Министерство образования и науки Российской Федерации ФГАО УВО "Севастопольский государственный университет"

Анализ стохастической устойчивости

методические указания к лабораторной работе по дисциплине «Теория вероятностей и математическая статистика»

студентами всех форм обучения для направлений: 09.03.01 – "Информатика и вычислительная техника", 09.03.02 – "Информационные системы и технологии", 09.03.04 – "Управление в технических системах"

Севастополь 2018

УДК 519.2

Анализ стохастической: методические указания к выполнению лабораторных и контрольных работ по дисциплине "Теория вероятностей и математическая статистика" студентами всех форм обучения для направлений: 09.03.01 – "Информатика и вычислительная техника", 09.03.02 – "Информационные системы и технологии", 09.03.04 – "Управление в технических системах" [Текст] / Разраб. П.П. Киже. – Севастополь: Изд-во СевГУ, 2018. – 44 с.

Методические указания составлены в соответствии с требованиями программы дисциплины «Теория вероятностей и математическая статистика»

Методические указания рассмотрены и утверждены на заседании кафедры Информационных систем, протокол № 13 от 26 января 2018 г.

Допущено учебно-методическим центром СевГУ в качестве методических указаний.

Рецензент Кожаев Е.А., кандидат техн. наук, доцент кафедры Информатики и вычислительной техники.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Доценко С. В. Теория информации и математическая статистика. Конспект лекций.
- 2. Вентцель Е.С. Теория вероятностей/Е.С. Вентцель.- М.:ФМ, 1958.- 464 с.
- 3. Гнеденко Б.В. Курс теории вероятностей/ Б.В.Гнеденко. М.: ФМ, 1961. 406 с.
- 4. МАТЬАВ. Руководство пользователя. Севастополь, СГТУ, 2000. 77 с.
- 5. Потемкин В.Г. МАТLAB 5 для студентов/ В.Г. Потёмкин. М.: ДИЛОГ- МИФИ, 1998. 314 с.
- 6. Потемкин В.Г. Система MATLAB. Справочное пособие/ В.Г. Потёмкин. М.: ДИАЛОГ-МИФИ, 1997. 350 с.
- 7. Лазарев Ю. MatLAB 5.x/ Ю. Лазарев. К.: «Ирина», bhv, 2000. 383 с.

4. СОДЕРЖАНИЕ ОТЧЁТА

- 1. Цель работы.
- 2. Краткое теоретическое введение
- 3. Аналитический расчёт вероятности случайных событий.
- 4. Практический расчёт оценки вероятности (частоты) случайных событий.
- 5. Программа на языке МАТLAB для расчёта частоты случайных событий.
- 6. Выводы по работе.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что такое случайное событие?
- 2. Что такое случайный исход эксперимента?
- 3. Что такое стохастическая устойчивость?
- 4. Как в системе MATLAB создать матрицу со случайными равномерно распределенными числами?
- 5. Что такое М-сценарий?
- 6. Что такое М-функция?
- 7. Что такое частота случайного события?
- 8. Какова связь между частотой случайного события и его вероятностью?
- 9. Какова зависимость частоты случайного события от числа испытаний?
- 10. Как построить график функции с помощью системы МАТLAB?
- 11. Какой тип распределения даёт функция *rand*, нарисовать график этой функции.

СОДЕРЖАНИЕ

1. Цель работы	4
2. Теоретический раздел	. 4
3. Ход работы	. 5
4. Содержание отчёта	.6
5. Контрольные вопросы	.6
Библиографический список	. 7

1. ЦЕЛЬ РАБОТЫ

- 1. Изучить методы получения последовательностей случайных событий программным путем на основе системы MATLAB. Применить их к конкретному эксперименту.
- 2. Научиться разрабатывать М-функции для статистических исследований, в частности, для подсчета текущей частоты случайных событий.
- 3. Рассчитать текущую частоту случайных событий, реализованных в проводимом эксперименте.
- 4. Убедиться, что случайные события, произошедшие в данном случайном эксперименте, обладают свойством стохастической устойчивости. Оценить вероятность этих событий.

2. ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ

На практике приходится часто сталкиваться с опытами (испытаниями, наблюдениями, процессами), дающими различные результаты в зависимости от обстоятельств, которых мы не знаем или не умеем учесть. Например, нельзя предсказать заранее, сколько выпускников средней школы подадут заявления в СевНТУ, сколько дождливых дней будет в следующем году и т.д. Применение математики к изучению явлений такого рода опирается на то, что во многих случаях при многократном повторении одного и того же опыта в одних и тех же условиях частома появления рассматриваемого результата остается все время примерно одинаковой, близкой к некоторому постоянному числу Р.

