Álgebra de Boole. Diseño Lógico

Fundamentos de Computadores Escuela Politécnica Superior. UAM

Índice de la Unidad 1

- U2. Álgebra de Boole y Diseño Lógico.
 - U1.1. Análogico vs Digital
 - U1.2. Sistema numérico binario. Conversión entre sistemas.
 - U1.3. Propiedades y teoremas básicos del álgebra booleana.
 - U1.3.1. Operaciones y expresiones booleanas.
 - U1.3.2. Leyes y reglas del álgebra de Boole. Leyes de De Morgan.
 - U1.4. Funciones lógicas.
 - U1.4.1. Expresiones booleanas y tabla de la verdad.
 - U1.4.2. Ampliación a varias entradas.
 - U1.4.3. Habilitación funcional.
 - U1.4.4. Implementaciones de puertas SOP y POS.
 - U1.5. Mapas de Karnaugh.
 - U1.5.1. Minimización de una suma de productos mediante el mapa K.
 - U1.5.2. Minimización de un producto de sumas mediante el mapa K.

Analógico vs Digital

Analógico vs Digital

Sistemas analógicos

- Trabajan con variables analógicas
- Señales físicas para representarlas: Señales analógicas
- Señal analógica: Puede tomar infinitos valores reales, puesto que varían de forma continua.

Señal Analógica

Ejemplo: Termómetro de mercurio

Analógico vs Digital

Analógico vs Digital

Sistemas digitales

- Trabajan con variables digitales.
 - Toma valores entre dos posibles
 - Los valores se expresan por sentencias declarativas
 - Los dos valores son excluyentes entre ellos
- Variables físicas para representarlas: Señales digitales.
- Señal digital: Toma valores discretos.
- Ejemplos: Interruptor de la luz Bombilla

¿Semáforo?

Sistema numérico posicional

El valor del dígito depende de su posición en el número.

> Sistema Decimal:

Columna	Columna	Columna	Columna	BASE	Equivalente numérico en decimal
1000's	100's	10's	1's	SISTEMA	
5	3	7	4	10	

> Sistema binario:

Columna 8's	Columna 4's	Columna 2's	Columna 1's	BASE SISTEMA	Equivalente numérico en decimal
1	1	0	1	2	

Ejemplos de conversión entre sistemas

> Convertir de binario a decimal el número 10101₂

Convertir de decimal a binario el número 47₁₀

Se recomienda el aprendizaje de las siguientes potencias:

$$\checkmark 2^0 = 1$$

$$\checkmark 2^5 = 32$$

$$\checkmark 2^5 = 32$$
 $\checkmark 2^{10} = 1024 = 1 \text{ k}$

$$\checkmark 2^1 = 2$$

$$\checkmark 2^2 = 4$$

$$\checkmark 2^7 = 128$$

$$\checkmark 2^2 = 4$$
 $\checkmark 2^7 = 128$ $\checkmark 2^{20} = 1.048.576 = 1 M$

$$\checkmark 2^3 = 8$$

$$\checkmark 2^8 = 256$$

$$\checkmark 2^3 = 8$$
 $\checkmark 2^8 = 256$ $\checkmark 2^{30} = 1.073.741.824 = 1 G$

$$\checkmark 2^4 = 16$$

$$\checkmark 2^9 = 512$$

$$\checkmark 2^4 = 16$$
 $\checkmark 2^9 = 512$ $\checkmark 2^{32} = 2^2 * 2^{30} = 4 G$

Ejemplos:

$$\dot{z}^{213} = ?$$

$$\dot{c} 2^{15} = ?$$

Rango de representación del sistema binario.

- ➤ Con un número de n dígitos decimales {0-9}, se representan
 10ⁿ números diferentes en el rango [0, 10ⁿ-1].
 - Ejemplo: con n = 3, 10³ = 1000 números diferentes.
 en el rango [0, 999]
- Con un número de n dígitos binarios {0, 1}, se representan
 2º números diferentes en el rango [0, 2º-1].
 - Ejemplo: con n = 3, $2^3 = 8$ números diferentes en el rango [0, 7]

Sistema Hexadecimal

Dígito Hexadecimal	Decimal Equivalente	Binario Equivalente	Dígito Hexadecimal	Equivalente Decimal	Equivalente Binario
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	А	10	1010
3	3	0011	В	11	1011
4	4	0100	С	12	1100
5	5	0101	D	13	1101
6	6 6		Е	14	1110
7	7	0111	F	15	1111

El hexadecimal es un sistema numérico posicional con base 16, que se utiliza para escribir de forma abreviada números en binario.

