Вольный конспект 3 лекции

21 сентября 2024 г.

Отступление про пример циклического пространства.

Пусть $V_{f(t)}$ - пространство бесконечных рекурентных последовательностей последовательностей, удовлетворяющих хактеристическому уравнению

$$f(t) = t^n - c_{n-1}t^{n-1} + \dots + c_1t + c_0$$

 $(V_{f(t)}, \mathcal{S})$ - пространство с оператором, где \mathcal{S} - оператор сдвига. Оно является циклическим, потому что $V_{f(t)} = \langle (0, 0, ..., 1, ***...) \rangle$ (под звездочками подразумеваются компоненты последовательности, которые определяются однозначно первыми n компонентами).

Чтобы убедиться в том, что циклическое пространство справа совпадает с $V_{f(t)}$, посмотрим как на него действует оператор сдвига. $\mathcal{S}^k((0,0...,1^{n-1},***...)) = (0,0...,1^{n-1-k},***...)$. Первые n-1(включая нулевую) степеней \mathcal{S} от образующего вектора линейно независимы и их n штук. Так как $\deg(f_t) = n$, то $\dim V_{f(t)} = n$ и набор векторов выше образует $V_{f(t)}$. Поэтому это пространство циклическое.

§ Примарное разложение.

$$p(t) = \prod_{i=1}^{l} f_i(t)$$
, где $(f_i(t), f_j(t)) = 1$, $p(A) = 0$.

Было доказано, что при этих условиях $V=\bigoplus_{i=1}^l \ker f_i(\mathcal{A})$ Если p(t)=l

$$\prod_{i=1}^l p_i(t)^{k_i}$$
, то $V = \bigoplus_{i=1}^l \ker p_i(\mathcal{A})^{k_i}$ называется примарным разложением.

Пусть $\mu_{\mathcal{A}}(t) = \prod_{i=1}^l p_i(t)^{l_i}$ (напоминаниме - $\mu_{\mathcal{A}}(t)$ - минимальный аннулятор). Тогда:

- 1. $\forall k_i \geq l_i \ker p_i(\mathcal{A})^{k_i} = \ker p_i(\mathcal{A})^{l_i}$
- 2. $\forall k_i < l_i \ker p_i(\mathcal{A})^{k_i} \subset \ker p_i(\mathcal{A})^{l_i}$ и $\ker p_i(\mathcal{A})^{k_i} \neq \ker p_i(\mathcal{A})^{l_i}$

Доказательство:

Первая честь:

1. $\ker p_i(\mathcal{A})^{l_i} \subset \ker p_i(\mathcal{A})^{k_i} \implies \dim \ker p_i(\mathcal{A})^{l_i} \le \dim \ker p_i(\mathcal{A})^{l_i}$

2.
$$V = \bigoplus_{i=1}^{l} \ker p_i(\mathcal{A})^{l_i} \Rightarrow \sum_{i=0}^{l} \dim \ker p_i(\mathcal{A})^{l_i} = V$$
 и $\sum_{i=0}^{l} \dim \ker p_i(\mathcal{A})^{k_i} = V$

Из этого следует что $\forall i \dim \ker p_i(\mathcal{A})^{k_i} = \dim \ker p_i(\mathcal{A})^{l_i}$, а значит и $\ker p_i(\mathcal{A})^{l_i} = \ker p_i(\mathcal{A})^{k_i}$

Вторая часть:

 $\ker p_i(\mathcal{A})^{k_i} \subset \ker p_i(\mathcal{A})^{l_i}$ - это включение есть всегда(если вектор аннулировался от меньшей степени оператора, то аннулируется и от большей) Предположим, что там равенство. Тогда:

$$\ker p_i(\mathcal{A})^{k_i}\oplus\bigoplus_{i\neq j}\ker p_j(\mathcal{A})^{l_j}=\bigoplus_{i=1}^l\ker p_i(\mathcal{A})^{l_i}\Rightarrow \mu_{\mathcal{A}}$$
 - не минимальный аннулятор \square .

Пусть $\mu_{\mathcal{A},v}=p(t)^n$ (напоминание - $\mu_{\mathcal{A},v}$ - минимальный аннулятор вектора, он же является минимальным аннулятором подпространства, натянутого на этот вектор), p(t) - неприводимый.

