

EECS 16B

Designing Information Devices and Systems II Lecture 19

Prof. Yi Ma

Department of Electrical Engineering and Computer Sciences, UC Berkeley, yima@eecs.berkeley.edu

Outline

- Upper Triangularization
- The RLC circuit
- Spectral Theorem

Upper-Triangularization (Schur Decomposition)

Claim: For any matrix $A \in \mathbb{R}^{n \times n}$ with real eigenvalues, there exists an orthogonal matrix: $U \in \mathbb{R}^{n \times n}$ such that $U^{\top}U = I$ and $T = U^{-1}AU = U^{\top}AU$ is upper-triangular.

Proof (continued):

Upper-Triangularization (Schur Decomposition)

Claim: For any matrix $A \in \mathbb{R}^{n \times n}$ with real eigenvalues, there exists an orthogonal matrix: $U \in \mathbb{R}^{n \times n}$ such that $U^{\top}U = I$ and $T = U^{-1}AU = U^{\top}AU$ is upper-triangular.

Proof (continued):

Upper-Triangularization (Algorithm)

Algorithm 10 Real Schur Decomposition

Input: A square matrix $A \in \mathbb{R}^{n \times n}$ with real eigenvalues.

Output: An orthonormal matrix $U \in \mathbb{R}^{n \times n}$ and an upper-triangular matrix $T \in \mathbb{R}^{n \times n}$ such that A = UTU^{\top} .

- 1: **function** REALSCHURDECOMPOSITION(*A*)
- if A is 1×1 then 2:
- return $\begin{bmatrix} 1 \end{bmatrix}$, A 3:
- end if 4:
- $(\vec{q}_1, \lambda_1) := \text{FINDEIGENVECTOREIGENVALUE}(A)$ 5:
- $Q := \text{EXTENDBASIS}(\{\vec{q}_1\}, \mathbb{R}^n)$ \triangleright Extend $\{\vec{q}_1\}$ to a basis of \mathbb{R}^n using Gram-Schmidt; see Note 13
- Unpack $Q := \begin{bmatrix} \vec{q}_1 & \widetilde{Q} \end{bmatrix}$
- Compute and unpack $Q^{T}AQ = \begin{bmatrix} \lambda_1 & \vec{\tilde{a}}_{12}^{T} \\ \vec{0}_{n-1} & \widetilde{A}_{22} \end{bmatrix}$
- $(P, \widetilde{T}) := \text{REALSCHURDECOMPOSITION}(\widetilde{A}_{22})$
- $U := egin{bmatrix} ec{q}_1 & \widetilde{Q}P \end{bmatrix} \ T := egin{bmatrix} \lambda_1 & \overrightarrow{\widetilde{a}}_{12}^TP \ \overrightarrow{0}_{n-1} & \widetilde{T} \end{bmatrix}$
- return (U,T)12:
- 13: end function

Upper-Triangularization (Example)

A RLC Circuit

$$i(t) = C \frac{dV_c(t)}{dt}, \quad V_L(t) = L \frac{di(t)}{dt}$$

$$V_s(t) = V_R(t) + V_L(t) + V_c(t)$$

Stability, Controllability
Diagonalization, Triangularization

Upper-Triangularization (Example)

A RLC Circuit (critically damped)

Upper-Triangularization (Example)

A RLC Circuit

Spectral Theorem (motivations)

Diagonalization for $A \in \mathbb{R}^{n \times n}$ with n independent eigenvectors: $V^{-1}AV = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$

Triangularization for $A \in \mathbb{R}^{n \times n}$ with real eigenvalues: $U^{-1}AU = \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ 0 & t_{22} & \cdots & t_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & t_{nn} \end{bmatrix}$

For real symmetric matrices $A = A^{\top} \in \mathbb{R}^{n \times n}$:

$$V^{-1}AV = V^{\top}AV = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$$

Spectral Theorem (statement)

Theorem: Let $A = A^{\top} \in \mathbb{R}^{n \times n}$ be a *real and symmetric* matrix. Then

- 1. All eigenvalues of A are real.
- 2. *A* is diagonalizable.
- 3. All eigenvectors are orthogonal to each other.

Spectral Theorem (proof)

Spectral Theorem (extensions)

Consider:
$$\frac{d\vec{x}(t)}{dt} = A\vec{x}(t)$$
 with A symmetric, and $\lambda_{\max}(A) < -\lambda$.

How does the "energy" $V(t) = \|\vec{x}(t)\|_2^2 = \vec{x}(t)^\top \vec{x}(t)$ evolves?

Spectral Theorem (extensions)

What if A is real and anti-symmetric: $A^{\top} = -A \in \mathbb{R}^{n \times n}$