

מבני נתונים, 12111

ד"ר שראל כהן, ד"ר מור פרי

תשפ"ד, סמסטר ב', מועד ב', 26/07/2024

הנחיות למענה מופיעות בתחילת כל חלק.

לפניך בחינה בחלקים:

חלק א - שאלות סגורות - 48 נקודות

חלק ב - שאלות פתוחות - 52 נקודות


```
<u>חלק א - שאלות סגורות - 48 נקודות</u>
- חלק זה מורכב משש שאלות רב-ברירה, 8 נק' לכל שאלה.
```

<u>שאלה מס' 1 (8 נק')</u>

נתונות 5 טענות, (הניחו שכל הלוגריתמים הם בבסיס 2):

$$n^{\mathrm{nlog}n} = \Omega(2^{n!}):1$$
 טענה

$$(n)^{\frac{1}{10}} = O(\log n)$$
 :2 טענה

$$\frac{\log n}{\log \log n} = \Omega\left(\frac{\sqrt{n}}{\log n}\right)$$
:3 טענה 3

$$2^{2n} = O(3^{n \log n})$$
:4 טענה

$$2^{2n} = O(3^n):5$$

מה מההיגדים הבאים נכון:

ו_א ל חמש הטענות שגויות.

ב. יש טענה נכונה אחת והיתר שגויות.

ג. כל חמש הטענות נכונות.

. יש ארבע טענות נכונות והיתר שגויות.

ה. יש שתי טענות נכונות והיתר שגויות.

. יש שלוש טענות נכונות והיתר שגויות.

	int func	(int A[], int n)	
--	----------	------------------	--

<u>שאלה מס' 2 (8 נק')</u>

נתונה הפונקציה הבאה שעושה שימוש בפונקציה calc שתוגדר בהמשך:

sum=0 for
$$(i = 2 \; ; \; i \leq n \; ; \; i = i * i)$$
 for $(j = 2 \; ; \; j \leq 2^i \; ; \; j = j * j)$ sum ++

```
k = calc(n)
for (j = 1; j <= k; j++)
    sum += func(A, n/2);
return sum
```

וגודלו ח. A הפונקציה נקראת עם מערך

הניחו שעלות חישוב הפונקציה calc היא O(1).

מה מההיגדים הבאים נכון:

. ליאור צודקת והשאר טועות

ג. אף היגד מההיגדים האחרים אינו נכון. ד. ליאור ומיטל צודקות והשאר טועות.

. הדר ומאיה צודקות והשאר טועות. _{א.}

ה. מיטל צודקת והשאר טועות. . הדר ומיטל צודקות והשאר טועות.

<u>שאלה מס' 3 (8 נק')</u>

נתונים שני עצי 2-3 $^{1}_{2}$ ו $^{3}_{3}$, שכל אחד מהם מחזיק ח מפתחות.

.3 בעץ T_2 הדרגה של כל קדקוד פנימי היא 2, ובעץ T_3 הדרגה של כל קדקוד פנימי היא

מבצעים הכנסה של מפתח חדש לכל אחד מהעצים באמצעות הפעולה פיצול עץ 2-3 כפי שנלמדה בכיתה. נסמן ב X_2 את מספר הקדקודים הפנימיים שעברו פיצול במהלך ההכנסה ל X_2 ,

 \mathcal{T}_3 ונסמן ב $^{ imes 2}$ את מספר הקדקודים הפנימיים שעברו פיצול במהלך ההכנסה למה ניתן להגיד על סדרי הגודל של $^{ imes 2}$ ושל

א יש יותר מתשובה נכונה אחת מבין התשובות א-ד.

 $x_3 = \theta(\log n)$ גם $x_2 = \theta(\log n)$ ר. יכול להיות ש $x_2 = \theta(\log n)$ וגם

 $x_3 = O(1)$ גם $x_2 = \theta(\log n)$ בטוח ש $x_3 = O(1)$ גם

. אף אחת מהתשובות א-ד אינה נכונה.

 $x_3 = \theta(\log n)$ גם $x_2 = O(1)$ בטוח ש

 $X_3 = O(1)$ וגם $X_2 = O(1)$ וגם.

שאלה מס' 4 (8 נק')

$\theta((n \log n)^2)$ נתון אלגוריתם שזמן הריצה הממוצע שלו הוא

טענה 1: בטוח שזמן הריצה של האלגוריתם במקרה הגרוע הוא $O(n^4)$ (נקרא: או גדול)

(נקרא: או גדול) $O(n^2)$ בטוח שזמן הריצה של האלגוריתם במקרה הטוב הוא

(נקרא: או גדול) $O(n^2)$ ייתכן שזמן הריצה של האלגוריתם במקרה הגרוע הוא $O(n^2)$ (נקרא: או גדול)

(וקרא: או קטן) ס $(n \log n)$ ייתכן שזמן הריצה של האלגוריתם במקרה הטוב הוא

 $\omega(n\log n)$ טענה 5: ייתכן שזמן הריצה של האלגוריתם במקרה הטוב הוא

מה מההיגדים הבאים נכון:

א. 4,5 נכונות והיתר שגויות.

. 1,3,4 נכונות והיתר שגויות.

., 2,5 נכונות והיתר שגויות.

. יש רק טענה נכונה אחת והיתר שגויות.

