Test for Independence

Analyzing the Association Between Variables Chi-Squared Test

Test for Independence

- explain the association between variables by doing a chi-squared test
- The test statistic for the test of independence measures how close the observed cell counts fall to the expected cell counts.

Test for Independence

- This test utilizes a contingency table to analyze the data. A contingency table (also known as a cross-tabulation, crosstab, or two-way table) is an arrangement in which data is classified according to two categorical variables.
- The categories for one variable appear in the rows, and the categories for the other variable appear in columns. Each variable must have two or more categories. Each cell reflects the total count of cases for a specific pair of categories.

Example:

In a study conducted by a pharmaceutical company, 605 out of 790 smokers and 122 out of 434 nonsmokers were diagnosed with lung cancer. Is smoking and lung cancer independent? Use $\alpha=0.05$

Contingency Table (Observed Count)

LUNG CANCER						
SMOKING	present	absent	Total			
Smoker	605	185	790			
Non-smoker	122	312	434			
Total	727	497	1224			

Version#d

Step 1: Assumptions

- Data are from random sampling
- Expected Count is greater that or equal to 5 in all cells

Step 2: State the Hypotheses

Null Hypothesis

 H_0 : The variables are independent Variables are **independent** if there is no association between the variables

Alternative Hypothesis

 H_a : The variables are dependent (associated) Variables are **dependent** if there is an association between the variables

Version#d

Step 3: Compute the Test Statistic

$$X^{2} = \Sigma \frac{(observed\ count - expected\ count)^{2}}{expected\ count}$$

where

$$expected\ count = \frac{row\ total\ \times column\ total}{total\ sample\ size}$$
 (if not given in the problem)

Step 3: Compute the Test Statistic

Contingency Table (Observed Count)

LUNG CANCER						
SMOKING	present	absent	Total			
Smoker	$E_{1,1}$	$E_{1,2}$	790			
Non-smoker	$E_{2,1}$	$E_{2,2}$	434			
Total	727	497	1224			

Expected Count

$$E_{1,1} = \frac{(727)(790)}{1224} = 469.22 \approx 469$$

$$E_{1,2} = \frac{(497)(790)}{1224} = 320.78 \approx 321$$

$$E_{2,1} = \frac{(727)(434)}{1224} = 257.78 \approx 258$$

$$E_{2,2} = \frac{(497)(434)}{1224} = 176.22 \approx 176$$

Step 3: Compute the Test Statistic

Contingency Table (Observed Count)

LUNG CANCER

SMOKING	present	absent	Total
Smoker	605	185	790
Non-smoker	122	312	434
Total	727	497	1224

Expected Count

LUNG CANCER

SMOKING	present	absent	Total
Smoker	469	321	790
Non-smoker	258	176	434
Total	727	497	1224

Version#d

Step 3: Compute the Test Statistic

$$X^{2} = \frac{(605 - 469)^{2}}{469} + \frac{(185 - 321)^{2}}{321} + \frac{(122 - 258)^{2}}{258} + \frac{(312 - 176)^{2}}{176}$$

$$= 273.84$$

Step 4: Interpret the Test Statistic (Using Rejection Region)

 Compute for the critical value with the degree of freedom,

$$df = (r - 1) \times (c - 1)$$

Use the chi-squared table

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

Step 4: Interpret the Test Statistic

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	χ^{2}_{900}	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.953
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.75
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.80
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.26
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.71
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.15
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.58
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.99
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.40
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.79
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.18
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.55
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.92
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.29
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.64
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.33
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.67
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.76
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.49
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.95
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.21
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.32
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.29
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.16

Step 4: Interpret the Test Statistic (Using Rejection Region)

- $\alpha = 0.05$
- df = (2-1)(2-1) = 1
- $X_c^2 = 3.841$

Step 5: Make a Conclusion

Since the test statistic lies in the RR

• then we reject the null hypothesis.

• Therefore, the variables are dependent.

