## 0 Quotient Groups and Homomorphisms

## 0.1 Definitions and Examples

**Definition.** If  $\phi$  is a homomorphism  $\phi: G \to H$ , the kernel of  $\phi$  is the set

$$\{g \in G \mid \phi(g) = 1\}$$

and will be denoted by  $\ker \phi$  (here 1 is the identity of H).

**Proposition 1.** Let G and H be groups and let  $\phi: H \to H$  be a homomorphism.

- 1.  $\phi(1_G) = 1_H$ , where  $1_G$  and  $1_H$  are the identities of G and H, respectively.
- 2.  $\phi(g^{-1}) = \phi(g)^{-1}$  for all  $g \in G$ .
- 3.  $\phi(g^n) = \phi(g)^n$  for all  $n \in \mathbb{Z}$ .
- 4.  $\ker \phi$  is a subgroup of G.
- 5.  $\operatorname{im} \phi$ , the image of G uner  $\phi$ , is a subgrrup of H.

**Definition.** Let  $\phi: G \to H$  be a homomorphism with kernel K. The quotient group or factor group, G/K (read G modulo K or simply G mod K), is the group whose elements are the fibers of  $\phi$  with the following group operation: If X is the fiber above a and Y is the fiber above b then the product XY in G/K is defined to be the fiber above the product ab in G.

**Proposition 2.** Let  $\phi: G \to H$  be a homomorphism with kernel K. Let  $X \in G/K$  be the fiber above a, i.e.,  $X = \phi^{-1}(a)$ . Then

- 1. For any  $u \in X$ ,  $X = \{uk \mid k \in K\}$
- 2. For any  $u \in X$ ,  $X = \{ku \mid k \in K\}$

**Definition.** For any  $N \leq G$  and any  $g \in G$  let

$$gN = \{gn \mid n \in N\} \text{ and } Ng = \{ng \mid n \in N\}$$

called respectively a *left coset* and a *right coset* of N in G. Any element of a coset is called a *representative* for the coset.

**Theorem 3.** Let G be a group and let K be the kernel of some homomorphism from G to another group. Then the set of whose elements are ;eft coeset of K in G with operation defined by

$$uK \circ vK = (uv)K$$

forms a group, G/K. This operation is well defined and does not depend on the choice of representatives.

**Proposition 4.** Let N be any subgroup of the group G. The set of left cosets of N in G form a partition of G. Furthermore, for all  $u, v \in G, uN = vN$  if and only if  $v^{-1}u \in N$  and in particular, uN = vN if and only if u and v are representatives of the same coset.

**Proposition 5.** Let G be a group and let N be a subgroup of G.

1. The operation on the set of left cosets of N in G described by

$$uN \cdot vN = (uv)N$$

is well defined if and only if  $gng^{-1}$  for all  $g \in G$  and all  $n \in N$ .

2. If the above operation is well defined, then it makes the set of left cosets of N in G into a group. In particular the identity of this group is the coset 1N and the inverse of gN is the coset  $g^{-1}$ , i.e,  $(gN)^{-1} = g^{-1}N$ .

**Definition.** The element  $gng^{-1}$  is called the *conjugate* of  $n \in N$  by g. The set  $gNg^{-1} = \{gng^{-1} \mid n \in N\}$  is called the *conjugate* of N by g. The element g is said to *normalize* N if  $gNg^{-1} = N$ . A subgroup N of a group G is called *normal* if every element of G normalizes N, i.e., if  $gNg^{-1} = N$  for all  $g \in G$ . If N is a normal subgoup of G we shall write  $N \subseteq G$ .

**Theorem 6.** Let N be a subgroup of the group G. The following are equivalent:

- 1.  $N \leq G$
- 2.  $N_G(N) = G$  (recall  $N_G(N)$  is the normalizer in G of N)
- 3. qN = Ng for all  $g \in G$
- 4. the operation on left cosets of N in G described in Proposition 5 makes the set of left cosets into a group
- 5.  $gNg^{-1} \subseteq N$  for all  $g \in G$ .

**Proposition 7.** A subgroup N of the group G is normal if and only if it is the kernel of some homomorphism.

**Definition.** Let  $N \subseteq G$ . The homomorphism  $\pi: G \to G/N$  defined by  $\pi(g) = gN$  is called the natural projection (homomorphism) of G onto G/N. If  $\overline{H} \subseteq G/N$  is a subgroup of G/N, the complete preimage of  $\overline{H}$  in G is the preimage of  $\overline{H}$  under the natural projection homomorphism.

## 0.2 More on Cosets and Lagrange's Thoerem