Verification Problems for FEM matlab program

Emayavaramban ELANGO

September 13, 2025

Contents

Formulae used:

$$error\% = \mid \frac{w_{analytical} - w_{FEM}}{w_{analytical}} \mid \times 100$$
 (1)

$$D = \frac{Eh^3}{12(1-\nu^2)} \tag{2}$$

1 Triangular Plate With Point Load (VM34)

Description:

A triangular plate with point load (P) on one corner is tested and its opposite edge is build-in.

Reference:

C.O.Harris , Introduction to Stress Analysis, The Macmillan Co., pg:114, Pr:61. Solution Retrieved from Ansys verification problem (VM34).

Material and Geometric data:

Figure 1: VM34

Table 1: Input Data

Material Property	Geometric Da	ıta	Loading Data		
Young's Modulus (E)	3E7 psi	Height (h)	20 in	Point Load (F_z)	10~lbs
Poission's Ratio (ν)	0.3	Breath (b)	3 in		
		Thickness (t)	0.5~in		

Mesh and boundary condition :

Table 2: FEM and Boundary condition data

Direchlet Bou	ndary	Neumann Boundary					
Geo - Entity	w	θ_x	θ_y	Geo - Entity	F_z	M_x	M_y
line {3}	Fixed	Fixed	Fixed	Point {2}	-10 lbs		

Analytically solution:

The target analytically solution is given as -0.042677 in at the corner where the loading is applied.

 $\frac{Y}{Z}$ ×

Figure 2: Geomentry of the problem

Y ...

Figure 3: Discritization

Result and error analysis:

Figure 4: FEM solution plot

The maximum displacement of the domain is our solution . w displacement at point 2 is -0.0426677in.

So the Error percentage is 0.00234%.

2 Simply Supported Circular plate with point load (TIM68)

Description:

Simply Supported Circular plate with point load at the center.

Reference:

S.Timoshenko , S . Woinowsky , Theory of Plates and Shells , pg:68, Article : 19 .

Material and Geometric data:

Figure 5: TIM68

Table 3: Input Data

Material Property	Geometric Da	ıta	Loading Data		
Young's Modulus (E) 5E11 Pa		Radius (r)	1 m	Point Load (F_z)	1000 N
Poission's Ratio (ν)	0.3	Thickness (t)	0.01~m		

Mesh and boundary condition:

Table 4: FEM and Boundary condition data

Direchlet Bour	ndary	Neumann Bo	undary				
Geo -Entity	w	θ_x	θ_y	Geo -Entity	F_z	M_x	M_y
line $\{1,2,3,4\}$	Fixed	Free	Free	Point {1}	-1000 N		

Analytically solution:

The target analytically solution given as

$$w_{at_center} = \frac{F_z}{16\pi D} \left[\frac{(3+\nu)r^2}{1+\nu} \right]$$
 (3)

Figure 6: Geomentry and Mesh of TIM68

Result and error analysis:

Figure 7: FEM solution plot

The maximum displacement of the domain is our solution . w displacement at center is -0.0010983in.

So the Error percentage is 0.42103%.

3 Build-in Circular plate with point load (TIM69)

Description:

Simply Supported Circular plate with point load at the center.

Reference:

S.Timoshenko , S . Woinowsky , Theory of Plates and Shells , pg:69, Article : 19 .

Material and Geometric data:

Table 5: Input Data

Material Property	Geometric Da	ıta	Loading Data		
Young's Modulus (E)	Young's Modulus (E) 5E11 Pa		1 m	Point Load (F_z)	-1000 N
Poission's Ratio (ν)	0.3	Thickness (t)	0.01~m		

Figure 8: TIM69

${\bf Mesh\ and\ boundary\ condition:}$

Figure 9: Geomentry and Mesh of TIM68

Table 6: FEM and Boundary condition data

Direchlet Bour	ndary	Neumann Boundary					
Geo -Entity	$\theta_x = \theta_y$			Geo -Entity	F_z	M_x	M_y
line {1,2,3,4}	Fixed	Fixed	Fixed	Point {1}	-1000 N		

Analytically solution:

The target analytically solution given as

$$w = \frac{F_z}{16\pi D} \left[r^2 - a^2 \right] + \frac{F_z r^2}{8\pi D} \left[\log \frac{a}{r} \right] \tag{4}$$

The displacement at center is obtained by substituting $a \approx 0$. The analytical solution is -0.000434 m.

