R¹-CH₂CH₂ (OCH₂CH₂O)_p-CH₂-C(O)-; wherein R¹ is selected (2) from hydrogen, alkyl, and N-acetylamino, and p is an integer from 1 to 8; A₁ is an amino acyl residue selected from: (1) alanyl, (2) asparaginyl, (3) citrullyl, (4) glutaminyl, (5) glutamyl, (6) N-ethylglycyl, (7) methionyl, (8) N-methylalanyl, (9) prolyl, (10)pyro-glutamyl, (11)sarcosyl, (12)seryl, threonyl, (13)-HN- $(CH_2)_q$ -C(O)-, wherein q is 1 to 8, and (14)-HN-CH₂CH₂-(OCH₂CH₂O) $_r$ -CH₂-C(O)-, wherein r is 1 to 8; (15)A₂ is an amino acyl residue selected from: (1) alanyl, (2) asparaginyl, aspartyl, (3) (4) glutaminyl, (5) glutamyl, (6) leucyl, methionyl, (7) (8) phenylalanyl, (9) prolyl, (10)seryl, -HN-(CH₂)_q-C(O)-, wherein q is 1 to \S (11)-HN-CH $_2$ CH $_2$ -(OCH $_2$ CH $_2$ O) $_r$ -CH $_2$ -C($\stackrel{\frown}{Q}$)-, wherein r is 1 to 8, and (12)

(13)

glycyl; A₃ is an amino acyl residue selected from:

cont

B2 Cart

- (1) alanyl,
- (2) asparaginyl,
- (3) citrullyl,
- (4) cyclohexylalanyl,
- (5) \ cyclohexylglycyl,
- (6) \ glutaminyl,
- (7) \backslash glutamyl,
- (8) glycyl,
- (9) isoleucyl,
- (10) leucyl,
- (11) methionyl,
- (12) norvalyl,
- (13) phenylalanyl,
- (14) seryl,
- (15) t-butylglycyl,
- (16) threonyl,
- (17) valyl,
- (18) penicillaminy, and
- (19) cystyl;

 A_4 is an amino acyl residue of k or D configuration selected from:

- (1) allo-isoleucyl,
- (2) glycyl,
- (3) isoleucyl,
- (4) prolyl,
- (5) dehydroleucyl,
- (6) D-alanyl,
- (7) D-3-(naphth-1-yl)alanyl,
- (8) D-3-(naphth-2-yl)alanyl,
- (9) D-(3-pyridyl)-alanyl,
- (10) D-2-aminobutyryl,
- (11) D-allo-isoleucyl,
- (12) D-allo-threonyl,
- (13) D-allylglycyl,
- (14) D-asparaginyl,

B2,

- (15) D-aspartyl,
- (16) D-benzothienyl,
- (17) D-3-(4,4'-biphenyl)alanyl,
- (\lambda 8) D-chlorophenylalanyl,
- (19) D-3-(3-trifluoromethylphenyl)alanyl,
- (20) D-3-(3-cyanophenyl)alanyl,
- (21) \ D-3-(3,4-difluorophenyl)alanyl,
- (22) \D-citrullyl,
- (23) D-cyclohexylalanyl,
- (24) Decyclohexylglycyl,
- (25) D-cystyl,
- (26) D-cystyl(S-t-butyl),
- (27) D-glutaminyl,
- (28) D-glutamyl,
- (29) D-histidyl,
- (30) D-homoisoleucyl,
- (31) D-homophenylalanyl,
- (32) D-homoseryl,
- (33) D-isoleucyl,
- (34) D-leucyl,
- (35) D-lysyl(N-epsilon-nicotinyl),
- (36) D-lysyl,
- (37) D-methionyl,
- (38) D-neopentylglycyl,
- (39) D-norleucyl,
- (40) D-norvalyl,
- (41) D-ornithyl,
- (42) D-penicillaminyl,
- (43) D-penicillaminyl(acetamidomethyl),
- (44) D-penicillaminyl(S-benzyl),
- (45) D-phenylalanyl,
- (46) D-3-(4-aminophenyl)alanyl,
- (47) D-3-(4-methylphenyl)alanyl,
- (48) D-3-(4-nitrophenyl)alanyl,

