

Algoritma *Data Mining* untuk
Optimasi Suhu dan
Waktu *Roasting* Nibs Biji Kakao di *Cocoa Teaching Industry* (CTI)
UGM

Rizky Alif Ramadhan 19/446785/TK/49890

LOCALLY ROOTED,
GLOBALLY RESPECTED

Daftar Konten

- Pendahuluan
- Tinjauan Pustaka dan Dasar Teori
- Metode Penelitian
- Hasil dan Pembahasan
- Kesimpulan

Pendahuluan

LOCALLY ROOTED, GLOBALLY RESPECTED

Nilai Ekspor US\$1,21 miliar (IDR 18 Triliun)

Sumber: WorldAtlas

Luas Kebun Kakao 1.497.467 Ha (>3x luas Provinsi DIY)

UGM CTLI (Cocoa Teaching and Learning Industry)

Cocoa Butter dan Bubuk

Suhu/temperatur

Durasi

Roasting/Penyangraian

- Kandar Air /Moist
- Warna
- Aroma

- Nibs Capacity
- Bean Source
- ...

Proses Roasting di UGM CTLI

- Operator menyetel suhu/temperatur roasting
- Pengecekan kadar air dan pH secara berkala
- Jika sudah sesuai standar maka proses roasting akan dihentikan

Optimize!!!

Permasalahan

- Suhu/temperatur yang terlalu kecil/besar
- Durasi yang terlalu singkat/panjang

Under roasted/over roasted

Data Mining Algorithm can solve this problem?

- Kadar Air /Moist
- Durasi
- Nibs Capacity
- Bean Source
- ...

Suhu/temperatur

Algoritma Data Mining/ML

Rumusan Masalah

- Apa saja variabel yang mempunyai tingkat signifikansi yang tinggi terhadap suhu roasting?
- Bagaimana kinerja algoritma data mining dalam merekomendasikan suhu yang optimal berdasarkan durasi roasting tertentu pada proses roasting biji kakao?
- Apa algoritma data mining yang mempunyai performa terbaik dalam merekomendasikan suhu yang optimal berdasarkan durasi roasting tertentu pada proses roasting biji kakao?

Tujuan Penelitian

Merancang Algoritma

Membandingkan Algoritma

Menentukan Algoritma Terbaik

Manfaat Penelitian

Penelitian dan Engineering

Operasional

Industri/Pabrik

Tinjauan Pustaka dan Dasar Teori

LOCALLY ROOTED, GLOBALLY RESPECTED

Tinjauan Pustaka

Pelita Perkebunan 2005, 21(3), 169-183

Optimasi Suhu dan Lama Penyangraian Biji Kakao Menggunakan Penyangrai Skala Kecil Tipe Silinder

Optimation of Temperature and Duration of Cocoa Beans Roasting in a Cylindrical Roaster

Misnawi¹⁾, Sri-Mulato¹⁾, Sukrisno Widyotomo¹⁾, Awad Sewet²⁾ and Sugiyono²⁾

Respon: Peroksida lemak, warna, serta sifat organoleptik.

International Food Research Journal 19(4): 1355-1359 (2012)

Journal homepage: http://www.ifrj.upm.edu.my

Optimization of cocoa beans roasting process using Response Surface Methodology based on concentration of pyrazine and acrylamide

^{1*}Farah, D.M.H., ¹Zaibunnisa, A.H. and ²Misnawi

¹Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

²Indonesia Coffee and Cocoa Research Institute, Jl. PB. Sudirman No. 90 Jember 68100, Indonesia

Respon: Konsentrasi dari pyrazine dan acrylamide

ISSN 0101-2061 Food Science and Technology

DOI: http://dx.doi.org/10.1590/1678-457X.16416

Effect of the roasting temperature and time of cocoa beans on the sensory characteristics and acceptability of chocolate

Ismara Santos ROCHA¹, Ligia Regina Radomille de SANTANA^{2*}, Sérgio Eduardo SOARES³, Eliete da Silva BISPO³

Respon: Penampilan, aroma, rasa, dan tekstur.

