CS118:

Computer Network Fundamentals

Instructor: Alex Afanasyev (aa@cs.ucla.edu)

Class Website: http://web.cs.ucla.edu/classes/spring17/cs118/

- Syllabus
- Project description

CCLE: https://ccle.ucla.edu/course/view/17S-COMSCI118-1

· Homework assignments

Gradescope: https://gradescope.com/courses/6565

Homework and project submission

Course Info Summary

Lectures	Mondays/Wednesdays 8am-9:50am ROLFE 1200
Discussion Sections	DIS 1: Fridays / 10:00am-11:50am, BH 5264 (Seungbae Kim) DIS 2: Fridays / 12:00pm-1:50pm, BH 5264 (Haitao Zhang) DIS 3: Fridays / 2:00pm-3:50pm, BH 5249 (Zengwen Yuan) DIS 4: Fridays / 8:00am-9:50am, GEOLOGY 4660 (Pranav Sodhani)
Office hours	Wednesday 5:30pm-6:30pm (BH 4809), other times by appointment
TAs	Seungbae Kim (sbkim at cs.ucla.edu): Fridays / 10:00am-11:50am, BH 5264 Haitao Zhang (haitao at cs.ucla.edu): Fridays / 12:00pm-1:50pm, BH 5264 Zengwen Yuan (zyuan at cs.ucla.edu): Fridays / 2:00pm-3:50pm, BH 5249 Pranav Sodhani (sodhanipranav at cs.ucla.edu): Fridays / 8:00am- 9:50am, GEOLOGY 4660

What is a Computer Network?

CS118: Explain to You How Internet Works

- Divide-and-conquer
 - Internet: a very large and complex system
 - First: figure out how many major parts
 - Then: Learn one part at a time
- Your job:
 - Read the textbook, think through
 - Ask questions
 - Practice from doing your homeworks and projects

Course Workload and Grading

- Weekly homeworks
 - 8 homeworks total
- Midterm Exam
- Final Exam
- Three programming projects
 - Acio (individual)
 - Confundo (team 2-3)
 - Riddikulus (team 2-3)

Strict Grading Policy

- No credit for late homework. No exceptions
- No credit for late projects. No extensions.
- No make-up exams

Homeworks	16%
Programming Projects	40% (8 / 16 / 16)
Midterm exam	22%
Final exam	22%
Extra Credits	0-5%

Start forming teams NOW

Course Schedule

Midterm	Wednesday, May 3, 2017, 8am- 9:50am, ROLFE 1200
Final	Monday, June 12, 2017, 6:30pm- 9:30pm, TBD
Homeworks due	Wednesday of the week following the assignment, 11pm
Project 1 due	Sunday, April 23, 2017, 11pm PDT
Project 2 due	Sunday, May 21, 2017, 11pm PDT
Project 3 due	Sunday, June 11, 2017, 11pm PDT

(Tentative) Schedule of the Quarter

We	ek: 1	2	3	4	5	
Mon	4/3 Course intro	4/10 HTTP, HTTP2.0	4/17 DNS	4/24 Reliable data delivery	5/1 Congestion Control	
Wed	BW& delay, socket programming	Email, P2P	Transport Protocols	ТСР	5/3 Midterm	
	6	7	8	9	10	
Mon	5/8 Internet Protocol (IP)	5/15 Routing algorithms & protocols	5/22 Multicast routing	5/29 Memorial Day	6/5 Network Security	Final exam

The big yellow numbers indicate the chapter numbers in the textbook.

Hints for Getting Good Grade

- Read the text before coming to lecture
- Ask questions!
 - In class and come to office hours
- Use piazza

https://piazza.com/class/j08uupsnixp5z2

- Make use of the course webpage
 - Lecture slides uploaded after lectures
 - CCLE
 - Homework assignment
 - CCLE
 - Project details and hints
 - http://web.cs.ucla.edu/classes/spring17/cs118/

8

- Homework and Project submission
 - https://gradescope.com/courses/6565

CS118 - Spring 2017

A Few More Hints

- You can earn extra credit for in-class participation
 - Make sure you come to me after class and that I have recorded your name in "the secret book"
- You can earn extra credit for extra tasks in projects

- If you think you may need a recommendation letter
 - Make sure I get to know you
 - Make sure I know you beyond the class

Class Policy

- Posting/sharing/selling class material with or without answers to students outside the class (during or after the class) is strictly prohibited
- Using old homeworks/midterm/finals, except ones provided by the instructor or TAs is strictly prohibited
- Making your project code publicly available during or after the class is strictly prohibited (i.e., you are prohibited to use public GitHub repositories; use private ones either on GitHub or GitLab)
- You must sign and adhere to UCLA Academic Integrity policy and UCLA Code of conduct.

Let's Start

First step: Big Picture & Terminology

millions of connected computing devices:

- hosts = end systems
- running *network apps*

smartphone

- fiber, copper, radio, satellite
- transmission rate: bandwidth

- Packet switches: forward packets (chunks of data)
 - routers and switches

"Nuts and Bolts"

- Internet: "network of networks"
 - Interconnected ISPs
- Protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, 802.11
- Internet standards
 - RFC: Request for comments
 - https://www.rfc-editor.org/rfc-index.html
 - IETF: Internet Engineering Task Force
 - IEEE Standards
 - W3C
 - and others

What's a Protocol?

human protocols:

- "how're you doing?"
- "what's the time?"
- "I have a question"

- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

What's a Protocol?

a human protocol and a computer network protocol:

Q: other human protocols?

