Машинное обучение. Выпуклые задачи. Регуляризация и стабильность

Алексей Колесов

Белорусский государственный университет

29 октября 2019 г.

План

- рассмотреть класс выпуклых задач
- показать, какие выпуклые задачи допускают (эффективное) решение
- рассмотреть понятия «регуляризация» и «стабильность»

Содержание

- Выпуклые задачи
 - Определения
 - Выпуклые задачи машинного обучения
 - Изучаемость выпуклых задач
 - Суррогатные функции потерь
- Регуляризация и стабильность
 - Минимизация регуляризированной функции потерь
 - Стабильные алгоритмы не переобучаются
 - Регуляризация Тихонова (L2)
 - Fitting-stability tradeoff

Выпуклое множество

Выпуклое множество

Подмножество C векторного пространства называется выпуклым (convex), если для любых u, v из C отрезок, соединяющий эти два вектора, тоже лежит в C. Т.е. $\forall \alpha \in [0,1]$ вектор $\alpha u + (1-\alpha)v \in C$

Определения

Выпуклые задачи машинного обучения Изучаемость выпуклых задач Суррогатные функции потерь

Примеры

Выпуклая функция

Выпуклая функция

Пусть C — выпуклое множество. Тогда функция f называется выпуклой (convex), если для любых двух векторов u, v из C график f лежит под отрезком, соединяющим f(u) и f(v). Т.е, для $\forall u, v \in C$ и $\forall \alpha \in [0,1]$:

$$f(\alpha u + (1 - \alpha)v) \leq \alpha f(u) + (1 - \alpha)f(v)$$

Пример

Определения
Выпуклые задачи машинного обучения
Изучаемость выпуклых задач

Надграфик

Выпуклая функция

Надграфиком (epigraph) функции называется множество точек, лежащих на или над графиком функции

Лемма о надграфике

Функция f выпукла \iff надграфик f — выпуклое множество

Надграфик

Лемма о минимуме выпуклой функции

Шаром радиуса r и центром в u называют множество точек $B(u,r) = \{v : ||v-u|| \leqslant r\}$

Точка u называется локальным минимумом f, если $\exists r > 0$, что для любого $v \in B(u,r)$ выполняется, что $f(v) \geqslant f(u)$

Лемма о минимуме выпуклой функции

Любой локальный минимум выпуклой функции является её глобальным минимумом

Доказательство леммы о минимуме выпуклой функции

 ${\sf Имеем}$: u — локальный минимум выпуклой f

Хотим: $\forall v \ f(v) \geqslant f(u)$

Доказательство: Зафиксируем *v*

- $\exists \alpha > 0$, такое что $u + \alpha(v u) \in B(u, r)$
- $f(u) \leqslant f(u + \alpha(v u))$
- $f(u + \alpha(v u)) = f(\alpha v + (1 \alpha)u) \leqslant (1 \alpha)f(u) + \alpha f(v)$
- $\alpha f(u) \leqslant \alpha f(v)$

Опорные плоскости

- для выпуклой функции *f* в любой точке *w* можно построить касательную плоскость
- ullet (опорная) плоскость будет лежать не выше графика f
- ullet если f дифференцируема, то $I(u) = f(w) + \langle
 abla f(w), u w
 angle$ опорная

•
$$\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \dots, \frac{\partial f(w)}{\partial w_d}\right)$$

$$\forall u, f(u) \geqslant f(w) + \langle \nabla f(w), u - w \rangle$$

Пример

Критерий выпуклости

Критерий выпуклости

Пусть $f:\mathbb{R} \to \mathbb{R}$ дважды дифференцируема. Тогда следующие утверждения эквивалентны:

- f выпукла
- f' монотонно не убывает
- $f'' \ge 0$

•
$$f(x) = x^2$$
 выпукла $\Leftarrow f''(x) = 2 > 0$

$$f(x) = \log(1 + \exp(x))$$
 выпукла \Leftarrow $f'(x) = rac{\exp(x)}{1 + \exp(x)} = rac{1}{\exp(-x) + 1}$ возрастает

