Gram and Design Matrix

The **Gram Matrix** is:

 $Gram = X^T X$

Where X is the **Design Matrix**:

- Its a square $p \times p$ matrix
- ullet Every value of $Gram_{ij}$ is the dot product between column i and column j of X
- Captures how correlated the Predictors are with each other
- Used in the <u>Hat Matrix</u>

The **Design Matrix** is:

- Its an n imes p
- *n*: number of Observation (rows)
- p: number of features or variables (columns)
- the intercept column eta_0 isn't included in the columns p, Its k+p
- Role in Multiple Linear Regression
 - X holds the data β is what we solve for
 - We use the Design matrix in both Training aka fitting β and prediction aka new unseen data

Conclusion:

- ullet Design Matrix o our raw data arranged in a matrix for the ease of modeling and interpretation
- **Gram Matrix** $X^TX \to \text{Derived from } X$ useful for computing the solutions and estimations for linear regression