Sistemas Embarcados

TCP/IP

TCP/IP

- Conteúdo:
 - Protocolos
 - Hardware
 - Camadas do TCP/IP

O que é um protocolo?

 Conjunto de regras e procedimentos para comunicação (formato de dados, significado de cada dado, ordem de envio, comandos, códigos de erro etc.)

Protocolo de comunicação serial para o envio dos bytes 0x55 e 0xFF

O que é um protocolo?

- Seguindo os formatos e regras de um mesmo protocolo, dois dispositivos (computadores, microcontroladores etc.) podem se comunicar;
- O TCP/IP (ou Protocolo de Internet) é o conjunto-padrão de protocolos de comunicação de dispositivos pela Internet.

Cenário típico

Acesso a uma página

- O servidor que contém a página separa a informação em datagramas (pequenos pedaços independentes)
- Cada datagrama tem o endereço do seu computador como destino
- O servidor manda datagramas para o roteador, que os manda para outro nó mais próximo de você (outro roteador ou computador)

Cenário típico

Acesso a uma página

- Isso é feito até os datagramas alcançarem seu computador
- No seu computador, os datagramas são agrupados adequadamente, e enviados ao programa adequado (browser)
- Processo semelhante é seguido no envio de emails, em chats, no download de arquivos etc.

- Placa de rede (network adapter)
 - Permite a conexão do computador com uma rede de computadores
 - Pode ser com fio (ethernet) ou sem fio (Wi-Fi)

• Placa de rede (network adapter)

```
$ ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN mode DEFAULT group default qlen 1000
        link/loopback 00:00:00:00:00 brd 00:00:00:00:00
2: wlp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
mq state UP mode DORMANT group default qlen 1000
        link/ether 5c:ea:ld:cf:e3:e1 brd ff:ff:ff:ff:ff
```

• Placa de rede (network adapter)

• Placa de rede (network adapter)

```
$ ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN mode DEFAULT group default qlen 1000
        link/loopback 00:00:00:00:00 brd 00:00:00:00:00
2: wlp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
mq state UP mode DORMANT group default qlen 1000
        link/ether 5c:ea:ld:cf:e3:e1 brd ff:ff:ff:ff:ff
```

MAC adress

• Placa de rede (network adapter)

```
$ ip link
1: lo:
UNKNOWN mode DEFAULT group
link/loopback 00:00:00

2: wlp1s0: <BROADCAST, MULTICAST, UP, LOWER_UP> mtu 1500 qdisc
mq state UP mode DORMANT group default qlen 1000
link/ether 5c:ea:1d:cf:e3:e1 brd ff:ff:ff:ff:ff:
```

• Placa de rede (network adapter)

```
$ ifconfig -a
lo: flags=73<UP, LOOPBACK, RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 3418 bytes 352145 (352.1 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 3418 bytes 352145 (352.1 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
wlp1s0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
       inet 192.168.25.197 netmask 255.255.255.0 broadcast
192.168.25.255
       inet6 fe80::be66:3ee0:71d:a7bb prefixlen 64 scopeid
0x20 < 1ink >
       ether 5c:ea:1d:cf:e3:e1 txqueuelen 1000 (Ethernet)
       RX packets 528183 bytes 671880119 (671.8 MB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 280942 bytes 51722587 (51.7 MB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

- Roteador (router)
 - Transfere pacotes (datagramas + endereços + outros) entre computadores

Endereço MAC

- Identificador único da placa de rede
- Gravado em hardware
- Composto por 48 bits

- Endereço IP
 - Identificador de cada dispositivo ligado à internet
 - Duas versões: IPv4 (4 bytes) e IPv6 (16 bytes)

IPv4 address (dotted-decimal notation)

172 . 16 . 254 . 1 **↓ ↓ ↓**

10101100.00010000.11111110.0000001

- Endereço IP
 - Identificador de cada dispositivo ligado à internet
 - Duas versões: IPv4 (4 bytes) e IPv6 (16 bytes)

IPv6 address (in hexadecimal)

2001:0DB8:AC10:FE01:0000:0000:0000:0000


```
$ ip addr
1: lo: <LOOPBACK, UP, LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN
group default glen 1000
   link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
   inet 127.0.0.1/8 scope host lo
       valid lft forever preferred lft forever
   inet6 ::1/128 scope host
       valid lft forever preferred lft forever
2: wlp1s0: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qdisc mq state
UP group default glen 1000
   link/ether 5c:ea:1d:cf:e3:e1 brd ff:ff:ff:ff:ff
    inet 192.168.25.197/24 brd 192.168.25.255 scope global dynamic
noprefixroute wlp1s0
       valid lft 75531sec preferred lft 75531sec
   inet6 fe80::be66:3ee0:71d:a7bb/64 scope link noprefixroute
       valid lft forever preferred lft forever
```

