## **PROJECT REPORT**

#### 1. INTRODUCTION

#### 1.1 Project Overview

Diabetic Retinopathy (DR) is a common complication of diabetes mellitus, which causes lesions on the retina that affect vision. If it is not detected early, it can lead to blindness. Unfortunately, DR is not a reversible process, and treatment only sustains vision. DR early detection and treatment can significantly reduce the risk of vision loss. The manual diagnosis process of DR retina fundus images by ophthalmologists is time, effort and cost-consuming and prone to misdiagnosis unlike computer-aided diagnosis systems.

Transfer learning has become one of the most common techniques that has achieved better performance in many areas, especially in medical image analysis and classification. We used Transfer Learning techniques like Inception V3,Resnet50,Xception V3 that are more widely used as a transfer learning method in medical image analysis and they are highly effective.

### 1.2 Purpose

Early detection ('screening') and timely treatment have been shown to prevent visual loss and blindness in patients with retinal complications of diabetes. In the next decade, projections for the United States are that the average age will increase, the number of people with diabetes in each age category will increase, and there will be an undersupply of qualified eye care providers, at least in the near-term. This "perfect storm" of healthcare trends will challenge the public health capacity to care for both patients with DR and people with diabetes at risk for this complication. If the previous scenario plays out, it will be necessary to either screen (perform early detection on) large numbers of people with diabetes for DR, ration access to eyecare, or both.

#### 2. LITERATURE SURVEY

#### 2.1 Existing problem

Diabetic retinopathy can cause abnormal blood vessels to grow out of the retina and block fluid from draining out of the eye. This causes a type of glaucoma (a group of eye diseases that can cause vision loss and blindness).

#### 2.2 References

- [1]. M. Chetoui, M. A. Akhloufi and M. Kardouchi, "Diabetic Retinopathy Detection Using Machine Learning and Texture Features", 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), pp. 1-4, 2018.
- [2]. Kangrok Oh, Hae Min Kang, Dawoon Leem, Hyungyu Lee, Kyoung Yul Seo, Sangchul Yoon, "Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images", Scientific Reports 11, Article No:1897 1-9,2021.
- [3]. Sheikh Muhammad Saiful Islam, Md Mahedi Hasan, Sohaib Abdullah, "Deep learning based early detection and grading of diabetic retinopathy using retinal fundus images", arXiv preprint arXiv:1812.10595, 2018.
- [4]. E. V. Carrera, A. González and R. Carrera, "Automated detection of diabetic retinopathy using SVM", 2017 IEEE XXIV International Conference on Electronics Electrical Engineering and Computing (INTERCON), pp. 1-4, 2017.

#### 2.3 Problem Statement Definition

Diabetic retinopathy is caused by damage to the blood vessels in the tissue at the back of the eye (retina). Poorly controlled blood sugar is a risk factor. Early symptoms include floaters, blurriness, dark areas of vision and difficulty perceiving colours. If not detected and treated properly, it can lead to severe complications and loss of vision. Our project aims to

develop a better screening using techniques like Inception V3, Resnet50, Xception V3 that are more widely used as a transfer learning method in medical image analysis and they are highly effective.

#### 3. IDEATION & PROPOSED SOLUTION

#### 3.1 Empathy Map Canvas



## 3.2 Ideation & Brainstorming



## 3.3 Proposed Solution

#### **Proposed Solution Template:**

Project team shall fill the following information in proposed solution template.

| S.No. | Parameter                                | Description                                                                                                                               |
|-------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Problem Statement (Problem to be solved) | To detect Diabetic Retinopathy in early stage using AI based technology to prevent vision loss.                                           |
| 2.    | Idea / Solution description              | To detect all the stages of Diabetic Retinopathy efficiently in a cost-effective manner using emerging Al technologies.                   |
| 3.    | Novelty / Uniqueness                     | Minimal human involvement and radiation free detection method.                                                                            |
| 4.    | Social Impact / Customer Satisfaction    | Economically affordable and to create a society without vision loss due to Diabetic Retinopathy.                                          |
| 5.    | Business Model (Revenue Model)           | Easily marketable and profitable with greater customer satisfaction.                                                                      |
| 6.    | Scalability of the Solution              | Best design practices using right tools and framework to increase the throughput. Best user experience using realistic screening methods. |

## 3.4 Problem Solution fit

| olem-Solution fit                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                       | Purpose/Vision:<br>Deep Learning Fundus Image Analysis for Early Detection of<br>Diabetic Retinopathy                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anyone with any kind of diabetes can get diabetic retinopathy — including people with type 1, type 2, and gestational diabetes (a type of diabetes that can develop during pregnancy). Your risk increases the longer you have diabetes.  Over time, more than half of people with diabetes will develop diabetic retinopathy                                                                | 6. Customer Limitations EG; Budgets, Devices  Budget, Complexity of the device, Environment, Accuracy, Reliability                                                                                                                                                                                                                                    | 5. Available Solutions pros and cons  You can reduce your risk of developing diabetic retinopathy, help stop it getting worse, by keeping your blood sugar leve blood pressure and cholesterol levels under control. This ca often be done by making healthy lifestyle choices, although some people will also need to take medication.                                                                                 |
| 2. Problems/Pains Its Frequency  Of the 25 million adults and children living with diabetes in the US, approximately 75% of them will develop diabetic retinopathy within 10 years of their diagnosis. Diabetic retinopathy is not painful, and you may not notice symptoms until your vision has been damaged permanently.                                                                  | 9. Problem Root / Cause  Diabetic retinopathy is caused by high blood sugar due to diabetes. Over time, having too much sugar in your blood can damage your retina — the part of your eye that detects light and sends signals to your brain through a nerve in the back of your eye (optic nerve). Diabetes damages blood vessels all over the body. | 7. Behaviour •Its intensity  The abnormal blood vessels associated with diabetic retinopathy stimulate the growth of scar tissue, which can puthe retina away from the back of the eye. This can cause sport floating in your vision, flashes of light or severe vision loss.                                                                                                                                           |
| 3. Triggers to act  Retinopathy can affect all people living with diabetes and becomes particularly dangerous the longer it is left untreated, eventually resulting in blindness.  4. Emotions Before/After  Adverse emotional responses include fear, anxiety, vulnerability, guilt, loss of confidence, anger, stress and self-perception issues. However, the research to date is largely | 10. Your Solution  Deep Learning Fundus Image Analysis for Early Detection of Diabetic Retinopathy                                                                                                                                                                                                                                                    | 8. Channels of Behaviour Online To assess the accuracy of artificial intelligence (Al)-based screening for diabetic retinopathy (DR) and to explore the feasibility of applying Al-based technique to community hospital for DR screening.  Offline The offline Al algorithm on the smartphone marked the images as referable diabetic retinopathy (RDR) or non-RDR which were then compared against the grading by two |

