Curs ID2

Cuprins

- 1 Variabile libere. Variabile legate. Enunțuri
- 2 Forma prenex
- 3 Forma Skolem
- 4 Modele Herbrand
- 5 Decidabilitate și semi-decidabilitate

Logica de ordinul I - sintaxa

Limbaj de ordinul I \mathcal{L} unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
Termenii lui \mathcal{L} , notați $Trm_{\mathcal{L}}$, sunt definiți inductiv astfel: \square orice variabilă este un termen;
orice simbol de constantă este un termen;
\square dacă $f \in \mathbf{F}$, $ar(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen
Formulele atomice ale lui $\mathcal L$ sunt definite astfel: \square dacă $R \in \mathbf R$, $ar(R) = n$ și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
Formulele lui $\mathcal L$ sunt definite astfel:
orice formulă atomică este o formulă
\square dacă $arphi$ este o formulă, atunci $\lnot arphi$ este o formulă
\square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
\square dacă φ este o formulă și x este o variabilă, atunci $\forall x \varphi$, $\exists x \varphi$ sunt formule

Logica de ordinul I - semantica

- O structură este de forma $A = (A, \mathbf{F}^A, \mathbf{R}^A, \mathbf{C}^A)$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{\mathcal{A}} \subseteq A^n$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ ($\mathcal A$ -interpretare) este o funcție $\mathit I:V \to A$.

Inductiv, definim interpretarea termenului t în A sub I notat t_I^A .

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \vDash \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

- O formulă φ este adevărată într-o structură $\mathcal A$, notat $\mathcal A \vDash \varphi$, dacă este adevărată în $\mathcal A$ sub orice interpretare. Spunem că $\mathcal A$ este model al lui φ .
- O formulă φ este adevărată în logica de ordinul I, notat $\vDash \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\vDash \varphi$.
- O formulă φ este satisfiabilă dacă există o structură $\mathcal A$ și o $\mathcal A$ -interpretare $\mathcal I$ astfel încât $\mathcal A$, $\mathcal I \vDash \varphi$.

Consecință logică

Definiție

O formulă φ este o consecință logică a formulelor $\varphi_1, \ldots, \varphi_n$, notat

$$\varphi_1,\ldots,\varphi_n\vDash\varphi$$
,

dacă pentru orice structură ${\cal A}$

dacă
$$\mathcal{A} \vDash \varphi_1$$
 și ... și $\mathcal{A} \vDash \varphi_n$, atunci $\mathcal{A} \vDash \varphi$

Consecință logică

Definiție

O formulă φ este o consecință logică a formulelor $\varphi_1, \ldots, \varphi_n$, notat

$$\varphi_1,\ldots,\varphi_n\vDash\varphi$$
,

dacă pentru orice structură ${\cal A}$

dacă
$$\mathcal{A} \vDash \varphi_1$$
 și ... și $\mathcal{A} \vDash \varphi_n$, atunci $\mathcal{A} \vDash \varphi$

Problemă semidecidabilă!

Nu există algoritm care să decidă mereu dacă o formula este sau nu consecință logică a altei formule în logica de ordinul I!

Formule echivalente

 \square Fie φ și ψ două formule. Notăm prin

$$\varphi \bowtie \psi$$

faptul că $\vDash \varphi \leftrightarrow \psi$, adică φ și ψ au aceleași modele.

Exemplu

Dacă P este un simbol de relație de aritate 1 și x și y sunt variabile distincte, atunci $\forall x P(x) \exists \forall y P(y)$ și $P(x) \exists P(y)$

Propoziție

O formulă φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Formule echivalente

 \square Fie φ și ψ două formule. Notăm prin

$$\varphi \bowtie \psi$$

faptul că $\vDash \varphi \leftrightarrow \psi$, adică φ și ψ au aceleași modele.

Exemplu

Dacă P este un simbol de relație de aritate 1 și x și y sunt variabile distincte, atunci $\forall x P(x) \exists \forall y P(y)$ și $P(x) \exists P(y)$

Propoziție

O formulă φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Pentru a verifica validitatea/satisfiabilitatea unei formule o vom prelucra sintactic, rezultatele ulterioare necesitând forme particulare.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

 \square Orice apariție a unei variabile x într-o formula $\forall x \varphi$ sau $\exists x \varphi$ se numește legată. Celelalte apariții se numesc libere.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

□ Orice apariție a unei variabile x într-o formula $\forall x \varphi$ sau $\exists x \varphi$ se numește legată. Celelalte apariții se numesc libere.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y (R(y,x) \lor R(y,z)) \rightarrow \forall x R(x,y))$$

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

□ Orice apariție a unei variabile x într-o formula $\forall x \varphi$ sau $\exists x \varphi$ se numește legată. Celelalte apariții se numesc libere.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y (R(y,x) \lor R(y,z)) \rightarrow \forall x R(x,y))$$

- \square Prima aparitie a lui x este liberă,
- \square dar a doua apariție a lui x este legată de apariția lui $\forall x$.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Orice apariție a unei variabile x într-o formula $\forall x \varphi$ sau $\exists x \varphi$ se numește legată. Celelalte apariții se numesc libere.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y (R(y,x) \lor R(y,z)) \rightarrow \forall x R(x,y))$$

- Prima aparitie a lui x este liberă.
- \square dar a doua apariție a lui x este legată de apariția lui $\forall x$.
- \square Primele două apariții ale lui y sunt legate de a doua apariție a lui $\forall y$,
- \square iar a treia apariție a lui y este legată de prima apariție a lui $\forall y$.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Orice apariție a unei variabile x într-o formula $\forall x \varphi$ sau $\exists x \varphi$ se numește legată. Celelalte apariții se numesc libere.

Exemple

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y (R(y,x) \lor R(y,z)) \rightarrow \forall x R(x,y))$$

- Prima aparitie a lui x este liberă,
- \square dar a doua apariție a lui x este legată de apariția lui $\forall x$.
- \square Primele două apariții ale lui y sunt legate de a doua apariție a lui $\forall y$,
- \square iar a treia apariție a lui y este legată de prima apariție a lui $\forall y$.
- □ z este liberă.

- \square O formulă φ este în formă rectificată dacă:
 - 1 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte

- \square O formulă φ este în formă rectificată dacă:
 - 1 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.