- Bonte
- (49) D-3-(3,4-dimethoxyphenyl)alanyl,
- (50) D-3-(3,4,5-trifluorophenyl)alanyl,
- (51) \setminus D-prolyl,
- (52) $\backslash D$ -seryl,
- (53) \mathbb{D} -seryl(O-benzyl),
- (54) $D_t t$ -butylglycyl,
- (55) D-thienylalanyl,
- (56) D-threonyl,
- (57) D-threonyl(O-benzyl),
- (58) D-tryptyl,
- (59) D-tyrosyl(O-benzyl),
- (60) D-tyrosyl(O-ethyl),
- (61) D-tyrosyland
- (62) D-valyl;

A₅ is an amino acyl residue of L or D configuration selected from:

- (1) alanyl,
- (2) (3-pyridyl)alanyl,
- (3) 3-(naphth-1-yl)alanyl,
- (4) 3-(naphth-2-yl)alanyl,
- (5) allo-threonyl,
- (6) allylglycyl,
- (7) glutaminyl,
- (8) glycyl,
- (9) histidyl,
- (10) homoseryl,
- (11) isoleucyl,
- (12) lysyl(N-epsilon-acetyl),
- (13) methionyl,
- (14) norvalyl,
- (15) octylglycyl,
- (16) ornithyl,
- (17) 3-(4-hydroxymethylphenyl)alanyl,
- (18) prolyl,
- (19) seryl,

B2 PT

- (20) threonyl,
- (21) tryptyl,
- (22) tyrosyl,
- (23) D-allo-threonyl,
- (24)\ D-homoseryl,
- $(25) \setminus D$ -seryl,
- (26) D-threonyl,
- (27) penicillaminyl, and
- (28) cystyl;

A₆ is an amino acyl residue of L or D configuration selected from:

- (1) alahyl,
- (2) 3-(naphth-1-yl)alanyl,
- (3) 3-(naphth-2-yl)alanyl,
- (4) (3-pyridyl)alanyl,
- (5) 2-aminobutyryl,
- (6) allylglycyl,
- (7) arginyl,
- (8) asparaginy
- (9) aspartyl,
- (10) citrullyl,
- (11) cyclohexylalanyl,
- (12) glutaminyl,
- (13) glutamyl,
- (14) glycyl,
- (15) histidyl,
- (16) homoalanyl,
- (17) homoleucyl,
- (18) homoseryl,
- (19) isoleucyl,
- (20) leucyl,
- (21) lysyl(N-epsilon-acetyl),
- (22) lysyl(N-epsilon-isopropyl),
- (23) methionyl(sulfone),
- (24) methionyl(sulfoxide),

B2, gont.

- (25) methionyl,
- (26) norleucyl,
- (27) norvalyl,
- (28) octylglycyl,
- (29)\ phenylalanyl,
- (30) \3-(4-carboxyamidephenyl)alanyl,
- (31) propargylglycyl,
- (32) seryl,
- (33) threanyl,
- (34) tryptyl,
- (35) tyrosyl,
- (36) valyl,
- (37) D-3-(naphth-1-yl)alanyl,
- (38) D-3-(naphth 2-yl)alanyl,
- (39) D-glutaminyl
- (40) D-homoseryl,
- (41) D-leucyl,
- (42) D-norvalyl,
- (43) D-seryl,
- (44) penicillaminyl, and
- (45) cystyl;

A₇ is an amino acyl residue of L or D configuration selected from:

- (1) alanyl,
- (2) allylglycyl,
- (3) aspartyl,
- (4) citrullyl,
- (5) cyclohexylglycyl,
- (6) glutamyl,
- (7) glycyl,
- (8) homoseryl,
- (9) isoleucyl,
- (10) allo-isoleucyl
- (11) leucyl,
- (12) lysyl(N-epsilon-acetyl),

BZ ant.

- (13) methionyl,
- (14) 3-(naphth-1-yl)alanyl,
- (15) 3-(naphth-2-yl)alanyl,
- (16) norvalyl,
- (1λ) phenylalanyl,
- (18)\ prolyl,
- (19) \setminus seryl,
- (20) \(\forall \)-butylglycyl,
- (21) thyptyl,
- (22) tyrosyl,
- (23) valy,
- (24) D-allo-isoleucyl,
- (25) D-isoleucyl,
- (26) penicillaminyl, and
- (27) cystyl;

A₈ is an amino acyl residue selected from:

- (1) 2-amino-4-[(2-amino)-pyrimidinyl]butanoyl,
- (2) alanyl(3-guanidino),
- (3) alanyl[3-pyrrolidinyl(2-N-amidino)],
- (4) alanyl[4-piperidinyl(N-amidino)],
- (5) arginyl,
- (6) arginyl(N^GN^G'diethy),
- (7) citrullyl,
- (8) 3-(cyclohexyl)alanyl(4-N-isopropyl),
- (9) glycyl[4-piperidinyl(N-amidino)],
- (10) histidyl,
- (11) homoarginyl,
- (12) lysyl,
- (13) lysyl(N-epsilon-isopropyl),
- (14) lysyl(N-epsilon-nicotinyl),
- (15) norarginyl,
- (16) ornithyl(N-delta-isopropyl),
- (17) ornithyl(N-delta-nicotinyl),
- (18) ornithyl[N-delta-(2-imidazolinyl)],

B2 Cant.

(10)	[(A	1
(19)	[(4-amino(N-isopropyl)methyl)phenyl]alan	VI.
(1/)	[(' 4111110(' ' 150 prop) 1/1114111) 1/prie11) 1/41411	J -,

- (20) 3-(4-guanidinophenyl)alanyl, and
- (21) 3-(4-amino-N-isopropylphenyl)alanyl;

A₉ is an amino acyl residue of L or D configuration selected from:

- (1) \setminus 2-amino-butyryl,
- (2) \ 2-amino-isobutyryl,
- (3) homoprolyl,
- (4) hadroxyprolyl,
- (5) isoleucyl,
- (6) leucyl,
- (7) phenylalanyl,
- (8) prolyl,
- (9) seryl,
- (10) t-butylglycyl,
- (11) 1,2,3,4-tetrahydroisoquinoline-3-carbonyl,
- (12) threonyl,
- (13) valyl,
- (14) D-alanyl, and
- (15) D-prolyl; and

 A_{10} is a hydroxyl group or an amino acid amide is selected from:

azaglycylamide,

D-alanylamide,

D-alanylethylamide,

glycylamide,

glycylethylamide,

sarcosylamide,

serylamide,

D-serylamide,

a group represented by the formula

-NH-(CH₂)_s-CHR^s

a group represented by the formula -NH-R4;

wherein:

s is an integer selected from 0 to 8,

R² is selected from hydrogen, alkyl, and a 5- to 6-membered cycloalkyl ring;
R³ is selected from hydrogen, hydroxy, alkyl, phenyl, alkoxy, and a 5-to
6-membered ring optionally containing from one to two heteroatoms selected from oxygen, nitrogen, and sulfur, provided that s is not zero when R³ is hydroxy or alkoxy; and
R⁴ is selected from hydrogen, hydroxy, and a 5-to 6-membered cycloalkyl ring.

12 (Amended). A compound, or a pharmaceutically acceptable salt, ester, solvate or prodrug thereof, selected from:

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,
pyroGlu-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₃,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH(CH₃)₂,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₂-(1-pyrrolidine),
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHethylpiperidine,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH(ethyl-1-(R)-cyclohexyl),
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₂OCH₃,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₂Cyclohexyl,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₂cyclohexyl,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH(CH₃)₂,
N-Ac-Sar-Gly-Val-D-Ille-Thr-Nva-Ile-Arg-ProNHCH₂CH₃

N-Ac-Sar-Gly-Val-Gly-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Val-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Ala-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Met-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Nle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Phe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Tyr-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-4,4-Biphenylala-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Cha-Thr-Nva-Ile-Arg-ProNHCH₃CH₃,

N-Ac-Sar-Gly-Val-D-Cha-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Chg-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

B3 Cont

N-Ac-Sar-Gly-Val-D-4-ClPhe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Hphe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val Dehydroleu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-3-CF₃Phe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-pentaFPhe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-\(\beta\),4-diClPhe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-3-ClPhe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-2-Thienylala-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-3-GNPhe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-DNva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thi-Cha-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gly-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Ala-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Val-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Abu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Ally gly-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Octylgly-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Met-Ile-Arg-ProNHCH₂CH₃, N-Cyclohexylacetyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-IIe Thr-Nva-IIe-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Nicotinyl-Sar-Gly-Val-D-Ile-Thr-Nva lle-Arg-ProNHCH₂CH₃, N-Propionyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(MeO)acetyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(Shikimyl)-Sar-Gly-Val-D-Ile-Thr-Nva-Ne-Arg-ProNHCH₂CH₃, N-(2-Furoyl)-Sar-Gly-Val-D-Ile-Thr-Nva-Ild-Arg-ProNHCH₂CH₃, N-Butyryl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Alg-ProNHCH₂CH₃, N-[2-THFcarbonyl]-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, $N-[CH_3C(O)NH-(CH_2)_2-O-(CH_2)_2-O-CH_2-C(O)]-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-$ ProNHCH2CH3,

