代码库

Blazar

2017年11月27日

目录			3	数据结构	13
				3.1 lct	13
1	数论	3		3.2 k-d 树	14
	1.1 快速求逆元	3		3.3 树上莫队	16
	1.2 扩展欧几里德算法	3		3.4 树状数组 kth	17
	1.3 中国剩余定理	3		3.5 虚树	17
	1.4 组合数取模	4			
	1.5 卢卡斯定理	4	4	图论	17
	1.6 小步大步	4		4.1 点双连通分量 (lyx)	17
	1.7 Miller Rabin 素数测试	5		4.2 Hopcoft-Karp 求最大匹配	18
	1.8 Pollard Rho 大数分解	5		4.3 KM 带权匹配	19
	1.9 快速数论变换 (zky)	5		4.4 2-SAT 问题	20
	1.10 原根	6		4.5 有根树的同构	20
	1.11 线性递推	7		4.6 Dominator Tree	21
	1.12 线性筛	7		4.7 无向图最小割	23
	1.13 直线下整点个数	8		4.8 带花树	23
2	数值	8	5	字符串	25
	2.1 高斯消元	8		5.1 KMP 算法	25
	2.2 线性基	9		5.2 扩展 KMP 算法	25
	2.3 1e9+7 FFT	9		5.3 AC 自动机	26
	2.4 单纯形法求解线性规划	10		5.4 后缀自动机	26
	2.5 自适应辛普森	11		5.4.1 广义后缀自动机 (多串)	26
	2.6 多项式求根	11		5.4.2 sam-ypm	27
	2.7 快速求逆	12		5.5 后缀数组	29
	2.8 魔幻多项式	12		5.6 Manacher	29

	5.7 循环串的最小表示	30	10	常见错误	41
6	计算几何	30	11	测试列表	41
	6.1 二维几何	30		7	44
	6.2 阿波罗尼茨圆	30		Java 12.1 Java Hints	41 41
	6.3 最小覆盖球	30		12.1 Java Hints	41
	6.4 三角形与圆交		13	数学	42
	6.5 圆并	31		13.1 常用数学公式	42
	6.6 整数半平面交	32		13.1.1 求和公式	42
	6.7 三角形			13.1.2 斐波那契数列	42
	6.8 经纬度求球面最短距离	33		13.1.3 错排公式	43
	6.9 长方体表面两点最短距离	33		13.1.4 莫比乌斯函数	43
	6.10 点到凸包切线	34		13.1.5 伯恩赛德引理	43
	6.11 直线与凸包的交点	34		13.1.6 五边形数定理	43
	6.12 平面最近点对	34		13.1.7 树的计数	43
	The Pr			13.1.8 欧拉公式	44
7	其他	35		13.1.9 皮克定理	44
	7.1 斯坦纳树			13.1.10牛顿恒等式	44
	7.2 最小树形图			13.2 平面几何公式	44
	7.3 DLX			13.2.1 三角形	44
	7.4 某年某月某日是星期几			13.2.2 四边形	44
	7.5 枚举大小为 <i>k</i> 的子集			13.2.3 正 n 边形	45
	7.6 环状最长公共子串			13.2.4 圆	45
	7.7 LLMOD			13.2.5 棱柱	45
	7.8 STL 内存清空			13.2.6 棱锥	45
	7.9 开栈			13.2.7 棱台	45
	7.10 32-bit/64-bit 随机素数	39		13.2.8 圆柱	46
0	vimrc	20		13.2.9 圆锥	46
0	VUII C	39		13.2.1-66台	46
9	常用结论	40		13.2.1球	46
	9.1 上下界网络流	40		13.2.12球台	46
	9.2 上下界费用流			13.2.13球扇形	46
	9.3 弦图相关			13.3 积分表	47
	9.4 Bernoulli 数	41			

1 数论

1.1 快速求逆元

```
使用条件: x \in [0, mod) 并且 x 与 mod 互质 LL inv(LL a, LL p) { LL d, x, y; exgcd(a, p, d, x, y); return d == 1 ? (x + p) % p : -1; }
```

1.2 扩展欧几里德算法

返回结果:

$$ax + by = gcd(a, b)$$

时间复杂度: $\mathcal{O}(nlogn)$

```
LL exgcd(LL a, LL b, LL &x, LL &y) {
    if(!b) {
        x = 1;
        y = 0;
        return a;
    } else {
        LL d = exgcd(b, a % b, x, y);
        LL t = x;
        x = y;
        y = t - a / b * y;
        return d;
    }
}
```

1.3 中国剩余定理

返回结果:

$$x \equiv r_i (mod \ p_i) \ (0 \le i < n)$$

```
LL china(int n, int *a, int *m) {
    LL M = 1, d, x = 0, y;
```

```
for(int i = 0; i < n; i++)
    M *= m[i];
for(int i = 0; i < n; i++) {
    LL w = M / m[i];
    d = exgcd(m[i], w, d, y);
    y = (y % M + M) % M;
    x = (x + y * w % M * a[i]) % M;
}
while(x < 0)x += M;
return x;
}</pre>
```

1.4 组合数取模

```
LL prod = 1, P;
pair<LL, LL> comput(LL n, LL p, LL k) {
   if(n <= 1) return make_pair(0, 1);</pre>
   LL ans = 1, cnt = 0;
   ans = pow(prod, n / P, P);
   cnt = n / p;
    pair<LL, LL> res = comput(n / p, p, k);
   cnt += res.first;
    ans = ans * res.second % P;
    for(int i = n - n % P + 1; i <= n; i++)</pre>
    if(i % p)
            ans = ans * i % P;
    return make pair(cnt, ans);
pair<LL, LL> calc(LL n, LL p, LL k) {
   prod = 1;
   P = pow(p, k, 1e18);
   for(int i = 1; i < P; i++)
   if(i % p)
     prod = prod * i % P;
    pair<LL, LL> res = comput(n, p, k);
    return res;
LL calc(LL n, LL m, LL p, LL k) {
    pair<LL, LL>A, B, C;
```

```
LL P = pow(p, k, 1e18);
    A = calc(n, p, k);
    B = calc(m, p, k);
    C = calc(n - m, p, k);
    LL ans = 1;
    ans = pow(p, A.first - B.first - C.first, P);
    ans = ans * A.second % P * inv(B.second, P) % P * inv(C.second, P) % P;
    return ans;
}
1.5 卢卡斯定理
LL Lucas(LL n, LL m, LL p) {
    LL ans = 1;
    while(n && m) {
       LL a = n \% p, b = m \% p;
       if(a < b) return 0;</pre>
       ans = (ans * C(a, b, p)) % p;
       n /= p;
       m /= p;
    }
    return ans % p;
}
1.6 小步大步
    返回结果:
                                 a^x = b \pmod{p}
    使用条件: p 为质数
                             时间复杂度: \mathcal{O}(\sqrt{n})
LL BSGS(LL a, LL b, LL p) {
    LL m = sqrt(p) + .5, v = inv(pw(a, m, p), p), e = 1;
```

map<LL, LL> hash;

for(int i = 1; i < m; i++)

if(hash.count(b))

e = e * a % p, hash[e] = i;
for(int i = 0; i <= m; i++) {</pre>

hash[1] = 0;

```
return i * m + hash[b];
       b = b * v \% p;
   }
   return -1;
1.7 Miller Rabin 素数测试
const int BASE[12] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
bool check(long long n, int base) {
   long long n2 = n - 1, res;
   int s = 0;
   while(n2 % 2 == 0) n2 >>= 1, s++;
   res = pw(base, n2, n);
   if((res == 1) || (res == n - 1)) return 1;
   while(s--) {
       res = mul(res, res, n);
       if(res == n - 1) return 1;
   return 0; // n is not a strong pseudo prime
bool isprime(const long long &n) {
   if(n == 2)
       return true;
   if(n < 2 || n % 2 == 0)
       return false:
   for(int i = 0; i < 12 && BASE[i] < n; i++) {</pre>
       if(!check(n, BASE[i]))
            return false:
   }
   return true;
```

1.8 Pollard Rho 大数分解

```
时间复杂度: \mathcal{O}(n^{1/4}) LL prho(LL n, LL c) { LL i = 1, k = 2, x = rand() % (n - 1) + 1, y = x;
```

```
while(1) {
        i++;
        x = (x * x % n + c) % n;
        LL d = gcd((y - x + n) \% n, n);
        if(d > 1 && d < n)return d;
        if(v == x)return n;
        if(i == k)y = x, k <<= 1;
    }
}
void factor(LL n, vector<LL>&fat) {
    if(n == 1)return;
    if(isprime(n)) {
        fat.push back(n);
        return;
    }
    LL p = n;
    while(p \ge n)p = prho(p, rand() % (<math>n - 1) + 1);
    factor(p, fat);
    factor(n / p, fat);
}
```

快速数论变换 (zky)

返回结果:

$$c_i = \sum_{0 \le j \le i} a_j \cdot b_{i-j}(mod) \ (0 \le i < n)$$

使用说明: magic 是 mod 的原根

时间复杂度: $\mathcal{O}(nlogn)$

```
/*
{(mod,G)}={(81788929,7),(101711873,3),(167772161,3)
      ,(377487361,7),(998244353,3),(1224736769,3)
      ,(1300234241,3),(1484783617,5)}
*/
int mo = 998244353, G = 3;
void NTT(int a[], int n, int f) {
    for(register int i = 0; i < n; i++)</pre>
        if(i < rev[i])</pre>
            swap(a[i], a[rev[i]]);
```

```
for (register int i = 2; i <= n; i <<= 1) {
        static int exp[maxn];
        exp[0] = 1;
        exp[1] = pw(G, (mo - 1) / i);
        if(f == -1)exp[1] = pw(exp[1], mo - 2);
        for(register int k = 2; k < (i >> 1); k++)
            \exp[k] = 1LL * \exp[k - 1] * \exp[1] % mo;
        for(register int j = 0; j < n; j += i) {
            for(register int k = 0; k < (i >> 1); k++) {
                register int &pA = a[j + k], &pB = a[j + k + (i >> 1)];
                register int A = pA, B = 1LL * pB * exp[k] % mo;
                pA = (A + B) \% mo;
                pB = (A - B + mo) \% mo;
            }
        }
    if(f == -1) {
        int rv = pw(n, mo - 2) \% mo;
        for(int i = 0; i < n; i++)</pre>
            a[i] = 1LL * a[i] * rv % mo;
    }
}
void mul(int m, int a[], int b[], int c[]) {
    int n = 1, len = 0;
    while(n < m)n <<= 1, len++;
    for (int i = 1; i < n; i++)
        rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
    NTT(a, n, 1);
    NTT(b, n, 1);
    for(int i = 0; i < n; i++)</pre>
        c[i] = 1LL * a[i] * b[i] % mo;
    NTT(c, n, -1);
1.10 原根
vector<LL>fct;
bool check(LL x, LL g) {
```

```
for(int i = 0; i < fct.size(); i++)</pre>
```

```
if(pw(g, (x - 1) / fct[i], x) == 1)
            return 0;
    return 1;
}
LL findrt(LL x) {
    LL tmp = x - 1;
    for(int i = 2; i * i <= tmp; i++) {</pre>
        if(tmp % i == 0) {
            fct.push_back(i);
            while(tmp % i == 0)tmp /= i;
       }
    }
    if(tmp > 1) fct.push back(tmp);
    // x is 1,2,4,p^n,2p^n
    // x has phi(phi(x)) primitive roots
    for(int i = 2; i < int(1e9); i++)</pre>
    if(check(x, i))
            return i;
    return -1;
}
const int BASE[12] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
bool check(long long n, int base) {
    long long n2 = n - 1, res;
    int s = 0;
    while(n2 % 2 == 0) n2 >>= 1, s++;
    res = pw(base, n2, n);
    if((res == 1) || (res == n - 1)) return 1;
    while(s--) {
        res = mul(res, res, n);
        if(res == n - 1) return 1;
    }
    return 0; // n is not a strong pseudo prime
}
bool isprime(const long long &n) {
    if(n == 2)
        return true;
    if(n < 2 || n % 2 == 0)
        return false:
    for(int i = 0; i < 12 && BASE[i] < n; i++) {
```

1.11 线性递推

```
//已知 a_0, a_1, ..., a_{m-1}\\
a_n = c_0 * a_{n-m} + ... + c_{m-1} * a_{n-1} \setminus \{
        \stackrel{*}{\mathbb{R}} a_n = v_0 * a_0 + v_1 * a_1 + \dots + v_{m-1} * a_{m-1} \setminus \{0\}
void linear recurrence(long long n, int m, int a[], int c[], int p) {
    long long v[M] = \{1 \% p\}, u[M << 1], msk = !!n;
    for(long long i(n); i > 1; i >>= 1) {
         msk <<= 1;
    for(long long x(0); msk; msk >>= 1, x <<= 1) {
         fill_n(u, m << 1, 0);
         int b(!!(n & msk));
         x \mid = b;
         if(x < m) {
             u[x] = 1 \% p;
         } else {
              for(int i(0); i < m; i++) {</pre>
                  for(int j(0), t(i + b); j < m; j++, t++) {
                       u[t] = (u[t] + v[i] * v[j]) % p;
             }
             for(int i((m << 1) - 1); i >= m; i--) {
                  for(int j(0), t(i - m); j < m; j++, t++) {
                       u[t] = (u[t] + c[j] * u[i]) % p;
                  }
             }
         }
         copy(u, u + m, v);
    //a[n] = v[0] * a[0] + v[1] * a[1] + ... + v[m - 1] * a[m - 1].
    for(int i(m); i < 2 * m; i++) {</pre>
```

```
a[i] = 0;
for(int j(0); j < m; j++) {
      a[i] = (a[i] + (long long)c[j] * a[i + j - m]) % p;
}

for(int j(0); j < m; j++) {
      b[j] = 0;
      for(int i(0); i < m; i++) {
         b[j] = (b[j] + v[i] * a[i + j]) % p;
      }

for(int j(0); j < m; j++) {
      a[j] = b[j];
}</pre>
```

