TD Intelligence Artificielle

Principe d'un contrôleur flou

Les étapes de commande floue

- Fuzzification
 - passage du non-flou au flou
- Evaluation des règles
- Agrégation des règles
- Défuzzification
 - passage du flou au non-flou

Arroseur Flou

Définition des variables floues

La gamme des températures traitées est 0° à 45° et les termes linguistiques caractérisant la température sont : Froide, Douce, Normale, Chaude, Caniculaire. Chacun de ces termes correspond à un ensemble flou dont le noyau est défini par :

K(*Froide*): [0, 5]° K(*Douce*): 13° K(*Normale*): [18, 22]°

K(Chaude): [26, 30]° K(Caniculaire): [38, 45]°

Le degré d'humidité du sol s'étend de 0% à 100%. Les termes linguistiques associés Sec, Humide, Trempé sont caractérisés par :

K(Sec): [0, 40] % K(Humide): [60, 70] % K(Trempé): [80, 100] %

L'état de la nappe phréatique parmi Insuffisant, Faible et Suffisant se définit d'après la hauteur d'eau selon :

K(Insuffisant): [0, 1] m K(Faible): 1.5m K(Suffisant): [2, 10] m

Définition des variables floues

La durée d'arrosage va de 0 à 30 minutes et les termes linguistiques caractérisant la durée d'arrosage sont : Courte, Moyenne et Longue. Chacun de ces termes correspond à un ensemble flou dont le noyau est défini par :

K(Courte): [0, 5] min

K(Moyenne): 10 min

K(Longue): 30 min

Représentation trapézoïdale

On utilisera la représentation trapézoïdale « quadruplet de valeurs » (a_k, b_k, c_k, d_k) pour les sous-ensembles flous F_k

Froide: [0,0,5,13] Douce: [5,13,13,18]

Contrôleur 1

	Froide	Douce	Normale	Chaude	Canniculaire
Sec	Courte	Moyenne	Moyenne	Longue	Longue
Humide	Nul	Courte	Moyenne	Moyenne	Longue
Trempé	Nul	Nul	Nul	Nul	Courte

Illustration

- Température = 6°
- Degré d'humidité = 50%
- Niveau nappe phréatique = 1.4m

Fuzzification: méthode


```
\begin{split} &\text{Si } T_0 < a_k \text{ alors } d^\circ appartenance = 0 \\ &\text{Si } a_k < T_0 < b_k \text{ alors } d^\circ appartenance = f(T_0, a_k, b_k) \\ &\text{Si } b_k < T_0 < c_k \text{ alors } d^\circ appartenance = 1 \\ &\text{Si } c_k < T_0 < d_k \text{ alors } d^\circ appartenance = f(T_0, c_k, d_k) \\ &\text{Si } T_0 > d_k \text{ alors } d^\circ appartenance = 0 \end{split}
```

Fuzzification pour la température

Soit $T_0 = 6^{\circ}$ pour la variable Température

$$F_{\text{Froide}}(T_0) = 0.875$$

$$F_{Douce}(T_0) = 0.125$$

$$F_{Normale}(T_0)=0$$

$$F_{\text{Chaude}}(T_0)=0$$

Fuzzification pour l'humidité

Soit $d_0 = 50\%$ pour la variable Humidité

$$F_{Sec}(d_0) = 0.5$$

$$F_{\text{Humide}}(d_0)=0.5$$

$$F_{\text{Caniculaire}}(d_0)=0$$

Modus Ponens Généralisé

- Règle floue : Si V est A Alors W est B
- Fait précis : A'=a₀
- Conclusion : W est B' où $f_{B'}(y) = f_{R}(a_{0},y)$
- Selon Mandani, $f_R(a_0,y)=min(f_A(a_0),f_B(y))$
- Si la condition de la règle contient une conjonction de 2 propositions (V est A et U est C) et si on a 2 faits précis (A'=a₀ et C'=c₀), f_A(a₀)=min(f_A(a₀),f_C(c₀))

Evaluation des règles

R : Si la Température est Froide et l'Humidité Sec Alors la Durée théorique est Courte

Selon Mandani:

- Conjonction : min
- Implication floue : Courte = min(Froide,Sec)
- Soit : $f_{Courte'}(y) = min(min(Froide,Sec), f_{Courte}(y))$

Application des règles du contrôleur 1 et agrégation

- Inférence (Mandani)
 - min(Froide,Sec) = min(0.875,0.5)=0.5 (Courte)
 - $\min(Douce, Sec) = \min(0.125, 0.5) = 0.125$ (Moyenne)
 - min(Douce, Humide) = min(0.125, 0.5)=0.125 (Courte)
- Agrégation
 - $\max(0.5, 0.125) = 0.5$ (Courte)
- Sortie Floue pour la durée théorique

Courte: 0.5; Moyenne: 0.125; Longue: 0

Application des règles

	Froide 0.875	<i>Douce</i> 0.125	Normale	Chaude	Canniculaire
Sec 0.5	Courte 0.5	Moyenne 0.125	Moyenne	Longue	Longue
Humide 0.5	Nul	Courte 0.125	Moyenne	Moyenne	Longue
Trempé	Nul	Nul	Nul	Nul	Courte

Défuzzification : Centre de gravité

Défuzzification pour la durée théorique

Fuzzification pour le niveau de nappe phréatique

Niveau nappe phréatique $n_0 = 1.4 \text{ m}$

$$F_{Insuffisant}(n_0)=0.2$$

$$F_{\text{Faible}}(n_0)=0.8$$

$$F_{Suffisant}(n_0)=0$$

Application des règles du contrôleur 2

- Inférence (Mandani)
 - min(Faible,Moyenne) =
 min(0.8,0.125)=0.125 (Courte)

Sortie Floue pour la durée effective

Courte: 0.5; Moyenne: 0; Longue: 0

Contrôleur 2

	Insuffisant 0.2	Faible 0.8	Suffisant
Courte 0.5	Nul	Nul	Courte
Moyenne 0.125	Nul	Courte 0.125	Moyenne
Longue	Nul	Moyenne	Longue

Défuzzification pour la durée effective

Objectif du TD 1

 Implémentation du système d'arrosage flou dans le langage de votre choix

 Tests (à partir du fichier données2012TD Flou.bmp)

Travail à réaliser (TD 1) si choix de l'outil Sherlock

- Création d'une base de K. à partir du modèle « contrôleur flou »
- Compréhension de la base et vérification des valeurs initiales des paramètres
- Ecriture des règles de commande (contrôleur 1 et 2)
- Ecriture de la tâche pour la défuzzification du contrôleur 2
- Réalisation des écrans de saisie et résultat (afficher tous les degrés d'appartenance + durées en min)

Travail à réaliser (TD2)

- Spécifications, implémentation et tests d'un 3ème contrôleur
- Présentation orale de votre solution (fichier ppt)
 - Description et intérêt de la nouvelle variable
 - Caractérisations floues de la variable
 - Règles floues
 - Tests
 - Ecoute active des autres propositions