MAI 5100 — Foundations of Artificial Intelligence Homework 0 (Part 2)

Solution

Dr Christopher Clarke

Semester II, 2025

Problem 3.15

Consider a state space where the start state is 1 and each state k has two successors: 2k (Left) and 2k + 1 (Right). Answer parts (i)–(v) for states 1–15 with goal state 11.

Solution

(i) State-space diagram (states 1-15)

- (ii) Node-visit orders (goal = 11)
 - Breadth-First Search (BFS): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
 - Depth-Limited DFS, limit 3 (Left before Right): 1, 2, 4, 8, 9, 5, 10, 11
 - Iterative Deepening DFS (limits $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$):

limit 0:1

limit 1: 1, 2, 3

limit 2: 1, 2, 4, 5, 3, 6, 7

limit 3: 1, 2, 4, 8, 9, 5, 10, 11

(The final limit discovers the goal at optimal depth.)

(iii) Bidirectional Search

Moving forward from the root, each node has two children $\Rightarrow b_f = 2$. Moving backward from any node (except the root), there is exactly one parent $\lfloor k/2 \rfloor \Rightarrow b_b = 1$. Because the backward frontier grows linearly, the two frontiers meet after at most $\lceil \log_2 11 \rceil = 4$ levels, so bidirectional search is highly efficient here.

(iv) Reformulation

Each state label encodes its unique path in binary. Writing the goal in binary, dropping the most-significant 1, and reading the remaining bits left-to-right gives the complete action sequence (bit 0=Left, bit 1=Right). Thus the path from 1 to any goal can be obtained with no search.

(v) Zero-search algorithm

- 1. Input a goal state $n \geq 1$.
- 2. Convert n to binary and discard the leading 1.
- 3. Scan the remaining bits:
 - bit $0 \rightarrow \text{output Left}$;
 - bit $1 \rightarrow \text{output Right}$.

Example for n = 11: $11_{10} = 1011_2 \Longrightarrow$ bits "011" \Rightarrow actions L R R. Time complexity $\mathcal{O}(\log n)$, memory $\mathcal{O}(1)$.

Problem 3.27

n labelled vehicles initially occupy the bottom row of an $n \times n$ grid: vehicle i starts in (i, 1) and must be moved to (n - i + 1, n) (top row, reversed order). At every discrete time-step each vehicle may

- move one square Up, Down, Left, or Right, or
- Stay. If it stays, at most one adjacent vehicle may hop over it.

No two vehicles may occupy the same square.

(a) Size of the state space. Each legal state is a placement of the n distinct vehicles on n distinct squares out of the n^2 available cells. Hence

$$|S(n)| = \frac{(n^2)!}{(n^2 - n)!}$$
.

(b) Branching factor. For an individual vehicle there are at most 5 distinct actions (the four cardinal moves plus Stay/Hop). Assuming no action conflicts, the joint action at a time-step is the Cartesian product of the individual choices, yielding an upper bound

$$b(n) = 5^n.$$

(The actual factor is lower because some joint moves are illegal when two vehicles target the same square, etc.)

2

(c) An admissible single-vehicle heuristic. Let vehicle i be at (x, y); its goal is $g_i = (n - i + 1, n)$. Define the Manhattan distance

$$d_M(i) = |x - (n - i + 1)| + |y - n|.$$

A hop can reduce d_M by at most two squares in one time-step, so

$$h_i = \left\lceil \frac{d_M(i)}{2} \right\rceil$$

never overestimates the remaining time and is therefore admissible (and dominates the plain Manhattan distance).

(d) Combined heuristics for the multi-vehicle problem. Let C^* be the true cost (number of time-steps until *all* vehicles reach their goals).

(i)
$$H_{\Sigma} = \sum_{i=1}^{n} h_i$$

Not admissible. Because the *n* vehicles move *simultaneously*, their individual costs do *not* add: if two cars each need 3 steps, $C^* = 3$ but $H_{\Sigma} = 6 > C^*$.

(ii) $H_{\max} = \max_i h_i$

Admissible. The fleet cannot finish before its slowest member, so $H_{\text{max}} \leq C^*$ always holds.

(iii) $H_{\min} = \min_{i} h_i$

Admissible (but weak). It is clearly a lower bound ($H_{\min} \leq C^*$) but usually provides very little guidance because it ignores the slower vehicles.

