Лекция 8

Ilya Yaroshevskiy

16 января 2021 г.

Содержание

1	Потенциальные векторные поля	1
	1.1 Локально потенциальные векторные поля	2
2	Равномерная сходимость функциональных рядов(продолжение)	3

1 Потенциальные векторные поля

$$\int_{\gamma} \sum V_i dx_i = F(\gamma(b)) - F(\gamma(a))$$

Определение. Интеграл V не зависит от пути в области O:

 $\forall A,B\in O\ \forall \gamma^1,\gamma^2$ - кусочно гладкие пути из A в B

$$\int_{\gamma^1} \sum V_i dx_i = \int_{\gamma^2} \sum V_i dx_i$$

Теорема 1.1 (характеризация потенциальных векторных полей в терминах интегралов). V - векторное поле в области O. Тогда эквивалентны:

- 1. V потенциально
- 2. $\int_{\gamma} \sum V_i dx_i$ не зависит от пути в области O
- 3. $\forall \gamma$ кусочно гладкого, замкнутого в $O\int_{\gamma}\sum V_i dx_i=0$

Доказательство.

- 1 \Rightarrow 2: обобщенная формула Ньютона-Лейбница
- $2\Rightarrow 3$: γ петля: $[a,b]\to O$ $\gamma(a)=\gamma(b)=A$ Рассмторим простой птуь $\tilde{\gamma}:[a,b]\to O$ $\gamma(t)=A$ по свойству $2\int_{\gamma}=\int_{\tilde{\gamma}}=0(=\int\langle V,\underbrace{\gamma'}_{o}\rangle dt)$
- $3 \Rightarrow 2$: γ_1, γ_2 пути с общим началом и концом

1

 $\gamma:=\gamma_2^-\gamma_1$ - кусочно гладкая петля $0=\int_\gamma=\int_{\gamma_1}+\int_{\gamma_2}=\int_{\gamma_1}-\int_{\gamma_2}$

• $2\Rightarrow 1$: Фиксируем $A\in O$ $\forall x\in O$ выберем кусочно гладкий путь γ_x , который ведет из A в x $f(x):=\int_{\gamma_x}\sum V_idx_i$ - проверим что это потенциал Достаточно проверить $\frac{\partial f}{\partial x_1}=V_1$ в O Фиксируем $x\in O$

$$\begin{array}{l} \gamma_0(t) = x + the_1 \quad , t \in [0,1] \\ \gamma_0'(t) = (h,0,\dots,0) = he_1 \\ f(x+he_1) - f(x) = \int_{\gamma_{x+he_1}} - \int_{\gamma_x} = \int_{\gamma_0\gamma_x} - \int_{\gamma_x} = \int_{\gamma_0} = \int_0^1 V_1(\gamma_0(t)) \cdot hdt = \\ = h \cdot V_1(x_1 + ch, x_2, \dots, x_n) \\ \text{Таким образом } \xrightarrow{f(x+he_1) - f(x)} \xrightarrow{h \to 0} V_1(x) \end{array}$$

1.1 Локально потенциальные векторные поля

Лемма 1. V - гладкое, потенциальное в O <u>Тогда</u> $\forall x \in O \ \forall k, j \quad \frac{\partial V_k}{\partial x_j} = \frac{\partial V_j}{\partial x_k}$

Доказательство.
$$\cdots = \frac{\partial^2 f}{\partial x_k \partial x_j}(x)$$

Теорема 1.2 (лемма Пуанкаре). $O \in \mathbb{R}^m$ - выпуклая область $V: O \to \mathbb{R}^m$ - векторное поле V - удовлетворяет условиям леммы(V - гладкое) Тогда V - потенциальное

Доказательство. Фиксируем $A \in O$ $\forall x \in O \ \gamma_x(t) := A + t \cdot (x - a) \quad , t \in [0, 1]$

 $\gamma_x'(t) = x - A$ - постоянный вектор

$$f(x) := \int_{\gamma_x} \sum V_i dx_i = \int_0^1 \sum_{k=1}^m V_k (A + t(x - A)) \cdot (x_k - A_k) dt$$

Проверим, что f - потенциал

$$\frac{\partial f}{\partial x_j}(x) = \langle$$
правило Лейбница $\rangle = \int_0^1 V_j(A+t(x-A)) + \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k-A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_k}(\dots) \cdot t(x_k-A_k) dt$

$$= \int_0^1 (tV_j(A + t(x - A))_t'dt) = t \cdot V_j(A + t(x - A)) \Big|_{t=0}^{t=1} = V_j(x)$$