1.12 线性筛

}

```
void sieve() {
   f[1] = mu[1] = phi[1] = 1;
   for(int i = 2; i < maxn; i++) {</pre>
       if(!minp[i]) {
            minp[i] = i;
            minpw[i] = i;
            mu[i] = -1;
            phi[i] = i - 1;
            f[i] = i - 1;
            p[++p[0]] = i; // Case 1 prime
       }
        for(int j = 1; j <= p[0] && (LL)i * p[j] < maxn; j++) {</pre>
            minp[i * p[j]] = p[j];
            if(i % p[j] == 0) {
                // Case 2 not coprime
                minpw[i * p[j]] = minpw[i] * p[j];
                phi[i * p[j]] = phi[i] * p[j];
                mu[i * p[j]] = 0;
                if(i == minpw[i]) {
                    f[i * p[j]] = i * p[j] - i; // Special Case for <math>f(p^k)
                } else {
```

```
f[i * p[j]] = f[i / minpw[i]] * f[minpw[i] * p[j]];
}
break;
} else {
    // Case 3 coprime
    minpw[i * p[j]] = p[j];
    f[i * p[j]] = f[i] * f[p[j]];
    phi[i * p[j]] = phi[i] * (p[j] - 1);
    mu[i * p[j]] = -mu[i];
}
}
}
```

1.13 直线下整点个数

返回结果:

$$\sum_{0 \le i \le n} \lfloor \frac{a + b \cdot i}{m} \rfloor$$

2 数值

2.1 高斯消元

```
void Gauss(){
  int r,k;
```

```
for(int i=0;i<n;i++){</pre>
    r=i;
    for(int j=i+1; j<n; j++)</pre>
      if(fabs(A[j][i])>fabs(A[r][i]))r=j;
    if(r!=i)for(int j=0;j<=n;j++)swap(A[i][j],A[r][j]);</pre>
    for(int k=i+1;k<n;k++){</pre>
      double f=A[k][i]/A[i][i];
      for(int j=i;j<=n;j++)A[k][j]-=f*A[i][j];</pre>
    }
  for(int i=n-1;i>=0;i--){
    for(int j=i+1; j<n; j++)</pre>
      A[i][n]-=A[j][n]*A[i][j];
    A[i][n]/=A[i][i];
  }
  for(int i=0;i<n-1;i++)</pre>
    cout<<fixed<<setprecision(3)<<A[i][n]<<" ";</pre>
  cout<<fixed<<setprecision(3)<<A[n-1][n];</pre>
}
bool Gauss(){
  for(int i=1;i<=n;i++){</pre>
    int r=0;
    for(int j=i;j<=m;j++)</pre>
    if(a[j][i]){r=j;break;}
    if(!r)return 0;
    ans=max(ans,r);
    swap(a[i],a[r]);
    for(int j=i+1; j<=m; j++)</pre>
    if(a[j][i])a[j]^=a[i];
  }for(int i=n;i>=1;i--){
    for(int j=i+1; j<=n; j++)if(a[i][j])</pre>
    a[i][n+1]=a[i][n+1]^a[j][n+1];
  }return 1;
}
LL Gauss(){
  for(int i=0;i<n;i++)for(int j=0;j<n;j++)A[i][j]%=m;</pre>
  for(int i=0;i<n;i++)for(int j=0;j<n;j++)A[i][j]=(A[i][j]+m)%m;</pre>
  LL ans=n%2?-1:1;
  for(int i=0;i<n;i++){</pre>
```

```
for(int j=i+1; j<n; j++){</pre>
      while(A[j][i]){
        LL t=A[i][i]/A[j][i];
        for(int k=0;k<n;k++)</pre>
        A[i][k]=(A[i][k]-A[j][k]*t%m+m)%m;
        swap(A[i],A[j]);
        ans=-ans;
    }ans=ans*A[i][i]%m;
  }return (ans%m+m)%m;
int Gauss(){//求秩
 int r,now=-1;
 int ans=0;
  for(int i = 0; i <n; i++){</pre>
   r = now + 1;
    for(int j = now + 1; j < m; j++)</pre>
      if(fabs(A[j][i]) > fabs(A[r][i]))
        r = j;
    if (!sgn(A[r][i])) continue;
    ans++;
    now++;
    if(r != now)
      for(int j = 0; j < n; j++)</pre>
        swap(A[r][j], A[now][j]);
    for(int k = now + 1; k < m; k++){
      double t = A[k][i] / A[now][i];
      for(int j = 0; j < n; j++){
        A[k][j] -= t * A[now][j];
      }
    }
  return ans;
```

2.2 线性基

```
const int N = 65;
LL bin[N], bas[N];
int pos[N], num;
void add(long long x, int m)
  for(int j = m; j >= 0; j--)
    if((x & bin[j]) && pos[j])
      x ^= bas[pos[j]];
  if(x == 0)
    return;
  for(int j = m; j >= 0; j--)
    if(x & bin[j])
      pos[j] = ++num;
      bas[num] = x;
      break;
}
int work(long long *a, int n, int m)
  num = 0;
  memset(pos, 0, sizeof(pos));
  for(int i = 1; i <= n; i++)</pre>
    add(a[i], m);
  return num:
}
```

2.3 1e9+7 FFT

```
// double 精度对 10^9+7 取模最多可以做到 2^{20} const int MOD = 1000003; const double PI = acos(-1); typedef complex<double> Complex; const int N = 65536, L = 15, MASK = (1 << L) - 1;
```

```
Complex w[N];
void FFTInit() {
 for (int i = 0; i < N; ++i)
    w[i] = Complex(cos(2 * i * PI / N), sin(2 * i * PI / N));
}
void FFT(Complex p[], int n) {
  for (int i = 1, j = 0; i < n - 1; ++i) {
   for (int s = n; j ^= s >>= 1, ~j & s;);
   if (i < j) swap(p[i], p[j]);</pre>
  for (int d = 0; (1 << d) < n; ++d) {
    int m = 1 \ll d, m2 = m * 2, rm = n >> (d + 1);
    for (int i = 0; i < n; i += m2) {
     for (int j = 0; j < m; ++j) {
        Complex &p1 = p[i + j + m], &p2 = p[i + j];
        Complex t = w[rm * j] * p1;
        p1 = p2 - t, p2 = p2 + t;
     } } }
Complex A[N], B[N], C[N], D[N];
void mul(int a[N], int b[N]) {
 for (int i = 0; i < N; ++i) {
   A[i] = Complex(a[i] >> L, a[i] & MASK);
    B[i] = Complex(b[i] >> L, b[i] & MASK);
 }
  FFT(A, N), FFT(B, N);
  for (int i = 0; i < N; ++i) {
   int j = (N - i) \% N;
    Complex da = (A[i] - conj(A[j])) * Complex(0, -0.5),
        db = (A[i] + conj(A[j])) * Complex(0.5, 0),
        dc = (B[i] - conj(B[j])) * Complex(0, -0.5),
        dd = (B[i] + conj(B[j])) * Complex(0.5, 0);
    C[j] = da * dd + da * dc * Complex(0, 1);
    D[j] = db * dd + db * dc * Complex(0, 1);
 }
  FFT(C, N), FFT(D, N);
  for (int i = 0; i < N; ++i) {
   long long da = (long long)(C[i].imag() / N + 0.5) % MOD,
          db = (long long)(C[i].real() / N + 0.5) % MOD,
```

```
dc = (long long)(D[i].imag() / N + 0.5) % MOD,
          dd = (long long)(D[i].real() / N + 0.5) % MOD;
   a[i] = ((dd \ll (L * 2)) + ((db + dc) \ll L) + da) % MOD;
 }
}
```

单纯形法求解线性规划

返回结果:

```
max\{c_{1\times m}\cdot x_{m\times 1} \mid x_{m\times 1}\geq 0_{m\times 1}, a_{n\times m}\cdot x_{m\times 1}\leq b_{n\times 1}\}
namespace LP{
  const int maxn=233;
  double a[maxn][maxn];
  int Ans[maxn],pt[maxn];
  int n,m;
  void pivot(int l,int i){
    double t;
    swap(Ans[l+n],Ans[i]);
    t=-a[l][i];
    a[l][i]=-1;
    for(int j=0;j<=n;j++)a[l][j]/=t;</pre>
    for(int j=0;j<=m;j++){</pre>
      if(a[j][i]&&j!=l){
         t=a[j][i];
         a[j][i]=0;
         for(int k=0;k<=n;k++)a[j][k]+=t*a[l][k];</pre>
      }
    }
  vector<double> solve(vector<vector<double> >A, vector<double>B, vector<double>C){
    n=C.size();
    m=B.size();
    for(int i=0;i<C.size();i++)</pre>
      a[0][i+1]=C[i];
    for(int i=0;i<B.size();i++)</pre>
       a[i+1][0]=B[i];
```

```
for(int i=0;i<m;i++)</pre>
  for(int j=0;j<n;j++)</pre>
    a[i+1][j+1]=-A[i][j];
for(int i=1;i<=n;i++)Ans[i]=i;</pre>
double t;
for(;;){
 int l=0;t=-eps;
  for(int j=1;j<=m;j++)if(a[j][0]<t)t=a[l=j][0];</pre>
 if(!l)break;
  int i=0;
  for(int j=1;j<=n;j++)if(a[l][j]>eps){i=j;break;}
 if(!i){
    puts("Infeasible");
    return vector<double>();
 }
  pivot(l,i);
}
for(;;){
 int i=0;t=eps;
  for(int j=1; j<=n; j++)if(a[0][j]>t)t=a[0][i=j];
 if(!i)break;
  int l=0;
  t=1e30;
  for(int j=1;j<=m;j++)if(a[j][i]<-eps){</pre>
    double tmp;
    tmp=-a[j][0]/a[j][i];
    if(t>tmp)t=tmp,l=j;
 }
 if(!l){
    puts("Unbounded");
    return vector<double>();
 }
  pivot(l,i);
vector<double>x;
for(int i=n+1;i<=n+m;i++)pt[Ans[i]]=i-n;</pre>
for(int i=1;i<=n;i++)x.push_back(pt[i]?a[pt[i]][0]:0);</pre>
```

```
double f(int n,double x){
    return x;
                                                                                            double ans=0;
}
                                                                                            for(int i=n;i>=0;--i)ans+=a[n][i]*mypow(x,i);
                                                                                            return ans;
      自适应辛普森
                                                                                          double getRoot(int n,double l,double r){
                                                                                            if(sgn(f(n,l))==0)return l;
double area(const double &left, const double &right) {
                                                                                            if(sgn(f(n,r))==0)return r;
    double mid = (left + right) / 2;
                                                                                            double temp;
    return (right - left) * (calc(left) + 4 * calc(mid) + calc(right)) / 6;
                                                                                            if(sgn(f(n,l))>0)temp=-1;else temp=1;
}
                                                                                            double m:
                                                                                            for(int i=1;i<=10000;++i){</pre>
double simpson(const double &left, const double &right,
                                                                                              m=(l+r)/2;
               const double &eps, const double &area sum) {
                                                                                              double mid=f(n,m);
    double mid = (left + right) / 2;
                                                                                              if(sgn(mid)==0){
    double area left = area(left, mid);
                                                                                                return m;
    double area_right = area(mid, right);
    double area total = area left + area right;
                                                                                              if(mid*temp<0)l=m;else r=m;</pre>
    if (std::abs(area total - area sum) < 15 * eps) {</pre>
        return area total + (area total - area sum) / 15;
                                                                                            return (l+r)/2;
    }
    return simpson(left, mid, eps / 2, area_left)
                                                                                          vd did(int n){
         + simpson(mid, right, eps / 2, area right);
                                                                                            vd ret;
}
                                                                                            if(n==1){
                                                                                              ret.push back(-1e10);
double simpson(const double &left, const double &right, const double &eps) {
                                                                                              ret.push_back(-a[n][0]/a[n][1]);
    return simpson(left, right, eps, area(left, right));
                                                                                              ret.push back(1e10);
}
                                                                                              return ret;
                                                                                            }
      多项式求根
                                                                                            vd mid=did(n-1);
                                                                                            ret.push back(-1e10);
const double eps=1e-12;
                                                                                            for(int i=0;i+1<mid.size();++i){</pre>
double a[10][10];
                                                                                              int t1=sgn(f(n,mid[i])),t2=sgn(f(n,mid[i+1]));
typedef vector<double> vd;
                                                                                              if(t1*t2>0)continue;
int sgn(double x) \{ return x < -eps ? -1 : x > eps; \}
                                                                                              ret.push_back(getRoot(n,mid[i],mid[i+1]));
double mypow(double x,int num){
  double ans=1.0;
                                                                                            ret.push back(1e10);
  for(int i=1;i<=num;++i)ans*=x;</pre>
                                                                                            return ret;
  return ans;
```

