Feuille d'exercices nº 13 : dérivation

Exercice 1. Pour chacune des fonctions suivantes, déterminer le domaine de dérivabilité et étudier l'existence de tangentes (éventuellement verticales) aux points posant problème.

1.
$$f(x) = (x^2 - 1)\arccos(x)$$

2.
$$f(x) = \sqrt{x}e^{-x}$$

3.
$$f(x) = (1-x)\sqrt{1-x^2}$$

Exercice 2. Les fonctions suivantes sont-elles prolongeables par continuité aux bornes de leur domaine de définition? Si oui, étudier la dérivabilité de la fonction prolongée. Et si oui, la fonction est-elle \mathcal{C}^1 ?

$$1. \ f(x) = \frac{x\sqrt{x}}{e^x - 1}$$

$$2. \ f(x) = xe^{\frac{1}{\ln(x)}}$$

Exercice 3. Soit $f: x \mapsto 1 + |x| \sin x$.

- 1. Montrer que f est continue, dérivable sur \mathbb{R} . Déterminer f'(x) pour tout $x \in \mathbb{R}$.
- 2. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .
- 3. f est-elle de classe C^2 sur \mathbb{R} ?

Exercice 4.

- 1. Déterminer la dérivée k-ième de $f: x \mapsto x^n$ pour $n \in \mathbb{N}$ et $g: x \mapsto \ln x$.
- 2. En déduire la dérivée p-ième $h: x \mapsto x^{p-1} \ln x$.

Exercice 5. Soit n un entier naturel non nul.

- 1. Déterminer la dérivée k-ième de $f(x) = x^n$.
- 2. Déterminer la dérivée n-ième de $q(x) = x^{2n}$.
- 3. Pour calculer la dérivée n-ième de g, appliquer la formule de Leibniz à $g(x) = f(x) \times f(x)$. En déduire que

$$\sum_{p=0}^{n} \binom{n}{p}^2 = \binom{2n}{n}.$$

Exercice 6. Soit f définie par $f(x) = \exp\left(-\frac{1}{x^2}\right)$ si $x \neq 0$ et 0 si x = 0.

- 1. Montrer que f est continue sur \mathbb{R} .
- 2. Montrer que f est dérivable sur \mathbb{R} et que f' est continue.
- 3. Montrer que pour tout $n \in \mathbb{N}$, $f^{(n)}$ existe et est continue.
- 4. En déduire que f est C^{∞} .

Exercice 7. On considère la fonction $f: x \mapsto e^{-x^2}$.

- 1. Calculer f' et f''.
- 2. Montrer que pour tout $n \in \mathbb{N}$, il existe un polynôme P_n de degré n tel que : $f^{(n)}(x) = P_n(x)e^{-x^2}$. Établir une relation entre P_{n+1}, P_n et P'_n .

- 3. Déterminer P_1, P_2 et déterminer le monôme de plus haut degré de P_n .
- 4. Montrer la relation (R): f'(x) = -2xf(x). En dérivant (R), déterminer une relation entre $f^{(n+1)}$, $f^{(n)}$ et $f^{(n-1)}$. En déduire : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}$, $P_{n+1}(x) = -2xP_n(x) - 2nP_{n-1}(x)$.
- 5. Montrer que $\forall n \in \mathbb{N}^*$, $P'_n = -2nP_{n-1}$. Montrer que le polynôme P_n vérifie l'équation différentielle : $P''_n(x) - 2xP'_n(x) + 2nP_n(x) = 0$.
- 6. Déterminer $\lim_{x \to +\infty} f^{(n)}(x)$ et $\lim_{x \to -\infty} f^{(n)}(x)$.
- 7. Montrer par récurrence que P_n admet n racines réelles distinctes.

Exercice 8. En uttilisant l'égalité des accroissements finis, déterminer $\lim_{t\to +\infty} t^2 \left(e^{\frac{1}{t}} - e^{\frac{1}{t+1}}\right)$.

Exercice 9.

- 1. Montrer que $\forall k \in \mathbb{N}^*$, $\frac{1}{k+1} \leqslant \ln(k+1) \ln k \leqslant \frac{1}{k}$.
- 2. On considère la suite (u_n) définie par $u_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \ln n$. A l'aide d'un passage à la somme, montrer que $\frac{1}{n+1} \leq u_n$.
- 3. Montrer que la suite u est convergente.

Exercice 10. Soit P un polynôme de degré n à coefficients réels, qui possède n racines réelles distinctes. Montrer que P' possède n-1 racines réelles distinctes.

Exercice 11.