Лемма о композиции выпуклой и линейной функции

Лемма о композиции выпуклой и линейной функции

Пусть $f:\mathbb{R}^d \to \mathbb{R}$ может быть представлена как $f(w)=g(\langle w,x\rangle+y)$, где $x\in\mathbb{R}^d$, $y\in\mathbb{R}$, $g:\mathbb{R}\to\mathbb{R}$. Тогда g-выпукла $\Rightarrow f-$ выпукла

$$f(\alpha w_{1} + (1 - \alpha)w_{2}) = g(\langle \alpha w_{1} + (1 - \alpha)w_{2}, x \rangle + y)$$
(1)

$$= g(\alpha \langle w_{1}, x \rangle + (1 - \alpha)\langle w_{2}, x \rangle + y)$$
(2)

$$= g(\alpha(\langle w_{1}, x \rangle + y) + (1 - \alpha)(\langle w_{2}, x \rangle + y))$$
(3)

$$\leq \alpha g(\langle w_{1}, x \rangle + y) + (1 - \alpha)g(\langle w_{2}, x \rangle + y))$$
(4)

Примеры

- ullet пусть $x\in\mathbb{R}^d$, $y\in\mathbb{R}$ и $f(w)=(\langle w,x
 angle -y)^2.$ Тогда f(w) выпукла
- ullet пусть $x\in\mathbb{R}^d$, $y\in\{-1;1\}$, тогда $f(w)=\log(1+\exp(-y\langle w,x
 angle))$ выпукла

Лемма о максимуме и сумме выпуклых функций

Лемма о максимуме и сумме выпуклых функций

Пусть для $i=1,\dots,r$ $f_i:\mathbb{R}\to\mathbb{R}$ — выпуклые функции. Тогда следующие функции тоже являются выпуклыми:

- $g(x) = \max_{i \in [r]} f_i(x)$
- $\bullet \sum_{i=1}^{r} w_i f_i(x)$, где $w_i \geqslant 0$

Например, f(x) = |x| выпукла.

Липшицевость

Липшицевость

Пусть $C \subset \mathbb{R}^d$. Функция $f: \mathbb{R}^d \to \mathbb{R}^k$ называется ho-липшицевой, если для любых w_1 , w_2 из C выполняется, $||f(w_1) - f(w_2)|| \leqslant \rho ||w_1 - w_2||$

По теореме $f(w_1) - f(w_2) = f'(u)(w_1 - w_2)$, поэтому если $|f'| < \rho$, то функция ho-липшицева

Примеры

- f(x) = |x| 1-липшицева \Leftarrow $|x_1| - |x_2| = |x_1 - x_2 + x_2| - |x_2| \le |x_1 - x_2| + |x_2| - |x_2| = |x_1 - x_2|$
- $f(x) = \log(1 + \exp(x))$ 1-липшицева, так как

$$|f'(x)| = |\frac{1}{1 + \exp(-x)}| \le 1$$

- $f(x) = x^2$ на \mathbb{R} не липшицева для любого ρ
- $f(x) = x^2$ на [-a; a] липшицева с $\rho = 2a$
- $f(w) = \langle w, v \rangle + b ||v||$ -липшицева

Лемма о композиции липшицевых функций

Лемма о композиции липшицевых функций

Композиция ho_1 и ho_2 липшицевых функций является $(
ho_1
ho_2)$ -липшицевой

$$|f(w_1) - f(w_2)| = |g_1(g_2(w_1)) - g_1(g_2(w_2))|$$
 (5)

$$\leq \rho_1 ||g_2(w_1) - g_2(w_2)||$$
 (6)

$$\leqslant \rho_1 \rho_2 || w_1 - w_2 || \tag{7}$$

Гладкость

Гладкая функция

Дифференцируемая функция $f: \mathbb{R}^d \to \mathbb{R}$ называется β -гладкой (smooth), если её градиент β -липшицевый, т.е.

