

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15070058002

FCC REPORT (BLE)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 15.6" Android touch LCD Media Player

Model No.: DT156-AC4-720, 502-1569ATATM

FCC ID: 2AB6Z-DT156-AC4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 22 Jul., 2015

Date of Test: 23 Jul., to 26 Aug., 2015

Date of report issued: 26 Aug., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	26 Aug., 2015	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Prepared by: Sora Yim Date: 26 Aug., 2015

Report Clerk

Reviewed by: Date: 26 Aug., 2015

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER!	SION	2
3		TENTS	
4		SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TEST	RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED PEAK OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	14
	6.5	Power Spectral Density	15
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	16
	6.6.2	Radiated Emission Method	17
	6.7	Spurious Emission	19
	6.7.1	Conducted Emission Method	19
	6.7.2	Radiated Emission Method	20
7	TEST	SETUP PHOTO	25
8	CUT	CONSTRUCTIONAL DETAILS	26

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247(d)	Pass*
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

Product Name:	15.6" Android touch LCD Media Player
Model No.:	DT156-AC4-720, 502-1569ATATM
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
AC Adapter:	MODEL: PS24A120K2000UD Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 2000mA

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS15070058002

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016	

Con	Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016			
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Requirement: Test Method: ANSI C63.4: 2009 Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 5 66 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a lisn impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/fouH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane LISN						
Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 446 5-3-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane ISN June Impedence Stabikzation National Receiver Remark EUT Equipment Under Test LISN Line Impedence Stabikzation National Receiver Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details	Test Requirement:	FCC Part 15 C Section 15.207	7			
Class / Severity: Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 48 5-30 60 50° * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane LISN AUX EUT: Equipment Under Test LISN Line impedence Stabilization Network Test table/Insulation plane Remark EUT: Equipment Under Test LISN Line impedence Stabilization Network Test table height=0 im height=0 i	Test Method:	ANSI C63.4: 2009				
Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 *Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane LISN AUX EUT Equipment Under Test LISN Line impedence Stabilization Network Test table/Insulation plane Reference Plane Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details	Test Frequency Range:	150 kHz to 30 MHz				
Limit: Frequency range (MHz)	Class / Severity:	Class B				
Test procedure Prequency range (MHZ)	Receiver setup:	RBW=9kHz, VBW=30kHz				
O.15-0.5 66 to 56* 56 to 46*	Limit:	Limit (dBuV)				
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane CISN AUX EUT Equipment Under Test LISN Line impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details Refer to section 5.3 for details		Frequency range (MHz)	Quasi-peak	Average		
Test procedure Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane LISN AC power LISN Filter AC power Results LISN Line impedance Stabilization Nelwork Test lable height=0.8m Test mode: Refer to section 5.7 for details Refer to section 5.3 for details						
* Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane Ref				ł		
1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane Reguipment Reguipment LISN AUX EQUIPMENT Under Test LISN Line Impedance Stabilization Network Test table height-0 8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details				50		
a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane Reference Plane Requipment LISN 40cm 80cm Filter AC power Remark E.U.T. Equipment Under Test LISN Line impedance Stabilization Network Test table height-0.0m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details						
AUX Equipment E.U.T Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details		 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted 				
Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details	Test setup:	Reference Plane				
Test mode: Refer to section 5.3 for details		AUX Equipment Test table/Insulation pla Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization	U.T Filt EMI Receiver	er — AC power		
	Test Instruments:	Refer to section 5.7 for details	;			
Test results: Passed	Test mode:	Refer to section 5.3 for details				
	Test results:	Passed				

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Trace: 9

Site

Condition

: CCIS Shielding Room : FCC PART 15C QP LISN NEUTRAL : 15.6° Android touch LCD Media Player : DT15-AC4-720 EUT

