

Decision Tree

Outline

- > What's a decision tree
- The algorithm of decision tree
 - Information Gain
 - Gain ratio
 - Pruning tree
 - Continuous attributes
 - Missing values
 - Interpretability
- Summary

Decision Tree

- Every non-leaf node represents a partition of an attribute
- ☐ The result of each partition either leads to a further decision problem or leads to the final conclusion
- Decision trees classify instances or examples by starting at the root of the tree and moving through branches until a leaf node
- The final conclusion of decision process corresponds to a target value

How to Construct a Decision Tree

(1) Which attribute to start? (root)

(2) Which attribute to proceed?

(3) When to stop and obtain the target value?

Decision Tree Algorithms

- The basic idea of decision tree algorithm:
 - Choose the best attribute(s) to split the remaining instances and make this attribute be a node
 - Repeat this process recursively for successor nodes
 - Stop when:
 - For the current node, all instances have same target value
 - Or there are no more attributes or the instances have the same values in all remaining attributes
 - Or there are no more instances

Choosing Attributes

- One key problem of decision tree algorithm: attribute selection
- Different decision tree algorithms: different methods for attribute selection
- We will focus on the *ID3* (Interactive Dichotomize 3) algorithm [Ross Quinlan/1975]

Information gain

- □ ID3 selects attributes according to their information gain
- Information gain is calculated from entropy
- Entropy is the measure of purity of a set Eg.
- Set1: 10 good watermelons
- Set2: 8 good watermelons and 2 bad watermelons
- Set3: 5 good watermelons and 5 bad watermelons

Purity: Set1 > Set2 > Set3

Entropy

- In general, when p_i is the fraction of instances labeled i,
 Entropy({p₁,...,p_k})=-sum(p_ilog(p_i))
- Entropy of a set of instances relative to a binary classification is

Entropy=
$$-p_1\log(p_1)-(1-p_1)\log(1-p_1)$$

- If all the instances belong to the same class, entropy is 0
- Eg. Set1: 10 good watermelons

If the instances are equally mixed, entropy is 1

Eg. Set2: 5 good watermelons, 5 bad watermelons

Entropy

- Entropy is minimum when all the instances belong to the same class (highest purity)
- Entropy is maximum when the instances are equally mixed (lowest purity)
- The higher the purity, the smaller the entropy is; the lower the purity, the larger the entropy is.

Information gain

- The information gain of an attribute is the expected reduction in entropy caused by partitioning on this attribute.
- Dⁱ is the subset of D, a is an attribute:

Gain(
$$D$$
, a)=Entropy(D) - $\sum_{i=1 \text{ to } k} |D^i|/|D|$ Entropy(D^i)

- Partitions: low entropy → high gain
- Eg.

D: 5 good watermelons, 5 bad watermelons

D1: 2 good watermelons, 1 bad watermelon

 D^2 : 3 good watermelons, 4 bad watermelons

Gain(D, a)= Entropy(D)-
$$\left(\frac{3}{10}$$
 Entropy(D²) + $\frac{7}{10}$ Entropy(D²)

The example

Ent(D)=-
$$\sum_{k=1}^{2} p_k \log_2 p_k$$
=- $(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17})$ =0.998

Training set

色泽:

Ent(D1)=-
$$(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6})$$
=1.000

Ent(D²)=-(
$$\frac{4}{6}\log_2\frac{4}{6}+\frac{2}{6}\log_2\frac{2}{6}$$
)=0.918

Ent(D³)=-
$$(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5})$$
=0.722

$$\sum_{\nu=1}^{3} \frac{|D^{\nu}|}{|D|} \operatorname{Ent}(D^{\nu}) = \frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722 = 0.889$$

$$Gain(D, 色泽) = Ent(D) - \sum_{v=1}^{3} \frac{|D^{v}|}{|D|} Ent(D^{v})$$

=0.998-
$$(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722)$$

=0.109

_	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1 .	青绿	蜷缩	浊响	清晰	凹陷	硬滑	- 是
	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	
	10	青绿	硬挺	清脆	清晰	平坦	软粘	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
39	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白 .	蜷缩	浊响	模糊	平坦	硬滑	否
	17	青绿	蜷缩	_ 沉闷	稍糊	稍凹	硬滑	否
					0			

The example

Gain(D, 色泽) = Ent(D) -
$$\sum_{\nu=1}^{3} \frac{|D^{\nu}|}{|D|}$$
 Ent (D^{ν}) = 0.998-($\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722$) = 0.109

Similarly:

Gain(D,根蒂)=0.143; Gain(D,敲声)=0.141; Gain(D,纹理)=0.381; Gain(D,脐部)=0.289;

