PRIMITIVE ROOT THEOREM

PRIMITIVE ROOT THEOREM

Recall that a primitive root modulo p is an element of $\Phi(p)$ such that the dynamic of $a \pmod{m}$ consists of only one circle.

Theorem 4.9.1 (Gauss)

If p is prime, then $\Phi(p)$ contains exactly $\varphi(\varphi(p))$ primitive roots.

PRIMITIVE ROOT THEOREM

Recall that a primitive root modulo p is an element of $\Phi(p)$ such that the dynamic of $a \pmod{m}$ consists of only one circle.

Theorem 4.9.1 (Gauss)

If p is prime, then $\Phi(p)$ contains exactly $\varphi(\varphi(p))$ primitive roots.

Example 4.9.2

For the prime 7, we have $\varphi(\varphi(7)) = \varphi(6) = 2$. Indeed, we have exactly two primitive roots 3 and 5.

Proof. For $a \in \Phi(p)$, theorem 4.4.5 tells us the dynamic of $a \pmod{p}$ consists of cycles of the same length $\ell(a)$. Let c(a) be the number of cycles. Then we have

$$c(\mathbf{a}) \cdot \ell(\mathbf{a}) = \varphi(\mathbf{p}) = \mathbf{p} - 1.$$

In particular, $\ell(a) \mid p-1$.

Proof. For $a \in \Phi(p)$, theorem 4.4.5 tells us the dynamic of $a \pmod{p}$ consists of cycles of the same length $\ell(a)$. Let c(a) be the number of cycles. Then we have

$$c(\mathbf{a}) \cdot \ell(\mathbf{a}) = \varphi(\mathbf{p}) = \mathbf{p} - 1.$$

In particular, $\ell(a) \mid p-1$.

Conversly, for each divisor ℓ of p-1, define

$$\Phi_{\ell}(p) := \{ a \in \Phi(p) \mid \ell(a) = \ell \}.$$

In particular, $\Phi_{p-1}(p) = \{\text{primitive roots}\}.$

We want to show: each $\Phi_{\ell}(p)$ is nonempty.

1. For distinct divisors $\ell_1 \neq \ell_2$ of p-1, we necessarily have $\Phi_{\ell_1}(p) \cap \Phi_{\ell_1}(p) = \emptyset$. Therefore,

$$|p-1| = |\Phi(p)| = \sum_{\ell \mid p-1} |\Phi_{\ell}(p)|.$$

We want to show: each $\Phi_{\ell}(p)$ is nonempty.

1. For distinct divisors $\ell_1 \neq \ell_2$ of p-1, we necessarily have $\Phi_{\ell_1}(p) \cap \Phi_{\ell_1}(p) = \emptyset$. Therefore,

$$p-1 = |\Phi(p)| = \sum_{\ell \mid p-1} |\Phi_{\ell}(p)|.$$

2. We will show that

$$\sum_{\ell \mid p-1} \varphi(\ell) = p - 1.$$

We want to show: each $\Phi_{\ell}(p)$ is nonempty.

1. For distinct divisors $\ell_1 \neq \ell_2$ of p-1, we necessarily have $\Phi_{\ell_1}(p) \cap \Phi_{\ell_1}(p) = \emptyset$. Therefore,

$$|p-1| = |\Phi(p)| = \sum_{\ell|p-1} |\Phi_{\ell}(p)|.$$

2. We will show that

$$\sum_{\ell \mid p-1} \varphi(\ell) = p-1.$$

3. But for each divisor ℓ of p-1, we will see that

$$|\Phi_{\ell}(p)| \leqslant \varphi(\ell).$$

We want to show: each $\Phi_{\ell}(p)$ is nonempty.

