1. Using the Big-O and Big-Omega definitions, show that the function $f(n) = n^3 + n$ is $O(n^3)$ and O(n).

Solution:

To show that $n^3 + n = O(n^3)$, we need to give two constants c and n_0 such that $n^3 + n \le cn^3$ for all $n > n_0$.

 $n^3 + n \le cn^3 \implies (c-1)n^3 - n \ge 0 \implies (c-1)n^2 - 1 \ge 0$. Let us choose c = 2. $n^2 - 1 \ge 0$ for all positive integers n. So we can choose $n_0 = 1$.

To show that $n^3 + n = \Omega(n)$, we need to give two constants c and n_0 such that $n^3 + n \ge cn$ for all $n \ge n_0$.

 $n^3 + n \ge cn \implies n^3 + (1-c)n \ge 0 \implies n^2 + (1-c) \ge 0$. Let us choose c = 0.5. $n^2 + 0.5 > 0$ for all positive integers n. So we can choose $n_0 = 1$.

Grading: 5 points for Big-O + 5 points for Big-Omega

2 points for Big-O/Big-Omega definitions, 2 points for giving valid c and n_0 , 1 point for other work in support of the solution.

2. Given the terms in the Fibonacci sequence, find a constant c < 1 such that $F_n \leq 2^{cn}$ for all $n \geq 0$. Show using induction that your answer is correct.

Solution:

We are asked to find a value of c that is less than 1. Observe that c = 1 satisfies the inequality (we can also prove it using induction). Let us choose $c = 1 - \epsilon$, where ϵ is a small value tending to 0, such as 10^{-5} . We then have that $2^c \approx 2$.

We need to show using induction that $F_n \leq 2^{cn}$ for all $n \geq 0$ and for $c = 1 - \epsilon$.

Base case: If n = 0, $F_n = 0 \le 2^0 = 1$. If n = 1, $F_n = 1 \le 2^c$, since 2^c is greater than 1 for all c > 0.

Inductive step: Let us assume that $F_{n-1} \leq 2^{c(n-1)}$ and $F_{n-2} \leq 2^{c(n-2)}$. We now wish to show that $F_n \leq 2^{cn}$.

 $F_n = F_{n-1} + F_{n-2} \le 2^{c(n-1)} + 2^{c(n-2)} = 2^{cn}(2^{-c} + 2^{-2c})$. We are done if we can show that $2^{-c} + 2^{-2c} < 1$ for the c we have chosen. When c = 1, $2^{-c} + 2^{-2c} = \frac{1}{2} + \frac{1}{4} = 0.75 < 1$. If $c = 1 - \epsilon$ and $\epsilon = 10^{-5}$, then $2^{-c} + 2^{-2c} > 0.75$, but certainly less than 1.

Optional analysis: For what values of c will the above result hold? If c=0.5 (which means $\epsilon=0.5$), then $2^{-c}+2^{-2c}=\frac{1}{\sqrt{2}}+\frac{1}{2}>1$. So the proof breaks down. The crossover point is somewhere between 0.5 and 1. Observe that $2^{-c}+2^{-2c}$ is a monotonically decreasing function for $c\in(0.5,1)$. Thus, to find the crossover point, or the smallest c for which this condition holds, we just set $2^{-c}+2^{-2c}$ to 1 and solve for c. Let us denote the crossover value of c to be c_m . Then, $2^{-c_m}+2^{-2c_m}=1$. Let $x=2^{-c_m}$. Then, $x+x^2=1$, or $x^2+x-1=0$, or $x=\frac{\sqrt{5}-1}{2}$ (the positive root). $2^{-c_m}=\frac{\sqrt{5}-1}{2}\implies 2^{c_m}=\frac{2}{\sqrt{5}-1}\implies c_m=1-\log_2(\sqrt{5}-1)\approx 0.694$. So, ϵ can be as large as $\log_2(\sqrt{5}-1)$ for the inequality to hold.

Grading: 3 points for providing a value of c (either at the start or after some analysis), 3 points for showing base case, 4 points for inductive step with correct inductive hypothesis.

- 3. Solve the recurrence T(n) = 3T(n/3) + n using the recursion tree method. Express your answer in the Θ -notation. In the recursion tree method, you
 - draw a recursion tree,
 - determine its height,
 - estimate the work associated with nodes at each level, and
 - simplify the summation to come up with a closed-form expression for the running time.

Assume that $T(1) = \Theta(1)$ and that n is a power of 3.

Solution:

The recursion tree looks like this:

The work associated with a node at level i is $\frac{n}{3^i}$.

The running time
$$T(n) = \sum_{i=0}^{h} \frac{n}{3^i} \cdot 3^i = n \sum_{i=0}^{h} 1 = n(h+1) = n(\log_3 n + 1) = \Theta(n \log n).$$

Grading: 4 points for recursion tree (2 points for correct work expressions at each node, 1 point for indicating number of subproblems, 1 point for correct branching), 2 points for height (1 point deducted if base 3 is missing), 4 points for final answer (2 points for correct summation, 2 points for simplification).

4. Solve the recurrence $T(n) = T(n-1) + \log n$ using the iterative substitution method.

Solution:

$$T(n) = T(n-1) + \log n = T(n-2) + \log (n-1) + \log n = T(n-3) + \log (n-2) + \log (n-1) + \log n.$$

So we have
$$T(n) = T(n-3) + \log (n(n-1)(n-2))$$
.

The general form appears to be $T(n) = T(n-k) + \log(n(n-1)\cdots(n-(k-1)))$ for an integer k.

Plugging in k = n - 1 and T(1) = c for some c > 0, we have

$$T(n) = T(1) + \log n! = c + \log n! = \Theta(\log n!).$$

Grading: 4 points for iterative substitution steps, 3 points for general form, and 3 points for steps towards final solution in Big-Theta notation.