1. Логика

"Колега, ми то логично..."

Октомври 2024

1 Преговор

Дефиниция 1.1. Логически константи - Т (true) и F (false)

Дефиниция 1.2. Прости съждения (логически променливи) - твърдения, които са или истина, или лъжа

Забележка. Въпросителни, възклицателни, подбудителни изречения, както и такива от вида "това изречение е лъжа", неможещи да бъдат нито истина, нито лъжа (защото съдържат противоречие), не са съждения

Дефиниция 1.3. Съставни съждения - такива, образувани от други съждения и логически константи, посредством логически съюзи

Дефиниция 1.4 (Логически операци).

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$\mathrm{p}\oplus q$	$p \to q$	$\mathbf{p} \leftrightarrow q$
F	F	Τ	F	F	F	Τ	Τ
F	Т	Т	F	Т	Т	Т	F
Т	F	F	F	Т	Т	F	F
Т	Т	F	Т	Т	F	Т	Т

Bопрос. Какъв тогава е резултатът след прилагане на следните операции върху логическите константи: $F \wedge T \vee T$?

- *Отговор*: Всъщност така написаното би имало двояк смисъл $((F \wedge T) \vee T \equiv T,$ но $F \wedge (T \vee T) \equiv F)$, ако нямахме приоритет на операциите.

Свойство 1.1 (Приоритет на логиеските операции).

- 1. негация ¬
- 2. конюнкция ∧
- 3. изкючващо или \oplus , дизюнкция \lor
- 4. $umn \lambda u \kappa a u u s \rightarrow$
- 5. $биимпликация \leftrightarrow$

Забележка. Разбира се, при наличие на скоби те са с най-голям приоритет

Малко повече за (би)импликацията. нека p, q са произволни съждения в импликация $p \to q$

- р се нарича антецедент, q консеквент
- на импликацията може да се гледа като обещание: нека съм ви дал дума: "Ако изкарате 100% на контролното, ще получите оценка 6" ако антецедентът е истина (изкарали сте 100%), то вие ще очаквате да имате 6 (т.е. и консеквентът да е истина), в противен случай обещаното не е изпълнено, ще кажете, че не съм удържал на думата си (т.е. импликацията е лъжа). Разбира се, ако не сте изкарали 100% (антецедентът е лъжа), няма как да говорим за неспазено обещание, т.е. без значение каква оценка ще получите (независимо консеквента), аз все пак съм казал истината.

- антецедентът (р) е свързан с достатъчното условие, а консеквентът с необходимото (q); Пр. "Ако съм човек, дишам" - да си човек е достатъчно, за да твърдим, че дишаш, но не и необходимо (животни и растения също дишат). Обратно, дишането е необходимо условие, за да кажем, че нещо е човек - ако не диша, то не е човек (или в най-добрия случай само е било...), но пък не е достатъчно условие.
- импликацията може да се зададе чрез различни езикови конструкции: "ако p, (то) q", **но** "p, **само** ако q"; "q (тогава), когато р", но "р само (тогава,) когато q";

"р влече q", "q следва от p", "p е достатъчно условие за q", "q е необходимо условие за p"

Забележка. Забележете, че "само" променя смисъла на казаното!

• биимпликацията е нещо като двойна импликация (т.е. тук р е и необходимо, и достатъно условие за q, както и обратно), неслучайно отговаря на езиковата конструкция *"тогава и само* тогава, когато", също и на "**точно** тогава, когато"

Забележка. Забележете, че "точно" променя смисъла на казаното, без него щеше да е просто импликация!

Дефиниция 1.5. Всеки ред от таблицата на истинност (отговарящ на точно една възможна комбинация от стойности F/T на променливите) наричаме валюация

Дефиниция 1.6.

- тавтология съставно съждение, чиято стойност е Т за всяка валюация на просите му съжления
- противоречие съставно съждение, чиято стойност е F за всяка валюация
- условност съждение, което приема, както стойност Т, така и F

Дефиниция 1.7. две съждения A и B са еквивалентни $(A \equiv B, A \Leftrightarrow B)$, тстк съждението $A \leftrightarrow B$ е тавтология

Забележка. А=В би означавало друго - че имат еднаква синтактична структура, т,е. и изглеждат еднакво

3абележка. ≡, ⇔ не са логически съюзи

Теорема 1.1 (еквивалентности). Нека p, q u r са произволни съждения. Следните еквивалентности са в сила:

- свойство на константите: $p \lor T \equiv T$, $p \land T \equiv p$, $p \lor F \equiv p$, $p \land F \equiv F$
- ullet свойства на отрицанието: $p \wedge \neg p \equiv F, \ p \vee \neg p \equiv T$
- *uдемпотентност:* $p \lor p \equiv p, \ p \land p \equiv p$
- ullet закон за двойното отрицание: $\neg(\neg p) \equiv p$
- комутативност: $p \lor q \equiv q \lor p, \ p \land q \equiv q \land p, \ p \oplus q \equiv q \oplus p$
- acoциативност: $(p \lor q) \lor r \equiv p \lor (q \lor r), (p \land q) \land r \equiv p \land (q \land r), (p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$
- $\partial ucmpu \delta umu uho cm$: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$, $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- закони на De Morgan: $\neg(p \land q) \equiv \neg p \lor \neg q, \ \neg(p \lor q) \equiv \neg p \land \neg q$ Забележка. Законите на De Morgan лесно могат да се обобщят за много променливи (как?)
- поглъщане (absorption law): $p \lor (p \land q) \equiv p \equiv p \land (p \lor q)$
- ullet свойство на импликацията: $p \to q \equiv \neg p \lor q$

- ullet свойство на би-импликацията: $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
- \mathcal{A} pyeu noneshu: $p \to q \equiv \neg q \to \neg p, \ p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q, \ p \leftrightarrow q \equiv \neg (p \oplus q),$ $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q), \ \neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q,$ $p \lor q \equiv \neg p \to q, \ p \land q \equiv \neg (p \to \neg q), \ p \land \neg q \equiv \neg (p \to q),$ $(p \to q) \land (p \to r) \equiv p \to (q \land r), \ (p \to r) \land (q \to r) \equiv (p \lor q) \to r,$ $(p \to q) \lor (p \to r) \equiv p \to (q \lor r), \ (p \to r) \lor (q \to r) \equiv (p \land q) \to r \equiv p \to (q \to r)$

Забележка. На контролни (особено семестриално и изпит) не може да ползвате послендите наготово - изключение правят първите три от тях като по-очевдини и често използвани

Полезно. Доказване на (не)еквивалентност

- еквивалентност можде да се докаже с:
 - таблица на истинност
 - еквивалентни преобразувания
- нееквивалентност можде да се докаже с:
 - таблица на истинност
 - контрапример (подходящ избор на стойности за променливите, за който дадените не са еквивалентни)

Дефиниция 1.8. Казваме, че q следва логически от p, ако $p \to q$ е тавтология, бележим $p \vdash q$, също и $p \Rightarrow q$

 $\it Забележка.$ ⊢ / \Rightarrow не са логически съюзи, така че изводът p ⊢ q не е съждение, да не се бърка с импликацията!

Дефиниция 1.9 (извод в съждителната логика). Извод наричаме последователност от съждения $p_1, p_2, ..., p_n, q / n > 0/$, където $p_1, ..., p_n$ са предпоставки (premises), а q е следствие (conclusion). Изводът се счита за валиден, когато, допускайки, че всички предпоставки са верни (m.e. $p_1 \land p_2 \land ... \land p_n \equiv T$), и следствието е вярно $(q \equiv T)$.

Горната дефиниция ни казва, че когато $p_1, \dots p_n$ са едновременно T, искаме и следствието да е T. Това може да се гледа като еквивалентно на това да искаме $p_1 \wedge p_2 \wedge \dots \wedge p_n \to q \equiv T$, защото ако някоя от предпоставките е F, то по дефиниция импликацията отново ще е T. В крайна сметка, за да кажем, че изводът е валиден, ще изискваме просто $p_1 \wedge p_2 \wedge \dots \wedge p_n \to q$ да е тавтология

Дефиниция 1.10. Едноместен предикат е съждение, в което има "празно място", в което се слага обект от предварително зададена област, наречена домейн. За всеки обект от домейна, предикатът е или истина, или лъжа.

