МПС РФ

Омский государственный университет путей сообщения Факультет довузовской подготовки и профориентации Кафедра физики и химии

КРАТКИЙ СПРАВОЧНИК ПО ЭЛЕМЕНТАРНОЙ ФИЗИКЕ (7–11 классы)

МЕХАНИКА

Кинематика материальной точки

кинематика материальной точки	
Проекции перемещения на ко-	$s_x = x_2 - x_1, s_y = y_2 - y_1$
ординатные оси Скорость, перемещение и координата при равномерном движении (движении с постоянной скоростью $\vec{v} = const$) Сложение скоростей в нерелятивистском случае (относительность движения) Формулы кинематики равноускоренного движения (движения с постоянным ускорением $\vec{a} = const$).	$ec{v} = rac{ec{s}}{t}, ec{s} = ec{v}t, x = x_0 + v_x t$ $ec{v}_{(Mam.moч \kappa u\ omh.\ henoobs.\ CO)} = = ec{v}_{(Mam.mov \kappa u\ omh.\ noobs.\ CO)} + \ + ec{u}_{(noobs.\ CO\ omh.\ henoobs.\ CO)}$ или $ec{v}_{(21)}' = ec{v}_2 - ec{v}_1$ $ec{s} = ec{v}_0 t + rac{ec{a}t^2}{2}$ $ec{v} = ec{v}_0 + ec{a}t$ $ec{v} = ec{v}_0 + ec{a}t$
При свободном падении тела $\vec{a} = \vec{g}$.	$\vec{s} = \frac{\vec{v} + \vec{v}_0}{2} t$ $v^2 - v_0^2 = 2 \vec{a} \vec{s}$ $x = x_0 + v_{0x}t + \frac{a_x t^2}{2}$
Скорость и перемещение при неравномерном (произвольном) движении.	$\vec{v} = \frac{d\vec{s}}{dt}, \vec{s} = \int_{t_1}^{t_2} \vec{v}(t)dt$
Ускорение и скорость при произвольном движении	$\vec{a} = \frac{d\vec{v}}{dt}, \vec{v} = \vec{v}_0 + \int_{t_0}^{t} \vec{a}(t)dt$
Средняя скорость	$<\vec{v}> = \frac{\vec{s}_1 + \vec{s}_2 + \dots}{t_1 + t_2 + \dots} = \frac{\vec{s}}{t}$
Средняя путевая скорость	$=\frac{\ell_1 + \ell_2 + \dots}{t_1 + t_2 + \dots} = \frac{\ell}{t}$

Центростремительное (нор- мальное) ускорение при дви-	$a_n = \frac{v^2}{R} = 4\pi^2 n^2 R = w^2 R$
мальное) ускорение при дви-	R
жении по окружности	
Период и частота обращения	$T = \frac{\ell}{\upsilon} = \frac{2\pi R}{\upsilon}, n = \frac{1}{T}, T = \frac{t}{N}$
Угловая скорость при равно-	$\varphi = 2\pi N$ 2π
мерном вращении и ее связь с	$w = \frac{\varphi}{t} = \frac{2\pi N}{t} = 2\pi n = \frac{2\pi}{T}$
частотой вращения и периодом	
Путь при движении с постоян-	
ной по модулю скоростью	$\ell = v t$
Связь линейной скорости точки	
на окружности и нормального	$v = wR$, $a_n = w^2R$
ускорения с угловой скоростью	- n

Динамика материальной точки

динамика материальной точки	
Второй закон Ньютона	$\vec{a} = \frac{\vec{F}}{m}$
Третий закон Ньютона	$\vec{F}_{12} = -\vec{F}_{21}$
Условие равновесия материальной точки	$\vec{F}_{pes} = \Sigma \vec{F}_i = \vec{F}_1 + \vec{F}_2 + \dots = 0$
Уравнение движения	$m\vec{a} = \Sigma \vec{F}_i = \vec{F}_1 + \vec{F}_2 + \dots$
Закон Гука	$(F_{ynp})_x = -kx, F_{ynp} = k \ell - \ell_0 $
Закон всемирного тяготения	$F = G \frac{m_1 m_2}{r^2}$
Сила тяжести	$\vec{F}_{m_{\mathcal{R}MC}} = m\vec{g}$

Сила трения скольжения	$F_{mp} = \mu N$
Сила трения покоя	F_{mp} . F_{mp} скольжение $F_{mp} = F_{su}$ покой F_{su}
Выталкивающая сила (сила Архимеда)	$F_{_A}= ho_{_{\mathcal{H}\!c}}gV$
Давление столба жидкости (газа)	$p = p_0 + \rho gh$
Плотность	$ \rho = \frac{m}{V} $
Гидравлический пресс	$p = \frac{F_1}{S_1} = \frac{F_2}{S_2}$

Статика

Момент силы	$M = F\ell = Fr\sin\alpha$
Условия равновесия тела	$\vec{F}_{pes} = \Sigma \vec{F}_i = \vec{F}_1 + \vec{F}_2 + \dots = 0,$
	$M_{pe3z} = \sum M_{iz} = M_{1z} + M_{2z} + = 0$

