Inference of Latent Neural Field Intensities from Spatiotemporal Point-Process Observations

Michael Rule¹, David Schnoerr¹, Evelyne Sernagor², Matthias Hennig¹, Guido Sanguinetti¹ ²Institute of Neuroscience, Newcastle University

¹School of Informatics, University of Edinburgh

1. 3-State model for waves in excitable medium

Three-state neural field model, Buice & Cowan '09 (1): complex wave patterns without inhibitory cells.

Figure 1. Quiescent-Active-Refractory (QAR) model of neural waves. The Q-A-R states (1) correspond to the Critical-Active-Stable retinal wave model of Hennig et al. '09 (2) and the Susceptible-Infected-Recovered model in epidemiology.

3 states

2.

- Q Quiescent
- A Active
- R Refractory
- ρ_a A to R transition $\blacksquare \rightarrow \blacksquare$ • ρ_r R to Q transition $\blacksquare \rightarrow \blacksquare$

• ρ_e Active cells excite Quiescent \longrightarrow

• ρ_q Spontaneous spiking; Q to A \longrightarrow

Mean-field dynamics (exclude spontaneous $Q \rightarrow A$)

4 rate parameters

$$\dot{Q} = -\rho_e A Q + \rho_r R$$

$$\dot{A} = -\rho_e A + \rho_e A Q$$

$$A = -\rho_a A + \rho_e A Q$$

 $R = -\rho_r R + \rho_a A$

Spontaneous $Q \rightarrow A$ sampled as shot noise (Poisson).

Spatial system

Let fields depend on coordinates (x, y) and define a lateral excitation kernel k with radius σ_i (Nonlocal interactions)

Figure 2. 3-state model can exhibit self-organized wave phenomena. Simulated on a $[0,1]^2$ unit interval using 20x20 grid, σ =0.04, ρ_a =0.1, ρ_r =10⁻³, ρ_e =0.4. Spontaneous excitation rate ρ_q =0.05. A finite threshold of 10^{-3} avoids widespread spontaneous excitation. Colors: Quiescent Active Refractory

3. Recover latent fields from spikes: Bayesian filtering

Figure 3. Hidden Markov model for latent neural **fields.** For all time-points T, state transition parameters $\theta = (\rho_q, \rho_a, \rho_r, \rho_e, \sigma)$ dictate the evolution of a multivariate Gaussian model μ , Σ of latent fields Q, A, R. Observation model β is a linear map with adjustable gain and threshold, and reflects how field A couples to firing intensity λ . Pointprocess observations (spikes) y are Poisson with intensity λ .

Predict state:

- Multivariate Gaussian state-space model $\mu = (Q, A, R)$, covariance Σ
- ullet Integrate forward μ mean-field equations
- ullet Covariance Σ evolves according to the system Jacobian J
- Similar to continuous-time extended Kalman filter $\dot{\Sigma} = J\Sigma + \Sigma J^T + \Sigma_{\text{noise}}$

Measurement:

- Refine estimate using spiking observations
- Spikes: Poisson events with intensity $\lambda = mA + b$
- Posterior is proportional to product of predicted state and data likelihood
- Laplace approximation (gradient descent; constrain to positive field intensities)

Test case: developmental retinal waves

Bipolar and amacrine cells (generate waves)

Retinal Ganglion Cells

Multi-electrode array (spiking observations)

Figure 4. Illustration of inner retina and recording setup. Spontaneous retinal waves are generated in a layer of laterally interconnected amacrine cells. These waves activate Retinal Ganglion Cells (RGCs), the output cells of the retina. RGC electrical activity is recorded via a 64×64 multi-electrode array with 50 μ m spacing.

High-density multielectrode array recordings of retinal waves

- 4096-electrode arrays (3)
- Recordings courtesy of the Sernagor lab (4, 5)
- Spontaneous waves during development (6)
- Small events divide retina into refractory patches
- Rare large events sweep across the retina
- Self-organized structure at multiple scales (2)

Figure 5. 4096-electrode array. Left: Array (3). Right: Spikes recorded in a single session.

6.

Figure 6. Example wave event, spike histograms in one-second intervals. Mouse retina, postnatal day 11.

5. In practice

Numerically challenging:

- 3 states, 10×10 grid \rightarrow 300-D covariance matrix (4.5k entries)
- Avoid inverses: work with inverse covariance (precision) matrix
- Improve stability: Cholesky factorization, triangular system solvers
- Regularize state variance

Performance e.g.:

- 37 s to filter 25 minutes of retinal data, $\Delta t=1$ s, \sim 40 samples/s
- 10×10 grid; Matlab implementation, 2.9 GHz 8-core Xeon CPU
- Complexity dominated by matrix multiplication

Fluctuations:

- A model of fluctuations is needed to model uncertainty in state estimation
- Use a linear noise approximation of the original discrete system

$$\Sigma_{\text{noise}} = \begin{bmatrix} \rho_e A Q + \rho_r R & -\rho_e A Q & -\rho_r R \\ -\rho_e A Q & \rho_i A + \rho_e A Q & -\rho_i A \\ -\rho_r R & -\rho_i A & \rho_r R + \rho_i A \end{bmatrix}$$

Bayesian filtering recovers latent states

Figure 7. Filtering recovers retinal wave states. Frames shown every 48 seconds; postnatal day 10.

Main points

- Spatiotemporal neural phenomena are complex: excitability, nonlinearity, refractoriness
- Previous spatiotemporal point-process inference procedures unsuitable (simple, linear)
- Three-state neural field model is suitable for inference
- Bayesian filtering recovers latent states, correlation structure, and model likelihood
- Future: optimize for fast parameter inference and apply to basic neuroscience

- [1] Buice MA et al. Statistical mechanics of the neocortex. Progress in Biophysics and Molecular Biology, 99(2-3):53-86, feb 2009. ISSN 00796107. doi: 10.1016/j.pbiomolbio.2009.07.003.
- [2] Hennig MH, et al. Early-Stage Waves in the Retinal Network Emerge Close to a Critical State Transition between Local and Global Functional Connectivity. Journal of Neuroscience, 29(4), 2009.
- [3] Imfeld K, et al. Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Transactions on biomedical engineering, 55(8):2064-2073, 2008.
- [4] Muthmann JO, et al. Spike detection for large neural populations using high density multielectrode arrays. Frontiers in neuroinformatics, 9:28, 2015.

[5] Hilgen G, et al. Unsupervised spike sorting for

- large-scale, high-density multielectrode arrays. Cell Reports, 18(10):2521–2532, 2017.
- [6] Maccione A, et al. Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse. The Journal of Physiology, 592(7):1545–1563, apr 2014. ISSN 00223751. doi: 10.1113/jphysiol.2013.262840.