Duality.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Dual function

The general mathematical programming problem with functional constraints:

$$f_0(x) o \min_{x \in \mathbb{R}^n}$$

s.t. $f_i(x) \le 0, \ i = 1, \dots, m$
 $h_i(x) = 0, \ i = 1, \dots, p$

And the Lagrangian, associated with this problem:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) = f_0(x) + \lambda^{\top} f(x) + \nu^{\top} h(x)$$

We assume $\mathcal{D} = \bigcap_{i=0}^m \operatorname{dom} \ f_i \cap \bigcap_{i=1}^p \operatorname{dom} \ h_i$ is nonempty. We define the Lagrange dual function (or just dual function) $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ as the minimum value of the Lagrangian over x: for $\lambda \in \mathbb{R}^m, \nu \in \mathbb{R}^p$

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

⊕ n ø

Dual function. Summary

Primal

Function:

$$f_0(x)$$

Variables:

$$x \in S \subseteq \mathbb{R}^{\ltimes}$$

Constraints:

$$f_i(x) \leq 0, i = 1, \ldots, m$$

$$h_i(x) = 0, \ i = 1, \dots, p$$

Dual

Function:

$$g(\lambda, \nu) = \min_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

Variables

$$\lambda \in \mathbb{R}^m_+, \nu \in \mathbb{R}^p$$

Constraints:

$$\lambda_i \ge 0, \forall i \in \overline{1, m}$$

Strong Duality

It is common to name this relation between optimals of primal and dual problems as **weak duality**. For problem, we have:

$$d^* \leq p^*$$

While the difference between them is often called duality gap:

$$0 \le p^* - d^*$$

Strong duality happens if duality gap is zero:

$$p^* = d^*$$

i Slater's condition

If for a convex optimization problem (i.e., assuming minimization, f_0, f_i are convex and h_i are affine), there exists a point x such that h(x)=0 and $f_i(x)<0$ (existance of a **strictly feasible point**), then we have a zero duality gap and KKT conditions become necessary and sufficient.

Reminder of KKT statements

Suppose we have a ${\bf general\ optimization\ problem}$

$$f_0(x) o \min_{x \in \mathbb{R}^n}$$

s.t. $f_i(x) \le 0, \ i = 1, \dots, m$

$$h_i(x) = 0, i = 1, \dots, p$$

and **convex optimization problem**, where all equality constraints are affine:

$$h_i(x) = a_i^T x - b_i, i \in 1, \dots p.$$

The KKT system is:

$$\nabla_{\nu} L(x^*, \lambda^*, \nu^*) = 0$$

$$\lambda_i^* \ge 0, i = 1, \dots, m$$

$$\lambda_i^* f_i(x^*) = 0, i = 1, \dots, m$$

$$f_i(x^*) \le 0, i = 1, \dots, m$$

 $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$

(1)

(2)

i KKT becomes necessary

If x^* is a solution of the original problem Equation 1, then if any of the following regularity conditions is satisfied:

- Strong duality If $f_1, \ldots f_m, h_1, \ldots h_p$ are differentiable functions and we have a problem Equation 1 with zero duality gap, then Equation 2 are necessary (i.e. any optimal set x^*, λ^*, ν^* should satisfy Equation 2)
- LCQ (Linearity constraint qualification). If $f_1, \ldots f_m, h_1, \ldots h_p$ are affine functions, then no other condition is needed.
- LICQ (Linear independence constraint qualification). The gradients of the active inequality constraints and the gradients of the equality constraints are linearly independent at x^*
- SC (Slater's condition) For a convex optimization problem (i.e., assuming minimization, f_i are convex and h_i is affine), there exists a point x such that $h_i(x) = 0$ and $g_i(x) < 0$.

Than it should satisfy Equation 2

i KKT in convex case

If a convex optimization problem with differentiable objective and constraint functions satisfies Slater's condition, then the KKT conditions provide necessary and sufficient conditions for optimality: Slater's condition implies that the optimal duality gap is zero and the dual optimum is attained, so x^* is optimal if and only if there are (λ^*, ν^*) that, together with x^* , satisfy the KKT conditions.

Problem 1. Dual LP

i Question

Ensure, that the following standard form Linear Programming (LP):

$$\min_{x \in \mathbb{R}^n} c^\top x$$

s.t.
$$Ax = b$$

$$x_i \ge 0, \ i = 1, \dots, n$$

Has the following dual:

$$\max_{y \in \mathbb{R}^n} b^\top y$$

$$\text{s.t. } A^T y \preceq c$$

Find the dual problem to the problem above (it should be the original LP).

