Hidden Markov Models and Gaussian Mixture Models

Peter Bell

Automatic Speech Recognition— ASR Lecture 2 16 January 2020

Overview

HMMs and GMMs

- Introduction to HMMs: Hidden Markov models
- Univariate and multivariate Gaussians
- Gaussian mixture models
- Introduction to the EM algorithm

Hidden Markov Models and Gaussian Mixture Models

Overview

HMMs and GMMs

- Introduction to HMMs: Hidden Markov models
- Univariate and multivariate Gaussians
- Gaussian mixture models
- Introduction to the EM algorithm

Warning: the maths starts here!

Fundamental Equation of Statistical Speech Recognition

If \mathbf{X} is the sequence of acoustic feature vectors (observations) and \mathbf{W} denotes a word sequence, the most likely word sequence \mathbf{W}^* is given by

$$\mathbf{W}^* = \arg\max_{\mathbf{W}} P(\mathbf{W} \,|\, \mathbf{X})$$

Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and W denotes a word sequence, the most likely word sequence W^* is given by

$$\mathbf{W}^* = \arg\max_{\mathbf{W}} P(\mathbf{W} \,|\, \mathbf{X})$$

Applying Bayes' Theorem:

$$P(\mathbf{W} | \mathbf{X}) = \frac{p(\mathbf{X} | \mathbf{W}) P(\mathbf{W})}{p(\mathbf{X})}$$

$$\propto p(\mathbf{X} | \mathbf{W}) P(\mathbf{W})$$

$$\mathbf{W}^* = \arg \max_{\mathbf{W}} \underbrace{p(\mathbf{X} | \mathbf{W})}_{\text{Acoustic}} \underbrace{P(\mathbf{W})}_{\text{Language}}$$

$$\text{model}$$

NB: **X** is used hereafter to denote the output feature vectors from the signal analysis module rather than DFT spectrum.

ASR Lecture 2 Hidden I

Acoustic Modelling

Hierarchical modelling of speech

The Hidden Markov model

- A statistical model for time series data with a set of **discrete** states $\{1, \ldots, J\}$ (we index them by j or k)
- At each time step t:
 - the model is in a fixed state q_t .
 - the model generates an observation, x_t, according to a probability distribution that is specific to the state
- We don't actually observe which state the model is in at each time step – hence "hidden".
- Observations can be either continous or discrete (usually the former)

HMM probabilities

- Imagine we know the state at a given time step t, $q_t = k$
- Then the probability of being in a new state, j at the next time step, is dependent only on q_t . This is the **Markov** assumption.
- Alternatively: q_{t+1} is conditionally independent of q_1, \ldots, q_{t-1} , given q_t .
- This means we can parametrise the model with parameters λ :
 - Transition probabilities $a_{kj} = P(q_{t+1} = j | q_t = k)$
 - Observation probabilities $b_i(\mathbf{x}) = P(\mathbf{x}|q=j)$

HMM assumptions

Note that **observation independence** is an assumption that naturally arises from the model: the probability of $\mathbf{x_t}$ depends only on the state that generated it, q_t .

 The HMM topology determines the set of allowed transitions between states

- The HMM topology determines the set of allowed transitions between states
- In principle any topology is possible

- The HMM topology determines the set of allowed transitions between states
- In principle any topology is possible

- The HMM topology determines the set of allowed transitions between states
- In principle any topology is possible

Not all transition probabilities are shown

Example topologies

left-to-right model

parallel path left-to-right model

ergodic model

$$\left(\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right)$$

$$\begin{pmatrix} a_{11} & a_{12} & 0 \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \qquad \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 & 0 \\ 0 & a_{22} & a_{23} & a_{24} & 0 \\ 0 & 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & 0 & a_{55} \end{pmatrix} \qquad \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{pmatrix}$$

$$a_{11}$$
 a_{12}
 a_{13}
 a_{14}
 a_{15}
 a_{21}
 a_{22}
 a_{23}
 a_{24}
 a_{25}
 a_{31}
 a_{32}
 a_{33}
 a_{34}
 a_{35}
 a_{41}
 a_{42}
 a_{43}
 a_{44}
 a_{45}
 a_{51}
 a_{52}
 a_{53}
 a_{54}
 a_{55}

Speech recognition: left-to-right HMM with 3 \sim 5 states

Speaker recognition: ergodic HMM

We generally model words or phones with a left-to-right topology with self loops.

Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)

Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)

Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)

The phone model topologies can be concatenated to form a HMM for the whole word

Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)

This model naturally generates an alignment between states and observations (and hence words/phones).

Hidden Markov Models and Gaussian Mixture Models

A note on HMM observation probabilities

	Observation prob.	
Continuous (density) HMM	continuous	GMM, DNN
Discrete (probability) HMM	discrete	Vector quantisation
Semi-continuous HMM	continuous	tied mixture
(tied-mixture HMM)		

Computing likelihoods with the HMM

Suppose we have a sequence of observations of length T, $X = (\mathbf{x}_1, \dots, \mathbf{x}_T)$, and Q is a known state sequence, (q_1, \dots, q_T) . Then we can use the HMM to compute the joint likelihood of X and Q:

$$P(X, Q; \lambda) = P(q_1)P(\mathbf{x}_1|q_1)P(q_2|q_1)P(\mathbf{x}_2|q_2)...$$
(1)

$$= P(q_1)P(\mathbf{x}_1|q_1)\prod_{t=2}^{r} P(q_t|q_{t-1})P(\mathbf{x}_t|q_t) \qquad (2)$$

 $P(q_1)$ denotes the initial occupancy probability of each state

Background: cdf

Consider a real valued random variable X

• Cumulative distribution function (cdf) F(x) for X:

$$F(x) = P(X \le x)$$

 To obtain the probability of falling in an interval we can do the following:

$$P(a < X \le b) = P(X \le b) - P(X \le a)$$
$$= F(b) - F(a)$$

Hidden Markov Models and Gaussian Mixture Models

Background: pdf

• The rate of change of the cdf gives us the *probability density* function (pdf), p(x):

$$p(x) = \frac{d}{dx}F(x) = F'(x)$$
$$F(x) = \int_{-\infty}^{x} p(x)dx$$

- p(x) is **not** the probability that X has value x. But the pdf is proportional to the probability that X lies in a small interval centred on x.
- Notation: p for pdf, P for probability

The Gaussian distribution (univariate)

- The Gaussian (or Normal) distribution is the most common (and easily analysed) continuous distribution
- It is also a reasonable model in many situations (the famous "bell curve")
- If a (scalar) variable has a Gaussian distribution, then it has a probability density function with this form:

$$p(x | \mu, \sigma^2) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

- The Gaussian is described by two parameters:
 - the mean μ (location)
 - the variance σ^2 (dispersion)

Plot of Gaussian distribution

- Gaussians have the same shape, with the location controlled by the mean, and the spread controlled by the variance
- One-dimensional Gaussian with zero mean and unit variance $(\mu=0,\,\sigma^2=1)$:

Properties of the Gaussian distribution

$$\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

Parameter estimation

- Estimate mean and variance parameters of a Gaussian from data x_1, x_2, \ldots, x_T
- Use the following as the estimates:

$$\hat{\mu}=rac{1}{T}\sum_{t=1}^{T}x_{t}$$
 (mean) $\hat{\sigma}^{2}=rac{1}{T}\sum_{t=1}^{T}(x_{t}-\hat{\mu})^{2}$ (variance)

Exercise — maximum likelihood estimation (MLE)

Consider the log likelihood of a set of T training data points $\{x_1,\ldots,x_T\}$ being generated by a Gaussian with mean μ and variance σ^2 :

$$L = \ln p(\{x_1, \dots, x_T\} | \mu, \sigma^2) = -\frac{1}{2} \sum_{t=1}^{T} \left(\frac{(x_t - \mu)^2}{\sigma^2} - \ln \sigma^2 - \ln(2\pi) \right)$$
$$= -\frac{1}{2\sigma^2} \sum_{t=1}^{T} (x_t - \mu)^2 - \frac{T}{2} \ln \sigma^2 - \frac{T}{2} \ln(2\pi)$$

By maximising the the log likelihood function with respect to μ show that the maximum likelihood estimate for the mean is indeed the sample mean:

$$\mu_{ML} = \frac{1}{T} \sum_{t=1}^{T} x_t.$$

The multivariate Gaussian distribution

• The *D*-dimensional vector $\mathbf{x} = (x_1, \dots, x_D)^T$ follows a multivariate Gaussian (or normal) distribution if it has a probability density function of the following form:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

The pdf is parameterised by the mean vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_D)^T$ and the covariance matrix $\Sigma = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1D} \\ \vdots & \ddots & \vdots \\ \sigma_{D1} & \dots & \sigma_{DD} \end{pmatrix}$.

