

Dimensionality Reduction

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01	Dimensionality Reduction
02	Variable Selection Methods
03	Shrinkage Methods
04	R Exercise

R Exercise: Data Set

Personal Loan

✓ Purpose: identify future customer who will use the personal loan service based on his/her demographic information and banking service history

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N
1	ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	Personal L	Securities	CD Accou	Online	CreditCard
2	1	25	1	49	91107	4	1.6	1	0	0	1	0	0	0
3	2	45	19	34	90089	3	1.5	1	0	0	1	0	0	0
4	3	39	15	11	94720	1	1	1	0	0	0	0	0	0
5	4	35	9	100	94112	1	2.7	2	0	0	0	0	0	0
6	5	35	8	45	91330	4	1	2	0	0	0	0	0	1
7	6	37	13	29	92121	4	0.4	2	155	0	0	0	1	0
8	7	53	27	72	91711	2	1.5	2	0	0	0	0	1	0
9	8	50	24	22	93943	1	0.3	3	0	0	0	0	0	1
10	9	35	10	81	90089	3	0.6	2	104	0	0	0	1	0

- A total of 14 variables (columns)
- ID, ZIP Code: irrelevant column (remove)
- Personal loan: target variable

R Exercise: Install packages

Install packages and prepare them to be used

```
# Install necessary packages
# glmnet: Ridge, Lasso, Elastic Net Logistic Regression
# GA: genetic algorithm
install.packages("glmnet")
install.packages("GA")
library(glmnet)
library(GA)
```


R Exercise: Performance Evaluation Function

Performance Evaluation Function

```
# Performance Evaluation Function --
perf eval <- function(cm){</pre>
    # True positive rate: TPR (Recall)
    TPR \leftarrow cm[2,2]/sum(cm[2,1)
    # Precision
    PRE \leftarrow cm[2,2]/sum(cm[,2])
    # True negative rate: TNR
    TNR <- cm[1,1]/sum(cm[1,])
    # Simple Accuracy
    ACC \leftarrow (cm[1,1]+cm[2,2])/sum(cm)
    # Balanced Correction Rate
    BCR <- sqrt(TPR*TNR)
    # F1-Measure
    F1 <- 2*TPR*PRE/(TPR+PRE)
    return(c(TPR, PRE, TNR, ACC, BCR, F1))
```

- √ Function name: perf_eval
 - Argument: confusion matrix
 - Outputs: six classification performance metrics

R Exercise: Performance Evaluation Function

Performance Evaluation Function

- ✓ Initialize the performance comparison matrix
- ✓ A total of 8 logistic regression models are compared
 - All: All variables are used
 - Forward/Backward/Stepwise: Variables selected by Forward Selection, Backward
 Elimination, and Stepwise selection are used
 - GA:Variables selected by genetic algorithm are used
 - Ridge/Lasso/Elastic Net

R Exercise: Data Load and Preprocessing

Data Load and Preprocessing

```
# Load the data & Preprocessing
Ploan <- read.csv("Personal Loan.csv")

Ploan_input <- Ploan[,-c(1,5,10)]
Ploan_input_scaled <- scale(Ploan_input, center = TRUE, scale = TRUE)
Ploan_target <- Ploan$Personal.Loan
Ploan_data_scaled <- data.frame(Ploan_input_scaled, Ploan_target)

trn_idx <- 1:1500
tst_idx <- 1501:2500

Ploan_trn <- Ploan_data_scaled[trn_idx,]
Ploan_tst <- Ploan_data_scaled[tst_idx,]</pre>
```

- ✓ Remove Ist, 5th, and 10th columns from input variables
- ✓ Perform input variable normalization
- ✓ Use the first 1,500 rows for training and the other 1,000 rows for test

Logistic Regression I:All variables

```
# Variable selection method 0: Logistic Regression with all variables
full_model <- glm(Ploan_target ~ ., family=binomial, Ploan_trn)
summary(full_model)
full_model_coeff <- as.matrix(full_model$coefficients, 12, 1)</pre>
```

