

Desenvolvimento de Games

PoliGame Show

Nome:	RA:
Enzo Marangoni Freitas	25.00383-1
Felipe Abrantes Lima	25.00211-4
Felipe Salero Idalgo	25.00963-0
Júlia Bolzan Gnan	25.01420-0
Lucas Quadros das Dores	25.00107-4
Sarah Sperduti	25.00276-7

Sumário

P	oliG	ame Show	1
	1.	Descrição/Resumo do Projeto	. 3
	2.	Extração de Requisitos	. 4
	2.2.	Análise da Coleta de Requisitos	. 5
	3.1.	Requisitos Funcionais	. 6
	3.2.	Requisitos Não-Funcionais	. 7
	3.3.	Especificação dos Casos de Uso	. 8
	4.1.	Diagrama de Casos de Uso	14
	4.2.	Diagrama de Classes	15
	4.3.	Diagrama de Sequência	16
	4.5.	Diagrama de Atividades	25
	5. In	nplementação	27
	6. T	estes	27
	7. R	esultados e Considerações	27
	8.Re	egistro da Apresentação ao Parceiro	31
	9. R	eferências	32
	10.	Apêndice I	33

1. Descrição/Resumo do Projeto

Contexto do Problema:

Diante da crescente importância da educação em tecnologia, busca-se otimizar a fixação do conteúdo para estudantes do ensino médio. As abordagens tradicionais nem sempre engajam os alunos de forma eficaz. Propõe-se, portanto, o desenvolvimento de um jogo interativo para aprimorar a revisão e consolidação do conhecimento. Ao tornar o aprendizado mais dinâmico e estimulante, o jogo busca explorar o potencial das mecânicas de jogos para reforçar o conteúdo de forma eficaz e divertida, motivando os alunos a se envolverem ativamente com o material e promovendo uma compreensão mais profunda dos conceitos. O projeto se justifica pela necessidade de modernizar as práticas pedagógicas e oferecer ferramentas inovadoras para facilitar o aprendizado.

Objetivo do Sistema:

O sistema proposto visa desenvolver um jogo interativo de perguntas e respostas, inspirado no formato do "Show do Milhão", para alunos do ensino médio. A plataforma oferecerá quizes dinâmicos com mecânica de recompensa financeira a cada acerto e checkpoints para salvar o progresso no banco de dados MySQL hospedado na nuvem por meio do serviço Aiven. Os estudantes poderão personalizar a experiência, selecionando a matéria e o ano desejados. O objetivo é facilitar o estudo, auxiliar na memorização de conceitos e proporcionar aos professores uma ferramenta de análise do desempenho dos alunos por meio de um sistema de ranking.

Público-alvo:

O público-alvo deste projeto é composto por alunos do ensino médio que buscam revisar e consolidar o conteúdo previamente apresentado em sala de aula pelos seus professores.

Escopo do Projeto:

Este projeto visa desenvolver um jogo de perguntas e respostas para revisar conteúdo do Ensino Médio, inspirado no "Show do Milhão". Com GUI (Interface Gráfica do Usuário) em PyGame, cada partida terá 15 perguntas com checkpoints a cada 5, divididas por dificuldade (fácil, médio, difícil). O sistema de acertos/erros penalizará com "Pontos de Vida" (máximo de 5, recuperáveis),

podendo levar a Game Over. O projeto inclui design do jogo, codificação, interface intuitiva, armazenamento/sorteio de perguntas, cálculo da pontuação e banco de dados. Funções extras como repetição espaçada, temporizador e ranking serão implementadas posteriormente, garantindo dinamismo e flexibilidade.

Tecnologias Utilizadas:

Para o desenvolvimento deste projeto, foram utilizadas as seguintes tecnologias: a linguagem Python, escolhida por sua eficiência e pelas bibliotecas que facilitam a criação de jogos interativos, com PyGame para a interface gráfica; o MySQL, como sistema de gerenciamento de banco de dados com hospedado na nuvem por meio do serviço Aiven. para armazenamento de perguntas e respostas, permitindo aos alunos adquirirem conhecimento sobre bancos de dados relacionais; e o conector mysql-connector-python para a integração do sistema com o MySQL (Aiven). Adicionalmente, pretende-se explorar o DeepSeek para otimizar a busca de dados no MySQL, visando aprimorar a velocidade e a precisão das consultas e facilitar a integração entre Python e MySQL, resultando em uma experiência mais fluida para o usuário.

