Parties convexes

Exercice 1 ★★

Soit E un \mathbb{R} -espace vectoriel et \mathcal{C} une partie de E. Montrer que \mathcal{C} est convexe si et seulement si tout barycentre de points de \mathcal{C} à coefficients positifs est dans \mathcal{C} .

Exercice 2 ***

ENS MP 2010

Déterminer les matrices $A \in GL_n(\mathbb{R})$ telles que A et A^{-1} appartiennent à $\mathcal{M}_n(\mathbb{R}_+)$.

Exercice 3 ★★

Epigraphe

Soit $f: I \to \mathbb{R}$ où I est un intervalle de \mathbb{R} . On appelle épigraphe de f l'ensemble

$$\{(x,y) \in \mathbb{R}^2 \mid x \in I, y \ge f(x)\}$$

Montrer que f est convexe si et seulement si son épigraphe est une partie convexe de \mathbb{R}^2 .

Exercice 4 ★★★

Enveloppe convexe et théorème de Carathéodory

Soient E un \mathbb{R} -espace vectoriel et \mathcal{A} une partie de E. On note \mathcal{C} l'*enveloppe convexe* de \mathcal{A} autrement dit la plus petite partie convexe de E (au sens de l'inclusion) contenant \mathcal{A} .

- 1. Montrer que \mathcal{C} est l'ensemble des barycentres à coefficients positifs de points de \mathcal{A} .
- **2.** On suppose que E est de dimension finie $n \in \mathbb{N}$. Montrer que \mathcal{C} est l'ensemble des barycentres à coefficients positifs de n + 1 points de \mathcal{A} .

Exercice 5 *

Un carré est convexe

Soit C = $\{(x, y) \in \mathbb{R}^2, |x| \le 1, |y| \le 1\}$. Montrer que C est une partie convexe de \mathbb{R}^2 .

Exercice 6 ★

Somme de deux convexes

Soient C₁ et C₂ deux convexes. Montrer que l'ensemble

$$C_1 + C_2 = \{x_1 + x_2, (x_1, x_2) \in C_1 \times C_2\}$$

est également convexe.

Inégalités

Exercice 7 ★

Montrer que pour tout $x \in [0, \frac{\pi}{2}]$,

$$\frac{2}{\pi}x \le \sin x \le x$$

Exercice 8 ★

- **1.** Montrer que $f: x \in \mathbb{R}_+^* \mapsto x \ln x$ est convexe.
- **2.** En déduire que pour tout $x \in]0,1[,x^x(1-x)^{1-x} \ge \frac{1}{2}.$

Exercice 9 ★★★

Inégalité de Jensen

Soit f continue sur [a, b] à valeurs dans \mathbb{R}_+^* .

- 1. Montrer que $\frac{1}{b-a} \int_a^b \ln(f(t)) dt \le \ln\left(\frac{1}{b-a} \int_a^b f(t) dt\right)$.
- **2.** Application : calcular $\lim_{n \to +\infty} \frac{1}{n} \int_{1}^{n} \left(1 + \frac{1}{t}\right)^{t} dt$.

Exercice 10 ★★★★

ENS PC 2010

Soient $n \ge 3$ et Γ un cercle. Parmi les polygones convexes à n côtés inscrits dans Γ , montrer que ce sont les polygones réguliers qui maximisent l'aire.

Exercice 11 ***

Inégalité de Jensen

Soient f une fonction continue sur [a,b] et φ une fonction continue et convexe sur f([a,b]). Montrer que

$$\varphi\left(\frac{1}{b-a}\int_{a}^{b}f(t) dt\right) \le \frac{1}{b-a}\int_{a}^{b}\varphi \circ f(t) dt$$

Exercice 12 ★★★

X MP

Soit f une application de [0,1] dans $\mathbb R$ continue et concave telle que f(0)=1. Montrer que

$$\int_0^1 x f(x) \, dx \le \frac{2}{3} \left(\int_0^1 f(x) \, dx \right)^2$$

Exercice 13 ★★★

Soit a_1, \dots, a_n des réels strictement positifs. On pose

$$A_n = \frac{1}{n} \sum_{k=1}^n a_k$$
 $G_n = \sqrt[n]{\prod_{k=1}^n a_k}$ $H_n = \frac{n}{\sum_{k=1}^n \frac{1}{a_k}}$

Montrer que $H_n \leq G_n \leq A_n$.

Exercice 14 ★★

- **1.** Etudier la convexité de la fonction $f: x \in \mathbb{R} \longmapsto \ln(1 + e^x)$.
- 2. Soient x_1, \dots, x_n des réels strictement positifs. Montrer que

$$1 + \left(\prod_{k=1}^{n} x_k\right)^{\frac{1}{n}} \le \left(\prod_{k=1}^{n} (1 + x_k)\right)^{\frac{1}{n}}$$

3. Soient $a_1, \ldots, a_n, b_1, \ldots, b_n$ des réels strictement positifs. Montrer que

$$\left(\prod_{k=1}^{n} a_{k}\right)^{\frac{1}{n}} + \left(\prod_{k=1}^{n} b_{k}\right)^{\frac{1}{n}} \leq \left(\prod_{k=1}^{n} a_{k} + b_{k}\right)^{\frac{1}{n}}$$

Exercice 15 ★★★

Inégalités de Hölder et Minkowski

Soient p et q deux nombres réels strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$.

