```
In [90]: # Pandas basics
         # Python cannot handle data storage - it will use objects
         # A data in python is a collection of various 1d arrays
             # 1. homogenous
         # Panel Data Analysis
             # 1. 1 - D DS - Series
             # 2. 2 - D DS - DataFrame
In [91]: 11 = [12,54,23,45,89,12,54,34,78,98,76,56,58,43,2,11,66,33]
In [92]: import pandas as pd
         ser1 = pd.Series(l1)
In [93]: ser1 # index and values
Out[93]: 0
               12
               54
         1
         2
               23
         3
               45
         4
               89
         5
               12
         6
               54
         7
               34
         8
               78
         9
               98
         10
               76
         11
               56
         12
               58
               43
         13
         14
                2
         15
               11
         16
               66
               33
         17
         dtype: int64
In [94]: # series index can be the default indexes 0 to n-1 or
         # customized
         #ser1.iloc[]
         #ser1.loc[]
         # only default indexes
         # both iloc and loc can be used
         # iloc[0:10] -> 0,1,2,3,...9
         # Loc[0:10] -> 0,1,2,3,4,5,...10
         # if both default and user defined index exists
         # iloc for default
         # loc for user defined
```

```
# Importing Data

pd.read_XXXXXX

1. file type
2. file path, name and ext
     URL/name.ext
3. for excel = sheet
4. for text = the separator (, or | or \t)
```

```
In [95]: # Working Directory
# a folder is set as the default directory
# directly import files from this WD or export to WD
import os
os.chdir("C:/Users/admin/pandas/DataSets")
```

```
In [96]: stores = pd.read_csv("stores.csv")
```

In [97]: stores

Out[97]:

	StoreCode	StoreName	StoreType	Location	OperatingCost	Staff_Cnt	TotalSales	Total_Custo
0	STR101	Electronics Zone	Electronincs	Delhi	21.0	60	160.0	
1	STR102	Apparel Zone	Apparel	Delhi	21.0	60	160.0	
2	STR103	Super Bazar	Super Market	Delhi	22.8	40	108.0	
3	STR104	Super Market	Super Market	Delhi	21.4	60	258.0	
4	STR105	Central Store	Super Market	Delhi	18.7	80	360.0	
5	STR106	Apparel Zone	Apparel	Delhi	18.1	60	225.0	
6	STR107	Fashion Bazar	Apparel	Delhi	14.3	80	360.0	
7	STR108	Digital Bazar	Electronincs	Delhi	24.4	40	146.7	
8	STR109	Electronics Zone	Electronincs	Chennai	22.8	40	140.8	
9	STR110	Apparel Zone	Apparel	Chennai	19.2	60	167.6	
10	STR111	Super Bazar	Super Market	Chennai	17.8	60	167.6	
11	STR112	Super Market	Super Market	Chennai	16.4	80	275.8	
12	STR113	Central Store	Super Market	Chennai	17.3	80	275.8	
13	STR114	Apparel Zone	Apparel	Chennai	15.2	80	275.8	
14	STR115	Fashion Bazar	Apparel	Chennai	10.4	80	472.0	
15	STR116	Digital Bazar	Electronincs	Chennai	10.4	80	460.0	
16	STR117	Electronics Zone	Electronincs	Mumbai	14.7	80	440.0	
17	STR118	Apparel Zone	Apparel	Mumbai	32.4	40	78.7	
18	STR119	Super Bazar	Super Market	Mumbai	30.4	40	75.7	
19	STR120	Super Market	Super Market	Mumbai	33.9	40	71.1	
20	STR121	Central Store	Super Market	Mumbai	21.5	40	120.1	
21	STR122	Apparel Zone	Apparel	Mumbai	15.5	80	318.0	

	StoreCode	StoreName	StoreType	Location	OperatingCost	Staff_Cnt	TotalSales	Total_Custo
22	STR123	Fashion Bazar	Apparel	Mumbai	15.2	80	304.0	
23	STR124	Digital Bazar	Electronincs	Mumbai	13.3	80	350.0	
24	STR125	Electronics Zone	Electronincs	Kolkata	19.2	80	400.0	
25	STR126	Apparel Zone	Apparel	Kolkata	27.3	40	79.0	
26	STR127	Super Bazar	Super Market	Kolkata	26.0	40	120.3	
27	STR128	Super Market	Super Market	Kolkata	30.4	40	95.1	
28	STR129	Central Store	Super Market	Kolkata	15.8	80	351.0	
29	STR130	Apparel Zone	Apparel	Kolkata	19.7	60	145.0	
30	STR131	Fashion Bazar	Apparel	Kolkata	15.0	80	301.0	
31	STR132	Digital Bazar	Electronincs	Kolkata	21.4	40	121.0	
4								+

