Analysis III

Homework

Exercises (homework) can be found in the script at the end of each Chapter.

Chapter I: #3 (only for convex sets), #4 due Th 4-25

Chapter II: # 2,4,5,6 due Th 5-2 Chapter III: # 3c, 4 due Th 5-9 Chapter IV: # 2b, 3, 4, 6 due Th 5-16 Chapter V: # 2,4,6 due Th 5-25 Chapter VI: # 2,3,4 due Th 6-1

Key Dates

Instruction begins: Mo, April 1
Instruction ends: Fr, June 7
Final's week: June 10, 12 (Mo Th

Final's week: June 10-13 (Mo-Th)

Holiday: Mo, May 27

April 2, 2024

No class Thursday, April 04. Makeup class (tentatively) on Friday, April 12 at 10:30. Discussion sections on Fridays (tentatively) at 11:40.

Topological Vector Spaces

Definition: Vector Spaces

V over a field \mathbb{F} (\mathbb{R} or \mathbb{C}).

Definition: Topological Spaces

 (X, τ) where $\tau \subseteq \mathcal{P}(X)$ satisfying

- 1. $\emptyset, X \in \tau$
- 2. $A, B \in \tau \implies A \cap B \in \tau$
- 3. $A_{\omega} \in \tau \implies \bigcup_{\omega} A_{\omega} \in \tau$

Recall: $A \in \tau \iff A \text{ open } \iff X \setminus A \text{ closed.}$

 $A^{\circ} = \bigcup_{\substack{U \subseteq A \\ U \text{ open}}} U$ the set of interior points of A.

 $\overline{A} = \bigcap_{\substack{F \supseteq A \\ F \text{ closed}}} \text{ the closure of } A.$

A' limit points of A.

Compact sets.

Locally compact sets.

Recall: *X* is Hausdorff iff $\forall x, y \in X$, $\exists U, V \in \tau$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Definition: Bases for Topological Spaces

Definition: Let (X, τ) be a topological space. $\sigma \subseteq \tau$ is called a base for topology τ if $\forall x \in X, \ \forall U \in \tau, \ x \in U, \ \exists W \in \sigma$ such that $x \in W \subseteq U$.

Proposition

 $\sigma \subseteq \tau$ is a base for τ if and only if every $U \in \tau$ is the union of certain sets taken from σ .

$$(*) \quad \tau = \left\{ \bigcup_{\omega \in \Omega} W_{\omega} : \{W_{\omega}\}_{\omega \in \Omega} \subseteq \sigma, \Omega \right\}$$

Proof

 (\longleftarrow) \checkmark (\Longrightarrow) Take $U \in \tau$ and let $x \in U$, \leadsto find $W_x \in \sigma$, $x \in W_x \subseteq U$.

$$U = \bigcup_{x \in U} \{x\} \subseteq \bigcup_{x \in U} W_x \subseteq U$$

Therefore $\bigcup_{x \in U} W_x = U$.

Proposition

If σ is a base for some topology τ on X, then

- 1. $\forall x \in X, \exists W \in \sigma \text{ such that } x \in W.$
- 2. $\forall U, V \in \sigma$, $\forall x \in U \cap V$, $\exists W \in \sigma$ such that $x \in W \subseteq U \cap V$.

Conversely, if $\sigma \in \mathcal{P}(X)$ ($\varnothing \notin \sigma$) satisfies (1) and (2), then σ is the base for a topology τ (and τ is given by (*)). Note that $U, V \in \tau \implies U \cap V \in \tau$ (requires (2)). If $U = \bigcup U_{\alpha}$ and $V = \bigcup V_{\beta}$, then $U \cap V = \bigcup_{\alpha,\beta} (U_{\alpha} \cap V_{\beta}) = \bigcup_{\alpha,\beta} \bigcup_{x \in U} W_{\alpha,\beta,x}$.

Example: Metric Spaces

(X, d) is a metric space if $d: X \times X \to [0, +\infty)$ satisfies

- 1. d(x, y) = 0 if and only if x = y.
- 2. d(x, y) = d(y, x).
- 3. $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

Definition: Epsilon Neighborhoods

$$B_{\varepsilon}(x) = \{ y \in x : d(x, y) < \varepsilon \}$$

2

 $A \subseteq X$ is open if and only if $\forall x \in A$, $\exists \varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq A$. $x \in B_{\varepsilon}(x)$. $\tau = \text{set of all open sets.}$

$$\sigma_1 = \{B_{\varepsilon}(x) : x \in X, ; \varepsilon > 0\}$$

is a base for the topology τ .

$$\sigma_2 = \left\{ B_{1/n}(x) : x \in X, \ n \in \mathbb{N} \right\}$$

is also a base for τ .

