ШАД. Хэндбук поступающего

Автор: Даниил Скороходов

@neuralspeedster

16.09.2025

Содержание

1.	. Алгебра	3
	1.1. Подстановки	3
	1.1.1. Умножение подстановок	3
	1.1.2. Циклы и транспозиции	4
	1.1.3. Чётность подстановки	5
	1.2. Комплексные числа	6
	1.2.1. Геометрическая интерпретация	6
	1.2.2. Формы записи	8
	1.2.3. Об умножении комплексных чисел	
	1.2.4. Извлечение корней	10
	1.2.5. Корни из единицы	11
	1.3. Системы линейных уравнений	12
	1.4. Линейная зависимость и ранг	13
2.	. Математический анализ	14
3.	. Комбинаторика	
	3.1. Основные правила комбинаторики	
	3.2. Перестановки, сочетания и размещения	17
4.	. Теория вероятностей	18
	4.1. Основные понятия	18
	4.1.1. Операции над событиями	
	4.1.2. Аксиомы вероятности	19
	4.1.3. Следствия из Аксиом	20
5.	б. Алгоритмы и структуры данных && программирование	21
	5.1. Основные понятия	21
	5.2. Анализ сложности и эффективности структур данных	21
	5.2.1. О-символика	21
	5.3. Дополнительные сведения	22
	5.3.1. Метод двух указателей	22
6	Анализ ланных	23

1. Алгебра

Здесь много базы!

1.1. Подстановки

Пусть Ω - конечное множество из n элементов. Удобно считать, что $\Omega = \{1, 2, ..., n\}$. Зададим множество всех биективных преобразований $\Omega \to \Omega$:

$$S = S_n(\Omega) = \{ \sigma : \Omega \to \Omega \mid \sigma - \text{биективно} \}$$
 (1)

Элементы множества S называются nodcmanoвками(или nepecmanoвками) множества Ω .

Развёрнутая запись подстановки $\pi: i \to \pi(i) \,\, \forall i = 1, 2, ..., n$ имеет вид:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix} \tag{2}$$

Подстановка $e=e_{\Omega}=\left(egin{smallmatrix}1&2&\dots&n\\1&2&\dots&n\end{smallmatrix}\right)$ называется единичной подстановкой.

1.1.1. Умножение подстановок

Пусть $\pi, \sigma \in S$. Тогда их произведение $\pi \sigma$ находится из общего определения композиции преобразований:

$$(\pi\sigma)(i) = \pi(\sigma(i)) \tag{3}$$

Пусть, например, $\pi=\begin{pmatrix}1&2&3&4\\2&3&4&1\end{pmatrix}$ и $\sigma=\begin{pmatrix}1&2&3&4\\4&3&2&1\end{pmatrix}$. Тогда:

$$(\pi\sigma)(1) = \pi(\sigma(1)) = \pi(4) = 1$$
 (4)

$$(\pi\sigma)(2) = \pi(\sigma(2)) = \pi(3) = 4 \tag{5}$$

$$(\pi\sigma)(3) = \pi(\sigma(3)) = \pi(2) = 3$$
 (6)

$$(\pi\sigma)(4) = \pi(\sigma(4)) = \pi(1) = 2$$
 (7)

Таким образом, $\pi\sigma=\begin{pmatrix}1&2&3&4\\1&4&3&2\end{pmatrix}$. Заметим, что вообще говоря, $\pi\sigma\neq\sigma\pi$. Имеем:

Свойства произведения подстановок:

- 1. Ассоциативность: $\forall \alpha, \beta, \gamma \in S_n : \alpha(\beta\gamma) = (\alpha\beta)\gamma.$
- 2. Единичный элемент: $\exists e \in S_n : \forall \alpha \in S_n \alpha e = e \alpha.$
- 3. Обратная подстановка: $\forall \alpha \in S_n \exists \alpha^{-1} \in S_n : \alpha \alpha^{-1} = \alpha^{-1} \alpha = e.$

Порядок группы подстановок или же попросту мощность множества подстановок равна факториалу количества элементов Ω . Действительно, для каждого из n элементов множества Ω можно выбрать одно из n мест, затем для оставшихся n-1 элементов — одно из n-1 мест и так далее. В итоге получаем:

Card
$$S_n = n(n-1)(n-2)...1 = n!$$
 (9)

1.1.2. Циклы и транспозиции

Примечание: элементы цикла приведены условно как $\{1,...,m\}$.

