《精算学》讲义1

王华明2

 $^{^1}$ 本讲义由陈锦功、王子颉、林嘉瑞、夏婧彤、徐婷婷等几名同学协助录入. 2 安徽师范大学数学与统计学院,安徽芜湖 (241003). Email:hmking@ahnu.edu.cn

本讲义是王华明老师在 2023-2024 年第 2 学期讲授的《精算学》课程笔记的电子版. 授课对象包括安徽师范大学 2021 级统计学专业全体同学及少数几位跨专业选课的同学. 教材选用的是北京大学出版社的《寿险精算基础》一书,该书的作者是杨静平教授. 在此对北京大学出版社及杨静平教授表示感谢.

精算学内容

- 1. 你能活多久?(生存分布)
- 2. 你死的时候, 保险公司支付你 1 元, 这 1 元的现值为多少? (人寿保险)
- 3. 在你活着时, 保险公司每年支付你 1 元, 这些支付的现值是多少?(生存年金)
- 4. 上述的寿险与生存年金, 你该向保险公式缴纳多少保费?(保费理论)
- 5. 保险公司为了保证支付,要准备多少钱?(准备金理论)

第一章 生存分布

1.1 新生儿的生存分布

一. 生存函数

设有一个新生儿, 其寿命记为 X, 则 X 是一个非负随机变量. 假设 X 为一个连续型随机变量, 其分布函数为 $F_X(x)$, 密度函数为 $f_X(x)$. 回忆一下, 我们有 $F_X(x) = \int_0^x f_X(t) dt$ 且在 $f_X(x)$ 的连续点上有

$$F_X'(x) = f_X(x).$$

如下我们总假设密度函数 $f_X(t)$ 连续.

定义 1.1. 称 s(t) := P(X > t), t > 0 为 X 的生存函数.

易知

$$s(t) = 1 - F_X(t), s'(t) = -f_X(t).$$
(1.1)

二. 死亡力

现欲刻画一个 t 时刻还活着的个体瞬间死去的可能性, 做如下计算:

$$\lim_{h \downarrow 0} \frac{P(t < X \le t + h | X > t)}{h} = \lim_{h \downarrow 0} \frac{P(t < X \le t + h)}{hP(X > t)}$$

$$= \lim_{h \downarrow 0} \frac{P(X \le t + h) - P(X \le t)}{hP(X > t)} = \lim_{h \downarrow 0} \frac{F_X(t + h) - F_X(t)}{h} \frac{1}{1 - F_X(t)}$$

$$= \frac{F_X'(t)}{1 - F_X(t)} = \frac{f_X(t)}{1 - F_X(t)} = -\frac{s'(t)}{s(t)}.$$
(1.2)

定义 1.2. 称 $\mu(t) := -\frac{s'(t)}{s(t)}, t \ge 0$ 为新生儿的死亡力函数.

由(1.2)中的计算可知, 死亡力 $\mu(t)$ 刻画了新生儿在 t 附近死去的"快慢".

命题 1.1. 关于 $\mu(t)$, s(t) 及 $f_X(t)$ 有如下结论:

(i)
$$\mu(t) = -\frac{s'(t)}{s(t)} = \frac{f_X(t)}{1 - F_X(t)} = \frac{f_X(t)}{s(t)};$$

(ii) $f_X(t) = \mu(t)s(t);$

(iii)
$$s(t) = e^{-\int_0^t \mu(s)ds}$$
.

证明. (i) 和 (ii) 可由死亡力 $\mu(t)$ 的定义及 (1) 式直接得出. 现证明 (iii). 注意到 s(0) = P(X > 0) = 1 及

$$\mu(t) = -\frac{s'(t)}{s(t)} = -[\ln s(t)]'.$$

所以有

$$\ln s(t) = -\int_0^t \mu(s)ds.$$

故 $s(t) = e^{-\int_0^t \mu(s)ds}$, (iii) 得证.

- 注 1.1. (a) 由 $s(t) = e^{-\int_0^t \mu(s) ds}$ 及 $\mu(t) = -\frac{s'(t)}{s(t)}$ 可知, 生存函数 s(t) 与死亡力函数 $\mu(t)$ 相互唯一确定.
- (b) 一个函数 $\mu(t)$ 要作为死亡力, 必须满足以下两条:

 $1^{\circ} \mu(t) \ge 0, \forall t \ge 0$ (保证 s(t) 单调递减).

$$2^{\circ} \int_0^{\infty} \mu(t) dt = \infty$$
(保证 $s(\infty) = 0$).

