

planetmath.org

Math for the people, by the people.

complex p-adic numbers

Canonical name ComplexPadicNumbers
Date of creation 2013-03-22 15:13:44
Last modified on 2013-03-22 15:13:44
Owner alozano (2414)

Last modified by alozano (2414)

Numerical id 6

Author alozano (2414)
Entry type Definition
Classification msc 12J12
Classification msc 11S99

Synonym complex p-adic numbers

First, we review a possible construction of the complex numbers. We start from the rational numbers, \mathbb{Q} , which we consider as a metric space, where the distance is given by the usual absolute value $|\cdot|$, e.g. |-3/2|=3/2. As we know, the field of rational numbers is not an algebraically closed field (e.g. $i=\sqrt{-1}\notin\mathbb{Q}$). Let $\overline{\mathbb{Q}}$ be a fixed algebraic closure of \mathbb{Q} . The absolute value in \mathbb{Q} extends uniquely to $\overline{\mathbb{Q}}$. However, $\overline{\mathbb{Q}}$ is not complete with respect to $|\cdot|$ (e.g. $e=\sum_{n\geq 0}1/n!\notin\overline{\mathbb{Q}}$ because e is transcendental). The completion of $\overline{\mathbb{Q}}$ with respect to $|\cdot|$ is \mathbb{C} , the field of complex numbers.

Construction of \mathbb{C}_p

We follow the construction of \mathbb{C} above to build \mathbb{C}_p . Let p be a prime number and let \mathbb{Q}_p be the http://planetmath.org/PAdicIntegersp-adic rationals or (p-adic numbers). The p-adics, \mathbb{Q}_p , are the completion of \mathbb{Q} with respect to the usual http://planetmath.org/PAdicValuationp-adic valuation $|\cdot|_p$. Thus, we regard $(\mathbb{Q}_p, |\cdot|_p)$ as a complete metric space. However, the field \mathbb{Q}_p is not algebraically closed (e.g. $i = \sqrt{-1} \in \mathbb{Q}_p$ if and only if $p \equiv 1 \mod 4$). Let $\overline{\mathbb{Q}}_p$ be a fixed algebraic closure of \mathbb{Q}_p . The p-adic valuation $|\cdot|_p$ extends uniquely to $\overline{\mathbb{Q}}_p$. However:

Proposition. The field $\overline{\mathbb{Q}}_p$ is not complete with respect to $|\cdot|_p$.

Proof. Let β_n be defined as:

$$\beta_n = \begin{cases} e^{2\pi i/n}, & \text{if } (n,p) = 1; \\ 1, & \text{otherwise.} \end{cases}$$

One can prove that if we define:

$$\alpha = \sum_{n=1}^{\infty} \beta_n p^n$$

then $\alpha \notin \overline{\mathbb{Q}}_p$, although $\sum_{n=m}^{\infty} \beta_n p^n \to 0$ as $m \to \infty$ (see [?], p. 48, for details). Thus, $\overline{\mathbb{Q}}_p$ is not complete with respect to $|\cdot|_p$.

Definition. The field of complex p-adic numbers is defined to be the completion of $\overline{\mathbb{Q}}_p$ with respect to the p-adic absolute value $|\cdot|_p$.

Proposition (Properties of \mathbb{C}_p). The field \mathbb{C}_p enjoys the following properties:

- 1. \mathbb{C}_p is algebraically closed.
- 2. The absolute value $|\cdot|_p$ extends uniquely to \mathbb{C}_p , which becomes an algebraically closed, complete metric space.
- 3. \mathbb{C}_p is a complete ultrametric field.
- 4. $\overline{\mathbb{Q}}_p$ is dense in \mathbb{C}_p .
- 5. \mathbb{C}_p is isomorphic to \mathbb{C} as fields, although they are not isomorphic as topological spaces.

References

[1] L. C. Washington, *Introduction to Cyclotomic Fields*, Springer-Verlag, New York.