

2.7. Transmitter Radiated Power (EIRP/ERP)

2.7.1. Requirement

According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts.

According to FCC section 24.232, the broadband PCS mobile station is limited to 2 Watts e.i.r.p. peak power.

According to FCC section 27.50, mobile, and portable (hand-held) stations is limited to 1 Watts e.i.r.p. peak power.

2.7.2. Test Description

Test Setup:

(For the test frequency from 30MHz to1GHz)

(For the test frequency above 1GHz)

The EUis located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading. A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded. Please refer to section 2.1.3 of this report.

- Step size (dB): 3dB

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) or a Horn one (used for above 3GHz), it's located at the same height as the EUT. The Filters consists of Notch Filters and High Pass Filter.

Tel: 86-755-36698555

Http://www.morlab.cn

2.7.3. Test Result

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST TX} is signal generator level,

P_{SUBST RX} is receiver level,

L_{SUBST CABLES} is cable losses including TX cable,

G_{SUBST TX ANT} is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

During the test, the data of A_{TOT} was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of A_{TOT} .

GSM Test verdict:

Band	Channel	Frequency	PCL		Measure	d ERP	Lim	it	Verdict
Danu	Channel	(MHz)	PCL	dBm	W	Refer to Plot	dBm	W	verdict
GPRS	128	824.20	5	34.29	2.685				PASS
850MHz	190	836.60	5	33.33	2.153	Plot A	38.5	7	PASS
OSUMITZ	251	848.80	5	32.08	1.614				PASS
EGPRS	128	824.20	5	33.54	2.259				PASS
850MHz	190	836.60	5	32.30	1.698	Plot B Note 1	38.5	7	PASS
OSUMINZ	251	848.80	5	32.38	1.730				PASS
GPRS	512	1850.2	5	29.17	0.826				PASS
1900MHz	661	1880.0	5	28.87	0.771	Plot C	33	2	PASS
1900101112	810	1909.8	5	28.81	0.760				PASS
EGPRS	512	1850.2	0	30.89	1.227				PASS
1900MHz	661	1880.0	0	30.71	1.178	Plot D Note 1	33	2	PASS
1900IVIITZ	810	1909.8	0	31.42	1.387				PASS

Note 1: For the GPRS and EGPRS model, all the slots were tested and just the worst data were recorded in this report.

Note 2: Both horizontal and vertical polarizations of the test antenna are evaluated respectively, only the worst data (horizontal) were recorded in this report.

Test Plots:

(Plot A, GPRS 850MHz, Channel = 128, 190, 251)

(Plot B, EGPRS 850MHz, Channel = 128, 190, 251)

(Plot C, GPRS 1900MHz, Channel = 512, 661, 810)

(Plot D, EGPRS 1900MHz, Channel = 512, 661, 810)

WCDMA Test verdict:

Band	Channel	Frequency		Measured E	ERP	Lim	it	Verdict
Danu	Chamilei	(MHz)	dBm	W	Refer to Plot	dBm	W	verdict
WCDMA	4132	826.4	27.07	0.509				PASS
850MHz	4175	835.0	24.14	0.259	Plot E	38.5	7	PASS
OSUMITIZ	4233	846.6	26.31	0.428				PASS
WCDMA	9262	1852.4	26.47	0.444				PASS
1900MHz	9400	1880.0	24.07	0.255	Plot F	33	2	PASS
TOUNTIL	9538	1907.6	27.38	0.547				PASS

Note 1: Both horizontal and vertical polarizations of the test antenna are evaluated respectively, only the worst data (horizontal) were recorded in this report.

Test Plot

(Plot E, WCDMA 850 MHz, Channel = 4132, 4175, 4233)

(Plot F, WCDMA 1900 MHz, Channel = 9262, 9400, 9538)

2.8. Radiated Out of Band Emissions

2.8.1. Requirement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.8.2. Test Description

Test Setup:

(For the test frequency from 30MHz to1GHz)

(For the test frequency above 1GHz)

The EUT is located in a 3m Full-Anechoic Chamber, the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded. Please refer to section 2.1.3 of this report.

