## La Seine Musicale ★

B2-14

Pas de corrigé pour cet exercice.

On choisit de représenter une demi-voile, de repère  $\Re_v\left(O;\overrightarrow{x_v},\overrightarrow{y_v},\overrightarrow{z}\right)$ , par une portion de demi-sphère (figure 1). On pourra remarquer qu'il n'y a pas de mouvement relatif entre les repères  $\Re_{C_G}\left(C_G;\overrightarrow{x_{C_G}},\overrightarrow{y_{C_G}},\overrightarrow{z}\right)$  et  $\Re_v\left(O;\overrightarrow{x_v},\overrightarrow{y_v},\overrightarrow{z}\right)$ , associé à la demi-voile. On rappelle que  $\overrightarrow{OC_G}=R\overrightarrow{y_{C_G}}$ , avec R le rayon moyen de la voie de roulement.



FIGURE 1 – Paramétrage de la surface totale et élémentaire en coordonnées sphériques de la demi-voile

La figure figure 2 présente l'orientation du vent par rapport au plan de symétrie de la demi-voile dans le plan  $(\overrightarrow{x_v}, \overrightarrow{y_v})$ . La densité d'effort surfacique du vent sur la demi-voile, pour une vitesse de 9 m s<sup>-1</sup>, est noté  $\overrightarrow{f}_{\text{vent}} = f\overrightarrow{u}$  avec  $f = 54.7 \, \text{N m}^{-2}$ , l'orientation de  $\overrightarrow{u}$  étant définie par l'angle constant  $\alpha = (\overrightarrow{x_v}, \overrightarrow{u})$ .

La base associée au système de coordonnées sphériques  $(r,\theta,\varphi)$  est  $(\overrightarrow{e_r},\overrightarrow{e_\theta},\overrightarrow{e_\varphi})$ . La position du point P appartenant à la demi-voile est définie par  $\overrightarrow{OP}=R\overrightarrow{e_r}$  avec R le rayon moyen de la voie de roulement  $(R=22,75\,\mathrm{m})$ . L'angle azimutal  $\varphi$  évolue entre  $-\frac{\pi}{8}$  et  $\frac{\pi}{8}$  et l'élévation  $\theta$  évolue entre 0 et  $\frac{\pi}{2}$ . On précise que, dans le cas présenté figure 1, la surface élémentaire en coordonnées sphériques est notée  $dS=R^2\sin\theta d\theta d\varphi$ .





FIGURE 2 – Paramétrage angulaire

**Question 1** Exprimer l'effort élémentaire du vent sur la demi-voile s'appliquant au point P sur la surface dS, noté  $\overrightarrow{dF}_{\text{vent}}$ .

**Question 2** Déterminer par intégration l'expression du moment de l'action mécanique du vent selon l'axe  $(O, \overrightarrow{z})$ ,  $\overline{\mathcal{M}(O, \text{vent} \to \text{demi-voile})} \cdot \overrightarrow{z}$  s'opposant à la rotation de la voile autour de l'axe  $(O, \overrightarrow{z})$  en fonction de R, f et  $\alpha$ .

**Question 3** On définit  $F_{\text{vent}}$  tel que  $(\overrightarrow{OC_G} \land F_{\text{vent}} \overrightarrow{x_{C_G}}) \cdot \overrightarrow{z} = \overrightarrow{M}(O, \text{vent} \to \text{demi-voile}) \cdot \overrightarrow{z}$ . En déduire l'expression de  $F_{\text{vent}}$  l'effort du vent au point  $C_G$  s'opposant au déplacement du chariot central.

Afin de modéliser le déplacement de la voile dans le cas le plus défavorable, on souhaite déterminer la valeur maximale de  $|F_{\text{vent}}|$ .

**Question 4** Pour quelle valeur de  $\alpha$  cet effort est-il maximal? Déterminer la valeur maximale de  $|F_{\text{vent}}|$ .

Corrigé voir .