Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	nt sur	la con	vocatio	on.)											1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
CLASSE: Première
E3C : □ E3C1 ⊠ E3C2 □ E3C3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 6

Exercice 1 – QCM (5 points)

Ce QCM comprend 5 questions indépendantes. Pour chacune d'elles, une seule des réponses proposées est exacte.

Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n'apporte ni ne retire de point.

Question 1

Dans un repère orthonormé, on considère la parabole P d'équation $y=2x^2+4x-11$, de sommet S et d'axe de symétrie la droite D. Quelle est la bonne proposition ?

A. S(-4;5) et **D** a pour équation y = 5.

B. S(-1;-17) et **D** a pour équation x=-1.

C. S(-1;-13) et **D** a pour équation x=-1.

D. S(-1;-13) et **D** a pour équation y=-1.

Question 2

Une expérience aléatoire met en jeu des événements A et B et leurs événements contraires \overline{A} et \overline{B} . L'arbre pondéré ci-dessous traduit certaines données de cette expérience aléatoire. On a alors :

A.
$$P(B) = 0.5$$

B.
$$P(A \cap B) = 0.9$$

c.
$$P_A(B) = 0.18$$

D.
$$P_B(A) = \frac{9}{13}$$

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	otio	n :			
	(Les nu	méros 1	figuren	t sur la	convo	cation	1.)											
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			$/\lfloor$			/[1.1

Question 3

On considère le nombre réel $a = \frac{18\pi}{5}$.

Un des nombres réels suivants a le même point image que le nombre réel \boldsymbol{a} sur le cercle trigonométrique. Lequel?

A.
$$\frac{3\pi}{5}$$

B.
$$\frac{63\pi}{5}$$

c.
$$\frac{-12\pi}{5}$$
 D. $\frac{-3\pi}{5}$

D.
$$\frac{-3\pi}{5}$$

Question 4

On considère la fonction f définie sur**R** par $f(x) = xe^x$. La fonction dérivée de la fonction f est notée f'. On a alors :

$$\mathbf{A.}\ f'(x) = \mathrm{e}^x$$

A.
$$f'(x) = e^x$$
 B. $f'(x) = (1+x)e^x$ **C.** $f'(x) = xe^x$ **D.** $f'(x) = 2xe^x$

$$\mathbf{C.}\ f'(x) = x\mathrm{e}^x$$

D.
$$f'(x) = 2xe^x$$

Question 5

Parmi les relations suivantes, quelle est celle qui permet de définir une suite géométrique de terme général u_n ?

A.
$$u_n = \frac{u_{n-1}}{2}$$

B.
$$u_n = u_{n-1} + 2$$

C.
$$u_n = 2u_{n-1}^2$$

A.
$$u_n = \frac{u_{n-1}}{2}$$
 B. $u_n = u_{n-1} + 2$ **C.** $u_n = 2u_{n-1}^2$ **D.** $u_n = 2u_{n-1} + 10$

Exercice 2 (5 points)

On considère la fonction f définie sur \mathbf{R} par $f(x) = x^3 + 3x^2 + 3x - 63$. On appelle \mathbf{C} sa courbe représentative dans un repère orthonormé.

- **1.** Déterminer f'(x).
- **2.** Etudier le signe de f'(x) sur **R**.
- **3.** Etablir le tableau de variations de la fonction f sur \mathbf{R} .
- **4.** Justifier que la tangente à la courbe **C** au point d'abscisse -1 est la droite **D** d'équation y = -64.
- **5.** Déterminer en quels points de la courbe \boldsymbol{c} la tangente à la courbe est parallèle à la droite d'équation y=3x-100.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tion	n :			
Liberté · Égalité · Fraternité RÉPLINI JOHE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Exercice 3 (5 points)

Pour placer un capital de 5 000 euros, une banque propose un placement à taux fixe de 5 % par an. Avec ce placement, le capital augmente de 5 % chaque année par rapport à l'année précédente. Pour bénéficier de ce taux avantageux, il ne faut effectuer aucun retrait d'argent durant les quinze premières années.

On modélise l'évolution du capital disponible par une suite (u_n) . On note u_n le capital disponible après n années de placement.

On dépose 5 000 euros le 1^{er} janvier 2020. Ainsi $u_0 = 5\,000$.

- **1.** Montrer que $u_2 = 5512,5$. Interpréter ce résultat dans le contexte de l'exercice.
- **2.** Exprimer u_{n+1} en fonction de u_n .
- **3.** Quelle est la nature de la suite (u_n) ? Préciser son premier terme et sa raison.
- **4.** Exprimer u_n en fonction de n.
- 5. Justifier que le capital aura doublé après 15 années de placement.

Exercice 4 (5 points)

Dans un repère orthonormé du plan, on considère les points A(-2;1), B(1;2) et E(0;-5). On appelle **C** le cercle de centre A passant par B.

- **1.** Justifier qu'une équation du cercle **C** est $(x+2)^2 + (y-1)^2 = 10$.
- **2.** Calculer $\overrightarrow{AB} \cdot \overrightarrow{AE}$.
- 3. Que peut-on en déduire pour les droites (AB) et (AE) ?
- **4.** Déterminer une équation cartésienne de la droite (AE).
- **5.** Calculer les coordonnées des points d'intersection de (AE) et du cercle **C**.