Криптоанализ

Лекция №10

Определение Криптоанализа

Существует только один путь стать хорошим разработчиком криптографических алгоритмов - быть хорошим криптоаналитиком и взламывать алгоритмы. Множество. Снова и снова. Только после того, как обучающийся продемонстрирует способности к криптоанализу чужих алгоритмов, он сможет серьезно браться за разработку собственных алгоритмов.

Брюс Шнайер (Bruce Schneier)

Криптоанализом (от греческого krypts - "скрытый" и analein - "ослаблять" или "избавлять") называют науку восстановления (дешифрования) открытого текста без доступа к ключу

Попытка криптоанализа называется атакой

Классификация исходов

- Полный взлом криптоаналитик извлекает секретный ключ
- Глобальная дедукция криптоаналитик разрабатывает функциональный эквивалент исследуемого алгоритма, позволяющий зашифровывать и расшифровывать информацию без знания ключа
- **Частичная дедукция** криптоаналитику удается расшифровать или зашифровать некоторые сообщения
- Информационная дедукция криптоаналитик получает некоторую информацию об открытом тексте или ключе

Методы криптоанализа

- 1 частотный анализ
- 2 полный перебор ключей
- 3 -анализ ключевого генератора
- 4 факторизация/дискретное логарифмирование
- 5 метод "встречи посередине"

- 6 разностный анализ
- 7 линейный анализ
- 8 метод коллизий
- 9 анализ по побочным каналам
- 10 квантовый анализ

Виды криптоанализа

- Частотный анализ
- Дифференциальный криптоанализ
- Линейный криптоанализ
- Модификации дифференциального и линейного анализов
- Интерполяционный криптоанализ
- Методы, основанные на слабости ключевых разверток

Метод полного перебора

- Распараллеливание
 - Конвейер
 - Разбиение ключевого множества («Китайская лотерея», «DESозавр», Криптоаналитические водоросли)
- Задача определения «осмысленности» выходных данных
 - Априорная вероятность
 - Апостериорная вероятность

Кол-во знаков	Кол-во вариантов	Стойкость	Время перебора
1	36	5 бит	менее секунды
2	1296	10 бит	менее секунды
3	46 656	15 бит	менее секунды
4	1 679 616	21 бит	17 секунд
5	60 466 176	26 бит	10 минут
6	2 176 782 336	31 бит	6 часов
7	78 364 164 096	36 бит	9 дней
8	2,821 109 9x10 ¹²	41 бит	11 месяцев
9	1,015 599 5x10 ¹⁴	46 бит	32 года
10	3,656 158 4x10 ¹⁵	52 бита	1 162 года
11	1,316 217 0x10 ¹⁷	58 бит	41 823 года
12	4,738 381 3x10 ¹⁸	62 бита	1 505 615 лет

Китайская лотерея

- Представьте, что микросхема, вскрывающая алгоритм грубой силой со скоростью миллион проверок в секунду, встроена в каждый проданный радиоприемник и телевизор. Каждая микросхема запрограммирована для автоматической проверки различного набора ключей после получения пары открытый текст/шифротекст по эфиру
- Каждый раз когда китайское правительство хочет раскрыть ключ, оно передает исходные данные по радио. Все радиоприемники и телевизоры в стране начинают считать. В конечном счете, правильный ключ появляется на чьем-нибудь дисплее
- Китайское правительство платит приз тому человеку это гарантирует, что результат будет сообщен быстро и правильно, и также способствует рыночному успеху радиоприемников и телевизоров с микросхемами вскрытия
- Если у каждого человека в Китае, будь то мужчина, женщина или ребенок, есть радиоприемник или телевизор, то правильное значение 56-битового ключа появится через 61 секунду. Если радиоприемник или телевизор есть только у каждого десятого китайца(что близко к действительности), то правильный ключ появится через 10 минут. Правильный 64-битовый ключ будет раскрыт через 4.3 часа (43 часа, если радиоприемник или телевизор есть только у каждого десятого китайца)

Частотный анализ

- Вероятности появления отдельных букв, а также их порядок в словах и фразах естественного языка подчиняются задокументированным статистическим закономерностям
- например, пара стоящих рядом букв "ся" в русском языке более вероятна, чем "цы", а "оь" не встречается никогда