## 4. REQUIREMENT ANALYSIS

## 4.1 Functional requirement

| FR No. | Functional Requirement (Epic)                                         | Sub Requirement (Story / Sub-Task)                                                                                                                            |
|--------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR-1   | Identifying the population eligible for screening                     | Determine the group to be screened based on best evidence and use registers to make sure people's details are collected and up to date                        |
| FR-2   | Invitation and information                                            | Invite the full cohort for screening, supplying information tailored appropriately for different groups to enable informed choice to participate              |
| FR-3   | Testing                                                               | Conduct screening test(s) using agreed/recommended methods                                                                                                    |
| FR-4   | Referral of screen positives and reporting of screen-negative results | Refer all screen-positive results to appropriate services and make sure screen negatives are reported to individuals and they stay in the screening programme |
| FR-5   | Diagnosis                                                             | Diagnose true cases and identify false positives                                                                                                              |
| FR-6   | Intervention/treatment/follow up                                      | Intervene/treat cases appropriately; in some conditions, surveillance or follow up will also be required                                                      |
| FR-7   | Reporting of outcomes                                                 | Collect, analyse and report on outcomes to identify false negatives and improve effectiveness and cost-effectiveness of screening programme                   |

## 4.2 Non-Functional requirements

| FR No. | Non-Functional Requirement | Description                                                                                                                                                                                                                           |
|--------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-1  | Usability                  | Provides novel results for five different screening and clinical grading systems for diabetic retinopathy including state-of-the-art results for accurately classifying images according to clinical five-grade diabetic retinopathy. |
| NFR-2  | Security                   | Deep Learning using AI can be more precise around sensitive organs and tissues, reduce blood loss, risk of infection, and pain during detection/screening.                                                                            |
| NFR-3  | Reliability                | The ability of Deep Learning is to perform pattern recognition by creating complex relationships based                                                                                                                                |

|       |              | on input data and then comparing it with performance standards is a big step.                                                                                                                                                                       |
|-------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-4 | Performance  | Al in simple words means to accomplish a task mainly by a computer or a robot, with minimal involvement of human beings. Standard templates for drawing findings of the retina may improve accuracy of recording of results.                        |
| NFR-5 | Availability | Healthcare affordability, quality, and accessibility can be amplified using this technology.                                                                                                                                                        |
| NFR-6 | Scalability  | It is possible to build on existing systems and take a stepwise approach to improving the effectiveness of current approaches so that high-quality systematic diabetic retinopathy screening becomes a universal offer to all people with diabetes. |

## **5. PROJECT DESIGN**

## 5.1 Data Flow Diagrams





## **5.2 Solution & Technical Architecture**



#### **5.3 User Stories**

| User Type                                | Functional<br>Requirement<br>(Epic) | User Story<br>Number | User Story / Task                                                                                       | Acceptance criteria                                                                                          | Priority | Release  |
|------------------------------------------|-------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------|----------|
| Customer<br>(Healthcare<br>Professional) | Screening method                    | USN-1                | As a user, I can find the method more efficient and accurate.                                           | I can reach many patients who could benefit from it.                                                         | High     | Sprint-1 |
|                                          |                                     | USN-2                | As a user, I can use it with minimal physical interaction with the device.                              | It prevents the chances of<br>unwanted infections in the<br>patient's eye.                                   | High     | Sprint-2 |
|                                          | Physical features                   | USN-3                | As a user, I can find it portable and light weight.                                                     | I can take the device to<br>the residence of patients if<br>they are unable to visit the<br>hospital/clinic. | Low      | Sprint-2 |
|                                          | Safety                              | USN-4                | As a user, I can be safe as the detection method is free from radiations.                               | I can perform the<br>screening procedure<br>without any fear and<br>hesitation.                              | High     | Sprint-4 |
| Customer<br>Diabetic<br>Patient)         | Testing                             | USN-5                | As a user, I can undergo testing without any fear of pain as this method is pain-free.                  | Pain due to testing is the major fear factor that prevents the patients from visiting the hospital.          | Medium   | Sprint-2 |
|                                          |                                     | USN-6                | As a user, I will be comfortable as it requires minimum/no human involvement.                           | The screening is carried out using a computer robot along with the aid of Al technology.                     | Low      | Sprint-4 |
|                                          | Results                             | USN-7                | As a user, I can rely on the results without any suspicion.                                             | The technique is almost 100% efficient as it involves Modern techniques incorporated with Machine Learning   | High     | Sprint-3 |
|                                          |                                     | USN-8                | As a user, I can benefit from the result as it will help me know whether treatment is necessary or not. | It can prevent me from vision loss.                                                                          | High     | Sprint-1 |
|                                          |                                     | USN-9                | As a user, I can get the results on the spot immediately after the screening process.                   | It prevents further delay in the treatment process.                                                          | Low      | Sprint-4 |

| User Type                                             | Functional<br>Requirement<br>(Epic) | User Story<br>Number | User Story / Task                                                                        | Acceptance criteria                                                 | Priority | Release  |
|-------------------------------------------------------|-------------------------------------|----------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------|----------|
| Customer (Public effectiveness Sector/Private Sector) |                                     | USN-10               | As a user, I can reach many people suffering from diabetes.                              | Diabetic patients are more vulnerable to Diabetic Retinopathy.      | Medium   | Sprint-1 |
|                                                       |                                     | USN-11               | As a user, I can create awareness among diabetic patients to undergo frequent screening. | As the technique is of low cost, patients will find it very useful. | Low      | Sprint-3 |
|                                                       | Results                             | USN-12               | As a user, I can complete the screening process within minutes for a single patient.     | The random results generated by the device saves time.              | High     | Sprint-2 |

## 6. PROJECT PLANNING & SCHEDULING

## **6.1 Sprint Planning & Estimation**

| Sprint   | Functional<br>Requirement (Epic) | User Story<br>Number | User Story / Task                                                                                          | Story Points | Priority | Team<br>Members      |
|----------|----------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|--------------|----------|----------------------|
| Sprint-1 | Screening method                 | USN-1                | As a physician, I can find the method more efficient and accurate.                                         | 5            | High     | Dharshine.R.S.       |
| Sprint-2 |                                  | USN-2                | As a patient, I can undergo screening without any physical interaction with my eyes.                       | 5            | Medium   | Petricia<br>Reshmi.L |
| Sprint-4 |                                  | USN-3                | As a lab technician, I want the application software to be simple.                                         | 5            | Low      | Dharshine.R.S.       |
| Sprint-4 |                                  | USN-4                | As a patient, I want to get all the updates of testing via the application software.                       | 5            | Medium   | Petricia<br>Reshmi.L |
| Sprint-1 | Testing                          | USN-5                | As a patient, I can undergo testing without any fear of pain as this method is pain-free.                  | 5            | High     | Inba Muhil.E.S.      |
| Sprint-3 |                                  | USN-6                | As a patient, I will be comfortable as it requires minimum/no human involvement.                           | 5            | Medium   | Inba Muhil.E.S       |
| Sprint-1 | Results                          | USN-7                | As an ophthalmologist, I can rely on the results without any suspicion.                                    | 5            | High     | Hassim<br>Arsha.S.   |
| Sprint-2 |                                  | USN-8                | As a patient, I can get the results on the spot immediately after the screening process.                   | 5            | Low      | Inba Muhil.E.S       |
| Sprint-3 |                                  | USN-9                | As a patient, I can benefit from the result as it will help me know whether treatment is necessary or not. | 5            | High     | Dharshine.R.S.       |
| Sprint-4 |                                  | USN-10               | As a patient, I can get the results on the spot immediately after the screening process.                   | 5            | Low      | Hassim<br>Arsha.S.   |

