BAB IV

STUDI KASUS

4.1. Deskripsi Data

Data yang digunakan adalah data cuaca harian yang terdiri dari data suhu rata-rata (temp), suhu maksimum (tempmax), suhu minimum (tempmin), titik embun (dew), kelembaban (humidity), curah hujan (precip), area curah hujan (precipcover), hembusan angin (windgust), kecepatan angin (windspeed), arah angin (winddir), tekanan air laut (sealevelpressure), area cakupan awan (cloudcover), visibilitas (visibility), radiasi matahari (solarradiation), energi matahari (solarenergy), dan indeks Ultra Violet (uvindex) dalam rentang waktu 1 Januari 2020 hingga 30 Juni 2024 dengan total 1643 observasi data. Data yang diambil dari laman resmi milik Visual Crossing Weather bertepat pada Daerah Istimewa Yogyakarta.

Gambar 4.1 Grafik Suhu Rata-rata Harian (2020 - 2024)

Grafik 4.1 menunjukkan fluktuasi suhu rata-rata harian di Yogyakarta dari awal 2020 hingga pertengahan 2024. Suhu mengalami fluktuasi yang signifikan dari hari ke hari, dengan puncak suhu yang kemungkinan terjadi pada musim kemarau

dan penurunan tajam yang dapat berkaitan dengan musim hujan. Pola tahunan terlihat cukup konsisten, di mana suhu cenderung mengalami siklus naik dan turun sepanjang tahun. Meskipun terdapat variabilitas harian yang tinggi, secara keseluruhan tren jangka panjang tampaknya tetap dalam kisaran yang relatif stabil antara 23°C hingga 28°C tanpa perubahan drastis. Secara visual, data suhu menunjukkan beberapa fluktuasi yang mengindikasikan bahwa data ini tidak sepenuhnya stasioner.

4.2. Data Preprocessing

4.2.1. Pengecekan Missing Value

Sebelum memasuki tahapan analisis, akan dilakukan pengecekan terhadap *missing value* pada data cuaca harian terlebih dahulu.

Gambar 4.2 Plot Representasi Availabilitas Missing Value

Berdasarkan Gambar [4.2], terlihat bahwa masih terdapat *missing value* pada data cuaca harian, yang berada pada variabel visibilitas (*visibility*). Oleh karena itu, akan dilakukan penghilangan variabel yang mengandung *missing value*. Sehingga variabel yang digunakan pada analisis selanjutnya terdiri dari suhu rata-rata (*temp*), suhu maksimum (*tempmax*), suhu minimum (*tempmin*), titik embun (*dew*), kelembaban (*humidity*), curah hujan (*precip*), area curah hujan (*precipcover*), hembusan angin (*windgust*), kecepatan angin (*windspeed*), arah angin (*winddir*),

tekanan air laut (*sealevelpressure*), area cakupan awan (*cloudcover*), radiasi matahari (*solarradiation*), energi matahari (*solarenergy*), dan indeks Ultra Violet (*uvindex*). Maka dari itu, data cuaca harian dapat digunakan ke tahap analisis selanjutnya.

4.2.2. Feature Selection Berbasis Random Forest

Variabel X	Importance
tempmax	49.47%
tempmin	37.20%
dew	4.33%
humidity	1.84%
winddir	1.19%
cloudcover	0,92%
solarradiation	0,83%
precip	0,80%
solarenergy	0,73%
windgust	0,71%
windspeed	0,67%
sealevelpressure	0,66%
precipcover	0,43%
uvindex	0,21%

Tabel 4.1 Hasil Pembobotan Feature Selection dengan Random Forest

Berdasarkan hasil *feature selection* menggunakan *Random Forest*, dapat dilihat bahwa *tempmax*/suhu maksimum (49.40%) dan *tempmin*/suhu minimum (37.14%) merupakan variabel dengan bobot kepentingan tertinggi, menunjukkan bahwa keduanya memiliki pengaruh dominan dalam model prediksi. Diikuti dengan variabel *dew*/titik embun (4.08%), *humidity*/kelembaban (1.80%), *winddir*/arah angin (1.09%), yang berarti masih cukup berkontribusi terhadap performa model.

Ambang Batas	Selected Features	MSE
0,1%	tempmax, tempmin, dew, humidity, winddir, cloudcover, solarradiation, precip, solarenergy, windgust, windspeed, sealevelpressure, precipcover, uvindex	0,07913
0,05%	tempmax, tempmin, dew, humidity, winddir, cloudcover, solarradiation, precip, solarenergy, windgust, windspeed, sealevelpressure	0,07818
1%	tempmax, tempmin, dew, humidity, winddir	0,06297
5%	tempmax, tempmin	0,15666

Tabel 4.2 Evaluasi Performa Cross-Validation Feature Selection

Berdasarkan Tabel [4.2], dapat disimpulkan bahwa ambang batas paling optimal untuk analisis prediksi selanjutnya adalah 1%, karena memiliki nilai MSE cross-validation paling kecil. Oleh karena itu, untuk langkah selanjutnya dalam pembuatan model, hanya variabel dengan bobot di atas 1% yang akan digunakan, yaitu tempmax, tempmin, dew, humidity, dan winddir. Variabel-variabel ini dipilih karena memiliki pengaruh signifikan terhadap hasil prediksi, sementara variabel dengan bobot di bawah 1% seperti cloudcover, solarradiation, dan lainnya akan dieliminasi karena kontribusinya yang rendah, sehingga dapat membantu menyederhanakan model dan meningkatkan efisiensi tanpa kehilangan informasi yang relevan.

4.3. Data Splitting

Splitting data merupakan langkah krusial dalam pengembangan model deep learning untuk memastikan bahwa model yang dihasilkan bersifat akurat, general, dan dapat diimplementasikan dalam situasi nyata. Pada penelitian ini, data yang akan diramalkan, yaitu data suhu rata-rata, akan dipisah dengan proporsi perbandingan data train (data latih) dan test (data uji) sebesar 80 : 20.

Gambar 4.3 Pembagian Data Suhu Rata-rata Harian

Data *train* atau latih pada data suhu harian terdiri dari 1314 observasi, yang berada pada rentang periode waktu 1 Januari 2020 hingga 6 Agustus 2023. Sedangkan data *test* atau uji pada data besar klaim memiliki 329 observasi pada rentang waktu 7 Agustus 2023 hingga 30 Juni 2024. Pada Grafik 4.3, data *train* ditunjukkan dengan garis biru, sementara data *test* direpresentasikan dengan garis merah. Setelah ini, akan dilakukan pemodelan berdasarkan data *train*. Data *test* akan digunakan untuk menguji akurasi dari model yang sudah terbentuk.

4.4. Pemodelan Runtun Waktu dengan Metode ARIMAX

Dalam melakukan *forecasting* dengan metode *Autoregressive Integrated Moving Average with Exogenous Variables* (ARIMAX), data harus melalui beberapa tahapan sebelum memperoleh hasil peramalan. Data yang digunakan dalam ARIMAX merupakan data yang memenuhi asumsi normalitas, linearitas, dan stasioner, oleh karena itu harus dilakukan uji asumsi data menggunakan uji D'Agostino-Pearson, *Lagrange Multiplier*, dan *Augmented Dickey-Fuller* (ADF) terlebih dahulu. Apabila data belum stasioner, akan dilakukan transformasi data hingga data memenuhi asumsi stasioneritas. Langkah selanjutnya, akan ditentukan orde *p* dan *q* melalui plot *autocorrelation* (ACF) dan *partial autocorrelation* (PACF), orde *d* diperoleh melalui banyak diferensiasi saat transformasi data. Peramalan dengan metode ARIMAX dilakukan dengan menggunakan orde *p*, *q*, dan *d* yang dimiliki.

4.4.1. Uji Asumsi Normalitas

Uji linearitas menggunakan hipotesis nol data berdistribusi normal dan hipotesis alternatif data tidak berdistribusi normal dengan tingkat signifikansi $\alpha=5\%$, diperoleh hasil dan kesimpulan sebagai berikut.

```
D'Agostino-Pearson Test Statistic = 3.757
P-value D'Agostino-Pearson Test = 0.153
```

Gambar 4.4 Uji D'Agostino-Pearson Data Train

Berdasarkan hasil uji D'Agostino-Pearson pada Gambar 4.4, karena nilai $P\text{-}Value=0,153>\alpha=0,05$, maka hipotesis awal tidak ditolak. Sehingga dapat disimpulkan data suhu rata-rata harian berdistribusi normal.

4.4.2. Uji Asumsi Linearitas

Uji linearitas menggunakan hipotesis nol data bersifat linear dan hipotesis alternatif data bersifat nonlinear dengan tingkat signifikansi $\alpha=5\%$, diperoleh hasil dan kesimpulan sebagai berikut.

```
Lagrange multiplier test statistic = 1136.70737
P-value Lagrange multiplier test = 0.00000
F statistic F test = 371.50247
P-value F test = 0.00000
```

Gambar 4.5 Uji Lagrange Multiplier Data Train

Berdasarkan hasil uji LM pada Gambar $\boxed{4.5}$, karena nilai $P\text{-Value}=0,00000<\alpha=0,05$, maka hipotesis awal ditolak. Sehingga dapat disimpulkan data suhu rata-rata harian bersifat nonlinear. Langkah selanjutnya, akan ditinjau linearitas antara variabel respon (temp) dengan variabel prediktor, diperoleh hasil sebagai berikut.

Variabel X	F-Statistic	P-Value
tempmax	60,89095	0,00000
tempmin	38.24870	0,00000
dew	29.52810	0,00000
humidity	3.58404	0,05851
winddir	60,48021	0,00000

Tabel 4.3 Uji Linearitas antara Variabel Respon dan Prediktor

Berdasarkan Tabel 4.3 dapat disimpulkan bahwa hanya variabel *humidity* yang memiliki hubungan linear terhadap variabel *temp*. Variabel prediktor *tempmax*, *tempmin*, *dew*, dan *winddir* memiliki hubungan nonlinear terhadap variabel respon.

4.4.3. Uji Asumsi Stasioneritas

Uji stasioneritas menggunakan hipotesis nol data tidak stasioner terhadap mean dan hipotesis alternatif data bersifat stasioner terhadap mean dengan tingkat signifikansi $\alpha=5\%$, diperoleh hasil dan kesimpulan sebagai berikut.

```
Hasil Uji ADF:

Test Statistic : -4.09076
P-value : 0.00100
Lags Used : 14
Critical Values 1% : -3.43437
Critical Values 5% : -2.86332
Critical Values 10% : -2.56772
```

Gambar 4.6 Uji Augmented Dickey-Fuller Data Train

Berdasarkan hasil uji ADF pada Gambar 4.6, karena nilai $P ext{-}Value = 0,001 < \alpha = 0,05$, maka hipotesis awal ditolak. Sehingga dapat disimpulkan data suhu rata-rata harian sudah bersifat stasioner terhadap mean. Akan tetapi pada penelitian ini, peneliti tetap melakukan differencing untuk menghilangkan tren pada data dan meningkatkan angka akurasi hasil forecasting.

4.4.4. Transformasi Data

berikut. hasil dari setiap transformasi yang dilakukan

Orde Differencing	Lag	Dickey-Fuller	P-Value
0	14	-4.09076	0,00100
1	6	-23.32668	0,000E+00
2	7	-20,51864	0,000E+00
3	7	-18.07130	2.604E-30

Tabel 4.4 Hasil Uji ADF Data Sebelum dan Setelah Transformasi

Berdasarkan Tabel 4.4, diperoleh nilai P-Value transformasi bernilai kurang dari tingkat signifikansi α , maka hipotesis awal ditolak. Dapat disimpulkan bahwa data setelah transformasi bersifat stasioner. Akan tetapi karena data setelah transformasi dengan orde 1 memiliki nilai absolut Dickey-Fuller terbesar, maka analisis selanjutnya akan dilakukan dengan menggunakan data train setelah transformasi dengan orde differencing sebesar 1.

4.4.5. Identifikasi Model ARIMAX

Setelah menemukan orde *differencing* terbaik, selanjutnya akan dicermati plot *Autocorrelation Function* (ACF) dan *Partial Autocorrelation Function* (PACF) untuk menentukan orde q dan p.

Gambar 4.7 Plot ACF & PACF Data Train Transformasi Diferencing 1 Kali

Orde maksimum untuk p dan q pada metode ARIMAX yang digunakan dalam penelitian ini adalah sebesar 4. Maka dari itu, berdasarkan Grafik [4.7], dapat terlihat bahwa lag yang terakhir keluar dari 4 lag pertama adalah lag ke-4. Artinya, fungsi ACF dan PACF signifikan pada lag ke-4, sehinga dapat disimpulkan bahwa orde MA (q) dan orde AR (p) bernilai 4. Sehingga diperoleh model ARIMAX awal yang terbentuk adalah ARIMA(4,1,4).

Dengan demikian, model ARIMAX yang dapat terbentuk beserta *underfitting*-nya adalah sebagai berikut.