- √ glm() function: provide logistic regression model
 - Arg I: Formula, "Target ~ Input" form, period(.) for input means all variables except the target variable are used as input variables
 - Arg 2: dataset for training
- ✓ summary(): provide summarized information of the trained model
- ✓ Store the regression coefficients for further comparison

- Logistic Regression I:All variables
 - √ Insignificant variables (alpha = 0.05)
 - Age
 - Experience
 - Mortgage
 - Online

```
> summary(full model)
Call:
glm(formula = Ploan target ~ ., family = binomial, data = Ploan trn)
Deviance Residuals:
    Min
              10
                  Median
                               30
                                       Max
-2.1781 -0.2189 -0.0906 -0.0365
                                    3.5345
Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
(Intercept)
                   -4.445483
                              0.272085 -16.339 < 2e-16 ***
Age
                   -0.776031
                              1.276510 -0.608 0.543233
Experience
                              1.272791
                                         0.716 0.474154
                   0.910984
Income
                   2.374701
                              0.206877 11.479 < 2e-16 ***
Family
                   0.739703
                              0.153237
                                         4.827 1.38e-06 ***
                              0.120946
CCAvg
                   0.264244
                                         2.185 0.028902 *
Education
                              0.170227 7.806 5.88e-15 ***
                   1.328860
Mortgage
                   0.009294
                              0.100392
                                         0.093 0.926239
Securities.Account -0.501459
                              0.183861 -2.727 0.006384 **
CD.Account
                   0.982082
                              0.151231
                                         6.494 8.36e-11 ***
Online
                  -0.182069
                              0.139815 -1.302 0.192843
CreditCard
                              0.181094 -3.409 0.000652 ***
                  -0.617374
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 984.01 on 1499 degrees of freedom
Residual deviance: 401.11 on 1488 degrees of freedom
AIC: 425.11
Number of Fisher Scoring iterations: 7
```


Logistic Regression I:All variables

```
# Make prediction
full_model_prob <- predict(full_model, type = "response", newdata = Ploan_tst)
full_model_prey <- rep(0, nrow(Ploan_tst))
full_model_prey[which(full_model_prob >= 0.5)] <- 1
full_model_cm <- table(Ploan_tst$Ploan_target, full_model_prey)
full_model_cm

# Peformance evaluation
Perf_Table[1,] <- perf_eval(full_model_cm)
Perf_Table</pre>
```

- √ type = "response" option for predict() function gives the probability of belonging to
 class I
- ✓ Use 0.5 as the cut-off

```
> full_model_cm
    full_model_prey
      0  1
    0 881  15
    1 36 68
```


• Logistic Regression I:All variables

> Perf_Table

	TPR	Precision	TNR	Accuracy	BCR	F1-Measure
All	0.6538462	0.8192771	0.9832589	0.949	0.8018105	0.7272727
Forward	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Backward	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Stepwise	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
GA	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Ridge	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Lasso	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Elastic Net	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000

Logistic Regression 2: Forward Selection

- ✓ step() function: perform forward selection/backward elimination/stepwise selection
 - Arg I: Initial model, forward selection model begins with the model with no input variable
 - Arg 2: Range of selected variables
 - Upper: the largest set of selected variables (all variables in this experiment)
 - Lower: the smallest set of selected variables (0 in this experiment)
 - Arg 3: direction = "forward" (perform forward selection)

- Logistic Regression 2: Forward Selection
 - ✓ Mortgage and Online are not selected