- \square O formulă φ este în formă rectificată dacă:
 - 1 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

- \square O formulă φ este în formă rectificată dacă:
 - 🔟 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

Exemplu

$$\forall x P(x) \land \exists x \forall y R(x,y) \land S(x)$$

- \square O formulă φ este în formă rectificată dacă:
 - 🔟 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

Exemplu

$$\forall x P(x) \land \exists x \forall y R(x,y) \land S(x) \vDash \forall x P(x) \land \exists x_1 \forall y R(x_1,y) \land S(x_2)$$

- \square O formulă φ este în formă rectificată dacă:
 - 🔟 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

Exemplu

$$\forall x P(x) \land \exists x \forall y R(x,y) \land S(x) \exists x P(x) \land \exists x_1 \forall y R(x_1,y) \land S(x_2)$$

În continuare vom presupune că toate formulele sunt în formă rectificată.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

 \square Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \Box Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducţie după formule:

```
\begin{array}{lcl} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \, \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \, \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \square Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- \square Mulțimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducție după formule:

```
\begin{array}{lll} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\rightarrow, \lor, \land\} \\ FV(\forall x \, \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \, \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

 \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \Box Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- \square Mulțimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducție după formule:

```
\begin{array}{lcl} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \, \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \, \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

- \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .
- ☐ Un enunț este o formulă fără variabile libere.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \square Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducţie după formule:

```
\begin{array}{lcl} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \, \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \, \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

- \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .
- ☐ Un enunț este o formulă fără variabile libere.
- \square Pentru orice structură \mathcal{A} și orice enunț φ , o \mathcal{A} -interpretare I nu joacă niciun rol în a determina dacă $\mathcal{A}, I \vDash \varphi$.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

Care din următoarele formule sunt enunțuri?

- $\forall x \forall y (R(x,y) \lor R(x,z))$
- $\forall x \forall y (R(x,y) \lor \forall z R(x,z))$

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

Care din următoarele formule sunt enunțuri?

- $\bigvee x \forall y R(x,y)$ enunț
- $\forall x \forall y (R(x,y) \lor R(x,z))$
- $\forall x \forall y (R(x,y) \lor \forall z R(x,z))$ enunț
- $\forall x R(x,y)$

Enunțuri

Fie φ o formulă și $FV(\varphi) = \{x_1, \dots, x_n\}$.

Propozitie

Pentru orice structură ${\cal A}$ avem

$$\mathcal{A} \vDash \varphi$$
 dacă și numai dacă $\mathcal{A} \vDash \forall x_1 \cdots \forall x_n \varphi$.

Enunțuri

Fie φ o formulă și $FV(\varphi) = \{x_1, \dots, x_n\}.$

Propozitie

Pentru orice structură A avem

 $\mathcal{A} \vDash \varphi$ dacă și numai dacă $\mathcal{A} \vDash \forall x_1 \cdots \forall x_n \varphi$.

Demonstrație

Exercițiu!

A verifica validitatea unei formule revine la a verifica validitatea enunțului asociat.

- □ Substituțiile înlocuiesc variabilele libere cu termeni.
- □ O substituție aplicată unui termen întoarce un alt termen.

- ☐ Substituțiile înlocuiesc variabilele libere cu termeni.
- O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?

- ☐ Substituțiile înlocuiesc variabilele libere cu termeni.
- O substituție aplicată unui termen întoarce un alt termen.
- □ Ce se întâmpla când aplicăm o substituție unei formule?
 - □ Fie φ formula $P(z,z) \land \exists y (\neg P(x,y))$

- Substituțiile înlocuiesc variabilele libere cu termeni.
- O substituție aplicată unui termen întoarce un alt termen.
- □ Ce se întâmpla când aplicăm o substituție unei formule?
 - □ Fie φ formula $P(z,z) \land \exists y (\neg P(x,y))$

- Substituțiile înlocuiesc variabilele libere cu termeni.
- O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?
 - □ Fie φ formula $P(z,z) \land \exists y (\neg P(x,y))$

Atenție! substituțiile afectează satisfiabilitatea formulei.

- Substituțiile înlocuiesc variabilele libere cu termeni.
- □ O substituţie aplicată unui termen întoarce un alt termen.
- □ Ce se întâmpla când aplicăm o substituție unei formule?
 - □ Fie φ formula $P(z,z) \land \exists y (\neg P(x,y))$

Atenție! substituțiile afectează satisfiabilitatea formulei.

□ Fie φ o formulă și t_1, \ldots, t_n termeni care nu conțin variabile din φ . Notăm $\varphi[x_1/t_1, \ldots, x_n/t_n]$ formula obținută din φ substituind toate aparițiile libere ale lui x_1, \ldots, x_n cu t_1, \ldots, t_n .

$$\varphi[x_1/t_1,\ldots,x_n/t_n] = \{x_1 \leftarrow t_1,\ldots,x_n \leftarrow t_n\}\varphi$$

Forma prenex

O formulă prenex este o formulă de forma

$$Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$$

unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, ..., n\}$, $x_1, ..., x_n$ sunt variabile distincte și φ nu conține cuantificatori.

O formulă prenex este o formulă de forma

$$Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$$

unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, ..., n\}$, $x_1, ..., x_n$ sunt variabile distincte și φ nu conține cuantificatori.

Exemplu

Fie R este un simbol de relație de aritate 2. Formula

$$\forall x \,\exists y \,\forall z ((R(x,y) \vee \neg R(x,z)) \wedge R(x,x))$$

este în formă prenex.

O formulă prenex este o formulă de forma

$$Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$$

unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, ..., n\}$, $x_1, ..., x_n$ sunt variabile distincte și φ nu conține cuantificatori.

Exemplu

Fie R este un simbol de relație de aritate 2. Formula

$$\forall x \,\exists y \,\forall z ((R(x,y) \vee \neg R(x,z)) \wedge R(x,x))$$

este în formă prenex.

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \vDash \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

$$\neg\exists x \neg \varphi \quad \exists x \varphi$$

$$\neg \forall x \neg \varphi \quad \exists x \varphi$$

$$\neg\exists x \varphi \quad \exists x \neg \varphi$$

$$\neg \forall x \varphi \quad \exists x \neg \varphi$$

$$\neg\exists x \neg \varphi \quad \exists x \varphi \qquad \forall x \varphi \wedge \forall x \psi \quad \exists x (\varphi \wedge \psi)$$

$$\neg \forall x \neg \varphi \quad \exists \exists x \varphi \qquad \exists x \varphi \vee \exists x \psi \quad \exists \exists x (\varphi \vee \psi)$$

$$\neg \exists x \varphi \quad \exists x \neg \varphi$$

$$\neg \forall x \varphi \quad \exists x \neg \varphi$$

$$\neg\exists x \neg \varphi \quad \exists x \varphi \qquad \forall x \varphi \land \forall x \psi \quad \exists x (\varphi \land \psi) \\
\neg\forall x \neg \varphi \quad \exists x \varphi \qquad \exists x \varphi \lor \exists x \psi \quad \exists x (\varphi \lor \psi) \\
\neg\exists x \varphi \quad \exists x \neg \varphi \qquad \forall x \forall y \varphi \quad \exists x \forall y \varphi \lor \exists x \varphi \\
\neg\forall x \varphi \quad \exists x \exists y \varphi \quad \exists x \exists y \varphi \quad \exists y \exists x \varphi$$

