

Lectio praecursoria, October 22, 2010

Accessing Multiversion Data in Database Transactions

Tuukka Haapasalo tuukka.haapasalo@tkk.fi

1/21

2/21

What are databases?

Databases

- Data storage for programs
- Examples:
 - Addresses in an address book
 - Bank account information
 - Calendar events
 - ...
 - Images, videos, music

What are databases used for?

Information retrieval

- Quick access to information
- Analogies: document archives, libraries
 - Books ordered by the author (in a library)
 - Easy to locate a certain book
 - Easy to locate all books written by a given author

How are databases used?

Transactions

- Data are modified and accessed in transactions
- Atomicity
- Multiple concurrent updates
 - State remains consistent
 - Index structure remains intact

Multiversion databases

Multiversion databases

Difference to traditional databases?

Multiversion databases

- Store the evolution of data
- What information was stored before?
- Examples:
 - What documents the archive consisted of when it was created?
 - Who were the users of the system on the June 6th, 2010?
 - What was the balance of Mr. X's bank account a month ago?

Modeling versioned data

8/21

Multiversion databases

Dissertation p. 12

Any change creates a new version (state) from the records of the index:

Queries can target previous versions in addition to the current version.

Modeling versioned data

Efficient queries

Optimality

Dissertation p. 35

A multiversion database index is optimal, if querying a version v is as efficient as in a single-version database index that only indexes the data items of the given version v.

Modeling versioned data

Efficient multiversion indexes

- Time-split B⁺-tree (TSB-tree); Lomet and Salzberg [4]
 - The first efficient multiversion index (1989)
 - Not optimal
 - Dissertation p. 55
- Multiversion B⁺-tree (MVBT); Becker et al. [1, 2]
 - Second efficient multiversion index (1993–1996)
 - Optimal
 - Each update creates a new version
 - Dissertation p. 61
- Multiversion access structure (MVAS); Varman and Verma [5]
 - Third efficient multiversion index (1997)
 - Optimal according to a different (not so strict) definition
 - Each update creates a new version
 - Dissertation p. 69

Our research

Our research

What are our contributions?

Contributions

- Transactions to the MVBT index: the *transactional MVBT* (TMVBT)
 - Only a single updating transaction at a time
 - As efficient as the MVBT
 - Dissertation p. 75
- 2 The concurrent MVBT (CMVBT) for concurrent updating transactions
 - CMVBT = TMVBT + VBT
 - VBT = a versioned B⁺-tree
 - Dissertation p. 111
- 3 Experimental evaluation
 - CMVBT is as efficient as the TSB-tree in the general situation
 - CMVBT is more efficient for key-range queries
 - Dissertation p. 137

The CMVBT index

Concurrent multiversion B⁺-tree [3]

Dissertation p. 113

Tested index structures

Indexes we have evaluated

- CMVBT index
- TSB-tree

Also implemented

- TMVBT index (one transaction at a time)
- VBT index (alone)

Queries and updates

Queries and updates, short transactions

Dissertation p. 147

Page fixes

Page reads from disk

Key-range queries

Key-range queries

Dissertation p. 151

Page reads from disk (almost identical to the number of page fixes in this test):

Summary

19 / 21

Summary

Index structures

- TMVBT = transactional, optimal MVBT
- CMVBT = TMVBT + VBT
- Multiple updating transactions can operate on the CMVBT concurrently

Kokeelliset tulokset

- CMVBT is as efficient as the TSB-tree in the general situation
- CMVBT is more efficient than the TSB-tree in key-range queries
- CMVBT takes 10–60 % more space than the TSB-tree

References I

- [1] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. On optimal multiversion access structures. In *Proceedings of the 3rd International Symposium on Advances in Spatial Databases*, pages 123–141, 1993.
- [2] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal multiversion B-tree. *The VLDB Journal*, 5(4):264–275, 1996.
- [3] T. Haapasalo, I. Jaluta, S. Sippu, and E. Soisalon-Soininen. Concurrent updating transactions on versioned data. In *Proceedings of the 2009 International Database Engineering and Applications Symposium*, pages 77–87, September 2009.
- [4] D. Lomet and B. Salzberg. Access methods for multiversion data. In *Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data*, pages 315–324, 1989.
- [5] P. J. Varman and R. M. Verma. An efficient multiversion access structure. *IEEE Transactions on Knowledge and Data Engineering*, 9(3):391–409, 1997.