Tinjauan Pustaka

Suhu dan durasi optimal menggunakan Response Surface Methodology

140°C dan 20 menit

116°C dan 23 menit

90 sampai 110°C

Tinjauan Pustaka

UGM CTLI Process

Suhu dan Durasi

Data Produksi

UGM CTLI Data Collecting

Data Preprocessing

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

One-hot Encoding

Min-max Normalization

Seleksi Fitur

Numerik

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

Kategorik

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F Value
Between Groups	$SSB = \sum_{j=1}^{n} n_{j} (\overline{X}_{j} - \overline{X})^{2}$	$df_1 = k - 1$	MSB = SSB / (k - 1)	f = MSB / MSE
Error	$SSE = \Sigma \Sigma (X - \overline{X_j})^2$	$df_2 = N - k$	MSE = SSE / (N - k)	
Total	SST = SSB + SSE	df ₃ = N - 1		

Support Vector Regression (SVR)

$$f(X) = w^T \varphi(X) + B$$

$$min \frac{1}{2} ||w||^2 + C \frac{1}{N} \sum_{i=1}^{N} L_E(y_i, f(X_i))$$
$$y_i - w \varphi(X_i) - b \le E$$
$$w \varphi(X_i) - y_i + b \le E, \qquad i = 1, 2, 3, ..., N$$

Dimana,

$$L_E(y_i, f(X_i)) = |y_i - f(X_i)| - E|y_i - f(X_i)|$$

- Linear Kernel
 - $k(x,y) = x^T y + C$
- Polynomial Kerne

 $k(x,y) = (ax^Ty + C)^d$

Radial Basis Function (RBF) Kernel
 k(x,y) = exp (-γ||x - y||²)^d

Multiple Linear Regression (MLR)

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n + \varepsilon$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$Y = X\beta + \varepsilon$$

$$b = egin{bmatrix} b_0 \ b_1 \ dots \ b_k \end{bmatrix} = (X^{'}X)^{-1}X^{'}Y$$

Extreme Learning Machine (ELM)

$$y_j = \sum_{i=1}^{H} b_i f(w_i x_j + c_i), j = 1, 2, ..., N$$

$$Y = FB$$

$$\hat{B} = F^+ Y$$

$$F^+ = (F^T F)^{-1} F^T$$

Particle Swarm Optimization (PSO)

$$v_k^i(t+i) = wv_k^i(t) + c_1 rand() \left(p_k^i(t) - x_k^i(t) \right) + c_2 rand() \left(g_k^i(t) - x_k^i(t) \right)$$

$$x_k^i(t+i) = x_k^i(t) + v_k^i(t+i)$$

Evaluation Metrics

$$MAPE = \frac{1}{N} \sum_{t=1}^{N} \left| \frac{A_t - F_t}{A_t} \right|$$

$$RMSE = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(A_i - F_i)^2}$$

Metode Penelitian

LOCALLY ROOTED, GLOBALLY RESPECTED

Dataset

Kolom	Keterangan
nibs_capacity	kapasitas nibs (kg)
solution_load	jumlah air yang dibutuhkan (L)
beans_source	wilayah kebun dari biji tersebut
is_alkalized	apakah proses tersebut mengalami alkilasi?
product_type	tipe produk
durasi_roasting	durasi roasting
suhu	suhu pengaturan
pH_0	pH awal biji kakao
pH_N	pH akhir biji kakao
moist_0	kadar air (%) awal biji kakao
moist_N	kadar air (%) akhir biji kakao

April 2021 sampai Juli 2022

43 **Baris Data**

Alur Penelitian

Hasil dan Pembahasan

LOCALLY ROOTED, GLOBALLY RESPECTED

Seleksi Fitur

Variabel	r_suhu	pvalue_suhu
nibs_capacity	-0.5089	0.0009
solution_load	-0.2962	0.0671
pH_0	0.0392	0.8125
pH_N	0.1251	0.4480
delta_pH	-0.1771	0.2807
moist_0	-0.0248	0.8809
moist_N	-0.5860	0.0001
delta_moist	0.2155	0.1876

Variabel	fscore_suhu	pvalue_suhu
beans_source	29.522289	0.000004
product_type	0.512261	0.478655
is_alkalized	6.490727	0.015131

Uji Hipotesis (Tingkat Signifikansi 99%)

- H0 : variabel bebas x tidak memiliki hubungan dengan variabel target y (suhu)
- H1 : variabel bebas x memiliki hubungan dengan variabel target y (suhu)

Variabel yang mempunyai tingkat signifikansi tinggi dan dipilih dalam pemodelan pada penelitian ini adalah nibs_capacity, moist_N, dan bean_source.

