Στροφορμή στερεού

$$\Box$$
 Η στροφορμή του στερεού γράφεται σαν: $\vec{l} = \sum m_a \left[\vec{r}_a^2 \vec{\omega} - (\vec{\omega} \cdot \vec{r}_a) \vec{r}_a \right]$ (1)

$$\square$$
 Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: $I_{ij} = \sum m_a \left(\vec{r}_a^2 \delta_{ij} - r_i^a r_j^a \right)$ (2)

$$\Box$$
 Η γωνιακή ταχύτητα δίνεται από: $\vec{\omega} = \sum_{i} \omega_{i} \vec{e}_{i}$ (3)

περιστρεφόμενο σύστημα αναφοράς σαν:
$$\vec{l} = \sum_{i} l_{i} \vec{e}_{i}$$

$$\vec{l} = \sum_{i} l_{i} \vec{e}_{i}$$

Μπορούμε να γράψουμε το διάνυσμα της στροφορμής στο

$$\square$$
 Από τις (2) και (3) η (1) μπορεί να γραφεί: $l_i = \sum_i I_{ij} \omega_j$ (4)

$$lacksquare$$
 Από διατήρηση στροφορμής: $\vec{l}=0$

Alla:
$$\vec{l} = \frac{d}{dt}\vec{l} = \frac{d}{dt}\left(\sum_{i}l_{i}\vec{e}_{i}\right) \Rightarrow \dot{\vec{l}} = \sum_{i}\left(\dot{l}_{i}\vec{e}_{i} + l_{i}\dot{\vec{e}}_{i}\right) \Rightarrow \dot{\vec{l}} = \sum_{i}\left(\dot{l}_{i}\vec{e}_{i} + l_{i}\dot{\vec{\omega}} \times \vec{e}_{i}\right)$$

$$\Rightarrow \dot{\vec{l}} = \sum_{i}\left(\dot{l}_{i} + l_{i}\dot{\vec{\omega}} \times \vec{e}_{i}\right)$$

$$ightharpoonup$$
 Αλλά από την (4) θα έχουμε: $\dot{l}_{i}=\sum_{i}I_{ij}\dot{m{\omega}}_{j}$

$$ightharpoonup$$
 ενώ: $\vec{\omega} imes \vec{e}_{i} = \sum arepsilon_{ijk} \omega_{j} \vec{e}_{k}$

$$ightharpoonup$$
 Kal: $l_i \vec{\omega} imes \vec{e}_i = \sum_{ik}^{jk} l_i oldsymbol{arepsilon}_{ijk} oldsymbol{\omega}_j \vec{e}_k = \sum_{ik} \Biggl(\sum_l I_{il} oldsymbol{\omega}_l \Biggr) oldsymbol{arepsilon}_{ijk} oldsymbol{\omega}_j \vec{e}_k$

 $-\dot{l}_{i} = \sum_{j} I_{ij} \dot{\omega}_{j} + \sum_{ikl} \varepsilon_{jkl} \omega_{j} I_{kl} \omega_{l} = 0$

Εξισώσεις κίνησης στερεού

- lacksquare Η εξίσωση κίνησης που καταλήξαμε: $\dot{l}_i = \sum_j I_{ij} \dot{\omega}_j + \sum_{jkl} \varepsilon_{jkl} \omega_j I_{kl} \omega_l = 0$
 - αρκετά πολύπλοκη μορφή
- Αν γράψουμε όμως τον τανυστή αδράνειας ως προς τους κύριους άξονες:
 - ightarrow ο τανυστής αδράνειας είναι τώρα διαγώνιος: $I_{ij}=I_i$ για i=j και $I_{ij}=0$ $i\neq j$
 - ightarrow Η στροφορμή επομένως ως προς το σύστημα των κύριων αξόνων είναι: $l_i = I_i \omega_i$
- Η διατήρηση της στροφορμής θα πάρει την μορφή:

$$\dot{\vec{l}} = 0 \Rightarrow \dot{l}_i + \sum_{ik} \varepsilon_{ijk} \omega_j l_k = 0 \Rightarrow I_i \dot{\omega}_i + \sum_{ik} \varepsilon_{ijk} \omega_j I_k \omega_k = 0$$

