Tanabe Sugano (TS) Diagram Lecture-1

M. Sc. (CC-6/PAT/CSIR NET) Inorganic Chemistry

Dr. Naresh Kumar

Prof. of Chemistry
Univ. Dept. of Chemistry
B. N. Mandal University, Madhepura

Tanabe Sugano (TS) Diagram

(It was Proposed by Yukito Tanabe & Satoru Sugano in 1954 on the absorption of spectra of complexes published in a journal).

Splitting of terms in strong field (as well as weak field) is called TS diagram.

It gives idea about e-spectra & is more comprehensive then orgel diagram. It is just like orgel diagram except.

1. It is plotted b/w ligand field strength (Δ_0 /B) & excited state term (E/B) along X axis & Y axis respectively. (Where B = Racah Parameter which play important role in TS diagram, Δ_0 = CFSE, E = energy of term) unlike orgel diagram.

TS Diagram

<u>Orgel Diagram</u>

Ground State is taken as constant reference
 energy is zero than other splitted terms

- 3. It is valid for both HS & LS (weak field & strong field) &follow non crossing rule.
- 4. All terms of different microstates are considered in TS diagram even forbidden transition occurs unlike orgel diagram.
- 5. It helps to calculate Δ_0 , B, β (Nephlauxetic ratio).

To sketch TS diagram microstates, possible terms, GST & their stability (energy) & orgel diagram must be considered

No. of Microstate
$$=\frac{\frac{\ln n}{\ln e}}{\ln e}$$

 $n = \text{twice of the no. of orientation of orbital}$
 $e = \text{No. of given } e$ -

Microstates for nd 1-10

configuration	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9	d^{10}
microstates	10	45	120	210	252	210	120	45	10	1

The number of microstates (the total degeneracy) for a configuration nd^x is the same as for nd^{10-x} .

configuration	atomic terms					
d^1 , d^9	2 D					
d^2 , d^8	3F , 3P, 1G, 1D, 1S					
d^3 , d^7	4F, 4P, 2H, 2G, 2F, 2D					
d ⁴ , d ⁶	⁵ D, ³ H, ³ G, ³ F, ³ D, ³ P, ¹ I, ¹ G, ¹ F, ¹ D, ¹ S					
d ⁵	6S, 4G, 4F, 4D, 4P, 2I, 2H, 2G, 2G', 2F, 2F', 2D, 2D', 2P, 2S					
d ¹⁰	1 S					
1. Term with highest spin multiplicity 2S+1 has lowest energy 2. Terms with same multiplicity, that one with highest value of L is lower in energy (S < P < D < F < G < H < I) e.g. ³ F < ³ P - for d ² , d ⁸ ⁴ F < ⁴ P - for d ³ , d ⁷						

Splitting of term Term splitting in octahedral field Term

S A_{1g}

D

H

0

1

2

3

4

5

6

F G

 d^{1} , d^{2} , d^{3} , d^{8} , d^{9} & d^{10} are field independent system so

spectral peak of weak field & strong field complexes.

 $A_{1g} + A_{2g} + E_g + T_{1g} + T_{2g} + T_{2g}$

T_{1g}

Eg+Tag

 $A_{2g} + T_{1g} + T_{2g}$

 $A_{1g} + E_g + T_{1g} + T_{2g}$

Eg+ 2T1g+ T2g

there is no change in weak or strong field but d⁴, d⁵, d⁶ & d⁷ are field dependent system. So there is change in

Now we discuss about TS diagram of dn system.

For d¹ & d⁹ system

Microstates of d¹ & d⁹ system is ²D

²D splits into two sets t_{2g}^1 & e_g^1 where t_{2g}^2 has lowest energy & goes to X axis

For d² system

Ground states term of d² & d⁸ system are ³F, ³P, ¹G, ¹D, ¹S but stable terms are ³F & ³P where energy of ³F < ³P

As we know that energy difference b/w two terms of same multiplicity (${}^{3}F \& {}^{3}P$) = 15B & we get 3 transition peaks E1, E2, E3 (however other transition are also b/w different terms are possible but they are not allowed)

Example: $[V(H_{2}O)_{6}]^{3+}$

