1 First order ODE

1.1 Homogeneous of degree n

Definition: f(x,y) is homogeneous of degree $n \implies$ $f(tx, ty) = t^n f(x, y)$

Formulation 1: M(x,y) + N(x,y)y' = 0, where M and N are homogeneous of degree n. y' = f(x, y) = $\frac{-M(x,y)}{N(x,y)}$, where f(x,y) is homogeneous of degree 0.

Solution 1: Substitution y = zx, then y' = z + xz', then $z + xz' = f(x, zx) = x^0 f(1, z) = f(1, z)$, the equation is now separable: $\frac{dz}{f(1,z)-z} = \frac{dx}{x}$

Formulation 2: $y' = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$ Solution 2-1: If $a_1b_2 \neq a_2b_1$, consider x = z + h, y = w + k, where $a_1h + b_1k + c_1 = 0$, $a_2h + b_2k + c_2 = 0$, the equation is transformed to $\frac{dw}{dz} = \frac{a_1z + b_1w}{a_2z + b_2w}$, back to formulation 1.

Solution 2-2: If $a_1b_2 = a_2b_1$, consider $r = \frac{a_1}{b_1} = \frac{a_2}{b_2}$, take z = rx + y, the equation is transformed to $\frac{b_2z+c_2}{b_1z+c_1+r(b_2z+c_2)}z'=1$, which is separable. 1.2 Exact

Formulation: M(x,y)dx + N(x,y)dy = 0, and there

 $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$ **Solution**: u(x,y) = c**Theorem:** Assume M, N and their first partial

exists u(x,y) such that M(x,y)dx + N(x,y)dy =

derivatives are continuous in the rectangle S: |x - y| $|x_0| < a, |y - y_0| < b$. A necessary and sufficient condition for the equation to be exact is $\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$ for

1.3 Integrating factor **Definition**: A non-zero function $\mu(x,y)$ is an

integrating factor of the formulation above if $\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$ is exact. One may look for an integrating factor of the form $\mu = \mu(v)$, where v is a known function of x and y, then we have $\frac{1}{\mu} \frac{d\mu}{dv} = \frac{M_y - N_x}{Nv_x - Mv_y}$, if RHS is a function of v alone, say $\phi(v)$, then $\mu = e^{\int_{-v}^{v} \phi(v) dv}$ is an

integrating factor. Common choices of v: If v = x, check $\frac{M_y - N_x}{N}$ is a

function of x. If v=y, check $-\frac{M_y-N_x}{M}$ is a function of y. If v=xy, check $\frac{M_y-N_x}{yN-xM}$ is a function of xy. 1.4 Homogeneous linear equations

Formulation: y' + p(x)y = 0

Solution: Take integrating factor $e^{P(x)}$, where $P(x) = \int_a^x p(s)ds$, then the general solution is $y(x) = \int_a^x p(s)ds$ $ce^{-P(x)}$.

1.5 Non-homogeneous linear equations

Formulation:y' + p(x)y = q(x)

Solution: $y(x) = e^{-P(x)} \left[\int_a^x e^{P(t)} q(t) dt + c \right]$, where $P(x) = \int_{a}^{x} p(s)ds$

1.6 Bernoulli equation

Formulation: $y' + p(x)y = q(x)y^n$

Solution: Consider substitution $u = y^{1-n}$, the equation is transformed into u' + (1 - n)p(x)u =(1-n)q(x), which is first order linear.

1.7 Riccati equation

Formulation: $y' = P(x) + Q(x)y + R(x)y^2$

Theorem: Let $y = y_0(x)$ be a particular solution of the Riccati equation. Set $H(x) = \int_{x_0}^x [Q(t) +$ $2R(t)y_0(t)]dt, Z(x) = e^{-H(x)}[c - \int_{x_0}^x e^{H(t)}R(t)dt],$ where c is an arbitrary constant, the the general solution is given by $y = y_0 + \frac{1}{Z(x)}$

Given four distinct functions p(x), q(x), r(x), s(x),we define cross-ratio $\frac{(p-q)(r-s)}{(p-s)(r-q)}$. Suppose y_1, y_2, y_3 are three distinct particular solutions of a Riccati equation, then the general solution is given by $\frac{(y_1-y_2)(y_3-y)}{(y_1-y)(y_3-y_2)}=c$, where c is an arbitrary constant. Suppose y_1, y_2 are two distinct particular solutions of a Riccati equation, then the general solution is given by $\ln \left| \frac{y - y_1}{y - y_2} \right| = \int R(x)(y_1(x) - y_2(x))dx + c$, where c

is an arbitrary constant.

