Matrikelnummer: DHBW Duale Hochschule Baden-Württemberg Stuttgart

Fakultät **Technik**

Studiengang: Informatik

Jahrgang / Kurs : **2019/19C&19IN**

Studienhalbjahr: 1. Semester

ÜBUNGSKLAUSUR

Datum: 12./20.2.2020 Bearbeitungszeit: 90 Minuten

Modul: TINF1002 Dozent: Stephan Schulz

Unit: Grundlagen und Logik

Hilfsmittel: Zwei Texte, z.B. Vorlesungsskript, eigene Notizen

Punkte: Note:

Aufgabe	erreichbar	erreicht
1	10	
2	13	
3	10	
4	12	
5	7	
6	8	
7	12	
8	8	
Summe	80	

- 1. Sind Sie gesund und prüfungsfähig?
- 2. Sind Ihre Taschen und sämtliche Unterlagen, insbesondere alle nicht erlaubten Hilfsmittel, seitlich an der Wand zum Gang hin abgestellt und nicht in Reichweite des Arbeitsplatzes?
- 3. Haben Sie auch außerhalb des Klausurraumes im Gebäude keine unerlaubten Hilfsmittel oder ähnliche Unterlagen liegen lassen?
- 4. Haben Sie Ihr Handy ausgeschaltet und abgegeben?

(Falls Ziff. 2 oder 3 nicht erfüllt sind, liegt ein Täuschungsversuch vor, der die Note "nicht ausreichend" zur Folge hat.)

Aufgabe 1 (4+4+2 Punkte)

- a) Betrachten Sie die Menge $M = \{x \in \mathbb{Z} \mid x^2 < 10\}$
 - a1) Geben Sie M explizit an.
 - a2) Wie groß ist die Mächtigkeit |M| von M?
 - a
3) Geben Sie 3 verschiedene Elemente der Potenzmenge
 $2^{\cal M}$ an.
- b) Betrachten Sie die Trägermenge $U=\{0,1,2,3,4,5,6,7,8,9\}$. Definieren Sie 3 Mengen $A,B,C\subseteq U$, die alle der folgenden Eigenschaften erfüllen:
 - 1. $A \cap B \cap C \neq \emptyset$
 - 2. $(A \cap B) \setminus C \neq \emptyset$
 - 3. $(A \cap C) \backslash B \neq \emptyset$
 - 4. $(B \cap C) \setminus A \neq \emptyset$
 - 5. $(A \setminus (B \cup C) \neq \emptyset$
 - 6. $(B \setminus (A \cup C) \neq \emptyset$
 - 7. $(C \setminus (A \cup B) \neq \emptyset$

Geben Sie die Mengen A, B, C explizit an und visualisieren Sie sie in einem Venn-Diagramm (Tipp: Fangen Sie mit dem Diagramm an).

c) Betrachten Sie die Trägermenge $V = \{0, 1, 2, 3, 4\}$. Können Sie analog zu Teil b) Mengen $A, B, C \subseteq V$ mit den Eigenschaften 1-7 angeben? Warum oder warum nicht?

Lösung:

- a1) $M = \{0, 1, 2, 3, -1, -2, -3\}$
- a2) |M| = 7
- a3) Z.B. $M_1 = \emptyset$, $M_2 = M$, $M_3 = \{0\}$

b) Z.B.

(Trägermenge optional)

$$-A = \{1, 4, 5, 6\}$$

$$-B = \{2, 4, 5, 7\}$$

$$-C = \{3, 5, 6, 7\}$$

c) Nein, denn die Eigenschaften 1-7 fordern 7 nichtleere Teilmengen mit verschiedenen Elementen, V hat aber nur 5 Elemente.

