

SEQUENCE LISTING

Brockhaus, et al.

<120> Human TNF Receptor

<130> 01017/40451B

<140> US 08/444,790

<141> 1995-05-19

<150> CH 3319/89

<151> 1989-09-12

<150> CH 786/90

<151> 1990-03-08

<150> CH 1347/90

<151> 1990-04-20

<150> US 07/580,013

<151> 1990-09-10

<150> US 08/095,640

<151> 1993-07-21

<160> 26

<170> PatentIn version 3.3

<210> 1

<211> 2111

<212> DNA

<213> Homo sapiens

<400> 1		
gaattcgggg gggttcaaga tcactggac caggccgtga tctctatgcc cgagtctcaa		60
ccctcaactg tcaccccaag gcacttggga cgtcctggac agaccgagtc ccgggaagcc		120
ccagcactgc cgctgccaca ctgcccgttag cccaaatggg ggagtgagag gccatagctg		180
tctggcatgg gcctctccac cgtgcctgac ctgctgctgc cgctggtgct octggagctg		240
tttgtggaa tataccccctc aggggttatt ggactggtcc ctcacctagg ggacagggag		300
aagagagata gtgtgtgtcc ccaaggaaaa tataatccacc ctcaaaataa ttcgatttgc		360
tgtaccaagt gccacaaaagg aacctacttg tacaatgact gtccaggccc ggggcaggat		420
acggactgca gggagtgtga gagcggctcc ttcaccgctt cagaaaacca cctcagacac		480
tgcctcagct gctccaaatg ccgaaaggaa atgggtcagg tggagatctc ttcttgacca		540
gtggaccggg acaccgtgtg tggctgcagg aagaaccagt accggcatta ttggagtgaa		600
aacctttcc agtgcttcaa ttgcagcctc tgcctcaatg ggaccgtgca cctctcctgc		660
caggagaaac agaacaccgt gtgcacctgc catgcaggtt tctttctaag agaaaacgag		720
tgtgtctcct gtagtaactg taagaaaagc ctggagtgca cgaagttgtg cctaccccag		780
attgagaatg ttaagggcac tgaggactca ggcaccacag tgctgttgcc cctggtcatt		840

ttctttggtc tttgccttt atccctcctc ttcattggtt taatgtatcg ctaccaacgg	900
tggaagtcca agctctactc cattgttgtt gggaaatcga cacctgaaaa agagggggag	960
cttgaaggaa ctactactaa gcccctggcc ccaaacccaa gcttcagtcc cactccaggc	1020
ttcaccccca ccctgggctt cagtcccgtg cccagttcca cttcacctc cagctccacc	1080
tatacccccg gtgactgtcc caactttgcg gctccccgca gagaggtggc accaccctat	1140
cagggggctg accccatcct tgcgacagcc ctcgcctccg accccatccc caacccctt	1200
cagaagtggg aggacagcgc ccacaagcca cagagcctag acactgatga ccccgcgacg	1260
ctgtacgccc tggtgagaa cgtcccccg ttgcgctgga aggaattcgt gggcgcccta	1320
gggctgagcg accacgagat cgatcggctg gagctgcaga acggcgctg cctgcgcgag	1380
gccaataaca gcatgctggc gacctggagg cggcgacacgc cgccggcgacg gcccacgctg	1440
gagctgctgg gacgcgtgct cgcgcacatg gacctgctgg gctgcctgga ggacatcgag	1500
gaggcgctt gggccccgc cgcctcccg cccgcgccca gtcttctcag atgaggctgc	1560
gcgcctgcgg gcagctctaa ggaccgtcct gcgagatcgc cttccaaaccc cactttttc	1620
tggaaaggag gggccttgca gggcaagca ggagcttagca gccgcctact tggtgctaac	1680
ccctcgatgt acatagctt tctcagctgc ctgcgcgcgc cgcacagtca gcgcgtgcg	1740
cgcggagaga ggtgcgcgcgt gggctcaaga gcctgagtgg gtggtttgcg aggatgaggg	1800
acgctatgcc tcattccccgt tttgggtgtc ctcaccagca aggctgctcg gggccccctg	1860
gttcgtccct gagcctttt cacagtgcac aagcagttt tttgtttt gttttgtttt	1920
gtttgtttt taaatcaatc atgttacact aatagaaaact tggacttcct gtgcctctg	1980
cctggacaag cacatagcaa gctgaactgt cctaaggcag gggcgagcac ggaacaatgg	2040
ggccttcagc tggagctgtg gactttgtt catacactaa aattctgaag ttaaaaaaaaaa	2100
aacccgaatt c	2111

<210> 2
 <211> 455
 <212> PRT
 <213> Homo sapiens

<400> 2

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu
 1 5 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro
 20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys
 35 40 45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys
50 55 60

Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp
65 70 75 80

Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu
85 90 95

Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val
100 105 110

Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg
115 120 125

Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe
130 135 140

Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu
145 150 155 160

Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu
165 170 175

Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr
180 185 190

Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser
195 200 205

Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu
210 215 220

Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys
225 230 235 240

Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu
245 250 255

Gly Glu Leu Glu Gly Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser
260 265 270

