Forelesning - 28.01.22

FYS009-G 21H - Fysikk realfagskurs

Kapittel 14 - Bevegelse II

Forelesningene dekker i hovedsak boken *Rom-Stoff-Tid - Fysikk forkurs* fra Cappelen Damm. I tillegg til teorien gjennomgåes det endel simuleringer og regnede eksempler. De fleste eksemplene er orientert etter oppgaver fra boka, men også andre oppgaver og problemstillinger kan tæs opp.

Repetisjon

Repetisjon av bevegelseslikninger og kast.

Bevegelseslikningene

Bevegelse med konstant akselerasjon i to dimensjoner

Regnet: Oppgave 14.341

Regnet: FYS009 - Juni 2017 - Eksamensoppgave - Oppgave 8

Bevegelseslikningene

Definisjon av akselerasjon og hastighet

Akselerasjon er definert som endring av hastighet over tid:

$$a = \frac{v_1 - v_0}{t_1 - t_0} = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t}$$

der $v_1=v$, $t_1=t$ og $t_0=0$. Når endringen taes over et endelig tidsrom Δt snakker man om *gjennomsnittsakselerasjon*. Når $\Delta t \to dt$ definerer vi det ofte som *momentanakselerasjon*. På samme måte kan man si at hastighet er definert som endring av posisjon over tid

$$v = \frac{x_1 - x_0}{t_1 - t_0} = \frac{\Delta x}{\Delta t} = \frac{x - x_0}{t}$$

Når endringen taes over et endelig tidsrom Δt snakker man om gjennomsnittsfart. Når $\Delta t \to dt$ definerer vi det ofte som momentanfart.

Bevegelseslikningene basert på definisjonen av akselerasjon og s=vt.

Vi starter med

$$a = \frac{v - v_0}{t} \qquad \Rightarrow \qquad \boxed{v = v_0 + at}$$

og når a er konstant, vil dette være en $\mathit{rett\ linje}$ i et $\mathit{vt}\text{-diagram\ (fartsgraf)}.$

Neste steg er å betrakte s=vt. Hvis akselerasjonen a=0 får vi konstant fart. Hvis man har jevn akselerasjon $a\neq 0$, kan vi sette

$$\bar{v} = \frac{v_1 + v_0}{2} = \frac{v + v_0}{2}$$

Da vil

$$s = \bar{v}t$$

Husk at hastigheten v alltid har et fortegn, slik at hvis man flytter seg fra punkt A til B, og tilbake etterpå, så vil $\bar{v}=0$. Da blir

$$s = \left(\frac{v + v_0}{2}\right)t$$

Vi har altså

$$v = v_0 + at$$
 og $s = \left(\frac{v + v_0}{2}\right)t$

Vi setter uttrykket for v til venstre inn i uttrykket for s til høyre

$$s = \left(\frac{v_0 + at + v_0}{2}\right)t = \left(\frac{2v_0 + at}{2}\right)t = \left(v_0 + \frac{at}{2}\right)t$$
$$= \left[v_0t + \frac{1}{2}at^2\right]$$

Deretter prøver vi å utlede den såkalte tidløsformelen fra dette. Vi eliminerer tiden t fra likningene. Vi har at

$$v = v_0 + at$$
 og $s = \left(\frac{v + v_0}{2}\right)t$

Fra den første får vi at

$$v = v_0 + at$$
 \Rightarrow $t = \frac{v - v_0}{a}$

og dette setter vi inn i uttrykket for s.

$$s = \left(\frac{v + v_0}{2}\right) \left(\frac{v - v_0}{a}\right) \implies 2as = (v + v_0)(v - v_0) = v^2 - v_0^2$$

slik at

$$v^2 - v_0^2 = 2as$$

Bevegelseslikninger for bevegelse med konstant akselerasjon.

$$v = v_0 + at$$

$$s = \left(\frac{v + v_0}{2}\right)t$$

$$s = v_0 t + \frac{1}{2} a t^2$$

$$v^2 - v_0^2 = 2as$$

Derivasjon og integrasjon av bevegelseslikningene

Vi husker at

$$\bar{v} = \frac{\Delta s}{\Delta t}$$
 og $\bar{a} = \frac{\Delta v}{\Delta t}$

