac{c_{-n}}{z^n} + \ldots$$

Рассмотрим случай, когда $\lim_{z \to \infty} f(z) = 0$. В таком случае

$$f(z) = \frac{c_{-1}}{z} + \ldots + \frac{c_{-n}}{z^n}.$$

Тогда

$$f(z) \underset{z \to \infty}{\sim} \frac{c_{-k}}{z^k}, \quad k \geqslant 1.$$

Если k>1, то $c_{-1}=0$ и, соответственно, $\mathop{\mathrm{res}}_{z=\infty} f(z)=0$. Если k=1, то $c_{-1}\neq 0$ и $\mathop{\mathrm{res}}_{z=\infty} f(z)=-c_{-1}=A_1$.

Если
$$k=1$$
, то $c_{-1}\neq 0$ и $\mathop{\mathrm{res}}_{z=\infty} f(z)=-c_{-1}=A_1$

Следовательно,

$$f(z) \underset{z \to \infty}{\sim} \frac{A}{z}.$$

Теорема (о сумме вычетов). Если функция f(z) в расширенной комплексной плоскости имеет конечное число особых точек, то

$$\sum_{k} \underset{z_k}{\operatorname{res}} f(z) + \underset{z=\infty}{\operatorname{res}} f(z) = 0.$$

lacktriangledark Берем окружность радиуса R такую, что она содержит внутри все конечные особые точки. А каждая особая точка находится в окрестности внутри окружности.

По следствию 3 из интегральной теоремы Коши

$$\int_{C(0,R)} f(z)dz = \sum_{k} \int_{C(z_k,R_k)} f(z)dz.$$

Причем

$$- \mathop{\rm res}_{z = \infty} f(z) = \int\limits_{C(0,R)} f(z) dz = \sum_{k} \int\limits_{C(z_k, R_k)} f(z) dz = \sum_{k} \mathop{\rm res}_{z_k} f(z).$$

 \boxtimes

Получили искомое равенство.

28 Основная теорема теории вычетов.

Теорема (основная теорема теории вычетов). Если функция f(z) регулярна в ограниченной области D за исключением конечного числа особых точек, γ — простая замкнутая кусочно-гладкая кривая, лежащая в области D, не проходящая через особые точки, то

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} \underset{z_{k}}{\operatorname{res}} f(z),$$

где z_k — все особые точки, лежащие внутри кривой γ .

lacktriangle Возьмем окрестности особых точке $C(z_i,R_i)$. По следствию 3 из интегральной теоремы Коши

$$\int\limits_{\gamma} f(z)dz = \sum\limits_{k=1}^{n} \int\limits_{C(z_k,R_k)} f(z)dz = 2\pi i \sum\limits_{k=1}^{n} \mathop{\rm res}\limits_{z_k} f(z).$$

 \boxtimes

29 Вычисление интегралов вида $\int\limits_0^{2\pi} R(\cos x,\sin x) dx, \int\limits_{-\infty}^{+\infty} R(x) dx.$

1. Рассмотрим интеграл вида

$$\int_{0}^{2\pi} R(\cos x, \sin x) dx,\tag{1}$$

где R — рациональная функция двух переменных. Распишем

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}.$$

Если $z = e^{ix}$, то $dz = ie^{ix}dx$, отсюда

$$dx = -i\frac{dz}{z}.$$

Подставим полученные выражения и построим новый интеграл

$$\int_{|z|=1} R\left(\frac{z+1/z}{2}, \frac{1-1/z}{2i}\right) \left(-i\frac{dz}{z}\right) = \int_{|z|=1} R_1(z)dz,$$
 (2)

где R_1 также рациональная функция.

Вычисление интеграла (1) сводится к вычислению интеграла (2). Рациональная функция имеет конечное число особых точек и все они являются полюсом. Следовательно, к интегралу (2) применить основную теорему теории вычетов:

$$\int_{|z|=1} R_1(z)dz = 2\pi i \sum_{|z_i|<1} \operatorname{res} R_1(z).$$

Тогда окончательно

$$\int_{0}^{2\pi} R(\cos x, \sin x) dx = 2\pi i \sum_{|z_i|<1} \operatorname{res} R_1(z).$$

2. Рассмотрим интеграл вида

$$\int_{-\infty}^{+\infty} R(x)dx. \tag{3}$$

Исследуем его на сходимость. Так как R(x) — рациональная функция, то она представима в виде частного неприводимых многочленов

$$R(x) = \frac{P(x)}{Q(x)}.$$

Если уравнение Q(x) = 0 имеет вещественный корень x_0 , то интеграл (3) является расходящимся, докажем это. Если x_0 — вещественный корень кратности $m \ge 1$, то многочлен Q(x) можно представить в виде

$$Q(x) = (x - x_0)^m \cdot M(x), \quad M(x_0) \neq 0, \ P(x_0) \neq 0.$$

В этом случае

$$\frac{P(x)}{Q(x)} \underset{x \to x_0}{\sim} \frac{P(x_0)}{M(x_0)} \cdot \frac{1}{(x - x_0)^m}.$$

Тогда, так как $m \geqslant 1$, то по степенному признаку сходимости интеграл (3) является расходящимся.

