04

복소수

유형의 이해에 띠	라 ○ 안에 ㅇ, ×표시를 하고 반복하여 학습합니다.	1st	2nd
필수유형 01	복소수의 사칙연산		
필수유형 02	복소수가 실수 또는 순허수가 되는 조건		
필수유형 03	복소수가 서로 같을 조건		
필수유형 04	켤레복소수의 성질		
필수유형 05	복소수의 성질을 이용하여 식의 값 구하기		
필수유형 06	등식을 만족시키는 복소수 구하기		
필수유형 07	i의 거듭제곱		
발전유형 08	음수의 제곱근		

필수유형 (01) 보소수의 사칙연산

다음을 계산하여라.

(1)
$$(2-3i)^2$$

(2)
$$(i-2)(1-2i)$$

$$(3) \; (1+2i)(2-3i) + \frac{1+i}{1-i}$$

(4)
$$\frac{2i}{2+i} - \frac{1-i}{i}$$

풍쌤 POINT

복소수의 사칙연산은 허수단위 i를 문자로 생각하고 다항식의 사칙연산과 같은 방법으로 계산해!

置の (1)
$$(2-3i)^2 = 4-12i+9i^2$$
 $= 4-12i-9$ $= (4-9)-12i$ $= -5-12i$

(2)
$$(i-2)(1-2i)=i-2i^2-2+4i$$

= $i+2-2+4i$
= $5i$

$$(3) (1+2i)(2-3i) + \frac{1+i}{1-i}$$

$$=2-3i+4i-6i^{2}+\frac{(1+i)^{2}}{(1-i)(1+i)}$$

$$=2-3i+4i+6+\frac{1+2i+i^{2}}{1-i^{2}}$$

$$=(2+6)+(-3i+4i)+\frac{2i}{2}$$

$$=8+i+i$$

$$=8+2i$$

② 분모에 a+bi (a, b는 실수) 가 있을 때는 분모, 분자에 각각 a-bi를 곱한다.

1 i^2 이 있으면 $i^2 = -1$ 로 고친다.

(4)
$$\frac{2i}{2+i} - \frac{1-i}{i} = \frac{2i(2-i)}{(2+i)(2-i)} - \frac{(1-i)i}{i^2}$$

$$= \frac{4i-2i^2}{4-i^2} + i - i^2$$

$$= \frac{4i+2}{5} + i + 1$$

$$= \left(\frac{2}{5} + 1\right) + \left(\frac{4}{5} + 1\right)i$$

$$= \frac{7}{5} + \frac{9}{5}i$$

분모와 분자에 각각 곱한다.

풍쌤 강의 NOTE

- 복소수의 덧셈과 뺄셈은 실수부분은 실수부분끼리, 허수부분은 허수부분끼리 계산한다.
- 복소수와 그 켤레복소수의 곱은 실수이므로 분모의 켤레복소수를 분자, 분모에 각각 곱하여 계산하 면 분모가 실수가 된다

다음을 계산하여라

- (1)(3+2i)+(2-i)
- (2) 3(2-i)+2(3+2i)
- (3) (1-i)(-2+i)-(2+i)(1-i)
- (4) $(2+3i)^2-(1-2i)^2$

01-2 (유사)

다음을 계산하여라.

- (1) $\frac{1+7i}{2-i}$
- (2) $\frac{3}{1+2i} + \frac{5}{2-i}$
- (3) $\frac{1-i}{1+i} + \frac{1+i}{1-i}$

01-3 ⊚ 변형)

 $3-5i-\frac{2-i}{1-3i}+\frac{1-2i}{1-i}-2+2i$ 를 계산하여 a+bi꼴로 나타낼 때. 실수 a. b에 대하여 a+b의 값을 구 하여라.

01-4 (변형)

(3+2i)(2-i)+(5-i)(-2-3i)의 실수부분을 a. 허수부분을 b라고 할 때 a-b의 값을 구하여라

01-5 ◎ 변형)

임의의 두 복소수 α . β 에 대하여 연산 \oplus 를 $\alpha \oplus \beta = \alpha + \beta + \alpha \beta$ 라고 정의할 때. $(2+i)\oplus (-1+i)$ 의 값을 구하여라.

01-6 ◎ 실력

복소수 0. i. -2i. 3i. -4i. 5i가 적힌 다트판에 3개의 다트를 던져 맞히는 게임이 있다. 3개의 다트를 모두 다 트판에 맞혔을 때, 얻을 수 있는 세 복소수를 a, b, c라 고 하자. $a^2 - bc$ 의 최솟값을 구하여라.

 $(\cot i = \sqrt{-1}$ 이고. 경계에 맞는 경우는 없다.)

필수유형 (02) 복소수가 실수 또는 순허수가 되는 조건

다음 물음에 답하여라.

- (1) 복소수 $(1+i)x^2+(3-i)x+2-2i$ 가 실수일 때, 실수 x의 값을 모두 구하여라
- (2) 복소수 $x^2 + (1+2xi)(-1+2i) + 4$ 가 순허수일 때, 실수 x의 값을 구하여라.
- (3) 복소수 $z=(x^2-3x+2)+(x-2)i$ 에 대하여 z^2 이 음의 실수가 되도록 하는 실수 *x*의 값을 구하여라.

풍쌤 POINT

주어진 복소수를 (실수부분)+(허수부분)i 꼴로 정리한 후. 실수 또는 순허수가 되는 조건을 이용하

- 풀이 (1) (주어진 식)= $x^2+x^2i+3x-xi+2-2i$ $=(x^2+3x+2)+(x^2-x-2)i$
 - 이 복소수가 실수이므로 $x^2 x 2 = 0$
 - (x+1)(x-2)=0 : $x=-1 \pm x=2$

따라서 x의 값은 -1. 2이다.