2. Extração de Requisitos

Para o levantamento de requisitos e planejamento do projeto, serão empregados os seguintes métodos: entrevistas com a equipe escolar para apresentação das ideias, protótipos de telas e HUD; aplicação de questionários para coletar feedback e identificar necessidades; realização de brainstorms para explorar soluções criativas; e aplicação de perguntas direcionadas para extrair os requisitos detalhados do sistema. A extração de requisitos será realizada de forma colaborativa, combinando a análise de documentos existentes e entrevistas com o cliente para alinhar expectativas. O objetivo é integrar a visão da equipe de desenvolvimento com as expectativas dos stakeholders, definindo o escopo do projeto, suas funcionalidades e o nível de dificuldade desejado, garantindo que o sistema atenda às necessidades do cliente.

Abaixo, algumas perguntas que foram feitas:

I. Objetivos Pedagógicos e Alinhamento Curricular:

1. Qual é o principal objetivo pedagógico do jogo? Que habilidades ou conhecimentos específicos vocês esperam que os alunos desenvolvam (ex: raciocínio lógico, interesse pela matéria, uso de tecnologias)?

- 2. O jogo deve introduzir novos conceitos ou revisar conhecimentos já adquiridos?
- 3. O jogo deve abordar conteúdos de quais disciplinas, com foco em quais tópicos específicos (ex: era Vargas em História)?
- 4. O jogo deve incluir elementos de storytelling ou narrativa para aumentar o engajamento? Quais temas seriam mais relevantes e atraentes para os alunos?
- 5. Qual o objetivo principal que vocês buscam alcançar com este projeto?
- 6. A escola tem preferência por perguntas de vestibulares específicos?

II. Público-Alvo e Acessibilidade:

- 1. Quais são as principais características e necessidades dos alunos que utilizarão o jogo?
- 2. Quais recursos visuais, auditivos e cinestésicos seriam mais eficazes para o aprendizado?
- 3. Quais medidas de acessibilidade devem ser implementadas para incluir alunos com deficiências visuais, auditivas ou outras necessidades especiais?

III. Design da Experiência do Usuário:

- 1. Qual a importância de um design limpo e intuitivo para a experiência do jogo?
- 2. Quais elementos visuais (cores, ícones, animações) vocês consideram importantes para tornar o jogo mais atrativo?
- 3. Quão prioritária é a facilidade de navegação no jogo? Existe alguma estrutura de menu ou sistema de navegação que a escola considera mais eficaz?
- 4. Qual o tipo de feedback (visual, sonoro) é mais adequado para indicar acertos e erros, garantindo que seja claro e motivador?
- 5. Qual o nível de importância que a escola atribui à utilização de elementos de gamificação, como recompensas, rankings e desafios? Quais tipos de recompensas seriam mais adequados para os alunos?
- 6. Vocês preferem perguntas de múltipla escolha, verdadeiro ou falso, ou uma combinação de ambos?
- 7. As questões devem ter o nível de dificuldade de vestibulares ou abranger um nível mais geral?

2.2. Análise da Coleta de Requisitos

O desenvolvimento da nossa plataforma de aprendizagem gamificada foi precedido por um processo de levantamento de requisitos, envolvendo todos os

stakeholders-chave para garantir que a solução final atenda às necessidades reais da comunidade escolar.

Iniciamos o processo com sessões colaborativas de brainstorming envolvendo a equipe, onde exploramos diversas possibilidades para a arquitetura da plataforma. Essas discussões geraram propostas fundamentais como: organização curricular por série e disciplina, sistema de autenticação seguro, formato de questões objetivas, mecanismos de salvamento automático de progresso e recursos de ajuda contextualizados.

Com essas premissas iniciais, partimos para a fase de validação junto aos principais stakeholders do projeto. Realizamos entrevistas como gestor da instituição parceira e entendo sua principal necessidade com esse projeto.

Com este levantamento completo, estabelecemos as bases para a fase de prototipagem e desenvolvimento, tendo como foco principal a criação de uma solução que efetivamente una aprendizagem significativa e motivação estudantil através da gamificação.

