TRAVAUX DIRIGÉS Nº 2 : Concentration, théorie de VC

Stephan Clémençon <stephan.clemencon@telecom-paris.fr> Ekhine Irurozki <irurozki@telecom-paris.fr>

EXERCICE 1. On se place dans le cadre de la classification binaire : soient un descripteur aléatoire X à valeurs dans un espace mesurable $\mathcal{X} \subset \mathbb{R}^d$ $(d \in \mathbb{N}^*)$ et un label aléatoire Y valant -1 ou 1. On considère une classe finie \mathcal{G} de classifieurs $\mathcal{X} \to \{-1,1\}$ telle que les deux labels sont parfaitement séparables par un élément de \mathcal{G} , *i.e.* $\min_{g \in \mathcal{G}} L(g) = 0$ pour le risque $L : g \in \mathcal{G} \mapsto \mathbb{P} (g(X) \neq Y) \in [0,1]$.

Soit $n \in \mathbb{N}^*$. On suppose que l'on dispose d'un échantillon i.i.d. $\{(X_i, Y_i)\}_{1 \le i \le n}$ suivant la même loi que (X, Y) et on note \hat{g}_n un minimiseur de l'erreur empirique de classification :

$$\hat{g}_n \in \min_{g \in \mathcal{G}} L_n(g)$$
 où $L_n : g \in \mathcal{G} \mapsto \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{g(X_i) \neq Y_i\}}.$

- 1) Montrer que $\min_{g \in \mathcal{G}} L_n(g) = 0$ presque-sûrement.
- 2) Montrer que $\mathbb{P}(L(\hat{g}_n) > \epsilon) \le |\mathcal{G}|(1 \epsilon)^n$ pour tout $\epsilon \in [0, 1]$. En déduire que $\mathbb{P}(L(\hat{g}_n) > \epsilon) \le |\mathcal{G}|e^{-n\epsilon}$ pour tout $\epsilon > 0$.

Indication. Utiliser $\mathcal{G}_B := \{g \in \mathcal{G} : L(g) > \epsilon\}$ ainsi qu'une borne d'union.

3) Déduire de la question précédente que $\mathbb{E}\left(\mathrm{L}(\hat{g}_n)\right) \leq \frac{\log(e|\mathcal{G}|)}{n}$

Indication. Pour toute variable aléatoire Z positive, $\mathbb{E}(Z) = \int_0^{+\infty} \mathbb{P}(Z > t) dt$.

Solution:

conséquent,

1) Avant toute chose, rappelons que l'ensemble image (aléatoire) de L_n étant inclus par construction dans l'ensemble fini (déterministe) : $\{\frac{k}{n} \in \{0, n\}\}$, la variable aléatoire $\min_{g \in \mathcal{G}} L_n(g)$ existe toujours. Il nous faut ici montrer que ce minimum est presque-sûrement nul. Pour cela, remarquons que par hypothèse, il existe $g^* \in G$ tel que $L(g^*) = \mathbb{P}(g^*(X) \neq Y) = 0$. Par

$$\mathbb{P}(L_n(g^*) = 0) = \mathbb{P}\left(\sum_{i=1}^n \mathbb{1}_{\{g^*(X_i) \neq Y_i\}} = 0\right) = \mathbb{P}(g^*(X_1) = Y_1, \dots, g^*(X_n) = Y_n)$$
$$= \mathbb{P}(g^*(X) = Y)^n = (1 - L(g^*))^n = 1.$$

Cela veut dire qu'avec probabilité 1, l'ensemble $\{L_n(g):g\in\mathcal{G}\}$ admet bien 0 pour minimum. En d'autres termes, $\min_{g\in\mathcal{G}}L_n(g)=0$ presque-sûrement.

2) (a) Remarquons tout d'abord que la variable aléatoire $L(\hat{g}_n)$ est par construction à valeurs dans [0,1], donc si $\epsilon \geq 1$ on a directement $\mathbb{P}(L(\hat{g}_n) > \epsilon) = 0$.

Supposons maintenant $\epsilon \in [0, 1[$ et posons $\mathcal{G}_{\epsilon} := \{g \in \mathcal{G} : L(g) > \epsilon\}$, de telle manière que $\mathbb{P}(L(\hat{g}_n) > \epsilon) = \mathbb{P}(\hat{g}_n \in \mathcal{G}_{\epsilon})$. D'après la question précédente, \hat{g}_n étant un minimiseur de l'erreur empirique de classification, on a $L_n(\hat{g}_n) = 0$ presque-sûrement. Ainsi,

$$\begin{split} \mathbb{P}(\mathbf{L}(\hat{g}_n) > \epsilon) &= \mathbb{P}(\hat{g}_n \in \mathcal{G}_{\epsilon}, \mathbf{L}_n(\hat{g}_n) = 0) \leq \mathbf{P}\Biggl(\bigcup_{g \in \mathcal{G}_{\epsilon}} \{\mathbf{L}_n(g) = 0\}\Biggr) \leq \sum_{g \in \mathcal{G}_{\epsilon}} \mathbb{P}(\mathbf{L}_n(g) = 0) \\ &= \sum_{g \in \mathcal{G}_{\epsilon}} \mathbb{P}(g(\mathbf{X}) = \mathbf{Y})^n \quad \text{(comme en question 1)} \\ &= \sum_{g \in \mathcal{G}_{\epsilon}} (1 - \mathbf{L}(g))^n \leq \sum_{g \in \mathcal{G}_{\epsilon}} (1 - \epsilon)^n \quad \text{(pour } g \in \mathcal{G}_{\epsilon} \text{ on a } \mathbf{L}(g) > \epsilon) \\ &\leq |\mathcal{G}_{\epsilon}| (1 - \epsilon)^n \leq |\mathcal{G}| (1 - \epsilon)^n \quad (\mathcal{G}_{\epsilon} \subset \mathcal{G} \text{ ensemble fini)}. \end{split}$$

Nous avons donc montré la première inégalité :

$$\mathbb{P}(L(\hat{g}_n) > \epsilon) \le |\mathcal{G}|(1 - \epsilon)^n \mathbb{1}_{\{0 \le \epsilon < 1\}}.$$

- (b) Par convexité de la fonction exponentielle, on a $1 \epsilon \le e^{-\epsilon}$ avec $e^{-\epsilon} > 0$. Ainsi, on a toujours $(1 \epsilon)^n \mathbb{1}_{\{0 \le \epsilon < 1\}} < e^{-n\epsilon}$. En partant de l'inégalité montrée à la question précédente, on obtient donc directement $\mathbb{P}(L(\hat{g}_n) > \epsilon) \le |G|e^{-n\epsilon}$.
- 3) Comme la variable aléatoire $L(\hat{g}_n)$ est positive, à valeurs dans [0, 1], on a

$$\mathbb{E}(L(\hat{g}_n)) = \int_0^{+\infty} \mathbb{P}(L(\hat{g}_n) > \epsilon) d\epsilon.$$

