

第十三届中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2022

数据智能 价值创新

OceanBase

数据来源:数据库产品上市商用时间

openGauss

RASESQL

百亿级分布式文件系统 FastCFS架构与实现

余庆 FastDFS & FastCFS创始人

自我介绍

- ➤ 分布式文件系统 FastDFS & FastCFS 作者
- > 曾任职于新浪、雅虎中国和阿里巴巴
- > 对分布式架构和高性能编程有着深入的研究和丰富的实践经验

为什么要研发FastCFS?

- ▶ 几款开源分布式文件系统: GlusterFS、MooseFS、Ceph
- ➤缺乏一款好用的DFS
- > 数据库云化是趋势

数据库存储面临的挑战

- > 数据一致性
- > 系统可用性
- ➤ IO性能

数据库对分布式存储要求

- > 硬盘好
- > 网络好
- > 软件好

FastCFS的定位

FastCFS 是一款强一致性、高性能、高可用、支持百亿级海量文件的通用分布式文件系统,可以作为MySQL、PostgresSQL、Oracle等数据库,k8s,KVM,FTP,SMB和NFS等系统的后端存储。

FastCFS版本历史

➤ V1.0: 2020年12月第一个版本

➤ V2.0: 2021年4月支持k8s

➤ V3.0: 2021年12月实现存储插件

➤ V3.3: 2022年4月生产环境可用

➤ V3.7: 2022年11月当前最新版本

FastCFS核心模块

faststore架构

Serv	er 21
DG 5	DG 6
DG 7	DG 8
Serv	er 22
DG 5	DG 6
DG 7	DG 8
Serv	er 23
DG 5	DG 6
DG 7	DG 8

•••

FastCFS架构特点

- > 有中心和无中心结合
- ▶ 分组方式,简单高效
 - 服务器分组
 - 数据分组
- ➤ 对等结构,自动failover

FastCFS软件特点

- > 保证数据强一致前提下实现了高性能
- ➤ 完全兼容POSIX文件接口,支持文件锁,支持百亿级海量文件
- ➤ 高可用:不存在单点,自动failover
- ▶ 简洁高效的架构和原生实现,不依赖第三方组件
- > 数据写入性能强悍

FastCFS如何做到数据强一致

- > 数据版本号
- ▶ 集群动态拓扑信息
- > 多数派机制,特有的公共选举节点
- > 幂等机制

FastDIR如何实现高性能

- > 支持命名空间
- ➤ 采用跳表(skiplist)
- > 数据线程无锁化

FastDIR如何支持百亿级海量文件

- ➤ binlog + 存储插件: 异步持久化
 - 修改的inode数目达到阈值
 - 超过特定时间间隔
- > 按目录结构淘汰
- > 按数据线程淘汰

FastCFS性能对比数据(一)

读写方式	并发数	FastCFS 2.2.0	Ceph 13.2.10	比值
顺序写	4	126.0	20.0	630%
	8	216.0	32.7	661%
	16	300.0	45.2	664%
随机写	4	24.9	17.4	143%
	8	44.0	25.0	176%
	16	65.9	27.7	238%
顺序读	4	136.2	58.0	235%
	8	245.1	97.2	252%
	16	337.9	152.0	222%
随机读	4	48.9	47.5	103%
	8	92.2	86.8	106%
	16	163.2	143.0	114%

注:性能指标为bw(吞吐量),单位为MiB。

FastCFS性能对比数据(二)

读写方式	并发数	V3.6	V2.2	比值
顺序写	4	351	126	279%
	8	351	216	163%
	16	347	300	116%
随机写	4	31.9	24.9	128%
	8	57.7	44.0	131%
	16	90.1	65.9	137%
顺序读	4	109	57.7	189%
	8	205	112	183%
	16	374	199	188%
随机读	4	61.6	43.4	142%
	8	114	81.9	139%
	16	211	137	154%

注:性能指标为bw(吞吐量),单位为MiB。

FastCFS性能对比数据(三)

读写方式		FastCFS 吞吐量(MB/s)		MooseFS 吞吐量	FCFS与MFS百分比	
		V3.5	V 3.6	(MB/s)	V3.5	V3.6
1MB顺序写	队列深度 1	4.61	256.58	152.14	2%	169%
	队列深度 8	4.82	316.43	171.01	2%	185%
1MB顺序读	队列深度 1	8.78	350.05	357.35	3%	98%
	队列深度 8	8.79	448.85	430.85	2%	104%
4KB随机写	队列深度 1	0.15	8.58	5.12	2%	168%
	队列深度 32	0.16	18.98	13.41	1%	142%
4KB随机读	队列深度 1	0.61	11.41	11.68	5%	98%
	队列深度 32	0.64	20.53	20.57	3%	100%

FastCFS如何做到极高性能

- ▶ 简洁高效的架构和原生实现
- ▶ 内存池、连接池、线程池等
- > 客户端读写缓存

FastCFS后续工作计划

- > 支持集群在线扩容
- ➤ 分级存储 & slice数据合并: 支持两级存储(如SSD+HDD)
- ➤ S3、块设备、NBD等接口方式