Транспозицией называется цикл длины 2. Записывается как $au=(i\ j)$, где $i\ u\ j-$ элементы, которые меняются местами.

Исходя из общего определения цикла, очевидно, что транспозиция оставляет неподвижными все элементы, кроме двух указанных.

Th. 1 (О разложении перестановок). Любая подстановка $\pi \in S_n \setminus \{e\}$ может быть представлена в виде произведения циклов.

Доказательство: Пусть $\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$. Разобьём множество Ω на непересекающиеся циклы. Для этого будем рассматривать последовательности элементов, которые переходят друг в друга под действием подстановки π .

Следствие 1. Любая подстановка может быть разложена в произведение транспозиций.

Доказательство: Разложим подстановку $\pi=\pi_1\pi_2...\pi_k$, где $\pi_1,\pi_2,...,\pi_k$ — циклы. Каждый цикл π_j можно представить в виде произведения транспозиций, например, так: $\begin{pmatrix} 1 & 2 & ... & m \end{pmatrix} = \begin{pmatrix} 1 & l \end{pmatrix} \begin{pmatrix} 1 & l-1 \end{pmatrix} ... \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$.

Индуктивное определение степени подстановки. Пусть $\pi \in S_n$. Тогда:

$$\pi^{s} = \begin{cases} \pi(\pi^{s-1}), & \text{если } s > 0 \\ e, & \text{если } s = 0 \\ \pi^{-1}\left(\left(\pi^{-1}\right)^{-s-1}\right), & \text{если } s < 0 \end{cases}$$
 (10)

Вернёмся к примеру $\pi=\begin{pmatrix}1&2&3&4\\2&3&4&1\end{pmatrix}$ и $\sigma=\begin{pmatrix}1&2&3&4\\4&3&2&1\end{pmatrix}$. Здесь $\pi-$ цикл длины 4, а σ раскладывается в произведение двух транспозиций: $\sigma=\begin{pmatrix}1&4\\2&3\end{pmatrix}$.

$$\sigma^2 = (1 \ 3)(2 \ 4), \sigma^4 = (\sigma^2)^2 = e, \pi^2 = e$$

1.1.3. Чётность подстановки

Пусть подстановка $\pi \in S_n$ раскладывается на множители $\pi = \tau_1 \tau_2 ... \tau_k$, где τ_j транспозиции.

Знаком(или чётностью) подстановки называется число

$$\varepsilon_{\pi} = (-1)^k \tag{11}$$

Тh. 2: Чётность подстановки не зависит от выбора разложения на транспозиции.

Th. 2.1 (О знаке произведения):

$$\varepsilon_{\alpha\beta} = \varepsilon_{\alpha}\varepsilon_{\beta} \tag{12}$$

Th. 3: Количество чётных подстановок равно количеству нечётных и равно $\frac{n!}{2}$.

1.2. Комплексные числа

Комплексным числом называется пара действительных чисел (a, b).

$$\mathbb{C} = \{ (a, b) \mid a, b \in \mathbb{R} \} \tag{13}$$

Если z = (a, b), то

$$a = \Re(z) \tag{14}$$

$$b = \Im(z) \tag{15}$$

a называется действительной частью комплексного числа z,b — мнимой частью.

Для комплексных чисел операции сложения и умножения определяются так:

1.
$$(a,b) + (c,d) = (a+c,b+d)$$

2.
$$(a,b)(c,d) = (ac - bd, ad + bc)$$

Заметим, что $(a,0)=a \ \forall a \in \mathbb{R}$. Так что $\mathbb{R} \subset \mathbb{C}$.

