Dimensionality Reduction

Ziping Zhao

School of Information Science and Technology ShanghaiTech University, Shanghai, China

CS182: Introduction to Machine Learning (Fall 2022) http://cs182.sist.shanghaitech.edu.cn

Ch. 6 of I2ML (Secs. 6.4, 6.6, and 6.12 – 6.13 excluded)

Outline

Introduction

Subset Selection

Principal Component Analysis

Factor Analysis

Multidimensional Scaling

Linear Discriminant Analysis

Canonical Correlation Analysis

Nonlinear Dimensionality Reduction

Kernel Dimensionality Reduction

Factor Analysis

- Factor analysis (FA) or exploratory factor analysis (EFA) assumes that there is a set of latent factors z_j , $j=1,\ldots,k$, which when acting in combination generate the observed variables \mathbf{x} .
- ▶ The goal of FA is to characterize the dependency among the observed variables by means of a smaller number of factors, i.e., in a smaller dimensional space without loss of information measured as the correlation between variables.
- Problem settings:
 - Sample $\mathcal{X}=\{\mathbf{x}^t\}$: drawn from some unknown probability density with $\mathbb{E}[\mathbf{x}]=\mu$ and $\mathsf{Cov}(\mathbf{x})=\mathbf{\Sigma}$.
 - Factors z_j are unit normals and uncorrelated: $\mathbb{E}[z_j] = 0$, $Var(z_j) = 1$, $Cov(z_i, z_j) = 0$, $i \neq j$.
 - Noise sources ϵ_i to explain what is not explained by the factors: $\mathbb{E}[\epsilon_i] = 0$, $Var(\epsilon_i) = \psi_{ii} = \psi_i^2$, $Cov(\epsilon_i, \epsilon_j) = \psi_{ij} = 0$, $i \neq j$, $Cov(\epsilon_i, z_j) = 0$, $\forall i, j$

Relationships Between Factors and Input Dimensions

▶ Each of the d input dimensions x_i , i = 1, ..., d, can be expressed as a weighted sum of the k (< d) factors z_j , j = 1, ..., k, plus some residual error term:

$$x_i - \mu_i = \sum_{j=1}^k v_{ij} z_j + \epsilon_i$$
 or $\mathbf{x} - \boldsymbol{\mu} = \mathbf{V}\mathbf{z} + \epsilon$

where $\mathbf{V} \in \mathbb{R}^{d \times k}$ is a matrix of weights, called factor loadings.

- Without loss of generality, we can assume that $\mu = \mathbf{0}$.
- ▶ The factors z_j are independent unit normals that are stretched, rotated, and translated to generate the inputs \mathbf{x} .

26

PCA vs. FA

- ▶ The target of FA is opposite to that of PCA:
 - PCA (from x to z):

$$\mathsf{z} = \mathsf{W}^{\mathsf{T}}(\mathsf{x} - \boldsymbol{\mu})$$

– FA (from z to x – generative model):

$$\mathsf{x} - \mu = \mathsf{Vz} + \epsilon$$

Covariance Matrix

• Given that ${\sf Var}(z_j)=1$ and ${\sf Var}(\epsilon_j)=\psi_i^2$,

$$\mathsf{Var}(x_i) = \sum_{j=1}^k v_{ij}^2 \mathsf{Var}(z_j) + \mathsf{Var}(\epsilon_i) = \sum_{j=1}^k v_{ij}^2 + \psi_i^2$$

where the first part $\sum_{j=1}^{k} v_{ij}^2$ is the variance explained by the common factors and the second part ψ_i^2 is the variance specific to x_i . Similarly, for $i \neq i'$, we have

$$\mathsf{Cov}(x_i, x_{i'}) = \sum_{j=1}^k v_{ij} v_{i'j}$$

Then, the covariance matrix:

$$\boldsymbol{\Sigma} = \mathsf{Cov}(\mathbf{x}) = \mathsf{Cov}(\mathbf{Vz} + \boldsymbol{\epsilon}) = \mathsf{Cov}(\mathbf{Vz}) + \mathsf{Cov}(\boldsymbol{\epsilon}) = \mathbf{V}\mathsf{Cov}(\mathbf{z})\mathbf{V}^T + \mathbf{\Psi} = \mathbf{V}\mathbf{V}^T + \mathbf{\Psi}$$
 where $\mathbf{\Psi} = \mathsf{diag}(\boldsymbol{\psi})$ with $\boldsymbol{\psi} = [\psi_1^2, \dots, \psi_d^2].$

2-Factor Example for Illustration - I

► Let

$$\mathbf{x} = [x_1, x_2, x_3]^T$$
 $\mathbf{V} = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \\ v_{31} & v_{32} \end{bmatrix}$ $\mathbf{z} = [z_1, z_2]^T$

