Student Number

Caringbah High School Year 12 Physics Trial Exam 2023

Write all your answers in this answer booklet.

Use pen for written responses and pencil for diagrams and graphs.

Total Marks: 100

Task Length: 3 hours + 5 minutes reading time

PART A: Multiple Choice Questions (20 marks)

PART B: Longer Response Questions (80 marks)

Task Prepared by: J. Warner

OUTCOME	MARK
Knowledge and Understanding	
	/ 75
Working Scientifically	
1, 3, 4, 5, 13, 15, 16, 17, 24b, 24c, 25b, 27 & 33	/ 25
Total	
	/100

PART A: Answer the multiple choice questions HERE. Circle the letter of the BEST answer.

Do NOT detach this page from the rest of the task.

1	Α	\ В	С	D	11	А	В	С	D
2	Α	\ В	С	D	12	А	В	С	D
3	Д	\ В	С	D	13	A	В	С	D
4	Д	\ В	С	D	14	А	В	С	D
5	Δ	\ В	С	D	15	А	В	С	D
6	Α	\ В	С	D	16	А	В	С	D
7	A	\ В	С	D	17	А	В	С	D
8	A	Л В	С	D	18	А	В	С	D
9	Α	Л В	С	D	19	А	В	С	D
10	Д	\ В	С	D	20	А	В	С	D

PART A: Circle the letter of the BEST answer on the grid (20 marks)

- **1.** Which one of the following best describes a hypothesis?
 - A. A testable scientific explanation.
 - B. A well-tested scientific explanation.
 - C. A scientific explanation by a famous scientist.
 - D. A widely believed and highly plausible explanation.
- **2.** Which statement describes how an electromagnetic wave is propagated?
 - A. An oscillating electric field causes an oscillating magnetic field perpendicular to the electric field.
 - B. An oscillating magnetic field causes a constant electric field perpendicular to the magnetic field.
 - C. An oscillating magnetic field causes an oscillating electric field parallel to the magnetic field.
 - D. An oscillating electric field causes a constant magnetic field parallel to the electric field.
- **3.** Light, sound, gravitation, electrostatics, and many other physical principles all follow an inverse-square law.

Which of the following graphs depicts this relationship?

Α.

В.

С.

D.

- **4.** An investigation is designed to determine the size of a generated current when the strength of a magnet is varied. Which is the independent variable for this investigation?
 - A. Speed of the magnet.
 - B. Strength of the magnet.
 - C. Size of the generated current.
 - D. Distance between the coil and the magnet.

5. A projectile is launched at 30° to the horizontal.

Which alternative below represents the projectile's acceleration while it remains in flight, assuming the upwards direction is positive?

В.

С.

D.

6. The rest length of a train is 120 m, and the rest length of the platform is 96 m. The train moves past the station so fast that it is measured by an observer on the platform to be the same length as the platform.

How fast must the train be travelling?

- A. 0.60c
- B. 0.75c
- C. 0.80c
- D. 1.25c
- A force is applied at 45° (θ) to a door. The force is applied at a distance (r) 28 cm from the pivot point. Calculate the magnitude of the force (F) required to achieve a torque of 51 Nm?

- A. $2.6 \times 10^2 \text{ N}$
- B. 2.6 N
- C. $1.0 \times 10^3 \text{ N}$
- D. $6.4 \times 10^4 \text{ N}$

8. Laser thermometers are used at airports to detect the surface skin temperature of passengers prior to boarding planes. Laser thermometers detect the infrared radiation emitted by the surface of the skin, and give an alert when a wavelength is reached that corresponds to 35.6°C.

Which of the following wavelengths corresponds with a temperature of 35.6°C?

- A. 940 x 10³ nm
- B. $9.40 \times 10^3 \text{ nm}$
- C. 940 nm
- D. 940 μm
- 9. Students use sound to test the ideas of the Michelson–Morley experiment. They conduct an experiment on an outdoor basketball court on a windy day. Student A stood at the western end and created a loud pulse of sound. Student B stood 30.0 m away at the eastern end with a sound detector, as shown below.

They found that the sound travelling towards the eastern end took 0.0857 s to reach student B. Student B, at the eastern end, then created a loud pulse of sound. This time the sound travelling towards the western end took 0.0909 s to reach student A.

Which one of the following best explains their observations?

- A. The wind was blowing to the east at 10 m.s^{-1} .
- B. The wind was blowing to the east at 20 m.s^{-1} .
- C. The wind was blowing to the west at 20 m.s^{-1} .
- D. The speed of sound is the same in all inertial reference frames.

10. In a distant galaxy, three stars (A, B and C) form a three-star system. The relative mass of each star and distance between their centres is shown.

How many times greater is the gravitational force between Star B and Star C compared to that between Star A and Star B?

- A. 1.78
- B. 5.12
- C. 2.16
- D. 2.37
- 11. What did Plank propose to explain the relationship between emitted wavelength and intensity for a black body cavity radiator?
 - A. The black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature.
 - B. The total energy radiated per second per unit area is proportional to the fourth power of the absolute temperature.
 - C. The radiation emitted and absorbed by the walls of the black body cavity is quantised.
 - D. The emitted light is not only a wave but can also be described as a collection of particles known as photons.

A monochromatic light source is emitting green light with a wavelength of 550 nm. The light source emits 2.8×10^{16} photons every second.

Which one of the following is closest to the power of the light source?

- A. $1.0 \times 10^{-2} W$
- B. $3.3 \times 10^{-11} W$
- C. $2.1 \times 10^9 \text{ W}$
- D. $6.3 \times 10^{16} \text{ W}$
- An electron moving between charged plates experiences a force. The distance between the plates is 10 cm and the voltage across is 150 V.

How much work was done to shift the electron 3 mm perpendicular between the plates?

- A. $7.2 \times 10^{-18} J$
- B. 2.7 x 10⁻¹⁹ J
- C. 2.4 x 10⁻¹⁶ J
- D. 7.2 x 10⁻¹⁹ J
- Calculate the work function for copper, which has a threshold frequency of 1 x 10^9 MHz.
 - A. 3.9 eV
 - B. 3.9 MeV
 - C. 4.1 eV
 - D. 4.1 MeV

15. A transformer has 1000 windings on the primary coil and 200 windings on the secondary coil.

The primary voltage is 240 V, with a primary current of 10.0 A. The secondary current is 44.0 A.

What is the efficiency and type of this transformer?

	Efficiency	Туре
A.	23%	Step-up
В.	44%	Step-up
С.	20%	Step-down
D.	88%	Step-down

Unpolarised light passes through two consecutive polarisers as shown. I_A is the intensity of the unpolarised light, and I_B is the intensity of light after polariser 2.

The value of I_B : I_A is 0.375.

What is the angle between the transmission axis of polariser 1 and polariser 2?

- A. 30°
- B. 41°
- C. 52°
- D. 64°

17. Three equal length (I) straight conductors, each carrying equal current I, are placed parallel as shown. The middle straight conductor is placed 2d and d units from the top and bottom conductors respectively.

The expression for the magnitude of the net force acting on the middle conductor is:

- A. $\frac{lkI^2}{2d}$
- c. $\frac{3lkI^2}{2d}$

- B. $\frac{2lkI^2}{d}$
- D. $\frac{lkI^2}{d}$
- A cyclist is riding around a corner on a banked track. He is travelling faster than the design speed of the bank. Which of the following vector diagrams illustrates the forces acting on the cyclist?

Α.

В.

С.

D.

- 19. A large warehouse ceiling fan has blades 1.5 m in length that rotate so the tip of the blade travels a distance of 2.5 m in 0.5 s. At what angular velocity does the turbine rotate?
 - A. $72^{\circ} s^{-1}$
 - B. 92° s⁻¹
 - C. 120° s⁻¹
 - D. 191° s⁻¹
- **20.** A student is investigating electromagnetic induction using a bar magnet hanging from a spring that is fixed to the ceiling as shown.

