ORACLE Academy

Database Programming with SQL

8-2 COUNT, DISTINCT, NVL

Objectives

- This lesson covers the following objectives:
 - Construct and execute a SQL query using the COUNT group function
 - -Use DISTINCT and the NVL function with group functions

Purpose

- Being able to aggregate (group together) data using SQL functions enables businesses to do calculations that would otherwise have to be done by hand
- Remember the example of having to count all of the students in your school? A daunting task!
- There just aren't enough hands to accomplish it manually
- Fortunately, the SQL group functions can easily process these types of requests

COUNT

 COUNT(expression) returns the number of non-null values in the expression column

```
SELECT COUNT(job_id)
FROM employees;
```

COUNT(JOB_ID)

20

COUNT and NULL Values

- Twenty rows of employees are listed in the employees table, and if you select commission_pct, twenty rows are returned
- Adding a count function to the query COUNT returned only four
- COUNT specifically counts the commission_pct column but ignores the null values in the column

SELECT commission_pct FROM employees;

20 rows returned in 0.01 seconds

SELECT COUNT(commission_pct)
FROM employees;

COUNT(COMMISSION PCT)

4

COUNT All Rows

- COUNT(*) returns the number of rows in a table
- It does not specify a column (which may or may not contain nulls) to count; it counts the number of rows returned in the result set
- For example, to find out how many employees were hired before 01/Jan/1996, COUNT can be used in the SELECT statement

```
SELECT COUNT(*)
FROM employees
WHERE hire_date < '01-Jan-1996';
```


COUNT All Rows

 We use COUNT(*) when we want to make sure that we count all the rows (including duplicates), as well as those that may have nulls in one or more columns

```
SELECT COUNT(*)
FROM employees
WHERE hire_date < '01-Jan-1996';
```

COUNT (*) 9

DISTINCT

- The keyword DISTINCT is used to return only nonduplicate values or combinations of non-duplicate values in a query
- Examine the query below
- Without using the keyword DISTINCT, the query returned all of the job_id values from the employees table, including the duplicate values

```
SELECT job_id FROM employees;
```

JOB_ID
AC_ACCOUNT
AC_MGR
AD_ASST
AD_PRES
AD_VP
AD_VP
IT_PROG

20 rows returned in 0.01 seconds

DISTINCT Example

- To eliminate duplicate rows, use the DISTINCT keyword as shown here
- Using the DISTINCT keyword returned all of the job IDs exactly once, with no duplicate values

```
SELECT DISTINCT job_id FROM employees;
```

JOB_ID
AC_ACCOUNT
AC_MGR
AD_ASST
AD_PRES
AD_VP
IT_PROG
MK_MAN

12 rows returned in 0.01 seconds

DISTINCT Non-duplicate

- The keyword DISTINCT, when used in a query selecting more than one column, will return non-duplicate combinations of the selected columns
- Examine the result set shown here
- Notice that no duplicates exist of the combination of job_id and department_id even though duplicates exist in both columns

SELECT DISTINCT job_id,
 department_id
FROM employees;

JOB_ID	DEPARTMENT_ID
IT_PROG	60
SA_REP	80
ST_MAN	50
AD_VP	90
AD_ASST	10
MK_MAN	20
MK_REP	20
SA_MAN	80
SA_REP	-

13 rows returned in 0.01 seconds

Using DISTINCT

- The keyword DISTINCT can be used with all group functions
- Using DISTINCT makes the function consider only non-duplicate values
- The two statements on the right produce different results because the second only considers one occurrence of 17000

SELECT SUM(salary)
FROM employees
WHERE department_id = 90;


```
SELECT SUM(DISTINCT salary)
FROM employees
WHERE department_id = 90;
```


DISTINCT and COUNT

 When using DISTINCT with a group function such as COUNT, the result set will return the number of nonduplicate column values

SELECT COUNT (DISTINCT
job_id)
FROM employees;

COUNT (DISTINCT job_id)

12

How many different jobs are assigned to employees?

SELECT COUNT (DISTINCT salary)
FROM employees;

COUNT (DISTINCT salary)

18

How many different salary amounts are paid to employees?

NVL

- Sometimes it is desirable to include null values in group functions
- For example, knowing the average number of customer orders served each day could be used to judge how much food to order each month
- Some days the restaurant is closed and no customers are served, but the owner has found that computing the average by including the days he is closed is a better indicator than just counting the days with customers

NVL

 The SELECT statement to include null values could be written starting with:

```
SELECT AVG(NVL(customer_orders, 0))
```

Another example on employees table:

```
SELECT AVG(commission_pct)
FROM employees;
```

```
AVG(COMMISSION_PCT)
```

.2125

```
SELECT AVG(NVL(commission_pct, 0))
FROM employees;
```

```
AVG(NVL(COMMISSION_PCT,0))
```

.0425

NVL

Compare the results of the following two queries

```
SELECT AVG(commission_pct)
FROM employees;
```

AVG(COMMISSION_PCT)

.2125

```
SELECT AVG(NVL(commission_pct, 0))
FROM employees;
```

AVG(NVL(COMMISSION_PCT,0))

.0425

Terminology

- Key terms used in this lesson included:
 - -Aggregate
 - -COUNT (expression)
 - -COUNT (DISTINCT expression)
 - -DISTINCT

Summary

- In this lesson, you should have learned how to:
 - Construct and execute a SQL query using the COUNT group function
 - -Use DISTINCT and the NVL function with group functions

ORACLE Academy