Предложение. $p(t)|\mu_{\mathcal{A}}(t)$.

Доказательство:

Допустим p(t) не делит $\mu_{\mathcal{A}(t)}$. Тогда в силу неприводимости и теоремы о линейном представлении НОД получаем, что:

$$a(t)\mu_{\mathcal{A}}(t) + b(t)p(t) = 1 \Rightarrow a(\mathcal{A})\mu_{\mathcal{A}}(\mathcal{A}) + b(\mathcal{A})p(\mathcal{A}) = Id \Rightarrow (a(\mathcal{A})\mu_{\mathcal{A}}(\mathcal{A}) + b(\mathcal{A})p(\mathcal{A}))v = v \Rightarrow v = 0$$

Получили противоречие □.

Высотой примарного вектора называется $\min_{k\in\mathbb{N}} k: p(\mathcal{A})^k(v) = 0.$

Если $\mu_{\mathcal{A}}(t) = \prod_{i=1}^r (t-\lambda_i)^{l_i}$ - примарное разложение, то $\ker(\mathcal{A}-\lambda_i Id)^{l_i}$ - называется корневым подпространством, а $v \in \ker(\mathcal{A}-\lambda_i Id)^{l_i}$ - корневым вектором.

Следствие: существует корневой вектор для числа λ_i высоты l_i . Это сразу следует из первой теоремы параграфа - действительно, для всех корневых векторов высота не может быть больше l_i в силу второго пункта теоремы, а в силу первого она не может быть меньше.

Замечание: собственный вектор - корневой вектор высоты 1.

Необходимое и достаточное условие диагонализуемости Если $\mu_{\mathcal{A}}(t)$ - сепарабельный многочлен, то есть он имеет вид

$$\mu_{\mathcal{A}}(t) = \prod_{i=1}^{r} (t - \lambda_i)$$

то оператор диагонализуем.

(Замечание - собственное число обязано быть корнем минимального аннулятора, так как оно является корнем характеристического многочлена.)

Доказательство:

Достаточность:

Если $\mu_{\mathcal{A}}(t)$ имеет такой вид, то $V = \bigoplus_{i=1}^r \ker(\mathcal{A} - \lambda_i Id)$. Отсюда легко видеть что можном выбрать базис из собственных векторов(ну действительно, каждый элемент слогаемого прямой суммы состоит из пространства собственных векторов для конкретного собственного числа λ и в каждом из них можно выбрать базис). Как известно это условие равносильно диагонализуемости.

Необходимость:

 $u_1, u_2, ..., u_n$ - базис из собственных векторов V.

 $\lambda_1,\lambda_2,...,\lambda_r$ - различные собственные числа.

 $q(t) = \prod_{i=1}^{r} (t - \lambda_i)$ - аннулирует каждый из векторов базиса, значит он является аннуляторм, значит $\mu_{\mathcal{A}}(t)|q(t)$ (минимальный аннулятор делит любой другой аннулятор). Так как все степени q(t) равны 1, это значит что и все степени $\mu_{\mathcal{A}}(t)$ равны 1. Отсюда $q(t) = \mu_{\mathcal{A}}(t)$ \square .

§ Примарное циклическое пространство - формулировка и следствие.

Теорема.

Пусть на векторном пространстве V, таком что $\dim V < \infty$, задан оператор $\mathcal{A}: V \to V$. Тогда V раскладывается в примарную сумму циклических подпространств.

Из предыдущего параграфа видно, что примарные подпространства имеют вид $\ker p(\mathcal{A})^k$. Сложность доказательства заключается в том, чтобы показать, что они циклические. Теперь перейдем к следствиям.

Следствие. Над алгебраически замкнутым полем у любого оператора $\mathcal{A}: V \to V$ существует Жорданов базис.

