

Pre-Training for Speech Processing

Chengyi Wang (王程一)

Joint Ph.D. student of Nankai University and Microsoft Research Asia

Three Key Elements

Data + Model + Task = Pre-training

Background

Background: HuBERT

HuBERT Setup

Three Key Elements

Data + Model + Task = Pre-training

Key Question

Can a single universal model benefit various speech tasks?

Key Question

Can a single universal model benefit various speech tasks?

WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing

Translate Success from ASR to Full Stack Speech Processing Tasks

Our Solution

One model for full-stack downstream tasks

- Content Modeling
 - Speech Recognition, Speech Translation

- Denoising Modeling
 - Speech Enhancement, Speech Separation

- Speaker Modeling
 - Speaker Diarization

WavLM: Masked Speech Prediction and Denoising

WavLM: Masked Speech Prediction and Denoising

Pre-Training Data

Audio duration of different sets (hours)

Public unlabeled data

- Libri-Light (60kh)
- VoxPopuli (24kh)
- GigaSpeech (10kh)

Three Key Elements

Data + Model + Task = Pre-training

SuperB Finetuning Setup

Representations are weighted sum.

The **Best** Universal Speech Pre-trained Model

The **Best** Universal Speech Pre-trained Model

Large Model

Model size: 316M

Training data:

Baseline(60k hrs) WavLM(90k hrs)

Content

Semantic

Paralinguistic

Speaker

The **Best** Universal Speech Pre-trained Model

General rank and score

Speech processing Universal PERformance Benchmark

Method	Rank ↑	Score ↑	PR↓	KS↑	IC ↑	SID ↑	ER↑	ASR ↓	QbE↑	SF-F1 ↑	SF-CER ↓	SV ↓	SD↓
WavLM Large	22.8	1145	3.06	97.86	99.31	95.49	70.62	3.44	8.86	92.21	18.36	3.77	3.24
WavLM Base+	21.35	1106	3.92	97.37	99	89.42	68.65	5.59	9.88	90.58	21.2	4.07	3.5
WavLM Base	18.8	1019	4.84	96.79	98.63	84.51	65.94	6.21	8.7	89.38	22.86	4.69	4.55
data2vec Large	18.7	949	3.6	96.75	98.31	76.77	66.31	3.36	6.28	90.98	22.16	5.73	5.53
LightHuBERT Sta	18.25	959	4.15	96.82	98.5	80.01	66.25	5.71	7.37	88.44	25.92	5.14	5.51
HuBERT Large	17.55	919	3.53	95.29	98.76	90.33	67.62	3.62	3.53	89.81	21.76	5.98	5.75
HuBERT Base	16.5	941	5.41	96.3	98.34	81.42	64.92	6.42	7.36	88.53	25.2	5.11	5.88
wav2vec 2.0 Large	16.3	914	4.75	96.66	95.28	86.14	65.64	3.75	4.89	87.11	27.31	5.65	5.62
data2vec base	15.6	884	4.69	96.56	97.63	70.21	66.27	4.94	5.76	88.59	25.27	5.77	6.67
LightHuBERT Small	14.65	901	6.6	96.07	98.23	69.7	64.12	8.34	7.64	87.58	26.9	5.42	5.85
FaST-VGS+	13.85	809	7.76	97.27	98.97	41.34	62.71	8.83	5.62	88.15	27.12	5.87	6.05
wav2vec 2.0 Base	12.65	818	5.74	96.23	92.35	75.18	63.43	6.43	2.33	88.3	24.77	6.02	6.08
DistilHuBERT	11.4	717	16.27	95.98	94.99	73.54	63.02	13.37	5.11	82.57	35.59	8.55	6.19
DeCoAR 2.0	10.8	722	14.93	94.48	90.8	74.42	62.47	13.02	4.06	83.28	34.73	7.16	6.59
wav2vec	8.9	529	31.58	95.59	84.92	56.56	59.79	15.86	4.85	76.37	43.71	7.99	9.9
vq-wav2vec	7	422	33.48	93.38	85.68	38.8	58.24	17.71	4.1	77.68	41.54	10.38	9.93
APC	5.8	392	41.98	91.01	74.69	60.42	59.33	21.28	3.1	70.46	50.89	8.56	10.53
VQ-APC	5.75	377	41.08	91.11	74.48	60.15	59.66	21.2	2.51	68.53	52.91	8.72	10.45

