algo-owls

LSTM Metrics

The Strategy

We aim at anticipating market moves by identifying squeezes that precedes them.

We aim at using 2 EMAs crossovers to anticipate their crossovers for direction predictions.

Project Objectives

REQUIREMENTS

- Build one Machine Learning Model to predict the squeeze breakout and breakout direction.
- Use at least two of the libraries specified below:

Project 2 Requirements

Find a FinTech problem that machine learning can help solve.

Apply ML in the context of technologies learned.

You must use: Scikit-Learn and/or another machine learning library.

You must use at least two of the below:

Scikit-Learn Google Colab

Tensorflow Amazon SageMaker

Amazon Lex

OUR SCOPE OF WORK

Project Objectives

REQUIREMENTS

- Build one Machine Learning Model to predict the squeeze breakout and breakout direction.
- Use at least two of the libraries specified below:

Project 2 Requirements O1 Find a FinTech problem that machine learning can help solve. O2 Apply ML in the context of technologies learned. You must use: Scikit-Learn and/or another machine learning library. You must use at least two of the below: Scikit-Learn Google Colab Tensorflow Amazon SageMaker Keras Amazon Lex

OUR SCOPE OF WORK

- Build a Machine Learning system comprised of 4 Machine Learning Models:
 - 2 Random Forests
 Classifiers (squeeze and EMAs crossover)
 - 1 LSTM Binary
 - 1 LSTM price predictor (price entry)

Project Objectives

REQUIREMENTS

- Build one Machine Learning Model to predict the squeeze breakout and breakout direction.
- Use at least two of the libraries specified below:

Project 2 Requirements O1 Find a FinTech problem that machine learning can help solve. O2 Apply ML in the context of technologies learned. You must use: Scikit-Learn and/or another machine learning library. You must use at least two of the below: Scikit-Learn Google Colab Tensorflow Amazon SageMaker Keras Amazon Lex

OUR SCOPE OF WORK

- Build a Machine Learning system comprised of 4 Machine Learning Models:
 - 2 Random Forests
 Classifiers (squeeze and EMAs crossover)
 - 1 LSTM Binary
 - 1 LSTM price predictor (price entry)
- Analyze each ML
 Performance with analytics and metrics.
- Libraries and applications:
 - Scikit-Learn
 - TensorFlow
 - Keras

Module 5: Saueeze RF

TN: 1002 FP: 494

FN: 316 TP: 892

0 1

Predicted

Precision = 64.36%

Estimators = 1000 Max_depth =25 Relevant Features 60%: bbup, bblo, kcup, kclo and 20sma.

Module 5: Saueeze RE

Precision = 64.36%

Estimators = 1000 Max_depth = 25 Relevant Features 60%: bbup, bblo, kcup, kclo and 20sma.

Madule 6: EMAs cross Ri

Estimators = 1000 Max_depth = 20 Relevant Features 53%: ema_dist, delta, close, ATR and high.

Recall

Acc. Score: 70%

¹ AUC: Area under the curve

Precision Recall Curve

Precision

Acc. Score: 70%

¹ AUC: Area under the curve

Precision

1

Acc. Score: 71%

Precision Recall Curve

Random Forest - Importance Features

Random Forest - Importance Features

LSTM Metrics

Module 8: Price Entry

Dates

Loss function = 0.00205

• Re-assess or reconfigure the EMA random forest to meet precision statistical requirements and improve performance.

- Re-assess or reconfigure the EMA random forest to meet precision statistical requirements and improve performance.
- Test models with more assets for robust statistics.

- Re-assess or reconfigure the EMA random forest to meet precision statistical requirements and improve performance.
- Test models with more assets for robust statistics.
- Automation / Machine Learning integration
- Develop a .py script using Select Function

- Re-assess or reconfigure the EMA random forest to meet precision statistical requirements and improve performance.
- Test models with more assets for robust statistics.
- Automation / Machine Learning integration
- Develop a .py script using Select Function
- Develop a Machine Learning Model to predict prices 5 or more periods ahead (target price predictor)

- Re-assess or reconfigure the EMA random forest to meet precision statistical requirements and improve performance.
- Test models with more assets for robust statistics.
- Automation / Machine Learning integration
- Develop a .py script using Select Function
- Develop a Machine Learning Model to predict prices 5 or more periods ahead (target price predictor)
- Develop Function that execute trades based on prices forecasted by LSTM price predictors.

• LSTM binary model caused barriers to the Machine Learning system.

- LSTM binary model caused barriers to the Machine Learning system.
- The two random forest classifiers offered 70% or above accuracy score.

