Аттрактор Рёсслера

Система ДУ Рёсслера

$$\begin{cases} \frac{dx}{dt} = -y - z \\ \frac{dy}{dt} = x + ay & ,a > 0, b > 0, r > 0 \\ \frac{dz}{dt} = b + z(x - r) \end{cases}$$

При значениях параметров a = b = 0.2 и 2.6 ≤ r ≤ 4.2 уравнения Рёсслера обладают устойчивым предельным циклом. Сам Рёсслер изучал систему при постоянных a = 0.2, b = 0.2 и r = 5.7, но также часто используются и значения a = 0.1, b = 0.1, и r = 14.

Анализ поведения системы на плоскости

$$\begin{cases} \frac{dx}{dt} = -y\\ \frac{dy}{dt} = x + ay \end{cases}, a > 0, b > 0$$

$$\lambda_{1,2} = \frac{a \pm \sqrt{a^2 - 4}}{2}$$

Неподвижные точки

$$\begin{cases} \frac{dx}{dt} = -y - z = 0 \\ \frac{dy}{dt} = x + ay = 0 \end{cases} \xrightarrow{\text{Solve}[\{-y - z = 0, x + ay = 0, b + z (x - r) = 0\}, \{x, y, z\}][All, ;; , 2] // \text{Column}} \end{cases}$$

$$\begin{cases} \frac{dz}{dt} = x + ay = 0 \\ \frac{dz}{dt} = b + z(x - r) = 0 \end{cases} \xrightarrow{\{\frac{1}{2} \left(r - \sqrt{-4 \text{ a} b + r^2}\right), \frac{1}{2} \left(-\frac{r}{a} + \frac{\sqrt{-4 \text{ a} b + r^2}}{a}\right), \frac{r - \sqrt{-4 \text{ a} b + r^2}}{2 \text{ a}}\}}{\{\frac{1}{2} \left(r + \sqrt{-4 \text{ a} b + r^2}\right), \frac{1}{2} \left(-\frac{r}{a} - \frac{\sqrt{-4 \text{ a} b + r^2}}{a}\right), \frac{r + \sqrt{-4 \text{ a} b + r^2}}{2 \text{ a}}\}} \end{cases}$$

$$\left(\frac{r + \sqrt{r^2 - 4ab}}{2}, \frac{-r - \sqrt{r^2 - 4ab}}{2a}, \frac{r + \sqrt{r^2 - 4ab}}{2a}\right) \\
\left(\frac{r - \sqrt{r^2 - 4ab}}{2}, \frac{-r + \sqrt{r^2 - 4ab}}{2a}, \frac{r - \sqrt{r^2 - 4ab}}{2a}\right)$$

Изменение параметра а

- b = 0.2, r = 5.7
 - $a \le 0$ сходится к устойчивой точке;
 - **a** = 0.1 крутится с периодом 2;
 - a = 0.2 xaoc;
 - a = 0.3 хаотичный аттрактор;
 - **a** = 0.35 аналогичен предыдущему, но хаос проявляется сильнее;
 - **a** = 0.38 аналогичен предыдущему, но хаос проявляется ещё сильнее.

// убедимся позже в AnyLogic

Изменение параметра b

- a = 0.2, r = 5.7
 - **b** -> 0 аттрактор неустойчив;
 - $\mathbf{b} > \mathbf{a}$ `and` $\mathbf{b} > \mathbf{r}$ стационарное состояние.

Изменение параметра r

* переход в AnyLogic *