Phe Ser Pro Thr Pro Gly Phe Thr Pro Thr Leu Gly Phe Ser Pro Val
275 280 285

Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys
290 295 300

Pro Asn Phe Ala Ala Pro Arg Arg Glu Val Ala Pro Pro Tyr Gln Gly
305 310 315 320

Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn
325 330 335

Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp
340 345 350

Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Val Glu Asn Val Pro Pro
355 360 365

Leu Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu Ser Asp His Glu
370 375 380

Ile Asp Arg Leu Glu Leu Gln Asn Gly Arg Cys Leu Arg Glu Ala Gln
385 390 395 400

Tyr Ser Met Leu Ala Thr Trp Arg Arg Arg Thr Pro Arg Arg Glu Ala
405 410 415

Thr Leu Glu Leu Leu Gly Arg Val Leu Arg Asp Met Asp Leu Leu Gly
420 425 430

Cys Leu Glu Asp Ile Glu Glu Ala Leu Cys Gly Pro Ala Ala Leu Pro
435 440 445

Pro Ala Pro Ser Leu Leu Arg
450 455

<210> 3
<211> 2339
<212> DNA
<213> Homo sapiens

<400> 3
tcggacaccg tgtgtgactc ctgtgaggac agcacataca cccagctctg gaactgggtt 60
cccgagtgtcttg ctccccgtgt agctctgacc aggtggaaac tcaaggcctgc 120
actcgggaac agaacccat ctgcacctgc aggccccgt ggtactgcgc gctgagcaag 180
caggagggtt gccggctgtg cgccggcgtg ccgaagtgtcc gcccgggtt cgccgtggcc 240
agaccaggaa ctgaaacatc agacgtggtg tgcaagccct gtccccggg gacgttctcc 300
aacacgactt catccacgga tatttgcagg ccccaccaga tctgtAACGT ggtggccatc 360
cctggaaatg caagcaggaa tgcagtctgc acgtccacgt ccccccacccg gagtatggcc 420
ccagggcag tacacttacc ccagccagtg tccacacgtat cccaacacac gcagccaagt 480
ccagaaccca gcactgctcc aagcacctcc ttccctgctcc caatggccc cagccccca 540

gctgaaggga gcactggcga ctgcgtctt ccagttggac tgattgtggg tgtgacagcc	600
ttgggtctac taataatagg agtggtaac tgtgtcatca tgacccaggt gaaaaagaag	660
cccttgcgcc tgcagagaga agccaaggtg cctcaattgc ctggcgataa ggcccgggt	720
acacagggcc ccgagcagca gcacctgctg atcacagcgc cgagctccag cagcagctcc	780
ctggagagct cggccagtgc gttggacaga agggcgcca ctcggaaacca gccacaggca	840
ccaggcgtgg aggccagtgg ggccggggag gcccgccca gcaccggag ctcagcagat	900
tcttcccctg gtggccatgg gacccaggta aatgtcacct gcatcgtcaa cgtctgttagc	960
agctctgacc acagctcaca gtgctcctcc caagccagct ccacaatggg agacacagat	1020
tccagccccct cggagtcccc gaaggacgag caggtccccct tctccaagga ggaatgtgcc	1080
tttcggtcac agctggagac gccagagacc ctgctggga gcaccgaaga gaagccccctg	1140
ccccctggag tgcctgatgc tggatgaag cccagttAAC caggccggtg tggctgtgt	1200
cgtagccaag gtggctgagc cttggcagga tgaccctgCG aagggccctt ggtccttcca	1260
ggcccccacc actaggactc tgaggcttt tctggccaa gttcctctAG tgcctccac	1320
agccgcagcc tccctctgac ctgcaggCCA agagcagagg cagcggatG tggaaagcct	1380
ctgctgccat ggcgtgtccc tctcggaagg ctggctggc atggacgttc gggcatgct	1440
ggggcaagtc cctgagtc tgcacctgC cccggccAGC tgcacctGCC agcctggctt	1500
ctggagccct tgggtttttt gttgtttgt ttgtttgtt gttgtttct cccctggc	1560
tctgcccAGC tctggcttcc agaaaACCCC agcatcctt tctgcagagg ggcttctgg	1620
agaggaggga tgctgcctGA gtcacccatG aagacaggac agtgcttcAG cctgaggctG	1680
agactgcggg atggcctGG ggctctgtc agggaggagg tggcagccct gttaggaacG	1740
gggtccttca agtagctca ggaggcttgG aaagcatCAC ctcaggccAG gtgcagtggc	1800
tcacgcctat gatcccAGCA ctggggagg ctgaggcggg tggatcacct gaggttagga	1860
gttcgagacc agcctggCCA acatggtaaa accccatCTC tactaaaaAT acagaaATTa	1920
gccggcgtG gtggcgggca CCTATAGTCC cagctactca gaagcctgAG gctggaaAT	1980
cgttGAACC CGGGAAGCGG aggttgcagg gagccgagat cacGCCACTG cactccAGCC	2040
tggcgcacAG agcgagagtc tgcacccAAA gaaaaaaaaA aagcaccGCC tccaaATGCT	2100
aacttgtcct tttgtaccat ggtgtgaaAG tcagatGCC agaggGCCa ggcaggCCAC	2160
catattcAGT gctgtggcct gggcaagata acgcacttct aactagaaAT ctgcctttt	2220
tttaaaaaAG taagtaccac tcaggCCAAC aagccaacGA caaagccAAA ctctGCCAGC	2280
cacatccaAC cccccacCTG ccattgcAC cctccgcTT cactccggTG tgcctgcAG	2339

