Date: May 21 Made by Eric

Definition

Definition 1. An Euclidean Domain D is an integral domain equipped with an Euclidean norm $\gamma: D \setminus \{0\} \to \mathbb{Z}_0^+$ that satisfy

For all nonzero $b \in D$, and for all $a \in D$, we can perform division algorithm to have

$$a = bq + r \tag{1}$$

where r = 0 or $\gamma(r) < \gamma(b)$

For all non-zero $a, b \in D$, we have

$$\gamma(a) \le \gamma(ab) \tag{2}$$

Also, we say a have Euclidean norm $\gamma(a)$.

Theorem

Theorem 1. Every Euclidean Domain is an PID.

Proof. Notice that the trivial ideal $\{0\}$ is principal, so we only have to show that every non-trivial ideal in an Euclidean domain is a principal ideal. Arbitrarily pick an non-trivial ideal N from an Euclidean Domain D, and pick an element b from D of the smallest Euclidean norm. Arbitrarily pick an element a from N, and perform the division algorithm to have a=bq+r. Notice $r=a-bq\in N$, so because b is the element of the smallest Euclidean norm in N, we know $\gamma(r)<\gamma(b)$ is impossible, which let us deduce r=0. This enable us to deduce a=bq.

Corollary 1.1. Every Euclidean Domain is an UFD.

For this amazing corollary, we can use the notion of association class in the development of theorems of Euclidean Domain.

Theorem 2. Every element in the same association class have the same Euclidean norm.

Proof. Suppose
$$b = au$$
. Observe $\gamma(a) \le \gamma(au) = \gamma(b) \le \gamma(bu^{-1}) = \gamma(a)$

Corollary 2.1.

$$\gamma(a) < \gamma(ab) \iff b \text{ is not a unit}$$
 (3)

Proof. From left to right, observe that if b is a unit, then $\gamma(a) = \gamma(ab)$ CaC. From right to left, assume $\gamma(a) = \gamma(ab)$, we see $\forall ax \in \langle a \rangle, ax = q(ab) + r$ where $r = a(x - qb) \implies \gamma(a) \leq \gamma(r)$ and $\gamma(r) \leq \gamma(ab) = \gamma(a)$, CaC unless r = 0. So ab|ax, then $\langle a \rangle \subseteq \langle ab \rangle$ and apparently $\langle ab \rangle \subseteq \langle a \rangle$. So $\langle ab \rangle = \langle a \rangle$, and this imply b is a unit CaC.

Theorem 3. In an Euclidean Domain, the elements of smallest Euclidean norm are precisely the units.

Proof. For all non-zero $a \in D$, observe $\gamma(1) \leq \gamma(1a) = \gamma(a)$, and for all unit $u \in D$, observe $\gamma(u) \leq \gamma(uu^{-1}) = \gamma(1)$.