```
In [1]: import pandas as pd
   import numpy as np
   import os
   df = pd.read_csv('https://raw.githubusercontent.com/jackiekazil/data-wrangling/master/
```

Out[1]:

:		Indicator	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
	0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
	1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

In [2]: df1 = pd.read_csv('https://raw.githubusercontent.com/kjam/data-wrangling-pycon/master/
df1.head(2)

Out[2]:

	STATION	STATION_NAME	DATE	PRCP	SNWD	SNOW	TMAX	TMIN	WDFG	PGTM	 WT
0	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310101	46	-9999	-9999	-9999	-11	-9999	-9999	 -99(
1	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310102	107	-9999	-9999	50	11	-9999	-9999	 -99(

2 rows × 21 columns

Task 1. Get the Metadata from the above files.

In [3]:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4656 entries, 0 to 4655
Data columns (total 12 columns):
Indicator
                          4656 non-null object
PUBLISH STATES
                         4656 non-null object
                         4656 non-null int64
Year
                        4656 non-null object
WHO region
World Bank income group 4656 non-null object
                        4656 non-null object
Country
                         4656 non-null object
Sex
                         4656 non-null int64
Display Value
                         4656 non-null float64
Numeric
Low
                          0 non-null float64
High
                          0 non-null float64
Comments
                          0 non-null float64
dtypes: float64(4), int64(2), object(6)
memory usage: 436.6+ KB
```

```
In [4]:
        <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 117208 entries, 0 to 117207
       Data columns (total 21 columns):
        STATION
                      117208 non-null object
        STATION NAME 117208 non-null object
                      117208 non-null int64
        DATE
        PRCP
                       117208 non-null int64
        SNWD
                       117208 non-null int64
        SNOW
                       117208 non-null int64
        XAMT
                       117208 non-null int64
        TMIN
                       117208 non-null int64
       WDFG
                      117208 non-null int64
                      117208 non-null int64
        PGTM
        WSFG
                      117208 non-null int64
       WT09
                      117208 non-null int64
       WT07
                      117208 non-null int64
                      117208 non-null int64
       WT01
       WT06
                       117208 non-null int64
       WT05
                       117208 non-null int64
       WT04
                      117208 non-null int64
       WT16
                      117208 non-null int64
       80TW
                      117208 non-null int64
       WT18
                      117208 non-null int64
       WT03
                      117208 non-null int64
       dtypes: int64(19), object(2)
       memory usage: 18.8+ MB
```

Task 2. Get the row names from the above files

```
In [6]:
Out[6]: Index(['Indicator', 'PUBLISH STATES', 'Year', 'WHO region',
               'World Bank income group', 'Country', 'Sex', 'Display Value', 'Numeric',
               'Low', 'High', 'Comments'],
              dtype='object')
In [7]:
Out[7]: Index(['STATION', 'STATION NAME', 'DATE', 'PRCP', 'SNWD', 'SNOW', 'TMAX',
               'TMIN', 'WDFG', 'PGTM', 'WSFG', 'WT09', 'WT07', 'WT01', 'WT06', 'WT05',
               'WT04', 'WT16', 'WT08', 'WT18', 'WT03'],
              dtype='object')
```

For testing:

In [8]:

Out[8]:

	Indicator	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

10/23/2018, 2:47 PM 2 of 15

Task 3. Change the column name from any of the above file

In [9]: df.rename(columns = {'Indicator':'Indicator_id'}, inplace=True)

Out[9]:

Indicator_id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

Task 4. Change the column name from any of the above file and store the changes made permanently.

In [10]: df.rename(columns = {'Indicator':'Indicator_id'}, inplace=True)

Out[10]:

	Indicator_id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
(Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
•	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

For Testing:

In [11]:

Out[11]:

	Indicator_id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

Task 5. Change the names of multiple columns.

In [13]: df.rename(columns = {'PUBLISH STATES':'Publication Status', 'WHO region':'WHO Region')

Out[13]:

	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

Task 6. Arrange values of a particular column in ascending order.

In [15]:

Out[15]:

	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1270	Life expectancy at birth (years)	Published	1990	Europe	High- income	Germany	Male	72	72.0	NaN	NaN	NaN
3193	Life expectancy at birth (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Male	65	65.0	NaN	NaN	NaN
3194	Life expectancy at birth (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Both sexes	68	68.0	NaN	NaN	NaN
3197	Life expectancy at age 60 (years)	Published	1990	Europe	Lower- middle- income	Republic of Moldova	Male	15	15.0	NaN	NaN	NaN

Task 7. Arrange multiple column values in ascending order

