Rozmaitości różniczkowalne

elo

_

Spis rzeczy niezbyt mądrych

1	Definicja rozmaitości 1.1 Rozmaitości topologiczne	4
2	Funkcje różniczkowalne 2.1 Dopowiedzenie o funkcjach gładkich 2.2 Atlasy C ^k 2.3 Rozmaitość gładka bez topologii	7 7 7
3	Rozmaitość z brzegiem 3.1 O brzegu i wnętrzu	
4	Pomocnik idiotów:	13

1. Definicja rozmaitości

Zanim podany dokładną definicję, możemy rozważyć kilka przykładów rozmaitości różniczkowalnych:

- → powierzchnia, domknięta lub nie,
- \hookrightarrow podzbiory \mathbb{R}^n lub \mathbb{C}^n zapisywalne równaniami algebraicznymi (np. $z_1^2 + z_2^2 + z_3^1 \le \mathbb{C}^3$).

Cały wykład będzie wstępnym słownikiem wokół pojęcia rozmaitości różniczkowalnej.

1.1. Rozmaitości topologiczne

Definicja 1.1. Przestrzeń topologiczna M jest n-wymiarową **rozmaitością topologiczną** [n-rozmaitością], jeżeli spełnia:

- 1. jest Hausdorffa
- 2. ma przeliczalną bazę
- 3. jest lokalnie euklidesowa wymiaru n, czyli każdy punkt z M posiada otwarte otoczenie w M homeomorficzne z otwartym podzbiorem w \mathbb{R}^n .

Konsekwencje Hausdorffowości:

nie jest rozmaitością topologiczną.

 \hookrightarrow Pewne własności otoczeń punktów są zachowywane. To znaczy, dla dowolnego zwartego podzbioru otoczenia punktu $x\in U\subseteq \mathbb{R}^n$ $K\subseteq U$ jego odpowiednik $\overline{K}=\phi^{-1}(K)\subseteq \overline{U}\subseteq M$ jest domknięty i zwarty w M. [ćwiczenia]

Konsekwencje przeliczalności bazy:

- \hookrightarrow Spełniany jest warunek Lindelöfa: każde pokrycie rozmaitości zbiorami otwartymi zawiera przeliczalne podpokrycie. [ćwiczenia]
 - \hookrightarrow Każda rozmaitość jest wstępującą sumą otwartych podzbiorów

$$U_1 \subseteq U_2 \subseteq ... \subseteq U_n \subseteq ...$$

które są po domknięciu w M zwarte. Czyli możemy ją wyczerpać za pomocą zbiorów, które są małe.

- → Parazwartość, czyli każde zwarte pokrycie M posiada lokalnie skończone rozdrobnienie.
- \hookrightarrow Każdą rozmaitość jesteśmy w stanie zanurzyć w \mathbb{R}^n dla odpowiednio dużego n.

Konsekwencje lokalnej euklidesowości:

- \hookrightarrow Twierdzenie Brouwer'a: dla n \neq m niepusty otwarty podzbiór \mathbb{R}^n nie jest homeomorficzny z jakimkolwiek otwartym podzbiorem w \mathbb{R}^m .

1.2. Mapy, lokalne współrzędne

Mapą na rozmaitości topologicznej M nazywamy parę (U, ϕ), gdzie U to otwarty podzbiór w M, a ϕ to homeomorfizm $\phi: U \to \overline{U} \subseteq \mathbb{R}^n$. Mapa to jest jakiś homeomorfizm między rozmaitością a pewnym podzbiorem \mathbb{R}^n . Zbiór U nazywamy zbiorem mapowym. **Przez lokalną euklidesowość wiemy, że pokrywają one całą rozmaitość**.

Parę (U, ϕ) nazywamy też **lokalnymi współrzędnymi** na M albo *lokalną parametryzacją* M.

Fakt 1.2. Hausdorffowska przestrzeń X o przeliczalnej bazie jest n-rozmaitością \iff posiada rodzinę map n-wymiarowych dla której zbiory mapowe pokrywają cały X.