The bar magnet is pulled down so that it is inside the solenoid, and then released. The student noted that when the solenoid is connected to an ammeter, the bar magnet comes to rest more quickly than when it is connected to a voltmeter.

Which statement best explains this observation?

- A. The induced emf from the voltmeter keeps the magnet moving.
- B. The induced emf from the ammeter opposes the magnet's movement.
- C. The voltmeter has a greater electrical resistance than the ammeter.
- D. The magnitude of induced emf is greater when the coil is connected to an ammeter.

21. A golfer hits a ball on a part of a golf course that is sloping downwards away from him, as shown below.

The golfer hits the ball at a speed of 40 m.s $^{-1}$ and at an angle of 30° to the horizontal.

a. Calculate the maximum height, h, that the ball rises above its initial position.

The ball lands at a point at a horizontal distance of 173 m from the hitting-off point, as shown

b. Calculate the vertical drop, d, from the hitting-off point to the landing point, G.

above.

Students have a model that can be used as a motor or generator, depending on the connections used. The magnets provide a uniform magnetic field of 2.0×10^{-3} T. EFGH is a square coil of each side length 4.0 cm with 10 turns. A 6.0 V battery and an ammeter are connected to the shaft through a commutator.

Diagram 1

a. The ammeter shows a current of 4.0 A. With the coil horizontal as shown in Diagram 1, what is the force on the side EF? Give the magnitude and direction (up, down, left, right) of the force.

The model is now set up as a DC generator, with the output connected to a voltmeter and oscilloscope via a commutator, as shown in Diagram 2, with the same coil of side length 4.0 cm and 10 turns, and a uniform magnetic field of 2.0×10^{-3} T. The shaft is rotated by hand.

Diagram 2

b. The shaft and coil make two complete revolutions per second. Calculate the magnitude of the average voltage as shown on the voltmeter during one-quarter revolution.

Question 22 continues on the next page.

2

	c. The students wish to convert this DC generator into an AC generator. Identify the change or changes the student would have to make to achieve this. Justify your answer.					
23.	The diagram shows two different models of light that were around in the late 1600s.					
	Model 1 Model 2					
	a. Which of these models was proposed by Newton?	1				
	b. With reference to general characteristics of scientific models, why was Newton's model rejected					
	in favour of the model proposed by Huygens?	2				
		1				

24.	The figure below shows a graph of the orbital radius cubed of the inner moons of Saturn plotted
	against their orbital period squared.

a. Identify which of Kepler's laws of planetary motion is supported by the data shown in the graph.	

b. Use the line of best fit provided in the graph to show that the mass of Saturn is 5.7 x 10^{26} kg	

 	 	•••••

c. Calculate the escape velocity of a 50 000 kg rocket on the surface of Saturn if the radius of Saturn
is 5.8 x 10 ⁷ m.

•••••	• • • • • • • • • • • • • • • • • • • •	 	

25. Below is a diagram of Bohr's model of the atom showing the different series of electron transitions within a hydrogen atom.

- a. Identify which series is responsible for producing electromagnetic radiation with wavelengths greater than visible light.
- b. Calculate the frequency of photons emitted when electrons move from n_i = 3 to n_f = 2 orbit.

c. Describe a limitation of this model of the atom.

1

2

		particle produced from cosn nich muons are created is 1.	-	
	Additional information abo	out muons can be found in	the table below.	
		Particle Class	Lepton]
		Mass (kg)	1.88 × 10 ⁻²⁸	-
		Charge (C)	- 1.602 × 10 ⁻¹⁹	
		Mean Life Time (μs)	2.2	
	a. Calculate the average gr	ravitational potential energ	y of a muon at 15 k	km above surface of Earth.
	 b. Determine the work don above surface of Earth. 	ne by gravity on a muon tha	t descends from 15	km to an altitude of 10 km
	Classical physics assumes t to their short lifetime.	that regardless of their velo	city, muons cannot	cover long distances due
	c. Explain from the muon's	perspective why they are o	letected on the surj	face of Earth.
ı				

Suppose that a muon is subject to a magnetic and electric field as shown. The magnetic field strength is 0.375 mT. The electric field is created by a pair of parallel metal plates 30 cm apart and connected to a potential difference of 45 V.

The muon (μ) enters the magnetic and electric field at 4.0 x 10⁵ ms⁻¹. Assume gravity is negligible.

a. Analyse the path of the muon as it travels through these two fields. Include calculations in your response.

27.	Outline an investigation that could be conducted to calculate the wavelength of monochromatic light emitted by a laser. Ensure that the investigation is valid by accounting for sources of error in	4
	your experimental design. Support your response with a diagram.	

28. The change in magnetic flux with time generated by the primary coil of a faulty transformer is shown below. A, B, C and D represent specific time points during this change.

a. On the graph below, show how the secondary voltage of the same transformer changes with time. On your graph, clearly indicate time points A, B, C and D.

b. Describe ONE way energy is lost in a transformer and how these losses are commonly reduced.

2

29. A Hertzsprung–Russell diagram is shown below (left). Point P indicates a particular star in the Milky Way galaxy. The second diagram below (right) shows the spectrum of radiation emitted from star P.

Below are two absorption spectra, one from star P and one from a laboratory.

Absorption Spectrum of Star P

Absoprtion Spectrum of an Element

a. Describe what the absorption spectra reveal about the motion of star P.

	••••••	••••••		••••••	•••••
	••••••	••••••		••••••	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	

Question 29 continues on the following page.

2

	c. Explain why there are relatively fewer Main Sequence stars in spectral classes B and A.	
30.	As a spacecraft approaches the speed of light, the extra momentum provided by the thrust from its propulsion system results in very little increase in speed. The relationship between the spacecrafts momentum and speed is depicted in the diagram below.	
	10	
	womentum p _{el} (kg m/s) 2.0 – 2.0 – 1.0 –	
	0 0.2c 0.4c 0.6c 0.8c 1.0c	
	with reference to appropriate mathematical relationships, explain this apparent discrepancy in Newtonian physics theory.	

31.	A student investigated how the current passing through an electric drill varied when it was turned	
	on and then used to drill a hole. The student used a battery-operated electric drill and connected it	3
	to an ammeter to measure the current in the rotor.	
	When the drill was switched on, the current rapidly increased to 5.5 A and then reduced quickly to a steady value of 0.9 A. The drill was then used to drill a hole, placing a load on the motor. The current went up to 2.1 A while it was drilling. The student then created a current vs time graph using the data they collected.	
	Current	
	Time	
	Explain the variations in current.	
32.	Compare the spectra produced by discharge tubes and incandescent light bulbs.	
J2.		2
		1

A ball moves in a circular path at the end of a string, forming a conical pendulum, as shown in the diagram below (left). A student found that if the speed of the ball varies, the angle (θ) changes. Some experimental values are recorded in the table below (right).

Velocity ² (m.s ⁻¹) ²	r tan (θ)
15.75	1.59
22.56	2.28
31.33	3.20
43.68	4.45
61.75	6.25
90.73	9.23

a. Draw a graph showing the relationship between Velocity² and r tan (θ) .

b. Determine the acceleration due to gravity (g) using the gradient of the graph and then use it to assess the accuracy of this investigation.

34.	The diagram shows an AC induction motor.	3
	Squirrel cage Solid iron core	
	Explain the operation of this device.	
35.	A uranium-234 atom, initially at rest, undergoes alpha decay. The masses of the atoms involved are shown in atomic mass units (u).	3
	$^{234}\mathrm{U}$ \rightarrow $^{230}\mathrm{Th}$ + $^{4}\mathrm{He}$	
	234.0409 u 230.0331 u 4.0026 u	
	The kinetic energy of Thorium-230 is 7.02×10^{-15} J.	
	Calculate the kinetic energy of the alpha particle.	

