- 1) The most general value of θ which will satisfy both the equations $\sin\theta$.
 - $\frac{1}{\sqrt{3}}$ is
- (a)
- $2n\pi +$ (b)
- $2n\pi + \frac{11\pi}{6}$
- $n\pi + (-1)^n \frac{7\pi}{6}$ (d)
- $2) \tan(\cot^{-1} x) =$
- cot(tan-1 x)
- (c)
- none (d)
- 3) The value of $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$ is
- (a)

MATHEMATICS

- (b)
- (c) (d)

- (d)
- 5) $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) =$
- (b)
- (c)
- (d)

- $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$ (6) (c)
- 7) The principle value of $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is

- g) The value of $\sin\left(\cos^{-1}\left(\frac{3}{5}\right)\right)$ is

- g) If $\sin^{-1} x = \frac{4}{5}$ for some $x \in [-1,1]$, then the value of $\cos^{-1} x$ is
- $\frac{5\pi 8}{2}$ $\frac{\pi 8}{10}$ $5\pi 2$ (a)
- 10 5π-8 (c) (d)
- 10) Number of solutions of the equation $\tan x + \sec x = 2\cos x$ lying in the interval [0, 2π] is

- 11) The general solution of $\tan x = \sin x$ is
- (a) nπ
- (b) 2nπ
- (c)
- (d) none

(a) (b)

12) The quadratic equation $8 \sec^2 \theta - 6 \sec \theta + 1 = 0$ has Exactly two roots Exactly four roots (a) Infinitely many roots (b) (c) $_{13)\, The\, smallest}$ positive angle satisfying the equation $sin^2\,\theta - 2\,cos\,\theta$. No roots (a) (b) (c) 14) If $\sin \theta = k$ and k is any integer then for exactly one value of θ , θ (d) of k is (a) (b) (c) (d) 15) The value of θ satisfying $\cos \theta + \sqrt{3} \sin \theta =$ (a) (b) (c) (d) 16) cot $\theta = \sin 2\theta$ where $(\theta \neq n\pi, n \text{ integer})$, if θ equals 45° and 90° 45° and 60° 90° only (c) 17) If $4\sin^2\theta = 1$, then the values of θ are (c) nπ± $2n\pi \pm \frac{\pi}{2}$

18) The smallest positive angle which satisfies the equation $2 \sin^2 \theta + \sqrt{3} \cos \theta + 1 = 0$ is

Page 258

```
(d) 6

19) The solution of the equation \cos^2 \theta + \sin \theta + 1 = 0 lies in the interval (5\pi, 7\pi)
_{20} If _{\rm g}^{\sin\theta} + \cos\theta = \sqrt{2} and \theta is acute, then \theta is
  (a)
  (c)
 (a) The value of \theta lying between 0° and 360° and satisfying the equation \tan \theta + \sqrt{3} is
       300°
  (b)
       135°
       225°
 _{22)Which} of the following is a solution of \cos 3x =
  (d)
              600
     (a)
     (b)
             arcos
     (c)
     (d)
  24) Range of tan^{-1}x is
      (a)
              \left[-\frac{\pi}{2},\frac{\pi}{2}\right]
     (b)
              [0,\pi]
     (c)
```

None

25) Range of cosec⁻¹x is

- (a)
- (b)
- $[0,\pi]$ (c)
- None (d)
- $26) cosec^{-1} \left(-\frac{2}{\sqrt{2}} \right) = ?$

 - (a) (b)
 - (c)
 - (d)

27) Which of the following can be the solution of sin2x - cosx = 0;

- (a)
- $\left\{\frac{\pi}{4}, \frac{3\pi}{4}\right\}$ $\left\{\frac{\pi}{3}, \frac{\pi}{4}\right\}$ (b)
- (c)
- (d)

28) Solve for $x\cos x = 0$

- (a)
- (b)
- (c) (d)

29) $\sin^{-1} x$

- (a)

- - tan-1x
 - $tan^{-1}\left(\frac{1}{r}\right)$ (b)
 - (c) -tan-1x (d) -Cos-1x

 $31) cosec^{-1}x?$

- (a) Sec-1x
- (b) Sin-1x

 $\frac{1}{\sin^{-1}(x)}$ $\sin^{-1}\left(\frac{1}{x}\right)$

 $\frac{32)^{\text{The value of } sin\left[cos^{-1}\left(\frac{3}{4}\right)\right]}{7} =$

- (a) (b)
- (c) (d)

 $_{33})$ Domain of sec⁻¹ x = ?

