

实验 3

学	期	2022-2023 学	年第1学期	实验日期	实验日期 2022/11/4			
学	院	信息	学部	专业	计算机科学与技术(实验班)			
班	级	210710	学 号	21071003	姓名	高立扬		
组	号	43	学 号	21071004	姓名	石昊阳		

评	阅	内	容
νı	1701	ויץ	47

任务一	任务二	总结	格式	成绩

题	目
---	---

实验 3: 计数器电路设计

一、实验目的

通过本实验,进一步了解典型时序逻辑电路的功能和特点;掌握计数器电路的基本分析方法和设计方法;掌握使用硬件描述语言设计计数器的方法。

- 1. 通过计数器、分频器等时序电路的设计与测试,掌握计数器电路的基本分析方法和设计方法。
- 2. 学会使用硬件描述语言编写计数器电路,并利用计数器电路解决实际问题。

二、任务一设计与实现

1. 要求

- (1)用硬件描述语言设计一个与 74LS163 功能一致的计数器。
- (2)清零和置数均为同步方式。
- (3)采用结构化描述方式将计数器 IP 和数码管 IP 相连,将计数结果显示在数码管上。
- 2. 设计思路

任务一要求设计一个具有清零、置数、加一、保持、进位功能的计数器,并将其用结构化描述方式将其 与数码管相连。通过思考发现,用 if 语句很容易将上述计数器功能实现。再用结构化描述方式将其之 前写完的数码管相连。

图 1.模 10 计数器设计思路

实验 3

3. 详细设计

表 1.计数器功能表

说明	输出						输入			
	RCO	Q _A	Q_{B}	Qc	Q_{D}	CLK	ENT	ENP	LDN	CLRN
置零	0	0	0	0	0	1	X	X	X	0
置数	*	A	В	С	D	1	X	X	0	1
加 1	计数 *					1	1	1	1	1
保持	*	Q _A	Q_{B}	Qc	Q_{D}	X	X	0	1	1
保持	0	QA	QB	Qc	QD	X	0	X	1	1

```
module led (out,in,n_en,sel);
                                                                                2
                                                                                          output [6:0] out;
                                                                                          input [3:0] in;
                                                                                3
                                                                                4
                                                                                          input n en;
                                                                                5
                                                                                          output sel = 1'b0;
                                                                                          reg [6:0] out;
                                                                                6
                                                                                          always @ (in or n_en)
                                                                                8
                                                                                             begin
      module counter(clrn, clk, enp, ent, ldn, data_in, q_out, rco);
                                                                                9
                                                                                             if (!n en)
 2
         input clrn, clk, ent, enp, ldn;
input [3:0] data_in;
                                                                               10
                                                                                    case (in)
 3
                                                                                                     4'd0:out = 7'b111_1110;
                                                                               11
          output [3:0] q_out;
                                                                                                     4'd1:out = 7'b011_0000;
                                                                               12
 5
         output rco;
                                                                                                     4'd2:out = 7'b110 1101;
                                                                               13
         reg [3:0] q_out;
always@(posedge clk)
 6
7
                                                                                                     4'd3:out = 7'b111_1001;
                                                                               14
                                                                                                     4'd4:out = 7'b011_0011;
4'd5:out = 7'b101_1011;
                                                                               15
 8
             begin
                                                                               16
 9
                if (~clrn)
                                                                                                     4'd6:out = 7'b101_1111;
4'd7:out = 7'b111_0000;
                q_out <= 0;
else if(!ldn)</pre>
                                                                               17
10
                                                                               18
                                                                                                     4'd8:out = 7'b111_1111;
4'd9:out = 7'b111_1011;
                    q_out <= data_in;</pre>
                                                                               19
                else if (enp && ent==1)
13
                                                                               20
                   q_out <= q_out + 1;</pre>
14
                                                                                                     default:out = 7'b0000 000;
                                                                               21
                                                                               22
                                                                                                 endcase
                    q_out <= q_out;
                                                                                             else out = 7'b0000000;
                                                                               23
17
            end
                                                                               24
                                                                                             end
         assign rco = (q_out==4'b1111 && ent) ? 1:0;
                                                                                     endmodule
```

```
module counter_top(clrn, clk, enp, ent, ldn, data_in, rco ,a,b,c,d,e,f,g,sel,n_en);
input clrn, clk, ent, enp, ldn, n_en;
input [3:0] data_in;
output a,b,c,d,e,f,g, rco;
output sel;
wire [3:0] y;
counter(.data_in(data_in), .clk(clk),.clrn(clrn), .ent(ent), .enp(enp),.ldn(ldn), .q_out(y),.rco(rco));
led(.in(y),.out({a,b,c,d,e,f,g}),.sel(sel),.n_en(n_en));
endmodule
```