Explain the physics principles underlying magnetic braking, including how conservation of energy applies to these systems.

The experiment is repeated, but this time the frequency is set to the lowest frequency at which current is detected. The light intensity is then increased, and the voltage and current are monitored.

The results are shown in the graphs below (right).

5

Analyse the results and explain how they support the idea of the quantum nature of light.

	H ₂	4.003 Helium	10	Š	20.18	18	Ar	39.95	36	K.	83.80	Krypton	42	Xe	131.3 Xenon	98	Rn		Radon	811	õ	Oganesson	
l			6	Ц	19.00	17	J	35.45	35	Br	79.90	Bromine	<u>ج</u> ج	_	126.9 Iodine	85	At		Astatine	117	T _S	Tennessine	
			_			+		32.07	+			+				╀			Polonium	911	^	Livermorium	
			7	Z	14.01	15	Д	30.97	33	As	74.92	Arsenic	7.5	S	121.8 Antimony	83	Bi	209.0	Bismuth	115	Mc	Moscovium L	
			9	O	12.01	14	Si	28.09	32	g	72.64	Germanium	25	S	118.7	82	Pb	207.2	Lead	114	Ĺ	Flerovium	
			5	В	10.81	13	ΑI	26.98	31	Ça	69.72	Gallium	4 -	=	114.8 Indium	18	Ε	204.4	Thallium	113	_K	Nihonium	
PI PMFNTS	SINE								30	Zu	65.38	ZIDC	847	3	112.4 Cadmium	80	ΞĤ	200.6	Mercury	112	C	Copernicium	
									59	ĵ	63.55	Copper	7.	Ago	107.9 Silver	79	Au	197.0	Gold	Ξ	Rg	Darmstadtium Roentgenium Copernicium	
OF THE									28	Z	58.69	Nickel	97	잗	106.4	78	Pt	195.1	Platinum	110	Ds	Darmstadtium	
TABLE		KEY	79	Au	197.0	Dog			27	ပိ	58.93	Coball	35	Α'n	102.9 Rhodium	77	ŀ	192.2	Iridium	109	Mt	Meitnerium	
			Atomic Number	Symbol	mic Weight	Dame			26	æ	55.85	Iron	44	N N	101.1 Ruthenium	92	SO	190.2	Osmium	108	Hs	Hassium	
DEPTOPIC	LENIO		Aton		Standard Ato				25	Mn	54.94	Manganese	₹£	o I	Technetium	75	Re	186.2	Rhenium	107	Bh	Bohrium	
									24	Ċ	52.00	Chromium	747	Mo	95.96 Molyhdenum	74	×	183.9	Tungsten	901	Sã	Seaborgium	
									23	>	50.94	Vanadrum	4.2	gN	92.91	73	Ta	180.9	Tantalum	105	Dp	Dubnium	
									22	Ξ	47.87	Thtamum	3.5	ΙZ	91.22 Zirconium	72	Hť		_		Rf.	Actinoids Rutherfordium	
									21	Sc	44.96	Scandium	33	Y	88.91 Yttrium	57-71			Lanthanoids	89-103		Actinoids	
			4	Be	9.012	12	Mg	24.31	20	Ca	40.08	Calcium	28	Sr	87.61 Strontium	99	Ва	137.3	Barium	88	Ra	Radium	
	- Ξ	1.008 Hydrogen	3	I	6.941	-	Na	22.99	19	Х	39.10	Potassium	25	Кb	85.47 Rubidium	55	S	132.9	Caesium	87	Ţ	Francium	
																	-	2					

70	Tm Yb Lu	173.1	Ytterbium	
89	Ē	167.3	Erbium	
29	Но	164.9	Holmium	
99	Dy	162.5	Dysprosium	
59	Tb	158.9	Terbium	
64	РS	157.3	Gadolinium	
63	Eu	152.0	Europium	
62	Sm	150.4	Samarium	
19	Pm		Promethium	
09	PΝ	144.2	Neodymium	
59	Pr	140.9	Praseodymium	
28	ಲಿ	140.1	Cerium	
57	Гa	138.9	Lanthanum	

	103	ΓĽ		Lawrenciun
	102	No		Nobelium
	101	РW		Mendelevium
	001	Fm		Fermium
	66	Es		Einsteinium
	86	Ċ		Californium
	6	Bk		Berkelium
	96	Cm		Curium
	96	Am		Americium
	94	Pu		Plutonium
	93	dN		Neptunium
	76	n	238.0	Uranium
	16	Pa	231.0	Protactinium
S	06	Th	232.0	Thorium
Actinoid	68	Ac		Actinium

Standard atomic weights are abridged to four significant figures.

Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version).

Task Evaluation	^	lame:							
Total Mark: out of									
Mark sub-totals									
Multiple choice mark: out of									
Knowledge and understanding mark: o	ut of								
Working Scientifically mark: out of _									
Circle the number that best matches. Key: 1– nev			metimes	1-mos	stly 5-				
rays	/E/ Z-000	usionally 5-30	metimes	4-11103	itiy 3-				
	novor	occasionally	sometimes	mostly	always				
Aspect I pay attention in class	never	occasionally 2	3	mostly 4	always 5				
I complete all my classwork	1	2	3	4	5				
I ask the teacher when I need help	1	2	3	4	5				
I make summary notes to study	1	2	3	4	5				
I get distracted in class	1	2	3	4	5				
I keep my OneNote book up to date	1	2	3	4	5				
I provide sufficient detail in my OneNote	1	2	3	4	5				
responses/notes		2		7					
I completed past papers to prepare for the	1	2	3	4	5				
test		_		,					
I can communicate my understanding in	1	2	3	4	5				
tests Questions:									
 Do you feel that your performance in this t ————————————————————————————————————				f Science	<i>?</i> 				
3. What can your teacher do to improve your	What can your teacher do to improve your understanding in Science?								
4. What do you do to maximise your results i	What do you do to maximise your results in Science?								
5. What could you do better/differently to im	What could you do better/differently to improve your results in Science?								
6. Is there anything else you want your teach	er to kno	 pw?							

6)
$$1 = l_0 \int (1 - \frac{v^2}{c^2})$$

 $96 = 120 \int (1 - \frac{v^2}{c^2})$
 $(\frac{96}{120})^2 = 1 - \frac{v^2}{c^2}$
 $v^2 = (1 - 0.64) c^2$

V= 0.6c : A

$$F = \frac{T}{r \sin \theta} = \frac{51}{(6.28)(\sin 45)}$$

= 257.6N

$$\lambda = \frac{2.898 \times 10^{-3}}{273 + 35.6}$$

9)
$$V_{\xi} = \frac{30}{0.0857} = 350 \text{ m/s}$$

$$V_{w} = \frac{30}{0.0909} = 330 \text{ m/s}$$

$$V_{\varepsilon} = V_{s} + V_{wind}$$

$$V_{\omega} = V_{s} - V_{wind}$$

$$F_{G:A88} = \frac{6}{4^2} = 0375$$

$$\frac{0.889}{0.375} = 2.37 ... D$$

12)
$$E = hc$$
 = $(6.426 \times 10^{-34})(3 \times 10^{-9})$
 $\frac{3.61 \times 10^{-19}}{3}$

13)
$$\xi = \frac{V}{d} = \frac{150}{01} = 1500 | 6 \rangle$$
 IA $\int \frac{I_{X}}{I_{A}} \int \frac{I_{B}}{I_{X}} \cos^{2}\theta$
 $W = 9.8d = (1.602 \times 10^{-19}) \times (500)$
 $= 7209 \times 10^{-19}$ D

 $I_{B} = \frac{I_{A}}{2} \cos^{2}\theta$
 $= (6626 \times 10^{-34}) (1 \times 10^{15})$
 $= (6626 \times 10^{-34}) (1 \times 10^{15})$
 $= (6626 \times 10^{-19}) (1 \times 10^{15})$
 $= (0.5)^{1} = (0.5)^{1$

ZUOV > 48v : Stepdown

IB = Ix Cos2 O IB = IA (0526) 2 IB = (0520) (050= JZ35 0 = (05") 2 × 0.375 0=30° (7) 1st to middle: F, = UKI3 3rd to middle: F3= LEIZ i. net force = F, +F3 Es = TKIs + TKIs = 2(NEZ) + 1 (NEZZ) = 3 1KI2 = 31KI2

$$d = \frac{9}{360^\circ} \times 271^\circ$$

9Student Number

Caringbah High School Year 12 Physics Trial Exam 2023

Write all your answers in this answer booklet.

