Implementacja algorytmu genetycznego. Prototyp 2 (z Circle Packing) Algorytmy i Struktury Danych

Wydział Elektryczny, Politechnika Warszawska

Tomasz Sobutka Artur Skonecki Prowadzący: Bartosz Chaber

Wygenerowano: 22 stycznia 2012

1 Specyfikacja funkcjonalna

1.1 Opis Problemu

Celem projektu jest zaimplementowanie algorytmu genetycznego służącego do optymalizacji wnętrza środka komunikacji miejskiej wraz z wizualizacją. Efektem końcowym działania algorytmu ma być znalezienie najlepszego "wnętrza środka komunikacji miejskiej".

1.1.1 Źródła

- Algorytmy genetyczne i ich zastosowania, David E. Goldberg, WNT 2003
- Algorytmy genetyczne + struktury danych = programy ewolucyjne , Zbigniew Michalewicz, WNT 1999
- http://www.obitko.com/tutorials/genetic-algorithms/ga-basic-description.php
- http://leonardo-m.livejournal.com/80721.html
- http://geneticalgorithms.ai-depot.com/Tutorial/Overview.html
- http://en.wikipedia.org/wiki/Circle_packing

1.2 Tworzenie osobników

Pierwsza generacja osobników jest tworzona za pomocą losowania. Kolejne generacje są tworzone za pomocą następujących technik:

- Krzyżowanie osobniki są losowo dobierane w pary i na tej podstawie obliczane jest ich potomstwo.
- Mutacja dla osobników w określonej części populacji isnieje szansa, że zostoną w losowy sposób zmienione

1.3 Selekcja osobników

Funkcja używa algorytmu Circle Packing, w celu znalezienia najlepszych osobników. Podczas obliczania przystosowania brane są pod uwagę następujące cechy:

- wygodę wnętrza, związaną z liczbą miejsc siedzących
- koszt materiałow, większy dla miejsc siedząych niż dla wolnej przestrzeni

• ilość miejsc w pojeździe, każde miejsce siedzące to 1 miejsce w pojeździe, wolna przestreń jest optymalizowana pod względem liczby pasażerów

W programie wykorzystano następujące rozwiązania w selekcji osobników:

- Koło ruletki, osobniki o większym przystosowaniu mają większą szansę zostać wylosowane do tworzenia potomstwa
- Elityzm, osobniki o największym przystosowaniu zawsze przechodzą do następnej generacji

1.4 Kodowanie genotypu

Genotyp osobników jest rozpatrywany jako ciągi bajtów. Każdy ciąg koduje 1 cechę, jest określonej, stałej długości i podlega krzyżowaniu oraz ewentualnej mutacji. Wszystkie cechy są interpretowane jako liczby naturalne.

1.5 Cechy osobników

Każdy osobnik jest określony przez następujące cechy:

- długość
- szerokość
- maksymalna liczba miejsc siedzących
- liczba rzędów
- odległość miedzy rzedami
- parametr określający co ile siedzeń w rzędzie występuje separator

1.5.1 Pierwsza Generacja

Wszystkie pierwsze osobniki są tworzone za pomocą losowania wartości cech osobników zawartych w dopuszczalnych wartościach .

1.6 Tworzenie kolejnych generacji

Kolejne generacje są tworzone z osobników wybranych przez koło ruletki i elityzm. Potomstwo wybranych osobników jest tworzone przez mutacje i krzyżowanie.

1.6.1 Operator mutacji

Mutacja polega na przypisaniu losowych wartości na losowych pozycjach w ciągach.

1.6.2 Operator Krzyżowania

Łączenie osobników przypomina "suwak", który raz bierze wartość od jednego osobnika a raz od drugiego

1.7 Zakończenie symulacji

- Po określonej maksymalnej liczbie generacji.
- Po osiągnięciu określonej wartości funkcji określającej przystosowanie.
- Na żądanie użytkownika.

1.8 Interfejs użytkownika oraz parametry symulacji

W celu ułatwienia testowania implementacji algorytmu genetycznego, pakiet zawiera graficzny interfejs użytkownika pozwalający na obserwacje postępu pracy za pomocą wizualizacji rozwiązania zadania.

