4950 " 217

RE-ENTRY SYSTEMS DIVISION

PHILADELPHIA, PENNBYLVANIA

(NASA-CR-164161) GENERIC AEROCAPTURE ATMOSPHERIC ENTRY STUDY, VOLUME 1 Final Report (General Electric Co.) 241 p HC A11/MF A01 CSCL 2

N81-21098

Unclas 13 42001

GENERAL & ELECTRIC

GENERIC AEROCAPTURE ATMOSPHERIC ENTRY STUDY

FINAL REPORT

* VOLUME I *
CONTRACT NO. 955689

"This work was performed for the Jet Propulsion Laboratory, California Institute of Technology sponsored by the National Aeronautics and Space Administration under Contract NAS7-100."

RE-ENTRY SYSTEMS DMSION 3198 Chestnut St., Philadelphia, PA 19101

NOMENCLATURE

٨ Reference (base) area - square meters Flap area (2 flaps), square meters Acceleration along wind axes (Xw along velocity vector, Y_w , Z_w rotate with body) ACTHR RCS roll acceleration, rad/sec API Autopilot integrator signal **AXBR** Reference drag in guidance law AXW Acceleration along X wind axis (drag), meters per sec2 A/C Aerocapture A/M Aeromaneuver ΑU Astronomical Unit AZB Acceleration along Z_B (body) axis (= $-A_N$), meters per \sec^2 AZBM = -AZB limited to a minimum value CDEL = CDELR * QB - Roll acceleration per degree flap deflection CDELR Coefficient of roll acceleration due to flap deflection CDIST Coefficient which, when multiplied by dynamic pressure, yields roll disturbance acceleration. c.g., X_{CG} Center of Gravity CM Center of Mass CP Carbon Phenolic c.p., X_{CP} Center of Pressure **CRDB** Cross-range, deadband, meters **CRNG** Cross-range distance, km c_2 Lateral distance between CG and CP

c ₃	Vertical CG displacement
c.V	Axial force coefficient
c _D	Drag coefficient
$c_{\mathbf{t}}$	lift coefficient
CN	Normal force coefficient
$c_{N_{P}}$	Flap penel normal force coefficient
c _x	X body force coefficient (= -C _A)
$c_{\mathbf{h}}$	flap hinge moment coefficient
$c_{\mathbf{v}_{\mathbf{o}}}$	Coefficient of roll torque due to roll asymmetries
Celk	Coefficient of roll torque due to β
Ces	Coefficient of roll torque due to flap deflection
C _m	Coefficient of pitching moment
C _{m,t}	Coefficient of pitching moment due to $\boldsymbol{\alpha}$
C _{mq} , C _{nr}	Pitch and yaw damping coefficients
Cno	Coefficient of yaw torque due to yaw asymmetries
$c_{n_{oldsymbol{eta}}}$	Coefficient of yaw moment due to B
$c_{n_{\delta}}$	Coefficient of yaw torque due to yaw nose deflection
$c_{\mathbf{y_{ik}}}$	Coefficient of side force due to θ
$c_{\mathbf{y_{\delta}}}$	Coefficient of side force due to yaw nose deflection
$c_{z_{\alpha}}$	Coefficient of normal force due to α
D	Drag Force
\mathfrak{d}_{B}	Vehicle Base Diaméter, m
DELR	$\delta_{\hat{\mathbf{g}}}$ - Roll flap deflection, degrees
DELRC	Commanded roll flap deflection
DIST	Roll disturbance acceleration, rad/sec ²

Roll disturbance acceleration during constant drag DISTN portion of aerocapture trajectory Deep Space Network DSN Down range distance, km DRNG Actuating signal for control jets ETR Elastomeric Shield Material ESM Attitude error, rad ERG1 Attitude error, deg ERG1D Roll rate error signal, rad/sec ER1R Actuator slew rate limit in first order model FLRL Air relative flight path angle, deg. r'PA Earth's gravitational acceleration (9.8 m/sec²) նը գր Air relative path angle at entry GMO Component of gravity along $Z_{V_{\bullet}}$ axis (velocity axis, X_{V} along velocity vector, Y_{V} horizontal) Gzv Guidance, Navigation and Control GN&C Heat transfer coefficient, qH - hw h Enthalpy of gas evaluated at wall temperature, J/KG hw Altitude, ft. Н Recovery enthalpy, J/KG Hp Altitude, meters HM Gyro input axis I٨ Control impulse, N-m-sec IMP Inertial Upper Stage IUS Roll, pitch and yaw moments of inertia I_{xx} , I_{yy} , I_{zz} Pitch moment of inertia I_{p} Roll moment of inertia

1_R

I _{sp}	Specific impulse, sec
K	Constant in roll control logic
KA	Flap actuator constant
K1, K2, K3	Roll control gains
KBPS	Thousands Bits Per Second
L	Lift force
L1M1,, L1M5	Roll control limits
L _A	Apex length of vehicle, meters
Lcr	Roll control lever arm, meters
Lc	Pitch/yaw control lever arm, meters
MM	Multi-Mission
MMRC	Moving mass roll control
MU	Gyro mass unbalance
M_{c}	Roll control torque, N-m
M _H	Flap hinge moment
^{M}D	Roll disturbance torque
M	Mach Number
M _m	Mass of movable mass (kg)
MSR	Mars Sample Return
P	Local pressure
p, q, r	Roll, pitch and yaw angular rates
PA	Flap actuator power
PROP	Autopilot proportional signal
PWC	Pulse width command signal
$QB = \overline{Q}$	Dynamic pressure, N/m ²
QB _N	Dynamic pressure on constant drag portion of trajectory

q	Local heat transfer rate, w/cm ²
PN	Phenalic Nylon
Ρ	Propulsion tank pressure, psia
PS	Stagnation Pressure, atm.
QB. ()	Dynamic pressure, kn/m ²
Q́в _N	Dynamic pressure during constant drag phase of aerocapture trajectory
RCS	Raction Control System
RCIMP	Roll control impulse, rad/sec
RB	Base radius, meters
Re ₀	Reynolds Number based on local properties and momentum thickness
Re	Free Stream Reynolds Number
RHO, RDEN	Atmosphere density
RG1	Bank angle, rad
RG1D	Bank angle, deg.
RG1R	Roll rate, rad/sec
RG1RD	Roll rate, deg/sec
RG1RL	Limited bank angle rate signal
RG10D	Roll control acceleration, rad/sec ²
RGTDL	Roll rate limit
RG1C	Bank angle command
RKRAT	Constant in roll control logic (= K)
RI	Intermediate radius of vehicle, meters
RTG	Radioisotope Thermal Generator
RB	Base radius, meters
^R N	Nose radius, meters

Silicone Ablator Material SF Scale factor SM Single Mission SRA Spin reference axis STS Space Transportation System T. t. Time, sec TDIST Average thruster acceleration for PWM RCS Roll Control in rad/sec2 TPS Thermal Protection System TH Aerodynamic torque on movable nese Pitch/yaw control torque Inertial velocity, m/s Hyperbolic flyby or freestream velocity, m/s ٧A Air relative velocity, m/sec v_{EXIT} Exit vélocity, m/sec VM Inertial velocity, m/s MAV Air relative velocity, m/s VM200 Exit velocity at 200 km altitude, m/s **VMEX** Exit velocity at 250 km altitude, m/s ٧۴ Volume of fuel tank, m^3 Volume of oxidizer tank, m³ W Weight of vehicle, kg W_M Weight of MMRC movable mass, kg WTP Total propellant weight, kg WE Weight of fuel, kg Wo Weight of oxidizer, kg W_{T} Tank weight, kg. WTF Weight of fuel tank, kg

SAM

W _{TO}	Weight of oxidizer tank, kg
X	Axial distance, m
Y	Radial distance, m
YM	Position of movable mass, m
Ý _M	Rate of movable mass, m/s
α	Angle of attack
Ωφ	Trim angle of attack
80	Shock stand off distance
6 _N	Nose bend angle, deg
8 _F	Flap deflection angle, deg
⁶ e, ⁶ e	Flap angle and angular rate
β	Angle of sideslip
βT	Trim angle of sideslip
Y(0)	Air relative flight path angle at entry
Ϋ́η	Bank angle (=RG1)
p	Material or gas density, kg/m ³
0	Cone angle
ωRL	Rate loop crossover frequency
ΛCR, ΔDR	Crossrange and downrange deviations from nominal, km
ΔVM200, ΔVMEX	Deviations from nominal of VM200 and VMEX
Subscripts	
e	Denotes local conditions
t	Denotes at transition to turbulent flow
w	Denotes freestream conditions
S	Denotes stagnation point
ac ·	Denotes aerodynamic center location
FB or fb	Distance from base

ABSTRACT

This report presents the results of an atmospheric entry study to define a generic Aerocapture vehicle capable of missions to Mars, Saturn, and Uranus. A single external geometry has been developed and, along with several control concepts, has been evaluated through atmospheric entry simulations.

Aerocapture is a system design concept that uses an aerodynamically controlled atmospheric entry to provide the necessary velocity depletion to capture payloads into planetary orbit.

Selected design concepts are presented that are capable of providing the control accuracy required while providing thermal protection for the mission payload.

The system design concepts consist of the following elements:

- (1) An extendable biconic aerodynamic configuration with lift to drag ratio between 1.0 and 2.0 thus allowing control of aerodynamic drag by vehicle roll control (i.e., rolling the lift vector relative to the local vertical).
- (2) Roll control system concepts to control aerodynamic lift and disturbance torques to allow orbit insertion within the required accuracy.
- (3) Aeroshell design concepts capable of meeting dynamic pressure loads during Aerocapture. and
- (4) Entry thermal protection system design concepts capable of meeting thermodynamic loads during Aerocapture.

TABLE OF CONTENTS

VOLUME I

SECTION		PAGE
	NOMENCLATURE	i Viii
	INTRODUCTION AND SUMMARY	1=1 1=1 1=2 1=7
11	SYSTEM REQUIREMENTS	[=] [-] [] -]
111	AERODYNAMIC CONFIGURATION A. Aerodynamic Configuration Screening Approach B. Generic Aerocapture Vehicle Configuration Selection C. Summary	111-1 111-1 111-4 111-9
IV	THERMAL PROTECTION SUBSYSIEM. A. Aerothermodynamic Design Approach. B. Convective Heat Transfer Design Techniques. C. Radiative Heat Transfer. D. Ablative Mass Loss. E. Material Thermal Response. F. Heat Protection Material Selection. G. Summary.	IV-1 IV-1 IV-2 IV-5 IV-8 IV-10 IV-11 IV-18
V	CONTROL SYSTEMS A. Introduction B. Results and Conclusions-Control System Evaluations C. Analysis and Simulation Results D. Trajectory Studies	V-1 V-1 V-3 V-6 V-26
VI	VEHICLE DESIGN. A. Approach. B. Generic Vehicle Design. C. Saturn Orbiter Dual Probe Aeroshell Design. D. Mars Sample Return Aeroshell Design. E. Uranus Mission Aeroshell Design. F. Vehicle Design Summary.	VI-1 VI-1 VI-2 VI-3 VI-8 VI-9 VI-9
117	CONCLUSIONS	1-11V
1117	NEW TECHNOLOGY AND RECOMMENDATIONS	VIII-1
IX	REFERENCES	1X-1

TABLE OF CONTENTS (continued)

LIST OF TABLES

VOLUME II

APPENDIX A

SO2P TRAJECTORIES

APPENDIX B

MSR TRAJECTORIES

APPENDIX C

URANUS TRAJECTORIES

I. INTRODUCTION AND SUMMARY

A. INTRODUCTION

Aerocapture is a system design technique that utilizes aerodynamic drag to obtain the velocity depletion necessary to obtain a closed planetary orbit from a hyperbolic flyby trajectory. It is accomplished through an aerodynamically controlled atmospheric entry during which vehicle I/D is varied to maintain a constant drag. When the required velocity depletion is calculated, the vehicle pulls full lift up and exits the atmosphere. The Aerocapture concept has been analytically demonstrated, at JPL, to provide a significant increase in the quantity of "in orbit" payload for planetary missions.

Generic Aerocapture indicates the utilization of a common aerodynamic configuration for missions to any of several planets. This report describes the results of a generic Aerocapture atmospheric entry study performed by General Electric Remembry Systems Division under contract to the Jet Propulsion Laboratory of the California Institute of Technology.

The primary objective was to develop conceptual designs of atmospheric entry systems with moderate to high L/D ratios to establish feasibility of aerocapture for missions to Mars, Saturn, and Uranus. Saturn aerocapture will be accomplished by using the atmosphere of Titan to provide the required velocity depletion. To a large extent, the study is based on the experience gained and the results obtained from a previous study, "Mars Aerocapture Vehicle Definition."

The overall study output consists of design concepts of vehicle configurations, structure, thermal protection and controls for the Mars Sample Return (MSR), Saturn Orbiter Dual Probe (SO2P) and Uranus Orbiter Probe (UOP) missions. The design concepts are based on trajectory analyses supplied by JPL and refined at GE-RSD through added simulation of a 'real' control system response. The

control implementation utilized the JPL recommended entry trajectory guidance and control approach (i.e., analytic drag control entry guidance and modulated lift vector roll control). In accordance with the scope of the study, the designs were selected to show mission feasibility based on state of the art concepts. System optimization from an analytic or hardware standpoint was not performed.

Emphasis was placed on selection of the aerodynamic configuration; definition of the aerodynamic loads; sizing of the aeroshell structure; selection and distribution of thermal protection materials on the structure; definition of control system concepts; and aerocapture performance verification through fight control simulations.

B. SUMMARY

1. Approach - Based on the results presented in the Mars Aerocapture

Vehicle Definition Study Final Report, Ref. I-1, a biconic configuration baseline
was selected at the study outset. The basic approach was then to evolve a
specific biconic configuration with the required aerodynamics and packaging
capability for all three missions; assess its trajectory accuracy over a range
of entry conditions and for several control schemes for the baseline SO2P
mission; extend the trajectory assessments to the MSR and Uranus missions;
and then, based on the environments developed from these trajectories, develop
aeroshell and control system design concepts along with system mass properties.

2. Results

a) Aerodynamic Configuration - The two configurations selected in the previous study, Mars Aerocapture Mission, along with two others, were evaluated for the generic Aerocapture mission (Figure III-2 and Table III-2). All configurations had an L/D greater than 1.0 and a $C_{\rm D}$ greater than 0.4. Configuration 7-6, scaled down to a length of 6.3 meters to meet STS-IUS/SEPS

requirements, was initially selected. This configuration provided the maximum payload packaging volume, tended to minimize the nose bend required to trim the vehicle and provided some degree of longitudinal and directional stability. Using the SO2P mission as baseline, payload prockaging studies at JPL indicated a satisfactory payload arrangement within the aeroshell (Figure VI-9). Evaluation of the packaging density of this arrangement led to the conclusion that the other three configurations were not writable for the SO2P mission without significant changes to the payload as conceived by JPL.

The payload for the MSR mission is essentially larger than the SO2P payload. An additional 3.3 meter long space is available in the STS payload bay since only the IUS is required for this mission. A 3.3 meter conic frustum extension was added to the SO2P baseline configuration to accommodate the additional payload (Figure III-3). As conceived, the full 9.6 meter MSR aeroshell is used for aerocapture, and subsequently, the forward 6.3 meter (basic) aeroshell is used to aeromaneuver the Lander to the surface of Mars.

The aerodynamic characteristics, Table I I-3 and Figure III-7, of the basic (SO2P, Uranus and Mars aeromaneuver) and stretched (Mars aerocapture) aeroshells were calculated for control system simulations and calculation of the thermal environment. In addition, the local pressure distributions over the generic aerocapture vehicle have been predicted at the selected trim angle of attack and provided for use in the structural analysis task.

b) Control System - The roll control system requirements are to proving the required bank-reverse-bank roll control legic and torque (thereby controlling vehicle L/D to maintain a constant deg), and to control roll disturbance torques. The required roll control system accuracy is \pm 25 m/sec variation in

exit velocity over the range of entry path angles for Aerocapture. In the initial study, Ref. I-1, a simple dual thrust level, bang-bang system was selected to show mission feasibility. As an extension to this, several other types of control were investigated for the generic Aerocapture system. They included an improved reaction control system using pulse width thrust modulation and two types of aerodynamic control: flaps and a moving mass roll control. The SO2P Aerocapture vehicle was used as a baseline for these studies. As indicated in Section V of Ref. I-1, most of the required RCS fuel is used to control the roll disturbance caused by a lateral offset between center-of-pressure and center-of-mass (C_2). A mass properties analysis was performed for the SO2P vehicle and results indicated that C_2 could be controlled to 0.6 cm. This offset, along with the aerodynamic characteristics from Section I'I and the mass properties from Section VI were used for the roll control system evaluations.

The results, indicated in Table V-1, show that for the SO2P mission, an RCS system has the highest mass. It should be noted that the system must have a 3-axis RCS for exoatmospheric control and hat only 4.5 kg of fuel is required for roll command control. Therefore, the aem dynamic trim control systems (i.e., disturbance torque control only) are the systems to be compared. The significant increase in mass to achieve roll command control is due to the magnitude of the required accelerations. It should also be noted that the RCS pulse system mass represents a theoretical minimum number and the actual system weight may be somewhat higher. The roll control numbers to be compared arc:

RCS (PWM)	57.8 kg	
Flaps (trim)	108.5 kg	Includes A E to fee
MMRC (trim)	65.5 kg	Includes 4.5 kg for roll commands

With a maximum difference of approximate y 40 kg, ultimate selection ust be based on a more detailed evaluation of pago and mass distribution, and

aerodynamic complexity of flaps and expendables management. For example, if C_2 increased from 0.6 to 1.6 cm, the mass of the RCS and MMRC (with similar travel) will increase to more than double its value, while the flap mass increase can be minimized by increasing flap deflection. In addition, use of an MMRC roll control on a generic vehicle could impose severe payload packaging constraints.

Entry trajectories were run using the flip roll control system to determine exit velocity accuracy and path angle corrider. The results, presented in Section V, are summarized below:

Mission	Path Angle: (deg.)	Exit Accuracy (m/sec)
SO2P (8 km/sec)	23.0 to 33.0	0 to 41
SO2P (13 km/sec)	23.5 to 29.0	-13 to +7
MSR	14.5 to 16.5	- 4 to +5
Uranus	8.0 to 12.0	0 to 40

Trajectory results also provided aerothermodynamic loads and flap hinge moments for determination of the aeroshell and flap design concepts.

The atmospheres used for the trajectory studies were:

SO2P (Titan)	Titan Thin / tmosphere
Mars	Viking 75 Project Mars Engineering Model, M-75-125-3, NASA Langley Viking Project Office
tiranus	Model 212, Fry 20, 1980 Orton and Appleby To be publicated - Icarus

c) Thermal Protection System - The TPS material selection is driven y the requirement to minimize the local TPS we ght while choosing from conte por y materials. Heat transfer has been calculated for all missions and is summarized in Figure IV-16. As indicated, heat transfer along the windward meridian parious

from approximately 100 w/cm² (MSR) to 2500 w/cm² (Uranus). This heat transfer can be as much as a factor of five lower on a side ray and a factor of ten lower on the leeward side. As such, several materials are used on each vehicle. The heat transfer, as indicated in Table IV-1 is a combination of convective and radiative. TPS material selection is based on peak heat transfer and material thickness is based on both heating load and heating time. Carbon phenolic (a high performance ablator) was chosen for the Uranus and SO2P (13 km/sec) peak heat rates while ESM (a low density ablator) performs satisfactorily for SO2P (8 km/sec) and Mars. Lower density ESM, AM and Nomex felt are used on the cooler sections of the vehicles. See Tables 7-2 through 6.

d) Structure and Aeroshell - The selecter "structure" was again a honey-comb sandwich as in Ref. I-1. Structure thickness and mass have been calculated for all missions and are presented in Figures VI- through and Tables VI - through. The structure sizing was based on launch loads and the distributed dynamic pressure encountered during atmospher entry. Based on the TPS solutions derived in Section IV, the TPS "map" of the SO2P, MSR and Uranus missions are indicated in Figures VI

The resulting aeroshell masses, including structure and TPS, are:

S02P (8 km/sec)	472 kg
SO2P (13 km/sec)	919 53
MSR	501 kg
Uranus	987 kg

3. <u>Conclusion</u> - Generic Aerocapture aeroshell and control system design concepts have been developed to allow further evaluation of the mission design concepts. A set of allowable launch masses for a specific mission concept is presented in Table I-1, along with aeroshell and control masses developed in this study.

As indicated the SO2P (8 km/sec), MSR and Uranus missions show positive mass margins. The SO2P (13 km/sec) has a negative margin of 120 kg. Further mission evaluations are required to either decrease entry velocity or change the required payload capability. Also, utilization of new heatshield materials such as PD218 (See Section IV), will significantly decrease the aeroshell mass.

The required exit velocity accuracy of 25 m/sec can be achieved for all missions using either a flap, MMRC or RCS control system.

In general, it is concluded that a generic Aerocapture configuration can be utilized for the studied missions.

The variation in dynamic pressure over the range of mission does not require a large change in structural mass (70 kg, Table VI-18). As a result, identical structures appear feasible for SO2P, Uranus and the Mars Aeromaneuver missions. However, the range of peak heating does cause a large change in TPS mass (670 kg). Therefore, it is recommended that the TPS be designed for the specific mission environments.

