```
In [3]: from keras.utils import np utils
        from keras.datasets import mnist
        import seaborn as sns
        from keras.initializers import RandomNormal
        Using TensorFlow backend.
In [0]:
        import matplotlib.pyplot as plt
        import numpy as np
        import time
        def plt_dynamic(x, vy, ty, ax, colors=['b']):
            ax.plot(x, vy, 'b', label="Validation Loss")
            ax.plot(x, ty, 'r', label="Train Loss")
            plt.legend()
            plt.grid()
            fig.canvas.draw()
In [5]: (X_train, y_train), (X_test, y_test) = mnist.load_data()
        Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
        In [6]: print("Number of training examples :", X_train.shape[0], "and each image is of
         shape (%d, %d)"%(X train.shape[1], X train.shape[2]))
        print("Number of training examples :", X_test.shape[0], "and each image is of
         shape (%d, %d)"%(X test.shape[1], X test.shape[2]))
        Number of training examples: 60000 and each image is of shape (28, 28)
        Number of training examples: 10000 and each image is of shape (28, 28)
In [0]: X train = X train.reshape(X train.shape[0], X train.shape[1]*X train.shape[2])
        X test = X test.reshape(X test.shape[0], X test.shape[1]*X test.shape[2])
In [8]: print("Number of training examples :", X_train.shape[0], "and each image is of
        shape (%d)"%(X train.shape[1]))
        print("Number of training examples :", X test.shape[0], "and each image is of
         shape (%d)"%(X_test.shape[1]))
        Number of training examples: 60000 and each image is of shape (784)
```

Number of training examples: 10000 and each image is of shape (784)

```
In [9]: print(X_train[0])
```

```
0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
       0
             0
                  0
                        0
                             0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
                                   0
                                                                        0
  0
             0
                  0
                             0
                                   0
                                        0
                                             0
                                                        0
                                                              0
                                                                   0
                                                                              0
                                                                                         0
                                                                                              0
  0
       0
             0
                  0
                                        0
                                             0
                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
                        0
                             0
                                   0
                                                        0
                                                              0
                                                                   0
  0
       0
             0
                  0
                        0
                             0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
                                   0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             3
                                                 18
                                                       18
                                                            18
                                                                126
                                                                     136 175
                                                                                  26 166
                                                                                           255
247 127
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                        0
                                                                             30
                                                                                  36
                                                                                       94
                                                                                           154
                                                                   0
170
    253
          253
                          253
                                225
                                                                                         0
                253
                     253
                                     172
                                          253
                                                242
                                                     195
                                                            64
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                              0
  0
             0
                        0
                            49
                                238
                                     253
                                          253
                                                253
                                                     253
                                                           253
                                                                253
                                                                     253
                                                                           253
                                                                                 251
                                                                                       93
                                                                                             82
       0
 82
      56
            39
                                                   0
                                                        0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                  18
                                                                                      219
                                                                                           253
253 253
          253 253 198
                          182
                                247
                                     241
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
                                                                                           154
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                            80
                                                156
                                                     107
                                                           253
                                                                253
                                                                     205
                                                                             11
                                                                                   0
                                                                                       43
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
      14
             1 154
                     253
                            90
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                      139
                                                                           253
                                                                                 190
                                                                                         2
                                                                                              0
                             0
                                             0
                                                                                              0
  0
       0
             0
                  0
                        0
                                   0
                                        0
                                                   0
                                                        0
                                                              0
                                                                              0
                                                                                   0
                                                                                         0
                                                                   0
                                                                        0
  0
       0
             0
                        0
                            11
                                190
                                     253
                                            70
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
                  0
             0
                                                   0
                                                        0
                                                              0
                                                                              0
                                                                                       35
  0
       0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                                   0
                                                                        0
                                                                                   0
                                                                                           241
225
     160
          108
                  1
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                 81
                                                     240
                                                           253
                                                                253
                                                                      119
                                                                             25
                                                                                   0
                                                                                         0
                                                                                              0
             0
                             0
                                                                                              0
  0
       0
                  0
                        0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
            45
                          253
                                       27
                                                                              0
                                                                                              0
  0
       0
               186
                     253
                                150
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                                   0
                                                                                         0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                       16
                                                                             93 252 253
                                                                                           187
  0
                                             0
                                                        0
                                                                              0
                                                                                   0
                                                                                              0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                                   0
                                                              0
                                                                   0
                                                                        0
                                                                                         0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                     249 253
                                                249
                                                       64
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
       0
             0
                        0
                             0
                                   0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                             46 130 183
                                                                                           253
                  0
                                        0
             2
253 207
                             0
                                             0
                                                   0
                                                        0
                                                              0
                  0
                        0
                                   0
                                        0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
       0
             0
                  0
                       39
                          148
                                229
                                     253 253
                                                253
                                                     250
                                                           182
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
                                                                     114
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                  24
                                                                           221 253
                                                                                      253
                                                                                           253
253 201
            78
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
       0
            23
                 66 213
                          253
                                253
                                     253
                                          253
                                                198
                                                       81
                                                              2
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                       18
                                                           171
                                                                219
                                                                     253
                                                                           253 253
                                                                                      253
                                                                                           195
       9
             0
                  0
                        0
                             0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                        0
                                                                                   0
                                                                                         0
                                                                                              0
 80
                                   0
                                                                   0
                                                                              0
 55
     172
          226
               253
                     253
                          253
                                253
                                     244
                                          133
                                                  11
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                     136 253
                                                                253
                                                                     253
                                                                           212 135
                                                                                      132
                                                                                             16
  0
       0
             0
                        0
                             0
                                             0
                                                                              0
                                                                                         0
                                                                                              0
                  0
                                   0
                                        0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                                   0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
  0
                  0
                        0
                             0
                                        0
                                             0
                                                   0
                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
       0
             0
                                   0
                                                              0
                                                                   0
                                                                        0
  0
                                             0
                                                   0
                                                                              0
                                                                                         0
                                                                                              0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                                   0
  0
       0
             0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                              0
             0
  0
       0
                  0
                        0
                             0
                                   0
                                        0
                                             0
                                                   0]
```

```
In [0]: X_train = X_train/255
X_test = X_test/255
```

In [11]: print(X_train[0])

Γα	0	a	a	a	0
[0. 0.	0.	0.	0.0.	0.0.	0.
0. 0.	0.	0.	0.		0.
	0.	0.		0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.		0.07058824		
	0.53333333				
	0.49803922		0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.		0.14117647		
	0.99215686				
	0.6745098		0.94901961		
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.19215686
	0.99215686				
	0.99215686				
	0.21960784			0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.			0.99215686
	0.99215686				
	0.94509804		0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.				0.99215686
	0.80392157				0.60392157
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.					0.35294118
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.			0.74509804		
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.