Since

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = \mathbf{V}\mathbf{V}^T + \mathbf{\Psi} = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \\ v_{31} & v_{32} \end{bmatrix} \begin{bmatrix} v_{11} & v_{21} & v_{31} \\ v_{12} & v_{22} & v_{32} \end{bmatrix} + \begin{bmatrix} \psi_1^2 & 0 & 0 \\ 0 & \psi_2^2 & 0 \\ 0 & 0 & \psi_3^2 \end{bmatrix}$$

we have

$$\sigma_{12} = \text{Cov}(x_1, x_2) = v_{11}v_{21} + v_{12}v_{22}$$

- If x_1 and x_2 have high covariance, then they are related through a factor:
 - If it is the first factor, then v_{11} and v_{21} will both be high.
 - If it is the second factor, then v_{12} and v_{22} will both be high.
- ▶ If x_1 and x_2 have low covariance, then they depend on different factors:
 - In each of the products $v_{11}v_{21}$ and $v_{12}v_{22}$, one term will be high and the other low.

2-Factor Example for Illustration – II

Because

$$Cov(x_1, z_1) = Cov(v_{11}z_1 + v_{12}z_2 + \epsilon_1, z_1)$$

= $Cov(v_{11}z_1, z_1) = v_{11}Var(z_1) = v_{11}$

and similarly,

$$Cov(x_1, z_2) = v_{12}$$

 $Cov(x_2, z_1) = v_{21}$ $Cov(x_2, z_2) = v_{22}$
 $Cov(x_3, z_1) = v_{31}$ $Cov(x_3, z_2) = v_{32}$

so we have

$$Cov(\mathbf{x}, \mathbf{z}) = \mathbf{V}$$

i.e., the factor loadings ${f V}$ represent the covariances (or correlations) between the variables and the factors.

Factor Analysis

Since

$$\Sigma = VV^T + \Psi$$

if there are only a few factors (i.e., $k \ll d$), we can get a simplified structure for Σ .

- The number of parameters is reduced from d(d+1)/2 (for **S**) to dk+d (for $\mathbf{VV}^T + \mathbf{\Psi}$).
- Special cases:
 - Probabilistic PCA (PPCA): $\Psi = \psi^2 \mathbf{I}$ (i.e., all ψ_i^2 are equal)
 - Conventional PCA: $\Psi = \mathbf{0}$, (i.e., $\psi_i^2 = 0$)
- The solution of factor loadings are not unique

$$\mathbf{V}\mathbf{V}^T = \mathbf{V}\mathbf{T}\mathbf{T}^T\mathbf{V}^T = (\mathbf{V}\mathbf{T})(\mathbf{V}\mathbf{T})^T = \tilde{\mathbf{V}}\tilde{\mathbf{V}}^T$$

for any orthogonal matrix $\mathbf{T} \in \mathbb{R}^{k \times k}$.

► The factors can be rotated to give maximum loading on as few factors as possible for each variable, to make the factors interpretable, for knowledge extraction.

Estimation of FA - I

\triangleright Given **S** as the estimator of **\Sigma**, we want to find **V** and **\Psi** such that

$$S = VV^T + \Psi$$
 (or: $S \approx VV^T + \Psi$)

- lacktriangle A naive method is to obtain lacktriangle firstly via PCA and then lacktriangle by taking directly the residual's sample variance.
- lacktriangle A joint estimation method over f V and $f \Psi$ can also be chosen to minimize

$$\label{eq:subject_to_v_problem} \begin{split} & \underset{\textbf{V}, \textbf{\Psi}}{\mathsf{minimize}} & & \|\textbf{S} - (\textbf{V}\textbf{V}^T + \textbf{\Psi})\|_F^2 \\ & \mathsf{subject to} & & \textbf{\Psi} \succ \textbf{0} \end{split}$$

Estimation of FA - II

- ightharpoonup The MLE for FA directly learns the parameters from raw data \mathbf{x}^t .
- ► It assumes that the data are generated from a certain statistical model, typically the multivariate Gaussian distribution.
- Then the parameters are estimated by maximizing the likelihood function

minimize
$$\frac{N}{2} \log \det(\mathbf{\Sigma}) + \frac{1}{2} \sum_{t} (\mathbf{x}^{t} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1} (\mathbf{x}^{t} - \boldsymbol{\mu})$$
 subject to $\mathbf{\Sigma} = \mathbf{V} \mathbf{V}^{T} + \mathbf{\Psi}$ $\mathbf{\Psi} \succ \mathbf{0}$

- Computationally this process is complex.
- ▶ In general, there is no closed-form solution to this optimization problem so iterative methods are applied.

Dimensionality Reduction

- ▶ FA can be used for dimensionality reduction when k < d.
- For dimensionality reduction, FA offers no advantage over PCA except the interpretability of factors allowing the identification of common causes, a simple explanation, and knowledge extraction.