To consider path loss, we now perform a transformation of RVs using (1), $\gamma_k = \bar{K} r_k^{-\beta} \zeta_k$, where, γ_k is the selected user SNR in each ring k. The CDF and PDF of γ_k can then be written as follows:

$$F_{\gamma_k}(\gamma_k) = \prod_{i=1}^{u_k} F_{\zeta_i}(\bar{K}^{-1}\gamma_k r_k^{\beta}) \stackrel{\text{i.i.d}}{=} \left(F_{\zeta}(\gamma_k r_k^{\beta} \bar{K}^{-1}) \right)^{u_k}$$

$$(7)$$

$$f_{\gamma_k}(\gamma_k) = \frac{1}{r_k^{-\beta}} \sum_{j=1}^{u_k} f_{\zeta_j}(\gamma_k r_k^{\beta} \bar{K}^{-1}) \prod_{i=1, i \neq j}^{u_k} F_{\zeta_i}(\gamma_k r_k^{\beta} \bar{K}^{-1}) \stackrel{\text{i.i.d}}{=} \frac{u_k}{r_k^{-\beta}} f_{\zeta}(\gamma_k r_k^{\beta} \bar{K}^{-1}) \left(F_{\zeta}(\gamma_k r_k^{\beta} \bar{K}^{-1}) \right)^{u_k - 1}$$
(8)

Step 2 (Selecting the user with maximum SNR among K rings): In this step, we compute the probability of selecting the k^{th} ring among all other rings. It is important to note that this is equivalent to selecting the ring k which possesses the user with the highest SNR among all rings. Conditioning on γ_k , the PDF of r_{sel} can be written explicitly as follows:

$$P(r_{\text{sel}} = r_k | \gamma_k) = \prod_{i=1, i \neq k}^K p(\gamma_i \le \gamma_k) = \prod_{i=1, i \neq k}^K F_{\gamma_i}(\gamma_k)$$
(9)

By averaging over the distribution of γ_k , the final expression for the PMF of $r_{\rm sel}$ is

$$P(r_{\text{sel}} = r_k) = \int_0^\infty \left(\prod_{i=1, i \neq k}^K F_{\gamma_i}(\gamma_k) \right) f_{\gamma_k}(\gamma_k) d\gamma_k$$
 (10)

Using (7), (10) can be written for i.i.d. case as follows:

$$P(r_{\text{sel}} = r_k) = \int_0^\infty \prod_{i=1, i \neq k}^K \left(F_{\zeta}(\gamma_k r_i^{\beta}) \right)^{u_i} \frac{u_k f_{\zeta}(\gamma_k r_k^{\beta})}{r_k^{-\beta}} \left(F_{\zeta}(\gamma_k r_k^{\beta}) \right)^{u_k - 1}$$
(11)

where $r_{\rm sel} \in [0, R]$. The results in (11) are generalized for any shadowing and fading statistics. Even though (11) is not a closed form expression, the integration can be solved accurately using standard mathematical software packages such as MAPLE and MATHEMATICA.

B. Proportional Fair Scheduling Scheme

The proportional fair scheduling scheme allocates the subcarrier to the user with the largest normalized SNR $(\gamma/\bar{\gamma})$ [12], where γ and $\bar{\gamma}$ denote the instantaneous SNR and the short term average SNR of a given user, respectively. In other words, the selection criterion is based on selecting a user who has maximum instantaneous SNR relative to its own average SNR. The distribution of $r_{\rm sel}$ can be derived as follows:

Step 1 (Selecting the user with maximum normalized SNR in ring k): In this step, the performance of proportional fair scheduling scheme is independent of the path loss factor if users are moving relatively