Vi kan godt skrive dette på differensialform, og vi får da for momentanhastigheten og momentanakselerasjonen at

$$v = \frac{ds}{dt} = s'(t)$$
 og $a = \frac{dv}{dt} = v'(t)$

Dette innebærer at

$$s = \int_{t_0}^{t_1} v(t) dt$$
 og $v = \int_{t_0}^{t_1} a(t) dt$

Derivasjon:

Vi setter

$$v = s'(t) = \left(v_0 t + \frac{1}{2} a t^2\right)' = v_0 + \frac{1}{2} a(2t) = v_0 + at$$

og

$$a = v'(t) = (v_0 + at)' = a$$

Integrasjon:

Vi setter

$$s = \int_{t_0}^{t_1} v(t) dt = \int_{t_0}^{t_1} (v_0 + at) dt = \left[v_0 t + a \left(\frac{1}{2} t^2 \right) + C \right]_{t_0}^{t_1}$$

setter vi $t_0=0,\,t_1=t~{\rm og}~s(0)=s_0~{\rm får}$ vi

$$s = s_0 + v_0 t + \frac{1}{2} a t^2$$

og

$$v = \int_{t_0}^{t_1} a(t) dt = \int_{t_0}^{t_1} a dt = \left[at + C \right]_{t_0}^{t_1}$$

setter vi $t_0=0,\,t_1=t$ og $v(0)=v_0\,$ får vi

$$v = v_0 + at$$

Bevegelse med konstant akselerasjon i to dimensjoner

Bevegelseslikninger

Vi husker bevegelseslikningene for s og v i en dimensjon (rettlinjet bevegelse)

$$s = s_0 + v_0 t + \frac{1}{2}at^2$$
 og $v = v_0 + at$

Når vi skriver disse i to dimensjoner som vektorer, må vi ta med både x- og y-retningen.

$$\vec{s} = \vec{s}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$
 og $\vec{v} = \vec{v}_0 + \vec{a} t$

eller

$$[x, y] = [x_0, y_0] + [v_{0x}, v_{0y}]t + \frac{1}{2}[a_x, a_y]t^2$$
$$[v_x, v_y] = [v_{0x}, v_{0y}] + [a_x, a_y]t$$

Vi tenker oss et legeme som starter fra origo $(x_0, y_0) = (0, 0)$ ved tiden t = 0, og har en starthastighet $\vec{v}_0 = [v_{0x}, v_{0y}]$ som danner en vinkel α med x-aksen.

Legemet påvirkes av en kraft $\vec{F} = [F_x, F_y]$ som gir en konstant akselerasjonsvektor $\vec{a} = [a_x, a_y]$.

Vi ser at de to vektorligningene egentlig er fire skalare likninger:

$$x = v_{0x}t + \frac{1}{2}a_xt^2$$
 $y = v_{0y}t + \frac{1}{2}a_yt^2$ $v_x = v_{0x} + a_xt$ $v_y = v_{0y} + a_yt$

Kastbevegelse

Her forenkles ligningene ganske mye fordi $\,a_x=0\,$ og hvis man velger positiv retning oppover så blir $\,a_y=-g$. Dette gir

$$x = v_{0x}t$$

$$y = v_{0y}t - \frac{1}{2}gt^{2}$$

$$v_{x} = v_{0x}$$

$$v_{y} = v_{0y} - gt$$

eller

$$[x, y] = [v_{0x}t, v_{0y}t - \frac{1}{2}gt^2]$$

$$[v_x, v_y] = [v_{0x}, v_{0y} - gt]$$

LØST OPPGAVE 14.341

14.341

En gutt har festet et lodd til en snor. Han snurrer snora rundt slik at loddet går i en horisontal sirkelbane 1,8 m over bakken og med radien 1,6 m. Snora ryker, og loddet flyr av gårde med horisontal fart og lander 12 m unna gutten. Bakken er horisontal. Du kan se bort fra luftmotstand.

Hvor stor var sentripetalakselerasjonen til loddet i sirkelbevegelsen?

