Óbudai egyetem

Bánki Donát Gépészmérnöki Kar

UART vezetéknélküli adatátviteli egység tervezése és kivitelezése

Projektum

Beágyazott informatikai rendszerek kurzus

Mechatronika MSC levelező szak

Kihelyezett tagozat, Szabadka

Hallgató: Szegedi Mihály Előadó: Dr. Simon János

Neptun kód: P0KPOE

OSzabadka, 2017.

Tartalomjegyzék

A feladat leírása	3
UART kommunikáció paraméterek	3
Vezeték nélküli kommunikáció paraméterek	3
Az áramkör megtervezése	3
Tápegység	4
Mikrovezérlő	4
nRF24L01 kommunikációs modul	5
Programozási és debuggolási lehetőség	6
Kapcsolási rajz	6
Alkatrészlista	7
A PCB terv	7
Firmware	8
Inicializálás	8
Órajel, PLL áramkör beállítása	9
WDT beállítása	9
Kommunikációs paraméterek beolvasása az EEPROM-ból	9
I/O lábak konfigurálása	9
UART konfigurálása a paraméterek alapján	9
SPI port inicializálása az nRF24L01-hez	9
nRF24L01 beállítása a paraméterek alapján	9
UART és INT megszakítások engedélyezése	9
Főprogram	9
Adatok fogadása UART-on	10
Adatok fogadása nRF24L01-en	10
AT szervízparancsok kezelése	10
Tesztkörnyezet	10
Kommunikáció tesztelése	10
Késleltetések mérése	11
Összegzés	11

A feladat leírása

A feladat megtervezni és megépíteni egy olyan kommunikációs átjátszó egységet amely UART kommunikációt tud átalakítani vezetékes kommunikációvá és vissza. Az egység feladatai:

- UART-on tudja fogadni az adatokat és 2.4GHz-es vezetéknélküli kommunikáción továbbítani, és fordítva
- A vezetéknélküli adatátvitelt a Nordic Semiconductor nRF24L01-es áramkörével kell megvalósítani
- beállíthatók legyenek az UART oldali és a vezeték nélküli kommunikáció paraméterei
- AT parancsokkal lehessen beállítani a paramétereket

UART kommunikáció paraméterek

Az UART oldali paraméterek a következők:

- Sebesség(BAUD Rate): 1200 bps 115200 bps.
- Bitszám, start, stop és paritás bitek beállításának lehetősége

Vezeték nélküli kommunikáció paraméterek

- Sebesség(Air Data Rate): 250kbps 2Mbps
- Állítható frekvencia csatornák
- Állítható működési módok
- Címezhetőség

Az áramkör megtervezése

A megtervezendő áramkörnek a következő egységeket kell tartalmazni:

- Tápegység
- Mikrovezérlő
- nRF24L01-es kommunikációs modul
- programozási és debuggolási lehetőség

Tápegység

A mikrovezérlők többsége 3.3V és 5V-os tápfeszültséggel is képes működni, viszont az nRF24L01-es csak a 3.3V-os tápfeszültséggel. A tápegység egy LM1117-es LDO áramkör amely legfeljebb 12V DC bemeneti feszültséget képes fogadni és 3.3V kimeneti feszültséget, valamint 800mA kimeneti áramot tud előállítani, ami elegendő az áramkör összfogyasztásának.

Mikrovezérlő

A mikrovezérlő kiválasztásánál több szempontot kellett figyelembe venni:

- Egyszerűen programozható
- Legalább 1 UART portja, 1 SPI portja legyen, ne ugyanazokon a lábakon legyenek
- Tudjon legalább 115200 bps UART kommunikációs sebességen működni
- Legyen legalább 1kB RAM memóriával és 16kB progammemóriával rendelkezzen
- A rendszer a megadott mikrovezérlővel bővíthető legyen

Ezek után a PIC18F25K80-as mikrovezérlőre esett a választás amelynek a következők a főbb paraméterei:

- 8 bites harvard arhitektúra
- 1.8V 5.5V tápfeszültségű működési tartomány
- 32kB programmemória
- 3.6kB RAM memória
- 1kB EEPROM memória
- 64MHz működési frekvencia, belső vagy külső oscillátorról
- 2 UART port
- 1 SPI port
- 8 Interrupt bemenet
- 5 timer modul
- WDT modul
- CAN modul
- 28 lábas tokozás, 24 I/O láb

Ez mikrovezérlő nagyban lábkompatibilis a mikrochip többi 28 lábas 8 bites mikrovezérlőjével, így szükség szerint könnyen cserélhető valamelyik másik típusra.

nRF24L01 kommunikációs modul

Mivel az nRF24L01 integrált áramkör nagyfrekvenciás rádióáramkört igényel melynek tervezése hosszas és összetett folyamat és nem is célkitűzése a kurzusnak ezért egy előre szerelt modul kerül felhasználásra, mely a következőket tartalmazza:

- nRF24L01 integrált áramkör
- PA power amplifier, aktív rádiójel erősítő áramkör
- Antenna, a jel további erősítéséért és a jelátvitel biztosságának növelése érdekében

A képen látható modul kerül felhasználásra:

Kép: az nRF24L01 LNA PA modul és az antenna

Ez a modul az interneten könnyen megvásárolható. Paraméterei a következők:

- Megfelelő ár-érték arány(akár 2 euró alatt)
- Legfeljebb 200mA áramfelvétel
- 1100m garantált szabadtéri hatósugár

Ez a modul SPI kommunikációs buszon kommunikál a mikrovezérlővel mint SLAVE egység. Az SPI kommunikációnál szokásos MISO, MOSI, SCK és CS lábakon kívűl, valamint a VCC és GND lábakon kívűl még két lábbal rendelkezik a modul ezek pedig:

- INT ez a láb lefutó élet generál amikor valamilyen esemény bekövetkezett(például adat érkezett) a modulnál.
- CSN ezzel a lábbal ki és be lehet kapcsolni az antenna erősítőt.

