Sample Space and Events

- Sample Space Ω : the set of all possible outcomes in a random phenomenon. Examples:
 - 1. Sex of a newborn child: $\Omega = \{girl, boy\}$
 - 2. The order of finish in a race among the 7 horses 1, 2, ..., 7:

$$\Omega = \{ \text{ all 7! Permutations of } (1, 2, 3, 4, 5, 6, 7) \}$$

- 3. Flipping two coins: $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$
- 4. Number of phone calls received in a year: $\Omega = \{0, 1, 2, 3, ...\}$
- 5. Lifetime (in hours) of a transistor: $\Omega = [0, \infty)$
- Event: Any (measurable) subset of Ω is an event. Examples:
 - 1. $A = \{girl\}$: the event child is a girl.

2. $A = \{\text{all outcomes in } \Omega \text{ starting with a } 3\}$: the event - horse 3 wins the race.

- $A=\{(H, H), (H, T)\}:$ the event head appears on the 1st coin.
- $A=\{0, 1, ..., 500\}$: the event no more than 500 calls received
- A=[0, 5]: the event transistor does not last longer than 5 hours.
- \triangleright an event occurs \Leftrightarrow outcome \in the event (subset)
- **> Q**: How many different events if $\#\Omega = n < \infty$?
- Set Operations of Events
 - ▶ Union. $C = A \cup B \Rightarrow C$: either A or B occurs
 - ▶ Intersection. $C = A \cap B \Rightarrow C$: both A and B occur
 - Complement. $C = A^c \Rightarrow C$: A does not occur
 - Mutually exclusive (disjoint). $A \cap B = \emptyset \Rightarrow A$ and B have no outcomes in common.
 - ➤ Definitions of union and intersection for more than 2 events can be defined in a similar manner

• Some Simple Rules of Set Operations

Commutative Laws. $A \cup B = B \cup A$ and $A \cap B = B \cap A$

Associative Laws. $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C).$

Distributive Laws. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

➤ DeMorgan's Laws.

$$(\bigcup_{i=1}^{n} A_i)^c = \bigcap_{i=1}^{n} A_i^c$$
 and $(\bigcap_{i=1}^{n} A_i)^c = \bigcup_{i=1}^{n} A_i^c$.

p. 3-4

* Reading: textbook, Sec 2.2

Probability Measure

The <u>Classical</u> Approach

- Sample Space Ω is a *finite* set
- \triangleright Probability: For an event A,

$$P(A) = \frac{\#A}{\#\Omega}$$

NTHU MATH 2810, 2019, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

- $P(\{\text{Red Outcome}\}) = 18/38 = 9/19.$
- Example (Birthday Problem): <u>n people</u> gather at a party. What is the probability that they all have different birthdays?
 - $\Omega = \underline{\text{lists}} \text{ of } \underline{n} \text{ from } \{1, 2, 3, ..., 365\}$
 - $A = \{all permutations\}$
 - $P_n(A) = (365)_n / 365^n$

-	n	8	16	<u>22</u>	<u>23</u>	32	40
	$P_n(A)$.926	.716	.524	.492	.247	.109

• Inadequacy of the Classical Approach

$$P(A) = \frac{\#A}{\#\Omega}$$

➤ It requires:

- Finite Ω
- Symmetric Outcomes

Example (Sum of Two Dice Being 6)

$$A = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}, P(A) = 5/36.$$

 $\Omega_2 = \{\{1,1\}, \{1,2\}, \{1,3\}, ..., \{6,6\}\}, \#\Omega_2 = 21,$

$$A = \{\{1,5\}, \{2,4\}, \{3,3\}\}, P(A) = 3/21.$$

 $\Omega_3 = \{2, 3, 4, ..., 12\}, \#\Omega_3=11,$

$$A=\{6\}, P(A)=1/11.$$

- Example (Sampling Proportional to Size):
 - N invoices.
 - Sample n < N.
 - Pick large ones with higher probability.
 - Note: Finite Ω , but non equally-likely outcomes.

