IP (Internet Protocol)

A.Barbieri

- Introducción
- Direccionamiento IP
- Protocolo IP, estructura del mensaje
- Ruteo Estático IP
- Fragmentación

Estructura de Internet

Conjunto de redes

Estructura de Internet

Conjunto de redes interconectadas

.

Estructura de Internet

Conjunto de redes interconectadas y

agregadas

Red de redes

- Acceso
- Carrier/Transporte

Protocolo común:IP

Modelo de Internet

Modelo de reloj de arena:

Fuente: http://isoc.org/wp/ietfjournal/?p=454

Modelo de Internet

Modelo de reloj de arena actual

Fuente: http://isoc.org/wp/ietfjournal/?p=454

Cómo trabaja IP

- End-to-End (Extremo-a-extremo)
- Ruteo se produce hop-by-hop (salto-a-salto)
- Cada nodo debe implementar IP

Protocolos IP actuales

- Brinda servicios a Transporte.
- Usa servicios de Enlace.
- IPv4, comúnmente llamado IP.
- IPv6 llamado antiguamente IP-ng.
- No son versiones de uno mismo, no son compatibles.
- En este texto se comenzará a estudiar IPv4.

.

Características de IPv4

- Protocolo de Red no orientado a conexión.
- Protocolo de Mejor Esfuerzo: best-effort,
 no confiable (no asegura el arribo de los mensajes).
- PDU: datagrama o paquete.
- Definido RFC 791 (STD-5).
- Funcionalidad:
 - Direccionamiento.
 - □ Ruteo/Forwarding.
 - Mux/Demux de protocolos superiores.
 - □ Accesorias (Solucionar deficiencias del protocolo)
 - Fragmentación.
 - Otras: como evitar loops.

Versus orientado a conexión

X.25, ATM usan Virtual Circuits (VC)

Esquema de IP en TCP/IP

- Es el núcleo de la Internet.
- Requiere protocolos "Helpers".

Direccionamiento IP

<u>Dir IP:</u> identifica unívocamente un punto de acceso (interfaz) a la red.

- Un router o un host multi-homed tienen varias IPs. Cada interfaz un valor único. Puede tener varias Dir. IP una interfaz.
- Tienen un significado global en la Internet o privado (local).
- Globales: asignadas por autoridad central:
 - Principio: John Postel, InterNIC (Internet Network Information Center).
 - Hoy: el IANA (Internet Assigned Numbers Authority), responsable, el ICANN, delegando la asignación a los RIRs (Regional Internet. Registers), siendo para América Latina y parte del Caribe: LACNIC.

Direcciones IP

- Son números de 32 bits, expresados en notación decimal delimitada por puntos byte a byte (e.g. 163.10.45.77).
- Son 4G de direcciones (2^32) puras, que organizadas en forma jerárquica se reducen.
- Para facilidad de los usuarios, mapping con nombres de domino (DNS - Domain Name Server).
- Son necesarias para rutear la información por la Internet.
- Son direcciones lógicas.

Direcciones IP

- Codificadas en dos partes:
 - □ Red (Net).
 - □ Anfitrión (Host).

net. pfix	Hostid		
4	.16.4.21		
00000100	00010000	00000100	00010101

- Hasta 1981, solo había pocas redes con mucho hosts disponibles. Sin clases. Redes 8 bits. (1979 RFC-758).
- En 1981: RFC-790 define clases.

Direcciones IP

- Cada Clase para diferentes tipos de redes:
 - □ Clases A, pocas redes grandes.
 - □ Clases B, más redes medianas.
 - □ Clases C, muchas redes chicas.

network prefix		Hostid	
172.16.		.4.21	
10101100	00010000	00000100	00010101

■ En 1984 se agrega una tercer parte, subred y se requiere un máscara: RFC-917.

