

# Lecture1: Ch1. Introduction: Databases and Database Users

Dr. Alaa eldin Abdallah Yassin

## outline

- Introduction and Basic Definitions.
- Types of Databases and Database Applications.
- **DBMS** and its functions.
- Example of a Database (UNIVERSITY).
- Database system environment.
- Main Characteristics of the Database Approach.
- Advantages of Using the DBMS Approach.
- When Not to Use DBMS.

## Introduction & Basic Definitions

### **■** Data:

- "Known facts that can be recorded and have an implicit meaning".
  - Like names, telephone numbers and addresses.

### Database:

- ❖ Database is a "collection of related data". ⊙
- Database has the following implicit properties:
  - 1. A database represents some aspect of the real world, sometimes called the "mini world".
  - 2. A database is a logically coherent collection of data with some inherent meaning. (related data not a random data)
  - 3. A database is **designed**, **built**, and **populated** with data for specific purpose.
- Examples: Airline reservation system, Students' registration system.

## Types of Databases and Database Applications

- Traditional Applications:
  - Numeric and Textual Databases
- More Recent Applications:
  - Multimedia Databases
    - store images, audio, video...
  - Geographic Information Systems (GIS)
    - > store and analyze maps, weather data, and satellite images
  - Data Warehouses and online analytical processing (OLAP)
    - Extract and analyze information from different and very large databases; to support decision making.

# **DBMS**





## Basic Definitions...

## Database Management System (DBMS):

- ❖ DBMS: "Is a collection of programs that enables users to create and maintain a database".
- DBMS: " is a general-purpose software system that facilitates the processes of defining, constructing, manipulating and sharing databases among various users and applications".

## Defining Database:

- Defining a database involves:
  - Specifying the data types, structures, and constrains of the data to be stored in the database.
  - ❖The database definition or descriptive information is stored by DBMS in database catalog or dictionary; it is called "meta-data".

### **DBMS** functions...

### Constructing Database:

Constructing a database is the process of storing the data on some storage medium (hard drive, cloud-based,...) that is controlled by the DBMS.

### Manipulating Database:

Manipulating a database include <u>functions</u> such as <u>querying</u> the database to retrieve specific data, <u>updating</u> the database to reflect changes in the mini-world, and <u>generating</u> reports from the data.

### Sharing Database:

Sharing a database allows multiple users and programs to access the database simultaneously (train tickets, ...).

### Protecting Database:

Protection includes system protection against hardware and software malfunction or crashes, and security protection against unauthorized access(privilege).

# Typical **DBMS** Functionality

- Define a particular database in terms of its <u>data types</u>, <u>structures</u>, and <u>constraints</u>.
- Construct or Load the initial database contents on a secondary storage medium.
- Manipulating the database:
  - \* Retrieval: Querying, generating reports
  - Modification: Insertions, deletions and updates to its content
  - Accessing: the database through Web applications
- Processing and Sharing by a set of concurrent users and application programs - yet, keeping all data valid and consistent

# Typical **DBMS** Functionality...

#### Other features:

- Protection or Security measures to prevent unauthorized access.
- Presentation and Visualization of data.
- Maintaining the database and associated programs over the lifetime of the database application.

# Summarize the previous slides



## 11 Summary

- <u>Data Base Management System (DBMS)</u>:
  - Collection of programs.
  - Enable users to create and maintain database.
- Defining a database :
  - Specify the data type, structure and constraints of the data to be stored.

#### Meta-data:

- Database definition or descriptive information.
- Stored by the DBMS in the form of database catalog or dictionary.
- Manipulating a database:
  - Query and update the database.
  - Generate reports.

## Summary...

- Sharing a database:
  - Allow multiple users and programs to access the database simultaneously.
- Application program:
  - Access database by sending queries to DBMS.
- Query:
  - Causes some data to be retrieved.
- **■** Transaction:
  - May cause some data to be read and some data to be written into the DB.
- Maintain the database system:
  - Allow the system to improve as requirements change over time.

