Register Number

Code: 20SC01T

I/II Semester Diploma Examination, Nov/Dec 2024 **ENGINEERING MATHEMATICS**

TIME: 3 HOURS

MAX MARKS: 100

Answer any 5 questions from SECTION-A, each question Note: i) carries 4 marks.

- Answer any 10 questions from SECTION-B, each question ii) carries 5 marks.
- Answer any 5 questions from SECTION-C, each question carries 6 marks.

- SECTION A $If A = \begin{bmatrix} 4 & 5 \\ 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 6 \\ 1 & 3 \end{bmatrix}, \text{ find the matrix } A + 2B.$
- If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, find $A A^{T}$. 2.
- If the matrix $A = \begin{pmatrix} x & 1 \\ 3 & 4 \end{pmatrix}$ is singular then find 'x'. 3.
- Find the slope of the line whose angle of inclination is 45° with 4. the positive x-axis.
- Find the slope of the straight line passing through the points (2, 6) 5. and (4, 9).

- 6. Convert 150° into radian and $\frac{3\pi}{2}$ into degree.
- 7. If $y = x^2 + 3 \sin x + e^x + 1$ then find $\frac{dy}{dx}$
- 8. Find the slope of the tangent to the curve $y = x^3 + 1$ at (1, 2)
- 9. Integrate $x^2 + \frac{1}{x} + e^x + 2$ with respect to x.
- 10. Evaluate $\int_1^2 x \, dx$

SECTION – B

- 11. Verify whether AB = BA for the matrices A = $\begin{bmatrix} 3 & 7 \\ 4 & 0 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & 2 \\ 7 & 3 \end{bmatrix}$.
- 12. Find adjoint of the matrix $A = \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$.
- 13. Find characteristic equation of the matrix $A = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix}$.
- 14. Find equation of the straight line passing through the point (3,2) and having slope 5.
- 15. Find the equation of the straight line passing through the points (4,2) and (6,4).
- Find the equation of straight line having x-intercept 2 and y-intercept
 units respectively

- 17. Show that the two lines 2x + y 4 = 0 and 6x + 3y + 10 = 0 are parallel.
- 18. Find the slope, x-intercept and y-intercept of the line 6x + 5y + 10 = 0
- 19. Find the value of $\sin 150^{\circ} + \cos 120^{\circ}$.
- 20. Simplify: $\sin(90^{\circ} + \theta) + \cos(180^{\circ} \theta) + \tan(270^{\circ} \theta) + \cot(360^{\circ} \theta)$
- 21. Write the formula of sin(A + B) and hence find the value of sin 75°
- 22. Prove that $\sin 2A = 2\sin A \cos A$ using compound angle formula.
- 23. If $y = x^2 + 3x + 7$, then find $\frac{d^2y}{dx^2}$
- 24. If $y = x \sin x$, then find $\frac{dy}{dx}$
- 25 If $y = \frac{1+x}{1-x}$, find $\frac{dy}{dx}$
- 26. Evaluate $\int (x^2(1+x))dx$.
- 27. Evaluate $\int_{0}^{1} (x^{2} + 1) dx$.
- 28. Evaluate $\int x e^x dx$.

SECTION - C

- 29. Solve the equations 3x + 2y = 8 and 4x + 5y = 6 by applying Cramer's rule.
- 30. Identify the singular and non-singular matrices in the following matrices.

$$A = \begin{bmatrix} 1 & 7 \\ 0 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 1 \\ 9 & 3 \end{bmatrix} \quad C = \begin{bmatrix} 7 & 2 \\ 1 & 3 \end{bmatrix}.$$

- 31. Find the equation of a line passing through the point (1, 3) and parallel to the line 5x + 2y + 10 = 0.
- 32. Prove that $\sin 3 A = 3 \sin A 4 \sin^3 A$
- 33. Write the compound angle formula for tan(A+B) and hence prove that $tan\left(\frac{\pi}{4} + A\right) = \frac{1 + tanA}{1 tanA}$
- 34. Write product rule and hence find the derivative of $y = x^2 e^x \sin x$
- 35. If y is the distance travelled in meters by a particle in time x sec is given $x^3 + 5x^2 + 3x 12$. Find the velocity and acceleration when x = 1 sec.
- 36. Find equation of tangent to the curve $y = x^2 + x$ at the point (1,2).
- 37. Find the area under the curve y = 2x + 1 with x-axis and ordinates x = 0 & x = 2
- 38. Find the volume of solid generated by revolving the curve $y^2 = 3x^2 1$ about the axis between x = 1 and x = 3.