例 1.1. 假设新生儿的寿命服从以 λ 为参数的指数分布,则密度函数 $f_X(t) = \lambda e^{-\lambda x}, x > 0$. 分布函数 $F_X(t) = \int_0^t f_X(s) ds = 1 - e^{-\lambda t}, t > 0$. 生存函数 $s(t) = 1 - F_X(t) = e^{-\lambda t}, t > 0$. 故其死亡力函数为

$$\mu(t) = -\frac{s'(t)}{s(t)} = -\frac{-\lambda e^{-\lambda t}}{e^{\lambda t}} \equiv \lambda. \tag{1.3}$$

注 1.2. 由(1.3)式可知, 若新生儿寿命服从以 λ 为参数的指数分布, 则死亡力 $\mu(t) \equiv \lambda$, 和 t 无关. 这表示新生儿的死亡力在任何时候都是一样的. 也就是说, 新生儿永远年轻. 这当然与实际情况不符. 所以, 指数分布作为寿命分布是有缺陷的. 但由于指数分布的计算较为简单, 所以在理论研究中, 学者们很多时候都采用指数分布作为寿命分布.

1.1 新生儿的生存分布

3

三. 整数年龄与分数年龄

很多时候, 保险金都是在整数时刻支付的. 所以有必要研究整数年龄和分数年龄. 设 K(0) 为 X 的整数部分, S(0) 为 X 的分数部分. 即

$$X = K(0) + S(0).$$

记 $\mathring{e}_0 = E(X)$, 它表示新生儿的期望寿命; 记 $e_0 = E(K(0))$, 它表示期望整数寿命. 易知

$$e_0 < \mathring{e}_0 < e_0 + 1$$
.

引理 1.1. 设随机变量 X 的 n 阶矩存在, 即 $E(X^n) < \infty$, 则 $\lim_{M \to \infty} M^n s(M) = 0$. 证明. 注意到

$$E(X^{n}) = \int_{0}^{\infty} s^{n} f_{X}(s) ds = \int_{0}^{M} s^{n} f_{X}(s) ds + \int_{M}^{\infty} s^{n} f_{X}(s) ds.$$
 (1.4)

因 X 的 n 阶矩存在, 故上式左右两端都是有限的. 由于 $\lim_{M\to\infty}\int_0^M s^n f_X(s)ds=E(X^n)$, 所以 $\lim_{M\to\infty}\int_M^\infty s^n f_X(s)ds=0$. 于是

$$M^{n}s(M) = M^{n}P(X > M) = \int_{M}^{\infty} M^{n}f_{X}(s)ds$$
$$\leq \int_{M}^{\infty} s^{n}f_{X}(s)ds \to 0, M \to \infty.$$

引理证毕.

命题 1.2. 如下结论成立:

(1)
$$\mathring{e}_0 = E(X) = \int_0^\infty s(t) dt;$$

(2)
$$E(X^2) = \int_0^\infty 2t s(t) dt;$$

(3)
$$E(K(0)^2) = \sum_{n=1}^{\infty} (2n-1)s(n);$$

(4)
$$e_0 = E(K(0)) = \sum_{n=1}^{\infty} s(n)$$
.

第一章 生存分布

证明. 由分部积分公式和引理 1.1可知

4

$$\begin{split} E\left(X^n\right) &= \int_0^\infty t^n \mathrm{d}F(t) = \lim_{M \to \infty} \int_0^M t^n \mathrm{d}F(t) = -\lim_{M \to \infty} \int_0^M t^n \mathrm{d}s(t) \\ &= -\lim_{M \to \infty} ([t^n s(t)] \Big|_0^M - \int_0^M n t^{n-1} s(t) \mathrm{d}t) \\ &= \lim_{M \to \infty} [-M^n s(M)] + \lim_{M \to \infty} \int_0^M n t^{n-1} s(t) \mathrm{d}t \\ &= \int_0^\infty n t^{n-1} s(t) \mathrm{d}t. \end{split}$$

