Statistics and Machine Learning

Classification I Logistic regression and Bayes rule

Contents of Week 7

- Data set in classification task
- Logistic function
- Judging a classifier: true positive, true negative, false positive, and false negative.
- Bayes rule

Regression versus classification

Regression: y is continuous number

TV	Radio	Sales
230.1	37.8	22.1
x_tv	x_radio	y_sales

Classification: y is qualitative, discrete or categorical, i.e. (0,1) (yes, no)

Balance	Income	Default
729.5	44361.6	NO
817.1	12106.1	YES
x_balance	x_income	y_default

Reading this week

P.127 - p.138

FIGURE 4.1. The Default data set. Left: The annual incomes and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card payments are shown in orange, and those who did not are shown in blue. Center: Boxplots of balance as a function of default status. Right: Boxplots of income as a function of default status.

```
In [2]: data = pd.read_excel('Default.xlsx')
```

Out[3]:

	Unnamed: 0	default	student	balance	income
0	1	No	No	729.526495	44361.625074
1	2	No	Yes	817.180407	12106.134700
2	3	No	No	1073.549164	31767.138947
3	4	No	No	529.250605	35704.493935
4	5	No	No	785.655883	38463.495879

In [4]: type(data)

Out[4]: pandas.core.frame.DataFrame

```
In [14]: data['default2'] = data.default.factorize()[0]
```

Out[15]:

	Unnamed: 0	default	student	balance	income	default2
0	1	No	No	729.526495	44361.625074	0
1	2	No	Yes	817.180407	12106.134700	0
2	3	No	No	1073.549164	31767.138947	0
3	4	No	No	529.250605	35704.493935	0
4	5	No	No	785.655883	38463.495879	0

In [17]: X_balance = data.balance.values.reshape(-1,1)
y = data.default2.values.reshape(-1,1)

```
In [14]: data['default2'] = data.default.factorize()[0]
```

Out[15]:

	Unnamed: 0	default	student	balance	income	default2
0	1	No	No	729.526495	44361.625074	0
1	2	No	Yes	817.180407	12106.134700	0
2	3	No	No	1073.549164	31767.138947	0
3	4	No	No	529.250605	35704.493935	0
4	5	No	No	785.655883	38463.495879	0

```
In [17]: X_balance = data.balance.values.reshape(-1,1)
y = data.default2.values.reshape(-1,1)
```

```
In [58]: plt.scatter(X_balance, y)
   plt.xlabel('Balance')
   plt.ylabel('Default or nor')
   plt.show()
```



```
In [14]: data['default2'] = data.default.factorize()[0]
```

Out[15]:

	Unnamed: 0	default	student	balance	income	default2
0	1	No	No	729.526495	44361.625074	0
1	2	No	Yes	817.180407	12106.134700	0
2	3	No	No	1073.549164	31767.138947	0
3	4	No	No	529.250605	35704.493935	0
4	5	No	No	785.655883	38463.495879	0

```
In [17]: X_balance = data.balance.values.reshape(-1,1)
y = data.default2.values.reshape(-1,1)
```

```
In [58]: plt.scatter(X_balance, y)
   plt.xlabel('Balance')
   plt.ylabel('Default or nor')
   plt.show()
```



```
In [14]: data['default2'] = data.default.factorize()[0]
In [15]: data.head()
```

Out[15]:

	Unnamed: 0	default	student	balance	income	default2
0	1	No	No	729.526495	44361.625074	0
1	2	No	Yes	817.180407	12106.134700	0
2	3	No	No	1073.549164	31767.138947	0
3	4	No	No	529.250605	35704.493935	0
4	5	No	No	785.655883	38463.495879	0

```
In [17]: X_balance = data.balance.values.reshape(-1,1)
y = data.default2.values.reshape(-1,1)
```

```
In [58]: plt.scatter(X_balance, y)
  plt.xlabel('Balance')
  plt.ylabel('Default or nor')
  plt.show()
```


(Balance = 750, default = 0)

```
In [14]: data['default2'] = data.default.factorize()[0]
In [15]: data.head()
Out[15]:
```

	Unnamed: 0	default	student	balance	income	default2
0	1	No	No	729.526495	44361.625074	0
1	2	No	Yes	817.180407	12106.134700	0
2	3	No	No	1073.549164	31767.138947	0
3	4	No	No	529.250605	35704.493935	0
4	5	No	No	785.655883	38463.495879	0

```
In [17]: X_balance = data.balance.values.reshape(-1,1)
y = data.default2.values.reshape(-1,1)
```

```
In [58]: plt.scatter(X_balance, y)
   plt.xlabel('Balance')
   plt.ylabel('Default or nor')
   plt.show()
```