GOVERNMENT OF KARNATAKA

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION I/II SEMESTER DIPLOMA EXAMINATIONS, NOV-DEC-2024

Sub: Engineering Mathematics Code: 20SC01T

SCHEME AND MODEL ANSWER

Q.NO	SCHEME	MARK	Q.NO	SCHEME	MARK
	SECTION-A		20	Applying allied angle	
				concept for each	1+1+1+1
				function	
				Calculation and Solution	1
1	Finding 2B	1	21	Writing formula	1
	Writing matrix, A+2B	1		Writing given angle in	
	Applying concept of			compound angle	1
	addition of matrices	1		Substituting in formula	1
	Calculation and answer	1		Writing standard angle	
				value	1
				Calculation and Solution	1
2	Finding transpose of A	1	22	Writing formula	1
	Writing matrix, $A-A^T$	1		Substituting A=B	1
	Applying concept of	1		Substituting in formula	1
	addition of matrices		1	Simplification	1
	Calculation and answer	1	(, ,	Arriving at result	1
3	Writing det(A)=0	1	23	Finding first derivative	3
	Applying determinant	1		Finding second	
	definition	7 1.		derivative	2
	Simplification	10			
	Solution for x	1			
4	Writing given data	1	24	Identifying the rule	1
	Slope Formula	1		Applying the product	2
	Substitution	1		rule	
	Slope value	1		Writing the derivative of	
	16/11			each	1+1
5	Writing given data	1	25	Identifying the rule	1
	Slope Formula	1		Applying the quotient	
4	Substitution	1		rule	2
	Slope value	1		Writing the derivative of	
	~			each	1+1
6	Multiplying by		26	Multiplying the term	2
	conversion factor for	1+1		Integral of each	1+1
	each			Adding constant of	
	Conversion value for	1+1		integration	1
	each				
7	Derivative of each term	1+1+1+1	27	Integral of each term	1+1
				Applying limits	1
				Calculation and	
				simplification	1
				Integral value	1

	Produced as as	2		20	T.J.,	1
8	Finding derivative	2		28	Identifying the rule	1
	Substituting points	1			Applying integration by	_
	Slope value	1			part rule	2
					Simplification and	
					solution	2
9	Integral of each term	1+1+1+1			SECTION-C	
10	Integral of each term	1+1		29	Finding Δ	2
	Applying limits	1			Finding Δ_1 and Δ_2	2
	Calculation and solution	1			Finding x and y	2
	SECTION-B			30	Finding determinant of	
	SEGIION B				each matrix.	1+1+1
					Conclusion for each	
					matrix	1+1+1
11	Finding AB	2		31	Finding slope given of	
	Finding BA	2		0.1	line	1
	Conclusion	1			Parallel condition	1
	Goneradion				Determining slope of	
					parallel line	1
					Equation of line in one	
				4	point form	1
					Substitution	1
					Simplification and	1
			1	_ ~	solution	1
12	Co-factor of each			32		1
12	element	1 : 1 : 1 : 1		34	Writing 3A=2A+A	
		1+1+1+1	0		Formula for sin(A+B)	1
	Writing Adjoint	1			Substituting in formula	
					Substituting sin2A	1
	. (>.			Substituting cos2A	1
	24				Simplification and	1
12		1		22	proving	1
13	Characteristic definition	1		33	Formula for tan(A+B)	2
	Applying definition for A	1			Substituting in the	
	Applying determinant				formula on LHS	1
	definition	1			Substituting in the	
	Calculation	1			formula on RHS	1
	Solution	1			Writing value of tan45 ⁰	1
4 .	()				Proving LHS=RHS	1
14	Slope Formula	1		34	For each term in	
	Slope value	1			applying product rule	1+1+1
	Equation of straight line				Each derivative	1+1+1
	in one point form	1				
	Substitution	1				
	Calculation and Solution	1				
15	Slope Formula	1		35	Finding first derivative	1
	Slope value	1			Substituting x=1 in first	
	Suitable equation of				derivative	1
	straight line in standard				Finding velocity	1
	form				Finding second	1
	Substitution	1			derivative	
						I

