Principal Component Pursuit for Source Apportionment from Block Missing Data: An Application to NYC PM_{2.5} Data

Lawrence Chillrud^{1*}, Jingkai Yan², John Wright², Jeff Goldsmith³, Marianthi-Anna Kioumourtzoglou¹

Departments of ¹Environmental Health Sciences, ²Electrical Engineering, ³Biostatistics, Columbia University, New York, USA

*Correspondence: lgc2139@columbia.edu

Background

Linking identified patterns (e.g. sources) associated with adverse health outcomes could yield:

- Efficient policy/public health regulations
- Targeted interventions

Elemental Carbon

Existing methods limited by:

- Subjective choice of k patterns
- Outliers may affect solution
- No standard for handling structured (block) missingness

Study aim: identify air pollution sources in NYC (2001-2020) & hindcast missing data for two PM_{2.5} species (EC, OC)

PCP+Nystrom

EPA AQS PM2.5 data: NYC, 2001 - 2020

- 26 PM_{2.5} chemical species measured across 2,378 days
- EC, OC missing all measurements from '01 '07 (2.6% of overall mixture)

Results

Organic Carbon

 PCP identified 5 sources of PM_{2.5} pollution: crustal dust, residual oil, salt, secondary sulfate, & traffic, as well as 3 single-constituent components (not shown): As, Ba, & Cd.

Methods

Principal Component Pursuit (PCP)

- Convex optimization algorithm from computer vision
- Dimension reduction by decomposing mixture into:

Original: environmental mixture

Low-rank (L): consistent exposure patterns

Sparse (S): outlying exposure events

Objective Fn: RRMC :
$$\min_{L,S} |\mathcal{I}_{(L) \leq r} + \eta ||S||_0 + ||L + S - D||_F^2$$

PCP & block missingness: how to reconstruct W_{11} ?

Mixture w/missing block W₁₁

PCP's Nystrom extension:

$$W = \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix}$$

$$\widehat{\boldsymbol{W}} = \begin{bmatrix} \boldsymbol{W}_{12} [\mathcal{P}_r(\boldsymbol{W}_{22})]^{\dagger} \boldsymbol{W}_{21} & \boldsymbol{W}_{12} \\ \boldsymbol{W}_{21} & \boldsymbol{W}_{22} \end{bmatrix}$$

Main idea: the missing block is reconstructed from observed data

Conclusions

- Traffic contributed most to total PM_{2.5} concentrations (20.2%) across study period
- Traffic peaked weekdays
- Traffic peaked in winters, including during block missing period
- Spikes observed in K⁺ concentrations around each fourth of July (including during missing period)

Final takeaways:

- Nystrom extension improves recovery of missing block
 - Exact recovery in no-noise conditions
 - As noise increases, harder to recover missing block
 - Main assumption: Missing block characterized by same patterns governing observed blocks
- PCP w/Nystrom offers reliable pattern recognition allowing researchers to leverage more data
- Sources can be used in subsequent health models