- $[0,\pi]$ $x \ge 1, x \le -1$ (c)

 $_{34)}$ Domain of $\cot^{-1} x$ is

- (a) (b)
- (-1,1) $x \ge 1, x \le -1$ (c)

- 35) Range of $\cos^{-1} x$ is
- (a) (b)
- (c) (d)

 $37)\sin^{-1}(1) + \cos^{-1}(1) = ?$ (a) $\frac{\pi}{}$

- (a) (b)
- (c) -1
- (d)

*MATHEMATICS *

38) The principle value of $\cot^{-1}(-1)$ is

(a)

(b)

(c)

(d)

39) Trigonometric equation contains trigonometric functions

At least one

At the most one (a)

(b) Exactly four

(c) Exactly one (d)

40) Basic trigonometric functions are

(a)

Continuous (b)

Periodic (c)

Non-periodic (d)

solutions when principle angle is $k_{N_{0W_{N}}}$ 41) A trigonometric equation may have

Only one (a)

Two (b)

(d)

Many (c) Infinite

42) To solve a trigonometric equation, firstly we find the solution over the interval which is

Domain (a)

Range (b)

Period (c)

None of these (d)

44) If $x = \tan^{-1}\left(\frac{1}{2}\right)$, $y = \tan^{-1}\left(\frac{1}{3}\right)$, then x + y = ?

(a)

(b)

(c) (d)

(b) (c)

(d) $_{46)c0s(tan^{-1}\infty)} = ?$

(a) (b)

(c)

 $=\frac{5}{6}$, $xy = \frac{1}{6}$ then $tan^{-1}x + tan^{-1}y = ?$ 47) If x + y

(a) (b) (c)

(d)

 $48)\frac{1}{x}\sin\left(\csc^{-1}\left(\frac{1}{x}\right)\right) = ?$

(b)

(c) (d)

 $_{49}$ Solution of $\cos 4x + 1 = \cos 2x$ is

50) If $4\sin^{-1}(x) + \cos^{-1}(x) = \pi$ then x = ?

(a) (b)

(c)

(d)

*MATHEMATICS

	6π) - 2						
51) cos ⁻¹ ($\cos\frac{\pi}{7}$						
(a)	π 7 6π						
(b)	$\frac{6\pi}{7}$						
	8π						
(c)	7 11π						
(d)	$\frac{11\pi}{7}$		2cosy	xe[0.2π] at	re		
	- of solution	on of tanx + s	secx = 2cosx,	Actornia			
52) Numb	0					. 1	
(a)	1					101	
(b) (c)	2						Į
(4)	3					A	-
	- 1 60	nction sin-1 (x) is		-	PAIN	
53) Doma	in of the Iu	liction				AND.	
(a)	(-π,π) [-1,1]			-		21	
(b)	$(0,2\pi)$				-		
(c)	(-0,00)			1			
(d)			•				
54) tan(c	$os^{-1}(x)) = ?$		4				
(a)	√1-X-						
(b)	$\frac{x}{x}$ $\sqrt{1+x^2}$						
(0)	$\sqrt{1+x^2}$						
(c)	X						
(d)	$\frac{\sqrt{1+x^2}}{\frac{x}{x}}$ $\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}$	A					
		M A					
55) sin[2	2sin-1(0.8)]=	-					
(a)	1,2	A					
(b)	1,6 0.48	A					
(c) (d)	0.96						
(4)							
56) 2 tar	$1^{-1} \left(\frac{1}{2}\right) + ta$	$n^{-1}\left(\frac{1}{4}\right) = ?$					
(a)	$\tan^{-1}\left(\frac{1}{2}\right)$	6)					
		3/					
(b)	$\frac{\pi}{2}$						
(c)	0 π						
(d)	$\frac{\pi}{4}$						

		Chapter #	# 13 & 14	
-	1	b	41	
-	2	b	42	d
-	3	а	43	a
-	4	С	44	a
-	5	d	45	d
-	6	d	46	a
-	7	b	47	a
-	8	ь	48	b
-	9	d	49	С
-	10	d	50	b
-	11	а	51	b
-	12	d	52	b
-	13	b	53	b
-	14	d	54	b
-	15	d	55	a
-	16	а	A A	d
-	17	С	56	3
-	18	а		
-		•		
-	19	a		
-	20	a b		
-	21	4000		
_	22	С		
-	23	С	V	
1	24	d		
4	25	d		
	26	A		
4	27	d		
	28	a		
1	29	С		
	30	b		
	31	b		
	32	b		
	33	d		
	34	а		
	35	b		
	36	b		
	37	b		
	38	a		
	39	a		
	40	С		