www.cellwise-semi.com CW1030-DS V1.0

CW1030

3 节电池保护 IC

功能特性

- 过充电保护
 - 阈值范围 4.175V~4.325V, 25mV 步进, ±25mV 精度
- 过放电保护
 - 阈值范围 2.500V 或 2.700V, ±50mV 精度
- 过电流保护
 - 过流检测 1 阈值 0.100V, ±5mV 精度
 - 过流检测 2 阈值 0.200V, ±10mV 精度
 - 短路保护 阈值 0.400V, ±10mV 精度
- 过流保护后负载锁定,解除负载后自动回复
- 低功耗设计
 - 工作状态 12μA (25°C)
 - 休眠状态 5μA (25°C)
- 封装形式: SOP-8

应用领域

- 电动工具
- 后备电源
- 锂离子及锂聚合物电池包

基本描述

CW1030 系列产品是一款高度集成的 3 串锂离子电池或锂聚合物电池保护芯片。CW1030 为电池包提供过充、过放以及过流保护。

应用示意图

产品选择指南

产品目录

产品型号	过充阈值	过充延时	过充解除	过放阈值	过放延时	过放解除
)加至与	[Voc]	[Toc]	[V _{OCR}]	[V _{OD}] [T _{OD}]		[V _{ODR}]
CW1030AAAP	4.225V	1s	4.125V	2.700V	1s	3.000V

产品型号	过流1阈值	过流2阈值	短路阈值
) 加纽与	[V _{EC1}]	[V _{EC2}] [V _S	
CW1030AAAP	0.100V	0.200V	0.400V

C€//Wi5€ CW1030

引脚排列图

编号	名称	引脚描述
1	VDD	芯片电源,连接电池组最高电位;即电池3正端
2	VC2	电池2正极连接端子
3	VM	P-端电压检测端子,过流检测端子
4	CO	充电保护输出端子,开漏输出,驱动 PMOS
5	TD	测试模式端子
6	DO	放电保护输出端子,驱动 NMOS
7	VC1	电池 1 正极连接端子
8	VSS	芯片接地端子,连接电池 1 负极

绝对最大额定值

		范	范围		
		最小值	最大值	単位	
引脚输入电压	VDD, VM, CO,VC2,VC1	VSS-0.3	VSS+30	V	
引脚输入电压	TD	VSS-0.3	6	V	
引脚输入电压	DO	VSS-0.3	VDD+0.3	V	
工作温度	T1	-30	85	°C	
存储温度	T2	-40	125	°C	

注意:绝对最大额定值是指无论在任何条件下都不能超过的额定值。如果超过此额定值,有可能造成产品损伤。

额定工作电压

描述	项目	最小值	典型值	最大值	单位
VDD 输入电压	V_{DD}	4		13.5	V
VCELL 输入电压	V _{CELL}	0		4.5	V

电气特性

除特殊说明外 T=25℃

描述	项目	测试条件	最小值	典型值	最大值	单位
电源	•					
正常工作电流	I _{OPR}	VC1=VC2=VC3=3.7V		12	20	μΑ
休眠电流	I _{SLEEP}	VC1=VC2=VC3=2.0V		5		μΑ
电压、温度检测和保护阈值	•					
过充检测电压	Voc*1	VC1=VC2=3.7V VC3=3.7→4.5V	V _{OC} - 0.025	Voc	V _{oc} + 0.025	V
过充解除电压	V _{OCR}	VC1=VC2=3.7V VC3=4.5→3.7V	V _{OCR} - 0.025	V _{OCR}	V _{OCR} + 0.025	V
过放检测电压	V _{OD}	VC1=VC2=3.7V VC3=3.7→2.0V	V _{OD} -	V _{OD}	V _{OD} + 0.050	٧
过放解除电压	V _{ODR}	VC1=VC2=3.7V VC3=2.0→3.7V	V _{ODR} - 0.050	V _{ODR}	V _{ODR} + 0.050	٧
过流 1 检测电压	V _{EC1}	VC1=VC2=VC3=3.7V VM=0→0.15V	V _{EC1} -	V _{EC1}	V _{EC1} + 0.005	٧
过流 2 检测电压	V _{EC2}	VC1=VC2=VC3=3.7V VM=0→0.3V	V _{EC2} -	V _{EC2}	V _{EC2} + 0.010	٧
短路检测电压	V _{SHR}	VC1=VC2=VC3=3.7V VM=0→0.5V	V _{SHR} - 0.010	V_{SHR}	V _{SHR} + 0.010	٧
负载检测电压	V_{LD}	VC1=VC2=VC3=3.7V		0.4		V
延迟时间	•					
过充保护延时	T _{oc}	VC1=VC2=3.7V VC3=3.7→4.5V	0.8	1	1.2	s
过充保护重置延时	T _{RESET}		8	12	16	ms
过充保护解除延时	T _{OCR}	VC1=VC2 =3.7V VC3=4.5→3.7V	10	17.5	25	ms
过放保护延时	T _{OD}	VC1=VC2= 3.7V VC3=3.7→2.0V	0.8	1	1.2	s
过放保护解除延时	T _{ODR}	VC1=VC2 =3.7V VC3=2.0→3.7V	160	200	240	ms
过流 1 保护延时	T _{EC1}	VC1=VC2=VC3=3.7V VM=0→0.15V	0.8	1	1.2	s
过流 2 保护延时	T _{EC2}	VC1=VC2=VC3=3.7V VM=0→0.5V	80	100	120	ms
短路保护延时	T _{SHORT}	VC1=VC2=VC3=3.7V VM=0→0.5V	200	240	280	μS
过流解除延时	T _{ECR} *2		50	60	70	ms
负载锁定态解除延时	T _{LLR}	VC1=VC2=VC3 =3.7V VM <v<sub>SHR</v<sub>		60		ms
休眠延时	T _{SLP}		24	30	36	S