Phoneme Recognition (PR) PER. **Keyword Spotting (KS)** ACC↑ Intent Classification (IC) ACC↑ **Speaker Identification (SID)** ACC↑ **Emotion Recognition (ER)** ACC↑ **Automatic Speech Recognition (ASR)** WER. **Query by Example Spoken Term Detection** MTWV↑ Slot Filling (Slot type) F1↑ Slot Filling (Slot value) CERJ **Speaker Diarization** DER↓

Ablation Study

	Speaker Identification ACC个	Speaker Verification EER↓	Speaker Diarization DER↓	Query by Example MTWV个		ASR WER ↓	Keyword Spotting Acc个	Intent Classification Acc个	Slot Filling F1个	Slot Filling CER↓	Emotion Recognition Acc个
WavLM-Base	85.49	4.49	4.65	0.087	4.86	6.13	96.79	98.63	89.38	22.86	65.94
- denoising task	84.39	4.91	6.03	0.0799	4.85	6.08	96.79	98.42	88.69	23.43	65.55
- grep	84.74	4.61	4.72	0.0956	5.22	6.80	96.79	98.31	88.56	24.00	65.60
WavLM-Base+	89.42	4.07	3.50	0.0988	3.92	5.59	97.37	99.00	90.28	21.20	68.65

- Denoising task helps speaker related tasks.
- Gated relative position bias is effective on content modeling.

Academic Benchmarks

Table 1: Results on the main track. Models finally selected for fusion are marked in bold.

(a) Results of fine-tuni	ng different	pretraine	d SSL mo	odels indiv	vidually f	or MOS p	rediction.	
		Utteran	ce level			Syster	n level	
Pretrained SSL Model	MSE	LCC	SRCC	KTAU	MSE	LCC	SRCC	KTAU
W2V 2.0 Base	0.235	0.875	0.878	0.707	0.094	0.935	0.941	0.803
W2V 2.0 Large	0.197	0.875	0.873	0.697	0.068	0.948	0.953	0.820
W2V 2.0 Large (LV-60)	0.191	0.878	0.878	0.704	0.060	0.950	0.953	0.823
HuBERT Base	0.207	0.878	0.876	0.700	0.077	0.944	0.947	0.812
HuBERT Large	0.288	0.813	0.809	0.623	0.103	0.923	0.924	0.757
HuBERT Extra Large	0.229	0.852	0.849	0.666	0.082	0.930	0.931	0.777
WavLM Base	0.199	0.891	0.891	0.722	0.072	0.949	0.954	0.828
WavLM Base+	0.248	0.879	0.883	0.709	0.115	0.948	0.958	0.832
WavLM Large	0.192	0.876	0.872	0.695	0.063	0.950	0.952	0.827
Data2Vec	0.314	0.826	0.842	0.660	0.144	0.905	0.931	0.779

Academic Benchmarks

MOS Prediction

Voice C	Con	version
SOTA	on	VCTK

Spk A:

Spk B: Holes William To

Table 3: The MOS (95% CI) test on different models.

	seen t	o seen	unseen to	unseen
model	naturalness	similarity	naturalness	similarity
AUTOVC [17] AdaIN-VC [17]	2.65 ± 0.12 2.98 ± 0.09	2.86 ± 0.09 3.06 ± 0.07	2.47 ± 0.10 2.72 ± 0.11	2.76 ± 0.08 2.96 ± 0.09
DSVAE [17]	3.40 ± 0.07	3.56 ± 0.06	3.22 ± 0.09	3.54 ± 0.07
DSVAE(HiFi-GAN)	3.76 ± 0.07	3.83 ± 0.06	3.65 ± 0.07	3.89 ± 0.05
C-DSVAE(BEST-RQ)	3.88 ± 0.06	3.93 ± 0.07	3.82 ± 0.08	3.98 ± 0.07
C-DSVAE(Mel)	3.86 ± 0.10	3.65 ± 0.07	3.78 ± 0.05	3.58 ± 0.08
C-DSVAE(Align)	4.03 ± 0.04	4.12 ± 0.07	3.93 ± 0.06	4.06 ± 0.07
C-DSVAE(WavLM)	4.08 ± 0.06	4.17 ± 0.06	3.98 ± 0.07	4.12 ± 0.05

Academic Benchmarks

Takeaway

Can a single universal model benefit various speech tasks?

Yes, WavLM is a pre-trained model for full-stack speech processing tasks.

Analysis

What's the relationship between representations and tasks?

