Introductory Econometrics I

A Short Introduction to

Causal Inference and Program Evaluation

Yingjie Feng

School of Economics and Management

Tsinghua University

May 14, 2024

Outline

Causal Inference

2 Potential Outcomes

3 An Example: Vaccine Effectiveness

4 Causal Inference and Linear Regression

Causal Inference

- So far we have focused on OLS regression from a technical perspective:
 - ► Algebraic properties
 - ▶ Unbiasedness, Consistency
 - Hypothesis testing, confidence intervals
 - Functional form, dummy variables
 - ▶ etc.
- But do not forget OLS is just a "tool".
- In today's class we "deviate" from OLS technicalities and try to formally talk about *causality*, which is key to economics and many other disciplines.
 - ▶ But you will see how our causal analysis is related to OLS.

Causal Inference

- The goal of program evaluation is to assess the causal effect of program or policy interventions. Examples:
 - ▶ Job training programs on earnings and employment
 - ▶ Minimum wage on employment
 - Military service on earnings and employment
- In addition, we may be interested in the effect of variables that do not represent policy interventions. Examples:
 - Interest rate on credit card usage
 - ▶ Terrorist risk on economic behavior
 - German reunification on economic growth

Causes and Effects

- Important distinction between cause and effect:
 - ▶ Cause: an event that generates some phenomenon.
 - Effect: the consequence (or one of the consequences) of the cause.
- Asymmetry in the difficulty of learning about the cause of an effect versus learning about the effect of a cause.
 - ▶ Learning causes of an effect is unclear and hard to be formalized as a research question (in economics).
 - **★** There might be 1000 causes of an effect...
 - \star We can keep searching for a more "fundamental" cause
 - ▶ But learning the effect of a cause is a well-defined question, as we'll see.

Causal Effects in a Potential Outcome Framework

- We will employ a causal inference framework in today's class.
- Two key ingredients:
 - ▶ Potential Outcomes: each individual has a different outcome corresponding to each level that the treatment takes.
 - ★ Example: your potential income in the labor market if you had studied at Tsinghua, and the potential income if you had not studied at Tsinghua
 - \star Of course, in the real world we can only observe *one* of the potential outcomes
 - Assignment Mechanism: each individual is assigned treatment based on some mechanism, which guides how estimation and inference will be conducted.
 - ★ This is analogous to the question in the regression model, "how is the key explanatory variable of interest determined?"

Outline

Causal Inference

Potential Outcomes

3 An Example: Vaccine Effectiveness

4 Causal Inference and Linear Regression

Potential Outcomes: Causation as Manipulation

- Causal analysis: must have ability to expose or not expose each unit to action of cause.
- Essential "each unit be potentially exposable to any one of the causes" [Holland, 1986].
 - ▶ If units could have been exposed to cause but they were not in practice: no problem.
 - ► If units could not have been exposed to cause in any state of world: our cause might not really be a cause.
 - ► Example: worker's education level versus worker's gender.
- Important: manipulability may require some imagination and has to be understood in context.

Potential Outcomes: Causation as Manipulation

- Each unit has as many potential outcomes as different possible treatments there are.
 - ▶ Called "potential" outcomes because **only one** of them is observed.
 - Observed outcome: the one corresponding to level of the treatment actually selected by (or assigned to) the unit.
- This introduces the idea of **counterfactual**: what would the outcome of this unit look like if the unit had been exposed to a different treatment?
 - "... effect of a cause is always **relative** to another cause." (Holland, 1986)
 - ▶ Good research needs to clearly specify what the counterfactual is.

Potential Outcomes: Causation as Manipulation

- What is the counterfactual in your analysis?
- Examples:
 - "Reduced infection probability due to vaccination"?
 - * Counterfactual seems to be very clear: do not receive a vaccine (probably get a placebo in a randomized experiment)
 - "High income due to studying at Tsinghua?"
 - ★ Less clear: study at PKU? study at any other university in China? do not go to any college? go to army?
 - ▶ "Lower wage due to being a woman"?
 - **★** Very hard to understand, unless a special design is possible.
 - * An excellent example is "Are Emily and Greg More Employable Than Lakisha and Jamal?" (Bertrand and Mullainathan, 2004, AER).