Ejemplos de conversión entre sistemas

Convertir de hexadecimal a binario el número 4AF₁₆; también (0x4AF)

> Convertir de hexadecimal a decimal el número 0x4AF

• Bits

bit mas significativo (msb)

bit mas significativo (lsb)

• Bytes & Nibbles

Bytes

Álgebra de Boole: es la herramienta matemática utilizada para el análisis y la síntesis de los sistemas digitales binarios.

Variable booleana: es una señal digital que en un instante determinado sólo puede tomar uno de dos valores. Los valores a tomar son mutuamente excluyentes.

Se representan como: 0 y 1; OFF y ON; etc...

Variables lógicas y circuitos eléctricos:

- Estado del interruptor A:
 - Abierto (0)
 - Cerrado (1)
- •Estado de la bombilla F:
 - Apagada (0)
 - Encendida (1)

El estado de la variable lógica bombilla es función del estado de la variable lógica interruptor

FUNCIÓN: "La bombilla está encendida si el interruptor está cerrado"

- Función lógica: Circuito que acepta valores lógicos a la entrada y produce un valor lógico a la salida
- Tabla de verdad: describe el funcionamiento de las funciones lógicas.
 - Especifica la salida de la puerta o función lógica para todas las posibles combinaciones de entradas
 - Son representaciones gráficas de todos los casos que se pueden dar en una relación algebraica y de sus respectivos resultados

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

 Puertas lógicas: Implementan a las funciones lógicas más elementales.

- EL AMPLIFICADOR (BUFFER)
 - Puerta lógica más sencilla
 - Una entrada (A) y una salida (Z)
 - Tabla de verdad:

Α	Z
1	1
0	0

Ecuación lógica: Z = A

- LA PUERTA NOT O INVERSOR
 - Una entrada (A) y una salida (Z)
 - Tabla de verdad:

A	Z
1	0
0	1

- Ecuación lógica: $Z = \overline{A}$
- Representación gráfica:

- LA PUERTA NOT O INVERSOR
 - Lógica interna de la puerta NOT:

Inverter circuit using IGFETs

- LA PUERTA AND
 - La puerta AND vista como interruptores:

FUNCIÓN: La bombilla está encendida si:

"el interruptor A Y el interruptor B están cerrados"

- LA PUERTA AND (2 entradas {A,B} y 1 salida {Z})
 - Z=1 sólo si las dos entradas están simultáneamente a 1
 - Tabla de verdad:

Α	В	Z
0	0	0
0	1	0
1	0	0
1	1	1 1

Ecuación lógica: Z = A·B

Representación gráfica:

¿Puerta AND de varias entradas?

- LA PUERTA AND
 - Lógica interna de la puerta AND:

- LA PUERTA OR
 - La puerta OR vista como interruptores:

FUNCIÓN: La bombilla está encendida si:

"el interruptor A, O el interruptor B O ambos están cerrados"

- LA PUERTA OR: (2 entradas {A,B} y 1 salida {Z})
 - Z = 1 cuando alguna de las dos entradas vale 1
 - Tabla de verdad:

Α	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

• Ecuación lógica: Z = A + B

Representación gráfica:

- LA PUERTA NAND: (2 entradas {A,B} y 1 salida {Z})
 - Z=1 si al menos una de las dos entradas vale 0
 - Tabla de verdad:

A	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

Ecuación lógica:

$$Z = \overline{A \cdot B}$$

Representación gráfica:

¿Puerta NAND de varias entradas?

- LA PUERTA NOR: (2 entradas {A,B} y 1 salida {Z})
 - Z=0 si al menos una de las dos entradas vale 1
 - Tabla de verdad:

Α	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

• Ecuación lógica: $Z = \overline{A + B}$

Representación gráfica:

¿Puerta NOR de varias entradas?

- LA PUERTA XOR (OR-Exclusiva): (2 entradas {A,B} y 1 salida {Z})
 - Z=1 si y sólo si una de las entradas está a 1
 - Tabla de verdad:

Α	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

- Ecuación lógica: Z = A ⊕ B
- Representación gráfica:

¿Puerta XOR de varias entradas?