			IVIIVIS I_Relas(2)		
0.	0.	0.	0.	0.	0.04313725
0.74509804	0.99215686	0.2745098	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
					0.94509804
0.	0.	0.	0.	0.1372549	
	0.62745098				0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.31764706	0.94117647	0.99215686
0.99215686	0.46666667	0.09803922	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.17647059		0.99215686	
	0.10588235		0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.0627451	0.36470588	0.98823529	0.99215686	0.73333333
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
				0.25098039	
0.					
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.			0.71764706	0.99215686
0.99215686	0.81176471	0.00784314	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.15294118	0.58039216
0.89803922	0.99215686	0.99215686	0.99215686	0.98039216	0.71372549
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
				0.99215686	
	0.78823529			0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.			0.83529412	
0.99215686	0.99215686	0.99215686	0.77647059	0.31764706	0.00784314
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.07058824	0.67058824
				0.99215686	
			0.	0.	0.70470300
0 313//5/14	0 033/941/	· .			
0.31372549			α	α	a
0.	0.	0.	0.	0.	0.
0. 0.	0. 0.	0. 0.	0.	0.	0.
0. 0. 0.21568627	0. 0. 0.6745098	0.0.0.88627451	0. 0.99215686	0. 0.99215686	0. 0.99215686
0. 0. 0.21568627 0.99215686	0. 0. 0.6745098 0.95686275	0.0.0.886274510.52156863	0.0.992156860.04313725	0.0.992156860.	0. 0.99215686 0.
0. 0. 0.21568627 0.99215686 0.	0. 0. 0.6745098 0.95686275 0.	0.0.886274510.521568630.	0. 0.99215686 0.04313725 0.	0. 0.99215686 0. 0.	0. 0.99215686 0. 0.
0. 0. 0.21568627 0.99215686	0. 0. 0.6745098 0.95686275	0.0.886274510.521568630.0.	0. 0.99215686 0.04313725 0. 0.	0. 0.99215686 0. 0.	0. 0.99215686 0. 0.
0. 0. 0.21568627 0.99215686 0.	0. 0. 0.6745098 0.95686275 0.	0.0.886274510.521568630.	0. 0.99215686 0.04313725 0.	0. 0.99215686 0. 0.	0. 0.99215686 0. 0.
0. 0. 0.21568627 0.99215686 0. 0.	0. 0. 0.6745098 0.95686275 0. 0.	0. 0. 88627451 0.52156863 0. 0.	0. 0.99215686 0.04313725 0. 0.	0. 0.99215686 0. 0.	0. 0.99215686 0. 0. 0. 0. 0.99215686

```
0.
            0.
                         0.
                                      0.
                                                   0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                   0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                   0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                   0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                   0.
                                                               0.
                                                  0.
0.
            0.
                         0.
                                      0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                   0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                   0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                   0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                   0.
                                                               0.
0.
            0.
                         0.
                                                   0.
                                                               0.
                                      0.
0.
            0.
                         0.
                                      0.
                                                   0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                  0.
                                                               0.
0.
            0.
                         0.
                                                  0.
                                      0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                  0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                  0.
                                                               0.
0.
            0.
                         0.
                                      0.
                                                 1
```

```
print("Class label of first image :", y train[0])
In [12]:
         Y_train = np_utils.to_categorical(y_train, 10)
         Y_test = np_utils.to_categorical(y_test, 10)
         print("After converting the output into a vector : ",Y_train[0])
         Class label of first image : 5
         After converting the output into a vector : [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
In [0]: from keras.models import Sequential
         from keras.layers import Dense, Activation
         from keras.initializers import he normal
         from keras.layers import Dropout
         from keras.layers.normalization import BatchNormalization
In [0]: | output_dim = 10
         input dim = X train.shape[1]
         batch_size = 128
         nb_epoch = 20
```

MLP + ReLu + Adam + BN + Dropout (2 Layer Architecture 784-168-472-10)

```
In [15]: model = Sequential()
    model.add(Dense(168, activation='relu', input_shape=(input_dim,), kernel_initi
    alizer=he_normal(seed=None)))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))

model.add(Dense(472, activation='relu', kernel_initializer=he_normal(seed=None)))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))

model.add(Dense(output_dim, activation='softmax'))

model.summary()
```

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating:

Colocations handled automatically by placer.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version. Instructions for updating:

Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - k eep prob`.

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	168)	131880
batch_normalization_1 (Batch	(None,	168)	672
dropout_1 (Dropout)	(None,	168)	0
dense_2 (Dense)	(None,	472)	79768
batch_normalization_2 (Batch	(None,	472)	1888
dropout_2 (Dropout)	(None,	472)	0
dense_3 (Dense)	(None,	10)	4730

Total params: 218,938 Trainable params: 217,658 Non-trainable params: 1,280

```
In [16]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
uracy'])
history12 = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch
, verbose=1, validation_data=(X_test, Y_test))
```

```
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/pyt
hon/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is d
eprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
acc: 0.8404 - val_loss: 0.1689 - val_acc: 0.9465
Epoch 2/20
acc: 0.9189 - val_loss: 0.1209 - val_acc: 0.9628
Epoch 3/20
acc: 0.9380 - val loss: 0.1113 - val acc: 0.9667
Epoch 4/20
acc: 0.9449 - val loss: 0.1012 - val acc: 0.9698
Epoch 5/20
acc: 0.9501 - val_loss: 0.0936 - val_acc: 0.9709
acc: 0.9546 - val_loss: 0.0869 - val_acc: 0.9730
Epoch 7/20
acc: 0.9557 - val loss: 0.0852 - val acc: 0.9741
Epoch 8/20
acc: 0.9599 - val loss: 0.0820 - val acc: 0.9747
Epoch 9/20
acc: 0.9618 - val loss: 0.0730 - val acc: 0.9766
Epoch 10/20
60000/60000 [============== ] - 6s 94us/step - loss: 0.1177 -
acc: 0.9638 - val loss: 0.0796 - val acc: 0.9757
Epoch 11/20
acc: 0.9653 - val loss: 0.0792 - val acc: 0.9762
Epoch 12/20
acc: 0.9672 - val loss: 0.0685 - val acc: 0.9776
Epoch 13/20
acc: 0.9673 - val loss: 0.0709 - val acc: 0.9785
Epoch 14/20
acc: 0.9684 - val loss: 0.0696 - val acc: 0.9783
Epoch 15/20
60000/60000 [============== ] - 6s 97us/step - loss: 0.0943 -
acc: 0.9697 - val loss: 0.0650 - val acc: 0.9794
60000/60000 [=============== ] - 6s 96us/step - loss: 0.0915 -
acc: 0.9707 - val loss: 0.0662 - val acc: 0.9789
Epoch 17/20
60000/60000 [=============== ] - 6s 95us/step - loss: 0.0909 -
acc: 0.9715 - val loss: 0.0692 - val acc: 0.9799
```

```
In [17]: score = model.evaluate(X_test, Y_test, verbose=0)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])
    fig,ax = plt.subplots(1,1)
    ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
    x = list(range(1,nb_epoch+1))
    vy = history12.history['val_loss']
    ty = history12.history['loss']
    plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06125014309256803

Test accuracy: 0.9811


```
In [18]: w_after = model.get_weights()
         h1_w = w_after[0].flatten().reshape(-1,1)
         h2 w = w after[2].flatten().reshape(-1,1)
         out_w = w_after[4].flatten().reshape(-1,1)
         fig = plt.figure()
         plt.title("Weight matrices after model trained")
         plt.subplot(1, 3, 1)
         ax = sns.violinplot(y=h1_w,color='b')
         plt.xlabel('Hidden Layer 1')
         plt.subplot(1, 3, 2)
         ax = sns.violinplot(y=h2_w, color='r')
         plt.xlabel('Hidden Layer 2 ')
         plt.subplot(1, 3, 3)
         ax = sns.violinplot(y=out_w,color='y')
         plt.xlabel('Output Layer ')
         plt.show()
```



