Deviation

Emphasise variations (+/-) from a fixed reference point. Typically the reference point is zero but it can also be a target or a long-term average. Can also be used to show sentiment (positive/neutral/negative).

Example FT uses Trade surplus/deficit, climate change

Diverging bar

A simple standard bar chart that can handle both negative and positive magnitude

Diverging stacked bar

Splits a single value into two contrasting

The shaded area of these charts allows a balance to be shown either against a baseline or between two series.

Visual

Designing with data

vocabulary

There are so many ways to visualise data - how do we

know which one to pick? Use the categories across the

top to decide which data relationship is most important

within the category to form some initial ideas about what

FT graphic: Alan Smith; Chris Campbell; Ian Bott; Liz Faunce; Graham Parrish; Billy Ehrenberg-Shannon; Paul McCallum; Martin Stabe

might work best. This list is not meant to be exhaustive,

in your story, then look at the different types of chart

nor a wizard, but is a useful starting point for making

informative and meaningful data visualisations.

Inspired by the Graphic Continuum by Jon Schwabish and Severino Ribecca

components (eq

Show the relationship between two or more variables. Be mindful that, unless you tell them otherwise, many readers will assume the relationships you show them to be causal (i.e. one causes the

Example FT uses Inflation & unemployment, income & life expectancy

Scatterplot

The standard way to show the relationship between two continuous variables, each of which

Column + line timeline

relationship between an amount (columns) and a rate (line).

Connected scatterplot

Usually used to show how the relationship between 2 variables has changed over time.

Like a scatterplot, but adds additional detail by sizing the circles according to a third

XY heatmap

A good way of showing the patterns between 2 categories of data, less effective at showing fine differences in amounts.

Correlation

Use where an item's position in an ordered list is more important than its absolute or relative value. Don't be afraid to highlight the points of interest.

> Example FT uses Wealth, deprivation, league tables constituency election results

Ranking

Standard bar charts display the ranks of values much more easily when sorted into order.

Ordered column

See above.

Ordered proportional symbol

Use when there are big variations between values and/or seeing fine differences between data is not so

Dot strip plot

Dots placed in order on a strip are a space-efficient method of laying out ranks across multiple categories.

Perfect for showing how ranks have changed over time or vary between categories.

Lollipops draw more attention to the data value than standard bar/column and can also show rank and value effectively.

Effective for showing changing rankings across multiple dates. For large datasets, consider grouping lines using colour.

Distribution

Show values in a dataset and how often they occur. The shape (or 'skew') of a distribution can be a memorable way of highlighting the lack of uniformity or equality in the data.

Example FT uses Income distribution, population (age/sex) distribution

The standard way to show a statistical distribution - keep the gaps between columns small to highlight the shape' of the data.

Dot plot

Dot strip plot

Good for showing individual values in a distribution, can be a problem when too many dots have the same value.

Barcode plot

Like dot strip plots, good for displaying all the data in a table, they work best when highlighting individual

Boxplot

distributions by showing the median (centre) and range of the data

Summarise multiple

Similar to a box plot but more effective with complex distributions (data that cannot be summarised with simple average).

A standard way for

breakdown of a

showing the age and sex

population distribution;

effectively, back to back

Population pyramid

Cumulative curve

A good way of showing how unequal a distribution is: y axis is always cumulative frequency, x axis is always a measure.

Frequency polygons

For displaying multiple distributions of data. Like a regular into chart, best limited to a maximum of 3 or 4 datasets.

Beeswarm

Use to emphasise individual points in a distribution. Points can be sized to an additional variable.

Change over Time

Give emphasis to changing trends These can be short (intra-day) movements or extended series traversing decades or centuries: Choosing the correct time period is important to provide suitable context

Example FT uses Share price movements, economic time

for the reader.

The standard way to show a changing time series. If data are irregular, consider markers to represent

Column

Columns work well for showing change over time - but usually best with only one series of

Column + line timeline

A good way of showing the relationship over time between an amount (columns) and a rate

Good for showing changing data as long as the data can be simplified into 2 or 3 points without missing a key part of story.

Area chart

Use with care – these are good at showing changes to total, but seeing change in components can be very difficult.