Leyes y reglas del álgebra de Boole

Nombre		Teorema		Dual
Identidad	T1	B ● 1 = B	T1′	B + 0 = B
Elemento nulo	T2	B ● 0 = 0	T2′	B + 1 = 1
Indempotencia	T3	B ● B = B	T3′	B + B = B
Involución	T4	//B	= B	
Complemento	T 5	B ● /B = 0	T5′	B + /B = 1
Prop. Conmutativa	T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B
Prop. Asociativa	T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B + C) + D = B + (C + D)
Prop. Distributiva	T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$
Ley de De Morgan	T12	$/(B_0 \bullet B_1 \bullet \bullet B_{n-2} \bullet B_{n-1}) =$ = $(/B_0 + /B_1 + + /B_{n-2} + /B_{n-1})$	T12′	$/(B_0 + B_1 + + B_{n-2} + B_{n-1}) =$ = $(/B_0 \bullet /B_1 \bullet \bullet /B_{n-2} \bullet /B_{n-1})$

Ecuaciones duales en el Álgebra de Boole

Circuitos lógicos

Las combinaciones de diferentes valores lógicos a la entrada hacen que aparezcan distintos valores lógicos a la salida => CIRCUITO LÓGICO

Un circuito lógico se compone de:

- Entradas
- Salidas
- Especificación funcional
- Especificación temporal

Cualquier función lógica puede expresarse como función de las puertas AND, OR y NOT

Circuitos lógicos

Ejemplo de un circuito lógico:

- Entradas: A, B, C y D
- Salidas: Z₁ y Z₂
- Especificación funcional
 - $S = f_1(A, B)$
 - $Z_1 = f_2(C, D)$
 - $Z_2 = f_3(S, Z_1) = (A, B, C, D)$

• Especificación temporal: $(\Delta t_{Z2} = MAX\{\Delta t_{f1}, \Delta t_{f2}\} + \Delta t_{f3})$

Lógica combinacional: si el estado de las salidas depende sólo del estado de las entradas. Sistema sin memoria.

Lógica secuencial: si el estado de la salida también depende del estado anterior del sistema. El circuito tiene memoria.

- Función lógica: Expresión Booleana que relaciona variables lógicas directas o complementadas por medio de operaciones AND y OR
- Las funciones lógicas se expresan con circuitos lógicos de dos niveles que en su forma canónica pueden ser:
 - Suma de productos de todas las variables o sus conjugadas:
 Suma de Minterms // Circuitos SOP (Sum Of Products)
 - Producto de sumas de todas las variables o sus conjugadas:
 Producto de Maxterms // Circuitos POS (*Product Of Sums*)

- Todas las ecuaciones Booleanas pueden ser descritas como suma de minterms (SOP)
- Cada fila en una tabla de verdad es un minterm
- Un minterm es un producto (AND) de las variables y sus complementos
- Cada minterm es VERDADERO ('1') para esa fila (y sólo para esa fila)
- La función se construye por la suma (OR) de los minterns para los cuales la salida es VERDADERA
- Se trata por tanto de una suma (OR) de productos (AND)

Α	В	Y	minterm
0	0	0	$\overline{A} \ \overline{B}$
0	1	1	A B
1	0	0	\overline{A}
(1	1	1	A B

$$Y = \mathbf{F}(A, B) = \overline{A}B + AB$$

- Todas las ecuaciones Booleanas pueden ser descritas como producto de maxterms (POS)
- Cada fila en una tabla de verdad es un maxterm
- Un maxterm es una suma (OR) de las variables y sus complementos
- Cada maxterm es FALSO ('0') para esa fila (y sólo para esa fila)
- La función se construye por el producto (AND) de los maxterms para los cuales la salida es FALSA
- Se trata por tanto de un producto (AND) de sumas (OR)

Α	В	Y	maxterm
0	0	0	A + B
0	1	1	$A + \overline{B}$
1	0	0	A + B
1	1	1	$\overline{A} + \overline{B}$

$$Y = \mathbf{F}(A, B) = (A + B) (\overline{A} + B)$$

 Ejemplo: Desarrollo canónico de una función a partir de su tabla de verdad.

