SPARSE LINEAR MODELS

SELECTING SETS OF WARS WITH A MODEL-BASED APPROACH. IF LINEAR MODEL P(Y/x)-P(Y/f(WTX)) WE OUT BY PROMOTING WITCHE SPANSE -> LOIS OF ZEROS USEFUL FOR: SMALL N, LARGE D; WERNEL MEHINES; SPANSE WAVELET REPRESENTATION FOR SIGNALS.

BAYESIAN VANIABLE SELECTION

$$P(\gamma|0) = \frac{e^{-f(\gamma)}}{z_{\gamma'}} \frac{e^{-f(\gamma')}}{e^{-f(\gamma')}} \frac{e^{-f(\gamma)}}{e^{-f(\gamma)}} \frac{e^{-f(\gamma)}}{e^{-f(\gamma$$

MEDIAN MODEL: \$ = {): (7,=110) > 0,5}

SPINE AND SLAB MODEL (of $f(\gamma|D) \approx \log f(\gamma|X, \hat{w_1}, \hat{\sigma}^2) - \frac{||\gamma||_0}{2} |_{\gamma} N - \lambda ||\gamma||_0 + const$ · II Allo = Lo NORM, NUM OF NON-NULL ELEMENTS BIC APPLOX PRIOR .
PENALTY PENALTY

BER/GAUSS MODEL

LO-REGULARIZATION: f(W)= || y-XW || 2+ A || W || 0 -> CONVERTS DISCRETE OFFINIZATION FROMEM OVER Y INTO A CONTINOUS ONE OVER WERE STILL NONSMOOTH AM THRO 2 OFTIMIZE

OPTIMIZATION ALGOS

SPACE OF MODELS IS 29 - WE NEED HELICSTICS. FIT THE MODEL AT EACH POINT, COMPUTING P(DIX) OR SP(DIX)P(W) dw - WASHER METHOD FOR FREIRIEFACY WE WAS TO BE ABLE TO COMOVER & CIVEN & DEPARTMENT SUFF. STATE. _ ON IF & OFFES BY 1 BIT AM \$(7) SERVINS ON DATA ONLY WAX

- · SINGUE DEST REPORCEMENT -> GREENY HILL CUMBING BY MOVING IN NEIGHBORHOOD OF & (1 EIT FLIPS). WITHCE SEMICH.
- ONTHOGONAL USEST SQUARES → STATE WITH \= 0 AM EMPTY SES. ADD DEST FRATURE AT EACH STED.) = AND MIN || Y (X, U) W || 2 | D. Ott • ONTHOGORAN MATCHING PURSUITS - OUS IS XPRISTURE, FRENCH AT OUR VAL THEN PICK NEXT) = ARE MINAIN | Y-XWE-BX: 1 |2 DALLY 1 IS PER STEP BUT NOT AS ACCUMENTS
- · MATCHING PURSUITS: WELY GREENY, ONLY ADDS COLUMN MOST WORELANDS W/ CHORENT PRIMAL LS GOUSTING
- · BACKWARDS SELECTION; STANDS WITH ALL VARS, REMOVES WORST ONE AT EACH STEE
- · F. BA: SBR WITH OMP STED FOR NEXT SELECTION
- · BAYESIAN MATCHING PURSUITS! OMP BUI USES MARSHINAL LINELIHOOD CRITERION US LEAST SQUARES. ALSO BEAM SEARCH.