| Sprint   | Functional         | User Story | User Story / Task                                                                                                  | Story Points | Priority | Team                 |
|----------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------|--------------|----------|----------------------|
|          | Requirement (Epic) | Number     |                                                                                                                    | _            |          | Members              |
| Sprint-2 | Features           | USN-11     | As a lab technician, I want the product to be user-friendly.                                                       | 5            | Medium   | Dharshine.R.S.       |
| Sprint-3 |                    | USN-12     | As a lab technician, I want the steps of the screening process to be easy.                                         | 5            | High     | Petricia<br>Reshmi.L |
| Sprint-3 | Safety             | USN-13     | As a patient, I can be safe as the detection method is free from radiations.                                       | 5            | High     | Hassim<br>Arsha.S.   |
| Sprint-4 |                    | USN-14     | As a physician, I want the screening method to follow all the prescribed medical guidelines.                       | 5            | Medium   | Inba Muhil.E.S.      |
| Sprint-1 | Cost-effectiveness | USN-15     | As a patient, I want the method to be cost-<br>effective.                                                          | 5            | Medium   | Petricia<br>Reshmi.L |
| Sprint-2 |                    | USN-16     | As a physician/medical professional, I can create awareness among diabetic patients to undergo frequent screening. | 5            | Low      | Hassim<br>Arsha.S    |

## **6.2 Sprint Delivery Schedule**

| Sprint   | Total Story<br>Points | Duration | Sprint Start Date | Sprint End Date<br>(Planned) | Story Points<br>Completed (as on<br>Planned End Date) | Sprint Release Date (Actual) |
|----------|-----------------------|----------|-------------------|------------------------------|-------------------------------------------------------|------------------------------|
| Sprint-1 | 20                    | 6 Days   | 24 Oct 2022       | 29 Oct 2022                  | 20                                                    | 29 Oct 2022                  |
| Sprint-2 | 20                    | 6 Days   | 31 Oct 2022       | 05 Nov 2022                  | 20                                                    | 5 Nov 2022                   |
| Sprint-3 | 20                    | 6 Days   | 07 Nov 2022       | 12 Nov 2022                  | 20                                                    | 12 Nov 2022                  |
| Sprint-4 | 20                    | 6 Days   | 14 Nov 2022       | 19 Nov 2022                  | 20                                                    | 19 Nov 2022                  |
|          |                       |          |                   |                              |                                                       |                              |

# 6.3 Reports from JIRA Roadmap



## **Sprint Burndown chart**



## **Velocity report**



#### 7. CODING & SOLUTIONING

#### 7.1 Feature 1

#### **DATA COLLECTION**

```
! pip install kaggle
```

! mkdir ~/.kaggle

! cp kaggle.json ~/.kaggle/

! chmod 600 ~/.kaggle/kaggle.json

#### Downloading the dataset

! kaggle datasets download arbethi/diabetic-retinopathy-level-detection

#### **Unzipping the dataset**

```
! unzip diabetic-retinopathy-level-detection.zip
```

#### **Creating Training And Testing Path**

```
imageSize = [299,299]
trainPath = r"/content/preprocessed dataset/preprocessed dataset/training"
testPath = r"/content/preprocessed dataset/preprocessed dataset/testing"
```

#### **DATA PRE-PROCESSING**

#### **Importing The Libraries**

```
from tensorflow.keras.layers import Dense,Flatten,Input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator,load_img
from tensorflow.keras.applications.xception import Xception,preprocess_input
from glob import glob
import numpy as np
import matplotlib.pyplot as plt
```

#### **Configuring ImageDataGenerator Class**

```
train_datagen = ImageDataGenerator (rescale=1./255, shear_range= 0.2, zoom_range
= 0.2, horizontal_flip = True)
test_datagen = ImageDataGenerator (rescale = 1./255)
```

#### Applying ImageDataGenerator Functionality To Train Set And Test Set

```
training_set = train_datagen.flow_from_directory('/content/preprocessed
dataset/preprocessed dataset/training',target_size = (299,299),batch_size =32,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('/content/preprocessed
dataset/preprocessed dataset/testing',target_size =(299,299),batch_size =
32,class_mode = 'categorical')
```

#### **MODEL BUILDING**

#### **Pre-Training CNN Model As A Feature Extractor**

```
xception = Xception(input_shape = imageSize +
[3], weights='imagenet', include_top = False)

for layer in xception.layers:
    layer.trainable = False

x = Flatten()(xception.output)

Adding Dense Layers

prediction = Dense( 5, activation ='softmax')(x)

model = Model(inputs=xception.input, outputs=prediction)

model.summary()
Model : "model"

Configuring The Learning Process
```

```
model.compile(
    loss = 'categorical_crossentropy',
    optimizer = 'adam',
    metrics =['accuracy']
)
```

#### **Training The Model**

```
# fit the model

r = model.fit_generator(
    training_set,
    validation_data=test_set,
    epochs=30,
    steps_per_epoch=len (training_set)//32,
    validation_steps=len(test_set)//32
)
```

