PATENT

Docket No.: 4590-235

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

Jan MULDER

Confirmation No.5631

U.S. Patent Application No. 10/716,882

Group Art Unit: 2833

Filed: November 20, 2003

Examiner: n/a

For: ELEMENTARY AND COMPLEX COUPLING DEVICES, AND THEIR USE

CLAIM OF PRIORITY AND TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

In accordance with the provisions of 35 U.S.C. 119, Applicant hereby claims, in the present application, the priority of The Netherlands Patent Application No. 1022035, filed November 29, 2002. The certified copy is submitted herewith.

Respectfully submitted,

LOWE HAUPTMAN GILMAN & BERNER, LLP

Kenneth M. Berner

Kenneth M. Berner

Registration No. 37,093

1700 Diagonal Road, Suite 310 Alexandria, Virginia 22314 (703) 684-1111 KMB/iyr Facsimile: (703) 518-5499

Date: March 19, 2004

KONINKRIJK DER

NEDERLANDEN

Hierbij wordt verklaard, dat in Nederland op 29 november 2002 onder nummer 1022035, ten name van:

THALES NEDERLAND B.V.

te Hengelo

een aanvrage om octrooi werd ingediend voor:

"Elementaire en complexe koppelinrichtingen, en de gebruiksmogelijkheden ervan", en dat de hieraan gehechte stukken overeenstemmen met de oorspronkelijk ingediende stukken.

Rijswijk, 14 november 2003

De Directeur van het Bureau voor de Industriële Eigendom, voor deze,

Mw. I.W. Scheevelenbos-de Reus

SAMENVATTING

Elementaire en complexe koppelinrichtingen, en de gebruiksmogelijkheden ervan

Deze uitvinding heeft betrekking op elementaire en complexe koppelinrichtingen. In het bijzonder kunnen dergelijke koppelinrichtingen worden gebruikt voor het dragen van radar- of antenne-apparatuur, met name op schepen.

Een doel van deze uitvinding is een elementaire koppelinrichting omvattende:

- Middelen 1 voor het verstijven van de elementaire koppelinrichting tegen torderen.
- Middelen 2' en 2' voor het verbinden van de verstijvingsmiddelen 1 te verbinden met een tweede, te koppelen object 4_o,
- Eerste middelen 2/4' en 2/4" voor het direct of indirect op twee verschillende punten scharnierend bevestigen van de verbindingsmiddelen 2' en 2" op het tweede te koppelen object 4_o,
- Tweede middelen 1/2' en 1/2" voor het op twee verschillende punten scharnlerend bevestigen van de verstijvingsmiddelen 1 op de verbindingsmiddelen 2' en 2",
- Derde middelen 1/3' en 1/3" voor het direct of indirect op twee verschillende punten scharnierend bevestigen van de verstijvingsmiddelen 1 op een eerste, te koppelen object (3_o).

Een verder doel van deze uitvinding is een complexe koppelinrichting die drie van deze elementaire koppelinrichtingen omvat.

[Afbeelding 2a]

1

Elementaire en complexe koppelinrichtingen, en de gebruiksmogelijkheden ervan

Deze uitvinding heeft betrekking op elementaire en complexe koppelinrichtingen. In het bijzonder kunnen dergelijke koppelinrichtingen gebruikt worden voor het dragen van radar- of antenne-apparatuur, met name op schepen.

5

Het eerste doel van dergelijke koppelinrichtingen is, één object in te stellen ten opzichte van een ander object. Daarom werd in de techniek aanvankelijk gebruik gemaakt van rechte, onderling niet verbonden instelmiddelen.

10

Door deze rechtheid was het uitgesloten dat een object zo op een ander object ingesteld kon worden dat gelijktijdige retractie-, extensie-, laterale en kantelbewegingen mogelijk waren.

15

De huidige koppelinrichtingen worden ontworpen zodat de objecten ten opzichte van elkaar beweegbaar zijn terwijl rotatie van de objecten ten opzichte van elkaar verhinderd wordt, zoals belichaamd in de koppelinrichting beschreven in het op 19 maart 1975 verleende Amerikaanse octrooi US Patent 3,871,778.

20

25

Dit gepatenteerde koppelmechanisme koppelt de objecten met elastische middelen en door middel van ten minste drie koppelinrichtingen. Elk van deze drie koppelinrichtingen bestaat uit twee systemen. Elk systeem omvat vier stangen, die tot een gesloten raam verbonden zijn door middel van scharnierende gewrichten. De twee systemen hebben één stang gemeenschappelijk.

Dit koppelinrichtingmechanisme is in veel opzichten te rigide (veel aanhechtingspunten, resulterend in overbodige bewegingsbelemmeringen), hetgeen grote inwendige spanningen en zelfs breuk ten gevolge kan hebben. In de praktijk werkt dit mechanisme daarom alleen goed Indien de gemeenschappelijke stang van de koppelinrichting opzettelijk zo gemaakt is

dat deze gemakkelijk tordeert.

فالأناء والمهام والرماء والمارج والإ

Bovendien zijn in het algemeen voor de koppelinrichtingen die gemaakt zijn volgens de tot nu toe toegepaste technieken betrekkelijk veel onderdelen en schamleren nodig en gebruiken deze koppelinrichtingen enkelvoudige schamleren die rotatie rond één as toelaten. Voor toepassingen zoals in antenne- en radarsupports zijn dergelijke lijnschamieren niet zonder meer in de handel verkrijgbaar.

De onderhavige ultvinding elimineert de bovengenoemde nadelen door te voorzien in koppelinrichtingen die relatieve translatorische bewegingen van de gekoppelde objecten toestaan maar relatieve rotatiebewegingen van deze objecten rond een as verhinderen. De koppelinrichting van deze uitvinding bevat bovendien minder onderdelen en kan met name betere stijfheidelgenschappen hebben omdat zij minder schamleren omvat.

