

ISCG8043 Adaptive Business Intelligence (ABI)

Time Series Analysis (Cont.)

Outline

- Basics and Definitions
- Evaluating Time Series Models
- Decomposition of Time Series

A time series is a sequence of data points (values), measured typically at successive points in time spaced at uniform time intervals.

 Different time periods can be used for different applications

e.g. seconds, minutes, hours, days, weeks, months or years.

- The aim of models, described in this lecture is to
 - Identifying regular patterns of an available time series
 - □ Predicting the time series values in the <u>future</u> time periods

Bimonthly electric assumption (M Watt Hours)in

Italy

- □ **Identify and state** any particular patterns in this time series.
- □ **Predict** the consumption for the next two months.

Monthly sales of wine in Australia (numbers of bottles)

- ☐ **Identify and state** any particular patterns in this time series.
- □ **Predict** the consumption for the next two months.

- Stochastic Nature of Time Series
 - ☐ Stochastic = Random

- \Box Ideally, a model of the time series, $\{Y_{ij}\}$, would be in the form of
 - a stochastic process

- □ In this situation main statistical parameters of the time series can be calculated as
 - ☐ Mean value
 - □ Variance (Second-order moment)

Assume that at time index N (current time) an actual time series is presented by a sequence of real numbers, measured at time indices 1 to k:

$$y_1, y_2, y_3, ..., y_k$$

- y_{k+1} and next values are <u>not available</u>
 - □ because we cannot measure them before the actual process produces them.

- A model for the time series can be developed (How? we discuss it later).
 - ☐ This model <u>could be</u> perfect (exact) or imperfect.

In general case, the model can re-calculates the time series sequence as

$$f_1$$
, f_2 , f_3 , ..., f_{k_1} , f_{k+1} , ..., (f is a forecasted value)

It <u>can calculate future values</u> as well because it's a mathematical model

- The <u>amount of money</u> you have spent daily on transportation from home to Unitec (bus, fuel or etc) during the <u>last 7 days</u> (week) can be represented by a time series.
 - \square Specify the actual time series: $y_1, y_2, ..., y_7$
 - □ State a set of rules (facts) that explain your transportation cost.
 - ☐ This set forms a model for the actual time-series.
 - \square Using the model, re-calculate the time series: $f_1, f_2, ..., f_7$.
- You may do this exercise in Excel

Decomposition

Time Series Components

- \Box Trend M_t
- \square Seasonality Q_t
- \square Random noise ε_t

$$Y_t = g(M_t, Q_t, \varepsilon_t)$$

Decomposition of a time series

■ For the power consumption example

Trend (M_t)

$$Y_t = g(M_t, Q_t, \varepsilon_t)$$

- The average behaviour of a time series over time
- It can be increasing, decreasing or stationary

Seasonality (Q_t)

$$Y_t = g(M_t, Q_t, \varepsilon_t)$$

- Wavelike short-term fluctuations of regular frequency appear in the values of a time series.
- Determined by the natural cycles by which demand develops, or by the seasonality of the products to which the time series refers

Random Noise (ε_t)

■ All irregular variations in the data that cannot be explained by the other components

A time series can be expressed as a combination of its components

$$Y_t = g(M_t, Q_t, \varepsilon_t)$$

- where g represents a function to be selected
 - ☐ A muliplicative model is

$$Y_t = M_t \times Q_t \times \varepsilon_t$$

☐ Alternatively, an **additive model** is

$$Y_t = M_t + Q_t + \varepsilon_t$$

■ What is **Trend**?

■ How do we find the Trend?

Moving Average (an estimation of Trend M_t)

$$m_t(h) \approx M_t$$

- The (arithmetic) mean of h consecutive observations of the time series $\{y_t\}$,
 - □ such that the time index *t* belongs to the indices of the *h* averaged observations.
- There are various methods of calculating Moving Average
 - □ Different methods give different results (http://en.wikipedia.org/wiki/Moving_average)
 - ☐ For example, here we learn "Centred Moving Average"

$m_t(h) \approx M_t$ based on Centred Moving Average

■ For example, we assume h=6 for 6 consecutive observations

■ If we calculate $m_t(6)$ from 1998 – 2004, we can draw a trend line (M_t)

Centred Moving Average $m_t(h)$

The mean of *h* observations such that *t* is the middle point of the set of periods corresponding to the observations

□ If *h* is <u>even</u>:

$$m_t(h) = \left(y_{t - \left(\frac{h}{2}\right)} + 2\left(\sum_{i = -\left(\frac{h}{2} - 1\right)}^{\left(\frac{h}{2} - 1\right)} y_{t + i}\right) + y_{t + \left(\frac{h}{2}\right)}\right) / 2h$$