Age	Coefficients:					
Experience	(Intercept)	Estimate 0.101881	Std. Error 0.006029	t value 16.899	Pr(> t) < 2e-16	***
- Mortgage	Income	0.149121	0.008154	18.288	< 2e-16	
	CD.Account Education	0.083880 0.068442	0.006887 0.006366	12.180 10.750	< 2e-16 < 2e-16	
- Online	Family	0.039866	0.006121	6.513	1.00e-10	***
	CreditCard Securities.Account	-0.024395 -0.025492	0.006331 0.006506		0.000122 9.32e-05	
	CCAvg	0.019494	0.007808	2.497	0.012642	*
	Experience Age	0.107328 -0.098853	0.058000 0.058078		0.064444 0.088950	
	Signif. codes: 0 '	·*** 0.001	l '**' 0.01	(*) 0 00	5 '.' 0.1	() ₁
	orgini Couco. 0	0.003	0.01	0.0.	. 0.1	_

• Logistic Regression 2: Forward Selection

- √ type = "response" option for predict() function gives the probability of belonging to
 class I
- ✓ Use 0.5 as the cut-off
 - > forward_model_cm
 forward_model_prey
 0 1
 0 893 3
 1 57 47

• Logistic Regression 2: Forward Selection

```
> Perf_Table
```

	TPR	Precision	TNR	Accuracy	BCR	F1-Measure
All	0.6538462	0.8192771	0.9832589	0.949	0.8018105	0.7272727
Forward	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
Backward	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Stepwise	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
GA	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Ridge	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Lasso	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Elastic Net	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000

• Logistic Regression 3: Backward Elimination

- √ step() function: perform forward selection/backward elimination/stepwise selection
 - Arg I: Initial model, forward selection model begins with the model with no input variable
 - Arg 2: Range of selected variables
 - Upper: the largest set of selected variables (all variables in this experiment)
 - Lower: the smallest set of selected variables (0 in this experiment)
 - Arg 3: direction = "backward" (perform backward elimination)

- Logistic Regression 3: Backward Elimination
 - √ Age, Experiment, Mortgage, and Online are not selected

- -Age	Coefficients:					
		Estimate	Std. Error	z value	Pr(> z)	
 Experience 	(Intercept)	-4.4217	0.2685	-16.467	< 2e-16	***
- Mortgago	Income	2.3871	0.2021	11.814	< 2e-16	***
- Hortgage	Family	0.7319	0.1507	4.858	1.18e-06	***
- Online	CCAvg	0.2482	0.1197	2.073	0.038149	*
	Education	1.3033	0.1661	7.849	4.20e-15	***
	Securities.Account	-0.4675	0.1809	-2.585	0.009751	**
	CD.Account	0.9373	0.1426	6.572	4.95e-11	***
	CreditCard	-0.5889	0.1769	-3.329	0.000871	***
	Signif. codes: 0	·*** 0.00	0.01	L '*' 0.0	05 '.' 0.1	1''1

• Logistic Regression 3: Backward Elimination

- √ type = "response" option for predict() function gives the probability of belonging to
 class I
- ✓ Use 0.5 as the cut-off
 - > backward_model_cm
 backward_model_prey
 0 1
 0 881 15
 1 37 67

• Logistic Regression 3: Backward Elimination

> Perf_Table

	TPR	Precision	TNR	Accuracy	BCR	F1-Measure
All	0.6538462	0.8192771	0.9832589	0.949	0.8018105	0.7272727
Forward	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
Backward	0.6442308	0.8170732	0.9832589	0.948	0.7958930	0.7204301
Stepwise	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
GA	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Ridge	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Lasso	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Elastic Net	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000

Logistic Regression 4: Stepwise Selection

- ✓ step() function: perform forward selection/backward elimination/stepwise selection
 - Arg I: Initial model, forward selection model begins with the model with no input variable
 - Arg 2: Range of selected variables
 - Upper: the largest set of selected variables (all variables in this experiment)
 - Lower: the smallest set of selected variables (0 in this experiment)
 - Arg 3: direction = "backward" (perform backward elimination)

- Logistic Regression 4: Stepwise Selection
 - ✓ Mortgage and Online are not selected (same result with the forward selection)

