Día 1

Herramientas Bioinformáticas para las Ciencias Biológicas: Introducción a Python

Trimestre 190

🋖 / Training / BIOINFO / An Introduction to Solving Biological Problems with Python

Bioinformatics Training

You are not currently logged in Log in

Home

Your bookings

Timetable

Courses

Themes

Venues

Instructor-led course

Provided by: Bioinformatics

This course has 1 scheduled run. To book a place, please choose your preferred date:

Thu 12 Mar 2020

09:30 - 17:30

[Places]

[Show past events]

An Introduction to Solving Biological Problems with Python

Description

This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core aspects of Python illustrated by a series of example programs. Upon completion of the course, attentive participants will be able to write simple Python programs and customize more complex code to fit their needs.

Course materials are available here.

Please note that the content of this course has recently been updated. This course now mostly focuses on core concepts including Python syntax, data structures and reading/writing files. Concepts and strategies for working more effectively with Python are now the focus of a new 2-days course, Data Science in Python.

Instituto de Biotecnología

Cursos básicos optativos tópicos 13-2

Básicos

Biología celular Biología molecular Calendario

Tópicos Selectos				
Bioinformática				
Determinación tridimensional				
Diseño de Experimentos				
Estructura y función proteinas				
del Gen al producto				
Genómica humana				
Mecanismos de regulación				
Mecanismos moleculares sistema inmune innato				
El pez cebra un modelo biológico				
Symbiomics				
Tópico en inmunología				

企業

rst floor and there is currently no wheelchair or level access available to this level.

e for a University of Cambridge Raven account you will need to book or register your

taff members from the University of Cambridge, Affiliated Institutions and other external

are only free for registered University of Cambridge students. All other participants will be orm. Registration fees and further details regarding the charging policy are available here. iteria are available here

eginners and assumes no prior programming experience (beyond the ability to use a text

ld be an advantage, but nothing will be assumed and extremely little will be required.

Bioinformática2020

Objetivos

Lograr que el alumno:

- Reconozca la importancia de las herramientas bioinformáticas.
- Aplique la funcionalidad de Python para procesar, analizar, interpretar, visualizar y almacenar información biológica relevante.
- Implemente flujos de trabajo en Jupyter Notebook.
- Adquiera fundamentos básicos de programación para aplicarlos en la solución de problemas (relacionados a su proyecto).

Objetivos

Genomic **Transcriptomic** Metagenomic **Proteomic Microarray**

swissprot

Organization, Analysis, Interpretation and Storage

Contenido

- Proyecto
- Motivos
- Expectativas

El Temario se encuentra en GitHub:

Bioinformática 2020

https://github.com/Bioinformatica2020/Semana1

pcr2.1@hotmail.com

Literatura recomendada

Literatura recomendada

Día 2

¿Qué es la Informática?

Se refiere al procesamiento automático de información mediante dispositivos electrónicos y sistemas computacionales.

Entrada (ingreso de información) **Procesamiento Salida** (resultados)

Software

Algoritmo y programación

• Un algoritmo es una secuencia finita de pasos que resuelven un problema.

UN ALGORITMO ES LA ESENCIA DE UN PROCEDIMIENTO COMPUTACIONAL

- Un programa de computadora es una secuencia de instrucciones que controlan el comportamiento de computadora.
- Un algoritmo debe ser traducido a un programa antes de que la computadora pueda usarlo para resolver el problema.
- El proceso de traducción es llamado programación y la persona que traduce es llamado programador.

¿Qué es la bioinformática?

Puede ser definida como una disciplina científica multidisciplinaria encargada de la aplicación de herramientas computacionales para organizar, analizar, interpretar, visualizar y almacenar información biológica a gran escala.

Genet. Mol. Res, 2017;16(1): gmr16019645

Proteomics, 2015;15(8):1341-55

¿Qué es la bioinformática?

Computer Science

- Algorithms
- databases
- data visualization
- intelligent information systems
- parallel processing
- artificial intelligence, etc.

Bioinformatic

Biology, Chemistry

- Biochemistry
- molecular biology
- genetics
- genomics
- protein science
- structural biology, etc.

Mathematics, Statistics

- Discrete mathematics
- multivariate statistics
- probability theory statistics
- random processes
- · Markov chain analysis, etc.

Wireless Pers Commun, 2019;105:405

Inicio de la Bioinformática

Aplicaciones

Bioinformatics

Omics Technologies

System Biology

Functional Annotation

Protein Structure prediction

Sequence alignment

Homology modeling

Phylogenetics

Aplicaciones

Genomic **Epigenomic** Transcriptomic -Metagenomic Ubiquitinome Serine* Microbiomic **Glycome** Threonine* **Omics** Proteomic* Acetylome Phosphoproteome* Tyrosine* Phenomic Metylome Metabolomic Succinylome Histidine* Ionomic Secretome Exposomic Subproteome Aspartate*

Lenguajes de programación

Java C **Python** 4 C++ 00 Visual Basic .NET VB.NET **Javascript** C# PHP php SQL **Objective-C** [OBJ-C]

ASM

Python: Biopython

biopython

Perl: Bioperl

Java: Biojava

BioRuby

Linux: Bio-Linux

¿Qué es Python?