Забележка. Самият предикат (без да е свързан с обект) още не е съждение, т.е. не е Т, нито F

Дефиниция 1.11 (квантори). Често ще ползвате следните (особено по дис):

- универсален квантор ∀ за всяко
- екзистенциален квантор ∃ съществува

Забележска. Кванторите имат по-висок приоритет от логическите съюзи

Свойство 1.2. Ако P(x) е предикат над домейн A, състоящ се от обекти $a_1, ..., a_n$, то:

- $\exists x \in A : P(x) \equiv P(a_1) \lor P(a_2) \lor \cdots \lor P(a_n)$
- $\forall x \in A : P(x) \equiv P(a_1) \land P(a_2) \land \cdots \land P(a_n)$

Свойство 1.3 (отрицание и квантори). Ако P(x) е предикат над произволен домейн, то:

- $\bullet \neg \forall x : P(x) \equiv \exists x : \neg P(x)$
- $\bullet \ \neg \exists x : P(x) \equiv \forall x : \neg P(x)$

2 Основни задачи

за произволни съждения p, q, r, s:

Задача 1. Съждения ли са изразите: $p \equiv q, p \Leftrightarrow q, p \vdash q, p \Rightarrow q$?

Решение. Не, защото \equiv , \Leftrightarrow , \vdash , \Rightarrow не са логически съюзи. ■

Задача 2. Вярно ли e, че ако тази задача e под номер 3, \oplus e символът за конюнкция?

Решение. Да, вярно е, стига да разгледаме задачата като логическо съждение, в частност импликация с антецедент лъжа (откъдето цялото съждение е истина). ■

Задача 3. Докажете чрез еквивалентни преобразувания закона за поглъщане: $p \lor (p \land q) \equiv p \equiv p \land (p \lor q)$

Решение. Доказваме двете равенства поотделно:

•
$$p \lor (p \land q)$$
 $\stackrel{\text{св-во на константите}}{\equiv} (p \land T) \lor (p \land q)$ $\stackrel{\text{дистрибутвиност}}{\equiv} p \land (T \lor q)$ $\stackrel{\text{св-во на консантите}}{\equiv} p \land T$

•
$$p \land (p \lor q)$$
 $\stackrel{\text{CB-BO HA KOHCTAHTUTE}}{\equiv} (p \lor F) \land (p \lor q)$ $\stackrel{\text{Дистрибутвиност}}{\equiv} p \lor (F \land q)$ $\stackrel{\text{CB-BO HA KOHCAHTUTE}}{\equiv} p \lor F$

Задача 4. Докажете чрез еквивалетни преобразувания следните:

- $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
- $p \oplus q \equiv (p \lor q) \land (\neg p \lor \neg q)$
- $\bullet \ \neg (p \leftrightarrow q) \equiv \ p \leftrightarrow \neg q$

Решение.

- $p \leftrightarrow q$ $\stackrel{\text{CB-BO HA GU-UMILIAURITA}}{\equiv} (p \to q) \land (q \to p)$ $\stackrel{\text{CB-BO HA UMILIAURITA}}{\equiv} (\neg p \lor q) \land (\neg q \lor p)$ $\stackrel{\text{GB-BO HA UMILIAURITA}}{\equiv} (\neg p \lor q) \land (\neg q \lor p)$ $\stackrel{\text{GB-BA HA OTPUUGHHOCT}}{\equiv} [(\neg p \land \neg q) \lor (q \land \neg q)] \lor [(\neg p \land p) \lor (q \land p)]$ $\stackrel{\text{CB-BA HA OTPUUGHHUETO}}{\equiv} [(\neg p \land \neg q) \lor F \lor F \lor (q \land p)]$ $\stackrel{\text{CB-BO HA KOHCTAHTUTE}}{\equiv} (\neg p \land \neg q) \lor (p \land q)$
- $\bullet \ p \oplus q \equiv \neg(p \leftrightarrow q) \equiv \neg[(\neg p \land \neg q) \lor (p \land q)] \stackrel{\mathrm{De\ Morgan}}{\equiv} \neg(\neg p \land \neg q) \land \neg(p \land q) \stackrel{\mathrm{De\ Morgan}}{\equiv} (p \lor q) \land (\neg p \lor \neg q) \blacksquare$
- $\neg(p \leftrightarrow q) \equiv (p \lor q) \land (\neg p \lor \neg q) \stackrel{\text{комутативност на диз.}}{\equiv} (q \lor p) \land (\neg p \lor \neg q) \stackrel{\text{св-во на импликацията}}{\equiv} (\neg q \to p) \land (p \to \neg q) \stackrel{\text{св-во на би-импликацията}}{\equiv} p \leftrightarrow \neg q$

Дефиниция 2.1. Множество от логически операции наричаме функционално затворено/завършено, ако за всяко съждение съществува еквивалетно съждение, съставено само чрез логическите променливи и константи, и въпросните операции. Т.е. всяко съждение можде да се запише, ползвайки само тези операции

Задача 5. Докажете, че множеството от логическите операции \neg, \lor, \land е функционално затворено

Решение. Достатъчно е да се покаже, че действието на всеки от останалите логически съюзи може да се представи като комбинация на горните три:

$$p \to q \equiv \neg p \lor q,$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q),$$

$$p \oplus q \equiv (p \lor q) \land (\neg p \lor \neg q); \blacksquare$$

Задача 6. Докажете, че множеството от логическите операции \neg , \lor е функционално затворено. А какво може да се каже за това от операциите \neg , \land ?

