Departamento de Matemática

Universidade do Minho

Álgebra

exame de recurso - primeira parte - 4 fev 2021

Lic. em Ciências de Computação/Lic. em Matemática - $2^{\underline{o}}$ ano

duração: duas horas

Nome _____

Curso _____ Número ___

Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas descontam 0,2 valores na mesma escala.

Declaração de Honra: "Ao submeter esta avaliação online, declaro por minha honra que irei resolver a prova recorrendo apenas aos elementos de consulta autorizados, de forma autónoma e sem trocar qualquer informação por qualquer meio, com qualquer pessoa ou repositório de informação, físico ou virtual"

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

1.	O conjunto dos números inteiros é um grupo quando consideramos a adição usual nele definida.	V 🗆 F 🗆
2.	Se * é uma operação binária associativa num conjunto S , então $(a*b)*(c*d)=a*(b*c)*d$, para todos $a,b,c,d\in S$.	V DF
3.	Existe um conjunto finito A tal que $(A,*)$ é grupo, para qualquer operação binária $*$ definida em A .	V 🗆 F 🗆
4.	Para H ser subgrupo de um grupo G é suficiente que $H\subseteq G$.	V 🗆 F 🗆
5.	Sejam G grupo e $H, K \subseteq G$. Se $H < G$ e $H \subseteq K$ então $H \cup K < G$.	V 🗆 F 🗆
6.	Existem grupos não abelianos nos quais todos os subgrupos próprios são abelianos.	V 🗆 F 🗆
7.	Se G é grupo, então, $G/G=\{1_G\}$	V 🗆 F 🗆
8.	Se G é grupo, $ G =12$, $H < G$ e $ H =6$, então, $H \lhd G$.	V 🗆 F 🗆
9.	Sejam G o grupo multiplicativo das matrizes invertíveis de ordem 2 e $H = \left\{ \left[\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right] : a \in \mathbb{R}^+ \right\} . \text{ Então, } H \lhd G.$	V 🗆 F 🗆
10.	O grupo aditivo \mathbb{R}/\mathbb{Z} admite um subgrupo não abeliano.	V I F I
11.	Todos os subgrupos do grupo $\mathbb{Z}_4 imes \mathbb{Z}_8$ são normais.	V 🗆 F 🗆
12.	O grupo $2\mathbb{Z}/6\mathbb{Z}$ tem ordem 12.	V I F I
13.	Se G é um grupo e $a \in G$ tem ordem 8 , então, $o(a^{10}) = 5$.	V I F I
14.	Seja ${\cal G}$ um grupo. O conjunto dos automorfismos em ${\cal G}$ é um grupo para a composição usual de funções.	V I F I
15.	Existe um morfismo de grupos não nulo entre um grupo de 6 elementos e um grupo de 10 elementos.	V DF
16.	O grupo quociente de um grupo que não é cíclico pode ser um grupo cíclico.	V 🗆 F 🗆
17	Seiam G e H grupos tais que $G = \langle x \rangle$ e $H = \langle y \rangle$. Então $G \times H = \langle (x, y) \rangle$	V I F I

Em cada uma das questões seguintes, assinale a opção correta:

18.	Sabendo que $\varphi:\mathbb{Z}_m o Z_n$ é um morfismo de grupos e $o(\varphi([3]_m))=4$, podemos ter
	$\square \ m = 9 \land n = 4 \qquad \qquad \square \ m = 16 \land n = 4$
	$\square m = 6 \land n = 8$ $\square m = 6 \land n = 12$
	$\square m = 0 \land m = 0$
19.	O grupo \mathbb{Z}_{20} é gerado por
	$\square [2]_{20} \square [15]_{20} \square [9]_{20}$
20.	Sejam G um grupo, $K < G$ e $H \lhd G$. Então
	$\Box \ H \cap K \lhd G \qquad \qquad \Box \ HK \lhd G$
	$\square \{kH : k \in K\} \triangleleft G/H \qquad \qquad \square \{kH : k \in K\} \triangleleft G$
21.	Sejam $G_1 = \langle a \rangle$ e $G_2 = \langle b \rangle$ grupos cíclicos de ordem 6 e 15, respetivamente. Sabendo que $H < G_1 \times G_2$ é tal
	que $\left H\right =10$, podemos ter
	$\Box H = <(a^3, b^3) > \qquad \Box H = \times $ $\Box H = <(a^2, a^5) > \qquad \Box H = <(a^5, b^2) >$
22.	Sejam G um grupo de ordem 10 e $a\in G\backslash\{1_G\}$ tal que $a^5=a^{11}$. Então,
	$\square \ o(a) = 1$ $\square \ o(a) = 6$ $\square \ o(a) = 3$ $\square \ o(a) = 2$
23	Se G é um grupo comutativo e $a,b\in G$ são tais que $o(a)=5$ e $o(b)=6$, então,
25.	Se α e um grupo comutativo e $a, b \in \alpha$ sao tais que $b(a) = b$ e $b(b) = 0$, entao,
	$\square \ o(ab) = 30 \qquad \qquad \square \ o(ab) = 1$
	$\square \ o(ab) = 11 \qquad \qquad \square \ o(ab) = 5$
24.	Sejam G um grupo finito e $f:\mathbb{Z} \to G$ um epimorfismo de grupos tal que $\mathrm{Nuc} f = 3\mathbb{Z}$. Então,
	$\Box G = 3$ $\Box G > 3$ $\Box G < 3$
25.	Seja $\varphi: \mathbb{Z} \to \mathbb{Z}_8 \times \mathbb{Z}_4$ o morfismo de grupos definido por $\varphi(x) = ([4x]_8, [2x]_4)$, para todo o $x \in \mathbb{Z}$. Então,
	$\square \ \mathrm{Nuc} arphi = \{0\} \qquad \qquad \square \ \mathrm{Nuc} arphi = 2\mathbb{Z}$
	$\square \operatorname{Nuc} \varphi = 4\mathbb{Z} \qquad \square \operatorname{Nuc} \varphi = \mathbb{Z}$