}

```
int main(){
   int n; scanf("%d",&n);
   for(int i=n;i>=0;--i){
      scanf("%lf",&a[n][i]);
   }
   for(int i=n-1;i>=0;--i)
      for(int j=0;j<=i;++j)a[i][j]=a[i+1][j+1]*(j+1);
   vd ans=did(n);
   sort(ans.begin(),ans.end());
   for(int i=1;i+1<ans.size();++i)printf("%.10f\n",ans[i]);
   return 0;
}</pre>
```

2.7 快速求逆

```
long long inverse(const long long &x, const long long &mod) {
   if (x == 1) {
      return 1;
   } else {
      return (mod - mod / x) * inverse(mod % x, mod) % mod;
   }
}
```

2.8 魔幻多项式

多项式求逆

原理: 令 G(x) = x * A - 1 (其中 A 是一个多项式系数),根据牛顿迭代法有:

$$F_{t+1}(x) \equiv F_t(x) - rac{F_t(x)*A(x)-1}{A(x)}$$

$$\equiv 2F_t(x) - F_t(x)^2*A(x) \pmod{x^{2t}}$$

注意事项:

- 1. F(x) 的常数项系数必然不为 0,否则没有逆元;
- 2. 复杂度是 $O(n \log n)$ 但是常数比较大 (10^5) 大概需要 0.3 秒左右);
- 3. 传入的两个数组必须不同, 但传入的次数界没有必要是 2 的次幂;

```
void getInv(int *a, int *b, int n) {
  static int tmp[MAXN];
  b[0] = fpm(a[0], MOD - 2, MOD);
  for (int c = 2, M = 1; c < (n << 1); c <<= 1) {
    for (; M <= 3 * (c - 1); M <<= 1);
    meminit(b, c, M);
    meminit(tmp, c, M);
    memcopy(tmp, a, 0, c);
    DFT(tmp, M, 0);
    DFT(b, M, 0);
    for (int i = 0; i < M; i++) {
      b[i] = 1ll * b[i] * (2ll - 1ll * tmp[i] * b[i] % MOD + MOD) % MOD;
    DFT(b, M, 1);
    meminit(b, c, M);
    }
}
```

多项式除法

作用:给出两个多项式 A(x) 和 B(x),求两个多项式 D(x) 和 R(x) 满足:

$$A(x) \equiv D(x)B(x) + R(x) \pmod{x^n}$$

注意事项:

- 1. 常数比较大概为 6 倍 FFT 的时间, 即大约 10^5 的数据 0.07s 左右;
- 2. 传入两个多项式的次数界,没有必要是 2 的次幂,但是要保证除数多项式不为 0。

```
getInv(tB, inv, M);
  for (M = 1; M <= 2 * (n - m + 1); M <<= 1);
  meminit(inv, n - m + 1, M);
 meminit(tA, n - m + 1, M);
 DFT(inv, M, 0);
 DFT(tA, M, 0);
 for (int i = 0; i < M; i++) {
   d[i] = 111 * inv[i] * tA[i] % MOD;
 }
 DFT(d, M, 1);
  std::reverse(d, d + n - m + 1);
  for (M = 1; M <= n; M <<= 1);
 memcopy(tB, b, 0, m); meminit(tB, m, M);
 memcopy(tD, d, 0, n - m + 1); meminit(tD, n - m + 1, M);
 DFT(tD, M, 0);
 DFT(tB, M, 0);
 for (int i = 0; i < M; i++) {
   r[i] = 111 * tD[i] * tB[i] % MOD;
 DFT(r, M, 1);
 meminit(r, n, M);
 for (int i = 0; i < n; i++) {
   r[i] = (a[i] - r[i] + MOD) % MOD;
 }
}
```

3 数据结构

3.1 lct

```
struct LCT
{
  int fa[N], c[N][2], rev[N], sz[N];

  void update(int o) {
    sz[o] = sz[c[o][0]] + sz[c[o][1]] + 1;
  }
  void pushdown(int o) {
```

```
if(rev[o]) {
    rev[o] = 0;
    rev[c[o][0]] ^= 1;
    rev[c[o][1]] ^= 1;
    swap(c[o][0], c[o][1]);
  }
}
bool ch(int o) {
  return o == c[fa[o]][1];
bool isroot(int o) {
  return c[fa[o]][0] != o && c[fa[o]][1] != o;
}
void setc(int x, int y, bool d) {
  if(x) fa[x] = y;
  if(y) c[y][d] = x;
}
void rotate(int x) {
  if(isroot(x)) return;
  int p = fa[x], d = ch(x);
  if(isroot(p)) fa[x] = fa[p];
  else setc(x, fa(p), ch(p));
  setc(c[x][d^1], p, d);
  setc(p, x, d^1);
  update(p);
  update(x);
void splay(int x) {
  static int q[N], top;
  int y = q[top = 1] = x;
  while(!isroot(y)) q[++top] = y = fa[y];
  while(top) pushdown(q[top--]);
  while(!isroot(x)) {
    if(!isroot(fa[x]))
      rotate(ch(fa[x]) == ch(x) ? fa[x] : x);
    rotate(x);
  }
}
void access(int x) {
```

```
for(int y = 0; x; y = x, x = fa[x])
                                                                                                ret += std::min(1ll * (dmin.data[i] - rhs.data[i]) * (dmin.data[i] -
      splay(x), c[x][1] = y, update(x);

    rhs.data[i]),

  }
                                                                                                  111 * (dmax.data[i] - rhs.data[i]) * (dmax.data[i] - rhs.data[i]));
  void makeroot(int x) {
                                                                                              }
    access(x), splay(x), rev(x) ^= 1;
                                                                                              return ret;
  void link(int x, int y) {
                                                                                            long long getMaxDist(const Point &rhs) {
    makeroot(x), fa[x] = y, splay(x);
                                                                                              long long ret = 0;
                                                                                              for (register int i = 0; i < k; i++) {
  void cut(int x, int y) {
                                                                                                int tmp = std::max(std::abs(dmin.data[i] - rhs.data[i]),
    makeroot(x);
                                                                                                    std::abs(dmax.data[i] - rhs.data[i]));
    access(y);
                                                                                                ret += 1ll * tmp * tmp;
    splay(v);
                                                                                              }
    c[y][0] = fa[x] = 0;
                                                                                              return ret;
  }
                                                                                            }
};
                                                                                          }tree[MAXN * 4];
                                                                                          struct Result{
                                                                                            long long dist;
3.2 k-d 树
                                                                                            Point d;
                                                                                            Result() {}
struct Point{
                                                                                            Result(const long long &dist, const Point &d) : dist(dist), d(d) {}
  int data[MAXK], id;
                                                                                            bool operator >(const Result &rhs)const {
}p[MAXN];
                                                                                              return dist > rhs.dist || (dist == rhs.dist && d.id < rhs.d.id);</pre>
                                                                                            }
struct KdNode{
                                                                                            bool operator <(const Result &rhs)const {</pre>
  int l, r;
                                                                                              return dist < rhs.dist || (dist == rhs.dist && d.id > rhs.d.id);
  Point p, dmin, dmax;
                                                                                            }
  KdNode() {}
                                                                                          };
  KdNode(const Point &rhs) : l(0), r(0), p(rhs), dmin(rhs), dmax(rhs) {}
  inline void merge(const KdNode &rhs) {
                                                                                          inline long long sqrdist(const Point &a, const Point &b) {
    for (register int i = 0; i < k; i++) {
                                                                                            register long long ret = 0;
      dmin.data[i] = std::min(dmin.data[i], rhs.dmin.data[i]);
                                                                                            for (register int i = 0; i < k; i++) {</pre>
      dmax.data[i] = std::max(dmax.data[i], rhs.dmax.data[i]);
                                                                                              ret += 1ll * (a.data[i] - b.data[i]) * (a.data[i] - b.data[i]);
                                                                                            }
  }
                                                                                            return ret;
  inline long long getMinDist(const Point &rhs)const {
    register long long ret = 0;
    for (register int i = 0; i < k; i++) {
                                                                                          inline int alloc() {
      if (dmin.data[i] <= rhs.data[i] && rhs.data[i] <= dmax.data[i]) continue;</pre>
```

```
size++;
  tree[size].l = tree[size].r = 0;
  return size;
}
void build(const int &depth, int &rt, const int &l, const int &r) {
  if (l > r) return:
  register int middle = l + r >> 1;
  std::nth element(p + l, p + middle, p + r + 1,
    [=](const Point &a, const Point &b){return a.data[depth] < b.data[depth];};</pre>
  tree[rt = alloc()] = KdNode(p[middle]);
  if (l == r) return;
  build((depth + 1) % k, tree[rt].l, l, middle - 1);
  build((depth + 1) % k, tree[rt].r, middle + 1, r);
  if (tree[rt].l) tree[rt].merge(tree[rt].l]);
 if (tree[rt].r) tree[rt].merge(tree[tree[rt].r]);
}
std::priority queue<Result, std::vector<Result>, std::greater<Result> > heap;
void getMinKth(const int &depth, const int &rt, const int &m, const Point &d) {
 → // 求 K 近点
  Result tmp = Result(sqrdist(tree[rt].p, d), tree[rt].p);
  if ((int)heap.size() < m) {</pre>
    heap.push(tmp);
 } else if (tmp < heap.top()) {</pre>
    heap.pop();
    heap.push(tmp);
  int x = tree[rt].l, y = tree[rt].r;
 \hookrightarrow y);
  if (x != 0 && ((int)heap.size() < m || tree[x].getMinDist(d) < heap.top().dist)) {</pre>
    getMinKth((depth + 1) % k, x, m, d);
  if (y != 0 && ((int)heap.size() < m || tree[y].getMinDist(d) < heap.top().dist)) {</pre>
    getMinKth((depth + 1) % k, y, m, d);
 }
}
```

```
void getMaxKth(const int &depth, const int &rt, const int &m, const Point &d) {
 → // 求 K 远点
  Result tmp = Result(sqrdist(tree[rt].p, d), tree[rt].p);
  if ((int)heap.size() < m) {</pre>
    heap.push(tmp);
 } else if (tmp > heap.top()) {
    heap.pop();
    heap.push(tmp);
  int x = tree[rt].l, y = tree[rt].r;
  if (x != 0 \&\& v != 0 \&\& sqrdist(d, tree[x].p) < sqrdist(d, tree[v].p)) std::swap(x, y) = 0 \&\& sqrdist(d, tree[x].p)
 \hookrightarrow y);
  if (x != 0 && ((int)heap.size() < m || tree[x].getMaxDist(d) >= heap.top().dist)) {
 → // 这里的 >= 是因为在距离相等的时候需要按照 id 排序
    getMaxKth((depth + 1) % k, x, m, d);
 }
  if (y != 0 && ((int)heap.size() < m || tree[y].getMaxDist(d) >= heap.top().dist)) {
    getMaxKth((depth + 1) % k, y, m, d);
 }
}
```

3.3 树上莫队

```
const int N = 40005;
const int M = 100005;
const int LOGN = 17;

int n, m;, w[N];
vector<int> g[N];
int bid[N << 1];

struct Query {
  int l, r, extra, i;
  friend bool operator < (const Query &a, const Query &b) {
    if(bid[a.l] != bid[b.l])
     return bid[a.l] < bid[b.l];
    return a.r < b.r;
}</pre>
```

```
} q[M];
int idx;
int st[N], ed[N];
int fa[N][LOGN], dep[N];
int col[N << 1], id[N << 1];</pre>
void dfs(int x, int p) {
  col[st[x] = ++idx] = w[x];
  id[st[x]] = x;
  // maintain fa[], dep[] for lca
  for(auto y: g[x])
   if(y != p)
      dfs(y, x);
  col[ed[x] = ++idx] = w[x];
  id[ed[x]] = x;
}
int lca(int x, int y); // normal lca
void prepare() {
  idx = 0;
  dfs(1, 0);
  int BS = (int)sqrt(idx + 0.5);
  for(int i = 1; i <= idx; i++)</pre>
    bid[i] = (i + BS - 1) / BS;
  for(int i = 1; i <= m; i++)</pre>
    int a = q[i].l;
    int b = q[i].r;
    int c = lca(a, b);
    if(st[a] > st[b]) swap(a, b);
    if(c == a) {
      q[i].l = st[a];
      q[i].r = st[b];
      q[i].extra = 0;
    } else {
      q[i].l = ed[a];
      q[i].r = st[b];
      q[i].extra = c;
    }
```

```
sort(q + 1, q + m + 1);
int curans;
int ans[M];
int cnt[N];
bool state[N];
void rev(int x) {
  int &c = cnt[col[x]];
  curans -= !!c;
  c += (state[id[x]] ^= 1) ? 1 : -1;
  curans += !!c;
void solve() {
  prepare();
  curans = 0;
  memset(cnt, 0, sizeof(cnt));
  memset(state, 0, sizeof(state));
  int l = 1, r = 0;
  for(int i = 1; i <= m; i++) {
   while(l < q[i].l) rev(l++);</pre>
    while(l > q[i].l) rev(--l);
    while(r < q[i].r) rev(++r);</pre>
    while(r > q[i].r) rev(r--);
    if(q[i].extra) rev(st[q[i].extra]);
    ans[q[i].i] = curans;
    if(q[i].extra) rev(st[q[i].extra]);
 }
  for(int i = 1; i <= m; i++)</pre>
    printf("%d\n", ans[i]);
```