Definition: Direct Product - Product Topology

Let (X_1, τ_1) and (X_2, τ_2) be topological spaces. Consider $X = X_1 \times X_2$. The product topology τ on X is given by the base

$$\sigma = \{U_1 \times U_2 \,:\, U_1 \in \tau_1, \; U_2 \in \tau_2\}$$

More explicitly,

$$\tau = \left\{ \bigcup_{\omega} U_{1,\omega} \times U_{2,\omega} : U_{i,\omega} \in \tau_i \right\}$$

 $(X_{\omega}, \tau_{\omega})$ topological spaces $(\omega \in \Omega)$

$$X = \prod_{\omega \in \Omega} = \{(x_{\omega})_{\omega \in \Omega} : x_{\omega} \in X_{\omega}\}$$

Formally, $f \cong (x_{\omega})_{\omega \in \Omega}$, $x_{\omega} = f(\omega)$, $f : \Omega \to \bigcup_{\omega \in \Omega} X_{\omega}$ such that $f(\omega) \in X_{\omega}$. $[x \neq \emptyset \longleftarrow X_{\omega} \neq \emptyset \text{ axiom of choice}]$

$$\sigma = \left\{ \prod_{\omega \in \Omega} U_{\omega} : U_{\omega} \in \tau_{\omega} \text{ and all but finitely many } U_{\omega} = X_{\omega} \right\}$$

Definition: Subspace Topology

Given (X, τ) and $Y \subseteq X$, then (Y, τ_Y) is also a topological space where

$$\tau_Y \{ U \cap Y : U \in \tau \}$$

Definition: Local Bases for Topological Spaces

A collection $\gamma \subseteq \tau$ is called a local base at $x \in X$ if

- 1. $\forall U \in \tau$, $x \in U$, $\exists W \in \gamma$ such that $x \in W \subseteq U$.
- 2. $\forall W \in \gamma, x \in W$

Example

Let (X, d) be a metric space.

$$\gamma_x = \{B_{\varepsilon}(x) : \varepsilon > 0\}$$

is a local base at x. Similarly,

$$\tilde{\gamma}_x = \{B_{1/n} : n \in \mathbb{N}\}$$

is a countable local base.

Proposition

If γ_x ($x \in X$) are local bases for τ at X, then

$$\sigma = \bigcup_{x \in X} \gamma_x$$

is a bse for τ .

Proposition

 $\{\gamma_x\}_{x\in X}$ are local bases at x for some topology τ if and only if

- 1. $\forall x \in X$, γ_x is a non-empty collection of subsets containing x.
- 2. If $U \in \gamma_x$, $V \in \gamma_y$, and $z \in U \cap V$, then $\exists W \in \gamma_z$ such that $z \in W \subseteq U \cap V$.

Definition: Topological Vector Spaces

Suppose V is a vector space over $\mathbb{F} = \mathbb{R}$, \mathbb{C} and let τ be a topology on V. Then V is a topological vector space (TVS) if

- 1. $\forall x \in V$, $\{x\}$ is closed.
- 2. The functions f, g (i.e. algebraic operations) are continuous.

$$f: V \times V \to V, f(x, y) = x + y$$

 $g: \mathbb{F} \times V \to V, g(\lambda, x) = \lambda \cdot x$

Notation

For $A_1, A_2 \subseteq V$ and $B \subseteq \mathbb{F}$,

$$A_1 + A_2 = \{ a_1 + a_2 : a_1 \in A_1, a_2 \in A_2 \}$$

$$a + A_1 = \{ a + \alpha : \alpha \in A \}$$

$$B \cdot A = \{ \beta \cdot a : \beta \in B, a \in A \}$$

$$\alpha \cdot A = \{ \alpha \cdot a : a \in A \}$$

Lemma

Let V be a TVS. Then

- 1. $\forall x, y \in V$, \forall open $U_{x+y} \ni x + y$, \exists open $U_x \ni x$, open $U_y \ni y$ such that $U_x + U_y \subseteq U_{x+y}$.
- 2. $\forall x \in V, \alpha \in \mathbb{F}, \forall \text{ open } U_{\alpha x} \ni \alpha x, \exists \text{ open } U_x \ni x, U_\alpha \ni \alpha \text{ such that } U_\alpha \cdot U_x \subseteq U_{\alpha x}.$

Proof of 1

Given $x, y \in X$, $x + y \in U_{x+y}$ open.

$$f(x,y) = x + y \in U_{x+y}$$

and $(x,y) \in f^{-1}(U_{x+y})$ open. In the product topology

$$(x,y) \in U_x \times U_y \subseteq f^{-1}(U_{x+y})$$

which implies $x \in U_x$ and $y \in U_y$, both open, and $U_x + U_y \le U_{x+y}$.

