应用随机过程

离散马链定义

授课教师: 赵毅

哈尔滨工业大学(深圳)理学院

离散马链的定义

转移概率矩阵

简单示例

(迷宫里的老鼠)如图所示,一只老鼠从1号方格出发,一只猫藏在7号方格,且9号方格里有一块奶酪。在缺乏学习的情况下,当老鼠在任一给定的方格里时,它会以1/k的概率移动到下一个方格里,其中k是相邻方格的数量。假设一旦老鼠找到奶酪或者遇到猫,它将永远停在那里。令 X_n 表示经过n次转移之后老鼠的位置,试给出马链 $\{X_n|n=0,1,\cdots\}$ 的转移概率矩阵。

状态空间为 $S = \{1, 2, \dots 9\}$, 则转移概率矩阵:

1	2	3
4	5	6
7	8	9

			- '	-					
	1	2	3	4	5	6	7	8	9
1	0	1/2	0	1/2	0	0	0	0	0
						0			
3	0	1/2	0	0	0	1/2	0	0	0
4	1/3	0	0	0	1/3	0	1/3	0	0
5	0	1/4	0	1/4	0	1/4	0	1/4	0
6	0	0	1/3	0	1/3	0	0	0	1/3
7	0	0	0	0	0	0	1	0	0
8	0	0	0	0	1/3	0	1/3	0	1/3
9	0	0	0	0	0	0	0	0	1

n步转移概率矩阵

Chapman-Kolmogorov等式

Chapman-Kolmogorov等式 $p_{ii}^{(n+m)} = \sum_{k=0}^{\infty} p_{ik}^{(n)} p_{ki}^{(m)}$ 为我们提供了一个计算n步转移概率的方法,试证明之。

证明: 设 $\{X_n, n = 0,1,\cdots\}$ 为任一离散马尔科夫链, 那么

概率可列可加性

条件概率的定义

马尔科夫性

n步转移概率 的定义

矩阵形式

 $P^{(n)} = P^n$

谢谢听课

授课教师

赵毅