1.8 Euler-Cauchy equation Formulation: $x^2y'' + Pxy' + Qy = 0$, where P, Q are constants. Let r_1, r_2 be roots of r(r-1)+Pr+Q=0. $y_1=x_1^{r_1}, y_2=x^{r_2}$ are solutions. If $r_1=r_2$, then

2 Linear ODE

2.1 General formulation

Theorem: [Existence and uniqueness theorem] Assume that $a_i(x)$ and f(x) are continuous functions defined on interval (a, b). Then for any $x_0 \in (a, b)$ and for any numbers y_0, \ldots, y_{n-1} , the initial value problem has a unique solution defined on (a, b).

Definition: The Wronskian of n functions $\phi_1(x), \ldots, \phi_n(x)$ is defined by $W(\phi_1, \ldots, \phi_n)(x) =$ $\phi_1(x)$... $\phi_n(x)$ $\left|\phi_1^{(n-1)}(x)\right|$ \cdots $\left|\phi_n^{(n-1)}(x)\right|$ Theorem: Let $y_1(x), \dots, y_n(x)$ be n solutions of the

homogeneous equation and let W(x) be their Wronskian. They are linearly dependent on $(a,b) \iff$ $W(x) \equiv 0$ on $(a,b) \iff W(x) = 0$ for some $x \in (a,b)$. They are linearly independent $\iff W(x)$ is never zero on (a, b).

Theorem: The Wronskian of n solutions of the homogeneous equation is either identically zero or nowhere zero. n solutions y_1, \ldots, y_n are linearly independent on (a,b) \iff vectors $(y_i(x_0),\ldots,y_i^{(n-1)}(x_0))$ are linearly independent for some $x_0 \in (a.b)$.

Theorem: Abel's theorem] Assume y_1, y_2 are solutions to the equation y'' + p(x)y' + q(x)y =0 on interval [a, b], then their Wronskian satisfies $W(y_1, y_2)(x) = ce^{-\int p(x)dx}$ 2.2 Linear equations with constant co-

efficients Formulation: y'' + ay' + by = 0 where a, b are con-

Solution: We look for solutions of form $e^{\lambda x}$. $e^{\lambda x}$ is a solution $\iff \lambda^2 + a\lambda + b = 0$. This is the characteristic equation. The roots are characteristic values: $\lambda_1 = \frac{1}{2}(-a + \sqrt{a^2 - 4b}), \lambda_2 = \frac{1}{2}(-a - \sqrt{a^2 - 4b}).$ If $a^2 - 4b > 0$, we have two distinct real characteristic values λ_1, λ_2 , the general solution is given by $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$. If $a^2 - 4b = 0$, we have a repeated real characteristic value λ , the general solution is given by $y = c_1 e^{\lambda x} + c_2 x e^{\lambda x}$. If $a^2 - 4b < 0$, we have two complex characteristic values $\lambda_1 = \alpha + i\beta$, $\lambda_2 = \alpha - i\beta$. The general solution is given by $y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x$ Formulation: $y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$

0, where a_i are real constants.

Solution: The characteristic equation is $\lambda^n + a_1\lambda^{n-1} + \cdots + a_n = 0$. We first find all characteristic values. Let $\lambda_1, \ldots, \lambda_s$ be the distinct eigenvalues and m_1, \ldots, m_s the corresponding multiplicity. We have that $e^{\lambda x}$ is a solution. If m > 1, then for any positive integer $1 \le k \le m-1$, $x^k e^{\lambda x}$ is a solution. If $\lambda = \alpha + i\beta$, then $x^k e^{\alpha x} \cos \beta x$, $x^k e^{\alpha x} \sin \beta x$ are solutions for $0 \le k \le m-1$.