April 9, 2024

Office Hours: Th 11:30 AM - 1:00 PM

Makeup Class: Friday, April 12 at 11:00 AM.

Lemma 1

Let V be a TVS

- 1. $\forall x, y \in V, \ \forall U_{x+y} \ni x+y \ \text{open}, \ \exists U_x \ni x, U_y \ni y \ \text{such that} \ U_x + U_y \subseteq U_{x+y}.$
- 2. $\forall \alpha \in F, \ \forall U_{\alpha x} \ni \alpha x \text{ open, } \exists U_{\alpha} \ni \alpha \text{ open in } F, \ U_{x} \ni x \text{ such that } U_{\alpha} \cdot U_{x} \subseteq U_{\alpha x}.$

For 2. with $\alpha = 0$, $\forall x \in X$, $\forall U \ni 0$ open, $\exists \delta > 0$, $U_x \ni x$ open such that $B_\delta(0) \cdot U_x \subseteq U$. That is, $\beta U_x \subseteq U$, $\forall |\beta| < \delta$.

Proposition

In a TVS, the maps

- 1. Translation: $T_a: x \in V \mapsto X + a \in V \ (a \in V)$
- 2. Multiplication: $M_{\lambda}: x \in V \mapsto \lambda \cdot x \in V \ (\lambda \in \mathbb{F}, \ \lambda \neq 0)$

are continuous (in fact, homeomorphic).

Proof

We know $(x, y) \mapsto x + y$ and $(\lambda, x) \mapsto \lambda \cdot x$ are continuous.

Inversions

 $T_a \circ T_{-a} = \mathrm{id}, \ T_{-a} \circ T_a = \mathrm{id}, \ M_\lambda \circ M_{1/\lambda} = \mathrm{id}, \ \mathrm{and} \ M_{1/\lambda} \circ M_\lambda = \mathrm{id}.$

Therefore they are bijective and the inverses are continuous.

Remark

If U is open, then a + U is also open.

If γ_0 is a local base at 0, then $\gamma_x = \{x + U : U \in \gamma_0\} = x + \gamma_0$ is a local base at x.

Recall that γ_x is a local base at x if $\forall W \ni x$ open, $\exists U \in \gamma_x$ such that $x \in U \subseteq W$.

That is, in a TVS only local base at 0 are needed. We may interpret "local base" as "local base at 0".

$$\sigma = \bigcup_{x \in V} (x + \gamma_0)$$

is a base for the TVS.

Types of Topologial Vector Spaces

Normed Spaces / Banach Spaces

A normed space is a vector space over \mathbb{F} together with a norm $||\cdot||$, i.e. a map $||\cdot||: x \in V \mapsto ||x|| \in [0, \infty)$ such that

- 1. $||x|| = 0 \iff x = 0$.
- 2. $||x + y|| \le ||x|| + ||y||$.
- 3. $||\lambda x|| = |\lambda| \cdot ||x||$.

Remarks

A normed space is a metric space with d(x, y) = ||x - y||.

A local base (at 0) is given by ε -neighborhoods:

$$\gamma_0 = \{B_{\varepsilon}(0) : \varepsilon > 0\}$$

where

$$B_{\varepsilon}(0) = \{ x \in V : ||x|| < \varepsilon \}$$

(open ball with radius $\varepsilon > 0$).

Convergence in Normed Space

A sequence $\{x_n\}$ $(x_n \in V)$ converges to $\lambda \in V$ if $\lim_{n\to\infty} ||x_n - x|| = 0$.

A sequence $\{x_n\}$ is Cauchy if $\forall \varepsilon > 0$, $\exists N$ such that $\forall j, k \ge N$, $||x_j - x_k|| < \varepsilon$.

A normed space is complete if $\{x_n\}$ Cauchy implies $\exists x \in V$ such that $x_n \to x$.

Complete normed spaces are called Banach spaces.