Gain(D,触感)= 0.006

The example

Gain(D¹, 敲声)=0.331; Gain(D¹, 脐部)=0.458;

Gain(*D*¹,触感)= 0.458

One limitation of ID3

 ID3 tends to select the attribute with more values as the best attribute

> 如果我们把"编号"视为 西瓜的一个属性,它将会 被选择为最优属性。

編号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1 1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	 是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
- 8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑。	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	,沉闷	稍糊	稍凹	硬滑	否
				0			

Gain ratio

Gain ratio:

- Gin ratio tends to the attribute with less values.
- C4.5 firstly selects these attributes whose information gain is higher than the average information gain, then chooses the attribute with highest gain ratio among these attributes.

Pruning Trees

- Too many branches may cause overfitting.
- There is a technique for reducing the number of branches used in a tree – pruning
- Two types of pruning:
 - Pre-pruning (forward pruning)
 - Post-pruning (backward pruning)

Pruning

Generalization ability is estimated by the accuracy on validation set

- Prepruning: we stop adding attributes during the process of building the decision tree
- Postpruning: we prune the attributes after the full decision tree has been built
- Prepruning & Postpruning: according to generalization ability

Example of Prepruning

脐部=?

If stop adding this attribute and the label of the node is good:

Accuracy on validation set: 3/7=42.9%

Example of Prepruning

If don't stop adding this attribute:

Accuracy on validation set:

(1+1+1+1+1)/7=71.4% > 42.9%

Example of Prepruning

- Prepruning can reduce the risk of overfitting, but it may lead to underfitting.
- ◆ Sometimes attributes individually may cause the reduction of generalization ability, but combined, they may improve the generalization ability.

色泽 根蒂 编号 敲声 纹理 脐部 触感 好瓜 青绿 清晰 是 蜷缩 沉闷 凹陷 硬滑 4 是 5 浅白 蜷缩 浊响 清晰 凹陷 硬滑 是 乌黑 稍蜷 浊响 清晰 稍凹 硬滑 Validation 否 乌黑 稍蜷 沉闷 稍糊 稍凹 硬滑 9 set 否 11 浅白 硬挺 清脆 模糊 平坦 硬滑 否 蜷缩 平坦 12浅白 浊响 模糊 软粘 稍蜷 13 青绿 浊响 稍糊 凹陷 硬滑 脐部 凹陷 稍凹 色泽 根蒂 坏瓜 对于节点6,剪枝前 乌黑 浅白 稍蜷 蜷缩 硬挺 验证集精度: 3/7=42.9% 色泽 坏瓜 好瓜 坏瓜 好瓜 青绿 乌黑 浅白 纹理? 验证集精度 好瓜 好瓜

剪枝前: 42.9%

青绿

稍糊

好瓜

模糊

好瓜

清晰

坏瓜

好瓜

将对节点6进行剪枝,即将节点6替换为叶子节点,当前包含的训练样本为{7+,15-},标记为"好瓜"。

Validation set

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	4 5	青绿 浅白	蜷缩 蜷缩	沉闷 浊响	清晰 清晰	凹陷 凹陷	硬滑 硬滑	是是
_	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

对于节点5:

对于节点5:

对于节点2:

对于节点2:

同理,先后把节点3和节点1替换为叶子节点,验证集精度均未提升,保留分支。

Example of Pruning

最终得到的后剪枝树:

Postpruning

- Advantages:
 - Compared to prepruning, the under-fitting risk of postpruning is low.
 - The generalization ability of postpruning is typically better than that of prepruning.
- Disadvantages:
 - The computational time is expensive.

Continuous Attribute

- Each non-leaf node represents the partition of the attribute (easy for discrete attributes).
- **C4.5** use Bi-partition to process continuous attributes:
 - Find a threshold T_a to change continuous attribute A_c to discrete attribute A_d which has two values

$$A_{d} = \begin{cases} true, & if \ Ad < Ta \\ false, & \text{otherwise} \end{cases}$$

How to choose the threshold T₃?

Continuous Attribute

Training set

$$\{a^1, a^2, \dots, a^n\}$$

$$T_{a} = \left\{ \frac{a^{i} + a^{i+1}}{2} \middle| 1 \le i \le n - 1 \right\}$$
 (Possible partitions)

$$\begin{aligned} & \operatorname{Gain}(D, a) = \max_{t \in Ta} \operatorname{Gain}(D, a, t) \\ & = \max_{t \in Ta} \operatorname{Ent}(D) - \sum_{\lambda \in \{-, +\}} \frac{|D_t^{\lambda}|}{|D|} \operatorname{Ent}(D_t^{\lambda}) \end{aligned}$$

We choose the threshold corresponding to the partition with highest information gain.

