

Jerko Radan Cruz r0773435

Outline

- I. Data definition.
- II. Univariate analysis.
- III. Forecasting models.
- IV. Multivariate analysis.
- V. Conclusions.

Data definition

- Unadjusted monthly stock price for Microsoft Corporation (MSFT) [Mar1986 Nov2019] [1]. (main series to forecast).
 - ➤ For the multivariate analysis, the series is dimension to [Dec2002 Oct2019], to match the other time series (in differences).
- 10-Year Breakeven Inflation Rate [Jan2003 Oct2019] [2] (percentage).
 - ➤ Definition: "measure of expected inflation derived from 10-Year Treasury Constant Maturity Securities (BC_10YEARM) and 10-Year Treasury Inflation-Indexed Constant Maturity Securities (TC_10YEARM)" [2].
 - > "The latest value implies what market participants expect inflation to be in the next 10 years, on average" [2].

Data plots

Microsoft closing monthly stock price (full)

Microsoft closing monthly stock price (short)

Time

Stationarity and trend

- Both Full and Short MSFT stock price:
 - Stochastic trend.
 - Log-diff to get them stationary.

- 10-YR Breakeven Infl Rate is stationary.
 - ADF test: p-value= 0,003 (RH0 no unit root).

Log-diff short MSFT stock price

Correlogram and partial correlogram

Log-Diff Full MSFT stock price

Series dlog_full_stock_ts Series dlog_full_stock_ts 0.10 80. 0.05 9.0 Partial ACF 0.00 0.2 -0.05 0.10 2.0 2.0 0.0 0.5 1.0 0.0 1.5 Lag Lag

Log-Diff Short MSFT stock price

No visible seasonality, corroborated with a monthly linear regression (not significant).

Heteroscedasticity

- The Log-Diff Full MSFT stock price ARMA models present conditional heteroscedasticity.
- The Log short MSFT stock price ARMA models present border line significance.
 - It might be due to having less data (shorter period of time).
 - O Note that it can be modelled as an ARIMA(0,1,0) with drift (Log-diff being a white noise with drift).

Log-Diff Full MSFT stock price

Correlgram of ARIMA (1,0,1) residuals^2

Log Short MSFT stock price

In-sample model analysis (Full MSFT stock price in log-differences)

Model	Highest order coefficient significant	Correlogram of the Std residuals	Correlogram of the Std residuals^2	Ljung-Box test for the standardized residuals	Ljung-Box test for the standardized residuals^2	BIC
ARMA (1,1) + GARCH (1,1)	No	Practically: OK Statistical: OK	Practically: OK Statistical: NOT	Fail to reject: OK	Fail to reject: OK	-1.9691
ARMA (1,1) + GARCH (2,2)	No	Practically: OK Statistical: OK	Practically: OK Statistical: Border line significance	Fail to reject: OK	Fail to reject: OK	-1.9446
ARMA (2,1) + GARCH (1,1)	No	Practically: OK Statistical: OK	Practically: OK Statistical: NOT	Fail to reject: OK	Fail to reject: OK	-1.9557
ARMA (1,2) + GARCH (1,1)	No	Practically: OK Statistical: Border line significance	Practically: OK Statistical: OK	Fail to reject: OK	Fail to reject: OK	-2.0089
AR (3) + GARCH (1,1)	Yes	Practically: OK Statistical: OK	Practically: OK Statistical: NOT	Fail to reject: OK	Fail to reject: OK	-1.9669
MA (3) + GARCH (1,1)	Yes	Practically: OK Statistical: OK	Practically: OK Statistical: NOT	Fail to reject: OK	Fail to reject: OK	-1.9649
ARMA (2,2) + GARCH (1,1)	Yes	Practically: OK Statistical: OK	Practically: OK Statistical: OK	Fail to reject: OK	Fail to reject: OK	-1.9522

Out-of-sample model analysis (Full MSFT stock price in log-differences)

Model	MAE (h = 1)		
ARMA (1,1) + GARCH (1,1)	0.04193		
ARMA (1,2) + GARCH (1,1)	0.04214		
AR (3) + GARCH (1,1)	0.04282		
MA (3) + GARCH (1,1)	0.04292		

Diebold-Mariano test: Fail to reject H0: there is no significant difference.

ARMA (1,1) + GARCH (1,1) is chosen since it is simpler.

Multivariate analysis

- 10-YR Breakeven Inflation rate is I(0).
 - ➤ Based on the US Dec2002 CPI of 180,9 (1982-84 = 100) the corresponding I(1) series is calculated (to be able to perform the Engle-Granger test).
- ADL(3) is a valid model.
- H0 of no Granger Causality is rejected (not very significant p-value 0,04).
 - > 10-YR Breakeven inflation rate (lag 3) has an incremental power in predicting dlog Short MSFT stock.
- Engle-Granger test: fail to reject H0 (T-statstic -0.782).
 - ➤ No evidence for cointegration (no cointegration).
 - > No need for ECM nor VECM.
- Proposed VAR(2) is not a good approximation for Log-diff Short MSFT stock price.
 - ➤ Model dlog_stock_ts = dlog_stock_ts.l1 + dlog_CPI_ts.l1 + dlog_stock_ts.l2 + dlog_CPI_ts.l2 + const is not significant.

Conclusions

- Based on the data, the best evaluated forecast model for the Log-Diff Full MSFT stock price series is the ARMA(1,1) + GARCH(1,1) with a MAE (h = 1) of 0,04193.
- The auto.arima function for the Log-Diff Full MSFT stock price series proposed a SARMA(2,1,3)(2,0,0). This model is rejected due to Heteroscedasticity, and there is no seasonality.
- The Short MSFT stock price dataset is very small (approx. 17 values per month), going into differences once makes it already white noise.
 - > A lot of models will fit the data.
 - > It can be modelled as a white noise with drift.
 - > Border line Heteroscedasticity significance.
- The final result for the VAR(2) model was expected, since the Granger Causality was border line significant.