Self-Supervised Learning for Speech Recognition with Intermediate Layer Supervision

Intermediate Layer Supervision

	Clean	WERR	Other	WERR
HuBERT (1h)	20.9	-	27.5	-
WavLM (1h)	24.5	-	29.2	-
ILS-SSL (1h)	17.9	14%	23.1	16%
HuBERT (10h)	10.1	-	16.8	
WavLM (10h)	9.8	3%	16.0	5%
ILS-SSL (10h)	8.3	18%	13.6	19%
HuBERT (100h)	6.0	-	13.0	-
WavLM (100h)	5.7	5%	12.0	9%
ILS-SSL (100h)	4.7	22%	10.1	24%

Intermediate Layer Supervision

960h	LM	Clean	Other
Transformer-CTC	Transf	2.5	5.5
Transformer-S2S	Transf	2.3	5.2
Transformer-Transducer	Transf	2.0	4.6
Conformer-Transducer	LSTM	1.9	3.9
HuBERT	None	2.1	4.3
HuBERT	4-gram	2.0	3.7
HuBERT	Transf	1.9	3.3
ILS-SSL	None	1.9	3.8
ILS-SSL	4-gram	1.9	3.4
ILS-SSL	Transf	1.8	3.2

Analysis: Evaluation on SuperB Benchmark

		Speaker	
	SID (ACC1)	ASV (EER↓)	SD (DER↓)
Fbank	0	9.56	10.05
HuBERT	81.42	5.11	5.88
ISL-SSL	79.29	5.24	6.31
		Content	
	PR (PER↓)	ASR (WER↓)	QbE (MTWV↑)
Fbank	82.01	23.18	0.0058
HuBERT	5.41	6.42	0.0736
ILS-SSL	5.00	5.45	0.0789
		Semantics	
	IC (ACC↑)	SF (F1↑)	SF (CER↓)
Fbank	9.10	69.64	52.94
HuBERT	98.34	88.53	25.20
ILS-SSL	98.47	89.16	24.29

Takeaway

- 1. Can a single universal model benefit various speech tasks?
- 2. What's the relationship between representations and tasks?

Bottom layers learn speaker information, and top layers learn content information.

Analysis

Does tokenizer matter for pre-trained model?

VoxCeleb-2 Speaker Verification

LibriSpeech 100hours ASR

Supervision-Guided Codebooks for Masked Prediction in Speech Pre-training

Clustering on Supervised Features

Discrete tokens

100h	Clean	WERR	Other	WERR
HuBERT Base	5.9	-	13.0	-
WavLM Base	5.7	3%	12.0	9%
CTC clustering	5.2	12%	11.4	12%

P-BERT

Force Align

	DH	IH1	S	IH1	Z	Α	Т	EH1	S	Т	
		THI	S	IS	IS A TEST						
4	4 6-200-200-00-00-00-0-0-0-0-0-0-0-0-0-0-0										

Results

• Unlabeled data: 960h

• Labeled data: 100h

	Witho	out LM	With LM			
	Clean	Other	Clean	Other		
Hubert	6.0	13.0	3.4	8.1		
WavLM	5.7	12.0	3.4	7.7		
Noisy Student	4.9	14.4	3.5	9.7		
Our Method	4.7	11.2	3.1	7.5		

P-BERT

Forced Alignment

DH	IH1	S	IH1	Z	Α	Т	EH1	S	Т		
	THI	S	IS		Α	TEST					
48-	4 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1										

Results

• Unlabeled data: 960h

• Labeled data: 100h

	Without LM		With LM	
	Clean	Other	Clean	Other
Hubert	6.0	13.0	3.4	8.1
WavLM	5.7	12.0	3.4	7.7
Noisy Student	4.9	14.4	3.5	9.7
+2 nd iter	4.3	11.0	3.3	8.4
Our Method	4.7	11.2	3.1	7.5
+2 nd iter	4.7	10.7	3.1	7.3

Combination with Noisy Student Learning

Previous Work

Combination with Noisy Student Learning

Our Work

Results

• Unlabeled data: 960h

• Labeled data: 100h

	Without LM		With LM	
	Clean	Other	Clean	Other
Hubert	6.0	13.0	3.4	8.1
WavLM	5.7	12.0	3.4	7.7
Noisy Student	4.9	14.4	3.5	9.7
+2 nd iter	4.3	11.0	3.3	8.4
Our Method	4.7	11.2	3.1	7.5
+2 nd iter	4.7	10.7	3.1	7.3
+ noisy student	4.2	9.5	3.1	7.2
Our Method + ILS	4.1	9.6	3.0	7.0
+noisy student	3.2	7.0	2.8	6.1

Takeaway

- 1. Can a single universal model benefit various speech tasks?
- 2. What's the relationship between representations and tasks?
- 3. Does tokenizer matter for pre-trained model?

 It depends! No for Speaker Verification, Yes for Speech Recognition

Thank you