

Start-Tech Academy

Step

Step 5

Error Function

• Calculate final output using these values

• Estimate error using error function

Find those W and B which can reduce this error

• Update W and B and repeat from step 2

Assume predicted output = 0.3, actual output = 0

Distance = 0 - 0.3 = -0.3

Error Function $_1 = |-0.3| = 0.3$

Error Function $_2 = (-0.3)^2 = 0.09$

Square function works well with regression but not with classification

Cross Entropy Error Function

$$= -y \log(y') - (1-y) \log(1-y')$$

Error Function

Cross Entropy Error Function

$$= -y \log(y') - (1-y) \log(1-y')$$

Assume actual output = y = 1,

Error = -
$$[1(\log(y')) + (1-1)(\log(1-y'))]$$

Error =
$$-[log(y')]$$

To minimize error, we have to minimize $-\log(y')$

i.e. maximize log(y')

 \Rightarrow Maximize y'

Since y' lies between 0 and 1, y' should be as close to 1 as possible

Error Function

Back Propagation

- Calculate final output using these values
- Estimate error using error function
- Find those W and B which can reduce this error
- Update W and B and repeat from step 2

$$w = w - \alpha \Delta w$$

Step

$$b = b - \alpha \Delta b$$

lpha is learning rate, Δw and Δb are unit steps

Alpha determines number of steps we take in downward direction

Back Propagation

$$w = w - \alpha \Delta w$$

$$b = b - \alpha \Delta b$$

To find Δw and Δb

We do back propagation

Example

$$w_1 x_1 + w_2 x_2 + b_1 = z$$

$$\sigma(z) \equiv rac{1}{1 + e^{-z}}.$$

Error Function

$$= -y \log(y') - (1-y) \log(1-y')$$

Back Propagation

Step 1 — Initialization

W1	W2	В
2	3	-4

Back Propagation

Step 2 — Forward propagation

x1	x2	у
10	-4	1

$$z = 2 \times 10 + 3 \times -4 + (-4) = 4$$

Applying activation function $\sigma(z) = 0.982$

Back Propagation

Step 3 — Error calculation
$$= -y \log(y') - (1-y) \log(1-y')$$

Υ'	у
0.982	1

$$E = 0.0079$$

Back Propagation

X
1
$$x$$
2
$$w_1x_1 + w_2x_2 + b_1 = z$$

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}}$$
Error Function
$$= -y \log(y') - (1 - y) \log(1 - y')$$

Step 4 — Back Propagation

$$\frac{\partial E}{\partial y'}$$
 = slope of error wrt $y' = \frac{\partial (-1 \times \log(y'))}{\partial y'} = -\frac{1}{y'}$

$$\frac{\partial y'}{\partial z}$$
 = slope of activation function wrt z = $\frac{e^{-z}}{(1 + e^{-z})^2}$

$$\frac{\partial z}{\partial w_1} = x_1 = 10 \qquad \frac{\partial z}{\partial w_2} = x_2 = -4 \qquad \frac{\partial z}{\partial b} = 1$$

Back Propagation

Step 4 — Back Propagation

$$\frac{\partial E}{\partial y'} = \text{slope of error wrt } y' = \frac{\partial (-1 \times \log(y'))}{\partial y'} = -\frac{1}{y'}$$

$$\frac{\partial y'}{\partial z} = \text{slope of activation function wrt } z = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$\frac{\partial z}{\partial w_1} = x_1 = 10 \qquad \frac{\partial z}{\partial w_2} = x_2 = -4 \qquad \frac{\partial z}{\partial b} = 1$$

To
$$get \frac{\partial E}{\partial w_1}$$
 i.e. Δw_1 we apply chain rule $\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial y'} \times \frac{\partial y'}{\partial z} \times \frac{\partial z}{\partial w_1} = -0.186$

Similarly
$$\frac{\partial E}{\partial w_2} = 0.0746$$
 $\frac{\partial E}{\partial b} = -0.0186$

Back Propagation

Step 5 — Updating w and b

$$w1 = w1 - \alpha \Delta w1 = 2 - 5 \times -0.186 = 2.93$$

$$w2 = w2 - \alpha \Delta w2 = 3 - 5 \times 0.0746 = 2.627$$

$$b = b - \alpha \Delta b = -4 - 5 \times -0.0186 = -3.907$$

Back Propagation

Repeat Step 2 -

x1	x2	у
10	-4	1

$$z = 2.9 \times 10 + 2.6 \times -4 + (-3.9) = 14.7$$

Applying activation function $\sigma(z) = 0.999$