$$\neg\exists x \neg \varphi \quad \exists \ \forall x \varphi \qquad \forall x \varphi \wedge \forall x \psi \quad \exists \ \forall x (\varphi \wedge \psi)$$

$$\neg \forall x \neg \varphi \quad \exists \ \exists x \varphi \qquad \exists x \varphi \vee \exists x \psi \quad \exists \ \exists x (\varphi \vee \psi)$$

$$\neg\exists x \varphi \quad \exists \ \forall x \neg \varphi \qquad \forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi$$

$$\neg \forall x \varphi \quad \exists \ \exists x \neg \varphi \qquad \exists x \exists y \varphi \quad \exists \quad \exists y \exists x \varphi$$

$$\forall x \varphi \vee \psi \quad \exists \quad \forall x (\varphi \vee \psi) \text{ dacă } x \notin FV(\psi)$$

$$\forall x \varphi \wedge \psi \quad \exists \quad \forall x (\varphi \wedge \psi) \text{ dacă } x \notin FV(\psi)$$

$$\exists x \varphi \vee \psi \quad \exists \quad \exists x (\varphi \vee \psi) \text{ dacă } x \notin FV(\psi)$$

$$\exists x \varphi \wedge \psi \quad \exists \quad \exists x (\varphi \wedge \psi) \text{ dacă } x \notin FV(\psi)$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists \forall x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists \forall x (\exists v R(x, v) \land \neg \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists \forall x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists \forall x (\exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists \forall x \exists v (R(x, v) \land \neg \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists \forall x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists \forall x (\exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists \forall x \exists v (R(x, v) \land \neg \exists z R(z, y))$$

$$\exists \forall x \exists v (R(x, v) \land \forall z \neg R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists \forall x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists \forall x (\exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists \forall x \exists v (R(x, v) \land \neg \exists z R(z, y))$$

$$\exists \forall x \exists v (R(x, v) \land \forall z \neg R(z, y))$$

$$\exists \forall x \exists v \forall z (R(x, v) \land \neg R(z, y))$$

Fie \mathcal{L} un limbaj de ordinul.

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducere de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

Fie \mathcal{L} un limbaj de ordinul.

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducere de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

În continuare φ este un enunț în formă prenex:

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \theta,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile distincte două câte două și θ este formulă liberă de cuantificatori.

Fie \mathcal{L} un limbaj de ordinul.

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducere de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

În continuare φ este un enunț în formă prenex:

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \theta,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile distincte două câte două și θ este formulă liberă de cuantificatori.

Vom asocia lui φ un enunț universal φ^{sk} într-un limbaj extins $\mathcal{L}^{sk}(\varphi)$.

☐ Un enunț se numește universal dacă conține doar cuantificatori universali.

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{sk}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{\mathit{sk}}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- dacă $\varphi = \exists x \ \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \ \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{\mathit{sk}}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \ \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- \square dacă $\varphi = \forall x_1 \dots \forall x_k \exists x \psi$

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{sk}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk}=\varphi$ și $\mathcal{L}^{sk}(\varphi)=\mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \, \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{\mathit{sk}}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \, \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ . Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{sk}=\varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2, \varphi^3, \ldots$, până ajungem la o formulă universală și aceasta este φ^{sk} .

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{\mathit{sk}}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \, \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \, \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ . Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{sk}=\varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2,\varphi^3,\ldots$, până ajungem la o formulă universală și aceasta este φ^{sk} .

Definiție

 φ^{sk} este o formă Skolem a lui φ .

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x \, P(x)$. Atunci

$$\varphi^1 =$$

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x \, P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă.

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x \, P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x P(x)$.

Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exemplu

Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \, \forall y \, \forall z \, R(x,y,z)$. Atunci

$$\varphi^1 =$$

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x \, P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exempli

Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \, \forall y \, \forall z \, R(x, y, z)$. Atunci

$$\varphi^1 = (\forall y \,\forall z \, R(x, y, z))[x/c] = \forall y \,\forall z \, R(c, y, z),$$

unde c este un nou simbol de constantă.

Exempli

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x \, P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exempli

Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \, \forall y \, \forall z \, R(x, y, z)$. Atunci

$$\varphi^{1} = (\forall y \,\forall z \,R(x,y,z))[x/c] = \forall y \,\forall z \,R(c,y,z),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{sk} = \varphi^1 = \forall y \, \forall z \, R(c,y,z)$.

Exemplu

Fie P un simbol de relatie de aritate 2 și $\varphi = \forall y \exists z P(y, z)$. Atunci

$$\varphi^1 =$$

Exempli

Fie P un simbol de relatie de aritate 2 și $\varphi = \forall y \exists z P(y, z)$. Atunci

$$\varphi^1 = (\forall y P(y, z))[z/f(y)] = \forall y P(y, f(y))$$

unde f este un simbol nou de funcție unară.

Exemplu

Fie P un simbol de relatie de aritate 2 și $\varphi = \forall y \exists z P(y, z)$. Atunci

$$\varphi^1 = (\forall y P(y, z))[z/f(y)] = \forall y P(y, f(y))$$

unde f este un simbol nou de funcție unară. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{sk} = \varphi^1 = \forall y \, P(y, f(y))$.

Exempli

Fie \mathcal{L} un limbaj și $P, R \in \mathbb{R}$, $f \in \mathbb{F}$, ari(P) = ari(R) = 2 și ari(f) = 1. Determinați forma Skolem pentru:

$$\varphi := \forall y \,\exists z \,\forall u \,\exists v (R(y,z) \wedge P(f(u),v)).$$

$$\varphi^1$$
 =

Exemplu

Fie \mathcal{L} un limbaj și $P, R \in \mathbb{R}$, $f \in \mathbb{F}$, ari(P) = ari(R) = 2 și ari(f) = 1. Determinați forma Skolem pentru:

$$\varphi := \forall y \exists z \forall u \exists v (R(y,z) \land P(f(u),v)).$$

$$\varphi^1 = \forall y (\forall u \exists v (R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \forall u \exists v (R(y,g(y)) \land P(f(u),v)),$$
unde g este un nou simbol de functie unară

Exemplu

Fie \mathcal{L} un limbaj și $P, R \in \mathbb{R}$, $f \in \mathbb{F}$, ari(P) = ari(R) = 2 și ari(f) = 1. Determinați forma Skolem pentru:

$$\varphi := \forall y \,\exists z \,\forall u \,\exists v (R(y,z) \land P(f(u),v)).$$

$$\varphi^1 = \forall y \,(\forall u \,\exists v \,(R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \,\forall u \,\exists v \,(R(y,g(y)) \land P(f(u),v)),$$
 unde g este un nou simbol de funcție unară
$$\varphi^2 =$$

Exemplu

Fie \mathcal{L} un limbaj și $P, R \in \mathbb{R}$, $f \in \mathbb{F}$, ari(P) = ari(R) = 2 și ari(f) = 1. Determinați forma Skolem pentru:

$$\varphi := \forall y \,\exists z \,\forall u \,\exists v (R(y,z) \land P(f(u),v)).$$

$$\varphi^1 = \forall y \,(\forall u \,\exists v \,(R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \,\forall u \,\exists v \,(R(y,g(y)) \land P(f(u),v)),$$
unde g este un nou simbol de funcție unară
$$\varphi^2 = \forall y \,\forall u \,(R(y,g(y)) \land P(f(u),v))[v/h(y,u)]$$

$$= \forall y \,\forall u \,(R(y,g(y)) \land P(f(u),h(y,u))),$$
unde h este un nou simbol de funcție binară.