Буква	Частота	Буква	Частота	Буква	Частота	Буква	Частота
0	0.09	В	0.038	3	0.016	Ж	0.007
e, ë	0.072	Л	0.035	ы	0.016	ш	0.006
A	0.062	К	0.028	6	0.014	ю	0.006
И	0.062	М	0.026	ь,ъ	0.014	ц	0.004
H	0.053	д	0.025	Γ	0.013	щ	0.003
T	0.053	П	0.023	ч	0.012	9	0.003
C	0.045	У	0.021	й	0.01	ф	0.002
P	0.04	Я	0.018	Х	0.009		

- Разработан в 1990 году израильскими криптографами Эли Бихамом (Eli Biham) и Али Шамиром (Ali Shamir)
- Выбираем пары входных текстов (**P**) с фиксированной разностью, смотрим, как отличаются шифры (**C**) от них: $\Delta \mathbf{P} = \mathbf{P_1} \oplus \mathbf{P_2} \quad \Delta \mathbf{C} = \mathbf{C_1} \oplus \mathbf{C_2}$
- Анализируем множество таких пар и находим наиболее вероятный ключ

Эли Бихам

Али Шамир

- Для двух заранее подобранных шифротекстов P_1 и P_2 злоумышленник вычисляется «дифференциал» $\Delta P = P_1 \oplus P_2$
- С помощью ΔP пытается определить каким должен быть «дифференциал» шифротекстов $\Delta C = C_1 \oplus C_2$
- Зачастую невозможно предугадать со 100% точностью какое именно будет иметь значение **△C**
- Единственное, что может злоумышленник, это определить с какой частотой шифр возвращает различные значения **ΔС**, для заданного заранее **ΔР**
- Это знание позволяет атакующему вскрыть часть ключа или ключ целиком

- Предположим, что злоумышленник решил проверить дифференциал **0x80**
- Для этого он генерирует произвольный байт X_1 , и вычисляет $X_2 = X_1 \oplus 80$
- Далее атакующий прогоняет X_1 и X_2 через функцию **Sbox** и получает значения Y_1 и Y_2
- Для каждой такой пары X_1 и X_2 , дифференциал которых равен 80, атакующий в состоянии получить дифференциал ΔY
- Анализируя полученные значения, атакующий выбирает такое значение **∆Y**, которое имеет большую вероятность возникновения
- Допустим, что из всех 256 пар X_1 и X_2 , в 192 случаях $Y_1 \oplus Y_2 = 02$. Таким образом, вероятность того, что при заданном $\Delta X = 80$, значение $\Delta Y = 02$, составляет 192/256=3/4
- Это означает, что при заданном $\Delta X = 80$, с вероятностью $P_1 = 3/4$ на вход второго раунда попадут два значения U_1 и U_2 , такие что $\Delta U = 02$

- Для раскрытия свойств второго раунда, злоумышленник генерирует новые 256 пар входных байт $\mathbf{X_1}$ и $\mathbf{X_2}$, таких, что $\mathbf{X_1} \oplus \mathbf{X_2} = \mathbf{02}$
- Произведя вычисление функции **Sbox** для каждой пары X_1 и X_2 , атакующий замечает, что в 64 случаях из 256 $\Delta Y = 88$, т.е. вероятность того, что $\Delta Y = 88$, для заданного $\Delta X = 02$, составляет $P_2 = 64/256 = 1/4$
- Таким образом, произведя нехитрый подсчет вероятностей, атакующий понимает, что для указанного шифра для каждой пары байт $\mathbf{X_1}$ и $\mathbf{X_2}$, таких что $\mathbf{\Delta X} = \mathbf{80}$, с вероятностью $\mathbf{P} = \mathbf{P_1} * \mathbf{P_2} = 3/4 * 1/4 = \mathbf{3/16}$, дифференциал внутреннего состояния шифра перед последним раундом составляет $\mathbf{\Delta Y} = \mathbf{88}$
- Обладая этим знанием атакующий генерирует несколько пар текстов таких, что **ДР=808080808080** и приступает к побайтовому подбору подключа третьего раунда

Недостатки Дифференциального анализа:

- С увеличением числа раундов сложность криптоанализа увеличивается, однако остаётся меньше сложности полного перебора при количестве циклов меньше 16
- Метод требует большого объема памяти для хранения возможных ключей