(Balance = **750**, default = **0**)

```
In [14]: data['default2'] = data.default.factorize()[0]
```

Out[15]:

	Unnamed: 0	default	student	balance	income	default2
0	1	No	No	729.526495	44361.625074	0
1	2	No	Yes	817.180407	12106.134700	0
2	3	No	No	1073.549164	31767.138947	0
3	4	No	No	529.250605	35704.493935	0
4	5	No	No	785.655883	38463.495879	0

```
In [17]: X_balance = data.balance.values.reshape(-1,1)
y = data.default2.values.reshape(-1,1)
```

```
In [58]: plt.scatter(X_balance, y)
  plt.xlabel('Balance')
  plt.ylabel('Default or nor')
  plt.show()
```


(Balance = 750, default = 0)

$$-\infty < x < \infty$$

$$y = 0$$
 or 1

$$-\infty < x < \infty$$

$$y = 0$$
 or 1

We can find a function f(x) such that

$$-\infty < x < \infty$$

$$y = 0$$
 or 1

We can find a function f(x) such that

$$0 \le f(x) \le 1$$

$$-\infty < x < \infty$$

$$y = 0$$
 or 1

We can find a function f(x) such that

$$0 \le f(x) \le 1$$

Then at prediction stage:

$$-\infty < x < \infty$$

$$y = 0$$
 or 1

We can find a function f(x) such that

$$0 \le f(x) \le 1$$

Then at prediction stage:

$$f(x) \ge 0.5 \to \hat{y} = 1$$

$$-\infty < x < \infty$$

$$y = 0$$
 or 1

We can find a function f(x) such that

$$0 \le f(x) \le 1$$

Then at prediction stage:

$$f(x) \ge 0.5 \rightarrow \hat{y} = 1$$

$$f(x) \le 0.5 \to \hat{y} = 0$$

Generalize linear function to logistic function

We want a function whose output is between 0 and 1

$$y = ax + b$$

$$y = \frac{1}{1 + e^{ax+b}}$$


```
In [6]: def logistic(x,a,b):
             return 1/(1+np.exp(a*x+b))
In [7]: tmpx = np.linspace(-10,10,500)
In [8]: import matplotlib.pyplot as plt
In [9]: plt.plot(tmpx,logistic(tmpx,1,1),'k-')
        plt.show()
         1.0
         0.8
         0.6
         0.4
            -10.0 -7.5 -5.0 -2.5
                               0.0
```

```
In [6]: def logistic(x,a,b):
             return 1/(1+np.exp(a*x+b))
In [7]: tmpx = np.linspace(-10,10,500)
   [8]: import matplotlib.pyplot as plt
In [9]: plt.plot(tmpx,logistic(tmpx,1,1),'k-')
        plt.show()
         1.0
         0.8
         0.6
         0.4
            -10.0 -7.5 -5.0 -2.5
                               0.0
```



```
In [6]: def logistic(x,a,b):
             return 1/(1+np.exp(a*x+b))
In [7]: tmpx = np.linspace(-10,10,500)
   [8]: import matplotlib.pyplot as plt
        plt.plot(tmpx, logistic(tmpx, 1, 1), 'k-')
        plt.show()
         1.0
         0.8
         0.6
         0.4
             -10.0 -7.5 -5.0 -2.5
                                0.0
```


Install User Guide API Examples More ▼

Prev

Up

Next

scikit-learn 0.23.2

Other versions

Please **cite us** if you use the software.

sklearn.linear_model.Logistic Regression

Examples using sklearn.linear _model.LogisticRegression

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) [source]

