Teoria Kategorii

Weronika Jakimowicz

Lato 2024/25

Spis treści

1	Początek ko	ńca	1
	24.02.2025	Podstawowe definicje	1
	1.	Przykłady kategorii	1
	2.	Funktory	2
	25.02.2025	Produkty i koprodukty kategorii	5
	1.	O obiektach początkowych i końcowych słów kilka	5
	2.	(Ko)granice funktorów a (ko)produtky	6
	3.	Obiekty i kategorie monoidalne	9
	03.03.2025	Funktory dołączone	11
	1.	Motywacja abstrakcyjnego nonsensu	11
	2.	,	11
	3.	,	13
	10.03.2025	Funktory dołączone własności [wieczny WIP]	14
	1.		14
	2.	, , , , , , , , , , , , , , , , , , , ,	16
	3.	,	18
	17.03.2025		
	1.	Po co właściwie te monady?	
	2.	Definicja i przykłady monad	
	3.	1 6 7	23
	24.03.2025	3 3	
	1.	Kategoria Eilenberga-Moore'a	
	31.03.2025	we back in business	
	1.	Diagramy strunowe [string diagrams]	
	01 04 2025	humpty dumpty	30

03.03.2025 Funktory dołączone

1. Motywacja abstrakcyjnego nonsensu

Niech V będzie przestrzenią wektorową nad ciałem k, a B wybraną jej bazą. Dowolne odwzorowanie $B \to V$ możemy rozszerzyć na odwzorowanie liniowe $k[B] = V \to V$. To znaczy, mamy izomorfizm zbiorów

$$Hom(B, V) \cong Hom(V, V)$$
.

W języku abstrakcyjnego nonsensu możemy zdefiniować dwa funktory,

$$\mathsf{Set}(\mathsf{-,U}(\mathsf{-})):\mathsf{Set}^{\mathit{op}}\times\mathsf{Vect}^{\mathit{fin}}_k\to\mathsf{Set}$$

$$\mathsf{Vect}_k(k[-],-) : \mathsf{Set}^{op} \times \mathsf{Vect}_k^{\mathit{fin}} o \mathsf{Set},$$

gdzie $U: Vect_k^{fin} \to Set$ to funktor zapominający strukturę przestrzeni wektorowej, między którymi istnieją naturalne izomorfizmy.

$$Set(-, U(-)) \cong Vect_{k}(k[-], -)$$

Definicja 1.12: funktory dołączone

Niech $L: \mathcal{C} \to \mathcal{D}$ oraz $R: \mathcal{D} \to \mathcal{C}$ będą funktorami. Powiemy, że L jest **lewo dołączony** do funktora R, a R **prawo dołączony** do L, jeśli funktory

$$\mathcal{C}(-,R-),\mathcal{D}(L-,-):\mathcal{C}^{op}\times\mathcal{D}\to\mathsf{Set}$$

są naturalnie izomorficzne. Taką parę funktorów dołączonych oznaczamy $L \dashv R$.

2. Dużo przykładów funktorów dołączonych

1. Niech $R: Set_* \to Set$ będzie funktorem z kategorii zbiorów zbazowanych w kategorię zbiorów, który zapomina o punkcie bazowym. Chcemy teraz znaleźć funktor $L: Set \to Set_*$, który będzie do niego lewo dołączony. Niech $L(X) = X \cup \{X\}$ (lub bardziej obrazowo: $X \sqcup \{*\}$), gdzie y_0 poślemy na $\{X\}$, to znaczy doklejamy do X singleton i staje się on punktem wyróżnionym.

Oba funktory są różnowartościowe na obiektach, więc wystarczy przekonać się, że

$$\mathsf{Set}_*(\mathit{LX}, (\mathsf{Y}, \mathsf{y}_0)) \cong \mathsf{Set}(\mathsf{X}, \mathsf{R}(\mathsf{Y}, \mathsf{y}_0))$$

jest izomorfizmem. Dowolna funkcja $X \to Y$ rozszerza się przez posłanie $\{X\} \mapsto y_0$ na funkcję $(X, \{X\}) \to (Y, y_0)$.

