Project C Project

Charlie Windolf

Contents

1	Probability Theory		
	1.1	Set Theory	2
	1.2	Basics of Probability Theory	3
	1.3	Conditional Probability and Independence	4
	1.4	Random Variables	5
	1.5	Distribution Functions	5
	1.6	Important examples	6
2		nsformations and Expectations	7
	2.1	Distributions of Functions of a Random Variable	7

Chapter 1

Probability Theory

Fix a sample space *S* and for all $A \subset S$ define $A^C = S \setminus A$.

1.1 Set Theory

Theorem 1.1.1 (Set arithmetic). *Set intersection* \cup *and union* \cap *are commutative, associative, and distributive, i.e.*

• (Commutativity)

$$A \cup B = B \cup A,$$

$$A \cap B = B \cap A.$$

• (Associativity)

$$A \cup (B \cup C) = (A \cup B) \cup C,$$

$$A \cap (B \cap C) = (A \cap B) \cap C,$$

• (Distributivity)

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

• (De Morgan)

$$(A \cup B)^C = A^C \cap B^C,$$

$$(A \cap B)^C = A^C \cup B^C.$$

De Morgan's laws extend to arbitrary unions and intersections. Actually, by definition of set membership, all of the above also extend to arbitrary unions and intersections.

Definition 1.1.1 (Disjoint events, partition). $A_1, A_2, ...$ are *pairwise disjoint* if for all $i \neq j$, $A_i \cap A_j = \emptyset$. If $\{A_i\}_{i \in I}$ are pairwise disjoint and $\bigcup_{i \in I} A_i = S$, then $\{A_i\}$ are said to form a *partition* of S.

1.2 Basics of Probability Theory

Definition 1.2.1 (σ -algebra). A collection \mathcal{B} of subsets of S is called a σ -algebra if

- a. $\emptyset \in \mathcal{B}$,
- b. Closed under complement: $A \in \mathcal{B} \implies A^C \in \mathcal{B}$,
- c. Closed under countable union: $A_1, A_2, \dots \in \mathcal{B} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{B}$.

Definition 1.2.2 (Borel algebra). The Borel algebra is the smallest σ -algebra containing all open sets. We'll use $\mathcal{B}_{\mathbb{R}}$ to denote the Borel algebra on the reals.

Note that (a.,b.) $\implies S = \varnothing^C \in \mathcal{B}$, and by De Morgan and (c.), \mathcal{B} is also closed under countable intersections. A set S together with a σ -algebra \mathcal{B} is called a *measurable space*.

Definition 1.2.3 (Probability measure). Given a measurable space (S, \mathcal{B}) , a *probability measure* is a set function $P : \mathcal{B} \to \mathbb{R}$ such that

- 1. $P(A) \ge 0$ for all A,
- 2. P(S) = 1,
- 3. For $A_1, A_2, ...$ pairwise disjoint, $P(\bigcup_{1}^{\infty} A_i) = \sum_{1}^{\infty} P(A_i)$.

Axiom of Continuity. If $A_1 \supset A_2 \supset ...$ and $\bigcap_n A_n = \emptyset$, then $P(A_n) \to 0$.

As shown in an exercise, continuity combined with the finite union property imply the countable union property.

Proposition 1.2.1 (Basic properties of probability measures). Let (S, \mathcal{B}, P) be a probability space and A a measurable set. Then,

- a. $P(\emptyset) = 0$,
- b. $P(A) \le 1$,
- c. $P(A^C) = 1 P(A)$,
- d. $P(B \cap A^C) = P(B) P(B \cap A)$,
- e. $P(A \cup B) = P(A) + P(B) P(A \cap B)$, which weakens to $P(A \cap B) \ge P(A) + P(B) 1$ (Bonferroni),
- f. $A \subset B \implies P(A) \leq P(B)$.

Further,

- g. $P(A) = \sum_{i=1}^{\infty} P(A \cap C_i)$ for any partition $\{C_i\}$.
- h. $P(\bigcup_{1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$ for any $\{A_i\} \subset \mathcal{B}$ (Boole).

Note (On counting).

• Recall that the number of independent choices from m collections of sizes n_1, \dots, n_m is $n_1 \times \dots \times n_m$.

