Introduction to Aerial Robotics Lecture 6

Shaojie Shen
Associate Professor
Dept. of ECE, HKUST

21 March 2023

Outline

- Feature Matching
- 3D-3D Pose Estimation
- 3D-2D Pose Estimation
- Outlier Rejection and Robust Estimation

Review: Feature Detection and Matching

- Detect corners features in both images
- Use image patch as feature description
 - Could be extended to color, texture, SIFT/HOG descriptor
- Find correspondences using descriptor matching

Feature matching

Given a feature in I_1 , how to find the best match in I_2 ?

- 1. Define distance function that compares two descriptors
- 2. Test all the features in I₂, find the one with min distance

Feature distance

- How to define the difference between two features f₁, f₂?
 - Simple approach is SSD(f₁, f₂)
 - sum of square differences between entries of the two descriptors
 - can give good scores to very ambiguous (bad) matches

Feature distance

- How to define the difference between two features f₁, f₂?
 - Better approach: ratio distance = $SSD(f_1, f_2) / SSD(f_1, f_2')$
 - f_2 is best SSD match to f_1 in I_2
 - f_2 ' is 2nd best SSD match to f_1 in I_2
 - gives large values (close to 1) for ambiguous matches

Evaluating the results

How can we measure the performance of a feature matcher?

feature distance

True/false positives

feature distance

- The distance threshold affects performance
 - True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
 - False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

Evaluating the results

How can we measure the performance of a feature matcher?

Evaluating the results

How can we measure the performance of a feature matcher?

- Generated by counting # current/incorrect matches, for different thresholds
- Want to maximize area under the curve (AUC)
- Useful for comparing different feature matching methods

Vision-based Pose Estimation Pipeline (aka. Map-based Localization)

Vision-based Pose Estimation Pipeline (aka. Map-based Localization)

Setup

- Applicable to different camera configurations (monocular, stereo, RGB-D, etc.)
- Sufficient illumination and texture
- Dominance of static scene
- Known map
- Sufficient observation of map features
- Focus on global consistency

3D-3D Pose Estimation (Point Cloud Registration)

3D-3D Registration of Point Cloud

3D-3D

3D points in frame 1(or known 3D points in world frame)

 3D points in frame 2 (or 3D point observations in body frame)

• How do we solve for $m{R}$, $m{t}$ from point correspondences? $m{p}_i = m{R} m{q}_i + m{t}$

What is the minimal number of points needed?

• Three non-collinear points suffice: each triangle $m{p}_{i=1...3}$ and $m{q}_{i=1...3}$ make an orthogonal basis

$$(p_{21} (p_{21} \times p_{31}) \times p_{21} p_{21} \times p_{31})$$

and

$$(q_{21} (q_{21} \times q_{31}) \times q_{21} q_{21} \times q_{31})$$

Rotation between two orthogonal bases is unique.

 We solve a minimization problem for N >= 3 point correspondences:

$$\min_{\boldsymbol{R},\boldsymbol{t}} \sum_{i}^{N} \|\boldsymbol{p}_{i} - (\boldsymbol{R}\boldsymbol{q}_{i} + \boldsymbol{t})\|^{2}$$

• After differentiating with respect to t, we observe that the translation is the difference between the centroids:

$$\mathbf{t} = \frac{1}{N} \sum_{i}^{N} \boldsymbol{p}_{i} - \boldsymbol{R} \frac{1}{N} \sum_{i}^{N} \boldsymbol{q}_{i} = \overline{\boldsymbol{p}} - \boldsymbol{R} \overline{\boldsymbol{q}}$$

• We subtract the centroids $\overline{m{p}}$ and $\overline{m{q}}$ and rewrite the objective function as

$$\min_{R} \|\boldsymbol{P} - \boldsymbol{R}\boldsymbol{Q}\|_{F}^{2}$$

where

$$oldsymbol{Q} = [oldsymbol{p}_1 - \overline{oldsymbol{p}}, ..., oldsymbol{p}_N - \overline{oldsymbol{p}}]$$

and

$$P = [q_1 - \overline{q}, ..., q_N - \overline{q}]$$

- Some useful mathematics
 - Frobenius norm $\|A\|_F = \sqrt{\sum \sum |a_{ij}|^2} \rightarrow \|A\|_F = \sqrt{tr(AA^H)}$
 - tr(AB) = tr(BA)
 - $tr(A) = tr(A^T)$
 - tr(A + B) = tr(A) + tr(B)