Løsning:

Vi tegner to figurer som viser kastet, en sett ovenfra og en sett fra siden.

Av figuren sett ovenfra og pytagorassetningen kan vi finne kastlengden x.

$$x = \sqrt{l^2 - r^2} = \sqrt{(12 \text{ m})^2 - (1.6 \text{ m})^2} = 11.89 \text{ m}$$

Parameterframstillingen for kastet er med det koordinatsystemet vi har valgt på figuren ovenfor til høyre:

$$x = v_0 t \tag{1}$$

$$y = \frac{1}{2} gt^2 \qquad (2)$$

siden $v_{0x} = v_0$, $v_{0y} = 0$, $a_x = 0$ og $a_y = g$.

Vi finner falltida av likning (2):

$$t = \sqrt{\frac{2y}{g}}$$

$$= \sqrt{\frac{2 \cdot 1.8 \text{ m}}{9.81 \text{ m/s}^2}} = 0.6057 \text{ s}$$

Så finner vi startfarten til ballen av likning (1):

$$v_0 = \frac{x}{t}$$

= $\frac{11,89 \text{ m}}{0,6057 \text{ s}} = 19,63 \text{ m/s}$

Sentripetalakselerasjonen til loddet i sirkelbevegelsen er da

$$a = \frac{{v_0}^2}{r}$$
= $\frac{(19,63 \text{ m/s})^2}{1,6 \text{ m}} = \frac{0,24 \text{ km/s}^2}{1}$

Fra eksamen i FY009 - Våren 2017:

Oppgave 8

I middelalderen ble katapulter brukt i krigføring. En slik katapult er ladet med en stein som skytes ut med en hastighet på $v_0 = 32\,\mathrm{m/s}$ som danner en vinkel $\theta = 52^\circ$ med horisontalen. Målet er å skyte steinen innenfor muren på borgen. Muren er $h = 20\,\mathrm{m}$ høy, og foran muren ligger en vollgrav som er $b = 20\,\mathrm{m}$ bred. I denne oppgaven kan du se bort fra luftmotstand, og også anta at høyden på katapulten er liten i forhold til murens høyde slik at man kan anta at steinen skytes ut fra bakkenivå.

- a) Hva blir maksimal høyde som steinen får?
- b) Hvor langt, d, unna vollgrava kan katapulten stå for at steinen skal komme over muren?

Løsningsforslag:

Figur

8. (a) I toppunktet er $v_y = 0$ som gir

$$-v_{0y}^2 = 2gy$$
$$y = \frac{-v_{0y}^2}{2g}$$

der $v_{0y}=v_0\sin\theta=32\,\frac{\rm m}{\rm s}\sin52^\circ=25,21\,\frac{\rm m}{\rm s}$ som gir

$$y = \frac{-(25, 21 \frac{\text{m}}{\text{s}})^2}{2(-9, 81 \frac{\text{m}}{\text{s}^2})} = 32, 40 \text{ m} = \underline{32 \text{ m}}$$

(b) Steinen må nå høyden 20 meter. Vi setter dermed $y=20\,\mathrm{m}$ som krav i bevegelseslikninga.

$$y = v_{0y}t - \frac{1}{2}gt^2$$

Vi dropper benevning for oversiktens skyld. Alt er i SI enheter.

$$20 = (32 \cdot \sin 52^{\circ})t - \frac{1}{2}(9, 81)t^{2}$$

$$4,905t^2 - 25,21t + 20 = 0$$

Vi løser andregradslikninga på kalkulator og får: $t=0,9803\,$ og t=4,159. Første løsning er den for kula på vei opp. Vi er ute etter løsninga der steinen er på vei ned, altså blir $t=4,159\,\mathrm{s}$, som vi setter inn i likninga for bevegelse i x-retning.

$$x = v_{0x}t - b$$

$$x = v_0(\cos \theta)t - b$$

$$x = 32 \frac{m}{s} \cdot \cos 52^\circ \cdot 4,159 - 20 m = 61,93 m$$

Dette vil si at katapulten kan stå nesten 62 meter unna vollgrava.