

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Subsidiary Level in Physics (WPH12) Paper 1: Waves and Electricity

Question Number				
1	B is the correct answer as the base units for power are kgm ² s ⁻³	(1)		
	A is not the correct answer as the newton is not a base unit			
	C is not the correct answer as the joule is not a base unit			
	D is not the correct answer as the ampere does not appear in kgm ² s ⁻³			
2	C is the correct answer as inverting $(1/Y + 1/Z)$ leads to YZ / $(Y + Z)$	(1)		
	A is not the correct answer as the section $(1/Y + 1/Z)$ has not been inverted)			
	B is not the correct answer as this considers resistor X as a parallel resistor			
	D is not the correct answer as this considers resistor X as a parallel resistor			
	D is the correct answer as the shorter the pulse, the shorter the time over	(1)		
	which reflections are received.			
	A is not the correct answer as only some of the ultrasound is reflected			
	B is not the correct answer as the air is less dense than body tissues			
	C is not the correct answer as higher resolution is gained with smaller λ			
1	C is the correct answer as the photoelectric effect can only be explained using the photon model of light.	(1)		
	A is not the correct answer as diffraction is demonstrated using waves			
	B is not the correct answer as the Huygen's construction is demonstrated using			
	Waves			
	D is not the correct answer as plane polarisation is demonstrated using waves			
5	D is the correct answer as $V = (-r)I + \mathcal{E}$ when in a $y=mx+c$ format.	(1)		
	A is not the correct answer as the area beneath the graph does not represent			
	energy dissipated in the cell			
	B is not the correct answer as the gradient of the graph is $-r$			
	C is not the correct answer as the graph is not a straight line through the origin			
6	C is the correct answer as $\mathcal{E} = I(R + r)$	(1)		
	A is not the correct answer as this does not include the effect of r			
	B is not the correct answer as this does not include the effect of R			
	D is not the correct answer as the two resistances are subtracted instead of			
7	added. B is the correct answer as the time period is 0.4 seconds, and $f = 1/T$	(1)		
	A is not the correct engineer as the applitude is 10cm			
	A is not the correct answer as the amplitude is 10cm. C is not the correct answer as the time period is 0.4 seconds			
	D is not the correct answer as the wavelength cannot be determined from a			
	graph of displacement against time.			
8	D is the correct answer as 45° is beyond the critical angle, so total internal	(1)		
·	reflection takes place			
	A is not the correct answer as there will also be some reflection at this angle			
	B is not the correct answer as there will also be some refraction at this angle			
	C is not the correct answer as there will be no refraction at this angle.			

9	B is the correct answer as the momentum of a photon is h/λ	(1)
	A is not the correct answer as momentum is mv	
	C is not the correct answer as it is not the speed of light, but the speed of the	
	electron.	
	D is not the correct answer as h is a constant.	
10	A is the correct answer as current = total charge / time	(1)
	B is not the correct answer as the charge of an electron is incorrectly inserted	
	C is not the correct answer as the time is incorrectly inserted	
	D is not the correct answer as the time and charge of an electron have been	
	swapped around	

Question	Answer	Mark
Number		
11	Use of $I = nqvA$ (using dimensionally-correct A) (1)	
	$v = 7.5 \times 10^{-4} \mathrm{m s^{-1}} \tag{1}$	2
	Example of calculation $A = \pi r^2 = \pi (0.40 \times 10^{-3} \text{ m})^2 = 5.0 \times 10^{-7} \text{ m}^2$ $v = \frac{I}{nqA} = \frac{5.1 \text{ A}}{(8.5 \times 10^{28} \text{ m}^{-3})(1.6 \times 10^{-19} \text{C})(5.0 \times 10^{-7} \text{m}^2)}$ $v = 7.5 \times 10^{-4} \text{ m s}^{-1}$	
	Total for Question 11	2

Question Number	Answer		Mark
12	Position A: Constructive (superposition)	(1)	
	Position B: Destructive (superposition)	(1)	
	Constructive is when: waves are in phase \mathbf{Or} path difference is λ	(1)	
	Destructive is when: waves are in antiphase Or path difference is $3\lambda/2$	(1)	4
	(MP3 and MP4 are not dependent upon MP1 and MP2) (MP3 – accept phase difference of 2π radians or 360°) (MP4 – accept phase difference of π radians or 180°). (Phase difference must refer to an angle, path difference to a distance) (MP3 – allow path difference of π) (MP4 – allow path difference of π) (MP4 – do not allow out of phase) (Ignore references to nodes and antinodes)		
	Total for Question 12		4