Законы сохранения

SWITCHEL COMPANION	
Импульс тела	$\vec{p} = m\vec{v}$
Закон сохранения импульса (в замкнутой системе тел)	$\sum_{i=1}^{n} \vec{p}_{i} = const$
Кинетическая энергия тела	$W_k = \frac{mv^2}{2}$

Потенциальная энергия силы	$W_{p} = mgh$
тяжести	p C
Поточника и над оноврид ониц	1 2
Потенциальная энергия силы	$W_p = \frac{kx^2}{2}$
упругости	2
Потенциальная энергия грави-	$m_1 m_2$
тационного взаимодействия	$W_p = -G \frac{m_1 m_2}{r}$
Механическая работа (работа	$A = F s \cos \alpha $ (при $\vec{F} = const$)
силы)	$A = F S \cos \alpha \text{ (IIPM } F = CONSt \text{)}$
Мощность	1
Мощность	$P = \frac{A}{t}, P = \vec{F} \vec{v}$
T	ι
Теорема о кинетической энергии	$A = W_{k2} - W_{k1}$
Работа консервативной силы	$A = -(W_{p2} - W_{p1}) = -\Delta W_p$
Механическая энергия тела	$W_{\text{Mex}} = W_k + W_p$
Закон сохранения механической	$W_{\text{new}} = const$
энергии (в замкнутой системе	MEA
при отсутствии сил трения)	$W_{k1} + W_{p1} = W_{k2} + W_{p2}$
Закон сохранения энергии	W = const
(в замкнутой системе тел)	
Коэффициент полезного дей-	A P
ствия	$\eta = rac{A_{noneзная}}{A_{coвеptuervhas}} = rac{P_{noneshas}}{P_{sampa ченная}}$
412101	A совершенная $^{\Gamma}$ затраченная
Применение законов сохранения	$m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{u}_1 + m_2 \vec{u}_2$
импульса и энергии к абсолютно	$m_1)^2$ $m_1)^2$ $m_1)^2$ $m_1)^2$
упругому удару двух тел	$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{m_1 u_1^2}{2} + \frac{m_2 u_2^2}{2}$ $m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{u}$
H	2 2 2
Применение законов сохране-	$m_1 v_1 + m_2 v_2 = (m_1 + m_2) \vec{u}$
ния импульса и энергии к аб-	$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{(m_1 + m_2)u^2}{2} + \Delta W_{eH}$
солютно неупругому удару	$\begin{bmatrix} -\frac{1}{2} + \frac{2}{2} = \frac{1}{2} & \frac{2}{2} \end{bmatrix} + \Delta W_{6H}$
двух тел	

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА Молекулярная физика

толскулирная физика	
Количество вещества, молярная масса	$v = \frac{N}{N_A}, M = m_0 N_A, v = \frac{m}{M}$
Концентрация молекул, давление	$n = \frac{N}{V}, p = \frac{\langle F_{\perp} \rangle}{S}$
Основное уравнение молеку- лярно-кинетической теории	$p = \frac{1}{3} m_0 n < v^2 >, p = \frac{2}{3} n < W_k >$
Температура как мера средней кинетической энергии поступательного движения молекул	$\langle W_k \rangle = \frac{3}{2} k_B T$
Среднеквадратичная скорость движения молекул	$v_{cp.\kappa g.} = \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3RT}{M}}$
Уравнение состояния идеального газа (уравнение Менделеева—Клапейрона)	$p = nk_{\scriptscriptstyle B}T$, $pV = \frac{m}{M}RT$
Закон Дальтона о парциальных давлениях смеси газов	$p = p_1 + p_2 + p_3 + \dots$
Закон Бойля-Мариотта (при $m = const$, $T = const$)	$pV = const, p_1V_1 = p_2V_2$
Закон Гей-Люссака (при $m = const$, $p = const$)	$\frac{V}{T} = const, \frac{V_1}{T_1} = \frac{V_2}{T_2}$
Закон Шарля (при $m = const$, $V = const$)	$\frac{p}{T} = const, \frac{p_1}{T_1} = \frac{p_2}{T_2}$
Закон Авогадро (при нормальных условиях)	$V\big _{_{V=1.MO.7b}}=22,4\pi$