Решение. Единственото, което е необходимо да направим в добавка на предната задача, е да представим конюнкцията като композиция на негации и дизюнкции. Директно от Де Морган: $p \wedge q \equiv \neg(\neg p \vee \neg q)$. Действието на останалите съюзи можем да представим чрез негация и дизюнкция, замествайки навсякъде в решението на предната задача конюнкцията с еквивалетното ѝ $\neg(\neg p \vee \neg q)$.

Задача 7 (Семестриално КН 21). Използвайки еквивалентни преобразувания, докажете следните еквивалентности:

- $(p \to q) \land (p \to r) \equiv p \to (q \land r)$
- $\bullet \ (p \to r) \land (q \to r) \equiv (p \lor q) \to r$
- $(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$
- $(p \to r) \lor (q \to r) \equiv (p \land q) \to r \equiv p \to (q \to r)$

Решение.

- $(p \to q) \land (p \to r)$ св-во на импликацията $(\neg p \lor q) \land (\neg p \lor r)$ $\stackrel{\text{дистриб.}}{\equiv} \neg p \lor (q \land r)$ св-во на импликацията $p \to (q \land r)$
- $(p \to r) \land (q \to r)$ св-во на импликацията $(\neg p \lor r) \land (\neg q \lor r)$ $\stackrel{\text{дистриб.}}{\equiv} (\neg p \land \neg q) \lor r$ $\stackrel{\text{De Morgan}}{\equiv} \neg (p \lor q) \lor r$ $\stackrel{\text{CB-BO На импликацията}}{\equiv} (p \lor q) \to r$
- $(p \to q) \lor (p \to r)$ $\stackrel{\text{CB-BO Ha импликацията}}{\equiv} (\neg p \lor q) \lor (\neg p \lor r)$ $\stackrel{\text{acoциативност на диз.}}{\equiv} \neg p \lor q \lor \neg p \lor r$ $\stackrel{\text{acoциативност и комутативност}}{\equiv} (\neg p \lor \neg p) \lor (q \lor r)$ $\stackrel{\text{udemnotenthoct}}{\equiv} \neg p \lor (q \lor r)$ $\stackrel{\text{CB-BO Ha импликацията}}{\equiv} p \to (q \lor r)$
- $(p \to r) \lor (q \to r) \stackrel{\text{св-во на импликацията}}{\equiv} (\neg p \lor r) \lor (\neg q \lor r) \stackrel{\text{асоциативност на диз.}}{\equiv} \neg p \lor \neg q \lor r$:

 $\stackrel{\text{De Morgan}}{\equiv} \neg (p \land q) \lor r \stackrel{\text{cb-во на импликацията}}{\equiv} (p \land q) \to r \quad \Box$

асоциативност на диз.
$$= \neg p \lor (\neg q \lor r) \stackrel{\text{св-во на импликацията}}{\equiv} \neg p \lor (q \to r) \stackrel{\text{св-во на импликацията}}{\equiv} p \to (q \to r) \blacksquare$$

Задача 8. Колко предиката ще ползваме, ако разглеждаме твърдението "Ботев и Вазов са поети" на езика на предикатната логика?

Решение. Един, идеята е да разбрем, че тук предикатът е "... е поет", а просто обектите са два. В крайна сметка, ако домейнът са хората и предикатът P(X) е "X е поет", то твърдението ще придобие вида $P(x) \land P(y)$, или в конкретния случай $P(\text{Ботев}) \land P(\text{Вазов})$ ■

Задача 9. Нека P(x, y), Q(x) са предикати над някакъв домейн. Приемаме, че долните съжения са коректно зададени (макар че домейн не е уточнен). Докажете или опровергайте:

- $\forall x \forall y : P(x,y) \equiv \forall x \forall y : P(y,x)$
- $\exists x \exists y : P(x,y) \equiv \exists x \exists y : P(y,x)$
- $\forall x \exists y : P(x,y) \vdash \exists y \forall x : P(x,y)$
- $\exists x \forall y : P(x,y) \vdash \forall y \exists x : P(x,y)$

Решение. Нека $x_1, ..., x_n$ и $y_1, ..., y_m$ са съответно обектите от двата домейна.