```
In [19]: model = Sequential()
    model.add(Dense(168, activation='relu', input_shape=(input_dim,), kernel_initi
    alizer=he_normal(seed=None)))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

model.add(Dense(472, activation='relu', kernel_initializer=he_normal(seed=None
    )))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

model.add(Dense(output_dim, activation='softmax'))

model.summary()
```

Layer (type)	Output	Shape	Param #
dense_4 (Dense)	(None,	168)	131880
batch_normalization_3 (Batch	(None,	168)	672
dropout_3 (Dropout)	(None,	168)	0
dense_5 (Dense)	(None,	472)	79768
batch_normalization_4 (Batch	(None,	472)	1888
dropout_4 (Dropout)	(None,	472)	0
dense_6 (Dense)	(None,	10)	4730 =======

Total params: 218,938
Trainable params: 217,658
Non-trainable params: 1,280

file:///C:/Users/admin/Downloads/MNIST_Keras(2).html

```
In [20]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
uracy'])
history12 = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch
, verbose=1, validation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
acc: 0.8885 - val loss: 0.1343 - val acc: 0.9599
Epoch 2/20
60000/60000 [=============== ] - 6s 94us/step - loss: 0.1718 -
acc: 0.9475 - val loss: 0.1060 - val acc: 0.9678
Epoch 3/20
60000/60000 [============== ] - 6s 94us/step - loss: 0.1371 -
acc: 0.9572 - val loss: 0.0841 - val acc: 0.9740
Epoch 4/20
60000/60000 [=============== ] - 6s 95us/step - loss: 0.1157 -
acc: 0.9639 - val loss: 0.0757 - val acc: 0.9753
acc: 0.9682 - val_loss: 0.0757 - val_acc: 0.9759
Epoch 6/20
acc: 0.9715 - val loss: 0.0743 - val acc: 0.9754
Epoch 7/20
60000/60000 [============ ] - 6s 95us/step - loss: 0.0803 -
acc: 0.9745 - val loss: 0.0707 - val acc: 0.9774
Epoch 8/20
acc: 0.9740 - val_loss: 0.0645 - val_acc: 0.9800
Epoch 9/20
60000/60000 [============ ] - 6s 94us/step - loss: 0.0678 -
acc: 0.9782 - val_loss: 0.0665 - val_acc: 0.9788
Epoch 10/20
acc: 0.9775 - val_loss: 0.0722 - val_acc: 0.9779
Epoch 11/20
60000/60000 [============= ] - 6s 105us/step - loss: 0.0622 -
acc: 0.9795 - val loss: 0.0667 - val acc: 0.9799
Epoch 12/20
acc: 0.9805 - val loss: 0.0665 - val acc: 0.9800
Epoch 13/20
60000/60000 [============ ] - 6s 96us/step - loss: 0.0544 -
acc: 0.9821 - val loss: 0.0686 - val acc: 0.9793
Epoch 14/20
acc: 0.9823 - val_loss: 0.0666 - val_acc: 0.9802
Epoch 15/20
acc: 0.9831 - val loss: 0.0657 - val acc: 0.9801
Epoch 16/20
acc: 0.9837 - val_loss: 0.0615 - val_acc: 0.9814
Epoch 17/20
acc: 0.9850 - val loss: 0.0607 - val acc: 0.9822
Epoch 18/20
60000/60000 [============= ] - 6s 96us/step - loss: 0.0435 -
acc: 0.9857 - val loss: 0.0593 - val acc: 0.9822
Epoch 19/20
```

```
In [21]: score = model.evaluate(X_test, Y_test, verbose=0)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])
    fig,ax = plt.subplots(1,1)
    ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
    x = list(range(1,nb_epoch+1))
    vy = history12.history['val_loss']
    ty = history12.history['loss']
    plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06603560918954463

Test accuracy: 0.9815


```
In [22]: w_after = model.get_weights()
         h1_w = w_after[0].flatten().reshape(-1,1)
         h2 w = w after[2].flatten().reshape(-1,1)
         out_w = w_after[4].flatten().reshape(-1,1)
         fig = plt.figure()
         plt.title("Weight matrices after model trained")
         plt.subplot(1, 3, 1)
         ax = sns.violinplot(y=h1_w,color='b')
         plt.xlabel('Hidden Layer 1')
         plt.subplot(1, 3, 2)
         ax = sns.violinplot(y=h2_w, color='r')
         plt.xlabel('Hidden Layer 2 ')
         plt.subplot(1, 3, 3)
         ax = sns.violinplot(y=out_w,color='y')
         plt.xlabel('Output Layer ')
         plt.show()
```



```
In [23]: model = Sequential()
    model.add(Dense(168, activation='relu', input_shape=(input_dim,), kernel_initi
    alizer=he_normal(seed=None)))
    model.add(BatchNormalization())
    model.add(Dropout(0.8))

model.add(Dense(472, activation='relu', kernel_initializer=he_normal(seed=None
    )))
    model.add(BatchNormalization())
    model.add(Dropout(0.8))

model.add(Dense(output_dim, activation='softmax'))

model.summary()
```

Layer (type)	Output	Shape	Param #
dense_7 (Dense)	(None,	168)	131880
batch_normalization_5 (Batch	(None,	168)	672
dropout_5 (Dropout)	(None,	168)	0
dense_8 (Dense)	(None,	472)	79768
batch_normalization_6 (Batch	(None,	472)	1888
dropout_6 (Dropout)	(None,	472)	0
dense_9 (Dense)	(None,	10)	4730 =======

Total params: 218,938
Trainable params: 217,658
Non-trainable params: 1,280

file:///C:/Users/admin/Downloads/MNIST_Keras(2).html

```
In [24]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
uracy'])
history12 = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch
, verbose=1, validation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [================ ] - 7s 109us/step - loss: 0.9308 -
acc: 0.7284 - val loss: 0.2600 - val acc: 0.9229
Epoch 2/20
acc: 0.8645 - val loss: 0.2060 - val acc: 0.9379
Epoch 3/20
60000/60000 [============== ] - 6s 99us/step - loss: 0.3667 -
acc: 0.8892 - val loss: 0.1710 - val acc: 0.9472
Epoch 4/20
60000/60000 [============== ] - 6s 96us/step - loss: 0.3209 -
acc: 0.9027 - val loss: 0.1559 - val acc: 0.9508
acc: 0.9120 - val loss: 0.1468 - val acc: 0.9554
Epoch 6/20
acc: 0.9183 - val loss: 0.1301 - val acc: 0.9608
Epoch 7/20
60000/60000 [============ ] - 6s 93us/step - loss: 0.2589 -
acc: 0.9222 - val loss: 0.1295 - val acc: 0.9595
Epoch 8/20
acc: 0.9268 - val_loss: 0.1209 - val_acc: 0.9623
Epoch 9/20
acc: 0.9277 - val_loss: 0.1185 - val_acc: 0.9651
Epoch 10/20
acc: 0.9317 - val_loss: 0.1119 - val_acc: 0.9653
Epoch 11/20
acc: 0.9349 - val loss: 0.1065 - val acc: 0.9664
Epoch 12/20
acc: 0.9364 - val loss: 0.1063 - val acc: 0.9669
Epoch 13/20
60000/60000 [============ ] - 6s 94us/step - loss: 0.2074 -
acc: 0.9381 - val_loss: 0.1039 - val_acc: 0.9675
Epoch 14/20
acc: 0.9413 - val_loss: 0.1018 - val_acc: 0.9687
Epoch 15/20
60000/60000 [============ ] - 6s 93us/step - loss: 0.1940 -
acc: 0.9415 - val loss: 0.1000 - val acc: 0.9695
Epoch 16/20
acc: 0.9430 - val_loss: 0.0958 - val_acc: 0.9715
Epoch 17/20
acc: 0.9438 - val loss: 0.0928 - val acc: 0.9712
Epoch 18/20
acc: 0.9452 - val loss: 0.1021 - val acc: 0.9702
Epoch 19/20
```

```
In [25]: score = model.evaluate(X_test, Y_test, verbose=0)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])
    fig,ax = plt.subplots(1,1)
    ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
    x = list(range(1,nb_epoch+1))
    vy = history12.history['val_loss']
    ty = history12.history['loss']
    plt_dynamic(x, vy, ty, ax)
```

