Lab Objective

運用 Arduino 實做一個數位示波器,嘗試各種 sampling rate、Quantization bit,並比較其差異然後討論造成原因。

Design Implementation

訊號傳遞的過程如下圖。首先,我們透過 Picoscope 產生 100Hz 的正弦波,並透過 Arduino 內部的 analogRead 去做取樣,再透過 serial communication 將取樣到的資料傳入電腦中,運用 MATLAB 將量測到的波形畫出來以及進行 FFT 將其 frequency domain 畫出來。

接著我們展示在各種不同的 sampling rate(fs)以及不同 Quantization Bit 下的量測結果:

Part 1. Different Sampling Rate (fs)

我們可以透過調整 Arduino 程式碼中 Loop 的週期來調整 sampling rate(fs)。根據 Sampling Theorem,取樣後要不產生 aliasing \leftrightarrow 2 * $f_{max} < fs$,因此理論上來說,這個部份我們應該要在 fs < 2 * 100 = 200Hz 的 case 中觀察到 aliasing。量測結果如下:

A. fs = 500Hz

從 frequency domain 我們可以很清楚的看出他是 100Hz 的正弦波(低頻多一個 inpulse 的原因會在下一個部分做討論,這邊先忽略)。另一方面,從波形圖也可以看出 他是 100Hz,我們可以很清楚的看到每個波峰之間間隔 0.01s -> 100Hz

2

B. fs = 200Hz

這個 case 也沒有發生 aliasing,但也可以發先這是一個十分極限的 case,我們<mark>取樣到的點基本上就是正弦波的波峰以及波谷。從 frequency domain</mark> 也可以看出我們取樣的正弦波 100Hz。

3

C. fs = 100Hz

這個 case 就發生了 aliasing,而且相當嚴重,從波形圖和頻譜可以看出幾乎變成 DC 訊號。

根據下圖·在取樣率為 100Hz 的情況下·原先在頻譜上 100Hz 和-100Hz 處的 impulse 會被移到 0Hz 附近·因此才會產生取樣後類似 DC 訊號的情形。

D. fs = 80Hz

根據我們前面的推導,這個 case 應該也會發生 aliasing,而且他應該會變成一個-80 + 100 = 20Hz 的正弦波。而量測結果也如我們預期,頻譜上的 impulse 在 20 和-20Hz, 從啵啵行也可以看出波峰間約間隔 0.05s。

EE3662 DSP Lab 5

Part 2. Different Quantization Bit

接著我們觀察不同數量的 Quantization Bit 在 fs = 500Hz(no aliasing case)下造成的影響。我們先解釋一下 Quantization 會造成的影響。如下圖所示,Quantization 就是將我們可以容忍的區域進行切割,以我們用的 Arduino 為例,AnalogRead 的電壓範圍介於 $0V\sim5V$,N bit quantization 就是將 $0\sim5V$ 切割成 2^N 個區間,將我們量測到的電壓歸類在最接近的區間。很容易可以想到 Quantization 會產生 error,其 error 如(c)所示。

Figure 6.24 The quantization operation allocates intervals to a number of discrete levels, that is, quantization is a many-to-one mapping. (a) Allocation of levels in a 3-bit quantizer which round x/Δ to the closest integer. Input-output (b) and quantization error (c) transfer function of a uniform rounding quantizer.

Quantization Noise 就來自這些 error,我們可以把原始的訊號經取樣後得到的 Y[n]想像成 $Y_Q[n] + Y_e[n]$,分別代表 quantization 後的訊號以及 quantization noise,也就是說我們傳送的訊號 $Y_Q[n] = Y[n] - Y_e[n]$,再經過 FFT 後,頻譜上會不僅有原始訊號的頻率,也會有Quantization Noise 的頻率。不同的 Quantization 方式會造成 Y[n]和 Ye[n]之間有不同的 SQNR(Signal-to-quantization-noise-ratio),如果以上面那張圖的方式為例,經過計算每多一個 Quantization bit 我們可以多大約 6dB 的 SQNR。因此,當 Quantization Bit 越少,Quantization Noise 就越明顯,實際情況可以從以下的兩側結果看出來:

A. 10 Bits

頻譜看起來十分平滑,noise 相當小。從我們的推倒也可看出 10 Bit 提供 60dB SNQR,代表訊號是雜訊的 1000000 倍,因此雜訊幾乎可以忽略。

