I claim:

4

5

6

7

8

7

8

1

2

3

İ	1. In a computing environn	nent having a connection to a network, computer readable code
2	readable by a computer system i	in said environment, for enhancing performance of a multithreaded
3	application, comprising:	

- a plurality of client requests for connections;
- a plurality of worker threads:
 - a subprocess for receiving said plurality of client requests; and
 - a subprocess for implementing a scheduling heuristic to alleviate over-scheduling of said worker threads.
 - 2. Computer readable code for enhancing performance of a multithreaded application according to Claim 1, wherein:

a first group of said worker threads are active threads, said first group being comprised of changeable ones of said plurality of worker threads, and having a changeable number of said changeable ones, said changeable number being at least one; and

said subprocess for implementing a scheduling heuristic further comprises a subprocess for balancing said changeable number in said first group against a current workload comprised of one or more of said plurality of client requests.

3. Computer readable code for enhancing performance of a multithreaded application according to Claim 2, wherein said subprocess for balancing further comprises using an average delay.

3

4

5

6

7

1

2

3

1	4.	Computer readable code for enhancing performance of a multithreaded application
2	acco	rding to Claim 3, wherein said subprocess for balancing further comprises using a maximum
3	delay	y. \

- 5. Computer readable code for enhancing performance of a multithreaded application according to Claim 4, wherein said average delay and said maximum delay are configuration parameters.
- 6. Computer readable code for enhancing performance of a multithreaded application according to Claim 2, wherein:

a second group of said worker threads are blocked threads, said second group being comprised of ones of said plurality of worker threads which are not in said first group; and said blocked threads are stored in a Last-In, First-Out queue.

- 7. In a computing environment having a connection to a network, computer readable code readable by a computer system in said environment, for enhancing performance of a multithreaded application, comprising:
- a subprocess for moving connections from a pending connections queue to a first queue when each of said connections are accepted;
- a subprocess for moving each of said connections from said first queue to a second queue when an initial data packet arrives for said connection; and

9	queue.		
1	8.	In a computing environment having a connection to a network, computer readable code	
2	readab	le by a computer system in said environment, for enhancing performance of a multithreaded	
3	application, comprising:		
4		a subprocess for receiving input from multiple sources; and	
5		a subprocess for merging said received input onto a single queue for scheduling.	
ii a	9.	Computer readable code for enhancing performance of a multithreaded application	
2 <u>0</u>	according to Claim 8, further comprising:		
		a subprocess for moving connections from a pending connections queue to a first queue	
	when each of said connections are accepted;		
5 5 6 6 7		a subprocess for moving each of said connections from said first queue to said single	
6=	queue	when an initial data packet arrives for said connection; and	
7 <u>=</u>		a subprocess for assigning a worker thread to each of said connections on said single	
8	queue.		
1	10.	Computer readable code for enhancing performance of a multithreaded application	
2	according to Claim 9, wherein said subprocess for scheduling further comprises:		
3		a group of active worker threads comprised of changeable ones of a plurality of worker	
4	thread	s, and having a changeable number of said changeable ones, said changeable number being	
	CR9-9	⁸ -027B - 47 -	

a subprocess for assigning a worker thread to each of said connections on said second

8

5	at least one; and
6	a subprocess for implementing a scheduling heuristic for balancing said changeable number
7	in said active group against a current workload comprised of said client requests stored on said
8	single queue.
1	11. In a computing environment having a connection to a network, computer readable code
2	readable by a computer system in said environment, for enhancing performance of a multithreaded
3	application, comprising:
4	a plurality of persistent connections;
5=	a plurality of worker threads;
<u>Ф</u>	a subprocess for binding selected ones of said persistent connections to selected ones of
71	said worker threads, wherein an execution of said subprocess for binding results in a bound
8	connection; and
	a subprocess for unbinding selected ones of said bound connections, wherein an execution
10=	of said subprocess for unbinding results in an unbound worker thread.
1	12. Computer readable code for enhancing performance of a multithreaded application
2	according to Claim 11, wherein:
3	said subprocess for binding further comprises using a 2-stage queue; and
4	said subprocess for unbinding further comprises using said 2-stage queue.
1	13. Computer readable code for enhancing performance of a multithreaded application

- 48 -

CR9-98-027B

2	according to Claim 12, wherein:
3	said subprocess for binding using said 2-stage queue further comprises:
4	a subprocess for moving each of said persistent connections to said first stage
5	when an initial data packet arrives for said connection;
6	a subprocess for moving each of said persistent connections from said second
7	stage to said first stage when data is received for said connection; and
8	a subprocess for scheduling said persistent connections from said first stage; and
9	said subprocess for unbinding using said 2-stage queue further comprises:
10	a subprocess for moving selected ones of said bound connections from said first
	stage to said second stage when said selected bound connection goes idle;
12 11	a subprocess for closing selected ones of said persistent connections in said second
H	stage, responsive to a maximum idle period being exceeded; and
14	a subprocess for making said unbound worker thread available to said subprocess
15	for binding.
H	14. Computer readable code for enhancing performance of a multithreaded application
2	according to Claim 13, wherein said subprocess for unbinding further comprises:
3	a subprocess for closing further selected ones of said persistent connections in said second
4	stage, responsive to exceeding a maximum number of idle connections.
1	15. A system for enhancing performance of a multithreaded application in a computing
2	environment having a connection to a network, comprising:
	CR9-98-027B - 49 -