#### **Saving The Model**

#### **Output:**

```
Layer (type)
                               Output Shape
                                                   Param #
                                                               Connected to
_____
input_1 (InputLayer)
                              [(None, 299, 299, 3 0
                                                                []
                               ) ]
                              (None, 149, 149, 32 864
block1_conv1 (Conv2D)
['input_1[0][0]']
block1_conv1_bn (BatchNormaliz (None, 149, 149, 32 128
['block1_conv1[0][0]']
ation)
                               )
block1_conv1_act (Activation)
                              (None, 149, 149, 32 0
['block1_conv1_bn[0][0]']
                               )
block1 conv2 (Conv2D)
                               (None, 147, 147, 64 18432
['block1_conv1_act[0][0]']
                               )
block1_conv2_bn (BatchNormaliz (None, 147, 147, 64 256
['block1_conv2[0][0]']
ation)
                               )
block1 conv2 act (Activation) (None, 147, 147, 64 0
['block1_conv2_bn[0][0]']
block2_sepconv1 (SeparableConv (None, 147, 147, 12 8768
['block1_conv2_act[0][0]']
2D)
                               8)
```

```
block2_sepconv1_bn (BatchNorma (None, 147, 147, 12 512
['block2_sepconv1[0][0]']
lization)
                                8)
block2_sepconv2_act (Activatio (None, 147, 147, 12 0
['block2_sepconv1_bn[0][0]']
                                8)
n)
block2_sepconv2 (SeparableConv (None, 147, 147, 12 17536
['block2 sepconv2 act[0][0]']
2D)
                                8)
block2_sepconv2_bn (BatchNorma (None, 147, 147, 12 512
['block2_sepconv2[0][0]']
lization)
                                8)
conv2d (Conv2D)
                                (None, 74, 74, 128)
                                                     8192
['block1_conv2_act[0][0]']
block2_pool (MaxPooling2D)
                                (None, 74, 74, 128)
['block2_sepconv2_bn[0][0]']
batch_normalization (BatchNorm (None, 74, 74, 128) 512
['conv2d[0][0]']
alization)
add (Add)
                                (None, 74, 74, 128) 0
['block2_pool[0][0]',
'batch normalization[0][0]']
                                                                ['add[0][0]']
block3_sepconv1_act (Activatio (None, 74, 74, 128) 0
n)
block3_sepconv1 (SeparableConv
                                 (None, 74, 74, 256) 33920
['block3 sepconv1 act[0][0]']
2D)
block3_sepconv1_bn (BatchNorma (None, 74, 74, 256) 1024
['block3_sepconv1[0][0]']
lization)
block3_sepconv2_act (Activatio (None, 74, 74, 256) 0
['block3_sepconv1_bn[0][0]']
n)
block3 sepconv2 (SeparableConv (None, 74, 74, 256) 67840
['block3_sepconv2_act[0][0]']
```

```
2D)
block3 sepconv2 bn (BatchNorma (None, 74, 74, 256) 1024
['block3_sepconv2[0][0]']
lization)
conv2d_1 (Conv2D)
                                (None, 37, 37, 256) 32768
                                                               ['add[0][0]']
block3_pool (MaxPooling2D)
                                (None, 37, 37, 256)
['block3 sepconv2 bn[0][0]']
batch normalization 1 (BatchNo (None, 37, 37, 256) 1024
['conv2d_1[0][0]']
rmalization)
add_1 (Add)
                                (None, 37, 37, 256) 0
['block3_pool[0][0]',
'batch normalization 1[0][0]']
block4_sepconv1_act (Activatio (None, 37, 37, 256) 0
['add_1[0][0]']
n)
block4_sepconv1 (SeparableConv
                                (None, 37, 37, 728) 188672
['block4_sepconv1_act[0][0]']
2D)
block4_sepconv1_bn (BatchNorma (None, 37, 37, 728) 2912
['block4_sepconv1[0][0]']
lization)
block4_sepconv2_act (Activatio (None, 37, 37, 728) 0
['block4_sepconv1_bn[0][0]']
n)
block4_sepconv2 (SeparableConv (None, 37, 37, 728) 536536
['block4_sepconv2_act[0][0]']
2D)
block4_sepconv2_bn (BatchNorma (None, 37, 37, 728) 2912
['block4_sepconv2[0][0]']
lization)
conv2d 2 (Conv2D)
                                (None, 19, 19, 728) 186368
['add_1[0][0]']
block4_pool (MaxPooling2D)
                               (None, 19, 19, 728) 0
```

```
['block4 sepconv2 bn[0][0]']
batch_normalization_2 (BatchNo (None, 19, 19, 728) 2912
['conv2d_2[0][0]']
rmalization)
                                (None, 19, 19, 728) 0
add_2 (Add)
['block4_pool[0][0]',
'batch normalization 2[0][0]']
block5_sepconv1_act (Activatio (None, 19, 19, 728) 0
['add_2[0][0]']
n)
block5_sepconv1 (SeparableConv
                                (None, 19, 19, 728) 536536
['block5_sepconv1_act[0][0]']
2D)
block5_sepconv1_bn (BatchNorma (None, 19, 19, 728) 2912
['block5_sepconv1[0][0]']
lization)
block5_sepconv2_act (Activatio (None, 19, 19, 728) 0
['block5_sepconv1_bn[0][0]']
n)
block5_sepconv2 (SeparableConv (None, 19, 19, 728) 536536
['block5_sepconv2_act[0][0]']
2D)
block5_sepconv2_bn (BatchNorma
                                (None, 19, 19, 728) 2912
['block5_sepconv2[0][0]']
lization)
block5 sepconv3 act (Activatio (None, 19, 19, 728) 0
['block5_sepconv2_bn[0][0]']
n)
block5_sepconv3 (SeparableConv (None, 19, 19, 728) 536536
['block5_sepconv3_act[0][0]']
2D)
block5_sepconv3_bn (BatchNorma (None, 19, 19, 728) 2912
['block5 sepconv3[0][0]']
lization)
add_3 (Add)
                                (None, 19, 19, 728) 0
```

```
['block5 sepconv3 bn[0][0]',
'add 2[0][0]']
block6_sepconv1_act (Activatio (None, 19, 19, 728) 0
['add_3[0][0]']
n)
block6_sepconv1 (SeparableConv
                                 (None, 19, 19, 728) 536536
['block6_sepconv1_act[0][0]']
2D)
block6_sepconv1_bn (BatchNorma
                                (None, 19, 19, 728) 2912
['block6_sepconv1[0][0]']
lization)
block6_sepconv2_act (Activatio (None, 19, 19, 728) 0
['block6_sepconv1_bn[0][0]']
n)
block6 sepconv2 (SeparableConv
                                (None, 19, 19, 728) 536536
['block6_sepconv2_act[0][0]']
2D)
block6 sepconv2 bn (BatchNorma (None, 19, 19, 728) 2912
['block6_sepconv2[0][0]']
lization)
block6_sepconv3_act (Activatio (None, 19, 19, 728) 0
['block6_sepconv2_bn[0][0]']
n)
block6_sepconv3 (SeparableConv (None, 19, 19, 728) 536536
['block6_sepconv3_act[0][0]']
2D)
block6_sepconv3_bn (BatchNorma (None, 19, 19, 728) 2912
['block6_sepconv3[0][0]']
lization)
add_4 (Add)
                                (None, 19, 19, 728) 0
['block6_sepconv3_bn[0][0]',
'add_3[0][0]']
block7_sepconv1_act (Activatio (None, 19, 19, 728) 0
['add 4[0][0]']
n)
```

```
block7_sepconv1 (SeparableConv (None, 19, 19, 728) 536536
['block7 sepconv1 act[0][0]']
2D)
block7_sepconv1_bn (BatchNorma (None, 19, 19, 728) 2912
['block7_sepconv1[0][0]']
lization)
block7 sepconv2 act (Activatio (None, 19, 19, 728) 0
['block7_sepconv1_bn[0][0]']
n)
block7_sepconv2 (SeparableConv
                                (None, 19, 19, 728) 536536
['block7_sepconv2_act[0][0]']
2D)
block7_sepconv2_bn (BatchNorma
                                (None, 19, 19, 728)
                                                     2912
['block7 sepconv2[0][0]']
lization)
block7_sepconv3_act (Activatio (None, 19, 19, 728) 0
['block7_sepconv2_bn[0][0]']
n)
block7_sepconv3 (SeparableConv (None, 19, 19, 728) 536536
['block7_sepconv3_act[0][0]']
2D)
block7_sepconv3_bn (BatchNorma (None, 19, 19, 728) 2912
['block7_sepconv3[0][0]']
lization)
                                (None, 19, 19, 728) 0
add 5 (Add)