En utilisant la seconde inégalité montrée à la question précédente et le fait qu'une probabilité est toujours plus petite que 1, quel que soit $\epsilon \in \mathbb{R}^+$, on a

$$P(L(\hat{q}_n) > \varepsilon) \le \min\{1, |\mathcal{G}|e^{-n\varepsilon}\}.$$

Or, pour tout $\varepsilon \in \mathbb{R}^+$, on a $|\mathcal{G}|e^{-n\varepsilon} \le 1$ si et seulement si $\varepsilon \ge \frac{1}{n}\ln(|\mathcal{G}|)$. Ainsi,

$$\mathbb{E}(L(\hat{g}_n)) \leq \int_0^{\frac{\ln(|\mathcal{G}|)}{n}} 1 \, d\epsilon + \int_{\frac{\ln(|\mathcal{G}|)}{n}}^{+\infty} |\mathcal{G}| e^{-n\epsilon} \, d\epsilon = \frac{\ln(|\mathcal{G}|)}{n} + |\mathcal{G}| \left[\frac{-e^{-n\epsilon}}{n} \right]_{\frac{\ln(|\mathcal{G}|)}{n}}^{+\infty}$$
$$= \frac{\ln(|\mathcal{G}|)}{n} + \frac{|\mathcal{G}|}{n} \frac{1}{|\mathcal{G}|} = \frac{1}{n} \left(\ln(|\mathcal{G}|) + 1 \right) = \frac{1}{n} \ln(e|\mathcal{G}|).$$

On retrouve donc bien l'inégalité recherchée.

Remarque. Par construction, la variable aléatoire $L(\hat{g}_n)$ est bornée, à valeurs dans [0, 1]. Il en est donc de même pour son espérance. La borne obtenue n'a donc d'intérêt que si $\frac{1}{n} \ln(e|\mathcal{G}|) \le 1$, c'est-à-dire si $|\mathcal{G}| \le e^{n-1}$.

En utilisant le caractère borné de $L(\hat{g}_n)$, on peut même raffiner cette borne. Si $|\mathcal{G}| \leq e^n$, alors

$$\mathbb{E}(L(\hat{g}_n)) \leq \int_0^{\frac{\ln(|\mathcal{G}|)}{n}} 1 \, d\epsilon + \int_{\frac{\ln(|\mathcal{G}|)}{n}}^1 |\mathcal{G}| e^{-n\epsilon} \, d\epsilon$$
$$= \frac{1}{n} \left(\ln(|\mathcal{G}|) + 1 - |\mathcal{G}| e^{-n} \right).$$

On retrouve la première borne en remarquant que

$$\frac{1}{n} \left(\ln(|\mathcal{G}|) + 1 - |\mathcal{G}|e^{-n} \right) \le \frac{1}{n} \left(\ln(|\mathcal{G}|) + 1 - \ln(|\mathcal{G}|)e^{-n} \right) \quad (|\mathcal{G}| > \ln(|\mathcal{G}|)) \\
= \frac{1}{n} \left(\ln(|\mathcal{G}|) (1 - e^{-n}) + 1 \right) \\
\le \frac{1}{n} \ln(e|\mathcal{G}|). \quad \text{for } 1 - e^{-n} \le 1 \text{ pour } n \ge 0.$$

Interprétation. Tous ces résultats indiquent qu'à nombre d'observations n fixé, on peut d'autant mieux contrôler l'erreur empirique de classification que la classe \mathcal{G} considérée est restreinte, i.e. que son cardinal est faible.

Alternativement, plus on enrichit \mathcal{G} , plus il faut de données (i.e. d'information) pour garantir une faible erreur empirique de classification. En particulier, on déduit de la question 2 que pour tous $\delta \in]0,1[$ et $\varepsilon > 0$, dès que $n \geq \frac{1}{\varepsilon} \ln \frac{|\mathcal{G}|}{\delta}$, on a $\mathbb{P}(L(\hat{g}_n) \leq \varepsilon) \geq 1 - \delta$.

EXERCICE 2. On se place dans le cadre de la classification binaire. On utilisera les mêmes notations que dans l'exercice précédent. On pose L* := L(g^*) avec $g^*: x \in X \mapsto 2\mathbb{1}_{\{\eta(x) \geq 1/2\}} - 1$ et on note $\eta: x \in X \mapsto \mathbb{P}(Y = 1 \mid X = x) \in [0, 1]$ la fonction de régression. Soit $(\eta_n)_{n \in \mathbb{N}^*}$ une suite de fonctions définies sur X à valeurs dans]0, 1[. Pour tout $n \in \mathbb{N}^*$ on considère le classifieur $g_n: x \in X \mapsto 2\mathbb{1}_{\{\eta_n(x) \geq 1/2\}} - 1$.

1) On suppose qu'il existe $\delta > 0$ tel que $|\eta(x) - 1/2| \ge \delta$ pour tout $x \in \mathcal{X}$. Montrer que

$$L(g_n) - L^* \le \frac{2 \mathbb{E} \left((\eta_n(X) - \eta(X))^2 \right)}{\delta}.$$

2) Montrer que si L* = 0, alors quel que soit $q \in [1, +\infty[$

$$L(q_n) \leq 2^q \mathbb{E} (|\eta_n(X) - \eta(X)|^q).$$

Soient maintenant $\eta': \mathcal{X} \to]0,1[$ et $g: x \in \mathcal{X} \mapsto 2\mathbb{1}_{\{\eta'(x) > 1/2\}} - 1.$

- 3) On suppose que $\mathbb{P}\{\eta'(X) = 1/2\} = 0$ et que $\mathbb{E}(|\eta_n(X) \eta'(X)|) \to 0$ lorsque $n \to +\infty$. Montrer que $L(g_n) \to L(g)$ lorsque $n \to +\infty$.
- 4) On suppose que le label Y n'est plus observable, mais qu'une variable Z à valeurs dans $\{-1, +1\}$ l'est, telle que :

$$\mathbb{P}(Z = 1 \mid Y = -1, X) = \mathbb{P}(Z = 1 \mid Y = -1) = a < 1/2,$$

 $\mathbb{P}(Z = -1 \mid Y = 1, X) = \mathbb{P}(Z = -1 \mid Y = 1) = b < 1/2.$

On pose à présent $\eta': x \in \mathcal{X} \mapsto \mathbb{P}(Z = +1 \mid X = x)$. Montrer que :

$$L(g) \le L^* \left(1 + \frac{2|a-b|}{1 - 2\max(a,b)} \right).$$

Que peut-on en déduire lorsque a = b?

