1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.7. This means (check all that apply):

1 point

- Our estimate for $P(y = 0 | x; \theta)$ is 0.3.
- Our estimate for $P(y = 1 | x; \theta)$ is 0.7.
- Our estimate for $P(y = 1 | x; \theta)$ is 0.3.
- Our estimate for $P(y = 0 | x; \theta)$ is 0.7.
- 2. Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$.

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- igsep J(heta) will be a convex function, so gradient descent should converge to the global minimum.
- ightharpoonup Adding polynomial features (e.g., instead using $h_{ heta}(x)=g(heta_0+ heta_1x_1+ heta_2x_2+ heta_3x_1^2+ heta_4x_1x_2+ heta_5x_2^2)$) could increase how well we can fit the training data.
- The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.
- Because the positive and negative examples cannot be separated using a straight line, linear regression will perform as well as logistic regression on this data.

3. For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

1 point

- $igcup heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m ig(h_ heta(x^{(i)}) y^{(i)} ig) x^{(i)}$ (simultaneously update for all j).
- lacksquare $heta_j:= heta_j-lpha_m^{rac{1}{m}}\sum_{i=1}^mig(h_ heta(x^{(i)}ig)-y^{(i)}ig)x_j^{(i)}$ (simultaneously update for all j).
- lacksquare $heta_j:= heta_j-lpha_{rac{1}{m}}\sum_{i=1}^m\left(rac{1}{1+e^{- heta T_x(i)}}-y^{(i)}
 ight)x_j^{(i)}$ (simultaneously update for all j).
- 4. Which of the following statements are true? Check all that apply.

1 point

- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
- The cost function $J(\theta)$ for logistic regression trained with $m \geq 1$ examples is always greater than or equal to zero.
- igspace The sigmoid function $g(z)=rac{1}{1+e^{-z}}$ is never greater than one (>1).
- Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.

- 5. Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=-6, \theta_1=1, \theta_2=0$. Which of the following figures represents the decision boundary found by your classifier?
 - O Figure:

Figure:

Figure:

O Figure:

