

Redução de quadrantes

Resumo

Relembrando: Círculo trigonométrico é um círculo de raio 1 e centro na origem que possui quatro quadrantes.

Em cada um dos quadrantes temos intervalos iguais cada um com 90° ou $\frac{\pi}{2}$ radianos (ou rad).

Ou seja, no primeiro quadrante estão os ângulos entre 0° e 90° ($\frac{\pi}{2}$ rad); no segundo entre 90° ($\frac{\pi}{2}$ rad) e 180°

(π rad); no terceiro entre 180° (π rad) e 270° ($\frac{3\pi}{2}$ rad) e no quarto quadrante entre 270°($\frac{3\pi}{2}$ rad) e 360°(2π rad)

Já vimos que no círculo trigonométrico os valores de senos e cossenos conhecidos estão no 1° quadrante (como 30°,45° e 90°). Por isso, caso o ângulo seja maior que 90°, precisamos reduzir ao primeiro quadrante para estudá-los.

Para reduzir do 2° quadrante para o primeiro, basta encontrar, no primeiro quadrante, o ângulo que somado ao ângulo em questão resulte em 180°. Do 3° para o primeiro, diminui-se o ângulo menos 180° e do 4°,360° menos o ângulo.

Por exemplo:

O ângulo de 150° reduzido ao primeiro quadrante é igual ao de 30° assim como o de 210° (210° - 180° = 30°) e o de 330° (360° - 330° = 30°).

Vale lembrar que para estudar seno, cosseno e tangente desses ângulos precisamos lembrar dos seus sinais no quadrante em que o ângulo se encontra.

Por exemplo: Se fossemos estudar o seno de 30 graus: Nos 1° e 2° quadrantes eles são positivos e nos 3° e 4° negativos, assim seno de 150° = seno 30° e seno de 210° =seno de 330° = - seno 30°

Os sinais de seno, cosseno e tangente são:

	1ºQ	2ºQ	3ºQ	4ºQ
seno	+	+	_	_
cosseno	+	_	_	+
tangente	+	-	+	_

Quer ver este material pelo Dex? Clique aqui

Exercícios

- 1. O número N = $\frac{3\cos 180^{\circ} 4\sin 210^{\circ} + 2tg135^{\circ}}{6\sin^{2}45^{\circ}}$ pertence ao intervalo:
 - **a)**] -4, -3 [.
 - **b)** [-3, -2 [.
 - **c)** [-2, -1].
 - **d)**] -1, 0].
- 2. O valor da expressão $\frac{\text{sen30°} + \text{tg225°}}{\cos \frac{\pi}{2} \text{sen(-60°)}} \text{ \'e:}$
 - **a)** 1.
 - $\frac{1}{2}$
 - (c) $-\sqrt{3}$
 - d) $\sqrt{3}$
 - $-\frac{1}{2}$
- **3.** Considere as afirmativas abaixo:
 - I. $tg 92^{\circ} = -tg 88^{\circ}$.
 - II. $tg 178^{\circ} = tg 88^{\circ}$.
 - III. $tg 268^{\circ} = tg 88^{\circ}$.
 - IV. $tg 272^{\circ} = -tg 88^{\circ}$.

Quais estão corretas?

- a) Apenas I e III.
- **b)** Apenas III e IV.
- c) Apenas I, II e IV.
- d) Apenas I, III e IV.
- e) Apenas II, III e IV.

4. No círculo trigonométrico de raio unitário indicado na figura, o arco AB mede $\,lpha\,$.

Assim, PM e igual a:

- a) $-1 \operatorname{tg} \alpha$.
- **b)** $1 \cos \alpha$.
- c) $1 + \cos \alpha$.
- d) $1 + \operatorname{sen} \alpha$.
- e) $-1 + \cot \alpha$.

5. Assinale a alternativa correta:

$$6\cos^2\!\left(\frac{13\pi}{6}\right)\!-4\cos^2\!\left(\frac{11\pi}{4}\right)\!+\!\,\text{sen}\!\left(-\frac{7\pi}{6}\right)\!+tg^2\!\left(\frac{31\pi}{3}\right)$$

- **a)** 6
- **b)** 5
- **c)** 9/2
- **d)** 3
- **e)** 23/4

- O valor da expressão $\cos \frac{2\pi}{3} + \sin \frac{3\pi}{2} + tg \frac{5\pi}{4}$ é: 6.

 - b)
 - **c)** 0.
- 7. O valor de (cos165° + sen155° + cos145° - sen25° + cos 35° + cos 15°) é:
 - $\sqrt{2}$
 - **b)** -1.

 - **d)** 1.
- O valor da expressão $\frac{sen \frac{8\pi}{3} \cos 5\pi}{tg \frac{13\pi}{6}}$ é: 8.
 - a)
 - $\frac{3\sqrt{2}+2\sqrt{3}}{2}$
 - b)

 - c) $3+2\sqrt{3}$ d) $3\sqrt{2}+2\sqrt{3}$ e) $3(\sqrt{2}+\sqrt{3})$

9. Na figura, P e Q são pontos da circunferência trigonométrica de centro O e raio unitário.

sen α : ordenada do ponto P cos α : abscissa do ponto P sen β : ordenada do ponto Q cos β : abscissa do ponto Q

O valor de α + β em radianos, e:

- a) 2π
 - <u>11π</u>
- **b**) 6

c)

- $\frac{13\pi}{6}$
- 25π
- d) 12

10.

- **I.** cos225° < cos215°.
- II. $tg(5\pi/12) > sen(5\pi/12)$.
- **III.** sen160° > sen172°.

