Algoritmer och komplexitet inom kommutativ algebra & algebraisk geometri

Omparametrisering av kurvor, semigrupper, implicit notation & multiplicitetsföljder

Peter Waher

peterwaher@hotmail.com
https://github.com/PeterWaher/Algebraiska_kurvor

9 november 2015

Outline

- Plana algebraiska kurvor
 - Introduktion
 - Omparametrisering

Vad är en plan kurva?

Definition

En **plan kurva** C är en delmängd i \mathbb{C}^2 sådan att det finns två kontinuerliga funktioner $f:\mathbb{C}\to\mathbb{C}$ och $g:\mathbb{C}\to\mathbb{C}$ sådana att $C=\{(f(t),g(t)):t\in\mathbb{C}\}.$ (f,g) är en **parametrisering** av C. Om C kan parametriseras av två analytiska funktioner f och g kallas C **analytisk**. Om den kan parametriseras av två polynom kallas C för **algebraisk**. Om den kan parametriseras av två formella potensserier kallas C **algebroid**.

Kurvor i det Euklidiska planet

Traditionellt har man ofta studerat plana kurvor i det *Euklidiska* planet. I detta fall är kurvan parametriserad av reellvärda funktioner $f: \mathbb{R} \to \mathbb{R}$ och $g: \mathbb{R} \to \mathbb{R}$.

Exempel

$$C(t) = (t^2, t^3 + t^7)$$

Not: För att förenkla notationen kan vi identifiera kurvan C med en viss parametrisering (f,g), även om parametriseringen inte är unik. Detta görs enklast genom att identifiera kurvan med funktionen $C:\mathbb{C}\to\mathbb{C}^2$, C(t)=(f(t),g(t)). Notera dock att kurvan som sådan och en av dess parametriseringar är två olika objekt.

Förenklingar vi kan göra om vi studerar en plan kurva lokalt:

1 Tillräckligt att studera algebraiska kurvor:

Förenklingar vi kan göra om vi studerar en plan kurva lokalt:

- 1 Tillräckligt att studera algebraiska kurvor:
 - Analytiska funktioner kan skrivas som formella potensserier kring den punkt vi studerar.

Förenklingar vi kan göra om vi studerar en plan kurva lokalt:

- 1 Tillräckligt att studera algebraiska kurvor:
 - Analytiska funktioner kan skrivas som formella potensserier kring den punkt vi studerar.
 - Formella potensserier kan approximeras av polynom med önskad noggrannhet.

Förenklingar vi kan göra om vi studerar en plan kurva lokalt:

- 1 Tillräckligt att studera algebraiska kurvor:
 - Analytiska funktioner kan skrivas som formella potensserier kring den punkt vi studerar.
 - Formella potensserier kan approximeras av polynom med önskad noggrannhet.
- ② Kurvan går genom *origo*: C(0) = 0

Reguljära och singulära kurvor

Definition

Om en kurva C har en parametrisering (f,g) sådan att $f'(0) \neq 0$ eller $g'(0) \neq 0$ kallas kurvan **reguljär**. Annars kallas kurvan **singulär**.

Not: Bara för att f'(0)=0 och g'(0)=0 i en parametrisering (f,g) av en kurva C, betyder inte det att kurvan är singulär. Det kan ju finnas en parametrisering av samma kurva där någon av derivatorna är nollskilda. Exempelvis är (t^3,t^3) och (t,t) två olika parametriseringar av samma kurva. I det första exemplet är derivatorna 0 i origo medan de i det andra exemplet båda är nollskilda.

Ordning och grad

Definition

Ordningen av ett polynom eller en potensserie $f(t) = \sum a_i t^i \neq 0$ är det minsta heltalet k sådant att koefficienten a_k är nollskild, och skrivs $\mathbf{o}(f)$. **Graden** for motsvarande polynom är det största heltalet k sådant att koefficienten a_k inte är noll, och skrivs $\deg(f)$.

Varför omparametrisera?