Зависимость от количества раундов [скрыть]			
Число раундов	Трудоёмкость атаки		
4	2^4		
6	28		
8	2^{16}		
9	2^{26}		
10	2 ³⁵		
11	2 ³⁶		
12	2^{43}		
13	2^{44}		
14	2^{51}		
15	2^{52}		
16	2 ⁵⁸		

Линейный анализ

- •Разработан в 1993 году Митцуру Матцуи
- •Основан на поиске линейных зависимостей между исходным текстом, шифротекстом и ключом
- •Подробное описание: https://habr.com/ru/post/233905/

Митцуру Матцуи

Интерполяционный анализ

- •Предложен в 1997 году **Т.Джекобсеном** и **Л.Кнудсеном**
- •Предполагает, что раундовая функция многочлен, тогда весь шифр может быть записан как многочлен, коэффициенты которого зависят от ключа
- •Далее многочлен интерполируется по большому количеству исходных текстов:

$$f(x) = \sum_{i=1}^{n} y_i \prod_{1 \le j \le n, j \ne i} \frac{x - x_j}{x_i - x_j}$$

•Подробное описание:

https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5 %D1%80%D0%BF%D0%BE%D0%BB%D1%8F%D1%86%D0%B8% D0%BE%D0%BD%D0%BD%D0%B0%D1%8F %D0%B0%D1%82% D0%B0%D0%BA%D0%B0

Атака по ключам

- Фундаментальное допущение Кирхгоффа: секретность сообщения всецело зависит от ключа, предполагается, что весь механизм шифрования, кроме значения ключа, известен противнику
- Слабый ключ это ключ, не обеспечивающий достаточного уровня защиты или использующий в шифровании закономерности, которые могут быть взломаны
- Генераторы псевдослучайных чисел
 - слабое место многих криптосистем

Методы подбора паролей

- неоптимизированный перебор
- перебор, оптимизированный по словарям вероятных паролей
- перебор, оптимизированный на основе встречаемости символов и биграмм
- перебор, ориентированный на информацию о подсистеме аутентификации ОС
- перебор с использованием знаний о пользователе

Парадокс дней рождения

• Если считать, что дни рождения распределены равномерно, то в группе из 23 человек с вероятностью 0,5 у двух человек дни рождения совпадут.

Парадокс дней рождения

- Рассчитаем вероятность того, что в группе из 365 человек дни рождения всех людей будут различными
- Возьмём наугад одного человека из группы и запомним его день рождения. Затем возьмём наугад второго человека, при этом вероятность того, что у него день рождения не совпадёт с днем рождения первого человека, равна $1 \frac{1}{365}$
- Затем возьмём третьего человека; при этом вероятность того, что его день рождения не совпадёт с днями рождения первых двух, равна $1-\frac{2}{}$

Парадокс дней рождения

• Перемножая все эти вероятности, получаем вероятность того, что все дни рождения в группе будут различными:

$$\bar{p}(n) = \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \cdot \ldots \cdot \left(1 - \frac{n-1}{365}\right) = \frac{365 \cdot 364 \cdot \ldots \cdot (365 - n + 1)}{365^n} = \frac{365!}{365^n (365 - n)!}$$

n	p(n)
10	12 %
20	41 %
22	47,57 %
23	50,73 %
30	70 %
50	97 %
100	99,99996 %
200	99,9999999998 %
365	100 %

Если $a\sqrt{b}$ предметов выбираются из некоторой совокупности размером b, то вероятность того что 2 из них совпадут равна:

$$1 - e^{-\frac{a^2}{2}}$$

Если b = 365, $a\sqrt{b}$ = 23, то a = 1,204

Метод «Встреча посередине»

- Задача: пусть нам нужно найти ключ К по известному открытому тексту **X** и криптограмме **Y**
- **Условие**: множество ключей криптоалгоритма замкнуто относительно композиции, то есть для любых ключей $\mathbf{K^1}$ и $\mathbf{K^2}$ найдется ключ \mathbf{K} такой, что $\mathbf{E_{K2}}(\mathbf{E_{K1}},\mathbf{X}) = \mathbf{E_K}(\mathbf{X})$
- Решение: Поиск ключа K можно свести к поиску пары эквивалентных ключей K^1 и K^2
- Для текста \mathbf{X} построим базу данных содержащую случайное множество ключей $\mathbf{K^1}$ и соответствующих криптограмм

