Лабораторная работа 7

Эффективность рекламы

Сунгурова М.М.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Сунгурова М. М.
- студентка группы НКНбд-01-21
- Российский университет дружбы народов

Вводная часть

Исследовать простейшую математическую модель эффективности рекламы.

Цель работы

Исследовать простейшую математическую модель эффективности рекламы.

Задание

Вариант 23

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.51 + 0.000099(t)n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.0000019 + 0.99(t)n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.99 + 0.3\cos(4t)n(t))(N - n(t))$$

При этом объем аудитории N=945, в начальный момент о товаре знает 13 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

$$\frac{dn}{dt} = (\alpha_1 + \alpha_2(t)n(t))(N-n(t))$$

При $\alpha_1>\alpha_2$ получается модель типа модели Мальтуса. При $\alpha_2>\alpha_1$ получаем уравнение логистической кривой.

Выполнение лабораторной работы

Зададим функцию для решения модели эффективности рекламы. Возьмем интервал $t\in[0;20]$ для первого сулчая и $t\in[0;0.05]$ для второго и третьего, а также начальное условие n0=12 и параметры. Рассмотрим сначала реализацию в Julia. Зададим начальные условия и функции для трех случаев:

```
n0 = 12
p1 = [0.51, 0.000099, 945]
p2 = [0.000019, 0.99, 945]
p3 = [0.99, 0.3, 945]
tspan1 = (0,20)
tspan2 = (0.0.05)
f(n, p, t) = (p[1] + p[2]*n)*(p[3]-n)
```

Для задания проблемы используется функция **ODEProblem**, а для решения – численный метод Tsit5():

```
prob1 = ODEProblem(f, n0, tspan1, p1)
prob2 = ODEProblem(f, n0, tspan1, p2)
prob3 = ODEProblem(f3, n0, tspan2, p3)
```

```
sol1 = solve(prob1, Tsit5())
sol2 = solve(prob2, Tsit5())
sol3 = solve(prob3, Tsit5())
```

Также зададим эту модель в OpenModelica. Модель для первого случая:

model lab7

Real n(start=13);

parameter Real a1 = 0.51;

parameter Real a2 = 0.000099;

Также зададим эту модель в OpenModelica. Модель для второго случая:

model lab7

Real n(start=13);

parameter Real a1 = 0.51;

parameter Real a2 = 0.000099;

Также зададим эту модель в OpenModelica. Модель для третього случая:

model lab7

Real n(start=13);

parameter Real a1 = 0.99;

parameter Real a2 = 0.3;

Посмотрим график распространения рекламы для первого случая(рис. (fig:001?), (fig:002?)):

Рис. 1: График изменения интенсивности рекламы для первого случая. OpenModelica

Рис. 2: График изменения интенсивности рекламы для первого случая. Julia

Посмотрим график распространения рекламы для второго случая(рис. (fig:003?), (fig:004?)):

Рис. 3: График изменения интенсивности рекламы для второго случая. OpenModelica

Рис. 4: График изменения интенсивности рекламы для второго случая. Julia

Посмотрим график распространения рекламы для третьего случая(рис. (fig:005?), (fig:006?)):

Рис. 5: График изменения интенсивности рекламы для третьего случая. OpenModelica

Рис. 6: График изменения интенсивности рекламы для третьего случая. Julia

Выводы

Построили математическую модель эффективности рекламы.

Список литературы

Список литературы