Block 1: Programming Mindset & Python Setup

Python Module for Incoming ISE & OR PhD Students

Will Kirschenman

August 7, 2025 | 9:00 AM - 9:50 AM

North Carolina State University

NC STATE UNIVERSITY

Welcome to Block 1!

- Goal: Build the foundation for your PhD journey in Python
- **Duration:** 50 minutes of interactive learning
- Format: Presentation + hands-on notebook exercises

What We'll Cover

 $Programming \ mindset \cdot Python \ ecosystem \cdot Google \ Colab \cdot Python \ fundamentals$

Session Learning Objectives

By the end of Block 1, you will:

- 1. Understand why programming matters in OR/ISE
- 2. Know where Python fits in the programming landscape
- 3. Be comfortable with **Google Colab** as your development environment today
- 4. Have hands-on experience with Python basics
- 5. Be **ready for Block 2** (NumPy & Pandas)

Interactive Approach

We'll switch between slides and the Jupyter notebook throughout!

Programming Paradigms

The Programming Landscape

For OR/ISE Research

Python offers an excellent balance of ease-of-use, ecosystem, and performance for most research tasks.

4

Programming Language Execution Models

Recipe book: Translate once, use many times

JIT Compiled (Julia) Source Code JIT Compiler Machine Code Execution

Smart chef: Compile as needed during execution

Why Python for OR/ISE?

Python's Dominance in Scientific Computing

Language Comparison for OR/ISE:

Feature	Python	R	MATLAB	Julia
Learning	***	**	***	**
Data Science	***	***	**	**
Optimization	***	**	***	**
ML/AI	***	***	**	**
Community	***	**	**	*
Industry	***	**	**	*

Python's Advantages

- · Gentle learning curve
- Massive ecosystem
- Industry standard
- Active research community
- Free and open source

Your Python Research Toolkit

What This Means for You

One language, endless possibilities: from data cleaning to optimization to machine learning!

Python's Expressiveness: A Quick Example

Optimization Problem: Minimize $f(x) = x^2 - 4x + 4$

In Python (3 lines):

```
from scipy.optimize import
minimize_scalar

f = lambda x: x**2 - 4*x + 4
result = minimize_scalar(f)
```

In C++ (50+ lines):

- Include headers
- · Define objective function
- Implement optimization algorithm
- Handle numerical precision
- Error checking
- Memory management

The Python Advantage

Focus on solving problems, not wrestling with implementation details!

Google Colab	

Essential Colab Shortcuts

Master these shortcuts for efficient coding:

Action	Shortcut
Run cell, go to next	Shift + Enter
Run cell, stay current	Ctrl + Enter
Add cell above	A (command mode)
Add cell below	B (command mode)
Delete cell	DD (command mode)
Cut cell	X (command mode)
Copy cell	C (command mode)
Paste cell below	V (command mode)
Change to code cell	Y (command mode)
Change to markdown	M (command mode)
Enter command mode	ESC
Comment/uncomment	Ctrl/Cmd + /
Show all shortcuts	H (command mode)

Command vs Edit Mode

Command mode (blue bar): Navigate & manipulate cells · Edit mode (green bar): Edit content

Python Fundamentals

Python's Philosophy: Simple and Readable

"Python is executable pseudocode"

Variables (No Declaration Needed!)

```
x = 42 (integer)
pi = 3.14159 (float)
name = "OR" (string)
is awesome = True (boolean)
```

Collections

```
numbers = [1, 2, 3, 4]
mixed = [42, "Python", 3.14]
algorithms = ["Simplex",
"TP"]
```

Python vs. Other Languages

```
Java: int x = 42;
C++: std::vector<int> numbers;
Python: x = 42
numbers = [1, 2, 3]
```

Less typing, more thinking!

Control Flow: Making Decisions

Python uses indentation instead of brackets!

If Statements

```
score = 85
if score >= 90:
    grade = "A"
    print("Excellent!")
elif score >= 80:
    grade = "B"
    print("Good_job!")
else:
    grade = "C"
    print("Keep.trving!")
```

For Loops

```
algorithms = ["Simplex", "IP", "DP"]

for algorithm in algorithms:
    print(f"Learning_{algorithm}")

# With enumeration
for i, algo in enumerate(algorithms):
    print(f"{i+1}.__{algo}")
```

Key Insight

Indentation makes Python code naturally readable and organized!

Functions: Building Reusable Code

Functions are essential for code organization:

Basic Function

```
import math
def calculate eog(demand, order cost,
                  holding cost):
    """Calculate Economic Order Ouantity
    eog = math.sgrt(2 * demand *
                    order cost /
                        holding cost)
    return eog
# Usage
result = calculate_eoq(1000, 600, 10)
print(f"EOQ={result:.2f}")
```

Research Applications

- · Objective functions for optimization
- Data processing pipelines
- Simulation components
- Algorithm implementations
- Reproducible experiments

Best Practice

Always include docstrings to document what your functions do!

Practical Application

Putting It All Together: OR/ISE Example

Let's see Python in action with a simple inventory simulation

What You'll Build in the Notebook

- Simulate inventory system with Python functions
- Use loops and conditions for decision logic
- · Visualize results with matplotlib
- Analyze performance metrics

From Simple to Sophisticated

Today's foundation → Your PhD program

Next Steps

What We Accomplished in Block 1 ✓

- · ✓ Understanding why programming matters in OR/ISE
- ✓ Positioned Python in the programming landscape
- ✓ Set up Google Colab for development
- ✓ Hands-on practice with Python fundamentals
- ✓ Built a practical inventory simulation

Ready for Block 2!

You now have the foundation to dive into data manipulation with NumPy & Pandas

Preview: Block 2 (10:00 AM - 10:50 AM)

Essential Data Wrangling with NumPy & Pandas

What's Coming

- NumPy arrays for fast computation
- · Pandas DataFrames for data analysis
- Real dataset manipulation
- Data cleaning techniques
- PhD student dataset (with humor!)

Quick Prep

- · Save your Block 1 notebook
- · Stretch and grab coffee
- · Think about data you work with
- Get ready for more hands-on coding!

10-minute break, then we continue to Block 2!

Resources for Continued Learning

Essential Resources

- Python Official Tutorial docs.python.org/3/tutorial/
- Python Tutor pythontutor.com (visualize code)
- Practice Python practicepython.org
- Google Colab Guide colab.research.google.com

Before Block 2

- · Re-run all notebook cells
- Try modifying the inventory simulation
- Think about data in your research

Remember: Save your notebook to Google Drive! File \rightarrow Save a copy in Drive

Questions?

See you in 10 minutes for Block 2!