Примечание. Это же доказательство проходит для "звездных областей

Существует точка из которой видны все остальные

Определение. V - локально потенциальное векторное поле в O, если $\forall x \in O \ \exists U(x) \ V$ потенциально в U(x)

 $Cnedcmeue\ 1.2.1\ ($ лемма Пуанкаре $).\ O\subset\mathbb{R}^m$ - любая область $V \in C^1(O)$, удовлетворяет Лемме 1 Тогда V - локально потенциально

2 Равномерная сходимость функциональных рядов (продолжение)

Теорема 3' (о дифференцировании ряда по параметру). $u_n \in C^1(\langle a, b \rangle)$ Путсть:

- 1. $\sum u_n(x) = S(x)$ поточенчная сходимость
- 2. $\sum u'_n(x) = \varphi(x)$ равномерно сходится на $\langle a, b \rangle$

Тогда:

1. $S(x) \in C^1(\langle a, b \rangle)$

2. $S' = \varphi$ на $\langle a, b \rangle$

т.е $(\sum u_n(x))' = \sum u'_n(x)$

Доказательство.

• $f_n \to f$ — поточечно

• $f'_n \Rightarrow f$

Тогда $f' = \varphi, f \in C^1$

- $S_n \to S$ поточечно
- $S'_n \Longrightarrow \varphi$

Пример. Формула Вейерштрасса:

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \cdot \prod_{k=1}^{+\infty} (1 + \frac{x}{k})e^{\frac{x}{k}}$$

, где γ - постоянная Эйлера

$$-\ln \Gamma(x) = \ln x + \gamma x + \sum_{k=1}^{+} (\ln(1 + \frac{x}{k}) - \frac{x}{k})$$

фиксируем x_0 $u_k'(x) = \frac{1}{1+\frac{x}{k}} \cdot \frac{1}{k} - \frac{1}{k} = \frac{1}{x+k} - \frac{1}{k} = \frac{-x}{(x+k)k}$ Пусть $M>x_0$ Тогда

$$\left| \frac{-x}{(x+k)k} \right| \leq \frac{M}{k^2}$$
, при $x \in (0,M)$

 $\sum \frac{M}{k^2}$ - сходится Тогда $\sum \frac{-x}{(x+k)k}$ равномерно сходится на (0,M)

Значит $\ln \Gamma(x) \in C^1(0,M) \Rightarrow \Gamma \in C^1(0,M)$

 $\mathit{Примечаниe}.$ Фактически теорема устанавливает, что $\sum u_n'(x)$ - непрерывна

Примечание (к примеру).

$$-\frac{\Gamma'(x)}{\Gamma(x)} = \frac{1}{x} + \gamma - \sum_{k=1}^{+\infty} \frac{x}{(x+k)k}$$

$$\Gamma'(x) = -\Gamma(x) \cdot (\frac{1}{x} + \gamma - \sum \dots)$$

$$\Gamma''(x) = \dots$$
(1)

Получается, что $\in C^{\infty}(0, +\infty)$

Теорема 4' (о почленном переходе в суммах). $u_n: E \subset X \to \mathbb{R}, \quad x_0$ - предельная точка E

- 1. $\forall n \; \exists \;$ конечный $\lim_{x \to x_0} u_n(x) = a_n$
- 2. $\sum u_n(x)$ равномерно сходится на E

Тогда:

- 1. $\sum a_n$ сходится
- 2. $\sum a_n = \lim_{x \to x_0} \sum_{n=1}^{+\infty} u_n(x)$

$$\lim_{x \to x_0} \sum_{n=0}^{+\infty} u_n(x) = \sum_{n=0}^{+\infty} (\lim_{x \to x_0} u_n(x))$$
 (2)

Доказательство.

1. $\sum a_n$ - сходится

 x_n - фундаментальная $orall arepsilon \; \exists N \; \forall m,n>N \quad |x_m-x_m|<arepsilon$

$$S_n(x) = \sum_{k=0}^n u_k(x), \quad S_n^a = \sum_{k=1}^n a_k$$
 (3)

Проверим, что S_n^a - фундаментальная

$$|S_{n+p}^a - S_n^a| \le |S_{n+p}^a - S_{n+p}(x)| + |S_{n+p}(x) - S_n(x)| + |S_n(x) - S_n^a|$$
(4)

Из равномерной сходимости $\sum u_n(x): \forall \varepsilon \; \exists N \; \forall n > N \; \forall p \in \mathbb{N} \; \forall x \in E \; |S_{n+p}(x) - S_n(x)| < \varepsilon$ Это критерий Больциано-Коши для равномерной сходимости