	Calculation and Solution				Substituting x=1 in	1
		1			second derivative	
		1			Finding velocity	1
16	Equation of straight line			36	Finding first derivative	1
	in intercept form	2			Substituting x=1 in first	
	Substitution	1			derivative	1
	Calculation and Solution	2			Slope of tangent value	1
					Equation of tangent in	
					standard form	1
					Substituting	1
					Simplification and	
					solution	1
17	Finding slope of each			37	Area formula	1
	line	2+2			Substituting in formula	1
	Conclusion	1			Each integral	1+1
					Applying limit	1
					Calculation and solution	1
18	Writing value of a, b, c	1		38	Volume formula	1
	Finding slope	2			Substituting in formula	1
	Finding x-intercept	1			Each integral	1+1
	Finding y-intercept	1			Applying limit	1
					Calculation and solution	1
19	Writing each angle in		d			
	allied angle form	1+1				
	Finding value of each	1+1) "			
	Simplification and	X				
	Solution	1				

MODEL ANSWER

Q. NO	SECTION-A
1	Given $A = \begin{bmatrix} 4 & 5 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 6 \\ 1 & 3 \end{bmatrix}$
	$2B = \begin{bmatrix} 0 & 12 \\ 2 & 6 \end{bmatrix}$
	$A+2B = \begin{bmatrix} 4 & 5 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 12 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} 4+0 & 5+12 \\ 1+2 & 2+6 \end{bmatrix} = \begin{bmatrix} 4 & 17 \\ 3 & 8 \end{bmatrix}$
2	Given $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
	$A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
	$A - A^{T} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 2 - 3 \\ 3 - 2 & 4 - 4 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
3	Given $A = \begin{pmatrix} x & 1 \\ 3 & 4 \end{pmatrix}$ is singular
	If A is singular then det(A)=0
	$\begin{vmatrix} x & 1 \\ 3 & 4 \end{vmatrix} = 0 \Rightarrow 4x - 3 = 0 \Rightarrow x = \frac{3}{4}$
4	Given $\theta=45^{\circ}$
	Slope m=tan $\theta \Rightarrow$ m=tan $45^0 = 1$

```
5
               Let (x_1, y_1) = (2,6) and B = (x_2, y_2) = (4,9)
                Slope m = \frac{y_2 - y_1}{x_2 - x_1} \Rightarrow m = \frac{9 - 6}{4 - 2} = \frac{3}{2}
6
               x \text{ degree} = \frac{\pi}{180} \times x \text{ radians}
                                          150^{\circ} = \frac{\pi}{180} \times 150 \text{ radians}
                                         150^{\circ} = \frac{5\pi}{6} radians
                x \text{ radians} = \frac{180^{\circ}}{\pi} \times x \text{ degree}
                            \frac{3\pi}{2} radians = \frac{180^{\circ}}{\pi} \times \frac{3\pi}{2} degree
             \frac{3\pi}{2} \text{ radians} = 270 \text{ degree}
Given \ y = x^2 + 3 \sin x + e^x + 1
 7
             \frac{dy}{dx} = 2x + 3\cos x + e^x + 0
Given y = x^3 + 1
8
                           \frac{\mathrm{dy}}{\mathrm{dy}} = 3x^2 + 0
            Slope of tangent at (1,2) is m = \frac{dy}{dx} at (1,2)

m = 3(1)^2 = 3

\int (x^2 + \frac{1}{x} + e^x + 2) dx = \frac{x^3}{3} + logx + e^x + 2x + c
10 \int_{1}^{2} x \ dx = \left[\frac{x^{2}}{2}\right]_{1}^{2} = \left[\frac{2^{2}}{2} - \frac{1^{2}}{2}\right]_{1}^{2} = \frac{3}{2}
                                                                                                                                SECTION-B
          Given A = \begin{bmatrix} 3 & 7 \\ 4 & 0 \end{bmatrix} and B = \begin{bmatrix} 1 & 2 \\ 7 & 3 \end{bmatrix}
AB = \begin{bmatrix} 3 & 7 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 7 & 3 \end{bmatrix} = \begin{bmatrix} 3X1 + 7X7 & 3X2 + 7X3 \\ 4X1 + 0X7 & 4X2 + 0X3 \end{bmatrix} = \begin{bmatrix} 52 & 27 \\ 4 & 8 \end{bmatrix}
BA = \begin{bmatrix} 1 & 2 \\ 7 & 3 \end{bmatrix} \begin{bmatrix} 3 & 7 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 1X3 + 2X4 & 1X7 + 2X0 \\ 7X3 + 3X4 & 7X7 + 3X0 \end{bmatrix} = \begin{bmatrix} 11 & 7 \\ 33 & 49 \end{bmatrix}
11
               We observe that AB≠BA
              Given A = \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}
12
               Cofactor of 4 = +1
               Cofactor of 2 = -3
               Cofactor of 3 = -2
              Cofactor of 1 = +4 Adjoint of A = adjA = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}
              Given A = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix}
13
               C.E is given by |A - \lambda I| = 0
             \begin{vmatrix} \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{vmatrix} = 0\begin{vmatrix} 3 - \lambda & 2 \\ 4 & 5 - \lambda \end{vmatrix} = 0(3 - \lambda) (5 - \lambda) - 4x2 = 0
```

