4005-800 Algorithms

Homework 1

Christopher Wood March 24, 2012

PROBLEM 1.

Solution.

The following table classifies the provided functions into equivalence class based on their order of growth in descending order.

	.
Class	Functions
1	$2^{2^{n+1}}$
2	2^{2^n}
3	(n+1)!
4	n!
5	e^n
6	$n*2^n$
7	2^n
8	$\left(\frac{3}{2}\right)^n$
9	$n^{\lg \lg n}$, $(\lg n)^{\lg n}$
10	$ (\lg n)!$
11	n^3
12	n^2 , $4^{\lg n}$
13	$\lg(n!), n \lg n$
14	$n, 2^{\lg n}$
15	$(\sqrt{2})^{\lg n}$
16	$2^{\sqrt{2 \operatorname{lg} n}}$
17	$\lg^2 n$
18	$\ln n$
19	$\sqrt{\lg n}$
20	$\ln \ln n$
21	$2^{\lg^* n}$
22	$\lg^*(\lg n), \lg^* n$
23	
24	$n^{\frac{1}{\lg n}}, 1$

PROBLEM 2-a. Using the definition of O, prove that $n = O(n^2)$.

Solution. If $n \ge 1$, then $n^2 \ge n$. Further, $0^2 \ge 0$. Therefore, $n^2 \ge n$ for any $n \in \mathbb{N}$. Thus, $cn^2 \ge n$ when $n \ge 0$ and $c \ge 1$. Finally, by definition, this means that $n \in O(n^2)$, or simply $n = O(n^2)$.

PROBLEM 2-b. Using the definition of O, prove that $n^k = O(n^{k'})$ if $k \le k'$.

Solution.

If $k \leq k'$, then it follows that $n^k \leq n^{k'}$ for any $n \in \mathbb{N}$. Thus, for constants $c \geq 1$, it is true that $n^k \leq n^{k'} \leq cn^{k'}$, or simply $n^k \leq cn^{k'}$, for all $n \geq 0$. Therefore, by definition, this means that $n^k \in O(n^{k'})$, or simply $n^k = O(n^{k'})$.

PROBLEM 3. Write a function fib that implements the recurrence relation for the Fibonacci numbers. What is the smallest n such that you notice fib running slowly?

Solution. The source code for the fib routine (written in Python) is listed below. It is also included in the electronic submission.

The smalest value of n that starts to yields long execution times is n = 32.

TODO: explain the time complexity of this guy by solving with second order nonlinear homogeneous equations!

PROBLEM 4-a. Prove using the strong form of mathematical induction that for any $n \in \mathbb{N}$ if n > 1 then f(n; a, b) = f(n - 1; a, b) + f(n - 2; a, b).

Solution. Based on the defintion for f and the problem constraints, we need only consider n = 2 as the base case for induction since it is the first valid value of n for which f is true.

```
Base (n=2)
```

By definition, we know that f(2; a, b) = f(1; b, a + b) = (a + b). Further, by definition we know that f(1; a, b) + f(0; a, b) = b + a = (a + b). Thus, f(2; a, b) = f(1; a, b) + f(0; a, b), as desired.

Induction (n > 2)

Assume that f(k; a, b) = f(k - 1; a, b) + f(k - 2; a, b) for some $k \in \mathbb{N}$ such that $3 \le k < n$. We now show that f(n; a, b) = f(n - 1; a, b) + f(n - 2; a, b). This result is described below.

$$f(n; a, b) = f(n-1; b, a+b)$$
 (by definition)
= $f(n-2; b, a+b) + f(n-3; b, a+b)$ (by induction)
= $f(n-1; a, b) + f(n-2; a, b)$ (by definition of f)

Thus, f(n; a, b) = f(n - 1; a, b) + f(n - 2; a, b), as desired.

PROBLEM 4-b. Prove using the strong form of mathematical induction that for any $n \in \mathbb{N}$, $F_n = f(n; 0, 1)$.

Solution. Based on the results from the previous problem, f(n) can depend on both f(n-1) and f(n-2). Therefore, we have two base cases to cover, as shown below.

```
Base (n = 0)
By definition, F_0 = 0, and f(0; 0, 1) = 0. Thus, F_0 = f(0; 0, 1).
Base (n = 1)
By definition, F_1 = 1, and f(1; 0, 1) = 1. Thus, F_1 = f(1; 0, 1).
Induction (n > 1)
```

Assume that $F_k = f(k; 0, 1)$ for some $k \in \mathbb{N}$ such that $2 \le k < n$. We now show that $F_n = f(n; 0, 1)$. This result is described below.

$$F_n = F_{n-1} + F_{n-2}$$
 (by definition)
= $f(n-1;0,1) + f(n-2;0,1)$ (by induction)
= $f(n;0,1)$ (by definition from problem 4-a)

Thus, $F_n = f(n; 0, 1)$, as desired.

PROBLEM 5. Write a function fibIt that implements f. Does fibIt also run slowly on the value of n that you found made fib run slowly?

Solution. The source code for the fibIt routine (written in Python) is listed below. It is also included in the electronic submission.

```
1 def fibIt(n, a, b):
2 if (n == 0):
3 return a
4 elif (n == 1):
5 return b
```

```
6 else:
7 return fibIt (n - 1, b, a + b)
```

Based on empirical observations, fibIt does not run slowly on the same value of n that made fib run slowly. In fact, fibIt will execute in a reasonable amount of time up to the point where the size of the recursive call stack is too large for the system to maintain in memory.

TODO: explain why (why oh why is this the case? - put it in a complexity class?)