Test score: 0.09341368079553358

Test accuracy: 0.9734


```
In [26]: w after = model.get weights()
         h1_w = w_after[0].flatten().reshape(-1,1)
         h2 w = w after[2].flatten().reshape(-1,1)
         out_w = w_after[4].flatten().reshape(-1,1)
         fig = plt.figure()
         plt.title("Weight matrices after model trained")
         plt.subplot(1, 3, 1)
         ax = sns.violinplot(y=h1 w,color='b')
         plt.xlabel('Hidden Layer 1')
         plt.subplot(1, 3, 2)
         ax = sns.violinplot(y=h2_w, color='r')
         plt.xlabel('Hidden Layer 2 ')
         plt.subplot(1, 3, 3)
         ax = sns.violinplot(y=out_w,color='y')
         plt.xlabel('Output Layer ')
         plt.show()
```


MLP + ReLu + Adam + BN + Dropout (3 Layer Architecture 784-352-164-124-10)

```
In [27]:
         model=Sequential()
         model.add(Dense(352, activation='relu', input_shape=(input_dim,), kernel_initi
         alizer=he normal(seed=None)))
         model.add(BatchNormalization())
         model.add(Dropout(0.5))
         model.add(Dense(164, activation='relu', kernel_initializer=he_normal(seed=None
         ))))
         model.add(BatchNormalization())
         model.add(Dropout(0.5))
         model.add(Dense(124, activation='relu', kernel_initializer=he_normal(seed=None
         )))
         model.add(BatchNormalization())
         model.add(Dropout(0.5))
         model.add(Dense(output_dim, activation='softmax'))
         model.summary()
```

Layer (type)	Output	Shape	Param #
dense_10 (Dense)	(None,	352)	276320
batch_normalization_7 (Batch	(None,	352)	1408
dropout_7 (Dropout)	(None,	352)	0
dense_11 (Dense)	(None,	164)	57892
batch_normalization_8 (Batch	(None,	164)	656
dropout_8 (Dropout)	(None,	164)	0
dense_12 (Dense)	(None,	124)	20460
batch_normalization_9 (Batch	(None,	124)	496
dropout_9 (Dropout)	(None,	124)	0
dense_13 (Dense)	(None,	10)	1250

Total params: 358,482 Trainable params: 357,202 Non-trainable params: 1,280

```
In [28]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
uracy'])
history23 = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch
, verbose=1, validation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
acc: 0.7932 - val loss: 0.1917 - val acc: 0.9394
Epoch 2/20
60000/60000 [============== ] - 8s 126us/step - loss: 0.2927 -
acc: 0.9146 - val loss: 0.1355 - val acc: 0.9571
Epoch 3/20
60000/60000 [============== ] - 8s 125us/step - loss: 0.2240 -
acc: 0.9342 - val loss: 0.1133 - val acc: 0.9652
Epoch 4/20
60000/60000 [============== ] - 8s 126us/step - loss: 0.1917 -
acc: 0.9447 - val loss: 0.1022 - val acc: 0.9695
Epoch 5/20
acc: 0.9501 - val loss: 0.0888 - val acc: 0.9744
Epoch 6/20
acc: 0.9568 - val loss: 0.0853 - val acc: 0.9756
Epoch 7/20
60000/60000 [============ ] - 8s 133us/step - loss: 0.1407 -
acc: 0.9587 - val loss: 0.0783 - val acc: 0.9771
Epoch 8/20
acc: 0.9621 - val_loss: 0.0782 - val_acc: 0.9776
Epoch 9/20
acc: 0.9643 - val_loss: 0.0811 - val_acc: 0.9775
Epoch 10/20
acc: 0.9650 - val_loss: 0.0764 - val_acc: 0.9776
Epoch 11/20
60000/60000 [============= ] - 8s 130us/step - loss: 0.1085 -
acc: 0.9678 - val loss: 0.0701 - val acc: 0.9790
Epoch 12/20
acc: 0.9701 - val loss: 0.0678 - val acc: 0.9802
Epoch 13/20
acc: 0.9710 - val_loss: 0.0692 - val_acc: 0.9804
Epoch 14/20
60000/60000 [================ ] - 8s 127us/step - loss: 0.0932 -
acc: 0.9723 - val_loss: 0.0706 - val_acc: 0.9798
Epoch 15/20
acc: 0.9744 - val loss: 0.0674 - val acc: 0.9810
Epoch 16/20
acc: 0.9739 - val_loss: 0.0665 - val_acc: 0.9812
Epoch 17/20
acc: 0.9749 - val loss: 0.0627 - val acc: 0.9823
Epoch 18/20
60000/60000 [============= - - 8s 130us/step - loss: 0.0801 -
acc: 0.9756 - val loss: 0.0616 - val acc: 0.9821
Epoch 19/20
60000/60000 [================= ] - 8s 126us/step - loss: 0.0801 -
```

```
In [29]: score = model.evaluate(X_test, Y_test, verbose=0)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])
    fig,ax = plt.subplots(1,1)
    ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
    x = list(range(1,nb_epoch+1))
    vy = history23.history['val_loss']
    ty = history23.history['loss']
    plt_dynamic(x, vy, ty, ax)
```

Test score: 0.0620166264391155

Test accuracy: 0.9826


```
In [30]: | w after = model.get weights()
         h1_w = w_after[0].flatten().reshape(-1,1)
         h2 w = w after[2].flatten().reshape(-1,1)
         h3_w = w_after[4].flatten().reshape(-1,1)
         out_w = w_after[6].flatten().reshape(-1,1)
         fig = plt.figure()
         plt.title("Weight matrices after model trained")
         plt.subplot(1, 4, 1)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h1_w,color='b')
         plt.xlabel('Hidden Layer 1')
         plt.subplot(1, 4, 2)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h2_w, color='r')
         plt.xlabel('Hidden Layer 2 ')
         plt.subplot(1, 4, 3)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h3 w, color='r')
         plt.xlabel('Hidden Layer 3 ')
         plt.subplot(1, 4, 4)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=out_w,color='y')
         plt.xlabel('Output Layer ')
         plt.show()
```



```
In [31]:
         model=Sequential()
         model.add(Dense(352, activation='relu', input_shape=(input_dim,), kernel_initi
         alizer=he normal(seed=None)))
         model.add(BatchNormalization())
         model.add(Dropout(0.2))
         model.add(Dense(164, activation='relu', kernel_initializer=he_normal(seed=None
         ))))
         model.add(BatchNormalization())
         model.add(Dropout(0.2))
         model.add(Dense(124, activation='relu', kernel_initializer=he_normal(seed=None
         )))
         model.add(BatchNormalization())
         model.add(Dropout(0.2))
         model.add(Dense(output dim, activation='softmax'))
         model.summary()
```

