Celem projektu z przedmiotu WSYZ jest pogłębienie wiedzy i umiejętności zdobywanych w trakcie wykładu i laboratoriów. Zakres projektu obejmuje:

- Utworzenie modeli biznesowych wybranych obszarów działania przedsiębiorstwa z wykorzystaniem notacji BPMN 2.0. Model ten powinny uwzględniać nie tylko procesy wewnętrzne przedsiębiorstwa, ale także interakcje z partnerami. Modele powinny także zawierać wyszczególnione obiekty danych, w szczególności te, które będą precyzowane w częściach dotyczących modeli optymalizacyjnych.
- W ramach modeli procesów biznesowych należy umiejscowić modele optymalizacyjne, które jako
 wejście otrzymają pewne obiekty danych (np. wejściowy plan produkcji) i dostarczą wynik, który
 będzie innym, bądź uszczegółowionym, obiektem danych (np. harmonogram produkcji).
- Każdy model optymalizacyjny powinien zawierać:
 - Specyfikację modelu (niezależną od danych) definiującą: zbiory, parametry, zmienne, ograniczenia i funkcję celu. Komentarze powinny opisywać znaczenie i funkcję poszczególnych ograniczeń (grup ograniczeń) oraz poszczególnych składników funkcji celu.
 - o Dane
- Należy zaproponować również dane wejściowe dla całego procesu biznesowego (np. zapotrzebowanie każdego sklepu na towar), obliczenie wyników za pomocą solvera i ich prezentacja.

Opis przedsięwzięcia.

Rozważana jest produkcja i dystrybucja podstawowych warzyw, tj. ziemniaków, kapusty, buraków i marchwi w Warszawie i okolicach.

Istnieją trzy rodzaje przedsiębiorstw:

 Grupa 6 producentów: P1...P6. Każdy z producentów produkuje każdy rodzaj warzyw jednak w różnych maksymalnych ilościach rocznych podanych w poniższej tabeli [tony]:

	Ziemniaki	Kapusta	Buraki	Marchew
P1	240	80	20	60
P2	50	100	240	80
P3	20	70	140	160
P4	30	50	160	150
P5	100	230	90	210
P6	100	130	20	200

Lokalizacja producentów to: Błonie, Książenice, Góra Kalwaria, Karczew, Wołomin, Legionowo.

• Sieć 3 magazynów-chłodni: M1..M3. Każdy magazyn ma określoną pojemność wyrażoną w tonach (1000, 100, 850) i może służyć do przechowywania dowolnych warzyw. Lokalizacje magazynów to Pruszków, Piaseczno, Zielonka.

• Sieć sklepów spożywczych usytuowanych w Warszawie (proszę zaproponować 10 sklepów rozlokowanych w różnych punktach Warszawy (adres i pozycja GPS)).

Każdy ze sklepów spożywczych składa zamówienie do centrali sieci magazynów (przez e-mail, telefon, lub specjalną aplikację) raz w tygodniu. Każdy sklep może być obsługiwany przez dowolny magazyn, lub kilka magazynów. Ilość zamawianego towaru wynika z aktualnego stanu zapasów w magazynie przysklepowym i prognozy sprzedaży (wyniki modelu optymalizacyjnego są wartością orientacyjną, ale pozwalają podjąć lepszą decyzję, z których magazynów są sprowadzane produkty).

Raz w roku (jesienią) producenci dostarczają towar do magazynów. Ilość towaru jest wyliczana na podstawie oddzielnie przeprowadzonych obliczeń, zgodnych z prognozowanymi zapotrzebowaniem (patrz model optymalizacyjny)

Problem optymalizacyjny to model transportowy połączony z modelem zapasów. Model ten powinien umożliwić podjęcie następujących decyzji,

- a) jakie warzywa w jakiej ilości powinny być transportowane raz w roku od każdego producenta do każdego magazynu,
- b) jakie warzywa i w jakiej ilości powinny być transportowane co tydzień z magazynów do poszczególnych sklepów,
- c) jaka część produktów powinna być w każdym tygodniu przechowywana w lokalnym magazynie każdego sklepu.

Dla każdego sklepu należy założyć:

- a) prognozowaną sprzedaż każdego z warzyw w ciągu roku z podziałem na poszczególne tygodnie (proszę przyjąć sensowne wartości, ale zmienne w ciągu roku i
- b) pojemność magazynu przysklepowego (znowu proszę przyjąć sensowne wartości, np. dwukrotność średniej sprzedaży w tygodniu danego sklepu).

Zapas warzyw nie powinien przekroczyć pojemności przysklepowego magazynu, ale także należy zachować minimalne zapasy każdego z warzyw (na wypadek błędów prognozy, należy przyjąć sensowne wartości, np. 10% średniej sprzedaży w tygodniu). Uwaga: towar dostarczany do sklepu uzupełnia zapas produktów w magazynie przysklepowym i dopiero stamtąd jest wydawany do sprzedaży w ciągu tygodnia.

Pozostałe brakujące dane (odległości między producentami, magazynami, sklepami) należy pobrać np. google maps. Założyć, że koszt przetransportowania jednej tony dowolnego produktu na odległość jednego kilometra wynosi 6 PLN.

Celem jest opracowanie strategii transportu minimalizującej całkowite roczne koszty transportu.