RSAConference2018

San Francisco | April 16-20 | Moscone Center

SESSION ID: CRYP-T10

CRYPTANALYSIS OF COMPACT-LWE

Jonathan Bootle, Mehdi Tibouchi, Keita Xagawa

 Lattice-based cryptographic assumption

Based on the learning-with-errors (LWE) assumption

Compact-LWE

Hoped to achieve security for smaller parameters

 Proposed by Liu, Li, Kim, and Nepal at ACISP'17 invited talk

 Gives lightweight encryption scheme for constrained devices

Basic Decryption Attack

Equivalent Secret Keys

Parameter Choice

Honest Decryption: 500 ciphertexts per second

Our Decryption: 18,000 ciphertexts per second

BACKGROUND

Lattices

An n-dimensional lattice \mathcal{L} is

- A discrete additive subgroup of \mathbb{R}^n
- Generated by a basis $\mathcal{B} = \{\boldsymbol{b}_1, \dots, \boldsymbol{b}_n\}$
- $\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \boldsymbol{b}_i)$

Lattices

MATTERS #RSAC

- Solve lattice problems by finding short vectors
- Example reduction algorithms are LLL and BKZ
- Add and subtract rows
- Find short basis vectors

$$\binom{\boldsymbol{b}_1}{\boldsymbol{b}_2} \to \binom{\boldsymbol{b}_1'}{\boldsymbol{b}_2'}$$

Learning with Errors

$$b_i = \langle \boldsymbol{a}_i, \boldsymbol{s} \rangle + e_i$$
$$\boldsymbol{b} = A\boldsymbol{s} + \boldsymbol{e}$$

Learning with Errors

Decision: does (b, A) look random?

Search: given (\boldsymbol{b}, A) , find \boldsymbol{s}

Learning with Errors

Decision: does (b, A) look random?

Search: given (\boldsymbol{b}, A) , find \boldsymbol{s}

Noise values $e_i \leftarrow \chi$

Noise distribution χ

RSAConference2018

Compact-LWE

$$b_i = \langle \boldsymbol{a}_i, \boldsymbol{s} \rangle + sk_q^{-1} \cdot p \cdot e_i$$

Compact-LWE

Decision: does (b, A) look random?

Search: given (\boldsymbol{b}, A) , find \boldsymbol{s}

 $a_i \in [0,b]^n$

s, e and the scaling factor are private

Compact-LWE

Scaling factor ingredients

Secret **Dimension** *n* secrets modulo q

Noise values $e_i \leftarrow [0]r$

Noise bound *r*

RSAConference2018

Parameters

Public Parameters

- pp = (q, n, m, t, w, b)
- t, maximum plaintext size
- w, knapsack weight for encryption
- $\bullet PK = (A, b)$

Secret Parameters

• $\mathbf{K} = (\mathbf{s}, \mathbf{s}k, r, p)$

Encryption Idea

#RSAC

- PK contains random-looking samples (\boldsymbol{a}_i, b_i) from (A, \boldsymbol{b})
- Add knapsack of b_i to hide message
- Include same knapsack of a_i to allow decryption

Enc(PK, v):

- Randomly pick w samples $(\boldsymbol{a_{i_i}}, b_{i_i})$ from \boldsymbol{PK}
- $(\boldsymbol{a},b) = \sum_{j=1}^{W} (\boldsymbol{a}_{i_j},b_{i_j})$ Return $c = (\boldsymbol{a},v-b)$

Comparison of Parameters

Compact-LWE Parameters

- Claims 138-bit security
- $q = 2^{32}$

$$n = 13$$

- m = 74
- $t = 2^{16}, w = 86, b = 16$

Lizard, Classical Parameters, 2016

- Claims 128-bit security
- $q \approx 2^{10}$

$$n = 544$$

• m = 840

Implementation Results

- Implemented on MTM-CM5000-MSP device
- Contiki OS
- 50 encryptions per second
- 500 decryptions per second

Contiki

The Open Source OS for the Internet of Things

RSAConference2018

BASIC DECRYPTION ATTACK

Attack Strategy

•
$$c = (a, v - b) = (a, b')$$

•
$$(a,b) = \sum_{j=1}^{w} (a_{i_j}, b_{i_j})$$

- Create lattice encoding knapsack
- Find a short vector with lattice reduction

 $(1 \quad 0 \quad 0 \quad v)$

Solves knapsack Recovers plaintext

Experimental Results

MATTERS #RSAC

- Correctly decrypted 9998/10,000 random ciphertexts
- Roughly 16 decryptions per second
- 3.4 GHz Core i7-3770 desktop
- Sagemath, LLL in fplll

