NATIONAL UNIVERSITY OF SINGAPORE

MA2101 Linear Algebra II

SEMESTER 1: AY 2014/2015

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your matriculation number only. Do not write your name.
- 2. This examination paper contains a total of **EIGHT** (8) questions and comprises **THREE** (3) printed pages.
- 3. Answer **ALL** questions. The marks for questions are not necessarily the same; marks for each question are indicated at the beginning of the question.
- 4. Use a separate page for each question.
- 5. This is a **CLOSED BOOK** examination.
- 6. Each candidate is allowed to use two pieces of A4-size, handwritten help sheets.
- 7. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Page 2 of 3 MA2101

Question 1 [15 marks]

Let V be a vector space over \mathbb{C} , and $T \in \mathcal{L}(V)$ such that $T^2 = 1_V$. Define

$$V_1 = \{ v \in V \mid T(v) = v \}$$
 and $V_2 = \{ v \in V \mid T(v) = -v \}.$

- (i) Prove that V_1 and V_2 are subspaces of V.
- (ii) Prove that $V = V_1 \oplus V_2$.

Question 2 [15 marks]

Let V be a vector space and $T \in \mathcal{L}(V)$.

- (i) Prove that $\operatorname{Im}(T^k) \subseteq \operatorname{Im}(T^{k-1})$ for every positive integer k.
- (ii) Prove that if $\operatorname{Im}(T^k) = \operatorname{Im}(T^{k-1})$ for a positive integer k, then $\operatorname{Im}(T^{k+1}) = \operatorname{Im}(T^k)$.
- (iii) If $V = \mathcal{P}(\mathbb{F})$, find $T \in \mathcal{L}(V)$ such that $\mathrm{Im}(T^k) \subsetneq \mathrm{Im}(T^{k-1})$ for all positive integer k.

Question 3 [15 marks]

Let $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ and define

$$T(X) = AX - XA, \quad X \in \mathcal{M}_{2\times 2}(\mathbb{R}).$$

- (i) Find $[T]_{\mathcal{B}}$, where $\mathcal{B} = \{ \mathbf{E}_{11}, \mathbf{E}_{12}, \mathbf{E}_{21}, \mathbf{E}_{22} \}$.
- (ii) Find $c_T(x)$ and $m_T(x)$, and determine if T is diagonalizable.

Question 4 [10 marks]

It is given that \langle , \rangle defined by

$$\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x) dx$$

is an inner product on $\mathcal{P}(\mathbb{R})$. Find an orthogonal basis for $V = \operatorname{span}_{\mathbb{R}}\{x^2, x^3, x^4\}$.

Page 3 of 3 MA2101

Question 5 [15 marks]

Consider the linear system

$$\begin{cases} x_1 + ix_2 - x_3 = 0 \\ x_1 + x_3 = 6 \\ 2x_1 + ix_2 = 3 \\ ix_2 - 2x_3 = 3. \end{cases}$$

- (i) Find all the least squares solutions.
- (ii) Find the optimal least squares solution.

Question 6 [10 marks]

Let V be a finite-dimensional vector space over \mathbb{C} , and $T \in \mathcal{L}(V)$. Suppose that T has exactly two eigenvalues 1 and -1, such that

- (i) the algebraic multiplicaties of -1 and 1 are 5 and 7 respectively, and
- (ii) the geometric multiplicities of -1 and 1 are 2 and 3 respectively.

Find all the possible Jordan canonical forms of T, and write down the corresponding minimal polynomials. (Write the Jordan canonical form as $J_{k_1}(\lambda_1) \oplus \cdots \oplus J_{k_s}(\lambda_s)$).

Question 7 [10 marks]

Let V be a finite-dimensional vector space, and $S, T \in \mathcal{L}(V)$. Prove that

- (i) $rank(S + T) \le rank(S) + rank(T)$.
- (ii) $\operatorname{nullity}(S \circ T) \leq \operatorname{nullity}(S) + \operatorname{nullity}(T)$.

Question 8 [10 marks]

Let V be a finite-dimensional inner product space, and $T \in \mathcal{L}(V)$ invertible. Prove that there exists a unitary operator U and a positive operator P on V such that $T = U \circ P$.