Example 1

 $\ell^p(\mathbb{N})$, $1 \le p < \infty$, the set of all sequences $\{x_n\}_{n=1}^{\infty} = x$ such that

$$||x|| = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} < +\infty$$

Recall $\{x_n\}+\{y_n\}=\{x_n+y_n\}$ and $\lambda\{x_n\}=\{\lambda x_n\}$. ℓ^p spaces are complete and therefore Banach. If $\{x_n\}\in\ell^p$ and $\{y_n\}\in\ell^q$, then $\{x_ny_n\}\in\ell^r$, $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}\in[0,1]$ (e.g. $\ell^2\cdot\ell^2\leq\ell^1$)

Example 2

 $\ell^{\infty}(\mathbb{N})$, the set of all bounded sequences

$$||x|| = \sup_{n \in \mathbb{N}} |x_n| < +\infty$$

Example 3

 $C_0(\mathbb{N}) \subseteq \ell^p(\mathbb{N})$, the set of all sequences $\{x_n\}$

$$\lim_{n\to\infty} x_n = 0$$

 C_0 is a closed subspace, and both are Banach.

Example 4

 $L^p(\Omega)$, $1 \le p < \infty$, $\Omega \subseteq \mathbb{R}^d$ a Lebesgue measurable set with $m(\Omega) > 0$, the space of all equivalence classes of Lebesgue measurable functions $f: \Omega \to \mathbb{F}$ such that

$$||f|| = \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p} < +\infty$$

Example 5

 $L^{\infty}(\Omega)$, the measurable and essentially bounded functions

$$\begin{split} ||f|| &= \inf_{\substack{N \subseteq \Omega \\ m(N) = 0}} \sup_{x \in \Omega \backslash N} |f(x)| < + \infty \\ &= \operatorname{ess\ sup}_{x \in \Omega} |f(x)| \end{split}$$

 $L^p(\Omega)$ spaces, $1 \le p \le \infty$, are Banach.

Example 6

For $\Omega \neq \emptyset$, let $B(\Omega)$ the set of all bounded functions $f: \Omega \to \mathbb{F}$ with

$$||f|| = \sup_{x \in \Omega} |f(x)|$$

is a Banach space.

 $f_n \to f$ in $B(\Omega)$ if and only if f_n converges uniformly on Ω to f.

Example 7

Let Ω be a topological space and $BC(\Omega)$ the set of all bounded, continuous functions $f:\Omega\to\mathbb{F}$.

Then $BC(\Omega) \subseteq B(\Omega)$ is a closed Banach subspace under the same norm.

That is, the uniform limit of continuous functions is a continuous function.

$$f_n \to f \Longrightarrow f \in B(\Omega)$$

Example 8

Let K be a compact, Hausdorff space.

Then C(K) is the set of all continous functions $f: K \to \mathbb{F}$ and C(K) = BC(K).

F Spaces / pre-F Spaces

A pre-*F*-space is a TVS where the topology is given by some invariant metric d(x+z,y+z)=d(x,y) or d(x,y)=d(x-y,0).

An *F*-space is a complete pre-*F*-space.

A local base (at 0) is given by

$$\gamma_0 = \{B_{\varepsilon}(0) : \varepsilon > 0\}, \quad B_{\varepsilon}(x) = \{y \in V : d(x, y) < \varepsilon\}$$

Example 1

 $\ell^p(\mathbb{N}), 0 , the set of all <math>\{x_n\}_{n=1}^{\infty}$ such that

$$\sum_{n=1}^{\infty} |x_n|^p < +\infty$$

with

$$d(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|^p$$

Note that this obeys the triangle inequality specifically because it has not been raised to 1/p.

$$d(\lambda x, \lambda y) = |\lambda|^p \cdot d(x, y)$$

means that d(z,0) is not a norm.

Here, $B_{\varepsilon}(x)$ are not convex sets.

Side Remark

Given \mathbb{R}^2 , the ℓ^p norm for $1 \le p \le \infty$ is given by

$$||(x_1, x_2)|| = (|x_1|^p + |x_2|^p)^{1/p}$$

and the distance for 0 by

$$d((x_1, x_2))) = |x_1|^p + |x_2|^p$$

The ε neighborhoods for p=1 are diamonds, p=2 circles, $p=\infty$ squares with smooth transition between them. However, for 0 , we have concave diamond shapes.

These norms and metrics are all equivalent on \mathbb{R}^2 in the sense that they give the same topology.

Locally Convex TVS

A TVS which has a local base γ at 0 consisting of open neighborhoods of 0 which are all convex.

Definition: Convex Set

A set $A \subseteq V$ is convex if $\forall x, y \in A, \lambda \in [0,1]$, then $\lambda x + (1-\lambda)y \in A$ Alternatively, the line segment between x and y is contained in A ($[x, y] \subseteq A$).

Fréchet Spaces and pre-Fréchet Spaces

A pre-Fréchet space is locally convex. A Fréchet space is a locally convex *F*-space.