 Honest decryption: 500 decryptions per second, constrained device

- One lattice reduction per ciphertext
- Relies on low dimension n = 13

RS/Conference2018

SECRET KEY RECOVERY

*equivalent secret key

Attack Strategy

2. Find other secret values by brute force

random

3. Compute equivalent secret using lattice reduction

Step 1: Scale-factor Recovery

•
$$b = As + ke$$

- Compute short U such that $U^T A = 0 \bmod q$
- $(Ub) = k (Ue) \mod q$

Public

Short vector in
$$\begin{pmatrix} (U\boldsymbol{b})^T \\ qI \end{pmatrix}$$

Step 2: Recovering Secret Key Parameters

- Secret scale-factor is $k = sk_q^{-1} \cdot p$
- ullet Brute force search for sk and p
- Use the values which maximise r

$$sk \cdot (t-1) + wrp < q$$

```
Trying username: 'ashish1' with password: '1212'
                                      failed to login as 'ashishl' with password '1212
                                      Trying username: 'ashishl' with password: '123321'
                                      failed to login as 'ashishl' with password '123321
                                      Trying username: 'ashish1' with password: 'hello'
                                       failed to login as 'ashish1' with password 'hello
                                      Trying username: 'gelowo' with password: '12121'
                                      failed to login as 'gelowo' with password '12121'
                                      Trying username: 'gelowo' with password: 'asdad'
                                      failed to login as 'gelowo' with password 'asdad
                                      Trying username: 'gelowo' with password: 'asdasd' failed to login as 'gelowo' with password 'asdasd
                                      Trying username: 'gelowo' with password: 'asdas
                                      failed to login as 'gelowo' with password 'asdas
                                      Trying username: 'gelowo' with password: '1212'
                                      failed to login as 'gelowo' with password '1212
                                      Trying username: 'gelowo' with password: '123321'
                                      failed to login as 'gelowo' with password '123321
192.168.0.197:3306 MYSOL
                                      Trying username: 'gelowo' with password: 'hello'
                                      failed to login as 'gelowo' with password 'hello
                                      Trying username: 'root' with password: '12121'
                                      failed to login as 'root' with password '12121
                                      Trying username: 'root' with password: 'asdad'
                                      failed to login as 'root' with password 'asdad
                                      Trying username: 'root' with password: 'asdasd'
                                      failed to login as 'root' with password 'asdasd
                                      Trying username: 'root' with password: 'asdas'
                                      failed to login as 'root' with password 'asdas
                                      Trying username: 'root' with password: '1212'
                                      failed to login as 'root' with password '1212
                                      Trying username: 'root' with password: '123321'
                                      failed to login as 'root' with password '123321
                                    - Trying username: 'root' with password: 'hello'
```


Step 3: Find an Equivalent Secret

- Secret is a short lattice vector.
- Use with modified decryption algorithm

$$egin{pmatrix} A^T & 0 \ qI_m & 0 \ k^{-1} & t \end{pmatrix}$$

Experimental Results

- Correctly decrypted 10,000/10,000 random ciphertexts
- 1.28 seconds to get a key
- 53 microseconds per ciphertext
- Over 18,000 decryptions per second

RSAConference2018

PARAMETER CHOICE

Hardness Reductions

Hardness Reductions

THANKS!

NIST Version Attack Paper: https://eprint.iacr.org/2018/020.pdf

NIST Version Attack Code: https://goo.gl/2Vo3T7

Yu Chen

Associate Professor Institute of Information Engineering, Chinese Academy of Sciences

Two-message Key Exchange with Strong Security from Ideal Lattices

Zheng Yang (University of Helsinki) **Yu Chen (Chinese Academy of Sciences)**Song Luo (Chongqing University of Technology)

April 17th, CT-RSA 2018

Background: Two-message Key Exchange (TMKE)

- ➤ Two-message Key exchange
 - Two messages: m_{id1}, m_{id2}——derived from party's (ephemeral) secrets.
 - Shared session key *K*——computed from party's (ephemeral) secrets and exchanged messages
 - Appealing to practice: low bandwidth and asynchronous communication