Age	Coefficients:					
.		Estimate	Std. Error	t value	Pr(> t)	
Experience	(Intercept)	0.101881	0.006029	16.899	< 2e-16	***
- Mortgogo	Income	0.149121	0.008154	18.288	< 2e-16	***
Mortgage	CD.Account	0.083880	0.006887	12.180	< 2e-16	***
- Online	Education	0.068442	0.006366	10.750	< 2e-16	***
	Family	0.039866	0.006121	6.513	1.00e-10	***
	CreditCard	-0.024395	0.006331	-3.853	0.000122	***
	Securities.Account	-0.025492	0.006506	-3.918	9.32e-05	***
	CCAvg	0.019494	0.007808	2.497	0.012642	*
	Experience	0.107328	0.058000	1.850	0.064444	
	Age	-0.098853	0.058078	-1.702	0.088950	

Logistic Regression 4: Stepwise Selection

- √ type = "response" option for predict() function gives the probability of belonging to
 class I
- ✓ Use 0.5 as the cut-off

```
> stepwise_model_cm
    stepwise_model_prey
      0  1
    0 893   3
    1 57 47
```


• Logistic Regression 4: Stepwise Selection

> Perf_Table

	TPR	Precision	TNR	Accuracy	BCR	F1-Measure
All	0.6538462	0.8192771	0.9832589	0.949	0.8018105	0.7272727
Forward	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
Backward	0.6442308	0.8170732	0.9832589	0.948	0.7958930	0.7204301
Stepwise	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
GA	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Ridge	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Lasso	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Elastic Net	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000

• Logistic Regression 5: Genetic Algorithm

```
# Variable selection method 4: Genetic Algorithm
# Fitness function: F1 for the training dataset
fit F1 <- function(string){</pre>
    sel var idx <- which(string == 1)</pre>
    # Use variables whose gene value is 1
    sel x <- x[, sel var idx]
    xy <- data.frame(sel x, y)</pre>
    # Training the model
    GA lr <- glm(y ~ ., family = binomial, data = xy)
    GA lr prob <- predict(GA lr, type = "response", newdata = xy)
    GA lr prey <- rep(0, length(y))
    GA lr prey[which(GA lr prob \Rightarrow = 0.5)] <- 1
    GA_{r_cm} \leftarrow matrix(0, nrow = 2, ncol = 2)
    GA lr\ cm[1,1] \leftarrow length(which(y == 0 & GA lr\ prey == 0))
    GA lr\ cm[1,2] \leftarrow length(which(y == 0 \& GA lr prey == 1))
    GA lr\ cm[2,1] \leftarrow length(which(y == 1 & GA lr\ prey == 0))
    GA lr cm[2,2] \leftarrow length(which(y == 1 & GA lr prey == 1))
    GA perf <- perf eval(GA lr cm)
    return(GA perf[6])
```


- Logistic Regression 5: Genetic Algorithm
 - ✓ fit_FI() function
 - Input: chromosome (binary vector whose length is the same as the number of variables)
 - 1: use the corresponding variable in the current model
 - 0: do not use the corresponding variable in the current model
 - Example

Output: fitness function in terms of FI measure (cut-off = 0.5)

• Logistic Regression 5: Genetic Algorithm

- √ ga() function: variable selected via genetic algorithm
 - Arg I: type of chromosome, if it is "binary", each gene has either 0 or I value
 - Arg 2: fitness function
 - Arg 3 & 4: number of variables and variable names
 - Arg 5 & 6 & 7: number of chromosomes, crossover rate, mutation rate
 - Arg 8 & 9: Maximum number of iterations, number of chromosomes to preserve

• Logistic Regression 5: Genetic Algorithm

```
best_var_idx <- which(GA_F1@solution == 1)

# Model training based on the best variable subset
GA_trn_data <- Ploan_trn[,c(best_var_idx, 12)]
GA_tst_data <- Ploan_tst[,c(best_var_idx, 12)]
GA_model <- glm(Ploan_target ~ ., family=binomial, GA_trn_data)

summary(GA_model)
GA_model_coeff <- as.matrix(GA_model$coefficients, 12, 1)
GA_model_coeff</pre>
```

