CFGs and PCFGs

(Probabilistic)
Context-Free
Grammars

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

people fish tanks
people fish with rods

Phrase structure grammars = context-free grammars (CFGs)

- G = (T, N, S, R)
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \subseteq N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - $X \subseteq N$ and $\gamma \subseteq (N \cup T)^*$
- A grammar G generates a language L.

Phrase structure grammars in NLP

- G = (T, C, N, S, L, R)
 - T is a set of terminal symbols
 - C is a set of preterminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol (S ∈ N)
 - L is the lexicon, a set of items of the form $X \rightarrow x$
 - $X \subseteq P$ and $x \subseteq T$
 - R is the grammar, a set of items of the form $X \rightarrow \gamma$
 - $X \subseteq N$ and $\gamma \subseteq (N \cup C)^*$
- By usual convention, S is the start symbol, but in statistical NLP, we usually have an extra node at the top (ROOT, TOP)
- We usually write e for an empty sequence, rather than nothing

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

people fish tanks
people fish with rods

Probabilistic – or stochastic – context-free grammars (PCFGs)

- G = (T, N, S, R, P)
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \subseteq N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - P is a probability function
 - P: $R \to [0,1]$
 - $\forall X \in \mathbb{N}, \sum_{X \to \gamma \in \mathbb{R}} P(X \to \gamma) = 1$
- A grammar G generates a language model L.

$$\sum_{\gamma \in T^*} P(\gamma) = 1$$

A PCFG

$S \rightarrow NP VP$	1.0	N → people	0.5
$VP \rightarrow V NP$	0.6	$N \rightarrow fish$	0.2
$VP \rightarrow V NP PP$	0.4	N → tanks	0.2
$NP \rightarrow NP NP$	0.1	$N \rightarrow rods$	0.1
$NP \rightarrow NP PP$	0.2	$V \rightarrow people$	0.1
$NP \rightarrow N$	0.7	$V \rightarrow fish$	0.6
$PP \rightarrow P NP$	1.0	V → tanks	0.3
		$P \rightarrow with$	1.0

[With empty NP removed so less ambiguous]

The probability of trees and strings

- P(t) The probability of a tree t is the product of the probabilities of the rules used to generate it.
- P(s) The probability of the string s is the sum of the probabilities of the trees which have that string as their yield

$$P(s) = \Sigma_j P(s, t)$$
 where t is a parse of s
= $\Sigma_j P(t)$

Tree and String Probabilities

- s = people fish tanks with rods
- $P(t_1) = 1.0 \times 0.7 \times 0.4 \times 0.5 \times 0.6 \times 0.7$ $\times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1$
 - = 0.0008232
- $P(t_2) = 1.0 \times 0.7 \times 0.6 \times 0.5 \times 0.6 \times 0.2$ $\times 0.7 \times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1$
 - = 0.00024696
- $P(s) = P(t_1) + P(t_2)$ = 0.0008232 + 0.00024696 = 0.00107016

Verb attach

Noun attach

CFGs and PCFGs

(Probabilistic)
Context-Free
Grammars

Grammar Transforms

Restricting the grammar form for efficient parsing

Chomsky Normal Form

- All rules are of the form X → Y Z or X → w
 - $X, Y, Z \subseteq N$ and $w \subseteq T$
- A transformation to this form doesn't change the weak generative capacity of a CFG
 - That is, it recognizes the same language
 - But maybe with different trees
- Empties and unaries are removed recursively
- n-ary rules are divided by introducing new nonterminals (n > 2)

