MLES & Multivariate Normal Theory

STA721 Linear Models Duke University

Merlise Clyde

September 6, 2016

Outline

- Expectations of Quadratic Forms
- Multivariate Normal Distribution
- Linear Transformations
- Distribution of estimates under normality

Properties of MLE's Recap

- $oldsymbol{\hat{Y}}=\hat{oldsymbol{\mu}}$ is an unbiased estimate of $oldsymbol{\mu}=oldsymbol{\mathsf{X}}oldsymbol{eta}$
- E[e] = 0 if $\mu \in C(X)$

$$\mathsf{E}[\mathsf{e}] = \mathsf{E}[(\mathsf{I} - \mathsf{P}_{\mathsf{X}})\mathsf{Y}]$$

• MLE of σ^2 :

$$\hat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{n} = \frac{\mathbf{Y}^T (\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \mathbf{Y}}{n}$$

Is this an unbiased estimate of σ^2 ?

Need expectations of quadratic forms $\mathbf{Y}^T \mathbf{A} \mathbf{Y}$ for \mathbf{A} an $n \times n$ matrix \mathbf{Y} a random vector in \mathbb{R}^n

Quadratic Forms

Without loss of generality we can assume that $\mathbf{A} = \mathbf{A}^T$

- \bullet **Y**^T**AY** is a scalar
- $\bullet \mathbf{Y}^T \mathbf{A} \mathbf{Y} = (\mathbf{Y}^T \mathbf{A} \mathbf{Y})^T = \mathbf{Y}^T \mathbf{A}^T \mathbf{Y}$

$$\frac{\mathbf{Y}^{T}\mathbf{A}\mathbf{Y} + \mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{Y}}{2} = \mathbf{Y}^{T}\mathbf{A}\mathbf{Y}$$
$$\mathbf{Y}^{T}\frac{(\mathbf{A} + \mathbf{A}^{T})}{2}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{A}\mathbf{Y}$$

• may take $\mathbf{A} = \mathbf{A}^T$

Expectations of Quadratic Forms

Theorem

Let \mathbf{Y} be a random vector in \mathbb{R}^n with $E[\mathbf{Y}] = \mu$ and $Cov(\mathbf{Y}) = \Sigma$. Then $E[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] = tr \mathbf{A} \Sigma + \mu^T \mathbf{A} \mu$.

Result useful for finding expected values of Mean Squares; no normality required!

Proof

Start with $(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

Rearrange

$$\begin{split} \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] &= \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr}(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathsf{E}[\mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathbf{A} \mathsf{E}([(\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathbf{A} \mathbf{\Sigma} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

$$tr \mathbf{A} \equiv \sum_{i=1}^{n} a_{ii}$$

Expectation of $\hat{\sigma}^2$

Use the theorem:

$$E[\mathbf{Y}^{T}(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}] = tr(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\sigma^{2}\mathbf{I} + \mu^{T}(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mu$$

$$= \sigma^{2}tr(\mathbf{I} - \mathbf{P}_{\mathbf{X}})$$

$$= \sigma^{2}r(\mathbf{I} - \mathbf{P}_{\mathbf{X}})$$

$$= \sigma^{2}(n - r(\mathbf{X}))$$

Therefore an unbiased estimate of σ^2 is

$$\frac{\mathbf{e}^T \mathbf{e}}{n - r(\mathbf{X})}$$

If **X** is full rank $(r(\mathbf{X}) = p)$ and $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ then the

$$tr(\mathbf{P}_{\mathbf{X}}) = tr(\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})$$

$$= tr(\mathbf{X}^{T}\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1})$$

$$= tr(\mathbf{I}_{p}) = p$$

Spectral Theorem

Theorem

If \mathbf{A} $(n \times n)$ is a symmetric real matrix then there exists a \mathbf{U} $(n \times n)$ such that $\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = \mathbf{I}_n$ and a diagonal matrix $\mathbf{\Lambda}$ with elements λ_i such that $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$

- **U** is an orthogonal matrix; $\mathbf{U}^{-1} = \mathbf{U}^T$
- ullet The columns of $oldsymbol{\mathsf{U}}$ from an Orthonormal Basis for \mathbb{R}^n
- rank of **A** equals the number of non-zero eigenvalues λ_i
- Columns of U associated with non-zero eigenvalues form an ONB for C(A) (eigenvectors of A)
- $\mathbf{A}^p = \mathbf{U} \mathbf{\Lambda}^p \mathbf{U}^T$ (matrix powers)
- a square root of $\mathbf{A} > 0$ is $\mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^T$

Projections

Projection Matrix

If **P** is an orthogonal projection matrix, then its eigenvalues λ_i are either zero or one with $\operatorname{tr}(\mathbf{P}) = \sum_i (\lambda_i) = r(\mathbf{P})$