STORMASTIC SEARCH

A FOR OXI MATES POSTERIOR, MCMC. BUT INSEFFICIENT. USE $P(y|0) = \frac{e^{-f(y)}}{5v'_{25} \circ f(y)}$

EM/ VANATIONAL

EM ON SPINE / SIAB, WITH NATION GAUSSIAN INSPASO OF DELTA. LOCAL MINIMA 155VE

EM ON BER/GAUSS - ALL VAR XANING AWAY. ISE MEAN FIELD APPROXIMATION

L1 REGUALIZATION	LIN RECR
PUTITION A O MEAN LAPPICE PAIGN ON THE POSTING AND FESTERVINE MAP. CAN BE COMPINED WITH ANY CONVEX/MONCONVEX NI	i. Join
PRIOR: P(W/X) = TTEAD (W) 10,1/X) or The - XIM/ NLL: f(W) = - lgp(DIW) - lgp(W/X) = NLL + XII WILL = 1/W	11/2: E/W) la norm
· CONVEX APPROX OF LO OBJECTIVE ARGMIN NULL (W)+ XII WILL	e, egent esen
· IN LINEAR REGRESSION: f(w) = \(\frac{2}{20} \) \(\frac{4}{20} \) \(\frac{4}{10} + \frac{1}{10} \) \(\frac{1}{10} + \frac{1}	

· YIELDS SPANSE SOLUTIONS

LI MIN RSS(W) + AllWIII - MIN RSS(W) ST |WII, LB LASSO EQUATION SMOUTH AUT CONSTRAINED

· MORE PROBABLE THAT CONNENS INTERSECT ELUPSE - CONVERS ARE SPANSE · SPANSE SOLUTIONS COST LESS

· Amax = MAX, (V) NII(O) , IF X > AMAX ~ W= 0

l2 MIN (RSS)(W) ST ||W||2 LB . NO CONVERS, NO PREFERENCE FOR SAME AS FOR DEMSE

((1)+1)/a, c, 1-1

COMPAUSON

• MLE Wu ois = x Ty • LASSO Wy usso = SIGN (who is) (| who is | - 1/2)

· NOGE Wy ROCE = Whats. . SUBJET SELECTION | WHOLS IF EMPLY

REGULANZATION PATH

PLOTS W, (A) US A FOR EACH FEATURE). SPARSE SOLUTIONS FOR BONDON & ABOWERD O AM BARX- | WOUSTY . INBETWEEN EACH LINEAR COEFF INCREASES ON DECREASES LINEARLY, PIECEWISE LINEAR. LARS ALGORITHM; SAME COST AS LEAST SQUARES FIT O(MIN(NO2, ON2)) · LIMITATION IF D7N USSO ONLY GETS TO N BEFORE COIND TO COMPLETE SET FOR OPTIME OLS - USE ELASTIC NET

MODEL SELECTION

RECOVER TRUE SPARSITY PATTERN FICH A. USE CV. LA WEAR IN FERTURDED BATA. OD BODTSTRAP AND COMPARE HOW BACK WAT IS PICKING IN RUNS AND GETUVE SPANSE ESTIMATOR - BOLASSO FICH IF WAR RETURNED AT LEAST 90% OF TIMES FOR GINEN) OPTIMAL A FOR PREDICTION TO MODEL SELECTION CONSISTENCY

BAYESIAN INFRIENCE; ONLY POSTENOR MODE IS SPINSE. POSTENOR MEAN BESTER IF WE MININZE SOUNDS EATOR. FINER AND SIGHT > PMODE + LAP PNOS

