作业(2):

1. 设 $S = \{x \mid Ax \ge b\}$, 其中 $A \ge m \times n$ 矩阵, m > n, A的秩为n。证明 $x^{(0)} \ge S$ 的极点的充要条件是 $A \Rightarrow b$ 可作如下分解:

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

其中, A_1 有 n 个行,且 A_1 的秩为 n , b_1 是 n 维列向量,使得 $A_1x^{(0)}=b_1$, $A_2x^{(0)}\geq b_2$ 。

2. 假设用单纯形方法解线性规划问题

$$\begin{array}{ll}
\min & cx \\
s.t. & Ax = b \\
& x \ge 0
\end{array}$$

在某次迭代中对应变量 x_j 的判别数 $z_j-c_j>0$,且单纯形表中对应的列 $y_j=B^{-1}p_j\leq 0$ 。证明:

$$d = \begin{bmatrix} -y_j \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

是可行域的极方向。其中分量 1 对应 x_i 。(假设 B 为 A 的前 m 列。)

3. 用单纯形方法解下列线性规划问题:

(1) min
$$3x_1 - 5x_2 - 2x_3 - x_4$$

 $s.t$ $x_1 + x_2 + x_3$ ≤ 4
 $4x_1 - x_2 + x_3 + 2x_4 \leq 6$
 $-x_1 + x_2 + 2x_3 + 3x_4 \leq 12$
 $x_j \geq 0, \quad j = 1, \dots, 4$
(2) min $-3x_1 - x_2$
 $s.t$ $3x_1 + 3x_2 + x_3 = 30$
 $4x_1 - 4x_2 + x_4 = 16$
 $2x_1 - x_2 \leq 12$
 $x_j \geq 0, \quad j = 1, \dots, 4$