Notas de cálculo diferencial e integral 1

Max Jáuregui

10 de Setembro de 2019

Estas notas foram criadas principalmente para meu uso pessoal e pode eventualmente ser usado como um curso elementar de análise matemático com aplicações ao cálculo. Todo o conteúdo foi produzido por mim, seguindo como roteiros os seguintes livros:

- R. Courant e E. McShane, *Differential and integral calculus*, Vol. I, 2 ed. (Blackie and Son, Londres, 1937).
- E. L. Lima, Análise real volume 1. Funções de uma variável real, 12 ed. (IMPA, Rio de Janeiro, 2013).
- W. Rudin, *Principles of mathematical analysis*, 3 ed. (McGraw-Hill, Singapore, 1976).

Max Jáuregui

Conteúdo

1	Linguagem de conjuntos	3
2	Números reais	5
3	Funções	8
4	Espaços euclidianos*	12
5	O conceito de limite para funções	14
6	Sequências de pontos no espaço euclidiano*	19
7	Séries de números reais*	23
8	Funções contínuas	27
9	A derivada de funções de uma variável real	36
10	A integral de Riemann-Stieltjes de funções de uma variável real	50
11	O teorema fundamental do cálculo	64

Linguagem de conjuntos

Um **conjunto** é uma coleção de objetos, chamados de **elementos** do conjunto. Se x é um elemento de um conjunto A, diz-se que x **pertence** a A e escreve-se $x \in A$; caso contrário diz-se x **não pertence** a A e escreve-se $x \notin A$.

Conjuntos numéricos:

- 1. Conjunto dos **números naturais:** $\mathbb{N} = \{1, 2, 3, \ldots\}$.
- 2. Conjunto dos **números inteiros:** $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$
- 3. Conjunto dos **números racionais:** $\mathbb{Q} = \{m/n : m \in \mathbb{Z}, n \in \mathbb{N}\}.$

O conjunto vazio, denotado por \emptyset , é o conjunto que não tem elementos.

Diz-se que um conjunto A é um **subconjunto** ou uma **parte** de um conjunto B se todo elemento de A é elemento de B. Nesse caso escreve-se $A \subset B$ ou $B \supset A$.

Exemplos: Tem-se que $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$. Para qualquer conjunto A tem-se que $\emptyset \subset A$.

Dois conjuntos A e B são iguais se, e somente se, $A \subset B$ e $B \subset A$.

Dados os conjuntos $A \in B$, definimos sua **união** por $A \cup B = \{x : x \in A \text{ ou } x \in B\}$ e sua **interseção** por $A \cap B = \{x : x \in A \text{ e } x \in B\}$. Define-se também a **diferença** $A \setminus B = \{x \in A : x \notin B\}$. Se todos os conjuntos com os quais está se trabalhando são subconjuntos de um conjunto X, a diferença $X \setminus A$ é chamada de **complementar** de A e é denotada por A^c .

Algumas propriedades:

- 1. $A \cup B = B$ se, e somente se, $A \subset B$;
- 2. $A \cap B = A$ se, e somente se, $A \subset B$;
- 3. se $A \subset B$, então $A \cup C \subset B \cup C$;
- 4. se $A \subset B$, então $A \cap C \subset B \cap C$;
- 5. $A \cap (B \cap C) = (A \cap B) \cap C$;
- 6. $A \cup (B \cup C) = (A \cup B) \cup C$;
- 7. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$:
- 8. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$;
- 9. $(A \cup B)^c = A^c \cap B^c$;

- 10. $(A \cup B)^c = A^c \cup B^c$;
- 11. $A \setminus B = A \cap B^c$.
- 12. $A \cap B = \emptyset$ se, e somente se, $A \subset B^c$.

Define-se o **produto cartesiano** de dois conjuntos A e B por $A \times B = \{(x, y) : x \in A \text{ e } y \in B\}$. Os elementos de $A \times B$ são chamados de **pares ordenados**. Dois pares ordenados (x_1, y_1) e (x_2, y_2) são iguais se, e somente se, $x_1 = x_2$ e $y_1 = y_2$.

O produto cartesiano de um conjunto A com ele próprio é denotado por A^2 .

Números reais

Não existe $r \in \mathbb{Q}$ tal que $r^2 = 2$. De fato, se r = p/q, em que $p, q \in \mathbb{N}$ são primos relativos, teríamos que $p^2 = 2q^2$. Isso implicaria que p é par. Porém, com isso concluiríamos que q também é par. Contradição!

 \mathbb{Q} não é suficiente para atribuir um comprimento a todo segmento de reta. Estende-se \mathbb{Q} introduzindo **números irracionais**, como $\sqrt{2}$. O conjunto formado pelos números racionais e irracionais é chamado de conjunto dos **números reais** e é denotado por \mathbb{R} .

 \mathbb{R} é um **corpo**, pois nele estão definidas as operações de adição e multiplicação, as quais têm as seguintes propriedades:

- 1. $x + y \in \mathbb{R}$ e $xy \in \mathbb{R}$ para quaisquer $x, y \in \mathbb{R}$.
- 2. x + (y + z) = (x + y) + z e x(yz) = (xy)z para quaisquer $x, y, z \in \mathbb{R}$.
- 3. x + y = y + x e xy = yx para quaisquer $x, y \in \mathbb{R}$.
- 4. x(y+z) = xy + xz para quaisquer $x, y, z \in \mathbb{R}$.
- 5. Existe $0 \in \mathbb{R}$ tal que x + 0 = x para todo $x \in \mathbb{R}$.
- 6. Existe $1 \in \mathbb{R}$, $1 \neq 0$, tal que $x \cdot 1 = x$ para todo $x \in \mathbb{R}$.
- 7. Para cada $x \in \mathbb{R}$ existe $-x \in \mathbb{R}$ tal que x + (-x) = 0.
- 8. Para cada $x \in \mathbb{R}$, $x \neq 0$, existe $x^{-1} \in \mathbb{R}$ tal que $xx^{-1} = 1$.

 \mathbb{R} é um **corpo ordenado**, pois existe o subconjunto \mathbb{R}^+ dos números reais **positivos** tal que

- 1. se $x \in \mathbb{R}$, só uma das seguintes afirmações é verdadeira: $x \in \mathbb{R}^+$, x = 0 ou $-x \in \mathbb{R}^+$.
- 2. dados $x, y \in \mathbb{R}^+$, tem-se que $x + y \in \mathbb{R}^+$ e $xy \in \mathbb{R}^+$.

Diz-se que $x \in \mathbb{R}$ é **menor** do que $y \in \mathbb{R}$ e escreve-se x < y se $y - x \in \mathbb{R}^+$. As seguintes propriedades seguem diretamente dessa definição:

- 1. Dados $x, y \in \mathbb{R}$, só uma das seguintes afirmações é verdadeira: x < y, x = y ou y < x.
- 2. Se x < y e y < z, então x < z.
- 3. Se x < y, então x + z < y + z para qualquer $z \in \mathbb{R}$.

- 4. Se x < y e z > 0, então xz < yz para qualquer $z \in \mathbb{R}$.
- 5. Se x < y e z < w, então x + z < y + w;
- 6. $x^2 \ge 0$ para todo $x \in \mathbb{R}$. Em particular, 1 > 0.

Usando essas propriedades podemos mostrar que

- 7. se x < y e z < 0, então xz > yz;
- 8. se 0 < x < y e 0 < z < w, então xz < yw;
- 9. se 0 < x < y, então $0 < y^{-1} < x^{-1}$;
- 10. $x^2 + y^2 \ge 2xy$ para quaisquer $x, y \in \mathbb{R}$.

Intervalos finitos: Sejam $a, b \in \mathbb{R}$ com a < b.

- 1. Intervalo aberto: $(a, b) = \{x \in \mathbb{R} : a < x < b\}$.
- 2. Intervalo fechado: $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}.$
- 3. Intervalos semiabertos: $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$ e $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$
- 4. Intervalo degenerado: $[a, a] = \{a\}$.

Intervalos infinitos: $(a, \infty) = \{x \in \mathbb{R} : x > a\}; [a, \infty) = \{x \in \mathbb{R} : x \geq a\}; (-\infty, b) = \{x \in \mathbb{R} : x < b\}; (-\infty, b] = \{x \in \mathbb{R} : x \leq b\}; (-\infty, \infty) = \mathbb{R}.$

Define-se o valor absoluto de $x \in \mathbb{R}$ por

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0. \end{cases}$$

Segue imediatamente daqui que $|x| \ge 0$ e $-|x| \le x \le |x|$ para qualquer $x \in \mathbb{R}$.

Se $|x-a| < \epsilon$, então $x \in (a-\epsilon, a+\epsilon)$ e vice-versa.

Teorema 2.1. Dados $x, y \in \mathbb{R}$, tem-se que

- 1. |xy| = |x||y|;
- 2. $|x+y| \le |x| + |y|$;
- 3. $||x| |y|| \le |x y|$.

Demonstração. 1. $|xy|^2 = x^2y^2 = (|x||y|)^2$.

- 2. Somando as desigualdades $-|x| \le x \le |x|$ e $-|y| \le y \le |y|$, obtemos que $-(|x| + |y|) \le x + y \le |x| + |y|$. Logo, $|x + y| \le |x| + |y|$.
- 3. $|x| \le |x-y| + |y|$ e $|y| \le |x-y| + |x|$. Logo, $-(|x-y|) \le |x| |y| \le |x-y|$ e, por conseguinte, $||x| |y|| \le |x-y|$.

Um conjunto $X \subset \mathbb{R}$ é **limitado superiormente** (**inferiormente**) se existe $c \in \mathbb{R}$ tal que $x \leq c$ ($x \geq c$) para todo $x \in X$. Nesse caso, diz-se que c é uma **cota superior** (**inferior**) de X.

Seja $X \subset \mathbb{R}$ um conjunto limitado superiormente (inferiormente). Diz-se que $\alpha \in \mathbb{R}$ é o **supremo** (**ínfimo**) de X se α é a menor (maior) cota superior (inferior) de X. Nesse caso, escreve-se $\alpha = \sup X$ ($\alpha = \inf X$).

Se $\alpha = \sup X$, para qualquer $\epsilon > 0$ existe $x \in X$ tal que $\alpha - \epsilon < x$. Isso é devido a que $\alpha - \epsilon$ não pode ser uma cota superior de X.

 \mathbb{R} é um corpo ordenado completo. Isso quer dizer que todo conjunto não-vazio $X \subset \mathbb{R}$ que é limitado superiormente tem um supremo.

Se $X \subset \mathbb{R}$ é um conjunto não-vazio limitado inferiormente, então $-X = \{-x \in \mathbb{R} : x \in X\}$ é um conjunto limitado superiormente. Vê-se claramente que inf $X = -\sup(-X)$.

Se $X \subset \mathbb{R}$ é um conjunto que não limitado superiormente (inferiormente), vamos escrever sup $X = \infty$ (inf $X = -\infty$). Com essa convenção, todo subconjunto não-vazio $X \subset \mathbb{R}$ possui um supremo e um ínfimo em $[-\infty, \infty]$.

Teorema 2.2. \mathbb{R} é arquimediano, ou seja, para qualquer $x \in \mathbb{R}$ existe $n \in \mathbb{N}$ tal que n > x.

Demonstração. Se isso não fosse verdade existiria $x \in \mathbb{R}$ tal que $n \leq x$ para todo $n \in \mathbb{N}$, ou seja, \mathbb{N} seria limitado superiormente e portanto teria um supremo $\alpha \in \mathbb{R}$. Logo, deve existir $n \in \mathbb{N}$ tal que $\alpha - 1 < n$. Porém, isso implicaria que $\alpha < n + 1$. Contradição! \square

Corolário 2.3. $\inf_{n \in \mathbb{N}} (1/n) = \inf \{1/n : n \in \mathbb{N}\} = 0.$

Teorema 2.4. \mathbb{Q} é denso em \mathbb{R} , ou seja, dados $a, b \in \mathbb{R}$, a < b, existe $r \in \mathbb{Q}$ tal que a < r < b.

Demonstração. Existe $n \in \mathbb{N}$ tal que 1/n < b - a. Os números m/n, $m \in \mathbb{Z}$, dividem a reta real em intervalos de comprimento 1/n. Se $a \in [(m-1)/n, m/n)$, devemos ter b > m/n. Com efeito, se tivéssemos $b \le m/n$, então $b - 1/n \le (m-1)/n \le a$. Porém, tem-se também que b - 1/n > a. Contradição! Portanto, a < m/n < b.

Teorema* 2.5. Teorema dos intervalos encaixados. Sejam I_n intervalos fechados tais que $I_{n+1} \subset I_n$ para todo $n \in \mathbb{N}$. Existe $c \in \mathbb{R}$ tal que $c \in I_n$ para todo $n \in \mathbb{N}$.

Demonstração. Suponhamos que $I_n = [a_n, b_n]$. Vemos que $a_1 \le a_2 \le \ldots \le a_n \le \ldots \le b_n \le \ldots \le b_2 \le b_1$. Logo, o conjunto formado pelos números a_n é limitado superiormente por qualquer um dos números b_n . Dessa forma, se c é o supremo desse conjunto, então $a_n \le c \le b_n$ para qualquer $n \in \mathbb{N}$.

Teorema* 2.6. \mathbb{R} é não-enumerável, ou seja, $\mathbb{R} \neq \{x_1, x_2, \ldots\}$.

Demonstração. Suponhamos que $\mathbb{R} = \{x_1, x_2, \ldots\}$. Seja I_1 um intervalo fechado não-degenerado tal que $x_1 \notin I_1$. Supondo definidos os intervalos fechados não-degenerados $I_1 \supset \ldots \supset I_n$, definimos o intervalo fechado não-degenerado I_{n+1} da seguinte forma:

- 1. Se $x_{n+1} \notin I_n$, então $I_{n+1} = I_n$.
- 2. Se $x_{n+1} \in I_n$, então x_{n+1} é diferente de pelo menos uma das extremidades de $I_n = [a, b]$. Supondo, por exemplo, que $x_{n+1} \neq a$, definimos $I_{n+1} = [a, (a + x_{n+1})/2]$.

Dessa forma, os intervalos encaixados I_n estão bem definidos para todo $n \in \mathbb{N}$ e são tais que $x_n \notin I_n$. Pelo teorema dos intervalos encaixados, existe $c \in \mathbb{R}$ tal que $c \in I_n$ para todo $n \in \mathbb{N}$. Dessa forma, $c \neq x_n$ para todo $n \in \mathbb{N}$. Contradição!

Funções

Sejam X e Y conjuntos arbitrários. Uma **função** $f: X \to Y$ é uma regra que associa a cada $x \in X$ um único $y \in Y$; nesse caso escreve-se f(x) = y. Os conjuntos X e Y são chamados respectivamente de **domínio** e **contradomínio** da função f.

Define-se a **imagem** de uma função $f: X \to Y$ como o conjunto $f(X) = \{f(x) \in Y : x \in X\}$. Se f(X) = Y, diz-se que f é **sobrejetiva**.

Uma função $f: X \to Y$ é dita **injetiva** se, dados $x_1, x_2 \in X$ com $x_1 \neq x_2$, tem-se que $f(x_1) \neq f(x_2)$. Uma função que é injetiva e sobrejetiva é chamada de uma **bijeção**.

Se $f: X \to Y$ é uma bijeção, para cada $y \in Y$ existe um único $x \in X$ tal que f(x) = y. Logo, podemos definir uma função $f^{-1}: Y \to X$ pondo $f^{-1}(y) = x$ quando f(x) = y. A função f^{-1} assim definida é chamada de **inversa** da função f.

Dadas as funções $f: X \to Y$ e $g: Y \to Z$, define-se a **função composta** $g \circ f: X \to Z$ por $(g \circ f)(x) = g(f(x))$. Se $f: X \to Y$ é uma bijeção, então $(f^{-1} \circ f)(x) = x$ para todo $x \in X$ e $(f \circ f^{-1})(y) = y$ para todo $y \in Y$.

No restante dessa seção consideraremos funções entre subconjuntos de \mathbb{R} a menos que se indique o contrário.

Uma função $f: X \to Y$ pode ser representada graficamente localizando os pontos (x, f(x)) no plano cartesiano xy. O desenho obtido é chamado de **gráfico** da função f. Qualquer reta vertical intersecta o gráfico de uma função em no máximo um ponto.

Em muitas ocasiões, uma função f é definida dando uma expressão para f(x). Nesse caso, vamos considerar que o domínio de f é o maior conjunto $X \subset \mathbb{R}$ tal que a expressão de f(x) esteja definida para todo $x \in X$.

Funções lineares: f(x) = ax + b. O domínio de $f \in \mathbb{R}$ e sua imagem é \mathbb{R} se $a \neq 0$ ou $\{b\}$ se a = 0. O gráfico de uma função linear é uma linha reta (ver figura 3.1).

Figura 3.1: Gráficos de funções lineares.

Funções quadráticas: $f(x) = ax^2 + bx + c$, $a \neq 0$. O domínio de $f \in \mathbb{R}$. Para determinar a imagem de f escrevemos

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a},$$

em que $\Delta = b^2 - 4ac$. Vemos daqui que

- 1. se a > 0, a imagem de f é o intervalo $[-\Delta/4a, \infty)$ e $f(-b/2a) = -\Delta/4a$.
- 2. se a > 0, a imagem de f é o intervalo $(-\infty, -\Delta/4a]$ e $f(-b/2a) = -\Delta/4a$.

O gráfico de f é uma parábola que se estende verticalmente para cima (baixo) se a > 0 (a < 0) como mostrado na figura 3.2.

Figura 3.2: Gráficos de funções quadráticas.

Funções polinomiais: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$. O domínio de f é \mathbb{R} e sua imagem é \mathbb{R} se o maior expoente de x é impar. No caso em que esse expoente é par, a imagem de f é um intervalo da forma $[a, \infty)$. A figura 3.3 mostra o gráfico da função $f(x) = x^n$ para vários valores de $n \in \mathbb{N}$.

Figura 3.3: Gráfico da função $f(x) = x^n$ para vários valores de $n \in \mathbb{N}$.

Funções racionais: f(x) = p(x)/q(x), em que p e q são funções polinomiais. O domínio de f é $\{x \in \mathbb{R} : q(x) \neq 0\}$. A figura 3.4 mostra os gráficos das funções f(x) = 1/x e $g(x) = 1/x^2$.

Figura 3.4: Gráficos das funções f(x) = 1/x e $g(x) = 1/x^2$.

Funções algébricas: São funções que podem envolver as operações racionais (adição, multiplicação, subtração e divisão) e raízes de diversas ordens em suas definições. Por exemplo: $f(x) = \sqrt{x-1}$, $g(x) = \sqrt[3]{x^2+2/x} - (\sqrt{x}-1)^2$. Para determinar o domínio dessas funções, deve se levar em conta que os denominadores nunca devem se anular e, além disso, o interior de raízes de ordem par sempre deve ser uma quantidade não-negativa. A figura 3.5 mostra o gráfico da função $g:[0,\infty) \to [0,\infty)$, $g(x) = x^{1/n}$, para vários valores de $n \in \mathbb{N}$. Como g é a inversa da função $f:[0,\infty) \to [0,\infty)$, $f(x) = x^n$, o gráfico de g pode ser obtido refletindo o gráfico de f em relação à reta f0 gráfico de f1 também pode ser obtido girando 90° o gráfico de f2 no sentido anti-horário e depois refletindo o resultado em relação ao eixo f3.

Figura 3.5: Gráfico da função $f(x) = x^{1/n}$ para vários valores de $n \in \mathbb{N}$.

Seja $I \subset \mathbb{R}$ um intervalo que contém o ponto 0. Uma função $f: I \to \mathbb{R}$ é dita uma **função par** (**ímpar**) se f(-x) = f(x) (f(-x) = -f(x)) para todo $x \in I$. O gráfico de uma função par é simétrico em relação ao eixo y enquanto que o gráfico de uma função ímpar é simétrico em relação à origem.

Funções trigonométricas: As funções seno e cosseno, definidas pelas expressões $f(x) = \operatorname{sen} x$ e $g(x) = \operatorname{cos} x$ respectivamente tem \mathbb{R} como domínio e o intervalo [-1,1] como imagem. Elas são funções periódicas de período 2π , ou seja, $\operatorname{sen}(x+2\pi) = \operatorname{sen} x$ e $\cos(x+2\pi) = \cos x$ para todo $x \in \mathbb{R}$ (ver figura 3.6). Além disso, a função seno é uma função ímpar, enquanto que a função cosseno é par. A função tangente é definida pela expressão $h(x) = \tan x = \operatorname{sen} x/\cos x$. O domínio dessa função é $\mathbb{R} \setminus \{(2n-1)\pi/2 : n \in \mathbb{Z}\}$ e sua imagem é \mathbb{R} . A função tangente é periódica e tem período π . Além disso, ela é uma função ímpar (ver figura 3.7).

Figura 3.6: Gráficos das funções seno e cosseno.

Figura 3.7: Gráfico da função tangente.

Seja $X \subset \mathbb{R}$. Uma função $f: X \to \mathbb{R}$ é dita **monótona crescente** (**decrescente**) se, dados $x,y \in X$ com x < y, tem-se que $f(x) \le f(y)$ ($f(y) \le f(x)$). Se sempre ocorre a desigualdade estrita, diz-se ainda que f é **estritamente crescente** (**decrescente**).

Função logaritmo: $f(x) = \log x$. O domínio dessa função é $(0, \infty)$ e sua imagem é \mathbb{R} . Ela é uma função estritamente crescente tal que f(1) = 0 e f(ab) = f(a) + f(b) para quaisquer a, b > 0.

Função exponencial: $f(x) = \exp x$. O domínio dessa função é \mathbb{R} e sua imagem é $(0, \infty)$. Ela é a inversa da função logaritmo. A função exponencial é estritamente crescente e é tal que f(0) = 1 e f(a+b) = f(a)f(b).

Espaços euclidianos*

O conjunto \mathbb{R}^d é chamado de **espaço euclidiano** d-dimensional e seus elementos são chamados de **pontos** ou de **vetores**.

Definem-se em \mathbb{R}^d as operações de adição e multiplicação por um escalar pelas equações

$$x + y = (x_1 + y_1, \dots, x_d + y_d)$$
 e $\alpha x = (\alpha x_1, \dots, \alpha x_d)$.

 \mathbb{R}^d é um **espaço vetorial**, pois essas operações têm as seguintes propriedades:

- 1. x + (y + z) = (x + y) + z para quaisquer $x, y, z \in \mathbb{R}^d$;
- 2. x + y = y + x para quaisquer $x, y \in \mathbb{R}^d$;
- 3. existe $0 \in \mathbb{R}^d$ tal que x + 0 = x para todo $x \in \mathbb{R}^d$;
- 4. para cada $x \in \mathbb{R}^d$ existe $-x \in \mathbb{R}^d$ tal que x + (-x) = 0;
- 5. 1x = x para todo $x \in \mathbb{R}^d$:
- 6. $\alpha(\beta x) = (\alpha \beta)x$ para quaisquer $\alpha, \beta \in \mathbb{R}$ e $x \in \mathbb{R}^d$;
- 7. $(\alpha + \beta)x = \alpha x + \beta x$ e $\alpha(x + y) = \alpha x + \alpha y$ para quaisquer $\alpha, \beta \in \mathbb{R}$ e $x, y \in \mathbb{R}^d$.

Define-se o **produto interno** de $x, y \in \mathbb{R}^d$ por $\langle x, y \rangle = x_1 y_1 + \dots + x_d y_d$. Podemos verificar que

- 1. $\langle x, y \rangle = \langle y, x \rangle$ para quaisquer $x, y \in \mathbb{R}^d$;
- 2. $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ para quaisquer $x, y, z \in \mathbb{R}^d$;
- 3. $\langle x, \alpha y \rangle = \alpha \, \langle x, y \rangle$ para quaisquer $\alpha \in \mathbb{R}$ e $x, y \in \mathbb{R}^d$;
- 4. $\langle x, x \rangle > 0$ se $x \neq 0$.

Diz-se que $x, y \in \mathbb{R}^d$ são **ortogonais** quando $\langle x, y \rangle = 0$.

Define-se a **norma euclidiana** de $x \in \mathbb{R}^d$ por $|x| = \sqrt{\langle x, x \rangle}$. Sejam $x, y, z \in \mathbb{R}^d$. Se x = y + z e $\langle z, y \rangle = 0$, então $|x|^2 = |y|^2 + |z|^2 + 2 \langle y, z \rangle = |y|^2 + |z|^2$ (teorema de Pitágoras).

Sejam $x,y \in \mathbb{R}^d$. Se $y \neq 0$, definamos $\alpha = \langle x,y \rangle / |y|^2$. Logo, o vetor $z = x - \alpha y$ é ortogonal a y. Com efeito, vemos que $\langle y, z \rangle = \langle y, x \rangle - \alpha \langle y, y \rangle = \langle y, x \rangle - \langle y, x \rangle = 0$.

Teorema 4.1. Desigualdade de Cauchy-Schwarz. Para quaisquer $x, y \in \mathbb{R}^d$ tem-se que $|\langle x, y \rangle| \leq |x||y|$. Além disso, a igualdade ocorre se, e somente se, $x = \alpha y$ para algum $\alpha \in \mathbb{R}$.

Demonstração. Se y=0, OK. Se $y\neq 0$, existe $z\in\mathbb{R}^d$ tal que $\langle y,z\rangle=0$ e $x=\alpha y+z$, em que $\alpha=\langle x,y\rangle/|y|^2$. Logo, $|x|^2=\alpha^2|y|^2+|z|^2\geq\alpha^2|y|^2=\langle x,y\rangle^2/|y|^2$, o que nos dá a desigualdade de Cauchy-Schwarz. Além disso, vemos que a igualdade ocorre se, e somente se, |z|=0. Isso implica que a igualdade ocorre se, e somente se, z=0, o qual equivale à condição $z=\alpha y$.

Teorema 4.2. Sejam $x, y \in \mathbb{R}^d$ e $\alpha \in \mathbb{R}$. Tem-se que

- 1. |x| > 0 se $x \neq 0$;
- 2. $|\alpha x| = |\alpha||x|$;
- 3. $|x+y| \le |x| + |y|$;
- 4. ||x| |y|| < |x y|.

Demonstração. 3. $|x+y|^2 = |x|^2 + |y|^2 + 2\langle x,y\rangle \le |x|^2 + |y|^2 + 2|x||y| = (|x|+|y|)^2$. \square

Uma **norma** em \mathbb{R}^d é uma função $|\cdot|: \mathbb{R}^d \to \mathbb{R}$ que cumpre os itens 1, 2 e 3 do teorema anterior. Além da norma euclidiana, de forma convenientemente podemos utilizar a **norma do máximo** $|x|_M = \max\{x_1, \dots, x_d\}$ e a **norma da soma** $|x|_S = |x_1| + \dots + |x_d|$. Pode-se verificar que $|x|_M \le |x| \le |x|_S \le d|x|_M$ para todo $x \in \mathbb{R}^d$.

O conceito de limite para funções

Consideremos a função f(x) = x - 2. Conforme x se aproxima de 2, f(x) se aproxima de 0. Nesse caso, podemos dizer que 0 é o limite de f(x) quando x tende para 2 e escrever $\lim_{x\to 2} f(x) = 0$.

Consideremos a função $f(x)=(x^2-1)/(x-1)$. O ponto $1\in\mathbb{R}$ não pertence ao domínio de f. Porém, pontos arbitrariamente próximos de 1 pertencem ao domínio de f. Para esses valores, notamos que f(x)=x+1 e vemos que, conforme x tende para 1, f(x) se aproxima de 2. Nesse caso, podemos dizer que 2 é o limite de f(x) quando x tende para 1 e escrever $\lim_{x\to 1} f(x) = 2$.

Define-se a **bola aberta** de centro $a \in \mathbb{R}^d$ e raio r > 0 como o conjunto $B(a, r) = \{x \in \mathbb{R}^d : |x - a| < r\}.$

Diz-se que $a \in \mathbb{R}^d$ é um **ponto de acumulação** de um conjunto $X \subset \mathbb{R}^d$ se para qualquer r > 0 a bola aberta B(a, r) contém um ponto de X diferente de a, ou seja, se $(X \setminus \{a\}) \cap B(a, \delta) \neq \emptyset$. O conjunto de todos os pontos de acumulação de X é denotado por X'.

Exemplo: O ponto $1 \in \mathbb{R}$ é um ponto de acumulação do intervalo (1,2) embora não pertença a ele.

Sejam $X \subset \mathbb{R}^m$, $f: X \to \mathbb{R}^d$ e $a \in X'$, diz-se que $L \in \mathbb{R}^d$ é o **limite** de f(x) quando x tende para a se, dado qualquer $\epsilon > 0$, pode-se encontrar $\delta > 0$ tal que $|f(x) - L| < \epsilon$ para qualquer $x \in X$ que satisfaz a condição $0 < |x - a| < \delta$. Nesse caso, escreve-se $\lim_{x \to a} f(x) = L$. A definição de limite pode ser rescrita também na seguinte forma: dado qualquer $\epsilon > 0$, existe $\delta > 0$ tal que $x \in (X \setminus \{a\}) \cap B(a, \delta)$ implica que $f(x) \in B(L, \epsilon)$. Devido a relação entre as normas euclidiana, do máximo e da soma, o limite L será o mesmo usando qualquer par delas na definição de limite.

Teorema 5.1 (Unicidade do limite). Sejam $X \subset \mathbb{R}^m$, $f: X \to \mathbb{R}^d$ e $a \in X'$. Se $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} f(x) = M$, então L = M.

Demonstração. Suponhamos $L \neq M$ e consideremos $\epsilon = |L - M|/2$. Existe $\delta > 0$ tal que $|f(x) - L| < \epsilon$ para todo $x \in X$ que satisfaz a condição $0 < |x - a| < \delta$. Como $|L - M| \leq |L - f(x)| + |f(x) - M|$ para todo $x \in X$, segue que, se $0 < |x - a| < \delta$, $|L - M| < \epsilon + |f(x) - M|$. Isso implica que $|f(x) - M| > \epsilon$ para todo $x \in X$ que satisfaz a condição $0 < |x - a| < \delta$. Portanto, M não é o limite de f(x) quando x tende para a. Contradição!