The multivariate Gaussian distribution

• The *D*-dimensional vector $\mathbf{x} = (x_1, \dots, x_D)^T$ follows a multivariate Gaussian (or normal) distribution if it has a probability density function of the following form:

$$\rho(\mathbf{x} \,|\, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

The pdf is parameterised by the mean vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_D)^T$ and the covariance matrix $\Sigma = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1D} \\ \vdots & \ddots & \vdots \\ \sigma_{D1} & \dots & \sigma_{DD} \end{pmatrix}$.

The 1-dimensional Gaussian is a special case of this pdf

The multivariate Gaussian distribution

• The *D*-dimensional vector $\mathbf{x} = (x_1, \dots, x_D)^T$ follows a multivariate Gaussian (or normal) distribution if it has a probability density function of the following form:

$$p(\mathbf{x} \,|\, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

The pdf is parameterised by the mean vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_D)^T$ and the covariance matrix $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1D} \\ \vdots & \ddots & \vdots \\ \sigma_{D1} & \dots & \sigma_{DD} \end{pmatrix}$.

- The 1-dimensional Gaussian is a special case of this pdf
- The argument to the exponential $0.5(\mathbf{x} \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} \boldsymbol{\mu})$ is referred to as a *quadratic form*.

Covariance matrix

• The mean vector μ is the expectation of \mathbf{x} :

$$\mu = E[x]$$

 The covariance matrix Σ is the expectation of the deviation of x from the mean:

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

• Σ is a $D \times D$ symmetric matrix:

$$\sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)] = E[(x_j - \mu_j)(x_i - \mu_i)] = \sigma_{ji}$$

- The sign of the covariance helps to determine the relationship between two components:
 - If x_j is large when x_i is large, then $(x_i \mu_i)(x_j \mu_j)$ will tend to be positive;
 - If x_j is small when x_i is large, then $(x_i \mu_i)(x_j \mu_j)$ will tend to be negative.

Hidden Markov Models and Gaussian Mixture Models

Spherical Gaussian

$$oldsymbol{\mu} = \left(egin{array}{c} 0 \ 0 \end{array}
ight) \qquad oldsymbol{\Sigma} = \left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight) \qquad
ho_{12} = 0$$

NB: Correlation coefficient $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$ $(-1 \le \rho_{ij} \le 1)$

Diagonal Covariance Gaussian

$$oldsymbol{\mu} = \left(egin{array}{c} 0 \ 0 \end{array}
ight) \qquad oldsymbol{\Sigma} = \left(egin{array}{c} 1 & 0 \ 0 & 4 \end{array}
ight) \qquad
ho_{12} = 0$$

NB: Correlation coefficient $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$ $(-1 \le \rho_{ij} \le 1)$

Full covariance Gaussian

$$\mu = \left(egin{array}{c} 0 \ 0 \end{array}
ight) \qquad oldsymbol{\Sigma} = \left(egin{array}{cc} 1 & -1 \ -1 & 4 \end{array}
ight) \qquad
ho_{12} = -0.5$$

NB: Correlation coefficient $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$ $(-1 \le \rho_{ij} \le 1)$

Parameter estimation of a multivariate Gaussian distribution

• It is possible to show that the mean vector $\hat{\mu}$ and covariance matrix $\hat{\Sigma}$ that maximise the likelihood of the training data are given by:

$$egin{aligned} \hat{oldsymbol{\mu}} &= rac{1}{T} \sum_{t=1}^{T} oldsymbol{x}_t \ \hat{oldsymbol{\Sigma}} &= rac{1}{T} \sum_{t=1}^{T} (oldsymbol{x}_t - \hat{oldsymbol{\mu}}) (oldsymbol{x}_t - \hat{oldsymbol{\mu}})^T \end{aligned}$$

where
$$\mathbf{x}_{t} = (x_{t1}, \dots, x_{tD})^{T}$$
.

