

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ЛАБОРАТОРНАЯ РАБОТА

на тему:

" Программная реализация интерполирования функции двух переменных 1.2.2a-треуг"

Направление: 01.03.02 Прикладная математ	тика и информатика
Обучающийся: Попова Софья Ивановна	
Группа: ПМ-1901	Подпись:
Проверил: Хазанов Владимир Борисович Должность: Профессор	
Оценка:	Дата:
Подпись:	

Оглавление

Необходимые формулы	3
Исходные данные	4
Трограмма:	
Выходные данные:	
эмходиме даниме	•• •

Необходимые формулы

1.2.2. Интерполяционная формула Лагранжа

явное интерполирование:
$$g_n(\mathbf{x}) = \sum_{k=0}^n f_k \Phi_k(\mathbf{x}), \ f_i = f(\mathbf{x}_i), \ \Phi_k(\mathbf{x}_i) = \delta_{ik} = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases} \Rightarrow g_n(\mathbf{x}_i) = f(\mathbf{x}_i), \ i = \overline{0,n}$$

а) Алгебраическое интерполирование (s=2)
$$P_{nm}(x,y) = \sum_{k=0}^n \sum_{l=0}^m a_{kl} x^k y^l$$

$$\omega(x) = \prod_{i=0}^n (x-x_i), \ \widetilde{\omega}(y) = \prod_{j=0}^m (y-y_j)$$

• треугольная $(x_i, y_j) \\ \text{сетка узлов} \qquad i+j=\overline{0,n} \qquad P_{mm}(x,y) = \sum_{k+l=0}^n \prod_{i=0}^{k-1} \prod_{j=0}^{l-1} \frac{x-x_i}{x_k-x_i} \frac{y-y_j}{y_l-y_j} f(x_k,y_l)$

Рисунок 1 - Формулы

Исходные данные

f1[
$$x_{y}$$
] := $x^{2}y + \cos[y/2]/2 + y$

[KOCUHYC]

f2[x_{y}] := $x^{3} + \sin[y^{4}/2]$

[CUHYC]

Рисунок 2 – исходные данные

Программа:

$$\begin{split} \mathsf{P}[j_-, x_-, X_-] &:= \mathsf{Product} \Big[\mathsf{If} \Big[j \neq \mathbf{i}, \frac{x - X [\mathbf{i}]}{X [\mathbf{j}]_0 - X [\mathbf{i}]}, 1 \Big], \{\mathbf{i}, 1, \mathsf{Length@}X \} \Big] \\ \mathsf{P2}[i_-, j_-, x_-, y_-, X_-, Y_-] &:= \mathsf{Times}[\mathsf{P}[i, x_-, X], \mathsf{P}[j, y_-, Y]] \\ & | \mathsf{умножить} \\ \mathsf{PAll}[f_-, x_-, y_-, X_-, Y_-] &:= \mathsf{Sum}[\mathsf{Sum}[f[X[\mathbf{i}]], Y[\mathbf{j}]] \star \mathsf{P2}[\mathbf{i}, \mathbf{j}, x_-, y_-, X_-, Y], \{\mathbf{j}, 1, \mathsf{Length@}Y \}], \{\mathbf{i}, 1, \mathsf{Length@}X \}] \\ & | \mathsf{C} \cdots \mathsf{C}_{\mathsf{CУММA}} \\ & \mathsf{Pисунок} \ 3 - \mathsf{peaлизация} \end{split}$$

Оценка точности полученного результата:

Plot3D[{PAll[f1, x, y, {-5, -1, 2, 5}, {-5, -1, 2, 5}], f1[x, y]}, {x, -5, 5}, {y, -5, 5}, PlotLegends → "Expressions"] | график функции 2-х переменных | __nегенды графика

Рисунок 4

Plot3D[{PAll[f2, x, y, {-9, -3, 0, 5, 10, 25}, {-9, -3, 0, 3, 7, 20}], f2[x, y]}, $\{x, -3, 6\}$, $\{y, -3, 10\}$, |график функции 2-x переменных

PlotLegends → "Expressions"]

легенды графика

Рисунок 5