Exemplos:

- 1. Consideremos a função constante f(x) = c. Temos que $\lim_{x\to a} f(x) = c$ para todo $a \in \mathbb{R}$. Com efeito, dado $\epsilon > 0$, existe $\delta = 1$ (pode ser qualquer número positivo) tal que $|f(x) c| = |c c| = 0 < \epsilon$ sempre que $0 < |x a| < \delta$.
- 2. Seja g(x) = x. Temos que $\lim_{x\to a} g(x) = a$ para qualquer $a \in \mathbb{R}$. Com efeito, dado $\epsilon > 0$, existe $\delta = \epsilon$ tal que $|g(x) a| = |x a| < \epsilon$ sempre que $0 < |x a| < \delta$.

Teorema 5.2. Sejam $X \subset \mathbb{R}^m$, $f: X \to \mathbb{R}^d$ e $a \in X'$. Se $\lim_{x\to a} f(x) = L$, $ent\tilde{ao} \lim_{x\to a} |f(x)| = |L|$.

Demonstração. Dado $\epsilon > 0$, existe $\delta > 0$ tal que $|f(x) - L| < \epsilon$ para todo $x \in X$ que satisfaz a condição $0 < |x - a| < \delta$. Sob essas condições, $||f(x)| - |L|| \le |f(x) - L| < \epsilon$. \square

Teorema 5.3. Sejam $X \subset \mathbb{R}^d$, $f: X \to \mathbb{R}$ $e \ a \in X'$. Se $\lim_{x \to a} f(x) = L$ $e \ L < M$, existe $\delta > 0$ tal que f(x) < M para todo $x \in X$ satisfazendo a condição $0 < |x - a| < \delta$.

Demonstração. Seja $\epsilon = M - L$. Existe $\delta > 0$ tal que $|f(x) - L| < \epsilon$ para todo $x \in X$ que satisfaz a condição $0 < |x - a| < \delta$. Logo, nessas condições, $f(x) < \epsilon + L = M$. \square

Teorema 5.4. Teorema do sanduíche. $Sejam\ X\subset\mathbb{R}^d,\ f,g,h:X\to\mathbb{R}\ e\ a\in X'.$ $Se\ \lim_{x\to a}f(x)=L,\ \lim_{x\to a}h(x)=L\ e\ f(x)\le g(x)\le h(x)\ para\ todo\ x\in X,\ ent\~ao\ \lim_{x\to a}g(x)=L.$

Demonstração. Seja $\epsilon > 0$. Existe $\delta_1 > 0$ tal que $|f(x) - L| < \epsilon$ para todo $x \in X$ que satisfaz a condição $0 < |x - a| < \delta_1$. Logo, nessas condições, $L - \epsilon < f(x)$. De forma análoga, existe $\delta_2 > 0$ tal que $h(x) < L + \epsilon$ para todo $x \in X$ satisfazendo a condição $0 < |x - a| < \delta_2$. Pondo $\delta = \min\{\delta_1, \delta_2\}$, temos que $L - \epsilon < f(x) \le g(x) \le h(x) < L + \epsilon$ para todo $x \in X$ tal que $0 < |x - a| < \delta$.

Seja $X \subset \mathbb{R}^m$. Diz-se que uma função $f: X \to \mathbb{R}^d$ é **limitada** quando existe existe M > 0 tal que |f(x)| < M para todo $x \in X$.

Lema 5.5. Sejam $X \subset \mathbb{R}^d$, $f, g: X \to \mathbb{R}$ $e \ a \in X'$. Se $\lim_{x \to a} f(x) = 0$ $e \ g \ \'e \ limitada$, $ent\~ao \lim_{x \to a} f(x)g(x) = 0$.

Demonstração. Seja M>0 tal que |g(x)|< M. Dado $\epsilon>0$, existe $\delta>0$ tal que $|f(x)|<\epsilon/M$ para todo $x\in X$ satisfazendo a condição $0<|x-a|<\delta$. Logo, nessas condições, $|f(x)g(x)|<\epsilon$.

Teorema 5.6. Sejam $X \subset \mathbb{R}^d$, $f, g: X \to \mathbb{R}$ $e \ a \in X'$. Se $\lim_{x\to a} f(x) = L$ $e \lim_{x\to a} g(x) = M$, $ent\tilde{a}o$

- 1. $\lim_{x\to a} [f(x) \pm g(x)] = L \pm M$;
- 2. $\lim_{x\to a} f(x)g(x) = LM$;
- 3. $\lim_{x\to a} f(x)/g(x) = L/M$ desde que se tenha $M \neq 0$.

Demonstração. 1. Dado $\epsilon > 0$, podemos encontrar $\delta > 0$ tal que $|f(x) - L| < \epsilon/2$ e $|g(x) - M| < \epsilon/2$ para todo $x \in X$ satisfazendo a condição $0 < |x - a| < \delta$. Logo, nessas condições, $|f(x) \pm g(x) - (L \pm M)| \le |f(x) - L| + |g(x) - M| < \epsilon$.

- 2. Notamos que f(x)g(x)-LM=f(x)[g(x)-M]+[f(x)-L]M. Como $\lim_{x\to a}f(x)=L$, existe $\delta>0$ tal que L-1< f(x)< L+1 para todo $x\in (X\setminus\{a\})\cap B(a,\delta)$. Logo a restrição de f a $(X\setminus\{a\})\cap B(a,\delta)$ é uma função limitada. Portanto, usando o lema 5.5 e o item anterior, $\lim_{x\to a}[f(x)g(x)-LM]=\lim_{x\to a}f(x)[g(x)-M]+\lim_{x\to a}[f(x)-L]M=0$.
- 3. Notamos que 1/g(x)-1/M=[M-g(x)]/Mg(x). Como $\lim_{x\to a}g(x)=M$, segue que $\lim_{x\to a}|g(x)|=|M|$. Logo, existe $\delta>0$ tal que |g(x)|>|M|/2 para todo $x\in X$ satisfazendo a condição $0<|x-a|<\delta$. Logo, nessas condições, 1/|g(x)|<2/|M|, ou seja, a função 1/|g| é limitada. Portanto, $\lim_{x\to a}[1/g(x)-1/M]=\lim_{x\to a}[M-g(x)]/Mg(x)=0$.

Exemplos:

- 1. Dado $n \in \mathbb{N}$, consideremos a função $f(x) = x^n$. Temos que $\lim_{x \to a} f(x) = a^n$ para todo $a \in \mathbb{R}$.
- 2. Se $p(x) = a_n x^n + \dots + a_1 x + a_0$, então $\lim_{x \to a} p(x) = p(a)$.
- 3. Se p e q são funções polinomiais e $q(a) \neq 0$, então $\lim_{x\to a} p(x)/q(x) = p(a)/q(a)$. Se p(a) = q(a) = 0, nada pode ser dito de forma geral sobre o limite de p(x)/q(x) quando x tende para a. Por exemplo, $\lim_{x\to 0} x^2/x = 0$ e $\lim_{x\to 0} x/x = 1$. Por outro lado, $\lim_{x\to 0} x/x^2$ não existe, pois se existisse e fosse $L \in \mathbb{R}$, então $1 = \lim_{x\to 0} 1 = \lim_{x\to 0} (x/x^2)x = L \cdot 0 = 0$. Absurdo!
- 4. Tem-se que

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1. \tag{5.1}$$

Podemos dar uma justificativa geométrica para esse resultado usando a circunferência trigonométrica. Percebemos que quando |x| é pequeno, x é quase igual a sen x. Uma prova da Eq. (5.1) só poderá ser dada depois de definir a função seno de forma analítica. A função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \sin x/x & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$$

é chamada às vezes de **função sinc** (ver figura 5.1).

Figura 5.1: Gráfico da função sinc.

Sejam $X \subset \mathbb{R}^m$ e $f: X \to \mathbb{R}^d$. Vemos que para cada $x \in X$, $f(x) = (f_1(x), \dots, f_n(x))$. As funções $f_1, \dots, f_n: X \to \mathbb{R}$ são chamadas de **funções-coordenada** de f.

Teorema* 5.7. Sejam $X \subset \mathbb{R}^m$, $f: X \to \mathbb{R}^d$ e $a \in X'$. Tem-se que $\lim_{x\to a} f(x) = L$, em que $L = (L_1, \ldots, L_d)$, se, e somente se, $\lim_{x\to a} f_j(x) = L_j$, $j = 1, \ldots, d$.

Demonstração. Dado $\epsilon > 0$, existe $\delta > 0$ tal que $|f(x) - L|_M < \epsilon$ para todo $x \in X$ satisfazendo a condição $0 < |x - a| < \delta$. Logo, sob essas condições, $|f_j(x) - L_j| \le |f(x) - L|_M < \epsilon, j = 1, ..., d$. Reciprocamente, se $|f_j(x) - L| < \epsilon, j = 1, ..., d$, para todo $x \in X$ tal que $0 < |x - a| < \delta$, então $|f(x) - L|_M < \epsilon$.

Corolário* 5.8. Sejam $X \subset \mathbb{R}^m$, $f, g: X \to \mathbb{R}^d$, $h: X \to \mathbb{R}$ $e \ a \in X'$. Se $\lim_{x \to a} f(x) = L$, $\lim_{x \to a} g(x) = M$ $e \lim_{x \to a} h(x) = \alpha$, tem-se que

- 1. $\lim_{x\to a} [f(x) \pm g(x)] = L \pm M;$
- 2. $\lim_{x\to a} h(x)f(x) = \alpha L$
- 3. $\lim_{x\to a} \langle f(x), g(x) \rangle = \langle L, M \rangle$.

Sejam $X \subset \mathbb{R}^d$, $f: X \to \mathbb{R}$ e $a \in X'$. Escreve-se $\lim_{x \to a} f(x) = \infty$ ($\lim_{x \to a} f(x) = -\infty$) para indicar que, dado A > 0, existe $\delta > 0$ tal que f(x) > A (f(x) < -A) para todo $x \in X$ satisfazendo a condição $0 < |x - a| < \delta$.

Teorema 5.9. Sejam $X \subset \mathbb{R}^d$, $f, g: X \to \mathbb{R}$ $e \ a \in X'$. Tem-se que

- 1. se $\lim_{x\to a} f(x) = \infty$ e g(x) > c para todo $x \in X$, então $\lim_{x\to a} [f(x) + g(x)] = \infty$;
- 2. se $\lim_{x\to a} f(x) = \infty$ e g(x) > c > 0 para todo $x \in X$, então $\lim_{x\to a} f(x)g(x) = \infty$;
- 3. se $\lim_{x\to a} f(x) = \infty$, então $\lim_{x\to a} 1/f(x) = 0$;
- 4. se $\lim_{x\to a} f(x) = 0$ e $f(x) \ge 0$ para todo $x \in X$, então $\lim_{x\to a} 1/f(x) = \infty$.

Sejam $X \subset \mathbb{R}$ um conjunto que não é limitado superiormente (inferiormente) e $f: X \to \mathbb{R}^d$. Diz-se que $L \in \mathbb{R}^d$ é o limite de f(x) quando x tende a ∞ $(-\infty)$ se, dado $\epsilon > 0$, existe A > 0 tal que $|f(x) - L| < \epsilon$ para todo $x \in X$ satisfazendo a condição x > A (x < -A). Se $f: X \to \mathbb{R}$, pode-se ainda definir expressões similares a $\lim_{x \to \infty} f(x) = \infty$. Todos os teoremas, lemas e corolários anteriores valem da mesma forma para esses limites. Exemplos:

1.

$$\lim_{x \to \infty} \frac{3x^2 - 3x + 7}{4x^2 - 9x + 6} = \lim_{x \to \infty} \frac{3 - \frac{3}{x} + \frac{7}{x^2}}{4 - \frac{9}{x} + \frac{6}{x}} = \frac{3}{4}.$$

2. Tem-se que $\lim_{x\to\infty}(\sin x)/x=0$. Isso decorre diretamente de usar o teorema do sanduíche na desigualdade $-1/x \le (\sin x)/x \le 1/x$.

Seja $X \subset \mathbb{R}$. Diz-se que $a \in \mathbb{R}$ é um **ponto de acumulação à direita** (**esquerda**) de X se existe $\delta > 0$ tal que $(a, a + \delta) \cap X \neq \emptyset$ ($(a - \delta, a) \cap X \neq \emptyset$). Nesse caso, escreveremos $a \in X'_+$ ($a \in X'_-$). Diz-se ainda que a é um **ponto de acumulação** bilateral se $a \in X'_+ \cap X'_-$.

Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ e $a \in X'_+$ $(a \in X'_-)$. Diz-se que L é o limite de f(x) quando x tende para a **pela direita** (**esquerda**) se, dado $\epsilon > 0$, existe $\delta > 0$ tal que $|f(x) - L| < \epsilon$ para todo $x \in X$ satisfazendo a condição $a < x < a + \delta$ $(a - \delta < x < a)$. Nesse caso escreve-se que $\lim_{x \to a+} f(x) = L$ $(\lim_{x \to a-} f(x) = L)$.

Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ e $a \in X'_+ \cap X'_-$. Verifica-se facilmente que $\lim_{x \to a} f(x) = L$ se, e somente se, $\lim_{x \to a+} f(x) = \lim_{x \to a-} f(x) = L$.

Exemplo: $\lim_{x\to 0} |x|/x$ não existe. Com efeito, podemos verificar que $\lim_{x\to 0+} |x|/x=1$ e $\lim_{x\to 0-} |x|/x=-1$.

Teorema 5.10. Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$, $a \in X'_+$ $e \ b \in X'_-$. Se $f \ \acute{e}$ monótona e limitada, então existem os limites laterais $\lim_{x\to a+} f(x)$ $e \lim_{x\to b-} f(x)$.

Demonstração. Suponhamos que f seja crescente e consideremos o conjunto $A = \{f(x) \in \mathbb{R} : x \in X, x > a\}$. Como $a \in X'_+$, $A \neq \emptyset$. Além disso, como f é limitada, A é limitado e, por conseguinte, existe $L = \inf A$. Dado $\epsilon > 0$, existe $x_0 \in X$, $x_0 > a$, tal que $L \leq f(x_0) < L + \epsilon$. Pondo $\delta = x_0 - a > 0$, vemos que para todo $x \in X$ tal que $a < x < a + \delta$, tem-se que $L \leq f(x) \leq f(a + \delta) < L + \epsilon$, o que implica que $L - \epsilon < f(x) < L + \epsilon$. Portanto, $\lim_{x \to a+} f(x) = L$.

Corolário 5.11 (da demonstração). Seja $X \subset \mathbb{R}$ um conjunto que não é limitado superiormente. Se $f: X \to \mathbb{R}$ é monótona e limitada superiormente, então existe $\lim_{x\to\infty} f(x)$. De forma análoga, se X não é limitado inferiormente e f é limitada inferiormente, então existe $\lim_{x\to-\infty} f(x)$.

Sequências de pontos no espaço euclidiano*

Uma **sequência** de pontos em um conjunto $X \subset \mathbb{R}^d$ é uma função $x : \mathbb{N} \to X$. Para cada $n \in \mathbb{N}$, escreve-se x_n no lugar de x_n . A sequência x é usualmente denotada listando seus termos x_1, x_2, \ldots

Diz-se que uma sequência x_1, x_2, \ldots converge para um ponto $a \in \mathbb{R}^d$ se $\lim_{n\to\infty} x_n = a$, ou seja, se, dado $\epsilon > 0$, existe A > 0 tal que $|x_n - a| < \epsilon$ para todo n > A. Nesse caso é comum escrever $x_n \to a$. Uma sequência que converge para um ponto de \mathbb{R}^d é dita convergente; caso contrário é dita divergente.

Vale ressaltar que todos os teoremas, lemas e corolários da seção anterior se aplicam da mesma forma para limites de sequências de pontos em \mathbb{R}^d , com a exceção do teorema 5.10 sobre limites laterais.

Se uma sequência de números reais x_1, x_2, \ldots é monótona crescente (decrescente) e converge para um número $a \in \mathbb{R}$, escreveremos $x_n \uparrow a \ (x_n \downarrow a)$. O corolário 5.11 nos diz que toda sequência de números reais que é monótona e limitada é convergente.

Teorema 6.1. Toda sequência convergente é limitada.

Demonstração. Se $x_n \to a$, existe $A \in \mathbb{N}$ tal que $|x_n - a| < 1$ para todo k > A. Logo, $|x_n| < |a| + 1$ para todo k > A. Assim, pondo $M = \max\{|x_1|, \dots, |x_A|, |a| + 1\}$, temos que $|x_n| \le M$ para todo $k \in \mathbb{N}$.

Uma subsequência de x_1, x_2, \ldots é uma sequência x_{l_1}, x_{l_2}, \ldots , na qual l_1, l_2, \ldots é uma sequência de números naturais estritamente crescente.

Teorema 6.2. Se $x_n \to a$, então toda subsequência de x_1, x_2, \ldots converge para a.

Demonstração. Dado $\epsilon > 0$, existe A > 0 tal que $|x_n - a| < \epsilon$ para todo n > A. Dada uma subsequência x_{l_1}, x_{l_2}, \ldots , como l_1, l_2, \ldots é uma sequência de números naturais estritamente crescente, existe $B \in \mathbb{N}$ tal que $l_n > A$ para todo n > B. Portanto, se n > B, $|x_{l_n} - a| < \epsilon$.

Corolário 6.3 (da demonstração). Se $x_n \to \infty$, para qualquer subsequência x_{l_1}, x_{l_2}, \ldots tem-se que $x_{l_n} \to \infty$.

Lema 6.4. Desigualdade de Bernoulli. $Dados \ h \ge -1 \ e \ n \in \mathbb{N}, \ tem\text{-se que } (1+h)^n \ge 1+nh.$

Demonstração. Usamos indução em n. Se n=1, OK. Supondo que o lema seja verdadeiro para algum $n \in \mathbb{N}$, temos que

$$(1+h)^{n+1} = (1+h)^n (1+h) \ge (1+nh)(1+h) = 1 + (n+1)h + nh^2 \ge 1 + (n+1)h$$

ou seja, o lema é verdadeiro para n+1. Portanto, o lema é verdadeiro para qualquer $n \in \mathbb{N}$.

Exemplos:

- 1. Tem-se que $1/n \downarrow 0$ em virtude do teorema 5.9.
- 2. A sequência $-1, 1, -1, 1, \ldots$ é limitada mas é divergente. Com efeito, considerando os termos de índice ímpar obtemos a subsequência $-1, -1, \ldots$ enquanto que considerando os termos de índice par obtemos $1, 1, \ldots$
- 3. Se 0 < x < 1, então $x^n \downarrow 0$. Com efeito, a sequência x^1, x^2, \ldots é estritamente decrescente e limitada. Logo, existe $a \in \mathbb{R}$ tal que $x^n \downarrow a$. Como $x^{2n} = x^n x^n$ e a subsequência x^2, x^4, \ldots converge para a, segue que $a = a^2$. Logo, a(1-a) = 0. Como $a \leq x$, pois o contrário implicaria que $x^n > x$ para n suficientemente grande, segue que a = 0.
- 4. Se |x| < 1, então $x^n \to 0$. De fato, usando o teorema do sanduíche na desigualdade $-|x|^n \le x^n \le |x|^n$, temos que $x^n \to 0$, pois $|x|^n \downarrow 0$.
- 5. Se |x| > 1, então a sequência x^1, x^2, \ldots é divergente. Com efeito, pela desigualdade de Bernoulli, $|x|^n \ge 1 + n(|x| 1)$. Logo, a sequência x_1, x_2, \ldots não é limitada e, por conseguinte, é divergente.
- 6. A convergência ou divergência da sequência x^1, x^2, \dots pode ser visualizada analisando o gráfico das funções $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = x^n$ (ver figura 3.3).
- 7. Para cada $n \in \mathbb{N}$, seja $x_n = 1 + q + \cdots + q^n$. Se $q \neq 1$, temos que $x_n = (1 q^{n+1})/(1 q)$. Logo, $x_n \to 1/(1 q)$ se |q| < 1. Se $|q| \ge 1$, a sequência x_1, x_2, \ldots é divergente.
- 8. Se x>0, então $x^{1/n}\to 1$. Com efeito, se $x\ge 1$, então $x^{1/n}\ge x^{1/(n+1)}\ge 1$; se 0< x<1, então $x^{1/n}< x^{1/(n+1)}<1$. Logo, em qualquer caso, a sequência $x^{1/1},x^{1/2},\ldots$ é monótona e limitada. Isso implica que ela é convergente. Suponhamos que $x^{1/n}\to a$. Da relação $x^{1/n}=x^{1/2n}x^{1/2n}$ segue que $a=a^2$. Como $a\ne 0$, segue que a=1. A convergência da sequência $x^{1/1},x^{1/2},\ldots$ pode ser visualizada analisando o gráfico das funções $f_n:\mathbb{R}\to\mathbb{R},\, f_n(x)=x^{1/n}$ (ver figura 3.5).
- 9. O número e: Para cada $n \in \mathbb{N}$, seja $s_n = 1 + 1/1! + \cdots + 1/n!$. Se n > 2, temos que

$$2 \le s_n < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} = 3.$$

Logo, s_1, s_2, \ldots é uma sequência limitada. Além disso, ela é estritamente crescente. Portanto, a sequência s_1, s_2, \ldots é convergente, ou seja, existe $e \in \mathbb{R}$ tal que $s_n \uparrow e$. Para cada $n \in \mathbb{N}$, seja $t_n = (1 + 1/n)^n$. Temos que

$$t_n = 1 + n\frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^2} + \dots + \frac{n(n-1)\cdots[n-(n-1)]}{n!} \frac{1}{n^n}$$
$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{n-1}{n}\right).$$

Logo, a sequência t_1, t_2, \ldots é estritamente crescente. Além disso, $t_n \leq s_n$ para todo $n \in \mathbb{N}$ e, por conseguinte, a sequência t_1, t_2, \ldots é convergente. Suponhamos que $t_n \uparrow a$. Logo, segue da relação $t_n \leq s_n$ que $a \leq e$. Por outro lado, se $n \leq m$, temos que

$$t_m \le 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{m} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{m} \right) \dots \left(1 - \frac{n-1}{m} \right).$$

Tomando o limite $m \to \infty$, temos que

$$a \le 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} = s_n$$
.

Isso implica que $a \leq e$. Portanto, a = e.

10. Tem-se que $n^{1/n} \to 1$. Com efeito, se $n \ge 3$, sabemos que $(1+1/n)^n < 3 \le n$ e isso implica que $(n+1)^{1/(n+1)} < n^{1/n}$. Logo, a sequência $3^{1/3}, 4^{1/4}, \ldots$ é estritamente decrescente e é limitada. Consequentemente, existe $a \in \mathbb{R}$ tal que $n^{1/n} \to a$. Da relação

$$n^{1/n} = \frac{(2n)^{1/2n} (2n)^{1/2n}}{2^{1/n}}$$

segue que $a = a^2$. Como $a \ge 1$, segue que a = 1.

Lema 6.5. Toda sequência limitada de números reais possui uma subsequência convergente.

Demonstração. Seja x_1, x_2, \ldots uma sequência limitada de números reais. Vamos dizer que x_p é um termo destacado dessa sequência se $x_p > x_n$ para todo n > p. Denotemos por D o conjunto dos índices dos termos destacados da sequência x_1, x_2, \ldots Se D é finito, então $D = \{d_1 < \ldots < d_p\}$. Se $l_1 > d_p$, então x_{l_1} não é um termo destacado e, por conseguinte, existe um índice $l_2 > l_1$ tal que $x_{l_1} \le x_{l_2}$. Pela sua vez x_{l_2} não é um termo destacado e, por conseguinte, existe $l_3 > l_2$ tal que $x_{l_2} \le x_{l_3}$. Dessa maneira, podemos construir uma subsequência x_{l_1}, x_{l_2}, \ldots , a qual é monótona crescente e limitada. Logo, essa subsequência é convergente. Por outro lado, se D é infinito, então $D = \{d_1 < d_2 < \ldots\}$. Logo, a subsequência x_{d_1}, x_{d_2}, \ldots é estritamente decrescente e limitada. Portanto, ela é convergente.

Teorema 6.6. Teorema de Bolzano-Weierstrass. Toda sequência limitada de pontos em \mathbb{R}^d possui uma subsequência convergente.

Demonstração. Seja x_1, x_2, \ldots uma sequência limitada de pontos em \mathbb{R}^d e suponhamos que $x_n = (x_{1n}, \ldots, x_{dn})$. Para cada $j \in \{1, \ldots, d\}$, a sequência de números reais x_{j1}, x_{j2}, \ldots é claramente limitada. Logo, pelo lema 6.5, a sequência x_{11}, x_{12}, \ldots possui uma subsequência convergente $x_{1l_1}, x_{1l_2}, \ldots$ Por outro lado, a subsequência $x_{2l_1}, x_{2l_2}, \ldots$ é também limitada e, por conseguinte, possui uma subsequência convergente $x_{2m_1}, x_{2m_2}, \ldots$ Além disso, a subsequência $x_{1m_1}, x_{1m_2}, \ldots$ possui o mesmo limite do que a sequência $x_{1l_1}, x_{1l_2}, \ldots$ Prosseguindo dessa forma, para cada $j \in \{1, \ldots, d\}$ vamos encontrar uma subsequência $x_{jz_1}, x_{jz_2}, \ldots$ que é convergente. Assim, a subsequência x_{z_1}, x_{z_2}, \ldots será convergente. \square

Dada uma sequência de números reais x_1, x_2, \ldots , sejam $a_n = \inf_{k \geq n} x_k$ e $b_n = \sup_{k \geq n} x_k$ para todo $n \in \mathbb{N}$. Define-se o **limite superior** (**inferior**) da sequência x_1, x_2, \ldots por $\limsup_{n \to \infty} x_n = \inf b_n$ ($\liminf_{n \to \infty} x_n = \sup a_n$). Em outras palavras, $\limsup_{n \to \infty} x_n = \inf_{n \in \mathbb{N}} \sup_{k \geq n} x_k$ ($\liminf_{n \to \infty} x_n = \sup_{n \in \mathbb{N}} \inf_{k \geq n} x_k$).

Lema 6.7. Seja $A \subset \mathbb{R}$ um conjunto não-vazio. Se $B \subset A$, então inf $A \leq \inf B \leq \sup B \leq \sup A$.

Demonstração. Temos que inf $B \le x \le \sup B$ para todo $x \in B$. Como $\sup A$ é uma cota superior de A, temos que $x \le \sup A$ para todo $x \in B$ e, por conseguinte, $\sup B \le \sup A$. Um raciocínio similar nos leva à desigualdade inf $A \le \inf B$.

Teorema 6.8. Para qualquer sequência de números reais x_1, x_2, \ldots tem-se que $-\infty \le \lim \inf_{n \to \infty} x_n \le \lim \sup_{n \to \infty} x_n \le \infty$.

Demonstração. Se a sequência x_1, x_2, \ldots não é limitada superiormente (inferiormente), então $\sup_{k\geq n} x_k = \infty$ ($\inf_{k\geq n} x_k = -\infty$) para todo $n \in \mathbb{N}$. Logo, $\limsup_{n\to\infty} x_n = \infty$ ($\limsup_{n\to\infty} x_n = -\infty$). Por outro lado, pondo $a_n = \inf_{k\geq n} x_k$ e $b_n = \sup_{k\geq n} x_k$ para cada $n \in \mathbb{N}$, temos que $a_1 \leq a_2 \leq \ldots \leq a_n \leq \ldots \leq b_n \leq \ldots \leq b_2 \leq b_1$. Segue daqui que, para qualquer $n \in \mathbb{N}$, b_n é uma cota superior de $A = \{a_1, a_2, \ldots\}$. Logo, $\sup A \leq b_n$ para todo $n \in \mathbb{N}$. Portanto, $\liminf_{n\to\infty} x_n = \sup A \leq \inf_{n\in\mathbb{N}} b_n = \limsup_{n\to\infty} x_n$.

Teorema 6.9. Seja x_1, x_2, \ldots uma sequência de números reais. Existem subsequências x_{l_1}, x_{l_2}, \ldots e x_{m_1}, x_{m_2}, \ldots tais que

$$\lim_{n \to \infty} x_{l_n} = \limsup_{n \to \infty} x_n \quad e \quad \lim_{n \to \infty} x_{m_n} = \liminf_{n \to \infty} x_n.$$

Demonstração. Seja $\limsup_{n\to\infty} x_n = \alpha \in [-\infty,\infty]$. Se $\alpha = -\infty$, o conjunto $\{\sup_{k\geq n} x_k : n\in\mathbb{N}\}$ não é limitado inferiormente. Logo, dado A>0, existe $N\in\mathbb{N}$ tal que $x_n\leq\sup_{k\geq N}x_k<-A$ para todo n>N, ou seja, $x_n\to-\infty$. Se $\alpha=\infty$, então $\sup_{k\geq n}x_k=\infty$ para todo $n\in\mathbb{N}$. Logo, a sequência x_1,x_2,\ldots não é limitada superiormente. Assim, existe $l_1\in\mathbb{N}$ tal que $x_{l_1}>1$ e para cada n>1 podemos encontrar $l_n>l_{n-1}$ tal que $x_{l_n}>n$. Dessa maneira, $x_{l_n}\to\infty$. Se $\alpha\in\mathbb{R}$, dado $\epsilon>0$, temos que $\alpha-\epsilon<\alpha\leq\sup_{k\geq n}x_k$ para todo $n\in\mathbb{N}$. Logo, existe $l_1\in\mathbb{N}$ tal que $\alpha-\epsilon< x_{l_1}\leq\sup_{k\geq l_{n-1}}x_k$ e para cada $n\in\mathbb{N}$ podemos encontrar $l_n>l_{n-1}$ tal que $\alpha-\epsilon< x_{l_n}\leq\sup_{k\geq l_{n-1}}x_k$. Assim, $\alpha-\epsilon< x_{l_n}$ para todo $n\in\mathbb{N}$. Por outro lado, existe $N\in\mathbb{N}$ tal que $\sup_{k\geq N}x_k\leq x_n<\alpha+\epsilon$ para todo n>N. Logo, $\alpha-\epsilon< x_{l_n}<\alpha+\epsilon$ para todo n>N, ou seja, $x_{l_n}\to\alpha$. De forma análoga pode-se provar que existe uma subsequência x_{m_1}, x_{m_2}, \ldots tal que $\lim_{n\to\infty}x_{m_n}=\liminf_{n\to\infty}x_n$. \square

Teorema 6.10. Seja x_1, x_2, \ldots uma sequência de números reais. Se x_{l_1}, x_{l_2}, \ldots é uma subsequência tal que $x_{l_n} \to a$, então $\liminf_{n \to \infty} x_n \le a \le \limsup_{n \to \infty} x_n$.