$$\forall v, w$$
 выполняется, что $||\nabla f(w) - \nabla f(v)|| \leq \beta ||w - v||$

- для гладкой функции выполняется, $f(v) \leqslant f(w) + \langle \nabla f(w), v w \rangle + \frac{\beta}{2} ||v w||^2$
- если функция гладкая и неотрицательная, то $||\nabla f(w)||^2 \leqslant 2\beta f(w)$ (самоограниченная)

Примеры

- $f(x) = x^2$ является 2-гладкой (f'(x) = 2x)
- $f(x) = \log(1 + \exp(x))$ является (1/4)-гладкой (см. f''(x))

Лемма о композиции гладкой и линейной функции

Лемма о композиции гладкой и линейной функции

Пусть $f(w) = g(\langle w, x \rangle + b)$, причём g является β -гладкой. Тогда f является $(\beta ||x||^2)$ -гладкой.

- $f(w) = (\langle w, x \rangle + b)^2$ является $(2||x||^2)$ -гладкой
- $f(w) = \log(1 + \exp(-y\langle w, x \rangle))$ является $(||x||^2/4)$ -гладкой

Определения Выпуклые задачи машинного обучения Изучаемость выпуклых задач Суррогатные функции потерь

Определения

Задача выпуклой оптимизации

Задача минимизации выпуклой функции на выпуклом множестве называется задачей выпуклой оптимизации (convex optimization problem)

Выпуклая задача машинного обучения

Задача машинного обучения (H, Z, I) называется выпуклой (convex learning problem), если множество гипотез H является выпуклым, и I является выпуклой для любого $z \in Z$.

Пример

Рассмотрим линейную регрессию с квадратичной функцией потерь.

Раньше задавали так: $H = \{x \mapsto \langle w, x \rangle, w \in \mathbb{R}^d\}$, $I(h, (x, y)) = (h(x) - y)^2$ Теперь:

- $H = \mathbb{R}^d$
- $Z = X \times Y = \mathbb{R}^{d+1}$
- $l(w,(x,y)) = (\langle w,x \rangle y)^2$
- задача выпукла

Лемма о выпуклых задачах машинного обучения

Лемма о выпуклых задачах машинного обучения

Минимизация эмпирического риска для выпуклой задачи машинного обучения является задачей выпуклой оптимизации

$$ERM_H(S) = \underset{w \in H}{\operatorname{argmin}} L_S(w) = \underset{w \in H}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^m I(w, z_i)$$

Все ли выпуклые задачи изучаемы

- ullet задача полупространств изучаема в \mathbb{R}^d (VC-теория)
- с помощью «discretization trick» любая задача с d параметрами изучаема
- ullet все задачи \mathbb{R}^d изучаемы?

Не все выпуклые задачи изучаемы

Пусть
$$H=\mathbb{R}$$
, $I(w,(x,y))=(wx-y)^2$.
Возьмём $\epsilon=1/4$, $\delta=0.01$, $m\geqslant m(\epsilon,\delta)$, $\mu=\frac{\log(100/99)}{2m}$ $z_1=(1,0)$, $z_2=(\mu,-1)$

Распределения:

$$D_1(x) = egin{cases} \mu & ext{ если } (x,y) = z_1 \ 1-\mu & ext{ если } (x,y) = z_2 \end{cases}.$$
 $D_2(x) = 1_{(x,y)=z_2}$

- вероятность, что S содержит только z_2 больше 0.99 $((1-\mu)^m\geqslant e^{-2\mu m}=0.99)$
- •
- если $A(S)=\hat{w}<-1/(2\mu)$, то $L_{D_1}(\hat{w})\geqslant \mu(\hat{w}\cdot 1-0)^2=rac{1}{4\mu}$, $L_{D_1}(0)=(1-\mu)$, т.е. ошибка точно больше 1/4
- $\hat{w}\geqslant -1/(2\mu)$, to $L_{D_2}(\hat{w})\geqslant 1/4$, xots $L_{D_2}(-\frac{1}{\mu})=0$

