	<pre>import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from scipy import stats from scipy.stats import skew, norm from scipy.stats.stats import pearsonr</pre>
In [2]: In [3]: Out[3]:	<pre>train = pd.read_csv("train.csv") test = pd.read_csv("Test.csv") train.head() Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape 0 127 120 RL NaN</pre>
In [4]: Out[4]:	4 422 20 RL NaN 16635 Pave NaN IR1 5 rows × 81 columns test.head() Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape 0 337 20 RL 86.0 14157 Pave NaN IR1 1 1018 120 RL NaN 5814 Pave NaN IR1
In [5]:	<pre>2 929</pre>
In [6]:	Number of columns: 81 number of rows: 1168 Test data: number of columns:80 Number of columns:292 #descriptive statistics summary train['SalePrice'].describe()
Out[6]: In [7]:	<pre>count 1168.000000 mean 181477.005993 std 79105.586863 min 34900.000000 25% 130375.000000 50% 163995.000000 75% 215000.000000 max 755000.000000 Name: SalePrice, dtype: float64 # kernel density plot sns.distplot(train.SalePrice,fit=norm);</pre>
	<pre>plt.ylabel =('Frequency') plt.title = ('SalePrice Distribution'); #Get the fitted parameters used by the function (mu, sigma) = norm.fit(train['SalePrice']); #QQ plot fig = plt.figure() res = stats.probplot(train['SalePrice'], plot=plt) plt.show() print("skewness: %f" % train['SalePrice'].skew()) print("kurtosis: %f" % train ['SalePrice'].kurt()) C:\Users\kisho\anaconda3\lib\site-packages\seaborn\distribution s.py:2619: FutureWarning: `distplot` is a deprecated function a nd will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar f lexibility) or `histplot` (an axes-level function for histogram</pre>
	s). warnings.warn(msg, FutureWarning) 8 6 2 2 2 200000 400000 500000 500000 600000 500000
In [8]:	400000 - 300000 - 200000 - 100000 - 100000 - 3 - 2 - 1 0 1 2 3 skewness: 1.953878 #log transform the target
In [8]:	<pre>#log transform the target train["SalePrice"] = np.log1p(train["SalePrice"]) #Kernel Density plot sns.distplot(train.SalePrice,fit=norm); plt.ylabel=('Frequency') plt.title=('SalePrice distribution'); #Get the fitted parameters used by the function (mu,sigma)= norm.fit(train['SalePrice']); #QQ plot fig =plt.figure() res =stats. probplot(train['SalePrice'], plot=plt) plt.show() C:\Users\kisho\anaconda3\lib\site-packages\seaborn\distribution s.py:2619: FutureWarning: `distplot` is a deprecated function a nd will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar f lexibility) or `histplot` (an axes-level function for histogram s). warnings.warn(msg, FutureWarning)</pre>
	1.2 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0 - 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 13.5 - 13.0 - 12.5 - 13.0 - 13.0 - 12.5 - 12.0 - 12.5 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0 - 12.0
In [9]:	print("skewness: %f" % train['SalePrice'].skew()) print("kurtosis: %f" % train ['SalePrice'].kurt())
n [10]:	<pre>skewness: 0.073610 kurtosis: 0.995996 #correration matrix corrmat = train.corr() f, ax = plt.subplots(figsize=(12, 9)) sns.heatmap(corrmat, vmax=0.9, square=True) plt.show();</pre> MSSubClass LotFrontage LotArea OverallQual
	OverallCond -
	Fireplaces - Garage/YBIt - Garage/Cars - OveraliCond - MiscAra - M
n [11]:	<pre>cols = corrmat.nlargest(10, 'SalePrice')['SalePrice'].index cm = np.corrcoef(train[cols].values.T) sns.set(font_scale=1.25) hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2</pre>
n [12]:	SalePrice 1.00 0.82 0.70 0.67 0.65 0.59 0.59 0.58 0.58 0.57 OverallQual 0.82 1.00 0.60 0.60 0.57 0.55 0.53 0.46 0.58 0.56 GrLivArea 0.70 0.60 1.00 0.46 0.46 0.63 0.46 0.57 0.20 0.30 GarageCars 0.67 0.60 0.46 1.00 0.88 0.47 0.42 0.41 0.53 0.43 GarageArea 0.65 0.57 0.40 0.88 1.00 0.41 0.49 0.48 0.47 0.39 FullBath 0.59 0.55 0.63 0.47 0.41 1.00 0.81 0.39 0.28 1stFirsF 0.58 0.46 0.57 0.41 0.48 0.37 0.81 1.00 0.28 0.23 YearBuilt YearRemodAdd 0.57 0.56 0.30 0.43 0.39 0.44 0.28 0.23 0.59 1.00 Var = 'TotalBsmtSF' data = pd.concat([train['SalePrice'], train[var]], axis=1)
	data.plot.scatter(x=var, y='SalePrice', ylim =0.800000); plt.show() *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence i n case its length matches with *x* & *y*. Please use the *colo r* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all point s.