LA REGULANZATION ALGORITHMS

- COONDINATE DESCENT: DETINGE VARS 1-84-1 W) = ARGMAN & (W+Ze) & (W) FICH NAMED ON ONE WHERE STEEREST GRAD, OR IF ANNYTHON SOUTH FORFACH
- LARS: ALTHOUSET MORE THAN I VAN AT TIME. HOMOTOPY STATES FROM A MAK COUN TO DESIDED AX. 10 MOBUEM. -> SHOOTING ALGO LEAST ANGLE REDDESSION & SHUMMAGE. STATES AT A WHENE WITH THE SINGLE MEST CORRUPTION VAN W/Y IS PICHTO. A DECREASED UNIX SECOND VAN WITH SAME CORRESPOND WITH RESIGNAL FROM MENST IS FOUND. NEW & FORM ANALYTRALLY, GEOMETRICALLY. PUNSERGREAT. ANALYTICAL SOLVITORS DALY FOR LINRES, NOT OTHERS GIM.
- PROXIMAL & GRADIENT PROJECTION: 6000 FOR VERY WAGE PROSUMS, CAN USE FOR OTHER TYPES BEYON & REC. CONVEX OBJECTIVE & (0) = L(0) + R(0) - f(0) = R(0) + 1/1 0-7 1/2 . WE CALL THE MINIMIZER OF THIS PROXIMAL OPERATOR (DEPENS ON R(0)) IN MUST CASES PROXA(9) IS PROJECTION ON SET C= {0:110111 6 B} = PROJ(0) - COMPUTED IN O(0) TIME. USED IN GRADIENT DESCENT ROUTINES EVADRATIC APPROX OF LUS CENTERES ON IN STEASIZE $\begin{cases}
 Q_{u+1} = f_{ROx_{EV}} R \left(Q_u - t_{u} g_u \right) & \text{approximates in point of the risk } Q_u \\
 g_u = \nabla L \left(Q_H \right) & \text{nesterov} + \text{if enable soft thresholded} + \text{continuation} = FISTA \\
 f_u = Q_u + \frac{k+1}{h_{12}} \left(Q_u - Q_{u-1} \right) & \text{the showns}
 \end{cases}$ [Duta = frox tur(Uu) tu stransize

lu= On-tugu 8m = DL(Qu)

FAST ITEMPTIVE SHANWES

```
PROXIMAL & PROJECTED GRADIENT METHODS
   $\(\theta\): \(\lambda\) + \(\theta\) - \(\theta\) LOSS, CONVEX AND DIFFERENTIABLE - \(\theta\) RECOVADERS NOT NECESSAVLY DIFFERENTIABLE
   • PROXIMAL OPERATOR FOR CONVEX FOR R PROXIC(Y) = ARGMIN (R(2) + 1/2 || 2-4 ||2)
                                                                                                    · EXAMPLE: L(0)=RSS , R(0)=|c(0) = UASSO
    - MOVES FOR POINT FOUNTS MINIMUM OF FOR PROXE(Y) = Y-DDE(Y)
                                                                                                                                  MOTCHION FOR
                                                                                                      - R(0)= AllOlly - Frox = SORT THRESHUSING
     - INTUITIVELY CONNECTED TO GRADIENT,
    - FIXED FOILT FOR FINE AND FOR MINIMA
                                                                                                       - F(0)= XIIBILO __PROX = HARD THESHURING
                                                                                                       _ R(0)=1/1c(0) -> rear = (20) c(0)= rearen 1/2-0/12
  PROJECTIC PROXIMAL GRADIENT METHOD
                                                                                                                           MO) IS CARIFE EASY TO COMPUTE
             - Oum = AROMIN [tuR(2)+1/2 || z-Ux||2] = FROX tuR(Uu) , Ux= On-tugu , gn = VL(Ou), tn = 1/94 , Qul= HBSIAN APPROXIMATION
            - R(0)= 0 -> VANILA GRAD DECEME
                                                                · CAN HAZ NESTERON ACCELEDATION
            - R(0)=1:(0) - PROJECTED GRADIENT DESCENT
            - R(D) = 11 | D | - ITERATIVE SOFT THUSIKUDING - 15TA - USED FUN LASSO
```

```
CONJUGATE GRADIENTS
   - MAXIMAL STEP IN EACH DIMENSION, COTTING _ ORTHOGONAL IN PRACTICE: CONJUGATE/A-OCHOGONAL CONJUGACY: P., F, IFF PITAF)=0 FOR SOME MIRIX A
2 ERROS OF: \alpha_1 = \beta_1^T \frac{(-\nabla f(x_1 - 1))}{\beta_1^T A \beta_1} HOW TO FIND COMPURATE DIRECTIONS? GRAINM-SCHMIDT PROCESS: TAME CANDOME DIRECTION AND REMOVE PARTS IN DIR AUSBROY DAY.

• INITIAL DIRECTION PO : IE STEEDEST DESCENT

• FIND Q MINIMAZING f(x_1 + a f_0) \rightarrow x_{1+1} \cdot x_1 \cdot r d f_0

• PARTS OF: \alpha_1 = \beta_1^T \frac{(-\nabla f(x_1 - 1))}{\beta_1^T A \beta_1}

• PROCESS: TAME CANDOME DIRECTION AND REMOVE PARTS IN DIR AUSBROY DAY.

• PARTS OF: \alpha_1 = \beta_1^T \frac{(-\nabla f(x_1 - 1))}{\beta_1^T A \beta_1}

• PROCESS: TAME CANDOME DIRECTION AND REMOVE PARTS IN DIR AUSBROY DAY.

• PARTS OF: \alpha_1 = \beta_1^T \frac{(-\nabla f(x_1 - 1))}{\beta_1^T A \beta_1}

• PROCESS: TAME CANDOME DIRECTION AND REMOVE PARTS IN DIR AUSBROY DAY.

• PARTS OF: \alpha_1 = \beta_1^T \frac{(-\nabla f(x_1 - 1))}{\beta_1^T A \beta_1}

• PROCESS: TAME CANDOME DIRECTION AND REMOVE PARTS IN DIR AUSBROY DAY.

• PARTS OF: \alpha_1 = \beta_1^T \frac{(-\nabla f(x_1 - 1))}{\beta_1^T A \beta_1}

• PROCESS: TAME CANDOME DIRECTION AND REMOVE PARTS IN DIR AUSBROY DAY.

• PARTS OF: \alpha_1 = \beta_1^T \frac{(-\nabla f(x_1 - 1))}{\beta_1^T A \beta_1}

• PROCESS: TAME CANDOME DIRECTION AND REMOVE PARTS IN DIR AUSBROY DAY.

• PARTS OF: \alpha_1 = \beta_1^T \frac{(-\nabla f(x_1 - 1))}{\beta_1^T A \beta_1}

• PROCESS: TAME CANDOME DIRECTION AND REMOVE PARTS IN DIRECTIONS?

• PARTS OF: \alpha_1 = \beta_1^T \frac{(-\nabla f(x_1 - 1))}{\beta_1^T A \beta_1}

• PROCESS: TAME CANDOME DIRECTION AND REMOVE PARTS IN DIRECTIONS?
```

