Problem Statement

To fulfil the gap of guidance to individuals. Build a platform for individuals to get guided through their steps/positions for yoga. The platform must correct the Yoga pose using text or text to speech if possible. Use deep learning neural networks and Openpose. Build a web based platform.

CONTENTS

- Introduction
- Motivation
- Problem Statement
- Literature Survey
- Use case diagram
- Explanation
- System Architecture
- Advantages
- Limitations
- Applications
- Future Scope
- Conclusion
- References

Introduction

- Human Pose estimation is an important problem that has enjoyed the attention of the Computer Vision community for the past few decades.
- Human Pose Estimation is defined as the problem of localization of human joints (also known as keypoints elbows, wrists, etc.) in images or videos.

14-12-2019

Motivation

- Due to lack of yoga trainers at a cost to suit budget.
- We thought of substituting traditional way with Technology for Yoga trainers.

Literature Survey

Sr. No.	Title	Author	Published year	Conference
1	Realtime Multi-Person 2D Pose Estimation using PAFs	Tomas Simon, Yaser Sheikh	2017	Computer Vision and Pose Recognition
2	Convolutional Pose Machines	Varun Ramkrishna, Takeo Kanade	2016	CVPR
3	DeepPose: Human Pose Estimation via DNN	Alexander Toshev, Christian Szegedy	2014	CVPR

UML (activity) diagram

Tool used:-Visual Paradigm

UML (Sequence) diagram

Tool used:-Visual Paradigm

Data Flow diagram

Tool used:-UMLet 14.3

What we are trying to implement

What we are trying to implement

Triangle Pose

14-12-2019

System Architecture

System Architecture

Convolution

Image

Convolved Feature

Pooling

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Joints / keypoints identification

What we are trying to implement

Warrior I Pose

Advantages

- Provoke to do Yoga
- Pocket friendly
- Human independent
- Expert guidance
- Injury prevention

-2019 19

Limitations

- Web enabled device required
- Device must be kept near work area

Applications

- Personal Yoga Trainer
- Knowledge about yoga

Conclusion

• Using Human pose estimation methods we implemented a real time pose corrector for yoga.

Future scope

- Dance step learning
- Gym steps correction
- Martial Arts
- Cross-fit Workouts

References

[1] Alexander Toshev and Christian Szegedy. DeepPose: Human Pose Estimation via Deep neural network. In CVPR, 2018.

[2] Tomas Simon, Yaser Sheikh. Realtime Multi-Person 2D Pose Estimation using Part affinity fields. In CVPR, 2017.

[3] JVarun Ramkrishna, Takeo Kanade. Convolutional Pose Machines. In COLT. ACL, 2016.

Contact Author

https://www.linkedin.com/in/mahajan-p/ mpsemailid@gmail.com