	12 10 8 8 4 2
n [13]:	#scatter plot LotArea/salePrice var = 'LotArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) data.plot.scatter(x= var, y='SalePrice', ylim =(0,800000)); plt.show(); *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence i n case its length matches with *x* & *y*. Please use the *colo r* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all point s. 8000000
n [14]:	200000 0 25000 50000 75000 100000 125000 150000 #scatter plot GrLivArea/salePrice
1 [14];	<pre>var ='GrLivArea' data =pd.concat([train['SalePrice'], train[var]], axis=1) data.plot.scatter(x=var, y='SalePrice',ylim=(0,800000)); plt.show() *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence i n case its length matches with *x* & *y*. Please use the *colo r* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all point s.</pre> 800000
	600000 <u>B</u> 400000 200000
n [15]:	#scatter plot GarageArea/SalePrice var = 'GarageArea' data =pd.concat([train['SalePrice'], train[var]], axis=1) data.plot.scatter(x=var,y='SalePrice', ylim= (0,800000)); plt.show() *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence i n case its length matches with *x* & *y*. Please use the *colo r* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all point s.
	800000 600000 400000 200000
n [16]: n [17]:	#Deleting Outliers of GrLivArea train = train.drop(train[(train['GrLivArea']>4000) & (train['Sa] #box plot overallqual/salePrice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1)
	f, ax =plt.subplots(figsize=(8,6)) fig = sns.boxplot(x=var, y='SalePrice', data=data) fig.axis(ymin=0, ymax=800000) plt.show(); 800000 700000 500000 300000 200000 100000
n [18]:	#year built var = 'YearBuilt' data= pd.concat([train['SalePrice'], train[var]], axis =1) f, ax = plt.subplots(figsize=(16, 8)) fig = sns.boxplot(x=var, y='SalePrice', data=data) fig.axis(ymin=0, ymax=800000) plt.xticks(rotation=90); plt.show();
	800000 600000 500000 300000 200000
ո [19]։	Inputing Missing Values train.head()
ut[19]:	Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape 0 127 120 RL NaN 4928 Pave NaN IR1 1 889 20 RL 95.0 15865 Pave NaN IR1 2 793 60 RL 92.0 9920 Pave NaN IR1 3 110 20 RL 105.0 11751 Pave NaN IR1 4 422 20 RL NaN 16635 Pave NaN IR1 5 rows × 81 columns 81 columns 105.0 11751 10635 100 1
n [20]:	<pre>all_data = pd.concat((train.loc[:, 'MSSubClass': 'SaleCondition'</pre>
	GarageYrBlt 5.563187 GarageQual 5.563187 GarageCond 5.563187 BsmtExposure 2.609890 BsmtFinType2 2.609890 BsmtFinType1 2.541209 BsmtQual 2.541209 MasVnrArea 0.549451 MasVnrType 0.549451 Electrical 0.068681
n [21]: n [22]:	Based on feature description provide, A feature that has NA means it is absent for col in ('PoolQC', 'MiscFeature', 'GarageType', 'Alley', 'Fence', 'GarageQual', 'GarageCond', 'MasVnrType', 'MSSubClass'): all_data[col] = all_data[col].fillna('None') #Replacing missing value with 0(since no garage = no cars in sucfor col in ('GarageYrBlt', 'GarageArea', 'GarageCars'):
n [23]:	<pre>for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'): all_data[col] = all_data[col].fillna(0) #missing values are likely zero for no basement for col in ('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF'</pre>
n [24]:	Setting Mode values for missing entries #msZoning classification: 'RL' is common all_data ['MsZoning'] = all_data['MsZoning'].fillna(all_data['MsZoning'].fillna(all_data['MsZoning'].fillna(all_data['MsZoning'].fillna(all_data['Indicated all_data["Functional"] = all_data["Functional"].fillna('Typ') #Electrical all_data['Electrical'] = all_data['Electrical'].fillna(all_data['KitchenQual]) all_data['KitchenQual'] = all_data['KitchenQual'].fillna(all_data['Exterior !st and Exterior 2nd') all_data['Exterior2nd'] = all_data['Exterior1st'].fillna(all_data['Exterior2nd'].fillna(all_data['