Use pen for written responses and pencil for diagrams and graphs.

Total Marks: 100

Task Length: 3 hours + 5 minutes reading time

PART A: Multiple Choice Questions (20 marks)

PART B: Longer Response Questions (80 marks)

Task Prepared by: J. Warner

OUTCOME	MARK
Knowledge and Understanding	
	/
Working Scientifically	
	/
Total	
	/100

PART A: Answer the multiple choice questions HERE. Circle the letter of the BEST answer.

Do NOT detach this page from the rest of the task.

1	A	В	С	D	11	А	В	C	D
2	A	В	С	D	12	A	В	С	D
3	А	В	С	D	13	А	В	С	D
4	А	В	С	D	14	А	В	C	D
5	А	В	C	D	15	А	В	С	D
6	A	В	С	D	16	A	В	С	D
7	A	В	С	D	17	А	В	C	D
8	А	В	С	D	18	A	В	С	D
9	A	В	С	D	19	А	В	С	D
10	А	В	С	D	20	А	В	C	D

PART A: Circle the letter of the BEST answer on the grid (20 marks)

- **1.** Which one of the following best describes a hypothesis?
 - A. A testable scientific explanation.
 - B. A well-tested scientific explanation.
 - C. A scientific explanation by a famous scientist.
 - D. A widely believed and highly plausible explanation.
- **2.** Which statement describes how an electromagnetic wave is propagated?
 - A. An oscillating electric field causes an oscillating magnetic field perpendicular to the electric field.
 - B. An oscillating magnetic field causes a constant electric field perpendicular to the magnetic field.
 - C. An oscillating magnetic field causes an oscillating electric field parallel to the magnetic field.
 - D. An oscillating electric field causes a constant magnetic field parallel to the electric field.
- 3. Light, sound, gravitation, electrostatics, and many other physical principles all follow an inverse-square law.

Which of the following graphs depicts this relationship?

Α.

В.

С.

D.

- **4.** An investigation is designed to determine the size of a generated current when the strength of a magnet is varied. Which is the independent variable for this investigation?
 - A. Speed of the magnet.
 - B. Strength of the magnet.
 - C. Size of the generated current.
 - D. Distance between the coil and the magnet.

5. A projectile is launched at 30° to the horizontal.

Which alternative below represents the projectile's acceleration while it remains in flight, assuming the upwards direction is positive?

В.

С.

D.

6. The rest length of a train is 120 m, and the rest length of the platform is 96 m. The train moves past the station so fast that is measured by an observer on the platform to be the same length as the platform.

How fast must the train be travelling?

- A. 0.60c
- B. 0.75c
- C. 0.80c
- D. 1.25c
- **7.** A force is applied at 45° (θ) to a 28 cm long spanner (r). Calculate the magnitude of the force (F) required to achieve a torque of 51 Nm?

- A. $2.6 \times 10^2 \text{ N}$
- B. 2.6 N
- C. $1.0 \times 10^3 \text{ N}$
- D. $6.4 \times 10^4 \text{ N}$

8. Laser thermometers are used at airports to detect the surface skin temperature of passengers prior to boarding planes. Laser thermometers detect the infrared radiation emitted by the surface of the skin, and give an alert when a wavelength is reached that corresponds to 35.6°C.

Which of the following wavelengths corresponds with a temperature of 35.6°C?

- A. $940 \times 10^3 \text{ nm}$
- B. $9.40 \times 10^3 \text{ nm}$
- C. 940 nm
- D. 940 μm
- 9. Students use sound to test the ideas of the Michelson–Morley experiment. They conduct an experiment on an outdoor basketball court on a windy day. Student A stood at the western end and created a loud pulse of sound. Student B stood 30.0 m away at the eastern end with a sound detector, as shown below.

They found that the sound travelling towards the eastern end took 0.0857 s to reach student B. Student B, at the eastern end, then created a loud pulse of sound. This time the sound travelling towards the western end took 0.0909 s to reach student A.

Which one of the following best explains their observations?

- A. The wind was blowing to the east at 10 m.s^{-1} .
- B. The wind was blowing to the east at 20 m.s^{-1} .
- C. The wind was blowing to the west at 20 m.s^{-1} .
- D. The speed of sound is the same in all inertial reference frames.

10. In a distant galaxy, three stars (A, B and C) form a three-star system. The relative mass of each star and distance between their centres is shown.

How many times greater is the gravitational force between Star B and Star C compared to that between Star A and Star B?

- A. 1.78
- B. 5.12
- C. 2.16
- D. 2.37
- **11.** What did Plank propose to explain the relationship between emitted wavelength and intensity for a black body cavity radiator?
 - A. The black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature.
 - B. The total energy radiated per second per unit area is proportional to the fourth power of the absolute temperature.
 - C. The radiation emitted and absorbed by the walls of the black body cavity is quantised.
 - D. The emitted light is not only a wave but can also be described as a collection of particles known as photons.

A monochromatic light source is emitting green light with a wavelength of 550 nm. The light source emits 2.8×10^{16} photons every second.

Which one of the following is closest to the power of the light source?

- A. $1.0 \times 10^{-2} W$
- B. $3.3 \times 10^{-11} W$
- C. $2.1 \times 10^9 W$
- D. $6.3 \times 10^{16} W$
- An electron moving between charged plates experiences a force. The distance between the plates is 10 cm and the voltage across is 150 V.

How much work was done to shift the electron 3 mm perpendicular between the plates?

- A. 7.2 x 10⁻¹⁸ J
- B. 2.7 x 10⁻¹⁹ J
- C. 2.4 x 10⁻¹⁶ J
- D. 7.2 x 10⁻¹⁹ J
- 14. Calculate the work function for copper, which has a threshold frequency of 1 x 10^9 MHz.
 - A. 4.1 eV
 - B. 4.1 MeV
 - C. 3.9 eV
 - D. 3.9 MeV

15. A transformer has 1000 windings on the primary coil and 200 windings on the secondary coil.

The primary voltage is 240 V, with a primary current of 10.0 A. The secondary current is 44.0 A.

What is the efficiency and type of this transformer?

	Efficiency	Туре
A.	23%	Step-up
В.	44%	Step-up
C.	20%	Step-down
D.	88%	Step-down

Unpolarised light passes through two consecutive polarisers as shown. I_A is the intensity of the unpolarised light, and I_B is the intensity of light after polariser 2.

The value of I_B : I_A is 0.375.

What is the angle between the transmission axis of polariser 1 and polariser 2?

- A. 30°
- B. 41°
- C. 52°
- D. 64°

17. Three equal length (I) straight conductors, each carrying equal current I, are placed parallel as shown. The middle straight conductor is placed 2d and d units from the top and bottom conductors respectively.

