Nombre de la asignatura: Redes Neuronales Artificiales

Línea de Trabajo: Inteligencia Artificial

Tiempo de dedicación del estudiante a las actividades de:

DOC TIS TPS Horas Totales Créditos 48 40 80 168 6

DOC: Docencia; TIS: Trabajo independiente significativo; TPS: Trabajo profesional supervisado

1. Historial de la asignatura

Fecha revisión/actualización	Participantes	Observaciones, cambios
		o justificación
1/Mar/2012	Dr. Claudio CASTELLANOS SÁNCHEZ	

2. **Pre-requisitos y Co-requisitos.** Se requieren conocimientos de:

- Fundamentos de probabilidad y estadística.
- Fundamentos de álgebra matricial.

3. Objetivo de la asignatura

Conocer, entender y aplicar algunos modelos clásicos de Redes Neuronales Artificiales (RNA) para la resolución de problemas y descubrir la estrecha relación entre la neurobiología, la probabilidad, la estadística y la computación para el modelado con RNA.

4. Aportación al perfil del graduado

El alumno será capaz de:

- Conocer el paradigma del cómputo neuronal y situarlo en el contexto de la Inteligencia Artificial.
- Aplicar los conceptos base en Redes Neuronales Artificiales para resolver problemas básicos.
- Comprender la necesidad del constante diálogo que un buen computólgo debe hacer con las otras ciencias.

5. Contenido temático

Unidad	Temas	Subtemas	
1	Introducción	1.1 ¿Qué son las Redes Neuronales Artificiales (RNA)?	
		1.2 Fundamentos biológicos	
		1.3 Elementos de las RNA	
		1.4 Procesos de aprendizaje	
2	RNA tipo perceptrón	2.1 Filtrado adaptativo	
		2.2 Mínimos cuadrados	
		2.3 Perceptrón y su regla de aprendizaje	
		2.4 Perceprtrón multinivel y su regla de aprendizaje	
3	Memorias asociativas	3.1 Nociones de sistemas dinámicos	
		3.2 Atractores	
		3.3 Modelo Hopfield	
		3.4 Modelo BAM	
		3.5 Modelo de las Máquinas de Boltzmann	
4	RNA recurrentes y	4.1 Arquitecturas de redes neuronales recurrentes	
	RNA híbridas	4.2 Mapas auto-organizados	
		4.3 Arquitecturas híbridas	

5	Aplicaciones	5.1 En visión 5.2 En control 5.3 En tratamiento de señales 5.4 En la toma de decisiones
6	Líneas abiertas de investigación en RNA	6.1 Aprendizaje neuro-conjugado 6.2 Programación neuro-dinámica 6.3 Aprendizaje en consejo

6. Metodología de desarrollo del curso

Clases impartidas por el profesor y realización de ejercicios por el alumno

7. Sugerencias de evaluación

Se recomienda la siguiente ponderación:

Examen de medio término 20% Examen Final 20% Tareas 20% Exposiciones 10% Proyecto Final 30%

8. Bibliografía y software de apoyo

Libro de texto:

- Haykin S., "Neural Networks: A Comprehensive Foundation" (2nd Edition) (Hardcover)", Hardcover: 842 pages Publisher: Prentice Hall; 2nd edition (July 6, 1998) ISBN: 0132733501.
- Castellanos Sánchez, Claudio, "Aplicación del perceptrón multinivel al reconocimiento de patrones", 95 páginas, Tesis de Licenciatura, BUAP-FCC, Puebla, México, 1998.
- Castellanos Sánchez, Claudio, "Análisis Experimental con las Memorias Asociativas Morfológicas", 102 páginas, Tesis de Maestría, BUAP-FCC, Puebla, México, 2000.

Libros complementarios

- Madan M. Gupta, Liang Jin, Noriyasu Homma, "Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory" (Hardcover), Hardcover: 700 pages Publisher: Wiley-IEEE Press; 1 edition (April 1, 2003) ISBN: 0471219487.
- Raul Rojas, J. Feldman, "Neural Networks: A Systematic Introduction" (Paperback), Paperback: 502 pages Publisher: Springer; 1 edition (July 12,1996) ISBN: 3540605053.
- Gérard Dreyfus, "Neural Networks", Springer 2005, ISBN 9783540229803.
- Ke Lin Du y M. N. S. Swamy, "Neural Networks in a Softcomputing Framework", Springer 2006, ISBN 9781846283024.

Para profundizar

- Peter Dayan, L. F. Abbott, "Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems" (Hardcover), Hardcover: 576 pages Publisher: The MIT Press; 1st edition (December 1, 2001) ISBN: 0262041995.
- C. Bishop, "Neural Networks for Pattern Recognition", 504 pages, Oxford University Press, USA (January 18, 1996) ISBN: 0198538642.
- Carl G. Looney, "Pattern Recognition using Neural Networks: Theory and Algorithms for Engineers and Scientists", 458 pages, Oxford University Press 1997, ISBN: 0-19-507920-5
- Abhijit S. Pandya, Robert B. Macy, "Pattern Recognition with Neural Networks in C++", 432 pages, CRC (October 17, 1995) ISBN: 0849394627
- A. Slavova, "Cellular neuronal networks: Dynamics and modelling", Springer 2003, ISBN 9781402011924.

Aplicaciones

- Julian Dorrado, Juan Ramon Rabunal, "Artificial Neural Networks in Real-Life Applications" (Paperback), Paperback: 375 pages Publisher: Idea Group Publishing (November 18, 2005) ISBN: 1591409039.
- T. Lindblad y J. M. Kinser, "Image processing using Pulse-Coupled neural networks", Springer 2005, 2a edición, ISBN 9783540242185.
- H. Tang y K. C. Tan, "Neural Networks: Computational Models and Applications", Springer 2007, ISBN 9783540692256.
- R. Lowen y A. Verschoren, "Foundations of generic optimization volumen 2: Applications of fuzzy control, genetic algorithms and neural networks", Springer 2008, ISBN 9781402066672.
- Lakhmi C. Jain (Editor), N.M. Martin, "Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms: Industrial Applications" (Hardcover), Hardcover: 368 pages Publisher: CRC (November 17, 1998) ISBN: 0849398045.

9. Prácticas propuestas

Unidad	Práctica
1	Investigación sobre los beneficios de las RNA
2	Aplicación a la separación de conjuntos linealmente separables
3	Aplicación al reconocimiento de números u optimización
4	Ejercicios de aplicación simple
5	Revisión de avance del proyecto final
6	Proyecro final

10. Catedrático (s) responsable (s)

Dr. Claudio Castellanos Sánchez