Demonstração. Seja $\alpha = \limsup_{n \to \infty}$ e suponhamos que $x_{l_n} \to a > \alpha$. Logo, existe $c \in (\alpha, a)$ tal que $c > \alpha$. Isso implica que existe $N \in \mathbb{N}$ tal que $c > \sup_{k \ge N} x_k \ge x_n$ para todo n > N. Porém, segue daqui que toda subsequência convergente de x_1, x_2, \ldots converge para um limite $\le c$. Contradição! Portanto, devemos ter $a \le \alpha$. De forma similar pode-se provar que $\liminf_{n \to \infty} x_n \le a$.

Teorema 6.11. Seja x_1, x_2, \ldots uma sequência de números reais. Tem-se $x_n \to a$ com $a \in \mathbb{R}$ se, e somente se, $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n = a$.

 $Demonstração.\ (\Rightarrow)$ Como $x_n \to a$, toda subsequência de x_1, x_2, \ldots converge para a. Como existem subsequências de x_1, x_2, \ldots que convergem para $\liminf_{n \to \infty} x_n$ e $\limsup_{n \to \infty} x_n$, segue que $\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = a$. (\Leftarrow) Dado $\epsilon > 0$, existem $n_1, n_2 \in \mathbb{N}$ tais que $a - \epsilon < \inf_{k \ge n_1} x_k \le a \le \sup_{k \ge n_2} x_k < a + \epsilon$. Logo, pondo $N = \max\{n_1, n_2\}$, temos que $a - \epsilon < \inf_{k \ge N} x_k \le \sup_{k \ge N} x_k < a + \epsilon$. Portanto, $a - \epsilon < x_n < a + \epsilon$ para todo n > N, ou seja, $x_n \to a$.

Séries de números reais*

Uma **série** de números reais é a soma dos termos de uma sequência de números reais a_1, a_2, \ldots , a qual é denotada por $\sum_{n=1}^{\infty} a_n$. Se para cada $n \in \mathbb{N}$ definimos $s_n = a_1 + \cdots + a_n$, então

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n .$$

Se o limite do lado direito existe, a série é dita **convergente**; caso contrário, ela é dita **divergente**. A sequência s_1, s_2, \ldots é chamada de sequência das **somas parciais** da série $\sum_{n=1}^{\infty} a_n$.

Uma série de números não-negativos $\sum_{n=1}^{\infty} a_n$ é convergente se, e somente se, existe M>0 tal que $\sum_{j=1}^{n} a_n < M$ para todo $n \in \mathbb{N}$. Com efeito, nesse caso a sequência das somas parciais da série é monótona crescente e limitada.

Se uma série de números não-negativos $\sum_{n=1}^{\infty} a_n$ é convergente (divergente), escreve-se $\sum_{n=1}^{\infty} a_n < \infty$ $(\sum_{n=1}^{\infty} a_n = \infty)$.

Teorema 7.1. Se $\sum_{n=1}^{\infty} a_n$ é uma série convergente, então $a_n \to 0$.

Demonstração. Seja s_1, s_2, \ldots a sequência das somas parciais de $\sum_{n=1}^{\infty} a_n$. Se $s_n \to L$, então $s_{n-1} \to L$. Logo, $a_n = s_n - s_{n-1} \to 0$.

Exemplos:

- 1. Dado $x \in \mathbb{R}$, a série $\sum_{n=1}^{\infty} x^n$ é chamada de **série geométrica**. Na seção 6 vimos que a série geométrica é convergente se, e somente, se |x| < 1. Nesse caso, temos também que $x^n \to 0$.
- 2. A série $\sum_{n=1}^{\infty} (-1)^n$ é divergente, pois $(-1)^n \not\to 0$.
- 3. A série $\sum_{n=1}^{\infty} (1/n)$ é chamada de **série harmônica**. Seja $s_n = 1/1 + \cdots + 1/n$ para cada $n \in \mathbb{N}$. Vemos que

$$s_{2^m} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots + \frac{1}{2^m}$$

$$\geq 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \dots + \frac{1}{2}$$

$$= 1 + \frac{m}{2}.$$

Logo, a sequência s_{2^1}, s_{2^2}, \ldots não é limitada. Como para cada $n \in \mathbb{N}$ pode-se encontrar $m \in \mathbb{N}$ tal que $2^m \geq 1 + m > n$, segue que a sequência s_1, s_2, \ldots não

é limitada. Portanto, a série harmônica é divergente, ou seja, $\sum_{n=1}^{\infty} (1/n) = \infty$, mesmo que se tenha $1/n \downarrow 0$.

Teorema 7.2. Critério de comparação. Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ duas séries de números não-negativos. Se $\sum_{n=1}^{\infty} b_n < \infty$ e $a_n \leq b_n$ para todo $n \in \mathbb{N}$, então $\sum_{n=1}^{\infty} a_n < \infty$. Por outro lado, se $\sum_{n=1}^{\infty} a_n = \infty$ e $a_n \leq b_n$ para todo $n \in \mathbb{N}$, então $\sum_{n=1}^{\infty} b_n = \infty$.

Demonstração. Sejam $s_n = a_1 + \dots + a_n$ e $t_n = b_1 + \dots + b_n$ para todo $n \in \mathbb{N}$. Se $\sum_{n=1}^{\infty} b_n < \infty$ e $a_n \le b_n$ para todo $n \in \mathbb{N}$, existe M > 0 tal que $t_n \le M$ para todo $n \in \mathbb{N}$. Logo, $s_n \le t_n \le M$ e, por conseguinte, $\sum_{n=1}^{\infty} a_n < \infty$. Se $\sum_{n=1}^{\infty} a_n = \infty$, a sequência s_1, s_2, \dots não é limitada. Logo, para cada $n \in \mathbb{N}$, existe $l_n \in \mathbb{N}$ tal que $n \le s_{l_n} \le t_{l_n}$. Assim, a sequência t_1, t_2, \dots possui uma subsequência que não é limitada e, por conseguinte, $\sum_{n=1}^{\infty} b_n = \infty$.

Exemplo: Dado $r \in \mathbb{Q}$, consideremos a série $\sum_{n=1}^{\infty} (1/n^r)$. Se r < 1, temos que $1/n^r > 1/n$ para todo $n \in \mathbb{N}$. Como $\sum_{n=1}^{\infty} (1/n) = \infty$, pelo critério de comparação, segue que $\sum_{n=1}^{\infty} (1/n^r) = \infty$. Se r > 1, seja s_1, s_2, \ldots a sequência das somas parciais de $\sum_{n=1}^{\infty} (1/n^r)$. Para cada $m \in \mathbb{N}$ temos que

$$s_{2^{m-1}} = 1 + \left(\frac{1}{2^{r}} + \frac{1}{3^{r}}\right) + \left(\frac{1}{4^{r}} + \frac{1}{5^{r}} + \frac{1}{6^{r}} + \frac{1}{7^{r}}\right) + \dots + \frac{1}{(2^{m} - 1)^{r}}$$

$$\leq 1 + \left(\frac{1}{2^{r}} + \frac{1}{2^{r}}\right) + \left(\frac{1}{4^{r}} + \frac{1}{4^{r}} + \frac{1}{4^{r}} + \frac{1}{4^{r}}\right) + \dots + \frac{1}{(2^{m-1})^{r}}$$

$$= 1 + \frac{1}{2^{r-1}} + \frac{1}{(2^{r-1})^{2}} + \dots + \frac{1}{(2^{r-1})^{m-1}}$$

$$\leq \frac{1}{1 - 1/2^{r-1}}$$

Logo, a sequência s_1, s_2, \ldots possui uma subsequência limitada. Isso implica que a própria sequência s_1, s_2, \ldots é limitada, pois ela é monótona. Portanto, $\sum_{n=1}^{\infty} (1/n^r) < \infty$ se r > 1. Uma série $\sum_{n=1}^{\infty} a_n$ é dita **absolutamente convergente** se $\sum_{n=1}^{\infty} |a_n| < \infty$. Se $\sum_{n=1}^{\infty} a_n$ é uma série convergente tal que $\sum_{n=1}^{\infty} |a_n| = \infty$, diz-se que $\sum_{n=1}^{\infty} a_n$ é uma série **condicionalmente convergente**.

Teorema 7.3. Toda série absolutamente convergente é convergente.

Demonstração. Suponhamos que $\sum_{n=1}^{\infty} |a_n| < \infty$. Definindo $p_n = \max\{a_n, 0\}$ e $q_n = \max\{-a_n, 0\}$, temos que $p_n, q_n \ge 0$, $|a_n| = p_n + q_n$ e $a_n = p_n - q_n$. Como $p_n, q_n \le |a_n|$, segue que $\sum_{n=1}^{\infty} p_n < \infty$ e $\sum_{n=1}^{\infty} q_n < \infty$. Portanto, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} p_n - \sum_{n=1}^{\infty} q_n$.

Corolário 7.4. Seja $\sum_{n=1}^{\infty} b_n$ uma série de números não-negativos. Se $\sum_{n=1}^{\infty} b_n < \infty$ e $|a_n| \leq b_n$ para todo $n \in \mathbb{N}$, então a série $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente.

Exemplo: A série $\sum_{n=1}^{\infty} \operatorname{sen}(nx)/n^2$ é absolutamente convergente para todo $x \in \mathbb{R}$. Com efeito, isso segue de observar que $|\operatorname{sen}(nx)/n^2| \leq 1/n^2$ para todo $n \in \mathbb{N}$ e que $\sum_{n=1}^{\infty} (1/n^2) < \infty$.

Teorema 7.5. Critério da raiz. Se $\limsup_{n\to\infty} \sqrt[n]{|a_n|} < 1$, então a série $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente. Por outro lado, se $\limsup_{n\to\infty} \sqrt[n]{|a_n|} > 1$, a série $\sum_{n=1}^{\infty} a_n$ é divergente.

 $\begin{array}{l} Demonstração. \text{ Se } \lim\sup_{n\to\infty}\sqrt[n]{|a_n|} < c < 1, \text{ então existe } N\in\mathbb{N} \text{ tal que }\sqrt[n]{|a_n|} \leq \sup_{k\geq N}\sqrt[k]{|a_k|} < c \text{ para todo } n\geq N. \text{ Logo, } |a_n| < c^n \text{ para todo } n\geq N. \text{ Como } \sum_{n=1}^{\infty}c^n<\infty, \text{ segue do critério de comparação que } \sum_{n=1}^{\infty}|a_n|<\infty. \text{ Por outro lado, se } \lim\sup_{n\to\infty}\sqrt[n]{|a_n|}>1, \text{ existe uma subsequência } \sqrt[4]{a_{l_1}}, \sqrt[2]{a_{l_2}}, \dots \text{ tal que } \sqrt[ln]{|a_{l_n}|}>1 \text{ para todo } n\in\mathbb{N}. \text{ Dessa maneira, } |a_n|\not\to 0, \text{ ou seja, a série } \sum_{n=1}^{\infty}a_n\text{ é divergente.} \end{array}$

Exemplos:

- 1. A série $\sum_{n=1}^{\infty} 1/n^n$ é convergente, pois $\sqrt[n]{1/n^n} = 1/n \to 0$.
- 2. A série harmônica é divergente e $\sqrt[n]{1/n} \to 1$. Por outro lado, a série $\sum_{n=1}^{\infty} (1/n^2)$ é convergente e $\sqrt[n]{1/n^2} \to 1$.

Teorema 7.6. Critério da razão. Se $\limsup_{n\to\infty} |a_{n+1}/a_n| < 1$, então a série $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente. Por outro lado, se $|a_{n+1}/a_n| \ge 1$ para todo $n \in \mathbb{N}$, a série $\sum_{n=1}^{\infty} a_n$ é divergente.

Demonstração. Se $\limsup_{n\to\infty} |a_{n+1}/a_n| < c < 1$, existe $N \in \mathbb{N}$ tal que $|a_{n+1}/a_n| \le A_N < c$ para todo $n \ge N$. Logo,

$$\left| \frac{a_{N+1}}{a_N} \right| < c, \quad \left| \frac{a_{N+2}}{a_{N+1}} \right| < c, \quad \dots, \quad \left| \frac{a_{N+n-N}}{a_{n+N-n-1}} \right| < c.$$

Multiplicando essas desigualdades, temos $|a_n/a_N| < c^{n-N}$ para todo $n \ge N$. Logo, $|a_n| < |a_N| c^{n-N}$ para todo $n \ge N$. Como $\sum_{n=1}^{\infty} |a_N| c^{n-N} < \infty$, segue do critério de comparação que $\sum_{n=1}^{\infty} |a_n| < \infty$. Se, por outro lado, temos que $|a_{n+1}/a_n| \ge 1$ para todo $n \in \mathbb{N}$, então $|a_{n+1}| \ge |a_n|$ para todo $n \in \mathbb{N}$. Assim, $|a_n| \not\to 0$, pois $|a_n| \ge |a_1| > 0$ para todo $n \in \mathbb{N}$. Portanto, nesse caso, a série $\sum_{n=1}^{\infty} a_n$ é divergente.

Exemplos:

1. Dados $k \in \mathbb{N}$ e x > 1, a série $\sum_{n=1}^{\infty} n^k / x^n$ é convergente pois

$$\frac{(n+1)^k}{x^{n+1}} \frac{x^n}{n^k} = \left(1 + \frac{1}{n}\right)^k \frac{1}{x},$$

em que o lado direito converge a 1/x < 1. A convergência da série $\sum_{n=1}^{\infty} n^k/x^n$ também pode ser provada usando o critério da raiz. Com efeito, temos que $\lim_{n\to\infty} \sqrt[n]{n^k/x^n} = 1/x < 1$.

- 2. A série harmônica é divergente e $(n+1)/n \to 1$. Por outro lado, a série $\sum_{n=1}^{\infty} (1/n^2)$ é convergente e $(n+1)^2/n^2 \to 1$.
- 3. Para cada $m \in \mathbb{N}$ sejam $a_{2m-1} = 1/m^m$ e $a_{2m} = 2/m^m$. A série $\sum_{n=1}^{\infty} a_n$ é convergente, pois

$$a^{2m-1}\sqrt{a_{2m-1}} = \frac{1}{m^{m/(2m-1)}} \le \frac{1}{m^{1/2}},$$

e $\sqrt[2m]{a_{2m}} = m^{1/2}$ para todo $m \in \mathbb{N}$ e, por conseguinte, $\sqrt[n]{a_n} \to 0 < 1$. No entanto,

$$\frac{a_{n+1}}{a_n} = \begin{cases} 2 & \text{se } n = 2m - 1\\ \frac{m^m}{2(m+1)^{m+1}} & \text{se } n = 2m \end{cases}$$

e, por conseguinte, $\limsup_{n\to\infty} |a_{n+1}/a_n| = 2$. Logo, o teste da razão é inconclusivo.

Os exemplos anteriores ilustram em particular que o critério da raiz é mais forte do que o critério da razão.

Teorema 7.7. Para qualquer sequência de números reais a_1, a_2, \ldots tem-se que

$$\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| \le \liminf_{n\to\infty} \sqrt[n]{|a_n|} \le \limsup_{n\to\infty} \sqrt[n]{|a_n|} \le \limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Demonstração. Suponhamos que $\limsup_{n\to\infty} \sqrt[n]{|a_n|} > c > \limsup_{n\to\infty} |a_{n+1}/a_n|$. Da segunda desigualdade segue que existe $N \in \mathbb{N}$ tal que $c > \sup_{n\geq N} |a_{n+1}/a_n| \geq |a_{n+1}|/|a_n|$ para todo $n \in \mathbb{N}$. Logo, sob essa condição, temos que $c^{n-N} > |a_n|/|a_N|$ e, por conseguinte, $c\sqrt[n]{|a_N|/c^N|} > \sqrt[n]{|a_n|}$. Como o lado esquerdo dessa desigualdade tende a c quando $n\to\infty$, dado $\epsilon>0$, existe A>0 tal que $c+\epsilon>c\sqrt[n]{|a_N|/c^N|} > \sqrt[n]{a_n}$ para todo n>A. Por outro lado, existe $\delta>0$ tal que $\limsup_{n\to\infty} \sqrt[n]{|a_n|} > c+\delta>c$. Logo, podemos encontrar uma subsequência $\sqrt[n]{|a_{l_1}|}, \sqrt[n]{|a_{l_2}|}, \ldots$ tal que $\sqrt[ln]{|a_{l_n}|} > c+\delta$ para todo $n\in\mathbb{N}$. Contradição! Portanto, deve-se ter $\limsup_{n\to\infty} \sqrt[n]{|a_n|} \leq \limsup_{n\to\infty} |a_{n+1}/a_n|$. A desigualdade envolvendo os limites inferiores pode ser provada de forma análoga. \square

Teorema 7.8. Seja $\sum_{n=1}^{\infty} a_n$ uma série absolutamente convergente. Para qualquer bijeção $\phi: \mathbb{N} \to \mathbb{N}$ tem-se que $\sum_{n=1}^{\infty} |a_{\phi(n)}| < \infty$ e $\sum_{n=1}^{\infty} a_{\phi(n)} = \sum_{n=1}^{\infty} a_n$.

Demonstração. Consideremos primeiramente que $a_n \geq 0$ para todo $n \in \mathbb{N}$. Dada uma bijeção $\phi: \mathbb{N} \to \mathbb{N}$, seja $m = \max\{\phi(1), \ldots, \phi(n)\}$. Logo, $\sum_{j=1}^n a_{\phi(j)} \leq \sum_{j=1}^m a_j$. Como $\sum_{j=1}^m a_j \leq \sum_{n=1}^\infty a_n$, segue que a série $\sum_{n=1}^\infty a_{\phi(n)}$ é convergente e que $\sum_{n=1}^\infty a_{\phi(n)} \leq \sum_{n=1}^\infty a_n$. Por outro lado, se $n = \max\{\phi^{-1}(1), \ldots, \phi^{-1}(m)\}$, temos que $\sum_{j=1}^m a_j \leq \sum_{j=1}^n a_{\phi(j)} \leq \sum_{n=1}^\infty a_{\phi(n)}$. Logo, $\sum_{n=1}^\infty a_n \leq \sum_{n=1}^\infty a_{\phi(n)}$. Se agora a_1, a_2, \ldots é uma sequência de números não necessariamente não-negativos, definindo $p_n = \max\{a_n, 0\}$ e $q_n = \max\{-a_n, 0\}$, temos que $\sum_{n=1}^\infty p_n < \infty$ e $\sum_{n=1}^\infty q_n < \infty$. Logo, $\sum_{n=1}^\infty p_{\phi(n)} = \sum_{n=1}^\infty p_n$ e $\sum_{n=1}^\infty q_{\phi(n)} = \sum_{n=1}^\infty q_n$. Portanto, $\sum_{n=1}^\infty a_{\phi(n)} = \sum_{n=1}^\infty (p_{\phi(n)} - q_{\phi(n)}) = \sum_{n=1}^\infty (p_n - q_n) = \sum_{n=1}^\infty a_n$.

Funções contínuas

Ingenuamente, uma função contínua $f: \mathbb{R} \to \mathbb{R}$ deve ter um gráfico que é uma curva que não tem saltos. Isso quer dizer que uma variação pequena de x deve provocar também uma variação pequena no valor de f(x). Passemos para as definições agora.

Seja $X \subset \mathbb{R}^m$. Diz-se que uma função $f: X \to \mathbb{R}^d$ é **contínua** em um ponto $a \in X$ se, dado $\epsilon > 0$, existe $\delta > 0$ tal que $|f(x) - f(a)| < \epsilon$ para todo $x \in X$ satisfazendo a condição $|x - a| < \delta$. A continuidade de f no ponto a não depende do par de normas usadas na definição anterior (euclidiana, do máximo, da soma). Usando a terminologia de bolas abertas, temos que f é contínua no ponto a se, dado $\epsilon > 0$, existe $\delta > 0$ tal que $f(x) \in B(f(a), \epsilon)$ sempre que $x \in B(a, \delta) \cap X$. Se f é contínua em todo ponto de X, diz-se simplesmente que é uma função contínua.

Seja $X \subset \mathbb{R}^d$. Diz-se que $a \in X$ é um **ponto isolado** de X se a não é um ponto de acumulação de X, ou seja, se existe $\delta > 0$ tal que $X \cap B(a, \delta) \subset \{a\}$. Se X não tem pontos de acumulação, diz-se que X é um **conjunto discreto**. Exemplos: \mathbb{N} e \mathbb{Z} .

Seja $X \subset \mathbb{R}^m$. Se $a \in X$ é um ponto isolado de X, toda função $f: X \to \mathbb{R}^d$ é contínua no ponto a. Com efeito, existe $\delta > 0$ tal que $B(a, \delta) \cap X = \{a\}$. Logo, dado $\epsilon > 0$, tem-se que $0 = |f(x) - f(a)| < \epsilon$ para todo $x \in X$ satisfazendo a condição $|x - a| < \delta$.

Seja $X \subset \mathbb{R}^m$. Se $a \in X \cap X'$, a função $f: X \to \mathbb{R}^d$ é contínua no ponto a se, e somente se, $\lim_{x\to a} f(x) = f(a)$.

Teorema 8.1. Seja $X \subset \mathbb{R}^m$. Se $f, g: X \to \mathbb{R}$ são funções contínuas no ponto $a \in X$, então $f \pm g$ e fg são contínuas no ponto a. Além disso, se $g(a) \neq 0$, f/g é contínua no ponto a.

Demonstração. Se a é um ponto isolado, OK. Se $a \in X'$, então o teorema é consequência do teorema 5.6.

Exemplo: As funções f(x) = c e g(x) = x são claramente contínuas. Logo, pelo teorema 8.1, toda função polinomial é contínua e toda função racional é contínua no seu domínio.

Teorema* 8.2. Seja $X \subset \mathbb{R}^m$. A função $f: X \to \mathbb{R}^d$ é contínua no ponto $a \in X$ se, e somente se, as funções-coordenada de f são contínuas no ponto a.

Demonstração. Consequência do teorema 5.7.

Corolário* 8.3. Seja $X \subset \mathbb{R}^m$. Se $f, g: X \to \mathbb{R}^d$ e $h: X \to \mathbb{R}$ são funções contínuas no ponto $a \in X$, então |f|, $f \pm g$, hf, $\langle f, g \rangle$ são contínuas no ponto a.

Diz-se que um conjunto $G \subset \mathbb{R}^d$ é um **conjunto aberto** se para cada $x \in G$ existe r > 0 tal que $B(a, r) \subset G$.

Teorema* 8.4. Toda bola aberta de \mathbb{R}^d é um conjunto aberto.

Demonstração. Seja $p \in B(a,r)$ e consideremos $\epsilon = r - |p-a|$. Vamos provar que $B(p,\epsilon) \subset B(a,r)$. Se $x \in B(p,\epsilon)$, então $|x-a| \leq |x-p| + |p-a| < \epsilon + |p-a| = r$. Portanto, $B(p,\epsilon) \subset B(a,r)$.

Teorema* 8.5. Considerando subconjuntos de \mathbb{R}^d , tem-se que

- 1. \mathbb{R}^d e \varnothing são conjuntos abertos;
- 2. a união arbitrária de conjuntos abertos é um conjunto aberto;
- 3. a interseção de dois conjuntos abertos é um conjunto aberto.

Demonstração. 1. Se \varnothing não fosse aberto, existiria $a \in \varnothing$ tal que $B(a,r) \not\subset \varnothing$ para todo r > 0. Absurdo!

- 2. Seja G_{α} um conjunto aberto para cada elemento α de um conjunto arbitrário I e seja $G = \bigcup_{\alpha \in I} G_{\alpha}$. Se $a \in G$, existe $\alpha \in I$ tal que $a \in G_{\alpha}$. Como G_{α} é aberto, existe r > 0 tal que $B(a,r) \subset G_{\alpha} \subset G$. Portanto, G é aberto.
- 3. Sejam G_1 e G_2 dois conjuntos abertos. Se $a \in G_1 \cap G_2$, então existem $r_1, r_2 > 0$ tais que $B(a, r_1) \subset G_1$ e $B(a, r_2) \subset G_2$. Considerando $r = \min\{r_1, r_2\}$, temos que $B(a, r) \subset G_1 \cap G_2$. Portanto, $G_1 \cap G_2$ é aberto.

Define-se o **fecho** de um conjunto $X \subset \mathbb{R}^d$ como o conjunto $\overline{X} = X \cup X'$. Diz-se ainda que o conjunto X é **fechado** se $\overline{X} = X$.

Teorema* 8.6. Um conjunto $F \subset \mathbb{R}^d$ é fechado se, e somente se, F^c é aberto.

Demonstração. (⇒) Se $a \in F^c$, então $a \notin F'$. Logo, existe r > 0 tal que $B(a,r) \cap F = \emptyset$. Isso implica que $B(a,r) \subset F^c$. Portanto, F^c é aberto. (⇐) Se $a \in F'$, então $B(a,r) \cap F \neq \emptyset$ para qualquer r > 0. Logo, $B(a,r) \not\subset F^c$ para todo r > 0. Como F^c é aberto, segue que $a \notin F^c$, ou seja, $a \in F$. Portanto, F é fechado.

Corolário* 8.7. Considerando subconjuntos de \mathbb{R}^d , tem-se que

- 1. \mathbb{R}^d e \varnothing são conjuntos fechados;
- 2. a interseção arbitrária de conjuntos fechados é um conjunto fechado;
- 3. a união de dois conjuntos fechados é um conjunto fechado.

Teorema* 8.8. O fecho de um conjunto $X \subset \mathbb{R}^d$ é um conjunto fechado.

Demonstração. Se $a \in \overline{X}^c$, então $a \notin X$ e $a \notin X'$. Logo, existe r > 0 tal que $B(a,r) \cap X = \emptyset$. Como B(a,r) é um conjunto aberto, para cada $x \in B(a,r)$ existe $\epsilon_x > 0$ tal que $B(x,\epsilon_x) \subset B(a,r)$. Logo, $B(x,\epsilon_x) \cap X = \emptyset$ para todo $x \in B(a,r)$. Isso implica que nenhum $x \in B(a,r)$ é ponto de acumulação de X e, por conseguinte, $B(a,r) \cap \overline{X} = \emptyset$. Logo, $B(a,r) \subset \overline{X}^c$. Portanto, \overline{X}^c é aberto.

Dado um conjunto $X \subset \mathbb{R}^d$, diz-se que $A \subset X$ é **aberto em** X se para cada $a \in X$ existe r > 0 tal que $B(a, r) \cap X \subset A$. Por outro lado, diz-se que A é **fechado em** X se $\overline{A} \cap X = A$.

Teorema* 8.9. Seja $X \subset \mathbb{R}^d$. Um conjunto $A \subset X$ é aberto em X se, e somente se, existe um conjunto aberto $G \subset \mathbb{R}^d$ tal que $A = G \cap X$.

Demonstração. (\Rightarrow) Para cada $x \in X$, existe $r_x > 0$ tal que $B(x, r_x) \cap X \subset A$. O conjunto $G = \bigcup_{x \in A} B(x, r_x)$ é aberto e tem-se que $G \cap X = A$. (\Leftarrow) Se $A = G \cap X$, no qual $G \subset \mathbb{R}^d$ é um conjunto aberto, então para cada $a \in A$ tem-se que $a \in G$. Logo, existe r > 0 tal que $B(a, r) \subset G$ e, por conseguinte, $B(a, r) \cap X \subset A$.

Corolário* 8.10. Dado $X \subset \mathbb{R}^d$, tem-se que

- 1. um conjunto $A \subset X$ é fechado em X se, e somente se, $X \setminus A$ é aberto em X;
- 2. $X \in \emptyset$ são abertos e fechados em X;
- 3. a união (interseção) arbitrária de conjuntos abertos (fechados) em X é um conjunto aberto (fechado) em X;
- 4. a interseção (união) de dois conjuntos abertos (fechados) em X é um conjunto aberto (fechado) em X.

Dada uma função $f: X \to Y$, define-se a **imagem inversa** de um conjunto $B \subset Y$ por f como o conjunto $f^{-1}(B) = \{x \in X : f(x) \in B\}$.

Teorema* 8.11. Sejam $f: X \to Y$ e $A, B \subset Y$. Tem-se que

- 1. se $A \subset B$, então $f^{-1}(A) \subset f^{-1}(B)$;
- 2. $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B);$
- 3. $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B);$
- 4. $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$.

Teorema* 8.12. Seja $X \subset \mathbb{R}^m$. Uma função $f: X \to \mathbb{R}^d$ é contínua se, e somente se, $f^{-1}(G)$ é um conjunto aberto em X para qualquer aberto $G \subset \mathbb{R}^d$.

Demonstração. (\Rightarrow) Seja $G \subset \mathbb{R}^d$ um conjunto aberto. Se $a \in f^{-1}(G)$, então $b = f(a) \in G$. Como G é aberto, existe $\epsilon > 0$ tal que $B(b, \epsilon) \subset G$. Por outro lado, como f é contínua no ponto a, existe $\delta > 0$ tal que $f(x) \in B(b, \epsilon)$ sempre que $x \in B(a, \delta) \cap X$. Logo, $B(a, \delta) \cap X \subset f^{-1}(B(b, \epsilon)) \subset f^{-1}(G)$. Portanto, $f^{-1}(G)$ é aberto em X. (\Leftarrow) Seja $a \in X$. Dado $\epsilon > 0$, ponhamos $G = B(f(a), \epsilon)$. Como G é aberto, $f^{-1}(G)$ é aberto em X e, além disso, $a \in f^{-1}(G)$. Logo, existe $\delta > 0$ tal que $B(a, \delta) \cap X \subset f^{-1}(G)$. Dessa maneira, $x \in B(a, \delta) \cap X$ implica que $f(x) \in G$. Portanto, f é contínua no ponto a.