Basic Sumary of the Data

```
In [ ]: n = 3
    stores.head(n) # first 6/n obs
    stores.tail(n)
```

```
In [11]: stores.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 32 entries, 0 to 31
         Data columns (total 15 columns):
         StoreCode
                             32 non-null object
                             32 non-null object
         StoreName
         StoreType
                             32 non-null object
         Location
                             32 non-null object
         OperatingCost
                             32 non-null float64
         Staff_Cnt
                             32 non-null int64
         TotalSales
                             32 non-null float64
                             32 non-null int64
         Total Customers
         AcqCostPercust
                             29 non-null float64
         BasketSize
                             32 non-null float64
         ProfitPercust
                             32 non-null float64
                             32 non-null int64
         OwnStore
         OnlinePresence
                             32 non-null int64
                             32 non-null int64
         Tenure
         StoreSegment
                             32 non-null int64
         dtypes: float64(5), int64(6), object(4)
         memory usage: 3.8+ KB
In [13]: stores.shape # (nrow, ncol)
         nrow = stores.shape[0]
         ncol = stores.shape[1]
In [15]: stores.dtypes
         stores.get_dtype_counts()
Out[15]: float64
                     5
         int64
                     6
         object
         dtype: int64
In [16]:
         stores.count()
                             32
Out[16]: StoreCode
                             32
         StoreName
                             32
         StoreType
         Location
                             32
         OperatingCost
                             32
         Staff Cnt
                             32
         TotalSales
                             32
         Total Customers
                             32
         AcqCostPercust
                             29
         BasketSize
                             32
         ProfitPercust
                             32
         OwnStore
                             32
         OnlinePresence
                             32
         Tenure
                             32
         StoreSegment
                             32
         dtype: int64
```

In [17]: stores.describe()

Out[17]:

	OperatingCost	Staff_Cnt	TotalSales	Total_Customers	AcqCostPercust	BasketSize	ProfitF
count	32.000000	32.000000	32.000000	32.000000	29.000000	32.000000	32.
mean	20.090625	61.875000	230.721875	146.687500	3.651034	3.217250	17.
std	6.026948	17.859216	123.938694	68.562868	0.532664	0.978457	1.
min	10.400000	40.000000	71.100000	52.000000	2.760000	1.513000	14.
25%	15.425000	40.000000	120.825000	96.500000	3.150000	2.581250	16.
50%	19.200000	60.000000	196.300000	123.000000	3.730000	3.325000	17.
75%	22.800000	80.000000	326.000000	180.000000	3.920000	3.610000	18.
max	33.900000	80.000000	472.000000	335.000000	4.930000	5.424000	22.
4							+

Columns

In []: # 1. Extacting columns

```
# 1.1 The . operator
         stores.TotalSales
         # 1.2 the []
         stores["TotalSales"]
         stores[["Location","OperatingCost","TotalSales"]]
         # 1.3 By using .loc (or .iloc[])
         stores.loc[:10,["Location","OperatingCost","TotalSales"]] # rows -> inddex 0 to n
         # DF with first 11 records and three mentioned columns
In [ ]: # Changing Datatypes
         pd.to_numeric(,errors = "coerce")
         pd.to_datetime(,format = )
         dataframe.astype(bool/str)
In [98]: # adding columns
         # TotalSales -> Income
         # OperatingCost -> expense
         # NetProfit = TotalSales - OperatingCost
         stores["NetProfit1"] = stores["TotalSales"] - stores["OperatingCost"]
         stores.head(2)
         # stores["NetProfit1"] = stores.TotalSales - stores.OperatingCost
         stores = stores.assign(NetProfit2 = stores.TotalSales - stores.OperatingCost,
                       GrandTotalSales = stores.TotalSales * stores.Total_Customers)
```

In [99]: stores.head(2)

Out[99]:

	StoreCode	StoreName	StoreType	Location	OperatingCost	Staff_Cnt	TotalSales	Total_Custor
0	STR101	Electronics Zone	Electronincs	Delhi	21.0	60	160.0	
1	STR102	Apparel Zone	Apparel	Delhi	21.0	60	160.0	
4								>

In [102]: stores.iloc[:,[1,2,3,4]]

Out[102]:

	StoreName	StoreType	Location	OperatingCost
0	Electronics Zone	Electronincs	Delhi	21.0
1	Apparel Zone	Apparel	Delhi	21.0
2	Super Bazar	Super Market	Delhi	22.8
3	Super Market	Super Market	Delhi	21.4
4	Central Store	Super Market	Delhi	18.7
5	Apparel Zone	Apparel	Delhi	18.1
6	Fashion Bazar	Apparel	Delhi	14.3
7	Digital Bazar	Electronincs	Delhi	24.4
8	Electronics Zone	Electronincs	Chennai	22.8
9	Apparel Zone	Apparel	Chennai	19.2
10	Super Bazar	Super Market	Chennai	17.8
11	Super Market	Super Market	Chennai	16.4
12	Central Store	Super Market	Chennai	17.3
13	Apparel Zone	Apparel	Chennai	15.2
14	Fashion Bazar	Apparel	Chennai	10.4
15	Digital Bazar	Electronincs	Chennai	10.4
16	Electronics Zone	Electronincs	Mumbai	14.7
17	Apparel Zone	Apparel	Mumbai	32.4
18	Super Bazar	Super Market	Mumbai	30.4
19	Super Market	Super Market	Mumbai	33.9
20	Central Store	Super Market	Mumbai	21.5
21	Apparel Zone	Apparel	Mumbai	15.5
22	Fashion Bazar	Apparel	Mumbai	15.2
23	Digital Bazar	Electronincs	Mumbai	13.3
24	Electronics Zone	Electronincs	Kolkata	19.2
25	Apparel Zone	Apparel	Kolkata	27.3
26	Super Bazar	Super Market	Kolkata	26.0
27	Super Market	Super Market	Kolkata	30.4
28	Central Store	Super Market	Kolkata	15.8
29	Apparel Zone	Apparel	Kolkata	19.7
30	Fashion Bazar	Apparel	Kolkata	15.0
31	Digital Bazar	Electronincs	Kolkata	21.4

```
In [105]:
           stores.head(2)
Out[105]:
               StoreCode StoreName
                                     StoreType Location OperatingCost Staff_Cnt TotalSales Total_Custor
                          Electronics
            0
                 STR101
                                    Electronincs
                                                  Delhi
                                                                21.0
                                                                           60
                                                                                   160.0
                              Zone
                            Apparel
            1
                 STR102
                                                  Delhi
                                                                21.0
                                                                           60
                                                                                   160.0
                                       Apparel
                              Zone
  In [ ]: stores.iloc[:,[0,1,2,3,4,5,6,15,7,8,9,10,11,12,13,14,16,17]]
In [108]: [1,2,3] + [5,6,7] + range(3,7)
Out[108]: [1, 2, 3, 5, 6, 7, 3, 4, 5, 6]
In [110]: range(0,7)+[15]+range(7,15)+[16,17]
Out[110]: [0, 1, 2, 3, 4, 5, 6, 15, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17]
  In [ ]:
           stores.iloc[:,range(0,7)+[15]+range(7,15)+[16,17]]
  In [ ]:
  In [ ]:
  In [ ]:
 In [26]: # Removing columns
           del stores["NetProfit2"]
           # stores.drop("NetProfit2")
 In [27]:
           stores.head(2)
 Out[27]:
               StoreCode StoreName
                                     StoreType Location OperatingCost Staff_Cnt TotalSales Total_Custor
                          Electronics
            0
                 STR101
                                    Electronincs
                                                  Delhi
                                                                21.0
                                                                           60
                                                                                   160.0
                              Zone
                            Apparel
            1
                 STR102
                                                  Delhi
                                                                21.0
                                                                           60
                                                                                   160.0
                                       Apparel
                              Zone
  In [ ]: # renaming columns
           stores.rename(columns = {})
           # take a dictionary as input
           # "key" : "value
                # "ExisitngColumnName" : "NewColumnName"
```

```
stores = stores.rename(columns = {"NetProfit1" : "NetProfit"})
In [31]:
          stores.head(2)
Out[31]:
              StoreCode
                        StoreName
                                     StoreType Location OperatingCost Staff_Cnt TotalSales Total_Custor
                         Electronics
           0
                STR101
                                    Electronincs
                                                  Delhi
                                                                 21.0
                                                                            60
                                                                                    160.0
                              Zone
                            Apparel
           1
                STR102
                                       Apparel
                                                  Delhi
                                                                 21.0
                                                                            60
                                                                                    160.0
                              Zone
          # ser1 > 30 and < 80
In [34]:
          ser1.loc[(ser1 > 30) & (ser1 < 80)]
Out[34]:
                 54
          3
                 45
          6
                 54
          7
                 34
          8
                 78
          10
                 76
          11
                 56
          12
                 58
          13
                 43
          16
                 66
          17
                 33
          dtype: int64
In [36]: # Filtering - applying conditions to the data
          # Get records from stores where Location is Delhi
          SubSet1 = stores.loc[(stores.Location == "Delhi"),:]
In [39]:
          # Records from Kolkata where TotalSales > 100 and < 300
          stores.loc[(stores.Location == "Kolkata") & (stores.TotalSales >= 100) & (stores.
Out[39]:
               StoreCode StoreName
                                      StoreType Location OperatingCost Staff_Cnt TotalSales Total_Custo
                              Super
                                          Super
           26
                 STR127
                                                 Kolkata
                                                                  26.0
                                                                             40
                                                                                     120.3
                              Bazar
                                         Market
                             Apparel
           29
                 STR130
                                        Apparel
                                                 Kolkata
                                                                  19.7
                                                                             60
                                                                                     145.0
                               Zone
                              Digital
           31
                 STR132
                                     Electronincs
                                                  Kolkata
                                                                  21.4
                                                                             40
                                                                                     121.0
                              Bazar
         # All store types from Chennai where OperatingCost > 15
```

```
In [42]: stores.loc[(stores.Location == "Chennai") & (stores.OperatingCost > 15),["StoreCo
Out[42]:
              StoreCode
                         StoreType
           8
                STR109
                        Electronincs
           9
                STR110
                            Apparel
          10
                STR111
                       Super Market
          11
                STR112 Super Market
          12
                STR113 Super Market
          13
                STR114
                            Apparel
In [43]: # sorting data
         stores.sort_values(["Location"],ascending=True)
In [ ]: # sort data acc to one column - Location asc
         stores.sort_values("Location",ascending=True)
In [ ]: # sort data acc to one column - TotalSales desc
         stores.sort_values("TotalSales",ascending=False)
In [ ]: | # sort data acc to two columns - Location, OperatingCost asc
         stores.sort_values(["Location","OperatingCost"],ascending=True)
In [44]: # sort data acc to two columns - Location, TotalSales desc
         stores.sort_values(["Location","TotalSales"],ascending=False)
In [ ]: # sort data acc to two columns - Location in asc, TotalSales in desc
         stores.sort_values(["Location","TotalSales"],ascending=[True,False])
```

```
In [49]: # Removing Duplicates
    # Employees
    Score = pd.read_csv("Score.csv")
    Score
```