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

Chomsky Normal Form steps

 $S \rightarrow NP VP$

 $S \rightarrow VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V$

 $VP \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

Chomsky Normal Form steps

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V$

 $S \rightarrow V$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

Chomsky Normal Form steps

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

Chomsky Normal Form steps

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

Chomsky Normal Form steps

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

Chomsky Normal Form steps

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP_V$

 $@VP V \rightarrow NP PP$

 $S \rightarrow V @S_V$

 $@S_V \rightarrow NPPP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

Chomsky Normal Form steps

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP_V$

 $@VP V \rightarrow NP PP$

 $S \rightarrow V @S_V$

 $@S_V \rightarrow NPPP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

Chomsky Normal Form

- You should think of this as a transformation for efficient parsing
- With some extra book-keeping in symbol names, you can even reconstruct the same trees with a detransform
- In practice full Chomsky Normal Form is a pain
 - Reconstructing n-aries is easy
 - Reconstructing unaries/empties is trickier
- Binarization is crucial for cubic time CFG parsing
- The rest isn't necessary; it just makes the algorithms cleaner and a bit quicker

An example: before binarization...

After binarization...

Treebank: empties and unaries

Unary rules: alchemy in the land of treebanks

Same-Span Reachability

Grammar Transforms

Restricting the grammar form for efficient parsing

CKY Parsing

Exact polynomial time parsing of (P)CFGs

Constituency Parsing

PCFG

Rule Prob θ_i				
$S \rightarrow NP VP$	Θ_{0}			
$NP \rightarrow NP NP$	Θ_1			
$N \rightarrow fish$	θ_{42}			
$N \rightarrow people$	θ_{43}			
$V \rightarrow fish$	θ_{44}			

Cocke-Kasami-Younger (CKY) Constituency Parsing

Viterbi (Max) Scores

people fish

Viterbi (Max) Scores

Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn't increase algorithmic complexity
- Empties can be incorporated
 - Use fenceposts
 - Doesn't increase complexity; essentially like unaries
- Binarization is vital
 - Without binarization, you don't get parsing cubic in the length of the sentence and in the number of nonterminals in the grammar
 - Binarization may be an explicit transformation or implicit in how the parser works (Early-style dotted rules), but it's always there.

The CKY algorithm (1960/1965) ... extended to unaries

```
function CKY(words, grammar) returns [most_probable_parse,prob]
  score = new double[#(words)+1][#(words)+1][#(nonterms)]
  back = new Pair[#(words)+1][#(words)+1][#nonterms]]
  for i=0; i<#(words); i++
    for A in nonterms
      if A -> words[i] in grammar
        score[i][i+1][A] = P(A \rightarrow words[i])
    //handle unaries
    boolean added = true
    while added
      added = false
      for A, B in nonterms
        if score[i][i+1][B] > 0 \&\& A->B in grammar
          prob = P(A->B)*score[i][i+1][B]
          if prob > score[i][i+1][A]
            score[i][i+1][A] = prob
            back[i][i+1][A] = B
            added = true
```


The CKY algorithm (1960/1965) ... extended to unaries

```
for span = 2 to \#(words)
  for begin = 0 to \#(words) - span
    end = begin + span
    for split = begin+1 to end-1
      for A,B,C in nonterms
        prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
        if prob > score[begin][end][A]
          score[begin]end][A] = prob
          back[begin][end][A] = new Triple(split,B,C)
    //handle unaries
    boolean added = true
   while added
      added = false
      for A, B in nonterms
        prob = P(A->B)*score[begin][end][B];
        if prob > score[begin][end][A]
          score[begin][end][A] = prob
          back[begin][end][A] = B
          added = true
return buildTree(score, back)
```


Quiz Question!