```
In [16]: df.sort_values(['Indicator_id', 'Country', 'Year', 'WHO Region', 'Publication Status']
Out[16]:
                                                            World
                             Publication
                                                            Bank
                                                                                    Display
                                              WHO Region
                 Indicator id
                                        Year
                                                                    Country
                                                                                Sex
                                                                                            Numeric Low High (
                                 Status
                                                          income
                                                                                      Value
                                                           group
                  Healthy life
                  expectancy
                                                   Eastern
                                                            Low-
            2798
                              Published 2000
                                                                  Afghanistan
                                                                               Male
                                                                                         45
                                                                                                45.0 NaN NaN
                   (HALE) at
                                             Mediterranean
                                                           income
                  birth (years)
                  Healthy life
                  expectancy
                                                   Eastern
                                                            Low-
                                                                               Both
                                                                  Afghanistan
            3363
                              Published 2000
                                                                                         45
                                                                                                45.0 NaN
                                                                                                          NaN
                   (HALE) at
                                             Mediterranean
                                                           income
                                                                              sexes
                  birth (years)
                  Healthy life
                  expectancy
                                                   Eastern
                                                            Low-
            4456
                               Published 2000
                                                                  Afghanistan Female
                                                                                         45
                                                                                                45.0 NaN
                                                                                                          NaN
                   (HALE) at
                                              Mediterranean
                                                          income
                  birth (years)
           Test Data for Task 8
In [17]:
Out[17]: Index(['Indicator_id', 'Publication Status', 'Year', 'WHO Region',
                   'World Bank income group', 'Country', 'Sex', 'Display Value', 'Numeric',
                   'Low', 'High', 'Comments'],
                  dtype='object')
           Task 8. Make country as the first column of the dataframe
In [18]: | df = df[['Country', 'Indicator id', 'Publication Status', 'Year', 'WHO Region',
                    'World Bank income group', 'Sex', 'Display Value', 'Numeric',
                   'Low', 'High', 'Comments']]
Out[18]: Index(['Country', 'Indicator id', 'Publication Status', 'Year', 'WHO Region',
                    'World Bank income group', 'Sex', 'Display Value', 'Numeric', 'Low',
                    'High', 'Comments'],
                  dtype='object')
In [19]:
Out[19]:
                                                             World
                                                     WHO
                                   Publication
                                                             Bank
                                                                          Display
              Country
                       Indicator_id
                                                                                  Numeric Low High Comments
                                       Status
                                                    Region
                                                            income
                                                                            Value
                                                             group
                              Life
                        expectancy
                                                             High-
                                                                    Both
               Andorra
                                     Published 1990
                                                    Europe
                                                                              77
                                                                                     77.0 NaN
                                                                                                NaN
                                                                                                           NaN
                            at birth
                                                            income
                                                                   sexes
                            (years)
                              Life
                        expectancy
                                                             High-
                                                                    Both
                                                    Europe
               Andorra
                                     Published 2000
                                                                              80
