EXPERIMENT 3

OBJECTIVE: The aim of this experiment is to plot (i) the output characteristics and (ii) the transfer characteristics of n-channel and p-channel enhancement-type MOSFETs, and (iii) the voltage transfer characteristics (VTC) of a CMOS inverter by connecting the n-MOSFET and p-MOSFET.

APPARATUS: MOSFET n type (IRFZ44N), p type (IRFZ9540), Bread board, resistors (1K Ω), connecting wires, Ammeters (0-10mA/0-25mA), DC power supply (0-12V) and multimeter.

CIRCUIT DIAGRAM:

1. Cut-Off Region

Cut-off region is a region in which the MOSFET will be OFF as there will be negligible current flow through it.

2. Ohmic or Linear Region

Ohmic or linear region is a region wherein the current I_D increases with an increase in the value of V_{DS} .

3. Saturation Region

In saturation region, the drain current I_D is quite constant irrespective of an increase in V_{DS} .

MOSFET	Cut-Off	Ohmic/Linear	Saturation
n-channel Enhancement-type	$V_{GS} < V_T$	$V_{GS} > V_T$ and $V_{DS} < V_{GS} - V_T$	$V_{GS} > V_T$ and $V_{DS} < V_{GS} - V_T$
p-channel Enhancement-type	$V_{GS} > -V_T$	$V_{GS} < -V_T$ and $V_{DS} > V_{GS} - V_T$	$V_{GS} < -V_T$ and $V_{DS} < V_{GS} - V_T$

Pins of IRFZ44N (NMOS)

Pins of IRF9540 (PMOS)

Figure 1 n-Channel Enhancement type MOSFET (a) Transfer Characteristics (b) Output Characteristics

Figure 2 p-Channel Enhancement type MOSFET (a) Transfer Characteristics (b) Output Characteristics

PROCEDURE:

OUTPUT CHARACTERISTICS: V_{DS} vs. I_D for different V_{GS} .

- 1. Connect the circuit as per given diagram properly.
- 2. Keep V_{cs} constant to 1 V and sweep V_{ps} and take readings of I_p . Vary V_{ps} in step of 1 V up to 11 V and measure the drain currents I_p . Tabulate all the readings.
- 3. Repeat the above procedure for V_{cs} as 2.5 V, 3 V, 3.5 V, 4 V, 4.5 V and 5 V.

TRANSFER CHARACTERISTICS: V_{GS} vs. I_D for different V_{DS} .

- 1. Connect the circuit as per given diagram properly.
- 2. Set the voltage V_{DS} constant at 3 V, 8 V and 11 V.
- 3. Vary V_{cs} in the step of 0.5 V from 0 to 11 V and note down value of drain currents I_p . Tabulate all the readings.
- 4. Plot the output characteristics V_{DS} vs I_{D} (for different values of V_{GS}) and transfer characteristics V_{GS} vs I_{D} .
- 5. Calculate V_r , g_m from the graphs and verify it from the data sheet.

OBSERVATION TABLE:

OUTPUT CHARACTERSTICS

$V_{DS}(V)$	$V_{GS} = 1 V$	$V_{GS} = 2.5 V$	$V_{GS} = 3 V$	$V_{GS} = 3.5 V$	$V_{GS} = 4 V$	$V_{GS} = 4.5 V$	$V_{GS} = 5 V$
	I_D (mA)	I_D (mA)	I_D (mA)	I_D (mA)	I_D (mA)	I_D (mA)	I_D (mA)
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							

TRANSFER CHARACTERISTICS

$V_{GS}(V)$	$V_{DS} = 8 V$	$V_{DS} = 11 \text{ V}$	$V_{GS}(V)$	$V_{DS} = 8 \text{ V}$	$V_{DS} = 11 \text{ V}$
	I_D (mA)	I_D (mA)		I_D (mA)	I_D (mA)
0			6		
0.5			6.5		
1			7		
1.5			7.5		
2			8		
2.5			8.5		
3			9		
3.5			9.5		

4		10	
4.5		10.5	
5		11	
5.5			

CALCULATIONS: Do for both NMOS and PMOS.

- 1. Threshold voltage V_T : Gate to source voltage at which, drain current starts flowing
- 2. Transconductance g_m : Ratio of small change in drain current (Δ ID) to the corresponding change in gate to source voltage (Δ VGS) for a constant VDS.

$$g_m = \Delta I_D / \Delta V_{GS}$$
 at constant V_{DS}

3. Output drain resistance: It is given by the relation of small change in drain to source voltage (ΔVDS) to the corresponding change in Drain Current (Δ ID) for a constant VGs.

$$r_d$$
 or $r_o = \Delta V_{DS}/\Delta I_D$ at a constant V_{GS}

RESULTS:

- 1. **V**_T:_____
- 2. **g**_m:_____
- 3. **r**_o:_____

CMOS INVERTER:

Circuit Diagram:

Figure 3: CMOS inverter

Figure 4: Voltage transfer characteristics

THEORY: A CMOS inverter consists of a PMOS and an NMOS transistor connected in series. The drain and gate terminals of the two transistors are connected. The supply voltage V_{DD} is connected to PMOS source terminal and the NMOS source terminal is connected to ground. The voltage V_{in} is applied at the gate terminals and V_{out} is the output voltage at the drain terminals. The input/output characteristics of a CMOS inverter is called voltage transfer characteristics and it has a sharp transition region, which makes it energy-efficient during switching between low and high voltage levels. At low input voltage circuit output high voltage and vice-versa, thereby it acts as an inverter.

Type of MOSFET	Condition of MOSFET	State of MOSFET
NMOS	$V_{GS} < V_{Tn}$	OFF
NMOS	$V_{GS} > V_{Tn}$	ON
PMOS	$V_{GS} < -V_{Tp}$	OFF
PMOS	$V_{GS} > -V_{Tp}$	ON