Зададим ε , по N выберем n, n+p и возьмем x близко к x_0 :

$$|S_{n+p}^a - S_{n+p}(x)| < \frac{\varepsilon}{3} \tag{5}$$

$$|S_n^a - S_n(x)| < \frac{\varepsilon}{3} \tag{6}$$

Тогда выполнено (4), т.е. $|S^a_{n+p}-S^a_n|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$ Это фундаментальность последовательности $S^a_n\Rightarrow\sum a_n$ - сходится

 $2. \sum_{n=1}^{\infty} a_n = \lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x)$ Сводим к теореме Стокса-Зайдля:

$$\tilde{u}_n(x) = \begin{bmatrix} u_n(x) & x \in E \setminus \{x_0\} \\ a_n & x = x_0 \end{bmatrix}$$
 (7)

— задана на $E \cup \{x_0\}$, непрерывна в x_0 (переход $(8) \to (9)$)

 $\sum \tilde{u_n}(x)$ - равномерно сходится на $E \cup \{x_0\} \Rightarrow$ сумма ряда непрерывна в x_0

$$\lim_{x \to x_0} \sum u_n(x) = \lim_{x \to x_0} \sum \tilde{u}_n(x) = \tag{8}$$

$$=\sum \tilde{u}_n(x_0) = \sum a_n \tag{9}$$

$$\sup_{x} \left| \sum_{k=n}^{+\infty} \tilde{u}_k(x) \right| \le \sup_{x \in E \setminus \{x_0\}} \left| \sum_{k=n}^{+\infty} u_k(x) \right| + \left| \sum_{k=1}^{+\infty} a_k \right|$$
 (10)

В (10) в правой части оба слагаемых $\xrightarrow[n \to +\infty]{} 0$ отсюда равномерная сходимость ряда $\sum \tilde{u}_n(x)$

Примечание. Теорема 4' верна для случая, когда $u_n: E \subset X \to Y$, где Y - полное нормированное пространство

Теорема 4 (о перестановке двух предельных переходов). $f_n: E \subset X \to \mathbb{R}, \ x_0$ - предельная точка

Пусть:

1.
$$f_n(x) \underset{n \to +\infty}{\Longrightarrow} S(x)$$
 на E

$$2. f_n(x) \xrightarrow[x \to x_0]{} A_n$$

Тогда:

1.
$$\exists \lim_{n \to +\infty} A_n = A \in \mathbb{R}$$

$$2. S(x) \xrightarrow[x \to x_0]{} A$$

$$\begin{array}{ccc}
f_n(x) & \xrightarrow{n \to +\infty} S(x) \\
x \to x_0 \downarrow & & \downarrow x \to x_0 \\
A_n & \xrightarrow{-n \to +\infty} A
\end{array}$$

Доказательство. $u_1=f_1, \ldots, u_k=f_k-f_{k-1},\ldots$ Тогда $f_n=u_1+u_2+\cdots+u_n$ $a_1=A_1, \ldots, a_k=A_k-A_{k-1},\ldots, A_n=a_1+a_2+\cdots+a_n$ В этих обозначениях: $\sum u_k(x)$ — равномерно сходится к сумме S(x)

$$a_1 = A_1, \ldots, a_k = A_k - A_{k-1}, \ldots, A_n = a_1 + a_2 + \cdots + a_n$$

$$u_n(x) \xrightarrow[x \to x_0]{} a_k$$

Тогда по т. 4' $\sum_{k=1}^n a_k = A_n$ — имеет конечный предел, при $n \to +\infty$ $\sum a_k$ - $cxo\partial umcs$

$$\lim_{x \to x_0} \sum u_k(x) = \lim_{x \to x_0} S(x) = \sum a_k = A$$
 (11)

 $\Pi puмечание. Здесь можно было бы вместо <math>n$ рассматривать "непрерывный параметр" t $f_n(x) \leftrightarrow f(x,t)$

$$n \to +\infty \leftrightarrow t \to t_0$$

$$f_nS$$
 на $E \leftrightarrow f(x,t)[t \to t_0]S(x)$ — при $x \in E$

$$f_nS$$
 на $E \leftrightarrow f(x,t)[t \to t_0]S(x)$ — при $x \in E$ $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall t: t \neq t_0, \; |t-t_0| < \delta \; \forall x \in E \quad |f(x,t)-S(x)| < \varepsilon$

5