Teoría de grafos

¿Qué es un grafo?

Un **grafo** es una estructura matemática que modela relaciones entre objetos. Está compuesto por:

- **Vértices (nodos):** Representan entidades.
- Aristas (edges): Representan conexiones entre los vértices.

Tipos de grafos:

- **Grafo no dirigido:** Las aristas no tienen dirección, es decir, la relación entre nodos es bidireccional.
- Grafo dirigido (dígrafo): Las aristas tienen una dirección ($u \rightarrow v \neq v \rightarrow u$).

Características:

- Matriz de adyacencia (A): Matriz cuadrada que indica con 1 si hay conexión directa entre nodos.
- Matriz de incidencia (I): Relaciona vértices con aristas. En grafos dirigidos usa
 -1 (salida) y 1 (entrada).
- Grado de un vértice:
 - o Grafo no dirigido: número de aristas incidentes.
 - o Grafo dirigido: grado de entrada (in-degree) y de salida (out-degree).
- Ley del apretón de manos (handshaking): En un grafo no dirigido, la suma de todos los grados es el doble del número de aristas.
- Trayectoria: Secuencia de vértices conectados por aristas.

Definiciones de matrices

• Matriz de adyacencia (A):

Si existe arista entre viv_ivi y vjv_jvj, entonces $Aij=1A_{ij}=1Aij=1$, de lo contrario $Aij=0A_{ij}=0Aij=0$.

• Matriz de recorrido (R):

Matriz que indica la existencia de una trayectoria (no necesariamente directa) entre nodos.

Matriz de distancias mínimas (Dij):

Muestra la longitud (peso) del camino más corto entre cada par de nodos. Puede obtenerse con el algoritmo de Dijkstra o Floyd-Warshall.

Multiplicación entre dos matrices

Para multiplicar dos matrices A y B:

- $Cij = \sum kAik \cdot BkjC \ \{ij\} = \sum kAik \cdot Bkj \ \{ik\} \setminus Cij = \sum kAik \cdot Bkj$
- Es decir, cada celda de la matriz resultante es el **producto punto** de la fila i de A y la columna j de B.

Algoritmo de Dijkstra

Busca el **camino más corto** desde un nodo fuente a todos los demás, en un grafo con pesos no negativos.

Pasos:

- 1. Inicializar distancias: 0 para el origen, ∞ para el resto.
- 2. Visitar el nodo con menor distancia no visitado.
- 3. Actualizar distancias a sus vecinos si se encuentra una ruta más corta.
- 4. Repetir hasta visitar todos los nodos.

Algoritmo de Yen

Encuentra los **K** caminos más cortos entre dos nodos en un grafo.

Pasos:

- 1. Calcular el camino más corto con Dijkstra.
- 2. Iterativamente buscar caminos alternativos desviando desde nodos del camino anterior.
- 3. Usar un heap para mantener los caminos ordenados por peso.

Análisis del grafo de Euler

Un grafo euleriano es aquel que contiene un ciclo que pasa exactamente una vez por cada arista.

Criterios:

- Grafo no dirigido: todos los vértices tienen **grado par** (o exactamente dos con grado impar para un camino euleriano).
- Grafo dirigido: para todo nodo, el **grado de entrada = grado de salida**.