April 11, 2024

Fréchet Spaces

Example

 $S = \{\{\{x_n\}_{n=1}^{\infty} \text{ the space of all sequences } x_n \in \mathbb{F}.$

$$d(\{x_n\},\{y_n\}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{|x_n - y_n|}{1 + |x_n - y_n|} < +\infty$$

Triangle inequality:

$$\frac{a+b}{1+a+b} \le \frac{a}{1+a} + \frac{b}{1+b}, \quad a, b \ge 0$$

invariant metric, complete.

 $\gamma_0 = \{B_{\varepsilon}(0) : \varepsilon > 0 \text{ is a local base.}$

 $\hat{\gamma}_0 = \{U_{\varepsilon,N} : \varepsilon > 0, N \in \mathbb{N}\}.$

 $U_{\varepsilon,N} = \{\{x_n\}_{n=1}^{\infty} : |x|_n < \varepsilon, \forall n = 1, \dots, n\}.$

 $\forall \varepsilon > 0, \exists \hat{\varepsilon} > 0, N \text{ such that } U_{\hat{\varepsilon},N} \subseteq B_{\varepsilon}(0).$

 $\forall \hat{\varepsilon} > 0, N, \exists \varepsilon > 0 \text{ such that } B_{\varepsilon}(0) \subseteq U_{\hat{\varepsilon},N}.$

 $x^{(m)} \to x \text{ in metric of } \mathcal{S} \text{ as } m \to \infty.$ $x^{(m)} = \{x_n^{(m)}\}_{n=1}^{\infty}, \ x = \{x_n\}_{n=1}^{\infty} \text{ if and only if } \forall n \in \mathbb{N}, \ x_n^{(m)} \to x_n \text{ as } m \to \infty \text{ (pointwise, componentwise convergence)}.$

Example

 $C(\mathbb{R}^d)$, the set of continuous functions $f:\mathbb{R}^d\to\mathbb{F}$.

$$|||f|||_N = \sup_{\substack{x \in \mathbb{R}^d \\ ||x|| \le N}} |f(x)|$$

$$d(f,g) = \sum_{N=1}^{\infty} \frac{1}{2^N} \cdot \frac{|||f - g|||_N}{1 + |||f - g|||_N}$$

Complete Fréchet space.

"Locally uniform congergence" such that $f_n \to f$ in metric of $C(\mathbb{R}^d)$ if and only if \forall compact set $K \subseteq \mathbb{R}^d$, f_n converges to f uniformly on K.

Example

 $C^{\infty}[0,1]$ the set of infinitely differentiable functions $f:[0,1] \to \mathbb{F}$.

$$|||f|||_n = \sup_{x \in [0,1]} |f^{(n)}(x)|$$

$$d(f,g) = \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot \frac{|||f - g|||_n}{1 - |||f - g|||_n}$$

Fréchet space.

 $f_m \to f$ in $C^{\infty}[0,1]$ as $m \to \infty$ if and only if for every $m \in \{0,1,\ldots\}, f_m^{(n)} \to f^{(n)}$ uniformly on [0,1] as $m \to \infty$.

Proposition

Every TVS is Huasdorff.

Proof

Let $x, y \in V$, $x \neq y$.

For $U = V \setminus \{0\}$, and open set, $x - y \in U$. Using the continuity of $(x^2, y^2) \mapsto x^2 - y^2$ and Lemma 1, there exist $U_x \ni x$ and $U_y \ni y$ open such that $U_x - U_y \subseteq U$. Note that $U_x \cap U_y = \emptyset$, otherwise there would exist $z \in U_x \cap U_y$ such that $0 = z - z \in U_x - U_y \subseteq U$ a contradiction.

Definition: Balancedness

A subset *U* of a vector space *V* is called balanced if $\forall \lambda \in \mathbb{F}$, $|\lambda| \le 1$, $\lambda U \subseteq U$.

Example

For $V = \mathbb{R}^2$, $\mathbb{F} = \mathbb{R}$, an ellipse is convex and balanced.

Note that since $\lambda = 0$ is a valid choice, 0 is always in a balanced set.

A retangle, offset from the origin, is convex but not balanced.

A concave diamond centered at 0 may be balanced.

An annulus is neither.

Exercise

Show that for $V = \mathbb{C}$, $\mathbb{F} = \mathbb{C}$, the balanced, convex sets are the open and closed disks along with the entire plane.

Proposition

- 1. Every TVS has a balanced, local base.
- 2. Every locally convex TVS has a balanced and convex local base.

Proof of A

e.g. $\gamma = \{U : U \text{ open, } 0 \in U\}.$

For every $U \in \gamma$, construct another \hat{U} open, $0 \in \hat{U} \subseteq U$ balanced.