3.4 树状数组 kth

```
int find(int k){
  int cnt=0,ans=0;
```

```
for(int i=22;i>=0;i--){
    ans+=(1<<i);
    if(ans>n || cnt+d[ans]>=k)ans-=(1<<i);
    else cnt+=d[ans];
}
return ans+1;
}</pre>
```

3.5 虚树

```
int find(int k){
    int cnt=0,ans=0;
    for(int i=22;i>=0;i--){
        ans+=(1<<i);
        if(ans>n || cnt+d[ans]>=k)ans-=(1<<i);
        else cnt+=d[ans];
    }
    return ans+1;
}</pre>
```

4 图论

4.1 点双连通分量 (lyx)

```
#define SZ(x) ((int)x.size())

const int N = 400005; // N 开 2 倍点数, 因为新树会加入最多 n 个新点
const int M = 200005;

vector<int> g[N];

int bccno[N], bcc_cnt;
vector<int> bcc[N];
bool iscut[N];

struct Edge {
  int u, v;
} stk[M << 2];
```

```
int top; // 注意栈大小为边数 4 倍
int dfn[N], low[N], dfs_clock;
void dfs(int x, int fa)
 low[x] = dfn[x] = ++dfs\_clock;
 int child = 0;
 for(int i = 0; i < SZ(g[x]); i++) {
   int y = g[x][i];
   if(!dfn[y]) {
     child++;
     stk[++top] = (Edge)\{x, y\};
     dfs(y, x);
     low[x] = min(low[x], low[y]);
     if(low[y] >= dfn[x]) {
       iscut[x] = true;
       bcc[++bcc_cnt].clear();
       for(;;) {
          Edge e = stk[top--];
         if(bccno[e.u] != bcc_cnt) { bcc[bcc_cnt].push_back(e.u); bccno[e.u] =

    bcc cnt; }

          if(bccno[e.v] != bcc cnt) { bcc[bcc cnt].push back(e.v); bccno[e.v] =

    bcc_cnt; }

         if(e.u == x && e.v == y) break;
       }
   } else if(y != fa && dfn[y] < dfn[x]) {</pre>
     stk[++top] = (Edge)\{x, y\};
     low[x] = min(low[x], dfn[y]);
   }
 }
 if(fa == 0 && child == 1) iscut[x] = false;
void find_bcc() // 求点双联通分量,需要时手动 1 到 n 清空, 1-based
 memset(dfn, 0, sizeof(dfn));
 memset(iscut, 0, sizeof(iscut));
 memset(bccno, 0, sizeof(bccno));
```

```
dfs_clock = bcc_cnt = 0;
  for(int i = 1; i <= n; i++)</pre>
    if(!dfn[i])
      dfs(i, 0);
}
vector<int> G[N];
void prepare() { // 建出缩点后的树
 for(int i = 1; i <= n + bcc cnt; i++)</pre>
    G[i].clear();
  for(int i = 1; i <= bcc_cnt; i++) {</pre>
    int x = i + n;
    for(int j = 0; j < SZ(bcc[i]); j++) {</pre>
      int y = bcc[i][j];
      G[x].push_back(y);
      G[y].push_back(x);
 }
}
```

4.2 Hopcoft-Karp 求最大匹配

```
int matchx[N], matchy[N], level[N];

bool dfs(int x) {
    for (int i = 0; i < (int)edge[x].size(); ++i) {
        int y = edge[x][i];
        int w = matchy[y];
        if (w == -1 || level[x] + 1 == level[w] && dfs(w)) {
            matchx[x] = y;
            matchy[y] = x;
            return true;
        }
    }
    level[x] = -1;
    return false;
}</pre>
```

```
int solve() {
   std::fill(matchx, matchx + n, -1);
   std::fill(matchy, matchy + m, -1);
   for (int answer = 0; ; ) {
        std::vector<int> queue;
        for (int i = 0; i < n; ++i) {
            if (matchx[i] == -1) {
                level[i] = 0;
                queue.push_back(i);
           } else {
                level[i] = -1;
           }
       }
       for (int head = 0; head < (int)queue.size(); ++head) {</pre>
            int x = queue[head];
            for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
                int y = edge[x][i];
                int w = matchy[y];
                if (w != -1 && level[w] < 0) {
                    level[w] = level[x] + 1;
                    queue.push_back(w);
                }
       }
       int delta = 0;
       for (int i = 0; i < n; ++i) {
            if (matchx[i] == -1 && dfs(i)) {
                delta++;
           }
       }
       if (delta == 0) {
            return answer;
       } else {
            answer += delta;
       }
```

4.3 KM 带权匹配

```
注意事项:最小权完美匹配,复杂度为 \mathcal{O}(|V|^3)。
int DFS(int x){
    visx[x] = 1;
    for (int y = 1; y <= ny; y ++){
        if (visy[y]) continue;
       int t = lx[x] + ly[y] - w[x][y];
       if (t == 0) {
            visy[y] = 1;
            if (link[y] == -1||DFS(link[y])){
                link[y] = x;
                return 1;
            }
        else slack[y] = min(slack[y],t);
    }
    return 0;
}
int KM(){
    int i,j;
    memset(link,-1,sizeof(link));
    memset(ly,0,sizeof(ly));
    for (i = 1; i <= nx; i++)
        for (j = 1, lx[i] = -inf; j <= ny; j++)
         lx[i] = max(lx[i],w[i][j]);
    for (int x = 1; x <= nx; x++){
        for (i = 1; i <= ny; i++) slack[i] = inf;</pre>
        while (true) {
            memset(visx, 0, sizeof(visx));
            memset(visy, 0, sizeof(visy));
           if (DFS(x)) break;
            int d = inf;
            for (i = 1; i <= ny;i++)
                if (!visy[i] && d > slack[i]) d = slack[i];
            for (i = 1; i <= nx; i++)
                if (visx[i]) lx[i] -= d;
            for (i = 1; i <= ny; i++)
                if (visv[i]) lv[i] += d;
```

```
else slack[i] -= d;
        }
    }
    int res = 0;
    for (i = 1;i <= ny;i ++)
        if (link[i] > -1) res += w[link[i]][i];
    return res:
4.4 2-SAT 问题
int stamp, comps, top;
int dfn[N], low[N], comp[N], stack[N];
void add(int x, int a, int y, int b) {
    edge[x \ll 1 \mid a].push back(y \ll 1 \mid b);
void tarjan(int x) {
    dfn[x] = low[x] = ++stamp;
    stack[top++] = x;
    for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
        int y = edge[x][i];
        if (!dfn[y]) {
            tarjan(y);
            low[x] = std::min(low[x], low[y]);
        } else if (!comp[y]) {
            low[x] = std::min(low[x], dfn[y]);
        }
    if (low[x] == dfn[x]) {
        comps++;
        do {
            int y = stack[--top];
            comp[y] = comps;
        } while (stack[top] != x);
    }
```

```
bool solve() {
    int counter = n + n + 1;
    stamp = top = comps = 0;
    std::fill(dfn, dfn + counter, 0);
    std::fill(comp, comp + counter, 0);
    for (int i = 0; i < counter; ++i) {</pre>
        if (!dfn[i]) {
            tarjan(i);
        }
    }
    for (int i = 0; i < n; ++i) {
        if (comp[i << 1] == comp[i << 1 | 1]) {</pre>
            return false:
        answer[i] = (comp[i \ll 1 \mid 1] < comp[i \ll 1]);
    }
    return true:
}
```

4.5 有根树的同构

```
const unsigned long long MAGIC = 4423;
unsigned long long magic[N];
std::pair<unsigned long long, int> hash[N];
void solve(int root) {
   magic[0] = 1;
   for (int i = 1; i <= n; ++i) {
        magic[i] = magic[i - 1] * MAGIC;
   }
   std::vector<int> queue;
   queue.push_back(root);
   for (int head = 0; head < (int)queue.size(); ++head) {</pre>
        int x = queue[head];
        for (int i = 0; i < (int)son[x].size(); ++i) {</pre>
            int y = son[x][i];
            queue.push back(y);
       }
```

```
for (int index = n - 1; index >= 0; --index) {
   int x = queue[index];
   hash[x] = std::make pair(0, 0);
    std::vector<std::pair<unsigned long long, int> > value;
    for (int i = 0; i < (int)son[x].size(); ++i) {</pre>
        int y = son[x][i];
        value.push_back(hash[y]);
   std::sort(value.begin(), value.end());
   hash[x].first = hash[x].first * magic[1] + 37;
   hash[x].second++;
   for (int i = 0; i < (int)value.size(); ++i) {</pre>
        hash[x].first = hash[x].first * magic[value[i].second] + value[i].first;
        hash[x].second += value[i].second;
   hash[x].first = hash[x].first * magic[1] + 41;
   hash[x].second++;
}
```

4.6 Dominator Tree

```
#include <bits/stdc++.h>
using namespace std;

const int MAXN = 50101;
const int MAXM = 110101;

class Edge
{public:
   int size;
   int begin[MAXN], dest[MAXM], next[MAXM];
   void clear(int n)
   {
      size = 0;
      fill(begin, begin + n, -1);
}
```

```
Edge(int n = MAXN)
                                                                                             void solve(int s, int n, const Edge &succ)
    clear(n);
                                                                                               fill(dfn, dfn + n, -1);
                                                                                               fill(idom, idom + n, - 1);
  void add_edge(int u, int v)
                                                                                                static Edge pred, tmp;
                                                                                               pred.clear(n);
    dest[size] = v;
                                                                                                for(int i = 0; i < n; ++i)</pre>
    next[size] = begin[u];
                                                                                                 for(int j = succ.begin[i]; ~j; j = succ.next[j])
    begin[u] = size++;
                                                                                                    pred.add_edge(succ.dest[j], i);
                                                                                               stamp = 0;
};
                                                                                                tmp.clear(n);
                                                                                               predfs(s, succ);
class dominator
                                                                                               for(int i = 0; i < stamp; ++i)</pre>
{public:
                                                                                                 fa[id[i]] = smin[id[i]] = id[i];
  int dfn[MAXN], sdom[MAXN], idom[MAXN], id[MAXN], f[MAXN], fa[MAXN], smin[MAXN],
                                                                                               for(int o = stamp - 1; o >= 0; --o)
 \hookrightarrow stamp;
                                                                                                 int x = id[o];
  void predfs(int x, const Edge &succ)
                                                                                                 if(o)
                                                                                                    sdom[x] = f[x];
    id[dfn[x] = stamp++] = x;
    for(int i = succ.begin[x]; ~i; i = succ.next[i])
                                                                                                    for(int i = pred.begin[x]; ~i; i = pred.next[i])
      int y = succ.dest[i];
                                                                                                      int p = pred.dest[i];
      if(dfn[y] < 0)
                                                                                                      if(dfn[p] < 0)
                                                                                                        continue;
        f[y] = x;
                                                                                                      if(dfn[p] > dfn[x])
        predfs(y, succ);
      }
                                                                                                        getfa(p);
    }
                                                                                                        p = sdom[smin[p]];
  int getfa(int x)
                                                                                                      if(dfn[sdom[x]] > dfn[p])
                                                                                                        sdom[x] = p;
    if(fa[x] == x)
      return x;
                                                                                                    tmp.add_edge(sdom[x], x);
    int ret = getfa(fa[x]);
    if(dfn[sdom[smin[fa[x]]]) < dfn[sdom[smin[x]]])</pre>
                                                                                                  while(~tmp.begin[x])
      smin[x] = smin[fa[x]];
    return fa[x] = ret;
                                                                                                   int y = tmp.dest[tmp.begin[x]];
```

```
tmp.begin[x] = tmp.next[tmp.begin[x]];
        getfa(y);
        if(x != sdom[smin[y]])
         idom[y] = smin[y];
        else
          idom[y] = x;
      }
      for(int i = succ.begin[x]; ~i; i = succ.next[i])
        if(f[succ.dest[i]] == x)
          fa[succ.dest[i]] = x;
    }
    idom[s] = s;
    for(int i = 1; i < stamp; ++i)</pre>
      int x = id[i];
      if(idom[x] != sdom[x])
        idom[x] = idom[idom[x]];
};
int ans[MAXN];
Edge e;
dominator dom1;
int dfs(int x)
  if(dom1.idom[x] \ll 0)
    return 0;
  if(ans[x] > 0)
    return ans[x];
  if(dom1.idom[x] == x)
    return ans[x] = x;
 return ans[x] = x + dfs(dom1.idom[x]);
}
int main()
{
```

```
int n, m;
while(scanf("%d%d", &n, &m) == 2)
{
    e.clear(n + 1);
    fill(ans, ans + n + 1, 0);
    for(int i = 0; i < m; ++i)
    {
        int u, v;
        scanf("%d%d", &u, &v);
        e.add_edge(u, v);
    }
    dom1.solve(n, n + 1, e);
    for(int i = 1; i <= n; ++i)
        printf("%d%c", dfs(i), " \n"[i == n]);
}
return 0;
}</pre>
```