```
$ ip addr
1: lo: <LOOPBACK, UP, LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN
group default glen 1000
   link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
   inet 127.0.0.1/8 scope host lo
      valid lft forever preferred lft forever
   inet6 ::1/128 scope host
      valid lft forever preferred lft forever
2: wlp1s0: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qdisc mq state
UP group default glen 1000
   link/ether 5c:ea:1d:cf:e3:e1 brd ff:
                                           Endereço IP do
                                                               mic
   inet 192.168.25.197/24
                                             computador
noprefixroute wlp1s0
      valid lft 75531sec preferred lft 75551sec
   inet6 fe80::be66:3ee0:71d:a7bb/64 scope link noprefixroute
       valid lft forever preferred lft forever
```

```
$ ip route
default via 192.168.25.1 dev wlp1s0 proto dhcp metric 600
169.254.0.0/16 dev wlp1s0 scope link metric 1000
192.168.25.0/24 dev wlp1s0 proto kernel scope link src
192.168.25.197 metric 600
```

```
$ ip route default via 192.168.25.1  
169.254.0.0/16 dev wlp1s0 scope link roteador 192.168.25.0/24 dev wlp1s0 proto kernel scope link src 192.168.25.197 metric 600
```

• Endereços IP e MAC

- No acesso à internet, é necessário conhecer o IP do servidor de interesse
- Ao longo do protocolo, o endereço MAC só é usado entre uma placa de rede e outra: não é preciso saber o endereço MAC do servidor que você quer acessar

Hostname

- Uma rede possui diversos dispositivos (*hosts*) com nomes únicos (*hostnames*)
- O *hostname* é um identificador mais fácil de lembrar, para não precisarmos decorar números IP
- Para descobrir o hostname do seu computador, digite \$ hostname

• Redes e *Hosts*

- O endereço IP contém duas partes, identificando a rede e o *host*
- Isto facilita a identificação do host
- O tamanho das duas partes é variável, sendo indicada ao final do endereço IP (CIDR *Classless Inter-Domain Routing*)

192.0.2.0/24:

- 24 bits para a rede: 192.0.2 (11000000.00000000.00000010)
- 8 bits para o *host*: 0 (0000000)

• Redes e *Hosts*

- Subredes podem ser criadas, aproveitando bits do *host*

• Endereços especiais

Se a parte do endereço
 IP correspondente à rede OU ao host é toda igual a 0 ou 1, este é um endereço especial

Reserved IPv4 addresses			
Range	Description		
0.0.0.0/8	Current network (only valid as source address)		
10.0.0.0/8	Private network		
100.64.0.0/10	Shared Address Space		
127.0.0.0/8	Loopback		
169.254.0.0/16	Link-local (for autoconfig)		
172.16.0.0/12	Private network		
192.0.0.0/24	IETF Protocol Assignments		
192.0.2.0/24	TEST-NET-1, documentation and examples		
192.88.99.0/24	IPv6 to IPv4 relay		
192.168.0.0/16	Private network		
198.18.0.0/15	Network benchmark tests		
198.51.100.0/24	TEST-NET-2, documentation and examples		
203.0.113.0/24	TEST-NET-3, documentation and examples		
224.0.0.0/4	IP multicast (former Class D network)		
240.0.0.0/4	Reserved (former Class E network)		
255.255.255	Broadcast		

• Endereços especiais

Se a parte do endereço
 IP correspondente à
 rede OU ao host é toda
 igual a 0 ou 1, este é um
 endereço especial

IANA-reserved private IPv4 network ranges				
private IPv4 network ranges	Start	End	No. of addresses	
24-bit block (/8 prefix, 1 × A)	10.0.0.0	10.255.255.255	16 777 216	
20-bit block (/12 prefix, 16 × B)	172.16.0.0	172.31.255.255	1 048 576	
16-bit block (/16 prefix, 256 × C)	192.168.0.0	192.168.255.255	65 536	

Network Topology

- O TCP/IP é um SUÍTE de protocolos, separada logicamente em 4 camadas:
 - Aplicação
 - Transporte
 - Internet (rede)
 - Link (enlace)

Network Topology

Data Flow

 O TCP/IP é um SUÍTE de protocolos, separada logicamente em 4 camadas:

Host = computador ou outro dispositivo

- Link (enlace)

Network Topology

 O TCP/IP é um SUÍTE de protocolos, separada logicamente em 4

Processo = programa em execução

- rransporte
- Internet (rede)
- Link (enlace)

• O TCP/IP é um *SUÍTE* de

protocolos, separada

logicamente em 4

camadas:

Network Topology

Network Topology

Data Flow

- O TCP/IP é um SUÍTE de protocolos, separada logicamente em 4 camadas:
 - Aplicação
 - Transporte
 - Internet (rede)
 - Link (enlace)

Conexões físicas

Network Topology

Data Flow

 O TCP/IP é um SUÍTE de protocolos, separada logicamente em 4 camadas:

Network Topology

Data Flow

 O TCP/IP é um SUÍTE de protocolos, separada logicamente em 4 camadas:

Network Topology

- Cada camada descreve o envio de datagramas mais detalhadamente.
 Usando uma analogia com os correios:
 - Deixamos cartas em agências,