2. Podobna sytuacja ma miejsce, kiedy szukamy lewo dołączony funktor do $R:Ring \rightarrow Rng$ między kategorią pierścieni z jedynką, a wszystkimi pierścieniami. Definiujemy funktor

$$L: Rng \rightarrow Ring$$

jako doklejenie \mathbb{Z} , $L(S)=\mathbb{Z}\oplus S$ z działaniem (n,s)(n',s')=(nn',ns'+ss'+n's), wtedy $(1,0_S)$ jest jedynka w nowym pierścieniu. Pozostaje przyjrzeć się co się dzieje z morfizmami, skoro

$$Rng(S, RT) \cong Ring(LS, T)$$
.

Dowolny morfizm $\varphi:S\to RT$ wystarczy, że trzyma element neutralny ze względu na dodawanie i jest addytywny. Możemy go rozszerzyć na morfizm, który całą pierwszą współrzędną $LS=\mathbb{Z}\oplus S$ posyła w $1_T\in T$, a drugą zgodnie z φ . W drugą stronę wystarczy obciąć morfizm do drugiej współrzędnej.

3. Niech $\Delta: Set \to Set \times Set$ będzie funktorem takim, że $\Delta(C) = (C, C)$. Zaczniemy od szukania funktora dołączonego do niego z prawej strony, czyli $R: Set \times Set \to Set$ takiego, że

$$\operatorname{\mathsf{Hom}}(X,R(Y,Z))\cong\operatorname{\mathsf{Hom}}(\Delta(X),(Y,Z)).$$

Od razu narzuca się $R(Y,Z)=Y\times Z$, czyli zlepiamy współrzędne $\Delta(X)$ w jedną. Przypomnijmy, że iloczyn kartezjański w kategorii zbiorów jest produktem.

Funktor lewo dołączony musi zatem spełniać

$$\operatorname{\mathsf{Hom}}(L(X,Y),Z)\cong\operatorname{\mathsf{Hom}}((X,Y),\Delta(Z)),$$

czyli dowolną funkcję $(X, Y) \to (Z, Z)$ musimy umieć zapisać jako funkcję z pojedynczego zbioru, którym będzie suma rozłączna $L(X, Y) = X \sqcup Y$, czyli koprodukt w kategorii zbiorów.

Historia funktora Δ uogalnia się na dowolną kategorię, w której są produkty i koprodukty:

koprodukt
$$\dashv \Delta \dashv \mathsf{produkt}$$

4. Ustalmy zbiór $Y \in Set_0$ i niech $R : Set \to Set$ będzie funktorem, który zbiorowi X przypisuje wszystkie funkcje z Y w ten zbiór, R(X) = Set(Y, X). Chcemy znaleźć funktor lewo dołączony $L : Set \to Set$ do R. Patrzymy na morfizmy i mamy

$$Set(L(X), Z) \cong Set(X, \underbrace{Set(Y, Z)}_{R(Z)})$$

zbiór po prawej to funkcje z X w funkcje z Y w Z. Można to przedstawić jako funkcje $X \times Y \to Z$, czyli $LX = X \times Y$.

Technika tłumaczenia funkcji o więcej niż jednym argumencie na sekwencję funkcji nazywamy *currying*.

5. Analogicznie jak w poprzednim przykładzie, niech R będzie pierścieniem (przemiennym z jedynką), W R-modułem i R funktorem $R:RMod\to RMod$ takim, że $R(U)=\mathrm{Hom}_R(W,U)$ będzie zbiorem homomorfizmów R-modułów. Funktorem lewo-dołączonym do R będzie wtedy $L(V)=V\otimes W$:

$$RMod(V, Hom_R(W, U)) \cong RMod(V \otimes W, U).$$

Uwaga: tensor produkt zwykle nie ma funktora lewo do siebie dołączonego.

6. Założmy, że kategoria \mathcal{C} ma produkty i ustalmy $X \in \mathcal{C}$. Rozważmy funktor $L: \mathcal{C} \to \mathcal{C}$, $L(Y) = Y \times X$. Jeśli kategoria \mathcal{C} posiada obiekty eksponencjalne, czyli wiemy jak uogólnić na nią przestrzeń funkcji $X \to Y$ (oznaczane Y^X), to funktorem prawo dołączonym do L jest właśnie funktor przypisujący obiektowi Y jego eksponens Y^X ,

$$C(Y, Z^X) \cong C(Y \times X, Z).$$

Przykładem takiej kategorii są przestrzenie "core-compact".