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.)

```
In [22]: import sklearn.linear_model as skl_lm
         X_{\text{test}} = \text{np.arange}(X_{\text{balance.min}}), X_{\text{balance.max}}).reshape(-1,1)
In [23]: clf = skl_lm.LogisticRegression(solver='newton-cg')
         clf.fit(X_balance, y)
          prob = clf.predict_proba(X_test)
          /Users/felix/opt/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A co
          lumn-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example u
          sing ravel().
            y = column_or_1d(y, warn=True)
In [25]: plt.scatter(X_balance, y)
          plt.plot(X_test,prob[:,1],'r-')
          plt.xlabel('Balance')
          plt.ylabel('Default probability')
          plt.show()
            1.0
          Default probability
                        500
                                      1500
                               1000
                                              2000
                                                     2500
                                   Balance
```

```
In [22]: import sklearn.linear_model as skl_lm
         X_{\text{test}} = \text{np.arange}(X_{\text{balance.min}}), X_{\text{balance.max}}).reshape(-1,1)
In [23]: clf = skl_lm.LogisticRegression(solver='newton-cg')
         clf.fit(X_balance, y)
          prob = clf.predict_proba(X_test)
          /Users/felix/opt/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A co
          lumn-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example u
          sing ravel().
            y = column_or_1d(y, warn=True)
In [25]: plt.scatter(X_balance, y)
         plt.plot(X_test,prob[:,1],'r-')
          plt.xlabel('Balance')
          plt.ylabel('Default probability')
          plt.show()
            1.0
          Default probability
            0.6
                        500
                                      1500
                               1000
                                              2000
                                                     2500
                                   Balance
```

```
In [22]: import sklearn.linear_model as skl_lm
         X_{\text{test}} = \text{np.arange}(X_{\text{balance.min}}), X_{\text{balance.max}}).reshape(-1,1)
In [23]: clf = skl_lm.LogisticRegression(solver='newton-cg')
         clf.fit(X_balance, y)
          prob = clf.predict_proba(X_test)
          /Users/felix/opt/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A co
          lumn-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example u
          sing ravel().
            y = column_or_1d(y, warn=True)
In [25]: plt.scatter(X_balance, y)
          plt.plot(X_test,prob[:,1],'r-')
          plt.xlabel('Balance')
          plt.ylabel('Default probability')
          plt.show()
            1.0
          Default probability
            0.6
                        500
                               1000
                                      1500
                                              2000
                                   Balance
```

```
In [22]: import sklearn.linear_model as skl_lm
         X_{\text{test}} = \text{np.arange}(X_{\text{balance.min}}), X_{\text{balance.max}}).reshape(-1,1)
In [23]: clf = skl_lm.LogisticRegression(solver='newton-cg')
         clf.fit(X_balance, y)
         prob = clf.predict_proba(X_test)
          /Users/felix/opt/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A co
          lumn-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example u
          sing ravel().
           y = column_or_1d(y, warn=True)
In [25]: plt.scatter(X_balance, y)
         plt.plot(X_test,prob[:,1],'r-')
         plt.xlabel('Balance')
         plt.ylabel('Default probability')
         plt.show()
            1.0
          Default probability
9.0
9.0
                                                             Around balance > 1900
            0.6
                                                             Predictive to be default
                       500
                                     1500
                              1000
                                             2000
                                  Balance
```

```
In [26]: print(clf.classes_)
           [0 1]
In [27]: print(clf.coef_)
           [[0.00549891]]
In [28]: print(clf.intercept_)
           [-10.65132226]
In [29]: plt.plot(X_test,logistic(X_test,(-1.)*clf.coef_,(-1.)*clf.intercept_),'k--')
plt.plot(X_test,prob[:,1],'r-')
Out[29]: [<matplotlib.lines.Line2D at 0x7fb8d521b9d0>]
            1.0
            0.8
            0.6
            0.4
            0.2
```

2500

2000

1500

1000

In sklearn, the used logistic function is

For single x versus single y

$$y = \frac{1}{1 + e^{-ax-b}}$$

To get the value of a: .coef_
To get the value of b: .intercept_

Important!! Go read and check the textbook in p. 132

To avoid this problem, we must model p(X) using a function that gives outputs between 0 and 1 for all values of X. Many functions meet this description. In logistic regression, we use the *logistic function*,

logistic function

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}. (4.2)$$

Judge a classifier

True positive, false positive

Judge a classifier

True positive, false positive

Judge a classifier

True positive, false positive

Classification report

Precision, recall, and f-1 score

Precision:
$$\frac{TP}{TP + FP}$$

Recall:
$$\frac{TP}{TP + FN}$$

Confusion matrix

sklearn.metrics.confusion_matrix

sklearn.metrics.confusion_matrix(y_true, y_pred, *, labels=None, sample_weight=None, normalize=None)

[source]

Compute confusion matrix to evaluate the accuracy of a classification.

By definition a confusion matrix C is such that $C_{i,j}$ is equal to the number of observations known to be in group i and predicted to be in group j.

Thus in binary classification, the count of true negatives is $C_{0,0}$, false negatives is $C_{1,0}$, true positives is $C_{1,1}$ and false positives is $C_{0,1}$.

