

Computer Engineering WS 2012

Sytemeinstellungem

HTM - SHF - SWR

Systemeinstellungen Hochschule für Angewandte Wissenschaften Hamburg

CE WS12

Übersicht

- Memory Accelerator Module
- Takterzeugung
- Stromverbrauch, Batteriebetrieb, Schlafzustände
- Reset
- Watchdog

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Scient

CE WS12

Memory Accelerator Module (MAM)

- Maschinencode ist im Flash gespeichert.
- Flash ist Flaschenhals bezüglichProgrammausführungsgeschwindigkeit.
 - Zugriffszeit ca. 50 ns:Begrenzung der Geschwindigkeit auf 20 MHz.
- Gängige Auswege:
 - Programm ins RAM kopieren.
 - Cache verwenden.
- LPC2000 verwendet MAM:
 - Kompromiss zwischen
 - Komplexität eines Caches und
 - Einfachheit des direkten Speicherzugriffs.

CE WS12

Memory Accelerator Module (MAM)

- ► Flash ist in 128-Bit Breite organisiert.
- Mit jedem Zugriff können 4 Instruktionen gelesen werden.
- Verbessert:
 - Sequentiellen ZugriffKurze Schleifen
 - Sprünge zur selben Adresse
- Wichtig:

 Timing der
 Flashzugriffe
 muss beachtet
 werden.

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Scient

CE WS12

Memory Accelerator Module (MAM)

- MAM befindet sich zwischen Flash und CPU
- MAM ist transparent für den Benutzer.
- Konfiguration über zwei Register:
 - Timing Register und
 - Control Register.
- Zusätzliche Register ermöglichen
 Statistiken zur Effektivität des MAMs.

CE WS12

Memory Accelerator Module (MAM)

- Drei Betriebsarten:
 - ▶ Mode 0: Off
 - Jeder Programmspeicherzugriff wirkt direkt auf das Flash
 - Mode 1: Partially enabled
 - Sequentielle Programmspeicherzugriffe werden vom Zwischenspeicher genommen.
 - Nichtsequentielle Zugriffe wirken direkt auf das Flash
 - Mode 2: Fully enabled
 - Alle Programmspeicherzugriffe werden nach Möglichkeit vom Zwischenspeicher genommen.

MAM Control Register (MAMCR - address 0xE01F C000) bit description

Bit	Symbol	Value	Description	Reset value
1:0	MAM_mode		These bits determine the operating mode of the MAM.	0
	_control	00	MAM functions disabled	
		01	MAM functions partially enabled	
		10	MAM functions fully enabled	
		11	Reserved. Not to be used in the application.	

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Scien

CE WS12

Memory Accelerator Module (MAM)

Timing-Einstellung

Suggestions for MAM timing selection

system clock	Number of MAM fetch cycles in MAMTIM
< 20 MHz	1 CCLK
20 MHz to 40 MHz	2 CCLK
40 MHz to 60 MHz	3 CCLK
> 60 MHz	4 CCLK

MAM Timing register (MAMTIM - address 0xE01F C004) bit description

	0 0	•	, ,
Bit	Symbol	Value	Description
2:0	MAM_fetch_ cycle_timing		These bits set the duration of MAM fetch operations.
		000	0 - Reserved
		001	1 - MAM fetch cycles are 1 processor clock (CCLK) in duration
		010	2 - MAM fetch cycles are 2 CCLKs in duration
		011	3 - MAM fetch cycles are 3 CCLKs in duration
		100	4 - MAM fetch cycles are 4 CCLKs in duration
		101	5 - MAM fetch cycles are 5 CCLKs in duration
		110	6 - MAM fetch cycles are 6 CCLKs in duration
		111	7 - MAM fetch cycles are 7 CCLKs in duration

CE WS12

MAM: Benchmarks

hitex DEVELOPMENT TOOLS

TestFunctionCopy

- Copy Data (256 Words)
- RAM to RAM

Test Configurations

5.

CE WS12

MAM: Benchmarks

md5_self_test

Use the self test function which is included in the md5 package

Test Configurations

Systemeinstellungen Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Scient

CE WS12

Übersicht

Memory Accelerator Module

- Takterzeugung
- Stromverbrauch, Batteriebetrieb, Schlafzustände
- Reset
- Watchdog

Systemeinstellungen chischule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Scie

CE WS12

Technologien Taktquellen

- Externer Oszillator
- Externer Quarz
- Externer Keramik-Resonator
- Interner RC-Oszillator