Przykład:

Rozważmy $S^n = \{(x_1,...,x_n) \in \mathbb{R}^{n+1} : \sum x_i^2 = 1\} \subseteq \mathbb{R}^{n+1}$ z dziedziczoną topologią. Z racji, że \mathbb{R}^{n+1} jest Hausdorffa i ma przeliczalną bazę, to S^n tęż spełnia te dwa warunki. Wystarczy teraz wskazać odpowiednią rodzinę map, która pokryje całe S^n . Dla i = 1,..., n + 1 określmy otwarte podzbiory w S^n

$$U_i^+ = \{x \in S^n : x_i > 0\}$$

$$U_i^- = \{x \in S^n : x_i < 0\}$$

RYSUNEK DLA S³

Określmy odwzorowania $\phi_{\mathbf{i}}^{\pm} \; : \; \mathsf{U}_{\mathbf{i}}^{\pm}
ightarrow \mathbb{R}^{\mathsf{n}}$

$$\phi_i^{\pm}(x) = (x_1, ..., x_{i-1}, \widehat{x_i}, x_{i+1}, ..., x_n).$$

Obraz tego odwzorowania to

$$\overline{\mathsf{U}}_{\mathsf{i}}^{\pm} = \phi_{\mathsf{i}}^{\pm}(\mathsf{U}_{\mathsf{i}}^{\pm}) = \{(\mathsf{x}_1,...,\mathsf{x}_\mathsf{n}) \in \mathbb{R}^\mathsf{n} : \sum \mathsf{x}_{\mathsf{i}}^2 < 1\}.$$

Odwzorowanie $\phi_{\mathbf{i}}^{\pm}:\mathsf{U}_{\mathbf{i}}^{\pm} o\overline{\mathsf{U}}_{\mathbf{i}}^{\pm}$ jest wzajemnie jednoznaczne [bijekcja], bo

$$(\phi_i^\pm)^{-1}(x_1,...,x_n)=(x_1,...,x_{i-1},\pm\sqrt{1-\sum x_j^2},x_{i+1},...,x_n).$$

Mamy w obie strony odwzorowanie ciągłe, więc jest to homeomorfizmy z odpowiednimi zbiorami \mathbb{R}^n .

1.3. Atlasy, rozmaitości gładkie [różniczkowalne]

Na tym wykładzie nie będziemy poświęcać dużej uwagi rozmaitościom różniczkowalnym nie nieskończenie razy, więc pomimo lekkich niuansów między tymi dwoma słowami, dla nas zwykle znaczą one to samo.

Dla funkcji $f: M \to \mathbb{R}$ chcemy określić, co znaczy, że f *jest różniczkowalna*? Będziemy to robić za pomocą wcześniej zdefiniowanych map:

- Funkcja f wyrażona w mapie (U, ϕ) to nic innego jak złożenie f $\circ \phi^{-1}: \overline{U} \to \mathbb{R}$. Teraz f $\circ \phi^{-1}$ jest funkcją zależącą od n zmiennych rzeczywistych.
- Chciałoby się powiedzieć, że funkcja $f:M\to\mathbb{R}$ jest gładka, jeśli dla każdej mapy (U, ϕ) na M, ten fragment wyrażony w tej mapie $f\circ\phi^{-1}$ jest gładki. Niestety, tych map może być nieco za dużo.
- Odwzorowanie przejścia między dwoma mapami (U₁, ϕ_1) i (U₂, ϕ_2) to funkcje $\phi_1\phi_2^{-1}$ i $\phi_2\phi_1^{-1}$ określone na U₁ \cap U₂.

Definicja 1.3. Mapy (U, ϕ_1) oraz (U, ϕ_2) są **zgodne** (gładko-zgodne), gdy odwzorowanie przejścia $\phi_1\phi_2^{-1}$ jest gładkie. Dla map (U, ϕ) i (V, ψ) mówimy, że są one zgodne, jeśli

- U \cap V = \emptyset , albo
- $\phi\psi^{-1}: \psi(U \cap V) \to \phi(U \cap V)$ i $\psi\phi^{-1}(U \cap V) \to \psi(U \cap V)$ są gładkie.

Warto zauważyć, że jeśli (U, ϕ) i (V, ψ) są zgodne, to f $\circ \phi^{-1} \upharpoonright (\phi(U \cap V))$ jest gładkie \iff Odwzorowania przejściowe map są automatycznie *dyfeomorfizmami*.