										-								_	-	-		+		
				-			_			-	-					-		_	-	+	-	_		
										_						_			\rightarrow	+				
				+						-								_	_	-		_		
																			_					
				+						-						-		+	\dashv	+	+	+		
				-						_									_	_				
																		T		\top		T		
																\neg			\neg	\top	\top			
$\parallel \parallel$		+	+	+						\dashv						\dashv			+	+	+		+	
\vdash		-	+							-						\dashv				+	+	+		
\vdash		-	-	+										-		+		-		+	+	+		
		_	_	+												_		+	_	_	_	+		
			_													_		_	_	_	_	_		
																				\top		\top		
																\dashv				\top	\top			
\Box		+	+							_						\dashv		+	+	+	+	+	+	
\vdash		+	+	+						+				-		+		+	-	+	+	+	+	
		\perp	-	+						_						-	_	-	_	+	+	+	_	
			_							_						_				_	_			
										T						T		T		T		T		

Aufgabe 2 (2+3+2+2+4 Punkte)

Betrachten Sie die Menge $A = \{a, b, c, d, e, f\}$ und die folgende Relation $R = \{(a, b), (a, c), (d, e), (e, f), (f, d)\}$ über A.

- a) Stellen Sie R als Relationsgraph da.
- b) Bestimmen Sie \mathbb{R}^2 und stellen Sie das Ergebnis als Tabelle da.
- c) Ist R eine totale Funktion? Warum oder warum nicht?
- d) Ist \mathbb{R}^{-1} eine partielle Funktion? Warum oder warum nicht?
- e) Bestimmen Sie die kleinste Äquivalenzrelation, die R enthält, und stellen Sie diese als Tabelle dar.

Lösung:

a)

b) $R^2 = \{(d, f), (e, d), (f, e)\}$

	a	b	c	d	е	f
a	0	0	0	0	0	0
b	0	0	0	0	0	0
c	0	0	0	0	0	0
d	0	0	0	0	0	1
e	0	0	0	1	0	0
f	0	0	0	0	1	0

- c) Nein, nicht rechtseindeutig (a, b) und (a, c).
- d) Ja, R^{-1} ist rechtseindeutig.

		a	b	c	d	е	f
	a	1	1	1	0	0	0
	b	1	1	1	0	0	0
e)	\mathbf{c}	1	1	1	0	0	0
	d	0	0	0	0 0 0 1 1 1	1	1
	e	0	0	0	1	1	1
	f	0	0	0	1	1	1

			-		+	+	-						_	+					-	-	-	+	-	
						_								-						_	_			
														_										
					_																			
			_		_	_								-						_	_	_	_	
						\neg																		
																				_				
			_			-								-				_	_	-	_	_	_	
			_			_								-				_		_	_	_	_	
																							\dashv	
			_		+	+								+						_	_	_	\dashv	
		-	+		+	+								+				+	-	-	+	+	+	
		\vdash	-		+	+								+-				+		-	-	+	+	
					-	-								-				\perp		_	_	_	-	
			_		4	_								-						_			_	
			_		_	_																	_	
			_ T			_ T												_ T						
					+	+																	\dashv	
			+		+	+													+			+	\dashv	
			+		+	+								-				+				+	+	
			-		+	+								-				+			-	-	+	
					+	+								-						_			+	
					-	_								-				_			_	\perp	-	
					_									1				_			_	_		

```
Aufgabe 3 (2+2+3+3) Punkte
Betrachten Sie die folgenden Scheme-Definitionen (in der Standard-Umgebung):
(define (revert lst)
  (if (null? lst)
       lst
       (append (revert (cdr lst)) (list (car lst)))))
(define (magic fun lst)
  (if (null? lst)
       lst
       (append (magic fun (cdr lst)) (list (fun (car lst))))))
  a) Was ist das Ergebnis des folgenden Ausdrucks?
     (revert '(4 5 6 1 2 3))
  b) Was ist das Ergebnis des folgenden Ausdrucks?
    (revert '((4 5 6) (1 2 3)))
  c) Was ist das Ergebnis des folgenden Ausdrucks?
     (magic revert '((4 5 6) (1 2 3)))
```

Lösung:

```
a) '(3 2 1 6 5 4)
```

d) Was ist das Ergebnis des folgenden Ausdrucks?

 $(\text{magic } (\text{lambda } (x) \ x) \ '((4 \ 5 \ 6) \ (1 \ 2 \ 3)))$

c) '((3 2 1) (6 5 4))

Aufgabe 4 (5+5+2 Punkte)

Betrachten Sie die folgenden aussagenlogische Formeln über $\Sigma = \{a, b, c\}$:

- $\varphi_1 = ((c \wedge b) \wedge a) \rightarrow ((\neg((\neg a) \vee (\neg b))) \wedge c)$
- $\varphi_2 = \neg(\varphi_1) = \neg(((c \land b) \land a) \to ((\neg((\neg a) \lor (\neg b))) \land c))$
- a) Konvertieren Sie φ_1 in konjunktive Normalform
- b) Verwenden Sie das in der Vorlesung gezeigten Tableaux-Verfahren, um ein vollständiges Tableau für φ_2 zu erzeugen und so zu entscheiden, ob die Formel erfüllbar ist.
- c) Wie viele Modelle hat φ_1 ? Begründen Sie ihr Ergebnis kurz!