Different Views on Networking

Application View

Transport View

Network-Level View

Link-Level View

Application View

Application protocols

- Assume network provides a way to send data to any hosts on the Internet
- Don't know or care how the data is sent; do care whether it is delivered reliably
- Runs on top of transport protocols who take care of how data gets sent

Application View

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games, ecommerce, social nets, ...
- Provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

Application Layer Protocols

- Covered in Chapter 2 of the textbook
- Basic objective: understand common application protocols:
 - Web: Hyper-Text Transfer Protocol (HTTP), Secure Hyper-Text Transfer Protocol (HTTPS)
 - Email: Simple Mail Transport Protocol (SMTP)
 - Domain Name System (DNS)
- More important objective: design issues
 - What kinds of services required from the network?
 - How does the choice of services impact application design?

Transport View

- Assuming application protocols take care of data content
- Transport protocol's job: delivering data between communicating ends
- Don't know or care about which paths data may traverse through the network
- Do care about (1) delivering data to the right application process, (2) delivery reliability, (3) congestion control

Transport Layer Protocols (Chapter 3)

- Unreliable data delivery: UDP (User Datagram Protocol)
- Reliable data delivery: TCP (Transport Control Protocol)
 - Reliable delivery over potentially unreliable network
 - Understanding and managing network delays
 - Coping with Congestion

But transport protocols don't really do the delivery!

Pass data to network protocols to do the job

Network Layer View

- Assuming higher layer protocols handle data content, reliability, congestion
- Network's job: forward data from source to destination
- Do care about: which way to forward data at each step?
- Why is this hard?

Because the Internet is huge!

Internet connectivity

- Consider the connection from laptop to CNN.com:
 - WiFi → campus backbone → ISP → other ISP → CNN website
- Access Networks
 - Connect end system to local network
 - Some local network router connects to ISP router
- ISP interconnect with each other to form the Internet
 - Each ISP consists of many links and routers

Internet connectivity

- Consider the connection from laptop to CNN.com:
 - WiFi → campu
- Access Networ
 - Connect end s
 - Some local net ms
- ISP interconnec
 - Each ISP cons

```
✓ 10:24 ~ $ traceroute google.com
```

traceroute to google.com (172.217.2.238), 64 hops max, 52 byte packets

- 1 cisco196-1.cs.ucla.edu (131.179.196.3) 3.207 ms 2.544 ms 2.538 ms
- 2 border1.cs.ucla.edu (131.179.244.3) 1.262 ms 1.233 ms 1.236 ms
- 3 169.232.12.154 (169.232.12.154) 1.032 ms 0.926 ms 0.878 ms
- 4 dr01f2.csb1—cr01f1.anderson.ucla.net (169.232.4.54) 1.057 ms 1.04
- 1.096 ms
 5 cr01f1.anderson--bd11f1.anderson.ucla.net (169.232.4.7) 1.533 ms 1.366
 - 5 Cruiti.anderson--bdiiti.anderson.ucta.net (169.232.4.7) 1.533 ms 1.360 s 1.365 ms
- 6 lax-agg6--ucla-10g.cenic.net (137.164.24.134) 3.395 ms 2.105 ms 1.957
 - 74.125.49.165 (74.125.49.165) 1.573 ms 1.782 ms 1.670 ms
- 8 64.233.174.238 (64.233.174.238) 1.725 ms 3.783 ms 2.074 ms
- 9 209.85.250.245 (209.85.250.245) 2.036 ms 2.005 ms 1.960 ms
- 10 lax02s19-in-f14.1e100.net (172.217.2.238) 2.500 ms 1.611 ms 1.774 ms

Network Layer Protocols

- Covered in Chapter 4 of the textbook
- There are different types of networks
 - Circuit-switched versus packet-switched
- Internet: packet-switched networks
 - Network layer provides best effort delivery of packets
- Don't care exactly how a packet is delivered from one node to next
 - That's the job for link layer protocols

Link Layer View

- Link can be twisted pair, coaxial cable, fiber optic, or wireless (multiple types)
- Link layer job: Get a packet sent across some medium
 - Different medium → different link layer protocol
- Covered in Chapter 5 and 6.1-6.3 of the text.
 - Borders on Electrical Engineering: running on top of physical layer
- Our objective is to understand technology
 - How the network is built
 - How do link layer features impact higher layers designs?

Internet protocol stack

Application layer

- Support data exchange between app. processes
- Example: ftp, smtp, http

Transport layer

- handling delivery reliability, multiplex within a host
- Example: TCP, UDP

Network layer:

- forward packets from source to destination
- IP, routing protocols

Link layer:

- transfer data between directly connected network elements
- Ethernet protocol
- physical: bits "on the wire"

application transport network link physical

What "layer" means to a packet

Introduction to Collaboration and Networking Tools

In This Class You Will Need / Learn: git

- Distributed version control system
- https://git-scm.com/
- ! Make sure you use private repositories for your code (free on GitLab, free with student account on GitHub)
- If you new to git
 - http://rogerdudler.github.io/git-guide/
- If you think you know git:
 - Play this game http://learngitbranching.js.org/index.html
 - How your commit messages look? https://chris.beams.io/posts/git-commit/

Working with Remote GIT Repositories

In This Class You Will Need / Learn: Vagrant

- A tool for building and managing virtual machine environments
 - https://www.vagrantup.com/
 - https://vagrantcloud.com/

In This Class You May Learn: Docker

- A platform for software containers
 - Light-weight VM to run a specific task
 - Container itself should be stateless, so it can easily be migrated to a different host
 - Can reference network storage
 - https://www.docker.com/
 - https://docs.docker.com/docker-for-mac/
 - https://docs.docker.com/docker-for-windows/
 - https://hub.docker.com/
- https://www.youtube.com/watch?v=YFI2mCH dv24
 - 12 minutes intro to Docker

Demo time

During discussion sections