

Statistics

STATISTICS: It is the science of collection, presentation, analysis and interpretation of numerical data.

Data: It is the information in the form of numerical figures or a set of given facts.

Data
Ungrouped Grouped
data data

(i) Ungrouped Data: Data obtained from direct observation is called raw data.

eg: The marker obtained by 10 students in a Math test are: 5,10,6,2,1,9,8,7,9,4

RANGE: The difference between the highest and Lowest number of data is called Range.

Range = 10-1Range = 9 (Refer above eg.)

OBSERVATION: Each numerical figure in a data is called observation.

FREQUENCY: The number of times a particular observation occurs is called the frequency.

(11) Grrouped Data: To present the data in a more meaningful way, we condense the data into convenient mumber of classes or groups.

Class	Frequency
10-20	5
20-30	8
30-40	9
40-50	10
50-60	6
60-70	2

(a) CLASS Interval: The group used to clarify the data is called the class interval i.e. 10-20, 20-30.

(b) CLASS Limits: Each class is bounded by two figures, which are called the class limits.

• Upper Limit: In each class interval, the R.H.S. 00 the greatest number is the upper-class limit. i.e 10-20

Tupper limit

Lower limit: In each clars interval, the LHS. or
the smallest number is the lower-clars
limit. i.e 10-20
Lower limit

(C) CLASS Size: It is the difference between the upper limit and lower limit.

eg: 10-20 is class interval

lower limit = 10, upper limit = 20

Class sije = 20-10

= 10

(d) CLASS MARK: The mid point of each wlass interval is the wlass mark.

Class mark = Upper limit + Lower limit
2

i.e. the class mark of 20-30 is 1(30+20)

(e) Number of Class Intervel = Range

Classize

Two METHODS OF Classifying Data according to the Class Intervels:

- (i) Exclusive Method
- (ii) Inclusive Method
- (i) Exclusive METHOD: When the class interval are so fixed that the upper limit of one class is the lower limit of the next class it is known as exclusive method.

eg:

Wages (Rs.)	No. of Workers		
1000-1100	125		
1100-1200	150		
1200-1300	200		
1300-1400	250		

(ii) INCLUSIVE METHOD: In this method the clarres are so formed that the upper limit of a clare is included in that clars.

eg:

Wages (Rs)	No. of Workers
1000-1099	125
1100 - 1199	150
1200-1299	200
1300-1399	250

GRAPHICAL REPRESENTATION OF STATISTICAL DATA:

- · Bar Graphs
- · Histogram
- · Frequency Polygon

1) BAR GIRAPH:

- · The width of the boxes should be uniform throughout.
- · The gap between one bar and another should be uniform throughout.
- · Bars may be either horizontal or vertical.

2.) HISTOGRAM:

- . Grouped data is represented graphically by histograms.
- · No gap between any two successive rectangles.
- · The class interval are to be taken along on an
 - · The height represents the frequencies of the scerpective relars intervals.

Construction of Histogram:

4.1 Construction of a histogram of a continuous grouped trequency distribution with equal class interval:

eg:

Marks:	0-10	10-20	20-30
No. of Students (Frequency)	4	10	8

- of. P. Construction of a histogram of a continuous grouped frequency distribution with uniqual class intervals:
 - · Choose a suitable scale along x-axis and represent class-limits on it.
 - · Determine the class-interval which has the minimum class size. Let the minimum class size be 'h'.
 - · Compute the adjusted frequencies of each class by using the following formula:

Adjusted frequency of a class = h x frequency of the class when size

9:

Marks:	Q-10	10-30	30-45	45-50	50-60
No. of Students	8	32	18	10	6
CFrequency					

here, minimum class size = 5

Claus - Antervale (Marks)	No. of Students (Frequency)	Adjusted Frequency		
0-10	8	$\frac{5}{10} \times 8 = 4$		
10-30	32	$\frac{5}{20}$ x 32 = 8		
30-45	18	$\frac{12}{2} \times 18 = 6$		
45-50	10	$\frac{5}{5} \times 10 = 10$		
50-60	6	$\frac{10}{5} \times 6 = 3$		

FREQUENCY POLYGION: Frequency Polygion is another method of representing frequency distribution (grouped-data)
Josphically.

(i) Frequency Polygon by using Histogram:

9

Marks:	0-10	10-20	20 -30	30-40	40-50
Frequency:	5	10	4	6	7

(ii) Frequency Polygon without using Histogram:

- · Compute the mid points of class-intervals i.e. class marks.
 - · Represent the clars-mark on X-quir on a suitable clars.
 - · Represent the frequencies on Y-anis on a suitable scale.
 - · Plot the points (xi, fi) where xi denotes clars marks and fi corresponding frequency.

Join the points.

en:

Age (in years)	0-2	2-4	4-6	6-8	8-10
Frequency	2	4	6	8	a