Missing value

	编号	———— 色泽	根蒂	敲声	纹理	脐部	触感	好瓜
ſ	1		蜷缩	浊响	清晰	凹陷	硬滑	是
	. 2	乌黑	蜷缩	沉闷	清晰	凹陷		是
	3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
	5	-	蜷缩	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	_	软粘	是
	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
Training	8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是是
set	9	乌黑	_	 沉闷	稍糊	 稍凹	硬滑	否
	10	青绿	硬挺	清脆	_	平坦	软粘	否
	11	浅白	硬挺	清脆	模糊	平坦	- ,	否
	12	浅白	蜷缩	_	模糊	平坦	软粘	否
	13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰		软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
ι	17	青绿		沉闷	稍糊	稍凹	硬滑	否

Q1: How to select the attribute when some values are missed?

Q2: Given the partitioning attribute, how to partition these examples which miss values on the attribute?

Missing value

- $ightharpoonup \widetilde{D}$ which is the subset of D contains the samples which have values on the attribute a
- $ightharpoonup \widetilde{D^v}$ which is the subset of \widetilde{D} contains the samples which have value a^v on the attribute a
- $ightharpoonup \widetilde{D_k}$ which is the subset of \widetilde{D} contains the samples labeled K

We assign a weight ω_x for each sample x.

 \blacksquare The weight ratio of the samples which have values on the attribute a:

$$\rho = \frac{\sum_{x \in \widetilde{D}} \omega_x}{\sum_{x \in D} \omega_x}$$

■ The weight ratio of the samples labeled K in \widetilde{D} :

$$\widetilde{p_k} = \frac{\sum_{x \in \widetilde{D_k}} \omega_x}{\sum_{x \in \widetilde{D}} \omega_x} \quad (1 \le k \le |y|)$$

are missed!

Q1: How to select the attribute when some values

lacksquare The weight ratio of the samples which have value a^v on the attribute a in \widetilde{D} :

$$\widetilde{r_v} = \frac{\sum_{x \in \widetilde{D^v}} \omega_x}{\sum_{x \in \widetilde{D}} \omega_x} \quad (1 \le v \le V)$$

Missing value

Then,

Gain(
$$D$$
, a)= $\rho \times$ Gain(\widetilde{D} , a)
= $\rho \times (\text{Ent}(\widetilde{D}) - \sum_{v=1}^{V} \widetilde{r_v} \text{Ent}(\widetilde{D^v}))$

$$\operatorname{Ent}(\widetilde{D}) = -\sum_{k=1}^{|\mathcal{Y}|} \widetilde{p_k} \log_2 \widetilde{p_k}$$

As for Q2:

- 1. For the sample x which has value on the attribute a, we put x in its corresponding child node, and its weight does not change (ω_x) .
- 2. For the sample x which misses value on the attribute a, we put it in all child nodes, and it weight changes to $\widetilde{r_v}$ * ω_x

Training set

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	 是
2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	-	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰		软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
9	乌黑	_	 沉闷	 稍糊	 稍凹	硬滑	否
10	青绿	硬挺	清脆	_	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	_	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰		软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿		沉闷	稍糊	稍凹	硬滑	否

- 学习开始时,根结点包含样本集中 全部17个样本,各样本的权值均初 始化为1
- 以"色泽"属性为例,在色泽属性有取值的样本为14个:

$$\widetilde{D}$$
={2+,3+,4+,6+,7+,8+,9-,10-, 11-,12-,14-,15-,16-,17-}

$$\operatorname{Ent}(\widetilde{D}) = -\sum_{k=1}^{2} \widetilde{p_k} \log_2 \widetilde{p_k}$$

$$=-(\frac{6}{14}\log_2\frac{6}{14}+\frac{8}{14}\log_2\frac{8}{14})=0.985$$

Training set

色泽:
$$\widetilde{D}$$
={2+,3+,4+,6+,7+,8+,9-,10-,11-,12-,14-,15-,16-,17-}

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1		蜷缩	浊响	清晰	凹陷	硬滑	 是
. 2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	-	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	_	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
9	乌黑	_	 沉闷	稍糊	———— 稍凹	硬滑	否
10	青绿	硬挺	清脆	_	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	_	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰		软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿		沉闷	稍糊	稍凹	硬滑	否

青绿:
$$\widetilde{D}^1$$
={4+,6+,10-,17-}

乌黑:
$$\widetilde{D}^2$$
={2+,3+,7+,8+,9-,15-}

浅白:
$$\widetilde{D}^3$$
={11-,12-14-,16-}

Ent
$$(\widetilde{D}^1)$$
=- $(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4})$ =1.000

