# Econometrics Assignment 5

### Yue Peng

### April 13 2022

## Question 1





## (b) & (c)





For 2008-2019, data is avaliable.

#### (d)



In the data, 22 states expanded in 2014. 16 never expanded.

stfips has 46 unique values, which means that it has data from 46 states, thus not all 50 states are contained in the data.

(e)

```
drop if yexp2 == 2015
gen treatment = 0
replace treatment = 1 if yexp2 <= 2014
```

. tab treatment if year==2008, missing

| treatment | Freq. | Percent | Cum.   |
|-----------|-------|---------|--------|
| 0         | 21    | 48.84   | 48.84  |
| 1         | 22    | 51.16   | 100.00 |
| Total     | 43    | 100.00  |        |

46-3=43, so the number is right

#### (f)

bysort year treatment: sum dins gives a very bad table so I'm using another

#### one.

. tab year if treatment==1, sum(dins)

. tab year if treatment == 0, sum(dins)

|             | Summary of Insurance Rate among |                |       | Census/ACS  | Summary of Insurance Rate among low-income childless adults |           |       |
|-------------|---------------------------------|----------------|-------|-------------|-------------------------------------------------------------|-----------|-------|
| Census/ACS  | low-inco                        | me childless a | dults |             |                                                             |           |       |
| survey year | Mean                            | Std. Dev.      | Freq. | survey year | Mean                                                        | Std. Dev. | Freq. |
| 2008        | .66408277                       | .05897912      | 22    | 2008        | . 62969285                                                  | .06207466 | 21    |
| 2009        | .64705367                       | .06083315      | 22    | 2009        | .61867571                                                   | .06662203 | 21    |
| 2009        | .64666867                       | .06107716      | 22    | 2010        | .60966938                                                   | .05563584 | 21    |
| 2010        | .64950643                       | .06294438      | 22    | 2011        | .61125046                                                   | .05444716 | 21    |
| 2011        | .65703935                       | .06294438      | 22    | 2012        | .61702441                                                   | .05897054 | 21    |
| 2012        |                                 | .05845086      | 22    | 2013        | .6227468                                                    | .04490705 | 21    |
|             | .66242208                       |                |       | 2014        | .66759239                                                   | .05465418 | 21    |
| 2014        | .75371452                       | .05418906      | 22    | 2015        | .69913534                                                   | .04614653 | 21    |
| 2015        | .8080168                        | .04312584      | 22    | 2016        | .7145581                                                    | .04496555 | 21    |
| 2016        | .82896771                       | .04356355      | 22    | 2017        | .71698077                                                   | .050089   | 21    |
| 2017        | .82087042                       | .04192338      | 22    | I           |                                                             |           |       |
| 2018        | .8204765                        | .03987981      | 22    | 2018        | .7189196                                                    | .05063796 | 21    |
| 2019        | .81819207                       | .03942364      | 22    | 2019        | .71389971                                                   | .05309046 | 21    |
| Total       | .73141758                       | .09490569      | 264   | Total       | .66167879                                                   | .06974533 | 252   |

**(g)** 

Change in average insurance rate for non-treated: 0.66759239-0.6227468=0.04484559 Change in average insurance rate for treated: 0.75371452-0.66242208=0.09129244 DID estimate =0.09129244-0.04484559=0.04644685

### (h)

```
gen t2014=0
replace t2014=1 if year==2014
gen treatx2014=treatment*t2014
gen filter = 0
replace filter = 1 if year==2014 | year==2013
```

#### . regress dins t2014 treatment treatx2014 if filter==1, cluster(stfips)

| Linear | regression Number of obs | = | 86     |
|--------|--------------------------|---|--------|
|        | F(3, 42)                 | = | 96.65  |
|        | Prob > F                 | = | 0.0000 |
|        | R-squared                | = | 0.4586 |
|        | Root MSE                 | = | .05336 |

(Std. Err. adjusted for 43 clusters in stfips)

| dins                    | Coef.     | Robust<br>Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|-------------------------|-----------|---------------------|-------|-------|------------|-----------|
| t2014                   | .0448456  | .0060665            | 7.39  | 0.000 | .0326029   | .0570883  |
| treatment<br>treatx2014 | .0396753  | .0159493            | 5.09  | 0.000 | .0280306   | .0648631  |
| _cons                   | . 6227468 | .009852             | 63.21 | 0.000 | .6028648   | .6426289  |

 $\beta_3$  is the same as the DID estimate I calculated earlier.