Seja $X \subset \mathbb{R}^d$. Diz-se que os conjuntos $A, B \subset X$ formam uma **cisão** de X se A e B são abertos em $X, A \cap B = \emptyset$ e $X = A \cup B$. Claramente X e \emptyset formam uma cisão de X, a qual é chamada de **cisão trivial**.

Diz-se que um conjunto $X \subset \mathbb{R}^d$ é **conexo** se só admite a cisão trivial.

Teorema* 8.13. Os únicos subconjuntos conexos de \mathbb{R} são os intervalos.

Demonstração. Se $X \subset \mathbb{R}$ não é um intervalo, existem $a,b \in X$ e $x \in X^c$ tais que a < x < b. Logo, os conjuntos $A = (-\infty, x) \cap X$ e $B = (x, \infty) \cap X$ são abertos em X, $A \cap B = \emptyset$ e $X = A \cup B$. Assim, A e B formam uma cisão de X e, por conseguinte, X não é conexo. Consideremos agora que $X \subset \mathbb{R}$ seja um intervalo e suponhamos que existam conjuntos não-vazios $A, B \subset X$ que formem uma cisão não-trivial de X. Se $a \in A, b \in B$ e a < b, então $x_1 = (a+b)/2 \in X$. Logo, só uma das seguintes afirmações é verdadeira: $x_1 \in A$ ou $x_1 \in B$. No primeiro caso definimos o intervalo $I_1 \subset X$ como $I_1 = [x_1, b]$ e no segundo como $I_1 = [a, x_1]$. Dessa maneira, I_1 tem comprimento (b-a)/2 e uma das extremidades de I_1 pertence a A e a outra a B. Repetindo esse procedimento, podemos encontrar intervalos fechados $I_1 \supset I_2 \supset I_3 \supset \dots$ tais que I_n tem comprimento $(b-a)/2^n$ e uma das suas extremidades pertence a A e a outra a B. Pelo teorema dos intervalos encaixados existe $c \in I_n$ para todo $n \in \mathbb{N}$. Se $I_n = [a_n, b_n]$, dado $\epsilon > 0$, existe $n \in \mathbb{N}$ tal que $b_n - a_n = (b-a)/2^n < \epsilon$. Logo, $c - a_n < \epsilon$ e $b_n - c < \epsilon$, o que implica que $c \in A$ e $c \in B$. Absurdo! Portanto, C0 deve ser conexo. □

Teorema* 8.14. Seja $X \subset \mathbb{R}^m$. Se $f: X \to \mathbb{R}^d$ é uma função contínua e X é conexo, então f(X) é conexo.

Demonstração. Sejam Y = f(X) e suponhamos que $A, B \subset Y$ formem uma cisão de Y. Como A e B são abertos em Y, existem conjuntos abertos $G_1, G_2 \subset \mathbb{R}^d$ tais que $A = Y \cap G_1$ e $B = Y \cap G_2$. Logo, $f^{-1}(A) = f^{-1}(G_1)$ e $f^{-1}(B) = f^{-1}(G_2)$, os quais são abertos em X, pelo teorema 8.12. Além disso, $f^{-1}(A) \cap f^{-1}(B) = \emptyset$ e $f^{-1}(A) \cup f^{-1}(B) = X$, ou seja, $f^{-1}(A)$ e $f^{-1}(B)$ formam uma cisão de X. Como X é conexo, deve-se ter $f^{-1}(A) = X$ e $f^{-1}(B) = \emptyset$ ou vice-versa. Considerando o primeiro caso, segue que $B = \emptyset$ e A = Y. Portanto, Y é conexo.

Corolário 8.15. Teorema do valor intermediário. Se $f : [a, b] \to \mathbb{R}$ é uma função contínua, então a imagem de f é um intervalo. Em outras palavras, para qualquer d no intervalo fechado de extremidades f(a) e f(b) existe $c \in [a, b]$ tal que f(c) = d.

Exemplos:

- 1. A equação $x^4 6x + 3 = 0$ tem pelo menos uma solução. Com efeito, a função $p(x) = x^4 6x + 3$ é contínua e podemos verificar que p(0) = 3 e p(1) = -2. Logo, pelo teorema do valor intermediário, existe $x_0 \in \mathbb{R}$ tal que $p(x_0) = 0$.
- 2. **Teorema do ponto fixo de Brouwer** em uma dimensão: Se $f:[a,b] \to [a,b]$ é uma função contínua, existe $c \in [a,b]$ tal que f(c) = c. Com efeito, se f(a) = a ou f(b) = b, OK. Se isso não acontece, então f(a) a > 0 e f(b) b < 0. Como a função $g:[a,b] \to \mathbb{R}$ definida por g(x) = f(x) x é contínua, pelo teorema do valor intermediário, existe $c \in [a,b]$ tal que g(c) = 0.

Lema* 8.16. Seja $I \subset \mathbb{R}$ um intervalo. Se $f: I \to \mathbb{R}$ é uma função contínua e injetiva, então ela é monótona.

Demonstração. Consideremos inicialmente que I = [a, b] e suponhamos que f(a) < f(b). Devemos ter que f é estritamente crescente. Com efeito, se existissem $x, y \in [a, b]$ tais que x < y e f(x) > f(y), teríamos duas possibilidades: f(x) > f(y) > f(a) ou f(b) > f(a) > f(y). No primeiro caso, pelo teorema do valor intermediário, existiria $x_1 \in [a, x]$ tal que $f(x_1) = f(y)$; no segundo caso existiria $x_2 \in [y, b]$ tal que $f(x_2) = f(a)$.

Assim, ambos casos contradizem a injetividade de f. Logo, f deve ser estritamente crescente. Analogamente podemos provar que f(a) > f(b) implica que f é estritamente decrescente. Consideremos agora que I seja um intervalo arbitrário. Se f não fosse monótona, existiriam $a,b,c,d \in I$ tais que a < b, c < d, f(a) < f(b) e f(c) > f(d). Do que foi provado anteriormente segue que temos dois casos: $a < b \le c < d$ ou $c < d \le a < b$. No primeiro caso, se f(a) < f(d) (f(a) > f(d)), f seria estritamente crescente (decrescente) em [a,d], contradizendo o fato de ela ser estritamente decrescente (crescente) em [c,d] ([a,b]). De forma análoga podemos verificar que o segundo caso também nos leva a uma contradição. Portanto, f deve ser monótona.

Teorema 8.17. Seja $I \subset \mathbb{R}$ um intervalo. Se $f: I \to J$ é uma bijeção contínua, sua inversa é contínua e monótona.

Demonstração. Pelo lema 8.16, f é monótona. Suponhamos que f seja estritamente crescente e denotemos a sua inversa por g. Se g não fosse estritamente crescente, existiriam $y_1, y_2 \in J$ tais que $y_1 < y_2$ e $g(y_1) > g(y_2)$. Porém, isso implicaria que $y_1 = f(g(y_1)) > f(g(y_2)) = y_2$. Contradição! Portanto, g deve ser estritamente crescente. Para provar que g é contínua, consideremos um conjunto $A \subset I$ aberto em I. Notamos que $g^{-1}(A) = f(A)$. Se $b \in f(A)$, existe $a \in A$ tal que f(a) = b. Como A é aberto em I, existe $\delta > 0$ tal que $B = (a - \delta, a + \delta) \cap I \subset A$. Logo, B é um intervalo e, por conseguinte, f(B) também é. Se b é uma extremidade de f(B), então a é uma extremidade de B devido a que A é estritamente crescente. Logo, A é uma extremidade de A e por conseguinte, A é uma extremidade de A e por conseguinte, A é uma extremidade de A e por conseguinte, A é uma extremidade de A e por conseguinte, A é aberto em A e uma extremidade de A e por conseguinte, A é aberto em A e uma extremidade de A e por conseguinte, A e aberto em A e aberto en A e aberto em A e aberto en A e aberto

Uma bijeção contínua cuja inversa é também contínua é chamada de um **homeomor-fismo**.

Exemplo: Para cada $n \in \mathbb{N}$, a função $f:[0,\infty) \to [0,\infty)$ definida por $f(x)=x^n$ é contínua e injetiva. Logo, pelo lema 8.16, ela é monótona. Como $0^n < 1^n$, segue que f é estritamente crescente. A função f é sobrejetiva, pois f é contínua, f(0)=0 e $\lim_{x\to\infty} f(x)=\infty$. Logo, f é uma bijeção e, pelo teorema 8.17, sua inversa $f^{-1}:[0,\infty) \to [0,\infty)$, definida por $f^{-1}(y)=y^{1/n}$, é contínua e estritamente crescente. Assim, temos provado em particular a existência e unicidade da raiz n-ésima de um número não-negativo.

Teorema 8.18. Sejam $X \subset \mathbb{R}^m$ e $Y \subset \mathbb{R}^d$. Se $f: X \to Y$ é uma função contínua no ponto $a \in X$ e $g: Y \to \mathbb{R}^p$ é uma função contínua no ponto b = f(a), então $g \circ f: X \to \mathbb{R}^p$ é contínua no ponto a.

Demonstração. Dado $\epsilon > 0$, existe $\eta > 0$ tal que $|g(y) - g(b)| < \epsilon$ para todo $y \in Y$ satisfazendo a condição $|y - b| < \eta$. Por outro lado, existe $\delta > 0$ tal que $|f(x) - b| < \eta$ para todo $x \in X$ que satisfaz a condição $|x - a| < \delta$. Portanto, nessas condições temos que $|g(f(x) - g(f(a))| < \epsilon$.

Exemplos:

1. Tem-se que $\lim_{x\to 2} \sqrt[3]{x^2-2x}=0$. Com efeito, a função $f(x)=x^2-2x$ é contínua no ponto 2 e a função $g(x)=\sqrt[3]{x}$ é contínua no ponto 0. Logo, $g\circ f$ é contínua no ponto 2 e, por conseguinte, $\lim_{x\to 2} g(f(x))=g(f(2))=0$.

2. Tem-se que $\lim_{x\to 0} \sqrt{(\sin x)/x} = 1$. Com efeito, a função

$$f(x) = \begin{cases} (\sin x)/x & \text{se } x \neq 0\\ 1 & \text{se } x = 0 \end{cases}$$

é contínua no ponto 0 e a função $g(x) = \sqrt{x}$ é contínua no ponto 1. Logo, $g \circ f$ é contínua no ponto 0 e, por conseguinte, $\lim_{x\to 0} g(f(x)) = g(f(0)) = 1$. Desse exemplo podemos concluir que, se $\lim_{x\to a} f(x) = L$, e g é uma função contínua no ponto L, então $\lim_{x\to a} g(f(x)) = g(L)$, mesmo que a não pertença ao domínio de f.

Diz-se que um conjunto $X \subset \mathbb{R}^d$ é **limitado** se existe c>0 tal que $|x| \leq c$ para todo $x \in X$.

Diz-se que um conjunto $K \subset \mathbb{R}^d$ é **compacto** se é fechado e limitado. Por exemplo, qualquer intervalo fechado $[a,b] \subset \mathbb{R}$ é um conjunto compacto. Além disso, é claro que todo subconjunto fechado de um conjunto compacto é compacto.

Teorema* 8.19. Um conjunto $K \subset \mathbb{R}^d$ é compacto se, e somente se, toda sequência de pontos em K possui uma subsequência que converge para um ponto de K.

Demonstração. (\Rightarrow) Se x_1, x_2, \ldots é uma sequência de pontos em K, ela é limitada. Logo, pelo teorema de Bolzano-Weierstrass, ela possui uma subsequência convergente x_{l_1}, x_{l_2}, \ldots Seja $a \in \mathbb{R}^d$ tal que $x_{l_n} \to a$. Logo, $B(a, \epsilon) \cap K \neq \emptyset$ para qualquer $\epsilon > 0$. Como K é fechado, segue que $a \in K$. (\Leftarrow) Se K não fosse limitado, para cada $n \in \mathbb{N}$, existiria $x_n \in K$ tal que $|x_n| > n$. Logo, a sequência x_1, x_2, \ldots não possuiria subsequência limitada e, por conseguinte, convergente. Contradição! Portanto, K deve ser limitado. Se K não fosse fechado, existiria $a \in K' \setminus K$. Logo, para cada $n \in \mathbb{N}$, existiria $x_n \in K \cap B(a, 1/n)$, ou seja, $|x_n - a| < 1/n$. Logo, $|x_n - a| \to 0$ e, por conseguinte, $x_n \to a$. Dessa maneira, toda subsequência de x_1, x_2, \ldots converge para $a \in K^c$. Contradição! Portanto, K deve ser fechado.

Teorema* 8.20. Seja $X \subset \mathbb{R}^m$. Uma função $f: X \to \mathbb{R}^d$ é contínua em um ponto $a \in X$ se, e somente se, para toda sequência de pontos $x_1, x_2, \ldots \in X$ tal que $x_n \to a$, tem-se que $f(x_n) \to f(a)$.

Demonstração. (\Rightarrow) Dado $\epsilon > 0$, existe $\delta > 0$ tal que $|f(x) - f(a)| < \epsilon$ para todo $x \in X$ satisfazendo a condição $|x - a| < \delta$. Se $x_n \in X$ para todo $n \in \mathbb{N}$ e $x_n \to a$, então existe A > 0 tal que $|x_n - a| < \delta$ para todo n > A. Assim, se n > A, $|f(x_n) - f(a)| < \epsilon$. Portanto, $f(x_n) \to f(a)$. (\Leftarrow) Se f não fosse contínua no ponto a, existiria $\epsilon > 0$ tal que, para todo $n \in \mathbb{N}$, pode-se encontrar $x_n \in X \cap B(a, 1/n)$ satisfazendo a condição $|f(x_n) - f(a)| \ge \epsilon$. Logo, temos que $x_n \to a$ mas $f(x_n) \not\to f(a)$. Contradição! Portanto, f deve ser contínua no ponto a.

Exemplo: A função

$$f(x) = \begin{cases} \sec(1/x) & \text{se } x \neq 0 \\ c & \text{se } x = 0 \end{cases}$$

não é contínua no ponto 0 para qualquer valor da constante $c \in \mathbb{R}$ (ver figura 8.1). Com efeito, para cada $n \in \mathbb{N}$, sejam $x_n = 2/(4n+1)\pi$ e $y_n = 2/(4n+3)\pi$. Logo, $x_n \downarrow 0$ e $y_n \downarrow 0$; porém $f(x_n) \to 1$ e $f(y_n) \to -1$.

Teorema* 8.21. Seja $K \subset \mathbb{R}^m$ um conjunto compacto. Se $f: K \to \mathbb{R}^d$ é uma função contínua, então f(K) é compacto.

Figura 8.1: Gráfico da função $f:(0,\infty)\to\mathbb{R}, f(x)=\sin(1/x)$.

Demonstração. Seja y_1, y_2, \ldots uma sequência de pontos em f(K). Logo, para cada $n \in \mathbb{N}$ existe $x_n \in K$ tal que $f(x_n) = y_n$. Como K é compacto, a sequência x_1, x_2, \ldots possui uma subsequência x_{l_1}, x_{l_2}, \ldots que converge para um ponto $a \in K$. Logo, como f é contínua, $f(x_{l_n}) \to f(a)$. Assim, a subsequência y_{l_1}, y_{l_2}, \ldots é convergente e, por conseguinte, f(K) é compacto.

Corolário 8.22. Teorema de Weierstrass. Seja $K \subset \mathbb{R}^d$ um conjunto compacto. Se $f: K \to \mathbb{R}$ é uma função contínua, então ela atinge seus valores mínimo e máximo, ou seja, existem $x_1, x_2 \in K$ tais que $f(x_1) \leq f(x_2)$ para todo $x \in K$.

Exemplo: A função $f:(0,1)\to\mathbb{R}$ definida por f(x)=1/x não tem um valor máximo nem um valor mínimo.

Teorema* 8.23. Sejam $K \subset \mathbb{R}^m$ um conjunto compacto e $L \subset \mathbb{R}^d$. Se $f : K \to L$ é uma bijeção contínua, então $f^{-1} : L \to K$ é contínua.

Demonstração. Seja y_1, y_2, \ldots uma sequência de pontos em L que converge a $b \in L$. Consideremos que $f^{-1}(b) = a$ e ponhamos $f^{-1}(y_n) = x_n$ para cada $n \in \mathbb{N}$. Suponhamos que $x_n \not\to a$. Logo, existe $\epsilon > 0$ tal que para todo $n \in \mathbb{N}$ podemos encontrar um índice $l_n > n$ para o qual $|x_{l_n} - a| \ge \epsilon$. Como K é compacto, passando para uma subsequência se necessário, existe $a_1 \in K$ tal que $x_{l_n} \to a_1$. Logo, $|x_{l_n} - a| \to |a_1 - a|$ e, por conseguinte, $|a_1 - a| \ge \epsilon$. Em particular, isso implica que $a_1 \ne a$. Como f é contínua, $f(x_{l_n}) \to f(a_1) \ne f(a)$, o qual contradiz o fato de que $f(x_n) \to f(a)$. Portanto, deve-se ter que $x_n \to a$, o que implica que f^{-1} é contínua.

Exemplo: A função $f:(-1,0)\cup[1,\infty)\to[0,\infty)$ definida por $f(x)=x^2$ é uma bijeção contínua. No entanto, sua inversa não é contínua no ponto 1.

Seja $X \subset \mathbb{R}^m$. Diz-se que uma função $f: X \to \mathbb{R}^d$ é **uniformemente contínua** se, dado $\epsilon > 0$, existe $\delta > 0$ tal que $|f(x) - f(y)| < \epsilon$ para quaisquer $x, y \in X$ satisfazendo a condição $|x - y| < \delta$.

Exemplo: Seja $X \subset \mathbb{R}^m$. Diz-se que uma função $f: X \to \mathbb{R}^d$ é **lipchitziana** se existe c > 0 tal que |f(x) - f(y)| < c|x - y|. Toda função lipchitziana é claramente uniformemente contínua.

Teorema* 8.24. Seja $X \subset \mathbb{R}^m$. Uma função $f: X \to \mathbb{R}^d$ é uniformemente contínua se, e somente se, para quaisquer sequências $x_1, x_2, \ldots \in X$ e $y_n, y_n, \ldots \in X$ tais que $x_n - y_n \to 0$ tem-se que $f(x_n) - f(y_n) \to 0$.

Demonstração. (\Rightarrow) Dado $\epsilon > 0$, existe $\delta > 0$ tal que $|f(x) - f(y)| < \epsilon$ para quaisquer $x, y \in X$ satisfazendo a condição $|x - y| < \delta$. Se $x_1, x_2, \ldots \in X$ e $y_1, y_2, \ldots \in X$ são sequências tais que $x_n - y_n \to 0$, existe A > 0 tal que $|x_n - y_n| < \delta$ para todo n > A. Logo, n > A implica que $|f(x_n) - f(y_n)| < \epsilon$ e, por conseguinte, $f(x_n) - f(y_n) \to 0$. (\Leftarrow) Se f não \acute{e} uniformemente contínua, existe $\epsilon > 0$ tal que para todo $n \in \mathbb{N}$ podemos encontrar $x_n, y_n \in X$ satisfazendo as condições $|x_n - y_n| \le 1/n$ e $|f(x_n) - f(y_n)| \ge \epsilon$. Logo, $x_n - y_n \to 0$ mas $f(x_n) - f(y_n) \not\to 0$.

Teorema* 8.25. Seja $K \subset \mathbb{R}^m$ um conjunto compacto. Se $f: K \to \mathbb{R}^d$ é uma função contínua, então ela é uniformemente contínua.

Demonstração. Se f não fosse uniformemente contínua, existiriam sequências $x_1, x_2, \ldots \in K$ e $y_1, y_2, \ldots \in K$ tais que $x_n - y_n \to 0$ e $f(x_n) - f(y_n) \not\to 0$. Como K é compacto, considerando subsequências se necessário, existiriam $a, b \in K$ tais que $x_n \to a$ e $y_n \to b$. Logo, a = b e, como f é contínua, $f(x_n) \to f(a)$ e $f(y_n) \to f(a)$. Porém, isso implicaria que $f(x_n) - f(y_n) \to 0$. Contradição! Portanto, f deve ser uniformemente contínua. \square

Exemplo: A função $f:[0,\infty)\to\mathbb{R}$ definida por $f(x)=\sqrt{x}$ é uniformemente contínua. Com efeito, a restrição de f ao intervalo [0,1] é uniformemente contínua e a restrição de f ao intervalo $(1,\infty)$ é lipchitziana, pois nesse caso

$$|f(x) - f(y)| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} < \frac{1}{2}|x - y|.$$

Logo, dado $\epsilon > 0$, existe $\delta_1 > 0$ tal que $|f(x) - f(y)| < \epsilon$ para quaisquer $x, y \in [0, 1]$ ou x, y > 1 satisfazendo a condição $|x - y| < \delta_1$. Por outro lado, se x > 1, $0 \le y \le 1$ e $x - y < \epsilon$, então

$$|f(x) - f(y)| = \frac{x - y}{\sqrt{x} + \sqrt{y}} < |x - y| < \epsilon.$$

Logo, pondo $\delta = \min\{\epsilon, \delta_1\}$, temos que $|f(x) - f(y)| < \epsilon$ para quaisquer $x, y \ge 0$ satisfazendo a condição $|x - y| < \delta$.

Teorema* 8.26. Seja $X \subset \mathbb{R}^m$ um conjunto limitado. Se $f: X \to \mathbb{R}^d$ é uniformemente contínua, então f é limitada.

Demonstração. Suponhamos que f não seja limitada. Logo, escolhido $x_1 \in X$, existe $x_2 \in X$ tal que $|f(x_2)| \ge |f(x_1)| + 1$, pois f não é limitada. Supondo definidos x_1, \ldots, x_n , escolhemos $x_{n+1} \in X$ de tal forma que $|f(x_{n+1})| \ge |f(x_n)| + 1$, o qual é possível devido a que f não é limitada. Assim, temos que $|f(x_{n+1}) - f(x_n)| \ge |f(x_{n+1})| - |f(x_n)| \ge 1$ para qualquer $n \in \mathbb{N}$. Como X é limitado, passando para uma subsequência se necessário, existe $a \in \mathbb{R}^m$ tal que $x_n \to a$. Logo, $x_{n+1} - x_n \to 0$ mas $f(x_{n+1}) - f(x_n) \not\to 0$. Portanto, f não é uniformemente contínua.

Exemplo: A função $f:(0,1)\to\mathbb{R}$ definida por f(x)=1/x é contínua mas não é uniformemente contínua, pois não é limitada.

Teorema* 8.27. Sejam $X \subset \mathbb{R}^m$, $f: X \to \mathbb{R}^d$ e $a \in X'$. Tem-se que $\lim_{x\to a} f(x) = L$ se, e somente se, para qualquer sequência $x_1, x_2, \ldots \in X \setminus \{a\}$ tal que $x_n \to a$, tem-se que $f(x_n) \to L$.

Demonstração. Análoga à demonstração do teorema 8.20.

Teorema* 8.28. Sejam $X \subset \mathbb{R}^m$ e $a \in X'$. Se $f : X \to \mathbb{R}^d$ é uniformemente contínua, então existe $\lim_{x\to a} f(x)$.

Demonstração. Fixemos r>0 e consideremos o conjunto limitado $A=B(a,r)\cap X$. A restrição de f a A é uniformemente contínua e $a\in A'$. Seja $x_1,x_2,\ldots\in X\setminus\{a\}$ uma sequência tal que $x_n\to a$. Como f é uniformemente contínua, pelo teorema 8.26, temos que $f(x_1), f(x_2),\ldots$ é uma sequência limitada. Logo, ela possui uma subsequência convergente. Seja $L\in\mathbb{R}^d$ tal que $f(x_{l_n})\to L$. Por outro lado, $f(x_n)-f(x_{l_n})\to 0$, pois f é uniformemente contínua e $x_n-x_{l_n}\to 0$. Logo, como $f(x_n)=[f(x_n)-f(x_{l_n})]+f(x_{l_n})$, segue que $f(x_n)\to L$. Portanto, $\lim_{x\to a}f(x)=L$.

Capítulo 9

A derivada de funções de uma variável real

Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}^d$ e $a \in X \cap X'$. Define-se a **derivada** de f no ponto a por

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
,

desde que o limite do lado direito exista. A derivada de f no ponto a também pode ser denotada por

 $\frac{df}{dx}(a)$.

Se n = 1, a derivada de f no ponto a pode ser interpretada geometricamente como a inclinação da reta tangente ao gráfico da função f no ponto a.

Exemplo: A função f(x) = |x| não é derivável no ponto 0, pois $f'(0) = \lim_{x\to 0} |x|/x$, o qual não existe.

Diz-se que uma função é **derivável** em um determinado ponto se existe a derivada da função nesse ponto. Se a função é derivável em todo ponto do seu domínio, diz-se que ela é uma função derivável.

Seja $X \subset \mathbb{R}$. Se $f: X \to \mathbb{R}^d$ é uma função derivável, para cada $x \in X$ existe f'(x). Isso define uma **função derivada** $f': X \to \mathbb{R}^d$. Se f é definida dando simplesmente uma expressão para f(x), os símbolos

$$f'(x)$$
, $\frac{df(x)}{dx}$ ou $\frac{d}{dx}f(x)$

vão representar a expressão da função derivada f'. Se f' é uma função derivável, podemos definir a **função segunda derivada** ou a **derivada de segunda ordem** de f por $f'': X \to \mathbb{R}$,

$$f''(x) = \frac{d}{dx}f'(x).$$

Nesse caso, dizemos que f é duas vezes derivável. De forma análoga podem ser definidas derivadas de ordens superiores.

Teorema 9.1. Sejam $X \subset \mathbb{R}$ e $a \in X \cap X'$. Se $f, g : X \to \mathbb{R}$ são funções deriváveis no ponto a, então

1. $f \pm g$ é derivável no ponto a e vale a relação $(f \pm g)'(a) = f'(a) \pm g'(a)$;

- 2. **regra do produto**: $fg \notin deriv \acute{a} vel \ no \ ponto \ a \ e \ vale \ a \ relação \ (fg)'(a) = f'(a)g(a) + f(a)g'(a);$
- 3. 1/g é derivável no ponto a desde que se tenha $g(a) \neq 0$ e vale a relação $(1/g)'(a) = -g'(a)/[g(a)]^2$.

Demonstração. 1. Temos que

$$(f \pm g)'(a) = \lim_{x \to a} \frac{f(x) \pm g(x) - [f(a) \pm g(a)]}{x - a}$$
$$= \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \pm \frac{g(x) - g(a)}{x - a} \right)$$
$$= f'(a) \pm g'(a).$$

2. Temos que

$$(fg)'(x) = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a}$$

$$= \lim_{x \to a} \frac{f(x)[g(x) - g(a)] + [f(x) - f(a)]g(a)}{x - a}$$

$$= f(a)g'(a) + f'(a)g(a).$$

3. Temos que

$$\left(\frac{1}{g}\right)'(a) = \lim_{x \to a} \frac{1/g(x) - 1/g(a)}{x - a} = \lim_{x \to a} \frac{g(a) - g(x)}{(x - a)g(x)g(a)} = -\frac{g'(a)}{[g(a)]^2}.$$

Corolário* 9.2. Sejam $X \subset \mathbb{R}$ e $a \in X \cap X'$. Se $f, g : X \to \mathbb{R}^d$ e $h : X \to \mathbb{R}$ são funções deriváveis no ponto a, então

- 1. $f \pm g$ é derivável no ponto e vale a relação $(f \pm g)' = f'(a) \pm g'(a)$;
- 2. hf é derivável no ponto a e vale a relação (hf)'(a) = h'(a)f(a) + h(a)f'(a);
- 3. $\langle f, g \rangle$ é derivável no ponto a e vale a relação $\langle f, g \rangle'(a) = \langle f'(a), g(a) \rangle + \langle f(a), g'(a) \rangle$.

Exemplos:

1. As funções f(x) = c e g(x) = x são deriváveis e valem as relações f'(x) = 1 e g'(x) = 0 para todo $x \in \mathbb{R}$. De fato, para qualquer $a \in \mathbb{R}$ temos que

$$f'(a) = \lim_{x \to a} \frac{c - c}{r - a} = 0$$
 e $g'(a) = \lim_{x \to a} \frac{x - a}{r - a} = 1$.

Logo, podemos escrever

$$\frac{dc}{dx} = 0$$
 e $\frac{dx}{dx} = 1$.

2. Usando a regra do produto, podemos concluir que

$$\frac{d}{dx}x^n = nx^{n-1} \tag{9.1}$$

para todo $n \in \mathbb{N}$. Para isso usamos indução em n. Se n = 1, OK. Supondo que a afirmação seja verdadeira para algum $n \in \mathbb{N}$, temos que

$$\frac{d}{dx}x^{n+1} = \frac{d}{dx}(x^nx) = \left(\frac{d}{dx}x^n\right)x + x^n\frac{dx}{dx} = nx^{n-1}x + x^n = (n+1)x^n.$$

Portanto, a Eq. (9.1) vale para todo $n \in \mathbb{N}$.

- 3. Se $p(x) = a_n x^n + \cdots + a_1 x + a_0$, então, usando os resultados anteriores, temos que $p'(x) = n a_n x^{n-1} + \cdots + a_1$. Portanto, toda função polinomial é derivável.
- 4. Toda função racional é derivável. De fato se a equação f(x) = p(x)/q(x) define uma função racional f, então p e q são funções polinomiais e, para qualquer x no domínio de f,

$$f'(x) = p'(x)\frac{1}{q(x)} - p(x)\frac{q'(x)}{[q(x)]^2} = \frac{p'(x)q(x) - p(x)q'(x)}{[q(x)]^2}.$$

Teorema 9.3. Sejam $X \subset \mathbb{R}$ e $a \in X \cap X'$. Se a função $f: X \to \mathbb{R}^d$ é derivável no ponto a, então ela é contínua nesse ponto.

Demonstração. Temos que

$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} (x - a) \frac{f(x) - f(a)}{x - a} = 0 f'(a) = 0.$$

Portanto, f é contínua no ponto a.

Exemplos:

1. A função seno é derivável no ponto 0. Com efeito, temos que

$$\operatorname{sen}'(0) = \lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1.$$

Logo, a função seno é contínua no ponto 0.