B. 8 Bits

仍舊看不出有雜訊。從我們的推導也可看出 10 Bit 提供 48dB SNQR,代表訊號是雜訊的約 100000 倍,因此雜訊幾乎可以忽略。

C. 5 Bits

已經可以看出有一點雜訊成分出現在頻譜上了,再 200Hz, -200Hz 以及 0Hz 處有一些小凸起。這時的 SNQR 為 30dB,訊號是雜訊的 1000 倍。

D. 3 Bits

從頻譜可以很明顯的看出有雜訊存在於 0, 200 以及-200Hz 處。原因在於這時的 SNQR 為 18、代表訊號能量約雜訊能量的 60 倍左右而已。

Discussion

前一個部分基本上已經滿清楚解釋,不同 sampling rate 和 quantization bit 對量測的影響。 這部分我們討論一些實驗中遇到的特殊情形,並嘗試做出解釋。

Q1)為什麼取樣後的波形看起來像是一個低頻的訊號乘上一個 100Hz 的載波(類似於 AM)

我們在 MATLAB 中得到的波形圖如下,如果沒有進行 zoom in 可以發現他與我們預期的波形圖(100Hz 正弦波)有些不同,反而比較像一個經過 Amplitude Modulation,並取 100Hz 作為 carrier frequency 的訊號。從頻域也可以看出,這個訊號中有一個 DC 訊號。

EE3662 DSP Lab 10

這個 DC 訊號的來源是我們對 Picoscope 的設定。因為 Arduino 中 AnalogRead 對於電壓的可讀取範圍是 0V~5V,為了要輸出一個可被 Arduino 讀取的正弦波,我們必須給 Picoscope輸出的正弦波一個 offset(不然會出現負電壓,導致 Arduino 讀出錯的電壓值)。這個 offset 本身就是一個 DC 訊號,這才導致我們在示波器上的訊號有一個 DC 訊號,看起來像經過Amplitude Modulation 的訊號。

Q2)BaudRate的影響是什麼?

BaudRate 是資料傳輸的速率,以我們的 code 為例,Baudrate = 115200 表示每秒傳輸 115200 bit。因此 Baudrate 會影響我們接收到的值。假設我們以 fs 作為 sampling rate,Arduino 的 analogRead 所回傳的值是一個 integer 佔 4byte,也就是 32bit。換句話說,我們每秒會取得 Data_Amount = 32 * fs 這麼多 bit 的資料。如果我們採用的 BaudRate < Data_Amount,那就會發生後半部分的波形無法完整呈現。下面我們簡單做一個實驗,以 fs = 500Hz 為例,Baudrate 需大於 500 * 32 = 16000 避免上述的事情發生,我們嚐試 3 種 Baudrate,分別是 9600, 19200, 25000,結果如下:

1. Baudrate = 9600bps

2. Baudrate = 19200bps

3. Baudrate = 25000bps

可以發現當 Baudrate = 9600 以及 19200 時的波形都出現了問題,跟我們前末量測到的完全不同,而在 Baudrate = 25000 時就不會有這個問題了。其原因就如我們面所述,資料傳輸太慢會導致我們沒辦法做一個 real-time 的示波器。另外,雖然 19200 大於我們所推導的 16000bps 但仍然在波形上出現問題,我認為這與 Arduino 與 PC 端都溝通方式有關,除了傳送資料外,Arduino 可能還要傳輸額外的資料來建立起整個communication channel 才會出現這樣的差異。

Q3) Quantization 造成的影響為何?

詳細的說明可以參考前一部分所述。總體而言,Quantization 所造成的 error 對於我們分析訊號就如同 noise,會在頻譜以及波形上造成影響。Resolution 越高(Quantization bit 越多),雜訊的影響越小(SQNR 越大,每多一個 bit 多 6dB)。

EE3662 DSP Lab 12

Conclusion

在這個 Lab 中,我們運用 Arduino 實際體驗 sampling 和 quantization 的過程。其中,也可以看到不同 sampling rate 和 quantization bit 對結果造成的差異。整個過程讓我簡單的複習在訊號與系統與 DSP 導論中學到的知識,也遇到一些在實作上才會出現的問題(ex. offset 造成的 DC 訊號、Quantization noise 以及 Baudrate 造成的影響等),十分有趣。

References

- 教授與助教的講義
- 李祈均教授的DSP講義
- Arduino Reference