Sprawozdanie WSI Lab4 Tobiasz Kownacki

1. Zadanie

Zaimplementować klasyfikator ID3 (drzewo decyzyjne). Atrybuty nominalne, testy tożsamościowe. Podać dokładność i macierz pomyłek na zbiorach: Breast cancer i mushroom. Dlaczego na jednym zbiorze jest znacznie lepszy wynik niż na drugim? Do potwierdzenia lub odrzucenia postawionych hipotez konieczne może być przeprowadzenie dodatkowych eksperymentów ze zmodyfikowanymi zbiorami danych.

2. Zbiór danych Breast-cancer

• Macierze pomyłek dla zbioru treningowego i testowego, które zostały wylosowane z ustalonym ziarnem równym kolejno: 7, 25, 42.

Wnioski:

Model na zbiorze Breast Cancer osiąga wyniki które pozostawiają wiele do życzenia. Średnia dokładność na zbiorze testowym wynosi średnio 66%. Powodem jest mała ilość i słaba jakość danych. Model był trenowany na zbiorze składającym się z tylko 171 wierszy. Ponadto zbiór danych składa się z dwóch klas o nierównomiernym rozkładzie wynoszącym 70:30, co skutkuje diametralnym pogorszeniem dokładności predykcji dla klasy mniej licznej. Klasa słabiej reprezentowana ma dokładność wynoszącą średnio tylko 40%. Dodatkowym problemem jest ograniczona liczba atrybutów, wynosząca zaledwie 10.

3. Zbiór danych Mushroom

• Macierze pomyłek dla zbioru treningowego i testowego, które zostały wylosowane z ustalonym ziarnem równym kolejno: 7, 25, 42.

• Wnioski: Model na zbiorze Mushroom osiąga dokładność na poziomie 100%. Zbiór danych Mushroom jest o wiele lepszy od Breast-Cancer. Model był trenowany na około 4800 wierszach i do tego rozkład klas wynosi 50:50. Dodatkowo zbiór danych ma 2 razy większą ilość atrybutów.

4. Wnioski

Wyniki ID3 różnią się przez wielkość danych, rozkład klas i liczbę atrybutów. Zbiór Mushroom jest większy, ma równomierny rozkład klas i przez to 100% dokładności. Zbiór Breast Cancer ma mało próbek, nierówny rozkład klas i tylko 10 atrybutów, co pogarsza wyniki. Nierównowaga klas utrudnia przewidywanie klasy mniejszej. Poprawa wymaga zwiększenia danych, zrównoważenia klas i dodania atrybutów.