Vectores Afines

- Los vectores afines no salen del origen.
- Si van de \overline{A} a \overline{B} denotamos \overline{AB} .
- El vector asociado a \overrightarrow{AB} tiene coordenadas B-A.

Geometría Vectorial: Álgebra

La idea clave será interpretar los vectores como movimiento desde el origen. En los siguientes ejemplos suponemos que $\vec{u} = (1,3)$ y $\vec{v} = (2,1)$.

Ejemplo 1. Sumamos \vec{u} con \vec{v} .

- Sumamos ordinariamente $\vec{u} + \vec{v} = (3,4)$.
- \blacksquare Gráficamente, nos movemos \vec{u} y luego \vec{v} . El movimiento total es $\vec{u} + \vec{v}$.

Ejemplo 2. ¡La resta en realidad es una suma!

- Vale que $\vec{u} \vec{v} = \vec{u} + (-\vec{v}) = (-1,2)$.
- $-\vec{v}$ es \vec{v} reflejado a través del origen.

- Análogamente $\vec{v} \vec{u} = \vec{v} + (-\vec{u}) = (1, -2)$.
- Y aquí reflejamos \vec{u} .

En general dos vectores afines generan un paralelogramo, si $\vec{u} = \vec{AB}$, $\vec{v} = \vec{AC}$ entonces obtenemos un paralelogramo ACDB donde $\overrightarrow{AD} = \overrightarrow{u} + \overrightarrow{v}$.

Práctica

Los puntos (2, 1), (4, 2) y (3, 5) forman un paralelogramo con otro punto. ¿Cuál es?

Hay más de una respuesta.

Ejemplo 3. Si ahora $\vec{u} = (-2,2)$, entonces:

- $2\vec{u} = (-4,4) \text{ y } -\frac{1}{2}\vec{u} = (1,-1).$
- Geometricamente al multiplicar $c \in \mathbb{R}$ tenemos:
 - c > 1: elongamos.
 - c < 1: acortamos.
 - c negativo es cambiar dirección.

Props. Suma

Props. Mult.

I)
$$\vec{x} + \vec{y} = \vec{y} + \vec{x}$$
.

I)
$$1\vec{x} = \vec{x}$$
.

II)
$$(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z}).$$

II)
$$(cd)\vec{x} = c(d\vec{x})$$
.

III)
$$\vec{x} + 0 = \vec{x}$$
.

III)
$$c(\vec{x}+\vec{y}) = c\vec{x}+c\vec{y}$$
.
IV) $(c+d)\vec{x} = c\vec{x}+d\vec{x}$

IV)
$$\vec{x} + (-\vec{x}) = 0$$
.

IV)
$$(c+d)\vec{x} = c\vec{x} + d\vec{x}$$
.

Distancia y Ángulos

Recordemos que $\|\vec{u}\|$ es la longitud del vector \vec{u} . Es decir, la distancia entre su origen y su punta.

Si tenemos $\vec{u} = (1,4)$ y $\vec{v} = (4,2)$, ¿cuál es la distancia entre sus puntas?

Con ley de cosenos $z^2 = x^2 + y^2 - 2xy\cos(\theta)$ podemos buscar z, pero encontrar θ es complicado.

Sin embargo, entre \vec{u} y \vec{v} hay una copia afín de $\vec{v} - \vec{u}$. Entonces:

$$\begin{aligned} \ell &= \operatorname{dist.}(\vec{u}, \vec{v}) = \operatorname{long.} \ \vec{v} - \vec{u} \ (\operatorname{afin}) \\ &= \operatorname{long.} \ \vec{v} - \vec{u} \\ &= \|\vec{v} - \vec{u}\| \end{aligned}$$

Definición. La distancia entre \vec{u}, \vec{v} es $d(\vec{u}, \vec{v}) = ||\vec{v} - \vec{u}||$.

Propiedades:

Props. Norma:

I)
$$d(\vec{u}, \vec{v}) = 0 \text{ si } \vec{u} = \vec{v}.$$

I)
$$\|\vec{u}\| = 0 \iff \vec{u} = 0$$
.

II)
$$d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$$
.

II)
$$\|\vec{v} - \vec{u}\| = \|\vec{u} - \vec{v}\|$$
.
III) $\|c\vec{u}\| = |c| \|\vec{u}\|$.

En el ejemplo anterior:

$$\vec{v} - \vec{u} = (3, -2) \Rightarrow \|\vec{v} - \vec{u}\|^2 = 3^2 + (-2)^2 = 13$$

y así $d(\vec{u}, \vec{v}) = \|\vec{v} - \vec{u}\| = \sqrt{13}$.

Queda la espina de resolver utilizando ley de cosenos. **Proposición 7.** Vale que $\vec{u} \times \vec{v} \perp \vec{u}, \vec{v}$. Tenemos la siguiente fórmula:

Proposición 4. Para \vec{u}, \vec{v} , vale: $\langle \vec{u} | \vec{v} \rangle = ||\vec{u}|| ||\vec{v}|| \cos(\theta)$.

