Homework 1

Jim Zieleman

August 28, 2020

- 1. (a) My name is Jim Zieleman
 - (b) Suppose A and B are sets. Then $A \setminus (A \setminus B) = A \cap B$.
 - (c) Suppose A and B are subsets of a set X. Then $(A \cup B)^c = A^c \cap B^c$.
 - (d) Suppose A and B are subsets of a set X. Then $(A \cap B)^c = A^c \cup B^c$.
 - (e) Suppose $\{A_i\}_{i\in I}$ is a collection of subsets of a set X. Then

$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c.$$

(f) Suppose $\{A_i\}_{i\in I}$ is a collection of subsets of a set X. Then

$$\left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} A_i^c.$$

2. (b) Suppose A and B are sets. Then $A \setminus (A \setminus B) = A \cap B$.

Proof:

Consider $A \setminus (A \setminus B)$:

We can see that $(A \setminus B) = A - B = A - (A \cap B)$.

Then $A \setminus (A \setminus B) = A - (A - (A \cap B)).$

Then $= A - A + (A \cap B).$

Then $= A \cap B$.

Thus $A \setminus (A \setminus B) = A \cap B$.

(c) Suppose A and B are subsets of a set X. Then $(A \cup B)^c = A^c \cap B^c$.

Proof:

Consider $(A \cup B)^c$:

Let $x \in (A \cup B)^c$.

Then $x \notin (A \cup B)$.

Then $x \notin A$ and $x \notin B$.

Then $x \in A^c$ and $x \in B^c$.

Then $x \in A^c \cap B^c$.

Thus $(A \cup B)^c = A^c \cap B^c$ since $x \in (A \cup B)^c$ and $x \in A^c \cap B^c$.

3. Let $A_n = \{x | 0 < x < 1/n\}$ or (0, 1/n). Then $\forall m > n, A_m \subset A_n$.

For example consider 2>1, such that $A_2=(0,1/2)$ and $A_1=(0,1)$. Then clearly $A_2\subset A_1.$

So with our definition of A_n we have: $A_1 \cap A_2 \cap ... \cap A_n = A_n = (0, 1/n) = \emptyset$ However, $A_1 \cap A_2 \cap ... = \lim_{n \to \infty} A_n = \{x | 0 < x < 0\} = \emptyset$