Exercices sur les nombres complexes : Partie 1

1- Soit
$$z = x + iy$$
 où $(x; y) \in IR^2$.
Soit $Z = z + 1 - 3i$

Quel est l'ensemble des points M(z) tel que :

- a. Z est un réel?
- b. Z est un imaginaire pur ?
- c. $z \cdot \overline{z} = 16$.

2- Soit
$$z = x + iy$$
 où $(x; y) \in IR^2$.
On pose $Z = \frac{z-1}{z+1}$ avec $z \neq -1$

1. Montrer que Z a pour forme algébrique :

$$Z = \frac{x^2 + y^2 - 1}{(x+1)^2 + y^2} + i\frac{2y}{(x+1)^2 + y^2}$$

- 2. Quel est l'ensemble des points M(z) tels que Z est :
 - a. Réel.
 - b. Imaginaire pur.
- 3- Donner la forme algébrique de $(1+i)^{2021}$.
- 4- On donne les nombres complexes suivants :

$$z_1 = -1 + 2i$$
 et $z_2 = 3 - 4i$

Déterminer la forme algébrique de :

a)
$$z_1 + z_2$$
 b) $z_1 - z_2$ c) $z_1 - 3z_2$ d) $z_1 \cdot z_2$

- 5- Donner la forme algébrique des nombres complexes suivants :
 - a) $(2+i)^2(1-3i)$
 - b) (5-2i)(1+4i)(2-i)
- 6- x et y sont deux nombres réels. Quelle est la forme algébrique de (x - 2 + iy)(x + 2 - iy)?

7- Déterminer la forme algébrique des nombres complexes suivants:

a)
$$i(1-i)$$

a)
$$i(1-i)$$
 b) $(2-3i)(4+i)$ c) $\frac{-1}{i}$

c)
$$\frac{-1}{i}$$

d)
$$\frac{1}{i}$$

e)
$$\frac{3+2i}{4-i}$$

e)
$$\frac{3+2i}{4-i}$$
 f) $\frac{1}{5-3i}$

g)
$$\frac{2}{1+i} - \frac{3}{1-i}$$
 h) $\frac{2+4i}{5-2i}$

h)
$$\frac{2+4i}{5-2i}$$

8- On donne les nombres complexes suivants :

$$z_1 = 1 - 2i$$

$$z_1 = 1 - 2i$$
 $z_2 = 3 + 2i$ $z_3 = 7 - 2i$

$$z_3 = 7 - 2i$$

Calculer:

a)
$$Re(z_1 + z_2 + z_3)$$

c)
$$Im(z_1z_2)$$

b)
$$Im(iz_1)$$

a)
$$Re(z_1 + z_2 + z_3)$$
 c) $Im(z_1z_2)$
b) $Im(iz_1)$ d) $Re(2z_1 - 3z_2 + z_3)$

9- Placer dans un repère orthonormé $(0; \vec{u}, \vec{v})$ les points A, B, C et D d'affixes respectives : $z_A = -3 + i$; $z_B = 1 + 3i$; $z_C = 3 + i$; $z_D = -3 - 2i$

$$z_A = -3 + i$$

$$z_B = 1 + 3i$$

$$z_C = 3 + i$$

$$z_D = -3 - 2i$$

Montrer que ABCD est un trapèze.

Placer dans un repère orthonormé $(0; \vec{u}, \vec{v})$ les points A, B, C et D d'affixes respectives :

$$z_A = \frac{3}{2}i$$
, $z_B = \frac{7}{2} + i$, $z_C = 1 - \frac{3}{2}i$ et $z_D = -\frac{5}{2} - i$

Quelle est la nature du quadrilatère ABCD? Justifier.

Placer dans un repère orthonormé $(0; \vec{u}, \vec{v})$ les points A, B, C et D d'affixes respectives :

$$z_A = -4 + 2i$$
, $z_B = -3 - i$, $z_C = 3 + i$ et $z_D = 2 + 4i$

Quelle est la nature du quadrilatère ABCD? Justifier.