1. For distinct divisors $\ell_1 \neq \ell_2$ of p-1, we necessarily have $\Phi_{\ell_1}(p) \cap \Phi_{\ell_1}(p) = \emptyset$. Therefore,

$$p-1 = |\Phi(p)| = \sum_{\ell \mid p-1} |\Phi_{\ell}(p)|.$$

2. We will show that

$$\sum_{\ell \mid p-1} \varphi(\ell) = p-1.$$

3. But for each divisor ℓ of p-1, we will see that

$$|\Phi_{\ell}(p)| \leq \varphi(\ell)$$
.

4. Hence, combining 1–3, we must have $|\Phi_{\ell}(p)| = \varphi(\ell) > 0$. $|\Phi_{\ell}(p)| = \varphi(\ell) > 0$.

Properties of $\phi(\,\cdot\,)$

Theorem 4.9.3

Let m be a positive integer. Then

$$\varphi(\mathbf{m}) = \mathbf{m} \prod_{\substack{p \mid \mathbf{m} \\ p \in \mathbb{P}}} \left(1 - \frac{1}{p}\right).$$

Theorem 4.9.3

Let m be a positive integer. Then

$$\varphi(\mathbf{m}) = \mathbf{m} \prod_{\substack{p \mid m \\ p \in \mathbb{P}}} \left(1 - \frac{1}{p}\right).$$

Corollary 4.9.4

The function $\varphi(\cdot)$ is multiplicative and $\varphi(p^e) = p^{e-1}(p-1)$ for any prime p.

Proof. The formula follows from careful study of the following sets:

$$A := \{0, 1, \dots, m-1\}, \qquad B_d := \{a \in A \mid a \text{ is a multiple of } d\}.$$

Proof. The formula follows from careful study of the following sets:

$$A := \{0, 1, \dots, m-1\},$$
 $B_d := \{a \in A \mid a \text{ is a multiple of } d\}.$

First note that

$$\Phi(\mathbf{m}) = A \setminus \bigcup_{\substack{d \mid m \\ d > 1}} B_d.$$

Proof. The formula follows from careful study of the following sets:

$$A := \{0, 1, \dots, m-1\}, \qquad B_d := \{a \in A \mid a \text{ is a multiple of } d\}.$$

First note that

$$\Phi(m) = A \setminus \bigcup_{\substack{d \mid m \\ d > 1}} B_d.$$

Note that: whenever $d_1 \mid d_2$, we must have $B_{d_1} \supseteq B_{d_2}$. Therefore, we may only focus on B_p with p being a prime divisor of m:

$$\Phi(\mathbf{m}) = A \setminus \bigcup_{\substack{p \mid m \\ p \in \mathbb{P}}} B_p.$$

But there are still overlaps.

We need the following result from combinatorics:

Lemma 4.9.5 (Inclusion - exclusion principle)

$$\left|\bigcup_{i\in I} S_i\right| = \sum_{k\geqslant 1} (-1)^{k-1} \sum_{i_1,\dots,i_k\in I} \left|S_{i_1}\cap\dots\cap S_{i_k}\right|.$$

Properties of $\phi(\cdot)$

We need the following result from combinatorics:

Lemma 4.9.5 (Inclusion - exclusion principle)

$$\left|\bigcup_{i\in I} S_i\right| = \sum_{k\geqslant 1} (-1)^{k-1} \sum_{i_1,\dots,i_k\in I} \left|S_{i_1}\cap\dots\cap S_{i_k}\right|.$$

Note that if p_1, \dots, p_k are distinct primes, then

$$lcm(p_1, \dots, p_k) = p_1 \dots p_k$$
. Hence,

$$B_{p_1} \cap \cdots \cap B_{p_k} = B_{p_1 \cdots p_k}$$

We need the following result from combinatorics:

Lemma 4.9.5 (Inclusion - exclusion principle)

$$\left|\bigcup_{i\in I} S_i\right| = \sum_{k\geqslant 1} (-1)^{k-1} \sum_{i_1,\dots,i_k\in I} \left|S_{i_1}\cap\dots\cap S_{i_k}\right|.$$