Problem 2. Lagrange matrix multiplier

i Question

Let matrices $X \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{n \times m}$, $A \in \mathbb{R}^{k \times n}$, $B \in \mathbb{R}^{k \times m}$. Setting the task:

$$f(X) = \langle C, X \rangle \longrightarrow \min_X$$

$$\mathrm{s.t}\ AX\leqslant B$$

Find the dual problem to the problem above.

i Question

Find the Euclidean projection of $x \in \mathbb{R}^n$ onto probability simplex

$$\Delta = \{ z \in \mathbb{R}^n \mid z \succeq 0, \mathbf{1}^\top z = 1 \},$$

i.e. solve the following problem:

$$x^* = P_{\Delta}(y) = \underset{x \in \mathbb{R}_+^n}{\operatorname{argmin}} \frac{1}{2} ||x - y||_2^2$$

s.t.
$$\mathbf{1}^{\top} x = 1$$

The "partial" Lagrangian, considering only equality constraints:

$$L(x, \nu) = \frac{1}{2} ||x - y||_2^2 + \nu \left(\mathbf{1}^T x - 1 \right)$$

The "partial" Lagrangian, considering only equality constraints:

$$L(x,\nu) = \frac{1}{2} ||x - y||_2^2 + \nu \left(\mathbf{1}^T x - 1 \right)$$

To find a solution (x^*, ν^*) , let's set a saddle point problem:

$$\underset{\nu}{\operatorname{argmax}} L(x,\nu) \longrightarrow \min_{x \succeq 0}$$

The "partial" Lagrangian, considering only equality constraints:

$$L(x,\nu) = \frac{1}{2} ||x - y||_2^2 + \nu \left(\mathbf{1}^T x - 1 \right)$$

To find a solution (x^*, ν^*) , let's set a saddle point problem:

$$\underset{\nu}{\operatorname{argmax}} L(x,\nu) \longrightarrow \min_{x \succeq 0}$$

We will solve this problem in two stages:

• We first solve $\operatorname{argmin} L(x, \nu)$ to get x^*

$$x \succeq 0$$

• Then we use x^* to get ν^* by solving $\mathrm{argmax} L(x^*,\nu)$

1. Let's solve $\operatorname{argmin} L(x, \nu)$:

$$\min_{x \succeq 0} L(x, \nu) = \min_{x \succeq 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \left(\mathbf{1}^T x - 1 \right) \right) = \min_{x \succeq 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \mathbf{1}^T x \right)$$

x,y,z Problems

1. Let's solve $\operatorname{argmin} L(x, \nu)$:

$$\min_{x \succeq 0} L(x, \nu) = \min_{x \succeq 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \left(\mathbf{1}^T x - 1 \right) \right) = \min_{x \succeq 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \mathbf{1}^T x \right)$$

$$\min_{x \succeq 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \mathbf{1}^T x \right) = \min_{x \succeq 0} \left(\sum_{i=1}^n \frac{1}{2} (x_i - y_i)^2 + \nu x_i \right) = \min_{x \succeq 0} \left(\sum_{i=1}^n l_i(x_i) \right)$$

v.z Problems

1. Let's solve $\operatorname{argmin} L(x, \nu)$:

$$\min_{x \succ 0} L(x, \nu) = \min_{x \succ 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \left(\mathbf{1}^T x - 1 \right) \right) = \min_{x \succ 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \mathbf{1}^T x \right)$$

$$\min_{x \succeq 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \mathbf{1}^T x \right) = \min_{x \succeq 0} \left(\sum_{i=1}^n \frac{1}{2} (x_i - y_i)^2 + \nu x_i \right) = \min_{x \succeq 0} \left(\sum_{i=1}^n l_i(x_i) \right)$$

L is minimized if all l_i are minimized, so we have scalar problem

$$l_i(x_i) = \frac{1}{2}(x_i - y_i)^2 + \nu x_i \longrightarrow \min_{x_i \geqslant 0}$$

1. Let's solve $\operatorname{argmin} L(x, \nu)$:

$$\min_{x \succeq 0} L(x, \nu) = \min_{x \succeq 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \left(\mathbf{1}^T x - 1 \right) \right) = \min_{x \succeq 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \mathbf{1}^T x \right)$$

$$\min_{x \succeq 0} \left(\frac{1}{2} \|x - y\|_2^2 + \nu \mathbf{1}^T x \right) = \min_{x \succeq 0} \left(\sum_{i=1}^n \frac{1}{2} (x_i - y_i)^2 + \nu x_i \right) = \min_{x \succeq 0} \left(\sum_{i=1}^n l_i(x_i) \right)$$