12- Exprimer dans chacun des cas suivants \overline{Z} en fonction de \overline{z} .

a)
$$Z = -2 + iz$$

b)
$$Z = (i + z)(2 - iz)$$

c)
$$Z = (2iz + 3)^2$$

$$d) Z = \frac{1+iz}{2z-i}$$

13- Soit z = x + iy un nombre complexe avec $(x; y) \in IR^2$. Répondre par Vrai ou Faux en justifiant :

a) Si
$$Z = 3 + z + \overline{z} + i(1+i)^2 + i(z-\overline{z}) + 4z\overline{z}$$

Alors Z est un réel.

b) Si
$$Z = 4i^9 - 5i + z - \overline{z} + 3i(z + \overline{z})$$

Alors Z est un imaginaire pur.

14- Soit z = x + iy un nombre complexe avec $(x; y) \in IR^2$. Préciser dans chacun des cas suivants si Z est réel ou imaginaire pur ou ni l'un ni l'autre.

a)
$$Z = z + \overline{z} - 4i$$

b)
$$Z = z - \overline{z} + 6i$$

c)
$$Z = z\overline{z} - z + \overline{z}$$

d)
$$Z = \overline{z}(z+i) + i(7i-z)$$

15- Soit
$$z_1 = \frac{3-i}{4+i}$$
 et $z_2 = \frac{3+i}{4-i}$

Sans avoir à passer aux formes algébriques de z_1 et z_2 , peut-on affirmer que $z_1 + z_2$ est un réel ?

16- Résoudre dans Cles équations suivantes :

$$(3-i)z = 4 + 2i$$

$$(5+i)\overline{z} = 3 - 7i$$

17- Résoudre dans Cles équations suivantes :

a)
$$3iz - 4 + 5i = (1 - 4i)z + 9$$

b)
$$(3+2i)z = 4iz - 5$$

c)
$$z^2 - (5+7i)^2 = 0$$

d)
$$z^2 + 8 = 0$$

e)
$$iz^2 + (4 - 7i)z = 0$$

$$f) \frac{z+3}{z-3} = 2i$$

18-Résoudre dans Cles équations suivantes :

a)
$$2i(z+4) - 3\overline{z} = 6 - 4i$$

b)
$$4(z+3i) = 5i\overline{z}$$

c)
$$-4iz + 5\overline{z} + 2i = 2 - 5i$$

Déterminer les racines carrées des nombres complexes suivants:

a.
$$-3 + 4i$$

b.
$$7 - 24i$$

c.
$$-21 + 20i$$

Résoudre dans C les équations suivantes : 20-

a)
$$z^2 + 3z - 4 = 0$$

b)
$$z^2 + z + 1 = 0$$

b)
$$z^2 + z + 1 = 0$$
 c) $z^2 + 4z + 4 = 0$

d)
$$z^2 - 2z + 2 = 0$$

e)
$$3z^2 + 2z + 1 = 0$$
 f) $z^2 + 5z + 7 = 0$

f)
$$z^2 + 5z + 7 = 0$$

g)
$$z^2 + 2z - 3 = 0$$

h)
$$z^4 + 4z^2 + 4 = 0$$

h)
$$z^4 + 4z^2 + 4 = 0$$
 i) $\bar{z} - 3z - 13 = 5 - 9i$

$$j) \frac{z^2 - z}{z^2 + 4} = 2$$

21- Résoudre dans l'ensemble des nombres complexes C l'équation $z^3 = 1$.

Pour quelle valeur de a le nombre complexe 3 - i est-il une solution de l'équation $z^2 - 6z + a = 0$? Donner alors l'autre solution de cette équation.

- 23- On donne l'équation (E): $z^3 12z^2 + 48z 128 = 0$
 - 1. Vérifier que 8 est une solution particulière de (E).
 - 2. a) Déterminer les réels a, b et c tels que pour tout z de \mathbb{C} :

$$z^3 - 12z^2 + 48z - 128 = (z - 8)(az^2 + bz + c)$$

b) Résoudre dans $\mathbb C$ l'équation (E).