Model Test Mode : BLE mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

MHz dBuV dB dB dBuV dBuV dB	
1 0.190 22.76 0.25 10.76 33.77 54.02 -20.25 Av	
2 0.289 30.46 0.26 10.74 41.46 60.54 -19.08 QF)
3 0.300 23.47 0.26 10.74 34.47 50.24 -15.77 Av	rerage
4 0.484 29.28 0.28 10.75 40.31 56.27 -15.96 QF)
5 0.739 20.56 0.19 10.79 31.54 46.00 -14.46 Av	rerage
6 0.751 31.26 0.19 10.79 42.24 56.00 -13.76 QF) -
7 2.500 18.52 0.29 10.94 29.75 46.00 -16.25 Av	rerage
1 0.190 22.76 0.25 10.76 33.77 54.02 -20.25 Av 2 0.289 30.46 0.26 10.74 41.46 60.54 -19.08 QF 3 0.300 23.47 0.26 10.74 34.47 50.24 -15.77 Av 4 0.484 29.28 0.28 10.75 40.31 56.27 -15.96 QF 5 0.739 20.56 0.19 10.79 31.54 46.00 -14.46 Av 6 0.751 31.26 0.19 10.79 42.24 56.00 -13.76 QF 7 2.500 18.52 0.29 10.94 29.75 46.00 -16.25 Av 8 3.623 28.95 0.29 10.90 40.14 56.00 -15.86 QF 9 3.681 20.15 0.29 10.90 31.34 46.00 -14.66 Av	, -
9 3.681 20.15 0.29 10.90 31.34 46.00 -14.66 Av	rerage
10 5.929 30.84 0.27 10.82 41.93 60.00 -18.07 QF	
11 9.654 23.98 0.25 10.92 35.15 50.00 -14.85 Av	rerage
12 18.622 32.69 0.26 10.91 43.86 60.00 -16.14 QF	

Line:

Trace: 11 Site

Condition

: CCIS Shielding Room : FCC PART 15C QP LISN LINE : 15.6" Android touch LCD Media Player : DT156-AC4-720

Model

Test Mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

EUT

Freq			Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu∇	<u>dB</u>	
0.180	33.19	0.28	10.77	44.24	54.50	-10.26	Average
0.185	41.73	0.28	10.77	52.78	64.24	-11.46	QP
0.230	30.93	0.27	10.75	41.95	52.44	-10.49	Average
0.310	36.39	0.26	10.74	47.39	59.97	-12.58	QP
0.310	28.67	0.26	10.74	39.67	49.97	-10.30	Average
0.484	32.41	0.29	10.75	43.45	56.27	-12.82	QP
0.731	23.64	0.22	10.78	34.64	46.00	-11.36	Average
0.747	33.02	0.23	10.79	44.04	56.00	-11.96	QP
1.065	29.90	0.25	10.88	41.03	56.00	-14.97	QP
1.970	23.46	0.26	10.96	34.68	46.00	-11.32	Average
6.186	29.86	0.31	10.82	40.99	50.00	-9.01	Average
6.219	35.85	0.31	10.82	46.98	60.00	-13.02	QP
	Freq 0.180 0.185 0.230 0.310 0.484 0.731 0.747 1.065 1.970 6.186	Read Level MHz dBuV 0.180 33.19 0.185 41.73 0.230 30.93 0.310 36.39 0.310 28.67 0.484 32.41 0.731 23.64 0.747 33.02 1.065 29.90 1.970 23.46 6.186 29.86	Read LISN Freq Level Factor MHz dBuV dB 0.180 33.19 0.28 0.185 41.73 0.28 0.230 30.93 0.27 0.310 36.39 0.26 0.310 28.67 0.26 0.484 32.41 0.29 0.731 23.64 0.22 0.747 33.02 0.23 1.065 29.90 0.25 1.970 23.46 0.26 6.186 29.86 0.31	Read LISN Cable Freq Level Factor Loss MHz dBuV dB dB 0.180 33.19 0.28 10.77 0.185 41.73 0.28 10.77 0.230 30.93 0.27 10.75 0.310 36.39 0.26 10.74 0.310 28.67 0.26 10.74 0.484 32.41 0.29 10.75 0.731 23.64 0.22 10.78 0.747 33.02 0.23 10.79 1.065 29.90 0.25 10.88 1.970 23.46 0.26 10.96 6.186 29.86 0.31 10.82	Read LISN Cable Level Freq Level Factor Loss Level	Read LISN Cable Limit Freq Level Factor Loss Level Line MHz dBuV dB dB dB dBuV dBuV 0.180 33.19 0.28 10.77 44.24 54.50 0.185 41.73 0.28 10.77 52.78 64.24 0.230 30.93 0.27 10.75 41.95 52.44 0.310 36.39 0.26 10.74 47.39 59.97 0.310 28.67 0.26 10.74 39.67 49.97 0.484 32.41 0.29 10.75 43.45 56.27 0.731 23.64 0.22 10.78 34.64 46.00 0.747 33.02 0.23 10.79 44.04 56.00 1.065 29.90 0.25 10.88 41.03 56.00 1.970 23.46 0.26 10.96 34.68 46.00 6.186 29.86 0.31 10.82 40.99 50.00	Read LISN Cable Limit Over Level Factor Loss Level Line Limit

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.4: 2009						
Limit:	30dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2						