Question Number	Answer		Mark
13 (a)	Use of $R = V/I$		
. ,	Or Equates ratio of resistances to ratio of p.d.s	(1)	
	$R = 1300 \Omega$	(1)	2
	1500 22		
	Example of calculation		
	Whole circuit current = $V/R = 1.19 \text{ V} / 5000 \Omega = 2.38 \times 10^{-4} \text{ A}$		
	$R \text{ (of LDR)} = V/I = (0.31 \text{ V}) / (2.38 \times 10^{-4} \text{ A}) = 1300 \Omega$		
13(b)	Calculates p.d. across fixed resistor as 1.497V	(1)	
	Difference between 1.50 and 1.497 is less than 0.01V	(1)	
	OR	(4)	
	Calculates p.d across the LDR as 0.003 V	(1) (1)	
	0.003 < 0.01V	(1)	
	OR	(1)	
	As resistance of the LDR decreases, the voltmeter reading increases	(1)	
	p.d. across the LDR becomes less than 0.01 V	()	
	OR	(1)	
	Ratio of resistor resistance to LDR resistance becomes very high	(1)	2
	p.d. across the LDR becomes less than 0.01 V		
	(Do not allow MP1 for use of V = IR with current value calculated in		
	(a))		
	(3 rd or 4 th methods – allow "there is hardly any p.d. across the LDR")		
	(For all MP, allow "resolution of the voltmeter" for "0.01V")		
	(For MP1 via 3 rd method, allow "p.d. across (fixed) resistor increases" for "the voltmeter reading increases")		
	Total for Question 13		4

Question Number	Answer		Mark
14	For the electron (in the atom) to move from -13.6eV to -1.5eV requires 12.1eV	(1)	
	0.2eV/ remaining (kinetic) energy left for the (incoming) electron	(1)	
	Idea that <u>energy</u> of a photon is transferred to a single electron Or Idea that photon can only excite an electron if it matches the energy difference between levels Or Idea that photons give all of their energy (or none at all) Photon energy is not exactly 12.1eV so electron/atom remains at the	(1)	
	-13.6eV level Or There is no transition equivalent to 12.3 eV Or There is no -1.3 eV energy level	(1)	4
	(Ignore references to work function or photons being emitted) (MP1 – award this mark if 12.1eV is seen) (MP3 – do not award simply for saying "one photon interacts with one electron") (MP4 – Award if candidates make it clear that 12.1eV is not equal to 12.3eV in an argument to explain why photons cannot produce the change in energy levels for the electron)		
	Total for Question 14		4

Answer		Mark
Change of direction (of a ray of light)	(1)	
Due to change in speed/density/medium/material/RI	(1)	2
(MP1 – do not allow "bending", but allow "deviation")		
Use of trigonometry to correctly determine either <i>i</i> or <i>r</i>	(1)	
Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ using calculated angles	(1)	
Refractive index = 1.3	(1)	3
(MP1 – Need to see working shown, as the r angle from the diagram is close to 43° with a protractor) (MP2 – Award if using $n = \sin i / \sin r$) (MP2 – Both angles need to be correct to award this mark)		
Example of calculation		
$\overline{\text{Tan } i = (1.8 \text{ cm} / 3.0 \text{ cm})}, i = 31^{\circ}$		
Tan $r = (3.7 \text{ cm} / 4.0 \text{ cm}), r = 43^{\circ}$		
$n_1 \sin \theta_1 = n_2 \sin \theta_2$ so $n_1 \sin 31^\circ = 1.00 \sin 43^\circ$		
$n_1 = 1.32$		
Total for Operation 15		5
	Change of direction (of a ray of light) Due to change in speed/density/medium/material/RI (MP1 – do not allow "bending", but allow "deviation") Use of trigonometry to correctly determine either i or r Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ using calculated angles Refractive index = 1.3 (MP1 – Need to see working shown, as the r angle from the diagram is close to 43° with a protractor) (MP2 – Award if using $n = \sin i / \sin r$) (MP2 – Both angles need to be correct to award this mark) Example of calculation Tan $i = (1.8 \text{ cm} / 3.0 \text{ cm}), i = 31^{\circ}$ Tan $r = (3.7 \text{ cm} / 4.0 \text{ cm}), r = 43^{\circ}$ $n_1 \sin \theta_1 = n_2 \sin \theta_2$ so $n_1 \sin 31^{\circ} = 1.00 \sin 43^{\circ}$	Change of direction (of a ray of light) Due to change in speed/density/medium/material/RI (1) (MP1 – do not allow "bending", but allow "deviation") Use of trigonometry to correctly determine either i or r (1) Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ using calculated angles (1) Refractive index = 1.3 (1) (MP1 – Need to see working shown, as the r angle from the diagram is close to 43° with a protractor) (MP2 – Award if using $n = \sin i / \sin r$) (MP2 – Both angles need to be correct to award this mark) Example of calculation Tan $i = (1.8 \text{ cm} / 3.0 \text{ cm}), i = 31^{\circ}$ Tan $r = (3.7 \text{ cm} / 4.0 \text{ cm}), r = 43^{\circ}$ $n_1 \sin \theta_1 = n_2 \sin \theta_2$ so $n_1 \sin 31^{\circ} = 1.00 \sin 43^{\circ}$ $n_1 = 1.32$