顶层文件

图 2-4.计数器和数码管的代码以及顶层文件的代码

数码管

4. 仿真验证

计数器

图 5.波形图

由图,一开始计数器因 clrn 为 0 所以无法计数,从 20ns 开始,clrn 置 1,开始计数。可见 35ns 时,写入权限 ldn 激活,clk 又是上升沿,因此 data 的 0011 被写入,数码管显示 3,并且正常计时。在 75ns 的时候 ENT 为 0,因此计数器锁定,85ns 的时候全为 1,clk 上升沿继续计数,90ns 的时候 ENP 为 0,计数器依然是锁定。计数为 9 的时候,rco 变为 1,数码管也按照预期做出了对应的反应。

5. 引脚分配

实验 3

表 2.引脚分配

端						输入站	n n			
	使能	时钟	ENT	ENP	置零	读取	data_in[3]	data_in[2]	data_in[1]	data_in[0]
名	端	信号			CLRN	LDN				
称	n_en	clk								
引	A3	AB15	E5	СЗ	AB17	AB18	N18	M20	AA15	V13
脚										
编										
号										
平	SW16	F1	SW12	SW11	SW9	SW10	SW1	SW2	SW3	SW4
台										
端										

表 2 续表

V 5/1/											
			输出端								
		LED				选位	进位				
output[5]	output[4]	output[3]	output[2]	output[1]	output[0]	sel	RCO				
W20	R21	P21	N21	N20	M21	V16	-				
LB	LC	LD	LE	LF	LG	DS8	-				
	W20	W20 R21	output[5] output[4] output[3] W20 R21 P21	输出端 LED output[5] output[4] output[3] output[2] W20 R21 P21 N21	输出端 LED output[5] output[4] output[3] output[2] output[1] W20 R21 P21 N21 N20	输出端 LED output[5] output[4] output[3] output[2] output[1] output[0] W20 R21 P21 N21 N20 M21	输出端 LED 选位 output[5] output[4] output[3] output[2] output[1] output[0] sel W20 R21 P21 N21 N20 M21 V16				

Node Name	Direction	Location
out a	Output	PIN_AA20
out b	Output	PIN W20
out c	Output	PIN_R21
in_ clk	Input	PIN_AB15
in_ clrn	Input	PIN_AB17
out d	Output	PIN_P21
data_in[3]	Input	PIN_N18
data_in[2]	Input	PIN_M20
data_in[1]	Input	PIN_AA15
data_in[0]	Input	PIN_V13
out e	Output	PIN_N21
in_ enp	Input	PIN_C3
in_ ent	Input	PIN_E5
out f	Output	PIN_N20
out g	Output	PIN_M21
in_ Idn	Input	PIN_AB18
n_en	Input	PIN_A3
out rco	Output	
out sel	Output	PIN_V16
< <new node="">></new>		

图 6.引脚锁定

6. 实验现象

按一次按钮, LED 显示的数字就+1, 因为没有消除按钮防抖, 因此按一次按钮, LED 的数字不一定加 1, 甚至还出现了加 9 的偶然现象。但是通过 n_e, clrn, ldn 的功能和波形图, 可以验证逻辑电路的设计是没问题的。因为 LED 模块没有考虑 10-15 的 LED 显示, 计数器加到 9 之后没有写归零代码, 因此计数器加到 9 之后, 还要按下 6 次才能到 1.