Термодинамика

Термодинамика		
Внутренняя энергия идеального одноатомного газа, изменение внутренней энергии	$W_{\scriptscriptstyle GH} = \frac{3}{2} \frac{m}{M} RT, \Delta W_{\scriptscriptstyle GH} = \frac{3}{2} \frac{m}{M} R \Delta T$	
Внутренняя энергия идеального многоатомного газа	$W_{\scriptscriptstyle{ ext{ iny GH}}} = rac{i}{2} rac{m}{M} RT$	
Работа газа при расширении, $(p = \text{const})$	$A = p(V_2 - V_1) = p \ \Delta V$	
Работа газа при расширении в произвольном процессе	$A = \int_{V_1}^{V_2} p dV$	
Теплоемкость, удельная теплоемкость емкость, молярная теплоемкость	$C = \frac{Q}{\Delta T}, c_m = \frac{C}{m} = \frac{Q}{m\Delta T}, c_v = \frac{C}{v}$	
Теплота, необходимая при нагревании тела или отдаваемая телом при остывании	$Q_{\scriptscriptstyle H} = cm(t_{\scriptscriptstyle K}^{\scriptscriptstyle o} - t_{\scriptscriptstyle H}^{\scriptscriptstyle o})$	
Теплота парообразования (конденсации)	$Q_n = rm (Q_{\kappa} = -rm)$	
Теплота плавления (кристал- лизации)	$Q_{n\pi} = \lambda m, (Q_{\kappa p} = -\lambda m)$	
Теплота сгорания топлива	$Q_{cz} = -qm$	
Первый закон термодинамики	$Q = \Delta W_{_{\mathit{GH}}} + A$	
Адиабатный процесс	$Q = \Delta W_{_{GH}} + A = 0$	
Уравнение теплового баланса	$Q_1 + Q_2 + Q_3 + \ldots + Q_n = 0$	
КПД тепловой машины, КПД идеальной тепловой машины	$\eta = \frac{A}{Q_{\scriptscriptstyle H}} = \frac{Q_{\scriptscriptstyle H} - Q_{\scriptscriptstyle X}'}{Q_{\scriptscriptstyle H}}, \eta_{\scriptscriptstyle \text{max}} = \frac{T_{\scriptscriptstyle H} - T_{\scriptscriptstyle X}}{T_{\scriptscriptstyle H}}$	

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Электростатика

Дискретность электрического $q = \pm Ne$, $N = 1, 2,$	2
$q = \pm ive$, $iv = 1, 2$,	J,
Закон сохранения электриче- $q_1 + q_2 + q_3 + + q_n = q_1 + q_2 + q_3 + + q_n + q_2 + q_3 +$	= const
ского заряда	
Закон Кулона (сила взаимо-	1
Закон Кулона (сила взаимо- действия двух неподвижных $F = k_e \frac{ q_1 q_2 }{r^2}, k_e =$	$\frac{1}{4\pi\varepsilon}$.
точечных зарядов в вакууме)	1770
Сила взаимодействия двух не-	
подвижных точечных зарядов $ q_1 q_2 $	
подвижных точечных зарядов в однородном диэлектрике $F = k_e \frac{ q_1 q_2 }{\varepsilon r^2}$	
(Закон Кулона для взаимодей-	
ствия зарядов в среде)	
Напряженность электростати-	
ческого поля $E = -$	
Cyro, roxomyroyyog yo congr	
Сила, действующая на заряд, нахолящийся в электростати- $\vec{F} = q\vec{E}$	
individual position in the state of the stat	
ческом поле	
Модуль напряженности электростатического поля точечно- $E = k_e \frac{ q }{c_e r^2}$	
6.1	
го заряда (в вакууме $\varepsilon = 1$)	
Модуль напряженности электростатического поля заряженной сферы радиуса R (в вакууме $\varepsilon=1$) $E = \begin{cases} k_e \frac{ q }{\varepsilon r^2}, & r > 0, \\ 0, & r < 0 \end{cases}$	D
тростатического поля заря- $E = \begin{cases} k_e \frac{1}{\varepsilon r^2}, & r > 0 \end{cases}$	> N
женной сферы радиуса R $0, r <$	R
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Принцип суперпозиции полей $\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3$ +	⊦ <u> </u>
Диэлектрическая проницае- E_0	
$\varepsilon = \frac{E_0}{E}$	
Потенциальная энергия заряда	
на расстоянии x от отрица- $W_p = qEx$	
тельно заряженной пластины в	
плоском конденсаторе	

Потенциальная энергия взаимодействия двух точечных зарядов	$W_p = k_e \frac{q_1 q_2}{r}$
Потенциал электростатического поля	$\varphi = \frac{W_p}{q}$
Потенциал поля точечного заряда (в вакууме $\varepsilon = 1$)	$\varphi = k_e \frac{q}{\varepsilon r}$
Потенциал электростатического поля заряженной сферы радиуса R (в вакууме $\varepsilon=1$)	$\varphi = \begin{cases} k_e \frac{q}{\varepsilon r}, & r \ge R \\ k_e \frac{q}{\varepsilon R}, & r \le R \end{cases}$
Потенциал поля, созданного точечными зарядами (следствие принципа суперпозиции полей)	$\varphi = \varphi_1 + \varphi_2 + \ldots + \varphi_n$
Работа электрического поля	$A = -\Delta W_p = q(\varphi_1 - \varphi_2) = qU$
Связь между напряженностью однородного электрического поля и разностью потенциалов	$E = \frac{U}{\Delta d}$
Электроемкость конденсаторов	$C = \frac{q}{U}$
Электроемкость плоского конденсатора, заряженной сферы	$C = \frac{\varepsilon \varepsilon_0 S}{d}, C = 4\pi \varepsilon \varepsilon_0 R$
Энергия заряженного конденсатора (электрического поля)	$W_p = \frac{qU}{2} = \frac{q^2}{2C} = \frac{CU^2}{2}$ $W_p = \frac{W_p}{V} = \frac{\varepsilon \varepsilon_0 E^2}{2}$
Объемная плотность энергии плоского конденсатора (энергия единицы объема)	$W_p = \frac{W_p}{V} = \frac{\varepsilon \varepsilon_0 E^2}{2}$
Параллельное соединение конденсаторов	$C = C_1 + C_2 + \dots$ $q = q_1 + q_2 + \dots + q_n$
	$U = U_1 = U_2 = \ldots = U_n$