Table I-1 Generic Aerocapture Mass Comparisons

Mission	Launch Capability (kg)	Payload (kg)	Allowable Aerocapture System Mass (kg)	Estimated* Ferocapture System Mass (kg)
S02P (8 km/sec)	2660 (SEEGA)	1500	1160	570
S02P (13 km/sec)	2400 (SEECA)	1500	006	0201
MSP	2000	4000	1000	600
oranus	1900 (10 year Mission)	0071		7
	iono () year mission			

* Includes 100 kg for flaps

II. SYSTEM REQUIREMENTS

A. MISSION DEFINITION

The Generic Aerocapture Atmospheric Entry Study developed Aerocapture system design concepts for three missions: SOP at entry velocities of 8 and 13 km/sec; MSR at an entry velocity of 5849 km/sec and Uranus at an entry velocity of 30 km/sec. Flight path angles are determined in the study to identify the Aerocapture limits for SO2P and Uranus. The atmospheres used for the entry trajectories are listed in Section I. Initial trajectories were supplied by JPL, then further refined at GE-RS using developed vehicle aerodynamics and mass properties and control sistem characteristics. For purposes of this study, an accepted and proven entry trajectory guidance and control approach was used as recommended by JP. The technique is analytic drag control entry guidance and modulated lift vector roll control - a completely autonomous method.

B. DESIGN AND PERFORMANCE REQUIREMENTS

Table II-1 presents a summary of the dess n and performance réquirement for the generic Aerocapture vehicle.

Table II-1

System Design and Performance Requirements

Envelope

SO2P, Uranus

4.3m diameter, 6 3m length

MSR

4.3m diameter, 9.6m length

Launch Mass

S02P

2660 kg (8 km/se²), 2400 kg (13 km/sec)

MSR

5000 kg

Uranus

2400 kg (10 year mission), 1800 kg (7 year mission)

Payload

S02P

1500 kg

MSR

4000 kg

Uranus

1250 kg

L/D

1.0 to 2.0

 $c_{\mathbf{p}}$

0.4 to 1.0

Launch Load

6 g axial

3 g lateral

Control Accuracy

± 25 m/sec on ex t velocity

III. AERODYNAMIC CONFIGURATION

A. AERODYNAMIC CONFIGURATION SCREENING APPROACH

The configuration selected for the generic derocapture vehicle is capable of packaging the required payload, fits within the length and width constraints of the Space Shuttle payload bay, provides a lift to drag ratio between 1 and 2, and a drag coefficient between 0.4 and 1.1. The specific packaging requirements, hypersonic entry performance requirements and cerodynamic characteristic criteria employed in the configuration screening process are outlined in Table III-1.

Several classes of configurations exist that meet the hypersonic performance requirements. These include axisymmetric and elliptical cross section cones, biconics and arbitrary cross section bodies. Generally, the sphere cones are too long to meet the Space Shuttle payload bay length corrtraint and package the required payloads. The existing aribtrary bodies have been designed with other mission requirements in mind (e.g., subsonic 1 nding capability or higher L/D), and hus, they are geometrically more complex than necessary for this aerocapture/ aeromaneuver vehicle. Evaluation of the aerod namics of elliptical and arbitrar, cross section vehicles is more complex than for the axisymmetric vehicles. Elliptical and arbitrary cross section vehicles were not considered because axisymmetric vehicles met the aerodynamic requirements and provide a greater payload volume. The class of configurations that lends itself to the packaging constraints most readily is an axisymmetric bi onic with ONOSE > OFRUSTUM biconics can be trimmed at an angle of attack, simultaneously producing both lift and drag forces to provide maneuvering capabil ty. Trimming can be accomplished by a variety of techniques including c.g. offs t, bent nose, aft frustum slice or flaps.

Perhaps the least complex concept is that of a fixed bent nose, which provides a nearly fixed trim angle of attack and the bank to turn steering approach. This concept has been evaluated in detail in several DOD programs and successfully demonstrated in earth entry flight tests. It was thoroughly evaluated for the aerocapture mission and presents a feasible, well characterized, solution. The aerodynamic screening and design procedure employed for this class of maneuvering entry vehicle includes:

- 9 Select a basic body external geometry that accommodates the specified payloads and meets the launch vehicle (shuttle payload bay) constraints.
- O Determine variation of basic body Cp. '/D. and aerodynamic center location (XAC. YAC) with angle of attack and select a trim angle of attack to meet L/D and Cp requirements
- o Identify the required basic body center of gravity location to provide adequate yaw stability margin at the t im angle of attack, to minimize yaw angle (β_T) excursions.
- O Determine the control surface deflection (nose or flap) required to trim the vehicle (8) with the selected c.g. location.
- O Evaluate pitch stability at the trim angle of attack to determine if adequate pitch stability exists to minimize angle-of-attack excursions.
- O Iterate c.g. location, trim angle, control concept, and guidance scheme to obtain acceptable yaw and pitch stability, as required.
- O Evaluate lift vector control concepts.
- 1. Aerodynamic Prediction Techniques and Validation The GE 3D Flow Field (3DFF) capability has been used to provide accurate and rapid estimates of the aerodynamic characteristics of candidate maneuvering aerocapture vehicle configurations. These techniques have been employed to generate the full set of aerodynamic coefficients for use in the mission/trajectory simulations for the selected configurations. The 3DFF system consists of two primary codes; a 3D Inviscid Code (31FF) (Ref. III-1) and a 3D Viscous Code (3VFF) (Ref. III-2). The inviscid technique is used to estimate surface pressures and shock shape

for various body geometries, including biconic, triconic and elliptical shapes; asymmetric noses; bent nose bodies and aft slites. The 3VFF design code considers flow features such as mass addition from the thermal protection system, asymmetric boundary layer transition in the pitch and yaw planes, and real gas characteristics. The effects of angle of atta k on local property variations, atreamline spreading and changes in boundary layer profile derivatives at the wall are included in the code. The induced pressure resulting from the viscous flow is calculated, and the resulting aerodyna ic coefficients are computed. These consist of the inviscid flow contributions for forces and moments and the viscous contributions caused by induced pressure and skin friction. It was also used to predict the aerothermodynamic environment of the entry configurations. The aerodynamic data generated using inese codes have been verified by extensive ground and flight testing of maneuvering biconic entry vehicles.

2. Vehicle Aerodynamic Coefficient Data Bink - Maneuvering entry vehicle design studies have generated a large aerodynamic coefficient analytical and experimental data bank for conic and biconic I dies with various control surfaces. This data bank covers a range of aft frustum a gles. Θ_F , from 4 to 8 deg; forward nose angles Θ_N , of 8 to 16 deg; nose radius-to break radius ratios, R_N/R_I , of 0.2 to 0.5; break radius-to-base radius ratios R_I/R_B , of 0.2 to 1.0; Mach Numbers 2 to 20; and angles of attack of 0.5 to 21 degrees in air.

The extent of the existing biconic data bank is illustrated in Figure III-1 and compared to the L/D and $C_{\rm D}$ range specified for the generic aerocapture vehicle. Significant increases in $C_{\rm D}$ of this biconic facily result from slight (2-5 degrees) increases in angle of attack. This effect has been evaluated for the selected concepts. Although some separated flow is expected on the leeward side, the

pressures there are quite low; therefore, it is anticipated that the windward pressures dominate and no significant shift in \mathbf{C}_{D} or \mathbf{C}_{L} occurs with separation onset at the higher angles of attack.

The AFFDL/MDAC hypersonic arbitrary body computer program HARB, Reference III-3, has been employed to determine the aerocynamic characteristics of the selected configuration at very high angles of attack (>20 degrees). The HARB results compare quite well with the flow field results in the intermediate angle of attack range where both techniques were used.

B. GENERIC AEROCAPTURE VEHICLE CONFIGURATION : ELECTION

Initially a goal was established to utilize a common aerodynamic configuration for the SO2P, MSR, and Uranus missions. A conecal frustum extension could be added to the MSR Aeromaneuvering configuration to accommodate the MSR Aerocapture portion of the mission.

The configurations selected in the previour study for Mars Aerocapture Mission feasibility, identified in Figure III-2 as 7-6 and 5-7 (Reference I-1) were considered as major candidates for the generic perocapture mission. Two additional configurations were evaluated. One configuration, 7-10, exhibited characteristics geometrically in between those two previously elected and a new configuration, identified as 4-4, appeared to provide adequat payload packaging volume with reduced surface area, Figure III-2.

Selected aerodynamic characteristics of these candidate basic body configurations are summarized in Table III-2. To maintain payload packaging flexibility of this generic aerocapture vehicle concept, the configuration that maximizes the payload volume, can package the larger spherical payload at the required aerocapture vehicle c.g. location, and has the further aft c.g. location requirement is the more desirable. These characteristics are also summarized

In Table III-2. Configuration 7-6 was again selected as representing the most iteractive configuration, given the general missions requirements, Figure III-3. For the MSR Acrocapture mission, a confictive extension was added to accommodate the additional payload, Figure III-3. This vehicle is identified in Table III-2 as configuration 7-12.

1. Aerodynamic Characteristics of Selected Generic Aerocapture Vehicle

The aerodynamic characteristics screened to this point are for zero nose bend (since nose bend is usually a second order effect on C_1 , C_{D} . L/D and the required \mathbf{X}_{CG}) and a flight medium of air. Calculations have been made for the selected configuration using the 3IFF code to determine the effect of nose bend angle on the axial center of pressure location in the pitch plane and thus determine the nose bend angle required to meet the desired trim angle of attack. These results were originally reported in Reference 1-1 and are presented here in Figure III-4 for completeness, for the free tream conditions typical of initial pull-up in Mars in a flight medium of CO2. Note that an axial c.g. location of 0.738 $L_{\rm anex}$ with a nose bend angle of 7 degrees results in a trim angle of 20 degrees while maintaining a very adequate (by standard design practice) yaw stability margin of 2.8 percent. Axial and normal force coefficient variations with nose bend angle and angle of a tack are illustrated in Figure 111-5. Longitudinal stability characteristics for the configuration with a selected mose bend angle of 7 degrees are illu trated in Figure III-6. This configuration provides a pitch stability margis, $\frac{X_{CG}}{L_{\Delta}} = \frac{X_{aC}}{L_{\Delta}} = \frac{dC_{MCG}}{dC_{N}}$ at the 20 degree trim angle of -0.084 (stable). The for e coefficients and moment coefficient derivatives due to pitch and yaw are provided for use in the 3DOF and 6DOF trajectory and control simulations in Table II -3.

For the purpose of this feasibility study, the inviscid aerodynamic characteristics are assumed to be independent of gas composition, an assumption that will be evaluated in the next phase of the program. The inviscid axial force coefficient does not include a contribution due to the vehicle base. The axial force increment identified as $\Delta CA_{Viscous}$ consists of increments due to skin friction and induced pressure. For turbulent flow, the skin friction contribution is the dominant contribution, providing 91 percent of $\Delta CA_{Viscous}$ for the MSR case. Turbulent flow is to be exposted due to the magnitude of the freestream Reynolds Number at pull up, 9 x 10 6 based on vehicle length. The total axial force coefficient includes an estimate of the base—drag increment. The skin friction contribution to $\Delta CA_{Viscous}$ in expected to vary with both gas composition and vehicle size, but due to the size of the inviscid term will have less than a 10 percent effect on the total axial force coefficient. These effects have been neglected in this feasibilit study.

An unsteady flow field code exists, Reference III-4, to predict the dynamic damping coefficients $C_{mq} + C_{m\alpha}$ and $C_{Nq} + C_{N\alpha}$ o sphere cone and biconic vehicles. For this feasibility study, however, it is recommended that a representative value of -0.2/radian be used for both coefficients — the 6DOF simulations.

The local pressure distributions over the energy aerocapture vehicle have been predicted at the selected trim angle of a tack and provided for use in the structural analysis task.

2. Aerodynamic Characteristics of MSR Vet cle

Inviscid aerodynamic computations have been made for the Mars Sample Return vehicle employing both the GE 3IFF and the HAI codes in CO₂. Solutions were obtained on 3IFF for angles of attack of 10 ar 15°, and on HARB for angles of attack up to 25°. At 20° angle of attack, 311 would not produce a solution due

to development of local subsonic flow regions in the body shock regime. Axial and normal force coefficients, lift to drag ratio, and axial center of pressure location variation with angle of attack are illustrated in Figure III-7. The axial force coefficient includes an estimate of the base drag and an increment due to skin friction and induced pressure in CO_2 , scaled from results of the previous study.

3. Generic Aerocapture Configurations Applicability as Aeromaneuver Vehicle - The aeromaneuver portion of the MSR mission at Mars consists of a controlled lifting entry from close Mars orbit where the perodynamic characteristics of the generic aerocapture vehicle at lower freestream Mach Numbers must be defined. An examination of the basic body characteristics at $M_{\infty} = 4$ in air, Reference I-1, indicates an aft movement of the pitch center of pressure ($\alpha = 0.5^{\circ}$) from the $M_{\infty} = 20$ case. Using this as an indication of otential yaw center of pressure movement, we would expect this configuration to experience a gain in yaw stability at the lower Mach Numbers. Base drawwould also be increasing, thus contributing to a general reduction of L/D.

Predicted axial center of pressure location for the aeromaneuver vehicle is expected to vary somewhat with freestream Mach Number. For a fixed center of gravity location, this results in a predictable small trim angle of attack variation. This effect is usually greater for the aeromaneuver portion than the aerocapture because of the larger freestream Mich Number range. In addition, some uncertainty exists in the predicted vehicle aerodynamic characteristics.

Typical flight experience has demonstrated a 3 aerodynamic coefficient axial and normal force prediction accuracy of ±10 percent, given the angle of attack. The impact of these uncertainties, along with the leed for real time measurement of 1/D, should be addressed in future studies.

4. Generic Aerocapture Vehicle Flap Chara teristics

For purposes of this feasibility analysis, split windward flaps are considered as one technique for providing roll control for the 7 degree bend nose configurations. In order to provide data for estimation of flap actuation requirements, preliminary estimates of hing molents generated by the differential flap deflection have been made.

Basic data for this analysis were obtained from wind tunnel data for flaps mounted on a similar forebody. The hinge moment requirement, C_h , sensitivity to c.g. offset was evaluated for two conditions: 1) for a basic roll moment coefficient, $C_{1\delta}$ capability of 0.002, i.e., the flaps are initially deflected at an angle such that as the flaps are differentially deflected \pm 1 degree the change in C_1 due to δ_F is 0.00020; (this was a complished at δ_F = 7.0); and 2) for the flaps initially trailing at a δ_F = 1 or a $C_{1\delta}$ = 0.00009.

Hinge moment coefficients, C_{h} , are determined from the panel load, C_{Np} , using the following equation:

$$C_h = C_{Np} \frac{A_F}{A_B} \frac{1}{L_A}$$

where:

A_F - Flap area

 A_{p} - Reference area = ve icle base area

1 - distance from flap leading edge to flap center of pressure (used ... $5 L_{FLAP}$)

 L_A - reference length (vihicle aft frustum apex length)

NOTE: $A_F/A_R = 0.182$

Total Flap Chord = 0.326 D;

Total Flap Span = 0.436 D

These hinge moments for an angle of attack of 'O degrees are shown in Figure III-8. Also presented are the maximum flap deflection angles required to provide the necessary roll torque. As would be expected, the large lateral c.g. offsets cause large hinge moments to control torque.

These data and analyses have been used to provide information for the initial feasibility studies for roll control of a bent nose vehicle. Additional analyses would be performed to optimize the roll control scheme. Items to be considered would be nose bend angle, flap geometry, body lice geometry, and possible use of split flaps (located off of the windward ray).

C. SUMMARY

Potential maneuvering vehicle basic body condidates have been screened for the generic aerocapture missions considering the packaging constraints and the desired aerodynamic performance characteristics. A single configuration was selected for the SO2P and Uranus Aerocapture, and MSR aeron meuver vehicle applications with a conical frustum addition to perform the MSR perocapture application. These were selected based on meeting the aerodynamic characteristics requirements, ease of packaging the given payloads in the vehicles and the vehicles in the Space Shuttle payload bay, minimizing the nose bend required to trim the vehicle, minimizing the vehicle surface area where possible and providing some degree of longitudinal and directional static stability. Configurations selected are summarized in Figure III-3 with the aerodynamic coefficients summarized in Table III-3 and Figure III-7.

Dominant flow regimes for the aerocapture rehicles is continuum flow with turbulent flow present over most of the vehicle at pull up.

Aerodynamic characteristics defined have considered the inviscid, skin friction and induced pressure effects, althougo only the inviscid effects are of first order.

Table III-1 Configuration Screening Criteria

Packaging Requirements

fit with n shuttle payload bay

MSR Vehi le must package a lander

and orbi er

SO2P and Uranus Vehicles will package an orbit r and probe(s)

Performance Requirements

1.0 < L/) < 2.0

0.4 < CD < 1.0

Both aer capture and aeromaneuver vehicles are fixe! trim

Aerodynamic Criteria

 $\begin{array}{ll} \mbox{Minimize center of pressure variations} \\ \mbox{with } \mbox{M}_{\mbox{\tiny m}} \end{array}$

Select bisic bodies with

$$x_{P_{\alpha_T}} \ge x_{CP}$$
 $\alpha = 0.5^{\circ}$

Eliminate all basic bodies with $X_{AC} \leq X_{CP}$ to speed screening.

TABLE III - 2

GENERIC AEROCAPTURE BASIC BODY CONFIGURATIONS

DIAMETER OF PACKAGABLE SPHERE AT RED'D c.q/m)	1.47	1.07	1.80	1.47						
XCP CP C C C C C C C C	0.760	0.700	0.744	0.712	(3) (4) (4)	াল হাস্টা ক্ষা র্থার	o cureativiti disentene e	में क्षेत्रकार ६ व्हातंत्रकार व स्व	e enveries	¥
ک میں	0.15	0.12	0.196	0.661	0.136		= 21°	= 20	00 =	AIR DATA BANK
L (Å)	15.6	9.25	10.71	8.62	14.00		8	∑ 8	æ .o*	AIR
2 €	1.09	0.81	1.315	1.08	1.72			······································		
CDTOTAL	0.486	0.470	0.432	0.440	(J	 				
1/0	1.17	1.65	1.25	1.40	,				71.40	
R_1/R_B	0.76	0.50	0.745	0.50	0.57					
R _{IV} /R _I	0.17	0.31	07.50	0.33	© ?			· · · · · · · · · · · · · · · · · · ·		
θ deq.	10	0	<u>د</u>	12]					
e deg.	(.)	ഹ	^	7	•		**************************************			
CONFIGURATION NUMBER	· ·	5-7	7-6	7-10	1					
			1	111-12		>				

Table III-3 Generic Aerocapture Vehicle Aerodynamics Summary
Configuration 7-6

 $\alpha = 20^{\circ}$, $M_{\infty} = 30$, $Rey_{\infty} = 3.5 \times 10^{5}/m$

Force Coefficients CO2

Flow State	CAiny PB = Pm	^{ΔC} Aviscous	C _A total_	C _{Ninv}	C _N total	Pitch X _{CP} /L _A	СД	cr	L/D
Laminar	0.245	0.0158	0.262	0.692	0.690	0.736	0.482	0.559	1.16
Turbulent	0.245	0.0621	0,308	0.692	0.682	0.736	0.522	0.536	1.03

Moment Derivatives

C _m	С _п в	c _{kg}	c _y	aC ^N aC ^m C.
-2.58 ⁻³	+8.84 ⁻⁴	-2.43 ⁻⁴	-3.20 ⁻²	-8.4 ⁻²

Figure III-1 Existing Bi onic Data Base

 $\theta_{\rm N} = 12^{\rm o}$

 $\Theta_{\mathbf{F}} = 7^{0},$

CONFIGURATION 7-10

Figure III-2 Basic Body Configuration Candidates

CONFIGURATION	L	" Э	φ ²²	R _N /R _I R _I /R _B	R _I /R _B	2.5	L	ex:	ar.
							•	•	2
7-6	6.3	70	130	0.5	.745	1.32	1.32 10.71	86.	2.
7-12	9.6	70 13	130	0.2	.570	1.72	1.72 14.01 .98	86.	2

Figure III-3 Generic Aerocapture Configurations Selected

- NOSE BEND ANGLE OF 7° IS SELECTED TO PROVIDE A TRIMMED ANGLE OF ATTACK OF 20° AT ML = 30 FOR x_{CG}/L_A = .738

 YAW CENTER OF PRESSURE MOVES TO x/L_A = 7.86 for δ_N = 7° PROVIDING 2.8% YAW STABILITY MARGIN

Figure III-4 Center of Pressire Locations for Generic Aerocapture Vehicle III-17

Figure III-5 Effect of Nose Bend Angl on Axial and Normal Force Coefficients of Generic Aerocapture Vehicle

Figure III-6 Longitudinal Stabi ity Characteristics of Generic Aerocaptur Vehicle

$$\frac{A_F}{A_B} = 0.18$$

Figure III-8 Sensitivity of Hinge Moment to Center of Gravity Offset

IV. THERMAL PROTECTION SUBSYSTEM

A. AEROTHERMODYNAMIC DESIGN APPROACH

State-of-the-art minimum mass Thermal Protection Systems. TPS, that meet all atmospheric entry requirements have been selected for the Generic Aerocapture missions. Since the mass of the TPS and its supporting substructure is a major portion of the aerocapture vehicle, selection of a minimum-mass TPS concept greatly enhances the potential science return tenefits of the aerocapture mission concept.

