12.2 DC Circuits

We define the following quantities on each element in a circuit.

• Current

$$I \equiv \frac{dQ}{dt},\tag{12.47}$$

where Q is the charge that passes through a fixed cross section on the circuit.

The cross section is defined with the choice of a normal direction $\hat{\mathbf{n}}$, and the current is positive or negative if it flows in the $\hat{\mathbf{n}}$ or $(-\hat{\mathbf{n}})$ direction.

Q 12.61: As the current flows in a conducting wire in a DC circuit, what makes the field line bend to follow the wires?

We assume that, except on capacitors, there is no charge accumulation on a circuit, so that the current is everywhere the same regardless of how the cross-sectional surface is defined.

There are actually small amount of charges accumulated at various places on a circuit.

Just like how we have defined charge density ρ , surface charge density σ , and line charge density λ for the electric charge, for the electric current I, we define current density \mathbf{J} , and surface current density \mathbf{K} . The current density \mathbf{J} is the current per unit area, and the surface current density \mathbf{K} is the current per unit length.

Q 12.62: What is the current I along a strip of conductor of width L with a uniform surface current density K?

• Voltage

The voltage across a circuit element is also defined with the choice of a direction. It is conventionally defined together with the current as follows (with the exception of batteries). We label the two endpoints of a circuit element by + and -. The voltage across the element is defined to be V = V(+) - V(-), and the current is positive if it flows from the end labelled + to the end labelled -.

+

In the figure on the right, the arrow is used to define the reference direction. It does not have to agree with the actual direction of the current, as I can be both positive and negative. Similarly, the voltage of the point with the + sign is not necessarily higher than the point with the - sign.

• Resistance

$$R \equiv \frac{V}{I}.\tag{12.48}$$

Ohm's Law

R is (often, roughly) approximately a constant in a certain range of voltage/current for a resistor. (There is almost no information in this statement

R is normally positive for resistors if we define V and I in the way described above.

except that it appears to hold in all experiments people have done during Ohm's time.)

• Resistivity

The <u>resistivity</u> (which is unfortunately also conventionally denoted as ρ) of a material is defined by $\rho \equiv RA/\ell$, where R is the resistance of the resistor made of this material as a tube of length ℓ and cross-sectional area A.

Q 12.63: Why is ρ expected to be independent of A and ℓ ?

• Power

$$P \equiv \frac{dE}{dt} = IV, \tag{12.49}$$

where E is the energy dissipated over an element.

• DC \equiv Direct Current, AC \equiv Alternating Current.

We will first discuss DC circuits.

It refers to the source of electric power.

• Kirchhoff's Rules:

Kirchhoff's Junction Rule: $\sum_{i} I_i = 0$.

Kirchhoff's Loop Rule: $\sum_a V_a = 0$.

Q 12.64: Why do Kirchhoff's laws hold?

The assumptions behind Kirchhoff's laws are that there is no time-dependent net charges accumulated anywhere on the circuits and that there is no timedependent magnetic field passing through the circuit.

• Series And Parallel Connections

Two elements in series have the same current; two elements in parallel have the same voltage.

Superposition Principle

The circuit elements R, C, L are linear elements, because when the current $I_1(t)$ is associated with the potential $V_1(t)$, and $I_2(t)$ with $V_2(t)$, we immediately know that the current $I(t) = aI_1(t) + bI_2(t)$ is associated with the potential $V(t) = aV_1(t) + bV_2(t)$.

The Kirchhoff's rules are linear. Hence, a circuit with only linear elements obey superposition principle.

The batteries are not linear because its voltage is a fixed number. But we can imagine superposing a battery V_1 with another battery V_2 to obtain a new battery $V = V_1 + V_2$.

A conducting wire is the same as a battery with $V=0. \label{eq:asymptotic}$

Ex 12.45: Find the current on the resistors for (1) $V_{B_1} = V_1$ and $V_{B_2} = 0$, and (2) $V_{B_1} = 0$ and $V_{B_2} = V_2$. Show that the current on the resistors is a superposition of these two problems when $V_{B_1} = V_1$ and $V_{B_2} = V_2$.

12.2.1 RC Circuits

Ex 12.46: For the circuit above, if the circuit is closed at t = 0, and the capacitor has a constant voltage V_0 for t < 0, what is the voltage on the capacitor $V_C(t)$ for t > 0? (The resistance of the resistor is R and the battery has a constant voltage V_S .)

HW: (2-3) See the figure below. For t < 0, the voltage across C_1 is a given number V_1 . The circuit is closed at t = 0. Find the voltage V(t) across C_1 for t > 0. For simplicity, let $C_1 = C_2 = C$ and $R_1 = R_2 = R$.

Define V(t) such that it is positive when the upper plate of C_1 has a higher voltage than the lower plate.