Последовательное соединение конденсаторов	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
	$q_1 = q_2 = \dots = q_n = q$ $U = U_1 + U_2 + \dots + U_n$

Постоянный электрический ток

постоянный электрический ток						
Сила тока	$I = \frac{\Delta q}{\Delta t}, I = q_0 n v_{\partial p} S$					
Квазистационарный ток	$i = \frac{dq}{dt}, q = \int_{t_1}^{t_2} i(t)dt$					
Плотность тока	$j = \frac{I}{S}, \vec{j} = q_0 n \vec{v}_{\partial p}$					
Закон Ома для участка цепи	$I = \frac{U}{R}$					
Сопротивление проводников постоянного сечения	$R = \rho_e \frac{l}{S_{ceq}}$					
Последовательное соединение проводников	$R = R_1 + R_2 + + R_n$ $I_1 = I_2 = = I_n = I$ $U = U_1 + U_2 + + U_n$					
Параллельное соединение проводников	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$ $I = I_1 + I_2 + \dots + I_n$ $U = U_1 = U_2 = \dots = U_n$					
Закон Джоуля–Ленца	$Q = IU\Delta t = I^2 R\Delta t = \frac{U^2}{R} \Delta t$					
Мощность тока	$P = IU = I^2 R = \frac{U^2}{R}$					

Электродвижущая сила	$\mathcal{E} = \frac{A_{cm}}{q}$
Закон Ома для замкнутой цепи, содержащей ЭДС	$I = \frac{\mathcal{E}}{R+r}$
Закон Фарадея	$m = kI \Delta t, k = \frac{1}{eN_A} \frac{M}{n}$

Магнетизм

Закон Ампера	$F = k_m \frac{2I_1I_2}{b} \ell, k_m = \frac{\mu_0}{4\pi}$
Сила Ампера	$F_{A} = B I \Delta \ell \sin \alpha$
Сила Лоренца	$F_{_{I\!I}} = q \upsilon B \sin \alpha$

Электромагнитная индукция

Магнитный поток	$\Phi = BS \cos \alpha$
Закон электромагнитной индукции Фарадея–Ленца	$\mathcal{E}_i = -\frac{\Delta\Phi}{\Delta t}, \mathcal{E}_i = -\frac{d\Phi}{dt}$
ЭДС индукции, возникающая в катушке, имеющей N витков (Φ_N – полный поток, пронизывающий N витков катушки)	$\mathcal{E}_{i} = -N \frac{\Delta \Phi}{\Delta t}, \mathcal{E}_{i} = -\frac{d\Phi_{N}}{dt},$ $\Phi_{N} = N\Phi$
ЭДС индукции в движущихся	$\mathcal{E}_i = B\ell \upsilon \sin \alpha$
проводниках	$\mathcal{E}_i = \frac{1}{2}B\ell^2 w = \pi n B\ell^2$
ЭДС самоиндукции	$\mathcal{E}_{is} = -L \frac{\Delta I}{\Delta t}, \mathcal{E}_{is} = -L \frac{dI}{dt}$
Индуктивность	$\Phi_N = N\Phi = LI$
Энергия магнитного поля	$W_M = \frac{LI^2}{2}$

