2

the mixture to ozone.

WHAT IS CLAIMED IS:

1	1. A method of preparing nickel oxyhydroxide comprising:
2	combining a nickel hydroxide and a hydroxide salt in an inert atmosphere to form a
3	mixture; and
4	exposing the mixture to ozone to form a nickel oxyhydroxide.
1	2. The method of claim 1, wherein the nickel hydroxide includes a beta-nickel
2	hydroxide, a cobalt hydroxide-coated beta-nickel hydroxide, an alpha-nickel hydroxide, or a
3	cobalt hydroxide-coated alpha-nickel hydroxide.
1	3. The method of claim 1, wherein the nickel oxyhydroxide includes a beta-nickel
2	oxyhydroxide, a cobalt oxyhydroxide-coated beta-nickel oxyhydroxide, a gamma-nickel
3	oxyhydroxide, or a cobalt oxyhydroxide-coated gamma-nickel oxyhydroxide.
1	4. The method of claim 1, wherein the inert atmosphere is substantially free of
2	carbon dioxide.
1	5. The method of claim 1, wherein the inert atmosphere is substantially free of water.
1	6. The method of claim 1, wherein the inert atmosphere is substantially free of
2	carbon dioxide and substantially free of water.
1	7. The method of claim 1, further comprising heating the mixture prior to or during
2	exposing the mixture to ozone.
1	8. The method of claim 1, further comprising agitating the mixture during exposing

2

1

2

1 2

1

1 2

- 9. The method of claim 1, wherein exposing the mixture to ozone includes contacting the mixture with a gas mixture including ozone.

 10. The method of claim 9, wherein the gas mixture includes dioxygen.
 - 11. The method of claim 9, wherein the gas mixture includes water.
 - 12. The method of claim 1, wherein the nickel hydroxide is a powder including particles having a spherical, spheroidal, or ellipsoidal shape.
 - 13. The method of claim 1, wherein the nickel hydroxide is a substantially dry nickel hydroxide.
 - 14. The method of claim 1, wherein the hydroxide salt includes potassium hydroxide, sodium hydroxide, lithium hydroxide, or mixtures thereof.
 - 15. The method of claim 1, wherein the hydroxide salt includes silver hydroxide or gold hydroxide.
 - 16. The method of claim 1, wherein the mixture is exposed to ozone for less than 24 hours.
 - 17. The method of claim 16, wherein the nickel hydroxide includes a cobalt hydroxide-coated beta-nickel hydroxide or a cobalt hydroxide-coated alpha-nickel hydroxide.
- 1 18. The method of claim 1, wherein the mixture further includes an oxidationpromoting additive.

1

2

1

1

2

3

- 1 19. The method of claim 18, wherein the oxidation-promoting additive includes 2 metallic silver, silver(+1) oxide, silver(+1,+3) oxide, metallic gold, gold (+3) oxide, gold 3 (+3) hydroxide, potassium peroxide, potassium superoxide, potassium permanganate, or 4 silver permanganate.
 - 20. The method of claim 1, wherein the nickel hydroxide includes a bulk dopant.
 - 21. The method of claim 1, wherein the bulk dopant includes aluminum, manganese, cobalt, gallium, indium, or bismuth.
 - 22. A battery comprising:
 - a cathode comprising a carbonate-free nickel oxyhydroxide;
 - an anode;
 - a separator; and
 - an electrolyte.
 - 23. The battery of claim 22, wherein the nickel oxyhydroxide includes a cobalt oxyhydroxide-modified nickel oxyhydroxide.
 - 24. The battery of claim 22, wherein the nickel oxyhydroxide includes a cobalt oxyhydroxide-modified gamma-nickel oxyhydroxide.
 - 25. The battery of claim 22, wherein the anode comprises zinc.
- 1 26. The battery of claim 23, wherein the cathode further includes an oxidizing 2 additive.
 - 27. The battery of claim 26, wherein the oxidizing additive includes sodium hypochlorite, sodium peroxydisulfate, potassium peroxydisulfate, potassium permanganate, barium permanganate, barium ferrate, silver permanganate, disilver oxide, or silver oxide.

1	28. The battery of claim 22, wherein the electrolyte includes potassium hydroxide,
2	sodium hydroxide, lithium hydroxide, or mixtures thereof.
1	29. A method of manufacturing a battery comprising:
2	combining a nickel hydroxide and a hydroxide salt in an inert atmosphere to form a
3	mixture;
4	exposing the mixture to ozone to form a nickel oxyhydroxide; and
5	assembling a cathode comprising the nickel oxyhydroxide, an anode, a separator, and
6	an electrolyte to form the battery.
1	30. A method of decreasing capacity loss in a nickel oxyhydroxide battery
2	comprising:
3	combining a nickel hydroxide and a hydroxide salt in an inert atmosphere to form a
4	mixture;
5	exposing the mixture to ozone to form a nickel oxyhydroxide;
6	forming a cathode including the nickel oxyhydroxide; and
7	assembling the cathode, an anode, a separator, and an electrolyte to form the alkaline
8	battery,
9	wherein the battery has a capacity loss after storage for 4 weeks at 60°C of less than
10	30 percent.

31. The method of claim 30, wherein the nickel hydroxide is cobalt hydroxide modified nickel hydroxide.