CHAPTER - 10 **Functions**

EE24BTECH11039 - Ranjith

A: Fill in the Blanks

1) The values of $f(x) = 3\sin\left(\sqrt{\frac{\pi^2}{16} - x^2}\right)$ lie in the interval

2) For the function $f(x) = \frac{x}{1+e^{1/x}}$, $x \ne 0 = 0$, x = 0 the derivative from the right, f'(0+) =..... and the derivative from the left, $f'(0-) = \dots$

(1983 - 2mark)

3) The domain of the function f(x) $\sin^{-1}\left(\log_2\left(\frac{x^2}{2}\right)\right)$ is given by ...

(1984 - 2mark)

4) Let A be a set of n distinct elements. Then the total number of distinct functions from A to A is _____ and out of these _____ are onto functions.

(1985-2mark)

5) If $f(x) = \sin \ln \left(\frac{\sqrt{4-x^2}}{1-x} \right)$, then domain of f(x) is... and its range is

(1985 - 2Mark)

6) There are exactly two distinct linear functions,...and...which map [-1,1]onto [0,2]

(1989 - 1Mark)

7) If f is a even function defined on the interval (-5,5), then four real values of x satisfying the equation $f(x) = f(\frac{x+2}{x+1})$ are..... and.....

(1996 - 1mark)

B: True/ False

1) If $f(x) = (a - x^n)^{1/n}$ where a > 0 n is a positive integer then f(f(x)) = x.

(1983 - 1Mark)

- 2) The function $f(x) = \frac{x^2 + 4x + 30}{x^2 8x + 18}$ is not one-to one. (1983 - 1Mark)
- 3) If $f_1(x)$ and $f_2(x)$ are defined on domains D_1 and D_2 respectively, then $f_1(x) + f_2(x)$ is defined on $D_1 \cup D_2$.

(1988 - 1Mark)

C: MCQ's with One Correct Answer

- 1) Let R be the set of real numbers. If $f: R \mapsto R$ is a function defined by $f(x) = x^2$, then f is:
 - (a) Injective but not surgective
 - (b)Surjective but not injective
 - (c)Bijective
 - (d)None of these.

2) The entire graphs of the equation $y = x^2 + kx - kx$ x + 9 is strictly above the x-axis if and only if (a) k < 7

(b)-5 < k < 7

(c)k > -5

(d)None of these. (1979)

3) Let f(x) = |x - 1|.then

(a) $f(x^2) = (f(x))^2$

(b) f(x + y) = f(x) + f(y)

(c) f(|x|) = |f(x)|

(d) None of these. (1983 - 1Mark)

4) If x satisfies $|x-1| + |x-2| + |x-3| \ge 6$, then (a) $0 \le x \le 4$

 $(b)x \le -2 \text{ or } x \ge 4$

 $(c)x \le 0 \text{ or } x \ge 4$

(d)None of these. (1983-1Mark)