 $\label{eq:normalizero} $$N-[6-N-acetyl-(CH_2)_5C(O)]-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH_2CH_3,$$N-Hexanoyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH_2CH_3,$$N-[4-N-Acetylaminobutyryl]-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH_2CH_3,$

 $\label{eq:harmonic} H-Sar-Gly-Val-D-le-Thr-Nva-Ile-Arg-ProNHCH_2CH_3,\\ N-Ac-Sar-Gly-Asn-D-Ile-Thr-Nva-Ile-Arg-ProNHCH_2CH_3,\\ N-[CH_3C(O)NH-(CH_2)_2-O-(CH_2)_2-O-CH_2-C(O)]-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH_2CH_3,\\ ProNHCH_2CH_3,\\ \end{array}$

N-Ac-Pro-Gly-Val-D-\(\)le-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Gly-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Ala-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-NEtGly-Gly-Val-D\le-Thr-Nva-lle-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr\Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nya-Ile-Arg-D-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-AbuNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva\Ile-Arg-Phe-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ne-Arg-Tic-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Il\(\frac{1}{2}\)-Arg-Hyp-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Aib-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-D-Ala-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pip-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Tyr(Et)-Thr-Nva-II& Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys(tBu)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Tyr(Bzl)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ser(Bzl)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-1Nal-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-tButylgly-Thr-Nva-Ile-Arg ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Orn-Thr-Nva-Ile-Arg-ProNACH₂CH₃, N-Ac-Sar-Gly-Val-D-Thr(Bzl)-Thr-Nva-Ile-Arg-Pr\(\rightarrow\)NHCH2CH3, N-Ac-Sar-Gly-Val-D-2Nal-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(4-Me)-Thr-Nva-Ile-Arg-Pr\(\)NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(3,4-diMeO)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Thr-Nva-Ile-Arg-RroNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(4-NO₂)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Thr-Nva-Ile-Arg-ProNHCH₂Ch

BB

N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Nva-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Asp-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Gly-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Lys(Ac)-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Leu-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-2Nal-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Allylgly-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Cit-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Ala-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Pro-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Trp-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Trp-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Pen(Acm)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Phe(4-NH2)-Thr-Nva-Ile-Arg-ProNHCH2CH3,

N-Ac-Sar-Gly-Val-D-Abu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Ala-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Met-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Phe-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Tyr-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Leu-Nva-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Gly-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Lys(Ac)-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-2Nal-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-1Nal-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Octylgly-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Gln-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Met-Nva-Ile-Arg-ProNHCH₂CH₃,
N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Leu-Allylgly-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Leu-Ile-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-D-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Ile-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nle-Ile-Arg-ProNHCH₃CH₃,

b3

N-Ac-Sar-Gly-Val-D-Leu-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Bala-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Phenylacetyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-AzaglyNH₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nya-Ile-Arg-Sar-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-N\(\frac{1}{2}\)a-Ile-Arg-Pro-SerNH₂, N-Succinyl-Sar-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Ala-Val-D-Ile-Thr-Nva\(\frac{1}{4}\)Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Leu-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Phe-Val-D-lle-Thr-Nva-lle-Arg-ProNHCH₂CH₃, N-Ac-Sar-Glu-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Pro-Val-D-Leu-Thr-Nva-II&-Arg-ProNHCH2CH3, N-Ac-Sar-Asn-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Asp-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Asn-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH2CH3,

N-Ac-Sar-Gly-Val-D-II&-Thr-Cit-IIe-Arg-ProNHCH2CH3,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Met(O₂)-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile Thr-Arg-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Tyr-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Glu-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Thr-Lys(Ac)-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Propargylgly-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Gln-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Ser-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Cit-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Glu-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-RroNHCH₂CH₃, N-Ac-Gaba-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Bala-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Gln-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Gly-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Glu-D-Ile-Thr-Nva-Ile-Arg-ProNACH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH2CH3,

Hont.

