

and let Z = X + Y. Find $\mathbf{P}(X = 1 \mid Z = z)$. Check that the expression obtained makes sense for $p \to 0^+, p \to 1^-, \lambda \to 0^+, \text{ and } \lambda \to \infty$.

$$P(X=1|1?=X) = \frac{P_{X}(x=1) \circ f_{Z}(x|x=1)}{f_{Z}(x)} = \frac{P_{X}(x=1) \circ f_{Z}(x|x=1) + P_{X}(x=1) \circ f_{Z}(x|x=1)}{P_{X}(x=1) \circ f_{Z}(x|x=1) + P_{X}(x=1) \circ f_{Z}(x|x=1)} = \frac{P_{X}(x=1) \circ f_{Z}(x|x=1) + P_{X}(x=1) \circ f_{Z}(x|x=1)}{P_{X}(x+1) \circ f_{Z}(x+1) \circ f_{Z}(x|x=1)} = \frac{P_{X}(x=1) \circ f_{Z}(x|x=1)}{(1-p)e^{-\lambda(|x+1|+pe^{-\lambda|x-1})} + P_{X}(x=1)} = \frac{P_{X}(x=1) \circ f_{Z}(x|x=1)}{(1-p)e^{-\lambda(|x+1|+pe^{-\lambda|x-1})} + P_{X}(x=1)} = \frac{P_{X}(x=1) \circ f_{Z}(x|x=1)}{P_{X}(x+1) \circ f_{Z}(x|x=1)} = \frac{P_{X}(x=1) \circ f_{Z}(x|x=1)}{P_{X}(x+1) \circ f_{Z}(x|x=1)} = \frac{P_{X}(x=1) \circ f_{Z}(x|x=1)}{P_{X}(x+1) \circ f_{Z}(x|x=1)} = \frac{P_{X}(x=1) \circ f_{Z}(x|x=1)}{P_{X}(x=1) \circ f_{Z}(x|x=1)} = \frac{P_{X}(x=1) \circ f_{X}(x|x=1)}{P_{X}(x=1) \circ f_{X}(x=1)} = \frac{P_{X}(x=1) \circ f_{X}(x=1)}{P_{X}(x=1) \circ f_{X}(x=1)} = \frac{P_{X}(x=1) \circ f_{X}(x=1)}{P_{X}(x=1)} = \frac{P_{X}(x=1) \circ f_{X}(x=1)}{P_{X}(x=1)} = \frac{P_{X}(x=1) \circ f_{X}(x=1)}{P_{X}(x=1)} = \frac{P_{X}(x=1) \circ f_{X$$

2. Let Q be a continuous random variable with PDF

$$f_Q(q) = \begin{cases} 6q(1-q), & \text{if } 0 \le q \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

This Q represents the probability of success of a Bernoulli random variable X, i.e.,

$$\mathbf{P}(X=1 \mid Q=q) = q.$$

Find $f_{Q|X}(q|x)$ for $x \in \{0,1\}$ and all q.

$$\int a_{1} \times (4_{1} \times = 1) = \int_{0}^{1} \int a_{1} (x_{1} + 1) dy dy$$

$$= \int_{0}^{1} \int a_{1} (x_{1} + 1) dy dy$$

$$= \int_{0}^{1} \int a_{1} (x_{1} + 1) dy dy$$

$$= \int_{0}^{1} \int a_{1} (x_{1} + 1) dy dy$$

$$= \int_{0}^{1} \int a_{1} (x_{1} + 1) dy dy$$

$$= \int_{0}^{1} \int a_{1} (x_{1} + 1) dy$$

$$= \int_{0}^{1} \int a$$

$$=\frac{\int_{0}^{1} 64(1-4) \cdot 9 d4}{\int_{0}^{1} 64(1-4) \cdot 9 d4} = \frac{\int_{0}^{1} 64^{2}(1-4) d4}{\int_{0}^{1} 64^{2}(1-4) d4} = \frac{\int_{0}^{1} 64^{2}(1-4) d4}{\int_{0}^{1} 64^{2}(1-4) d4} + \int_{0}^{1} 64(1-4)^{2} d4$$

$$= \frac{\int 6q^2 + 6q^3 dq}{\int 6q^2 + 6q^3 dq} + \frac{\int 6q(q-2q^2+q^3)}{\int 6(q^2+q^3+q^4)} dq = \frac{6(\frac{1}{2}q^3+\frac{1}{3}q^4)}{6(\frac{1}{2}q^3+\frac{1}{3}q^4)+6(q^4+q^4)}$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$f_Q(q) = \begin{cases} 6q(1-q), & \text{if } 0 \le q \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

