Paper reading seminar

Yan Wang

September 5, 2012

What Has My Classifier Learned? Visualizing the Classification Rules of Bag-of-Feature Model by Support Region Detection

- Interesting
 - Motivation
 - Applications
- Motivation
 - Critical parts of the image for classification
 - Sparse Coding + Max Polling

Background

- Related work: heat map
 - Mine important parts for image classification
 - ▶ Li Fei-Fei's group in CVPR 11

- Assumption
 - SC + MP \Rightarrow no linearity: $C(A \cup B) \neq \mu C(A) + (1 - \mu)C(B)$
 - Interested in regions without which the image will be misclassified

- ► SC + MP
 - Sparse coding: $u_j \in \mathbb{R}^V$. u_{jk}
 - ▶ Pooling: $\max_{j} \{u_{jk}\}$
 - Classification: $\hat{y} = sgn\left(w_k \max_j \{u_{jk}\} + b\right)$
- ► Support Region R_s
 - Only interested in positive samples

$$\sum_{k} \max_{\{j|P_j \notin R_s\}} \{u_{jk}\} + b < 0$$

Restriction on area

► An efficient (DP-like) way to detect such regions

$$J(R_p, R_q) = \sum_{k} w_k \Big(\max_{\{j|P_j \in R_p\}} \{u_{jk}\} - \max_{\{j|P_j \in R_p - R_q\}} \{u_{jk}\} \Big)$$

▶ Don't really know what it means... The larger, the better? $R_q \subset R_p$

$$K(I, R_s) \ge S_0, S_0 = \sum_k \max_j \{u_{jk}\} + b$$

$$J(I, R_t) = J(I, R_{t-1} + J(I - R_{t-1}, P_t))$$

▶ Iteration way. Start from P_0 , $R_t = R_{t-1} \cup \hat{P}_t$

$$\hat{P}_t = \arg\max_{P_t \in \mathsf{boundary}\{R_{t-1}\}} J(I - R_{t-1}, P_t)$$

Predict the failure mode of classifiers

▶ Understand the classification and discover database bias

Understand the classification and discover database bias

tvmonitor	1	.08	.03	.16	.03.0	3 .10.	.02	.03	
train				.01					
sofa	.03			.07		.04	.01		.01
sheep				.13			.06	.06	
oottedplant	.04.0	1.10		21.0	1.02.04.1	0 .15.	01.01	.03	.01
person	.01.0	1.01	.01	.0	1.01.02.0	1.01.01	.04.	01 .0	1
motorbike				.01			.01		
horse				.01	.01				
dog	.01		.01	.08		.02			
diningtable	.01	.02	.03	.09		.05			
cow									
chair	.10	.09	.05	19	.0	1 .	02	.03	.01
cat	.02	.01	.02	.03	.02	.02	.01		.01
car	.0	1		.05.02	2.01		,	03	.01.01
bus				.15			.05		.05
bottle	.04	.03	.01.01	.29	.01.0	.06	.02		
boat			.02	.11					
bird				.05		.01.01	.01	.0	1
bicycle	.02	.03	.01	13.0			01.04.	02	
aeroplane		ain Sol	02 Sh ₆ Poh	.02		ninglable			oat irobicycle

- Build better classifiers
 - ▶ User annotates bad support regions ⇒ remove the regions, put remaining image as a positive sample
 - Cross-dataset validation: context won't help, must focus on the objects themselves

- Build better classifiers
 - ► User annotates bad support regions ⇒ remove the regions, put remaining image as a positive sample
 - Cross-dataset validation: context won't help, must focus on the objects themselves

Test Setting	Bike	Car	Person
Without new samples Test on Graz	93.3	79.2	86.4
With new samples Test on Graz	93.8	79.7	88.3
Without new samples Test on Pascal	73.2	77.5	67.7
With new samples Test on Pascal	73.4	80.9	68.4

Ensemble of Exemplar-SVMs for Object Detection and Beyond

- Motivation
 - "Semantic classifier" hard because things are not visually similar
 - Build "exemplar classifier" to do instance classification and then fuse the scores
 - SVM-style extension of KNN-based classification
- New problem
 - ▶ Detection dataset ⇒ matching instance ⇒ associated metadata (class, label, 3D model, segmentation, ...)

- Exemplar-SVM
 - Corresponds to every (detection) instance
 - Positive training sample: detection instance
 - Negative training sample: all the other instances
 - ▶ HoG + Linear SVM
 - Use non-maximum suppression in testing phrase

- Calibration
 - ▶ The individually trained SVMs have different scales
 - Cannot be integrated for final result directly
 - Calibration to normalize their score
 - For every Exemplar-SVM

$$f(x|w_E, \alpha_E, \beta_E) = \frac{1}{1 + e^{-\alpha_E(W_E^T x - \beta_E)}}$$

- Calibration
 - Sample collection
 - ▶ Agreed samples (w/in one class?) ⇒ positive samples
 - Other samples
- Test
 - Sliding window + HoG
 - Individual test score
 - Calibrated test score
 - ► Sum?

Data-driven Visual Similarity for Cross-domain Image Matching

- ▶ Problem: cross-domain image matching
- Motivation
 - Visual similarity metric is hard to design
 - Directly use the (unlabeled) data
 - ► Training a discriminative classifier to discover important parts of an image ⇒ learn a similarity metric from data

- Train an SVM for every image
 - Pos: one image with shifting/rotating/scaling
 - Neg: (millions of) sliding windows from (10K) randomly sampled Flickr images
 - ► Feature: grid-like features with high enough dimensions, like HoG or Dense SIFT
- Technical details
 - ► Efficiency: SVM only keeps support vectors in the negative part ⇒ efficient in testing phrase
 - "Sample expansion": explore more negative samples with current trained w
 - Ranking: didn't find in the paper

Experiments

- Perform well in saliency detection
- ► Image-Image matching
 - Dataset: INRIA Holiday Dataset to ensure the exact query instance exists in the dataset
 - Baselines: GIST, Tiny images, spatial pyramid
 - Measurement: true positive rate in top 100 results

Experiments

- Sketch-Image matching
 - ▶ Dataset: 25 car sketch + 25 bike sketch against PASCAL VOC 2007 and SBIR Dataset
 - Baselines: proposed algo. with different dataset size
 - Measurement: mAP of top K
- Point-Image matching (qualitative)
 - Dataset: self-collected, 50 outdoor paintings agains 5K GPS-enabled images within 50 miles and 5K random images

- Scene completion
- Internet re-photography
- ► Painting2GPS
- Visual Scene Exploration