$_{ m QCM}^{ m ALGO}$

- 1. Quelles méthodes sont des méthodes directes de gestion des collisions primaires?
 - (a) Le hachage linéaire
 - (b) Le double hachage
 - (c) Le hachage Coalescent
 - (d) Le hachage avec chaînage séparé
- 2. La modularisation est une méthode de hachage de base?
 - (a) Oui
 - (b) Non
 - (c) Parfois
- 3. La gestion des collisions primaires peut se gérer?
 - (a) par calcul
 - par chaînage
 - (c) aléatoirement
 - (d) universellement

4. La COMPLETION?

- (a) utilise tous les bits de la représentation de la clé
- (b) n'utilise pas tous les bits de la représentation de la clé
- (c) tronçonnent la séquence de bits en sous-mots
- (d) s'applique uniquement à une clé numérique
- n'est pas une méthode de hachage

5. La COMPRESSION?

- (a) utilise tous les bits de la représentation de la clé
- (b) n'utilise pas tous les bits de la représentation de la clé
- (c) tronçonnent la séquence de bits en sous-mots
- (d) s'applique uniquement à une clé numérique
- (e) n'est pas une méthode de hachage

6. La MULTIPLICATION?

- (a) utilise tous les bits de la représentation de la clé
- (b) n'utilise pas tous les bits de la représentation de la clé
- (c) tronçonnent la séquence de bits en sous-mots
- (d) s'applique uniquement à une clé numérique
- (e) n'est pas une méthode de hachage

1

7. La DIVISION?

- a utilise tous les bits de la représentation de la clé
- (b) n'utilise pas tous les bits de la représentation de la clé
- (c) tronçonnent la séquence de bits en sous-mots
- (d) s'applique uniquement à une clé numérique
- (e) n'est pas une méthode de hachage

8. Le handicap majeur de la compression est?

- (a) de hacher les anagrammes d'une clé de la même façon
- (b) de nécessiter un m premier majorant le nombre de clés
- (c) de n'utiliser q'une partie de représentation de la clé
- (d) de n'être efficace que sur une petite collection de données

9. Une collision primaire représente une collision?

- (a) avec coincidence de valeur de hachage entre un x égal à un y
- (b) sans coincidence de valeur de hachage entre un x égal à un y
- (c) sans coincidence de valeur de hachage entre un x différent d'un y
- (d) avec coincidence de valeur de hachage entre un x différent d'un y

10. Le hachage coalescent utilise une fonction d'essais successifs?

- (a) Jamais
- (b) Parfois
- (c) Toujours

QCM N°2

lundi 21 octobre 2013

Question 11

Soient (u_n) et (v_n) deux suites réelles telles que $u_n \sim v_n$. Alors $u_n - v_n \xrightarrow[n \to +\infty]{} 0$.

- a. vrai
- (b) faux

Question 12

Soit (u_n) une suite réelle positive telle que $nu_n \xrightarrow[n \to +\infty]{} +\infty$. Alors

- a. $\sum u_n$ converge
- $b.\sum u_n$ diverge
- c. on ne peut rien dire sur la nature de $\sum u_n$

Question 13

Soient (u_n) et (v_n) deux suites réelles quelconques. Alors

- a. $\sum u_n$ converge $\Longrightarrow \sum u_n^2$ converge
- b. $\sum u_n$ converge $\Longrightarrow \sum nu_n$ converge
- c. $\sum u_n$ diverge et $\sum v_n$ diverge $\Longrightarrow \sum (u_n + v_n)$ diverge
- d rien de ce qui précède

Question 14

Soit (u_n) une suite décroissante convergeant vers 0. Alors $\sum u_n$ converge absolument.

- a. vrai
- (b.) faux

Question 15

Soit $\alpha \in \mathbb{R}.$ La série $\sum \frac{(-1)^n}{n^\alpha}$ converge si et seulement si

- a. $\alpha > 1$
- $\alpha > 0$
 - c. $0 < \alpha < 1$
 - d. $\alpha < 1$
 - e. rien de ce qui précède

Question 16

Soient (u_n) et (v_n) deux suites réelles strictement positives tels que $\sum v_n$ converge et

$$\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$$

Alors

- (a) $\sum u_n$ converge
- b. $\sum u_n$ diverge
- c. on ne peut rien dire quant à la nature de $\sum u_n$

Question 17

Soit (u_n) une suite réelle telle que $\sum (u_{n+1} - u_n)$ converge. Alors (u_n) converge.