Layer (type)		Output	Shape	Param #
dense_14 (Dense)	=====	(None,	352)	276320
batch_normalization_10	(Batc	(None,	352)	1408
dropout_10 (Dropout)		(None,	352)	0
dense_15 (Dense)		(None,	164)	57892
batch_normalization_11	(Batc	(None,	164)	656
dropout_11 (Dropout)		(None,	164)	0
dense_16 (Dense)		(None,	124)	20460
batch_normalization_12	(Batc	(None,	124)	496
dropout_12 (Dropout)		(None,	124)	0
dense 17 (Dense)		(None,	10)	1250

Total params: 358,482 Trainable params: 357,202 Non-trainable params: 1,280

file:///C:/Users/admin/Downloads/MNIST_Keras(2).html

```
In [32]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
uracy'])
history23 = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch
, verbose=1, validation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
acc: 0.9035 - val loss: 0.1150 - val acc: 0.9647
Epoch 2/20
60000/60000 [============== ] - 8s 130us/step - loss: 0.1418 -
acc: 0.9563 - val loss: 0.0886 - val acc: 0.9722
Epoch 3/20
60000/60000 [============== ] - 8s 126us/step - loss: 0.1045 -
acc: 0.9683 - val loss: 0.0775 - val acc: 0.9756
Epoch 4/20
60000/60000 [============== ] - 8s 126us/step - loss: 0.0895 -
acc: 0.9719 - val loss: 0.0744 - val acc: 0.9778
Epoch 5/20
acc: 0.9763 - val loss: 0.0699 - val acc: 0.9778
Epoch 6/20
acc: 0.9796 - val loss: 0.0710 - val acc: 0.9781
Epoch 7/20
60000/60000 [============ ] - 8s 132us/step - loss: 0.0620 -
acc: 0.9796 - val loss: 0.0725 - val acc: 0.9789
Epoch 8/20
acc: 0.9819 - val_loss: 0.0669 - val_acc: 0.9786
Epoch 9/20
acc: 0.9844 - val_loss: 0.0565 - val_acc: 0.9825
Epoch 10/20
acc: 0.9850 - val_loss: 0.0615 - val_acc: 0.9823
Epoch 11/20
acc: 0.9860 - val loss: 0.0597 - val acc: 0.9822
Epoch 12/20
acc: 0.9876 - val loss: 0.0598 - val acc: 0.9832
Epoch 13/20
acc: 0.9872 - val loss: 0.0624 - val acc: 0.9819
Epoch 14/20
60000/60000 [================ ] - 8s 132us/step - loss: 0.0368 -
acc: 0.9879 - val_loss: 0.0603 - val_acc: 0.9818
Epoch 15/20
acc: 0.9884 - val loss: 0.0620 - val acc: 0.9825
Epoch 16/20
acc: 0.9895 - val_loss: 0.0565 - val_acc: 0.9835
Epoch 17/20
60000/60000 [============ ] - 8s 131us/step - loss: 0.0290 -
acc: 0.9904 - val loss: 0.0589 - val acc: 0.9832
Epoch 18/20
60000/60000 [=============== ] - 8s 131us/step - loss: 0.0284 -
acc: 0.9909 - val loss: 0.0649 - val acc: 0.9817
Epoch 19/20
```

```
In [33]: score = model.evaluate(X_test, Y_test, verbose=0)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])
    fig,ax = plt.subplots(1,1)
    ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
    x = list(range(1,nb_epoch+1))
    vy = history23.history['val_loss']
    ty = history23.history['loss']
    plt_dynamic(x, vy, ty, ax)
```

Test score: 0.0696625495184242

Test accuracy: 0.9801


```
In [34]: w after = model.get weights()
         h1_w = w_after[0].flatten().reshape(-1,1)
         h2 w = w after[2].flatten().reshape(-1,1)
         h3_w = w_after[4].flatten().reshape(-1,1)
         out_w = w_after[6].flatten().reshape(-1,1)
         fig = plt.figure()
         plt.title("Weight matrices after model trained")
         plt.subplot(1, 4, 1)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h1_w,color='b')
         plt.xlabel('Hidden Layer 1')
         plt.subplot(1, 4, 2)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h2_w, color='r')
         plt.xlabel('Hidden Layer 2 ')
         plt.subplot(1, 4, 3)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h3 w, color='r')
         plt.xlabel('Hidden Layer 3 ')
         plt.subplot(1, 4, 4)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=out_w,color='y')
         plt.xlabel('Output Layer ')
         plt.show()
```



```
In [35]:
         model=Sequential()
         model.add(Dense(352, activation='relu', input_shape=(input_dim,), kernel_initi
         alizer=he normal(seed=None)))
         model.add(BatchNormalization())
         model.add(Dropout(0.8))
         model.add(Dense(164, activation='relu', kernel_initializer=he_normal(seed=None
         ))))
         model.add(BatchNormalization())
         model.add(Dropout(0.8))
         model.add(Dense(124, activation='relu', kernel_initializer=he_normal(seed=None
         )))
         model.add(BatchNormalization())
         model.add(Dropout(0.8))
         model.add(Dense(output_dim, activation='softmax'))
         model.summary()
```

Layer (type)		Output	Shape	Param #
dense_18 (Dense)		(None,	352)	276320
batch_normalization_13	(Batc	(None,	352)	1408
dropout_13 (Dropout)		(None,	352)	0
dense_19 (Dense)		(None,	164)	57892
batch_normalization_14	(Batc	(None,	164)	656
dropout_14 (Dropout)		(None,	164)	0
dense_20 (Dense)		(None,	124)	20460
batch_normalization_15	(Batc	(None,	124)	496
dropout_15 (Dropout)		(None,	124)	0
 dense_21 (Dense)		(None,	10)	1250

Total params: 358,482 Trainable params: 357,202 Non-trainable params: 1,280

file:///C:/Users/admin/Downloads/MNIST_Keras(2).html

```
In [36]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
uracy'])
history23 = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch
, verbose=1, validation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
- acc: 0.3203 - val loss: 0.8520 - val acc: 0.7836
Epoch 2/20
60000/60000 [============== ] - 8s 127us/step - loss: 1.1387 -
acc: 0.5952 - val loss: 0.4971 - val acc: 0.8783
Epoch 3/20
60000/60000 [============== ] - 8s 125us/step - loss: 0.8513 -
acc: 0.7194 - val loss: 0.3424 - val acc: 0.9115
Epoch 4/20
60000/60000 [============== ] - 8s 130us/step - loss: 0.6934 -
acc: 0.7846 - val loss: 0.2719 - val acc: 0.9247
acc: 0.8227 - val loss: 0.2339 - val acc: 0.9323
Epoch 6/20
acc: 0.8453 - val loss: 0.2122 - val acc: 0.9393
Epoch 7/20
60000/60000 [============ ] - 8s 131us/step - loss: 0.4925 -
acc: 0.8616 - val loss: 0.1982 - val acc: 0.9441
Epoch 8/20
acc: 0.8727 - val_loss: 0.1801 - val_acc: 0.9483
Epoch 9/20
acc: 0.8825 - val_loss: 0.1753 - val_acc: 0.9501
Epoch 10/20
acc: 0.8893 - val_loss: 0.1677 - val_acc: 0.9522
Epoch 11/20
60000/60000 [============= ] - 8s 131us/step - loss: 0.3948 -
acc: 0.8960 - val loss: 0.1611 - val acc: 0.9558
Epoch 12/20
acc: 0.9021 - val loss: 0.1578 - val acc: 0.9570
Epoch 13/20
acc: 0.9047 - val_loss: 0.1560 - val_acc: 0.9564
Epoch 14/20
acc: 0.9083 - val_loss: 0.1530 - val_acc: 0.9576
Epoch 15/20
acc: 0.9090 - val loss: 0.1425 - val acc: 0.9610
Epoch 16/20
acc: 0.9128 - val_loss: 0.1398 - val_acc: 0.9627
Epoch 17/20
acc: 0.9134 - val loss: 0.1394 - val acc: 0.9617
Epoch 18/20
60000/60000 [============ ] - 8s 131us/step - loss: 0.3260 -
acc: 0.9153 - val loss: 0.1355 - val acc: 0.9635
Epoch 19/20
```

```
In [37]: score = model.evaluate(X_test, Y_test, verbose=0)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])
    fig,ax = plt.subplots(1,1)
    ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
    x = list(range(1,nb_epoch+1))
    vy = history23.history['val_loss']
    ty = history23.history['loss']
    plt_dynamic(x, vy, ty, ax)
```

