MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

ABSTRACT. We prove a formula for the determinant of a principal minor of the distance matrix of a weighted tree. This generalizes a result of Graham and Pollak.

Contents

1.	Introduction	1
2.	Background	2
3.	Proofs	2
4.	Examples	4
Acknowledgements		4
References		4

1. Introduction

Suppose T is a tree with n vertices and m=n-1 edges. Let D denote the distance matrix of T. In [3], Graham and Pollak proved that

(1)
$$\det(D) = (-1)^{n-1} 2^{n-2} (n-1).$$

A weighted version was proved by Bapat–Kirkland–Neumann [I].

thm:main

Theorem 1. Suppose G is a tree with n vertices, and $S \subset V(G)$ is a subset of vertices. Let D denote the distance matrix of G, and D[S] the principal minor that includes the S-indexed rows and columns. Then

(2)
$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left((n-1) \kappa(G/S) - \sum_{\mathcal{F}_2(G/S)} k(F_*)^2 \right).$$

where G/S denotes the quotient graph that identifies together vertices in S, \mathcal{F}_2 is the set of two-component spanning forests, F_* denotes the *-component of F, and

$$k(F_*) = \sum_{x \in V(F_*)} 2 - \deg(x) = 2 - c(F_*).$$

Weighted version:

thm:w-max-capacity

Theorem 2. Suppose G is a finite, weighted tree, and $A \subset V(G)$ is a subset of vertices. Then

eq:w-max-capacity

(3)
$$\det D[A] = (-1)^{|S|-1} 2^{|S|-2} \left(\sum_{e} \ell(e) \sum_{\mathcal{T}} w(T) - \sum_{\mathcal{F}^*} k(F_{2,*})^2 w(F_2) \right).$$

 $\label{eq:Date:v1} \textit{Date} \colon \text{v1, April 24, 2022} \, (\text{Preliminary draft, not for circulation}).$

where $\mathcal{T}(G/A)$ denotes the set of A-rooted spanning forests of G, F_2 varies over all (A,*)-rooted spanning forests of G, $F_{2,*}$ denotes the *-component of F_2 .

Theorem 3 (Monotonicity of principal minors). Suppose G = (V, E) is a finite, weighted tree with distance matrix D. If $A, B \subset V(G)$ are vertex subsets with $A \subset B$, then

$$\left|\frac{\det D[A]}{\cot D[A]}\right| \leq \left|\frac{\det D[B]}{\cot D[B]}\right|.$$

Theorem 4 (Nonsingular minors). Let G be a finite, weighted tree with distance matrix D, and let $S \subset V(G)$ be a subset of vertices. If $|S| \ge 2$ then $\det D[S] \ne 0$.

1.1. **Previous work.** The following theorem is due to Kirchhoff. For any graph G, let $\kappa(G)$ denote the number of spanning trees of G.

Theorem 5 (All-minors matrix tree theorem). Let G = (V, E) be a finite graph. Let L denote the Laplacian matrix of G. Then for any nonempty vertex set $S \subset V(G)$,

(4)
$$\det L[V \setminus S] = \kappa(G/S).$$

Note that $\kappa(G/S)$ is also the number of S-rooted spanning forests of G.

Theorem 6 ([2]). Let T be a tree with m+1 vertices and m edges. Let D be the distance matrix of T, and L the Laplacian matrix. Let $S \subset V(T)$ be a subset of vertices of T. Then

$$\operatorname{cof} D[S] = (-2)^{|S|-1} \det L[V \setminus S].$$

- 1.2. Notation. G a finite graph, loops and parallel edges allowed, possibly disconnected
 - E(G) edge set of G
 - V(G) vertex set of G

2. Background

3. Proofs

Outline of proof: given subset S and distance matrix minor D[S], we will

- (1) Find vector **m** such that $D[S]\mathbf{m} = \lambda \mathbf{1}$.
- (2) Compute the sum of entries of \mathbf{m} , i.e. $\mathbf{1}^T \mathbf{m}$.
- (3) Note the identity

$$\mathbf{1}^T \mathbf{m} = \lambda (\mathbf{1}^T D[S]^{-1} \mathbf{1}) = \lambda \frac{\cot D[S]}{\det D[S]}.$$

where cof D[S] is the sum of cofactors of D[S]

(4) Use known expression for cof D[S] to compute

$$\det D[S] = \lambda(\operatorname{cof} D[S]) \left(\mathbf{1}^T \mathbf{m}\right)^{-1}.$$

The interesting part will be hidden in the constant λ .