<210> 4
<211> 392
<212> PRT
<213> Homo sapiens

<400> 4

Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu
1 5 10 15

Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser
20 25 30

Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys
35 40 45

Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys
50 55 60

Arg Leu Cys Ala Pro Leu Pro Lys Cys Arg Pro Gly Phe Gly Val Ala
65 70 75 80

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro
85 90 95

Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His
100 105 110

Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Arg Asp Ala
115 120 125

Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val
130 135 140

His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Ser
145 150 155 160

Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly
165 170 175

Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val
180 185 190

Gly Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Ile Gly Val
195 200 205

Val Asn Cys Val Ile Met Thr Gln Val Lys Lys Lys Pro Leu Cys Leu
210 215 220

Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly
225 230 235 240

Thr Gln Gly Pro Glu Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser
245 250 255

Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Arg Ala
260 265 270

Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala
275 280 285

Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Ala Asp Ser Ser Pro Gly
290 295 300

Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser
305 310 315 320

Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met
325 330 335

Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val
340 345 350

Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu Thr Pro
355 360 365

Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val
370 375 380

Pro Asp Ala Gly Met Lys Pro Ser
385 390

<210> 5
<211> 28
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Xaa = any or unknown amino acid

<400> 5

Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro
1 5 10 15

Gln Gly Lys Tyr Ile His Pro Glu Xaa Asn Ser Ile
20 25

<210> 6
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 6

Ser Thr Pro Glu Lys Glu Gly Glu Leu Glu Gly Thr Thr Thr Lys
1 5 10 15

<210> 7
<211> 18
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 7

Ser Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys
1 5 10 15

Pro Leu

<210> 8
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 8

Val Phe Cys Thr
1

<210> 9
<211> 16
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 9

Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala
1 5 10 15

<210> 10
<211> 18
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (8)..(8)
<223> Xaa = any or unknown amino acid

<400> 10

Leu Pro Ala Gln Val Ala Phe Xaa Pro Tyr Ala Pro Glu Pro Gly Ser
1 5 10 15

Thr Cys

<210> 11
<211> 13
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa = any or unknown amino acid

<400> 11

Ile Xaa Pro Gly Phe Gly Val Ala Tyr Pro Ala Leu Glu
1 5 10

<210> 12
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 12

Leu Cys Ala Pro
1

<210> 13
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 13

Val Pro His Leu Pro Ala Asp
1 5

<210> 14
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (9)..(10)
<223> Xaa = any or unknown amino acid

<220>
<221> misc_feature
<222> (13)..(13)
<223> Xaa = any or unknown amino acid

<400> 14

Gly Ser Gln Gly Pro Glu Gln Gln Xaa Xaa Leu Ile Xaa Ala Pro
1 5 10 15

<210> 15
<211> 9
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 15

Leu Val Pro His Leu Gly Asp Arg Glu
1 5

<210> 16
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic primer

<400> 16
agggagaaga gagatagtgt gtgtccc

27

<210> 17
<211> 41
<212> DNA
<213> Artificial sequence

```

<220>
<223> Synthetic primer

<400> 17
aagcttggcc aggatccagc tgactgactg atcgcgagat c 41

<210> 18
<211> 41
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic primer

<400> 18
ttcgaaccgg tccttaggtcg actgactgac tagcgctcta g 41

<210> 19
<211> 38
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic primer

<400> 19
cacagggatc catagctgtc tggcatgggc ctctccac 38

<210> 20
<211> 44
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic primer

<400> 20
cgtgactcct gagtcgtgg tgtattatct ctagaccatg gccc 44

<210> 21
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic primer

<400> 21
gatccagaat tcataatag 19

<210> 22
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic primer

```

<400> 22	
gtcttaagta ttatccatg	19
<210> 23	
<211> 31	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic primer	
<400> 23	
gcaccacata atagagatct ggtaccggga a	31
<210> 24	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic primer	
<400> 24	
gtgtattatc tctagaccat ggccc	25
<210> 25	
<211> 29	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic primer	
<400> 25	
tacgagctcg gccatagctg tctggcatg	29
<210> 26	
<211> 29	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic primer	
<400> 26	
atacagctct gtggtgccctg agtcctcag	29