Definicja 1.4. Gładkim atlasem \mathscr{A} na topologicznej rozmaitości M nazywamy dowolny taki zbiór map $\{(U_{\alpha}, \phi_{\alpha})\}$ taki, że:

- 1. 1. zbiory mapowe U_{α} pokrywają całe M
- 2. 2. każde dwie mapy z tego zbioru są zgodne.

Przykład: Rodzina map $\{(U_i^\pm,\phi_i^\pm): i=1,2,...,n+1\}$ jak wcześniej na sferze $S^n\subseteq R^{n+1}$ tworzy gładki atlas. Wystarczy zbadać gładką zgodność tych map. Rozpatrzmy jeden przypadek: $(U_i^+,\phi_i^+), (U_i^+,\phi_i^+), i < j$. Po pierwsze, jak wygląda przekrój tych zbiorów?

$$U_i \cap U_i = \{x \in S^n : x_i > 0, x_i > 0\}$$

Dalej, jak wyglądają obrazy tego przekroju przez poszczególne mapy?

$$\phi_i^+(U_i\cap U_j) = \{x \in \mathbb{R}^n \ : \ |x| < 1, x_{j-1} > 0\}$$

$$\phi_{\mathbf{i}}^{+}(\mathsf{U}_{\mathbf{i}}\cap\mathsf{U}_{\mathbf{j}})$$
 = {x $\in\mathbb{R}^{\mathsf{n}}$: |x| < 1, x_i < 0}

Odwzorowania przejścia to:

$$\begin{split} \phi_j^+(U_i^+\cap U_j^+) \ni (x_1,...,x_n) \\ (x_1,...,x_{j-1},\sqrt{1-|x|^2},x_j,...x_n) \\ \\ \phi_i^+(\phi_i^+)^{-1}(x_1,...,x_n) = (x_1,...,x_{j-1},x_{j+1},...,x_{j-1},\sqrt{1-|x|^2},x_j,...,x_n) \end{split}$$

jest przekształceniem gładkim. Analogicznie dla drugiego odwzorowania przejścia.

Definicja 1.5. Rozmaitość gładka to para (M, \mathcal{A}) złożona z rozmaitości M i gładkiego atlasu \mathcal{A} opisanego na M.

Uściślenie: Często (M, \mathcal{A}_1) i (M, \mathcal{A}_2) będące rozmaitościami gładkimi określają tę samą rozmaitość.

Definicja 1.6. Niech \mathscr{A} będzie gładkim atlasem na M.

- 1. Mapa (U, ϕ) jest **zgodna z atlasem** \mathscr{A} , jeśli jest zgodna z każdą mapą z \mathscr{A} .
- 2. Dwa atlasy \mathcal{A}_1 , \mathcal{A}_2 na M są zgodne, jeśli każda mapa z \mathcal{A}_1 jest zgodna z atlasem \mathcal{A}_2 .

Twierdzenie 1.7. Relacja zgodności atlasów jest relacją równoważności.

Dowód: Ćwiczenia.

Konwencja jest wtedy taka, że zgodne atlasy zadają tą samą strukturę gładką na M. W takim razie, zgodne atlasy można wysumować do jednego większego atlasu.

Definicja 1.8. \mathscr{A} jest **atlasem maksymalnym** na M, jeśli każda mapa na M z nim zgodna jest w nim zawarta.

Fakt 1.9. Każdy atlas \mathscr{A} na M zawiera się w dokładnie jednym atlasie maksymalnym na M. Zaś ten atlas maksymalny to zbiór wszystkich map na M zgodnych z \mathscr{A} .

Dowód: Ćwiczenia.

Równoważna definicja rozmaitości gładkiej: para (M, \mathscr{A}), gdzie M to rozmaitość topologiczna, zaś \mathscr{A} to pewien atlas maksymalny.

2. Funkcje różniczkowalne

2.1. Dopowiedzenie o funkcjach gładkich

Definicja 2.1. Funkcja $f: M \to \mathbb{R}$ jest **gładka względem atlasu** \mathscr{A} na M, jeśli

$$(\forall (U, \phi) \in \mathscr{A}) f \circ \phi^{-1} : \overline{U} \to \mathbb{R} \text{ jest gładka.}$$

To znaczy po wyrażeniu w dowolnej mapie atlasu jest nadal funkcją gładką.