☐ If *h* is <u>odd</u>:

$$m_t(h) = \frac{y_{t+(h-1)/2} + y_{t+(h-1)/2-1} + \dots + y_{t-(h-1)/2}}{h}$$

■ Let's do this one $m_t(6)$

$$m_t(6) = (y_{t+3} + 2(y_{t+2} + y_{t+1} + y_t + y_{t-1} + y_{t-2}) + y_{t-3})/2x6$$

$$= (83+2(79+75+70+74+74)+73) / 12 \approx 75$$

■ Try more, calculate M_t for $m_{1999}(6)$ and $m_{2000}(6)$

$$= m_{2000}(6) =$$

Exercise 1

- Open the EXCEL sheet on the Moodle
- Calculate M_t for all periods (from 2000-2005) using

h=6

■ Draw a graph for M_t

$$m_t(h) = \left(y_{t-\left(\frac{h}{2}\right)} + 2\left(\sum_{i=-\left(\frac{h}{2}-1\right)}^{\left(\frac{h}{2}-1\right)}y_{t+i}\right) + y_{t+\left(\frac{h}{2}\right)}\right)/2h$$

■ Can you obtain future values of the trend based on the

Moving Average m_t ?

■ What is **Seasonality**?

■ How do we find the Seasonality?

Removal of the Trend Component M_t

 $Y_t = M_t \times Q_t \times \varepsilon_t$

- We can remove M_t from the time series
- What remained is another time series
- We show the new time series by

Removal of the Trend Component M_t

For a multiplicative time series model

$$Y_t = M_t \times Q_t \times \varepsilon_t$$

■ In a time series B_t (with M_t removed), we have

$$B_t = Q_t \times \varepsilon_t$$

$$= Y_t / M_t$$

$$\approx Y_t / m_t(h)$$

Later, B_t is used to calculate Seasonality

\blacksquare B_t for the power consumption example

Exercise 2

- **Use** the EXCEL sheet (with Exercise 1 completed)
- **Calculate** B_t for all periods (from 2000-2005)
- Draw a graph for B_t

Seasonality component (Q_t)

 Q_t = the <u>mean value</u> of all B_t

■ We can write

$$Q_t = \sum_{i=1}^n \mathbf{B}_i / n$$

n is the number of observations at the same time t at different periods

Seasonality (Q_t) for the power consumption example:

Based on monthly season

■ Notice the same month of every year has the same Q_t

Exercise 3

- **Use** the EXCEL sheet (with Exercise 1+2 completed)
- Calculate Q_t for every month during 2000-2005
- **Draw a graph** for Q_t

Can you obtain <u>future values</u> of the seasonality indices based on the <u>seasonality component?</u>

Time Series : De-seasonalized

Removal of the Season Component Q_t

- We can remove Q_t from the time series
- What remained is another time series
- We show the new time seriesby C

Removal of Seasonality component

Called de-seasonalization

$$C_{t} = M_{t} \times \varepsilon_{t}$$

$$= (Y_{t}/(Q_{t} \times \varepsilon_{t})) \times \varepsilon_{t}$$

$$= Y_{t}/Q_{t}$$

$$Y_t = M_t \times Q_t \times \varepsilon_t$$

So, we have
$$C_t = Y_t / Q_t$$

Also ... $C_t = M_t \times \varepsilon_t$

De-seasonalization for the power

consumption example

 $C_t = Y_t/Q_t$

Exercise 4

- Use the EXCEL sheet (with Exercise 1+2+3 completed)
- Calculate C_t for 2000-2005
- Draw a graph for C_t

■ At this stage we re-calculate the trend on the De-seasonalized C_t

- We look for <u>an analytical model</u> for the trend that can be used for forecasting
 - ☐ Linear regression ?!?

■ We re-define Trend component (M_t) for C_t based on using Linear Regression

Exercise 5

■ **Use** the EXCEL sheet (with Exercise 1+2+3+4 completed)

■ Calculate Trend M_t based on Linear Regression for C_t during 2000-2005

■ Draw a graph of M_t and

■ Can you obtain <u>future values</u> of the seasonality indices based on the <u>Trend Mt for De-</u> seasonalized by using <u>Linear Regression</u>?

Yes, we can use it as a prediction model

Time Series: Random noise

■ What is **Random**

Noise?

How do we find the Random Noise?