Reference entry trajectories supplied by J.L. were used for initial screening of acceptable entry corridors. Employing the predicted aerodynamic characteristics of the selected Generic Aerocapture con igurations, entry trajectories were computed and control simulations conducted as a part of this study. A number of reference heating parameters were simultaneously computed employing engineering correlations for eventual use in sizing the thermal protection systems. Results from the selective calculations of the 3D inviscid and viscous flow field codes were used to establish the shock shape, local pressure, local Reynolds number, and local laminar turbulent flow, which results in a significant increase in local heat transfer rates, was based on available flight test transition data correlations analytically scaled to the Aerocapture vehicle geometry. The thermal protection material thi kness was sized to limit the maximum bondline/structure temperature to 600° (590K), a contemporary design practice based on bond strength degradation. ypically, during the period of maximum entry loads, the bond and structure at at room temperature and reach their peaks during the long soak out after the heating period is over and the structural loads are minimal. TPS requirement were evaluated considering both the shallow and steep ends of the trajectory . d a nominal initial temperature of 100°F (310K).

B. CONVECTIVE HEAT TRANSFER DESIGN TECHNIQUES

The convective heating rate distributions to the aerocapture vehicle have been calculated by means of the GE 3D Viscous Loundary Layer Code, 3VFFF (Ref. III-2). This program calculates the Lee:/Eckert Reference Enthalpy and Vaglio-Laurin laminar, transitional and turbulent heating rate distributions, as well as skin friction and viscous drag over sphere-cone and biconic configurations at angle of attack. The code uses integral boundary layer techniques, including entropy swallowing effects, along boundary layer edge loci computed on the basis of the local pressure gradient. The inviscid flow field pressure and shock shape are obtained from data generated by the GE 3D Flow Field Program (Ref. III-1), 3IFF.

Comparison of the 3VFF heating predictions with wind tunnel data in air is shown in Figure IV-1 for a representative bicoric geometry for M_{∞} = 12.0. Vaglio-Laurin local heating distributions were used in these predictions and in all aerocapture vehicle frustum heat protection and lyses. The good agreement shown in this figure is typical and thus verifies the prediction techniques for the biconic class of configurations that will be used as baseline in this study. Local convective heat transfer distributions have been computed at conditions representative of peak heating in CO₂ and are illustrated in Figures IV-2 and IV-3.

- 1. Atmosphere Models Atmospheric density and speed of sound variations with altitude were provided by JPL and are present in Figures IV-4 and IV-5 for the various planets.
- 2. Reference Laminar Stagnation Point Hea Transfer The Reference laminar stagnation point heat transfer rate in ${\rm CO_2}$ at he stagnation point of a hemishperical nose can be approximated by:

$$\dot{q}_{S} = 1.156 \times 10^{-5} (H_{R} - h_{W}) \sqrt{\frac{P_{S}}{N}} \left(\frac{W}{cm^{2}}\right)$$

where: P_S in Atm. R_N in M_R in M_R in J/KG

This approach was selected after comparing the ivailable hypersonic ground test data in CO_2 to theoretical and semi-empirical approaches suggested by variou investigators, Ref. IV-1, and to our 3D viscour flow field solutions in $\mathrm{100}^\circ$ CO_2 employing Lees' solution, Figure IV-6. Estimates of the laminar stagnat on point heat transfer in CH_4 were also computed vith the above expression.

The reference laminar stagnation point heat transfer rate in 89% H₂ = 11 He (by volume) can be approximated by:

$$\dot{q}_s = 3.50 \times 10^{-6} (H_R - h_W) \sqrt{-\frac{15}{N}}$$

This approach was selected for consistency with the ${\rm CO}_2$ results and after examining results presented by Moss for Jovian entry, Ref. IV-2, Figure IV-7

3. Reference Maximum Turbulent Heat Transfer Rate - For the range of planetary entry conditions considered, transition to turbulent flow will occur prior to peak heating as far forward as $X/R_N=3$, except for the shallow Titan entries where it occurs after peak laminar heating (Figure IV-21). Vehicle shape, angle of attack, and free stream density and velocit are the first order parameters affecting magnitude of the turbulent heat transfer rates. Gas composition expected to be a second order effect for CO_2 and CH_4 .

The reference turbulent heat transfer rate in CO₂ is taken as the maximum value of the turbulent heat transfer rate occurring on a hemispherical nose at zero angle of attack. It can be shown that this maximum occurs at about 33° off the stagnation point, assuming a modified Newtonian pressure distribution and can be cast in terms of the free stream conditions. Ref. IV-3. as:

$$\dot{q}_T R_N^{0.2} = 1.943 \times 10^{-7} \rho_m^{0.8} V$$

The constant has been increased for air by a factor of 1.24 to bring the estimate into line with air results from the 3VFF code. Estimates of the reference turbulent heat rate in CH_4 were also computed with the expression above.

The reference turbulent heat transfer rate to a hemisphere in 89% H₂ - 11% He is approximated by:

$$\dot{q}_T R_N 0.2 = 6.15 \times 10^{-8}$$
 $p_{\infty}^{0.8} V$

The constant in this equation was selected after examination of the non-plowing turbulent heat transfer results presented by Moss for Jovian entry, Refs. IV-4 to IV-6.

4. Turbulent Leeward - Turbulent leeward eating data in air for spherically blunted cones at angle of attack has been revi wed by Nestler, Ref. IV-7. He concluded that leeward turbulent heating le els are less than zero angle f attack values and are relatively independent of freestream Reynolds Number, approaching a $\frac{h}{h_{\alpha}=0}=.3$ for α/o_c values greater than about 2. Typical α/o_c values of this study range from about 3 to 4 for the aft cone. This value $c=\frac{h}{h_{\alpha}=0}=.3$ was used throughout this study, in ependent of gas composition and angle of attack. This is considered a reasonable approach at this stage of evaluation, since the leeward heat protection weight is much less than the windward.

C. RADIATIVE HEAT TRANSFER

The Pioneer Venus and Galileo Programs have provided recent impetus for the development of full viscous shock layer solutions for the radiative heat flux distribution on sphere cones, Ref. IV-8 and IV-2, as well as more approximate techniques. Refs. IV-9 and IV-10. Design studies have previously been completed using these techniques in both CO₂ and H₂ - He mixtures and reported in Refs. IV-5. IV-11, and IV-12. For this initial assessment of radiative heat transfer rates experienced by the Generic Aerocapture vehicle, engineering correlations confistent with results produced by these more comprehensive codes have been employed to establish approximate radiative heating levels.

1. Stagnation Point Radiative Heat Transfer - The radiative heat transfer calculations in CO₂ are based on the non-adiabatic shock layer results of Page and Woodward, Ref. IV-13, which is an extension to the Venus atmosphere of a theory previously applied to earth entry, Ref. IV-14. In order to facilitate design calculations, the radiative heating levels given in Ref. IV-13 as Table 1 in terms of re-entry velocity, stagnation to reference pressure ratio, and stock layer standoff distance have been correlated, Ref. IV-15, by separating the results into three velocity regimes. The equation defining this correlation is:

$$\dot{q}_{R_{NA_0}} = \lambda (p)^{1.16} \left[\frac{V_{\infty}}{10^4}\right]^{\sigma} \delta o^{0.56} (W/cm^2)$$

where:

$$\sigma = 19.2$$
, $\lambda = 6.2(10^5)$, $V_{\infty} \le 7000$ m/sec
 $\sigma = 4.1$, $\lambda = 2(10^2)$, $7000 \le V_{\infty} \le 10,000$ m/sec
 $\sigma = 9.12$, $\lambda = 2(10^2)$, $10,000 \le V_{\infty} \le 13,000$ m/sec
 $\rho = 10cal$ pressure in atmospheris

 δ_0 = shock standoff distance in centimeters

Although the usually accepted value of the exponent of adiabatic shock standoff distance is 0.6, a value of 0.56 appeared to give a slightly better comparison with the results of Page and Woodward. Figure IV-8 is a plot of the radiative heat flux calculated using the correlation equation vs. the values given in Ref. IV-13. The radiative rates of Page and Woodward were used since they are the most recent complete parametric results available, and because the results of previous analyses, such as those of Wolf and Spiegel, Ref. IV-16, were no in a form suitable for ease of computation, or did not include the important CO (+4) contribution to the heating rates in a carbon dioxide atmosphere.

Since the published Page and Woodward radiative heating rates are for a non-adiabatic shock layer, no correction factor was necessary to account for non-isothermal effects. This correlation of the Page and Woodward results his been applied to several Pioneer Venus design cases and compares favorably, Figure IV-9, to the more complete calculations reported by Brewer, Ref. IV-12, employing the computational technique developed by Falanga and Olstad, Ref. IV-9.

Also of concern is the effect of shock layer cooling on the convective h atimi. Figure IV-10 presents a plot of the stagnation point convective heating results of Page and Woodward compared to the stagnation point rates predicted by the methods of Zoby, Ref. IV-17, Marvin and Deiwert, Ref. IV-18. Note that the Page and Woodward results are for 90%, CO_2 , 10° N_2 , while the other theories are for 100% CO_2 . Also, the Marvin and Deiwert results are calculated using the resimplified equation (Equation 11, Ref. IV-18). No significant difference due to shock layer cooling is indicated by the results of Figure IV-10.

The radiative heat transfer calculations in He - $\rm H_2$ mixtures are based correlation of the Project Galileo stagnation point results reported by Brew r, Brant, and Fogaroli, Refs. IV-10 and IV-11. The Galileo results were generated

based on the viscous shock layer solutions of Moss, Ref. IV-2, for the radiative flux distribution along the surfaces of large angle sphere cones and hyperboloids and the tabulated matrix of precalculated RAD/IQUAL code results of Nicolet. Refs. IV-19 and IV-20. The correlations of the Project Galileo results is modeled after that suggested by Stickford and Menard, Ref. IV-21, for a 61% H2 - 36% He + 3% N_e mixture and takes the form, Figure IV-11, of:

$$\dot{q}_{R_{A_0}} = \lambda \rho_{\infty}^{1.23} \left(\frac{v_{m}}{10^4} \right)^{\sigma} \delta_0^{0.56}$$

Based on the results presented in Ref. IV-10, he radiative heating can be expected to be a factor of two higher for the leavy atmosphere (78% $\rm H_2$) and bout half the nominal value for the light atmospher (100% $\rm H_2$).

Hypersonic radiative heat transfer results in $\mathrm{CH_4}$ are not yet available, and generation of them was beyond the scope of this study. For purposes of estimating the radiative heat transfer from radiating $\mathrm{CH_4}$ the $\mathrm{CO_2}$ correlation was employed. Preliminary results of computations in radiating $\mathrm{CH_4-N_2}$ mixtures, Ref. IV-3%, indicate this to be a reasonably conservative approach.

2. Shock Stand Off Distance - The shock's and off distance around the entry probe is obtained from an exact General Electric flow field calculation in 190% ${\rm CO}_2$. This calculation technique has been well validated in air, e.g., see Pef. IV-22. The full shock shape employed is shown in Figure IV-12. The stagnation point adiabatic shock stand off distance is compared in Figure IV-13 to Sertin, Ref. IV-23, and Li-Geiger, Ref. IV-24, relationships for predicting the shock stand off distance in air. The flow field result favors the Li-Geiger relationship. Ridyard and Storer demonstrated in Ref. IV-25 that for values of $\rho_2/\epsilon_1 > 29$ the Li-Geiger relationship is preferred over Serbin. In addition, Serbin, Pef.

IV-23, and Storer. Ref. IV-26, have recognized that the shock stand off distance can be correlated for various gases with a single parameter. ρ_2/ρ_m , the density ratio across the shock. Therefore, the agreement of the air and ${\rm CO}_2$ results is not surprising. This correlation was used to estimate the shock stand off distance in the ${\rm CH}_4$ and ${\rm H}_2$ -He mixtures.

3. Radiative Heating over the Skirt - for purposes of this study, the radiative heating over the conical section of the vehicle has been estimated from a review of the sphere cone distribution: reported in figure 5 of Ref. IV-10 for H₂ - He mixtures and in Figure 8 of Ref. IV-12 for CO₂. Employing a tangent cone approach, the equivalent cone angle of our forward frustum is 40° at α = 20° . This results in the radiative heat flux dropping to about 20% of the stagnation point value at X/R $_{\rm N}$ > 2.

D. ABLATIVE MASS LOSS

Several specific materials, representing general classes of ablators, were evaluated for generic aerocapture mission applications. For the milder heating experienced by the MSR and some areas of the SO2P, thermally efficient, shape stable charring ablators are attractive. These ablators include ESM 1004X-NS, ESM 1004AP and SAM. The ESM's are of the foamed silicone elastomer family which have a tailorable density. The 1004X-NS and 1004AP have densities of 240 and 580 kg/m 3 and are shape stable to heat flux levels of 85 and 90 W/cm 2 . SAM, a derivative of Silica RSI, is expected to be shape stable at heat fluxes up to 85 W/cm 2 .

For those areas of the vehicle and those missions that receive heat transfer rates above 90 W/cm², higher performance ablators that experience char surface recession by melting, vaporization, sublimation, or mechanical scrubbing must be considered. In the heat flux range of approximately 90 to 565 W/cm², ESM 1004 LPS

(ρ_V ≈ 886 kg/m³) will probably provide the lightest weight heat protection option. Performance of this material, in an air environment has been described in Ref. IV-27. Char melting commences at a heat transfer rate of about 90 W/cm² and proceeds at higher melt rates as the heat transfer rate is increased. The variation of char mass loss rate with incident heat flux in air is illustrated in Figure IV-14, taken from Ref. IV-27, and is incorporated in REKAP. The mass loss rate is not expected to be affected by the atmospheric gas composition.

As the heat flux increases into the range of 565 to 1130 W/cm², material. like phenolic hylon ($\rho_V = 1200 \text{ Kg/m}^3$) may be attractive. This material has an attractive thermal conductivity and is nearly shape stable for low values of aerodynamic shear (\leq 48 N/m²), Ref. IV-28. For shear levels above 48 N/m², the char fails mechanically and is swept away, thus forcing the use of a material like carbon phenolic. Flight and ground test char removal data were evaluated in Ref. IV-28. For aerodynamic shear levels allove 48 N/m², a correlation of char removal data was made of the form $Q^* = \frac{q_{\text{chw}}}{P_{\text{surface}}} = f\left(H_{\text{R}} - h_{\text{w}}\right)$. For values greater than 27.8 MJ/kg ($V_{\text{E}} = 7.5 \text{ km/sec}$) $Q^* \rightarrow 31.2 \text{ MJ/kg}$. This value has been employed to generate material tradeoffs in this study.

For application in the higher heat flux ar as, $\dot{q} > 1130 \text{ W/cm}^2$, material of the carbon phenolic family ($\rho_V = 1450 \text{ kg/m}^3$) are usually attractive. The refer ent activity on the Pioneer Venus and Galileo programs and the many Earth entry scientific and strategic programs have provide a large bank of both analytical and test results. Ablation material surface reactions with the dissociated boundary layer have been modeled for several corbon atmosphere combinations. Carbon ablation in CO_2 was evaluated for the Foneer Venus program, Ref. IV-2. It was shown that the difference between performance in CO_2 and air is small in

the sublimation region and in the diffusion controlled regime the mass loss is about 60% greater in CO_2 . Figure IV-15. Carbon ablation in H_2 - He mixtures was evaluated for the Galileo program. Ref. IV-10. In this case, a much greater difference was observed between the air and H_2 - He results. Figure IV-15. Sublimation is seen to commence earlier in the H_2 - He mixture than in air or CO_2 and the wall gas onthalpy, the primary term that controls the carbon surface recession (higher h_{W} resulting in lower mass loss rates), is seen to be considerably higher for the H_2 - He mixture. Carbon mass loss rates in dissociated CH_4 were unavailable at initiation of this study, and have been recently generated. These results are illustrated in Figure IV-15 for a local pressure of one atmosphere, and have been employed in this study to generate carbon phenolic thermal response and mass loss results.

E. MATERIAL THERMAL RESPONSE

Having determined the heating rates, heating times and time integrated heating loads using the techniques discussed above, TP trade studies have been conducted through use of design correlations derived from the results of the GE Reaction Kinetics Ablation Program (REK 1). The REKAP ablation analysis technique (Ref. 1V-29) was developed to provide predictions of the surface recession, degradation and thermal penetration for a variety of materials over a wide range of flight conditions and environments. The program includes the decomposition of a plustic material and the flow of pyrolysis gases through a porous char, the effect of mass addition on aerodynamic heat transfer, surface recession caused by melting and/or vaporization, and the oxidation and vaporization of graphitic type materials. This code has made possible the analysis of numerous materials including the silicone and epoxy elastomers (e.g., ESM), carbon phenolic, the

family of graphites and carbon-carbon composites, teflon, silica phenolic, phenolic nylon, boron nitrides, quartz, and other silica-based glassy materials like RSI and SAM. The REKAP computer code has been used successfully on a number of ground and flight test programs.

The TPS design rationale for the aerocapture vehicles involves specification of bond and structure thicknesses and maximum allowable temperatures in both bond and structure. In the preliminary vehicle design phase, the heatshield materials have been sized and bonded with 25.4 mm of an PTV silicone elastomer to the structure. The peak bond temperature is limited to 590K with the structure soaking out to a temperature of nearly 590K at a time when loads are low. The IPS is normally selected by review of the heating rates for the range of trajectories considered and usually sized by the larger heating loads of the shallow path angle trajectory.

F. HEAT PROTECTION MATERIAL SELECTION

1. <u>General Considerations</u> - Heat protection material selection is driven by the requirement to minimize the total TPS weight while choosing from contemporary materials. Other materials may become available prior to hardware implementation of the aerocapture vehicle. It has been found that a meaningful parameter to indicate potential range of a materials application is the peak heat transfer rate expected. The variation of the peak heat transfer rate on the aerocapture vehicle forecone on the windward meridian across the entry corridors for the MSR, SO2P and Uranus entry vehicles is illustrated in Figure IV-16. The peak heat transfer rate also varies significantly over the aerocapture vehicle, Figur 5 IV-17 and IV-18, being as much as a factor of five lower than the windward meridian on the side ray location and as much as a factor of ten lower on the leeward side.

2. MSR Thermal Protection Selections - The MSR configuration evaluated is a scaled down version of the Mars Single Mission Aerocapture Vehicle selected in the previous study, Ref. I-l. with a conical stirt extension added to the aft frustum, Figure III-3, for a total length of 1.6M. Reference heat transfer, freestream Reynolds Number, and dynamic pressule were computed during the guidance and control studies and are summarized in Table IV-1.

Following the boundary layer transition on et criteria logic outlined in Ref. 1-1, an Earth entry flight derived $\mathrm{Re}_{_{\mathrm{O}}}$ criteria, Ref. IV-30, has been applied to the MSR vehicle. To simplify this study, the local Re_0 boundary layer trip criteria has been translated back to a freestream Reynolds Number. It was determined that for the MSR vehicle, the frees ream Reynolds Number that would result in turbulent flow covering most of the vindward side of the vehicle would be a 2.2 x $10^5/\text{meter}$. A review of the vilues of Rey, at $|\dot{q}_T R_N^{-0.2}|_{\text{max}}$, Table IV-1, indicates that transition to turbulent flow will have occurred prior to the peak of $\dot{q}_T R_N^{-0.2}$. Employing techniques lescribed in Section IV-B, heat transfer rate time histories for a representative forward cone body point on the windward meridian (X/R $_{
m N}$ = 12.5) have been generated for the range of entry path angles and are illustrated in Figure IV-19. Pat transfer rate distribution over the vehicle at the time of peak heating is il istrated for the steep path a ile in Figure IV-17. The general heat protection material selection criteria bore been superimposed on this Figure. The parameters that drive the sizing of he heat protection materials are the time integrated heat flux and the heating time. It is seen from Table IV-1 that these parameters are maximum for the shallo path angle entry case. The TPS materials selected from consideration of th peak heat flux values of the steep trajectory, Figure IV-17, have been size for the time integrated heat flux and heating limes experienced during the

shallow trajectory. These heat loads and heat protection material requirements are summarized in Table IV-2.

The ablative materials selected are consistent with those selected as minimum weight candidates for the previous Mars Aerocapture Vehicle Definition Study. Ref. I-1, since the peak heat transfer rates, heat loads and heating times are quite similar.

The MSR vehicle requires a thermal protection material on the aeromaneuter vehicle that can function in a reusable mode. It must function during the aerocapture maneuver and then subsequently during the entry maneuver. Low density ablators such as ESM and SAM are expected to be reusable with some small loss of thermal efficiency because of the charming experienced during the aerocapture maneuver. It was found in the previous study that due to the milder entry conditions of the out-of-orbit entry, the heat load was a factor of 5 less and the heating time a factor of 6 less than the aerocapture maneuver. Thus, it is expected that use of the precharmed ablator material for aeromaneuver will result in a peak bondline temperature of such less than 590K.