Example 7. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding minor of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}.$$

Following the steps outlined above:

(1) The vector
$$\mathbf{m} = \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$
 satisfies $D[S]\mathbf{m} = (a+b+c)\mathbf{1}$

- (2) The sum of entries of **m** is $\mathbf{1}^T \mathbf{m} = 2$.
- (3) We have

$$2 = \mathbf{1}^T \mathbf{m} = \lambda(\mathbf{1}^T D[S]\mathbf{1}) = \lambda \frac{\operatorname{cof} D[S]}{\det D[S]}$$

(4) The cofactor sum is cof D[S] = -8abc, so the determinant is

$$\det D[S] = \lambda \frac{\cot A}{\mathbf{1}^T \mathbf{m}} = (a+b+c)(-8abc)\frac{1}{2} = -4(a+b+c)abc.$$

Proposition 8. Let T = (V, E) a tree, and consider the vector $\mathbf{m} \in \mathbb{R}^V$ defined by $\mathbf{m}(v) = 2 - \deg v$,

where deg v denote the degree of v in T. Then $\mathbf{1}^T \mathbf{m} = \sum_{v \in V} (2 - \deg v) = 2$.

Let 1 denote the all-ones vector.

Theorem 9. Let T be a tree, S a subset of vertices, and D[S] the corresponding minor of the distance matrix. Suppose $\mathbf{m} \in \mathbb{R}^S$ is defined by

$$\mathbf{m}(v) = \sum_{T \in \mathcal{T}(T/S)} \sum_{w \in T_v} (2 - \deg w)$$

Then $D[S]\mathbf{m} = \lambda \mathbf{1}$ for some constant λ .

Proof. For any $u, v \in S$, we must show that $(D[S]\mathbf{m})(u) = (D[S]\mathbf{m})(v)$. We have

$$\begin{split} (D[S]\mathbf{m})(v) &= \sum_{w \in S} d(v, w) \mathbf{m}(w) \\ &= \sum_{w \in S} d(v, w) \sum_{T \in \mathcal{T}(G/S)} \sum_{z \in T(w)} (2 - \deg z) \\ &= \sum_{T \in \mathcal{T}(G/S)} \sum_{w \in S} \sum_{z \in T(w)} (2 - \deg z) d(v, w) \\ &= \sum_{T \in \mathcal{T}(G/S)} \sum_{w \in S} (2 - c(T, w)) d(v, w). \end{split}$$

where c(T, w) is the "cut index" of the w-component of T (as a spanning forest). Note that we can express the tree distance d(v, w) as a sum over edges

$$d(v,w) = \sum_{e \in E(G)} \delta(e;v,w) \quad \text{where } \delta(e;v,w) = \begin{cases} 1 & \text{if } e \text{ lies on } v \sim w \text{ path,} \\ 0 & \text{otherwise.} \end{cases}$$

Thus

$$(D[S]\mathbf{m})(v) = \sum_{T \in \mathcal{T}(G/S)} \sum_{w \in S} (2 - c(T, w)) \sum_{e \in E(G)} \delta(e; v, w)$$
$$= \sum_{T \in \mathcal{T}(G/S)} \sum_{e \in E(G)} \left(\sum_{w \in S} (2 - c(T, w)) \delta(e; v, w) \right)$$

4

4. Examples

Example 10. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding minor of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -a & a & a \\ b & b & -b & b \\ c & c & c & -c \end{bmatrix} \cdot \sim \begin{bmatrix} 0 & a & b & c \\ a & -2a & 0 & 0 \\ b & 0 & -2b & 0 \\ c & 0 & 0 & -2c \end{bmatrix}.$$

The determinant is

$$\det D[S] = -4(a+b+c)abc.$$

Example 11. Suppose Γ is a tripod with lengths a, b, c and corresponding leaf vertices u, v, w.

Let $A = \{u, v, w\}$. Then

$$D[A] = \begin{bmatrix} 0 & a+b & a+c \\ a+b & 0 & b+c \\ a+c & b+c & 0 \end{bmatrix}.$$

and

$$\det D[A] = 2(a+b)(a+c)(b+c) = 2((a+b+c)(ab+ac+bc) - abc).$$

The "special vector" in this example is $\mathbf{m}^T = \begin{bmatrix} a(b+c) & b(a+c) & c(a+b) \end{bmatrix}$.

ACKNOWLEDGEMENTS

The authors would like to thank Ravindra Bapat for helpful discussion.

References

bapat-kirkland-neumann

[1] R. Bapat, S. J. Kirkland, and M. Neumann. On distance matrices and Laplacians. *Linear Algebra Appl.*, 401:193–209, 2005.

bapat-sivasubramanian

- [2] R. B. Bapat and S. Sivasubramanian. Identities for minors of the Laplacian, resistance and distance matrices. *Linear Algebra Appl.*, 435(6):1479–1489, 2011.
- graham-pollak
- [3] R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. Bell System Tech. J., 50:2495–2519, 1971.