Lecture Handout 6- Chapter 2 (continued) and statistics

Additional office hours this Friday after class until 11:30 AM and from 2:00 to 4:00 PM. Next week additional hours to be announced.

All lecture handouts, problem sets, past exams, and the exam formula sheet are on Compass. **Exam** will cover lectures, problem sets, past exams, items on Compass, book chapters 1 and 2, and book questions assigned.

Closed book exam; no notes allowed

Only the formula sheet devised by Dr. Roca will be allowed; this formula sheet will be included as a page on the exam (don't bring your own).

A copy of the formula sheet can be seen on Compass. I welcome suggestions for additions to the formula sheet.

Greek letter	Name	Roman letter	Statistical term
α	alpha	a	Type I error
			(see below)
β	beta	b	Type II error
			(see below)
δ	delta	D	difference
π	pi	p	proportion
μ	mu	M	mean
σ	sigma	S	standard deviation

Note: Greek letters are used to describe a population; Roman letters (i.e. English letters) are used to describe a sample

Statistics, review:

mean, or arithmetic mean: average of a group of values, and indicated by a bar above x

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance: measure of dispersion of values around a mean, sum of the SQUARES

$$V_x = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

TABLE 3–2	Column 1 number of coffee breaks	Column 2 raw deviation $X - \overline{X}$	Column 3 absolute deviation X - X	Column 4 squared deviation $(X - \overline{X})^2$
Calculation	1	_8	8	64
of the mean	3	-6	6	36
deviation	4	-5	5	25
	7		7	4
	9	O.	0	0
	9	0	0	0
	11	2	2	4
	12	3	3	9
	16	7	7	49
	18	9	9	81
	$\Sigma X = 90$ Σ	$\Sigma(X - \overline{X}) = 0$ Σ	$ X - \overline{X} = 42$	$\sum (X - \overline{X})^2 = 272$

Why squared deviations? Just adding all the deviations from the mean always sums to zero; while absolute values are difficult to manipulate mathematically.

Standard deviation: another measure of dispersion, square root of the variance, so the value is on the same scale as the mean (i.e. not squared)

$$sd = (V_x)^{1/2}$$

Standard error: the standard deviation of a statistic, eg, of the mean. Note: 95% confidence interval, mean +/- 1.96(s.e.), will contain true mean 95% of the time

$$se = \left(\frac{V_x}{n}\right)^{1/2}$$

Figure 1.4. The distribution of heights, in inch categories, of male students at Connecticut Agricultural College (from Crow, 1997). (Courtesy of Albert Blakeslee, 1914.)

Normal distribution: often seen in samples from natural populations, in which values fall in a bell shaped curve in which 68% are within 1 sd of the mean, and 95% within 1.96 sd of the mean.

TABLE 6-1	Called	Truth		
The relationship		No difference	Difference	
between α and β	Accept Ho	$(1-\alpha)$	β	
	Reject Ho	α	$(1 - \beta)$	

For a null hypothesis: that a sample is not different from the population:

Alpha = Type I error = reject the null hypothesis even though it is true.

For the null hypothesis that a sample is not different from the population:

Beta = Type II error = accept the null hypothesis even though it is false.

TABLE 6-1	Called	Truth		
The relationship		No difference	Difference	
nd β	Accept Ho	$(1-\alpha)$	β	
	Reject Ho	α	$(1-\beta)$	

For the null hypothesis that our sample matches the population, statistical power is the probability of concluding that there is a difference when in fact there is one.

Power =
$$1 - \beta$$

Please try in problem set: use of X^2 test to determine if allele frequencies are different between two populations. For two alleles:

$$\chi^2 = \frac{2N\,V(\hat{p})}{\bar{p}\bar{q}}$$

Where N is *combined* total sample size, p-bar and q-bar are *weighted* allele frequencies, and the weighted variance is:

$$V(\hat{p}) = \sum \frac{N_j}{N} \hat{p}_j^2 - \bar{p}^2$$

Estimates of allele frequency

- -May not exactly reflect the allele frequency of a population if the sample size is small
- -Larger sample sizes provide better estimates of population frequencies
- -Sampling must not be biased
- -Variance estimates reflect on the accuracy of allele frequency estimates

Estimates of allele frequency

- -Generally, a maximum likelihood (ML) approach is used.
- -Used to estimate the allele frequency p given the data. The maximum likelihood approach varies p until it finds the value that maximizes the probability of the data, given p.

ML approach, example: three genotypes at a codominant allele with sample size N, so N_{11} , N_{12} , N_{22} , with genotype frequencies p^2 , 2p(1-p), and $(1-p)^2$

Multinomial probability to calculate the likelihood:

$$L = \frac{N!}{N_{11}! N_{12}! N_{22!}} (p^2)^{N_{11}} [2p(1-p)]^{N_{12}} [(1-p)^2]^{N_{22}}$$

$$= \frac{N!}{N_{11}! N_{12}! N_{22!}} 2^{N_{12}} p^{2N_{11}+N_{12}} (1-p)^{N_{12}+2N_{22}}$$
(2.10a)

The value of p that maximizes this probability also maximizes the probability of its logarithm. Therefore, we can calculate the logarithm

Five steps to calculate maximum likelihood estimation of gene frequency:

- 1. Determine likelihood (multinomial probability)
- 2. Transform with log
- 3. Take derivative
- 4. Set derivative to zero
- 5. Solve for allele frequency

Details are on page 80

SLIDES IN THIS HANDOUT BEYOND THIS POINT ARE FOR INFORMATION PURPOSES ONLY.

Why log(L) rather than L?

- Following power points were prepared by Byunggil Yoo, September 2007.
- Reminder: Maximum Likelihood is used to estimate the allele frequency p given the data. The maximum likelihood approach varies p until it finds the value that maximizes the probability of the data, given p.

Why log(L) rather than L?

• Likelihood (L) =
$$\frac{N!}{N_{11}! N_{12}! N_{22}!} 2^{N_{12}} p^{2N_{11}+N_{12}} (1-p)^{N_{12}+2N_{22}}$$

- Can we get Max(L) by dL/dp = 0 ? Yes, but there are up to $2N_{11} + 2N_{12} + 2N_{22} - 1$ values which satisfy dL/dp = 0 (L: polynomial)
- Why log(L) work?

 Because log is monotone increasing function,
 the value p which makes L maximum can also make
 log(L) maximum.

Advantages of log(L)?

- Can we get Max(log L) by d(log L)/dp = 0 ?
 Yes, in some special cases.
- If we can use d(log L)/dp = 0,
 Since Log (L) is much simpler than L,
 differentiation is easier, and number of values
 are considerably reduced.

Let's plot

 $> plot({ln(p), ln(1-p), ln(p)+ln(1-p)}, p = 0 .. 1);$

Sum of log(p) and log(1-p) result in a form which we can easily get Maximum by its derivative!

Influence of coefficient/constant?

$$plot(\{\ln(p) + \ln(1-p) + 10, 2\ln(p) + \ln(1-p), \ln(p) + 5\ln(1-p)\}, p = 0..1);$$

Those affects location of p which make log(L) maximum; p = 0 or 1 is always negative infinity, and there is ONLY one maximum!

Always work if Alog(p) + Blog(1-p)?

- No, Coefficient A, B should be positive!
- Example: $plot(\{\ln(p) \ln(1-p), \ln(l-p) \ln(p)\}, p = 0..1);$

In this case, A, B are always positive!