

Datawhale 开源学习社区

What is Data Competition?

数据竞赛是以工业/学术**问题为导向**的,聚合广泛、跨学科人才参与的,利用数据研发算法模型和探索解决方案的研发模式。

数据竞赛是:

- ✓ 一种众包的竞赛模型(对参赛人员门槛没有限制);
- ✓ 有明确的问题背景(具有较强的业务或数据背景);

	数据竞赛	普通学科竞赛
内容	数据挖掘 & 机器学习	学科知识点
打分反馈	支持	不支持
定量打分	支持	不支持
交互式	支持	不支持

What is Data Competition?

■ 数据竞赛平台:Kaggle/天池/DC竞赛/DataFountain/FlyAl等

Kaggle是全球最大的数据竞赛平台,每年会举办几十场竞赛,主要以算法赛和可视化比赛居多。Kaggle具有完整的比赛平台机制:从赛题介绍、数据分析、评分、排名和最终的分享。

Kaggle

What is Data Competition?

■ Kaggle上数据竞赛有哪些类型?

● Feature: 工业赛赛题,难度较大

● Research:学术赛题,难度较大

● Playground:练习赛,难度适中

● Analytics:数据分析赛

● Getting Started:入门赛,难度较低

● Kernel赛题:需通过Notebook提交的比赛

● 非Kernel赛题:通过Notebook & 文件提交的比赛

What is Data Competition?

■ Kaggle上数据竞赛有哪些类型?

Basic knowledge

```
为什么要做数据分析?
```

- ✓ 分析数据的质量、噪音;
- ✓ 分析字段的类型、取值、分布,为后续操作提供依据;
- ✓ 分析字段的含义、相关性;

如何做数据分析?

- ✓ 统计;
- ✓ 可视化;

Basic knowledge

建模前做数据分析:

- ✓ 为建模细节提供参考;
- ✓ 为模型选择提供参考;

建模后做数据分析:

- ✓ 特征重要性分析;
- ✓ 误差分析;

https://github.com/slundberg/shap

Basic knowledge

■ 特征工程是什么?

特征工程是原始数据转变为模型的训练数据的过程,就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。特征工程是数据挖掘中重要的部分,包括特征构建、特征提取、特征选择三个部分。

口 为什么需要特征工程?

- ✓ 数据的原始字段并不直接适合送给模型训练
- ✓ 数据的原始字段并不能体现数据内在的含义

Basic knowledge

- 如何做特征工程?
- ✓ 字段如何编码?
- ✓ 如何构造新特征?
- ✓ 如何筛选特征?

Tableaur dataset

结构化数据是以行列存储的数据,以表格形式存储。

✓ 行:一个样本;

✓ 列:一个字段;

结构化数据特点:

- ✓ 所有的样本有用相同个数的字段
- ✓ 每个字段的类型相同;

Tableaur dataset

Kaggle中结构化竞赛的分类:

- ✓ 单表单id:所有的记录存储在单张表格内,且样本与 标签存在——对应关系;
- ✓ 单表多id:所有的记录存储在单张表格内,且多条样 本记录对应与一个标签;
- ✓ 多表单id:所有的记录存储在多张表格内,且样本与 标签存在——对应关系;
- ✓ 多表多id:所有的记录存储在多张表格内,且多条样 本记录对应与一个标签;

Main table in sheet1			N	New data table in sheet 2			
Δ	Α	В			Α	В	С
1	ID	Price		1	ID	Store	Location
2	1001	2		2	1001	Α	N
3	1002	3		3	1003	Α	N
4	1003	2		4	1004	С	W
5	1004	4		5	1002	В	E

Merge and update in main table

	Α	В	С	D
1	ID	Price	Store	Location
2	1001	2	Α	N
3	1002	3	В	E
4	1003	2	Α	N
5	1004	4	С	W
6	1005	1	С	W

Tableaur dataset

Tableaur dataset

表格赛	CV赛
任务多样	任务固定
依赖人工	依赖机器和经验
主要是CPU资源	主要是GPU资源

- ✓ 与表格赛相比, CV赛题任务更加固定(分类、分割和检测);
- ✓ 与表格赛相比,CV赛题需要更多的计算资源,奖金相对多(人少,钱多);

Tableaur dataset

1.代码基础

基础技能包括:Pandas、数据分析技能、树模型使用与调参;

进阶技能包括:模型集成、特征工程

2.关键代码部分

步骤1:对数据集进行数据分析

步骤2:对数据集字段进行编码

步骤3:使用LightGBM进行五折交叉验证

Q&A

Ask me anything

- 竞赛学习路径
- ✓ 每位同学参与竞赛的目的不同 知识/奖金/认可?
- ✓ 每位同学参与竞赛的背景不同 本科/找工作/就业?

Q&A

Ask me anything

- 竞赛学习路径
- ✓ 入门阶段(一周):掌握数据挖掘流程、Pandas、Sklearn
- ✓ 进阶阶段(四周):掌握特征工程、特征筛选、掌握XGBoot、LightGBM
- ✓ 深入阶段(半年):
 - ✓ 深度学习基础: Pytorch、Keras、模型搭建、训练流程、深度学习调参
 - ✓ NLP领域知识: TFIDF、Word2Vec、TextCNN、Bert
 - ✓ CV领域知识:CNN、预训练模型、分类模型、检测模型、分割模型