Theorem: Let $\lambda_1, \ldots, \lambda_s$ be the distinct eigenvalues for the equation, with multiplicity m_1, \ldots, m_s respectively. Then a fundamental set of solutions is $e^{\lambda_i x}, x e^{\lambda_i x}, \dots, x^{m_i - 1} e^{\lambda_i x}$

2.3 Non-homogeneous equation

Formulation: y'' + P(x)y' + Q(x)y = f(x)

2.4 Variation of parameters

Let y_1, y_2 be two linearly independent solutions of the associated homogeneous solution and W(x) their Wronskian. We look for a particular solution with the form $y_p = u_1 y_1 + u_2 y_2$.

We have $u_1(x) = -\int_{x_0}^{x} \frac{y_2(t)}{W(t)} f(t) dt, u_2(x)$ $\int_{x_0}^x \frac{y_1(t)}{W(t)} f(t) dt.$

In addition, if z is a known solution of the homogeneous equation. We assume y = vz is another solution, then we have $v = \int z^{-2} e^{-\int P dx} dx$

2.5 Undetermined coefficient

Remark: Only applicable to y'' + ay' + by = f(x), and $f(x) = P_n(x)e^{\alpha x}$ or $f(x) = P_n(x)e^{\alpha x}\cos\beta x$ or $f(x) = P_n(x)e^{\alpha x}\sin\beta x$ where P is a polynomial of

When $f(x) = P_n(x)e^{\alpha x}$, we look for a particular solution of the form $y = Q(x)e^{\alpha x}$, where Q is a polynomial. By substitution we have $Q'' + (2\alpha + a)Q' +$ $(\alpha^2 + a\alpha + b)Q = P_n(x)$. If $\alpha^2 + a\alpha + b \neq 0$, we choose $Q = R_n$, a polynomial of degree n, and solve for R_n by comparing coefficients. If $\alpha^2 + a\alpha + b = 0$ but $2\alpha + a \neq 0$, then $Q'' + (2\alpha + a)Q' = P_n$. We choose $Q = xR_n$ and solve for coefficients. If $\alpha^2 + a\alpha + b = 0$ and $2\alpha + a = 0$, we have $Q'' = P_n$, we choose $Q = x^2 R_n$. When $f(x) = P_n(x)e^{\alpha x} \cos \beta x$ or $f(x) = P_n(x)e^{\alpha x}\sin\beta x$. We first look for a

solution of $y'' + ay' + by = P_n(x)e^{(\alpha+i\beta)x}$. By previous case, we obtain a complex-valued solution z(x) = u(x) + iv(x), and we have u is a solution of $y'' + ay' + by = P_n(x)e^{\alpha x}\cos\beta x$, and v is a solution of $y'' + ay' + by = P_n(x)e^{\alpha x}\sin \beta x$.

2.6 Operator method

We define a differential operator L(D)y = $\sum_{j=0}^{n} a_j D^j y$. Formulation: L(D)y = f(x). **Theorem:** More generally, we have $(1)D^{-1}f(x) =$

 $\int f(x)dx + C; \quad (2)(D - a)^{-1}f(x) = Ce^{ax} + e^{ax} \int e^{-ax}f(x)dx; \quad (3)L(D)(e^{ax}f(x)) = e^{ax}L(D + a)^{-1}f(x) + e^{ax}f(x)dx$

 $a)f(x); (4)L(D)^{-1}(e^{ax}f(x)) = e^{ax}L(D+a)^{-1}f(x)$

To find a particular solution, we can ignore arbitrary

If $L(x) = \prod_{i=1}^{n} (x - r_i)$, then $y = L(D)^{-1}f =$ $(D-r_1)^{-1}\dots(D-r_n)^{-1}f$, we could either obtain solution by successive integration, or if the roots are all distinct, consider partial fraction $\frac{1}{L(x)} = \sum_{i=1}^{n} \frac{A_i}{x - r_i}$, and thus $y = [A_1(D-r_1)^{-1} + \cdots + A_n(D-r_n)^{-1}]f$ Furthermore, if f is a polynomial, then (1-D)(1+ $(D + D^2 + \dots)f = f$ by power series, thus $(1 - \dots)f$ $(D)^{-1}f = (1 + D + D^2 + \dots)f$. We may formally expand $(D-r)^{-1}$ into power series of D and apply it to f, it is only necessary to expand up to degree of f, since further derivatives evaluate to zero. **Theorem**: Common power series expansion: (1)(1-