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)						
Test Method:	ANSI C63.4: 2009						
Limit:	>500kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.5 Power Spectral Density

-	
Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.4: 2009
Limit:	8 dBm
Test setup:	Spectrum Analyzer
	Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4: 2009						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	Spectrum Analyzer E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.6.2 Radiated Emission Method

 Radiated Emission is	notino a							
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4: 2009							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency Above 1GHz	Detector Peak Peak	RBW 1MHz 1MHz	VBW 3MHz 10Hz	Remark Peak Value Average Value			
Limit:			1	ı				
	Freque	ency	Limit (dBuV/		Remark			
	Above 1		54.0 74.0	0	Average Value Peak Value			
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the numbers and to find the substitute of the emission of the EUT have 10 defined to determine the substitute of t	at a 3 meter cane the position of a yas set 3 meters which was mount a height is varieto determine the ontal and vertical and vertical and vertical easurement. The ontal and vertical easurement and the rota table of maximum readiceiver system where it is not level of the ecified, then test would be reported.	amber. The toof the highest saway from ted on the too ed from one maximum al polarizations to high was turned from the ed from	table was rost radiation. The interfer op of a variation are meter to for a value of the ons of the are to heights of the degree at Detect old Mode. It is mode was the stopped arise the emit one by one	our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees			
Test setup:	Sheet. Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier							
Test Instruments:	Refer to section							
Test mode:	Refer to section	5.3 for details						
Test results:	Passed							

Measurement data

Test mode: B	est mode: BLE			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
2390	22.12	27.58	6.63	0	56.33	74	-17.67	Vertical		
2390	22.30	27.58	6.63	0	56.51	74	-17.49	Horizontal		
Test mode: B	LE		Test char	nnel: Lowest		Remark: Ave	erage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
2390	10.64	27.58	6.63	0	44.85	54	-9.15	Vertical		
2390	10.97	27.58	6.63	0	45.18	54	-8.82	Horizontal		

Test mode: Bl	LE		Test chan	nel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.5	21.54	27.52	6.85	0	55.91	74	-18.09	Vertical
2483.5	22.44	27.52	6.85	0	56.81	74	-17.19	Horizontal
Test mode: Bl	LE		Test chan	nel: Highest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.5	10.42	27.52	6.85	0	44.79	54	-9.21	Vertical
2483.5	10.20	27.52	6.85	0	44.57	54	-9.43	Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
•							
Test Method:	ANSI C63.4: 2009						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	9KHz to 25GHz						
Test site:	Measurement D	istance: 3m					
Receiver setup:							
·	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above Total	Peak	1MHz	10Hz	Average Value		
Limit:	_	1			T		
	Frequency		Limit (dBuV/m	@3m)	Remark		
	30MHz-88MHz		40.0		Quasi-peak Value		
	88MHz-216MHz		43.5		Quasi-peak Value		
	216MHz-960MH 960MHz-1GHz		46.0 54.0		Quasi-peak Value Quasi-peak Value		
	900IVITZ-1GTZ		54.0 54.0		Average Value		
	Above 1GHz	<u> </u>	74.0		Peak Value		
Test Procedure:	the ground to determin 2. The EUT vantenna, was tower. 3. The antenrathe ground Both horizon make the make the make the make the make to find the maters and the material materials.	at a 3 meter e the position was set 3 m hich was mount and vertine and vertine assurement. Suspected emaximum reaction level of the cified, then to would be reparation would a margin would set to the cified, then to would be reparation in the cified, then to would be reparation in the cified, then to would be reparation would set to the cified, then to would be reparation would set to the cified, then to would be reparation would set to the cified, then to would set to the cified, then to would set to the cified, then to would set to the cified s	camber. The of the highes eters away funted on the taried from one the maximulical polarizations was turned awas turned ling. In was set in Maximum Hare EUT in peresting could be ported. Other in the taries was termed be re-tested.	table was at radiation. From the in op of a variance meter to um value of ions of the EUT was and to height from 0 deg to Peak Dold Mode. The stopped wise the erd one by on	le 0.8 meters above rotated 360 degrees		

Below 1GHz

Horizontal:

Site 3m chamber

FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL 15.6" Android touch LCD Media Player DT156-AC4-720 Condition

EUT

Model BLE mode AC120V/60Hz Temp:25.5°C Huni:55% 101KPa Test mode Power Rating :

Environment :

Test Engineer: Viki REMARK :