Then $\hat{\gamma} = {\hat{U} : U \text{ taken from } \gamma}$ is a local base.

Use Lemma 1 again and the continuity of $(\lambda, x') \mapsto \lambda \cdot x'$ at $\lambda = 0$, x' = 0.

Given open $U \ni 0$, find $\delta > 0$ and open $U_0 \ni 0$ such that $B_{2\delta}(0) \cdot U_0 \subseteq U$.

Then for $\alpha \in \mathbb{F}$, $|\alpha| \leq \delta$, $\alpha \cdot U_0 \subseteq U$. Take

$$\hat{U} = \bigcup_{\substack{\alpha \in \mathbb{F} \\ |\alpha| \le \delta}} \alpha \cdot U_0$$

Therefore \hat{U} is a union of open sets and $0 \in \hat{U} \subseteq U$. Finally, for $|\lambda| \le 1$,

$$\lambda \cdot \hat{U} = \bigcup_{\substack{\alpha \in \mathbb{F} \\ |\alpha| < \delta}} \lambda \cdot \alpha \cdot U_0 = \bigcup_{\substack{\beta \\ |\beta| \le |\lambda| \cdot \delta \le \delta}} \beta U_0 = \hat{U}$$

Proof of B

We have a local base $\gamma=\{U_\omega\},\ U_\omega\ni 0$ open and convex. We want to construct $\hat{\gamma}=\{\hat{U}_\omega\},\ \hat{U}_\omega\ni 0$ open, convex and balanced. Given U convex, define

$$\hat{U} = \bigcap_{|\alpha| \le \delta} \alpha U$$

convex and balanced.

Need to show that $\hat{U} \ni 0$ is an open neighbrhood.

Rest of the owl left to the reader.

Recall

The intrinsic characterization of a base for a topological space or a local base for a topological space X, $\{\gamma_x\}_{x\in X}$.

- $\forall x \in X, U \in \gamma_x, x \in U$
- $\forall x, y \in X, U \in \gamma_x, V \in \gamma_y, z \in U \cap V, \exists W \in \gamma_z, W \subseteq U \cap V.$

Proposition

A balanced, local base γ (at 0) of a TVS V has the following properties:

- 1. γ is a nonempty collection of subsets of V containing 0.
- 2. $\forall U_1, U_2 \in \gamma$, $\exists U \in \gamma$ such that $U \subseteq U_1 \cap U_2$.
- 3. $\forall U \in \gamma, x \in U, \exists W \in \gamma \text{ such that } x + W \subseteq U.$

- 4. $\forall U \in \gamma$, $\exists W \in \gamma$ such that $W + W \subseteq U$ (continuity of $(x, y) \mapsto x + y$ at (x = y = 0).
- 5. $\forall U \in \gamma, \ \forall x \in V, \ \exists t > 0, \ x \in t \cdot U$ (continuty of scalar multiplication $(\lambda, x') \mapsto \lambda x'$ at $\lambda = 0, \ x' = x$).

$$\frac{1}{t} \cdot x \in U, \ \frac{\delta}{2} \cdot x \subset B_{\delta}(0) \cdot \hat{U} \subseteq U.$$

6. $\forall x \in V, x \neq 0, \exists U \in \gamma, x \notin U (\{x\} \text{ closed}; 0 \in V \setminus \{x\} \text{ open}; 0 \in U \subseteq V \setminus \{x\}).$ (Hausdorff)

Converse

Conversely, if γ satisfies properties 1-6, then there exists a unique topology on V such that γ is a balanced, local base for V and V with this topology is a TVS.

Theorem:

Any two TVS of finite dimension d (over $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) are homeomorphic to eachother.

Proof

Let V be a TVS with $\dim(V) = d$. We want to show that $V \cong \mathbb{F}^d$. We have

$$V = \lim\{v_1, \dots, v_d\}$$

a basis and

$$f:(\lambda_1,\ldots,\lambda_n)\in\mathbb{F}^d\mapsto\sum_{i=1}^d\lambda_i\nu_i\in V$$

an isomorphism between \mathbb{F}^d and V as vector spaces. Further, f is continuous. Consider \mathbb{F}^d equipped with the product topology and the continuity of addition and scalar multiplication.

We need only that f^{-1} is continuous at 0 which is equivalent to $\forall U \ni 0$ open in \mathbb{F}^d , $\exists W \ni 0$ open in V such that $W \subseteq f(U)$ $((f^{-1})^{-1}(U))$.

April 12, 2024

Lemma

 $\forall U \ni 0$ open in \mathbb{F}^d , $\exists W \ni 0$ open such that $f(U) \supseteq W$. That is, 0 is an interior point of f(U).