3 Second order linear ODE

Formulation: $p_0(x)y'' + p_1(x)y' + p_2(x)y = f(x)$ 3.1 Exact

 $D)^{-1}f = (1 + D + D^2 + \dots)f; (2)(1 - D)^{-2}f = (1 + 2D + 3D^2 + 4D^3 + \dots)f$

The equation can be written as $(p_0y' - p'_0y)' +$

 $(p_1y)' + (p_0'' - p_1' + p_2)y = f(x)$. It is exact if $p_0'' - p_1' + p_2 = 0$. If exact, integrate both sides to get $p_0(x)y' - p_0'(x)y + p_1(x)y = \int f(x)dx + C_1.$ 3.2 Two-point boundary value problem Formulation: Solve $y'' + p(x)y' + q(x)y = f(x), x \in$

(a,b) with boundary conditions $a_{11}y(a) + a_{12}y'(a) +$ $b_{11}y(b) + b_{12}y'(b) = d_1, a_{21}y(a) + a_{22}y'(a) + b_{21}y(b) +$ $b_{22}y'(b) = d_2.$ 3.3 Regular Sturm-Liouville boundary

value problem

Formulation: L[y] = (p(x)y')' + q(x)y, L[y] + $\lambda r(x)y = 0, x \in (a, b), a_1y(a) + a_2y'(a) = 0, b_1y(b) +$ $b_2y'(b) = 0$. p, p', q, r are continuous on [a, b] and p(x) > 0, r(x) > 0 on [a, b], and a_1, a_2 are not both zero, b_1, b_2 are not both zero.

3.4 Non-homogeneous regular Sturm-Liouville bondary value problem

Formulation: L[y] = f(x), where f is continuous on [a, b]. Same boundary conditions. We let L[y] = 0be the associated homogeneous problem.

If the associated homogeneous problem has only the trivial solution, we construct a solution of the nonhomogeneous solution. Let y_1, y_2 be nontrivial solutions to the equation L[y] = 0 satisfying only the first and the second boundary condition respectively. We write $y = \int_a^b G(x,t)f(t)$, where $G(x,t) = \frac{y_1(t)y_2(x)}{W(t)p(t)}$, $a \le t \le x$, $\frac{y_1(x)y_2(t)}{W(t)p(t)}$, $x \le t \le b$.

Definition: If a function has an infinite number of zeros in an interval $[a, \infty)$, we say that the function is oscillatory.

Theorem:[Sturm separation theorem] If y_1, y_2 are two linearly independent solutions of y'' + P(x)y' +Q(x)y = 0, then the zeros of these functions are dis-

tinct and occur alternatively in the sense that y_1 vanishes exactly once between any two successive zeros of y_2 , and vice versa. **Theorem:** Suppose one nontrivial solution to the equation above is oscillatory on $[a, \infty)$, then all solu-

tions are oscillatory. **Theorem:** Let y be a non-trivial solution of the equation above on a closed interval [a, b], then y has

at most a finite number of zeros in this interval. **Theorem**: [Sturm comparison theorem] Let y_1 be a non-trivial solution to $y'' + q_1(x)y = 0$ and y_2 a non-

trivial solution to $y'' + q_2(x)y = 0, x \in (a, b)$. Assume $q_2(x) \ge q_1(x)$ on (a,b). If x_1, x_2 are two consecutive zeros of y_1 , then there exists a zero of y_2 in (x_1, x_2) , unless $q_2 = q_1$, in which case y_1, y_2 are linearly de-

Theorem: Suppose q(x) < 0 on [a, b], if y is a nontrivial solution of y'' + q(x)y = 0, then y has at most

4 Linear system

4.1 General homogeneous and nonhomogeneous system

Formulation: $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{g}$. Homogeneous if $\mathbf{g} = \mathbf{0}$. Together with an initial condition $\mathbf{x}(t_0) = \mathbf{x}_0$, we form an IVP. EU theorem holds for the system IVP as well

Theorem: A set of solutions $\mathbf{x}_i(t)$, $i=1,\ldots,r$ of the system are linearly dependent on $(a,b) \iff$ they are linearly dependent for any fixed $t_0 \in (a,b)$. **Definition:** The Wronskian of n vector-valued functions $\mathbf{x}_i(t) = (x_{1i}(t) \cdots x_{ni}(t))$ is the determinant $W(\mathbf{x}_1, \ldots, \mathbf{x}_n)(t) = \det W$, where $W_{ij}(t) = x_{ij}(t)$

Theorem: The Wronskian of n solutions of the system is either identically zero or nowhere zero in (a, b). n solutions are linearly dependent in $(a, b) \iff$ Wronskian is identically zero in (a, b).