Out[49]:

	Student	Section	Test1	Test2	Final
0	Capalleti	1	94	91	87
1	Dubose	2	51	65	91
2	Engles	1	95	97	97
3	Grant	2	63	75	80
4	Krupski	2	80	76	71
5	Lundsford	1	92	40	86
6	Mcbane	1	75	78	72
7	Capalleti	1	94	65	87
8	Dubose	2	51	65	91
9	Engles	1	95	97	97
10	Grant	2	63	75	80
11	Krupski	2	80	76	71
12	Lundsford	1	92	40	86
13	Mcbane	1	75	78	72

```
In [52]: Score.duplicated()
# 12,2,3,4,3,4,5,12,1,5
# F,F,F,F,T,T,F,T,F,T
```

Out[52]: 0

False 1 False 2 False 3 False 4 False 5 False 6 False 7 False 8 True 9 True 10 True 11 True 12 True 13 True dtype: bool

In [53]: Score.loc[Score.duplicated(),:] # a subset of the data where I have all duplicate.

Out[53]:

Student	Section	Test1	Test2	Final
Dubose	2	51	65	91
Engles	1	95	97	97
Grant	2	63	75	80
Krupski	2	80	76	71
Lundsford	1	92	40	86
Mcbane	1	75	78	72
	Dubose Engles Grant Krupski Lundsford	Dubose 2 Engles 1 Grant 2 Krupski 2 Lundsford 1	Engles 1 95 Grant 2 63 Krupski 2 80 Lundsford 1 92	Dubose 2 51 65 Engles 1 95 97 Grant 2 63 75 Krupski 2 80 76 Lundsford 1 92 40

In [54]: Score.loc[-Score.duplicated(),:]

Out[54]:

	Student	Section	Test1	Test2	Final
0	Capalleti	1	94	91	87
1	Dubose	2	51	65	91
2	Engles	1	95	97	97
3	Grant	2	63	75	80
4	Krupski	2	80	76	71
5	Lundsford	1	92	40	86
6	Mcbane	1	75	78	72
7	Capalleti	1	94	65	87

In [57]: # WRT a column

Score.loc[-Score.Student.duplicated(),:]

Out[57]:

	Student	Section	Test1	Test2	Final
0	Capalleti	1	94	91	87
1	Dubose	2	51	65	91
2	Engles	1	95	97	97
3	Grant	2	63	75	80
4	Krupski	2	80	76	71
5	Lundsford	1	92	40	86
6	Mcbane	1	75	78	72

L m n T d	Fma: 1	Dha		NI-		D.
# Check	duplicates	wrt	to	two	coT	umns

EmpId	Email	Phone	Name	Designation	Team	Sal
1144	abc@s.com	5464	John D	Manager	Analytics	\$1900
1144	abc@s.com	5464	John D	Manager	Analytics	\$1900
1234	der@s.com	1234	John D	Manager	Analytics	\$1900
1144	pqr@s.com	6767	John D	Manager	Analytics	\$1900

Emp.loc[Emp.EmpID.duplicated(),:]

Emp.loc[Emp.EmpID.duplicated() & Emp.Email.duplicated(),:]

```
Score.loc[(Score.Student.duplicated()) & (Score.Test1.duplicated()),:]
```

```
In [67]: # Percentage of missing values
# Acq

# Step 1 : Get total obs in the column
nrow = stores.shape[0]

# Step 2 : Get no of non missing values
nonmiss = stores.AcqCostPercust.count()
nmiss = nrow - nonmiss

# Step 3 : % of missing
permiss = float(nmiss)/nrow * 100 # why float? float(100)/3
print permiss
```

