

10

30

50

CAGGGGACATGAGAGGCACACCGAAGACCCACCTCCTGGCCTTCTCCCTCCTTGCCCTCC
MetArgGlyThrProLysThrHisLeuLeuAlaPheSerLeuLeuCysLeuL
 70 90 110

TCTCAAAGGTGCGTACCCAGCTGTGCCGACACCATGTACCTGCCCTGGCACCTCCCC
euSerLysValArgThrGlnLeuCysProThrProCysThrCysProTrpProProA
 130 150 170

GATGCCGCTGGGAGTACCCCTGGTGCTGGATGGCTGTGGCTGCTGCCGGTATGTGCAC
 rgCysProLeuGlyValProLeuValLeuAspGlyCysGlyCysCysArgValCysAlaA
 190 210 230

GGCGGCTGGGGAGCCCTGCGACCAACTCCACGTCTGCGACGCCAGGGCCTGGTCT
 rgArgLeuGlyGluProCysAspGlnLeuHisValCysAspAlaSerGlnGlyLeuValC
 250 270 290

GCCAGCCCGGGCAGGACCCGGTGGCCGGGGCCCTGTGCCTTGGCAGAGGACGACA
 ysGlnProGlyAlaGlyProGlyGlyArgGlyAlaLeuCysLeuLeuAlaGluAspAspS
 310 330 350

GCAGCTGTGAGGTGAACGGCCGCCTGTATCGGAAGGGGAGACCTTCAGCCCCACTGCA
 erSerCysGluValAsnGlyArgLeuTyrArgGluGlyGluThrPheGlnProHisCysS
 370 390 410

GCATCCGCTGCCGCTGCGAGGACGGCGCTTCACCTGCGTCCGCTGTGCAGCGAGGATG
 erIleArgCysArgCysGluAspGlyGlyPheThrCysValProLeuCysSerGluAspV
 430 450 470

TGCGGCTGCCAGCTGGACTGCCACCCAGGAGGGTCGAGGTCTGGCAAGTGCT
 alArgLeuProSerTrpAspCysProHisProArgArgValGluValLeuGlyLysCysC
 490 510 530

GCCCTGAGTGGGTGTGCGGCCAAGGAGGGGACTGGGGACCCAGCCCCTCCAGCCAAAG
 ysProGluTrpValCysGlyGlnGlyGlyLeuGlyThrGlnProLeuProAlaGlnG
 550 570 590

GACCCAGTTCTGGCCTGTCTTCCCTGCCCTGGTGTCCCTGCCAGAATGGA
 1yProGlnPheSerGlyLeuValSerSerLeuProProGlyValProCysProGluTrpS

610

630

650

GCACGGCCTGGGGACCCTGCTCGACCACCTGTGGGCTGGCATGCCACCCGGGTGTCCA
 erThrAlaTrpGlyProCysSerThrThrCysGlyLeuGlyMetAlaThrArgValSerA
 670 690 710

ACCAGAACCGCTTCTGCCGACTGGAGACCCAGCGCCGCCTGTGCCTGTCCAGGCCCTGCC
 snGlnAsnArgPheCysArgLeuGluThrGlnArgArgLeuCysLeuSerArgProCysP
 730 750 770

CACCTCCAGGGTCGCAGTCCACAAACAGTGCCTTAGAGCCGGCTGGGAATGGGG
 roProSerArgGlyArgSerProGlnAsnSerAlaPheEnd
 790 810 830

ACACGGTGTCCACCATCCCCAGCTGGTGGCCCTGTGCCTGGCCCTGGGCTGATGGAAGA
 850 870 890

TGGTCCGTGCCAGGCCCTGGCTGCAGGCAACACTTAGCTTGGTCCACCATGCAGAA
 910 930 950

CACCAATATTAAACACGCTGCCTGGCTGTCTGGATCCGAGGTATGGCAGAGGTGCAAGA
 970 990 1010

CCTAGTCCCCTTCCTCTAACTCACTGCCTAGGAGGCTGGCCAAGGTGTCCAGGGTCCTC
 1030 1050 1070

TAGCCCACCTCCCTGCCTACACACACAGCCTATATCAAACATGCACACGGCGAGCTTCT
 1090 1110 1130

CTCCGACTTCCCCTGGCAAGAGATGGGACAAGCAGTCCCTTAATATTGAGGCTGCAGCA
 1150 1170 1190

GGTGCTGGCTGGACTGCCATTCTGGGGTAGGATGAAGAGAAGGCACACAGAGAT
 1210 1230 1250

TCTGGATCTCCTGCTGCCCTTCTGGAGTTGTAAAATTGTTCTGAATAAGCCTATG
 1270

CGTAAAAAAAAAAAAAA

FIG. 2

FIG. 3