Test score: 0.13190246427785604

Test accuracy: 0.9647


```
In [38]: w after = model.get weights()
         h1_w = w_after[0].flatten().reshape(-1,1)
         h2 w = w after[2].flatten().reshape(-1,1)
         h3 w = w after[4].flatten().reshape(-1,1)
         out_w = w_after[6].flatten().reshape(-1,1)
         fig = plt.figure()
         plt.title("Weight matrices after model trained")
         plt.subplot(1, 4, 1)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h1_w,color='b')
         plt.xlabel('Hidden Layer 1')
         plt.subplot(1, 4, 2)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h2_w, color='r')
         plt.xlabel('Hidden Layer 2 ')
         plt.subplot(1, 4, 3)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h3 w, color='r')
         plt.xlabel('Hidden Layer 3 ')
         plt.subplot(1, 4, 4)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=out_w,color='y')
         plt.xlabel('Output Layer ')
         plt.show()
```


MLP + ReLu + Adam + BN + Dropout (5 Layer Architecture 784-216-170-136-80-38-10)

```
In [39]:
         model=Sequential()
         model.add(Dense(216, activation='relu', input_shape=(input_dim,), kernel_initi
         alizer=he normal(seed=None)))
         model.add(BatchNormalization())
         model.add(Dropout(0.5))
         model.add(Dense(170, activation='relu', kernel_initializer=he_normal(seed=None
         ))))
         model.add(BatchNormalization())
         model.add(Dropout(0.5))
         model.add(Dense(136, activation='relu', kernel_initializer=he_normal(seed=None
         )))
         model.add(BatchNormalization())
         model.add(Dropout(0.5))
         model.add(Dense(80, activation='relu', kernel initializer=he normal(seed=None
         ))))
         model.add(BatchNormalization())
         model.add(Dropout(0.5))
         model.add(Dense(38, activation='relu', kernel_initializer=he_normal(seed=None
         ))))
         model.add(BatchNormalization())
         model.add(Dropout(0.5))
         model.add(Dense(output dim, activation='softmax'))
         model.summary()
```

Layer (type)	Output	Shape	Param #
dense_22 (Dense)	(None,	216)	169560
batch_normalization_16 (B	atc (None,	216)	864
dropout_16 (Dropout)	(None,	216)	0
dense_23 (Dense)	(None,	170)	36890
batch_normalization_17 (B	atc (None,	170)	680
dropout_17 (Dropout)	(None,	170)	0
dense_24 (Dense)	(None,	136)	23256
batch_normalization_18 (B	atc (None,	136)	544
dropout_18 (Dropout)	(None,	136)	0
dense_25 (Dense)	(None,	80)	10960
batch_normalization_19 (B	atc (None,	80)	320
dropout_19 (Dropout)	(None,	80)	0
dense_26 (Dense)	(None,	38)	3078
batch_normalization_20 (B	atc (None,	38)	152
dropout_20 (Dropout)	(None,	38)	0
dense_27 (Dense)	(None,	10)	390

Total params: 246,694 Trainable params: 245,414 Non-trainable params: 1,280

```
In [40]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
uracy'])
history23 = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch
, verbose=1, validation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
- acc: 0.4750 - val loss: 0.4692 - val acc: 0.8639
Epoch 2/20
60000/60000 [============== ] - 8s 126us/step - loss: 0.6977 -
acc: 0.7849 - val loss: 0.2683 - val acc: 0.9261
Epoch 3/20
60000/60000 [============== ] - 7s 125us/step - loss: 0.4856 -
acc: 0.8690 - val loss: 0.1942 - val acc: 0.9458
Epoch 4/20
60000/60000 [============== ] - 8s 129us/step - loss: 0.3871 -
acc: 0.9016 - val loss: 0.1629 - val acc: 0.9579
acc: 0.9157 - val loss: 0.1492 - val acc: 0.9595
Epoch 6/20
acc: 0.9250 - val loss: 0.1330 - val acc: 0.9646
Epoch 7/20
60000/60000 [============ ] - 8s 126us/step - loss: 0.2787 -
acc: 0.9325 - val loss: 0.1354 - val acc: 0.9653
Epoch 8/20
acc: 0.9383 - val_loss: 0.1313 - val_acc: 0.9671
Epoch 9/20
acc: 0.9416 - val_loss: 0.1300 - val_acc: 0.9686
Epoch 10/20
acc: 0.9458 - val_loss: 0.1127 - val_acc: 0.9712
Epoch 11/20
acc: 0.9484 - val loss: 0.1135 - val acc: 0.9707
Epoch 12/20
acc: 0.9491 - val loss: 0.1131 - val acc: 0.9733
Epoch 13/20
acc: 0.9539 - val_loss: 0.1110 - val_acc: 0.9725
Epoch 14/20
60000/60000 [=============== ] - 7s 125us/step - loss: 0.1961 -
acc: 0.9546 - val_loss: 0.0997 - val_acc: 0.9758
Epoch 15/20
60000/60000 [============ ] - 8s 125us/step - loss: 0.1932 -
acc: 0.9542 - val loss: 0.1032 - val acc: 0.9762
Epoch 16/20
acc: 0.9567 - val_loss: 0.1059 - val_acc: 0.9757
Epoch 17/20
acc: 0.9574 - val loss: 0.0996 - val acc: 0.9763
Epoch 18/20
60000/60000 [============= ] - 8s 126us/step - loss: 0.1729 -
acc: 0.9593 - val loss: 0.0992 - val acc: 0.9761
Epoch 19/20
```

```
In [41]: score = model.evaluate(X_test, Y_test, verbose=0)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])
    fig,ax = plt.subplots(1,1)
    ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
    x = list(range(1,nb_epoch+1))
    vy = history23.history['val_loss']
    ty = history23.history['loss']
    plt_dynamic(x, vy, ty, ax)
```