9.375

```
In [118]: ACQ = stores.AcqCostPercust
           # Imputing
           # 1. filling missing with zeros
           ACQ.isna()
Out[118]: 0
                 False
                 False
           1
           2
                 False
           3
                 False
           4
                 False
           5
                 False
           6
                 False
           7
                 False
           8
                 False
           9
                 False
           10
                 False
           11
                  True
           12
                  True
           13
                  True
           14
                 False
           15
                 False
           16
                 False
           17
                 False
           18
                 False
           19
                 False
           20
                 False
           21
                 False
           22
                 False
           23
                 False
           24
                 False
           25
                 False
           26
                 False
           27
                 False
           28
                 False
           29
                 False
           30
                 False
           31
                 False
           Name: AcqCostPercust, dtype: bool
In [119]: ["#N/A","NULL","#VALUE",np.NaN]
Out[119]: ['#N/A', 'NULL', '#VALUE', nan]
 In [71]: # Filling NaN with mean/median
           AvgOfACQ = ACQ.mean() # sum/no of elements
           MedianOfACQ = ACQ.median()
           R1 = ACQ.fillna(AvgOfACQ)
           R2 = ACQ.fillna(MedianOfACQ)
  In [ ]: # dropping all rows with NaN
           stores.dropna()
```

```
In [ ]: # Binning
         # TotalSales -> PerformanceCategory
         # TS < 100 - "Low"
         # TS > 100 and < 200 - "Agerage"
         # TS > 200 and < 300 - "High"
         # TS > 300 - "Very High"
In [79]:
         import numpy as np
         x = -10
         print np.where(x > 0, "positive", "negative")
         negative
In [82]:
         ser1
         pd.Series(np.where(ser1 > 50, "GT50", "LT50"))
               LT50
Out[82]: 0
               GT50
         1
         2
               LT50
         3
               LT50
         4
               GT50
         5
               LT50
         6
               GT50
         7
               LT50
         8
               GT50
         9
               GT50
         10
               GT50
         11
               GT50
         12
               GT50
         13
               LT50
         14
               LT50
         15
               LT50
         16
               GT50
         17
               LT50
         dtype: object
In [84]: # Location ->
                          Food
         # Delhi
                          "Chole Bhature"
         # Mumbai
                          "Vada Pav"
                     ->
                          "Pongal"
         # Chennai ->
         # Kolkata ->
                          "Sandesh"
         stores["Food"] = np.where((stores.Location == "Delhi"),"CB",
                                    np.where((stores.Location == "Mumbai"),"VP",
                                              np.where((stores.Location == "Chennai"), "Ponga
                                                       np.where((stores.Location == "Kolkata
```

```
In [88]:
           # TS < 100 - "Low"
           # TS > 100 and < 200 - "Agerage"
           # TS > 200 and < 300 - "High"
           # TS > 300 - "Very High"
           TS = stores.TotalSales
           stores["PerformaceCat"] = np.where((TS < 100),"Low",</pre>
                    np.where((TS > 100) & (TS < 200), "Average",</pre>
                              np.where((TS > 200) & (TS < 300), "High", "Very High")))</pre>
  In [ ]: # Gender -> M/F
           # Gender1 \rightarrow F = 1 and M = 2
           np.where(Gender == "F",1,np.where(Gender == "M",2,""))
In [122]: def OddEven(x):
               if(x \% 2 == 0):
                   return(True)
               else:
                   return(False)
Out[122]: False
  In [ ]: # Lambda functions
           # mini/smaller unnamed or anonymous function
In [129]: data = {'name': ['Dinkar', 'Vikalp', 'Sumeet', 'Shubham', 'Ramesh'],
                    'year': [2012, 2012, 2013, 2014, 2014],
                    'reports': [4, 24, 31, 2, 3],
                    'coverage': [25, 94, 57, 62, 70]}
           df = pd.DataFrame(data)
           df = df.iloc[:,[1,0,2,3]]
In [127]: def capitalizer(x):
               return x.upper()
In [128]: capitalizer("xyz")
Out[128]: 'XYZ'
```

```
In [130]:
           lambda x: x.upper()
           df
Out[130]:
                 name coverage reports year
                 Dinkar
                                       2012
            0
                             25
            1
                 Vikalp
                             94
                                    24 2012
            2
                Sumeet
                             57
                                    31 2013
              Shubham
                             62
                                     2 2014
                             70
                                     3 2014
               Ramesh
  In [ ]: capitalizer(df.name) # Syntax Error
In [133]: df["name"].apply(capitalizer)
Out[133]: 0
                 DINKAR
                 VIKALP
           1
                 SUMEET
           2
           3
                SHUBHAM
                 RAMESH
           Name: name, dtype: object
In [134]: lambda x : x * 1000
Out[134]: <function __main__.<lambda>>
In [135]: df.coverage.apply(lambda x : x * 1000)
Out[135]:
                25000
                94000
           1
           2
                57000
           3
                62000
           4
                70000
           Name: coverage, dtype: int64
          df[["coverage","reports","year"]].apply(lambda x : x * 1000)
In [137]:
Out[137]:
              coverage reports
                                  year
            0
                 25000
                         4000 2012000
            1
                 94000
                        24000 2012000
            2
                 57000
                        31000 2013000
                 62000
                         2000 2014000
            3
                 70000
                         3000 2014000
```

```
In [139]: # Use a general function that returns multiple values
           def var summary(x):
               return pd.Series([x.count(), x.isnull().sum(), x.sum(), x.mean(), x.median(),
                              index=['N', 'NMISS', 'SUM', 'MEAN', 'MEDIAN', 'STD', 'VAR', 'MIN
In [138]: def summary(x):
               res = pd.Series([x.mean(),x.median(),x.sum()],index = ['mean','median','sum']
               return res
          df.iloc[:,1:].apply(lambda x:summary(x))
In [147]:
Out[147]:
                   coverage reports
                                     year
             mean
                       61.6
                              12.8
                                    2013.0
           median
                       62.0
                                    2013.0
                               4.0
                      308.0
                              64.0 10065.0
              sum
          def summary(x):
  In [ ]:
In [148]:
           # Group By
           # SELECT Location, sum(TotalSales) as 'SumOfTotalSales' FROM stores GROUP BY Loca
          temp = stores.groupby(["Location"])
In [149]:
In [153]: res = temp.TotalSales.agg({"SumOfTotalSales":"sum"})
           res.reset_index()
           C:\Users\admin\Anaconda2\lib\site-packages\ipykernel\__main__.py:1: FutureWarni
           ng: using a dict on a Series for aggregation
           is deprecated and will be removed in a future version
             if __name__ == '__main__':
Out[153]:
              Location SumOfTotalSales
              Chennai
                               2235.4
           1
                 Delhi
                               1777.7
           2
               Kolkata
                               1612.4
                               1757.6
           3
               Mumbai
In [154]: # select Location, StoreType, sum(TotalSales) from stores groupby Location, Store
```