Мнимая единица. $(0,1)^2=(0,1)(0,1)=(0\cdot 0-1\cdot 1,0\cdot 1+1\cdot 0)=(-1,0)=-1.$ Число (0,1) принято обозначать i и называть мнимой единицей. Итак,

$$i^2 = -1 \tag{16}$$

Стандартное обозначение для комплексного числа z=(a,b):

$$z = a + bi (17)$$

Для произвольных комплексных чисел нельзя корректно ввести бинарное отношение порядка(<).

1.2.1. Геометрическая интерпретация

Комплексному числу можно сопоставить точку в двумерном пространстве с декартовыми координатами (a,b). По оси абсцисс откладывается действительная часть, по оси ординат — мнимая.

Рис. 1 - комплексная плоскость

Операция сопряжения. Число $\overline{z}=a-bi$ называется сопряжённым числу z=a+bi. Операция сопряжения соотвествует симметрии $S_{\mathfrak{R}}$ относительно действительной оси.

Заметим, что $\mathfrak{I}(z\overline{z})=0\Leftrightarrow z\overline{z}\in\mathbb{R}$

Модуль комплексного числа. Величина $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$ называется модулем z.

Аргумент комплексного числа. Величина $\arg(z)=\varphi$, где $\varphi\in(-\pi;\pi]$ — ориентированный угол между радиус-вектором z и положительным направлением оси абсцисс называется *аргументом комплексного числа*. Аргумент числа (0,0) не определён.

Неравенство треугольника в комплексных числах. $\forall z_1, z_2 \in \mathbb{C}:$

$$|z_1 + z_2| \le |z_1| + |z_2| \tag{18}$$

(Доказывается алгебраическими преобразованиями или использованием неравенства Коши-Буняковского-Шварца)

Переход в полярные координаты. Сделав замену

$$\begin{cases} r = |z| = \sqrt{a^2 + b^2} \\ \varphi = \arg(z) \end{cases}$$
 (19)

Мы перейдем в полярные координаты, получив тем самым *тригонометрическую* форму записи комплексного числа.

Оказывается, есть всего 8 принципиальных случаев расположения комплексного числа z=a+bi на комплексной плоскости.

Расположение точки (a,b)	Главное значение аргумента
a > 0, b = 0	0
a > 0, b > 0	$\operatorname{arctg}(\frac{b}{a})$
a = 0, b > 0	$rac{\pi}{2}$
a < 0, b > 0	$\pi + \operatorname{arctg}\left(\frac{b}{a}\right)$
a < 0, b = 0	π
a < 0, b < 0	$-\pi + \operatorname{arctg}\left(\frac{b}{a}\right)$
a = 0, b < 0	$-\frac{\pi}{2}$
a > 0, b < 0	$\operatorname{arctg}(\frac{b}{a})$

На самом деле, главными называются значения аргумента из полуинтервала $(-\pi;\pi]$, но, вообще говоря, аргументом можно считать и главный аргумент с добавкой $2\pi k$, где $k\in\mathbb{Z}$. Ввиду этого, главное значение аргумента обозначается $\mathrm{Arg}(z)$, а в целом значение аргумента $\mathrm{arg}(z)$.

1.2.2. Формы записи

1. Алгебраическая:

$$z = a + bi (20)$$

2. Тригонометрическая:

$$z = r(\cos\varphi + i\sin\varphi) \tag{21}$$

3. Показательная:

$$z = re^{i\varphi} \tag{22}$$

Показательная форма есть просто следствие формулы Эйлера:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi \tag{23}$$

Доказательство самой формулы Эйлера вытекает из следующих трёх разложений. $\forall z \in \mathbb{C}$

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$
 (24)

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$
 (25)

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 (26)

Подставим в разложение экспоненты $z=i\varphi$, где $\varphi\in\mathbb{R}$ и учтем следующие тождества: $i^2=-1,\ i^3=-i,\ i^4=1,\ i^5=i.$ Вообще говоря, $i^n=i^{n-4}.$ Отсюда и следует требуемое. \blacksquare

1.2.3. Об умножении комплексных чисел

Алгебраическое умножение комплексных чисел не столь удобно, особенно при возведении в степень.

