Equações Diferenciais: Notas de Aula Modelagem matemática com EDOs de primeira ordem

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

Versão: 20150906

1 Objetivos de aprendizagem

Ao final desta aula o aluno deve saber utilizar a idéia de proporcionalidade na modelagem com EDOs de primeira ordem lineares e interpretar situações de crescimento ou decaimento exponencial.

2 Conteúdo

O aluno deve consultar o livro texto na seção X.Y para se aprofundar no conteúdo desta aula.

2.1 Lei de Newton do Resfriamento (ou Aquecimento)

Como exatamente uma tulipa de cerveja esquenta, ou uma xícara de café esfria com o tempo?

Considere a temperatura T(t) de um objeto, que está em um local onde a temperatura ambiente T_a é constante.

Em poucas palavras, a **Lei de Newton do Resfriamento** (ou do aquecimento) diz que "a temperatura T do corpo tende a se igualar com a temperatura T_a do ambiente, a uma taxa proporcional à diferença entre ambas, isto é a diferença entre T e T_a ".

Ora, a diferença entre a temperatura do objeto (T) e a temperatura do ambiente (T_a) é simplesmente a subtração destes: $T-T_a$. A variação da temperatura é sua derivada T'. Assim, a proporcionalidade entre essas duas grandezas é dada pela equação

$$T' = -\alpha (T - T_a)$$

Por que α tem sinal negativo? Observe que conforme o tempo passa, a diferença entre a temperatura do objeto e a temperatura do ambiente vai diminuindo. A tendência é que, após um tempo muito grande, essas temperaturas se igualem. Com isso, a temperatura T do objeto deixa de variar (ou seja, derivada T'=0).

Se você souber o valor da temperatura do ambiente T_a , a temperatura inicial T(0) do objeto e a constante α , você pode montar e resolver um PVI substituindo esses valores na equação acima.

Exemplos: Duas pessoas estão em um restaurante, onde a temperatura ambiente é $T_a = 25^{\circ}$ C. Uma delas pede um café, com temperatura inicial 90°C, e a outra pede um chope com temperatura inicial 6°C. Qual é a função T(t) que determina como a temperatura de cada um desses objetos varia com o tempo? Considere que a taxa de transferência nesse local de temperatura é $\alpha = 1\%$.

Resoluções:

Substituindo os valores $\alpha = \frac{1}{100}$ e $T_a = 25$, temos a equação $T' = -\frac{1}{100}(T - 25)$. Para cada uma das temperaturas iniciais T(0) acima, temos um PVI, conforme abaixo.

Como vimos nas aulas anteriores, a família de soluções da equação $\frac{\mathrm{d}T}{\mathrm{d}t}=-\frac{1}{100}(T-25)$ é: $T(t)=Ke^{-t/100}+25$ (você pode chegar nessa resposta usando separação de variáveis).

Assim, a solução específica de cada PVI é:

PVI café:
$$\begin{cases} T' = -\frac{1}{100}(T - 25) \\ T(0) = 90 \end{cases}$$

$$T(0) = Ke^{0} + 25 \\ K = 90 - 25 \\ K = 65 \\ T(t) = 65e^{-t/100} + 25$$

Figura 1: Gráficos das temperaturas do café e o chope no tempo

PVI chope:
$$\begin{cases} T' = -\frac{1}{100}(T - 25) \\ T(0) = 6 \end{cases}$$
$$T(t) = Ke^{-t/100} + 25$$
$$T(t) = Ke^{-t/100} + 25$$
$$T(t) = T(t) = T(t) = T(t) = T(t) = T(t) = T(t)$$

Qual vai ser a temperatura de cada um após 1 minuto (t=60s?) Café após 60s: $T(60)=65e^{-60/100}+25=65e^{-3/5}+25$ Chope após 60s: $T(60)=-19e^{-60/100}+25=-19e^{-3/5}+25$

Como somos todos curiosos, podemos usar uma calculadora qual é o valor numérico dessa expressão (mas apenas em casa ou na aula, não na prova!):

Café após 60s: $T(60) \approx 60.7^{\circ}$ C Chope após 60s: $T(60) \approx 14.6^{\circ}$ C

Veja os gráficos das duas funções na figura 1

Desafio: Qual é o limite dessas duas funções quando $t \to \infty$? O que você pode concluir desse resultado?

2.2 Resistência do ar

Como funciona um pára-quedas?

Um corpo em queda livre tem sua velocidade acelerada pela força da gravidade. Assim, a força que atua no corpo, para baixo é $F_g=mg$, onde m é a massa e g é a aceleração da gravidade, que assumiremos constante por simplicidade.

