Kapitel 4 (4a)

PostGIS Administration, Import/Export von Daten, Betrachten von Daten

Stefan Keller

Dank an Dr. Andreas Neumann

Werkzeuge zum Laden von Geometrien

- shp2pgsql / shp2pgsql-gui
- ◆Laden von WKT/WKB Geometrien per CSV/SQL mit Type Cast
- Laden mit OGR
- QGIS DB-Manager / ArcCatalog
- GIS ETL-Tools (Extract / Transform / Load):
 - -GDAL / OGR
 - -FME
 - -speziell Interlis: InfoGrips-Tools; ili2db
- **♦ETL-Tools**
 - -Talend (dual license)
 - –SQL Server (kommerziell)
 - -CSV Tools, dbt

shp2pgsql-gui

Laden per SQL/CSV-Datei

SQL-Dateien laden

```
psql:
```

% psql -d uster -f lwflaechen.sql

pgAdmin4:

Laden des SQL-Files im SQL-Editor und ausführen

Text-Dateien laden (CSV)

```
psql (COPY-Befehl):
    % psql -d uster
    % COPY av.gvz_nutzungscodes
    FROM '/home/an/GVZ_Code.csv'
    DELIMITER AS ';' CSV HEADER;
```

Laden per OGR

Beispiel: Laden einer GeoPackage-Datei nach PostGIS:

```
% ogr2ogr
  -f "PostgreSQL"
  PG: "host=DEIN HOST
  user=DEIN BENUTZER
  dbname=DEINE DATENBANK
  password=DEIN PASSWORT"
  -append
  -nln ZIELTABELLE
  -s_srs "EPSG:21781" -t srs "EPSG:4326"
QuellGeoPackage.gpkg
% zeigt an, dass das in einer Shell ist (DOS-Konsole)
```

- Folie 5

Laden per QGIS DB-Manager

- Zuerst Datei in QGIS laden
- Danach DB-Manager starten (Menü Datenbank > DB-Manager)
- ◆Im DB-Manager: Menü "Tabelle" > "Layer/Datei importieren"
- **♦Import-Optionen vornehmen**

Beispiel ETL/FME

Werkzeuge zum Anzeigen von Daten

Frage: Was sind das für Daten? Layer, Tabellen, Attribute, Datentyp, KRS, etc.

- **QGIS**
- pgAdmin4
- **♦**OGR → % ogrinfo fluesse.shp -al -so
- ◆Geometry: Line String
- -GESAMT1M_I: Integer (9.0)
- **–NAME: String (20.0)**
- -Feature Count: 49

```
C:\Daten\daten_eigene\_kurse\_HSR-Kurs_PostGIS\_2023-09\Uebungsdaten>ogrinfo fluesse.shp -al -so INFO: Open of `fluesse.shp'
using driver `ESRI Shapefile' successful.

Layer name: fluesse
Geometry: Line String
Feature Count: 49
Extent: (488131.394865, 85709.257813) - (831066.562500, 283450.062500)
Layer SRS WKT:
PROJCRS["CH1903 / LV03",
BASEGEOGCRS["CH1903",

"BDOX[45.82,51.90,47.81,10.49]],
ID["EPSG",21781]]
Data axis to CRS axis mapping: 1,2
GESAMTIM_I: Integer (9.0)
NAME: String (20.0)
```

Werkzeuge zum Anzeigen von PostGIS-Daten

- OpenSource Desktop-GIS
- **-QGIS** sowie GRASS
- Kommerzielle Desktop-GIS
- -ArcGIS Pro, Geomedia, Autodesk Map3D, etc.
- Map-Server
- **–UMN Mapserver, Geoserver, QGIS Server**
- Web-GIS-Applikationen
- -Web-Framework GeoDjango (Python, selbst geschrieben)
- Cloud-basierte GIS
- -QGIS Cloud (QGIS Server), ArcGIS Online
- Geo-Datenbank mit Webserver (selbst geschrieben)
- Virtuelle Globen

PostGIS Lade-Dialog in QGIS

DB-Manager in QGIS

SQL-Queries in DB-Manager in QGIS

PostGIS mit UMN Mapserver

```
LAYER
NAME 'Bedeckung Grundwasserleiter'
 TYPE POLYGON
EXTENT 688000 240000 704000 254000
CONNECTIONTYPE postqis
CONNECTION "dbname='uster' host=localhost port=5432 user='www' password='xx' sslmode=disable"
DATA 'the geom FROM "hydrologie". "bed gwleiter" USING UNIQUE gid USING srid=21781'
METADATA
   'ows title' 'Bedeckung Grundwasserleiter'
END
CLASS
  NAME 'Bedeckung Grundwasserleiter'
   STYLE
     SYMBOL "schraffur"
    ANGLE 90
     SIZE 10
     COLOR 220 100 100
  END
   STYLE
     SYMBOL 0
     WIDTH 1
     OUTLINECOLOR 220 100 100
  END
END
END
```

PostGIS mit Geoserver

Geo-Datenbank mit Webserver

pg_featureserv

- Webserver verbunden mit PostGIS
- Selbst geschrieben, bzw. "gehostet"
- Leichtgewichtiger RESTful Feature Server, Go
- https://github.com/CrunchyData/pg_featureserv/blob/ma
- siehe auch pg_tileserv

AsSVG() mit Scripten

ST_AsSVG(geometry, [rel], [precision])

Darstellen in Virtuellen Globen und Webkartenapps

Google Earth (über PostGIS AsKML, OGR, FME)
NASA Worldwind (über KML)
Microsoft VirtualEarth (über KML)
OssimPlanet (über KML)
Google Maps (über KML)

Export von KML

- PostGIS SQL: AsKML(version,geom,precision)
- ◆über OGR
- **♦**über FME