Test score: 0.09488777558589354

Test accuracy: 0.9769


```
In [42]: | w after = model.get weights()
         h1 w = w after[0].flatten().reshape(-1,1)
         h2 w = w after[2].flatten().reshape(-1,1)
         h3 w = w after[4].flatten().reshape(-1,1)
         h4_w = w_after[6].flatten().reshape(-1,1)
         h5 w = w after[8].flatten().reshape(-1,1)
         out w = w after[10].flatten().reshape(-1,1)
         fig = plt.figure()
         plt.title("Weight matrices after model trained")
         plt.subplot(1, 6, 1)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h1 w,color='b')
         plt.xlabel('Hidden Layer 1')
         plt.subplot(1, 6, 2)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h2 w, color='r')
         plt.xlabel('Hidden Layer 2 ')
         plt.subplot(1, 6, 3)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h3_w, color='r')
         plt.xlabel('Hidden Layer 3 ')
         plt.subplot(1, 6, 4)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h4 w, color='r')
         plt.xlabel('Hidden Layer 4 ')
         plt.subplot(1, 6, 5)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h4_w, color='r')
         plt.xlabel('Hidden Layer 5 ')
         plt.subplot(1, 6, 6)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=out w,color='y')
         plt.xlabel('Output Layer ')
         plt.show()
```

Trained mīoraken के प्रांता के विवास क

Hidden Layelidden Layelidden Layelidden Layelidden Layellidden Layel

In [43]: model=Sequential() model.add(Dense(216, activation='relu', input_shape=(input_dim,), kernel_initi alizer=he normal(seed=None))) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Dense(170, activation='relu', kernel_initializer=he_normal(seed=None)))) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Dense(136, activation='relu', kernel_initializer=he_normal(seed=None))) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Dense(80, activation='relu', kernel initializer=he normal(seed=None))) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Dense(38, activation='relu', kernel_initializer=he_normal(seed=None)))) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Dense(output dim, activation='softmax')) model.summary()

Layer (type)		Output	Shape	Param #
=======================================	=====			
dense_28 (Dense)		(None,	216)	169560
batch_normalization_21 ((Batc	(None,	216)	864
dropout_21 (Dropout)		(None,	216)	0
dense_29 (Dense)		(None,	170)	36890
batch_normalization_22 ((Batc	(None,	170)	680
dropout_22 (Dropout)		(None,	170)	0
dense_30 (Dense)		(None,	136)	23256
batch_normalization_23 ((Batc	(None,	136)	544
dropout_23 (Dropout)		(None,	136)	0
dense_31 (Dense)		(None,	80)	10960
batch_normalization_24 ((Batc	(None,	80)	320
dropout_24 (Dropout)		(None,	80)	0
dense_32 (Dense)		(None,	38)	3078
batch_normalization_25 ((Batc	(None,	38)	152
dropout_25 (Dropout)		(None,	38)	0
dense_33 (Dense)		(None,	10)	390

Total params: 246,694 Trainable params: 245,414 Non-trainable params: 1,280

```
In [44]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
uracy'])
history23 = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch
, verbose=1, validation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
- acc: 0.8248 - val loss: 0.1732 - val acc: 0.9498
Epoch 2/20
60000/60000 [============= ] - 7s 123us/step - loss: 0.2234 -
acc: 0.9370 - val loss: 0.1184 - val acc: 0.9661
Epoch 3/20
60000/60000 [============== ] - 7s 122us/step - loss: 0.1694 -
acc: 0.9514 - val loss: 0.1012 - val acc: 0.9715
Epoch 4/20
60000/60000 [============= ] - 7s 123us/step - loss: 0.1393 -
acc: 0.9600 - val_loss: 0.0908 - val acc: 0.9727
60000/60000 [================ ] - 7s 123us/step - loss: 0.1253 -
acc: 0.9645 - val loss: 0.0816 - val acc: 0.9767
Epoch 6/20
60000/60000 [================ ] - 7s 123us/step - loss: 0.1131 -
acc: 0.9676 - val loss: 0.0828 - val acc: 0.9766
Epoch 7/20
60000/60000 [============ ] - 7s 124us/step - loss: 0.1014 -
acc: 0.9713 - val loss: 0.0819 - val acc: 0.9758
Epoch 8/20
acc: 0.9739 - val_loss: 0.0773 - val_acc: 0.9783
Epoch 9/20
acc: 0.9763 - val_loss: 0.0709 - val_acc: 0.9801
Epoch 10/20
acc: 0.9769 - val_loss: 0.0786 - val_acc: 0.9777
Epoch 11/20
60000/60000 [============== ] - 8s 134us/step - loss: 0.0729 -
acc: 0.9785 - val loss: 0.0688 - val acc: 0.9812
Epoch 12/20
acc: 0.9797 - val loss: 0.0667 - val acc: 0.9806
Epoch 13/20
acc: 0.9804 - val_loss: 0.0710 - val_acc: 0.9797
Epoch 14/20
acc: 0.9821 - val_loss: 0.0650 - val_acc: 0.9821
Epoch 15/20
acc: 0.9825 - val loss: 0.0698 - val acc: 0.9804
Epoch 16/20
acc: 0.9825 - val_loss: 0.0633 - val_acc: 0.9824
Epoch 17/20
acc: 0.9850 - val loss: 0.0688 - val acc: 0.9809
Epoch 18/20
60000/60000 [============ ] - 8s 132us/step - loss: 0.0532 -
acc: 0.9843 - val loss: 0.0643 - val acc: 0.9814
Epoch 19/20
```

```
In [45]: score = model.evaluate(X_test, Y_test, verbose=0)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])
    fig,ax = plt.subplots(1,1)
    ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
    x = list(range(1,nb_epoch+1))
    vy = history23.history['val_loss']
    ty = history23.history['loss']
    plt_dynamic(x, vy, ty, ax)
```

Test score: 0.06503258371697739

Test accuracy: 0.9834


```
In [46]: | w after = model.get weights()
         h1 w = w after[0].flatten().reshape(-1,1)
         h2 w = w after[2].flatten().reshape(-1,1)
         h3 w = w after[4].flatten().reshape(-1,1)
         h4_w = w_after[6].flatten().reshape(-1,1)
         h5 w = w after[8].flatten().reshape(-1,1)
         out w = w after[10].flatten().reshape(-1,1)
         fig = plt.figure()
         plt.title("Weight matrices after model trained")
         plt.subplot(1, 6, 1)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h1 w,color='b')
         plt.xlabel('Hidden Layer 1')
         plt.subplot(1, 6, 2)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h2 w, color='r')
         plt.xlabel('Hidden Layer 2 ')
         plt.subplot(1, 6, 3)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h3_w, color='r')
         plt.xlabel('Hidden Layer 3 ')
         plt.subplot(1, 6, 4)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h4 w, color='r')
         plt.xlabel('Hidden Layer 4 ')
         plt.subplot(1, 6, 5)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h4_w, color='r')
         plt.xlabel('Hidden Layer 5 ')
         plt.subplot(1, 6, 6)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=out w,color='y')
         plt.xlabel('Output Layer ')
         plt.show()
```


Hidden Layelidden Layelidden Layelidden Layelidden Layellidden Layel

```
In [47]:
         model=Sequential()
         model.add(Dense(216, activation='relu', input_shape=(input_dim,), kernel_initi
         alizer=he normal(seed=None)))
         model.add(BatchNormalization())
         model.add(Dropout(0.8))
         model.add(Dense(170, activation='relu', kernel_initializer=he_normal(seed=None
         ))))
         model.add(BatchNormalization())
         model.add(Dropout(0.8))
         model.add(Dense(136, activation='relu', kernel_initializer=he_normal(seed=None
         )))
         model.add(BatchNormalization())
         model.add(Dropout(0.8))
         model.add(Dense(80, activation='relu', kernel initializer=he normal(seed=None
         ))))
         model.add(BatchNormalization())
         model.add(Dropout(0.8))
         model.add(Dense(38, activation='relu', kernel_initializer=he_normal(seed=None
         ))))
         model.add(BatchNormalization())
         model.add(Dropout(0.8))
         model.add(Dense(output dim, activation='softmax'))
         model.summary()
```

