Cours 5 : Phase I – Phase 2 applications de la programmation linéaire

Christophe Gonzales

LIP6 – Université Paris 6, France

Plan du cours

- Phase I Phase II
- Applications
 - Théorème de l'alternative
 - lemme de Farkas

Problème de départ :

$$\max -2x_1 - x_2 s.c. -2x_1 - 3x_2 \le -19 3x_1 + 4x_2 \le 32 x_1, x_2 \ge 0$$

Problème de départ :

$$\max -2x_1 - x_2 s.c. -2x_1 - 3x_2 \le -19 3x_1 + 4x_2 \le 32 x_1, x_2 \ge 0$$

Introduction des variables d'écart :

$$\max -2x_1 - x_2$$
s.c. $-2x_1 - 3x_2 + x_3 = -19$

$$3x_1 + 4x_2 + x_4 = 32$$

$$x_1, x_2, x_3, x_4 > 0$$

Problème de départ :

$$\max -2x_1 - x_2 s.c. -2x_1 - 3x_2 \le -19 3x_1 + 4x_2 \le 32 x_1, x_2 \ge 0$$

Introduction des variables d'écart :

Base évidente : X3, X4

Problème de départ :

$$\max -2x_1 - x_2 s.c. -2x_1 - 3x_2 \le -19 3x_1 + 4x_2 \le 32 x_1, x_2 \ge 0$$

Introduction des variables d'écart :

$$\max -2x_1 - x_2 s.c. -2x_1 - 3x_2 + x_3 = -19 3x_1 + 4x_2 + x_4 = 32 x_1, x_2, x_3, x_4 > 0$$

Base évidente : x_3, x_4 non réalisable!!!!!!!

Problème avec variables d'écart :

$$\max -2x_1 - x_2 s.c. -2x_1 - 3x_2 + x_3 = -19 3x_1 + 4x_2 + x_4 = 32 x_1, x_2, x_3, x_4 \ge 0$$

Problème avec variables d'écart :

$$\max -2x_1 - x_2 s.c. -2x_1 - 3x_2 + x_3 = -19 3x_1 + 4x_2 + x_4 = 32 x_1, x_2, x_3, x_4 \ge 0$$

Introduction de variables artificielles :

 \implies nouvelle base réalisable évidente : x_4 , x_5

Problème avec variables d'écart :

$$\max -2x_1 - x_2 s.c. -2x_1 - 3x_2 + x_3 = -19 3x_1 + 4x_2 + x_4 = 32 x_1, x_2, x_3, x_4 > 0$$

Introduction de variables artificielles :

 \implies nouvelle base réalisable évidente : x_4, x_5

Simplexe \implies si $x_5 = 0$ alors optimum du problème de départ

$$\max -2x_1 - x_2$$
s.c. $-2x_1 - 3x_2 + x_3 - x_5 = -19$

$$3x_1 + 4x_2 + x_4 = 32$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Assurer que $x_5 = 0$:

min
$$x_5$$

s.c. $-2x_1 - 3x_2 + x_3 - x_5 = -19$
 $3x_1 + 4x_2 + x_4 = 32$
 $x_1, x_2, x_3, x_4, x_5 > 0$

$$\begin{array}{lll} \max & -2x_1 - x_2 \\ s.c. & -2x_1 - 3x_2 + x_3 & -x_5 = -19 \\ & 3x_1 + 4x_2 & +x_4 & = 32 \\ & x_1, x_2, x_3, x_4, x_5 \geq 0 \end{array}$$

Assurer que $x_5 = 0$:

min
$$x_5$$

s.c. $-2x_1 - 3x_2 + x_3 - x_5 = -19$
 $3x_1 + 4x_2 + x_4 = 32$
 $x_1, x_2, x_3, x_4, x_5 > 0$

Problème d'origine réalisable ssi min $x_5 \Longrightarrow x_5 = 0$

$$\begin{array}{lll} \max & -2x_1 - x_2 \\ s.c. & -2x_1 - 3x_2 + x_3 & -x_5 = -19 \\ & 3x_1 + 4x_2 & +x_4 & = 32 \\ & x_1, x_2, x_3, x_4, x_5 \geq 0 \end{array}$$

Assurer que $x_5 = 0$:

min
$$x_5$$

s.c. $-2x_1 - 3x_2 + x_3 - x_5 = -19$
 $3x_1 + 4x_2 + x_4 = 32$
 $x_1, x_2, x_3, x_4, x_5 > 0$

