ASSIGNMENT 4 MATH 251 NICHOLAS HAYEK

QUESTION 1

Consider a matrix $A \in M_{m \times n}(\mathbb{F})$. Let $L_A : \mathbb{F}^n \to \mathbb{F}^m$ be such that $L_A(v) = A \cdot v$ for any $v \in \mathbb{F}^n$. In particular, A is of the form

$$A := \begin{bmatrix} & & & & \\ L_A(e_1) & L_A(e_2) & \cdots & L_A(e_n) \\ & & & & \end{bmatrix}$$

where $\{e_i\}$ form the standard basis for \mathbb{F}^n . Then, $\mathrm{rank}(A) = \mathrm{rank}(L_A) = \dim(\mathrm{Im}(L_A)) = \dim(\mathrm{Span}(L_A(e_1),....,L_A(e_n)))$. Thus, $\mathrm{rank}(A)$ is the size of a maximally independent subset of $\{L_A(e_1),...,L_A(e_n)\} = \{A^{(1)},...,A^{(n)}\}$ from above, and this is c-rank(A).

QUESTION 2

Part (a): Let $I: V \to V$ be the identity transformation, α , β be two ordered bases for *V* with size *n*, and $v \in V$. We have $v = a_1 \alpha_1 + ... + a_n \alpha_n$, where $\alpha_i \in \alpha$. Let $\alpha_i = b_1^i \beta_1 + ... + b_n^i \beta_n$ be the unique representation of α_i in β , where $\beta_j \in \beta$. Then:

$$v = a_1(b_1^1 \beta_1 + \dots + b_n^1 \beta_n) + \dots + a_n(b_1^n \beta_1 + \dots + b_n^n \beta_n)$$

= $(a_1 b_1^1 + \dots + a_n b_1^n) \beta_1 + \dots + (a_1 b_n^1 + \dots + a_n b_n^n) \beta_n$

Hence, $[v]_{\beta}$ is

$$\begin{bmatrix} a_1b_1^1 + \dots + a_nb_1^n \\ \vdots \\ a_1b_n^1 + \dots + a_nb_n^n \end{bmatrix} = \begin{bmatrix} a_1[\alpha_1]_{\beta} + \dots + a_n[\alpha_n]_{\beta} \\ \vdots \\ a_1[\alpha_n]_{\beta} + \dots + a_n[\alpha_n]_{\beta} \end{bmatrix}$$

Now, we just observe that

$$[I]_{\alpha}^{\beta} \cdot [v]_{\alpha} = \begin{bmatrix} & & & & & & \\ & [I(\alpha_{1})]_{\beta} & [I(\alpha_{2})]_{\beta} & \cdots & [I(\alpha_{n})]_{\beta} \\ & & & & & \end{bmatrix} \cdot [v]_{\alpha}$$

$$= \begin{bmatrix} & & & \\ a_{1}[\alpha_{1}]_{\beta} + \dots + a_{n}[\alpha_{n}]_{\beta} \\ & & & \end{bmatrix} \quad \text{since } I(\alpha_{i}) = \alpha_{i}$$

$$= [v]_{\beta} \quad \text{from above}$$

Part (b): We already know that, for V, W, U finite-dimensional, with bases α , β , γ , respectively, and $R: V \to W$, $S: W \to U$, we have $[S \circ R]^{\gamma}_{\alpha} = [S]^{\gamma}_{\beta} [R]^{\beta}_{\alpha}$. Taking V = W = U, and R = S = I, it follows that $[I \circ I]^{\gamma}_{\alpha} = [I]^{\gamma}_{\alpha} = [I]^{\gamma}_{\beta} [I]^{\dot{\beta}}_{\alpha}$.

