Appendices

12.11-2020

1 Appendices

1.1 Appendix A

Warning: attributes are not identical across measure variables; ## they will be dropped

1.2 Appendix B

Figure 1.1: GDP Growth(%) vs 5-year Treasury Implied Volatility

1.3 Appendix C

Notes: This table includes summary statistics for main variables used in our research. Statistics include mean, standard deviation,, min, 1st quartile, median, 3rd quartile, max & number of valid data points. In Panel A, different YIV data is summarized. In Panel B, we have listed the main dependent variables which are used for predictions. GDP denotes the year-on-year growth rate(quarterly data), CON denotes YOY consumption growth(monthly data), EMP describes YOY growth rate for non-farm payroll and lastly IND stands for Industrial production YOY growth (monthly data). In Panel C, different control variables are listed: SVEN1F01 - 1 year treasury bond par yield.

Table 1.1: Summary Statistics

Variable	Mean	Std.Dev	Min	Q1	Median	Q3	Max	N.Valid		
Panel A: YIV										
AAA	0	1	-1.82	-0.67	-0.14	0.79	2.09	103		
Panel B: Dependent Variables										
CON	0	1	-4.07	-0.55	0.16	0.68	1.84	103		
DBAA	0	1	-1.83	-0.68	0.05	0.70	2.33	103		
DGS1	0	1	-1.32	-1.17	0.09	0.89	2.14	103		
DGS10	0	1	-1.75	-0.74	-0.04	0.76	2.14	103		
Panel C: Control Variables										
DGS3MO	0	1	-1.26	-1.20	0.08	0.93	2.18	103		
DGS5	0	1	-1.69	-0.94	0.13	0.80	2.10	103		
DGS6MO	0	1	-1.29	-1.18	0.07	0.88	2.15	103		
EMP	0	1	-3.55	-0.47	0.32	0.66	1.40	103		
F1	0	1	-3.66	-0.43	0.08	0.82	1.54	102		
F10	0	1	-3.78	-0.44	0.04	0.81	1.49	93		
F11	0	1	-3.77	-0.44	0.05	0.80	1.50	92		
F12	0	1	-3.75	-0.45	0.04	0.82	1.50	91		
F2	0	1	-3.65	-0.43	0.09	0.81	1.53	101		
F3	0	1	-3.67	-0.44	0.08	0.81	1.52	100		
F4	0	1	-3.74	-0.46	0.07	0.81	1.52	99		
F5	0	1	-3.80	-0.46	0.05	0.80	1.52	98		
F6	0	1	-3.84	-0.45	0.04	0.79	1.51	97		
F7	0	1	-3.84	-0.43	0.07	0.79	1.50	96		
F8	0	1	-3.82	-0.45	0.03	0.80	1.50	95		
F9	0	1	-3.80	-0.44	0.03	0.80	1.49	94		
GDP	0	1	-3.62	-0.44	0.07	0.83	1.58	103		
housng	0	1	-3.01	-0.39	0.21	0.64	2.22	103		
IND	0	1	-4.26	-0.12	0.18	0.55	1.59	103		
lag10	0	1	-3.52	-0.46	0.08	0.84	1.49	93		
lag12	0	1	-3.50	-0.41	0.09	0.83	1.47	91		
lag4	0	1	-3.62	-0.47	0.08	0.84	1.53	99		

Table 1.1: Summary Statistics (continued)

Variable	Mean	Std.Dev	Min	Q1	Median	Q3	Max	N.Valid
lag6	0	1	-3.58	-0.46	0.08	0.83	1.52	97
lag8	0	1	-3.55	-0.46	0.08	0.85	1.51	95
SRT03M	0	1	-3.13	-0.19	0.16	0.38	2.18	102
TRM0503	0	1	-2.31	-0.80	0.12	0.82	1.93	103
TRM0506	0	1	-2.19	-0.75	0.14	0.76	1.95	103
TRM1003	0	1	-2.20	-0.90	0.15	0.77	1.54	103
TRM1006	0	1	-2.07	-0.88	0.14	0.78	1.59	103
TRM1012	0	1	-1.84	-0.88	0.14	0.87	1.66	103
VIX	0	1	-1.20	-0.77	-0.31	0.57	5.30	103
YIV	0	1	-1.49	-0.56	-0.26	0.22	4.50	103

Note:

Additional control variables will be added upon construction. Furthermore, currently the frequency of the datasets differs for different variables but this will be addressed in the research process.