- We rewrite the Frobenius norm using the trace of the matrix $\|P RQ\|_F^2 = tr(P^TP) + tr(Q^TQ) tr(P^TRQ) tr(Q^TR^TP)$
- And observe that only the two last terms depend on the unknown R yielding a maximization problem.
- Even without using the properties of the trace we can see that both last terms are equal to

$$\sum_{i}^{N} R(q_{i} - \overline{q})(p_{i} - \overline{p})^{T} = tr(RQP^{T})$$

• The 3D-3D pose problem reduced to $\max_{\boldsymbol{R}} tr(\boldsymbol{R}\boldsymbol{Q}\boldsymbol{P}^T)$

• If the SVD of QP^T is USV^T and let $Z = V^TRU$

$$tr(\mathbf{RQP^T}) = tr(\mathbf{RUSV^T}) = tr(\mathbf{ZS}) = \sum_{i=1}^{3} z_{ii} \sigma_i \le \sum_{i=1}^{3} \sigma_i$$

The upper bound is obtained by setting

$$R = VU^T$$

 3D-3D Registration enables the creation of 3D models from multiple point clouds:

- How to obtain 3D-3D data association?
 - "Soft" data association directly from point clouds
 - The Iterative Closest Point (ICP) algorithm
 - 1. Start with some initial guess of rotation and translation
 - For each point in pointcloud1, find its nearest neighbor in pointcloud2 based on the current estimated rotation and translation
 - 3. Refine the rotation and translation based on the latest data association
 - 4. Iterate from step 2 until converge

Step 2

Step 3

Rot3& Tran3 S_2

- How to obtain 3D-3D data association?
 - "Soft" data association directly from point clouds
 - The Iterative Closest Point (ICP) algorithm
 - Need to speed up the search of nearest neighbors
 - Naive implementation: O(N)
 - K-d Tree: O(log N)

Iterative Closest Point Algorithm

Iteration 0

3D Laser-Based Mapping

Online Quadrotor Trajectory Generation and Autonomous Navigation on Point Clouds

Fei Gao and Shaojie Shen

High resolution video available at http://www.ece.ust.hk/~eeshaojie/ssrr2016fei.mp4

- How to obtain 3D-3D data association?
 - Feature matching using stereo images
 - Calibrated stereo image pairs as input to be covered in the next lecture
 - Spatial matching feature matching between stereo image pairs, for computation of 3D points
 - Temporal matching feature matching between images captures at different times, for motion estimation
 - Need to address outlier removal to be discussed soon
 - Usually poor performance due to increased ranging error at longer distance with stereo vision – use 3D-2D pose estimation instead

3D-2D Pose Estimation (Pose from Projective Transform) (The PnP Problem)

Project2 phase1

 Using the projective transformation to get the pose of a robot with respect to a planar pattern:

Known 3D features R, t3D-2D

2D observations

Image

- 3D features in frame 1 (or known 3D features in world frame)
- 2D feature observations in frame 2 (or feature observations in body frame)
- 2D feature reprojections of given a estimated pose of frame 2 in frame 1 (or estimated transformation of body frame in world frame)

Linear 3D-2D Pose Estimation on Planar Scene

• Pose from reference points on plane $z_w = 0$

Recall the projection from world to camera

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = K(\mathbf{r_1} \quad \mathbf{r_2} \quad \mathbf{r_3} \quad t) \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

- Assume all points in the world lie in the ground plane z=0.
- Then the transformation reads

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = K(\mathbf{r_1} \quad \mathbf{r_2} \quad t) \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