Part (c): Using (b), we have

$$[I]^{\alpha}_{\beta}[I]^{\beta}_{\alpha} = [I]^{\alpha}_{\alpha} = \begin{bmatrix} & & & & \\ & & & \\ & I(\alpha_1) \end{bmatrix}_{\alpha} & \cdots & [I(\alpha_n)]_{\alpha} \end{bmatrix} = \begin{bmatrix} & & & & \\ & \alpha_1 \end{bmatrix}_{\alpha} & \cdots & [\alpha_n]_{\alpha} \end{bmatrix} = \begin{bmatrix} & & & \\ e_1 & \cdots & e_n \\ & & & \end{bmatrix} = I$$

 $[I]^{\beta}_{\alpha}[I]^{\alpha}_{\beta}=[I]^{\beta}_{\beta}=I$ holds identically, and so $[I]^{\beta}_{\alpha}$ is invertible, with $([I]^{\beta}_{\alpha})^{-1}=[I]^{\alpha}_{\beta}$. (Found two-sided inverse)

c.f. Lecture 13

Part (d): As above, we consider $[S \circ R]^{\gamma}_{\alpha} = [S]^{\gamma}_{\beta}[R]^{\beta}_{\alpha}$, where $\gamma = \beta$, S = T, R = I, and α , β are bases of V. From this, we immediately observe that $[T]^{\beta}_{\beta}[I]^{\beta}_{\alpha} = [T \circ I]^{\beta}_{\alpha} = [T]^{\beta}_{\alpha}$. Similarly, we have $[I]^{\alpha}_{\beta}[T]^{\beta}_{\alpha} = [T]^{\alpha}_{\alpha}$. Since $([I]^{\beta}_{\alpha})^{-1} = [I]^{\alpha}_{\beta}$ from part (c), we conclude

$$([I]_{\alpha}^{\beta})^{-1}[T]_{\beta}^{\beta}[I]_{\alpha}^{\beta} = [T]_{\alpha}^{\alpha} \implies [T]_{\beta}^{\beta} \sim [T]_{\alpha}^{\alpha} \text{ i.e. } [T]_{\beta} \sim [T]_{\alpha}$$

Part (e): We'll first show that $Q = [I]_{\alpha}^{\beta}$ for bases $\alpha, \beta \in \mathbb{F}^n$, and generalize this to V via an isomorphism $T : \mathbb{F}^n \to V$. Let $[L_Q] = Q$, and observe

$$Q = \begin{bmatrix} & & & & \\ L_Q(e_1) & \cdots & L_Q(e_n) \end{bmatrix}$$

where $e_i \in \operatorname{St}_n$. Since Q is invertible, c-rank(Q) = rank(Q) = $n = \dim(\mathbb{F}^n)$, which necessitates that $\alpha := \{L_Q(e_1), ..., L_Q(e_n)\}$ form a basis for \mathbb{F}^n . Let $\{e_1, ..., e_n\} =: \beta$.

Recall that $[v]_{\beta}$, where β is the standard basis, is simply v, so we conclude that

$$[I]^{\beta}_{\alpha} = \begin{bmatrix} & & & & \\ L_{Q}(e_1) & \cdots & L_{Q}(e_n) \end{bmatrix} = Q$$

Since V and \mathbb{F}^n have dimension n, they are isomorphic, so consider some isomorphism $T: \mathbb{F}^n \to V$. Since T is bijective, $T(\alpha)$ and $T(\beta)$ are bases for V.

$$[I]_{T(\alpha)}^{T(\beta)} = \begin{bmatrix} & & & & & \\ & & & & & \\ [T(\alpha_1)]_{T(\beta)} & \cdots & [T(\alpha_n)]_{T(\beta)} \end{bmatrix} \qquad \alpha_i = L_Q(e_i)$$

Then $T(\alpha_i) = a_1 T(e_1) + ... + a_n T(e_n) \implies \alpha_i = a_1 e_1 + ... + a_n e_n$ by linearity and injectivity of T. We conclude that $[T(\alpha_i)]_{T(\beta)} = [\alpha_i]_{\beta}$, and in particular $[T(L_Q(e_i))]_{T(\beta)} = [L_Q(e_i)]_{\beta} = L_Q(e_i)$, i.e. $Q = [I]_{\alpha}^{\beta} = [I]_{T(\alpha)}^{T(\beta)}$ as desired.

Assignment 4 4

QUESTION 3

Part (a): We have $\operatorname{tr}(cA + B) = \sum_{i=1}^{n} (ca_{ii} + b_{ii}) = c \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = c\operatorname{tr}(A) + \operatorname{tr}(B)$, $c \in \mathbb{F}$, where we note that the diagonal elements of cA + B are $ca_{ii} + b_{ii}$.