Таким образом, если есть корень у знаменателя, то интеграл (3) расходится, следовательно, интеграл сходится если многочлен Q(x) не обращается в нуль.

Рассмотрим точку $x = \infty$. В таком случае

$$\frac{P(x)}{Q(x)} \underset{x \to \infty}{\sim} \frac{x^n \cdot a_n}{x^m \cdot b_m} = \frac{M}{x^{m-n}}.$$

Интеграл (3) будет являться сходящимся, если m-n>1, то есть m>n+1. А это значит, что

$$\deg Q(x) \geqslant \deg P(x) + 2.$$

Иначе интеграл (3) будет расходящимся.

Таким образом, интеграл (3) является сходящимся, если многочлен Q(x) не имеет вещественных корней и степень знаменателя функции R(x) по крайней мере больше на 2 единицы степени числителя.

Пемма. Если функция f(z) регулярна в области, содержащей верхнюю полуплоскость, то есть $\operatorname{Im} z>0$ за исключением конечного числа точек, не лежащих на вещественной оси и

$$\int_{C_R} f(z)dz \xrightarrow[R \to \infty]{} 0,$$

где C_R — полуокруженость |z|=R, Im z>0:

mo

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \sum_{\text{Im } z_i > 0} \underset{z_i}{\text{res}} f(z).$$

Предполагаем, что интеграл $\int\limits_{-\infty}^{+\infty} f(x)dx$ является сходящимся.

♦ Возьмем полуокружность C_R таким образом, чтобы все особые точки, лежащие в верхней полуплоскости, попали в эту полуокружность. Пусть Γ_R — кривая, образованная полуокружностью и полуотрезком (-R;R).

По основной теореме вычетов

$$\int_{\Gamma_R} f(z)dz = 2\pi i \sum_{\text{Im } z_i > 0} \underset{z_i}{\text{res}} f(z).$$

Но, с другой стороны,

$$\int_{\Gamma_R} f(z)dz = \int_{C_R} f(z)dz + \int_{-R}^R f(x)dx.$$

Устремим $R \to \infty$ и получим, что

$$\int_{C_R} f(z)dz \xrightarrow[R \to \infty]{} 0, \quad \int_{-R}^{R} f(x)dx \xrightarrow[R \to \infty]{} \int_{-\infty}^{+\infty} f(x)dx.$$

Отсюда

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \sum_{\text{Im } z_i > 0} \underset{z_i}{\text{res}} f(z).$$

Пусть интеграл (3) является сходящимся. Тогда функция R(z) не имеет особых точек на вещественной оси и

$$\lim_{R \to +\infty} \int_{C_R} R(z)dz = 0.$$

Проверим это:

$$\left| \int\limits_{C_{-}} R(z)dz \right| \leqslant \max_{z \in C_{R}} |R(z)| \cdot \pi R = \max_{z \in C_{R}} \left| \frac{P(z)}{Q(z)} \right| \cdot \pi R \leqslant \frac{M}{R^{2}} \cdot \pi R = \frac{M\pi}{R} \xrightarrow[R \to \infty]{} 0.$$

Все условия леммы выполнены, следовательно по лемме

$$\int_{-\infty}^{+\infty} R(x)dx = 2\pi i \sum_{\text{Im } z_i > 0} \underset{z_i}{\text{res}} R(z).$$

30 Вычисление интегралов вида $\int\limits_{-\infty}^{+\infty} R(x) \cdot e^{i\alpha x} dx, \, \alpha > 0.$

Рассмотрим интеграл вида

$$\int_{-\infty}^{+\infty} R(x) \cdot e^{i\alpha x} dx, \, \alpha > 0. \tag{1}$$

Пусть $R(x) = \frac{P(x)}{Q(x)}$ — рациональная функция и пусть x_0 — корень знаменателя, то есть $Q(x_0) = 0$. Тогда

$$\frac{P(x)}{Q(x)} \underset{x \to x_0}{\sim} \frac{M}{(x - x_0)^{\alpha}}, \quad \alpha \geqslant 1.$$

Следовательно, интеграл (1) расходится по степенному признаку сходимости.

