The Case Roots of Unity The case works of unity, three in number, au extracted from [n³-1=0]. Factorisation: (a+b)3 = a3 + 3a2b + 3ab2+b3 $a^{2}+b^{2}=(a+b)^{3}-3ab(a+b)$ $3 + 5^{3} = (a+5)(a+5)^{2} - 3a5$ $= (a+b)[a^2+2ab+b^2-3ab]$ >) a2+b2 = (R+b) (a2 - ab + b2) Eguating [a = x] and [b:-1], we get | x3-1 = (x-1) (x2 + x +1) = 0 The Solutions are [x=L] and [x=+x+L=0] Solving the guardratic, $\lambda = \frac{-1 \pm \sqrt{1-4}}{2}$ $|x = -1 \pm \sqrt{3}i \quad \text{as well as } |x = 1|.$

Hence Unity has one red not and two complex roots.

from the theory of guadratic equations, for $\left[2x^2 + 5x + c = 0\right]$, there are two wets,

The wot are x = 2, $S = -\frac{5}{2} \pm \sqrt{5^2 - 4ac}$. $2 + 15 = -\frac{b}{2a} + \sqrt{\frac{b^2}{4ac}} + \sqrt{\frac{b^2}{2a}} + \sqrt{\frac{b^$:. | X + B = - 5 | and | XB = C | For the equation, [x2+x+1=0], a=b=c=1. =) [x+B=-1 & [xB=1] Now \x3=1 and B3=1, Since both 2 and s are cube looks of whity. Since, & B=1 => 23B=2=> B=2] or $23:3^2=3^2=3[2:3^2]$. => Sither Complex not of unity is the square of the other. It is costomany to write the works as 1, wand wit in which [w = wit, where win the complex anjugate of w. Further, from 22+2+1=0, We see that 1+ W+ W2 = 0 , i.e. the Sam of the three

- 30 -

Again $[\omega.\omega^2 = \omega^3 = 1] = 3 [\omega = \frac{1}{\omega^2}]$, i.e. the product of the two complex wolf is unity and each in the reciprocal of the other. Also $[1.\omega.\omega^2 = 1]$, i.e. the product of all the three coots is unity.

Check: Let $\omega = \frac{-1 \sqrt{3}i}{2}$, $\omega^* = \frac{-1 - \sqrt{3}i}{2}$ $\vdots \quad \dot{\omega} = \frac{2}{-1 + \sqrt{3}i} = \frac{2(-1 - \sqrt{3}i)}{(-1 + \sqrt{3}i)(-1 - \sqrt{3}i)} = \frac{-2(1 + \sqrt{3}i)}{1 - (3)(1)}$ $\Rightarrow \quad \dot{\omega} = -\frac{2(1 + \sqrt{3}i)}{4} = -\frac{(1 + \sqrt{3}i)}{2} = \frac{-1 - \sqrt{3}i}{2} = \omega^*$ Hence $\omega^* = \frac{1}{\omega}$ on $\omega^* = 1$ Also, $\omega^2 = (-1 + \sqrt{3}i)^2 = 1 - 2\sqrt{3}i - 3$ $\omega^* = \omega^2 = -2 - 2\sqrt{3}i = -1 - \sqrt{3}i = \omega^*$ $\omega^* = \omega^2 = -2 - 2\sqrt{3}i = -1 - \sqrt{3}i = \omega^*$ $\omega^* = \omega^2 = -2 - 2\sqrt{3}i = -1 - \sqrt{3}i = \omega^*$

Powers of ω : ω^n with n being an integer.

ii) n = 3m (m is an integer), $= 3\omega^{3m} = 1^{m-1}$ iii) $n = 3m+1 = 3\omega^{3m+1} = 1.\omega^1 = \omega$ | Since iii) $n = 3m+2 \Rightarrow \omega^{3m+2} = 1.\omega^2 = \omega^2 = \omega^3 = 1$

The cube wots of a number [a=ax1] are \$\sqrt{a}, \$\sqrt{a} \omega \omega \omega \omega \omega \omega \omega^2 in which \$\sqrt{a} \omega \omega

Representations on the Argand plane three The cube roots of writy are $1, -\frac{1+\sqrt{3}i}{2}$ and $-\frac{1-\sqrt{3}i}{2}$, i.e., $1, \omega, \omega^*$ (or ω^2)

We write $\omega = \cos\theta + i\sin\theta \Rightarrow \cos\theta = -\frac{1}{2}$.

Similarly $\omega^* = \cos\theta + i\sin\theta \Rightarrow \cos\theta = -\frac{1}{2}$ and $\sin\theta = \frac{\sqrt{3}}{2}$.

.. $\omega = \cos 120^{\circ} + i \sin 120^{\circ} = \cos \left(\frac{2\pi}{3}\right) + i \sin \left(\frac{2\pi}{3}\right)$ $\omega^{*} = \cos \left(\frac{240^{\circ}}{3}\right) + i \sin \left(\frac{240^{\circ}}{3}\right) = \cos \left(\frac{4\pi}{3}\right) + i \sin \left(\frac{4\pi}{3}\right).$ Using $e^{i\theta} = \cos \theta + i \sin \theta$, $\omega = e^{i2\pi i 3}$ and $\omega^{*} = e^{i4\pi i 3}$.

 $\omega \left(-\frac{1}{2}, \frac{13}{2}\right)$ $|20^{\circ} = 2\overline{u}|_{3}$ $|120^{\circ} = 2\overline{u}|_{3}$ $|170^{\circ} = 2\overline{u}|_{3}$

Mno $\omega^{3} = 1 = \omega = 1/\omega^{2}$ But $\omega^{4} = \omega^{2}$ $\omega^{4} = \omega^{2}$ $\omega^{4} = \omega^{2}$ $\omega^{4} = \omega^{2}$ $\omega^{5} = e^{i2\pi/3} = e^{-i4\pi/3}$ and $\omega^{2} = e^{i4\pi/3} = e^{-i2\pi/3}$

 $\therefore \omega^{3} = \omega^{2}\omega = e^{i2\pi i_{3}+i4\pi}$ $\Rightarrow \omega^{3} = e^{i2\pi} = c_{n}(2\pi) + c_{n}(2\pi)$ $\Rightarrow \omega^{3} = 1 \qquad is in(2\pi)$