The expression for the magnitude of the net force acting on the middle conductor is:

- A. $\frac{lkI^2}{2d}$
- c. $\frac{3lkI^2}{2d}$

- B. $\frac{2lkI^2}{d}$
- D. $\frac{lkI^2}{d}$
- A cyclist is riding around a corner on a banked track. He is travelling faster than the design speed of the bank. Which of the following vector diagrams illustrates the forces acting on the cyclist?

Α.

В.

С.

D.

- 19. A large warehouse ceiling fan has blades 1.5 m in length that rotate so the tip of the blade travels a distance of 2.5 m in 0.5 s. At what angular velocity does the turbine rotate?
 - A. $72^{\circ} s^{-1}$
 - B. 92° s⁻¹
 - C. 120° s⁻¹
 - D. 191° s⁻¹
- **20.** A student is investigating electromagnetic induction using a bar magnet hanging from a spring that is fixed to the ceiling as shown.

The bar magnet is pulled down so that it is inside the solenoid, and then released. The student noted that when the solenoid is connected to an ammeter, the bar magnet comes to rest more quickly than when it is connected to a voltmeter.

Which statement best explains this observation?

- A. The induced emf from the voltmeter keeps the magnet moving.
- B. The induced emf from the ammeter opposes the magnet's movement.
- C. The voltmeter has a greater electrical resistance than the ammeter.
- D. The magnitude of induced emf is greater when the coil is connected to an ammeter.

21. A golfer hits a ball on a part of a golf course that is sloping downwards away from him, as shown below.

The golfer hits the ball at a speed of 40 m.s $^{-1}$ and at an angle of 30° to the horizontal.

a. Calculate the maximum height, h, that the ball rises above its initial position.

2 mark answer $u_{v}=40\sin 30=20\,\,\mathrm{m\ s^{-1}}$ $v^{2}=u^{2}+2ax$ $0=20^{2}+2\times(-10)\times x$ $x=20\,\,\mathrm{m}$

The ball lands at a point at a horizontal distance of 173 m from the hitting-off point, as shown above.

b. Calculate the vertical drop, d, from the hitting-off point to the landing point, G.

3 mark answer

-1 mark for error

Many students did not realise to use the total time of flight to find the vertical displacement of d. Marks were given where there were steps towards a correct solution

$$t = \frac{x}{v} = \frac{173}{40\cos 30} = 5.0\sec 0$$

Step two was to use this time to calculate the final displacement:

....
$$x_v = u_v t + \frac{1}{2} a t^2$$

.... $x = (20 \times 5) + (0.5 \times -10 \times 25)$
.... $x = -25 \text{ m}$

2

Students have a model that can be used as a motor or generator, depending on the connections used. The magnets provide a uniform magnetic field of 2.0×10^{-3} T. EFGH is a square coil of each side length 4.0 cm with 10 turns. A 6.0 V battery and an ammeter are connected to the shaft through a commutator.

Diagram 1

a. The ammeter shows a current of 4.0 A. With the coil horizontal as shown in Diagram 1, what is the force on the side EF? Give the magnitude and direction (up, down, left, right) of the force.

.....The force was found using:

F = nBII

..... $F = 10 \times (2 \times 10^{-3}) \times 4.0 \times 0.04$

 $F = 3.2 \times 10^{-3} \text{ N}$

2 mark magnitude and direction

-1 mark for an error

This was done well apart from forgetting there are 10 turns

The direction was given by the right-hand slap rule (or equivalent), which was up.

The model is now set up as a DC generator, with the output connected to a voltmeter and oscilloscope via a commutator, as shown in Diagram 2, with the same coil of side length 4.0 cm and 10 turns, and a uniform magnetic field of 2.0×10^{-3} T. The shaft is rotated by hand.

Diagram 2

b. The shaft and coil make two complete revolutions per second. Calculate the magnitude of the average voltage as shown on the voltmeter during one-auarter revolution.

Calculation of EMF is done using Faraday's law:

$$... EMF = \frac{n \times B \times A}{t}$$

... $EMF = \frac{10 \times (2 \times 10^{-3}) \times (0.04)^2}{0.125}$

 $\cdot \cdot \cdot EMF = 0.26 \text{ mV}$

2 marks answer

-1 mark for an error

Many students did not use the correct formula to calculate EMF.

Marks were given for using correct formula and working towards a correct solution. Many students also did not account for 10 turns

Question 22 continu

2

	2 marks: identifies slip ring and justifies]
	1 mark: missing one of the above	
	The student would need to replace the split-ring commutator with slip rings. The slip rings would maintain a constant connection throughout the rotation of the armature and the rotating armature would generate an ac current as it rotates within the magnetic field.	
	This was mostly done ok. However, some students spoke about motors not generators. An answer must explain that a constant connection is maintained through replacing split ring with slip rings.	
a. V	Which of these models was proposed by Newton? 1 mark: Model 1	
1 man	ce to general characteristics of scientific models, why was Newton's model rej model proposed by Huygens?	
b. V in fo	I mark: Model 1 With reference to general characteristics of scientific models, why was Newton's model rejuvour of the model proposed by Huygens? Marks: identifies scientific models can predict/explain observations and then links this to double slit periment	
b. V in fo	I mark: Model 1 With reference to general characteristics of scientific models, why was Newton's model rejection of the model proposed by Huygens? Marks: identifies scientific models can predict/explain observations and then links this to double slit operiment Marks: missing one of the above.	ected
b. V in for exp	I mark: Model 1 With reference to general characteristics of scientific models, why was Newton's model rejuvour of the model proposed by Huygens? Marks: identifies scientific models can predict/explain observations and then links this to double slit periment	ected

24. The figure below shows a graph of the orbital radius cubed of the inner moons of Saturn plotted against their orbital period squared.

a. Identify which of Kepler's laws of planetary motion is supported by the data shown in the graph.

 1 mark: Keplers 3 rd Law	

b. Use the line of best fit provided in the graph to show that the mass of Saturn is 5.7×10^{26} kg.

Criteria	Marks
 Answer:	3
Correctly calculates the gradient of the line of best fit and uses this to calculate the correct mass of Saturn	
 Uses a correct approach to calculate the gradient and a correct approach to calculate the mass of Saturn but makes a calculation error or misses the exponents in the calculation of the gradient	2
 Demonstrates an understanding of the correct approach but makes more than one error	1
Sample answer: The gradient of the graph is:	
 $gradient = \frac{(13.5 - 1) \times 10^{25}}{(14 - 1) \times 10^{10}} = 9.6 \times 10^{14} m^3 s^{-2}$	
 The mass of Saturn is given by rearranging Kepler's 3rd law to make M th	ne subject:

Marks were lost if the gradient was not calculated correctly. This includes not having two data points each for rise and run.

1

3

The equations needs to be correctly arranged for r^3/T^2 and gradient substituted in.

c. Calculate the escape velocity of a 50 000 kg rocket on the surface of Saturn if the radius of Saturn is 5.8×10^7 m.

2 marks: answer

1 mark: escape velocity formula

3.6 x 10⁴m/s

Sometimes incorrect formula was used.

 $M = \frac{r^3}{T^2} \frac{4\pi^2}{G} = 9.6 \times 10^{14} \times \frac{4 \times \pi}{6.67 \times 10^{-11}} = 5.7 \times 10^{26} \mathrm{kg}$

25. Below is a diagram of Bohr's model of the atom showing the different series of electron transitions within a hydrogen.

a. Identify which series is responsible for producing electromagnetic radiation with wavelengths greater than visible light.

1 mark: Paschen Series

Many students interpreted a wavelength greater than visible light as having more energy. Remember Greater wavelength, lower frequency.

b. Calculate the frequency of photons emitted when electrons move from n_i = 3 to n_f = 2 orbit.