 $N-Succinyl-Sar-Gly-Vall-D-Leu-Thr-Gln-Ile-Arg-ProNHCH_{2}CH_{3},\\$ N-Succinyl-Sar-Gly-Val-D-Leu-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Leu-Thr-Asp-Ile-Arg-ProNHCH2CH3, $\hbox{N-Ac-Sar-Gly-Val-D-Ile-} Thr-Asp-Ile-Arg-ProNHCH_2CH_3,$ N-Ac-Sar-Gly-Val-D-Ile-Thr-Asn-Ile-Arg-ProNHCH2CH3, $N\hbox{-}Ac\hbox{-}Sar\hbox{-}Gly\hbox{-}Val\hbox{-}D\hbox{-}Ile\hbox{-}1 hr\hbox{-}Met(O)\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHCH_2CH_3,$ N-Ac-Sar-Gly-Val-D-Leu-Ihr-Asn-Ile-Arg-ProNHCH2CH3, $\hbox{N-Ac-Sar-Gly-Val-D-Thr-Thr-Nva-Ile-Arg-ProNHCH}_2\hbox{CH}_3,$ $\hbox{N-Ac-Sar-Gly-Val-D-Ser-Th} \hbox{N-Nva-Ile-Arg-ProNHCH}_2\hbox{CH}_3,$ N-Ac-Sar-Gly-Val-D-Hser-Tht-Nva-Ile-Arg-ProNHCH2CH3, $\hbox{N-Ac-Sar-Gly-Val-D-Gln-Thr-Nva-Ile-Arg-ProNHCH}_2\hbox{CH}_3,$ N-Ac-Sar-Gly-Val-D-Asn-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Cit-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Hcit-Thr-NVa-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Hle-Thr-Nva\le-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Neopentylgly-Thr-Nva-Ile-Arg-ProNHCH2CH3, $N-Ac-Sar-Gly-Val-D-Ile-Thr-Phe (4-\c ONH_2)-Ile-Arg-ProNHCH_2CH_3,$ N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-His-ProNHCH2CH3, $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-L} ys (Isp)-ProNHCH_2CH_3,$ $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-L} \underline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm}$ N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Orh(Nic)-ProNHCH2CH3, $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Orn} (Isp)- \hbox{ProNHCH}_2 \hbox{CH}_3,$ $N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Phe(\c -NIsp)-ProNHCH_2CH_3,$ $N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Cha(\c -NIsp)-ProNHCH_2CH_3,$ N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Harg-ProNHCH₂CH₃, $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Norarg} \\ \hbox{ProNHCH}_2\hbox{CH}_3,$ $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Cit-Pro} \hbox{NHCH}_2\hbox{CH}_3,$ $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Lys-Pro} \hbox{\rat N+CH$}_2\hbox{\it CH}_3,$ $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Phe} (\hbox{4-CH}_2\hbox{OH})-\hbox{Nva-I}\hbox{1-Arg-ProNHCH}_2\hbox{CH}_3,$ $N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Phe (4-gual pidino)-ProNHCH {}_2CH_3,\\$ $N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Aminopyrimidinylbutanoyl-Pro-NHCH_2CH_3,\\$ N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Phe(4-CH₂NHIsp)-ProNHCH₂CH₃, $N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Gly [4-Pip(N-amidino)]-Pro-NHCH_2CH_3,\\$ $N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Ala[4-Pip(N-amidino)]-Pro-NHCH_2CH_3,\\$

N-Succinyl-Sar-Gly-Val-D-aNolle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Sar-Gly-Val-D-allo le-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Gln-Ne-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-SarNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-Pro-SarNH₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-SarNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-SarNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Ser-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Ser-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Ser-Ile-Arg-Pr\(\rightarrow\)NHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Thr-Orn(Ac)-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-AzaglyNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-Pro-AzaglyNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-AzaglyNH₂, N-(2-THFcarbonyl)-Sar-Gly-Val-D-allolle-Thr-Nva-Ne-Arg-Pro-NHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile Thr-Nva-Ile-Ala(3-guanidino)-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Orn(2-imidazo)-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D{allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Ne-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Ala(3-pyrrolidinylamidino)-Pro-NHCH₂CH₃,

N-(2-THFcarbonyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Alg-ProNHCH₂CH₃, N-(2-THFcarbonyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile\Arg-Pro-NHCH₂CH₃,

N-(2-THF carbonyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg\Pro-D-AlaNH₂, N-(2-THFcarbonyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(2-THFcarbonyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-NHCH(CH₃)₂,