Solution:

1) Soit $n \in \mathbb{N}^*$. Tout d'abord, l'inégalité à démontrer est trivialement vraie si $L(g_n) = L^*$. Supposons donc que $L(g_n) \neq L^*$, i.e. que $L(g_n) - L^* > 0$ (par définition de L^*), alors

$$\begin{split} \mathsf{L}(g_n) - \mathsf{L}^* &= \mathbb{P}(g_n(\mathsf{X}) \neq \mathsf{Y}) - \mathbb{P}(g^*(\mathsf{X}) \neq \mathsf{Y}) = \mathbb{E}\left(\mathbb{1}_{\{g_n(\mathsf{X}) \neq \mathsf{Y}\}} - \mathbb{1}_{\{g^*(\mathsf{X}) \neq \mathsf{Y}\}}\right) \\ &= \mathbb{E}\left(\mathbb{1}_{\{\mathsf{Y}=-1\}}(\mathbb{1}_{\{g_n(\mathsf{X})=1\}} - \mathbb{1}_{\{g^*(\mathsf{X})=1\}}) + \mathbb{1}_{\{\mathsf{Y}=1\}}(\mathbb{1}_{\{g_n(\mathsf{X})=-1\}} - \mathbb{1}_{\{g^*(\mathsf{X})=-1\}})\right) \\ &= \mathbb{E}\left((1 - \eta(\mathsf{X}))(\mathbb{1}_{\{g_n(\mathsf{X})=1\}} - \mathbb{1}_{\{g^*(\mathsf{X})=1\}}) + \eta(\mathsf{X})(\mathbb{1}_{\{g_n(\mathsf{X})=-1\}} - \mathbb{1}_{\{g^*(\mathsf{X})=-1\}})\right) \\ &= \mathbb{E}\left((2\eta(\mathsf{X}) - 1)(\mathbb{1}_{\{g_n(\mathsf{X})=-1\}} - \mathbb{1}_{\{g^*(\mathsf{X})=-1\}})\right) \end{split}$$

Or pour tout $x \in \mathcal{X}$, si $g^*(x) = -1$ alors $2\eta(x) - 1 \le 0$ et $\mathbbm{1}_{\{g_n(x) = -1\}} - \mathbbm{1}_{\{g^*(x) = -1\}} \le 0$, puis si $g^*(x) = 1$ alors $2\eta(x) - 1 > 0$ et $\mathbbm{1}_{\{g_n(x) = -1\}} - \mathbbm{1}_{\{g^*(x) = -1\}} \ge 0$, d'où $(2\eta(x) - 1)(\mathbbm{1}_{\{g_n(x) = -1\}} - \mathbbm{1}_{\{g^*(x) = -1\}}) \ge 0$. Ainsi,

$$L(g_n) - L^* = \mathbb{E}\left[|2\eta(X) - 1| \left| \mathbb{1}_{\{g_n(X) = -1\}} - \mathbb{1}_{\{g^*(X) = -1\}} \right| \right]$$

$$= 2\mathbb{E}\left[\left| \eta(X) - \frac{1}{2} \right| \mathbb{1}_{\{g_n(X) \neq g^*(X)\}} \right]. \tag{1}$$

On remarque que pour tout $x \in X$, si $g_n(x) \neq g^*(x)$ alors $\eta_n(x)$ et $\eta(x)$ sont d'un côté et de l'autre de $\frac{1}{2}$, d'où $|\eta_n(x) - \eta(x)| \geq |\eta(x) - \frac{1}{2}|$. On en déduit que

$$L(g_{n}) - L^{*} \leq 2\mathbb{E}\left[|\eta_{n}(X) - \eta(X)|\mathbb{1}_{\{g_{n}(X) \neq g^{*}(X)\}}\right]$$

$$\leq 2\mathbb{E}\left[(\eta_{n}(X) - \eta(X))^{2}\right]^{\frac{1}{2}}\mathbb{E}\left[(\mathbb{1}_{\{g_{n}(X) \neq g^{*}(X)\}})^{2}\right]^{\frac{1}{2}}$$
 (Cauchy-Schwartz).
$$= 2\mathbb{E}\left[(\eta_{n}(X) - \eta(X))^{2}\right]^{\frac{1}{2}}\mathbb{E}\left[\mathbb{1}_{\{g_{n}(X) \neq g^{*}(X)\}}\right]^{\frac{1}{2}}$$
 (3)

En outre, par hypothèse, il existe $\delta > 0$ tel que $\left| \eta(x) - \frac{1}{2} \ge \delta \right|$ pour tout $x \in \mathcal{X}$. Alors en repartant de l'Eq. (1), on obtient

$$L(g_n) - L^* = 2\mathbb{E}\left[\left|\eta(X) - \frac{1}{2}\right| \mathbb{1}_{\{g_n(X) \neq g^*(X)\}}\right] \ge 2\delta\mathbb{E}\left[\mathbb{1}_{\{g_n(X) \neq g^*(X)\}}\right] \ge 0$$

d' ou

$$\mathbb{E}[\mathbb{1}_{\{g_n(\mathbf{X})\neq g^*(\mathbf{X})\}}]^{\frac{1}{2}} \leq \left(\frac{1}{2\delta}(\mathbf{L}(g_n) - \mathbf{L}^*)\right)^{\frac{1}{2}}$$

En injectant ce dernier résultat dans l'Eq.(3), on obtient finalement

$$L(g_n) - L^* \le 2\mathbb{E}\left[\left(\eta_n(X) - \eta(X)\right)^2\right]^{\frac{1}{2}} \left(\frac{1}{2\delta}(L(g_n) - L^*)\right)^{1/2}$$

$$\Leftrightarrow (2\delta(L(g_n) - L^*))^{1/2} \le 2\mathbb{E}\left[\left(\eta_n(X) - \eta(X)\right)^2\right]^{\frac{1}{2}}$$

$$\Leftrightarrow L(g_n) - L^* \le \frac{2}{\delta}\mathbb{E}\left[\left(\eta_n(X) - \eta(X)\right)^2\right]. \text{ (tout est positif)}$$

