Test3-ProbabilisticReasoning

- Due Mar 21 at 4:40pm
- Points 30
- Questions 15
- Available Mar 21 at 4pm Mar 21 at 6pm 2 hours
- Time Limit 35 Minutes

Instructions

Closed book test. Use one page for scratch work and submit it with your name on it.

Online test: scratch page will not be be used for the grading purpose.

Choose the best answer. You may need a calculator.

Usual upper/lower case semantics apply, e.g., for the proposition Cavity, cavity means Cavity=True, and ~cavity means Cavity=False.

~ tilde or - dash may be used for negation.

This quiz was locked Mar 21 at 6pm.

Attempt History

	Attempt	Time	Score		
LATEST	Attempt 1	30 minutes	22 out of 30		
① Correct ar	① Correct answers are hidden.				
Score for this quiz: 22 out of 30					
Submitted Mar 21 at 4:29pm					
This attempt took 30 minutes.					
IncorrectQuestion 1					
0 / 2 pts					
The model for a Probabilistic Knowledge Base is a					
Truth table					
O None of the above					
Joint probability distribution table					
Conditional probability table					

•• •• ••
Question 2
2 / 2 pts
A given knowledge base has 5 random variables. Four of these variables are Propositions and one is categorical with 3 domain values. How many <i>INDPENDENT</i> probability numbers are needed in the joi probability distribution table? (^ indicates power, e.g., 9^2=81, and ^ has the highest precedence in arithmetic.)
© 2^4*3 -1
O 2^4*3
O 4^2*3 -1
O 4^2*3
Question 3
2 / 2 pts
P(A ^ B) = P(A B)P(B), even when A and B are independent of each other. (^ is 'and')
○ True
○ False
IncorrectQuestion 4
0 / 2 pts
On a Bayesian net over four propositional random variables {A, B, C, D} looking like an inverted Y-graph, A->B, B->C, B->D how many INDEPENDENT probability entries are required over all probability tables?
O 2+1+4+2
© 2+2+4+2
O 1+2+2+2
1+1+4+1
Question 5
2 / 2 pts
A Bauesian Network over three propositional random variables has a V-tupe structure: B->A and C->

What is the probability P(~a ^ ~b ^ ~c) proportional to? (^ is and)
Remeber upper/lower case semantics, e.g., b means B=T and ~b means B=F.
○ P(~a ~b, ~c) P(~b ~c) P(~c ~b)
○ P(a ~b, ~c) P(a ~b) P(a ~c)
P(~a ~b, ~c) P(~b) P(~c)
○ P(~a ~b) P(a ~c)
Question 6
2 / 2 pts
Here is a V-type Bayesian Network over three propositional random variables, B->A and E->A with the probability tables, $P(b)=0.001$, $P(e)=0.02$, and the conditional probability table, $P(a B,E) = \{(T,T,0.95), (T,F,0.94), (F,T,0.29), (F,F,0.001)\}$ in 4 rows respectively. Usual upper/lower case semantics apply, e.g., b means B=T and ~b means B=F. What is the probability for $P(a \sim e)$, presuming the normalization constant is <i>alpha</i> ?
alpha*(0.95+0.29)
alpha*(0.29 + 0.001)
alpha*(0.94+0.29)
alpha*(0.94+0.001)
**
Question 7 2 / 2 pts
Bayesian Network from the above question over 3 propositions: B->A and E->A with the probability tables, P(b)=0.001, P(e)=0.02, and the conditional probability table, P(a B,E) = {(T,T,0.95), (T,F,0.94), (F,T,0.29), (F,F,0.001)} in 4 rows respectively. Usual upper/lower case semantics apply, e.g., b means B=T and ~b means B=F. How many values are there for P(a E)?
O 4
O 3
2
○ Unknown

Question 8
2 / 2 pts
Bayes theorem: P(A B)P(A) = P(B A)P(B)
Wrong
O Correct
O Depends
O None of the above
Question 9 2 / 2 pts
Two random variables A and B have three values in each of their domains.
A FULL joint distribution P(A B) indicates how many total values? (NOT only independent values)
(Remember upper/lower case semantics for propositions A and B)
© 3*3
○ 2^3
O 3+3
O 3*2
Question 10 2 / 2 pts
Two random variables A and B have three values in each of their domains.
A conditional probability distribution P(A B) will need how many INDEPENDENT values?
(Remember upper/lower case semantics for propositions A and B)
O 5
O 3
◎ 6
O 9
Question 11
2 / 2 pts

P(toothache cavity) = 1- P(~toothache cavity)					
○ 1- P(~toothache cavity)					
1- (P(~toothache ^ cavity)/P((cavity))				
All of the above					
P(toothache ^ cavity)/P(cavi	ity)				
**					
IncorrectQuestion 12 O / 2 pts					
What is the value of P(~toot	hache V ~cavit	ty) computed fr	om the followi	ng table?	
	toothache		~toothache		
	catch	~catch	catch	~catch	
cavity	.108	.012	.072	.008	
~cavity	.016	.064	.144	.576	
○ .016 +.064 +.144 +.576 +.144 +.576 +.072 +.008					
0.016 +.064 +.144 +.576 +.072 +	.008				
O .016 +.064 +.144 +.576					
<u> </u>					
••					
Question 13 2 / 2 pts					
What is the value of P(~toot	hache cavity)	computed fron	n the following	table?	
	toothache		~toothache		
	catch	~catch	catch	~catch	

1		_	_		
cavity	.108	.012	.072	.008	
~cavity	.016	.064	.144	.576	
0.2/0.8					
0.72/0.8					
0.08/0.2					
0.8/0.72					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
Question 14 2 / 2 pts					
What is the value of F	P(~toothache) com	puted from the	following table	∍?	
	toothache	toothache		~toothache	
	catch	~catch	catch	~catch	
cavity	.108	.012	.072	.008	
~cavity	.016	.064	.144		
.072+.008+.144					
.108+.012+.016+.064					
None of the above					
0.072+.008+.144+.576					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
IncorrectQuestion 15					
0 / 2 pts					
Consider the Bayesia probabilities: P(b)=.00 P(m A)=(.70, .01). Wha	01, P(e)=.002. Cond				
T	Т	.95			
т	F	.94			
F	Т	.29			

F	F	.001			
.05*.01*.29	*.999*.002				
.05*.01*(1:	.05*.01*(129)*.999*.002				
None of th	None of the above				
.05*.01*(1:	29)*.001*.002				
			Quiz Score: 22 out of 30		