Part (b): Observe the following picture

$$AB = \begin{bmatrix} ----A_{(1)} ---- \\ \vdots \\ -----A_{(n)} ---- \end{bmatrix} \begin{bmatrix} | & & | \\ B^{(1)} & \cdots & B^{(n)} \\ | & & | \end{bmatrix}$$

to conclude that the diagonal elements of AB are $A_{(i)}B^{(i)}$ (i.e. dot product). Then:

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} A_{(i)} B^{(i)} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} b_{ji} = \sum_{j=1}^{n} B_{(j)} A^{(j)} = \operatorname{tr}(BA)$$

as desired.

Part (c): Since $A \sim B$, $Q^{-1}AQ = B$ for some $Q \in GL_n(\mathbb{F})$. Then $tr(Q^{-1}AQ) = tr(B)$, but from (b) we have $tr(Q^{-1}AQ) = tr(QQ^{-1}A) = tr(A)$, so we find tr(A) = tr(B).

QUESTION 4

Let V be a vector space, $U \subseteq V$, and V/U be the quotient ring, i.e. $\{v+U: v \in V\} = \{\overline{v}: v \in V\}$. We've seen previously that $\overline{v_1+v_2} = \overline{v_1} + \overline{v_2}$ is a well-defined notion. Consider $T: (V/U)^* \to U^\perp$, where $T(f)(v) = f(v+U) = f(\overline{v})$, and $f: V/U \to \mathbb{F}$ linear. We observe that, indeed, $T(f) \in U^\perp$: for $u \in U$, $T(f)(u) = f(\overline{u}) = f(\overline{0}) = 0$.

T is linear: $T(af + g)(v) = (af + g)(\overline{v})$. Since f, g are linear, this is $af(\overline{v}) + g(\overline{v}) = aT(f)(v) + T(g)(v)$ for all $v \in V$, $a \in \mathbb{F}$, and f, $g \in (V/U)^*$.

T is injective: Suppose $T(f)(v) = T(g)(v) \ \forall v \in V$. Then $f(\overline{v}) = g(\overline{v})$ for all cosets $\overline{v} \in V/U$, so in particular f = g.

T is surjective: Consider $f \in U^{\perp}$ and define $g \in (V/U)^*$ such that g sends $\overline{v} \to f(v)$.

g is well defined: let $\overline{v_1} = \overline{v_2}$. Then $g(\overline{v_1}) = f(v_1)$ and $g(\overline{v_2}) = f(v_2)$. Since $\{v_1 + u : u \in U\} = \{v_2 + u : u \in U\}, \{f(v_1) + f(u) : u \in U\} = \{f(v_2) + f(u) : u \in U\}$ by linearity of f. But $f(u) = 0 \ \forall u \in U$, so we conclude that $f(v_1) = f(v_2)$.

g is linear: $g(c\overline{v_1} + \overline{v_2}) = g(\overline{cv_1} + \overline{v_2}) = f(cv_1 + v_2) = cf(v_1) + f(v_2) = cg(\overline{v_1}) + g(\overline{v_2})$ by linearity of *f*.

Then $T(g)(v) = g(\overline{v}) = f(v) \ \forall v \in V$, so T(g) = f, as desired.

T is an isomorphism between $(V/U)^*$ and U^{\perp} , so $(V/U)^* \cong U^{\perp}$.

Assignment 4 6

QUESTION 5

Proof follows from tutorial

We've seen previously that $\operatorname{Im}(T^t) \subseteq (\ker(T))^{\perp}$. Let $f \in (\ker(T))^{\perp}$. We define $g: W \to \mathbb{F}$ that takes $w \to f(x)$, where w = T(x) + y uniquely. We see immediately that $T^t(g)(v) = g(T(v)) = f(v)$, as desired, but we still need to show $W = \operatorname{Im}(T) \oplus \operatorname{Span}(\gamma)$ for some set γ , and that g is linear.

Let β be a basis for $\operatorname{Im}(T)$. This is linearly independent, so we can extend it to a basis $\beta \cup \gamma$ for W. Clearly $\operatorname{Span}(\beta) \cap \operatorname{Span}(\gamma) = \{0\}$, else $\beta \cup \gamma$ would lose independence. Since $\beta \cup \gamma$ form a basis, we can write $w = a_1\beta_1 + ... + a_n\beta_n + b_1\gamma_1 + ... + b_m\gamma_m \ \forall w \in W$ with $a_i, b_i \in \mathbb{F}$ i.e. x + y with $x \in \operatorname{Span}(\beta)$ and $y \in \operatorname{Span}(\gamma)$. Since $\operatorname{Span}(\beta) = \operatorname{Im}(T)$, we can conclude $W = \operatorname{Im}(T) \oplus \operatorname{Span}(\gamma)$.

