μ**A741**

FREOUENCY-COMPENSATED OPERATIONAL AMPLIFIER

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The μ A741 is a high performance monolithic operational amplifier constructed on a single silicon chip, using the Fairchild Planar* epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the μ A741 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications.

- NO FREQUENCY COMPENSATION REQUIRED
- SHORT-CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW POWER CONSUMPTION
- NO LATCH UP

Supply Voltage

ABSOLUTE MAXIMUM RATINGS

Military (312 Grade)	±22 V
Commercial (393 Grade)	±18 V
Internal Power Dissipation (Note 1)	
Metal Can	500 mW
Ceramic DIP	670 mW
Silicone DIP	340 mW
Mini DIP	310 mW
Flatpak	570 mW
Differential Input Voltage	±30 V
Input Voltage (Note 2)	±15 V
Storage Temperature Range	
Metal Can, Ceramic DIP, and Flatpak	-65° C to $+150^{\circ}$ C
Mini DIP and Silicon DIP	−55° C to +125° C
Operating Temperature Range	
Military (312 Grade)	−55°C to +125°C
Commercial (393 Grade)	0° C to + 70° C
Lead Temperature (Soldering)	
Metal Can, Ceramic DIP and Flatpak (60 seconds)	300° C
Mini DIP and Silicone DIP (10 seconds)	260° C
Output Short Circuit Duration (Note 3)	Indefinite

Notes on following pages.

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ741

312 GRADE

PARAMETERS (see definitions)	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage	$R_{S} \leq 10 \text{ k}\Omega$		1.0	5.0	mV
Input Offset Current			20	200	nA
Input Bias Current			80	500	nA
Input Resistance		0.3	2.0		Ω M
Input Capacitance			1.4		pF
Offset Voltage Adjustment Range			±15		mV
Large-Signal Voltage Gain	$ m R_L \geq 2~k\Omega,~V_{out} = \pm 10~V$	50,000	200,000		
Output Resistance			75		Ω
Output Short-Circuit Current			25		mA
Supply Current	4		1.7	2.8	mA
Power Consumption			50	85	- mW
Transient Response (unity gain)	$ m V_{in} = 20~mV,~R_{L} = 2~k\Omega,~C_{L} \leq 100~pF$				
Risetime	···		0.3		μS
Overshoot			5.0		%
Slew Rate	$ m R_L \geq 2~k\Omega$		0.5		V /μs
The following specifications app	oly for $-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$:				
Input Offset Voltage	$ extsf{R}_{ extsf{S}} \leq 10 \; extsf{k}\Omega$		1.0	6.0	m۷
Input Offset Current	$T_A = +125$ °C		7.0	200	nA
	$T_A = -55$ °C		85	500	nA
Input Bias Current	$T_A = +125$ °C		0.03	0.5	μ A
	$T_A = -55$ °C		7.0 200 85 500	μ A	
Input Voltage Range		±12	±13		٧
Common Mode Rejection Ratio	$ extsf{R}_{ extsf{S}} \leq 10 \; extsf{k}\Omega$	70	90		dB
Supply Voltage Rejection Ratio	${ m R_S} \leq 10~{ m k}\Omega$		30	150	μ V/V
Large-Signal Voltage Gain	$R_L \geq 2 \ k\Omega, \ V_{out} = \pm 10 \ V$	25,000			
Output Voltage Swing	${\sf R_L} \geq 10~{\sf k}\Omega$	±12	±14		٧
	$R_L \geq 2 k\Omega$	±10	±13		٧
Supply Current	$T_A = +125$ °C		1.5	2.5	mA
	$T_A = -55$ °C		2.0	3.3	mA
Power Consumption	$T_A = +125$ °C		45	75	mW
	$T_A = -55$ °C		60	100	mW

TYPICAL PERFORMANCE CURVES

312 GRADE

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE

INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

FAIRCHILD LINEAR INTEGRATED CIRCUITS • µA741

393 GRADE

ELECTRICAL CHARACTERISTICS ($V_S = \pm 15 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$ unless otherwise specified)

