Mathematics Methods for Computer Science

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

Mathematics Methods for Computer Science

Instructor: Xubo Yang

SJTU-SE DALAB

Mathematics Methods for Computer Science

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Lecture

Designing and Analyzing Linear Systems

Theorist's Dilemma

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

"Find a nail for this really interesting hammer."

$$A\vec{x} = \vec{b}$$

ametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

Linear systems are insanely important.

Regression

Motivation

Parametric Regression

Least Square

Cholesky Factorizatio

Sparsity

Special Structure

(回归)

Regression: for data analysis

Example: biological experiment

Plant growth: fertilizer, sunlight, water

Goal: predict the output of $f(\vec{x})$ for a new \vec{x} without carrying out the full experiment

Linear Regression

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$f(\vec{x}) = a_1x_1 + a_2x_2 + \dots + a_nx_n = \vec{a}^T\vec{x}$$

Find $\{a_1, \dots, a_n\}$

n Experiments

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

$$\vec{x}^{(k)} \mapsto y^{(k)} \equiv f\left(\vec{x}^{(k)}\right)$$

$$y^{(1)} = f\left(\vec{x}^{(1)}\right) = a_1 x_1^{(1)} + a_2 x_2^{(1)} + \dots + a_n x_n^{(1)}$$
$$y^{(2)} = f\left(\vec{x}^{(2)}\right) = a_1 x_1^{(2)} + a_2 x_2^{(2)} + \dots + a_n x_n^{(2)}$$
$$\vdots$$

Linear System for \vec{a}

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

$$\begin{pmatrix} - \vec{x}^{(1)\top} & - \\ - \vec{x}^{(2)\top} & - \\ \vdots & \\ - \vec{x}^{(n)\top} & - \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix}$$

注意a是我们带确定的参数向量。可以将a理解为某个属性在最终结果中所占据的权重。

Parametric Regression

_east Square

Cholesky Factorization

Sparsity

Special Structur

或许可以参考一下泰勒展开,将非线性函数在某一点展开为基本(1)线性函数的组合 f can be nonlinear!

$$f(\vec{x}) = a_1 f_1(\vec{x}) + a_2 f_2(\vec{x}) + \dots + a_m f_m(\vec{x})$$

$$\begin{pmatrix} f_1\left(\vec{x}^{(1)}\right) & f_2\left(\vec{x}^{(1)}\right) & \cdots & f_m\left(\vec{x}^{(1)}\right) \\ f_1\left(\vec{x}^{(2)}\right) & f_2\left(\vec{x}^{(2)}\right) & \cdots & f_m\left(\vec{x}^{(2)}\right) \\ \vdots & \vdots & \cdots & \vdots \\ f_1\left(\vec{x}^{(m)}\right) & f_2\left(\vec{x}^{(m)}\right) & \cdots & f_m\left(\vec{x}^{(m)}\right) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{pmatrix}$$

Key: write f as a linear combination of basis functions

General Case

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Two Important Cases

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

$$f(\vec{x}) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
"Vandermonde system"

$$f(x) = acos(x + \phi)$$

Mini-Fourier

rametric Pegressier

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Why should you have to do exactly n experiments?

What if $y^{(k)}$ is measured with error?

Mathematics Methods for Computer Science

Drawbacks of fitting values exactly

Overfitting noisy data

Finding patterns in statistical noise

Least Squares

Cholesky Factorization

Sparsity

Drawbacks of fitting values exactly

Motivation

Parametric Regressio

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Wrong basis

Basis may not be tuned to the function sampled

Interpretation of Linear Systems

Motivation

Parametric Pegrossion

Least Squares

Cholesky Factorization

Sparsity

Special Structure

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} - & \vec{r}_1^\top & - \\ - & \vec{r}_2^\top & - \\ \vdots & \cdots & \vdots \\ - & \vec{r}_n^\top & - \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \vec{r}_1 \cdot \vec{x} \\ \vec{r}_2 \cdot \vec{x} \\ \vdots \\ \vec{r}_n \cdot \vec{x} \end{pmatrix}$$

"Guess \vec{x} by observing its dot products with $\vec{r_i}$'s."

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Rows are likely to be incompatible.

Next best thing:

$$A\vec{x} \approx \vec{b}$$

An over-determined least-squares problem.