- · RUN MULTIPLE TIMES AM PICH BEST BELAVE FINS DIFFRENT DIRECTIONS
- · LOUR MELAUSE REQUIRES NO MATRIX INVERSIONS

Por

MOSEL WITH MIXING OSINIBUTION ON VANANCES

CAN REPRESENT WHALE DETRIBUTION AS GAUSSIAN SCALE MIXTURE, DERIVE REPRESENTATION OF USSO. P(Y,W,Z,O2|X) = Exp(-bu/02) 1 Exp (-32) STEP INFERS 22 AM 52, M STED ESTIMATES W · SOMETIMES DUES NOT WORK FOR NUMEROUS PEASONS

WHY EM)

- PROVIDES WAY TO DERIVE ly REG. FOR OTHER MODELS
- ALLOWS FOR TRYING OUT OTHER FRIORS ON UNDIANCES
- CAN COMPUTE FULL POSTERIOR AND NOT JUST MAR BAYESON USSO

WHEN VECTOR OF WEIGHTS AND NOT SINCLE, FOR EACH VAR. IE MULTINOMIAL WEISTC, LINEAR RECR. WITH CATEGORICAL IMOUS, MULTITAGE VERNING - FAMILIONS FMAM VECTUR INTO GROUPS

-)(w)= NLL(w)+ Z/y | Wg| 2 -> W HERE TWO NORM RESULTS IN SAMSITY. ELSE USE ON NORM | Wg | P = MAX[W] . NLL IS USAST GALANES LASSO.
- CAN BE SEEN AS GSM VANANCE GROUP TERM COMES FROM A GAMMY PRIOR
- ALGOS! PROXIMAL GRADIENT DESCENT DECOMPOSED IN G. EM

- FUSED LASSO

IF WE WANT NEIGHBURNOU COEFFICIENTS TO BE SIMINAL TO EACHOTHER AM SAMSE. LOCATION-BASED PENALTY. UMAHS, IMAGES, LATTICES, ETC. SIMIAN TO CHAIN-STRUCTURED GAUSSIAN MACHOU FIELDS, ROBOM VARIANCE. SOLVES WITH EM.