√ best_var_idx: index of best variable subset selected by GA

```
> best_var_idx
[1] 1 3 4 5 6 7 8 9 11
```


• Logistic Regression 5: Genetic Algorithm

✓ Unselected variables

Experience

Online

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-4.4333	0.2705	-16.391	< 2e-16	***
Age	0.1292	0.1353	0.954	0.33985	
Income	2.3956	0.2063	11.611	< 2e-16	***
Family	0.7508	0.1527	4.918	8.76e-07	***
CCAvg	0.2572	0.1202	2.140	0.03237	*
Education	1.3081	0.1670	7.833	4.75e-15	***
Mortgage	0.0135	0.1003	0.135	0.89298	
Securities.Account	-0.4726	0.1822	-2.595	0.00947	**
CD.Account	0.9276	0.1429	6.489	8.63e-11	***
CreditCard	-0.5733	0.1770	-3.240	0.00120	**

Logistic Regression 5: Genetic Algorithm

```
# Make prediction
GA_model_prob <- predict(GA_model, type = "response", newdata = GA_tst_data)
GA_model_prey <- rep(0, nrow(Ploan_tst))
GA_model_prey[which(GA_model_prob >= 0.5)] <- 1
GA_model_cm <- table(GA_tst_data$Ploan_target, GA_model_prey)
GA_model_cm

# Peformance evaluation
Perf_Table[5,] <- perf_eval(GA_model_cm)
Perf_Table</pre>
```

- ✓ type = "response" option for predict() function gives the probability of belonging to
 class I
- ✓ Use 0.5 as the cut-off

```
> GA_model_cm
GA_model_prey
0 1
0 883 13
1 38 66
```


• Logistic Regression 5: Genetic Algorithm

```
> Perf_Table
```

	TPR	Precision	TNR	Accuracy	BCR	F1-Measure
All	0.6538462	0.8192771	0.9832589	0.949	0.8018105	0.7272727
Forward	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
Backward	0.6442308	0.8170732	0.9832589	0.948	0.7958930	0.7204301
Stepwise	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
GA	0.6346154	0.8354430	0.9854911	0.949	0.7908273	0.7213115
Ridge	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Lasso	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Elastic Net	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000

Logistic Regression 6: Ridge Regression

```
# Shrinkage method 1: Ridge logistic regression
Ploan_trn_X <- as.matrix(Ploan_trn[,-12])
Ploan_trn_y <- as.factor(Ploan_trn[,12])
Ploan_tst_X <- as.matrix(Ploan_tst[,-12])
Ploan_tst_y <- as.factor(Ploan_tst[,12])

Ridge_model <- glmnet(Ploan_trn_X, Ploan_trn_y, family = "binomial", alpha = 0)
plot(Ridge_model, xvar = "lambda")</pre>
```

- √ glmnet() function: can learn shrinkage methods
 - Arg I: Input variables (matrix form)
 - Arg 2:Target variable (factor form)
 - Arg 3: family = "binomial" (binary classification = logistic regression)
 - Arg 4:Weight for L1 and L2 norm (alpha = $0 \rightarrow \text{Ridge regression}$)

$$(1 - \alpha) \times \lambda_1 \sum_{j=1}^{d} |\hat{\beta}_j| + \alpha \times \lambda_2 \sum_{j=1}^{d} \hat{\beta}_j^2$$

• Logistic Regression 6: Ridge Regression

Logistic Regression 6: Ridge Regression

```
# Find the best lambda based in 5-fold cross validation
CV_Ridge <- cv.glmnet(Ploan_trn_X, Ploan_trn_y, family = "binomial", alpha = 0)
plot(CV_Ridge)
best_lambda <- CV_Ridge$lambda.min</pre>
```