Question Number	Answer					Mark
*16	structured answ awarded for inc	ver with linkag dicative conter ing. The follov		ned reason nswer is st		
	IC points	IC mark	Max linkage marl	k	Max final mark	
	6	4	2		6	
	5	3	2		5	
	4	3	1		4	
	3	2	1		3	
	2	2	0		2	
	1	1	0		1	
	0	0	0		0	
	The following lines of reasoni		ow the marks should	l be award	led for structure and	
	lines of reasons	ing.			of marks awarded for structure and sustained line of reaso	
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout				2	
	Answer is partial and lines of reason					
	Answer has no linkages between points and is unstructured 0					
	Or F curre Or ra Incre ions/ Incre ions/ For a Or F Or ra Incre	for filament ent ate of increa tased temper atoms/lattice ased rate of atoms/lattice thermistor, for a thermistate of increased number ased number as the filament of the filament at the filament of the filament at the filament of the fila	collision between resistance decre	creases. creased ven electro cases (as cases at a reases	vibration of ons and p.d. increases) a greater rate than	p.d.
	(For IC1 & IC4 accept symbols for p.d. and current) (Ignore references to the gradient of the graph as $1/R$)					

Question Number	Answer		Mark
17(a)	Use of $v = f\lambda$ Use of $E = hf$ Converts work function from eV to J Use of $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}$ $v_{\text{max}} = 4.5 \times 10^6 \text{ m s}^{-1}$ (MP4 can only be awarded if values substituted are valid energy and mass values) $\frac{\text{Example of calculation}}{v = f\lambda, 3.00 \times 10^8 \text{ m s}^{-1}} = f \times (20 \times 10^{-9} \text{ m}), f = 1.50 \times 10^{16} \text{ Hz}$ $E = hf = (6.63 \times 10^{-34} \text{ Js}) (1.50 \times 10^{16} \text{ Hz}) = 9.95 \times 10^{-18} \text{ J}$ Work function $\Phi = (3.68 \text{ eV}) (1.60 \times 10^{-19} \text{ J/eV}) = 5.89 \times 10^{-19} \text{ J}$ $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}, 9.95 \times 10^{-18} \text{ J} = 5.89 \times 10^{-19} \text{ J} + \frac{1}{2} mv^2_{\text{max}}$ $\frac{1}{2} (9.11 \times 10^{-31} \text{ kg}) v^2_{\text{max}} = 9.36 \times 10^{-18} \text{ J}$ $v_{\text{max}} = 4.53 \times 10^6 \text{ m s}^{-1}$	(1) (1) (1) (1) (1)	5
17(b)	Increasing intensity leads to more photons/electrons But intensity does not affect the speed/ KE (of electrons) Increasing λ leads to a decrease in photon/light energy Leads to decrease in speed/ KE (for electrons), so student incorrect (MP1 – Allow equations with arrows correctly indicating increased and decreased components)	(1)(1)(1)(1)	4
	Total for Question 17		9