Example (Waiting for a success):

- Play roulette until a win.
- $\Omega = \{1, 2, 3, ...\}.$
- P = ??
- Example (Uniform Spinner):
 - Random Angle (in radians).
 - $\Omega = (-\pi, \pi].$
 - P=??
- The Modern Approach
 - \triangleright A probability measure on Ω is a function P from subsets of Ω to the real number (or [0, 1]) that satisfies the following axioms:
 - (Ax1) Non-negativity. For any event $A, P(A) \ge 0$.
 - (Ax2) Total one. $P(\Omega)=1$.
 - (Ax3) Additivity. If $A_1, A_2, ...$, is a sequence of mutually exclusive events, i.e., $\underline{A}_i \cap \underline{A}_j = \emptyset$ when $i \neq j$, then

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

- Notes:
 - These axioms restrict probabilities, but do not define them.
 - □ Probability is a property of events.
- ➤ <u>Define</u> Probability Measures in a <u>Discrete</u> Sample Space.
 - Q: Is it required to define probabilities directly on every events? (e.g., n possible outcomes in Ω , 2^n-1 possible events)
 - Suppose $\Omega = \{\omega_1, \omega_2, ...\}, \underline{finite}$ or <u>countably infinite</u>, let $p: \Omega \to [0, 1]$ satisfy

$$p(w) \ge 0$$
 for all $\omega \in \Omega$ and $\sum_{\omega \in \Omega} p(w) = 1$.

Let

$$P(A) = \sum_{\omega \in A} p(\omega)$$

for $A \subset \Omega$, then P is a probability measure. (exercise)

($\underline{\mathbf{Q}}$: how to define \underline{p} ?)

NTHU MATH 2810, 2019, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan).

- Example: In the <u>classical</u> approach, $p(\omega) = 1/\#\Omega$. For example, throw a <u>fair dice</u>, $\Omega = \{1, ..., 6\}$, p(1) = ... = p(6) = 1/6 and $P(\text{odd}) = P(\{1, 3, 5\}) = p(1) + p(3) + p(5) = 3/6 = 1/2$.
- Example (non equally-likely events): Throwing an unfair dice might have p(1)=3/8, p(2)=p(3)=...=p(6)=1/8, and $P(\text{odd})=P(\{1,3,5\})=p(1)+p(3)+p(5)=5/8$. (c.f., Examples in LNp.3-5)
- Example (Waiting for Success Play Roulette Until a Win):
 - Let r=9/19 and q=1-r=10/19
 - $\Omega = \{1, 2, 3, ...\}$
 - Intuitively, $\underline{p(1)}=r$, $\underline{p(2)}=qr$, $\underline{p(3)}=q^2r$, ..., $\underline{p(n)}=q^{n-1}r$, ... ≥ 0 , and ∞

$$\sum_{n=1}^{\infty} p(n) = \sum_{n=1}^{\infty} rq^{n-1} = \frac{r}{1-q} = 1.$$

• For an event $A \subset \Omega$, let

$$P(A) = \sum_{n \in A} p(n).$$

For example, $Odd = \{1, 3, 5, 7, ...\}$

❖ Reading: textbook, Sec 2.3 & 2.5

Some Consequences of the 3 Axioms

• Proposition: For any sample space Ω , the probability of the empty set is zero, i.e.,

$$P(\emptyset) = 0.$$

• Proposition: For any finite sequence of mutually exclusive events $A_1, A_2, ..., A_n,$

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n).$$

NTHU MATH 2810, 2019, Lecture Notes

p. 3-10 • Proposition: If A is an event in a sample space Ω and A^c is the complement of A, then $P(A^c) = 1 - P(A)$.

• Proposition: If A and B are events in a sample space Ω and $A \subset B$, $P(A) \le P(B)$ and $P(B-A) = P(B \cap A^c) = P(B) - P(A)$.

▶ Example (摘自"快思慢想", Kahneman).

琳達是個三十一歲、未婚、有話直說的聰明女性。她主修 哲學,在學生時代非常關心歧視和社會公義的問題,也參 與過反核遊行。下面那一個比較可能?