3. SO2P Thermal Protection Selection - The SO2P configuration evaluated is a scaled down version of the Mars Single Mission Aerocapture Vehicle selected in the previous study with a total length of 6.3M. Reference heat transfer, free-stream Reynolds Number, and dynamic pressure were computed during the guidance and control studies and are summarized in Table IV-1.

Following the boundary layer transition criteria logic described earlier for the MSR vehicle, a review of the values of Rey_{∞} at $\left[q_T R_N^{-0.2}\right]_{\text{max}}$. Table IV-1 indicates that transition to turbulent flow will occur generally before peak turbulent heating for the steep trajectories and after peak turbulent heating

would have occurred for the shallow trajectories. Convective heat transfer rate time histories for a representative forward core body point on the windward meridian ($X/R_N = 12.5$) have been generated for the range of entry path angles and are illustrated in Figures IV-20 and 21. Convective heat transfer rate distribution over the vehicle at the time of peak heating is illustrated for the steep path angle cases in Figure IV-18 for an entry velocity of 13 km/sec.

Radiative heat transfer to the stagnation point area in the Methane environment has been estimated, Figure IV-22, employing the CO_2 atmosphere results described in Section IV-C, since results for CH_4 are currently not available. It is seen that for the shallow trajectory, which sizes the heat protection system, the radiative heat flux at the stagnation point, is estimated to be only I7% as large as the convective heat flux or $\mathrm{V}_E=13~\mathrm{km/sec}$. For the purposes of sizing the heat protection system in this study, the total radiative plus convective heat load has been a sumed to be 1.25 times as large as the convective heat load. For the slower trajectories at $\mathrm{V}_E=8~\mathrm{km/sec}$, the radiative heating is assumed to be negligible.

The TFS materials selected from consideration of the peak heat flux values of the steep ($V_{\tilde{E}} = 13 \text{ km/sec}$) trajectory, Figure IV-18, have been sized for the shallow trajectory. These heat loads and heat protection material requirements are summarized in Table IV-3.

The materials selected for the high speed ontry have also been sized for the low speed, $V_{\rm E} = 8$ km/sec, entry. However, consideration of the peak heat transfer rates experienced during the slow speed entry indicates that low density charring ablators could be used over the entire SO2P vehicle and offer a lighter weight heat protection system. The materials selected as providing the lightest weight locally while meeting the constraint of performing adequately for

the peak heat fluxes expected for the steep trajectories are identified with their thickness requirement in Table IV-4.

Several tradeoff studies were conducted in arriving at these final selections. Employing the char mass loss models described in Section IV-D, char recession histories were generated for ESM, phenolic nyl n, and carbon phenolic for the windward meridian location at $X/R_N = 12.5$, Fig re IV-23. It is seen that the ESM experiences nearly 6.8 cm of recession, phenolic nylon about 3 cm, and carbo phenolic a negligible amount in the methane en ironment. The shape stability of the carbon phenolic is highly desirable, although as currently constructed it is not as good an insulator as ESM or PN.

The thermal response of carbon phenolic whin exposed to a typical methanheating environment on the windward meridian of the forward cone has been
predicted with REKAP for both 8 and 13 km/sec intries. The predicted surfaces
temperature reached a maximum value of a littlinover 2200K. This was not
sufficient to initiate sublimation, as would be expected from the results shown
in Figure IV-15. The carbon phenolic thicknes is vs. maximum bondline temperature
occurring at soak out are illustrated in Figure IV-24. These data were factored
into our carbon phenolic thickness requirement data bank for air, and a design
correlation for use in heated methane generates for this study.

Carbon phenolic, although attractive as a leat protection material for short periods of intense heating (Figure IV-16 summa izes some contemporary applications) is not a very weight efficient insulator. This can be confirmed from a revolve of the thermal properties in Table IV-5 and a convarison of the carbon phenolic and low density ablator weights summarized for the 8 km/sec entry of SO2P in Figure IV-25. An experimental development material, PD 218, Ref. IV-31, is a low

density carbon foam with excellent thermal properties and adequate structural properties for this application. Thermal response calculations were performed on a carbon phenolic PD 218 composite. The carbon phenolic outer layer is employed to help suppress the surface temperature response and minimize the char mass loss. The PD 218 is employed as a light weight insulator to meet the bondline temperature requirements. The computations indicate that a combination of 5 mm of carbon phenolic plus 4 cm of PD 218 (a combined weight of 13.7 kg/m²) can replace 3.6 cm of carbon phenolic (51.3 kg 12). This concept provides the potential for significant weight reduction for the $V_{\rm E}$ = 13 km/sec SO2P Titan entries.

4. Uranus Thermal Protection Sélection - le Uranus aerocapture configuration evaluated is the scaled down version of the Mai. Single Mission Aerocapture Vehicle selected in the previous study, Ref. 1 %, with a total length of 6.3 m. Reference heat transfer, freestream Reynolds Number, and dynamic pressure were computed during the guidance and control studia; and are summarized in Table IV-1.

Following the boundary layer transition criteria logic described earlier for the MSR vehicle, a review of the values of Rey at $\left[q_TR_N0.2\right]_{max}$, Table IV-1. indicates that transition to turbulent flow will always occur before peak turbulent heating.

Convective heat transfer rate time histories for the stagnation point and a representative forward cone windward location where turbulent flow predominates have been generated for the 12° entry path ang a case for the nominal atmosp are. Convective heat transfer rate distributions over the vehicle at the time of leak heating is illustrated for the 12° entry case as Figure IV-26.

Radiative heat transfer to the stagnation point area in the 89% $\rm H_2$ = 11% He mixture have been estimated employing an engineering correlation of Galileo results described in Section IV-C. The convective heat transfer rate dominates the TPS response. Figure IV-27. The stagnation point convective heat transfer rate peaks at 3728 Btu/ft²sec (4213 w/cm²), the adiabatic non-blowing radiative heat transfer rate at the stagnation point peaks at about 780 Btu/ft²sec (880 w/cm²), the turbulent heat transfer rate t X/R_N = 12.5 peaks at 2406 Btu/ft²sec (2719 w/cm²) with the radiative decleasing to about 20% of the stagnation point values at that station. Base on these comparisons, the radiative heating has been considered negligible for this study, although in subsequent design studies it must be included.

With peak heat transfer rates over most of the vehicle being high enough that carbon mass loss will be significant, the firs TPS evaluated was all carbon phenolic over all sides of the vehicle. The required nominal ablator thicknesses are summarized in Table IV-6. Some weight reduction might be possible by use of a carbon phenolic - PD 218 composite, where the carbon phenolic thickness is sufficient to cover the expected char mass los with margin and the PD 218 is, used to provide a lighter weight insulation later.

5. Control Surface Heat Protection

Split windward flaps are being considered some of the control options, Section V. Typically, these flaps introduce somificant flow field perturbations and experience heating rates well above the loal approach conditions. The flaps are expected to be deflected at about 5 with a differential deflection from that point of $\pm 5^{\circ}$. This creates an effective total impact angle to the flow of from 27 to 37°. The forecone has an effective impact angle of 40° .

For the purposes of this study, the heat protection requirements for the flaps is assumed to be equivalent to the requirement on the forecone. For SO2P, if the heating to the flaps is a factor of two higher, the flap thermal protection requirements will increase by 30%. If the heating increases by an order of magnitude, the thermal protection requirement will increase by 180%.

G. SUMMARY

Thermal protection materials have been selected and sized for a generic aerocapture vehicle for entry at Mars, Titan and Uranus—in the entry corridors defined in the trajectory and control simulation studies described in Section V. Hypersonic convective and radiative heat transfer to these vehicles was estimated based on a combination of 3D inviscid and viscous flow field solutions generated for the aerocapture vehicle and engineering correlations developed from the numerous complete convective and radiative heat transfer evaluations conducted in CO_2 and H_2 -He mixtures for the Pioneer Venus and Galileo programs.

A summary is presented in Table IV-1 of the peak and time integrated convective and radiative heat transfer rates, the peak dynamic pressure, the freestream Reynolds Number at peak turbulent heating and the heating times computed. I' was concluded that generally transition to turbulent flow is expected to occur prior to peak heating except for the shallow path angle entries into Titan, Figure IV-19, IV-20, and IV-21.

The thermal protection material selection and sizing is driven by the phak and time integrated heat transfer rates experienced and the heating times, summarized in Figure IV-16. It is seen that a propriate contemporary materials are available ranging from low density ablator for MSR and low speed Titan entry to high performance ablators for Uranus and high speed Titan entry.

However, the long heating times associated with use of the high performance ablators fall outside the demonstrated capability of current entry vehicle applications and thus need to be experimentally demonstrated.

Thermochemical response of graphitic heatshields in ${\rm CO_2}$ and ${\rm H_2}$ -He mixtures was available from the previous studies; response in a ${\rm CH_4}$ mixture was not available, so was generated during this study.

Sizing of the thermal protection system was accomplished by employing design correlations derived from the results of GE RELAP. The nominal thermal protection material requirements for the generic aerocapture vehicle in the several mission applications are summarized in Tables IV-2, IV-3, IV-4, and IV-6. Comparisons between the thermal protection material weight required of representative windward meridian locations are presented in Figure IV-28. For the low speed Mars and Titan entries, low density, near shape stable ablators offer attractive solutions. Low density ablators were selected over a metallic reradiative type or an RSI approach due to the limited reuse required, simplicity of design, the fabrication and applications data base existing and cost. For the 13 km/sec Titan entry in CH₄, carbon phenolic is predict to be shape stable since there is no oxidation experienced and the peak surface temperature expected is well below the sublimation temperature. A developmental material, PD 218 (a low density carbon foam), used as an insulative layer is slown to reduce the local TPS weight requirement by a factor of 3. For Uranis entry, a high performance ablator such as carbon phenolic is required and experiences some mass loss due to sublimation.

	ता के ज के बी ्रोज है	285	255	270	0Z*	310	242	4		239) 된	id pi en) 183	272	43	43	हा। भा १९९
	(1) (2) (3) (4) (4) (5) (7) (7) (1) (7) (8)	7.25	7.255	7.255	13.255	10 10 10 10 10 10 10 10 10 10 10 10 10 1	13,255	Z1.5E5	27.25	111	37.35	77.315	53.55	333.21	11.1 1.1 1.1 1.2 1.3 1.2	14) 14) 14)	141 141 141 141
	6 G	\$230	57.53	() () ()	585	() (i) (ii) (ii)		(3 (1) (1)	111	11		k 3 e 3 i 3 i 3 i 3	11242	#35°.	111	Z . 7EE	-
	11 (1) (1) (1) (1) (1) (1) (1) (1) (1) (() () () ()		111	27002		24755	1.)	1) 1.1 1.1 1.4 1.4	; } ; } ; 6} ; 6}	k 3 +	6A 11 11 14.3 Fire	1 4 1.1 1.1 101 for	43 144 17 17	(4.) (4.)	113	11 1 11 1 1 1
	1 134 13 2 41 13 3 41	11	(*) 	u) ii)	111 124 1.2	111 111	325	1 1 60 67	117 (1) (2)	:;	1, 3 1,12 103	673 4.1 4.1	47) 6) 40)	3883	101	113 113 113	() () () () ()
	1 to 0 0 0 to 0	3220	(A)	() ()	28135	00252	59522	13 PA	49000	1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000	23588	76507	LL') Lud	() () () () () () () () () ()	11) 12) 13)	10
	1	76	m,	in C	2	9	37:	203	(4) (4) (*)	• 1	14 t 1 2 1 t	e) (0)	ស ចា ព	1616	1 (1) 1 (1)	IX Fr	
7 7	3	(P) (+) (1)	(1)	117 148 175	255	E	100 100 100 100	ur's	ID Id ID IN	123 643 1 3 443	LLA LLE Ex-	11 ° 10 ° 10 ° 10 ° 10 ° 10 ° 10 ° 10 °	14 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 *	un tal Co tr	183	161 161 17 191	
	2-164 83 6 83	un ez res	oi iii	22.0	5.2	7.	22.5	6.	00 m	34.8	ofs ofs en	8	0.65	(h)	114 17 5 14 1	ez. (eg lod	
	ta, es tal = di 13 Ch 13 Sm	US.			3.0			ن. د <u>ه</u>						133	<u>`</u>	3	
	111 C 8: dy 13	5.5	83 73	က် က	23	28	33	25	%	es.	12 191 171	5.32	2.5	a,	21	O.	r ND
		5.36			a.			€' }_			(% ;*** !			39.0			·
	7.37£ #3/45	773		• •	546									223			
	200 B	57.5			513		wells do a							**			
	1.00 4.80 (3.	Sega		. •	TITAS	## · · · ·	Mark of an area				·· · • • • • • • • • • • • • • • • • •	- Modern	····		ينونو القية	b di- - dia base.	

17-50

Table IV-2 MSR Thermal Protection System Requirements Summary $\begin{array}{c} \text{Ma.s Entry} \\ \text{V}_{E} = 5859 \text{ m/sec} \end{array}$

Vehicle Station X/R _N	Paripheral Location (deg.)	/q _c dt (w·sec/cm ²)	Flow Lam.	-State Turb	Material Selected	Thick.	Unit Weight (kg/m²)
2	0	2.30 ⁺⁴	Х	3.4	ESM1004AP	1.24	7.2
5		2.28 ⁺⁴	х	Х		1.24	7.2
18		4.4+3	х	Х		0.91	5.3
35.6		1.78+4	х	X		1.19	6.8
49.4		1.24 ⁺⁴	x	χ		1.12	6.4
2	90	3.74 ⁺³	х	Х	SAM	1.83	2.3
5		5.72 ⁺³	х	X		1.88	2.4
18		3,33 ⁺³	х	Х		1.83	2.3
35.6		1.36 ⁺³	x	х		1.75	2.2
49.4		1.49 ⁺³	х	х		1.75	2,2
5.5	180	1.72 ⁺³	x	х	SAM	1.75	2.2
18,5		1.0+3	x	х	Nomex Felt	1.93	1.6
35.6		407	x	х		1.88	1.6
2	90		х	х	ESM1004AP	0.89	5.1
5.5	1	5.72 ⁺³	x)	!	0.97	5.6
35.6		1.36 ⁺³	x	х		0.71	4.1
49.4	+	1.49 ⁺³	х	х		0.71	4.1

Table IV-3
SO2P Thermal Protection System Requirements Summary

Titan Entry

 $V_E = 13 \text{ km/sec}$

Vehicle Station X/R _N	Peripheral Location (deg.)	/q _c dt (w·sec/cm ²)	Flow -	State Turb	Material Selected	Thick.	Unit Weight (kg/m ²)
2	0	1.97 ⁺⁵	х		Carbon Phenolic	4.45	64.2
5		1.23 ⁺⁵	Х			4.06	58.8
18		1.98 ⁺⁴	x			1.85	26.9
31		5.84+4	х			2.92	42.5
5.5	90	4.04 ⁺⁴	х			2.46	35.6
18.5		2.05 ⁺⁴	х			1,88	27.3
31		1.00 ⁺⁴	Х			1.45	21.0
5.5	180	1.21+4	х		ESM1004AP	1.40	8.1
25		3.24 ⁺³	X		ESM1004X	1.99	4.74
5.5	90	1.04+4	X		ESM1004AP	1.73	10.0
18.5		2.05 ⁺⁴	X	y		1.55	8.9
31		1.00 ⁺⁴	×	у		1.35	7.8

Table 1V-4
SO2P Thermal Protection System Requirements Summary

Titan Entry

V_E = 8 km/sec

Vehicle Station X/R _N	Peripheral Location (deg.)	∫q _c dt (w•sec/cm ²)	Flow Lam	Stale Turo	Material Selected	Thick. (cm)	Unit Weight (kg/m ²)
0	0	5.54 ⁺⁴	X		ESM1004LPS	3.23	28.3
5		4.43 ⁺⁴	х	y		2.77	24.4
18		7.66 ⁺³	х	,	ESM1004AP	1.33	7.5
31	1	2.23 ⁺⁴	Х	>	1	1.55	9.0
5.5	90	1.34 ⁺⁴	х	>	ESM1004X	2.79	6.7
18.5	1	7.09 ⁺³	х	>		2.39	5.7
31		3.42 ⁺³	x	>		1.98	4.8
5.5	180	4.02 ⁺³	х	>	ESM1004X	2.08	5.0
25	+	1.09 ⁺³	х	x	SAM	1.98	2.5
5.5	90	1.34 ⁺⁴	х	>	ESM1004LPS	2.0	17.6
18.5		7.09 ⁺³	х	,	ESM1004AP	1.27	7.3
31		3.42+3	x		1	1.12	6.4

Lable IV-5

Comparison of Candidate Thermal Protection Materials

Thermophysical Properties

Material	Density kg/m ³	Thermal Conductivity W/m ^a K	Specific Heat (cal/gm K)
Carbon Phenolic	1450	6.4 x 10 ⁻¹	0.28
Phenolic Nylon	1200	2.3 x 10 ⁻¹	0.41
E5M 1004LPS	880	1.8×10^{-1}	0.31
ESM 1004AP	580	1.48 x 10 ⁻¹	0.31
ESM 1004X	240	9.6×10^{-2}	0.36
PD 218*	160	9.3 x 10 ⁻²	0.21
SAM	130	3.1 x 10 ⁻²	0.23
Nomex Felt	83	4.8 x 10 ⁻²	0.49
esta: 9 - a. de de composito, più altro-proprieto de l'esc. Società de l'esc.	· Links		

^{*} A DEVELOPMENTAL MATERIAL

Vehicle Station X/R _N	Peripheral Location (deg.)	≠q; dt. (w•sec/cm²)	Flow Lam	v = St.c.l.e Tur :	Material Selected	Thick.	Unit Weight (kg/m ²
0	0	5.75 ⁺⁵	х		Carbon Phénolic	4.83	69.8
5		3.32 ⁺⁵	Х			3.81	55.2
5		2.2 ⁺⁵	Х)		3.3	47.8
18		4.36 ⁺⁴	X)		1.65	23.9
31		1.25 ⁺⁴	X	,		2.49	36.1
5.5	90	6.0 ⁺⁴	х	Х		1.85	
18.5		3.4+4	х	Х		i i	26,9
31		1.62 ⁴⁴	х	,		1.52	22.0
5.5	180	1.63 ⁺⁴	x	1		1.19	17.3
25		4.9 ⁺³	- 1	>		1.19	17.3
		4.9	X	Х		1.02	14.6

Figure IV-1 Comparison of Predicted to Measured Local Heat Iranster Rate

On A Biconic configuration in Laminar Flos.

$$\approx = 20^{\circ}$$
, $M_{\infty} = 30$, $REY_{\infty} = 3.5 \times 10^{5}$ (1/M)

Figure IV-2 <u>Laminar Heat Transf r Distribution on</u>

Generic Aerocaptur <u>Vehicle in CO</u>2

Figure IV-3 Turbulent Heat Transfer Distribution on Generic Aerocapture Vehicle in CO₂

• MODEL 212 MAY 20, 1980 ORTON & APPLEBY TO BE PUBLISHED - ICARUS

Figure IV-4 Atmosphere Models for Genric Aerocapture

Figure IV-5 <u>Atmosphere Models for (eneric Aerocapture</u> - Speed of Sound (ariation)

Figure IV-6 Comparison of Availa le Theories with

Experimental Data or Hypersonic

Heat Transfer 1 100% CO2

IV-31

Figure IV-7 <u>Correlation of Hypersonic Leat Transfer Results</u>
in H2 - He Mixtures and Comparison to CO₂
IV-32

$$\dot{q}_{R} = \lambda (P/P_{S})^{1.16} (V_{\infty}/10^{4})^{5.56}$$
 $0.0 < (V_{\infty}/10^{4}) < 0.7, \sigma = 19.2, \lambda = 4.28 \times 10^{4}$
 $0.7 < (V_{\infty}/10^{4}) \le 1.0, \sigma = 4.1, \lambda = 2 \times 10^{2}$
 $1.0 < (V_{\infty}/10^{4}) \le 1.3, \sigma = 9.12, \lambda = 2 \times 10^{2}$

Figure IV-8 <u>Correlation of Hypersonic Reliative Heat</u>

<u>Transfer Results in 2</u>

ORIGINAL PAGE IS OF POOR QUALITY

- STAGNATION POINT
- $\delta = 32.4^{\circ}$

ANALYTICAL, Ref.
ENGINEERING CORRELATION

FIGURE IV-8

Figure IV-9 Radiative Heat Transfer Rate

Pioneer Venus Large Probe

Figure IV-10 Effect of Shock Cooling on Stagnation
Point Convective Heating in CO2

Figure IV-11 Variation of Stagnation Point Radiative Heating Parameter with Velocity for $89\ensuremath{\mathbb{S}}$ Hz - 11 $\ensuremath{\mathbb{S}}$ He

Figure IV-12 Generic Aerocapture Vehicie Shock Shape

Li-GEIGER (δ_{S}/R_{N}) = $\frac{K - \sqrt{2K - 1}}{K^{2} + 1 - 3K + \sqrt{2K - 1}}$ • SERBIN (S_S/R_N) = $\frac{0.667}{K-1}$

55° SPHERE CONE, $R_{\rm N}/R_{\rm B} = 0.5$ $M_{\infty} = 41.8$, $\rho_{\infty} = 2.05 \times 10^{-6} \ {\rm gm/CM}^3$ \triangle - FLOW FIELD SOLUTION IN 106% CO_2

Figure IV-13 Stagnation Point Adiabatic Shock Stand Off Distance

Figure IV-14 ESM1004AP and ESM1004LPS Mass Loss Rates

 c^{H}

2.0

1.0

m = 'A

GAS ENTHALPY - MJ/KG

4000

3500

3000

WALL TEMPERATURE -

Carbon Ablative Performance

Expected for Generic Aerocapture to Current Entry Vehicles Firms 14-16 Comparison of Peak Heating Rates and Heating Times

- Windward Forecone Location

Figure IV-17 Peak Heat Transfer lates for MSR Vehicle

Figure IV-18 Peak Convective Heat Transfer Rates
for SO2P Vehicle

Figure IV-19 Heat Transfer Rate History for MSR Vehicle

Figure IV-20 Convective Heat Transfer Rate History for SO2P Vehicle Titan Entry

Figure IV-21 Convective Heat Transfer Rate History for SO2P Vehicle Titan Entry

Figure IV-22 Radiative Heat Transfer Rate History for SUZF Venicle

Titan Entry

1V-47

ESM 1004 LPS,
$$\rho_{\rm V}$$
 = 881 KG/M³

PN.
$$\rho_{\rm vr} = 1201 \text{ KG/N}$$

Figure IV-23 Ablator Char Recession for SO2P Entry

Figure IV-24 Carbon Phenolic Thick ess Requirements for SO2P Entry into a M thane Atmosphere

Figure IV-25 Comparison of Local T! Material Requirements

for \$02F Entry, \ = 8 km/sec

Figure IV-26 Peak Convective Heat Transfer Rates for Uranus Vehicle

Figure IV-28 Comparison of Local Windward TPS Material Requirements
on the orecone

V. CONTROL SYSTEMS

A. INTRODUCTION

Several concepts for control of the aerocap ure vehicle during atmospheric flight have been evaluated during this study. I phasis was placed onthe use of aerodynamic control techniques for countering the effects of roll disturbance torques. Performance of the several systems was demonstrated on a 3-1/2 DOF simulation using the atmospheric and planetary characteristics of Titan as a baseline (3-1/2 DOF indicates a simulation of a three degree of free low controlled trajectory plus a one degree of freedom roll control loop). Weight estimates were made for each system along with atmospheric exit accuracies.

