Teoretická informatika (3. ročník)

Algorimus A*, problém SAT, algoritmus DPLL (varianta A)

Jméno:	Třída:	Datum:
--------	--------	--------

Body	25 - 21	20 - 17	16 - 13	12 - 10	9 - 0
Známka	1	2	3	4	5

1. (5 bodů) Algoritmus A*

- (a) (4 body) Vyberte **pravdivá tvrzení** o algoritmu A*.
 - $\sqrt{\mbox{ Po skončení algoritmu jsou nalezeny nejkratší cesty mezi počátečním a ostatními vrcholy v grafu.}$
 - \bigcirc V každé iteraci vnějšího cyklu vybírá vrcholy podle f-skóre, které odpovídá vzdálenosti od počátečního vrcholu v_0 , tj. f(v) = D(v).
 - Algoritmus **vždy** uzavře všechny vrcholy v grafu.
 - O Po skončení algoritmu jsou nalezeny nejkratší cesty **mezi všemi dvojicemi** vrcholů v grafu.
 - √ Algoritmus vždy aktualizuje vzdálenosti do všech vrcholů sousedících s právě vybraným (uzavíraným) vrcholem, je-li nová vzdálenost kratší než původní.
 - \bigcirc Algoritmus lze aplikovat na libovolný graf (tj. bez ohledu na *počet vrcholů*, *hrany*, ani jejich $v\acute{a}hy$).
 - $\sqrt{\ }$ Algoritmus lze aplikovat na grafy, kde jsou váhy hran nezáporné.
 - $\sqrt{\text{Heuristick\'a funkce }\psi \text{ mus\'i spl\'novat troj\'uheln\'ikovou nerovnost.}}$
- (b) (1 bod) K čemu slouží heuristická funkce?

 $\check{\mathbf{R}}$ ešení: Heuristická funkce slouží pro výpočet odhadu vzdálenosti libovolného vrcholu od cílového.

2. (15 bodů) Problém SAT

(a) (1 bod) Co je to problém SAT?

Řešení: Jedná se o problém, zda pro danou logickou formuli φ existuje takové ohodnocení proměnných, aby byla pravdivá, tj. $\varphi(...) = 1$.

(b) (3 body) Vyberte všechny logické formule, které jsou **splnitelné** a ke každé **uveďte libovolné splňující ohodnocení** (pokud existuje).

$$\sqrt{\neg x_1 \Rightarrow x_2}
\sqrt{(x_1 \Leftrightarrow x_2) \land x_3}
\bigcirc (x_1 \Rightarrow x_2) \land \neg(\neg x_1 \lor x_2)
\sqrt{(\neg x_1 \land \neg x_2) \lor (x_3 \Leftrightarrow x_1)}
\bigcirc (x_1 \Leftrightarrow x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2)
\bigcirc \neg x \Rightarrow \neg(\neg x)$$

(c) (2 body) Co je to **literál** a **klauzule** ve formuli v konjunktivní normální formě (CNF)?

Řešení:

- Literál je libovolná proměnná, nebo její negace.
- Klauzule je výraz sestavený z literálů spojených disjunkcí \vee .
- (d) (4 body) Vyberte všechny logické formule, které jsou v CNF.
 - $\bigcirc (x_1 \land x_2) \lor (x_1 \land \neg x_2)$
 - $\sqrt{\neg x_1 \vee \neg x_2 \vee \neg x_3}$
 - $\bigcirc (\neg x_1 \lor x_4) \land (x_1 \lor (\neg x_2 \land x_3))$
 - $\bigcirc \neg (x_1 \lor x_2)$
 - $\sqrt{\neg x}$
 - $\sqrt{x_2 \wedge (x_1 \vee x_2) \wedge x_3}$
 - $\sqrt{x_1} \vee \neg x_2$
 - $\bigcirc (\neg x_1 \Rightarrow x_2) \land (\neg x_1 \Leftrightarrow \neg x_2)$
- (e) (5 bodů) Převeďte formuli $\psi(x,y)=(\neg x_1\wedge x_2)\Leftrightarrow (x_1\Rightarrow \neg x_2)$ do CNF. Uveďte tabulku pravdivostních hodnot.

Řešení: Tabulka pravdivostních hodnot pro ψ :

x_1	x_2	$\neg x_1 \wedge x_2$	$x_1 \Rightarrow \neg x_2$	$\psi(x,y)$
0	0	0	1	0
0	1	1	1	1
1	0	0	1	0
1	1	0	0	1

$$\overline{\psi'(x,y) = (x_1 \vee x_2) \wedge (\neg x_1 \vee x_2)}$$

- 3. (5 bodů) Algoritmus DPLL
 - (a) (2 body) K čemu slouží algoritmus DPLL? Co je jeho vstupem?

Řešení: Algoritmus DPLL slouží k rozhodnutí, zda je formule splnitelná. Vstupem je formule v CNF.

(b) (3 body) Máme formuli $\varphi(x, y, z) = (y \vee \neg z) \wedge (x \vee \neg y) \wedge (\neg y \vee \neg x \vee \neg z) \wedge (\neg x \vee y)$. Napište výslednou formuli φ' po aplikaci procedury **pure literal elimination**.

Řešení:
$$\varphi'(x,y,z) = (x \vee \neg y) \wedge (\neg x \vee y)$$

4. **(Bonus)** Odvoď te časovou složitost algoritmu DPLL. (Stačí odvodit danou rekurentní rovnici a pak uvést její řešení v O-notaci. Řešit ji nemusíte.)

Řešení: V nejhoriším případě algoritmus eliminuje pouze jeden literál z formule φ , kde počet literálů označíme n. Při každém volání funkce strávíme konstantní čas c a následně rekurzivně voláme dvakrát funkci na vstup velikosti n-1. Označíme-li počet kroků algoritmu T(n) pro formuli φ , pak platí

$$T(n) = c + 2 \cdot T(n-1).$$

Lze ukázat, že $T(n) = \mathcal{O}(2^n)$.