W ramach kontrprzykładu rozważmy funktor zapominania $U: FinGrp \to FinSet$, i załóżmy, że $L: FinSet \to FinGrp$ jest jego funktorem lewo dołączonym. Niech p będzie taką liczbą pierwszą, że p > |L(1)| (wystarczy, że są względnie pierwsze). Wtedy

$$FinSet(1, U(\mathbb{Z}_p)) \cong FinGrp(L(1), \mathbb{Z}_p)$$

gdzie po lewej zbiór ma $|\mathbb{Z}_p| = p$ różnych funkcji z singletona w zbiór elementów grupy \mathbb{Z}_p , a po prawej mamy jedynie trywialny morfizm, bo żaden element L(1) nie ma rzędu podzielnego przez p, czyli nie może przejść w żaden nietrywialny element \mathbb{Z}_p .

3. Druga definicja

Definicja 1.13: funktory dołączone (naturalne transformacje)

Rozważmy parę funktorów

$$\mathcal{C} \overset{\mathsf{L}}{\underset{\mathsf{R}}{\longleftrightarrow}} \mathcal{D}.$$

Powiemy, że L jest lewo dołączony do R i na odwrót, jeśli istnieją dwie natrualne transformacje

$$\varepsilon: \mathsf{LR} \implies 1_{\mathcal{D}} \quad \eta: 1_{\mathcal{C}} \implies \mathsf{RL}$$

takie, że komutują diagramy

 η nazywamy unit, a ε to counit.

17.03.2025 Kategoria Kleislego

A monad is just a monoid in the category of endofunctors, what's the problem?

1. Po co właściwie te monady?

W programowaniu monady są używane do modelowania "robienia czegoś więcej" jako efektu działania funkcji. W OCamlu (autorka notatek dostaje oczopląsu na widok Haskella) jest definiowana jako

```
module type Monad = sig
   type 'a t
   val return : 'a -> 'a t
   val bind : 'a t -> ('a -> 'b t) -> 'b t
end
```

Przykładem namacalnej monady jest tzw. monada Maybe, która opakowuje dane w pudełko, tym samym pozwalając zwracać pudełka puste.

Powiedzmy, że potrzebujemy znaleźć element maksymalny listy, czyli maxElem : int list -> int. Co, jeśli nasza lista jest pusta? Możemy opakować zwracaną wartość i zmienić ją w int option. Wtedy w wypadku pustej listy zwracamy None.

```
let maxElem (x : int list) : int option =
  match x with
| [] -> None
| x::xs ->
  match maxElem(xs) with
| None -> Some x
| Some y -> Some max(x, y)
```

Pojawia się kolejny problem: zmiana zwracanego typu z int na int option nie pozwala nam dodawać elementów maksymalnych z różnych list, ani (po napisaniu minElem) odjąć od elementu maksymalnego elementu minimalnego. Potrzebujemy więc w elegancki sposób zmienić również operacje arytmetyczne. Zacznijmy od zdefiniowania funkcji potrzebnych w monadzie.

```
type 'a t = a' option
let return (x : int) : int option =
   Some x
```

```
let bind (x : int option) (op : int -> int option) : int option =
  match x with
  | None -> None
  | Some a -> op a
```

Funkcja return nie robi nic poza opakowaniem int w int option, natomiast funkcja bind wyjmuje int z pudełka i dopiero wtedy nakłada funkcję i pakuje z powrotem do pudła. Dla przykładu napiszemy tylko nową implementację dodawania, która będzie teraz pobierać dwa argumenty typu int option i zwracać int option.

```
let ( + ) : (x : int option) (y : int option) : int option =
  bind ( x, fun a -> bind(y, fun b -> Some(a+b)) )
```

Możemy teraz odpalić

```
maxElem([1; 4; 45]) + maxElem([44; -10; 9])
```

i na konsoli zobaczymy Some 69.