Programozási és debuggolási lehetőség

Az áramkörnek tartalmaznia kell olyan csatlakozási lehetőségeket amiken keresztül a mikrovezérlőt fel lehet programozni, valamint valamilyen debuggolási lehetőséget kell hogy tartalmazzon, akár UART port, akár LEDek akár valamilyen kijelző vagy billentyűzet interfész.

Kapcsolási rajz

A kapcsolási rajz a következő ábrán látható:

Kép: az áramkör kapcsolási rajza

Az áramkör a J2 nevű USB-B szabványos csatlakozóról kapja a tápfeszültséget, ami több okból is praktikus:

- Az 5V számos helyen elérhető, számítógépek USB portjain, telefontöltőkben, hordozható akkubankokban
- Az USB-B csatlakozó különböző ipari szabványoknak is megfelel

Az LDO előtt és után a C1 és C2-es kondenzátorok felelnek a tápfeszültség símításáért. A D1-es dióda jelzi a tápfeszültség jelenlétét.

Az nRF24L01-es áramkör csatlakozója a modulon feltűntetett lábkiosztás szerint lett megrajzolva.

A mikrovezérlőhöz a PICKIT programozó csatlakozójának lábkiosztása lett illesztve.

A mikrovezérlő kihasználatlan lábai egy-egy 14 pólusú DIP 2.54mm-es lábkiosztású tüskesőrra lettek kötve amikkel lehetővé válik később úgynevezett shield áramkörök tervezése amelyek akár CAN akár RS485 vagy RS232 vagy egyéb perifériákat tartalmazhatnak. A tüskesorok a tápfeszültségeket is átviszik valamint az USB csatlakozó adatlábait így akár USB-UART áramkörök is egyszerűen illeszthetők az áramkörhöz.

Alkatrészlista

A PCB terv

Az áramkör tervezésénél figyelembe kellett venni hogy a készülék minél kevesebb helyet foglaljon el így némely alkatrészek egymás felett helyezkednek el de úgy hogy az összeszerelést lehetővé tegyék. A PCB rajza valamint a 3D modellje a következő ábrákon látható:

Kép: a PCB huzalozási és alkatrész elhelyezési terve

Kép: A PCB 3D-s modellje

Firmware

A mikrovezérlő programja a következő részekre bontható:

- Inicializálás
- Főprogram

Inicializálás

Ebben a függvényben a mikrovezérlő inicializálása valósul meg, ami a következő részekből áll:

- Órajel, PLL áramkör beállítása
- WDT beállítása
- Kommunikációs paraméterek beolvasása az EEPROM-ból
- I/O lábak konfigurálása

- UART konfigurálása a paraméterek alapján
- SPI port inicializálása az nRF24L01-hez
- nRF24L01 beállítása a paraméterek alapján
- UART és INT megszakítások engedélyezése

Órajel, PLL áramkör beállítása

WDT beállítása

Kommunikációs paraméterek beolvasása az EEPROM-ból

I/O lábak konfigurálása

UART konfigurálása a paraméterek alapján

SPI port inicializálása az nRF24L01-hez

nRF24L01 beállítása a paraméterek alapján

UART és INT megszakítások engedélyezése

Főprogram

A főprogram három fő részre osztható:

- Adatok fogadása az UART-on, ennek dekódolása, AT parancs észlelése során szervíz módba váltás, egyébként továbbítás az nRF24L01 felé
- Adatok fogadása az nRF24L01 vagyis a vezeték nélküli kommunikáció felől és továbbítása az UART-on
- Az AT szervízparancsok során beállított működési paraméterek elmentése és a szükséges műveletek elvégzése hogy az eszköz a beállított paraméterekkel működjön tovább

Adatok fogadása UART-on

Adatok fogadása nRF24L01-en

AT szervízparancsok kezelése

Tesztkörnyezet

A teszteléshez két eszköz lett felhasználva, mindkettőnek az UART portját egy-egy a képen látható USB-UART átalakítóra lettek kötve.

Kép: USB-UART modul

Kommunikáció tesztelése

A kommunikáció soros port terminálon keresztül lett tesztelve, a teszt ereménye a következő képen látható, alatta a táblázatban az egységek paramétereinek beállításai:

Késleltetések mérése

Ahhoz hogy meg lehessen határozni a legnagyobb adatátviteli sebességet le kellett mérni az egyes adatok érkezése és továbbítása közötti késleltetéseket. A késleltetések, és a szabad RAM memória függvényében, melybe átmeneti tárolók(FIFO-k) kerütlek, meg lehet határozni a legnagyobb adatátviteli sebességet.

Összegzés