Clases de Direcciones IP

Class	First Octet Range	Max Hosts	Format	
Α	1-126	16M	NETID 0	HOSTID 3 Octets
В	128-191	64K	NETID 1 0 2 Octets	HOSTID 2 Octets
С	192-223	254	1 1 0	HOSTID
D	224-239	N/A	3 Octer Multic	ts 1 Octet ast Address
E	240-255	N/A	Experimental 1 1 1 1	

 Definidas en , RFC-790 (Assigned Numbers), RFC-796 (Address mapping).

- Unicast: destino a un host/interfaz en particular, son las más comunes.
 - □ e.g: 172.16.4.21
- Broadcast: destino a todos los hosts en una red.
- Multicast: destinada a un grupo de hosts en una red o varias redes. Clase D.
- Anycast: destinada al primero que resuelva. IPv4 no hay casos especiales.

м

Direcciones IP especiales

- loopback: unicast, red clase A. 127.0.0.1
 - □ La más utilizada: 127.0.0.1, localhost.
 - □ Aunque podría ser cualquier otra:
 - **127.10.0.1**
 - 127.34.34.1, etc.
- Dirección de red: la primera (zero).
 - □ e.g. 172.16.0.0, 192.168.1.0.
- Dirección de broadcast:
 - □ Directed Broadcast: la última (ones).
 - □ e.g. 172.16.255.255, 192.168.1.255.

Direcciones IP especiales

- □ Limited Broadcast: (all ones).
- 255.255.255.255.
- "Este host", cuando aún no tiene asignada una dirección:
 - 0.0.0.0.

Direcciones Privadas

- No tienen significado global no son únicas.
- Definidas en RFC-1918.
- Se utilizan en Intranets. Redes autónomas sin conexión a Internet.
- Para conectar a Internet requieren un proceso de transformación: NAT, RFC-1631.
- No deberían pasar a la Internet. Filtradas por routers de borde.
 - □ 10.0.0.0 10.255.255.255, 1 Clase A.
 - □ 172.16.0.0 172.31.255.255, 16 Clases B.
 - □ 192.168.0.0 192.168.255.255, 256 Clases C.

Direccionamiento Fijo (Ejemplo)

- 4 Redes físicas, requieren 4 redes IP:
 - □ Si cada red menos de 254 hosts, por ejemplo 25 c/red. se pueden utilizar 4 clases C:

Red A: 193.168.1.0*

Red B: 193.168.2.0

Red C: 193.168.3.0

Red D: 193.168.4.0

Problemas con Dir. IP Fijo

- Prefijos de longitud fija por clase, provoca un uso ineficiente en el espacio de direcciones.
- Muchos equipos, produce escasez de direcciones.
- Crecimiento acelerado de la Internet, evidencia la falta de escalabilidad del esquema. Crecimiento de tablas de ruteo en el núcleo de la red.
- Codificar la red en la dirección IP implica que si un host cambia de red, cambiará su dirección (IP Mobility). Problema atacado en IPv4, mejor resuelto en IPv6.
- Soluciones IPv4: subnetting, CIDR, NAT, DHCP.
- Definitivamente solucionados en IPv6.

Subnetting IP

- Se toma una parte del hostid.
- Su utiliza para generar redes dentro de la red.
- Se agrega una "máscara" de bits.
- Para saber la subred se aplica un "AND" lógico.

	network prefix		Subnet	Hostid	
172.16.		. 4	.21		
10	101100	00010000	0000010	000101	01
11	111111	11111111	1111111	.1 000000	00
172.16.4.				. 0	

Subnetting IP

- En 1984 se agrega una tercer parte y se requiere una "máscara" de subred: RFC-917, RFC-940, RFC-950.
- Agregar un nivel más en la estructura:
 - □ Red, Subred, Host.
 - □ Ejemplo usar un bloque clase B como 256 clases C:

network prefix		Subnet	Hostid	
172.16.		. 4	.21	
10	101100	00010000	0000010	0 00010101
11	111111	11111111	1111111	1 00000000

W

Subnetting

- Las máscaras se escriben en notación decimal o hex.
 - □ 255.255.255.0 o 0xff ff ff 00.
- También pueden escribirse como longitud de prefijo: /24.
- Otros ejemplos:
 - □ 255.255.255.192 /26.
 - □ 255.224.0.0 /11**.**
 - □ 255.255.255.252 /30.
- Las máscaras defaults:
 - ☐ Clase A: 255.0.0.0.
 - □ Clase B: 255.255.0.0.
 - □ Clase C: 255.255.255.0.