Пусть даны два комплексных числа $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$ и $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$. Тогда их произведение можно записать в виде:

$$\begin{split} z_1 z_2 &= r_1 r_2 (\cos \varphi_1 + i \sin \varphi_1) (\cos \varphi_2 + i \sin \varphi_2) = \\ &= r_1 r_2 (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i (\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2)) = \\ &= r_1 r_2 (\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2)) \end{split} \tag{27}$$

Итак,

$$\begin{cases} |z_1 z_2| = |z_1| |z_2| \\ \arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \end{cases} \tag{28}$$

Исходя из этого, можно быстро возводить комплексные числа в произвольную натуральную степень.

Формула Муавра. $\forall z = r(\cos \varphi + i \sin \varphi) \in \mathbb{C}, n \in \mathbb{N}$:

$$z^{n} = r^{n}(\cos(n\varphi) + i\sin(n\varphi)) \tag{29}$$

Доказательство: докажем по индукции.

- 1. База: n=1. Тогда $z^1=z=r(\cos\varphi+i\sin\varphi)$. Это уже получено. Для уверенности можем проверить случай n=2. Легко видеть, что это следствие (28) для $z=z_1=z_2$.
- 2. Предположение индукции. Пусть верно для $n \in \mathbb{N}$: $z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$

3. Шаг индукции. Докажем для n+1. Тогда

$$z^{n+1} = z^n z = r^n r(\cos(n\varphi + \varphi) + i\sin(n\varphi + \varphi)) =$$

$$= r^{n+1}(\cos((n+1)\varphi) + i\sin((n+1)\varphi))$$
(30)

Здесь мы снова использовали (28). Таким образом, формула верна для $n+1\Rightarrow$ она верна $\forall n\in\mathbb{N}.$

Дополнительно. Легко видеть, что умножение $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$ на $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$ задаёт композицию поворота $R_o^{\varphi_2}$ и гомотетии $H_O^{r_2}$ точки z_1 на плоскости $\mathbb C$. Полученное преобразование $\mathbb R^2\to\mathbb R^2$ называется поворотной гомотетиней: $H_O^{r_2,\varphi_2}=H_O^{r_2}\circ R_O^{\varphi_2}$.

1.2.4. Извлечение корней

Алгебраическим корнем степени n>1 числа $z\in\mathbb{C}$ называется множество $\Omega=\{w\mid w^n=z\mid w\in\mathbb{C}, n\in\mathbb{N}\}$ и обозначается $\sqrt[n]{z}$.

$$\forall z \in \mathbb{C} : \operatorname{Card}(\sqrt[n]{z}) = n.$$

Выведем формулу для корней из комплексного числа $z = r(\cos \varphi + i \sin \varphi)$.

Пусть
$$\sqrt[n]{z} = \{w_k \mid w_k^n = z \mid k = 0, 1, ..., n - 1\}.$$

- 1. Очевидно, что $|w_k| = \sqrt{r}$, где $\sqrt{r} apu \phi$ метический квадратный корень из действительного числа r. И правда, по формуле Муавра $|z| = |w_k|^n$.
- 2. Пусть $\, \varphi_k = \arg(w_k) .$ Тогда по формуле Муавра: $n \varphi_k = \varphi + 2\pi k .$ Для всех $k \in \{k_0+i \mid i=0,1,...(n-1)\}$ будут получаться все n корней. Поэтому для удобства полагают $k_0=0.$

Итак, доказана формула корней числа $z=r(\cos \varphi+i\sin \varphi) \ \forall k \in \{0,1,...,n-1\}$:

$$w_k = \sqrt{r} \left(\cos \left(\frac{\varphi}{n} + 2\pi \frac{k}{n} \right) + i \sin \left(\frac{\varphi}{n} + 2\pi \frac{k}{n} \right) \right) \tag{31}$$

Все корни из числа z лежат на вершинах правильного n-угольника, вписанного в окружность с центром в начале координат и радиусом \sqrt{r} .