NB: T denotes either the number of samples or vector transpose depending on context.

Example data

Maximum likelihood fit to a Gaussian

Data in clusters (example 1)

Example 1 fit by a Gaussian

$$oldsymbol{\mu}_1 = (0,0)^{\mathcal{T}} \qquad oldsymbol{\mu}_2 = (1,1)^{\mathcal{T}} \qquad oldsymbol{\Sigma}_1 = oldsymbol{\Sigma}_2 = 0.2 \, \mathbf{I}$$

k-means clustering

- k-means is an automatic procedure for clustering unlabelled data
- Requires a prespecified number of clusters
- Clustering algorithm chooses a set of clusters with the minimum within-cluster variance
- Guaranteed to converge (eventually)
- Clustering solution is dependent on the initialisation

k-means example: data set

33

k-means example: initialisation

k-means example: iteration 1 (assign points to clusters)

k-means example: iteration 1 (recompute centres)

k-means example: iteration 2 (assign points to clusters)

k-means example: iteration 2 (recompute centres)

k-means example: iteration 3 (assign points to clusters)

No changes, so converged

Mixture model

 A more flexible form of density estimation is made up of a linear combination of component densities:

$$p(\mathbf{x}) = \sum_{m=1}^{M} P(m)p(\mathbf{x} \mid m)$$

- This is called a *mixture model* or a *mixture density*
- $p(\mathbf{x} \mid m)$: component densities
- P(m) : mixing parameters
- Generative model:
 - **1** Choose a mixture component based on P(m)
 - ② Generate a data point x from the chosen component using p(x|m)

Gaussian mixture model

- The most important mixture model is the Gaussian Mixture Model (GMM), where the component densities are Gaussians
- Consider a GMM, where each component Gaussian $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$ has mean $\boldsymbol{\mu}_m$ and a spherical covariance $\boldsymbol{\Sigma}_m = \sigma_m^2 \mathbf{I}$

GMM Parameter estimation when we know which component generated the data

- Define the indicator variable $z_{mt} = 1$ if component m generated data point x_t (and 0 otherwise)
- If z_{mt} wasn't hidden then we could count the number of observed data points generated by m:

$$N_m = \sum_{t=1}^T z_{mt}$$

And estimate the mean, variance and mixing parameters as:

$$\hat{\mu}_m = \frac{\sum_t z_{mt} x_t}{N_m}$$

$$\hat{\sigma}_m^2 = \frac{\sum_t z_{mt} || x_t - \hat{\mu}_m ||^2}{N_m}$$

$$\hat{P}(m) = \frac{1}{T} \sum_t z_{mt} = \frac{N_m}{T}$$

GMM Parameter estimation when we don't know which component generated the data

• *Problem:* we don't know z_{mt} - which mixture component a data point comes from...

GMM Parameter estimation when we don't know which component generated the data

- Problem: we don't know z_{mt} which mixture component a data point comes from...
- Idea: use the posterior probability $P(m|\mathbf{x})$, which gives the probability that component m was responsible for generating data point \mathbf{x} .

$$P(m|\mathbf{x}) = \frac{p(\mathbf{x}|m) P(m)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|m) P(m)}{\sum_{m'=1}^{M} p(\mathbf{x}|m') P(m')}$$

- The P(m|x)s are called the component occupation probabilities (or sometimes called the responsibilities)
- Since they are posterior probabilities:

$$\sum_{m=1}^{M} P(m | \mathbf{x}) = 1$$

Soft assignment

• Estimate "soft counts" based on the component occupation probabilities $P(m|x_t)$:

$$N_m^* = \sum_{t=1}^T P(m | \boldsymbol{x}_t)$$

- We can imagine assigning data points to component m weighted by the component occupation probability $P(m|\mathbf{x}_t)$
- So we could imagine estimating the mean, variance and prior probabilities as:

$$\begin{split} \hat{\mu}_{m} &= \frac{\sum_{t} P(m|\mathbf{x}_{t}) \mathbf{x}_{t}}{\sum_{t} P(m|\mathbf{x}_{t})} = \frac{\sum_{t} P(m|\mathbf{x}_{t}) \mathbf{x}_{t}}{N_{m}^{*}} \\ \hat{\sigma}_{m}^{2} &= \frac{\sum_{t} P(m|\mathbf{x}_{t}) \|\mathbf{x}_{t} - \hat{\mu}_{m}\|^{2}}{\sum_{t} P(m|\mathbf{x}_{t})} = \frac{\sum_{t} P(m|\mathbf{x}_{t}) \|\mathbf{x}_{t} - \hat{\mu}_{m}\|^{2}}{N_{m}^{*}} \\ \hat{P}(m) &= \frac{1}{T} \sum_{t} P(m|\mathbf{x}_{t}) = \frac{N_{m}^{*}}{T} \end{split}$$

