Programming report

李逸思 自动化系 2016310707

Problem6

1. 随机生成 200 个线性可分的二维平面上的点如下:

图 1.1 200 个二维平面上的线性可分随机点

2. 实现经典感知算法,得到分界线如下:

图 1.2 经典感知算法分界线

3. 实现 margin 感知算法,取对 gamma 分别取,得到迭代次数和相应

表 1 不同 γ 取值时 margin 感知算法迭代次数和分界线

γ	10	100	1000	10000	100000	1000000	10000000
iteration							
times	5	5	6	353	2680	24957	249040
slope	-1.10801	-1.07802	-0.86355	-0.66165	-0.66163	-0.66162	-0.66163
intercept	0.013443	0.131914	1.144851	2.140843	2.140982	2.140992	2.140996

 $\gamma = 10$

 $\gamma = 10000$

 $\gamma = 100000$

 $\gamma = 1000000$

图 1.3 margin 感知算法分界线

可以看到 γ 取值越大算法收敛越慢,分界面越贴近标记为"1"的类别(即对于训练集分类更加严格),但 γ 取值超过一定范围,则分界面不再改变。

Problem7

分界面方程由(1.1)式给出, margin 的值由(1.2)式计算出:

separating hyperplane:
$$w_0^T * x = rho$$
 (1.1)

$$margin = \frac{2}{norm_2(w_0)}$$
 (1.2)

原始数据在二维空间分布如图一,

图一 原始数据在二维空间的分布

将原始数据映射到六维空间得到新数据后,将新数据中的前 1 对、前 2 对…直至全部数据分别取出,依次用 SVM 方法分类,得到分解面方程的参数与 margin 值变化如表一

表一 六维空间 SVM 分类结果

样本数		rho	margin					
					-		-	
2	0	-0.0005	0.002761	0.00251	0.00407	-0.0312	1.28164	63.12276
	-1.7E-			-	-	-	-	
4	18	0.012111	0.073881	0.04135	0.05343	0.02219	2.27403	19.36915
				-	-		-	
6	0	0.01211	0.07388	0.04135	0.05343	-0.0222	2.27415	19.36929
	-3.3E-			-	-	-	-	
8	19	0.012111	0.073885	0.04134	0.05343	0.02219	2.27349	19.36935
	5.42E-			-	-		-	
10	19	0.012111	0.073883	0.04134	0.05343	-0.0222	2.27407	19.36884
					-	-	-	
12	0	0.011113	0.098873	-0.0379	0.02104	0.02392	2.04542	17.99625
	-2.6E-				-	-	-	
14	18	0.011112	0.098863	-0.0379	0.02104	0.02391	2.04492	17.99809
	8.67E-				-	-	-	
16	19	0.011112	0.098864	-0.0379	0.02104	0.02391	2.04482	17.99827
	4.34E-				-		-	
18	19	0.011113	0.098871	-0.0379	0.02105	-0.0239	2.04474	17.99696
	4.34E-				-	-		
20	19	0.011112	0.098864	-0.0379	0.02104	0.02391	-2.0449	17.99806