Six control approaches were studied:

- 1. Reaction Control System (RCS) Roll Control
 - This is the simple on-off system with \pm 5° deadband described in Ref. I-1. The control torque was set to provide 77 deg, sec² roll control acceleration with worst case roll asymmetry torques luring the constant drag phase.
- 2. RCS with Pulse Width Modulation (PWM)

In this case the duration of the jet pulse is made proportional to the roll error signal. Ignoring propulsion time delays this results in an RCS system whose performance is essentially linear and provides a significant increase in efficiency of fiel utilization.

3. Flap Trim Control

With this scheme flaps are used to counter the effect of roll asymmetry torques but response to roll commands is accomplished by means of an RCS roll central system.

4. Flap Control

In this case flaps were used to provide response to roll commands as well as to counter roll disturbance torques. Experience indicates that the same flaps could be used to provide the required pitch/yaw damping. A full 6DOF simulation is required to include pitch/yaw damping and is recommended for investigation in further studies.

5. Moving Mass Roll Control (MMRC) Trim Control

In this mode, the MMRC is used only to counter the effect of roll disturbance torques and an RCS system provides response to roll commands. Performance on a 3-1/2 DOF simulation is essentially identical to that of the Flap Trim System.

6. MMRC Roll Control

In this case the MMRC is sized to provide response to roll commands as well as to counter the effect of roll disturbance torques. Roll control performance on a 3-1/2 DOF simulation is essentially identical to that of the Flap Control System. However, the MMRC system would not be capable of providing pitch, yaw damping.

The control system simulation trade-off st dies used an SO2P Aerocapture vehicle and a Titan equatorial trajectory with the following parameters:

Entry Conditions

H = 500 km

V = 10 km/s

Y = -29°

Exit Conditions

 $V_{EXIT} = 2400 \text{ m/s}$

AXBR = $D_{REF} = -39.23 \text{ m/s}^2 (4G)$

Vehicle Characteristics

M = 2606 kg
A = 5.47 m²

L_A = 10.75 m

I_R = 1324 kg - m²

I_P = I_Y = 5511 kg - m²

$$\alpha_T$$
 = 25°

 C_A = .317

 C_N = .939

 C_D = .684

 C_L = .717

 $\frac{L}{D}$ = 1.048

 $\frac{M}{C_1 A}$ = 696.5

 $\frac{M}{C_1 A}$ = 664.5

Although these conditions were selected early in the study for the control simulations, they are representative of the SO2F aerocapture vehicle (baseline mission for generic aerocapture). The results estained can be applied to a specific SO2P mission or other planetary missions.

B. RESULTS AND CONCLUSIONS OF THE CONTROL SYSTIM EVALUATIONS

Results of the control trade-off study are summarized in Table V-1 which lists estimated weights and effect of disturbance torque on exit velocity for the six control approaches.

- a) The roll disturbance torques, as defined in Ref. I-1, are primarily due to c.g.-c.p. offset (C_2). For the control studies that were performed, a C_2 of 1.56 cm was used. This value is derived from the offset used in Ref. I-1, 2.5 cm, using a ratio of vehicle base diameters. The control system performance results presented in this section are based on the 1.56 cm offset. However, an updated analysis of vehicle design indicates that the value of C_2 can be held to $0.\pm0.6$ cm. As a result, the control system performance requirements were extrapolated and the values of control system mass in Table V-1 were colculated for the 0.6 cm offset.
- b) The exit velocity accuracy in this table is the total spread in exit velocity with C_{DIST} (disturbance torque coefficient) = 0 and $\pm 2.815 \times 10^{-5}$.
- c) The RCS system mass has been estimated by extrapolating the results detailed in Ref. I-1.
- d) The mass estimate for the PWM RCS system represents the theoretical minimum that could be achieved with an RCS system. Propulsion time delays were not included in the simulation. The effect of these delays can be partially compensated by control logic design. Therefore, the calculated system mass represents a somewhat optimistic solution.
- e) Control simulation studies of flap systems utilized linear approximations of flap aerodynamics and limited roll flap deflection to $\delta_1=\pm 10^\circ$. The control moments (i.e. product of $C_{1\delta}$ and deflection angle) derived from this simulation were used to determine the flap performance requirements. The mass calculated for the flap system in Table V-1 is based on a deflection of $\delta_1=4.8\pm4.8$ degrees (see Section III). Further optimization of flap size and deflection as a function of aerodynamic performance and mass is recommenced for further studies.

f) In Ref. I-1 flaps for a Flap Control System were used to counter maximum roll asymmetry torques and still provide twice the required control response for the dynamic pressure of the constant drag phase. Applying this philosophy to the simulation of the Titan vehicle with $C_2 = 1.56 \ c$ led to a requirement for 7° flap deflection to counter the disturbance torque leaving only 3° for control. This led to an error in exit velocity for one posarity of CDIST. To minimize this effect flaps were sized so that disturbance torques could be countered by 5° flap deflection, which of course leads to somewhat larger flaps. Thus with the Flap Control approach there is a potential trade-off between flap size and exit velocity error. The weight estimate in Table V-1, Column 4, is based on flaps which can provide twice the worst case roll disturbance to ques.

The following conclusions can be drawn from the results of this study:

- a) For the Titan mission, flaps do not offer a minimum weight solution for aerodynamic control. This is due primarily to the TPS mass requirements. Another factor is the need to minimize flap deflections with the large angles of attack postulated. However, it should be recognized that flaps do add flexibility to the system in that they can provide α_T adjustments o compensate for vehicle tolerances such as longitudinal c.g. c.p. locations. Fl. is also can handle larger lateral c.g. c.p. offsets with minimum mass increase is lative to the RCS system. For example, if C_2 increases from 0.6 to 1.56 cm, the RCS and MMRC weights in Table V-1 will increase to more than double their value while the flap weight can be compensated by additional deflection. Also for a generic vehicle, packaging a moving mass or moving part of the payload become impractical.
- b) The Flap Control approach in which flap are used both to counter roll disturbance torques and to provide response to \mapsto 11 commands requires larger flaps

than the trim only control. However, further de ign trade-offs could reduce flap size.

- c) The on-off reaction control approach do s not appear attractive even with reduced value of C2. An RCS scheme with more so histicated control logic such as pulse width modulation provides increased fuel efficiency and should be investigated further prior to implementing a decision on roll control technique. The RCS system masses in Table V-1 are optimistic since the RCS system was not sized for worst case trajectory conditions. A significant advantage of the aerodynamic control approaches, flaps or MMRC, is that they are not too sensitive to trajectory conditions since control and disturbance torques are both proportional to dynamic pressure.
- d) Reduction in the estimated lateral c.g. c.p. uncertainty has considerable effect on selection of the best control approach. This emphasizes more exact estimates of vehicle mass properties and investigation of possible ways of minimizing them or compensating for them through vehicle design and payload integration; and through manufacturing and testing techniques. Also note that studies to date have assumed these disturbances constant. Disturbances which vary with time due to ablation and structural deformation, may impose further requirements on the roll control system. Prediction of roll disturbance torques are the major factor in the design of the roll control system.

C. ANALYSIS AND SIMULATION RESULTS

The nominal Titan aerocapture trajectory used in this study is illustrated in Figures V-1 through 7 which show trajectory variables for the case of Flap Trim Control and CDIST = 0. However, these curves for other cases do not differ significantly.

- 1. Roll Disturbance Torques Calculation of roll asymmetry torques assumed in the analysis of the several roll control schelles is summarized below. The approach is the same as that discussed in Ref. 11.
 - a) $\beta_T = 0.5^{\circ}$

 $c_{1\mathrm{B}}$ was assumed to be 2.4 x $10^{-4}/\mathrm{deg}$.

$$\frac{C_{1R}AL_{\Lambda}^{R}T}{I_{R}}$$
 (2.4 x 10⁻⁴) (5.47) (10.71) (.5)
= 5.330 x 10⁻⁶

h) Lateral c.g. - c.p. Uncertainty

For control studies this uncertainty was assumed to be 2.5 cm times the ratio of the base radius of the present vehicle to that of the Single Mission Vehicle of Ref. I-1. Thus, $C_2=1.56$ cm.

$$\frac{AC_2 \left(\frac{C_N + C_{18} \frac{C_A}{C_{n\beta}} \right)}{I_R} = \frac{(5.47) \cdot (.0156)}{1324} \cdot .939 - \frac{(2.4 \times 10^{-4}) \cdot (.317)}{8.86 \times 10^{-4}}$$

$$= 5.498 \times 10^{-5}$$

Subsequent investigation of the problem of lateral c.g. - c.p. tolerance indicates that a better assumption is approximately 0.635 cm. Using this value the above number become: 2.238×10^{-5} .

c)
$$\frac{c_{10} = 10^{-5}}{c_{10}^{AL}A} = \frac{(10^{-5}, (5.47), (10.75))}{1324}$$

= $\frac{4.441 \times 10^{-7}}{10.75}$

d) Total Roll Disturbance

Adding the above three contributor, with C_2 = 1.56 cm

CDIST =
$$6.075 \times 10^{-5}$$

with $C_2 \approx .635$ cm

The total roll disturbance acceler tion is then

where QB is dynamic pressure in Ne tons/m²

?. Pitch/Yaw Damping - The study results resented in Ref. I-1 indicated the necessity of providing pitch/yaw damping. The approach to doing this is to use RCS nozzles normal to the roll axis. Previous DOF studies showed the required torque to inertia ratio for the Single Mission Tehicle to be 0.05 rad/sec. Using this number along with a lever arm of .32 L_A = 3.4 m the required nozzle thrust is

$$T_C = \frac{(.05)(5511)}{3.4} = 81 \text{ Newtons}$$

Assuming a total on time of 135 sec. the total impulse required is

$$IMP = 81 \times 135 = 10935$$

Using the approach to ${\tt RoJ}$ design discussed in ${\tt Rof}$. I-1, we arrive at the following RCS weight summary:

	6.0 kg
Valves, Nozzles, etc.	1.8
He System	0.2
Tanks	0.1
Oxidizer	2.4
Fue1	1.5 kg

Thus, the total weight for both pitch and yaw i. 12 kg.

3. RCS Roll Control - For this case the RC roll control described in Ref. I-1 was used with thrust levels high enough to counter the roll disturbance torque.

Dynamic pressure during the constant drag phase is

$$QB_N = \frac{D_{REF}M}{C_DA} = \frac{(39.23)(2606)}{(.684)(5.47)}$$

$$\approx 27325 \text{ N/m}^2$$
For $C_2 = .635 \text{ cm}$
DIST = $(2.815 \times 10^{-5})(27325)$
= $.769 \text{ rad/sec}^2$

Thus the RCS control acceleration must be .769 \pm .349 \pm 1.118 rad/sec. The required high thrust level is

$$T_C = \frac{(1.118) (1324)}{(2) (1.32)} = 560.7$$
 New ons

The control acceleration required here is about the same as that for the Single Mission Vehicle in Ref. 1-1 with $C_L=2.5\,\mathrm{cm}$. For that case the maximum RCIMP = 192.4 rad/sec. Multiplying by the ratio of the time in the atmosphere we can estimate requirements for the Titan vehicle as 480 rad/sec. This corresponds to a total impulse of 63550 N-m-sec. The estimated RCS system weight to provide these characteristics is as follows:

	182.2 kg.
Valves, Nozzles, etc.	2.3
He System	6.7
Tanks	3.9
Oxidizer	104.2
Fuel	65.1 kg

The value of AV (exit) in Table V-1 is also base on studies in Ref. 1-1.

4. PWM RCS Control - The large weight and poor performance of the previously discussed RCS system is due in part to the ineffictive control of impulse resulting from the simple on-off logic. Thus it appears that considerable improvement could be made by using more sophisticated control logic. One possibility is the pulse width modulation (PWM) technique. This technique has been employed to drive electric motors in an MMRC control system. A potential problem is the propulsion system time delays which are much larger than the electrical time constants in a motor drive. In fact, propulsion delays represe that the effect of the time delays could be at least partially compensated in the control logic.

A block diagram of this system is shown in Figure V-8. The roll control computation is done at .1 sec intervals. At each step the pulse width command is stored as a count proportional to the error sign 1 in an 8-bit counter such that 255 counts correspond to .1 sec. The propulsion system is activated at the beginning of the interval and turned off when the counter counts down to zero. When the count is 255 the thruster is on continuously.

To simulate this system, the flap control s mulation was modified to agree with Figure V-8 and the pulse width command was imulated by 8-bit quantization of the PWC signal. The thrust level was assumed to be twice the value necessary to counter the roll disturbance torque at the dy amic pressure of the constant drag phase. Thus the thruster acceleration was $.32 \text{ rad/sec}^2$.

Performance of the PWM RCS roll control is resented in Figures V-9 through 13. Figure V-9 shows TDIST, the average thrust coeleration in rad/sec², for CDIST = 0. The pulses are response, to roll commands. Figure V-10 shows the response of the autopilot integrator for the same run. Figure V-11 shows TDIST

for the case where CDIST = 6.075×10^{-5} . The average curve follows the magnitude of the roll disturbance torque which is proportional to dynamic pressure. The pulses are again responses to roll commands. Figure V-12 shows the autopilot integrator response for the same run. Figure V- 3 shows the proportional part of the signal for the same run. The excursions - L about 100 and 250 sec indicate control errors resulting from the fact that the integrator does not exactly track the rapid change in roll torque occurring at the e-times.

Exit velocity for the three cases were

Worst case integrated acceleration was 320 rad/s c. Integrating dynamic pressure;

$$\int QB * dt = 5.26 \times 10^6 \frac{n-sec}{m^2}$$

then multiplying by CDIST = 6.075×10^{-5} yields 019.5 rad/sec. Thus from a weight standpoint this idealized PWM system represents the theoretical optimum that can be achieved with an RCS system.

The weight estimate for this system is bas d on CDIST = 2.815×10^{-5} . Required thrust acceleration is 1.538 rad/sec an the propulsion thrust level is then

$$T_C = \frac{(1.538)(1324)}{2(1.32)} = 771 \text{ Newton}$$

Multiplying this value of CDIST by the integral f dynamic pressure gives a required angular impulse of 148.1 rad/sec which orresponds to a total impulse of 196100 n-m-sec. An estimate of the weight of an RCS system to achieve these requirements is as follows:

Fuel	20.1 kg
Oxidizer	32.1
Tanks	1.2
He System	2.1
Valves, Nezzles, etc.	2.3
	57.8 kg.

6. Flap Trim Control System - With this scieme flaps are used to counter the effect of roll asymmetry torques but the respons to roll commands is accomplished by means of an RCS roll control system. One of the problems is to design the two systems to minimize interactions (i.e., disturbance torques have little effect on propellant requirements and roll commands produce relatively little flap motion). In order to minimize interactions at high altitudes the flap control was not activated until axial acceleration reached .05 earth g's.

A block diagram of the flap control portion of this system is shown in Figure V-14. For large roll commands, signals will be saturated and under these conditions it is desirable to have ER1R = 0, i.e.

K1 * LIM1 = LIM2

Since for large commands control is by means of the RCS system

ERG1 = 1.5 RG1R

Thus for the signals to hit limits simultaneousl/

LIM1 = 1.5 LIM2

which leads to K1 = .667. Setting LIM1 = .075 r d and LIM2 = .05 rad/sec is a matter of judgment. The deadband in the RCS sy: em was also set at .075 rad. K2 was selected to give a rate loop crossover frequency of a little over 1 rad/sec.

For this case the flaps were designed so the maximum value of CDIST results in 9" flap deflection. Flap roll torque is proport onal to CDELR * DELR so

CDELR =
$$\frac{6.075 \times 10^{-5}}{9}$$
 = 6.75 x 1 $^{-6}$

Response to roll commands is provided by an RCS system with control acceleration of 20 deg/sec or .3491 rad/sec². Operation of t is system is the same as that described in Ref. I-1 except that the deadband w s set at .075 rad and the low thrust actuation was eliminated. The required tirust level is

$$T_C = \frac{(.3491) (1324)}{(2) (1.32)} = 175 \text{ Newto:s}$$

Integrated angular impulse for the three cases wire

CDIST	RCIMP
6.075×10^{-5}	6.1 rad/ ec
0	5.2
-6.075×10^{-5}	6.1

Using 7 rad/sec the total impulse required is 70°0 N-s. Estimated weight of the RCS system to provide these requirements is summarized below.

Fuel	1.0 kg
Oxidizer	1.5
Tanks	0.1
He System	0.1
Valves, Nozzles, etc.	1.8
	4.5 kg

The maximum difference in exit velocity for the hree cases was 1 m/s.

Performance of this roll control system is illustrated in Figure V-15 thru 22. Figure 15 shows the flap motion with CDIST = 0 indicating the relatively small response to roll commands. Figure V-16 shows the even smaller response of the integrator which stores the flap command necessary to counter the roll disturbance torque. Figures V-17 through 19 show the flap motion and the proportional and integral components of the command for CDIST = 6.075×10^{-5} . With CDIST = -6.075×10^{-5} the response is essentially the mirror image. Figures V-20 through 22 show the first 100 seconds of these same curves illustrating the initial response in greater detail.

6. Flap Control System - In this approach flaps are used for total roll control. A low thrust RCS system was included to provide exospheric stabilization. This system had a control acceleration of .01 rol/sec² and was allowed to operate throughout the atmospheric flight. In this case the flap system was activated activated at the start of the entry trajectory. In the actual system, since the RCS system cannot provide significant atmospheric control, the flap system would probably be activated shortly before entry.

a) Design

Using the philosophy of flap system design outlined in Ref. I-1 CDELR * QB_N * $DELC_{MAY}$ =

CDIST
$$*$$
 QB_N + 2 (.3616)

$$QB_N = 27325 \text{ N/m}^2$$

CDIST =
$$6.075 \times 10^{-5}$$

thus

CDELR =
$$\frac{1.660 + 2(.3616)}{(27325)(10)}$$
 = 8.72 x 10⁻⁶/deg

A block diagram of this system is shown in figure V-23. The gain K2 was set at 450 to make the rate loop crossover frequency about 2 rad/sec.

For this system the flap deflection require: to counter the disturbance torque is

$$\frac{\text{CD1ST}}{\text{CDELR}} = \frac{6.075 \times 10^{-5}}{8.72 \times 10^{-6}} = 6.97^{\circ}$$

With this large a value the additional flap motion due to roll commands causes the flaps to hit the 10° limit, particularly for negative CDIST. This is illustrated in Figures V-24 through 26, which show flap motion for CDIST = 0 and \pm 6.075 x 10^{-5} . The net result is that the exit velocity is somewhat sensitive to disturbance torques as shown by the results below.

b) Redesign for Lower AV (exit)

In order to minimize the variation in exit velocity the flap size was increased so that worst case disturbance torques could be countered by 5° of flap delfection. Then

CDELR =
$$\frac{6.075 \times 10^{-5}}{5}$$
 = 1.21! x $10^{-5}/\text{deg}$

No RCS roll control is needed since the flaps provide all roll control. Also it is assumed that flaps can provide pitch/yaw damping. This can be confirmed only by 6 DOF simplations which are recommended for juture studies. Estimates of flap and actuation requirements are given in Section 9.

Performance of this system is illustrated in Figures 27 through 31 which show flap deflection for CDIST = 0 and \pm 6.075 x 10^{-5} . It is seen that there is less tendency to hit the 10° flap limits than in the previous case. Maximum variation in exit velocity for the three cases was 1 m/s. The only change in the block diagram of Figure V-23 is that K2 was set at 325 to keep the rate loop crossover frequency the same.

7. MMRC Roll Trim System - The MMRC system was not actually simulated. However, with a design as shown in the block diagram of Figure V-32 its performance is similar to that of the flap trim system. Assuming that 90% of the travel must counter the worst case disturbance torque, with C_2 = .635 cm;

$$\dot{P}_{MAX} = CDIST * QB_{N} = 0.769 \text{ rad/sec}^{2}$$

$$= .9 \frac{c_{N} * QB_{N} * A}{M * I_{R}} M_{m} Y_{m} (MAX)$$

Substituting parameters from above

$$M_{m}^{Y}_{m}$$
 (MAX) = 21.0 kg-m

Assuming $Y_m(MAX) = .45$ m the weight of the movable mass is 46.7 kg. Assuming the weight of the support structure is 30% of this, the total MMRC weight is 61 kg. This system requires RCS control to provide response to roll commands and for pitch/yaw damping. The effect on exit velocity is assumed to be the same as that for the flap trim system.

8. MMRC Roll Control System - With this approach the MMRC is sized to provide response to roll commands as well as to counter roll disturbance torques. Although this system was not simulated, with a design as shown in Figure V-33 its performance is similar to that of the flap roll control system.

Using the techniques of Ref. I-1

$$\dot{P}_{MAX}$$
 = CDIST * QB_N + 2 (.3616)
= .769 + 2 (.3616) = 1.492 rad/sec²
= $\frac{C_N * QB_N * A}{M * I_R}$ $M_{mi}Y_m$ (MAX)

Then $M_{m}Y_{m}$ (MAX) = 36.7 kg-m. Again assuming Y_{m} MAX) = .45m, M_{m} = 81.5 kg. Adding 30% for support structure the total MMRC reight is 106 kg. For a rate loop cross over frequency of W_{RL} = 2 rad/sec K2 = 20.4

To counter the worst case roll disturbance corque about 52% of the mass travel capability is required. Thus we would expect to incounter only small errors in exit velocity. RCS roll control is not required sinc, all roll control is provided by the MMRC. However, an RCS system for pitch/yaw lamping is required. The effect on exit velocity was assumed to be the same as for the Flap Control System.

9. Estimate of Flap and Actuation Requirements

a) Simulation Studies

The time required for a flight tested MMRC to travel from zero to maximum excursion under no load conditions is about 0.2 sec. Assuming that the no load slew rate required is proportional to rate loop bandwidth. The requirements for flap trim and flap control are 5 deg/sec, and 10 deg/sec respectively. However, this no load speed must be maintained to some value of MH which would be determined from control stability studies. Furthermore, the actuation must be capable of some lower slew rate at maximum hinge moment. This value would also be

determined from control stability studies. Based on these considerations Linear speed-torque requirements are estimated as shown in Figures V-34 and V-35.

Flap actuation response was approximated on the 3-1/2 DOF simulation by a first order actuator as illustrated in Figure V-36. For the entry velocity of 10 km/s, maximum dynamic pressure of 34500 N/m occurred with entry $\gamma = -33^\circ$. For this dynamic pressure $A_{ZB} = -68 \text{ m/s}^2$. The slew rate limit was defined by

FLRL =
$$1.0 - \frac{.6}{68}$$
 AZBM
= $1.0 - 8.824 \times 10^{-3}$ AZBI1

where AZBM = -A_{ZB}. K_A was set at 0 deg/sec/deg for flap trim and 20 deg/sec/deg for flap control. Juns were made on the trajectory defined above. Performance was not significantly affected by the addition of the actuation response characteristics. Elap overshots in response to roll commands increased somewhat as illustrated in Figures V-37 through 39 for flap trim and Figures V-40 through 42 for flap control. These can be compared to Figures V-15 and 17 for flap trim and V-27 through 29 for flap control to see the difference in overshoot.

b) Requirements for Flap Trim

Preliminary control studies on the 3-1/2 DOF simulation were based on linearized aerodynamics. However, the aerodynamic characteristics of flapped vehicles are actually cuite non-linear. Thus, the characteristics of a realistic flap system will differ somewhat from those previously assumed. The following estimates of flap size and loading are based on a more realistic analysis of flap aerodynamics.

Maximum flap control torque must be at least sufficient to overcome the worst case predicted roll asymmetry torques. Thus

$$\frac{C_L(s_{MAX}) AL_A}{I_R}$$
 2.815 x 10⁻⁵

where C_L (δ_{MAX}) is the roll torque due to the flaps with maximum roll deflection. Then C_L (δ_{MAX}) = 6.33E x 10⁻⁴. As discussed in Section VI, this can be achieved with 18% flaps at 4.8° with ±4.8° of roll deflection, i.e., each flap varies from 0° to 9.6° with respect to the vehicle. Maximum flap hinge miment was found to be 4000 N-m for the following conditions.

$$QB = 34500 \text{ N/m}^2$$

$$\alpha = 20^{\circ}$$

$$\delta = 9.6^{\circ}$$

The 9.6° flap angle results from a 4.8° roll deflection from its neutral angle of 4.8°. Then if we assume a speed torque characteristic as shown in Figure V-43 the required actuator output power is:

$$P_A = \frac{1}{4}$$
 (5) (6680) = 8335 N-m-(eg/sec

or about 0.2 HP. To this must be $\epsilon dded$ the power required to overcome friction.

Flap and actuator design is discussed in Section VI. Results are summarized below:

	104 kg
Actuation (Electric)	16
Support Structure	20
Flaps	68 kg

c) Requirements for Flap Control

Assuming the same flap deflection is for Flap Trim the required flap area is twice as great, i.e. 16% of the base area or $\Lambda_F \approx 1.97~\text{m}^2$. Assuming hinge moment is proportional to the 3/2 power of the flap area, the maximum hinge moment is 11310 N-m. Using the speed-torque characteristic of Figure V-44 the required actuator output power is

 $P_A = \frac{1}{4}(10)$ (18860) = 47150 N m-deg/sec or about 1.1 HP. Again friction lesses must be added. An estimate of the flap system weight is as follows:

Flaps	136 kg
Support Structure	30
Actuation (Electric)	20
	186 kg

10. Application to Mars Aerocapture - A br of investigation was made of the application of the above flap systems to Mars a rocapture. The trajectory used here was the same as that used in Ref. I-1 with entry conditions:

$$H = 200 \text{ km}$$
 $V = 5359 \text{ m/s}$
 $Y = -15.5^{\circ}$

 Ψ = 89.61°

and

$$V_{EXIT} = 3650 \text{ m/s}$$
AXBR = $-D_{REF} = -14.71 \text{ m/s} (1.50)$

Assumed characteristics of the MSR vehicle were

$$R_R = 1.72 \text{ m}$$

A =
$$9.294 \text{ m}^2$$

$$1_{\rm R}$$
 = 184.5 kg-m²

$$I_{p}$$
 = T_{γ} = 13800 kg-m²

$$\alpha_{\rm T}$$
 = 20°

then

$$\frac{L}{D} = 1.267$$

$$\frac{M}{C_D A} = 977$$

$$\frac{M}{C_1 A} = 771$$

a) Pitch/Yaw Damping

Assuming a torque to inertia ratio of .05 rad/sec² and

$$L_{C}$$
 = .32 L_{A} = 4.5 m

The required nozzle thrust is

$$T_C = \frac{(.05)(13800)}{4.5} = 153.3$$

Assuming a total on time of 50 sec the required impulse is 7670 Y-se..

The weight summary for the RCS sys em is as follows:

 Fuel
 1.04 kg

 Oxidizer
 1.66

 Tanks
 0.1

 He System
 0.2

 Valves, Nozzles, etc.
 1.8

 4.8 kg

Thus the total weight for both pit h and yaw is 9.6 kg.

b) Roll Disturbance Torques

For control simulation studies rol disturbance effects are calculated as in Section 1 except that the as umed lateral c.g.-c.p. uncertainty $C_2 = 2.04$ cm. Results are summariled below

$$f = .5^{\circ}$$
 $C_{2} = 2.04 \text{ cm}$
 $C_{L0} = 10^{-5}$
 $C_{L0} = 10^{-5}$
 $C_{L0} = 10^{-5}$
 $C_{L0} = 10^{-5}$
 $C_{L0} = 10^{-5}$

with $C_2 = .635$ cm this becomes CDI T = 3.069×10^{-5}

c) Flap Trim Control

For purposes of 6 DOF simulation s udies flaps were again sized of that the maximum value of CDIST r sults in 9° of flap deflection. Then

CDELR =
$$\frac{7.83 \times 10^{-5}}{9}$$
 = 8.7 > 10⁻⁶

To keep ω_{RL} the same as in Figure 4, K2 was first set at 191. However, due to the fact that normal acceleration builds up more rapidly than on the Titan trajectory the flaps did not come out ast

enough and performance was quite poor. The gains were then changed to K2 = 270, K3 = 0.2. With these rains satisfactory performance was achieved as indicated in Figure V=5 through 61. Figures V=45 through 52 show trajectory parameters for CDIST = 0. These are not significantly affected by other values of CDIST. Control response for CDIST i illustrated in Figures V=53 through 55. It is seen that flap response to roll commands is somewhat higher than before due to the higher control gains. Figures V=56 through 58 illustrate control performance with CDIST = 7.83 x 10^{-5} . Figures V=59 through 61 show the initial response in greater detail. Response with CDIST = -7.83 x 10^{-5} is essentially the mirror image.

Exit velocity for three cases were

CDIST	VEXII
7.83×10^{-3}	3652
0	3653
-7.83×10^{-3}	3653

Thus AV_{EXIT} is 1 meter/sec.

To size the flap, CDIST = 3.069×10^{-5} . Then

$$\frac{C_L (\delta_{MAX}) AL_A}{I_R} = \frac{3.069 \times 10^{-5}}{.9}$$

Then C_L (δ_{MAX}) = 4.832 x 10⁻⁴. Using the same flap configuration as the Titan vehicle this requires flaps qual to 13.7% of the base are: or $A_F = 1.27 \text{ m}^2$. Maximum \overline{Q} on the Mars trajectories was 22000 N/m². Assuming

$$M_{H} = Q * A_{F}^{3/2}$$

and comparing to requirements for Tap Trim on the Titan vehicle, the maximum hinge moment is

$$M_{H} = 4000 \left(\frac{22000}{34500} \right) (1.295)^{3/2} = 3670 \text{ N-m}$$

Then from Figure V-43

or about .2 HP.

Assuming TPS requirements of 7.2 kg/sq meter the weight of the flap system is estimated as follows:

Flaps	28 kg
Support Structure	15
Actuation (Electric)	16 59 kg

The required thrust level for the RCS system is

$$T_C = \frac{(.3491)(1845)}{(2)(1.72)} = 187$$
 Newto is

Worst case integrated impulse was less than 4 rad/sec. Using 5 rad/sec the total impulse required is 5360 N-sec. Estimated weight of the RCS system is as follows:

	3.9 kg
Valves, Nozzles, etc.	1.8
He System	0.1
Tanks	0.1
Oxidizer	1.15
Fuel	0.75 kg

d) Flap Control - Sizing the flaps for simulation so that the maxim m value of CDIST results in 5° flap deflection we have

CDELR =
$$\frac{7.83 \times 10^{-5}}{5}$$
 = 1.566 $\times 10^{-5}$

To keep ω_{RL} the same as in Figure 13, K2 was set at 200. The trajectory parameters for this ca \pm did not differ significantly from

Figures 45-52. Control performance is illustrated in Figures V-62 through 66. Figures V-62 through 4 show flap motion for CDIST = 0 and \pm 7.83 x 10^{-5} . Figures V-65 and V-66 show the initial response in more detail for CDIST = \pm 7.83 \cdot 10^{-5} . Comparing these to Figures 27 and 28 it is seen that the flap come out considerably slower than for the Titan mission since initial dynamic pressure is lower (.05 farth g's axial acceleration occur, at about 140 sec, as opposed to about 18 sec, after the start of the Titan trajectory). Also the flap motion is somewhat oscillator, due to the fact that this transient occurs before the point where rate loop gain variation is started. Control stability improves at higher dynamic pressure. In any case system performance is satisfactory.

Exit velocities for the three case; were:

CDIST	VEXIT		
7.83 x 10 ⁻⁵	5 3652 m/s ec		
0	3652		
-7.83×10^{-5}	3651		

Thus AVEXIT = 1 m/sec

Required flap area is twice that for Flap Trim. Using the same approach as for the Titan vehicle we find a eximum hinge moment to be 10380 N-r and required actuator output power about 1.0 HP. Estimated weight of the flap system is as follows:

Flaps	55 kg
Support Structure	30
Actuation (Electric)	16
	101 kg

D. TRAJECTORY STUDIES

Entry trajectory studies were made on the 3-1/2 DOF simulation using Flap

Trim roll control for Titan, Mars and Uranus. The purpose of these studies was to

define sensitivity of trajectory and guidance performance to entry velocity and

path angle and their effects on vehicle heating. Heating results derived from

these trajectories are discussed in Section IV.

1. SO2P Trajectories - Titan aerocapture rajectories were run for several combinations of entry velocities and path angle. In an attempt to define a set of nominal entry conditions for which satisfact my performance could be achieved with a tolerance of \pm 5" on entry path angle. /ehicle characteristics were the same as those used in control studies except that $\alpha_{\rm T} = 30^{\circ}$. Aerodynamic characteristics were

then

$$\frac{L}{D}$$
 = .94
 $\frac{M}{C_D A}$ = 513.4
 $\frac{M}{C_1 A}$ = 545.7

Desired exit velocity was 2400 m/sec and value: of AXBR (- $D_{\mbox{REF}}$) used were as follows:

V	AXCR	
(m/s)	(m/s ²)	
6000	-14.71	(1.5 G _E)
8000	-29,42	(3.0 G _E)
10000	-39,23	4.0 G _E)
13000	~39, 23	4.0 G _E)

The SO2P trajectories are presented in Appendix A. Included in Volume II of this final report. Table V-2 gives a summar of exit velocities for the various entry conditions. It is seen that a tolerance of \pm 5° on entry γ can be accommodated only for V = 8 and 10 km/s and even for these cases the error in exit velocities exceeded the desired 25 m/sec at the edge of the entry path angle band.

2. Mars Trajectories - Mars trajectory studies were conducted only for the aerocapture trajectory used in Ref. I-1. Characteristics are discussed therein and in Part C of this section. Desired exit velocity was 3650 m/s and AXBR = -14.71 m/s² (1.5 G_F).

Trajectory results, presented in Appendix : Volume II, are illustrated in Figures B1 through B9 for $\gamma = -14.5^{\circ}$, Figures B) through B18 for $\gamma = -15.5^{\circ}$ and Figures B19 through B27 for $\gamma = -16.5^{\circ}$. Exit v locities (H = 250 km) were as follows:

	VEXIT	ΔV _{EXIT}
-14.5°	3649 m/s	-4 m/s
-15.5°	3653	•
-16.5°	3658	+5

No further studies were made on Mars Aeromoneuver trajectories. However, with Flap Trim control system performance will be quite similar to that illustrated in Figure V-16 of Ref. I-1. In this case the disturbance torque CDIST = 0 and control acceleration of the RCS system was 20 deg/sec^2 .

3. <u>Uranus Trajectories</u> - Uranus trajectory studies were conducted for the following entry conditions:

Desired exit velocity was 21288 m/sec and value of AXBR of -196.13 m/sec 2 (20 G_E) and -147.10 m/sec 2 (15 G_E) were used. Vehicle haracteristics are summarized below:

then

$$\frac{L}{D}$$
 = 1.13
 $\frac{M}{C_D A}$ = 595.7
 $\frac{M}{C_1 A}$ = 527.0

Trajectory results, presented in Appendix C, Vo ume II, are illustrated in Figures C1 through C24 for $D_{REF} = 20~G_E$ and in Figures 25 through C48 for $D_{REF} = 15~G_E$. Variations in entry path angle resulted in size ble variations in exit velocity as indicated in Table V-3. One factor in these valiations is the roll-over maneuver to correct cross-range errors. With high lift acceleration, occurrence of a roll-over near the point where the vehicle star is its exit results in the exit velocity being very sensitive to perturbations. This factor should be investigated thoroughly in future studies. However, the similations do demonstrate feasibility of aerocapture using the above defined vehicle and provide estimates of heating for TPS design. However from Table V-4 it is seen that changing cross-range deadband from 5000 m (value used for results in Figures C1 through C24) to 7500 m did not change the variation in V_{EXIT} significantly for $D_{REF} = 20~G_E$. Variations with $D_{REF} = 15~G_E$ were considerably smaller. The only conclusion to be drawn from this brief study is that there is a potential sensitivity of exit velocity to control response timing and variations in trajectory parameters.

Table V-1 Control Sys em Summary

Control System	Roll RCS Mass (kg)	P/Y RCS Mass (kg)	Fap Mss (g)	MMRC Mass (kg)	Total Mass m/s	Exit Velocity Accuracy m/s
1. RCS	182.2	12.0	•		194.2	40
2. PWM RCS	57.8	12.0	**	-	69,8	3
3. Flap Trim	4.5	12.0	74	•	120,5	1
4. Flap Control	-	-	36	-	186.0	•
5. MMRC Trim	4.5	12.0	•	61	77.5	1
5. MMRC Control	•	12.0	a	106	118.0	1

Table V-2 Exit Velocities, SO2P Trajectory

V <u>m/s</u>	α deg.	V _{EXIT} m/s	AV _{EXIT}
6000	-22.5	2396	- 4
	-26,5	2400	
	~30.5	2378	-22
8000	-23.0	2443	+41
	-28.0	2402	_
	-33.0	2406	+ 4
10000	-23.0	2394	- 7
	-28.0	2401	~
	-32.5	2377	-24
1	-33 0	2350	-51
13000	-23.5	2407	+ 7
	-26.0	2400	-
Andrew 18.5 or their gradient constraint and the const	-29.0	2387	-13

Table V-3	Exit Velocities,	anus Trajec	torv
-----------	------------------	-------------	------

D _{REF} G _F	CRDB Meters	α(°) Deg.	VEXIT	ΛV _{EXIT}
20	5000	- 8	21660	+380
15		-10	21280	-
		-12	21450	+170
	7500	- 8	21130	-150
		-1(21280	-
		-1 7	21580	+300
		- }	21280	0
		-11	21280	•
	v	-1, -30	21320	+ 40

V-30

Figures, Section V

The Figures of Section V present the following relationships:

QB vs. VA	Dynamic Pressure (N/m²) vs. Air Relative Velocity (m/sec)	
H vs. DRNG	Altitude (m) vs. Jownrange Distance (km)	
H vs. I	Altitude (m) vs. Fime (seconds)	
VA vs. T	Air Relative Velocity (m/sec) vs. Time (seconds)	
FPA vs. 1	Air Relative Flight Path Angle (deg) vs. Time (seconds)	
AXW vs. T	Drag (m/sec ²) vs. Time (seconds)	
RGCD vs. T	Bank Angle Commard (deg) vs. Time (sec)	
TDIST vs. 1	Average Thruster Acceleration (rad/sec ²) vs. Time (sec)	
API vs. T	Autopilot Integrator Signal vs. Time (sec)	
PROP VS. T	Autopilot Proportional Signal vs. Time (sec)	
DELRC vs. T	Roll Flap Deflection Command vs. Time (sec)	

Signro V-I Oynamic Enecoure. Titam Insjectory

righre V-/ Altitude, Titam Irajectory

V-33

Figure V-3 Altitude, Titan Trajectory

V=34

Figure 7: 4 Jelosity, Titer Trajectury

V - ,₹6

Figure V-6 Oreg, Titan Trajectory

V-37

V=38

Figure 7-8 Par 205 and Francis

DE FOOL STAIRT

COLOUR TOTAL STEER STEERS STEERS TO STEERS TO STEER STEERS STEERS

V= ! |

THE REPORT OF A COMPANY

Figure 7-11 Average Triviscentacelerations 14" Self Lepter

Figure V-12 Autopilot Integrator Signal, PAM Roll Control

Figure Vila Autopilot Propertional Signals Propertion

WITH NINIMOM VALUE 1.24 M/52 1.06 RAD/SEC 11 K2* M * CDELR Cx * A -A2B Ħ 11 AZBM WRL

Figure V-14 Flap Trim Control

Y.

