By symmetry, we also obtain $d(y, A) \leq d(x, y) + d(x, A)$, and thus

$$|d(x,A) - d(y,A)| \le d(x,y),$$

as claimed. \Box

Definition 37.6. Let (E, d) be a metric space. For any nonempty subset A of E, and any r > 0, let

$$V_r(A) = \{ x \in E \mid d(x, A) < r \}.$$

Proposition 37.3. Let (E, d) be a metric space. For any nonempty subset A of E, and any r > 0, the set $V_r(A)$ is an open set containing A.

Proof. For any $y \in E$ such that d(x,y) < r - d(x,A), by Proposition 37.2 we have

$$d(y, A) \le d(x, A) + d(x, y) \le d(x, A) + r - d(x, A) = r,$$

so $V_r(A)$ contains the open ball $B_0(x, r - d(x, A))$, which means that it is open. Obviously, $A \subseteq V_r(A)$.

37.2 Topological Spaces

Motivated by Proposition 37.1, a topological space is defined in terms of a family of sets satisfying the properties of open sets stated in that proposition.

Definition 37.7. Given a set E, a topology on E (or a topological structure on E), is defined as a family \mathcal{O} of subsets of E called open sets, and satisfying the following three properties:

- (1) For every finite family $(U_i)_{1 \leq i \leq n}$ of sets $U_i \in \mathcal{O}$, we have $U_1 \cap \cdots \cap U_n \in \mathcal{O}$, i.e., \mathcal{O} is closed under finite intersections.
- (2) For every arbitrary family $(U_i)_{i\in I}$ of sets $U_i \in \mathcal{O}$, we have $\bigcup_{i\in I} U_i \in \mathcal{O}$, i.e., \mathcal{O} is closed under arbitrary unions.
- (3) $\emptyset \in \mathcal{O}$, and $E \in \mathcal{O}$, i.e., \emptyset and E belong to \mathcal{O} .

A set E together with a topology \mathcal{O} on E is called a topological space. Given a topological space (E, \mathcal{O}) , a subset F of E is a closed set if F = E - U for some open set $U \in \mathcal{O}$, i.e., F is the complement of some open set.

It is possible that an open set is also a closed set. For example, \emptyset and E are both open and closed. When a topological space contains a proper nonempty subset U which is both open and closed, the space E is said to be disconnected.