CLAIMS

What is claimed is:

1	1. An electrical circuit, comprising:
2	a dissipative clamp circuit coupled to an input of the electrical circuit;
3	an inductive element coupled between the dissipative clamp circuit and an
4	output of the electrical circuit; and
5	a switch coupled in series with the inductive element;
6	the dissipative clamp circuit coupled to provide a clamp voltage across the
7	inductive element, the clamp voltage provided by the dissipative clamp circuit
8	responsive to conditions at the input of the electrical circuit, the dissipative clamp
9	circuit coupled to maintain a voltage across the switch below a switch voltage
.0	limit.
1,	2. The electrical circuit of claim 1 wherein the dissipative clamp circuit is
2	coupled to be responsive to conditions at the output of the electrical circuit.
1	3. The electrical circuit of claim 1 wherein the electrical circuit is a power
2	conversion circuit.
1	4. The electrical circuit of claim 3 wherein the power conversion circuit is
2	a forward converter power conversion circuit.

1	5. The electrical circuit of claim 1 wherein the inductive element
2	comprises a winding of a transformer.
1	6. The electrical circuit of claim 1 wherein the switch comprises a first
2	transistor.
1	7. The electrical circuit of claim 6 wherein the first transistor comprises a
2	first bipolar transistor.
1	8. The electrical circuit of claim 6 wherein the first transistor comprises a
2	first metal oxide semiconductor (MOS) transistor.
1.	9. The electrical circuit of claim 1 wherein the dissipative clamp circuit
2	comprises a second transistor coupled to the inductive element to dissipate energy
3	stored in the inductive element.
1	10. The electrical circuit of claim 9 wherein the second transistor
2	comprises a second bipolar transistor.
,	
1	11. The electrical circuit of claim 9 wherein the second transistor
2	comprises a second metal oxide semiconductor (MOS) transistor.

12. The electrical circuit of claim 1 wherein the input of the electrical 1 2 circuit is coupled to receive an input voltage. 13. The electrical circuit of claim 12 wherein the dissipative circuit is 1 coupled to be responsive to varying voltage conditions at the input of the 2 3 electrical circuit. 14. The electrical circuit of claim 12 wherein the input of the electrical . 1 2 circuit is coupled to receive the input voltage from a rectifier coupled to rectify an 3 alternating current (AC) line voltage. 15. The electrical circuit of claim 12 wherein the dissipative circuit is 1 2 coupled to be responsive to a varying amount of energy being clamped across the inductive element of the electrical circuit. 3 16. The electrical circuit of claim 15 wherein the amount of energy being 1 clamped across the inductive element varies in response to a varying peak current 2 in the inductive element. 3 17. The electrical circuit of claim 16 wherein the output of the electrical 1 circuit is coupled to a load, the varying peak current in the inductive element to 2

vary in response to changes in the load coupled to the output of the electrical

3

circuit.

2	the inductive element is coupled to vary in response to a soft start period of a
3	control of the switch.
1.	19. The electrical circuit of claim 1 further comprising a second input
2	coupled to the switch, wherein switching of the switch is responsive to the second
3	input of the electrical circuit.
1	20. The electrical circuit of claim 19 wherein the clamp voltage provided
2	by the dissipative clamp circuit is further responsive to conditions at the second
3	input of the electrical circuit.
1	21. The electrical circuit of claim 1 further comprising a second output
2	coupled to the inductive element, wherein the clamp voltage provided by the
3	dissipative clamp circuit is further responsive to conditions at the second output of
4	the electrical circuit.
1	22. A power supply, comprising:
2	an energy transfer element having an energy transfer element input and an
3	energy transfer element output coupled to an output of the power supply;
4	a switching regulator circuit including a power switch coupled to the
5	energy transfer element input, and a control circuit coupled to the power switch

18. The electrical circuit of claim 16 wherein the varying peak current in

6	and the output of the power supply, the control circuit coupled to switch the
7	power switch to regulate the output of the power supply; and
8	a dissipative clamp circuit coupled to the energy transfer element input,
9	the dissipative clamp circuit coupled to a power supply input to receive an input
0	voltage, the dissipative clamp circuit including:
1.	a sensing network coupled to the power supply input to sense the input
2	voltage;
3	a dissipative element coupled to the sensing network and coupled to the
l4	energy transfer element;
15	an energy storage element coupled to the energy transfer element and the
16.	dissipative element; and
1 7	a first diode coupled between the power switch and the dissipative elemen
18	and the energy storage element.

- 23. The power supply of claim 22 wherein the energy storage element comprises a capacitor coupled to the energy transfer element input and the first diode.
- 24. The power supply of claim 22 wherein the dissipative element
 comprises a first transistor coupled to the energy storage element, the first
 transistor coupled to dissipate energy in the energy storage element in response to
 a signal received from the sensing network.

1	25. The power supply of claim 22 wherein the sensing network
2	comprises:
3	a voltage divider circuit coupled to the reference voltage circuit to provide
4	a scaled voltage responsive to a reference voltage added to the input voltage; and
5	a second transistor coupled to the dissipative element and coupled to the
6	voltage divider, the second transistor coupled to provide a current that is coupled
7	to decrease linearly with increasing input voltage.
1	26. The power supply of claim 25 wherein the reference voltage is
2	provided by a reference voltage circuit coupled to the power supply input, the
3	reference voltage circuit including a zener diode coupled between the voltage
4	divider circuit and the power supply input, the reference voltage circuit further
5	including a second capacitor coupled between the voltage divider circuit and the
6	power supply input.
1	27. A method, comprising:
2	switching a power supply input on an energy transfer element;
3:	regulating a power supply output by switching the power supply input on
4	the energy transfer element;
5	clamping a voltage on the energy transfer element to a clamp voltage; and
6	varying the clamp voltage in response to the power supply input.

- 1 28. The method of claim 27 wherein the varying of the clamp voltage is
- 2 substantially independent of the power supply output.
- 1 29. The method of claim 28 wherein the varying of the clamp voltage is
- 2 further substantially independent of leakage inductance of the energy transfer
- 3 element.
- 1 30. The method of claim 27 wherein clamping the voltage on the energy
- 2 transfer element comprises dissipating energy stored in leakage inductance of the
- 3 energy transfer element in response to the power supply input.
- 1 31. The method of claim 30 wherein varying the clamp voltage comprises
- 2 varying the clamp voltage substantially inversely linearly with respect to the
- 3 power supply input.