Email: klaus-robert.mueller@tu-berlin.de

Week 2: Matrices

Exercise 1

1. A mapping $f: V \to W$ between two real vector spaces V and W is linear if				
	$\square \ f(\lambda \boldsymbol{x} + \mu \boldsymbol{y}) = \lambda f(\boldsymbol{x}) + \mu f(\boldsymbol{y}) \text{ for all } \boldsymbol{x}, \boldsymbol{y} \in V, \lambda, \mu \in \mathbb{R}.$			
	\Box f is a matrix.			
	\square the image of f is a vector subspace of W .			
2.	$\left[\begin{array}{cc} 1 & -1 \\ 2 & 0 \end{array}\right] \cdot \left[\begin{array}{c} 2 \\ 1 \end{array}\right] =$			
	$\Box \begin{bmatrix} 1 \\ 4 \end{bmatrix}$	$\square \left[egin{array}{c} 4 \\ -2 \end{array} ight]$	$\square \left[egin{array}{c} 0 \ 4 \end{array} ight]$	
3. For which of the following 3×3 matrices A does it hold that $AB = BA = B$ for all $B \in \mathbb{R}^{3 \times 3}$:				
	$\Box \ \ A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$	$\Box \ A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$	$\Box \ A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right]$	
4. Let $A, B \in \mathbb{R}^{2 \times 3}$ be 2×3 matrices. Then				
	$\Box \ A + B \in \mathbb{R}^{2 \times 3}$	$\Box \ A + B \in \mathbb{R}^{4 \times 6}$	$\Box \ A + B \in \mathbb{R}^{4 \times 9}$	
5. For $A \in \mathbb{R}^{m \times n}$ it holds that				
	\square A has m rows and n columns			
	\square A has n rows and m columns			
	\square The rows of A have length m and the columns of A have length n.			
6. Which of the following is <u>not</u> a property of matrix multiplication?				
	\square Associative property	$\hfill\Box$ Commutative property	\Box Distributive property	
7. For every square $n \times n$ matrix A it holds that				
	\square rank $A = n \Rightarrow A$ is invertible, but there also exist invertible A with rank $A \neq n$.			
	\square A is invertible \Rightarrow rank $A = n$, but there also exist A with rank $A = n$ which are not invertible.			
	\square rank $A = n \Leftrightarrow A$ is invertible			
8. Which of the following statements is <u>true</u> for all $A, B, C \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$?				
	$\Box \det(A+B) = \det A + \det B$			
	$\Box \det \lambda A = \lambda \det A$			
	$\Box \det(ABC) = \det A \det B \det C$			

 $\Box \ \det(A^{-1}BA) = \det A \det B \qquad \qquad \Box \ \det(A^{-1}BA) = \det A \qquad \qquad \Box \ \det(A^{-1}BA) = \det B$

9. Which of the following statements is true for all invertible $A, B \in \mathbb{R}^{n \times n}$?

10.
$$\det \begin{bmatrix} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{bmatrix} =$$

$$\Box 0 \qquad \Box \lambda$$

Exercise 2

Describe in words or draw the mappings represented by the following matrices. Compute the determinants of the matrices.

1.
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$$
 2. $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$

Exercise 3

Let $R \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, i.e., $RR^{\top} = R^{\top}R = I$. Show: Multiplication with R is invariant to the scalar product of two vectors, i.e., for all $x, y \in \mathbb{R}^n$ it holds that

$$\langle R\boldsymbol{x}, R\boldsymbol{y} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle$$
.

Exercise 4

Show that any square matrix M can be written as the sum of a symmetric matrix M_s and an anti-symmetric matrix M_a , i.e., $M = M_s + M_a$ with $M_s^{\top} = M_s$ and $M_a^{\top} = -M_a$ Hint: Construct a symmetric and an anti-symmetric matrix based on M. First express M^{\top} with respect to M_s and M_a . Then express M_s with respect to M and M^{\top} .

Exercise 5

We have seen last week that the orthogonal projection onto a vector subspace is a linear transformation. The goal of this exercise is to find the matrix representation of an orthogonal projection. For this we consider \mathbb{R}^n with standard scalar product. Let \mathcal{U} be an r-dimensional vector subspace of \mathbb{R}^n with basis $\{u_1,\ldots,u_r\}\subseteq\mathbb{R}^n$. Let $U:=(u_1,\ldots,u_r)\in\mathbb{R}^{n\times r}$ be the matrix whose columns are the u_i . Because $u_1,\ldots,u_r\in\mathbb{R}^n$ form a basis, they must be linearly independent, but they do not need to be orthonormal (as in exercise 4 from last week). Let $v\in\mathbb{R}^n$ be an arbitrary vector and Pv its orthogonal projection onto \mathcal{U} . The goal of this exercise is to compute P from U. For this we first establish that Pv has the following two properties:

• Because Pv is an orthogonal projection, v - Pv is perpendicular to u_1, \ldots, u_r , i.e.,

$$U^{\top}(P\boldsymbol{v} - \boldsymbol{v}) = \mathbf{0} \tag{1}$$

• Because Pv is a projection onto \mathcal{U} , Pv is contained in \mathcal{U} , i.e., there exist $c_1, \ldots, c_r \in \mathbb{R}$ such that $Pv = c_1 u_1 + \ldots + c_r u_r$. If we define $\mathbf{c} := (c_1, \ldots, c_r)^{\top}$, we can express this as follows:

$$P\mathbf{v} = U\mathbf{c} \tag{2}$$

Using this knowledge complete the following exercises:

- 1. Consider your drawing from last week which shows the vector $\mathbf{v} = \begin{bmatrix} 25 \\ 0 \end{bmatrix}$ and its orthogonal projection $P\mathbf{v} = \begin{bmatrix} 9 \\ 12 \end{bmatrix}$ onto the subspace spanned by the vector $\mathbf{u}_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Visualize equations (1) and (2) in your drawing.
- 2. Based on equations (1) and (2) show that

$$\mathbf{c} = (U^{\top}U)^{-1}U^{\top}\boldsymbol{v}.$$

3. Then, show that this implies

$$P = U(U^{\top}U)^{-1}U^{\top}.$$

- 4. What is the dimensionality of $U^{\top}U$ and P?
- 5. Compute the determinant of P (for r < n).
- 6. Does the assumption that $u_1, \ldots, u_r \in \mathbb{R}^n$ form an orthonormal basis of \mathcal{U} simplify the computation of P?
- 7. Construct the 2×2 matrix which describes the orthogonal projection onto the vector subspace spanned by $\mathbf{u}_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$.