Exemplu

Fie \mathcal{L} un limbaj și $P, R \in \mathbb{R}$, $f \in \mathbb{F}$, ari(P) = ari(R) = 2 și ari(f) = 1. Determinați forma Skolem pentru:

$$\varphi := \forall y \,\exists z \,\forall u \,\exists v (R(y,z) \land P(f(u),v)).$$

$$\varphi^1 = \forall y \,(\forall u \,\exists v \,(R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \,\forall u \,\exists v \,(R(y,g(y)) \land P(f(u),v)),$$
unde g este un nou simbol de funcție unară
$$\varphi^2 = \forall y \,\forall u \,(R(y,g(y)) \land P(f(u),v))[v/h(y,u)]$$

$$= \forall y \,\forall u \,(R(y,g(y)) \land P(f(u),h(y,u))),$$
unde h este un nou simbol de funcție binară.

Deoarece φ^2 este un enunț universal, rezultă că $\varphi^{sk} = \varphi^2 = \forall y \, \forall u \, (R(y,g(y)) \wedge P(f(u),h(y,u))).$

Teorema de formă Skolem

Fie φ un enunț în formă prenex.

Teorema de formă Skolem

Fie φ un enunț în formă prenex.

- $\blacksquare \models \varphi^{sk} \to \varphi$, deci $\varphi^{sk} \models \varphi$ în $\mathcal{L}^{sk}(\varphi)$.

Demonstrație [schiță]

Folosind următoarele proprietăți

$$\begin{split} & \vDash \varphi(x/t) \to \exists x \, \varphi \\ & \vDash \varphi \text{ implic} \breve{\mathbf{a}} \vDash \forall x \, \varphi \, \, \dot{\mathbf{s}} \\ & \vDash \forall x \, (\varphi \to \psi) \to (\forall x \, \varphi \to \forall x \, \psi) \\ \text{putem demonstra c} \breve{\mathbf{a}} \vDash \varphi^1 \to \varphi, \, \vDash \varphi^2 \to \varphi^1, \, \text{etc.} \end{split}$$

Teorema de formă Skolem

Fie φ un enunț în formă prenex.

- $\blacksquare \models \varphi^{sk} \to \varphi$, deci $\varphi^{sk} \models \varphi$ în $\mathcal{L}^{sk}(\varphi)$.

Demonstrație [schiță]

Folosind următoarele proprietăți

$$\vDash \varphi(x/t) \to \exists x \varphi
\vDash \varphi \text{ implică} \vDash \forall x \varphi \text{ și}
\vDash \forall x (\varphi \to \psi) \to (\forall x \varphi \to \forall x \psi)
\text{putem demonstra că} \vDash \varphi^1 \to \varphi, \vDash \varphi^2 \to \varphi^1, \text{ etc.}$$

2 "←" Se aplică (1).
"⇒" exercitiu.

Observație

În general, φ și $\varphi^{\it sk}$ nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{\it sk}(\varphi)$.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} =$

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Fie $\mathcal{L}^{sk}(\varphi)$ -structura $\mathcal{A}=(\mathbb{Z},<,f^{\mathcal{A}})$, unde $f^{\mathcal{A}}(n)=n-1$ pentru orice $n\in\mathbb{Z}$.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Fie $\mathcal{L}^{sk}(\varphi)$ -structura $\mathcal{A}=(\mathbb{Z},<,f^{\mathcal{A}})$, unde $f^{\mathcal{A}}(n)=n-1$ pentru orice $n\in\mathbb{Z}$. Atunci $\mathcal{A}\vDash\varphi$, deoarece pentru orice număr întreg m există un număr întreg n astfel încât m< n.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Fie $\mathcal{L}^{sk}(\varphi)$ -structura $\mathcal{A}=(\mathbb{Z},<,f^{\mathcal{A}})$, unde $f^{\mathcal{A}}(n)=n-1$ pentru orice $n\in\mathbb{Z}$. Atunci $\mathcal{A}\vDash\varphi$, deoarece pentru orice număr întreg m există un număr întreg n astfel încât m< n. Pe de altă parte, $\mathcal{A}\not\vDash\varphi^{sk}$, deoarece pentru orice $n\in\mathbb{Z}$, avem că $n\geq f^{\mathcal{A}}(n)=n-1$.

Logica de ordinul I

- ☐ Cercetarea validității poate fi redusă la cercetarea satisfiabilității.
- ☐ Cercetarea satisfiabilității unei formule poate fi redusă la cercetarea satisfiabilității unui enunț în forma Skolem.

Vom arăta că pentru a verifica validitatea/satisfiabilitatea este suficient să ne uităm la o singură structură.

Fie ${\mathcal L}$ un limbaj de ordinul I.

- ☐ Presupunem că are cel puțin un simbol de constantă!
- □ Dacă nu are, adăugăm un simbol de constantă.

Fie \mathcal{L} un limbaj de ordinul I.

- ☐ Presupunem că are cel puțin un simbol de constantă!
- □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor fără variabile.

- Fie \mathcal{L} un limbaj de ordinul I.
 - □ Presupunem că are cel puţin un simbol de constantă!
 - □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor fără variabile.

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 2 și două simboluri de constantă a și b.

Fie \mathcal{L} un limbaj de ordinul I.

- ☐ Presupunem că are cel puţin un simbol de constantă!
- □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor fără variabile.

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 2 și două simboluri de constantă a și b.