CKY Parsing

Exact polynomial time parsing of (P)CFGs

CKY Parsing

A worked example

Christopher Manning

 $S \rightarrow NP VP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

The grammar: Binary, no epsilons,

0.9

0.7

1.0

J FINI VI	0.5
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \rightarrow V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NPPP$	1.0
$NP \rightarrow NP NP$	0.1
$NP \rightarrow NP PP$	0.2

$$N \rightarrow people$$
 0.5
 $N \rightarrow fish$ 0.2
 $N \rightarrow tanks$ 0.2
 $N \rightarrow rods$ 0.1
 $V \rightarrow people$ 0.1
 $V \rightarrow fish$ 0.6
 $V \rightarrow tanks$ 0.3
 $P \rightarrow with$ 1.0

0_	fish 1	L people	2 fish	3 tanks 4
1	score[0][1]	score[0][2]	score[0][3]	score[0][4]
2		score[1][2]	score[1][3]	score[1][4]
3			score[2][3]	score[2][4]
4				score[3][4]

C NDVD	0.0	fish 1 people 2 fish 3	tanks 4
$S \rightarrow NP VP$	0.9	$0 \longrightarrow \text{fish } 0.2$	
$S \rightarrow VP$	0.1	$V \rightarrow \text{fish } 0.6$	
$VP \rightarrow V NP$	0.5	$NP \rightarrow N \ 0.14$	
$VP \rightarrow V$	0.1	$VP \rightarrow V 0.06$	
$VP \rightarrow V @VP_V$	0.3	$\begin{array}{c} 1 \\ S \rightarrow VP \ 0.006 \end{array}$	
$VP \rightarrow VPP$	0.1	N → people 0.5	
$@VP_V \rightarrow NPPP$	1.0	V → people 0.1	
$NP \rightarrow NP NP$	0.1	NP → N 0.35	
$NP \rightarrow NP PP$	0.2	$VP \rightarrow V 0.01$	
$NP \rightarrow N$	0.7	$2 \qquad \qquad S \rightarrow VP \ 0.001$	
$PP \rightarrow P NP$	1.0	$N \rightarrow \text{fish } 0.2$	
		$V \rightarrow \text{fish } 0.6$	
$N \rightarrow people$	0.5	$\begin{array}{c} NP \rightarrow N \ 0.14 \\ VP \rightarrow V \ 0.06 \end{array}$	
$N \rightarrow fish$	0.2	3 S → VP 0.006	
$N \rightarrow tanks$	0.2		→ tanks 0.2
$N \rightarrow rods$	0.1	prob=score[begin][split][B]*score[split][end][C]*P(A->BC) if (prob > score[begin][end][A])	→ tanks 0.1
$V \rightarrow people$	0.1	score[begin]end][A] = prob	P → N 0.14
$V \rightarrow fish$	0.6		$P \rightarrow V 0.03$
$V \rightarrow tanks$	0.3	4	→ VP 0.003
$P \rightarrow with$	1.0		

C - ND VD	0.0	0_	fish í	l people	2 fish	3 tanks 4
$S \rightarrow NP VP$	0.9	_	N → fish 0.2	NP → NP NP		
$S \rightarrow VP$	0.1		$V \rightarrow fish 0.6$	0.0049		
$VP \rightarrow V NP$	0.5		$NP \rightarrow N \ 0.14$	VP → V NP		
$VP \rightarrow V$	0.1		$VP \rightarrow V 0.06$	0.105		
$VP \rightarrow V @VP_V$	0.3	1	$S \rightarrow VP 0.006$	$S \rightarrow NP VP$ 0.00126		
$VP \rightarrow VPP$	0.1			$N \rightarrow \text{people } 0.5$	NP → NP NP	
$@VP_V \rightarrow NPPP$	1.0			$V \rightarrow \text{people 0.1}$	0.0049	
$NP \rightarrow NP NP$	0.1			NP → N 0.35	$VP \rightarrow V NP$ 0.007	
$NP \rightarrow NP PP$	0.2	_		$VP \rightarrow V 0.01$ S \rightarrow VP 0.001	$S \rightarrow NP VP$	
$NP \rightarrow N$	0.7	2		3 → VP 0.001	0.0189	
$PP \rightarrow P NP$	1.0				$N \rightarrow \text{fish } 0.2$	$\begin{array}{c} NP \rightarrow NP NP \\ 0.00196 \end{array}$
					$V \rightarrow \text{fish } 0.6$ NP \rightarrow N 0.14	VP → V NP
$N \rightarrow people$	0.5		//handle unaries		$VP \rightarrow V 0.06$	0.042
$N \rightarrow fish$	0.2	3	boolean added = tru	ıe	$S \rightarrow VP 0.006$	$S \rightarrow NP VP$ 0.00378
$N \rightarrow tanks$	0.2	3	while added added = false			N → tanks 0.2
$N \rightarrow rods$	0.1		for A, B in nonterms			V → tanks 0.1
V → people	0.1		if prob > score[be	core[begin][end][B]; egin][end][A]		NP → N 0.14
V → fish	0.6		score[begin][end][A] = prob back[begin][end][A] = B			$VP \rightarrow V 0.03$
$V \rightarrow tanks$	0.3	4	added = true	 		$S \rightarrow VP 0.003$
$P \rightarrow with$	1.0					

