notebooks

November 11, 2023

1 Hausaufgabe 2

In dieser Hausaufgabe wollen wir uns wieder mit einem Lösungsverfahren für Funktionen beschäftigen.

1.1 Aufgabe 2.1

Gegeben ist die Funktion $f(x) = ax^3 + 2ax^2$. Für welche Stellen x gilt f(x) = 0?

1.2 Lösung 2.1

Wir wollen herausfinden, an welchen Stellen x der die Funktion den Wert 0 annimmt:

Gegeben ist 4

'Hallo'

Für unseren Fall müssen wir das die das folgende Problem lösen: $4x^3 + 8x^2 = 0$

Durch das Konzept des konsequenten Anstarrens sieht man, das ein x direkt ausgeklammert werden kann.

$$x \cdot (4x^2 + 8x) = 0$$

Jetzt nutzen wir den Satz des Nullproduktes, sodass wir sagen können, dass der Ausdruck $x \cdot (4x^2 + 8x)$ genau dann 0 wird, wenn x = 0 ist oder wenn $4x^2 + 8x = 0$ ist

Die erste Nullstelle ist somit Bereits gefunden: $x_1 = 0$. Das Überprüfe ich eben noch:

$$0 \cdot (4 \cdot 0^2 + 8 \cdot 0) = 0$$

Das stimmt also schon mal. Bleibt die Frage offen, wann der Faktor $4x^2 + 8x = 0$ wird

Hier kann ich schon wieder ein x ausklammern. $x \cdot (4x + 8) = 0$

Hier kann ich schon wieder den Satz des Nullproduktes benutzen: $x \cdot (4x + 8)$ ist genau dann 0, wenn x = 0 ist oder wenn 4x + 8 = 0 ist

Die zweite Nullstelle ist somit auch gefunden: $x_2 = 0$. Das Überprüfen schenke ich mir. Die Stelle x = 0 ist also eine doppelte Nullstelle.

1.2.1 Einschub

Das x = 0 eine doppelte Nullstelle ist, hätte wir auch einfacher sehen können.

bei unserem Anfangsproblem: $4x^3+8x^2=0$ können wir auch direkt ein x^2 ausklammern $x^2\cdot (4x+8)=0$

mit dem Satz des Nullproduktes folgt das $x^2=0$ sein muss. Woraus direkt x_1 und x_2 folgen

$$x^{2} = 0 \qquad |\sqrt{(}$$

$$x_{1} = \sqrt{0} \qquad =0$$

$$x_{2} = -\sqrt{0} \qquad =0$$