 $\bullet \ \forall x \forall y : P(x,y) \equiv [\forall y P(x_1,y)] \land \dots \land [\forall y P(x_n,y)] \equiv [P(x_1,y_1) \land \dots \land P(x_1,y_m)] \land \dots \land [P(x_n,y_1) \land \dots \land P(x_n,y_m)] \equiv P(x_1,y_1) \land \dots \land P(x_n,y_m) \equiv [P(x_1,y_1) \land \dots \land P(x_n,y_n)] \land \dots \land [P(x_1,y_m) \land \dots \land P(x_n,y_m)] \equiv [\forall x P(x,y_1)] \land \dots \land [\forall x P(x,y_m)] \equiv \forall y \forall x : P(x,y)$

- $\exists x \exists y : P(x,y) \equiv \bigvee_{i=1}^{n} (\exists y P(x_i,y)) \equiv \bigvee_{i=1}^{n} (\bigvee_{j=1}^{m} P(x_i,y_j)) \equiv \bigvee_{i=1}^{n} \bigvee_{j=1}^{m} P(x_i,y_j) \equiv \bigvee_{j=1}^{m} \bigvee_{i=1}^{n} P(x_i,y_j) \equiv \bigvee_{j=1}^{m} (\exists x P(x,y_j)) \equiv \exists y \exists x : P(x,y) \equiv \exists x \exists y : P(y,x)$
- Не е вярно, ето контрапимер. Нека предикатът P(x,y) е: "студент x има факултетен номер y". Наистина всеки студент си има факултетен номер: $\forall x \exists y P(x,y)$. Не е вярно обаче, че съществува номер, който е факултетен едновременно за всички студенти ($\exists y \forall x : P(x,y)$)
- Изводът е валиден, защото: за някое $x_0, \forall y : P(x_0, y) \Rightarrow \forall y \exists x = x_0 : P(x_0, y);$

Ако търсим формалност, можем да докажем друго, че
$$\exists x \forall y P(x,y) \to \forall y \exists x P(x,y)$$
 е тавтология: $\exists x \forall y P(x,y) \to \forall y \exists x P(x,y) \equiv \neg \exists x \forall y P(x,y) \lor \forall y \exists x P(x,y) \equiv \forall x \exists y \neg P(x,y) \lor \forall y \exists x P(x,y) \equiv \bigwedge_{i=1}^{n} [\bigvee_{j=1}^{m} \neg P(x_i,y_j)] \lor \bigwedge_{k=1}^{m} [\bigvee_{l=1}^{n} P(x_l,y_k)] \stackrel{\text{дистриб.}}{\equiv} \bigwedge_{i,k=1}^{n,m} [[\bigvee_{j=1}^{m} \neg P(x_i,y_j)] \lor [\bigvee_{l=1}^{n} P(x_l,y_k)]] \stackrel{\text{асоциативност на диз.}}{\equiv} \bigwedge_{i,k=1}^{n,m} [\bigvee_{j=1}^{m} \neg P(x_i,y_j) \lor \bigvee_{l=1}^{n} P(x_l,y_k)] \stackrel{\text{разглеждаме j=k, l=i}}{\equiv} \bigwedge_{i,k=1}^{n,m} [... \lor \neg P(x_i,y_k) \dots \lor P(x_i,y_k) \dots] \equiv \bigwedge_{i,k=1}^{n,m} [T] \equiv T$

Забележка. Макар че формалният запис е изключително затормозяващ и нечетим, горните преобразувания всъщност са доста прости откъм идея. (Не е необходимо да ги четете /аз не бих/, достатъчно е да можете сами да "облечете" идеите си в подобен запис.)