Bayes rule

A practical question

Suppose that a test for using a particular drug is 97% sensitive and 95% specific. That is, the test will produce 97% true positive results for drug users and 95% true negative results for non-drug users. These are the pieces of data that any screening test will have from their history of tests. Bayes' rule allows us to use this kind of data-driven knowledge to calculate the final probability.

Suppose, we also know that 0.5% of the general population are users of the drug. What is the probability that a randomly selected individual with a positive test is a drug user?

https://towardsdatascience.com/bayes-rule-with-a-simple-and-practical-example-2bce3dof4ado

Bayes rule

A practical question

Suppose that a test for using a particular drug is 97% sensitive and 95% specific. That is, the test will produce 97% true positive results for drug users and 95% true negative results for non-drug users. These are the pieces of data that any screening test will have from their history of tests. Bayes' rule allows us to use this kind of data-driven knowledge to calculate the final probability.

Suppose, we also know that 0.5% of the general population are users of the drug. What is the probability that a randomly selected individual with a positive test is a drug user?

Let us call the variable X:

X = o means negative test result

X = 1 means positive test result

https://towardsdatascience.com/bayes-rule-with-a-simple-and-practical-example-2bce3dof4ado

Bayes rule

A practical question

Suppose that a test for using a particular drug is 97% sensitive and 95% specific. That is, the test will produce 97% true positive results for drug users and 95% true negative results for non-drug users. These are the pieces of data that any screening test will have from their history of tests. Bayes' rule allows us to use this kind of data-driven knowledge to calculate the final probability.

Suppose, we also know that 0.5% of the general population are users of the drug. What is the probability that a randomly selected individual with a positive test is a drug user?

Let us call the variable X:

X = o means negative test result

X = 1 means positive test result

Let us call the variable Y:

Y = 0 means not a drug user Y = 1 means a drug user

https://towardsdatascience.com/bayes-rule-with-a-simple-and-practical-example-2bce3dof4ado

Why we need to learn probability

Let us call the variable X:

X = o means negative test result

X = 1 means positive test result

Type 1: Given y, what is probability for x?

If a drug user goes to test, what is the chance this person will get a positive test result?

Let us call the variable Y:

Y = o means not a drug user

Y = 1 means a drug user

Why we need to learn probability

Let us call the variable X:

X = 0 means negative test result

X = 1 means positive test result

Type 1: Given y, what is probability for x?

If a drug user goes to test, what is the chance this person will get a positive test result?

Let us call the variable Y:
Y = 0 means not a drug user
Y = 1 means a drug user

Then we can say: p(x=1|y=1) = 0.95 (sensitivity) p(x=0|y=0) = 0.97 (specificity)

Why we need to learn probability

Let us call the variable X:

X = 0 means negative test result

X = 1 means positive test result

Type 1: Given y, what is probability for x?

If a drug user goes to test, what is the chance this person will get a positive test result?

Then we can say: p(x=1|y=1) = 0.95 (sensitivity) p(x=0|y=0) = 0.97 (specificity) Additionally, we can say: p(x=0|y=1) = 0.05 (sensitivity) p(x=1|y=0) = 0.03 (specificity)

Let us call the variable Y:
Y = 0 means not a drug user
Y = 1 means a drug user

Why we need to learn probability

Let us call the variable X:

X = 0 means negative test result

X = 1 means positive test result

Type 1: Given y, what is probability for x?

If a drug user goes to test, what is the chance this person will get a positive test result?

Then we can say: p(x=1|y=1) = 0.95 (sensitivity) p(x=0|y=0) = 0.97 (specificity) Additionally, we can say: p(x=0|y=1) = 0.05 (sensitivity) p(x=1|y=0) = 0.03 (specificity)

Let us call the variable Y:
Y = 0 means not a drug user
Y = 1 means a drug user

Type 2: Given x, what is probability for y?

If one person receive a positive test result, what is the chance this person is truly a drug user?

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

The prior probability p(y): If we choose a random person without doing any test, the chance that this person is drug user is p(y=1). The chance that this person is not drug user is

$$p(y = 0) = 1 - p(y = 1)$$

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

The prior probability p(y): If we choose a random person without doing any test, the chance that this person is drug user is p(y=1). The chance that this person is not drug user is

$$p(y = 0) = 1 - p(y = 1)$$

From the problem text, we learn that

$$p(y = 1) = 0.005$$

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

The prior probability p(y): If we choose a random person without doing any test, the chance that this person is drug user is p(y=1). The chance that this person is not drug user is

$$p(y = 0) = 1 - p(y = 1)$$

The evidence p(x):

The "fact" is that a guy got a positive result, it could mean 1) this guy is drug user, and the test got him; or 2) this guy is not drug user, but the test failed him.

