波形拟合反演震源机制的定权研究及误差评 定

邓东平 2013202140004

导师:朱良保教授

武汉大学测绘学院

9究意义 研究背景 解决方案 理论实验 实例应用 总结和展望

概览

研究意义

研究背景

解决方案

优化加权 误差估计

理论实验

无噪实验 权重对比实验 噪声强度对比实验

实例应用

总结和展望

预览

研究意义

研究背景

解决方案

优化加权 误差估计

理论实验

无噪实验 权重对比实验 噪声强度对比实验

空侧应用

总结和展望

研究意义

- 发震构造研究、灾害评估
- 区域应力、地震活动性
- 介质结构、海啸模拟等研究

预览

研究意义

研究背景

解决方案

优化加权 误差估计

理论实验

无噪实验 权重对比实验 噪声强度对比实验

空侧应用

总结和展望

研究背景

- 初动极性反演:早期方法,只用了初动方向信息,结果不稳定,台站约束多
- 振幅反演:利用了震相振幅的定量数据,如其辐射规律或振幅比值
- 波形拟合反演:利用了地震波形中振幅相位等所有信息,约束 更强,结果更稳定

波形拟合原理

$$\begin{cases}
U_z(r,\phi,0,\omega) = Z_{SS} \cdot s_2 + Z_{DS} \cdot s_3 + Z_{DD} \cdot s_1 \\
U_r(r,\phi,0,\omega) = R_{SS} \cdot s_2 + R_{DS} \cdot s_3 + R_{DD} \cdot s_1 \\
U_\phi(r,\phi,0,\omega) = T_{SS} \cdot t_2 + T_{DS} \cdot t_1
\end{cases} \tag{1}$$

$$\begin{split} s_1 &= 1/2 sin\lambda sin2\delta \\ s_2 &= cos\lambda sin\delta sin2(\phi - \phi_s) + 1/2 sin\lambda sin2\delta cos2(\phi - \phi_s) \\ s_3 &= -cos\lambda cos\delta cos(\phi - \phi_s) + sin\lambda cos2\delta sin(\phi - \phi_s) \\ t_1 &= cos\lambda cos\delta sin(\phi - \phi_s) + sin\lambda cos2\delta cos(\phi - \phi_s) \\ t_2 &= cos\lambda sin\delta cos2(\phi - \phi_s) - 1/2 sin\lambda sin2\delta sin2(\phi - \phi_s) \end{split}$$

波形拟合原理

$$\begin{cases}
U_z(r,\phi,0,\omega) = Z_{SS} \cdot s_2 + Z_{DS} \cdot s_3 + Z_{DD} \cdot s_1 \\
U_r(r,\phi,0,\omega) = R_{SS} \cdot s_2 + R_{DS} \cdot s_3 + R_{DD} \cdot s_1 \\
U_\phi(r,\phi,0,\omega) = T_{SS} \cdot t_2 + T_{DS} \cdot t_1
\end{cases} \tag{1}$$

$$\begin{cases} s_1 = 1/2 sin\lambda sin2\delta \\ s_2 = cos\lambda sin\delta sin2(\phi - \phi_s) + 1/2 sin\lambda sin2\delta cos2(\phi - \phi_s) \\ s_3 = -cos\lambda cos\delta cos(\phi - \phi_s) + sin\lambda cos2\delta sin(\phi - \phi_s) \\ t_1 = cos\lambda cos\delta sin(\phi - \phi_s) + sin\lambda cos2\delta cos(\phi - \phi_s) \\ t_2 = cos\lambda sin\delta cos2(\phi - \phi_s) - 1/2 sin\lambda sin2\delta sin2(\phi - \phi_s) \end{cases}$$
 (2)

- 方法: 波形拟合 (波形数据), 格点搜索 (公式1非线性),
- 应用:CAP.CPS 等代表性方法 (程序) 广泛应用
- 优点:

- 问题:

- 方法: 波形拟合 (波形数据), 格点搜索 (公式1非线性),
- 应用:CAP,CPS 等代表性方法 (程序) 广泛应用
- 优点:

- 问题:

- 方法: 波形拟合(波形数据), 格点搜索(公式1非线性),
- 应用:CAP,CPS 等代表性方法 (程序) 广泛应用
- ・ 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题:

- 方法: 波形拟合(波形数据), 格点搜索(公式1非线性),
- 应用:CAP,CPS 等代表性方法 (程序) 广泛应用
- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题:

- 方法: 波形拟合(波形数据), 格点搜索(公式1非线性),
- 应用:CAP,CPS 等代表性方法 (程序) 广泛应用
- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题:

- 方法: 波形拟合 (波形数据), 格点搜索 (公式1非线性),
- 应用:CAP,CPS 等代表性方法 (程序) 广泛应用
- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题:
 - 1. 无法直接给出误差评价, 无法有效识别病态问题
 - 2. CAP 和 CPS 的加权方案不一致, 数值相对大小冲突

究意义 研究背景 解决方案 理论实验 实例应用 总结和展望

- 方法: 波形拟合 (波形数据), 格点搜索 (公式1非线性),
- 应用:CAP,CPS 等代表性方法 (程序) 广泛应用
- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题:
 - 1. 无法直接给出误差评价, 无法有效识别病态问题
 - 2. CAP 和 CPS 的加权方案不一致, 数值相对大小冲突

究意义 研究背景 解决方案 理论实验 实例应用 总结和展望

- 方法: 波形拟合 (波形数据), 格点搜索 (公式1非线性),
- 应用:CAP,CPS 等代表性方法 (程序) 广泛应用
- 优点:
 - 1. 波形数据充分应用了地震波信息
 - 2. 震源机制解空间较小,且正演合成迅速,格点搜索可快速反演
- 问题:
 - 1. 无法直接给出误差评价, 无法有效识别病态问题
 - 2. CAP 和 CPS 的加权方案不一致, 数值相对大小冲突

本文目标

- 统一优化定权
- 针对 CAP、CPS 给出结果误差评价

预览

研究意义

研究背景

解决方案

优化加权 误差估计

理论实验

无噪实验 权重对比实验 噪声强度对比实验

空侧应用

总结和展望

究意义 研究背景 解决方案 理论实验 实例应用 总结和展望

解决方案

- 优化定权
 - 1. 分析二者定权的理论依据, 联合定权解决差异
 - 2. 数值定量精化,结果尽量客观
- 针对 CAP、CPS 给出结果误差评价
 - 1. 估计数据噪声
 - 2. 计算震源机制协方差矩阵

• 统一加权

- 1. CPS 加权 W1. 考虑信噪比. 权重随震中距单调递减
- 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
- 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2

• 定量精化

- 2. CAP 加权估计 W2 的公式 $(r/r_0)^p$ 中的参考参数 r_0, p 只能经验判定,主观性很强

• 本文最终权重

1. WT = (1 - NoiseStd/WaveStd)/L2norm

- 统一加权
 - 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
 - 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
 - 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2
- 定量精化
 - 1. 利用震中距估计的 W1, W2 均较粗糙, 改为由波形数据直接定量计
 - 2. CAP 加权估计 W2 的公式 $(r/r_0)^p$ 中的参考参数 r_0, p 只能经验判定,主观性很强
- 本文最终权重
 - 1. WT = (1 NoiseStd/WaveStd)/L2norm

• 统一加权

- 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
- 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
- 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2

定量精化

- 1. 利用震中距估计的 W1, W2 均较粗糙, 改为由波形数据直接定量计算
- 2. CAP 加权估计 W2 的公式 $(r/r_0)^p$ 中的参考参数 r_0, p 只能经验判定,主观性很强

本文最终权重

1. WT = (1 - NoiseStd/WaveStd)/L2norn

- 统一加权
 - 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
 - 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
 - 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2
- 定量精化