Layer (type)		Output	Shape	Param #
dense_34 (Dense)	=====	(None,	216)	 169560
batch_normalization_26 ((Batc	(None,	216)	864
dropout_26 (Dropout)		(None,	216)	0
dense_35 (Dense)		(None,	170)	36890
batch_normalization_27 ((Batc	(None,	170)	680
dropout_27 (Dropout)		(None,	170)	0
dense_36 (Dense)		(None,	136)	23256
batch_normalization_28 ((Batc	(None,	136)	544
dropout_28 (Dropout)		(None,	136)	0
dense_37 (Dense)		(None,	80)	10960
batch_normalization_29 ((Batc	(None,	80)	320
dropout_29 (Dropout)		(None,	80)	0
dense_38 (Dense)		(None,	38)	3078
batch_normalization_30 ((Batc	(None,	38)	152
dropout_30 (Dropout)		(None,	38)	0
dense_39 (Dense)	=====	(None,	10)	390

Total params: 246,694 Trainable params: 245,414 Non-trainable params: 1,280

```
In [48]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
uracy'])
history23 = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch
, verbose=1, validation_data=(X_test, Y_test))
```

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
- acc: 0.1053 - val loss: 2.3135 - val acc: 0.1135
Epoch 2/20
60000/60000 [============= ] - 8s 130us/step - loss: 2.2723 -
acc: 0.1475 - val loss: 2.3420 - val acc: 0.1135
Epoch 3/20
60000/60000 [============= ] - 8s 126us/step - loss: 2.1364 -
acc: 0.1918 - val loss: 2.2887 - val acc: 0.1358
Epoch 4/20
60000/60000 [============== ] - 8s 126us/step - loss: 2.0281 -
acc: 0.2190 - val loss: 2.1321 - val acc: 0.1821
Epoch 5/20
60000/60000 [================ ] - 7s 125us/step - loss: 1.9156 -
acc: 0.2463 - val_loss: 1.7242 - val_acc: 0.3085
Epoch 6/20
acc: 0.2807 - val loss: 1.5540 - val acc: 0.3138
Epoch 7/20
60000/60000 [============ ] - 8s 126us/step - loss: 1.6934 -
acc: 0.3031 - val loss: 1.5104 - val acc: 0.3679
Epoch 8/20
acc: 0.3204 - val_loss: 1.4852 - val_acc: 0.3799
Epoch 9/20
acc: 0.3313 - val_loss: 1.4692 - val_acc: 0.3778
Epoch 10/20
acc: 0.3406 - val_loss: 1.4402 - val_acc: 0.3839
Epoch 11/20
acc: 0.3511 - val loss: 1.4090 - val acc: 0.3861
Epoch 12/20
60000/60000 [================= ] - 7s 123us/step - loss: 1.5488 -
acc: 0.3598 - val loss: 1.3855 - val acc: 0.3953
Epoch 13/20
60000/60000 [================ ] - 7s 124us/step - loss: 1.5284 -
acc: 0.3707 - val_loss: 1.3582 - val_acc: 0.4097
Epoch 14/20
60000/60000 [================= ] - 7s 123us/step - loss: 1.4876 -
acc: 0.3903 - val_loss: 1.2590 - val_acc: 0.5016
Epoch 15/20
acc: 0.4100 - val loss: 1.1390 - val acc: 0.5219
Epoch 16/20
60000/60000 [================ ] - 7s 123us/step - loss: 1.3747 -
acc: 0.4209 - val loss: 1.0800 - val acc: 0.5192
Epoch 17/20
acc: 0.4303 - val loss: 1.0669 - val acc: 0.5370
Epoch 18/20
60000/60000 [============ ] - 7s 124us/step - loss: 1.3176 -
acc: 0.4322 - val loss: 1.0485 - val acc: 0.5151
Epoch 19/20
60000/60000 [================ ] - 7s 123us/step - loss: 1.3023 -
```

```
In [49]: score = model.evaluate(X_test, Y_test, verbose=0)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])
    fig,ax = plt.subplots(1,1)
    ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
    x = list(range(1,nb_epoch+1))
    vy = history23.history['val_loss']
    ty = history23.history['loss']
    plt_dynamic(x, vy, ty, ax)
```

Test score: 1.0241631193161012 Test accuracy: 0.575


```
In [50]: | w after = model.get weights()
         h1 w = w after[0].flatten().reshape(-1,1)
         h2 w = w after[2].flatten().reshape(-1,1)
         h3 w = w after[4].flatten().reshape(-1,1)
         h4_w = w_after[6].flatten().reshape(-1,1)
         h5 w = w after[8].flatten().reshape(-1,1)
         out w = w after[10].flatten().reshape(-1,1)
         fig = plt.figure()
         plt.title("Weight matrices after model trained")
         plt.subplot(1, 6, 1)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h1 w,color='b')
         plt.xlabel('Hidden Layer 1')
         plt.subplot(1, 6, 2)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h2 w, color='r')
         plt.xlabel('Hidden Layer 2 ')
         plt.subplot(1, 6, 3)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h3_w, color='r')
         plt.xlabel('Hidden Layer 3 ')
         plt.subplot(1, 6, 4)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h4 w, color='r')
         plt.xlabel('Hidden Layer 4 ')
         plt.subplot(1, 6, 5)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=h4_w, color='r')
         plt.xlabel('Hidden Layer 5 ')
         plt.subplot(1, 6, 6)
         plt.title("Trained model Weights")
         ax = sns.violinplot(y=out w,color='y')
         plt.xlabel('Output Layer ')
         plt.show()
```


Hidden Layelidden Layelidden Layelidden Layellidden Layel

```
In [51]: from prettytable import PrettyTable
         x = PrettyTable()
         x.field names = ["Architecture", "Dropout Rate", "Test Score", "Test Accuracy"
         x.add_row(["2 Layer Architecture 784-168-472-10", "0.5 ", 0.06, 0.98])
         x.add_row(["2 Layer Architecture 784-168-472-10", "0.2 ", 0.06, 0.98])
         x.add_row(["2 Layer Architecture 784-168-472-10", "0.8 ", 0.09, 0.97])
         x.add_row(["3 Layer Architecture 784-352-164-124-10", "0.5", 0.06, 0.98])
         x.add_row(["3 Layer Architecture 784-352-164-124-10", "0.2", 0.06, 0.98])
         x.add_row(["3 Layer Architecture 784-352-164-124-10","0.8", 0.13, 0.96])
         x.add row(["5 Layer Architecture 784-216-170-136-80-38-10", "0.5", 0.09, 0.97
         ])
         x.add_row(["5 Layer Architecture 784-216-170-136-80-38-10", "0.2", 0.06, 0.98
         ])
         x.add row(["5 Layer Architecture 784-216-170-136-80-38-10", "0.8", 1.02, 0.57
         ])
         print(x)
```

+	+
Dropout Rate	Test Score
+	++
0.5	0.06
0.2	0.06
0.8	0.09
0.5	0.06
0.2	0.06
0.8	0.13
0.5	0.09
0.2	0.06
0.8	1.02
	0.5 0.2 0.8 0.5 0.2 0.8 0.5 0.2