15

30

10

Een doel van deze uitvinding is een elementaire koppelinrichting omvattende:

- Middelen 1 voor het verstijven van de elementaire koppelinrichting tegen torderen,
- Middelen 2' en 2" voor het verbinden van de verstijvingsmiddelen 1 met een tweede, te koppelen object 4_o,
 - Eerste middelen 2/4' en 2/4" voor het direct of indirect op twee verschillende punten scharnierend bevestigen van de verbindingsmiddelen 2' en 2" op het tweede te koppelen object 4_o,
- Tweede middelen 1/2' en 1/2" voor het op twee verschillende punten scharnierend bevestigen van de verstijvingsmiddelen 1 op de verbindingsmiddelen 2' en 2",
 - Derde middelen 1/3' en 1/3" voor het direct of indirect op twee verschillende punten scharnierend bevestigen van de verstijvingsmiddelen 1 op een eerste, te koppelen object 3_o.

Een verder doel van deze uitvinding is een complexe koppelinrichting die drie elementaire koppelinrichtingen omvat.

Een andere uitvoeringsvorm van deze uitvinding is een complexe koppelinrichting, waarin de drie elementaire koppelinrichtingen zodanig ten opzichte van elkaar zijn gemonteerd dat de assen van de elementaire koppelinrichtingen onderling haaks op elkaar staan, waarbij een elementaire as de as is die loodrecht staat op de door de verbindingsmiddelen (2'1-2"1, 2'2-2"2, 2'3-2"3) van een elementaire koppelinrichting gedefinieerd vlak.

Een ander doel van deze uitvinding is verder het gebruik van een dergelijke complexe koppelinrichting met draagmiddelen 3 die speciaal aangepast zijn voor het dragen van radar- of antenne-apparatuur.

10

20

25

30

Verdere kenmerken en gunstige elgenschappen van de uitvinding zullen duidelijk worden uit de volgende beschrijving van voorbeelden van uitvoeringsvormen van de uitvinding, aan de hand van afbeeldingen, die voor de uitvinding essentiële bijzonderheden laten zien en uit de conclusies. De afzonderlijke eigenschappen kunnen apart, allemaal of in elke gewenste combinatie worden gerealiseerd in een van de mogelijke uitvoeringsvormen van de uitvinding.

 Afbeelding 1, een voorbeeld van de elementaire koppelinrichting volgens de uitvinding,

Afbeeldingen 2a, 2b, 2c, 2d, 2e, 2f, 2g en 2h, schematische gedeeltelijke zijaanzichten van acht alternatieve voorbeelden van het volgens de uitvinding met verbindingsmiddelen integreren van de elementaire koppelinrichting,

- Afbeeldingen 3a, 3b en 3c, respectievelijk, een driedimensionaal bovenaanzicht, een driedimensionaal onderaanzicht en een zijaanzicht van een eerste uitvoeringsvorm van de complexe koppelinrichting volgens de uitvinding,

 Afbeeldingen 4a, 4b en 4c, respectievelijk, een
 driedimensionaal bovenaanzicht, een driedimensionaal onderaanzicht en een zijaanzicht van een tweede uitvoeringsvorm van de complexe koppelinrichting volgens de uitvinding,

- Afbeeldingen 5a en 5b, respectievelijk, een driedimensionaal bovenaanzicht en een driedimensionaal onderaanzicht van een derde uitvoeringsvorm van de complexe koppelinrichting volgens de uitvinding,
- Afbeelding 6, een vierde uitvoeringsvorm van de complexe koppelinrichting volgens de uitvinding,

5

15

25

30

35

- Afbeelding 7, een vijfde uitvoeringsvorm van de complexe koppelinrichting volgens de uitvinding.

Afbeelding 1 toont een voorbeeld van de elementaire koppelinrichting volgens de uitvinding. De elementaire koppelinrichting omvat: middelen 1 voor het verstijven van de elementaire koppelinrichting tegen torderen en middelen 2' en 2" voor het verbinden van de verstijvingsmiddelen 1 met een eerste te koppelen object 3_o.

Eerste scharniermiddelen 2/4' en 2/4" worden geplaatst tussen de verbindingsmiddelen 2' en 2" en twee verschillende punten van een tweede te koppelen object 4_o, d.w.z. indien het de bedoeling is dat dit direct scharnierend wordt bevestigd. Indien de verbindingsmiddelen 2' en 2" en het tweede te koppelen object 4_o indirect scharnierend verbonden moeten worden, kunnen de eerste scharnlermiddelen 2/4' en 2/4" bijvoorbeeld geplaatst worden tussen de verbindingsmiddelen 2' en 2" en twee verschillende punten van tussenschakelmiddelen 4, die star verbonden zijn met het tweede te koppelen object 4_o. De verbindingsmiddelen 2' en 2" zijn nu scharnierend verbonden met deze tussenschakelmiddelen 4. De genoemde tussenschakelmiddelen 4 kunnen vastgezet zijn op het tweede te koppelen object 4_o.

Tweede scharniermiddelen 1/2' en 1/2" worden op twee verschillende punten geplaatst tussen de verstijvingsmiddelen 1 en de verbindingsmiddelen 2' en 2".

Derde scharniermiddelen 1/3' en 1/3" worden op twee verschillende punten geplaatst tussen de verstijvingsmiddelen 1 en het eerste te koppelen object 3°, d.w.z. indien het de bedoeling is dat dit direct scharnierend wordt bevestigd. Indien het de bedoeling is dat de verstijvingsmiddelen 1 en het

eerste te koppelen object 3_o indirect scharnierend verbonden moeten zijn, worden de derde scharniermiddelen 1/3' en 1/3" geplaatst tussen twee verschillende punten van de verstijvingsmiddelen 1 en twee verschillende punten van, bijvoorbeeld, draagmiddelen 3 die verbonden zijn met het eerste te koppelen object 3_o.

De verstijvingsmiddelen 1 kunnen een doosvorm hebben, zoals weergegeven in Afb. 1. Met name kunnen de verstijvingsmiddelen 1 een holle doos zijn, waarin bijvoorbeeld een object kan worden geplaatst. Verder kunnen de verbindingsmiddelen 2' en 2" de vorm hebben van stangen.