Запишем интеграл (1) в виде

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \cdot (\cos(\alpha x) + i\sin(\alpha x)) dx, \, \alpha > 0.$$

Возьмем точку $x = +\infty$. По признаку Дирихле

$$\left| \int \cos x dx \right| = \left| \frac{1}{\alpha} \sin(\alpha x) \right| \leqslant \frac{1}{\alpha}.$$
$$\left| \int \sin x dx \right| \leqslant \frac{1}{\alpha}.$$

При этом

$$\frac{P(x)}{Q(x)} \xrightarrow[x \to 0]{} 0$$

монотонно, когда $\deg P(x) + 1 \leqslant \deg Q(x)$.

Следовательно, интеграл (1) сходится \iff многочлен Q(x) не имеет вещественных корней и $\deg Q(x) \geqslant \deg P(x) + 1$.

Лемма. Если функция g(z) непрерывна в области $|z|\geqslant R$, ${\rm Im}\,z\geqslant 0$ и величина

$$M(R) = \max_{z \in C_R} |g(z)| \xrightarrow[R \to \infty]{} 0,$$

mo

$$\int_{C_R} g(z) \cdot e^{i\alpha z} dz \xrightarrow[R \to \infty]{} 0.$$

 \boxtimes

♦ Без доказательства.

Вычисление интеграла.

Возьмем функцию

$$g(z) = R(z) \cdot e^{i\alpha z}$$

и пусть интеграл (1) сходится. Значит на вещественной оси у функции g(z) нет особых точек. Тогда функция g(z) удовлетворяет условиями леммы, а

$$M(R) = \max_{z \in C_R} |R(z)| \cdot |e^{i\alpha z}| \leqslant \frac{M}{R} \underset{R \to \infty}{\longrightarrow} 0.$$

Берем полуокружность C_R и дополним ее полуотрезком (-R;R)

Тогда

$$\int_{\Gamma_R} R(z) \cdot e^{i\alpha z} dz = 2\pi i \sum_{\text{Im } z_i > 0} \underset{z_i}{\text{res}} R(z) \cdot e^{i\alpha z} dz.$$

Причем, с другой стороны,

$$\int_{\Gamma_R} R(z) \cdot e^{i\alpha z} dz = \int_{C_R} R(z) \cdot e^{i\alpha z} dz + \int_{-R}^R R(x) \cdot e^{i\alpha x} dx.$$

Тогда при $R \to \infty$ по лемме из предыдущего пункта

$$\int_{C_R} R(z) \cdot e^{i\alpha z} dz \underset{R \to \infty}{\longrightarrow} 0, \quad \int_{-R}^R R(x) \cdot e^{i\alpha x} dx \underset{R \to \infty}{\longrightarrow} \int_{-\infty}^{+\infty} R(x) \cdot e^{i\alpha x} dx.$$

Следовательно, получаем

$$\int_{-\infty}^{+\infty} R(x) \cdot e^{i\alpha x} dx = 2\pi i \sum_{\text{Im } z_i > 0} \text{res}_{z_i} R(z) \cdot e^{i\alpha z}, \quad \alpha > 0.$$

Поскольку $e^{i\alpha x} = \cos(\alpha x) + i\sin(\alpha x)$, то

$$\int_{-\infty}^{+\infty} R(x) \cdot \cos(\alpha x) dx = \operatorname{Re}\left(2\pi i \sum_{\operatorname{Im} z_i > 0} \operatorname{res}_{z_i} R(z) \cdot e^{i\alpha z}\right),\,$$

$$\int_{-\infty}^{+\infty} R(x) \cdot \sin(\alpha x) dx = \operatorname{Re}\left(2\pi \sum_{\operatorname{Im} z_i > 0} \operatorname{res}_{z_i} R(z) \cdot e^{i\alpha z}\right).$$

31 Оригиналы и изображеня. Преобразование Лапласа.

- Функция $f:(-\infty;+\infty)\to\mathbb{R}$ называется **оригиналом**, если она удовлетворяет следующим условиям:
 - 1. $f(t) \equiv 0 \ \forall t < 0;$
 - 2. функция f(t) кусочно-непрервная на интервале $(-\infty; +\infty)$;
 - 3. $\exists M = const, a = const$:

$$|f(t)| \leq Me^{at} \quad \forall t \in (-\infty; +\infty).$$

(то есть если функция возрастает, то возрастает не быстрее, чем некоторая эскпонента).

