Nama: Bill Van Ricardo Zaluklun NIM: 221911069 Kelas: 38I1 . Hitung dan buat matrix kovarian dan korelari dari data dibawah ini: . Hitung eigen value dan eigenvektor dan walrix kovarian dan vorelasi dan nomor s Matrix A: Untuk menghitung matrix kovarian, gunakan 2 metale: delcomposisi ('eleviasi) maka:

$$|A|_{2} = [3 - 4 \ 0 - 5 \ 2] = 30 = 55_{11} = 30_{5} = 6_{12}$$

$$|A|_{2} = [4 \ 0 - 2 - 4 \ 2] = 40_{12} = 40_{12} = 55_{22} \Rightarrow 5_{22} = 40_{5} = 8_{12}$$

$$|A|_{3} = [1 \ 2 - 2 \ 0 - 1] = 40_{12} = 55_{22} \Rightarrow 5_{22} = 40_{5} = 8_{12}$$

$$|A|_{3} = [1 \ 2 - 2 \ 0 - 1] = 40_{12} = 55_{22} \Rightarrow 5_{23} = 40_{5} = 2_{12}$$

$$d_1 d_2 = \begin{bmatrix} 3-9 & 0-12 \end{bmatrix} \begin{bmatrix} \frac{3}{4} \\ \frac{0}{2} \end{bmatrix} = 20 = 55 = 20 = 55 = 20 = 55 = 4$$

$$d_1 d_3 = \begin{bmatrix} 3 -40 - 12 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix} = -7 = 55_{13} \implies 5_{13} = -7/5$$

$$d_2d_3 = \begin{bmatrix} 4 & 0 & -2 & -4 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ -2 \\ -4 \end{bmatrix} = 6 = 55_{13} = 5_{13} = 6$$

$$\Rightarrow S_{n} = \begin{bmatrix} 6 & 4 & -7/5 \\ 4 & 8 & 6/5 \\ -7/5 & 6/5 \end{bmatrix} \Rightarrow S = \frac{N}{N-1} S_{n} = \frac{5}{4} \begin{bmatrix} 6 & 4 & -7/5 \\ 4 & 8 & 6/5 \\ -7/5 & 6/5 \end{bmatrix} = \begin{bmatrix} 7/5 & 5 & -1/75 \\ 5 & 10 & 1/5 \\ -1/75 & 1/5 & 2/5 \end{bmatrix}$$

b. Menagunakan yumus kovanian

$$\Rightarrow S_{11} = \frac{\sum_{i=1}^{5} (x_{i,i} - \overline{x}_{i,i})^{2}}{A} = \frac{(3)^{2} + (-A)^{2} + 0 + (-1)^{2} + (2)^{2}}{A} = 7,5$$

 $S_{13} = \frac{\sum_{i=1}^{3} (x_{12} - \overline{x}_2)(x_{13} - \overline{x}_3)}{(9-6)(2-3) + (9-6)(2-3$ $=-\frac{7}{A}=-\frac{1}{15}$ 2= 51=1 (513-55) = (15-813+(8-813+(P-813+(N-813+(M-813) S_2 = [1/21/21/2-2] (21/3-2) (1/2-8)(3-2)+(8-8)(4-2)+(6-8)(0-2)+(4-8)(2-2)+(0-8)(1-2) = 94 = 1,5 Son = [(Pis - Pi) - (3-2)2+(4-2)2+(0-2)2+(2-2)2+(1-2)2 Maka: ta hitung matrix localasi dan memanjaa Aan matrix kovarian 1,-15 - 0, AOA(A52 = 0,5773503 = 0.13; selvingga: R = 0.5773503