The Simplest Example of TMKE

- ➤ Seminal TMKE: Diffie-Hellman key exchange (DHKE) [DH76]
 - Cyclic group G =< g > of prime order p
 - Two messages: X, Y
 - Passively secure; active attacker can implement man-in-the middle attack

 id_1

Protocol Execution

$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$$
$$X := g^x$$

$$y \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$$
$$Y := g^y$$

accept $K := Y^x$

accept $K := X^y$

Motivation

- Quantum computers are about to get real
- >DL, factoring,, not hard against quantum algorithms
- > Lattice-based Cryptography
 - Quantum secure
 - Simple, efficient, and highly parallel
- Existing Lattice-based AKE, e.g.:
 - AsiaCCS'13, Fujioka et al.,
 - —— standard model, CK+ model without perfect forward secrecy (PFS)
 - Eurocrypt'15, Zhang et al.,
 - —— random oracle, BR model without PFS and leakage of ephemeral secret key
 - CT-RSA'14, Kurosawa and Furukawa (KF scheme)
 - ——standard model, eCK model without PFS **Is it Secure?**

Overview of Our Results

- > Revisit the security of the KF scheme (CT-RSA'14)
 - finding an attack
- Propose a new generic TMKE scheme
 - New cryptographic primitive: One-time CCA-secure KEM
 - Without random oracles
 - eCK-PFS model: known session key (KSK), key compromise impersonation (KCI), chosen identity and public key (CIDPK), ephemeral secret key leakage (ESKL), and perfect forward secrecy (PFS)
- Instantiation of TMKE from ideal lattices

The KF scheme

Building Blocks: Twisted PRF (TPRF), Signature (SIG), IND-CPA KEM (wKEM)

$$\begin{aligned} \operatorname{id}_1 & \operatorname{id}_2 \\ (sk_{\operatorname{id}_1}, pk_{\operatorname{id}_1}) &= ((ssk_{\operatorname{id}_1}, s_{\operatorname{id}_1}), spk_{\operatorname{id}_1}) \end{aligned} \qquad (sk_{\operatorname{id}_2}, pk_{\operatorname{id}_2}) &= ((ssk_{\operatorname{id}_2}, s_{\operatorname{id}_2}), spk_{\operatorname{id}_2}) \end{aligned}$$

Protocol Execution

Insecurity of the KF scheme: Attack

test oracle is fresh and has no partner oracle at id,

Insecurity of the KF scheme: Problems

One-time CCA attack against the KEM, CPA-secure KEM does not suffice

How to remedy the KF scheme?

- > Main idea
 - Enhance the security of KEM
 - CPA to one-time CCA

- Employ Key Derivation function
 - bind the session key with session specific information to defend active attacks

Our New Generic TMKE Protocol

- ➤ Building blocks
 - One-time KEM (OTKEM): encapsulate the session key
 - Signature (SIG): authenticate exchanged messages
 - IND-CPA KEM (wKEM): implement NAXOS trick against ephemeral key leakage (generate the pk for OTKEM)
 - **Pseudo-random function (PRF)**: act as KDF to bind session key with session specific information

A New Generic TMKE Protocol

$$\begin{aligned} \operatorname{id}_1 & \operatorname{id}_2 \\ (sk_{\operatorname{id}_1}, pk_{\operatorname{id}_1}) &= ((ssk_{\operatorname{id}_1}, dk_{\operatorname{id}_1}), spk_{\operatorname{id}_1}) \\ \end{aligned} \qquad (sk_{\operatorname{id}_2}, pk_{\operatorname{id}_2}) &= ((ssk_{\operatorname{id}_2}, dk_{\operatorname{id}_2}), spk_{\operatorname{id}_2}) \end{aligned}$$