Das afirmações acima:

- a) todas são verdadeiras.
- b) todas são falsas.
- c) somente II e III são verdadeiras.
- d) somente II e verdadeira.
- e) somente I e II são verdadeiras.

Gabarito

1. C

$$N = \frac{3.(-1) - 4.(-0,5) + 2.(-1)}{6.(0,5)} = \frac{-3 + 2 - 2}{3} = -1$$

2. D

Calculando:

$$\frac{\text{sen}\,30^\circ + \text{tg}\,225^\circ}{\cos\frac{\pi}{2} - \text{sen}\,(-60^\circ)} = \frac{\text{sen}\,30^\circ + \text{tg}\,45^\circ}{\cos90^\circ - \text{sen}\,(-60^\circ)} = \frac{\frac{1}{2} + 1}{0 + \sqrt{3}/2} = \frac{3}{2} \cdot \frac{2}{\sqrt{3}} = \frac{3}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \sqrt{3}$$

3. D

I. $\tan 92^{\circ} = -\tan 88^{\circ}$

Reduzindo o ângulo de 92° ao primeiro quadrante, temos:

Os ângulos de 92° e 88° são correspondentes e possuem tangente de mesmo módulo. De acordo com a figura, podemos constatar que o sinal das duas tangentes é diferente. Logo, a afirmação I é verdadeira.

II. tan 178° = tan 88°

Reduzindo o ângulo de 178° ao primeiro quadrante, temos:

Os ângulos de 178° e 88° não são correspondentes, logo suas tangentes são diferentes. Assim sendo, a afirmação II é falsa.

III. tan 268° = tan 88°

Reduzindo o ângulo de 268° ao primeiro quadrante, temos:

Os ângulos de 268° e 88° são correspondentes e possuem tangente de mesmo módulo. Através da figura, vemos que é igual o sinal de suas tangentes. Logo, a afirmação III é verdadeira.

IV. tan 272° = -tan 88°

Reduzindo o ângulo de 272° ao primeiro quadrante, temos:

Os ângulos de 272° e 88° são correspondentes e suas tangentes possuem o mesmo módulo. Através da figura, vemos que é diferente o sinal de suas tangentes. Logo, a afirmação III é verdadeira.

São verdadeiras as afirmações I, III e IV. A alternativa correta é a letra d.

4. C

Sendo α um arco do 2° quadrante, a abscissa do ponto M é igual ao $\cos\alpha$ < 0 e OC =1, logo, CM = 1 | $\cos\alpha$ | \Rightarrow CM = 1 ($\cos\alpha$) = 1 + $\cos\alpha$. O triângulo retângulo PMC é isósceles (semelhante ao triângulo COD), logo PM = CM =1+ $\cos\alpha$.

5. A

Desde que $sen(2\pi + \alpha) = sen\alpha$, $cos(2\pi + \alpha) = cos\alpha$, $sen(-\alpha) = -sen\alpha$, $sen(\pi + \alpha) = -sen\alpha$ e $tg(n \cdot 2\pi + \alpha) = tg\alpha$, com $n \in \mathbb{N}$, temos

$$\begin{split} &6\cos^2\!\left(\frac{13\pi}{6}\right)\!-4\cos^2\!\left(\frac{11\pi}{4}\right)\!+\!\,\mathrm{sen}\!\left(-\frac{7\pi}{6}\right)\!+\!\,\mathrm{tg}^2\!\left(\frac{31\pi}{3}\right)\!=\\ &6\cos^2\!\left(2\pi+\frac{\pi}{6}\right)\!-4\cos^2\!\left(2\pi+\frac{3\pi}{4}\right)\!-\!\,\mathrm{sen}\!\left(\pi+\frac{\pi}{6}\right)\!+\!\,\mathrm{tg}^2\!\left(10\pi+\frac{\pi}{3}\right)\!=\\ &6\cdot\!\left(\frac{\sqrt{3}}{2}\right)^2\!-\!4\cdot\!\left(-\frac{\sqrt{2}}{2}\right)^2-\!\left(-\frac{1}{2}\right)\!+\!\left(\sqrt{3}\right)^2\!=\\ &\frac{9}{2}\!-\!2+\frac{1}{2}\!+\!3\!=\!6. \end{split}$$

6. E

Substituindo os respectivos valores das razões trigonométricas temos que:

$$\frac{-1}{2} - 1 + 1 = -1/2$$

7. C

$$(\cos 165^{\circ} + \sin 155^{\circ} + \cos 145^{\circ} - \sin 25^{\circ} + \cos 35^{\circ} + \cos 15^{\circ}) =$$

 $-\cos 15^{\circ} + \sin 25^{\circ} - \cos 35^{\circ} - \sin 25^{\circ} + \cos 35^{\circ} + \cos 15^{\circ} = 0$

8. 4

$$\frac{\frac{\sqrt{3}}{2} - (-1)}{\frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3} + 2}{2}}{\frac{1}{\sqrt{3}}} = \frac{(\sqrt{3} + 2) \cdot \sqrt{3}}{2} = \frac{3 + 2\sqrt{3}}{2}$$

9. A

$$sen\alpha = + 1/2 - --> \alpha = pi/6$$

$$sen\beta = -1/2 - ---> \beta = 11.pi/6$$

$$\alpha + \beta = 2.pi$$

10. C

Analisando o ciclo trigonométrico temos que:

- I. $\cos 225^{\circ} < \cos 215^{\circ}$ (F)
- II. $tg(5\pi/12) > sen(5\pi/12)$ (V)
- III. sen 160° > sen 172° (V)

Neste caso basta analisar os sinais dentro do ciclo de cada razão trigonométrica e a posição em que cada ângulo se encontra.