Auswahlkriterien

- Preis
- Genauigkeit
- Platzbedarf
- Strombedarf

CE WS12

Oszillatoren

■Characteristics of Various Oscillator Elements

- Onaracteristics of various escillator Elements							
Name	Symbol	Price	Size	Adjust- ment	Oscillation Frequency Initial Tolerance	Long-term Stability	
LC	-[380]-	Inexpen- sive	Big	Required	±2.0%	Fair	
CR	~ W _ L °	Inexpen- sive	Small	Required	±2.0%	Fair	
Quartz Crystal	○ — □—○	Expen- sive	Big	Not required	±0.001%	Excellent	
Ceramic Resonator	○ — □—○	Inexpen- sive	Small	Not required	±0.5%	Excellent	

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Scient

CE WS12

Schwingquarz

■Vibration Mode and Frequency Range

[Note] : ← → show the direction of vibration

CE WS12

Externer Taktoszillator

	CXO-11	CXO-21			
Package	14 Pin DIP	8 Pin DIP			
Frequency Range	1.000 ~ 100.000 MHz				
Frequency Stability	A=±25ppm, B=± 50)ррт, C=± 100ррт			
Operating Temperature Range	0°C - 70°C (-40°C - +85°C -> Option 'S')				
Storage Temperature Range	-55°C - 125°C				
Supply Voltage	5.0 VDC ±10%				
Aging (at 25°C)	±5ppm / year max.				
Supply Current	1.000MHz to 23.999MHz 24.000MHz to 70.000MHz 70.000MHz to 100.000MHz	20mA max. 30mA max. 40mA max.			
Waveform Symmetry	40/60 % Normal	l, 45/55% Tight			
Rise/Fall Time	< 9 MHz < 32 MHz > 32 MHz	5ns max.			
Output Voltage	Logic Low Logic High	0.4 V max. 2.4 V min.			
Output Load	1 to 10	TTL Load			
Start-up Time	10	ms			

Systemeinstellungen Chischule für Angewandte Wissenschaften Hamburg Hamburg University of Applied

CE WS12

Externer Quarz

Frequenzbereich: 4 ... 40 MHz

Frequenztoleranz (25°C): \pm 50 ppm

Shunt-Kapazität (max.): 5 pF

Betriebstemperaturbereich: - 20 ... + 70 °C

Temperaturstabilität < 5.5 MHz: $\pm 50 \text{ ppm}$

Temperaturstabilität > 5,5 MHz: $\pm 30 \text{ ppm}$

Isolationswiderstand (min): 500 M Ω

Belastung (empfohlen): 10 ... 100 µW

Alterung: $\pm 5 \text{ ppm} / \text{Jahr}$

Lötwärmebeständigkeit bis 3 Min.: < 230 °C

bis 10 s: $> 260 \,^{\circ}\text{C}$

Schockbeständigkeit (max.): $\pm 10 \text{ ppm}$

Systemeinstellunge Hichschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Science

CE WS12

Externer Keramik-Resonator

> 8,00 MHz Keramik-Resonator, 3-pin, für integrierte Ladekapazität.

► Frequenztoleranz: +/- 0,5%

Frequenzstabilität bis 6 MHz: +/- 0,3%

Frequenzstabilität ab 8 MHz: +/- 0,4%

Feste Taktfrequenz: 8 MHz

Genauigkeit:

Standard: 10 % (bei 5 V und 25 C)

Kann kalibriert werden: 2%

Hamburg University of Applied Sciences

Hochschule für Angewandte Wissenschaften Hamburg

CE WS12

Takterzeugung

Systemeinstellungen Hochschule für Angewandte Wi

CE WS12

Takterzeugung, Beispiel Atmel AVR

- Im Mikrocontroller verwendete Takte werden meist von einer gemeinsamen Quelle abgeleitet.
- Kann bei niedrigen Taktraten problematisch werden,
 z.B. bei gleichzeitiger Nutzung von I2C und RS232 (Beispiel AVR):
 - I2C mit Bitrate 400kHz

$$Teiler = \frac{f_{CLK}}{2 \cdot Bitrate} - 8 \qquad Teiler \ge 10$$

- Mögliche Teiler sind 10, 11 und 12 bei 14.4 MHz, 15.2 MHz und 16 MHz
- ▶ RS232 mit Baudrate 115200

$$Teiler = \frac{f_{CLK}}{8 \cdot Baudrate} - 1$$

Fehler bei bester Einstellung:
-2.6% bei 14.4 MHz, 3.2% bei 15.2 MHz, -2.2% bei 16 MHz,

CE WS12

Takterzeugung

- Frequenzvervielfachung:
 - höhere Oszillatorfrequenz ermöglicht flexiblere Takteinstellung
 - Verwendung von Phase-locked loops (PLL)

Hamburg University of Applied Sciences

CE WS12

Takterzeugung

- Getrennter Takt für
 - System (cclk) und
 - Usb (usbclk)
- Takte werden mittels Frequenzvervielfacher von langsamer externer Taktquelle abgeleitet

