Kai Yun

Legal Name: SirkHoo Yun

Graduate Student Researcher, Robotics Institute at Carnegie Mellon University sirkhooy@andrew.cmu.edu — +1 (510) 499-5459 — LinkedIn — Personal Site

RESEARCH INTEREST

My research is focused on safe and high-performance control of autonomous robots in the wild.

My methodology encompasses control theory, deep learning, and their intersection.

My vision is to develop a unified framework for highly reactive robot controllers in complex, dynamic environments.

EDUCATION

Carnegie Mellon University, Pittsburgh, PA

Class of 2025 (Expected)

Master of Science in Mechanical Engineering - Research

4.00/4.00

Advisors: Dr. Changliu Liu (Robotics Institute), Dr. John M. Dolan (Robotics Institute)

University of California, Berkeley, Berkeley, CA

Class of 2023

Bachelor of Science in Mechanical Engineering

3.68/4.00

Minor in Electrical Engineering and Computer Science (EECS)

Military Service (Leave of Absence)

2019 - 2020

PUBLICATIONS & PREPRINTS

- * Equal Contribution
 - [1] Kai S. Yun, Rui Chen, Chase Dunaway, John M. Dolan, Changliu Liu, "Safe Control of Quadruped in Varying Dynamics via Safety Index Adaptation". arxiv.org:2409.09882, 2024, Submitted to 2025 IEEE International Conference on Robotics and Automation (ICRA).
 - [2] Simin Liu*, Kai S. Yun*, John M. Dolan, Changliu Liu, "Synthesis and Verification of Robust-Adaptive Safe Controllers". European Control Conference (ECC), Stockholm, Sweden, 2024, Oral Presentation.
 - [3] Tianhao Wei, Luca Marzari*, **Kai S. Yun***, Hanjiang Hu*, Peizhi Niu*, Xusheng Luo, Changliu Liu, "ModelVerification.jl: a Comprehensive Toolbox for Formally Verifying Deep Neural Networks". *arxiv.org:2407.01639*, 2024.
 - [4] Jack C. Harms, Ethan M. Grame, **SirkHoo Yun**, Bushra Ahmed, Leah C. O'Brien, James J. O'Brien, "Mass-independent Dunham Analysis of the $[7.7]Y^2\Sigma^+ X^2\Pi_i$ and $[16.3]A^2\Sigma^- X^2\Pi_i$ Transitions of Copper Monoxide, CuO". Journal of Molecular Spectroscopy, 2019.

SKILLS

- Area of expertise: Humanoids, Quadrupeds, Quadrotors, Safety Index, Control Barrier Function, Control Lyapunov Function, Adversarial Training, Model Learning, Safe Reinforcement Learning, Model-based Reinforcement Learning, Optimal Control, Hybrid Control, Adaptive Control, Robust Control, System Identification, Polynomial Optimization.
- Physical Robots/Machines: Unitree G1, Unitree G02, PX4 Autopilot Quadrotor, CrazyFlie, Sawyer, Kinova, Tanks.
- Libraries: PyTorch, TensorFlow, Isaac Lab/Sim, Gazebo, OpenAI Gym, PyBullet, Mosek, CasADi, PX4, Ray, Numpy.
- Programming/OS/Tools: Python, MATLAB, Julia, C++, ROS, ROS2, Linux, Git, Docker.
- Other skills: OpenSim, SolidWorks, IATEX, Simulink, CAN Bus, MoTeC, Scuba Diving.
- Languages: Fluent in English, Korean.

RESEARCH EXPERIENCE

Intelligent Control Lab (Robotics Institue at CMU) Advisors: Dr. Changliu Liu, Dr. John M. Dolan Pittsburgh, PA Jun 2023 — Present

- Research on humanoid hardware platform development for safe control, based on Unitree G1 [ongoing].
- Research on learning-based safe rapid navigation of quadrotors in forests using vision inputs [ongoing].
- Research on adaptive safe controller for varying dynamics on quadrupeds (Unitree Go2) [1].
 - Safety Index Adaptation deployment on a package-carrying quadruped for obstacle avoidance.
- Research on algorithm development for synthesizing safe controllers for robotic systems. [2]
 - Devised an optimization algorithm that generates robust-adaptive control barrier functions given uncertain systems.
- Developed *ModelVerification.jl*, a Julia library containing state-of-the-art neural network verification algorithms. [3]
- Research on developing and deploying a learning-based safe controller for quadrotor hardware.
 - o Deploy a neural safe controller on quadrotor-pendulum hardware for safety and performance experiments.

