1 FPGA 基础

1.1 按键去抖动以及按键阵列检测

学习按键去抖动的方法,进一步应用到 4x4 键盘阵列的检测和读取。动态数码管扫描也是类似的方法。

1.2 多路分频器设计

学会分频方法,设计任意频率发生器(任意分频)。 学会使用 ila 抓取上板测试的波形,在上板调试过程中非常有用。

1.3 串口收发

实现串口字符的收发。

1.4 spi flash

了解 spi 协议和 spi flash 读写操作,设计简单的 flash 控制器,实现 flash 的擦除、编程、读取等。

1.5 sd 卡读写

sd 卡或 tf 卡是嵌入式设备重要的存储模块,通过此实验了解 sd 卡的读写。 在次基础上可以读取 sd 卡中存储的图片等文件,用于显示和图像处理器操作。

1.6 VGA 控制器

学习 VGA 时序,并实现 VGA 显示,包括字符和图片显示。在此基础上设计俄罗斯方块、贪吃蛇等游戏。

1.7 HDMI

了解 HDMI 时序,完成 HDMI 显示。

1.8 网口开发

了解 UDP 协议,实现简单的网口通信。

1.9简单的图像处理

用 Verilog 实现简单的图像处理程序,如 Sobel 边缘检测,推荐使用硬件乘法器 IP。

2 SoC 基础

主要参考米联客《Zynq SoC 修炼秘籍》

2.1 嵌入式最小系统

包括 hello world 实验,内存测试等。

2.2 MIO/EMIO

PS 端的操作。

2.3 自定义 IP

创建简单的用户 IP, 学习 PS+PL 开发思想。

2.4程序固化

学习镜像文件的制作,在搭建 Linux 系统时有重要作用。

2.5 XADC 实验

借助 Zynq 内嵌的 XADC 采集内部参数。

2.6 Zynq PL 中断请求

学习外部中断,通过 PL 传递中断,在 PS 端接受并处理器。

2.7 定时器中断

PS 端自己的中断。

2.8 串口中断

进一步学习中断。

2.9 User GPIO

创建基于 AXI 接口的 IP。

2.10 软硬件调试技巧

在 Block Design 中使用 VIO 和 ILA, 学会软硬件联合调试。

2.11 AXI Lite 总线

通过分析代码了解工作时序。

3 DMA/VDMA

3.1 DMA Loop 环路测试

SDK 发送数据到 DMA, DMA 将数据发送到 DDR, SDK 读取内存地址中的数据,对比是否和发送的一致。

3.2 PL 发送数据到 PS

接上一个实验, PS 端接收。

3.3 基于 DMA 的摄像头采集系统

没有摄像头可以换成本地视频流或图片。

3.4基于 VDMA 的摄像头采集系统

VDMA 主要用于视频流的存取,在图像、视频处理系统中具有重要意义。

3.5 DMA LWIP 以太网传输

PL 通过 DMA 将数据发送到 PS DDR 的乒乓缓存中, PS 将缓存的数据通过 TCP 协议发送至 PC。

3.6 通过 BRAM 进行 PS 与 PL 的数据交互

适用于传输少量,地址不连续,长度不规则的数据。

4 Linux 系统开发(嵌入式开发)

参考《Zynq SoC 修炼秘籍》(2017 版不完整)和《Zynq-7000 嵌入式系统设计与实现——基于 Cortex A9 双核处理器和 Vivado 的设计方法》

4.1 构建硬件运行环境

在基本硬件环境的基础上添加用户定制外设的 IP。

4.2 构建软件运行环境

编译 u-boot, kernel, 设备树和文件系统。制作启动镜像, 从 sd 卡或 flash 启动 Linux。

4.3 开发字符设备驱动程序

除了 PS 一端的外设之外,用户可以在 PL 中定制大量不同类型的外设。Linux 中没有提供这些外设的驱动,需要自行开发。

4.4 运行 Qt 程序

搭建 Qt 交叉编译环境,在开发板上运行 Qt 程序。

5 HLS 入门

参考 ug902 和 ug871。

5.1 基于 HLS 的流水灯

熟悉 HLS 的开发流程。

5.2 简单算法的实现

通过 HLS 实现矩阵乘法,FFT 等计算密集型算法,体会 HLS 优化指令对设计的影响。

5.3 图像处理实例

通过 HLS 开发肤色检测或边缘检测等图像处理程序,并搭建完整的软硬件系统。

6 MIG 控制器

6.1 DDR 读写测试

了解 MIG 控制器的使用。

6.2 DDR 缓存图像数据

通过 DDR 缓存图像数据并输出,可以移植到其他工程中。

7 PCIe 开发

7.1 XAPP1052

Xilinx 官方的 XAPP1052 demo 提供了一种古老的 PCIe 开发方式,可以用来分析学习。

7.2 XDMA 基础测试

Vivado 自带 PCIe DMA 即 XDMA, 目前主要使用这种方式。在本例程中测

试 AXI4 读写 DDR,AXI-Lite 读写 BRAM。

7.3 XDMA 读写 BAR 和 BRAM

进一步了解 XDMA 的原理。

7.4 XDMA 图像传输

主机读取本地图像,通过 PCIE 传送给 FPGA, FPGA 处理完成后通过 PCIE 传给主机。