1.4 Appendix D.

Notes: This table depicts the output of regression with YIV as independent variable. The equation for the regression is following:

$$\sum_{j=1}^{j=H} \log(1 + GDP_{i,t+j})/H = \alpha_H + \beta_H \sigma_{IV,t}^{INT} + \varepsilon_{t+H}$$
(1)

Warning: attributes are not identical across measure variables; ## they will be dropped

Table 1.2: Regression output

	H4	Н6	Н8	H10	H12				
Panel A: YIV									
(Inter-	0.01	0.01	0.02	0.02	0.02				
cept)_estimate									
(Intercept)_std.e	erroil.24	1.30	1.39	1.45	1.49				
(Intercept)_p.val	lue 1.00	0.99	0.99	0.99	0.99				
YIV_estimate	-0.61	-0.58	-0.51	-0.46	-0.43				
YIV_std.error	1.40	1.47	1.30	1.07	0.99				
YIV_p.value	0.66	0.70	0.70	0.67	0.67				
r.squared	0.39	0.35	0.28	0.23	0.20				
adj.r.squared	0.39	0.34	0.27	0.22	0.19				
RMSE	0.78	0.81	0.86	0.88	0.90				

Note:

^{*** -} p<0.01, ** - p<0.05, * - p<0.1. Reported standard error is adjusted for heteroskedasticity

1.5 Appendix E.

Notes: YIV and dummy as independent variables. The equation for the regression is following:

$$\sum_{j=1}^{j=H} \log(1 + GDP_{i,t+j})/H = \alpha_H + \beta_H \sigma_{IV,t}^{INT} + Dummy + \varepsilon_{t+H}$$
 (2)

Warning: attributes are not identical across measure variables;

they will be dropped

Table 1.3: Regression with state-dependency

	H4	H6	H8	H10	H12						
-					1112						
Panel A											
(Inter-	0.01	0.02	0.02	0.02	0.02						
cept)_estimate											
(Intercept)_std.e	errof).95	1.06	1.25	1.38	1.45						
(Intercept)_p.val	lue 0.99	0.99	0.99	0.99	0.99						
YIV_estimate	-0.33	-0.32	-0.30	-0.30	-0.30						
$YIV_std.error$	0.82	0.94	0.92	0.81	0.78						
YIV_p.value	0.69	0.74	0.75	0.71	0.70						
$dum_estimate$	-0.54	-0.50	-0.40	-0.30	-0.24						
$dum_std.error$	0.81	0.83	0.81	0.73	0.73						
dum_p.value	0.51	0.55	0.62	0.68	0.75						
r.squared	0.61	0.54	0.40	0.30	0.25						
adj.r.squared	0.60	0.53	0.39	0.29	0.23						
RMSE	0.63	0.69	0.78	0.85	0.88						

Note:

^{*** -} p<0.01, ** - p<0.05, * - p<0.1. Reported standard error is adjusted for heteroskedasticity

1.6 Appendix F.

Notes: This table includes regression using YIV and GDP lags. The equation for the regression is following:

$$\sum_{j=1}^{j=H} log(1 + GDP_{i,t+j})/H = \alpha_H + \beta_H \sigma_{IV,t}^{INT} + lag[log(1 + GDP_{i,t+j})] + \varepsilon_{t+H}$$
 (3)

Warning: attributes are not identical across measure variables; ## they will be dropped