2. A função cosseno é derivável no ponto 0. Com efeito,

$$\cos'(0) = \lim_{x \to 0} \frac{\cos x - 1}{x}.$$

Usando a identidade trigonométrica $\cos x = 1 - 2 \operatorname{sen}^2(x/2)$, temos que

$$\cos'(0) = \lim_{x \to 0} -\frac{2 \operatorname{sen}^2(x/2)}{x} = \lim_{x \to 0} -\frac{\operatorname{sen}(x/2)}{x/2} \operatorname{sen}(x/2).$$

Como $\lim_{x\to 0} \frac{\sin(x/2)}{(x/2)} = 1$ e, pelo item anterior, a função seno é contínua no ponto 0, temos que $\cos'(0) = 0$. Logo, a função cosseno é contínua no ponto 0.

3. As funções seno e cosseno são de fato funções deriváveis e, por conseguinte, contínuas. Com efeito, para qualquer $a \in \mathbb{R}$ temos que

$$\operatorname{sen}'(a) = \lim_{x \to a} \frac{\operatorname{sen} x - \operatorname{sen} a}{x - a} = \lim_{h \to 0} \frac{\operatorname{sen}(a + h) - \operatorname{sen} a}{h}.$$

Usando a identidade trigonométrica sen(a+h) = sen a cos h + cos a sen h, temos que

$$\operatorname{sen}'(a) = \lim_{h \to 0} \left(\operatorname{sen} a \frac{\cos h - 1}{h} + \cos a \frac{\sin h}{h} \right).$$

Como

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} \frac{\cos^2 h - 1}{h(\cos h + 1)} = -\lim_{h \to 0} \frac{\sin h}{h} \frac{\sin h}{\cos h + 1} = 0,$$

segue que sen' $(a) = \cos a$. Logo, podemos escrever

$$\frac{d}{dx}\operatorname{sen} x = \cos x.$$

Por outro lado, $\cos'(a) = \lim_{h\to 0} [\cos(a+h) - \cos a]/h$. Usando a identidade trigonométrica $\cos(a+h) = \cos a \cos h - \sin a \sin h$, temos que

$$\cos'(a) = \lim_{h \to 0} \left(\cos a \frac{\cos h - 1}{h} - \sin a \frac{\sin h}{h} \right) = -\sin a.$$

Logo, podemos escrever

$$\frac{d}{dx}\cos x = -\sin x.$$

- 4. A função $f:(0,1)\to\mathbb{R}$ definida por $f(x)=\sin(1/x)$ é contínua mas não é uniformemente contínua, pois $\lim_{x\to 0}\sin(1/x)$ não existe.
- 5. Como $\tan x = \sin x / \cos x$, temos que

$$\tan'(x) = \operatorname{sen}'(x)\frac{1}{\cos x} + \operatorname{sen} x \frac{d}{dx} \left(\frac{1}{\cos x}\right) = \frac{\cos x}{\cos x} + \frac{\operatorname{sen}^2 x}{\cos^2 x} = 1 + \tan^2 x.$$

Logo, podemos escrever,

$$\frac{d}{dx}\tan x = 1 + \tan^2 x = \sec^2 x.$$

Teorema 9.4. Sejam $I \subset \mathbb{R}$ um intervalo $e f : I \to J$ uma bijeção contínua. Se $f \notin derivável$ no ponto $a \in I$ e $f'(a) \neq 0$, então f^{-1} $\notin derivável$ no ponto b = f(a) e vale a relação $(f^{-1})'(b) = 1/f'(a)$.

Demonstração. Temos que

$$(f^{-1})'(b) = \lim_{y \to b} \frac{f^{-1}(y) - f^{-1}(b)}{y - b} = \lim_{y \to b} \frac{1}{\frac{y - b}{f^{-1}(y) - a}} = \lim_{y \to b} \frac{1}{\frac{f(f^{-1}(y)) - f(a)}{f^{-1}(y) - a}}.$$

Como $\lim_{x\to a} [f(x)-f(a)]/(x-a)=f'(a)$ e f^{-1} é contínua no ponto b. Segue que

$$(f^{-1})'(b) = \lim_{y \to b} \frac{1}{\frac{f(f^{-1}(y)) - f(a)}{f^{-1}(y) - a}} = \frac{1}{f'(a)}.$$

Exemplos:

1. Dado $n \in \mathbb{N}$, a função $f:[0,\infty) \to [0,\infty)$ definida por $f(x) = x^n$ é uma bijeção derivável e $f'(x) = nx^{n-1} > 0$ para todo x > 0. Logo, $f^{-1}:[0,\infty) \to [0,\infty)$, definida por $f^{-1}(y) = y^{1/n}$, é derivável em $(0,\infty)$ e vale a relação

$$(f^{-1})'(y) = \frac{1}{n(y^{1/n})^{n-1}} = \frac{1}{n}y^{1/n-1}$$

para todo y > 0. Portanto, podemos escrever

$$\frac{d}{dx}x^{1/n} = \frac{1}{n}x^{1/n-1} \quad (x > 0).$$

2. A função $f: [-\pi/2, \pi/2] \to [-1, 1]$ definida por $f(x) = \operatorname{sen} x$ é uma bijeção crescente e derivável. A inversa dessa função é chamada de **função arco seno** e é denotada por arcsen : $[-1, 1] \to [-\pi/2, \pi/2]$ (ver figura 9.1). Como $f'(x) = \cos x > 0$ para todo $x \in (-\pi/2, \pi/2)$, a função arco seno é derivável em (-1, 1), valendo a relação

$$\arcsin'(y) = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - \sin^2 x}} = \frac{1}{\sqrt{1 - y^2}}.$$

Assim, podemos escrever

$$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}} \quad (|x| < 1).$$

3. A função $f:[0,\pi] \to [-1,1]$ definida por $f(x) = \cos x$ é uma bijeção decrescente e derivável. A inversa dessa função é chamada de **função arco cosseno** e é denotada por arccos: $[-1,1] \to [0,\pi]$ (ver figura 9.1). Como $f'(x) = -\sin x < 0$ para todo $x \in (0,\pi)$, a função arco cosseno é derivável em (-1,1), valendo a relação

$$\frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}} \quad (|x| < 1).$$

Figura 9.1: Gráficos das funções arco seno e arco cosseno. Nota-se que a função arco seno é uma função ímpar.

4. A função $f:(-\pi/2,\pi/2)\to\mathbb{R}$ definida por $f(x)=\tan x$ é uma bijeção crescente e derivável. A inversa dessa função é chamada de **função arco tangente** e é

Figura 9.2: Gráfico da função arco tangente. Nota-se que ela é uma função ímpar.

denotada por arctan : $\mathbb{R} \to (-\pi/2, \pi/2)$ (ver figura 9.2). Como $f'(x) = \sec^2 x > 0$ para todo $x \in (-\pi/2, \pi/2)$, a função arco tangente é derivável e

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2}.$$

Sejam $X \subset \mathbb{R}$ e $a \in X \cap X'$. Se $f: X \to \mathbb{R}^d$ é uma função derivável no ponto a, para qualquer $x \in X$, temos que f(x) = f(a) + (x-a)f'(a) + r(x), em que $\lim_{x \to a} r(x)/(x-a) = 0$. Reciprocamente, se f(x) = f(a) + (x-a)v + r(x) para todo $x \in X$ e $\lim_{x \to a} r(x)/(x-a) = 0$, então a função f e derivável no ponto a e f'(a) = v.

Teorema 9.5. Regra da cadeia. Sejam $X,Y \subset \mathbb{R}$ e $a \in X \cap X'$. Se $f: X \to Y$ é derivável no ponto $a, f(a) \in Y \cap Y'$ e $g: Y \to \mathbb{R}^d$ é derivável no ponto f(a), então $g \circ f$ é derivável no ponto a e vale a relação $(g \circ f)'(a) = f'(a)g'(f(a))$.

Demonstração. Como f é derivável no ponto a, temos que

$$f(x) = f(a) + (x - a)f'(a) + r(x)$$

para todo $x \in X$, em que $\lim_{x\to a} r(x)/(x-a) = 0$. Por outro lado, como g é derivável no ponto f(a), temos que

$$g(y) = g(f(a)) + (y - f(a))g'(f(a)) + s(y)$$

para qualquer $y \in Y$, em que $\lim_{y \to f(a)} s(y)/[y-f(a)] = 0$. Logo, em particular, para qualquer $x \in X$,

$$g(f(x)) = g(f(a)) + [f(x) - f(a)]g'(f(a)) + s(f(x))$$

= $g(f(a)) + (x - a)f'(a)g'(f(a)) + r(x)g'(f(a)) + s(f(x))$.

Temos que

$$\lim_{x\to a}\frac{s(f(x))}{x-a}=\lim_{x\to a}\frac{s(f(x))}{f(x)-f(a)}\frac{f(x)-f(a)}{x-a}\,.$$

Como f é contínua no ponto a, então $\lim_{x\to a} s(f(x))/[f(x)-f(a)]=0$. Segue daqui que $\lim_{x\to a} s(f(x))/(x-a)=0$. Dessa maneira, temos que

$$(g \circ f)(x) = (g \circ f)(a) + (x - a)f'(a)g'(f(a)) + t(x)$$

para todo $x \in X$, em que $\lim_{x\to a} t(x)/(x-a) = 0$. Portanto, $g \circ f$ é derivável no ponto a e vale a relação $(g \circ f)'(a) = f'(a)g'(f(a))$.

Exemplo: Consideremos as funções $f(x) = x^m$ e $g(x) = x^{1/n}$. Como f e g são funções deriváveis, pela regra da cadeia temos que

$$(f \circ g)'(x) = f'(g(x))g'(x) = mx^{(m-1)/n} \frac{1}{n} x^{1/n-1} = \frac{m}{n} x^{m/n-1}.$$

Portanto, para qualquer $r \in \mathbb{Q}$, temos que

$$\frac{d}{dx}x^r = rx^{r-1}\,,$$

desde que o lado direito esteja definido.

Teorema 9.6. Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$ uma função derivável. Se f é monótona crescente, então $f'(x) \geq 0$ para todo $x \in X$. Por outro lado, se f é monótona decrescente, então $f'(x) \leq 0$ para todo $x \in X$.

Demonstração. Suponhamos que f seja monótona crescente. Se existe $a \in X$ tal que f'(a) < 0, então existe $\delta > 0$ tal que [f(x) - f(a)]/(x - a) < 0 para todo $x \in X$ satisfazendo a condição $0 < |x - a| < \delta$. Logo, f(x) > f(a) para todo $x \in X \cap (a - \delta, a)$ e f(x) < f(a) para todo $x \in X \cap (a, a + \delta)$. Isso implica que f não é monótona crescente. Contradição! Portanto, devemos ter $f'(x) \geq 0$ para todo $x \in X$. O caso no qual f é monótona decrescente pode ser provado de forma análoga.

Exemplo: A função $f(x) = x^3$ é estritamente crescente. No entanto, não se tem f'(x) > 0 para todo $x \in \mathbb{R}$. De fato, f'(0) = 0.

Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}^d$ e $a \in X \cap X'_+$. Define-se a **derivada à direita** de f no ponto a por

$$f'_{+}(a) = \lim_{x \to a+} \frac{f(x) - f(a)}{x - a}$$
.

Analogamente, se $a \in X \cap X'_{-}$, define-se a **derivada à esquerda** de f no ponto a por

$$f'_{-}(a) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a}$$
.

É claro que f é derivável em um ponto $a \in X \cap X'_+ \cap X'_-$ se, e somente se, $f'_+(a) = f'_-(a)$.

Teorema 9.7. Sejam $X \subset \mathbb{R}$, $a \in X \cap X'_+ \cap X'_ e \ f : X \to \mathbb{R}^d$. Se $f'_+(a)$ $e \ f'_-(a)$ existem, então $f \ \acute{e}$ contínua no ponto a.

Exemplo: Consideremos a função f(x) = |x|. Temos que $f'_{+}(0) = 1$ e $f'_{-}(0) = -1$. Logo, f é contínua no ponto 0 embora não seja derivável nesse ponto.

Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$. Diz-se que $a \in X$ é um **ponto de mínimo** (**máximo**) de f se existe $\delta > 0$ tal que $f(a) \leq f(x)$ ($f(a) \geq f(x)$) para todo $x \in X \cap (a - \delta, a + \delta)$. Nesse caso, diz-se também que f tem um mínimo (máximo) no ponto a.

Teorema 9.8. Sejam $X \subset \mathbb{R}$ e $a \in X \cap X'_+ \cap X'_-$. Se a é um ponto de mínimo ou de máximo de uma função $f: X \to \mathbb{R}$ que é derivável nesse ponto, então f'(a) = 0.

Demonstração. Temos que $f'_+(a) = f'_-(a) = f'(a)$. Suponhamos que a seja um ponto de mínimo. Logo, existe $\delta > 0$ tal que $f(x) - f(a) \ge 0$ para todo $x \in X \cap (a - \delta, a + \delta)$. Isso implica que [f(x) - f(a)]/(x - a) é não-negativo para todo $x \in X \cap (a, a + \delta)$ e é não-positivo para todo $x \in X \cap (a - \delta, a)$. Assim, $f'_+(a) \ge 0$ e $f'_-(a) \le 0$. Portanto, devemos ter f'(a) = 0. O caso no qual a é um ponto de mínimo pode ser tratado de forma semelhante.

Exemplo: A recíproca do teorema anterior é falsa. Para ver isso consideremos a função $f(x) = x^3$. Temos que f'(0) = 0, mas 0 não é um ponto de máximo nem de mínimo.

Teorema 9.9. Teorema de Darboux. Seja $f : [a,b] \to \mathbb{R}$ uma função derivável. Se f'(a) < d < f'(b), existe $c \in (a,b)$ tal que f'(c) = d.

Demonstração. Suponhamos inicialmente que f'(a) < 0 < f'(b). Pelo teorema de Weierstrass, a função f atinge seus valores máximo e mínimo. Como f'(b) > 0, segue que existe $\delta > 0$ tal que [f(x) - f(b)]/(x - b) > 0 para todo $x \in X \cap (b - \delta, b)$. Segue daqui que f(x) < f(b) para todo $x \in X \cap (b - \delta, b)$ e, por conseguinte, b não é um ponto de mínimo. De forma análoga pode-se provar que a também não é um ponto de mínimo. Logo, o valor mínimo de f é atingido em um ponto $c \in (a, b)$. Portanto, f'(c) = 0, pois c é um ponto de acumulação bilateral. Consideremos agora o caso geral em que f'(a) < f'(b). Se f'(a) < d < f'(b), a função $g : [a, b] \to \mathbb{R}$ definida por g(x) = f(x) - dx é derivável e é tal que g'(a) < 0 < g'(b). Logo, pelo que foi provado anteriormente, existe $c \in (a, b)$ tal que g'(c) = 0. Isso implica que f'(c) = d.

Exemplo: Não existe função derivável $f: \mathbb{R} \to \mathbb{R}$ tal que f'(x) = 1 se $x \ge 0$ e f'(x) = 0 se x < 0.

Lema 9.10. Teorema de Rolle. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua. Se f é derivável em (a,b) e f(a)=f(b), então existe $c \in (a,b)$ tal que f'(c)=0.

Demonstração. Se f(x) = f(a) = f(b) para todo $x \in (a, b)$, então f é a função constante e, por conseguinte, f'(x) = 0 para todo $x \in [a, b]$. Se esse não for o caso, pelo teorema de Weierstrass, existem $x_1, x_2 \in [a, b]$ tais que $f(x_1) \leq f(x) \leq f(x_2)$ para todo $x \in [a, b]$. Como pelo menos um dos valores extremos $f(x_1)$ ou $f(x_2)$ é diferente de f(a) = f(b), então $x_1 \in (a, b)$ ou $x_2 \in (a, b)$. Além disso, esses pontos seriam pontos de mínimo ou de máximo respectivamente. Portanto, $f'(x_1) = 0$ ou $f'(x_2) = 0$.

Teorema 9.11. Teorema do valor médio. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua. Se f é derivável em (a,b), então existe $c \in (a,b)$ tal que

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Demonstração. A função $g:[a,b]\to\mathbb{R}$ definida por

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

é derivável e é tal que g(a) = g(b) = 0. Logo, pelo teorema de Rolle, existe $c \in (a, b)$ tal que g'(c) = 0. Isso implica que f'(c) = [f(b) - f(a)]/(b - a).

O teorema do valor médio pode ser intuído a partir do gráfico de uma função derivável $f:[a,b] \to \mathbb{R}$. Dada a reta secante que passa pelos pontos (a, f(a)) e (b, f(b)), pode-se encontrar uma reta paralela a ela a qual é tangente ao gráfico em um ponto intermediário (c, f(c)).

Corolário 9.12. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua que é derivável em (a,b). Se f'(x) = 0 para todo $x \in (a,b)$, então f é uma função constante.

Corolário 9.13. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua que é derivável em (a,b). A função f é monótona crescente se, e somente se, $f'(x) \ge 0$ para todo $x \in (a,b)$. De forma análoga, f é monótona decrescente se, e somente se, $f'(x) \le 0$ para todo $x \in (a,b)$. Além do mais, se valem as desigualdades estritas para todo $x \in (a,b)$, f será estritamente crescente ou decrescente respectivamente.

Corolário 9.14. Sejam $f:[a,b] \to \mathbb{R}$ uma função contínua, $c \in (a,b)$ e f derivável em $(a,c) \cup (c,b)$. Se $f'(x) \leq 0$ para todo $x \in (a,c)$ e $f'(x) \geq 0$ para todo $x \in (c,b)$, então c é um ponto de mínimo. De forma análoga, se $f'(x) \geq 0$ para todo $x \in (a,c)$ e $f'(x) \leq 0$ para todo $x \in (c,b)$, então c é um ponto de máximo.

Corolário 9.15. Seja $f:[a,b] \to \mathbb{R}$ uma função que possui segunda derivada no ponto $c \in (a,b)$. Se f'(c) = 0 e f''(c) > 0, então c é um ponto de mínimo. Por outro lado, se f'(c) = 0 e f''(c) < 0, então c é um ponto de máximo.

Exemplos:

- 1. A função f(x) = |x| tem um mínimo no ponto 0, pois f'(x) = 1 se x > 0 e f'(x) = -1 se x < 0. Nesse caso, f'(0) não existe.
- 2. A função $f(x) = 1/(1+x^2)$ tem um máximo no ponto 0, pois f'(0) = 0 e f''(0) = -2.

Teorema 9.16. Teorema do valor médio generalizado. Sejam $f, g : [a, b] \to \mathbb{R}$ funções contínuas que são deriváveis em (a,b). Se g é injetiva e $g'(x) \neq 0$ para todo $x \in (a,b)$, então existe $c \in (a,b)$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$
.

Demonstração. Como g é contínua e injetiva, existe um intervalo $[\alpha, \beta] \subset \mathbb{R}$ tal que $g:[a,b] \to [\alpha,\beta]$ é uma bijeção. Logo, ela é monótona e sua inversa g^{-1} é derivável no intervalo (α,β) . Suponhamos que g^{-1} seja crescente. Logo, $g^{-1}(\alpha)=a$ e $g^{-1}(\beta)=b$. Dessa maneira,

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f(g^{-1}(\beta)) - f(g^{-1}(\alpha))}{\beta - \alpha}.$$

Como $f \circ g^{-1} : [\alpha, \beta] \to \mathbb{R}$ é uma função contínua que é derivável em (α, β) , pelo teorema do valor médio existe $d \in (\alpha, \beta)$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = (f \circ g^{-1})'(d).$$

Se $g^{-1}(d) = c$, usando a regra da cadeia e o teorema 9.4, temos que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = f'(g^{-1}(d))(g^{-1})'(d) = \frac{f'(c)}{g'(c)}.$$

Teorema* 9.17. Desigualdade do valor médio. Seja $f:[a,b] \to \mathbb{R}^d$ uma função contínua que é derivável em (a,b). Se existe M>0 tal que $|f'(x)| \le M$ para todo $x \in (a,b)$, então $|f(b)-f(a)| \le M|b-a|$.

Demonstração. Se f(a) = f(b), OK. Se esse não é o caso, consideremos a função ϕ : $[a,b] \to \mathbb{R}$ definida por $\phi(x) = \langle f(x), f(b) - f(a) \rangle$. Essa função é contínua, é derivável em (a,b) e $\phi(b) - \phi(a) = |f(b) - f(a)|^2$. Logo, pelo teorema do valor médio, existe $c \in (a,b)$ tal que

$$\frac{\phi(b) - \phi(a)}{b - a} = \frac{|f(b) - f(a)|^2}{b - a} = f'(c) = \langle f'(c), f(b) - f(a) \rangle .$$

Usando a desigualdade de Cauchy-Schwarz, temos que

$$\frac{|f(b) - f(a)|^2}{|b - a|} \le |f'(c)||f(b) - f(a)| \le M|f(b) - f(a)|.$$

Portanto, $|f(b) - f(a)| \le M|b - a|$.

Corolário* 9.18. Seja $f:[a,b] \to \mathbb{R}^d$ uma função contínua que é derivável em (a,b). Se f'(x) = 0 para todo $x \in (a,b)$, então f é uma função constante.

Corolário* 9.19. Seja $f:[a,b] \to \mathbb{R}^d$ uma função contínua que é derivável em (a,b). Se existe M>0 tal que $|f'(x)| \le M$ para todo $x \in (a,b)$, então $|f(x)-f(y)| \le M|x-y|$ para quaisquer $x,y \in [a,b]$, ou seja, f é lipchitziana.

Diz-se que um conjunto $X \subset \mathbb{R}^d$ é **convexo** se, dados $x, y \in X$, $(1 - \alpha)x + \alpha y \in X$ para quaisquer $x, y \in X$ e $\alpha \in [0, 1]$.

Exemplo: Toda bola aberta de \mathbb{R}^d é um conjunto convexo. Com efeito, dados $x, y \in B(a, r)$ e $\alpha \in [0, 1]$, temos que $|(1 - \alpha)x + \alpha y - a| \le (1 - \alpha)|x - a| + \alpha|y - a| < r$.

Teorema 9.20. Os únicos subconjuntos convexos de \mathbb{R} são os intervalos.

Demonstração. Se $X \subset \mathbb{R}$ não é um intervalo, existem $a,b \in X$ e $x \in X^c$ tal que a < x < b. Pondo t = (x-a)/(b-a), temos que $t \in (0,1)$ e x = (1-t)a+tb. Logo, X não é um conjunto convexo. Reciprocamente, se $I \subset \mathbb{R}$ é um intervalo, dados $x,y \in I$ com x < y, a função $f : [0,1] \to \mathbb{R}$ definida por f(t) = (1-t)x+ty é contínua e estritamente crescente. Logo, $(1-t)x+ty \in [x,y] \subset I$ para todo $t \in [0,1]$. Portanto, I é um conjunto convexo.

Seja $I \subset \mathbb{R}$ um intervalo. Diz-se que uma função $f: I \to \mathbb{R}$ é **convexa** se $f((1-t)a+tb) \leq (1-t)f(a)+tf(b)$ para quaisquer $a,b \in I$ e $t \in [0,1]$. Se a < b, pondo x = (1-t)a+tb, temos que t = (x-a)/(b-a). Segue daqui que

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \frac{f(b) - f(x)}{b - x} \tag{9.2}$$

para quaisquer $a,b,x\in I$ satisfazendo a condição a< x< b. Reciprocamente, se a condição (9.2) é satisfeita, a função f é convexa. Com efeito, pondo t=(x-a)/(b-a), podemos obter que $f((1-t)a+tb)\leq (1-t)f(a)+tf(b)$ para quaisquer $a,b\in I$ com a< b e $t\in (0,1)$. Se b< a, pondo s=1-t, podemos obter a mesma desigualdade. Além disso, se a=b ou $t\in \{0,1\}$, ocorre a igualdade de forma trivial. Portanto, f é convexa. Intuitivamente, uma função convexa deve ter um gráfico parecido com \smile . Dessa maneira, qualquer reta secante corta o gráfico de uma função convexa em exatamente dois pontos. Além disso, a porção do gráfico limitada pelos pontos de interseção com a reta secante está por baixo dessa reta.

Teorema 9.21. Seja $I \subset \mathbb{R}$ um intervalo aberto. Se $f: I \to \mathbb{R}$ é uma função convexa, então ela é contínua.

Demonstração. Seja $a \in I$. Existe $\epsilon > 0$ tal que $[a - \epsilon, a + \epsilon] \subset I$. Consideremos a função $\phi : (a, a + \epsilon] \to \mathbb{R}$ definida por $\phi(x) = [f(x) - f(a)]/(x - a)$. Como f é convexa, segue que ϕ é monótona crescente. Além disso, ϕ é limitada, pois

$$\frac{f(a) - f(a - \epsilon)}{\epsilon} \le \phi(x) \le \phi(a + \epsilon)$$

para todo $x \in (a, a + \epsilon]$. Logo, pelo teorema 5.10, existe $\lim_{x\to a+} \phi(x) = f'_+(a)$. De maneira análoga, a função $\psi: [a-\epsilon, a) \to \mathbb{R}$ definida por $\psi(x) = [f(a) - f(x)]/(a-x)$ é monótona crescente e limitada. Logo, existe $\lim_{x\to a-} \psi(x) = f'_-(a)$. Portanto, f é contínua no ponto a.

Exemplo: A função $f:[0,1]\to\mathbb{R}$ definida por f(0)=1 e f(x)=0 se $x\neq 0$ é convexa mas não é contínua.

Teorema 9.22. Seja $I \subset \mathbb{R}$ um intervalo. Se $f: I \to \mathbb{R}$ é uma função derivável, então as seguintes afirmações são equivalentes:

- 1. f é uma função convexa;
- 2. tem-se que $f(x) \ge f(a) + (x-a)f'(a)$ para quaisquer $x, a \in I$;
- 3. a função derivada f' é monótona crescente.

Demonstração. $(1 \Rightarrow 2)$ Se a = x, OK. Se a < x, então para qualquer $t \in (a, x)$, temos que

$$\frac{f(t) - f(a)}{t - a} \le \frac{f(x) - f(a)}{x - a}.$$

Logo, $f'(a) = f'_+(a) \leq [f(x) - f(a)]/(x - a)$. De forma análoga podemos mostrar que, se a > x, $f'(a) = f'_-(a) \geq [f(x) - f(a)]/(x - a)$. Portanto, $f(x) \geq f(a) + (x - a)f'(a)$ para quaisquer $x, a \in I$. $(2 \Rightarrow 3)$ Dados $x, y \in I$, temos que $f(x) \geq f(y) + (x - y)f'(y)$ e $f(y) \geq f(x) + (y - x)f'(x)$. Logo, $f(x) \geq f(x) + (y - x)[f'(x) - f'(y)]$, o que implica que $(x - y)[f'(x) - f'(y)] \geq 0$. Portanto, se x > y, deve-se ter $f'(x) \geq f'(y)$, ou seja, f' é monótona crescente. $(3 \Rightarrow 1)$ Se f não é convexa, existem $a, b, x \in I$ com a < x < b tais que

$$\frac{f(x) - f(a)}{x - a} > \frac{f(b) - f(a)}{b - a} > \frac{f(b) - f(x)}{b - x}.$$

Logo, pelo teorema do valor médio, existem $\xi \in (a, x)$ e $\eta \in (x, b)$ tais que $f'(\xi) > f'(\eta)$. Assim, f' não é monótona crescente.

Corolário 9.23. Sejam $I \subset \mathbb{R}$ um intervalo e $f: I \to \mathbb{R}$ uma função duas vezes derivável. Logo, $f \in convexa$ se, e somente se, $f''(x) \geq 0$ para todo $x \in I$.

Exemplo: A função $f(x) = x^2$ é convexa, pois $f''(x) = 2 \ge 0$ para todo $x \in \mathbb{R}$.

Seja $I \subset \mathbb{R}$ um intervalo. Diz-se que uma função $f: I \to \mathbb{R}$ é côncava quando -f é convexa.

Exemplo: A função $f: [-\pi/2, \pi/2] \to \mathbb{R}$ definida por $f(x) = \cos x$ é côncava pois $f''(x) = -\cos x \le 0$ para todo $x \in [-\pi/2, \pi/2]$.

Sejam $I \subset \mathbb{R}$ um intervalo. Diz-se que $a \in I$ é um **ponto de inflexão** de uma função $f: I \to \mathbb{R}$ se existe $\delta > 0$ tal que a restrição de f a $(a - \delta, a] \cap I$ é convexa e a restrição a $[a, a + \delta) \cap I$ é côncava, ou vice-versa.

Teorema 9.24. Seja $I \subset \mathbb{R}$ um intervalo. Se $f: I \to \mathbb{R}$ é duas vezes derivável $e \ a \in I$ é um ponto de inflexão, então f''(a) = 0. Por outro lado, se f''(a) = 0 e f'' muda de sinal ao passar pelo ponto a, então a é um ponto de inflexão.

Exemplos:

- 1. A função $f(x) = x^4$ é convexa, pois $f''(x) = 12x^2 \ge 0$ para todo $x \in \mathbb{R}$. Logo, ela não tem um ponto de inflexão, embora se tenha f''(0) = 0.
- 2. A função $f(x) = 1/(1+x^2)$ tem dois pontos de inflexão: $1/\sqrt{3}$ e $-1/\sqrt{3}$. Com efeito, temos que $f''(x) = (6x^2 2)/(1+x^2)^3$ para todo $x \in \mathbb{R}$. Logo, $f''(1/\sqrt{3}) = 0$, f''(x) < 0 se $x < 1/\sqrt{3}$ e f''(x) > 0 se $x > 1/\sqrt{3}$. Por outro lado, $f''(-1/\sqrt{3}) = 0$, f''(x) < 0 se $x > -1/\sqrt{3}$ e f''(x) > 0 se $x < -1/\sqrt{3}$.

