第3章 门电路

补: 半导体基础知识

半导体基础知识(1)

两种载流子

- 本征半导体: 纯净的具有晶体结构的半导体。
- 常用: 硅Si, 锗Ge

本征半导体的导电机理

价电子在获得一定能量 (温度升高或受光照)后, 即可挣脱原子核的束缚, 即可挣脱原子核的束缚, 成为自由电子(带负电), 同时共价键中留下一个空 位,称为空穴(带正电)。

这一现象称为本征激发。 温度愈高,晶体中产 生的自由电子便愈多。

在外电场的作用下,空穴吸引相邻原子的价电子来填补,而 在该原子中出现一个空穴,其结果相当于空穴的运动(相当于正 电荷的移动)。

半导体基础知识(2)

- 杂质半导体
- N型半导体 (磷原子是+5价元素)

多子: 自由电子

少子:空穴

半导体基础知识(2)

- 杂质半导体
- P型半导体 (硼原子是+3价元素)

多子:空穴

少子:自由电子

无论N型或P型半导体都是中性的,对外不显电性。

半导体基础知识(3)

• PN结的形成

• 空间电荷区(耗尽层)

• 扩散和漂移

半导体基础知识(4)

• PN结的单向导电性

• 外加正向电压

半导体基础知识(4)

• PN结的单向导电性

• 外加反向电压

半导体基础知识(5)

本章要求:

熟练掌握TTL和CMOS集成门电路输出与输入间的逻辑关系,了解外部电气特性(包括电压传输特性、输入特性、输出特性和动态特性等);掌握各类集成电子器件正确的使用方法。

重点和难点:

TTL电路与CMOS电路的结构与特点.

TTL: Transistor-Transistor Logic

CMOS: Complementary Metal-Oxide-Semiconductor

3.1 概述

• 门电路:实现基本运算、复合运算的单元电路,如 与门、与非门、或门 • • • • •

门电路中以高/低电平表示逻辑状态的1/0

获得高、低电平的基本原理

利用半导体开关元件的导通、截止(即开、关)两种工作状态。

单开关电路

互补开关电路

◎功耗小

正逻辑: 高电平表示1, 低电平表示0

负逻辑:高电平表示0,低电平表示1

在数字电路中,对电压值为多少并不重要, 只要能判断高低电平即可,对器件参数精度 及供电电源稳定度要求低。

3.2半导体二极管门电路

• 二极管的结构:

3.2.1二极管的开关特性:

二极管的开关等效电路:

二极管的动态电流波形:

高电平: V_{IH}=V_{CC}

低电平: V/L=0

•
$$V_I = V_{IH}$$

D截止,
$$V_o = V_{OH} = V_{CC}$$

•
$$V_I = V_{IL}$$

D导通,
$$V_o = V_{oL} = 0.7V$$

二极管导通时

$$V_{DF} = 0.7V$$

3V

OF 0:7 4		
A	В	Y
0V	0V	0.7V
0V	3V	0.7V
3V	0V	0.7V

3V | 3.7V

规定3V以上为1

A	В	\mathbf{Y}
0	0	0
0	1	0
1	0	0
1	1	1

3.2.3 二极管或门

$A \longrightarrow$	
$B \longrightarrow$	

A	В	Y
0V	$\mathbf{0V}$	0V
0V	3V	2.3V
3V	0V	2.3V
3V	3V	2.3V

规定2.3V以上为1

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

二极管构成的门电路的缺点:

- 电平有偏移
- 带负载能力差

3.3 CMOS门电路(Complementary Metal-Oxide-Semi)

以N沟道增强型为例:

以N沟道增强型为例:

当加+V_{DS}时,

V_{GS}=0时,D-S间是两个背向PN结串联,i_D=0

加上+V_{GS}, 且足够大至V_{GS} >V_{GS (th)}, D-S间形成导电沟道 (N型层)

开启电压

二、输入特性和输出特性

- ① 输入特性:直流电流为0,看进去有一个输入电容C_I,对动态有影响。
- ② 输出特性:

 $i_D = f(V_{DS})$ 对应不同的 V_{GS} 下得一族曲线。

对于共源极接法的电路,栅极和衬底之间被二氧 化硅绝缘层隔离,所以栅极电流为零。

输出特性曲线 (漏极特性曲线)

$v_{GS} < v_{GS(th)}$

夹断区(截止区)

特点: $i_D \approx 0$

恒流区或 可变电阻区

恒流区(放大区):

特点: (1)受控性:

输入电压v_{GS}控制输出电流i_D

$$\dot{\boldsymbol{I}}_{D} = \boldsymbol{I}_{DS} \left(\frac{\boldsymbol{v}_{GS}}{\boldsymbol{V}_{GS(th)}} - 1 \right)^{2}$$

(2)恒流性:输出电流 i_D 基本上不受输出电压 v_{DS} 的影响。

用途:可做放大器和恒流源。

可变电阻区(饱和区):

特点:

(1)当 ν_{GS} 为定值时, i_D 是 ν_{DS} 的线性函数,管子的漏源间呈现为线性电阻,且其阻值受 ν_{GS} 控制。

(2) 管压降_{νρς} 很小。

三、MOS管的基本开关电路

因为 $R_{OFF} > 10^{9} \Omega, R_{ON} < 1K\Omega$ 只要 $R_{ON} << R_{D} << R_{OFF}$,则:

当
$$V_I = V_{IL} < V_{GS}(th)$$
 — $\rightarrow T$ 截止 — $\rightarrow V_O = V_{OH} \approx V_{DD}$ 当 $V_I = V_{IH} > V_{GS}(th)$ — $\rightarrow T$ 导通 — $\rightarrow V_O = V_{OL} \approx 0$ 所以 MOS 管 $D - S$ 间相当于一个受 V_I 控制的开关。

四、等效电路

五、MOS管的四种类型

φd • 增强型 SiO_2 绝缘层 P(衬底) N沟道 P沟道 φB (a) (b) • 耗尽型 反型层 耗尽层 В 耗尽型N沟道管 耗尽型P沟道管 导电沟道 (a) (b)

3.3.2 CMOS反相器的电路结构和工作原理

当NMOS管和PMOS管成对出现在电路中,且 二者在工作中互补,称为CMOS管。

静态下,无论 v_I 是高电平还是低电平, T_P 、 T_N 总有一个截止,因此CMOS反相器的静态功耗极小。

二、电压、电流传输特性

*AB段: $V_I < V_{GS(TH)N}$

 T_1 导通, T_2 截止 $\Rightarrow V_o = V_{OH} = V_{DD}$

*CD段: $V_I > V_{DD} - |V_{GS(TH)P}|$

 T_2 导通, T_1 截止 $\Rightarrow V_o = V_{oL} = 0$

*BC段: $V_{GS(TH)N} < V_I < V_{DD} - V_{GS(TH)P}$

 T_1, T_2 同时导通

若 T_1 , T_2 参数完全对称, $V_I = \frac{1}{2}V_{DD}$ 时, $V_O = \frac{1}{2}V_{DD}$

三、输入噪声容限

在 V_{II} 偏离 V_{III} 和 V_{III} 的一定范围内, V_{o} 基本不变; 在输出变化允许范围内 ,允许输入的变化范围 称为输入噪声容限

$$V_{NH} = V_{OH(\min)} - V_{IH(\min)}$$

$$V_{NL} = V_{IL(\max)} - V_{OL(\max)}$$

- •可以通过提高V_{DD}来提高噪声容限
- 噪声容限越大,表明 电路抗干扰能力越强。

3.3.3 CMOS 反相器的静态输入和输出特性

一、输入特性

二、输出特性

1.低电平输出特性 $V_{oL} = f(I_{oL})$ 同样的 I_{oL} 下, $V_{GS} \uparrow \Rightarrow V_{oL} \downarrow$

二、输出特性

1.高电平输出特性 $V_{OH} = f(I_{OH})$ 同样的 I_{OH} 下, $|V_{GS}|$ $\uparrow \Rightarrow V_{OH} \downarrow$ 越少

3.3.4 CMOS反相器的动态特性

一、传输延迟时间

1.原因: C_I 和 C_I 充放电,因为 C_I 较大所以 C_I 充放电影响也较大;