 e esperamos que elas cheguem
 ao destino

Network Topology

- Cada camada descreve o envio de datagramas mais detalhadamente.
 Usando uma analogia com os correios:
 - Dentro dos correios, existe um sistema de transporte, um sistema de distribuição etc.

Network Topology

- Cada camada descreve o envio de datagramas mais detalhadamente.
 Usando uma analogia com os correios:
 - Quanto mais nos aprofundamos nos detalhes, mais "descemos" nas camadas

Network Topology

Data Flow

A vantagem de usar camadas é a flexibilidade. Se uma delas muda, mas se comunica corretamente com as outras, o sistema como um todo ainda funciona (p. ex., trocar a camada de link de Ethernet para Wi-Fi)

 A camada de aplicação representa em alto-nível a troca de informação entre processos. Alguns protocolos possíveis:

- HTTP (web)
- SMTP (email)
- SSH (acesso remoto)

• A camada de transporte representa a troca de informação entre *hosts*:

- TCP
- UDP

TCP segment

• A camada de internet representa a troca de informação entre redes:

- IP

A camada de link representa a troca física de informação

- Ethernet
- Fibra ótica
- Wi-Fi

Portas

- Números inteiros de 16 bits que servem de endereços para as aplicações dentro de um host
- O IP identifica o computador; a porta identifica o processo dentro do computador
 - 20 and 21: FTP
 - 22: SSH (for secure remote command line access.)
 - 23: Telnet (for remote command line access)
 - 25: SMTP (for sending email)
 - 53: DNS
 - 80: HTTP
 - 110: POP3 (for receiving email)
 - 143: IMAP. (for receiving email, improved POP)
 - 161: Simple Network Management Protocol (SNMP)
 - 443: HTTPS. (secure web, for example, online banking, shopping)

Sockets

- Interface de programação para processos se ligarem à rede
- Combinação de endereço IP e porta
- Usados por browsers, aplicativos de email etc. para conexão com a internet
- Programador não se preocupa com os DETALHES do TCP/IP, somente necessitando do IP, da porta e do tipo de comunicação

- Sockets: tipos de comunicação
 - Com conexão: uma sessão deve ser previamente estabelecida (p. ex., TCP)
 - Sem conexão: sem necessidade de estabelecimento de sessão (p. ex., UDP)

- Sockets: tipos de comunicação
 - Com conexão: uma sessão deve ser previamente estabelecida (p. ex., TCP)
 - Sem conexão: sem necessidade de estabelecimento de sessão (p. ex., UDP)

- Sockets: tipos de comunicação
 - Com conexão: uma sessão deve ser previamente estabelecida (p. ex., TCP)
 - Sem conexão: sem necessidade de estabelecimento de sessão (p. ex., UDP)

- Sockets: tipos de comunicação
 - No TCP, a conexão é fechada por um handshake triplo, que garante ausência de erros nos dados enviados

TCP 3 Way Handshake Diagram

- Sockets: tipos de comunicação
 - No UDP, pode haver erros nos dados enviados

TCP Transmission Illustration

Only 3 Blocks received order not quaranteed

UDP Transmission Illustration

- Sockets: tipos de comunicação
 - TCP é usado quando erros não são tolerados (browser, email etc.)
 - UDP é usado quando atrasos não são tolerados (videoconferência etc.)

TCP Transmission Illustration

- Outros termos importantes
 - DNS (Domain Name Structure):
 oferece nomes mais fáceis de
 lembrar (URLs), para não
 precisarmos decorar endereços
 IP de sites
 - Exemplo: vá em

 https://www.whatismyip.com/
 dns-lookup/, e digite
 www.google.com
 na barra de
 busca

What Is My IP? » DNS Lookup

DNS Lookup

Use the DNS lookup tool to find the IP address of a certain domain name. The results will include the IP addresses in the DNS records received from the name servers.

- Outros termos importantes
 - Neste exemplo, encontramos o endereço de IP 172.217.8.4
 - Digite 172.217.8.4 em um browser e veja o resultado

DNS Lookup

IPv4 address for www.google.com Domain Name Server: 172.217.8.4

Use the DNS lookup tool to find the IP address of a certain domain name. The results will include the IP addresses in the DNS records received from the name servers.

Outros termos importantes

- DHCP (*Dynamic Host Configuration Protocol*): oferece automaticamente endereços IP para dispositivos ligados a uma rede
- Estes dispositivos usam um cliente DHCP para conectar ao servidor DHCP, que lhe fornece um endereço IP
- Não é necessário conhecer o endereço IP do servidor DHCP; ele usa um mecanismo de broadcast (p. ex., o endereço 255.255.255.255)

Referências

- http://xahlee.info/linux/tcp_ip_tutorial.html
- http://www.steves-internet-guide.com/internet-prot ocol-suite-explained/
- http://www.steves-internet-guide.com/tcp-vs-udp/
- http://www.steves-internet-guide.com/understandin g-dhcp/