Module 03 Models of Computation Stack Machines (Push Down Automata)

CS 332 Organization of Programming Languages Embry-Riddle Aeronautical University Daytona Beach, FL

Mo3 Outcomes

At the end of this module you should be able to ...

Given a grammar, justify why it is or is not context free.

State the definition of the Push Down Automata(PDA) and its component parts.

Given a context free language create the PDA for it.

State the acceptance criteria for a PDA.

Given a PDA and a string, demonstrate the state transitions and stack operations for processing the string.

Given a PDA and a string, state whether the PDA accepts or rejects the string.

Provide real world examples of a PDA with justification.

Stack Machines: Introduction (1/2)

- PDA's have theoretical value.
- We're still asking "What can a computer compute?"
- The PDA is another mathematical model of computation.
- Pure computation is the mindless manipulation of symbols using formal rules:
 - Mindless or a computer couldn't do it!
 - Manipulation of symbols operators modifying operands
 - Formal rules require no judgment, opinion, thought. Just do what is says.
- PDAs are a stronger model than the FSM PDAs have memory.

Stack Machines: Introduction (2/2)

- PDAs have practical value
- All real world programming languages are context free
 - When parsing a statement in a program, the stack records what has been seen so far
- Many systems utilize a stack to schedule tasks
 - Function calls reserve memory on the memory stack, and remove when done
 - Some "intelligent" systems sequence behaviors/actions using a stack of tasks
- CS 332 consider PDAs as <u>language recognizers</u>.
 - PDAs will *accept* anything in the language, and *reject* anything not in language.
 - Each language has it's own PDA (actually many PDA's).

The Chomsky Hierarchy (Review)

- For now, define the Chomsky Hierarchy in terms of grammars
- Will describe restrictions on the Left Hand Side (LHS) and Right Hand Side (RHS)
- "Unrestricted" is sometimes called "recursively enumerable" but not covering that in this course it would take several weeks.

Туре	Name	Characteristics of Grammar
Туре 3	Regular	LHS must contain exactly one non-terminal. Number of terminals in RHS cannot decrease. Strings derived from right to left, or left to right.
Type 2	Context Free	LHS must contain exactly one non-terminal. Number of terminals in RHS cannot decrease.
Type 1	Context Sensitive	LHS may have terminals and non-terminals. Number of terminals in RHS cannot decrease.
Type o	Unrestricted	No restrictions

The Chomsky Hierarchy (Review)

- Previously defined the Chomsky Hierarchy in terms of grammars
- Can also define in terms of model of computation
- Will discuss why these models and language match as we go through

Туре	Name	Equivalent Model of Computation
Туре 3	Regular	Finite State Machine, FSM, also known as Discrete Finite Automata, DFA
Type 2	Context Free	Stack Machine (Push Down Automata, PDA)
Type 1	Context Sensitive	Turing Machine, TM, with finite tape
Type o	Unrestricted	Turing Machine, TM, with infinite tape

Context Free versus Context Sensitive

- Context free languages allow only a single non-terminal on the LHS
 - A \rightarrow aA | a | AB
- Context sensitive languages allow groups of terminal and nonterminals on the LHS
 - Rules can only be used in certain contexts
 - $A \rightarrow aA \mid a$
 - aaaA → AB (the 'aaa' is the context, AB can only appear if three a's precede the A)
- The context allows for more "if-then" conditions
 - For context free, a rule may be used at any time
 - For context sensitive, a rule may be used only in the correct context
 - More "if-then" rules implies a more sophisticated language

PDA: Basic Definitions

- A Push Down Automata (PDA) is a mathematical device to recognize certain languages (context free languages).
 - An PDA will accept all strings in the language it is designed for.
 - An PDA will reject all strings not in the language it is designed for.
 - Each language may have many PDAs; most are trivial.
 - The class of language PDAs recognize are called the *context free languages*.
- Deterministic: A system is deterministic if there is exactly one unambiguous action defined for every situation
 - You can always determine what to do next
 - You can determine ahead of time what a result will be
- Non-Deterministic FSMs and PDAs exist we will not focus them

PDA: Informal Definition

- Stack (Review)
 - Data structure holding multiple values, but only the "top" value is visible
 - Push: An item is added to the stack
 - Pop: The top item is removed from the stack
 - LIFO behavior: Last In First Out
- The PDA is just a FSM with a stack added to it
- In addition to the input alphabet, Σ , there is a stack alphabet, Γ
- Every transition is now dependent on current state, input symbol, and top of stack symbol
- Every transition now has a state change and a change to the stack

PDA: Formal Definition

- Formally, a PDA M = {Q, Σ , Γ , q_0 , Z, F, δ }, where,
 - Q = a finite set of states
 - Σ = a finite set of symbols for input strings
 - Γ = finite set of symbols for use on stack
 - q_o = a single *start state*, where processing begins ($q_o \in Q$)
 - Z = a single symbol representing an empty stack ($Z \in \Gamma$)
 - F = a set of *final*, or *accepting*, states. (F subset of Q)
 - δ = a transition function

PDA Operation

- A PDA, M, processes a string, u, as follows:
 - M begins in the start state, q_0 , with Z (empty stack) on the stack
 - M processes string u one symbol at a time, from left to right.
 - The top of stack is "popped" every time an input symbol is processed.
 - Each symbol that is processed results in a state transition and a "push" on the stack.
 - Accepted strings are in the language, L, and rejected strings are not.
 - Acceptance criteria discussed on next slide.
- Will also allow transition to occur without processing a symbol
 - ϵ transitions, where ϵ represents "no input processed."
 - Sometimes useful, will still keep them deterministic