Activité de découverte :

Placer les points suivants dans un repère orthonormé $(0; \vec{u}, \vec{v})$:

$$A(3), B(-5), C(-2i), D(4i),$$

 $E(1+i), F(-1+i),$
 $G(-1-i)$ et $H(1-i)$

Puis compléter le tableau suivant :

Nombre complexe z	z = OM	$arg(z) = (\vec{u}, \overrightarrow{OM})(2\pi)$
$z_A = 3$		
$z_B = -5$		
$z_C = -2i$		
$z_D = 4i$		
$z_E = 1 + i$		
$z_F = -1 + i$		
$z_G = -1 - i$ $z_H = 1 - i$		
$z_H = 1 - i$		
$z_I = -4 - 4i$		
$z_J = -5 + 5i$		

24- Déterminer :

$$arg(4-4i)$$
 $arg\left(\frac{-2}{1-i}\right)$ $arg\left(\frac{-1-i}{1+i}\right)$ $arg((-3i)^{24})$

19-Déterminer:

$$\arg\left(\frac{1+5i}{2-3i}\right) \qquad \arg\left(\frac{4-8i}{-4-2i}\right) \qquad \arg\left((1-2i)(-2-4i)\right)$$
$$\arg\left(2i(-3+3i)\right).$$

20-z est un nombre complexe non nul.

- a. Quel est l'ensemble des points M(z) tels que $\arg(z) = \frac{-\pi}{4} (2\pi)$? Le tracer.
- \vec{v} \vec{v}

b. Quel est l'ensemble des points M(z) tels que $\arg(z) = \frac{\pi}{6}(\pi)$? Le tracer.

c. Quel est l'ensemble des points M(z) tels que $\arg(z) = -\frac{\pi}{8} (\pi)$? Le tracer.

21-Dans un repère orthonormé $(0; \vec{u}, \vec{v})$:

Faire une figure dans chacun des cas suivants puis répondre aux questions suivantes :

1) Soient A(1+5i), B(1+2i)

Que vaut $(\vec{u} \ \overrightarrow{AB})$?

2) Soient C(2), D(-8)

Que vaut $(\vec{u} \ \overrightarrow{CD})$?

3) Soient E(4-6i), F(2-8i)

Que vaut $(\vec{u} \ \overrightarrow{EF})$?

4) Soient G(-7), H(2)

Que vaut $(\vec{u} \ \overrightarrow{GH})$?

5) Soient
$$I(-3+2i)$$
, $J(-3+7i)$

Que vaut
$$(\vec{u} \ \vec{l} \vec{J})$$
?

6) Soient
$$K(4+2i)$$
, $L(1+5i)$

Que vaut
$$(\vec{u} \ \vec{K}\vec{L})$$
?

22-Dans chacun des cas suivants, on a représenté un ensemble (E) des points M du plan d'affixe z.

Caractériser l'ensemble (E) à l'aide de |z| ou de arg (z).

1)

3)

4)

23-On donne dans un repère orthonormé les points suivants :

$$A(2-3i)$$
 $B(-1+4i)$ et $C(-5+2i)$

Dans chacun des cas suivants, déterminer l'ensemble des points M(z), puis le tracer :

a.
$$|z-2+3i|=2$$

b.
$$|z-2+3i| = |z+1-4i|$$

c.
$$|z-2+3i| = |z+1-4i| = |z+5-2i|$$

24-On donne dans un repère orthonormé les points suivants :

$$A(-4i)$$
, $B(-1+3i)$, $C(-2)$ et $D(4i)$.

Dans chacun des cas suivants, déterminer l'ensemble des points M(z), puis le tracer :

a.
$$|iz - 4| = 2$$

b.
$$|\overline{z} + 1 + 3i| = |z + 2|$$

c.
$$|\bar{z} - 4i| = 3$$

d.
$$arg(z + 4i) = \frac{\pi}{3}(2\pi)$$

e.
$$\arg(iz + 3 + i) = -\frac{\pi}{6}(\pi)$$
 et $|z + 1 - 3i| > 2$
f. $\arg(2\overline{z} + 8i) = \frac{3\pi}{4}(2\pi)$ et $|2iz + 8| \le 6$

f.
$$\arg(2\overline{z} + 8i) = \frac{3\pi}{4}(2\pi)$$
 et $|2iz + 8| \le 6$

25-Dans chacun des cas suivants, déterminer l'ensemble des points M(z) et le représenter.

a.
$$6 < |-2i\overline{z} + 8| \le 10$$
.

b.
$$-\frac{\pi}{4} < \arg(-3i\overline{z} - 9) \le \frac{\pi}{3}$$
 (2 π)

b.
$$-\frac{\pi}{4} < \arg(-3i\overline{z} - 9) \le \frac{\pi}{3}$$
 (2π)
c. $-\frac{\pi}{4} < \arg(-3i\overline{z} - 9) \le \frac{\pi}{3}$ (π)

Exercices sur les nombres complexes : Partie 2

Exercice 1:

Dans chacun des cas suivants, donner une forme trigonométrique et une forme exponentielle de z.

