------ CEN 6070 Software Testing & Verification

Exam 2 - Summer 2015 - Solution Notes

- 1. a. would not
 - b. would
 - c. would not
 - d. would not
 - e. would
 - f. would not
 - g. would not
 - h. would
- 2. a. false
 - b. false
 - c. false
 - d. true
 - e. false
 - f. true
 - g. true
 - h. true
 - i. false
- 3. a. $P \Rightarrow wlp(K,Q)$
 - b. H_0 : (t=0 Λ z=yx)

 H_1 : (t=1 \land z=y(x-1))

 H_2 : (t=2 \land z=y(x-2))

 H_k : $t=k \wedge z=y(x-k)$

Closed form expression of wlp: $(t \ge 0 \land z = y(x-t)) \lor t < 0 \equiv z = y(x-t) \lor t < 0$

- c. Clearly, $(|t|=3 \ \Lambda \ z=4 \ \Lambda \ y=2) => wlp(K,z=yx)$ since t can be either -3, satisfying the second disjunct, or 3, satisfying the first disjunct. Therefore, the instantiated antecedent of the ROI from part (a), holds, and therefore $\{|t|=3 \ \Lambda \ z=5 \ \Lambda \ z=4 \ \Lambda \ y=2\}$ K $\{z=yx\}$ holds. Since, by observation, both x and y are invariant w.r.t. K, we therefore conclude that z=y'x'=(2)(5)=10 if K happens to terminate.
- 4. f

5.

	Р1	P2
f1	Ν	Ν
f2	Ν	S

- 6. a. invalid
 - b. valid
 - c. valid
 - d. invalid
 - e. valid
 - f. invalid
 - g. valid
 - h. valid
 - i. invalid
 - j. invalid
- 7. INITIALIZATION: Does P⇒I?

P:
$$\{n \ge -17 \land t=1 \land k=0\} \Rightarrow t=1 \land 2^k=1 \Rightarrow t=2^k$$

Therefore $P \Rightarrow I$. $\sqrt{}$

PRESERVATION: Does $\{I \land b\}$ s $\{I\}$?

I
$$\Lambda$$
 b: $\{ t=2^k \Lambda \ k \neq n \}$
 $t := 2*t$
 $\{ t=2^{k+1} \Lambda \ k \neq n \}$
 $k := k+1$
 $\{ t=2^{(k-1)+1} \Lambda \ k-1 \neq 0 \}$
 \Leftrightarrow
 $\{ t=2^k \Lambda \ k-1 \neq 0 \} \Rightarrow I \ \sqrt{ }$

FINALIZATION: Does (I $\land \neg b$) \Rightarrow Q?

$$(I \land \neg b)$$
: $(t=2^k \land k=n) \Rightarrow t=2^n = Q \lor$

8. **Does term(f, H)?**

We use the Method of Well Founded Sets with measure k to prove H will terminate for any initial values of k and n in D(t) – i.e., for any k \leq n. If k is initially equal to n, the predicate "k<>n" evaluates to false and H terminates immediately. If k is initially less than n:

- i. the value of k increases by 1 with each execution of the loop body (via k := k+1).
- ii. the value of k is bounded from above when k is initially less than or equal to n since when k becomes equal to n (which is constant), the loop must terminate **because** "k≠n" (i.e., the loop predicate) becomes false.
- iii. the value of k may assume only a finite number of values $[(k_0 < n, k_0 + 1, k_0 + 2, ..., n)]$ since it increases by an integral amount (1) with each iteration of the loop body.

Therefore, H terminates for any initial value of $k \le n$ and we conclude that term(f, H) holds.

```
Does \neg p \Rightarrow (f = I)?
  (k=n) \Rightarrow (f = (t,k := t2^{\mathbf{0}},k)
                   = I)
  Therefore, \neg p \Rightarrow (f = I).
Does p \Rightarrow (f = f \circ g)?
 There are 2 cases to consider: k < n and k > n.
     case a:
     (k < n) \Rightarrow (f = (t,k := t2^{n-k},n))
     (k < n) \Rightarrow (f \circ g = (t,k := t2^{n-k},n) \circ
                                    (t,k := 2t,k+1)
          since ((k \le n) \circ g(k < n)) = true
                             = (t,k := (2t)2^{n-(k+1)},n)
                             = (t,k := t2^{n-k-1+1},n)
                             = (t,k := t2^{n-k},n)
     case b:
     (k>n) \Rightarrow (f = undefined)
     (k>n) \Rightarrow (f \circ g = undefined \circ g)
          since ((k \le n) \circ g(k > n)) = false
                              = undefined )
```

Therefore, $p \Rightarrow (f = f \circ q)$.

- 9. a. i. $t(X_3) = X_n = (0, z_0 + 5|y_0|)$ ii. $t(X_n) = X_n = (0, z_0 + 5|y_0|)$ iii. q(X): $z+5|y| = z_0 + 5|y_0|$ or $z = z_0 + 5(|y_0| - |y|)$
 - b. One cannot deduce unique values of y_0 and z_0 from this information, but one CAN deduce that $z_0+5|y_0|=-1$
 - c. iii
 - d. Yes, q(1,14) is consistent with $X_0 = (y_0, z_0) = (4,-1)$. Equivalently, t(1,14) = t(4,-1) = (0,19). Therefore, a while loop computing t(4,-1) could also generate intermediate state (1,14).
- 10. a. true
 - b. false
 - c. true
 - d. true
 - e. false
- 11. a. false
 - b. false
 - c. false
 - d. false
 - e. true
- 12. program function: $(x>-1 \rightarrow x,y := x,x+1 \mid x \le -1 \rightarrow x,y := -x-1,-x)$

4		
Histogram of Scaled Scores		
* *		
* * ** * * * * * * * * * * * * * * * *		
 mean		