 - 2. CAP 加权估计 W2 的公式 $(r/r_0)^p$ 中的参考参数 r_0, p 只能经验判定,主观性很强
- 本文最终权重
 - 1. WT = (1 NoiseStd/WaveStd)/L2norm

• 统一加权

- 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
- 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
- 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2

定量精化

- 1. 利用震中距估计的 W1, W2 均较粗糙, 改为由波形数据直接定量计 算
- 2. CAP 加权估计 W2 的公式 $(r/r_0)^p$ 中的参考参数 r_0, p 只能经验判定,主观性很强

本文最终权重

1. WT = (1 - NoiseStd/WaveStd)/L2norm

• 统一加权

- 1. CPS 加权 W1, 考虑信噪比, 权重随震中距单调递减
- 2. CAP 加权 W2, 考虑振幅调节, 权重随震中距单调递增
- 3. 信噪比和振幅调节均可提高数据质量,应联合统一 WT = W1 * W2

定量精化

- 1. 利用震中距估计的 W1, W2 均较粗糙, 改为由波形数据直接定量计算
- 2. CAP 加权估计 W2 的公式 $(r/r_0)^p$ 中的参考参数 r_0, p 只能经验判定,主观性很强

本文最终权重

1. WT = (1 - NoiseStd/WaveStd)/L2norm

■ STEP1 估计数据噪声

- 1. 截取震前平静期数据样本
- 2 参数估计得到噪声分布函数(高斯
- STFP2 随机生成模拟数据集

STEP3 反演得解集并计算协方差矩

阵

STEP1 估计数据噪声

- 1. 截取震前平静期数据样本
- 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机牛成模拟数据集

TEP3 反演得解集并计算协方差矩

PŦ

STEP1 估计数据噪声

- 1. 截取震前平静期数据样本
- 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成档划数据集

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据
 2. 噪声数据与原始观测数据叠加,生
 - 成多组模拟观测数据
 - STEP3 反演得解集并计算协方差矩

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据

成名用描述到测数据

STEP3 反演得解集并计算协方差矩

阵

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据
 - 噪声数据与原始观测数据叠加,生成多组模拟观测数据
 - STEP3 反演得解集并计算协方差矩

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据
 - 噪声数据与原始观测数据叠加,生成多组模拟观测数据
- · STEP3 反演得解集并计算协方差矩 阵
 - 1. 每组"观测"数据独立反演,得随机误差范围内解集
 - 2. 对解集统计分析,计算震源机制三 参数协方差矩阵

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据
 - 噪声数据与原始观测数据叠加,生成多组模拟观测数据
- · STEP3 反演得解集并计算协方差矩 阵
 - 每组"观测"数据独立反演,得随机 误差范围内解集
 - 2. 对解集统计分析,计算震源机制= 参数协方差矩阵

- STEP1 估计数据噪声
 - 1. 截取震前平静期数据样本
 - 2. 参数估计得到噪声分布函数 (高斯)
- STEP2 随机生成模拟数据集
 - 1. 用噪声分布函数随机生成噪声数据
 - 噪声数据与原始观测数据叠加,生成多组模拟观测数据
- · STEP3 反演得解集并计算协方差矩 阵
 - 每组"观测"数据独立反演,得随机 误差范围内解集
 - 对解集统计分析, 计算震源机制三 参数协方差矩阵

预览

研究意义

研究背景

解决方案

优化加权 误差估计

理论实验

无噪实验 权重对比实验 噪声强度对比实验

实例应用

总结和展望

理论实验

- 无噪实验
- 权重对比实验
- 噪声强度对比实验

实验条件

走向 250°, 倾角 40°, 滑动角 82°, M, 震级 6.5, 震源深度 17km

无噪实验

- 结果
 - 1. 结果与理论设定一致
 - 2. 理论与观测数据拟合度 100%
- 结论

无噪实验

- 结果
 - 1. 结果与理论设定一致
 - 2. 理论与观测数据拟合度 100%
- 结论
 - 1. 台站分布合理,满足反演要求
 - 2. 说明分辩核为单位矩阵
 - 3. 计算机数值计算引起的误差可忽略