3.1. Requisitos Funcionais

ID	Descrição do Requisito	Prioridade	Relação
			Com RNFs
RF01	O sistema deve autenticar o usuário através de credenciais	Alta	RNF01,
	válidas.		RNF02,
			RNF05
RF02	O sistema deve identificar o tipo de usuário (aluno ou	Média	RNF01,
	professor) durante o processo de login.		RNF03
RF03	O sistema deve armazenar questões cadastradas em banco	Alta	RNF04,
	de dados.		RNF06
RF04	O sistema deve registrar a alternativa escolhida pelo aluno	Alta	RNF05,
	para cada questão.		RNF07
RF05	O sistema deve gerar um relatório contendo o desempenho	Média	RNF09,
	de cada aluno por rodada (Pontuação).		RNF08
RF06	O sistema deve possuir a opção de editar as questões.	Média	RNF06,
			RNF04
RF07	O sistema deve recuperar perguntas armazenadas no banco	Alta	RNF04,
	de dados para exibição.		RNF06
RF08	O sistema deve permitir ao usuário (professor) a escolha das	Média	RNF03,
	matérias para composição do questionário.		RNF08
RF09	O sistema deve disponibilizar painel administrativo para	Alta	RNF01,
	gestão de usuários.		RNF08

RF10	O sistema deve permitir ao usuário escolher o nível de	Média	RNF06,
	dificuldade (fácil, médio ou difícil) das questões previamente		RNF10
	cadastradas.		
RF11	O sistema deve possuir valores de pontuação mínima por	Média	RNF10
	estágio (Checkpoints).		
RF12	F12 O sistema deve possuir opções de ajuda ao usuário.		RNF03
RF13	O sistema deve incluir menu de configuração para ativação	Alta	RNF03
	de funcionalidades do jogo.		
RF14	O sistema deve implementar sistema de ranking comparativo	Alta	RNF08,
	entre alunos.		RNF09
RF15	O sistema deve armazenar histórico completo de atividades	Média	RNF04,
	por usuário.		RNF07
RF16	O sistema deve alertar sobre questões com baixo	Média	RNF09
	desempenho geral.		

3.2. Requisitos Não-Funcionais

ID	Descrição do Requisito Não Funcional	Taxonomia	Relação com RFs
RNF01	Login diferenciado para professores e alunos com controles de acesso específicos	segurança	RF01, RF02, RF09
RNF02	O tempo máximo para autenticar usuários é de menos de 5 segundos após submissão de credenciais.	Desempenho	RF01, RF02
RNF03	A interface do sistema deve ser intuitiva, permitindo que novos usuários compreendam suas funcionalidades em até 30 minutos.	Usuabilidade	RF08, RF12, RF13
RNF04	O sistema deve armazenar todos os dados em banco MySQL com hospedado na nuvem por meio do serviço Aiven.	Confiabilidade	RF03, RF07, RF15
RNF05	Criptografia dos dados sensíveis (credenciais, respostas) com AES-256.	Segurança	RF01, RF04

RNF06	Classificação clara de questões por dificuldade (tags visuais (Fácil/Médio/Difícil)).	Usuabilidade	RF06, RF10
RNF07	Checkpoints automáticos a cada 5 questões respondidas	Confiabilidade	RF04, RF15
RNF08	Conformidade com LGPD (consentimento explícito, relatórios de acesso).	Conformidade	RF09, RF14
RNF9	O relatório de desempenho deve ser gerado em até 10 segundos após a solicitação do usuário.	Desempenho	RF05, RF14
RNF10	Os valores de pontuação mínima devem ser exibidos corretamente e atualizados automaticamente conforme progresso do aluno.	Confiabilidade	RF1, RF14

3.3. Especificação dos Casos de Uso

3.3.1. Caso de Uso: Jogar

Ator: Aluno.

Descrição: Responsável por iniciar o jogo educacional, realizando a configuração com a seleção de matéria, turma e nível de dificuldade. Após a configuração, interage com o jogo respondendo perguntas com alternativas e utilizando recursos de ajuda disponíveis.

Objetivo: O aluno participa do jogo para testar seus conhecimentos, responder perguntas e ganhar pontos.