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Scient

CE WS12

Takterzeugung LPC2468

▶ f_{in}: 32kHz bis 24 MHz

• f_{CCO}: 275 MHz bis 550 MHz

• f_{USB}: 48 MHz (4*12 MHz)

► f_{SYS}: maximal 72 MHz

 K_1, K_2 : gerade

N 1 bis 32

M: 6 bis 32768

Hamburg University of Applied Sciences

CE WS12

Systemeinstellungen Hochschule für Angewandte Wissenschaften Hamburg

ewandte Wissenschaften Hamburg

Hamburg University of Applied Scien

CE WS12

Übersicht

- Memory Accelerator Module
- Takterzeugung

- Stromverbrauch, Batteriebetrieb, Schlafzustände
- Reset
- Watchdog

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Scient

CE WS12

Stromverbrauch LPC2468

 $T_{amb} = -40 \, ^{\circ}C$ to +85 $^{\circ}C$ for commercial applications, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
I _{DD(DCDC)} act(3V3)	active mode DC-to-DC converter supply current (3.3 V)	$V_{DD(DCDC)(3V3)} = 3.3 \text{ V};$ $T_{amb} = 25 \text{ °C}; \text{ code}$				
		while(1){}				
		executed from flash; no peripherals enabled; PCLK = CCLK				
		CCLK = 10 MHz	-	15	-	mA
		CCLK = 72 MHz	-	63	-	mA
		all peripherals enabled; PCLK = CCLK / 8				
		CCLK = 10 MHz	-	21	-	mA
		CCLK = 72 MHz	-	92	-	mA
		all peripherals enabled; PCLK = CCLK				
		CCLK = 10 MHz	-	27	-	mA
		CCLK = 72 MHz	-	125	-	mA
I _{DD(DCDC)pd(3V3)}	power-down mode DC-to-DC converter	$V_{DD(DCDC)(3V3)} = 3.3 \text{ V};$ $T_{amb} = 25 \text{ °C}$				
	supply current (3.3 V)		-	150	-	μΑ
I _{BATact}	active mode battery supply current	DC-to-DC converter on	[10]	20	-	μΑ
		DC-to-DC converter off	[10]	28	-	μΑ

ewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

CE WS12

Betriebsarten der CPU, Schlafzustände

- Zum Stromsparen hat die CPU 3 verschiedene Schlafzustände:
 - Idle
 - Sleep
 - Power-down

- Unterscheiden sich
 - in den möglichen Quellen zum Aufwecken
 - benötigte Zeit zum Aufwecken
 - Höhe der Stromersparnis

wandte Wissenschaften Hamburg Hamburg University of Applied Sciences

CE WS12

Betriebsarten der CPU, Schlafzustände

- Idle Mode
 - Takt der CPU wird abgeschaltet.
 - Peripherie funktioniert weiter und kann Interrupts auslösen.
 - Stromersparnis dadurch,
 dass CPU, Speicher und interne Busse nicht mehr getaktet werden.

ewandte Wissenschaften Hamburg
Hamburg University of Applied Sciences

CE WS12

Betriebsarten der CPU, Schlafzustände

- Sleep Mode
 - Ausschalten des Hauptoszillators.
 - Interner RC-Oszillator läuft weiter, ist aber nicht mit System verbunden
 - → ermöglicht schnelles Aufwachen
 - Real-time Clock funktioniert weiter
 - → Echtzeituhr kann CPU wieder aufwecken.
 - Aufwecken kann durch Echtzeituhr oder durch andere Interrupts, die keinen Takt benötigen, erfolgen.
 - Nach Aufwecken muss Hauptoszillator gestartet werden:
 - → 4096 Takte Wartezeit
 - Zusätzlicher Zeitbedarf für das Neukonfigurieren der PLL:
 - → 500µsec

ewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

CE WS12

Betriebsarten der CPU, Schlafzustände

- Power-down Mode
 - Wie Sleep Mode, zusätzlich:
 - Power-down des Flash
 - Ausschalten des RC-Oszillators.
 - Real-time Clock funktioniert weiter
 - → Echtzeituhr kann CPU wieder aufwecken.
 - Aufwecken kann durch Echtzeituhr oder durch andere Interrupts, die keinen Takt benötigen, erfolgen.
 - Nach Aufwecken:

Start des internen RC-Oszillators: 60 µsec

Start des Flash: 100 µsec

Start des Hauptoszillators: 4096 Takte

Neukonfiguration der PLL
 500 µsec

Systemeinstellungen Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Scient

CE WS12

Übersicht

- Memory Accelerator Module
- Takterzeugung
- Stromverbrauch, Batteriebetrieb, Schlafzustände

- Reset
- Watchdog

Systemeinstellungen Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

blocks

CE WS12

Systemeinstellungen Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CE WS12

LPC2468: Reset

Systemeinstellungen Hochschule für Angewandte Wissenschaften Hamburg

gewandte Wissenschaften Hamburg
Hamburg University of Applied Scien

CE WS12

Übersicht

- Memory Accelerator Module
- Takterzeugung
- Stromverbrauch, Batteriebetrieb, Schlafzustände
- Reset