['block7_sepconv3_bn[0][0]',
'add_4[0][0]']
block8_sepconv1_act (Activatio (None, 19, 19, 728) 0
['add_5[0][0]']
n)
block8_sepconv1 (SeparableConv
                                 (None, 19, 19, 728) 536536
['block8_sepconv1_act[0][0]']
2D)
block8 sepconv1 bn (BatchNorma (None, 19, 19, 728) 2912
['block8_sepconv1[0][0]']
```

```
lization)
block8 sepconv2 act (Activatio (None, 19, 19, 728) 0
['block8_sepconv1_bn[0][0]']
n)
block8_sepconv2 (SeparableConv
                                (None, 19, 19, 728) 536536
['block8_sepconv2_act[0][0]']
2D)
block8_sepconv2_bn (BatchNorma (None, 19, 19, 728)
['block8 sepconv2[0][0]']
lization)
block8_sepconv3_act (Activatio (None, 19, 19, 728) 0
['block8_sepconv2_bn[0][0]']
n)
block8 sepconv3 (SeparableConv
                                (None, 19, 19, 728) 536536
['block8_sepconv3_act[0][0]']
2D)
block8_sepconv3_bn (BatchNorma (None, 19, 19, 728) 2912
['block8_sepconv3[0][0]']
lization)
add_6 (Add)
                                (None, 19, 19, 728) 0
['block8_sepconv3_bn[0][0]',
'add 5[0][0]']
block9_sepconv1_act (Activatio (None, 19, 19, 728) 0
['add_6[0][0]']
n)
block9 sepconv1 (SeparableConv (None, 19, 19, 728) 536536
['block9_sepconv1_act[0][0]']
2D)
block9_sepconv1_bn (BatchNorma (None, 19, 19, 728) 2912
['block9_sepconv1[0][0]']
lization)
block9_sepconv2_act (Activatio (None, 19, 19, 728) 0
['block9 sepconv1 bn[0][0]']
n)
block9_sepconv2 (SeparableConv (None, 19, 19, 728) 536536
```

```
['block9 sepconv2 act[0][0]']
2D)
block9_sepconv2_bn (BatchNorma (None, 19, 19, 728) 2912
['block9_sepconv2[0][0]']
lization)
block9_sepconv3_act (Activatio (None, 19, 19, 728) 0
['block9_sepconv2_bn[0][0]']
n)
block9 sepconv3 (SeparableConv
                                (None, 19, 19, 728) 536536
['block9_sepconv3_act[0][0]']
2D)
block9_sepconv3_bn (BatchNorma (None, 19, 19, 728) 2912
['block9_sepconv3[0][0]']
lization)
add 7 (Add)
                                (None, 19, 19, 728) 0
['block9_sepconv3_bn[0][0]',
'add_6[0][0]']
block10_sepconv1_act (Activati (None, 19, 19, 728) 0
['add_7[0][0]']
on)
block10_sepconv1 (SeparableCon
                                (None, 19, 19, 728) 536536
['block10_sepconv1_act[0][0]']
v2D)
block10_sepconv1_bn (BatchNorm (None, 19, 19, 728) 2912
['block10_sepconv1[0][0]']
alization)
block10_sepconv2_act (Activati (None, 19, 19, 728) 0
['block10_sepconv1_bn[0][0]']
on)
block10_sepconv2 (SeparableCon (None, 19, 19, 728) 536536
['block10_sepconv2_act[0][0]']
v2D)
block10 sepconv2 bn (BatchNorm (None, 19, 19, 728) 2912
['block10_sepconv2[0][0]']
alization)
```

```
block10 sepconv3 act (Activati (None, 19, 19, 728) 0
['block10_sepconv2_bn[0][0]']
on)
block10_sepconv3 (SeparableCon (None, 19, 19, 728) 536536
['block10_sepconv3_act[0][0]']
v2D)
block10_sepconv3_bn (BatchNorm (None, 19, 19, 728) 2912
['block10 sepconv3[0][0]']
alization)
add 8 (Add)
                                (None, 19, 19, 728) 0
['block10_sepconv3_bn[0][0]',
'add_7[0][0]']
block11_sepconv1_act (Activati (None, 19, 19, 728) 0
['add_8[0][0]']
on)
block11_sepconv1 (SeparableCon (None, 19, 19, 728) 536536
['block11_sepconv1_act[0][0]']
v2D)
block11_sepconv1_bn (BatchNorm (None, 19, 19, 728) 2912
['block11_sepconv1[0][0]']
alization)
block11_sepconv2_act (Activati (None, 19, 19, 728) 0
['block11_sepconv1_bn[0][0]']
on)
block11 sepconv2 (SeparableCon (None, 19, 19, 728) 536536
['block11_sepconv2_act[0][0]']
v2D)
block11_sepconv2_bn (BatchNorm (None, 19, 19, 728) 2912
['block11_sepconv2[0][0]']
alization)
block11_sepconv3_act (Activati (None, 19, 19, 728) 0
['block11_sepconv2_bn[0][0]']
on)
block11_sepconv3 (SeparableCon (None, 19, 19, 728) 536536
['block11 sepconv3 act[0][0]']
v2D)
```

```
block11 sepconv3 bn (BatchNorm (None, 19, 19, 728) 2912
['block11 sepconv3[0][0]']
alization)
add 9 (Add)
                                (None, 19, 19, 728) 0
['block11_sepconv3_bn[0][0]',
'add_8[0][0]']
block12_sepconv1_act (Activati (None, 19, 19, 728) 0
['add 9[0][0]']
on)
block12_sepconv1 (SeparableCon (None, 19, 19, 728) 536536
['block12_sepconv1_act[0][0]']
v2D)
block12 sepconv1 bn (BatchNorm (None, 19, 19, 728) 2912
['block12_sepconv1[0][0]']
alization)
block12_sepconv2_act (Activati (None, 19, 19, 728) 0
['block12_sepconv1_bn[0][0]']
on)
block12_sepconv2 (SeparableCon (None, 19, 19, 728) 536536
['block12_sepconv2_act[0][0]']
v2D)
block12_sepconv2_bn (BatchNorm (None, 19, 19, 728) 2912
['block12_sepconv2[0][0]']
alization)
block12_sepconv3_act (Activati (None, 19, 19, 728) 0
['block12 sepconv2 bn[0][0]']
on)
block12_sepconv3 (SeparableCon (None, 19, 19, 728) 536536
['block12_sepconv3_act[0][0]']
v2D)
block12_sepconv3_bn (BatchNorm (None, 19, 19, 728) 2912
['block12_sepconv3[0][0]']
alization)
add 10 (Add)
                                (None, 19, 19, 728) 0
['block12_sepconv3_bn[0][0]',
```

```
'add 9[0][0]']
block13_sepconv1_act (Activati (None, 19, 19, 728) 0
['add_10[0][0]']
on)
block13_sepconv1 (SeparableCon (None, 19, 19, 728) 536536
['block13_sepconv1_act[0][0]']
v2D)
block13 sepconv1 bn (BatchNorm (None, 19, 19, 728) 2912
['block13_sepconv1[0][0]']
alization)
block13_sepconv2_act (Activati (None, 19, 19, 728) 0
['block13_sepconv1_bn[0][0]']
on)
block13_sepconv2 (SeparableCon (None, 19, 19, 1024 752024
['block13_sepconv2_act[0][0]']
v2D)
                               )
block13_sepconv2_bn (BatchNorm (None, 19, 19, 1024 4096
['block13_sepconv2[0][0]']
alization)
                                )
conv2d 3 (Conv2D)
                                (None, 10, 10, 1024 745472
['add_10[0][0]']
                                )
block13_pool (MaxPooling2D)
                                (None, 10, 10, 1024 0
['block13_sepconv2_bn[0][0]']
                               )
batch normalization 3 (BatchNo (None, 10, 10, 1024 4096
['conv2d_3[0][0]']
rmalization)
                               )
add_11 (Add)
                                (None, 10, 10, 1024 0
['block13_pool[0][0]',
                                 ['block14_sepconv1[0][0]']
alization)
                               )
block14_sepconv1_act (Activati (None, 10, 10, 1536 0
['block14 sepconv1 bn[0][0]']
on)
block14_sepconv2 (SeparableCon (None, 10, 10, 2048 3159552
```

```
['block14 sepconv1 act[0][0]']
v2D)
block14_sepconv2_bn (BatchNorm (None, 10, 10, 2048 8192
['block14_sepconv2[0][0]']
alization)
               )
block14_sepconv2_act (Activati (None, 10, 10, 2048 0
['block14_sepconv2_bn[0][0]']
on)
flatten (Flatten)
               (None, 204800) 0
['block14_sepconv2_act[0][0]']
                    1024005
dense (Dense)
               (None, 5)
['flatten[0][0]']
===============
Total params: 21,885,485
Trainable params: 1,024,005
Non-trainable params: 20,861,480
Epoch 1/30
accuracy: 0.3854
Epoch 2/30
accuracy: 0.5625
Epoch 3/30
0.5833
Epoch 4/30
0.5729
Epoch 5/30
0.5625
Epoch 6/30
0.7083
Epoch 7/30
0.5938
Epoch 8/30
0.6250
```

```
Epoch 9/30
0.6146
Epoch 10/30
0.6458
Epoch 11/30
0.6250
Epoch 12/30
0.6458
Epoch 13/30
0.7917
Epoch 14/30
0.6458
Epoch 15/30
Epoch 16/30
0.7292
Epoch 17/30
0.6458
Epoch 18/30
0.6458
Epoch 19/30
0.6667
Epoch 20/30
0.7500
Epoch 21/30
0.7188
Epoch 22/30
0.7292
Epoch 23/30
0.6250
Epoch 24/30
0.7308
```

```
Epoch 25/30
0.7396
Epoch 26/30
0.6979
Epoch 27/30
0.7083
Epoch 28/30
Epoch 29/30
0.6771
Epoch 30/30
0.6667
```

