3. Перехідні процеси в ключовій схемі на МДН-транзисторі.

Основний вплив на характер протікання перехідних процесів в ключових схемах на польових транзисторах здійснюють ємності, утворені між їхніми виводами (рис. 6.3).

Рис. 6.3. Перехідні процеси в ключовій схемі на МДН-транзисторах: а – еквівалентна схема ключа, б – часові діаграми.

При закритому транзисторі вихідна ємність C_{cs} заряджена до напруги, практично рівної E_c . Коли вхідна напруга перевищує порогову напругу U_{nop} (напругу відкривання транзистора) впродовж часу затримки

$$t_{3amp} \approx \frac{C_{3e} \cdot U_{nop}}{I_{ex}} = \frac{C_{3e} \cdot U_{nop}}{U_{ex}/R_{ex}}.$$

формується провідний стан каналу. Однак, при досить низькому опорі R_{ex} джерела вхідного сигналу U_{ex} час затримки дуже малий.

Як тільки канал сформований, ємність C_{cs} починає розряджатися постійним струмом I_p , який визначається невеликим опором провідного каналу транзистора, впродовж часу t_{skn} . За цей час вихідна напруга ключа падає до величини близької до нуля.

При замиканні транзистора (зменшення U_{ex} до нуля) відбувається зарядка ємності C_{ce} через резистор R_c від напруги джерела живлення E впродовж часу t_{gukn} . Цей час, як правило, більший часу включення, так як опір навантажувального резистора R_c значно більший опору каналу транзистора в провідному стані.

У комплементарному ключі заряд і розряд навантажувальної ємності відбувається в однакових умовах через відкритий провідний канал. Це пояснюється симетрією схеми відносно вхідної напруги і навантаження. Відповідно, інтервали часу $t_{вкл}$ і $t_{викл}$ приблизно однакові і майже на порядок менші, ніж у звичайного ключа на МДН-транзисторах. Ця перевага зберігається і при зменшенні напруги живлення.