- För utritande av kurvor spelar parametriseringen inte så stor roll.
- ② Vill man beräkna $y(x) = g(f^{-1}(x))$ eller $x(y) = f(g^{-1}(y))$, står man genast inför en mängd problem.

Omparametrisering av kurvor

Sats

Om C = C(t) = (f(t), g(t)) är en komplex analytisk, algebroid eller algebraisk kurva, samt att f(0) = g(0) = 0, kan kurvan C omparametriseras på formen $C^*(t) = (\pm t^n, g^*(t))$ eller på formen $C^*(t) = (f^*(t), \pm t^n)$ i ett område kring t = 0, där f(t) och g(t) är formella potensserier. Dessutom gäller att $\mathbf{o}(f^*) \geq n$ eller att $\mathbf{o}(g^*) \geq n$. Om f(t) och g(t) är reellvärda, kan också omparametriseringen göras reellvärd.

Not: Från *Weierstrass Preparation Theorem* får man att en sådan omparametrisering existerar. Dock presenteras inte en metod över hur en sådan omparametrisering kan tas fram.

Beviset av satsen går igenom följande steg:

$$C^*(t) = (f^*(t), g^*(t)) = (f(\phi(t)), g(\phi(t)))$$

Beviset av satsen går igenom följande steg:

1 Vi skapar en omparametrisering via komposition med $\phi(t)$:

$$C^*(t) = (f^*(t), g^*(t)) = (f(\phi(t)), g(\phi(t)))$$

2 Vi väljer $\phi(t)$ sådan att:

Beviset av satsen går igenom följande steg:

$$C^*(t) = (f^*(t), g^*(t)) = (f(\phi(t)), g(\phi(t)))$$

- 2 Vi väljer $\phi(t)$ sådan att:
 - Analytisk kring t = 0.

Beviset av satsen går igenom följande steg:

$$C^*(t) = (f^*(t), g^*(t)) = (f(\phi(t)), g(\phi(t)))$$

- 2 Vi väljer $\phi(t)$ sådan att:
 - Analytisk kring t = 0.
 - $\phi(0) = 0$

Beviset av satsen går igenom följande steg:

$$C^*(t) = (f^*(t), g^*(t)) = (f(\phi(t)), g(\phi(t)))$$

- 2 Vi väljer $\phi(t)$ sådan att:
 - Analytisk kring t = 0.
 - $\phi(0) = 0$

Beviset av satsen går igenom följande steg:

$$C^*(t) = (f^*(t), g^*(t)) = (f(\phi(t)), g(\phi(t)))$$

- 2 Vi väljer $\phi(t)$ sådan att:
 - Analytisk kring t = 0.
 - $\phi(0) = 0$

Beviset av satsen går igenom följande steg:

$$C^*(t) = (f^*(t), g^*(t)) = (f(\phi(t)), g(\phi(t)))$$

- 2 Vi väljer $\phi(t)$ sådan att:
 - Analytisk kring t = 0.
 - $\phi(0) = 0$

 - $\phi(t), f(t), g(t)$ reellvärda $\Longrightarrow C^*(t)$ reellvärd.
- **3** Med början i a_1 , löses koefficienterna a_i ut ur $\phi(t) = \sum_{k=1}^{\infty} a_k t^k$ för att uppfylla ovanstående.

Beviset av satsen går igenom följande steg:

$$C^*(t) = (f^*(t), g^*(t)) = (f(\phi(t)), g(\phi(t)))$$

- 2 Vi väljer $\phi(t)$ sådan att:
 - Analytisk kring t = 0.
 - $\phi(0) = 0$

 - $\phi(t), f(t), g(t)$ reellvärda $\Longrightarrow C^*(t)$ reellvärd.
- **3** Med början i a_1 , löses koefficienterna a_i ut ur $\phi(t) = \sum_{k=1}^{\infty} a_k t^k$ för att uppfylla ovanstående.
- Finns precis en lösning i det generella fallet som uppfyller ovanstående samt satsens krav.

Reparametrize()