Chapter 2

Projection Matrices

2.1 Definition

Definition 2.1 Let $x \in E^n = V \oplus W$. Then x can be uniquely decomposed into

$$\boldsymbol{x} = \boldsymbol{x}_1 + \boldsymbol{x}_2 \ (where \ \boldsymbol{x}_1 \in V \ and \ \boldsymbol{x}_2 \in W).$$

The transformation that maps x into x_1 is called the projection matrix (or simply projector) onto V along W and is denoted as ϕ . This is a linear transformation; that is,

$$\phi(a_1 y_1 + a_2 y_2) = a_1 \phi(y_1) + a_2 \phi(y_2)$$
(2.1)

for any y_1 , $y_2 \in E^n$. This implies that it can be represented by a matrix. This matrix is called a projection matrix and is denoted by $P_{V.W}$. The vector transformed by $P_{V.W}$ (that is, $x_1 = P_{V.W}x$) is called the projection (or the projection vector) of x onto V along W.

Theorem 2.1 The necessary and sufficient condition for a square matrix P of order n to be the projection matrix onto $V = \operatorname{Sp}(P)$ along $W = \operatorname{Ker}(P)$ is given by

$$P^2 = P. (2.2)$$

We need the following lemma to prove the theorem above.

Lemma 2.1 Let P be a square matrix of order n, and assume that (2.2) holds. Then

$$E^n = \operatorname{Sp}(\mathbf{P}) \oplus \operatorname{Ker}(\mathbf{P}) \tag{2.3}$$

H. Yanai et al., *Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition*, Statistics for Social and Behavioral Sciences, DOI 10.1007/978-1-4419-9887-3_2,