Mathematics Department

Exceptional schooling. Exceptional students.

Course Methods Test 2 Year 12

Independent Public School

1 | Page

ormula sheet provided: r	no but formulae listed on next page.
ask weighting:	%ЕТ
Marks available: ⁶	t marks
	Drawing instruments, templates, notes on one unfolded sheet of AA paper,
	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Materials required:	Upto three calculators/classpads
fumber of questions:	9
Norking time allowed for	this task: 40 mins
: teat cint for this test	suim 2 :
esk type:	gesbouse
Student name:	Teacher name:

Note: All part questions worth more than 2 marks require working to obtain full marks.

Mathematics Department Perth Modern

Qe continued

c) It the wall is 5 cm thick determine the volume of glass with units, needed to make the wall.

End of test.

8 Page

Mathematics Department Perth Modern

Useful formulae

$\frac{d}{dx}x^n = nx^{n-1}$		$\int x^n dx = \frac{x^{n+1}}{n+1}$	$-+c$, $n \neq -1$
$\frac{d}{dx}e^{ax-b} = ae^{ax-b}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx}\ln x = \frac{1}{x}$		$\int \frac{1}{x} dx = \ln x + c, x > 0$	
$\frac{d}{dx} \ln f(x) = \frac{f'(x)}{f(x)}$		$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c, f(x) > 0$	
$\frac{d}{dx}\sin(ax-b) = a\cos(ax-b)$		$\int \sin(ax-b) dx = -\frac{1}{a}\cos(ax-b) + c$	
$\frac{d}{dx}\cos(ax-b) = -a\sin(ax-b)$		$\int \cos(ax-b) dx = \frac{1}{a} \sin(ax-b) + c$	
Product rule	If $y = uv$		If $y = f(x) g(x)$
	then	or	then
	$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$		y' = f'(x) g(x) + f(x) g'(x)
Quotient rule	If $y = \frac{u}{v}$		If $y = \frac{f(x)}{g(x)}$
	then	or	then
	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		$y' = \frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$
Chain rule	If $y = f(u)$ and $u = g(x)$)	If $y = f(g(x))$
	then	or	then
	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		y' = f'(g(x)) g'(x)
Fundamental theorem	$\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$	and	$\int_{a}^{b} f'(x) dx = f(b) - f(a)$
Increments formula	$\delta y \approx \frac{dy}{dx} \times \delta x$		
Exponential growth and decay	$\frac{dP}{dt} = kP \iff P = P_0 e^{kt}$		

2 | P a g e

Mathematics Department Perth Modern

Q6 (2, 4 & 3 = 9 marks)

7 | Page

Consider a glass wall with the height H(x) metres **above floor** at x metres along the floor according to

 $H(x) = 17 - (2x - 9)^2 - \cos(2x - \frac{3\pi}{2})$. The glass wall sits on a stone support of height 8 metres.

- a) Determine the values $x_1 & x_2$ to the nearest cm.
- b) Using calculus, determine the maximum height of the wall. Justify.

Q1 (2, 3, 2, 2, & 3 = 12 marks)

Consider the function y = f(x) which is graphed below.

Q4 continued-

c) Determine the distance travelled in the first 1.5 seconds.

must be given \boldsymbol{using} the result from part a.

Q5 (2 & 4 = 6 marks)

a) Determine $\frac{d}{dx} \left(3x \cos \frac{\pi x}{6} \right)$ without the use of a classpad. Full reasoning must be given.

Perth Modern

b) Hence show how to determine $\int \frac{\pi}{\delta} x \sin \frac{\pi x}{\delta} dx$ without the use of a classpad. Full reasoning

. L > t > 0 not t to a small t and t > t > 0 (a) t > t > 0 (b) t > t > 0 (a)

 $xp(x), f_{9-}^{9-}$ (p

 $\int_{\varepsilon} dx dx dx = \int_{\varepsilon} dx dx$

 $\int_{0}^{0} \int_{0}^{0} dx dx$

 $.8 = t \text{ nehw } xb(x) \int_{a}^{b} \int_{a}^{b} (a)$

Mathematics Department

Perth Modern

Q2 (4 marks)

Sketch a continuous function **showing the** x **coordinates and labelling** of all special features on the axes below that meet the following requirements.

$$f(-4) = 0 = f(3)$$

$$f(0) = -7$$

$$f'(-4) = 0 = f'(1)$$

$$f''(1) > 0, f''(-4) < 0$$

Has exactly two stationary points.

4 | P a g e

Mathematics Department Perth Modern

Q3 (3 marks)

Consider a balloon whose volume V, litres, varies with time, t seconds, such that $\frac{dV}{dt} = \frac{-100t^2}{\left(2t^3 + 5\right)^2}$.

If the balloon fully deflates after 12 seconds, determine the initial volume. Full reasoning must be shown for full marks.

Q4 (2, 2 & 3 = 7 marks)

5 | Page

An object's displacement, x metres at t seconds, from the origin is $x = 5e^{-3t}\cos(5t)$ metres.

a) Determine the velocity function at time t seconds.

b) Determine the first two times that the object changes direction.