C∈//Wis∈

0V 充电功能						
0V 充电开始电压	V _{ov}			1.3	2.0	V
VM 端子						
VM 和 VSS 间电阻	R _{VMVSS}			60		kΩ
引脚输出电压						
CO 逻辑低电平输出电压	CO*3			VSS		V
DO 逻辑高电平输出电压	DO			VDD		V
DO 逻辑低电平输出电压				VSS		V
引脚驱动能力						
CO 農乙於山山冻	СО	CO端子逻辑高电平				μА
CO端子输出电流		CO 端子逻辑低电平		-150		μА
DO 端子输出电流	DO	DO 端子逻辑高电平		150		μА
		DO 端子逻辑低电平		-400		μΑ

^{*1} 详细保护阈值选择,请参阅选择指南表

^{*2} 所有过电流保护(包括过流 1,过流 2 和短路保护)解除延迟时间均为 60ms

^{*3} CO 端子的输出高电平为高阻态

原理框图

功能描述

正常状态

所有电池电压处于过充检测电压(V_{OD})和过放检测电压(V_{OD})之间,且 VM 端子电压小于过流检测电压(V_{EC1})时,CW1030 处于正常工作状态。

过充电状态

正常状态下,任意一节电池电压高于过充检测电压(V_{oc}),且超过过充保护延迟时间(T_{oc}),CO端子输出高阻态关断充电MOSFET,CW1030进入过充保护状态。

过充保护延时时间(T_{oc})内,若所检测电池电压低于过充检测电压(V_{oc})的时间超过过充重置延时(T_{RESET}),则过充累积的延迟时间(T_{oc})重置。否则,电池电压的下降则认为是无关的干扰从而被屏蔽。

过充电保护解除条件:

所有电池电压低于过充解除电压(V_{OCR})且超过过充解除延迟时间(T_{OCR})。

过放电状态

正常状态下,任意一节电池电压低于过放保护电压(V_{OD}),且超过过放保护延迟时间(T_{OD}),DO 端子输出低电平关断放电 MOSFET,CW1030 进入过放保护状态。

过放电保护解除条件:

所有电池电压高于过放解除电压(V_{ODR})且超过过放解除延迟时间(T_{ODR});

过放电负载锁定态

CW1030 在连接负载的条件下进入过放保护态,保持负载存在,若所有电池电压高于过放解除电压 (Vodr) 且维持超过过放解除延时(Todr),则 CW1030 进入过放电负载锁定态。此时,即使所有电池电压高于过放解除电压(Vodr),DO 端子也会持续输出低电平保持放电 MOSFET 关闭。

过放电负载锁定解除条件:

负载解除,VM 端子电压小于 V_{SHR},并超过负载锁定解除延时 T_{LLR},过放电负载锁定态解除,IC 进入正常状态。

低功耗状态

CW1030 进入过放保护状态,并超过休眠延时时间(T_{SLP}),则 CW1030 会进入低功耗状态。DO 端子保持低电平,维持放电 MOSFET 关闭;CO 端子保持低电平状态,维持充电 MOSFET 开启。

休眠状态解除条件:

负载解除, 电池电压高于过放解除电压(V_{ODR})且维持超过过放解除延时(T_{ODR})。

过电流状态

CW1030 内置三级过流检测,过流 1,过流 2 和短路保护。

保护机制:通过 VM 端子柃测主回路放电 MOSFET 上压降,来判断是否进行相应的过流保护。

以过流 1 保护为例,放电电流跟随外部负载变化,VM 端子检测到放电 MOSFET 上的电压大于过流 1 保护阈值(V_{EC1})并维持超过过流 1 保护延迟时间(T_{EC1}),DO 端子输出低电平关断放电 MOSFET。CW1030 进入过流保护状态。

过流解除条件:

VM 端子电压小于 V_{SHR} ,且超过过流回复延时时间(T_{ECR}),过流保护解除。

0V 充电

CW1030 支持电池 0V 充电功能,即当电池电压低于芯片正常工作电压时,电池包可正常充电。 CW1030 的 VDD 电压大于 0V 充电开始电压(Vov),连接充电器且充电器输出电压高于充电 MOSFET 开启阈值时,电池开始充电。

参考应用电路

3 串共负异口应用电路

3 串共正异口应用电路

Ce∥Wise CW1030

封装图和封装尺寸

SOP-8 封装

SECTION B-B

SYMBOL		MILLIMETER	
	MIN	NOM	MAX
Α			1.75
A1	0.10		0.225
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.39		0.47
b1	0.38	0.41	0.44
С	0.20		0.24
c1	0.19	0.20	0.21
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27BSC	
h	0.25		0.50
L	0.50		0.80
L1		1.05REF	
θ	0		8°

CW1030 C€//Wi5€

版本履历

日期	版本	修改项目	修改	批准
2018-06-14	1.0	V1.0 说明书发布	曾抗	周军

声明

赛微微电子公司为提高产品的可靠性、功能或设计,保留对其做出变动的权利,恕不另行通知。对于本文描述的任何产品和电路应用中出现的问题,赛微微电子公司不承担任何责任;不转让其专利权下的任何许可证,也不转让其他权利。

若无赛微微电子公司总裁正式的书面授权,其产品不可作为生命支持设备或系统中的关键器件。

具体如下:

- 生命支持器件或系统是指如下的设备或系统: (a)用于外科植入人体,或(b)支持或维持生命,以及即使依照标示中的使用说明进行正确操作,但若操作失败,仍将对使用者造成严重的伤害。
- 2. 关键器件是指生命支持设备或系统中,由 于该器件的失效会导致整个生命支持设备 或系统的失效,或是影响其安全性及使用 效果。