2) Soit $n \in \mathbb{N}^*$ et supposons $L^* = 0$. Cela signifie que $g^*(X) = Y$ presque-sûrement. Comme à la question précédente, l'inégalité à démontrer est trivialement vraie si $L(g_n) = 0$. Supposons donc que $L(g_n) > 0$, alors en repartant de l'Eq. (2) et en appliquant l'inégalité de Hölder, pour tout $q \in [1, +\infty[$ on a

$$L(g_n) \le 2\mathbb{E}\left[|\eta_n(X) - \eta(X)|^q\right]^{\frac{1}{q}} \mathbb{E}\left[\left(\mathbb{1}_{\{g_n(X) \ne g^*(X)\}}\right)^{\frac{q}{q-1}}\right]^{\frac{q-1}{q}}$$

$$\begin{split} &= 2 \mathbb{E} \left[|\eta_n(\mathbf{X}) - \eta(\mathbf{X})|^q \right]^{\frac{1}{q}} \mathbb{E} \left[\mathbb{1}_{\{g_n(\mathbf{X}) \neq g^*(\mathbf{X})\}} \right]^{\frac{q-1}{q}} \\ &= 2 \mathbb{E} \left[|\eta_n(\mathbf{X}) - \eta(\mathbf{X})|^q \right]^{\frac{1}{q}} \mathbb{E} \left[\mathbb{1}_{\{g_n(\mathbf{X}) \neq \mathbf{Y}\}} \right]^{\frac{q-1}{q}} \\ &= 2 \mathbb{E} \left[|\eta_n(\mathbf{X}) - \eta(\mathbf{X})|^q \right]^{\frac{1}{q}} L(g_n)^{\frac{q-1}{q}} \end{split}$$

Ainsi,

$$\begin{split} \mathsf{L}(g_n) &\leq 2 \mathbb{E} \left[|\eta_n(\mathsf{X}) - \eta(\mathsf{X})|^q \right]^{\frac{1}{q}} \mathsf{L}(g_n)^{\frac{q-1}{q}} \\ &\iff \mathsf{L}(g_n)^{1-\frac{q-1}{q}} = \mathsf{L}(g_n)^{\frac{1}{q}} \leq 2 \mathbb{E} \left(|\eta_n(\mathsf{X}) - \eta(\mathsf{X})|^q \right)^{1/q} \quad (\mathsf{L}(g_n) > 0 \text{ par hypothèse}) \\ &\iff \mathsf{L}(g_n) \leq 2^q \mathbb{E} \left(|\eta_n(\mathsf{X}) - \eta(\mathsf{X})|^q \right). \quad \text{(Tout est positif)} \end{split}$$

3) Soit $n \in \mathbb{N}^*$. En reprenant les mêmes calculs qu'à la question 1, on obtient

$$\begin{split} |L(g_n) - L(g)| &= 2 \left| \mathbb{E} \left((\eta(X) - 1) \left(\mathbbm{1}_{\{g_n(X) = -1\}} - \mathbbm{1}_{\{g(X) = -1\}} \right) \right) \right| \\ &\leq 2 \mathbb{E} \left(|\eta(X) - 1| \left| \mathbbm{1}_{\{g_n(X) = -1\}} - \mathbbm{1}_{\{g(X) = -1\}} \right| \right) \quad \text{(inégalité triangulaire)} \\ &\leq \mathbb{E} \left(\left| \mathbbm{1}_{\{g_n(X) = -1\}} - \mathbbm{1}_{\{g(X) = -1\}} \right| \right) \quad (|\eta(X) - 1| \leq 2 \text{ par définition)} \\ &= \mathbb{E} \left(\mathbbm{1}_{\{g_n(X) \neq g(X)\}} \right) = P(g_n(X) \neq g(X)) \\ &= P\left(\eta_n(X) > \frac{1}{2}, \eta(X) \leq \frac{1}{2} \right) + P\left(\eta_n(X) \leq \frac{1}{2}, \eta(X) > \frac{1}{2} \right) \end{split}$$

Or, quel que soit $\lambda \in \left[0, \frac{1}{2}\right]$, on a les relations d'événements suivantes :

$$\begin{split} \left\{ \eta'(X) > \frac{1}{2} \right\} &= \left\{ \eta'(X) \ge \frac{1}{2} + \lambda \right\} \cup \left\{ \frac{1}{2} < \eta'(X) < \frac{1}{2} + \lambda \right\}, \text{ puis} \\ \left\{ \eta_n(X) \le \frac{1}{2} \right\} \cap \left\{ \eta'(X) \ge \frac{1}{2} + \lambda \right\} \subset \left\{ \left| \eta_n(X) - \eta'(X) \right| \ge \lambda \right\}, \\ \left\{ \eta_n(X) \le \frac{1}{2} \right\} \cap \left\{ 1 < \eta'(X) < \frac{1}{2} + \lambda \right\} \subset \left\{ \left| \eta'(X) - \frac{1}{2} \right| < \lambda \right\}. \end{split}$$

ďoù

$$\mathbb{P}\left(\eta_{n}(X) \leq \frac{1}{2}, \eta'(X) > \frac{1}{2}\right) \leq \mathbb{P}\left(\left|\eta'(X) - \frac{1}{2}\right| < \lambda\right) + \mathbb{P}\left(\left|\eta_{n}(X) - \eta'(X)\right| \geq \lambda\right),$$

$$\left\{\eta'(X) \leq \frac{1}{2}\right\} = \left\{\eta'(X) \leq \frac{1}{2} + \lambda\right\} \cup \left\{\frac{1}{2} < \eta'(X) \leq \frac{1}{2} + \lambda\right\}, \text{ puis}$$

$$\left\{\eta_{n}(X) > \frac{1}{2}\right\} \cap \left\{\eta'(X) \leq \frac{1}{2} + \lambda\right\} \subset \left\{\left|\eta_{n}(X) - \eta'(X)\right| \geq \lambda\right\},$$

$$\left\{\eta_{n}(X) > \frac{1}{2}\right\} \cap \left\{1 < \eta'(X) \leq \frac{1}{2} + \lambda\right\} \subset \left\{\left|\eta'(X) - \frac{1}{2}\right| < \lambda\right\}.$$

ďoù

$$\mathbb{P}\left(\eta_n(X) > \frac{1}{2}, \eta'(X) \leq \frac{1}{2}\right) \leq \mathbb{P}\left(\left|\eta'(X) - \frac{1}{2}\right| < \lambda\right) + \mathbb{P}\left(\left|\eta_n(X) - \eta'(X)\right| \geq \lambda\right),$$

Soit $\epsilon > 0$, il s'agit maintenant de trouver $N \in \mathbb{N}^*$ tel que pour tout $n \ge N$, on a $|L(g_n) - L(g)| < \epsilon$. Tout d'abord, puisque $\mathbb{P}(\eta'(X) = \frac{1}{2}) = \mathbb{P}(\left|\eta'(X) - \frac{1}{2}\right| = 0) = 0$ par hypothèse, on peut choisir $\lambda \in (0, \frac{1}{2})$ tel que $\mathbb{P}(\left|\eta'(X) - \frac{1}{2}\right| < \lambda) \le \frac{\epsilon}{2}$ (si on avait une masse $m \in]0, 1]$ en 0, on aurait toujours $\mathbb{P}(\left|\eta'(X) - \frac{1}{2}\right| < \lambda) \ge m$ et on ne pourrait pas descendre en dessous).