Note that if p_1, \dots, p_k are distinct primes, then $lcm(p_1, \dots, p_k) = p_1 \dots p_k$. Hence,

$$B_{p_1} \cap \cdots \cap B_{p_k} = B_{p_1 \cdots p_k}$$

Apply the inclusion - exclusion principle to the sets B_p , where p ranges over prime divisors of m (let's denote this set by I):

$$|\Phi(\mathbf{m})| = |A| - \sum_{k \ge 1} (-1)^{k-1} \sum_{\mathbf{p}_1, \dots, \mathbf{p}_k \in I} |B_{\mathbf{p}_1 \dots \mathbf{p}_k}|$$

On the other hand, it is clear that $|B_d| = \frac{m}{d}$ whenever $d \mid m$. Thus, we obtain from the previous identity that

$$\varphi(m) = m - \sum_{k \ge 1} (-1)^{k-1} \sum_{\substack{p_1, \dots, p_k \in I}} \frac{m}{p_1 \cdots p_k}$$

Properties of $\phi(\cdot)$

On the other hand, it is clear that $|B_d| = \frac{m}{d}$ whenever $d \mid m$. Thus, we obtain from the previous identity that

$$\varphi(m) = m - \sum_{k \ge 1} (-1)^{k-1} \sum_{p_1, \dots, p_k \in I} \frac{m}{p_1 \dots p_k}$$

$$= m \left(1 - \sum_{k \ge 1} (-1)^{k-1} \sum_{p_1, \dots, p_k \in I} \frac{1}{p_1 \dots p_k} \right)$$

Properties of $\phi(\cdot)$

On the other hand, it is clear that $|B_d| = \frac{m}{d}$ whenever $d \mid m$. Thus, we obtain from the previous identity that

$$\varphi(m) = m - \sum_{k \ge 1} (-1)^{k-1} \sum_{p_1, \dots, p_k \in I} \frac{m}{p_1 \dots p_k}$$

$$= m \left(1 - \sum_{k \ge 1} (-1)^{k-1} \sum_{p_1, \dots, p_k \in I} \frac{1}{p_1 \dots p_k} \right)$$

$$= m \prod_{p \in I} \left(1 - \frac{1}{p} \right).$$

Properties of $\phi(\,\cdot\,)$

Theorem 4.9.6

$$\sum_{\mathbf{d}\mid m}\varphi(\mathbf{d})=m.$$

Theorem 4.9.6

$$\sum_{\mathbf{d}\mid\mathbf{m}}\varphi(\mathbf{d})=\mathbf{m}.$$

Proof. Consider the following sets:

$$A := \{0, 1, \dots, m-1\}, \qquad C_d := \{a \in A \mid \gcd(a, m) = d\}.$$

Properties of $\phi(\cdot)$

Theorem 4.9.6

$$\sum_{d|m} \varphi(d) = m.$$

Proof. Consider the following sets:

$$A := \{0, 1, \dots, m-1\}, \qquad C_d := \{a \in A \mid \gcd(a, m) = d\}.$$

Note that whenever $d_1 \neq d_2$, we must have $C_{d_1} \cap C_{d_2} = \emptyset$. Therefore,

$$|A| = \sum_{\mathbf{d} \mid \mathbf{m}} |C_{\mathbf{d}}|.$$

It remains to relate $|C_d|$ and $\varphi(d)$.

We finish the proof by showing that C_d is bijective to $\Phi(\frac{m}{d})$.

We finish the proof by showing that C_d is bijective to $\Phi(\frac{m}{d})$.

For any $a \in C_d$, we have

- Since $0 \le a < m$, we have $0 \le \frac{a}{d} < \frac{m}{d}$.
- Since gcd(a, m) = d, we have $gcd(\frac{a}{d}, \frac{m}{d}) = 1$.

Therefore, $\frac{a}{d} \in \Phi(\frac{m}{d})$.

Properties of $\phi(\cdot)$

We finish the proof by showing that C_d is bijective to $\Phi(\frac{m}{d})$.