Пусть

$$L = \{a : |f(t)| \leqslant Me^{at}, \ M = const\}.$$

• Число $a_0 = \inf\{L\}$ называется **показателем** роста функции f(t).

Если число a_0 — показатель роста функции f(t), то

$$|f(t)| \leqslant Me^{(a_0+\delta)t}, \quad \forall \delta > 0.$$

Рассмотрим единичную функцию (функцию Хевисайда)

$$1(t) = \begin{cases} 0, \ t < 0, \\ 1, \ t \geqslant 0. \end{cases}$$

Эта функция является оригиналом. Если функция f(t) удовлетворяет второму и третьему условиям, но не удовлетворяет первому условию, то можно рассматривать функцию $f(t) \cdot 1(t)$. Такая функция будет являться оригиналом.

ullet Отображение, которое каждому оригиналу f(t) ставит в соответствие функцию комплексного переменного

$$F(p) = \int_{0}^{+\infty} e^{-pt} f(t)dt, \quad p \in \mathbb{C}$$
 (1)

называется **преобразованием Лапласа**. Будем обозначать f(t) = F(p).

• Функция F(p) называется **изображением оригинала** f(t).

Функция F(p) имеет особую точку $+\infty$.

Теорема (о множестве задания изображения). Если функция f(t) — оригинал c показателем роста a_0 , то функция F(p) определена в полуплоскости $\operatorname{Re} p > a_0$, причем интеграл (1) сходится равномерно в полуплоскости $\operatorname{Re} p \geqslant \beta > a_0$. И изображение обладает свойством

$$|F(p)| \xrightarrow[\text{Re } p \to \infty]{} 0.$$

lacktriangle Возьмем число $p \in \mathbb{C}$ такое, что $\operatorname{Re} p > a_0$. Тогда

$$\exists \varepsilon > 0 : \operatorname{Re} p > a_0 + \varepsilon.$$

Следовательно,

$$|e^{-pt}f(t)| \le [|e^{-pt}| = |e^{(-x-iy)t}| = e^{-xt}] \le Me^{(a_0+\varepsilon)t} \cdot e^{-xt}, \quad \text{Re } p = x > a_0 + \varepsilon.$$

Следовательно,

$$M \cdot \int_{0}^{+\infty} e^{(a_0 + \varepsilon)t} dt = \frac{M \cdot e^{(a_0 + \varepsilon)t}}{a_0 + \varepsilon - x} \Big|_{0}^{+\infty} = -\frac{M}{a + \varepsilon - x}.$$

Следовательно, интеграл (1) сходится. Тогда $\operatorname{Re} p > a_0$. А из последнего равенства вытекает $|F(p)| \underset{\operatorname{Re} p \to \infty}{\longrightarrow} 0$.

Докажем равномерную сходимость. Пусть $\operatorname{Re} p \geqslant \beta > a_0$. Тогда

$$|f(t) \cdot e^{-pt}| \leqslant e^{-\beta t} \cdot M \cdot e^{(a_0 + \varepsilon)t}.$$

Выражение справа в последнем неравенстве — мажоранта. Возьмем ε такое, что $-\beta + a_0 + \varepsilon < 0$. Следовательно, мажоранта сходится. Отсюда по признаку Вейрштрасса исходный интеграл (1) сходится равномерно в полуплоскости $\operatorname{Re} p \geqslant \beta > a_0$.

32 Теорема о регулярности преобразования Лапласа.

Теорема (Морера). Если функция f(z) непрерывна в области D и интеграл по любой замкнутой кусочно-гладкой кривой γ равен нулю, m. e.

$$\int_{\gamma} f(z)dz = 0,$$

то функция f(z) регулярна в области D.

• Первая часть теоремы доказывается аналогично теореме о первообразной. То есть

$$F'(z) = f(z) \quad \forall z \in D.$$

 \boxtimes

Тогда функция f(z) также регулярна в D, следовательно, она регулярна в D.

Если существует непрерывная функция z=z(t), причем $t\in I=(-\infty;\beta)$ (или $I=(\alpha;+\infty)$, или $I=(-\infty;+\infty)$), то эта функция задает **неограниченную кривую** γ . Иначе, если $z=z(t),\,t\in[\alpha;\beta]$, то кривая γ ограниченная.

Теорема (о регулярности ИЗОП). Рассмотрим $\Phi 2\Pi \ f(z,\zeta), \ z \in D - область, \ \zeta \in \gamma -$ некоторая кривая. Если выполняются условия:

- 1. функция $f(z,\zeta)$ непрерывна как $\Phi 2\Pi$ на множестве пар $(z,\zeta) \in D \times \gamma$, где γ ограниченная кривая;
- 2. при каждом $\zeta \in \gamma$ функция $f(z,\zeta)$ регулярна в области D,

то функция

$$F(z) = \int_{\gamma} f(z,\zeta)d\zeta$$

регулярная в D.