Lema 9.25. Seja $I \subset \mathbb{R}$ um intervalo tal que $0 \in I$ e seja $f: I \to \mathbb{R}$ uma função que possui derivada de ordem n contínua no ponto 0. Se $f(0) = f'(0) = \ldots = f^{n-1}(0) = 0$, existe $\delta > 0$ tal que, para todo $x \in (-\delta, \delta) \cap I$, pode-se encontrar $\xi \in I$ satisfazendo a condição $0 < |\xi| \le |x|$ e a relação

$$\frac{f(x)}{r^n} = f^{(n)}(\xi)r(x) ,$$

 $na \ qual \ |r(x)| \le 1.$

Demonstração. Usamos indução em n. Se n=1, como f' é contínua no ponto 0, existe $\delta>0$ tal que f'(x) existe para todo $x\in (-\delta,\delta)\cap I$. Logo, pelo teorema do valor médio, para cada $x\in (-\delta,\delta)\cap I$ podemos encontrar $\xi\in I$ tal que $0<|\xi|<|x|$ e $f(x)/x=f'(\xi)$. Supondo que a afirmação seja verdadeira para algum $n\in\mathbb{N}$, existe $\delta>0$ tal que, para todo $x\in (-\delta,\delta)\cap I$, pode-se encontrar $\xi\in I$ satisfazendo a condição $0<|\xi|\leq |x|$ e a relação

$$\frac{f(x)}{x^{n+1}} = f^{(n)}(\xi) \frac{r(x)}{x} ,$$

na qual $|r(x)| \leq 1$. Se f possui derivada de ordem n+1 contínua no ponto 0, podemos considerar que δ seja tal que $f^{(n+1)}(x)$ exista para todo $x \in (-\delta, \delta) \cap I$. Se, além disso, $f^{(n)}(0) = 0$, pelo teorema do valor médio, existe $\eta \in I$ tal que $0 < |\eta| < |\xi|$ e $f^{(n)}(\xi)/\xi = f^{(n+1)}(\eta)$. Logo,

$$\frac{f(x)}{x^{n+1}} = f^{(n+1)}(\eta)r(x)\frac{\xi}{x}$$
.

Definindo $s(x) = r(x)\xi/x$, vemos que $|s(x)| \le |r(x)||\eta|/|x| \le 1$. Isso prova a afirmação para $(n+1) \in \mathbb{N}$.

Lema 9.26. Seja $I \subset \mathbb{R}$ um intervalo tal que $0 \in I$ e seja $f: I \to \mathbb{R}$ uma função n vezes derivável no ponto 0. Tem-se que $f(0) = f'(0) = \ldots = f^n(0) = 0$ se, e somente se, $\lim_{x\to 0} f(x)/x^n = 0$.

 $Demonstração. (\Rightarrow)$ Pelo lema 9.25, temos que

$$\lim_{x \to 0} \frac{f(x)}{x^n} = \lim_{x \to 0} f^{(n-1)}(\xi) \frac{r(x)}{x} ,$$

em que $0 < |\xi| \le |x|$ e $|r(x)| \le 1$. Logo,

$$\lim_{x \to 0} \frac{f(x)}{x^n} = \lim_{x \to 0} \frac{f^{(n-1)}(\xi)}{\xi} r(x) \frac{\xi}{x}.$$

Como $\lim_{x\to 0} \xi = 0$ e $\lim_{y\to 0} f^{(n-1)}(y)/y = f^{(n)}(0) = 0$, segue que $\lim_{x\to 0} f^{(n-1)}(\xi)/\xi = 0$. Finalmente, como $|r(x)\xi|/|x| \le 1$, obtemos que $\lim_{x\to 0} f(x)/x^n = 0$. (\Leftarrow) Se $\lim_{x\to 0} f(x)/x^n = 0$, para cada $k \in \{0, 1, \ldots, n\}$, temos que

$$\lim_{x \to 0} \frac{f(x)}{x^k} = \lim_{x \to 0} \frac{f(x)}{x^n} x^{n-k} = 0.$$

Definamos a função $r: I \to \mathbb{R}$ por

$$r(x) = f(x) - \left(f(0) + xf'(0) + \dots + \frac{x^n}{n!}f^{(n)}(0)\right). \tag{9.3}$$

Vemos imediatamente que r é n vezes derivável no ponto 0 e $r(0) = r'(0) = \ldots = r^{(n)}(0) = 0$. Logo, pelo que foi provado anteriormente, temos que $\lim_{x\to 0} r(x)/x^n = 0$ e, por conseguinte, $\lim_{x\to 0} r(x)/x^k = 0$ para todo $k \in \{0, 1, \ldots, n\}$. Usando isso na Eq. (9.3) temos que

$$0 = \lim_{x \to 0} r(x) = \lim_{x \to 0} \left(f(x) - f(0) - xf'(0) - \dots - \frac{x^n}{n!} f^{(n)}(0) \right) = -f(0),$$

ou seja, f(0)=0. Supondo que $f(0)=f'(0)=\ldots=f^{(k-1)}(0)=0$ para algum $k\in\{1,\ldots,n\}$, temos que

$$0 = \lim_{x \to 0} \frac{r(x)}{x^k} = \lim_{x \to 0} \left(\frac{f(x)}{x^k} - \frac{f(0)}{x^k} - \frac{f'(0)}{x^{k-1}} - \dots - \frac{x^{n-k}}{n!} f^{(n)}(0) \right) = -\frac{f^{(k)}(0)}{k!},$$

ou seja, $f^{(k)}(0) = 0$. Portanto, $f(0) = f'(0) = \dots = f^{(n)}(0) = 0$.

Teorema 9.27. Fórmula de Taylor infinitesimal. Sejam $f: I \to \mathbb{R}$ um intervalo e $f: I \to \mathbb{R}$ uma função n vezes derivável no ponto $a \in I$. Logo,

$$f(x) = f(a) + (x - a)f'(a) + \dots + \frac{(x - a)^n}{n!}f^{(n)}(a) + r(x)$$

para todo $x \in I$, em que $\lim_{x\to a} r(x)/(x-a)^n = 0$. Reciprocamente, se para qualquer $x \in I$ tem-se que

$$f(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n + r(x)$$
,

em que $\lim_{x\to a} r(x)/(x-a)^n = 0$, então $c_k = f^{(k)}(a)/k!$ para todo $k \in \{0, 1, ..., n\}$.

Demonstração. Se vale a primeira expressão para f(x), temos que r é n vezes derivável no ponto a e $r(a) = r'(a) = \ldots = r^{(n)}(a) = 0$. Logo, a função $s: I \to \mathbb{R}$ definida por s(y) = r(y+a) é n vezes derivável no ponto 0 e $s(0) = s'(0) = \ldots = s^{(n)}(0) = 0$. Consequentemente, pelo lema 9.26, temos que

$$0 = \lim_{y \to 0} \frac{s(y)}{y^n} = \lim_{y \to 0} \frac{r(y+a)}{y^n} = \lim_{x \to a} \frac{r(x)}{(x-a)^n}.$$

Reciprocamente, se $f(x) = c_0 + c_1(x-a) + \cdots + c_n(x-a)^n + r(x)$ para todo $x \in I$ e $\lim_{x\to a} r(x)/(x-a)^n = 0$, então, definindo a função $s: I \to \mathbb{R}$ por s(x) = r(x+a), temos que $\lim_{x\to 0} s(x)/x^n = 0$. Logo, pelo lema 9.26, $s(0) = s'(0) = \ldots = s^{(n)}(0) = 0$ e, por conseguinte, $r(a) = r'(a) = \ldots = r^{(n)}(a) = 0$. Usando esse fato na expressão de f(x), obtemos que $c_k = f^{(k)}(a)/k!$ para todo $k \in \{0, 1, \ldots, n\}$.

Corolário 9.28. Regra de L'Hôpital. Sejam $I \subset \mathbb{R}$ um intervalo $e f, g : I \to \mathbb{R}$ funções n vezes deriváveis no ponto $a \in I$. Se $f^{(k)}(a) = g^{(k)}(a) = 0$ para todo $k \in \{0, 1, \dots, n-1\}$ $e g^{(n)}(a) \neq 0$, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f^{(n)}(a)}{g^{(n)}(a)}.$$

Teorema 9.29. Fórmula de Taylor com resto de Lagrange. $Seja \ f : [a,b] \to \mathbb{R}$ uma função n vezes derivável em (a,b) que possui derivada de ordem n-1 contínua em [a,b]. Logo, existe $c \in (a,b)$ tal que

$$f(b) = f(a) + (b-a)f'(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!}f^{(n-1)}(a) + \frac{(b-a)^n}{n!}f^{(n)}(c).$$

Demonstração. Segue da fórmula de Taylor infinitesimal que, para qualquer $x \in [a, b]$,

$$f(b) = f(x) + (b-x)f'(x) + \dots + \frac{(b-x)^{n-1}}{(n-1)!}f^{(n-1)}(x) + r_x(b).$$

A função $\rho:[a,b]\to\mathbb{R}$ definida por

$$\rho(x) = r_x(b) = f(b) - f(x) - (b - x)f'(x) - \dots - \frac{(b - x)^{n-1}}{(n-1)!}f^{(n-1)}(x)$$

é contínua, é derivável em (a,b) e é tal que $\rho(b)=0$. Logo, pelo teorema do valor médio generalizado, existe $c\in(a,b)$ tal que

$$\frac{r_a(b)}{(b-a)^n} = \frac{\rho(a) - \rho(b)}{(b-a)^n - (b-b)^n} = -\frac{\rho'(c)}{n(b-c)^{n-1}} = -\frac{1}{n(b-c)^{n-1}} \left(-\frac{(b-c)^{n-1}}{(n-1)!} f^{(n)}(c) \right).$$

Portanto,

$$r_a(b) = \frac{(b-a)^n}{n!} f^{(n)}(c).$$

Capítulo 10

A integral de Riemann-Stieltjes de funções de uma variável real

Intuitivamente, a integral de uma função contínua $f:[a,b]\to [0,\infty)$ é a área da região limitada pelo gráfico de f e o eixo x. Passemos para as definições agora.

Uma **partição** de um intervalo [a,b] é um conjunto $P=\{a=x_0< x_1<\ldots< x_n=b\}$. Sejam $f:[a,b]\to\mathbb{R}$ uma função limitada, $\alpha:[a,b]\to\mathbb{R}$ uma função monótona crescente e $P=\{x_0< x_1<\ldots< x_n\}$ uma partição de [a,b]. Para cada $j\in\{1,\ldots,n\}$ sejam $M_j=\sup_{x\in[x_{j-1},x_j]}f(x)$ e $m_j=\inf_{x\in[x_{j-1},x_j]}f(x)$. Definem-se a **soma superior** e a **soma inferior** de f em relação a P e α por

$$S(f, P, \alpha) = \sum_{j=1}^{n} M_j [\alpha(x_j) - \alpha(x_{j-1})] \quad \text{e} \quad s(f, P, \alpha) = \sum_{j=1}^{n} m_j [\alpha(x_j) - \alpha(x_{j-1})]$$

respectivamente. Se $\alpha(x) = x$ para todo $x \in [a, b]$, as somas superior e inferior de f em relação a P e α são denotadas por S(f, P) e s(f, P) respectivamente. Intuitivamente, se f é contínua e não-negativa, essas somas superior e inferior são aproximações por meio de retângulos da área da região limitada pelo gráfico de f e o eixo x.

Seja P uma partição de um intervalo [a,b]. Diz-se que um conjunto Q é um **refinamento** de P se Q é uma partição de [a,b] tal que $P \subset Q$.

Teorema* 10.1. Sejam $f:[a,b] \to \mathbb{R}$ uma função limitada, $\alpha:[a,b] \to \mathbb{R}$ uma função monótona crescente e P uma partição de [a,b]. Se Q é um refinamento de P, tem-se que $s(f,P,\alpha) \le s(f,Q,\alpha) \le S(f,Q,\alpha)$.

Demonstração. É claro que $s(f, P, \alpha) \leq S(f, P, \alpha)$ para toda partição P de [a, b]. Seja $P = \{x_0 < x_1 < \ldots < x_n\}$ e suponhamos inicialmente que $Q = P \cup \{x\}$, em que $x \notin P$. Logo, existe $j \in \{1, \ldots, n\}$ tal que $x \in (x_{j-1}, x_j)$. Dessa maneira,

$$\begin{split} S(f,P,\alpha) - S(f,Q,\alpha) &= M_j[\alpha(x_j) - \alpha(x_{j-1})] - M_1'[\alpha(x) - \alpha(x_{j-1})] \\ &- M_2'[\alpha(x_j) - \alpha(x)] \\ &= (M_j - M_1')[\alpha(x) - \alpha(x_{j-1})] + (M_j - M_2')[\alpha(x_j) - \alpha(x)] \,, \end{split}$$

em que $M_1' = \sup_{x \in [x_{j-1}, x]} f(x)$, $M_2' = \sup_{x \in [x, x_j]} f(x)$ e $M_j = \sup_{x \in [x_{j-1}, x_j]} f(x)$. Como $M_j \geq M_1'$ e $M_j \geq M_2'$, segue que $S(f, P, \alpha) \geq S(f, Q, \alpha)$. A desigualdade envolvendo as somas inferiores pode ser provada de forma análoga. Como todo refinamento de P pode ser construído adicionando pontos a P de um a um, o teorema é verdadeiro para qualquer refinamento Q de P.

Corolário* 10.2. Sejam $f : [a,b] \to \mathbb{R}$ uma função limitada $e \alpha : [a,b] \to \mathbb{R}$ uma função monótona crescente. Se P e Q são partições de [a,b], então $S(f,P,\alpha) \ge s(f,Q,\alpha)$.

Sejam $f:[a,b]\to\mathbb{R}$ uma função limitada e $\alpha:[a,b]\to\mathbb{R}$ uma função monótona crescente. Define-se a **integral superior** de f em relação a α por

$$\overline{\int} f \, d\alpha = \inf\{S(f, P, \alpha) : P \text{ \'e uma partição de } [a, b]\}$$

e a integral inferior de f em relação a α por

$$\underline{\int} f \, d\alpha = \sup \{ s(f, P, \alpha) : P \text{ \'e uma partição de } [a, b] \}.$$

As integrais superior e inferior de f sempre existem e vale a relação

$$\int f \, d\alpha \le \overline{\int} f \, d\alpha \, .$$

Se essas integrais são iguais, diz-se que f é **integrável à Riemann-Stieltjes** em relação a α e define-se a **integral de Riemann-Stieltjes** de f em relação a α por

$$\int_a^b f(x) \, d\alpha(x) = \int f \, d\alpha = \overline{\int} f \, d\alpha = \int f \, d\alpha \, .$$

Se $\alpha(x) = x$ para todo $x \in [a, b]$ e f é integrável em relação a α , diz-se que f é **integrável** à **Riemann** e $\int_a^b f(x) dx$ é chamada de **integral de Riemann** de f.

Lema* 10.3. Seja $A \subset \mathbb{R}$ um conjunto limitado. Se $B \subset A$ é tal que para cada $x \in A$ existem $a, b \in B$ satisfazendo a condição a < x < b, então $\sup B = \sup A$ e inf $B = \inf A$.

Demonstração. Como $B \subset A$, tem-se que $\sup B \leq \sup A$ e $\inf B \geq \inf A$. Se tivéssemos $\sup B < \sup A$, existiria $x \in A$ tal que $\sup B < x \leq \sup A$. Porém, isso implicaria que existe $y \in B$ tal que $\sup B < x \leq y$. Absurdo! Portanto, deve-se ter $\sup B = \sup A$. De forma análoga pode-se provar que $\inf B = \inf A$.

Teorema* 10.4. Sejam $f:[a,b] \to \mathbb{R}$ uma função limitada, $\alpha:[a,b] \to \mathbb{R}$ uma função monótona crescente e P_0 uma partição de [a,b]. Tem-se que

$$\overline{\int} f \, d\alpha = \inf \{ S(f, P, \alpha) : P \text{ \'e um refinamento de } P_0 \}$$

e

$$\int f \, d\alpha = \sup \{ S(f, P, \alpha) : P \ \'e \ um \ refinamento \ de \ P_0 \} \, .$$

Demonstração. Sejam os conjuntos $A = \{S(f, P, \alpha) : P \text{ \'e uma partição de } [a, b]\}$ e $B = \{S(f, P, \alpha) : P \text{ \'e um refinamento de } P_0\}$. Vemos imediatamente que $B \subset A$. Além disso, se $S(f, P, \alpha) \in A$, então $Q = P \cup P_0$ é um refinamento de P_0 , $S(f, Q, \alpha) \in B$ e $S(f, Q, \alpha) \leq S(f, P, \alpha)$. Portanto, inf $B = \inf A = \overline{\int} f \, d\alpha$. A igualdade envolvendo a integral inferior pode ser provada de forma similar.

Teorema* 10.5. Sejam $f:[a,b] \to \mathbb{R}$ uma função limitada $e \alpha:[a,b] \to \mathbb{R}$ uma função monótona crescente. As seguintes afirmações são equivalentes:

- 1. f é integrável em relação a α ;
- 2. dado $\epsilon > 0$, existem partições P e Q de [a,b] tais que $S(f,P,\alpha) s(f,Q,\alpha) < \epsilon$.
- 3. dado $\epsilon > 0$, existe uma partição P de [a,b] tal que $S(f,P,\alpha) s(f,P,\alpha) < \epsilon$.

 $Demonstração.~(1\Rightarrow 2)$ Dado $\epsilon>0,$ existem partições P e Q de [a,b] tais que

$$\overline{\int} f \, d\alpha \le S(f, P, \alpha) < \overline{\int} f \, d\alpha + \frac{\epsilon}{2} \quad \text{e} \quad \int f \, d\alpha - \frac{\epsilon}{2} < s(f, Q, \alpha) \le \int f \, d\alpha \, .$$

Como f é integrável em relação a α , segue que

$$\int f \, d\alpha \le S(f, P, \alpha) < \int f \, d\alpha + \frac{\epsilon}{2} \quad e \quad - \int f \, d\alpha \le -s(f, Q, \alpha) < - \int f \, d\alpha + \frac{\epsilon}{2}.$$

Somando essas desigualdades, obtemos que $0 \le S(f,P,\alpha) - s(f,Q,\alpha) < \epsilon$. $(2 \Rightarrow 3)$ Dado $\epsilon > 0$ sejam P e Q partições de [a,b] tais que $S(f,P,\alpha) - s(f,Q,\alpha) < \epsilon$. Definindo a partição $R = P \cup Q$, temos que $S(f,R,\alpha) \le s(f,P,\alpha)$ e $-s(f,R,\alpha) \le -s(f,Q,\alpha)$. Logo, $S(f,R,\alpha) - s(f,R,\alpha) \le S(f,P,\alpha) - s(f,Q,\alpha) < \epsilon$. $(3 \Rightarrow 1)$ Se $\underline{f} f d\alpha < \overline{f} f d\alpha$, existe $\epsilon > 0$ tal que $\overline{f} f d\alpha = f f d\alpha + \epsilon$. Logo, para qualquer partição P de [a,b], temos que

$$s(f, P, \alpha) + \epsilon \le \underline{\int} f d\alpha + \epsilon = \overline{\int} f d\alpha \le S(f, P, \alpha).$$

Portanto, $S(f, P, \alpha) - s(f, P, \alpha) \ge \epsilon$.

Seja $P = \{x_0 < x_1 < \ldots < x_n\}$ uma partição de um intervalo [a, b]. Define-se a **norma** de P por $|P| = \max\{|x_i - x_{i-1}| : j \in \{1, \ldots, n\}\}$.

Teorema 10.6. Seja $\alpha:[a,b] \to \mathbb{R}$ uma função monótona crescente. Toda função contínua $f:[a,b] \to \mathbb{R}$ é integrável em relação a α .

Demonstração. Se α é uma função constante, $S(f,P,\alpha)=s(f,P,\alpha)=0$ para toda partição P de [a,b]. Suponhamos agora que esse não seja o caso. Como f é uniformemente contínua, dado $\epsilon>0$, existe $\delta>0$ tal que $|f(x)-f(y)|<\epsilon/[\alpha(b)-\alpha(a)]$ para quaisquer $x,y\in[a,b]$ satisfazendo a condição $|x-y|<\delta$. Seja $P=\{x_0< x_1<\ldots< x_n\}$ uma partição de [a,b] tal que $|P|<\delta$. Logo, pelo teorema de Weierstrass, para cada $j\in\{1,\ldots,n\}$ existem $x_j',x_j''\in[x_{j-1},x_j]$ tais que $f(x_j')\leq f(x)\leq f(x_j'')$ para todo $x\in[x_{j-1},x_j]$. Dessa maneira,

$$S(f, P, \alpha) - s(f, P, \alpha) = \sum_{j=1}^{n} [f(x_j'') - f(x_j')] [\alpha(x_j) - \alpha(x_{j-1})]$$

$$< \frac{\epsilon}{\alpha(b) - \alpha(a)} \sum_{j=1}^{n} [\alpha(x_j) - \alpha(x_{j-1})]$$

$$= \epsilon.$$

Portanto, f é integrável em relação a α .

Exemplos:

1. Sejam $f:[a,b]\to\mathbb{R}$ definida por f(x)=c e $\alpha:[a,b]\to\mathbb{R}$ uma função monótona crescente. A função f é integrável em relação a α , pois é contínua. Por outro lado, pode-se verificar facilmente que $S(f,P,\alpha)=c[\alpha(b)-\alpha(a)]$ para toda partição P de [a,b]. Portanto,

$$\int_{a}^{b} c \, d\alpha(x) = c[\alpha(b) - \alpha(a)].$$

2. Sejam $f:[a,b] \to \mathbb{R}$ uma função tal que f(x) = c para todo $x \in (a,b]$ e $\alpha:[a,b] \to \mathbb{R}$ uma função monótona crescente que é contínua no ponto a. Se $f(a) \neq c$, dado $\epsilon > 0$, existe $d \in (a,b)$ tal que $\alpha(d) - \alpha(a) < \epsilon/|f(a) - c|$, pois α é contínua no ponto a. Logo, considerando a partição $P_0 = \{a,d,b\}$ de [a,b], temos que

$$S(f, P_0, \alpha) - s(f, P_0, \alpha) = |f(a) - c|[\alpha(d) - \alpha(a)] < \epsilon$$

e, por conseguinte, f é integrável. Se f(a) > c, então $s(f, P, \alpha) = c[\alpha(b) - \alpha(a)]$ para toda partição P de [a, b]. Logo, $\int f \, d\alpha = c[\alpha(b) - \alpha(a)]$. Por outro lado, se f(a) < c, então $S(f, P, \alpha) = c[\alpha(b) - \alpha(a)]$ para toda partição P de [a, b]. Logo, $\int f \, d\alpha = c[\alpha(b) - \alpha(a)]$.

Lema* 10.7. Sejam $A, B \subset \mathbb{R}$ conjuntos limitados. O conjunto $A + B = \{x + y : x \in A, y \in B\}$ é limitado e valem as relações $\sup(A + B) = \sup A + \sup B$ e $\inf(A + B) = \inf A + \inf B$.

Demonstração. Dado $z \in A + B$, existem $x \in A$ e $y \in B$ tais que z = x + y. Logo, $z \le \sup A + \sup B$, o que implica que A + B é limitado superiormente e que $\sup(A + B) \le \sup A + \sup B$. Por outro lado, para quaisquer $x \in A$ e $y \in B$ temos que $x + y \le \sup(A + B)$. Logo, $x \le \sup(A + B) - y$, o que implica que $\sup A \le \sup(A + B) - y$, pois $x \in A$ é arbitrário. Pela sua vez, essa desigualdade pode ser escrita como $y \le \sup(A + B) - \sup A$. Como y é arbitrário, temos que $\sup B \le \sup(A + B) - \sup A$. Portanto, $\sup(A + B) = \sup A + \sup B$. De forma análoga pode-se provar que A + B é limitado inferiormente e que $\inf(A + B) = \inf A + \inf B$.

Teorema 10.8. Sejam $\alpha : [a,b] \to \mathbb{R}$ uma função monótona crescente $e \in (a,b)$. Uma função limitada $f : [a,b] \to \mathbb{R}$ é integrável em relação a α se, e somente se, as restrições de f a [a,c] e a [c,b] são integráveis em relação a α . Além do mais, nesse caso tem-se que

$$\int_{a}^{b} f(x) d\alpha(x) = \int_{a}^{c} f(x) d\alpha(x) + \int_{c}^{b} f(x) d\alpha(x).$$

Demonstração. Seja $P_0 = \{a,c,b\}$. Todo refinamento P de P_0 pode ser escrito como $P = P_1 \cup P_2$, em que P_1 e P_2 são partições de [a,c] e [c,b] respectivamente. Reciprocamente, se P_1 e P_2 são partições arbitrárias de [a,c] e [b,c] respectivamente, então $P = P_1 \cup P_2$ é um refinamento de P_0 . Se f_1 e f_2 denotam as restrições de f a [a,c] e a [c,b] respectivamente, então, para todo refinamento P de P_0 temos

$$S(f, P, \alpha) = S(f_1, P_1, \alpha) + S(f_2, P_2, \alpha)$$

e

$$s(f, P, \alpha) = s(f_1, P_1, \alpha) + s(f_2, P_2, \alpha),$$

em que P_1 e P_2 são partições de [a,c] e [c,b] respectivamente. Logo,

$$\overline{\int_a^b} f(x) \, d\alpha(x) = \overline{\int_a^c} f(x) \, d\alpha(x) + \overline{\int_c^b} f(x) \, d\alpha(x)$$

e

$$\int_a^b f(x) \, d\alpha(x) = \int_a^c f(x) \, d\alpha(x) + \int_c^b f(x) \, d\alpha(x) \, .$$

Segue daqui que

$$\underbrace{\int_{a}^{c} f(x) d\alpha(x) + \int_{c}^{b} f(x) d\alpha(x)}_{\leq \frac{a}{\sqrt{a}}} = \underbrace{\int_{a}^{b} f(x) d\alpha(x)}_{\leq \frac{a}{\sqrt{a}}} + \underbrace{\int_{c}^{b} f(x) d\alpha(x)}_{\leq \frac{a}{\sqrt{a}}} = \underbrace{\int_{a}^{c} f(x) d\alpha(x) + \int_{c}^{b} f(x) d\alpha(x)}_{\leq \frac{a}{\sqrt{a}}} + \underbrace{\int_{c}^{b} f(x) d\alpha(x)}_{=\frac{a}{\sqrt{a}}} + \underbrace{\int_{c}^{b} f(x) d\alpha(x)}_{=\frac{a}{\sqrt{a}}} + \underbrace{\int_{c}^{b} f(x) d\alpha(x)}_{=\frac{a}{$$

Portanto, f é integrável se, e somente se, as restrições de f a [a,c] e a [c,b] são integráveis. Além disso, nesse caso vale a relação $\int_a^b f(x) d\alpha(x) = \int_a^c f(x) d\alpha(x) + \int_c^b f(x) d\alpha(x)$. \square

Pondo por convenção que $\int_a^a f(x) \, d\alpha(x) = 0$ e que $\int_a^b f(x) \, d\alpha(x) = -\int_b^a f(x) \, d\alpha(x)$, segue do teorema 10.8 que, se $I \subset \mathbb{R}$ é um intervalo fechado e $f: I \to \mathbb{R}$ é uma função integrável,

$$\int_{a}^{b} f(x) d\alpha(x) = \int_{a}^{c} f(x) d\alpha(x) + \int_{c}^{b} f(x) d\alpha(x)$$

para quaisquer $a, b, c \in I$.

Exemplos:

1. Seja $\alpha:[a,b]\to\mathbb{R}$ uma função monótona crescente que é contínua nos pontos a e b. Se $f:[a,b]\to\mathbb{R}$ é uma função tal que f(x)=c para todo $x\in(a,b)$, então f é integrável em relação a α e $\int f\,d\alpha=c[\alpha(b)-\alpha(a)]$. Com efeito, escolhendo $d\in(a,b)$, as restrições de f a [a,d] e a [d,b] são integráveis. Logo, f é integrável e

$$\int_a^b f(x) d\alpha(x) = \int_a^d f(x) d\alpha(x) + \int_d^b f(x) d\alpha(x)$$
$$= c[\alpha(d) - \alpha(a)] + c[\alpha(b) - \alpha(d)]$$
$$= c[\alpha(b) - \alpha(a)].$$

2. Seja $\alpha:[a,b]\to\mathbb{R}$ uma função monótona crescente que é contínua nos pontos $a=x_0< x_1<\ldots< x_n=b.$ Se $f:[a,b]\to\mathbb{R}$ é uma função tal que, para cada $j\in\{1,\ldots,n\},\ f(x)=c_j$ para todo $x\in(x_{j-1},x_j)$, então f é integrável e

$$\int f d\alpha = \sum_{j=1}^{n} c_j [\alpha(x_j) - \alpha(x_{j-1})].$$

Isso segue diretamente de observar que a restrição de f a cada intervalo $[x_{j-1}, x_j]$ é integrável e $\int_{x_{j-1}}^{x_j} f(x) d\alpha(x) = c_j [\alpha(x_j) - \alpha(x_{j-1})].$

Seja $X \subset \mathbb{R}$. Se $f: X \to \mathbb{R}$ é uma função limitada, escreveremos sup f e inf f para denotar $\sup_{x \in X} f(x)$ e $\inf_{x \in X} f(x)$ respectivamente.

Lema* 10.9. Seja $X \subset \mathbb{R}^d$. Se $f, g: X \to \mathbb{R}$ são funções limitadas, a função f+g é limitada e valem as relações $\sup(f+g) \leq \sup f + \sup g$ e $\inf(f+g) \geq \inf f + \inf g$.

Demonstração. Dado $x \in X$, temos que inf $f \le f(x) \le \sup f$ e inf $g \le g(x) \le \sup g$. Logo, inf $f + \inf g \le f(x) + g(x) \le \sup f + \sup g$. Isso implica que f + g é limitada, $\sup(f+g) \le \sup f + \sup g$ e $\inf(f+g) \ge \inf f + \inf g$.

Lema* 10.10. Seja $X \subset \mathbb{R}$ um conjunto limitado. Para qualquer $c \in \mathbb{R}$, o conjunto $cX = \{cx : x \in X\}$ é limitado. Além disso, se $c \geq 0$, $\sup cX = c \sup X$ e $\inf cX = c \inf X$. Por outro lado, se c < 0, $\sup cX = c \inf X$, $\inf cX = c \sup X$.