- How many ways are there to sample k objects from a collection of size
 n? Well, it depends on the sampling method:
 - Ordered, with replacement: n^k .
 - Ordered, without replacement:

$$\frac{n!}{(n-k)!} = n \times (n-1) \times \dots \times (n-k+1).$$

- *Unordered*, without replacement:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n}{k} \times \frac{n-1}{k-1} \times \dots \times \frac{n-k+1}{1}.$$

- *Unordered, with replacement*, aka *stars and bars*: since we're putting k balls into n bins, we are equivalently arranging n-1 bars and k stars. So, there are k+n-1 total slots, and we want to choose k of them for the stars, putting us in the previous case:

$$\frac{(k+n-1)!}{k!(n-1)!} = \binom{k+n-1}{k}.$$

1.3 Conditional Probability and Independence

Definition 1.3.1 (Conditional probability). Let A, B be measurable with P(B) > 0. Then the *conditional probability* $P(A \mid B)$ is given by

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Theorem 1.3.1 (Bayes' rule). For B measurable and $A_1, A_2, ...$ a partition of the sample space, we have

$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{\sum_{j=1}^{\infty} P(B \mid A_j)P(A_j)},$$

and in particular for any measurable A,

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}.$$

To obtain the latter, take $A = \bigcup_{i=1}^{\infty} A_i$.

Proposition 1.3.1 (Chain rule). For any events $A_1, ..., A_n$,

$$\begin{split} P(A_n \cap \dots \cap A_1) &= P(A_n \mid A_{n-1} \cap \dots \cap A_1) \times \dots \times P(A_2 \mid A_1) P(A_1) \\ &= \prod_{k=1}^n P\Big(A_k \mid \bigcap_{j=1}^{k-1} A_j\Big). \end{split}$$

This follows by straight induction from $P(A \cap B) = P(B \mid A)P(A)$.

Definition 1.3.2 (Independence). Two events A, B are said to be *independent*, written $A \perp \!\!\! \perp B$, if

$$P(A \cap B) = P(A)P(B)$$
.

Note: If $A \perp\!\!\!\perp B$, then also $A \perp\!\!\!\perp B^C$, $A^C \perp\!\!\!\!\perp B$, $A^C \perp\!\!\!\!\perp B^C$.

Definition 1.3.3 (Mutual independence). A collection of events $\{A_i\}_{i \in I}$ is said to be mutually independent if for all $J \subset I$,

$$P\Big(\bigcap_{j\in J} A_j\Big) = \prod_{j\in J} P(A_j).$$

1.4 Random Variables

Definition 1.4.1 (Measurable function). Let (S, A), (T, B) be measurable spaces and $f : A \to B$. Then we say that f is measurable if $f^{-1}(B) \in A$ for all $B \in \mathcal{B}$, i.e. preimages of measurable sets are measurable.

Note: The book ignores the measurability of random variables, but I wanted to write it down.

Definition 1.4.2 (Random variable). A random variable is a measurable function $X : (S, A) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definition 1.4.3 (Pushforward, induced probability measure). Let X be a random variable with range $\mathcal{X} = X(S)$. Then X induces a *pushforward* probability measure on \mathcal{X} , $P_X = P \circ X^{-1}$, i.e.

$$P_X(E) = P(X^{-1}(E)).$$

This will most often be written as $P(X \in E)$.

1.5 Distribution Functions

Definition 1.5.1 (Cumulative distribution function). The *cumulative distribution function* or *cdf* of a random variable X is

$$F_X(x) = P(X \le x).$$

Note: In the book, they have (to me) some problems with notation where $F_X(x) = P_X(X \le x)$. This does not make sense to me, since $X \le x$ lives in the sample space and is not a subset of $\mathbb R$ under any reasonable interpretation.

Definition 1.5.2 (cádlág). Continuous from the right, with limits existing from the left.

Theorem 1.5.1 (Properties of the .). F(x) is a cdf if and only if the following hold

- a. $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$,
- b. F(x) is nondecreasing,
- c. F(x) is right continuous.

Note that (b.) and (c.) imply cádlág. Actually that's not really important at this point?

Note: We say that a random variable with a continuous cdf is *continuous* and that one with a step function cdf is *discrete*.

Definition 1.5.3 (Identically distributed). Random variables X, Y are *identically distributed* if $P_X = P_Y$, i.e. if for all $A \in \mathcal{B}_{\mathbb{R}}$, $P(X \in A) = P(Y \in A)$.

Definition 1.5.4 (pdf, pmf). The definition they give is vague. But the point is these are positive functions that sum to 1 over the range of the random variable.

1.6 Important examples

• Binomial pmf: If $X \sim Bin(n, p)$, then

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Chapter 2

Transformations and Expectations

2.1 Distributions of Functions of a Random Variable