Fakt 2.2.

- 1. Jeśli f : M $\to \mathbb{R}$ jest gładka względem \mathscr{A} , zaś (U, ϕ) jest zgodna z \mathscr{A} , to wówczas funkcja f wyrażona w tej nowej mapie (czyli f $\circ \phi^{-1}$) też jest gładka.
- 2. Jeśli $\mathscr{A}_1, \mathscr{A}_2$ są zgodnymi atlasami, wówczas taka funkcja $f: M \to \mathbb{R}$ jest gładka względem $\mathscr{A}_1 \iff$ jest gładka względem atlasu maksymalnego $\mathscr{A} \supseteq \mathscr{A}_1, \mathscr{A}_2$ zawierającego \mathscr{A}_1 (oraz \mathscr{A}).

Niech M będzie gładką rozmaitością. Wówczas $f: M \to \mathbb{R}$ jest gładka jeśli f jest gładka względem każdego (dowolnego) atlasu \mathscr{A} wyznaczającego na M daną gładką strukturę.

2.2. Atlasy C^k

Definicja 2.3.

- Dwie mapy (U, ϕ) i (V, ψ) są C^k-zgodne, jeśli $\phi\psi^{-1}$ oraz $\psi\phi^{-1}$ są funkcjami klasy C^k.
- C^k-atlas to atlas składający się z map, które są C^k-zgodne.
 - Taki atlas określa strukturę C^k-rozmaitości na M.
 - Jest ona słabsza niż struktura rozmaitości gładkiej.

 C^0 w tej konwencji to rozmaitość topologiczna, a C^∞ to często jest rozmaitość gładka.

Na C^k-rozmaitości nie da się sensownie określić funkcji klasy C^m dla m > k.

Rozmaitość można definiować na różne sposoby niewymagające użycia definicji i własności topologicznych. Przykłady to:

- \hookrightarrow Rozmaitość analityczna [C^{ω}] to rozmaitość, dla której atlas składa się z map analitycznie zgodnych (czyli wyrażają się za pomocą szeregów potęgowych).
- \hookrightarrow Rozmaitość zespolona ma mapy jako funkcje w \mathbb{C}^n zamiast w \mathbb{R}^n .
- → Rozmaitość konforemna zachowuje kąty.
- → Rozmaitość kawałkami liniowa

2.3. Rozmaitość gładka bez topologii

Dychotomia pomiędzy sytuacją C^0 a sytuacją C^k dla k > 0:

- Z każdego maksymalnego atlasu C^k -rozmaitości można wybrać atlas złożony z map C^∞ -zgodnych. A zatem, każda C^k -rozmaitość posiada C^k -zgodną strukturę C^∞ -rozmaitości.
- Istnieją C⁰-rozmaitości niedopuszczające żadnej struktury gładkiej.

Lemat 2.4. Niech X będzie zbiorem (bez topologii). Niech $\{U_{\alpha}\}$ będzie kolekcją podzbiorów X i dla każdego α mamy $\phi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$ różnowartościowe (n jest ustalone dla całego X). Ta trójka obiektów ma spełniać następujące warunki:

- 1. Dla każdego $\alpha \phi_{\alpha}(U_{\alpha})$ jest otwarty w \mathbb{R}^{n} .
- 2. Dla każdych α , β $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ oraz $\phi_{\beta}(U_{\alpha} \cap U_{\beta})$ są otwarte w \mathbb{R}^{n} .
- 3. Gdy $U_{\alpha} \cap U_{\beta} \neq \emptyset$, to $\phi_{\alpha} \circ \phi_{\beta}^{-1} : \phi(U_{\alpha} \cap U_{\beta}) \to \phi(U_{\alpha} \cap U_{\beta})$ jest odwzorowaniem gładkim. Są to dyfeomorfizmy (gładkie i odwracalne).
- 4. Przeliczalnie wiele spośród zbiorów U_{α} pokrywa całe X.
- 5. Dla dowolnych punktów p, q \in X, p \neq q istnieją α , β oraz otwarte podzbiory $V_p \subseteq \phi_{\alpha}(U_{\alpha})$, $V_q \subseteq \phi_{\beta}(U_{\beta})$ takie, że p $\in \phi_{\alpha}^{-1}[V_p]$, q $\in \phi_{\beta}^{-1}[V_q]$ oraz $\phi_{\alpha}^{-1}[V_p] \cap \phi_{\beta}^{-1}[V_q] = \emptyset$. Czyli możemy rozdzielić dwa dowolne różne punkty za pomocą zbiorów otwartych w \mathbb{R}^n .