无噪实验

结果

- 1. 结果与理论设定一致
- 2. 理论与观测数据拟合度 100%
- 结论
 - 1. 台站分布合理,满足反演要求
 - 2. 说明分辩核为单位矩阵
 - 3. 计算机数值计算引起的误差可忽略

无噪实验

结果

- 1. 结果与理论设定一致
- 2. 理论与观测数据拟合度 100%
- 结论
 - 1. 台站分布合理, 满足反演要求
 - 2. 说明分辩核为单位矩阵
 - 3. 计算机数值计算引起的误差可忽略

无噪实验

结果

- 1. 结果与理论设定一致
- 2. 理论与观测数据拟合度 100%

结论

- 1. 台站分布合理, 满足反演要求
- 2. 说明分辩核为单位矩阵
- 3. 计算机数值计算引起的误差可忽略

权重对比实验

	走向/°	倾角/°	滑动角/°	深度/km	拟合度	震级
真值	250	40	82	17	1	6.50
W1	252	40	82	18	0.91	6.52
W2	245	39	78	17	0.75	6.47
WT	250	40	81	17	0.84	6.50

- W1 加权拟合度最高, 但深度有偏差
- W2 加权深度无偏差,拟合度最低
- 本文联合加权深度无偏,拟合度较高,综合效果最优

噪声强度对比实验

加噪强度	走向/°	倾角/°	滑动角/°	拟合度
无噪声	250	40	82	1
低噪声 (1.0·10 ⁻⁶)	250±3	40±3	82±3	0.99
中等噪声 $(2.5 \cdot 10^{-6})$	250±8	40±3	83±7	0.94
高噪声 (5.0 · 10 ⁻⁶)	246±18	40±6	78±17	0.87
超高噪声 (1.0 · 10-5)	245±30	42±14	84±36	0.65

- 局部线性近似下,理论误差大小与噪声强度成正比,与结果吻合
- 拟合度表征反演受噪声影响程度,结果表明拟合度低,误差 大,稳定性差
- 各组反演结果均在误差范围内,证明了误差估计的准确性

噪声强度对比实验

加噪强度	走向/°	倾角/°	滑动角/°	拟合度
无噪声	250	40	82	1
低噪声 (1.0·10 ⁻⁶)	250±3	40±3	82±3	0.99
中等噪声 $(2.5 \cdot 10^{-6})$	250±8	40±3	83±7	0.94
高噪声 (5.0 · 10 ⁻⁶)	246±18	40±6	78±17	0.87
超高噪声 (1.0 · 10-5)	245±30	42±14	84±36	0.65

- 局部线性近似下,理论误差大小与噪声强度成正比,与结果吻合
- 拟合度表征反演受噪声影响程度,结果表明拟合度低,误差 大,稳定性差
- 各组反演结果均在误差范围内,证明了误差估计的准确性

噪声强度对比实验

加噪强度	走向/°	倾角/°	滑动角/°	拟合度
无噪声	250	40	82	1
低噪声 (1.0 · 10-6)	250±3	40±3	82±3	0.99
中等噪声 (2.5 · 10-6)	250±8	40±3	83±7	0.94
高噪声 (5.0 · 10 ⁻⁶)	$246{\pm}18$	40±6	78 ± 17	0.87
超高噪声 (1.0 · 10-5)	245±30	42±14	84±36	0.65

- 局部线性近似下,理论误差大小与噪声强度成正比,与结果吻合
- 拟合度表征反演受噪声影响程度,结果表明拟合度低,误差 大,稳定性差
- 各组反演结果均在误差范围内,证明了误差估计的准确性