Universul Herbrand pentru limbajul \mathcal{L} este mulțimea:

$$a, b, f(a, b), f(f(a, b), b), f(f(a, a), f(b, b)), \dots$$

Structură Herbrand

- O structură Herbrand este o structură $\mathcal{H}=(\mathcal{T}_{\mathcal{L}},\mathbf{F}^{\mathcal{H}},\mathbf{R}^{\mathcal{H}},\mathbf{C}^{\mathcal{H}})$, unde
 - \square pentru orice simbol de constantă c, $c^{\mathcal{H}} = c$
 - pentru orice simbol de funcție f de aritate n,

$$f^{\mathcal{H}}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

Atenție! Într-o structură Herbrand nu fixăm o definiție pentru relații: pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}}(t_1,\ldots,t_n)\subseteq (T_{\mathcal{L}})^n$

Structură Herbrand

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

Structură Herbrand

Exempli

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (\mathcal{T}_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\square a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{T}(t) = f(t)$
- $\square R^{\mathcal{H}} = \{(a, a), (f(a), f(a)), (f(f(a)), f(f(a))), \ldots\}$

 \square O interpretare Herbrand este o interpretare $H:V o T_{\mathcal L}$

- \square O interpretare Herbrand este o interpretare $H:V o T_{\mathcal L}$
- \square O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \vDash \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

- \square O interpretare Herbrand este o interpretare $H:V \to T_{\mathcal{L}}$
- \square O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \vDash \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H}=(\mathcal{T}_{\mathcal{L}},\mathbf{F}^{\mathcal{H}},\mathbf{R}^{\mathcal{H}},\mathbf{C}^{\mathcal{H}})$ unde

- $\square T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\square \ a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{T}(t) = f(t)$
- $\square \ R^{\mathcal{H}} = \{(a, a), (f(a), f(a)), (f(f(a)), f(f(a))), \ldots\}$

- \square O interpretare Herbrand este o interpretare $H:V \to T_{\mathcal{L}}$
- O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \vDash \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (\mathcal{T}_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\Box T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\square \ a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{T}(t) = f(t)$
- $\square R^{\mathcal{H}} = \{(a, a), (f(a), f(a)), (f(f(a)), f(f(a))), \ldots\}$

$$\mathcal{H} \vDash \forall x R(x,x).$$

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square \ T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\Box a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{\mathsf{T}}(t) = f(t)$
- $\square \ R^{\mathcal{H}} = \{(a, f(a)), (f(a), f(f(a))), (f(f(a)), f(f(f(a)))), \ldots\}$

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\Box a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{\mathsf{T}}(t) = f(t)$
- $\square R^{\mathcal{H}} = \{(a, f(a)), (f(a), f(f(a))), (f(f(a)), f(f(f(a)))), \ldots\}$

$$\mathcal{H} \not\models \forall x R(x,x).$$

Exemplu

□ Considerăm structura Herbrand în care toate simbolurile de relație sunt adevărate peste tot,

Exemplu

- □ Considerăm structura Herbrand în care toate simbolurile de relație sunt adevărate peste tot, adică
- \square pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}} = (T_{\mathcal{L}})^n$.
- Această structură este model pentru orice mulțime de formule atomice.
- ☐ Exerciţiu: De ce?

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x \leftarrow t\}\varphi$.

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x \leftarrow t\}\varphi$.

Propoziția 1

Fie \mathcal{A} o structură, $I:V\to A$ o interpretare și $a=t_I^{\mathcal{A}}$. Atunci

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x \leftarrow t\}\varphi$.

Propoziția 1

Fie \mathcal{A} o structură, $I:V\to A$ o interpretare și $a=t_I^{\mathcal{A}}$. Atunci

 $\ \ \, \textbf{I} \ \, \text{pentru orice termen } u \text{ avem } u[x/t]_I^{\mathcal A} = u_{I_{x\leftarrow a}}^{\mathcal A}$

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x \leftarrow t\}\varphi$.

Propoziția 1

Fie A o structură, $I: V \to A$ o interpretare și $a = t_I^A$. Atunci

- **1** pentru orice termen u avem $u[x/t]_I^A = u_{I_{x\leftarrow a}}^A$
- 2 pentru orice formulă φ avem

$$A, I \vDash \varphi[x/t]$$
 dacă și numai dacă $A, I_{x \leftarrow a} \vDash \varphi$

Intuitiv, a schimba evaluarea I atribuind variabilei x valoarea $a \in A$ este același lucru cu a înlocui variabila x cu un termen t a cărui interpretare prin I este a.

Interpretări Herbrand

Propoziția 2

Fie \mathcal{H} o structură Herbrand, $H:V\to T_{\mathcal{L}}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal{L}}$ un termen fără variabile. Sunt adevărate:

Interpretări Herbrand

Propoziția 2

Fie $\mathcal H$ o structură Herbrand, $H:V\to T_{\mathcal L}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal L}$ un termen fără variabile. Sunt adevărate:

Interpretări Herbrand

Propoziția 2

Fie $\mathcal H$ o structură Herbrand, $H:V\to T_{\mathcal L}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal L}$ un termen fără variabile. Sunt adevărate:

- 2 $\mathcal{H}, H \vDash \varphi[x/t]$ dacă și numai dacă $\mathcal{H}, H_{x \leftarrow t} \vDash \varphi$

Interpretări Herbrand

Propoziția 2

Fie \mathcal{H} o structură Herbrand, $H:V\to T_{\mathcal{L}}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal{L}}$ un termen fără variabile. Sunt adevărate:

- $\mathbf{I} t_H^{\mathcal{H}} = t$
- $2 \mathcal{H}, H \vDash \varphi[x/t]$ dacă și numai dacă $\mathcal{H}, H_{x \leftarrow t} \vDash \varphi$

Demonstrație

- prin inducție structurală pe termeni.
- 2 Următoarele echivalențe sunt adevărate

$$\mathcal{H}, H \vDash \varphi[x/t]$$
 ddacă $\mathcal{H}, H_{x \leftarrow t_H^{\mathcal{H}}} \vDash \varphi$ ddacă $\mathcal{H}, H_{x \leftarrow t} \vDash \varphi$

Prima echivalență rezultă din Propoziția 1, iar a doua rezultă din punctul 1.

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Demonstrație

Dacă φ are un model Herbrand atunci este, evident, satisfiabilă. Vom demonstra afirmația inversă.

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Demonstrație

Dacă φ are un model Herbrand atunci este, evident, satisfiabilă. Vom demonstra afirmația inversă.

Fie $\mathcal A$ un model pentru φ , adică $\mathcal A \vDash \varphi$. Vrem să construim un model Herbrand $\mathcal H$ pentru φ , ceea ce revine la a da o interpretare pentru simbolurile de relații.

Dacă
$$R \in \mathbf{R}$$
 și $ari(R) = n$ definim

$$(t_1,\ldots,t_n)\in R^{\mathcal{H}}$$
 dacă și numai dacă $\mathcal{A}\vDash R(t_1,\ldots,t_n)$ (*)

Demonstrație (cont.)

Dacă $R \in \mathbf{R}$ și ari(R) = n definim

$$(t_1,\ldots,t_n)\in R^{\mathcal{H}}$$
 dacă și numai dacă $\mathcal{A}\vDash R(t_1,\ldots,t_n)$ (*)

Demonstrăm prin inducție după $k \ge 0$ că

oricare ar fi
$$\varphi = \forall x_k \dots \forall x_1 \ \psi$$
 un enunț în forma Skolem,
$$\mathcal{A} \vDash \varphi \quad \text{implică} \quad \mathcal{H} \vDash \varphi$$

Demonstrație (cont.)

