Probability and Statistics Assignment 2 (Due: 10/09)

1 Discrete Random Variables

1. (3 points) Let the function p(x) be defined as follows

$$p(x) = \begin{cases} \frac{3}{4} \left(\frac{1}{4}\right)^x, & x = 0, 1, 2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

- 1. Check that p(x) is a PMF. of discrete random variable.
- 2. Find P(X = 2).
- 3. Find $P(X \leq 2)$.
- 2. (3 points) A fair coin is tossed repeatedly until first head appears. Let X denote the R.V. for the number of tosses required until the first head. Answer the following:
 - 1. Calculate PMF of X and sketch the PMF.
 - 2. Calculate the CDF. of X and sketch the CDF.
 - 3. Find $P(1 < X \le 4)$.
- 3. (2 points) (Binomial and Poisson Distribution) The probability of error in transmission of a bit through a noisy channel is p = 0.01.
 - 1. What is the probability that out of the 10 received digits, there are more than one bits with error? Show using Binomial.
 - 2. Show above using Poisson approximation.
- 4. (2 points) Let $X = N(0, \sigma^2)$. Find $E[X \mid X > 0]$ and $Var(X \mid X > 0)$.
- 5. (2 points) (Exponential Distribution) We know that exponential R.V. is memoryless. Show the converse, that is, show that any random variable that is memoryless must be an exponential R.V.

IIIT Hyderabad Page 1 of 4

6. (3 points) (Laplace Distribution) A random variable X defined as follows

$$f_X(x) = ke^{-\lambda|x|}, \quad \lambda > 0, \quad -\infty < x < \infty,$$

where k is a constant is called a Laplace R.V.

- 1. What is k?
- 2. Find the CDF of X.
- 3. Find the mean and variance of X.
- 7. (2 points) There are two dice: 4-sided and 6-sided. Let X denote the outcome of rolling 4 sided die and Y denote the outcome of rolling 6-sided die. Let Z = (X+Y)/2. Answer the following:
 - 1. Find the variance of X, Y, Z.
 - 2. Plot the graph of PMF and CDF of Z
 - 3. Consider the game that if X > Y, you get 2X rupees and otherwise you loose 1 rupee. Find the expected total profit if you play 50 times.

2 Two Random Variables

8. (2 points) If the joint PMF of X and Y is given by the following table Are X and Y

X/Y	1	2	3	
1	1/18	1/9	1/6	
2	1/9	1/6	1/18	
3	1/6	1/18	1/9	

Table 1: Joint PMF of X and Y.

independent random variables?

IIIT Hyderabad Page 2 of 4

	x = 1	x = 2	x = 3	x = 4	x = 5
y = 0	0.05	0.2	0.1	0.04	0.01
y=1	0.01	0.09	0.15	0.20	0.15

Table 2: Joint PMF of X and Y.

- 9. (5 points) Air India was recently acquired by TATA group. To understand the customer satisfaction for the services offered, the airline decides to do a survey. The passengers are asked to rate the quality on a scale of 1 to 5. They are also asked to rate on the same scale whether the air hostesses were attentive. Their ratings are changed to a scale between 0 and 1. The quality is denoted by the random variable X and the quality of service by air hostesses by random variable Y. The joint PMF is given in Table 2. Answer the following:
 - 1. Justify that this is a valid PMF.
 - 2. Find $P(Y = 1 \mid X \ge 3)$ and $P(Y = 0, X \ge 3)$.
 - 3. Find the marginal PMF of X.
 - 4. Find the marginal PMF of Y.
 - 5. Find E[X|Y = 1].
- 10. (2 points) Let X and Y be two independent Uniform (0,1) random variables. Find
 - 1. E[XY].
 - 2. $E[e^{X+Y}]$.
 - 3. $E[X^2 + Y^2 + XY]$
- 11. (2 points) (Method of Transformation) Let X and Y be two independent N(0,1). Let

$$Z = 7 + X + Y$$
$$W = 1 + Y$$

Find the joint PDF of Z and W.

IIIT Hyderabad Page 3 of 4

12. (2 points) The joint PDF of two random variables is given as follows

$$f_{XY}(x,y) = \begin{cases} x^2 + \frac{1}{3}y & -1 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Calculate the following:

- 1. $f_{X|Y}(x|y)$, the conditional PDF.
- 2. $P(X > 0 \mid Y = y)$. Does this depend on y?
- 3. Are X and Y independent?
- 13. (2 points) (Gamma Function) Find the value of I:
 - 1. $I = \Gamma(7/2)$
 - 2. $I = \int_0^\infty x^7 e^{-5x} dx$
- 14. (4 points) (Joint Probability) A surface has infinite parallel lines, equally spaced and d distance apart from each other. Suppose we have a needle of length l which we throw randomly on the surface. What is the probability that this needle intersects a line on the surface? Assume l < d and that the needle and the surface lie in the same cartesian plane.
- 15. (4 points) (Normal Distribution) If $X \sim N(\mu_x, \sigma_x^2)$ and $Y \sim N(\mu_y, \sigma_y^2)$ are independent, prove that:

$$X + Y \sim N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$$

- 16. (2 points) (Normal Distribution) Let X_1 be a normal random variable with $\mu = 2$ and $\sigma^2 = 3$ and let X_2 be a normal random variable with $\mu = 1$ and $\sigma^2 = 4$. Assuming that X_1 and X_2 are independent, What is the distribution of the linear combination:
 - 1. $Y = 2X_1 + 3X_2$?
 - 2. $Y = X_1 X_2$?

IIIT Hyderabad Page 4 of 4