- $P = U\Lambda U^T$
- $P = P^2 \Rightarrow U \Lambda U^T U \Lambda U^T = U \Lambda^2 U^T$
- $\Lambda = \Lambda^2$ is true only for $\lambda_i = 1$ or $\lambda_i = 0$
- Since $r(\mathbf{P})$ is the number of non-zero eigenvalues, $r(\mathbf{P}) = \sum \lambda_i = \text{tr}(\mathbf{P})$

$$\begin{split} \mathbf{P} &= [\mathbf{U}_{P}\mathbf{U}_{P^{\perp}}] \left[\begin{array}{cc} \mathbf{I}_{r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_{n-r} \end{array} \right] \left[\begin{array}{c} \mathbf{U}_{P}^{T} \\ \mathbf{U}_{P^{\perp}}^{T} \end{array} \right] = \mathbf{U}_{P}\mathbf{U}_{P}^{T} \\ \mathbf{P} &= \sum_{i=1}^{r} \mathbf{u}_{i}\mathbf{u}_{i}^{T} \end{split}$$

sum of r rank 1 projections.

Distributions

- ullet Distribution of $\hat{oldsymbol{eta}}$
- Distribution of P_XY
- Distribution of e
- Distribution of $\hat{\sigma}^2$

Univariate Normal

Definition

We say that Z has a standard Normal distribution

$$Z \sim N(0,1)$$

with mean 0 and variance 1 if it has density

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$$

If $Y = \mu + \sigma Z$ then $Y \sim N(\mu, \sigma^2)$ with mean μ and variance σ^2

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2}$$

Standard Multivariate Normal

Let $z_i \stackrel{\text{iid}}{\sim} N(0,1)$ for $i = 1, \ldots, d$ and define

$$\mathbf{Z} \equiv \left[\begin{array}{c} z_1 \\ z_2 \\ \vdots \\ z_d \end{array} \right]$$

• Density of Z:

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$$

- ullet $\mathsf{E}[\mathbf{Z}] = \mathbf{0}$ and $\mathsf{Cov}[\mathbf{Z}] = \mathbf{I}_d$
- $\mathbf{Z} \sim \mathsf{N}(\mathbf{0}_d, \mathbf{I}_d)$

Multivariate Normal

For a d dimensional multivariate normal random vector, we write $\mathbf{Y} \sim N_d(oldsymbol{\mu}, oldsymbol{\Sigma})$

- $E[Y] = \mu$: d dimensional vector with means $E[Y_j]$
- Cov[\mathbf{Y}] = $\mathbf{\Sigma}$: $d \times d$ matrix with diagonal elements that are the variances of Y_j and off diagonal elements that are the covariances $\mathsf{E}[(Y_j \mu_j)(Y_k \mu_k)]$

Density

If Σ is positive definite $(\mathbf{x}'\mathbf{\Sigma}\mathbf{x}>0$ for any $\mathbf{x}\neq 0$ in $\mathbb{R}^d)$ then \mathbf{Y} has a density a

$$p(\mathbf{Y}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} \exp(-\frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{Y} - \boldsymbol{\mu}))$$

 a with respect to Lebesgue measure on \mathbb{R}^{d}

Multivariate Normal Density

• Density of $Z \sim N(\mathbf{0}, \mathbf{I}_d)$:

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$

= $(2\pi)^{-d/2} e^{-\frac{1}{2}(\mathbf{Z}^T \mathbf{Z})}$

- Write $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$
- Solve for $\mathbf{Z} = g(\mathbf{Y})$
- Jacobian of the transformation $J(\mathbf{Z} o \mathbf{Y}) = |rac{\partial g}{\partial \mathbf{Y}}|$
- substitute $g(\mathbf{Y})$ for **Z** in density and multiply by Jacobian

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{Z}}(\mathbf{z})J(\mathbf{Z} \to \mathbf{Y})$$

Multivariate Normal Density

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ} \quad \text{ for } \mathbf{Z} \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_d)$$
 (1)

Proof.

- since $\Sigma > 0$, \exists an \mathbf{A} $(d \times d)$ such that $\mathbf{A} > 0$ and $\mathbf{A} \mathbf{A}^T = \mathbf{\Sigma}$
- $\mathbf{A} > 0 \Rightarrow \mathbf{A}^{-1}$ exists
- Multiply both sides (1) by A^{-1} :

$$\mathbf{A}^{-1}\mathbf{Y} = \mathbf{A}^{-1}\mu + \mathbf{A}^{-1}\mathbf{A}\mathbf{Z}$$

- ullet Rearrange $\mathbf{A}^{-1}(\mathbf{Y}-oldsymbol{\mu})=\mathbf{Z}$
- Jacobian of transformation $d\mathbf{Z} = |\mathbf{A}^{-1}|d\mathbf{Y}$
- Substitute and simplify algebra

$$f(\mathbf{Y}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} \exp(-\frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{Y} - \boldsymbol{\mu}))$$

Singular Case

$$\mathbf{Y} = \boldsymbol{\mu} + \mathbf{AZ}$$
 with $\mathbf{Z} \in \mathbb{R}^d$ and \mathbf{A} is $n imes d$

- $E[Y] = \mu$
- $Cov(\mathbf{Y}) = \mathbf{A}\mathbf{A}^T \ge 0$
- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^T$

If Σ is singular then there is no density (on \mathbb{R}^n), but claim that Y still has a multivariate normal distribution!