 \square Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \models \varphi$ implică $\mathcal{H} \models \varphi$.
- \square Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \ \psi$ atunci $\varphi = \forall x_k \ \alpha$.

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.
- □ Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \psi$ atunci $\varphi = \forall x_k \alpha$. Observăm că α nu satisface ipoteza de inducție deoarece poate contine x_k ca variabilă liberă.

Demonstrație (cont.)

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \models \varphi$ implică $\mathcal{H} \models \varphi$.
- □ Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \psi$ atunci $\varphi = \forall x_k \alpha$. Observăm că α nu satisface ipoteza de inducție deoarece poate conține x_k ca variabilă liberă.

Fie $t \in T_{\mathcal{L}}$ un termen fără variabile. Observăm că $\alpha[x_k/t]$ este enunț în formă Skolem,

Demonstrație (cont.)

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.
- □ Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \psi$ atunci $\varphi = \forall x_k \alpha$. Observăm că α nu satisface ipoteza de inducție deoarece poate conține x_k ca variabilă liberă.

Fie $t \in T_{\mathcal{L}}$ un termen fără variabile. Observăm că $\alpha[x_k/t]$ este enunț în formă Skolem, deci $\mathcal{A} \models \alpha[x_k/t]$ implică $\mathcal{H} \models \alpha[x_k/t]$ din ipoteza de inducție.

Demonstrație (cont.)

 \square $\mathcal{A} \models \varphi$ implică

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- $\square A$, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \models \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- ☐ Deoarece / a fost o interpretare arbitrară, am demonstrat că

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \models \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $\mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \models \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $\mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece I a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- Aplicând ipoteza de inducție obținem

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square $A, I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $A, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- ☐ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \models \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- ☐ Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square $A, I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $\mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece I a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \models \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \models \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$ și orice interpretarea H.

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $\mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece I a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- Aplicând ipoteza de inducție obținem
- \square $\mathcal{H} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.
- □ Folosind Propoziția 2 obținem

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $\mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece I a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- ☐ Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.
- □ Folosind Propoziția 2 obținem
- $\square \mathcal{H}, H_{\mathsf{x}_k \leftarrow t} \vDash \alpha$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretare H, deci

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $A, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \models \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.
- □ Folosind Propoziţia 2 obţinem
- $\square \mathcal{H}, H_{x_k \leftarrow t} \models \alpha$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$ și orice interpretare H, deci
- $\square \mathcal{H}, H \vDash \forall x_k \alpha \text{ pentru orice interpretare } H, \text{ adică}$

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \ \mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.
- □ Folosind Propoziţia 2 obţinem
- $\square \mathcal{H}, H_{x_k \leftarrow t} \models \alpha$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$ și orice interpretare H, deci
- $\square \mathcal{H}, H \vDash \forall x_k \alpha$ pentru orice interpretare H, adică $\mathcal{H} \vDash \varphi$

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Teorema lui Herbrand reduce problema satisfiabilității la găsirea unui model Herbrand.

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \, \forall y \, (P(x) \land R(y) \rightarrow P(y))$$

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \, \forall y \, (P(x) \land R(y) \to P(y))$$

Ştim că este suficient să găsim un model Herbrand.

Exempli

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \, \forall y \, (P(x) \land R(y) \to P(y))$$

Știm că este suficient să găsim un model Herbrand.

Considerăm structura Herbrand ${\mathcal H}$ cu

- $\square P^{\mathcal{H}} = \{c_1\} \text{ si } R^{\mathcal{H}} = \{c_1\}$

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \, \forall y \, (P(x) \land R(y) \rightarrow P(y))$$

Știm că este suficient să găsim un model Herbrand.

Considerăm structura Herbrand ${\mathcal H}$ cu

- $\Box T_{\mathcal{L}} = \{c_1, c_2, c_3\}$ $\Box P^{\mathcal{H}} = \{c_1\} \text{ și } R^{\mathcal{H}} = \{c_1\}$
- $P^n = \{c_1\} \text{ si } R^n = \{c_1\}$

Se observă că $\mathcal{H} \vDash \varphi$, deci φ este satisfiabilă.

Exemplu (cont.)

$$\square \ \psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$$

Exemplu (cont.)

 $\psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$ Formulele atomice sunt asemănătoare variabilelor din calculul propozițional. Putem scrie interpretările Herbrand într-un tabel

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

Exemplu (cont.)

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

propozițional. Putem scrie interpretările Herbrand într-un tabel

Observăm că formula este adevărată într-o interpretare în care $P(c_2)$ este adevărată, iar $P(c_1)$ și $R(c_3)$ sunt false.

Exemplu (cont.)

 $\square \ \psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$

Formulele atomice sunt asemănătoare variabilelor din calculul propozițional. Putem scrie interpretările Herbrand într-un tabel

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

Observăm că formula este adevărată într-o interpretare în care $P(c_2)$ este adevărată, iar $P(c_1)$ și $R(c_3)$ sunt false.

Considerăm structura Herbrand ${\cal H}$ cu

$$T_{\mathcal{L}} = \{c_1, c_2, c_3\}$$

Exemplu (cont.)

$$\square \ \psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$$

Formulele atomice sunt asemănătoare variabilelor din calculul propozițional. Putem scrie interpretările Herbrand într-un tabel

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

Observăm că formula este adevărată într-o interpretare în care $P(c_2)$ este adevărată, iar $P(c_1)$ și $R(c_3)$ sunt false.

Considerăm structura Herbrand \mathcal{H} cu

$$P^{\mathcal{H}} = \{c_1, c_2, c_3\}$$

$$P^{\mathcal{H}} = \{c_2\} \text{ si } R^{\mathcal{H}} = \{c_2\}$$

Se observă că $\mathcal{H} \models \psi$, deci ψ este satisfiabilă.

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și ari(P) = ari(R) = 1. Cercetați validitatea formulei

$$\chi = \forall x \, \forall y \, \forall z \, (\neg(P(x) \to R(z)) \vee \neg(\neg P(x) \to P(y)))$$

Teorema lui Herbrand

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și ari(P) = ari(R) = 1. Cercetați validitatea formulei

$$\chi = \forall x \, \forall y \, \forall z \, (\neg(P(x) \to R(z)) \vee \neg(\neg P(x) \to P(y)))$$

 \square A cerceta validitatea lui χ este echivalent cu a cerceta satisfiabilitatea lui $\neg \chi$

$$\neg \chi = \exists x \,\exists y \,\exists z \,((P(x) \to R(z)) \land (\neg P(x) \to P(y)))$$

Teorema lui Herbrand

Exempli

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și ari(P) = ari(R) = 1. Cercetați validitatea formulei

$$\chi = \forall x \, \forall y \, \forall z \, (\neg(P(x) \to R(z)) \vee \neg(\neg P(x) \to P(y)))$$

