

- 1 humpi: The python code for the Hurricane Maximum
- ² Potential Intensity (HuMPI) model
- ³ Albenis Pérez-Alarcón^{1,2}, José Carlos Fernández-Alvarez^{1,2}, and Oscar
- 4 Díaz-Rodríguez³
- 1 Departamento de Meteorología, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad
- 6 de La Habana, La Habana, Cuba 2 Centro de Investigación Mariña, Universidade de Vigo,
- 7 Environmental Physics Laboratory (EPhysLab), Campus As Lagoass/n, Ourense, 32004, Spain 3
- e Centro de Ciencias de la Atmósfera, Universidad Autónoma de México, Ciudad de México, México

DOI: 10.xxxxx/draft

Software

- Review 🗗
- Repository 🗗
- Archive 🗗

Editor: ♂

Submitted: 17 April 2022 **Published:** unpublished

License

Authors of papers retain copyright and release the work under a Creative Commons
Attribution 4.0 International License (CC BY 4.0).

Summary

The potential intensity (PI) of tropical cyclones (TCs) is the maximum surface wind speed and minimum central pressure limits found by representing the storm as a thermal heat engine (Emanuel, 1986; Gilford, 2021; Holland, 1997). The PI theory proposed by Emanuel (1986) (hereafter E-PI) has been widely accepted as the upper bound for TCs intensity (Garner, 2015; Kieu & Moon, 2016; Kowaleski & Evans, 2016). In the E-PI theory, the dynamic and thermodynamic processes of the TC are described as an energy cycle like a Carnot engine, absorbing heat from the ocean, giving it up at the tropopause. Nevertheless, the "superintensity" phenomenon, which occurs when the observed or modelled TC intensity is higher than the E-PI prediction, is a research challenge nowadays (Li et al., 2020; Persing & Montgomery, 2003; Rousseau-Rizzi & Emanuel, 2019).

In a recent attempt to avoid the "superintensity" phenomenon, Pérez-Alarcón et al. (2021) proposed a new hurricane maximum potential intensity (HuMPI) model based on the E-PI theory. HuMPI describes the TC thermo-energetic cycle as a generalized Carnot cycle and includes a TC model for the atmospheric boundary layer (Smith, 2003; Smith & Vogl, 2008). For further details of HuMPI physics description, see Pérez-Alarcón et al. (2021).

- Bister & Emanuel (2002) coded the E-PI as a FORTRAN subroutine, while Kerry Emanuel
- later converted it for use as a MATLAB function. Despite the widespread use of the E-PI theory, the codes in FORTRAN and MATLAB have not been well documented (Gilford, 2021).
- Due to the advantages of the Python programming language, Gilford (2021) recently developed
- the Tropical Cyclone Potential Intensity Calculations in Python (piPy) to implement the E-PI
- theory. Therefore, this work aims to implement the HuMPI model formulation in Python.

Statement of Need

The humpi Python package implements the HuMPI model for its extensive use in scientific research to understand the changes in TC intensity due to climate change.

4 Python implementation

- humpi (v1.0) is written in Python v3.8 and uses the mpi4py package for parallel runs. The
- humpi package requires netCDF4, numpy, scipy, mpi4py, os, time and datetime packages.
- 37 Similar to piPy, the run times of humpi will depend on the user's particular implementation


```
and computing resources. Computing the maximum intensity of TCs with humpi requires the
   sea surface temperature as input. Below we provided the basic commands for humpi usage:
      For help
   import humpi
41
   humpi.help()
42

    To get HuMPI input parameters templete file

   import humpi
   humpi.get_HuMPI_inputs_template()
45

    To get HuMPI input data file for multiple runs

   import humpi
   humpi.get_HuMPI_input_data()
   Additionally, you can use the basic implementation to run the HuMPI model, as indicated in the
   run_HuMPI.py script in the Github repository (https://github.com/apalarcon/HuMPI-master):
   import humpi
51
52
   args = humpi.read_args()
53
   if args.HuMPI_help:
54
        humpi.help()
   elif args.get_template:
        humpi.get_HuMPI_inputs_template()
57
   elif args.get_input_data:
58
        humpi.get_HuMPI_input_data()
59
        humpi.HuMPI_main(args.parameterfile)
61
      For help
   python run_HuMPI.py -hh t

    For getting input paramters template

   python run HuMPI.py -gt t
      • For getting input data file for multiples runs
   python run_HuMPI.py -id t

    For running using MPI

   mpiexec -n N python run_HuMPI.py -pf input_paramters_file
```