Problème d'origine réalisable ssi min $x_5 \Longrightarrow x_5 = 0$

Phase I: résolution du problème min x5

Résolution du problème | :

min
$$x_5$$

 $s.c. -2x_1 - 3x_2 + x_3 - x_5 = -19$
 $3x_1 + 4x_2 + x_4 = 32$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Résolution du problème | :

Résolution du problème :

Expression en fonction des variables hors base | :

max
$$2x_1 + 3x_2 - x_3 - 19$$

s.c. $-2x_1 - 3x_2 + x_3 - x_5 = -19$
 $3x_1 + 4x_2 + x_4 = 32$
 $x_1, x_2, x_3, x_4, x_5 > 0$

Résolution du problème :

max
$$-x_5$$

s.c. $-2x_1 - 3x_2 + x_3 - x_5 = -19$
 $3x_1 + 4x_2 + x_4 = 32$
 $x_1, x_2, x_3, x_4, x_5 > 0$

Expression en fonction des variables hors base | :

$$\max 2x_1 + 3x_2 - x_3 - 19$$
s.c. $-2x_1 - 3x_2 + x_3 - x_5 = -19$
 $3x_1 + 4x_2 + x_4 = 32$
 $x_1, x_2, x_3, x_4, x_5 > 0$

Résolution : faire entrer x_2 et sortir x_5 :

max
$$-x_5$$

s.c. $\frac{2}{3}x_1 + x_2 - \frac{1}{3}x_3 + \frac{1}{3}x_5 = \frac{19}{3}$
 $\frac{1}{3}x_1 + \frac{4}{3}x_3 + x_4 - \frac{4}{3}x_5 = \frac{20}{3}$
 $x_1, x_2, x_3, x_4, x_5 > 0$

Résolution du problème :

Expression en fonction des variables hors base | :

Résolution : faire entrer x_2 et sortir x_5 : $\Longrightarrow x_5 = 0$

max

s.c.
$$\frac{2}{3}x_1 + x_2 - \frac{1}{3}x_3 + \frac{1}{3}x_5 = \frac{19}{3}$$

 $\frac{1}{3}x_1 + \frac{4}{3}x_3 + x_4 - \frac{4}{3}x_5 = \frac{20}{3}$
 $x_1, x_2, x_3, x_4, x_5 > 0$

Variables en base : x_2 , x_4 $\implies x_5 = 0$ $(x_1 = 0, x_2 = \frac{19}{3}, x_3 = 0, x_4 = \frac{20}{3}) =$ solution réalisable

du problème d'origine

Cours 5 : Phase I – Phase 2 applications de la programmation linéaire

Dernière itération du simplexe

Dernière itération du simplexe | :

Retour sur le problème d'origine | :

$$\max -2x_1 - x_2$$
s.c. $\frac{2}{3}x_1 + x_2 - \frac{1}{3}x_3 = \frac{19}{3}$
 $\frac{1}{3}x_1 + \frac{4}{3}x_3 + x_4 = \frac{20}{3}$
 $x_1, x_2, x_3, x_4 \ge 0$

Dernière itération du simplexe | :

Retour sur le problème d'origine | :

$$\max -2x_1 - x_2$$
s.c. $\frac{2}{3}x_1 + x_2 - \frac{1}{3}x_3 = \frac{19}{3}$
 $\frac{1}{3}x_1 + \frac{4}{3}x_3 + x_4 = \frac{20}{3}$
 $x_1, x_2, x_3, x_4 \ge 0$

Algo du simplexe sur ce problème : phase II

Phase I – phase 2 (1/5)

Problème d'origine (après introduction des variables d'écart) :

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i} & (i = 1, 2, ..., m) \\ x_{j} \ge 0 & (j = 1, 2, ..., n) \end{cases}$$

Phase I – phase 2 (1/5)

Problème d'origine (après introduction des variables d'écart) :

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

Introduction des variables artificielles :

$$x_{n+1} \ge 0, \dots, x_{n+m} \ge 0$$
 telles que :

$$\sum_{i=1}^n a_{ij}x_j + w_ix_{n+i} = b_i, \text{ où } w_i = \begin{cases} 1 \text{ si } b_i \geq 0 \\ -1 \text{ si } b_i < 0 \end{cases}$$

Problème d'origine (après introduction des variables d'écart) :