Pré-condições: O aluno deve estar autenticado no sistema. O aluno deve ter escolhido um nível de dificuldade e/ou matérias.

Fluxo Principal: Inicia-se quando o aluno acessa a funcionalidade "Jogar" no sistema. Antes de iniciar a partida, o sistema exige que o aluno selecione obrigatoriamente a matéria, a turma e o nível de dificuldade. Após essa configuração inicial, o sistema exibe a primeira pergunta, com base nas escolhas realizadas. O aluno visualiza as alternativas de resposta e seleciona uma delas. Em seguida, o sistema apresenta uma caixa de diálogo solicitando a confirmação da resposta. O aluno pode confirmar a resposta escolhida ou optar por utilizar uma ajuda disponível

antes de responder novamente. Confirmada a resposta, o sistema executa o caso de uso "Confirmar Respostas" para validá-la. Se a resposta estiver correta, o sistema atribui a pontuação correspondente e, em seguida, executa o caso de uso "Salvar Progresso", registrando o avanço do aluno. O sistema então exibe a próxima pergunta e repete esse ciclo de interação até que todas as perguntas tenham sido respondidas ou até que o aluno interrompa voluntariamente a partida. Ao término do jogo, o sistema gera automaticamente um relatório de desempenho, contendo as informações consolidadas da participação do aluno na atividade.

Fluxos Alternativos: Caso o aluno selecione uma resposta incorreta, o sistema interrompe automaticamente a partida. Se o aluno tiver alcançado um ponto de salvamento (checkpoint), as moedas acumuladas até aquele momento são armazenadas automaticamente; caso contrário, nenhum progresso é salvo. Como alternativa ao fluxo principal, o sistema também permite que o aluno interrompa voluntariamente a partida a qualquer momento. Nessa situação, o sistema registra o progresso atual e retorna ao menu principal. Adicionalmente, este caso de uso pode ser estendido pelo caso de uso "Pedir Ajuda", permitindo que o aluno utilize recursos auxiliares durante a partida. Ao acionar essa funcionalidade, o controle é temporariamente transferido para o fluxo do caso de uso "Pedir Ajuda", sendo retomado em seguida no ponto em que o aluno parou.

Pós-condições: O progresso do aluno é registrado caso ele tenha alcançado um checkpoint ou interrompido voluntariamente a partida. Se o jogo foi concluído com sucesso, o sistema gera um relatório de desempenho e salva as moedas acumuladas. Caso a partida tenha sido encerrada automaticamente por erro sem checkpoint, nenhum progresso ou recompensa é armazenado.

3.3.2. Caso de Uso: Escolher Nível de Dificuldade

Ator: Aluno.

Descrição: O aluno escolhe o nível de dificuldade das perguntas do jogo, podendo optar entre as opções "Fácil", "Médio" e "Difícil". Caso o aluno não faça essa escolha, o sistema ajusta automaticamente a dificuldade com base no desempenho do aluno, aumentando o nível conforme as respostas corretas forem registradas.

Objetivo: Permitir que o aluno defina o nível de dificuldade das perguntas que serão apresentadas durante a partida.

Pré-condições: O aluno deve estar autenticado e ter iniciado o caso de uso "Jogar".

Fluxo Principal: O aluno acessa a funcionalidade "Escolher Nível de Dificuldade". O sistema exibe as opções disponíveis: "Fácil", "Médio" e "Difícil". O aluno seleciona o nível desejado. O sistema ajusta o conjunto de perguntas conforme o nível escolhido e retorna ao fluxo principal do caso de uso "Jogar", utilizando a configuração definida pelo aluno.

Fluxos Alternativos: Caso o aluno não selecione um nível de dificuldade. o sistema ajusta dinamicamente a dificuldade do jogo com base nas respostas corretas obtidas durante a partida. O aluno também pode alterar o nível de dificuldade antes de iniciar o jogo, retornando ao fluxo principal do caso de uso "Jogar".

Pós-condições: O sistema registra o nível de dificuldade escolhido pelo aluno ou, caso não tenha sido selecionado, aplica o ajuste automático baseado no desempenho durante o jogo.

3.3.3. Caso de Uso: Manter Questões

Ator: Professor.