Ensuite, d'après l'inégalité de Markov, $\mathbb{P}(|\eta_n(X) - \eta'(X)| \ge \lambda) \le \frac{1}{\lambda} \mathbb{E}(|\eta_n(X) - \eta'(X)|)$ et par hypothèse, il existe $N = N(\varepsilon, \lambda) \in \mathbb{N}^*$ tel que pour tout $n \ge N$, $\mathbb{E}(|\eta_n(X) - \eta'(X)|) \le \frac{\lambda \varepsilon}{2}$, et finalement $|L(g_n) - L(g)| < \varepsilon$.

Nous avons donc bien montré que $L(g_n) \to L(g)$ quand $n \to +\infty$.

4) Commençons par remarquer que pour tout $x \in \mathcal{X}$, on a

$$\eta'(x) = \mathbb{P}(Z = 1 \mid X = x)$$

$$= \mathbb{P}(Z = 1 \mid Y = 1, X = x)\mathbb{P}(Y = 1 \mid X = x) + \mathbb{P}(Z = 1 \mid Y = -1, X = x)\mathbb{P}(Y = -1 \mid X = x)$$

$$= (1 - b)\eta(x) + a(1 - \eta(x)) = a + (1 - b - a)\eta(x).$$

Maintenant, d'après l'Eq.(2), on a

$$L(g) - L^* \le 2\mathbb{E} \left(|\eta'(X) - \eta(X)| \mathbb{1}_{\{g(X) \ne g^*(X)\}} \right)$$

= $2\mathbb{E} \left(|\eta'(X) - \eta(X)| \mid g(X) \ne g^*(X) \right) \mathbb{P}(g(X) \ne g^*(X)).$

Il s'agit de majorer les deux termes à droite de cette dernière inégalité (l'espérance conditionnelle et la probabilité).

Soit $x \in \mathcal{X}$, alors $g(x) \neq g^*(x)$ signifie (i) $\eta(x) \geq \frac{1}{2} > \eta'(x)$ ou (ii) $\eta(x) < \frac{1}{2} \leq \eta'(x)$. Puisque $\eta'(x) = a + (1 - a - b)\eta(x)$, cela donne

(a)
$$\frac{1-2a}{2(1-a-b)} > \eta(x) \ge \frac{1}{2}$$
, ce qui n'est possible que si $a < b$, et dans ce cas

$$|\eta'(x) - \eta(x)| = \eta(x) - \eta'(x) = \eta(x)(a+b) - a$$
$$\frac{1 - 2a}{2(1 - a - b)}(a+b) - a = \frac{b - a}{2(1 - a - b)} = \frac{|a - b|}{2(1 - a - b)}.$$

(b)
$$\frac{1-2a}{2(1-a-b)} \le \eta(x) < \frac{1}{2}$$
, ce qui n'est possible que si $a > b$, et dans ce cas

$$|\eta'(x) - \eta(x)| = \eta'(x) - \eta(x) = a - \eta(x)(a+b)$$
$$a - \frac{1 - 2a}{2(1 - a - b)}(a+b) = \frac{a - b}{2(1 - a - b)} = \frac{|a - b|}{2(1 - a - b)}.$$

On peut donc d'ores et déjà majorer l'espérance conditionnelle :

$$\mathbb{E}(|\eta'(X) - \eta(X)| | g(X) \neq g^*(X)) \leq \frac{|a - b|}{2(1 - a - b)}.$$

Pour majorer la probabilité, rappelons-nous que d'après le TD1 on a

$$\begin{split} \mathbf{L}^* &= \mathbb{E}(\eta(\mathbf{X}) \wedge (1 - \eta(\mathbf{X}))) \\ &\geq \mathbb{E}(\eta(\mathbf{X}) \wedge (1 - \eta(\mathbf{X})) \mathbb{1}_{g(\mathbf{X}) \neq g^*(\mathbf{X})}) \\ &= \mathbb{E}(\eta(\mathbf{X}) \wedge (1 - \eta(\mathbf{X})) | g(\mathbf{X}) \neq g^*(\mathbf{X})) \mathbb{P}(g(\mathbf{X}) \neq g^*(\mathbf{X})) \\ &\geq \begin{cases} \frac{1 - 2b}{2(1 - a - b)} \mathbb{P}(g(\mathbf{X}) \neq g^*(\mathbf{X})) & \text{si } a < b \\ &= \frac{1 - 2a}{2(1 - b - a)} \mathbb{P}(g(\mathbf{X}) \neq g^*(\mathbf{X})) & \text{si } a > b \end{cases} \\ &= \frac{1 - 2(a \vee b)}{2(1 - a - b)} \mathbb{P}(g(\mathbf{X}) \neq g^*(\mathbf{X})). \end{split}$$

ďoù

$$\mathbb{P}(g(X) \neq g^*(X)) \le 2L^* \frac{1 - a - b}{1 - 2(a \lor b)}.$$

Finalement, on obtient

$$L(g) - L^* \le \frac{|a-b|}{1-a-b} 2L^* \frac{1-a-b}{1-2(a \lor b)} = L^* \frac{2|a-b|}{1-2(a \lor b)}.$$

d'où le résultat recherché

$$L(g) \le L^* \left(1 + \frac{2|a-b|}{1 - 2(a \lor b)} \right)$$

Lorsque a = b, on a $\eta'(x) = a + (1 - 2a)\eta(x)$. Ainsi, $\eta'(x) > \frac{1}{2} \iff \eta(x) > \frac{1}{2} \quad \frac{1-2a}{1-2a} = 1$ et donc $g = g^*$; on retombe sur le classifieur de Bayes.

EXERCICE 3. Calculer la VC dimension des classes \mathcal{A} d'ensembles suivantes :

- 1) $\mathcal{A} = \{] \infty, x_1] \times \ldots \times] \infty, x_d] : (x_1, \ldots, x_d) \in \mathbb{R}^d \},$
- 2) \mathcal{A} est constituée des rectangles de \mathbb{R}^d .