Lösung:

•
$$\varphi_1 = ((c \wedge b) \wedge a) \rightarrow ((\neg((\neg a) \vee (\neg b))) \wedge c)$$

•
$$\varphi_2 = \neg(\varphi_1) = \neg(((c \land b) \land a) \rightarrow ((\neg((\neg a) \lor (\neg b))) \land c))$$

Lösung:

b) φ_2 ist unerfüllbar.

c) Da φ_2 unerfüllbar ist, ist φ_1 allgemeingültig und hat 8 (= $2^{|\Sigma|}$) Modelle.

•
$$\varphi_1 = ((c \wedge b) \wedge a) \rightarrow ((\neg((\neg a) \vee (\neg b))) \wedge c)$$

$$\bullet \ \varphi_2 = \neg(\varphi_1) = \neg(((c \wedge b) \wedge a) \rightarrow ((\neg((\neg a) \vee (\neg b))) \wedge c))$$

	_
	_
	_
	—
	_
	_
	_
	_
	_
	_
	_
+++	_
	_
+	_
++	—
++	_
	_
	_
$\perp \perp$	_
	_
+++	
	_
	_
++	—
++	_
++	_
++	_
+	_
+	_
$\perp \perp$	_
	_
+	
++	_
+++	_
+++	_
++	_
1 1	_
++	,

Aufgabe 5 (5+2 Punkte)

Betrachtachten Sie die Situation eines Fußgängerübergangs mit Ampel. Es gibt dabei eine Fahrzeug-Ampel mit roter, gelber und grüner Lampe sowie eine Personen-Ampel mit roter und grüner Lampe.

- a) Formalisieren Sie die folgenden Aussagen in Aussagenlogik:
 - 1. Weder bei der Personen-Ampel noch bei der Fahrzeug-Ampel leuchten die rote und die grüne Lampe gleichzeitig.
 - 2. Wenn die Personen-Ampel grün ist, ist die Fahrzeug-Ampel rot.
 - 3. Wenn die gelbe Lampe der Fahrzeug-Ampel leuchtet, dann leuchtet entweder keine weitere Lampe der Fahrzeug-Ampel oder nur die rote.
 - 4. Fahrzeug- und Personen-Ampel leuchten nicht beide grün.
 - 5. Wenn die Fahrzeug-Ampel grün leuchtet, leuchten die anderen Lampen der Fahrzeug-Ampel nicht, und die Personen-Ampel ist rot.

Verwenden Sie die Aussagenvariablen FR, FY, FG (bei der Fahrzeug-Ampel leuchtet die rote/gelbe/grüne Lampe) und PR, PG (bei der Personen-Ampel leuchtet die rote/grüne Lampe).

b) Geben Sie ein Modell ihrer Formalisierung von 1-5 an.

Lösung:

- a) 1. $\neg (FR \land FG) \land \neg (PR \land PG)$
 - 2. $PG \rightarrow FR$
 - 3. $FY \to \neg FG$ (wörtlicher: $FY \to ((FR \land \neg FG) \lor (\neg FR \land \neg FG)))$
 - 4. $\neg (FG \land PG)$
 - 5. $FG \rightarrow (\neg FY \land \neg FR \land PR \land \neg PG)$
- b) Z.B. $I = \{FG, \neg FR, \neg FY, \neg PG, PR\}$

Aufgabe 6 (5+3 Punkte)

Sei Σ eine aussagenlogische Signatur.

a) Bezeichne f_s die Anzahl der Vorkommen einer schließenden Klammern in einer Formel f, f_0 die Anzahl der Operatoren aus $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ in f. Es gilt also z.B. $(a \rightarrow (\neg b))_s = 2$, $((\neg a) \land (a \land a))_o = 3$.