Descrição: Nesse caso de uso, o professor, e somente o professor, poderá visualizar, adicionar, editar e remover Questões.

Objetivo: Permitir que o professor gerencie as questões utilizadas no jogo, incluindo as operações de inserção, edição e exclusão.

Pré-condições: O professor deve estar autenticado no sistema para acessar esta funcionalidade.

Fluxo Principal: O professor acessa a seção "Manter Questões". O sistema exibe as opções: "Adicionar", "Editar", "Remover", "Atualizar". Se o professor escolher "Adicionar", o sistema exibe um formulário para inserir os dados da questão (enunciado, alternativas, resposta correta, e dica sobre o tema), o professor preenche o formulário e salva. Se o professor escolher "Editar", o sistema exibe a lista de questões, o professor seleciona a questão a ser editada, o sistema exibe um formulário com os dados da questão, o professor edita os dados e salva. Se o professor escolher "Remover", o sistema exibe a lista de questões, o professor seleciona a questão a ser removida, o sistema pede confirmação, o professor confirma a remoção. Se o professor escolher "Atualizar", o sistema exibe a lista de questões, o professor seleciona a questão a ser atualizada, o sistema exibe um formulário com os dados da questão, o professor atualizar os dados e salva. O sistema atualiza o banco de dados.

Fluxos Alternativos: O professor pode cancelar qualquer ação (adicionar, editar, remover, atualizar) e retornar à tela principal de "Manter Questões".

Pós-condições: O banco de dados de questões reflete as atualizações realizadas pelo professor, garantindo que as operações de inserção, edição ou exclusão foram devidamente aplicadas.

3.3.4. Caso de Uso: Manter Turma

Ator: Professor.

Descrição: Nesse caso de uso, o professor, e somente o professor, poderá visualizar, adicionar, editar e remover turmas cadastradas no sistema.

Objetivo: Permitir que o professor gerencie as turmas utilizadas no jogo, incluindo as operações de inserção, edição e exclusão.

Pré-condições: O professor deve estar autenticado no sistema para acessar esta funcionalidade.

Fluxo Principal: O professor acessa a seção "Manter Turma". O sistema exibe as opções: "Adicionar", "Editar", "Remover", "Atualizar". Se o professor escolher "Adicionar", o sistema exibe um formulário para inserir os dados da turma (nome da turma, série, turno), o professor preenche o formulário e salva a turma. Se o professor escolher "Editar", o sistema exibe a lista de turmas, o professor seleciona a turma a ser editada, o sistema exibe um formulário com os dados, o professor edita os dados e salva. Se o professor escolher "Remover", o sistema exibe a lista de turmas, o professor seleciona a ser removida, o sistema pede confirmação, o professor confirma a remoção. Se o professor escolher "Atualizar", o sistema exibe a lista de turmas, o professor seleciona a ser atualizada, o sistema exibe um formulário com os dados da turma, o professor atualizar os dados e salva. O sistema atualiza o banco de dados.

Fluxos Alternativos: O professor pode cancelar qualquer ação (adicionar, editar, remover, atualizar) e retornar à tela principal de "Manter Turma".

Pós-condições: O banco de dados de turmas reflete as atualizações realizadas pelo professor, garantindo que as operações de inserção, edição ou exclusão foram devidamente aplicadas.

3.3.5. Caso de Uso: Manter Usuário

Ator: Professor.

Descrição: Nesse caso de uso, o professor, e somente o professor, poderá visualizar, adicionar, editar e remover usuários.

Objetivo: Permitir que o professor gerencie as questões utilizadas no jogo, incluindo as operações de inserção, edição e exclusão.

Pré-condições: O professor deve estar autenticado no sistema para acessar esta funcionalidade.

Fluxo Principal: O professor acessa a seção "Manter Usuário". O sistema exibe as opções: "Adicionar", "Editar", "Remover", "Atualizar". Se o professor escolher "Adicionar", o sistema exibe um formulário para inserir os dados do usuário (nome, RA, turma, série), o professor preenche o formulário e salva. Se o professor escolher "Editar", o sistema exibe a lista de usuários, o professor seleciona a ser editada, o sistema exibe um formulário com os dados, o professor edita os dados e salva. Se o professor escolher "Remover", o sistema exibe a lista de usuários, o professor seleciona o usuário a ser removido, o sistema pede confirmação, o professor confirma a remoção. Se o professor escolher "Atualizar", o sistema exibe a lista, o professor seleciona o usuário a ser atualizado, o sistema exibe um formulário com os dados, o professor atualizar os dados e salva. O sistema atualiza o banco de dados.