This Q represents the probability of success of a Bernoulli random variable X, i.e.,

$$\mathbf{P}(X=1 \mid Q=q) = q.$$

Find $f_{Q|X}(q|x)$ for $x \in \{0,1\}$ and all q.

$$\int a |x| (4|x=1) = \int \int a(4) px|a(x=1|4) dq$$

$$= \int \int a(4) px|a(x=1|4) dq$$

$$= \int \int a(4) px|a(x=1|4) dq + \int \int a(4) px|a(x=0|4) dq$$

$$=\frac{564(1-4)\cdot 9d4}{564(1-4)\cdot 9d4}=\frac{564^2(1-4)d4}{564^2(1-4)d4}=\frac{564^2(1-4)d4}{564^2(1-4)d4}$$

$$\frac{64^{2}(1-4)}{564^{2}+64^{3} 44 + \frac{364(4-24+3)}{64(4-24+3)}} = \frac{64^{2}(1-4)}{8(\frac{1}{2}4^{3}+\frac{1}{3}4^{4})} = \frac{1-4}{5(1-4)}$$

$$\frac{32(1-4)}{32(1-4)} = \frac{1-4}{14+34} = \frac{1-4}{14+34} = \frac{1-4}{5(1-4)} = \frac{1-4}{5(1-4)}$$

SECTION 8.1. Bayesian Inference and the Posterior Distribution

Problem 1. Artemisia moves to a new house and she is "fifty-percent sure" that the phone number is 2537267. To verify this, she uses the house phone to dial 2537267, she obtains a busy signal, and concludes that this is indeed the correct number. Assuming that the probability of a typical seven-digit phone number being busy at any given time is 1%, what is the probability that Artemisia's conclusion was correct?

Problem 2. Nefeli. a student in a probability class, takes a multiple-choice test with 10 questions and 3 choices per question. For each question, there are two equally likely possibilities, independent of other questions: either she knows the answer, in which case she answers the question correctly, or else she guesses the answer with probability of success 1/3.

- (a) Given that Nefeli answered correctly the first question, what is the probability that she knew the answer to that question?
- (b) Given that Nefeli answered correctly 6 out of the 10 questions, what is the posterior PMF of the number of questions of which she knew the answer?

Stat 110 Strategic Practice 7, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

- 1 Joint, Conditional, and Marginal Distributions
 - 3. Let U_1, U_2, U_3 be i.i.d. Unif(0, 1), and let $L = \min(U_1, U_2, U_3), M = \max(U_1, U_2, U_3)$.
 - (a) Find the marginal CDF and marginal PDF of M, and the joint CDF and joint PDF of L, M.

Hint: for the latter, start by considering $P(L \ge l, M \le m)$.

(b) Find the conditional PDF of M given L.

Stat 110 Strategic Practice 7, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

- 1 Joint, Conditional, and Marginal Distributions
 - 3. Let U_1, U_2, U_3 be i.i.d. Unif(0, 1), and let $L = \min(U_1, U_2, U_3), M = \max(U_1, U_2, U_3)$.
 - (a) Find the marginal CDF and marginal PDF of M, and the joint CDF and joint PDF of L, M.

Hint: for the latter, start by considering $P(L \ge l, M \le m)$.

(b) Find the conditional PDF of M given L.

Stat 110 Strategic Practice 7, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1 Joint, Conditional, and Marginal Distributions

(independent version -> Poisson)

5. A chicken lays n eggs. Each egg independently does or doesn't hatch, with probability p of hatching. For each egg that hatches, the chick does or doesn't survive (independently of the other eggs), with probability s of survival. Let $N \sim \text{Bin}(n,p)$ be the number of eggs which hatch, X be the number of chicks which survive, and Y be the number of chicks which hatch but don't survive (so X + Y = N). Find the marginal PMF of X, and the joint PMF of X and Y. Are they independent?

-> Multinounal