#### (i)

Parallel trends assumption assumes that the difference between treatment group and control group should be constant with the absence of treatment.

$$\mu_{1,2014}^0 - \mu_{1,2013}^0 = \mu_{0,2014}^0 - \mu_{0,2013}^0 \tag{1}$$

$$E[Y_{i2014}(0) - Y_{i2013}(0)|D_i = 1] = E[Y_{i2014}(0) - Y_{i2013}(0)|D_i = 0]$$
(2)

In this case, it means that the difference between the dins estimates for states in the treatment group and that of control group should be (approximately) the same without the treatment, which is "before 2014" in this case.

## (j)

```
drop t2014
tabulate year, generate (year)
ren year# year#, renumber(2008)
quietly forval j = 2008/2019 {
              generate t'j' = treatment * year'j'
replace t2013 = 0
regress dins i.year i.stfips t2*, cluster(stfips)
ssc install coefplot
coefplot, omitted keep(t2*) vertical
. regress dins i.year i.stfips t2*, cluster(stfips) note: t2013 omitted because of collinearity.
Linear regression
                                                                                      516
                                                                                  0.9374
                                                       R-squared
Root MSE
                                        (Std. err. adjusted for 43 clusters in stfips)
                                    Robust
                                                          P>|t|
                    Coefficient
                                                                      [95% conf. interval]
            dins
                                   std. err.
                       .0110171
                                    .0041383
                                                 -2.66
-4.08
-3.36
-2.91
-1.08
8.87
8.50
9.51
8.60
7.56
                                                                     -.0193686
            2010
                       .0200235
.0184424
                                    .0049124
.0054814
                                                          0.000
0.002
0.006
0.288
0.000
0.000
0.000
0.000
                                                                     -.0299371
-.0295044
                                                                                   -.0101098
            2011
                                                                                   -.0073804
            2012
                      -.0126684
                                    .0043538
                                                                      .0214547
                                                                                    .0038822
            2013
                                    .0064585
                                                                      - .0199798
            2014
                       .0378995
                                    .0042739
                                                                       .0292745
                                                                                    .0465246
           2014
2015
2016
2017
2018
2019
                        .0694425
                                    .0081728
.0089196
                                                                       .0529492
.0668648
                                                                                    .0859358
                        .0848653
                                                                                    .1028657
                       .0872879
.0872268
.0842069
                                    .0101555
.0118061
.0117343
                                                                       .0667932
.0654011
.0605261
                                                                                    .1077827
.1130525
.1078876
   stfips
alaska
arizona
arkansas
california
colorado
connecticut
florida
georgia
hawaii
```