C - ND VD	0.0	fish 1 people 2 fish 3	3 tanks 4
$S \rightarrow NP VP$	0.9	$N \rightarrow \text{fish } 0.2$ NP \rightarrow NP NP	
$S \rightarrow VP$	0.1	$V \rightarrow \text{fish } 0.6$ 0.0049	
$VP \rightarrow V NP$	0.5	$NP \rightarrow N \ 0.14$ $VP \rightarrow V \ NP$	
$VP \rightarrow V$	0.1	$VP \rightarrow V \ 0.06 \qquad \begin{array}{c} 0.105 \\ S \rightarrow VP \end{array}$	
$VP \rightarrow V @VP_V$	0.3	1 S \rightarrow VP 0.006 0.0105	
$VP \rightarrow VPP$	0.1	$N \rightarrow \text{people } 0.5 NP \rightarrow NP NP$	
$@VP_V \rightarrow NPPP$	1.0	$V \rightarrow \text{people } 0.1$ 0.0049	
$NP \rightarrow NP NP$	0.1	$NP \rightarrow N \ 0.35$ $VP \rightarrow V \ NP$ 0.007	
$NP \rightarrow NP PP$	0.2	$ VP \rightarrow V 0.01 $ $ S \rightarrow NP VP$	
$NP \rightarrow N$	0.7	2 $S \rightarrow VP 0.001$ 0.0189	
$PP \rightarrow P NP$	1.0	$N \rightarrow \text{fish } 0.2$	$NP \rightarrow NP NP$
		$V \rightarrow \text{fish } 0.6$	$\begin{array}{c} 0.00196 \\ VP \rightarrow V NP \end{array}$
$N \rightarrow people$	0.5	$NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$	0.042
$N \rightarrow fish$	0.2	$S \rightarrow VP \cap OOG$	$S \rightarrow VP$
N → tanks	0.2	3	0.0042
$N \rightarrow rods$	0.1	for split = begin+1 to end-1	N → tanks 0.2 V → tanks 0.1
		for A,B,C in nonterms	$V \rightarrow talks 0.1$ NP $\rightarrow N 0.14$
$V \rightarrow people$	0.1	prob=score[begin][split][B]*score[split][end][C]*P(A->BC) if prob > score[begin][end][A]	$VP \rightarrow V 0.03$
$V \rightarrow fish$	0.6	score[begin]end][A] = prob	$S \rightarrow VP 0.003$
V → tanks	0.3	back[begin][end][A] = new Triple(split,B,C)	
$P \rightarrow with$	1.0		

