Supervised Machine Learning: Modelos Logísticos Binários e Multinomiais

Prof. Dr. Luiz Paulo Fávero



## Modelos Lineares Generalizados (GLM)

$$\eta_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + ... \beta_k X_{ki}$$

Negativos (Dados de Contagem)

| Modelos lineares generalizados, características da variável dependente e funções de ligação canônica. |                                                                          |                             |                                          |   |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|------------------------------------------|---|
| Modelo de Regressão                                                                                   | Característica da Variável Dependente                                    | Distribuição                | Função de Ligação<br>Canônica (η)        |   |
| Linear                                                                                                | Quantitativa                                                             | Normal                      | $\hat{Y}$                                |   |
| Com Transformação de Box-Cox                                                                          | Quantitativa                                                             | Normal Após a Transformação | $\hat{Y}^{\lambda} - 1$                  |   |
|                                                                                                       |                                                                          |                             | ${\lambda}$                              |   |
| Logística Binária                                                                                     | Qualitativa com 2 Categorias ( <i>Dummy</i> )                            | Bernoulli                   | , ( p )                                  |   |
|                                                                                                       |                                                                          |                             | $\ln\left(\frac{1}{1-p}\right)$          |   |
| Logística Multinomial                                                                                 | Qualitativa $M$ ( $M > 2$ ) Categorias                                   | Binomial                    | $p_m$                                    |   |
| RO                                                                                                    | 00,                                                                      |                             | $\ln \left( \frac{1-p_m}{1-p_m} \right)$ | 1 |
| Poisson                                                                                               | Quantitativa com Valores Inteiros e Não<br>Negativos (Dados de Contagem) | Poisson                     | $\ln\!\left(\lambda_{poisson} ight)$     |   |
| Binomial Negativo                                                                                     | Quantitativa com Valores Inteiros e Não                                  | Poisson-Gama                | $\ln(\lambda_{bneg})$                    |   |









#### Regressão Logística Binária

- Técnica supervisionada de machine learning utilizada para explicar ou predizer a probabilidade de ocorrência de determinado evento em função de uma ou mais variáveis explicativas.
- Variável dependente: binária.
  - → Resultados interpretados em termos de probabilidades.
- Variáveis preditoras X: métricas ou não métricas.







Conceito de Probabilidade

Seja Y a resposta a um estímulo (sim ou não) - pode ser a preferência por um produto, adimplência, aprovação em um curso, etc.

- p: probabilidade da resposta "sim".
- 1 p: probabilidade da resposta "não".

Conceito de Chance (Odds)

# Chance (odds) de ocorrência de um evento:

$$chance = rac{p}{1-p}$$
 (Evento)

Exemplos: se 
$$p = 0.50$$
; chance = 1 (1 para 1)  
se  $p = 0.75$ ; chance = 3 (3 para 1)  
se  $p = 0.25$ ; chance =  $\frac{1}{3}$  (1 para 3)

#### Conceito de Logito

Logito: logaritmo natural da chance de ocorrência de uma resposta do tipo "sim".

E, a partir do logito, define-se a expressão da probabilidade de ocorrência do evento em estudo, em função das variáveis explicativas.

Vetor com variáveis explicativas 
$$e^{logito} = Z = ln\left(\frac{p}{1-p}\right)$$
$$e^{logito} = e^{Z} = \frac{p}{1-p} = odds$$
$$p = \frac{e^{Z}}{1+e^{Z}} = \frac{1}{1+e^{-Z}}$$



### O Modelo de Regressão Logística Binária



$$p_i = \frac{1}{1 + e^{-Z_i}} = \frac{1}{1 + e^{-(\alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki})}}$$

A curva logística, ou sigmóide, descreve a relação entre a probabilidade associada à ocorrência de determinando evento e um conjunto de variáveis preditoras.

A função logística assume valores entre 0 e 1 para qualquer Z entre  $-\infty$  e  $+\infty$ 

#### Função Logística

$$p_i = \frac{1}{1 + e^{-Z_i}} = \frac{1}{1 + e^{-(\alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki})}}$$

- Definida para que se estabeleça a probabilidade de ocorrência de determinado evento e a importância das variáveis explicativas para esta ocorrência.
- Estimação dos parâmetros: processo iterativo para maximizar o acerto da probabilidade de ocorrência de um evento à sua real ocorrência (Método de Máxima Verossimilhança).
- Os **resultados** atribuíveis à variável dependente estarão entre 0 e 1.
- Análise do ajuste do modelo: testes de significância dos parâmetros e tabela de classificação (matriz de confusão).







#### Regressão Logística Multinomial

- Variável dependente se apresenta na forma qualitativa com mais de duas categorias.
- Por exemplo, para três possíveis respostas (labels 0, 1 ou 2, por exemplo), e sendo 0 a categoria de referência escolhida, teremos duas outras possibilidades de evento em relação a esta categoria (1 ou 2).
- Dessa forma, são definidos dois vetores de variáveis explicativas, com os respectivos parâmetros estimados (dois logitos):

$$Z_{1i} = \alpha_1 + \beta_{11} X_{1i} + \ldots + \beta_{k1} X_{ki}$$

$$Z_{2i} = \alpha_2 + \beta_{12} X_{1i} + \ldots + \beta_{k2} X_{ki}$$

Logo, número de logitos estimados será (M − 1), sendo M o número de categorias de Y.

#### Funções Logísticas Multinomiais

Sendo 
$$p_i = \frac{e^{Z_i}}{1 + e^{Z_i}}$$
 a probabilidade de ocorrência do evento, temos que:

$$P_{i_0} = \frac{1}{1 + e^{Z_{1i}} + e^{Z_{2i}}}$$

$$P_{i_1} = \frac{e^{Z_{1i}}}{1 + e^{Z_{1i}} + e^{Z_{2i}}}$$

$$P_{i_2} = \frac{e^{Z_{2i}}}{1 + e^{Z_{1i}} + e^{Z_{2i}}}$$

#### Interpretação e Eficiência Global do Modelo Multinomial

- Como na regressão logística binária, deve-se avaliar o resultado do **teste**  $\chi^2$  para o modelo de regressão logística multinomial, bem como os resultados dos **testes** z para os parâmetros estimados das variáveis preditoras.
- Interpretação: os parâmetros das variáveis devem ser analisados em relação à categoria de referência da variável dependente.

 Eficiência do modelo: a classificação das observações deve ser realizada a partir da maior probabilidade estimada para cada observação (aqui, ao contrário da regressão logística binária, não faz sentido a definição de um cutoff).