故(1)与(2)得证.下证(3),由离散型随机变量函数期望的计算公式,有

$$E(K(0)^{2}) = \sum_{k=0}^{\infty} k^{2} P(K(0) = k) = \sum_{k=0}^{\infty} k^{2} [P(X \ge k) - P(X \ge k + 1)]$$

$$= \sum_{k=0}^{\infty} k^{2} s(k) - \sum_{k=0}^{\infty} k^{2} s(k + 1)$$

$$= \sum_{k=0}^{\infty} k^{2} s(k) - \sum_{k=0}^{\infty} (k + 1)^{2} s(k + 1) + \sum_{k=0}^{\infty} (2k + 1) s(k + 1)$$

$$= \sum_{k=0}^{\infty} (2k + 1) s(k + 1) = \sum_{n=1}^{\infty} (2n - 1) s(n).$$

故(3)得证. 类似可证(4).

一. x 岁个体余命的分布、密度及生存函数

为了方便, 今后将一个 x 岁还活着的个体记为 (x). 个体 (x) 的余命记为 T(x). 显然有

$$T(x) = X - x.$$

这里特别强调一下, T(x) 的分布表示在已知事件 $\{X > x\}$ 发生的条件下, X - x 的分布. 如果新生儿在 x 岁之前死了, 也就没有了所谓的个体 (x), 其余命也就无从谈起.

记 $F_{T(x)}(t)$ 为 T(x) 的分布函数, 则

$$F_{T(x)}(t) = P(T(x) \le t | X > x) = P(X - x \le t | X > x)$$

$$= \frac{P(x < X \le t + x)}{P(X > x)} = \frac{P(X > x) - P(X > x + t)}{P(X > t)}$$

$$= 1 - \frac{s(x + t)}{s(x)}.$$
(1.5)

记 $f_{T(x)}(t)$ 为 T(x) 的密度函数, 则

$$f_{T(x)}(t) = F'_{T(x)}(t) = -\frac{s'(x+t)}{s(x)} = \frac{f_X(x+t)}{s(x)}.$$
 (1.6)

定义 1.3. 称 $s_{T(x)}(t) := P(T(x) > t)$ 为个体 (x) 的的生存函数.

由(1.5)可得

$$s_{T(x)}(t) = 1 - F_{T(x)}(t) = \frac{s(x+t)}{s(x)} \perp s'_{T(x)}(t) = -f_{T(x)}(t).$$
 (1.7)

二. x 岁个体的死亡力

为了解个体 (x) 在 x+t 岁附近死去的"快慢", 考虑极限

$$\lim_{\Delta t \to 0+} \frac{P(t < T(x) \le t + \Delta t | T(x) > t)}{\Delta t} = \lim_{\Delta t \to 0+} \frac{P(t < T(x) \le t + \Delta t)}{\Delta t P(T(x) > t)}$$

$$= \lim_{\Delta t \to 0+} \frac{s_{T(x)}(t) - s_{T(x)}(t + \Delta t)}{\Delta t} \frac{1}{s_{T(x)}(t)} = -\frac{s'_{T(x)}(t)}{s_{T(x)}(t)}$$

$$= -\frac{\frac{s'(x+t)}{s(x)}}{\frac{s(x+t)}{s(x)}} = -\frac{s'(x+t)}{s(x+t)} = \mu(x+t).$$

定义 1.4. 称 $\mu_x(t) = -\frac{s'_{T(x)}(t)}{s_{T(x)}(t)}$ 为 X 岁个体在 t 年后的死亡力函数。

命题 1.3. 我们有

(i)
$$s_{T(x)}(t) = 1 - F_{T(x)}(t) = \frac{s(x+t)}{s(x)};$$

(ii)
$$\mu_x(t) = \frac{f_{T(x)}(t)}{1 - F_{T(x)}(t)} = \frac{f_{T(x)}(t)}{s_{T(x)}(t)} = -\frac{s'_{T(x)}(t)}{s_{T(x)}(t)}$$
.