Ent
$$(\widetilde{D}^2)$$
=- $(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6})$ =0.918

Ent
$$(\widetilde{D}^3)$$
=- $(\frac{0}{4}\log_2\frac{0}{4} + \frac{4}{4}\log_2\frac{4}{4})$ =0.000

$$\sum_{v=1}^{3} \widetilde{r_{v}} \operatorname{Ent}(\widetilde{D^{v}}) = \frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000 = 0.679$$

色泽: \widetilde{D} ={2+,3+,4+,6+,7+,8+,9-,10-,11-,12-,14-,15-,16-,17-}

Information gain:

Gain(
$$\widetilde{D}$$
, 色泽)=Ent(\widetilde{D})- $\sum_{v=1}^{3} \widetilde{r_{v}}$ Ent($\widetilde{D^{v}}$)
=0.985-($\frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000$)
=0.306

我们这里把含有色泽属性样本集的权重所占的比例考虑进去(每个样本的初始权重为1):

 \tilde{D} 含有14个样本,每个样本的权重为1,所以 \tilde{D} 总权重为14;训练集D共包含17个样本,每个样本的权重为1,所以训练集D的总权重为17; \tilde{D} 所占权重比例为 $\frac{14}{17}$:

$$Gain(D, 色泽) = \rho \times Gain(\widetilde{D}, 色泽) = \frac{14}{17} \times 0.306 = 0.252$$

Similarly,

Gain(D,色泽)=0.252; Gain(D,根蒂)=0.171;

Gain(D, 敲声)=0.145; Gain(D, 纹理)=0.424;

Gain(D,脐部)=0.289; Gain(D,触感)= 0.006.

✓ 纹理(15个样本):{1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17}

其中: 稍糊(5个样本): {7,9,13,14,17}

清晰(7个样本): {1,2,3,4,5,6,15}

模糊(3个样本): {11,12,16}

✔ 缺失纹理属性取值的样本: {8,10}

选择纹理属性后,我们把在纹理属性上有取值的样本划分到三个分支,权重不变;同时把在纹理属性上没有取值的样本8,10同时放进三个分支,在三个子节点的权重调整为 \tilde{r}_v * ω_x ,即 $\frac{5}{15}$, $\frac{7}{15}$, $\frac{3}{15}$ 。则:

- 1. D_{t_1} 各个样本权重为: 样本7,9,13,14,17的权重为1, 样本8,10的权重为 $\frac{5}{15}$
- 2. D_{t2} 各个样本权重为: 样本1,2,3,4,5,6,15的权重为1, 样本8,10的权重为 $\frac{7}{15}$
- 3. D_{t3} 各个样本权重为: 样本1,2,3,4,5,6,15的权重为1, 样本8,10的权重为 $\frac{3}{15}$

对于后续节点同理:

Interpretability

- The boundaries of classification are axis-parallel
- But for too complex problems, they may have too many small segments.

Summary

Strengths

- can generate understandable rules
- perform classification without much computation
- provide a clear indication of which attributes are most important for prediction or classification
- Treat well rectangular regions

Weaknesses

- The trees may suffer from error propagation
- Do not treat well non-rectangular regions

RESOURCES

- C4.5 package: http://www.rulequest.com/Personal/c4.5r8.tar.gz
- Wikipedia page for decision tree: http://en.wikipedia.org/wiki/Decision_tree_learning
- Random Forests (Leo Breiman and Adele Cutler): http://www.stat.berkeley.edu/~breiman/RandomForests/
- ICCV 2013 tutorial:

Decision Forests and Fields for Computer Vision: http://research.microsoft.com/enus/um/cambridg e/projects/iccv2013tutorial/

References

- [Rastogi, et al., 1998] R. Rastogi and K. Shim. PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning. In Proceedings of the 24th International Conference on Very Large Data Bases (VLDB'98), pp. 404–415, Aug. 1998.
- [Shafer, et al., 1996] J. C. Shafer, R. Agrawal, and M. Mehta. SPRINT: AScalable Parallel Classifier for Data Mining. In *Proceedings of the 22th International Conference on Very Large Data Bases (VLDB'96), pp. 544–555, Sep. 1996.*
- [Gehrke, et al., 1999] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-H. Loh. BOAT: Optimistic Decision Tree Construction. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD'99), pp. 169–180, 1999.
- [Thomas, 2000] Dietterich, Thomas (2000). "An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization". <u>Machine Learning</u>: 139–157.
- [Breiman, 2001] Breiman, Leo (2001). "Random Forests". Machine Learning 45 (1): 5–32.doi:10.1023/A:1010933404324.

Thanks!