- ARIMAX(4,1,4) dengan atau tanpa konstanta
- ARIMAX(4,1,3) dengan atau tanpa konstanta
- ARIMAX(4,1,2) dengan atau tanpa konstanta
- ARIMAX(4,1,1) dengan atau tanpa konstanta
- ARIMAX(4,1,0) dengan atau tanpa konstanta
- ARIMAX(3,1,4) dengan atau tanpa konstanta
- ARIMAX(3,1,3) dengan atau tanpa konstanta
- ARIMAX(3,1,2) dengan atau tanpa konstanta
- ARIMAX(3,1,1) dengan atau tanpa konstanta
- ARIMAX(3,1,0) dengan atau tanpa konstanta
- ARIMAX(2,1,4) dengan atau tanpa konstanta
- ARIMAX(2,1,3) dengan atau tanpa konstanta
- ARIMAX(2,1,2) dengan atau tanpa konstanta
- ARIMAX(2,1,1) dengan atau tanpa konstanta
- ARIMAX(2,1,0) dengan atau tanpa konstanta

- ARIMAX(1,1,4) dengan atau tanpa konstanta
- ARIMAX(1,1,3) dengan atau tanpa konstanta
- ARIMAX(1,1,2) dengan atau tanpa konstanta
- ARIMAX(1,1,1) dengan atau tanpa konstanta
- ARIMAX(1,1,0) dengan atau tanpa konstanta
- ARIMAX(0,1,4) dengan atau tanpa konstanta
- ARIMAX(0,1,3) dengan atau tanpa konstanta
- ARIMAX(0,1,2) dengan atau tanpa konstanta
- ARIMAX(0,1,1) dengan atau tanpa konstanta
- ARIMAX(0,1,0) dengan atau tanpa konstanta

4.4.6. Pembentukan Model

Selanjutnya, akan dilakukan pemodelan seluruh *underfitting* model ARIMAX terhadap data *train*. Pemilihan model terbaik dalam penelitian dilakukan berdasarkan signifikansi parameter model, nilai *Log Likelihood* (LL), *Akaike Information Criterion* (AIC), dan *Bayesian Information Criterion* (BIC). Diperoleh hasil pembentukan model beserta kriteria pemilihan model terbaik sebagai berikut.

Tabel 4.5 Pemilihan Model ARIMAX Terbaik

Model	Konstanta	Signifikansi	LL	AIC	BIC
ARIMAX(4,1,4)	Ya	Tidak	1383.316	-2736.633	-2658.932
ARIMAX(4,1,3)	Ya	Tidak	1373.092	-2718.184	-2645.663
ARIMAX(4,1,2)	Ya	Tidak	1359.643	-2693.287	-2625.946
ARIMAX(4,1,1)	Ya	Tidak	1330,722	-2637.444	-2575.283
ARIMAX(4,1,0)	Ya	Tidak	1322.521	-2623.041	-2566.060
ARIMAX(3,1,4)	Ya	Tidak	1381.012	-2734.025	-2661.504

Model	Konstanta	Signifikansi	LL	AIC	BIC
ARIMAX(3,1,3)	Ya	Tidak	1365.507	-2705.014	-2637.673
ARIMAX(3,1,2)	Ya	Tidak	1309.270	-2594.539	-2532.378
ARIMAX(3,1,1)	Ya	Tidak	1318.395	-2614.789	-2557.809
ARIMAX(3,1,0)	Ya	Tidak	1306.872	-2593.744	-2541.944
ARIMAX(2,1,4)	Ya	Tidak	1377.788	-2729.577	-2662.236
ARIMAX(2,1,3)	Ya	Tidak	1313.061	-2602.121	-2539.960
ARIMAX(2,1,2)	Ya	Tidak	1311.091	-2600,183	-2543.202
ARIMAX(2,1,1)	Ya	Tidak	1334.619	-2649.237	-2697.436
ARIMAX(2,1,0)	Ya	Tidak	1282.457	-2546.915	-2500,294
ARIMAX(1,1,4)	Ya	Tidak	1377.278	-2730,556	-2668.395
ARIMAX(1,1,3)	Ya	Tidak	1305.429	-2588.859	-2531.878
ARIMAX(1,1,2)	Ya	Tidak	1344.152	-2668.305	-2616.504
ARIMAX(1,1,1)	Ya	Tidak	1339.212	-2660,425	-2613.804
ARIMAX(1,1,0)	Ya	Tidak	1229.804	-2443.609	-2402.168
ARIMAX(0,1,4)	Ya	Tidak	1379.842	-2737.684	-2680,703
ARIMAX(0,1,3)	Ya	Tidak	1367.079	-2714.158	-2662.357
ARIMAX(0,1,2)	Ya	Tidak	1351.624	-2685.248	-2638.628
ARIMAX(0,1,1)	Ya	Tidak	1320,081	-2624.163	-2582.722
ARIMAX(0,1,0)	Ya	Tidak	1113.638	-2213.276	-2177.015
ARIMAX(4,1,4)	Tidak	Tidak	1380,340	-2732.681	-2660,160
ARIMAX(4,1,3)	Tidak	Tidak	1371.602	-2717.204	-2649.864
ARIMAX(4,1,2)	Tidak	Tidak	1364.384	-2704.768	-2642.608
ARIMAX(4,1,1)	Tidak	Tidak	1330,724	-2639.448	-2582.467
ARIMAX(4,1,0)	Tidak	Ya	1321.459	-2622.918	-2571.117
ARIMAX(3,1,4)	Tidak	Tidak	1378.704	-2731.407	-2664.066
ARIMAX(3,1,3)	Tidak	Ya	1365.557	-2707.114	-2644.953
ARIMAX(3,1,2)	Tidak	Tidak	1311.910	-2601.819	-2544.839
ARIMAX(3,1,1)	Tidak	Tidak	1318.395	-2616.790	-2564.989
ARIMAX(3,1,0)	Tidak	Tidak	1309.171	-2600,341	-2553.720

Model	Konstanta	Signifikansi	LL	AIC	BIC
ARIMAX(2,1,4)	Tidak	Tidak	1376.685	-2729.371	-2667.210
ARIMAX(2,1,3)	Tidak	Tidak	1336.500	-2651.000	-2594.019
ARIMAX(2,1,2)	Tidak	Tidak	1309.475	-2598.949	-2547.148
ARIMAX(2,1,1)	Tidak	Tidak	1334.625	-2651.249	-2604.629
ARIMAX(2,1,0)	Tidak	Ya	1282.458	-2548.916	-2507.475
ARIMAX(1,1,4)	Tidak	Tidak	1376.451	-2730,901	-2673.920
ARIMAX(1,1,3)	Tidak	Tidak	1301.457	-2582.913	-2531.112
ARIMAX(1,1,2)	Tidak	Tidak	1344.199	-2670,399	-2623.778
ARIMAX(1,1,1)	Tidak	Ya	1338.340	-2660,680	-2619.239
ARIMAX(1,1,0)	Tidak	Tidak	1229.805	-2445.609	-2409.349
ARIMAX(0,1,4)	Tidak	Tidak	1378.964	-2737.928	-2686.127
ARIMAX(0,1,3)	Tidak	Tidak	1366.233	-2714.466	-2667.845
ARIMAX(0,1,2)	Tidak	Tidak	1353.555	-2691.110	-2649.669
ARIMAX(0,1,1)	Tidak	Ya	1315.905	-2617.810	-2581.549
ARIMAX(0,1,0)	Tidak	Tidak	1113.637	-2215.271	-2184.193

Berdasarkan Tabel [4.5], diperoleh kesimpulan bahwa model ARIMAX terbaik adalah ARIMAX(3,1,3) tanpa konstanta. Model ARIMAX dengan orde p sebesar 3, differencing 1, dan orde q sebesar 3 ini memiliki parameter yang signifikan, dengan nilai LL terbesar, dan nilai AIC serta BIC terkecil. Oleh karena itu, model ARIMAX(3,1,3) tanpa konstanta merupakan model ARIMAX terbaik.

berikut. persamaan model yang terbentuk menggunakan ARIMAX(3,1,3) tanpa konstanta

$$\begin{split} y_t &= y_{t-1} + 0,0615 \cdot \mathsf{tempmax}_t + 0,0107 \cdot \mathsf{tempmin}_t + 0,9209 \cdot \mathsf{dew}_t \\ &- 0,2029 \cdot \mathsf{humidity}_t - 0,00009929 \cdot \mathsf{winddir}_t \\ &- 1.1054 \cdot \Delta y_{t-1} - 0,4478 \cdot \Delta y_{t-2} + 0,1904 \cdot \Delta y_{t-3} \\ &+ 0,4715 \cdot \varepsilon_{t-1} - 0,3504 \cdot \varepsilon_{t-2} - 0,6095 \cdot \varepsilon_{t-3} + \varepsilon_t \end{split}$$

dengan y_t adalah suhu rata-rata harian pada waktu ke-t dan $\Delta y_t = y_t - y_{t-1}$ karena model memiliki orde differencing 1.

4.4.7. Hasil Peramalan dan Evaluasi Performa

Selanjutnya, akan dilakukan *forecasting* pada rentang waktu yang sama dengan data *test* dalam menguji performa model ARIMAX(3,1,3) tanpa konstanta dalam meramalkan data *train*. Diperoleh hasil peramalan yang divisualisasikan melalui grafik berikut.

Gambar 4.8 Hasil Peramalan Data Train dengan ARIMAX(3,1,3) tanpa Konstanta

Model	MSE	RMSE	MAE	MAPE
ARIMAX(3,1,3)	0,10087	0,31760	0,17134	0,66861

Tabel 4.6 Metrik Evaluasi Performa Model ARIMAX(3,1,3) tanpa Konstanta

Grafik 4.8 menunjukkan hasil prediksi suhu menggunakan model ARIMAX(3,1,3) tanpa konstanta (garis merah) dibandingkan dengan data *test* asli (garis biru). Secara umum, model ini mampu mengikuti pola fluktuasi suhu dengan sangat baik, menunjukkan bahwa prediksi cukup akurat dalam menangkap tren dan variasi harian. Akan tetapi, terdapat beberapa perbedaan, terutama pada lonjakan suhu yang lebih ekstrem, di mana model cenderung sedikit meredam variasi dibandingkan data *test* asli. Meskipun demikian, prediksi tetap *fit* dengan pola pergerakan suhu, menandakan bahwa model ARIMAX(3,1,3) tanpa konstanta dapat merepresentasikan dinamika suhu rata-rata dengan cukup baik, meskipun

masih ada ruang untuk peningkatan dalam menangkap perubahan suhu yang lebih tajam.

4.5. Pemodelan Runtun Waktu dengan Metode MLP

Dalam penelitian ini, dilakukan pengujian terhadap model *Multilayer Perceptron* (MLP) pada data multivariat untuk membandingkan kinerja metode dalam pemodelan runtun waktu. Pembentukan model MLP dilakukan dengan *trial and error*, mengingat tidak ada aturan baku dalam menentukan parameter optimal. Pembuatan model MLP akan dilakukan menggunakan berbagai kombinasi algoritma optimasi, fungsi aktivasi, dan *dropout rate* guna memperoleh konfigurasi terbaik. Pada seluruh percobaan, beberapa *hyperparameter* penyesuaian bobot akan disamakan, yaitu dengan *learning rate* sebesar 0,001, jumlah *layer* sebanyak 2 dengan masing-masing *layer* terdiri dari 128 dan 64 *units*, serta dievaluasi menggunakan 100 *epochs*. Kinerja masing-masing model diukur berdasarkan nilai MSE, RMSE, MAE, dan MAPE, dengan fokus utama pada performa data *testing*, karena penelitian ini bertujuan untuk mengevaluasi kemampuan model dalam memprediksi data baru.

4.5.1. Model MLP tanpa *Dropout Rate*

Eksperimen pertama pada model MLP dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Pada percobaan ini, model MLP akan diuji tanpa *dropout rate*. Berikut merupakan hasil performa tiap model MLP yang terbentuk terhadap data uji

Tabel 4.7 Metrik Evaluasi Performa Model MLP tanpa Dropout Rate

Model	MSE	RMSE	MAE	MAPE
MLP_Adam_ReLU_D0	0,02474	0,15730	0,09837	0,38800
MLP_Adam_TanH_D0	0,06410	0,25319	0,13910	0,54407
MLP_Adam_Sigmoid_D0	0,05550	0,23559	0,20633	0,81505
MLP_AdaGrad_ReLU_D0	0,40687	0,63787	0,44926	1.74813

Model	MSE	RMSE	MAE	MAPE
MLP_AdaGrad_TanH_D0	0,04889	0,22112	0,16936	0,67760
MLP_AdaGrad_Sigmoid_D0	1.08913	1.04362	0,80943	3.23033
MLP_RMSProp_ReLU_D0	0,02534	0,15917	0,12140	0,47424
MLP_RMSProp_TanH_D0	0,09527	0,30867	0,16812	0,65721
MLP_RMSProp_Sigmoid_D0	0,12721	0,35666	0,30056	1.20069

Berdasarkan Tabel 4.7, performa model MLP dengan algoritma optimasi Adam dan fungsi aktivasi ReLU memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen tanpa *dropout rate*. Maka dari itu, model MLP_Adam_ReLU_D0 merupakan model terbaik untuk meramalkan data uji pada percobaan tanpa *dropout rate*.

