Astigmatic laser beam transformation device

Patent number: DE19623762 (A1)

Publication date: 1997-12-18

Inventor(s): EPPICH BERND [DE]; GAO CHUNQIN [DE]; FRIBERG ARI

PROF DR ING [FI]; WEBER HORST PROF DR [DE]

Applicant(s): LASER & MED TECH GMBH [DE]

Classification:

- international: G02B27/09; H01S3/0941; H01S3/00; H01S5/00; H01S5/20;

H01S5/40; G02B27/09; H01S3/0941; H01S3/00; H01S5/00;

Also published as:

TDE19755641 (A1)

(IPC1-7): G02B27/09

- european: G02B27/09F; G02B27/09; G02B27/09S2L2; H01S3/0941E

Application number: DE19961023762 19960614 **Priority number(s):** DE19961023762 19960614

Abstract of **DE 19623762 (A1)**

The device includes a spherical lens with a bifocal telescope and three cylinder lenses (Z1-Z3) arranged in pairs. The lens and telescope provide a radiation field with uniform Rayleigh lengths and similar beam constriction positions. The obtained image is converted into a circular symmetrical radiation field via the three cylinder lenses which are arranged in pairs perpendicular to one another and spaced apart by half the spacing of the beam constrictions.

Data supplied from the **esp@cenet** database — Worldwide

(9) BUNDESREPUBLIK
DEUTSCHLAND

① Offenlegungsschrift② DE 196 23 762 A 1

(5) Int. Cl.⁶: G 02 B 27/09

DEUTSCHES PATENTAMT

(2) Aktenzeichen: 196 23 762.9 (2) Anmeldetag: 14. 6. 96 (3) Offeniegungstag: 18. 12. 97

71) Anmelder:

Laser- und Medizin-Technologie gGmbH, Berlin, 12207 Berlin, DE

(74) Vertreter:

Christiansen, H., Dipl.-Ing., Pat.-Anw., 14195 Berlin

② Erfinder:

Eppich, Bernd, 10997 Berlin, DE; Gao, Chunqin, 14129 Berlin, DE; Friberg, Ari, Prof. Dr.-Ing., Espoo, FI; Weber, Horst, Prof. Dr., 14052 Berlin, DE

(A) Vorrichtung zur Transformation astigmatischer Laser-Strahlung in rotationssymmetrische Strahlprofile

Die Erfindung betrifft eine optische Anordnung, die es in einfacher Weise ermöglicht, astigmatische Strahlungsfelder in rotationssymmetrische Strahlprofile zu transformieren.

Beschreibung

Zahlreiche Lasersysteme wie z. B. Diodenlaser oder Slablaser emittieren astigmatische Strahlungsfelder, die sich sowohl durch unterschiedliche Strahlquerschnitte wie auch durch unterschiedliche Öffnungswinkel (Divergenz) senkrecht zur Ausbreitungsrichtung darstellen. Für die meisten praktischen Anwendungen werden dagegen rotationssymmetrische Strahlprofile benötigt. Es soll daher eine optische Anordnung gefunden werden, die es in einfacher Weise ermöglicht, astigmatische Strahlungsfelder in rotationssymmetrische Strahlprofile zu transformieren.

Stand der Technik

Es ist bekannt, daß astigmatische Strahlungsfelder durch optische Wellenleiter mit konischem Eintritt (Taper), die multimode betrieben werden, bei hinreichender Länge zu einer Mischung der transversalen Modenstruktur des astigmatischen Strahlungsfeldes genutzt werden können. Es ist weiterhin bekannt, daß durch die Verwendung von Zylinderlinsen asymmetrische Strahlprofile beispielsweise eines Excimer Lasers in einer Koordinate senkrecht zur Ausbreitungsrichtung hinsichtlich der Divergenz und der Fokussierbarkeit einzuengen.

Erfindungsgemäße Lösung

Im folgenden wird eine einfache Anordnung beschrieben, die die Transformation astigmatischer Strahlen bis auf Fresnel-Verluste verlustfrei in zirkularsymmetrische Strahlungen ermöglicht.