C - NDVD	0.0	fish 1 people 2 fish 3	tanks 4
$S \rightarrow NP VP$	0.9	$N \rightarrow \text{fish } 0.2$ $NP \rightarrow NP NP$ $NP \rightarrow NP NP$	
$S \rightarrow VP$	0.1	$V \rightarrow \text{fish } 0.6$ 0.0049 0.0000686	
$VP \rightarrow V NP$	0.5	$NP \rightarrow N \ 0.14$ $VP \rightarrow V \ NP$ $VP \rightarrow V \ NP$ 0.105 0.00147	
$VP \rightarrow V$	0.1	$VP \rightarrow V \ 0.06$ $\begin{array}{c c} 0.105 & 0.00147 \\ S \rightarrow VP & S \rightarrow NP \ VP \end{array}$	
$VP \rightarrow V @VP_V$	0.3	1 $S \rightarrow VP \ 0.006$ 0.0105 0.000882	
$VP \rightarrow VPP$	0.1	$N \rightarrow \text{people } 0.5 NP \rightarrow NP NP$	
$@VP_V \rightarrow NPPP$	1.0	$V \rightarrow \text{people } 0.1$ $VP \rightarrow VNP$	
$NP \rightarrow NP NP$	0.1	$ NP \rightarrow N 0.35 $ 0.007	
$NP \rightarrow NP PP$	0.2	$VP \rightarrow V 0.01$ $S \rightarrow NP VP$	
$NP \rightarrow N$	0.7	2 $S \rightarrow VP \ 0.001$ 0.0189	
$PP \rightarrow P NP$	1.0	1.0.1.0.1	→ NP NP 0.00196
		$V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$	→ V NP
$N \rightarrow people$	0.5	$VP \rightarrow V \cap 06$	0.042
$N \rightarrow fish$	0.2	$S \rightarrow VP \ 0.006$	→ VP 0.0042
$N \rightarrow tanks$	0.2		→ tanks 0.2
$N \rightarrow rods$	0.1	for split = begin+1 to end-1	→ tanks 0.1
$V \rightarrow people$	0.1	for A,B,C in nonterms prob=score[begin][split][B]*score[split][end][C]*P(A->BC)	P → N 0.14
V → fish	0.6		$V \rightarrow V 0.03$
V → tanks	0.3	4 back[begin][end][A] = new Triple(split,B,C)	→ VP 0.003
$P \rightarrow with$	1.0		

S → NP VP	0.9	fish 1 people 2 fish 3	tanks 4
$S \rightarrow VP$	0.9	$N \rightarrow \text{fish } 0.2$ $NP \rightarrow NP NP$ $NP \rightarrow NP NP$	
VP → V NP	0.5	$V \rightarrow \text{fish } 0.6$ $VP \rightarrow V NP$ $VP \rightarrow V NP$ $VP \rightarrow V NP$ $VP \rightarrow V NP$	
$VP \rightarrow V$	0.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$VP \rightarrow V @VP_V$	0.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$VP \rightarrow VPP$	0.1		IP → NP NP
$@VP_V \rightarrow NP PP$	1.0	$V \rightarrow \text{people } 0.1$	0.0000686
$NP \rightarrow NP NP$	0.1	$ NP \rightarrow N 0.35 $ 0.007	$P \rightarrow V NP$ 0.000098
$NP \rightarrow NP PP$	0.2	$VP \rightarrow V 0.01$ $S \rightarrow NP VP$ S	→ NP VP
$NP \rightarrow N$	0.7	0.0189	0.01323
$PP \rightarrow P NP$	1.0	17 11511 512	IP → NP NP 0.00196
		$V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$	'P → V NP
$N \rightarrow people$	0.5	$VP \rightarrow V \cap 06$	0.042
$N \rightarrow fish$	0.2	$S \rightarrow VP \ 0.006$	→ VP 0.0042
$N \rightarrow tanks$	0.2	_	I → tanks 0.2
$N \rightarrow rods$	0.1	for split = begin+1 to end-1	′ → tanks 0.1
$V \rightarrow people$	0.1	prob-score[begin][spin][b] score[spin][end][c] r (A->bc)	IP → N 0.14
$V \rightarrow fish$	0.6		$VP \rightarrow V 0.03$
V → tanks	0.3	back[begin][end][A] = new Triple(split,B,C)	→ VP 0.003
$P \rightarrow with$	1.0		