Изучаемые классы

Выпукло-липшицево-ограниченная задача

Задача называется выпукло-липшицево-ограниченной (convex-lipschitz-bounded) с параметрами ρ, B , если:

- ullet Н является выпуклым множеством и $\forall w \in H, \ ||w|| \leqslant B$
- $\forall z \in Z$ функция I(w, z) является выпуклой и ρ -липшицевой

Например, пусть $X=\{x\in\mathbb{R}^d:||x||<\rho\},\ Y=\mathbb{R},$ $H=\{w\in\mathbb{R}^d,||w||< B\}$ и $I(w,(x,y))=|\langle w,x\rangle-y|$. Данная задача выпукло-липшицево-ограниченная

Изучаемые классы

Выпукло-гладко-ограниченная задача

Задача называется выпукло-гладко-ограниченной (convex-smooth-bounded) с параметрами β , B, если:

- ullet Н является выпуклым множеством и $\forall w \in H, ||w|| \leqslant B$
- $\forall z \in Z$ функция I(w,z) является выпуклой, **неотрицательной** и β -гладкой

Например, пусть $X=\{x\in\mathbb{R}^d:||x||<\beta/2\},\ Y=\mathbb{R},\ H=\{w\in\mathbb{R}^d,||w||< B\}$ и $I(w,(x,y))=(\langle w,x\rangle-y)^2$. Данная задача выпукло-липшицево-ограниченная

Определения
Выпуклые задачи машинного обучения
Изучаемость выпуклых задач
Суррогатные функции потерь

Суррогатные функции потерь

- интересные функции потерь часто сложно оптимизировать (0-1 loss)
- можно задать функцию
 - выпукла
 - оценка сверху на оригинальную функцию потерь
- оптимизировать верхнюю границу

Hinge-loss

$$I^{\mathsf{hinge}}(w,(x,y)) = \mathsf{max}\{0,1-y\langle w,x\rangle\}$$

Определения Выпуклые задачи машинного обучения Изучаемость выпуклых задач Суррогатные функции потерь

Декомпозиция

Ошибка такой задачи складывается из:

- approximation error насколько хорош класс
- esitmation error насколько хорошо решили задачу в неполных данных
- optimization error насколько велика разница между суррогатной и оригинальной функцией потерь

Содержание

- 1 Выпуклые задачи
 - Определения
 - Выпуклые задачи машинного обучения
 - Изучаемость выпуклых задач
 - Суррогатные функции потерь
- 2 Регуляризация и стабильность
 - Минимизация регуляризированной функции потерь
 - Стабильные алгоритмы не переобучаются
 - Регуляризация Тихонова (L2)
 - Fitting-stability tradeoff

RLM

Будем искать решение вот так:

$$\operatorname{argmin}_{w}(L_{S}(w) + R(w))$$

- R(w) может отражать «сложность» гипотезы
- $H = \bigcup_{i} \{w : R(w) \leqslant i\}$ (cm. SRM)
- $R(w) = \lambda ||w||^2$ регуляризация Тихонова
- гребневая регрессия использует регуляризацию
- выбор регуляризации наложение prior distribution на w

Стабильность

- интуитивно, если «немного» изменить S, то A(S) должен меняться немного (стабильность)
- если $L_D(A(S)) >> L_S(A(S))$, то есть «переобучение»
- ullet если алгоритм стабилен, то $\mathbb{E}_S[L_D(A(S)) L_S(A(S))]$ невелико

Определение стабильности

- пусть $S = (z_1, \dots, z_m) \sim D^m$, $z' \sim D$
- $S^{(i)} = (z_1, \ldots, z_{i-1}, z', z_{i+1}, z_m)$
- ullet замена S на $S^{(i)}$ «небольшое изменение входа»
- ullet для «хороших» $A\ I(A(S^{(i)}),z_i)-I(A(S),z_i)\geqslant 0$
- ullet если $I(A(S^{(i)}), z_i) I(A(S), z_i)$ велико, то «переобучение»