Least Squares

Motivation

Parametric Perroccion

Least Squares

Cholesky Factorization

Sparsity

$$A\vec{x} \approx \vec{b} \iff \min_{\vec{x}} ||A\vec{x} - \vec{b}||_{2}$$

$$\iff \min_{\vec{x}} ||A\vec{x} - \vec{b}||_{2}^{2}$$

$$\iff A^{\top}A\vec{x} = A^{\top}\vec{b}$$

Minimizing residual square $\|Aec{x}-ec{b}\|_2^2$

Motivation

Parametric Regressio

Least Squares

Cholesky Factorization

Sparsity

Special Structure

$$\begin{split} \|A\vec{x} - \vec{b}\|_{2}^{2} &= (A\vec{x} - \vec{b}) \cdot (A\vec{x} - \vec{b}) \\ &= (A\vec{x} - \vec{b})^{\top} (A\vec{x} - \vec{b}) \\ &= \left(\vec{x}^{\top} A^{\top} - \vec{b}^{\top} \right) (A\vec{x} - \vec{b}) \\ &= \vec{x}^{\top} A^{\top} A \vec{x} - \vec{x}^{\top} A^{\top} \vec{b} - \vec{b}^{\top} A \vec{x} + \vec{b}^{\top} \vec{b} \\ &= \|A\vec{x}\|_{2}^{2} - 2 \left(A^{\top} \vec{b} \right) \cdot \vec{x} + \|\vec{b}\|_{2}^{2} \end{split}$$

Minimimum ($\nabla_{\vec{x}}$ must be zero)

$$\vec{0} = 2A^T A \vec{x} - 2A^T \vec{b}$$
$$\Longrightarrow A^T A \vec{x} = A^T \vec{b}$$

Normal Equations

Motivation

Parametric Regression

Least Squares

Cholesky Factorizatio

Sparsity

Special Structure

$$A^T A \vec{x} = A^T \vec{b}$$

 A^TA is the Gram matrix.

Normal Equations

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structur

$$A^T A \vec{x} = A^T \vec{b}$$

 A^TA is the Gram matrix.

In the overdetermined case (m>n), solving the least-squares problem $A\vec{x}\approx\vec{b}$ is equivalent to solving the square system $A^TA\vec{x}=A^T\vec{b}$.

Normal Equations

Motivation

Parametric Regressio

Least Squares

Cholesky Factorization

Sparsity

Special Structur

$$A^T A \vec{x} = A^T \vec{b}$$

 A^TA is the Gram matrix.

In the overdetermined case (m>n), solving the least-squares problem $A\vec{x}\approx\vec{b}$ is equivalent to solving the square system $A^TA\vec{x}=A^T\vec{b}$.

How about underdetermined case (m < n)?

Underdetermined case

Motivation

tric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

More difficult: ambiguity, too much solutions

Add additional assumptions to get a unique solution (e.g. small norm, more zeros)

Application dependent

Methods commonly used in computer graphics, computer vision, statical analysis and machine learning

Regularization

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Tikhonov regularization ("Ridge Regression;" Gaussian prior):

$$\min_{\vec{x}} \|A\vec{x} - \vec{b}\|_2^2 + \alpha \|\vec{x}\|_2^2$$

$$0 < \alpha \ll 1$$

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Tikhonov regularization ("Ridge Regression;" Gaussian prior):

$$\min_{\vec{x}} \|A\vec{x} - \vec{b}\|_2^2 + \alpha \|\vec{x}\|_2^2$$

$$0 < \alpha \ll 1$$

$$\implies \vec{0} = 2A^T A \vec{x} - 2A^T \vec{b} + 2\alpha \vec{x}$$

$$\implies (A^{\top}A + \alpha I_{n \times n})\vec{x} = A^{\top}\vec{b}$$

Regularization

Motivation

Parametric Regressio

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Tikhonov regularization ("Ridge Regression;" Gaussian prior):

$$\min_{\vec{x}} \|A\vec{x} - \vec{b}\|_2^2 + \alpha \|\vec{x}\|_2^2$$

Lasso (Laplace prior):

$$\min_{\vec{x}} \|A\vec{x} - \vec{b}\|_2^2 + \beta \|\vec{x}\|_1$$

Elastic Net:

$$\min_{\vec{x}} \|A\vec{x} - \vec{b}\|_2^2 + \alpha \|\vec{x}\|_2^2 + \beta \|\vec{x}\|_1$$

Example

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$\begin{pmatrix} 1 & 1 \\ 1 & 1.00001 \end{pmatrix} \vec{x} = \begin{pmatrix} 1 \\ 0.99 \end{pmatrix}$$
$$\vec{x} = (1001, -1000)$$

Example: Image Alignment

 $\vec{y}_k \approx A\vec{x}_k + \vec{b}$ $A \in \mathbb{R}^{2 \times 2} \quad \vec{b} \in \mathbb{R}^2$

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

(b) Input images with keypoints

(c) Aligned images

Example: Image Alignment

Motivation

Parametric Pegroccion

Least Squares

Cholesky Factorization

Sparsity

$$\begin{split} & \vec{y}_k \approx A \vec{x}_k + \vec{b} \\ \Rightarrow & \text{Residual: } \vec{r_k} = \vec{y}_k - A \vec{x}_k - \vec{b} \\ \Rightarrow & \text{Target: } \min_{A,b} \sum_k \|\vec{r_k}\|_2^2 \\ \Rightarrow & A \vec{x} + \vec{b} = \vec{y} \quad \Rightarrow \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} A \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad \Rightarrow Xp = Y \\ \Rightarrow & X^\top Xp = X^\top Y \quad \Rightarrow p \quad \text{(LU, Cholesky or others)} \end{split}$$

Example: Robotics

Planar Serial Chain Manipulator

Problem: How to change redundant joint angles \vec{q} to move toward goal position?

