Relatório - Trabalho Prático 1

Algoritmos 2

Marcelo Ganem, Rafael Paniago, Pedro Loures

{marceloganem, rafaelpaniago, pedroloures}@dcc.ufmg.br
Universidade Federal de Minas Gerais

8 de junho de 2025

1 Especificação do Problema

O código que acompanha este relatório implementa o **armazenamento e consulta de pontos geográficos**, bem como suas informações correspondentes – pertinentes aos bares cadastrados na Prefeitura de Belo Horizonte e ao festival *Comida di Buteco* – em uma **árvore K-dimensional**.

1.1 Dados de entrada

A base de dados primária para a implementação é o relatório em formato .csv de localização das atividades econômicas cadastradas no município de Belo Horizonte disponibilizada mensalmente pela Secretaria Municipal da Fazenda da PBH¹.

Adicionalmente, dados **não-estruturados** do festival *Comida di Buteco*, disponíveis na lista de participantes do evento², são necessários para a execução do exercício extra.

Por fim, definimos a entrada do usuário como um **retângulo** sob o espaço bidimensional representado pelo mapa de Belo Horizonte.

1.2 Árvores K-Dimensionais

O enunciado propõe a organização dos dados obtidos conforme latitude e longitude em uma árvore K-dimensional. Essa estrutura permite realizar buscas em intervalos ortogonais³ em tempo $O(\sqrt{n}+k)$ no caso bidimensional (para uma árvore com n nós e retornando k resultados) dado um processo de construção de custo $O(n\log n)$.

1.3 Ferramentas

A implementação do trabalho na linguagem Python requer a OpenStreetMaps API⁵ para obtenção de coordenadas geográficas correspondentes aos endereços dos dados primários e a biblioteca dash-leaflet⁶ para a construção da interface gráfica. Todas as ferramentas adicionais utilizadas são explicitamente justificadas na Seção 2.

1.4 Requisitos

A tarefa consiste em implementar uma interface web que permita ao usuário selecionar uma área retangular no mapa de Belo Horizonte e, por meio da busca intervalar na árvore K-dimensional, filtrar entre os restaurantes em uma determinada tabela.

1.4.1 Requisitos adicionais (Comida di Buteco)

Como uma tarefa opcional, dados do festival Comida di Buteco podem ser cruzados com os dados da tarefa principal, aumentando a interface web com um *pop-up* dinâmico que exibe informações⁷ sobre o prato concorrente de restaurantes participantes.

2 Implementação

2.1 Processamento de dados

2.1.1 Filtragem

Um primeiro filtro seleciona somente as entradas de CNAE 5611201.0, 5611204.0 ou 5611205.0, correspondentes a bares e restaurantes. Então,

¹https://dados.pbh.gov.br/dataset/
atividades-economicas1

²https://comidadibuteco.com.br/butecos/ belo-horizonte

³Do inglês orthogonal range search.

⁴Na implementação ótima. A implementação utilizada aqui constrói a árvore em $O(n \log^2 n)$.

⁵https://www.openstreetmap.org/

⁶https://www.dash-leaflet.com/

⁷Vale observar que as informações se limitam às imagens disponíveis na galeria de restaurantes – isso porque as páginas dos estabelecimentos específicos não estão disponíveis desde (pelo menos) 03/06/2025.

descartamos as colunas excedentes, mantendo: nome, endereço – formatado como uma única string, data de início das atividades e um campo booleano condicional à existência de um alvará emitido pela prefeitura.

2.1.2 Geolocalização

Aumentamos os dados filtrados com coordenadas geográficas correspondentes ao endereço de cada bar utilizando a biblioteca geopy⁸. Assim, definimos os valores a serem utilizados para ordenação na árvore K-dimensional.

2.1.3 Deduplicação

Deduplicamos os dados, tendo em vista a duplicação extensiva presente no conjunto original, em função do campo NOME da entrada (não processado).

2.1.4 Coleta e casamento (Comida di Buteco)

Os dados foram extraídos por meio de web scraping utilizando a biblioteca bs 49. O casamento entre os dados do Comida di Buteco e da PBH é feito com base em uma representação normalizada da forma rua#número, e então desambiguado com base na contagem de palavras em comum no campo NOME – também normalizado. Por normalização, nos referimos à remoção de acentos, caracteres não alfanúmericos e palavras e sequências irrelevantes.

2.2 Árvores K-Dimensionais

A implementação da árvore para busca intervalar é feita em C++ e Python. Utilizamos a biblioteca pybind11 10 para compilar o código da classe que implementa a árvore K-dimensional em C++, incluindo um método construtor $O(n\log^2 n)$ e um método de consulta $O(\sqrt{n}+k)$. A implementação em Pyhton apresenta métodos equivalentes que invocam o método na classe original, e é incluída por conveniência.

2.3 Interface Web

O aplicativo dash-leaflet implementado apresenta um mapa e uma tabela que filtra constantemente os restaurantes sob a seleção retangular atual – que pode ser iniciada pelo usuário clicando no botão correspondente no canto

8https://geopy.readthedocs.io/en/stable/

superior esquerdo. Adicionalmente, restaurantes participantes do *Comida di Buteco* aparecem em destaque nas primeiras posições da tabela.

Selecionar um restaurante na tabela ativa um marcador no mapa e centraliza a visualização atual no restaurante selecionado. Passar o mouse (hover) no marcador de um restaurante participante do Comida di Buteco ativa um pop-up mostrando informações do restaurante e uma imagem do prato concorrente.

3 Considerações

- A geolocalização de dados e a posterior filtragem por dados geolocalizados para display no mapa causa uma perda de aproximadamente 3.000 entradas.
- Os critérios de casamento descritos na Subseção 2.1.4 casam 78 dos 124 restaurantes participantes com os dados deduplicados não geolocalizados, e 51 com os dados filtrados por geolocalização.
- 3. A árvore é construída sempre que o servidor é incializado. Para otimização, uma ideia é armazenar a estrutura ordenada em disco essa solução é mais escalável para um número de entradas fora dos limites específicos deste trabalho.

⁹https://pypi.org/project/beautifulsoup4/

¹⁰https://github.com/pybind/pybind11