0	DI	10	п	14	00	W	~	a	M	CT	0	-	~	ХИ	-	41		00	
6	ON	U	м		CC	10	u	7		C 1	C	IAF	u	API	IAI		7	-	

ПЕРИОДЫ	pgnLi	ГРУПП										
петиоды	Риды	ı	II	III	IV	V						
1	1	Н 1,00797 Водород										
II	2	Li 3 6,939 Литий	Be 9,0122 Бериллий	B 5 2S ² 2P ¹ 10,811 Bop	С 2S ² 2P ² 12,01115 Углерод	2S ² 2P ³ 14,0067 A3OT						
Ш	3	Na 11 22,9898 Натрий	Si 14 28,086 Кремний	Р 3S ² 3P ³ 30,9738 Фосфор								
4		К 4S ¹ 39,102 Калий	Ca 20 4S² 40,08 Кальций	21 Sc 44,956 Sd ¹ 4S ² Скандий	22 47,90 Ті 47,90 За ² 4S ² Титан	23 V 50,942 _{3d} 34S ² Ванадий						
IV	5	29 63,546 Си _{3d} 10 _{4S} 1 Медь	30 Zn 65,37 За ¹⁰ 4S ² Цинк	Ga _{4S²4P¹} Баллий 69,72	Ge 32 72,59 Германий	As 33 74,9216 Мышьяк						
V	6	Rb 37 85,47 Рубидий	Sr 38 _{5S²} 87,62 Стронций	39 88,905 Y 4d ¹ 5S ² Иттрий	40 Zr 91,22 4d ² 5S ² Цирконий	41 Nb 92,906 Ниобий						
V	7	47 Ag 107,868 Ad ¹⁰ 551 Cepe6po	48 Cd 112,40 4d ¹⁰ 5S ² Кадмий	In _{5S²5P¹} 114,82 Индий	Sn 50 118,69 Олово	Sb 51 121,75 Сурьма						
VI	8	Сs 55 132,905 Цезий	Ba 56 137,34 Барий	57 La* sd¹6s² Лантан	72 Hf 178,49 _{4f} 14 _{5d} 2 _{6S} 2 Гафний	73 Та 180,948 _{4f} 14 _{5d} 3 _{6S} 2 Тантал						
VI	9	79 Au 196,967 3олото	80 200,59 Нд 5d ¹⁰ 6S ² Ртуть	Tl 81 204,37 Таллий	Pb 82 207,19 Свинец	Ві 83 65 ² 6Р ³ 208,980 Висмут						
VII 10		Fr 87 [223] Франций	Ra 88 [226] Радий	89 Ас** [227] Ас** 6d ¹ 7S ² Актиний	104 Rf [261] _{5f} ¹⁴ 6d ² 7S ² Резерфордий	105 Db [262] _{5f} ¹⁴ 6d ³ 7S ² Дубний						
	11	111 Rg [281] ₅₅ 14 _{6d} 10 _{7S} 1 Рентгений	112 Сп ^[285] _{5f} ¹⁴ 6d ¹⁰ 7S ² Коперниций	Nh _{7S²7P¹} 113 [286] Нихоний	FI 114 [289] Флеровий	Мс 115 _{78²7Р³ [289] Московий}						
высшие о	ксиды	R ₂ O	RO	R_2O_3	RO_2	R_2O_5						
ЛЕТУЧИ ВОДОРОД СОЕДИНЕ	НЫЕ				RH ₄	RH ₃						
* ЛАНТАНО	иды	58 Се 140,12 «rtsd16s2 Церий Пр	08 4635d0652 144,242 464	Vd 61 Pm [145] 4155d ⁰ 68 промети	2 150,35 4065d06S2 1	63 Eu 64 51,96 _{4f} 75 _d 96S ² Европий						
** АКТИНО	иды	90 Th 91 232,038 sr ⁰ 6d ² 7s ² Торий Про	Ра 92 36 _{sr²6d¹7s²} этактиний	U 93 Nр [237] sr46d178 Уран Нептуни	2 5/6649782	95 Am 243] sr ⁷ 6d ⁰ 7s ² Америций 96						

ких элементов Д.И. Менделеева Ы ЭЛЕМЕНТОВ VI VIII VII He (H) Символ элемента Порядковый номер 4,0026 Гелий 19 Ne 10 8 F Электронная 15,9994 2S²2P⁵ 18,9984 20,183 2S²2P⁴ 39,102 2S22P6 -4S1 конфигурация -Неон Кислород Фтор внешнего слоя Калий 16 CI 18 17 Относительная атомная масса (а.е.м.) 32,064 3S²3P⁵ 35,453 39,948 3S²3P⁶ $3S^23P^4$ Название элемента Хлор Аргон Cepa Fe 27 58,9332 Co 28 24 Cr 25 Mn 26 3d⁵4S¹ 54,938 3d⁵4S² 55,847 3d⁷4S² 58,71 51,996 $3d^{8}4S^{2}$ Железо Хром Марганец Кобальт Никель 35 Li - металлы, образующие основные Se 48²4P⁴ 34 Br 36 Be - металлы, образующие амфотерные В · неметаллы 45²4p6 коиды и гидроксиды оксиды и основания 78,96 4S²4P⁵ 79,904 83,80 Селен Бром Ru 45 102,905 Rh 46 Pd 106,4 4d 105S 0 42 Mo 43 4d⁵5S¹ [99] 4d⁵5S² 101,07 Молибден Технеций Рутений Родий Палладий 52 Xe 5525p6 54 s-элементы d-элементы 127,60 5S²5P⁵ 5S²5P⁴ 126,9044 131,30 f-элементы р-элементы Теллур Йод Ксенон **74** W 75 Re 183,85 411454682 186,2 4114545652 190,2 Вольфрам Рений Осмий Иридий 84 At 68²6P⁵ **85** 210 Po Rn 86 [293] - масса наиболее устойчивого изотопа [222] 6S²6Р⁴ Полоний 6S²6P⁶ 1 a.e.м.=1,66 ×10⁻²⁷ кг Астат Радон Bh 108 Сиборгий Борий Хассий Мейтнерий Дармштадтий 117 Од 1 7S²7P⁶ Оганесон 116 Ts 118 75²7Р⁴ [293] 75²7Р⁵ [2 Ливерморий Теннессин [294] [294] RO_4 RO₃ R_2O_7 H,R HR Gd 65 Ть 162,50 163,000 668 163,000 1 Er 69 Tm 70 Yb 71 Lu 4f12sd06S2 Эрбий Тулий 173,04 4f14sd06S2 Тулий Иттербий Лютеций Cm 97 Bk 98 Cf 99 sc²6d¹7s² Берклий калифорний 264 жорий жири жири жири 30ни Es 100 Fm 101 Md 102 No 103 Lr гейний держини менделевий портина порт 5f116d07S2

