MATH 709 HW # 5

MARIO L. GUTIERREZ ABED PROF. A. BASMAJAN

Problem 1 (Problem 4-6). Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F: M \to \mathbb{R}^k$ for any k > 0.

Proof. Assume, to the contrary, that F is a smooth submersion. Then, by a previous result, we know that F must be an open map, and thus we have that F(M) is open in \mathbb{R}^k . In addition, we must have that F(M) is compact because M is compact and continuous images of compact sets are compact. Therefore $F(M) \subseteq \mathbb{R}^k$ (for k > 0) is open and also closed and bounded (by Heine-Borel). But this would imply that, since \mathbb{R}^k is connected, the image F(M) is either empty or it's the entire space \mathbb{R}^k . Since M is nonempty, we must have that $F(M) = \mathbb{R}^k$, which contradicts the boundedness (and compactness) of F(M) since \mathbb{R}^k is unbounded (and noncompact). $(\Rightarrow \Leftarrow)$