Лемма о «небольшом изменении входа»

Лемма о «небольшом изменении входа»

Пусть U(m) — равномерное распределение над [m]. Тогда:

$$\mathbb{E}_{S \sim D^m}[L_D(A(S)) - L_S(A(S))] = \\ \mathbb{E}_{(S,z') \sim D^{m+1}, i \sim U(m)}[I(A(S^{(i)}, z_i) - I(A(S), z_i)]$$

•
$$\mathbb{E}[L_D(A(S))] = \mathbb{E}_{S,z_i}[I(A(S),z')] = \mathbb{E}_{S,z'}[I(A(S^{(i)},z_i))]$$

•
$$\mathbb{E}[L_S(A(S))] = \mathbb{E}[I(A(S), z_i)]$$

В среднем стабильный при замене одного объекта алгоритм

В среднем стабильный при замене одного объекта алгоритм

Алгоритм называется в среднем стабильным при замене одного объекта (on-average-replace-one-stable), если существует монотонно убывающая $\epsilon: \mathbb{N} \to \mathbb{R}$, такая, что

$$\underset{(S,z')\sim D^{m+1},i\sim U(m)}{\mathbb{E}}[I(A(S^{(i)},z_i)-I(A(S),z_i)]\leqslant \epsilon(m)$$

Стабильность не означает «хорошесть» алгоритма!

План

- стабильные алгоритмы не переобучаются
- докажем, что *RLM* с регуляризацией Тихонова стабилен
- будем считать, что функция потерь выпукла

Сильная выпуклость

Сильная выпуклость

Функция f называется λ -сильно выпуклой, если для всех u, w и $\alpha \in [0,1]$ выполняется

$$f(\alpha w + (1-\alpha)u) \leq \alpha f(w) + (1-\alpha)f(u) - \tfrac{\lambda}{2}\alpha(1-\alpha)||w-u||^2$$

Выпуклая функция является 0-сильно выпуклой.

Рисунок

Лемма о сильно выпуклых функциях

Лемма о сильно выпуклых функциях

- **①** $f(w) = \lambda ||w||^2$ является 2λ -сильно выпуклой
- $oldsymbol{2}$ если f λ -сильно выпуклая, а g выпуклая, то f+g является λ -сильно выпуклой
- **③** если f является λ -сильно выпуклой, и u минимизирует f(u), то для любого w выполняется:

$$f(w) - f(u) \geqslant \frac{\lambda}{2}||w - u||^2$$

$$\frac{f(u+\alpha(w-u))-f(u)}{\alpha}\leqslant f(w)-f(u)-\frac{\lambda}{2}(1-\alpha)||w-u||^2$$

Рассмотрим предел при lpha o 0

Регуляризация Тихонова стабилизирует задачу

Рассматриваем:

$$A(S) = \underset{w}{\operatorname{argmin}} (L_S(w) + \lambda ||w||^2)$$

 $f_S(w) = L_S(w) + \lambda ||w||^2$ является 2λ -сильно выпуклой и для любого v

$$f_S(v) - f_S(A(S)) \geqslant \lambda ||v - A(S)||^2$$

$$f_{S}(v) - f_{S}(u) = L_{S}(v) + \lambda ||v||^{2} - (L_{S}(u) + \lambda ||u||^{2})$$
 (8)

$$= L_{S(i)}(v) + \lambda ||v||^2 - (L_{S(i)}(u) + \lambda ||u||^2)$$
 (9)

$$+\frac{l(v,z_{i})-l(u,z_{i})}{m}+\frac{l(u,z')-l(v,z')}{m}$$
 (10)

Регуляризация Тихонова стабилизирует задачу

Имеем:

$$f_S(v) - f_S(A(S)) \geqslant \lambda ||v - A(S)||^2$$

$$f_{S}(v) - f_{S}(u) = L_{S(i)}(v) + \lambda ||v||^{2} - (L_{S(i)}(u) + \lambda ||u|^{2})$$

$$+ \frac{I(v, z_{i}) - I(u, z_{i})}{I(u, z_{i})} + \frac{I(u, z') - I(v, z')}{I(u, z')}$$
(12)