	-
2 Menghitung eigenvalue dan eigenvalle Di	7
2 Menghitung eigenvalue dan eigenveletor dan : a. Matrix kovarjan.	1
$S = \begin{bmatrix} 7/5 & 5 & -1/75 \\ 5 & 10 & 1/5 \\ -1/75 & 1/5 & 2/5 \end{bmatrix}$	7
S= 5 10 15	+
1-1.75 1.5 2.5	-
	1
$\Rightarrow det (8 - \lambda I) = 0$	
det[7.5 5 -1.75] [X 0 0]	-
5 10 1,5 0 D = 0	-
$\begin{bmatrix} 5 & 10 & 1,5 \\ -1,75 & 1,5 & 2,5 \end{bmatrix} = \begin{bmatrix} 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} = 0$	-
	-
det 5 10-2 3,5 =0	7
det ([7,5-25 -1,757) =0 -1,75 2,5 2,52)	7
======================================	
(-1,75)]	1
	_
$-\lambda^{3} + 20\lambda^{2} - 158,75\lambda + 161,25 - (110 - 30,13125) = 0$	1
$-\lambda^3 + 20\lambda^2 - 88,4375\lambda + 11,25=0$	_
x3-20x2 + 88, 4375 x -54,25=0	1
	-[
Dengan menggunakan kalkulator, didapatkan:	-
λ, U= 13 90440087384 - 15,543(223A48x'10° U	4
$\lambda_2 = 5,41436335662 + 17,763568394 \times 10^{-16}i$	4
$\lambda_{2} = 5,41436335662 + 17,763568394 \times 10^{-16}i$ $\lambda_{3} = 0,680735775544 - 8,881784197 \times 10^{-16}i$	4
	-
Dengan menggunakan Newton-Raphson:	-
7 = 13, 9049	-
λ ₂ ≈ 5,4143	-
$\lambda_3 \approx 0,6807$	-
	-
$(\mathbf{S} - \lambda \mathbf{I})(\mathbf{V}) = 0$	+
$(S-\lambda I)(V)=0$	-
/ [7 = = -17=] [13,9049 00] \ V. [0]	
	-
1-1,75 15 25 0 0 13,909 1/ V3 0	100

-6,4040) (-1/75	1 V	10
5	-3,0040	is	V ₂	= 0
-1,75	1,5	- 11, AOAO)	1 V3	T TO T

=> Menggunakan metode Eliminan Grauss - Jordan:

	•	Annual Control of the	and the same of	-	-
1	0-63,4506	V		0	_
0	1-81,6290	V2	=	0	
0	0 0	L V3		0	1
		-	9		

 $V_1 - 63$, 4956 $V_3 = 0$ \Rightarrow $V_1 = 67,4506 V_3$ $V_2 - 81$, 6290 $V_3 = 0$ $V_2 = 81,629 V_3$

$$\eta = \begin{cases} 84506V_3 \\ 81,629V_3 \\ V_3 \end{cases}$$
, misal $V_2 = 1$, waka:

 $(S-\lambda I)(V)=0$

1/75 5 -	-1,75]		\$ 1A1A3 0 0		[VI]	Tyrind.	07	75
 F 10	1,5	-	0 5,A143 D	,-	Va	=	0	
1-1,75 45	2,5		0 0 5,4143		-V3		10	

 $\begin{bmatrix} 20856 & 5 & -1.75 \\ 5 & 4.5856 & 1.5 \\ -1.75 & 1.5 & -2.9143 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

3) Menggunakan Melade Eliminasi Gauss-Jardan:

$$\begin{bmatrix} 1, & 0 & 1,0057 \end{bmatrix} \begin{bmatrix} V_1 \\ 0 & 1 & -0,7695 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 $V_1 + I_{10057}V_3 = 0$ => $V_1 = -I_{10057}V_3$ $V_2 - G_{17695}V_3 = 0$ => $V_2 = G_{17695}V_3$

$ \eta = \begin{bmatrix} -1,0057 V_3 \\ 0,7695 V_3 \end{bmatrix} $; misal $V_2 = 1$, waka: $V_2 = 1$	-1,0057 0,7695
$\# \text{ uft } \lambda_3 = 0,6873$ $(S - \lambda t)(4) = 0$	
$ \begin{bmatrix} 7,5 & 5 & -1,75 \\ 5 & 10 & 1,5 \\ -1,75 & 1,5 & 2,5 \end{bmatrix} \begin{bmatrix} 6,6873 & 0 & 0 \\ 0 & 0,6873 & 0 \\ 0 & 0 & 0,6873 \end{bmatrix} $	$ \begin{vmatrix} J_1 \\ J_2 \\ J_3 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $
$ \begin{bmatrix} 6,8192 & 5 & -1.75 & V_1 & 0 \\ 5 & 9,3192 & 115 & V_2 & = 0 \\ -1.75 & 1.15 & 1,8192 & V_3 & 0 \end{bmatrix} $	
Menggunakan metade Eliminasi Gauss-Jordan: $ \begin{bmatrix} 1 & 0 & -0.6175 & V_1 & 0 \\ 0 & 1 & 0.4923 & V_2 & 0 \\ 0 & 0 & 0 & V_3 & 0 \end{bmatrix} $	
$V_{2} - 0.6175 V_{3} = 0$ = $V_{4} = 0.6175 V_{5}$ $V_{2} + 0.4923 V_{3} = 0$ $V_{2} = -0.4923 V_{2}$	
$ \eta = \begin{bmatrix} 0,6175 \ 13 \end{bmatrix} $; misal $1_3 = 1$, watea: $1_3 = 1$	0,6175] -0,4923
Sehingga, eigenvelder dan matrix 8 adalah: 81,62	0,7695 0,14923
b. Matrix Korelan L 0,57735 -0,40414 R = 0,5775 L 0,3 -0,40414 0,3	
$\Rightarrow \det(R - \lambda I) = 0$	