#### 7.2 Feature 2

import numpy as np

#### **Application building (Using Python-Flask)**

```
import os
from tensorflow import keras
from keras import models
from keras.models import load_model
from keras.preprocessing import image
from keras.applications.inception_v3 import preprocess_input
import requests
from flask import Flask, request, render_template, redirect, url_for
from cloudant.client import Cloudant
model = load_model(r"Updated-xception-diabetic-retinopathy.h5")
app = Flask(_name_)
# Authenticate using an IAM API key
client = Cloudant.iam('367e91e7-6150-4f63-92f4-24625af53457-bluemix',
           'EqKm5BOKxzGLIm9YsFnXKJ66ywOyL9tDVK9oN0_FPD4G', connect=True)
# Create a database using an initialized client
my_database = client.create_database('my_db')
if my_database.exists():
  print("Database '{0}' successfully created.".format('my_db'))
```

```
# default home page or route
@app.route('/')
def index():
  return render_template('index.html')
@app.route('/index')
def home():
  return render_template("index.html")
"@ app.route('/register')
def register():
  return render_template("register.html")"
# registration page
@app.route('/register', methods=["GET", "POST"])
def register():
  if request.method == "POST":
    name = request.form.get("name")
    mail = request.form.get("emailid")
    mobile = request.form.get("num")
    pswd = request.form.get("pass")
    data = {
      'name': name,
      'mail': mail,
      'mobile': mobile,
      'psw': pswd
    }
    print(data)
    query = {'mail': {'$eq': data['mail']}}
    docs = my_database.get_query_result(query)
    print(docs)
    print(len(docs.all()))
    if (len(docs.all()) == 0):
      url = my_database.create_document(data)
      return render_template("register.html", pred=" Registration Successful, please login using your
details ")
    else:
      return render_template('register.html', pred=" You are already a member , please login using your
details ")
  else:
    return render_template('register.html')
```

```
@app.route('/login', methods=['GET', 'POST'])
def login():
  if request.method == "POST":
    user = request.form.get('name')
    passw = request.form.get('pass')
    print(user, passw)
    query = {'_id': {'$eq': user}}
    docs = my_database.get_query_result(query)
    print(docs)
    print(len(docs.all()))
    if (len(docs.all()) == 0):
      return render_template('login.html', pred="The username is not found.")
    else:
      if ((user == docs[0][0]['\_id'] and passw == docs[0][0]['pswd'])):
         return redirect(url_for('prediction'))
      else:
         print('Invalid User')
  else:
    return render_template('login.html')
@app.route('/logout')
def logout():
  return render_template('logout.html')
@app.route("/predict")
def predict():
  return render_template("prediction.html")
@app.route('/result', methods=["GET", "POST"])
def res():
  if request.method == "POST":
    f = request.files['image']
    # getting the current path 1.e where app.py is present
    basepath = os.path.dirname(_file_)
    # print ( " current path " , basepath )
    # from anywhere in the system we can give image but we want that
    filepath = os.path.join(basepath, 'uploads', f.filename)
    # print ( " upload folder is " , filepath )
    f.save(filepath)
    img = image.load_img(filepath, target_size=(299, 299))
    x = image.img_to_array(img) # ing to array
```