Demonstração. Dado $x \in X$, tem-se que inf $X \le x \le \sup X$. Se $c \ge 0$, então $c \inf X \le cx \le c \sup X$. Isso implica que cX é limitado, $\sup cX \le c \sup X$ e inf $cX \ge c \inf X$. Por outro lado, dado $x \in X$, temos que inf $cX \le cx \le \sup cX$, o que implica que $(\inf cX)/c \le x \le (\sup cX)/c$. Logo, $(\inf cX)/c \le \inf X$ e $\sup X \le (\sup cX)/c$. Portanto, $\sup cX = c \sup X$ e $\inf cX = c \inf X$. O caso em que c < 0 pode ser provado de forma análoga.

Corolário* 10.11. Seja $X \subset \mathbb{R}^d$. Se $f: X \to [0, \infty)$ é uma função limitada, então cf é uma função limitada para todo $c \in \mathbb{R}$. Além disso, se $c \geq 0$, sup $cf = c \sup f$ e inf $cf = c \inf f$. Por outro lado, se c < 0, sup $cf = c \inf f$ e inf $cf = c \sup f$.

Lema* 10.12. Seja $X \subset \mathbb{R}^d$. Se $f: X \to \mathbb{R}$ é uma função limitada, então sup $f - \inf f = \sup_{x,y \in X} |f(x) - f(y)|$.

 $\begin{array}{lll} \operatorname{Demonstraç\~ao}. \text{ Sejam sup } f &= M \text{ e inf } f &= m. \text{ Dados } x,y \in X, \text{ temos que } m \leq f(x) \leq M \text{ e } m \leq f(y) \leq M. \text{ Logo, } -(M-m) \leq f(x) - f(y) \leq M-m, \text{ o que implica que } |f(x) - f(y)| \leq M-m. \text{ Assim, } \sup_{x,y \in X} |f(x) - f(y)| \leq M-m. \text{ Seja } \omega = \sup_{x,y \in X} |f(x) - f(y)|. \text{ Para quaisquer } x,y \in X \text{ temos que } f(x) - f(y) \leq \omega. \text{ Logo, } f(x) \leq \omega + f(y), \text{ o que implica que } M \leq \omega + f(y), \text{ pois } x \in X \text{ \'e arbitr\'ario. Pela sua vez, a designal dade } M-\omega \leq f(y) \text{ implica que } M-\omega \leq m, \text{ pois } y \in X \text{ \'e arbitr\'ario. Portanto, } \omega = M-m. \end{array}$

Teorema 10.13. Seja $\alpha:[a,b] \to \mathbb{R}$ uma função monótona crescente. Se $f,g:[a,b] \to \mathbb{R}$ são funções integráveis em relação a α , então

- 1. f + g é integrável em relação a α e $\int (f + g) d\alpha = \int f d\alpha + \int g d\alpha$;
- 2. $fg \ \'e \ integr\'avel \ em \ relaç\~ao \ a \ \alpha \ e, \ em \ particular, \int cf \ d\alpha = c \int f \ d\alpha \ para \ todo \ c \in \mathbb{R};$
- 3. f/g é integrável em relação a α desde que exista c>0 tal que $|g(x)|\geq c$ para todo $x\in [a,b];$
- 4. se $f \leq g$, então $\int f d\alpha \leq \int g d\alpha$;
- 5. |f| é integrável $e | \int f d\alpha | \leq \int |f| d\alpha$.

Demonstração. 1. Dadas as partições $P \in Q$ de [a, b], temos

$$S(f+g,P\cup Q,\alpha)\leq S(f,P\cup Q,\alpha)+S(g,P\cup Q,\alpha)\leq S(f,P,\alpha)+S(g,Q,\alpha)$$

е

$$s(f+g,P\cup Q,\alpha)\geq s(f,P\cup Q,\alpha)+s(g,P\cup Q,\alpha)\geq s(f,P,\alpha)+s(g,Q,\alpha)\,.$$

Logo,

$$\overline{\int} (f+g) \, d\alpha \le \overline{\int} f \, d\alpha + \overline{\int} g \, d\alpha \quad \text{e} \quad \underline{\int} (f+g) \, d\alpha \ge \underline{\int} f \, d\alpha + \underline{\int} g \, d\alpha \, .$$

A partir dessas desigualdades obtemos que

$$\underline{\int} f \, d\alpha + \underline{\int} g \, d\alpha \le \underline{\int} (f+g) \, d\alpha \le \overline{\int} (f+g) \, d\alpha \le \overline{\int} f \, d\alpha + \overline{\int} g \, d\alpha \, .$$

Portanto, se f e g são integráveis, segue que f+g é integrável e que $\int (f+g) d\alpha = \int f d\alpha + \int g d\alpha$.

2. Seja M > 0 tal que $|f(x)| \le M$ e $|g(x)| \le M$ para todo $x \in [a, b]$. Dados $x, y \in [a, b]$, temos que

$$|f(x)g(x) - f(y)g(y)| \le |f(x)||g(x) - g(y)| + |f(x) - f(y)||g(y)|$$

$$\le M(|f(x) - f(y)| + |g(x) - g(y)|).$$

Como f e g são integráveis, dado $\epsilon > 0$, existe uma partição $P = \{x_0 < x_1 < \ldots < x_n\}$ de [a,b] tal que $S(f,P,\alpha) - s(f,P,\alpha) < \epsilon/2M$ e $S(g,P,\alpha) - s(g,P,\alpha) < \epsilon/2M$. Logo,

$$S(fg, P, \alpha) - s(fg, P, \alpha) = \sum_{j=1}^{n} \sup_{x,y \in [x_{j-1}, x_{j}]} |f(x)g(x) - f(y)g(y)| [\alpha(x_{j}) - \alpha(x_{j-1})]$$

$$\leq M \sum_{j=1}^{n} \sup_{x,y \in [x_{j-1}, x_{j}]} |f(x) - f(y)| [\alpha(x_{j}) - \alpha(x_{j-1})]$$

$$+ M \sum_{j=1}^{n} \sup_{x,y \in [x_{j-1}, x_{j}]} |g(x) - g(y)| [\alpha(x_{j}) - \alpha(x_{j-1})]$$

$$= M[S(f, P, \alpha) - s(f, P, \alpha) + S(g, P, \alpha) - s(g, P, \alpha)]$$

$$< \epsilon.$$

Portanto, fg é integrável. Em particular, segue daqui que cf é integrável para qualquer $c \in \mathbb{R}$. Além disso, se $c \geq 0$, temos que $S(cf, P, \alpha) = cS(f, P, \alpha)$ para toda partição P de [a, b]. Logo, $\int cf \, d\alpha = c \int f \, d\alpha$. Por outro lado, se c < 0, $S(cf, P, \alpha) = cs(f, P, \alpha)$ para toda partição P de [a, b]. Logo, $\int cf \, d\alpha = c \int f \, d\alpha$.

3. Dados $x, y \in [a, b]$, temos que

$$\left| \frac{1}{g(x)} - \frac{1}{g(y)} \right| = \frac{|g(x) - g(y)|}{|g(x)||g(y)|} \le \frac{1}{c^2} |g(x) - g(y)|.$$

Como g é integrável, dado $\epsilon > 0$, existe uma partição $P = \{x_0 < x_1 < \ldots < x_n\}$ de [a,b] tal que $S(g,P,\alpha) - s(g,P,\alpha) < \epsilon c^2$. Logo,

$$S(1/g, P, \alpha) - s(1/g, P, \alpha) = \sum_{j=1}^{n} \sup_{x,y \in [x_{j-1}, x_j]} \left| \frac{1}{g(x)} - \frac{1}{g(y)} \right| [\alpha(x_j) - \alpha(x_{j-1})]$$

$$\leq \frac{1}{c^2} \sum_{j=1}^{n} \sup_{x,y \in [x_{j-1}, x_j]} |g(x) - g(y)| [\alpha(x_j) - \alpha(x_{j-1})]$$

$$= \frac{1}{c^2} [S(g, P, \alpha) - s(g, P, \alpha)]$$

$$< \epsilon.$$

Portanto, 1/g é integrável. Finalmente, usando o resultado do item anterior, temos que f/g é integrável.

- 4. Temos que a função h=g-f é integrável e que $h\geq 0$. Logo, $S(h,P,\alpha)\geq 0$ para toda partição P de [a,b]. Dessa maneira, $\int h\,d\alpha\geq 0$, o que implica que $\int g\,d\alpha\geq \int f\,d\alpha$.
- 5. Dados $x, y \in [a, b]$, temos que $||f(x)| |f(y)|| \le |f(x) f(y)|$. Como f é integrável, dado $\epsilon > 0$, existe uma partição $P = \{x_0 < x_1 < \ldots < x_n\}$ de [a, b] tal que $S(f, P, \alpha) s(f, P, \alpha) < \epsilon$. Logo,

$$S(|f|, P, \alpha) - s(|f|, P, \alpha) = \sum_{j=1}^{n} \sup_{x, y \in [x_{j-1}, x_j]} ||f(x)| - |f(y)||[\alpha(x_j) - \alpha(x_{j-1})]$$

$$\leq \sum_{j=1}^{n} \sup_{x, y \in [x_{j-1}, x_j]} |f(x) - f(y)|[\alpha(x_j) - \alpha(x_{j-1})]$$

$$= S(f, P, \alpha) - s(f, P, \alpha)$$

$$< \epsilon.$$

Portanto, |f| é integrável. Além disso, como $-|f| \le f \le |f|$, segue do que foi provado no item anterior que $-\int |f| d\alpha \le \int f d\alpha \le \int |f| d\alpha$. Assim, $|\int f d\alpha| \le \int |f| d\alpha$. \square

Teorema 10.14. Teorema do valor médio para integrais. $Sejam \ f:[a,b] \to \mathbb{R} \ uma$ $função \ contínua \ e \ \alpha:[a,b] \to \mathbb{R} \ uma \ função \ monótona \ crescente. \ Se \ p:[a,b] \to [0,\infty) \ é$ $uma \ função \ integrável \ em \ relação \ a \ \alpha, \ existe \ c \in [a,b] \ tal \ que$

$$\int f p \, d\alpha = f(c) \int p \, d\alpha \, .$$

Demonstração. Pelo teorema de Weierstrass existem $x_1, x_2 \in [a, b]$ tais que $f(x_1) \leq f(x) \leq f(x_2)$ para todo $x \in [a, b]$. Logo, $f(x_1)p(x) \leq f(x)p(x) \leq f(x_2)p(x)$ e, por conseguinte,

$$f(x_1) \int p \, d\alpha \le \int f p \, d\alpha \le f(x_2) \int p \, d\alpha$$
.

Como a função $g:[a,b]\to\mathbb{R}$ definida por $g(x)=f(x)\int p\,d\alpha$ é contínua, pelo teorema do valor intermediário, existe $c\in[a,b]$ tal que $g(c)=\int fp\,d\alpha$.

Teorema* 10.15. Sejam $\alpha, \beta : [a, b] \to \mathbb{R}$ funções monótonas crescentes. Uma função limitada $f : [a, b] \to \mathbb{R}$ é integrável em relação a $\alpha + \beta$ se, e somente se, ela é integrável em relação a α e a β . Além do mais, nesse caso vale a relação

$$\int f d(\alpha + \beta) = \int f d\alpha + \int f d\beta.$$

Demonstração. Dadas as partições P e Q de [a,b], seja $R=P\cup Q$. Temos que $S(f,R,\alpha+\beta)=S(f,R,\alpha)+S(f,R,\beta)$ e $s(f,R,\alpha+\beta)=s(f,R,\alpha)+s(f,R,\beta)$. Logo,

$$S(f, R, \alpha + \beta) \ge \overline{\int} f \, d\alpha + \overline{\int} f \, d\beta, \quad s(f, R, \alpha + \beta) \le \underline{\int} f \, d\alpha + \underline{\int} f \, d\beta$$

e, por outro lado,

$$S(f, R, \alpha + \beta) \le S(f, P, \alpha) + S(f, Q, \beta)$$
 e $s(f, R, \alpha + \beta) \ge s(f, P, \alpha) + s(f, Q, \beta)$.

Dessa maneira temos que

$$\overline{\int} f d(\alpha + \beta) = \overline{\int} f d\alpha + \overline{\int} f d\beta \quad \text{e} \quad \underline{\int} f d(\alpha + \beta) = \underline{\int} f d\alpha + \underline{\int} f d\beta.$$

Logo,

$$\underline{\int} f \, d\alpha + \underline{\int} f \, d\beta = \underline{\int} f \, d(\alpha + \beta) \le \overline{\int} f \, d(\alpha + \beta) = \overline{\int} f \, d\alpha + \overline{\int} f \, d\beta$$

Portanto, f é integrável em relação a $\alpha + \beta$ se, e somente se, ela é integrável em relação a α e a β . Além disso, vale a relação $\int f d(\alpha + \beta) = \int f d\alpha + \int f d\beta$.

Teorema* 10.16. Seja $\alpha:[a,b]\to\mathbb{R}$ uma função monótona crescente. Uma função limitada $f:[a,b]\to\mathbb{R}$ é integrável em relação a α se, e somente se, ela é integrável em relação a $c\alpha$ para todo c>0. Além disso, nesse caso vale a relação

$$\int f d(c\alpha) = c \int f d\alpha.$$

Demonstração. Dado c>0, percebemos facilmente que $S(f,P,c\alpha)=cS(f,P,\alpha)$ e $s(f,P,c\alpha)=cs(f,P,\alpha)$ para toda partição P de [a,b]. Logo,

$$c \int f d\alpha = \int f d(c\alpha) \le \overline{\int} f d(c\alpha) = c \overline{\int} f d\alpha.$$

Portanto, f é integrável em relação a $c\alpha$ se, e somente se, é integrável em relação a α . Além disso, nesse caso vale a relação $\int f \, d(c\alpha) = c \int f \, d\alpha$.

Exemplos:

1. Dado $c \in (a, b]$, seja $H_c : [a, b] \to \mathbb{R}$ a função degrau definida por

$$H_c(x) = \begin{cases} 1 & \text{se } x \ge c \\ 0 & \text{se } x < c. \end{cases}$$

Se $f:[a,b] \to \mathbb{R}$ é uma função limitada que é contínua no ponto c, dado $\epsilon > 0$, existe $\delta > 0$ tal que $|f(x) - f(c)| < \epsilon/3$ para todo $x \in [a,b]$ satisfazendo a condição $|x-c| < \delta$. Se $P = \{a < \ldots < c_1 < c \leq \ldots \leq b\}$ é uma partição de [a,b] tal que $|P| < \delta$, então

$$S(f, P, H_c) - s(f, P, H_c) = \sup_{x,y \in [c_1, c]} |f(x) - f(y)| \le \frac{2\epsilon}{3} < \epsilon.$$

Logo, f é integrável. Por outro lado, para qualquer refinamento P de $\{a, c, b\}$ temos que $S(f, P, H_c) \ge f(c)$ e $s(f, P, H_c) \le f(c)$. Dessa maneira, $f(c) \le \int f \, dH_c \le f(c)$. Portanto,

$$\int f \, dH_c = f(c) \, .$$

2. Dados $a < x_1 < \ldots < x_n \le b$, seja $\alpha_n = \sum_{j=1}^n p_j H_{x_j}$, em que $p_1, \ldots, p_n \ge 0$. Se $f: [a,b] \to \mathbb{R}$ é uma função limitada que é contínua nos pontos x_1, \ldots, x_n , então ela é integrável em relação a α_n e

$$\int f \, d\alpha_n = \sum_{j=1}^n f(x_j) p_j \, .$$

3. Sejam $x_1, x_2, \ldots \in [a, b]$ uma sequência estritamente crescente e $p_1, p_2, \ldots \geq 0$ uma sequência tal que $\sum_{n=1}^{\infty} p_n = L$. Consideremos a função $\alpha : [a, b] \to \mathbb{R}$ definida por $\alpha(x) = \sum_{n=1}^{\infty} p_n H_{x_n}(x)$. A função α está bem definida, pois $\alpha(x)$ existe para todo $x \in [a, b]$. Isso segue do critério de comparação, usando o fato de que $p_n H_{x_n}(x) \leq p_n$ para quaisquer $x \in [a, b]$ e $n \in \mathbb{N}$. Por outro lado, vê-se facilmente que a função α é monótona crescente. Dado $t \in [a, b]$, existe $k \in \mathbb{N}$ tal que $t \in [x_{k-1}, x_k]$. Logo,

$$\alpha(t) = \sum_{n=0}^{\infty} p_n H_{x_n}(t) = \sum_{j=0}^{k-1} p_j H_{x_j}(t) = \alpha_{k-1}(t).$$

De fato, temos que $\alpha(t) = \alpha_n(t)$ para todo $n \geq k-1$. Sejam $f: [a,b] \to \mathbb{R}$ uma função contínua e $P = \{t_0 < t_1 < \ldots < t_m\}$ uma partição de [a,b]. Pelo que vimos anteriormente, podemos encontrar $n_0 \in \mathbb{N}$ tal que $\alpha(t_j) = \alpha_n(t_j)$ para quaisquer $j \in \{1,\ldots,m\}$ e $n > n_0$. Logo, $S(f,P,\alpha) = S(f,P,\alpha_n)$ e $s(f,P,\alpha) = s(f,P,\alpha_n)$ para todo $n > n_0$. Como f é integrável em relação a α e em relação a α_n para todo $n \in \mathbb{N}$, as desigualdades anteriores implicam que $\int f d\alpha \geq \int f d\alpha_n \geq \int f d\alpha$ para todo $n > n_0$. Portanto,

$$\int f d\alpha = \lim_{n \to \infty} \int f d\alpha_n = \sum_{n=1}^{\infty} f(x_n) p_n,$$

em que a série do lado direito é absolutamente convergente, pois, como f é limitada, existe M > 0 tal que $|f(x_n)p_n| \leq Mp_n$ para todo $n \in \mathbb{N}$.

Teorema* 10.17. Sejam $f, g : [a, b] \to \mathbb{R}$ funções monótonas crescentes. Tem-se que f é integrável em relação a g se, e somente se, g é integrável em relação a f. Além disso, nesse caso vale a **fórmula de integração por partes**:

$$\int f \, dg = f(b)g(b) - f(a)g(a) - \int g \, df.$$

Demonstração. Observamos que S(f,P,g) - s(f,P,g) = S(g,P,f) - s(g,P,f) para qualquer partição P de [a,b]. Logo, f é integrável em relação a g se, e somente se, g é integrável em relação a f. Por outro lado, se $P = \{x_0 < x_1 < \ldots < x_n\}$ é uma partição de [a,b], então

$$S(f, P, g) = \sum_{j=1}^{n} f(x_j)[g(x_j) - g(x_{j-1})]$$

$$= \sum_{j=1}^{n} [f(x_j)g(x_j) - f(x_{j-1})g(x_{j-1}) + f(x_{j-1})g(x_{j-1}) - f(x_j)g(x_{j-1})]$$

$$= \sum_{j=1}^{n} [f(x_j)g(x_j) - f(x_{j-1})g(x_{j-1})] - \sum_{j=1}^{n} [f(x_j) - f(x_{j-1})]g(x_{j-1})$$

$$= f(b)g(b) - f(a)g(a) - s(g, P, f).$$

Portanto, $\int f dg = f(b)g(b) - f(a)g(a) - \int g df$.

Corolário* 10.18. Seja $\alpha : [a,b] \to \mathbb{R}$ uma função monótona crescente e contínua. Toda função monótona $f : [a,b] \to \mathbb{R}$ é integrável em relação a α .

Exemplos:

- 1. Temos que $\int_a^b 1 \, dx = b a \int_a^b x \, d(1) = b a$.
- 2. Temos que $\int_a^b x \, dx = b^2 a^2 \int_a^b x \, dx$. Portanto, $\int_a^b x \, dx = (b^2 a^2)/2$.
- 3. Se $f:[a,b]\to\mathbb{R}$ é uma função monótona crescente e contínua, então $\int f\,df=[f(b)]^2-[f(a)]^2-\int f\,df$. Portanto,

$$\int f \, df = \frac{[f(b)]^2 - [f(a)]^2}{2} \, .$$

Teorema* 10.19. Sejam $f:[a,b] \to \mathbb{R}$ uma função limitada que é contínua em (a,b] e $\alpha:[a,b] \to \mathbb{R}$ uma função monótona crescente. Se f é descontínua no ponto a e α é contínua nesse ponto, então f é integrável em relação a α .

Demonstração. Seja M>0 tal que $|f(x)|\leq M$. Como α é contínua no ponto a, dado $\epsilon>0$, existe $c\in(a,b)$ tal que $\alpha(c)-\alpha(a)<\epsilon/4M$. Por outro lado, como f é uniformemente contínua em [c,b], existe $\delta>0$ tal que $|f(x)-f(y)|<\epsilon/2[\alpha(b)-\alpha(a)]$ para quaisquer $x,y\in[c,b]$ satisfazendo a condição $|x-y|<\delta$. Se $P=\{x_0< x_1< \ldots < x_n\}$ é uma partição de [a,b] tal que $x_k=c$ e $|P|<\delta$, então

$$S(f, P, \alpha) - s(f, P, \alpha) = \sum_{j=1}^{k} \sup_{x, y \in [x_{j-1}, x_j]} |f(x) - f(y)| [\alpha(x_j) - \alpha(x_{j-1})]$$

$$+ \sum_{j=k}^{n} \sup_{x, y \in [x_{j-1}, x_j]} |f(x) - f(y)| [\alpha(x_j) - \alpha(x_{j-1})]$$

$$\leq 2M[\alpha(c) - \alpha(a)] + \frac{\epsilon}{2[\alpha(b) - \alpha(a)]} [\alpha(b) - \alpha(c)]$$

$$< \epsilon.$$

Portanto, f é integrável.

Corolário* 10.20. Sejam $f:[a,b] \to \mathbb{R}$ uma função limitada $e \alpha:[a,b] \to \mathbb{R}$ uma função monótona crescente. Se f é descontínua em apenas um número finito de pontos e α é contínua nesses pontos, então f é integrável em relação a α .

Exemplo: Se $f:[0,1] \to \mathbb{R}$ é uma função tal que f(x) = sen(1/x) para todo $x \in (0,1]$, então f é integrável à Riemann independentemente do valor de f(0).

Teorema* 10.21. Seja $\alpha : [a,b] \to \mathbb{R}$ uma função monótona crescente, derivável e cuja derivada é integrável à Riemann. Se $f : [a,b] \to \mathbb{R}$ é uma função integrável à Riemann, então f é integrável em relação a α e vale a relação

$$\int_a^b f(x) \, d\alpha(x) = \int_a^b f(x) \alpha'(x) \, dx.$$

Demonstração. Como α' é integrável, ela é limitada. Logo, existe M>0 tal que $0 \le \alpha'(x) \le M$. Além disso, como f é integrável à Riemann, dado $\epsilon>0$, existe uma partição $P=\{x_0< x_1<\ldots < x_n\}$ de [a,b] tal que $S(f,P)-s(f,P)<\epsilon/M$. Temos que

$$S(f, P, \alpha) - s(f, P, \alpha) = \sum_{j=1}^{n} \sup_{x,y \in [x_{j-1}, x_j]} |f(x) - f(y)| [\alpha(x_j) - \alpha(x_{j-1})].$$

Pelo teorema do valor médio, para cada $j \in \{1, ..., n\}$ existem $t_j \in (x_{j-1}, x_j)$ tais que

$$S(f, P, \alpha) - s(f, P, \alpha) = \sum_{j=1}^{n} \sup_{x, y \in [x_{j-1}, x_j]} |f(x) - f(y)| \alpha'(t_j) (x_j - x_{j-1})$$

$$\leq M \sum_{j=1}^{n} \sup_{x, y \in [x_{j-1}, x_j]} |f(x) - f(y)| (x_j - x_{j-1})$$

$$= M[S(f, P) - s(f, P)]$$

$$< \epsilon.$$

Logo, f é integrável em relação a α . Por outro lado, para quaisquer partições P e Q de [a,b] tais que $R=P\cup Q=\{x_0< x_1< \ldots < x_n\}$ temos que

$$S(f, R, \alpha) = \sum_{j=1}^{n} \sup_{x \in [x_{j-1}, x_j]} f(x)\alpha'(t_j)(x_j - x_{j-1})$$

$$\geq \sum_{j=1}^{n} f(t_j)\alpha'(t_j)(x_j - x_{j-1})$$

$$\geq \sum_{j=1}^{n} \inf_{x \in [x_{j-1}, x_j]} [f(x)\alpha'(x)](x_j - x_{j-1})$$

$$= s(f\alpha', R),$$

em que, para cada $j \in \{1, \ldots, n\}$, $t_j \in [x_{j-1}, x_j]$. Logo, $S(f, P, \alpha) \geq s(f\alpha', Q)$, o que implica que $\int_a^b f \, d\alpha \geq \int_a^b f(x)\alpha'(x) \, dx$. De maneira análoga podemos obter que $s(f, P, \alpha) \leq S(f\alpha', Q)$ e, por conseguinte, $\int_a^b f \, d\alpha \leq \int_a^b f(x)\alpha'(x) \, dx$. Portanto, $\int_a^b f \, d\alpha = \int_a^b f(x)\alpha'(x) \, dx$.

Exemplo: Se $0 \le a < b \in n \in \mathbb{N}$, temos que

$$\int_{a}^{b} x^{n} dx = b^{n+1} - a^{n+1} - \int_{a}^{b} x d(x^{n}) = b^{n+1} - a^{n+1} - n \int_{a}^{b} x^{n} dx.$$

Portanto, $\int_a^b x^n dx = [b^{n+1} - a^{n+1}]/(n+1)$.

Teorema* 10.22. Seja $f:[a,b] \to \mathbb{R}$ uma função limitada. Dado $\epsilon > 0$, existe $\delta > 0$ tal que $\int_a^b f(x) dx - \epsilon < s(f,P) \le S(f,P) < \int_a^b f(x) dx + \epsilon$ para toda partição P de [a,b] com norma menor do que δ .

 $\ldots < x_n$ } de [a,b] tal que $S(f,P_0) < \overline{\int_a^b} f(x) \, dx + \epsilon/2$. Pondo $\delta = \min\{\epsilon/2nM, x_1 - x_0, \ldots, x_n - x_{n-1}\}$, seja P uma partição de [a,b] tal que $|P| < \delta$. Essa partição divide o intervalo [a,b] em subintervalos $I_p = [a_p,b_p] \subset [x_{j-1},x_j]$ para alguns $j \in \{1,\ldots,n\}$ e $J_q = [c_q,d_q] \not\subset [x_{k-1},x_k]$ para todo $k \in \{1,\ldots,n\}$. Temos que

$$\sum_{p} \sup_{x \in [a_p, b_p]} f(x)(b_p - a_p) \le S(f, P_0) < \overline{\int_a^b} f(x) dx + \frac{\epsilon}{2}.$$

Por outro lado, cada intervalo J_q contém só uma extremidade dos intervalos $[x_{j-1}, x_j]$. Logo, existem no máximo n intervalos J_q . Dessa maneira,

$$\sum_{q} \sup_{x \in [c_q, d_p]} f(x)(d_q - c_q) < Mn\delta < \frac{\epsilon}{2}.$$

Portanto, $S(f,P) < \overline{\int_a^b} f(x) \, dx + \epsilon$. Vejamos o caso geral agora. Se f é uma função limitada arbitrária, existe c>0 tal que $f(x) \geq -c$ para todo $x \in \mathbb{R}$. Logo a função $g:[a,b] \to \mathbb{R}$ definida por g(x) = f(x) + c é não-negativa. Assim, dado $\epsilon>0$, existe $\delta>0$ tal que $S(g,P) < \overline{\int_a^b} g(x) \, dx + \epsilon$ para toda partição P de [a,b] com norma menor do que δ . Como S(g,P) = S(f,P) + c(b-a) e $\overline{\int_a^b} g(x) \, dx = \overline{\int_a^b} f(x) + c(b-a)$, segue que $S(f,P) < \overline{\int_a^b} f(x) \, dx + \epsilon$. A desigualdade envolvendo a soma inferior pode ser provada de forma análoga.

Seja $P = \{x_0 < x_1 < \ldots < x_n\}$ uma partição de um intervalo [a, b]. Se para cada $j \in \{1, \ldots, n\}$ é escolhido $\xi_j \in [x_{j-1}, x_j]$, obtem-se uma **partição pontilhada** de [a, b], denotada por P_{ξ} , em que $\xi = (\xi_1, \ldots, \xi_n)$. Definiremos a norma da partição pontilhada P_{ξ} como a norma da partição P.

Dada uma função $f:[a,b]\to\mathbb{R}$, seja P_ξ uma partição pontilhada de [a,b], em que $P=\{x_0< x_1<\ldots< x_n\}$. A soma

$$\Sigma(f, P_{\xi}) = \sum_{j=1}^{n} f(\xi_j)(x_j - x_{j-1})$$

é chamada de uma **soma de Riemann**. Diz-se que L é o limite de $\Sigma(f, P_{\xi})$ quando |P| tende a 0 se, dado $\epsilon > 0$, existe $\delta > 0$ tal que $|\Sigma(f, P_{\xi}) - L| < \epsilon$ para toda partição pontilhada P_{ξ} com norma menor do que δ . Nesse caso, escreve-se $\lim_{|P| \to 0} \Sigma(f, P_{\xi}) = L$.