□ Εξίσωση κίνησης ενός περιστρεφόμενου στερεού σώματος χρησιμοποιώντας τους κύριους άξονες:

$$\Rightarrow I_1 \dot{\omega}_1 + \omega_2 \omega_3 (I_3 - I_2) = 0$$

$$\Rightarrow I_2 \dot{\omega}_2 + \omega_1 \omega_3 (I_1 - I_3) = 0$$

$$\Rightarrow I_3 \dot{\omega}_3 + \omega_1 \omega_2 (I_2 - I_1) = 0$$

Εξισώσεις Euler

Τρεις διαφορικές εξισώσεις κίνησης που χρησιμοποιούνται για να βρεθούν τα ω Δηλαδή να βρεθεί ο πίνακας περιστροφής και επομένως η θέση του στερεού συναρτήσει του χρόνου

 Οι εξισώσεις αυτές περιγράφουν την κίνηση ενός στερεού που είναι ελεύθερο χωρίς εξωτερικές δυνάμεις (εξωτερικές ροπές)

Εξισώσεις κίνησης στερεού

Οι εξισώσεις κίνησης που καταλήξαμε:

$$I_1\dot{\omega}_1 + \omega_2\omega_3(I_3 - I_2) = 0$$
 $I_2\dot{\omega}_2 + \omega_1\omega_3(I_1 - I_3) = 0$ $I_3\dot{\omega}_3 + \omega_1\omega_2(I_2 - I_1) = 0$

περιγράφουν την κίνηση ενός περιστρεφόμενου στερεού που δεν υπόκειται σε εξωτερικές ροπές

 Αν υπήρχαν εξωτερικές ροπές τότε η στροφορμή δεν διατηρείται και επομένως η μεταβολή της στροφορμής θα είναι ίση με την ροπή που ασκείται:

$$ec{l} = ec{ au} \Rightarrow \left\{ egin{aligned} I_1 \dot{\omega}_1 + \omega_2 \omega_3 ig(I_3 - I_2ig) &= au_1 \ I_2 \dot{\omega}_2 + \omega_1 \omega_3 ig(I_1 - I_3ig) &= au_2 \ I_3 \dot{\omega}_3 + \omega_1 \omega_2 ig(I_2 - I_1ig) &= au_3 \end{aligned}
ight.$$

Εξισώσεις Euler με εξωτερική ροπή

Διερεύνηση των εξισώσεων κίνησης

Οι εξισώσεις κίνησης που καταλήξαμε:

$$I_1\dot{\omega}_1 + \omega_2\omega_3(I_3 - I_2) = 0$$
 $I_2\dot{\omega}_2 + \omega_1\omega_3(I_1 - I_3) = 0$ $I_3\dot{\omega}_3 + \omega_1\omega_2(I_2 - I_1) = 0$

- Θα εξετάσουμε τις λύσεις των διαφορικών αυτών εξισώσεων για διάφορες περιπτώσεις στερεών σωμάτων
- lacktriangle Έστω ένα στερεό σώμα με ίσες κύριες ροπές αδράνειας: $I_1=I_2=I_3$ σφαιρικά συμμετρικό σώμα
 - \triangleright Στην περίπτωση αυτή οι εξισώσεις κίνησης είναι απλά: $\dot{\omega}_1 = \dot{\omega}_2 = \dot{\omega}_3 = 0$
 - ightharpoonup Δηλαδή: $\omega_i = \sigma \tau \alpha \theta$.
 - Στο περιστρεφόμενο σύστημα που χρησιμοποιούμε, το σφαιρικά συμμετρικό σώμα (μια μπάλα) θα περιστρέφεται ως προς τους κύριους άξονές του με σταθερή γωνιακή ταχύτητα
- $lue{}$ Έστω η περίπτωση που ένα στερεό σώμα έχει $I_1=I_2
 eq I_3$
 - Τα σώματα είναι συμμετρικά ως προς περιστροφές
 - Αξονική συμμετρία
 - Είδαμε διάφορα παραδείγματα στερεών με ίδιες 2 κύριες ροπές αδράνειας
 - Σώμα με αξονική συμμετρία, ονομάζεται συμμετρική σβούρα

