

Ch12.4 Minimization of Circuits (Week 10)

Introduction

• Minimizing Boolean functions is an NP-complete problem.

Karnaugh Maps (K-maps)

- 1 is placed in the cell representing a minterm
- Cells are said to be **adjacent** if the minterms that they represent differ in exactly one literal

▼ Example 1

Find the K-maps for (a) $xy+\overline{x}y$, (b) $x\overline{y}+\overline{x}y$, and (c) $x\overline{y}+\overline{x}y+\overline{x}\,\overline{y}$.

Sum-of-Products Expansions

▼ Example 2

Simplify the sum-of-products expansion given in Example 1.

Ans: (a) y, (b) $x\overline{y} + \overline{x}y$, and (c) $\overline{x} + \overline{y}$.

Simplify the Sum-of-Products Expansions

Implicant

• The product of literals corresponding to a block of all 1s in the K-map (Each cell with a 1 in it)

Prime Implicant (PI)

- This block of 1s is not contained in a larger block of 1s representing the product of fewer literals than this product
- (not in other blocks, by itself) OR (all possible groups formed)

Essential Prime Implicant (EPI)

- The only block of 1s covering a 1 in the K-map.
- cover at least one minterm that can't be covered by any other prime implicant

Redundant Prime Implicant (RPI)

No. of Prime Implicants = 3

No. of Essential Prime Implicants = 2

No. of Redundant Prime Implicants = 1

1

▼ Example 4'

Use K-maps to simplify these sum-of-products expansions.

- (a) $wxyz + wxy\overline{z} + wx\overline{y}\ \overline{z} + w\overline{x}yz + w\overline{x}\ \overline{y}z + w\overline{x}\ \overline{y}\ \overline{z} + \overline{w}x\overline{y}z + \overline{w}\ \overline{x}yz + \overline{w}\ \overline{x}yz$
- $\text{(b) } wx\overline{y}\ \overline{z} + w\overline{x}yz + w\overline{x}y\overline{z} + w\overline{x}\ \overline{y}\ \overline{z} + \overline{w}x\overline{y}\ \overline{z} + \overline{w}\ \overline{x}y\overline{z} + \overline{w}\ \overline{x}\ \overline{y}\ \overline{z}$
- $\text{(c) } wxy\overline{z} + wx\overline{y} \ \overline{z} + w\overline{x}yz + w\overline{x}y\overline{z} + w\overline{x} \ \overline{y} \ \overline{z} + \overline{w}xyz + \overline{w}xy\overline{z} + \overline{w}x\overline{y} \ \overline{z} + \overline{w}x\overline{y}z + \overline{w} \ \overline{x}y\overline{z} + \overline{w} \ \overline{x} + \overline{$