Komendy

Interfejs umożliwia wykonanie poleceń:

Komenda	Argument	Opis	
start	-	Rozpoczęcie / kontynuacja symulacji	
stop	-	Wstrzymanie symulacji	
reset	-	Usunięcie bieżącej symulacji	
show	[int]	Ustawienie wizualizacji na osobnika $(1 - \infty)$ (od najlepszego do najgorszego), wartość 0 oznacza osobnika obecnie ocenianego	
[integer]	-	skrót do komendy show	

Parametry symulacji - część 1

Interfjes pozwala ustawić następujące parametry symulacji (niektóre parametry wymagają resetu przed zadziałeniem):

Parametr	Argument	Opis	
Fcircle-radius [float]		Promień zajmowany przez pojedynczego pasażera	
Fcost-seat [float]		Koszt siedzenia	
Fcost-space [float]		Koszt przestrzeni	
Felitism	[float]	Procent populacji do której stosuje się elityzm	
Ffactor-	[float]	waga komfortu w funkcji oceniającej	
comfort			
Ffactor-cost	[float]	waga kosztu w funkcji oceniającej	
Ffactor-	[float]	waga dostępnej przestrzeni w funkcji oceniającej	
Fmax-	[float]	Wartość funkcji określającej przystosowanie po	
adaptation		przekroczeniu której symulacja zakończy działanie	
Fmax-cost	[float]	maksymalny koszt, jeżeli koszt osobnika jest więk-	
		szy, to wartość funkcji oceniającej przystosowanie	
		będzie wynosić zero	
Fmin-comfort [float]		minimalny komfort, jeżeli komfort osobnika jest	
		mniejszy, to wartość funkcji oceniającej przysto-	
		sowanie będzie wynosić zero	
Fmin-space	[float]	minimalna przestrzeń, jeżeli przestrzeń osobnika	
		jest mniejsza, to wartość funkcji oceniającej przy-	
		stosowanie będzie wynosić zero	
Fmutation-	[float]	Współczynnik mutacji	
rate			
Froulette	[float]	Procent osobników losowanych przez ruletkę pod-	
		czas wyboru osobników do tworzenia nowej gene-	
		racji	
Fseat-offset	[float]	Wolna przestrzeń pozostawiana za każdym siedze-	
		niem w rzędzie	
Fseat-radius	[float]	Promień siedzenia brany pod uwagę przez circle	
		packing	
Fseat-size [float]		Długość boku rysowanego siedzenia	

Parametry symulacji - część 2

Parametr	Argument	Opis	
Icircles [int]		Liczba kółek symulujących pasażerów	
Igenome-bits [int]		liczba bitów w na które konwertowane są cechy osobników	
Imax-	[int]	Maksymalna wartość funkcji określającej adap-	
adaptation		tację, w przypadku przekroczenia symulacja jest wstrzymywana	
Imax-bus-h	[int]	Maksymalna i minimalna szerokość autobusu	
Imin-bus-h			
Imax-bus-w,	[int]	Maksymalna i minimalna długość autobusu	
Imin-bus-w			
Imax-	[int]	Maksymalna liczba generacji przy której symulacja	
generations		zakończy działanie, 0 to brak ograniczenia	
Imax-rows,	[int]	Maksymalna i minimalna liczba rzędów siedzeń w	
Imin-rows		autobusie	
Imax-rows-	[int]	Maksymalny i minimalny odstęp między rzędami	
spacing,		siedzeń w autobusie	
Imin-rows-			
spacing			
Imax-seats,	[int]	Maksymalna i minimalna liczba siedzeń w autobu-	
Imin-seats		sie	
Imax-seat-	[int]	Maksymalna i minimalna wartość, która określa co	
separator ,		ile siedzeń w rzędzie jest separator	
Imin-seat-			
separator			
Ipacking-iter	[int]	liczba iteracji circle packing dla każdej ewaluacji	
		osobnika	
Ipopulation	[int]	Wielkość populacji	

Dodatkowe funkcje interfejsu użytkownika

- Wyświetla liczbę generacji
- Wyświetla numer obecnie ocenianego osobnika w populacji
- Wyświetla czas trwania symulacji
- Okno wizualizacji pozwala wyświetlić dowolnego osobnika (domyślnie wyświetlany jest aktualnie oceniany)
- Pokazuje statystyki wyświetlanego osobnika
- Pokazuje parametry wyświetlanego osobnika

1.9 Opis interfejsu użytkownika

- Na samej górze okna programu znajduję się "linia poleceń", przez którą odbywa się cały dialog z programem.
- Na środku znajduję się wizualizacja autobusu. Pasażerowie są reprezentowani kółka a fotele przez kwadraty.
- Po lewej stronie umieszczone są statystyka symulacji oraz statystyka osobnika.
- Po prawej stronie umieszczone są status symulacji i wizualizacji oraz parametry symulacji.

prompt>

Genetic algorithm evaluator and viewer.