- 복소수가 실수이면 (허수부분)=0
- (2) (주어진 식)= $x^2-1+2i-2xi-4x+4$ $=(x^2-4x+3)+(-2x+2)i$
 - 이 복소수가 슈허수이므로²⁰
 - $x^{2}-4x+3=0$, $-2x+2\neq 0$
 - $(i) x^2 4x + 3 = 0$ 에서

$$(x-1)(x-3)=0$$
 : $x=1 \pm \frac{1}{2} x=3$

- $(ii) -2x + 2 \neq 0$ 에서 $x \neq 1$
- (i), (ii)에 의하여 x=3
- (3) z^2 이 음의 실수가 되려면 z는 순허수이어야 하므로 Θ $x^2-3x+2=0, x-2\neq 0$
 - $(i) x^2 3x 2 = 0$ 에서

$$(x-1)(x-2)=0$$
 $\therefore x=1$ 또는 $x=2$

- (ii) $x-2 \neq 0$ 에서 $x \neq 2$
- (i), (ii)에 의하여 x=1

- ② 복소수가 순허수이면 (실수부분)=0. (허수부분)≠0
- $z^2 = (a^2 - b^2) + 2abi0$ z^{2} 이 음의 실수이면 $a^2 - b^2 < 0$, 2ab = 0즉. a=0. $b \neq 0$ 이므로 z=bi (순허수) 꼴이어야 한다.
- \blacksquare (1) -1, 2 (2) 3 (3) 1

풍쌤 강의 NOTE

복소수 z=a+bi (a. b는 실수)에 대하여

- ① z=a+bi가 실수이면 $\Rightarrow b=0$. 즉 z=a (실수)
- ② z=a+bi가 순허수이면 $\Rightarrow a=0, b\neq 0$, 즉 z=bi (순허수)
- ③ z^2 이 실수이면 $\Rightarrow z$ 는 실수 (b=0) 또는 순허수 $(a=0, b \neq 0)$
- ④ z^2 이 양의 실수이면 $\Rightarrow z$ 는 0이 아닌 실수 (b=0)
- ⑤ z^2 이 음의 실수이면 $\Rightarrow z$ 는 순허수 $(a=0, b \neq 0)$

복소수 z= $(1+i)x^2-xi-9-6i$ 에 대하여 다음 물음 에 답하여라.

- (1) 복소수 z가 실수일 때, 실수 x의 값을 모두 구하여라.
- (2) 복소수 z가 순허수일 때, 실수 x의 값을 구하여라.

02-2 ৄ ন্ন৸)

복소수 $z=(x^2-5x+6)+(x^2-4)i$ 에 대하여 z^2 이음의 실수가 되도록 하는 실수 x의 값을 구하여라.

02-3 《변형》

복소수 z=(x+3i)(-2+i)에 대하여 z^2 이 양의 실수가 되도록 하는 실수 x의 값을 구하여라.

02-4 (변형)

복소수 $z=2i(a-3i)^2$ 이 실수가 되도록 하는 양수 a 의 값을 m, 그때의 z의 값을 n이라고 할 때, m+n의 값을 구하여라.

02-5 (변형)

복소수 z=(a+2i)(-1+ai)+(-2+ai)에 대하 여 $z^2<0$ 이 되도록 하는 실수 a의 값을 구하여라.

02-6 인 실력

복소수 $z=x^2+(i+4)x+3+3i$ 에 대하여 z^2 과 z-2i가 모두 실수가 되도록 하는 실수 x의 값을 구하여라.

필수유형 (03) 복소수가 서로 같을 조건

다음 등식을 만족시키는 실수 x. u의 값을 각각 구하여라.

(1)
$$(2x-y)+(x-y)i=1-i$$

(2)
$$(1+i)x+(1-i)y=4+2i$$

(3)
$$\frac{2x}{1+i} + \frac{4y}{1-i} = 3+i$$

풍쌤 POINT

주어진 등식의 좌변을 (실수부분)+(허수부분)i 꼴로 정리한 후, 복소수가 서로 같을 조건을 이용하 여 연립방정식을 만들자!

복소수가 서로 같을 조건: a+bi=c+di이면 a=c, b=d (단, a, b, c, d는 실수) 실수부분끼리 같다. ← ─ 허수부분끼리 같다.

풀()] ← \bullet (1) 복소수가 서로 같을 조건에 의하여 \bullet

- $\bigcirc 2x-y, x-y$ 가 실수이므로 복 소수가 서로 같을 조건을 이용 하다.
- (2) 주어진 등식의 좌변을 전개하여 a+bi 꼴로 정리하면

$$(1+i)x+(1-i)y=(x+y)+(x-y)i$$

이므로
$$(x+y)+(x-y)i=4+2i$$

복소수가 서로 같을 조건에 의하여

$$x+y=4, x-y=2$$

두 식을 연립하여 풀면 x=3, y=1

(3) 주어진 등식의 좌변의 분모를 실수화하여 a + bi 꼴로 정리하면

$$\frac{2x}{1+i} + \frac{4y}{1-i} = \frac{2x(1-i)}{(1+i)(1-i)} + \frac{4y(1+i)}{(1-i)(1+i)}$$

$$= \frac{2x-2xi}{2} + \frac{4y+4yi}{2}$$

$$= x-xi+2y+2yi$$

$$= (x+2y) + (-x+2y)i$$

② 분모에 복소수가 있을 때는 분 모의 켤레복소수를 분모, 분자 에 각각 곱한다.

이므로
$$(x+2y)+(-x+2y)i=3+i$$

복소수가 서로 같을 조건에 의하여

$$x+2y=3, -x+2y=1$$

두 식을 연립하여 풀면 x=1, y=1

$$\blacksquare$$
 (1) $x=2, y=3$ (2) $x=3, y=1$ (3) $x=1, y=1$

(2)
$$x=3$$
 $y=1$

(3)
$$x=1$$
 $y=1$

풍쌤 강의 NOTE

복소수 a+bi와 복소수 c+di가 서로 같다면 실수부분 a와 c가 서로 같고 허수부분 b와 d가 서로 같 다. (단. 복소수가 서로 같을 조건은 a, b, c, d가 모두 실수일 때 성립한다.)

다음 등식을 만족시키는 실수 x, y의 값을 각각 구하여라

$$\text{(1)} \left(-\frac{1}{2}x + \frac{2}{3} \right) + \left(\frac{4}{3}y - \frac{1}{2} \right) i = 0$$

(2)
$$(x+y)+(x-y)i=8-2i$$

(3)
$$(2-3i)x-(1-i)y=3-2i$$

$$(4) \frac{2x}{1+2i} + \frac{y}{1-2i} = -1 + 6i$$

03-2 인유사

다음 등식을 만족시키는 실수 x, y의 값을 각각 구하여라.