N°	Α	В	С	F(A,B,C)		Minterms		Maxterms
0	0	0	0	1	\rightarrow	$(\overline{A}\cdot\overline{B}\cdot\overline{C})$		
1	0	0	1	O			\rightarrow	$(A+B+\overline{C})$
2	0	1	0	1	\rightarrow	$(\overline{A}\cdotB\cdot\overline{C})$		
3	0	1	1	1	\rightarrow	$(\overline{A}\cdotB\cdot\mathcal{C})$		
4	1	0	0	0			\rightarrow	$(\overline{A} + B + C)$
5	1	0	1	0			\rightarrow	$(\overline{A} + B + \overline{C})$
6	1	1	0	1	\rightarrow	$(A \cdot B \cdot \overline{C})$		
7	1	1	1	1	\rightarrow	$(A \cdot B \cdot C)$		

• Minterms:

$$F = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C) =$$

$$= m_0 + m_2 + m_3 + m_6 + m_7 = \sum (0, 2, 3, 6, 7)$$

Maxterms:

$$F = (A + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}) = M_1 \cdot M_4 \cdot M_5 = \prod (1,4,5)$$

 La implementación de una función lógica por medio de Minterns o de Maxterns, requiere la mayor cantidad de recursos. Por tanto es conveniente, si es posible, obtener expresiones más simplificadas.

- Diagramas de Karnaugh (mapas k)
 - Facilitan la realización de diseños lógicos con la estructura de puertas más sencilla mayor economía de diseño.
 - Secuencia de celdas en la que cada celda representa un valor binario de las variables de entrada. Cada celda contiene el valor correspondiente de la función para dicha combinación.
 - Las celdas se disponen de manera que la simplificación de una determinada expresión consiste en agrupar adecuadamente las celdas.
 - Pueden utilizarse para expresiones de 2, 3, 4, 5 ó 6 variables.
 - Para n variables hacen falta 2ⁿ celdas.
 - Para un número mayor de variables se utilizan otros métodos (Quine-McClusky) o métodos CAD.

- Diagramas de Karnaugh de tres variables
 - A, B, C: Variables. Conjunto de 8 celdas
 - Los valores binarios de A y B se encuentran en la parte izquierda y los de C en la parte superior (puede hacerse al revés)

AB C	0	1
00	1	0
00 01 11 10	0	0
11	0	0
10	0	1

AB		0	1
(00[$(\overline{A} \cdot \overline{B} \cdot \overline{C})$	$(\overline{A} \cdot \overline{B} \cdot C)$
(01 [$(\overline{A} \cdot B \cdot \overline{C})$	$(\overline{A} \cdot B \cdot C)$
	11	$(A \cdot B \cdot \overline{C})$	(A · B · C)
	10 [$(A \cdot \overline{B} \cdot \overline{C})$	$(A \cdot \overline{B} \cdot C)$

Ejemplo: La función vale '1' en la celda de la esquina superior izquierda corresponde a un valor de las variables A, B y C de 000 (/A./B./C) y en la celda de la esquina inferior derecha corresponde a un valor de las variables de 101 (A./B.C)

- Diagramas de Karnaugh de cuatro variables
 - A, B, C, D: Variables. Matriz de 16 celdas
 - Los valores binarios de A y B se muestran en la parte izquierda de la tabla y los de C y D en la parte superior

AB CD	00	01	11	10	AB CD	. 00	01	11	10
00	0	0	0	1	00	$(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D})$	$(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D)$	$(\overline{A} \cdot \overline{B} \cdot C \cdot D)$	$(\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D})$
01	1	0	0	0	01	$(\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D})$	$(\overline{A} \cdot B \cdot \overline{C} \cdot D)$	$(\overline{A} \cdot B \cdot C \cdot D)$	$(\overline{A} \cdot B \cdot C \cdot \overline{D})$
11	0	0	0	0	11	$(A \cdot B \cdot \overline{C} \cdot \overline{D})$	$(A \cdot B \cdot \overline{C} \cdot D)$	$(A \cdot B \cdot C \cdot D)$	$(A \cdot B \cdot C \cdot \overline{D})$
10	0	1	0	0	10	$(A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D})$	$(A \cdot \overline{B} \cdot \overline{C} \cdot D)$	$(A \cdot \overline{B} \cdot C \cdot D)$	$(A \cdot \overline{B} \cdot C \cdot \overline{D})$

Ejemplo: La función vale '1' en la celda de la esquina superior derecha corresponde a un valor de las variables A, B, C y D de 0010 (/A./B.C./D), en la celda de la segunda fila izquierda que corresponde a un valor de 0100 (/A.B./C./D) y en la última fila que corresponde a un valor de 1001 (/A./B./C.D).

