Opgave 6.3

$$(5) \exists z \forall x (Ax \land Bz)$$

Scope:
$$(Ax \wedge Bz)$$

(6)
$$\forall x (Ax \to Bx) \land Cx$$

Scope:
$$(Ax \to Bx)$$

Opgave 6.5

$$(7) \ \forall x ((Ax \to Bx) \land Cx)$$

Gesloten

(8)
$$(Ax \to \forall xBx) \land Cx$$

Open

Opgave 6.6

$$(4) \neg \exists x Ax \lor \forall y By$$

Alleen universeel: $\neg \neg \forall x \neg Ax \lor \forall y By$

$$(5) \neg (\exists x Ax \lor \forall y By)$$

Alleen universeel: $\neg(\neg \forall x \neg Ax \lor \forall yBy)$

Opgave 6.9

Vertaalsluitel:

Sxy: x scheert yBx: x is een barbier

1.
$$\forall x (Bx \land \neg Sxx \to \exists y (By \land Syx))$$

2.
$$\forall x (Bx \land \neg Sxx \to \exists y (By \land \neg Syx))$$

3.
$$\neg \exists x (Bx \land \neg Sxx \land \forall y (By \land Syx))$$

4.
$$\exists x (Bx \land \neg Sxx \land \forall y (By \land Sxy))$$

5.
$$\exists x (Bx \land \neg Sxx \land \forall y (By \land \neg Syy \land \neg Sxy))$$

Opgave 6.13

(4) $\exists x ((Kxm \land Kxp) \land \neg Mx)$

'Er is een kind van Marie en Piet, en het is geen mannetje.'

 $(5) \exists x (Kxm \land \forall y (Kym \to Kyp))$

'Er is een kind van Marie en alle kinderen van Marie zijn ook kinderen van Piet.'

(6) $\exists x ((Kxm \land Mx) \land \neg \exists y (Kxy \land My))$

'Marie heeft een zoon, en Marie heeft geen zoon.'

Opgave 6.16

 $(1) \ \forall x(Rxx)$

Onwaar.

 $(2) \exists x(Rxx)$

Onwaar.

(3) $\forall x \exists y (Rxy)$

Waar.

 $(4) \exists x \forall y (Rxy)$

Onwaar.

(5) $\forall x(\exists yRxy \to Rxx)$

Onwaar.

Opgave 6.18

 $(3) \ \forall x (Rxx \to Px)$

Onwaar.

(6) $\forall x (Px \to \exists y Rxy)$

Onwaar.

$$(9) \exists x \exists y (Rxy \land \neg Px \land \neg Py)$$

Waar.

$$(10) \ \forall x (Rxx \to \exists y (Rxy \land Py))$$

Waar.

Opgave 6.22

$$(4) [b/y](\exists x \exists y Rxy \land Py)$$

$$\exists x \exists y Rxy \land Pb$$

(5)
$$[a/x] \forall x \forall y Rxy \rightarrow Px$$

$$\forall x \forall y Rxy \rightarrow Px$$

(6)
$$[a/x](\forall x \forall y Rxy \rightarrow [b/x]Px)$$

$$\forall x \forall y Rxy \rightarrow Pb$$

(7)
$$\exists x Px \land [a/x] \exists y Rxy$$

$$\exists x Px \land \exists y Ray$$