Thematic Modeling

- Thematic modeling is referred to the description, handling and storage of the thematic of spatial objects
- We use thematic layers and object hierarchies to combine objects with the same thematic
- Furthermore, thematic modeling describes attributes and (semantic) relations between objects
- Thematic models are represented with graphical modeling languages

Thematic Queries

- Who is the owner of the house 124?
- How many houses are used commercial?
- Can trucks drive on Road A?

- Thematic information are independent from geometry and topology
- Thematic information can be coded additionally in the graphic representation of an object. Examples:
 - houses are represented by red polygons
 - parcels are filled with green colour
 - street names are oriented at the centre line of the street

Thematic Information

- Normally not all thematic information can be coded in the graphic representation
- Example: thematic information of a house
 - roof type
 - number of floors
 - area
 - owner
 - kind of use
 - etc.
- Thematic information are represented by alphanumerical symbols in the database
 - geometric information are represented by points, lines and areas (in 2D)
 - topologic information are represented by nodes, edges and meshes (in 2D)

Universität Stuttgart

Thematic Information in a Sewer Information System

GeoAs (AGIS GmbH, Frankfurt)

Layer principle

- The layer principle stores geometric data with different thematic meaning in different layers
- First used model but still widely used
- Developed by the 1:1 implementation of the analogue map production (use of transparencies). In order to produce different kinds of maps, the transparencies could be selected and combined - instead of drawing a new map each time

layer 1: fixed points

layer 2: height lines

layer n: water

Layer principle

- Layer principle:
 - each layer contains different information
 - simple model; easy superimposition
 - no hierarchy all layers are of equal priority
 - not flexible: all layers have to be of same size

Thematic Modelling

- Objects can have relations to other objects:
 - parcel is owned by owner
 - student attends lecture
- Objects can have attributes:
 - house has house number
 - student has matriculation number
- Different modeling languages are available to describe this information in a formal way:
 - Entity-Relationship-Model)
 - NIAM (Nijsen Information Analysis Method)
 - OMT (Object Modeling Technique)
 - UML (Unified Modeling Language)