$det \begin{pmatrix} 1 & 0.57735 & -0.40414 \\ 0.57735 & 1 & 0.3 \\ -0.40414 & 0.3 & 1 \end{pmatrix} = 0$
=>[(1-x)(1-x)(1-x)(0,57735)(0,3)(-0,40414)+(-0,40414)(0,57735)(0,3)]-[(1-x)(0,57735)2+(1-x)(0,3)2+(1-x)
$= \frac{1}{3} \left(-\frac{1}{3} + \frac{3}{3} \right)^{2} - \lambda + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} +$
Deman menggundran kalkulatur, didapatran: \(\frac{1}{2}\frac{150021927}{3} - 4.99600361081\times 10 ¹⁶ i \(\sigma = 1.27351223241 + 3.8857808619 \times 10 ¹⁶ i \(\lambda = 0.13485154862 - 1.38877878078 \times 10 ¹⁶ i
Dengan mengamakan metale Naton - Raphso: $ \begin{array}{c} \lambda_1 = 1, 59.103 \\ \lambda_2 = 1,27351 \\ \lambda_3 = 0,13485 \end{array} $
$*$ whe $\lambda_1 = 159163$ $(8-\lambda T)(V) = 0$
-0,50163 0,57735 -0,40414 \ \(\bar{V_1} \) = 0 \ \\ \(\cdot{0} \) \\ \(\cdot{1} \) \(\cdot{0} \) \\ \(\cdot{0} \) \
Menggunakan metode \overline{t} liminasi biauss-jordan: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $3 V_1 + 3,94594V_3 = 0$ $V_1 = -3,94594V_3$ $V_2 + 3,34359V_3 = 0$ $V_2 = -3,34359V_3$ - 3,94594 misel /2=1, maka: e,= $(S - \lambda I)(V) = 0$ 0,57735 -0,40A14 1,27351 0 0,57135 127351 0 0 -6,40414 -0,27351 0,57735 -0,40414 0,57735 -0,27351 1 0 0,24240 0 1-0,58515 => V1 + 0,24240 /2 =0 => V1 = -0,2424V V= 4-0,58515V =0 -0,2424V -0,2424 ; misal V2=1, naka: e, = 0,5851513 * utc 12= 0,13485 0,57735 -0 A0414 0,13485 0 0 6,13485 0.5735 0,13415 50,40HIA 0,3

6,86514 0,57135 -0,40414 V1 0 0,57135 0,86514 0,3 V2 = 0 0 0,57135 0,86514 0,3 V2 = 0 0 0 1,0858 0,86514 V3 0 0 Menagunakan mukack Eliminasi basuss - badan: 1 0 -1,08958 V2 0 0 0 1,18722 V2 = 0 0 0 V3 0 0 1,18722 V2 = 0 0 0 V3 0 0 1,18722 V2 0 0 0 0 0 0 1,18722 V2 0 0 0 0 0 0 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
The state of the	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10,00514 05113) 07:0:14 1 3 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,57735 0,86514 0,3 1 1/2 = 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1-0,40414 0,3 0,86514 1 V3 1 DJ
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		어느 아니다 그는 아이들이 다양하는 이 이 이 아이들이 아니는 사람들이 되었다면 사람들이 살아왔다면 하는데 하는데 하는데 아이들이 되었다면 하는데 아이들이 되었다면 하는데 아이들이 아니는데 아이들이 사람들이 아이들이 아니는데 아이들이 아이들이 아니는데 아니는데 아이들이 아니는데 아이들이 아니는데 아니는데 아니는데 아니는데 아니는데 아니는데 아니는데 아니는데