4.5.2. Model MLP dengan Dropout Rate 0,01

Eksperimen kedua pada model MLP dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Pada percobaan ini, model MLP akan diuji dengan *dropout rate* sebesar 0,01. Berikut merupakan hasil performa tiap model MLP yang terbentuk terhadap data uji

Tabel 4.8 Metrik Evaluasi Performa Model MLP dengan Dropout Rate 0,01

Model	MSE	RMSE	MAE	MAPE
MLP_Adam_ReLU_D1	0,05417	0,23274	0,16269	0,63748
MLP_Adam_TanH_D1	0,10761	0,32804	0,19257	0,75574
MLP_Adam_Sigmoid_D1	0,03769	0,19414	0,14586	0,58267
MLP_AdaGrad_ReLU_D1	0,28745	0,53615	0,38064	1.48250
MLP_AdaGrad_TanH_D1	0,08358	0,28911	0,22814	0,90626
MLP_AdaGrad_Sigmoid_D1	1.05974	1.02944	0,79910	3.18698
MLP_RMSProp_ReLU_D1	0,02360	0,15363	0,10039	0,39208
MLP_RMSProp_TanH_D1	0,09399	0,30657	0,25763	1.00366

Model	MSE	RMSE	MAE	MAPE
MLP_RMSProp_Sigmoid_D1	0,05719	0,23915	0,17238	0,69353

Berdasarkan Tabel 4.8, performa model MLP dengan algoritma optimasi RMSProp dan fungsi aktivasi ReLU memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen dengan *dropout rate* sebesar 0,05. Maka dari itu, model MLP_RMSProp_ReLU_D1 merupakan model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,01.

4.5.3. Model MLP dengan Dropout Rate 0,05

Eksperimen ketiga pada model MLP dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Pada percobaan ini, model MLP akan diuji dengan *dropout rate* sebesar 0,05. Berikut merupakan hasil performa tiap model MLP yang terbentuk terhadap data uji

Tabel 4.9 Metrik Evaluasi Performa Model MLP dengan Dropout Rate 0,05

Model	MSE	RMSE	MAE	MAPE
MLP_Adam_ReLU_D5	0,03457	0,18593	0,12406	0,49030
MLP_Adam_TanH_D5	0,13892	0,37271	0,20439	0,79917
MLP_Adam_Sigmoid_D5	0,05349	0,23128	0,17112	0,68790
MLP_AdaGrad_ReLU_D5	0,27024	0,51985	0,38564	1.53261
MLP_AdaGrad_TanH_D5	0,03902	0,19755	0,14931	0,59725
MLP_AdaGrad_Sigmoid_D5	1.09126	1.04463	0,80629	3.22125
MLP_RMSProp_ReLU_D5	0,02999	0,17319	0,13331	0,52309
MLP_RMSProp_TanH_D5	0,10890	0,33001	0,20544	0,79816
MLP_RMSProp_Sigmoid_D5	0,06412	0,25321	0,18885	0,75875

Berdasarkan Tabel 4.9, baik model MLP_Adam_ReLU_D5 maupun MLP_RMSProp_ReLU_D5 memenuhi 2 kriteria model terbaik. Model MLP_Adam_ReLU_D5 memberikan performa terbaik untuk metrik MAE

dan MAPE, sedangkan MLP_RMSProp_ReLU_D5 memberikan performa terbaik untuk metrik MSE dan RMSE. Maka model MLP dengan algoritma optimasi Adam dan fungsi aktivasi ReLU, serta model MLP dengan algoritma optimasi RMSProp dan fungsi aktivasi ReLU merupakan dua model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,05.

4.5.4. Model MLP dengan *Dropout Rate* 0,1

Eksperimen keempat pada model MLP dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Pada percobaan ini, model MLP akan diuji dengan *dropout rate* sebesar 0,1. Berikut merupakan hasil performa tiap model MLP yang terbentuk terhadap data uji

Tabel 4.10 Metrik Evaluasi Performa Model MLP dengan Dropout Rate 0,1

Model	MSE	RMSE	MAE	MAPE
MLP_Adam_ReLU_D10	0,02511	0,15846	0,10073	0,39502
MLP_Adam_TanH_D10	0,08066	0,28400	0,15589	0,60679
MLP_Adam_Sigmoid_D10	0,08813	0,29686	0,21253	0,85963
MLP_AdaGrad_ReLU_D10	0,38343	0,61922	0,47420	1.86044
MLP_AdaGrad_TanH_D10	0,10393	0,32239	0,23223	0,93788
MLP_AdaGrad_Sigmoid_D10	1.07294	1.03583	0,80497	3.21015
MLP_RMSProp_ReLU_D10	0,03024	0,17389	0,14898	0,58394
MLP_RMSProp_TanH_D10	0,08565	0,29266	0,15723	0,61169
MLP_RMSProp_Sigmoid_D10	0,08967	0,29945	0,24056	0,94902

Berdasarkan Tabel 4.10, performa model MLP dengan algoritma optimasi Adam dan fungsi aktivasi ReLU memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen dengan *dropout rate* sebesar 0,1. Maka dari itu, model MLP_Adam_ReLU_D10 merupakan model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,1.

4.5.5. Model MLP dengan *Dropout Rate* 0,15

Eksperimen kelima pada model MLP dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Pada percobaan ini, model MLP akan diuji dengan *dropout rate* sebesar 0,15. Berikut merupakan hasil performa tiap model MLP yang terbentuk terhadap data uji

Tabel 4.11 Metrik Evaluasi Performa Model MLP dengan $Dropout\ Rate\ 0,15$

Model	MSE	RMSE	MAE	MAPE
MLP_Adam_ReLU_D15	0,02401	0,15495	0,10836	0,42744
MLP_Adam_TanH_D15	0,11262	0,33558	0,18197	0,70810
MLP_Adam_Sigmoid_D15	0,09420	0,30693	0,23706	0,94351
MLP_AdaGrad_ReLU_D15	0,42979	0,65558	0,49157	1.91479
MLP_AdaGrad_TanH_D15	0,08828	0,29713	0,22026	0,88579
MLP_AdaGrad_Sigmoid_D15	1.11474	1.05581	0,81831	3.26542
MLP_RMSProp_ReLU_D15	0,04699	0,21676	0,17886	0,70634
MLP_RMSProp_TanH_D15	0,09145	0,30240	0,26201	1.02224
MLP_RMSProp_Sigmoid_D15	0,16609	0,40754	0,34148	1.33690

Berdasarkan Tabel [4.11], performa model MLP dengan algoritma optimasi Adam dan fungsi aktivasi ReLU memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen dengan *dropout rate* sebesar 0,15. Maka dari itu, model MLP_Adam_ReLU_D15 merupakan model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,15.

4.5.6. Model MLP dengan Dropout Rate 0,2

Eksperimen keenam pada model MLP dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Pada percobaan ini, model MLP akan diuji dengan *dropout rate* sebesar 0,2. Berikut merupakan hasil performa tiap model MLP yang terbentuk terhadap data uji

Tabel 4.12 Metrik Evaluasi Performa Model MLP dengan Dropout Rate 0,2

Model	MSE	RMSE	MAE	MAPE
MLP_Adam_ReLU_D20	0,03195	0,17874	0,11701	0,46348
MLP_Adam_TanH_D20	0,11941	0,34556	0,19165	0,75038
MLP_Adam_Sigmoid_D20	0,09805	0,31313	0,22699	0,91093
MLP_AdaGrad_ReLU_D20	0,38630	0,62153	0,47031	1.84269
MLP_AdaGrad_TanH_D20	0,11124	0,33353	0,26466	1.04786
MLP_AdaGrad_Sigmoid_D20	1.07676	1.03767	0,81095	3.22842
MLP_RMSProp_ReLU_D20	0,03189	0,17858	0,13999	0,54500
MLP_RMSProp_TanH_D20	0,09012	0,30020	0,17406	0,67891
MLP_RMSProp_Sigmoid_D20	0,14428	0,37984	0,28709	1.14431

Berdasarkan Tabel 4.12, baik model MLP_Adam_ReLU_D20 maupun MLP_RMSProp_ReLU_D20 memenuhi 2 kriteria model terbaik. Model MLP_Adam_ReLU_D20 memberikan performa terbaik untuk metrik MAE dan MAPE, sedangkan MLP_RMSProp_ReLU_D20 memberikan performa terbaik untuk metrik MSE dan RMSE. Maka model MLP dengan algoritma optimasi Adam dan fungsi aktivasi ReLU, serta model MLP dengan algoritma optimasi RMSProp dan fungsi aktivasi ReLU merupakan dua model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,01.

4.5.7. Model MLP Terbaik

Setelah membangun model MLP dengan menguji berbagai kombinasi algoritma optimasi, fungsi aktivasi, dan *dropout rate*. Langkah selanjutnya akan dibandingkan performa dari seluruh model-model terbaik pada tiap eksperimen yang dihasilkan. Berikut ini merupakan kinerja model terbaik yang diperoleh dari proses pemodelan sebelumnya

Model	MSE	RMSE	MAE	MAPE
MLP_Adam_ReLU_D0	0,02474	0,15730	0,09837	0,38800
MLP_RMSProp_ReLU_D1	0,02360	0,15363	0,10039	0,39208
MLP_Adam_ReLU_D5	0,03457	0,18593	0,12406	0,49030
MLP_RMSProp_ReLU_D5	0,02999	0,17319	0,13331	0,52309
MLP_Adam_ReLU_D10	0,02511	0,15846	0,10073	0,39502
MLP_Adam_ReLU_D15	0,02401	0,15495	0,10836	0,42744
MLP_Adam_ReLU_D20	0,03195	0,17874	0,11701	0,46348
MLP_RMSProp_ReLU_D20	0,03189	0,17858	0,13999	0,54500

Tabel 4.13 Metrik Evaluasi Performa Model MLP Terbaik

Berdasarkan Tabel 4.13, terlihat bahwa baik MLP_Adam_ReLU_D0 dan MLP_RMSProp_ReLU_D1 memenuhi 2 kriteria model terbaik. Oleh karena itu, akan ditinjau kriteria tambahan menggunakan metrik evaluasi R^2 . Berikut merupakan R^2 score masing-masing model

Model	R^2score
MLP_Adam_ReLU_D0	0,97743
MLP_RMSProp_ReLU_D1	0,97847
MLP_Adam_ReLU_D5	0,96847
MLP_RMSProp_ReLU_D5	0,97265
MLP_Adam_ReLU_D10	0,97710
MLP_Adam_ReLU_D15	0,97810
MLP_Adam_ReLU_D20	0,97086
MLP_RMSProp_ReLU_D20	0,97092

Tabel 4.14 $R^2\ score\ ext{Model MLP Terbaik}$

Berdasarkan Tabel 4.14, model MLP_RMSProp_ReLU_D1 memiliki R^2 score paling besar dibandingkan model MLP lainnya. Artinya, 97.847% variasi dari suhu rata-rata dapat diprediksi atau dijelaskan oleh variasi variabel

independen yang digunakan. Maka dari itu, dapat disimpulkan bahwa model MLP_RMSProp_ReLU_D1 merupakan model terbaik dalam memprediksi data penelitian. Berikut adalah plot perbandingan antara hasil prediksi data *train* menggunakan model MLP_RMSProp_ReLU_D1 dengan data *test* asli

Gambar 4.9 Hasil Peramalan Data Train dengan MLP_RMSProp_ReLU_D1

Grafik 4.9 menunjukkan perbandingan antara hasil prediksi model MLP_RMSProp_ReLU_D1 (garis merah) dengan data *test* asli (garis biru). Secara umum, prediksi mampu mengikuti pola naik-turun serta nilai aktual dari data *test* dengan sangat akurat, yang menandakan model berhasil menangkap hubungan mendasar pada data. Meskipun ada beberapa selisih kecil, *error* yang dihasilkan tidak signifikan dan model tidak menunjukkan adanya keterlambatan (*lag*), sehingga dapat disimpulkan bahwa model dapat melakukan prediksi yang akurat, dengan beberapa perbedaan kecil hanya pada beberapa periode tertentu.

4.6. Pemodelan Runtun Waktu dengan Metode CNN

Dalam penelitian ini, dilakukan pengujian terhadap model *Convolutional Neural Network* (CNN) pada data multivariat untuk membandingkan kinerja metode dalam pemodelan runtun waktu. Pembentukan model CNN dilakukan dengan *trial and error*, mengingat tidak ada aturan baku dalam menentukan parameter optimal. Pembuatan model CNN akan dilakukan menggunakan berbagai kombinasi algoritma

optimasi, fungsi aktivasi, jumlah *time steps*, dan *dropout rate* guna memperoleh konfigurasi terbaik. Pada seluruh percobaan, beberapa *hyperparameter* penyesuaian bobot akan disamakan, yaitu dengan *learning rate* sebesar 0,001, jumlah *layer* sebanyak 2 dengan masing-masing *layer* terdiri dari 128 dan 64 *units*, serta dievaluasi menggunakan 100 *epochs*. Kinerja masing-masing model diukur berdasarkan nilai MSE, RMSE, MAE, dan MAPE, dengan fokus utama pada performa data *testing*, karena penelitian ini bertujuan untuk mengevaluasi kemampuan model dalam memprediksi data baru.