N-(6-Ac-Aca)-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-(6-Ac-Aca)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(6-Ac-Aca)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(6-Ac-Aca)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(6-Ac-Aca)-Sar-Gly-Val\D-allolle-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(4-Ac-Gaba)-Sar-Gly-Val\D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(4-Ac-Gaba)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(4-Ac-Gaba)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(4-Ac-Gaba)-Sar-Gly-Val-D\le-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(4-Ac-Gaba)-Sar-Gly-Val-D-\[alloIle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(4-Ac-Gaba)-Sar-Gly-Val-D-aliolle-Thr-Gln-Ile-Arg-Pro-NHCH(CH₃)₂, N-(2-Furoyl)-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(2-Furoyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(2-Furoyl)-Sar-Gly-Val-D-allolle Thr-Gln-Ile-Arg-ProNHCH2CH3, N-(2-Furoyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(2-Furoyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(2-Furoyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(Shikimyl)-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(Shikimyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(Shikimyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(Shikimyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Me-Arg-Pro-D-AlaNH₂, N-(Shikimyl)-Sar-Gly-Val-D-allolle-Thr-Gln-lle-Arg-Pro-D-AlaNH₂, N-(Shikimyl)-Sar-Gly-Val-D-allolle-Thr-Gl\u00e1-lle-Arg-ProNHCH(CH₃)₂, N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-Pro-NHCH₂CH₃, N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH2CH3, N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-NHCH₂CH₃, N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-allolle-Thr-Glh-Ile-Arg-Pro-NHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Leu-Ile-Arg-Pro-D-AlaNH₂,

N-(6-Ac-Aca)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃,

N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-Pro-D-\landalaNH₂,

-18-

N-Ac-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-alloIle-Thr-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Sar-Gly-Val-D-allolle-Thr-Leu-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-Pro-AzaglyNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHethyl-(1-pyrrolidine), N-Ac-Sar-Gly-Val-D-allolle Thr-Nva-Ile-Arg-ProNH(ethyl-1-cyclohexyl), N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHethyl-(1-pyrrolidine), N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNH(ethyl-1-cyclohexyl), N-Succinvl-Sar-Gly-Val-D-Ile-Whr-Gln-Ile-Arg-ProNH(ethyl-1-cyclohexyl), N-Ac-Sar-Gly-Val-D-allolle-Thi-Nva-Ile-Arg-ProNHCH₂CH₂OCH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₂OCH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Ser-\le-Arg-ProNHCH₂CH₂OCH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Leu-Ne-Arg-ProNHCH₂CH₂OCH₃, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₂OCH₃, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₂OCH₃, N-Succinyl-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH2CH2OCH3, N-Ac-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH₂CH₂OCH₃, N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH2CH2OCH3, N-Ac-Sar-Gly-Val-D-allolle-Thr-Allygly-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Thr-Allygly-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Allygly-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Allygly-I e-Arg-Pro-D-AlaNH₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Allygly-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Ile-Ser-Allygly-Ile-Arg-Pro-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ser-Allygly-Ile-Atg-Pro-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Prb-SarNH₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-PrdNHOH,

N-Ac-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Hser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Gln-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Nva-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Ile-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-ProNHCH(CH₃)₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-alloIle-Thr-Leu-Ile-Arg-ProNHCH₂CH₃,

B3 Contraction

Bont

N-Ac-Sar-Gly-Phe-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Leu-D\[Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Ser-D-I\e-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Thr-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-allolle-Thr-Ala-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Thr-Ala-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Ala-Ile-Arg-Pro-D-AlaNH2, N-Ac-Sar-Gly-Val-D-alloIld-Thr-Ala-Ile-Arg-Pro-D-AlaNH₂, N-Succinvl-Sar-Gly-Val-D-Ile-Thr-Ala-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Ile-Ser-Ala-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Leu-Ser-Ala-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-allolle-Thr-Val-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Val-Ile-Arg-ProNHCH(CH₂)₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Val Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Val-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Val-Ile-Arg-Pro-D-AlaNH2, N-Ac-Sar-Gly-Val-D-Ile-Ser-Val-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Leu-Ser-Val-Ild-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-allolle-Thr-D-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Thr-D-Nva-Ile-Arg-ProNHCH(CH3)2, N-Ac-Sar-Gly-Val-D-Ile-Thr-D-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-alloIle-Thr-D-Nva-Lle-Arg-Pro-D-AlaNH2, $\label{eq:normalized-energy-pro-D-AlaNH2} N-Succinyl-Sar-Gly-Val-D-Ile-Thr-D-Nva \cite{Continuous}. The pro-D-AlaNH2 is a succinyl-Sar-Gly-Val-D-Ile-Thr-D-Nva \cite{Continuous}. The pro-D-Nva \cite{Continuous}. The pro-D$ N-Ac-Sar-Gly-Val-D-Ile-Ser-D-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Leu-Ser-D-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Ser-Gln-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-Pro-D\AlaNH₂, N-Succinyl-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH2CH3, N-Succinyl-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH2CH3, N-Succinyl-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH2CH3, N-Succinyl-Sar-Gly-Val-D-Ile-Ser-Gln-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Ser-Ser-Ile-Arg-ProNHCH2CH3,