- Diagramas de Karnaugh de cinco variables
 - A, B, C, D, E: Variables. Matriz de 32 celdas
 - Se consideran dos tablas de cuatro variables (A, B, C y D), una correspondiendo al valor de la variable E=0 y otra a E=1
 - Los valores binarios de A y B se muestran en la parte izquierda de la tabla y los de C y D en la parte superior

AB CD	00	01	11	01	00	01	11	10		
00										
01										
11										
10										
	E=O						E =1			

- Diagramas de Karnaugh. Adyacencia de celdas
 - Las celdas de un diagrama de Karnaugh se disponen de manera que sólo cambia una única variable entre celdas adyacentes
 - Celdas que difieren en una única variable: Adyacentes
 - Celdas cuyo valor difiere en más de una variable: No adyacentes
 - Físicamente, cada celda es adyacente a las celdas que están situadas inmediatas a ella por cualquiera de sus cuatro lados
 - Las celdas adyacentes tienen una distancia de Hamming de 1.
 - Una celda no es adyacente a aquellas que tocan diagonalmente alguna de sus esquinas
 - Las celdas de la fila superior son adyacentes a las de la fila inferior y las celdas de la columna izquierda son adyacentes a la de la comuna derecha
 Adyacencia cíclica

- Diagrama de Karnaugh de una suma de productos estándar
 - Por cada término de la expresión suma de productos, se coloca un 1 en el diagrama de Karnaugh en la celda correspondiente al valor del producto

- Diagrama de Karnaugh de una suma de productos no estándar
 - A un término en forma no estándar le faltan una o más variables en su expresión, que habrá que completar

$$\overline{A} + A\overline{B} + AB\overline{C}$$
000 100 110
001 101
010
011

- Diagramas de Karnaugh. Simplificación de una suma de productos
 - Minimización: Proceso que genera una expresión que contiene el menor número posible de términos con el mínimo número de variables posibles
 - Tras obtener el diagrama de Karnaugh, hay que seguir tres pasos para obtener la expresión de productos mínima:

- Diagramas de Karnaugh. Simplificación de una suma de productos
 - Agrupación de 1's
 - Un grupo tiene que contener 1, 2, 4, 8 ó 16 celdas (potencias de 2).
 Diagrama de 3 variables: Grupo máximo de 8 celdas
 - Cada celda de un grupo tiene que ser adyacente a una o más celdas del mismo grupo, pero no todas las celdas del grupo tienen que ser adyacentes entre sí
 - Incluir siempre en cada grupo el mayor número posible de 1's
 - Cada 1 del diagrama tiene que estar incluido en al menos un grupo.
 Los 1's que ya pertenezcan a un grupo pueden estar incluidos en otro siempre que los grupos que solapen contengan 1's no comunes

Diagramas de Karnaugh. Simplificación de una suma de productos

Agrupación de 1's

AB	CD	00	01	11	10
	00	1	1		
	00 01	1	1	1	
	11				
	10		1	1	

- Diagramas de Karnaugh. Simplificación de una suma de productos
 - Determinación de la expresión suma de productos mínima a partir del diagrama. Suma de los términos producto obtenidos
 - Cada grupo de celdas que contiene 1's da lugar a un término producto compuesto por todas las variables que aparecen en el grupo en sólo una forma (no complementada o complementada)
 - Las variables que aparecen complementadas y sin complementar dentro del mismo grupo se eliminan
 - Una vez obtenidos todos los términos mínimos a partir del diagrama de Karnaugh, se suman para obtener la expresión de productos mínima

- Diagramas de Karnaugh. Simplificación de una suma de productos
 - Determinación de la expresión suma de productos mínima a partir del diagrama. Suma de los términos producto obtenidos

Diagramas de Karnaugh de cinco variables.

Simplificar $F(A,B,C,D,E) = \Sigma(2,3,5,8,9,10,12,13,14,16,18,20,21,22,23,25,26,30)$

- Dos mapas de 4 variables, uno para la quinta variable a 0 y otro para la quinta variable a 1
- Adyacencia: Imaginar que el mapa E=0 está colocado encima del mapa A=1. Cada celda del mapa E=0 es adyacente con la celda que está justo debajo en el mapa A=1

$$A\overline{C}\overline{E} + \overline{A}D\overline{E} + \overline{A}\overline{D}E + C\overline{D} + \overline{A}BD + A\overline{B}\overline{C}D$$

Diagramas de Karnaugh de cinco variables.

