

STATISTICS WORKSHEET-1

Q1 to Q9 have only one correct answer. Choose the correct option to answer your question.

- 1. Bernoulli random variables take (only) the values 1 and 0.
 - a) True
 - b) False
- 2. Which of the following theorem states that the distribution of averages of iid variables, properly normalized, becomes that of a standard normal as the sample size increases?
 - a) Central Limit Theorem
 - b) Central Mean Theorem
 - c) Centroid Limit Theorem
 - d) All of the mentioned
- 3. Which of the following is incorrect with respect to use of Poisson distribution?
 - a) Modeling event/time data
 - b) Modeling bounded count data
 - c) Modeling contingency tables
 - d) All of the mentioned
- 4. Point out the correct statement.
 - a) The exponent of a normally distributed random variables follows what is called the log-normal distribution
 - b) Sums of normally distributed random variables are again normally distributed even if the variables are dependent
 - c) The square of a standard normal random variable follows what is called chi-squared distribution
 - d) All of the mentioned
- 5. Position random variables are used to model rates.

 - b) Binomial
 - c) Poisson
 - d) All of the mentioned
- 6. 10. Usually replacing the standard error by its estimated value does change the CLT.
 - a) True
 - b) False
- 7. 1. Which of the following testing is concerned with making decisions using data?
 - a) Probability
 - b) Hypothesis
 - c) Causal
 - d) None of the mentioned
- 8. 4. Normalized data are centered at_____and have units equal to standard deviations of the original data.
 - a) 0
 - b) 5
 - c) 1
 - d) 10
- 9. Which of the following statement is incorrect with respect to outliers?
 - a) Outliers can have varying degrees of influence
 - b) Outliers can be the result of spurious or real processes
 - c) Outliers cannot conform to the regression relationship
 - d) None of the mentioned

Q10and Q15 are subjective answer type questions, Answer them in your own words briefly.

- 10. What do you understand by the term Normal Distribution?
- 11. How do you handle missing data? What imputation techniques do you recommend?
- 12. What is A/B testing?
- 13. Is mean imputation of missing data acceptable practice?
- 14. What is linear regression in statistics?
- 15. What are the various branches of statistics?

Ans.10: Normal distribution, also known as the Gaussian distribution, is a probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean. In graph form, normal distribution will appear as a bell curve.

Ans. 11: Best techniques to handle missing data 3 Methods to Handle Missing Data:
Missing Completely At Random (MCAR)
Missing At Random (MAR)
Not Missing At Random (NMAR):

Common Methods:

- 1. Mean or Median Imputation
- 2. Multivariate Imputation by Chained Equations (MICE)
- 3. Random Forest

Best techniques to handle missing data:

IP ROBO

Use deletion methods to eliminate missing data

Use regression analysis to systematically eliminate data

Data scientists can use data imputation techniques like as : Average imputation and common-point imputation Keeping things under control

- Ans.12: A/B testing is a basic randomized control experiment. It is a way to compare the two versions of a variable to find out which performs better in a controlled environment. It is a hypothetical testing methodology for making decisions
- Ans. 13: True, imputing the mean preserves the mean of the observed data. So if the data are missing completely at random, the estimate of the mean remains unbiased. ..
- Ans. 14: Linear regression is a basic and commonly used type of predictive analysis.

 Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data.

 One variable is considered to be an explanatory variable, and the other is considered to be a dependent variable.

A linear regression line has an equation of the form Y = a + bX, where X is the explanatory variable and Y is the dependent variable. The slope of the line is b, and a is the intercept (the value of y when x = 0).

Ans. 15: Statistics have majorly categorised into two types:

Descriptive statistics.

Inferential statistics.