ABBOTSLEIGH

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

MATHEMATICS

3 UNIT

1999

Time allowed: Two hours (Plus 5 minutes reading time)

Directions to candidates:

- Attempt ALL questions.
- · ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- · Standard integrals are supplied.
- Board-approved calculators may be used.
- Answer each question in a SEPARATE Writing Booklet.
- · You may ask for extra Writing Booklets if you need them.

Q1. (a) Let A(-5,12) and B(4,9) be two points in the number plane. Find the coordinates of P which divides the interval AB externally in the ratio 5:2.

2

(b) Find the size of the acute angle between the lines y = 2x + 3 and y = 4x + 1. (Answer to the nearest minute).

2

(c) Express $f(x) = x^3 + 3x^2 - 10x - 24$ as a product of three linear factors.

3

(d) Evaluate $\int_{0}^{3} \frac{dx}{\sqrt{9-x^2}}$

3

2

(e) Two points A and B are placed on a circle and AC is a diameter. AE is perpendicular to the tangent at B.

- (i) Draw the diagram on your paper.
- (ii) Prove AB bisects ∠CAE.

- Q2. Start a new booklet
- (a) Solve for x:

(c)

3

- (b) For $y = -3\sin^{-1}\frac{x}{2}$
 - (i) State the domain and range.

3

(ii) Sketch the curve.

- 3
- (d) The area bounded by the curve $y = \sin x$ between x = 0 and $x = \frac{\pi}{2}$ is rotated about the x-axis. Find the volume of the solid of revolution.

Using the substitution $u = 9 - x^2$, evaluate $\int x \sqrt{9-x^2} dx$

3

O3. Start a new booklet

(a) Express $3\cos x + 4\sin x$ in the form $A\cos (x-\alpha)$ where A > 0. Hence, or otherwise, solve $3\cos x + 4\sin x = -3$ for $0 \le x \le 360^\circ$.

4

(b) Find the greatest coefficient in the expansion $(3 + 4x)^{16}$ (leave in index form)

4

- (c) A point P moves on the curve $y = x^3$ in such a way that its x coordinate is changing at a constant rate of 2 units/sec. When x = 1, at what rate is
 - (i) the y coordinate changing?
 - (ii) the gradient changing?

4

Q4. Start a new booklet

(a) Find x and y if $\frac{4^x}{16} = 8^{x+y}$ and $2^{2x+y} = 128$.

3

(b) If $x = 2 - \cos t$ and $y = 2t + 2\sin t$,

4

- (i) find $\frac{dx}{dt}$ and $\frac{dy}{dt}$
- (ii) Hence or otherwise, find $\frac{dy}{dx}$ in terms of $\frac{t}{2}$.

5

- (c) A particle is oscillating in simple harmonic motion such that its displacement x metres from the origin is given by the equation $\frac{d^2x}{dt^2} = -9x$ where t is time in seconds.
 - (i) Show that $x = a \cos(3t+\alpha)$ is a solution of motion for this particle (a and α are constants).
 - (ii) When t = 0, v = 3 m/s and x = 5 m. Show that the amplitude of the oscillation is $\sqrt{26}$ metres.
 - (iii) What is the maximum speed of the particle?

Q5. Start a new booklet

(a) α , β , γ are the roots of the equation $2x^3 + 3x^2 - 4 = 0$

3

Find

- (i) $\alpha + \beta + \gamma$
- (ii) αβγ
- (iii) $\alpha^2 + \beta^2 + \gamma^2$
- (b) For the function $y = x^2 2x + 1$, find the largest possible domain such that this function has an inverse. Find the equation of this inverse and state its range.

3

(c) For the parabola $x^2 = 12y$, find

6

- (i) the equation of the tangent at the point $P(6p, 3p^2)$ on the parabola.
- (ii) the coordinates of the point T where the tangent meets the x axis.
- (iii) Show that N, the midpoint of PT, has coordinates $(\frac{9p}{2}, \frac{3p^2}{2})$.
- (iv) Find the equation of the locus of N.

Q6. Start a new booklet

(a) Find $\lim_{x\to 0} \frac{\sin 3x}{5x}$

2

(b) The daily growth of a colony of insects is 10% of the excess of the population over 1.2 x 10⁶.

ie
$$\frac{dN}{dt}$$
 = 0.1 (N - 1.2 x 10⁶).

Initially, the population is 2.7×10^6 ,

- (i) Determine the population after $3\frac{1}{2}$ days.
- (ii) If a scientist checks the population each day, which is the first day on which she should notice that the original population has tripled?

Q6. (continued).....

(c) A ball is thrown with a velocity of $30\sqrt{3}$ m/s at an angle of 60° to the horizontal.

6

- (i) Assuming negligible air resistance and letting $g = 10 \text{ ms}^{-2}$, derive the equations of motion.
- (ii) Find the time of flight and the range.
- (iii) If the ball had been thrown with velocity $30\sqrt{3}$ m/s at an angle of 30° to a hill which is itself inclined at 30° to the horizontal (see diagram), determine the time of flight.

Q7. Start a new booklet

(a) Prove by mathematical induction that for all values of n

5

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = \frac{(n+1)! - 1}{(n+1)!}$$

where n is a positive integer.

(b) (i) Show that $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ has no stationary points.

7

- (ii) Prove that the lines $y = \pm 1$ are asymptotes.
- (iii) Sketch the curve.
- (iv) If k is a positive constant, find the area in the first quadrant enclosed by the above curve and the three lines y = 1, x = 0 and x = k.
- (v) Prove that for all values of k, this area is always less than loge 2.