- ✓ cv.glmnet(): function for 5-fold cross-validation
 - Arg I: Input variables (matrix form)
 - Arg 2:Target variable (factor form)
 - Arg 3: family = "binomial" (binary classification = logistic regression)
 - Arg 4:Weight for L1 and L2 norm (alpha = $0 \rightarrow \text{Ridge regression}$)

• Logistic Regression 6: Ridge Regression

Logistic Regression 6: Ridge Regression

- ✓ predict()
 - Arg I: trained model
 - Arg 2: Lambda
 - Arg 3: Input variables of test dataset
 - Arg 4: Type of the output (estimated coefficients or predicted class)

• Logistic Regression 6: Ridge Regression

> Perf_Table

	TPR	Precision	TNR	Accuracy	BCR	F1-Measure
All	0.6538462	0.8192771	0.9832589	0.949	0.8018105	0.7272727
Forward	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
Backward	0.6442308	0.8170732	0.9832589	0.948	0.7958930	0.7204301
Stepwise	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
GA	0.6346154	0.8354430	0.9854911	0.949	0.7908273	0.7213115
Ridge	0.5384615	0.8888889	0.9921875	0.945	0.7309274	0.6706587
Lasso	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000
Elastic Net	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000

Logistic Regression 7: Lasso Regression

```
# Shrinkage method 2: Lasso regression
Lasso_model <- glmnet(Ploan_trn_X, Ploan_trn_y, family = "binomial", alpha = 1)
plot(Lasso_model, xvar = "lambda")

# Find the best lambda based in 5-fold cross validation
CV_Lasso <- cv.glmnet(Ploan_trn_X, Ploan_trn_y, family = "binomial", alpha = 1)
plot(CV_Lasso)
best_lambda <- CV_Lasso$lambda.min</pre>
```

- √ glmnet() function: can learn shrinkage methods
 - Arg I: Input variables (matrix form)
 - Arg 2:Target variable (factor form)
 - Arg 3: family = "binomial" (binary classification = logistic regression)
 - Arg 4:Weight for LI and L2 norm (alpha = $I \rightarrow Lasso regression$)

$$(1 - \alpha) \times \lambda_1 \sum_{j=1}^{d} |\hat{\beta}_j| + \alpha \times \lambda_2 \sum_{j=1}^{d} \hat{\beta}_j^2$$

• Logistic Regression 7: Lasso Regression

• Logistic Regression 7: Lasso Regression

• Logistic Regression 7: Lasso Regression

- ✓ predict()
 - Arg I:Trained model
 - Arg 2: Lambda
 - Arg 3: Input variable of test dataset
 - Arg 4: Output type (regression coefficients or predicted class)

• Logistic Regression 7: Lasso Regression

> Perf_Table

	TPR	Precision	TNR	Accuracy	BCR	F1-Measure
All	0.6538462	0.8192771	0.9832589	0.949	0.8018105	0.7272727
Forward	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
Backward	0.6442308	0.8170732	0.9832589	0.948	0.7958930	0.7204301
Stepwise	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
GA	0.6346154	0.8354430	0.9854911	0.949	0.7908273	0.7213115
Ridge	0.5384615	0.8888889	0.9921875	0.945	0.7309274	0.6706587
Lasso	0.6250000	0.8227848	0.9843750	0.947	0.7843688	0.7103825
Elastic Net	0.0000000	0.0000000	0.0000000	0.000	0.0000000	0.0000000

Logistic Regression 8: Elastic Net

```
# Shrinkage method 3: Elastic net regression
Elastic_model <- glmnet(Ploan_trn_X, Ploan_trn_y, family = "binomial", alpha = 0.5)
plot(Elastic_model, xvar = "lambda")

# Find the best lambda based in 5-fold cross validation
CV_Elastic <- cv.glmnet(Ploan_trn_X, Ploan_trn_y, family = "binomial", alpha = 0.5)
plot(CV_Elastic)
best_lambda <- CV_Elastic$lambda.min</pre>
```