Note that g is well defined: let $w_1 = w_2$. Then $w_1 = w_2 = T(x) + y$ for some $y \in \operatorname{Span}(\gamma)$, $x \in V$, and thus $g(w_1) = g(w_2) = f(x)$.

Let g be defined as above. Let w_1 and w_2 be expressed as $T(x_1) + y_1$ and $T(x_2) + y_2$, respectively, where $y_1, y_2 \in \operatorname{Span}(\gamma)$. Then $aw_1 + w_2 = aT(x_1) + T(x_2) + ay_1 + y_2 = T(ax_1 + x_2) + y_1 + y_2$, so we conclude $g(aw_1 + w_2) = f(ax_1 + x_2)$, and since $f \in V^*$, this breaks out linearly to $af(x_1) + f(x_2) = ag(w_1) + g(w_2)$.

 $\implies g \in W^* \text{ and } T^t(g)(v) = f(v) \text{ as shown } \implies f \in \text{Im}(T^t)$

Then $(\ker(T))^{\perp} \subseteq \operatorname{Im}(T^t) \implies (\ker(T))^{\perp} = \operatorname{Im}(T^t)$

QUESTION 6

Part (a): We've shown that all $A \in GL_n(\mathbb{F})$ can be written as a product of elementary matrices, so write

$$A = E_1 \cdot ... \cdot E_k \implies E_k^{-1} \cdot ... \cdot E_1^{-1} A = I_n \quad \text{AND} \quad E_1 \cdot ... \cdot E_k A^{-1} = I_n$$

Combining, we find $E_k^{-1} \cdot \dots \cdot E_1^{-1}A = E_1 \cdot \dots \cdot E_kA^{-1} \implies E_k^{-1} \cdot \dots \cdot E_1^{-1}E_k^{-1} \cdot \dots \cdot E_1^{-1}A = A^{-1}$, i.e. $EA = A^{-1}$, where E is a product of elementary matrices.

Part (b): We know $A=E_1\cdot\ldots\cdot E_k$, i.e. $A^{-1}=E_k^{-1}\cdot\ldots\cdot E_1^{-1}$. Then $E_k^{-1}\cdot\ldots\cdot E_1^{-1}(A|I_n)=(E_k^{-1}\cdot\ldots\cdot E_1^{-1}A|E_k^{-1}\cdot\ldots\cdot E_1^{-1})=(A^{-1}A|E_k^{-1}\cdot\ldots\cdot E_1^{-1})=(I_n|A^{-1})$, as desired. Note that, since we multiplied on the left, we are effectively performing row operations.

Part (c): Suppose *E* is a product of elementary operations s.t. E(A|I) = (I|B). Then (EA|E) = (I|B), so EA = I and $E = B \implies E = IA^{-1} \implies B = A^{-1}$.

Assignment 4

QUESTION 7

8

Part (a): Observe that $c_1A^{(1)} + ... + c_nA^{(n)} = \vec{0} \iff A_{(i)}\vec{c} = 0 \ \forall 1 \le i \le n$, where \vec{c} is the column vector of our coefficients $c_i \in \mathbb{F}$. If we (i) swap any two $A_{(i)} \leftrightarrow A_{(j)}$, both rows will still satisfy $A_{(i)}\vec{c} = 0$, as before. If we (ii) multiply row i by some scalar α , then $\alpha A_{(i)}\vec{c} = \alpha \cdot 0 = 0$ as before. Lastly (iii), $[A_{(i)} - \alpha A_{(j)}]\vec{c} = A_{(i)}\vec{c} - \alpha A_{(j)}\vec{c} = 0$ and thus

$$c_1A^{(1)} + \dots + c_nA^{(n)} = 0 \implies c_1(EA)^{(1)} + \dots + c_1(EA)^{(n)} = 0 \implies c_1B^{(1)} + \dots + c_1B^{(n)} = 0$$

If we instead assume $c_1B^{(1)} + ... + c_nB^{(n)} = 0$, notice that $EA = B \implies E^{-1}B = A$, i.e. A is obtained from B via some *other* row operation, and the proof is identical.