2 marks correct answer

1 mark: relevant formula

4.57 x 10¹⁴ Hz

Remember to calculate frequency correctly. Errors were made in substitution and not calculating frequency correctly

c. Describe a limitation of this model of the atom.

2 marks: Identifies and then describes limitation

1 mark: description is lacking details

Bohr's model combines principles from both classical and quantum physics. Circular motion of electrons is from classical physics while the quantisation of its momentum and energy of orbits is from quantum physics.

Bohr does not provide an explanation to 'stationary states' of electrons. The model does not explain why electrons can remain in their orbits without spiralling into the nucleus due to electrostatic attraction.

Predictions made by Bohr's model is only accurate for the hydrogen atom. The accuracy decreases as the effective nuclear charge of an atom or ion increases

Mostly done fine.

2

1

Additional information about muons can be found in the table below.

Particle Class	Lepton
Mass (kg)	1.88×10^{-28}
Charge (C)	- 1.602 × 10 ⁻¹⁹
Mean Life Time (μs)	2.2

a. Calculate the average gravitational potential energy of a muon at 15 km above surface of Earth.

b. Determine the work done by gravity on a muon that descends from 15 km to an altitude of 10 km above surface of Earth.

2 marks: correct answer

1 mark: relevant formula

-9.23 x 10 ⁻²⁴ J

Results were mixed, make sure to correctly calculate the difference in energy

$$W = U_{final} - U_{initial}$$

$$W = -\frac{(6.67 \times 10^{-11})(6.0 \times 10^{24})(1.88 \times 10^{-28})}{(6371000 + 10000)} - U_{initial}$$

Classical physics assumes that regardless of their velocity, muons cannot cover long distances due to their short lifetime.

c. Explain from the muon's perspective why they are detected on the surface of Earth.

2 marks: explanation includes length contraction, relativistic speeds, and reference to muons lifetime

1 mark: Explanation lacks one of the above

As muons move at relativistic speeds, length contraction occurs in space in the direction of their velocity. This means that the distance they must travel to the surface of the earth has contacted and becomes smaller allowing them to reach the earth's surface despite their short lifetimes.

This was done ok.

Question 26 continues on the next page.

Suppose that a muon is subject to a magnetic and electric field as shown. The magnetic field strength is 0.375 mT. The electric field is created by a pair of parallel metal plates 30 cm apart and connected to a potential difference of 45 V.

The muon (μ) enters the magnetic and electric field at 4.0 x 10⁵ ms⁻¹. Assume gravity is negligible.

d. Analyse the path of the muon as it travels through these two fields. Include calculations in your response.

4 marks: Calculations for the force due to electric field, magnetic field, showing they are equal and stating the particle will travel in a straight line.

-1 mark for each of the above which are not addressed.

A muon is negatively charged which means its experiences an electric force in the upward direction towards the positively charged metal plate.

$$F = qE$$

$$F = (-1.602 \times 10^{-19}) \left(\frac{45}{0.3}\right)$$

$$F = -2.403 \times 10^{-17} N$$

$$F_e = 2.403 \times 10^{-17} \; N \; upwards$$

Additionally, the muon is subject to magnetic force which acts downwards upon its entry.

$$F=qvB\sin\theta$$

$$F = (-1.602 \times 10^{-19})(4.0 \times 10^{5})(0.375 \times 10^{-3}) \sin 90^{\circ}$$

$$F = -2.403 \times 10^{-17} N$$

$$F_m = 2.403 \times 10^{-17} N \text{ upwards}$$

Thus, the muon experiences two forces of equal magnitude in two opposite direction. The net force is zero which means it passes through two fields in a straight line undeflected.

	Mark
Student outlines experiment including the following:	4
Outlines how experiment is conducted	
 Outlines how results are gathered and wavelength calculated 	
2 sources of error accounted for	
Diagram is relevant and supports experimental procedure	
Missing 1 of the above	3
Missing 2 of the above	2
Provides relevant information	1

Students could use double slit or photoelectric effect.

A laser was set up so that it's emitted light was directed through a double slit apparatus. This was cause diffraction to occur between the wavelengths of light passing through the slits. The resulting interference pattern would be established on a screen some distance (L) from the slits. Bright bands would form from constructive interference and dark bands would form from destructive interference. Students would then measure the distance from the central maxima to the first order maxima. They could then use the formula $m\lambda = dx/L$ to find the wavelength of the laser. The students would need to measure the distance between the slits (d), the distance between bright spots (x) and the distance from the slits to the interference pattern (L).

Some sources of error for the investigation include:

- Ensuring that L is large enough to create a clear interference pattern and minimise measurement error.
- Using a precise measuring instrument to measure from the centre of each maxima (for x)
- Ensure that d is small enough to cause diffraction or using a diffraction grating to produce a clear interference pattern.

8/9/23

The change in magnetic flux with time generated by the primary coil of a faulty transformer is shown below. A, B, C and D represent specific time points during this change.

a. On the graph below, show how the secondary voltage of the same transformer changes with time. On your graph, clearly indicate time points A, B, C and D.

2 marks: correct answer

-1 per error

Common errors: change of flux direction would mean a change direction for induced emf.

Gradient reflects emf magnitude.

b. Describe ONE way energy is lost in a transformer and how these losses are commonly reduced.

2 marks: Describes how energy is lost AND how it is reduced

1 mark: Describes how energy is lost OR how it is reduced.

The changing magnetic field, created by AC in the primary coil, induces eddy currents in the iron core because of Faradays law. These eddy currents transform electrical energy into heat and results in power lose ($P_{loss} = I^2 R$). This is often reduced through lamination of the iron core which involved separating the core into thin layers and inserting insulation in between. This reduces the size of eddy currents induced and the amount of electrical energy converted into heat.

Some students created more than 1 energy loss. If the question states "One" then only the first response is considered.

Some students lacked the correct terminology – eddy currents, insulation, reduced surface area, heat.

.....

....

.....

....

.

29. A Hertzsprung–Russell diagram is shown below (left). Point P indicates a particular star in the Milky Way galaxy. The second diagram below (right) shows the spectrum of radiation emitted from star P.

Below are two absorption spectra, one from star P and one from a laboratory.

Absorption Spectrum of Star P

Absoprtion Spectrum of an Element from a Laboratory

a. Describe what the absorption spectra reveal about the motion of star P.

1 mark identify translational and rotational

2 marks Description.

The absorption spectrum of star P are thickened which means that Star P must have rotational velocity. The absorption spectrum is also red shifted meaning the Star has translational velocity away from the Earth.

1 mark explains 1 change to the absorption spectra

2 marks : explains at least 2 changes to the absorption spectra

P is currently a Main sequence star, which will evolve into a Red Giant. As the star expands into a red giant, its surface temperature and atmospheric density decrease due to a drastic increase in radius. A reduction in surface temperature will increase the dominant wavelength present in the absorption spectra (λ max = b/T). A reduction in density will cause the absorption lines to become thinner than before.

Other changes include: Red giants are more luminous which means the overall intensity of P's spectrum will increase. During the transition into a red giant, P may change spectral class which means some absorption lines disappear or decrease in intensity and new ones may appear. Red giants fuse heavier elements and so the elements present in the absorption spectra will change.

Many students did not make the link between a red giant and the absorption spectra changes that would occur.

_

2

2

b. D

next

As a spacecraft approaches the speed of light, the extra momentum provided by the thrust from its propulsion system results in very little increase in speed. The relationship between the spacecrafts momentum and speed is depicted in the diagram below.

With reference to appropriate mathematical relationships, explain this apparent discrepancy in Newtonian physics theory.

