MATH462 Homework 0

Rodz Andrie Amor

119017609

Work on the following background problems. You don't have to turn in anything

1. Find all the solutions y(x) of the following first order differential equations:

- (a) y' + 5y = 0
- (b) $(1+x)y' = y, \quad x \ge 0$
- (c) $y' = \frac{1}{1+x^2}$
- $(d) y' = 2xy^2$
- (e) yy' = x

2. Find the solution of each of the following initial value problems

- (a) y' + 4y = 0, y(0) = 1
- (b) y'' + 4y = 0, y(0) = 1, y'(0) = -1
- (c) y'' 4y = 0, y(0) = 1, y'(0) = -1

3. Compute the second partial derivatives u_{xx} , u_{xt} , u_{tx} , u_{tt} for the following functions. Be sure to take note that $u_{xt} = u_{tx}$.

- (a) $u(x,t) = \arctan(xt)$
- (b) $u(x,t) = x \ln(xt)$
- (c) $u(x,t) = e^{x/t} + t\sin(x^2)$

4. Use the Multivariable Chain Rule to compute the following:

(a) Suppose f(x,y) is a function of two variables and g(t) is defined by the formula

$$g(t) = f(e^{-t}, t^2 + 1)$$

Express the derivative g'(t) in terms of the partial derivatives of f.

(b) Suppose f(x,y) is a function of two variables and g(s,t) is defined by the formula

$$g(s,t) = f(1+st,5t)$$

Express the partial derivatives $g_s(s,t)$ and $g_t(s,t)$ in terms of the partial derivatives of f.

- 5. Suppose u = f(x, y), but we would like to view u as a function of the polar coordinates (r, θ) .
 - (a) Apply the Multivariable Chain Rule to $u = f(r\cos, r\sin)$ to express $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial \theta}$ in terms of $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$. You should obtain

$$\frac{\partial u}{\partial r} = \cos\theta \frac{\partial u}{\partial x} + \sin\theta \frac{\partial u}{\partial y}$$

$$\frac{\partial u}{\partial \theta} = -r \sin \theta \frac{\partial u}{\partial x} + r \cos \frac{\partial u}{\partial y}$$

(b) Solve the system of equations in the previous part for $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ to show

$$\frac{\partial u}{\partial x} = \cos\theta \frac{\partial u}{\partial r} + -\frac{\sin\theta}{r} \frac{\partial u}{\partial \theta}$$

$$\frac{\partial u}{\partial y} = \sin \theta \frac{\partial u}{\partial r} + \frac{\cos \theta}{r} \frac{\partial u}{\partial \theta}$$

(c) Rewrite the four equations from the previous two parts by converting the coefficients in front of each partial derivative from (r, θ) to (x, y) using $x = r \cos \theta$ and $y = r \sin \theta$. For example,

$$\begin{aligned} \frac{\partial u}{\partial r} &= \cos \theta \frac{\partial u}{\partial x} + \sin \theta \frac{\partial u}{\partial y} \\ &= \frac{x}{r} \frac{\partial u}{\partial x} + \frac{y}{r} \frac{\partial u}{\partial y} \\ &= \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial u}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial u}{\partial y} \end{aligned}$$

6. Use the Fundamental Theorem of Calculus to evaluate the following derivatives.

(a)
$$\frac{d}{dx} \int_0^x e^{-s^2} ds$$

(b)
$$\frac{d}{dx} \int_0^{x^2} \sqrt{u} \cos(4u) du$$

7. Let c > 0 be a constant and let $\phi(w)$ be a twice-differentiable function of a single variable. Let

$$u(x,t) = \frac{1}{2} [\phi(x+ct) + \phi(x-ct)]$$

Evaluate u_{tt} and u_{xx} and show that u satisfies the wave equation: $u_{tt} = c^2 u_{xx}$. Additionally, show that u satisfies the two "initial conditions" $u(x,0) = \phi(x)$ and $u_t(x,0) = 0$.

8. Let c>0 be a constant and let $\psi(w)$ be a differentiable function of a single variable. Let

$$u(x,t) = \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(w)dw$$

Evaluate u_{tt} and u_{xx} and show that u satisfies the wave equation: $u_{tt} = c^2 u_{xx}$. Additionally, show that u satisfies the two "initial conditions" u(x,0) = 0 and $u_t(x,0) = \psi(x)$.

- 9. Let k > 0 be a positive constant.
 - (a) Show that for any real number r, the function $u(x,t) = e^{rx+kr^2t}$ is a solution of the diffusion equation (heat equation) $u_t = ku_{xx}$.
 - (b) Show that for any real number r, the functions $u(x,t) = e^{kr^2t}\cos(rx)$ and $u(x,t) = e^{-kr^2t}\sin(rx)$ are also solutions of $u_t = ku_{xx}$.
- 10. Let c > 0 be a positive constant.
 - (a) Show that for any real number r, the function $u(x,t) = e^{rx+crt}$ is a solution of the wave equation $u_{tt} = c^2 u_{xx}$.
 - (b) Show that for any real number r, the functions

$$u(x,t) = \sin(crt)\sin(rx)$$
, $\sin(crt)\cos(rx)$, $\cos(crt)\sin(rx)$, and $\cos(crt)\cos(rx)$ are also solutions of $u_{tt} = c^2u_{xx}$.

11. Let k and V be constants. Suppose that u(x,t) is a solution to the "heat equation with convection"

$$u_t - ku_{xx} + Vu_x = 0$$

Show that the function w(x,t) = u(x + Vt,t) is a solution to the (regular) heat equation. That is, show that $w_t = kw_{xx}$.