Zeigen Sie folgende Behauptung: Für alle $A \in For0_{\Sigma}$ gilt: $f_s(A) = f_o(A)$. Beachten Sie: Es gilt die formale Definition von $For0_{\Sigma}$, aber sie können sich auf Formeln mit den Operatoren $\{\land, \neg\}$ und ohne \top, \bot beschränken.

Hinweis: Verwenden Sie Induktion über den Aufbau.

b) Der Operator \oplus ist definiert mit folgender Semantik:

F	G	$F \oplus G$
0	0	0
0	1	1
1	0	1
1	1	0

Ist $\{\oplus, \land, \leftrightarrow\}$ eine Basis der Aussagenlogik? Begründen Sie ihre Antwort kurz (keine Induktion nötig).

Lösung:

a) Beweis: Per Induktion über den Aufbau.

IA: Sei A atomar, also $A \in \Sigma$. Dann enhält A weder Klammern noch Operatoren, also $A_s = 0 = A_o$, und die Behauptung gilt.

IV: Die Behauptung gelte für $B, C \in For0_{\Sigma}$, also: $B_s = B_o$ und $C_s = C_o$.

IS: Sei A nicht atomar. Dann hat A eine der folgenden Formen:

- $-\ A=(\neg B).$ Dann gilt: $A_S=B_s+1=(IV)B_o+1=A_o$ Also gilt die Behauptung für diesen Fall.
- $-A = (B \wedge C)$. Dann gilt: $A_s = B_s + C_s + 1 = (IV)B_o + C_o + 1 = A_o$. Also gilt die Behauptung für diesen Fall.

Also gilt die Behauptung für alle zu betrachtenden Fälle. Damit ist der IS abgeschlossen und mit IA und IS folgt die Behauptung für alle Formeln aus $For0_{\Sigma}$.

q.e.d.

b) Ja, denn $(a \leftrightarrow a) \equiv \top$, und damit $((a \leftrightarrow a) \oplus a) \equiv (\neg a)$. Also lässt sich \neg mit \oplus , \leftrightarrow darstellen, und $\{\neg, \land\}$ ist eine bekannte Basis der Aussagenlogik.

			-						_	_			_	_									_			
																							-			
									_	-			-										-			
													\neg										\neg			
										\dashv			\dashv		+			+					\dashv	\dashv		
										-			+		-							\Box		+		
										_			+											-		
										_		_	-		_									-		
										_			_											_		
										-													+			
													\dashv										\dashv			
										+			\dashv									\vdash	+	\dashv		
													+											-		
										+			+		-									+		
										_			_										_	-	_	
													_										_			
										\dashv			\dashv											+		
										-			\dashv		+							\vdash				
			+						-	+			+		+			+				\vdash	+	\dashv	-	
			-				-		_	+			+					-				\vdash	+	+	_	
										_			_											_		
										T																
										\exists			\neg													
				_						_								_								
	_			_		_		_		_		_		_		 _	_			_	 _	_	_	_	_	

Aufgabe 7 (5+3+4 Punkte)

Betrachten Sie die prädikatenlogische Signatur $\Sigma = (P, F, V)$ mit $P = \{e/2, o/1\}$, $F = \{f/2, a/0, b/0\}$, $V = \{X, Y, Z, ...\}$ und folgende Menge M von Klauseln:

- $(C1) \neg o(f(a,b)) \lor \neg o(b) \lor \neg o(a)$
- (C2) e(a,b)
- (C3) $e(b,a) \lor \neg e(a,b)$
- (C4) $o(a) \lor \neg o(b) \lor \neg e(b, a)$
- (C5) $o(b) \lor \neg o(a) \lor \neg e(a,b)$
- (C6) $o(b) \lor o(a) \lor \neg o(f(a,b))$
- (C7) o(f(a,b))
 - a) Zeigen Sie per Resolution, dass M unerfüllbar ist. Geben Sie zu jeder Inferenz das Ergebnis und die Prämissen an.
 - b) Betrachten Sie nun die folgende Menge von Klauseln M^\prime
 - (Ca) e(a,b)
 - (Cb) $o(X) \vee o(Y) \vee \neg o(Z)$
 - (Cc) o(Z)
 - (Cd) $\neg e(X,Y) \lor e(Y,X)$
 - (Ce) $\neg e(X,Y) \lor \neg o(X) \lor o(Y)$
 - (Cf) $\neg o(X) \lor \neg o(Y) \lor \neg o(Z)$

Ist M' erfüllbar oder unerfüllbar? Begründen Sie Ihre Aussage!

c) Geben Sie eine Interpretation \mathfrak{I} an, in der die Klauseln (C1), (C2) und (C4) zu 1 (wahr) ausgewertet werden, Klausel (C7) zu 0 (falsch). Geben Sie für die wahren Klauseln jeweils ein Literal an, dass unter \mathfrak{I} wahr ist und begründen Sie diese Wahl.

