50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics in AES

50.020 Security Lecture 12 - Modular Arithmetics I

This lecture

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetic

Modular arithmetics ir AES This lecture: math!

- In particular:
 - Why we need groups, rings, fields in cryptography
 - Introduction to groups, rings, fields
 - References (on abstract algebra): https://math. berkeley.edu/~apaulin/AbstractAlgebra.pdf, http://www-users.math.umn.edu/~garrett/m/ algebra/notes/Whole.pdf

Where will we need that?

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetic

- We discussed S-Boxes in AES
 - How to choose the parameters
- We discussed MixColumn in AES
 - What is really happening in there
- We discussed XOR or + for OTP
 - Why are they the same?
- We will discuss RSA in detail soon
- All these things rely on modular arithmetics

Why do we need modular arithmetics?

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetic

- Because we are computing in finite resources
- int is 32 bit, long is 64 bit, ...
- Remember Caesar's cipher: only 26 symbols
 - What is Z shifted to the right by 3?
- How to solve? Limit space with a modulus
 - Will this change any of our arithmetic rules?
- For all this, we need *Galois (Extension) Field* [pⁿ]
 - But to explain those, we need groups, rings, fields

Modular arithmetics

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Everyone knows the mod operation

- 3 is the remainder of 8 modulus 5
- Mathematical notation:

More general for \mathbb{Z} , i.e. all integers= $\{\ldots,-2,-1,0,1,2,\ldots\}$

- $a \equiv r \mod m$, with $a, r, m \in \mathbb{Z}$
- Is there more than one solution to this congruence? Infinitely many!
 - $-2 \equiv 3 \mod 5$
 - $-7 \equiv 3 \mod 5$
 - \blacksquare 13 \equiv 3 mod 5

Sets, Groups, Rings, Fields,...

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

- By convention, we chose the remainder from $0 \le r < m$
- We obtain a set of possible elements $\mathbb{S} = \{0, 1, 2, \dots, m-1\}$
- While \mathbb{Z} is infinite, \mathbb{S} is finite
- There are many other ways to construct sets
- Together with operators, they form algebraic structures
- Algebraic structures are classified based on
 - Properties of the set
 - Properties of the operator(s)
- Possible structures are groups, rings, fields,...

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics in AES

 ${\sf Groups}$

Arithmetic groups

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Definition (Group)

A group consists of:

- A set of elements
- An operation * that combines two elements to a third
- The operation * must satisfy the following properties:
 - closure
 - associativity
 - identity
 - invertibility

Closure

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics ir AES

Definition (Closure)

An operation \star on members of set satisfies *closure*, iff for all possible inputs from the set, the result of the operation is within the set.

Example (\mathbb{Z}^+ and +,-)

- Positive integers \mathbb{Z}^+ and + has closure
- lacktriangle Positive integers \mathbb{Z}^+ and does not have closure

Associativity

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics in AES

Definition (Associativity)

An operation \star on members of a set satisfies associativity, iff in an expression containing two or more operators, the order of evaluation does not change the result.

Example ($\mathbb Z$ and *,+)

- lacksquare $\mathbb Z$ and * is associative
- \blacksquare \mathbb{Z} and + is associative

Identity

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics in AES

Definition (Identity)

An operation \star on members of a set satisfies *identity*, iff the set contains an element "0", such that $0 \star a = a$, $\forall a \in \text{set}$

Example (\mathbb{Z} and *,+)

- lacksquare $\mathbb Z$ and *: element 1 is identity
- \blacksquare \mathbb{Z} and +: element 0 is identity

Invertibility

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics in AES

Definition (Invertibility)

An operation \star on members of a set $\mathbb S$ satisfies *invertibility*, iff $\mathbb S$ contains an inverse $y \in \mathbb S$ for each $x \in \mathbb S$ such that $x \star y = y \star x = i$ (with i the identity element of the operation).

Example (\mathbb{Z} and *,+)

- \blacksquare \mathbb{Z} and *: no inverse tor most elements, e.g. 2 *?=1
- \blacksquare \mathbb{Z} and +: -a is inverse element for a

Invertibility

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics in AES

Definition (Invertibility)

An operation \star on members of a set $\mathbb S$ satisfies *invertibility*, iff $\mathbb S$ contains an inverse $y \in \mathbb S$ for each $x \in \mathbb S$ such that $x \star y = y \star x = i$ (with i the identity element of the operation).

Example (\mathbb{Z} and *,+)

- \blacksquare \mathbb{Z} and *: no inverse for most elements, e.g. 2 *?=1
- \blacksquare \mathbb{Z} and +: -a is inverse element for a

■ Do you have an example group with an operation * that provides closure, associativity, identity, invertibility?

Example group $(\mathbb{Z},+)$

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

- Based on the previous examples, $(\mathbb{Z},+)$ is an additive group
- Closure: for any $a, b \in \mathbb{Z}$, c = a + b will have $c \in \mathbb{Z}$
- Associativity: for any $a, b, c \in \mathbb{Z}$: (a+b)+c=a+(b+c)
- Identity: for any $a \in \mathbb{Z}$, 0 is the identity: a + 0 = a
- Invertibility: for any $a \in \mathbb{Z}$, -a is the inverse: a + (-a) = (-a) + a = 0

Quotient groups

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics ir AES

- So far, we only considered infinite groups
- Finite groups are much more interesting. Why?
- Quotient groups map a larger group onto a smaller one while preserving the structure
- For now, lets assume this mapping i to modulo operation

Example $(\mathbb{Z}/2\mathbb{Z})$

- Group created by "applying mod 2"
- $\mathbb{Z}/2\mathbb{Z}$ has two elements: $\{0,1\}$.
- Operations possible on these elements:
 - addition mod 2 (same as XOR)
 - Multiplication mod 2 (same as AND)

Order of finite groups and elements

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

- The order of a group G is |G|, the number of its elements
- The order of an element is defined as follows

Definition (Order of elements)

The order of an element a of a group (S, \star) is the smallest positive integer k such that

$$a^k = a \star a \star a \dots a \star a = 1$$

With 1 being the identity element for |

Cyclic groups

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

- Generated from one element g with invertible associative operation. $G = \{g^n | n \in \mathbb{Z}\}$
- g has order |G|, it is also called a primitive element or generator
- $(\mathbb{Z}^+,+)$ is a cyclic group with generator 1.

