The complexity of matrix rank and feasible systems of linear equations

Eric Allender Robert Beals Mitsunori Ogihara

1

Definitions

- 1. For a NDTM M, define the function gap_M as $gap_M(x) = \#accepting paths of <math>M$ on x #rejecting paths of <math>M on x.
- 2. GapL = $\{gap_M | M \text{ is a NL machine}\}.$
- 3. $C_{=}L = \{A \mid \exists f \in GapL \text{ such that } x \in A \iff f(x) = 0\}.$
- 4. A problem Q is logspace-uniform NC^1 -reducible to F i.e. $Q \in NC^1(F)$ if there exists a logspace machine M such that for every $n \geq 1$, M on 1^n outputs a description of a circuit $C_n \in NC^1$ which can contain oracle gates from F and for every x of length n, C_n outputs Q(x) on input x.

Results in the paper

Theorem (1)

The sets $\{(M,r)|\ M\in\mathbb{Z}^{n\times n}\ and\ rank(M)=r\}$ and $\{M|\ M\in\mathbb{Z}^{n\times n}\ and\ rank(M)=n-1\}$ are complete for $C_=L\cap co-C_=L$.

Theorem (2)

$$L^{C_=L} = NC^1(C_=L).$$

Review of some previously known results

[Ber84] Computing coefficients of characteristic polynomial \leq_L Iterated matrix multiplication

 \implies **Determinant** \leq_L **Iterated matrix multiplication** [: Constant term of characteristic polynomial of A is $(-1)^n \det(A)$]

[Val92] Iterated matrix multiplication \leq_L Determinant

There is a logspace-computable function that takes as input a sequence of matrices D_i and numbers (a, b) and outputs a matrix H such that entry (a, b) of $\prod D_i$ is $\det(H)$.

- Build a layered directed graph where edges exist only between adjacent layers. The edge between k-th vertex of i-th layer and m-th vertex of (i + 1)-th layer will have weight equal to entry (k, m) of D_i . Then entry (a, b) of $\prod D_i$ equals to the sum of weights of all paths from vertex a in the first layer to vertex b in the last layer [weight of a path is the product of weights of the edges on the path].
- Replace every edge (x, y) of weight c with a path of length 2 consisting of an edge (x, z) having weight 1 and an edge (z, y) having weight c. This make every path from the first layer to the last layer of even length.
- ullet Add self-loops of weight 1 to all vertices except vertex b in the last layer.
- Add an edge from vertex b in the last layer to vertex a in the first layer of weight 1.
- If H is the adjacency matrix of this graph, then det(H) has the desired value.

Corollary

There is a logspace-computable function f such that if M is a matrix of full rank, then so is f(M), and if det(M) = 0, then f(M) has rank exactly one less than full.

- Using **Determinant** \leq_L **Iterated matrix multiplication**, we obtain matrices D_i such that (1, n) entry of $\prod D_i$ is $\det(M)$.
- Then we use the last lemma to obtain $H_{n\times n}$ such that $\det(H) = \det(M)$.
- For $1 \le i, j \le n-1$, (i,j) is an edge in the graph induced by $H \implies i \le j$. Hence the submatrix of H induced by the first (n-1) rows and the first (n-1) columns is upper triangular. As the diagonal entries of H are all 1, we have that $\operatorname{rank}(H) \ge n-1$.

[Mul87] Checking whether the rank of an $n \times n$ matrix A is $\leq k$

- Take $A' = \begin{bmatrix} 0 & A \\ A^t & 0 \end{bmatrix}$. We have $\operatorname{rank}(A') = 2 \cdot \operatorname{rank}(A)$.
- Let Y be a $2n \times 2n$ diagonal matrix with $Y_{ii} = y^{i-1}$ for $1 \le i \le 2n$ for some indeterminate y. Take B = YA'. Then $\operatorname{rank}(B) = \operatorname{rank}(A')$.
- $\operatorname{Ker}(B^2) = \operatorname{Ker}(B) \implies \operatorname{Ker}(B^t) = \operatorname{Ker}(B) \ \forall t \geq 1 \implies \bigcup_{t \geq 1} \operatorname{Ker}(B^t) = \operatorname{Ker}(B)$. Fact from linear algebra: $\dim(\bigcup_{t \geq 1} \operatorname{Ker}(B^t))$ equals to the highest integer m such that t^m divides the characteristic polynomial P(t) of B. Then $m = \dim(\operatorname{Ker}(B)) = 2n - \operatorname{rank}(B)$.

- The first 2n rank(B) coefficients of P(t) are all zero. We can use Computing coefficients of characteristic polynomial \leq_L Iterated matrix multiplication to build matrices D_i such that it suffices to check whether certain entries of $\prod D_i$ are zero. The entries of D_i are polynomials of degree at most $4n^2$.

• For any matrix
$$X \in K[y]^{m \times m}$$
, write $X = X_0 + X_1 y + X_2 y^2 + \dots$
The map $\phi_d : K[y]^{m \times m} \to (K^{d \times d})^{m \times m}$ defined by $\phi_d(X) = \begin{bmatrix} X_0 & X_1 & \dots & X_{d-1} \\ 0 & X_0 & \dots & X_{d-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & X_0 \end{bmatrix}$ is

a ring homomorphism. Thus it suffices to check whether certain entries of $\prod \phi_d(D_i)$ are zero.