(1)
$$(3-x)+(2+x)i=4+yi$$

(2)
$$(2x-y)+(x-2y)=1-2i$$

(3)
$$(2+i)x-(3-4i)y=2-10i$$

(4)
$$\frac{x}{3+i} - \frac{2y}{-1+3i} = 2-3i$$

03-3 (유사)

두 실수 x, y가 등식 $(x+i)^2+(2+3i)^2=y+20i$ 를 만족시킬 때. x+y의 값을 구하여라.

03-4 ●변형

등식 $(2+i)^2x+(3-2i)^2y=2-16i$ 를 만족시키는 실수 x, y에 대하여 x^2+y^2 의 값을 구하여라.

03-5 ●변형

 $f(x)=x^2+ax+b$ 에 대하여 f(2+i)=0일 때, f(1)의 값을 구하여라. (단, a, b는 실수이다.)

03-6 인 실력

xy<0인 두 실수 x, y가 등식

$$|x-y|+(x-1)i=3-2i$$

를 만족시킬 때. x+y의 값을 구하여라. (단. $i=\sqrt{-1}$)

필수유형 (14) 켤레복소수의 성질

복소수 z의 켤레복소수를 \overline{z} 라고 할 때, 다음 중 옳지 않은 것은?

- ① zz는 실수이다.
- ② z가 순허수이면 \overline{z} 도 순허수이다.
- ③ $\frac{1}{z} + \frac{1}{\overline{z}}$ 은 허수이다. (단, $z \neq 0$)
- ④ $z = -\overline{z}$ 이면 z는 순허수이다.
- ⑤ $z=\overline{z}$ 이면 z는 실수이다.

풍쌤 POINT

z=a+bi로 놓으면 $\overline{z}=a-bi$ 이므로 z, \overline{z} 를 주어진 식에 대입하여 각 보기가 참 또는 거짓이 되는지 확인해 봐!

풀이 \bullet \bullet z=a+bi (a, b는 실수)로 놓으면 $\overline{z}=a-bi$

- ① $z\overline{z} = (a+bi)(a-bi) = a^2 + b^2$ 즉, $z\overline{z}$ 는 실수이다.
- ② z가 순허수이면 z=bi이므로 z=-bi^② 즉, z도 순허수이다.
- $\underbrace{\frac{1}{z} + \frac{1}{\overline{z}} = \frac{1}{a+bi} + \frac{1}{a-bi}}_{=\frac{a-bi+a+bi}{a^2+b^2} = \frac{2a}{a^2+b^2}$
 - 즉, $\frac{1}{z} + \frac{1}{z}$ 은 실수이다.
- ④ $z=-\overline{z}$ 이면 a+bi=-(a-bi)이므로 2a=0 $\therefore a=0$ 즉, z=bi이므로 z는 순허수이다.
- 즉, z=bi이므로 z은 순허주이 $z=\overline{z}$ 이면 a+bi=a-bi
 - 2bi=0 $\therefore b=0$

즉, z=a이므로 z는 실수이다.

따라서 옳지 않은 것은 ③이다.

- (허수부분)=0이므로 실수이다.
- ② (실수부분)=0이므로 순허수이다.

3

풍쌤 강의 NOTE

복소수 z=a+bi (a, b는 실수)라고 할 때

- ① b = 0이면 z = a이므로 z는 실수이다.
- ② a = 0이면 z = bi이므로 z는 순허수이다.

복소수 z의 켤레복소수를 z라고 할 때 다음 중 옳은 것은?

- (1) $z-\overline{z}$ 는 실수이다.
- ② \overline{z}^2 은 순허수이다.
- $(3)\frac{1}{7} + \frac{1}{7}$ 은 실수이다.
- ④ \overline{z} 가 순허수이면 $\frac{1}{z}$ 은 실수이다.
- ⑤ $z\overline{z}=0$ 이면 z는 순허수이다.

04-2 ◎ 변형

0이 아닌 복소수 z에 대하여 항상 실수인 것만을 |보기|에서 있는 대로 골라라. (단. \overline{z} 는 z의 켤레복소수이다.)

$$\neg z + \overline{z}$$

$$\neg. z + \overline{z} \qquad \qquad \bot. \frac{2}{z} - \frac{2}{\overline{z}}$$

$$\Box. z^2 + \overline{z}^2 \qquad \qquad \exists. (z+2)(\overline{z+2})$$

$$\exists (z+2)(\overline{z+2})$$

04-3 (변형)

복소수 z=(1+i)a-3a+4-i에 대하여 $z=\overline{z}$ 를 만 족시키는 실수 a의 값을 구하여라.

04-4 (변형)

0이 아닌 복소수 $z=(2-i)x^2-4xi-4i-80$ $z+\overline{z}=0$ 을 만족시킬 때. 실수 x의 값을 구하여라. $(\, \underline{\overline{z}} = z)$ 켤레복소수이다.)

04-5 ⊚ ਥੋਰੇ)

기출

5 이하의 두 자연수 a. b에 대하여 복소수 z를 $z{=}a{+}bi$ 라고 할 때, $\frac{z}{z}$ 의 실수부분이 0이 되게 하는 모든 복소수 z의 개수를 구하여라.

 $(\stackrel{\cdot}{\nabla} , i = \sqrt{-1}$ 이고. $\stackrel{\cdot}{z} = z$ 의 켤레복소수이다.)

04-6 (변형)

복소수 z에 대하여 $\frac{z}{z+1}$ 가 실수일 때, 다음 중 옳은 것은? (단 z는 z의 켤레복소수이다.)

- ① z=0 ② $z+\overline{z}=0$ ③ $z-\overline{z}=0$
- (4) $z\bar{z} < 0$ (5) $\frac{1}{z} = 1$

필수유형 (05) 복소수의 성질을 이용하여 식의 값 구하기

 $\alpha=2-i$, $\beta=-1+3i$ 일 때, 다음 값을 구하여라. (단, α , β 는 각각 α , β 의 켤레복소수이다.)

(1)
$$\alpha \overline{\alpha} + \alpha \overline{\beta} + \overline{\alpha} \beta + \beta \overline{\beta}$$

(2)
$$\alpha \beta - \alpha \overline{\beta} - \overline{\alpha \beta} + \alpha \beta$$

풍쌤 POINT

복소수와 그 켤레복소수로 이루어진 식의 값을 구할 때는 먼저 식을 간단히 해야 해!