From the problem text, we learn that

$$p(y = 1) = 0.005$$

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

The prior probability p(y): If we choose a random person without doing any test, the chance that this person is drug user is p(y=1). The chance that this person is not drug user is

$$p(y = 0) = 1 - p(y = 1)$$

The evidence p(x):

The "fact" is that a guy got a positive result, it could mean 1) this guy is drug user, and the test got him; or 2) this guy is not drug user, but the test failed him.

So we can follow the general probability rules:

From the problem text, we learn that p(x = 1) = p(x = 1 | y = 1)p(y = 1) + p(x = 1 | y = 0)p(y = 0)p(y = 1) = 0.005

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

The prior probability p(y): If we choose a random person without doing any test, the chance that this person is drug user is p(y = 1). The chance that this person is not drug user is

$$p(y = 0) = 1 - p(y = 1)$$

The evidence p(x):

The "fact" is that a guy got a positive result, it could mean 1) this guy is drug user, and the test got him; or 2) this guy is not drug user, but the test failed him.

So we can follow the general probability rules:

$$p(y = 1) = 0.005$$

From the problem text, we learn that
$$p(x = 1) = p(x = 1 | y = 1)p(y = 1) + p(x = 1 | y = 0)p(y = 0)$$

sensitivity

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

The prior probability p(y): If we choose a random person without doing any test, the chance that this person is drug user is p(y = 1). The chance that this person is not drug user is

$$p(y = 0) = 1 - p(y = 1)$$

The evidence p(x):

The "fact" is that a guy got a positive result, it could mean 1) this guy is drug user, and the test got him; or 2) this guy is not drug user, but the test failed him.

So we can follow the general probability rules:

$$p(y = 1) = 0.005$$

From the problem text, we learn that
$$p(x = 1) = p(x = 1 | y = 1)p(y = 1) + p(x = 1 | y = 0)p(y = 0)$$

sensitivity	prior
0.97	0.005

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

The prior probability p(y): If we choose a random person without doing any test, the chance that this person is drug user is p(y=1). The chance that this person is not drug user is

$$p(y = 0) = 1 - p(y = 1)$$

The evidence p(x):

The "fact" is that a guy got a positive result, it could mean 1) this guy is drug user, and the test got him; or 2) this guy is not drug user, but the test failed him.

So we can follow the general probability rules:

From the problem text, we learn that p(x = 1) = p(x = 1 | y = 1)p(y = 1) + p(x = 1 | y = 0)p(y = 0)

$$p(y = 1) = 0.005$$

sensitivity prior Opposite of specificity:
$$0.97$$
 0.005 $1-0.95 = 0.05$

Given a person who got a positive test result, the probability that he really is a drug user is:

$$p(y = 1 | x = 1) = \frac{p(x = 1 | y = 1)p(y = 1)}{p(x = 1)}$$

Given a person who got a positive test result, the probability that he really is a drug user is:

$$p(y = 1 | x = 1) = \frac{p(x = 1 | y = 1)p(y = 1)}{p(x = 1)}$$

$$= \frac{0.97 * 0.005}{0.97 * 0.005 + 0.05 * 0.995}$$

Given a person who got a positive test result, the probability that he really is a drug user is:

$$p(y = 1 | x = 1) = \frac{p(x = 1 | y = 1)p(y = 1)}{p(x = 1)}$$

$$= \frac{0.97 * 0.005}{0.97 * 0.005 + 0.05 * 0.995}$$

$$= \frac{1}{1 + \frac{995*5}{97*5}} \approx 1/11 \approx 0.09$$

Why we need to know Bayes rule in Machine learning

Discriminative versus generative

Why we need to know Bayes rule in Machine learning

Discriminative versus generative

In Default data set, we are concerned with:

And we build a discriminative model:

$$p(y = 1 \mid x) = \frac{1}{1 + e^{-(wx+b)}}$$

Why we need to know Bayes rule in Machine learning

Discriminative versus generative

In Default data set, we are concerned with:

And we build a discriminative model:

$$p(y = 1 \mid x) = \frac{1}{1 + e^{-(wx+b)}}$$

In next week, we will talk about the method from the other way around:
$$p(y=1 \mid x) = \frac{p(x \mid y=1)p(y=1) + p(x \mid y=0)p(y=0)}{p(x)}$$