CH 2 — Inequalities and Limits

Luke Lu • 2025-09-13

Triangle Inequality

$$|\mathbf{x} - \mathbf{y}| \le |\mathbf{x} - \mathbf{z}| + |\mathbf{z} - \mathbf{y}| \text{ for } x, y, z \in \mathbb{R}$$

Sketch: the straight-line distance is shortest. Without loss of generality assume $x \leq y$; swapping x, y preserves the statement.

Number-line proof by cases:

- Case $1 \ z \le x \le y$: $|x y| \le |z y| \le |x z| + |z y|$
- Case $2 x \le z \le y$: |x y| = |x z| + |z y|
- Case $3 x \le y \le z$: $|x y| \le |x z| + |z y|$

Triangle Inequality 2

For all $a, b \in \mathbb{R}$

$$|a + b| \le |a| + |b|$$

Proof: apply the triangle inequality to x = a, y = -b, z = 0.

Quick check

Is
$$|a-b| \leq |a| - |b|$$
 for all a, b No

Example:
$$a = 10$$
, $b = -9$ gives $|10 - (-9)| = 19$ while $|10| - |-9| = 1$

Interval translations

- 1. $|x-a| < \delta \Rightarrow x \in (a-\delta, a+\delta)$
- 2. $|x-a| < \delta \Rightarrow x \in [a-\delta, a+\delta]$
- 3. $0 \le |x a| \le \delta \Rightarrow x \in (a \delta, a) \cup (a, a + \delta)$

Practice

- 1) Solve |2x 5| < 3
- $-3 < 2x 5 < 3 \Rightarrow 1 < x < 4$

Answer: $x \in (1, 4)$

2) Solve
$$2 < |x+7| \le 3$$

Split into
$$|x+7| > 2$$
 and $|x+7| \le 3$

Answer:
$$x \in [-10, -9) \cup (-5, -4]$$

3) Solve
$$\frac{|x+2|}{|x-2|} > 5$$

Consider regions $(-\infty, -2)$, (-2, 2), $(2, \infty)$ and track signs of x + 2 and x - 2

Answer: $x \in (\frac{4}{3}, 2) \cup (2, 3)$

Infinite Sequences

A sequence is an ordered list $a_1, a_2, a_3, ...$; write $(a_n)_{\{n=1\}}^{\{\infty\}}$

A subsequence chooses indices $n_1 < n_2 < ...,$ yielding $a_{\{n_1\}}, a_{\{n_2\}}, ...$

The tail with cutoff k is $a_k, a_{\{k+1\}}, a_{\{k+2\}}, \dots$

Convergence (definition)

We say $\lim_{\{n \to \infty\}} a_n = L$ if for every $\varepsilon > 0$ there exists N such that

$$n > N \Rightarrow |a_n - L| < \varepsilon$$

Equivalent formulations:

- Every interval $(L-\varepsilon,L+\varepsilon)$ contains a tail of (a_n)
- Only finitely many terms lie outside $(L-\varepsilon,L+\varepsilon)$
- More generally, any open interval (a, b) containing L contains a tail

Examples

1) Show $\lim_{\{n\to\infty\}} \frac{1}{\sqrt[3]{n}} = 0$

Choose
$$N = \frac{1}{\varepsilon^3}$$

Then
$$n>N\Rightarrow |\frac{1}{\sqrt[3]{n}}|<\varepsilon$$

2) Show
$$\lim_{\{n\to\infty\}} \frac{3n^2+2n}{4n^2+n+1} = \frac{3}{4}$$

Estimate |
$$\frac{3n^2+2n}{4n^2+n+1}-\frac{3}{4}$$
 | $\leq \frac{5}{16n+4}$

Pick
$$N > \frac{5}{16\varepsilon} - \frac{1}{4}$$

Theorem (Equivalent definitions of the limit of a sequence)

For a sequence (a_n) and a number L, the following are equivalent

- 1) $\lim_{\{n\to\infty\}} a_n = L$
- 2) For every $\varepsilon>0,$ the interval $(L-\varepsilon,L+\varepsilon)$ contains a tail of (a_n)
- 3) For every $\varepsilon>0,$ only finitely many n satisfy $|a_n-L|\geq \varepsilon$
- 4) Every interval (a,b) containing L contains a tail of (a_n)
- 5) Given any interval (a,b) containing L, only finitely many terms of (a_n) lie outside (a,b)

Example 1 (worked)

Show
$$\lim_{\{n\to\infty\}} \frac{1}{\sqrt[3]{n}} = 0$$

Side work:

$$\mid \frac{1}{\sqrt[3]{n}} \mid < \varepsilon \Rightarrow \frac{1}{\sqrt[3]{n}} < \varepsilon$$

$$\Rightarrow \sqrt[3]{n} > \frac{1}{\varepsilon}$$

$$\Rightarrow n > \frac{1}{\varepsilon^3}$$

Formal proof:

Let
$$\varepsilon > 0$$
 and choose $N = \frac{1}{\varepsilon^3}$

If
$$n>N$$
 then $\mid \frac{1}{\sqrt[3]{n}}\mid <\frac{1}{\sqrt[3]{N}}=\frac{1}{\sqrt[3]{\frac{1}{\varepsilon^3}}}=\varepsilon$

Example 2 (worked)

Prove
$$\lim_{\{n\rightarrow\infty\}}\frac{3n^2+2n}{4n^2+n+1}=\frac{3}{4}$$

Estimate:

$$\mid \frac{3n^2 + 2n}{4n^2 + n + 1} - \frac{3}{4} \mid = \frac{|5n - 3|}{16n^2 + 4n + 4} \le \frac{5n}{16n^2 + 4n} = \frac{5}{16n + 4}$$

Given $\varepsilon>0$, pick $N>\frac{5}{16\varepsilon}-\frac{1}{4}$

Then for n > N

$$\mid \frac{3n^2 + 2n}{4n^2 + n + 1} - \frac{3}{4} \mid < \frac{5}{16n + 4} \le \frac{5}{16N + 4} < \varepsilon$$