НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 3.3.4 «Эффект Холла в полупроводниках»

Овсянников Михаил Александрович студент группы Б01-001 2 курс ФРКТ

г. Долгопрудный 2021 г.

Цель работы: изучить эффект Холла, определить концентрацию и подвижность заряженных частиц в образце германия.

В работе используются: электромагнит с источником питания GPR, батарейка 1,5 В, амперметр, реостат, цифровой вольтметр B7-78/1, милливеберметр, образцы легированного германия.

Экспериментальная установка.

Рис. 1. Схема установки для исследования эффекта Холла

В зазоре электромагнита (Рис. 1а) создается постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания.

Образец легированного германия, смонтированный в специальном держателе (Рис. 16), подключается к батарее (≈ 1.5 B).

В образце с током, помещенном в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, поэтому напряжение связано не только с эффектом Холла, но и омическим падением напряжения. Тогда измеряемая разность потенциалов в одном направлении магнитного поля равна сум-

ме ЭДС Холла и омического падения напряжения, а в другом - их разности.

Можно исключить омическое падение напряжения по-другому - при фиксированном значении тока I оно является постоянным U_0 . Тогда $\mathscr{E}=U_{34}\pm U_0$.

Ход работы

Рис. 2. Образец

Зафиксируем параметры образца:

a=2,2 мм - это ширина образца;

 $L_{35}=3,0\,\,{
m MM}$ - это расстояние между контактами;

h = 2,5 мм - это толщина образца.

Проведем градуировку электромагнита и запишем результаты в таблицу 1:

B, м T л	1057	1032	978	935	845	730	611	491	338
I, A	2,0	1,8	1,6	1,4	1,2	1,0	0,8	0,6	0,4

Таблица 1

Снимем вольт-амперную характеристику образца. Запишем все измерения в таблицу 2:

I, MA	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
U, MKB	361	530	703	875	1043	1220	1392	1565	1743

Таблица 2

Построим график U(I):

Рис. 3.

Используя МНК:
$$U(I) = R \cdot I$$
; $R = 1,742 \text{ Ом}$; $\sigma_R = 0,002 \text{ Ом}$.

Найдем удельное сопротивление ho_0 образца германия:

$$ho_0 = R \frac{ah}{L_{35}} = 0,312 \text{ Om} \cdot \text{cm}.$$
 $\sigma_{\rho_0} = \rho_0 \cdot \frac{\sigma_R}{R} = 0,0004 \text{ Om} \cdot \text{cm}.$

Итого: $\rho_0 = (3120 \pm 4) \cdot 10^{-4} \text{ Om} \cdot \text{cm}$

Теперь найдем удельную проводимость $\sigma = \frac{1}{\rho_0} = 3, 2 \; (\text{Ом·см})^{-1}$. Ее погрешность $\sigma_{\sigma} = \sigma \cdot \frac{\sigma_{\rho_0}}{\rho_0} = 0,004 \; (\text{Ом·см})^{-1}$.

Итого:
$$\sigma = (3, 200 \pm 0, 004) (\text{Ом} \cdot \text{см})^{-1}$$

Исследуем зависимость ЭДС Холла от магнитного поля магнита при различных значениях продольного тока. Примем во внимание тот факт, что напряжение на контактах также связано с омическим падением напряжения, поэтому можно найти само ЭДС Холла двумя путями:

$$1)U_{\rm cp} = \frac{(+U_X) - (-U_X)}{2}$$

$$2)U_{\rm cp} = U_{34} - U_0$$

1.
$$I_0 = 1$$
 MA, $U_0 = -38$ MKB.

I, A	В, мТл	$+U_X$, мкВ	$-U_X$, мкВ	$U_{ m cp}$		
1, 11			\mathcal{O}_X , MKD	$\frac{(+U_X)-(-U_X)}{2}$, MKB	$U_{34} - U_0$, мкВ	
2,0	1057	166	-237	202	204	
1,8	1032	157	-230	194	195	
1,6	978	149	-221	185	187	
1,4	935	137	-210	174	175	
1,2	845	121	-193	157	159	
1,0	730	99	-172	136	137	
0,8	611	75	-148	112	113	
0,6	491	49	-122	86	87	
0,4	338	23	-95	59	61	

Таблица 3

Как видим, значения, полученные этими двумя способами, достаточно близки друг к другу.

Строим график $\mathscr{E}_X(B) = U_{\rm cp}(B)$.

Рис. 4.