 $2.t_{PHL}, t_{PLH}$ 受 C_L 、 V_{DD} 影响;

 $3.t_{PHL} \approx t_{PLH}$,74HC系列为 10ns,74AHC系列为 5ns。

二、交流噪声容限

三、动态功耗

静态功耗极小,与动态功耗相比,可以忽略

三、动态功耗

- 2.负载电容充放电功耗 P_C
- *当 $V_I \downarrow, V_{DD}$ 经 T_1 向 C_L 充电,有 i_P
- *当 V_I ↑, C_L 经 T_2 放电,有 i_N

可得平均功耗

$$P_C = C_L f V_{DD}^2$$

3.总的动态功耗

$$P_D = P_T + P_C$$

3.3.5 其他类型CMOS门电路

一、其他逻辑功能的CMOS门电路

$$Y = (A \cdot B)'$$

2.或非门

$$Y = (A + B)'$$

存在什么问题?

与非门

存在的缺点:

 $(1):输出电阻<math>R_0$ 受输入状态影响

$$A = 1, B = 1$$
 $\mathbb{I} R_O = R_{ON2} + R_{ON4} = 2R_{ON}$

$$A = 0, B = 0$$
则 $R_O = R_{ON1} // R_{ON3} = \frac{1}{2} R_{ON}$

$$A = 0, B = 1 \text{ III} R_O = R_{ON1} = R_{ON}$$

$$A = 1, B = 0$$
则 $R_O = R_{ON3} = R_{ON}$

(2)输出的高低电平受输入端数目的影响

输入端越多, V_{OL} 越高, V_{OH} 也更高

(3)使 T_2 、 T_4 的 V_{GS} 达到开启电压时,

对应的以值不同

3. 带缓冲级的CMOS门电路

$$Y = ((A' + B')')' = (A \cdot B)'$$

带缓冲级的门电路其输出电阻、输出高、低电平以及电压传输特性将不受输入端状态的影响。电压传输特性的加强。

二、漏极开路的门电路(OD门)

为什么需要OD门?

普通与非门输出不能 直接连在一起实现"线与"!

$$Y = (AB)' \cdot (CD)'$$

需将一个MOS管的漏极开路构成OD门。

A
$$Y = (A \cdot B)'$$

OD输出与非门的逻辑符号及函数式

OD门输出端可直接连接实现线与。

R_L 的计算方法

三、CMOS传输门

双向模拟开关

四、三态输出门

(b)

$$EN' = 0$$
时, $Y = A'$
 $EN' = 1$ 时, Y 高阻态

三态门的用途

3.5 TTL门电路

3.5.1 半导体三极管的开关特性

一、双极型三极管的结构

管芯 + 三个引出电极 + 外壳

二、三极管的输入特性和输出特性

三极管的输入特性曲线 (NPN)

- V_{ON}: 开启电压
- 硅管, 0.5~0.7V
- 锗管, 0.2~0.3V

- 近似认为:
- $V_{BE} < V_{ON}$ $i_B = 0$
- $V_{BE} \ge V_{ON}$ i_B 的大小由外电路电压,电阻决定

$$i_B = rac{V_{BB} - V_{BE}}{R_b}$$

三极管的输出特性

• 固定一个 I_B 值,即得一条曲线, $\text{在V}_{\text{CE}} > 0.7 \text{V}$ 以后,基本为水平直线

$$i_C = f(V_{CE})$$

- 特性曲线分三个部分
- ① 放大区:条件 $V_{CE}>0.7V$, $i_B>0$, i_C 随 i_B 成正比变化, $\Delta i_C=\beta \Delta i_B$ 。
- ② 饱和区:条件 $V_{CE} < 0.7V$, $i_B > 0$, V_{CE} 很低, Δi_C 随 Δi_B 增加变缓,趋于"饱和"。
- ③ 截止区: 条件 $V_{BE} = 0V$, $i_B = 0$, $i_C = 0$, c—e间"断开"。

$$i_{C} = f(V_{CE})$$

三、双极型三极管的基本开关电路

工作状态分析:

- (1) 设 $V_I = V_{IL} = 0$, 则 $V_{BE} < V_{ON}$ T截止, i_B, i_C 近似为0。
- (2) 当 V_I 上升至 > V_{ON} 后,有 i_B 产生, $i_B = \frac{V_I V_{ON}}{R_B}$,并有对应的 $i_C = \beta i_B$ 流过 R_C 于是得到 $V_O = V_{CE} = V_{CC} i_C R_C = V_{CC} \beta i_B R_C$ 。
 所以 $V_I \uparrow \rightarrow i_B \uparrow \rightarrow i_C \uparrow \rightarrow V_O \downarrow$,三极管工作在放大区

$$A_{V} = -\frac{\Delta V_{o}}{\Delta V_{I}}$$

- (3) 当 V_I 继续上升, i_B 继续上升, V_o 继续下降。
- 当 R_c 上压降接近于 V_{cc} 时, $V_o \approx 0$ 。
- 三极管工作在深饱和状态 $V_o = V_{oL} = V_{CE(sat)} \approx 0$ 。

图解分析法:

$$V_{CE} = V_{CC} - R_C i_C = V_{CC} - R_C \beta i_B$$

$$V_{RC} = R_C i_C$$

四、三极管的开关等效电路

截止状态

饱和导通状态

五、动态开关特性

从二极管已知, PN结存在电容效 应。

在饱和与截止两个 状态之间转换时, i_c的变化将滞后于 V_I,则V_o的变化也 滞后于V_I。

六 、三极管反相器

• 三极管的基本开关电路就是非门

参数合理? V_I=V_{IL}时,T截止, V_O=V_{OH} VI=VIH时,T截止, V_O=V_{OL} 实际应用中,为保证 VI=V_{IL}时T可靠截止,常在 输入接入负压。

例3.5.1: 计算参数设计是否合理

例3.5.1: 计算参数设计是否合理

① 将发射极外接电路化为等效的V_B与R_B电路

$$R_B = R_1 // R_2 = 2.5 K\Omega$$

$$V_B = V_I - \frac{V_I - V_{EE}}{R_1 + R_2} R_1 = V_I - \frac{V_I + 8}{13.3} \times 3.3$$

- ② 当 $V_I = V_{IL} = 0$ 时, $V_B = 0 \frac{8}{13.3} 3.3 = -2.0V$ 所以 T截止, $i_C = 0, V_O = V_{OH} = V_{CC} = 5.0V$
- ③ 当 $V_I = V_{IH} = 5V$ 时, $V_B = 5 \frac{5+8}{13.3}$ 3.3 = 1.8V 所以T导通如果用折线等效电路,认为 $V_{BE} = 0.7V$ 则得: $i_B = \frac{V_B V_{BE}}{R_B} = 0.44 mA$
- 4 又 深度饱和时 I_{BS} 为:

$$I_{BS} = \frac{I_{CS}}{\beta} = \frac{V_{CC} - V_{CE}(sat)}{\beta R_C} = 0.25 mA$$
故 $i_B > i_{BS}, T$ 饱和, $V_O = V_{CE}(sat) \approx 0V$

5 因此,参数设计合理

六 、三极管反相器

• 三极管的基本开关电路就是非门

参数合理 V_I=V_{IL}时,T截止, V_O=V_{OH} VI=VIH时,T截止, V_O=V_{OL} 实际应用中,为保证 VI=V_{IL}时T可靠截止,常在 输入接入负压。