Criteria	Mark
Student explains discrepancy including the following:	3
Clearing links extra momentum to mass increase	
Reference to classical and relativistic momentum formulas	
Objects would require infinite energy to travel at the speed of light	
Described Newtonian physics	
Missing 1 of the above	2
Provides 1 of the above	1

When a propulsion system imparts extra momentum to an object, its mass increases due to mass dilation resulting from relativistic speeds. While classical physics follows a straightforward linear relationship between momentum and velocity (p = mv), special relativity introduces a more complex formula for relativistic

momentum $\sqrt{1-\frac{v^2}{c^2}}$. This formula reveals that as an object approaches the speed of light, its mass increases significantly. Consequently, the amount of energy required to further accelerate the object also increases, approaching infinity as the speed of light is approached. This fundamental change in behaviour prevents any massive object from achieving or surpassing the speed of light, in stark contrast to the predictions of classical

A student investigated how the current passing through an electric drill varied when it was turned on and then used to drill a hole. The student used a battery-operated electric drill and connected it to an ammeter to measure the current in the rotor.

When the drill was switched on, the current rapidly increased to 5.5 A and then reduced quickly to a steady value of 0.9 A. The drill was then used to drill a hole, placing a load on the motor. The current went up to 2.1 A while it was drilling.

The student then created a current vs time graph using the data they collected.

Explain the variations in current.

commenting on spectra.

Criteria	
Student explains variations including the following:	
Initial increase before back emf	
Constant current when voltage and back emf are balanced	
Increase in current following reduction in motor speed and back emf	
Missing 1 of the above	
Provides 1 of the above	1

The current initially increases to a maximum as the motor is turned on and before the rotor begins to spin. As the rotor begins to spin it will cause a change in flux in the armature resulting in back emf and a decrease in current. When the back emf and supply voltage are balanced the current remains constant. When the drill is used and the rotor velocity decreases, so too does the back emf and this results in an increase in current.

This question is an application of motors and is about back emf. All 3 changes are due to changes in motor speed, changes in flux and the resulting back emf reducing current flow.

32.	Compare the spectra	produced by	discharge	tubes and	incandescent	light bulbs.
-----	---------------------	-------------	-----------	-----------	--------------	--------------

1 mark states a spectra feature of one

2 marks a spectra feature of each.

Discharge tubes produce discontinuous spectra whilst incandescent light bulbs produce continuous spectra.

Students are advised to use the terms continuous and discontinuous when

8/9/23

2

A ball moves in a circular path at the end of a string, forming a conical pendulum, as shown in the diagram below (left). A student found that if the speed of the ball varies, the angle (θ) changes. Some experimental values are recorded in the table below (right).

Velocity ² (m.s ⁻¹) ²	r tan (θ)
15.75	1.59
22.56	2.28
31.33	3.20
43.68	4.45
61.75	6.25
90.73	9.23

a. Draw a graph showing the relationship between Velocity² and r tan (θ) .

Criteria	Mark
Uses two points on the line to find a gradient	3
Uses the gradient for find acceleration due to gravity	
Assesses the accracy by comparing their experimental value to the true value of s	9.8
Missing 1 of the above	2
Provides 1 of the above	1

Because
$$\tan(\alpha) = \frac{\left(\frac{mv^2}{r}\right)}{mg}$$
; therefore, $\frac{v^2}{r\tan(\alpha)} = g$
Slope = $\frac{1}{g} = \frac{(9.0 - 1.0)}{(88 - 10)} = 0.103$; therefore, $g = 9.75 \,\text{m s}^{-2}$

8/9/23

3

3

.

34. The diagram shows an AC induction motor.

Explain the operation of this device.

Criteria	Mark
Thoroughly explains operation of AC induction motors	3
Briefly explains or describes operation of AC induction motors	2
Correctly identifies components of its operation.	1

When AC is supplied to the stator winding around the iron core, a magnetic field is produced. The AC is supplied to three pairs of electromagnets in three phases such that a rotating magnetic field is created. The squirrel cage contains rotor bars that experience changes in magnetic flux due to this rotating magnetic field. By Faradays law, emf and current are induced in the rotor bares. When current flows through a rotor bar in the form of eddy currents, an electromagnetic force acts on it, The force produces torque and causes the squirrel cage to rotate in the same direction as the rotating magnetic field. OTHER INFO: The rotational speed of the squirrel cage will always be slower than the rotating magnetic field so that the squirrel cage continuously experiences a change in magnetic flux.

This was poorly answered by most of the grade and will require revision for the HSC

35.	A uranium-234 atom, initially at rest, undergoes alpha decay. The masses of the atoms involved are
	shown in atomic mass units (u).

$$^{234}\text{U}$$
 \rightarrow ^{230}Th + ^{4}He $^{234.0409}\,u$ $^{230.0331}\,u$ $^{4.0026}\,u$

	· ·	
	Criteria	Marks
The kinetic energy of Thorium-230 is	Provides correct calculations the kinetic energy	3
Calculate the kinetic energy of the a	Provides the correct calculations of the mass defect in joules	2
Culculate the kinetic energy of the di	Provides some relevant steps	1

Sample answer:

Consider mass defect of alpha decay: $E = mc^{2}$ $E = (234.0409 - 230.0331 - 4.0026)(931.5 \text{ MeV}/c^{2})c^{2}$ E = 4.8438 MeV $E = 4.8438 \times 10^{6} \times 1.602 \times 10^{-19} = 7.76 \times 10^{-12} \text{ J}$ Energy is transformed into kinetic energies of 230 Th and alpha particle.

Kinetic energy of alpha particle = $7.76 \times 10^{-13} - 7.02 \times 10^{-15} = 7.69 \times 10^{-13} \text{ J}$.

Two methods for calculating the energy released when mass is converted to energy:

Method 1:

Convert mass to kg and use $E = mc^2$.

1 amu = $1.661 \times 10^{-27} kg$

Then you will have energy in Joules.

You can convert to eV by dividing by 1.602×10^{-19} .

Method 2:

Multiply the mass in amu by 931.5 $\frac{MeV}{c^2}$.

Then you have energy in MeV.

You can convert MeV to Joules by multiplying MeV by 1×10^6 to get eV then multiplying by 1.602×10^{-19} J.

Students commonly made a mistake of using the wrong mass in $E = mc^2$. Refer to this table for how to convert masses to energy.

Explain the physics principles underlying magnetic braking, including how conservation of energy applies to these systems.

Answer demonstrates thorough knowledge and understanding of the physics of electromagnetic	Mark
braking and communicates this logically and effectively using correct scientific terms. Including the following:	5
 Links relative motion between conductor and magnetic field to production of change in flux Describes Faradays Law Describes Lenz's Law 	
 Links the production of eddy currents to the force that slows the vehicle. Describes how conservation of energy relates to this situation Response is succinct. 	
Four of the above (excluding succinct)	4
Three of the above (excluding succinct)	3
Two of the above (excluding succinct)	2
Provides relevant and correct information	1

- In electromagnetic braking there is relative motion between a solid conductor (e.g. a rotating wheel) and a strong magnetic field.
- This relative motion produces a change in magnetic flux through regions of the conductor. In the case of the wheel shown below, there are two regions (A and B) in which the flux is changing.
- By Faraday's law $(\varepsilon=-\frac{\Delta\Phi}{\Delta t})$, this changing magnetic flux induces an emf, which drives an eddy current (induced current).
- The magnetic field produced by these eddy currents opposes the change in magnetic flux (Lenz's law), producing an anticlockwise current at A and a clockwise current at B.
- The part of these currents that are in the magnetic field experience a force due to the motor effect which, by the right hand rule, is in the opposite direction to the rotation of the wheel, slowing it.
- This effect can also be understood using conservation of energy (that energy is never created or destroyed, only transformed) by noting that the eddy currents dissipate electrical energy as heat in the wheel, and that this energy must come from the rotational energy of the wheel, causing it to slow down.