식 간단히 하기

 $\alpha+\beta$. $\overline{\alpha+\beta}$ 의 값 구하기

 \Rightarrow

대입하기

복소수에서도 실수에서의 인수 분해 공식을 이용하여 식을 간

단히 할 수 있다.

풀이 • ● (1) STEP1 켤레복소수의 성질을 이용하여 식 간단히 하기

$$\begin{array}{l}
\alpha\overline{\alpha} + \alpha\overline{\beta} + \overline{\alpha}\beta + \beta\overline{\beta} = \alpha(\overline{\alpha} + \overline{\beta}) + \beta(\overline{\alpha} + \overline{\beta}) \\
= (\alpha + \beta)(\overline{\alpha} + \overline{\beta})^{\bullet} \\
= (\alpha + \beta)(\overline{\alpha} + \overline{\beta})
\end{array}$$

STEP2 $\alpha+\beta$, $\overline{\alpha+\beta}$ 의 값 구하기

$$\alpha + \beta = (2-i) + (-1+3i) = 1+2i$$

$$\overline{\alpha+\beta} = \overline{1+2i} = 1-2i$$

STEP 3 $\alpha + \beta$, $\overline{\alpha + \beta}$ 의 값을 대입하여 식의 값 구하기

$$\therefore a\overline{a} + a\overline{\beta} + \overline{a}\beta + \beta\overline{\beta} = (a+\beta)(\overline{a+\beta})$$

$$= (1+2i)(1-2i)$$

$$= 1+4=5$$

(2) STEP1 켤레복소수의 성질을 이용하여 식 간단히 하기

$$\overline{\alpha}\beta - \alpha\overline{\beta} - \overline{\alpha}\overline{\beta} + \alpha\beta = \beta(\overline{\alpha} + \alpha) - \overline{\beta}(\overline{\alpha} + \alpha)$$
$$= (\beta - \overline{\beta})(\overline{\alpha} + \alpha)$$

STEP2 $\beta - \overline{\beta}$, $\alpha + \alpha$ 의 값 구하기

$$\beta - \overline{\beta} = (-1 + 3i) - (-1 - 3i) = 6i$$

$$\bar{\alpha} + \alpha = (2+i) + (2-i) = 4$$

STEP3 $\beta - \overline{\beta}$, $\alpha + \alpha$ 의 값을 대입하여 식의 값 구하기

$$\therefore \overline{\alpha}\beta - \alpha\overline{\beta} - \overline{\alpha}\overline{\beta} + \alpha\beta = (\beta - \overline{\beta})(\overline{\alpha} + \alpha)$$
$$= 6i \times 4 = 24i$$

 \blacksquare (1) 5 (2) 24*i*

- 위의 문제에서 켤레복소수의 성질 $\alpha+\beta=\overline{\alpha+\beta}$ 임이 기억나지 않으면 α , β 를 각각 구하여 더해도 되므로 당황하지 않도록 한다.
- 식에 켤레복소수가 포함되어 있으면 켤레복소수의 성질을 이용할 때, 계산이 훨씬 간단해질 수 있으므로 켤레복소수의 성질을 꼭 기억하도록 한다.

 $\alpha\!=\!-2\!+\!i$, $\beta\!=\!1\!-\!2i$ 일 때, 다음 값을 구하여라.

 $(\, \stackrel{-}{\mathrm{C}}, \, \stackrel{-}{\alpha}, \, \stackrel{-}{\beta} = \, \stackrel{+}{\mathrm{C}} \, \stackrel{+}{\alpha}, \, \stackrel{+}{\beta} = \, \stackrel{+}{\mathrm{C}} \, \stackrel{+}{\alpha}, \, \stackrel{+}{\beta} = \, \stackrel{+}{\alpha}, \, \stackrel{+}{\alpha} = \, \stackrel{+}{\alpha}, \, \stackrel{+}{\alpha}, \, \stackrel{+}{\alpha} = \, \stackrel{+}{\alpha}, \, \stackrel{+}{\alpha}, \, \stackrel{+}{\alpha}, \, \stackrel{+}{\alpha}, \, \stackrel{+}{\alpha}, \, \stackrel$

(1)
$$\alpha \alpha + \alpha \beta + \alpha \overline{\beta} + \beta \overline{\beta}$$

(2)
$$\alpha \overline{\alpha} - \alpha \overline{\beta} - \overline{\alpha} \beta + \beta \overline{\beta}$$

05-2 ●변형

두 복소수 α , β 에 대하여 $\alpha+\beta=4-2i$ 가 성립할 때, $\alpha \overline{\alpha}+\alpha \overline{\beta}+\overline{\alpha}\beta+\beta \overline{\beta}$ 의 값을 구하여라.

05-3 ●변형

두 복소수 $\alpha=3+i$, $\beta=1-2i$ 에 대하여 $(\alpha-\beta)(\overline{a}-\overline{\beta})$ 의 값을 구하여라. (단, $i=\sqrt{-1}0$)고, \overline{a} , $\overline{\beta}$ 는 각각 a, β 의 켤레복소수이

(난, $i=\sqrt{-10}$ 고, α , β 는 각각 a, β 의 켤레목소수이다.)

05-4 (변형)

두 복소수 α , β 에 대하여

$$\overline{\alpha} - \overline{\beta} = 3 - 2i$$
, $\overline{\alpha} \, \overline{\beta} = 2 + 5i$

일 때, $(\alpha-2)(\beta+2)$ 의 값을 구하여라.

 $(\, \stackrel{-}{\text{U}}, \, \stackrel{-}{\alpha}, \, \stackrel{-}{\beta}) = \, 2$ 크레복소수이다.)

05-5 € 변형)

두 복소수 α , β 에 대하여 $\overline{\alpha\beta}=1$, $\alpha+\frac{1}{\alpha}=2i$ 일 때,

 $\beta + \frac{1}{\beta}$ 의 값을 구하여라.

 $(\, \stackrel{-}{\mathrm{C}}, \, \stackrel{-}{\alpha}, \, \stackrel{-}{\beta}$ 는 각각 $\alpha, \, \beta$ 의 켤레복소수이다.)

05-6 인질력)

기출

x=2-3i일 때, $x^3-4x^2+11x+4$ 의 값을 구하여라.

필수유형 (06) 등식을 만족시키는 복소수 구하기

복소수 z와 그 켤레복소수 \overline{z} 에 대하여 다음을 만족시키는 복소수 z를 구하여라.