- 1. Soit $f:[0;1] \to \mathbb{R}$ définie par $f(x) = \frac{e^x}{x+2}$ pour tout $x \in [0;1]$.
 - (a) Calculer f'(x) et f''(x).
 - (b) Étudier le sens de variation de f sur [0,1]. Quelle est l'image de [0,1] par f?
 - (c) Montrer que $\forall x \in [0, 1], \quad \frac{1}{4} \leqslant f'(x) \leqslant \frac{2}{3}$.
 - (d) Montrer que l'équation f(x) = x admet une unique solution dans [0,1]. On note ℓ cette valeur.
- 2. Soit la suite (u_n) définie par $u_0 = \frac{1}{2}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{e^{u_n}}{u_n + 2}$.
 - (a) Montrer que : $\forall n \in \mathbb{N}, u_n \in [0, 1].$
 - (b) Montrer que : $\forall n \in \mathbb{N}, \quad |u_{n+1} \ell| \leqslant \frac{2}{3}|u_n \ell|.$
 - (c) En déduire que (u_n) converge vers ℓ , et déterminer un entier n_0 tel que $n \ge n_0 \Rightarrow |u_n \ell| \le 10^{-3}$.

Exercice 12. On considère la fonction f définie sur $]0, \frac{1}{e}[\cup]\frac{1}{e}, +\infty[$ par $f(x) = \frac{x}{\ln x + 1}$.

- 1. Montrer que f est prolongeable par continuité en 0. On appellera encore f la fonction ainsi prolongée. La fonction f prolongée est-elle dérivable en 0?
- 2. Étudiez les variations de f.
- 3. Déterminer les points fixes de f.
- 4. Étudiez sur \mathbb{R}_+ la fonction $g:t\mapsto \frac{t}{(t+1)^2},$ en déduire que :

$$\forall x \in [1; +\infty[, \qquad 0 \le f'(x) \le \frac{1}{4}]$$

- 5. On définit une suite (x_n) par $x_0 = 2$ et : $\forall n \in \mathbb{N}, x_{n+1} = f(x_n)$.
 - (a) Montrer que la suite (x_n) est bien définie en la minorant.
 - (b) Montrer que : $\forall n \in \mathbb{N}, |x_{n+1} 1| \le \frac{1}{4}|x_n 1|$.
 - (c) En déduire que (x_n) converge et déterminer la limite de la suite.

Pour s'entrainer

Exercice 13. Soit $f:[0,1] \to \mathbb{R}$ une fonction dérivable, telle que f(0) = f(1) = 0 et uniquement en ces points. On suppose aussi que f'(0) = 0.

- 1. On considère la fonction $g(x) = \frac{f(x)}{x}$. Montrer que g est prolongeable par continuité en 0. On notera encore g la fonction prolongée.
- 2. Montrer que la dérivée de la fonction $g: x \mapsto \frac{f(x)}{x}$ s'annule au moins une fois sur]0,1[.
- 3. En déduire que la courbe de f admet une tangente passant par l'origine autre que celle en 0.

Exercice 14. Soit f une fonction dérivable sur [a,b]. On suppose que f(a)=f(b) et que f'(a)=0. Montrer qu'il existe $c\in]a,b[$ tel que $f'(c)=\frac{f(c)-f(a)}{c-a}$.

Exercice 15. Soit (u_n) la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{4}(2 - u_n^2)$.

- 1. On note f la fonction définie par $f(x) = x + \frac{1}{4}(2 x^2)$. Étudier les variations de f et déterminer ses points fixes.
- 2. Montrer que $\forall x \in [1, 2], |f'(x)| \leq \frac{1}{2}$, et que $f([1, 2]) \subset [1, 2]$.
- 3. En déduire que $\forall n \in \mathbb{N}, u_n \in [1; 2],$ et que $|u_{n+1} \sqrt{2}| \leq \frac{1}{2} |u_n \sqrt{2}|.$
- 4. Prouver par récurrence que $\forall n \in \mathbb{N}, |u_n \sqrt{2}| \leq \frac{1}{2^n}$, et en déduire la limite de la suite (u_n) .
- 5. À partir de quel rang a-t-on $|u_n \sqrt{2}| \le 10^{-9}$?

Exercice 16. Soit f la fonction définie par $f(x) = \sqrt{4+x} + 2$.