• Suppose $H = K(r_1 \quad r_2 \quad t)$

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\lambda u = h_{11}x + h_{12}y + h_{13}$$

$$\lambda v = h_{21}x + h_{22}y + h_{23}$$

$$\lambda = h_{31}x + h_{32}y + h_{33}$$

Given a observation $(u, v) = (u_i, v_i)$ of feature (x_i, y_i)

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x_i u_i & -y_i u_i & -u_i \\ 0 & 0 & 0 & x & y & 1 & -x_i v_i & -y_i v_i & -v_i \end{bmatrix} \begin{vmatrix} h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{24} \end{vmatrix} = 0$$

Stack pairs of observations

- Suppose we estimate an \widehat{H} from $N \geq 4$ correspondences.
- Let us assume that we know the intrinsic parameters K.
- Pose estimation means finding R t given H and intrinsic K.
- We observe that $K^{-1}H = (r_1 \ r_2 \ t)$ has specific properties: its first two columns are orthogonal unit vectors.
- Nothing guarantees that the \widehat{H} we computed will satisfy this condition.

- Let us name the columns of $K^{-1}\widehat{H}$ be $[\widetilde{h}_1 \quad \widetilde{h}_2 \quad \widetilde{h}_3]$
- since $K^{-1}H = (r_1 \ r_2 \ t)$
- We seek orthogonal r_1 and r_2 that are the closest to \widetilde{h}_1 and \widetilde{h}_2 . The solution to this position is given by the Singular Value Decomposition.
- We find the orthogonal matrix R that is the closest to $(\widetilde{h}_1 \quad \widetilde{h}_2 \quad \widetilde{h}_1 \times \widetilde{h}_2)$:

$$(m{h_1} \quad m{h_2} \quad m{h_1} imes m{h_2})$$
:
 $rg \min_{R \in SO(3)} \lVert m{R} - (\widetilde{m{h_1}} \quad \widetilde{m{h_2}} \quad \widetilde{m{h_1}} imes \widetilde{m{h_2}})
Vert_F^2$

$$\underset{R \in SO(3)}{\text{arg min}} \|R - (\widetilde{h}_1 \quad \widetilde{h}_2 \quad \widetilde{h}_1 \times \widetilde{h}_2)\|_F^2$$

• If the SVD of $(\widetilde{h}_1 \quad \widetilde{h}_2 \quad \widetilde{h}_1 imes \widetilde{h}_2) = USV^T$, then the solution is $R = UV^T$

To find the translation:

$$t = \widetilde{h}_3 / \|\widetilde{h}_1\|$$

Nonlinear 3D-2D Pose Estimation

- **\theta**: Euler Angles $\in \mathbb{R}^3$ **t**: Translation $\in \mathbb{R}^3$ $\pi(\cdot)$: projection function
- Minimize the reprojection error w.r.t. camera pose
 - No need to assume planar scene

$$\min_{\boldsymbol{\theta}, \boldsymbol{t}} \sum_{i} \left\| \begin{bmatrix} u_i \\ v_i \end{bmatrix} - \pi \left(\boldsymbol{K} \cdot (\boldsymbol{R}(\boldsymbol{\theta}) \cdot \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} + \boldsymbol{t}) \right) \right\|^2$$

Nonlinear 3D-2D Pose Estimation

- **\theta**: Euler Angles ϵR^3 **t**: Translation ϵR^3 $\pi(\cdot)$: projection function
- 1) Nonlinear least square

$$\min_{\boldsymbol{\theta}, \boldsymbol{t}} \sum_{i} \left\| \begin{bmatrix} u_i \\ v_i \end{bmatrix} - \pi \left(\boldsymbol{K} \cdot (\boldsymbol{R}(\boldsymbol{\theta}) \cdot \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} + \boldsymbol{t}) \right) \right\|^2 = \min_{\boldsymbol{\theta}, \boldsymbol{t}} \sum_{i} \| \gamma_i(\boldsymbol{\theta}, \boldsymbol{t}) \|^2$$