	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>d</u> B	dBuV/m	dBuV/m	dB	
96.775	43.42	12.97	0.94	29.54	27.79	43.50	-15.71	QP
147.404	51.10	8.24	1.30	29.23	31.41	43.50	-12.09	QP
196.510	50.06	10.57	1.38	28.85	33.16	43.50	-10.34	QP
336.035	46.39	13.99	1.89	28.53	33.74	46.00	-12.26	QP
428.019	42.99	15.51	2.19	28.83	31.86	46.00	-14.14	QP
842.130	37.21	20.51	3.24	28.03	32.93	46.00	-13.07	QP
	MHz 96.775 147.404 196.510 336.035 428.019	Freq Level MHz dBuV 96.775 43.42 147.404 51.10 196.510 50.06 336.035 46.39 428.019 42.99	Freq Level Factor MHz dBuV dB/m 96.775 43.42 12.97 147.404 51.10 8.24 196.510 50.06 10.57 336.035 46.39 13.99 428.019 42.99 15.51	MHz dBuV dB/m dB 96.775 43.42 12.97 0.94 147.404 51.10 8.24 1.30 196.510 50.06 10.57 1.38 336.035 46.39 13.99 1.89 428.019 42.99 15.51 2.19	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 96.775 43.42 12.97 0.94 29.54 147.404 51.10 8.24 1.30 29.23 196.510 50.06 10.57 1.38 28.85 336.035 46.39 13.99 1.89 28.53 428.019 42.99 15.51 2.19 28.83	MHz dBuV dB/m dB dB dBuV/m 96.775 43.42 12.97 0.94 29.54 27.79 147.404 51.10 8.24 1.30 29.23 31.41 196.510 50.06 10.57 1.38 28.85 33.16 336.035 46.39 13.99 1.89 28.53 33.74 428.019 42.99 15.51 2.19 28.83 31.86	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 96.775 43.42 12.97 0.94 29.54 27.79 43.50 147.404 51.10 8.24 1.30 29.23 31.41 43.50 196.510 50.06 10.57 1.38 28.85 33.16 43.50 336.035 46.39 13.99 1.89 28.53 33.74 46.00 428.019 42.99 15.51 2.19 28.83 31.86 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dBuV/m dB dB dBuV/m dBuV/m dBuV/m dB 96.775 43.42 12.97 0.94 29.54 27.79 43.50 -15.71 147.404 51.10 8.24 1.30 29.23 31.41 43.50 -12.09 196.510 50.06 10.57 1.38 28.85 33.16 43.50 -10.34 336.035 46.39 13.99 1.89 28.53 33.74 46.00 -12.26 428.019 42.99 15.51 2.19 28.83 31.86 46.00 -14.14

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 15.6" Android touch LCD Media Player : DT156-AC4-720 Condition

EUT

lest mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Viki
REMARK Model

Huni:55% 101KPa

TURNE									
	Freq		Antenna Factor				Limit Line		Remark
_	MHz	dBu∜		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	134.088	48.33	8.61	1.22	29.31	28.85	43.50	-14.65	QP
2	202.100	44.76	10.64	1.39	28.82	27.97	43.50	-15.53	QP
2 3 4 5 6	344.386	40.05	14.20	1.92	28.55	27.62	46.00	-18.38	QP
4	417.641	43.78	15.43	2.17	28.81	32.57	46.00	-13.43	QP
5	582.743	42.96	18.14	2.59	28.99	34.70	46.00	-11.30	QP
6	758.041	41.81	19.53	3.06	28.43	35.97	46.00	-10.03	QP

Above 1GHz

Test channel:		Lowest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	43.25	31.53	10.57	40.24	45.11	74.00	-28.89	Vertical
4804.00	43.35	31.53	10.57	40.24	45.21	74.00	-28.79	Horizontal

Test channel:		Lowest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.45	31.53	10.57	40.24	37.31	54.00	-16.69	Vertical
4804.00	35.12	31.53	10.57	40.24	36.98	54.00	-17.02	Horizontal

Test channel:		Middle		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	45.05	31.58	10.66	40.15	47.14	74.00	-26.86	Vertical
4884.00	44.13	31.58	10.66	40.15	46.22	74.00	-27.78	Horizontal

Test channel:		Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	36.05	31.58	10.66	40.15	38.14	54.00	-15.86	Vertical
4884.00	34.97	31.58	10.66	40.15	37.06	54.00	-16.94	Horizontal

Test channel:		Highest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	43.26	31.69	10.73	40.03	45.65	74.00	-28.35	Vertical
4960.00	44.15	31.69	10.73	40.03	46.54	74.00	-27.46	Horizontal

Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	33.62	31.69	10.73	40.03	36.01	54.00	-17.99	Vertical
4960.00	33.48	31.69	10.73	40.03	35.87	54.00	-18.13	Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.