Communities

Question 1:

For the following graph:

Write the adjacency matrix A, the degree matrix D, and the Laplacian matrix L. For each, find the sum of all entries and the number of nonzero entries.

Adjacency Matrix A:

Sum of all entries = 22

No. of non-zero entries = 22

<u>Degree Matrix D</u>: $D[i, j] = \{degree(V_i), if i==j; 0 \text{ otherwise}\}$

Sum of all entries = 22

No. of Non-Zero entries = 22

Laplacian Matrix L:

 $L[i, j] = \{degree(V_i), if i == j - 1, if i \neq j and V_i is adjacent to V_j 0, else$

And also L = D - A

	1	2	3	4	5	6	7	8
1	2 -1 0 0	-1	0	0	0	0	0	-1
2	-1	3	-1	0	0	0	0	-1
3	0	-1	3	-1	0	0	-1	0
4	0	0	-1	3	-1	-1	0	0
5	0	0	0	-1	2	-1	0	0
6	0	0	0	-1	-1	3	-1	0
7	0 0 -1	0	-1	0	0	-1	3	-1
8	-1	-1	0	0	0	0	-1	3

Sum of all entries = 0

No. of Non-Zero entries = 30

Question 2:

Consider the following undirected graph (i.e., edges may be considered bidirectional):

Run the "trawling" algorithm for finding dense communities on this graph and find all complete bipartite subgraphs of types $K_{3,2}$ and $K_{2,2}$. Note: In the case of $K_{2,2}$, we consider $\{\{W, X\}, \{Y, Z\}\}$ and $\{\{Y, Z\}, \{W, X\}\}$ to be identical.

Adjacency List:

 $A = \{B, C, E\}$

 $B = \{A, C, D, E\}$

 $C = \{A, B, E\}$

 $D = \{B, E\}$

 $E = \{A, B, C, D\}$

Complete bipartite graphs

Question 3:

We fit AGM to the network on the left, and found the parameters on the right:

Find the optimal values for $p_{\mbox{\tiny A}}$ and $p_{\mbox{\tiny B}}.$

After examining the AGM network and the parameters figure, we can say that

 $p_A = 0.4$

 $p_B = 0.6$ would be the optimal values