2) Linearization Initial values

$$\gamma_{i}(\boldsymbol{\theta}, \boldsymbol{t}) \approx \gamma_{i}(\boldsymbol{\theta_{0}}, \boldsymbol{t_{0}}) + \frac{\partial \gamma_{i}}{\partial \boldsymbol{\theta_{i}}, \boldsymbol{t_{i}}}|_{\boldsymbol{\theta_{0}}, \boldsymbol{t_{0}}} \cdot \begin{bmatrix} \delta \boldsymbol{\theta} \\ \delta \boldsymbol{t} \end{bmatrix} = \gamma_{i}(\boldsymbol{\theta_{0}}, \boldsymbol{t_{0}}) + J_{i}\begin{bmatrix} \delta \boldsymbol{\theta} \\ \delta \boldsymbol{t} \end{bmatrix}$$

$$2 \times 6 \text{ matrix}$$

$$2 \times 6 \text{ matrix}$$

The problem becomes:

$$\min_{\delta\boldsymbol{\theta},\delta\boldsymbol{t}} \sum_{i} \left\| \gamma_{i}(\boldsymbol{\theta}_{0}, \boldsymbol{t}_{0}) + J_{i} \begin{bmatrix} \delta\boldsymbol{\theta} \\ \delta\boldsymbol{t} \end{bmatrix} \right\|^{2}$$

Nonlinear 3D-2D Pose Estimation

- **\theta**: Euler Angles ϵR^3 **t**: Translation ϵR^3 $\pi(\cdot)$: projection function
- 3) Take derivative and set it to zero $\sum_{i} J_{i}^{T} J_{i} \begin{bmatrix} \delta \theta \\ \delta t \end{bmatrix} + \sum_{i} J_{i}^{T} \gamma_{i}(\theta_{0}, t_{0}) = 0 \Rightarrow \sum_{i} J_{i}^{T} J_{i} \begin{bmatrix} \delta \theta \\ \delta t \end{bmatrix} = -\sum_{i} J_{i}^{T} \gamma_{i}(\theta_{0}, t_{0})$
- 4) Solve for the incremental states and update the optimization variables

$$\begin{bmatrix} \delta \boldsymbol{\theta} \\ \delta \boldsymbol{t} \end{bmatrix} = A^{-1} \boldsymbol{b} \quad \Rightarrow \quad \begin{bmatrix} \boldsymbol{\theta} \\ \boldsymbol{t} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\theta}_0 \\ \boldsymbol{t}_0 \end{bmatrix} + \begin{bmatrix} \delta \boldsymbol{\theta} \\ \delta \boldsymbol{t} \end{bmatrix}$$

5) Iterate from step (1) with updated states as initial values

Nonlinear State Estimation

- The nonlinear Gauss Newton method also works for 3D-3D pose estimation.
- In fact, it works for all nonlinear optimization problems, if provided with sufficiently good initial values.
- Simultaneous localization and mapping (SLAM) problems (with only cameras or with heterogeneous sensors) are solved in essentially the same way.
- Anything missing?

$$\min_{\boldsymbol{\theta}, \boldsymbol{t}} \sum_{i} \left\| \begin{bmatrix} u_i \\ v_i \end{bmatrix} - \pi \left(\boldsymbol{K} \cdot (\boldsymbol{R}(\boldsymbol{\theta}) \cdot \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} + \boldsymbol{t}) \right) \right\|^2$$

3D-2D Vision-Based Localization with Markers

Outlier Rejection and Robust Estimation

3D-2D Pose Estimation in Unstructured Environments

- Why do you need markers?
 - For data association
 - What if you do not have them?

Optical flow (next lecture)

Feature matching

3D-2D Pose Estimation in Unstructured Environments

- What if you do not have markers?
 - Outlier rejection

3D-2D Pose Estimation in Unstructured Environments

- What if you do not have markers?
 - Map representation features stored in a database
 - Data association descriptor matching
 - Outlier rejection RANSAC

- Model fitting with outlier rejection
 - The 6-DOF pose you are trying to estimation is a model
- Algorithm:
 - Loop:
 - Randomly select a small amount of (or minimum) data points to find a model
 - See the error between the model and all other data points
 - Find the data points with error smaller than a threshold as inliers
 - If the current model has more inliers than all previous ones, record all inliers
 - Repeat
 - Use all inliers to find the best estimate of the model

- RANSAC for 2D line fitting
 - Minimum number of points to define a 2D line: 2
 - Error metric: point to line distance
 - How many iterations are required?