Solution:

Commençons par quelques rappels de cours. Soient \mathcal{A} une classe d'ensembles de \mathbb{R}^d et $n \in \mathbb{N}^*$. Quels que soient $x_1, \ldots, x_n \in \mathbb{R}^d$, on note

$$N_{\mathcal{A}}(x_1,\ldots,x_n) := \operatorname{Card} \{\{x_1,\ldots,x_n\} \cap A : A \in \mathcal{A}\}$$

le nombre d'ensembles différents que l'on peut former en intersectant $\{x_1, \ldots, x_n\}$ avec les éléments de \mathcal{A} . Par construction, il y en a au plus 2^n , et si $N_{\mathcal{A}}(x_1, \ldots, x_n) = 2^n$, on dit que \mathcal{A} pulvérise ou éclate $\{x_1, \ldots, x_n\}$.

Le n-ème coefficient de pulvérisation ou d'éclatement de $\mathcal A$ est alors défini comme la quantité

$$S_{\mathcal{A}}(n) := \max_{x_1,\dots,x_n \in \mathbb{R}^d} N_{\mathcal{A}}(x_1,\dots,x_n),$$

qui donne le plus grand nombre d'ensembles différents que l'on peut obtenir en intersectant les éléments de \mathcal{A} avec n'importe quel ensemble de $n \in \mathbb{N}^*$ éléments de \mathbb{R}^d . Par construction, il jouit des propriétés suivantes :

- (i) $S_{\mathcal{A}}(n) \in [1, 2^n]$ (on a toujours soit l'ensemble vide soit au moins un des *n* points considérés),
- (ii) $S_{\mathcal{H}}(n) = 2^n$ ssi il existe un sous-ensemble de n éléments de \mathbb{R}^d éclaté par \mathcal{H} ,
- (iii) si $S_{\mathcal{A}}(n) < 2^n$, alors pour tout $k \ge n$ on a aussi $S_{\mathcal{A}}(k) < 2^k$ (si \mathcal{A} ne peut pas éclater un ensemble à n éléments, alors elle ne peut pas éclater d'ensemble plus grand encore).

Les coefficients d'éclatement permettent ainsi de mesurer la richesse de la classe \mathcal{A} .

En cherchant l'entier n tel que à partir duquel $S_{\mathcal{A}}(n+k) < 2^{n+k}$ pour tout $k \in \mathbb{N}^*$, on définit la dimension de Vapnik-Chervonenkis (VC dimension) de la classe \mathcal{A} :

$$V_{\mathcal{A}} := \max\{n \in \mathbb{N}^* : S_{\mathcal{A}}(n) = 2^n\} \in \mathbb{N}^* \cup \{+\infty\}.$$

Elle donne le plus grand nombre de points que l'on peut éclater avec \mathcal{A} .

1) Quel que soit $\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$, notons $A_{\mathbf{x}} :=]-\infty, x_1] \times \dots \times]-\infty, x_d]$, de telle manière que $\mathcal{A} = \{A_{\mathbf{x}} : \mathbf{x} \in \mathbb{R}^d\}$. Nous allons montrer que $V_{\mathcal{A}} = d$. Pour cela, il faut d'abord trouver un ensemble de d points de \mathbb{R}^d éclatés par \mathcal{A} . Considérons les vecteurs e_1, \dots, e_d de la base canonique de \mathbb{R}^d , tels que pour tout $i \in \{1, \dots, d\}$, toutes les composantes du vecteur e_i valent 0, sauf la i-ème qui vaut 1.

On remarque que les que soient $i \in [1, d]$ et $x \in \mathbb{R}^d$,

$$e_i \in A_x$$
 ssi
$$\begin{cases} x_1, \dots, x_n \ge 0 \text{ and } \\ x_i \ge 1. \end{cases}$$

Par conséquent, pour tout $x \in \mathbb{R}^d$, on a d'abord $\{e_1, \ldots, e_d\} \cap A_x = \emptyset$ ssi $x_1, \ldots, x_n < 1$ puis pour tous $m \in [1, d]$ et $i_1, \ldots, i_m \in [1, d]$,

$$\{e_1, \dots, e_d\} \cap A_x = \{e_{i_1}, \dots, e_{i_m}\}$$
 ssi $\begin{cases} \forall k \in [1, d] \setminus \{i_1, \dots, i_m\} : 0 \le x_k < 1, \\ x_{i_1}, \dots, x_{i_m} \ge 1. \end{cases}$

En d'autres termes, pour tout sous-ensemble $\{e_{i_1},\ldots,e_{i_m}\}$, on est capable de trouver au moins un $A_{\mathbf{x}} \in \mathcal{A}$ qui permet de l'isoler. Cela signifie exactement que \mathcal{A} éclate $\{e_1,\ldots,e_d\}$, d'où $\mathbf{S}_{\mathcal{A}}(d)=2^d$. Il nous faut maintenant vérifier que \mathcal{A} ne peut pas éclater d+1 points. Pour cela, prenons $\mathbf{z}_1,\ldots,\mathbf{z}_{d+1} \in \mathbb{R}^d$ quelconques. Quel que soit $i \in [1,d]$, notons $\mathbf{z}_k=(z_{k,1},\ldots,z_{k,d})$ et définissons \bar{z}_i comme l'élément de $\{\mathbf{z}_1,\ldots,\mathbf{z}_{d+1}\}$ ayant la plus grande i-ème coordonnée, c'est-à-dire $\bar{z}_{i,i}=\max\{z_{1,i},\ldots,z_{d+1,i}\}$. Alors, quel que soit $\mathbf{x}\in\mathbb{R}^d$, on a

$$\begin{split} \{\bar{z}_1,\ldots,\bar{z}_d\} \subset \mathbf{A}_{\mathbf{x}} &\iff \forall i \in \llbracket 1,d \rrbracket, \ \bar{z}_{1,i},\ldots,\bar{z}_{d,i} \leq x_i \\ &\iff \forall i \in \llbracket 1,d \rrbracket, \ \bar{z}_{i,i} = \max\{z_{1,i},\ldots,z_{d+1,i}\} \leq x_i \\ &\iff \forall i \in \llbracket 1,d \rrbracket, \ z_{1,i},\ldots,z_{d+1,i} \leq x_i \\ &\iff \{z_1,\ldots,z_{d+1}\} \subset \mathbf{A}_{\mathbf{x}}. \end{split}$$

En d'autres termes, on ne peut pas trouver $A_x \in \mathcal{A}$ qui isole le sous-ensemble de points $\{\bar{z}_1,\ldots,\bar{z}_d\}$, d'où $S_{\mathcal{A}}(d+1) < 2^{d+1}$.