Figure V-15 Acil Flag Leflection Command, Flag Trim Control

Figure V-17 Roll Flap Deflection Command. Flan Trim Control

V-19

1-53

Figure V-23 Flap Control System

11

AZBM

Figure V-20 Drit fire heftection Commayn. Flat Control

Figure 7-25 Toll Flam Deflection Command, Than Control

 $\gamma_{\sim}(-)$

Figure 4-28 Roll Flan Perlection Command, Flan Control

Figure V-30 Roll Flam Poflection Command, Flam Control

AZBM = - AzB WITH MINIMUM VALUE 1.24 M/s2 = 1.06 RAD/SEC K2 * Mm $\omega_{RL} =$

Figure V-32 MMRC Trim Control

WITH MINIMUM VALUE 1,24 m/st

Figure V-33 MMRC Roll Control System

Liqure V-34 Flap Actuation Requirements - Flap Trim Linear Simulation

Figure V-35 Flap Actuation Requirements - Flap Control Linear Simulation

Figure V-36 First Order Actuation Simulation

V~67

V-68

V~69

Finne V-40 Kgll Flas Beffection Command, Flas Control

Figure V-41 Roll Flap Deflection Command, Flap Control

No. 10 Park In

V~70

Figure V-43 Flap Frim

Figure V-44 Flap introl

Figure V-45 Altitude, Mars Trajectory

Figure 7-47 Altitude, Wars Trajectory

V = 7 1

A Property of the Property of

(i)

Figure V-57 Autopilot Proportional Signal, Flap Trim Control

OF POOR QUALITY

Figure V-58 Autopilot Integrator Signal, Flap Trim Control

A-50

V-(1)

V-93

 \vec{x} :

VI. VEHICLE DESIGN

A. APPROACH

The design approach for this study was to evolve a single generic spacecraft concept for several aerocapture planetary missions. The goal was to develop a structural design such that either skirts, pane's or sections can be added so that the basic design can meet length constraints and still package the mission payload.

A generic spacecraft aeroshell configuration was developed that met performance and packaging requirements for the SO20, and Uranus missions. The STS IUS/SEPS launch limited the length to 6.3 m for these missions. For the MSR mission the basic configuration is lengthened by a 3.3m long skirt added to the basic shape (allowed because the SEPS stage is not planned for the MSR mission). The output of this vehicle design effort consists of a definition of the aeroshell design concept, including geometry and mass properties required for Titan, Mars and Uranus aerocapture.

The section is partitioned into a Generic Design discussion that presents data common to aeroshells for all missions and characteristics of specific design concepts for the SO2P, MSR and Uranus missions. The spacecraft configuration selection is based on aerodynamic, thermodynamic, control, interface and packaging constraints. The first three parameters are discussed in Sections III, IV, and V. Interface and packaging constraints are listed in Table VI-1 along with their effects on aeroshell design.

A comparison of configurations evaluated in Section III vs. vehicle design parameters is shown in Figure VI-1. A geometric visual comparison of the studied shapes is shown in Figure VI-2. Shape 7-6 was elected for study analysis based on the packaging volume, the results of JPL's pickaging studies and the data available on its characteristics as the SM configuration used in the Mars Aerocapture Vehicle Definition Study, Ref. 1-1.

B. GENERIC VEHICLE DESIGN

This section contains data and analyses that are applicable to the generic aerocapture vehicle as studied for various planetary missions. It contains geometry, unit mass properties and structural analyses that are applicable to the basic 6,3m long SM configuration and its extension to a 9.6m long design.

Geometric and aerodynamic data are presented in Figure VI-3. A geometric solution for the intersection of the two frustums is shown in Figure VI-4. Achieving a smooth intersection is not straightforward since the frustum cuts end up as different ellipses unless the cut angle is compromised and a step is formed. Three solutions were studied: a) A wedge inserted between the two sections with each cut at right angles to its centerline; b) Use of an elliptical forebody or afterbody; and c) Use of an offset centerline, a slanted cut giving a matched intersection with coincident ellipse.

The last method was chosen based on minimum perturbation to aerodynamic characteristics and manufacturing simplicity. This results in slightly modified geometry when holding basic shape dimensions as inputs.

Surface areas, centroids, enclosed volumes and unit inertias are given in Table VI-2 for the shell parts. These are used to develop the properties for a specific mission condition after the structure and thermal protection requirements are set.

The shell structure sizing analysis is done parametrically by analyzing for a range of atmospheric pressures that might be sustained during aerocapture. A range of dynamic pressures from 13 to 150 kPa was used for sizing the aluminum honeycomb sandwich used as the shell design. Inertia relief is based on preliminary center-of-mass locations for the aeroshell and payload. The pressure distributions

used are shown in Figures VI-5 and 6. A basic sandwich design using aluminum face sheets and honeycomb core was used. The depth is varied to provide the required strength. Figure VI-7 gives the unit mass versus depth.

C. SATURN ORBITER DUAL PROBE AEROSHELL DESIGN

The SO2P mission spacecraft is designed for a Titan atmosphere aerocapture. It will be transferred by the STS shuttle to a low earth orbit and propelled in the trans-Saturn phase by a IUS-SEPS combination.

The spacecraft will consist of an aeroshell supporting and packaging a litan probe, a Saturn probe and a Galileo type Saturn orbiter. Study configuration (Figure VI-9) supplied by JPL placed the litan probe at the mose and would be deployed after the aerocapture maneuver; the Saturn re-entry probe is next in line and is ultimately deployed into the Saturn atmosphere.

The SO2P estimated payload mass as defined by JPL for this mission is:

Orbiter	1072 kg
Titan Probe and Support	228
Saturn Probe and Support	250
Total =	550 kg

Using the mission performance curves of Figure 11-10 the net allowable spacecraft mass depending on mission time is as follows:

Entry Velocity	Spacecraft Mass
8 km/s	266(kg
10	2600
13	2400

Hence the mass goal for the Aerocapture system raries between (2400-1550=).850 and (2660-1530=).1110 kg. As the aeroshell rash increases with increasing entry velocity, the greatest allowable Aerocaptine mass occurs at $V_{\rm m}=8$ km/sec.

The design and mass properties for the SO2P aereshell are obtained by combining those for the structure and thermal protection subsystems that are required for typical Titan capture missions at entry velocities of 8 and 13 km/s. An aeroshell mass summary is presented in Table VI-3 for an ISM solution at 8 km/sec and carbon phenolic solutions at 8 and 13 km/sec.

1. <u>Aeroshell Design</u> - The shell structure sizing has been performed at the high and low extremes of likely entry velocities. It is based on the maximum pressure attained during control system runs of Section V and on the accelerations during IUS boost. The pressures correlate with the following TPS solutions:

An aluminum sandwich was assumed as the shell configuration for the monocoque aluminum structure. The aluminum structure is protected to room temperature during peak pressures even though it soaks out to 590K after aerocapture loading has subsided.

The sandwich shell used is defined in Figure VI-7 as to geometry and unit weights. Figure VI-8 gives parametric data on the honeycomb thickness required for a range of static pressures for the three frustums of the vehicle.

The structural shell requirements and ring masses for the aerosholl are given in Figures VI-11 and 12. Mass and center-of-mas analyses for the structure are included in Table VI-3.

The thermal protection materials as defined in Section IV and unit masses are shown in Figures VI-13 and 14. Tables VI-4 and 5 contain the detail mass and CM analyses for the TPS, and Table VI-6 for the structure.

A summary of the structure and TPS masses required for the SO2P aeroshell at the Titan entry conditions are given in Table VI-3.

An alternate TPS consisting of carbon phenolic material in the high heat areas of the vehicle was examined for the 8 km/s entry velocity mission. The required protection map is shown in Figure VI-15, and the analysis in Table VI-7. This TPS solution would impose 2 145 kg mass penalty.

- 2. <u>Mass Properties</u> The structure, TPS and aeroshell (structure plus TPS) masses have been presented in Tables VI-3 through 7 for the three parametric design concepts evolved in this study. In addition, the aeroshell inertia properties are presented in Tables VI-8 and 9.
- 3. <u>Flap Implementation Analysis SO2P</u> This section contains the results of analyses performed to determine the design impact of using flaps to achieve roll trim for an aerocapture vehicle. This analysis was performed in support of Section V Attitude Control where six control configurations are examined:
 - 1. RCS Roll Control
 - 2. RCS with Pulse Width Modulation
 - 3. Flap Trim Control
 - 4. Flap Control
 - 5. MMRC Trim Control
 - 6. MMRC Roll Control

The results presented provide a weight est mate in support of 3 (Flap Trim Control) for a specific SO2P mission and configuration.

The assumed design is a trailing, split-wi dward flap concept on the 6.5m long vehicle as shown in Figure VI-16. The trailing flap has a lesser impact on the aerodynamic and structural characteristics of the vehicle than would a cur

with a larger slice for body mounted flaps. However, the trailing flaps can complicate the interface with the propulsion module or a jettisonable skirt arrangement like the one evaluated for the MSR mission.

The following design requirements and assumptions are derived from the simulations discussed in Section V.

Roll for Titan A/C (QB = 34.5 kPa; a = 20° & = 9.6°)

Trim for 6.3 nm center-of-mass offset.

Area = 18% of base area (0.98m²)

Span = 1.15m

Chord = 0.86m

Operating Angle = 4.8° ±4.8°

Pitch Rate = 5 °/s

Pitch Freq. = 3 Hz

Operating Time 200s

Hinge Moment = 4000 Nm

The flap structure and thermal protection details are defined in Table V'-10. The required aeroshell supporting structure is given in Table VI-11. The total masss of the flap installation using the lightest weight actuation subsystem is given in Table VI-12 as 100 kg.

The dynamic requirements for flap actuation can be met by hydraulic, pneumatic, or electric actuation systems. Hydraulic actuation was rejected as unsuitable for space application, so a trade-off was made between electric and pneumatic designs.

The electric system allows the easiest maintenance and check-out procedures. The system comprises a drive electronics package, and two actuators, each consisting of a 1/2 HP samarium cobalt permanent magnet DC servo motor driving an acme worm through a gearbox. The system weights are:

2 Actuators	8.3 kg
2 Motors	4.5
Drive Electronics	1.8
Cable	.1
Battery Delta	.5
Total	15. 9 ±g

The pneumatic system comprises a 69000 kPa helium storage bottle with a fill and squib valve, a 5500 kPa regulation, two actuators and a control electronics package. Each actuator employs a differential area piston with system pressure on the smaller area (rod end). Pressure in the large end is controlled by a torque motor operated three way low leakage poppet valve. The actuators are 9.6 cm in diameter and 33 cm long plus devices. System weights are:

Filter Tank	4.5 lg
Regulator	.7
2 Actuators w/Control Valves	5.5
Lines	.7
Control Electronics	.2
Tota1	11.6 kg

The pneumatic system is lighter and has the potential for better dynamic performance. The electrical system simplifies servicing and check-out procedures and has an inherently longer storage life. Final selection must be based on interplanetary cruise time, overall system mass and otential integration with payload power sources.

D. MARS SAMPLE RETURN AEROSHELL DESIGN

The Mars Sample Return Aerocapture aeroshell is designed for a Mars atmosphere entry as defired in Sections IV and V of this report. The payload will be the Orbiter, Lander, and the trans-Mars flight components. The space-craft and IUS are to be launched to a low Earth orbit where the spacecraft/IUS assembly is deployed. The IUS then provides the velocity increment for transit to Mars.

This spacecraft mission was studied extensively as reported in Ref. I-1. The current study was directed toward using a generic configuration for the MSR mission that can also be used at other planets.

The allowable vehicle length for the SO2P and Uranus missions is 6.3m. This is based on packaging of the spacecraft and their propulsion stages in the shuttle. However, the MSR mission propulsion allows a vehicle length of 9.6m. The MSR spacecraft as defined in this section consists of a 6.3m long vehicle as generic to Saturn and Uranus with a 3.3m skirt added to the base to provide a 9.6m aeroshell to house the MSR Orbiter and Lander. This presents a challenge to packaging the MSR payload. A potential inboard view was developed by JPL and shown in Figure VI-17.

1. <u>Aeroshell Design</u> - The structural shell sandwich is defined in Figure VI-7 and the unit masses are given in Figure VI-18. Table VI-13 contains the analyses for the mass and CM of both the AC and AM configurations.

The thermal protection required materials and unit masses are shown in Figure VI-19. TPS mass and center-of-mass analysis i summarized in Table VI-14.

The combined mass properties for both the serocapture and aeromaneuver eroshells are given in Figure VI-20 and Table VI-5.

E. URANUS MISSION AEROSHELL DESIGN

The generic spacecraft configuration was adapted to the Uranus mission by designing a thermal protection and structural system to meet the requirements for an entry at $V \sim 30$ km/s and $\alpha \approx -12^{\circ}$.

The basic honeycomb sandwich structure of Figure VI-7 was sized for depth-figure VI-21, by using Figure VI-8. Table VI-15 contains the data on structure mass and center-of-mass location.

The thermal protection map is given in Figure VI-22. TPS mass and CM numbers are contained in Table VI-17.

F. VEHICLE DESIGN SUMMARY

The Vehicle Design Study results support the feasibility of a design solution for a structure and thermal protection system of a generic aeroshell to accomplish the proposed missions to Saturn, Mars and Uranus.

A 6.3m long aeroshell has been defined for use on the SO2P and Uranus missions and a 9.6m long aeroshell defined for the MSR mission by adding a "skirt" to the basic configuration. The MSR "kirt" can be jettisoned after Mars aerocapture so that the forward section will perform the aeromaneuver to a specified landing site.

Table VI-18 summarizes the mass properties of the aeroshells for the SO2P, MSR and Uranus missions.

Table VI-1 Configuration Selection Criteria

œ
L
-
u
Σ
4
α
<
\sim

SURFACE AREA

INTERNAL VOLUME

CM/CP LOCATION

MASS INERTIAS

SHUTTLE SPACE

INTERFACES

DESCRIPTION/DISCUSSION

Minimum surface area of the vehicle results in minimum structure and 'nermal protection mass.

must be near the nose of the shape where the space is least, a packaging evaluation criterion is used which compares the maximum diameter of spheres Since the center-of-mass of the packaged equipment The internal packaging volume is to be maximum to accommodate the payload with centers at the vehicle c.p. vehicles and equipment.

package with the need to maintain the center-of-mass at the center-of-pressure. The configuration that has the most aft center-of-pressure is the easiest to

Minimizing roll, pitch and yaw inertias reduce the attitude control energy needed to maneuver the spacecraft during the complete mission

A maximum length of propulsion modules required for the deep space missions. A maximum length 6.3m is allowed for the SO2P and Uranus missions; 9.5m for the MSR mission. The 4.5m bay diameter was not found restrictive for the biconic shapes Vehicle length is critical due to the shuttle bay space required for the considered.

The propulsion module The spacecraft base attaches to the propulsion module. may be a SEPS, IUS or other developed propulsion unit.

The interface to the payload orbiter or probe shall provide for structural support, thermal protection, separation and deployment.

External interface accommodations provide for antennae, radiators, attitude control and guidance components and science sensors.

Table VI-2 Aeroshell Unit Data

Part.	(m)	r (m)	R (m)	Surface Area (m ²)	X _{fb} (m)	Valume (m ³)	I _R (kgm²)	¹ P&Y (kgm ²)
Nose	(0.2)	(m)	0.2	0.25	0.1	0.02	0.0267M	0.0167M
13° Frustum	3.37	0.2	0.98	12.82	1.31	4.22	0.50M	0.15M
7" Frustum	2.74	0.98	1.32	19.95	1.30	11.47	1.35M	1.30M
Base @ R = 1.32	.,	-	1.32	5.47	0	0	0.871M	0.136M
7° Skirt	3,3	1.32	1.72	31.75	1.58	24.09	2.35M	2.08M
Base @ R = 1.72	-	•	1.72	9.29	0	0	1.48M	0.74M

NOTES: Basic - SM Shape 6.3m long

Extended - 3.3m long skirt added

Table VI-3 SO2P Aeroshell Mass and Center of Mass

्रे अक्ष्रिक प्रदेशक के ने नाम स्थाप क्ष्युवर स्थापनी की हीताओं -	granger agrant annihilities	Parameter (1904-14) - An order believe en	1	PS	Struc	ture		Aeroshel	1
Entr Condit V(km/s)		TPS Matl.	Mass (kg)	MX (kgm)	Ma≤s (kg)	MX (kgm)	Mass (kg)	MX (kgm)	X fb (m)
8	-23°	ESM/SAM	343	1101	129	288	472	1389	2.94
13	-23.5°	CP/ESM	781	2264	133	288	919	2552	2.80
8	-23°	CP/ESM	488	1412	129	308	617	1720	2.7

Table VI-4 SO2P - TPS Mass and Center of Mass, V = 8 km/s

Part	(m ²)	M/A (kg/m ²)	M (kg)	X fb (m)	MX (kgm)
Nose ,	.25	92.8	23	6.2	144
Fwd. Cone Upper 160°	5.70	4.9	28	4.05	113
Fwd. Cone Lower 200°	7.12	24.4	174	4.05	704
Aft Cone Upper 160°	8.87	2.5	22	1.30	29
Aft Cone Lower 200°	11.08	7.7	85	1.30	111
Base	5.47	2	11	0	0
			343	3.21	1101

Table VI-5 SO2P - TPS Mass and Center of Mass, V = 13 m/s

- C. (All control of the control of	** 18. No 40 Up 1 State 18. 18. 18. 18. 18. 18. 18. 18. 18. 18.					
Part	(m ²)	M/A (kg/m ²)	M (kg)	X _{fb} (m)	MX (kgm)	
Nose	0.25	210	53	6.2	326	
Upper 13° Cone	6.41	9.05	58	4.05	235	
Lower 13° Cone	6.11	47.2	303	4.05	1226	
Δ 7° Cone	2.9	8.12	24	2.30	54	
Upper 7° Cone	7.1	4.74	34	1.30	43	
Lower 7° Cone	10.0	29.28	293	1.30	380	
Base	5.47	3	16	0	0	
			781	2.90	2264	

Table VI-6 SO2P Structure Mass and Center of Mass

Part		<u>V = 8 km/s</u>				<u>V = 13 km/s</u>			
	A (ni ²)	X _{fb} (m)	M/A (kg/m ²)	M (kg)	MX (kgm)	M/A (kg/m ²)	ત (kg)	MX (kgm)	
Nose	0,25	6.2	2.8	1	4	2.9	1	4	
Fwd. Fru.	2,8	5.3	2.8	8	42	2.9	8	43	
Fwd. Ring		4.7	•	5	23	-	6	26	
Mid Fru.	10.0	3.6	3.0	30	108	3.1	31	112	
Brk. Ring	-	2.74	tes	6	16	~	7	19	
Aft fru.	20.0	1,3	3.1	62	81	3.3	56	86	
Base Ring	-	0	-	10	0	-	11	0	
Sep. S/S	-	2.0	-	7	14	-	8	16	
				129	288	•	138	308	
		X ₈ =	2.23			\overline{x}_1	3 = 2.23		

Table VI-7 SO2P - TPS Mass and Center of Mass (CP Alt.)