Συμμετρική σβούρα χωρίς εξωτερικές δυνάμεις

Οι εξισώσεις κίνησης Euler:

$$I_1\dot{\omega}_1 + \omega_2\omega_3(I_3 - I_2) = 0$$
 $I_2\dot{\omega}_2 + \omega_1\omega_3(I_1 - I_3) = 0$ $I_3\dot{\omega}_3 + \omega_1\omega_2(I_2 - I_1) = 0$

- ightharpoonup Εφόσον: $I_1 = I_2 \implies I_3 \dot{\omega}_3 = 0 \implies \omega_3 = \sigma \tau \alpha \theta$.
- $I_1\dot{\omega}_1 = \omega_2\omega_3 (I_1-I_3)$ $I_1\dot{\omega}_2 = \omega_1\omega_3 (I_3-I_1)$
 - ightharpoonup Ορίζουμε: $\Omega = \omega_3 \frac{I_1 I_3}{I_1}$
 - ightharpoonup Οι εξισώσεις κίνησης γίνονται: $\dot{\omega}_1 = \omega_2 \Omega$ και $\dot{\omega}_2 = -\omega_1 \Omega$
- ightharpoonup Οι λύσεις των εξισώσεων αυτών είναι απλά: $\dot{\omega}_{\scriptscriptstyle 1}=\omega_{\scriptscriptstyle 2}\Omega \Rightarrow \ddot{\omega}_{\scriptscriptstyle 1}=\dot{\omega}_{\scriptscriptstyle 2}\Omega$
 - $\Rightarrow \ddot{\omega}_1 = -\omega_1 \Omega^2$ απλός αρμονικός ταλαντωτής με συχνότητα Ω
- ightharpoonup Όμοια για το $ω_2$: $\Rightarrow \ddot{\omega}_2 = -\omega_2 \Omega^2$
- ightharpoonup Οι λύσεις για $ω_1$ και $ω_2$ δίνουν: $(ω_1,ω_2) = A(\sin \Omega t,\cos \Omega t)$ πλάτος της ταλάντωσης

Συμμετρική σβούρα χωρίς εξωτερικές δυνάμεις

Ποια η φυσική σημασία του αποτελέσματος:

Αντίθετα με την περίπτωση της σφαιρικής συμμετρίας όπου η γωνιακή ταχύτητα είναι σταθερή ως προς τους κύριους άξονες

Στην περίπτωση αυτή, η συνιστώσα της γωνιακής ταχύτητας ως προς τον άξονα συμμετρίας είναι σταθερή αλλά οι συνιστώσες ως προς τους δυο άλλους κύριους άξονες (κάθετους στον άξονα συμμετρίας) ταλαντώνονται με συχνότητα Ω

Περιστρέφονται ουσιαστικά με συχνότητα Ω

Η διεύθυνση της περιστροφής δεν είναι σταθερή αλλά μεταπίπτει γύρω από τον άξονα συμμετρίας.