10

20

35

De eerste, tweede en derde scharniermiddelen 1/2' en 1/2", 1/3' en 1/3", 2/4' en 2/4" kunnen scharnieren zijn die rotatie rond een as toelaten. De eerste, tweede en derde scharniermiddelen 1/2' en 1/2", 1/3' en 1/3", 2/4' en 2/4" kunnen dus stangkopscharnieren zijn of cardankoppelingen, of kogelgewrichten zoals weergegeven in Afb. 1. Bovendien kan ten minste een van de derde scharniermiddelen 1/3' en 1/3" relatieve translatorische bewegingen toelaten in de richting van de lijn door de middelpunten van de scharniermiddelen 1/3' en 1/3". Eén van deze derde scharniermiddelen 1/3' en 1/3" kan dus een stangkopscharnier zijn, in combinatie met een lineaire geleiding die bijvoorbeeld axiale speling toelaat.

Met een dergelijke stangkopscharnier laat ten minste een van de derde scharniermiddelen (1/3' en 1/3") rotatie toe rond twee assen die loodrecht staan op de as van de verbindingsmiddelen (2' en 2") en blokkeert rotatie rond de as van de verbindingsmiddelen (2' en 2").

Een dergelijke elementaire koppelinrichting verhindert rotatiebewegingen rond een as die loodrecht staat op het vlak 1/2' - 1/2" - 2/4' - 2/4", zonder dat de nadelen optreden van inwendige spanningen die tot breuken kunnen leiden. Bovendien bevatten elementaire koppelinrichtingen zoals die welke is weergegeven in Afb. 1 minder onderdelen en minder scharnieren dan elementaire koppelinrichtingen volgens de tot nu toe toegepaste techniek. Daarbij komt, dat de voorgestelde elementaire inrichtingen kunnen werken zonder enkelvoudige lijnscharnieren.

Een dergelijke elementaire koppelinrichting heeft een grote rotatiestijfheld rond één as, welke de as is die loodrecht staat op het door de as van verbindingsmiddelen 2' en 2" gedefinieerde vlak, of die de as is die loodrecht staat op het door elke combinatie van drie van de vier middelpunten van de scharniermiddelen 1/2', 1/2", 2/4' en 2/4" gedefinieerde vlak.

Afbeeldingen 3a, 3b, 3c en Afbeeldingen 4a, 4b en 4c tonen

uitvoeringsvormen van een complexe koppelinrichting volgens de uitvinding.

De weergegeven complexe koppelinrichtingen omvatten drie elementaire koppelinrichtingen van het in Afb. 1 getoonde type. Voor een complexe koppelinrichting die rotatie rond geen enkele as toelaat, worden in een gunstige opstelling de drie elementaire koppelinrichtingen ten opzichte van elkaar op een zodanige wijze gemonteerd dat de assen van de drie elementaire koppelinrichtingen, ten opzichte waarvan deze voor een grote rotatiestijfheid zorgen, niet in één vlak liggen.

Een bijzonder gunstige situatie kan zich voordoen wanneer deze drie
assen haaks op elkaar staan in de neutrale stand van de complexe
koppelinrichting. Deze situatie ontstaat wanneer alle relatieve translaties
tussen de eerste en tweede te koppelen objecten 3_o en 4_o nul zijn, omdat
dan de rotatiestijfheid van de complexe koppelinrichting rond elke, willekeurig
georiënteerde, as dezelfde is. Elke van deze elementalre assen is de as die
loodrecht staat op het door de verbindingsmiddelen 2' en 2" van de
respectieve elementaire koppelinrichtingen gedefinieerde vlak.

De draagmiddelen 3 en/of de tussenschakelmiddelen 4 kunnen gemeenschappelijk zijn voor de drie elementaire koppelinrichtingen.

De tussenschakelmiddelen 4 vormen dus de basis van de complexe koppelinrichting. Deze basis 4 kan een onderste zeskantige ring zijn, zoals getoond in Afbeeldingen 3a, 3b, 3c en Afbeeldingen 4a, 4b, 4c. De basis kan

bijvoorbeeld op een schip worden gemonteerd.

35

Elke hoek van de onderste zeskantige ringbasis 4 is verbonden via een van de verbindingsmiddelen 2'1-2"1, 2'2-2"2 en 2'3-2"3 (aan elk uiteinde voorzien van respectievelijk eerste of tweede scharniermiddelen 1/2'1-1/2"1, 2/4'1-2/4"1, 1/2'2-1/2"2, 2/4'2-2/4"2 of 1/2'3-1/2"3, 2/4'3-2/4"3) met de respectieve verstijvingsmiddelen 11, 12 en 13.

Bovendien kan elk van de verstijvingsmiddelen 1, 12, en 13 verbonden zijn via, respectievelijk, derde scharniermiddelen 1/3'1-1/3", 1/3'2-1/3", met een bovenste zeskantige ring, die deel uitmaakt van de gemeenschappelijke draagmiddelen 3. Een van de derde scharniermiddelen 1/3'1, 1/3'2 en 1/3'3 kan een stangkopscharnier zijn. De andere derde scharniermiddelen 1/3", 1/3"2 en 1/3"3 kunnen de vorm hebben van een stangkopscharnier met aanvullend de mogelijkheid voor een translatorische beweging in de richting van de rotatie-as tussen, respectievelijk, de verstijvingsmiddelen 1, 12, en 13 en de draagmiddelen 3.