L is minimized if all l_i are minimized, so we have scalar problem

$$l_i(x_i) = \frac{1}{2}(x_i - y_i)^2 + \nu x_i \longrightarrow \min_{x_i \geqslant 0}$$

And the solution to this problem is

- $x_i^* = (y_i \nu) \text{ if } y_i \nu \geqslant 0$
- $x_i^* = 0$ if $y_i \nu < 0$

So, solution of the first subtask is

$$x^* = [y - \nu \mathbf{1}]_+$$

2. Now we must find ν . To do this, let's use the constraint:

So, solution of the first subtask is

$$x^* = [y - \nu \mathbf{1}]_+$$

2. Now we must find ν . To do this, let's use the constraint:

$$\sum_{i=1}^{n} x_i^* = \sum_{i=1}^{n} [y_i - \nu]_+ = \sum_{i=1}^{n} \max\{0, y_i - \nu\} = \sum_{j: y_j > \nu} (y_j - \nu) = 1$$

So, solution of the first subtask is

$$x^* = [y - \nu \mathbf{1}]_+$$

2. Now we must find ν . To do this, let's use the constraint:

$$\sum_{i=1}^{n} x_i^* = \sum_{i=1}^{n} [y_i - \nu]_+ = \sum_{i=1}^{n} \max\{0, y_i - \nu\} = \sum_{j: y_j > \nu} (y_j - \nu) = 1$$

In other words, in this sum, we discard those components of the y that are less than ν . To find ν , using the expression above, let's sort the components of the vector and present a set

$$\mathcal{J} = \{j : y_j > \nu\}, \quad |\mathcal{J}| = K,$$

where elemets of y already sorted: $y_1 \geqslant y_2 \geqslant ... \geqslant y_n$

So we have

$$\sum_{j:y_j>\nu} (y_j - \nu) = \sum_{j\in\mathcal{J}} y_j - K\nu = 1 \Rightarrow \nu = \frac{\sum_{j\in\mathcal{J}} y_j - 1}{K}$$

The final probability simplex projection algorithm includes 3 steps:

- Sort y
- Find K, which is the last integer in $\{1,2,...,n\}$ that $y_K \frac{\sum_{j \in \mathcal{J}} y_j 1}{K} > 0$
- Output $\nu = \frac{\sum_{j \in \mathcal{J}} y_j 1}{K}$ for $x = P_{\Delta}(y) = [y \nu \mathbf{1}]_+$

So we have

$$\sum_{j:y_j>\nu} (y_j - \nu) = \sum_{j\in\mathcal{J}} y_j - K\nu = 1 \Rightarrow \nu = \frac{\sum_{j\in\mathcal{J}} y_j - 1}{K}$$

The final probability simplex projection algorithm includes 3 steps:

- Sort y
 - Find K, which is the last integer in $\{1,2,...,n\}$ that $y_K \frac{\sum_{j \in \mathcal{J}} y_j 1}{\mathcal{K}} > 0$
 - Output $\nu = \frac{\sum_{j \in \mathcal{J}} y_j 1}{\kappa}$ for $x = P_{\Delta}(y) = [y \nu \mathbf{1}]_+$

The most expensive part here is step-1, using quick sort, the worst computational complexity is $\mathcal{O}(n \log n)$

Problem 3 solution: another algorithm $\mathcal{O}(n)$ (?)

Here is the formulation of the algorithm:

```
INPUT A vector \mathbf{v} \in \mathbb{R}^n and a scalar z > 0
Initialize U = [n] s = 0 \rho = 0
While U \neq \phi
    PICK k \in U at random
    PARTITION U:
        G = \{ j \in U \mid v_j \ge v_k \}
      L = \{ j \in U \mid v_i < v_k \}
    Calculate \Delta 
ho = |G| ; \Delta s = \sum v_j
    IF (s + \Delta s) - (\rho + \Delta \rho)v_k < z j \in G

s = s + \Delta s ; \rho = \rho + \Delta \rho ; U \leftarrow L
    ELSE
        U \leftarrow G \setminus \{v_k\}
    ENDIE
SET \theta = (s-z)/\rho
OUTPUT w s.t. v_i = \max\{v_i - \theta, 0\}
```

Figure 1: Linear time projection algorithm pseudo-code

Problem 3 solution: another algorithm $\mathcal{O}(n)$ (?)

In short, what is the difference between this algorithm and the first one? In the step 1.