- 琳達是銀行行員。
- 琳達是銀行行員,也是活躍的女性主義運動者。

• Proposition: If \underline{A} is an event in a sample space Ω , then

$$0 \le P(A) \le 1.$$

• Proposition: If <u>A</u> and <u>B</u> are two events in a sample space Ω , then $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

• Proposition: If $\underline{A_1}, \underline{A_2}, ..., \underline{A_n}$ are events in a sample space Ω , then

$$P(\underline{A_1 \cup \cdots \cup A_n}) \leq P(A_1) + \cdots + P(A_n).$$

NTHU MATH 2810, 2019, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

• Proposition (inclusion-exclusion identity): If $\underline{A_1}$, $\underline{A_2}$, ..., $\underline{A_n}$ are any \underline{n} events, let

$$\sigma_1 = \sum_{i=1}^n P(A_i),$$

$$\sigma_2 = \sum P(A_i \cap A_j),$$

Q: For an <u>outcome</u> w contained in \underline{m} out of the \underline{n} events, how many times is its probability $\underline{p}(w)$ repetitively counted in $\underline{\sigma}_1, ..., \underline{\sigma}_n$?

$$\sigma_{2} = \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j}),$$

$$\sigma_{3} = \sum_{1 \leq i < j \leq k \leq n} P(A_{i} \cap A_{j} \cap A_{k}),$$

$$\cdots = \cdots$$

$$\sigma_k = \sum_{1 \le i_1 < \dots < i_k \le n} P(A_{i_1} \cap \dots \cap A_{i_k})$$

$$\cdots = \cdots$$

$$\sigma_n = P(A_1 \underline{\cap} A_2 \underline{\cap} \cdots \underline{\cap} A_n).$$

A B U

then

$$P(\underline{A_1 \cup \cdots \cup A_n}) = \sigma_1 - \sigma_2 + \sigma_3 - \cdots + (-1)^{k+1}\sigma_k + \cdots + (-1)^{n+1}\sigma_n.$$

➤ Notes:

- There are $\binom{n}{k}$ summands in σ_k
- In symmetric examples,

$$\sigma_k = \binom{n}{k} P(A_1 \cap \dots \cap A_k)$$

• It can be shown that

$$P(A_1 \cup \dots \cup A_n) \leq \sigma_1$$

$$P(A_1 \cup \dots \cup A_n) \geq \sigma_1 - \sigma_2$$

$$P(A_1 \cup \dots \cup A_n) \leq \sigma_1 - \sigma_2 + \sigma_3$$

... ...

NTHU MATH 2810, 2019, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Example (The Matching Problem).

p. 3-14

- Applications: (a) Taste Testing. (b) Gift Exchange.
- Let $\underline{\Omega}$ be all permutations $\underline{\omega} = (\underline{i_1}, ..., \underline{i_n})$ of $\underline{1, 2, ..., n}$. Thus, $\underline{\#\Omega} = \underline{n!}$.
- Let

$$\underline{A}_j = \{ \omega : i_j = \underline{j} \} \text{ and } A = \bigcup_{i=1}^n A_i ,$$

Q: P(A)=? (What would you expect when n is large?)

• By symmetry,
$$\sigma_k = \binom{n}{k} P(A_1 \cap \cdots \cap A_k),$$

Here,

$$P(A_1) = \frac{1 \times (n-1)!}{n!} = \frac{1}{n},$$

$$P(A_1 \cap A_2) = \frac{(n-2)!}{n!} = \frac{1}{(n)_2},$$

$$\cdots = \cdots,$$

$$P(A_1 \cap \cdots \cap A_k) = \frac{(n-k)!}{n!} = \frac{1}{(n)_k}.$$

for k = 1, ..., n.

• So,
$$\sigma_k = \binom{n}{k} \frac{1}{(n)_k} = \frac{1}{k!}$$

$$P(A) = \sigma_1 - \sigma_2 + \dots + (-1)^{n+1} \sigma_n = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k!},$$

$$P(A) = 1 - \sum_{k=0}^{n} (-1)^k \frac{1}{k!} \approx 1 - \frac{1}{e} = 0.632 \Rightarrow P(A^c) \approx e^{-1} = 0.368$$