Part	A (m ²)	M/A (kg/m ²)	M (kg)	X _{fb} (m)	MX (kgm)
Nose	.25	132	33	6.2	205
Upper 13° Fru.	6.41	7.48	48	4.05	194
Lower 13° Fru.	6.41	27.4	176	4.05	711
Δ7° Fru.	2.9	7.33	21	2,30	49
Upper 7° Fru.	7.1	3.42	24	1.30	32
Lower 7° Fru.	10.0	17.0	170	1.30	221
Base	5.47	3	16	0	0
-48. / (141) 17. 111 (141) 17.11 (141)	***		488	2.89	1412

VI-13

Table VI-8 SO2P Aeroshell Inertias, V = 8 km/s

Part.	M (kg)	I _{R2}	IO (kgm²)	XCM (m)	X ² M (kgm ²)	I _{P&Y} (kym ²)
Nose	25	1	Neg1.	3.26	265	265
13º Frustum	240	120	276	1.11	296	5/2
7" frustum	169	228	22 0	1.64	455	6/5
Base	11	10	5	2.94	95	100
Fwd. Ring	5	2	1	1.76	15	16
Brk. Ring	6	6	3	0.20	м	3
Base Ring	10	19	10	2.94	86	96
SEP S/S	7	7	4	0.94	6	10
		338				1737

^{*} CM 2.94m from Base

Table VI-9 SO2P Aeroshell Inertias, V = 13 km/s

Part	M (kg)	I _R (kgm²)	0 IP& ((kgi ¹)	X CM (m)	X ² M (kgm²)	1 _{P&Y} (kgm²)
Nose	54	1	·-	3.4	624	€75
13° Frustum	400	200	460	1.25	625	10.15
7° Frustum	417	563	547	1.50	938	1 30
Base	16	14		2.80	125	* 32
Fwd. Ring	6	2	1	1.9 '	22	23
Brk. Ring	7	7	L ;	0.34	1	5
Base Ring	11	21	31	2.80	86	16
Sep. 8/8	8	8	}	0.80	5	13
•	1	816				30.59

^{*} CM @ 2.80m

Table VI-10 Flap Structure and TPS Characteristics

ក្រុសកូច ស្គម្មាធិ ស្គម្មាធិ ស្គម្មាធិ	16.81	12.0 kg		28 C. 88	ი. ი.
Structure H/C Core19m thick at 83.5 kg/m ³ Skins (2) 1.02mm thick aluminum alloy Torsion Bar leading edge - aluminum alloy Horn Assembly (2) Hinge Assembly (4)	+ 10% Allowance for bond and herdware	Flap Structure Weight =	<u>TPS</u> Windward Surface and Edges	30mm thick carbon phenolic at 505 kg/m =	Leeward Surface 14mm thick ESM at 550 kg/m ² =

Table VI-11 Aeroshell Support Structure Characteristics

Circular Rings (2)

React Flap Hinge Moments

1.07m Spacing

P = 7500 N.; BM = 1390 N-m

75mm Deep Alum. Alloy Channel

Weight = 0.077 gm/Linear mm

Longitudinal Intercostals (4)

Poact Actuator Loading

P = 1350 N (tension)

L = 1.07 M

75mm Deep Alum. Alloy Channels (0.98 gm/mm)

Table VI-12 Flap Weight

		68 kg			20 kg				11.6 kg	
	12 kg 48 8			13 kg			4.5 kg	5.5		em - ~100 kg
Flaps	Structure + FTG Carbon Phenolic H/S ESM H/S		Support Structure	<pre>Intercostals (4) Rings (2) FTG + Contingencies</pre>		Actuation S/S	Tank & Gas Regulars	Actuators (2) Lines Control Electronics		Total Weight of Flap System -

Table VI-13 MSR Structure Mass and Center of Mass

					<u>on (1g.</u>	A/M Con	fig.
Part	A _{(m} 2)	M/A (kg/m ²)	M (kg)	X _{fb} (m)	f1X (kgm)	X fb (m)	MX (kgm)
Nose	0.25 ,	3.0	.8	9.5	8	6.2	5
Fwd. Cone	12.82	3.0	38.5	7.35	283	4.05	156
Center Cone	19,95	3.3	65.8	4.60	303	1.30	85
Aft Cone	31.75	3.4	107.9	1.58	171		
Break Ring			6	6.03	36	2.74	16
Sep. Ring			10	3.3	33	0	0
Base Ring	<u> </u>		16	0	0		
Sep. Parts			10	1.65	17		
ΑCΣ	74		255	3.34	351		
ΑΜΣ	33		121.1	eroskymelitis i estorum		2.16	262

Table VI-14 MSR TPS Mass and Center of Mass

								200	H In Canada Constitution	
	giount vit i			A/C Configuration	guration			A/F COI	india me	- }
Part	n magazoret pariti. elite	A (m ²)	M/A (kg/ m^2)	™ (kg)	Х _{fb} (п)	MX (kgm)	м/д (кg/m²)	(kg)	4 (E)	MX (kgm)
eso:		0.25	7.34	8.	9.5	-		ထ္	6.2	
Forecone	, 00L	3.56	7.19	25.6	7.35	188		25.6	4.05	104
	260°	9.26	2.40	22.2	7.35	163		22.2	4.05	06
Aft Cone	000	5.54	6.85	37.9	4.6	175	monorità e distributioni	37.9	3.30	49
L - 2.7	590ء	14.41	2.40	34.6	4.6	159	· Waryy is -	34.6	<u>3</u> 30	45
L - 3.3	,00 100°	8.82	6.85	60.4	1.58	95				
	}	1	? •	တ (၁)	i.58	13				
Base		9.29	1.00	9.3	0	0				
		74.06		246.8	3.58	884		122.1	2.45	299

Table VI-15 MSR Aeroshell Inertias

		A/C Conf. (CM @ 3.46)	6 %D)	1.46)				4.4	f Confid	C 2 7 7 1	(;	
								1/4	A/F LUIN 19. (LM & 2.31)	ע פּאַ בּאַר (בּאַ בּאַר בּאַר	()	
• estillations	E	I.	10 Pr.v	l×	MXZ	, e	X	þ. v	φ.	>	27.75	
	(kg)	(kgm ²)	(kgm^2)	(E)	(kgm^2)	(kgm^2)	(kg)	$\frac{R}{(kgm^2)}$	*P&Y (Kgm²)	· Œ	(kg ²)	PRY2
Nose	2.6	•	ı	6.04	94.9	94.9	2.6	Neg].	Ne al	, c	30	C C C
Fwd. Cone	86.3	43.1	99.5	3.89	1305.9	1405.1	86.3	43.]	6 00		ראפ ראפ	7 4
Center Cone	138.3	186.7	179.8	1.14	179.7	359.5	138.3	186.7	3.67		: 07 [2]	30 CC
Aft Cone	223.3	524.8	464.5	1.88	789.2	1253.7			•		r r	70
פווע אפא ויי	5	า	-	2.37	39.6	<u>ن</u> ن	o	٠,	, ,	£,	,	ſ
Sep. Ring	0	14	7	0.16	ო.	7.3	10	*	· In	, , , ,	. c	1 6
Base Ring	9	46	23	3.46	191.5	214.5			.	3	2	
Sep. Parts	20	œ	1.81	32.8	40.8							
Base Shield	9.3	13.8	6.9	3.49	113.3	120.2						
	502	839.4			•	3536.6	243	247			•	785
)

Table VI-16 Uranus Structure Mass and Center of Mass

Part	A (m ²)	M/A (kgm ²)	M (kg)	X (m)	MX (kgm)
Nose	.25	3.2	1	6.2	144
Fwd. Frustum	2.8	3.2	9	5.3	47
Fwd. Ring	-		10	4.7	47
Mid Frustum	10.0	4.0	40	3.6	144
Brk. Ring	-		12	2.74	33
Aft. Frustum	20.0	4.5	90	1.30	117
Sep. S/S	-		10	2.0	20
Base Ring	-		20	0	0
			192	2.15	413

Table VI-17 Uranus TPS Mass and Center of Mass

Part	A (m ²)	M/A (kg/m ²)	M (kg)	X _{fb} (m)	MX (kgm)
Nose	0.25	55.05	13.76	6.2	85
Upper 13° Cone	6.41	17.25	110.57	4.05	448
Lower 13° Cone	6.41	37.25	238.77	4.05	967
Δ 7° Cone	2.9	22.02	63.86	2.30	147
Upper 7° Cone	7.1	14.68	104.23	1.30	135
Lower 7° Cone	10.0	24.77	247.7	1.30	322
Base	5.47	3	16	0	0
			795	2.65	2104

Table VI-18 Mass Property Summary

						Aerosholl		
Mission	V(km/s)	(6)z	Structure Mass (kg)	TPS Mass (kg)	Mass (kg)	CM Loc. (m from base)	IR (kgm ²)	1pg.y (kgm²)
S02P	(1)8	-23	129	343(1)	472	80	acc	727
S02P	8(2)	-23		488(2)	2/4	2,75	999	/2/
S02P	2	-23,5	138	781	919	2,80	816	3 3 3 3 3
Uranus	30	-12	192	795	987	2.55) }	
MSR-AC			255	247	502	3.45	839	3537
WE GON			101	122	543	6	72.7	אמר
								1

(1) Minimum Mass Thermal Protection

(2) Carbon Phenolic Thermal Protection

·- TI				
(44 (*)	2.74	3.73	4.41	7.61
n N	13° 2.74	160	120	100
وا <u>ند</u> ور	7٥	40	70	20
r Ma	1.32	1.09	1.09	0.40 0.81 5°
\mathbf{I}_{Σ}	0.98 1.32	0.54 1.09 4° 16°	0.83	07.0
عجز	0.20	•	0.14	0.12
H		6.3 0.18	6.3	6.3
SHAPE	7-6 (SM)* 6.3	4-4	7-10	(M)

* Reference I-1

Figure VI-2 Candidate Configuration Geometry

Figure VI-3 Generic Aeroshell Geometry

Figure VI-4 Frustum Insersection Geometry

Figure VI-5 SO2P Nose Press are Distribution

AXIAL STATION/LENGT:
Figure VI-6 SO2P Vehicle Pres ure Distribution

Figure VI-7 Shell Structure Unit Mass vs. Inickness

Figure VI-8 Structure Depth vs. Dynamic Pressure

Figure VI-9 SO2P Irboard Profile

Figure 10 SO2P Performance

Figure VI-11 SO2P Structure, V = 8 km/sec

VI-32"

Figure VI-12 SO2P Structure, V = 13 km/sec

Figure VI-13 SO2P TPS, V = 8 km/sec

Figure VI-14 SO2P TPS, V = 13 km/sec

Figure VI-15 SO2P TPS, Carbon Phenolic Alternate, V = 8 km/sec

Figure VI-16 Flap Concept

Figure VI-17 MSR Inboard Profile

Figure VI-18 MSP Structure Unit Mass

Figure VI-19 MSP TPS

ur १ द्वीसोत् हे इंटलंड का किस्तार का कार्र के किस के

Figure VI-20 MSR Aeroshell Mass Parameters

Figure VI-21 Uranus Structure

Figure VI-22 Branus TPS

VII. CONCLUSIONS

This study has resulted in system design concepts for a generic Aerocapture configuration for the SO2P. MSR and Uranus mistions. These concepts, along with the controlled entry simulations, support the leasibility of the generic Aerocapture concept. The design concepts consist of: aerodynamic configuration; control systems for atmospheric energy management; entry thermal protection; and structural definition.

The design concepts meet the requirements of Section II with the exception of SO2P payload mass at 13 km/sec. However, the 8 km/sec entry has a significant mass margin and it is estimated that entries up to 11 km/sec can accommodate the current payload mass estimate. Additional capebility can become available as overall mission studies progress relative to SO2P payload and launch trajectory.

Based on the results of this study, the 6 3m configuration design concept for SO2P could also be used as the MSR aeromaneuver vehicle. It would be very inefficient from the mass standpoint but would allow not only a generic configuration but an identical design for both missions.

VIII. NEW TECHNOLOGY AND RECOMMENDATIONS

Based on the results of this study, it is trongly recommended that existing aerothermodynamic design technology be e-panded to meet generic Aerocapture needs. Emphasis should be placed on thermal protection systems and associated vehicle interactions. Specific recommendations are as follows:

A. Thermal Protection Material Response in Aerocapture Environment

- Contemporary thermal protection materia is like carbon phenolic should be evaluated in plasma arc ground tests in air to assess their performance capabilities for the long heating time high heating rate environments
- 2. Reuse capability of the above contemporary ablators for subsequent entry in a more benign ballistic probe type environment should be evaluated in plasma arc ground tests.
- 3. New composite thermal protection materials, such as carbon/carbon over a carbon foam, which offer potential to significantly reduce TPS weight should be surveyed and several selected, fabricated, and tested for comparison to the contemporary material.
- 4. Full scale panel to panel ablator gaps hould be tested in a plasma arc at angle of attack to determine ablativ shape change effects on gap thermal performance.

B. Aerothermochemistry Effects in Dissociated ypersonic Flows

1. Material surface - gas phase interactio s between carbon and silica and ${\rm CH_4}$ and ${\rm N_2}$ should be evaluated.

- 2. In-depth thermal response of carbon phonolic, refrasil phenolic and elastomeric shield materials in dissociated $\rm H_2$, $\rm He$, $\rm CH_4$, and $\rm N_2$ should be evaluated analytically.
- 3. Facilities should be surveyed to determine where plasma arc tests can be conducted to validate the thermal response modeling of task 2 above.
- 4. Plan and conduct plasma are tests where feasibility has been indicated in task 3 above.

C. Hypersonic Heat Transfer in Planetary Atmorpheres

- 1. Thermodynamic and transport properties for $\mathrm{CH_4}$ and $\mathrm{N_2}$ should be generated.
- 2. Laminar and turbulent heat transfer to typical aerocapture configurations (with and without aerodynamic control surfaces) should be experimentally evaluated on the windward side, leeward and base areas. Predictions for the combination of gas composition and test conditions should be made utilizing the GE 3DV code for windward and side areas and a semi-empirical separated flow heat transfer algorithm on the leeside and base areas. Predictions should also be made for typical aerocapture missions.
- Uncoupled radiative heat transfer compitations should be made for the SO2P and Uranus aerocapture missions.

D. Aerothermal Design of An Aerodynamic Control Surface

1. Ablative shape change of a split windward flap control surface should be evaluated laterally and axially by employing heat transfer distributions from task C-2 and the analytical ablative material models calibrated in task B-2 above.

- 2. Thermal design of the flap hinge line and actuator box seals should be investigated in sufficient detail to provide preliminary design type weight estimates. Design concepts should be derived from previous DOD flapped vehicle designs.
- Aerocapture vehicle nose bend required vs. body slice size (to accommodate a split windward flap installation) should be generated.
- Techniques to enhance the aerodynamic yaw stability like yaw tabs, bumps, or ears should be investigated.
- 5. Refined weight estimates of the split windward flap thermal protection and structural support system should be made.
- E. Aerothermal Material Interaction Effects on Aerocapture Performance
 Six-degree-of-freedom aerodynamic characteristics should be generated,
 including the effects of:
 - 1. Vehicle asymmetries
 - 2. Ablative mass addition phase lag
 - 3. Skewed laminar turbulent boundary layer transition front
 - 4. Ablator roughness
 - 5. Split windward flap shape change
 - 6. Free stream gas composition
- F. Trajectory and control simulations should be performed to demonstrate the mission impact of items 1 through 6 above.

IX REFERENCES

- I-1 Armento, R., "Mass Aerocapture Vehicle Definition Study Final Report,"
 GE Report 79SDR2258, 17 August 1979
- TTI-1 Dawitt, J. Brant, D. and Bosworth, F., "Computational Technique for Three Dimensional inviscid Flow Fields About Re-entry Vehicles," SAMEOTR-79-5, April 1978.
- 171-2 Hecht, A. M., and Nestler, D. E., "A Three Dimensional Boundary Layer Computer Program for Sphere-Cone Type Le-entry Vehicles," AFTDL-TR-78-67, July 1978.
- Gentry, A. E., Smyth, D. N., Oliver. W. R., "The Mark IV Supersonic-Hypersonic Arbitrary-Rody Program," Vol. I, II and III, AFFDI-TR-73-159, November, 1973.
- III-4 Marshall, I., "Hypersonic Dynamic Stability," GE-TIS-66SD333, Oct. 27, 1966
- IV-1 Brewer, R. A., "A Comparison of Experimental Data and Theoretical Predictions for Laminar Stagnation Point Convective Heat Transfer in the Martian Entry Environment", GE-TDM-8151-107.
- IV-2 Moss, J. N., Anderson, E. C., and Beiz, C. W., Jr., "Viscous-Shock Layer Solutions with Radiation and Ablation Injection for Jovian Entry", ALAA Paper 75-671, May 1975.
- IV-3 Haviland, R., "Handbook of Satellites and Space Vehicles," D. Van Nostrand Co., Inc. New York, 1965, Pg. 354 374.
- IV-4 Moss, J. N., Simmons, A. L. and Anderson, E. C., "The Impact of Turbulence on a Radiating Shock Layer with Coupled Allation Injection", AIAA Paper 78-1186, July 10-12, 1978.
- IV-5 Moss, J. N., "A Study of the Aerothermal Entry Environment for the Galilea Probe", ALMA Paper 79-1081, ALMA 14th Chermophysics Conference, June 4-6, 1979.
- IV-6 Moss, J. N., "Flow Field Analysis for Luture Planetary Entry", AIAA Paper 79-0918, Hampton, Va., May 8 11, 197'.
- IV-7 Nestler, D. E., Personal Communication June 1980
 - Feldhuhn, R. H. and Pasiuk, L., "An Experimental Investigation of the Aerodynamic Characteristics of Slengar Hypersonic Vehicles at High Angles of Attack, "NOL Tech. Rept. (3-52, May 1968.

and the second of the second o

Programme Trades W. T. TRUCK

- Moyer, R. E., "Skybolt Heat Transfer Data Analysis Angle of Attack," OF MED TIM-8151-004, November 1962.
- Widhopf, G. F., "Turbulent Heat Transfer Measurements on a Blunt Cone at Angle of Attack," Aerospace Rept. TR-0059 (S6816-66)-1, February 22, 1971.
- Widhopf, G. P., "Transitional and Turbulent Heat Transfer Measurements on a Yawed Blunt Conical Nosetip," / LAA Paper No. 72-212.
- IV-8 Sutton, K. "Fully Coupled Nongray Radiating Gas Flows with Ablation Product Effects about Planetary Entry Bodies", AIAA Paper 73-672, July 1973.
- IV-9 Falanga, R. A., and Olstad, W. B., "An Approximate Inviscid Radiatine Flow Field Analysis for Sphere-Cone Venusiae Entry Vehicles", AIAA Paper 74-75.

 July, 1974.
- IV-10 Brower, R. A., D. N. Brant and R. P. Fezaroli, "Development of a Steady-State Shape Change Ablation Code for the Design of Outer Planet Probed" ALAA Paper 77-95, presented at ALAA 15 Acrospace Sciences Meeting, Los Angeles, January 1977.
- 1V-11 Brewer, R. A. and D. N. Brant, "Thermal Protection System for the Galulco Mission Atmospheric Entry Probe," AIA: paper 80-0358, presented at ATAA 18th Aerospace Sciences Meeting, Pasadena, Cal., Jan. 1980.
- IV-12 Brower, R. A., "Selection of a Heat Protection System for Venusian Entry," AIAA paper #75-731, presented at AIAA 30th Thermophysics Conference, Server, Colorado, May 1975.
- 1V-13 Page, W. A., and Woodward, H. T., "Radiative and Convective Heating I min Venus Entry", ATAA J., Vol. 10, October 1972, pp. 1379-1381.
- 1V-14 Page, W. A., Compton, D. L., Borucki, V. J., Ciffone, D. L., and Cooper, D. M., "Radiative Transport in Invisci Nonadiabatic Stagnation Region Shock Layers", AIAA Paper 68-784, Los orgeles, California, 1968.
- IV-15 Florence, D. A. Hecht, and E. Vogel, " proposonic Entry Heat Transfer '
 Pioneer Venus, (E RESD, Philadelphia, ' 1. 1972
- IV-16 Wolf, F., and Spiegel, JM, "Status of asic Shock-Layer Radiation Information for Inner-Planet Atmospheric Entry", J of Spacecraft and Rockets, 4 pp. 1166-1173, September 1967.
- IV-17 Marvin, J. G. and Deiwert, C. S., "Connective Heat Transfer in Plane wy Gases", NASA TR R-224, July 1965.
- IV-18 Hoby, E. V., "Empirical Stagnation-Poi : Heat-Transfer Relaxation in Neveral Gas Mixtures at High Enthalpy Levels" NASA TND-4799, October 1968.

- IV-19 Nicolet, W. E., Morne, H. L., Neumer, G. J., and Gomez, A. V., "Outer Planet Probe Entry Thornal Protection", Aerothema Final Export 74-92, February 10, 1975.
- IV-20 Nicolet, W. E., Private Communication, November 18, 1975.
- IV-21 Sticktord, G. H., and Menard, W. A., "New Shock Composition and Radiation Intensity Calculations for a Ballistic Entry into the Jovian Atmosphere", ALMA 3rd Thermophysics Conference, Paper No. 68-787 (1968).
- IV-22 Berman, R. J., "Bow Shock Shape About a Spherical Nose", AIAA J., Vol. 3, No. 4 pp. 779, 780, APril 1965.
- IV-23 Serbin, H., "Supersonic Flow Around Blunt Bodies", J. Aerospace Sci. 25, 58-59 (1958).
- 1V-24 Li, T.-Y., and Geiger, R.E., "Stagnation Point of a Blunt Body in Hypersonic Flow", J. Aerospace Sci. 24, 25-32 (1957).
- 1V-25 Ridyard, H. W., and E. M. Storer, "Steamation Point Shock Detachment of Blunt Bodies in Supersonic Flow", J. Aerospace Sciences, 29, 751-752 (1962).
- IV-26 Storer, E. M., "A Simple Method for Colculating the Stagnation Point Shock Detachment of Spherical Bodies in Supersonic Flow", GE RESD Aerodynamics Fundamentals Memo 64-2, May 6, 1964.
- IV-27 Florence, D., H. Thibault and A. Hilt:, "Selection, Development, Characterization and Flight Test of a Thermal Protection System for an Earth Entry Satellite Vehicle", AIAA paper #78-86, presented at 2nd ADA/ASME Thamsen Physics & Heat Transfer Conference, P. lo Alto, Cal., May 1978.
- IV-28 Rottock, S., "The Development of a Phenolic Nylon Model for a React on Kinetics Ablation Program", GE-TIS-65: 0320, Sept. 1965.
- IV-29- Cline, P. B., and Schultz, F. L., "Investigation of the Effect of M terial Properties on Composite Ablative Material Behavior," NASA CR-72142, April 1967.
- IV-30 Berkowitz, A. M., Kyriss, C. L., and Martelucci, A., "Boundary Layer Transition Flight Test Observations," ALM Paper No. 77-125, January 24-25, 1977.
- 1V-31 Juneau, P. W., Jr., et J. Brazel, J. W. Metzger, C. Fehl, & R. M. Fentor,
 "Ablative Materials for High Heat Loads Part III Insulative Layers for
 Carbon/Phenolic Heatshields", AFML-M-70-95, Part 111, June 1973.
- IV-32 Moss, J. M., personal communication, September 1980.