1 Dérivées

Fonction	Dérivée	
x^n	nx^{n-1}	$(n \in \mathbb{Z})$
$\frac{1}{x}$	$-\frac{1}{x^2}$	
\sqrt{x}	$\frac{1}{2}\frac{1}{\sqrt{x}}$	
x^{α}	$\alpha x^{\alpha-1}$	$(\alpha \in \mathbb{R})$
e ^x	e ^x	
$\ln x$	$\frac{1}{x}$	
cos x	$-\sin x$	
sin x	cos x	
tan x	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	

— Somme.
$$(u+v)' = u' + v'$$

— Produit par un réel.
$$(ku)' = ku'$$
 où $k \in \mathbb{R}$

— **Produit.**
$$(u \times v)' = u'v + uv'$$

- Inverse.
$$\left[\left(\frac{1}{u} \right)' = -\frac{u'}{u^2} \right]$$
- Quotient.
$$\left[\left(\frac{u}{v} \right)' = \frac{u'v - uv'}{v^2} \right]$$

Pour u une fonction qui dépend de x:

Fonction	Dérivée	
u ⁿ	$nu'u^{n-1}$	$(n \in \mathbb{Z})$
$\frac{1}{u}$	$-\frac{u'}{u^2}$	
\sqrt{u}	$\frac{1}{2} \frac{u'}{\sqrt{u}}$	
u^{α}	$\alpha u'u^{\alpha-1}$	$(\alpha \in \mathbb{R})$
e^u	u'e ^u	
ln u	$\frac{u'}{u}$	
cosu	$-u'\sin u$	
sin u	$u'\cos u$	
tan u	$u'(1+\tan^2$	$u(u) = \frac{u'}{\cos^2 u}$