Theorem: A set of n linearly independent solutions is called a fundamental set/basis of solutions. The matrix-valued function $\phi(t) = (\mathbf{x}_1(t) \cdots \mathbf{x}_n(t))$ is called a fundamental matrix. The general solution is given by $\mathbf{x}(t) = \phi(t)\mathbf{x}$ where \mathbf{c} is an arbitrary constant vector. Variation of parameter: Let ϕ be a fundamental ma-

trix of the associated homogeneous system. We look for a particular solution of the non-homogeneous system in the form $\mathbf{x} = \phi \mathbf{u}$, we have $\phi \mathbf{u}' = \mathbf{g} \to \mathbf{u}' = \phi^{-1} \mathbf{g} \to \mathbf{u} = \int_{t_0}^t \phi^{-1}(s) \mathbf{g}(s) ds$. The general solution of non-homogeneous system is given by $\mathbf{x}(t) = \phi(t)\mathbf{c} + \phi(t)\int_{t_0}^t \phi^{-1}(s)\mathbf{g}(s) ds$

4.2 Homogeneous system with constant coefficients

We recall the concepts of eigenvalues and eigenvectors. We define quasi-simple if geometric multiplicity is equal to algebraic multiplicity. We define simple if they are 1.

Theorem: If λ is an eigenvalue of \mathbf{A} and \mathbf{k} is an associated eigenvector, then $\mathbf{x}(t) = e^{\lambda t}\mathbf{k}$ is a solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$. If λ is complex, then the real and imaginary parts of $e^{\lambda t}\mathbf{k}$ are two linearly independent solutions. Theorem: If \mathbf{A} has n linearly independent eigenvectors.

tors \mathbf{k}_i associated with eigenvalues λ_i , then $\phi(t) = (e^{\lambda_1 t} \mathbf{k}_1, \dots, e^{\lambda_n t} \mathbf{k}_n)$ is a fundamental matrix.

Theorem: Assume λ is an eigenvalue of **A** with algebraic multiplicity m > 1, then the system $(\mathbf{A} - \lambda \mathbf{I})^m \mathbf{v} = \mathbf{0}$ has exactly m linearly independent solutions. **Theorem**: Assume λ is an eigenvalue of **A** with alge-

Theorem: Assume λ is an eigenvalue of \mathbf{A} with algebraic multiplicity m > 1. Let $\mathbf{v}_0 \neq \mathbf{0}$ be a solution of the system above, define $\mathbf{v}_l = (\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_{l-1}, 1 \leq l \leq m-1$, and let $\mathbf{x}(t) = e^{\lambda t}[\mathbf{v}_0 + t\mathbf{v}_1 + \dots + \frac{t^{m-1}}{(m-1)!}\mathbf{v}_{m-1}]$, then \mathbf{x} is a solution of the original homogeneous system.

tem. Alternative algorithm to reduce the number of constant vectors: Consider an eigenvalue λ of \mathbf{A} with algebraic multiplicity m. Start with r=m. Let \mathbf{v}_0 be a vector such that $(\mathbf{A}-\lambda\mathbf{I})^r\mathbf{v}_0=\mathbf{0}$ while $(\mathbf{A}-\lambda\mathbf{I})^{r-1}\mathbf{v}_0\neq\mathbf{0}$. \mathbf{v}_0 is called a generalized eigenvector of rank r associated with λ . If no such \mathbf{v}_0 exists, reduce r by 1. We have $\mathbf{v}_i=(\mathbf{A}-\lambda\mathbf{I})^i\mathbf{v}_0, 0\leq i\leq r-1$ form a chain of linearly independent solutions of the system in theorem 34 with \mathbf{v}_{r-1} being the base eigenvector associated with λ . This gives r independent solutions of the original system. If r< m, repeat the algorithm by finding another choice of \mathbf{v}_0 which is not in the previous chain.