Table 1.4: Regression with state-dependency

	H4	Н6	Н8	H10	H12	
		I	Panel A			
(Inter-	0.10	0.09	0.07	0.05	0.04	
cept)_estimate						
(Intercept)_std.en	rroil.06	1.17	1.34	1.47	1.52	
(Intercept)_p.val	ue 0.93	0.94	0.96	0.98	0.98	
YIV_estimate	-0.68	-0.66	-0.58	-0.52	-0.48	
YIV_std.error	1.27	1.34	1.21	1.00	0.94	
YIV_p.value	0.59	0.62	0.63	0.61	0.61	
lag4_estimate	0.25	0.24	0.25	0.20	0.18	
lag4_std.error	0.98	0.87	0.85	0.84	0.83	
lag4_p.value	0.80	0.79	0.77	0.81	0.83	
lag6_estimate	-0.27	-0.22	-0.26	-0.22	-0.22	
lag6_std.error	0.93	0.86	0.88	0.90	0.92	
lag6_p.value	0.78	0.80	0.77	0.80	0.81	
lag8_estimate	0.08	-0.03	-0.01	-0.02	0.01	
lag8_std.error	0.96	1.01	1.10	1.12	1.14	
lag8_p.value	0.93	0.98	0.99	0.99	0.99	
lag10_estimate	-0.21	-0.17	-0.14	-0.09	-0.11	
lag10_std.error	0.92	1.05	1.14	1.17	1.21	
lag10_p.value	0.82	0.87	0.90	0.94	0.93	
lag12_estimate	0.16	0.18	0.16	0.10	0.10	
lag12_std.error	0.99	1.00	1.06	1.16	1.17	
lag12_p.value	0.87	0.86	0.88	0.93	0.93	
r.squared	0.52	0.47	0.36	0.28	0.24	
adj.r.squared	0.48	0.43	0.31	0.22	0.17	
RMSE	0.72	0.77	0.87	0.93	0.96	

Note:

^{*** -} p<0.01, ** - p<0.05, * - p<0.1. Reported standard error is adjusted for heteroskedasticity

1.7 Appendix G.

Notes: This table includes regression using GDP lags and controls. The equation for the regression is following:

$$\sum_{j=1}^{j=H} \log(1 + GDP_{i,t+j})/H = \alpha_H + \beta_H \sigma_{IV,t}^{INT} + \log[\log(1 + GDP_{i,t+j})] + \varepsilon_{t+H}$$
 (4)

Warning: attributes are not identical across measure variables; ## they will be dropped

Table 1.5: Regression with state-dependency

	H4	Н6	Н8	H10	H12	
		I	Panel A			
(Inter-	0.04	0.04	-0.01	-0.03	-0.03	
cept)_estimate						
$(Intercept)$ _std.er	rrof0.76	0.83	0.87	0.90	0.89	
$(Intercept)$ _p.val	ue 0.96	0.97	0.99	0.97	0.97	
lag4_estimate	-0.02	0.11	0.19	0.16	0.12	
$ag4_std.error$	0.64	0.67	0.70	0.68	0.63	
lag4_p.value	0.98	0.87	0.79	0.82	0.85	
lag6_estimate	-0.05	-0.02	-0.06	-0.11	-0.09	
$ m lag6_std.error$	0.70	0.73	0.77	0.80	0.77	
lag6_p.value	0.95	0.97	0.94	0.89	0.91	
lag8_estimate	0.08	0.03	0.04	0.06	0.08	
$ag8_std.error$	0.71	0.76	0.81	0.83	0.81	
lag8_p.value	0.91	0.97	0.96	0.94	0.92	
lag10_estimate	-0.13	-0.07	-0.01	-0.02	-0.05	
$lag10_std.error$	0.61	0.68	0.70	0.71	0.72	
lag10_p.value	0.83	0.92	0.98	0.98	0.94	
lag12_estimate	-0.05	-0.06	-0.10	-0.16	-0.17	
$lag12_std.error$	0.56	0.62	0.67	0.73	0.76	
lag12_p.value	0.92	0.93	0.89	0.82	0.82	
DGS1_estimate	4.82	7.04	10.49	12.64	13.93	
DGS1_std.error	0.59	0.61	0.64	0.68	0.69	
DGS1_p.value	0.00	0.00	0.00	0.00	0.00	
DGS10_estimate	-1.54	-0.54	0.15	-0.34	0.08	
$DGS10_std.error$	0.41	0.43	0.43	0.43	0.45	
DGS10_p.value	0.00	0.21	0.72	0.43	0.86	
DGS5_estimate	-8.32	-15.00	-20.35	-21.75	-23.48	
DGS5_std.error	0.47	0.49	0.50	0.51	0.53	
DGS5_p.value	0.00	0.00	0.00	0.00	0.00	
DGS3MO_estima	ate6.38	10.60	11.96	11.45	11.38	

