Homework Assignment 4

Arjun Subramanian

- 1. The contrapositive of this statement is $n \mid a \lor n \mid b \implies n \mid ab$. Let $n \mid a$ without loss of generality. Then $a = n \times k$ for some integer k. So, $ab = n \times k \times b$. Since $k \times b$ is an integer, $n \mid ab$.
- 2.
- a. Let irrational number be i and the rational number be $\frac{r_1}{r_2}$ for some integers r_1, r_2 . For the sake of contradiction let the sum of the 2 numbers be rational so $i + \frac{r_1}{r_2} = \frac{s_1}{s_2}$ for some integers s_1, s_2 . Solving for i: $i = \frac{s_1}{s_2} \frac{r_1}{r_2}$, becomes $i = \frac{s_1 r_2 s_2 r_1}{s_2 r_2}$. Here, an irrational number is being represented in rational terms, so the sum must be irrational.
- b. Let's assume that $\sqrt{13}$ is rational, so $\sqrt{13} = \frac{p}{q}$ for some integers p, q. Squaring both
 - sides: $13 = \frac{p^2}{q^2}$, and removing the fraction: $13q^2 = p^2$. Since $13 \mid p^2$, 13 is prime, and all the prime factors from p^2 must come from p, $13 \mid p$. This means p = 13k so $p^2 = 169k^2$. Substituting back: $13q^2 = 169k^2$, $q^2 = 13k^2$. For the same reasons as above $13 \mid q$, so p and q are both multiples of 13 and share a common factor. Since p and q have to be relatively prime, this is a contradiction to the definition of rational so $\sqrt{13}$ is prime.
- 3. The incorrect assumption is that since x-3 is not in the set, then it is a multiple of 3. x-3 won't be in X because it only contains natural numbers. It is possible for other integers not to be divisible by 3.
- 4. There are 3 possible remainders when dividing a positive integer by 3: 0,1,2. If given an integer with a negative remainder, add 3 to that remainder so we are only dealing with those 3 remainders. Let s be the sum of the remainders of the chosen numbers, x_1, x_2, x_3 . If s then the 3 numbers are valid because: Let s be the sum is s and s is an integer, s be a multiple of 3 for the sum to be a multiple of 3.
 - Case 1: 3 or more numbers have the same remainder: the sum of those numbers will be divisible by 3. This is because, $r_1 = r_2 = r_3$ so $s = r_1 \times 3$. This means $3 \mid s$.
 - Case 2: There are 2,2,1 integers for each remainder (in any order): take one x_i from each remainder so that $r_1=0, r_2=1, r_3=2$ (in any order). Here, s=3 and s=3

- 5. $(a-b)(a+b)=a^2-ab+ab-b^2=a^2-b^2$. Let's put that into the equation. $(a-b)(a+b)+2b^2=c^2$. Proving $2\mid a\vee 2\mid b\vee 2\mid c$ will prove $2\mid abc$. There are 2 cases:
 - Case 1: $2 \mid a-b$: Here, (a-b)(a+b) must be a multiple of 2 because one of its factors is. That way the left side the of equation is a multiple of 2 so $2 \mid c^2$. Since the multiplication of 2 odd numbers is an odd number, $2 \mid c$.
 - Case $2: 2 \nmid a b$: The subtraction of 2 odd numbers or 2 even numbers results in an even number. Since a b is odd, either a or b must be even. In other words $2 \mid a \lor 2 \mid b$ Regardless of the case, $2 \mid a \lor 2 \mid b \lor 2 \mid c$, so $2 \mid abc$.
- 6. Let $X = \{x_1, x_2, \dots x_n\}$. For the sake of contradiction let $\forall x \in X, x < \bar{x}$. Because of this we know $\sum_{i=1}^n x_i < n \times \bar{x}$. Dividing both sides by n: $(\sum_{i=1}^n x_i)/n < \bar{x}$. By definition the

average of X is the sum of all elements divided by the number of elements, so we can replace the left side of the equation with \bar{x} . This gives $\bar{x} < \bar{x}$ which will always be false.