Η συχνότητα της μετάπτωσης είναι: $\Omega = \omega_3 \frac{I_1 - I_3}{I_1}$

Η διεύθυνση της μετάπτωσης εξαρτάται από : $I_1 > I_3$ ή $I_1 < I_3$

Για μακρύ και λεπτό στερεό, όπου $I_1=I_2>I_3$, η μετάπτωση είναι σύμφωνα με τους δείκτες του ρολογιού

Για κοντό και παχύ στερεό, όπου $I_1=I_2<I_3$, η μετάπτωση είναι αντίθετα με τους δείκτες του ρολογιού Για την γη: $(I_1-I_3)/I_1\sim 1/300\,$ και : $\omega_3=1/day$ $\Rightarrow \Omega=1/300(day)\,$ πειραματικά $\Omega=1/435\,$ και πλάτος 10m:

Γενική περίπτωση στερεού

 \blacksquare Εξετάζουμε την περίπτωση όπου: $I_1 \neq I_2 \neq I_3$

Εν γένει μπορεί να μην υπάρχει μια γενική λύση, αλλά υπάρχουν μερικές ειδικές περιπτώσεις που είναι εύκολο να βρούμε

- Θεωρήστε ότι έχετε περιστροφή γύρω από έναν κύριο άξονα με ω₁=Ω
- Οι εξισώσεις Euler θα είναι:

$$I_{1}\dot{\omega}_{1} + \omega_{2}\omega_{3}(I_{3} - I_{2}) = 0$$

$$I_{2}\dot{\omega}_{2} + \omega_{1}\omega_{3}(I_{1} - I_{3}) = 0$$

$$I_{3}\dot{\omega}_{3} + \omega_{1}\omega_{2}(I_{2} - I_{1}) = 0$$

- ightharpoonup Αλλά τώρα: $\omega_1 = \Omega$ ενώ: $\omega_2 = \omega_3 = 0$ είναι μια ειδική λύση
- Εξετάζουμε αν η λύση αυτή είναι ευσταθής ή όχι
- ightharpoonup Θεωρούμε: $ω_1 = \Omega + \eta_1$ $ω_2 = \eta_2$ $ω_3 = \eta_3$ όπου η_i διαταραχές
- \Leftrightarrow Η 1^η εξίσωση θα δώσει: $I_1\dot{\eta}_1 + O(\eta^2) = 0$
- \Leftrightarrow Η $\mathbf{2}^{\mathrm{\eta}}$ εξίσωση θα δώσει: $I_2\dot{\eta}_2=\Omega\eta_3ig(I_3-I_1ig)$
- \diamondsuit Η 3^η εξίσωση θα δώσει: $I_3\dot{m{\eta}}_3=\Omegam{\eta}_2ig(I_1-I_2ig)$

Γενική περίπτωση στερεού

- Η λύση του συστήματος αυτόυ βρίσκεται όπως πριν:
 - \diamondsuit Από την 2^η εξίσωση: $I_2\dot{\eta}_2=\Omega\eta_3ig(I_3-I_1ig)\Longrightarrow I_2\ddot{\eta}_2=\Omega\dot{\eta}_3ig(I_3-I_1ig)$
 - \Leftrightarrow Αντικατάσταση από την 3^η εξίσωση: $\ddot{\eta}_2 = \frac{\Omega^2}{I_2 I_3} \eta_2 (I_3 I_1)(I_1 I_2)$
 - ♦ Η ποσότητα αυτή θα είναι θετική ή αρνητική ανάλογα με το πρόσημο του όρου:
 - \Leftrightarrow Η λύση θα είναι ευσταθής αν $(I_3 I_1)(I_1 I_2) < 0 \Rightarrow \begin{cases} I_1 < I_2 \& I_3 \\ I_1 > I_2 \& I_3 \end{cases}$
 - \Leftrightarrow Η λύση θα είναι ασταθής αν $(I_3 I_1)(I_1 I_2) > 0 \Rightarrow egin{cases} I_2 < I_1 < I_3 \\ I_3 < I_1 < I_2 \end{cases}$
 - Ένα σώμα με τρεις κύριες ροπές αδράνειας διαφορετικές μεταξύ τους, μπορεί να περιστρέφεται ως προς ένα κύριο άξονά του και η περιστροφή θα είναι σταθερή αν ο άξονας αυτός είναι ο άξονας με την μεγαλύτερη ή την μικρότερη ροπή αδράνειας