Modul 7

Half-Adder dan Full-Adder

7.1. Tujuan

- 1. Praktikan mampu memahami rangkaian half adder.
- 2. Praktikan mampu memahami rangkaian full adder.

7.2. Alat dan Bahan

- 1. Laptop/PC
- 2. Aplikasi EasyEDA

7.3. Dasar Teori

1. Half Adder

Half adder adalah suatu rangkaian penjumlahan sistem bilangan biner yang paling sederhana. Rangkaian ini hanya dapat digunakan untuk operasi penjumlahan data bilangan biner sampai 1 bit saja. Rangkaian Half Adder memiliki 2 terminal *input* untuk 2 variabel bilangan biner dan 2 terminal *output*, yaitu *summary out* (SUM) dan *carry out* (CARRY).

Half Adder (HA) adalah rangkaian penjumlahan sistem bilangan biner yang paling sederhana. Rangkaian ini hanya dapat digunakan untuk melakukan operasi penjumlahan dua bilangan biner 1 bit. Rangkaian half adder memiliki dua terminal input untuk 2 variabel bilangan biner dan 2 terminal output, yaitu summary out (sum) dan carry out (carry). Aturan-aturan untuk melakukan penambahan biner dua bit diilustrasikan sebagai berikut:

- 1. Aturan $1 \ 0 + 0 = 0$
- 2. Aturan $2 \cdot 0 + 1 = 1$
- 3. Aturan 3 1 + 0 = 1
- 4. Aturan 4 1 + 1 = 0 dan *carry* 1 = 10

Tiga aturan pertama mudah dimengerti, sedangkan aturan 4 menyatakan bahwa penjumlahan biner 1 + 1 = 10 (desimal 2). Angka 1 hasil penjumlahan dibawa ke kolom yang mempunyai tingkatan lebih tinggi, dan dikatakan terdapat *carry*. Rancangan diagram logika menggunakan XOR dan AND, masukan diberikan simbol A dan B sedangkan keluaran diberi simbol Σ yang berarti jumlah (SUM) dan Simbol Co berarti bawaan keluar (*Carry Out*).

Diagram logika dan penambahan setengah (half adder) dengan input A dan B, simbol half adder dan tabel kebenaran diberikan pada gambar berikut.

2. Full Adder

Full Adder adalah rangkaian elektronik yang bekerja melakukan perhitungan penjumlahan penuh dari dua buah bilangan biner yang masing-masing terdiri dari satu bit. Rangkaian ini memiliki 3 input dan 2 output, salah satu input merupakan nilai dari pindahan penjumlahan, kemudian sama seperti pada half adder salah satu output-nya dipakai sebagai tempat nilai pindahan dan yang lain sebagai hasil dari penjumlahan. Rangkaian full adder (FA) dapat digunakan untuk menjumlahkan bilangan biner yang lebih dari 1 bit. Rangkaian Full Adder dapat dibentuk oleh gabungan 2 buah rangkaian half adder dan sebuah gerbang OR untuk menjumlahkan carry output. Pada penambahan penuh muncul aturan kelima yang menyatakan suatu penjumlahan setengah tidak akan bekerja bila muncul carry-in. Oleh karena itu penambahan penuh mempunyai tiga masukan yaitu A, B dan C-in, sedangkan keluaran adalah SUM dan Co (carry out). Diagram logika dari full adder dan tabel kebenaran disajikan pada gambar berikut

Gambar 7. 2 Full Adder

7.4. Langkah Kerja

7.4.1. Percobaan 1

1. Buat project baru pada EasyEDA dan buat rangkaian seperti gambar berikut

Gambar 7. 3 Rangkaian Percobaan 1

Komponen yang dibutuhkan:

- 1 Voltage Source 12V
- 2 Switch
- 4 Logic Probe
- 1 XOR Gate
- 1 AND Gate
- 2 LED

2. Analisis hasil dari rangkaian tersebut untuk mengisi tabel analisis berikut

S1	S2	SUM	CARRY
0	0		
0	1		
1	0		
1	1		

7.4.2. Percobaan 2

1. Buat rangkaian sebagai berikut

Gambar 7. 4 Rangkaian Percobaan Kedua

- 1 Voltage Source 12v
- 3 Switch
- 5 Logic Probe
- 2 XOR Gate
- 2 AND Gate
- 1 OR Gate
- 2 LED

2. Analisis hasil dari rangkaian tersebut untuk mengisi tabel analisis berikut

A	В	Cin	SUM	Cout
0	0	0		
0	0	1		
0	1	1		
0	1	0		
1	0	1		
1	0	0		
1	1	0		
1	1	1		