As soluções dos exercícios a seguir pressupõem o uso de TADs, principalmente o **TAD Fila**.

Uma característica do ambiente *Sharif* é que a solução de cada problema esteja em um único arquivo .c, para que possa ser submetida (enviada) para ser avaliada no ambiente *Sharif*. Nesse sentido, ao trabalhar com TADs, antes de submeter uma solução, crie um único arquivo .c, cujo conteúdo segue o formato abaixo:

O "uso do TAD" significa que a função **main** deve utilizar somente as operações presentes no arquivo **TAD.h**, ou seja, conhecer que operações estão previstas para o TAD.

Considere o TAD Fila, conforme as operações abaixo:

```
typedef struct fila Fila;

Fila * fila_cria (int maxTamanho);
Fila * fila_copia (Fila * p);
void fila_libera (Fila * p);
int fila_insere (Fila * p, char * elemento);
char * fila_remove (Fila * p);
char * fila_obtem_primeiro (Fila * p);
int fila_obtem_tamanho (Fila * p);
int fila_se_vazia (Fila * p);
int fila_se_cheia (Fila * p);
char * fila_imprime (Fila * p);
```

Problema 01) Fila de Pessoas

Considere uma fila de pessoas que esperam por atendimento em algum posto do INSS. Devido à demora no atendimento, algumas pessoas desistem, o que modifica o tamanho da fila e seu conteúdo. Escreva um programa para saber qual o conteúdo da fila em algum momento.

Aplique o TAD Fila e implemente suas operações usando estrutura do tipo vetor (é preciso concluir a implementação de **Fila_vetor.h**)

Entrada: várias linhas, cada qual com uma das seguintes operações:

- inserir pessoa, para inserir pessoa na fila;
- **remover pessoa**, para remover **pessoa** da fila, caso presente na mesma;
- **consultar**, para imprimir a fila (início da fila na extremidade à esquerda).
- finalizar, para finalizar a execução.

É garantido que cada pessoa possui nome simples (nome não é composto, por exemplo "maria") e que duas pessoas não possuem o mesmo nome.

Saída: o conteúdo da fila em linha separada, em resposta a cada operação **consultar**.

Exemplos:

Entrada	Saída
inserir maria inserir pedro inserir ana remover pedro remover marta inserir marta consultar inserir paulo consultar finalizar	maria ana marta maria ana marta paulo

Problema 02) Fila de Pessoas 2

Modifique o Problema 1 (**Fila de pessoas**), tal que a pessoa que abandona a fila retorna a mesma imediatamente (no final da fila).

Exemplos:

Entrada	Saída
inserir maria inserir pedro inserir ana remover pedro remover marta inserir marta consultar inserir paulo remover maria consultar finalizar	maria ana pedro marta ana pedro marta paulo maria

Problema 03) Fila de pessoas 3

Repita o Problema 02 (Fila de pessoas 2), contudo usando a implementação da fila por encadeamento simples. Noutras palavras, aplique o TAD Fila e implemente suas operações usando estrutura do tipo encadeamento simples (é preciso concluir a implementação de **Fila_encadeamento_simples.h**)

Problema 04) Fila de pessoas 4

Repita o Problema 03 (Fila de pessoas 3), considerando as operações inserir, remover, consultar e finalizar, acrescido da seguinte operação:

- mover pessoa num, para mover pessoa na fila, considerando num; alguns exemplos são:
- 1) **mover pedro 3**, significa que pedro será movido **três posições para frente** na fila; se pedro estiver na posição 7 na fila, então pedro será movido para a posição 4 (quarta posição) da fila; se pedro estiver na posição 2, então pedro será movido para o início da fila;
- 2) **mover pedro -4**, significa que pedro será movido **quatro posições para trás** na fila; se pedro estiver na posição 7 na fila, então pedro será movido para a posição 11 da fila; se pedro estiver na penúltima posição da fila, então pedro será movido para a última posição;
 - 3) nos dois exemplos acima, se pedro não estiver na fila, então a fila permanecerá a mesma.

Aplique o TAD Fila e implemente suas operações usando estrutura do tipo encadeamento simples (é preciso concluir a implementação de **Fila_encadeamento_simples.h**). Note que somente as operações do TAD podem ser usadas no seu programa (função **main**).