4.7 无向图最小割

```
int node[N], dist[N];
bool visit[N];
int solve(int n) {
    int answer = INT MAX;
    for (int i = 0; i < n; ++i) {
        node[i] = i;
    while (n > 1) {
        int max = 1;
        for (int i = 0; i < n; ++i) {
            dist[node[i]] = graph[node[0]][node[i]];
            if (dist[node[i]] > dist[node[max]]) {
                max = i;
           }
        }
        int prev = 0;
        memset(visit, 0, sizeof(visit));
        visit[node[0]] = true;
```

```
for (int i = 1; i < n; ++i) {
                                                                                            y = find(y);
            if (i == n - 1) {
                                                                                             if (x != y) {
                answer = std::min(answer, dist[node[max]]);
                                                                                                belong[x] = y;
                for (int k = 0; k < n; ++k) {
                                                                                             }
                    graph[node[k]][node[prev]] =
                                                                                        }
                        (graph[node[prev]][node[k]] += graph[node[k]][node[max]]);
                                                                                         int lca(int x, int y) {
                node[max] = node[--n];
                                                                                             static int stamp = 0;
                                                                                             stamp++;
            visit[node[max]] = true;
                                                                                             while (true) {
                                                                                                if (x != -1) {
            prev = max;
            max = -1;
                                                                                                    x = find(x);
                                                                                                    if (visit[x] == stamp) {
            for (int j = 1; j < n; ++j) {
                if (!visit[node[j]]) {
                                                                                                         return x;
                    dist[node[j]] += graph[node[prev]][node[j]];
                                                                                                    visit[x] = stamp;
                    if (max == -1 || dist[node[max]] < dist[node[j]]) {</pre>
                        max = j;
                                                                                                    if (match[x] != -1) {
                    }
                                                                                                         x = next[match[x]];
                }
                                                                                                    } else {
                                                                                                         x = -1;
       }
                                                                                                    }
                                                                                                }
    }
    return answer;
                                                                                                std::swap(x, y);
}
      带花树
                                                                                        void group(int a, int p) {
                                                                                             while (a != p) {
int match[N], belong[N], next[N], mark[N], visit[N];
                                                                                                int b = match[a], c = next[b];
std::vector<int> queue;
                                                                                                if (find(c) != p) {
                                                                                                     next[c] = b;
int find(int x) {
    if (belong[x] != x) {
                                                                                                if (mark[b] == 2) {
        belong[x] = find(belong[x]);
                                                                                                    mark[b] = 1;
    }
                                                                                                     queue.push_back(b);
    return belong[x];
}
                                                                                                if (mark[c] == 2) {
                                                                                                     mark[c] = 1;
void merge(int x, int y) {
                                                                                                     queue.push_back(c);
    x = find(x);
```

```
match[u] = v;
        merge(a, b);
                                                                                                            u = mv;
                                                                                                        }
       merge(b, c);
       a = c;
                                                                                                        break;
   }
                                                                                                    } else {
}
                                                                                                        next[y] = x;
                                                                                                        mark[y] = 2;
void augment(int source) {
                                                                                                        mark[match[y]] = 1;
   queue.clear();
                                                                                                        queue.push_back(match[y]);
   for (int i = 0; i < n; ++i) {
       next[i] = visit[i] = -1;
                                                                                                }
       belong[i] = i;
                                                                                            }
       mark[i] = 0;
                                                                                        }
   }
   mark[source] = 1;
                                                                                        int solve() {
   queue.push_back(source);
                                                                                            std::fill(match, match + n, -1);
   for (int head = 0; head < (int)queue.size() && match[source] == -1; ++head) {</pre>
                                                                                            for (int i = 0; i < n; ++i) {
                                                                                                if (match[i] == -1) {
       int x = queue[head];
        for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
                                                                                                    augment(i);
           int y = edge[x][i];
                                                                                                }
           if (match[x] == y || find(x) == find(y) || mark[y] == 2) {
                                                                                            }
                continue;
                                                                                            int answer = 0;
                                                                                            for (int i = 0; i < n; ++i) {
           if (mark[y] == 1) {
                                                                                                answer += (match[i] != -1);
                                                                                            }
               int r = lca(x, y);
               if (find(x) != r) {
                                                                                            return answer;
                    next[x] = y;
               if (find(y) != r) {
                    next[y] = x;
                                                                                            字符串
               }
                group(x, r);
                                                                                        5.1 KMP 算法
               group(y, r);
           } else if (match[y] == -1) {
                                                                                        void getnex(char *s, int *nex){
                next[y] = x;
                                                                                          int n = strlen(s + 1);
               for (int u = y; u != -1; ) {
                                                                                          for(int j = 0, i = 2; i <= n; i++){
                   int v = next[u];
                                                                                            while(j && s[j + 1] != s[i])j = nex[j];
                   int mv = match[v];
                                                                                            if(s[i] == s[j + 1]) j++;
                    match[v] = u;
                                                                                            nex[i] = j;
```

```
}
```

5.2 扩展 KMP 算法

```
//nex[i] 表示 s 和其后缀 s[i, n] 的 lcp 的长度
void getnext(char s[], int n, int nex[])
 nex[1] = n;
 int &t = nex[2] = 0;
 for(; t + 2 \le n \& s[1 + t] == s[2 + t]; t++);
 int pos = 2;
 for(int i = 3; i <= n; i++){
   if(i + nex[i - pos + 1] < pos + nex[pos])
     nex[i] = nex[i - pos + 1];
   else{
     int j = max(0, nex[pos] + pos - i);
     for(;i + j <= n && s[i + j] == s[j + 1]; j++);
     nex[i] = j; pos = i;
 }
//extend[i] 表示 s2 和 s1 后缀 s1[i, n] 的 lcp 的长度
void getextend(char s1[], char s2[], int extend[])
 int n = strlen(s1 + 1), m = strlen(s2 + 1);
 getnext(s2, m, next);
 int &t = extend[1] = 0, pos = 1;
 for(; t < n && t < m && s1[1 + t] == s2[1 + t]; t++);
 for(int i = 2; i <= n; i++){
   if(i + nex[i - pos + 1] < pos + extend[pos])
     extend[i] = nex[i - pos + 1];
   else{
     int j = max(0, extend[pos] + pos - i);
     for(; i + j \le n \& j \le m \& s1[i + j] == s2[j + 1]; j++);
     extend[i] = j; pos = i;
}
```

5.3 AC 自动机

```
const int C = 26, L = 1e5 + 5, N = 5e5+10;
int n, root, cnt, fail[N], son[N][26], num[N];
char s[L];
inline int newNode(){
  cnt++; fail[cnt] = num[cnt] = 0;
  memset(son[cnt], 0, sizeof(son[cnt]));
  return cnt:
void insert(char *s){
  int n = strlen(s + 1), now = 1;
  for(int i = 1; i <= n; i++){
   int c = s[i] - 'a';
   if(!son[now][c]) son[now][c] = newNode();
    now = son[now][c]:
  num[now]++;
void getfail(){
  static queue<int> Q;
  fail[root] = 0;
  Q.push(root);
  while(!Q.empty()){
    int now = Q.front();
    Q.pop();
    for(int i = 0; i < C; i++)
     if(son[now][i]){
        Q.push(son[now][i]);
        int p = fail[now];
        while(!son[p][i]) p = fail[p];
        fail[son[now][i]] = son[p][i];
      else son[now][i] = son[fail[now]][i];
 }
}
int main(){
  cnt = 0; root = newNode();
  scanf("%d", &n);
  for(int i = 0; i < C; i++) son[0][i] = 1;
```

```
for(int i = 1; i <= n; i++){
    scanf("%s", s + 1);
    insert(s);
}
getfail();
return 0;
}</pre>
```

5.4 后缀自动机

5.4.1 广义后缀自动机(多串)

注意事项: 空间是插入字符串总长度的 2 倍并请注意字符集大小。

```
const int N = 251010, C = 26;
int tot, las, root;
struct Node
 int son[C], len, par;
 void clear(){
   memset(son, 0, sizeof(son));
   par = len = 0;
 }
}node[N << 1];</pre>
inline int newNode(){return node[++tot].clear(), tot;}
void extend(int c)
{
 int p = las;
 if (node[p].son[c]) {
   int q = node[p].son[c];
   if (node[p].len + 1 == node[q].len) las = q;
   else{
     int ng = newNode();
     las = nq; node[nq] = node[q];
     node[nq].len = node[p].len + 1; node[q].par = nq;
     for (; p \& node[p].son[c] == q; p = node[p].par)
       node[p].son[c] = nq;
   }
  else{ // Naive Suffix Automaton
```

```
int np = newNode();
   las = np; node[np].len = node[p].len + 1;
   for (; p && !node[p].son[c]; p = node[p].par)
     node[p].son[c] = np;
   if (!p) node[np].par = root;
   else{
     int q = node[p].son[c];
     if (node[p].len + 1 == node[q].len)
       node[np].par = q;
     else{
       int nq = newNode();
       node[nq] = node[q];
       node[nq].len = node[p].len + 1;
       node[q].par = node[np].par = nq;
       for (; p && node[p].son[c] == q; p = node[p].par)
         node[p].son[c] = nq;
void add(char *s)
 int len = strlen(s + 1); las = root;
 for(int i = 1; i <= len; i++) extend(s[i] - 'a');</pre>
5.4.2 sam-ypm
sam-nsubstr
//SAM 利用后缀树进行计算, 由儿子向 parert 更新
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int inf = 1e9;
const int N = 251010, C = 26;
int tot, las, root;
struct Node
```

```
int son[C], len, par, count;
 void clear(){
   memset(son, 0, sizeof(son));
   par = count = len = 0;
 }
}node[N << 1];</pre>
inline int newNode(){return node[++tot].clear(), tot;}
void extend(int c)//传入转化为数字之后的字符,从 0 开始
  int p = las, np = newNode(); las = np;
  node[np].len = node[p].len + 1;
  for(;p && !node[p].son[c]; p = node[p].par)
   node[p].son[c] = np;
  if(p == 0) node[np].par = root;
  else{
   int q = node[p].son[c];
   if(node[p].len + 1 == node[q].len)
     node[np].par = q;
   else{
      int ng = newNode();
     node[nq] = node[q];
      node[nq].len = node[p].len + 1;
     node[q].par = node[np].par = nq;
      for(p \& node[p].son[c] == q; p = node[p].par)
       node[p].son[c] = nq;
 }
}
int main(){
 static char s[N];
  while(scanf("%s", s + 1) == 1){
   tot = 0:
   root = las = newNode();
   int n = strlen(s + 1);
   for(int i = 1;i <= n; i++) extend(s[i] - 'a');</pre>
   static int cnt[N], order[N << 1];</pre>
   memset(cnt, 0, sizeof(*cnt) * (n + 5));
   for(int i = 1; i <= tot; i++) cnt[node[i].len]++;</pre>
```

```
for(int i = 1; i <= n; i++) cnt[i] += cnt[i - 1];</pre>
    for(int i = tot; i; i--) order[ cnt[node[i].len]-- ] = i;
    static int dp[N]; memset(dp, 0, sizeof(dp));
    //dp[i] 为长度为 i 的子串中出现次数最多的串的出现次数
    for(int now = root, i = 1; i <= n; i++){</pre>
      now = node[now].son[s[i] - 'a'];
      node[now].count++:
    for(int i = tot; i; i--){
     Node &now = node[order[i]];
      dp[now.len] = max(dp[now.len], now.count);
      node[now.par].count += now.count;
   }
    for(int i = n - 1; i; i--) dp[i] = max(dp[i], dp[i + 1]);
    for(int i = 1; i <= n; i++) printf("%d\n", dp[i]);</pre>
 }
}
sam-lcs
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int inf = 1e9;
const int N = 101010, C = 26;
int tot, las, root;
struct Node{
 int son[C], len, par, count;
 void clear(){
   memset(son, 0, sizeof(son));
    par = count = len = 0;
 }
}node[N << 1];</pre>
inline int newNode(){return node[++tot].clear(), tot;}
void extend(int c)//传入转化为数字之后的字符,从 0 开始
  int p = las, np = newNode(); las = np;
```

```
node[np].len = node[p].len + 1;
  for(;p && !node[p].son[c]; p = node[p].par)
    node[p].son[c] = np;
  if(p == 0) node[np].par = root;
  else{
    int q = node[p].son[c];
    if(node[p].len + 1 == node[q].len)
      node[np].par = q;
    else{
      int nq = newNode(); node[nq] = node[q];
      node[nq].len = node[p].len + 1;
      node[q].par = node[np].par = nq;
      for(p \&\& node[p].son[c] == q; p = node[p].par)
        node[p].son[c] = nq;
    }
 }
}
int main(){
 static char s[N];
  scanf("%s", s + 1);
  tot = 0; root = las = newNode();
  int n = strlen(s + 1);
  for(int i = 1;i <= n; i++)</pre>
    extend(s[i] - 'a');
  static int cnt[N], order[N << 1];</pre>
  memset(cnt, 0, sizeof(*cnt) * (n + 5));
  for(int i = 1; i <= tot; i++) cnt[node[i].len]++;</pre>
  for(int i = 1; i <= n; i++) cnt[i] += cnt[i - 1];</pre>
  for(int i = tot; i; i--) order[ cnt[node[i].len]-- ] = i;
  static int ANS[N << 1], dp[N << 1];</pre>
  memset(dp, 0, sizeof(*dp) * (tot + 5));
  for(int i = 1; i <= tot; i++) ANS[i] = node[i].len;</pre>
  while(scanf("%s", s + 1) == 1){
    n = strlen(s + 1);
    for(int now = root, len = 0, i = 1; i <= n; i++){</pre>
      int c = s[i] - 'a';
      while(now != root && !node[now].son[c])
        now = node[now].par;
      if(node[now].son[c]){
```

```
len = min(len, node[now].len) + 1;
    now = node[now].son[c];
}
    else len = 0;
    dp[now] = max(dp[now], len);
}
for(int i = tot; i; i--){
    int now = order[i];
    dp[node[now].par] = max(dp[node[now].par], dp[now]);
    ANS[now] = min(ANS[now], dp[now]);
    dp[now] = 0;
}
int ans = 0;
for(int i = 1; i<= tot; i++) ans = max(ans, ANS[i]);
printf("%d\n", ans);
}</pre>
```