1. Beschreibung des Strahlungsfeldes

Im allgemeinen ist ein Strahlungsfeld durch die Angabe seiner Varianzmatrix vollständig in 2. Ordnung charakterisiert /1/. Diese Matrix ist symmetrisch und lautet

$$V = \begin{vmatrix} \langle x^{2} \rangle \langle xy \rangle \langle x\theta_{x} \rangle \langle x\theta_{y} \rangle \\ \langle xy \rangle \langle y^{2} \rangle \langle y\theta_{x} \rangle \langle y\theta_{y} \rangle \\ \langle x\theta_{x} \rangle \langle y\theta_{y} \rangle \langle \theta_{x}^{2} \rangle \langle \theta_{x}\theta_{y} \rangle \\ \langle x\theta_{y} \rangle \langle y\theta_{y} \rangle \langle \theta_{x}\theta_{y} \rangle \langle \theta_{y}^{2} \rangle \end{vmatrix}$$

10

Im wesentlichen sind drei Fälle zu unterscheiden, die in Felder mit zirkularsymmetrischem 2. Moment transformiert werden können.

1.1 Einfach astigmatische Strahlen

$$V_{1} = \begin{vmatrix} \langle x^{2} \rangle & 0 \\ \langle y^{2} \rangle & \\ \langle \theta_{x}^{2} \rangle & \\ 0 & \langle \theta_{y}^{2} \rangle \end{vmatrix}$$
(1)

mit gleichen Rayleigh-Längen zR in x,y-Richtung gleicher Lage der Taillen

$$z_{R,x}^2 = \frac{\langle x^2 \rangle}{\langle \theta_x^2 \rangle} = z_{R,y}^2 = \frac{\langle y^2 \rangle}{\langle \theta_y^2 \rangle}$$
 (2)

Derartige Strahlen werden z. B. von Nd-YAG-Slab-Laseroszillatoren mit sphärischen Resonatorspiegeln erzeugt.

1.2 Astigmatische Strahlen mit unterschiedlichen Rayleigh-Längen, aber gleicher Lage der Taille, wie sie z. B. Diodenlaser erzeugen. Die Varianzmatrix V_2 ist die gleiche wie V_1 , aber Gl. 2 gilt nicht

$$65 \qquad \frac{\langle x^2 \rangle}{\langle \theta_x^2 \rangle} \neq \frac{\langle y^2 \rangle}{\langle \theta_y^2 \rangle}$$

Durch ein bifokales Teleskop, gekennzeichnet durch die Matrix

$$\mathbf{M}_{r} = \begin{vmatrix} \mathbf{m}_{x}^{2} & 0 \\ \mathbf{m}_{y}^{2} \\ 0 & \frac{1}{m_{y}^{2}} \end{vmatrix}$$
 (3)

können bei geeigneter Wahl der Vergrößerungen m_xm_y die Rayleigh-Längen angepaßt werden. Ein solches 15 Teleskop kann realisiert werden durch zwei bisokale Linsen mit den Brennweiten f_{1x}, f_{1y}, f_{2x}, f_{2y} im Abstand:

$$b = f_{1x} + f_{1y} = f_{1x} + f_{2y}$$
 (4)

Ein solches Teleskop bildet ein Feld im Abstand a vor dem System auf eine Ebene c hinter dem System mit unterschiedlichen Vergrößerungen m_x , m_y in x,y-Richtung ab, falls die Bedingung erfüllt ist

$$a = c/m_x \cdot m_y \quad (5)$$

Dabei können die Vergrößerungen m_x, m_y, der Abstand a und eine Brennweite frei gewählt werden.

Durch Anwendung dieses Teleskops kann das Strahlungsfeld nach Fall 2 auf den Fall 1 zurückgeführt werden.

