Теория вероятности 1 модуль.

Андрей Тищенко БПИ231 @AndrewTGk 2024/2025

Лекция 6 сентября.

Формула оценки

random()%11

Накоп = 0.1ИДЗ + 0.15PC + 0.25KP + 0.5Экзамен

ИДЗ = индивидуальное домашнее задание (выдаётся через вики курса).

РС = работа на семинарах.

КР = контрольные работы.

Учебник:

Кибзун А. К., Горяинова Е. Р., Наумов А. В. "Теория вероятности и математическая статистика. Базовый курс с примерами и задачами" 2013 или 2014 года.

История

Наука появилась из-за азартных игр. Кавалер Демире захотел составить математическую базу для расчётов в азартных играх. Перечесление многих известных математиков, работавших в этой области. Колмогоров легенда теорвера, придумал определение вероятности, основал СУНЦ, ездил на лыжах.

Основные понятия

Определения

Теория вероятности - раздел математики, изучающий математические модели массовых случайных явлений.

Maccoвоcmb - за n повторений эксперимента, вероятность каждого исхода стабилизируется возле какого-то значения p_i .

Всякое случайное событие обладает массовостью.

Обозначения

 $\omega_1, \ldots, \omega_n$ - элементарные случайные события.

 $\Omega = \{\omega_1, \ldots, \omega_n\}$ - пространство элементарных событий.

 $\forall \Omega \ \forall A \quad A \subset \Omega \Leftrightarrow A$ - случайное событие.

 $\forall A \ \forall \Omega \quad \Omega \subseteq A \Leftrightarrow A$ - достоверное событие.

 $\forall A \ \forall \Omega \quad \Omega \cap A = \emptyset \Leftrightarrow A$ - невозможное событие.

Операции с событиями

 $A, B \subset \Omega$

Произведение

Произведением случайных событий $A,\ B$ называется событие $A\cdot B=A\cap B$

Сумма

Сумма A + B есть событие $A \cup B$.

Разность

Разность множеств $A \setminus B$.

Дополнение

 $\overline{A} = \Omega \backslash A$.

Свойства операций

1.
$$A + A = A$$

$$2. A \cdot A = A$$

3.
$$A \cdot \Omega = A$$

4.
$$A + \Omega = \Omega$$

5.
$$A + B = B + A$$

6.
$$A \cdot B = B \cdot A$$

7.
$$A + (B + C) = (A + B) + C$$

8.
$$\overline{\overline{A}} = A$$

9.
$$\overline{\overline{\overline{A}}} = \overline{A}$$

10.
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Определение

Класс подмножнеств $\mathcal A$ на пространстве событий Ω называется $\underline{\sigma\text{-алгеброй}}$ событий, если:

1.
$$\Omega \in \mathcal{A}$$

2.
$$\forall A \subset \Omega \quad A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$$

3.
$$\forall A_i \ A_1, \dots, \ A_n, \dots \in \mathcal{A} \Rightarrow \sum_{i=1}^{\infty} A_i \in \mathcal{A} \land \prod_{i=1}^{\infty} A_i \in \mathcal{A}$$

Классическое определение вероятности

Исход = элементарное случайное событие.

- 1. Конечное число исходов эксперимента.
- 2. Исходы взаимно исключающие.
- 3. Исходы равновозможны.

Тогда
$$P(A) = \frac{|A|}{|\Omega|}$$

|A| - мощность множества исходов, принадлежищих A.

1.
$$P(A) \ge 0$$

2.
$$P(\Omega) = 1$$

3.
$$A \cdot B = \emptyset \Rightarrow P(A+B) = P(A) + P(B)$$

Задача

В коробке 10 красных и 20 чёрных шаров. Событие $A = \{$ вытащить красный шар $\} \Rightarrow P(A) = \frac{|A|}{|\Omega|} = \frac{10}{30} = \frac{1}{3}$

Лекция 13 сентября.

Геометрическое определение вероятности

 Ω является подмножеством конечной меры в $\mathbb R$ или $\mathbb R^2$, или ... или $\mathbb R^n$. $P(A) = \frac{\mu(A)}{\mu(\Omega)}, \, \mu$ - мера (длина, площадь, n-мерный объём). Свойства:

1.
$$P(A) \ge 0 \quad \forall A \subseteq \Omega$$

2.
$$P(\Omega) = 1$$

3.
$$A \cdot B = \emptyset \Rightarrow P(A + B) = P(A) + P(B)$$

Задача

Ромео и Джульетта хотят встретиться между полуночью и часом ночи, но не могут договориться о времени, поэтому они приходят в произвольный момент времени на этом отрезке и ждут 15 минут, после чего уходят. С какой вероятностью они не встретятся? x - время прихода Дж. у - время прихода Ромео.

Тут должен быть балдёжный график, но писать это долго.

$$|x - y| \leqslant \frac{1}{4}$$

$$|x-y| \leqslant \frac{1}{4}$$
 $P(\overline{A}) = \frac{\frac{3}{4} \cdot \frac{3}{4}}{1} = \frac{9}{16} \Rightarrow P(A) = 1 - \frac{9}{16} = \frac{7}{16}.$ В этом определении мы избавились от конечности множества исходов.