5.5 后缀数组

```
注意事项: \mathcal{O}(n \log n) 倍增构造。
#define ws wws
const int MAXN = 201010;
int wa[MAXN], wb[MAXN], wv[MAXN], ws[MAXN];
int sa[MAXN], rk[MAXN], height[MAXN];
char s[MAXN];
inline bool cmp(int *r, int a, int b, int l)
\{\text{return r}[a] == r[b] \&\& r[a+l] == r[b+l];\}
void SA(char *r, int *sa, int n, int m){
 int *x = wa, *y = wb;
 for(int i = 1; i <= m; i++)ws[i] = 0;
  for(int i = 1; i <= n; i++)ws[x[i] = r[i]]++;
  for(int i = 1; i <= m; i++)ws[i] += ws[i - 1];</pre>
  for(int i = n; i > 0; i--)sa[ ws[x[i]]-- ] = i;
  for(int j = 1, p = 0; p < n; j <<= 1, m = p){
   p = 0;
   for(int i = n - j + 1; i \le n; i++)y[++p] = i;
    for(int i = 1; i <= n; i++)if(sa[i] > j) y[++p] = sa[i] - j;
    for(int i = 1; i <= n; i++)wv[i] = x[v[i]];
```

```
for(int i = 1; i <= m; i++)ws[i] = 0;
    for(int i = 1; i <= n; i++)ws[wv[i]]++;</pre>
    for(int i = 1; i <= m; i++)ws[i] += ws[i - 1];
    for(int i = n; i > 0; i--)sa[ ws[wv[i]]-- ] = y[i];
    swap(x, y); x[sa[1]] = p = 1;
    for(int i = 2; i <= n; i++)
      x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p : ++p;
  }
}
void getheight(char *r, int *sa, int *rk, int *h, int n){
  for(int i = 1; i <= n; i++) rk[sa[i]] = i;
  for(int i = 1, p = 0; i <= n; i++, p ? p-- : 0){
   int j = sa[rk[i] - 1];
    while(r[i + p] == r[j + p]) p++;
    h[rk[i]] = p;
 }
}
```

5.6 Manacher

注意事项: 1-based 算法, 请注意下标。

```
void manacher(char *st){
    static char s[N << 1];
    static int p[N << 1];
    int n = strlen(st + 1);
    s[0] = '$'; s[1] = '#';
    for(int i = 1; i <= n; i++)
        s[i << 1] = st[i], s[(i << 1) + 1] = '#';
    s[(n = n * 2 + 1) + 1] = 0;
    int pos, mx = 0, res = 0;
    for(int i = 1; i <= n; i++){
        p[i] = (mx > i) ? min(p[pos * 2 - i], mx - i) : 1;
        while(s[i + p[i]] == s[i - p[i]]) p[i]++;
        if(p[i] + i - 1 > mx) mx = p[i] + i - 1, pos = i;
    }
}
```

5.7 循环串的最小表示

注意事项: 0-Based 算法,请注意下标。

```
int getmin(char *s, int n){// 0-base
  int i = 0, j = 1, k = 0;
  while(i < n && j < n && k < n){
    int x = i + k; if(x >= n) x -= n;
    int y = j + k; if(y >= n) y -= n;
    if(s[x] == s[y]) k++;
    else{
       if(s[x] > s[y]) i += k + 1;
       else j += k + 1;
       if(i == j) j++;
       k = 0;
    }
}
return min(i ,j);
}
```

6 计算几何

6.1 二维几何

```
int getmin(char *s, int n){// 0-base
  int i = 0, j = 1, k = 0;
  while(i < n && j < n && k < n){
    int x = i + k; if(x >= n) x -= n;
    int y = j + k; if(y >= n) y -= n;
    if(s[x] == s[y]) k++;
    else{
       if(s[x] > s[y]) i += k + 1;
       else j += k + 1;
       if(i == j) j++;
       k = 0;
    }
}
return min(i ,j);
}
```

6.2 阿波罗尼茨圆

```
硬币问题: 易知两两相切的圆半径为 г1, г2, г3, 求与他们都相切的圆的半径 г4
  分母取负号,答案再取绝对值,为外切圆半径
  分母取正号为内切圆半径
// r_4^{\pm} = \frac{r_1 r_2 r_3}{r_1 r_2 + r_1 r_3 + r_2 r_3 \pm 2 \sqrt{r_1 r_2 r_3 (r_1 + r_2 + r_3 + r
```

6.3 最小覆盖球

```
// 注意,无法处理小于四点的退化情况
struct P;
P a[33];
P intersect(const Plane & a, const Plane & b, const Plane & c) {
    P c1(a.nor.x, b.nor.x, c.nor.x), c2(a.nor.y, b.nor.y, c.nor.y), c3(a.nor.z, b.nor.z,
  \rightarrow c.nor.z), c4(a.m, b.m, c.m);
    return 1 / ((c1 * c2) % c3) * Point((c4 * c2) % c3, (c1 * c4) % c3, (c1 * c2) % c4);
}
bool in(const P & a, const Circle & b) {
    return sign((a - b.o).len() - b.r) <= 0;</pre>
}
vector<P> vec;
Circle calc() {
    if (vec.empty()) {
          return Circle(Point(0, 0, 0), 0);
    } else if(1 == (int)vec.size()) {
          return Circle(vec[0], 0);
    } else if(2 == (int)vec.size()) {
          return Circle(0.5 * (vec[0] + vec[1]), 0.5 * (vec[0] - vec[1]).len());
    } else if(3 == (int)vec.size()) {
          double r((vec[0] - vec[1]).len() * (vec[1] - vec[2]).len() * (vec[2] - vec[2]).len() * (vec[2]

    vec[0]).len() / 2 /

                     fabs(((vec[0] - vec[2]) * (vec[1] - vec[2])).len()));
          return Circle(intersect(Plane(vec[1] - vec[0], 0.5 * (vec[1] + vec[0])),
                               Plane(vec[2] - vec[1], 0.5 * (vec[2] + vec[1])),
                          Plane((vec[1] - vec[0]) * (vec[2] - vec[0]), vec[0])), r);
    } else {
          P o(intersect(Plane(vec[1] - vec[0], 0.5 * (vec[1] + vec[0])),
                          Plane(vec[2] - vec[0], 0.5 * (vec[2] + vec[0])),
                          Plane(vec[3] - vec[0], 0.5 * (vec[3] + vec[0])));
```

```
return Circle(o, (o - vec[0]).len());
 }
Circle miniBall(int n) {
 Circle res(calc());
  for(int i(0); i < n; i++) {</pre>
   if(!in(a[i], res)) {
     vec.push_back(a[i]);
     res = miniBall(i);
     vec.pop back();
     if (i) { Point tmp(a[i]); memmove(a + 1, a, sizeof(Point) * i); a[0] = tmp; }
 }
 return res:
int main() {
  for(int i(0); i < n; i++) a[i].scan();</pre>
 sort(a, a + n);
 n = unique(a, a + n) - a;
 vec.clear();
  random shuffle(a, a + n);
 printf("%.10f\n", miniBall(n).r);
6.4 三角形与圆交
// 反三角函数要在 [-1, 1] 中, sqrt 要与 0 取 max 别忘了取正负
// 改成周长请用注释, res1 为直线长度, res2 为弧线长度
// 多边形与圆求交时, 相切精度比较差
D areaCT(P pa, P pb, D r) { //, D & res1, D & res2) {
   if (pa.len() < pb.len()) swap(pa, pb);</pre>
   if (sign(pb.len()) == 0) return 0;
→ // if (sign(pb.len()) == 0) { res1 += min(r, pa.len()); return; }
```

```
D = pb.len(), b = pa.len(), c = (pb - pa).len();
D sinB = fabs(pb * (pb - pa)), cosB = pb \% (pb - pa), area = fabs(pa * pb);
D S, B = atan2(sinB, cosB), C = atan2(area, pa % pb);
sinB /= a * c; cosB /= a * c;
if (a > r) {
    S = C / 2 * r * r; D h = area / c; //res2 += -1 * sqn * C * r; D h = area / c;
```

```
if (h < r && B < pi / 2) {
                                                                                       bool intersect(const Circle &a, const Circle &b) { return sign((a.o - b.o).len() - a.r
           //res2 = -1 * sqn * 2 * acos(max((D)-1., min((D)1., h / r))) * r;
                                                                                        \rightarrow - b.r) < 0; }
           //res1 += 2 * sqrt(max((D)0., r * r - h * h));
                                                                                       int C;
           S := (acos(max((D)-1., min((D)1., h / r))) * r * r - h * sqrt(max((D)0., r Circle c[N]);
→ * r - h * h)));
                                                                                       double area[N];
                                                                                       void solve() { // 返回覆盖至少 k 次的面积
   } else if (b > r) {
                                                                                         memset(area, 0, sizeof(D) * (C + 1));
       D theta = pi - B - asin(max((D)-1., min((D)1., sinB / r * a)));
                                                                                         for (int i = 0; i < C; ++i) {
       S = a * r * sin(theta) / 2 + (C - theta) / 2 * r * r;
                                                                                          int cnt = 1;
       //res2 += -1 * sgn * (C - theta) * r;
                                                                                           vector<Event> evt;
       //res1 += sqrt(max((D)0., r * r + a * a - 2 * r * a * cos(theta)));
                                                                                           for (int j = 0; j < i; ++j) if (issame(c[i], c[j])) ++cnt;
   } else S = area / 2; //res1 += (pb - pa).len();
                                                                                           for (int j = 0; j < C; ++j)
   return S;
                                                                                             if (j != i \&\& !issame(c[i], c[j]) \&\& overlap(c[j], c[i]))
}
                                                                                               ++cnt:
                                                                                           for (int j = 0; j < C; ++j)
                                                                                             if (j != i && !overlap(c[j], c[i]) && !overlap(c[i], c[j]) && intersect(c[i],
                                                                                        圆并
6.5
                                                                                               addEvent(c[i], c[j], evt, cnt);
                                                                                           if (evt.empty()) area[cnt] += PI * c[i].r * c[i].r;
struct Event {
                                                                                           else {
 P p; D ang; int delta;
                                                                                             sort(evt.begin(), evt.end());
 Event (P p = Point(0, 0), D ang = 0, int delta = 0) : p(p), ang(ang), delta(delta)
                                                                                             evt.push back(evt.front());
for (int j = 0; j + 1 < (int)evt.size(); ++j) {</pre>
};
                                                                                               cnt += evt[i].delta;
bool operator < (const Event &a, const Event &b) { return a.ang < b.ang; }
                                                                                               area[cnt] += det(evt[j].p, evt[j + 1].p) / 2;
void addEvent(const Circle &a, const Circle &b, vector<Event> &evt, int &cnt) {
                                                                                               D ang = evt[j + 1].ang - evt[j].ang;
 D d2 = (a.o - b.o).sqrlen(), dRatio = ((a.r - b.r) * (a.r + b.r) / d2 + 1) / 2,
                                                                                               if (ang < 0) ang += PI * 2;
   pRatio = sqrt(max((D)0., -(d2 - sqr(a.r - b.r)) * (d2 - sqr(a.r + b.r)) / (d2 * d2)
                                                                                               area[cnt] += ang * c[i].r * c[i].r / 2 - sin(ang) * c[i].r * c[i].r / 2;

    * 4)));
                                                                                       } } } }
 P d = b.o - a.o, p = d.rot(pi / 2),
   q0 = a.o + d * dRatio + p * pRatio,
   q1 = a.o + d * dRatio - p * pRatio:
                                                                                       6.6 整数半平面交
 D ang0 = (q0 - a.o).ang(), ang1 = (q1 - a.o).ang();
 evt.emplace back(q1, ang1, 1); evt.emplace back(q0, ang0, -1);
                                                                                       typedef __int128 J; // 坐标 |1e9| 就要用 int128 来判断
 cnt += ang1 > ang0;
                                                                                       struct Line {
                                                                                         bool include(P a) const { return (a - s) * d >= 0; } // 严格去掉 =
                                                                                         bool include(Line a, Line b) const {
bool issame(const Circle &a, const Circle &b) { return sign((a.o - b.o).len()) == 0 &&
                                                                                           J l1(a.d * b.d);
\rightarrow sign(a.r - b.r) == 0; }
bool overlap(const Circle &a, const Circle &b) { return sign(a.r - b.r - (a.o -
                                                                                           if(!l1) return true;
                                                                                           J x(l1 * (a.s.x - s.x)), y(l1 * (a.s.y - s.y));
→ b.o).len()) >= 0; }
```

```
J l2((b.s - a.s) * b.d);
   x += 12 * a.d.x; y += 12 * a.d.y;
                                                                                        if(emp) break;
                                                                                        res.push_back(i);
   J res(x * d.y - y * d.x);
   return l1 > 0 ? res >= 0 : res <= 0; // 严格去掉 =
                                                                                     }
 }
                                                                                      while (res.size() > 2u && !res[0].include(res.back(), res[res.size() - 2]))
};
                                                                                     → res.pop back();
bool HPI(vector<Line> v) { // 返回 v 中每个射线的右侧的交是否非空
                                                                                      return !emp;// emp: 是否为空, res 按顺序即为半平面交
 sort(v.begin(), v.end());// 按方向排极角序
 { // 同方向取最严格的一个
   vector<Line> t; int n(v.size());
                                                                                    6.7 三角形
   for(int i(0), j; i < n; i = j) {
     LL mx(-9e18); int mxi;
                                                                                    Point fermat(const Point& a, const Point& b, const Point& c) {
     for(j = i; j < n && v[i].d * v[j].d == 0; j++) {
                                                                                      double ab((b - a).len()), bc((b - c).len()), ca((c - a).len());
       LL tmp(v[j].s * v[i].d);
                                                                                      double cosa((b - a) % (c - a) / ab / ca);
       if(tmp > mx)
                                                                                      double cosb((a - b) % (c - b) / ab / bc);
         mx = tmp, mxi = j;
                                                                                      double cosc((b - c) % (a - c) / ca / bc);
                                                                                      Point mid; double sq3(sqrt(3) / 2);
     t.push back(v[mxi]);
                                                                                      if(sign((b - a) * (c - a)) < 0) swap(b, c);
                                                                                      if(sign(cosa + 0.5) < 0) mid = a;
   swap(v, t);
                                                                                      else if(sign(cosb + 0.5) < 0) mid = b;
                                                                                      else if(sign(cosc + 0.5) < 0) mid = c;
 deque<Line> res;
                                                                                      else mid = intersection(Line(a, c + (b - c).rot(sq3) - a), Line(c, b + (a -
 bool emp(false);
                                                                                     → b).rot(sq3) - c));
 for(auto i : v) {
                                                                                      return mid;
   if(res.size() == 1) {
                                                                                      // mid 为三角形 abc 费马点,要求 abc 非退化
     if(res[0].d * i.d == 0 && !i.include(res[0].s)) {
                                                                                      length = (mid - a).len() + (mid - b).len() + (mid - c).len();
       res.pop back();
                                                                                      // 以下求法仅在三角形三个角均小干 120 度时,可以求出 ans 为费马点到 abc 三点距离和
       emp = true;
                                                                                      length = (a - c - (b - c).rot(sq3)).len();
   } else if(res.size() >= 2) {
                                                                                    Point inCenter(const Point &A, const Point &B, const Point &C) { // 內心
     while(res.size() >= 2u && !i.include(res.back(), res[res.size() - 2])) {
                                                                                      double a = (B - C).len(), b = (C - A).len(), c = (A - B).len(),
       if(i.d * res[res.size() - 2].d == 0 || !res.back().include(i, res[res.size() -
                                                                                       s = fabs(det(B - A, C - A)),
r = s / p;
         emp = true;
                                                                                      return (A * a + B * b + C * c) / (a + b + c):
         break;
                                                                                    Point circumCenter(const Point &a, const Point &b, const Point &c) { // 外心
       res.pop back();
                                                                                      Point bb = b - a, cc = c - a;
                                                                                      double db = bb.len2(), dc = cc.len2(), d = 2 * det(bb, cc);
     while(res.size() >= 2u && !i.include(res[0], res[1])) res.pop front();
                                                                                      return a - Point(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d;
```

```
}
Point othroCenter(const Point &a, const Point &b, const Point &c) { // 垂心
Point ba = b - a, ca = c - a, bc = b - c;
double Y = ba.y * ca.y * bc.y,
        A = ca.x * ba.y - ba.x * ca.y,
        x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
        y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
return Point(x0, y0);
}
```