Это легко видеть, исходя из того, что у всех корней одинаковый модуль, и каждый следующий получается из предыдущего поворотом на один и тот же угол $\frac{2\pi}{n}$.

Рис. 2 — корни 5 степени из z=4+4i

1.2.5. Корни из единицы

Положим z=1. Тогда корни степени n выражаются так:

$$\sqrt[n]{1} = \varepsilon_k = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right) \tag{32}$$

$$\forall k \in \{0, 1, ..., n-1\}.$$

Все корни есть вершины правильного n-угольника, вписанного в окружность единичного радиуса. Её уравнение $z\overline{z}=1$.

4 0		U	U
1.3.	Системы	линеиных	уравнений
		·	, p ***

1.4.	Линейная	зависимость	T/T	ранг
T. T.		Jubiciniocib	-	Pulli

2. Математический анализ

3. Комбинаторика

В этом разделе рассматриваются основные понятия и тождества комбинаторики, а так же основы теории множеств и теории графов.

3.1. Основные правила комбинаторики

Правило суммы. Если элемент множества A можно выбрать m способами, а элемент множества B n способами, то выбор «либо A, либо B» может быть сделан m+n способами, при условии, что множества A и B не пересекаются.

 \mathcal{A} оказательство: Количество способов выбрать «либо A, либо B» равно мощности множества $A \cup B$. По условию $A \cap B = \emptyset$, поэтому надо доказать лемму:

$$A \cap B = \bigotimes \Rightarrow |A \cup B| = |A| + |B| \tag{33}$$

Доказательство леммы: пусть $A=\{a_1,...,a_m\}$ и $B=\{b_1,...,b_n\}$ Тогда

$$A \cup B = \{a_1, ..., a_m, b_1, ..., b_n\}$$
(34)

Здесь существенно использовано то, что $A\cap B=\emptyset$, так как тогда $\forall a\in A,\ \forall b\in B:\ a\neq b$. Следовательно, $|A\cup B|=m+n$.

По лемме, $|A \cup B| = |A| + |B|$, что и требовалось доказать. \blacksquare

Правило произведения. Если объект A можно выбрать m способами и для каждого выбора A объект B можно выбрать n способами, то количество способов выбрать упорядоченные пары (A,B) равно $m\cdot n$.

Доказательство: Переформулируем доказываемое утверждение так: пусть $|A|=m,\ |B|=n.$ Тогда надо доказать, что мощность декартова произведения множеств равна произведению мощностей сомножителей:

$$|A \times B| = m \cdot n \tag{35}$$

. Перед доказательством сформулируем важную лемму, которая доказана в разделе, связанном с теорией множеств. Лемма о дистрибутивности декартова произведения относительно объединения множеств:

$$A \times (B \cup C) = (A \times B) \cup (A \times C) \tag{36}$$

. Докажем исходное утверждение индукцией по мощности второго сомножителя:

1. База индукции.

1.1.
$$n = 0$$
: $A \times B = A \times \emptyset = \emptyset$. Ho $|\emptyset| = 0 = m \cdot n$.

