• 计算机网络概述

- 0 1. 网络安全设备
- 2. 网络参考模型
- 3. 以太网的帧格式
- · 4. 网络传输介质
 - 4.1. 线缆
 - 4.2. 接口

网络层

- 1. IP地址介绍
- o 2. 无类IP
- o 3. windows常用命令
- 4. IP数据包格式
- o 5. ARP协议 (Address Resolusion Protocal)
- o 6. ICMP协议
- 传输层
 - 1. TCP协议

计算机网络概述

网络安全设备

包括计算机、服务器、集线器(用来将信号整形放大,把所有节点集中到以它为中心的节点上,在物理层)、交换机(比集线器智能,依据MAC地址选择性发送数据,在数据链路层)、路由器(连接不同网络)、(光)调制解调器(用于信号转换)、防火墙(控制数据)、入侵检测/防御系统(IDS/IPS)

网络参考模型

OSI模型 (七层)

- 应用层---为应用程序提供网络服务
- 表示层---数据格式化、加密、解密
- 会话层---建立、维护、管理会话连接
- 传输层---建立、维护、管理端到端连接
- 网络层---IP寻址和路由选择
- 数据链路层---Mac地址寻址
- 物理层---如何利用物理讯号表示0 和1, 比特流传输

TCP/IP协议簇

- 应用层: HTTP、FTP、TFTP、SMTP、SNMO、DNS
- 传输层TCP、UDP
- 网络层ICMP、IGMP、IP、ARP、RARP
- 数据链路层、物理层: RJ45、PPP、HDLC、IEEE、VLAN

以太网的帧格式

有两种格式:

D.MAC是目标MAC地址, C.MAC是原主机MAC地址. 以太网II的类型值大于1536, IEEE小于1500

计算机的**通信方式**有:

- 广播: d.MAC地址为ff-ff-ff-ff, 作用于当前网络范围
- 单播: d.MAC地址的第八位为0, 效率最高且最安全
- 组播: d.MAC地址的第八位为1, 只有采用相同协议的软件才能收到

网络传输介质

线缆

1. 双绞线

Cat5(10~100Mbps)、Cat 5e(1000Mbps)、Cat6(1000Mbps)、Cat7(10Gbps)

2. 光纤

单模光纤	多模光纤
用于高速度、长距离	用于低速度、短距离
成本高	成本低
端接较难	端接较易
窄芯线,需要激光源	宽芯线,聚光好,光源可采用激 光或发光二极管
一般为黄色	橘黄色、灰色
纤芯为9.0μm, 大约在1mm的 百分之一	50.0 μm, 62.0 μm
耗散极小, 高效	耗散大, 低效

接口

RJ45接口 光纤接口:

- FC 圆形带螺纹
- ST 卡接式圆形
- SC 方形
- LC 窄体方形
- MT-RJ收发一体方形 光模块 信息插座

网络层

IP地址介绍

组成: 网络部分和主机部分

- A类: 10.X.X.X是私有地址, 127.X.X.X是保留地址, 用作循环测试用 (127.0.0.1, 测试本机TCP/IP是否安装正确)
- B类: 172.16.0.0~172.31.255.255是私有地址, 169.254.X.X是保留地址(如果IP地址是自动获取IP地址, 而在网络上没找到可用DHCP服务器,则会得到一个可用的该保留地址), 191.255.255.255是广播地址
- C类: 192.168.X.X是私有地址

子网掩码: 网络位都为1, 主机位都为0 DHCP:自动分配IP地址等参数的协议/服务

无类IP

无类IP指的是子网掩码不是标准的8/16/24位的IP。

好处:可以减少IP地址的浪费、满足不同网络对IP地址的需求、实现网络的层次性

实现方式: 子网划分

子网划分含义: 将一个大的网段分为小的网段(切割网络位)

超网:使用一个子网掩码将多个有类地址聚合成单个网络地址(与划分相反)

windows常用命令

- ipconfig:
 - /all 显示所有
- ping X.X.X.X:
 - -t 一直进行
 - o -n 2 指定发送包的数量

- 。 -I 100 指定要发送的字节数
- 。 -S 1.1.1.1 从本地的1.1.1.1为原地址ping

IP数据包格式

版本 (4)	首部长度 (4)	优先级与服务类型 (8)	总长度 (16)				
90 F	标识符	(16)	标志 (3)	段偏移量 (13)	20		
TTL	(8)	协议号 (8)	首部校验和(16)				
		源地址	(32)				
	62	目标地址	(32)				
可选项							
-		数技	居				