колебания и волны

Механические колебания и волны

Период, частота, циклическая частота и фаза колебаний	$T = \frac{t_N}{N}, v = \frac{1}{T}, \omega = \frac{2\pi}{T},$
	$\omega = 2\pi v, \varphi = \omega t + \varphi_0$
Закон изменения координаты	$x = x_m \sin(\omega t + \varphi_0),$
при гармонических колебаниях	$x = x_m \cos(\omega t + \varphi_0)$
Амплитуды скорости и ускорения	$v_m = \omega x_m, a_m = \omega^2 x_m$
Периоды колебаний пружинно-	$T = 2\pi \sqrt{\frac{m}{k}}, T = 2\pi \sqrt{\frac{l}{g}}$
го и математического маятников	$I = 2\hbar\sqrt{\frac{1}{k}}, I = 2\hbar\sqrt{\frac{1}{g}}$
Длина волны	$\lambda = vT, \lambda = \frac{v}{-}$
	ν
Энергия гармонических коле-	$W = \frac{mv^2}{2} + \frac{kx^2}{2} = \frac{mv_m^2}{2} = \frac{kx_m^2}{2}$
баний груза на пружине	$W = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

Электромагнитные колебания и волны

Уравнение колебаний в колебательном контуре	$q'' = -\omega^2 q, \omega = \frac{1}{\sqrt{LC}}$
Закон изменения заряда конденсатора в колебательном контуре	$q = q_m \sin(\omega t + \varphi_0),$ $q = q_m \cos(\omega t + \varphi_0)$
Амплитуды напряжения и силы тока	$U_{\scriptscriptstyle m} = \frac{q_{\scriptscriptstyle m}}{C} , I_{\scriptscriptstyle m} = \omega q_{\scriptscriptstyle m}$
Формула Томсона	$T = 2\pi\sqrt{LC}$
Энергия колебаний в колебательном контуре	$W = \frac{LI^2}{2} + \frac{q^2}{2C} = \frac{LI_m^2}{2} = \frac{q_m^2}{2C}$
Длина волны $(c - $ скорость света)	$\lambda = cT, \lambda = \frac{c}{v}$

Оптика

	ика
Абсолютный и относительный показатель преломления	$n = \frac{c}{v}, n_{21} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$
Законы отражения и преломления света (α , γ , β – углы падения, отражения, преломления)	$\alpha = \gamma, \frac{\sin \alpha}{\sin \beta} = n_{21}$
Предельный угол полного внутреннего отражения	$\sin \alpha_0 = \frac{n_2}{n_1} = \frac{1}{n_1} \bigg _{npu \ n_2 = 1}$
Формула тонкой линзы (собирающая линза), оптическая сила линзы	$\frac{1}{d} \pm \frac{1}{f} = \frac{1}{F}, D = \frac{1}{F}$
Формула тонкой линзы (рассеивающая линза)	$\frac{1}{d} - \frac{1}{f} = -\frac{1}{F}, D = -\frac{1}{F}$
Линейное увеличение линзы	$\Gamma = \frac{H}{h} = \frac{f}{d}$
Оптическая разность хода	$\Delta = n_2 \ell_2 - n_1 \ell_1$
Условие максимума при наложении когерентных волн	$\Delta = m\lambda = 2m\frac{\lambda}{2}, m = 0, 1, 2, \dots$ $\Delta = (2m+1)\frac{\lambda}{2}, m = 0, 1, 2, \dots$
Условие минимума при нало- жении когерентных волн	$\Delta = (2m+1)\frac{\lambda}{2}, m = 0, 1, 2,$
Разность хода интерферирую- щих лучей в опыте Юнга	$\Delta = \frac{y d}{\ell}$
Условие главных максимумов при дифракции на дифракции онной решетке	$d\sin\varphi_m = \pm m\lambda, m = 0, 1, 2, \dots$

СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

CHERNAJDHAA TEOLIA C	THOCHTESIBHOCTH
Лоренцево сокращение длины	$l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$
Замедление хода часов в движущейся системе отсчета	$\Delta t = \frac{\tau}{\sqrt{1 - \frac{v^2}{c^2}}}$
Сложение скоростей в релятивистской механике	$\upsilon = \frac{\upsilon' + u}{1 + \frac{\upsilon'u}{c^2}}$
Релятивистская масса	$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$
Релятивистский импульс	$\vec{p} = m\vec{v} = \frac{m_0\vec{v}}{\sqrt{1 - \frac{v^2}{c^2}}}$
Связь массы и энергии (Формула Энштейна), энергия покоя частицы	$W = mc^2, W_0 = m_0 c^2$
Кинетическая энергия релятивистской частицы	$W_k = W - W_0 = mc^2 - m_0 c^2$

КВАНТОВАЯ И АТОМНАЯ ФИЗИКА

Квантовая физика

Энергия, масса и импульс фотона	$W = hv = \hbar\omega = \frac{hc}{\lambda} = mc^{2}$ $p = mc = \frac{W}{c} = \frac{h}{\lambda}$
Уравнение Эйнштейна для фотоэффекта	$hv = A_{\text{вых}} + \frac{m_e v_{\text{max}}^2}{2}$

Красная граница фотоэффекта	$A_{\rm gas} = hv_{\rm min} = \frac{hc}{\lambda_{\rm max}}$
Задерживающая разность потенциалов	$\frac{m_e v_{\text{max}}^2}{2} = e U_{3a\partial ep.}$