Verder kan de complexe koppelinrichting middelen omvatten voor het absorberen van trillingen en schokken 5_1 , 5_2 en 5_3 . De middelen voor het absorberen van trillingen en schokken 5_1 , 5_2 en 5_3 worden met het eerste uitsteeksel aangebracht op de draagmiddelen 3 via, respectievelijk, scharniermiddelen $5/3_1$, $5/3_2$ en $5/3_3$ en met het tweede uitsteeksel op de tussenschakelmiddelen 4 via, respectievelijk, scharniermiddelen $5/4_1$, $5/4_2$ en $5/4_3$. Deze scharniermiddelen $5/3_1$, $5/3_2$ en $5/3_3$, $5/4_1$, $5/4_2$ en $5/4_3$ kunnen ook stangkopscharnieren zijn of cardankoppelingen, of kogelgewrichten zoals weergegeven in Afbeeldingen 3a, 3b, 3c en Afbeeldingen 4a, 4b, 4c. De complexe koppelinrichting kan bijvoorbeeld middelen omvatten voor het absorberen van trillingen en schokken 5_1 , 5_2 en 5_3 tussen elke groep van twee elementaire koppelinrichtingen zoals getoond in Afbeeldingen 3a, 3b, 3c, 4a, 4b, 4c.

30

10

15

20

Dergelijke middelen 5_1 , 5_2 en 5_3 voor het absorberen van trillingen en schokken, begrenzen de translatorische bewegingen. Deze drie middelen 5_1 , 5_2 en 5_3 voor het absorberen van trillingen en schokken kunnen ervoor zorgen dat de resonantiefrequenties van de complexe koppelinrichtingen binnen een bereik van ongeveer 2 tot 10 Hz blijven. De resonantiefrequenties

dienen lager te zijn dan de voornaamste schokfrequenties (> 10 Hz), waardoor schokisolatie wordt verkregen. De resonantiefrequenties moeten echter hoger te zijn dan de frequenties van de gebruikelijke scheepsbewegingen, bijvoorbeeld het slaan van het schip (< 2 Hz), zodat de maximum uitslag wordt begrensd, met name die van de veren. De complexe koppelinrichting voorziet derhalve tevens in schok- en/of trillingisolatie voor de draagmiddelen 3 en het eerste te koppelen daarop geplaatste object 3₀.

Een gunstige situatie doet zich voor indien, in de neutrale staat van de complexe koppelinrichting, de door de trillingen en/of schokken absorberende middelen 5_1 , 5_2 en 5_3 uitgeoefende krachten ten naaste bij het zwaartepunt kruisen van de combinatie van de verstijvingsmiddelen 1_1 , 1_2 en 1_3 , de draagmiddelen 3 en het eerste te koppelen object 3_0 . In een dergelijke situatie worden verstorende, door lineaire versnellingen ten gevolge van, bijvoorbeeld, scheepsbewegingen veroorzaakte kantelmomenten geminimaliseerd waardoor de hoeknauwkeurigheid wordt verhoogd.

De ratio van de resonantiefrequenties van de horizontale en verticale translatiemodi kan worden gewijzigd door de nominale hoek te veranderen tussen de centrale as van de trillingen en schokken absorberende middelen 5_1 , 5_2 en 5_3 en de verticale richting.

Veerdempers, afgebeeld als spiraalveren in Afbeeldingen 3a, 3b, 3c, 4a, 4b, 4c kunnen worden gebruikt in de complexe koppelinrichting als middelen voor het absorberen van trillingen en schokken 5_1 , 5_2 en 5_3 . De trillingen en schokken absorberende middelen 5_1 , 5_2 en 5_3 kunnen ook worden uitgevoerd als stapelingen van schotelveren, kabelveren en/of elk ander type veer en/of kunnen aanvullende dempers omvatten.

De constructie van de complexe koppelinrichting kan statisch worden bepaald omdat deze een juiste combinatie omvat van:

- verstijvingsmiddelen 1₁, 1₂ en 1₃
- te koppelen objecten 3₀ en 4₀

10

30

- verbindingsmiddelen 2'₁-2"₁, 2'₂-2"₂ en 2'₃-2"₃

scharnlermiddelen 1/2'₁-1/2"₁, 1/3'₁-1/3"₁, 2/4'₁-2/4"₁, 1/2'₂-1/2"₂, 1/3'₂-1/3"₂, 2/4'₂-2/4"₂ en 1/2'₃-1/2"₃, 1/3'₃-1/3"₃, 2/4'₃-2/4"₃
 die specifieke vrijheldsgraden koppelen.

Dit betekent dat de werkelijke geometrie van alle betrokken onderdelen niet ideaal hoeft te zijn om toch assemblage van alle onderdelen mogelijk te maken. Bijvoorbeeld, de lengte van een of meer van de verbindingsmiddelen 2'1-2"1, 2'2-2"2 en 2'3-2"3 kan worden gewijzigd zonder dat daardoor inwendige krachten en spanningen worden gegenereerd.

Echter, alleen bij een ideale geometrie voorziet de complexe koppelinrichting in zuivere relatieve translatorische bewegingen, zonder dat er sprake is van relatieve rotatiebewegingen.

De genoemde ideale geometrie wordt verkregen wanneer voor elk van de elementaire koppelinrichtingen aan de twee volgende voorwaarden wordt voldaan:

20

25

30

35

- de assen van de verbindingsmiddelen 2' en 2" lopen parallel,
- de lijn door de middelpunten van de eerste scharniermiddelen 2/4'
 en 2/4" en de lijn door de tweede scharniermiddelen 1/2' en 1/2" en de lijn door de derde scharniermiddelen 1/3' en 1/3" lopen parallel.

Deze twee voorwaarden betekenen, bijvoorbeeld, dat de lengten van de verbindingsmiddelen 2' en 2" gelijk zijn. Verschillende lengten kunnen worden gebruikt voor elk van de drie elementaire koppelinrichtingen. Ook kunnen alle andere afmetingen en hoeken worden veranderd of kunnen verschillend zijn voor elk van de elementaire koppelinrichtingen, zo lang aan de twee bovengenoemde voorwaarden wordt voldaan voor elke van de elementaire koppelinrichtingen.