B3.

Ac-Sar-Gly-Val-D-Leu-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac\Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sax-Gly-Val-D-Leu-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Oly-Val-D-allolle-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val D-allolle-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-allolle-Ser-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-\(\frac{1}{2}\)llolle-Ser-Leu-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-allolle-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Gly-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Gly-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Gly-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Gly-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Gly-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Tyr-Nvà-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Tyr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Tyr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Tyr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Tyr-Gln-Il&Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ser-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Thr-Thr-Nva-Ile-Arg-RroNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Gln-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Asn-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Arg-Thr-Nva-Ile-Arg-ProNNCH₂CH₃, N-Ac-Sar-Gly-Val-D-3-Pal-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Glu-Thr-Nva-Ile-Arg-ProNHCH\CH₃, N-Ac-Sar-Gly-Val-D-Asp-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-His-Thr-Nva-Ile-Arg-ProNHCH₂CH₂, N-Ac-Sar-Gly-Val-D-Hser-Thr-Nva-Ile-Arg-ProNHCH₂CH N-Ac-Sar-Gly-Val-D-alloThr-Thr-Nva-Ile-Arg-ProNHCH2CN3, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-D-Ile-Arg-ProNHCH₂CH₃

BA.

NAc-Sar-Gly-Val-D-Ser-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Thr-Thr-Gln-Ile-Arg-ProNHCH2CH3, N-Ac\Sar-Gly-Val-D-alloThr-Thr-Gln-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ser-Ser-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar\Gly-Val-D-Thr-Ser-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-O(y-Val-D-alloThr-Ser-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-alloThr-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Thr-Ser-Gln-Ile-Arg-ProNHCH2CH3, N-(6-Ac-Aca)-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH3)2, N-(6-Ac-Aca)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-(4-Ac-Gaba)-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(4-Ac-Gaba)-Sar-Oty-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-(2-Furoyl)-Sar-Gly-\(\)al-D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(2-Furoyl)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-(Shikimyl)-Sar-Gly-Val\D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(Shikimyl)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, $N-(Shikimyl)-Sar-Gly-Val-D\Leu-Ser-Gln-Ile-Arg-ProNHCH(CH_3)_2,$ N-(Shikimyl)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-(2-Me-nicotinyl)-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(2-Me-nicotinyl)-Sar-Gly-Val-Q-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva lle-Arg-ProNHethyl-1-(R)-cyclohexyl, N-Ac-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHethyl-1-(R)-cyclohexyl, N-Ac-Sar-Gly-Val-DIle-Thr-Ser-Ile-Arg-ProNHethyl-1-(R)-cyclohexyl, $N\hbox{-}Ac\hbox{-}Sar\hbox{-}Gly\hbox{-}Val\hbox{-}D\hbox{-}Leu\hbox{-}Thr\hbox{-}Nva\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHethyl\hbox{-}1\hbox{-}(R)\hbox{-}cyclohexyl,$ N-Ac-Sar-Gly-Val-D-Leu-Ser-Ser-Ile-Arg-ProNHethyl-1-(R)-cyclohexyl, N-Ac-Sar-Gly-Val-DIle-Thr-Nva-Ile-Arg-RroNHethyl-1-(S)-cyclohexyl, N-Ac-Sar-Gly-Val-D-Pen-Ser-Nva-Ile-Arg-RroNHCH2CH3, N-Ac-Sar-Gly-Val-D-Pen-Gly-Nva-Ile-Arg-P\(\partial NHCH_2CH_3, \) N-Ac-Sar-Gly-Val-D-Pen-Thr-Gln-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Pen-Ser-Nva-Ile-Arg-ProNNCH(CH₃)₂, N-Succinyl-Sar-Gly-Val-D-Pen-Ser-Nva-Ile-Arg-PNHCH2CH3, N-Ac-Sar-Gly-Val-D-Pen-Ser-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Pen-Ser-Gln-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Pen-Gly-Gln-Ile-Arg-ProNHCH₂CH₃