Basic Binary Treatment Setup

- Each unit i is exposed to a binary treatment.

 - $d_i = 0$ if unit i received the control cause
- Each unit i has two potential outcomes:
 - \triangleright $y_i(1)$: outcome that would be observed if i were exposed to treatment cause
 - $y_i(0)$: outcome that would be observed if i were exposed to control cause
- Observed data: $(y_i, d_i)'$ where

$$y_i = d_i \cdot y_i(1) + (1 - d_i) \cdot y_i(0)$$

• This setup can be extended to multi-valued or even continuous treatment.

Treatment Effects

- For each unit i, the causal effect of the treatment is $y_i(1) y_i(0)$
- In this framework we can define many parameters of interest for the population
 - ▶ Average treatment effect (ATE): $\mathbb{E}[y_i(1) y_i(0)]$
 - ▶ Average treatment effect on the treated (ATT): $\mathbb{E}[y_i(1) y_i(0)|d_i = 1]$
 - ▶ Average treatment effect on the untreated (ATU): $\mathbb{E}[y_i(1) y_i(0)|d_i = 0]$
 - Quantile treatment effect (QTE): $Q_{\tau}[y_i(1)] Q_{\tau}[y_i(0)]$
 - ▶ etc.

Outline

Causal Inference

2 Potential Outcomes

3 An Example: Vaccine Effectiveness

4 Causal Inference and Linear Regression

Vaccines Effectiveness

- Vaccine development procedure often consists of an experiment to check its
 effectiveness in the real world.
- Does a vaccine decrease the probability of infection with a virus?
 - ightharpoonup n participants: $1 \le i \le n$
 - ▶ Binary explanatory variable ("treatment")
 - ★ $d_i = 1$ if vaccinated; $d_i = 0$ if not
 - * $n_1 = \sum_{i=1}^n d_i, n_0 = \sum_{i=1}^n (1 d_i)$
 - ▶ Binary dependent variable ("outcomes")
 - * Each person has two potential outcomes: $y_i(1)$ if vaccinated; $y_i(0)$ if not vaccinated
 - * For each $d = 0, 1, y_i(d) = 1$ if i is infected with Covid; $y_i(d) = 0$ if not
 - ▶ Observed outcome: $y_i = d_i y_i(1) + (1 d_i) y_i(0)$
 - * $y_i = y_i(1)$ if $d_i = 1$; $y_i = y_i(0)$ if $d_i = 0$

Vaccines Effectiveness

- Vaccine development procedure often consists of an experiment to check its
 effectiveness in the real world.
- Does a vaccine decrease the probability of infection with a virus?
 - ▶ n participants: $1 \le i \le n$
 - For each person i, we observe either $y_i(1)$ or $y_i(0)$

	Vaccinated	Not vaccinated
infected	$y_i(1) = 1$	$y_i(0) = 1$
not infected	$y_i(1) = 0$	$y_i(0) = 0$

- Given a sample,
 - * $\sum_{i:d_i=1} y_i$: # of infected people in the treatment group
 - * $\sum_{i:d_i=0} y_i$: # of infected people in the control group
- ▶ Difference in "infection rate" between two groups:

$$\frac{1}{n_1} \sum_{i:d_i=1} y_i - \frac{1}{n_0} \sum_{i:d_i=0} y_i$$

What does OLS estimate in this example?

• A "binary-binary" regression:

$$y_i = \beta_0 + \delta_0 d_i + u_i$$

▶ In PS1 you show that the OLS estimator $\hat{\delta}_0$ is equivalent to a simple difference-in-means estimator:

$$\hat{\delta}_0 = \frac{1}{n_1} \sum_{i:d_i=1} y_i - \frac{1}{n_0} \sum_{i:d_i=0} y_i$$