Определение. Жорданов базис оператора \mathcal{A} - базис, в котором матрица оператора [\mathcal{A}] имеет блочно-диагональный вид, в котором каждый блок - Жорданова клетка, то есть матрица с собственным числом на диагонали и 1 над/под ней:

$$\begin{pmatrix} \lambda & 0 & 0 & \dots & \dots & 0 \\ 1 & \lambda & 0 & \dots & \dots & 0 \\ 0 & 1 & \lambda & \dots & \dots & 0 \\ 0 & 0 & 1 & \dots & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & \lambda \end{pmatrix} \text{ или } \begin{pmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & 1 \\ 0 & 0 & 0 & \dots & \dots & \lambda \end{pmatrix}$$

Для наглядности вот так выглядят Жордановы клетки для матриц 3 на 3:

$$\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} \bowtie \begin{pmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{pmatrix}$$

Замечание. В литературе иногда разделяют понятие Жордановых клеток и блоков. Под клеткой понимают то, что описано выше, а под блоком понимают блочно-диагональную матрицу, где каждый блок - Жорданова клетка для одного конкретного собственного числа.

В предыдущих лекциях дано понятие "модельного" циклического пространства - одного удобного циклического пространства, которое изоморфно заданному. В нашем случае это будет $\mathbb{K}[t]/(p(t)^r)$ с оператором $\mu_t: \mathbb{K}[t]/(p(t)^r) \to \mathbb{K}[t]/(p(t)^r)$

$$\mu_t: f(t) \mapsto tf(t).$$

(возможна путаница - μ_t никак не связан с аннулирующим многочленом, буква μ была выбрана потому слово multiplication начинается на букву m).

Пространства с операторами называются изоморфными, когда следующая диаграмма коммутативна:

$$\mathbb{K}[t]/(p(t)^r) \xrightarrow{\mu_t} \mathbb{K}[t]/(p(t)^r)$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi^{-1}} \qquad \qquad \downarrow^{\varphi^{-1}} \qquad \qquad \downarrow^{\varphi^{-1}} \qquad \qquad \downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi}$$

 φ, φ^{-1} - изоморфизмы.

Еще не доказанная теорема равносильна утверждению, что из любого примарного пространства существует изоморфизм в модельное циклическое.

B нашем случае $p(t) = t - \lambda$.

$$\mathbb{K}[t]/((t-\lambda)^r) \xrightarrow{\mu_t} \mathbb{K}[t]/((t-\lambda)^r)$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi^{-1}} \qquad \qquad \downarrow^{\varphi^{-1}} \qquad \qquad \downarrow^{\varphi^{-1}} \qquad \qquad \downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi$$

Выберем в $\mathbb{K}[t]/((t-\lambda)^r)$ базис, такой чтобы матрица оператора $\mu_{t-\lambda}$ имела вид

$$\begin{pmatrix} 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Очевидно, что матрциа оператора μ_t в этом базисе будет иметь вид Жордановой клетки:

$$\begin{pmatrix} \lambda & 0 & 0 & \dots \\ 1 & \lambda & 0 & \dots \\ 0 & 1 & \lambda & \dots \\ 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Таким базисом, очевидно является базис $1, (t-\lambda), (t-\lambda)^2, ..., (t-\lambda)^{r-1}$ Теперь вернемся к случаю с произвольным p.

Выберем базис $1, t, t^2, ..., t^{n-1}$. Матрица оператора μ_t в этом базисе выглядит так:

$$\begin{pmatrix} 0 & 0 & 0 & \dots & c_0 \\ 1 & 0 & 0 & \dots & c_1 \\ 0 & 1 & 0 & \dots & c_2 \\ 0 & 0 & 1 & \dots & c_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \dots & \dots & \dots & \vdots \end{pmatrix}$$

Это называется первым "простым"вариантом Фробениусовой формы. c_i - коэфициенты многочлена $p^r(t), n = r \deg p$.

Есть так же второй, "сложный вариант" Фробениусовой формы, которые в некотором роде будет комбинацией первого варианта и Жордановой формы. Пусть $h = \deg p$. Выберем базис:

$$1, t, ..., t^{h-1}, p(t), tp(t), ..., t^{h-1}p(t), ..., p(t)^2, ..., p(t)^{r-1}t^{h-1}$$

Посмотрим как действует оператор μ_t на нем

Поэтому матрица будет выглядеть так: идут диагональные блоки, которые выглядят так же, как в первом варианте Фробениусовой формы, а под ними находятся единички, как в Жордановой форме(то есть Жорданова форма, только вместо собственных чисел Фробениусовы клетки). Это выглядит так:

Стоит отметить, что c_i здесь и в первом варианте это разные числа. В первом варианте это коэфициенты p^r , а во втором это коэфициенты p. Лучше не путать. Вот такие вот дела.