- Step size (dB): 3dB

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) and a Horn one (used for above 3 GHz), it's located at the same height as the EUT. The Filters consists of Notch Filters and High Pass Filter.

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.8.3. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested to verify the out of band emissions. The power of the EUT transmitting frequency should be ignored.

Note 1: All test mode and condition mentioned were considered and evaluated respectively by performing full test, only the worst data were recorded and reported.

Note 2: All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

A. Test Verdict:

			Measured Ma	•			
	. .	Frequency	Emission			Limit	
Band	Channel	(MHz)	Test	Test	Refer to Plot	(dBm)	Verdict
		,	Antenna	Antenna		(- ,	
			Horizontal	Vertical			
GPRS	128	824.2	< -25	< -25	Plot A1/A2		PASS
850MHz	190	836.6	< -25	< -25	Plot A3/A4	-13	PASS
OSUMITZ	251	848.8	< -25	< -25	Plot A5/A6		PASS
GPRS	512	1850.2	< -25	< -25	Plot B1/B2		PASS
1900MHz	661	1880.0	< -25	< -25	Plot B3/B4	-13	PASS
1900101112	810	1909.8	< -25	< -25	Plot B5/B6		PASS
EGPRS	128	824.2	< -25	< -25	Plot C1/C2		PASS
850MHz	190	836.6	< -25	< -25	Plot C3/C4	-13	PASS
OJOIVII IZ	251	848.8	< -25	< -25	Plot C5/C6		PASS
EGPRS	512	1850.2	< -25	< -25	Plot D1/D2		PASS
1900MHz	661	1880.0	< -25	< -25	Plot D3/D4	-13	PASS
T900MI	810	1909.8	< -25	< -25	Plot D5/D6		PASS
WCDMA	4132	826.4	< -25	< -25	Plot E1/E2		PASS
850MHz	4175	835.0	< -25	< -25	Plot E3/E4	-13	PASS
OSUMINZ	4233	846.6	< -25	< -25	Plot E5/E6		PASS
WCDMA	9262	1852.4	< -25	< -25	Plot F1/G2		PASS
1900MHz	9400	1880.0	< -25	< -25	Plot F3/G4	-13	PASS
1 3001011 12	9538	1907.6	< -25	< -25	Plot F5/G6		PASS

Tel: 86-755-36698555

Http://www.morlab.cn

B. Test Plots

(Plot A1, GPRS 850MHz, Channel = 128, Horizontal)

(Plot A2, GPRS 850MHz, Channel = 128, Vertical)

(Plot A3, GPRS850MHz, Channel = 190, Horizontal)

(Plot A4, GPRS 850MHz, Channel = 190, Vertical)

(Plot A5, GPRS 850MHz, Channel = 251, Horizontal)

(Plot A6, GPRS 850MHz, Channel = 251, Vertical)

(Plot B1, GPRS 1900MHz, Channel = 512, Horizontal)

(Plot B2, GPRS 1900MHz, Channel = 512, Vertical)

(Plot B3, GPRS 1900MHz, Channel = 661, Horizontal)

(Plot B4, GPRS 1900MHz, Channel = 661, Vertical)

(Plot B5, GPRS 1900MHz, Channel = 810, Horizontal)

(Plot B6, GPRS 1900MHz, Channel = 810, Vertical)

(Plot C1, EGPRS 850MHz, Channel = 128, Horizontal)

(Plot C2, EGPRS 850MHz, Channel = 128, Vertical)

(Plot C3, EGPRS 850MHz, Channel = 190, Horizontal)

(Plot C4, EGPRS 850MHz, Channel = 190, Vertical)

(Plot C5, EGPRS 850MHz, Channel = 251, Horizontal)

(Plot C6, EGPRS 850MHz, Channel = 251, Vertical)

(Plot D1, EGPRS 1900MHz, Channel = 512, Horizontal)

(Plot D2, EGPRS 1900MHz, Channel = 512, Vertical)