4.6.1. Model CNN tanpa *Dropout Rate*

Eksperimen pertama pada model CNN dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model CNN akan diuji tanpa *dropout rate*. Berikut merupakan hasil performa tiap model CNN yang terbentuk terhadap data uji

Tabel 4.15 Metrik Evaluasi Performa Model CNN tanpa Dropout Rate

Model	MSE	RMSE	MAE	MAPE
CNN_Adam_ReLU_TS5_D0	1.43216	1.19673	0,85725	3.32444
CNN_Adam_ReLU_TS10_D0	0,50132	0,70804	0,55273	2.15647
CNN_Adam_ReLU_TS15_D0	0,51842	0,72002	0,57175	2.24161
CNN_Adam_TanH_TS5_D0	1.02278	1.01133	0,72119	2.82679
CNN_Adam_TanH_TS10_D0	0,38020	0,61660	0,47991	1.89114
CNN_Adam_TanH_TS15_D0	0,51044	0,71445	0,55837	2.18392
CNN_Adam_Sigmoid_TS5_D0	0,38920	0,62386	0,48896	1.93248
CNN_Adam_Sigmoid_TS10_D0	0,35510	0,59590	0,46359	1.81528
CNN_Adam_Sigmoid_TS15_D0	0,41930	0,64753	0,51695	2.02051
CNN_AdaGrad_ReLU_TS5_D0	0,70634	0,84044	0,66241	2.58429
CNN_AdaGrad_ReLU_TS10_D0	0,56683	0,75288	0,59128	2.30958
CNN_AdaGrad_ReLU_TS15_D0	0,60631	0,77866	0,61409	2.39230
CNN_AdaGrad_TanH_TS5_D0	0,44728	0,66879	0,53910	2.11944

Model	MSE	RMSE	MAE	MAPE
CNN_AdaGrad_TanH_TS10_D0	0,55770	0,74679	0,58145	2.26879
CNN_AdaGrad_TanH_TS15_D0	0,58323	0,76370	0,60365	2.35382
CNN_AdaGrad_Sigmoid_TS5_D0	1.07586	1.03724	0,79795	3.18204
CNN_AdaGrad_Sigmoid_TS10_D0	1.01682	1.00838	0,77754	3.09029
CNN_AdaGrad_Sigmoid_TS15_D0	0,91688	0,95754	0,74677	2.95339
CNN_RMSProp_ReLU_TS5_D0	0,58188	0,76281	0,58991	2.29731
CNN_RMSProp_ReLU_TS10_D0	0,47921	0,69225	0,57607	2.24343
CNN_RMSProp_ReLU_TS15_D0	0,44749	0,66895	0,51475	2.03242
CNN_RMSProp_TanH_TS5_D0	0,48140	0,69383	0,55752	2.16823
CNN_RMSProp_TanH_TS10_D0	0,61459	0,78396	0,61943	2.41965
CNN_RMSProp_TanH_TS15_D0	0,72799	0,85322	0,69152	2.69576
CNN_RMSProp_Sigmoid_TS5_D0	0,64325	0,80203	0,65052	2.51955
CNN_RMSProp_Sigmoid_TS10_D0	0,55686	0,74623	0,58771	2.29555
CNN_RMSProp_Sigmoid_TS15_D0	0,58602	0,76552	0,60182	2.34472

Berdasarkan Tabel 4.15, performa model CNN dengan algoritma optimasi Adam, fungsi aktivasi Sigmoid, dengan jumlah *time steps* sebesar 10 memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen tanpa *dropout rate*. Maka dari itu, model CNN_Adam_Sigmoid_TS10_D0 merupakan model terbaik untuk meramalkan data uji pada percobaan tanpa *dropout rate*.

4.6.2. Model CNN dengan *Dropout Rate* 0,01

Eksperimen kedua pada model CNN dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model CNN akan diuji dengan *dropout rate* sebesar 0,01. Berikut merupakan hasil performa tiap model CNN yang terbentuk terhadap data uji

Tabel 4.16 Metrik Evaluasi Performa Model CNN dengan *Dropout Rate* 0,01

Model	MSE	RMSE	MAE	MAPE
CNN_Adam_ReLU_TS5_D1	0,87463	0,93522	0,66847	2.59797
CNN_Adam_ReLU_TS10_D1	0,68986	0,83058	0,67965	2.63080
CNN_Adam_ReLU_TS15_D1	0,56064	0,74876	0,57620	2.23943
CNN_Adam_TanH_TS5_D1	0,60533	0,77803	0,56403	2.19611
CNN_Adam_TanH_TS10_D1	0,39399	0,62768	0,48009	1.88093
CNN_Adam_TanH_TS15_D1	0,55027	0,74180	0,58649	2.28393
CNN_Adam_Sigmoid_TS5_D1	0,41027	0,64052	0,51042	2.00198
CNN_Adam_Sigmoid_TS10_D1	0,34771	0,58967	0,45631	1.79028
CNN_Adam_Sigmoid_TS15_D1	0,56230	0,74987	0,60895	2.36385
CNN_AdaGrad_ReLU_TS5_D1	0,57279	0,75683	0,59624	2.33096
CNN_AdaGrad_ReLU_TS10_D1	1.09814	1.04792	0,78895	3.04648
CNN_AdaGrad_ReLU_TS15_D1	0,64551	0,80343	0,63393	2.46184
CNN_AdaGrad_TanH_TS5_D1	0,48436	0,69596	0,55500	2.16884
CNN_AdaGrad_TanH_TS10_D1	0,48297	0,69496	0,54023	2.12049
CNN_AdaGrad_TanH_TS15_D1	0,50301	0,70923	0,53585	2.11237
CNN_AdaGrad_Sigmoid_TS5_D1	1.07066	1.03472	0,79748	3.17853
CNN_AdaGrad_Sigmoid_TS10_D1	1.02442	1.01214	0,77753	3.09347
CNN_AdaGrad_Sigmoid_TS15_D1	0,90377	0,95067	0,74965	2.95605
CNN_RMSProp_ReLU_TS5_D1	0,70924	0,84216	0,68524	2.65467
CNN_RMSProp_ReLU_TS10_D1	0,35735	0,59779	0,45356	1.78538
CNN_RMSProp_ReLU_TS15_D1	0,47653	0,69031	0,56193	2.18961
CNN_RMSProp_TanH_TS5_D1	0,37478	0,61219	0,47219	1.85269
CNN_RMSProp_TanH_TS10_D1	0,55606	0,74569	0,56674	2.25307
CNN_RMSProp_TanH_TS15_D1	0,46448	0,68153	0,52496	2.06533
CNN_RMSProp_Sigmoid_TS5_D1	0,51123	0,71500	0,56828	2.22413
CNN_RMSProp_Sigmoid_TS10_D1	0,69090	0,83120	0,66824	2.58584
CNN_RMSProp_Sigmoid_TS15_D1	0,97276	0,98629	0,81678	3.14509

Berdasarkan Tabel 4.16, baik model CNN_Adam_Sigmoid_TS10_D1 maupun CNN_RMSProp_ReLU_TS10_D1 memenuhi 2 kriteria model terbaik. Model CNN_Adam_Sigmoid_TS10_D1 memberikan performa terbaik untuk metrik MSE dan RMSE, sedangkan CNN_RMSProp_ReLU_TS10_D1 memberikan performa terbaik untuk metrik MAE dan MAPE. Maka model CNN dengan algoritma optimasi Adam, fungsi aktivasi Sigmoid, dengan jumlah *time steps* sebesar 10, serta model CNN dengan algoritma optimasi RMSProp, fungsi aktivasi ReLU, dengan jumlah *time steps* sebesar 10 merupakan dua model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,01.

4.6.3. Model CNN dengan *Dropout Rate* 0,05

Eksperimen ketiga pada model CNN dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model CNN akan diuji dengan *dropout rate* sebesar 0,05. Berikut merupakan hasil performa tiap model CNN yang terbentuk terhadap data uji

Tabel 4.17 Metrik Evaluasi Performa Model CNN dengan *Dropout Rate* 0,05

Model	MSE	RMSE	MAE	MAPE
CNN_Adam_ReLU_TS5_D5	1.10406	1.05074	0,74839	2.90018
CNN_Adam_ReLU_TS10_D5	0,43078	0,65634	0,52204	2.04865
CNN_Adam_ReLU_TS15_D5	0,51205	0,71558	0,56160	2.20603
CNN_Adam_TanH_TS5_D5	0,58411	0,76427	0,57744	2.24827
CNN_Adam_TanH_TS10_D5	0,37798	0,61480	0,48115	1.88008
CNN_Adam_TanH_TS15_D5	0,46390	0,68110	0,51829	2.02376
CNN_Adam_Sigmoid_TS5_D5	0,46173	0,67951	0,54580	2.13537
CNN_Adam_Sigmoid_TS10_D5	0,36641	0,60532	0,47053	1.84555
CNN_Adam_Sigmoid_TS15_D5	0,48014	0,69292	0,53475	2.11725
CNN_AdaGrad_ReLU_TS5_D5	0,62338	0,78954	0,60888	2.36823
CNN_AdaGrad_ReLU_TS10_D5	0,59189	0,76934	0,61419	2.39074
CNN_AdaGrad_ReLU_TS15_D5	0,86298	0,92896	0,73610	2.83996

Model	MSE	RMSE	MAE	MAPE
CNN_AdaGrad_TanH_TS5_D5	0,51745	0,71934	0,55291	2.16235
CNN_AdaGrad_TanH_TS10_D5	0,48391	0,69564	0,56511	2.21941
CNN_AdaGrad_TanH_TS15_D5	0,53406	0,73079	0,57577	2.26183
CNN_AdaGrad_Sigmoid_TS5_D5	1.07781	1.03818	0,79658	3.17922
CNN_AdaGrad_Sigmoid_TS10_D5	1.00944	1.00471	0,78148	3.09896
CNN_AdaGrad_Sigmoid_TS15_D5	0,91145	0,95470	0,75581	2.97556
CNN_RMSProp_ReLU_TS5_D5	0,65175	0,80731	0,65236	2.52726
CNN_RMSProp_ReLU_TS10_D5	0,54796	0,74024	0,62984	2.44906
CNN_RMSProp_ReLU_TS15_D5	0,45683	0,67589	0,53990	2.10607
CNN_RMSProp_TanH_TS5_D5	0,37452	0,61198	0,48670	1.90273
CNN_RMSProp_TanH_TS10_D5	0,59877	0,77380	0,64233	2.49113
CNN_RMSProp_TanH_TS15_D5	0,49351	0,70251	0,53414	2.09464
CNN_RMSProp_Sigmoid_TS5_D5	0,54929	0,74114	0,57706	2.29684
CNN_RMSProp_Sigmoid_TS10_D5	0,61040	0,78128	0,60369	2.39989
CNN_RMSProp_Sigmoid_TS15_D5	0,63243	0,79525	0,62652	2.44824

Berdasarkan Tabel 4.17, performa model CNN dengan algoritma optimasi Adam, fungsi aktivasi Sigmoid, dengan jumlah *time steps* sebesar 10 memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen dengan *dropout rate* sebesar 0,05. Maka dari itu, model CNN_Adam_Sigmoid_TS10_D5 merupakan model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,05.

4.6.4. Model CNN dengan Dropout Rate 0,1

Eksperimen keempat pada model CNN dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model CNN akan diuji dengan *dropout rate* sebesar 0,1. Berikut merupakan hasil performa tiap model CNN yang terbentuk terhadap data uji

Tabel 4.18 Metrik Evaluasi Performa Model CNN dengan *Dropout Rate* 0,1

Model	MSE	RMSE	MAE	MAPE
CNN_Adam_ReLU_TS5_D10	0,79716	0,89284	0,70163	2.71111
CNN_Adam_ReLU_TS10_D10	0,60601	0,77847	0,57945	2.25117
CNN_Adam_ReLU_TS15_D10	0,66322	0,81438	0,64149	2.50439
CNN_Adam_TanH_TS5_D10	0,56585	0,75223	0,61123	2.37324
CNN_Adam_TanH_TS10_D10	0,57904	0,76095	0,60382	2.34396
CNN_Adam_TanH_TS15_D10	0,83038	0,91125	0,72101	2.78464
CNN_Adam_Sigmoid_TS5_D10	0,45353	0,67344	0,53830	2.10448
CNN_Adam_Sigmoid_TS10_D10	0,55620	0,74579	0,60280	2.34727
CNN_Adam_Sigmoid_TS15_D10	0,55890	0,74760	0,60797	2.36330
CNN_AdaGrad_ReLU_TS5_D10	0,73100	0,85499	0,66875	2.59886
CNN_AdaGrad_ReLU_TS10_D10	0,65873	0,81162	0,63656	2.47295
CNN_AdaGrad_ReLU_TS15_D10	0,69863	0,83584	0,68876	2.66990
CNN_AdaGrad_TanH_TS5_D10	0,43726	0,66126	0,52515	2.05948
CNN_AdaGrad_TanH_TS10_D10	0,55764	0,74675	0,58778	2.29193
CNN_AdaGrad_TanH_TS15_D10	0,60078	0,77510	0,59219	2.34679
CNN_AdaGrad_Sigmoid_TS5_D10	1.09173	1.04486	0,80148	3.19883
CNN_AdaGrad_Sigmoid_TS10_D10	0,99092	0,99545	0,78053	3.08676
CNN_AdaGrad_Sigmoid_TS15_D10	0,90890	0,95336	0,75208	2.96430
CNN_RMSProp_ReLU_TS5_D10	0,50316	0,70934	0,56159	2.19216
CNN_RMSProp_ReLU_TS10_D10	0,33980	0,58293	0,43988	1.73708
CNN_RMSProp_ReLU_TS15_D10	0,44572	0,66762	0,52446	2.05769
CNN_RMSProp_TanH_TS5_D10	0,35147	0,59285	0,46234	1.82337
CNN_RMSProp_TanH_TS10_D10	0,33386	0,57781	0,42406	1.67464
CNN_RMSProp_TanH_TS15_D10	0,65615	0,81003	0,63967	2.47015
CNN_RMSProp_Sigmoid_TS5_D10	0,57386	0,75754	0,60718	2.38148
CNN_RMSProp_Sigmoid_TS10_D10	0,79752	0,89304	0,72183	2.78854
CNN_RMSProp_Sigmoid_TS15_D10	0,75535	0,86911	0,68138	2.70917

Berdasarkan Tabel [4.18], performa model CNN dengan algoritma optimasi RMSProp, fungsi aktivasi TanH, dengan jumlah *time steps* sebesar 10 memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen dengan *dropout rate* sebesar 0,1. Maka dari itu, model CNN_RMSProp_TanH_TS10_D10 merupakan model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,1.

