Novo Espaço – Matemática A, 12.º ano

Proposta de teste de avaliação [janeiro - 2024]

Nome:	
	_

Ano / Turma: _____ N.º: ____

Data: ___ - ___

 Na entrada de um prédio há 18 caixas de correio, uma por habitação, tal como é sugerido na figura.

Num dia, o carteiro, na distribuição da correspondência, verificou que três cartas não estavam corretamente endereçadas e optou por distribuí-las, ao acaso, por 3 das 18 caixas.

Determina a probabilidade de, no máximo, duas cartas ficarem nas caixas correspondentes.

2. Considera uma função f, de domínio \mathbb{R} .

Sabe-se que:

- f é contínua em [-4,3]
- f(3) > 0
- $f(-4) > \frac{1}{f(3)}$
- f'(-5) = 1

Considera as afirmações:

- (I) O Teorema de Bolzano-Cauchy permite garantir, no intervalo]-4,3[, a existência de, pelo menos, um zero da função f .
- (II) A função f é contínua em x = -5.

O que se pode afirmar quanto ao valor lógico das afirmações anteriores?

- (A) São ambas verdadeiras.
- (B) I é falsa e II é verdadeira.
- (C) I é verdadeira e II é falsa.
- (**D**) São ambas falsas.

3. Seja f a função definida, em \mathbb{R} , por $f(x) = \begin{cases} \frac{x}{\sqrt{4-x}-2} + k & \text{se } x < 0 \\ \frac{-x^2 + 7x + 2}{x+2} & \text{se } x \ge 0 \end{cases}$, sendo $k \in \mathbb{R}$.

- **3.1.** Determina o valor de k, de modo que f seja contínua em x = 0.
- **3.2.** Estuda o gráfico de f quanto à existência de assíntota não vertical quando $x \to +\infty$.
- **4.** Seja f uma função de domínio \mathbb{R}^+ .

Sabe-se que $f'(x) = -\frac{x}{x^2 - 3}$ para todo o $x \in \mathbb{R}^+$.

Qual é o valor de $\lim_{x\to 2} \frac{f(x)-f(2)}{4-x^2}$?

- (A) -2 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$
- **(D)** 2

5. Considera a função f, definida em $\mathbb{R}\setminus\{2\}$ por:

$$f(x) = \left(\frac{x}{x-2}\right)^2$$

- **5.1.** Mostra que $f'(x) = -\frac{4x}{(x-2)^3}$, $\forall x \in \mathbb{R} \setminus \{2\}$.
- **5.2.** Escreve a equação reduzida da reta tangente ao gráfico de f no ponto de abcissa 1.
- **5.3.** Estuda a função f quanto à monotonia e existência de extremos. Na tua resposta, apresenta:

• o(s) intervalo(s) em que f é crescente, caso exista(m);

- o(s) intervalo(s) em que f é decrescente, caso exista(m);
- o(s) extremo(s) relativo(s) de f, caso exista(m).
- **5.4.** Mostra, recorrendo ao Teorema de Bolzano-Cauchy, que existe pelo menos um ponto do gráfico de f com abcissa pertencente ao intervalo]0,1[tal que a reta tangente é paralela à bissetriz dos quadrantes ímpares.

6. Na figura está representada, num referencial o.n. xOy, parte do gráfico de uma função polinomial

f.

Considera que:

- A função f tem um máximo relativo para x = -2.
- A função f tem um mínimo relativo para x = 2.
- O ponto de abcissa $0\,$ é o único ponto de inflexão do gráfico de f .

Qual é o conjunto-solução da condição $f'(x) \times f''(x) \le 0$?

(A)
$$[-2,0] \cup [2,+\infty[$$

(B)
$$]-\infty,-2]\cup[0,+\infty[$$

(c)
$$]-\infty,-2]\cup[0,2]$$

(D)
$$]-\infty,0]\cup[2,+\infty[$$

- 7. De duas funções reais de variável real $f \in g$, sabe-se que:
 - f é definida por $f(x) = \sqrt{x}$;
 - a reta de equação y = -2x + 10 é tangente ao gráfico de g no ponto de abcissa 3.

Qual é o valor de $(f \circ g)'(3)$?

$$(B) \quad \frac{1}{4}$$

(B)
$$\frac{1}{4}$$
 (C) $-\frac{1}{2}$

8. Na figura está parte da representação gráfica da função f, de domínio \mathbb{R}^+ .

A reta AB é assíntota ao gráfico de f, interseta o eixo Ox no ponto A, de abcissa 6, e interseta o eixo Oy no ponto B, de ordenada -3.

Determina o valor de $\lim_{x \to +\infty} \left(\frac{f(x)}{x} - 2f(x) + x \right)$.

Novo Espaço – Matemática A, 12.º ano

Proposta de teste de avaliação [janeiro - 2024]

- 9. Considera uma função f, diferenciável em $\mathbb R$ tal que:
 - $f'(x) < 0, \forall x \in \mathbb{R}$
 - $\bullet \quad f(x) = x f'(x)$

Seja g outra função, duas vezes diferenciável em \mathbb{R} , tal que a função derivada de g é definida por $g'(x) = x^2 f(x)$.

Prova que o gráfico de g não tem pontos de inflexão.

FIM

Cotações

Questões	1.	2.	3.1.	3.2.	4.	5.1.	5.2.	5.3.	5.4.	6.	7.	8.	9.	Total
Cotação	16	14	16	16	14	16	16	16	16	14	14	16	16	200
(pontos)	10	17	10	10	17	10	10	10	10	17	17	10	10	230