1.3 Astigmatische Strahlen mit unterschiedlicher Lage der Taillen, wie sie z. B. von Slab-Lasern mit nichtsphärischen Resonatorspiegeln erzeugt werden. Die Varianzmatrix lautet:

$$V_{3} = \begin{vmatrix} \langle x^{2} \rangle & 0 & \langle x\theta_{x} \rangle & 0 \\ 0 & \langle y^{2} \rangle & 0 & \langle y\theta_{y} \rangle \\ \langle x\theta_{x} \rangle & 0 & \langle \theta_{x}^{2} \rangle & 0 \\ 0 & \langle y\theta_{y} \rangle & 0 & \langle \theta_{y}^{2} \rangle \end{vmatrix}$$
(6)

Durch eine passende gewählte sphärische Optik kann erreicht werden, daß $< x\theta_x > = < y\theta_y > = 0$ und damit die Taillen beider Richtungen eine gemeinsame Lage besitzen. Durch ein bifokales Teleskop können anschließend der Rayleigh-Längen angepaßt werden. Im folgenden muß deshalb nur der Fall 1 diskutiert werden.

2. Beschreibung der Transformationsoptik

45

60

65

Ein Beispiel für eine Transformationsoptik ist in Abb. 1 skizziert. Sie besteht aus

Zylinderlinse Z_1 der Brennweite f_x .

Zylinderlinse Z_2 der Brennweite f_y ,

Zylinderlinse Z_3 der Brennweite f_x .

50

Zylinderlinse Z_3 der Brennweite f_x .

Die Brennweiten werden wie folgt gewählt:

$$f_y = z_{Rx} = f,$$
 $f_x = z_{Rx/2} = f/2$

Das Linsensystem wird um 45° gegen den astigmatischen Strahl gedreht. Die Abstände der Linsen sind wie folgt

Strahltaille $-Z_1:f_x$, $Z_1-Z_2:f_x$, $Z_2-Z_3:f_x$, $Z_3-Bild:f_x$

Die Matrix dieser Anordnung lautet

$$_{5} \quad M_{T} = \frac{1}{2} \cdot \begin{vmatrix} -1 & +1 & f & f \\ 1 & -1 & f & f \\ -\frac{1}{f} & -\frac{1}{f} & -1 + 1 \\ -\frac{1}{f} & -\frac{1}{f} & +1 - 1 \end{vmatrix}$$
 (7)

und transformiert den astigmatischen Strahl in einen zirkularsymmetrischen Strahl mit den neuen Parametern

$$< x^2 >_T = < y^2 >_T = \frac{1}{2} [< x^2 > + < y^2 >]$$
 (8)

$$<\theta_{x}^{2}>_{T}=<\theta_{y}^{2}>_{T}=\frac{1}{2}\left[<\theta_{x}^{2}>+<\theta_{y}^{2}>\right]$$
 (9)

$$\langle xy \rangle_{T} = 0 \langle \theta_{x}\theta_{y} \rangle_{T} = 0 \tag{10}$$

$$^{25} < x\theta_{x} >_{T} = 0 < y\theta_{y} >_{T} = 0$$
 (11)

Es handelt sich um einen zirkularsymmetrischen Strahl mit einer Taille in der Bildebene, der sich von dort nach dem bekannten hyperbolischen Gesetz in den freien Raum ausbreitet gemäß:

$$< x^{2}(z)>_{T} = < x^{2}(0)>_{T} + z^{2} < \theta_{x}^{2}>_{T}$$
 (12)

$$\langle y^2(z) \rangle_T = \langle y^2(0) \rangle_T + z^2 \langle \theta_y^2 \rangle_T$$
 (13)