Par définition de la dimension VC, on en conclut que $V_{\mathcal{A}} = d$. La Figure 2 donne une illustration des résultats précédents quand d = 2.

Remarque. Pour avoir l'intuition de la démonstration, on peut regarder d'abord les cas d=1 et d=2, qui amènent à penser que $V_{\mathcal{A}}=d$ et donnent l'idée de travailler avec les maxima des coordonnées.

2) Quels que soient $\mathbf{x} = (x_1, \dots, x_d), \mathbf{y} = (y_1, \dots, y_d) \in \mathbb{R}^d$, on note

$$\mathbf{x} \wedge \mathbf{y} := (x_1 \wedge y_1, \dots, x_d \wedge y_d)$$
 et $\mathbf{x} \vee \mathbf{y} := (x_1 \vee y_1, \dots, x_d \vee y_d)$

les minimum et maximum composante par composante. Lorsque $x = x \land y$ et $y = x \lor y$, on note

$$[\mathbf{x}, \mathbf{y}] := [x_1, y_1] \times \cdots \times [x_d, y_d].$$

Nous allons montrer que $V_{\mathcal{A}} = 2d$.

Pour cela, il faut d'abord trouver un ensemble de 2d points de \mathbb{R}^d éclatés par \mathcal{A} . Considérons les vecteurs e_1, \ldots, e_d de la base canonique de \mathbb{R}^d , comme à la question précédente, ainsi que leurs symétriques $-e_1, \ldots, -e_d$. On remarque que pour tous $i \in [1, d]$ et $\varepsilon \in]0, 1[$,

$$\pm e_i \in [\pm e_i - \varepsilon, \pm e_i + \varepsilon].$$

Par conséquent, pour tout sous-ensemble de $\{-e_1, \ldots, -e_d, e_1, \ldots, e_d\}$, on peut trouver un hyper-rectangle qui l'isole des autres points : quel que soit $\varepsilon \in]0,1[$,

Figure 1 – Illustration of VC dimension for d = 2.

- (a) $\{-e_1, \ldots, -e_d, e_1, \ldots, e_d\} \cap [-\varepsilon, \varepsilon]^d = \emptyset$,
- (b) pour tous $m \in [1, d]$ et $i_1, ..., i_m \in [1, d]$,

$$\{-e_1,\ldots,-e_d,e_1,\ldots,e_d\}\cap\left[\bigwedge_{k=1}^m\pm e_{i_k}-\varepsilon,\bigvee_{k=1}^m\pm e_{i_k}+\varepsilon\right]=\{\pm e_{i_1},\ldots,\pm e_{i_m}\}.$$

On a donc bien $S_{\mathcal{A}}(2d) = 2^{2d}$.

Il nous faut maintenant vérifier que \mathcal{A} ne peut pas éclater 2d+1 points. Pour cela, prenons $\mathbf{z}_1,\ldots,\mathbf{z}_{2d+1}\in\mathbb{R}^d$ quelconques. Quel que soit $i\in\{1,\ldots,d\}$, définissons \bar{z}_i et \underline{z}_i comme les éléments de $\{\mathbf{z}_1,\ldots,\mathbf{z}_{2d+1}\}$ ayant respectivement la plus grande et la plus petite i-ème coordonnée, i.e.

$$\bar{z}_{i,i} = \max\{z_{1,i}, \dots, z_{2d+1,i}\}$$
 et $\underline{z}_{i,i} = \min\{z_{1,i}, \dots, z_{2d+1,i}\}.$

Alors, quels que soient $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ tels que $\mathbf{x} = \mathbf{x} \wedge \mathbf{y}$ et $\mathbf{y} = \mathbf{x} \vee \mathbf{y}$, on a

$$\begin{split} \{\bar{z}_1, \dots, \bar{z}_d, \underline{z}_1, \dots, \underline{z}_d\} \subset [\mathbf{x}, \mathbf{y}] &\iff \forall i, k \in [\![1, d]\!], \ \bar{z}_{i,k}, \underline{z}_{i,k} \in [x_k, y_k] \\ &\iff \forall i \in [\![1, d]\!], \ \bar{z}_{i,i}, \underline{z}_{i,i} \in [x_i, y_i] \\ &\iff \forall i \in [\![1, d]\!], \ z_{1,i}, \dots, z_{2d+1,i} \in [x_i, y_i] \\ &\iff \{\mathbf{z}_1, \dots, \mathbf{z}_{2d+1}\} \subset [\mathbf{x}, \mathbf{y}]. \end{split}$$

En d'autres termes, on ne peut pas trouver d'hyper-rectangle qui isole le sous-ensemble de points $\{\bar{z}_1,\ldots,\bar{z}_d,\underline{z}_1,\ldots,\underline{z}_d\}$, d'où $S_{\mathcal{H}}(2d+1)<2^{2d+1}$.

Par définition de la dimension VC, on en conclut que $V_{\mathcal{A}} = 2d$. La Figure 2 donne une illustration des résultats précédents quand d = 2.

EXERCICE 4. Donner une borne supérieure de la VC dimension de la classe des boules fermées dans \mathbb{R}^d :

$$\mathcal{A} = \left\{ \left\{ x = (x_1, \dots, x_d) \in \mathbb{R}^d : \sum_{i=1}^d |x_i - a_i|^2 \le b \right\} : a_1, \dots, a_d, b \in \mathbb{R} \right\}.$$

Solution:

Figure 2 – Illustration of VC dimension for d = 2.

Pour répondre à la question posée, nous allons d'abord démontrer le théorème suivant. Soit G un espace vectoriel de fonctions $\mathbb{R}^d \to \mathbb{R}$ $(d \in \mathbb{N}^*)$, de dimension finie $m \in \mathbb{N}^*$. Alors la classe d'ensembles

$$\mathcal{A} := \{ \{ x \in \mathbb{R}^d : g(x) \ge 0 \} : g \in \mathcal{G} \}$$

a pour VC dimension $V_{\mathcal{A}} \leq m$.

Il suffit pour cela de prouver qu'aucun ensemble de m+1 points de \mathbb{R}^d ne peut être éclaté par \mathcal{A} . Prenons donc $x_1, \ldots, x_{m+1} \in \mathbb{R}^d$ quelconques, puis considérons l'application linéaire

$$h: q \in \mathcal{G} \mapsto (q(x_1), \dots, q(x_{m+1})) \in \mathbb{R}^{m+1}$$
.