DGS3MO_std.error	0.61	0.64	0.67	0.71	0.72
DGS3MO_p.value (0.00	0.00	0.00	0.00	0.00
TRM0506_estimate	3.91	6.10	7.52	7.99	8.30
TRM0506_std.error	0.78	0.87	0.98	1.05	1.05
TRM0506_p.value 0	0.00	0.00	0.00	0.00	0.00
SRT03M_estimate 0	0.24	0.35	0.34	0.21	0.12
SRT03M_std.error 0	0.56	0.72	0.81	0.76	0.72
SRT03M_p.value 0	0.67	0.63	0.68	0.78	0.86
AAA_estimate	2.02	1.28	1.34	1.96	2.28
AAA_std.error	0.42	0.43	0.43	0.45	0.48
AAA_p.value (0.00	0.00	0.00	0.00	0.00
DBAA_estimate -	1.99	-1.32	-1.04	-1.18	-1.23
DBAA_std.error 0	0.38	0.40	0.41	0.42	0.44
DBAA_p.value (0.00	0.00	0.01	0.01	0.01
VIX_estimate -	0.09	-0.08	-0.15	-0.12	-0.11
VIX_std.error	0.45	0.59	0.50	0.51	0.52
VIX_p.value (0.84	0.89	0.77	0.81	0.84
housng_estimate (0.01	0.01	0.08	0.16	0.13
housng_std.error (0.48	0.55	0.61	0.64	0.55
housng_p.value (0.98	0.98	0.89	0.80	0.81
r.squared (0.73	0.67	0.65	0.65	0.68
adj.r.squared	0.67	0.60	0.57	0.57	0.60
RMSE	0.58	0.64	0.68	0.68	0.67

Note:

*** - p<0.01, ** - p<0.05, * - p<0.1. Reported standard error is adjusted for heteroskedasticity

1.8 Appendix H.

Notes: YIV, dummy, GDP lags and controls as independent variables. The equation for the regression is following:

$$\sum_{j=1}^{j=H} \log(1 + GDP_{i,t+j})/H = \alpha_H + \beta_H \sigma_{IV,t}^{INT} + \log[\log(1 + GDP_{i,t+j})] + \varepsilon_{t+H}$$
 (5)

Warning: attributes are not identical across measure variables; ## they will be dropped

Table 1.6: Regression with state-dependency

	H4	H6	H8	H10	H12	
		F	Panel A			
(Inter-	0.05	0.06	0.01	-0.01	-0.02	
cept)_estimate						
(Intercept)_std.er	ro f).64	0.71	0.79	0.84	0.83	
(Intercept)_p.valu	e 0.94	0.93	0.99	0.99	0.98	
YIV_estimate	-0.12	-0.17	-0.14	-0.14	-0.13	
$YIV_std.error$	0.58	0.75	0.68	0.65	0.65	
YIV_p.value	0.84	0.82	0.84	0.83	0.85	
$dum_estimate$	-0.41	-0.42	-0.40	-0.34	-0.32	
$dum_std.error$	0.49	0.61	0.54	0.51	0.51	
dum_p.value	0.41	0.49	0.46	0.50	0.54	
lag4_estimate	0.07	0.20	0.28	0.23	0.19	
$lag4_std.error$	0.59	0.60	0.68	0.66	0.60	
lag4_p.value	0.91	0.74	0.68	0.73	0.76	
lag6_estimate	-0.06	-0.06	-0.08	-0.14	-0.12	
$lag6_std.error$	0.60	0.62	0.69	0.70	0.68	
lag6_p.value	0.92	0.92	0.91	0.84	0.87	
lag8_estimate	0.06	0.00	0.01	0.04	0.06	
$lag8_std.error$	0.67	0.74	0.80	0.82	0.82	
$lag8_p.value$	0.92	1.00	0.99	0.96	0.94	
lag10_estimate	-0.11	-0.05	0.00	-0.01	-0.05	
$lag10_std.error$	0.55	0.68	0.73	0.74	0.75	
$lag10_p.value$	0.84	0.94	1.00	0.99	0.95	
$lag12_estimate$	0.01	0.01	-0.02	-0.10	-0.12	
$lag12_std.error$	0.49	0.58	0.63	0.69	0.69	
$lag12_p.value$	0.99	0.98	0.97	0.88	0.87	
DGS1_estimate	4.69	6.70	10.35	12.46	13.79	
$DGS1_std.error$	0.55	0.58	0.62	0.66	0.67	
DGS1_p.value	0.00	0.00	0.00	0.00	0.00	
DGS10_estimate	-1.60	-0.70	0.15	-0.45	0.00	