M

Subnetting

- Valen los mismos conceptos para redes completas.
- Ejemplo para 172.16.4.21:
 - □ Dirección de broadcast: 172.16.4.255.
 - □ Dirección de red: 172.16.4.0.
 - \square Redes y hosts: (2ⁿ), (2^{(32-(m+n))}.
 - □ Ejemplo Clase B con /24: n=8, m=16.
 - Cantidad de hosts: (2^8).
 - Cantidad de hosts útiles: (2^8)-2.
 - Cantidad de subredes: (2^8).
 - Cantidad de subredes útiles: (2^8)-2.
 - Las 2 que se restan a las subredes se pueden utilizar: dando: 2^8 redes útiles.

Ejemplo Subnetting Fijo

Si cada red menos de 254 hosts, por ejemplo 25 c/red. Se pueden utilizar 1 clase C dividida en 4:

Red A: 193.168.4.0 255.255.255.192 o /26

Red B: 193.168.4.64 "

Red C: 193.168.4.128 "

Red D: 193.168.4.192 "

Ejemplo Subnetting Fijo

- 4 Redes físicas, pueden direccionarse con una red IP:
 - \square 4 redes requieren 2 bits $2^2 = 4$.
 - Si fuesen 6, se requieren 2^3 = 8 ~ 6. Siempre potencias de 2.

,		•		•		•			
		193.168.4.		0					
		193.168.4.							
11000	01	10101000	000	0100)				-
111111	111111 11111111 11111111		1	11	00	000	0		
193.168.4.				00					
						01			
						11			

En un principio, por cuestiones de compatibilidad con viejos sistemas no se permitía utilizar la primera ni la última sub-red:

Red A: 193.168.4.0 Dir. de sub-red = Dir. De red.

Red D: 193.168.4.192 Dir. de "sub-bcast" = Dir de bcast de red.

- Se genera mucho desperdicio, en este caso el 50% de las direcciones.
- RFCs subsiguientes lo permiten, hoy completamente difundido.

M

VLSM Subnetting

- Variable Length Subnet Mask. RFC-1009, RFC-1878.
- La longitud de la máscara no tiene necesidad de ser para todas las subredes igual.
 - □ 193.168.4.0 /26 /26 00 193.168.4.0, /26 01 193.168.4.64, /26 10 193.168.4.128, /26 11 193.168.4.192. 62 hosts max. c/u.
- ¿Qué sucede si se tienen diferentes cantidades de hosts en las subredes?
 - □ Por ejemplo la Red A: tiene 70 hosts, la Red B tiene 40 host y la C,D tienen 25 hosts.

M

VLSM Subnetting

- El siguiente esquema no sirve:
 - □ 193.168.4.0 */*26

```
/26 00 193.168.4.0,
/26 01 193.168.4.64,
/26 10 193.168.4.128,
/26 11 193.168.4.192. 62 host c/u.
```

Se deben agrupar o dividir redes del esquema fijo:

```
/25 000 193.168.4.0,
/26 100 193.168.4.128,
/27 110 193.168.4.192,
/27 111 193.168.4.224. 126, 62, 30, 30 hosts respectivamente.
```

VLSM Subnetting

Subredes iguales: /26

255.255.255.192

255.255.255.192

255.255.255.192

255.255.255.192

VLSM: /25, /26, /27, /27:

255.255.255.128

255.255.255.192

255.255.255.224

255.255.255.224

VLSM Subnetting

VLSM: /25, /26, /27, /27:

Red A: 255.255.255.128

Red B: 255.255.255.192

Red C: 255.255.254

Red D: 255.255.254

×

CIDR - Supernetting

- Classless Inter Domain Routing.
- Hasta 1993, se asumía, de acuerdo a la clase de la Dir. IP la máscara default.
- Los bits de la red definida por la clase eran fijos.
- El direccionamiento era Classful.
- Con CIDR, se sacan las clases: Classless y siempre debe haber una máscara o long. de Pref.
- RFC-1338, RFC-1517, RFC-1518, RFC-1519.
- Permite agrupar, reducen long. tablas de ruteo:
 - □e.g. 193.168.0.0, 193.168.1.0, ... 193.168.3.0 /24
 - □ En 193.168.0.0/22 se agrupan 4 redes.

- En 1992 la RFC-1338 marca los problemas del crecimiento de las tablas de ruteo:
 - □ Las clases A y B el 50% asignadas, clases C solo el 2%.
 - □ Las clases C: 2^21 redes aumentarían las tablas de ruteo notablemente.
 - □ Crecimiento de 1988 a 2000 de tablas de ruteo:

BGP update classful:

BGP update classless:

- Agrupación de bloques de forma contigua por ISP.
- Asignación por regiones geográficas.
- El IANA crea los RIRs (Regional Internet Registers):
 - □ RIPE (Europa)
 - □ ARIN (Estados Unidos)
 - □ LACNIC (América Latina y Caribe)
 - □ APNIC (Asia y Pacífico)
 - ☐ AfriNIC (africa)

RIRs:

Fuente: http://www.arin.net

Evolución (2013-2014):

Fuente:http://ipv6.he.net/statistics/

Evolución:

Datagrama IPv4

53

Datagrama IPv4

Campos de Datagrama IP

Version (4 bits): versión actual 4, la nueva 6. Header length (4 bits): longitud en múltiplos de 4B.

DS/ECN field (1 byte)

□TOS (Type of Service), DSCP DiffService Codepoint.

Differentiated Service (DS) (6 bits):

Usado para marcar QoS.

Explicit Congestion Notification (ECN) (2 bits):

• Usado en control d congestión con TCP.

Campos de Datagrama IP

Identification (16 bits): identificador único. Utilizado para la fragmentación.

Flags (3 bits):

- □ Primero es 0.
- □ DF bit (Do not fragment)
- ☐ MF bit (More fragments)

Utilizados para la fragmentación.

Campos de Datagrama IP Time To Live (TTL) (1 byte):

- Cuantos saltos puede dar el datagrama.
- □ Evita loops.
- □ Emisor lo pone a un valor, e.g. 128 o 64.
- □ Cada router por el que pasa lo decrementa en 1.
- □Si esta más de un segundo también.
- □ Si llega a un router que no esta en la red destino y TTL=0, se descarta.

Campos de Datagrama IP

Protocol (1 byte):

Para mux/demux.

Header checksum (2 bytes):

16 bit checksum del header solamente.

Campos de Datagrama IP

Options:

- Security restrictions.
- Record Route
- Timestamp.
- (loose) Source Routing
- (strict) Source Routing.

Padding:

agregado para ser múltiplo de 4B.

Ruteo

- Tabla de ruteo: estructura en hosts y routers (gateways) que indica como despachar un mensaje. Perspectiva del vecino, siguiente salto.
- Host: no despacha mensajes que recibe que no son para <u>él</u>. Despacha solo <u>sus</u> mensajes mirando su tabla de ruteo.
- Router: Nodos intermedios, más de una interfaz, despacha mensajes mirando tabla de ruteo, desde cualquier interfaz.
- Host multihome: tiene varias interfaces, no rutea.

Ruteo

- Ruteo: seleccionar la interfaz de salida y el próximo salto. Routers y Hosts.
- Forwarding/Despacho: pasar el paquete desde una interfaz de entrada hacia una de salida. Solo routers.
- El forwarding es más intensivo.
- El ruteo es de control, alimentado por protocolos de enrutamiento (routing).
- El forwarding es de datos, envía protocolos enrutados (routed).