                                                                                     80.0 NaN
                                                                                                NaN
                                                                                                           NaN
                            at birth
                                                            income
                                                                   sexes
                            (years)
```

Task 9. Get the column array using a variable

Task 10. Get the subset rows 11, 24, 37

In [24]:

Out[24]:

	Country	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Numeric	Low	High	Commer
11	Austria	Life expectancy at birth (years)	Published	2012	Europe	High- income	Female	83	83.0	NaN	NaN	N:
24	Brunei Darussalam	Life expectancy at age 60 (years)	Published	2012	Western Pacific	High- income	Female	21	21.0	NaN	NaN	N:
37	Cyprus	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Female	26	26.0	NaN	NaN	N:

Task 11. Get the subset rows excluding 5, 12, 23, and 56

In [35]: excludedRows = df.index.isin([5,12,23,34,56])

Out[35]:

	Country	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Numeric	Low	High
0	Andorra	Life expectancy at birth (years)	Published	1990	Europe	High- income	Both sexes	77	77.0	NaN	NaN
1	Andorra	Life expectancy at birth (years)	Published	2000	Europe	High- income	Both sexes	80	80.0	NaN	NaN
2	Andorra	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Female	28	28.0	NaN	NaN
3	Andorra	Life expectancy at age 60 (years)	Published	2000	Europe	High- income	Both sexes	23	23.0	NaN	NaN
4	United Arab Emirates	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High- income	Female	78	78.0	NaN	NaN
6	Antigua and Barbuda	Life expectancy at age 60 (years)	Published	1990	Americas	High- income	Male	17	17.0	NaN	NaN
7	Antigua and Barbuda	Life expectancy at age 60 (years)	Published	2012	Americas	High- income	Both sexes	22	22.0	NaN	NaN
8	Australia	Life expectancy at birth (years)	Published	2012	Western Pacific	High- income	Male	81	81.0	NaN	NaN
9	Australia	Life expectancy at birth (years)	Published	2000	Western Pacific	High- income	Both sexes	80	80.0	NaN	NaN
10	Australia	Life expectancy at birth (years)	Published	2012	Western Pacific	High- income	Both sexes	83	83.0	NaN	NaN
11	Austria	Life expectancy at birth (years)	Published	2012	Europe	High- income	Female	83	83.0	NaN	NaN
13	Belgium	Life expectancy at birth (years)	Published	2012	Europe	High- income	Female	83	83.0	NaN	NaN
14	Bahrain	Life expectancy at birth (years)	Published	2000	Eastern Mediterranean	High- income	Male	73	73.0	NaN	NaN
15	Bahrain	Life expectancy at birth (years)	Published	1990	Eastern Mediterranean	High- income	Female	74	74.0	NaN	NaN
46	Dobroin	Life expectancy	Dublished	1000	Eastern	High-	Mala	17	17.0	NIONI	NIONI

Load datasets from CSV

In [38]:

Out[38]:

	UserID	User	Gender	Registered	Cancelled
0	1	Charles	male	2012-12-21	NaN
1	2	Pedro	male	2010-08-01	2010-08-08
2	3	Caroline	female	2012-10-23	2016-06-07
3	4	Brielle	female	2013-07-17	NaN
4	5	Benjamin	male	2010-11-25	NaN

In [39]:

Out[39]:

	SessionID	SessionDate	UserID
C	1	2010-01-05	2
1	2	2010-08-01	2
2	3	2010-11-25	2
3	3 4	2011-09-21	5
4	5	2011-10-19	4

In [40]:

Out[40]:

	ProductID	Product	Price
0	1	Α	14.16
1	2	В	33.04
2	3	С	10.65
3	4	D	10.02
4	5	Е	29.66

In [41]:

Out[41]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
1	2	2011-05-26	3.0	4	1
2	3	2011-06-16	3.0	3	1
3	4	2012-08-26	1.0	2	3
4	5	2013-06-06	2.0	4	1

Task 12: Join users to transactions, keeping all rows from transactions and only matching rows from users (left join)

In [42]: pd.merge

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Cancelled
0	1	2010-08-21	7.0	2	1	NaN	NaN	NaN	NaN
1	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	2016-06-07
2	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	2016-06-07
3	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	NaN
4	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	2010-08-08
5	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	2010-08-08
6	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	2016-06-07
7	8	2014-04-24	NaN	2	3	NaN	NaN	NaN	NaN
8	9	2015-04-24	7.0	4	3	NaN	NaN	NaN	NaN
9	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	2016-06-07

Task 13: Which transactions have a UserID not in users?

In [43]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
7	8	2014-04-24	NaN	2	3
8	9	2015-04-24	7.0	4	3

Task 14. Join users to transactions, keeping only rows from transactions and users that match via UserID (inner join)

In [46]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Cancelled
0	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	2016-06-07
1	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	2016-06-07
2	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	2016-06-07
3	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	2016-06-07
4	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	NaN
5	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	2010-08-08
6	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	2010-08-08

Task 15. Join users to transactions, displaying all matching rows AND all non-matching rows (full outer join)

In [47]:

	TransactionID	nID TransactionDate L		ProductID	Quantity	User	Gender	Registered	Cancelled
0	1.0	2010-08-21	7.0	2.0	1.0	NaN	NaN	NaN	NaN
1	9.0	2015-04-24	7.0	4.0	3.0	NaN	NaN	NaN	NaN
2	2.0	2011-05-26	3.0	4.0	1.0	Caroline	female	2012-10-23	2016-06-07
3	3.0	2011-06-16	3.0	3.0	1.0	Caroline	female	2012-10-23	2016-06-07
4	7.0	2013-12-30	3.0	4.0	1.0	Caroline	female	2012-10-23	2016-06-07
5	10.0	2016-05-08	3.0	4.0	4.0	Caroline	female	2012-10-23	2016-06-07
6	4.0	2012-08-26	1.0	2.0	3.0	Charles	male	2012-12-21	NaN
7	5.0	2013-06-06	2.0	4.0	1.0	Pedro	male	2010-08-01	2010-08-08
8	6.0	2013-12-23	2.0	5.0	6.0	Pedro	male	2010-08-01	2010-08-08
9	8.0	2014-04-24	NaN	2.0	3.0	NaN	NaN	NaN	NaN
10	NaN	NaN	4.0	NaN	NaN	Brielle	female	2013-07-17	NaN
11	NaN	NaN	5.0	NaN	NaN	Benjamin	male	2010-11-25	NaN

Task 16. Determine which sessions occurred on the same day each user registered

In [48]:

	SessionID	SessionDate	UserID	User	Gender	Registered	Cancelled
0	1	2010-01-05	2	Pedro	male	2010-08-01	2010-08-08
1	2	2010-08-01	2	Pedro	male	2010-08-01	2010-08-08
2	3	2010-11-25	2	Pedro	male	2010-08-01	2010-08-08
3	4	2011-09-21	5	Benjamin	male	2010-11-25	NaN
4	5	2011-10-19	4	Brielle	female	2013-07-17	NaN
5	6	2012-10-23	4	Brielle	female	2013-07-17	NaN
6	8	2013-05-22	4	Brielle	female	2013-07-17	NaN
7	9	2013-07-17	4	Brielle	female	2013-07-17	NaN
8	10	2016-01-11	4	Brielle	female	2013-07-17	NaN
9	7	2012-12-21	3	Caroline	female	2012-10-23	2016-06-07

