

 $a^{<t>} = c^{<t>}$ Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

dependant on $c^{< t-1>}$.

GRU

propagate back through that timestep without much decay. Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Alice's model (removing Γ_u), because if $\Gamma_r pprox 0$ for a timestep, the gradient can

Alice's model (removing Γ_u), because if $\Gamma_r pprox 1$ for a timestep, the gradient can

propagate back through that timestep without much decay.

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly

Betty's model (removing Γ_r), because if $\Gamma_u pprox 1$ for a timestep, the gradient can

LSTM

Here are the equations for the GRU and the LSTM:

propagate back through that timestep without much decay.

points	$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$	$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$
	$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$	$\Gamma_u = \sigma(W_u[a^{< t-1>},x^{< t>}] + b_u)$
	$\Gamma_r = \sigma(W_r[c^{< t-1>},x^{< t>}] + b_r)$	$\Gamma_f = \sigma(W_f[\ a^{< t-1>}, x^{< t>}] + b_f)$
	$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$	$\Gamma_o = \sigma(W_o[a^{< t-1>},x^{< t>}] + b_o)$
	$a^{< t >} = c^{< t >}$	$c^{< t>} = \ \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$
		$a^{< t>} = \Gamma_o * c^{< t>}$
	From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to and in the GRU. What should go in the the blanks?	
	Correct Yes, correct!	

 Γ_u and Γ_r $1-\Gamma_u$ and Γ_u Γ_r and Γ_u

weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood,

10. You have a pet dog whose mood is heavily dependent on the current and past few days'

other days' weather.

which you represent as $y^{<1>},\dots,y^{<365>}$. You'd like to build a model to map from x o y. Should you use a Unidirectional RNN or Bidirectional RNN for this problem? Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information. Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.

> Unidirectional RNN, because the value of $\boldsymbol{y}^{< t>}$ depends only on $x^{<1>},\ldots,x^{<t>}$, but not on $x^{< t+1>},\ldots,x^{<365>}$

Correct Yes!

Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not