预览

研究意义

研究背景

解决方案

优化加权 误差估计

理论实验

无噪实验 权重对比实验 噪声强度对比实验

实例应用

总结和展望

实例应用

- 芦山地震案例,远震 P 波和 SH 波 联合反演
- 各道波形分别采用 W1, W2 以及 本文的 WT 联合加权进行三次反 演,对比择优
- 对最优结果进行误差评定
- 与他人成果对比

权重对比分析——稳定性

加权方案	走向标准差/°	倾角标准差/°	滑动角标准差/°
W1	1.03	0.00	0.61
W2	2.25	0.14	0.83
WT	1.66	0.00	0.59

权重对比分析——稳定性

拟合度 W1>WT>W2, 稳定性 W1>WT>W2

W1 出现了双峰,深度约束不理想,易多解

加权方案	走向标准差/°	倾角标准差/°	滑动角标准差/°
W1	1.03	0.00	0.61
W2	2.25	0.14	0.83
WT	1.66	0.00	0.59

权重对比分析——深度约束震相 pP,sP

- 浅源地震在远震情况下,除 震源区域,pP,sP和P震 相的传播路径基本相同
- pP,P 震相的到时差 $\delta t_{pP} = (2hcosi)/\alpha$ sP,P 震相的到时差 $\delta t_{sP} = (h/\alpha)(cosi + (3 sin^2i)^{1/2})$
- 到时差只与区域速度深度等相关,与传播过程的介质无关,可以很好约束震源深度本文"P"波包含了 pP.sP

权重对比分析——深度约束震相 pP,sP

- 浅源地震在远震情况下,除 震源区域,pP,sP和P震 相的传播路径基本相同
- pP,P 震相的到时差 $\delta t_{pP} = (2hcosi)/\alpha$ sP,P 震相的到时差 $\delta t_{sP} = (h/\alpha)(cosi + (3 sin^2i)^{1/2})$
- 到时差只与区域速度深度等相关,与传播过程的介质无关,可以很好约束震源深度本文"P"波包含了pP,sP

权重对比分析——深度约束震相 pP,sP

- 浅源地震在远震情况下,除 震源区域,pP,sP和P震 相的传播路径基本相同
- pP,P 震相的到时差 $\delta t_{pP} = (2hcosi)/\alpha$ sP,P 震相的到时差 $\delta t_{sP} = (h/\alpha)(cosi + (3 sin^2i)^{1/2})$
- 到时差只与区域速度深度等相关,与传播过程的介质无关,可以很好约束震源深度,本文"P"波包含了pP.sP

权重对比分析——可靠性

- WT 仅在 18km 左右 出现极值, W1 在 18km, 32km 左右均 有极值
 - W1 加权的震源机制 随深度变化差异明显 易多解,不可靠
- · 综合稳定性和可靠性 考虑, WT 加权最优

权重对比分析——可靠性

- WT 仅在 18km 左右 出现极值, W1 在 18km, 32km 左右均 有极值
- W1 加权的震源机制 随深度变化差异明显, 易多解,不可靠
 - 综合稳定性和可靠性 考虑,WT 加权最优

T究意义 研究背景 解决方案 理论实验 总结和展**5**

权重对比分析——可靠性

- WT 仅在 18km 左右 出现极值, W1 在 18km, 32km 左右均 有极值
- W1 加权的震源机制 随深度变化差异明显, 易多解,不可靠
- 综合稳定性和可靠性 考虑,WT 加权最优

WT 加权误差评价

- 带误差的结果: 走向 211° ± 5°, 倾角 41° ± 1°, 滑动角 94° ± 2°
- 相关系数与理论实验较吻合,与相关系数由特定地震类型决定的预期一致

