

Tetraedralização

Uma comparação entre algoritmos de tetraedralização

Objetivo

Resolver o problema de tetraedralização usando avanço de fronteira

Alcançado

Implementação de tetraedralização usando varredura

Base

Partindo do fecho selecionamos uma aresta e vamos avançando a fronteira até que ela se torne vazia

Problema

Colisão entre arestas

Verificamos então se o ponto mais próximo é valido verificando se ele colide com outras arestas

Problema 3D

Colisão entre Tetraedros

Agora aqui fica um pouco mais complicado devido aos vários casos para tratar

Problema 3D

Colisão entre Tetraedros

Interseção no mesmo plano pode ser válido ou não

Implementado

Varredura

Já retiramos o fecho com ela

Pra cada aresta feita, testa se ela colide com alguma aresta da trinag, se não colide com nenhuma então adiciona ela na triang

ponto da triang
ponto pra add

arestas trina

arestas pra testar

Implementado

Varredura

Para evitar o problema de interseção entre tetraedros

Pois ligando apenas a fronteira não teremos problemas de colisões e ainda ganhamos o fecho Mantemos os triangulos e atualizamos as arestas da fronteira, agora podemos partir para o proximo ponto e fazer a mesma coisa

Complexidade

Avanço de fronteira com validação = n³

Varredura = n²

Considerações

Varredura x Avanço de fronteira

Complexidade

••

0

Facilidade

0

Qualidade

Questões?

Obrigado!