- Joint angles: $\vec{q} = (q_1, q_2, \cdots, q_n)^T$
- End-effector position: $\vec{p} = \begin{pmatrix} x \\ y \end{pmatrix}$
- Kinematic model: $\vec{p} = \vec{f}(\vec{q}) \stackrel{\text{Linearize}}{\longrightarrow} \Delta \vec{p} = J \Delta \vec{q}$
- An under-determined linear least-squares problem.
- Minimum-norm solution for $\Delta \vec{q}$ given $\Delta \vec{p}$.

Least Squares

A Ridiculously Important Matrix

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

$$A^T A$$

 A^TA is the Gram matrix.

Properties of A^TA

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

Symmetric

B is symmetric if $B^T = B$.

Properties of A^TA

Motivation

arametric Regressior

Least Square

Cholesky Factorization

Sparsity

Special Structure

Symmetric

B is symmetric if $B^T = B$.

Positive (Semi-)Definite

B is positive semidefinite if for all $\vec{x} \in \mathbb{R}^n$, $\vec{x}^T B \vec{x} \geq 0$. B is positive definite if $\vec{x}^T B \vec{x} > 0$ whenever $\vec{x} \neq \vec{0}$.

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

Goal:

Solve $C\vec{x} = \vec{d}$ for symmetric positive definite C.

$$C = \left(\begin{array}{cc} c_{11} & \vec{v}^{\top} \\ \vec{v} & \tilde{C} \end{array} \right)$$

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

$$E = \begin{pmatrix} 1/\sqrt{c_{11}} & \overrightarrow{0}^{\top} \\ \overrightarrow{r} & I_{(n-1)\times(n-1)} \end{pmatrix}$$

Symmetry Experiment

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

Try post-multiplication:

$$ECE^{T}$$

Parametric Perroccion

Least Square

Cholesky Factorization

Sparsity

Special Structur

. Positive definite \Rightarrow existance of $\sqrt{c_{11}}$

• Symmetry \Rightarrow apply E to both sides

Cholesky Factorization

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$C = LL^T$$

Observation about Cholesky

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$L = \begin{pmatrix} L_{11} & 0 & 0 \\ \vec{\ell}_k^{\top} & \ell_{kk} & 0 \\ L_{31} & L_{32} & L_{33} \end{pmatrix}$$

$$LL^{\top} = \begin{pmatrix} \times & \times & \times \\ \vec{\ell}_k^{\top} L_{11}^{\top} & \vec{\ell}_k^{\top} \vec{\ell}_k + \ell_{kk}^2 & \times \\ \times & \times & \times \\ \end{pmatrix}$$

Observation about Cholesky

Motivation

Parametric Pagressian

Least Square

Cholesky Factorization

Sparsity

$$\ell_{kk} = \sqrt{c_{kk}} - \left\| \vec{\ell}_k \right\|_2^2$$

$$L_{11}\vec{\ell}_k = \vec{c}_k$$

Harmonic Parameterization

Motivation

Parametric Pegrossion

Least Square

Cholesky Factorization

Sparsity

E.g., mesh Laplacian matrices.

Storing Sparse Matrices

Motivation

netric Regression

east Square

Cholesky Factorization

Sparsity

Special Structur

Want O(n) storage if we have O(n) nonzeros!

Examples:

- List of triplets (r,c,val)
- For each row r, matrix[r] holds a dictionary c \rightarrow A[r][c]

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Storing Sparse Matrices

Motivation

grametric Regressio

east Square

Cholesky Factorization

Sparsity

- Common strategy: Permute rows/columns
- Mostly heuristic constructions
 Minimizing fill in Cholesky is NP-complete!
- Alternative strategy:
 Avoid Gaussian elimination altogether
 Iterative solution methods only need
 matrix-vector multiplication! More in a few
 weeks

Banded Matrices

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Cyclic Matrices

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

$$\left(\begin{array}{cccc}
a & b & c & d \\
d & a & b & c \\
c & d & a & b \\
b & c & d & a
\end{array}\right)$$