- (a) vrai
- b. faux

Question 18

Soit (u_n) une suite réelle positive telle que $n^3u_n\xrightarrow[n\to+\infty]{}+\infty$. Alors

- a. $\sum u_n$ converge
- b. $\sum u_n$ diverge
- \bigcirc on ne peut rien dire sur la nature de $\sum u_n$

Question 19

Soit (u_n) une suite réelle. Alors

- a. si (u_n) converge vers 0, alors $\sum u_n$ converge
- \bigcirc si $\sum u_n$ converge alors (u_n) converge vers 0
- \bigodot si (u_n) converge vers 1, alors $\sum u_n$ diverge
- d. si $\sum u_n$ diverge alors (u_n) diverge
- e. rien de ce qui précède

Question 20

Soit (u_n) une suite réelle strictement positive telle que $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{2}$. Alors

- $\sum u_n$ converge
 - b. $\sum u_n$ diverge
 - c. on ne peut rien dire sur la nature de $\sum u_n$

QCM 2: Ouverture Culturelle SPE

- 21. The Rhind Mathematical Papyrus from Thebes, Egypt (c. 1500 BCE) contains 84 different mathematical problems. What was the primary purpose of this papyrus?
- a. It allowed Egyptian priests to calculate the number of years that passed since Egypt was united under a single pharaoh.
- b. It contained the correct formulas necessary for mummifying a body.
- ② It helped civil servants calculate to practical solutions to administrative problems.
- d. It contained astronomical calculations written by the Egyptian sun god named Ra.
- 22. Although the Egyptian pyramids at Giza stand largely intact today, only fragments of the ancient Mesopotamian ziggurats have survived. The primary reason for this is the following:
- a. Mesopotamian ziggurats were constructed over 2,000 years before the first Egyptian pyramids.
- b. Whereas the Egyptian state has invested money to protect its ancient monuments, Saddam Hussein destroyed the Mesopotamian ziggurats during the last Iraqi war.
- c. The unpredictable flooding of the Tigris and Euphrates Rivers led to the near destruction of the ancient Mesopotamian ziggurats.
- d Whereas the Egyptian pyramids were made of cut stone, the Mesopotamian ziggurats were constructed using clay brick that easily disintegrates.
- 23. When did the first cities, civilizations, and written languages emerge?
- acirca 3,200 BCE
- b. 200,000 years ago
- c. in the fourth century BCE
- d. circa 9,000 BCE
- 24. In the context of ancient Greece, Prometheus was best known for being:
- a. an inventor who designed astronomical tools and war machines.
- b. the god of fire who punished humans for their excessive hubris.
- the Titan who stole fire from Mt. Olympus and gave it to humans.
- d. the philosopher who studied under Plato and tutored Alexander the Great.
- 25. Which of the following quotes accurately reflects how the ancient historian Plutarch described the Greek mathematician and inventor, Archimedes?
- a. "Archimedes regarded necessity as the mother of invention."
- b. "Archimedes regarded mechanical occupations . . . as an activity that brought humans closer to divinity."
- c. "Archimedes regarded mechanical occupations ... as ignoble or vulgar, and he directed his own ambition solely to those studies the beauty and subtlety of which are unadulterated by necessity."
- d. "Archimedes renounced abstract scientific thinking and regarded the creation of mechanical tools as his sole purpose in life."

- 26. The Romans borrowed all of the following technologies from the ancient Greeks **except** for:
- a. land surveying techniques
- b. aqueducts for water distribution
- c. city planning using the urban grid
- d) concrete construction
- 27. The pantheon in Rome was constructed to serve the following function:
- a. as a meeting hall for the Roman senate.
- b as a temple dedicated to all of the gods.
- c. as a cistern to collect and redistribute fresh water.
- d. as a commercial market for merchants.
- 28. Where did archaeologists discover the Antikythera mechanism?
- a. among the ruins of the Roman forum.
- b. among the ruins at the Greek shrine of Asclepius, the god of healing.
- C. among the remains of a ship wreck off the coast of a Greek island.
- d. among the objects in the Louvre art collection.
- 29. The Roman Emperors invested heavily in developing which **two** forms of technology?:
- aqueducts
- 76) roads
- c. mechanized private industry
- d. sophisticated sailing boats
- 30. Which of the following requirements are necessary for the successful completion of the ouverture culturelle reading response essay?
- a. It must be a minimum of 500 words.
- b. It must be written in English.
- c. It must be typed, printed, and submitted to the professor by the stated deadline.
- d all of the above.