(iii)
$$f_{T(x)}(t) = s_{T(x)}(t)\mu_x(t);$$

(iv)
$$\mu_x(t) = \mu(x+t);$$

(v)
$$s_{T(x)}(t) = e^{-\int_0^t \mu_x(s)ds} = e^{-\int_0^t \mu(x+s)ds} = e^{-\int_x^{x+t} \mu(s)ds}$$
.

证明. 利用(1.5), (1.6) 和 (1.7), 很容易证明 (i), (ii), (iii). 下证 (iv). 由 (ii), (1.6) 及(1.7) 可得,

$$\mu_x(t) = \frac{f_{T(x)}(t)}{s_{T(x)}(t)} = \frac{f_X(x+t)/s(x)}{s(x+t)/s(x)} = \frac{f_X(x+t)}{s(x+t)} = \mu(x+t).$$

其中, 为了得到最后一个等号, 我们用了命题 1.1 中的第一条. (iv) 得证.

最后证明 (v). 注意到 $s_{T(x)}(0) = P(T(x) > 0) = 1$ 且由第 (ii) 条有

$$\mu_x(t) = -\frac{s'_{T(x)}(t)}{s_{T(x)}(t)} = -[\ln s_{T(x)}(t)]'.$$

故 $\ln s_{T(x)}(t) = -\int_0^t \mu_x(s)ds$. 从而 $s_{T(x)}(t) = e^{-\int_0^t \mu_x(s)ds}$. 又因为 $\mu_x(t) = \mu(x+t)$, 故

$$s_{T(x)}(t) = e^{-\int_0^t \mu_x(s)ds} = e^{-\int_0^t \mu(x+s)ds} = e^{-\int_x^{x+t} \mu(s)ds}$$

其中, 为得到最后一个等号, 我们用定积分的换元法即可.

注 1.3. 理论上, 一个人一旦出生, 其死亡力就"注定"了. 如果他在 x 岁还活着, 在 t 年后他变为 x+t 岁, 此时他的死亡力是 $\mu_x(t)$. 换一种观点, 如果站在 0 时刻 (他出生时) 看, 他在 x+t 岁的死亡力应为 $\mu(x+t)$. 故有

$$\mu_x(t) = \mu(x+t).$$

例 1.2. 设新生儿的寿命服从以 $\lambda>0$ 为参数的指数分布. 则 $s(t)=e^{-\lambda t}, t>0$. 从 而有

$$F_{T(x)}(t) = 1 - \frac{s(x+t)}{s(x)} = 1 - \frac{e^{-\lambda(x+t)}}{e^{-\lambda x}} = 1 - e^{-\lambda t} = F_X(t);$$

$$f_{T(x)}(t) = F'_{T(x)}(t) = F'_X(t) = f_X(t);$$

$$\mu_X(t) = \mu(x+t) \equiv \lambda.$$

以上计算再次表明, 在指数分布寿命假设下, 新生儿的的寿命 X 与 x 岁的个体的 余命 T(x) 的分布相同. 进一步说明指数分布作为寿命分布是有缺陷的.

命题 1.4. $\forall u, t > 0$, 有

$$P(T(x) > t + u|T(x) > t) = P(T(x+t) > u).$$
(1.8)

该式的含义为: 一个 x 岁的人, 在 x + t 岁还活着的条件下, 再活 u 年不死的概率 与一个 x + t 岁的人再 u 年内未死的概率相等.

证明. 对 u, t > 0, 由条件概率定义知

$$\begin{split} P(T(x) > t + u | T(x) > t) &= \frac{P(T(x) > t + u)}{P(T(x) > t)} = \frac{P(X - x) > t + u}{P(X - x) > t} \\ &= \frac{P(X - (x + t) > u)}{P(X > x + t)} = P(X - (x + t > u | X > x + t)) \\ &= P(T(x + t) > u) = \frac{P(T(x) > t + u)}{P(T(x) > t)}. \end{split}$$

命题证毕.