```
In [49]: sameDayUserReg=pd.merge(sessions, users, on='UserID', how='inner')
```

Out[49]:		SessionID	SessionDate	UserID	User	Gender	Registered	Cancelled
	0	1	2010-01-05	2	Pedro	male	2010-08-01	2010-08-08
	1	2	2010-08-01	2	Pedro	male	2010-08-01	2010-08-08
	2	3	2010-11-25	2	Pedro	male	2010-08-01	2010-08-08
	3	4	2011-09-21	5	Benjamin	male	2010-11-25	NaN
	4	5	2011-10-19	4	Brielle	female	2013-07-17	NaN
	5	6	2012-10-23	4	Brielle	female	2013-07-17	NaN
	6	8	2013-05-22	4	Brielle	female	2013-07-17	NaN
	7	9	2013-07-17	4	Brielle	female	2013-07-17	NaN
	8	10	2016-01-11	4	Brielle	female	2013-07-17	NaN
	9	7	2012-12-21	3	Caroline	female	2012-10-23	2016-06-07

In [52]:

Out[52]

	SessionID	SessionDate	UserID	User	Gender	Registered	Cancelled	
1	2	2010-08-01	2	Pedro	male	2010-08-01	2010-08-08	
7	9	2013-07-17	4	Brielle	female	2013-07-17	NaN	

Task 17. Build a dataset with every possible (UserID, ProductID) pair (cross join)

In [53]: possibleDataSet = users.assign(value=1).merge(products.assign(value=1)).drop('value',

	UserID	User	Gender	Registered	Cancelled	ProductID	Product	Price
0	1	Charles	male	2012-12-21	NaN	1	А	14.16
1	1	Charles	male	2012-12-21	NaN	2	В	33.04
2	1	Charles	male	2012-12-21	NaN	3	С	10.65
3	1	Charles	male	2012-12-21	NaN	4	D	10.02
4	1	Charles	male	2012-12-21	NaN	5	Е	29.66
5	2	Pedro	male	2010-08-01	2010-08-08	1	Α	14.16
6	2	Pedro	male	2010-08-01	2010-08-08	2	В	33.04
7	2	Pedro	male	2010-08-01	2010-08-08	3	С	10.65
8	2	Pedro	male	2010-08-01	2010-08-08	4	D	10.02
9	2	Pedro	male	2010-08-01	2010-08-08	5	Е	29.66
10	3	Caroline	female	2012-10-23	2016-06-07	1	Α	14.16
11	3	Caroline	female	2012-10-23	2016-06-07	2	В	33.04
12	3	Caroline	female	2012-10-23	2016-06-07	3	С	10.65
13	3	Caroline	female	2012-10-23	2016-06-07	4	D	10.02
14	3	Caroline	female	2012-10-23	2016-06-07	5	Е	29.66
15	4	Brielle	female	2013-07-17	NaN	1	Α	14.16
16	4	Brielle	female	2013-07-17	NaN	2	В	33.04
17	4	Brielle	female	2013-07-17	NaN	3	С	10.65
18	4	Brielle	female	2013-07-17	NaN	4	D	10.02
19	4	Brielle	female	2013-07-17	NaN	5	Е	29.66
20	5	Benjamin	male	2010-11-25	NaN	1	Α	14.16
21	5	Benjamin	male	2010-11-25	NaN	2	В	33.04
22	5	Benjamin	male	2010-11-25	NaN	3	С	10.65
23	5	Benjamin	male	2010-11-25	NaN	4	D	10.02
24	5	Benjamin	male	2010-11-25	NaN	5	Е	29.66

Task 18. Determine how much quantity of each product was purchased by each user

In [54]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
1	2	2011-05-26	3.0	4	1
2	3	2011-06-16	3.0	3	1
4	5	2013-06-06	2.0	4	1
6	7	2013-12-30	3.0	4	1
3	4	2012-08-26	1.0	2	3
7	8	2014-04-24	NaN	2	3
8	9	2015-04-24	7.0	4	3
9	10	2016-05-08	3.0	4	4
5	6	2013-12-23	2.0	5	6

Task 19. For each user, get each possible pair of pair transactions

In [55]:

Out[55]:		TransactionID_x	TransactionDate_x	UserID	ProductID_x	Quantity_x	TransactionID_y	TransactionDate_y	Pro
_	0	1	2010-08-21	7.0	2	1	1	2010-08-21	
	1	1	2010-08-21	7.0	2	1	9	2015-04-24	
	2	9	2015-04-24	7.0	4	3	1	2010-08-21	
	3	9	2015-04-24	7.0	4	3	9	2015-04-24	
	4	2	2011-05-26	3.0	4	1	2	2011-05-26	
	5	2	2011-05-26	3.0	4	1	3	2011-06-16	
	6	2	2011-05-26	3.0	4	1	7	2013-12-30	
	7	2	2011-05-26	3.0	4	1	10	2016-05-08	
	8	3	2011-06-16	3.0	3	1	2	2011-05-26	
	9	3	2011-06-16	3.0	3	1	3	2011-06-16	
	10	3	2011-06-16	3.0	3	1	7	2013-12-30	
	11	3	2011-06-16	3.0	3	1	10	2016-05-08	
	12	7	2013-12-30	3.0	4	1	2	2011-05-26	
	13	7	2013-12-30	3.0	4	1	3	2011-06-16	
	14	7	2013-12-30	3.0	4	1	7	2013-12-30	
	15	7	2013-12-30	3.0	4	1	10	2016-05-08	
	16	10	2016-05-08	3.0	4	4	2	2011-05-26	
	17	10	2016-05-08	3.0	4	4	3	2011-06-16	
	18	10	2016-05-08	3.0	4	4	7	2013-12-30	
	19	10	2016-05-08	3.0	4	4	10	2016-05-08	
;	20	4	2012-08-26	1.0	2	3	4	2012-08-26	
	21	5	2013-06-06	2.0	4	1	5	2013-06-06	
;	22	5	2013-06-06	2.0	4	1	6	2013-12-23	
;	23	6	2013-12-23	2.0	5	6	5	2013-06-06	
;	24	6	2013-12-23	2.0	5	6	6	2013-12-23	
:	25	8	2014-04-24	NaN	2	3	8	2014-04-24	

Task20. Join each user to his/her first occuring transaction in the transactions table

In [56]: data=pd.merge(users, transactions.groupby('UserID').first().reset_index(), how='left',

Out[56]:		UserID	User	Gender	Registered	Cancelled	TransactionID	TransactionDate	ProductID	Quantity	
	0	1	Charles	male	2012-12-21	NaN	4.0	2012-08-26	2.0	3.0	
	1	2	Pedro	male	2010-08-01	2010-08-08	5.0	2013-06-06	4.0	1.0	
	2	3	Caroline	female	2012-10-23	2016-06-07	2.0	2011-05-26	4.0	1.0	
	3	4	Brielle	female	2013-07-17	NaN	NaN	NaN	NaN	NaN	
	4	5	Benjamin	male	2010-11-25	NaN	NaN	NaN	NaN	NaN	

Task 21. Test to see if we can drop columns

In [58]:

```
In [59]:
Out[59]: ['UserID', 'User', 'Gender', 'Registered']
In [60]: missingInfo = list(data.columns[data.isnull().any()])
Out[60]: ['Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']
In [61]: for col in missingInfo:
             missingNumber = data[data[col].isnull() == True].shape[0]
         Missing Number for Col Cancelled: 3
         Missing Number for Col TransactionID: 2
         Missing Number for Col TransactionDate: 2
         Missing Number for Col ProductID: 2
         Missing Number for Col Quantity: 2
In [62]: for col in missingInfo:
            percentMissing = data[data[col].isnull() == True].shape[0] / data.shape[0]
         Col Percent Missing Cancelled: 0.6
         Col Percent Missing TransactionID: 0.4
         Col Percent Missing TransactionDate: 0.4
         Col Percent Missing ProductID: 0.4
         Col Percent Missing Quantity: 0.4
```

End of Project