- √ glmnet() function: can learn shrinkage methods
 - Arg I: Input variables (matrix form)
 - Arg 2:Target variable (factor form)
 - Arg 3: family = "binomial" (binary classification = logistic regression)
 - Arg 4:Weight for L1 and L2 norm (alpha = 0.5 → Elastic Net)

$$(1 - \alpha) \times \lambda_1 \sum_{j=1}^{d} |\hat{\beta}_j| + \alpha \times \lambda_2 \sum_{j=1}^{d} \hat{\beta}_j^2$$

• Logistic Regression 8: Elastic Net

• Logistic Regression 8: Elastic Net

44

Logistic Regression 8: Elastic Net

- ✓ predict()
 - Arg I:Trained model
 - Arg 2: Lambda
 - Arg 3: Input variable of test dataset
 - Arg 4: Output type (regression coefficients or predicted class)

• Logistic Regression 8: Elastic Net

> Perf_Table

	TPR	Precision	TNR	Accuracy	BCR	F1-Measure
All	0.6538462	0.8192771	0.9832589	0.949	0.8018105	0.7272727
Forward	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
Backward	0.6442308	0.8170732	0.9832589	0.948	0.7958930	0.7204301
Stepwise	0.4519231	0.9400000	0.9966518	0.940	0.6711259	0.6103896
GA	0.6346154	0.8354430	0.9854911	0.949	0.7908273	0.7213115
Ridge	0.5384615	0.8888889	0.9921875	0.945	0.7309274	0.6706587
Lasso	0.6250000	0.8227848	0.9843750	0.947	0.7843688	0.7103825
Elastic Net	0.6250000	0.8227848	0.9843750	0.947	0.7843688	0.7103825

R Exercise: Summary

• Logistic Regression Coefficients

> full_model_coeff		> forward_model_coeff		> backward_model_coeff		> stepwise_model_coeff	
(Intercept) Age Experience Income Family CCAvg Education Mortgage Securities.Account CD.Account Online CreditCard	[,1] -4.445483193 -0.776030543 0.910983523 2.374700527 0.739703391 0.264244401 1.328860208 0.009294095 -0.501459121 0.982081783 -0.182069399 -0.617373701	(Intercept) Income CD.Account Education Family CreditCard Securities.Account CCAvg Experience Age	[,1] 0.10188147 0.14912124 0.08388042 0.06844227 0.03986637 -0.02439480 -0.02549191 0.01949386 0.10732764 -0.09885277	(Intercept) Income Family CCAvg Education Securities.Account CD.Account CreditCard	[,1] -4.4217370 2.3871278 0.7319393 0.2481614 1.3033304 -0.4674934 0.9372616 -0.5889305	(Intercept) Income CD.Account Education Family CreditCard Securities.Account CCAvg Experience Age	[,1] 0.10188147 0.14912124 0.08388042 0.06844227 0.03986637 -0.02439480 -0.02549191 0.01949386 0.10732764 -0.09885277
> GA_model_coeff (Intercept) Age Income Family CCAvg Education Mortgage Securities.Account CD.Account CreditCard	[,1] -4.43332725 0.12916530 2.39554937 0.75075280 0.25721313 1.30812212 0.01350098	Age Experience Income Family CCAvg Education Mortgage Securities.Account CD.Account	x of class 1 -3.25969793 0.02036741 0.04528453 1.35739246 0.39426207 0.32094559 0.69815256 0.07387779	> Lasso_model_coeff 12 x 1 sparse Matri (Intercept) Age Experience Income Family CCAvg Education Mortgage Securities.Account CD.Account Online CreditCard	ix of class "dg 1 -4.2408732055 0.0986384046 2.2682994528 0.6748085859 0.2384203451 1.2171062156 0.0006765386	> Elastic_model_coe 12 x 1 sparse Matri (Intercept) Age Experience Income Family CCAvg Education Mortgage Securities.Account CD.Account Online CreditCard	1 -4.21928953 . 0.11110504 2.22361220 0.67302703 0.25676164 1.20324138 0.01181456