表: 芦山地震震源机制相关性

表: 10-5 理论噪声组参数相关性

相关性	走向	倾角	滑动角
走向	1	0	0.91
倾角	0	1	0
滑动角	0.91	0	1

相关性	走向	倾角	滑动角
走向	1	-0.02	0.85
倾角	-0.02	1	0.11
滑动角	0.85	0.11	1

结果对比

研究者	美国地调局	GCMT	刘超	韩立波等	预测所
深度/km	12	22	15	12	15
走向/°	198	210	220	220	210
倾角 /°	33	38	35	50	47
滑动角/°	71	96	95	107	90
研究者	刘杰等	曾祥方等	谢祖军等	吕坚等	本文
一深度/km	19	12	16	14	17
走向/°	214	212	210	209	211
倾角 /°	39	47	44	46	41
滑动角/°	100	93	91	94	94

结果检验

- 震源机制主应力与的区域主 应力方向以及应力实测 (BX)
 一致,与剪切波快轴暗示的 主应力方向一致
- 走向与龙门山断裂带南段的 走向相近,且和双差重定位 的余震空间分布吻合
- 略超过 90°的滑动角和南段 右旋逆冲的构造运动背景吻合

结果检验

- 震源机制主应力与的区域主 应力方向以及应力实测 (BX)
 一致,与剪切波快轴暗示的 主应力方向一致
- 走向与龙门山断裂带南段的 走向相近,且和双差重定位 的余震空间分布吻合
- 略超过 90° 的滑动角和南段 右旋逆冲的构造运动背景吻
 - 슴

结果检验

- 震源机制主应力与的区域主 应力方向以及应力实测 (BX)
 一致,与剪切波快轴暗示的 主应力方向一致
- 走向与龙门山断裂带南段的 走向相近,且和双差重定位 的余震空间分布吻合
- 略超过 90°的滑动角和南段 右旋逆冲的构造运动背景吻 合

预览

研究意义

研究背景

解决方案

优化加权 误差估计

理论实验

无噪实验 权重对比实验 噪声强度对比率

实例应用

总结和展望

工作总结

- 核心工作,提出了一种误差评估方案解决 CAP、CPS 误差缺失的问题,并从理论和实践分别进行论证方法的有效性
- 在 CAP 和 CPS 基础上针对其加权"冲突",提出一联合加权 的统一方案,并定量精化,优化加权
- 芦山地震的震源机制反演表明,发震原因是由区域水平西北-东南向的挤压应力长期积累导致的高倾角逆冲位错

工作总结

- 核心工作,提出了一种误差评估方案解决 CAP、CPS 误差缺失的问题,并从理论和实践分别进行论证方法的有效性
- 在 CAP 和 CPS 基础上针对其加权"冲突",提出一联合加权 的统一方案,并定量精化,优化加权
- 芦山地震的震源机制反演表明,发震原因是由区域水平西北-东南向的挤压应力长期积累导致的高倾角逆冲位错

工作总结

- 核心工作,提出了一种误差评估方案解决 CAP、CPS 误差缺失的问题,并从理论和实践分别进行论证方法的有效性
- 在 CAP 和 CPS 基础上针对其加权"冲突",提出一联合加权的统一方案,并定量精化,优化加权
- 芦山地震的震源机制反演表明,发震原因是由区域水平西北-东南向的挤压应力长期积累导致的高倾角逆冲位错

不足和展望

- 目前的误差评价方案仅能分析随机噪声的影响,对模型偏差等系统性误差无能为力
 - 该误差分析方法要求大量样本统计,震要重复反演,计算压力大
- 前景: 应更系统全面地分析各种误差及适当减少计算量

不足和展望

- 目前的误差评价方案仅能分析随机噪声的影响,对模型偏差等系统性误差无能为力
- 该误差分析方法要求大量样本统计, 震要重复反演, 计算压力 大
- 前景: 应更系统全面地分析各种误差及适当减少计算量

不足和展望

- 目前的误差评价方案仅能分析随机噪声的影响,对模型偏差等系统性误差无能为力
- 该误差分析方法要求大量样本统计, 震要重复反演, 计算压力 大
- 前景: 应更系统全面地分析各种误差及适当减少计算量

结束

感谢您的宝贵时间, 欢迎指正!