Simplificar $F(A,B,C,D,E) = \Sigma(2,3,5,8,9,10,12,13,14,16,18,20,21,22,23,25,26,30)$

- Dos mapas de 4 variables, uno para la quinta variable a 0 y otro para la quinta variable a 1
- Adyacencia: Imaginar que el mapa E=0 está colocado encima del mapa A=1. Cada celda del mapa E=0 es adyacente con la celda que está justo debajo en el mapa A=1

- Diagramas de Karnaugh. Simplificación de un producto de sumas
 - El proceso de minimización de un producto de sumas es básicamente el mismo que para una expresión suma de productos, salvo que ahora hay que agrupar los 0's para generar el mínimo número de términos suma
 - Las reglas para agrupar los 0's son las mismas que para agrupar los 1's

- Diagramas de Karnaugh. Simplificación de un producto de sumas
 - Determinación de la expresión producto de sumas mínima a partir del diagrama. Producto de los términos suma obtenidos

- Obtención del diagrama de Karnaugh a partir de la tabla de verdad
 - Ejemplo:

N°	A	В	C	D	F	Minterms			Maxterms
0	0	0	0	0	1	\rightarrow	$(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D})$		
1	0	0	0	1	1	\rightarrow	$(\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D)$		
2	0	0	1	0	0			\rightarrow	$(A+B+\overline{C}+D)$
3	0	0	1	1	1	\rightarrow	$(\overline{A} \cdot \overline{B} \cdot C \cdot D)$		
4	0	1	0	0	0			\rightarrow	$(A + \overline{B} + C + D)$
5	0	1	0	1	1	\rightarrow	$(\overline{A} \cdot B \cdot \overline{C} \cdot D)$		
6	0	1	1	0	1	\rightarrow	$(\overline{A} \cdot B \cdot C \cdot \overline{D})$		
7	0	1	1	1	0			\rightarrow	$(A + \overline{B} + \overline{C} + \overline{D})$
8	1	0	0	0	0			\rightarrow	$(\overline{A} + B + C + D)$
9	1	0	0	1	1	\rightarrow	$(A \cdot \overline{B} \cdot \overline{C} \cdot D)$		
10	1	0	1	0	0			\rightarrow	$(\overline{A} + B + \overline{C} + D)$
11	1	0	1	1	1	\rightarrow	$(A \cdot \overline{B} \cdot C \cdot D)$		
12	1	1	0	0	1	\rightarrow	$(A \cdot B \cdot \overline{C} \cdot \overline{D})$		
13	1	1	0	1	1	\rightarrow	$(A \cdot B \cdot \overline{C} \cdot D)$		
14	1	1	1	0	0			\rightarrow	$(\overline{A} + \overline{B} + \overline{C} + D)$
15	1	1	1	1	1	\rightarrow	$(A \cdot B \cdot C \cdot D)$		

- Obtención del diagrama de Karnaugh a partir de la tabla de verdad
 - Ejemplo: Desarrollo por minterms

$$F = \overline{ABCD} + \overline{ABC} + \overline{ABC} + \overline{CD} + \overline{AD} + \overline{BD}$$

AND2

- Obtención del diagrama de Karnaugh a partir de la tabla de verdad
 - Ejemplo: Desarrollo por maxterms

$$F = (\underline{A} + \overline{B} + \underline{C} + \underline{D}) \cdot (\underline{A} + \overline{B} + \overline{C} + \overline{D}) \cdot (\overline{A} + B + \underline{D}) \cdot (\underline{B} + \overline{C} + \underline{D}) \cdot (\overline{A} + \overline{C} + \underline{D})$$

- Los elementos y funciones lógicas vistos están disponibles como circuitos integrados (CI)
- Un circuito integrado monolítico es un circuito electrónico construido enteramente sobre un pequeño chip de silicio
- Todos los componentes del circuito (transistores, diodos, resistencias y condensadores) son parte integrante de un único chip

• Sección de un encapsulado de CI:

- Encapsulados de los CI
 - Se clasifican según la forma en que se montan sobre las tarjetas de circuito impreso
 - Pueden ser de inserción o de montaje superficial
 - Encapsulados de inserción:
 - Los pines (patas) se insertan en los taladros de la tarjeta de circuito impreso y se sueldan a las pistas por la cara opuesta
 - El más típico: DIP (dual in-line package)

- Encapsulados de los CI
 - Encapsulados de montaje superficial:
 - Método más moderno, ahorra espacio
 - No necesita taladros en las tarjetas de circuito impreso. Los pines se sueldan directamente a las pistas de una cara de la tarjeta, dejando la otra libre para añadir circuitos adicionales
 - Menos tamaño que el DIP, los pines están más cercanos
 - El más típico: SOIC (small-outline IC)

- Encapsulados de los CI
 - Encapsulados típicos DIP y SOIC con sus dimensiones básicas y la numeración de los pines

 Diagramas de configuración de los pines para las puertas lógicas más comunes

