Equivalent Representationsand Models

Communication System

Model of the Channel

Describing the Input to a Channel

• We can describe the input to the channel as a discrete time signal or waveform:

- We can describe a discrete time signal in many different ways, e.g.
 - Verbal
 - Graph
 - List of values for each sample n.
 - Sum of unit step functions

Equivalent Representations

Verbal	"Encoding of the bit sequence 1,0,1,0,0,0,1 at 4 samples per bit"
Graph	x(n) 1
List, table or vector of values	n = [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17] x(n) = [1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0]
Sum of unit step functions	$x(n) = [1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0$

Model of the Channel

Equivalent Models

 We described two equivalent models for the response of the channel due to the input

- Model 1:
 - Channel is linear and time invariant
 - Channel has step response
 s(n) = k(1-aⁿ⁺¹)u(n)
- Model 2:
 - Let x(n) = channel inputy(n) = channel output

$$y(n) = a \cdot y(n-1) + (1-a) \cdot k \cdot x(n)$$

Example: Response to a pulse

unit step =
$$u(n)$$
 \longrightarrow LTI system \longrightarrow $s(n)$ = step response

Key Idea

Replace a direct path by a longer path with easier steps

$$x(n) = u(n) - u(n - 16)$$

Recursive Model of IR Channel

- k > 0 is a scaling parameter
- $0 \le a \le 1$ determines the "memory" in the channel
 - $a = 0 \rightarrow no memory of the past$
 - $a = 1 \rightarrow infinite memory (never forgets, never changes)$

Channel Equalization

Equalizer:
$$\tilde{x}(n) = \frac{1}{(1-a)\cdot k} [y(n) - a\cdot y(n-1)]$$