generation = 10 specimen = 0 time = 50.62

bus height = 95 bus width = 359floor space = 118306.0 rows spacing = 32 seat separator = 10 seats = 47seats space = 10575.0 standing = 33

stat = 1046.125 stat comfort = 920.0stat cost effect = 47.125 stat space = 79.0

running: True

show:1

Fcircle-radius: 10.5

Fcost-seat: 4.0 Fcost-space: 1.0

Felitism: 0.1

Ffactor-comfort: 20.0

Ffactor-cost: 0.001

Ffactor-space: 1.0 Fmax-cost: 100000.0

Fmin-comfort: 1.0

Fmin-space: 1.0

Froulette: 0.5 Fseat-offset: 3.0

Fseat-radius: 10.6066017178

Fseat-size: 15.0 Icircles: 250

Igenome-bits: 32 Imax-adaptation: 0

Imax-bus-h:100

Imax-bus-w:400

Imax-generations: 100

Imax-rows: 10

Imax-rows-spacing: 100 Imax-seat-separator: 10

Imax-seats: 200

Imin-bus-h:10

Imin-bus-w:10

Imin-rows: 1

Imin-rows-spacing: 32 Imin-seat-separator: 1

Imin-seats: 0

Ipacking-iter: 100

Ipopulation: 20

2 Specyfikacja implementacyjna

2.1 Narzędzia

Program został zaimplementowany w języku **Python 2.5**, przy wykorzystaniu biblioteki **PyGame** wersja **1.7.1**. Program wykorzystuje moduł **eztext**, który implementuje prostą linię komend. Dokumentacja jest generowana za pomocą *LaTeX*.

2.2 Pliki i Klasy

Klasa	Plik	Opis
-	run.sh	startuje program
*	src/eztext.py	Moduł (zewnętrzny) implementu-
		jący prostą linię komend w Py-
		Game.
-	src/Util.py	Zawiera funkcje pomocnicze.
-	src/Main.py	Punkt wejściowy. Znajduje się tu
		również główna pętla programu.
Breeder	src/Genetic.py	Klasa implemenująca tworzenie
		nowej populacji na podstawie sta-
		rej.
GenerationEvaluator	src/Genetic.py	Klasa wspomagająca wybieranie
		osobników z generacji.
Generation	src/Genetic.py	Klasa reprezentująca generację
		osobników.
Config	src/Config.py	Służy do konfiguracji symulacji i
		parametrów programu.
Specimen	src/Objects.py	Reprezentuje pojedynczego osob-
		nika.
Seat	src/Objects.py	Reprezentuje pojedynczy fotel za-
		warty w osobniku.
Circle	src/Objects.py	Reprezentuje pojedynczego pasa-
		żera.
Overlay	src/Overlay.py	Wyświetla interfejs użytkownika.

2.3 Opis implementacji algorytmu genetycznego

2.3.1 Kodowanie

Wszystkie cechy osobników są określone przez liczby całkowite. Są one konwertowane do reprezentacji bitowej (o długości określonej parametrem Igenome-bits) za pomocą funkcji Util.int2bin(). Po wykonaniu operacji krzyżowania i mutacji wartości są konwertowane z powrotem to liczb całkowitych za pomocą funkcji Util.bin2int().

2.3.2 Krzyżowanie i mutacja

Łączenie osobników przypomina "suwak", który raz bierze wartość od jednego osobnika a raz od drugiego (Breeder._crossover()). Przed wykonaniem krzyżowania, wszystkie cechy są konwertowane do reprezentacji binarnej i łączone w jeden długi ciąg. Mutacja jest wykonywana na losowych osobnikach przez funkcję Breeder. mutate().

2.3.3 Określanie przystosowania

Funkcja określająca przystosowanie (process_specimen() w module Genetic) bierze pod uwagę 3 parametry: komfort (liczba siedzeń), koszt (przesteń zajmowana przez siedzeń i wolna przestrzeń), oraz całkowita liczba pasażerów w autobusie. Ponadto program bierze pod uwagę wagi poszczególnych parametrów (Ffactor-comfort, Ffactor-cost, Ffactor-capacity). Liczba pasażerów jest określana przy pomocy funkcji implementującej algorytm Circle Packing (Util.pack())

2.3.4 Selekcja

Selekcja osobników do nowego tworzenia nowego pokolenia odbywa się za pomocą koła ruletki (GenerationEvaluator.roulette()). Osobniki o większym przystosowaniu mają większą szansę zostać wybrane przez koło ruletki.

2.3.5 Elityzm

Osobniki, które zostały określone jako najlepsze są przekopiowywane do nowej populacji (GenerationEvaluator.get elite()).