- a) z est un nombre complexe tel que $\begin{cases} |z|=1\\ \arg(z)=\frac{\pi}{7}(2\pi) \end{cases}$
- b) z est un nombre complexe tel que $\begin{cases} |z| = 3\\ \arg(z) = -\frac{\pi}{5}(2\pi) \end{cases}$
- c) z = 1 + i
- d) z = -1 + i
- e) z = 5i
- f) z = -1 i
- g) z = -7i
- h) z = 1 i
- i) z = -2 + 2i
- j) z = 4 4i
- k) z = 8
- I) z = -6

m)z = x avec x un réel strictement positif

n) z = x avec x un réel strictement négatif

o) z = iy avec y un réel strictement positif

p) z = iy avec y un réel strictement négatif

Exercice 2:

Dans chacun des cas suivants dire s'il s'agit d'une forme trigonométrique.

Sinon donner une forme trigonométrique et une forme exponentielle de z.

a)
$$z = 2\left(\cos\left(\frac{\pi}{5}\right) + i\sin\left(\frac{\pi}{5}\right)\right)$$

b)
$$z = -2\left(\cos\left(\frac{\pi}{5}\right) + i\sin\left(\frac{\pi}{5}\right)\right)$$

c)
$$z = 4\left(-\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$$

d)
$$z = 7\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$$

e)
$$z = 6\left(\sin\left(\frac{\pi}{3}\right) + i\cos\left(\frac{\pi}{3}\right)\right)$$

Exercice 3:

Donner une forme trigonométrique et une forme exponentielle de chacun des nombres complexes suivants :

$$z_1 = \cos\left(\frac{\pi}{6}\right) - i\sin\left(\frac{\pi}{6}\right)$$

$$z_2 = -\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)$$

$$z_2 = -\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)$$

$$z_3 = -\cos\left(\frac{\pi}{7}\right) - i\sin\left(\frac{\pi}{7}\right)$$

$$z_4 = -7\left(\cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right)\right)$$

$$z_5 = -\sin\left(\frac{\pi}{9}\right) + i\cos\left(\frac{\pi}{9}\right)$$

Exercice 4:

Donner une forme trigonométrique et exponentielle de chacun des nombres suivants :

$$z_1 = \sqrt{3} - i\sqrt{3}$$

$$z_2 = 2i$$

$$z_3 = \frac{1}{1+i}$$

Exercice 5:

Donner une forme trigonométrique et exponentielle de chacun des nombres suivants :

$$z_1 = -2(\cos(\theta) + i\sin(\theta))$$
 $z_2 = 3(\sin(\theta) + i\cos(\theta))$

Exercice 6:

- 1. Donner une forme exponentielle de $z = (-1 i\sqrt{3})(-1 + i)$
- 2. Donner une forme algébrique de $z = (-1 i\sqrt{3})(-1 + i)$
- 3. En déduire les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 7:

Donner une forme trigonométrique et exponentielle de chacun des nombres suivants:

$$z_1 = 2\sqrt{3} - 2i$$

$$z_2 = (2 - 2i) (3 + i\sqrt{3})$$

$$z_3 = \frac{\sqrt{3} - 3i}{1 - i}$$

Exercice 8:

Donner le module et un argument de chacun des nombres suivants :

$$z_1 = \sqrt{2}e^{i2\theta}$$

$$z_2 = -e^{-i\theta}$$

$$z_2 = -e^{-i\theta}$$
$$z_3 = -2ie^{i\theta}$$

Exercice 9:

On donne les nombres complexes $z_1 = -1 - i$ et $z_2 = \frac{1}{2} + \frac{i\sqrt{3}}{2}$

- a. Donner une forme exponentielle de $\frac{z_1}{z_2}$.
- b. Donner la forme algébrique de $\frac{z_1}{z_2}$.
- c. En déduire la valeur exacte de $\cos\left(\frac{11\pi}{12}\right)$ et $\sin\left(\frac{11\pi}{12}\right)$.