- Note: approximation accurate to 3 decimal places if $n \ge 6$.
- Proposition: If $A_1, A_2, ...$, is a partition of Ω , i.e.,

$$1. \ \cup_{i=1}^{\infty} A_i = \Omega,$$

2.
$$A_1, A_2, ...,$$
 are mutually exclusive,

then, for any event $A \subset \Omega$,

$$P(A) = \sum_{i=1}^{\infty} P(A \cap A_i).$$

❖ Reading: textbook, Sec 2.4 & 2.5

NTHU MATH 2810, 2019, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

Probability Measure for Continuous Sample Space

- Q: How to define probability in a continuous sample space?
- Monotone Sequences of sets
 - Definition: A sequence of events $\underline{A_1}, \underline{A_2}, ...$, is called *increasing* if

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset A_{n+1} \subset \cdots \subseteq \Omega$$

and decreasing if

$$A_1 \supset A_2 \supset \cdots \supset A_n \supset A_{n+1} \supset \cdots \supseteq \emptyset$$

The limit of an increasing sequence is defined as

$$\lim_{n \to \infty} A_n = \underline{\cup_{i=1}^{\infty}} A_i$$

and the limit of an decreasing sequence is

$$\lim_{n \to \infty} A_n = \underline{\cap_{i=1}^{\infty}} A_i$$

p. 3-16

p. 3-18

• Proposition: If $A_1, A_2, ...$, is increasing or decreasing, then

$$\left(\lim_{n\to\infty} A_n\right)^c = \lim_{n\to\infty} A_n^c$$

• Proposition: If $A_1, A_2, ...$, is increasing or decreasing, then

$$\overline{\lim_{n\to\infty} P(A_n)} = P\left(\lim_{n\to\infty} A_n\right).$$

NTHU MATH 2810, 2019, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Example (Uniform Spinner): Let $\Omega = (-\pi, \pi]$. Define

$$P((a,b]) = \frac{b-a}{2\pi}.$$

for subintervals $(a, b] \subset \Omega$. Then, extend \underline{P} to other subsets using the $\overline{3 \text{ axioms}}$. For example, if $-\pi < a < b < \overline{\pi}$.

$$P(\underline{[a,b]}) = P\left(\left(\bigcap_{k=1}^{\infty} (a - \frac{1}{k}, b]\right) \cap \Omega\right) = P\left(\bigcap_{k=1}^{\infty} \left(\underline{(a - \frac{1}{k}, b] \cap \Omega}\right)\right)$$

$$= \lim_{k \to \infty} P\left((a - \frac{1}{k}, b] \cap \Omega\right)$$

$$= \lim_{k \to \infty} \frac{1}{2\pi} (b - a + \frac{1}{k}) = \frac{b - a}{2\pi}.$$

- Some notes
 - $P(\{a\}) = P([a,b] (a,b]) = P([a,b]) P((a,b]) = 0.$
 - \Box If $\overline{C}=\{\omega_1, \omega_2, ...\}\subset \Omega$, then

$$P(C) = \sum_{i=1}^{\infty} P(\{\omega_i\}) = 0 + 0 + \dots = 0.$$

□ The probability of all rational outcomes is zero

* Reading: textbook, Sec. 2.6

Objective v.s. Subjective "Interpretation" of Probability

- Evaluate the following statements
 - 1. This is a fair coin
 - 2. It's 90% probable that Shakespeare actually wrote Hamlet
- Q: What do we mean if we say that the probability of rain tomorrow is 40%?

Objective: Long run relative frequencies

Subjective: Chosen to reflect opinion

- The Objective (Frequency) Interpretation
 - ➤ Through Experiment: Imagine the experiment repeated N times. For an event A, let

$$N_{\underline{A}} = \# \text{ occurrences of } \underline{A}.$$

Then,

$$P(A) \equiv \lim_{N \to \infty} \frac{N_A}{N}.$$

NTHU MATH 2810, 2019, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

p. 3-20

Example (Coin Tossing):

N	100	1000	10000	100000
N_H	55	493	5143	50329
$N_{H}\!/N$.550	.493	.514	.503

The result is consistent with P(H)=0.5.

- The Subjective Interpretation
 - Strategy: Assess probabilities by imagining bets
 - Example:
 - Peter is willing to give two to one odds that it will rain tomorrow. His subjective probability for rain tomorrow is at least 2/3
 - Paul accepts the bet. His subjective probability for rain tomorrow is at most 2/3
 - Probabilities are simply personal measures of how likely we think it is that a certain event will occur

experi	ments is not	<u>feasible</u>		

NTHU MATH 2810, 2019, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)