生物統計学/社会医学フィールド実習(補足) カイ2乗検定 McNemar検定

「McNemar補足.jmpprj」に例題データセットと解析 結果が含まれています。演習してみてください。

対応のある 比率の差の検定 McNemar検定

例題1:運動トレーニング前後の腰痛あり・なしの評価 (同一対象に繰り返し実施)

		トレーニング後		
		腰痛あり	腰痛なし	計
トレーニング前	腰痛あり	47 a	_ 16 ^b	63
	腰痛なし	5	32 🗖	37
	計	52	48	100

<前提>

帰無仮説:「トレーニング効果は無い(b=c)」

対立仮説:「トレーニング効果がある(bとcは異なる)」

<計**算**>

 χ^2 =(|b-c|-1)²/(b+c)=(|5-16|-1)²/(5+16)= 4.762 χ^2 ≥4.762の上側累積確率は「0.029」 マクネマー検定では「bとc」に差が無ければ有意にならない

前後で カテゴリ─(bとc)に着目

JMP演習パッケージ「McNemar補足. jmpprj」の使い方

生物統計学/社会医学フィールド実習 (補足)カイ2乗検定 McNemar検定

対応のある比率の差の検定 McNemar検定

例題1:運動トレーニング前後の腰痛あり・なしの評価(同一対象に繰り返し実施)

		トレーニング後		
		腰痛あり	腰痛なし	計
トレーニング前	腰痛あり	47 a	_ 16 ^b	63
	腰痛なし	c 5	32 d	37
	計	52	48	100

<前提>

帰無仮説:「トレーニング効果は無い(b=c)」

対立仮説:「トレーニング効果がある(bとcは異なる)」

前後で結果に 変化みられた カテゴリー(bとc)に着目

<計算>

滋賀医科大学

 $\chi^2 = (|b-c|-1)^2/(b+c) = (|5-16|-1)^2/(5+16) = 4.762$

x²≥4.762の上側累積確率は「0.029」

マクネマー検定では「bとc」に差が無ければ有意にならない

Dataset 力イ2乗 McNemar 「Dataset」ボタン:

演習データの読み込み

「カイ2乗」、「McNemar」ボタン: それぞれの解析結果が 出力されます

変数選択画面を確認したい場合は、

▼postとpreの分割表に対する分析 から

「やり直し」・「分析の再起動」

「やり直し」-「分析の再起動」で選択画面が表示

結果から、 解析を行う際の変数の選択状況を確認することができます

解析例

対応のある比率の差の検定 McNemar検定

例題1:運動トレーニング前後の腰痛あり・なしの評価 (同一対象に繰り返し実施)

		トレーニング後		
		腰痛あり	腰痛なし	計
トレーニング前	腰痛あり	47 a	_ 16 ^b	63
	腰痛なし	5 c	32 d	37
	計	52	48	100

<前提>

帰無仮説:「トレーニング効果は無い(b=c)」

対立仮説:「トレーニング効果がある(bとcは異なる)」

前後で

カテゴリー(bとc)に着目

<計算>

 $\chi^2 = (|b-c|-1)^2/(b+c) = (|5-16|-1)^2/(5+16) = 4.762$ χ2≥4.762の上側累積確率は「0.029」 マクネマー検定では「bとc」に差が無ければ有意にならない

例題2:お父さんとお母さん、どちらに悩みを相談しや すいですか?それぞれ同じ人が回答

a×dとb×c の比較---カイ2乗検定 bとcの比較 --- McNemar検定

 $\chi^2 = 100$ (P=0.000)

全体での相談率は、父親も母親も50%

父親相談群での母親相談率は100%しかし、父親非相談群では、0%

 $\chi^2 = 0.00$ (P=1.000)

全体での相談率は、父親40%、母親80%

父親相談群での母親相談率は80% 父親非相談群でも、同じ80%

McNemar $\chi^2 = (|48-8|-1)^2/(48+8) = 27.16$ p<.0001

例題2:お父さんとお母さん、どちらに悩みを相談しやすいですか?それぞれ同じ人が回答

- 1) カイ二乗検定とマクネマー検定の両方を計算する
- 2) 二つの方法で結果が異なることを確認する
- →この場合は、マクネマー検定の結果が正しい

<u>設定A</u> <u>設定B</u>

		Father		
		話す	話さない	Total
	話す	a 32	48	80
Mother	話さない	8	12	20
		C	d	
Total		40	60	100

 χ^2 test: a×d to b×c

Mcnemar's test: b to c

McNemar検定

△検正

N 自由度 (-1)*対数尤度 R2乗(U)

100 1 69.314718 1.0000

検定 カイ2乗 p値(Prob>ChiSq)

^{大度比} 138.629 <.0001* カイ2乗

Fisherの正確検定 p値 対立仮説

p値 対域 有意差あり

左片側検定 1.0000 Prob(Father=Y)は、McLici - 1.0000 Action - 1.0000 Prob(Father=Y)は、Mother=Yの方がNより大きい

両側検定 <.0001* 「Father=Y」である確率は、「Mother」の水準間で異なる

一致性の統計

△ カッパ係数

一致性の度合し

McNemar検定は、bとcの比較を検定します。

同じ対象に繰り返し測定している(対応がある)ことを考慮しないと(カイ2乗)、

検定結果が逆になることもあります。

漸近検定

p値(Prob>z) p値(Prob>|Z|)

<.0001* <.00

1.0000

△Bowkerの検定

対称性 カイ2乗 p値(Prob>ChiSq)

McNemar検定

2x2表の場合、Bowker検定はMcNemar検定と等価です。

有意差はない

△検定

N 自由度 (-1)*対数尤度 R2乗(U)

100 1 1.4211e-14 0.0000

検定 カイ2乗 p値(Prob>ChiSq)

^{大度比} 0.000 1.0000 **カイ2乗**

Fisherの正確検定 p値 対立仮説

^{飗 粒儼} 有意差はない

左片側検定 0.5966 Prob(Father=Y)は、M....... かったしたことに 右片側検定 0.6042 Prob(Father=Y)は、Mother=Yの方がNより大きい

両側検定 1.0000 「Father=Y」である確率は、「Mother」の水準間で異なる

新近検定 **p値(Prob>z) p値(Prob>|Z|)**0.5000 1.0000

⊿Bowkerの検定

対称性 **カイ2乗 p値(Prob>ChiSq)** 28.57143 <.0001*

McNemar検定

2x2表の場合、Bowker検定はMcNemar検定と等価です。

有意差あり

