Estadística descriptiva o análisis exploratorio de datos

Primera parte Medidas resumen.

¿Qué es la estadística?

 La ciencia de recolectar, describir y analizar datos. (de libro de Lock, "Unlocking the power of data")

Muestra - Datos (Observaciones)

• Muestra aleatoria: X_1, \ldots, X_n : variables aleatorias i.i.d.

Datos-Observaciones: son realizaciones de las variables aleatorias

• Datos - Observaciones x_1, \ldots, x_n : números.

Datos-Observaciones: son los resultados obtenidos al realizar el "experimento"

Departamentos en venta en Buenos Aires en 2016

Fuente: https://data.buenosaires.gob.ar/

```
> departamentos<-read.csv("departamentos.csv",</pre>
                             header = TRUE
+
> dim(departamentos)
[1] 7564
             5
> departamentos[1:10,]
           M2CUB
    M2
                  DOLARES
                            USM2
                  170150
    57
           50
                            3403
    46
           46
                  118650
                             2579
3
    61
                  181470
           56
                            3241
   140
           76
                  320000
                            4211
4
5
    39
           33
                  82116
                             2488
                  81921
6
    39
           34
                             2409
    50
           45
                  103802
                             2307
8
    82
           58
                  265000
                            4569
9
    38
           38
                  145000
                             3816
10
    38
           35
                   147000
                             4200
```

Departamentos en venta en Buenos Aires en 2016

ullet $X=m^2$ de un departamento elegido al azar de entre todos los departamentos en venta en Buenos Aires en 2016

$$X \sim F$$

ullet Experimento: Elegir n departamentos al azar. Tengo variables aleatorias

$$X_1, \ldots X_n$$

 $X_i = m^2$ del i- ésimo departamento elegido.

$$X_i \sim F$$
 i.i.d

Departamentos en venta en Buenos Aires en 2016

Tenemos vectores aleatorios

$$(X_1, Y_1, Z_1, W_1) \dots (X_n, Y_n, Z_n, W_n)$$

 $X_i=m^2$ del i-ésimo departamento $Y_i=m^2$ cubiertos del i-ésimo departamento $Z_i=$ precio en dólares del i-ésimo departamento $W_i=$ precio en dólares por m^2 del i-ésimo departamento

El conjunto de datos es una realización de estos vectores aleatorios, para n=7564.

Algunos datos

 Considere los siguientes datos, generados por una distribución F.

- Recordar $F(t) = P(X \le t)$, donde $X \sim F$
- Estime F(160).
- Estime F(168).
- ullet Proponga una fórmula para estimar F(t)

$$\widehat{F}(t) = \dots$$

• Grafique la función $\widehat{F}: \mathbb{R} \to [0,1]$.

Algunos datos

ullet Considere los siguientes datos, generados por una distribución F.

- Recordar $F(t) = P(X \le t)$, donde $X \sim F$
- Estime F(160).
- Estime F(168).
- \bullet Proponga una fórmula para estimar F(t)

$$\widehat{F}(t) = \frac{1}{5} \sum_{i=1}^{5} I\{x_i \le t\}.$$

• Grafique la función $\widehat{F}: \mathbb{R} \to [0,1]$.

$$\widehat{F}(t) = \frac{1}{5} \sum_{i=1}^{5} I\{x_i \le t\}.$$

La empírica

valores	156.67	162.37	165.03	167.84	172.47
puntual	1/5	1/5	1/5	1/5	1/5

Función de distribución empírica

• Datos - Observaciones generadas con *F*:

$$x_1,\ldots,x_n$$

- Acumulada $F. F(t) = \mathbb{P}(X \leq t).$
- Estimación de la acumulada : función de distribución empírica asociada a $x_1, \dots x_n$

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathrm{I}\{x_i \leq t\}$$
 mean(datos<=t)

Función de distribución empírica

• Datos - Observaciones generadas con *F*:

$$x_1,\ldots,x_n$$

- Acumulada F. $F(t) = \mathbb{P}(X \leq t).$
- Estimación de la acumulada : función de distribución empírica asociada a $x_1, \dots x_n$

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathrm{I}\{x_i \leq t\}$$
 mean(datos<=t)

- \widehat{F}_n es una función de distribución acumulada (de discreta).
- \widehat{F}_n asigna peso 1/n a cada valor x_1, \ldots, x_n .

valores	x_1				x_n
puntual	1/n	1/n	1/n	1/n	1/n

La media muestral

Sea $X \sim \widehat{F}_n$ entonces $R_X = \{x_1 \dots x_n\}$ y

$$E(X) = \sum_{x_i \in R_X} x_i p_X(x_i)$$
$$= \sum_{x_i \in R_X} x_i \frac{1}{n}$$
$$= \overline{x}_n$$

Notación: $E_F(X)$ quiere decir la esperanza de X, donde $X \sim F$.