- ELASTIC NET

CUMBINES LASSO AM NOGE

- IF SROWN OF VARS CONCENTED USSO LINELY FICHS ONE OF THEM OBJECTNE:)(W, A, A:)=|| Y-Xw||^2+ A, || w||_4

STRITTY CONVEX GROUPING EFFECT =

- HIGH WASHING VANS HAVE
- · N70 + CONNEWIRD VANS MOGE DUES GETTER $= A \left[\cos(y) + M \right] + \left[\cos(y) \cos(y) + \cos(y) \right]$ $= \left[\cos(y) + \left(\cos(y) \right) \right]$ $= \left[\cos(y) + \left($
 - W= Cw

- · CV to PICU Ai, A2
- · IF WE STOP AT M VARS O(m3+ Dm2) OBS | DOUBLE SHRINNAGE: RESCRIE UP, UNDO 12, W=N1+12 W
- · G.S.M.; WITH PRODUCT OF GAVISIAN AND LANGE PRIORS MAP, MCMC, VANATONAL BAYES

NONCONVEX REGULARIZERS LAPPICE PAICA NOT SUPPRESSES NOISE, TOO MUCH SHAINING ON LARGE VALVE COEFFS -> INTRODUCE MORE FLEXIBLE FLORIS. NO GLOBAL OPTIMUM ANYMORE BUT OUTTERFORM IN PREDICTIVE ACCURACY AM VANABLE SELECTION - BROOK REGRESSION GENERALIZES & W= NLL(W) + X Z / W) b · MAP WITH EXPONENTIAL POWER DISTNIBUTION · b=0 Lo - BSS · IN WENEATE BIMUDALS · b=1 = Urnie - insso A STATE OF THE STATE OF b= 2 = GAUSSIAN - RINGE - HIEMALHICAL ADAPTIVE LASSO DIFFERENT FEMALTY FARAMETER FOR EACH PARAMETER. FEMALTIES MODELES AS RV COMING FROM COMPUGATE FAIRLY Y, ~ 16(0,16), 22/7, ~ 6a(1,7)2/2) OFFER WORKS MUCH BENTER THAN LY, FIT WITH EM · STANFISH - MONE AGGINESSIVE GRANSITY MAPPED WILE, 2~ N(0,23) F-STEP - SAME FOR USSO · APPROXIMATE; HARD - THRESHOWING M-STELT: WEIGHTED LASSO PRODUEM - USE LARS . CAN USE WITH ALL SOOTS OF COMBINATIONS OF P(Y), P(Y), P(W) FOR DIFFERENT RESULTS · SCAUSS MIXTURE OF UPUCIANS AUTOMATIC RELEVANCE DETERMINATION SPACE BAYESIAN LEARNING · VANANCES ESTIMATED - PLUG-IN TO COMPUTE WEIGHT PUSTFORM MEANS E[W/E,D] -> SPANSENESS · NON-FACTORIAL PRIOR

APPRIVACE DASED ON TYPE 2 ML, EMPRICAL DAYES. WE INTECRATE OUT W AND MAXIMIZE MANUNAL LIVEUHOUD WAT Z. USING EM OR LI SCHEME . 19 POINT ESTIMATION

