Komutativna algebra - 11. domača naloga

Benjamin Benčina, 27192018

28. maj 2020

<u>Nal. 1:</u> Naj bosta $R \subseteq R'$ cela kolobarja (torej domeni) in naj bo R' končno generirana R-algebra. Pokažimo, da obstajajo $y_1, \ldots, y_n \in R'$, ki so algebraično neodvisni nad R in neničelen element $s \in R$, da je R'_s celosten nad $R[y_1, \ldots, y_n]_s$.

Najprej opazimo, da je trditev skoraj identična Noetherski normalizaciji, le da imamo tukaj namesto polja domeno in da smo tukaj primorani lokalizirati. Spomnimo se, da lokalizacija z elementom s pomeni le lokalizacijo z množico $\{s^n; n \in \mathbb{N}_0\}$. Ker je R domena in kot taka nima deliteljev niča, $s^n \neq 0$ za noben $n \in \mathbb{N}_0$ in ta lokalizacija je dobro definirana (oz. ni ničelna). Naj bo V množica vseh neničelnih elementov kolobarja R. Ker je R domena, je V očitno multiplikativna množica, ki ne vsebuje elementa 0. Ker je V multiplikativna v R, je seveda tudi v R', zato si oglejmo obe lokalizaciji po V. Jasno je $V^{-1}R'$ končno generirana $V^{-1}R$ -algebra, saj je R' končno generirana R-algebra. Ker V vsebuje vse neničelne elemente kolobarja R, ti pa se slikajo v obrnljive elemente v lokalizaciji $V^{-1}R$, so zato vsi neničelni elementi v $V^{-1}R$ obrnljivi, torej je $K = V^{-1}R$ polje. Z drugimi besedami, kolobar $V^{-1}R'$ je končno generirana K-algebra (z generatorji x_1, \ldots, x_n), kjer je K polje. Uporabimo klasično Noethersko normalizacijo (izrek 11.4), ki nam da $r \in \mathbb{N}$ in injektiven homomorfizem $\varphi \colon K[z_1, \ldots, z_r] \to V^{-1}R'$, da je $V^{-1}R'$ končna razširitev polinomskega kolobarja $K' = K[z_1, \ldots, z_r]$.

V naslednjem koraku si podrobneje oglejmo generatorje obeh algeber. Naj bo x_j eden od generatorjev R-algebre R'. Po konstrukciji je $\frac{x_j}{1} \in V^{-1}R'$ celosten nad K', zato obstaja moničen polinom p_j s koeficienti v K', ki uniči x_j . Seveda pa je vsak od teh koeficienov že sam polinom v spremenljivkah z_1, \ldots, z_r s koeficienti v $K = V^{-1}R$ (koeficienti so torej ulomki). Sedaj definiramo $s \in R$ kot produkt imenovalcev vseh koeficientov vseh polinomov p_j (če sta dva ulomka ekvivalentna, si imenovalce izberemo). Ker so bili v imenovalcih ravno neničelni elementi domene R, velja $s \neq 0$.

Sedaj lahko dobimo elemente y_j tako, da vzamemo generatorje z_j in jih pomnožimo z elementom s (s tem se znebimo vseh imenovalcev). Ker so bili generatorji z_j algebraično neodvnisni nad K, so neodvisni tudi, če jih omejimo le na R. Potem so neodvisni tudi elementi y_j , saj so le "raztegi"elementov z_j . Naj bo torej $R'' = R[y_1, \ldots, y_r]$ razširitev kolobarja R.

Oglejmo si še enkrat generatorje x_1, \ldots, x_n R-algebre R'. Spomnimo se, da je za generator x_j moničen polinom p_j v spremenljivkah z_1, \ldots, z_r s koeficienti v K. Če si ogledamo posamezen člen tega polinoma, vidimo, da lahko ta člen pomnožimo s primerno potenco elementa s, da se vsi z_j spremenijo v y_j (vseh je končno). Po konstrukciji s lahko nato še enkrat množimo in delimo s potencami s, da se izničijo vsi imenovalci vseh členov (ki jih je tudi končno) in hkrati polinom ostane moničen. V imenovalcu nam lahko ostanejo le potence števila s (lahko tudi le 1). Nov polinom označimo s p'_j . Jasno so koeficienti polinoma p'_j sedaj vsi v kolobarji R''_s . Ker je vsak x_j celosten nad R''_s , je tudi R' celosten nad R''_s . Ker $s \in R$, je po trditvi 9.5b (lokalizacija ohranja celost) R'_s celostna razširitev kolobarja $R''_s = R[y_1, \ldots, y_n]_s$.

<u>Nal. 2:</u> Naj bosta $R \subseteq R'$ domeni, R celostno zaprt v svojem polju ulomkov (tj. normalen) in R' celosten nad R. Naj bo $M \triangleleft R'$ maksimalen ideal. Pokažimo, da je $N = R \cap M \triangleleft R$ maksimalen in $\dim(R_N) = \dim(R'_M)$.

Recimo, da N ni maksimalen ideal (vendar še vedno praideal). Naj bo Q nek maksimalen ideal vR, ki strogo vsebuje N. Po 9.16 (going up) obstaja Q', ki leži nad Q, torej $Q' \cap R = Q$ in $M \subseteq Q'$. Vendar pa je M maksimalen ideal, zato bodisi Q' = R' bodisi Q' = M, kar oboje vodi v protislovje, saj $Q \neq R$, N (ta trditev sledi tudi iz posledice 9.14b).

Spomnimo se, da je za poljuben praideal P kolobarja S dimenzija lokalizacije S_P enaka dolžini najdaljše verige praidealov v S, ki so vsebovani v P. S tem v mislih predpostavimo dim R_N , dim $R'_M < \infty$ in vzemimo neko najdaljšo verigo praidealov P_j v R, ki so vsebovani v N. Predpostavimo lahko, da se ta veriga začne z (0) in konča z N (ki je kot maksimalen ideal tudi praideal), torej

$$(0) \subset P_1 \subset P_2 \subset \cdots \subset P_n = N.$$

Vemo že, da M leži nad idealom $N=P_n$. Ker so izpolnjene predpostavke izreka 9.18 (going down), obstaja praideal $P' \subset M$, ki leži nad P_{n-1} . Ker so vsebovanosti v zgornji verigi stroge, je tudi tukaj stroga vsebovanost. Induktivno dobimo verigo praidealov dolžine n v R', ki cela leži v M, torej velja dim $R_n \leq \dim R'_M$. Obratno, vzemimo najdaljšo verigo praidealov v R', ki so vsebovani v M, torej

$$(0) \subset Q_1 \subset Q_2 \subset \cdots \subset Q_m = M.$$

Jasno z operatorjem . $\cap R$ dobimo naraščujočo verigo praidealov v R, ki so vsebovani v N. Po izreku 9.13 (incomparability) so te vsebovanosti stroge, ker so stroge tudi vsebovanosti v zgornji verigi. Dobili smo torej verigo praidealov dolžine m v R, ki cela leži v N, torej dim $R'_M \leq \dim R_N$. Dokazali smo obe neenakosti.

Iz zgornjega argumenta je razvidno, da postopek potrdi enačbo tudi v primeru, ko je ena od dimenzij neskončna (in s tem tudi druga).