Возьмем $v = A(S^{(i)}), u = A(S)$ и:

$$\begin{split} f_S(A(S^{(i)}) - f_S(A(S)) &\leqslant \frac{I(A(S^{(i)}), z_i) - I(A(S), z_i)}{m} + \frac{I(A(S^{(i)}), z') - I(A(S), z')}{m} \\ \lambda ||A(S^{(i)}) - A(S)||^2 &\leqslant \frac{I(A(S^{(i)}), z_i) - I(A(S), z_i)}{m} + \frac{I(A(S^{(i)}), z') - I(A(S), z')}{m} \end{split}$$

Случай липшицевой функции потерь

Если I ρ -липшицева, то

$$I(A(S^{(i)}), z_i) - I(A(S), z_i) \le \rho ||A(S^{(i)} - A(S))||$$

 $I(A(S^{(i)}), z') - I(A(S), z') \le \rho ||A(S^{(i)} - A(S))||$

Получаем

$$\lambda ||A(S^{(i)}) - A(S)||^{2} \leqslant \frac{2\rho ||A(S^{(i)} - A(S))||}{m}$$

$$||A(S^{(i)}) - A(S)|| \leqslant \frac{2\rho}{\lambda m}$$

$$I(A(S^{(i)}), z_{i}) - I(A(S), z_{i}) \leqslant \frac{2\rho^{2}}{\lambda m}$$

Регуляризация Тихонова стабилизирует RLM

Лемма о RLM в случае выпукло-липшицево-ограченной задачи

RLM в случае выпукло-липшицево-ограченной задачи является стабильным с $\epsilon(m)=rac{2
ho^2}{\lambda m}.$ T.e.

$$\mathop{\mathbb{E}}_{S \sim D^m} [L_D(A(S)) - L_S(A(S))] \leqslant \frac{2\rho^2}{\lambda m}$$

Чуть более слабую оценку можно доказать для выпукло-гладко-ограниченных задач

Fitting-stability tradeoff

- ullet чем больше λ , тем стабильней алгоритм, но хуже приближение
- $\mathbb{E}[L_D(A(S))] = \mathbb{E}[L_S(A(S))] + \mathbb{E}[L_D(A(S)) L_S(A(S))]$
- второе слагаемое соответствует стабильности
- хотим, чтобы сумма была маленькой
- можно находить баланс валидацией

Оценки на эмпирический риск

Оценка на эмпирический риск для липшицевой функции потерь

Если мы используем RLM-алгоритм для липшицевой функции потерь с регуляризацией Тихонова, то:

$$\forall w^*, \ \mathbb{E}[L_D(A(S))] \leqslant L_D(w^*) + \lambda ||w^*||^2 + \frac{2\rho^2}{\lambda m}$$

Пусть
$$\lambda = \sqrt{\frac{2 \rho^2}{B^2 m}}$$
, тогда:

$$\mathbb{E}[L_D(A(S))] \leqslant \min_{w \in H} L_D(w) + \rho B \sqrt{\frac{8}{m}}$$

Содержание

- Выпуклые задачи
 - Определения
 - Выпуклые задачи машинного обучения
 - Изучаемость выпуклых задач
 - Суррогатные функции потерь
- Регуляризация и стабильность
 - Минимизация регуляризированной функции потерь
 - Стабильные алгоритмы не переобучаются
 - Регуляризация Тихонова (L2)
 - Fitting-stability tradeoff

Итоги

- рассмотрели выпуклость, гладкость, липшицевость фукнций
- показали, что выпуклости недостаточно для изучаемости
- выделили классы выпуклых задач, которые можно решить
- ввели понятие регуляризации и стабильности
- доказали, что стабильные алгоритмы не переобучаются

Литература

 Shai Shalev-Shwartz and Shai Ben-David — Understanding Machine Learning: From theory to algorithms (главы 12,13)