31. An optimist is someone __ expects the worst to happen.

- a. what
- (b) that
- c. which
- d. whom
- 32. Choose the one correct sentence.
 - a. I met someone his wife is an English teacher.
 - B. I met someone whom wife is an English teacher.
 - (c) I met someone whose wife is an English teacher.
 - D. I met someone who's wife is an English teacher.
- 33. Choose the one incorrect sentence.
 - a. The bartender I wanted to hire never answered my calls.
 - b. The bartender whom I wanted to fire had already left.
 - (c) The woman what I wanted to see had already left.
 - d. The woman who I wanted to see was away.
- 34. Choose the one incorrect sentence.
 - a. The actors with whom I work are very nice.
 - The actresses with who I make films are very nice.
 - c. The people I work with are very nice.
 - d. The decorators who I work with are very nice.
- 35. Choose the one correct sentence. Mary showed me her computer. It was a Dell.
 - a. Mary showed me her new computer, what was a Dell.
 - b. Mary showed me her new computer that was a Dell.
 - (C) Mary showed me her new computer, which was a Dell.
 - d. Mary showed me her new computer which was a Dell.
- 36. Choose the one correct sentence. John takes the metro a lot. He's a courier.
 - John, who's a courier, takes the metro a lot.
 - b. John, whose the job is courier, takes the metro a lot.
 - c. John, who's is a courier, takes the metro a lot.
 - d. John, whose a courier, takes the metro a lot.
- 37. Can you name the French writer ____ written the most books?
 - a. that
 - b. which
 - ⟨c̄⟩ who's
 - d. whose
- 38. Choose the **correct** sentence: These books have been in the basement for years. We're selling them.
 - We're selling the books that have been in the basement for years.
 - b. We're selling the books, that have been in the basement for years.

- c. We're selling the books what have been in the basement for years.
- d. We're selling the books have been in the basement for years.
- 39. Make one sentence: Ms. Mosley was very lazy. She used to be on our advertising team.
 - a. Ms. Mosley, which was very lazy, used to be on our advertising team.
 - b. Ms. Mosley, that was very lazy, used to be on our advertising team.
 - c. Ms. Mosley, what was very lazy, used to be on our advertising team.
 - Ms. Mosley, who was very lazy, used to be on our advertising team.
- 40. Make one sentence: The clerk stole the computer manual from the secretary. She filed a complaint.
 - a. The clerk stole the computer manual from the secretary and filed a complaint.
 - b. The clerk stole the computer manual from the secretary filed a complaint.
 - The clerk stole the computer manual from the secretary, who filed a complaint.
 - d. The clerk stole, the computer manual from the secretary, she filed a complaint.

SPE

Méthodologie

QCM n° 2 (Mathématiques)

41. Parmi ces Grecs illustres	, lequel n'a joué aucun rôle dans l	le progrès des mathématiques ?
-------------------------------	-------------------------------------	--------------------------------

- A. Pythagore
- B. Diophante
- C. Euclide
- D Euripide
- 42. Quelle civilisation a initié le premier système numérique positionnel ?
- A Sumer
- B. Les Hébreux
- C. L'Egypte
- D. La Grèce
- 43. Où et quand furent introduits les nombres imaginaires ?
- A. En Inde au Ve siècle
- B. Dans le monde arabo-musulman au Xe siècle
- C. En Chine au XIIIe siècle
- ①. En Italie au XVIe siècle
- 44. Lequel de ces hommes célèbres de la Renaissance fut mathématicien ?
- A. Jérôme Savonarole
- B Jérôme Cardan
- C. Miguel de Cervantes
- D. Albert Dürer
- 45. Lequel est l'un des fondateurs des géométries non-euclidiennes ?
- A. Pouchkine
- B. Lermontov
- C Lobatchevski
- D. Chostakovitch

- 46. Lequel ne fut pas mathématicien?
- A. Leonard Euler
- B. Gaspard Monge
- C. Daniel Defoe
- D. Carl Friedrich Gauss
- 47. Lequel ne fut pas mathématicien?

 A Jean Honoré Fragonard
- B. Evariste Galois
- C. Augustin Cauchy
- D. Georg Cantor
- 48. Lequel ne fut pas mathématicien?
- A. Joseph Fourier
- B Robert Schumann
- C. David Hilbert
- D. Andrew Wiles
- 49. Laquelle de ces personnalités est un mathématicien imaginaire ayant eu une grande influence sur l'enseignement des mathématiques en France ?
- A. Piotr Tchaïkovski
- B. Fédor Dostoïevski
- C. Léon Trotski
- D Nicolas Bourbaki
- 50. Quel mathématicien publia, en 1931, deux célèbres « théorèmes d'incomplétude » ?
- A. Albert Einstein
- B. Werner Heisenberg
- C. Kurt Gödel
- D. Werner von Braun

QCM Electronique - InfoSPE

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Q1. Soit une diode à jonction PN. On appelle I_D , le courant qui traverse la diode et V_D , la tension à ses bornes.

$$V_D$$

Choisir l'affirmation correcte :