2. Definicja i przykłady monad

Definicja 1.20: monada

Monada na kategorii C składa się z

- endofunktora $T: \mathcal{C} \to \mathcal{C}$,
- naturalnej transformacji $\eta: 1_{\mathcal{C}} \to T$ (unit z funktorów dołączonych),
- naturalnej transformacji $\mu:T^2\to T$, która definiuje mnożenie na funktorze T takich, że poniższe diagramy komutują w kategorii $\mathcal{C}^\mathcal{C}$

Diagramy te są bardzo podobne do tych, które pojawiły się przy definiowaniu obiektu monoidalnego [1.11]. Nie jest to przypadkiem: monady są obiektem monoidalnym w kategorii endofunktorów $\mathcal{C}^{\mathcal{C}}$ z binarnym działaniem $\mathcal{C}^{\mathcal{C}} \times \mathcal{C}^{\mathcal{C}} \to \mathcal{C}^{\mathcal{C}}$ będącym składaniem funktorów.

Przykłady

1. Rozważmy parę funktorów sprzężonych znaną z poprzednich wykładów

Set
$$\stackrel{F}{\longleftrightarrow} Ab$$

gdzie F to funktor rozpinający wolną grupę abelową o generatorach równych zbiorowi, a U zapomina strukturę grupy. Niech $\eta:1_{Set} \implies UF$ oraz $\varepsilon:FY \implies 1_{Ab}$ będą unitem oraz counitem z definicji gunktorów sprzężonych.

Widzimy tutaj endofunktor UF oraz naturalną transformację η jak z definicji monady. Potrzebujemy jeszcze mnożenia na UF.

Naturalne przekształcenie $\varepsilon: FU \implies 1_{Ab}$ na dowolnej grupie A jest homomorfizmem ewaluującym formalną sumę jej elementów (obiekt z FUA) jako właściwy element grupy A. Możemy ten homomorfizm wyrazić jako funkcję, podkładając funktory U i F z odpowiednich stron, tzn. rozważając złożenie

$$U\varepsilon F: UFUF \rightarrow UF.$$

Jest to występujący w definicji monady sposób mnożenia funktorów.

- 2. W przykładzie z funkcją maxElem, endofunktorem T jest zmiana typów int -> int option. Naturalnym przekształceniem $\eta:1_{\mathcal{C}}\to T$ jest funkcja return, a funkcja bind mówi nam jak nałożyć funkcję int -> int option na element typu int option, czyli element poddany już działaniu endofunktora T.
- 3. Rozważmy kategorię Set i funktor $T: Set \to Set$, $T(X) = X \cup \{X\}$. Przypomnijmy, że jest to funktor będący złożeniem zapominającego funktora z kategorii zbiorów z wyróżnionym punktem z funktorem do niego dołączonym. $\eta: 1_{Set} \to T$ posyła elementy X w elementy X, tj. singleton $\{X\}$ nie jest w obrazie. $\mu_X: T^2X \to TX$ pośle elementy X w X, a zbiory $\{X\}$ oraz $\{X \cup \{X\}$ w singleton $\{X\}$. Czy widzisz podobieństwo z przykładem wyżej?

Lemat 1.21

Każda para $L \vdash R$ funktorów sprzężonych zadaje monadę, gdzie

- RL jest endofunktorem T,
- unit z definicji pary funktorów sprzężonych $\eta:1_{\mathcal{C}}\to \mathit{RL}$ jest unitem z definicji monady,
- counit z nałożonymi funktorami, $R \varepsilon L : RLRL \implies RL$ jest mnożeniem $\mu : T^2 \to T$.

3. Konstruowanie funktorów sprzężonych z monad

Definicja 1.22

Niech $\mathcal C$ będzie kategorią z monadą (T, η, μ) . Wtedy **kategorią Kleislego**, oznaczane $\mathcal C_T$, na $\mathcal C$ nazwiemy kategorię której

- obiekty są obiektami z $\mathcal C$
- morfizmy z A do B w C_T , oznaczane (niekoniecznie konsekwentnie) $A \rightsquigarrow B$, jest morfizmem $A \rightarrow TB$ w kategorii C.

Identyczność $id_A:A\leadsto A$ definiujemy, posiłkując się monadą, jako $\eta_A:A\to TA$. Złożenie morfizmów $f:A\leadsto B$ oraz $g:B\leadsto C$ to z kolei

$$A \stackrel{f}{\longrightarrow} TB \stackrel{Tg}{\longrightarrow} T^2C \stackrel{\mu_C}{\longrightarrow} TC$$

Lemat 1.23

Składanie morfizmów w kategorii C_T jest łączne.

