

Lecture 10: Mosfet ECE3110J, Electronic Circuits

Xuyang Lu 2024 Summer

Recap of Last Lecture

BJT Circuits

Topics to Be Covered

MOSFET

NMOS FET

- MOS = Metal-Oxide-Semiconductor
- FET = Field effect Transistor
- CMOS Technology keeps on reducing t_{ox} and L_{eff} (Moore's Law).
- Substrate (Body) of NMOS is generally connected to ground.
- See Chapter 17 for the introduction of CMOS fabrication technology.

CMOS

Spice Models

- CMOS = Complementary MOS
- Substrate (Body) of NMOS is generally connected to ground.
- \bullet N-well (Body) of PMOS is generally connected to $V_{DD}.$

Layout

NMOS

PMOS

- \bullet $V_C = 0V$
- No current flow
- As VG increases from zero, holes in p-substrate are repelled, leaving negative ions (ionized boron dopants) behind to form a depletion region.
- Positive charges are mirrored at the gate.

- No charge carriers (electrons or holes) in the channel, so no current flow.
- Higher V_G further increases the width of the depletion region.

- When V_G reaches a sufficiently positive value, a channel of electrons (inversion layer) is formed beneath the gate oxide.
- Electrons flow from "source" to "drain" . Equivalently, current flows from "drain" to "source" .
- The value of V_G at which the inversion layer forms is the threshold voltage (V_{TH}) .

• If V_G rises further, the charges in the depletion region remain relatively constant, whereas the charges in the inversion layer increase rapidly.

For $V_{GS} \ge V_{TH}$

Analog Circuits

$$Q = -WL_{eff}C_{ox}(V_{GS} - V_{TH}) \text{(unit: coulomb)}$$
(1)

$$Q_d = -WC_{ox}(V_{GS} - V_{TH}) \text{(unit: coulomb} \cdot m^{-1}) \tag{2}$$

 $C_{ox}({\sf gate\ oxide\ capacitance\ per\ unit\ area})$

$$= \epsilon_{\text{silicon oxide}} / t_{ox}$$

$$= [8.85 \times 10^{-12} (F/m) \times 3.9] / t_{ox}$$
(3)

$$I_{D} = Q_{d} \cdot v = Q_{d} \cdot (\mu_{n} E) = -WC_{ox} \left[V_{GS} - V_{TH} - V(x) \right] \cdot (\mu_{n} E) \tag{4}$$

$$E = -dV(x)/dx (5)$$

$$= W_{ox} \left[V_{GS} - V_{TH} - V(x) \right] \cdot \mu_n \cdot \frac{dV(x)}{dx} \tag{6}$$

$$\int_{x=0}^{x=L_{\rm eff}} I_D \cdot dx = \int_{V(0)=0}^{V(L)=V_{DS}} \mu_n C_{ox} W \left[V_{GS} - V_{TH} - V(x) \right] \cdot dV(x) \tag{7}$$

$$I_D = \mu_n C_{ox} \frac{W}{L_{eff}} \left[\left(V_{GS} - V_{TH} \right) V_{DS} - \frac{1}{2} V_{DS}^{\ 2} \right] \quad I_D : \text{constant along channel} \quad \text{(8)}$$

Spice Models

$$I_D = \mu_n C_{ox} \frac{W}{L_{eff}} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$
 (9)

$$I_{D, \text{ max}} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L_{eff}} \left(V_{GS} - V_{TH} \right)^2$$
 (10)

where

$$V_{DS} = V_{GS} - V_{TH} \tag{11}$$

 i_D

Deep triode region

$$R_{on} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)_{\text{eff}} \left(V_{GS} - V_{TH}\right)} \tag{12}$$

Saturation Region

- For $V_{DS} > V_{GS} V_{TH}$, I_D becomes relatively constant.
- $V_{DS} = V_{GS} V_{TH}$ is the minimum value for the NMOS to operate in saturation region.

Saturation Region

Saturation Region

Analog Circuits

$$\int_{x=0}^{x=L'} I_D \cdot dx = \int_{V(0)=0}^{V(L')=V_{GS}-V_{TH}} \mu_n C_{ox} W \left[V_{GS} - V_{TH} - V(x) \right] \cdot dV(x) \tag{13}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right)^{2}$$
 (14)

 I_D : constant along channel $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH}\right)^2 \ \ \text{(14)} \qquad \qquad \frac{L'\colon \ \text{the point at which } Q_d \ \text{drops to zero}}{V_{GS} - V_{TH}\colon \ \text{the overdrive voltage}}$

• Electron velocity ($v = I_D/Q_d$) becomes tremendously high at the pinch off point $(Q_d \to 0)$, such that electrons shoot through the depletion region and arrive at the drain terminal.