Zoals eerder opgemerkt kan zich een bijzonder gunstige situatie voordoen indien de assen van de drie elementaire koppelinrichtingen, ten opzichte waarvan deze voor een grote rotatiestijfheid zorgen, haaks op elkaar staan. Dit wordt verkregen, plus een zeer symmetrische opstelling ten opzichte van de verticale richting, indien de drie elementaire koppelinrichtingen gelijke afmetingen hebben en, in de neutrale staat van de

complexe koppelinrichting, de hoek α_1 tussen de verbindingsmiddelen $2'_1$ - $2''_1$ en de verticale richting, de hoek α_2 tussen de verbindingsmiddelen $2'_2$ - $2''_2$ en de verticale richting, de hoek α_3 tussen de verbindingsmiddelen $2'_3$ - $2''_3$ en de verticale richting gelijk zijn aan de boogcos (de wortel uit 2/3), hetgeen bijna 35 graden is.

Een verdere keuze betreft de hoek tussen de as van de verbindingsmiddelen 2' en de as door de middelpunten van de scharniermiddelen 1/2' en 1/2", die resulteert uit de twee bovengenoemde voorwaarden en gelijk is aan de hoek tussen de as van de verbindingsmiddelen 2" en de as door de middelpunten van de scharniermiddelen 1/2' en 1/2" welke, in de neutrale staat van de complexe koppelinrichting, willekeurig op 90 graden kan worden gesteld voor alle elementaire koppelinrichtingen.

15

20

Verder wordt de neutrale staat - waarin alle translaties van de draagmiddelen 3 gelijk zijn aan nul - verkregen voor:

- een hoek α van ongeveer 35°,
- hoeken van 90° tussen de verbindingsmiddelen 2'₁-2"₁, 2'₂-2"₂ en 2'₃-2"₃ en de assen door de respectieve middelpunten van de tweede scharniermiddelen 1/2'₁-1/2"₁, 1/2'₂-1/2"₂ en 1/2'₃-1/2"₃, en
- de assen van de veren die de zwaartepunten kruisen van de combinatie van de verstijvingsmiddelen 1₁, 1₂ en 1₃, de draagmiddelen 3 en het de koppelen object 3_o,
- 25 de hoeken tussen de veren en de verticale richting, afhankelijk van de massaverdeling en de gewenste resonantiefrequenties.

Het gebruik van holle dozen voor verstijvingsmiddelen 1₁, 1₂ en 1₃ in de complexe koppelinrichting voorzlet in gedeeltelijk tegen schokken en trilling geïsoleerde behuizingen voor verdere objecten zoals bijvoorbeeld elektronische eenheden.

Afbeeldingen 2a, 2b, 2c, 2d, 2e, 2f, 2g en 2h tonen schematisch partiële zijaanzichten van acht alternatieve voorbeelden voor het met verbindingsmiddelen 2' en 2" integreren van de elementaire koppelinrichting.

In de eerste vier varianten, geïllustreerd door Afbeeldingen 2a, 2b, 2c en 2d, is de elementaire koppelinrichting geïntegreerd via verbindingsmiddelen 2' en 2" aan de onderzijde. De complexe koppelinrichtingen bevatten twee of meer, zich naast de golvende breuklijnen (aan de rechterzijde van de afbeeldingen) bevindende elementaire koppelinrichtingen (niet weergegeven).

In een eerste variant, geïllustreerd door Afbeelding 2a, zijn de verbindingsmiddelen 2' en 2" verbonden met de naar buiten gerichte onderkant van de verstijvingsmiddelen 1. Verder zijn de draagmiddelen 3 verbonden met de naar binnen gerichte bovenkant van de verstijvingsmiddelen 1.

In een tweede variant, geïllustreerd door Afbeelding 2b, zijn de verbindingsmiddelen 2' en 2" verbonden met de naar binnen gerichte onderkant van de verstijvingsmiddelen 1 en zijn de draagmiddelen 3 verbonden met de naar buiten gerichte bovenkant van de verstijvingsmiddelen 1.

20

25

30

15

10

Andere varianten zijn mogelijk. Bijvoorbeeld, in twee van deze varianten zijn de verbindingsmiddelen 2' en 2" verbonden met de bovenkant van de verstijvingsmiddelen 1, zoals geïllustreerd door Afbeeldingen 2c en 2d, respectievelijk aan het naar buiten gerichte en het naar binnen gerichte deel.

Alle beschreven varianten zijn ook omgekeerd mogelijk, met de verbindingsmiddelen aan de bovenzijde, zoals weergegeven door Afbeeldingen 2e, 2f, 2g en 2h. In deze tweede vier alternatieven is de elementaire koppelinrichting geïntegreerd via verbindingsmiddelen 2' en 2" aan de bovenzijde. De complexe koppelinrichtingen bevatten twee of meer, zich naast de golvende breuklijnen (aan de rechterzijde van de afbeeldingen) bevindende elementaire koppelinrichtingen (niet weergegeven).

Afbeeldingen 3a, 3b en 3c stellen een eerste uitvoeringsvorm voor van de complexe koppelinrichting volgens de uitvinding. In deze eerste uitvoeringsvorm worden de verbindingsmiddelen 2'1-2"1, 2'2-2"2 en 2'3-2"3 verbonden met de naar buiten gerichte onderkant van, respectievelijk, verstijvingsmiddelen 11, 12 en 13. Verder zijn de draagmiddelen 3 verbonden met de naar binnen gerichte bovenkant van de verstijvingsmiddelen 11, 12 en 13.

Poals blijkt uit Afbeelding 3a kunnen de draagmiddelen 3 de vorm hebben van een omgekeerde (afgeknotte) kegel die onder andere een bovenste zeskantige ring omvat, waarvan telkens één van twee zijden scharnlerend is bevestigd aan de verstijvingsmiddelen 1₁, 1₂ en 1₃ van een van de drie elementaire koppelinrichtingen. De onderste cirkelvormige ring van de centrale omgekeerde kegel 3 kan als basis dienen voor een radarantennesysteem of een andere sensor, waardoor (nauwkeurige) hoekcoördinaten kunnen worden verkregen. Door als draagmiddelen 3 een omgekeerde kegel te nemen in plaats van bljvoorbeeld een eenvoudige platte basis, wordt het zwaartepunt van het ondersteunde eerste te koppelen object 3_o verlaagd. Op deze wijze worden tijdens bedrijf de kantelmomenten op de fundatie verkleind, waardoor de hoekfouten dankzij de beperkte kantelstijfheid worden verminderd.

De middelen voor het absorberen van trillingen en schokken 5_1 , 5_2 en 5_3 zijn via hun eerste uitsteeksel verbonden met de onderste cirkelvormige ring van de centrale omgekeerde kegel 3 door, respectievelijk, scharniermiddelen $5/3_1$, $5/3_2$ en $5/3_3$, zoals weergegeven in Afbeeldingen 3a, 3b en 3c.

25

Het ontwerp van de eerste uitvoeringsvorm van de complexe koppelinrichting voorziet in ideale hoeken α van de boogcos (de wortel uit 2/3) $\approx 35^\circ$ tussen de as van de verbindingsmiddelen $2'_1$, $2''_1$, $2'_2$, $2''_2$, $2'_3$ en $2''_3$ van de drie elementaire koppelinrichtingen en de verticale richting, zoals getoond door Afbeelding 3c. Deze hoeken α zijn buitenhoeken, hetgeen betekent dat de verbindingsmiddelen $2'_1$ - $2''_1$, $2'_2$ - $2''_2$ en $2'_3$ - $2''_3$ van de drie

elementaire koppelinrichtingen zich buiten de onderste zeskantige ringbasis 4 bevinden.

Deze zeskantige ringbasis 4 kan een imaginaire cilinder zijn waarvan de centrale as parallel loopt aan de verticale richting en waarbij de middelpunten van de scharniermiddelen 2/4'1, 2/4"1, 2/4'2, 2/4"2, 2/4'3 en 2/4"3 zich bevinden op het oppervlak van deze cilinder.

Afbeeldingen 4a, 4b en 4c tonen een tweede uitvoeringsvorm van de complexe koppellnrichting die meer ruimte inneemt in het horizontale 10 montagevlak maar het voordeel heeft van lagere draagmiddelen 3 voor het eerste te koppelen object 3₀.

In deze tweede uitvoeringsvorm zijn de verbindingsmiddelen 2'1, 2"1, 2'2, 2"2, 2'3 en 2"3 verbonden met de naar buiten gerichte bovenkant van, respectievelijk, de verstijvingsmiddelen 11, 12 en 13. Verder zijn de draagmiddelen 3 verbonden met de naar binnen gerichte onderkant van de verstlivingsmiddelen 11, 12 en 13.

20

Het ontwerp van deze tweede uitvoeringsvorm van de complexe koppelinrichting heeft eveneens ideale hoeken α (de boogcos, de wortel uit 2/3) \approx 35 ° tussen de as van de verbindingsmiddelen 2'1, 2"1, 2'2, 2"2, 2'3 en 2"3 van de drie elementaire koppelinrichtingen en de verticale richting, zoals weergegeven in Afbeelding 4c. Deze hoeken α zijn binnenhoeken, hetgeen betekent dat de verbindingsmiddelen 2'1-2"1, 2'2-2"2 en 2'3-2"3 van de drie 25 elementaire koppelinrichtingen zich binnen de onderste zeskantige ringbasis 4 bevinden.

De zeskantige ringbasis 4 kan een Imaginaire cilinder zijn waarvan de centrale as parallel loopt aan de verticale richting en de middelpunten van de scharniermiddelen 2/4'1, 2/4"1, 2/4'2, 2/4"2, 2/4'3 en 2/4"3 zich bevinden op het oppervlak van deze cilinder.

Andere, niet behandelde, varianten zijn mogelijk waarbij de verstijvingsmiddelen 11, 12 en 13 geplaatst worden aan de onderzijde van de complexe koppelinrichting en de verbindingsmiddelen 2'₁-2"₁, 2'₂-2"₂ en 2'₃-2"₃ aan de bovenzijde. De verstijvingsmiddelen 1₁, 1₂ en 1₃ zijn derhalve verbonden met de tussenschakelmiddelen 4 via scharniermiddelen. Bovendien zijn de verbindingsmiddelen 2'₁-2"₁, 2'₂-2"₂ en 2'₃-2"₃ verbonden met draagmiddelen 3 via scharniermiddelen.

Indien in deze varianten bepaalde objecten worden geplaatst in een of meer holle, als verstijvingsmiddelen 1₁, 1₂ en 1₃ dienstdoende dozen, zullen deze objecten niet beschermd zijn tegen schokken en trillingen op een wijze zoals in de eerste en tweede uitvoeringsvormen van de complex koppelinrichting. Indien derhalve gevoelige elektronica geplaatst wordt in de holle dozen 1₁, 1₂ en/of 1₃ zal aan de complexe koppelinrichting van de eerste en tweede uitvoeringsvormen de voorkeur worden gegeven boven deze varianten, vanwege een betere schok- en trillingisolatie.

15

10

Aan genoemde varianten zal wêl de voorkeur worden gegeven boven de complexe koppelinrichting van de eerste en tweede uitvoeringsvormen indien betrekkelijk zware verstijvingsmiddelen 1₁, 1₂ en 1₃ worden toegepast in vergelijking met de verbindingsmiddelen 2'₁-2"₁, 2'₂-2"₂ en 2'₃-2"₃.

20

Dankzij de lagere plaatsing van de verstijvingsmiddelen $\mathbf{1}_1$, $\mathbf{1}_2$ en $\mathbf{1}_3$, kan de veerstijfheid en dus de veermassa verlaagd worden om dezelfde resonantiefrequentie van de translatiemodi te bereiken.

25

Afbeeldingen 5a, 5b, 6 en 7 geven drie mogelijke uitvoeringsvormen van de elementaire koppelinrichting met verbindingsmiddelen 2'₁-2"₁, 2'₂-2"₂ en 2'₃-2"₃ en verstijvingsmiddelen 1₁, 1₂ en 1₃ en draagmiddelen 3. Het is nlet de bedoeling dat verschillende elementaire koppelinrichtingen samen in één complexe koppelinrichting gebruikt worden, ook al is dat mogelijk.