Wówczas na X istnieje **struktura rozmaitości topologicznej** dla której U_{α} są otwarte. Ponadto rodzina $(U_{\alpha}, \phi_{\alpha})$ tworzy gładki atlas na X.

Szkic dowodu:

- Topologię produkujemy jako bazę topologii na X: bierzemy przeciwobrazy przez poszczególne ϕ_{α} otwartych podzbiorów w zbiorach $\phi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^{n}$.
- Lokalna n-euklidesowość X względem takiej topologii jest oczywista.
- Nietrudno jest też wybrać mniejszą bazę przeliczalną [ćwiczenia].
- Hausdorffowość tak określonej topologii wynika z warunku 5.

Przykład: Niech \mathscr{L} będzie zbiorem wszystkich prostych na płaszczyźnie. Nie ma na tym zbiorze wygodnej do opisania topologii, ale możemy skorzystać z lematu wyżej.

Zacznijmy od opisania podzbiorów

$$U_V = \{proste niepoziome\}$$

Jeśli $U_h \ni L$, to wtedy $L = \{y = ax + b\}$ i wtedy ϕ_h będzie przypisywać takiej prostej parę (a, b). Jeśli zaś $U_v \ni L$, to wtedy $L = \{x = yc + d\}$ i wtedy ϕ_v przypisze jej (c, d). To, że $\phi_h(U_h)$ i $\phi_v(U_v)$ są różnowartościowe widać. Przyjrzyjmy się teraz przekrojowi naszych zbiorków:

$$U_h \cap U_V = \{ proste \ niepoziomie \ i \ niepionowe \} = \{ y = ax + b : a \neq 0 \} = \{ x = cd + d : c \neq 0 \}$$

$$\phi_{\mathsf{h}}(\mathsf{U}_{\mathsf{h}}\cap\mathsf{U}_{\mathsf{v}})$$
 = {(a, b) $\in\mathbb{R}^2$: a $eq 0$ }

$$\phi_{\mathsf{V}}(\mathsf{U}_{\mathsf{h}}\cap\mathsf{U}_{\mathsf{V}}) = \{(\mathsf{c},\mathsf{d}) \in \mathbb{R}^2 \ : \ \mathsf{c} \neq \mathsf{0}\}$$

i są to zbiory otwarte, więc warunek 3. jest spełniony. Warunek 4. jest tutaj trywialny.

Niech COŚ TUTAJ SIĘ URWAŁO

To jest homeomorficzne z wnętrzem wstęgi Mobiusa.

3. Rozmaitość z brzegiem

Lokalnie wygląda jak \mathbb{R}^n albo jak półprzestrzeń n-wymiarowa:

$$H^n = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n \ge 0\}$$

brzegiem takiej półprzestrzeni nazywamy zbiór:

$$\partial H^n = \{x \in \mathbb{R}^n : x_n = 0\}$$

definiuje się też wnętrze takiej półprzestrzeni:

$$int(H^n) = \{x \in \mathbb{R}^n : x_n > 0\}$$

Definicja 3.1. Dla otwartego zbioru $U \subseteq H^n$ określamy

- \hookrightarrow brzeg zbioru: $\partial U = U \cap \partial H^n$
- \hookrightarrow wnetrze zbioru: int(U) = U \cap int(Hⁿ)
- \hookrightarrow Jeżeli mamy zadane f : U $\to \mathbb{R}^m$, to jest ono **gładkie**, gdy jest obcięciem do U pewnej gładkiej funkcji $\bar{f}: \overline{U} \to \mathbb{R}^m$, gdzie \overline{U} jest otwartym podzbiorem \mathbb{R}^n taki, że U $\subseteq \overline{U}$.

