Lineare Funktion II

Peter Wunderli, BBB, 18./19. 01.2016

96.04	BM 15 a/b//
	Stoff
	Ihr Lernziel:
	<u>Sie verstehen</u> das Wesen der linearen Funktion aus der Grundlage der allgemeinen Definition der mathematischen Funktion.
	Sie können aus Punktekoordinaten und Steigung die lineare Funktion bestimmen.
	Der Graph der linearen Funktion
	Punkte auf / neben dem Graphen
	Alle Punkte (x,y), welche die Funktion $f(x) = y = 2 x + 2$ erfüllen, liegen auf der Geraden, alle anderen nicht.
	Allgemein: Alle Argumente, die durch die Funktion einen zulässigen Funktionswert erhalten, definieren als Zahlenpaar Punkte, welche auf dem Graphen liegen.
	Oder Alle x-Werte, die durch die Funktion einen zulässigen y-Wert erhalten, bilden als
	Zahlenpaar Punkte im Koordinatensystem, die auf dem Graphen der Funktion liegen.
	Wir betrachten die lineare Funktion $y = 0.5 x + 2$
	10
	7
	3=0,5x+2
	3 3 0 3
	-7 -8 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Wir definieren die folgenden Grössen der Funktion:

y-Achsenabschnitt

Schwittpunkt mit der y-Achse

Eine lineare Funktion ist gegeben durch:

1)

Lineare Funktion aus zwei Punkten

Eine Gerade ist ebenfalls durch die zwei Punkte $P_1 = (x_1; y_1)$ und $P_2 = (x_2; y_2)$ eindeutig festgelegt.

Bild 9

Graph einer linearen Funktion durch die Punkte $P_1 = (x_1; y_1)$ und $P_2 = (x_2; y_2)$

Die Steigung m berechnen wir nach Gleichung (5).

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\frac{Z_2}{Z_1} = \frac{Z_2}{Z_2} = \frac{Z_2}{Z_2}$$

$$-34y = 32-31 = 5-3=2$$

 $\Delta x = x_2-x_1 = 7-2=5$

$$\Rightarrow m = \frac{\Delta y}{\delta x} = \frac{2}{5}$$
 oder 0,4

2)

Lineare Funktion aus der Steigung und einem Punkt

Kennt man von einer linearen Funktion die Steigung m und die Koordinaten eines Punkts $P_1 = (x_1; y_1)$, der auf der Geraden liegt, so kann daraus die Grundform der Funktionsgleichung berechnet werden.

Bild 7 Graph einer linearen Funktion mit der Steigung m durch den Punkt $P_1 = (x_1; y_1)$

=>
$$y = 0.5 \cdot x + 9$$

q berechnen: Koosdinatudes

gep. Finans Pr eincep:

$$3 = 0,5.2 + 9$$

 $3 = 1 + 9$ |-1
 $2 = 9$
-> Seadenjeoidly: $y = 0,5x + 2$

Parallele / Senkrechte

Eine spezielle Situation liegt bei linearen Funktionen dann vor, wenn sich diese unter 90° schneiden. Man sagt dann, die Geraden seien *senkrecht*, *rechtwinklig*, *orthogonal* oder *normal* (alles Synonyme) zueinander.

Nach Bild 13 sind die Steigungen der beiden sich senkrecht schneidenden Geraden:

$$g_1$$
: $m_1 = \frac{\Delta y_1}{\Delta x_1}$ und g_2 : $m_2 = \frac{\Delta y_2}{\Delta x_2}$ (15)

Bild 13 senkrechte Geraden $g_1: y = m_1 \cdot x + q_1$ und $g_2: y = m_2 \cdot x + q_2$

Die Steigungsdreiecke mit den Katheten Δx_1 und Δy_1 respektive Δy_2 und Δx_2 haben die gleichen Winkel. Ihre Seitenlängen sind deshalb proportional zueinander.

$$m_{1} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{\Delta x_{2}}{-\Delta y_{2}} = -\frac{\Delta x_{2}}{\Delta y_{2}} = -\frac{1}{m_{2}}$$
(16)

Das negative Vorzeichen musste eingeführt werden, weil die eine Steigung positiv, die andere Steigung negativ ist. Fassen wir zusammen:

Senkrechte Geraden

Die beiden linearen Funktionen g_1 : $y = m_1 \cdot x + q_1$ und g_2 : $y = m_2 \cdot x + q_2$ schneiden sich genau dann senkrecht, wenn für ihre Steigungen m_1 und m_2 gilt:

$$m_2 = -\frac{1}{m_1}$$
 oder $m_1 \cdot m_2 = -1$ (17)

Parallele Geraden

HA; Lornaufty attobers blatt

$$m_1 = \frac{\Delta y_1}{\Delta x_2} = \frac{\Delta x_2}{\Delta y_2} = \frac{1}{m_2}$$

och

$$m_1 \cdot m_2 = -7$$

Lernvideo zur linearen Funktion:

http://www.youtube.com/watch?v=6ylbVkn3fJg

Ansonsten Suchkriterien youtube: Lineare Funktion, Dorfuchs

PROPORTIONALITÄT – eine spezielle Form der Linearität

Alle Funktionen f(x) = mx + d für welche gilt: **d = 0**

heissen Proportionalitäten: f(x) = mx

wobei der Proportionalitätsfaktor m eine feste rationale Zahl ist.

Graph einer Proportionalität:

Wir wissen von der Theorie der liearen Funktion: f(x) = mx + d: m ist die Steigung der Geraden und d ist der y-Achsenabschnitt der Geraden.

Also sind die Graphen von Proportionalitäten Geraden, welche duch den Nullpunkt oder durch den Ursprung des Koordinatensystems gehen.

Man nennt solche Geraden auch *Ursprungsgeraden*.

Übungsbeispiele/Aufgaben

1) Bestimmen Sie die Funktionsgleichung der Geraden g, die mit der Geraden h: y = 2x - 1 einen rechten Winkel bildet und durch den Punkt S (3/1) geht.

Nachdem Sie die Funktionsgleichung bestimmt haben, zeichnen Sie die beiden Geraden im Koordinatensystem ein und überprüfen Sie so Ihre Lösung graphisch.

2) Welcher Punkt P(x_p/y_p) auf der Geraden g: y = 1/3x - 1 hat die kleinste Entfernung d zum Punkt Q (1/4)? Berechnen Sie den Abstand $d = \overline{PQ}$

3) Berechnen Sie die Fläche des Dreiecks ABC:

$$g_1: y = -\frac{1}{3} x + 2$$
 $g_2: y = x - 1$ $g_3: x = 5$

4) Zwei zueinander senkrechte Geraden g1 und g2 schneiden die y-Achse bei -3 bzw. bei 7 und ihr Schnittpunkt hat die x-Koordinate 4. Bestimmen Sie die beiden Geradengleichungen.

5