$\frac{130}{\text{Доказательство.}} \, f^{(n-1)}(x) \,$ существует при $|x-\xi| < \epsilon$ для некоторо $\epsilon > 0$. Тогда из теорем 177 и 178 (с заменой n на n-1) следует, что при $0<|h|<\epsilon$ между ξ и $\xi+h$ имеется y, такое, что:

$$f(\xi+h) - f(\xi) = \frac{h^{n-1}}{(n-1)!} f^{(n-1)}(y). \tag{1}$$

 $f^{n-1}(x)$ возрастает, соответственно убывает, в ξ , смотря по тому, будет ли $f^n(\xi) > 0$, соответственно < 0. Следовательно, существует $\epsilon_1, 0 < \epsilon_1 < \epsilon$, такое, что при $0 < |h| < \epsilon_1$ для всех yмежду ξ и $\xi+h$ выполняется неравенство

$$hf^{n-1}(y)f^n(\xi) > 0.$$
 (2)

Поэтому из (1) имеем при $0 < |h| < \xi_1$, с тамошним у

$$h^n f^{(n)}(f(\xi+h) - f(\xi)) = (\frac{(h''-1)^2}{(n-1)!} h f^{(n-1)}(y) f^{(n)}(\xi) > 0.$$

Следовательно,

1) Если n четное и $f^{(n)}(\xi) > 0$, то

$$f(\xi + h) - f(\xi) > 0.$$

2) Если n четное и $f^{(n)}(\xi) < 0$, то

$$f(\xi + h) - f(\xi) < 0.$$

3) Если n нечетное и $f^{(n)}(\xi) > 0$, то

$$h(f(\xi + h) - f(\xi)) > 0.$$

4) Если n нечетное и $f^{(n)}(\xi) < 0$, то

$$h(f(\xi+h) - f(\xi)) > 0.$$

Примеры I)-IV) — те же, что и в конце гл. 7.

I) $f(x) = -x^2$, f'(0) = 0, f''(0) = -2 < 0: максимум в 0.

II)
$$f(x) = -x^2$$
, $f'(0) = 0$, $f''(0) = -2 < 0$: минимум в 0.

III) $f(x) = -x^3$, f'(0) = 0, f''(0) = 0, f'''(0) = 6 > 0: возрастание в 0.

 $\frac{151}{\text{IV}}$ $f(x) = -x^3$, f'(0) = 0, f''(0) = 0, f'''(0) = -6 < 0. убывание в 0.

V) Пусть

$$f(x) = \frac{(x+1)^3}{x^2}$$
 при $x \neq 0$.

Найдём все максимумы и минимумы этой функции. Так как, очевидно, f(x) при $x \neq 0$ дифференцируема любое число раз (поскольку этим свойством обладают x^{-2} и $(x+3)^3$), то подозрительными на максимум или минимум являются лишь корни функции f'(x) (т. е. те x, для которых f'(x) = 0). Но при $x \neq 0$ имеем

$$f'(x) = (x^{-2}(x+1)^3)' = -2x^{-3}(x+1)^3 + 3x^{-2}(x+1)^2 = x^{-3}(x+1)^2(-2x-2+3x) = x^{-3}(x+1)^2(x-2).$$

Таким образом, исследованию подлежат лишь x = -1 и x = 2. Для этого мы применим наш признак, не вычисляя, однако, ненужных членов.

Исследование x=-1:

$$f''(x) = \left((x+1)^2 \frac{x-2}{x^3} \right)' =$$

$$= (x+1)^2 \left(\frac{x-2}{x^3} \right)' + (x+1) \frac{x-2}{x^3},$$

$$f''(-1) = 0,$$

$$f'''(x) = \left((x+1)^2 \frac{x-2}{x^3} \right)'' =$$

$$= (x+1)^2 \left(\frac{x-2}{x^3} \right)'' + 4(x+1) \left(\frac{x-2}{x^3} \right)' + 2 \frac{x-2}{x^3}$$

$$f'''(-1) = 0 + 0 + 2 \frac{-3}{1} > 0.$$

Возрастание, ни максимума, ни минимума.

Исследование x=2:

$$f''(2) = \lim_{x=2} \frac{f'(x)}{x-2} = \lim_{x=2} \frac{(x+1)^2}{x^3} > 0.$$

Минимум,