Die Strahlkennzahl hinter dem optischen System ergibt sich ebenfalls als Mittelwert der ursprünglichen Strahlkennzahlen

$$M_{T}^{2} = \frac{1}{2} \left[M_{x}^{2} + M_{y}^{2} \right] \tag{14}$$

3. Beispiel

Abb. 2 zeigt ein experimentelles Beispiel für die Transformation eines TEMon-Strahlungsfeldes in ein zirkularsymmetrisches Feld. Für diese spezielle Intensitätsverteilung der Form

$$J = J_o \cdot \exp\left[-2 \cdot \frac{x^2 + y^2}{w_o^2}\right] \cdot H_n^2\left(\frac{x \cdot \sqrt{2}}{w_o}\right)$$
 (15)

ergibt sich hinter dem optischen System eine Ringstruktur der Form

$$J_T = J_{oT} \cdot r^n \cdot \exp[-r^2/w_o^2] \quad (16)$$

30

45

65

Beschreibungen der Abbildungen

Abb. 1 gibt ein Beispiel für ein optisches System, welches die Matrix M_T nach Gleichung 7 liefert.
Abb. 2 verdeutlicht die Transformation eines astigmatischen TEM_{On} Strahles in einen zirkularsymmetrischen Strahl gemäß oben ausgeführtem Beispiel.

Patentansprüche

1. Vorrichtung zur Transformation astigmatischer Laserstrahlung in rotationssymmetrische Strahlprofile dadurch gekennzeichnet, daß die astigmatische Strahlung durch Einsatz einer sphärischen Optik und eines

DE 196 23 762 A1

bisokalen Teleskops in ein Strahlungsseld mit gleichen Rayleighlängen und gleichen Lage der Taillen transformiert wird und anschließend das Bild der so erzeugten astigmatischen Strahltaille durch einen Satz von drei Zylinderlinsen, die paarweise zueinander senkrecht stehen in ein zirkularsymmetrisches Strahlungsseld transformiert wird.

- 2. Vorrichtung nach 1, dadurch gekennzeichnet, daß sich die Brennweiten der drei Zylinderlinsen wie 5/2f.f/2 verhalten, wobei f der Rayleighlänge des Strahlungsfeldes entspricht. Die Abstände der Linsen untereinander entspricht f/2, der Abstand zur zu transformierenden Strahltaille entspricht ebenfalls f/2.
- 3. Vorrichtung nach 1, dadurch gekennzeichnet, daß der aus den Zylinderlinsen bestehende Teil der Transformationsoptik um 45! gegen das Bild der astigmatischen Strahltaille gedreht wird.
- 4. Vorrichtung nach 1, dadurch gekennzeichnet, daß das Teleskop in der Transformationsoptik aus zwei 10 bifokalen (torischen) Linsen besteht, deren Abstand der Summe der Einzelbrennweiten der bifokalen Linsen entspricht.
- 5. Vorrichtung nach 1 und 4, dadurch gekennzeichnet, daß die bisokalen Linsen des Teleskops durch paarweise zueinander senkrecht angeordnete Zylinderlinsen ersetzt werden.
- 6. Überführung des gesamten Transformationssystems in eine monolithische optische Struktur mit entsprethend torisch angepaßten optischen Endflächen.
- 7. Vorrichtung nach 1 bis 6, dadurch gekennzeichnet, daß statt normaler Linsen sogenannte Gradientenindexlinsen verwendet werden.
- 8. Vorrichtung nach 1 bis 6, dadurch gekennzeichnet, daß anstelle der normalen Linsen ein oder mehrere Linsen des Systems als diffraktive Elemente zum Einsatz kommen.
- 9. Vorrichtung nach 1 bis 8, dadurch gekennzeichnet, daß die verwendeten optischen Bauelemente zur Transformation von vorzugsweise polarisierten Strahlungsfeldern aus doppelbrechendem Material bestehen.

Hierzu 2 Seite(n) Zeichnungen 25

35

30

40

45

50

55

60

65

Nummer:

Int. Cl.⁶: Offenlegungstag: DE 196 23 762 A G 02 B 27/09

18. Dezember 1997

Abb.1 Beispiel für ein optisches System, welches die Matrix M_T nach Gl.7 liefert

Nummer: Int. Cl.⁸:

Offenlegungstag:

DE 196 23 762 A1 G 02 B 27/0918. Dezember 1997

Abb.2 Transformation eines astigmatischen Strahles $TEM_{n,0}$ (links) in einen zirkularsymmetrischen Strahl (rechts)