Fluxos Alternativos: O professor pode cancelar qualquer ação (adicionar, editar, remover, atualizar) e retornar à tela principal de "Manter Usuários".

Pós-condições: O banco de dados de questões reflete as atualizações realizadas pelo professor, garantindo que as operações de inserção, edição ou exclusão foram devidamente aplicadas.

3.3.6. Caso de Uso: Autenticar Usuário

Ator: Aluno / Professor.

Descrição: Nesse caso de uso o professor assim como o aluno irão se autentificar como suas respectivas funcionalidades no jogo, porém o professor poder atuar como aluno.

Objetivo: Autenticar o usuário (aluno ou professor) para conceder acesso ao sistema.

Pré-condições: Nenhuma.

Fluxo Principal: O usuário acessa o sistema. O sistema solicita login e senha. O usuário insere suas credenciais. O sistema valida as credenciais. Se as credenciais forem válidas, o sistema autentifica o usuário e o direciona para a tela inicial de menu (com opções baseadas no perfil).

Fluxos Alternativos: Se as credenciais forem inválidas, o sistema exibe uma mensagem de erro e permite que o usuário tente novamente. Se o usuário tiver esquecido a senha, ele pode solicitar a recuperação da senha com o professor de sua turma.

Pós-condições: O usuário está autenticado e tem acesso às funcionalidades apropriadas para seu perfil.

3.3.7. Caso de Uso: Conferir Pontos

Ator: Aluno.

Descrição: O aluno irá acessar esse caso de uso para poder visualizar

somente os seus pontos.

Objetivo: Permitir que o professor confira os pontos obtidos pelos alunos.

Pré-condições: O aluno deve estar autenticado.

Fluxo Principal: O aluno acessa a opção de "Conferir Pontos". O sistema exibe a lista de jogadas e sua respectiva pontuação por rodada. O sistema exibe os pontos obtidos pelo aluno por rodada juntamente com seus acertos.

Fluxos Alternativos: O aluno pode retornar ao menu principal.

Pós-condições: O aluno visualiza seus pontos atualizados no sistema.

3.3.8. Caso de Uso: Conferir Ranking

Ator: Professor.

Descrição: Este caso de uso permite que o professor consulte o ranking dos alunos, ordenado por eficiência e assertividade. O ranking é visualizado exclusivamente pelo professor.

Objetivo: Permitir que o professor confira o ranking dos alunos.

Pré-condições: O professor deve estar autenticado no sistema.

Fluxo Principal: O Professor acessa a opção de "Conferir Ranking". O sistema exibe o ranking dos alunos, ordenado por pontos. O professor visualiza o ranking.

Fluxos Alternativos: Nenhum.

Pós-condições: O professor visualiza o ranking dos alunos no sistema.

3.3.9. Caso de Uso: Confirmar respostas

Ator: Sistema.

Descrição: O sistema solicita ao aluno uma confirmação sobre a resposta selecionada, visando garantir que o aluno esteja seguro de sua escolha, reduzindo assim a chance de erros.

Objetivo: Assegurar que o aluno confirme sua resposta antes de finalizála, diminuindo as chances de respostas incorretas.

Pré-condições: O aluno deve ter selecionado uma resposta para a pergunta.

Fluxo Principal: O sistema compara a resposta do aluno com a resposta correta. O sistema exibe uma mensagem solicitando que o aluno confirme sua resposta. O aluno confirma ou rejeita a resposta escolhida.

Fluxos Alternativos: Nenhum.

Pós-condições: O sistema registra a confirmação da resposta e determina se a resposta está correta ou incorreta.

4.1. Diagrama de Casos de Uso

4.2. Diagrama de Classes

4.3. Diagrama de Sequência

OBS: Diagramas desenhados conforme orientação, para desenhar os mais utilizados: Jogar, Sequência de Jogo, Escolher Dificuldade, Manter Questões, Autenticar Usuário, Conferir Pontos, Conferir Ranking.

