CS372 FORMAL LANGUAGES & THE THEORY OF COMPUTATION

Dr. Nguyen Thi Thu Huong

Phone: +84 24 38696121, Mobi: +84 903253796

Email: huongnt@soict.hust.edu.vn,

huong.nguyenthithu@hust.edu.vn

Unit 9 Undecidability

Contents

- Acceptance Problem for Turing machine
- The diagonalization method
- The halting problem

Relationship among classes of languages

Acceptance Problems for Turing Machines

Theorem 9.1

 $A_{TM} = \{(M, w) \mid M \text{ is a TM and } M \text{ accepts } w\}$ is undecidable.

- 1. Note that A_{TM} is Turing-recognizable. This theorem when proved, shows that recognizers are more powerful than deciders.
- 2. We can encode TMs with strings just like we did for DFA's

Encoding aTuring Machine

- Encode Q using unary encoding:
 - For $Q = \{q_0, q_1, \dots q_{n-1}\}$, encode q_i using i + 1 0's, i.e., using the string 0^{i+1} . q_{accept} is encoded with 0^{n+1} , q_{reject} is encoded with 0^{n+2} ,
 - We assume that q_0 is always the start state.
- Encode Γ using unaryencoding: $\Gamma = \{a_1, a_2, a_3\}$, where $a_1 = 0$, $a_2 = 1$, $a_3 = \square$. Encode a_1 using 0, a_2 using 00, a_3 using 000.
- Encode $\Delta = \{\Delta_1, \Delta_2\} = \{L, R\}$ using 0 $^t(t = 1 \text{ or } t = 2)$
- Encode δ . Each entry of δ , e.g., $\delta(q_i, a_j) = (q_k, a_m, \Delta_t)$ is encoded as

$$0^{i+1}10^{j+1}10^{k+1}10^{m+1}10^{t}$$

• Separate entries of δ with 11, the code for the whole machine begins with 111 and ends with 111

Example for TM Encoding

• TM for language $L = \{0^{2n} \mid n \ge 0\}$ with the following state diagram is

Acceptance Problems for Turing Machines

- The TM U recognizes A_{TM}
- U = "On input (M, w) where M is a TM and w is a string:
 - Simulate M on w
 - If *M* ever enters its accepts state, *accept*; if *M* ever enters its reject state, *reject*.
- Note that if M loops on w, then U loops on (M, w), which is why it is NOT a decider!
- U can not detect that M halts on w.
- In some documents A_{TM} is also known as the Halting
- Problem

U is known as the Universal Turing Machine because it can simulate every TM (including itself!)

The diagonalization method

- Let A and B be any two sets (not necessarily finite) and f be a function from A to B.
- f is one-to-one if $f(a) \neq f(b)$ whenever $a \neq b$.
- f is onto if for every $b \in B$ there is an $a \in A$ such that f(a) = b.
- We say A and B are the same size if there is a one-to-one and onto function $f: A \longrightarrow B$.
- Such a function is called a correspondence for pairing A and B.
 - Every element of A maps to a unique element of B
 - Each element of B has a unique element of A mapping to it.

The diagonalization method

- Let N be the set of natural numbers {1, 2, ...} and let E be the set of even numbers {2, 4, ...}.
- f(n) = 2n is a correspondence between N and E.
- \blacksquare Hence, N and E have the same size (though E \subset N).
- A set A is countable if it is either finite or has the same size as N.
- $\mathbb{Q} = \{ \frac{m}{n} \mid m, n \in \mathbb{N} \}$ is countable!
- Z the set of integers is countable:

$$f(n) = \begin{cases} \frac{n}{2} & n \text{ even} \\ -\frac{n+1}{2} & n \text{ odd} \end{cases}$$

The diagonalization method

THEOREM

R is uncountable

PROOF.

Assume <i>f</i> exists and every number in R is listed.	<u>n</u>	f(n) 3. <mark>14159</mark>	
iistea.	1		
Assume $x \in \mathbb{R}$ is a real number such that x	2	55.7 <mark>7</mark> 777	
differs from the j^{th} number in the j^{th} decimal	3	0.12 <mark>3</mark> 45	
digit.	4	0.500 <mark>0</mark> 0	
If x is listed at some position k , then it			
	•		
	_ = !	.4527	
differs from itself at k^{th} position; otherwise the	defined as		
premise does not hold	such, can not		
f does not exist	be on this list.		

Diagonalization over languages

Corollary

Some languages are not Turing-recognizable.

Proof

For any alphabet Σ , Σ^* is countable. Order strings in Σ^* by length and then alphanumerically, so $\Sigma^* = \{s_1, s_2, \dots, s_i, \dots\}$

The set of all TMs is a countable language.

Each TM M corresponds to a string(M).

Generate a list of strings and remove any strings that do not represent a TM to get a list of TMs.

Diagonalization over languages

Proof (continued)

- The set of infinite binary sequences, B, is uncountable. (Exactly the same proof we gave for uncountability of R)
- Let L be the set of all languages over Σ.
- For each language $A \in L$ there is unique infinite binary sequence X_A
 - The i^{th} bit in X_A is 1 if $s_i \in A$, 0 otherwise.

```
\Sigma_{A=\{}^{*}=\{ E, 0, 1, 00, 01, 10, 11, 000, 001, \dots \}
X_{A}=\{ 0 1 0 1 1 1 0 0 1 1 1 \dots \}
```

Diagonalization over languages

Proof (continued)

- The function $f: L \longrightarrow B$ is a correspondence. Thus L is uncountable.
- So, there are languages that can not be recognized by some TM.
 There are not enough TMs to go around.

The Acceptance problem is undecidable

Theorem

- $A_{TM} = \{(M, w) \mid M \text{ is a } TM \text{ and } M \text{ accepts } w\}$, is undecidable.
- We assume A_{TM} is decidable and obtain a contradiction.
 - Suppose H decides A_{TM}

```
H((M, w)) = egin{array}{ll} accept & if M 	ext{ accepts } w \\ reject & if M 	ext{ does not accept } w \end{array}
```

The Acceptance problem is undecidable

PROOF (CONTINUED)

- We now construct a new TM D D = "On input (M), where M is a TM
 - \blacksquare Run H on input (M, (M)).
 - If H accepts, D rejects, if H rejects, D accepts"
- So $D((M)) = \begin{array}{c} accept & \text{if } M \text{ does not accept } (M) \\ reject & \text{if } M \text{ accepts } (M) \end{array}$
- When D runs on itself we get

$$D((D)) = egin{array}{ll} accept & ext{if } D ext{ does not accept } (D) \\ reject & ext{if } D ext{ accepts } (D) \end{array}$$

Neither D nor H can exist.

Consider the behaviour of all possible deciders:

						(D)	
	(M_1)	(M_2)	(M_3)	(M_4)	•••	(M_j)	
M_1	<u>accept</u>	reject	accept	reject		accept	
M_2	accept	<u>accept</u>	accept	accept		accept	• • •
M_3	reject	reject	<u>reject</u>	reject		reject	• • •
M_4	accept	accept	reject	<u>reject</u>		accept	• • •
:		:			٠		
$D = M_j$	reject	reject	accept	accept		<u>?</u>	• • •
-		•					٠

D computes the opposite of the diagonal entries!

A Turing unrecognizable language

A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

A language is decidable if it is Turing-recognizable and co-Turing-recognizable.

 A_{TM} is not Turing recognizable.

- ▼ We know A_{TM} is Turing-recognizable.
- If A_{TM} were also co- Turing-recognizable, A_{TM} would have to be decidable.
- We know A_{TM} is not decidable.
- A_{TM} must not be co -Turing-recognizable.