4.3 Autonomous system

Consider a system x'(t) = f(x,y), y'(t) = g(x,y), we have $\frac{dy}{dx} = \frac{g(x,y)}{f(x,y)}$ by chain rule. We sketch the phase plane by considering the behavior from $t = -\infty$ to $t = \infty$. We summarize the cases divided by eigenvalues: distinct and positive, improper node, unstable; distinct and negative, improper node, asymptotically stable; opposite sign, saddle, unstable; equal and positive, proper or improper node, unstable; equal and negative, proper or improper node, asymptotically stable; complex with positive real part, spiral, unstable; complex with negative real part, spiral, asymptotically stable; purely imaginary, center, stable

5 Power series

Definition: Consider homogeneous second order linear ODE y'' + P(x)y' + Q(x)y = 0. x_0 is an ordinary point if P, Q are analytic at x_0 . If P or Q is not analytic at x_0 , then x_0 is a singular point. A singular point at which the functions $(x - x_0)P(x)$ and $(x - x_0)^2Q(x)$ are analytic is called a regular singular point, otherwise an irregular singular point. For

the point at infinity, substitute $x = \frac{1}{t}$ and study the behavior of t approaching 0. **Theorem**: Let x_0 be an ordinary point and let a_0, a_1 be arbitrary constants. There exists a unique solution y that is analytic at x_0 , and satisfies the initial

be arbitrary constants. There exists a unique solution y that is analytic at x_0 , and satisfies the initial conditions $y(x_0) = a_0, y'(x_0) = a_1$. Furthermore, if the power series expansions of P, Q are valid on an interval $|x-x_0| < R$, then the power series expansion of the solution is also valid on this interval.

5.1 Legendre's equation

Formulation: $(1-x^2)y'' - 2xy' + p(p+1)y = 0$, where p is a constant called the order of Legendre's equation. x=0 is an ordinary point.

The recursion formula for series coefficients is given by $a_{n+2} = -\frac{(p-n)(p+n+1)}{(n+1)(n+2)}a_n, n \geq 0$. The entire series is defined by choice of a_0 and a_1 . We could take one to be 0 and another to be 1 to obtain two linearly independent solutions. When p=n is a non-negative integer, one of the series could terminate and become a polynomial of degree n in x. The coefficients in the series solution are called Legendre functions. We could choose the arbitrary constants a_0 or a_1 so that the coefficient of x^n in $P_n(x)$ is $\frac{(2n)!}{2^n(n!)^2}$ so that $P_n(1)=1$, then $P_n(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^k(2n-2k)!}{2^nk!(n-k)!(n-2k)!}x^{n-2k}$. $P_0 = 1, P_1 = x, P_2 = \frac{1}{2}(3x^2-1), P_5(x) = \frac{1}{8}(63x^5-70x^3+15x)$. Rodrigue's formula given by $P_n(x) = \frac{1}{n!2^n} \frac{d^n}{dx^n}(x^2-1)^n$ gives a particular solution of Legendre's equation of order n.

5.2 Hermite's equation

Formulation: y'' - 2xy' + 2py = 0 The general solution is given by $y = a_0y_1 + a_1y_2$, where $y_1(x) = 1 - \frac{2p}{2!}x^2 + \frac{2^2p(p-2)}{4!}x^4 - \frac{2^3p(p-2)(p-4)}{6!}x^6 \dots, y_2(x) = x - \frac{2(p-1)}{3!}x^3 + \frac{2^2(p-1)(p-3)}{5!}x^5 - \frac{2^3(p-1)(p-3)(p-5)}{7!}x^7 \dots$ The Hermite polynomial of degree n denoted by $H_n(x)$ is the polynomial of degree n that is a solution, multiplied by suitable constant such that the coefficient of x^n is 2^n . $H_0 = 1, H_1 = 2x, H_2 = 4x_2 - 2, H_3 = 8x^3 - 12x, H_5 = 32x^5 - 160x^3 + 120x.H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$

