

Metodi di soluzione numerica per l'equazione di Schrodinger

Candidata: Matilde Battisti Tutor: Claudio Bonati

Ottobre 2024

Problema generale e metodo delle differenze finite

- Perché usare una soluzione numerica?
 Alcuni sistemi non hanno soluzione analitica per gli autovalori (e.g. buca di potenziale unidimensionale).
- Sistema dell'oscillatore armonico quantistico 1D:

$$H = \frac{\hat{P}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$$
$$\left[-\frac{\hbar^2\nabla^2}{2m} + \frac{1}{2}m\omega^2x^2 \right]\psi = E\psi$$
$$E_n = \hbar\omega\left(n + \frac{1}{2}\right)$$

Si introduce il metodo delle differenze finite.

Si risolve l'equazione su una maglia equispaziata:

$$a = x_0 < \dots < x_N = b$$
$$x_i = a + ih, h = \frac{b - a}{h}$$

 Si riscrive la derivata seconda in termini di differenze finite.
 Differenza finita in avanti:

$$\frac{d\psi(x)}{dx} \approx \frac{\psi(x+h) - \psi(x)}{h}$$
(1)

Metodo delle differenze finite

Differenza finita indietro:

$$\frac{d\psi(x)}{dx} \approx \frac{\psi(x) - \psi(x - h)}{h}$$
 (2)

 Derivata seconda come derivata della derivata prima usando $\psi(x_i) = \psi_i, \ \psi(x_i + h) = \psi_{i+1},$ $\psi(x_i - h) = \psi_{i-1}$:

$$\frac{d^2\psi(x)}{dx^2} \approx \frac{\psi_{i+1} + \psi_{i-1} - 2\psi_i}{h^2} \tag{3}$$

 Si riscrive Schrödinger usando l'approssimazione:

$$\frac{d\psi(x)}{dx} \approx \frac{\psi(x) - \psi(x - h)}{h} \qquad (2) \qquad \frac{2\psi_i}{h^2} - \frac{\psi_{i+1} + \psi_{i-1}}{h^2} + q_i\psi_i = E'\psi_i \tag{4}$$

con $q_i = \left(\frac{m\omega}{\hbar} x_i\right)^2$ ed $E' = \frac{2mE}{\hbar^2}$. Si deduce la forma

dell'Hamiltoniana:

$$H = \begin{cases} \frac{2}{h^2} + q_i & j = i \\ -\frac{1}{h^2} & j = i+1, i-1 \\ 0 & \text{altrove} \end{cases}$$

Applicazione del metodo delle differenze finite

Con la seguente porzione di codice si implementa la matrice Hamiltoniana

```
# Tridiagonal matrix definition
def EigenvaluesEigenvectors():
N = MeshPoints()
q = PotentialEnergy()
hbar = Hbar()
m = Mass()
H = np.zeros((N, N))

for i in range(1, N-1):
H[i, i-1] = -hbar**2 / (2 * m * h**2)
H[i, i] = hbar**2 / (m * h**2) + q[i]
H[i, i+1] = H[i, i-1]
H[0, 0] = H[N-1, N-1] = le10
return elah(H)
```

I risultati ottenuti per N = 1000 punti nella griglia sono i seguenti:

n	$E_{n,att}$	E_n	ΔE
0	0.5	0.499997	3e-6
1	1.5	1.49998	2e-5

Table: Energie dei primi due stati

Ripetendo il calcolo a N diversi si osserva che l'errore diminuisce all'aumentare di N. Per N=1000 si ottengono le seguenti funzioni d'onda:

Figure: Densità di probabilità delle prime due funzioni d'onda

Metodo di shooting

Il metodo di shooting consiste nel trasformare una condizione al bordo in una condizione iniziale. Per la normalizzazione delle funzioni d'onda, si ha come condizione al bordo:

$$\psi(-\infty) = \psi(+\infty) = 0$$

Si riscrive l'equazione di Schrödinger adimensionale:

$$\psi$$
" $(\tilde{x}) = \left[\tilde{x}^2 - 2\tilde{E}\right]\psi(\tilde{x})$

dove
$$\tilde{x} = x\sqrt{\frac{m\omega}{\hbar}}$$
, $\tilde{E} = \frac{E}{\hbar\omega}$.

 Computazionalmente, questa si risolve con la funzione solve_ivp di Scipy

```
* Showting function

of Shocting(1)

psi, a * Psid()

psid()
```

 Si seleziona la funzione d'onda con la giusta energia tramite il metodo della bisezione

Metodo di shooting

- Il potenziale è una funzione pari in x, per cui gli autostati $\psi_n(x)$ sono funzione pari: si impongono le condizioni iniziali $\psi_0 = 1$ e $\psi_0' = 0$.
- Altrettanto importante è fornire un giusto guess per l'energia.

$$E_{guess,n=0} = [0.,2.]$$

 $E_{guess,n=1} = [1.,3.]$

n	$E_{n,att}$	E_n	ΔE
0	0.50	0.4999	1e-4
1	1.50	1.4996	4e-4

Table: Energie dello stato fondamentale e del primo eccitato

Densità di probabilità per lo stato fondamentale e per il primo eccitato:

Bibliografia e ringraziamenti

- Pryce J.D., Numerical solution of Sturm-Liouville Problems, 52-56,
 Oxford Science Publications, 1993
- Flannery, Press, Teukolsky, Vetterling, Numerical Recipes in C, The Art of Scientific Computing, 757-762, Cambridge University Press, 1997
- Ballentine L. E., Quantum Mechanics, A Modern Development, 151-158, Simon Fraser University, 1998

Grazie per l'attenzione