4.3.1 - Diagrama de Sequência: Jogar

4.3.2 - Diagrama de Sequência: Sequência de Jogo

4.3.3 - Diagrama de Sequência: Escolher Dificuldade

4.3.3.1 - Diagrama de Sequência: Manter Questões - Adicionar

4.3.3.2 - Diagrama de Sequência: Manter Questões - Editar

4.3.3.3 - Diagrama de Sequência: Manter Questões - Visualizar

4.3.3.4 - Diagrama de Sequência: Manter Questões - Excluir

4.3.4.1 - Diagrama de Sequência: Autenticar Usuário - Aluno

4.3.4.2 - Diagrama de Sequência: Autenticar Usuário - Professor

4.3.5.1 - Diagrama de Sequência: Conferir Pontos - Professor

4.3.5.2 - Diagrama de Sequência: Conferir Pontos - Aluno

4.3.6 - Diagrama de Sequência: Conferir Ranking Geral

4.4. Modelo de Banco de Dados

4.5. Diagrama de Atividades

4.5.1. Diagrama de Atividades: Conferir Ranking

4.5.2. Diagrama de Atividades: Criar Nova Questão

4.5.3. Diagrama de Atividades: Jogar

5. Implementação

- https://github.com/Felipox06/ProjetoIntegrador.git
- O projeto foi desenvolvido utilizando a linguagem de programação Python, em conjunto com a biblioteca Pygame para a criação da interface gráfica e interação do usuário com o jogo. Para o gerenciamento e persistência dos dados, foi utilizado o sistema de gerenciamento de banco de dados MySQL, hospedado na nuvem por meio do serviço Aiven. A arquitetura do sistema adota um padrão de separação por camadas, promovendo a organização lógica entre as responsabilidades de interface, lógica de negócio e acesso a dados, facilitando a manutenção e escalabilidade do sistema.

6. Testes

https://github.com/Felipox06/ProjetoIntegrador.git

7. Resultados e Considerações

Telas do Poligame Show:

o Tela de Login para Aluno e Professor

o Tela de Menu para Poligamer

Tela de Menu para PoliMaster

o Tela de Configurar Jogo (PoliGamer e PoliMaster)

Tela de Jogo (PoliGamer e PoliMaster)

Tela Ranking para PoliMaster

O desenvolvimento do projeto "PoliGame Show" representou uma aplicação prática dos conhecimentos adquiridos ao longo do curso, permitindo integrar programação, design de interface e conceitos de gamificação voltados para fins educacionais. A proposta do jogo foi proporcionar uma experiência interativa e motivadora para os estudantes, ao mesmo tempo em que oferecesse ao professor ferramentas de apoio pedagógico.

Comparação entre Requisitos e Entrega Final

Os requisitos do projeto foram definidos em conjunto com o parceiro/ stakeholder, considerando tanto a dinâmica do jogo quanto a funcionalidade da plataforma como um todo. Entre os principais requisitos estabelecidos, destacouse a estrutura do jogo baseada em checkpoints, que possibilitam ao aluno avançar por etapas progressivas, simulando a lógica do Show do Milhão original. Adicionalmente, definiu-se um sistema de pontuação utilizando moedas virtuais denominadas "Policoins", acumuladas ao longo das partidas. Outro requisito fundamental foi a possibilidade de o professor cadastrar turmas e usuários (alunos), além de acessar o ranking geral de desempenho dos estudantes. Por fim, estabeleceu-se a funcionalidade para que o aluno visualizasse apenas o seu próprio desempenho, incluindo o ranking pessoal e o acúmulo de Policoins por

partida. A entrega final atendeu de forma satisfatória a esses requisitos. Todas as funcionalidades essenciais foram implementadas com êxito, e ajustes foram realizados com base no *feedback* obtido ao longo das reuniões com o parceiro.

A versão final do sistema apresentou uma interface responsiva, sistema de *login*, lógica de jogo conforme os objetivos propostos e ferramentas de acompanhamento voltadas tanto para alunos quanto para professores.

