Explicit CN Soundness Proof

Dhruv Makwana

June 21, 2021

1 Weakening

If $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ and $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$ then $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$.

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$

PROVE: $C'; L'; \Phi'; \mathcal{R}' \vdash J$.

2 Substitution

2.1 Weakening for Substitution

Weakening for substitution: as above, but with $J = (\sigma) : (\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROOF SKETCH: Induction over the substitution.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C''; \mathcal{L}''; \Phi''; \mathcal{R}'')$

PROVE: $C': L': \Phi': \mathcal{R}' \vdash (\sigma) : (C'': L'': \Phi'': \mathcal{R}'')$.

2.2 Substitution Lemma

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ and $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. C; L; Φ ; $R \vdash (\sigma) : (C'; L'; \Phi'; R')$ 2. C'; L'; Φ' ; $R' \vdash J$

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$. $\langle 1 \rangle 1$. Case: Ty_PVal_Var. $C'; \mathcal{L}'; \Phi' \vdash x \Rightarrow \beta$

- $\langle 2 \rangle 1$. Have $x : \beta \in \mathcal{C}'$ (or $x : \beta \in \mathcal{L}'$).
- $\langle 2 \rangle 2$. So $\exists pval. \ \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta$ by Ty_Subs_Cons_{Comp,Log}.
- $\langle 2 \rangle 3$. Since $pval = \sigma(x)$, we are done.

 $\langle 1 \rangle 2$. Case: Ty_TPE_Let.

$$\mathcal{C}'; \mathcal{L}'; \Phi' \vdash \mathtt{let} \ pat = pexpr \ \mathtt{in} \ tpexpr \Leftarrow y_2 : \beta_2. \ term_2$$

 $\langle 2 \rangle 1$. By induction,

1.
$$C$$
; \mathcal{L} ; $\Phi \vdash \sigma(pexpr) \Rightarrow y_1 : \beta_1$. $\sigma(term_1)$
2. C , C_1 ; \mathcal{L} , $y_1 : \beta_1$; Φ , $term_1$, $\Phi' \vdash \sigma(tpexpr) \Leftarrow y_2 : \beta_2$. $\sigma(term_2)$.

$$\langle 2 \rangle 2$$
. C ; L ; $\Phi \vdash \sigma(\text{let } pat = pexpr \text{ in } tpexpr \Leftarrow y_2 : \beta_2. term_2)$ as required.

 $\langle 1 \rangle 3$. Case: Ty_TVal_Log.

$$\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \text{done } pval, \overline{spine_elem} \Leftarrow \exists y : \beta. ret$$

 $\langle 2 \rangle 1$. By inversion and then induction,

1.
$$C; \mathcal{L}; \Phi \vdash \sigma(pval)\beta$$

2.
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\text{done } \overline{spine_elem}) \Leftarrow \sigma([pval/y]ret).$$

- $\langle 2 \rangle 2$. Therefore $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\text{done } pval, \overline{spine_elem} \Leftarrow \exists y : \beta.ret)$.
- $\langle 1 \rangle 4$. Case: Ty_Spine_Res.

$$\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'_1, \mathcal{R}_2 \vdash x = res_term, \overline{x = spine_elem} :: res \multimap arg \gg res_term/x, \psi; ret$$

 $\langle 2 \rangle 1$. By inversion and then induction,

1.
$$C$$
; L ; Φ ; $R_1 \vdash \underline{x = \sigma(res_term)} \Leftarrow \sigma(res)$

2.
$$C; \mathcal{L}; \Phi; \mathcal{R}_2 \vdash \overline{x = \sigma(spine_elem)} :: \sigma(res) \multimap \sigma(arg) \gg \sigma(\psi); \sigma(ret)$$

$$\langle 2 \rangle 2$$
. Hence $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash \sigma(x = res_term, \overline{x = spine_elem} :: res \multimap arg \gg res_term/x, \psi; ret)$

2.3 Identity Extension

If
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$
 then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$.

PROOF SKETCH: Induction over the substitution.

Assume:
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$

PROVE:
$$C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}').$$

2.4 Usable Substitution Lemma

If
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$
 and $C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Apply identity extension then substitution lemma.

ASSUME: 1.
$$C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$$

2. $C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$

PROVE:
$$C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$$
.

3 Progress

If
$$\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$$
 then either value(e) or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROOF SKETCH: Induction over the typing rules.

Assume: $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$

PROVE: either value(e) or $\forall h: R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

Framing 4

If $\langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$ and h_1, h_2 disjoint then $\langle h_1 + h_2; e \rangle \longrightarrow \langle h'_1 + h_2; e' \rangle$.

PROOF SKETCH: Induction over the operational rules.

 $\begin{array}{ccc} \text{Assume:} & 1. \ \langle h_1; e \rangle \longrightarrow \langle h_1'; e' \rangle \\ & 2. \ h_1, h_2 \ \text{disjoint.} \end{array}$

PROVE: $\langle h_1 + h_2; e \rangle \longrightarrow \langle h'_1 + h_2; e' \rangle$.

Type Preservation 5

 $\text{If } :; :; :; \mathcal{R} \vdash e \Leftrightarrow t \text{ then } \forall h : \mathcal{R}, e', h' : \mathcal{R}'. \ \langle h; e \rangle \longrightarrow \langle h'; e' \rangle \implies :; :; :; \mathcal{R}' \vdash e' \Leftrightarrow t.$

PROOF SKETCH: Induction over the typing rules.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$

2. arbitrary $h: \mathcal{R}, e', h': \mathcal{R}'$

3. $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}' \vdash e' \Leftrightarrow t$.

6 Typing Judgements

7 Opsem Judgements