 \blacklozenge Возьмем произвольную точку z_0 в области D и круг с центром в этой точке, принадлежащий области D. Берем любую замкнутую кривую γ_1 , лежащую в этом круге.

Рассмотрим интеграл

$$\int_{\gamma_1} F(z)dz = \int_{\gamma_1} \left(\int_{\gamma} f(z,\zeta)d\zeta \right) dz = \int_{\gamma} \left(\int_{\gamma_1} f(z,\zeta)dz \right) d\zeta = 0.$$

Тогда функция F(z) регулярна в области D по теореме Морера.

Следствие. Пусть выполняются условия теоремы кроме предположения о том, что γ — конечная кривая, то есть γ — бесконечная кривая, и выполняется улосвие

 \boxtimes

3. интеграл $\int_{\gamma} f(z,\zeta)d\zeta$ сходится равномерно по $z \in K$, где K — любая замкнутая области из D.

Тогда функция

$$F(z) = \int_{\gamma} f(z,\zeta)d\zeta$$

регулярна в D.

Теорема (о регулярности преобразования Лапласа). Функция

$$F(p) = \int_{0}^{+\infty} e^{-pt} f(t)dt,$$

если f(t) — оригинал, регулярна в области $\operatorname{Re} p > a_0$.

igoplusДоказательство вытекает из последнего следствия. Применим следствие к функции $f(z,t) = e^{-pt}f(t)$. Условие 3 вытекает из теоремы о множестве задания преобразования Лапласа. Следовательно, функция F(p) регулярна в области $\operatorname{Re} p > a_0$.

33 Свойства преобразования Лапласа.

1. Линейность. Если f(t) = F(p), g(t) = G(p), mo

$$\alpha f(t) + \beta g(t) = \alpha F(p) + \beta G(t), \quad \alpha, \beta \in \mathbb{C}.$$

 \blacklozenge

$$\int\limits_{0}^{+\infty}(\alpha f+\beta g)e^{-pt}dt=\alpha\int\limits_{0}^{+\infty}f(t)e^{-pt}dt+\beta\int\limits_{0}^{+\infty}g(t)e^{-pt}dt=\alpha F(p)+\beta G(p),\quad\alpha,\beta\in\mathbb{C}.$$

 \boxtimes

 \boxtimes

 \boxtimes

 \boxtimes

2. Подобие. $Ecnu\ f(t) = F(p),\ mo$

$$f(at) = \frac{1}{a} F\left(\frac{p}{a}\right), \quad a \in \mathbb{R}, a > 0.$$

♦

$$\int_{0}^{+\infty} f(at)e^{-pt}dt = \left[at = s, \ dt = \frac{ds}{a}\right] = \frac{1}{a}\int_{0}^{+\infty} f(s)e^{-\frac{ps}{a}}ds = \frac{1}{a}F\left(\frac{p}{a}\right), \quad a \in \mathbb{R}, a > 0.$$

3. Преобразование Лапласа для экспоненты и степенной функции.

(a) $e^t = F(p-1)$;

♦

$$\int_{0}^{+\infty} e^{t} \cdot e^{-pt} dt = \int_{0}^{+\infty} e^{-(p-1)t} dt = F(p-1).$$

(b) $t^{\alpha} = \frac{\Gamma(\alpha + 1)}{n^{\alpha + 1}}$.

lack Обозначим $F(p)=\int\limits_0^{+\infty}t^{lpha}e^{-pt}dt,$ $\mathrm{Re}\,p>0.$ И пусть $p=x\in\mathbb{R}.$ Тогда

$$\int_{0}^{+\infty} t^{\alpha} \cdot e^{-xt} dt = \left[xt = s, \ t = \frac{s}{x}, \ dt = \frac{ds}{x} \right] = \frac{1}{x^{\alpha+1}} \int_{0}^{+\infty} e^{-s} \cdot s^{\alpha} ds = \frac{1}{x^{\alpha+1}} \cdot \Gamma(\alpha+1).$$

$$\left(\text{так как } \Gamma(a) = \int\limits_0^{+\infty} e^{-t} \cdot t^{a-1} dt \right)$$

Функция F(p) регулярна в полуплоскости $\operatorname{Re} p > 0$. При p = x она будет совпадать с F(x), то есть F(p) = F(x). По теореме единственности существует единственное аналитическое представление регулярной функции. Тогда

$$t^{\alpha} = \frac{\Gamma(\alpha+1)}{p^{\alpha+1}}.$$

Если $\alpha = n \in \mathbb{N}$, то

$$t^n = \frac{\Gamma(n+1)}{n^{n+1}} = \frac{n!}{n^{n+1}}.$$

58

4. Дифференцирование оригинала. Пусть f(t) = F(p). Тогда

$$f'(t) = pF(p) - f(0)$$
.

