

基于频率法的超前校正

基于频率法的超前校正

实验目的:

通过实验,理解所加校正装置的结构、特性和对系统性 能的影响。

掌握串联校正设计方法。

实验仪器:

MATLAB

基于频率法的超前校正

实验内容:

性能指标:

静态误差速度 $K_V = 25s^{-1}$ 相位裕量 γ 不小于50°

校正前系统的性能分析

校正前的开环系统传递函数: $K_v = \lim_{s \to 0} s * \frac{5}{0.2s(0.5s+1)} = 25$

系统的静态速度误差满足需求。

未校正系统的开环频率特性为:
$$G_0(j\omega) = \frac{5}{0.2j\omega(0.5j\omega+1)}$$

校正装置的设计

根据相位裕量要求,确定校正网络提供的相位超前角:

$$\phi = \gamma - \gamma_1 + \varepsilon = 50 - 16.1 + 8 = 41.9$$

校正装置参数
$$\alpha = \frac{1-sin41.9}{1+sin41.9} = 0.20$$

根据lpha计算剪切频率: $L_c(\phi_m)=20lg(1/\sqrt{a})=7.0dB$,此时-7.0db对应 $\omega_m=$

10.5 rad/s

确定 ω_1,ω_2 :

$$\omega 1 = 1 / T = \omega_m \sqrt{\alpha} = 4.70$$

$$\omega_2 = 1/(\alpha T) = \omega_m / \sqrt{\alpha} = 23.48$$

$$G_c(s) = \frac{s+4.7}{s+23.48} = \frac{0.20(1+0.2s)}{1+0.04s}$$

放大倍数为: $\frac{1}{\alpha} = 5$

校正装置的传递函数

校正系统传递函数为(频率特性曲线见图1): $G_c(s) = 5 * \frac{0.20(1+0.2s)}{1+0.04s}$

接入电路模拟校正系统后开环传递函数的频率特性曲线见图2:

$$G(s)G_c(s) = \frac{5*5*(s+4.7)}{0.2s(0.5s+1)(s+23.48)} = \frac{5*(1+0.2s)}{0.2s(0.5s+1)(0.04s+1)}$$

$$G_c(s) = \frac{(1+0.2s)}{1+0.04s}$$

图1校正装置频率特性曲线

图2校正后开环系统的频率特性曲线

校正装置的传递函数

校正系统传递函数为: $G_c(s) = \frac{(1+0.2s)}{1+0.04s}$

校正后的开环传递函数:
$$G(s)G_c(s) = \frac{5*5*(s+4.7)}{0.2s(0.5s+1)(s+23.48)} = \frac{5*(0.2s+1)}{0.2s(0.5s+1)(0.04s+1)}$$

$$G_c(s) = \frac{R_2R_4}{R_1R_3} * \frac{1 + R_1C_1s}{1 + R_2C_2s}$$

$$R_1 = 200K, R_2 = 400K, R_3 = 100K, R_4 = 50K, C_1 = 1uF. C_2 = 0.1uF$$

校正装置的传递函数

$$G(s)H(s) = \frac{5}{0.5s+1} * \frac{1}{0.2s}$$
的闭环系统电路连接图如下:

实验效果

加校正装置前后单位闭环系统的阶跃响应曲线

单位反馈系统的开环传递函数为: $G(s) = \frac{5}{0.5s+1} * \frac{1}{0.2s}$

- 根据设计要求,结合开环传递函数的频率特性曲线,设计该系统的串联校正装置,分别在simulink中搭建校正前闭环传递函数与校正后闭环传递函数的电路图
- 分别对校正前与校正后的闭环系统施加单位阶跃信号,并记录之。

MATLAB电路实验说明

- 1、matlab电路图搭建方式详见频率特性PPT。
- 2、matlab运放位置为:

simcape/FoundationLibrary/Electrical/Electrical Elements

Pulse Voltage Source

MATLAB电路实验说明

4、Pulse Voltage Sources设置如下图:

Settings			
Parameters			
Initial value, V1:	0	V	~
Pulse value, V2:	1	V	~
Pulse delay time, TD:	100	ms	~
Pulse rise time, TR:	1e-9	S	~
Pulse fall time, TF:	1e-9	S	~
Pulse width, PW:	Inf	S	~
Pulse period, PER:	Inf	S	~

MATLAB电路实验说明

5、参考电路图如下图:

