A TYPE THEORY WITH SCOPED EQUALITY REFLECTION

JONATHAN STERLING

Feel free to change the stuff below as our thinking evolves. This is just a starting point. We have the following judgments:

$\vdash \Sigma \text{ sig}$	Σ is a valid signature
$\mathcal{H} \vdash_{\Sigma} \Gamma \operatorname{ctx}$	Γ is a valid context
$\Gamma \vdash_{\Sigma} \mathcal{H} \text{ hints}$	\mathcal{H} is a valid hints set
$\Gamma; \mathcal{H} \vdash_{\Sigma} M \Rightarrow A$	M infers type A
$\Gamma; \mathcal{H} \vdash_{\Sigma} M \Leftarrow A$	M checks type A
$\Gamma; \mathcal{H} \vdash_{\Sigma} M \equiv N : A$	M equals N at type A

The rules for the theory are given inductive-recursively below.

$$(\text{Signatures}) \qquad \qquad \frac{\vdash \Sigma \text{ sig}}{\diamond \vdash_{\Sigma} A \Leftarrow \mathbb{U}} \qquad \frac{\Sigma \# c}{\vdash \Sigma, c : A \text{ sig}}$$

$$\frac{\mathcal{H} \vdash_{\Sigma} \Gamma \operatorname{ctx}}{\Gamma; \mathcal{H} \vdash_{\Sigma} A \Leftarrow \mathbb{U}} \qquad \Gamma \# x$$
(Contexts)
$$\frac{\mathcal{H} \vdash_{\Sigma} \circ \operatorname{ctx}}{\mathcal{H} \vdash_{\Sigma} \Gamma, x : A \operatorname{ctx}}$$

$$\begin{array}{ccc} & \Gamma \vdash_{\Sigma} \mathcal{H} \text{ hints} \\ & \Gamma; \mathcal{H} \vdash_{\Sigma} A \Leftarrow \mathbb{U} \\ & \Gamma; \mathcal{H} \vdash_{\Sigma} a, b \Leftarrow A \end{array}$$
 (Hints)
$$\overline{\Gamma \vdash \diamond \text{ hints}} & \overline{\Gamma \vdash_{\Sigma} \mathcal{H}, a \equiv b : A \text{ hints}} \end{array}$$

$$\frac{x:A\in\Gamma}{\Gamma;\mathcal{H}\vdash_{\Sigma}x\Rightarrow A}\qquad \frac{c:A\in\Sigma}{\Gamma;\mathcal{H}\vdash_{\Sigma}c\Rightarrow A}\qquad \frac{a\equiv b:A\in\mathcal{H}}{\Gamma;\mathcal{H}\vdash_{\Sigma}a\equiv b:A}$$

$$\begin{array}{l} \Gamma; \mathcal{H} \vdash_{\Sigma} p \Rightarrow \operatorname{Id}_A(M;N) \\ \Gamma; \mathcal{H}, M \equiv N : A \vdash_{\Sigma} C \Leftarrow \mathbb{U} \\ \Gamma; \mathcal{H}, M \equiv N : A \vdash_{\Sigma} e \Leftarrow C \\ \hline \Gamma; \mathcal{H} \vdash_{\Sigma} \operatorname{reflect} p \text{ in } e \Leftarrow C \end{array} \tag{Reflect}$$

$$\begin{array}{c} \Gamma;\mathcal{H}\vdash_{\Sigma}A \Leftarrow U \\ \Gamma;\mathcal{H}\vdash_{\Sigma}M \Leftarrow A \\ \Gamma;\mathcal{H}\vdash_{\Sigma}N \Leftarrow A \\ \Gamma;\mathcal{H}\vdash_{\Sigma}N \Leftrightarrow A \\ \Gamma;\mathcal{H}\vdash_{\Sigma}D \Leftrightarrow A \\ \Gamma;\mathcal{H}\vdash_{\Sigma}Q \Leftrightarrow D \\ \Gamma;\mathcal{H}\vdash_{\Sigma}Q \Rightarrow D \\ \Gamma;\mathcal{H}$$