

Final Report

CS422 Data Science

Semester Project

Wajih Hyder 21i-2957

Ali Ahmed 21k-4922

Taqi Raza 21k-4667

Section BCS-8A

Submitted to: M Nouman Durrani

Department of Computer Science BS(CS)

FAST-NUCES Karachi

Healthcare Stroke Prediction Project Report

1. Objective

The aim of this project is to predict whether a person has experienced a stroke using a machine learning model. The dataset used includes various health and demographic factors relevant to stroke risk.

2. Dataset Overview

- Source:
 - https://www.kaggle.com/datasets/fedesoriano/stroke-pre diction-dataset
- Features:
 - Demographics: gender, age, ever_married
 - **Output** Health Metrics:
 - avg glucose level, bmi, hypertension, heart disease
 - Employment and Lifestyle:
 - work_type, smoking_status, Residence_type
 - Target: stroke (binary classification)
- Data Head:

3. Data Preprocessing

• Missing Values:

- o bmi: Converted to numeric, and rows with null values were dropped.
- o smoking status: Missing values were filled with 'Unknown'.

• Irrelevant Columns:

• The id column was removed.

• Encoding:

- o Binary categorical variables (gender, ever_married, Residence_type) were label-encoded.
- Other categorical features like work_type and smoking_status were mapped to numerical values.

• Feature Engineering:

• A new binary feature is_senior_citizen was added to indicate if age >= 60.

4. Exploratory Data Analysis (EDA)

• Correlation Matrix:

 A heatmap was generated to analyse feature correlations with each other and with the target.

• Distributions:

 KDE plots showed the distributions of age, bmi, and avg_glucose_level by stroke status. • Histograms illustrate the general distribution of these features.

5. Modeling

- Model Used: Random Forest Classifier (n_estimators=100)
- Train-Test Split: 80% training, 20% testing using stratification on the target variable.

6. Evaluation Metrics

- Confusion Matrix: Used to evaluate prediction accuracy in terms of TP, FP, TN, and FN.
- Classification Report: Provided precision, recall, F1-score, and accuracy for the classification model.

```
print(confusion_matrix(y_test, y_pred))

[[939 1]
   [42 0]]
```

[]	<pre>print(classification_report(y_test, y_pred))</pre>				
₹		precision	recall	f1-score	support
		9 0.96 L 0.00	1.00 0.00	0.98 0.00	940 42
	accuracy macro ava weighted ava	g 0.48	0.50 0.96	0.96 0.49 0.94	982 982 982

7. Conclusion

- A complete pipeline from data loading to model evaluation was implemented.
- Exploratory analysis helped identify important patterns and correlations.
- The Random Forest model achieved results that can be improved further by:
 - o Applying model tuning techniques
 - o Trying advanced models like XGBoost or Gradient Boosting
 - Handling class imbalance if necessary