♦

$$\int_{0}^{+\infty} f'(t) \cdot e^{-pt} dt = \begin{bmatrix} e^{-pt} = u, & du = e^{-pt}(-p)dt, \\ f'(t)dt = dv, & v = f(t) \end{bmatrix} =$$

$$= f(t) \cdot e^{-pt} \Big|_{0}^{+\infty} + p \cdot \int_{0}^{+\infty} f(t) \cdot e^{-pt} dt = -f(0) + pF(p).$$

Следствие. Производную n-го порядка от оригинала можно вычислить по формуле

$$f^{(n)}(t) = p^n F(p) - p^{n-1} \cdot f(0) - p^{n-2} \cdot f'(0) - \dots - f^{(n-1)}(0).$$

5. Дифференцирование оригинала. $Ecnu\ f(t) = F(p),\ mo$

$$F'(p) = (-t) \cdot f(t)$$
.

lackПусть $F(p) = \int\limits_0^{+\infty} f(t) \cdot e^{-pt} dt.$ Тогда

$$F'(p) \int_{0}^{+\infty} \left(f(t) \cdot e^{-pt} \right)'_{p} dt = \int_{0}^{+\infty} (-t) \cdot f(t) \cdot e^{-pt} dt.$$

.

 \boxtimes

 \boxtimes

Следствие. Производную п-го порядка от изображения можно найти по формуле

$$F^{(n)}(p) = (-1)^n \cdot t \cdot f(t).$$

6. Интегрирование оригинала. $Ecnu\ f(t) = F(p),\ mo$

$$\int_{0}^{t} f(\tau)d\tau = \frac{F(p)}{p}.$$

♦

$$\int\limits_0^{+\infty} \Big(\int\limits_0^t f(\tau)d\tau\Big) \cdot e^{-pt}dt = \left[\text{изменим порядок интегрирования}\right] =$$

$$= \int\limits_0^{+\infty} d\tau \int\limits_\tau^{+\infty} f(\tau) \cdot e^{-pt}dt = \int\limits_0^\infty f(\tau) \cdot \frac{e^{-pt}}{-p}\Big|_\tau^{+\infty}d\tau = \frac{1}{p}\int\limits_0^{+\infty} f(\tau) \cdot e^{-p\tau}d\tau = \frac{F(p)}{p}.$$

 \boxtimes

7. Интегрирование изображения. $Ecnu\ f(t) = F(p),\ mo$

$$\int_{p}^{+\infty} F(p)dp = \frac{f(t)}{t}.$$

- 8. Изображение свертки.
 - \bullet Если есть две функции f(t) и g(t), то функция

$$\varphi(t) = \int_{0}^{t} f(\tau) \cdot g(t - \tau) d\tau = f * g$$

называется сверткой.

Eсли f(t) = F(p), g(t) = G(p), mo

$$f * q = F(p) \cdot G(p)$$
.

•

$$\int\limits_0^{+\infty} \left(\int\limits_0^t f(\tau) \cdot g(t-\tau) d\tau\right) \cdot e^{-pt} dt = \left[\text{изменим порядок интегрирования}\right] =$$

$$= \int\limits_0^{+\infty} d\tau \int\limits_\tau^{+\infty} f(\tau) \cdot g(t-\tau) e^{-pt} dt = \begin{bmatrix} t-\tau=s, \\ t=\tau \Rightarrow s=0, \\ t=+\infty \Rightarrow s \to +\infty \end{bmatrix} =$$

$$= \int\limits_0^{+\infty} d\tau \int\limits_0^{+\infty} f(\tau) \cdot g(s) e^{-p(\tau+s)} ds = \int\limits_0^{+\infty} f(\tau) \cdot e^{-p\tau} d\tau \int\limits_0^{+\infty} g(s) \cdot e^{-ps} ds = G(p) \cdot F(p).$$

 \boxtimes

34 Применение преобразования Лапласа.