	$\lambda^2 - 8\lambda + 7 = 0$
14	Given m=5 and $(x_1, y_1) = (3,2)$
	Equation of straight line is
	$y - y_1 = m(x - x_1)$
	y - 2 = 5(x - 3)
	-5x + y + 13 = 0 or $5x-y-13=0$ is the required equation of line.
15	Given: $(x_1, y_1) = (4,2)$ and $(x_2, y_2) = (6,4)$
	Slope $m = \left(\frac{y_2 - y_1}{x_2 - x_3}\right) = \frac{4 - 2}{6 - 4} = 1$
	Equation of straight line is
	$y - y_1 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1)$
	$y - y_1 = \left(\frac{1}{x_2 - x_1}\right)(x - x_1)$
	y-2=1(x-4)
	-x + y - 2 + 4 = 0
	-x + y + 2 = 0 or x-y-2=0 is the required equation of the line.
16	Given that: $a = 2$ and $b = 3$
	Equation of a straight line is $\frac{x}{a} + \frac{y}{b} = 1$
	$\Rightarrow \frac{x}{2} + \frac{y}{3} = 1$
	$\Rightarrow \frac{3x + 2y}{6} = 1 \Rightarrow 3x + 2y - 6 = 0$
17	Given lines $l1: 2x + y - 4 = 0$ and $l2: 6x + 3y + 10 = 0$
17	Given times $t1: 2x + y - 4 = 0$ and $t2: 0x + 3y + 10 = 0$
	Let the slope of l_1 be $m_1 = -\frac{a}{b} = -\frac{2}{1} = -2$
	Clause of 12h a mag a 6 2
	Slope of $l2$ be $m_2 = -\frac{a}{b} = -\frac{6}{3} = -2$
	We observe that $m_1 = m_2$, hence given two lines are parallel.
	we observe that m ₁ m ₂ , hence given two lines are paramen
18	Given 6x+5y+10=0
	a=6, b=5, c=10
	$Slope = -\frac{a}{b} = -\frac{6}{5}$
	10 5
	$x-intercept = -\frac{10}{6} = -\frac{5}{3}$
	y-intercept== $-\frac{10}{5}$ = -2
	y-intercept== $-\frac{1}{5}$ = -2
19	$\sin 150^{\circ} = \sin(180^{\circ} - 30^{\circ}) = +\sin 30^{\circ} = +\frac{1}{2}$
	$cos120^{0} = cos(180^{0} - 60^{0}) = -cos60^{0} = -\frac{1}{3}$
	Hence $\sin 150^{\circ} + \cos 120^{\circ} = \frac{1}{2} - \frac{1}{2} = 0$
20	$sin(90^{0} + \theta) + cos(180^{0} - \theta) + tan(270^{0} - \theta) + cot(360^{0} - \theta)$
24	$= (+\cos\theta) + (-\cos\theta) + (+\cot\theta) + (-\cot\theta) = 0$ We have that $\sin(\Delta + B) = \sin(\Delta + \cos B) + \cos(\Delta + B) = 0$
21	We know that $sin(A + B) = sinA cosB + cosA sinB \rightarrow (1)$ $sin 75^{\circ} = sin(45^{\circ} + 30^{\circ})$
	$\sin 75^{\circ} = \sin (45^{\circ} + 30^{\circ})$ Substitute A = 45° , B = 30° in equation (1), then we get
	$= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$
<u> </u>	

```
sin75^{\circ} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}}
22
        We know that sin(A + B) = sinA cosB + cosA sinB \rightarrow (1)
         Put B=A in (1) then (1) becomes,
         sin(A + A) = sinA cosA + cosA sinA
        sin2A = sinA cosA + sinA cosA
        \sin 2A = 2\sin A\cos A. Hence proved. 
 Given \ y = x^2 + 3x + 7
23
         \frac{\mathrm{dy}}{\mathrm{dx}} = 2x + 3(1) + 0
        \frac{\mathrm{dy}}{\mathrm{dx}} = 2x + 3
        \frac{d^2y}{dx^2} = 2(1) + 0 = 2
24
        Given y = x \sin x
        Apply product rule
       \frac{\frac{dy}{dx} = x \frac{d(\sin x)}{dx} + \sin x \frac{d(x)}{dx} = x(\cos x) + \sin x(1) = x\cos x + \sin x
Given y = \frac{1+x}{1-x}
25
       Apply quotient rule

\frac{dy}{dx} = \frac{(1-x)\frac{d}{dx}(1+x) - (1+x)\frac{d}{dx}(1-x)}{(1-x)^2}

= \frac{(1-x)(0+1) - (1+x)(0-1)}{(1-x)^2}

= \frac{(1-x)(1) + (1+x)(1)}{(1-x)^2}

        Apply quotient rule
       = \frac{2}{(1-x)^2}
\int (x^2(1+x))dx = \int (x^2+x^3)dx = \int (x^2)dx + \int (x^3)dx = \frac{x^3}{3} + \frac{x^4}{4} + c
26
        \int_0^1 (x^2 + 1) \, dx = \left[ \frac{x^3}{3} + x \right]_0^1 = \overline{\left[ \frac{1^3}{3} + 1 \right] - \left[ \frac{0^3}{3} + 0 \right] = \frac{4}{3}}
27
        Let I = \int x e^x dx
28
         Here x is Algebraic function and e^x is Exponential function.
         According to the ILATE rule of choosing the first function,
         u = I fn = x
                                 and v = II fn = e^x
         \int (I \text{ fn} \times II \text{ fn}) dx = I \text{ fn} \int (II \text{ fn}) dx - \int (\int (II \text{ fn}) dx) \frac{d}{dx} (I \text{ fn}) dx
                                 I = \int x e^x dx
                                   = x \int e^x dx - \int (\int e^x dx) \frac{d}{dx}(x) dx
                                   = x e^x - \int e^x \times 1 dx
                                   = x e^x - \int e^x dx
                                   = x e^x - e^x + c
29
        Given 3x + 2y = 8
                   4x + 5y = 6
        let \Delta = \begin{vmatrix} 3 & 2 \\ 4 & 5 \end{vmatrix} = 15 - 8 = 7
```