n [26]:	<pre>all_data['SaleType'] = all_data['SaleType'].fillna(all_data['SaleType'].fillna(all_data['SaleType'].fillna(all_data['SaleType'].fillna(all_data['SaleType'].fillna(all_data['SaleType'].fillna(all_data['SaleType'].fillna(all_data['SaleType'].fillna(all_data['SaleType'].fillna(all_data['SaleType'].fillna(all_data['Utilities'].fillna(all_data['MSaleType'].fillna(all_data['MSSubClas'].fillna(all_data['MSSubClas'].fillna(all_data['MSSubClas'].fillna(all_data['MSSubClas'].fillna(all_data['MSSubClas'].fillna(all_data['MSSubClas'].fillna(all_data['MSSubClas'].fillna(all_data['MSSubClas'].fillna(all_data['MSSubClas'].fillna(all_data['SaleType'</pre>
n [28]:	<pre>from sklearn.preprocessing import LabelEncoder cols = ('FireplaceQu', 'BsmtQual', 'BsmtCond', 'GarageQual', 'GarageQual', 'ExterQual', 'ExterCond', 'HeatingQC', 'PoolQC', 'Kitcher</pre>
ut[29]:	numeric_features = all_data.dtypes[all_data.dtypes != "object"]. skewed_features = all_data[numeric_features].apply(lambda x : sk #compute skewness print ("\skew in numerical features: \n") skewness = pd.DataFrame({'Skew' : skewed_features}) skewness.head(7) \skew in numerical features: Skew MiscVal 24.418175 PoolArea 17.504556 LotArea 12.574590 3SsnPorch 10.279262 LowQualFinSF 8.989291 LandSlope 4.801326
n [30]:	Box cox transformation of highly skewed features skewness = skewness[abs(skewness) > 0.75] print ("There are {} skewed numerical features to box cox transf from scipy.special import boxcox1p skewed_features = skewness.index lam = 0.15 for feat in skewed_features: all_data[feat] = boxcox1p(all_data[feat], lam) There are 59 skewed numerical features to box cox transform
n [31]:	adding dummy categorical features all_data = pd.get_dummies(all_data) print(all_data.shape) (1456, 220) ntrain = train.shape[0] ntest = test.shape[0] y_train= train.SalePrice.values train = pd.DataFrame(all_data[:ntrain]) test = pd.DataFrame(all_data[ntrain:]) Linear regression Modeling Lasso Regression Gradient Boosting Regression
n [33]: n [34]:	<pre>from sklearn.linear_model import Lasso from sklearn.preprocessing import RobustScaler from sklearn.ensemble import GradientBoostingRegressor from sklearn.pipeline import make_pipeline from sklearn.model_selection import KFold, cross_val_score, traifrom sklearn.metrics import mean_squared_error from sklearn.base import BaseEstimator, TransformerMixin, Regres #validation function n_folds = 5 def RMSLE_cv(model): kf = KFold(n_folds, shuffle=True, random_state=42).get_n_spl rmse= np.sqrt(-cross_val_score(model, train.values, y_train,</pre>
n [35]:	, , , , , , , , , , , , , , , , , , , ,
n [36]:	<pre>#Lasso score = RMSLE_cv(lasso) print ("\n Lasso score: {:.4f} ({:.4f})\n".format(score.mean(),s) #Gradient Boosting Regression score = RMSLE_cv(GBoost)</pre>
n [37]:	<pre>definit(self, models): self.models = models</pre>
n [38]:	<pre>model.fit(X, y) return self #Now we do the predictions for cloned models and average the def predict(self, X): predictions = np.column_stack([</pre>
n [39]:	<pre>return np.sqrt(mean_squared_error(y, y_pred)) #final training and prediction of the stacked regressor averaged_models.fit(train.values, y_train) stacked_train_pred = averaged_models.predict(train.values) stacked_pred = np.expm1(averaged_models.predict(test.values)) print("RMSLE score on the train data:") print(RMSLE(y_train, stacked_train_pred)) print("Accuracy score:") averaged_models.score(train.values, y_train) RMSLE score on the train data:</pre>
n [37]:	<pre>score = RMSLE_cv(sBoost) print ("Nn GBoost score: {:.4f} ({:.4f})\n".format(score.mean(), Lasso score: 0.1167 (0.0114) GBoost score: 0.1232 (0.0149) Stacking the models class AveragingModels(BaseEstimator, RegressorMixin, Transformer definit(self, models): self.models = models # we define clones of the original models to fit the data in def fit(self, X, y): self.models_ = [clone(x) for x in self.models] # Train cloned base models for model in self.models_: model.fit(X, y) return self #Now we do the predictions for cloned models and average the def predict(self, X): predictions = np.column_stack([</pre>