# 1.5V / 15mW dual power amplifier BA5152F

The BA5152F is a dual-channel power amplifier designed for 1.5V headphone stereos. The circuit consists of a power supply circuit, mute circuit, bias circuit, and two amplifier circuits. To simplify assembly, the gain is fixed, so external negative-feedback components are not required.

# Applications

1.5V headphone Hi-Fi stereos

#### Features

- 1) High output. Pout = 15mW (R<sub>L</sub> = 16 $\Omega$ ).
- 2) Small "pop" noise.
- 3) Mute circuit terminal provided.
- 4) Terminals provided for radiation countermeasures.
- 5) Good ripple rejection ratio.
- 6) Few external components required.
- 7) Good low-voltage characteristics.
- 8) Built-in power switch circuit.

#### Block diagram



#### ● Absolute maximum ratings (Ta = 25°C)

| Parameter             | Symbol | Limits           | Unit |
|-----------------------|--------|------------------|------|
| Power supply voltage  | Vcc    | 4.5              | V    |
| Power dissipation     | Pd     | 500*             | mW   |
| Operating temperature | Topr   | <b>−25~</b> +75  | °    |
| Storage temperature   | Tstg   | <b>−55~</b> +125 | °    |

Reduced by 5.0mW for each increase in Ta of 1°C over 25°C (when mounted on a 50mm×50mm×1.6mm glass epoxy board).

Audio ICs BA5152F

# ● Recommended operating conditions (Ta = 25°C)

| Parameter            | Symbol | Min. | Тур. | Max. | Unit |
|----------------------|--------|------|------|------|------|
| Power supply voltage | Vcc    | 1.0  | 1.5  | 1.8  | V    |

# •Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 1.5V, f= 1kHz and $R_L$ = 16 $\Omega$ )

| Parameter                 | Symbol          | Min. | Тур. | Max. | Unit              | Conditions                                                  | Measurement circuit |
|---------------------------|-----------------|------|------|------|-------------------|-------------------------------------------------------------|---------------------|
| Quiescent current         | la              | _    | 12   | 18   | mA                | V <sub>IN</sub> =0V <sub>rms</sub>                          | Fig.1               |
| Closed loop voltage gain  | Gvc             | 18   | 21   | 24   | dB                | V <sub>IN</sub> =-46dBm                                     | Fig.1               |
| Rated output              | Роит            | 10   | 15   | _    | mW                | THD=10%                                                     | Fig.1               |
| Total harmonic distortion | THD             | _    | 1    | 3    | %                 | Po=2.5mW                                                    | Fig.1               |
| Output noise voltage      | V <sub>NO</sub> | _    | 23   | 47   | μV <sub>rms</sub> | $R_g=0\Omega$ , BPF=20Hz~20kHz                              | Fig.1               |
| Input resistance          | R <sub>IN</sub> | 6.6  | 9.5  | 12.4 | kΩ                | _                                                           | Fig.1               |
| Ripple rejection ratio    | RR              | 35   | 45   | _    | dB                | $V_{RR}$ =-30dBm, f <sub>RR</sub> =100Hz, $R_g$ =0 $\Omega$ | Fig.1               |
| Standby current           | Isт             | _    | 0    | 10   | μΑ                | 13pin: OPEN                                                 | Fig.1               |
| Channel balance           | СВ              | _    | _    | 2    | dB                | _                                                           | Fig.1               |
| Mute level                | MUTE            | 70   | _    | _    | dB                | V <sub>IN</sub> =-20dBm, 16pin:V <sub>CC</sub>              | Fig.1               |

#### Measurement circuit



Fig. 1

Audio ICs BA5152F

## Application example



Fig. 2

## Application board patterns



Fig. 3

# Application board component layout



Fig. 4

Audio ICs BA5152F

#### Complete application example circuit



Fig. 5

# Circuit description

# (1) Power supply block

The BA5152F has an internal power switch, so the Vcc terminal (pin 9) connects directly to the power source. Pin 13 is the power switch, and if it is left open, no bias current flows in the circuit and the IC will not operate.



Fig. 6

#### (2) Mute circuit block

When pin 13 is connected to  $V_{\rm CC}$ , the IC starts up, but the mute circuit operates to suppress a "pop" sound from being generated. The time constant of the power-on mute circuit is determined by the capacitor connected between pins 14 and 15. It is also possible to force the mute circuit to operate by connecting pin 16 to  $V_{\rm CC}$ . There is no time constant in this case.



Fig. 7