Атомная физика

Условие квантования стацио-	
нарных электронных орбит	h
атома водорода (первый по-	$m v_n r_n = n\hbar = n \frac{h}{2\pi}, n = 1, 2,$
стулат Бора)	
Энергетические уровни атома	$W = 126 \frac{1}{5} \left(-R \right)$
водорода	$W_n = -13.6 \frac{1}{n^2} \left(9B \right)$
Излучение и поглощение света	hc w w
атомом водорода (второй по-	$hv_{kn} = \frac{hc}{\lambda_{kn}} = W_k - W_n$
стулат Бора)	- Kn

ЯДЕРНАЯ ФИЗИКА

71,721 111.01 + 11.9111.01	
Массовое число	A = Z + N
Правила смещения	$_{Z}^{A}X \rightarrow_{Z-2}^{A-4}Y + _{2}^{4}He$
	$_{Z}^{A}X \rightarrow_{Z+1}^{A}Y +_{-1}^{0}e$
Закон радиоактивного распада	$N = N_0 e^{-\lambda t}, \lambda = \frac{\ln 2}{T_{1/2}}$
	$N = N_0 2^{-\frac{t}{T_{V_2}}}$
Дефект масс	$\Delta m = Zm_p + Nm_n - m_s$
	$\Delta m = Zm_H + Nm_n - m_{am}$
Энергия связи	$W_{cs} = \Delta m c^2$
Удельная энергия связи	$W_{cs.yd.} = \frac{W_{cs}}{A}$

МАТЕМАТИЧЕСКИЕ ФОРМУЛЫ

Векторы

Berroper			
Сложение и вычитание векторов	$\vec{c} = \vec{a} \pm \vec{b} \iff c_x = a_x \pm b_x \\ c_y = a_y \pm b_y$		
Умножение вектора на число	$\vec{b} = c \vec{a} \iff b_x = c a_x \\ b_y = c a_y$		
Скалярное произведение	$\vec{a}\vec{b} = ab\cos\alpha = a_x b_x + a_y b_y$		
Проекция вектора \vec{a} на ось ОХ	$a_x = a \cos \alpha$		
Модуль вектора \vec{a}	$a = \sqrt{a_x^2 + a_y^2}$		
Составляющие вектора	$\vec{a} = \vec{a}_x + \vec{a}_y, \vec{a} = \vec{a}_\perp + \vec{a}_\parallel$		

Алгебра, тригонометрия, геометрия и начала анализа

	comerphia in ma mana amaninga
Корни квадратного уравнения $ax^2 + bx + c = 0$	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Основное тригонометрическое тождество	$\sin^2\alpha + \cos^2\alpha = 1$
Функции двойного угла	$\sin 2\alpha = 2\sin \alpha \cos \alpha,$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$
Функции суммы (разности) углов	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
Сумма (разность) функций	$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}$ $\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$
	$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$

Формулы приведения	$\sin(\pi/2\pm\alpha) = \cos\alpha$	
	$\cos(\pi/2\pm\alpha) = \mp\sin\alpha$	
Теорема Пифагора	$c^2 = a^2 + b^2$	
Теорема косинусов	$c^2 = a^2 + b^2 - 2ab\cos\alpha$	
Площадь круга	$S = \pi R^2$	
Площадь поверхности сферы	$S = 4\pi R^2$	
Объем шара	$V = \frac{4}{3}\pi R^3$	
Формулы приближенных вы-	$(1\pm x)^n \approx 1\pm n x$	
числений (при <i>x</i> << 1)	$e^x \approx 1 + x$	
	$\ln(1+x) \approx x$	
	$\sin x \approx x$, $([x] = pa\theta)$	
	$\cos x \approx 1 - \frac{x^2}{2}, ([x] = pa\theta)$	
Некоторые производные	$\left(x^{n}\right)'=nx^{n-1},$	
	$\left(\sin ax\right)' = a\cos ax,$	
	$(\cos ax)' = -a\sin ax$	
Геометрический смысл производной: производная численно равна тангенсу угла наклона касательной к графику функции в данной точке	$f'(x) _{x=x_0} = = tg\alpha = = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_1}{x_1 - x_0} = \frac{y_2 - y_1}{x_1 - x_0} = \frac{y_2 - y_1}{x_1 - x_0} $	
Геометрический смысл интеграла: интеграл <u>численно</u> равен площади под графиком функции	$S = \int_{x_1}^{x_2} f(x) dx$ x_1 x_2	

