Полувписанная окружность

Во всех задачах используются следующие обозначения. Дан треугольник ABC.

- ullet и Ω вписанная и описанная окружность соответственно;
- I центр ω ;
- A_1, B_1, C_1 середины дуг BC, AC, AB окружности Ω соответственно;
- A' середина дуги BAC окружности Ω .

Полувписанной будем называть окружность, которая касается отрезков AB, AC и Ω . Обозначим точки касания через K, L, T_a соответственно. Аналогично можно определить точки T_b и T_c .

Напоминание. В листике про композицию гомотетий доказывалось, что прямые $AT_a,\ BT_b,\ CT_c$ пересекаются в центре положительной гомотетии, переводящей ω в Ω .

- **1.** (a) Докажите, что точки T_a , K, C_1 лежат на одной прямой.
 - (6) Докажите, что $T_a A$ симедиана треугольника $T_a B_1 C_1$.
 - (в) Докажите, что $T_a A'$ содержит медиану треугольника $T_a B_1 C_1$.
 - (Γ) Докажите, что точки T_a , I, A' лежат на одной прямой.

- **2.** (a) Докажите, что точки B, K, I, T_a лежат на одной окружности.
 - (6) Докажите, что I середина отрезка KL.
- 3. (а) Пусть M середина стороны BC. Докажите, что $\angle A_1IM = \angle A_1A'I$. (б) Докажите, что точка Нагеля изогонально сопряжена центру положительной гомотетии, переводящей ω в Ω .
- **4.** (a) Докажите, что окружности (BIC) и (T_aIA_1) касаются.
- (б) Докажите, что прямые KL, BC, T_aA_1 пересекаются в одной точке. (в) Обозначим точку из предыдущего пункта через X_a . Аналогично определим точки X_b , X_c . Докажите, что точки X_a , X_b , X_c лежат на одной прямой.
 - (г) Докажите, что прямая T_bT_c проходит через точку X_a .
- 5. (а) На Ω выбрана точка X. Произвольная прямая, проходящая через вершину A, пересекает прямую BC в точке Y, а Ω в точке Z. Докажите, что окружность (XYZ) проходит через фиксированную точку. (б) Докажите, что при $X=T_a$ этой точкой является точка D касания вписанной окружности со стороной BC. Чем является вторая точка пересечения T_aD с Ω ?