	$\Delta_{1} = \begin{vmatrix} 8 & 2 \\ 6 & 5 \end{vmatrix} = 40 - 12 = 28$ $\Delta_{2} = \begin{vmatrix} 3 & 8 \\ 4 & 6 \end{vmatrix} = 18 - 32 = -14$
	$\Delta_2 = \begin{vmatrix} 3 & 8 \\ 4 & 6 \end{vmatrix} = 18 - 32 = -14$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
20	$\therefore x = \frac{\dot{\Delta}_1}{\Delta} = \frac{28}{7} = 4 \text{ and } y = \frac{\Delta_2}{\Delta} = \frac{-14}{7} = -2$ $Given A = \begin{bmatrix} 1 & 7 \\ 0 & 3 \end{bmatrix} \text{ then } A = \begin{bmatrix} 1 & 7 \\ 0 & 3 \end{bmatrix} = 1x3-7x0=3$
30	Given $A = \begin{bmatrix} 1 & 7 \\ 0 & 3 \end{bmatrix}$ then $ A = \begin{bmatrix} 1 & 7 \\ 0 & 3 \end{bmatrix} = 1 \times 3 - 7 \times 0 = 3$
	$ A \neq 0$ Hence A is non-singular.
	Given $B = \begin{bmatrix} 3 & 1 \\ 9 & 3 \end{bmatrix}$ then $ B = \begin{vmatrix} 3 & 1 \\ 9 & 3 \end{vmatrix} = 3x3 - 1x9 = 0$
	B = 0 Hence B is singular.
	Given $C = \begin{bmatrix} 7 & 2 \\ 1 & 3 \end{bmatrix}$ then $ C = \begin{bmatrix} 7 & 2 \\ 1 & 3 \end{bmatrix} = 7x3 - 2x1 = 19$
	$ C \neq 0$ Hence C is non-singular.
31	slope of given line $5x + 2y + 10 = 0$
	$m_1 = -\frac{a}{b} = -\frac{5}{2}$
	As the required line is parallel to given line
	$m_1 = m_2 = -\frac{5}{2} = m$
	Equation of the required line passing through (1,3) is
	$y - y_1 = m(x - x_1)$ $y - 3 = -\frac{5}{2}(x - 1)$
	5x + 2y - 11 = 0 $\sin 3 A = \sin(2A + A)$
32	$\sin 3 A = \sin(2A + A)$ $\sin 3 A = \sin 2 A \cos A + \cos 2 A \sin A$
	$\sin 3 A = \sin 2 A \cos A + \cos 2 A \sin A$ $\sin 3 A = (2 \sin A \cos A) \cos A + (1 - 2 \sin^2 A) \sin A$
	$\sin 3 A = 2 \sin A \cos^2 A + \sin A - 2 \sin^3 A$
	$\sin 3 A = 2 \sin A (1 - \sin^2 A) + \sin A - 2 \sin^3 A$ $\sin 3 A = 2 \sin A - 2 \sin^3 A + \sin A - 2 \sin^3 A$
	$\sin 3 A = 3 \sin A - 4 \sin^3 A$
33	$\tan (A + B) = \left(\frac{\tan A + \tan B}{1 - \tan A \tan B}\right)$
	Put $A = \frac{\pi}{4}$ B=A in the above
	We get,
	(π, π) $(\tan \frac{\pi}{4} + \tan A)$
	$\tan\left(\frac{\pi}{4} + A\right) = \left(\frac{\tan\frac{\pi}{4} + \tan A}{1 - \tan\frac{\pi}{4} \tan A}\right)$
	$\tan\left(\frac{\pi}{4} + A\right) = \left(\frac{1 + \tan A}{1 - 1 \cdot \tan A}\right)^{\frac{\pi}{4}} (as \tan\frac{\pi}{4} = 1)$
	\4 \ \ \1-1.tanA\ \ \ 4 \ \ \
	Hence $\tan\left(\frac{\pi}{4} + A\right) = \left(\frac{1 + \tan A}{1 - \tan A}\right)$ Given $y = x^2 e^x \sin x$
34	
	$\frac{dy}{dx} = x^2 e^x \frac{d}{dx} (\sin x) + e^x \sin x \frac{d}{dx} (x^2) + x^2 \sin x \frac{d}{dx} (e^x)$
	$\frac{dy}{dx} = x^2 e^x (\cos x) + e^x \sin x (2x) + x^2 \sin x (e^x)$