Support Vector Regression (SVR)

Hyperparameter Tuning

- C = 22
- epsilon = 1
- gamma = 1
- kernel = rbf

SVR		
Ukuran	MAPE	RMSE
Fold 1	3.71	7.72
Fold 2	5.73	8.85
Fold 3	4.84	10.94
Rata-rata	4.76	9.17
Std Dev	1.01	1.63

Multiple Linear Regression (MLR)

 $suhu = 153.84 - 6.36 \cdot nibs$ capacity - 15.99 · moist N - 16.97 · durasi roasting + categoric

	4	
	ADACHI	-18.26
	BONDO	0.10
	GOBEL	-19.46
	HMGN	-17.18
<	PAPUA	13.08
	PGL	2.34
	SGU	21.89
	SIKLON	36.42
	UNIDKOREA	7.23
	`	

MLR			
Ukuran	MAPE	RMSE	
Fold 1	3.72	7.83	
Fold 2	7.06	12.32	
Fold 3	3.62	5.73	
Rata-rata	4.8	8.63	
Std Dev	1.96	3.37	

Extreme Learning Machine (ELM)

ELM		
Ukuran	MAPE	RMSE
Fold 1	3.69	7.81
Fold 2	7.06	12.32
Fold 3	3.62	5.73
Rata-rata	4.79	8.62
Std Dev	1.97	3.37

PSO-ELM

PSO was Optimizing RMSE to 7.37

PSO-ELM			
Ukuran	MAPE	RMSE	
Fold 1	3.21	6.48	
Fold 2	4.19	7.59	
Fold 3	5.01	8.03	
Rata-rata	4.14	7.37	
Std Dev	0.90	0.80	

Perbandingan Algoritma

Model	MAPE	RMSE
SVR	4.76	9.17
MLR	4.81	8.63
ELM	4.80	8.62
PSO-ELM	4.14	7.37

PSO-ELM adalah model yang memiliki performa terbaik dengan skor MAPE 4.14% dan RMSE 7.37 lebih baik dibandingkan SVR dan MLR. Penambahan PSO untuk inisialisasi bobot awal w dan bias dapat menurunkan nilai RMSE sebesar 14.5% dari 8.62 menjadi 7.37.

Kesimpulan dan Saran

LOCALLY ROOTED, GLOBALLY RESPECTED

Kesimpulan

- Variabel yang mempunyai tingkat signifikansi yang tinggi dengan variabel suhu adalah nibs_capacity, moist_N, dan bean_source.
- Algoritma data mining terbaik adalah PSO-ELM dengan skor MAPE sebesar 4.14% dan RMSE sebesar 7.37, kemudian ELM dengan skor MAPE sebesar 4.79% dan RMSE sebesar 8.62, MLR dengan skor MAPE sebesar 4.80% dan RMSE sebesar 8.62, dan SVR dengan skor MAPE sebesar 4.76% dan RMSE sebesar 9.17.
- Algoritma data mining dikatakan layak dengan predikat Highly Accurate Forecasting karena mempunyai nilai MAPE < 10%

Saran

Integrating the Data

Using another Feature Selection Method

Using Tree-based Model

Terima Kasih

LOCALLY ROOTED, GLOBALLY RESPECTED

"Ini adalah text untuk kutipan atau qoutes yang menggunakan font gama-sans light italic"

Ini Adalah Judul Presentasi Title Case Dengan Menggunakan Font Gama-sans Bold

Sedangkan ini adalah space untuk sub-judul sebagai pelengkap judul utama di atas, Sentence Case dengan menggunakan font Gama-Sans regular

LOCALLY ROOTED,
GLOBALLY RESPECTED

"Ini adalah text untuk kutipan atau qoutes yang menggunakan font gama-sans light italic"