• Iteration 1: 4 Inliers

- RANSAC for 2D line fitting
 - Minimum number of points to define a 2D line: 2
 - Error metric: point to line distance
 - How many iterations are required?

Iteration 2: 10 Inliers

- RANSAC for 2D line fitting
 - Minimum number of points to define a 2D line: 2
 - Error metric: point to line distance
 - How many iterations are required?

Iteration 3: 12 Inliers

- RANSAC for 2D line fitting
 - Minimum number of points to define a 2D line: 2
 - Error metric: point to line distance
 - How many iterations are required?
- Iteration 4: 4 Inliers

Pose Estimation in Unstructured Environments

- How many feature correspondences are required to create a model?
 - 3D-3D: 3
 - 3D-2D: 3
 - It is OK to use more points to find the model (our 3D-2D requires 4)
 - But few number of points is better (Why?)
- How to find the model from feature correspondences?
- How to define the error metric?
 - 3D-3D: point distance
 - 3D-2D: reprojection error
- How many iterations are required?

- How many iterations are required the probability
 - Probability of outlier: X (X < 1)
 - M number of data points to create a model
 - N iterations
- RANSAC failure: all random sample contains at least 1 outlier
 - Failure probability = $(1 (1 X)^M)^N$
 - 2D line fitting example
 - 30% outliers
 - 2 data points to create a model
 - Failure probability for 5 iterations: 3.45%
 - Failure probability for 10 iterations: 0.12%

- How many iterations are required the probability
 - Probability of outlier: X (X < 1)
 - M number of data points to create a model
 - N iterations
- RANSAC failure: all random sample contains at least 1 outlier
 - Failure probability = $(1 (1 X)^M)^N$
 - 3D-3D pose estimation
 - 30% outliers
 - 3 data points to create a model
 - Failure probability for 5 iterations: 12.24%
 - Failure probability for 10 iterations: 1.49%
 - Failure probability for 20 iterations: 0.02%

- How many iterations are required the probability
 - Probability of outlier: X (X < 1)
 - M number of data points to create a model
 - N iterations
- RANSAC failure: all random sample contains at least 1 outlier
 - Failure probability = $(1 (1 X)^M)^N$
 - 3D-3D pose estimation
 - 30% outliers
 - 20 data points to create a model (bad example)
 - Failure probability for 5 iterations: 99.6%
 - Failure probability for 10 iterations: 99.2%
 - Failure probability for 20 iterations: 98.4%
 - Failure probability for 1000 iterations: 45%
 - Failure probability for 10000 iterations: 0.03%

- **\theta**: Euler Angles $\in \mathbb{R}^3$ **t**: Translation $\in \mathbb{R}^3$ $\pi(\cdot)$: projection function
- Recall the nonlinear 3D-2D pose estimation problem

$$\min_{\boldsymbol{\theta}, \boldsymbol{t}} \sum_{i} \left\| \begin{bmatrix} u_i \\ v_i \end{bmatrix} - \pi \left(\boldsymbol{K} \cdot (\boldsymbol{R}(\boldsymbol{\theta}) \cdot \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} + \boldsymbol{t}) \right) \right\|^2 = \min_{\boldsymbol{\theta}, \boldsymbol{t}} \sum_{i} \| \gamma_i(\boldsymbol{\theta}, \boldsymbol{t}) \|^2$$

- The original least square problem is very sensitive to outliers, due to the squared influence of data terms
- Even after RANSAC, there may still be outlier (or relatively bad "inliers")
 exists
- We want a method to reduce the impact of outliers