5.3 Method of Frobenius

If x = 0 is a regular singular point of y'' + P(x)y' +Q(x)y = 0, then xP(x) and $x^2Q(x)$ are analytic at x = 0. We let p(x) = xP(x) and $q(x) = x^2Q(x)$ and write the equation as $x^2y'' + xp(x)y' + q(x)y = 0$. We now that p, q has Taylor series expansion p(x) = $\sum_{n=0}^{\infty} p_n x^n, q(x) = \sum_{n=0}^{\infty} q_n x^n$. Suppose there exists a series solution of the form $y = x^r \sum_{n=0}^{+\infty} a_n x^n =$ $\sum_{n=0}^{+\infty} a_n x^{n+r}$, substitute y, y', y'' into the equation, then LHS is polynomial, thus all coefficients must vanish. The coefficient of x^r is $r(r-1)a_0 + p_0ra_0 +$ $q_0a_0=0$. As $a_0\neq 0$, r satisfies the equation $r(r-1)+p_0r+q_0=0$. This is the indicial equation of the DE and the two roots are the exponents of the DE at regular singular point x = 0. If $r_1 \neq r_2$, then we have two possible linearly independent Frobenius solutions. If $r_1 = r_2$, there is only one Frobenius solution. The second one cannot be a Frobenius series and must be found by other means. If r_1, r_2 are complex conjugates, we always get two linearly independent solutions. If x < 0, we substitute x = -tand study for t. We now consider r_1, r_2 are real and After substitution of y, y', y'', we get the recurrence relation $a_n[(r+n)(r+n-1)+(r+n)p_0 +$ $q_0] + \sum_{k=0}^{n-1} a_k[(r+k)p_{n-k} + q_{n-k}] = 0$. When n=0, the summation term vanished and we recover the indicial equation. a_0 is an arbitrary constant. a_n can be recursively determined as long as $(r+n)(r+n-1) + (r+n)p_0 + q_0 \neq 0$. This is the case if r_1, r_2 do not differ by an integer. Otherwise, suppose $r_1 > r_2$, only the Forbenius series solution with exponent r_1 is guaranteed, the other one may

5.4 Bessel's equation

Formulation: $x^2y'' + xy' + (x^2 - p^2)y = 0$

not be a Frobenius series or fail to exist.

The general solution is $y=c_1J_p(x)+c_2Y_p(x)$, where J_p is the Bessel function of order p of first kind and Y_p is of second kind. x=0 is a regular singular point. The exponents are $\pm p$. We consider a series solution $y=\sum_{m=0}^{+\infty}a_mx^{m+r}$ and by substitution and check that a_0 is arbitrary, $a_1=0$ and $[(m+r)^2-p^2]a_m+a_{m-2}=0$ for $m\geq 2$.

When r = p > 0, we have $a_m = -\frac{a_{m-2}}{m(2p+m)}$, since $a_1 = 0$, then $a_m = 0$ if m is odd. $a_{2m} = \frac{(-1)^m a_0}{2^{2m} m! (p+1) (p+2) \dots (p+m)}$.

When r = -p < 0, there is a Frobenius series solution if p is not an integer., we have $m(m-2p)a_m + a_{m-2}$ for $m \ge 2$. The result is the same except we replace p by -p.

6 EUT Definition: Let G be a subset of \mathbb{R}^2 . $f(t,x): G \to \mathbb{R}$

is said to satisfy a Lipschitz condition with respect to x in G if there exists a constant L>0 such that for any $(t,x_1),(t,x_2)\in G$, we have $|f(t,x_1)-f(t,x_2)|\leq L|x_1-x_2|$. L is called a Lipschitz constant. **Theorem:** Let f(t,x) be continuous on the rectangle $R:|t-t_0|\leq a,|x-x_0|\leq b$ and let $|f(t,x)|\leq M$ for all $(t,x)\in R$. Furthermore, f satisfies a Lipschitz condition with constant L in R, then there is a unique solution to IVP $\frac{dx}{dt}=f(t,x),x(t_0)=x_0$ on the interval $I=[t_0-\alpha,t_0+\alpha]$, where $\alpha=\min(a,\frac{b}{M})$. **Theorem:** Suppose f(t,x) has a continuous partial

derivative f_x on a closed rectangle R in the tx-plane, then f satisfies a Lipschitz condition on R. **Definition**: Let $\{f_n\}$ be a sequence of functions on [a,b]. It is said to converge uniformly to f if for every $\epsilon > 0$, there exists a positive integer N such that

 $|f_n - f| < \epsilon$ for all n > N. **Definition**: The sequence is said to converge to f pointwise if for each $x \in [a, b]$, $\lim_{n \to \infty} f_n(x) = f(x)$. If $\{f_n\}$ converges uniformly to f and each f_n is continuous, then f is continuous, and $\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$ Uniform convergence of series means uniform convergence.