Protocol Execution

$$c_{\mathsf{id}_1} \overset{\$}{\leftarrow} \mathcal{C}_{\mathsf{wKEM}}, rs_{\mathsf{id}_1} \overset{\$}{\leftarrow} \mathcal{RS}_{\mathsf{SIG}} \\ rpg_{\mathsf{id}_1} \leftarrow \mathsf{wKEM.Dec}(dk_{\mathsf{id}_1}, c_{\mathsf{id}_1}) \\ (epk_{\mathsf{id}_1}, esk_{\mathsf{id}_1}) \overset{\$}{\leftarrow} \mathsf{OTKEM.Gen}(1^\kappa, rpg_{\mathsf{id}_1}) \\ \sigma_{\mathsf{id}_1} \leftarrow \mathsf{SIG.Sign}(ssk_{\mathsf{id}_1}, epk_{\mathsf{id}_1}, rs_{\mathsf{id}_1}) \\ m_{\mathsf{id}_1} := (\mathsf{id}_1, epk_{\mathsf{id}_1}, \sigma_{\mathsf{id}_1}) \\ m_{\mathsf{id}_1} := (\mathsf{id}_1, epk_{\mathsf{id}_1}, \sigma_{\mathsf{id}_1}) \\ T := \mathsf{id}_1 ||pk_{\mathsf{id}_1}||epk_{\mathsf{id}_1}||\sigma_{\mathsf{id}_1}||\mathsf{id}_2||pk_{\mathsf{id}_2}||C_{\mathsf{id}_2} \\ reject \ \mathsf{if} \ \mathsf{SIG.Vfy}(spk_{\mathsf{id}_2}, \sigma_{\mathsf{id}_2}, T) \neq 1 \\ k \leftarrow \mathsf{OTKEM.Dec}(esk_{\mathsf{id}_1}, C_{\mathsf{id}_2}) \\ \mathsf{sid} := T||\sigma_{\mathsf{id}_2} \\ \mathsf{accept} \ K := \mathsf{PRF}(k, \mathsf{sid}) \\ \end{aligned} \qquad \mathsf{reject} \ \mathsf{if} \ \mathsf{SIG.Vfy}(spk_{\mathsf{id}_1}, \sigma_{\mathsf{id}_1}, epk_{\mathsf{id}_1}) \neq 1 \\ c_{\mathsf{id}_2} \overset{\$}{\leftarrow} \mathcal{C}_{\mathsf{wKEM}}, rs_{\mathsf{id}_2} \overset{\$}{\leftarrow} \mathcal{RS}_{\mathsf{SIG}} \\ erk_{\mathsf{id}_2} & \leftarrow \mathsf{wKEM.Dec}(dk_{\mathsf{id}_2}, c_{\mathsf{id}_2}) \\ (k, C_{\mathsf{id}_2}) \overset{\$}{\leftarrow} \mathsf{OTKEM.Enc}(epk_{\mathsf{id}_1}, erk_{\mathsf{id}_2}) \\ (k, C_{\mathsf{id}_2}) \overset{\$}{\leftarrow} \mathsf{OTKEM.Enc}(epk_{\mathsf{id}_1}, erk_{\mathsf{id}_2}) \\ r := \mathsf{id}_1 ||pk_{\mathsf{id}_1}||epk_{\mathsf{id}_1}||\sigma_{\mathsf{id}_1}||\mathsf{id}_2||pk_{\mathsf{id}_2}||C_{\mathsf{id}_2} \\ m_{\mathsf{id}_2} := (\mathsf{id}_2, C_{\mathsf{id}_2}, \sigma_{\mathsf{id}_2}) \\ m_{\mathsf{id}_2} := (\mathsf{id}_2, C_{\mathsf{id}_2}, \sigma_{\mathsf{id}_2}) \\ \mathsf{accept} \ K := \mathsf{PRF}(k, \mathsf{sid}) \\ \mathsf{accept} \ K := \mathsf{PRF}(k, \mathsf{sid})$$

Instantiations from Ideal Lattices

- ➤ Building blocks' instantiations from existing works:
 - Signature (SIG): Ruckert (PQCrypto'10)
 - IND-CPA KEM (wKEM): Peikert (PQCrypto'14).
 - Pseudo-random function (PRF): Banrjee et al. (Eurocrypt'12)
 - One-time KEM (OTKEM): q-bounded IND-CCA KEM (q=1), Cramer et al. Asiacrypt'07 (less efficient)

Can we build efficient OTKEM from ideal lattices?

Efficient OTKEM from Ideal Lattices

- Direct construction
 - Ring-Learning with Errors (RLWE):

$$a \in_R R_q, (s, e) \in_R \mathcal{X}, V_0 := a \cdot s + e, V_1 \in_R$$

• Target collision resistant hash function (TCRHF):

TCRHF:
$$hk_{\text{TCRHF}} \times R_q \rightarrow \{0,1\}^n$$

Similar to construction of OTS from OWF

Thank you very much for your attention!