三、任务二设计与实现

- 1. 要求
- (1) 基准频率为 50MHz。

实验 3

- (2)要求从四个输出端分别输出频率 1Hz、10Hz、100Hz 和 1KHz。
- (3)将设计好的分频器 1hz 频率与计数器电路的时钟信号相连,要求采用结构化描述龙式:其它频率接至未用到的 LED 灯。

2. 设计思路

任务要求设计一个拥有一输入四输出的分频器,并将其 1hz 输出端与计数器电路的时钟信号相连。通过思考发现可以用四个 always 语句实现。

图 7.分频器电路设计思路

3. 详细设计

```
module frequency_divider(clk_50mhz,rst,clk_1khz,clk_100hz,clk_10hz,clk_1hz);
        input clk 50mhz, rst;
output clk 150mhz, rst;
output clk 1khz, clk 100hz, clk 10hz, clk 1hz;
reg clk 1khz, clk 100hz, clk 10hz, clk 1hz;
reg [31:0]cntl, cnt2, cnt3, cnt4;
parameter A=50000;
         parameter B=500000;
        parameter B=500000;
parameter C=50000000;
parameter D=50000000;
//parameter A = 4, B = 10, C = 10, D =10;
always@(posedge clk_50mhz)
11
    always@(posedge

Bbegin

| if(!rst)

B begin

| cnt1<=1'b0;
12
13
14
15
16
17
                clk_1khz<=1'b0;
            end
        else
18
           if (cnt1<A/2-1)
20
21
                cnt1<=cnt1+1'b1;
                                                                                                                                               68
                                                                                                                                                              end
22
23
24
               begin
                   cnt1<=1'b0;
                                                                                                                                                69
                                                                                                                                                          else
                   clk_1khz<=~clk_1khz;
                                                                                                                                                70
                                                                                                                                                              if(cnt4<D/2-1)
25
26
                                                                                                                                                71
                                                                                                                                                                    cnt4<=cnt4+1'b1;
        end
                                                                                                                                                72
                                                                                                                                                              else
27
28
                                                                                                                                               73
         always@(posedge clk_50mhz)
                                                                                                                                                        begin
29
30
     ⊟begin
|if(!rst)
                                                                                                                                                74
                                                                                                                                                                       cnt4<=1'b0;
                                                                                                                                               75
                                                                                                                                                                       clk_1hz<=~clk_1hz;
31
32
          begin
cnt2<=1'b0;
                                                                                                                                               76
                                                                                                                                                                    end
                                                                                                                                                         end
               clk_100hz<=1'b0;
33
                                                                                                                                               77
                                                                                                                                               78
                                                                                                                                                           endmodule
       module f_c(clrn, enp, ent, ldn, data_in,q_out, rco, n_en, clk_50mhz,rst,clk_1khz,clk_100hz,clk_10hz);
input clrn, ent, enp, ldn, n_en ,rst, clk_50mhz;
input [3:0] data in;
output [3:0] q out;
output rco, clk_1khz, clk_100hz, clk_10hz;
wire clk_lhz;
```

图 8-10.分频器和顶层文件的代码

 $frequency_divider(.rst(rst), .clk_50mhz(clk_50mhz), .clk_1khz(clk_1khz), .clk_100hz(clk_100hz), .clk_10hz(clk_10hz), .clk_1hz(clk_1hz)); \\ counter(.data_ih(data_in), .clk(clk_1hz), .clrn(clrn), .ent(ent), .enp(enp), .ldn(ldn), .q_out(q_out), .rco(rco)); \\ \\$

4. 仿真验证

实验 3

图 11.波形图仿真

为了方便观察代码逻辑的正确与否,因此频率均设置为 10 倍缩放。由图可见,四个 clk 输出,频率 确实被缩放了 10 倍,因此验证了代码的准确性。把 parameter 注释掉,重新写为五千万,五百万,五十 万,五万,即可按照预期分频了。其中 1Hz 的信号接到计数器的 clk 输入口上。

5. 引脚分配

表 3.引脚分配

_					-						
	端口					输入端					
	名称	重	时钟信号	data_in[0]	data_in[1]	data_in[2]	data_in[3]	ENT	ENP	置零	读取
		置	clk_50mh							CLR	LDN
		rst	Z							N	
	引脚	R18	T1	V13	AA15	M20	N18	E5	C3	AB17	AB18
	编号										
	平台	F10	T1	SW4	SW3	SW2	SW1	SW1	SW1	SW9	SW1
	端口							2	1		0
Г					表	3 绿表					