Students did not need to include eddy current direction.

Students will need to revise this concept and plan their responses before starting to write. Dot points could help students break down the steps involved:

- Relative motion and change in flux
- Change in flux and faradays
- Lenz law and force reducing change in flux
- Force slows wheel
- Kinetic energy is converted into electrical and heat energy.

NOTE: these dot points would need to be expanded in a full response

The experiment is repeated, but this time the frequency is set to the lowest frequency at which current is detected. The light intensity is then increase, and the voltage and current are monitored.

The results are shown in the graphs below (right).

Analyse the results and explain how they support the idea of the quantum nature of light.

Criteria	Mark
Thorough analysis of results from both experiments ($IV = frequency and IV = Light intensity$) and	5
thorough explanation of a quantum model of light with reference to experimental results.	
Response is lacking minimal details in analysis of results OR in explanation	4
Response is lacking details in analysis of results AND in explanation	3
Brief analysis of the experiments and description of quantum nature of light	2
Provides correct relevant information	1

See next page for sample response.

Most students answered this well but were missing an analysis of each graph and then linking the analysis to relevant equations and Einstein's photoelectric effect. Many students did not explain graph D well enough for full marks.

In Graph A, electron energy versus frequency, the frequency of light needs to be above a certain value before electrons can be ejected. Any additional frequency above this value results in an increase in electron kinetic energy. This suggests that light energy is delivered in quanta (photons). If the frequency is below the threshold frequency, it will not have enough energy to cause photoelectrons to be emitted even over time. This supports the formula k = hf — work function.

In graph B, the kinetic energy does not change as the intensity changes This is because the energy of the photoelectrons is determined by the frequency of the incident light photons according to E = hf.

Graph C shows that changing the frequency of the incident light does not change the number of photoelectrons emitted and Graph D shows that as intensity is increased, the current increases. This indicates that more electrons will be ejected with higher intensity light. This agrees with Einstein's explanation of the photoelectric effect as one photon can give its energy to one electron. As intensity of light increases, the number of photons increases which can interact with electrons, which then increases current.

The quantum nature of light is demonstrated by the fact that a minimum amount of energy is needed for photoelectrons to be emitted and only a change in frequency will affect the energy of the photons and kinetic energy of the photoelectrons. Also, the one-to-one interaction of photons and electrons reveal the particle nature of photons and is supported in graph D.

	H ₂	4.003 Helium	10	Š	20.18	Neon 18	Āŗ	39.95	36	Kr	83.80	Krypton 5.4	Υ γ γ	131.3	Xenon	98	Rn		Radon	811	õ	Oganesson	
l			6	Ц	19.00	17	:5	35.45	35	Br	79.90	Bromine	S -	126.9	Iodine	82	At		Astatine	117	E	Tennessine	
			_			+		32.07	+			+							Polonium	911	2	Livermorium	
			7	Z	14.01	Nitrogen 15	2	30.97	33	As	74.92	Arsenic 51	7 5	121.8	Antimony	83	Bi	209.0	Bismuth	115	Mc	Moscovium L	
			9	O	12.01	14	Si	28.09	32	g	72.64	Germanium	25	118.7	Tin	82	Pb	207.2	Lead	114	Œ	Flerovium	
			5	В	10.81	Boron 13	Ā	26.98	31	Ça	69.72	Gallium	£ -	114.8	Indium	81	Ξ	204.4	Thallium	113	K	Nihonium	
PI PMFNTS	SINE								30	Zu	65.38	ZIDC	0 F	112.4	Cadmium	80	Ξũ	200.6	Mercury	112	C	Copernicium	
									59	ĵ	63.55	Copper	\ \ \	107.9	Silver	79	Au	197.0	Gold	Ξ	Rg	Darmstadtium Roentgenium Copernicium	
OF THE									28	Z	58.69	Mckel	0 70	106.4	Palladium	28	Pt	195.1	Platinum	110	Ds	Darmstadtium	
TABLE		KEY	79	Au	197.0	DioD			27	ပိ	58.93	Coball	£ 5	102.9	Rhodium	77	ŀ	192.2	Iridium	109	Mt	Meitnerium	
			Atomic Number	Symbol	mic Weight	Name			26	윤	55.85	Iron 4.4	± 2	101.1	Ruthenium	9/	SO	190.2	Osmium	108	Hs	Hassium	
DEPTOPIC	LENIO		Aton		Standard Ato				25	Mn	54.94	Manganese	£	2	Technetium	75	Re	186.2	Rhenium	107	Bh	Bohrium	
									24	Ċ	52.00	Chromium	7 Z	95.96	Molybdenum	74	\geqslant	183.9	Tungsten	901	Sã	Seaborgium	
									23	>	50.94	vanadium A1	1 5	92.91	Niobium	73	Ta	180.9	Tantalum	105	Dp	Dubnium	
									22	Ξ	47.87	THEATHURN A A A A A A A A A A A A A A A A A A A	7.5	91.22	Zinconium	72	Ηţ		_		Rf	Actinoids Rutherfordium	
									21	Sc	44.96	Scandium	તે>	88.91	Yttrium	57-71			Lanthanoids	89-103		Actinoids	
			4	Be	9.012	Beryllium 12	Mg	24.31	20	Ca	40.08	Calcium	ŝ	87.61	Strontium	99	Ba	137.3	Barium	88	Ra	Radium	
	- Ξ	1.008 Hydrogen	3	I	6.941	11	Na	22.99	19	Х	39.10	Potassium	5 2	85.47	Rubidium	55	S	132.9	Caesium	87	Ï	Francium	
																	-	2					

27	28	59	9	19	62	63	64	65	99	67	89	69	70	71
Гa	č	Pr	PΝ	Pm	Sm	Eu	РS	Tb	Dy	Но	Εľ	Tm	ΧÞ	Γn
138.9	140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium

90 Th 232.0 Thorium	91 Pa 231.0	92 U 238.0	93 Np	94 Pu	95 Am	96 Cm	97 BK Berkelium	98 Cf	99 Es	100 Fm	101 Md	No Nobelium		94 95 96 97 98 99 100 101	Pa U Np Pu Am Cm Bk Cf Es Fm Md	231.0 238.0	Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium N
------------------------------	-------------------	------------------	----------	----------	----------	----------	-----------------------	----------	----------	-----------	-----------	----------------	--	---------------------------	---------------------------------	---------------	---

Standard atomic weights are abridged to four significant figures.

Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version).

Task Evaluation	ı	Vame:			
Total Mark: out of					
<u>Mark sub-totals</u>					
Multiple choice mark: out of					
Knowledge and understanding mark:	out of				
Working Scientifically mark: out					
				4	-41. F
Circle the number that best matches. Key: 1– vays	never 2-occ	casionally 3-sc	ometimes	4-mos	stly 5-
,		. ,		1	1 ,
Aspect	never		sometimes	mostly	always
I pay attention in class	1	2	3	4	5
I complete all my classwork	1	2	3	4	5
I ask the teacher when I need help	1	2	3	4	5
I make summary notes to study	1	2	3	4	5
I get distracted in class	1	2	3	4	5
I keep my OneNote book up to date	1	2	3	4	5
I provide sufficient detail in my OneNote	1	2	3	4	5
responses/notes	e 1	2	3	4	5
I completed past papers to prepare for the test		2	3	4	3
I can communicate my understanding in	1	2	3	4	5
tests					
 Do you feel that your performance in the performance in t				of Science	·?
3. What can your teacher do to improve y	our underst	anding in Scier	nce?		
4. What do you do to maximise your resul	lts in Science	??			
5. What could you do better/differently to	o improve yo	our results in Sc	ience?		
6. Is there anything else you want your te	acher to kno				