IN THE CLAIMS:

Please amend the claims as follows:

- (Currently Amended) An optical receiver, comprising:

 an optical pre-amplifier for receiving an input light signal, the optical pre-amplifier employing no carrier filters in the optical pre-amplifier, wherein the optical pre-amplifier includes <u>a pair of isolators</u>, a pump laser, and <u>eoupled-to</u> an optical multiplexer:
- a <u>photodiode PIN-diode</u>, coupled to the optical pre-amplifier, for converting the input light signal into an electrical current signal;
- a transimpedance amplifier, coupled to the <u>photodiode PIN diode</u>, for converting the electrical current signal to an output electrical voltage signal; and
- a control loop, coupled to the transimpedance amplifier and the optical preamplifier, for adjusting the optical signal generated by the pre-amplifier relative to the output electrical voltage signal generated by the transimpedance amplifier, wherein the control loop is configured to maintain the input light signal sent to the PIN diode substantially-constant.

2. - 7. (Cancelled)

 (Currently Amended) A method for maintaining the intensity of an optical signal, comprising:

receiving an input light signal by a pre-amplifier, the pre-amplifier comprising a pair of isolators, a pump laser and an optical multiplexer, wherein the pair of isolators are configured to reject pump power generated by the pump laser and substantially prevent optical reflection in the pre-amplifier;

converting the input light signal into an electrical current signal by a PIN diode; amplifying and converting the electrical current signal to produce an output electrical voltage signal without carrier filtering; and feeding the output electrical voltage signal back for maintaining the PIN input light signal substantially constant by correlating the output electrical voltage signal to the intensity of the input light signal by adjusting the gain of the pre-amplifier.

- (Currently Amended) The method of Claim 8, wherein the feeding step [[,]]
 comprises generating a level signal output relative to the peak or average value of the
 output electrical voltage signal.
- 10. (Currently Amended) The method of Claim 9, wherein the feeding step [[,]] comprises generating a control voltage signal for controlling the level of input light signal generated by controlling the current of a pump laser.

11.- 17. (Cancelled)

18. (Previously Presented) The optical receiver of Claim 1, wherein the control loop maintains the input light signal sent to the PIN diode substantially constant by correlating the output electrical voltage signal to the intensity of the input light signal by adjusting the gain of the pre-amplifier.

19. - 20. (Cancelled)

Please add the following new claims:

- 21. (New) An optical receiver, comprising:
- an optical pre-amplifier for receiving an input light signal, the optical preamplifier employing no carrier filters in the optical pre-amplifier, wherein the optical pre-amplifier comprises
 - a first isolator having an input and an output;
 - a second isolator having an input and an output;
 - a pump laser having an input and an output; and

an optical multiplexer having an input coupled to the output of the pump laser and an output, wherein the output of the optical multiplexer is coupled between the output of the first isolator and the input of the second isolator, the first and second isolators being used in order to reject pump power generated by the pump laser and substantially prevent optical reflection in the pre-amplifier;

a PIN diode, coupled to the optical pre-amplifier, for converting the input light signal into an electrical current signal:

a transimpedance amplifier, coupled to the PIN diode, for converting the electrical current signal to an output electrical voltage signal; and

a control loop, coupled to the transimpedance amplifier, for adjusting the optical signal generated by the pre-amplifier relative to the output electrical voltage signal generated by the transimpedance amplifier, wherein the control loop is configured to maintain the input light signal sent to the PIN diode substantially constant.

- 22. (New) The optical receiver of Claim 21 in backward pumping mode, wherein the optical pre-amplifier comprises an erbium fiber having a west end and east end, the east end of the erbium fiber coupled to the output of the optical multiplexer and the input of the second isolator, the input light signal generating an input light power that propagates in contrary direction relative to a pump light power from the pump laser.
- 23. (New) The optical receiver of Claim 21 in forward pumping mode, wherein the optical pre-amplifier comprises an erbium fiber having a west end and east end, the west end of the erbium fiber coupled to the output of the optical multiplexer and the output of the first isolator, the input light signal generating an input light power that propagates in same direction relative to a pump light power from the pump laser.
- 24. (New) The optical receiver of Claim 22, wherein the control loop comprises a level detector for generating a level signal relative to the peak or average value of the output electrical voltage signal.

- 25. (New) The optical receiver of Claim 24, wherein the control loop comprises an automatic gain controller for generating a control voltage signal for controlling the level of optical amplification generated by adjusting the current of a pump laser in the optical pre-amplifier.
- 26. (New) The optical receiver of Claim 25, further comprising a clock/data regenerator coupled to the transimpedance amplifier for compensating distortion and timing jitter to ensure accurate regeneration of the output electrical voltage signal.
- (New) A transponder, comprising:
 - a controller:
 - a transmitter, coupled to the controller transmitter; and
- a receiver, coupled to controller, the receiver having an optical amplifier receiver comprising:
- an optical pre-amplifier for receiving an input light signal, the optical preamplifier employing no filters in the optical pre-amplifier, wherein the optical preamplifier comprises
 - a first isolator having an input and an output;
 - a second isolator having an input and an output;
 - a pump laser having an input and an output; and
 - an optical multiplexer having an input coupled to the output of the pump laser and an output, wherein the output of the optical multiplexer is coupled between the output of the first isolator and the input of the second isolator, the first and second isolators being used in order to reject pump power generated by the pump laser and substantially prevent optical reflection in the pre-amplifier;
- a photodiode, coupled to the optical pre-amplifier, for converting the input light signal into an electrical current signal:
- a transimpedance amplifier, coupled to the photodiode, for converting the electrical current signal to an output electrical voltage signal; and
 - a control loop, coupled to the transimpedance amplifier, for adjusting the

optical signal generated by the pre-amplifier relative to the electrical voltage signal generated by the transimpedance amplifier, wherein the control loop is configured to maintain the input light signal sent to the photodiode substantially constant.

- 28. (New) The optical receiver of Claim 27, wherein the control loop comprises a level detector for generating a level signal relative to the peak or average value of the output electrical voltage signal.
- 29. (New) The optical receiver of Claim 28, wherein the control loop comprises an automatic gain controller for generating a control voltage signal for controlling the level of optical amplification generated by adjusting the current of a pump laser in the optical pre-amplifier.
- 30. (New) The optical receiver of Claim 29, further comprising a clock/data regenerator coupled to the transimpedance amplifier.
- (New) The optical receiver of Claim 29, wherein the transmitter comprises:
 an electronic multiplexer having inputs for receiving a plurality of inputs and generating a multiplexed output signal;
- a driver, coupled to the electronic multiplexer, for driving the multiplexed output signal from the electronic multiplexer and generating a driver output signal; and a modulator, coupled to the driver, for modulating the input light of the modulator.
- 32. (New) The optical receiver of Claim 29, further comprising a demultiplexer coupled to an optical amplifier PIN receiver.
- 33. (New) The optical receiver of Claim 29, further comprising a coupler and a power detector coupled to the input of an optical PIN receiver.
- 34. (New) The optical receiver of Claim 27, wherein the control loop maintains

the input light signal sent to the photodiode substantially constant by correlating the output electrical voltage signal to the intensity of the input light signal by adjusting the gain of the pre-amplifier.

- 35. (New) The optical receiver of Claim 1, wherein the pump laser and the optical multiplexer are coupled between an output of one isolator in the pair of isolators and an input of the other isolator in the pair of isolators.
- 36. (New) The optical receiver of Claim 35, wherein the pair of isolators are configured to reject pump power generated by the pump laser and substantially prevent optical reflection in the pre-amplifier.