- Media poblacional: $E_F(X)$
- Media muestral: $E_{\hat{F}_n}(X)$

La mediana

Si $X \sim F$

$$\mathsf{Med}(X) = F^{-1}(0.5)$$

$$F^{-1}(p) = \inf\{x/F(x) \ge p\}$$

- Mediana poblacional: $F^{-1}(0.5)$
- Mediana muestral: $\hat{F}_n^{-1}(0.5) = x_{([(n+1)/2])}$ donde $x_{(1)} \leq \ldots \leq x_{(n)}$
- Otra forma de definir la mediana muestral:
 - $n \text{ impar } x_{(\frac{n+1}{2})}$
 - $n \text{ par: } \frac{1}{2} \{ x_{(n/2)} + x_{(n/2+1)} \}$

Cuantiles y percentiles

- Cuantil α (poblacional): $F^{-1}(\alpha)$ es el valor v tal que $P(X \le v) = \alpha$
- Cuantil α muestral: $\hat{F}_n^{-1}(\alpha) = x_{([\alpha(n+1)])}$
- Por ejemplo, si $\alpha=0.8$, n=99, el cuantil muestral 0.8 es la observación que ocupa el lugar 80 en la muestra ordenada. Estima: v tal que $P(X \le v) = 0.8$.
- Noción equivalente: percentil cuantil 0.8 = percentil 80 cuantil $\alpha = \text{percentil } \alpha 100$

Medidas de resumen - Posición

- ullet Media muestral \overline{x}
- Mediana muestral \widetilde{x} :
- Cuantil α muestral: $x_{([\alpha(n+1)])}$
- Cuartiles: Primero: $Q_1=\widehat F_n^{-1}(0.25)$ o $x_{([0.25(n+1)])}$; Segundo: Q_2 mediana; Tercero: $Q_3=\widehat F_n^{-1}(0.75)$ o $x_{([0.75(n+1)])}$
- Media α podada:

$$\overline{x}_{\alpha} = \frac{x_{([n\alpha]+1)} + \dots + x_{(n-[n\alpha])}}{n - 2[n\alpha]}$$

Medidas de resumen - Dispersión

• Estimación de la varianza a partir de la empírica

$$\widehat{\sigma^2} = V_{\hat{F}_n}(X) = \frac{1}{n} \sum_{i=1}^n x_i^2 - \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

Varianza muestral

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- Distancia intercuartil. $Q_3 Q_1$
- MAD: mediana $\{|x_i \widetilde{x}|\}$

Datos de departamentos. Medidas de posición

```
> mean(departamentos$M2)
[1] 70.3834
> median(departamentos$M2)
[1] 54
> quantile(departamentos$M2)
0% 25% 50% 75% 100%
15 41 54 80 730
> mean(departamentos$M2,0.1)
[1] 60.59468
```

Datos de departamentos. Medidas de dispersión

```
> mean(departamentos$M2^2)-mean(departamentos$M2)^2
[1] 2632.525
> mean((departamentos$M2-mean(departamentos$M2))^2)
[1] 2632.525
> var(departamentos$M2)
[1] 2632.873
> sum((departamentos$M2-mean(departamentos$M2))^2)/(n-1)
[1] 2632.873
> IQR(departamentos$M2)
Γ1] 39
> mad(departamentos$M2, constant = 1)
Γ1 16
```

Segunda parte Gráficos.

Histograma: AREA=FRECUENCIA RELATIVA

- 1. datos: x_1, \ldots, x_n
- 2. datos ordenados: $x_{(1)} \leq \ldots, \leq x_{(n)}$
- 3. $I_1, \ldots I_K$, K intervalos que particionan $[x_{(1)}, x_{(n)}]$
- 4. Graficamos una constante sobre cada intervalo de forma tal que el area del rectángulo coincida con la frecuencia relativa en el intervalo:

Altura sobre
$$I_j \times \text{longitud } (I_j) = \frac{1}{n} \sum_{i=1}^n \mathbf{I}_{x_i \in I_j}$$

Si
$$I_j=(a,b)$$
, entonces longitud $(I_j)=\lvert I_j\rvert=b-a$

Altura sobre
$$I_j = \frac{1}{|I_j|} \frac{1}{n} \sum_{i=1}^n \mathrm{I}_{x_i \in I_j}$$

Histogramas de distribuciones conocidas

Datos de departamentos

Datos de Pearson: estaturas de padres e hijos

```
> library(UsingR)
> father.son[1:10,]
fheight sheight
  65.04851 59.77827
2 63.25094 63.21404
3 64.95532 63.34242
 65.75250 62.79238
5 61,13723 64,28113
 63.02254 64.24221
 65.37053 64.08231
8 64.72398 63.99574
  66.06509 64.61338
10 66.96738 63.97944
```

Datos de Pearson: estaturas de padres e hijos

```
par(mfrow=c(1,2))
with(data=father.son, hist(fheight, probability = TRUE))
with(data=father.son, hist(sheight, probability = TRUE))
```


Boxplot - en R boxplot(datos)

Boxplots de distribuciones conocidas

Datos de departamentos

Figure:

Datos de Pearson: estatura de padres e hijos

Tercera parte

Datos bivariados.