EM algorithm

• Problem! Recall that:

$$P(m|\mathbf{x}) = \frac{p(\mathbf{x}|m)P(m)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|m)P(m)}{\sum_{m'=1}^{M} p(\mathbf{x}|m')P(m')}$$

We need to know $p(\mathbf{x} \mid m)$ and P(m) to estimate the parameters of $P(m|\mathbf{x})$, and to estimate P(m)....

- Solution: an iterative algorithm where each iteration has two parts:
 - Compute the component occupation probabilities $P(m|\mathbf{x})$ using the current estimates of the GMM parameters (means, variances, mixing parameters) (E-step)
 - Computer the GMM parameters using the current estimates of the component occupation probabilities (M-step)
- Starting from some initialisation (e.g. using k-means for the means) these steps are alternated until convergence
- This is called the EM Algorithm and can be shown to maximise the likelihood. (NB: local maximum rather than global)

Maximum likelihood parameter estimation

• The likelihood of a data set $\mathbf{X} = \{x_1, x_2, \dots, x_T\}$ is given by:

$$\mathcal{L} = \prod_{t=1}^{T} p(\boldsymbol{x}_t) = \prod_{t=1}^{T} \sum_{m=1}^{M} p(\boldsymbol{x}_t | m) P(m)$$

- We can regard the *negative log likelihood* as an error function:
- Considering the derivatives of E with respect to the parameters, gives expressions like the previous slide

Example 1 fit using a GMM

Example 1 fit using a GMM

Fitted with a two component GMM using EM

Peakily distributed data (Example 2)

$$oldsymbol{\mu}_1 = oldsymbol{\mu}_2 = [0 \quad 0]^T \qquad oldsymbol{\Sigma}_1 = 0.1 oldsymbol{\mathsf{I}} \qquad oldsymbol{\Sigma}_2 = 2 oldsymbol{\mathsf{I}}$$

Example 2 fit by a Gaussian

$$oldsymbol{\mu}_1 = oldsymbol{\mu}_2 = [0 \quad 0]^T \qquad oldsymbol{\Sigma}_1 = 0.1 oldsymbol{\mathsf{I}} \qquad oldsymbol{\Sigma}_2 = 2 oldsymbol{\mathsf{I}}$$

$$\mathbf{\Sigma}_1 = 0.1$$

$$\Sigma_2 = 2I$$

Example 2 fit by a GMM

Example 2 fit by a GMM

Fitted with a two component GMM using EM

Example 2: component Gaussians

51

Comments on GMMs

- GMMs trained using the EM algorithm are able to self organise to fit a data set
- Individual components take responsibility for parts of the data set (probabilistically)
- Soft assignment to components not hard assignment "soft clustering"
- GMMs scale very well, e.g.: large speech recognition systems can have 30,000 GMMs, each with 32 components: sometimes 1 million Gaussian components!! And the parameters all estimated from (a lot of) data by EM

Next

Back to HMMs:

- Likelihood computation with the Forward algorithm
- Finding the most likely path with the Viterbi algorithm
- Parameter estimation with the Forward-Backward algorithm

References: HMMs

- Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", Foundations and Trends in Signal Processing, 1 (3), 195–304: section 2.2.
- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): sections 6.1-6.5; 9.2; 9.4. (Errata at http://www.cs.colorado.edu/~martin/SLP/Errata/ SLP2-PIEV-Errata.html)
- Rabiner and Juang (1989). "An introduction to hidden Markov models", IEEE ASSP Magazine, 3 (1), 4–16.
- Renals and Hain (2010). "Speech Recognition",
 Computational Linguistics and Natural Language Processing Handbook, Clark, Fox and Lappin (eds.), Blackwells.