Familienname:	J	Bsp.	1	2	3	4	$\sum /40$
Vorname:	_						
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Einführung in die Analysis

Roland Steinbauer, Sommersemester 2012

5. Prüfungstermin (14.6.2013)

Gruppe A

- 1. Definitionen, Sätze & Beweise.
 - (a) Definiere die folgenden Begriffe (je 1 Punkt): konvergente Reihe, Grenzwert einer Funktion
 - (b) Formuliere den Satz, der die Stetigkeit ein Funktion in einem Punkt via Folgen charakterisiert. ("Umgebungsstetigkeit = Folgenstetigkeit") Beweise den Satz und beschreibe beide Beweisrichtungen kurz in Worten. (7 Punkte)
 - (c) Formuliere und beweise das Cauchy-Prinzip für Reihen. Begründe jeden deiner Beweisschritte. (3 Punkte)
- 2. Beispiele und Gegenbeispiele.
 - (a) Folgen. Berechne die folgenden Grenzwerte und begründe jeden deiner Schritte: (je 2 Punkte)

$$\sqrt{\frac{n^2+1}{n^2}} \qquad \qquad \sqrt{n^2-n}+\sqrt{n}$$

- (b) Funktionen. Gib, falls existent, je ein Beispiel für eine Funktion $f: \mathbb{R} \to \mathbb{R}$ mit den geforderten Eigenschaften an: (je 1 Punkt) unstetig aber keine Sprünge, stetig und unbeschränkt, bijektiv und $f(\mathbb{R}) =$ $(-\pi/2,\pi/2).$
- (c) Potenzen. Skizziere auf (0,1) die Graphen der allgemeinen Potenzfunktion x^{α} für $\alpha < 0$, $\alpha = 0$, $0 < \alpha < 1$, $\alpha = 1$ und $1 < \alpha$. (3 Punkte)
- (d) Reihen. Konvergiert die folgende Reihe? Konvergiert sie auch absolut?

$$\sum_{n=1}^{\infty} \frac{(n+2)^n}{n^{n+1}}$$

Bitte umblättern!

3. Vermischtes.

- (a) Exponential funktion. Gib die Definition der (reellen) Exponential funktion an und beweise $\exp(-x) = 1/\exp(x)$ und $\exp(x) > 0$ für alle $x \in \mathbb{R}$. (3 Punkte)
- (b) Winkelfunktionen. Leite aus der Reihendarstellung der komplexen Exponentialfunktion und den Definitionen der Winkelfunktionen die Reihendarstellung von Sinus und Cosinus her. (3 Punkte)
- (c) Vollständigkeit. Was versteht man unter der Vollständigkeit von \mathbb{R} ? Nenne verschiedene äquivalente Formulierungen und gib eine exakt an. Gib je ein Resultat über Folgen, Reihen und (stetige) Funktionen an, das wesentlich auf der Vollständigkeit beruht. (4 Punkte)

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (je 3 Punkte)

- (a) Seien $a_n \ge 0$, dann gilt: $s_m = \sum_{k=0}^m a_k$ beschränkt $\Rightarrow \sum_{k=0}^\infty a_k$ konvergent.
- (b) Jede Teilfolge einer gegen a konvergenten Folge konvergiert auch gegen a.