Example of humpi usage

In the 'example' subdirectory in the Github repository (https://github.com/apalarcon/HuMPl-master) of humpi we provided a real case for calculating de TC maximum potential intensity using humpi.

Acknowledgements

We acknowledge the support from Departamento de Meteorología, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana and Centro de Física de la Atmósfera del Instituto de Meteorología de Cuba.

References

- Bister, M., & Emanuel, K. A. (2002). Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. *Journal of Geophysical Research: Atmospheres*, 107(D24), ACL–26. https://doi.org/https://doi.org/10.1029/2001JD000776
- Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part i: Steady-state maintenance. *Journal of Atmospheric Sciences*, 43(6), 585–605. https://doi.org/10.1175/1520-0469(1986)043%3C0585:AASITF%3E2.0.CO;2
- Garner, S. (2015). The relationship between hurricane potential intensity and CAPE. *Journal* of the Atmospheric Sciences, 72(1), 141–163. https://doi.org/10.1175/JAS-D-14-0008.1
- Gilford, D. M. (2021). pyPI (v1.3): Tropical cyclone potential intensity calculations in
 python. Geoscientific Model Development, 14(5), 2351–2369. https://doi.org/10.5194/
 gmd-14-2351-2021
- Holland, G. J. (1997). The maximum potential intensity of tropical cyclones. *Journal of the Atmospheric Sciences*, *54*(21), 2519–2541. https://doi.org/10.1175/1520-0469(1997) 054%3C2519:TMPIOT%3E2.0.CO;2
- Kieu, C. Q., & Moon, Z. (2016). Hurricane intensity predictability. Bulletin of the American
 Meteorological Society, 97(10), 1847–1857. https://doi.org/10.1175/BAMS-D-15-00168.
- Kowaleski, A. M., & Evans, J. L. (2016). A reformulation of tropical cyclone potential intensity
 theory incorporating energy production along a radial trajectory. *Monthly Weather Review*,
 144(10), 3569–3578. https://doi.org/10.1175/MWR-D-15-0383.1
- Li, Y., Wang, Y., Lin, Y., & Fei, R. (2020). Dependence of superintensity of tropical cyclones on SST in axisymmetric numerical simulations. *Monthly Weather Review*, *148*(12), 4767–4781. https://doi.org/10.1175/MWR-D-20-0141.1
- Pérez-Alarcón, A., Fernández-Alvarez, J., & Díaz-Rodríguez, O. (2021). Hurricane maximum potential intensity model. *Revista Cubana de Física*, *38*(2), 85–93. http://www.revistacubanadefisica.org/index.php/rcf/article/view/2021v38p085
- Persing, J., & Montgomery, M. T. (2003). Hurricane superintensity. *Journal of the Atmospheric Sciences*, 60(19), 2349-2371. https://doi.org/10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2
- Rousseau-Rizzi, R., & Emanuel, K. (2019). An evaluation of hurricane superintensity in axisymmetric numerical models. *Journal of the Atmospheric Sciences*, 76(6), 1697–1708. https://doi.org/10.1175/JAS-D-18-0238.1
- Smith, R. K. (2003). A simple model of the hurricane boundary layer. *Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography*, 129(589), 1007–1027. https://doi.org/10.1256/qj.01.197
- Smith, R. K., & Vogl, S. (2008). A simple model of the hurricane boundary layer revisited.

 Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric

 Sciences, Applied Meteorology and Physical Oceanography, 134(631), 337–351. https://doi.org/10.1002/qj.216