Result and error analysis:

The maximum displacement of the domain is our solution . w displacement at center is -0.000429in. So the Error percentage is 1.26%.

Figure 10: FEM solution plot

4 Natural Frequency of Square plate (VMP09)

${\bf Description:}$

Natural frequency of a square plate is analyzed and compared.

Reference:

NAFEMS Manual. Solution Retrieved from Ansys verification problem (VMP09-T12).

Material and Geometric data:

Figure 11: VMP09

Table 7: Input Data

Material Property	Geometric Da	Loading Data		
Young's Modulus (E)	2E11 pa	Length (l)	10 m	
Poission's Ratio (ν)	0.3	Breath (b)	$10 \ m$	Nil
Density (ρ)	$8000~Kg/m^3$	Thickness (t)	0.05~m	

Figure 12: Geomentry and Mesh of TIM68

Table 8: FEM and Boundary condition data

Direchlet Bour	Neumann Boundary						
Geo -Entity	Geo -Entity $w = \theta_x = \theta_y$				F_z	M_x	M_y
line {1,2,3,4}	Free	Free	Free	Nil			

Mesh and boundary condition:

Analytically solution:

Retrieved Natural frequencies from reference manuals are

Mode $4 = 1.622 \; Hz$

Mode $5 = 2.360 \; Hz$

 ${\rm Mode}\ 6=2.922\ Hz$

 $\mathrm{Mode}\ 7 = 4.233\ Hz$

Mode $8 = 4.233 \; Hz$

Mode $9 = 7.416 \; Hz$

Result and error analysis:

The Natural modes obtained are plotted in the below figures.

For each natural frequency the error percentage is

Mode 4 = 0.0018 %

Mode 5 = 0.0042 %

Mode 6 = 0.061 %

Mode 7 = 0.911 %

Mode 8 = 0.902 %

Figure 13: Natural Modes of a Square Plate

Mode 9 = 0.645 %

5 Square plate with distributed load(TIM116)

Description:

A simply Supported square plate with distributed load (q).

Reference:

S. Timoshenko , S . Woinowsky , Theory of Plates and Shells , pg:116, Article : 30 .

Material and Geometric data:

Table 9: Input Data

Material Property		Geometric Data		Loading Data		
Young's Modulus (E)	2E11 pa	Length (a)	10 m	Distributed Load (q)	$1000 \ N/m^2$	
Poission's Ratio (ν)	0.3	Breath (b)	10~m			
		Thickness (t)	0.1~m			

Figure 14: TIM116

Figure 15: Geomentry and Mesh of TIM116 $\,$

Table 10: FEM and Boundary condition data

Direchlet Bour	ndary			Neumann Boundary					
Geo -Entity	w	θ_x	θ_y	Geo -Entity	F_z	M_x	M_y		
line $\{1,2,3,4\}$	Fixed	Free	Free	Area {1}	$1000 \ N/m^2$				

${\bf Mesh\ and\ boundary\ condition:}$

${\bf Analytically\ solution:}$

The w_{max} which is the w displacement at the middle of the plate is given by

$$w_{max} = 0.00406 \frac{qb^4}{D} \tag{5}$$

The analytically solution of the problem is calculated as $w_{max} = -0.0022167m$

Result and error analysis:

Figure 16: FEM solution plot

The maximum displacement of the domain is our solution . w displacement at middle is -0.0022144m.

$$error\% = \mid \frac{w_{analytical} - w_{FEM}}{w_{analytical}} \mid \times 100$$
 (6)

So the Error percentage is 0.1%.

6 Square plate with combined load(TIM381)

${\bf Description}:$

A simply Supported square plate with distributed load (q).

Reference:

S. Timoshenko , S . Woinowsky , Theory of Plates and Shells , pg:381, Article : 30 .

Material and Geometric data:

Figure 17: TIM381

Table 11: Input Data

Material Property		Geometric Data		Loading Data		
Young's Modulus (E)	2E11 pa	Length (a)	10 m	Axial Tension (N_x)	2E7 N/m	
Poission's Ratio (ν)	0.3	Breath (b)	10~m	Distributed Load (q)	$1000\ N/m^2$	
			0.1~m			

${\bf Mesh\ and\ boundary\ condition:}$

Table 12: FEM and Boundary condition data

Direchlet Boundary				Neumann Boundary					
Geo -Entity	w	θ_x	θ_y	Geo -Entity	F_z	M_x	M_y		
line $\{1,2,3,4\}$	Fixed	Free	Free	Area {1}	$1000 \ N/m^2$				
				Geo -Entity	Fx				
				$line{1,3}$	2E7 N/m				

Figure 18: Geomentry and Mesh of TIM381

Analytically solution:

The w_{max} which is the w displacement at the middle of the plate is given by

$$w_{max} = \alpha \frac{qb^4}{Et^3} \tag{7}$$

Where α can be taken from the graph given in the figure : ??. For this problem alpha is taken as $\alpha \approx 0.0113$.