- Algorithm 2 (pivot-algorithm) does not sort the entire array, but randomly selects a "pivot" and "slices" the list. similar to Quickselect (quick median search).
- On average, it gives $\mathcal{O}(n)$, but in the worst case (unsuccessful pivots), theoretically it can "fail" to $\mathcal{O}(n^2)$ (!)
- So, the statement about the difficulty of $\mathcal{O}(n)$ in the original article was a mistake. Article \mathbf{x} provides an attempt to fix this and an overview of the mistake.
- The code for comparing this algorithm with the previous one is here

Problem 4. Projection onto the unit simplex VS projection onto the l_1 ball

The same article \mathbb{Z} mentions the connection between searching for a projection on the unit simplex and on the l_1 ball. Previous problem:

$$x_1^* = \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} ||x - y||_2^2$$

s.t.
$$\mathbf{1}^{\top} x = 1, \ x \succeq 0$$

New problem:

$$x_2^* = \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} ||x - y||_2^2$$

$$\text{s.t. } \|x\|_1\leqslant 1$$

Let's show idea how to reduce the first to the second.

⊕ ი €

Problem 4. Projection onto the unit simplex VS projection onto the l_1 ball

1. If $||y||_1 \le 1$ then you don't need to do anything: it's already inside (or on the border) l_1 -ball, therefore, the desired projection is equal to the y

Problem 4. Projection onto the unit simplex VS projection onto the l_1 ball

- 1. If $||y||_1 \le 1$ then you don't need to do anything: it's already inside (or on the border) l_1 -ball, therefore, the desired projection is equal to the y
- 2. If $||y||_1 > 1$ then the optimum will be exactly on the border, that is, it must be fulfilled $||y||_1 = 1$

Problem 4. Projection onto the unit simplex VS projection onto the l_1 ball

- 1. If $||y||_1 \le 1$ then you don't need to do anything: it's already inside (or on the border) l_1 -ball, therefore, the desired projection is equal to the y
- 2. If $\|y\|_1>1$ then the optimum will be exactly on the border, that is, it must be fulfilled $\|y\|_1=1$
- 3. The following lemma is proved in the paper:

i Lemma

In the optimal solution, each non-zero coordinate x_i must have the same sign as the y_i . Formally,

$$x_i \neq 0 \Rightarrow sign(x_i) = sign(y_i)$$

Problem 4. Projection onto the unit simplex VS projection onto the l_1 ball

4. Thanks to the previous paragraph, it is sufficient to consider the "modules" of coordinates. An auxiliary vector is introduced

$$u \in \mathbb{R}^n, u_i = |y_i|$$

Problem 4. Projection onto the unit simplex VS projection onto the l_1 ball

4. Thanks to the previous paragraph, it is sufficient to consider the "modules" of coordinates. An auxiliary vector is introduced

$$u \in \mathbb{R}^n, u_i = |y_i|$$

Then the constraint $||x||_1 \leqslant 1$ and the condition "sign x_i coincides with sign y_i " are equivalent to the problem

$$\min_{u \succeq 0} \|u - |y|\|_2^2 \text{ s.t. } \|u\|_1 = 1$$

n Problems

Problem 4. Projection onto the unit simplex VS projection onto the l_1 ball

4. Thanks to the previous paragraph, it is sufficient to consider the "modules" of coordinates. An auxiliary vector is introduced

$$u \in \mathbb{R}^n, u_i = |y_i|$$

Then the constraint $||x||_1\leqslant 1$ and the condition "sign x_i coincides with sign y_i " are equivalent to the problem

$$\min_{u \succ 0} \|u - |y|\|_2^2 \text{ s.t. } \|u\|_1 = 1$$

But this is the problem of projection onto a probability simplex with a sum of coordinates equals to 1.

⊕ ი

Problem 4. Projection onto the unit simplex VS projection onto the l_1 ball

4. Thanks to the previous paragraph, it is sufficient to consider the "modules" of coordinates. An auxiliary vector is introduced

$$u \in \mathbb{R}^n, u_i = |y_i|$$

Then the constraint $||x||_1 \le 1$ and the condition "sign x_i coincides with sign y_i " are equivalent to the problem

$$\min_{u \succeq 0} \|u - |y|\|_2^2 \text{ s.t. } \|u\|_1 = 1$$

But this is the problem of projection onto a probability simplex with a sum of coordinates equals to 1.

Let's denote the found solution to the problem above for u^* . Then we return to the original x^* , restoring the signs:

$$x_i^* = sign(y_i) \cdot u_i^*$$

This x_i^* solution that is the desired projection onto the l_1 ball.

Problem 5. Dual to SVM