(Plot D3, EGPRS 1900MHz, Channel = 661, Horizontal)

(Plot D4, EGPRS 1900MHz, Channel = 661, Vertical)

(Plot D5, EGPRS 1900MHz, Channel = 810, Horizontal)

(Plot D6, EGPRS 1900MHz, Channel = 810, Vertical)

(Plot E1, WCDMA 850MHz, Channel = 4132, Horizontal)

(Plot E2, WCDMA 850MHz, Channel = 4132, Vertical)

(Plot E3, WCDMA 850MHz, Channel = 4175, Horizontal)

(Plot E4, WCDMA 850MHz, Channel = 4175, Vertical)

(Plot E5, WCDMA 850MHz, Channel = 4233, Horizontal)

(Plot E6, WCDMA 850MHz, Channel = 4233, Vertical)

(Plot G1, WCDMA 1900MHz, Channel = 9262, Horizontal)

(Plot G2, WCDMA 1900MHz, Channel = 9262, Vertical)

(Plot G3, WCDMA 1900MHz, Channel = 9400, Horizontal)

(Plot G4, WCDMA 1900MHz, Channel = 9400, Vertical)

(Plot G5, WCDMA 1900MHz, Channel = 9538, Horizontal)

(Plot G6, WCDMA 1900MHz, Channel = 9538, Vertical)

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Output Power	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Radiated Emission	±2.95dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China
Responsible Test Lab	Mr. Su Feng
Manager:	Mi. Su Felig
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Namai	Shenzhen Morlab Communications Technology Co., Ltd.
Name:	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2018.04.17	2019.04.16
Attenuator 1	(N/A.)	10dB	Resnet	2018.04.17	2019.04.16
Attenuator 2	(N/A.)	3dB	Resnet	2018.04.17	2019.04.16
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
Wireless synthesizer	MY48364176	8960 -E5515C	Agilent	2018.04.17	2019.04.16
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Temperature Chamber	(N/A)	HUT705P	CHONGQING HANBA EXPERIMENTAL EQUIPMENT CO.,LTD	2018.04.17	2019.04.16

4.2 Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal. Due
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.3 List of Software Used

Description	Manufacturer	Software Version
Test system	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V 1.0

4.4 Radiated Test Equipments

Equipment	Чатритента				
	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Name					
Receiver	MY54130016	N9038A	Agilent	2018.05.08	2019.05.07
Test Antenna -	9163-519	VULB 9163	Schwarzbeck	2018.05.08	2019.05.07
Bi-Log	9105-519	VOLD 9103	Ochwarzbeck	2010.03.00	2019.03.07
Test Antenna -	04700 504	DD114.0470	Calarramahaada	0047.00.40	0040 00 40
Horn	9170C-531	BBHA9170	Schwarzbeck	2017.09.13	2018.09.12
Test Antenna -	4540,000	EMZD4540	Calavvanalaaala	2040 02 02	2040 02 02
Loop	1519-022	FMZB1519	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna -	01774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Horn	01774	BBHA 9120D	Scriwarzbeck	2017.09.13	2016.09.12
Coaxial cable					
(N male)	CB04	EMC04	Morlab	N/A	N/A
(9KHz-30MHz)					
Coaxial cable					
(N male)	CB02	EMC02	Morlab	N/A	N/A
(30MHz-26GHz)					
Coaxial cable					
(N male)	CB03	EMC03	Morlab	N/A	N/A
(30MHz-26GHz)					
1-18GHz	N4A 00	TC DD40	Rohde&	2040 05 00	2040 05 07
pre-Amplifier	MA02	TS-PR18	Schwarz	2018.05.08	2019.05.07
18-26.5GHz	MAGG	TO DD40	Rohde&	2019 05 00	2010 05 07
pre-Amplifier	MA03	TS-PR18	Schwarz	2018.05.08	2019.05.07
Anechoic	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18
Chamber	IN/A		CKI	2017.11.19	2020.11.10

END OF REPORT

Tel: 86-755-36698555

Http://www.morlab.cn