• Rewrite in a general form for minimizing w.r.t parameter p

$$\min_{\boldsymbol{\theta}, \boldsymbol{t}} \sum_{i} \| \gamma_{i}(\boldsymbol{\theta}, \boldsymbol{t}) \|^{2} \Rightarrow \min_{p} \sum_{i} \rho(\gamma_{i}(p))$$

- $-\rho$ is a symmetric, positive-definite function with unique minimum at 0
- Take the derivative and set to 0

$$\sum_{i} \frac{\partial \rho}{\partial \gamma_{i}} \frac{\partial \gamma_{i}}{\partial p} = \sum_{i} \psi(\gamma_{i}) \frac{\partial \gamma_{i}}{\partial p} = 0$$

- $-\psi(x)=\partial\rho/\partial x$ is called the influence function
- We can also define a weight function $\omega(x) = \psi(x)/x$
- We then have:

$$\sum_{i} \omega(\gamma_i) \gamma_i \frac{\partial \gamma_i}{\partial p} = 0$$

• This is exactly the system we obtain if we solve the following iterative reweighted least square problem:

$$\min_{p} \sum_{i} \omega(\gamma_i^{k-1}) \|\gamma_i(p)\|^2$$

- The influence function $\psi(\cdot)$ measures the influence of a datum on the value of parameter estimation
- For least square with $\rho(x) = x^2/2$, the influence is $\psi(x) = x$. The influence of a datum increases w.r.t. the size of error
- When an estimator is robust, we want influence of any single datum is insufficient to yield any significant offsets, provided following constraints are met:
 - Bounded influence function
 - Individual $\rho(\cdot)$ function is convex in parameter p

$^{\rm type}_{L_2}$	$\rho(x)$ $x^2/2$	$\psi(x)$	w(x)
L_2	$x^{2}/2$	\boldsymbol{x}	1
L_1	æ	$\mathrm{sgn}(x)$	$rac{1}{ oldsymbol{x} }$
$\boldsymbol{L_1-L_2}$	$2(\sqrt{1+x^2/2}-1)$	$\frac{x}{\sqrt{1+x^2/2}}$	$\frac{1}{\sqrt{1+x^2/2}}$
$L_{oldsymbol{p}}$	$\frac{ x ^{ u}}{ u}$	$\mathrm{sgn}(x) x ^{\nu-1}$	$ x ^{ u-2}$
"Fair"	$c^2[\frac{ x }{c} - \log(1 + \frac{ x }{c})]$	$\frac{x}{1+ x /c}$	$\frac{1}{1+ x /c}$
$ ext{Huber} egin{cases} ext{if} \ x \leq k \ ext{if} \ x \geq k \end{cases}$	$\begin{cases} x^2/2 \\ k(x -k/2) \end{cases}$	$\begin{cases} x \\ k \operatorname{sgn}(x) \end{cases}$	$\begin{cases} 1 \\ k/ x \end{cases}$
Cauchy	$\frac{c^2}{2}\log(1+(x/c)^2)$	$\frac{x}{1+(x/c)^2}$	$\frac{1}{1+(x/c)^2}$
Geman-McClure	$\frac{x^2/2}{1+x^2}$	$\frac{x}{(1+x^2)^2}$	$\frac{1}{(1+x^2)^2}$
Welsch	$\frac{c^2}{2}[1 - \exp(-(x/c)^2)]$	$x \exp(-(x/c)^2)$	$\exp(-(x/c)^2))$
Tukey $\begin{cases} \text{if } x \leq c \\ \text{if } x > c \end{cases}$	$egin{cases} rac{c^2}{6} \left(1 - [1 - (x/c)^2]^3 ight) \ (c^2/6) \end{cases}$	$\begin{cases} x[1-(x/c)^2]^2 \\ 0 \end{cases}$	$\begin{cases} [1-(x/c)^2]^2 \\ 0 \end{cases}$

3D-2D Vision-Based Localization without Markers

Logistics

- Project 2, phase 1 is released (03/21), due next Friday (03/31)
- Project 1, phase 4 will also due next Friday (03/31)