Channel-Length Modulation

$$\begin{cases}
I_{D} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L'} \left(V_{GS} - V_{TH}\right)^{2} \\
L' = L_{eff} - \Delta L \\
\frac{1}{L'} = \frac{1}{L_{eff} - \Delta L} = \frac{1}{L_{eff}} \cdot \frac{1}{1 - \frac{\Delta L}{L_{eff}}} \approx \frac{1}{L_{eff}} \cdot \left(1 + \frac{\Delta L}{L_{eff}}\right)
\end{cases}$$

$$I_{D} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L_{eff}} \left(V_{GS} - V_{TH}\right)^{2} \left(1 + \frac{\Delta L}{L_{eff}}\right)$$
(15)

 $=\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L_{cff}}\left(\right.V_{GS}-V_{TH})^{2}\left(1+\lambda V_{DS}\right)$

4 D > 4 A > 4 B > 4 B >

Channel-Length Modulation

$$r_o = \frac{\partial V_{DS}}{\partial I_D} = 1 / \frac{\partial I_D}{\partial V_{DS}} \tag{17}$$

$$= \frac{1}{\frac{1}{2}\mu_{n}C_{ox}\frac{W}{T}(V_{GS} - V_{TH})^{2} \cdot \lambda}$$
 (18)

$$pprox rac{1}{I_D \cdot \lambda}$$
 (19)

Body Effect

$$V_{TH} = V_{TH0} + \gamma(\sqrt{|2\Phi_F + V_{SB}|} - \sqrt{|2\Phi_F|})$$
 (20)

$$\Phi_F = \frac{kT}{q} \ln \frac{N_{sub}}{n_i} \tag{21}$$

$$\gamma = \frac{\sqrt{2q\epsilon_{Si}N_{sub}}}{C_{ox}} \tag{22}$$

$$I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right)^2 \tag{23}$$

Body Effect

$$g_{mb} = \frac{\partial I_D}{\partial V_{SR}} = \frac{\partial I_D}{\partial V_{TH}} \cdot \frac{\partial V_{TH}}{\partial V_{SR}}$$
 (24)

$$= -\mu_n C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right) \cdot \frac{\partial V_{TH}}{\partial V_{SB}} \tag{25}$$

$$= -\mu_n C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right) \cdot \frac{\gamma}{2} \frac{1}{\sqrt{|2\Phi_F + V_{SB}|}}$$
 (26)

$$= -gm \cdot \eta \tag{27}$$

Body Effect

- ullet V_{GS} increases, I_D increases.
- ullet V_{SB} increases, V_{TH} increases and thus I_D decreases.

$$\left(\frac{W_{drawn}}{L_{drawn}}\right) = \frac{10\mu m}{2\mu m} \tag{28}$$

$$V_{th} = 0.7 + 0.45(\sqrt{0.9 + 1} - \sqrt{0.9}) \tag{29}$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L_{eff}} \right) \left(V_{Gs} - V_{th} \right)^2 \left(1 + \lambda V_{DS} \right) \tag{30} \label{eq:energy_state}$$

Spice Models

NMOS Model			
$LEVEL{=}1$	VTO=0.7	GAMMA=0.45	PHI=0.9
NSUB=9e+14	LD=0.08e-6	UO=350	LAMBDA=0.1
TOX=9e-9	PB=0.9	CJ = 0.56e-3	CJSW=0.35e-11
MJ=0.45	MJSW=0.2	CGDO=0.4e-9	JS=1.0e-8
PMOS Model			
LEVEL=1	VTO=-0.8	GAMMA=0.4	PHI=0.8
NSUB=5e+14	LD=0.09e-6	UO=100	LAMBDA=0.2
TOX=9e-9	PB=0.9	CJ = 0.94e - 3	CJSW=0.32e-11
MJ=0.5	MJSW=0.3	CGDO=0.3e-9	JS=0.5e-8

Spice Models

- Simulators such as SPICE and Cadence need accurate models for each device.
- Above is the simplest MOS SPICE model, known as "Level 1," and provide typical values for each parameter corresponding to 0.5-µm technology.

Spice Models


```
VTO : threshold voltage with zero V_{SB} ( unit : V ) GAMMA : body effect coefficient ( unit : V^{1/2} ) PHI : 2\Phi_F ( unit : V ) TOX : gate oxide thickness ( unit : m ) NSUB : substrate doping ( unit : cm^{-3} ) LD : source/drain side diffusion ( unit : m ) UO : channel mobility ( unit : cm^2/V/s ) LAMBDA : channel-length modulation coefficient ( unit : V^{-1} )
```

Spice Models


```
CJ : source/drain bottom-plate junction capacitance per unit area ( unit : F/m^2 ) CJSW : source/drain sidewall junction capacitance per unit length ( unit : F/m )
```

 $\mathsf{PB} : \mathsf{source} \; / \; \mathsf{drain} \; \mathsf{junction} \; \mathsf{built-in} \; \mathsf{potential} \; \big(\; \mathsf{unit} \; \colon \; \mathsf{V} \; \big)$

 $\mathsf{MJ}:\mathsf{exponent}$ in CJ equation (unitless)

MJSW : exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit : F/m)

CGSO : gate-source overlap capacitance per unit width (unit : F/m)

 $\mathsf{JS}:\mathsf{source}/\mathsf{drain}$ leakage current per unit area (unit $\mathrel{\mathop:}\ A/m^2$)