For any $a \in C_d$, we have

- Since $0 \le a < m$, we have $0 \le \frac{a}{d} < \frac{m}{d}$.
- Since gcd(a, m) = d, we have $gcd(\frac{a}{d}, \frac{m}{d}) = 1$.

Therefore, $\frac{a}{d} \in \Phi(\frac{m}{d})$. In this way, we obtain a map from C_d is to $\Phi(\frac{m}{d})$. It is not difficult to verify that it is bijective.

П

Definition 4.9.7

Let f and g be two arithmetic functions. Then their *Dirichlet* convolution $f \star g$ is the arithmetic function

$$f \star g \colon m \longmapsto \sum_{d \mid m} f(d)g(\frac{m}{d}).$$

Definition 4.9.7

Let f and g be two arithmetic functions. Then their *Dirichlet* convolution $f \star g$ is the arithmetic function

$$f \star g \colon m \longmapsto \sum_{d \mid m} f(d)g(\frac{m}{d}).$$

The set of arithmetic functions equipped with the Dirichlet convolution (and the neural element for \star) is an abelian monoid. Moreover, it becomes a ring after equipped with addition of functions (see supplementary notes for more details).

$$\frac{2}{2}\varphi(d)=m$$

Theorem 4.9.6 can be interpreted as:

$$\varphi \star 1 = id$$
,

where 1 is the constant function mapping any positive integer to 1, id is the identity function mapping any positive number to itself.

Theorem 4.9.6 can be interpreted as:

$$\varphi \star 1 = id$$
,

where 1 is the constant function mapping any positive integer to 1, id is the identity function mapping any positive number to itself.

The Möbius inversion formula says that

$$f = g \star \mu \iff g = f \star 1$$
.

Hence, theorem 4.9.6 is equivalent to the following one:

$$\varphi = id \star \mu = \mu \star id$$
.

Let's spell out $\mu \star id$.

Let's spell out $\mu \star id$.

For any positive integer m, we have

$$(\mu \star \mathrm{id})(m) = \sum_{d|m} \mu(d) \frac{m}{d}$$

Recall that

$$\mu(x) := \begin{cases} 1 & \text{if } x = 1, \\ 0 & \text{if } x \text{ is NOT sqaure-free,} \\ (-1)^k & \text{if } x \text{ is sqaure-free and has exactly } k \text{ prime divisors.} \end{cases}$$

Therefore,

$$(\mu \star \mathrm{id})(m) = m + \sum_{k \geq 1} (-1)^k \sum_{p_1, \dots, p_k \in I} \frac{m}{p_1 \cdots p_k},$$

Therefore,

$$(\mu \star \mathrm{id})(m) = m + \sum_{k \geq 1} (-1)^k \sum_{p_1, \dots, p_k \in I} \frac{m}{p_1 \cdots p_k},$$

which we have seen equal to

$$m \prod_{\substack{p \mid m \\ p \in \mathbb{P}}} \left(1 - \frac{1}{p} \right).$$

So theorems 4.9.3 and 4.9.6 are equivalent through the Möbius inversion formula.

Some remarks:

• Without spelling out $\mu \star \mathrm{id}$, the identity $\varphi = \mu \star \mathrm{id}$ itself already implies that φ is multiplicative since both μ and id are multiplicative.

Some remarks:

- Without spelling out $\mu \star \mathrm{id}$, the identity $\varphi = \mu \star \mathrm{id}$ itself already implies that φ is multiplicative since both μ and id are multiplicative.
- So we can only spell out $(\mu \star id)(p^e)$, where p is a prime. But this is clear since we know $\mathcal{D}(p^e) = \{1, p, \dots, p^e\}$, and among them, only 1 and p are square-free.

$$\varrho(p^{e}) = \sum_{p \in K} \mu(p^{k}) p^{e-k} = I \cdot p^{e} + (-1) \cdot p^{e-1} \\
= p^{e-1} (p-1).$$