• Statistically, $\hat{\delta}_0$ is estimating the difference in population means

$$\tilde{\delta}_0 = \mathbb{E}[y_i(1)|d_i = 1] - \mathbb{E}[y_i(0)|d_i = 0]$$

▶ This amounts to assuming $\mathbb{E}[u_i|d_i] = 0$ in the regression framework, and thus

$$\beta_0 = \mathbb{E}[y_i|d_i = 0], \quad \beta_0 + \delta_0 = \mathbb{E}[y_i|d_i = 1], \quad \delta_0 = \tilde{\delta}_0$$

Selection Bias

$$y_i = \beta_0 + \delta_0 d_i + u_i$$

• But does it make sense to assume $\mathbb{E}[u_i|d_i] = 0$? Or equivalently, are we interested in $\tilde{\delta}_0 = \mathbb{E}[y_i(1)|d_i = 1] - \mathbb{E}[y_i(0)|d_i = 0]$?

$$\mathbb{E}[y_i(1)|d_i = 1] - \mathbb{E}[y_i(0)|d_i = 0]$$

$$= \underbrace{\mathbb{E}[y_i(1) - y_i(0)|d_i = 1]}_{\text{average treatment effect on the treated}} + \underbrace{\mathbb{E}[y_i(0)|d_i = 1] - \mathbb{E}[y_i(0)|d_i = 0]}_{\text{Selection bias}}$$

- Maybe interested in average treatment effect on the treated (ATT)
 - ▶ If selection bias=0, then the answer is yes.
 - ▶ Otherwise, the estimator is biased (for ATT)!
 - Probably, healthier people self-selected to get a vaccine; risk-averse people self-selected not to get a vaccine

Randomized Experiments v.s. Observational Data

• In the vaccine example, researchers may remove bias by randomized experiment which makes the following hold:

$$(y_i(0), y_i(1)) \perp d_i \Rightarrow \mathbb{E}[y_i(0)|d_i = 1] = \mathbb{E}[y_i(0)|d_i = 0]$$

- However, in many cases we cannot randomize and have to rely on observational data.
- One possible solution is "selection on observables".

$$(y_i(0), y_i(1)) \perp d_i \mid \mathbf{x}_i$$

- \triangleright "Controlling for" some covariates \mathbf{x}_i , treatment becomes (as if) randomized
- ► This is analogous to the reason why you want to run multiple regression rather than a simple regression

Outline

Causal Inference

2 Potential Outcomes

3 An Example: Vaccine Effectiveness

4 Causal Inference and Linear Regression

Relationship with Linear Regression

• How is the potential outcome framework related to the linear regression

$$y_i = \beta_0 + \frac{\delta \cdot d_i}{\delta \cdot d_i} + \beta_1 x_1 + \dots + \beta_k x_k + u$$

- OLS theory itself does not tell us if δ can be interpreted as an average treatment effect (or other causal parameters).
- Some general conclusions are d: 1 (\(\forall (\forall) \forall (\forall (\forall (\forall) \forall (\forall (\forall (\forall) \forall (\forall) \forall (\forall) \forall (\forall (\forall) \forall) \forall (\forall) \forall (\forall) \forall) \forall (\forall) \forall (\forall) \forall) \forall (\forall) \forall (\forall) \forall) \forall (\forall) \forall (\forall) \forall) \forall (\forall) \forall) \forall (\forall) \forall (\forall) \forall (\forall) \forall) \forall) \forall (\forall) \forall) \forall) \fora
 - In a randomized experiment OLS estimator $\hat{\delta}$ can identify the average treatment effect. We have actually shown that.
 - ▶ Under selection on observables, OLS estimator does not identify a causal

Relationship with Linear Regression

- What is the "correct" regression model we should work with under selection on observables?
- Recall "zero conditional mean" assumption in our OLS theory implies we try to estimate the conditional expectation of outcome given the covariates.

