全国大学生数学建模竞赛论文模板

摘要

摘要

对于问题一,

对于问题二,

对于问题三,

对于问题四,

最后,

关键字: 关键词 关键词 关键词 关键词 关键词

目录

1	问题里还	4
	1.1 问题背景	4
	1.2 问题要求	4
	1.3 我们的工作	5
2	模型假设	5
3	符号说明	5
4	问题一的模型的建立和求解	5
	4.1 问题一的描述与分析	5
	4.2 预备工作	5
	4.3 模型建立	5
	4.4 模型求解	5
	4.5 求解结果	5
5	问题二的模型的建立和求解	5
	5.1 问题二的描述与分析	5
	5.2 预备工作	6
	5.3 模型建立	6
	5.3.1 决策变量	6
	5.3.2 状态变量	6
	5.3.3 传输性能模型	7
	5.3.4 服务质量模型	7
	5.3.5 优化目标	7
	5.3.6 约束条件	8
	5.4 模型求解	8
	5.5 求解结果	8
6	问题三的模型的建立和求解	9
	6.1 问题三的描述与分析	9
	6.2 预备工作	9
	6.3 模型建立	9
	6.4 模型求解	9

	6.5 求解结果	9
7	模型的分析与检验	9
	7.1 灵敏度分析	9
	7.2 误差分析	9
8	模型的评价	9
	8.1 模型的优点	9
	8.2 模型的缺点	9
A	附录 文件列表	10
В	附录 代码	10

1 问题重述

1.1 问题背景

随着移动通信需求的激增和物联网(IoT)的快速发展,网络架构正向异构化和虚拟化演进。异构蜂窝网络(HetNet)通过混合部署宏基站与微基站,有效提升了网络容量与覆盖。在此基础上,5G 网络切片技术利用网络功能虚拟化(NFV),将单一物理网络划分为多个逻辑切片,以满足超高可靠低时延(URLLC)、增强移动宽带(eMBB)和大规模机器通信(mMTC)等多样化服务需求。

无线资源的管理依赖于正交频分多址接入(OFDMA)技术,它将频谱划分为时频资源块(RB)进行灵活分配。因此,在异构网络与多切片共存的复杂场景下,如何设计高效的资源块和功率分配策略,以最大化用户服务质量并优化能耗,成为无线资源管理领域的核心挑战。

1.2 问题要求

本赛题旨在研究异构蜂窝网络中基于网络切片的无线资源管理问题。核心任务是设计一套优化方案,在满足不同用户多样化服务质量(QoS)需求的同时,实现系统资源的高效利用。具体来说,需要解决以下几个层层递进的问题:

- 问题一:针对单个微基站和单一用户任务的场景,研究如何将有限的资源块在URLLC、eMBB、mMTC 三类切片间进行静态分配,以实现用户服务质量的最大化。
- 问题二:在动态场景下,考虑用户任务的随机到达和用户移动性,设计一个多周期的资源分配策略。该策略需要在 10 个决策点上对资源进行重新分配,不仅要服务新到达的任务,还要处理队列中积压的任务,目标是最大化整个时间窗口内的总体用户服务质量。
- 问题三:将场景扩展到多个微基站,引入了基站间的同频干扰问题。要求在进行资源块分配的同时,对每个基站各切片的发射功率进行协同优化,以抑制干扰,最大化全系统的用户服务质量。
- 问题四:构建一个包含宏基站和多个微基站的异构网络模型。在此模型中,需要为每个用户决策其接入基站(宏基站或微基站),并为所有基站进行切片划分和功率控制,以应对更大规模的用户需求和更复杂的网络环境,最终目标仍是最大化整体服务质量。
- 问题五:在问题四的基础上,引入基站能耗模型,探讨在保证最大化用户服务质量的同时,如何通过优化资源分配策略来实现网络总能耗的最低化,从而在服务性能和绿色节能之间取得平衡。

1.3 我们的工作

2 模型假设

为简化问题,本文做出以下假设:

- 假设1
- 假设 2
- 假设3

3 符号说明

符	号 说明	单	位
n	n 质量 / 体和	·	

4 问题一的模型的建立和求解

- 4.1 问题一的描述与分析
- 4.2 预备工作
- 4.3 模型建立
- 4.4 模型求解

Step1:

Step2:

Step3:

4.5 求解结果

5 问题二的模型的建立和求解

5.1 问题二的描述与分析

问题二考虑现实中用户任务随机到达、用户移动性以及任务队列积压的动态场景。 系统需要在 1000ms 时间窗口内进行 10 次资源分配决策(每 100ms 一次),目标是最大 化整体用户服务质量。与问题一相比,问题二增加了以下复杂性:

• 用户任务以概率形式动态到达,需要建立随机到达过程模型

- 用户移动导致信道参数随时间变化,影响传输性能
- 未完成任务在队列中积压,产生排队时延
- 需要在多个决策周期间协调资源分配策略

5.2 预备工作

时间离散化: 将 1000ms 时间窗口划分为 10 个决策周期,每个周期 $\Delta t = 100$ ms。设决策时刻为 $t_k = k \cdot \Delta t$, $k = 0, 1, \ldots, 9$ 。

用户任务到达建模: 用户 i 在决策周期 k 的任务到达量 $A_{i,k}$ 为随机变量,服从以下分布:

$$A_{i,k} \sim \begin{cases} \operatorname{Poisson}(\lambda_i), & \operatorname{URLLC} 用户 \\ \operatorname{Uniform}(a_i,b_i), & \operatorname{eMBB/mMTC} 用户 \end{cases}$$
 (1)