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

Introduction des variables artificielles :

$$x_{n+1} \ge 0, \dots, x_{n+m} \ge 0$$
 telles que :

$$\sum_{i=1}^n a_{ij}x_j + w_ix_{n+i} = b_i, \text{ où } w_i = \begin{cases} 1 \text{ si } b_i \geq 0 \\ -1 \text{ si } b_i < 0 \end{cases}$$

si $b_i \ge 0$: variables d'écart \Longrightarrow variables artificielles inutiles

Phase I – phase 2 (2/5)

Nouveau simplexe :

$$\begin{cases} \sum_{j=1}^{n} a_{ij}x_{j} + w_{i}x_{n+i} = b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n + m) \end{cases}$$

Phase I – phase 2 (2/5)

Nouveau simplexe :

$$\begin{cases} \sum_{j=1}^{n} a_{ij}x_{j} + w_{i}x_{n+i} = b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., n + m) \end{cases}$$

Solution réalisable :

$$x_j = \begin{cases} 0 & \text{si } j \le n \\ b_j/w_i & \text{si } j > n \end{cases}$$

Détermination d'une solution réalisable du problème d'origine :

$$\min \sum_{i=1}^{m} x_{n+i}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j + w_i x_{n+i} = b_i & (i = 1, 2, ..., m) \\ x_j \ge 0 & (j = 1, 2, ..., n + m) \end{cases}$$

Détermination d'une solution réalisable du problème d'origine :

$$\min \sum_{i=1}^{m} x_{n+i}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j + w_i x_{n+i} = b_i & (i = 1, 2, ..., m) \\ x_j \ge 0 & (j = 1, 2, ..., n + m) \end{cases}$$

Proposition

Le problème d'origine a une solution réalisable si et seulement si le problème ci-dessus a une solution dont la valeur (fonction objectif) vaut 0

Phase I – phase 2 (4/5)

Début de la phase 2 :

si min $\sum_{i=1}^{m} x_{n+i} > 0$ alors problème d'origine non réalisable

sinon tableau simplexe:

 \implies solution réalisable $(x_1^*, \dots, x_{n+m}^*)$ telle que $x_{n+i}^* = 0 \ \forall i = 1, \dots, m$

Phase I – phase 2 (4/5)

Début de la phase 2 :

si min $\sum_{i=1}^{m} x_{n+i} > 0$ alors problème d'origine non réalisable

sinon tableau simplexe:

$$\implies$$
 solution réalisable (x_1^*,\ldots,x_{n+m}^*) telle que $x_{n+i}^*=0 \ \forall i=1,\ldots,m$

Problème d'origine équivalent à :

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} + w_{i} x_{n+i} = b_{i} & (i = 1, 2, ..., m) \\ x_{j} \geq 0 & (j = 1, 2, ..., m) \\ x_{n+i} = 0 & (i = 1, 2, ..., m) \end{cases}$$

Phase I – phase 2 (5/5)

Résolution du problème d'origine :

supprimer toutes les variables artificielles hors base

il peut rester des variables artificielles en base (présence de contraintes redondantes)

② résoudre avec l'algo du simplexe et variable artificielle sort de la base ⇒ la supprimer du problème à résoudre ⇒ élimination progressive des variables artificielles

Variation de la phase I

$$\min \sum_{i=1}^{m} x_{n+i}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j + w_i x_{n+i} = b_i & (i = 1, 2, ..., m) \\ x_j \ge 0 & (j = 1, 2, ..., n + m) \end{cases}$$

- ⇒ ne tient pas compte de la fonction objectif
- ⇒ risque d'obtenir une solution réalisable très éloignée de l'optimum du problème d'origine

Variation de la phase I

$$\min \sum_{i=1}^{m} x_{n+i}$$
s.c.
$$\begin{cases} \sum_{j=1}^{n} a_{ij}x_{j} + w_{i}x_{n+i} = b_{i} & (i = 1, 2, ..., m) \\ x_{j} \ge 0 & (j = 1, 2, ..., n + m) \end{cases}$$

- ⇒ ne tient pas compte de la fonction objectif
- ⇒ risque d'obtenir une solution réalisable très éloignée de l'optimum du problème d'origine

la méthode «big M»

- choisr un *M* très grand
- 2 résoudre max $\sum_{i=1}^{n} c_i x_i M \sum_{i=1}^{m} x_{n+i}$ au lieu de min $\sum_{i=1}^{m} x_{n+i}$