Dificuldades Enfrentadas e Sugestões de Melhorias

Durante o desenvolvimento, algumas dificuldades técnicas foram identificadas. A mais significativa foi a elaboração da lógica do jogo, que exigiu atenção especial para garantir o funcionamento adequado dos *checkpoints*, a progressão correta de perguntas e a contabilização precisa dos policoins.

Além disso, a implementação de uma conexão estável com o banco de dados apresentou desafios, principalmente relacionados ao armazenamento e recuperação de dados dos usuários, partidas e *rankings* em tempo real. Problemas de sincronização e instabilidades eventuais demandaram revisões no código e na estrutura do banco.

Conclusão

Em síntese, o projeto alcançou com êxito os objetivos propostos e demonstrou o potencial da gamificação como instrumento de apoio ao ensino. O "Show do Milhão Educacional" consolidou-se como uma solução funcional, com usabilidade adequada e forte aderência às necessidades pedagógicas identificadas.

8. Registro da Apresentação ao Parceiro

Durante a fase de desenvolvimento do projeto, foram conduzidas três reuniões formais com o parceiro/stakeholder, com o objetivo de apresentar o progresso da solução e coletar *feedback* para orientar os ajustes necessários, visando o alinhamento com as expectativas do cliente. O registro detalhado de cada reunião é apresentado a seguir.

1. Reunião de 28 de março:

Nesta primeira apresentação, a equipe de desenvolvimento realizou uma rodada de perguntas ao parceiro para esclarecer aspectos relacionados à interface gráfica e ao desenvolvimento geral do jogo. As questões abordaram temas como preferências estéticas, usabilidade e estrutura funcional. O parceiro respondeu às perguntas, fornecendo direcionamentos importantes que validaram o caminho adotado até o momento e contribuíram para um melhor

alinhamento entre as funcionalidades previstas e as necessidades reais do projeto.

2. Reunião de 25 de abril:

Na segunda reunião, foi apresentada uma versão mais avançada da interface. A equipe conduziu questionamentos específicos ao stakeholder, buscando compreender quais funcionalidades ele considerava essenciais em um jogo educativo. Também foram discutidas possibilidades como a necessidade de cadastro de alunos, as ferramentas que o professor gostaria de ter à disposição e como essas ferramentas poderiam ser integradas à experiência de ensino. Com base nas respostas e observações do parceiro, foram sugeridas melhorias como a inclusão de um sistema de ajuda e a implementação de uma contagem visível de "policoins", a moeda virtual utilizada no jogo. Esses *feedbacks* foram cuidadosamente registrados e incorporados ao cronograma de desenvolvimento.

3. Reunião de 16 de maio:

A última reunião teve como foco a verificação final das funcionalidades implementadas. Além da aprovação formal do sistema por parte do parceiro, representado por Cassiano, foram abordadas questões importantes relacionadas à autenticação dos usuários, incluindo a criação de login e senha para que os estudantes pudessem acessar e jogar. A equipe apresentou as soluções planejadas para essa funcionalidade, que foram bem recebidas pelo parceiro, confirmando que o sistema estava de acordo com os objetivos definidos no início do projeto.

9. Referências

DANJOU, Julien. Python levado a sério. São Paulo: Novatec, 2020.

MATHES, Eric. Python Crash Course: A Hands-On, Project-Based Introduction to Programming. 3. ed. San Francisco: No Starch Press, 2023.

MENEZES, N. N. C. Introdução à programação com Python: algoritmos e lógica de programação para iniciantes. 4. ed. São Paulo: Novatec, 2024.

MOKA, M. Use MySQL with Python. [S. I.: s. n.], 2016.

MOLINARO, A.; DE GRAAF, R. SQL Cookbook: Query Solutions and Techniques for Database Developers. 2. ed. Sebastopol: O'Reilly Media, 2021.

NIELD, Thomas. Getting Started with SQL: A Hands-On Approach for Beginners. Sebastopol: O'Reilly Media, 2016.

PYGAME. Pygame Documentation. [S. I.], 2025. Disponível em: https://www.pygame.org/docs/. Acesso em: 13 abril 2025.

PYTHON SOFTWARE FOUNDATION. The Python Language Reference. [S. I.], 2025. Disponível em: https://docs.python.org/3/. Acesso em: 20 março 2025.

10. Apêndice I

Não houve roteiro de entrevista nem questionário respondido.