1. Prouver l'inégalité de Young,

$$\forall (u;v) \in (\mathbb{R}_+^*)^2, \ uv \le \frac{u^p}{p} + \frac{u^q}{q}$$

2. Soient x_1, \ldots, x_n et y_1, \ldots, y_n des réels strictement positifs. Prouver l'inégalité de Hölder,

$$\sum_{k=1}^{n} x_k y_k \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} y_k^q\right)^{\frac{1}{q}}$$

3. Soient $p > 1, x_1, \dots, x_n$ et y_1, \dots, y_n des réels strictement positifs. Prouver l'inégalité de Minkowski,

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}}.$$

Exercice 16 ★★★

Entropie

Soient p_1, \dots, p_n des réels strictement positifs et de somme 1. On pose $H(p) = -\sum_{i=1}^n p_i \ln(p_i)$.

- **1.** Montrer que $0 \le H(p) \le \ln(n)$.
- 2. Soient q_1,\ldots,q_n des réels strictement positifs et de somme 1. Montrer que

$$H(p) \le -\sum_{i=1}^n p_i \ln(q_i)$$

Théorie

Exercice 17 ***

X MP

Soit f une fonction continue de \mathbb{R} dans \mathbb{R} telle que pour tout $(a,b) \in \mathbb{R}^2$ tel que $a \leq b$, $(b-a)f\left(\frac{a+b}{2}\right) \leq \int_a^b f(t) \, \mathrm{d}t$. Montrer que f est convexe.

Exercice 18 ***

Soit $f: \mathbb{R} \to \mathbb{R}$ continue et $F: \mathbb{R} \to \mathbb{R}$ telles que :

$$\forall (x, y) \in \mathbb{R}^2, \ F(y) - F(x) \ge (y - x)f(x)$$

- **1.** Montrer que f est croissante sur \mathbb{R} .
- **2.** Montrer que F est une primitive de f sur \mathbb{R} .
- **3.** Montrer que F est convexe sur \mathbb{R} .

Exercice 19 ***

Convexité entière

Soit $f: \mathbb{Z} \to \mathbb{R}$ une application vérifiant :

$$\forall n \in \mathbb{Z}, f(n) \ge \frac{f(n+1) + f(n-1)}{2}$$

On suppose de plus que f est minorée. Montrer que f est constante.

Exercice 20 ★★★★

ENS MP 2010

Soit f une fonction positive sur \mathbb{R} . Montrer qu'il existe une unique fonction g convexe sur \mathbb{R} telle que pour toute fonction h convexe sur \mathbb{R} telle que $h \geq f$, on ait $h \leq g$.

Exercice 21 ***

ENS Ulm/Lyon/Cachan MP 2001

Pour $f: \mathbb{R} \to \mathbb{R}_+$, on note

$$E_f = \{(x, y) \in \mathbb{R}^2, \ y > f(x)\}\$$

l'épigraphe de f.

Soient $f, g: \mathbb{R} \to \mathbb{R}_+$.

- **1.** Montrer qu'il existe une unique application $h: \mathbb{R} \to \mathbb{R}_+$ telle que $E_h = E_f + E_g$.
- **2.** On suppose f et g convexes. Montrer que h est convexe.
- 3. Montrer que f et g peuvent être de classe \mathcal{C}^{∞} sans que h le soit.

Exercice 22 ★★★

X-ENS 2017 PC

Que peut-on dire d'une application $f: \mathbb{R} \to \mathbb{R}$ convexe et impaire?

Exercice 23 ***

Fonctions convexes majorées

- **1.** Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe majorée. Prouver que f est constante.
- **2.** Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction convexe majorée. A-t-on la même conclusion qu'à la question précédente?

Exercice 24 ★★

Soit I un intervallle et f: I convexe. Montrer que si f admet un minimum local en $a \in I$, alors f admet un minimum global en a.

Divers

Exercice 25 ★★

Soient f et g deux fonctions continues sur un intervalle [a,b]. On suppose que $f\geq 0$ sur [a,b] et on souhaite montrer qu'il n'existe qu'une solution non nulle de l'équation différentielle y''-fy=g s'annulant en a et b.

Soient donc φ_1 et φ_2 deux solutions de l'équation différentielle y''-fy=g s'annulant en a et b.

- 1. Montrer que $(\varphi_1 \varphi_2)^2$ est convexe.
- **2.** En déduire que $\varphi_1 = \varphi_2$.

Exercice 26 ★★

Soient f une application convexe sur un intervalle I, $\sum_{n\in\mathbb{N}}a_n$ une série à termes positifs convergente de somme 1 et (x_n) une suite d'éléments de I. Montrer que si les séries $\sum_{n\in\mathbb{N}}a_nx_n$ et $\sum_{n\in\mathbb{N}}a_nf(x_n)$ convergent, alors

$$f\left(\sum_{n=0}^{+\infty} a_n x_n\right) \le \sum_{n=0}^{+\infty} a_n f(x_n)$$

Exercice 27 ★★

TPE

Soit f une fonction de classe \mathcal{C}^2 convexe sur $[0, 2\pi]$. Montrer que

$$\int_0^{2\pi} f(t)\cos(t) \, \mathrm{d}t \ge 0$$