6.8 经纬度求球面最短距离

```
double sphereDis(double lon1, double lat1, double lon2, double lat2, double R) {
  return R * acos(cos(lat1) * cos(lat2) * cos(lon1 - lon2) + sin(lat1) * sin(lat2));
}
```

6.9 长方体表面两点最短距离

```
int r;
void turn(int i, int j, int x, int y, int z, int x0, int y0, int L, int W, int H) {
 if (z==0) { int R = x*x+y*y; if (R<r) r=R;
 } else {
   if(i>=0 && i< 2) turn(i+1, j, x0+L+z, y, x0+L-x, x0+L, y0, H, W, L);
   if(j>=0 && j< 2) turn(i, j+1, x, y0+W+z, y0+W-y, x0, y0+W, L, H, W);
   if(i<=0 && i>-2) turn(i-1, j, x0-z, y, x-x0, x0-H, y0, H, W, L);
   if(j \le 0 \& j > -2) turn(i, j-1, x, y0-z, y-y0, x0, y0-H, L, H, W);
 }
}
int main(){
 int L, H, W, x1, y1, z1, x2, y2, z2;
 cin >> L >> W >> H >> x1 >> y1 >> z1 >> x2 >> y2 >> z2;
 if (z1!=0 \&\& z1!=H) if (y1==0 || y1==W)
       swap(y1,z1), std::swap(y2,z2), std::swap(W,H);
  else swap(x1,z1), std::swap(x2,z2), std::swap(L,H);
 if (z1==H) z1=0, z2=H-z2;
  r=0x3fffffff:
  turn(0,0,x2-x1,y2-y1,z2,-x1,-y1,L,W,H);
 cout<<r<endl:
}
```

6.10 点到凸包切线

```
P lb(P x, vector<P> & v, int le, int ri, int sg) {
   if (le > ri) le = ri;
   int s(le), t(ri);
   while (le != ri) {
       int mid((le + ri) / 2);
       if (sign((v[mid] - x) * (v[mid + 1] - v[mid])) == sg)
           le = mid + 1; else ri = mid;
   }
   return x - v[le]; // le 即为下标,按需返回
// v[0] 为顺时针上凸壳, v[1] 为顺时针下凸壳, 均允许起始两个点横坐标相同
// 返回值为真代表严格在凸包外, 顺时针旋转在 d1 方向先碰到凸包
bool getTan(P x, vector<P> * v, P & d1, P & d2) {
   if (x.x < v[0][0].x) {
       d1 = lb(x, v[0], 0, sz(v[0]) - 1, 1);
       d2 = lb(x, v[1], 0, sz(v[1]) - 1, -1);
       return true;
   } else if(x.x > v[0].back().x) {
       d1 = lb(x, v[1], 0, sz(v[1]) - 1, 1);
       d2 = lb(x, v[0], 0, sz(v[0]) - 1, -1);
       return true:
   } else {
       for(int d(0); d < 2; d++) {
           int id(lower bound(v[d].begin(), v[d].end(), x,
           [&](const P & a, const P & b) {
               return d == 0 ? a < b : b < a;
           }) - v[d].begin());
           if (id && (id == sz(v[d]) \mid | (v[d][id - 1] - x) * (v[d][id] - x) > 0)) {
               d1 = lb(x, v[d], id, sz(v[d]) - 1, 1);
               d2 = lb(x, v[d], 0, id, -1);
               return true:
          }
       }
   return false;
```

6.11 直线与凸包的交点

using namespace std;

```
// a 是顺时针凸包, i1 为 x 最小的点, j1 为 x 最大的点 需保证 j1 > i1
// n 是凸包上的点数, a 需复制多份或写循环数组类
                                                                                    struct Data {
int lowerBound(int le, int ri, const P & dir) {
                                                                                      double x, v;
 while (le < ri) {</pre>
                                                                                    };
   int mid((le + ri) / 2);
   if (sign((a[mid + 1] - a[mid]) * dir) <= 0) {</pre>
                                                                                    double sqr(double x) {
     le = mid + 1:
                                                                                      return x * x;
   } else ri = mid;
 }
                                                                                    double dis(Data a, Data b) {
 return le;
                                                                                      return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
}
                                                                                    }
int boundLower(int le, int ri, const P & s, const P & t) {
 while (le < ri) {</pre>
                                                                                    int n;
   int mid((le + ri + 1) / 2);
                                                                                    Data p[N], q[N];
   if (sign((a[mid] - s) * (t - s)) <= 0)
     le = mid:
                                                                                    double solve(int l, int r) {
   } else ri = mid - 1;
                                                                                      if(l == r) return 1e18;
 }
                                                                                      if(l + 1 == r) return dis(p[l], p[r]);
 return le;
                                                                                      int m = (l + r) / 2;
}
                                                                                      double d = min(solve(l, m), solve(m + 1, r));
                                                                                      int qt = 0;
void calc(P s, P t) {
                                                                                      for(int i = l; i <= r; i++) {</pre>
 if(t < s) swap(t, s);</pre>
                                                                                        if(fabs(p[m].x - p[i].x) \le d) {
 int i3(lowerBound(i1, j1, t - s)); // 和上凸包的切点
                                                                                          q[++qt] = p[i];
 int j3(lowerBound(j1, i1 + n, s - t)); // 和下凸包的切点
                                                                                        }
 int i4(boundLower(i3, j3, s, t));
→ // 如果有交则是右侧的交点,与 a[i4]~a[i4+1] 相交 要判断是否有交的话 就手动 check 一下 sort(q + 1, q + qt + 1, [&](const Data &a, const Data &b) {
 int j4(boundLower(j3, i3 + n, t, s)); // 如果有交左侧的交点, 与 a[j4]~a[j4+1] 相交
                                                                                          return a.y < b.y; });</pre>
   // 返回的下标不一定在 [0 ~ n-1] 内
                                                                                      for(int i = 1; i <= qt; i++) {
}
                                                                                        for(int j = i + 1; j <= qt; j++) {
                                                                                          if(q[j].y - q[i].y >= d) break;
                                                                                          d = min(d, dis(q[i], q[j]));
       平面最近点对
                                                                                        }
                                                                                      }
// Create: 2017-10-22 20:15:34
                                                                                      return d;
#include <bits/stdc++.h>
```

const int N = 100005;

```
int main()
{
    while(scanf("%d", &n) == 1 && n) {
        for(int i = 1; i <= n; i++) {
            scanf("%lf%lf", &p[i].x, &p[i].y);
        }
        sort(p + 1, p + n + 1, [&](const Data &a, const Data &b) {
            return a.x < b.x || (a.x == b.x && a.y < b.y); });
        double ans = solve(1, n);
        printf("%.2f\n", ans / 2);
    }
    return 0;
}</pre>
```

7 其他

7.1 斯坦纳树

```
priority queue<pair<int, int> > Q;
// m is key point
// n is all point
for (int s = 0; s < (1 << m); s++){}
 for (int i = 1; i <= n; i++){
   for (int s0 = (s&(s-1)); s0 ; s0=(s&(s0-1)))
        f[s][i] = min(f[s][i], f[s0][i] + f[s - s0][i]);
     }
 for (int i = 1; i <= n; i++) vis[i] = 0;
   while (!Q.empty()) Q.pop();
  for (int i = 1; i <= n; i++){
   Q.push(mp(-f[s][i], i));
 }
 while (!Q.empty()){
   while (!Q.empty() && Q.top().first != -f[s][Q.top().second]) Q.pop();
     if (Q.empty()) break;
     int Cur = 0.top().second; 0.pop();
```

```
for (int p = g[Cur]; p; p = nxt[p]){
    int y = adj[p];
    if ( f[s][y] > f[s][Cur] + 1){
        f[s][y] = f[s][Cur] + 1;
        Q.push(mp(-f[s][y], y));
    }
}
}
```