#### 8. TESTING

#### 8.1 Test Cases

| Test case ID         | Feature Type | Compo         | Test Scenario                                                                                     | Pre-Requisite                                                                                                     | Steps To Execute                                                                                                                                                                                                                                           | Test Data                                                                   | Expected Result                                                                                                                                                                                                          | Actual<br>Result          | Sta  | Commets                      | TC for<br>Automation(Y/N | BU<br>G ID | Executed By        |
|----------------------|--------------|---------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|------------------------------|--------------------------|------------|--------------------|
| LoginPage_TC_<br>001 | Functional   | Home<br>Page  | Verify user is able to see the<br>Login/Signup popup when<br>user clicked on My account<br>button | User is authorized and<br>has an account.                                                                         | 1.Enter URL and click go<br>2.Click on My Account<br>dropdown button<br>3.Verify login/Singup popup<br>displayed or not                                                                                                                                    | https://drdetection.com                                                     | Login/Signup popup should<br>display                                                                                                                                                                                     | Working<br>as<br>expected | Pass | Steps are clear to<br>follow | Y                        | ,          | Dharshine.R.S.     |
| LoginPage_TC_<br>002 | UI           | Home<br>Page  | Verify the UI elements in<br>Login/Signup popup                                                   | Verify user is able to<br>search by entering<br>keywords in search box                                            | 1.Enter URL and click go<br>2.Click on My Account<br>dropdown button<br>3.Verify login/Singup popup<br>with below Ul elements:<br>a.mail text box<br>c.login button<br>d.New customer? Creata<br>account link<br>e.Last password? Recovery<br>password ink | https://drdetection.com                                                     | Application should show below<br>UI elements:<br>a.email text box<br>b.password text box<br>c.Login button with orange<br>colour<br>d.New customer? Create<br>account link<br>e.Last password? Recovery<br>password link | Working<br>as<br>expected | Pass | Steps are clear to<br>follow | Y                        | ,          | Hassim Arsha.S.    |
| LoginPage_TC_<br>003 | Functional   | Home<br>page  | Verify user is able to log into<br>application with Valid<br>credentials                          | Verify user is able to see<br>suggestions based on<br>keyword entered in search<br>box                            | 1.Enter URL(https://shopenzer.com/) and click go 2.Click on My Account dropdown button 3.Enter Valid username/email in Email text box 4.Enter valid password in password text box 5.Click on loain button                                                  |                                                                             | User should navigate to user account homepage                                                                                                                                                                            | Working<br>as<br>expected | Pass | Steps are clear to<br>follow | Y                        | ,          | Inbə Muhil.S.      |
| LoginPage_TC_<br>004 | Functional   | Login<br>page | Verify user is able to log into<br>application with InValid<br>credentials                        | Verify user is able to see<br>related auto suggestions<br>displaying based on<br>keyword entered in search<br>box | 1.Enter UPL (https://shopenzer.com/) and click go 2.Click on My Account dropdown button 3.Enter In/Valid username/email in Email text box 4.Enter valid password in password text box 5.Click on login button                                              | Username:<br>chalam@gmail<br>password: Testing123                           | Application should show<br>'Incorrect email or password'<br>validation message.                                                                                                                                          | Working<br>as<br>expected | Pass | Steps are clear to<br>follow | Y                        |            | Petricia Reshmi.L. |
| LoginPage_TC_<br>004 | Functional   | Login<br>page | Verify user is able to log into application with InValid credentials                              | Verify user is able to see<br>no matches found message<br>when no results are<br>matching with entered<br>keyword | 1.Enter UPL(https://shopenzer.com/) and click go 2.Click on My Account dropdown button 3.Enter Valid username/email in Email text box 4.Enter Invalid password in password text box 5.Click on login button                                                | Username:<br>chalsm@gmail.com<br>password:<br>Testing1236786867868<br>76876 | Application should show<br>'Incorrect email or password'<br>validation message.                                                                                                                                          | Working<br>as<br>expected | Pass | Steps are clear to<br>follow | Y                        |            | Dharshine.R.S.     |
| LoginPage_TC_<br>OO5 | Functional   | Login<br>page | Verify user is able to log into application with InValid credentials                              | Verify user is able to see<br>seach detailed page when<br>nothing entered in textbox.                             | 1.Enter URL(https://shopenzer.com/) and click go 2.Click on My Account dropdown button 3.Enter InValid username/email in Email text box 4.Enter Invalid password in                                                                                        | Username: chalam<br>password:<br>Testing1236786867868<br>76876              | Application should show<br>'Incorrect email or password'<br>validation message.                                                                                                                                          | Working<br>as<br>expected | Pass | Steps are clear to<br>follow | Y                        |            | Petricia Reshmi.L. |

## 8.2 User Acceptance Testing Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

| Resolution     | Severity 1 | Severity 2 | Severity 3 | Severity 4 | Subtotal |
|----------------|------------|------------|------------|------------|----------|
| By Design      | 4          | 1          | 0          | 0          | 5        |
| Duplicate      | 4          | 1          | 3          | 2          | 10       |
| External       | 1          | 3          | 2          | 0          | 6        |
| Fixed          | 2          | 4          | 4          | 2          | 12       |
| Not Reproduced | 0          | 0          | 0          | 1          | 1        |
| Skipped        | 0          | 0          | 0          | 0          | 0        |
| Won't Fix      | 0          | 0          | 0          | 0          | 0        |
| Totals         | 11         | 9          | 9          | 5          | 34       |

#### **Test Case Analysis**

This report shows the number of test cases that have passed, failed, and untested.

| Section             | Total Cases | Not Tested | Fail | Pass |
|---------------------|-------------|------------|------|------|
| Print Engine        | 5           | 0          | 0    | 5    |
| Client Application  | 10          | 0          | 0    | 10   |
| Security            | 2           | 0          | 0    | 2    |
| Outsource Shipping  | 3           | 0          | 0    | 3    |
| Exception Reporting | 2           | 0          | 0    | 2    |
| Final Report Output | 4           | 0          | 0    | 4    |
| Version Control     | 2           | 0          | 0    | 2    |