$S \rightarrow NP VP$	0.9	o fish 1 people 2 fish 3	3 tanks 4
$S \rightarrow VP$	0.9	$N \rightarrow \text{fish } 0.2$ $NP \rightarrow NP NP$ $NP \rightarrow NP NP$	$NP \rightarrow NP NP$
VP → V NP	0.5	$V \rightarrow \text{fish } 0.6$ $VP \rightarrow V NP$ $VP \rightarrow V NP$ $VP \rightarrow V NP$ $VP \rightarrow V NP$ $V \rightarrow V NP$	0.000009604 VP → V NP
$VP \rightarrow V$	0.1	$ \begin{array}{c ccccc} NP \rightarrow N & 0.14 \\ VP \rightarrow V & 0.06 \end{array} $ $ \begin{array}{c cccccc} VP \rightarrow V & NP \\ 0.105 & 0.00147 \end{array} $	0.00002058
VP → V @VP V	0.3	$ S \rightarrow VP \cap OOE$ $ S \rightarrow VP S \rightarrow NP VP$	$S \rightarrow NP VP$
$VP \rightarrow VPP$	0.1	$1 \longrightarrow VP 0.000 \qquad 0.0105 \qquad 0.000882$ $N \rightarrow \text{people } 0.5 \qquad NP \rightarrow NP NP$	0.00018522 $NP \rightarrow NP NP$
$@VP_V \rightarrow NPPP$	1.0	$V \rightarrow \text{people 0.1}$ 0.0049	0.0000686
$NP \rightarrow NP NP$	0.1	$NP \rightarrow N \ 0.35$ $VP \rightarrow V \ NP$ 0.007	$VP \rightarrow V NP$ 0.000098
$NP \rightarrow NP PP$	0.2	$VP \rightarrow V 0.01$ $S \rightarrow NP VP$	$S \rightarrow NP VP$
$NP \rightarrow N$	0.7	2 $S \rightarrow VP \ 0.001$ 0.0189	0.01323
$PP \rightarrow P NP$	1.0	$N \rightarrow \text{fish } 0.2$	$\begin{array}{c} NP \rightarrow NP NP \\ 0.00196 \end{array}$
		$V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$	VP → V NP
$N \rightarrow people$	0.5	$VP \rightarrow V 0.06$	$\begin{array}{c} 0.042\\S \rightarrow VP \end{array}$
$N \rightarrow fish$	0.2	$S \rightarrow VP \ 0.006$	0.0042
$N \rightarrow tanks$	0.2	<u> </u>	N → tanks 0.2
$N \rightarrow rods$	0.1		V → tanks 0.1
$V \rightarrow people$	0.1		$NP \rightarrow N \ 0.14$
$V \rightarrow fish$	0.6		$VP \rightarrow V 0.03$
$V \rightarrow tanks$	0.3	4	$S \rightarrow VP 0.003$
$P \rightarrow with$	1.0	Call buildTree(score, back) to get the best parse	

CKY Parsing

A worked example

Constituency Parser Evaluation

Evaluating constituency parsing

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets: S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)

Evaluating constituency parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Labeled Precision 3/7 = 42.9%

Labeled Recall 3/8 = 37.5%

LP/LR F1 40.0%

Tagging Accuracy 11/11 = 100.0%

How good are PCFGs?

- Penn WSJ parsing accuracy: about 73% LP/LR F1
- Robust
 - Usually admit everything, but with low probability
- Partial solution for grammar ambiguity
 - A PCFG gives some idea of the plausibility of a parse
 - But not so good because the independence assumptions are too strong
- Give a probabilistic language model
 - But in the simple case it performs worse than a trigram model
- The problem seems to be that PCFGs lack the lexicalization of a trigram model

Constituency Parser Evaluation