4.6.5. Model CNN dengan *Dropout Rate* 0,15

Eksperimen kelima pada model CNN dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model CNN akan diuji dengan *dropout rate* sebesar 0,15. Berikut merupakan hasil performa tiap model CNN yang terbentuk terhadap data uji

Tabel 4.19 Metrik Evaluasi Performa Model CNN dengan *Dropout Rate* 0,15

Model	MSE	RMSE	MAE	MAPE
CNN_Adam_ReLU_TS5_D15	0,90208	0,94978	0,71858	2.77274
CNN_Adam_ReLU_TS10_D15	0,89308	0,94503	0,74160	2.85510
CNN_Adam_ReLU_TS15_D15	0,46950	0,68520	0,53157	2.07708
CNN_Adam_TanH_TS5_D15	0,53371	0,73055	0,57453	2.23792
CNN_Adam_TanH_TS10_D15	0,37658	0,61366	0,45923	1.79782
CNN_Adam_TanH_TS15_D15	0,64825	0,80514	0,61255	2.37556
CNN_Adam_Sigmoid_TS5_D15	0,44967	0,67058	0,52984	2.09339
CNN_Adam_Sigmoid_TS10_D15	0,50612	0,71142	0,57092	2.22312
CNN_Adam_Sigmoid_TS15_D15	0,59051	0,76845	0,62702	2.43695
CNN_AdaGrad_ReLU_TS5_D15	0,83666	0,91469	0,74284	2.87075
CNN_AdaGrad_ReLU_TS10_D15	0,66587	0,81601	0,64357	2.49696
CNN_AdaGrad_ReLU_TS15_D15	0,95387	0,97666	0,79083	3.04362
CNN_AdaGrad_TanH_TS5_D15	0,67683	0,82270	0,65572	2.54057
CNN_AdaGrad_TanH_TS10_D15	0,67754	0,82313	0,68156	2.63770
CNN_AdaGrad_TanH_TS15_D15	0,65591	0,80988	0,65927	2.55992

Model	MSE	RMSE	MAE	MAPE
CNN_AdaGrad_Sigmoid_TS5_D15	1.07547	1.03705	0,79745	3.18053
CNN_AdaGrad_Sigmoid_TS10_D15	0,99845	0,99922	0,78736	3.11084
CNN_AdaGrad_Sigmoid_TS15_D15	0,91664	0,95741	0,75501	2.97619
CNN_RMSProp_ReLU_TS5_D15	0,42397	0,65113	0,51682	2.02071
CNN_RMSProp_ReLU_TS10_D15	0,46107	0,67902	0,55998	2.17497
CNN_RMSProp_ReLU_TS15_D15	0,58198	0,76288	0,62021	2.40548
CNN_RMSProp_TanH_TS5_D15	0,58864	0,76723	0,63410	2.46088
CNN_RMSProp_TanH_TS10_D15	0,38992	0,62443	0,46774	1.83694
CNN_RMSProp_TanH_TS15_D15	0,51430	0,71714	0,54652	2.12296
CNN_RMSProp_Sigmoid_TS5_D15	0,71036	0,84283	0,68433	2.65577
CNN_RMSProp_Sigmoid_TS10_D15	0,63805	0,79878	0,62183	2.45447
CNN_RMSProp_Sigmoid_TS15_D15	0,75574	0,86933	0,69713	2.69887

Berdasarkan Tabel 4.19, performa model CNN dengan algoritma optimasi Adam, fungsi aktivasi TanH, dengan jumlah *time steps* sebesar 10 memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen dengan *dropout rate* sebesar 0,15. Maka dari itu, model CNN_Adam_TanH_TS10_D15 merupakan model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,15.

4.6.6. Model CNN dengan Dropout Rate 0,2

Eksperimen terakhir pada model CNN dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model CNN akan diuji dengan *dropout rate* sebesar 0,2. Berikut merupakan hasil performa tiap model CNN yang terbentuk terhadap data uji

Tabel 4.20 Metrik Evaluasi Performa Model CNN dengan Dropout Rate 0,2

Model	MSE	RMSE	MAE	MAPE
CNN_Adam_ReLU_TS5_D20	0,63176	0,79483	0,61681	2.39538

Model	MSE	RMSE	MAE	MAPE
CNN_Adam_ReLU_TS10_D20	0,61686	0,78541	0,58645	2.27651
CNN_Adam_ReLU_TS15_D20	0,61549	0,78453	0,63527	2.46931
CNN_Adam_TanH_TS5_D20	0,63653	0,79783	0,62350	2.41896
CNN_Adam_TanH_TS10_D20	0,38329	0,61910	0,45660	1.79190
CNN_Adam_TanH_TS15_D20	0,59898	0,77394	0,60053	2.32148
CNN_Adam_Sigmoid_TS5_D20	0,46942	0,68514	0,54713	2.14859
CNN_Adam_Sigmoid_TS10_D20	0,38827	0,62311	0,48252	1.89429
CNN_Adam_Sigmoid_TS15_D20	0,59353	0,77041	0,62534	2.43095
CNN_AdaGrad_ReLU_TS5_D20	0,74324	0,86212	0,68596	2.66610
CNN_AdaGrad_ReLU_TS10_D20	0,92845	0,96356	0,76496	2.95592
CNN_AdaGrad_ReLU_TS15_D20	0,87030	0,93290	0,79116	3.05191
CNN_AdaGrad_TanH_TS5_D20	0,58094	0,76219	0,59715	2.32713
CNN_AdaGrad_TanH_TS10_D20	0,64519	0,80324	0,63237	2.50362
CNN_AdaGrad_TanH_TS15_D20	0,58206	0,76293	0,61847	2.40397
CNN_AdaGrad_Sigmoid_TS5_D20	1.07854	1.03853	0,80344	3.19967
CNN_AdaGrad_Sigmoid_TS10_D20	1.00680	1.00340	0,78279	3.10065
CNN_AdaGrad_Sigmoid_TS15_D20	0,93455	0,96672	0,75280	2.97907
CNN_RMSProp_ReLU_TS5_D20	0,44268	0,66535	0,51747	2.02561
CNN_RMSProp_ReLU_TS10_D20	0,51722	0,71918	0,60213	2.33258
CNN_RMSProp_ReLU_TS15_D20	0,54169	0,73599	0,56281	2.22617
CNN_RMSProp_TanH_TS5_D20	0,72232	0,84989	0,70699	2.73959
CNN_RMSProp_TanH_TS10_D20	0,49792	0,70563	0,54519	2.11917
CNN_RMSProp_TanH_TS15_D20	0,97098	0,98539	0,82821	3.19426
CNN_RMSProp_Sigmoid_TS5_D20	0,78199	0,88430	0,67915	2.71529
CNN_RMSProp_Sigmoid_TS10_D20	0,66630	0,81627	0,63959	2.51827
CNN_RMSProp_Sigmoid_TS15_D20	0,65014	0,80631	0,62356	2.45996

Berdasarkan Tabel 4.20, performa model CNN dengan algoritma optimasi Adam, fungsi aktivasi TanH, dengan jumlah *time steps* sebesar 10 memiliki nilai

MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen dengan *dropout rate* sebesar 0,2. Maka dari itu, model CNN_Adam_TanH_TS10_D20 merupakan model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,2.

4.6.7. Model CNN Terbaik

Setelah membangun model CNN dengan menguji berbagai kombinasi algoritma optimasi, fungsi aktivasi, jumlah *time steps*, dan *dropout rate*. Langkah selanjutnya akan dibandingkan performa dari seluruh model-model terbaik pada tiap eksperimen yang dihasilkan. Berikut ini merupakan kinerja model terbaik yang diperoleh dari proses pemodelan sebelumnya

Model	MSE	RMSE	MAE	MAPE
CNN_Adam_Sigmoid_TS10_D0	0,35510	0,59590	0,46359	1.81528
CNN_Adam_Sigmoid_TS10_D1	0,34771	0,58967	0,45631	1.79028
CNN_RMSProp_ReLU_TS10_D1	0,35735	0,59779	0,45356	1.78538
CNN_Adam_Sigmoid_TS10_D5	0,36641	0,60532	0,47053	1.84555
CNN_RMSProp_TanH_TS10_D10	0,33386	0,57781	0,42406	1.67464
CNN_Adam_TanH_TS10_D15	0,37658	0,61366	0,45923	1.79782
CNN_Adam_TanH_TS10_D20	0,38329	0,61910	0,45660	1.79190

Tabel 4.21 Metrik Evaluasi Performa Model CNN Terbaik

Berdasarkan Tabel [4.21], dapat disimpulkan bahwa model CNN dengan algoritma optimasi RMSProp, fungsi aktivasi TanH, jumlah *time steps* 10, dan *dropout rate* sebesar 0,1 merupakan model terbaik karena memiliki metrik evaluasi yang paling kecil dibandingkan model-model lainnya. Berikut adalah plot perbandingan antara hasil prediksi data *train* menggunakan model CNN_RMSProp_TanH_TS10_D10 dengan data *test* asli

Gambar 4.10 Hasil Peramalan Data Train dengan CNN_RMSProp_TanH_TS10_D10

Grafik 4.10 menunjukkan perbandingan antara hasil prediksi model CNN _RMSProp_TanH_TS10_D10 (garis merah) dengan data *test* asli (garis biru). Secara umum, model ini mampu mengikuti tren utama dari data *test* dengan cukup baik, meskipun terdapat beberapa selisih pada beberapa titik. Akan tetapi, prediksi model masih tampak lebih halus dibandingkan data asli, terutama pada bagian lonjakan dan penurunan tajam, di mana model tidak sepenuhnya menangkap perubahan ekstrem. Meskipun demikian, pola fluktuasi yang dihasilkan masih cukup *fit* dengan data *test*, menunjukkan bahwa model dapat melakukan prediksi yang cukup akurat, dengan beberapa perbedaan kecil pada periode tertentu.

4.7. Pemodelan Runtun Waktu dengan Metode GRU

Dalam penelitian ini, dilakukan pengujian terhadap model *Gated Recurrent Unit* (GRU) pada data multivariat untuk membandingkan kinerja metode dalam pemodelan runtun waktu. Pembentukan model GRU dilakukan dengan *trial and error*, mengingat tidak ada aturan baku dalam menentukan parameter optimal. Pembuatan model GRU akan dilakukan menggunakan berbagai kombinasi algoritma optimasi, fungsi aktivasi, jumlah *time steps*, dan *dropout rate* guna memperoleh konfigurasi terbaik. Pada seluruh percobaan, beberapa *hyperparameter* penyesuaian bobot akan disamakan, yaitu dengan *learning rate* sebesar 0,001, jumlah *layer*

sebanyak 2 dengan masing-masing *layer* terdiri dari 128 dan 64 *units*, serta dievaluasi menggunakan 100 *epochs*. Kinerja masing-masing model diukur berdasarkan nilai MSE, RMSE, MAE, dan MAPE, dengan fokus utama pada performa data *testing*, karena penelitian ini bertujuan untuk mengevaluasi kemampuan model dalam memprediksi data baru.