Kai Yun October 2024

Hybrid Robotics Lab (Mechanical Engineering at UC Berkeley)

Advisor: Dr. Koushil Sreenath Aug 2021 — Apr 2022

- Research on safe reinforcement learning for worst-case scenarios. [Report]
 - o Devised a safe RL algorithm called PPO-Worst-Case, to ensure safety constraints are met in the worst-case scenarios.
 - Achieved up to 110% performance compared to state-of-the-art algorithms such as CPO and PPO-Lagrangian.

PROFESSIONAL EXPERIENCE

Tesla, Inc.
Vehicle Dynamics / Software Engineering Intern

Palo Alto, CA May 2022 — Aug 2022

Berkeley, CA

- Developed a correlation framework for comparing subjective vehicle evaluation and objective test data.
- Analyzed vehicle dynamics data to improve the ride, handling, and steering experiences of Models S, 3, and Semitruck.
- Instrumented Tesla vehicles and competitor vehicles with sensors and robots. Assisted vehicle tests on proving grounds.
- Developed automated ticketing, reporting, and logging systems utilizing internal software and corresponding API.

NeuroCore.ai

Reinforcement Learning Research Intern

Seoul, South Korea Oct 2020 — Jul 2021

- Designed and developed RL training and deployment frameworks, which increased training efficiency by 84%.
- Developed simulators for Supply Chain Management (SCM) tasks for semiconductor manufacturers.
- These are currently deployed in South Korean semiconductor manufacturers, such as SK Hynix.

TEACHING & LEADERSHIP EXPERIENCE

Robotics Institute at Carnegie Mellon University

Manager/Developer - RoboticsKnowledgebase

Pittsburgh, PA

Oct 2024 — Present

Mechanical Engineering Department at CMU

Teaching Assistant — Dynamic Systems and Controls (24.352)

Pittsburgh, PA Aug 2024 — Present

Robotics Institute at Carnegie Mellon University

Research Mentor — Robotics Institute Summer Scholars (RISS)

Pittsburgh, PA May 2024 — Aug 2024

Mechanical Engineering Department at UC Berkeley

Teaching Assistant — Statistics and Data Science for Engineers (ENG 178)

Berkeley, CA Jan 2023 — May 2023

Republic of Korea Army

K-1 Tank Mechanic, Sergeant, Squad Leader — Combat Service Support (CSS)

South Korea

Jan 2019 — Aug 2020

SELECTED COURSES

Carnegie Mellon University

Provably Safe Robotics (16.883), Optimal Control & Reinforcement Learning (16.745), Advanced Control Systems Integration (24.774), Engineering Optimization (24.785), Biomechanics of Human Movement (24.663).

UC Berkeley

Deep Reinforcement Learning (CS 285), Nonlinear Systems (EE C222), Machine Learning (CS 189), Robotic Manipulation & Interaction (EECS C106B), Vehicle Dynamics and Control (ME 131), Dynamic Systems & Feedback (ME 132), Mechatronics Design (ME 102B), Experimentation and Measurements (ME 103).

ACADEMIC PROJECTS

- Balancing an Inverted Pendulum on Quadrotor (16.745; 2024). Used LQR to balance an inverted pendulum on a quadrotor in flight. The quadrotor was built with PX4 firmware. [Video]
- Extended Kalman Filter (EKF) for Autonomous Racing (EECS C106B; 2023). Implemented EKF system identification for tire loads and side-slip angles for a lateral stability MPC for the Indy Autonomous Challenge.
- Model-based Reinforcement Learning (MBRL) for Trajectory Optimization (CS 285; 2022). Developed an image-based model-learning algorithm using MBRL to locally approximate the linear dynamics and cost function for iterative LQR. [Report]
- Dart-launching Robot (EECS C106A; 2022). Devised a method to track dart boards with computer-vision and launch darts using spring-actuated dart-launcher with Sawyer manipulator for bullseye. [Website]