Definition

 $\mathbf{Y} \in \mathbb{R}^n$ has a multivariate normal distribution $N(\mu, \mathbf{\Sigma})$ if for any $\mathbf{v} \in \mathbb{R}^n$ $\mathbf{v}^T \mathbf{Y}$ has a normal distribution with mean $\mathbf{v}^T \boldsymbol{\mu}$ and variance $\mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$

see Lessons in Sakai for videos using Characteristic functions

Linear Transformations are Normal

If
$$\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 then for $\mathbf{A} \ m \times n$

$$\mathbf{AY} \sim \mathsf{N}_m(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$$

 $\mathbf{A} \mathbf{\Sigma} \mathbf{A}^T$ does not have to be positive definite!

Equal in Distribution

Multiple ways to define the same normal:

- $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$, $\mathbf{Z}_1 \in \mathbb{R}^n$ and take $\mathbf{A} \ d \times n$
- ullet $\mathbf{Z}_2 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_p)$, $\mathbf{Z}_2 \in \mathbb{R}^p$ and take $\mathbf{B} \ d imes p$
- ullet Define $\mathbf{Y} = oldsymbol{\mu} + \mathbf{A}\mathbf{Z}_1$
- ullet Define $\mathbf{W} = oldsymbol{\mu} + \mathbf{B}\mathbf{Z}_2$

Theorem

If
$$\mathbf{Y} = \mu + \mathbf{A}\mathbf{Z}_1$$
 and $\mathbf{W} = \mu + \mathbf{B}\mathbf{Z}_2$ then $\mathbf{Y} \stackrel{\mathrm{D}}{=} \mathbf{W}$ if and only if $\mathbf{A}\mathbf{A}^T = \mathbf{B}\mathbf{B}^T = \mathbf{\Sigma}$

Zero Correlation and Independence

Theorem

For a random vector $\mathbf{Y} \sim \mathit{N}(\mu, \mathbf{\Sigma})$ partitioned as

$$\mathbf{Y} = \left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array} \right] \sim \mathcal{N} \left(\left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right], \left[\begin{array}{cc} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array} \right] \right)$$

then $Cov(\mathbf{Y}_1, \mathbf{Y}_2) = \mathbf{\Sigma}_{12} = \mathbf{\Sigma}_{21}^T = \mathbf{0}$ if and only if \mathbf{Y}_1 and \mathbf{Y}_2 are independent.

Independence Implies Zero Covariance

Proof.

$$Cov(\mathbf{Y}_1, \mathbf{Y}_2) = E[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T]$$

If \mathbf{Y}_1 and \mathbf{Y}_2 are independent

$$\mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T] = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)\mathsf{E}(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T] = \mathbf{00}^T = \mathbf{0}$$

therefore $\Sigma_{12} = \mathbf{0}$

Zero Covariance Implies Independence

Assume
$$\Sigma_{12} = 0$$

Proof

Choose an

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{array} \right]$$

such that
$$\mathbf{A}_1\mathbf{A}_1^T=\mathbf{\Sigma}_{11}$$
, $\mathbf{A}_2\mathbf{A}_2^T=\mathbf{\Sigma}_{22}$

Partition

$$\mathbf{Z} = \left[\begin{array}{c} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{array} \right] \sim \mathsf{N} \left(\left[\begin{array}{cc} \mathbf{0}_1 \\ \mathbf{0}_2 \end{array} \right], \left[\begin{array}{cc} \mathbf{I}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_2 \end{array} \right] \right) \text{ and } \boldsymbol{\mu} = \left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right]$$

ullet then $\mathbf{Y} \stackrel{\mathrm{D}}{=} \mathbf{AZ} + oldsymbol{\mu} \sim \mathsf{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$

Continued

Proof.

•

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

- But **Z**₁ and **Z**₂ are independent
- Functions of Z₁ and Z₂ are independent
- Therefore \mathbf{Y}_1 and \mathbf{Y}_2 are independent

Another Useful Result

Corollary

If $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ and $\mathbf{A}\mathbf{B}^T = \mathbf{0}$ then $\mathbf{A}\mathbf{Y}$ and $\mathbf{B}\mathbf{Y}$ are independent.

Proof.

•

$$\left[\begin{array}{c} \textbf{W}_1 \\ \textbf{W}_2 \end{array}\right] = \left[\begin{array}{c} \textbf{A} \\ \textbf{B} \end{array}\right] \textbf{Y} = \left[\begin{array}{c} \textbf{AY} \\ \textbf{BY} \end{array}\right]$$

- $Cov(\mathbf{W}_1, \mathbf{W}_2) = Cov(\mathbf{AY}, \mathbf{BY}) = \sigma^2 \mathbf{AB}^T$
- AY and BY are independent if $AB^T = 0$