Part (b): Let EA = B. We can apply (a) as follows

$$c_1 A^{(j_1)} + \dots + c_k A^{(j_k)} = 0 \iff c_1 B^{(j_1)} + \dots + c_k B^{(j_k)} = 0$$
 $j_i \in J$

as the matrix $\{A^{(j_i)}: j_i \in J\}$ is obtained from $\{B^{(j_i)}: j_i \in J\}$ via the same row operation E. Thus, if the columns of A are linearly independent over an index J, all $c_i = 0$, and thus B is linearly independent over J as well, and vice versa.

Now suppose $A^{(m)} \in \operatorname{Span}(A^{(j_i)}: j_i \in J)$, where $m \notin J$. Then

$$c_1 A^{(j_1)} + \dots + c_m A^{(j_m)} - A^{(m)} = 0$$

where $j_i \in J$. From (a), this happens IFF

$$c_1 B^{(j_1)} + \dots + c_m B^{(j_m)} - B^{(m)} = 0 \implies B^{(m)} \in \text{Span}(B^{(j_i)} : j_i \in J)$$

Once again, we can apply (a) because we can obtain $\{B^{(i)}: i \in J \cup \{m\}\} \text{ from } \{A^{(i)}: i \in J \cup \{m\}\} \text{ via } E.$

If we start by taking $B^{(m)} \in \operatorname{Span}(B^{(j_i)}: j_i \in J)$, the (\longleftarrow) direction follows identically. Also note that, had we considered $m \in J$, then we'd have nothing to show, as $A^{(m)} = 1 \cdot A^{(m)}$ and $B^{(m)} = 1 \cdot B^{(m)}$ always.

QUESTION 8

Let $A \in M_{m \times n}(\mathbb{F})$, and B, C be two matrices in RREF, obtained from A. We know that, if $\{B^{(j)}: j \in J\}$ is the set of all pivot columns in B, it is linearly independent. We also know that all *non-pivot* columns are contained in the span of those previous, so in particular $\{B^{(j)}: j \in J\}$ is maximally independent, and |J| = c-rank(B) = rank(B) = rank(A), since row operations are rank-preserving.

From (7a), $\{C^{(j)}: j \in J\}$ is linearly independent. We know rank(C) = |J| as well, so in fact $\{C^{(j)}: j \in J\}$ describes all pivots of C, i.e. B and C contain the same pivot columns.

Thus, we only need to show that the non-pivot columns are equal. We can express a non-pivot column in B, $B^{(k)}$, as a combination of columns in $\{B^{(j)}:j\in J\}=\{C^{(j)}:j\in J\}=\{C^{(j)}:j\in J\}$. From (7b), we know $B^{(k)}=c_1B^{(j_1)}+...+c_lB^{(j_l)}\iff C^{(k)}=c_1C^{(j_1)}+...+c_lC^{(j_l)}$, but $C^{j_i}=B^{j_i}=e_{j_i}$, so $B^{(k)}=C^{(k)}$.

 \implies *B* and *C* contain pivots in the same columns (which are of the form e_j), and have equal non-pivot columns, so we conclude B = C.

The arguments in (7) extend easily to n row operations, so if $E_BA = B$ and $E_CA = C$ for a series of row operations, the columns $A^{(j)}: j \in J$ are linearly independent $\iff B^{(j)}$ are $\iff C^{(j)}$ are.

Assignment 4 10

QUESTION 9

Part (a): Consider B = EA, where E swaps row i and i + 1. Then

since rows $A'_{(i)}$ and $A'_{(i+1)}$ are equivalent. But also

$$\delta(A') = \delta \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)} + A_{(i+1)} \\ A_{(i+1)} + A_{(i)} \\ \vdots \\ A_{(n)} \end{pmatrix} = \delta \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)} \\ A_{(i+1)} + A_{(i)} \\ \vdots \\ A_{(n)} \end{pmatrix} + \delta \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i+1)} \\ A_{(i+1)} \\ \vdots \\ A_{(n)} \end{pmatrix} + \delta \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(n)} \\ \vdots \\ A_{(n)} \end{pmatrix} + \delta \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i+1)} \\ A_{(i)} \\ \vdots \\ A_{(n)} \end{pmatrix} + \delta \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i+1)} \\ A_{(i)} \\ \vdots \\ A_{(n)} \end{pmatrix} + \delta \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i+1)} \\ A_{(i+1)} \\ \vdots \\ A_{(n)} \end{pmatrix} + \delta \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)} \\ A_{(i)} \\ \vdots \\ A_{(n)} \end{pmatrix} = \delta(A) + \delta(B)$$

