Russell Cooper

January 24, 2024

- Basic Optimization Model
- 2 Hall
- 3 Hansen-Singleton
- **Extensions**
 - Borrowing Constraints
 - Consumption Habit
 - Labor Supply
 - Life-Cycle
 - Costly Adjustment
 - Durables

$$v(A, R, y) = \max_{s} u(c) + \beta E_{y', R'|R, y} v(A', R', y')$$
 (1)

for all (A, R, y)

subject to:

- $c = y + A \sum_{i} s^{i}$
- $A' = \sum_i R^{i'} s^i$
- $s^i \geq \underline{s^i}$,

where

- state vector: A is start of period financial wealth, y is exogenous labor income and R is realized return
- control vector: $s = (s^1, ...s^N)$ is the purchase of shares of asset i = 1, N
- policy functions: $s^i = \phi^i(A, R, y), c = \zeta(A, R, y)$

Issues

- infinite vs finite horizon
- single vs multiple agents
- income process: (i) aggregate vs idiosyncratic shocks, (ii) transitory vs permanent shocks (iii) unemployment spells and (iv) non-Gaussian stochastic process
- gross or net income: treatment of government taxes and transfers, potential nonlinearities
- exogenous income

Conditions of (Interior) Solution

for i = 1, 2, ...N

$$u'(c) = \beta E_{v',R'|R,v}[R^{i'}v_A(A',R',y')]$$
 (2)

Using the Bellman equation, generate Euler Equations

$$u'(c) = \beta E_{y',R'|R,y}[R^{i'}u'(c')]$$
 (3)

Note:

- holds for all assets
- holds for groups of assets
- will fail if borrowing constraint binds

Hall

Assumptions

- N = 1
- $\beta R = 1$
- quadratic utility: $u(c) = \mathbf{a}c (\frac{\mathbf{b}c}{2})^2$
- Euler equation implies consumption follows a random walk

$$Ec' = c$$
 (4)

- Interpreting this condition
 - changes in consumption are not predictable conditional on current consumption
 - it does not mean that consumption is constant
 - $c_{t+1} = c_t + \epsilon_{t+1}, E_t(\epsilon_{t+1}) = 0$ but $\epsilon_{t+1} \neq 0$

Empirical Implementation

Let z_t be a variable known in period t. Consider

$$c_{t+1} = \alpha_0 + \alpha_1 c_t + \alpha_2 z_t + \varepsilon_{t+1} \tag{5}$$

Theory predicts

- $\alpha_1 = 1$
- $\alpha_2 = 0$ for any z_t : $Ez_t \varepsilon_{t+1} = 0$
- so throw in all the variables and test $\alpha_2 = 0$
- test of theory not estimation of structural parameters
 - ullet cannot reject $lpha_2=0$ for consumption and income instruments
 - reject $\alpha_2 = 0$ for stock returns

Hansen-Singleton

Approach

- work with general model: N assets, more general utility
- estimate parameters and test model
- methodology is used in many applications
- particular results less influential
- assume $u(c) = \frac{c^{\gamma}}{\gamma}$ so $u'(c) = c^{\alpha}, \alpha \equiv (\gamma 1)$
- representative agent (not panel data for their application)

Components of Model

• Euler (asset i = 1, 2, 3, ...N)

$$u'(c_t) = \beta E_t[R_{t+1}^i u'(c_{t+1})]$$
 (6)

• create $ex\ post$ expectational errors for i=1,2,...N and t=1,2,...T-1

$$\varepsilon_{t+1}^{i}(\Theta) = \frac{\beta[R_{t+1}^{i}u'(c_{t+1})]}{u'(c_{t})} - 1 \tag{7}$$

- $\Theta^* = (\beta^*, \alpha^*)$
- THEORY: ex post errors not predictable: $E_t(\varepsilon_{t+1}^i(\Theta^*)) = 0$

Methodology: (Overview Only)

- impose sample analogue of $E_t(\varepsilon_{t+1}^i(\Theta^*))=0$
- ullet compute $ex\ post$ errors from data given Θ
- $m_T^{ij}(\Theta) \equiv \frac{1}{T} \sum (Z_t^j \times \varepsilon_{t+1}^i(\Theta))$ for instrument j = 1, 2, 3, ...J
- solve $J \equiv min_{\Theta}m_T(\Theta)'Wm_T(\Theta)$ where
 - m_T is vector (NJX1) of moments
 - W is a weighting matrix; usually the inverse of the VarCov
 - ullet this minimization yields consistent estimates of Θ^*
 - implement iteratively: W = I, estimate parameters, calculate VarCov
- See Hamilton GMM Chpt. or Hansen notes for proofs of these properties

Findings

- α around -0.9; β around 0.99; some but not all specifications rejected(J too far from zero)
- Errata published in Eca, Jan 1984: much more variability in estimates of utility curvature
- Huge impact on methodology
- concerns over instrument choice and sensitivity

Example

- N = 1
- Euler becomes:

$$u'(c_t) = \beta E_t[R_{t+1}u'(c_{t+1})]$$
 (8)

Ex post error is

$$\varepsilon_{t+1}^{i}(\Theta) = \frac{\beta[R_{t+1}u'(c_{t+1})]}{u'(c_{t})} - 1$$
 (9)

- instruments: $Z_t = (1, c_{t-1}, y_{t-1})$
- moment for $Z_t = 1$ is $m_T^1(\Theta) \equiv \frac{1}{T} \sum \varepsilon_{t+1}(\Theta)$
- moment j > 1 is: $m_T^j(\Theta) \equiv \frac{1}{T} \sum (Z_t^j \times \varepsilon_{t+1}(\Theta))$
- recall GMM in OLS and IV estimation

SMM Approach

- data on (c_t, y_t, R_t) for t = 1, 2, 3, T.
- estimate process for (y_t, R_t) directly from the data, eg VAR(1).
- estimate $\Theta = (\beta, \alpha)$ using SMM
 - data moments:
 - given Θ solve DPP to obtain policy function: $c = \phi_{\Theta}(A, y, R)$
 - simulate model to obtain simulated data set
 - calculate moments as you did in the data
 - minimize distance between data and model moments
- much slower than GMM
- use policy function $c = \phi_{\hat{\Theta}}(A, y, R)$ for policy exercises depending on MPC

- borrowing constraints
- habit formation
- labor supply
- life cycle model
- portfolio adjustment costs
- durable goods

Borrowing Constraints

- if they bind for asset $i: u'(c_t) > \beta E[R_{t+1}^i u'(c_{t+1})]$
- ignoring them can bias the estimation
- estimate parameters from other Euler equations
- constraints influence choices even if they do not bind (Precautionary savings)
- Sources:
 - natural borrowing constraint (Aiyagari)
 - incentive based: choice over (repay, default) [see additional notes]
 - ad hoc: $s^i \ge \underline{s^i}$, constraint could depend on the state

Consumption Habit

$$v(A, y, c_{-1}) = \max_{A'} u(c + \gamma c_{-1}) + \beta E_{y'|y} v(A', y', c)$$
 (10)

for all (A, y, c_{-1}) with $c = y + A - \frac{A'}{R}$.

- utility depends upon own consumption today and last period: internal habit.
- Euler is more complicated: Hansen-Singleton mis-specified
- estimate parameters using GMM
- if $\gamma = 0$, then no habit

Euler Equation

FOC

$$\frac{-1}{R}u'(y+A-\frac{A'}{R}+\gamma c_{-1})+\beta E_{y'|y}[v_1(A',y',c)+\frac{-1}{R}v_3(A',y',c)]=0$$
(11)

Use

$$v_1(A, y, c_{-1}) = u'(y + A - \frac{A'}{R} + \gamma c_{-1}) + \beta E_{y'|y} v_3(A', y', c)$$
 (12)

and

$$v_3(A, y, c_{-1}) = \gamma u'(y + A - \frac{A'}{R} + \gamma c_{-1})$$
 (13)

to get the Euler

$$u'(c+\gamma c_{-1})+\beta E_{y'|y}\gamma u'(c'+\gamma c)=\beta R E_{y'|y}[u'(c'+\gamma c)+\beta \gamma u'(c''+\gamma c')]$$
(14)

Labor Supply

- static problem: intensive and extensive margins
- dynamic problem
 - intensive, extensive margins and savings all together
 - dynamics induced by habit
 - estimate wage process
 - interactions with portfolio and borrowing constraints
 - estimation challenge: avoid zero likelihood, use Euler equations

- Utility: $u(c, n, \epsilon)$ with $c = \omega n + A$
- if work: $\omega = -\frac{u_n(c,n,\epsilon)}{u_c(c,n,\epsilon)}$
- reservation wage: $\omega^* = -\frac{u_n(A,0,\epsilon)}{u_c(A,0,\epsilon)}$
- work iff $\omega > \omega^*$
- READ
 - Heckman, Eca. July 1974: model
 - Heckman, Eca. July 1979: two-step procedure
 - Killingsworth Labor Supply, Cambridge University Press
 - Alternative approaches: propensity score methods

- Utility: $u(c, n, \epsilon) = (\omega(n + \epsilon) + A)^{\alpha} (1 n \epsilon)^{\beta}$
- will work iff: $\epsilon < J \equiv (1-b) b \frac{A}{\omega}$ with $b = \frac{\beta}{\alpha + \beta}$
- ullet Probability no work: $(1-F(J_i))$ use $i\in ar{\mathcal{E}}$ for variations in $rac{A_i}{\omega_i}$
- if work: $n_i = J_i \epsilon_i$, $i \in E$
- likelihood:

$$\Omega(b) = \Pi_{i \in \bar{E}}(1 - F(J_i))\Pi_{i \in E}f(J_i - n_i)$$

- estimation of b combines both intensive and extensive choices
- ASSUMES ω_i is observed even if $n_i = 0$

Static Model: Estimation with selection

- normally observe only accepted wages
- \bullet selection bias in the sample of workers: only those with low ϵ participate
- conditional expectation becomes:

$$E(n_i|n_i>0)=J_i-\kappa_i$$

with
$$\kappa_i \equiv E[\epsilon | \epsilon < J_i]$$

- regression of n_i without κ_i leads to OVB: selection depends on b
- How can you estimate these parameters?

Static Model: Estimation with selection

- estimate participation and hours choice jointly through MLE
 - ...challenge: wages for non-workers not observed
- Heckman (Eca., 1979) two-step procedure (there are alternatives!)
 - need Z_i that impacts participation but not hours worked: see Heckman 1974 re married women's labor supply
 - Step 1: regress participation on Z_i
 - compute inverse Mills ratio (IMR) to capture probability of working
 - Step 2: include IMR in the hours regression to eliminate selection bias
- SMM: $\Theta = (\alpha, \beta, F(\epsilon))$
 - given Θ
 - find workers: $n_{\Theta}(\epsilon) > 0$
 - match moments
 - participation conditional on observables
 - hours conditional on observables
 - use Heckit two-step as moment
 - impose cross equation restrictions

Labor with Habit

$$v(A, \omega, n_{-1}) = \max_{A', n} u(\omega n + A - \frac{A'}{R}, n + \gamma n_{-1}) + \beta E_{\omega' \mid \omega} v(A', \omega', n)$$
(15)

for all (A, ω, n_{-1})

- utility depends upon both labor supply today and last period.
- FOCs will now entail two dynamic equations
- estimate them jointly using GMM
- if $\gamma = 0$, then no dynamic to labor supply

intertemporal consumption

$$u_c(c, n + \gamma n_{-1}) = \beta R E_{\omega' \mid \omega} u_c(c', n' + \gamma n)$$
 (16)

• intertemporal labor supply

$$\omega u_c(c, n+\gamma n_{-1}) + u_n(c, n+\gamma n_{-1}) + \beta \gamma E_{\omega'|\omega} u_n(c', n'+\gamma n) = 0$$
(17)

Discrete Employment Choice

- $V(A, \omega, \xi) = max\{V^w(A, \omega, \xi), V^n(A, \omega, \xi)\}$ where
- value of work is

$$V^{w}(A,\omega,\xi) = \max_{A'} u(A+\omega-\frac{A'}{R}) - \xi + \beta E_{\omega',\xi'|\omega,\xi} V(A',\omega',\xi')$$
(18)

value of no work is

$$V^{n}(A,\omega,\xi) = \max_{A'} u(A - \frac{A'}{R}) + \beta E_{\omega',\xi'|\omega,\xi} V(A',\omega',\xi')$$
 (19)

- $V(A, \omega, \xi) = max\{V^w(A, \omega, \xi), V^n(A, \omega, \xi)\}$ where
- value of work is

$$V^{w}(A,\omega,\xi) = \max_{n,A'} u(A + \omega n - \frac{A'}{R}, n) - \xi + \beta E_{\omega',\xi'|\omega,\xi} V(A',\omega',\xi')$$
 (20)

value of no work is

$$V^n(A,\omega,\xi) = \max_{A'} u(A - \frac{A'}{R},0) + \beta E_{\omega',\xi'|\omega,\xi} V(A',\omega',\xi')$$
 (21)

Life Cycle Model

- income: $y_t^i = \alpha_0^i + \alpha_1 age_t^i + \alpha_2 (age_t^i)^2 + \rho y_{t-1}^i + \varepsilon_t^i$
- Bellman Equation

$$v_t(y_t, A_t) = \max_{A_{t+1}} u(c_t) + \beta E_{y_{t+1}|y_t} v_{t+1}(y_{t+1}, A_{t+1}) \quad (22)$$

where
$$A_{t+1} = (A_t + y_t - c_t)R_{t+1}, t = 1, 2, ... T$$
.

- solve by VFI, starting with t = T and work backwards.
- no stationarity, just an endpoint.

Costly Portfolio Adjustment

- In the data see:
 - · majority of households do not hold stocks
 - majority of households do not adjust stocks
- portfolio adjustment is costly
- asset market participation is costly: two period example
- consider dynamic discrete choice problem

Two Period Participation Example

- Period 2: consume and die, no bequest
- Period 1:
 - discrete choice: asset market participation (costly)
 - continuous choice over available assets
- $R = (R^b, R^s)$ for bond and stock returns
- ullet Γ is a cost of participating in stock markets
- F is an adjustment cost

Two Period Participation Example: initial $A^s = 0$

• Period 2

$$V_1(A^b, A^s, R, y) = u(c)$$
 (23)

Hansen-Singleton

$$c = y + A^b R^B + A^s R^s (24)$$

- Period 1
 - Participate

$$V_{2}^{p}(A^{b}, A^{s}, R, y) = \max_{A^{b'}, A^{s'}} u(c) + \beta EV_{1}(A^{b'}, A^{s'}, R', y')$$

$$c = y + A^{b}R^{b} - A^{b'} - A^{s'} - \Gamma$$
(25)

No Participate

$$V_2^n(A^b, A^s, R, y) = \max_{A^{b'}} u(c) + \beta E V_1(A^{b'}, 0, R', y')$$

$$c = y + A^b R^b - A^{b'}$$
(26)

Discrete Choice

$$V_2(A^b, A^s, R, y) = \max\{V_2^p(A^b, A^s, R, y), V_2^n(A^b, A^s, R, y)\}$$
 (27)

Period 2

$$V_1(A^b, A^s, R, y) = u(c)$$
 (28)

$$c = y + A^b R^B + A^s R^s (29)$$

- Period 1
 - Adjust

$$V_{2}^{a}(A^{b}, A^{s}, R, y) = max_{A^{b'}, A^{s'}}u(c) + \beta EV_{1}(A^{b'}, A^{s'}, R', y')$$

$$c = y + A^{b}R^{b} + A^{s}R^{s} - A^{b'} - A^{s'} - F$$
(30)

No Adjust

$$V_{2}^{na}(A^{b}, A^{s}, R, y) = max_{A^{b'}}u(c) + \beta EV_{1}(A^{b'}, A^{s}R^{s}, R', y')$$

$$c = y + A^{b}R^{b} - A^{b'}$$
(31)

Discrete Choice

$$V_2(A^b, A^s, R, y) = \max\{V_2^a(A^b, A^s, R, y), V_2^{na}(A^b, A^s, R, y)\}$$
(32)

- see separate notes, Adda-Cooper and Krueger-Villaverde
- preferences: u(c, D)
- transition: $D' = D(1 \delta) + e$
- budget constraint: A' = R(A + y c pe)