Watchdog

CE WS12

Sicherheitsaspekte: Beispiel Medizintechnik

Überwachung:

Kreislauf (EKG, Herzfrequenz) Sauerstoffsättigung des Blutes Blutdruck

Überwachung:

Gaszusammensetzung (O2, CO2, Narkosemittel) Beatmungsdruck

⊟nstellung:

Beatmungsfrequenz, -volumen Sauerstoffgehalt, Narkosemittel

CE WS12

Prinzipieller Aufbau

CE WS12

Erkennbare Fehler

- Programmpfad, welcher Zurücksetzen des Watchdogs beinhaltet, wird nicht mehr durchlaufen, z. B. wg.
 - CPU hängt in Endlosschleife
 - Interrupt-Hardware umprogrammiert
 - CPU ist im Sleep-Zustand
 - CPU ist aus dem Programm gesprungen

Nicht erkennbare Fehler

- Falsche Daten
- Zu häufiges Durchlaufen der Schleife
- versehentliches Triggern des Zählers
- Falscher Takt (wenn keine unabhängigen Taktquellen)

CE WS12

Design-Hinweise

- Zeitbasis muss unabhängig von CPU-Takt sein.
- Vorsicht bei programmierbarer Periode.
- Schutz gegen versehentliches Triggern,
 z. B. mit spezieller Sequenz: (0x55, 0xAA)
- Besser: Verwendung komplexer Sequenzen, die z. B. den Programmablauf beschreiben.
- Unabhängige Überwachung von
 - Hauptschleife und
 - Interruptserviceroutinen.
- Watchdog-Funktion muss beim Einschalten des Systems überprüft werden.

CE WS12

Watchdog Prozessor

```
ξ1
while (x > 0)
  x = x - 1;
  if(y < x)
  else
  z = y + x;
```


CE WS12

Watchdog Prozessor

- Überwachung des Programmflusses
- Darstellung des Programmablaufs als Graph
- Jedem Knoten wird eine Signatur zugeordnet: z.B. mittels automatischem Verfahren
- Signaturen, erlaubte Pfade und Verweildauer sind im Watchdog-Prozessor gespeichert
- Während der Programmausführung werden Signaturen und Pfade mit den gespeicherten verglichen.
- Im Fehlerfall: CPU-Reset, Übergang in den "sicheren Zustand" und Alarmierung

Zu beachten:

- erlaubte, aber falsche Übergänge werden nicht entdeckt
- Interruptroutinen können Kontrollfluß jederzeit unterbrechen
- Besondere Behandlung von Bibliotheksfunktionen und Betriebssystemaufrufen (z.B. Multitasking)
- Erkennung von fehlerhaften Daten nur wenn sie zu unerlaubten Übergängen führen

Hamburg University of Applied Sciences

CF WS12

- Zwei gleichwertige Kanäle zur Signalaufbereitung und –darstellung.
- Einfache Sensorik.
- Bei unterschiedlichen Ergebnissen erfolgt Alarmgebung.
- Bediener muss entscheiden, welche Ergebnisse richtig sind.
- Sicherstellung der Funktion bei Ausfall einer Elektronik.
- Geringer Entwicklungsaufwand.
- Keine Sicherheit gegen Ausfall eines Sensors.
- Hohe Herstellkosten.

Hamburg University of Applied Sciences

CE WS12

Überwachungsprozessor

- Übergang in den sicheren Zustand
- Alarmierung
- Aber keine Sicherstellung der Gerätefunktion

CE WS12

Überwachungsprozessor

- einfacher zu verifizieren.
- ▶ Geringer Softwareaufwand, einfache Algorithmen im Überwachungsprozessor
- Anforderungen:
 - Alle Überwachungseinrichtungen müssen überprüfbar sein (z.B. während des Einschalt-Selbsttest).
 - Hardwareausfall während des Betriebes kann toleriert werden (führt zum doppelten Fehlerfall).

CF WS12

LPC2468: Watchdog

- Initialisierung:
 - Auswahl der Taktquelle: Interner RC Oszillator.
 - Wichtig wegen Unabhängigkeit vom Haupttakt.
 - Programmierung der Betriebsart:
 - Interrupt oder Reset
 - Festlegung der Timeout-Zeit.
 - 4-facher Vorteiler und 32-Bit Zähler.
 - Aktivierung des Watchdog durch Schreiben der Sequenz:
 - 0xAA, 0x55 (darf nicht unterbrochen werden!)
- Danach regelmäßiges Nachtriggern der Watchdog-Timers
 - Schreiben der Sequenz 0xAA, 0x55.