Задача 10. Ако P(x), Q(x) са предикати над някакъв домейн, да се докаже, че:

- $\forall x (P(x) \land Q(x)) \equiv \forall x (P(x)) \land \forall x (Q(x))$
- $\exists x (P(x) \lor Q(x)) \equiv \exists x (P(x)) \lor \exists x (Q(x))$

Забележка. Тоест универсалният квантор има дистрибутивно свойство спрямо конюнкцията, а екзистенциалният спрямо дизюнкцията

Решение. Ще разгледаме само първото. Ако a_1, \dots, a_n са обектите от домейна, то от *свойство* 1.2 $\forall x (P(x) \land Q(x)) \equiv (P(a_1) \land Q(a_1)) \land \dots \land (P(a_n) \land Q(a_n))$, от асоциативността и комутативността на конюнкцията:

$$(P(a_1) \wedge Q(a_1)) \wedge \cdots \wedge (P(a_n) \wedge Q(a_n)) \equiv (P(a_1) \wedge \cdots \wedge P(a_n)) \wedge (Q(a_1) \wedge \cdots \wedge Q(a_n)) \equiv \forall x (P(x)) \wedge \forall x (Q(x)) \quad \blacksquare$$

Задача 11. Нека P(x, y), Q(x, y), R(x, y) са предикати над някакви домейни. Напишете отрицанието на следните твърдения така, че знакът за отрицание да не се среща вляво от кванторите

- $\forall x \exists y [(P(x,y) \land Q(x,y)) \rightarrow R(x,y)]$
- $\exists x \forall y [P(x,y) \to (P(x,y) \lor Q(x,y))]$

Решение.

- $\neg \forall x \exists y [(P(x,y) \land Q(x,y)) \rightarrow R(x,y)] \equiv \exists x \forall y \neg [(P(x,y) \land Q(x,y)) \rightarrow R(x,y)] \stackrel{\text{св-во на импликацията}}{\equiv} \exists x \forall y \neg [\neg (P(x,y) \land Q(x,y)) \lor R(x,y)] \stackrel{\text{De Morgan}}{\equiv} \exists x \forall y \neg [(\neg P(x,y) \lor \neg Q(x,y)) \lor R(x,y)] \stackrel{\text{acoquatub} \text{ност}}{\equiv} \exists x \forall y \neg [\neg P(x,y) \lor \neg Q(x,y) \lor R(x,y)] \stackrel{\text{De Morgan}}{\equiv} \exists x \forall y [P(x,y) \land Q(x,y) \land \neg R(x,y)] \quad \blacksquare$
- ¬ $\exists x \forall y [P(x,y) \rightarrow (P(x,y) \lor Q(x,y))] \equiv \forall x \exists y \neg [P(x,y) \rightarrow (P(x,y) \lor Q(x,y))] \stackrel{\text{св-во на импликацията}}{\equiv} \forall x \exists y \neg [\neg P(x,y) \lor (P(x,y) \lor Q(x,y))] \stackrel{\text{асоциативност}}{\equiv} \forall x \exists y \neg [\neg P(x,y) \lor P(x,y) \lor Q(x,y)] \stackrel{\text{De Morgan}}{\equiv} \forall x \exists y [P(x,y) \land \neg P(x,y) \land \neg Q(x,y)] \equiv F$

3 Задачи за подготовка

Задача 12 (Семестриално И 24). Ако p, q, r, s, t, x, y и z са съждения, докажете, че изразът: $(p \to q) \lor [((p \land t) \lor (q \land x) \lor (r \land y)) \to ((t \to y) \to z) \to p] \lor (q \to r)$ е тавтология

 $\begin{array}{ll} \textit{Решение.} \ \ \textit{От комутативността на дизюнкцията даденото е същото като:} \ (p \rightarrow q) \lor (q \rightarrow r) \lor [((p \land t) \lor (q \land x) \lor (r \land y)) \rightarrow ((t \rightarrow y) \rightarrow z) \rightarrow p] \equiv [(\neg p \lor q) \lor (\neg q \lor r)] \lor [...] \overset{\text{асоциативност}}{\equiv} [\neg p \lor q \lor \neg q \lor r] \lor [...] \overset{\text{св-во на отрицанието}}{\equiv} [\neg p \lor T \lor r] \lor [...] \equiv T \quad \blacksquare \end{array}$

Задача 13 (Семестриално КН 22). Докажете или опровергайте (само чрез еквивалентни преобразувания), че изразът $(\neg p \land (p \lor q) \rightarrow q) \rightarrow r$ е тавтология

Решение. $(\neg p \land (p \lor q) \to q) \to r$ $\stackrel{\text{св-во на импликацията}}{\equiv} (\neg (\neg p \land (p \lor q)) \lor q) \to r$ $\stackrel{\text{De Morgan}}{\equiv} ((p \lor \neg (p \lor q)) \lor q) \to r$ $\stackrel{\text{асоциативност}}{\equiv} (p \lor \neg (p \lor q) \lor q) \to r$ $\stackrel{\text{комутат. и асоциат.}}{\equiv} ((p \lor q) \lor \neg (p \lor q)) \to r \equiv T \to r \equiv r$ значи е достатъчно да изберем $r \equiv F$, за да бъде цялото съждение грешно, т.е. не е тавтология. Можем и направо да дадем контрапример, полагайки $p \equiv q \equiv r \equiv F$ \blacksquare .

