《内容算法》笔记--part1

2019年4月7日 星期日 下午2:58

→ <mark>架构</mark>

▶ 搜索系统架构

▶ 推荐系统架构

• 相同点:

信息与用户意图之间的匹配

- 不同点:
- 表意明确的查询词 vs 没有明确表达的偏好
- 用户行为-->影响内容价值评判 vs 用户行为-->影响 内容价值评判+自身画像建立
- → 推荐的起点:断物识人
- ▶断物

	1175					
	标签		分类		聚类	
	在不同的应用场景下,我们 对标签全集进行有针对性的 投射,用不同的标签以换取 信息匹配效率的最大化		树状的,自上而下,每个节 点都有严格的继承关系,兄 弟节点具有可以被完全枚举 的属性值		不下定义。基于某一维度的 特征将相关物品组成一个集 合,并告诉你这个新的物品 同哪个集合相似	
	权威性弱、 灵活性强、 完备性强		权威性强、 灵活性弱、 完备性弱			
	PGC	UGC 需要经过清 洗和归一处 理				
		1.五星评价 2.标签输入 3.简短评论				
	先基于产品场景快速覆盖主要标签 ——结合使用频次、专家建议——> 将部分入口收敛到树状的分类体系					

▶ 识人

- 通过标签来描述一个用户的特征集合
- 应用场景
- 精准广告营销
- 行业研究 eg.消费分析等
- 产品效率优化
- 数据来源

>>>3/11/2 (1//3)				
静态用户画像数据	动态用户画像数据			
独立于产品场景之外,有统计性意义	产品场景中,不同行为权重不同			
包含: 性别 学历 年龄 教育程度 婚育状况 常住位置(旅行者模块)	显式: 点赞 评论 (文本分析) 分享 (以社会身份传递 了立场态度, 意义大) 关注 收藏 搜索 评分 (根据历史平均分 归一化)	隐式: 某页面的停留时长 用户的操作行为轨迹 播放比例/播放时长		
	稀疏,权重更高	权重较低,补充验证		
来源: 第三方联合登录 用户表单填写				

→ <mark>推荐算法:物以类聚,人以群分</mark>

- ▶ 物以类聚:基于内容属性的相似性推荐
- 推荐与用户历史消费相似的新物品
- 相似度计算:

• 优点:

只依赖于物品本身的特征,而不依赖于用户的行为,让新的物品、冷僻的物品都能得到展示的机会

- 缺点:
- 依赖于特征构建的完备性,存在一定成本
- 没有引入受众反馈因素
- ▶ 人以群分:基于用户行为的协同过滤

• 优点:

不需要对物品或信息进行完整的标签化分析和建模

- 缺点:
 - 领域无关,可以很好的发现用户的潜在兴趣爱好
- 依赖历史数据,新用户/新物品存在冷启动问题