PDA Acceptance Criteria

- Given an FSM, M, then M accepts a string u iff $\delta(u, q_0) \in F$
- PDAs may accept strings based on <u>accepting states</u> or <u>empty stack</u>.
- Given a PDA, M, then M accepts a string u iff $\delta(u, Z, q_0) \in F \times \Gamma^*$
 - F x Γ^* is the formal way of saying "You must end up in a final state and we don't care what is on the stack."
- OR given a PDA, M, then M accepts string u iff $\delta(u, Z, q_0) \in Q \times Z$
 - Q x Z is the formal way of saying "we don't care what state you end up in, you have to have an empty stack."
- Design a specific PDA to accept one way or the other, not both.
- We'll use empty stack in the examples.

PDA Transition Function

- For the FSM, the transition function, δ , takes as input a symbol and a state
 - This is actually an ordered pair (symbol, state).
- For the FSM, δ outputs a state -- $\delta(a, q_i) = q_j$
- For the PDA, δ takes in a symbol from the string being processed, the current state, and the current symbol at the top of the stack
- For the PDA, δ outputs a state and a "push" on the stack
- Formally, $\delta(a, x, q_i) = q_i$, v
 - 'a' is a symbol from Σ . (The next symbol processed from the input string.)
 - 'x' is a symbol from Γ . It is popped from the stack
 - q_i and q_i are states in the machine
 - v is a <u>string</u>, which may be empty, pushed onto the stack
 - $\delta(\varepsilon, x, q_i) = q_i$, v is allowed

PDA Graphical Representation

- 1. State, start state, final state are all the same as for FSM.
- 2. Transition must now include the input symbol, top of stack, and string written to the stack. Let $\Sigma = \{a, b\}, \Gamma = \{0, 1, \$\}$:

Read this as "If in state q_i , and processing an 'a' from the input string, and a '1' is popped of the stack, then transition to state q_j and push the string '11' on the stack.

- 3. We're going to cheat including all transitions leads to clutter.
- 4. If a transition is not shown, assume immediate rejection of string.

PDA Example #1

- Let $\Sigma = \{a, b\}$ (For all examples unless stated otherwise)
- Let L₁ be the set of strings having some number of 'a's followed by the same number of 'b's.
- This is the canonical non-regular language it requires memory to keep track of the 'a's.
- $L_1 = a^n b^n$ (Not really a regular expression, borrowing the form)

PDA Example #1, $L_1 = a^n b^n$

	State Transitions						Pushed on Stack					
	a b				a b							
State	\$	0	1	\$	0	1	\$	0	1	\$	0	1
0	0	0	R	R	1	R	\$0	00	na	na	λ	na
1	R	R	R	R	1	R	na	na	na	na	λ	na
					R = Reje							

PDA Processing a String Example

$L_1 = a^n b^n$		•u = aaabb	b				
Beginning	Existing Stack	Remaining	Input Symbol	Popped From	New State	Pushed Onto	New Stack
State	Contents	String	Input Symbol	Top of Stack	New State	Stack	Contents
0	\$	aaabbb	a	\$	0	\$0	0\$
0	0\$	aabbb	a	0	0	00	00\$
0	00\$	abbb	a	0	0	00	000\$
0	000\$	bbb	b	0	1	λ	00\$
1	00\$	bb	b	0	1	λ	0\$
1	0\$	b	b	0	1	λ	\$
1	\$ = ACCEPT	λ					

PDA Example #2, $L_2 = (aab)^*$

	State Transitions								Pushed	on Stack		
	a b				a b							
State	\$	0	1	\$	0	1	\$	0	1	\$	0	1
0	1	R	R	R	R	R	\$0	na	na	na	na	na
1	R	2	R	R	R	R	na	λ	na	na	na	na
2	R	R	R	0	R	R	na	na	na	\$	na	na
	R = Reje						ct string					

PDA Example #2, $L_2 = (aab)^*$, u = aabaab

$L_1 = (aab)*$		•u = aabaab					
Beginning	Existing Stack	Remaining	Input Symbol	Popped From	New State	Pushed Onto	New Stack
State	Contents	String	IIIput Syllibol	Top of Stack	New State	Stack	Contents
0	\$	aabaab	а	\$	1	\$0	0\$
1	0\$	abaab	а	0	2	λ	\$
2	\$	baab	b	\$	0	\$	\$
0	\$	aab	a	\$	1	\$0	0\$
1	0\$	ab	a	0	2	λ	\$
2	\$	b	b	\$	0	\$	\$
0	\$ = ACCEPT	λ					

PDA Example #2, $L_2 = (aab)^*$, u = aaba (not in L)

$L_1 = (aab)*$		u = aaba					
Beginning	Existing Stack	Remaining	Input Symbol	Popped From New State		Pushed Onto	New Stack
State	Contents	String	Input Symbol	Top of Stack	New State	Stack	Contents
0	\$	aaba	а	\$	1	\$0	0\$
1	0\$	aba	а	0	2	λ	\$
2	\$	ba	b	\$	0	\$	\$
0	\$	а	a	\$	1	\$0	0\$
1	0\$ = REJECT	λ	а	0	2	λ	\$