输	1	Ц	光
邢川	ī	Γì	少m

_								
	RCO	clk_1Khz	clk_10hz	clk_100hz	计数输出	计数输出	计数输出	计数输出
					q_out[3]	q_out[2]	q_out[1]	q_out[0]
	-	U12	V12	V15	W15	Y17	R16	T17
	-	LED1	LED2	LED3	LED5	LED6	LED7	LED8

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Surrent Strength	Slew Rate	Differential Pair
clk_1khz	Output	PIN_U12	4	B4_N1	PIN_U12	2.5 V (default)		8mA (default)	2 (default)	
clk_10hz	Output	PIN_V12	4	B4_N1	PIN_V12	2.5 V (default)		8mA (default)	2 (default)	
Clk_50mhz	Input	PIN_T1	2	B2_N0	PIN_T1	2.5 V (default)		8mA (default)		
clk_100hz	Output	PIN_V15	4	B4_N0	PIN_V15	2.5 V (default)		8mA (default)	2 (default)	
Clrn	Input	PIN_AB17	4	B4_N0	PIN_AB17	2.5 V (default)		8mA (default)		
data_in[3]	Input	PIN_N18	5	B5_N0	PIN_N18	2.5 V (default)		8mA (default)		
data in[2]	Input	PIN M20	5	B5_N0	PIN M20	2.5 V (default)		8mA (default)		
data_in[1]	Input	PIN_AA15	4	B4_N1	PIN_AA15	2.5 V (default)		8mA (default)		
data_in[0]	Input	PIN_V13	4	B4_N1	PIN_V13	2.5 V (default)		8mA (default)		
in_ enp	Input	PIN_C3	8	B8_N1	PIN_C3	2.5 V (default)		8mA (default)		
ent ent	Input	PIN_E5	8	B8_N1	PIN_E5	2.5 V (default)		8mA (default)		
Idn	Input	PIN_AB18	4	B4_N0	PIN_AB18	2.5 V (default)		8mA (default)		
n_en	Input	PIN_A3	8	B8_N1	PIN_A3	2.5 V (default)		8mA (default)		
g_out[3]	Output	PIN_W15	4	B4_N0	PIN_W15	2.5 V (default)		8mA (default)	2 (default)	
gut q_out[2]	Output	PIN_Y17	4	B4_N0	PIN_Y17	2.5 V (default)		8mA (default)	2 (default)	
gut q_out[1]	Output	PIN_R16	4	B4_N0	PIN_R16	2.5 V (default)		8mA (default)	2 (default)	
gut q_out[0]	Output	PIN_T17	5	B5_N1	PIN_T17	2.5 V (default)		8mA (default)	2 (default)	
out rco	Output				PIN_T15	2.5 V (default)		8mA (default)	2 (default)	
in_ rst	Input	PIN R18	5	B5 N0	PIN R18	2.5 V (default)		8mA (default)		

图 12.引脚锁定

6. 实验现象

本任务, 我们将 10Hz,100Hz,1kHz 的信号分别接在了 LED1~3 上, 计数器的输出从高位到低位接到 了 LED5~8 上。实验开始之后,10Hz 的 LED 开始闪动,1 秒一闪,而另两个 LED 则纹丝不动。观测 LED5~8,它们也1秒一变闪动规律,而且通过观察,是按照0000~1111按顺序变化,再次表明了电路 设计无误。

四、扩展实验

实验 3

1.设计思路

我们的想法是,设计一个可以自选频率的分频器,然后通过三个计数器配合,实现模 10*N 计数,再通过分别输入三个七段数码管,实现计时器的功能。但是实验进行到引脚分配的时候,发现七段数码管无法分别传入数据,因此我们原本的实验设计(图 14)被迫换为了图 13 所示实验。我们在之后的实验中,会汲取更多经验和思路,来实现我们的想法。

本实验的分频器基于任务二修改而成,由于时间问题,我们的自选频率是一个伪自选:输入三位二进制数,分频器会根据8个数字,选择设定好的对应的八个不同的频率。因为高频信号不便于在实验台观察,因此我们只写了两种频率的频选。