Задача 14 (Семестриално И 21). Нека р, q и г са произволни съждения. Докажете чрез еквивалентни преобразувания, че:

- $(p \land q) \lor (p \land q \land r) \equiv p \land q$
- $(p \lor q) \land (p \lor q \lor r) \equiv p \lor q$

Решение. Задачата се решава доста елегантно, ако положим $s \equiv (p \land q), t \equiv (p \lor q),$ тогава:

- $(p \land q) \lor (p \land q \land r) \equiv (p \land q) \lor ((p \land q) \land r) \equiv s \lor (s \land r) \equiv s$ директно от закона за поглъщане. \blacksquare
- $(p \lor q) \land (p \lor q \lor r) \equiv (p \lor q) \land ((p \lor q) \lor r) \equiv t \land (t \lor r) \equiv t$ директно от закона за поглъщане. \blacksquare

Задача 15 (Семестриално И 23). Докажете с табличен метод и с еквивалентни преобразувания, че следните са еквивалентни:

$$A = \neg((p \to q) \land (\neg(p \to r) \lor (\neg q \land \neg r)))$$

$$B = (\neg p \land q) \lor (p \land \neg q) \lor r$$

Задача 16 (Семестриално КН 16). Вярно ли е, че:

- от $\forall x(P(x)) \vee \forall x(Q(x))$ следва $\forall x(P(x) \vee Q(x))$
- \bullet от $\forall x (P(x) \lor Q(x))$ следва $\forall x (P(x)) \lor \forall x (Q(x))$

Решение.

- За да бъде $\forall x(P(x)) \lor \forall x(Q(x)) \equiv T$, то поне един от двата операнда на дизюнкцията е истина, б.о.о $\forall x(P(x)) \equiv T \Rightarrow \forall x(P(x) \lor Q(x)) \equiv T$.
- Не, не следва. Например, ако предикатът P(x) е: "x има брат", а предикатът Q(x): "x има сестра" и знаем, че всеки x от домейна има брат или сестра, $\forall x (P(x) \lor Q(x))$, но оттук не следва, че всички имат брат или всички имат сестра, т.е $\forall x (P(x)) \lor \forall x (Q(x))$.

Задача 17. Нека P(x,y) е предикатът " $x^2 + y^2 > 2xy$ ". Вярно ли е, че:

- Р(-1,2), ако домейнът са всички цели числа
- $\exists x \in \mathbb{N} \exists y \in \mathbb{N} : P(x, y)$
- $\forall x \in \mathbb{R} \exists y \in \mathbb{N} : P(x,y)$
- $\forall x \in \mathbb{R}^+ \forall y \in \mathbb{R}^- : P(x,y)$
- $\forall x$ четно $\exists y$ нечетно: $\neg P(x,y)$
- $\exists x$ четно $\forall y$ нечетно: P(x,y)
- $\forall x \in \mathbb{R} \forall y \in \mathbb{R}, y > x : P(x, y)$
- $\forall x \in \mathbb{R} \exists y \in \mathbb{N} : \neg P(x, y)$
- $\exists x \in \mathbb{R} \exists y \in \mathbb{R}, y \neq x : \neg P(x, y)$
- $\neg \exists x \in \mathbb{R}, \forall y \in \mathbb{Q} : P(x, y)$

Решение. Задачата става лесна, след като направим наблюдението, че $x^2 + y^2 > 2xy$ е същото като $(x-y)^2 > 0$, което се случва тогава и само тогава, когато $x \neq y$ (*при реални числа). Ето защо:

