```
asmlinkage __visible void __init start_kernel(void)
 1.
 2.
      {
 3.
       . . . . . .
 4.
 5.
               ftrace_init();
 6.
           dump_p15();
8.
 9.
               /* Do the rest non-__init'ed, we're now alive */
10.
               rest_init();
11.
      }
12.
13.
      static void dump_p15(void)
14.
15.
           unsigned int tmp = 0;
16.
17.
           // dump ID register
18.
           asm(
19.
               "mrc p15, 0, %0, c0, c0, 0\n"
20.
              :"=r"(tmp)
21.
22.
           );
23.
           printk("p15-c0: 0x%8x ", tmp);
24.
25.
           tmp = 0;
26.
27.
           // dump cache type register
28.
           asm(
29.
               "mrc p15, 0, %0, c0, c0, 1\n"
30.
               :"=r"(tmp)
31.
32.
           );
33.
           printk("0x%8x ", tmp);
34.
35.
           tmp = 0;
36.
37.
           // dump TLB Type register
           asm(
38.
39.
               "mrc p15, 0, %0, c0, c0, 3\n"
40.
               :"=r"(tmp)
41.
42.
           );
43.
           printk("0x%8x ", tmp);
44.
45.
           tmp = 0;
46.
47.
           // dump MPIDR register
48.
           asm(
49.
               "mrc p15, 0, %0, c0, c0, 5\n"
50.
               :"=r"(tmp)
51.
52.
```

```
53.
           printk("0x%8x \n", tmp);
 54.
55.
           tmp = 0;
56.
57.
           // dump c1 register
58.
           asm(
59.
                "mrc p15, 0, %0, c1, c0, 0\n"
60.
               :"=r"(tmp)
61.
62.
           );
63.
           printk("p15-c1: 0x%8x \n", tmp);
64.
65.
           tmp = 0;
66.
67.
           // dump c2 register, Translation Table Base (TTB) register
68.
           asm(
69.
                "mrc p15, 0, %0, c2, c0, 0\n"
70.
               :"=r"(tmp)
71.
72.
           );
73.
           printk("p15-c2: 0x%8x \n", tmp);
74.
75.
           tmp = 0;
76.
77.
           // dump c3 register, 16 domains
           asm(
78.
 79.
                "mrc p15, 0, %0, c3, c0, 0\n"
80.
               :"=r"(tmp)
81.
82.
           );
83.
           printk("p15-c3: 0x%8x \n", tmp);
84.
85.
           tmp = 0;
86.
87.
           // dump c4 register, reserved, could not read !!!
88.
       //
            asm(
                 "mrc p15, 0, %0, c4, c0, 0\n"
89.
       //
90.
       //
                 :"=r"(tmp)
91.
       //
92.
       //
             );
93.
             printk("p15-c4(reserved): 0x%8x \n", tmp);
       //
94.
       //
95.
       //
             tmp = 0;
96.
97.
           // dump c5 register, data invalidation status register
           asm(
98.
99.
                "mrc p15, 0, %0, c5, c0, 0\n"
100.
                :"=r"(tmp)
101.
102.
           );
103.
           printk("p15-c5: 0x%8x ", tmp);
104.
105.
           tmp = 0;
106.
```

```
107.
            // dump c5 register, instruction invalidation status register
108.
            asm(
109.
                "mrc p15, 0, %0, c5, c0, 1\n"
110.
               :"=r"(tmp)
111.
112.
            );
            printk("0x%8x \n", tmp);
113.
114.
115.
           tmp = 0;
116.
117.
            // dump c6 register, data invalidation address
118.
            asm(
119.
                "mrc p15, 0, %0, c6, c0, 0\n"
120.
               :"=r"(tmp)
121.
122.
            );
123.
            printk("p15-c6: 0x%8x ", tmp);
124.
125.
           tmp = 0;
126.
127.
           // dump c6 register, instruction invalidation address
128.
            asm(
129.
               "mrc p15, 0, %0, c6, c0, 2\n"
130.
               :"=r"(tmp)
131.
132.
           );
133.
            printk("0x%8x \n", tmp);
134.
135.
           tmp = 0;
136.
137.
           // c7, c8 are write-only
138.
           // c7 is for controling cache
139.
           // c8 is for clearing TLB entries
140.
141.
           // dump c12 register, vector address
142.
            asm(
143.
               "mrc p15, 0, %0, c12, c0, 0\n"
144.
               :"=r"(tmp)
145.
146.
           );
147.
            printk("p15-c12: 0x8%x ", tmp);
148.
149.
           // dump c13 register, fast context switch
150.
```