 \square A cerceta validitatea lui χ este echivalent cu a cerceta satisfiabilitatea lui $\neg \chi$

$$\neg \chi = \exists x \,\exists y \,\exists z \, ((P(x) \to R(z)) \land (\neg P(x) \to P(y)))$$

 \square Determinăm forma Skolem: $\mathcal{L}^{sk} = \mathcal{L} \cup \{c_1, c_2, c_3\}$

$$(\neg \chi)^{sk} = (P(c_1) \rightarrow R(c_3)) \land (\neg P(c_1) \rightarrow P(c_2))$$

Teorema lui Herbrand

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și ari(P) = ari(R) = 1. Cercetați validitatea formulei

$$\chi = \forall x \, \forall y \, \forall z \, (\neg(P(x) \to R(z)) \vee \neg(\neg P(x) \to P(y)))$$

 \square A cerceta validitatea lui χ este echivalent cu a cerceta satisfiabilitatea lui $\neg \chi$

$$\neg \chi = \exists x \,\exists y \,\exists z \, ((P(x) \to R(z)) \land (\neg P(x) \to P(y)))$$

 \square Determinăm forma Skolem: $\mathcal{L}^{sk} = \mathcal{L} \cup \{c_1, c_2, c_3\}$

$$(\neg \chi)^{sk} = (P(c_1) \rightarrow R(c_3)) \land (\neg P(c_1) \rightarrow P(c_2))$$

Din exercițiul anterior știm că $(\neg \chi)^{sk}$ este satisfiabilă, deci $\neg \chi$ este satisfiabilă. În concluzie, χ nu este adevărată în logica de ordinul I, i.e $\not \vdash \chi$.

Universul Herbrand al unei formule

Universul Herbrand al unei formule

```
Fie \varphi un enunț în forma Skolem, adică \varphi = \forall x_1 \dots \forall x_n \psi.

Definim T(\varphi), universul Herbrand al formulei \varphi, astfel:

dacă c este o constantă care apare în \varphi atunci c \in T(\varphi),
dacă \varphi nu conține nicio constantă atunci alegem o constantă arbitrară c și considerăm că c \in T(\varphi),
dacă f este un simbol de funcție care apare în \varphi cu ari(f) = n și t_1, \dots, t_n \in T(\varphi) atunci f(t_1, \dots, t_n) \in T(\varphi).
```

Exemplu

- \square pt. $\varphi_1 = \forall x \, \forall y \, (P(x) \land R(y) \rightarrow P(y))$ avem $T(\varphi_1) = \{c\}$
- \square pt. $\varphi_2 = \forall x (\neg P(x) \land P(f(c)))$ avem $T(\varphi_2) = \{c, f(c), f(f(c)), \ldots\}$

Intuitiv, $T(\varphi)$ este mulțimea termenilor care se pot construi folosind simbolurile de funcții care apar în φ .

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

 \square Definim expansiunea Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in \mathcal{T}(\varphi) \}$$

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

 \square Definim expansiunea Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in \mathcal{T}(\varphi) \}$$

Exemplu

$$\Box \varphi_1 = \forall x \,\forall y \, (P(x) \land R(y) \to P(y))
T(\varphi_1) = \{c\}
\mathcal{H}(\varphi_1) = \{P(c) \land R(c) \to P(c)\}$$

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

 \square Definim expansiunea Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in \mathcal{T}(\varphi) \}$$

Exemplu

- $\Box \varphi_1 = \forall x \, \forall y \, (P(x) \land R(y) \to P(y))$ $T(\varphi_1) = \{c\}$ $\mathcal{H}(\varphi_1) = \{P(c) \land R(c) \to P(c)\}$
- $\Box \varphi_2 = \forall x (\neg P(x) \land P(f(c)))$ $T(\varphi_2) = \{c, f(c), f(f(c)), \ldots\}$ $\mathcal{H}(\varphi_2) = \{\neg P(c) \land P(f(c)), \neg P(f(c)) \land P(f(c)), \\
 \neg P(f(f(c))) \land P(f(c)), \neg P(f(f(c)))) \land P(f(c)), \ldots\}$

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

 $\square \varphi$ este satisfiabilă,

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

- $\square \varphi$ este satisfiabilă,
- \square φ are un model Herbrand \mathcal{H} cu proprietatea că $\mathbf{R}^{\mathcal{H}} \subseteq T(\varphi)^n$ pentru orice relație $R \in \mathbf{R}$ cu ari(R) = n care apare în φ ,

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

- $\square \varphi$ este satisfiabilă,
- \square φ are un model Herbrand \mathcal{H} cu proprietatea că $\mathbf{R}^{\mathcal{H}} \subseteq \mathcal{T}(\varphi)^n$ pentru orice relație $R \in \mathbf{R}$ cu ari(R) = n care apare în φ ,
- \square mulțimea de formule $\mathcal{H}(\varphi)$ este satisfiabilă.

Exempli

```
\Box \varphi_1 = \forall x \, \forall y \, (P(x) \land R(y) \to P(y))
T(\varphi_1) = \{c\}
\mathcal{H}(\varphi_1) = \{P(c) \land R(c) \to P(c)\}
\mathcal{H}(\varphi_1) \text{ este satisfiabilă: } P^{\mathcal{H}} = R^{\mathcal{H}} = \{c\}
```

Exemple

```
 \Box \varphi_1 = \forall x \, \forall y \, (P(x) \land R(y) \rightarrow P(y)) 
 T(\varphi_1) = \{c\} 
 \mathcal{H}(\varphi_1) = \{P(c) \land R(c) \rightarrow P(c)\} 
 \mathcal{H}(\varphi_1) \text{ este satisfiabilă: } P^{\mathcal{H}} = R^{\mathcal{H}} = \{c\} 
 \Box \varphi_2 = \forall x (\neg P(x) \land P(f(c))) 
 T(\varphi_2) = \{c, f(c), f(f(c)), \ldots\} 
 \mathcal{H}(\varphi_2) = \{\neg P(c) \land P(f(c)), \neg P(f(c)) \land P(f(c)), \neg P(f(f(c))), \neg P(f(f(c))), \neg P(f(f(c))), \neg P(f(f(c))), \cdots\} 
 \mathcal{H}(\varphi_2) \text{ nu este satisfiabilă: conține formula } \neg P(f(c)) \land P(f(c)).
```

Logica de ordinul I

- ☐ Cercetarea validității poate fi redusă la cercetarea satisfiabilității.
- □ Cercetarea satisfiabilității unei formule poate fi redusă la cercetarea satisfiabilității unui enunț în forma Skolem.
- □ Teorema lui Herbrand reduce verificarea satisfiabilității unui enunț în forma Skolem la verificarea satisfiabilității în universul Herbrand.
- \square În situații particulare Teorema lui Herbrand ne dă o procedură de decizie a satisfiabilității, dar acest fapt nu este adevărat în general: dacă limbajul $\mathcal L$ conține cel putin o constantă și cel puțin un simbol de funcție f cu $ari(f) \geq 1$ atunci universul Herbrand $T_{\mathcal L}$ este infinit.