- да
- да, достатъчно е $x \neq y$
- \bullet да, достатъчно е $x \neq y$
- \bullet да, защото тук винаги $x \neq y$
- \bullet не; уточнихме, че знакът винаги е > (или =), равенство получаваме само при х=у, което е невзъможно, когато са с различна четност
- да, всъщност, което и да е четно върши работа
- \bullet да, защото тук винаги $x \neq y$
- не, ако х не е естествено, няма как да изберем у=х, така че да "счупим" неравенството
- не, в началото уточнихме защо
- не; ако вземем произволно иррационално число x (т.е. $x \notin \mathbb{Q}$), например $x = \pi$, за кое да е у рационално, $x \neq y$, а оттук и $(x y)^2 > 0$

Задача 18. Обяснете защо е същото дали ще имаме извод с предпоставки $p_1, ... p_n$ и следствие q, или извод с единствена предпоставка $(p_1 \wedge ... \wedge p_n)$ и следствие q. Тоест $\frac{p_1 \ ... \ p_n}{\therefore q}$ е същото като $\frac{(p_1 \wedge ... \wedge p_n)}{\therefore q}$

Решение. Извод с предпоставки $p_1, ..., p_n$ и следствие q е валиден точно когато $p_1 \wedge \wedge p_n \to q \equiv T$ е тавтология. Извод с единствена предпоставка $(p_1 \wedge \wedge p_n)$ и следствие q пък е валиден точно когато $(p_1 \wedge \wedge p_n) \to q \equiv T$ е тавтология, което е същото като горното. Тоест двата извода, имащи еднакво следствие, са еквивалентни (единият е верен точно когато и другият е).

Задача 19 (#бонус). Да се докаже, че изводът с предпоставки $p_1,...,p_n$ и следствие $q \to r$ е валиден, ако изводът с предпоставки $p_1,...,p_n,q$ и следствие r е валиден

Решение. Ще покажем два начина (всъщност начинът е един, но формализирането на решението изглежда различно):

1 H.)

Искаме да покажем, че $\frac{p_1 \cdots p_n}{\therefore q \to r}$. По условие имаме, че: $\frac{p_1 \cdots p_n - q}{\therefore r}$, което според *дефиниция* 1.9 е същото като $(p_1 \wedge \cdots \wedge p_n \wedge q) \to r \equiv T$ (*) (т.е. е тавтология) . От (*):

$$T \equiv$$

$$(p_1 \wedge \dots \wedge p_n \wedge q) \to r \equiv \\ \neg (p_1 \wedge \dots \wedge p_n \wedge q) \vee r \equiv \\ (\neg (p_1 \wedge \dots \wedge p_n) \vee \neg q) \vee r \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee \neg q \vee r \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) \equiv \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n) \vee (\neg q \vee r) = \\ \neg (p_1 \wedge \dots \wedge p_n$$

$$\neg (p_1 \land \dots \land p_n) \lor (\neg q \lor r) \equiv \neg (p_1 \land \dots \land p_n) \lor (q \to r) \equiv$$

$$(p_1 \wedge \cdots \wedge p_n) \vee (q \to r)$$
$$(p_1 \wedge \cdots \wedge p_n) \to (q \to r)$$

Сега според дефиницията за извод (1.9) $(p_1 \wedge \cdots \wedge p_n) \to (q \to r) \equiv T$ ни носи $\frac{p_1 \cdots p_n}{\therefore q \to r}$, което и искаме.

2 н.)

Тъй като искаме да покажем, че изводът с предпоставки $p_1,...,p_n$ и следствие $q \to r$ е валиден, то можем да използваме даденото по условие, а именно втория извод (този с предпоставки $p_1,...,p_n,q$ и следствие r), за който знаем е валиден, като предпоставка за първия. Тоест искаме:

$$p_1 \wedge \cdots \wedge p_n (=p)$$

$$\frac{(p_1 \wedge \dots \wedge p_n \wedge q) \to r/\text{втория извод ползваме като предпоставка}/{} \dots \qquad q \to r$$

Забележка. За олекотавяне на записа можем да считаме, че $p_1 \wedge \cdots \wedge p_n$ е една голяма предпоставка $\equiv p$.

- 1. $p \wedge q \rightarrow r \equiv \neg p \vee \neg q \vee r$ /свойство на импликацията/
- 2. $\neg p \lor \neg q \lor r \equiv \neg p \lor (\neg q \lor r)/$ асоциативност на дизюнкцията/
- 3. p (предпоставка)
- 4. $(\neg q \lor r)$ /от 2., 3. и дизюнктивен силогизъм/
- 5. $(\neg q \lor r) \equiv q \to r$ /свойство на импликацията/

Благодарности

Благодаря на Христо Атанасов за откритата грешка в решението на задача 19.