3	a plurality of client requests for connections;		
4	a plurality of worker threads;		
5	means for receiving said plurality of client requests; and		
6	means for implementing a scheduling heuristic to alleviate over-scheduling of said worker		
7	threads.		
1	16. The system for enhancing performance of a multithreaded application according to Claim		
2	15, wherein:		
3	a first group of said worker threads are active threads, said first group being comprised of		
	changeable ones of said plurality of worker threads, and having a changeable number of said		
	changeable ones, said changeable number being at least one; and said means for implementing a scheduling heuristic further comprises means for balancing		
	said changeable number in said first group against a current workload comprised of one or more		
	of said plurality of client requests.		
	17. The system for enhancing performance of a multithreaded application according to Claim		
2	16, wherein said means for balancing further comprises using an average delay.		
1	18. The system for enhancing performance of a multithreaded application according to Claim		
2	17, wherein said means for balancing further comprises using a maximum delay.		
1	19. The system for enhancing performance of a multithreaded application according to Claim		

	-	1
2	18, wł	nerein said average delay and said maximum delay are configuration parameters.
1	20.	The system for enhancing performance of a multithreaded application according to Claim
2	16, wł	nerein:
3		a second group of said worker threads are blocked threads, said second group being
4	comprised of ones of said plurality of worker threads which are not in said first group; and	
5		said blocked threads are stored in a Last In, First-Out queue.
1	21.	A system for enhancing performance of a multithreaded application in a computing
2 <u> </u>	environment having a connection to a network, comprising:	
25 35 45 55		means for moving connections from a pending connections queue to a first queue when
4 <u>U</u>	each of said connections are accepted;	
មា 5៣ -		means for moving each of said connections from said first queue to a second queue when
6 二	an init	ial data packet arrives for said connection; and
		means for assigning a worker thread to each of said connections on said second queue.
1	22.	A system for enhancing performance of a multithreaded application in a computing
2	enviro	nment having a connection to a network, comprising:
3		means for receiving input from multiple sources; and
4		means for merging said received input onto a single queue for scheduling.
1	23.	The system for enhancing performance of a multithreaded application according to Claim
	CR9-9	98-027B - 51 -

3	means for moving connections from a pending connections queue to a first queue when	
4	each of said connections are accepted;	
5	means for moving each of said connections from said first queue to said single queue when	
6	an initial data packet arrives for said connection; and	
7	means for assigning a worker thread to each of said connections on said single queue.	
1	24. The system for enhancing performance of a multithreaded application according to Claim	
2	23, wherein said means for scheduling further comprises:	
	a group of active worker threads comprised of changeable ones of a plurality of worker	
	threads, and having a changeable number of said changeable ones, said changeable number being	
<u>4</u> 5	at least one; and	
6	means for implementing a scheduling heuristic for balancing said changeable number in	
<u>7</u> 7	said active group against a current workload comprised of said client requests stored on said	
	single queue.	
1	25. A system for enhancing performance of a multithreaded application in a computing	
2	environment having a connection to a network, comprising:	
3	a plurality of persistent connections;	
4	a plurality of worker threads;	
5	means for binding selected ones of said persistent connections to selected ones of said	
6	worker threads, wherein an execution of said subprocess for binding results in a bound	
	\	

2

22, further comprising:

CR9-98-027B

7	connection; and
8	means for unbinding selected ones of said bound connections, wherein an execution of
9	said subprocess for unbinding results in an unbound worker thread.
1	26. The system for enhancing performance of a multithreaded application according to Claim
2	25, wherein:
3	said means for binding further comprises using a 2-stage queue; and
4	said means for unbinding further comprises using said 2-stage queue.
æn.	
0985 <u>-</u> 365*	27. The system for enhancing performance of a multithreaded application according to Claim
15 Tu	26, wherein:
	said means for binding using said 2/stage queue further comprises:
∏ 4	means for moving each of said persistent connections to said first stage when an
를 []5	initial data packet arrives for said connection;
☐6 ☐ ☐ 7	means for moving each of said persistent connections from said second stage to
₹7	said first stage when data is received for said connection; and
8	means for scheduling said persistent connections from said first stage; and
9	said means for unbinding using said 2-stage queue further comprises:
10	means for moving selected ones of said bound connections from said first stage to
11	said second stage when said selected bound connection goes dle;
12	means for closing selected ones of said persistent connections in said second stage
13	responsive to a maximum idle period being exceeded; and
	CR9-98-027B - 53 -