"Manual" Search Tree Generation

Given the highway graph in Figure 1 of the assignment (major cities in the U.S. North-East / Mid-West with edge costs = road mileage), solve

$$Start = Chicago \longrightarrow Goal = Boston$$

with four search strategies:

- (i) Breadth-First Search (BFS)
- (ii) Depth-First Search (DFS)
- (iii) Uniform-Cost Search (UCS)
- (iv) A* Search with an admissible straight-line heuristic h(n)

For each method give the expansion order, solution path, total mileage g^* , and comment on optimality.

In this solution, children are generated in Alphabetical order.

Figure 1: Highway network supplied in the assignment. Purple edges are labelled with driving mileage and are treated as step-costs.

1 Pre-computed edge lengths

Edge	Miles	Edge	Miles
$\overline{\text{Chicago} \rightarrow \text{Cleveland}}$	345	$Cleveland \rightarrow Pittsburgh$	134
$Chicago \rightarrow Detroit$	283	Cleveland \rightarrow Buffalo	189
$Chicago \rightarrow Indianapolis$	182	$Columbus \rightarrow Pittsburgh$	185
$Detroit \rightarrow Buffalo$	256	Buffalo \rightarrow Syracuse	150
Cleveland \rightarrow Columbus	144	$Syracuse \rightarrow Boston$	312
$Pittsburgh \rightarrow Buffalo$	215	$Syracuse \rightarrow New York$	254
Philadelphia \rightarrow New York	97	Boston \rightarrow Providence	50
New York \rightarrow Providence	181	$Boston \rightarrow Portland$	107
Baltimore \rightarrow Philadelphia	101	$Pittsburgh \to Baltimore$	247

2 Breadth-First Search (BFS)

Expansion order

Level 0: Chicago

Level 1: Cleveland, Detroit, Indianapolis

Level 2: Buffalo, Columbus, Pittsburgh

Level 3: Syracuse, Baltimore, Philadelphia

Level 4: Boston

Solution path & cost

Chicago
$$\to$$
 Cleveland \to Buffalo \to Syracuse \to Boston
$$g^*_{\rm BFS} = 345 + 189 + 150 + 312 = \boxed{996~{\rm mi}}$$

Optimality BFS is *optimal in number of edges*. Because all solutions have the same depth (4), the first found happens also to be the least mileage, but BFS does *not* guarantee minimal cost in weighted graphs.

3 Depth-First Search (DFS)

With the same alphabetical ordering the recursion explores the leftmost branch first.

Expansion order Chicago, Cleveland, Buffalo, Syracuse, Boston.

Solution path & cost (identical to BFS under this ordering)

$$g_{\rm DFS}^* = 996 \ {\rm mi}$$

Optimality DFS is neither optimal nor complete in graphs. It *happened* to return an optimal path, but this is coincidence, not a guarantee.

th, but this is confedence, not a guarantee.

4 Uniform-Cost Search (UCS)

UCS always removes the node with smallest path-cost g.

Expansion #	City (n)	g(n) [mi]
1	Chicago	0
2	Indianapolis	182
3	Detroit	283
4	Cleveland	345
5	Columbus	358
6	Pittsburgh	479
7	Buffalo	534
8	Syracuse	684
9	$\boxed{Boston(goal)}$	996

Solution path & cost

Chicago
$$\rightarrow$$
 Cleveland \rightarrow Buffalo \rightarrow Syracuse \rightarrow Boston $g_{UCS}^* = 996$ mi

Optimality Because every edge cost is positive, UCS is *optimal*; the first time the goal leaves the priority queue its cost is the global minimum.

5 A* Search

Heuristic h(n) (straight-line to Boston)

City	h(n) [mi]	City	h(n) [mi]
Chicago	850	Philadelphia	280
Indianapolis	900	New York	200
Detroit	600	Providence	40
Cleveland	550	Portland	120
Columbus	650	Boston	0
Pittsburgh	500	_	_
Buffalo	400	Syracuse	300

The table values are all lower than the true driving distances, so h is **admissible** and, because straight-line obeys the triangle inequality, also **consistent**.

Key steps

#	Node n	g(n)	h(n)	f(n) = g + h
1	Chicago	0	850	850
2	Cleveland	345	550	895
3	Buffalo	534	400	934
4	Syracuse	684	300	984
5	Boston	996	0	996

Solution path & cost Same optimal route:

$$g_{A^\star}^* = 996 \text{ mi}$$

Optimality Because h is admissible and consistent, A^* is both complete and optimal. Expanding only five nodes shows the benefit of informed search.