N-Ac-Sar-Gly-Val-D-Pen-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Thr-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac\sar-Gly-Val-D-Pen-Thr-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Succin l-Sar-Gly-Val-D-Pen-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Succinyl\Sar-Gly-Val-D-Pen-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Pen-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Cys-Thr-Nva-Ile-Arg- ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val\D-Cys-Gly-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val- D-Cys-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Succinyl-Sar-Gly-Val-D-Cys-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys\Ser-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Cys-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Gly-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Thr-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Thr-Leu-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Cys-Ser-Leu-Ne-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Cys-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Cys-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Pen-DIle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Cys-DIle-Thr-Nva-Ile-Arg-RroNHCH₂CH₃, N-Ac-Sar-Gly-Pen-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Pen-D-Leu-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Pen-D-Ile-Thr-Gln-Ile-Arg-ProNNCH₂CH₃, N-Ac-Sar-Gly-Pen-D-Ile-Ser-Nva-Ile-Arg-ProNH&H₂CH₃, N-Ac-Sar-Gly-Pen-D-Ile-Thr-Nva-Ile-Arg-ProNHCN(CH₃)₂, N-Ac-Sar-Gly-Pen-D-Ile-Thr-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Gly-Pen-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Pen-D-Ile-Thr-Gln-Ile-Arg-ProNHCH, CH₃, N-Succinyl-Sar-Gly-Pen-D-Ile-Thr-Gln-Ile-Arg-ProNHCH(QH₃)₂, N-Ac-Sar-Gly-Val-D-Leu-Pen-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Pen-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Pen-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Pen-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar\Gly-Val-D-Ile-Pen-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Oly-Val-D-Ile-Pen-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Pen-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Ile-Pen-Nva-Ile-Arg-Pro- D-AlaNH₂, N-Succinyl-Sar-Oly-Val-D-Ile-Pen-Nva-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gl\(\frac{1}{2}\)-Val-D-Ile-Pen-Gln-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Ile-Pen-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Ne-Thr-Pen-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Thr-Pen-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu Thr-Pen-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Pen-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Pen-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Thr-Pen-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Leu-Ser-Pen-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Gly-Pen-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Leu-Ser-Pen-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)\Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Gly-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Ser-Nya-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Sar-Gly-Val-D-Phe(3,4,5-triF)-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Phe(3,4,5-triF)-Sel-Gln-Ile-Arg-ProNHCH₂CH₃, N-Succinvl-Sar-Gly-Val-D-Phe(3,4,5-triF)-Thr-Gln-Ile-Arg-ProNH-CH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Ser-Ser-Ile-Alg-ProNHCH2CH3, N-Ac-Sar-Ala-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Ala-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH, CH₃, N-Ac-Sar-Ala-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH2CH N-Ac-Sar-Ala-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH₂CH₃ N-Ac-Sar-Ala-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH₂CH₃,

N-Succityl-Sar-Ala-Val-D-Ile-Thr-Gln-Nva-Ile-Arg-Pro-D-AlaNH2, N-(3-Ac-Rala)-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-(3-Ac-Bala)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-DAlaNH₂, N-(3-Ac-Bala)\Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-DAlaNH₂, N-(3-Ac-Bala)-\$ar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(3-Ac-Bala)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sak-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Gly-Val-D-Pen-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Ala-Val-D-allolle-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Ala\Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Ala-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Ala-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Leu-Thr\Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Pen-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-thF)-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Ala-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Ile-Ser-Gln-Ile-Arg-Pro-OH, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-OH,

N-Succinyl-Sar-Gly-Val-D-Leu-Thr-Gln-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Asp-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Ala-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Met-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Cit-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Succinyl-Sar-Ala-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Ala-Val-D-Ile-Thr-Gln-Nva-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Ala-Val-D-Ile-Thr-Gln-Nva-Ile-Arg-ProNHCH(CH₃)₂,

By Cont