O pára-quedas tem a função de diminuir ou cancelar essa aceleração, atuando na direção oposta (a força atua para cima). Ele cria uma enorme resistência do ar que é proporcional à velocidade atual. Assim, a força gerada pelo pára-quedas pode ser escrita como $F_p = \alpha v$. Isso implica que, quanto maior for a velocidade, maior será também a resistência do ar (diretamente proporcionais).

A resultante dessas duas forças é a diferença entre ambas, isto é $F = F_q - F_p$. Pela segunda lei de Newton essa força resultante é F = mv', onde v' é a aceleração. Juntando tudo em uma única equação, temos:

$$mv' = mg - \alpha v$$

Simplificando, isto \acute{e} , dividindo por m, temos:

$$v' = g - \frac{\alpha}{m}v$$

Podemos colocar o coeficiente de v em evidência, no lado direito da igualdade, dividindo ambos os termos por ele:

$$v' = g - \frac{\alpha}{m}v = -\frac{\alpha}{m}v + g$$
$$v' = -\frac{\alpha}{m}(v - \frac{mg}{\alpha})$$

Agora, com o coeficiente de v do lado direito em evidência, fica um pouco mais fácil para separar as variáveis e resolver a equação.

Exemplo:

Josefina salta de um avião e abre o pára-quedas imediatamente. Sua velocidade inicial é $v_0=0$. Jô pesa 50kg e digamos que o coeficiente de arrasto do ar nesse local é $\alpha=50$. Assumindo que a gravidade é $g=10\frac{m}{\varsigma^2}$, qual será a velocidade de Jô após os primeiros 2s de pura adrenalina?

Resolução:

Substituindo as informações do enunciado temos:

$$v' = -\frac{50}{50}(v - \frac{50 \times 10}{50}) = -(v - 10)$$

Agora já podemos resolver o:

PVI pára-quedas:
$$\begin{cases} v' = -(v - 10) \\ v(0) = 0 \end{cases}$$

A família de soluções da EDO é $v(t) = Ke^{-t} + 10$. Substituindo a velocidade inicial, encontramos o valor de K:

$$v(0) = Ke^0 + 10$$

$$0 = K + 10$$

$$K = -10$$

E a solução desse PVI é:

$$v(t) = -10e^{-t} + 10$$

Com essa função, podemos saber a velocidade Jô em qualquer instante de tempo. Como queremos saber a velocidade depois de 2s, basta substituir t = 2 e encontrar a resposta procurada:

$$v(2) = -10e^{-2} + 10$$

Como curiosidade, podemos efeturar essa resposta na calculadora e encontrar um valor numérico aproximado de $8.6\frac{m}{s}\approx 31\frac{km}{h}$.

Desafio 1: Qual seria a velocidade de Jô depois de 2s se ela não tivesse um pára-quedas? (O que muda no problema?)

Desafio 2: Como a resistência do ar aumenta com a velocidade causada pela gravidade, em algum momento as duas forças F_g e F_p se igualam e se cancelam, e nesse momento Jô passa a cair com velocidade constante (força resultante nula \Rightarrow aceleração nula $\Rightarrow v' = 0$). Qual é essa velocidade terminal?

O gráfico na figura 2 mostra a velocidade terminal.

2.3 Tempo de meia vida

2.3.1 Pré-requisitos

- $b\log(a) = \log(a^b)$
- $-\ln(2) = \ln(2^{-1}) = \ln(\frac{1}{2})$

Figura 2: Gráfico da velocidade da Jô no tempo

2.3.2 A meia vida

$$C' = -\alpha C$$

$$C(t) = Ke^{-\alpha t} = C_0 e^{-\alpha t}$$

Tempo de meia vida: $t_m,$ o tempo necessário para observar a metade de ${\cal C}_0$

$$C(t_m) = C_0 e^{-\alpha t_m}$$

$$C(t_m) = \frac{C_0}{2}$$

$$C_0 e^{-\alpha t_m} = \frac{C_0}{2}$$

Cortando C_0 :

$$e^{-\alpha t_m} = \frac{1}{2}$$

Aplicando o logaritmo em ambos os lados, temos:

$$\ln(e^{-\alpha t_m}) = \ln(\frac{1}{2}) = \ln(2^{-1})$$

$$-\alpha t_m = -\ln(2)$$

Cancelando o sinal e dividindo por t_m :

$$\alpha = \frac{\ln(2)}{t_m}$$