- a- En polarisation directe, la tension V_D (positive) s'ajoute au potentiel de contact V_0 , et le champ dans la jonction s'intensifie, empêchant tout phénomène de diffusion.
- (b-) En polarisation directe, la tension V_D (positive) se soustrait au potentiel de contact V_0 , et le phénomène de diffusion peut alors reprendre. On voit alors apparaître un courant I_D circulant de l'anode vers la cathode.
- c- En polarisation directe, la tension V_D (positive) se soustrait au potentiel de contact V_0 , et le phénomène de diffusion peut alors reprendre. On voit alors apparaître un courant I_D circulant de la cathode vers l'anode.
- d- En polarisation inverse, la tension V_D (positive) se soustrait au potentiel de contact V_0 , et le phénomène de diffusion peut alors reprendre. On voit alors apparaître un courant I_D circulant de l'anode vers la cathode.
- **Q2.** L'équation de la caractéristique de la diode s'écrit : $I_D = I_S(e^{\frac{V_D}{mV_T}} 1)$ où I_D représente le courant qui traverse la diode et V_D , la tension à ses bornes, courant et tension étant fléchés selon la convention récepteur. Choisir l'expression exacte :
 - a- I_S est une constante et correspond au courant en polarisation inverse
 - b- I_S correspond au courant inverse. On l'appelle aussi courant de saturation car il est indépendant de la température.
 - C- I_S est le courant thermique. Il est appelé ainsi car les porteurs de charge qui le composent sont issus de la thermogénération.
 - d- m est homogène à une résistance.
- Q3. Quel modèle permet la représentation la plus simple de la diode :
 - (a-) Le modèle idéal

c- Le modèle réel

b- Le modèle à seuil

d- Les trois modèles sont équivalents

Q4. Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle à seuil de la diode :

Q5. Par quoi remplace-t-on la diode en polarisation directe si on utilise le modèle à seuil?

QCM 2

Architecture des ordinateurs

Lundi 21/10/2013

- Q11. Un compteur comportant n bascules (avec n > 1) est à cycle incomplet si :
 - (a) il compte de $0 \ à \ 2^n 1$.
 - (b) il compte de 0 à 2ⁿ.
 - (c) il compte de 0 à une valeur inférieure à $2^n 1$.
 - (d) il compte de 0 à une valeur inférieure à 2ⁿ.
- Q12. Quelle bascule divise sa fréquence d'horloge par deux ?
 - (a) Une bascule D dont la sortie Q est reliée à l'entrée D.
 - (b) Une bascule D dont la sortie \overline{Q} est reliée à l'entrée D.
 - (c) Une bascule JK dont la sortie Q est reliée aux entrées J et K.
 - (d) Une bascule JK dont la sortie \overline{Q} est reliée aux entrées J et K.
- Q13. Combien de bascules sont nécessaires pour fabriquer un compteur modulo 2^n (avec n > 1)?
 - (a) n-1 bascules.
 - (b) n bascules.
 - (c) n + 1 bascules.
 - (d) 2ⁿ bascules.

Figure 1

Q14. Que réalise le montage de la figure 1?

QCM₂

- (a) Un décompteur asynchrone modulo 9.
- (b) Un décompteur asynchrone modulo 10.
- (c) Un décompteur asynchrone modulo 12.
- (d) Un compteur asynchrone modulo 12.

1/2

- Q15. Un compteur synchrone génère la séquence suivante : 2, 3, 1, 0. Ce compteur est constitué de bascules JK avec :
 - $J1 = \overline{Q0}, K1 = Q0, J0 = Q1, K0 = \overline{Q1}$
 - (b) $J1 = \overline{Q0}$, K1 = Q0, $J0 = \overline{Q1}$, K0 = Q1
 - (c) $J1 = Q0, K1 = \overline{Q0}, J0 = Q1, K0 = \overline{Q1}$
 - (d) $J1 = Q0, K1 = \overline{Q0}, J0 = \overline{Q1}, K0 = Q1$

Q.C.M. de Physique n°2

21 – Le gradient represente —??? de la plus grande pente d'une fonction scalaire ?
a. la norme
b. la direction
(c) les deux ((a) et (b))
d. aucun des deux
22 – Pour un champ scalaire f et pour un vecteur, $\vec{\nabla} \wedge (\vec{\nabla} f)$ est égal à?
a) 1 ; (b) 0 ; c) −1 ; d) ∞
23 – Le théorème de Stokes relie, l'intégrale deà l'intégrale de ?
a. volume, surface
b. volume, linéique
(c) linéique, surface
d. aucune d'elles
$24 - \vec{\nabla}(fg)$ est égal à?
a. $\vec{\nabla} f \cdot \vec{\nabla} g$
b. $\vec{\nabla} f + \vec{\nabla} g$
c. $\vec{ abla}^2 fg$
(d.) $f \cdot \vec{\nabla} g + g \cdot \vec{\nabla} f$
25 – Le Laplacien d'un vecteur est???? du gradient de sa divergence et du rotationnel du rotationnel.
a. l'addition
b.) la différence
c. la multiplication
d. la division