Ruteo

Routers tienen el forwading habilitado, los hosts no.

.

Tabla de Ruteo

- Estructura de tabla de ruteo:
 - Red Destino.
 - □ Next Hop (Próximo salto).
 - □ Interfaz de salida.
- En un Host es más simple:

Tabla de Ruteo (H1)

root@h1:~# ifconfig e0 193.168.4.226 netmask 255.255.255.224

root@h1:~# route add default gw 193.168.4.225

Tabla de Ruteo (R2)


```
root@r2:~# netstat -nr
Destination Gateway
                            Genmask
                                           Metric Iface
193.168.4.0 0.0.0.0
                            255.255.255.128
                                                    e0
193.168.4.128 0.0.0.0
                          255.255.255.192
                                                    e1
193.168.4.192 0.0.0.0
                        255.255.255.224
                                                    e2
              193.168.4.193 0.0.0.0
0.0.0.0
                                                    e2
```

root@r2:~# sysctl net.ipv4.ip forward=1

Tabla de Ruteo (H2)

Tabla de Ruteo (R1)

andres@rl:~\$ ne	tstat -nr	7		
Destination	Gateway	Genmask	Metric	Iface
193.168.4.224	0.0.0.0	255.255.255.224	0	e1
193.168.4.192	0.0.0.0	255.255.255.224	0	e0
200.3.4.0	0.0.0.0	255.255.255.252	0	ppp0
193.168.4.0	193.168.4.194	255.255.255.128	0	e0
193.168.4.128	193.168.4.194	255.255.255.192	0	e0
0.0.0.0	200.3.4.1	0.0.0.0	_	ppp0

Tabla de Ruteo (R1-a)

Alternativa

andres@r1:~\$ ne	tstat -nr
Destination	Gateway
193.168.4.224	0.0.0.0
193.168.4.192	0.0.0.0
200.3.4.0	0.0.0.0
193.168.4.0	193.168.4.194
0.0.0.0	200.3.4.1

Genmask	Metric	Iface
255.255.255.224	0	e1
255.255.255.224	0	e0
255.255.255.252	0	ppp0
255.255.255.0	0	e0
0.0.0.0	_	ppp0

×

Tareas de Ruteo

- Validación de datagrama: IP header.
- Calcula checksum (solo header).
- Leer IP destino.
- Buscar en tabla de ruteo, seleccionar prefijo más largo ("best match").
- Decrementar TTL.
- Fragmentar (alternativo).
- Transmitir o Descartar.
- Generar ICMP (alternativo).

Fragmentación

- Debido a que hay diferentes capas de enlaces con diferentes MTUs.
- Fragmentos múltiplos de 8 bytes.
 - □ Offset en unidades de 8 bytes.
- Se deben agregar los headers.

version	header length	DS	ECN	total length (in bytes)		
Identification				Frag	ment offset	
time-to-live (TTL)		protocol		header checksum		hecksum

Fragmentación

Ejemplo:

Referencias:

- Richard Stevens. TCP/IP Illustrated.
 Vol 1. The Protocols.
- Douglas Comer. Internetworking with TCP/IP. Vol 1.

Referencias:

- RFC 791 IP.
- RFC 792 ICMP.
- RFC 796 Address mappings.
- RFC 1812 Requirements for IP Version 4 Routers.
- RFC 917 Internet subnets.
- RFC 940 Toward an Internet standard scheme for subnetting.
- RFC 950 Internet Standard Subnetting Procedure.

Referencias:

- RFC 1878 Variable Length Subnet Table For IPv4.
- RFC 1918 Address Allocation for Private Internets.
- RFC 1631 The IP Network Address Translator (NAT) -Obsoleta por 3022-
- RFC 3022 Traditional NAT.
- RFC 1517 Applicability Statement for the Implementation of CIDR.
- RFC 1518 An Architecture for IP Address Allocation with CIDR.
- RFC 1519 Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy.