BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

First Semester 2023-2024 Course Handout (Part-II)

11-08-2023

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE F314

Course Title : Process Design Principles I

Instructor-in-Charge (IC) : Dr. Arnab Dutta

Office No. of IC : D216

Scope & Objective:

The course as a whole, Process Design Principles, is designed to bring together the concepts of engineering and economics for chemical plant design and optimization. In the first part of this course (i.e., **Process Design Principles I**) in this semester will combine the individual aspects of chemical engineering such as fluid mechanics, mass transfer, heat transfer, chemical reaction engineering, chemical process calculations, thermodynamics, etc. for designing different chemical processes. Knowledge of different process heuristics followed by the design of separation trains, reactor networks, heat exchanger networks, and process integration will be discussed. The students will be exposed to process simulation via hands-on sessions in Aspen HYSYS, which is a commonly used process simulator in chemical engineering domain spanning both academia and industries.

On completion of this course, students should be able to appreciate the following **learning outcomes**:

- Understand different heuristics pertaining to process synthesis
- Develop process flowsheet simulations using Aspen HYSYS
- Synthesize separation trains
- Design heat exchanger networks for maximizing energy recovery
- Apply process design and synthesis concepts in the chemical engineering domain

Text Book:

Warren D. Seider, J. D. Seader, and Daniel R. Lewin, "**Product & Process Design Principles: Synthesis, Analysis, and Evaluation**", John Wiley & Sons, New York, 3rd Edition, I.S.V. [Reprint: 2017]

Reference Book:

R1 Robin Smith, "Chemical Process: Design and integration", John Wiley & Sons, New York, 2nd Edition [2016].

Course Plan:

Lecture Learning No. objectives		Topics to be covered	Chapters in the Text Book	
1-4	Introduction	Product design	Ch.: 1, 2, & 4 (T1)	
		Process synthesis	, ,	
5-6	Block	Formulation	Reference Materials will	
	Flow Diagram	Calculations	be provided	
7-10	-10 Process Introduction to process simulator: Aspe		Ch.: 5 (T1)	
	Simulation	Basic Simulations using Aspen HYSYS	Reference materials will	
		- •	be provided	
11-16	Process	Heat Exchanger Simulations using Aspen HYSYS	Ch.: 5 (T1)	

	Simulation	Reactor Simulations in Aspen HYSYS	Reference materials will
		Distillation Column Simulations in Aspen HYSYS	be provided
17-18	Process Synthesis:	Heuristics associated with different unit operations	Ch.: 6 (T1)
	Heuristics		
19-23	Separation Train	Sequencing of distillation columns for separating	Ch.: 8 (T1)
	Synthesis	near ideal fluid mixtures	Ch.: 11 (R1)
24-25	Reactor Networks	Reactor network design	Ch. 7 (T1)
26-31	Heat Exchanger	Maximum energy recovery (Minimum utility	Ch.: 9 (T1)
	Networks (HEN)-	consumption)	Ch.: 16 (R1)
	I: Energy Target	Pinch analysis	
		Temperature-Interval method	
		Composite curve method	
32-35	Heat Exchanger	Minimizing annual (capital & operational) costs	Ch.: 9 (T1)
	Networks (HEN)-	Reduce number of Heat Exchangers: Breaking heat	Ch.: 17, 18 (R1)
	II: Total cost	loops	
	Target	Reduce number of Heat Exchangers: Stream	
		splitting	
36-37	Process	Data extraction	Ch.: 9 (T1)
	Integration	Heat-Integration	Ch.: 19, 21 (R1)
38-40	Research	Use of Aspen HYSYS in Research	Reference materials will
	Applications	Experiential learning through research papers	be provided

Note: Weekly tutorial sessions will be based on using **Aspen HYSYS** as the process simulator, which will take place in the **CAD Lab.**

Evaluation Scheme:

EC No.	Evaluation Component	Duration	Weightage (%)	Date & Time	Nature of Component
1.	Midterm	90 min	25	12/10 - 11.30 - 1.00PM	Open Book
2.	Comprehensive	180 min	35	14/12 AN	Closed Book (15) + Open Book (20)
3.	Assignments (2)	TBA	20	Equally-spaced out	Open Book
4.	Continuous Assessment	TBA	15	Throughout the semester	Open Book (10) + Closed Book (5)
5.	Viva (1)	TBA	5	Tentatively towards the end of semester	Closed Book

Chamber Consultation Hour: TBA

Notices: All notices concerning this course will be displayed on the Chemical Engineering Notice Board

Make-up Policy: Make-up is granted only for genuine cases with valid justifications at the discretion of the IC. A prior permission from the Instructor-in-charge is required. Decision of the IC will be final. There will be NO provision for Make-up w.r.t. assignments, continuous assessments, and viva components.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge (Dr. Arnab Dutta) CHE F314

Arnab Julta