(1)
$$2z + (2+i)\overline{z} = 9 + 2i$$

(2)
$$\frac{z}{1+i} + \frac{\overline{z}}{1-2i} = \frac{1-i}{2}$$

풍쌤 POINT

등식에 복소수 z와 \overline{z} 가 있으면 z=a+bi, $\overline{z}=a-bi$ 로 놓고 식에 대입하면 돼!

$$z=a+bi$$
로 놓기 \Rightarrow 식에 대입 \Rightarrow 복소수가 서로 같을 조건 이용

풀이 $\bullet - \bullet$ (1) STEP1 z=a+bi로 놓고 주어진 식에 대입하기

$$z=a+bi$$
 $(a, b$ 는 실수)로 놓으면 $\overline{z}=a-bi$ 이므로 $2z+(2+i)\overline{z}=2(a+bi)+(2+i)(a-bi)$ $=2a+2bi+(2a-2bi+ai-bi^2)$ $=(4a+b)+ai$

STEP 2 복소수가 서로 같을 조건 이용하기

$$(4a+b)+ai=9+2i$$
에서 $4a+b=9, a=2^{\bullet}$ $\therefore b=1$ $\therefore z=2+i$

¶ 복소수가 서로 같을 조건 a, b, c, d가 실수일 때 a+bi=c+di이면 a=c, b=d

(2) STEP1 z=a+bi로 놓고 주어진 식에 대입하기

z=a+bi (a, b)는 실수)로 놓으면 $\overline{z}=a-bi$ 이므로

$$\begin{split} \frac{z}{1+i} + \frac{\overline{z}}{1-2i} &= \frac{a+bi}{1+i} + \frac{a-bi}{1-2i} \\ &= \frac{(a+bi)(1-i)}{2} + \frac{(a-bi)(1+2i)}{5} \\ &= \frac{a-ai+bi-bi^2}{2} + \frac{a+2ai-bi-2bi^2}{5} \\ &= \frac{(7a+9b)+(-a+3b)i}{10} \end{split} \qquad \qquad \text{ 한모에 복소수가 있을 때는 분 모의 켤레복소수를 분모와 분자 } \\ &(1+i)(1-i)=1-i^2=2 \\ &(1-2i)(1+2i)=1-4i^2=5 \end{split}$$

 $(1+i)(1-i)=1-i^2=2$

$$(1+i)(1-i)=1-i^2=2$$

 $(1-2i)(1+2i)=1-4i^2=5$

STEP 2 복소수가 서로 같을 조건 이용하기

$$\frac{(7a+9b)+(-a+3b)i}{10} = \frac{1-i}{2} \text{ ond } \lambda$$

$$\frac{7a+9b}{10} = \frac{1}{2}, \frac{-a+3b}{10} = -\frac{1}{2}$$

$$7a+9b=5, -a+3b=-5$$

$$\therefore a=2, b=-1$$

 $\therefore z=2-i$

 \blacksquare (1) 2+i (2) 2-i

풍쌤 강의 NOTE

복소수 z가 포함된 등식이 주어지면 z=a+bi로 놓고 식에 대입하여 정리하면 복소수가 서로 같을 조건을 이용하는 문제로 바뀐다.

복소수 z와 그 켤레복소수 \overline{z} 에 대하여 다음을 만족시키는 복소수 z를 구하여라.

(1)
$$(-1+2i)z-2i\overline{z}=5-i$$

(2)
$$\frac{2z}{2-i} + \frac{\overline{z}}{3+i} = -3-4i$$

06-2 ◎ 변형

복소수 z와 그 켤레복소수 \overline{z} 에 대하여 $z+\overline{z}=4$, $z\overline{z}=130$] 성립할 때. 복소수 z를 모두 구하여라.

06-3 (변형)

등식 $(2+3i)z+(2-3i)\overline{z}=14$ 를 만족시키는 복소수 z만을 |보기|에서 있는 대로 골라라.

06-4 (변형)

두 복소수 z_1 , z_2 에 대하여 $z_1\overline{z_1}=3$, $z_2\overline{z_2}=3$ 이고 $z_1+z_2=3+9i$ 일 때, $\frac{1}{z_1}+\frac{1}{z_2}$ 의 값을 구하여라. $(단, \overline{z_1}, \overline{z_2}$ 는 각각 z_1 , z_2 의 켤레복소수이다.)

06-5 ●변형

기출

등식 z^2 =3+4i를 만족시키는 복소수 z에 대하여 $z\overline{z}$ 의 값을 구하여라.

 $(\underbrace{\text{ 단. } i = \sqrt{-10} \text{ ID. } z}_{z} = z \text{ 2 }$ 켤레복소수이다.)

06-6 인실력)

 $\frac{z+i}{z} = \overline{\left(\frac{z-i}{z}\right)}$ 를 만족시키는 순허수가 아닌 복소수 z에 대하여 $\frac{z}{z}$ 의 값을 구하여라.

 $(\, \underline{z} = z \,)$ 켤레복소수이다.)

다음 식을 간단히 하여라.

(1)
$$i+i^2+i^3+i^4+\cdots+i^{29}+i^{30}$$

$$(2) \frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \dots + \frac{1}{i^{30}}$$

(3)
$$(1+i)^{12}$$

(4)
$$\left(\frac{1+i}{\sqrt{2}}\right)^{52} + \left(\frac{1-i}{\sqrt{2}}\right)^{52}$$

풍쌤 POINT

복소수의 거듭제곱 문제는 답이 간단하게 나오게 되어 있어 i^4 =1임을 알고 지수법칙을 이용하여 i의 지수를 모두 4 이하로 변형하여 계산을 해 봐!