Datos bivariados: relación entre dos variables numéricas

- ¿Hay relación entre las variables?
- ¿Cuán fuerte es la relación entre las variables?
- ¿Es la relación entre las variables lineal?

Datos de departamentos

departamentos<-read.csv("departamentos.txt",header = TRUE)
with(data=departamentos, plot(M2,DOLARES))</pre>

Datos de Pearson: estatura de padres e hijos

library(UsingR)
with(data=father.son, plot(fheight, sheight)

Estimación de la correlción

 Recuerdo: La correlación (poblacional) de un vector aleatorio (X, Y):

$$\rho(X,Y) = \frac{E((X - E(X)(Y - E(Y)))}{\sqrt{V(X)V(Y)}}$$

La correlación muestral:

$$\hat{\rho}(X,Y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})/n}{\sqrt{\sum (x_i - \overline{x})^2/n \sum (y_i - \overline{y})^2/n}}$$
$$\hat{\rho}(X,Y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

Estimación de la correlación en R

```
> cor(departamentos$M2,departamentos$DOLARES)
[1] 0.8003153
```

```
> cor(father.son$fheight,father.son$sheight)
[1] 0.5013383
```

Ejercicio Verificar que da lo que indica la fórmula de la diapositiva anterior.

Predicción

Vimos que el mejor predictor lineal de Y basado en X según el criterio del ECM es:

$$\hat{Y} = \mu_Y - \frac{\sigma_Y}{\sigma_X} \rho_{XY} \mu_X + \frac{\sigma_Y}{\sigma_X} \rho_{XY} X$$

Ahora podemos estimar μ_X , μ_Y , σ_X , σ_Y y ρ_{XY} .

Predicción

Vimos que el mejor predictor lineal de Y basado en X según el criterio del ECM es:

$$\hat{Y} = \underbrace{\mu_Y - \frac{\sigma_Y}{\sigma_X} \rho_{XY} \mu_X}_{\alpha} + \underbrace{\frac{\sigma_Y}{\sigma_X} \rho_{XY}}_{\beta} X$$

$$\hat{\beta} = \sqrt{\frac{\sum (y_i - \overline{y})^2}{\sum (x_i - \overline{x})^2}} \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sum (y_i - \overline{y})^2}$$

$$= \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

$$\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x}$$

La recta de regresión

La recta

$$y = \alpha + \beta x$$
,

con α y β definidos como en la diapositiva anterior, se llama recta de regresión

 $\bullet \ \, \mathsf{Prop:} \ \, (\alpha,\beta) = \mathit{argmin}_{a,b} \, E\left((Y-a-bX)^2\right)$

La recta de regresión estimada

La recta

$$y = \hat{\alpha} + \hat{\beta}x,$$

se llama recta de regresión estimada

Prop:

$$(\hat{\alpha}, \hat{\beta}) = \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

Dem: no la haremos en este curso.

• $(\hat{\alpha}, \hat{\beta})$ se llama estimación por mínimos cuadrados de (α, β) .

Estimación por mínimos cuadrados en R

```
> ajuste1 <- lm(DOLARES~M2, data=departamentos)
> ajuste1
```

Call:

lm(formula = DOLARES ~ M2, data = departamentos)

Coefficients:

(Intercept) M2

-24860 2973

La recta de regresión estimada de DOLARES vs M2 basada es

$$y = -24860 + 2973x$$

Predicción del precio de un departamento de 120M2:

$$\hat{y}_{120} = -24860 + 2973 * 120 = 331900$$

with(data=departamentos, plot(M2,DOLARES))
abline(ajuste1\$coefficients)

with(data=father.son, plot(fheight, sheight))
ajuste2 <- lm(sheight~fheight, data=father.son)
abline(ajuste2\$coefficients)</pre>

Para explorar: el método L1

Con este método se minimiza el EAM

$$(\hat{\alpha}, \hat{\beta}) = \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{n} (|y_i - a - bx_i|)$$

 $(\hat{\alpha}, \hat{\beta})$ no se pueden calcular en forma explícita. Pero sí se pueden calcular por método numéricos:

- > ajuste3 <- 11fit(departamentos\$M2,departamentos\$DOLARES)</pre>
- > ajuste3\$coefficients

-12542.435 2638.224

with(data=departamentos, plot(M2,DOLARES))
abline(ajuste1\$coefficients)
abline(ajuste3\$coefficients)


```
with(data=father.son, plot(fheight,sheight))
ajuste2 <- lm(sheight~fheight, data=father.son)
ajuste4 <- l1fit(father.son$fheight,father.son$sheight)
abline(ajuste2$coefficients)
abline(ajuste4$coefficients, col=2)</pre>
```