- 1. (a) Étudier les variations de f, et tracer sa courbe représentative dans un repère orthonormé.
 - (b) Montrer que |f'| est majorée sur \mathbb{R}_+ , et en donner un majorant.
 - (c) Résoudre l'équation f(x) = x dans \mathbb{R} .
- 2. Soit (u_n) la suite définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n)$.
 - (a) Montrer que $\forall n \in \mathbb{N}, u_n \geqslant 0$.
 - (b) Montrer que $\forall n \in \mathbb{N}, \quad |u_{n+1} 5| \leq \frac{1}{4}|u_n 5|.$
 - (c) Montrer que (u_n) converge et déterminer sa limite.

Exercice 17. Chercher les extrema locaux des fonctions suivantes :

$$f: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^3 - 7x^2 + 5 \end{array} \right., \quad g: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto \ln \frac{1}{5x^2 + 3} \end{array} \right., \quad h: \left\{ \begin{array}{l}] -10, 10 [\to \mathbb{R} \\ x \mapsto \frac{e^x}{x + 2} \end{array} \right.$$

Exercice 18.

- 1. Soient f et g deux fonctions continues sur [a,b] et dérivables sur [a,b]. Montrer qu'il existe $x \in]a,b[$ tel que f'(x)(g(b)-g(a))=g'(x)(f(b)-f(a)).
- 2. En déduire la règle de l'Hôpital : Si f et g s'annulent toutes les deux en un point a, sont continues et dérivables au voisinage de a (sauf éventuellement en a pour la dérivabilité), ne s'annulent pas au voisinage de a, et vérifient $\lim_{x\to a} \frac{f'(x)}{g'(x)} = l \in \mathbb{R}$, alors $\lim_{x\to a} \frac{f(x)}{g(x)} = l$.
- 3. En déduire les limites suivantes : $\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$ et $\lim_{x\to 0} \frac{\ln(1+x)-x}{x^2}$.

Exercice 19. Soient I un intervalle et f une fonction définie sur I qui vérifie les deux propriétés :

(1):
$$f(I) \subset I$$
 (2): $\exists k \in]0, 1[, \forall (x, y) \in I^2, |f(x) - f(y)| \le k|x - y|$

- 1. Montrer que f est continue en tout point de I.
- 2. Montrer que l'équation f(x) = x admet une solution $\alpha \in I$. Montrer que cette solution est unique.
- 3. On définit la suite (u_n) par : $u_0 \in I$ et $u_{n+1} = f(u_n)$. Montrer que la suite converge vers α .

Exercice 20. On considère la fonction f définie par $f(x) = \frac{x}{\sinh(x)}$.

- 1. Montrer que f est de classe \mathcal{C}^{∞} sur son ensemble de définition. Quelle est sa parité?
- 2. Montrer que f est prolongeable par continuité sur \mathbb{R} , et que son prolongement est de classe \mathcal{C}^2 sur \mathbb{R} . Préciser les valeurs de f'(0) et f''(0).
- 3. Résoudre l'équation $\operatorname{sh}(x)=1$, on note α sa solution. Vérifier que $\alpha\in]0,1[$ et calculer $\operatorname{ch}(\alpha)$.
- 4. Étudier le signe sur \mathbb{R} de $\operatorname{ch}(t) t$, puis prouver que : $\forall t \geq 0$, $0 \leq t \operatorname{ch}(t) \operatorname{sh}(t) \leq \frac{1}{2} \operatorname{sh}^2(t)$.
- 5. Montrer que f est lipschitizienne sur \mathbb{R} .
- 6. On définit une suite (u_n) par $u_0=0$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$. Déterminer la nature de la suite (u_n) .

Exercice 21. Soit f une fonction dérivable en un point a. Montrer que $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h} = f'(a)$. La réciproque est-elle vraie?

Exercice 22.

- 1. Soit f une fonction dérivable en un point a. Déterminer la limite éventuelle en a de $\frac{xf(a)-af(x)}{x-a}$.
- 2. Soit f une fonction dérivable sur \mathbb{R} . Calculer la limite quand h tend vers 0 de $\frac{f^2(x+3h)-f^2(x-h)}{h}$.

Exercice 23. Soit f une fonction continue sur [0,1] telle que f(0)=0 et f(1)=1. On suppose en plus que f est dérivable en 0 et en 1 avec f'(0)=f'(1)=0. On définit g sur]0,1[par $g(x)=\frac{f(x)}{x}-\frac{f(x)-1}{x-1}$.

- 1. Étudier les limites de g en 0 et en 1. Montrer que l'on peut prolonger g en une fonction continue sur [0,1].
- 2. Démontrer alors qu'il existe α dans]0,1[tel que $\frac{f(\alpha)}{\alpha} = \frac{f(\alpha)-1}{\alpha-1}$ et que $f(\alpha) = \alpha$.