注 1.4. 由(1.8)式立即可得

$$P(T(x) \le t + u | T(x) > t) = P(T(x+t) \le u). \tag{1.9}$$

例 1.3. 设新生儿的寿命服从指数分布,参数为 λ ,则 $\mu(t) \equiv \lambda$,

$$s(t) = e^{-\lambda t}, t > 0.$$

$$F_{T(x)} = 1 - \frac{s(x+t)}{s(x)} = 1 - e^{-\lambda t} = F_x(t).$$

$$f_{T(x)}(t) = F_{T(x)}(t) = \lambda e^{-\lambda t} = f_x(t), t > 0.$$

$$s_{T(x)}(t) = \frac{s(x+t)}{s(x)} = e^{-\lambda t} = s(t), t > 0.$$

$$\mu_x(t) = \mu(x+t) \equiv \mu, t > 0.$$

$$e_x = \sum_{k=1}^{\infty} {}_k p_x = \sum_{k=1}^{\infty} e^{-\lambda t} = \frac{e^{-\lambda}}{1 - e^{-\lambda}}.$$

$$\mathring{e}_x = \int_0^{\infty} {}_t p_x dt = \int_0^{\infty} e^{-\lambda t} dt = \frac{1}{\lambda}.$$

显而易见, 这里的 \mathring{e}_x 和 e_x 与 x 无关, 也就是说, 所有人的剩余寿命的期望都是一样的, 和他现在的年龄无关. 这进一步说明指数分布作为寿命分布是有缺陷的. 此外, 因 $\mathring{e}_x = ET(x) = \frac{1}{\lambda}$, 故指数分布的参数 λ 正好是期望寿命的倒数.

三. 一些精算学表示法

注意到 $S_{T(x)}(t) = P(T(x) > t)$ 表示个体 (x) 在 t 年后还活着的概率; 而 $F_{T(x)}(t) = P(T(x) \le t)$ 表示个体 (x) 在 t 年内死去的概率. 这些记号都很复杂, 书写比较困难. 故精算学中需引入一些简单的记号.

定义如下几个记号:

ů. 用 $_tp_x\stackrel{\mathrm{def}}{=}P(T(x)>t)=S_{T(x)}(t)$ 表示个体 (x) 在 t 年后还活着的概率. 显然 有

$$_{t}P_{x} = S_{T(x)}(t) = e^{-\int_{0}^{t} \mu_{x}(s)ds} = e^{-\int_{0}^{t} \mu(x+s)ds} = e^{-\int_{x}^{x+t} \mu(s)ds}.$$

 $\mathring{2}$. 用 $_tq_x\stackrel{\mathrm{def}}{=}P(T(x\leq t)=F_{T(x)}(t))$ 表示一个 x 岁的人在 t 年内死亡的概率. 易知

$$_{t}p_{x}+_{t}q_{x}=1.$$

3. 用 $u|_t q_x = P(u < T(x) \le u + t)$ 表示一个 x 岁的人在 x + u 岁还活着,但在未来 t 年内死亡的概率.

命题 1.5. 如下几个结论成立:

- (i) $\frac{d(t_t p_x)}{dt} = -t p_x \mu_x(t);$
- (ii) $\frac{d(tp_x)}{dx} = -tp_x(\mu(x) \mu(x+t)).$

证明. (i) 注意到 $_tp_r = e^{-\int_0^t \mu_x(s)ds}$. 故

$$\frac{d(t_t p_x)}{dt} = \frac{d(e^{-\int_0^t \mu_x(s)ds})}{dt} = e^{-\int_0^t \mu_x(s)ds} (-\int_0^t \mu_x(s)ds)_t' = -t p_x \mu_x(t).$$

(ii) 利用等式 $_tp_x=e^{-\int_x^{x+t}\mu_x(s)ds}$, 有

$$\frac{d(t_t p_x)}{dx} = (e^{-\int_x^{x+t} \mu_x(s)ds})' = e^{-\int_x^{x+t} \mu(s)ds} (-\int_x^{x+t} \mu(s)ds)'_x = -t p_x(\mu(x) - \mu(x+t)).$$

命题证毕.

命题 1.6. 以下结论成立:

- (1) $f_{T(x)}(t) =_t p_x * \mu_x(t)$;
- (2) $_{t}p_{x} = _{s}p_{x} \cdot _{t-s}p_{x+s}, 0 \le s \le t;$
- (3) $u|_t q_x =_u p_x -_{u+t} p_x, u, t > 0;$
- $(4) _{u|t}q_x =_u p_{xt}q_{x+u}, u, t \ge 0.$

证明. (1) 是显然的, 不需证明. (2) 固定 0 < s < t, 则由条件概率性质可知

$$tp_x = P(T(x) > t) = P(T(x) > s)P(T(x) > t|T(x) > s)$$

$$= {}_{s}p_x P(T(x) > t + s - s|T(x) > s)$$

$$= {}_{s}p_x P(T(x + s) > t - s)$$

$$= {}_{s}p_x \cdot t_{-s}p_{x+s}.$$

(3) 对 $t, u \geq 0$, 简单计算可知

$$u|_{t}q_{x} = P(u < T(x) \le u + t)$$

$$= P(T(x) > u) - P(T(x) > u + t) = {}_{u}p_{x} - {}_{u+t}p_{x}.$$

(4) 固定 $t, u \ge 0$, 利用(1.9)得

$$u_{|t}q_x = P(u < T(x) \le u + t) = P(T(x) > u)P(T(x) \le u + t|T(x) > u)$$

= $up_x P(T(x + u) < t) = up_{xt}q_{x+u}$.

命颢证毕.

四. 个体(x)的整数与分数余命

类似处理新生儿的寿命一样, 可将个体 (x) 的余命 T(x) 分为整数部分和小数部分. 设

$$T(x) = K(x) + S(x)$$

其中 K(x) 是 T(x) 的整数部分, S(x) 是 T(x) 的小数部分. 记

$$e_x^{\circ} \stackrel{\text{def}}{=} E(T(x)), \ e_x \stackrel{\text{def}}{=} E(K(x))$$

则简单计算可知

$$e_x^\circ = E(T(x)) = \int_0^\infty P(T(x) > t) dt = \int_0^\infty t p_x dt;$$
 $e_x = E(K(x)) = \sum_{k=0}^\infty k P(K(x) = k)$

$$= \sum_{k=0}^\infty k [P(T(x) \ge k) - P(T(x) \ge k + 1)]$$

$$= \sum_{k=0}^{\infty} k_k p_x - \sum_{k=0}^{\infty} k_{k+1} p_x = \sum_{k=0}^{\infty} k_{k+1} p_x$$
$$= \sum_{k=0}^{\infty} k_k p_x.$$

1.3 随机生存群

一. 模型描述

设 0 时刻系统中有 l_0 个新生儿, 他们的寿命独立同分布, 服从某分布, 生存函数为 $s(t), t \ge 0$. 记

 $\mathcal{L}(x)$ 为在 x 岁还活着的总人数;

 $_t\mathcal{D}_x$ 为 [x,x+t] 内死去的总人数.

设系统中初始时刻的 l_0 个人的寿命分别为 $X_1, X_2, ..., X_n$, 则他们独立同分布,且

$$P(X_i > t) = s(t), i = 1, ..., n.$$

显然有

$$\mathscr{L}(x) = \sum_{i=1}^{l_0} I_{\{X_i \geqslant x\}}, \ _t \mathscr{D}_x = \sum_{i=1}^{l_0} I_{\{x \leqslant X_i < x + t\}}$$

其中
$$I_A = \begin{cases} 1, & \omega \in A, \\ 0, & \omega \in A^c \end{cases}$$
 为示性函数.

 $l_x \stackrel{def}{=} E(\mathcal{L}(x))$,它表示在x岁还活着的期望人数; $td_x \stackrel{def}{=} E(t\mathcal{D}_x)$,它表示在[x, x+t)内死去人数的期望.

二. 几个结论

命题 1.7. 如下结论成立:

$$l_r = l_0 s(x), t d_r = l_r - l_{r+t}.$$

1.3 随机生存群 11

证明. 注意到 $E(I_A) = P(A)$, 所以

$$l_{x} = E(\mathcal{L}(x)) = E(\sum_{k=0}^{l_{0}} I_{\{x_{k} > x\}})$$

$$= \sum_{k=0}^{l_{0}} E(I_{\{x_{k} > x\}}) = \sum_{k=1}^{l_{0}} P(X_{k} > x) = \sum_{k=1}^{l_{0}} P(X_{1} > x)$$

$$= l_{0}P(X_{1} > x) = l_{0}s(x);$$

$$td_{x} = E(t\mathcal{D}_{t}) = E(\sum_{k=1}^{l_{0}} I_{\{x < x_{k} \le x + t\}})$$