Используя МНК, получаем:

$$\mathcal{E}_X = \frac{I_0 B}{nea} = R_X \cdot \frac{I_0 B}{a} = k_1 B.$$

$$k_1 = 18, 8 \cdot 10^{-5} \frac{B}{T_{\Pi}} = 18, 8 \cdot 10^{-5} \frac{M^2}{c}$$

$$\sigma_{k_1} = 0, 1 \cdot 10^{-5} \frac{M^2}{c}.$$

Откуда получаем:

$$n = \frac{I_0}{k_1 e a} = 1,51 \cdot 10^{16} \text{ cm}^{-3};$$
 $R_X = \frac{a k_1}{I_0} = 414 \frac{\text{cm}^3}{\text{K}_{\pi}};$ $\sigma_n = n \cdot \frac{\sigma_{k_1}}{k_1} = 0,01 \cdot 10^{16} \text{ cm}^{-3};$ $\sigma_{R_X} = R_X \cdot \frac{\sigma_{k_1}}{k_1} = 2 \frac{\text{cm}^3}{\text{K}_{\pi}};$

$$n = (1, 51 \pm 0, 01) \cdot 10^{16} \text{ см}^{-3}$$
 $R_X = (414 \pm 2) \frac{\text{см}^3}{\text{Кл}}$

Найдем подвижность частиц
$$\mu$$
 из уравнения $\sigma=ne\mu$:
$$\mu=\frac{\sigma}{ne}=1,32\cdot 10^2~\frac{\text{см}^2}{\text{B·c}}$$

$$\sigma_{\mu}=\mu\sqrt{\left(\frac{\sigma_{\sigma}}{\sigma}\right)^2+\left(\frac{\sigma_n}{n}\right)^2}=0,01\cdot 10^3~\frac{\text{см}^2}{\text{B·c}}$$

$$\mu = (1, 32 \pm 0, 01) \cdot 10^3 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$

2. $I_0 = 0,5$ mA, $U_0 = -17$ mkB.

I, A	В мТп	$+U_X$, мкВ	_U_ MKB	$U_{ m cp}$		
1, 11	D, MIM	$ +O_X, MKD $	$-\mathcal{O}_X$, MKD		$U_{34} - U_0$, мкВ	
2,0	1057	85	-120	103	102	
1,8	1032	82	-115	99	99	
1,6	978	77	-110	94	94	
1,4	935	71	-105	88	88	
1,2	845	63	-96	80	80	
1,0	730	52	-85	69	69	
0,8	611	40	-73	57	57	
0,6	491	26	-60	43	43	
0,4	338	13	-47	30	30	

Таблица 4

Опять же, значения, полученные двумя способами, почти совпадают. Строим график $\mathscr{E}_X(B) = U_{\mathrm{cp}}(B)$.

Рис. 5.

Из МНК:
$$\mathscr{E}_X = k_2 B.$$

$$k_2 = 9, 53 \cdot 10^{-5} \, \frac{\text{M}^2}{\text{c}};$$

$$\sigma_{k_2} = 0, 05 \cdot 10^{-5} \, \frac{\text{M}^2}{\text{c}}.$$
 Значит:
$$n = \frac{I_0}{k_2 e a} = 1, 49 \cdot 10^{16} \, \text{см}^{-3};$$

$$\sigma_n = n \cdot \frac{\sigma_{k_2}}{k_2} = 0, 01 \cdot 10^{16} \, \text{см}^{-3};$$

$$n = (1, 49 \pm 0, 01) \cdot 10^{16} \text{ cm}^{-3}$$

$$R_X = \frac{ak_2}{I_0} = 419 \frac{\text{cm}^3}{\text{K}_{\text{J}}};$$

 $\sigma_{R_X} = R_X \cdot \frac{\sigma_{k_2}}{k_2} = 2 \frac{\text{cm}^3}{\text{K}_{\text{J}}}$

$$\sigma_{R_X} = R_X \cdot \frac{\sigma_{k_2}}{k_2} = 2 \frac{\text{cm}^3}{\text{K}_{\text{J}}};$$

$$R_X = (419 \pm 2) \frac{\text{cm}^3}{\text{K}_{\text{J}}}$$

Найдем подвижность частиц
$$\mu$$
 из уравнения $\sigma=ne\mu$:
$$\mu=\frac{\sigma}{ne}=1,34\cdot 10^3~\frac{\text{см}^2}{\text{B·c}}$$

$$\sigma_{\mu}=\mu\sqrt{\left(\frac{\sigma_{\sigma}}{\sigma}\right)^2+\left(\frac{\sigma_{n}}{n}\right)^2}=0,01\cdot 10^3~\frac{\text{см}^2}{\text{B·c}}$$

$$\mu=(1,34\pm 0,01)\cdot 10^3~\frac{\text{см}^2}{\text{B·c}}$$

3.
$$I_0 = 0,3$$
 mA, $U_0 = -10$ mkB.

I, A	В, мТл	$+U_X$, MKB	$-U_X$, мкВ	$U_{ m cp}$		
1, 11				$\frac{(+U_X)-(-U_X)}{2}$, MKB	$U_{34} - U_0$, мкВ	
2,0	1057	52	-72	62	62	
1,8	1032	50	-69	60	60	
1,6	978	47	-66	57	57	
1,4	935	44	-63	54	54	
1,2	845	39	-58	49	49	
1,0	730	32	-52	42	42	
0,8	611	24	-44	35	34	
0,6	491	17	-36	27	27	
0,4	338	8	-28	18	18	

Таблица 5

И снова значения, полученные двумя способами, почти совпадают.