- 9. RESULTS
- 9.1 Performance Metrics Model Summary

# [16] model.summary() Model : "model"

| Model: "model"                                      |                           |         |                              |  |  |  |
|-----------------------------------------------------|---------------------------|---------|------------------------------|--|--|--|
| Layer (type)                                        | Output Shape              | Param # | Connected to                 |  |  |  |
| input_1 (InputLayer)                                | [(None, 299, 299, 3<br>)] | 0       | t)                           |  |  |  |
| block1_conv1 (Conv2D)                               | (None, 149, 149, 32<br>)  | 864     | ['input_1[0][0]']            |  |  |  |
| <pre>block1_conv1_bn (BatchNormaliz ation)</pre>    | (None, 149, 149, 32<br>)  | 128     | ['block1_conv1[0][0]']       |  |  |  |
| block1_conv1_act (Activation)                       | (None, 149, 149, 32<br>)  | 0       | ['block1_conv1_bn[0][0]']    |  |  |  |
| block1_conv2 (Conv2D)                               | (None, 147, 147, 64<br>)  | 18432   | ['block1_conv1_act[0][0]']   |  |  |  |
| block1_conv2_bn (BatchNormaliz<br>ation)            | (None, 147, 147, 64<br>)  | 256     | ['block1_conv2[0][0]']       |  |  |  |
| block1_conv2_act (Activation)                       | (None, 147, 147, 64<br>)  | 0       | ['block1_conv2_bn[0][0]']    |  |  |  |
| <pre>block2_sepconv1 (SeparableConv 2D)</pre>       | (None, 147, 147, 12<br>8) | 8768    | ['block1_conv2_act[0][0]']   |  |  |  |
| <pre>block2_sepconv1_bn (BatchNorma lization)</pre> | (None, 147, 147, 12<br>8) | 512     | ['block2_sepconv1[0][0]']    |  |  |  |
| <pre>block2_sepconv2_act (Activatio n)</pre>        | (None, 147, 147, 12<br>8) | 0       | ['block2_sepconv1_bn[0][0]'] |  |  |  |

```
add 11 (Add)
                                (None, 10, 10, 1024 0
                                                                 ['block13 pool[0][0]',
                                                                  'batch_normalization_3[0][0]']
  block14 sepconv1 (SeparableCon (None, 10, 10, 1536 1582080
                                                                 ['add_11[0][0]']
  v2D)
  block14_sepconv1_bn (BatchNorm (None, 10, 10, 1536 6144
                                                                 ['block14_sepconv1[0][0]']
  alization)
  block14_sepconv1_act (Activati (None, 10, 10, 1536 0
                                                                 ['block14_sepconv1_bn[0][0]']
  on)
                                                                 ['block14_sepconv1_act[0][0]']
  block14_sepconv2 (SeparableCon (None, 10, 10, 2048 3159552
  v2D)
  block14_sepconv2_bn (BatchNorm (None, 10, 10, 2048 8192
                                                                 ['block14_sepconv2[0][0]']
  alization)
 block14_sepconv2_act (Activati (None, 10, 10, 2048 0
                                                                 ['block14_sepconv2_bn[0][0]']
 on)
flatten (Flatten)
                                (None, 204800)
                                                                 ['block14_sepconv2_act[0][0]']
dense (Dense)
                                (None, 5)
                                                     1024005
                                                                 ['flatten[0][0]']
Total params: 21,885,485
Trainable params: 1,024,005
Non-trainable params: 20,861,480
```

#### **Accuracy (Training and Validation Accuracy)**

```
# fit the model
r = model.fit generator(
 training set,
 validation_data=test_set,
 epochs=30,
 steps per epoch=len (training set)//32,
 validation_steps=len(test_set)//32
)
Epoch 1/30
Epoch 2/30
Epoch 3/30
Epoch 4/30
3/3 [==========] - 51s 16s/step - loss: 7.3417 - accuracy: 0.5833
Epoch 5/30
Epoch 6/30
Epoch 7/30
Epoch 8/30
3/3 [================== ] - 49s 15s/step - loss: 4.0479 - accuracy: 0.6250
Epoch 9/30
3/3 [================= ] - 50s 15s/step - loss: 4.3574 - accuracy: 0.6458
Epoch 10/30
Epoch 11/30
```

```
Epoch 12/30
Epoch 13/30
Epoch 14/30
Epoch 15/30
3/3 [========================= ] - 40s 15s/step - loss: 4.7868 - accuracy: 0.6795
Epoch 16/30
3/3 [========================= ] - 49s 14s/step - loss: 2.7478 - accuracy: 0.7604
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
Epoch 21/30
Epoch 22/30
Epoch 23/30
Epoch 24/30
3/3 [========================= ] - 49s 15s/step - loss: 3.3278 - accuracy: 0.7083
Epoch 25/30
3/3 [========================= ] - 49s 14s/step - loss: 3.9974 - accuracy: 0.6354
Epoch 26/30
Epoch 27/30
Epoch 28/30
3/3 [======================== ] - 47s 14s/step - loss: 1.9773 - accuracy: 0.7708
Epoch 29/30
Epoch 30/30
```

#### 10. ADVANTAGES & DISADVANTAGES

#### 10.1 Advantages

- 1) Early detection and treatment can reduce the risk of vision loss for diabetics by 25%.
- 2) The economic cost of early diagnosis and treatment is low.
- 3) Treatment for patients with recognizable disease is safe, effective and universally agreeable.
- 4) It is an appropriate screening procedure which is acceptable both to the public and health care professionals.

#### 10.2 Disadvantages

- 1) It requires very large amount of data in order to perform better than other techniques.
- 2)It is extremely expensive to train due to complex data models. Moreover deep learning requires expensive GPUs and hundreds of machines. This increases cost to the users.
- 3)There is no standard theory to guide you in selecting right deep learning tools as it requires knowledge of topology, training method and other parameters. As a result it is difficult to be adopted by less skilled people.

#### 11. CONCLUSION

Diabetic retinopathy is a serious complication of diabetes mellitus, leading to progressive damage and even blindness of the retina. Its early detection and treatment is important in order to prevent its deterioration and the retina's damage. The interest in applying deep learning in detecting diabetic retinopathy has increased during the past years and as several DL systems evolve and become integrated into the clinical practice, they will enable the clinicians to treat the patients in need more effectively and efficiently. This article presents the current state of research regarding the application of deep learning in diagnosing diabetic retinopathy. Although deep learning has paved the way for more accurate diagnosis and treatment, further improvements are still necessary regarding performance, interpretability and trustworthiness from ophthalmologists.

12. FUTURE SCOPE

Use of AI in medical diagnostics, especially in ophthalmology heralds a new era. If

proven to be sensitive and specific enough this technology can totally change the way we look

at screening programs and community-based ophthalmology programs. Most of the present

systems use conventional of 30-50° fundus images. A lot of work is also being done on

identifying serum biomarkers for early detection and monitoring of diseases like diabetic

retinopathy. Thus, a comprehensive analysis of fundus imaging, systemic parameter profile and

other serum biomarkers using AI might provide better insights, perhaps even better conclusions

than what human intelligence is capable of deriving.

13. APPENDIX

GitHub Link: <a href="https://github.com/IBM-EPBL/IBM-Project-40335-1660628291">https://github.com/IBM-EPBL/IBM-Project-40335-1660628291</a>

Team ID: PNT2022TMID34131

39