18(b)(i)	Light directed through one polarising filter Filter is rotated until no light passes through Or filter is rotated and light changes intensity (Answers involving use of more than one polarising filter can only potentially score MP2) Distance between (adjacent) slits Or grating spacing	(1)	2
18(b)(i)	Or filter is rotated and light changes intensity (Answers involving use of more than one polarising filter can only potentially score MP2) Distance between (adjacent) slits	(1)	2
18(b)(i)	Or filter is rotated and light changes intensity (Answers involving use of more than one polarising filter can only potentially score MP2) Distance between (adjacent) slits	(1)	2
18(b)(i)	(Answers involving use of more than one polarising filter can only potentially score MP2) Distance between (adjacent) slits		
18(b)(i)	potentially score MP2) Distance between (adjacent) slits		
	Or grating spacing		
	0.1		
	Or line spacing		
	Or slit spacing		
	Or $\frac{1}{lines \ per \ m}$	(1)	1
18(b)(ii)	Use of $\tan \theta = \frac{\text{distance from central maximum to first order}}{\text{grating to agreen distance}}$		
	Use of $\tan \theta = {}$ grating to screen distance	(1)	
		(1)	
	Use of $n\lambda = d\sin\theta$	(1)	
	number of lines per mm = 950	(1)	3
	(MP1 – award if $\sin\theta$ calculated from Pythagoras)		
	(Use of Young's Double Slit equation scores 0)		
	Example of calculation		
	$\tan\theta = 1.61 \mathrm{m} / 2.74 \mathrm{m}, \theta = 30.4^{\circ}$		
	$d = n\lambda / \sin\theta = (1)(532 \times 10^{-9} \text{ m}) / \sin(30.4^{\circ})$		
	$d = 1.05 \times 10^{-6} \text{ m}$		
	number of lines per m = $1 / 1.05 \times 10^{-6}$ m = 9.52×10^{5} m ⁻¹ . number of lines per mm = 952		
	number of fines per finiti – 932		
18(b)(iii)	Measuring distance from from first order maxima on one side of the central		
1	maxima to the first order maxima on the other side	(1)	
	Increasing distance from diffraction grating to screen	(1)	
		(1)	
]	It would decrease percentage uncertainty	(1)	3
	(MP3 is dependent upon awarding MP1 or MP2)		
,	Total for Question 18		9

Question Number	Answer		Mark
19(a)	Power supply, ammeter, variable resistor and nichrome wire all in series	(1)	
	Voltmeter in parallel across nichrome wire	(1)	2
19(b)(i)	Or value of p.d. read off for a corresponding length	(1)	
	Gradient uses more than half of the graph Or value of p.d. used is greater than 2.0V Or value of length used is greater than 0.5m Use of $R = \rho l/A$ and $R = V/I$ Or Use of $\rho = (\text{gradient} \times A)/I$ $\rho = 1.1 \times 10^{-6} \Omega \text{m}$ (MP1 – Values read off graph need to be within ½ a square) (MP1 – Gradient should be in the range $4.1 - 4.2 \text{Vm}^{-1}$) Example of calculation Gradient = $V/I = (4.15 \text{V}/1.00 \text{m}) = 4.15 \text{Vm}^{-1}$ $V/I = \rho I/A, \text{ so } \rho = (\text{gradient} \times A)/I$ $= (4.15 \text{Vm}^{-1} \times 5.31 \times 10^{-8} \text{m}^2)/0.200 \text{A} = 1.10 \times 10^{-6} \Omega \text{m}$	(1)(1)(1)	4
19(b)(ii)	V value read from graph = 3.1V Use of $P = VI$ $P = 0.62$ W (MP1 – allow use of resistivity equation with answer from (i) used to calculate V or R) (MP2 – allow combination of equations e.g. $R = V/I$ followed by $P = I^2R$) (MP3 – allow variation of value if using resistivity value that rounds to $1.1 \times 10^{-6} \Omega$ m from (i)) Example of calculation $P = VI = (3.1 \text{ V} \times 0.200 \text{ A}) = 0.62 \text{ W}$	(1) (1) (1)	3
	Total for Question 19		9