Частотное (статистическое) определение вероятности

Определение

Пусть опыт проведён N раз, а событие A произошло n_A раз. Тогда $\frac{n_A}{N}$ называется частотой события A.

Тогда вероятность $P(A) = \lim_{N \to \infty} \frac{n_A}{N}$

Аксиоматическое определение А. Н. Колмогорова (легенды, миллионера, плейбоя и филантропа)

Определение

Пусть $\mathcal{A} - \sigma$ алгебра событий на пространстве Ω . Назовём вероятностью числовую функцию $P: \mathcal{A} \to \mathbb{R}^1$, удовлетворяющую следующим аксиомам:

1.
$$\forall A \in \mathcal{A} \quad P(A) \geqslant 0$$

2.
$$P(\Omega) = 1$$

3.
$$\forall A_1, \dots, A_n \in \mathcal{A} \quad (\forall i, j \in \mathbb{N} \ A_i \cap A_j \neq \emptyset \Rightarrow i = j) \Rightarrow P\left(\sum_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Определение

Число $P(A), A \in \mathcal{A}$ называется вероятностью события A.

Определение

 (Ω, \mathcal{A}, P) называется вероятностным пространством.

Свойства Р(А)

1.
$$P(A) = 1 - P(\overline{A})$$
.
 $\Omega = A + \overline{A} \wedge A \cap \overline{A} = \emptyset$
 $P(\Omega) = P(A + \overline{A}) = P(A) + P(\overline{A}) \Rightarrow P(A) = 1 - P(\overline{A})$

2.
$$P(\emptyset) = 0$$

 $\overline{\Omega} = \emptyset \Rightarrow P(\Omega) + P(\emptyset) = 1 \Rightarrow P(\emptyset) = 1 - 1 = 0$

3.
$$A \subseteq \Omega \land B \subseteq \Omega \land A \subseteq B \Rightarrow P(A) \leqslant P(B)$$

 $B = A + (B \backslash A) \Rightarrow P(B) = P(A + (B \backslash A)) = P(A) + \underbrace{P(B \backslash A)}_{\geqslant 0} \Rightarrow$
 $\Rightarrow P(A) \leqslant P(B)$

- 4. $0\leqslant P(A)\leqslant 1$ По первой аксиоме $P(A)\geqslant 0$ Из третьего $A\subseteq\Omega\wedge\Omega\subseteq\Omega\wedge A\subseteq\Omega\Rightarrow P(A)\leqslant P(\Omega)=1$
- 5. Формула (теорема) сложения вероятностей:

$$P(A+B) = P(A) + P(B) - P(A \cdot B)$$

$$\begin{cases} A = A \cdot \Omega = A \cdot (B+\overline{B}) = AB + A\overline{B} \Rightarrow P(A\overline{B}) = P(A) - P(AB) \\ B = B \cdot \Omega = B \cdot (A+\overline{A}) = BA + B\overline{A} \Rightarrow P(B\overline{A}) = P(B) - P(AB) \end{cases} \Rightarrow$$

$$\Rightarrow A + B = AB + A\overline{B} + B\overline{A} \Rightarrow P(A+B) = P(A) + P(A) - P(AB) + P(B) - P(AB) = P(A) + P(B) - P(AB)$$
 Замечание: тут не было $2(AB)$, потому что сложение по определению есть объединение, поэтому одного экземпляра достаточно. Для трёх слагаемых:
$$P((A+B)+C) = P(A+B) + P(C) - P((A+B) \cdot C) = P(A+B) + P(B) - P(AB) + P(C) - P(AC) - P(BC) + P(ABC)$$

$$P(A_1 + \dots + A_n) = \sum_{i=1}^n P(A_i) - \sum_{i \leqslant j} P(A_i A_j) + \sum_{i \leqslant j \leqslant k} P(A_i A_j A_k) + \dots$$

$$\dots + (-1)^{n-1} P(A_1, \dots, A_n)$$

Задача

$$A_1=\{$$
Решка при 1-ом броске $\},\ A_2=\{$ Решка при 2-ом броске $\}$ $P(A_1+A_2)=P(A_1)+P(A_2)-P(A_1A_2)=\frac{1}{2}+\frac{1}{2}-\frac{1}{4}=\frac{3}{4}$

Определение

Пусть $P(B) \neq 0$, тогда условная вероятность события A при условии B

$$P(A/B) = \frac{P(AB)}{P(B)}$$

Определение

События $A,\ B$ называются независимыми, если P(A/B)=P(A) Отсюда следует: $\frac{P(AB)}{P(B)}=P(A)\Rightarrow P(AB)=P(A)P(B)$

Определение

События $A_1,\ A_2,\dots,\ A_n$ называются независимый в совокупности, если:

$$\forall k = 2, \dots, n \ \forall i_1, \dots, i_k \quad (1 \leqslant i_1 \leqslant \dots \leqslant i_k \leqslant n) \Rightarrow P(A_{i_1}, \dots, A_{i_k}) = P(A_{i_1}) \cdot \dots \cdot P(A_{i_k})$$