 $\mathbf{W} = \{\mathbf{W_1}, \, \mathbf{W_2}, ... \, \mathbf{W_N}\},$ где **N** – мощность множества ключей $\mathbf{K^1}$

Метод «Встреча посередине»

- Затем подбираем случайным образом ключи K^2 для расшифровки текстов Y и результат расшифрования как $V = E_{K2}(Y)$
- Для каждого ключа K^2 сравниваем V с W, которые хранятся в БД
- Если V = W, то ключ K^1K^2 эквивалентен ключу K

Атаки на Хэш-функции

Коллизия: H(M)=H(M'), где

H – хеш-функция

М – исходное сообщение

М' – сообщение, подобранное злоумышленником

Атака на обнаружение коллизий для n-битной хешфункции:

Требует ~ **2**^{n/2} операций (парадокс дней рождения)

Анализ ассиметричных систем

- Криптоанализ систем шифрования, основанных на сложности задачи **дискретного логарифмирования**
- Криптоанализ систем шифрования, основанных на сложности задачи факторизации
- Задача дискретного логарифмирования вычислительно сложнее задачи разложения. Если будет найден полиномиальный алгоритм ее решения, станет возможным и разложение на множители (обратное не доказано)

Логарифм в конечном поле

 Вычислить дискретный логарифм числа b по основанию а в конечном поле Z_p означает найти

$$x = \log_a b \in Z$$
, при котором $a^x = b$

Пример:

$$24^x = 19 \pmod{37}$$

Найти Х?

Алгоритм Адлемана: 1 Этап

 Сформировать факторную базу Q состоящую из всех простых чисел q:

$$Q = \left\{ q \le B = e^{\sqrt{\log p \log \log p}} \right\}$$

• Пример:

$$24^x = 19 \pmod{37}$$

Факторная база: 2, 3, 5 (для р = 37)

Алгоритм Адлемана: 2 Этап

• С помощью перебора найти натуральные числа r_i такие, что:

$$a^{r_i} \equiv \prod_{q \leq B} q^{a_{iq}} \bmod p$$

• То есть a^{r_i} раскладывается по факторной базе

$$r_i \equiv \sum_{q \leq B} a_{iq} \log_a q \bmod (p-1)$$

Пример:

$$\begin{cases} 24^{1} = 2^{3} * 3 \pmod{37} \\ 24^{3} = 2^{2} * 3 * 5 \pmod{37} \end{cases} \to \begin{cases} 1 = 3 * \log_{24} 2 + \log_{24} 3 \pmod{36} \\ 3 = 2 * \log_{24} 2 + \log_{24} 3 + \log_{24} 5 \pmod{36} \end{cases} \to \begin{cases} 24^{7} = 5 \pmod{37} \end{cases} \begin{cases} \log_{24} 2 = 5 \pmod{36} \end{cases}$$

Алгоритм Адлемана: 3 Этап

• С помощью перебора найти одно значение $\it r$ такое, что:

$$a^r \equiv \prod_{q \leq B} q^{b_q} p_1 \dots p_k \bmod p$$

То есть:

$$\log_a b = -r + \sum_{q \le B} b_q \log_a q \bmod (p-1)$$

• Пример:

$$b = 19 \rightarrow 24^{1} * 19 = 12 = 2^{2} * 3 \pmod{37}$$

 $\log_{24} 19 = -1 + 2 * \log_{24} 2 + \log_{24} 3 = 31 \pmod{36}$

$$x = 31$$

Атаки по побочным каналам

- Используют информацию, которая может быть получена с устройства шифрования и не является при этом ни открытым текстом, ни шифртекстом
- Основаны на корреляции между значениями физических параметров, измеряемых в разные моменты во время вычислений, и внутренним состоянием вычислительного устройства, имеющим отношение к ключу.

Атаки по побочным каналам

Пример атаки по побочным каналам

Software-defined radio - это когда все характеристики будущей радиоволны (например, её частота) создаются в компьютере, и затем такая «нарисованная» в компьютере волна отправляется на внешнее устройство, чтобы быть отправленной как настоящая радиоволна

https://youtu.be/PV_v1HgjN3Q