• 版本: IPV4/IPV6

• TTL: 生成周期

• 标识符、标志、段偏移量:用于标注、划分、排序包中的内容(用于描述包中的数据关系)

• 协议号: 指是哪个协议

ARP协议 (Address Resolusion Protocal)

作用:将已知IP地址解析成MAC地址

ARP代理:同一网段,不同物理网络上的计算机之间,可以通过ARP代理实现相互通信

免费ARP: 用来探测IP地址是否冲突

windows主机ARP相关命令:

arp -a: 查看arp缓存表 arp -d: 清除arp缓存 arp -s: arp绑定

vrp系统的ARP命令:

dis arp all: 查看arp缓存表

reset arp dynamic: 清除arp缓存

arp static 192.168.1.100 1111.1111.1111: arp绑定

arp报文通信过程:

		-L (/		
25 53.110000	HuaweiTe_bc:63:bc	Broadcast	ARP	60 Who has 192.168.1.2? Tell 192.168.1.1
26 53.141000	HuaweiTe_4b:7a:28	HuaweiTe_bc:63:bc	ARP	60 192.168.1.2 is at 54:89:98:4b:7a:28
27 53.156000	192.168.1.1	192.168.1.2	ICMP	74 Echo (ping) request id=0xc50d, seq=1/256, ttl=128 (reply in 28)
28 53,203000	192,168,1,2	192,168,1,1	ICMP	74 Echo (ping) reply id=0xc50d, seq=1/256, ttl=128 (request in 27)

ICMP协议作用:用来确认两个主机是否能够诵信

ICMP报文格式:

8位的类型字段标识了该ICMP报文的具体类型, \$\\
8位的代码字段进一步指出产生这种类型ICMP报文的原因, \\
每种类型报文的产生的原因都可能有多个, 就拿目的站不可达报文来说, \\
产生的原因可能有主机不可达、协议不可达、端口不可达等; \\
16位校验和字段包括整个ICMP报文, 即包括ICMP首部和数据区域。 \\
首部中的剩余4个字节在每种类型的报文中有特殊的定义

ICMP主要功能:

• 差错检查: 查询和相应某些信息

• 错误报告: ICMP目的不可达 (无法访问目标网络)

ICMP协议的封装:

传输层

TCP协议

TCP报文段:

源端	源端口号 (16) 49152-65535						目标端口号 (16) 0-1023	
序号 (32)								
确认号 (32)								
首部长度 (4)	保留 (6)	U R G	A C K	P S H	R S T	S Y N	F I N	窗口大小(16)
校验和 (16)						紧急指针 (16)		
选项								

• 端口: 传输层与应用层的服务接口

• 序号Seq: 发送端为每个字节进行编号, 便于接收端正确重组

• 确认号Ack: 用于确认发送端的信息

• 首部长度: 确定首部数据结构的字节长度

• 保留:目前未被使用,用于今后拓展

• 窗口大小: 用来控制本地可接受数据段的数目, 此值大小可变化, 流量控制机制依靠此属性大小实现

• 紧急比特URB: 当URB=1有效,告诉此报文段有紧急数据,尽快发送

• 确认比特ACK: 当ACK=1有效,用于确认发送方的数据

• 推送比特PSH:接收到PSH=1的报文则尽快交付给应用程序,而非等到缓存填满再交付

• 复位比特RST: RST=1时表明TCP出现严重差错(如主机崩溃等),必须释放连接,重新建立连接

• 同步比特SYN: SYN=1表明这是一个连接请求或连接接受报文(建立连接)

• 终止比特FIN: FIN=1用于释放一个连接,表明发送端数据发送完毕(终止连接) TCP端口号与常用网络服务关系

协议	端口号
FTP	21、20
HTTP	80
SSH	22
Telnet	23
SMTP	25

TCP的建立连接过程需要进行"三次握手":

