COMP 474/6741 Intelligent Systems (Winter 2021)

Worksheet #5: Recommender Systems

Task 1. Let's take some movies that have been #tagged (or categorized) as follows:

	Action	Comedy	Sci-Fi	Horror	Drama	Romance	length
Movie 1	4	8	6	3	0	0	
Movie 2	0	5	0	8	5	0	
Movie 3	1	4	0	3	0	10	

So, each movie becomes a 6-dimensional vector of tags t_i , e.g., $\overrightarrow{\text{Movie}_1} = \langle 4, 8, 6, 3, 0, 0 \rangle$. Compute the *length* of each movie vector, which is defined as $\|\vec{m}\| = \sqrt{t_1^2 + \ldots + t_n^2}$ (rounded to two digits).

Task 2. Now you can *normalize* the vectors, by dividing the raw count of each tag t_i by the length $\frac{t_i}{||\vec{m}||}$:

	Action	Comedy	Sci-Fi	Horror	Drama	Romance
Movie 1						
Movie 2						
Movie 3						

Use 4 significant digits for this table (protip: the *length* of each movie vector must now be 1).

Task 3. We can now compute the *similarity* between the movies by computing their *cosine similarity*. Since the vectors are normalized, this is simply their dot product: $sim(\vec{m}, \vec{n}) = cos(\vec{m}, \vec{n}) = \vec{m} \cdot \vec{n} = \sum_i m_i \cdot n_i$:

	Movie 1	Movie 2	Movie 3
Movie 1	1		
Movie 2		1	
Movie 3			1

This is the information we need for an *item-to-item recommendation engine*: Now we can answer the question, which movie is interesting to (buy, watch) for a customer who (bought, watched) Movie 1?

Task 4. Now we want to *personalize* the recommendations. We collected the following profiles about the movies watched (bought) by our users in the past:

	Action	Comedy	Sci-Fi	Horror	Drama	Romance	length
Jane	1	2	1	1	1	0	
Joe	0	1	0	1	0	1	

Compute the length of each user vector and normalize it like before:

	Action	Comedy	Sci-Fi	Horror	Drama	Romance
Jane						
Joe						

Task 5. Now we can answer the question which movie a user is interested in. Compute the cosine similarity between the *user vectors* and the *movie vectors*:

	Movie 1	Movie 2	Movie 3
Jane			
Joe			

Task 6. Consider the results from three different recommender systems below: Here, X1–X5 are the items (movies, photos, songs, ...) that the systems should have recommended as relevant for a specific user. The remaining 495 instances are not relevant for the user. A checkmark indicates that a system recommended this item to the user:

Target	system 1	system 2	system 3
X1 √	X1 ×	X1 √	X1 √
X2 √	X2 ×	X2 ×	X2 √
X3 √	X3 ×	X3 √	X3 √
X4 √	X4 ×	X4 √	X4 √
X5 √	X5 ×	X5 ×	X5 √
X6 ×	X6 ×	X6 ×	X6 √
X7 ×	X7 ×	X7 ×	X7 √
×		×	×
×		×	×
X500 ×	X500 ×	X500 ×	X500 ×

Evaluate the performance of the three systems using the measures *Precision* and *Recall*:

	Precision	Recall
system 1		
system 2		
system 3		

Task 7. Based on the output below, compute precision@k = $\frac{1}{k} \cdot \sum_{c=1}^{k} \operatorname{rel}(c)$ for the three recommender systems (for k = 1, 2, 3):

1, 2, 0).	$\operatorname{rel}(k)$			pre	ecision	@k	
	1	2	3	1	2	3	AP@3
system 1	1	0	0				
system 2	0	1	0				
system 3	0	0	1				

That is, each system got exactly one recommendation right, but in a different position.

Task 8. Moving on to the average precision, AP @ $N = \frac{1}{m} \sum_{k=1}^{N} \operatorname{precision}$ @ $k \cdot \operatorname{rel}(k)$. Compute the AP@3 and add it to the table above. Here, assume m = 3 (i.e., there could have been 3 correct recommendations in the top-3). Note the difference in the AP@3 for the three systems.

Task 9. Create a document vector for the movie description $m_1 = \text{``A comedy with zombies.''}$ Start by filling in the tf values below. Then compute $\text{idf} = \log_{10} \frac{N}{\text{df}}$ (assume N = 10,000,000) and tf.idf =tf×idf (i.e., no log weighting for tf). Finally, compute the normalized vector \vec{q} as before.

		m_1						
token	tf	df	idf	tf.idf	q_i			
action		50,000						
comedy		10,000						
zombies		100,000						
romantic		10,000						