Dowód

Niech $f: A \leadsto B$, $g: B \leadsto C$ oraz $h: C \leadsto D$ będą morfizmami w kategorii \mathcal{C}_T . Chcemy pokazać, że $h \circ (g \circ f) = (h \circ g) \circ f$. Z definicji wiemy, że $h \circ g = \mu_D \circ Th \circ g$, ale ponieważ podkładamy pod to f, to musimy nałożyć na niego funktor f. Mamy diagram

Punktem zapalnym jest? w diagramie. Jeśli ten prostokąt komutuje, to koniec.

Z naturalności $\mu: \mathcal{T}^2 o \mathcal{T}$ dostajemy komutujący diagram

$$T^{2}C \xrightarrow{T^{2}h} T^{3}D = T^{2}(TD)$$

$$\downarrow^{\mu_{TD}}$$

$$TC \xrightarrow{Th} T(TD) = T^{2}D$$

czyli

$$\mu_{\mathsf{TD}}\mathsf{T}^2\mathsf{h}=\mathsf{TH}\mu_{\mathsf{C}}$$
,

co daje nam równość przejścia po pomarańczowych strzałkach na górze (prawa strona równości) i na dole (lewa strona równości).

Przykład

Dla monady $T: Set \to Set$, $T(X) = X \cup \{X\}$ z przykładów wyżej, kategoria Kleisliego zawiera jako obiekty wszystkie zbiory. Morfizmy $A \leadsto B$ posyłają część elementów A w "kosmos", czyli singleton $\{B\}$. Są to funkcje częsciowe! Czyli $Set_T = Set^\delta$ jest kategorią zbiorów z funkcjami częsciowymi.

24.03.2025 Kategoria algebr i Eilenberga-Moore'a

tutaj kiedyś będzie wzmianka o modułach

Definicja 1.24: kategoria algebr -

Niech (T, η, μ) będzie monadą na kategorii C. Definiujemy wtedy **kateogrię algebr** na T, oznaczane \mathfrak{alg}_T , jako kategorię której

obiekty to pary (θ, c) , gdzie $\theta : Tc \rightarrow c$

morfizmy $\mathfrak{alg}_T((\theta,c),(\theta',c'))$ to odwzorowania $f\in\mathcal{C}(c,c')$ takie, że komutuje diagram

$$\begin{array}{ccc}
Tc & \xrightarrow{Tf} & Tc' \\
\downarrow \theta & & \downarrow \theta' \\
c & \xrightarrow{f} & c'
\end{array}$$

Naturalnie, pytamy o istnienie obiektów początkowych i końcowych w tej kategorii.

Przykład

Niech $T\equiv c$ będzie funktorem stałym. Wtedy (θ,x) jest obiektem początkowym, jeśli dla każdego (ψ,y) jest dokładnie jeden komutujący diagram

$$Tx = c \xrightarrow{Tf = id_c} c = Ty$$

$$\psi$$

$$x \xrightarrow{f} y$$

czyli $\psi = f \circ \theta$. Możemy wywnioskować, że $(\theta, x) = (id_c, c)$ i wtedy dla każdego innego (ψ, y) będzie jedyny morfizm $f = \psi$ spełniający diagram.

1. Kategoria Eilenberga-Moore'a

Definicja 1.25: Eilenberg-Moore

Kategoria **Eilenberga-Moore'a** dla T (kategorię T-algebra), oznaczaną jako $\mathcal{C}^T \subseteq \mathfrak{alg}_T$, jest podkategorią \mathfrak{alg}_T w której

obiekty to pary (θ, a) , $a \in \mathcal{C}$, $\theta : Ta \to a$ dla których komutują diagramy w \mathcal{C}

morfizmy
$$f:(\theta,a)\to(\varphi,b)$$
 są mapami $f:a\to b$ w $\mathcal C$ takie, że komutuje diagram $Ta\stackrel{Tf}{\longrightarrow} Tb$

$$\begin{array}{ccc}
\mathsf{Ta} & \xrightarrow{\mathsf{Tf}} & \mathsf{Tb} \\
\theta \downarrow & & \downarrow \varphi \\
\mathsf{a} & \xrightarrow{\mathsf{f}} & \mathsf{b}
\end{array}$$

Chcemy teraz pokazać, że dla dowolnej monady możemy stworzyć parę funktorów sprzężonych.