图 13.扩展实验设计思路

图 14.扩展实验原本的设计思路

2. 详细设计

实验 3

```
module frequency(clk_50mhz,rst,clk_hz, zeros);
     input clk_50mhz,rst;
input [2:0] zeros;
3
     output clk_hz;
reg clk_hz;
reg [31:0]cnt1;
                                                         68
                                                                        else
8
     always@(posedge clk_50mhz)
                                                         69
                                                                           begin
9
   ⊟case(zeros)
                                                         70
                                                                             cnt1<=1'b0;
10
        3'b0000:
                                                         71
                                                                             clk_hz<=~clk_hz;
11
           begin
   É
                                                         72
                                                                          end
12
           if(!rst)
                                                         73
                                                                      end
13
               cnt1<=1'b0;
14
                                                         74
               clk_hz<=1'b0;
15
                                                         75
                                                                  default:
16
             end
                                                         76 <u>=</u>
                                                                     begin
17
           else
                                                         77
                                                                      if(!rst)
18
             if(cnt1< 50000000/2-1)
                                                         78
                                                             begin
19
               cnt1<=cnt1+1'b1;
                                                                          cnt1<=1'b0;
                                                         79
20
             else
                                                                          clk_hz<=1'b0;
                                                         80
               begin
21 ⊟
                 cnt1<=1'b0;
                                                         81
                  clk_hz<=~clk_hz;
                                                         82
24
                                                                        if (cnt1< 50000000/2-1)
                                                         83
25
           end
                                                                          cnt1<=cnt1+1'b1;
                                                         84
        3'b001:
26
                                                                        else
                                                         85
27
           begin
   86 🖹
                                                                          begin
           if(!rst)
                                                         87
                                                                             cnt1<=1'b0;
29
             begin
                                                                             clk_hz<=~clk hz;
                                                         88
               cnt1<=1'b0;
30
               clk_hz<=1'b0;
                                                         89
                                                                          end
31
                                                         90
32
             end
                                                                      end
           else
                                                         91
                                                                  endcase
             if(cnt1< 2500000/2-1)
                                                         92
                                                              endmodule
                cnt1/-cnt1+1!h1.
```

```
immodule expand(clk 50mhz,rst,reros, clrn, enp, ent, ldn,data_in,rco, q_o, outl,n_en,sell);
input clk 50mhz,rst;
input clrn, seros;
wire clk_whr;
input [3:0] data_in;
input [3:0] data_in;
input [3:0] data_in;
input [3:0] dota_in;
input
```

图 15-17.扩展实验代码

3. 引脚分配

表 4.引脚分配

端口	输入端										
名称	重	时钟信号	data_in[0]	data_in[1]	data	_in[2]	data_in[3]	ENT	ENP	置零	读取
	置	clk_50mh								CLR	LDN
	rst	Z								N	
引脚	F7	T1	V13	AA15	M	[20	N18	E5	C3	AB17	AB18
编号											
平台	SW	T1	SW4	SW3	S	W2	SW1	SW1	SW1	SW9	SW1
端口	15							2	1		0
端口	n_e	en zeros[[0] zeros[1] zero	s[2]			,			
名称											
引脚	A3	B F8	E7	С	8						
编号											
平台	SW	16 SW8	8 SW7	y SV	76						
端口											
		I	I	I							

实验 3

表4续表

	输出端											
RCO	q_o	sel1	q_out[6]	q_out[5]	q_out[4]	q_out[3]	q_out[2]	q_out[1]	q_out[0]			
W15	U12	AB20	AA20	W20	R21	P21	N21	N20	M21			
LED	LED1	DS1	LA	LB	LC	LD	LE	LF	LG			
5												

