Week2 CNN Architectures

Tutor: Email:

Tutorial:

Code: https://github.com/Jinxu-Lin/COMP5329

AlexNet

AlexNet

- Dataset: ImageNet1K
 - $(3 \times 227 \times 227, 1000)$
- AlexNet
 - Block 1
 - Block 2
 - Block 3,4
 - Block 5
 - Linear Block

AlexNet-Block 1

- 2d Convolution Layer: 96*(11*11), s=4, p=0
 - Input Chanels: 3; Input Size: 227*227
 - Output Shape: ?
- ReLU
- MaxPooling

AlexNet-Block 2

- 2d Convolution Layer: 256*(5*5), s=1, p=2
 - Input Chanels: 96; Input Size: 27*27
 - Output Shape: ?
- ReLU
- MaxPooling

AlexNet-Block 3,4

- 2d Convolution Layer: 384*(3*3), s=1, p=1
 - Input Chanels: 256; Input Size: 13*13
 - Output Shape: ?
- ReLU

AlexNet-Block 5

- 2d Convolution Layer: 256*(3*3), s=1, p=1
 - Input Chanels: 384; Input Size: 13*13
 - Output Shape: ?
- ReLU
- MaxPooling

AlexNet-Full Connected Layer

- Flatten (256*6*6=9216)
- Linear: (9216,4096)
- ReLU
- Linear: (4096,1000)
- Softmax

VGG-11

VGG-11

- VGG is also a popular CNN with a number of versions which are VGG-11, VGG-16 and VGG-19.
- In this class we are gonna build the VGG-11 according to the following diagram:

/GG 11		Input 224 v 224 v2	Input 22 v 22 v 2
	1	Input 224 x 224 x3	Input 32 x 32 x 3
conv3-64 + ReLU	In Out	224 x 224 x3	32 x 32 x 3
	Out	224 x 224 x64	32 x 32 x 64
MaxPool	In	224 x 224 x 64	32 x 32 x 64
	Out	112 x 112 x 64	16 x 16 x 64
conv3-128 + ReLU	In	112 x 112 x 64	16 x 16 x 64
	Out	112 x 112 x 128	16 x 16 x 128
MaxPool	In	112 x 112 x 128	16 x 16 x 128
WIGHT GOT	Out	56 x 56 x 128	8 x 8 x 128
conv3-256 + ReLU	In	56 x 56 x 128	8 x 8 x 128
JOHNO 230 - NGLO	Out	56 x 56 x 256	8 x 8 x 256
conv3-256 + ReLU	In	56 x56 x 256	8 x 8 x 256
SUNVO-200 + RELU	Out	56 x 56 x 256	8 x 8 x 256
MaxPool	In	56 x 56 x 256	8 x 8 x 256
VIAXPUUI	Out	28 x 28 x 256	4 x 4 x 256
200v2 F12 + Doll!	In	28 x 28 x 256	4 x 4 x 256
conv3-512 + ReLU	Out	28 x 28 x 512	4 x 4 x 512
aony2 F12 + Dalli	In	28 x 28 x 512	4 x 4 x 512
conv3-512 + ReLU	Out	28 x 28 x 512	4 x 4 x 512
MayDaal	In	28 x28 x 512	4 x 4 x 512
MaxPool	Out	14 x 14 x 512	2 x 2 x 512
2001/2 F12 + Dalli	In	14x14 x 512	2 x 2 x 512
conv3-512 + ReLU	Out	14 x 14 x 512	2 x 2 x 512
O F10 + D -	In	14x14 x 512	2 x 2 x 512
conv3-512 + ReLU	Out	14 x 14 x 512	2 x 2 x 512
MayDaal	In	14 x 14 x 512	2 x 2 x 512
MaxPool	Out	7 x 7 x 512	1 x 1 x 512
	In	25088	512
FC	Out	4096	2048
-0	In	4096	2048
FC	Out	4096	2048
	In	4096	2048
FC	Out	1000	10
SoftMax			

- Existing Problems
 - People all realize that deeper network means better results. However, it is not the whole story
- Reason
 - Gradient vanishing: gradient disappeared at very early layer, while very strong in the last layers.
 - Saturation: (Observed in the Resnet paper)
 Stacking more layers without gradient vanishing also have gradient vanishing problem.

- Skip Connection
- Intuition
 - If F(x) is a saturated factor, F(x) is optimized to 0. This will reduce the depth of the network. (saturation problem)
 - Strengthen signal from x. Which helps the gradient signals toward x is stronger. (gradient vanishing)
- Means:
 - Reduce the depth of the network if saturation
 - Reduce gradient vanishing

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
conv1	112×112	7×7 , 64, stride 2							
		3×3 max pool, stride 2							
conv2_x 56×56	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \end{bmatrix}$	[1×1, 64]	[1×1, 64]			
				$\begin{bmatrix} 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $			
	1×1	average pool, 1000-d fc, softmax							
FLO	OPs	1.8×10^9	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10^9			

Code

Code

- ./materials/Week6_CNN_Architectures/Week6_CNN_Architectures.ipynb
- ./ResNet/Models/resnet.py
- ./ResNet/train_utils.py: line32
- ./ResNet/train.py: line203