output from Gemstone2 board

p15-c1: 0x30c5383d

p15-c2: 0x 3000

p15-c3: 0xffffffd

p15-c5: 0x57731fe9 0x 163e

p15-c6: 0x7f7b2fdf 0x7b6bffdd

p15-c12: 0x83fe9f000

c0 - id register is 0x410fd034

0100,0001,0000,1111,1101,0000,0011,

0100 - marvell定义的处理器版本号

0100,0001,0000,1111,**1101,0000,0011**,0100

1101,0000,0011 - marvell定义的产品编号

0100,0001,0000,1111,1101,0000,0011,0100

1111 - ARM arch version

0100,0001,0000,1111,1101,0000,0011,0100

生产厂商编号, marvell为0x41

c1 - control register 0x30c5383d

0011,0000,1100,0101,0011,1000,0011,1101

0011,0000,1100,0101,0011,1000,0011,1101

0: disable MMU

1: enable MMU

0011,0000,1100,0101,0011,1000,0011,1101

0: disable address alignment

1: enable address alignment

0011,0000,1100,0101,0011,1000,0011,1101

if data cache and instruction cache is different

0: disable data cache

1: enable data cache

if data cache and instruction cache share the same cache

0: disable whole cache

1: ensable whole cache

0011,0000,1100,0101,0011,1000,0011,1101

0: disbale write buffer

1: enable write buffer

0011,0000,1100,0101,0011,1000,0011,1101

0011,0000,1100,0101,0011,1000,0011,1101

Gemstone2 doesn't support 26-bit address, so return "1"

0011,0000,1100,0101,0011,1000,0011,1101

0: little endian

1: big endian

0011,0000,1100,0101,0011,1000,0011,1101

0: diable跳转预测

1: enable跳转预测

0011,0000,1100,0101,0011,1000,0011,1101

when data cache and instruction cache are different

0: disable instruction cache

1: enable instruction cache

0011,0000,1100,0101,0011,1000,0011,1101

control vector table location

0: low vector, 0 - 0x1c

1: high vector, 0xffff0000 - 0xffff001c

0011,0000,1100,0101,0011,1000,0011,1101

control cache中的淘汰算法

p15-c5: 0x57731fe9 0x 163e

0x57731fe9,数据失效 status

0x 163e,instruction 失效 status

bit 0 - bit 3 (4 bits), status id

引起访问失效的原因	状态标识	域标识	C6
终端异常(Terminal Ex ception)	0010 (0x2)	无效	生产商定义
中断向量访问异常(Vector Exception)	0000 (0x0)	无效	有效
地址对齐	00x1	无效	有效
一级页表访问失效	1100 (0xc)	无效	有效
二级页表访问失效	1110 (0xe)	有效	有效
基于段的地址变换失效	0101 (0x5)	无效	有效
基于页的地址变换失效	0111 (0x7)	有效	有效
基于段的存储访问中域 控制失效	1001 (0x9)	有效	有效
基于页的存储访问中域 控制失效	1101 (0xd)	有效	有效
基于段的存储访问中访问权限控制失效	1111 (0xf)	有效	有效
基于页的存储访问中访问权限控制失效	0100 (0x4)	有效	有效
基于段的 cache 预 取时外部存储系统失效	0110 (0x6)	有效	有效

基于页的 cache 预 取时外部存储系统失效	1000 (0x8)	有效	有效
基于段的非 cache 预 取时外部存储系统失效	1010 (0xa)	有效	有效

bit 4 - bit 7, domain id

p15-c6: 0x7f7b2fdf 0x7b6bffdd

0x7f7b2fdf - 访问data失效address (virtual address)

0x7b6bffdd - 访问instruction失效address (virtual address)

p15-c12: 0x83fe9f000

设置异常vector base address

mcr p15, 0, Rd, c12, c0, 0

bit 0 - bit 4, reserve

bit 5 - bit 31, exception vector base address

Rd = exception vector base address