Human behaviour modelling for teleoperation

M. Angerer

Advanced Seminar

Betreuer: S. Musić

Lehrstuhl für Informationstechnische Regelung

Technische Universität München

Human aspects in teleoperation

Telerobots allow for complex tasks in unstructured environments

Human behaviour is relevant for control design [She92]

Levels of human-in-the-loop involvement

Direct -

Shared -

Supervisory Control

Human actuation in bilateral telemanipualtion

Haptic interface: Human is an impedance Human motion is inherently dissipative [RIM99] The passivation of delayed communication leads to a distorted environment display

A dissipative system is locally stable for a negative semidefinite supply rate $s\left(u(t),y(t)\right)$

$$\dot{V}(x(t)) \le s(u(t), y(t)),$$

The interconnection of dissipative systems is again a dissipative system with supply rate $s(t) = \sum_i s_i(t)$

A closed-loop dissipative system with a non-passive communication channel has reduced environment distortion [HB12]

Human Perception Resolution

Passivation of delayed communication:

- Hard contacts are displayed softer
- Telerobot seems to be more inert

Just noticeable difference (JND) for inertias: 21%; for stiffness: 8% Displayed impedances for free motion and hard contact

$$Z_{\rm m}^* = \frac{bT}{2}s$$
 , $Z_{\rm k}^* = \frac{2k_e b}{2bk_e T} \frac{1}{s}$

Tuning the wave impedance b gives conflictive results Just not noticeable deviation in stiffness

$$b > (1 - \mathsf{JND}_k) \frac{k_e T}{2}$$

Perceived stiffness is not compromised, inertia display becomes more realistic ${\tiny [HB12]}$

Human trajectory planning: Zero-order hold

Forward-looking planning requires few changes in direction Shared control of quadruped robot: Human controls front legs Automatic positioning of rear legs to achieve

- Gait stability during rear leg change
- Gait stability for the next front leg steps

Prediction of the next step allows for a large step size

Zero-order hold extrapolation is suitable for a small prediction horizon [CDE13]

Human motion sequence learning

Traded control: robot automatically executes repetitive tasks Learning "good" motion sequences by demonstration Human motion is a doubly stochastic process: Hidden Markov Models States (intention) are estimated from the observations (motion) Selection of the best learned trajectory

$$\max P(\lambda_r \mid O^*) = \frac{P(O^* \mid \lambda_r)P(\lambda_r)}{P(O^*)}, \ \forall r = 1...R$$

Elimination of minor uncertainties, trading of control not perceivable [YX94]

Human actuation with pointing interfaces

A passive human ensures stability with delayed communication and correct positioning in partially controlled robot-swarms

The VITE model generates human arm trajectories

$$\dot{\nu} = \gamma(-\nu + x_{\rm d} - x)$$
$$\dot{x} = G(t) \max(0, \nu)$$

Target position $x_{\rm d}$, actual position x, gains γ, G Passive for no position overshoot

 $\nu > 0$ [VZ13]

System identification: passive at low frequencies f < 1 [rad/s] [HCF15]

Shared -

Forced-choice decision making

Supervision of multiple surveillance agents

Modelling of human decision making for incident identification and estimation of the evaluation time

Choice between two alternatives by accumulation of evidence \boldsymbol{x}

$$dx(t) = \mu dt + \sigma dW(t),$$

with the accumulation rate μ , the diffusion rate σ and the Wiener process W(t)

Pre-selection and scheduling of tasks reduces human resource allocation $_{\mbox{\scriptsize [PST+15]}}$

Shared -

Conclusion

Human modelling in teleoperation can

- ensure stability with a human-in-the-loop
- achieve a more realistic display of the environment
- improve manipulation skill
- support decision making

References

Rahul Chipalkatty, Greg Droge, and Magnus Egerstedt.

Less Is More: Mixed Initiative Model Predictive Control With Human Inputs.

In: IEEE Transactions on Robotics 29.3 (2013), pp. 695-703.

Takeshi Hatanaka, Nikhil Chopra, and Masayuki Fujita. Passivity-based bilateral human-swarm-interactions for cooperative robotic networks and human passivity analysis.

In: Proc. IEEE Conference on Decision and Control, Vol. 54, 2015, pp. 1033-1039.

Sandra Hirche and Martin Buss, Human-oriented control for haptic teleoperation.

In: Proceedings of the IEEE 100.3 (2012), pp. 623-647.

Human Supervisory Control of Robotic Teams.

Jeffrey Peters, Vaibhav Srivastava, Grant Taylor, Amit Surana, and Miguel Eckstein.

In: IEEE Control Systems Magazine 35.6 (2015), pp. 57-80.

M.M. Rahman, R. Ikeura, and K. Mizutani. Investigating the impedance characteristic of human arm for development of robots to co-operate with human operators.

In: Proc. IEEE Conf. on Systems, Man. and Cybernetics, Vol. 2, 1999, pp. 676-681.

T.B. Sheridian. Telerobotcis, Automation and Human Supervisory Control. Cambridge: MIT Press, 1992.

In: Proc. IFAC Workshop on Distributed Estimation and Control in Networked Systems. Vol. 4. 2013, pp. 369-376.

J Yang, Y Xu, and C S Chen,

Hidden Markov model approach to skill learning and its application to telerobotics.

In: IEEE Transactions on Robotics and Automation 10.5 (1994), pp. 621-631.

