COVENANT UNIVERSITY

COLLEGE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PHYSICS

2022/2023 SESSION

PHY119 PRACTICAL

A. EXPERIMENT 1:

In a heat experiment, a mass of copper 40g was heated to a temperature T1°C and then quickly transferred into container well lagged containing 240g of water at a room temperature θ_0 °C. The mixture is stirred uniformly to attain a final temperature θ_1 °C. By using the same mass of water with same initial temperature of θ_0 °C, the experimental procedure is repeated five additional times with the same copper block heated to temperatures T₂, T₃, ..., T₆°C while the corresponding final temperatures obtained for the mixture θ_2 , θ_3 ,..., θ_6 °C are recorded. Results obtained are tabulated as shown;

Room temperature observed $\theta_0 = 32.5^{\circ}$ C

S/N	Temp. of metal T,	Final Temp. of mixture, θ	θ - θο	$T- heta_{ m o}$
	(°C)	(°C)	(°C)	(°C)
1	43.00	32.60	0.10	10.40
2	55.50	32.90	0.40	22.60
3	63.50	33.00	0.50	30.50
4	75.00	33.10	0.50	42.00
5	86.50	33.20	0.70	53.30
6	98.00	33.30	0.80	64.7

Plot a graph of $(\theta - \theta_0)$ against $(T - \theta_0)$. Determine the slope of your graph

QUESTIONS

- 1. State two precautions you would take in laboratory performing this experiment to obtain best results.
- 2. Define the term specific heat capacity.
- 3. What is the difference between heat capacity and specific heat capacity of a material?

B. EXPERIMENT 2: (LIGHT)

In a given experimental arrangement for light, a circular hole represents an illuminated object of diameter d_i placed at a distance U from a converging lens. To obtain the image distance V, the position of the screen from the lens is adjusted. The distances of U,V, and diameter d_i were measured and recorded. The varying object distance, U, image distance, V, and diameter d_i of the illuminated circular hole for six different instances were measured and recorded. For each of the instances, the magnifications, M were determined. Results obtained are tabulated below;

Actual diameter of object do = 2.80 cm

S/N	U	V	d _i	M
	(cm)	(cm)	(cm)	(cm)
1	10.00	19.50	2.20	0.786
2	12.00	24.10	2.70	0.964
3	14.00	28.50	3.20	1.143
4	16.00	32.00	3.60	1.286
5	18.00	36.50	4.20	1.500
6	20.00	40.00	5.10	1.821

Plot a graph of M on the vertical axis and V on the horizontal axis and determine the slope of the graph, and from your graph, determine the value of M when V=0.

QUESTIONS

- 1. State two (2) precautions you would consider if you were performing this experiment in the laboratory.
- 2. Suppose the object and image distances with respect to the lens are 17 cm and V cm. If the focal length is 10 cm, determine the image distance.