Uniform convergence of series means uniform convergence of sequence of partial sum.

Theorem: [Weisertrass M-test] Let $\sum_{n=1}^{\infty} f_n$ be a series of functions defined on [a,b]. Let $\{M_n\}$ be a sequence of non-negative numbers such that $0 \le |f_n(x)| \le M_n$ for all $x \in [a,b]$ and for all n. If $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n$ converges uniformly.

Theorem: A function ϕ is a solution of the IVP

 $\frac{dx}{dt} = f(t, x), x(t_0) = x_0$ on an interval $I \iff$ it is a solution of the integral equation $x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$

To find the solution, we consider iterative approximations $\phi_0(t) = x_0, \phi_{k+1}(t) = x_0 + \int_{t_0}^t f(s, \phi_k(s)) ds$, we might expect ϕ_k converges to ϕ .

might expect ϕ_k converges to ϕ . **Theorem:** Suppose $|f(t,x)| \leq M$ for all $(t,x) \in R$, then the successive approximations ϕ_k exist as continuous functions on $I: |t-t_0| \leq \alpha = \min(a, \frac{b}{M})$ and $(t,\phi_k(t))$ is in R for $t \in I$ and satisfy $|\phi_k(t) - x_0| \leq M|t-t_0|$ for all $t \in I$.

Theorem: Let f(t,x) be a continuous function on the strip $S = \{(t,x) \in \mathbb{R}^2 : |t-t_0| \leq a\}$, where a > 0, and f satisfies the Lipschitz condition with respect to S, then IVP $\frac{dx}{dt} = f(t,x), x(t_0) = x_0$ where $(t_0,x_0) \in S$ has a unique solution on the entire interval $[t_0-a,t_0+a]$.

Theorem: Let f(t,x) be a continuous function defined on \mathbb{R}^2 . Let $(t_0,x_0) \in \mathbb{R}^2$. Suppose that for any a > 0, f satisfies the Lipschitz condition with respect to $S = \{(t,x) \in \mathbb{R}^2 : |t| \le a\}$, then IVP has a unique solution on entire \mathbb{R} . **Theorem**: Let f,g,h be continuous nonnegative functions defined for $t \ge t_0$, if $f(t) \le h(t) + \int_0^t g(s)f(s)ds, t \ge t_0$, then $f(t) \le h(t) + \int_0^t g(s)f(s)ds, t \ge t_0$, then $f(t) \le h(t) + \int_0^t g(s)f(s)ds$.

tive functions defined for $t \geq t_0$, if $f(t) \leq h(t) + \int_{t_0}^t g(s)f(s)ds, t \geq t_0$, then $f(t) \leq h(t) + \int_{t_0}^t g(s)h(s)e^{\int_s^t g(u)du}ds, t \geq t_0$

Theorem:[Gronwall's inequality] Let f, g be contin-

uous nonnegative functions for $t \ge t_0$, let k be any nonnegative constant, if $f(t) \le k + \int_{t_0}^t g(s)f(s)ds$ for

 $t \ge t_0$, then $f(t) \le ke^{\int_{t_0}^t g(s)ds}$, for $t \ge t_0$. **Theorem**: Let f be a continuous nonnegative function for $t \ge t_0$ and $k \ge 0$, if $f(t) \le k \int_{t_0}^t f(s)ds$ for

all $t \ge t_0$, then $f(t) \equiv 0$ for $t \ge t_0$. **Theorem:** Let f(t,x) be a continuous function which satisfies a Lipshitz condition on R with a constant L, where R is either a rectangle or a strip. If ϕ and ψ are two solutions of IVP, on an interval I

containing t_0 , then $\phi(t) = \psi(t)$ for all $t \in I$. **Theorem**:[Peano] Assume G is an open set of \mathbb{R}^2 containing (t_0, x_0) and f(t, x) is continuous on G, then there exists a > 0 such that IVP has at least one solution on the interval $[t_0 - a, t_0 + a]$.