3.5.2 TTL反相器的电路结构和工作原理

一、电路结构

设

$$V_{CC} = 5V$$

$$V_{IH} = 3.4V$$

$$V_{IL} = 0.2V$$

PN结导通压降 $V_{ON} = 0.7V_{(v_1)}$

1

$$V_I = V_{II} = 0.2V(A = 0)$$

2

$$V_o = V_{OH}(Y = 1)$$

$$V_I = V_{IH} = 3.4V(A = 1)$$

$$V_o = V_{oL}(Y = 0)$$

1.输入为低电平(0.2V)时

1.输入为低电平(0.2V)时

$$v_o = 5 - v_{R2} - v_{be4} - v_{D2} \approx 3.4 \text{V}$$
 输出高电平

2.输入为高电平 (3.4V) 时

 T_2 、 T_5 饱和导通

2.输入为高电平 (3.4V) 时

$$v_o = V_{\text{CE5}} \approx 0.3 \text{V}$$
 输出低电平

可见,无论输入如何, T_4 和 T_5 总是一管导通而另一管截止。

这种推拉式工作方式,带负载能力很强。

- 需要说明的几个问题:
- ① T_2 的输出 V_{c2} 和 V_{e2} 变化方向相反,故称倒相级。
- ② 输出级在稳态下, T₄和T₅总有一个导通、一个截止。 既能降低功耗又提高了带负载能力,称推拉式。

③ D_1 抑制负向干扰 D_2 保证 T_2 导通时 T_5 可靠地截止。

二、电压传输特性

二、电压传输特性

*AB段: 截止区 $V_I < 0.6V$, $\therefore V_{B1} < 1.3V$

 T_1 导通, T_2 , T_5 截止, T_4 导通 $\Rightarrow V_{OH} = V_{CC} - V_{R2} - V_{BE4} - V_{D2} = 3.4V$

*BC段: 线性区 $0.7V < V_I < 1.3V$

 T_2 导通且工作在放大区, T_5 截止, T_4 导通, $V_I \uparrow \Rightarrow V_o \downarrow$

二、电压传输特性

*CD段:转折区 $V_I = V_{TH} \approx 1.4V$,所以 $V_{B1} \geq 2.1V$

 T_2, T_5 同时导通, T_4 截止,所以 V_o 迅速 $\downarrow \Rightarrow V_{oL} \approx 0$

*DE段: 饱和区 V_1 继续 $^{\uparrow}$,而 V_0 不变

 $V_o = V_{oL}$

3.5.3 TTL非门的静态输入特性和输出特性

一.输入特性:

二.输出特性

由于受到功耗的限制手册上给出的高电平输出电流的最大值要比5mA小得多。

74系列 $I_{
m OH(max)}$ =0.4mA

 $V_{
m OH}/{
m V}$

TTL反相器高电平输出特性

二.输出特性 $V_{ m OL}/{ m V}$ 2.0 1.0 $I_{\rm OL(max)}$ 15 10 $i_{\rm L}/{ m mA}$ TTL反相器低电平输出特性

前后级之间电流的联系

前级输出为高电平时

前级输出为低电平时

扇出系数一一驱动同类门的个数。

灌电流工作时:
$$N_{OL} = \left| \frac{I_{OL}}{I_{IL}} \right|$$

拉电流工作时: $N_{OH} = \left| \frac{I_{OH}}{I_{III}} \right|$

扇出系数 $N_{\rm O}$ 取 $N_{\rm OL}$ 、 $N_{\rm OH}$ 中较小的一个。

扇出系数一一衡量门电路的带负载能力。

§ 3.2.4 TTL非门的动态特性

一、传输延迟时间

平均传输延迟时间 t_{pd} 表征了门电路的开关速度。

平均传输时间

$$t_{pd} = \frac{1}{2}(t_{PLH} + t_{PHL})$$

二. 功耗:

有静态功耗和动态功耗。静态功耗指的是当电路没有状态转换时的功耗;动态功耗只发生在状态转换的瞬间。对于TTL电路静态功耗是主要的,用P_D表示。

3.5.5其他类型的TTL门电路

一、其他逻辑功能的门电路

1. 与非门

 $-\overset{*}{V_{cc}}A \bullet B$ 由多发射极三极管实现

当A和B有一个为0.2V时, $V_{B1} = 0.9V$,

 T_5 截止, T_4 导通, $V_o = V_{OH} = 1$

当A和B同为高电平时, $V_{B1} = 2.1V$,

 T_4 截止, T_2 和 T_5 导通, $V_o = V_{oL} = \emptyset$

2. 或非门

3. 与或非门

- *两个完全一样的输入电路
- *因为 T_2 和 T_2 的输出并联

所以A、B任何一个为1均使 T_5 导通, T_4 截止 $\Rightarrow V_o = V_{OL}$ 只有A、B同为0,才有 T_5 截止, T_4 导通 $\Rightarrow V_o = V_{OH}$

*输入电流计算时, I_{HI} 和 I_{II} 均加倍

74LS00内含4个2输入与非门,74LS20内含2个4输入与非门。

3.集电极开路门(OC门)

为什么需要OC门?

