

I.S.O.

☑Versión: Marzo 2013

☑Palabras Claves: Procesos, Planificación, FCFS, SJF, Round Robin, SRTF, Prioridades, Algoritmos Apropiativos y Algoritmos No Apropiativos

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts)

Comportamiento de los procesos (cont.)

- ☑ CPU-bound
 - ✓ Mayor parte del tiempo utilizando la CPU
- ☑I/O-bound
 - ✓ Mayor parte del tiempo esperando por I/O
- ☑ La velocidad de CPU aumento considerablemente respecto a la de los dispositivos de I/O
 - ✓ Pensar: Necesidad de atender rápidamente procesos I/O-bound para mantener el dispositivo ocupado y aprovechar la CPU para procesos CPU-bound

Planificación

☑Planificación:

 Necesidad de determinar cúal de todos los procesos que están listos para ejecutarse, se ejecutará a continuación en un ambiente multiprogramado

☑Algoritmo de Planificación

– Algoritmo utilizado para realizar la planificación del sistema

Algoritmos Apropiativos y No Apropiativos

- ☑En los algoritmos Apropiativos (preemtive) existen situaciones que hacen que el proceso en ejecución sea expulsado de la CPU
- ☑En los algoritmos No Apropiativo (nonpreemptive) los procesos se ejecutan hasta que el mismo (por su propia cuenta) abandone la **CPU**
 - Se bloquea por E/S, finaliza, etc.
 - No hay decisiones de planificación durante las interrupciones de reloj

Categorías de los Algoritmos de Planificación

- ☑Según el ambiente es posible requerir algoritmos de planificación diferentes, con diferentes metas:
 - ✓ Equidad: Otorgar una parte justa de la CPU a cada
 - ✓ Balance: Mantener ocupadas todas las partes del sistema

☑ Ejemplos:

- ✓ Procesos por lotes (batch)
- ✓ Procesos Interactivos
- ✓ Procesos en Tiempo Real

Procesos Batch

- ☑No existen usuarios que esperen una respuesta en una terminal.
- ☑Se pueden utilizar algoritmos no apropiativos
- ✓ Metas propias de este tipo de algoritmos:
 - ✓ Rendimiento: Maximizar el número de trabajos por hora
 - ✓ Tiempo de Retorno: Minimizar los tiempos entre el comienzo y la finalización
 - ✓ Uso de la CPU: Mantener la CPU ocupada la mayor cantidad de tiempo posible

Procesos Interactivos

- ☑ No solo interacción con los usuarios
 - ✓ Un servidor, necesita de varios procesos para dar respuesta a diferentes requerimientos
- ✓ Son necesarios algoritmos apropiativos para evitar que un proceso acapare la CPU
- ✓ Metas propias de este tipo de algoritmos:
 - ✓ Tiempo de Respuesta: Responder a peticiones con rapidez
 - ✓ Proporcionalidad: Cumplir con expectativas de los usuarios
 - Si el usuario le pone STOP al reproductor de música, que la música deje de ser reproducida en un tiempo considerablemente corto.

Facultad de Informática

Política Versus Mecanismo

- ✓ Existen situaciones en las que es necesario que la planificación de uno o varios procesos se comporte de manera diferente
- ☑El algoritmo de planificación debe estar parametrizado, de manera que los procesos/usuarios pueden indicar los parámetros para modificar la planificación

Facultad de Informática

Política Versus Mecanismo (cont.)

- ☑El Kernel implementa el mecanismo
- ☑El usuario/proceso/administrador utiliza los parámetros para determinar la Política
- **☑**Ejemplo:
 - ✓ Un algoritmo de planificación por prioridades y una System Call que permite modificar la prioridad de un proceso (man nice)
 - ✓ Un proceso puede determinar las prioridades de los procesos que el crea, según la importancia de los mismos.

Facultad de Informática