Question Number	Answer		Mark
20(a)	Use of $A = 4\pi r^2$	(1)	
	Use of $I = P/A$ to calculate I	(1)	
	$I = 1.3 \text{ W m}^{-2} < 4.5 \text{ W m}^{-2} \text{ so not dangerous}$	(1)	
	OR		
	Use of $A = 4\pi r^2$	(1)	
	Use of $I = P/A$ to calculate A	(1)	
	$r = 0.13 \mathrm{m} < 0.25 \mathrm{m}$ so not dangerous	(1)	3
	(For MP2 via second method, look for area of 0.22 m ²)		
	Example of calculation		
	$A = 4\pi (0.25 \text{ m})^2 = 0.79 \text{ m}^2$		
	$A = P/I \text{ so } 0.79 \text{ m}^2 = 1.00 \text{ W} / I$, so $I = 1.27 \text{ W m}^{-2}$		
20(b)	Use of $E = hf$	(1)	
	Conversion from J to eV	(1)	
		(1)	2
	Energy per photon = 3.7×10^{-6} (eV)	(1)	3
	Example of calculation $E = hf = (6.63 \times 10^{-34} \text{ Js}) \times (902 \times 10^{6} \text{ Hz}) = 5.98 \times 10^{-25} \text{ J}$ Energy per photon (in eV) = $(5.98 \times 10^{-25} \text{ J}) / (1.60 \times 10^{-19} \text{ J eV}^{-1})$ = $3.74 \times 10^{-6} \text{ eV}$.		
20(c)	Use of $P = E/t$ for kettle	(1)	
	Converts kWh to J for electricity usage		
	Or converts J to kWh for kettle usage	(1)	
	-	()	
	Percentage = 0.61% so student is correct		
	Or states that 150,000 J is less than 1% of 2.47×10^7 J so student is	(1)	3
	correct	(1)	3
	(Kettle energy in kW h is 0.042)		
	Example of calculation $E = P \times t$ (for kettle) = 1200 W × 125 s = 150,000 J Electricity usage = 6.85 kWh = 6.85 ×1000 W x 3600 s = 2.47 × 10 ⁷ J Kettle's percentage of daily usage = [(150,000J) / (2.47 × 10 ⁷ J)] × 100 Percentage = 0.61%		
	Total for Question 20		9

Question	Answer		Mark
Number			
21(a)(i)	Recognises that wavelength = $2 \times \text{length of recorder}$		
	Or recognises that length of recorder = $\lambda/2$	(1)	
	Or see that λ used is 47.2 cm / 0.472 m	(1)	
		(1)	
	Use of $v = f\lambda$ with $v = 330 \text{ m s}^{-1}$	(1)	
		(1)	3
	f = 700 Hz	(-)	
	Example of calculation		
	Wavelength = $2 \times \text{length of recorder} = 2 \times 0.236 \text{ m} = 0.472 \text{m}$		
	$v = f\lambda \text{ so } f = 330 \text{ m s}^{-1} / 0.472 \text{ m} = 699 \text{ Hz}$		
21(a)(ii)	To keep same frequency, wavelength would need to increase	(1)	
	So length of recorder needs to increase	(1)	
	Or so length of air column needs to increase	(1)	
	This is achieved by sliding the recorder sections further apart		
	Or this is achieved by loosening the sections of the recorder	(1)	3
	(Do not award MP2 or MP3 if clearly linked to a decrease in		
	wavelength)		
21(1)		(1)	
21(b)	See $v = f\lambda$ and $v = \sqrt{(T/\mu)}$	(1)	
	Combines equations to show that $f \propto \sqrt{T}$ or $T = k f^2$		
	Or recognises that $T_2/T_1 = (f_2/f_1)^2$		
	Or see $\frac{(440)^2 - (432)^2}{(432)^2}$	(1)	
	$(432)^2$	(1)	
		(1)	3
	Percentage increase in <i>T</i> is 3.7%	` /	
	Example of calculation $T = \frac{1}{1} \frac{C^2}{C^2}$		
	$f\lambda = \sqrt{(T/\mu)} \text{ so } T = k f^2$		
	$T_2/T_1 = (f_2/f_1)^2$ so $T_2/T_1 = (440 \text{ Hz}/432 \text{ Hz})^2 = 1.037$		
	Percentage increase in <i>T</i> is 3.7%		
			6
	Total for Question 21		9