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics in AES

Rings

Arithmetic rings

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

- Arithmetic rings are groups with a second operation ×
- This operation is often called "multiplication", but can be any operation
- Requirements for ×:
 - This second operation × is associative
 - × needs to satisfy closure
 - × has an identity element
 - × is distributive over *

Distributivity

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics ir AES

Definition (Distributivity)

Consider two binary associative operations \star ,× on members of a set \mathbb{S} . × is *distributive* over \star iff $\forall a,b,c\in\mathbb{S}$:

$$a \times (b \star c) = a \times b \star a \times c$$

- \blacksquare \mathbb{Z} and +,*: * is distributive over +
- \blacksquare \mathbb{Z} and *,+: + is not distributive over *

Distributivity

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics ir AES

Definition (Distributivity)

Consider two binary associative operations \star ,× on members of a set \mathbb{S} . × is *distributive* over \star iff $\forall a,b,c\in\mathbb{S}$: $a\times(b\star c)=a\times b\star a\times c$

Example (\mathbb{Z} and * and +)

- \blacksquare \mathbb{Z} and +,*: * is distributive over +
- \blacksquare \mathbb{Z} and *,+: + is not distributive over *

■ So, do you know an example for a Ring?

Example ring $(\mathbb{Z},+,*)$

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

- Based on the previous examples, $(\mathbb{Z},+,*)$ is a *ring*
- We know that $(\mathbb{Z},+)$ is a group
- The additional operation *
 - Is associative (a*b)*c=a*(b*c)
 - lacksquare * is closed over $\mathbb Z$
 - Has identity element 1
 - Is distributive over +: a*(b+c)=a*b+a*c

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics in AFS

Fields

Fields

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

- A *field* is a ring with the following properties:
- All elements of the field form an additive group with the group operation + and the neutral element 0.
- lacktriangle All elements of the field except 0 form a multiplicative group with the group operation imes and the neutral element 1.
 - In particular: each nonzero element has a multiplicative inverse
- When the two group operations are mixed, the distributivity law holds, i.e., for all a, b, $c \in S$: a*(b + c) = (a*b) + (a*c).

Finite Fields

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

Modular arithmetics ir AES

- Also called Galois Field: GF(p)
- p is called the characteristic of the field

Example (GF(p))

- p is prime number
- operations +,*
- In GF(2) addition is XOR, multiplication is AND

Extension fields

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

- An arithmetic structure that "contains several instances of a basic field"
- The basic field is also called a subfield of the extension field
- **Example:** $GF(p^n)$ with GF(p) as subfield
- Field operations * and × can still be applied to elements of the extension field
- Commonly, a polynomial representation is used for the elements

Polynomials

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

- We represent our elements of $GF(p^n)$ as coefficients of a polynomial of degree n-1
- The coefficients are each in GF(p)
- Example: $GF(2^8)$: $P(x)=a_7x^7+a_6x^6+a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0$
- These "xⁿ" are placeholders, not the variable to be evaluated
- For multiplication (and division), "schoolbook" polynomial division can be used
 - But the result has to be reduced mod a fixed irreducable polynomial of degree n
- Addition and subtraction are simple XORs of the vectors/coefficients

Example: $GF(2^2)$

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetics

- Subfield is $GF(2) = (\{0,1\},+,*)$
- Elements can be represented as 2 bit values, e.g. 01
- Additions are XOR within the respective subfield
 - 10+11 =01
- Multiplications are polynomial multiplications within the respective subfields
 - $= 10*11 = x^2 + x = 110 = \text{ which is of degree } 2...$
- Lets assume our reduction polynomial is $P(x)=x^2+x+1$
 - Reduction operation: $(x^2 + x) \mod x^2 + x + 1 = 110 111$
 - = 110 XOR 111 = 001
- Still confused? More details are coming up (next lecture)

GF(2⁸) in AES

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetic

- GF(2⁸) is used for the S-boxes and mixColumn in AES
- Particular irreducable polynomial is chosen, Rijndael's polynomial
 - $P(x)=x^8+x^4+x^3+x+1$
- S-Boxes are usually hard-coded, but can also be replaced by GF(2⁸) multiplication/division

Byte Substitution

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetic

- In AES, byte substitution for A_i (in GF(2⁸)) requires the computation of the multiplicative inverse, and then an affine mapping.
- The multiplicative inverse can be computed on-the-fly using the extended euclidean algorithm
- We will discuss that algorithm in more detail in next lecture

Conclusion

50.020 Security Lecture 12 -Modular Arithmetics I

Modular arithmetic

- Cryptographic operations rely on modular arithmetics
- They allow us to work on limited hardware
- We can still preserve some "hardness guarantees"
 - More on that later
- To construct Galois Fields, we need the characteristic to be a prime
- Extension fields need to have an irreducable polynomial instead
- More details next lecture