| idaho          | 0128005  |           | -1.3e+13 | 0.000 | 0128005  | 0128005  |
|----------------|----------|-----------|----------|-------|----------|----------|
| illinois       | 0163106  | .0067381  | -2.42    | 0.020 | 0299087  | 0027125  |
| iowa           | .0876154 | .0067381  | 13.00    | 0.000 | .0740173 | .1012135 |
| kansas         | .0138945 | 1.02e-15  | 1.4e+13  | 0.000 | .0138945 | .0138945 |
| kentucky       | .0309765 | .0067381  | 4.60     | 0.000 | .0173784 | .0445747 |
| louisiana      | 0358099  | 1.02e-15  | -3.5e+13 | 0.000 | 0358099  | 0358099  |
| maine          | .0656128 | 1.02e-15  | 6.4e+13  | 0.000 | .0656128 | .0656128 |
| maryland       | .0118266 | .0067381  | 1.76     | 0.087 | 0017715  | .0254247 |
| michigan       | .0349109 | .0067381  | 5.18     | 0.000 | .0213128 | .048509  |
| minnesota      | .0884664 | .0067381  | 13.13    | 0.000 | .0748682 | .1020645 |
| mississippi    | 0424017  | 1.02e-15  | -4.2e+13 | 0.000 | 0424017  | 0424017  |
| missouri       | .0185215 | 1.02e-15  | 1.8e+13  | 0.000 | .0185215 | .0185215 |
| montana        | .0016449 | 1.02e-15  | 1.6e+12  | 0.000 | .0016449 | .0016449 |
| nebraska       | .0465129 | 1.02e-15  | 4.5e+13  | 0.000 | .0465129 | .0465129 |
| nevada         | 0688877  | .0067381  | -10.22   | 0.000 | 0824858  | 0552896  |
| new jersey     | 0539224  | .0067381  | -8.00    | 0.000 | 0675205  | 0403243  |
| new mexico     | 035146   | .0067381  | -5.22    | 0.000 | 0487441  | 0215479  |
| north carolina | 0214531  | 1.02e-15  | -2.1e+13 | 0.000 | 0214531  | 0214531  |
| north dakota   | .0414656 | .0067381  | 6.15     | 0.000 | .0278675 | .0550637 |
| ohio           | .0163148 | .0067381  | 2.42     | 0.020 | .0027167 | .0299129 |
| oklahoma       | 0662598  | 1.02e-15  | -6.5e+13 | 0.000 | 0662598  | 0662598  |
| oregon         | 0007891  | .0067381  | -0.12    | 0.907 | 0143872  | .012809  |
| rhode island   | .0601783 | .0067381  | 8.93     | 0.000 | .0465801 | .0737764 |
| south carolina | 0346476  | 1.02e-15  | -3.4e+13 | 0.000 | 0346476  | 0346476  |
| south dakota   | .0173781 | 1.02e-15  | 1.7e+13  | 0.000 | .0173781 | .0173781 |
| tennessee      | 0172016  | 1.02e-15  | -1.7e+13 | 0.000 | 0172016  | 0172016  |
| texas          | 1207823  | 1.02e-15  | -1.2e+14 | 0.000 | 1207823  | 1207823  |
| utah           | 0098695  | 1.02e-15  | -9.7e+12 | 0.000 | 0098695  | 0098695  |
| virginia       | .0046849 | 1.02e-15  | 4.6e+12  | 0.000 | .0046849 | .0046849 |
| washington     | .0179123 | .0067381  | 2.66     | 0.011 | .0043142 | .0315104 |
| west virginia  | .0310248 | .0067381  | 4.60     | 0.000 | .0174267 | .044623  |
| wisconsin      | .0494254 | .0067381  | 7.34     | 0.000 | .0358273 | .0630235 |
| wyoming        | 0281642  | 1.02e-15  | -2.8e+13 | 0.000 | 0281642  | 0281642  |
| _              |          |           |          |       |          |          |
| t2008          | 0052854  | .0090566  | -0.58    | 0.563 | 0235622  | .0129915 |
| t2009          | 0112973  | .0089213  | -1.27    | 0.212 | 0293013  | .0067066 |
| t2010          | 002676   | .0074388  | -0.36    | 0.721 | 017688   | .012336  |
| t2011          | 0014193  | .0066217  | -0.21    | 0.831 | 0147825  | .0119439 |
| t2012          | .0003397 | .0077351  | 0.04     | 0.965 | 0152705  | .0159498 |
| t2013          | 0        | (omitted) |          |       |          |          |
| t2013          | .0464469 | .009578   | 4.85     | 0.000 | .0271176 | .0657761 |
| t2014          | .0692062 | .010832   | 6.39     | 0.000 | .0473463 | .091066  |
| t2016          | .0747343 | .0117466  | 6.36     | 0.000 | .0510288 | .0984399 |
| t2017          | .0642144 | .012695   | 5.06     | 0.000 | .0385948 | .0898339 |
| t2018          | .0618816 | .0146892  | 4.21     | 0.000 | .0322376 | .0915256 |
| t2019          | .0646171 | .0130541  | 4.21     | 0.000 | .0382728 | .0915256 |
| cons           | .6535443 | .0051142  | 127.79   | 0.000 | .6432234 | .6638652 |
| _cons          | .0555445 | .0031142  | 127.79   | 0.000 | .0432234 | .0036032 |



(k)

 $\hat{\beta}_{2014}$  is the same as the DID calculated above.  $\hat{\beta}_{2012}$  is .0003397, which is the DID for year 2011-2012, which can be represented as:

$$\hat{\beta}_{2012} = (\bar{Y}_{1,2013} - \bar{Y}_{1,2012}) - (\bar{Y}_{0,2013} - \bar{Y}_{0,2012})$$

$$= (\bar{Y}_{1,2013} - \bar{Y}_{0,2013}) - \bar{Y}_{1,2012} + \bar{Y}_{0,2012}$$

$$\tag{3}$$

 $\hat{\beta}$  is an interaction term of treatment and year that gives out each year's DID when compared to the previous year.

**(1)** 

```
. test t2008 t2009 t2010 t2011 t2012
```

(1) t2008 = 0 (2) t2009 = 0 (3) t2010 = 0 (4) t2011 = 0 (5) t2012 = 0 F(5, 42) = 0.76

In this case we fail to reject the null hypothesis that pre-treatment event-study coefficients all equal to 0. This

boosts my confidence in parallel trends assumption because it show that there's no significant interactive effects between treatment and year prior to treatment year.

#### (m)

Post-treatment coefficients are larger than pre-treatment coefficients in general and we can not draw a straight line. It boosts my confidence because it shows that there's real difference before and after treatment in coefficients.

#### $(\mathbf{n})$

No. I still can draw a straight line, which means that the difference between pre/post-treatment coefficients is not large.

## (o)

The confounding variables are possible covariates that changes over time in treatment and control group. For example, if there's strict insurance mandate policies passed during 2008-2014, it will drive the insurance rate up, but not as a possible effect of medicaid expansion.