# Real example "university db. "

## A real example "University data base"

- University database :
  - Information concerning students, courses, grades in the university environment.
- Data records (I want to store data about what ?):
  - **STUDENTS**
  - **COURSES**
  - ❖ SECTIONs (of COURSEs)
  - (academic) DEPARTMENTs
  - **❖ INSTRUCTORS**
  - PREREQUSITE
  - GRADES

# "University data base"....

- Specify structure of records of each file by specifying data type for each data element.
  - Integer
  - String
  - \* Etc.
- Construct "university" database:
  - Store data to represent each student, course, section, and prerequisite as a record in appropriate file.
  - \* Relationship among the records.
  - Manipulating involves querying and updating.
    - Query example: list the names of students who register "database" course.
    - > Another query ex: list the prerequisite of the "database" course.

# Example of a Database (with a Conceptual Data Model)...

- Some mini-world (university database)relationships:
  - **SECTIONs** are of specific COURSEs
  - STUDENTS take SECTIONS
  - COURSEs have prerequisite COURSEs
  - INSTRUCTORs teach SECTIONS
  - **COURSEs** are offered by DEPARTMENTS
  - **STUDENTs** major in **DEPARTMENTs**
- Note: The above entities and relationships are typically expressed in a conceptual data model, such as the ENTITY-RELATIONSHIP data model (Chapters 3, 4)

# University database...

#### COURSE

| Course_name               | Course_number | Credit_hours | Department |
|---------------------------|---------------|--------------|------------|
| Intro to Computer Science | CS1310        | 4            | CS         |
| Data Structures           | CS3320        | 4            | CS         |
| Discrete Mathematics      | MATH2410      | 3            | MATH       |
| Database                  | CS3380        | 3            | CS         |

#### GRADE\_REPORT

|   | Student_number | Section_identifier | Grade |
|---|----------------|--------------------|-------|
|   | 17             | 112                | В     |
|   | 17             | 119                | С     |
|   | 8              | 85                 | Α     |
| I | 8              | 92                 | Α     |
|   | 8              | 102                | В     |
|   | 8              | 135                | Α     |

#### SECTION

| Section_identifier | Course_number | Semester | Year | Instructor |
|--------------------|---------------|----------|------|------------|
| 85                 | MATH2410      | Fall     | 04   | King       |
| 92                 | CS1310        | Fall     | 04   | Anderson   |
| 102                | CS3320        | Spring   | 05   | Knuth      |
| 112                | MATH2410      | Fall     | 05   | Chang      |
| 119                | CS1310        | Fall     | 05   | Anderson   |
| 135                | CS3380        | Fall     | 05   | Stone      |

#### **PREREQUISITE**

| Course_number | Prerequisite_number |
|---------------|---------------------|
| CS3380        | CS3320              |
| CS3380        | MATH2410            |
| CS3320        | CS1310              |

# Example of a simplified database catalog

#### RELATIONS

| Relation_name | No_of_columns |
|---------------|---------------|
| STUDENT       | 4             |
| COURSE        | 4             |
| SECTION       | 5             |
| GRADE_REPORT  | 3             |
| PREREQUISITE  | 2             |

#### COLUMNS

| Column_name         | Data_type      | Belongs_to_relation |
|---------------------|----------------|---------------------|
| Name                | Character (30) | STUDENT             |
| Student_number      | Character (4)  | STUDENT             |
| Class               | Integer (1)    | STUDENT             |
| Major               | Major_type     | STUDENT             |
| Course_name         | Character (10) | COURSE              |
| Course_number       | XXXXNNNN       | COURSE              |
|                     |                |                     |
|                     |                |                     |
|                     |                |                     |
| Prerequisite_number | XXXXNNNN       | PREREQUISITE        |

## Simplified database system environment ©



# Managing Data

- There are two approaches to manage data
  - 1. File-based approach:
    - An approach that utilizes a collection of application programs which performs services to end-users (e.g., Reports).
    - Each program defines and manages its own data.

### 2. Database approach:

An approach that data is collected and manipulated using specific software called Database Management System, and many programs share this data.

