- Def: Let T,T' be G-topologies on Xe Set.
- . T' is fines than T if every T-open is T'-open and T-carec is a T'-covec.
- · every T'-cover of T-open can be refined to T-cover. . It is slightly fines than T if it is fines than T and

Point: T' slightly finer than T => every T-sheaf extends uniquely to T'-sheaf. This also does a not affect cohom.

Fact: There is a slightly finest G-topology. T~> T*

- . UET is T*-open if I notive corecing $u = Uu_i u u_i T$ -open s.t. $\forall T$ -open $V \in U$ the native cov. V= U(Vnu;) can be offined to T-cov.
- · Naive car. of T*-open U, of form U = UU; , is T-w. if all U; are T*-open and Y T-open VEW, the naive cov. V = U(VNU;) can be coffined to T-cov.

Dof: The neak G-top. on P is:

- . admissible opens are P and affinoid subsets of P
- u= uu; s.t. u is already covered by finitely · admissible cov. of admissible open U is naïve cov. many Wig.
- · strong G-top. = (weak G-top.) *.
- Pcop: Admaissible opens for strong top. on P are open sets for canonical (= metric) top. A cov. N = UN. of admissible open by admissible opens is admissible iff Y affinoid FEU one can find a finite subset JEI and VjeJ some F; EU; offinoid s.t. F U F; (pobably same as equality...).
- Ex: In strong top., {zep: |z|<13 is admissible open y admissible covers U {zep: |z|<c} =

and ocrel {zep: |z| < r }.

Ex: (losed disk $\overline{D} = \{z \in P : |z| \le 1\}$ is open for strong top. but $\{z \in P : |z| = 1\} \cup D$ is $\overline{D} = \{z \in P : |z| \le 1\} \cup \{z \in P : |z| \ge 2\}$ is admissible $\forall v \in C \in C$.

Def: X & set M G-top. Seq. of shewes 0 -> 7, -> 72 -> 73 -> 0 is exact if

- (1) Y admissible opens $U \subseteq X : O \rightarrow \mathcal{F}_1(\mathcal{U}) \rightarrow \mathcal{F}_2(\mathcal{U}) \rightarrow \mathcal{F}_3(\mathcal{U})$ is exact;
- (2) Y admissible open $N \subseteq X$ and $s_3 \in F_3(N)$ F admissible cov. $N = UN_i = 1.$ $rac{1}{2} N_i \in \text{image}(F_2(N_i) \rightarrow F_3(N_i))$

Warning: This is stronger than exactness on stalks because (2) needs admissible covers.

Cech cohom. works as usual, including getting LES from SES of sheaves.

Def: Sheaf \mathcal{F} on X is loc. acyclic if \mathcal{F} admissible car. X = U \mathcal{U}_i s.t. V admissible open \mathcal{U} contained in some \mathcal{U}_i we have \mathcal{F} \mathcal{F} \mathcal{U} \mathcal{F} \mathcal{V} \mathcal{F} \mathcal{V} \mathcal{F} \mathcal{V} \mathcal{V} \mathcal{F} \mathcal{V} \mathcal{V} \mathcal{V} \mathcal{F} \mathcal{V} $\mathcal{V$

Peop: Loc. acyelic covers realize the Cech cohom. of X.

Punack:
H=H for all G-topologies in the book!

In the weak top., extend O's definition by O(P) := K, O(\$):=0.

Thm (Tate Acyclicity for P): Um O(U) is sheaf for weak top. Moreover, Hn(Q,O) = 0 Yn 21 and

a) admissible cov. of some admissible open.

We will prove this next time.