Weather Data Analysis

Jasper Slingsby 9 March 2017

Trends in mean monthly maximum temperature anomalies:

Mean monthly Max Temp Anomaly (1961-2010)

Pretty clear increases in positive anomalies.

Trends in cumulative monthly rainfall anomalies:

Cumulative Monthly Rainfall Anomaly (1961–2010)

Not much trend. There's bigger variance in April to September because this spans the wet season.

Analysis of maximum count of consecutive hot and dry days (1963-2009)

Let's look at the plot of consecutive hot and dry days and then model them as a function of year with MCMCglmm (default priors and normal errors).


```
##
   Iterations = 3001:12991
##
   Thinning interval = 10
##
   Sample size = 1000
##
##
   DIC: 185.8413
##
##
##
   R-structure:
                  ~units
##
         post.mean 1-95% CI u-95% CI eff.samp
##
##
  units
             3.171
                      1.957
                                 4.6
                                        869.9
##
##
   Location effects: Consecutive_Hot_and_Dry_Days ~ Year
##
##
                            1-95% CI
                                       u-95% CI eff.samp pMCMC
                post.mean
## (Intercept) -8.294e+01 -1.620e+02 -7.261e+00
                                                     1000
                                                          0.04 *
## Year
                4.437e-02 4.028e-03 8.194e-02
                                                     1000 0.03 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Lastly, hidden code calculates the most extreme post fire weather (CDD and CHD) experienced in the first year after fire and outputs this as *postfireweather.csv*. This can be altered to change thresholds etc for downstream analyses if desired.