Bayesian Basics:A Gentle introduction

Bill Thompson

biltho@mpi.nl

What is Bayesian Statistics?

What is Bayesian Statistics?

What is Bayesian Statistics **Not**? Frequentist Statistics

THILOSOPHICAL TRANSACTIONS:

An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.

Mr. Bayes and Mr. Price

THILOSOTHICAL TRANSACTIONS:

An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.

Mr. Bayes and Mr. Price

Modern Title:

A Method of Calculating the Exact Probability of All Conclusions founded on Induction

A Popular Question on stackexchange.com:

A Popular Question on stackexchange.com:

"How would you describe in plain English the characteristics that distinguish Bayesian from Frequentist reasoning?"

The Most Popular **Answer**:

Problem:

I have misplaced my phone somewhere in the home. I can use the phone locator on the base of the instrument to locate the phone and when I press the phone locator the phone starts beeping.

Which area of my home should I search?

The Most Popular **Answer**:

Frequentist Reasoning

I can hear the phone beeping. I also have a mental model which helps me identify the area from which the sound is coming. Therefore, upon hearing the beep, I infer the area of my home I must search to locate the phone.

The Most Popular **Answer**:

Bayesian Reasoning

I can hear the phone beeping. Now, apart from a mental model which helps me identify the area from which the sound is coming from, I also know the locations where I have misplaced the phone in the past. So, I combine my inferences using the beeps and my prior information about the locations I have misplaced the phone in the past to identify an area I must search to locate the phone.

Data: A Doctor's patient keeps coughing

Data: A Doctor's patient keeps coughing

Hypothesis #1:

The patient has a cold

Data: A Doctor's patient keeps coughing

Hypothesis #1:

The patient has a cold

Hypothesis #2:

The patient has chewing gum stuck inside the lungs

Data: A Doctor's patient keeps coughing

Hypothesis #1:

The patient has a cold

Hypothesis #2:

The patient has chewing gum stuck inside the lungs

Inferential Question:

What is the cause of the cough (a cold or chewing gum?)

Bayesian statistics divides inference into two main ingredients:

- 1. The **Prior** probability of a hypothesis
- 2. The **Likelihood** of data under a hypothesis

Bayes Theorem (see later slide) provides a formula for combining these two source of information when performing inference.

Data: A Doctor's patient keeps coughing

Hypothesis #1:

The patient has a cold

Hypothesis #2:

The patient has chewing gum stuck inside the lungs

Data: A Doctor's patient keeps coughing

Hypothesis #1: The patient has a cold

Data: A Doctor's patient keeps coughing

Hypothesis #1: The patient has a cold

Likelihood:

The likelihood of observing the data if the hypothesis were true

Data: A Doctor's patient keeps coughing

Hypothesis #1: The patient has a cold

Likelihood:

The likelihood of observing the data if the hypothesis were true

P(Data | Hypothesis)

Data: A Doctor's patient keeps coughing

Hypothesis #1: The patient has a cold

Likelihood:

P(Data | Hypothesis # 1) = High or Low?

Data: A Doctor's patient keeps coughing

Hypothesis #1: The patient has a cold

Likelihood:

P(Data | Hypothesis # 1) = High

Data: A Doctor's patient keeps coughing

Hypothesis #1: The patient has a cold

Hypothesis #2: The patient has chewing gum in the lungs

Likelihood:

P(Data | Hypothesis # 2) = High or Low?

Data: A Doctor's patient keeps coughing

Hypothesis #1: The patient has a cold

Hypothesis #2: The patient has chewing gum in the lungs

Likelihood:

P(Data | Hypothesis # 2) = High

Data: A Doctor's patient keeps coughing

Hypothesis #1:

The patient has a cold

Hypothesis #2:

The patient has chewing gum in the lungs

Likelihood: P(Data | Hypothesis)

High

High

Data: A Doctor's patient keeps coughing

Hypothesis #1:

The patient has a cold

Hypothesis #2:

The patient has chewing gum in the lungs

Likelihood: P(Data | Hypothesis)

High

High

Prior:

P(Hypothesis)

Data: A Doctor's patient keeps coughing

Hypothesis #1:

Hypothesis #2:

The patient has a cold

The patient has chewing gum in the lungs

Likelihood: P(Data | Hypothesis)

High

High

Prior: P(Hypothesis)

High

Data: A Doctor's patient keeps coughing

Hypothesis #1:

Hypothesis #2:

The patient has a cold

The patient has chewing gum in the lungs

Likelihood: P(Data | Hypothesis)

High

High

Prior: P(Hypothesis)

High

Low

Data: A Doctor's patient keeps coughing

Hypothesis #1:
The patient has a cold

Hypothesis #2:

The patient has chewing gum in the lungs

Likelihood: P(Data Hypothesis)	High	High
	+	+
Prior: P(Hypothesis)	High	Low
	=	=
	Hiah	Medium

Data: A Doctor's patient keeps coughing

Hypothesis #1:
The patient has a cold

Hypothesis #2:

Medium

The patient has chewing gum in the lungs

Likelihood: P(Data Hypothesis)	High	High
	+	+
Prior: P(Hypothesis)	High	Low
	=	=
Winner	High	Modium

Two problems with the formulation above:

1: We're just adding highs and lows — is there a better formula?

2: We chose a single winner — is there a better selection technique?

Two problems with the formulation above:

1: We're just adding highs and lows — is there a better formula?

2: We chose a single winner — is there a better selection technique?

solution:

Bayes' Rule!

P(Hypothesis | Data) = P(Data | Hypothesis) x P(Hypothesis)

Two problems with the formulation above:

1: We're just adding highs and lows — is there a better formula?

2: We chose a single winner — is there a better selection technique?

solution: Bayes' Rule!

P(Hypothesis | Data) = **P(Data | Hypothesis)** x P(Hypothesis)

Two problems with the formulation above:

1: We're just adding highs and lows — is there a better formula?

2: We chose a single winner — is there a better selection technique?

solution: Bayes' Rule!

P(Hypothesis | Data) = P(Data | Hypothesis) x P(Hypothesis)

Two problems with the formulation above:

1: We're just adding highs and lows — is there a better formula?

2: We chose a single winner — is there a better selection technique?

solution:

Sampling (repeated guessing)

Recap: In Bayesian Statistics:

- Every Hypothesis must be given a Prior probability: P(H)
- Every Hypothesis implies a Likelihood for the data: P(D | H)
- Bayes Theorem provides the recipe for combining Prior and Likelihood information optimally
- Bayesian statistics allows you to probabilistically sample answers to an inferential question, rather than chose one single winner

advanced exercises in the notebook —>

How do you do a Bayesian Mixed Effects GLM in R?

Check out Bradley Rentz's Excellent tutorial on RSTANARM

SLIDES:

https://github.com/rentzb/bayesian-pape

R MARKDOWN:

https://github.com/rentzb/bayesian-pape/blob/master/presentation/intro_rstanarm.Rmd

How do you do a Bayesian inference in Python using PYMC3?

Check out the notebook:

Bayesian Inference with PYMC3 -- Inferring the Size - Pitch Relationship.ipynb

Looking for more intuitive explanations?

Check out:

A 10-minute intuitive video explainer of Bayes by Julia Galef (writer and founder of the Centre for Applied Rationality in New York):

A Visual Guide to Bayesian Thinking

https://www.youtube.com/watch?v=BrK7X_XIGB8

How is Bayesian inference used in the cognitive sciences?

Check out:

Tom Griffiths's Bayesian reading list:

http://cocosci.berkeley.edu/tom/bayes.html