Corolário 10.23. Seja $f:[a,b]\to\mathbb{R}$ uma função integrável à Riemann. Tem-se que

$$\lim_{|P|\to 0} \Sigma(f, P^*) = \int_a^b f(x) \, dx \, .$$

Exemplos:

1. Dado $p \in \mathbb{N}$, a função $f:[0,1] \to \mathbb{R}$ definida por $f(x) = x^p$ é integrável à Riemann. Considerando a partição pontilhada P_{ξ} de [0,1] em que $P = \{0,1/n,2/n,\ldots,1\}$ e $\xi = (1/n,2/n,\ldots,1)$, temos que

$$\Sigma(f, P_{\xi}) = \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{p} \frac{1}{n}.$$

Como $\lim_{|P|\to 0} \Sigma(f, P_{\xi}) = \int_0^1 f(x) dx = 1/(p+1)$, temos em particular que

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{p}}{n^{p+1}} = \frac{1}{p+1} .$$

2. Sejam $f, g: [a, b] \to \mathbb{R}$ funções integráveis à Riemann e $P = \{x_0 < x_1 < \ldots < x_n\}$ uma partição de [a, b] tal que $\lim_{n \to \infty} |P| = 0$. Escolhendo $\xi_j, \eta_j \in [x_{j-1}, x_j]$ de forma arbitrária para cada $j \in \{1, \ldots, n\}$, temos que

$$\lim_{n \to \infty} \sum_{j=1}^{n} f(\xi_j) g(\eta_j) (x_j - x_{j-1}) = \int_a^b f(x) g(x) \, dx \,. \tag{10.1}$$

Para provar isso, vamos começar provando que

$$\lim_{n \to \infty} \sum_{j=1}^{n} f(\xi_j) [g(\xi_j) - g(\eta_j)] (x_j - x_{j-1}) = 0.$$
 (10.2)

Se $|f(x)| \leq M$ para todo $x \in [a, b]$, temos que

$$\left| \sum_{j=1}^{n} f(\xi_{j})[g(\xi_{j}) - g(\eta_{j})](x_{j} - x_{j-1}) \right| \leq \sum_{j=1}^{n} |f(\xi_{j})| |g(\xi_{j}) - g(\eta_{j})| (x_{j} - x_{j-1})$$

$$\leq M \sum_{j=1}^{n} |g(\xi_{j}) - g(\eta_{j})| (x_{j} - x_{j-1})$$

$$\leq M \sum_{j=1}^{n} \sup_{x,y \in [x_{j-1},x_{j}]} |g(x) - g(y)| (x_{j} - x_{j-1})$$

$$= M[S(g, P) - s(g, P)].$$

Como $\lim_{|P|\to 0} S(g,P) = \lim_{|P|\to 0} s(g,P) = \int_a^b g(x) dx$, segue que

$$\lim_{n \to \infty} \left| \sum_{j=1}^{n} f(\xi_j) [g(\xi_j) - g(\eta_j)] (x_j - x_{j-1}) \right| = 0,$$

da qual decorre a equação (10.2). Como

$$\lim_{n \to \infty} \sum_{j=1}^{n} f(\xi_j) g(\xi_j) (x_j - x_{j-1}) = \int_a^b f(x) g(x) \, dx \,,$$

a equação (10.1) segue da equação (10.2).

Capítulo 11

O teorema fundamental do cálculo

Seja $I \subset \mathbb{R}$ um intervalo. Diz-se que uma função $F: I \to \mathbb{R}$ é uma **primitiva** de uma função $f: I \to \mathbb{R}$ se F'(x) = f(x) para todo $x \in I$. Vemos imediatamente que, se F é uma primitiva de f, então F + c também é uma primitiva de f para todo $c \in \mathbb{R}$.

Teorema 11.1. Seja $I \subset \mathbb{R}$ um intervalo. Se $F, G : I \to \mathbb{R}$ são primitivas de uma função $f : I \to \mathbb{R}$, então existe $c \in \mathbb{R}$ tal que F(x) - G(x) = c para todo $x \in I$.

Demonstração. Temos que F'(x) = f(x) e G'(x) = f(x) para todo $x \in I$. Segue daqui que (F - G)'(x) = 0 para todo $x \in I$. Portanto, F - G é uma função constante. \square

Teorema 11.2. Seja $f:[a,b] \to \mathbb{R}$ uma função derivável cuja derivada é integrável à Riemann. Logo, para qualquer $x \in [a,b]$ tem-se que

$$f(x) = f(a) + \int_a^x f'(t) dt.$$

Demonstração. Seja $P = \{x_0 < x_1 < \ldots < x_n\}$ uma partição de [a, x]. Temos que

$$f(x) - f(a) = \sum_{j=1}^{n} [f(x_j) - f(x_{j-1})].$$

Logo, pelo teorema do valor médio, para cada $j \in \{1, ..., n\}$ existem $\xi_j \in (x_{j-1}, x_j)$ tais que

$$f(x) - f(a) = \sum_{j=1}^{n} f'(\xi_j)(x_j - x_{j-1}).$$

Dessa maneira, $s(f',P) \leq f(x) - f(a) \leq S(f',P)$. Como f' é integrável, segue que $\int_a^x f'(t) dt \leq f(x) - f(a) \leq \int_a^x f'(t) dt$.

Corolário 11.3. Teorema fundamental do cálculo. Seja $f : [a, b] \to \mathbb{R}$ uma função integrável à Riemann que possui uma primitiva F. Logo,

$$\int_{a}^{b} f(x) dx = F(x)|_{a}^{b} = F(b) - F(a).$$

Teorema 11.4. Seja $f:[a,b] \to \mathbb{R}$ uma função integrável à Riemann. A função $F:[a,b] \to \mathbb{R}$ definida por $F(x) = \int_a^x f(t) dt$ é uniformemente contínua. Além disso, se f é contínua no ponto $c \in [a,b]$, então F é derivável no ponto $c \in F'(c) = f(c)$.

Demonstração. Como f é limitada, existe M > 0 tal que $|f(x)| \le M$. Dados $x, y \in [a, b]$ com x < y, temos que

$$|F(x) - F(y)| = \left| \int_x^y f(x) \, dx \right| \le \int_x^y |f(x)| \, dx \le M(y - x).$$

Logo, F é lipchitziana e, por conseguinte, é uniformemente contínua. Por outro lado, para qualquer h>0, temos que

$$\left| \frac{F(c+h) - F(c)}{h} - f(c) \right| = \left| \frac{1}{h} \int_{c}^{c+h} f(x) \, dx - \frac{1}{h} \int_{c}^{c+h} f(c) \, dx \right|$$

$$\leq \frac{1}{h} \int_{c}^{c+h} |f(x) - f(c)| \, dx.$$

Como f é contínua no ponto c, dado $\epsilon > 0$, existe $\delta > 0$ tal que $|f(x) - f(c)| < \epsilon$ para todo $x \in [a, b]$ satisfazendo a condição $|x - c| < \delta$. Logo, se $0 < h < \delta$,

$$\left| \frac{F(c+h) - F(c)}{h} - f(c) \right| < \frac{1}{h} \int_{c}^{c+h} \epsilon \, dx = \epsilon.$$

Portanto, $F'_{+}(c) = f(c)$. De forma análoga, pode-se provar que $F'_{-}(c) = f(c)$.

Corolário 11.5. Toda função contínua $f:[a,b] \to \mathbb{R}$ possui uma primitiva.

Seja $f:[a,b] \to \mathbb{R}$ uma função integrável que possui uma primitiva F. Define-se a **integral indefinida** de f como uma primitiva arbitrária de f, ou seja,

$$\int f(x) \, dx = F(x) + c \,,$$

em que $c \in \mathbb{R}$ é uma constante arbitrária.

Exemplos:

1. Sabemos que, para qualquer $r \in \mathbb{Q}$,

$$\frac{d}{dx}x^{r+1} = (r+1)x^r.$$

Logo, x^{r+1} é uma primitiva de $(r+1)x^r$ e, por conseguinte, $x^{r+1}/(r+1)$ é uma primitiva de x^r se $r \neq -1$. Portanto,

$$\int x^r \, dx = \frac{x^{r+1}}{r+1} + c \quad (r \neq -1) \,,$$

em que $c \in \mathbb{R}$ é uma constante arbitrária.

2. Sabemos que

$$\frac{d}{dx} \operatorname{sen} x = \cos x$$
, $\frac{d}{dx} \cos x = -\operatorname{sen} x$ e $\frac{d}{dx} \tan x = \operatorname{sec}^2 x$.

Logo,

$$\int \cos x \, dx = \sin x + c, \quad \int \sin x \, dx = -\cos x + c \quad e \quad \int \sec^2 x \, dx = \tan x + c,$$

em que $c \in \mathbb{R}$ é uma constante arbitrária.

3. Sabemos que

$$\frac{d}{dx} \operatorname{arcsen} x = \frac{1}{\sqrt{1-x^2}}, \quad \frac{d}{dx} \operatorname{arccos} x = -\frac{1}{\sqrt{1-x^2}} \quad \text{e} \quad \frac{d}{dx} \operatorname{arctan} x = \frac{1}{1+x^2}.$$

Logo,

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = arcsen \, x + c = - arccos \, x + d \quad \text{e} \quad \int \frac{1}{1+x^2} \, dx = arctan \, x + c \, ,$$

em que $c, d \in \mathbb{R}$ são constantes arbitrárias. Segue do primeiro resultado que, para qualquer $x \in (-1, 1)$,

$$\int_0^x \frac{1}{\sqrt{1-t^2}} \, dt = \arcsin t |_0^x = -\arccos t|_0^x.$$

Portanto, arcsen $x + \arccos x = \pi/2$ para todo $x \in (-1, 1)$.

A função f(x) = 1/x é contínua. Logo, ela possui uma primitiva em qualquer intervalo fechado. Define-se a **função logaritmo (natural)** log : $(0, \infty) \to \mathbb{R}$ por

$$\log x = \int_{1}^{x} \frac{1}{t} dt.$$

Segue imediatamente daqui que $\log 1 = 0$, que a função logaritmo é derivável e que

$$\frac{d}{dx}\log x = \frac{1}{x}.$$

De forma mais geral temos que

$$\frac{d}{dx}\log|x| = \frac{1}{|x|}\frac{d}{dx}|x| = \frac{1}{x} \quad (x \neq 0)$$

e com isso

$$\int \frac{1}{x} \, dx = \log|x| + c \,.$$

Como $\log'(x)>0$ para todo x>0, a função logaritmo é estritamente crescente. Além disso, $\log''(x)=-1/x^2<0$ para todo x>0, o que implica que a função logaritmo é uma função côncava. Em particular, para qualquer x>0, tem-se que $\log x \leq \log 1 + (x-1)$ e, por conseguinte,

$$\log x \le x - 1$$

para todo x > 0.

Agora vamos obter a propriedade algébrica fundamental do logaritmo. Dado a>0, temos que

$$\frac{d}{dx}\log(ax) = \frac{1}{ax}a = \frac{1}{x} = \frac{d}{dx}\log x.$$

Logo,

$$\frac{d}{dx}[\log(ax) - \log x] = 0.$$

Isso implica que existe $c \in \mathbb{R}$ tal que $\log(ax) - \log x = c$. Considerando x = 1, obtemos que $c = \log a$. Portanto,

$$\log(ab) = \log a + \log b$$

para quaisquer a,b>0. Como consequência direta dessa relação podemos obter que $\log(a^n)=n\log a$ para quaisquer a>0 e $n\in\mathbb{N}$. Por outro lado, se b>0, $\log b=\log((b^{1/n})^n)=n\log b^{1/n}$ e, por conseguinte, $\log b^{1/n}=(\log b)/n$. Logo, dados $m,n\in\mathbb{N}$ e a>0, tem-se que $\log a^{m/n}=(m/n)\log a$. Finalmente, como $\log 1=\log(a^{m/n}a^{-m/n})=\log(a^{m/n})+\log(a^{-m/n})$, segue que $\log a^{-m/n}=-(m/n)\log a$ e, portanto, para quaisquer $r\in\mathbb{Q}$ e a>0, tem-se que

$$\log a^r = r \log a.$$

A função logaritmo não é limitada superiormente nem inferiormente. Com efeito, dado A>0, existe $n\in\mathbb{N}$ tal que $\log(2^n)=n\log 2>A$, pois $\log 2>\log 1=0$. Segue daqui também que $\log 2^{-n}<-A$. Logo, como a função logaritmo é estritamente crescente, segue que $\lim_{x\to\infty}\log x=\infty$ e $\lim_{x\to 0}\log x=\infty$. Além disso, como a função logaritmo é contínua, sua imagem deve ser \mathbb{R} . Dessa maneira, a função logaritmo possui inversa.

A inversa da função logaritmo é chamada de **função exponencial**, denotada por $\exp : \mathbb{R} \to (0, \infty)$ (ver figura 11.1). A função exponencial é estritamente crescente, $\exp(0) = 1 \exp'(y) = 1/\log'(\exp y) = \exp y$. Assim, escrevemos

$$\frac{d}{dx}\exp x = \exp x.$$

Além disso, $\exp''(x) = \exp x > 0$ para todo $x \in \mathbb{R}$. Logo, a função exponencial é convexa e, em particular, temos a desigualdade

$$\exp x \ge 1 + x$$

para todo $x \in \mathbb{R}$.

Figura 11.1: Gráficos das funções logaritmo e exponencial.

Dados $x, y \in \mathbb{R}$, temos que $\log(\exp x \exp y) = x + y$. Logo,

$$\exp(x+y) = \exp x \exp y.$$

Definindo $e=\exp 1$, temos que $\exp n=e^n$ para todo $n\in\mathbb{N}$. Por outro lado, dados $m,n\in\mathbb{N},\ e^m=\exp m=[\exp(m/n)]^n$ e, por conseguinte, $\exp(m/n)=e^{m/n}$. Como $\exp 0=\exp(m/n-m/n)=e^{m/n}\exp(-m/n)$, segue que $\exp(-m/n)=e^{-m/n}$. Portanto, para qualquer $r\in\mathbb{Q}$, tem-se

$$\exp r = e^r$$
.

Isso motiva a escrever $\exp x$ como e^x para todo $x \in \mathbb{R}$.

Agora vamos provar que o número $e=\exp 1$ coincide com o número e visto na seção 6. Dado a>0, temos que

$$a = \log'(1/a) = \lim_{h \to 0} \frac{\log(1/a + h) - \log(1/a)}{h} = \lim_{h \to 0} \frac{1}{h} \log(1 + ha) = \lim_{h \to 0} \log(1 + ha)^{1/h}.$$

Logo,

$$\lim_{h \to 0} (1 + ha)^{1/h} = e^a.$$

Se a = 1, temos que

$$\lim_{h \to 0} (1+h)^{1/h} = e.$$

Em particular, como $1/n \downarrow 0$, então

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \,.$$

Dados a > 0 e $x \in \mathbb{R}$, define-se a potência $a^x = e^{x \log a}$. Vemos que

$$\frac{d}{dx}a^x = e^{x\log a}\log a = a^x\log a.$$

Logo, a função $f(x) = a^x$ é estritamente crescente (decrescente) se a > 1 (a < 1). Além disso, $f''(x) = a^x(\log a)^2 > 0$ para todo $x \in \mathbb{R}$. Assim, a função f é convexa para qualquer $a \neq 1$ (ver figura 11.2). Como $f : \mathbb{R} \to (0, \infty)$ é monótona e contínua em qualquer caso, ela possui uma inversa, a qual é chamada de **função logaritmo na base** a, denotada por $\log_a : (0, \infty) \to \mathbb{R}$. Dado qualquer x > 0, temos que $x = a^{\log_a x} = e^{(\log_a x) \log a}$. Logo, $\log x = (\log_a x) \log a$ e, por conseguinte,

$$\log_a(x) = \frac{\log x}{\log a} \,.$$

Figura 11.2: Gráfico da função $f(x) = a^x$ quando a = 2 e a = 1/2.

Dados x > 0 e $a \in \mathbb{R}$, definimos a potência $x^a = e^{a \log x}$. Vemos que

$$\frac{d}{dx}x^a = e^{a\log x}\frac{a}{x} = ax^{a-1}.$$

Agora vamos comparar os crescimentos exponencial e logarítmico com o crescimento tipo lei de potência. Dado $a \in \mathbb{R}$, temos que

$$\lim_{x \to \infty} \frac{x^a}{e^x} = 0,$$

ou seja, a função exponencial cresce mais rápido do que qualquer potência. Com efeito, a afirmação é trivial se $a \le 0$. Se a > 0 e x > 0, $e^x = (e^{x/2a})^{2a} > (x/2a)^{2a}$. Logo,

$$0 < \frac{x^a}{e^x} < \frac{x^a}{(x/2a)^{2a}} = \frac{(2a)^{2a}}{x^a}$$
.

Como $\lim_{x\to\infty} 1/x^a = 0$, segue que $\lim_{x\to\infty} x^a/e^x = 0$. Por outro lado, dado a>0, temos que

$$\lim_{x \to \infty} \frac{\log x}{x^a} = 0,$$

ou seja, a função exponencial cresce mais devagar do que qualquer potência positiva. Com efeito, temos que $\log x = \log[(x^{a/2})^{2/a}] = 2\log(x^{a/2})/a < 2x^{a/2}/a$. Logo, se x > 1,

$$0 < \frac{\log x}{x^a} < \frac{2x^{a/2}}{ax^a} = \frac{2}{ax^{a/2}}.$$

Portanto, $\lim_{x\to\infty} (\log x)/x^a = 0$.

Definem-se as funções seno hiperbólico senh : $\mathbb{R} \to \mathbb{R}$ e cosseno hiperbólico cosh : $\mathbb{R} \to \mathbb{R}$ por

$$\operatorname{senh} x = \frac{e^x - e^{-x}}{2}$$
 e $\cosh x = \frac{e^x + e^{-x}}{2}$.

Pode-se verificar imediatamente que a função seno hiperbólico é uma função ímpar, enquanto que a função cosseno hiperbólico é par. Além disso, verifica-se facilmente que $\cosh^2 x - \sinh^2 x = 1$ para todo $x \in \mathbb{R}$ e que

$$\frac{d}{dx} \operatorname{senh} x = \cosh x$$
 e $\frac{d}{dx} \cosh x = \operatorname{senh} x$.

Como $\cosh x > 0$ para todo $x \in \mathbb{R}$, a função seno hiperbólico é monótona crescente (ver figura 11.3).

Figura 11.3: Gráficos das funções seno hiperbólico e cosseno hiperbólico.

Define-se a função tangente hiperbólica $tanh : \mathbb{R} \to \mathbb{R}$ por

$$\tanh x = \frac{\operatorname{senh} x}{\operatorname{cosh} x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Verifica-se imediatamente que a função tangente hiperbólica é uma função ímpar. Além disso, $\lim_{x\to\infty} \tanh x = 1$, $\lim_{x\to-\infty} \tanh x = -1$ e

$$\frac{d}{dx}\tanh x = \frac{\cosh x}{\cosh x} - \frac{\sinh^2 x}{\cosh^2 x} = 1 - \tanh^2 x = \frac{1}{\cosh^2 x}.$$

Segue daqui que a função tangente hiperbólica é monótona crescente (ver figura 11.4).

Figura 11.4: Gráfico da função tangente hiperbólica.

Teorema 11.6. Mudança de variável. Seja $f : [\alpha, \beta] \to \mathbb{R}$ uma função contínua. Se $I \subset \mathbb{R}$ é um intervalo e $\phi : I \to \mathbb{R}$ é uma função derivável tal que $\phi(a) = \alpha$ e $\phi(b) = \beta$ para alguns $a, b \in I$ e, além disso, ϕ' é integrável à Riemann no intervalo de extremidades $a \in b$, então

$$\int_{\alpha}^{\beta} f(y) \, dy = \int_{a}^{b} f(\phi(x)) \phi'(x) \, dx \, .$$

Demonstração. Como f é contínua, ela possui uma primitiva F. Logo,

$$\int_{\alpha}^{\beta} f(x) \, dx = F(x)|_{\alpha}^{\beta} = F(\phi(b)) - F(\phi(a)) = (F \circ \phi)(b) - (F \circ \phi)(a) \, .$$

Por outro lado, pela regra da cadeia, $(F \circ \phi)'(x) = f(\phi(x))\phi'(x)$ e, por conseguinte,

$$\int_{a}^{b} f(\phi(x))\phi'(x) \, dx = (F \circ \phi)(x)|_{a}^{b} = (F \circ \phi)(b) - (F \circ \phi)(a) \, .$$

Portanto,
$$\int_{\alpha}^{\beta} f(y) dy = \int_{a}^{b} f(\phi(x)) \phi'(x) dx$$
.

Exemplos:

1. Sejam I um intervalo e $\phi: I \to \mathbb{R}$ uma função com derivada integrável. Temos que

$$\int \frac{\phi'(x)}{\phi(x)} dx = \int \frac{1}{y} dy,$$

no qual utilizamos a mudança de variáveis $y = \phi(x)$. Logo,

$$\int \frac{\phi'(x)}{\phi(x)} dx = \log|y| + c = \log|\phi(x)| + c,$$

em que $c \in \mathbb{R}$ é uma constante arbitrária.

2. Temos que

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\log|\cos x| + c = \log|\sec x| + c$$

e

$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \log|\sin x| + c = -\log|\csc x| + c,$$

em que $c \in \mathbb{R}$ é uma constante arbitrária.

3. Usando a identidade sen $x = 2 \operatorname{sen}(x/2) \cos(x/2)$, temos que

$$\int \csc x \, dx = \int \frac{1}{2 \sec(x/2) \cos(x/2)} \, dx = \int \frac{\sec^2(x/2)}{2 \tan(x/2)} \, dx \, .$$

Portanto,

$$\int \csc x \, dx = \log \left| 2 \tan \frac{x}{2} \right| + c = \log \left| \tan \frac{x}{2} \right| + d,$$

em que $c, d \in \mathbb{R}$ são constantes arbitrárias.

4. Usando a identidade $\cos x = \operatorname{sen}(x + \pi/2)$, temos que

$$\int \sec x \, dx = \int \frac{1}{\sin(x + \pi/2)} \, dx = \int \frac{1}{\sin y} \, dy \,,$$

em que usamos a mudança de variáveis $y = x + \pi/2$ $(x = y - \pi/2)$. Logo,

$$\int \sec x \, dx = \log \left| \tan \frac{y}{2} \right| + c = \log \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + c.$$

5. Dado a > 0, temos que

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \int \frac{1}{\sqrt{1 - (x/a)^2}} \frac{1}{a} \, dx.$$

Usando a mudança de variáveis y = x/a (x = ay), obtemos que

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \int \frac{1}{\sqrt{1 - y^2}} dy = \arcsin y + c = \arcsin \frac{x}{a} + c.$$

6. Dado $a \in \mathbb{R}$, temos que

$$\int \frac{1}{a^2 + x^2} dx = \int \frac{1}{1 + (x/a)^2} \frac{1}{a^2} dx = \int \frac{1}{1 + y^2} \frac{1}{a} dy,$$

em que usamos a mudança de variáveis y = x/a. Logo,

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan y + c = \frac{1}{a} \arctan \frac{x}{a} + c.$$

Teorema 11.7. Integração por partes. Se $f,g:[a,b]\to\mathbb{R}$ são funções deriváveis cujas derivadas são integráveis à Riemann, então

$$\int_{a}^{b} f(x)g'(x) dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} g(x)f'(x) dx.$$

Demonstração. Temos que (fg)'(x) = f'(x)g(x) + f(x)g'(x) para todo $x \in [a,b]$. Logo, (fg)' é integrável e $\int_a^b (fg)'(x) \, dx = \int_a^b f'(x)g(x) \, dx + \int_a^b f(x)g'(x) \, dx$. Por outro lado, $\int_a^b (fg)'(x) \, dx = f(x)g(x)|_a^b$. Portanto, $\int_a^b f(x)g'(x) \, dx = f(x)g(x)|_a^b - \int_a^b g(x)f'(x) \, dx$. \square

Exemplos:

1. Temos que

$$\int \log x \, dx = \int (\log x) 1 \, dx = (\log x) x - \int \frac{x}{x} \, dx = x \log x - x + c,$$

em que $c \in \mathbb{R}$ é uma constante arbitrária.

2. Temos que

$$\int \arcsin x \, dx = (\arcsin x)x - \int \frac{x}{\sqrt{1 - x^2}} \, dx.$$

Usando a mudança de variáveis $x = \sqrt{1-y}$ $(y = 1-x^2)$, temos que

$$\int \operatorname{arcsen} x \, dx = x \operatorname{arcsen} x + \int \frac{\sqrt{1-y}}{\sqrt{y}} \frac{1}{2\sqrt{1-y}} \, dy = x \operatorname{arcsen} x + \sqrt{y} + c,$$

em que $c \in \mathbb{R}$ é uma constante arbitrária. Portanto,

$$\int \arcsin x \, dx = x \arcsin x + \sqrt{1 - x^2} + c.$$

3. Temos que

$$\int \arctan x \, dx = x \arctan x - \int \frac{x}{1+x^2} \, dx \, .$$

Usando a mudança de variáveis $x = \sqrt{y-1}$ $(y = 1 + x^2)$, temos que

$$\int \arctan x \, dx = x \arctan x - \int \frac{\sqrt{y-1}}{y} \frac{1}{2\sqrt{y-1}} \, dy = x \arctan x - \frac{1}{2} \log|y| + c,$$

em que $c \in \mathbb{R}$ é uma constante arbitrária. Portanto,

$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \log(1 + x^2) + c.$$

4. Sejam $a, b \in \mathbb{R}$ não ambos nulos. Se $a \neq 0$, temos que

$$\int e^{ax} \operatorname{sen}(bx) dx = \frac{e^{ax}}{a} \operatorname{sen}(bx) - \int \frac{e^{ax}}{a} b \cos(bx) dx.$$

Usando a fórmula de integração por partes na integral do lado direito, temos que

$$\int e^{ax} \operatorname{sen}(bx) \, dx = \frac{e^{ax}}{a} \operatorname{sen}(bx) - \frac{b}{a} \left(\frac{e^{ax}}{a} \cos(bx) + \int \frac{e^{ax}}{a} b \operatorname{sen}(bx) \, dx \right) \, .$$

Logo,

$$\left(1 + \frac{b^2}{a^2}\right) \int e^{ax} \operatorname{sen}(bx) \, dx = \frac{e^{ax}}{a^2} [a \operatorname{sen}(bx) - b \cos(bx)] \, .$$

Portanto,

$$\int e^{ax} \sec(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} [a \sec(bx) - b \cos(bx)] + c,$$

em que $c \in \mathbb{R}$ é uma constante arbitrária. Vemos que esse resultado é verdadeiro mesmo no caso em que a=0 e $b \neq 0$.

5. Dado $n \in \mathbb{N}$, temos que

$$\int \cos^n x \, dx = \int \cos^{n-1} x \cos x \, dx$$
$$= \cos^{n-1} x \operatorname{sen} x + (n-1) \int \cos^{n-2} x \operatorname{sen} x \operatorname{sen} x \, dx.$$

Usando a identidade trigonométrica sen² $x = 1 - \cos^2 x$, temos que

$$\int \cos^n x \, dx = \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x \, dx - (n-1) \int \cos^n x \, dx.$$

Portanto,

$$\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx \, .$$

Em particular, segue daqui que

$$\int \cos^2 x \, dx = \frac{x}{2} + \frac{\sin x \cos x}{2} \quad \text{e} \quad \int \sin^2 x \, dx = \frac{x}{2} - \frac{\sin x \cos x}{2} \, .$$

6. **Fórmula de Wallis:** Dado $n \in \mathbb{N}$, temos que

$$\int_0^{\pi/2} \cos^{2n} x \, dx = \frac{2n-1}{2n} \frac{2n-3}{2n-2} \cdots \frac{3}{4} \frac{1}{2} \int_0^{\pi/2} dx = \frac{2n-1}{2n} \frac{2n-3}{2n-2} \cdots \frac{3}{4} \frac{1}{2} \frac{\pi}{2}.$$

De forma análoga, temos

$$\int_0^{\pi/2} \cos^{2n-1} x \, dx = \frac{2n-2}{2n-1} \frac{2n-4}{2n-3} \cdots \frac{2}{3} \, .$$

Logo,

$$\frac{\int_0^{\pi/2} \cos^{2n} x \, dx}{\int_0^{\pi/2} \cos^{2n-1} x \, dx} = \frac{2n-1}{2n} \frac{2n-1}{2n-2} \frac{2n-3}{2n-2} \frac{2n-3}{2n-4} \cdots \frac{3}{4} \frac{3}{2} \frac{1}{2} \frac{\pi}{2}$$

e, por conseguinte,

$$\frac{\pi}{2} = \frac{2}{1} \frac{2}{3} \frac{4}{3} \frac{4}{5} \cdots \frac{2n-2}{2n-3} \frac{2n-2}{2n-1} \frac{2n}{2n-1} \frac{\int_0^{\pi/2} \cos^{2n} x \, dx}{\int_0^{\pi/2} \cos^{2n-1} x \, dx}.$$
 (11.1)

Se $0 \le x \le \pi/2$, temos que $\cos^{2n+1} x \le \cos^{2n} x \le \cos^{2n-1} x$. Logo,

$$\frac{2n}{2n+1} \int_0^{\pi/2} \cos^{2n-1} x \, dx = \int_0^{\pi/2} \cos^{2n+1} x \le \int_0^{\pi/2} \cos^{2n} x \le \int_0^{\pi/2} \cos^{2n-1} x \, dx$$

Dessa maneira temos que

$$\frac{2n}{2n+1} \le \frac{\int_0^{\pi/2} \cos^{2n} x \, dx}{\int_0^{\pi/2} \cos^{2n-1} x \, dx} \le 1,$$

o que implica que

$$\lim_{n \to \infty} \frac{\int_0^{\pi/2} \cos^{2n} x \, dx}{\int_0^{\pi/2} \cos^{2n-1} x \, dx} = 1.$$

Portanto, da equação (11.1) obtemos que

$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{2}{1} \frac{2}{3} \frac{4}{3} \frac{4}{5} \cdots \frac{2n-2}{2n-3} \frac{2n-2}{2n-1} \frac{2n}{2n-1} = \lim_{n \to \infty} \frac{2^2}{3^2} \frac{4^2}{5^2} \cdots \frac{(2n-2)^2}{(2n-1)^2} 2n.$$

Além disso, segue dessa relação que

$$\sqrt{\frac{\pi}{2}} = \lim_{n \to \infty} \frac{24}{35} \cdots \frac{2n-2}{2n-1} \sqrt{2n} = \lim_{n \to \infty} \frac{2^{2n-2}[(n-1)!]^2}{(2n-1)!} \sqrt{2n}.$$

Logo,

$$\sqrt{\frac{\pi}{2}} = \lim_{n \to \infty} \frac{2^{2n-2}[(n-1)!]^2}{(2n-1)!} \frac{n^2}{n^2} \frac{2}{2} \sqrt{2n} = \lim_{n \to \infty} \frac{2^{2n-1}(n!)^2}{(2n)!} \frac{\sqrt{2n}}{n}.$$

Portanto,

$$\lim_{n \to \infty} \frac{2^{2n} (n!)^2}{(2n)! \sqrt{n}} = \sqrt{\pi} \,.$$