In [156]: temp = stores.groupby(["Location","StoreType"])

In [159]: temp.TotalSales.agg({"SumOfTotalSale":"sum"}).reset_index()
sum mean median var sd kurtosis skew Len

C:\Users\admin\Anaconda2\lib\site-packages\ipykernel__main__.py:1: FutureWarni
ng: using a dict on a Series for aggregation
is deprecated and will be removed in a future version

if __name__ == '__main__':

Out[159]:

	Location	StoreType	SumOfTotalSale
0	Chennai	Apparel	915.4
1	Chennai	Electronincs	600.8
2	Chennai	Super Market	719.2
3	Delhi	Apparel	745.0
4	Delhi	Electronincs	306.7
5	Delhi	Super Market	726.0
6	Kolkata	Apparel	525.0
7	Kolkata	Electronincs	521.0
8	Kolkata	Super Market	566.4
9	Mumbai	Apparel	700.7
10	Mumbai	Electronincs	790.0
11	Mumbai	Super Market	266.9

In [160]: temp = stores.groupby(["Location","StoreType"])
 temp.TotalSales.agg({"SumOfTotalSales":"sum","MeanOfTotalSales":"mean"}).reset_in

C:\Users\admin\Anaconda2\lib\site-packages\ipykernel__main__.py:2: FutureWarni
ng: using a dict on a Series for aggregation

is deprecated and will be removed in a future version from ipykernel import kernelapp as app

Out[160]:

	Location	StoreType	MeanOfTotalSales	SumOfTotalSales
0	Chennai	Apparel	305.133333	915.4
1	Chennai	Electronincs	300.400000	600.8
2	Chennai	Super Market	239.733333	719.2
3	Delhi	Apparel	248.333333	745.0
4	Delhi	Electronincs	153.350000	306.7
5	Delhi	Super Market	242.000000	726.0
6	Kolkata	Apparel	175.000000	525.0
7	Kolkata	Electronincs	260.500000	521.0
8	Kolkata	Super Market	188.800000	566.4
9	Mumbai	Apparel	233.566667	700.7
10	Mumbai	Electronincs	395.000000	790.0
11	Mumbai	Super Market	88.966667	266.9

In [168]: temp = stores.groupby(["Location","StoreType"])
 r = temp[["TotalSales","OperatingCost"]].agg({"Sum":"sum"}).reset_index()
 r

Out[168]:

	Location	StoreType		Sum
			TotalSales	OperatingCost
0	Chennai	Apparel	915.4	44.8
1	Chennai	Electronincs	600.8	33.2
2	Chennai	Super Market	719.2	51.5
3	Delhi	Apparel	745.0	53.4
4	Delhi	Electronincs	306.7	45.4
5	Delhi	Super Market	726.0	62.9
6	Kolkata	Apparel	525.0	62.0
7	Kolkata	Electronincs	521.0	40.6
8	Kolkata	Super Market	566.4	72.2
9	Mumbai	Apparel	700.7	63.1
10	Mumbai	Electronincs	790.0	28.0
11	Mumbai	Super Market	266.9	85.8

In [172]: temp = stores.groupby(["Location","StoreType"])
 res = temp[["TotalSales","OperatingCost"]].agg("sum").reset_index()
 res = res.rename(columns = {"TotalSales":"SumOfTotalSales","OperatingCost":"SumOfTotalSales", "OperatingCost":"SumOfTotalSales", "OperatingCost":"SumOfTotalSales", "OperatingCost":"SumOfTotalSales", "OperatingCost":"SumOfTotalSales", "OperatingCost":"SumOfTotalSales", "OperatingCost":"SumOfTotalSales", "OperatingCost":"SumOfTotalSales "OperatingCost":"

Out[172]:

	Location	StoreType	SumOfTotalSales	SumOfOperatingCost
	0 Chennai	Apparel	915.4	44.8
	1 Chennai	Electronincs	600.8	33.2
:	2 Chennai	Super Market	719.2	51.5
:	3 Delhi	Apparel	745.0	53.4
	4 Delhi	Electronincs	306.7	45.4
	5 Delhi	Super Market	726.0	62.9
	6 Kolkata	Apparel	525.0	62.0
,	7 Kolkata	Electronincs	521.0	40.6
	8 Kolkata	Super Market	566.4	72.2
!	9 Mumbai	Apparel	700.7	63.1
1	0 Mumbai	Electronincs	790.0	28.0
1	1 Mumbai	Super Market	266.9	85.8

In [174]: temp = stores.groupby(["Location","StoreType"])
 r = temp[["TotalSales","OperatingCost"]].agg({"sum","mean"}).reset_index()
 r

Out[174]:

	Location	StoreType		TotalSales	OperatingCost		
			sum	mean	sum	mean	
0	Chennai	Apparel	915.4	305.133333	44.8	14.933333	
1	Chennai	Electronincs	600.8	300.400000	33.2	16.600000	
2	Chennai	Super Market	719.2	239.733333	51.5	17.166667	
3	Delhi	Apparel	745.0	248.333333	53.4	17.800000	
4	Delhi	Electronincs	306.7	153.350000	45.4	22.700000	
5	Delhi	Super Market	726.0	242.000000	62.9	20.966667	
6	Kolkata	Apparel	525.0	175.000000	62.0	20.666667	
7	Kolkata	Electronincs	521.0	260.500000	40.6	20.300000	
8	Kolkata	Super Market	566.4	188.800000	72.2	24.066667	
9	Mumbai	Apparel	700.7	233.566667	63.1	21.033333	
10	Mumbai	Electronincs	790.0	395.000000	28.0	14.000000	
11	Mumbai	Super Market	266.9	88.966667	85.8	28.600000	

In [179]: temp = stores.groupby(["Location","StoreType"])
 r = temp[["TotalSales","OperatingCost"]].agg({"TotalSales":"sum","OperatingCost":
 r = r.rename(columns = {"TotalSales":"SumOfToalSales","OperatingCost":"MeanOfOper.
 r

Out[179]:

	Location	StoreType	SumOfToalSales	MeanOfOperatingCost
0	Chennai	Apparel	915.4	14.933333
1	Chennai	Electronincs	600.8	16.600000
2	Chennai	Super Market	719.2	17.166667
3	Delhi	Apparel	745.0	17.800000
4	Delhi	Electronincs	306.7	22.700000
5	Delhi	Super Market	726.0	20.966667
6	Kolkata	Apparel	525.0	20.666667
7	Kolkata	Electronincs	521.0	20.300000
8	Kolkata	Super Market	566.4	24.066667
9	Mumbai	Apparel	700.7	21.033333
10	Mumbai	Electronincs	790.0	14.000000
11	Mumbai	Super Market	266.9	28.600000

In [187]: #Finding top 5 customers with income by each category in SeriousDlqin2yrs

def topN(data, col, N):

Takes a dataframe, and returns N rows for given column (sorted by this column """ $\,$

#return data.sort_values(by=col, ascending=False).loc[:, col].head(N)
return data.sort values(by=col, ascending=False).head(N)

```
In [191]: temp = stores.groupby("Location")
          temp.apply(topN, col = "TotalSales", N = 2)
                      TotalSales
          # Chennai
                     top1
                      top2
          # Delhi
                      top1
          #
                      top2
                     top1
          # Kolkata
                      top2
                      top1
          # Mumbai
                      top2
```

Out[191]:

		StoreCode	StoreName	StoreType	Location	OperatingCost	Staff_Cnt	TotalSales 7
Location								
Champi	14	STR115	Fashion Bazar	Apparel	Chennai	10.4	80	472.0
Chennai	15	STR116	Digital Bazar	Electronincs	Chennai	10.4	80	460.0
Delhi	4	STR105	Central Store	Super Market	Delhi	18.7	80	360.0
Deini	6	STR107	Fashion Bazar	Apparel	Delhi	14.3	80	360.0
Valkata	24	STR125	Electronics Zone	Electronincs	Kolkata	19.2	80	400.0
Kolkata	28	STR129	Central Store	Super Market	Kolkata	15.8	80	351.0
Mountai	16	STR117	Electronics Zone	Electronincs	Mumbai	14.7	80	440.0
Mumbai	23	STR124	Digital Bazar	Electronincs	Mumbai	13.3	80	350.0
4								>

```
In [192]: # Merging
  demographic = pd.read_csv("Demographic_Data.csv")
  txn = pd.read_csv("Transaction_Summary.csv")
```

In [193]:	de	mographic						
Out[193]:		CustName	Gender	Age	Location	Salary	Education	Mobile
	0	Alex	М	21	UK	19159	PhD	8834777722
	1	Tom	М	34	USA	10461	X	8812237772
	2	Michel	М	25	India	19961	XII	8834777232
	3	Michael	М	28	Belgium	821	B.Com	8831234222

13743

25000

3000

2000

4000

20000

8823427722

8834772342

8837427722

9892877722

7867277722

8834772321

MBA

MS

MS

MBA

MBA

In [194]: txn

4

5

6

8

9

Patrik

Hans

Biliana

Raj

Laila

Prabhas

M

Μ

F

29

34

26

29

26

35

Australia

Japan

Russia

India

India

India

Out[194]:

	CustomerName	Total_Transaction_value	No_of_holding_prods	No_of_visits	No_of_channels
0	Alex	19159	3	3	1
1	Tom	10461	2	7	2
2	Michel	19961	4	8	3
3	Hans	821	1	2	2
4	Biliana	13743	6	9	3
5	Rajesh	25000	2	12	2
6	Laila	3000	1	6	1
7	Prabhas	2000	2	4	2
8	Ramu	30000	6	2	3

In [195]: # Inner Join
 pd.merge(left=demographic,right=txn,left_on="CustName",right_on="CustomerName",hor

Out[195]:

	CustName	Gender	Age	Location	Salary	Education	Mobile	CustomerName	Total_Transa
0	Alex	М	21	UK	19159	PhD	8834777722	Alex	
1	Tom	М	34	USA	10461	Х	8812237772	Tom	
2	Michel	М	25	India	19961	XII	8834777232	Michel	
3	Hans	М	34	Japan	25000	MS	8834772342	Hans	
4	Biliana	F	26	Russia	3000	MS	8837427722	Biliana	
5	Laila	F	26	India	4000	MBA	7867277722	Laila	
6	Prabhas	F	35	India	20000	MBA	8834772321	Prabhas	
4									•