PARAMETERS (see definitions)	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage	$R_{S} \leq 10~\mathrm{k}\Omega$		2.0	6.0	mV
Input Offset Current			20	200	nA
Input Bias Current			80	500	nA
Input Resistance		0.3	2.0		$M\Omega$
Input Capacitance			1.4		pF
Offset Voltage Adjustment Range			±15		mV
Input Voltage Range		±12	±13		٧
Common Mode Rejection Ratio	${ m R_S} \leq 10~{ m k}\Omega$	70	90		dB
Supply Voltage Rejection Ratio	${ m R_S} \leq 10~{ m k}\Omega$		30	150	μ V/V
Large-Signal Voltage Gain	$R_L \ge 2 \text{ k}\Omega$, $V_{\text{out}} = \pm 10 \text{ V}$	20,000	200,000		
Output Voltage Swing	${ m R_L} \geq 10~{ m k}\Omega$	±12	±14		٧
	$R_{L}^{-} \geq 2 \ k\Omega$	±10	±13		٧
Output Resistance			75		Ω
Output Short-Circuit Current			25		mA
Supply Current			1.7	2.8	mA
Power Consumption			50	85	mW
Transient Response (unity gain)	$ m V_{in} = 20~mV,~R_{L} = 2~k\Omega,~C_{L} \leq 100~pF$				
Risetime			0.3		μ S
Overshoot			5.0		%
Slew Rate	${\sf R}_{\sf L} \geq 2~{\sf k}\Omega$		0.5		V/μs
The following specifications app	y for $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ}\text{C}$:				
Input Offset Voltage				7.5	mV
Input Offset Current				300	nA
Input Bias Current				800	nA
Large-Signal Voltage Gain	$R_L \geq 2 \text{ k}\Omega$, $\mathbf{Q}_{\text{out}} = \pm 10 \text{ V}$	15,000			
Output Voltage Swing	$R_{L} \geq 2 \text{ k}\Omega$	±10	±13		٧

TYPICAL PERFORMANCE CURVES 393 GRADE

NOTES

- Rating applies to ambient temperatures up to 70° C. Above 70° C ambient derate linearly at 6.3 mW/ $^{\circ}$ C for the Metal Can, 8.3 mW/ $^{\circ}$ C for the Ceramic DIP, 6.3 mW/ $^{\circ}$ C for the Silicone DIP, 5.6 mW/ $^{\circ}$ C for the Mini DIP and 7.1 mW/ $^{\circ}$ C for the Flatpak. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage. Short circuit may be to ground or either supply. Rating applies to $\pm 125^{\circ}$ C case temperature or $\pm 75^{\circ}$ C ambient temperature.

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ741

TYPICAL PERFORMANCE CURVES (312 GRADE)

INPUT BIAS CURRENT

INPUT OFFSET CURRENT

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ741

TYPICAL PERFORMANCE CURVES (312 AND 393 GRADES)

POWER CONSUMPTION

FAIRCHILD LINEAR INTEGRATED CIRCUITS • µA741

SUPPLY VOLTAGE - ± V

TRANSIENT RESPONSE TEST CIRCUIT

VOLTAGE OFFSET NULL CIRCUIT

COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY

VOLTAGE FOLLOWER LARGE-SIGNAL PULSE RESPONSE

TYPICAL APPLICATIONS

UNITY-GAIN VOLTAGE FOLLOWER

 $\begin{aligned} \mathbf{R}_{\mathrm{IN}} &= 400 \ \mathrm{M}\Omega \\ \mathbf{C}_{\mathrm{IN}} &= 1 \ \mathrm{pF} \\ \mathbf{R}_{\mathrm{out}} &< < 1 \ \Omega \\ \mathbf{B.W.} &= 1 \ \mathrm{MHz} \end{aligned}$

NON-INVERTING AMPLIFIER

GAIN	R,	R ₂	B.W.	R _{IN}
10	1 kΩ	9 kΩ	100 kHz	400 MΩ
100	100 Ω	9.9 kΩ	10 kHz	280 MΩ
1000	100 Ω	99.9 kΩ	1 kHz	80 MΩ

INVERTING AMPLIFIER

GAIN	R,	R ₂	B.W.	R _{IN}
1	10 kΩ	10 kΩ	1 MHz	10 kΩ
10	1 kΩ	10 kΩ	100 kHz	1 kΩ
100	1 kΩ	100 kΩ	10 kHz	1 kΩ
1000	100 Ω	100 kΩ	1 kHz	100 Ω

CLIPPING AMPLIFIER

$$\frac{E_{_{out}}}{E_{_{IN}}} = \frac{R_{_2}}{R_{_1}} \; \text{if} \; \big| \; E_{_{out}} \, \big| \leq V_{_Z} + 0.7 \; V$$
 where $V_{_Z} =$ Zener breakdown voltage

TYPICAL APPLICATIONS

SIMPLE INTEGRATOR

$$\rm E_{out} = -\frac{1}{R_{I}C_{I}} \int \, E_{IN}dt$$

SIMPLE DIFFERENTIATOR

$$\mathbf{E}_{\mathrm{out}} = -\mathbf{R}_{\mathrm{2}}\mathbf{C}_{\mathrm{1}} \; \frac{\mathrm{d}\mathbf{E}_{\mathrm{1N}}}{\mathrm{d}t}$$

LOW DRIFT LOW NOISE AMPLIFIER

HIGH SLEW RATE POWER AMPLIFIER

NOTCH FILTER USING THE μ A741 AS A GYRATOR