Decidabilitate și semi-decidabilitate

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

 \square O problemă de decizie $\mathfrak{D}(x)$ este decidabilă dacă există un algoritm care, pentru orice intrare x, întoarce \top când $\mathfrak{D}(x)$ este adevărată și \vdash când $\mathfrak{D}(x)$ este falsă.

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

- \square O problemă de decizie $\mathfrak{D}(x)$ este decidabilă dacă există un algoritm care, pentru orice intrare x, întoarce \top când $\mathfrak{D}(x)$ este adevărată și \vdash când $\mathfrak{D}(x)$ este falsă.
- \square O problemă de decizie $\mathfrak{D}(x)$ este semi-decidabilă (recursiv enumerabilă) dacă există un algoritm care, pentru orice intrare x, întoarce \square când $\mathfrak{D}(x)$ este adevărată, dar este posibil să nu se termine când $\mathfrak{D}(x)$ este falsă.

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

- \square O problemă de decizie $\mathfrak{D}(x)$ este decidabilă dacă există un algoritm care, pentru orice intrare x, întoarce \top când $\mathfrak{D}(x)$ este adevărată și \vdash când $\mathfrak{D}(x)$ este falsă.
- \square O problemă de decizie $\mathfrak{D}(x)$ este semi-decidabilă (recursiv enumerabilă) dacă există un algoritm care, pentru orice intrare x, întoarce \square când $\mathfrak{D}(x)$ este adevărată, dar este posibil să nu se termine când $\mathfrak{D}(x)$ este falsă.

 $\mathfrak{D}(n) = "n$ este număr prim" este decidabilă.

Problema validității ¹

Vom analiza problema validității în logica de ordinul I, adică:

$$\mathfrak{D}(\varphi) = "\varphi \text{ este validă"}$$

¹Referințe

M. Huth, M. Ryan, Logic in Computer Science, 2009 http://www.cs.ox.ac.uk/people/james.worrell/lectures.html

Problema validității ¹

Vom analiza problema validității în logica de ordinul I, adică:

$$\mathfrak{D}(\varphi) = "\varphi \text{ este validă"}$$

 \square În logica de ordinul I, problema validității $\mathfrak{D}(\varphi)$ este semi-decidabilă.

¹Referinte

M. Huth, M. Ryan, Logic in Computer Science, 2009 http://www.cs.ox.ac.uk/people/james.worrell/lectures.html

Problema validității ¹

Vom analiza problema validității în logica de ordinul I, adică:

$$\mathfrak{D}(\varphi) = "\varphi \text{ este validă"}$$

- \square În logica de ordinul I, problema validității $\mathfrak{D}(\varphi)$ este semi-decidabilă.
- \square În logica de ordinul I, problema validității $\mathfrak{D}(\varphi)$ nu este decidabilă.

¹Referinte

M. Huth, M. Ryan, Logic in Computer Science, 2009 http://www.cs.ox.ac.uk/people/james.worrell/lectures.html

Teorema de compacitate - cazul propozițional

În calculul propozițional o mulțime de formule Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

 $\mathfrak{D}(\varphi)$?

Teorema de compacitate - cazul propozițional

În calculul propozițional o mulțime de formule Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

Corolar

Fie φ un enunț în forma Skolem (în logica de ordinul I) și $\mathcal{H}(\varphi)$ expansiunea Herbrand. Sunt echivalente:

- $\square \varphi$ nu este satisfiabilă,
- \square există o submulțime finită a lui $\mathcal{H}(\varphi)$ care nu este satisfiabilă.

 $\mathfrak{D}(\varphi)$?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

II se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

- **II** se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)
- 2 fie $\{\psi_1, \psi_2, \psi_3, \ldots\}$ o enumerare pentru $\mathcal{H}(\psi)$

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

- **II** se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)
- 2 fie $\{\psi_1, \psi_2, \psi_3, \ldots\}$ o enumerare pentru $\mathcal{H}(\psi)$
- g pentru $n=1,2,3,\ldots$ execută dacă $\{\psi_1,\ldots,\psi_n\}$

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

```
Intrare: \varphi enunt
```

- **II** se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)
- 2 fie $\{\psi_1, \psi_2, \psi_3, \ldots\}$ o enumerare pentru $\mathcal{H}(\psi)$

```
pentru n=1,2,3,\ldots execută dacă \{\psi_1,\ldots,\psi_n\} nu este satisfiabilă atunci \{\ \mbox{leşire:}\ \varphi\ \mbox{este valid}; \mbox{stop}\ \}
```

□ Problema corespondenței lui Post (PCP)

Fie $\mathbf{P}=\{(w_1,w_1'),\ldots,(w_k,w_k')\}$ cu $w_i,w_i'\in\{0,1\}^+$. O soluție pentru \mathbf{P} este o secvență de indici i_1,i_2,\ldots,i_n cu $n\geq 1$ astfel încât $w_{i_1}\cdots w_{i_n}=w_{i_1}'\cdots w_{i_n}'$.

Exemplu

P :

1
101

□ Problema corespondenței lui Post (PCP)

Fie $\mathbf{P}=\{(w_1,w_1'),\ldots,(w_k,w_k')\}$ cu $w_i,w_i'\in\{0,1\}^+$. O soluție pentru \mathbf{P} este o secvență de indici i_1,i_2,\ldots,i_n cu $n\geq 1$ astfel încât $w_{i_1}\cdots w_{i_n}=w_{i_1}'\cdots w_{i_n}'$.

Exemplu

P :

1
101

Secvența (1,3,2,3) este soluție:

□ Problema corespondenței lui Post (PCP)

Fie $\mathbf{P}=\{(w_1,w_1'),\ldots,(w_k,w_k')\}$ cu $w_i,w_i'\in\{0,1\}^+$. O soluție pentru \mathbf{P} este o secvență de indici i_1,i_2,\ldots,i_n cu $n\geq 1$ astfel încât $w_{i_1}\cdots w_{i_n}=w_{i_1}'\cdots w_{i_n}'$.

Exemplu

P :

1	1
101	1

Secvența (1,3,2,3) este soluție:

101110011 101110011

□ PCP este nedecidabiă (E.Post, 1946)

Teorema Church-Turing

Problema validității în logica de ordinul I este nedecidabilă.

Teorema Church-Turing

Problema validității în logica de ordinul I este nedecidabilă.

Demonstrație (schiță)

Vom arăta că problema validității poate fi redusă la PCP:

fiind dată o problemă de corespondență $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ există o formulă $\varphi_{\mathbf{P}}$ astfel încât

P are o soluție dacă și numai dacă $\models \varphi_{\mathbf{P}}$.

- ☐ În logica de ordinul I, problema validității este semi-decidabilă.
- ☐ În logica de ordinul I, problema validității nu este decidabilă.