ME 596 Spacecraft Attitude Dynamics and Control

Mission Analysis for Attitude Dynamics and Control

Professor Christopher D. Hall Mechanical Engineering

University of New Mexico

September 21, 2020

One-Minute Course On Orbital Mechanics

- semimajor axis (size of orbit), a;
- eccentricity (shape of orbit), e;
- inclination, i;

- Longitude of ascending node, Ω ;
- argument of periapsis, ω ;
- true anomaly, ν ;

Orbital Mechanics (continued)

- Semimajor axis a determines the size of the ellipse
- ▶ Eccentricity e determines the shape of the ellipse
- Two-body problem
 - a, e, i, Ω , and ω are constant
 - 6th orbital element is the angular measure of satellite motion in the orbit; 2 angles are commonly used:
 - True anomaly, ν
 - Mean anomaly, ${\cal M}$
- In reality, these elements are subject to various perturbations
 - Earth oblateness (J_2)
 - atmospheric drag
 - solar radiation pressure
 - gravitational attraction of other bodies

As satellite orbits the Earth, the sub-satellite point (SSP) traces a ground track

Algorithm for SSP, Ground Track

- ► Compute position vector in Earth-Centered Inertial reference frame (ECI)
- lacktriangle Determine Greenwich Sidereal Time (GST) $heta_g$ at epoch, $heta_{g0}$
- ▶ Latitude is $\delta_s \sin^{-1}(r_3/r)$
- ▶ Longitude is $L_s = \tan^{-1}(r_2/r_1) \theta_{g0}$
- Propagate position vector in "the usual way"
- ▶ Propagate GST using $\theta_g=\theta_{g0}+\omega_\oplus(t-t_0)$, where ω_\oplus is the angular velocity of the Earth

Reference: James R. Wertz and Wiley J. Larson (editors), *Space Mission Analysis and Design*, 3rd Edition, Microcosm Press, El Segundo, California, 1999

Algorithm 2.1

Initialize

```
orbital elements: a,\,e,\,i,\,\omega,\,\Omega,\,\nu_0 Greenwich sidereal time at epoch: \theta_{g0} period: P=2\pi\sqrt{a^3/\mu} number of steps: N time step: \Delta t=P/(N-1) for j=0 to N-1
```

Compute

Greenwich sidereal time: $\theta_g = \theta_{g0} + j\omega_{\oplus}\Delta t$ position vector: \mathbf{r} (details on next slide) latitude: $\delta_s = \sin^{-1}{(r_3/r)}$ longitude: $L_s = \tan^{-1}{(r_2/r_1)} - \theta_g$

Computing the position vector

Want position vector in Earth-Centered Earth-Fixed (ECEF) frame:

- 1. Compute mean anomaly (changes with time)
- 2. Solve Kepler's Equation for eccentric anomaly
- 3. Compute position vector in orbital frame
- 4. Rotate to inertial frame (ECI)
- 5. Rotate to ECEF frame

Geometry of Earth viewing

Given altitude H, we can state $\sin \rho = \cos \lambda_0 = R_\oplus/(R_\oplus + H)$, and $\rho + \lambda_0 = 90^\circ$

For a target with known position vector, λ is easily computed

$$\cos \lambda = \cos \delta_s \cos \delta_t \cos \Delta L + \sin \delta_s \sin \delta_5$$

Then $\tan \eta = \sin \rho \sin \lambda / (1 - \sin \rho \cos \lambda)$

And
$$\eta + \lambda + \varepsilon = 90^{\circ}$$
 and $D = R_{\oplus} \sin \lambda / \sin \eta$

Instantaneous Access Area (IAA)

Instantaneous Access Area (IAA) is the area that the spacecraft's instruments or antennas could potentially see at any instant

$$\begin{array}{rcl} \mathrm{IAA} &=& K_A(1-\cos\lambda) \\ K_A &-& 2.55604187\times 10^8 \ \mathrm{km}^2 \\ \cos\lambda &=& \frac{R_{\oplus}}{R_{\oplus}+H} \end{array}$$

Example: Hubble Space Telescope

$$R_{\oplus} = 6378 \text{ km}$$

 $H = 560 \text{ km}$
 $\cos \lambda = 0.9193 \Rightarrow \lambda = 23.18^{\circ}$
IAA = 20,631,067 km²

9 / 11

Error Sources

The error sources described in the table below are self-explanatory. Position and orientation errors are relevant to both *pointing* and *mapping*.

Pointing is the act of orienting the spacecraft or a sensor on the spacecraft to a specific target.

Mapping is the act of determining the geographic (or spatial) coordinates of a target in the field of view of the spacecraft or sensor.

Table 2.1: Sources of Pointing and Mapping Errors ¹							
Spacecraft Position Errors							
ΔI	In- or along-track	Displacement along the spacecraft's velocity vector					
ΔC	Cross-track	Displacement normal to the spacecraft's orbit plane					
ΔR_S	Radial	Displacement toward the center of the Earth (nadir)					
Sensing Axis Orientation Errors (in polar coordinates about nadir)							
$\Delta \eta$	Elevation	Error in angle from nadir to sensing axis					
$\Delta \phi$	Azimuth	Error in rotation of the sensing axis about nadir					
Other	Other Errors						
ΔR_T	Target altitude	Uncertainty in the altitude of the observed object					
ΔT	Clock error	Uncertainty in the real observation time					

Error Budgets

Source	N 1	Magnitude of	Magnitude of	Direction of			
A 1 1 2 1 T3	Magnitude	Mapping Error (km)	Pointing Error (rad)	Error			
Attitude Error							
Azimuth	$\Delta \phi$ (rad)	$\Delta \phi D \sin \eta$	$\Delta\phi\sin\eta$	Azimuthal			
Nadir Angle	$\Delta \eta \text{ (rad)}$	$\Delta \eta D / \sin \varepsilon$	$\Delta \eta$	Toward nadir			
Position Errors	s:						
In-track	$\Delta I~(\mathrm{km})$	$\Delta I(R_T/R_S)\cos H$	$(\Delta I/D)\sin Y_I$	Parallel to ground track			
Cross-track	$\Delta C \text{ (km)}$	$\Delta C(R_T/R_S)\cos G$	$(\Delta C/D)\sin Y_C$	Perpendicular to ground track			
Radial	$\Delta R_S \text{ (km)}$	$\Delta R_S \sin \eta / \sin \varepsilon$	$(\Delta R_S/D)\sin\eta$	Toward nadir			
Other Errors:							
Target altitude	ΔR_T (km)	$\Delta R_T / \tan \varepsilon$	_	Toward nadir			
S/C Clock	ΔT (s)	$\Delta T V_e \cos \operatorname{lat}$	$\Delta T(V_e/D)\cos \tan \sin J$	Parallel to Earth's equator			
$\sin H = \sin \lambda \sin \varphi$	ф						
$\sin G = \sin \lambda \cos \phi$							
$V_e = 464 \text{ m/s}$ (Earth rotation velocity at equator)							
$\cos Y_I = \cos \phi \sin \eta$							