Свойства преобразования Лапласа:

1.
$$\alpha f(t) + \beta g(t) = \alpha F(p) + \beta G(p)$$
;

2.
$$f(\alpha t) = \frac{1}{\alpha} F\left(\frac{p}{\alpha}\right);$$

3.
$$e^{at} \cdot f(t) = F(p-a);$$

4.
$$f^{(n)}(t) = p^n F(p) - p^{n-1} \cdot f(0) - p^{n-2} \cdot f'(0) - \dots - f^{(n-1)}(0);$$

5.
$$F^{(n)}(p) = (-1)^n \cdot t \cdot f(t);$$

6.
$$\int_{0}^{t} f(\tau)d\tau = \frac{F(p)}{p};$$

7.
$$\int_{p}^{+\infty} F(p)dp = \frac{f(t)}{t};$$

8.
$$f * g = F(p) \cdot G(p)$$
.

Таблица основных оригиналов и изображений:

1.
$$1 = \frac{1}{p}$$
;

$$2. \ t^n = \frac{n!}{p^{n+1}};$$

3.
$$e^{\alpha t} = \frac{1}{p - \alpha}$$
;

4.
$$\sin(\omega t) = \frac{\omega}{p^2 + \omega^2};$$

5.
$$\cos(\omega t) = \frac{p}{p^2 + \omega^2};$$

6.
$$t\sin(\omega t) = \frac{2p\omega}{(p^2 + \omega^2)^2}$$
;

7.
$$t\cos(\omega t) = \frac{p^2 - \omega^2}{(p^2 + \omega^2)^2};$$

8.
$$e^{at}\sin(\omega t) = \frac{\omega}{(p-a)^2 + \omega^2};$$

9.
$$e^{at}\cos(\omega t) = \frac{p-a}{(p-a)^2 + \omega^2}$$
.

Теорема. Пусть F(p) — изображение кусочно-дифференцируемой функции-оригинала f(t). Тогда

$$f(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} e^{pt} F(p) dp,$$
 (1)

 $ede \ x > lpha_0 \ - \ no$ казатель роста оригинала f(t).

♦ Без доказательства.

• Формула (1) называется формулой Мелена.

Формула Мелена позволяет восстанавливать оригинал по изображению.

Применение преобразования Лапласа:

(далее по данному вопросу нужно привести примеры использования преобразования Лапласа. Примеры, разобранные в конспекте, были разобраны на лекции. Однако Леваков сказал, что можно придумать свои более легкие примеры, но обязательно должны быть показаны методы решения СтЛУ, СтЛВУ, интегральных уравнений.)

1. Интегрирование стационарных линейных уравнений.

Найти решение задачи Коши

$$D^2x - 2Dx + 2x = 1$$
, $x(0) = 0$, $Dx(0) = 0$.

Решение. Пусть x(t) = X(p). Тогда вычислим производные

$$Dx = pX(p) - x(0) = pX(p);$$

$$D^2x = p^2X(p) - px(0) - Dx(0) = p^2X(p).$$

Найдем изображение неоднородности:

$$1 = \frac{1}{p}$$
.

Подставим найденные значения в исходное уравнение:

$$p^{2}X(p) - 2pX(p) + 2X(p) = \frac{1}{p}.$$

Получили линейное уравнение относительно X(p). Выразим X(p):

$$X(p) = \frac{1}{p(p^2 - 2p + 2)} = \frac{1}{2} \cdot \frac{1}{p} + \left(-\frac{p}{2} + 1\right) \cdot \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p}{(p - 1)^2 + 1} + \frac{1}{p^2 - 2p + 2} = \frac{1}{p^2 - 2p + 2}$$

$$+\frac{1}{(p-1)^2+1} = \frac{1}{2} \cdot \frac{1}{p} - \frac{1}{2} \cdot \frac{p-1}{(p-1)^2+1} + \frac{1}{2} \frac{1}{(p-1)^2+1} = \frac{1}{2} - \frac{1}{2} e^t \cos t + \frac{1}{2} e^t \sin t.$$

Таким образом, решение задачи Коши имеет вид

$$x(t) = \frac{1}{2} \cdot (1 - e^t \cos t + e^t \sin t).$$

2. Интегрирование дифференциальных систем.