Podemos despejar para obtener $\theta = \arccos\left(\frac{\langle \vec{u}|\vec{v}\rangle}{\|\vec{u}\|\|\vec{v}\|}\right)$.

Definición. Si el ángulo entre \vec{u} , \vec{v} es $90^{\circ} = \frac{\pi}{2}$ rad, entonces diremos que son ortogonales. Denotamos $\vec{u} \perp \vec{v}$.

Teorema 5. $\vec{u} \perp \vec{v} \iff \langle \vec{u} | \vec{v} \rangle = 0$.

Para un vector \vec{u} podemos caracterizar 3 regiones del espacio asociadas a este.

Práctica

Si $\vec{x} = 2\hat{\imath} + \hat{k}$ v $\vec{y} = 3\hat{\imath} - \hat{k}$ entonces:

- I) Encuentre la longitud de $3\vec{x} + \vec{y}$.
- II) Encuentre \vec{u} con componente \hat{j} igual a -4y $\vec{u} \perp \vec{x}, \vec{y}$.
- III) Encuentre \vec{v} con $||\vec{v}|| = 21 \text{ y } \vec{v} \perp \vec{x}, \vec{y}$.

Observación. Al igual que $\hat{i} = (1,0), \ \hat{j} = (0,1)$ en $\mathbb{R}^2, \ \hat{k}$ es el vector canónico que apunta en dirección z^+ en \mathbb{R}^3 aquí $\hat{k} = (0,0,1)$. En general, el vector $(a,b,c) \in \mathbb{R}^3$ es $a\hat{\imath}+b\hat{\jmath}+c\hat{k}$.

Producto Cruz (Sólo en \mathbb{R}^3)

Definición. Si $\vec{u}, \vec{v} \in \mathbb{R}^3$, entonces su producto cruz es

$$\vec{u} \times \vec{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} = \det^* \begin{pmatrix} \vec{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}.$$

Propiedades:

- I) $\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$.
- II) $\vec{u} \times 0 = \vec{u} \times \vec{u} = 0$.
- III) $(\vec{u} + \vec{v}) \times \vec{w} = (\vec{u} \times \vec{w}) + (\vec{v} \times \vec{w}).$
- IV) $(c\vec{u}) \times \vec{v} = c(\vec{u} \times \vec{v}).$

Proposición 6. Para \vec{u}, \vec{v} , vale: $\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin(\theta)$. $\operatorname{Proy}_{\vec{u}}(\vec{v}) = r\hat{u} = \langle \vec{v}|\hat{u}\rangle\hat{u} = \frac{\langle \vec{v}|\vec{u}\rangle}{\|\vec{u}\|^2}\vec{u}$.

Definición. Dos vectores son paralelos si el ángulo entre ellos es 0° ó $180^{\circ} = \pi$ rad. Denotamos como $\vec{u} \parallel \vec{v}$.

Teorema 8. $\vec{u} \parallel \vec{v} \iff \vec{u} \times \vec{v} = 0$.

Ejemplo 9. El tercer inciso de la práctica pide encontrar $\vec{v} \perp \vec{x}, \vec{y}$. ¡Aprovechamos el producto cruz!

$$\vec{x} \times \vec{y} = \det \begin{pmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 0 & 1 \\ 0 & 3 & -1 \end{pmatrix}$$
$$= 0\hat{\imath} + 0\hat{\jmath} + 6\hat{k} - 0\hat{k} - 3\hat{\imath} - (-2)\hat{\jmath} = (-3, 2, 6).$$

En este caso $\|\vec{x} \times \vec{y}\|^2 = 9 + 4 + 36 = 49$, entonces $\|\vec{x} \times \vec{y}\| = 7$. Si multiplicamos ese vector por 3, obtendremos uno de norma 21. Concluimos que el vector \vec{v} buscado es (-9.6.18).

Aplicaciones: Área, Volumen y Proyección

En el plano, \vec{u} y \vec{v} generan un paralelogramo. ¿Cuál es su área?

La fórmula del área será $A = ||\vec{u} \times \vec{v}||$.

Análogamente en tres dimensiones, tres vectores \vec{u}, \vec{v} y \vec{w} generan un paralelepípedo.

Proposición 10. El volumen del paralelepípedo formado por $\vec{u}, \vec{v}, \vec{w}$ es $V = |\langle \vec{u} | \vec{v} \times \vec{w} \rangle|$.

La proyección ortogonal responde otro problema de encontrar distancias. Consideremos dos vectores \vec{u}, \vec{v} . Queremos encontrar la menor distancia entre \vec{u} y \vec{v} . Es decir, desde la punta de \vec{v} y un punto de \vec{u} .

Proposición 11. Valen las fórmulas $r = \langle \vec{v} | \hat{u} \rangle = \frac{\langle \vec{v} | \vec{u} \rangle}{\|\vec{u}\|}$ $u \ell^2 + r^2 = ||\vec{v}||^2$.

Definición. La proyección ortogonal de \vec{v} sobre \vec{u} es