

Lab Course - Excercise

Jakob Lechner, Thomas Polzer

http://ti.tuwien.ac.at/ecs/teaching/courses/hwswcode_lu

FPGA board

Cyclone IV FPGA
VGA, RS-232, PS/2
2x Ethernet
USB Host/Device
Audio In/Out, Video In
LCD, 7-segments
IR-Receiver
SD-Card Reader
128MB SDRAM
2MB SRAM
8MB FLASH
Switches, Pushbuttons

4.3 inch screen 24-bit color depth max. resolution 800x480

12-bit ADC for touch coordinates

Touchscreen

Camera

up to 5 Megapixels up to 70 fps

Interface board

3x 40-pin extension connectors

- FPGA: Altera Cyclone IV
 - 114480 ALUTs
 - Embedded memory: 3888 Kbits
- ▶Spear2
 - Clock: 50 MHz
 - Instruction Mem: 128K
 - Data Mem: 128K
 - No FPU, no multiplication

HW/SW-Codesign Setting

- Fetch video frames from camera
 - Resolution: 640x480 pixel
 - Real-time image processing
 - Frame rate: 20-30 fps
- Perform face detection
 - Face detection = find position of face in an image
 - Draw rectangle around detected face
- Output processed images on touchscreen

- Simple algorithm based on finding skincolored regions
- Processing steps (input: RGB image):
 - 1. Conversion to YCbCr color space
 - 2. Apply skin filter
 - 3. Erosion filter for reducing noise
 - 4. Dilation filter
 - 5. Image segmentation
 - 6. Compute coordinates

- Luma (brightness) stored in Y component
- Chroma (color) stored in Cb/Cr components
 - Allows for filtering the skin-color independent of brightness => simple rectangular region

- Color value of every pixel is evaluated
 - Skin-colored pixels become white
 - Other pixels become black

NASA/courtesy of nasaimages.org

- Apply an erosion filter to remove noise
- White pixels, which have a black neighbor pixel, are blackened

- Face size is reduced due to erosion
- => Dilation: opposite to erosion
 - Black pixels, which have a white neighbor pixel, are whitened

- Find candidate face regions
- Histogram-based approach
 - Count white pixels in every row/column

Step 6: Compute coordinates

- Compute edges of each candidate region
 - Based on lower threshold in histogram
- Choose candidate region with biggest area
- Draw rectangle in original image

SW Development

- Provided application written in C
- Download over RS232 as SREC file
- Two application modes:
 - Normal mode
 - Image data is taken from camera
 - Test mode (make TEST=1)
 - A single image can be downloaded over the serial interface
 - Face detection is performed and the result image is uploaded to the PC
 - Execution time is evaluated

- Performance optimization by
 - Analyzing SW for repetative and timeconsuming code sequences
 - Implementing HW-accelerators
 - Basic arithmetic functions
 - Complex computations
 - Try to find computations suitable for HW
 - E.g., large degree of parallelism
 - Pipelining computations

- Memory accesses might be bottleneck
 - Access of SDRAM by processor slow
 - Burst access not properly supported (high SW overhead)
 - Possible solution: Direct memory access of hardware modules on SDRAM
 - Module needs to be AMBA AHB master (compare svgactrl IP-Core from GRLIB)
 - Using fast SRAM memory could also help to migtigate this bottleneck
 - 2MB available

- Detailed explanation of face detection algorithm
 - http://channel9.msdn.com/coding4fun/articles/FaceLight--Silverlight-4-Real-Time-Face-Detection
- AMBA specification
 - http://polimage.polito.it/~lavagno/esd/IHI0011A AMBA SPEC.pdf
- Course Materials
 - http://ti.tuwien.ac.at/ecs/teaching/courses/hwswcode_lu