30

35

Uitvoeringsvormen waarin dezelfde elementaire koppelinrichtingen volgens Afbeeldingen 5a, 5b, 6 en 7 driemaal worden toegepast kunnen worden beschouwd als respectievelijk derde, vierde en vijfde uitvoeringsvormen van de complexe koppelinrichting. Deze uitvoeringsvormen omvatten drie als niet-roterende dozen 601, 602 en 603

weergegeven radarantennes die star op een ulterst geïntegreerde wijze verbonden zijn met de draagmiddelen 3.

Deze complexe koppelinrichting kan gecompleteerd worden met, op de zijden en/of de bovenkant van de complexe koppelinrichting gemonteerde opnamemiddelen 6.

De derde uitvoeringsvorm van de complexe koppelinrichting voorziet in bevestiging van de verbindingsmiddelen $2'_1$ - $2''_1$, $2'_2$ - $2''_2$ en $2'_3$ - $2''_3$ aan de naar buiten gerichte onderkant van de respectieve verstijvingsmiddelen 1_1 , 1_2 en 1_3 en van de draagmiddelen 3 aan de naar binnen gerichte bovenkant van de verstijvingsmiddelen 1_1 , 1_2 en 1_3 . De in Afbeeldingen 5a en 5b weergegeven opnamemiddelen 6 kunnen star verbonden zijn met de draagmiddelen via de zijden van de niet-roterende dozen 6_{01} , 6_{02} en 6_{03} .

15

20

25

De vierde uitvoeringsvorm van de complexe koppelinrichting voorziet in de bevestiging van de verbindingsmiddelen $2'_1-2''_1$, $2'_2-2''_2$ en $2'_3-2''_3$ aan de naar binnen gerichte onderkant van de respectieve verstijvingsmiddelen 1_1 , 1_2 en 1_3 en van de draagmiddelen 3 aan de naar bulten gerichte bovenkant van de verstijvingsmiddelen 1_1 , 1_2 en 1_3 . De in Afbeelding 6 getoonde opnamemiddelen 6 zijn star met de draagmiddelen 3 verbonden via de zijden van de drie niet-roterende dozen 6_{01} , 6_{02} en 6_{03} .

De vijfde uitvoeringsvorm van de complexe koppelinrichting voorzlet in de bevestiging van de verbindingsmiddelen 2'1-2"1, 2'2-2"2 en 2'3-2"3 aan de naar buiten gerichte bovenkant van de respectieve verstijvingsmiddelen 11, 12 en 13 en van de draagmiddelen 3 aan de naar binnen gerichte onderkant van de verstijvingsmiddelen 11, 12 en 13.

30

35

De opnamemiddelen 6 in deze uitvoeringsvorm zijn zijpanelen van de drie niet-roterende dozen 6_{01} , 6_{02} en 6_{03} zelf. De in Afbeeldingen 5 en 6 getoonde opnamemiddelen 6 zijn bevestigd rond de verstijvingsmiddelen 1_1 , 1_2 en 1_3 zonder deze te bedekken. De in Afbeeldingen 5 en 6 getoonde opnamemiddelen 6 omvatten aan de bovenzijde een star op de drie niet-roterende dozen 6_{01} , 6_{02} en 6_{03} gemonteerde extra verstijvingsplaat 6_4 .

Het is mogelijk, ook al komen ze niet in deze afbeeldingen voor, om één of een veelheid van middelen 5_1 , 5_2 en 5_3 voor het absorberen van trillingen en schokken te gebruiken in deze derde, vierde en vijfde uitvoeringsvormen van de complexe koppelinrichting.

Een verdere uitvoeringsvorm van de complexe koppelinrichting wordt geïllustreerd door Afbeelding 8. Deze omvat middelen 7 voor het bedekken van de boven beschreven constructies.

10

15

20

25

30

De bedekkingsmiddelen 7 kunnen de vorm hebben van een mast die de zijden en de bovenkant van de complexe koppelinrichting bedekt. Deze mast 7 maakt het mogelijk om het eerste koppelobject 3° – bijvoorbeeld antennes – te verbinden met de niet-geïsoleerde omgeving, door gebrulkmaking van zowel aan de onder- als aan de bovenkant van de antennes bevestigde veren. Deze opzet minimaliseert storende momenten tengevolge van, bijvoorbeeld, scheepsbewegingen.

Bovendlen kan de voorkant van elke antenne bedekt worden met een radardoorlatende radome 8, die op de mast is aangebracht zoals getoond in Afbeelding 8.

In toepassingen voor niet-roterende antennes kunnen de trillingen en schokken absorberende middelen 5_1 , 5_2 en 5_3 geplaatst worden op de onderen bovenzijden van de antennes 3_0 om storende kantelmomenten te minimaliseren en daarmee de hoeknauwkeurigheid te verhogen.

Om een dergelijke complexe koppelinrichting te gebruiken in een bepaalde toepassing kunnen de draagmiddelen 3 speciaal geschikt gemaakt worden voor het dragen van radar- of antenne-apparatuur. Met name kan de complexe koppelinrichting worden gebruikt voor radar- en/of antenne-apparatuur aan boord van elk bewegend vervoermiddel zoals een schip, landvoertuig, vliegtuig, raket.

Een andere toepassing van de complexe koppelinrichtingen volgens de uitvinding kan zijn de Isolatie van elektronicakasten tegen grondtrillingen en/of schokken, zoals kunnen voorkomen in selsmisch actieve omgevingen, of door schokken afkomstig van kernexplosies.

5

Meer in het algemeen kan een dergelijke complexe koppelinrichting worden gebruik om elk object te dragen waarvan alle rotatie-assen geblokkeerd en alle translaties vrij dienen te zijn.