풀이 •• (1)
$$i+i^2+i^3+i^4=i-1-i+1=0$$
이므로
$$i+i^2+i^3+i^4+\cdots+i^{29}+i^{30}$$

$$=(i+i^2+i^3+i^4)+i^4(i+i^2+i^3+i^4)+\cdots$$

$$+i^{24}(i+i^2+i^3+i^4)+i^{28}(i+i^2)$$

$$=i^{28}(i+i^2)=(i^4)^7\times(i-1)=-1+i$$

① 자연수
$$k$$
에 대하여 $i^{4k-3}=i, i^{4k-2}=-1,$ $i^{4k-1}=-i, i^{4k}=10$]고 $i^{4k-3}+i^{4k-2}+i^{4k-1}+i^{4k}=0$ 이므로 항을 4개씩 묶어 해결한다.

$$\begin{split} \text{(2)} \ & \frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \frac{1}{i^4} = \frac{1}{i} - 1 - \frac{1}{i} + 1 = 0 \text{이므로} \\ & \frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \dots + \frac{1}{i^{30}} \\ & = \left(\frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \frac{1}{i^4}\right) + \dots + \frac{1}{i^{24}} \left(\frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \frac{1}{i^4}\right) \\ & \qquad \qquad + \frac{1}{i^{28}} \left(\frac{1}{i} + \frac{1}{i^2}\right) \end{split}$$

$$= \frac{1}{i^{28}} \left(\frac{1}{i} + \frac{1}{i^2} \right) = \frac{1}{(i^4)^7} \times (-i - 1) = -1 - i$$

$$2\frac{1}{i} = \frac{i}{i \times i} = \frac{i}{i^2} = -i$$

(3)
$$(1+i)^2 = 1 + 2i + i^2 = 2i$$
이므로 $(1+i)^{12} = \{(1+i)^2\}^6$

$$= (2i)^{6} = 2^{6} \times i^{6} = -64$$

(4) $(1+i)^2=2i$, $(1-i)^2=-2i$ 이므로

$$\mathbf{3} i^6 = i^4 \times i^2$$

= 1 \times (-1)

$$\left(\frac{1+i}{\sqrt{2}}\right)^{52} + \left(\frac{1-i}{\sqrt{2}}\right)^{52} = \frac{\{(1+i)^2\}^{26}}{(\sqrt{2})^{52}} + \frac{\{(1-i)^2\}^{26}}{(\sqrt{2})^{52}}$$

$$= \frac{(2i)^{26}}{2^{26}} + \frac{(-2i)^{26}}{2^{26}}$$

$$= i^{26} + i^{26} = 2 \times (i^4)^6 \times i^2 = -2$$

$$(1)$$
 $-1+i$ (2) $-1-i$ (3) -64 (4) -2

복소수의 거듭제곱을 계산할 때, 다음이 자주 사용된다.

①
$$i+i^2+i^3+i^4=i-1-i+1=0$$
, $\frac{1}{i}+\frac{1}{i^2}+\frac{1}{i^3}+\frac{1}{i^4}=\frac{1}{i}-1-\frac{1}{i}+1=0$

07-1 인유사)

다음 식을 간단히 하여라.

(1)
$$i+i^2+i^3+i^4+\cdots+i^{90}+i^{91}$$

(2)
$$\frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \dots + \frac{1}{i^{100}}$$

(3)
$$(1+i)^{16}+(1-i)^{16}$$

(4)
$$\left(\frac{1+i}{1-i}\right)^{30} + \left(\frac{1-i}{1+i}\right)^{30}$$

07-2 ●변형

 $i+2i^2+3i^3+4i^4+5i^5=a+bi$ 일 때, 3a+2b의 값을 구하여라. (단, $i=\sqrt{-1}$ 이고 a, b는 실수이다.)

07-3 (변형)

$$z=rac{1-i}{1+i}$$
일 때, $1+z+z^2+z^3+z^4+\cdots+z^{49}+z^{50}$ 의 값을 구하여라.

07-4 (변형)

$$z=rac{1}{i}+rac{1}{i^2}+rac{1}{i^3}+\cdots+rac{1}{i^{21}}$$
일 때, $2z^2-rac{2}{z}$ 의 값을 구하여라. (단, \overline{z} 는 z 의 켤레복소수이다.)

07-5 (변형)

복소수 $\left(\frac{1-i}{1+i}\right)^n$ 이 실수가 되는 10보다 작은 모든 자연수 n의 값의 합을 구하여라.

07-6 인실력

복소수
$$z = \frac{1-\sqrt{3}i}{2}$$
에 대하여 $z^{2023} + \frac{1}{z^{2023}}$ 의 값을 구하여라.

음수의 제곱근

다음 물음에 답하여라.

(1)
$$\sqrt{-2}\sqrt{-8}+2\sqrt{-8}+\frac{\sqrt{-32}}{\sqrt{-8}}$$
 를 계산하여라.

(2) 두 실수
$$a$$
, b 에 대하여 $\sqrt{a}\sqrt{b}=-\sqrt{ab}$ 일 때, $\sqrt{a^2}+\sqrt{b^2}+\sqrt{(a+b)^2}$ 을 간단히 하여라.

(단, ab≠0)

(3) 두 실수
$$a$$
, b 에 대하여 $\frac{\sqrt{a}}{\sqrt{b}} = -\sqrt{\frac{a}{b}}$ 일 때, $\sqrt{a^2} + \sqrt{b^2} + \sqrt{(a-b)^2}$ 을 간단히 하여라.

풍쌤 POINT

음수의 제곱근의 성질을 이용하여 문자를 포함한 식을 계산할 때는 그 문자의 부호를 잘 파악해야 해!

置の (1)
$$\sqrt{-2}\sqrt{-8} + 2\sqrt{-8} + \frac{\sqrt{-32}}{\sqrt{-8}} = \sqrt{2}i \times \sqrt{8}i + 2\sqrt{8}i + \frac{\sqrt{32}i}{\sqrt{8}i} = \sqrt{16}i^2 + 2\sqrt{8}i + \sqrt{4} = -4 + 4\sqrt{2}i + 2 = -2 + 4\sqrt{2}i$$

$$(2)$$
 $\sqrt{a}\sqrt{b} = -\sqrt{ab}$ 이므로

$$a < 0$$
. $b < 0$ 또는 $a = 0$ 또는 $b = 0$

그런데 ab = 0이므로

$$\therefore \sqrt{a^2} + \sqrt{b^2} + \sqrt{(a+b)^2} = |a| + |b| + |a+b|^{\bullet}$$

$$= -a - b - (a+b)$$

$$= -2a - 2b$$

① a<0. b<0이므로 a+b < 0

$$(3) \frac{\sqrt{a}}{\sqrt{b}} = -\sqrt{\frac{a}{b}}$$
이므로

$$\therefore \sqrt{a^2} + \sqrt{b^2} + \sqrt{(a-b)^2} = |a| + |b| + |a-b|^{2}$$

$$= a - b + a - b$$

$$= 2a - 2b$$

② a>0, b<00□로</p> a-b>0

$$\blacksquare$$
 (1) $-2+4\sqrt{2}i$ (2) $-2a-2b$ (3) $2a-2b$

(3)
$$2a - 2b$$

• a. b가 실수일 때

(1)
$$\sqrt{a}\sqrt{b} = -\sqrt{ab}$$
이면 $a < 0$, $b < 0$ 또는 $a = 0$, $b = 0$

(2)
$$\frac{\sqrt{a}}{\sqrt{b}} = -\sqrt{\frac{a}{b}}$$
이면 $a > 0$, $b < 0$ 또는 $a = 0$, $b \neq 0$

 \circ (1)의 성질을 이용하면 $\sqrt{-2}\sqrt{-8} = -\sqrt{16} = -4$ 와 같이 계산할 수 있다.