4.7.1. Model GRU tanpa Dropout Rate

Eksperimen pertama pada model GRU dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model GRU akan diuji tanpa *dropout rate*. Berikut merupakan hasil performa tiap model GRU yang terbentuk terhadap data uji

Tabel 4.22 Metrik Evaluasi Performa Model GRU tanpa Dropout Rate

Model	MSE	RMSE	MAE	MAPE
GRU_Adam_ReLU_TS5_D0	2.91913	1.70855	1.09507	4.29132
GRU_Adam_ReLU_TS10_D0	0,62064	0,78781	0,58368	2.26844
GRU_Adam_ReLU_TS15_D0	0,31467	0,56096	0,42546	1.66087
GRU_Adam_TanH_TS5_D0	0,39497	0,62847	0,49129	1.91232
GRU_Adam_TanH_TS10_D0	0,32754	0,57231	0,42913	1.68211
GRU_Adam_TanH_TS15_D0	0,37114	0,60921	0,45462	1.77606
GRU_Adam_Sigmoid_TS5_D0	0,31803	0,56394	0,42722	1.68949
GRU_Adam_Sigmoid_TS10_D0	0,39942	0,63199	0,50609	1.97235
GRU_Adam_Sigmoid_TS15_D0	0,35781	0,59817	0,44439	1.76402
GRU_AdaGrad_ReLU_TS5_D0	0,61590	0,78479	0,60326	2.36472
GRU_AdaGrad_ReLU_TS10_D0	0,63726	0,79829	0,61083	2.38655
GRU_AdaGrad_ReLU_TS15_D0	0,60276	0,77638	0,60110	2.35011
GRU_AdaGrad_TanH_TS5_D0	0,71390	0,84492	0,65151	2.54153
GRU_AdaGrad_TanH_TS10_D0	0,48961	0,69972	0,53896	2.11133
GRU_AdaGrad_TanH_TS15_D0	0,61965	0,78718	0,60934	2.36759

Model	MSE	RMSE	MAE	MAPE
GRU_AdaGrad_Sigmoid_TS5_D0	1.06142	1.03025	0,79529	3.16812
GRU_AdaGrad_Sigmoid_TS10_D0	1.01860	1.00926	0,78008	3.09706
GRU_AdaGrad_Sigmoid_TS15_D0	0,91149	0,95472	0,74872	2.95534
GRU_RMSProp_ReLU_TS5_D0	0,35894	0,59912	0,44930	1.78445
GRU_RMSProp_ReLU_TS10_D0	0,33185	0,57606	0,42934	1.69656
GRU_RMSProp_ReLU_TS15_D0	0,53935	0,73440	0,60350	2.33368
GRU_RMSProp_TanH_TS5_D0	0,31871	0,56454	0,42852	1.68810
GRU_RMSProp_TanH_TS10_D0	0,34745	0,58945	0,45256	1.77015
GRU_RMSProp_TanH_TS15_D0	0,47960	0,69253	0,56525	2.18818
GRU_RMSProp_Sigmoid_TS5_D0	0,61824	0,78629	0,64111	2.48157
GRU_RMSProp_Sigmoid_TS10_D0	1.07197	1.03536	0,89801	3.46656
GRU_RMSProp_Sigmoid_TS15_D0	0,38198	0,61805	0,47763	1.88008

Berdasarkan Tabel 4.22, performa model GRU dengan algoritma optimasi Adam, fungsi aktivasi ReLU, dengan jumlah *time steps* sebesar 15 memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen tanpa *dropout rate*. Maka dari itu, model GRU_Adam_ReLU_TS15_D0 merupakan model terbaik untuk meramalkan data uji pada percobaan tanpa *dropout rate*.

4.7.2. Model GRU dengan *Dropout Rate* 0,01

Eksperimen kedua pada model GRU dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model GRU akan diuji dengan *dropout rate* sebesar 0,01. Berikut merupakan hasil performa tiap model GRU yang terbentuk terhadap data uji

Tabel 4.23 Metrik Evaluasi Performa Model GRU dengan *Dropout Rate* 0,01

Model	MSE	RMSE	MAE	MAPE
GRU_Adam_ReLU_TS5_D1	1.37398	1.17217	0,80463	3.13333
GRU_Adam_ReLU_TS10_D1	0,44512	0,66717	0,48238	1.88845
GRU_Adam_ReLU_TS15_D1	0,37387	0,61145	0,45735	1.78159
GRU_Adam_TanH_TS5_D1	0,43790	0,66174	0,52628	2.04424
GRU_Adam_TanH_TS10_D1	0,35026	0,59183	0,45269	1.76786
GRU_Adam_TanH_TS15_D1	0,29220	0,54056	0,41063	1.60946
GRU_Adam_Sigmoid_TS5_D1	0,33492	0,57872	0,44100	1.74567
GRU_Adam_Sigmoid_TS10_D1	0,34941	0,59111	0,45590	1.78955
GRU_Adam_Sigmoid_TS15_D1	0,31464	0,56093	0,42807	1.68487
GRU_AdaGrad_ReLU_TS5_D1	0,70710	0,84089	0,65120	2.54669
GRU_AdaGrad_ReLU_TS10_D1	0,76290	0,87344	0,66373	2.59249
GRU_AdaGrad_ReLU_TS15_D1	0,64048	0,80030	0,61620	2.40153
GRU_AdaGrad_TanH_TS5_D1	0,54702	0,73961	0,59748	2.33770
GRU_AdaGrad_TanH_TS10_D1	0,43741	0,66137	0,52147	2.05070
GRU_AdaGrad_TanH_TS15_D1	0,58461	0,76460	0,58979	2.29175
GRU_AdaGrad_Sigmoid_TS5_D1	1.07793	1.03824	0,79839	3.18409
GRU_AdaGrad_Sigmoid_TS10_D1	1.01459	1.00727	0,77924	3.09410
GRU_AdaGrad_Sigmoid_TS15_D1	0,91093	0,95443	0,74905	2.95745
GRU_RMSProp_ReLU_TS5_D1	0,55016	0,74172	0,59911	2.32202
GRU_RMSProp_ReLU_TS10_D1	0,33573	0,57942	0,44365	1.74090
GRU_RMSProp_ReLU_TS15_D1	0,41357	0,64310	0,50747	1.96984
GRU_RMSProp_TanH_TS5_D1	0,32982	0,57430	0,43696	1.71779
GRU_RMSProp_TanH_TS10_D1	0,51131	0,71506	0,58574	2.27112
GRU_RMSProp_TanH_TS15_D1	0,33972	0,58286	0,44992	1.75458
GRU_RMSProp_Sigmoid_TS5_D1	0,42861	0,65468	0,50511	1.99447
GRU_RMSProp_Sigmoid_TS10_D1	0,40469	0,63615	0,48998	1.93136
GRU_RMSProp_Sigmoid_TS15_D1	0,76342	0,87374	0,72701	2.79992

Berdasarkan Tabel 4.23] performa model GRU dengan algoritma optimasi Adam, fungsi aktivasi TanH, dengan jumlah *time steps* sebesar 15 memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen dengan *dropout rate* sebesar 0,01. Maka dari itu, model GRU_Adam_TanH_TS15_D1 merupakan model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,01.

4.7.3. Model GRU dengan *Dropout Rate* 0,05

Eksperimen ketiga pada model GRU dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model GRU akan diuji dengan *dropout rate* sebesar 0,05. Berikut merupakan hasil performa tiap model GRU yang terbentuk terhadap data uji

Tabel 4.24 Metrik Evaluasi Performa Model GRU dengan *Dropout Rate* 0,05

Model	MSE	RMSE	MAE	MAPE
GRU_Adam_ReLU_TS5_D5	0,70776	0,84128	0,58827	2.28695
GRU_Adam_ReLU_TS10_D5	0,45347	0,67340	0,49311	1.93110
GRU_Adam_ReLU_TS15_D5	0,57619	0,75907	0,57587	2.23106
GRU_Adam_TanH_TS5_D5	0,36219	0,60182	0,46158	1.80348
GRU_Adam_TanH_TS10_D5	0,35599	0,59665	0,45556	1.77728
GRU_Adam_TanH_TS15_D5	0,31452	0,56082	0,41933	1.63965
GRU_Adam_Sigmoid_TS5_D5	0,42398	0,65114	0,52534	2.05047
GRU_Adam_Sigmoid_TS10_D5	0,38518	0,62063	0,49146	1.92205
GRU_Adam_Sigmoid_TS15_D5	0,38964	0,62421	0,49631	1.93562
GRU_AdaGrad_ReLU_TS5_D5	0,70118	0,83736	0,65608	2.57768
GRU_AdaGrad_ReLU_TS10_D5	0,61073	0,78149	0,60222	2.34703
GRU_AdaGrad_ReLU_TS15_D5	0,68973	0,83050	0,63527	2.46545
GRU_AdaGrad_TanH_TS5_D5	0,54423	0,73772	0,58067	2.27485
GRU_AdaGrad_TanH_TS10_D5	0,50367	0,70970	0,53797	2.11069
GRU_AdaGrad_TanH_TS15_D5	0,59937	0,77419	0,61931	2.40471

Model	MSE	RMSE	MAE	MAPE
GRU_AdaGrad_Sigmoid_TS5_D5	1.06753	1.03321	0,79613	3.17400
GRU_AdaGrad_Sigmoid_TS10_D5	1.00596	1.00298	0,77120	3.06789
GRU_AdaGrad_Sigmoid_TS15_D5	0,90392	0,95075	0,74452	2.94180
GRU_RMSProp_ReLU_TS5_D5	0,33746	0,58092	0,44638	1.75871
GRU_RMSProp_ReLU_TS10_D5	0,33881	0,58208	0,44745	1.75631
GRU_RMSProp_ReLU_TS15_D5	0,33800	0,58138	0,43370	1.71828
GRU_RMSProp_TanH_TS5_D5	0,41764	0,64625	0,51534	2.00516
GRU_RMSProp_TanH_TS10_D5	0,34728	0,58930	0,43581	1.72523
GRU_RMSProp_TanH_TS15_D5	0,60674	0,77894	0,66800	2.58081
GRU_RMSProp_Sigmoid_TS5_D5	0,66769	0,81712	0,66490	2.57048
GRU_RMSProp_Sigmoid_TS10_D5	0,68309	0,82649	0,67492	2.60791
GRU_RMSProp_Sigmoid_TS15_D5	0,70722	0,84096	0,69497	2.67661

Berdasarkan Tabel 4.24, performa model GRU dengan algoritma optimasi Adam, fungsi aktivasi TanH, dengan jumlah *time steps* sebesar 15 memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen dengan *dropout rate* sebesar 0,05. Maka dari itu, model GRU_Adam_TanH_TS15_D5 merupakan model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,05.

4.7.4. Model GRU dengan Dropout Rate 0,1

Eksperimen keempat pada model GRU dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model GRU akan diuji dengan *dropout rate* sebesar 0,1. Berikut merupakan hasil performa tiap model GRU yang terbentuk terhadap data uji