信道时变性: 用户 i 在时刻 t_k 的信道参数为 $(\phi_{i,k}, h_{i,k})$,其中 $\phi_{i,k}$ 为大规模衰减, $h_{i,k}$ 为小规模瑞利衰减。

5.3 模型建立

5.3.1 决策变量

在每个决策时刻 t_k ,需要确定三类切片的资源块分配:

$$\mathbf{x}_k = (x_k^{\text{URLLC}}, x_k^{\text{eMBB}}, x_k^{\text{mMTC}}) \tag{2}$$

其中 $x_k^{(s)} \ge 0$ 表示在时刻 t_k 分配给切片 s 的资源块数。

5.3.2 状态变量

队列状态:用户 i 在时刻 t_k 的队列长度 $Q_{i,k}$ 和总任务量 $W_{i,k}$:

$$Q_{i,k+1} = Q_{i,k} + \mathbf{1}_{A_{i,k} > 0} - \mathbf{1}_{\text{RB} \hat{\pi} \hat{\pi} \hat{\pi}}$$
(3)

$$W_{i,k+1} = W_{i,k} + A_{i,k} - C_{i,k} \tag{4}$$

其中 $C_{i,k}$ 为在决策周期 k 内完成的任务量。

等待时延:队列中任务 j 的等待时间 $D_{j,k}$ 随决策周期递增:

$$D_{i,k+1} = D_{i,k} + \Delta t \tag{5}$$

5.3.3 传输性能模型

信干噪比计算:

$$\gamma_{i,k} = \frac{P_{\mathsf{tx}} \cdot \phi_{i,k} \cdot |h_{i,k}|^2}{N_0(\mathsf{RB} \ \mathfrak{A} \ \pm)} \tag{6}$$

传输速率:

$$r_{i,k} = \text{RB } \mathfrak{A} \equiv \times 360 \times 10^3 \times \log_2(1 + \gamma_{i,k}) \tag{7}$$

传输时延:

$$T_{i,k} = \frac{W_{i,k} \times 10^6}{r_{i,k}} \tag{8}$$

总时延:

$$L_{i,k} = D_{i,k} + T_{i,k} \tag{9}$$

5.3.4 服务质量模型

URLLC 用户 QoS:

$$y_i^{\text{URLLC}}(k) = \begin{cases} \alpha^{L_{i,k} \times 1000}, & L_{i,k} \le 5 \text{ms} \\ -5, & L_{i,k} > 5 \text{ms} \end{cases}$$
(10)

eMBB 用户 OoS:

$$y_i^{\text{eMBB}}(k) = \begin{cases} 1, & L_{i,k} \le 100 \text{ms} \land r_{i,k} \ge 50 \text{Mbps} \\ \frac{r_{i,k}}{50 \times 10^6}, & L_{i,k} \le 100 \text{ms} \land r_{i,k} < 50 \text{Mbps} \\ -3, & L_{i,k} > 100 \text{ms} \end{cases}$$
(11)

mMTC 切片 QoS:

$$y^{\text{mMTC}}(k) = \begin{cases} \frac{\text{接入用户数}}{\text{请求用户数}}, &$$
无超时
$$-1 \times \text{请求用户数}, &$$
存在超时

5.3.5 优化目标

最大化整个时间窗口内的累积服务质量:

$$\max_{\{\mathbf{x}_k\}_{k=0}^9} \quad \sum_{k=0}^9 \left[\sum_{i \in \mathcal{U}} y_i^{\text{URLLC}}(k) + \sum_{i \in \mathcal{E}} y_i^{\text{eMBB}}(k) + y^{\text{mMTC}}(k) \right]$$
(13)

5.3.6 约束条件

资源约束:

$$x_k^{\text{URLLC}} + x_k^{\text{eMBB}} + x_k^{\text{mMTC}} \le 50, \quad \forall k$$
 (14)

$$x_k^{(s)} \ge 0, \quad \forall s, k \tag{15}$$

资源块粒度约束:

$$x_k^{\text{URLLC}} \in \{0, 10, 20, \ldots\}$$
 (16)

$$x_k^{\text{eMBB}} \in \{0, 5, 10, \ldots\}$$
 (17)

$$x_k^{\text{mMTC}} \in \{0, 2, 4, \ldots\}$$
 (18)

队列演化约束:

$$Q_{i,k+1} = \max(0, Q_{i,k} + \mathbf{1}_{A_{i,k} > 0} - \mathbb{R} + \mathbb{R})$$
(19)

$$W_{i,k+1} = \max(0, W_{i,k} + A_{i,k} - C_{i,k})$$
(20)

- 5.4 模型求解
- 5.5 求解结果

6 问题三的模型的建立和求解

- 6.1 问题三的描述与分析
- 6.2 预备工作
- 6.3 模型建立
- 6.4 模型求解

Step1:

Step2:

Step3:

6.5 求解结果

7 模型的分析与检验

- 7.1 灵敏度分析
- 7.2 误差分析

8 模型的评价

- 8.1 模型的优点
 - 优点 1
 - 优点 2
 - 优点 3
- 8.2 模型的缺点
 - 缺点1
 - 缺点 2

附录 A 文件列表

文件名	功能描述
q1.m	问题一程序代码
q2.py	问题二程序代码
q3.c	问题三程序代码
q4.cpp	问题四程序代码

附录 B 代码

```
q1.m
  disp("Hello World!")
  q2.py
  print("Hello World!")
  q3.c
  #include <stdio.h>
2
  int main()
3
  {
4
       printf("Hello World!");
5
       return 0;
6
  }
  q4.cpp
  #include <bits/stdc++.h>
  using namespace std;
3
  int main()
4
5
  {
       cout << "Hello World!" << endl;</pre>
6
7
      return 0;
8
  }
```