Jeśli f: $U \to \mathbb{R}^m$ jest gładka, to wówczas pochodne cząstkowe f są dobrze określone w punktach int(U). Ze względu na ciągłość pochodnych cząstkowych dowolnego rozszerzenia \bar{f} , pochodne cząstkowe f są również dobrze określone w punktach ∂U .

Fakt 3.2. Z analizy: rozszerzenie \bar{f} istnieje \iff f jest gładka na int(U) oraz pochodne cząstkowe tego f obciętego do int(U) w sposób ciągły rozszerzają się na ∂U .

Definicja 3.3. M jest gładką rozmaitością z brzegiem, jeśli posiada atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ taki, że

- \hookrightarrow U_{α} jest otwartym podzbiorem M
- \hookrightarrow oraz $\phi_{\alpha}: U_{\alpha} \to H^{n}$ jest homeomorfizmem na swój obraz,
- $\hookrightarrow \overline{\mathsf{U}}_{\alpha} = \phi(\mathsf{U}_{\alpha}) \subseteq \mathsf{H}^{\mathsf{n}}$ jest otwarty,
- \hookrightarrow odwzorowania przejścia $\phi_{\alpha}\phi_{\beta}^{-1}:\phi_{\beta}(U_{\alpha}\cap U_{\beta})\to\phi_{\alpha}(U_{\alpha}\cap U_{\beta})$ są gładkie $[U_{\alpha}\cap U_{\beta}\subseteq H^{n}]$ otwarte].

Fakt 3.4. Jeśli w pewnej mapie $(U_{\alpha}, \phi_{\alpha})$ $\phi_{\alpha}(p) \in \partial H^{n}$, to w każdej innej mapie $(U_{\beta}, \phi_{\beta})$ zawierającej punkt p również obraz punktu p należy do brzegu Hⁿ.

Dowód:

Odwzorowania przejścia są gładkie, ale gładkie są też odwzorowania odwrotne, czyli $\phi_{\alpha}\phi_{\beta}^{-1}$ są gładkie i gładko odwracalne.

Twierdzenie o odwzorowaniu otwartym z analizy wielu zmiennych

Odwzorowania przejścia mają nieosobliwe macierze pierwszych pochodnych cząstkowych we wszystkich punktach.

Uwaga 3.5. Dla rozmaitości topologicznych z brzegiem (ta sama definicja, tylko odwzorowania przejścia nie muszą być gładkie, a wystarczy homeomorfizmy) dowód wyżej nie śmignie, ale *analogiczny fakt również zachodzi*, tylko dowód jest trudniejszy i opiera się na twierdzeniu Brouwera o niezmienniczości obszaru (analog twierdzenia o odwzorowaniach otwartych dla ciągłych fLR $\to \mathbb{R}^n$)

Dzięki twierdzeniom powyżej następujące definicje mają sens:

$$\partial M$$
 = {p $\in M$: w pewnej mapie (każdej) ϕ_{α} (p) $\in \partial H^{n}$ }

$$int(M) = \{p \in M : dla pewnej mapy (U_{\alpha}, \phi_{\alpha}), \phi_{\alpha}(p) \in int(H^n)\}$$

3.1. O brzegu i wnętrzu

Fakt 3.6. Wnętrze int(M) n-rozmaitości gładkiej M jest n-rozmaitością gładką bez brzegu.

Dowód:

Pokażemy atlas, który działa dla int(M). Weźmy $\{(U'_{\alpha}, \phi'_{\alpha})\}$, gdzie

$$U'_{\alpha} = U_{\alpha} \cap int(M), \quad \phi'_{\alpha} = \phi_{\alpha} \upharpoonright U_{\alpha}$$

a (U_{α} , ϕ_{α}) było atlasem na M.

Fakt 3.7. Brzeg ∂M n-rozmaitości M z brzegiem jest (n – 1) wymiarową rozmaitością gładką bez brzegu.