Tabel 4.25 Metrik Evaluasi Performa Model GRU dengan *Dropout Rate* 0,1

Model MSE RMSE MAE MAPE GRU_Adam_ReLU_TS5_D10 1.08766 1.04291 0,72295 2.79801 GRU_Adam_ReLU_TS10_D10 0,54519 0,73837 0,54889 2.13366 GRU_Adam_ReLU_TS15_D10 0,46442 0,68148 0,50149 1.95575 GRU_Adam_TanH_TS5_D10 0,33649 0,58007 0,43977 1.72692 GRU_Adam_TanH_TS15_D10 0,30670 0,55380 0,41030 1.61593 GRU_Adam_TanH_TS15_D10 0,33658 0,58015 0,43780 1.70763 GRU_Adam_Sigmoid_TS5_D10 0,37068 0,60884 0,47617 1.87755 GRU_Adam_Sigmoid_TS15_D10 0,54404 0,73759 0,59272 2.31346 GRU_AdaGrad_ReLU_TS5_D10 0,43712 0,66115 0,53443 2.07846 GRU_AdaGrad_ReLU_TS10_D10 0,65042 0,80649 0,62156 2.43332 GRU_AdaGrad_TanH_TS5_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 <		T	T	T	
GRU_Adam_ReLU_TS10_D10 0,54519 0,73837 0,54889 2.13366 GRU_Adam_ReLU_TS15_D10 0,46442 0,68148 0,50149 1.95575 GRU_Adam_TanH_TS5_D10 0,33649 0,58007 0,43977 1.72692 GRU_Adam_TanH_TS10_D10 0,30670 0,55380 0,41030 1.61593 GRU_Adam_Sigmoid_TS5_D10 0,33658 0,58015 0,43780 1.70763 GRU_Adam_Sigmoid_TS10_D10 0,54404 0,73759 0,59272 2.31346 GRU_Adam_Sigmoid_TS15_D10 0,43712 0,66115 0,53443 2.07846 GRU_AdaGrad_ReLU_TS5_D10 0,79514 0,89170 0,68364 2.66703 GRU_AdaGrad_ReLU_TS10_D10 0,65042 0,80649 0,62156 2.43332 GRU_AdaGrad_TanH_TS5_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS10_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS5_D10 1.03822 1.01893 <t< th=""><th>Model</th><th>MSE</th><th>RMSE</th><th>MAE</th><th>MAPE</th></t<>	Model	MSE	RMSE	MAE	MAPE
GRU_Adam_ReLU_TS15_D10 0,46442 0,68148 0,50149 1.95575 GRU_Adam_TanH_TS5_D10 0,33649 0,58007 0,43977 1.72692 GRU_Adam_TanH_TS10_D10 0,30670 0,55380 0,41030 1.61593 GRU_Adam_TanH_TS15_D10 0,33658 0,58015 0,43780 1.70763 GRU_Adam_Sigmoid_TS5_D10 0,37068 0,60884 0,47617 1.87755 GRU_Adam_Sigmoid_TS10_D10 0,54404 0,73759 0,59272 2.31346 GRU_AdaGrad_ReLU_TS5_D10 0,43712 0,66115 0,53443 2.07846 GRU_AdaGrad_ReLU_TS10_D10 0,65042 0,80649 0,62156 2.43332 GRU_AdaGrad_ReLU_TS15_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS5_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS15_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS5_D10 0,90115 0,94929 <t< td=""><td>GRU_Adam_ReLU_TS5_D10</td><td>1.08766</td><td>1.04291</td><td>0,72295</td><td>2.79801</td></t<>	GRU_Adam_ReLU_TS5_D10	1.08766	1.04291	0,72295	2.79801
GRU_Adam_TanH_TS5_D10 0,33649 0,58007 0,43977 1.72692 GRU_Adam_TanH_TS10_D10 0,30670 0,55380 0,41030 1.61593 GRU_Adam_TanH_TS15_D10 0,33658 0,58015 0,43780 1.70763 GRU_Adam_Sigmoid_TS5_D10 0,37068 0,60884 0,47617 1.87755 GRU_Adam_Sigmoid_TS10_D10 0,54404 0,73759 0,59272 2.31346 GRU_AdaGrad_ReLU_TS5_D10 0,43712 0,66115 0,53443 2.07846 GRU_AdaGrad_ReLU_TS5_D10 0,79514 0,89170 0,68364 2.66703 GRU_AdaGrad_ReLU_TS10_D10 0,65042 0,80649 0,62156 2.43332 GRU_AdaGrad_ReLU_TS15_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS5_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,61872 0,78659 0,61084 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929	GRU_Adam_ReLU_TS10_D10	0,54519	0,73837	0,54889	2.13366
GRU_Adam_TanH_TS10_D10 0,30670 0,55380 0,41030 1.61593 GRU_Adam_TanH_TS15_D10 0,33658 0,58015 0,43780 1.70763 GRU_Adam_Sigmoid_TS5_D10 0,37068 0,60884 0,47617 1.87755 GRU_Adam_Sigmoid_TS10_D10 0,54404 0,73759 0,59272 2.31346 GRU_AdaGrad_ReLU_TS5_D10 0,43712 0,66115 0,53443 2.07846 GRU_AdaGrad_ReLU_TS5_D10 0,79514 0,89170 0,68364 2.66703 GRU_AdaGrad_ReLU_TS10_D10 0,665042 0,80649 0,62156 2.43332 GRU_AdaGrad_ReLU_TS15_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS5_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_Sigmoid_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.03822 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454	GRU_Adam_ReLU_TS15_D10	0,46442	0,68148	0,50149	1.95575
GRU_Adam_TanH_TS15_D10 0,33658 0,58015 0,43780 1.70763 GRU_Adam_Sigmoid_TS5_D10 0,37068 0,60884 0,47617 1.87755 GRU_Adam_Sigmoid_TS10_D10 0,54404 0,73759 0,59272 2.31346 GRU_Adam_Sigmoid_TS15_D10 0,43712 0,66115 0,53443 2.07846 GRU_AdaGrad_ReLU_TS5_D10 0,79514 0,89170 0,68364 2.66703 GRU_AdaGrad_ReLU_TS10_D10 0,65042 0,80649 0,62156 2.43332 GRU_AdaGrad_ReLU_TS15_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS5_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_TanH_TS5_D10 0,33428 0,59525	GRU_Adam_TanH_TS5_D10	0,33649	0,58007	0,43977	1.72692
GRU_Adam_Sigmoid_TS5_D10 0,37068 0,60884 0,47617 1.87755 GRU_Adam_Sigmoid_TS10_D10 0,54404 0,73759 0,59272 2.31346 GRU_Adam_Sigmoid_TS15_D10 0,43712 0,66115 0,53443 2.07846 GRU_AdaGrad_ReLU_TS5_D10 0,79514 0,89170 0,68364 2.66703 GRU_AdaGrad_ReLU_TS15_D10 0,65042 0,80649 0,62156 2.43332 GRU_AdaGrad_ReLU_TS15_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS5_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_TanH_TS5_D10 0,30136 0,59525<	GRU_Adam_TanH_TS10_D10	0,30670	0,55380	0,41030	1.61593
GRU_Adam_Sigmoid_TS10_D10 0,54404 0,73759 0,59272 2.31346 GRU_Adam_Sigmoid_TS15_D10 0,43712 0,66115 0,53443 2.07846 GRU_AdaGrad_ReLU_TS5_D10 0,79514 0,89170 0,68364 2.66703 GRU_AdaGrad_ReLU_TS10_D10 0,65042 0,80649 0,62156 2.43332 GRU_AdaGrad_ReLU_TS15_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS5_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS15_D10 1.03822 1.01893 0,78490 3.11995 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_TanH_TS5_D10 0,35432 0,59525 0,47768 1.86129 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711	GRU_Adam_TanH_TS15_D10	0,33658	0,58015	0,43780	1.70763
GRU_Adam_Sigmoid_TS15_D10 0,43712 0,66115 0,53443 2.07846 GRU_AdaGrad_ReLU_TS5_D10 0,79514 0,89170 0,68364 2.66703 GRU_AdaGrad_ReLU_TS10_D10 0,65042 0,80649 0,62156 2.43332 GRU_AdaGrad_ReLU_TS15_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS5_D10 0,49235 0,70167 0,54667 2.15637 GRU_AdaGrad_TanH_TS10_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_RMSProp_ReLU_TS5_D10 0,335348 0,59454 0,46732 1.83662 GRU_RMSProp_ReLU_TS15_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 </td <td>GRU_Adam_Sigmoid_TS5_D10</td> <td>0,37068</td> <td>0,60884</td> <td>0,47617</td> <td>1.87755</td>	GRU_Adam_Sigmoid_TS5_D10	0,37068	0,60884	0,47617	1.87755
GRU_AdaGrad_ReLU_TS5_D10 0,79514 0,89170 0,68364 2.66703 GRU_AdaGrad_ReLU_TS10_D10 0,65042 0,80649 0,62156 2.43332 GRU_AdaGrad_ReLU_TS15_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS5_D10 0,49235 0,70167 0,54667 2.15637 GRU_AdaGrad_TanH_TS10_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_TanH_TS5_D10 0,35432 0,59525 0,47768 1.86129 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896	GRU_Adam_Sigmoid_TS10_D10	0,54404	0,73759	0,59272	2.31346
GRU_AdaGrad_ReLU_TS10_D10 0,65042 0,80649 0,62156 2.43332 GRU_AdaGrad_ReLU_TS15_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS5_D10 0,49235 0,70167 0,54667 2.15637 GRU_AdaGrad_TanH_TS10_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_ReLU_TS10_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95	GRU_Adam_Sigmoid_TS15_D10	0,43712	0,66115	0,53443	2.07846
GRU_AdaGrad_ReLU_TS15_D10 0,66501 0,81548 0,62734 2.44105 GRU_AdaGrad_TanH_TS5_D10 0,49235 0,70167 0,54667 2.15637 GRU_AdaGrad_TanH_TS10_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_ReLU_TS10_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_AdaGrad_ReLU_TS5_D10	0,79514	0,89170	0,68364	2.66703
GRU_AdaGrad_TanH_TS5_D10 0,49235 0,70167 0,54667 2.15637 GRU_AdaGrad_TanH_TS10_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_ReLU_TS10_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_AdaGrad_ReLU_TS10_D10	0,65042	0,80649	0,62156	2.43332
GRU_AdaGrad_TanH_TS10_D10 0,61872 0,78659 0,61084 2.37653 GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_ReLU_TS10_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_AdaGrad_ReLU_TS15_D10	0,66501	0,81548	0,62734	2.44105
GRU_AdaGrad_TanH_TS15_D10 0,46984 0,68545 0,54814 2.14420 GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_ReLU_TS10_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_ReLU_TS15_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS5_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_AdaGrad_TanH_TS5_D10	0,49235	0,70167	0,54667	2.15637
GRU_AdaGrad_Sigmoid_TS5_D10 1.06932 1.03408 0,80084 3.18819 GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_ReLU_TS10_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_ReLU_TS15_D10 0,35432 0,59525 0,47768 1.86129 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_AdaGrad_TanH_TS10_D10	0,61872	0,78659	0,61084	2.37653
GRU_AdaGrad_Sigmoid_TS10_D10 1.03822 1.01893 0,78490 3.11995 GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_ReLU_TS10_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_ReLU_TS15_D10 0,35432 0,59525 0,47768 1.86129 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_AdaGrad_TanH_TS15_D10	0,46984	0,68545	0,54814	2.14420
GRU_AdaGrad_Sigmoid_TS15_D10 0,90115 0,94929 0,74224 2.93462 GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_ReLU_TS10_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_ReLU_TS15_D10 0,35432 0,59525 0,47768 1.86129 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_AdaGrad_Sigmoid_TS5_D10	1.06932	1.03408	0,80084	3.18819
GRU_RMSProp_ReLU_TS5_D10 0,35348 0,59454 0,46732 1.83662 GRU_RMSProp_ReLU_TS10_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_ReLU_TS15_D10 0,35432 0,59525 0,47768 1.86129 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_AdaGrad_Sigmoid_TS10_D10	1.03822	1.01893	0,78490	3.11995
GRU_RMSProp_ReLU_TS10_D10 0,34288 0,58556 0,44844 1.76830 GRU_RMSProp_ReLU_TS15_D10 0,35432 0,59525 0,47768 1.86129 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_AdaGrad_Sigmoid_TS15_D10	0,90115	0,94929	0,74224	2.93462
GRU_RMSProp_ReLU_TS15_D10 0,35432 0,59525 0,47768 1.86129 GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_RMSProp_ReLU_TS5_D10	0,35348	0,59454	0,46732	1.83662
GRU_RMSProp_TanH_TS5_D10 0,50352 0,70959 0,57279 2.22039 GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_RMSProp_ReLU_TS10_D10	0,34288	0,58556	0,44844	1.76830
GRU_RMSProp_TanH_TS10_D10 0,32162 0,56711 0,42335 1.67123 GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_RMSProp_ReLU_TS15_D10	0,35432	0,59525	0,47768	1.86129
GRU_RMSProp_TanH_TS15_D10 0,30136 0,54896 0,41794 1.63844 GRU_RMSProp_Sigmoid_TS5_D10 0,91209 0,95503 0,79285 3.05677	GRU_RMSProp_TanH_TS5_D10	0,50352	0,70959	0,57279	2.22039
GRU_RMSProp_Sigmoid_TS5_D10	GRU_RMSProp_TanH_TS10_D10	0,32162	0,56711	0,42335	1.67123
	GRU_RMSProp_TanH_TS15_D10	0,30136	0,54896	0,41794	1.63844
CDII DMCDrop Sigmoid TS10 D10 0 49007 0 60022 0 52044 2 12505	GRU_RMSProp_Sigmoid_TS5_D10	0,91209	0,95503	0,79285	3.05677
$ONO_NNISTIOP_SIGNIOIO_1S10_D10 0,48907 0,09933 0,33944 2.13393$	GRU_RMSProp_Sigmoid_TS10_D10	0,48907	0,69933	0,53944	2.13595
GRU_RMSProp_Sigmoid_TS15_D10	GRU_RMSProp_Sigmoid_TS15_D10	0,59133	0,76898	0,62180	2.40301

Berdasarkan Tabel 4.25, baik model GRU_Adam_TanH_TS10_D10 maupun GRU_RMSProp_TanH_TS15_D10 memenuhi 2 kriteria model terbaik. Model GRU_Adam_TanH_TS10_D10 memberikan performa terbaik untuk metrik MAE dan MAPE, sedangkan GRU_RMSProp_TanH_TS15_D10 memberikan performa terbaik untuk metrik MSE dan RMSE. Maka model GRU dengan algoritma optimasi Adam, fungsi aktivasi TanH, dengan jumlah *time steps* sebesar 10, serta model GRU dengan algoritma optimasi RMSProp, fungsi aktivasi TanH, dengan jumlah *time steps* sebesar 15 merupakan dua model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,1.

