ALGORITMO HILL CLIMBING

- También es conocido como el método de ascenso de colinas
- Usa una técnica de mejoramiento iterativo
- Comienza a partir de un punto (punto actual) en el espacio de búsqueda
- Si el nuevo punto es mejor, se transforma en el punto actual, si no, otro punto vecino es seleccionado y evaluado
- El método termina cuando no hay mejorías, o cuando se alcanza un número predefinido de iteraciones

Escalada Simple

- Dirigirse siempre a un estado mejor que el actual
- Función Heurística de proximidad
- No se mantiene reporte de los estados anteriores
- Es un método local, sus movimientos están determinados por ser mejores que los previos.

Escalada por máxima pendiente

Buscar no solamente un estado mejor que el actual, sino el mejor de todos los estados posibles (Máxima Pendiente).

Ascenso a Colina (Hill Climbing)

- Es una variante del algoritmo de búsqueda de Best First.
- Del procedimiento de prueba existe una realimentación que ayuda al generador a decidirse por cual dirección debe moverse en el espacio de búsqueda.
- En estos procesos se abandona la búsqueda si no existe un estado alternativo razonable al que se pueda mover.
- Los algoritmos de ascenso a colina son típicamente locales, ya que deciden qué hacer, mirando únicamente a las

- consecuencias inmediatas de sus opciones.
- Puede que nunca lleguen a encontrar una solución, si son atrapados en estados que no son el objetivo, desde donde no se puede hallar mejores estados, por ejemplo:
- 1. Un máximo local: Estado mejor que sus vecinos pero no es mejor que otros que están algo más alejados.
- 2. **Una meseta:** Es un espacio de búsqueda en el que todo un conjunto de estados vecinos tienen igual valor.
- 3. Un risco: que es un tipo especial de máximo local, imposible de atravesar con movimientos simples.

- Hay algunas formas que pueden ayudar a resolver estos problemas, aunque no existe garantía:
- 1. Para evitar máximos locales, regresar a un estado anterior y explorar en una dirección diferente.
- 2. Para casos de **mesetas**, dar un salto grande en alguna dirección y tratar de encontrar una nueva sección del espacio de estados.
- 3. Para los **riscos**, aplicar dos o más reglas, antes de realizar una prueba del nuevo estado, esto equivale a moverse en varias direcciones a la vez.

- En todos los casos anteriores, el algoritmo llega un punto más allá del cual no se logra ningún avance.
- Cuando esto sucede es obvio que debe empezarse de nuevo en otro punto.
- Y esto es justamente lo que hace con ascenso de cima con reinicio aleatorio, efectúa una serie de búsquedas de ascenso de cima desde <u>estados</u> <u>iniciales generados aleatoriamente</u>, hasta para o cuando no se logra ningún avance significativo.
- Se guarda el mejor resultado que hasta un momento dado se haya obtenido en las diversas búsquedas.
- Puede usar un número fijo de iteraciones, o puede continuar hasta que el mejor de los resultados

Email: takeyas@itnuevolaredo.edu.mx

almacenados no haya sido mejorado para cierta cantidad de iteraciones.

 Los algoritmos de ascenso a colina, a pesar de explorar sólo un paso adelante, al examinar el nuevo estado pueden incluir una cierta cantidad de información global codificada en la función objetivo o función heurística.

Yentaja,

• Reduce el número de nodos a analizar

Características

- Informado: Utiliza información del estado por elegir un nodo u otro.
- No exhaustivo: No explora todo el espacio de estados. Como máximo, sólo encuentra una solución.
- Encuentra buenas soluciones, pero no la mejor, puesto que no es exhaustivo.
- Es eficiente, porque evita la exploración de una parte del espacio de estados.

Email: takeyas@itnuevolaredo.edu.mx

función de evaluación

Devuelve un número que representa qué tan cerca está un determinado estado de la solución, cuanto mayor sea el número, se estará más cerca de la solución.

Ejemplo: Juego 8-puzzle

 Establecer una función de evaluación

f(nodo)= # de casillas bien colocadas (maximización)

f(nodo)=número de casillas bien colocadas (maximizo)

🔘 = Secuencia de estados generados

= Valor que devuelve función f(nodo)

Email: takeyas@itnuevolaredo.edu.mx

Algoritmo Hill Climbing INICIO C=A=Estado inicial S=[] (Vacío) Termina la A=[] ó búsqueda con A=Obj éxito (Recorrer C) S=Sucesor de A (con valor más alto) C=Almacenar trayectoria (hijo, padre) Generar V[S] aleatoriamente un nuevo Estado V[A] inicial A = S