

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PIAUÍ – UFPI CAMPUS SENADOR HELVÍDIO NUNES DE BARROS – PICOS BACHARELADO EM SISTEMAS DE INFORMAÇÃO

Arquitetura de Computadores

Sistemas de Informação - UFPI Prof. Dr. Frank César Lopes Véras 2023.1

AULA 4

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES 8º edição PEARSON

Por que estudar Arq. e Org. de Comp.?

- Precisamos saber como funciona um computador
- A arquitetura e a organização refletem diretamente:
 - Na capacidade dos programas em resolver problemas;
 - Nas possibilidades dos programadores em utilizar o computador;
 - No desempenho do sistema final;
 - Na segurança dos dados;
 - Dentre outros detalhes.

- Ao se descrever um sistema de computação
 - Distinção entre Arq x Org do computador
- Arquitetura de um computador:
 - Atributos de um sistema que são visíveis para o programador
 - Ou seja,
 - Atributos que têm impacto direto sobre a execução lógica de um programa

- Exemplos de ATRIBUTOS DE ARQUITETURA
 - Conjunto de instruções
 - Número de bits usados para representar os vários tipos de dados (números, caracteres, por exemplo)
 - Mecanismos de E/S
 - Técnicas de endereçamento à memória

- Organização de um computador
 - Refere-se às unidades operacionais e suas interconexões que implementam as especificações da sua arquitetura
- Exemplos de **ATRIBUTOS DE ORGANIZAÇÃO**
 - Detalhes de hardware transparentes ao programador
 - Sinais de controle
 - Interfaces entre o computador e os periféricos
 - Tecnologia de memória utilizada

QUESTÃO DE PROJETO ARQUITETURAL

 Decidir se um computador deve ou não ter uma instrução de multiplicação

QUESTÃO DE PROJETO ORGANIZACIONAL

- Decidir se essa instrução será implementada por
 - uma unidade especial de multiplicação ou
 - por um mecanismo que faça uso repetido da unidade de adição do sistema.

QUESTÃO DE PROJETO ORGANIZACIONAL

- A decisão pode ser baseada na:
 - Antecipação da frequência de uso da instrução de multiplicação;
 - Na velocidade relativa das duas técnicas;
 - No custo e tamanho físico de uma unidade especial de multiplicação.

- O fato é que...
 - Essa distinção é histórica e de fundamental importância
 - Muitos fabricantes oferecem uma família de modelos de computadores
 - Todos com a mesma arquitetura, mas com diferenças de organização

- Consequentemente:
 - Diferentes modelos tem preços e características de desempenho distintos.
- Uma arquitetura pode sobreviver por muitos anos:
 - Pode abranger diversos modelos de computadores diferentes;
 - E sua organização pode variar com a evolução da tecnologia.

- Na classe dos microcomputadores
 - A relação Arquitetura x Organização é muito estreita
 - Mudanças na tecnologia influenciam tanto uma como a outra
 - Resultam na introdução de arquiteturas mais poderosas e mais flexíveis

- Na classe dos microcomputadores
 - Geralmente, há menor requisito para compatibilidade de geração para geração

Assim:

- Existe mais interação entre decisões Projeto Organizacional e Arquitetural
- EXEMPLO
 - Computadores RISC (Reduced Instruction Set Computer)

Estrutura e Função de um computador

- O que é um computador?
 - Sistema complexo com milhões de componentes eletrônicos elementares
- Como descrevê-los com clareza?
 - UM CAMINHO É:
 - Reconhecer a natureza hierárquica dos sistemas mais complexos, incluindo o computador (Simon, 1996)

Estrutura e Função de um computador

- E o que é um Sistema Hierárquico?
 - É um conjunto de subsistemas interrelacionados;
 - Cada um deles, por sua vez, é hierárquico em estrutura até que se alcance um nível mais baixo de subsistema elementar.
- A Natureza Hierárquica é essencial para o projeto e descrição de um computador.

Estrutura e Função de um computador

- Estrutura
 - Modo como os componentes estão interrelacionados
- Função
 - Operação de cada componente individual como parte da estrutura

Função

- Tanto a Estrutura como a Função de um computador são, em sua essência, muito simples
- Em termos gerais, existem quatro:
 - Processamento de dados
 - Armazenamento de dados
 - Transferência de dados
 - Controle
- Vejamos os gráficos sobre tais funções:

Visão funcional de um computador

• E QUAIS OS TIPOS POSSÍVEIS DE OPERAÇÕES, NESSE NÍVEL DE DISCUSSÃO?

Operations (1)

Movimentação de dados

Operations (2)

Armazenamento de dados

Operation (3)

Processamento de/para armazenamento
 – Ex.: Atualizando extrato bancário
 Movimentação

Controle

→Operação envolvendo processamento

de dados armazenados na memória

Processamento

Operation (4)

Processamento do armazenamento para E/S.

Estrutura

Estrutura – A CPU

Estrutura

- Há quatro principais componentes estruturais:
 - Unidade central de processamento (CPU)
 - Controla a operação do computador e desempenha funções de processamento de dados
 - Memória principal
 - Armazena dados
 - **E/S**
 - Transfere dados entre o computador e o ambiente ext
 - Interconexão do sistema
 - Mecanismos que estabelecem a comunicação entre a CPU, a Memória Principal e os dispositivos de E/S.
 - Ex.: Barramento do sistema
 - Fios condutores → conexão dos demais componentes

CONSIDERAÇÕES FINAIS

- PESQUISAR SOBRE NÍVEIS DE LINGUAGEM
 - LIVRO: Organização Estruturada de Computador
 - AUTOR: Andrew S. Tanenbaum
 - CONTEÚDO: Capítulo 1
 - Tópico 1.1 → Subtópicos 1.1.1 e 1.1.2