- LSTM binary model caused barriers to the Machine Learning system.
- The two random forest classifiers offered 70% or above accuracy score.
- The EMA crossover model needs to be reconfigured to increase precision and to improve the precision-recall curve.

- LSTM binary model caused barriers to the Machine Learning system.
- The two random forest classifiers offered 70% or above accuracy score.
- The EMA crossover model needs to be reconfigured to increase precision and to improve the precision-recall curve.
- The squeeze random forest model was able to anticipate the "squeeze" state with a precision of 64%.

- LSTM binary model caused barriers to the Machine Learning system.
- The two random forest classifiers offered 70% or above accuracy score.
- The EMA crossover model needs to be reconfigured to increase precision and to improve the precision-recall curve.
- The squeeze random forest model was able to anticipate the "squeeze" state with a precision of 64%.
- Tests were limited to one asset and one direction (bullish trades)

Module 5: Saueeze RF

Acc. Score: 70%

Estimators = 1000 Max_depth = 25 Relevant Features 60%: bbup, bblo, kcup, kclo and 20sma.

Module 6: EMAs cross RF

Estimators = 1000 Max_depth = 20 Relevant Features 53%: ema_dist, delta, close, ATR and high.

Acc. Score: 71%

Confusion Matrix					
Ø	1				
0 1876	758				
1 20	50				
Accuracy Score 0.7122781065088757					
		precision	recall	f1-score	support
	0	0.99	0.71	0.83	2634
	1	0.06	0.71	0.11	70
accui	racv			0.71	2704
macro	- 1	0.53	0.71	0.47	2704
weighted	_	0.97	0.71	0.81	2704

algo-owls

Confusion Matrix

We can use our confusion matrix to calculate the model's overall accuracy.

- · Accuracy is the proportion of correct calls
- It is calculated as Acc = (TP+TN)/(TP+TN+FP+FN)
- Treats FP and FNs equally-an issue for unbalanced data

	Predicted: No (0)	Predicted: Yes (1)
Actual=No (0)	True Negatives (TN)	False Positive (FP)
Actual=Yes (1)	False Negative (FN)	True Positives (TP)

Confusion Matrix

We can use our confusion matrix to calculate the model's **precision**.

- Precision is the proportion of positive calls that were correct.
- It is calculated as Precision = TP/(TP+FP), using the first column of the confusion matrix.
- A model with no FPs has perfect precision. All of its positive calls are correct!

If FPs are very undesirable, you want a high precision

	Predicted: No (0)	Predicted: Yes (1)
Actual=No (0)	True Negatives (TN)	False Positive (FP)
Actual=Yes (1)	False Negative (FN)	True Positives (TP)

Confusion Matrix

We can use our confusion matrix to calculate the model's recall.

- · Recall is the proportion of actually positive samples that were correct
- It is calculated as Recall = TP/(TP+FN), using the first row of the confusion matrix
- · Recall is a critical metric for optimizing a model with unbalanced data
- A model with no FNs has perfect recall. All of the positive samples are correctly identified!
- · Recall is sometimes called sensitivity

If FNs are very undesirable, you want a model with high recall

	Predicted: No (0)	Predicted: Yes (1)
Actual=No (0)	True Negatives (TN)	False Positive (FP)
Actual=Yes (1)	False Negative (FN)	True Positives (TP)

algo-owls

Confusion Matrix

We can use our confusion matrix to calculate the model's **F1-score**.

- The F1-score (or F-measure) is another overall accuracy measure equivalent to the harmonic mean of the precision and recall
- It is calculated as F1 = 2* (Precision * Recall)/(Precision + Recall), using the first row and column of the confusion matrix.
- A model with perfect precision and recall has an F1-score of 1.0. The F1-score gives equal weight to
 precision and recall. Note that if either are 0, the score is 0 too.
- It is a good summary metric for comparing one model's performance to another.

	Predicted: No (0)	Predicted: Yes (1)
Actual=No (0)	True Negatives (TN)	False Positive (FP)
Actual=Yes (1)	False Negative (FN)	True Positives (TP)

Confusion Matrix

We can use our confusion matrix to calculate the model's specificity.

- Specificity is the proportion of actually negative samples that were correct.
- It is calculated as Specificity = TN/(TN+FP), using the second row of the confusion matrix.
- A model with no FPs has perfect specificity. All of the negative samples are correctly identified!
- Well-performing models with lots of TNs (>10,000) will often have very high specificity (>0.99).

If FPs are very undesirable, you want a highly specific model

	Predicted True	Predicted False
Actually True	TP	FN
Actually False	FP	TN