Proof

 $f: \mathbb{F}^d \to V$, continuous.

We may assume without loss of generality that $U = B_1(0)$.

Let $S = \{\lambda \in \mathbb{F}^d : ||\lambda|| = 1\}$, a compact set.

Since f continuous, f(S) is compact in V. Since V is Hausdorff, f(S) is closed.

Take $\hat{U} = V \setminus f(S) \ni 0$ open (because $0 \notin f(S)$ else $f(\lambda) = 0$ would imply $||\lambda|| = 1$)

Now, there exists a balanced, open set $0 \in W \subseteq \hat{U}$. Therefore, $W \subseteq f(U)$.

Otherwise, $x \in W$, $x \notin f(U)$, $x = f(\lambda)$, $\lambda \notin U$, $||\lambda|| \ge 1$ would give $\frac{\hat{x}}{||\lambda||} = \frac{1}{||\lambda||} \cdot f(\lambda) = f\left(\frac{\lambda}{||\lambda||}\right) \in f(S)$.

But, $\frac{x}{||\lambda||} \in W \subseteq \hat{U}$ because $x \in W$, $\frac{1}{||\lambda|} \in [0,1]$ and W is balanced shows a contradiction.

Theorem

Any finite-dimensional subspace in a TVS is closed.

Theorem

Every locally compact TVS is finite-dimensional.

Definition: Locally Compact

V is locally compact if $\forall x \in V$, $\exists U \ni x$ open and $K \subseteq V$ such that $U \subseteq K$. For Hausdorff spaces, $\forall x \in V$, $\exists U \ni x$ open such that \overline{U} compact.

Example

Let V be a normed space, $\dim(V) = +\infty$. Then $\overline{B_1(0)}\{x \in V : ||x|| \le 1\}$ is not compact.

Definition: Semi-norm

A semi-norm on a metric space V (over $\mathbb{F} = \mathbb{R}$, \mathbb{C}) is a map

$$p: V \to [0, +\infty)$$

such that

1.
$$p(x+y) \le p(x) + p(y)$$

2.
$$p(\lambda x) = |\lambda| \cdot p(x)$$
.

Note that p(0) = 0 and $(p(x - y) \ge |p(x) - p(y)|$.

$$N_p = \{x \in V : p(x) = 0\}$$

is a linear subspace of $V: x, y \in N$ such that $p(x+y) \le p(x) + p(y) = 0$, $p(\lambda x) = 0$. A semi-norm on V induces a norm on the quotient space V/N_p .

$$||[x]_{N_p}|| = p(x) \quad [x]_N = \{x + z : z \in N\} = x + N$$

Definition: Absorbing

A set $A \subseteq V$ is called absorbing if $\forall x \in V$, $\exists \lambda > 0$ such that $\lambda x \in A$. Equivalently, $\bigcup_{\lambda > 0} \frac{1}{\lambda} A = V$.

There is a relationhip between semi-norms on V and balanced, convex and absorbing subsets of V.

Proposition

If p is a semi-norm on a vector space V, then

$$A = \{x \in V : p(x) < 1\}$$

is balanced, convex and absorbing.

Proof

Convex: $x, y \in A, p(x) < 1, p(y) < 1,$

$$p(\lambda x + (1 - \lambda)y) \le \lambda \cdot p(x) + (1 - \lambda)p(y) < 1$$

Balanced: $x \in A$, $|\lambda| \le 1$, p(x) < 1,

$$p(\lambda x) = |\lambda| \cdot p(x) < 1$$

Absorbing: $x \in V$. If p(x) = 0, then $x \in A$ $(\lambda = 1)$. If p(x) > 0, $\lambda = \frac{1}{2p(x)}$ gives $p(\lambda x) = |\lambda| \cdot p(x) = \frac{1}{2} < 1$.

Example

Let $V = \mathbb{R}^2$ and $\mathbb{F} = \mathbb{R}$.

An ellipse is balanced, convex and absorbing.

A band is also balanced, convex and absorbing.

An open interval along the axis is balanced and convex, but it is not absorbing.

Proposition

Each open neighborhood of 0 in a TVS is absorbing.

Proof

Continuity of the map $(\lambda, x) \mapsto \lambda x'$ at $\lambda = 0$ and x' = x. Given $x \in V$, $U \ni 0$ open, $\exists \delta > 0$, $W \ni x$ such that $B_r(0) \cdot W \subseteq U$ and $\frac{\delta}{2} \cdot x \in U$.

Definition: Minkowski Functional

Let A be a subset in a vector space V.