# Disadvantages of file processing approach

- Program data dependance:
  - All programs maintain meta data for each file they use.
- Duplication of data:
  - Different system/programs have separate copies of the same data(no sharing)
- Limited data sharing:
  - No centralized control of data.
- Lengthy development times:
  - Programmers must design their own file formats.
- Excessive program maintenance:
  - 80% of information system budget.

## Disadvantages of file processing approach



# Database approach is the solution

- Central storage of shared data.
- Data is managed by a controlling agent.
- Stored in standardized convenient form.



## Main Characteristics of the Database Approach

- **Self-describing nature** of a database system:
  - A DBMS catalog stores the description of a particular database (e.g., data structures, types, storage format, and constraints).
  - The description is called meta-data.
  - This allows the DBMS software to work with different database applications; because DBMS use catalog.
- Insulation between programs and data:
  - Called program-data independence (PDI).
  - Allows changing data structures and storage organization without having to change the DBMS access programs.
  - Program operation independence (POI) (OO system).
  - ❖ Data abstraction = PDI + POI.

# Main Characteristics of the Database Approach (continued)...

### ❖ Data Abstraction:

- >A data model is a type of data abstraction (ERD,...).
- It hide storage details and present the users with a conceptual view of the database.
- Programs refer to the data model constructs rather than data storage details.

## ■ Support of **multiple views** of the data:

- Each user may see a different view of the database, which describes only the data of interest to that user.
- This characteristic used in security.

# Main Characteristics of the Database Approach (continued)...

- Sharing of data and multi-user transaction processing:
  - Allowing a set of concurrent users to retrieve from and to update the database.
  - Concurrency control within the DBMS guarantees that each transaction is correctly executed or aborted (ticket reservation).
  - Recovery subsystem ensures each completed transaction has its effect permanently recorded in the database
  - OLTP (Online Transaction Processing) is a major part of database applications. This allows hundreds of concurrent transactions to execute per second (Bank transfer).

# Advantages of Using the **DBMS** Approach

- Controlling redundancy in data storage and in development and maintenance efforts.
  - > Sharing of data among multiple users.
- 2. Restricting unauthorized access to data.
  - Security and privilege
- 3. Providing persistent storage for program Objects
  - > Save object in database.
  - > Impedance mismatch problem.
- 4. Providing Storage Structures and search techniques for efficient query processing.
  - indexes for efficient Query Processing
  - Buffering and caching.

# Advantages of Using the **DBMS** Approach, continued ...

- 5. Providing backup and recovery services.
- 6. Providing multiple interfaces to different classes of users (GUIs)
- 7. Representing complex relationships among data.
- 8. Enforcing integrity constraints on the database.
- 9. Drawing inferences and actions from the stored data using deductive and active rules
  - Deductive database
  - Active database (triggers)

# Additional Implication of Using the Database Approach

- Potential for enforcing standards:
  - ❖This is very crucial for the success of database applications in large organizations. Standards refer to data item names, display formats, screens, report structures, meta-data (description of data), Web page layouts, etc.
- Reduced application development time:
  - Incremental time to add each new application is reduced.

# Additional Implication of Using the Database Approach, continued ...

- ► Flexibility to change data structures:
  - Database structure may evolve as new requirements are defined.
- Availability of current information:
  - Extremely important for on-line transaction systems such as airline, hotel, car reservations.
- **Economies** of scale:
  - Wasteful overlap of resources and personnel can be avoided by consolidating data and applications across departments.

## When not to use a DBMS

- Main inhibitors (costs) of using a DBMS:
  - High initial investment and possible need for additional hardware.
  - Overhead for providing generality, security, concurrency control, recovery, and integrity functions.
- When a DBMS may be unnecessary:
  - If the database and applications are simple, well defined, and not expected to change.
  - ❖If there are stringent real-time requirements that may not be met because of DBMS overhead.
  - ❖If access to data by multiple users is not required.

## When not to use a DBMS

- When no DBMS may suffice:
  - ❖If the database system is not able to handle the complexity of data because of modeling limitations
  - ❖If the database users need special operations not supported by the DBMS.



## Team code in Microsoft team

# g23d8bv