Найти решение задачи Коши

$$\begin{cases} Dx = x + y + e^t, \\ Dy = x + y + e^t \end{cases}, \quad x(0) = 1, y(0) = 1.$$

Решение. Пусть x(t) = X(p), y(t) = Y(p). Найдем производные

$$Dx = pX(p) - x(0) = pX(p) - 1,$$

$$Dy = pY(p) - y(0) = pY(p) - 1.$$

Найдем изображение неоднородности:

$$e^t = \frac{1}{p-1}.$$

Подставим найденные нами значения в систему. Тогда она примет вид

$$\begin{cases} pX(p) - 1 = X(p) + Y(p) + \frac{1}{p-1}, \\ pY(p) - 1 = X(p) + Y(p) + \frac{1}{p-1}. \end{cases}$$

Получили систему из линейных относительно X(p) и Y(p) уравнений. Решим ее методо Гаусса. Для этого перенесем неизвестные функции в левую часть, а всё остальное — в правую:

$$\begin{cases} X(p) \cdot (p-1) - Y(p) = 1 + \frac{1}{p-1}, \\ -X(p) + Y(p) \cdot (p-1) = 1 + \frac{1}{p-1}. \end{cases}$$

Метод Гаусса:

$$\begin{pmatrix} p-1 & -1 & \left| & \frac{p}{p-1} \\ -1 & p-1 & \right| & \frac{p}{p-1} \end{pmatrix} \sim \begin{pmatrix} -1 & p-1 & \left| & \frac{p}{p-1} \\ 0 & p(p-2) & \left| & \frac{p}{p-1} + p \right| \end{pmatrix} \sim \begin{pmatrix} -1 & p-1 & \left| & \frac{p}{p-1} \\ 0 & 1 & \left| & \frac{p}{(p-1)(p-2)} \right| \end{pmatrix}$$

Тогда из нижней строки

$$Y(p) = \frac{p}{(p-1)(p-2)} = -\frac{1}{p-1} + \frac{2}{p-2} = -e^t + 2e^{2t} = y(t).$$

Из верхней строки

$$X(p) = (p-1) \cdot Y(p) - \frac{1}{p-1} = \frac{p}{p-2} - \frac{p}{p-1} = 1 + \frac{2}{p-2} - \left(1 + \frac{1}{p-1}\right) = \frac{2}{p-2} - \frac{1}{p-1} = 2e^{2t} - e^t = x(t).$$

Таким образом, решение исходной задачи Коши имеет вид

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 2e^{2t} - e^{-t} \\ 2e^{2t} - e^{-t} \end{pmatrix}.$$

3. Решение интегральных уравнений. Найти решение уравнения

$$\varphi(x) = \sin x + \int_{0}^{x} (x - t)\varphi(t)dt.$$

Решение. Пусть $\phi(x) = \Phi(p)$. Тогда по формуле свертки

$$\int_{0}^{x} (x-t)\varphi(t)dt = \frac{1}{p^2}\Phi(p).$$

$$\sin x = \frac{1}{p^2 + 1}.$$

Подставим найденные значения в исходное уравнение

$$\Phi(p) = \frac{1}{p^2 + 1} + \frac{1}{p^2} \cdot \Phi(p).$$

Получили линейное уравнене относительно $\Phi(p)$. Выразим его

$$\Phi(p) = \frac{\frac{1}{p^2+1}}{1-\frac{1}{p^2}} = \frac{p^2}{(p^2+1)(p^2-1)} = \frac{1}{2} \cdot \frac{1}{p^2+1} + \frac{1}{2} \cdot \frac{1}{p^2-1} = \frac{1}{2} \cdot \left(\frac{1}{p^2+1} + \frac{1}{2} \cdot \frac{1}{p-1} - \frac{1}{2} \cdot \frac{1}{p+1}\right) = \frac{1}{2} \cdot \left(\sin x + \frac{1}{2} \cdot (e^x - e^{-x})\right) = \frac{1}{2} \cdot (\sin x + \sin x) = \varphi(x).$$

4. Интегрирование линейных дифференциальных уравнений.

Найти общее решение уравнения $tD^2x - 2Dx = 0$.

Решение. Пусть x(t) = X(p). Тогда найдем производные:

$$Dx = pX(p) - C_1,$$

$$D^2x = p^2X(p) - C_1p - C_2.$$

Найдем tD^2x по свойству дифференцирования изображения:

$$tD^2x = -(p^2X(p) - C_1p - C_2)'_p = -2pX(p) - p^2X'(p) + C_1.$$

Подставим найденные значения в исходное уравнение:

$$-2pX(p) - p^2X'(p) + C_1 - 2pX(p) + 2C_1 = 0.$$

Получили дифференциальное уравнение первого порядка. Запишем его в виде разрешенном относительно производной:

$$X'(p) + \frac{4}{p}X(p) = \frac{3C_1}{p}.$$

Получили линейное уравнение. Найдем его общее решение:

$$X(p) = \frac{C_2}{p^4} + \frac{C_1}{p} = C_2 t^3 + C_1 = x(t).$$

Таким образом, общее решение исходного уравнения имеет вид

$$x(t) = C_1 + C_2 t^3.$$