Рассмотрим эксперимент с пространством событий $Z = \{z_1, z_2, ... z_m\}$, который можно повторять многократно в одних и тех же условиях. Допустим, что проведено N испытаний, при которых интересующее нас событие $z_i \in Z$ произошло N_i раз. Относительное число случаев, при которых данное событие имело место, т.е. величина

$$q_i = q(z_i) = \frac{N_i}{N} , \qquad (1)$$

называется частотой события z_i .

При небольшом числе экспериментов частота оказывается в значительной мере случайной. Однако, практика показывает, что при увеличении числа экспериментов частота отдельных событий теряет свой случайный характер и имеет тенденцию приближаться с незначительными колебаниями к некоторому среднему неслучайному значению, которое и может рассматриваться как вероятность $P(z_i)$ данного события z_i . Именно эта **тенденция** и является признаком стохастически устойчивоет данного случайного явления, и только стохастически устойчивые явления могут изучаться с помощью теории вероятностей. Вообще при увеличении числа опытов частота приближается к вероятности в том смысле, что вероятность сколько-нибудь значительных отклонений частоты от вероятности становится пренебрежимо малой. Такая сходимость называется cxodumocmbo

3. ХОД РАБОТЫ

- 1. Создать матрицу A \mathbf{q}_{ij} , элементами a_{ij} которой являются случайные равномерно распределенные числа, лежащие в диапазоне от 0 до 1. Число строк матрицы m=5, число столбцов n=1000. (рекомендуется функция r and)
- 2. Проверить наличие элементов в матрице А, выведя на экран ее первые 10 столбцов.
- 3. Будем считать **событием** z_{kj} попадание числа a_{kj} в промежуток $a_{k\min} \le a_{kj} < a_{k\max}$. Границы этих промежутков для разных вариантов приведены в таблице 1.

Таблица 1 - Варианты заданий

вари-	$a_{ m lmin}$	$a_{1\max}$	$a_{2\min}$	$a_{2 \text{max}}$	$a_{3\min}$	$a_{3 \text{max}}$	$a_{4\min}$	$a_{4\mathrm{max}}$	$a_{5 \mathrm{\ min}}$	$a_{5\mathrm{max}}$
1	0.0	0.5	0.0	0.5	0.0	0.5	0.05	0.10	0.00	0.90
2	0.1	0.6	0.1	0.6	0.1	0.6	0.10	0.15	0.02	0.92
3	0.2	0.7	0.2	0.7	0.2	0.7	0.15	0.20	0.04	0.94
4	0.3	0.8	0.3	0.8	0.3	0.8	0.20	0.25	0.06	0.96
5	0.4	0.9	0.4	0.9	0.4	0.9	0.25	0.30	0.08	0.98
6	0.5	1.0	0.5	1.0	0.5	1.0	0.30	0.35	0.10	1.00
7	0.05	0.55	0.05	0.55	0.05	0.55	0.35	0.40	0.01	0.91
8	0.15	0.65	0.15	0.65	0.15	0.65	0.45	0.50	0.03	0.93
9	0.25	0.75	0.25	0.75	0.25	0.75	0.55	0.60	0.05	0.95
10	0.35	0.85	0.35	0.85	0.35	0.85	0.65	0.70	0.07	0.97
11	0.45	0.95	0.45	0.95	0.45	0.95	0.75	0.80	0.09	0.99
12	0.47	0.97	0.47	0.97	0.47	0.97	0.95	1.00	0.02	0.93

Создать М-функцию $y = \log z n (am, aM, x)$, которая возвращает единицу, если выполняется условие $am \le x < aM$, и возвращает 0, если это условие не выполнено. Сохранить эту функцию в М-файле.

- 4. С помощью функции logzn из матрицы $A(\mathbf{q}_{ij})$ получить матрицу $B(\mathbf{q}_{ij})$, элементы которой равны 1, если событие z_{kj} произошло, и равны 0, если не произошло. Для этого написать и сохранить соответствующую М-функцию.
- 5. Написать М-функцию y = fregp(v, m), определяемую формулой (1), где v вектор размера m, состоящий из нулей и единиц. Сохранить ее в М-файле.
- 6. Рассчитать зависимости $q_k(N)$ частот событий от числа испытаний для $1 \le N \le 1000$ и всех пяти k и изобразить их графически в линейном и полулогарифмическом (по оси x) масштабах. Найти **аналитически** вероятности событий P_k , учтя тип распределения получаемого с помощью функции rand.
- 7. Сделать выводы. Оформить отчет.