1.2.
$$n=1:A\times B=A\times\{b_1\}=\{(a_1,b_1),...,(a_m,b_1)\}.$$
 Легко видеть, что
$$|\{(a_1,b_1),...,(a_m,b_1)\}|=m=m\cdot 1.$$

- 2. Предположение индукции. Пусть верно для некоторого $n\in\mathbb{N},$ что $\forall A,B:\ |A imes B|=m\cdot n.$
- 3. Шаг. Докажем для n+1 на основе предположения индукции. Пусть множество $B_{n+1} = B_n \cup \left\{ b_{n+1} \right\} \;\; \text{и} \;\; |B_n| = n.$

$$A\times B_{n+1}=A\times \left(B_n\cup \left\{b_{n+1}\right\}\right)=A\times B_n\cup A\times \left\{b_{n+1}\right\} \tag{37}$$

Тогда

$$\left|A\times B_{n+1}\right| = \left|A\times B_{n}\right| + \left|A\times \left\{b_{n+1}\right\}\right| = m\cdot n + m\cdot 1 = m\cdot (n+1) \tag{38}$$

Шаг индукции верен, поэтому утверждение доказано.

3.2. Перестановки, сочетания и размещения

Существуют две схемы выбора m элементов из множества мощности n: $0 < m \le n$: с повторениями и без повторений.

В первой схеме выбранный элемент не возвращается в множество, а во второй схеме на каждом шаге элемент должен быть возвращён в множество.

Перестановка. Определение перестановки было дано в разделе 1.1.

Число всех перестановок длины n равно:

$$P_n = n! (39)$$

Размещением из n элементов по m называют любое упорядоченное подмножество данного множества, содержащего n элементов.

Из определения вытекает, что размещения это комбинации, состоящие из m элементов, которые отличаются друг от друга либо составом, либо порядком расположения элементов.

Число всех размещений из n по m:

$$A_n^m = \frac{n!}{(n-m)!} \tag{40}$$

Доказательство: Всего перестановок множества мощности $n:\ P_n=n!$, из них

4. Теория вероятностей

4.1. Основные понятия

Случайное событие — событие, про которое нельзя точно сказать, произойдёт оно или нет. Обозначают буквами латинского алфавита: A, B, C...

Достоверным называется событие, которое происходит всегда. Обозначается Ω .

Невозможным называется событие, которое не может произойти. Обозначается ⊘.

Вероятность случайного события это численная мера объективной возможности наступления данного события. Обозначение: P(A) — вероятность события A.

4.1.1. Операции над событиями

 \overline{A} — событие, противоположное А. Заключается в том, что событие A не произошло.

 $A \cap B$ — произведение событий. Это событие, которое заключается в совместном происхождении событий A, B.

Если $A \cap B = \emptyset$, то события A, B называются несовместными.

Вместо $A \cap B$ иногда пишут AB.

 $A \cup B$ — объединение или сумма событий. Заключается в том, что хотя бы одно из $\{A,B\}$ верно.

Закон де Моргана в терминах событий:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \tag{41}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \tag{42}$$

Диаграммы Венна

Свойства противоположного события:

1.
$$\overline{\overline{A}} = A$$

$$2. \ A \cap \overline{A} = \bigotimes$$

3.
$$A \cup \overline{A} = \Omega$$

Свойства бинарных операций над событиями.

- 1. Коммутативность:
 - $A \cap B = B \cap A$;
 - $A \cup B = B \cup A$.
- 2. Ассоциативность:

- $A \cap (B \cap C) = (A \cap B) \cap C$;
- $A \cup (B \cup C) = (A \cup B) \cup C$.
- 3. Дистрибутивность.
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$;
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Операция включения

 $A \subset B$ — событие, которое заключается в том, что происхождение B влечёт A.

Разность и симметрическая разность.

Разность событий A и B определяется как:

$$A \setminus B = A \cap \overline{B} \tag{43}$$

Симметрической разностью называется бинарная операция над событиями, такая, что

$$A \triangle B = (A \cup B) \cap \left(\overline{A} \cup \overline{B}\right) \tag{44}$$

Отрицание симметрической разности:

$$\overline{A \triangle B} = \overline{A} \triangle B = A \triangle \overline{B} = \overline{A} \triangle \overline{B} \tag{45}$$

Поглощение.

- 1. $A \cup (A \cap B) = A$
- $2. \ A \cap (A \cup B) = A$
- 3. $\overline{A} \cup (A \cap B) = \overline{A} \cup B$
- 4. $\overline{A} \cap (A \cup B) = \overline{A} \cap B$

Декомпозиция бинарных операций.