Candlestick

Usually focused on day-to-day activity, these charts show opening/closing and high/low points of each day.

Fan chart (projections)

uncertainty in future projections - usually this grows the further forward to projection.

Connected scatterplot

A good way of showing changing data for two variables whenever there is a relatively clear pattern of

Calendar heatmap

A great way of showing temporal patterns (daily, weekly, monthly) – at the expense of showing precision in

Priestley timeline Great when date and

duration are key elements of the story in the data.

Circle timeline

Good for showing discrete values of varying size across multiple categories (eg earthquakes by contintent).

Presents time on the Y

Vertical timeline

Another alternative to the circle timeline for showing series where

there are big

variations in the data.

axis. Good for

displaying detailed

time series that work

especially well when

scrolling on mobile.

Streamgraph

A type of area chart; use to show changing proportion over time when the absolute number is not of primary importance

Magnitude

Show size comparisons. These can be relative (just being able to see larger/bigger) or absolute (need to see fine differences). Usually these show a 'counted' number (for example, barrels dollars or people) rather than a

Example FT uses Commodity production, market capitalisation

calculated rate or per cent.

Column

See above. Good when the data are not time

series and labels have

long category names.

Paired column

column but allows for multiple series. Can become tricky to read with more than 2

Paired bar

Marimekko

the same time – as long as the data are not too complicated

Proportional symbol

Use when there are big variations between values and/or seeing fine differences between data is not so important.

Isotype (pictogram) Excellent solution in some instances – use only with whole

off an arm to represent a decimal). Lollipop charts draw more attention to the

data value than

standard bar/column -

zero (but preferable).

does not have to start a

A space-efficient way of showing value of multiple variables- but make sure they are organised in a way that makes sense to reader.

An alternative to radar

arrangement of the variables is important.

Usually benefits from

highlighting values.

Parallel coordinates

Good for showing a measurement against the context of a targe

or performance range

An alternative to

being able to count

data or highlight individual elements is

useful.

bar/column charts when

Grouped symbol

Part-to-whole

Show how a single entity can be broken down into its component elements. If the reader's interest is solely in the size of the components, consider a magnitude-type chart instead.

Example FT uses Fiscal budgets, company structures, national election results

Stacked column

A simple way of showing part-to-whole relationships but can be difficult to read with more than a few components.

Marimekko

A common way of showing part-to-whole data – but be aware that it's difficult to accurately compare the size of the

A good way of

Donut

space to include more information about the data (eg total).

relationships; can be

difficult to read when

there are many small

Use for hierarchical

part-to-whole

good way of making

Treemap

A way of turning points into areas – any point within each area is closer to the central is closer to the central point than any other

A hemicycle, often

parliamentary

composition by

number of seats.

multiple layout form.

representation.

used for visualising

Waterfall

Can be useful for showing part-to-whole relationships where some of the components are negative.

Spatial

catchment areas, variation in election

Basic choropleth (rate/ratio)

Example FT uses

Flow map

Contour map

Equalised cartogram

Aside from locator maps only used when precise locations or geographical patterns in data are more important to the reader than anything else.

Population density, natural resource locations, natural disaster risk/impact,

The standard approach

map – should always be

rates rather than totals

and use a sensible base

Use for totals rather

than rates – be wary

that small differences

in data will be hard to

For showing

unambiguous

movement across a

For showing areas of

equal value on a map.

Can use deviation

showing +/- values

colour schemes for

Converting each unit on

a map to a regular and

equally-sized shape –

good for representing

voting regions with

equal value.

Stretching and

according to a

particular value.

shrinking a map so

that each area is sized

geography.

Proportional symbol (count/magnitude)

for putting data on a

Waterfall

Network

Flow

Show the reader volumes or intensity of movement between two or more states or conditions. These might be logical sequences or geographical locations.

Example FT uses Movement of funds, trade, migrants, lawsuits, information; relationship graphs.

Scaled cartogram (value)

Grid-based data values mapped with an intensity colour scale. As choropleth map but not snapped to an

admin/political unit.

reader should see.

副總 ft.com/vocabulary