- Es de propuesta general
- De alto nivel
- Dinámico
- Sintaxis sencilla
- Gran cantidad de bibliotecas
- Altamente interactivo
- Es libre
- Aplicaciones científicas
- Tiene una gran comunidad

Python

*

Qt Console

4.3.1

PyQt GUI that supports inline figures, proper multiline editing with syntax highlighting, graphical calltips, and more.

Launch

Notebook

5.7.0

Web-based, interactive computing notebook environment. Edit and run human-readable docs while describing the data analysis.

Install

Spyder

3.3.1

Scientific PYthon Development EnviRonment. Powerful Python IDE with advanced editing, interactive testing, debugging and introspection features

Launch

Orange 3

3.16.0

Component based data mining framework.

Data visualization and data analysis for novice and expert. Interactive workflows with a large toolbox.

Install

Ů

Glueviz

0.13.3

Multidimensional data visualization across files. Explore relationships within and among related datasets.

Install

RStudio

1.1.456

A set of integrated tools designed to help you be more productive with R. Includes R essentials and notebooks

Install

*

٠

JupyterLab

0.35.3

An extensible environment for interactive and reproducible computing, based on the Jupyter Notebook and Architecture.

Install

VS Code

1.28.2

Streamlined code editor with support for development operations like debugging, task running and version control.

Install

Herramientas

http://www.instylevacations.ca/post/view/10-interesting-facts-about-mt-everest

Descargar Python 3.7.5

Python 3.7.5

Release Date: Oct. 15, 2019

Files

Version	Operating System	Description	MD5 Sum	File Size	GPG
Gzipped source tarball	Source release		1cd071f78ff6d9c7524c95303a3057aa	23126230	SIG
XZ compressed source tarball	Source release		08ed8030b1183107c48f2092e79a87e2	17236432	SIG
macOS 64-bit/32-bit installer	Mac OS X	{Deprecated) for Mac OS X 10.6 and later	cd503606638c8e6948a591a9229446e4	35020778	SIG
macOS 64-bit installer	Mac OS X	for macOS 10.9 and later	20d9540e88c6aaba1d2bc1ad5d069359	28198752	SIG
Windows help file	Windows		608cafa250f8baa11a69bbfcb842c0e0	8141193	SIG
Windows x86-64 embeddable zip file	Windows	for AMD64/EM64T/x64	436b0f803d2a0b393590030b1cd59853	7500597	SIG
Windows x86-64 executable installer	Windows	for AMD64/EM64T/x64	697f7a884e80ccaa9dff3a77e979b0f8	26777448	SIG
Windows x86-64 web-based installer	Windows	for AMD64/EM64T/x64	b8b6e5ce8c27c20bfd28f1366ddf8a2f	1363032	SIG
Windows x86 embeddable zip file	Windows		726877d1a1f5a7dc68f6a4fa48964cd1	6745126	SIG
Windows x86 executable installer	Windows		cfe9a828af6111d5951b74093d70ee89	25766192	SIG
Windows x86 web-based installer	Windows		ea946f4b76ce63d366d6ed0e32c11370	1324872	SIG

Instalar Python

2. Ejecutar como administrador

3. Activar la casilla: Add Python to Path

- Install launcher for all users (recommended)
- Add Python 3.6 to PATH

→ Install Now

 $C:\Users\pGEN1\AppData\Local\Programs\Python\Python37$

Includes IDLE, pip and documentation Creates shortcuts and file associations

Corroborar la instalación

```
# muestra todos los módulos instalados
>python -mpip list
```

```
# ingresar al intérprete de Python
>python
```

```
# otra forma de revisar los módulos instalados
>>> help("modules")
```

- # Ahora haz el siguiente ejercicio # La función **print** se puede usar con comillas dobles o simples
- >>> print("Primera semana del curso")
- >>> print("Semana1:" + "Segunda clase")
- >>> print("Semana1: " + "Segunda clase")
- # Hacer la prueba con comillas simples

Comillas dependiendo del contexto

>>> print(" 'Primera semana del curso' ")

>>> print(' "Semana1: ' + 'Segunda clase" ')

Módulos de Python

- Un módulo permite organizar lógicamente el código de Python.
- Un módulo agrupa el código de tal forma que lo hace mas fácil de entender y usar.
- Un módulo es un objeto de Python con atributos y nombres arbitrarios que puede enlazar y hacer referencia a su función.

```
pandas atributo: read_csv
```

pandas.read_csv()

Instalación de Módulos

Instalar módulos usando la función: **pip** desde la terminal de Windows (**cmd**)

>python -mpip install pandas

>python -mpip install matplotlib

#¿cómo comprobarías la instalación de los módulos?

Ver las funciones de un módulo:

```
>python
>>> import pandas
>>> funciones = pandas.__dict__
>>> funciones.keys()
```

Otra forma de buscarlos

>python -mpip list | grep "pandas"

Actividades

- 1. Revisar la literatura recomendada.
- 2. Instalar los siguientes módulos y comprobar su instalación:

requests

scipy

colormap

3. Revisar expresiones regulares y/o metacaracteres.

aquí un link: https://docs.python.org/3/library/re.html