$DGS10_std.error$	0.41	0.43	0.44	0.42	0.43
DGS10_p.value	0.00	0.11	0.73	0.29	0.99
DGS5_estimate	-6.15	-12.20	-18.15	-19.64	-21.58
$DGS5_std.error$	0.46	0.48	0.50	0.50	0.50
DGS5_p.value	0.00	0.00	0.00	0.00	0.00
DGS3MO_estimat	te 3.97	7.82	9.48	9.26	9.36
DGS3MO_std.erro	0.56	0.60	0.65	0.69	0.69
DGS3MO_p.value	0.00	0.00	0.00	0.00	0.00
TRM0506_estimat	te3.07	5.08	6.66	7.21	7.59
$TRM0506_std.erro$	0.75	0.89	0.99	1.05	1.04
TRM0506_p.value	0.00	0.00	0.00	0.00	0.00
SRT03M_estimate	0.04	0.13	0.14	0.03	-0.04
SRT03M_std.error	r 0.38	0.43	0.61	0.61	0.58
$SRT03M_p.value$	0.91	0.77	0.82	0.96	0.95
AAA_estimate	1.39	0.52	0.64	1.33	1.70
$AAA_std.error$	0.42	0.44	0.45	0.45	0.46
AAA_p.value	0.00	0.24	0.16	0.00	0.00
DBAA_estimate	-1.21	-0.41	-0.21	-0.43	-0.54
${ m DBAA_std.error}$	0.40	0.45	0.45	0.44	0.44
$DBAA_p.value$	0.00	0.36	0.64	0.33	0.22
VIX_estimate	-0.04	-0.01	-0.07	-0.05	-0.05
$VIX_std.error$	0.38	0.49	0.46	0.48	0.50
$VIX_p.value$	0.92	0.98	0.88	0.91	0.93
housng_estimate	0.05	0.06	0.13	0.21	0.17
housng_std.error	0.49	0.65	0.75	0.74	0.62
housng_p.value	0.92	0.93	0.87	0.78	0.78
r.squared	0.81	0.77	0.73	0.72	0.73
adj.r.squared	0.76	0.71	0.66	0.64	0.66
RMSE	0.49	0.55	0.61	0.63	0.62
NT 1					

Note:

*** - p<0.01, ** - p<0.05, * - p<0.1. Reported standard error is adjusted for heteroskedasticity

1.9 Appendix I.

	H1	H2	НЗ	H4	Н5	Н6	H7	Н8	Н9	H10	H11	H12
Out-of-sample RMSFE	0.95	0.98	1.05	1.13	1.21	1.24	1.21	1.17	1.15	1.15	1.12	1.10
Recessionary	1.87	1.94	2.12	2.17	2.17	1.85	1.34	1.07	1.24	1.33	0.94	0.82
Expansionary	0.73	0.75	0.78	0.89	1.00	1.12	1.19	1.18	1.13	1.12	1.14	1.14
Naive	0.53	0.85	1.10	1.27	1.32	1.34	1.33	1.28	1.22	1.13	1.04	1.00
TRM	1.02	0.96	0.93	1.01	1.00	0.94	0.91	0.86	0.90	0.93	1.02	1.12
CRS	0.84	1.08	1.41	1.62	1.51	1.33	1.13	1.05	1.04	1.02	1.00	0.97