Dowód:

Jako atlas na ∂M bierzemy $\{(U'_{\alpha}, \phi'_{\alpha})\}$, gdzie

$$\begin{split} \mathsf{U}_\alpha' &= \mathsf{U}_\alpha \cap \partial \mathsf{U}_\partial \mathsf{M} \\ \phi_\alpha' &: \mathsf{U}_\alpha' \to \mathbb{R}^{\mathsf{n}-1} = \partial \mathsf{H}^\mathsf{n} \quad \phi_\alpha' = \phi_\alpha \upharpoonright \mathsf{U}_\alpha' \end{split}$$

Przykład: Dysk $D^n = \{x \in \mathbb{R}^n : |x| \le 1\}$ jest rozmaitością gładką z brzegiem $\partial D^n = \{x \in \mathbb{R}^n : |x| = 1\}$. Pokażemy mapy, ale uzasadnienie ich gładkiej zgodności pominiemy.

$$(\mathsf{U}_0,\phi_0)\quad :\quad \mathsf{U}_0=\{\mathsf{x}\ :\ |\mathsf{x}|<1\},\quad \phi_0:\mathsf{U}_0\to\mathsf{H}^n,\ \phi_0(\mathsf{x}_1,...,\mathsf{x}_n)=(\mathsf{x}_1,...,\mathsf{x}_{n-1},\mathsf{x}_n+2)$$

$$(\mathsf{U}_i^\pm,\phi_i^\pm)\quad:\quad \mathsf{U}_i^\pm = \{x\in \mathsf{D}^n\ :\ \pm x_i>0\},\quad \phi_1:\mathsf{U}_1\to \mathsf{H}^n$$

Czyli w punkcie opisujemy n – 1 wymiarową płaszczyznę styczną i rzucamy punkty p \in Dⁿ przez rzut odśrodkowy π na tę płaszczyznę. Funkcje ϕ_i^\pm opisują się wtedy wzorem:

$$\phi_{i}^{\pm}(p) = (\pi(p), 1 - r^{2})$$

lub konkurencyjnie

$$\phi_i^{\pm}(x_1,...,x_n) = (\frac{x_1}{x_i},...,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},...,\frac{x_n}{x_i},1-\sum_{i=1}^n x_i^2)$$

Inny atlas gładki na dysku Dⁿ (zgodny z poprzednim)

$$U_A = D^n \setminus \{A\}$$

$$U_B = D^n \setminus \{B\}$$

 $\phi_{\mathsf{A}}:\mathsf{U}_{\mathsf{A}}\to\mathsf{H}^{\mathsf{n}}_{\mathsf{A}}\leftarrow\mathsf{inwersja}$ względem sfery o środku A i r = 2

3.2. Rozkłady jedności

Motywacja: jak uzasadnić, że na każdej rozmaitości z brzegiem M istnieje gładka funkcja f taka, że f : $M \to \mathbb{R}^n$ taka, że

$$f(p) = 0$$
 $p \in \partial M$
 $f(p) > 0$ $p \in Int(M)$?

Na zbiorze mapowym możemy taką funkcję zadać przez:

$$\overline{\mathsf{f}}_\alpha:\overline{\mathsf{U}}_\alpha\to\mathbb{R}$$

$$ar{\mathsf{f}}_{lpha}(\mathsf{x}_1,...,\mathsf{x}_\mathsf{n}) = \mathsf{x}_\mathsf{n}$$
 $ar{\mathsf{f}}_{lpha} : \mathsf{U}_{lpha}
ightarrow \mathbb{R}$ $ar{\mathsf{f}}_{lpha} = ar{\mathsf{f}}_{lpha} \circ \phi_{lpha}$

Czyli zmuszamy funkcję do bycia gładką.

TU PEWNIE JAKIŚ BULLSHIT PISZĘ, DOCZYTAĆ I POPRAWIĆ.

Definicja 3.8. Rodzina $\{A_i\}$ podzbiorów przestrzeni topologicznej X jest **lokalnie skończona**, jeśli dla każdego $p \in X$ istnieje otwarte otoczenie $p \in U_p$ w X takie, że $U_p \cap A_\alpha \neq \emptyset$ tylko dla skończenie wielu α .