Lösung:

- a) M ist unerfüllbar:
 - (C8) e(b,a) aus C2,C3
 - $(C9) \neg o(a) \lor \neg o(b)$ aus C7 und C1
 - (C10) $o(a) \lor \neg o(b)$ aus C4 und C8
 - (C11) $o(b) \lor \neg o(a)$ aus C5 und C2
- (C12) $o(a) \vee o(b)$ aus C6 und C7
- $(C13) \neg o(b)$ C9 und C10
- (C14) o(b) aus C11 und C12
- (C15) \square aus C13 und C14
- b) Alle Klauseln von M sind Grundinstanzen von Klauseln von M'. Also hat M' eine unerfüllbare Menge von Grundinstanzen und ist nach dem Satz von Herbrand selbst unerfüllbar.
- c) Betrachte $\mathfrak{I} = \langle \mathbb{N}, I \rangle$ mit
 - -I(a) = 1
 - -I(b) = 1
 - $-I(f) = (x,y) \mapsto x + y$
 - $-I(e) = \{(x,x) \mid x \in \mathbb{N}\}\ (\text{die Gleichheitsrelation})$
 - $-I(o) = \{(2x+1) \mid x \in \mathbb{N}\}\ (das\ Ungerade-Prädikat)$

Damit gilt: I(f(a,b)) = 2, I(o(f(a,b))) = 0, damit I(C1) = 1. I(C2) = 1 ist offensichtlich. I(C4) = 1, da I(o(a)) = 1. I(C7) = 0, denn I(f(a,b)) = 2, und 2 ist gerade.

Aufgabe 8 (4+4 Punkte)

Verwenden Sie das in der Vorlesung gezeigten Unifikationsverfahren, um jeweils einen Unifikator für die Termpaare s_1, s_2 und t_1, t_2 zu finden, falls ein solcher existiert. Es ist $F = \{f/2, g/1, a/0\}, X, Y, Z, U$ sind Variablen.

Unterstreichen Sie in jedem Schritt die Gleichung, die Sie bearbeiten, und geben Sie die Regel an, die Sie anwenden.

a)
$$s_1 = f(f(f(X,Y),Y), f(Y,U))$$

 $s_2 = f(f(f(Z,a),Z), f(U,g(a)))$

b)
$$t_1 = g(f(f(X,Y),g(g(a))))$$

 $t_2 = g(f(f(U,a),g(U)))$

Tabelle für a)			
Gleichungen	σ	Regel	
$f(f(f(X,Y),Y),f(Y,U)) = f(f(f(Z,a),Z),f(U,g(a)))\}$	{}		

		-	Tal	oelle	e fü	ir b)																						_			
			Gle	eich	ung	gen														σ							Reg	gel				
		=	$\{g($	f(f	X	$\overline{(Y)}$	g(g(a)	(i))))) =	g(j	f(f)	$\overline{(U, c)}$	a), g	g(U	(((({]						Ť			=			
		_																								-						
_																										\perp						
+																										+						+
+																																+
+																																
1																																\top
1																																_
																																_
+																										+						_
																																+
																										+						+
1																										\perp						
																																_
_																																_
+																																+
																																+
																																_
																																_
+																																_
																										+						+
+																																
																																_
-																						-			-	+						+
+																						+		-	+	+						+
+																										+						+
_																						_										_
-																						-										+
+																																+
+																																+
\dagger																																+
-																																_
+																						-			-							+
+																						+		\dashv	-							+
+																																+
+																															+	+

Lösung:

•	Tabelle für a)							
	Gleichungen	σ		Regel				
a)	$\{f(f(f(X,Y),Y),f(Y,U)) = f(f(f(Z,a),Z),f(U,g(a)))\}$	{}		$ \begin{array}{c} \hline \text{Decompose} \\ \text{f(f(f(X,Y),Y),f(Y,U))} \\ = \\ \end{array} $				
	$\{f(f(X,Y),Y){=}f(f(Z,a),Z),\ f(Y,U){=}f(U,g(a))\}$	{}		$\begin{array}{l} f(f(f(Z,a),Z),f(U,g(a))) \\ Decompose \\ f(f(X,Y),Y) \\ = \\ f(f(Z,a),Z) \end{array}$				
	$\{f(Y,U){=}f(U,g(a)),f(X,Y){=}f(Z,a),Y{=}Z\}$	{}						
	$\{f(X,Y){=}f(Z,\!a),\;Y{=}Z,\;Y{=}U,\;U{=}g(a)\}$	{}		Decompose $f(X,Y) = f(Z,a)$				
	$ \begin{aligned} &\{Y{=}Z,Y{=}U,U{=}g(a),X{=}Z,Y{=}a\} \\ &\{Z{=}U,U{=}g(a),X{=}Z,Z{=}a\} \\ &\{U{=}g(a),X{=}U,U{=}a\} \\ &\{X{=}g(a),g(a){=}a\} \\ &\{g(a){=}a\} \end{aligned} $		$\begin{array}{l} \leftarrow \mathrm{U} \\ \text{0.} $	Binding $Y \leftarrow Z$ Binding $Z \leftarrow U$ Binding $U \leftarrow g(a)$ Binding $X \leftarrow g(a)$ Conflict-FAIL $\{g(a)\}$!= a $\}$				
	Tabelle für b)							
	Gleichungen		σ	Regel				
	$\{g(f(f(X,Y),g(g(a)))) = g(f(f(U,a),g(U)))\}$		{}					
	$\{f(f(X,Y),g(g(a)))\!=\!f(f(U,a),g(U))\}$		{}	$ \begin{array}{l} -\\ g(f(f(U,a),g(U))) \\ Decompose \\ f(f(X,Y),g(g(a))) \\ = \end{array} $				
b)	$\{f(X,Y){=}f(U,a),\ g(g(a)){=}g(U)\}$		{}	$\begin{array}{l} f(f(U,a),g(U)) \\ Decompose \\ f(X,Y) = \end{array}$				
	$\{g(g(a)){=}g(U), \ X{=}U, \ Y{=}a\}$		{}	$ \begin{array}{l} f(U,a) \\ Decompose \\ g(g(a)) = \end{array} $				
	${X=U, Y=a, g(a)=U}$		{}	$ \begin{array}{l} g(U) \\ Binding \ X \\ \leftarrow U \end{array} $				
	$\{Y{=}a,g(a){=}U\}$		{X←U}	Binding Y				
	$\{g(a)=U\}$		$ \begin{cases} Y \leftarrow a, X \leftarrow U \\ Y \leftarrow a, X \leftarrow U \end{cases} $ $ \{Y \leftarrow a, X \leftarrow G(a), U \leftarrow G(a) \} $	$ \begin{array}{l} \leftarrow a \\ \text{Orient} \\ g(a) = U \end{array} $				
	$\{U=g(a)\}$		$\{Y\leftarrow a, X\leftarrow U\}$	Binding U \leftarrow g(a)				
	{}		$ \{Y \leftarrow a, X \leftarrow g(a), U \leftarrow g(a)\} $	\leftarrow g(a) Success				

 $\sigma(s_1) = \sigma(s_2) = g(f(f(g(a), a), g(g(a)))) = g(f(f(g(a), a), g(g(a))))$

																							_	
																					-		+	
																						\exists		
																					_	_	4	
																					\dashv	\dashv	\dashv	
																					_		\dashv	
																					_		_	
																							-	
																							_	
																					_		_	
																					_		_	
																							_	
																							-	
																					_	_	_	
																					\dashv	-	_	
																					\prod	_	\bot	
																						_	-	
																					_	_	_	
																					\dashv	\dashv	\dashv	
																					+	\dashv	\dashv	
																					\dashv	_	\dashv	
									ID	d-	4-	, T/	laus	,,,,-							-	-	\dashv	
									للخت	ue	uel	N	iaus	ur										
																					$\overline{}$	_		
																					\dashv	\dashv	\dashv	