- PLANS HER FOLLYTIONS THAT WASTE PROBABILITY MASS
- WE INTEGRATE OF OUT AM OFFIMIZE OF, MUESTAMAND DUES OFFICIFE. FARANS IN DECIME CONSULTED DUE TO EXPONENCE AWAY. FOR OF WE ESTIMA INFO IN PUTTERIOR FROM ALL FEATURES
- PRIOR IS NON- FACTORIAL: E[WID] DEPENS ON DATA D AND 52
- NON-FACTURAL OBJECTIVE HAS ALMAYS FEWER LOCAL MINIM THAN FACTORIAL ONES BUT STIL GLOBAL MAXIMUM IS FOURL TO be
- · ALGONTHMS: EM, FIXED-POINT ALGONTHM, REVENUATED & WITH ARGMIN NIL (W) + EX) [W], VANUALIONAL MAROXIMATIONS
- GAUSSIAN PROLOGIES, NAS, ... M(XIX') = 00 EXT 1 2 M, (x1 x',) 2 M 0. FOR INSENSITIVE TO X VALUES

 USE ML TO ESTIMATE M DESECT VMS WITH LITTLE POSTERIOR PLATEOT, CAN DISORD

SPARSE CODING

IDEA! SPARSE PRIORS FOR UNSUPERVISED LEADING. THINK ICA BUT WITH SPARSITY PROMOMENTE PRIORS. VECTORS X, AS SPARSE COMMINGION OF MASIS SPARSE COOING: W NOT ORTHOGONAL | W: HERE CALLED A DICTIONARY COLUMN OF W: ATOM . IF L7D OVERCOMMETE SPARSE PRIOR ON LATERT FACTORS | FIXED: WAVELET/DET GASIS

SPANSE PCA; SPANSE ON WS, FAIR IS GAVIS $|\log F(D|\omega)|^{\frac{2}{3}} \sum_{i=1}^{\infty} \log |N(x_i|W_{z_i},\sigma^2,|) f(z_i) dz,$ COMES MATRX FACTORIZATION: SPANSE WS + SPANSE LF

How to VEAN DICTIONARY!

MPLACE: NLL(WIZ) = \$\frac{1}{2} \| || X_1 - W_2_1 \|_2^2 + \lambda \| || 2_1 \| || 1 CONSTRAIN & OF COLUMNS TO BE \$1 . FOR FIXED 2, LEAST SOUTH CATIMIZATION OVER W . FOR FIXED W LALSO PROBLEM OVER 2

ANALYSIS/SYNTHESIS LOOP: ALTERNATE OPTIMIZE W AND Z

- · OTHER MODELS OTHER OPPINGATION FROMIENS
- SMF ! ELASTE NET TYPE PENALTY ON WEIGHTS = MIN 12 511x1-W2.112 + 1112114
- · CAN USE OTHER SPARSITY INDUCING PRIORS THAN LAPLICE; I'E BITMAINS, META PROCESSES

WHAT TO DO WITH SPARSE CODING

· CUCL BECAUSE LEARNED BASIS VECTOR LOWN LINE BRAIN VISUAL FILTERS , ALSO ICA, BUT NOT PLA · COMPRESSED SENSING; Y= RX+E, LOW-DIM FROJECTION OF DATA. R MOWN SENSING MARRY. IE MRI EACH SEAM DIRECTION IS ROW IN R - INFER P(X|4,R) VIA DAYESIAN INFERENCE. ASSUMING X=W=Z 20€-0× L SPARSE PRIOR L DICTIONARY × Or Ow · IMAGE INPAINTING / DENOISING WE PARTITION IND IN OVERNAPING PATCHES Y AN CONCAIRMANTE TO FORM Y. R DEFINED TO SELECT FAITH I WITH ITH ROW. V VISIBUE, IT HIDDEN. 4 OX-O R VE DASFAVE LOW-DIMY WE COMPUTE F(YH YVID) O ARE FARAMS W AND STARSTTY LEVEL & PASSED THROUGH R. DICTIONALY LEARNED ON FIXED. X IS SPARSE WAT WAND 2. AUTEMATIVE: FIELD OF EXFERTS - ENCOSE CONSUMPTIONS RESWEEN NEIGHYDIAIDA PATCHES/ NO LATENTS - COMPUNIONALLY