Definicja 3.9. Dla funkcji rzeczywistej $f: X \to \mathbb{R}$ jej **nośnik** supp(f) = cl($\{x \in X : f(x) \neq 0\}$)

Twierdzenie 3.10. [*Twierdzenie o rozkładzie jedności*] Dla każdego otwartego pokrycia $\{U_{\alpha}\}$ rozmaitości gładkiej M (może być z brzegiem) istnieje rodzina $\{f_j\}_{j\in J}$ gładkich funkcji $f_j: M \to \mathbb{R}$ takich, że

- $f_i \ge 0$
- każdy nośnik supp(f_i) zaiwera się w pewnym U_{α} z pokrycia
- nośniki $\{supp(f_i)\}_{i\in J}$ tworzą lokalnie skończoną rodzinę podzbiorów w M
- dla każdego $x \in M \sum_{j \in J} f_j(x) = 1$

Jest to rozkład jedności wpisany w pokrycie $\{U_{\alpha}\}$

Wracamy do pytania o istnienie $f:M\to\mathbb{R}$ takiego, że $f\upharpoonright\partial M\equiv 0$ i $f\upharpoonright int(M)>0$.

Niech $\{U_{\alpha}\}$ będzie dowolnym pokryciem rozmaitości M zbiorami mapowymi. Wtedy $f_{\alpha}:U_{\alpha}\to\mathbb{R}$ jest gładka, jeśli

- $U_{\alpha} \cap \partial M \neq \emptyset \implies f_{\alpha} = \overline{f}_{\alpha}\phi_{\alpha}$, gdzie $\overline{f}_{\alpha} : \overline{U}_{\alpha} \to \mathbb{R}$, $\overline{f}_{\alpha}(x_{1},...,x_{n}) = x_{n}$
- $U_{\alpha} \cap \partial M = \emptyset \implies f_{\alpha} = 1$

Niech $\{h_j\}$ będzie rozkładem jedności wpisanym w $\{U_\alpha\}$. Dla każdego $j \in J$ wybieramy $\alpha(j)$ takie, że supp $(h_j) \subseteq U_{\alpha(j)}$. Definiujemy wtedy $h_j' = h_j \cdot f_{\alpha(j)} : M \to \mathbb{R}$ takie, że

$$h'_{j}(p) = \begin{cases} h(p)f_{\alpha(j)}(p) & p \in U_{\alpha(j)} \\ 0 \end{cases}$$

taka funkcja jest gładka, bo supp $(h_i) \subseteq U_{\alpha(i)}$.

4. Pomocnik idiotów:

Skorowidz definicji

Twierdzonkowa zabawa

3.10 Twierdzenie: *o rozkładzie*

jedności 12

1.1	Definicja: rozmaitość topolog-	7	1.2	Fakt: n-rozmaitość ⇔	1
4 7	iczna	3	4 7	rodzina map pokrywających	4
1.3	Definicja: zgodność map	5	1.7	Twierdzenie: zgodność to	
1.4	Definicja: atlas gładki	5		relacja równoważnośći	6
1.5	Definicja: <i>rozmaitość gładka</i>	5	1.9	Fakt: dla każdego atlasu ist-	
1.6	Definicja: zgodność map, at-			nieje jedyny atlas maksymalny .	6
	lasów	5	2.2	Fakt: funkcja gładka względem	
1.8	Definicja: atlas maksymalny	6		atlasu	7
2.1	Definicja: gładkość względem		2.4	Lemat: rozmaitość gładka bez	
	atlasu	7		topologii	8
2.3	Definicja: <i>mapa</i> C ^k -zgodna,		3.2	. 9	
	C ^k -atlas	7	J	funkcji	9
3.1	Definicja: brzeg, wnętrze	,	3.4	Fakt: jeśli obraz punktu jest w	
J.1	zbioru otwartego, gładka		٦.٦	rzegu w jednej mapie, to jest w	
		9			9
7 7	funkcja ze zbioru	9	7 5	brzegu w każdej	9
3.3	Definicja: gładka rozmaitość z		3.5	Uwaga: fakt wyżej jest	
	brzegiem	9		prawdziwy dla rozmaitości	
3.8	Definicja: rodzina lokalnie			topologicznych z brzegiem	10
	skończona	12	3.6	Fakt: wnętrze rozmaitości jest	
3.9	Definicja: nośnik funkcji	12		rozmaitością	10
			3.7	Fakt: brzeg rozmaitości jest	
				rozmaitością	10