08-1 인유사

 $\sqrt{3}\sqrt{-3}+\sqrt{-27}\sqrt{-3}+rac{\sqrt{27}}{\sqrt{-3}}+rac{\sqrt{-8}}{\sqrt{-2}}$ 을 계산하여

08-2 (유사)

0이 아닌 두 실수 a, b에 대하여 $\sqrt{a}\sqrt{b} = -\sqrt{ab}$ 일 때, $\sqrt{(a+b)^2} + \sqrt{a^2} - \sqrt{(-a-b)^2}$ 을 간단히 하여라.

08-3 (변형)

다음 중 옳지 않은 것을 모두 고르면? (정답 2개)

①
$$\sqrt{-5}\sqrt{-7} = -\sqrt{35}$$
 ② $\sqrt{-5}\sqrt{7} = \sqrt{-35}$
③ $\frac{\sqrt{-5}}{5} = -\sqrt{\frac{5}{5}}$ ④ $\frac{\sqrt{5}}{5} = -\sqrt{-\frac{5}{5}}$

$$(5) \frac{\sqrt{-7}}{\sqrt{-5}} = -\sqrt{\frac{7}{5}}$$

08-4 (변형)

0이 아닌 세 실수 *a*. *b*. *c*에 대하여

$$\frac{\sqrt{a}}{\sqrt{b}} = -\sqrt{\frac{a}{b}}, \sqrt{b}\sqrt{c} = -\sqrt{bc}$$
일 때,
$$\sqrt{a^2} - \sqrt{c^2} + \sqrt{(b+c)^2} - \sqrt{(a-c)^2}$$
을 간단히 하여라.

08-5 (변형)

기출

001 아닌 실수 a b c가 다음 조건을 만족시킨다

(7)
$$\frac{\sqrt{b}}{\sqrt{a}} = -\sqrt{\frac{b}{a}}$$
 (4)
$$|a+b| + |a+c-1| = 0$$

세 수 a, b, c의 대소 관계로 옳은 것은?

- ① a < b < c ② a < c < b ③ b < a < c
- (4) b < c < a (5) c < a < b

08-6 ● 실력)

2<x<4일 때

$$\sqrt{x-4} \times \sqrt{4-x} - \frac{\sqrt{4-x}}{\sqrt{x-4}} \times \sqrt{\frac{x-4}{4-x}} + \sqrt{x} \times \sqrt{-x}$$

를 a+bi (a, b는 실수) 꼴로 나타내려고 한다. 이때 a+b의 값을 구하여라.

<mark>실전</mark> 연습 문제

01

다음 중 옳지 않은 것은?

- ① $\sqrt{-9} = 3i$
- 2 2i는 순허수이다.
- ③ 제곱하여 -3이 되는 수는 $\sqrt{3}i$ 또는 $-\sqrt{3}i$ 이다.
- ④ −5의 허수부분은 0이다.
- ⑤ 실수 a, b에 대하여 a+bi가 실수이면 $a\neq 0$. b=0이다

02

두 복소수 $a = \frac{1+i}{2i}$, $\beta = \frac{1-i}{2i}$ 에 대하여

 $(2\alpha^2+3)(2\beta^2+3)$ 의 값은? (단. $i=\sqrt{-1}$)

- ① 6
- ② 10
- ③ 14

- (4) 18 (5) 22

03

*x*가 양수일 때.

$$z=(1+i)x^2+(3-3i)x-8-10i$$

가 실수가 되도록 하는 x의 값을 a. 이때의 z의 값을 b라고 하자. 이때 a+b의 값을 구하여라.

↑ 서술형 / 기

두 실수 x. y가 등식 $x^2+y^2i-3x-5yi+2-6i=0$ 을 만족시킬 때. x+y의 값이 될 수 있는 것을 모두 구 하여라

05

0이 아닌 복소수 z에 대하여 항상 실수인 것만을 |보기|에서 있는 대로 고른 것은?

 $(\, \underline{v}, \, \underline{z} = z \,)$ 켤레복소수이다.)

·보기⊢

刀출

7출

 $\neg z - \overline{z}$

$$\Box z^3 - (\overline{z})^3$$

$$\exists \cdot \frac{z}{\overline{z}} + \frac{\overline{z}}{z}$$

- ① 7. ∟

- ④ ㄴ, ㄹ ⑤ ㄷ, ㄹ

06 서술형 🗷

두 실수 a, b에 대하여 등식

$$a(\overline{1-2i})+b(1-i)^2=2$$

가 성립할 때, ab의 값을 구하여라.

07 서술형 ∥

복소수 w=1-2i에 대하여 $z=\frac{w-1}{2w+3i}$ 일 때, $\frac{z}{z}$ 의 값을 구하여라. (단. \overline{z} 는 z의 켤레복소수이다.)

08

복소수 z=a+bi $(a, b \leftarrow 00)$ 아닌 실수)에 대하여 $iz=\overline{z}$ 일 때, 옳은 것만을 |보기|에서 있는 대로 고른 것 은? (단. $i=\sqrt{-10}$]고. \overline{z} 는 z의 켤레복소수이다.)

$$\neg z + \overline{z} = -2b$$

$$\Box \cdot \frac{\overline{z}}{z} + \frac{z}{\overline{z}} = 0$$

- ① ¬ ② ⊏ ③ ¬, ∟
- ④ ∟, ⊏ ⑤ ¬, ∟, ⊏

09

 $\alpha \beta$ 가 실수가 아닐 때, 두 복소수 α , β 에 대하여 $\alpha \overline{\beta} - \overline{\alpha} \beta$ 는 순허수임을 보여라.