Строим график $\mathscr{E}_X(B) = U_{\rm cp}(B)$.

Рис. 6.

С помощью МНК получаем следующее:

$$\mathscr{E}_X = k_3 B.$$
 $k_3 = 5,80 \cdot 10^{-5} \, \frac{\text{M}^2}{\text{c}};$ $\sigma_{k_3} = 0,02 \cdot 10^{-5} \, \frac{\text{M}^2}{\text{c}}.$ Следовательно:

$$n = \frac{I_0}{k_3 e a} = 1,47 \cdot 10^{16} \text{ cm}^{-3};$$

$$\sigma_n = n \cdot \frac{\sigma_{k_3}}{k_3} = 0,01 \cdot 10^{16} \text{ cm}^{-3};$$

$$n = (1, 47 \pm 0, 01) \cdot 10^{16} \text{ cm}^{-3}$$

$$R_X = \frac{ak_3}{I_0} = 425 \frac{\text{cm}^3}{\text{K}_{\text{II}}};$$

 $\sigma_{R_X} = R_X \cdot \frac{\sigma_{k_3}}{k_3} = 2 \frac{\text{cm}^3}{\text{K}_{\text{II}}};$

$$R_X = (425 \pm 2) \frac{\mathrm{cm}^3}{\mathrm{K}_{\mathrm{J}}}$$

Найдем подвижность частиц
$$\mu$$
 из уравнения $\sigma=ne\mu$:
$$\mu=\frac{\sigma}{ne}=1,36\cdot 10^3~\frac{\text{см}^2}{\text{B}\cdot \text{c}}$$

$$\sigma_{\mu}=\mu\sqrt{\left(\frac{\sigma_{\sigma}}{\sigma}\right)^2+\left(\frac{\sigma_n}{n}\right)^2}=0,01\cdot 10^3~\frac{\text{см}^2}{\text{B}\cdot \text{c}}$$

$$\mu = (1, 36 \pm 0, 01) \cdot 10^3 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$

	,= 0,3 M			z-0,010
I,A	B, MTA	tux, nB	- Ux, MB	U a, HB
2,0	1057	0,052	-0,072	0,062
1,8	1032	0,050	-0,069	0,060
1,6	978	0,047	- 0,066	0,057
1,4	935	0,044	-0,063	0,054
1,2	845	0,039	-0,058	0,049
1.0	730	0,032	-0,052	0,042
0,8	611	0,024	-0,044	0,035
0,6	491	0,017	-0,036	0,027
0,4	338	0,008	-0,028	0,018
13.10 E _y = R _x	19.704	B	19-105	M2

Рис. 7

Подытожим результат.

I_0 , мА	$n, 10^{16} \text{ cm}^{-3}$	R_X , $\frac{\text{см}^3}{\text{Кл}}$	$\mu, 10^3 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$
1	1,51	414	1,32
0,5	1,49	419	1,34
0,3	1,47	425	1,36

Таблица 6

Как видим, величины, соответствующие разным экспериментам, достаточно близки друг к другу.

$$\overline{n} = 1,49 \cdot 10^{16} \text{ cm}^{-3} \qquad \sigma_{\overline{n}} = \sqrt{\sigma_{n_1}^2 + \sigma_{n_2}^2 + \sigma_{n_3}^2} = 0,02 \cdot 10^{16} \text{ cm}^{-3};$$

$$R_X = \overline{R_X} = 419 \frac{\text{cm}^3}{\text{K}_{\text{J}}} \qquad \sigma_{R_X} = \sqrt{\sigma_{R_X}^2 + \sigma_{R_X}^2 + \sigma_{R_X}^2 + \sigma_{R_X}^2} = 4 \frac{\text{cm}^3}{\text{K}_{\text{J}}};$$

$$\overline{\mu} = 1,34 \cdot 10^3 \frac{\text{cm}^2}{\text{B} \cdot \text{c}} \qquad \sigma_{\overline{\mu}} = \sqrt{\sigma_{\mu_1}^2 + \sigma_{\mu_2}^2 + \sigma_{\mu_3}^2} = 0,02 \cdot 10^3 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}.$$

Вывод: в работе был исследован эффект Холла в полупроводнике, а именно в образце германия. Для него были найдены следующие параметры:

- 1) удельное сопротивление $\rho_0 = (3120 \pm 4) \cdot 10^{-4} \text{ Ом} \cdot \text{см};$
- 2) удельная проводимость $\sigma = (3, 200 \pm 0, 004) \; (\text{Ом} \cdot \text{см})^{-1};$
- 3) концентрация носителей заряда $n=(1,49\pm0,02)\cdot10^{16}~{\rm cm}^3;$ 4) постоянная Холла $R_X=(419\pm4)~{\rm \frac{cm^3}{K_{\rm I}}};$
- 5) подвижность заряженных частиц $\mu = (1, 34 \pm 0, 02) \cdot 10^3 \frac{\text{см}^2}{\text{B.c}}$.

Все ошибки связаны с неточностью измерений и несовершенством техники измерения.