35 Given
$$y = x^3 + 5x^2 + 3x - 12$$
 $\frac{dy}{dx} = 3x^2 + 5(2x) + 3(1) - 0$ $\frac{dy}{dx} = 3x^2 + 10x + 3$ $\frac{d^2y}{dx^2} = 3(2x) + 10(1) + 0$ $\frac{d^2y}{dx^2} = 6x + 10$ Velocity at $x = 1$ is $\frac{dy}{dx}$ at $x = 1$, Velocity= $3(1)^2 + 10(1) + 3 = 16$ m/s Acceleration at $x = 1$ is $\frac{d^2y}{dx^2}$ at $x = 1$ Acceleration= $6(1) + 10 = 16$ m/s² $\frac{dy}{dx} = 2x + 1$ Slope of tangent at $(1,2)$ is $m = \frac{dy}{dx}$ at $(1,2)$ $m = 2(1) + 1 = 3$ Equation of tangent to the curve at the point $(1,2)$ $y - y_1 = m(x - x_1)$ $y - 2 = 3(x - 1)$ $y - 2 = 3(x - 1)$ $y - 3x + y + 1 = 0$ or $3x - y - 1 = 0$ We know that the area bounded by the curve $y = f(x)$ between $x = a$ and $x = b$ about the $x - axis$ is $A = \int_a^b y \, dx = \int_0^2 (2x + 1) \, dx = \left[2\frac{x^2}{2} + x\right]_0^2 = \left[x^2 + x\right]_0^2 = (2^2 + 2) \cdot (0^2 + 0)$ $\therefore A = 6$ square units $x = x + 2$ and $x = 0$ about the $x - axis$ between $x = a$ and $x = 0$ about the $x - axis$ between $x = a$ and $x = 0$ about the $x - axis$ is $y = \pi \int_a^b y^2 \, dx = \pi \int_a^1 (3x^2 - 1) dx = \pi \left[3\frac{x^3}{3} - x\right]_1^3 = \pi [x^3 - x]_1^3 = \pi [(3^3 - 3)] \cdot (1^3 - 1)] = 24\pi$ cubic unit

Certified that the scheme of valuation and model answers prepared by me for the code 20SC01T are according to the revised syllabus and are correct.