$$\begin{split} \bullet \text{ Write } v_i(0) &= y_i(0) - \mathbb{E}[y_i(0)] \text{ and } v_i(1) = y_i(1) - \mathbb{E}[y_i(1)]. \text{ Then,} \quad \bullet \text{ gradients} \\ \mathbb{E}[y_i|d_i,\mathbf{x}_i] &= \mathbb{E}[y_i(0) + d_i(y_i(1) - y_i(0))|d_i,\mathbf{x}_i] \quad \Leftrightarrow \quad \text{left } y_i(i) - y_i(\bullet) \not\mid X_i \end{bmatrix} = \\ \mathbb{E}[y_i(0)|d_i,\mathbf{x}_i] + d_i\mathbb{E}[y_i(1) - y_i(0)|d_i,\mathbf{x}_i] \quad \Leftrightarrow \quad \text{left } y_i(i) - y_i(\bullet) \not\mid X_i \end{bmatrix} \\ &= \mathbb{E}[y_i(0)|\mathbf{x}_i] + d_i\mathbb{E}[y_i(1) - y_i(0)|\mathbf{x}_i] \quad \text{constant} \\ &= \mathbb{E}[y_i(0)] + d_i\mathbb{E}[y_i(1) - y_i(0)] + \mathbb{E}[v_i(0)|\mathbf{x}_i] + d_i\mathbb{E}[v_i(1) - v_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + d_i\mathbb{E}[y_i(1) - y_i(0)] + \mathbb{E}[v_i(0)|\mathbf{x}_i] + d_i\mathbb{E}[v_i(1) - v_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + d_i\mathbb{E}[y_i(1) - y_i(0)] + \mathbb{E}[v_i(0)|\mathbf{x}_i] + d_i\mathbb{E}[v_i(1) - v_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + d_i\mathbb{E}[y_i(1) - y_i(0)] + \mathbb{E}[v_i(0)|\mathbf{x}_i] + d_i\mathbb{E}[v_i(1) - v_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + d_i\mathbb{E}[y_i(1) - y_i(0)] + \mathbb{E}[v_i(0)|\mathbf{x}_i] + d_i\mathbb{E}[v_i(0) - v_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + d_i\mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[v_i(0)|\mathbf{x}_i] + d_i\mathbb{E}[v_i(0) - v_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + d_i\mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[v_i(0)|\mathbf{x}_i] + d_i\mathbb{E}[v_i(0) - v_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + d_i\mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[y_i(0)|\mathbf{x}_i] + \mathbb{E}[y_i(0) - y_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)|\mathbf{x}_i] \\ &= \mathbb{E}[y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)] \\ &= \mathbb{E}[y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)] \\ &= \mathbb{E}[y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[y_i(0)] \\ &= \mathbb{E}[y_i(0)] + \mathbb{E}[y_i(0) - y_i(0)] + \mathbb{E}[y_i(0)] + \mathbb{E}[y_i(0)] + \mathbb{E}[y_i(0)] \\ &= \mathbb{E}[y_i(0)] + \mathbb{E$$

Relationship with Linear Regression

- Many other methods are available. Regression as a "technique" may still be useful.
- For example, note the following fact under selection on observables:

$$\begin{split} \mathbb{E}[y_i(1) - y_i(0)] &= \mathbb{E}\left[\mathbb{E}[y_i(1) - y_i(0) | \mathbf{x}_i]\right] \\ &= \mathbb{E}\left[\mathbb{E}[y_i(1) | \mathbf{x}_i] - \mathbb{E}[y_i(0) | \mathbf{x}_i]\right] \\ \mathcal{Y}_i &= \begin{cases} \mathbf{y}_i(0) & \text{if } d \in \mathbb{Z} \\ \mathbf{x}_i(0) & \text{if } d \in \mathbb{Z} \end{cases} \\ &= \mathbb{E}\left[\mathbb{E}[y_i(1) | \mathbf{x}_i, d_i = 1] - \mathbb{E}[y_i(0) | \mathbf{x}_i, d_i = 0]\right] \end{split}$$

• The last line suggests another way to estimate ATE based on regression techniques. (How?)

1 reg /: on X; if d:=1 X; B: estimate of 150 /; / X; di=17. (b) reg /: on X: if d:=0. X; ê: estimate of IE[/i/Xi, di=o].

(3) $\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} x_i \left(\widehat{\beta} - \widehat{x} \right).$ $\widehat{IE} \left[\widehat{\beta} \left(\frac{1}{2} | x_i \right) - \widehat{IE} \left[\frac{1}{2} | x_i \right] \right].$