CONCLUSIES

15

- 1. Een elementaire koppelinrichting, met het kenmerk dat deze omvat:
- Middelen (1) voor het verstijven van de elementaire koppelinrichting tegen torderen.
- Middelen (2' en 2") voor het verbinden van de verstijvingsmiddelen (1)
 met een tweede, te koppelen object (4_o),
 - Eerste middelen (2/4' en 2/4") voor het direct of Indirect op twee verschillende punten scharnlerend bevestigen van de verbindingsmiddelen (2' en 2") op het tweede te koppelen object (4_o),
- Tweede middelen (1/2' en 1/2") voor het op twee verschillende punten schamierend bevestigen van de verstijvingsmiddelen (1) op de verbindingsmiddelen (2' en 2"),
 - Derde middelen (1/3' en 1/3") voor het direct of indirect op twee verschillende punten scharnierend bevestigen van de verstijvingsmiddelen (1) op een eerste, te koppelen object (3_o).
 - 2. Een elementaire koppelinrichting volgens de voorgaande conclusie, met het kenmerk dat de verstijvingsmiddelen (1) de vorm hebben van een doos.
- 20 3. Een elementaire koppelinrichting volgens de voorgaande conclusie, met het kenmerk dat de verstijvingsmiddelen (1) de vorm hebben van een holle doos.
- 4. Een elementaire koppelinrichting volgens een van de voorgaande conclusies, met het kenmerk dat alle scharniermiddelen (2/4', 2/4", 1/2', 1/2", 1/3', 1/3") rotatie toelaten om elke as.
 - 5. Een elementaire koppelinrichting volgens een van de voorgaande conclusies, met het kenmerk dat ten minste een van de derde scharniermiddelen (1/3', 1/3") translatiebewegingen toelaat.
 - 6. Een elementaire koppelinrichting volgens een van de conclusies 1 t/m 4, met het kenmerk dat de derde scharniermiddelen (1/3 en 1/3') rotatie toelaten rond één as, welke as de middelpunten kruist van de derde

scharniermiddelen (1/3 en 1/3').

15

- 7. Een elementaire koppelinrichting volgens een van de voorgaande conclusies, met de kenmerken dat deze middelen (4) omvat waarop de verbindingsmiddelen (2' en 2") rusten, welke tussenschakelmiddelen (4) scharnierend bevestigd zijn aan de verbindingsmiddelen (2' en 2") met de eerste scharniermiddelen (2/4' en 2/4") en vast bevestigd zijn aan het tweede te koppelen object (4_o).
- 8. Een elementaire koppelinrichting volgens een van de voorgaande conclusies, met de kenmerken dat deze middelen (3) omvat om het eerste te koppelen object (3_o) te dragen, waarbij de genoemde draagmiddelen (3) op twee verschillende punten scharnierend verbonden zijn met de verstijvingsmiddelen (1) via de derde scharniermiddelen (1/3' en 1/3").
 - 9. Een complexe koppelinrichting, met het kenmerk dat deze drie elementaire koppelinrichtingen volgens een van de voorgaande conclusies omvat.
- 10. Een complexe koppelinrichting volgens de voorgaande conclusie, met de kenmerken dat de drie elementaire koppelinrichtingen zodanig ten opzichte van elkaar zijn aangebracht dat de assen van alle elementaire koppelinrichtingen haaks op elkaar staan, waarbij de genoemde elementaire as de as is die loodrecht staat op het door de twee verbindingsmiddelen (2'1-2"1, 2'2-2"2, 2'3-2"3) van een elementaire koppelinrichting gedefinieerde vlak.
 - 11. Een complexe koppelinrichting volgens conclusie 8 of 9, met het kenmerk dat de draagmiddelen (3) gemeenschappelijk zijn voor de drie elementaire koppelinrichtingen.
 - 12. Een complexe koppelinrichting volgens de voorgaande conclusie, met de kenmerken dat de draagmiddelen (3) een omgekeerde kegel vormen, welke kegel een bovenste zeskantige ring omvat, waarvan een van elke twee zijden scharnierend is bevestigd aan de verstljvingsmiddelen (1, 1, 1, 1) van een

van de drie elementaire koppelinrichtingen.

- 13. Een complexe koppelinrichting volgens een van de conclusies 8 t/m 11, met het kenmerk dat de hoeken (α) tussen de assen van de
 5 verbindingsmiddelen (2'₁-2"₁, 2'₂-2"₂, 2'₃-2"₃) van de drie elementaire koppelinrichtingen en de verticale richting gelijk zijn aan de boogcos (de wortel uit 2/3).
- 14. Een complexe koppelinrichting volgens een van de conclusies 8 t/m 12, met het kenmerk dat deze middelen omvat voor het absorberen van trillingen en schokken (5₁, 5₂, 5₃), die gemonteerd zijn in verbinding met de draagmiddelen (3) en de tussenschakelmiddelen (4).
- 15. Een complexe koppelinrichting volgens de voorgaande conclusie, met het kenmerk dat deze middelen omvat voor het absorberen van trillingen en schokken (5₁, 5₂, 5₃) tussen elke groep van twee elementaire koppelinrichtingen.
- 16. Een complexe koppelinrichting volgens een van de conclusies 8 t/m 14, met het kenmerk dat deze opnamemiddelen (6) omvat, die gemonteerd zijn op de zijden en/of de bovenkant van de complexe koppelinrichting.
 - 17. Een complexe koppelinrichting volgens een van de conclusies 8 t/m 15, met het kenmerk dat deze middelen (7) omvat voor het bedekken van de zijden en/of de bovenkant van de complexe koppelinrichting.
 - 18. Gebruik van een complexe koppelinrichting volgens een van de conclusies 8 t/m 16, met het kenmerk dat de draagmiddelen (3) speciaal geschikt gemaakt zijn voor het dragen van radar- of antenne-apparatuur.

(

Afb.(1.

O

Afb. 2d

()

Afb. 2g

Afb. 2h

 \bigcirc

. . 3 de 7

Afti. 8