- 1. $A \cup B = A \triangle B \triangle AB$
- 2. $A \setminus B = A \setminus (AB)$

4.1.2. Аксиомы вероятности

- 1. $\forall A \ P(A) \ge 0$ (неотрицательность);
- 2. $P(\Omega) = 1$ (Вероятность достоверного события);
- 3. $\forall A, B: A \cap B = \emptyset: \ P(A \cup B) = P(A) + P(B).$ (Аддитивное свойство вероятности).

4.1.3. Следствия из Аксиом

Теорема о вероятности противоположных событий.

$$P(A) + P(\overline{A}) = 1 \tag{46}$$

.

Доказательство: так как

$$\begin{cases} A \cup \overline{A} = \Omega \\ A \cap \overline{A} = \emptyset \end{cases} \tag{47}$$

то из аксиом 2 и 3: $P\!\left(A\cup\overline{A}\right)=P(\Omega)=1.$ \blacksquare

Следствие из теоремы.

Вероятность объединения n попарно независимых событий.

$$\begin{split} \forall A_1,A_2,...A_n: \forall i,j: \ i\neq j: A_i\cap A_j &= \varnothing: \\ P\biggl(\bigcup_{1\leq i\leq n}A_i\biggr) &= \sum_{i=1}^n P(A_i) \end{split} \tag{48}$$

Доказательство: по индукции. n=2: это аксиома 3.

Пусть верно для $n\in\mathbb{N}.$ Тогда $P\Bigl(\bigcup_{1\leq i\leq n}A_i\Bigr)=\sum_{i=1}^nP(A_i)$ Докажем для n+1:

$$\begin{split} P\bigg(\bigcup_{1\leq i\leq n+1}A_i\bigg) &= P\bigg(\left[\bigcup_{1\leq i\leq n}A_i\right]\cup A_{n+1}\bigg) = P\bigg(\bigcup_{1\leq i\leq n}A_i\bigg) + \\ &+ P(A_{n+1}) = \sum_{i=1}^n P(A_i) + P(A_{n+1}) = \sum_{i=1}^{n+1} P(A_i) \ \blacksquare \end{split} \tag{49}$$

5. Алгоритмы и структуры данных && программирование

5.1. Основные понятия

Алгоритм — точное или формализованное описание вычислительного процесса, ведущее от входных данных к искомому результату.

Структуры данных — множество элементов данных и связи между ними.

Физические данные существуют в памяти машины, а теоретические нет.

Элементарные данные не могут быть разделены на более мелкие части. Если же данные могут быть разделены на логически более мелкие части, то они называются сложными.

5.2. Анализ сложности и эффективности структур данных

Должны быть некие критерии хорошего алгоритма.

Два основных критерия, используемых на практике:

- 1. Быстродействие;
- 2. Объём потребляемой памяти.

Прямое измерение времени работы программной реализации измеряет далеко не только быстродействие алгоритма. На время выполнения влияют так же способ реализации, умения программиста, среда разработки и мощность компъютера.

Измеренеия скорости и памяти носят теоретический характер.

- T(n) функция теоретического времени работы алгоритма.
- V(n) функция теоретической пространственной сложности алгоритма.

Получить точную формулу нельзя, можно только получить скорость и порядок скорости изменения времени выполнения.

5.2.1. О-символика

$$f(n) = O(g(n)) \Leftrightarrow \exists N, C > 0 : \forall n > N : |g(n)| \le C \cdot |f(n)| \tag{50}$$

5.3. Дополнительные сведения

5.3.1. Метод двух указателей

Задача на массиве a[n] решаема методом двух указателей \Leftrightarrow (Предикат из условия $P(x)\equiv 1:\ \forall x\in [L,R]\Rightarrow P(X)\equiv 1 \forall x\in [L',R']\subset [L,R])$

6. Анализ данных