

Rajshahi University of Engineering & Technology

Department of Electrical & Computer Engineering

Lab Report

Course Code : ECE 1202

Course Title : Circuits and Systems- II

Experiment no :01

Date of experiment : 21-05-2024

Date of Submission: 10-09-2024

Submitted To:	Submitted By:
Oishi Jyoti	Name : Jaharun Binta Feroz Jeba
Assistant Professor	Roll : 2210008
Department of ECE, RUET	Registration: 1062
	Session : 2022-2023
	Department of ECE, RUET

Name of The Experiment: Study the relationship between phase and line voltages of wye connected $3-\phi$ balanced system.

Theory: In a wye-connected three-phase balanced system, there is a specific relationship between the phase voltages and the line voltages. The phase voltage (V_p) is the voltage between any phase and the neutral point, while the line voltage (V_L) is the voltage between any two phases. In a balanced three-phase system, the three-phase voltages have the same magnitude and are displaced by 120 degrees from each other. Due to the wye-connection, where the neutral point of the three-phase system is connected to the common point, the line voltage is equal to the phase voltage multiplied by the square root of 3 $(\sqrt{3})$. Mathematically, this relationship can be expressed as,

$$v_p = \frac{v_L}{\sqrt{3}}$$

$$I_P = I_L$$

Circuit:

Fig. Circuit Diagram

Required Apparatus:

- I. Source
- II. Ammeter
- III. Resistor
- IV. Multimeter
- V. Connecting Wire

Data Table:

Sl No.	V _L	V _p (m)	V _p (Cal)	%Error	I_L	I_P
1	49.2	27.7	28.40	2.53	0.21	0.21
2	69.8	40.3	40.3	0%	0.405	0.405
3	72.6	41.1	41.9	1.95%	0.421	0.421
4	19.06	16.75	11.004	34.3%	0.158	0.158

Roll	· 2	210001	, 2210	015, 22	10008.	2210027, 2210025
vil box o	SLOW	VL	Vp(m)	Ve(00)	% error	172179
- 103	1	49.2	27.7		2.53	0-21 0-21
	2	59.2	34.36	39:23	0.38	Sto to Person
21.0594	3	69.8	70.3	40.3	0%	0.05 0.405
27.0	4	TRE	41.7	41.9	0>1.95%	042 1 0-421 (03)
	5	19.06	40.1	11-004	34.3%	0158 0-158
			1			

Calculation:

For 1st calculation,

$$V_L$$
=49.2 V, V_P (Cal) = $\frac{vL}{\sqrt{3}}$ =28.40 V, V_P (m) =27.7 V, Error= $\left|\frac{vL-vP}{vL}\right|$ =2.53%

For 2nd calculation,

$$V_L$$
=69.8 V, V_P (Cal) = $\frac{VL}{\sqrt{3}}$ =40.3 V, V_P (m) =40.3 V, Error= $\left|\frac{VL-VP}{VL}\right|$ =0%

For 3rd calculation,

$$V_L = 72.6 \text{ V}, V_P(Cal) = \frac{VL}{\sqrt{3}} = 41.9 \text{ V}, V_P(m) = 41.1 \text{ V}, Error = \left| \frac{VL - VP}{VL} \right| = 1.95\%$$

For 4th^t calculation,

$$V_L=19.06 \text{ V}, V_P(Cal) = \frac{v_L}{\sqrt{3}} = 11.004 \text{ V}, V_P(m) = 16.75 \text{ V}, Error = \left|\frac{v_L - v_P}{v_L}\right| = 34.3\%$$

Conclusion:

The experiment investigated the relationship between phase and line voltages in a balanced wyeconnected three-phase system. The results confirmed (or discussed deviations from) the theoretical relationship (VL = $\sqrt{3}$ * Vph). This experiment demonstrates the fundamental concept of voltage relationships in a common three-phase system configuration.