

Wildlife Drones and Flight Plans

DR BAM team

Project goals

- Empower rangers:
 - Where target animals are likely to be
 - Where tracked animals are likely to be in the future
 - Where **poachers** are likely to be
 - Track recent poaching incidents
 - Report poaching incidents
 - View drone routes

Project goals

- Generate flight plans which
 - Fly over as many high priority areas as possible
 - Are random enough so poachers cannot easily predict them
 - Are dependent on flight time of the drone
- Inform rangers of
 - Probable poaching areas
 - Areas where animals are likely to be
 - Live drone location relative to flight plans
 - Any reported poaching incidents

Project goals

- The system should be applicable to most game reserves we have stressed tested using Kruger National Park
- The system should be useful
- Configurable
- Front-end mobile and desktop application for use by pilots
- Back-end interface for use by administrators
 - Provide full control over system
- Server which handles all processing and storage

Map data

- Pulled from OpenStreetMaps
 - Rangers can update map data via OpenStreetMaps
 - Roads, residential areas, fenced areas, water
- Satellite imagery from Google Earth
 - 30cm accurate
 - Provides useful information not visible from vector maps
 - Overlay osm features on top of satellite to show names of places
- Elevation
 - 30m accurate from NASA SRTM Shuttle Radar Topography Mission

Map partitioning

- Divide reserve into cells
 - Cell size is configurable
 - Trade-off of performance vs accuracy (smaller = slower, more precise) accuracy != precision
 - Drones patrol these areas (cells)
- Determine necessary properties for each cell
 - Distance to water: dams, rivers, weirs, lakes, streams (to water edge, not center)
 - Distance to roads
 - Distance to residential areas and fenced areas
 - Altitude, altitude difference (how slope-y)

Map calculations

- OSM
 - 49 000 river points
 - 178 000 intermittent river points
 - 1 500 reserve boundary points
 - 127 000 road points
 - Residences, etc.
- Partitioned Kruger into 500x500m cells = 76 520 cells
- + 283 000 tracking points = +/- 350 000 calculations on +/- 350 000 map points
- Used a k-d tree to efficiently find in O(logn) time, rather than $\mathrm{O}(n^2)$
- Few milliseconds vs few seconds -> minutes vs months (we saw a 19 000x speed up)

Finding where animals/ poachers might be

- Determine what types of cells animals and poachers like
- Custom K nearest neighbours algorithm
- Effective lazy unsupervised learning
- Compares geographical similarity between cell and animal tracking points and poaching incidents

Training based on few points

Trained on animal data

Train on 283 000 elephant tracking points (Movebank.org)

Findings

• Elephants like rivers and flat areas

Not steep areas

Route generation

- We are breaking drone routes into two types:
 - "Static" routes points do not move
 - "Dynamic" routes intercepts points
- Static routing uses heuristic approach to shortest paths
 - Based on Clarke-Wright savings algorithm (vehicle routing problem)
 - Best pairs of points to visit are ranked and joined
 - Ranking based on distance savings, value of visiting node
 - Pairs are discarded if infeasible (flight time/distance is exceeded)

Static routes

- Savings algorithm
- Assume greatest savings (should) yield greatest number of nodes
- Works in polynomial time. Tested with 500+ nodes

- Savings = a + b c
- But apply additional weights, like nodes' value
- We also use asymmetry, adjacency and demand heuristics
- Two-opt algorithm is then applied to result to yield better results

Static routes

- Visit cells which have a high priority of poaching and animals
- "Hotspots" are identified by taking weighted average

Hot spots

- Prominent outliers of high poaching + animal cell weight
- Cells which have not been visited recently are prioritised
- 5000 randomly selected every 2 hours (random routes)

Static routes

- Vehicle Routing Problem NP-Complete
- Clarke Wright savings heuristic
- All routes are restricted to flight time

Static routes

- Weights using adjacency, symmetry, demand
 - Ran all possible combinations at 0.1 step count to find best weights
- Near-optimal, calculated in only a few seconds

- Only use animal locations
- Attempt to intercept future location of individual animals
- We find the animal's future position dependent on the drone flight duration

- Keep applying regressor to points until distance required reached
 - Distance = average speed of individual * flight time

Points treated as functions

•
$$p = (d_x, d_y, t, v) \Rightarrow (x, y)$$

- Coordinates returned based on drone position, speed and elapsed flight time
- Can find where the animal is along the path using variable "time" (d = vt)

- Use predicted location at each step
- Keep calculating savings after each step
- Attempts all possible permutations
- Only works for few points (NP-hard)

- Low number of nodes (<10) we limit users to 5
- Intercepts paths
 - Grow circle of intercept from drone until circle meets line
- Attempts all possible combinations to find most optimal route

- Works for multi-line path segments
- Takes into account
 - Drone range
 - Drone speed
 - Animal speed
 - Animal path

Randomising routes

- Savings algorithm generates multiple routes
- Each returns to depot once fuel runs out
- If we start the routes at random edges, we get multiple random routes
- We then pick one of the routes at random
- Always take an efficient, feasible route
- Not able to predict which route might be taken

Conclusion

- Decisions based on data rather than human intuition:
 - Predict animal habitats
 - Predict poaching areas
 - Predict future animal locations
- Flight routes:
 - More likely to be closer to optimal than guessing
 - Can accurately intercept moving targets
- Expandable:
 - Can be integrated with other systems
 - Algorithms can be applied to other areas