. 3,4,5 נכונות והיתר שגויות.

ו. אף היגד מההיגדים האחרים אינו נכון. ו. אף היגד מההיגדים האחרים אינו נכון.

שאלה מס' 5 (8 נק')

נתון האלגוריתם הבא הנקרא SortTogether, המקבל בקלט מערך []A ואת גודלו n. המערך מכיל את כל המספרים השלמים מ1 עד n באיזשהו סדר (מופע אחד של כל מספר).

:SortTogether(A[],n) תיאור האלגוריתם

- (מיון מהיר) Quick Sort על \sqrt{n} האיברים השמאליים מריצים את אלגוריתם \sqrt{n}
- (מיון מיזוג) Merge Sort על יתר האיברים $n-\sqrt{n}$ האיברים הימניים) מריצים את אלגוריתם $-\sqrt{n}$
- האיברים הימניים) באמצעות הפעולה $n-\sqrt{n}$ האיברים השמאליים ו $n-\sqrt{n}$ האיברים הימניים) באמצעות הפעולה Merge

בהנחת התפלגות אחידה על הקלט (כלומר, כל פרמוטציה של המספרים 1 עד n יכולה להופיע בקלט באותה ההסתברות), מה זמן הריצה של אלגוריתם SortTogether במקרה הגרוע, ומה זמן הריצה במקרה הממוצע?

- א. לא ניתן לקבוע במדויק את סדרי הגודל של זמני הריצה לפי נתוני השאלה.
 - ו. אף אחת מהתשובות א-ה אינה נכונה.
 - $\theta(n)$ במקרה הגרוע ($\theta(n)$ ובמקרה הממוצע ($\theta(n)$
 - $\theta(n^2)$ ובמקרה הממוצע $\theta(n^2)$ ד. במקרה הגרוע
 - $\theta(n \log n)$ במקרה הגרוע $\theta(n^2)$ ובמקרה הממוצע (ח $\theta(n^2)$
 - $\theta(n \log n)$ במקרה הגרוע ($\theta(n \log n)$ ובמקרה הממוצע ($\theta(n \log n)$ וב

שאלה מס' 6 (8 נק')

נתונה טבלת ערבול עם שרשור בגודל m=4.

המפתחות המגיעים למבנה נבחרים באופן אקראי מהתחום {0,...,399} בהתפלגות הבאה:

$$\frac{1}{200}$$
 בהסתברות $\{0,...,99\}$

$$\frac{1}{600}$$
וכל איבר מהתחום $\{100,...,399\}$ בהסתברות

(שימו לב שההתפלגות בשאלה זו אינה אחידה. לשם השוואה, בהתפלגות אחידה, כל איבר מהתחום {99,...,399

$$(\frac{1}{400}$$
 נבחר בהסתברות

איזו מהפונקציות הבאות היא פונקציית ערבול אחידה לפי נתוני השאלה?

$$h(k) = k \mod 4$$

$$h(k) = k \mod 400$$

מספר גרסה: 0000

ברצוננו לממש את טיפוס הנתונים המופשט תור. כלומר, את הפעולות:

ברשותכם רק 2 מחסניות S_2 , S_2 כטיפוס נתונים מופשט (ADT), עם הפעולות הבאות:

MakeEmpty()

IsEmpty()

EnQueue(x)

MakeEmpty()

IsEmpty()

Push(x)

DeQueue()

MakeEmpty() אור	תיא
-----------------	-----

מבוצעת ב (1)θ.

זמן הריצה של כל סדרה של n פעולות של התור במימוש שלכם נדרש להיות θ(n), בהינתן שכל פעולת מחסנית

בפתרון שלכם אין להשתמש בתוצאות שראינו בכיתה בהקשר של שאלה זו.

שאלה מס' 8

שאלה זו עוסקת במבנה הנתונים ערימה.

נתון האלגוריתם של פלויד לבניית ערימת מקסימום ממערך בגודל ח.

<u>שאלה מס' 8.1 (13 נק')</u>

```
for (i = n/2-1; i >= 0; i--)
```

	$\sum_{i=1}^{\infty} \frac{1}{2^{i}} = 2$ מותר להשתמש בטענה:
--	--

בסעיף זה אין להשתמש בתוצאות שראינו בכיתה בהקשר של ניתוח זה. $-\infty$

נתחו את זמן הריצה של האלגוריתם של פלויד על ערימה שהיא עץ שלם.

חשבו והסבירו את כל שלבי החישוב.

שאלה מס' 8.2 (נק')

ראינו כיצד מתבצעת הפעולה deleteMax בערימת מקסימום, ושזמן הריצה של הפעולה במקרה הגרוע הוא θ(log n) כאשר מתבצעת על ערימה בגודל n.

בסעיף זה נתייחס לבעיית ה deleteMax ולא לאלגוריתם הספציפי שראינו עבורה, ונבחן האם קיים אלגוריתם טוב יותר.

> בעיית ה deleteMax מוגדרת כך: קלט: ערימת מקסימום H בגודל n

. בגודל H' בגודל H פלט: ערימת מקסימום 'H בגודל n-1 המכילה את כל אברי

ס(log n) או הפריכו: קיים אלגוריתם לבעיית ה deleteMax שזמן הריצה שלו במקרה הגרוע הוא (נקרא: או קטן).

הוכחה/הפרכה