4.7.5. Model GRU dengan *Dropout Rate* 0,15

Eksperimen kelima pada model GRU dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model GRU akan diuji dengan *dropout rate* sebesar 0,15. Berikut merupakan hasil performa tiap model GRU yang terbentuk terhadap data uji

Tabel 4.26 Metrik Evaluasi Performa Model GRU dengan Dropout Rate 0,15

Model	MSE	RMSE	MAE	MAPE
GRU_Adam_ReLU_TS5_D15	0,78585	0,88648	0,64243	2.48775
GRU_Adam_ReLU_TS10_D15	0,41771	0,64631	0,48732	1.90391
GRU_Adam_ReLU_TS15_D15	0,31337	0,55980	0,42043	1.64756
GRU_Adam_TanH_TS5_D15	0,38991	0,62443	0,48579	1.89280
GRU_Adam_TanH_TS10_D15	0,35860	0,59883	0,45944	1.79344
GRU_Adam_TanH_TS15_D15	0,31124	0,55789	0,41648	1.63049
GRU_Adam_Sigmoid_TS5_D15	0,41761	0,64623	0,51368	2.01856
GRU_Adam_Sigmoid_TS10_D15	0,56225	0,74983	0,58329	2.29670
GRU_Adam_Sigmoid_TS15_D15	0,51934	0,72065	0,57538	2.23922
GRU_AdaGrad_ReLU_TS5_D15	0,73588	0,85783	0,65515	2.55399
GRU_AdaGrad_ReLU_TS10_D15	0,77223	0,87877	0,67796	2.65286
GRU_AdaGrad_ReLU_TS15_D15	0,59513	0,77144	0,60123	2.34376

Model	MSE	RMSE	MAE	MAPE
GRU_AdaGrad_TanH_TS5_D15	0,57091	0,75559	0,59739	2.33412
GRU_AdaGrad_TanH_TS10_D15	0,51403	0,71696	0,56284	2.19919
GRU_AdaGrad_TanH_TS15_D15	0,68166	0,82563	0,64529	2.49801
GRU_AdaGrad_Sigmoid_TS5_D15	1.06655	1.03274	0,79413	3.16770
GRU_AdaGrad_Sigmoid_TS10_D15	1.01895	1.00943	0,77633	3.08743
GRU_AdaGrad_Sigmoid_TS15_D15	0,90201	0,94974	0,74630	2.94661
GRU_RMSProp_ReLU_TS5_D15	0,36447	0,60371	0,46654	1.83888
GRU_RMSProp_ReLU_TS10_D15	0,34663	0,58875	0,45794	1.79944
GRU_RMSProp_ReLU_TS15_D15	0,41117	0,64123	0,48222	1.91420
GRU_RMSProp_TanH_TS5_D15	0,40020	0,63261	0,49414	1.92558
GRU_RMSProp_TanH_TS10_D15	0,33612	0,57976	0,43760	1.72095
GRU_RMSProp_TanH_TS15_D15	0,37922	0,61581	0,49100	1.90725
GRU_RMSProp_Sigmoid_TS5_D15	0,59430	0,77091	0,61330	2.39468
GRU_RMSProp_Sigmoid_TS10_D15	0,85017	0,92205	0,75746	2.92418
GRU_RMSProp_Sigmoid_TS15_D15	0,49573	0,70408	0,55158	2.15572

Berdasarkan Tabel 4.26, performa model GRU dengan algoritma optimasi Adam, fungsi aktivasi TanH, dengan jumlah *time steps* sebesar 15 memiliki nilai MSE, RMSE, MAE, dan MAPE terkecil dari eksperimen dengan *dropout rate* sebesar 0,15. Maka dari itu, model GRU_Adam_TanH_TS15_D15 merupakan model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,15.

4.7.6. Model GRU dengan Dropout Rate 0,2

Eksperimen terakhir pada model GRU dengan 3 opsi algoritma optimasi, yang terdiri dari Adam, AdaGrad, dan RMSProp, serta 3 opsi fungsi aktivasi, antara lain ReLU, TanH, dan Sigmoid. Jumlah *time steps* yang digunakan adalah 5, 10, dan 15. Pada percobaan ini, model GRU akan diuji dengan *dropout rate* sebesar 0,2. Berikut merupakan hasil performa tiap model GRU yang terbentuk terhadap data uji

Tabel 4.27 Metrik Evaluasi Performa Model GRU dengan *Dropout Rate* 0,2

Model	MSE	RMSE	MAE	MAPE
GRU_Adam_ReLU_TS5_D20	0,57185	0,75621	0,54327	2.12154
GRU_Adam_ReLU_TS10_D20	0,60959	0,78076	0,57304	2.22710
GRU_Adam_ReLU_TS15_D20	0,44828	0,66953	0,51809	2.01127
GRU_Adam_TanH_TS5_D20	0,35125	0,59267	0,45987	1.79750
GRU_Adam_TanH_TS10_D20	0,32952	0,57403	0,42807	1.68045
GRU_Adam_TanH_TS15_D20	0,34270	0,58541	0,44653	1.73858
GRU_Adam_Sigmoid_TS5_D20	0,56858	0,75404	0,61327	2.39551
GRU_Adam_Sigmoid_TS10_D20	0,40210	0,63411	0,49227	1.94005
GRU_Adam_Sigmoid_TS15_D20	0,38229	0,61830	0,48237	1.89542
GRU_AdaGrad_ReLU_TS5_D20	0,71654	0,84649	0,65016	2.54118
GRU_AdaGrad_ReLU_TS10_D20	0,65741	0,81081	0,62178	2.42628
GRU_AdaGrad_ReLU_TS15_D20	0,62895	0,79306	0,61897	2.41599
GRU_AdaGrad_TanH_TS5_D20	0,54779	0,74013	0,58620	2.28685
GRU_AdaGrad_TanH_TS10_D20	0,50665	0,71180	0,57313	2.24411
GRU_AdaGrad_TanH_TS15_D20	0,47344	0,68807	0,54436	2.12488
GRU_AdaGrad_Sigmoid_TS5_D20	1.08422	1.04126	0,80179	3.19654
GRU_AdaGrad_Sigmoid_TS10_D20	1.02315	1.01151	0,77313	3.08074
GRU_AdaGrad_Sigmoid_TS15_D20	0,91374	0,95590	0,75626	2.97678
GRU_RMSProp_ReLU_TS5_D20	0,38052	0,61686	0,49456	1.93651
GRU_RMSProp_ReLU_TS10_D20	0,36052	0,60043	0,45232	1.79281
GRU_RMSProp_ReLU_TS15_D20	0,34892	0,59069	0,44377	1.75844
GRU_RMSProp_TanH_TS5_D20	0,52328	0,72338	0,59038	2.28744
GRU_RMSProp_TanH_TS10_D20	0,37143	0,60945	0,47840	1.86667
GRU_RMSProp_TanH_TS15_D20	0,32436	0,56952	0,43555	1.70465
GRU_RMSProp_Sigmoid_TS5_D20	0,94837	0,97384	0,80607	3.11517
GRU_RMSProp_Sigmoid_TS10_D20	0,73037	0,85462	0,69110	2.67795
GRU_RMSProp_Sigmoid_TS15_D20	1.04266	1.02111	0,85624	3.29131

Berdasarkan Tabel 4.27, baik model GRU_Adam_TanH_TS10_D20 maupun GRU_RMSProp_TanH_TS15_D20 memenuhi 2 kriteria model terbaik. Model GRU_Adam_TanH_TS10_D20 memberikan performa terbaik untuk metrik MAE dan MAPE, sedangkan GRU_RMSProp_TanH_TS15_D20 memberikan performa terbaik untuk metrik MSE dan RMSE. Maka model GRU dengan algoritma optimasi Adam, fungsi aktivasi TanH, dengan jumlah *time steps* sebesar 10, serta model GRU dengan algoritma optimasi RMSProp, fungsi aktivasi TanH, dengan jumlah *time steps* sebesar 15 merupakan dua model terbaik untuk meramalkan data uji pada percobaan dengan *dropout rate* 0,2.

4.7.7. Model GRU Terbaik

Setelah membangun model GRU dengan menguji berbagai kombinasi algoritma optimasi, fungsi aktivasi, jumlah *time steps*, dan *dropout rate*. Langkah selanjutnya akan dibandingkan performa dari seluruh model-model terbaik pada tiap eksperimen yang dihasilkan. Berikut ini merupakan kinerja model terbaik yang diperoleh dari proses pemodelan sebelumnya

Model	MSE	RMSE	MAE	MAPE
GRU_Adam_ReLU_TS15_D0	0,31467	0,56096	0,42546	1.66087
GRU_Adam_TanH_TS15_D1	0,29220	0,54056	0,41063	1.60946
GRU_Adam_TanH_TS15_D5	0,31452	0,56082	0,41933	1.63965
GRU_Adam_TanH_TS10_D10	0,30670	0,55380	0,41030	1.61593
GRU_RMSProp_TanH_TS15_D10	0,30136	0,54896	0,41794	1.63844
GRU_Adam_TanH_TS15_D15	0,31124	0,55789	0,41648	1.63049
GRU_Adam_TanH_TS10_D20	0,32952	0,57403	0,42807	1.68045
GRU_RMSProp_TanH_TS15_D20	0,32436	0,56952	0,43555	1.70465

Tabel 4.28 Metrik Evaluasi Performa Model GRU Terbaik

Berdasarkan Tabel 4.28, dapat disimpulkan bahwa model GRU dengan algoritma optimasi Adam, fungsi aktivasi TanH, jumlah *time steps* 15, dan *dropout rate* sebesar 0,01 merupakan model terbaik karena memiliki metrik evaluasi yang

paling kecil dibandingkan model-model lainnya. Berikut adalah plot perbandingan antara hasil prediksi data *train* menggunakan model GRU_Adam_TanH_TS15_D1 dengan data *test* asli

Gambar 4.11 Hasil Peramalan Data Train dengan GRU_Adam_TanH_TS15_D1

Grafik 4.11 menunjukkan bahwa model GRU_Adam_TanH_TS15_D1 menghasilkan prediksi suhu rata-rata harian yang cukup mendekati data *test* asli. Garis merah yang mewakili prediksi mengikuti pola umum dari garis biru, yang merupakan data *test* asli, dengan tren yang serupa sepanjang periode. Akan tetapi, terdapat beberapa perbedaan pada titik-titik tertentu, terutama pada lonjakan dan penurunan tajam, di mana prediksi cenderung lebih halus dibandingkan data asli. Meskipun demikian, secara keseluruhan, model berhasil merepresentasikan fluktuasi suhu dengan baik, meskipun terdapat sedikit selisih pada beberapa bagian.

4.8. Perbandingan Performa Model

Setelah melakukan berbagai eksperimen dengan metode *Autoregressive* Integrated Moving Average with Exogenous Variables (ARIMAX), Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), dan Gated Recurrent Unit (GRU), diperoleh model-model terbaik dari tiap metode adalah sebagai berikut.

Model	MSE	RMSE	MAE	MAPE
ARIMAX(3,1,3)	0,10087	0,31760	0,17134	0,66861
MLP_RMSProp_ReLU_D1	0,02360	0,15363	0,10039	0,39208
CNN_RMSProp_TanH_TS10_D10	0,33386	0,57781	0,42406	1.67464
GRU_Adam_TanH_TS15_D1	0,29220	0,54056	0,41063	1.60946

Tabel 4.29 Metrik Evaluasi Performa Model Terbaik

Tabel 4.29 menunjukkan perbandingan performa model berdasarkan empat metrik evaluasi, yaitu MSE (*Mean Squared Error*), RMSE (*Root Mean Squared Error*), MAE (*Mean Absolute Error*), dan MAPE (*Mean Absolute Percentage Error*). Model MLP_RMSProp_ReLU_D1 memiliki nilai metrik evaluasi terkecil dibandingkan dengan model ARIMAX(3,1,3), CNN_RMSProp_TanH_TS10_D10, dan GRU_Adam_TanH_TS15_D1, yang menandakan bahwa MLP_RMSProp_ReLU_D1 adalah model paling akurat dalam memprediksi suhu. Model ini memiliki MSE sebesar 0,02360, RMSE sebesar 0,15363, MAE sebesar 0,10039, dan MAPE sebesar 0,39208, yang jauh lebih rendah dibandingkan model lainnya, menunjukkan kesalahan prediksi yang lebih kecil. Maka dari itu, MLP_RMSProp_ReLU_D1 dapat disimpulkan merupakan model terbaik untuk memprediksi suhu dalam penelitian ini.

4.9. Prediksi Data *Out-Sample* dengan Model Terbaik

Berdasarkan analisis yang sudah dilakukan, diperoleh kesimpulan bahwa *Multilayer Perceptron* dengan algoritma optimasi RMSProp, fungsi aktivasi ReLU, dan *dropout rate* sebesar 0,01 merupakan model terbaik dalam meramalkan data cuaca harian. Maka dari itu, model tersebut akan digunakan untuk meramalkan data *out-sample*, yang dimulai pada 1 Agustus 2024 hingga 31 Agustus 2024. Berikut adalah hasil prediksi model MLP_RMSProp_ReLU_D1 terhadap data *out-sample*

Gambar 4.12 Hasil Prediksi Data Out-sample dengan Model Terbaik

Grafik 4.12 menunjukkan hasil prediksi *out-sample* suhu rata-rata harian menggunakan model MLP_RMSProp_ReLU_D1 (garis merah) dibandingkan dengan data asli (garis biru). Secara umum, model mampu menangkap pola perubahan suhu dengan baik, mengikuti tren naik dan turun pada data aktual. Perbedaan antara prediksi dan data asli relatif kecil, terutama pada periode stabil, meskipun terdapat sedikit deviasi pada beberapa titik perubahan suhu yang tajam. Model juga menunjukkan kemampuan yang baik dalam menangkap fluktuasi harian tanpa mengalami pergeseran tren yang signifikan. Hal ini mengindikasikan bahwa MLP_RMSProp_ReLU_D1 efektif dalam memprediksi suhu berdasarkan variabel eksogen yang digunakan, meskipun masih dapat ditingkatkan untuk menangkap perubahan ekstrem dengan lebih akurat.