СПРАВОЧНЫЕ ДАННЫЕ Основные физические постоянные

Основные физические постоянные			
$c = 3,00 \times 10^8 \text{ m/c}$			
$G = 6.67 \times 10^{-11} \text{ m}^3/(\text{kg} \times \text{c}^2)$			
$N_A = 6.02 \times 10^{23} \text{ моль}^{-1}$			
$R = 8,31 \; Дж/(моль × K)$			
$k_{\rm E} = 1.38 \times 10^{-23}$ Дж/К			
$M_{603\partial yxa} = 29 \times 10^{-3} \text{ кг/моль}$			
$p_0 = 101,3 \ к\Pi a$			
$e = 1,60 \times 10^{-19} \mathrm{K}$ л			
$m_e = 9,11 \times 10^{-31} \text{ кг}$			
$m_p = 1,672 \times 10^{-27} \text{ кг}$			
$m_n = 1,674 \times 10^{-27} \text{ к}$ г			
$\varepsilon_0 = 8.85 \times 10^{-12} \Phi/M$			
$k_e = 9.0 \times 10^9 \text{ H} \times \text{m}^2 / \text{K} \text{J}^2$			
$\mu_0 = 4\pi \times 10^{-7} \Gamma_{\rm H/M}$			
$h = 6.63 \times 10^{-34} \text{Дж} \times \text{c}$			
$\hbar = 1,05 \times 10^{-34} \text{Дж} \times \text{c}$			
$g = 9.81 \text{ m/c}^2$			
$R_3 = 6370 \text{ км}, M_3 = 5,98 \times 10^{24} \text{ кг}$			
$R_{JI} = 1737 \text{ км}, M_{JI} = 7,35 \times 10^{22} \text{ кг}$			
R = 384 Mm			

Внесистемные единицы измерений

Ангстрем	$1 \text{ Å} = 10^{-10} \text{ M}$
Атомная единица массы	1 а.е.м. = $1,67 \times 10^{-27}$ кг
Киловатт-час	$1 \kappa B_{\text{T}} \times \text{ч} = 3,6 \times 10^6 \text{Дж}$
Калория	1 кал = 4,19 Дж
Литр	$1 \text{ л} = 1 \text{ дм}^3 = 10^{-3} \text{ м}^3$
Миллиметр ртутного столба	1 мм. рт. ст. = 133 Па
Электрон-вольт	$1 \text{ эB} = 1,60 \times 10^{-19} \text{ Дж}$

Десятичные приставки

Назва-	Обозна-	Множи-	Назва-	Обозна-	Множи-
ние	чение	тель	ние	чение	тель
деци	Д	10 ⁻¹	дека	да	10^{1}
санти	c	10 ⁻²	гекто	Γ	10^{2}
милли	M	10 ⁻³	кило	К	10^{3}
микро	МК	10^{-6}	мега	M	10^{6}
нано	Н	10 ⁻⁹	гига	Γ	10^9
пико	П	10 ⁻¹²	тера	T	10^{12}
фемто	ф	10 ⁻¹⁵	пета	Π	10^{15}
атто	a	10 ⁻¹⁸	экса	Э	10^{18}

Физические свойства веществ

Вещество	Плот-	Удельная	Темпера-	Удельная теп-
	ность,	теплоем-	тура плав-	лота плавле-
	Γ/cm^3	кость,	ления	ния (** парооб-
		кДж/(кг×К)	(* кипения),	разования),
			°C	МДж/кг
	TE	вердые т	ела	
Алюминий	2,7	0,88	660	0,38
Лед	0,9	2,1	0	0,33
Медь	8,9	0,38	1083	0,18
Олово	7,3	0,23	232	0,059
Свинец	11,3	0,13	327	0,025
Серебро	10,5	0,21	960	0,087
Сталь	7,8	0,46	1400	0,082
		Жидкост	И	
Вода	1,0	4,2	* 100	** 2,3
Керосин	0,80	2,1	_	_
Нефть	0,80	_	_	_
Ртуть	13,6	0,13	* 357	** 0,29
Спирт	0,79	2,4	* 78	** 0,85

Удельная теплота сгорания топлива, МДж/кг

Бензин	46	Нефть	43
Дерево	10	Порох	3,8
Дизельное топливо	42	Спирт	29
Каменный уголь	29	Условное топливо	29
Керосин	46		

Диэлектрические проницаемости веществ

Вода	81	Парафин	2,1
Керосин	2,1	Слюда	6
Масло	2,5	Стекло	7

Удельные сопротивления при $t=20^{\circ}$ С, нОм × м

Алюминий	28	Нихром	1120
Вольфрам	55	Свинец	210
Латунь	71	Серебро	16
Медь	17	Сталь	120
Никелин	420		

Электрохимические эквиваленты, мг/Кл

Алюминий	0,093	Никель	0,36
Водород	0,0104	Серебро	1,12
Кислород	0,083	Хром	0,18
Медь	0,33	Цинк	0,34
Олово	0,62		

Показатели преломления (относит. воздуха t=20°C, λ =589,3 нм)

Алмаз	2,42	Ацетон	1,36
Изумруд	1,58	Вода	1,33
Корунд	1,77	Глицерин	1,47
Лед	1,31	Канадский бальзам	1,53
Плексиглас	1,50	Скипидар	1,47
Стекло	1,6	Спирт этиловый	1,36
Шпат исландский	1,66	Толуол	1,50

Работа выхода электронов, эВ

Алюминий	4,25	Никель	4,5
Вольфрам	4,54	Олово	4,38
Германий	4,76	Платина	5,32
Железо	4,31	Свинец	4,0
Золото	4,30	Серебро	4,3
Калий	2,2	Хром	4,58
Литий	2,38	Цезий	2,7
Медь	4,40	Цинк	3,9
Молибден	4,3		

12-7-5-14-12

Печать на Seikosha правой страницы – поля 15,5 и 2,5, а левой – 17,2 и 0,8