Lemat 1.26

Istnieją funktory

$$\mathcal{C} \xrightarrow{\mathsf{L}} \mathcal{C}_{\mathsf{T}} \xrightarrow{\mathsf{J}} \mathcal{C}^{\mathsf{T}} \xrightarrow{\mathsf{R}} \mathcal{C}_{\mathsf{T}}$$

takie, że RJL = T.

Dowód

Zaczynamy od zdefiniowania wszystkich funktorów.

$$L: \mathcal{C} o \mathcal{C}_T$$
 $L(c) = c$, $L(f) = \eta \circ f$

Wypada sprawdzić, czy $\eta\circ (gf)=L(gf)=L(g)L(f)=(\eta\circ g)\circ (\eta\circ f)$, czyli czy komutuje największy prostokąt w diagramie

$$J: \mathcal{C}_T \to \mathcal{C}^T$$

$$J(c) = (Tc, \mu \circ \eta), \quad J(f: c \to Tc') = \mu \circ Tf: Tc \to Tc'$$

$$R: \mathcal{C}^T \to \mathcal{C}$$

$$R(c, \theta) = c, \quad R(f: (c, \theta) \to (c', \theta')) = f: c \to c'$$

Tutaj składanie działa bez problemów, bo f było morfizmem w C.

Teraz pokażemy, że RJL = T. Dla obiektów mamy:

$$RJL(c) = RJ(c) = R(Tc) = Tc$$

a dla dowolnego morfizmu $f: c \rightarrow c'$

$$RJL(f) = RJ(\eta \circ f) = R(\mu \circ T(\eta \circ f)) = R(\mu \circ T(\eta) \circ Tf) = R(1_T \circ Tf) = R(Tf) = Tf.$$

Pozostawiam ten dowód jako pomnik dla oryginalnego stwierdzenia, że RJ i L oraz R i JL to dwie pary funktorów dołączonych.

Twierdzenie 1.27

Dla dowolnej pary funktorów sprzężonych $\mathcal{C} \overset{L}{\rightleftharpoons} \mathcal{D}$ indukujących monadę (T, η, μ) istnieją jedyne funktory J i K

takie, że prawy i lewy trójkąt komutuje.

Dowód

Emily Proposition 5.2.12.

31.03.2025 we back in business

Przykłady

- 1. $F: Set \rightarrow Monoid$, $U: Monoid \rightarrow Set$ -> wolny monoid \iff słowa z konkatenacją
 - Set \xrightarrow{T} Set zbiór idzie w listę, $\eta:x\mapsto [x]$ idzie w jednoelementową listę, μ to spłaszczanie list
- 2. $F: Set \to AbMonoid$ przedłużamy tutaj $X \mapsto \{f: X \to \mathbb{N}, f=0 \text{ skończenie wiele razy}\}, \eta: x \to \delta_X$ (delta diraca), $\mu(\sum_n m_n \sum_x n_x x) = \sum_n (\sum_n m_n n_x) x$
- 3. $Vect \xrightarrow{F} AbAlg_k$, $V \mapsto \oplus S^n V$ podprzestrzeń $V^{\otimes n}$ niezmiennicza na S_n . η jest włożeniem
- 4. $F: Vect \rightarrow Alg_k, V \mapsto \oplus V^{\otimes n}$

1. Diagramy strunowe [string diagrams]

Do tej pory rysowaliśmy kropki jako kategorie, a strzałki jako funktory. Zmieniamy teraz konwencję i piszemy funktory jako kropki oraz kategorie jako kreski.

 \mathcal{E} \mathcal{D} \mathcal{C}

dokończyć rysunek wyżej

Niech teraz $L \vdash R$ będzie parą funktorów pochodnych i $\eta : 1_{\mathcal{C}} \implies RL$.

Diagramy czytamy od dołu do góry i od lewej do prawej.

Tutaj mamy narysowany unit

 $(\varepsilon 1_L)(1_L \eta)$ to z kolei

zdjęcia + obrazki dla monady

maybe, reader monad