Complete problem for $C_{=}L$

The set $A = \{(M,r) | M \in \mathbb{Z}^{n \times n} \text{ and } \mathrm{rank}(M) < r\}$ is complete for C=L.

Hardness: Determinant is GapL-hard \implies Singularity is C₌L-hard \implies A is C₌L-hard. **Inclusion in C₌L**:

- Iterated integer matrix multiplication \in GapL \Longrightarrow Given integer matrices D_i and integers (a, b), the problem of checking whether an entry (a, b) of $\prod D_i$ is zero is in $C_{=}L$.
- The preceding discussion shows that the problem of determining if the rank is $\leq r-1$ is logspace conjunctive-truth-table reducible to a problem in $C_{=}L$ [f is a logspace conjunctive truth-table reduction from A to B if for all $x, x \in A \iff f(x, i) \in B$ for all $i \leq poly(|x|)$].
- [AO96] C₌L is closed under logspace conjunctive-truth-table reductions.

Complete problem for $C_{=}L \cap co-C_{=}L$

The sets $\{(M,r)|\ M\in\mathbb{Z}^{n\times n}\ \text{and}\ \mathrm{rank}(M)=r\}$ and $\{M|\ M\in\mathbb{Z}^{n\times n}\ \text{and}\ \mathrm{rank}(M)=n-1\}$ are complete for C₌L \cap co-C₌L.

Let $A = B \cap C$ where $A \in C_{=}L$ and $B \in \text{co-}C_{=}L$.

- Since the set of singular matrices is complete for $C_{=}L$, we can compute matrices M_1 and M_2 such that $x \in A \iff \det(M_1) = 0$ and $\det(M_2) \neq 0$.
- We can compute matrices M_3 and M_4 such that $x \in A \iff$ rank of M_3 is one less than full and rank of M_4 is full.
- $x \in A \iff \text{rank of} \begin{bmatrix} M_3 \\ & M_4 \end{bmatrix}$ is one less than full.

Theorem

$$L^{C_=L} = NC^1(C_=L).$$

$$L^{C_{=}L} \subseteq AC^{0}(C_{=}L) \subseteq NC^{1}(C_{=}L).$$

$NC^1(\mathbb{C}_{=}\mathbb{L}) \subseteq L^{\mathbb{C}_{=}\mathbb{L}}$:

Let B be a language in $NC^1(C_=L)$ and $\{C_n\}_{n\geq 1}$ be a logspace-uniform NC^1 circuit family that reduces B to $A \in \text{co-}C_=L$. Let N be a NDTM witnessing that $A \in \text{co-}C_=L$.

Assumptions:

- N has a one-way input tape.
- Each C_n is a tree.
- Each gate of C_n is either an input gate or an oracle gate.

For each oracle gate g in C_n , we assign weight $R(g) = 2^k$ where k is the number of oracle gates in C_n between g and the output gate.

Define a machine M as follows:

On input (x, m), M guesses in the following manner a collection H of nodes in C_n such that the sum of their weights is equal to m:

- 1. First M initializes a variable s to m. Then it traverses C_n by depth-first search. Whenever it visits a new node g, it guesses the output of that gate.
- 2. If the guessed output of g is 1, then M subtracts R(g) from s and simulates N on the input of g.
- 3. If the guessed output of g is 0, M continues traversing the tree.
- 4. If g is an input gate and the guessed output of g doesn't match with its actual value, then about the simulation and create an accepting and a rejecting path.
- 5. At the end, if $s \neq 0$, then M creates an accepting path and a rejecting path. Otherwise, M accepts if and only if the number of simulations of N where a rejecting state is encountered is even.

Fix H. Let g_1, \ldots, g_m be the gates in H and y_1, \ldots, y_m be their inputs. Then the gap generated by M is $\operatorname{gap}_N(y_1) \ldots \operatorname{gap}_N(y_m)$.

Let Z_x be the actual collection of oracle gates of C_n that output 1 on input x and let n_x be the sum of the weights of all gates in Z_x .

Want to show: n_x is the largest m such that M generates non-zero gap on input (x, m).

- If M correctly guesses Z_x as H, then gap generated is non-zero since $y_i \in A$ for all i.
- Consider $Z \neq Z_x$ such that the weight sum of Z is $\geq n_x$.

The weight of any gate is greater than the sum of weights of all of its ancestors. Hence there is a gate g is $Z \setminus Z_x$ such that for all gates h below g,

$$h \in Z_x \iff h \in Z$$
.

When M guesses Z as H, the input string for g is the same as what it would be if M would have guessed Z_x as H (i.e. the actual query string for g).

Hence, $gap_N(u) = 0$ implying that the gap generated by M is zero.

Let M' be the machine that does everything the same as M' except that it guesses the output of the output gate to be 1.

Let X_1, X_2 be languages in co-C₌L defined by the gap function of M and M' respectively.

Then $x \in B \iff$ The highest $m \leq q(|x|)$ for which $(x, m) \in X_1$ also satisfies $(x, m) \in X_2$.

 $\therefore B \in L^{\mathbf{C}=\mathbf{L}}.$