Puisque \mathcal{G} est un espace vectoriel, h(G) est un sous-espace vectoriel de \mathbb{R}^{m+1} , de dimension inférieure ou égale à celle de \mathcal{G} , i.e. m. Il existe donc un vecteur non nul $\gamma = (\gamma_1, \ldots, \gamma_{m+1}) \in \mathbb{R}^{m+1}$ orthogonal à $h(\mathcal{G})$, c'est-à-dire tel que pour tout $g \in \mathcal{G}$, on ait

$$\langle \gamma, h(g) \rangle = \gamma_1 g(x_1) + \dots + \gamma_{m+1} g(x_{m+1}) = 0. \tag{4}$$

Soient P := $\{i \in [1, m+1] : \gamma_i \ge 0\}$ et N := $\{i \in [1, m+1] : \gamma_i < 0\}$, alors pour tout $g \in \mathcal{G}$, on a

$$\sum_{i \in P} \gamma_i g(x_i) = -\sum_{i \in N} \gamma_i g(x_i). \tag{4}$$

Quitte à remplacer, si besoin, γ par $-\gamma$ (qui satisfait aussi l'Eq. 4), on peut supposer que N $\neq \emptyset$.

Supposons maintenant par l'absurde qu'il existe $g \in \mathcal{G}$ telle que $\{x \in \mathbb{R}^d : g(x) \geq 0\}$ contient $\{x_i : i \in P\}$ mais pas $\{x_i : i \in N\}$. Alors la partie de gauche dans l'Eq. 4 est positive ou nulle, tandis que celle de droite est forcément strictement négative, ce qui amène à une contradiction. Il n'existe donc pas d'élément de \mathcal{G} qui permette de séparer $\{x_i : i \in P\}$ et $\{x_i : i \in N\}$. Par conséquent, $\mathcal{S}_A(m+1) < 2^{m+1}$ puis $V_{\mathcal{A}} < m+1$, i.e. $V_{\mathcal{A}} \leq m$.

Revenons maintenant à la question posée. Quels que soient $a_1, \ldots, a_d, b \in \mathbb{R}$ et $(x_1, \ldots, x_d) \in \mathbb{R}^d$, on remarque que

$$\sum_{i=1}^{d} |x_i - a_i|^2 = \sum_{i=1}^{d} x_i^2 - 2 \sum_{i=1}^{d} a_i x_i + \left(\sum_{i=1}^{d} a_i^2 - b \right).$$

Ainsi, si l'on considère \mathcal{G} , l'espace vectoriel engendré par les fonctions $\varphi_1, \dots, \varphi_{d+2} : \mathbb{R}^d \to \mathbb{R}$ qui à tout $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ associent

$$\varphi_1(x) = \sum_{i=1}^d x_i^2$$
, $\varphi_2(x) = x_1, \dots, \varphi_{d+1}(x) = x_d$, $\varphi_{d+2}(x) = 1$,

on a $\mathcal{A} \subset \{\{x \in \mathbb{R}^d : g(x) \le 0\} : g \in \mathcal{G}\} =: \mathcal{B}$.

Or, comme \mathcal{G} est un espace vectoriel, $g \in \mathcal{G}$ ssi $-g \in \mathcal{G}$, et

$$\mathcal{B} = \{ \{ x \in \mathbb{R}^d : -q(x) \ge 0 \} : q \in \mathcal{G} \} = \{ \{ x \in \mathbb{R}^d : q(x) \ge 0 \} : q \in \mathcal{G} \}.$$

En appliquant le théorème que l'on vient de démontrer, on a donc $V_{\mathcal{A}} \leq V_{\mathcal{B}} \leq d+2$.

EXERCICE 5. Soit \mathcal{A} une classe d'ensembles de \mathbb{R}^d de VC dimension $V < +\infty$ et de coefficients d'éclatement $s(\mathcal{A}, n), \forall n \in \mathbb{N}^*$.

- 1) Montrer que : $\forall n \geq 1$, $s(\mathcal{A}, n) \leq (n+1)^{V}$.
- 2) Montrer que : $\forall n \geq V, s(\mathcal{A}, n) \leq (ne/V)^{V}$.

Indication. On utilisera le lemme de Sauer : $\forall n \geq 1$, $s(\mathcal{A}, n) \leq \sum_{k=0}^{V} \binom{n}{k}$.

Solution:

1) Soit $n \in \mathbb{N}^*$, alors

$$(n+1)^{V} = \sum_{k=0}^{V} {V \choose k} n^{k} = \sum_{k=0}^{V} \frac{V!}{(V-k)!k!} n^{k} = 1 + \sum_{k=1}^{V} \frac{(V-k+1)\cdots V}{k!} n^{k}$$

$$\geq 1 + \sum_{k=1}^{V} \frac{n^{k}}{k!} = 1 + \sum_{k=1}^{V} {n \choose k} n^{k} \frac{(n-k)!}{n!} = 1 + \sum_{k=1}^{V} {n \choose k} \frac{n^{k}}{(n-k+1)\cdots n}$$

$$\geq 1 + \sum_{k=1}^{V} {n \choose k} = \sum_{k=0}^{V} {n \choose k} \geq S_{\mathcal{A}}(n)$$

par le lemme de Sauer.

2) Soit un entier $n \ge V$, alors $1 \ge \frac{V}{n}$. On cherche à montrer que

$$\sum_{k=0}^{V} \binom{n}{k} \le \left(\frac{ne}{V}\right)^{V} = \left(\frac{n}{V}\right)^{V} e^{V}$$

ou de manière équivalente que

$$\left(\frac{\mathrm{V}}{n}\right)^{\mathrm{V}} \sum_{k=0}^{\mathrm{V}} \binom{n}{k} \leq e^{\mathrm{V}},$$

pour pouvoir ensuite appliquer le lemme de Sauer et conclure. Or

$$\left(\frac{n}{\mathrm{V}}\right)^{\mathrm{V}}\sum_{k=0}^{n}\binom{n}{k}\leq \sum_{k=0}^{\mathrm{V}}\binom{n}{k}\left(\frac{\mathrm{V}}{n}\right)^{\mathrm{V}}\leq \sum_{k=0}^{n}\binom{n}{k}\left(\frac{\mathrm{V}}{n}\right)^{k}=\left(\frac{\mathrm{V}}{n}+1\right)^{n}\leq \left(e^{\frac{\mathrm{V}}{n}}\right)^{n}=e^{\mathrm{V}}.$$