 $(\stackrel{-}{\nabla}, \stackrel{-}{\alpha}, \stackrel{-}{\beta}) = ^{-}$ 각각 α, β 의 켤레복소수이다.)

10

刀출

0이 아닌 복소수 $z=(i-2)x^2-3xi-4i+32$ 가 $z+\overline{z}=0$ 을 만족시킬 때, 실수 x의 값은? $(\underbrace{\text{ 단. } i = \sqrt{-1} \text{ Old. } \overline{z}}_{=} \underbrace{z} \text{ 의 켤레복소수이다.})$

- $\bigcirc 1 4$ $\bigcirc 2 1$ $\bigcirc 3 1$

- **4** 3 **5** 4

11

기출

복소수 z와 그 켤레복소수 \overline{z} 에 대하여 $(1-2i)z+(1+2i)\overline{z}=6$ 을 만족시키는 복소수 z의 개수를 구하여라.

12 서술형 //

복소수 z가 다음 조건을 모두 만족시킬 때, $\frac{z+\overline{z}}{2}$ 의 값 을 구하여라. (단. \overline{z} 는 z의 켤레복소수이다.)

(2-3i)+z는 양의 실수이다.

(나) $z\overline{z} = 18$

13

등식

$$(i+i^2)+(i^2+i^3)+(i^3+i^4)+\cdots+(i^{18}+i^{19})$$

= $a+bi$

를 만족시키는 실수 a, b에 대하여 $4(a+b)^2$ 의 값을 구하여라.

14

100 이하의 자연수 n에 대하여 $\Big(\frac{\sqrt{3}+i}{2}\Big)^n = -1$ 을 만 족시키는 n의 개수를 구하여라.

15

두 실수 a, b에 대하여

$$\sqrt{-5}\sqrt{5}+rac{\sqrt{75}}{\sqrt{-3}}i+rac{\sqrt{3}-\sqrt{-1}}{1+\sqrt{-3}}=a+bi$$
일 때, ab 의

값은?

- ① 14
- 2 17
- ③ 20

- ④ 23
- **⑤** 26

16

0이 아닌 두 실수 x, y에 대하여 $\sqrt{x}\sqrt{y} = -\sqrt{xy}$ 이고, $x^2 + 5x - (2y + 7)i = 14 + 3i$ 일 때, xy의 값은?

- ① 5
- ② 15
- ③ 25

- **4** 35
- (5) 45

17 서술형 //

등식 $\sqrt{-3}\sqrt{x-2} = -\sqrt{6-3x}$ 를 만족시키는 자연수 x의 개수를 구하여라.

18

등식 (a+b+3)x+ab-1=0이 x의 값에 관계없이 항상 성립할 때, $(\sqrt{a}+\sqrt{b})^2$ 의 값은?

(단, a, b는 실수이다.)

- $\bigcirc -5$
- (2) 2
- ③ 1

- (4) 4
- **⑤** 7

상위권 도약 문제

01

두 복소수 α , β 가 $\alpha^2 = i$, $\beta^2 = -i$ 를 만족시킬 때. |보기|에서 옳은 것만을 있는 대로 고른 것은?

⊣보기├─

- \neg . $\alpha\beta$ 는 순허수이다.
- $\Box \alpha \overline{\alpha} \beta \overline{\beta} = 1$
- $\Box (\alpha + \beta)^4 = 2i$
- ① L
- ② T
- (4) 7. L (5) L. L

02

복소수 z=a+bi (a, b = 00) 아닌 실수)에 대하여 z^2-z 가 실수일 때, |보기|에서 옳은 것만을 있는 대로고른 것은? (단. \overline{z} 는 z의 켤레복소수이다.)

⊣보기├─

- $\overline{z^2-z}$ 는 실수이다.
- \bot , $z+\overline{z}=1$
- $z = z = \frac{1}{4}$

- ① 7 ② L ③ 7, L

③ 7. ∟

- ④ ¬, ⊏ ⑤ ¬, ∟, ⊏

03

자연수 x에 대하여 복소수 z가 다음 조건을 만족시킨다.

(7) z=2(x+1)+(x+4)i

(나) $z^2 + (\overline{z})^2$ 은 음수이다.

이때 자연수 x의 값을 구하여라.

(단. $i=\sqrt{-1}$ 이고 \overline{z} 는 z의 켤레복소수이다.)

04

기출

 $a{=}4{-}\sqrt{5}$ 일 때, $\sqrt{a{-}2}\sqrt{a{-}2}{+}rac{\sqrt{2{-}a}}{\sqrt{a{-}2}}{+}i$ 의 값을 구하여라.

05

복소수 z=a-i에 대하여 $\frac{z}{z}$ 가 실수일 때, $1+z+z^2+z^3+\cdots+z^{50}$ 의 값을 구하여라. $(\, \, \text{단}, \, a$ 는 실수이고, \overline{z} 는 z의 켤레복소수이다.)

06

등식 $\frac{1}{i} - \frac{1}{i^2} + \frac{1}{i^3} - \frac{1}{i^4} + \dots + \frac{(-1)^{n+1}}{i^n} = 1 - i$ 가

성립하도록 하는 100 이하의 자연수 n의 개수를 구하여라. (단. $i=\sqrt{-1}$)

07

다음 그림과 같이 숫자가 표시되는 화면과 🔼 🕮 두 개의 버튼으로 구성된 장치가 있다.

 $lacksymbol{\triangle}$ 버튼을 누르면 화면에 표시된 수와 $\dfrac{\sqrt{2}+\sqrt{2}i}{2}$ 를 곱한 결과가, $lacksymbol{\triangle}$ 버튼을 누르면 화면에 표시된 수와 $\dfrac{-\sqrt{2}+\sqrt{2}i}{2}$ 를 곱한 결과가 화면에 나타난다. 화면에 표시된 수가 1일 때, $lacksymbol{\triangle}$ 또는 $lacksymbol{\triangle}$ 버튼을 여러 번 눌렀더니 다시 1이 나타났다. 버튼을 누른 횟수의 최솟값은? $(\tabullet$, $i=\sqrt{-1})$

- ① 3
- ② 4
- ③ 5

- **4** 6
- **⑤** 7