Applications

Théorème de l'alternative (1/3)

Théorème de l'alternative

- \bullet A une matrice $m \times n$
- c un vecteur de taille n
- un et un seul des énoncés suivants est vrai :
 - **1** il existe v tel que $v^T A < c^T$
 - ② il existe $x \ge 0$ tel que Ax = 0 et $c^T x < 0$

Rappel : les vecteurs sont tous par défaut en colonne

Théorème de l'alternative (2/3)

- il existe v tel que $v^T A \leq c^T$
- 2 il existe $x \ge 0$ tel que Ax = 0 et $c^T x < 0$

Démonstration :

démo de $\mathbf{0} \Longrightarrow$ non $\mathbf{2}$:

supposons • alors le PL suivant a un optimum :

 $\max v^T.0$

s.c.
$$\begin{cases} v^T A + d^T = c^T \\ d^T \ge 0 \end{cases}$$

- il existe v tel que $v^T A \leq c^T$
- 2 il existe $x \ge 0$ tel que Ax = 0 et $c^T x < 0$

Démonstration :

démo de $\mathbf{0} \Longrightarrow$ non $\mathbf{2}$:

supposons • alors le PL suivant a un optimum :

 $\max v^T.0$

$$s.c. \begin{cases} v^T A + d^T = c^T \\ d^T \ge 0 \end{cases}$$

 \Longrightarrow dual a un optimum :

 $\min c^T x$

s.c.
$$\begin{cases} Ax = 0 \\ x \ge 0 \end{cases}$$

- **1** il existe v tel que $v^T A \leq c^T$
- 2 il existe $x \ge 0$ tel que Ax = 0 et $c^T x < 0$

Démonstration : |

démo de $\mathbf{0} \Longrightarrow$ non $\mathbf{2}$:

supposons 1 alors le PL suivant a un optimum :

 $\max v^T.0$

$$s.c. \begin{cases} v^T A + d^T = c^T \\ d^T \ge 0 \end{cases}$$

 \Longrightarrow dual a un optimum :

 $\min c^T x$

s.c.
$$\begin{cases} Ax = 0 \\ x \ge 0 \end{cases}$$

valeur du dual = valeur du primal $\Longrightarrow c^T x \not< 0 \Longrightarrow$ non 2

- **1** il existe v tel que $v^T A \leq c^T$
- ② il existe $x \ge 0$ tel que Ax = 0 et $c^T x < 0$

Démo de non $2 \Longrightarrow 0$:

On sait que $S = \{x : Ax = 0, x \ge 0\} \ne \emptyset$ car contient 0.

- **1** il existe v tel que $v^T A \leq c^T$
- 2 il existe $x \ge 0$ tel que Ax = 0 et $c^T x < 0$

Démo de non $2 \Longrightarrow 0$:

On sait que $S = \{x : Ax = 0, x \ge 0\} \ne \emptyset$ car contient 0.

$$\implies \min c^T x$$

s.c.
$$\begin{cases} Ax = 0 \\ x \ge 0 \end{cases}$$

a une solution, de valeur 0

- il existe v tel que $v^T A \leq c^T$
- 2 il existe $x \ge 0$ tel que Ax = 0 et $c^T x < 0$

Démo de non $2 \Longrightarrow 0$:

On sait que $S = \{x : Ax = 0, x \ge 0\} \ne \emptyset$ car contient 0.

$$\implies$$
 min $c^T x$

s.c.
$$\begin{cases} Ax = 0 \\ x \ge 0 \end{cases}$$

a une solution, de valeur $0 \Longrightarrow$ dual a une solution :

$$\max v^T.0$$

$$s.c. \begin{cases} v^T A + d^T = c^T \\ d^T \ge 0 \end{cases}$$

- il existe v tel que $v^T A \leq c^T$
- 2 il existe $x \ge 0$ tel que Ax = 0 et $c^T x < 0$

Démo de non ② ⇒ ① :

On sait que $S = \{x : Ax = 0, x \ge 0\} \neq \emptyset$ car contient 0.

$$\implies \min c^T x$$

$$s.c. \begin{cases} Ax = 0 \\ x > 0 \end{cases}$$

a une solution, de valeur $0 \Longrightarrow$ dual a une solution :