In [197]: # Outer Join

pd.merge(left=demographic,right=txn,left_on="CustName",right_on="CustomerName",ho

Out[197]:

	CustName	Gender	Age	Location	Salary	Education	Mobile	CustomerName	Total_Tı
0	Alex	М	21.0	UK	19159.0	PhD	8.834778e+09	Alex	
1	Tom	М	34.0	USA	10461.0	X	8.812238e+09	Tom	
2	Michel	М	25.0	India	19961.0	XII	8.834777e+09	Michel	
3	Michael	М	28.0	Belgium	821.0	B.Com	8.831234e+09	NaN	
4	Patrik	М	29.0	Australia	13743.0	MBA	8.823428e+09	NaN	
5	Hans	М	34.0	Japan	25000.0	MS	8.834772e+09	Hans	
6	Biliana	F	26.0	Russia	3000.0	MS	8.837428e+09	Biliana	
7	Raj	М	29.0	India	2000.0	MS	9.892878e+09	NaN	
8	Laila	F	26.0	India	4000.0	MBA	7.867278e+09	Laila	
9	Prabhas	F	35.0	India	20000.0	MBA	8.834772e+09	Prabhas	
10	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Rajesh	
11	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Ramu	
4									•

In [198]: # Left Join

pd.merge(left=demographic,right=txn,left_on="CustName",right_on="CustomerName",ho

Out[198]:

	CustName	Gender	Age	Location	Salary	Education	Mobile	CustomerName	Total_Transa
0	Alex	М	21	UK	19159	PhD	8834777722	Alex	
1	Tom	М	34	USA	10461	Х	8812237772	Tom	
2	Michel	М	25	India	19961	XII	8834777232	Michel	
3	Michael	М	28	Belgium	821	B.Com	8831234222	NaN	
4	Patrik	М	29	Australia	13743	MBA	8823427722	NaN	
5	Hans	М	34	Japan	25000	MS	8834772342	Hans	
6	Biliana	F	26	Russia	3000	MS	8837427722	Biliana	
7	Raj	М	29	India	2000	MS	9892877722	NaN	
8	Laila	F	26	India	4000	MBA	7867277722	Laila	
9	Prabhas	F	35	India	20000	MBA	8834772321	Prabhas	
4									•

Right Join

In [199]:

pd.merge(left=demographic,right=txn,left on="CustName",right on="CustomerName",ho Out[199]: CustName Gender Age Location Salary Education Mobile CustomerName Total_Tra 0 19159.0 8.834778e+09 Alex 21.0 UK PhD Alex 1 34.0 USA 10461.0 8.812238e+09 Tom M Tom 2 Michel 25.0 India 19961.0 XII 8.834777e+09 Michel 25000.0 3 Hans 34.0 Japan MS 8.834772e+09 Hans 3000.0 4 Biliana 26.0 8.837428e+09 Biliana Russia MS 5 7.867278e+09 Laila 26.0 India 4000.0 MBA Laila 6 Prabhas F 35.0 India 20000.0 8.834772e+09 Prabhas MBA 7 NaN NaN NaN NaN NaN Rajesh NaN NaN 8 NaN NaN NaN NaN NaN NaN Ramu NaN In [200]: print stores StoreName StoreCode StoreType Location OperatingCost 0 STR101 Electronics Zone Electronincs Delhi 21.0 1 21.0 STR102 Apparel Zone **Apparel** Delhi 2 STR103 Delhi 22.8 Super Bazar Super Market 3 STR104 Super Market Super Market Delhi 21.4 4 STR105 Central Store Super Market Delhi 18.7 5 **STR106** Apparel Zone Apparel Delhi 18.1 6 STR107 Fashion Bazar Apparel Delhi 14.3 7 STR108 Digital Bazar Electronincs Delhi 24.4 8 STR109 Electronics Zone Electronincs Chennai 22.8 9 **STR110** Apparel Zone Apparel Chennai 19.2 10 **STR111** Super Bazar Super Market Chennai 17.8 11 **STR112** Super Market Super Market Chennai 16.4 12 **STR113** Central Store Super Market Chennai 17.3 13 **STR114** Apparel Zone Apparel Chennai 15.2 14 **STR115** Fashion Bazar Apparel Chennai 10.4 15 **STR116** Digital Bazar Electronincs Chennai 10.4 14.7 16 STR117 Electronics Zone Electronincs Mumbai 17 **STR118** Apparel Zone Mumbai 32.4 **Apparel** CTD110 Cunan Dazan Cunan Mankat Mumbai DA 1 In [201]: stores.to excel("storesExport.xlsx") In [206]: from pandas import ExcelWriter w = ExcelWriter("TestExport.xlsx") In [207]: stores.to excel(w,sheet name="stores first") stores.to excel(w, sheet name="stores second") stores.to excel(w, sheet_name="stores third") In [208]: os.getcwd() Out[208]: 'C:\\Users\\admin\\pandas\\DataSets'

In [209]:	w.close()
In []:	