14	means for making said unbound worker thread available to said subprocess for	
15	binding.	
1	28. The system for enhancing performance of a multithreaded application according to Claim	
2	27, wherein said means for unbinding further comprises:	
3	means for closing further selected ones of said persistent connections in said second stage,	
4	responsive to exceeding a maximum number of idle connections.	
1	29. A method for enhancing performance of a multithreaded application in a computing	
	environment having a connection to a network, comprising the steps of:	
13 N	receiving a plurality of client requests for connections; and	
U4 (T	implementing a scheduling hearistic to alleviate over-scheduling of a plurality of worker	
75 07 14 10 14 10 14 12	threads to said plurality of client requests.	
	30. The method for enhancing performance of a multithreaded application according to Claim	
-2	29, wherein:	
3	a first group of said worker threads are active threads, said first group being comprised of	
4	changeable ones of said plurality of worker threads, and having a changeable number of said	
5	changeable ones, said changeable number being at least one; and	
6	said implementing a scheduling heuristic step further comprises balancing said changeable	
7	number in said first group against a current workload comprised of one or more of said plurality	
8	of client requests.	
	CR9-98-027B - 54 -	

2

3

4

- 1 31... The method for enhancing performance of a multithreaded application according to Claim
- 2 30, wherein said balancing step further comprises using an average delay.
- 1 32. The method for enhanding performance of a multithreaded application according to Claim
- 2 31, wherein said balancing step further comprises using a maximum delay.
- 1 33. The method for enhancing performance of a multithreaded application according to Claim
- 2 32, wherein said average delay and said maximum delay are configuration parameters.
 - 34. The method for enhancing performance of a multithreaded application according to Claim 30, wherein:

a second group of said worker threads are blocked threads, said second group being comprised of ones of said plurality of worker threads which are not in said first group; and said blocked threads are stored in a Last-In, First-Out queue.

- 35. A method for enhancing performance of a multithreaded application in a computing environment having a connection to a network, comprising the steps of:
- moving connections from a pending connections queue to a first queue when each of said connections are accepted;
- moving each of said connections from said first queue to a second queue when an initial

 data packet arrives for said connection; and

3
1
2
COOKESS OF LOI
2
3
4

7		assigning a worker thread to each of said connections on said second queue.
1	36.	A method for enhancing performance of a multithreaded application in a computing
2	enviro	onment having a connection to a network, comprising the steps of:
3		receiving input from multiple sources; and
4		merging said received input onto a single queue for scheduling.
1	37.	The method for enhancing performance of a multithreaded application according to Claim
2	36, further comprising the steps of:	
		moving connections from a pending connections queue to a first queue when each of said
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	conne	ections are accepted;
5		moving each of said connections from said first queue to said single queue when an initial
6	data packet arrives for said connection; and	
7		assigning a worker thread to each of said connections on said single queue.
1	38.	The method for enhancing performance of a multithreaded application according to Claim
2	37, further comprising:	
3		a group of active worker threads comprised of changeable ones of a plurality of worker
4	thread	ds, and having a changeable number of said changeable ones, said changeable number being
5	at least one; and	
6	where	ein said scheduling step further comprises:
7		implementing a scheduling heuristic for balancing said changeable number in said active

8 group against a current workload comprised of said client requests stored on said single queue. 1 39. A method for enhancing performance of a multithreaded application in a computing 2 environment having a connection to a network, comprising the steps of: 3 binding selected ones of a plurality of persistent connections to selected ones of a plurality of worker threads, wherein an execution of said binding step results in a bound connection; and 4 5 unbinding selected ones of said bound connections, wherein an execution of said 6 unbinding step results in an unbound worker thread. The method for enhancing performance of a multithreaded application according to Claim 40. 39, wherein: said binding step further comprises using a 2-stage queue; and said unbinding step further comprises using said 2-stage queue. The method for enhancing performance of a multithreaded application according to Claim 41. 40, wherein: said binding using said 2-stage queue step further comprises the steps of: 3 moving each of said persistent connections to said first stage when an initial data 4 5 packet arrives for said connection; 6 moving each of said persistent connections from said second stage to said first 7 stage when data is received for said connection; and 8 scheduling said persistent connections from said first stage; and CR9-98-027B - 57 -

9	said unbinding using said 2-stage queue step further comprises the steps of:
0	moving selected ones of said bound connections from said first stage to said
1	second stage when said selected bound connection goes idle;
12	closing selected ones of said persistent connections in said second stage,
13	responsive to a maximum idle period being exceeded; and
14	making said unbound worker thread available to said subprocess for binding.
1	42. The method for enhancing performance of a multithreaded application according to Claim
2	41, wherein said unbinding step further comprises the step of:
3	closing further selected ones of said persistent connections in said second stage,
3945F26	responsive to exceeding a maximum number of idle connections.