普通与非门输出不能

直接连在一起实现"线与"!

$$Y = (AB)' \cdot (CD)'$$

0C门输出端可直接连接实现线与。

R_{L} 的选择:

$$V_{CC} - (nI_{OH} + mI_{IH})R_L \ge V_{OH}$$

$$R_L \le \frac{V_{CC} - V_{OH}}{nI_{OH} + mI_{IH}} = R_{L(\text{max})}$$

负载门输入 端个数

若为与非门,m'是负载门的个数,而不是输入端的数目。

电下时,贝取门尔安一个个个人的人们。 1_2 、 1_5 则似此。03.5.5

三、三态输出门(Three state Output Gate,TS)

输出有三个状态: V_{oL}, V_{oH} , 高阻(Z)

- (1)EN'=0, P=1, D截止,为"工作状态" $\Rightarrow Y=(AB)'$
- (2)EN'=1, P=0, D导通,为"高阻状态" $\Rightarrow Y=Z$

三态门的用途

3.5.6 TTL数字集成电路的各种系列

从提高工作速度、降低功耗两方面考虑进行改进。

74H系列: 高速系列。其工作速度的提高是用增加功耗的代价换取的,效果不够理想。

74S系列: 肖特基系列。采用抗饱和三极管,提高了工作速度,但电路功耗加大,并且输出的低电平升高。

74LS系列: 低功耗肖特基系列。兼顾功耗和速度两个方面,得到更小的延迟一功耗积。

74AS系列: 电路结构与74LS系列相似,采用低阻值,提高了工作速度,但功耗较大。

74ALS系列: 其延迟一功耗积是TTL电路所有系列中最小的一种。

54、54H、54S、54LS系列: 54系列与74系列电路 具有完全相同的电路结构和电气性能参数。54系列 工作温度范围更宽,电源允许的工作范围更大。

74系列: 温度0~70°C, 电源电压5V±5%;

54系列: 温度-55~+125℃, 电源电压5V±10%。

TTL集成门电路系列

型 号	名 称	主要功能
74LS00	四2输入与非门	
74LS02	四2输入或非门	
74LS04	六反相器	
74LS05	六反相器	OC i J
74LS08	四2输入与门	
74LS13	双4输入与非门	施密特触发
74LS30	8输入与非门	
74LS32	四2输入或门	
74LS64	4-2-3-2输入与或非门	
74LS133	13输入与非门	
74LS136	四异或门	OC输出
74LS365	六总线驱动器	同相、三态、公共控制
74LS368	六总线驱动器	反相、三态、两组控制

CMOS电路与TTL电路比较:

- (1) CMOS电路的工作速度比TTL电路的低。
- (2) CMOS带负载的能力比TTL电路强。
- (3) CMOS电路的电源电压允许范围较大,约在 3~18V,抗干扰能力比TTL电路强。
- (4) CMOS电路的功耗比TTL电路小得多。门电路的功耗只有几个μW,中规模集成电路的功耗也不会超过100μW。

CMOS电路与TTL电路比较:

- (5) CMOS集成电路的集成度比TTL电路高。
- (6) CMOS电路容易受静电感应而击穿,在使用和 存放时应注意静电屏蔽,焊接时电烙铁应接地 良好,尤其是CMOS电路多余不用的输入端不 能悬空,应根据需要接地或接高电平。

多余输入端的处理措施

处理原则: 不能影响输入与输出之间的逻辑关系。

数字集成电路中多余的输入端在不改变逻辑 关系的前提下可以并联起来使用,也可根据逻辑关 系的要求接地或接高电平。TTL电路多余的输入端 悬空表示输入为高电平;但CMOS电路,多余的输 入端不允许悬空,否则电路将不能正常工作。