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pai
clk_50mhz	Input	PIN_T1	2	B2_N0	PIN_T1	2.5 V (default)		8mA (default)		
_ clrn	Input	PIN_AB17	4	B4_N0	PIN_AB17	2.5 V (default)		8mA (default)		
data_in[3]	Input	PIN_N18	5	B5_N0	PIN_N18	2.5 V (default)		8mA (default)		
data_in[2]	Input	PIN_M20	5	B5_N0	PIN_M20	2.5 V (default)		8mA (default)		
data_in[1]	Input	PIN_AA15	4	B4_N1	PIN_AA15	2.5 V (default)		8mA (default)		
Lacin[0]	Input	PIN_V13	4	B4_N1	PIN_V13	2.5 V (default)		8mA (default)		
_ enp	Input	PIN_C3	8	B8_N1	PIN_C3	2.5 V (default)		8mA (default)		
_ ent	Input	PIN_E5	8	B8_N1	PIN_E5	2.5 V (default)		8mA (default)		
≗ Idn	Input	PIN_AB18	4	B4_N0	PIN_AB18	2.5 V (default)		8mA (default)		
_ n_en	Input	PIN_A3	8	B8_N1	PIN_A3	2.5 V (default)		8mA (default)		
s out1[6]	Output	PIN_AA20	4	B4_N0	PIN_AA20	2.5 V (default)		8mA (default)	2 (default)	
out1[5]	Output	PIN_W20	5	B5_N1	PIN_W20	2.5 V (default)		8mA (default)	2 (default)	
s out1[4]	Output	PIN_R21	5	B5_N0	PIN_R21	2.5 V (default)		8mA (default)	2 (default)	
s out1[3]	Output	PIN_P21	5	B5_N0	PIN_P21	2.5 V (default)		8mA (default)	2 (default)	
s out1[2]	Output	PIN_N21	5	B5_N0	PIN_N21	2.5 V (default)		8mA (default)	2 (default)	
s out1[1]	Output	PIN_N20	5	B5_N0	PIN_N20	2.5 V (default)		8mA (default)	2 (default)	
s out1[0]	Output	PIN_M21	5	B5_N0	PIN_M21	2.5 V (default)		8mA (default)	2 (default)	
% q_o	Output	PIN_U12	4	B4_N1	PIN_U12	2.5 V (default)		8mA (default)	2 (default)	
rco rco	Output	PIN_W15	4	B4_N0	PIN_M5	2.5 V (default)		8mA (default)	2 (default)	
rst rst	Input	PIN_F7	8	B8_N1	PIN_F7	2.5 V (default)		8mA (default)		
sel1	Output	PIN_AB20	4	B4_N0	PIN_AB20	2.5 V (default)		8mA (default)	2 (default)	
_ zeros[2]	Input	PIN_C8	8	B8_N0	PIN_C8	2.5 V (default)		8mA (default)		
zeros[1]	Input	PIN_E7	8	B8_N1	PIN_E7	2.5 V (default)		8mA (default)		
_ zeros[0]	Input	PIN F8	8	B8 N1	PIN F8	2.5 V (default)		8mA (default)		

图 18.引脚锁定

4.实验现象

LED 灯的代码添加了 10~15 的 A-F 显示。实验开启的时候,默认为 1Hz,因此计数器一秒一变,当计数到 9 的时候,RCO 接的 LED 灯闪烁。改变频选的时候,七段数码管改变频率明显上升,RCO 小灯也如此。ENP,ENT,ldn 等功能无误。

五、总结

收获:

遇到的问题或现象

- ①实验一中,出现了按一次按钮,计数器自加若干次的现象,这是因为没有解决键盘抖动的问题。
- ②实验二中,由于不熟悉代码模块调用,导致我没有更改工程绑定的".v 文件",导致卡了很久。好在及时发现了问题,进行了改正,顺利完成实验
- ③实验二中,100Hz 和1000Hz 的 LED 没有闪烁,这是因为闪烁频率太高,有可能人眼观测不到闪动,或者实验台为了保护电路,设置了闪动频率阈值。
- ④扩展实验中,我们本来想设计七段数码管计时器,但是引脚锁定的时候发现,八个七段数码管只能输入同一组数据,因此没有实现预期功能,也说明了我们相关方面的知识仍不足。

实验 3

图 1-2 任务一计数器代码和波形图

图 3-4.任务一顶层文件及波形图

图 5-7 任务二分频器代码和波形图,以及顶层文件代码

图 8-9.扩展任务频选分频器代码和顶层文件代码