One-Hot Encoded Finite State Machines

Example State Machine

State	۸ _	\cap
State	_ _	UU
State	B =	01
State	C =	: 10
State	D =	: 11

InA	InB	CS	NS	Z
0	-	Α	Α	0
1	-	Α	В	0
0	-	В	Α	1
1	-	В	A C C	1
-	0	C C	С	1
-	1	С	D	1
-	-	D	Α	0
InA	InB	▼ CS	NS	Z
InA 0	InB -	CS 00	NS 00	Z 0
	InB - -			
0	InB - - -	00	00	0
0	InB - - - -	00	00 01	0
0 1 0	InB 0	00 00 01	00 01 00	0 0 1
0 1 0	- - -	00 00 01 01	00 01 00 10	0 0 1 1

Example Machine Implementation

N1 = Q1•Q0' + Q1'•Q0•InA N0 = Q1•Q0'•InB + Q1'•Q0'•InA Z = Q1'•Q0 + Q1•Q0'

Logic Used:

- 9 gates
- · 21 gate inputs
- · 2 flip flops

Q1

Q0'

Choose a Different Encoding

A=1000, B=0100, C=0010, D=0001

InA	InB	CS	NS	Z
0	-	1000	1000	0
1	_	1000	0100	0
0	-		1000	
1	-		0010	
-	0		0010	
-	1		0001	
-	-	0001	1000	0

InA	InB	CS	NS	Z
0	-	1	1000 0100 1000	0
1	-	1	0100	0
0	-	-1	1000	1
1	-	-1	0010 0010	1
-	0	1-	0010	1
_	1	1-	0001	1
-	-	1	1000	0

This is called a *one-hot* encoding.

Only one state bit is on at a time

Because of the state encodings, there are many illegal states.

This TT with all these input don't cares is the result

One-Hot Encoding Results

- Will require 4 flip flops
 - One per state
 - Call the current state bits A, B, C, and D
 - Call the next state bits NA, NB, NC, and ND

By inspection we see:

 $NA = A \cdot lnA' + B \cdot lnA' + D$

NB = A•InA

 $NC = B \cdot InA + C \cdot InB'$

ND = C•InB

Z = B + C

One-Hot Implementation

Logic Used:

- 9 gates
- 19 gate inputs
- 4 flip flops

One-Hot Observations

- Choosing a one-hot encoding results in many, many don't cares in transition table
- Minimization results in simpler IFL and OFL
- · Requires more flip flops
- Can do one-hot design by inspection
 - Without using transition tables...

Another One-Hot Example

State	Encoding
Α	100
В	010
С	001

State Encoding and Structure

State	Encoding
Α	100
В	010
С	001

With one-hot encoding, each state has its own flip flop.

'A' is the name of a state and it is the name of the wire coming out of the flip flop for state 'A'.

The same holds true for states 'B' and 'C'

When is A the next state?

Look at the arcs entering state A

$$NA = A \cdot x' + B \cdot y'z + C$$

ECEn 224

When is A the next state?

Look at the arcs entering state A

$$NA = A \cdot x' + B \cdot y'z + C$$

When is A the next state?

Look at the arcs entering state A

$$NA = A \cdot x' + B \cdot y'z + C$$

When is A the next state?

Look at the arcs entering state A

$$NA = A \cdot x' + B \cdot y'z + C$$

Similar reasoning leads to:

$$NB = A \cdot x + B \cdot y'z'$$

The Key Lock Problem - One-Hot Version

ECEn 224

ERROR = E INC =

ECEn 224

ERROR = E INC = (PUSHED.7'.A) + (PUSHED.8'.B) + (PUSHED.9'.C) CLRTIMFR =

BYU

ECEn 224

ERROR = E INC = (PUSHED.7'.A) + (PUSHED.8'.B) + (PUSHED.9'.C) CLRTIMER = ECNT3.E CLRCNTR =


```
ERROR = E
INC = (PUSHED.7'.A)
     + (PUSHED.8'.B)
     + (PUSHED.9'.C)
CLRTIMER = ECNT3.E
CLRCNTR = (WAITDONE.F)
         + (LOCKED·D)
UNLOCK =
```


ERROR = E
INC = (PUSHED·7'·A)
+ (PUSHED·8'·B)
+ (PUSHED·9'·C)

CLRTIMER = ECNT3·E

CLRCNTR = (WAITDONE·F)
+ (LOCKED·D)

UNLOCK = (PUSHED·9·C)

Other State Encoding Techniques

- You have learned the 2 extremes
 - Fully encoded (8 states \Leftrightarrow 3 state bits)
 - One-hot encoded (8 states ⇔ 8 state bits)
- · A range of options exist in between
- A good choice of encoding
 - Can minimize IFL and OFL complexity
 - Algorithms have been developed for this...
 - Beyond the scope of this class