 $\max v^T.0$

$$s.c. \ \begin{cases} \ v^T A + d^T = c^T \\ \ d^T \ge 0 \end{cases}$$

 \implies il existe v tel que $v^T A < c^T \implies \mathbf{0}$

Lemme de Farkas

- \bullet A une matrice $m \times n$
- c un vecteur de taille n
- les deux énoncés suivants sont équivalents :

 - 2 il existe $v \ge 0$ tel que $v^T A = c^T$

- ② il existe $v \ge 0$ tel que $v^T A = c^T$

Démonstration :

démo de $2 \Longrightarrow 0$:

Soit $v \ge 0$ tel que $v^T A = c^T$. Supposons que $Ax \ge 0$

alors $v \ge 0$ et $Ax \ge 0 \Longrightarrow v^T Ax \ge 0$

Or $v^T A = c^T \Longrightarrow v^T A x = c^T x \ge 0 \Longrightarrow \mathbf{0}$

- 2 il existe $v \ge 0$ tel que $v^T A = c^T$

démo de $\mathbf{0}\Longrightarrow\mathbf{2}$:

Soit le PL:

 $\min c^T x$

s.c. Ax > 0

- 2 il existe v > 0 tel que $v^T A = c^T$

démo de **1** ⇒ 2 :

Soit le PL:

 $\min c^T x$

s.c. $Ax \geq 0$

Pas de contraintes sur le signe de x

- 2 il existe v > 0 tel que $v^T A = c^T$

Soit le PL:

 $\min c^T x$

 $s.c. Ax \geq 0$

Pas de contraintes sur le signe de $x \Longrightarrow$ équivalent à :

$$\min c^T x' - c^T x''$$

s.c.
$$\begin{cases} Ax' - Ax'' \ge 0 \\ x' \ge 0, \ x'' \ge 0 \end{cases}$$

$$\min c^T x' - c^T x''$$
s.c.
$$\begin{cases} Ax' - Ax'' \ge 0 \\ x' \ge 0, \ x'' \ge 0 \end{cases}$$

a pour dual:

$$\max v^{T}.0$$
s.c.
$$\begin{cases} v^{T}A \ge c^{T} \\ v^{T}(-A) \ge -c^{T} \\ v \ge 0 \end{cases}$$

$$\min c^T x' - c^T x''$$
s.c.
$$\begin{cases} Ax' - Ax'' \ge 0 \\ x' \ge 0, x'' \ge 0 \end{cases}$$

a pour dual:

$$\max v^{T}.0$$
s.c.
$$\begin{cases} v^{T}A \geq c^{T} \\ v^{T}(-A) \geq -c^{T} \\ v > 0 \end{cases}$$

ce qui équivaut à :

$$\max_{s.c.} \begin{cases} v^T A = c^T \\ v > 0 \end{cases}$$

- 2 il existe $v \ge 0$ tel que $v^T A = c^T$

PL1:
$$\min c^T x$$

a donc pour dual:

PL2:
$$\max v^T.0$$

$$s.c. \begin{cases} v^T A = c^T \\ v \ge 0 \end{cases}$$

- 2 il existe $v \ge 0$ tel que $v^T A = c^T$

PL1:
$$\min c^T x$$

a donc pour dual:

PL2:
$$\max v^T.0$$

$$s.c. \begin{cases} v^T A = c^T \\ v \ge 0 \end{cases}$$

Or, d'après $\mathbf{0}$, PL1 minoré par $\mathbf{0}$, atteint pour $x = \mathbf{0}$

- 2 il existe $v \ge 0$ tel que $v^T A = c^T$

PL1:
$$\min c^T x$$

a donc pour dual:

PL2:
$$\max v^T.0$$

$$s.c. \begin{cases} v^T A = c^T \\ v \ge 0 \end{cases}$$

Or, d'après $\mathbf{0}$, PL1 minoré par 0, atteint pour x = 0

Théorème de la dualité : PL2 a une solution optimale = 0

- 2 il existe $v \ge 0$ tel que $v^T A = c^T$

PL1:
$$\min c^T x$$

s.c.
$$Ax > 0$$

a donc pour dual:

PL2:
$$\max v^T.0$$

$$s.c. \begin{cases} v^T A = c^T \\ v \ge 0 \end{cases}$$

Or, d'après $\mathbf{0}$, PL1 minoré par 0, atteint pour x = 0

Théorème de la dualité : PL2 a une solution optimale = 0

$$\implies$$
 il existe v_* tel que $v_* \ge 0$ et $v_*^T A = c^T \implies 2$

CQFD