

Deep Learning – Summer Semester 2024 Exercise for Lecture – Mathematical Foundation

Task 1 (Differentiation)

Calculate the first-order derivative f'(x) in each case:

- a) $f(x) = 5x^4$
- b) $g(x) = 3\sin(x)^2$
- c) $z(x) = \log(\sqrt{e^{2x}})$

Task 2 (Tangent Hyperbolicus)

The hyperbolic tangent

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

is an example of a (non-linear) activation function frequently used in deep learning applications.

- a) Draw the graph of the function
- b) Calculate the first-order derivative tanh'(x)
- c) Show that $tanh'(x) = 1 (tanh(x))^2$

Task 3 (Sigmoid Activation Function)

The sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

is an example of a (non-linear) activation function frequently used in deep learning applications.

- a) Draw the graph of the function
- b) Calculate the first-order derivative $\sigma'(x)$
- c) Show that $\sigma'(x) = \sigma(x)(1 \sigma(x))$

Task 4 (Convex Functions)

a) Decide whether the following functions are convex or not:

$$f(x) = |x|$$
, $g(x) = \sin(x)$, $h(x) = e^x$

- b) Let f and g be convex functions. Show that $h(x) := \max(f(x), g(x))$ is also convex
- c) Conclude from subtask a) that the ReLU activation function ReLU(x) = max(0, x) is convex
- d) Let f and g be convex functions. Show that f + g is also convex
- e) Let f be a convex function and h a linear function. Show that $f \circ h$ is convex.

Task 5 (Logistic Regression)

The loss function in logistic regression has the form

$$L(\boldsymbol{\theta}) = -\sum_{i=1}^{m} y^{(i)} \log(\sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})) + (1 - y^{(i)}) \log(1 - \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}))$$

where $\sigma(x) = \frac{1}{1+e^{-x}}$ is the sigmoid function and $\theta = (\theta_0, \dots, \theta_p)^T$ denotes the weights of the model. The convention $x_0^{(i)} := 1$ is used.

- a) Show that $f_1(x) = -\log(\sigma(x))$ and $f_2(x) = -\log(1 \sigma(x))$ are convex. Calculate their second derivatives
- b) Conclude from a) that L is a convex function in the weights θ
- c) Calculate the partial derivatives of L according to the weights $\theta_0, \dots, \theta_p$ and describe the gradient ∇L_{θ} in vectorized form. Use the representation from task 3c

																	_				
																	+				
															-						
																	+				
															+						
																	+				
														_							
															-						
																	+				
														_							
																		+			
																	_				