$$= \sum_{k=1}^{l_{0}} E(I_{\{x < x_{k} \le x + t\}}) = \sum_{k=1}^{l_{0}} E(x < x_{k} \le x + t)$$

$$= l_{0}P(x < X_{1} \le x + t) = l_{0}[P(X_{1} > x) - P(X_{1} > x + t)]$$

$$= l_{0}s(x) - l_{0}s(x + t) = l_{x} - l_{x+t}.$$

引入 l_x 及 $_td_x$ 的目的是为了计算生存概率 $_tp_x$ 与死亡概率 $_tq_x$. **命题** 1.8. 如下结论成立:

(i)
$$_tp_x = \frac{l_{x+t}}{l_x}, _tq_x = \frac{_tdx}{l_x}, \ l_{x+t} = l_xe^{-\int_x^{x+t}\mu(s)ds}$$

(ii)
$$\frac{dl_x}{dx} = -l_x \mu(x)$$
, $_n d_x = \int_x^{x+n} l_x \mu(t) dy$.

证明. 我们先证 (i). 由 $l_x = l_0 s(x)$ 知 $s(x) = \frac{l_x}{l_0}$, 所以

$$_{t}p_{x} = s_{T(x)}(t) = \frac{s(x+t)}{s(x)} = \frac{l_{x+t}/l_{0}}{l_{x}/l_{0}} = \frac{l_{x+t}}{l_{x}}.$$

由此可推出

$$\begin{split} l_{x+t} &= l_x \cdot {}_t p_x = l_x e^{-\int_x^{x+t} \mu(s) ds}; \\ {}_t q_x &= 1 - {}_t p_x = 1 - \frac{l_{x+t}}{l_x} = \frac{l_x - l_{x+t}}{l_x} = \frac{{}_t d_x}{l_x}. \end{split}$$

下证 (ii). 由 (i) 知,

$$\frac{dl_x}{dx} = l_0 e^{-\int_0^x \mu(t)dt} (-\mu(x)) = l_0 s(x) (-\mu(x)) = -l_x \mu(x).$$

由此可导出

$$_{n}d_{x} = l_{x} - l_{x+n} = -\int_{x}^{x+n} \frac{d(l_{y})}{dy} dy = \int_{x}^{x+n} l_{x}\mu(t) dy.$$

命题证毕.

1.4 作业

作业 1.1. 设某人现年 20 岁, 假设他的余命 T(20) 服从 [0,60] 上的均分分布, 求 $F_{T(20)}(t)$, $f_{T(20)}(t)$, $\mu_{20}(t)$, $s_{T(20)}(t)$.

作业 1.2. 设 $\mu(t) = \frac{1}{(t+e)(\ln(t+e))^a}, t \geq 0$. 讨论 a 取何值时, $\mu(t)$ 可作为死亡力函数, 并求出 $s_{T(x)}(t), f_{T(x)}(t)$.

作业 1.3. 假设新生儿的寿命为 X, 死亡力为 $\mu(t) = \frac{a}{(t+1)}, t \ge 0, a > 0$. 讨论 a 何值 时, D(X) 存在并求出 D(X).

作业 1.4. 证明: $\frac{d}{dx}\mathring{e}_x = \mathring{e}_x\mu(x) - 1$.

作业 1.5. 设系统中有 lo 个新生儿, 它们的寿命独立同分布, 生存函数为

$$s(t) = 1 - \frac{t}{16}, 0 \le t \le 16.$$

证明

$$(_4\mathcal{D}_0, _8\mathcal{D}_4, _{12}\mathcal{D}_8, _{16}\mathcal{D}_{12}),$$

服从多项分布,并计算(1),每个随机变量的期望;(2)每个随机变量的方差;(3)每两个随机变量的相关系数;(4)对你计算所得的结果进行简要分析.

作业 1.6. 你现在多少岁?请根据 303 页的附表 2.1(男生用)、307 页附表 2.2(女生用) 计算你 80 岁还活着的概率.

参考文献

- [1] 杨静平/编著: 《寿险精算基础》, 北京大学出版社, 2002.
- [2] 吴岚, 黄海, 何洋波/编著: 《金融数学引论》第二版, 北京大学出版社, 2013.