Time Series: Random noise

■ Random Noise (ε_t)

$$Y_t = M_t \times Q_t \times \varepsilon_t$$

$$\varepsilon_t = Y_t / (M_t \times Q_t)$$

□ where M_t is a **Trend component** for **Deseasonalized by using Linear Regression**

Time Series: Random noise

Exercise 6

- **Use** the EXCEL sheet (with Exercise 1+2+3+4+5 completed)
- Calculate Random Noise ε_t for Trend M_t during 1998-2004
- Draw a graph of ε_t

Time Series : Summary

■ Time series components $Y_t = M_t \times Q_t \times \varepsilon_t$

$$Y_t = M_t \times Q_t \times \varepsilon_t$$

■ Trend M_t based on Moving Average

$$m_t(h) = \frac{y_{t+h/2} + y_{t+h/2-1} + \dots + y_{t-h/2+1}}{2h} + \frac{y_{t+h/2-1} + y_{t+h/2-2} + \dots + y_{t-h/2}}{2h}$$

$$m_t(h) = \frac{y_{t+(h-1)/2} + y_{t+(h-1)/2-1} + \dots + y_{t-(h-1)/2}}{h}$$

■ Seasonality Q_r – By Trend Removal on Moving Average

$$Q_t = sum(B_t)/n$$

 $B_t \approx Y_t/m_t(h)$

■ De-seasonalized C_t + Linear Regression on C_t → Prediction

$$C_t = Y_t/Q_t$$

Random

$$\varepsilon_t = Y_t / (M_t \times Q_t)$$

Evaluating Time Series Models

- Yes, we have a <u>prediction model</u> by using Trend (M_t)
 - □ that utilizes Linear regression to predict the future values ...
 That's great!! ②

■ But.... *How* to do we <u>evaluate the accuracy</u> of the <u>model</u>?

Evaluating - Distortion measures

■ Given the observations y_t of a time series and the corresponding forecasts f_t , the Prediction Error is defined as

$$e_t = y_t - f_t$$

and the Percentage PredictionError as

$$e_t$$
(%) $e_t^P = \frac{y_t - f_t}{y_t} \times 100$

Evaluating - Distortion measures

Exercise 7

■ **Use** the EXCEL sheet (with Exercise 1+2+3+4+5+6 completed)

■ Calculate e_t and e_t^P (%) of Trend M_t based on Linear Regression for C_t during 2000-2005

$$e_t = y_t - f_t$$

Tracking Signal

■ The tracking signal TS_k is an index that is useful in the

monitoring stage of forecasting process

■ The formulae is:

$$TS_k = \frac{\sum_{t=1}^{k} e_t}{\sum_{t=1}^{k} |e_t|}$$

$$e_t = y_t - f_t$$

- TS takes values in the interval [-1,1].
 - ☐ If TS is close to -1 the prediction model is distorted by
 - excess,
 - ☐ the prediction is *greater* than the actual value.

- □ If TS is close to 1 the prediction model is distorted by <u>defect</u>,
 - ☐ the prediction is *smaller* than the actual value.

- \square If **TS** is close to 0
- United
 NEW ZEALAND
 Te Whare Wananga o Wairaka
- □ the prediction model has substantial <u>lack of distortion</u>.

$$TS_k = \left| \frac{D_k}{G_k} \right| \qquad e_t = y_t - f_t$$

$$D_k = \beta e_k + (1 - \beta)D_{k-1}$$

$$G_k = \beta |e_k| + (1 - \beta)G_{k-1}$$

 $0<\beta<1$ is a parameter

■ It is in the interval of [0,1]

■ Example, using TS with $\beta = 0.2$

$$TS_k = \begin{vmatrix} D_k \\ \overline{G}_k \end{vmatrix}$$
 $D_k = \beta e_k + (1 - \beta)D_{k-1}$ $G_k = \beta |e_k| + (1 - \beta)G_{k-1}$

t	Yt	Ft	e t	Dk	Gk	TS k
1	2	2.5	-0.5	(0.2*-0.5) + (1- 0.2)*1	(0.2* -0.5) + (1- 0.2)*1	$ \mathbf{0.7/0.9} = 0.78$
2	3	3.5	-0.5	(0.2*-0.5) + (0.8* <mark>0.7</mark>)	(0.2* -0.5) + (0.8*0.9)	0.46 / 0.82 = 0.56
3	4	3.6	0.4	(0.2*0.4) + (0.8* 0.46)	(0.2* 0.4) + (0.8* 0.82)	0.448 / 0.736 = 0.61
4	5	4.2	8.0	(0.2*0.8) + (0.8* 0.448)	(0.2* 0.8) + (0.8* 0.736)	0.518/0.7488 = 0.69
						6

0

Exercise 8

■ **Use** the EXCEL sheet (with Exercise 1+2+3+4+5+6+7 completed)

■ Calculate TS_k with β =0.5 of Trend M_t based on Linear Regression for C_t during 2000-2005

$$TS_k = \left| \frac{D_k}{G_k} \right|$$

$$D_k = \beta e_k + (1 - \beta)D_{k-1}$$

$$G_k = \beta |e_k| + (1 - \beta)G_{k-1}$$

Evaluating Time Series Models

Tracking Signal

■ *TS* is ideally close to 0

- The actual TS at time k is calculated and it is then <u>compared with</u> a **threshold** (U).
 - ☐ If **TS>U**, it means that the **Trend (Prediction) model** should be revised