Thus, $\delta(A) + \delta(B) = 0 \implies \delta(A) = -\delta(B)$

Part (b): Let A be such that $A_{(i)} = A_{(j)}$ for j > i. Denote by E_k the elementary operation which swaps the rows k and k + 1. When we let $E_{j-1}A =: A'$, we get that $A'_{(i)} = A'_{(j-1)}$, and subsequently $E_k \cdot ... \cdot E_{j-2}E_{j-1}A =: A' \implies A'_{(i)} = A'_{(k)}$.

Thus, we set $E_{i+1} \cdot ... \cdot E_{j-2} E_{j-1} A =: A'$ to yield a matrix A' with $A'_{(i)} = A'_{(i+1)}$. We conclude that $\delta(A') = 0$. But also notice that

$$\delta(A) = -\delta(E_{j-1}A) = \delta(E_{j-2}E_{j-1}A) = \dots = (-1)^{j-i-1}\delta(E_{i+1}\cdot\dots\cdot E_{j-2}E_{j-1}A)$$

by the result of (a). Thus, $\delta(A) = (-1)^{j-i-1} \delta(E_{i+1} \cdot ... \cdot E_{j-1}A) = \delta(A') = 0$.

QUESTION 10

Note the following:

$$\sum_{i,j,k}^{3} \delta \begin{pmatrix} e_i \\ e_j \\ e_k \end{pmatrix} = \sum_{\substack{i,j,k: \\ i \neq j \neq k \neq i}}^{3} \delta \begin{pmatrix} e_i \\ e_j \\ e_k \end{pmatrix}$$

as δ is alternating, so matrices with i = j, j = k, or i = k may be removed. Note also that the ordered set $\{i, j, k \in [1, 3] : i \neq j \neq k \neq i\}$ is precisely the ordered set $\{\pi(1), \pi(2), \pi(3) : \pi \in S_3\}$, so in particular we can write

$$\sum_{\substack{i,j,k:\\i\neq j\neq k\neq i}}^{3} \delta \begin{pmatrix} e_i\\e_j\\e_k \end{pmatrix} = \sum_{\pi \in S_3} \delta \begin{pmatrix} e_{\pi(1)}\\e_{\pi(2)}\\e_{\pi(3)} \end{pmatrix} = \sum_{\pi \in S_3} \delta(\pi I_3)$$

Now, we have

$$\begin{split} \delta(A) &= \delta\left(\underbrace{\sum_{i=1}^3 a_{1j} e_i}_{A(2)} \right) = \sum_{i=1}^3 a_{1i} \delta\left(\underbrace{-A_{(2)}}_{A(3)} \right) \quad \text{by multi-linearity} \\ &= \sum_{i=1}^3 a_{1i} \delta\left(\underbrace{\sum_{j=1}^3 a_{2j} e_j}_{A(3)} \right) = \sum_{i=1}^3 a_{1i} \sum_{j=1}^3 a_{2j} \delta\left(\underbrace{-e_i^i}_{e_j^i} \right) \\ &= \sum_{i=1}^3 a_{1i} \sum_{j=1}^3 a_{2j} \delta\left(\underbrace{-e_i^i}_{e_j^i} \right) = \sum_{i=1}^3 a_{1i} \sum_{j=1}^3 a_{2j} \sum_{k=1}^3 a_{3k} \delta\left(e_i^i \right) \\ &= \sum_{i,j,k}^3 a_{1i} a_{2j} a_{3k} \delta\left(e_i^i \right) \\ &= \sum_{\pi \in S_3}^3 a_{1\pi(1)} a_{2\pi(2)} a_{3\pi(3)} \delta(\pi I_3) \quad \text{by the observations made above} \end{split}$$

This generalizes easily to the n case, with slightly more notation and trust.