If A is absorbing, one can define the Minkowski functional

$$\mu_A(x) = \inf\left\{\lambda > 0 \ : \ \frac{x}{\lambda} \in A\right\} = \inf\{\lambda > 0 \ : \ x \in \lambda \cdot A\}$$

Proposition

If A is convex, balanced and absorbing, then μ_A is a semi-norm.

Proof

Absorbing $\rightarrow \mu_A$ is well defined, $\mu_A(x) \in [0, +\infty)$. For $\alpha \neq 0$,

$$\begin{split} \mu_A(\lambda x) &= \inf \left\{ \lambda > 0 \, : \, \frac{\alpha \cdot x}{\lambda} \in A \right\} \\ &= \inf \left\{ |\alpha| \cdot \lambda > 0 \, : \, \frac{\alpha \cdot x}{|\alpha| \cdot \lambda} \in A \right\} \quad (\lambda \mapsto |\alpha| \cdot \lambda) \\ &= |\alpha| \cdot \inf \left\{ \lambda > 0 \, : \, \frac{x}{\lambda} \in \frac{|\alpha|}{\alpha} A \right\} \\ &= |\alpha| \cdot \inf \left\{ \lambda > 0 \, : \, \frac{x}{\lambda} \in A \right\} \\ &= |\alpha| \cdot \mu_A(x) \end{split}$$

since A is balanced, $\frac{\alpha}{|\alpha|}A = A$.

Note that $\mu_A(0) = 0$ since $0 \in A$ balanced.

Given $x, y \in V$ and $\varepsilon > 0$, let $s = \mu_A(x) + \varepsilon$ and $t = \mu_A(y) + \varepsilon$. Then, since A is balanced, $\frac{x}{s}, \frac{y}{t} \in A$. By convexity,

$$\frac{x+y}{t+s} = \underbrace{\frac{s}{t+s}}_{(1-\sigma)} \cdot \underbrace{\frac{\epsilon A}{x}}_{s} + \underbrace{\frac{t}{t+s}}_{\sigma} \cdot \underbrace{\frac{\epsilon A}{y}}_{t} \in A$$

Therefore, $\mu_A(x+y) \le t+s$ which implies $\mu_A(x+y) \le \mu_A(x) + \mu_A(y) + 2\varepsilon$ for all $\varepsilon > 0$.

Equivalence between Semi-norm and ABC Sets

 $p \rightsquigarrow A = \{x : p(x) < 1\} \rightsquigarrow \mu_a = p.$

A bounded, convex, absorbing $\rightarrow \mu_A \rightarrow \tilde{A} = \{x : \mu_A(x) < 1\}$ where $\tilde{A} \subseteq A$ differing possibly by the boundary.

Question: which TVS are normable?

That is a norm such that the topology is vien by this norm.

Definition: Bounded Sets

A subset *A* in a TVS is bounded if $\forall U \ni 0$ open, $\exists \delta > 0$ such that $A \subseteq t \cdot U$, $\forall t > \delta$.

Theorem:

A TVS is normable if and only if there exists a bounded, convex, balanced, open neighborhood of 0.

Proof (Sketch)

Suppose V is a normed space with norm $||\cdot||$.

$$B = \{x \in V : ||x|| < 1\} = B_1(0)$$

is convex, balanced, and an open neighborhood of 0.

B is bounded, since given $U \ni 0$ open, $B_{\varepsilon}(0) \subseteq U$, so $B = \frac{1}{\varepsilon} \cdot B_{\varepsilon}(0) \subseteq \lambda B_{\varepsilon}(0) \subseteq \lambda \cdot U$ for $\lambda \ge \frac{1}{\varepsilon}$.

Now, let B be a bounded, convex, balanced, open neighborhood of 0 in a TVS.

Therefore B is absorbing (as an open neighborhood of 0).

It follows that the semi-norm $\mu_B(x)$ may be defined.

Then $\mu_B(x) = 0 \implies x = 0$ since B is bounded, otherwise $0 \in U = V \setminus \{x\}$ open gives $B \subseteq t \cdot U$, $\forall t > \delta$ and $\frac{1}{t}B \subseteq U$, $\forall t > \delta$.

Thus, $||x|| = \mu_B(x)$ is a norm on V.

One need only demonstrate that the norm topology is the same as the original topology on V.

That is, $\forall U \ni 0$ open, $\exists \varepsilon > 0$ such that $\varepsilon \cdot B \subseteq U$.

 $\forall \varepsilon > 0, \exists \hat{U} \ni 0$ open such that $\hat{U} \subseteq \varepsilon B$.