Exercice 10:

Ecrire sous forme trigonométrique et sous forme exponentielle chacun des nombres complexes suivants :

$$z_{1} = \left[\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right]^{12}$$

$$z_{2} = \left(\sqrt{2} - i\sqrt{2}\right)\left(-\cos\left(\frac{\pi}{7}\right) + i\sin\left(\frac{\pi}{7}\right)\right)$$

$$z_{3} = (1+i)^{2020}(1-i)^{2021}$$

Exercice 11:

Ecrire sous forme exponentielle chacun des nombres complexes suivants :

$$z_{1} = -4ie^{i\frac{\pi}{3}} \qquad z_{2} = (-1 - i)e^{i\frac{\pi}{5}} \qquad z_{3} = \left(-4e^{-i\frac{\pi}{9}}\right)^{3}$$

$$z_{4} = \frac{6}{e^{i\frac{\pi}{8}}} \qquad z_{5} = \left(\frac{-2}{3e^{-i\frac{\pi}{7}}}\right)^{14} \qquad z_{6} = \frac{4i}{-8e^{i\frac{\pi}{3}}}$$

Exercice 12:

Soient les points A(2+3i) B(4-5i) et C(10+5i) dans un repère orthonormé $(0; \vec{u}, \vec{v})$ du plan alors :

- a) Ecrire sous forme exponentielle $\frac{z_C z_A}{z_B z_A}$.
- b) En déduire $\left|\frac{z_C z_A}{z_B z_A}\right|$ et $\arg\left(\frac{z_C z_A}{z_B z_A}\right)$
- c) En déduire la nature du triangle ABC.

Exercice 13:

Soient les points A(-2i) $B(-\sqrt{3}+i)$ et $C(\sqrt{3}+i)$ dans un repère orthonormé $(0; \vec{u}, \vec{v})$ du plan alors :

- a) Ecrire sous forme exponentielle $\frac{z_C z_A}{z_B z_A}$.
- b) En déduire $\left| \frac{z_C z_A}{z_B z_A} \right|$ et $\arg \left(\frac{z_C z_A}{z_B z_A} \right)$ (2π)
- c) En déduire la nature du triangle ABC.

Exercice 14:

- 1. Placer les points A B et C d'affixes respectives : $z_A = -\frac{1}{3} 2i$ et $z_B = 1 + 2i$ et $z_C = \frac{7}{3} + 6i$.
- 2. Les points A, B et C sont-ils alignés ?

Exercice 15:

On donne dans le plan complexe les points A B et C d'affixes respectives $z_A = -2$, $z_B = 1 + i$ et $z_C = -1 - 3i$.

- 1. Placer les points A B et C.
- 2. Quelle est la nature du triangle ABC?

Exercice 16: Vrai ou Faux?

Pour chacune des propositions suivantes, indiquez si elle est vraie ou fausse et donnez une démonstration de la réponse choisie.

Le plan complexe est ramené à un repère orthonormé $(0; \vec{u}, \vec{v})$.

- 1. A est le point d'affixe 2-5i et B est le point d'affixe 7-3i. Proposition 1 : Le triangle OAB est rectangle isocèle.
- 2. On note (Δ) l'ensemble des points M(z) tel que :

$$|z - i| = |z + 2i|$$

Proposition 2 : (Δ) est une droite parallèle à l'axe des réels.

3. z est un nombre complexe non nul.

Proposition 3 : Si $\frac{\pi}{2}$ est un argument de z, alors |i+z|=1+|z|

4. Soit $z = 3 + i\sqrt{3}$.

Proposition 4 : Pour tout entier naturel n non nul, z^{3n} est imaginaire pur.

5. z est un nombre complexe non nul.

Proposition 5 : Si |z| = 1, alors $z^2 + \frac{1}{z^2}$ est un nombre réel.

Exercice 17:

Déterminer la nature des ensembles de points suivants :

1)
$$|z - 3 + i| \ge 2$$
.

2)
$$z = 2 + 5i + 4e^{i\theta}$$
 avec $\theta \in]-\pi;\pi]$.

3)
$$\arg(z-2+3i) = \frac{\pi}{4}(\pi)$$

4)
$$z = 3 - 4i + 2ie^{i\theta}$$
 avec $\theta \in [-\frac{\pi}{2}; \frac{3\pi}{2}[$.

5)
$$z = -1 + 4i - 3e^{i\theta}$$
 avec $\theta \in \left] -\frac{5\pi}{4}; -\frac{3\pi}{4} \right]$.