The parameter γ is given by

$$\gamma = \frac{N_x b^2}{4\pi^2 D} \tag{8}$$

The analytically solution of the problem is calculated as $w_{max} = 0.000565m$

Result and error analysis:

The maximum displacement of the domain is our solution . w displacement at middle is 0.000566m.

So the Error percentage is 0.17%.

Figure 19: Graph to find α .

Figure 20: FEM solution plot

7 Natural Frequency of Rectangular strip with axial load (NAS277)

${\bf Description:}$

Modal analysis of a rectangular strip with axial stress (N_2) on short edge.

Reference:

Arthur W.Leissa ,Vibration of Plates,NASA SP-160, pg:277, Ch:10.2.

Material and Geometric data:

Mesh and boundary condition:

Analytically solution:

The analytical solution of the this problem is given by

Figure 21: NAS277

Table 13: Input Data

Material Property	Geometric Da	ıta	Loading Data		
Young's Modulus (E)	1E11 pa	Length (a)	1 m	N_2	$3E11 N/m^2$
Poission's Ratio (ν)	0.3	Breath (b)	40 m		
Density (ρ)	$7810~Kg/m^3$	Thickness (t)	1 m		

Table 14: FEM and Boundary condition data

Direchlet Boundary			Loading Conditions		
Geo -Entity	w	θ_x	θ_y	Geo -Entity	N_2
line {1,3}	Fixed	Free	Free	line {1,3}	$3E11 N/m^2$

$$\omega_{mn} = \sqrt{\frac{1}{\rho} \left(D \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right] + N_1 \left(\frac{m\pi}{a} \right)^2 + N_2 \left(\frac{n\pi}{b} \right)^2 \right)}$$
(9)

Natural frequencies are

 $\bmod e\ 1:\ 77.479\ Hz$

 $mode\ 2$: N.A

 $\bmod e\ 3:\ 155.00\ Hz$

 $\bmod e\ 4:\ N.A$

 $\bmod 6\ 5:\ 232.61\ Hz$

mode 6: N.A

note: modes 2,4 and 6 are twisting modes, which are not given by the formula.

30 20 10 -

(a) Geomentry of the problem

(b) Discritization

Result and error analysis:

The natural frequencies of the plates are provided below.

 $\begin{array}{l} \text{mode 1}: 77.458 \ Hz \\ \text{mode 2}: 95.610 \ Hz \\ \text{mode 3}: 154.98 \ Hz \\ \text{mode 4}: 191.46 \ Hz \\ \text{mode 5}: 232.63 \ Hz \\ \text{mode 6}: 287.38 \ Hz \end{array}$

So the Error percentage for each mode is :

 $\begin{array}{l} \bmod {\rm e} \ 1: \ 0.026 \ \% \\ \bmod {\rm e} \ 3: \ 0.012 \ \% \\ \bmod {\rm e} \ 5: \ 0.013 \ \% \end{array}$

Figure 23: Natural Modes of a rectangular strip

8 Error analysis of strip with various thickness (NAS277)

${\bf Description:}$

It is the continuation of previous problem but the error of the solution is compared for different thicknesses.

Material and Geometric data:

Mesh and boundary condition:

Result and error analysis:

Table 15: Input Data

Material Property		Geometric Da	ta	Loading Data	
Young's Modulus (E)	1E11 pa	Length (a)	1 m	N_2	$\frac{T}{t} N/m^2$
Poission's Ratio (ν)	0.3	Breath (b)	40 m	Tension T	3E4 N/m
Density (ρ)	$7810~Kg/m^3$	Thickness (t)	$\{0.001, 0.005,, 0.5, 1\}$ m		

Table 16: FEM and Boundary condition data

Direchlet Boundary			Loading Conditions		
Geo -Entity	w	θ_x	θ_y	Geo -Entity	N_2
line {1,3}	Fixed	Free	Free	line {1,3}	$\frac{T}{t} N/m^2$

Figure 24: Natural Modes of a rectangular strip