7.2 最小树形图

```
const int maxn=1100;
int n,m , g[maxn][maxn] , used[maxn] , pass[maxn] , eg[maxn] , more , queue[maxn];
void combine (int id , int &sum ) {
 int tot = 0 , from , i , j , k ;
 for ( ; id!=0 && !pass[ id ] ; id=eg[id] ) {
   queue[tot++]=id ; pass[id]=1;
 }
  for ( from=0; from<tot && queue[from]!=id ; from++);</pre>
 if (from==tot) return;
  more = 1;
  for ( i=from ; i<tot ; i++) {</pre>
    sum+=g[eg[queue[i]]][queue[i]];
   if ( i!=from ) {
      used[queue[i]]=1;
      for ( j = 1 ; j <= n ; j++) if ( !used[j] )
        if ( g[queue[i]][j]<g[id][j] ) g[id][j]=g[queue[i]][j] ;</pre>
    }
  for ( i=1; i<=n ; i++) if ( !used[i] && i!=id ) {</pre>
   for ( j=from ; j<tot ; j++){</pre>
      k=queue[j];
      if ( g[i][id]>g[i][k]-g[eg[k]][k] ) g[i][id]=g[i][k]-g[eg[k]][k];
 }
```

```
else{
int mdst( int root ) { // return the total length of MDST
                                                                                              L[sz]=H[r];R[sz]=R[H[r]];
  int i , j , k , sum = 0;
                                                                                              L[R[H[r]]]=sz;R[H[r]]=sz;
  memset ( used , 0 , sizeof ( used ) );
                                                                                            }
                                                                                             s[c]++;col[sz]=c;row[sz]=r;sz++;
  for ( more =1; more ; ) {
    more = 0;
    memset (eq,0,sizeof(eq));
                                                                                          void remove(int c){
    for ( i=1 ; i <= n ; i ++) if ( !used[i] && i!=root ) {
                                                                                            for(int i=D[c];i!=c;i=D[i])
      for ( j=1 , k=0 ; j <= n ; j ++) if ( !used[j] && i!=j )
                                                                                              L[R[i]]=L[i],R[L[i]]=R[i];
                                                                                          }
        if (k=0 || g[j][i] < g[k][i]) k=j;
      eg[i] = k;
                                                                                          void resume(int c){
    }
                                                                                            for(int i=U[c];i!=c;i=U[i])
    memset(pass,0,sizeof(pass));
                                                                                              L[R[i]]=R[L[i]]=i;
    for ( i=1; i<=n ; i++) if ( !used[i] && !pass[i] && i!= root ) combine ( i , sum )
                                                                                          int A(){
 int res=0;
                                                                                             memset(vis,0,sizeof vis);
  for ( i =1; i<=n ; i ++) if ( !used[i] && i!= root ) sum+=q[eq[i]][i];
                                                                                             for(int i=R[0];i;i=R[i])if(!vis[i]){
  return sum ;
}
                                                                                              vis[i]=1;res++;
                                                                                              for(int j=D[i];j!=i;j=D[j])
                                                                                                for(int k=R[j];k!=j;k=R[k])
7.3 DLX
                                                                                                  vis[col[k]]=1;
                                                                                             }
int n,m,K;
                                                                                             return res;
struct DLX{
                                                                                          }
  int L[maxn],R[maxn],U[maxn],D[maxn];
                                                                                          void dfs(int d,int &ans){
  int sz,col[maxn],row[maxn],s[maxn],H[maxn];
                                                                                            if(R[0]==0){ans=min(ans,d);return;}
  bool vis[233];
                                                                                             if(d+A()>=ans)return;
  int ans[maxn],cnt;
                                                                                             int tmp=233333,c;
  void init(int m){
                                                                                             for(int i=R[0];i;i=R[i])
    for(int i=0;i<=m;i++){</pre>
                                                                                              if(tmp>s[i])tmp=s[i],c=i;
      L[i]=i-1;R[i]=i+1;
                                                                                             for(int i=D[c];i!=c;i=D[i]){
      U[i]=D[i]=i;s[i]=0;
                                                                                              remove(i);
                                                                                               for(int j=R[i];j!=i;j=R[j])remove(j);
    memset(H,-1,sizeof H);
                                                                                               dfs(d+1,ans);
    L[0]=m;R[m]=0;sz=m+1;
                                                                                               for(int j=L[i];j!=i;j=L[j])resume(j);
                                                                                               resume(i);
  void Link(int r,int c){
                                                                                             }
    U[sz]=c;D[sz]=D[c];U[D[c]]=sz;D[c]=sz;
                                                                                          }
    if(H[r]<0)H[r]=L[sz]=R[sz]=sz;</pre>
```

```
void del(int c){//exactly cover
        L[R[c]]=L[c];R[L[c]]=R[c];
    for(int i=D[c];i!=c;i=D[i])
      for(int j=R[i];j!=i;j=R[j])
        U[D[j]]=U[j],D[U[j]]=D[j],--s[col[j]];
    void add(int c){ //exactly cover
        R[L[c]]=L[R[c]]=c;
    for(int i=U[c];i!=c;i=U[i])
      for(int j=L[i];j!=i;j=L[j])
        ++s[col[U[D[j]]=D[U[j]]=j]];
    }
  bool dfs2(int k){//exactly cover
        if(!R[0]){
            cnt=k;return 1;
        int c=R[0];
    for(int i=R[0];i;i=R[i])
      if(s[c]>s[i])c=i;
        del(c);
    for(int i=D[c];i!=c;i=D[i]){
      for(int j=R[i];j!=i;j=R[j])
        del(col[j]);
            ans[k]=row[i];if(dfs2(k+1))return true;
      for(int j=L[i];j!=i;j=L[j])
        add(col[j]);
        add(c);
    return 0;
 }
}dlx;
int main(){
  dlx.init(n);
  for(int i=1;i<=m;i++)</pre>
    for(int j=1;j<=n;j++)</pre>
      if(dis(station[i],city[j])<mid-eps)</pre>
        dlx.Link(i,j);
      dlx.dfs(0,ans);
}
```

7.4 某年某月某日是星期几

7.5 枚举大小为 k 的子集

```
使用条件: k > 0

void solve(int n, int k) {
	for (int comb = (1 << k) - 1; comb < (1 << n); ) {
		// ...
		int x = comb & -comb, y = comb + x;
		comb = (((comb & ~y) / x) >> 1) | y;
	}
```

7.6 环状最长公共子串

```
int n, a[N << 1], b[N << 1];
bool has(int i, int j) {
    return a[(i - 1) % n] == b[(j - 1) % n];
}
const int DELTA[3][2] = {{0, -1}, {-1, -1}, {-1, 0}};</pre>
```

```
int from[N][N];
int solve() {
    memset(from, 0, sizeof(from));
    int ret = 0;
    for (int i = 1; i <= 2 * n; ++i) {
        from[i][0] = 2;
       int left = 0, up = 0;
        for (int j = 1; j <= n; ++j) {
            int upleft = up + 1 + !!from[i - 1][j];
           if (!has(i, j)) {
                upleft = INT_MIN;
           }
            int max = std::max(left, std::max(upleft, up));
           if (left == max) {
                from[i][j] = 0;
           } else if (upleft == max) {
                from[i][j] = 1;
           } else {
                from[i][j] = 2;
            }
            left = max;
        if (i >= n) {
            int count = 0;
            for (int x = i, y = n; y; ) {
               int t = from[x][y];
                count += t == 1;
               x += DELTA[t][0];
                y += DELTA[t][1];
            ret = std::max(ret, count);
            int x = i - n + 1;
            from[x][0] = 0;
            int y = 0;
            while (y \le n \&\& from[x][y] == 0) {
                y++;
            for (; x <= i; ++x) {
```

```
from[x][y] = 0;
               if (x == i) {
                   break;
               }
               for (; y <= n; ++y) {
                   if (from[x + 1][v] == 2) {
                      break:
                   if (y + 1 \le n \&\& from[x + 1][y + 1] == 1) {
                      y++;
                      break;
    return ret;
7.7 LLMOD
LL multiplyMod(LL a, LL b, LL P) { // `需要保证 a 和 b 非负`
 LL t = (a * b - LL((long double)a / P * b + 1e-3) * P) % P;
 return t < 0 : t + P : t;
7.8 STL 内存清空
template <typename T>
inline void clear(T& container) {
  container.clear(); // 或者删除了一堆元素
 T(container).swap(container);
7.9 开栈
register char * sp asm ("rsp");
int main() {
```

const int size = 400 << 20;//400MB

```
static char *sys, *mine(new char[size] + size - 4096);
sys = _sp; _sp = mine; _main(); _sp = sys;
}
```

7.10 32-bit/64-bit 随机素数

32-bit	64-bit
73550053	1249292846855685773
148898719	1701750434419805569
189560747	3605499878424114901
459874703	5648316673387803781
1202316001	6125342570814357977
1431183547	6215155308775851301
1438011109	6294606778040623451
1538762023	6347330550446020547
1557944263	7429632924303725207
1981315913	8524720079480389849

8 vimrc

```
colo morning
set ru nu cin ts=4 sts=4 sw=4 hls is ar acd bs=2 mouse=a ls=2 fdm=syntax fdl=100
set makeprg=g++\ %:r.cpp\ -o\ %:r\ -g\ -std=c++11\ -Wall\ -Wextra\ -Wconversion

nmap <C-A> ggVG
vmap <C-C> "+y
noremap <C-V> "+P

map <F3> :vnew %:r.in<cr>
map <F4> :!gedit %<cr>
map <F5> :!time ./%:r<cr>
map <F8> :!time ./%:r< %:r.in<cr>
map <F9> :make<cr>
map <F9> :make<cr>
map <C-F9> :!g++ %:r.cpp -o %:r -g -02 -std=c++11<cr>
map <F10> :!gdb ./%:r<cr>
```

9 常用结论

9.1 上下界网络流

B(u,v) 表示边 (u,v) 流量的下界,C(u,v) 表示边 (u,v) 流量的上界,F(u,v) 表示边 (u,v) 的流量。设 G(u,v) = F(u,v) - B(u,v),显然有

$$0 \le G(u, v) \le C(u, v) - B(u, v)$$

无源汇的上下界可行流

建立超级源点 S^* 和超级汇点 T^* ,对于原图每条边 (u,v) 在新网络中连如下三条边: $S^* \to v$,容量为 B(u,v); $u \to T^*$,容量为 B(u,v); $u \to v$,容量为 C(u,v) - B(u,v)。最后求新网络的最大流,判断从超级源点 S^* 出发的边是否都满流即可,边 (u,v) 的最终解中的实际流量为 G(u,v) + B(u,v)。

有源汇的上下界可行流

从汇点 T 到源点 S 连一条上界为 ∞ , 下界为 0 的边。按照**无源汇的上下界可行流**一样做即可,流量即为 $T \to S$ 边上的流量。

有源汇的上下界最大流

- **1.** 在**有源汇的上下界可行流**中,从汇点 T 到源点 S 的边改为连一条上界为 ∞ ,下届为 x 的边。x 满足二分性质,找到最大的 x 使得新网络存在**无源汇的上下界可行流**即为原图的最大流。
- 2. 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边,变成无源汇的网络。按照**无源汇的上下界可行流**的方法,建立超级源点 S^* 和超级汇点 T^* ,求一遍 $S^* \to T^*$ 的最大流,再将从汇点 T 到源点 S 的这条边拆掉,求一次 $S \to T$ 的最大流即可。

有源汇的上下界最小流

1. 在**有源汇的上下界可行流**中,从汇点 T 到源点 S 的边改为连一条上界为 x,下 界为 0 的边。x 满足二分性质,找到最小的 x 使得新网络存在**无源汇的上下界可行流**即为原图的最小流。

2. 按照无源汇的上下界可行流的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 $S^* \to T^*$ 的最大流,但是注意这一次不加上汇点 T 到源点 S 的这条边,即不 使之改为无源汇的网络去求解。求完后,再加上那条汇点 T 到源点 S 上界 ∞ 的边。因为这条边下界为 0,所以 S^* , T^* 无影响,再直接求一次 $S^* \to T^*$ 的最大流。若超级源点 S^* 出发的边全部满流,则 $T \to S$ 边上的流量即为原图的最小流,否则无解。

9.2 上下界费用流

来源: BZ0J 3876 设汇 t, 源 s, 超级源 S, 超级汇 T, 本质是每条边的下界为 **1**, 上界为 MAX, 跑一遍有源汇的上下界最小费用最小流。(因为上界无穷大,所以只要满足所有下界的最小费用最小流)

- **1.** 对每个点 x: 从 x 到 t 连一条费用为 0, 流量为 MAX 的边,表示可以任意停止 当前的剧情(接下来的剧情从更优的路径去走,画个样例就知道了)
- 2. 对于每一条边权为 z 的边 x->y:
 - 从 S 到 y 连一条流量为 1, 费用为 z 的边, 代表这条边至少要被走一次。
 - 从 x 到 y 连一条流量为 MAX, 费用为 z 的边, 代表这条边除了至少走的 一次之外还可以随便走。
 - 从 x 到 T 连一条流量为 1, 费用为 0 的边。(注意是每一条 x->y 的边都 连, 或者你可以记下 x 的出边数 Kx, 连一次流量为 Kx, 费用为 0 的边)。

建完图后从 S 到 T 跑一遍费用流,即可。(当前跑出来的就是满足上下界的最小费用最小流了)

9.3 弦图相关

- 1. 团数 \leq 色数, 弦图团数 = 色数
- 2. 设 next(v) 表示 N(v) 中最前的点. 令 w* 表示所有满足 $A \in B$ 的 w 中最后的一个点,判断 $v \cup N(v)$ 是否为极大团,只需判断是否存在一个 w,满足 Next(w) = v 且 $|N(v)| + 1 \le |N(w)|$ 即可.
- 3. 最小染色: 完美消除序列从后往前依次给每个点染色,给每个点染上可以染的最小的颜色

- 4. 最大独立集: 完美消除序列从前往后能选就选
- 5. 弦图最大独立集数 = 最小团覆盖数,最小团覆盖: 设最大独立集为 $\{p_1, p_2, \dots, p_t\}$,则 $\{p_1 \cup N(p_1), \dots, p_t \cup N(p_t)\}$ 为最小团覆盖

9.4 Bernoulli 数

- **1.** 初始化: $B_0(n) = 1$
- 2. 递推公式:

$$B_m(n) = n^m - \sum_{k=0}^{m-1} {m \choose k} \frac{B_k(n)}{m-k+1}$$

3. 应用:

$$\sum_{k=1}^{n} k^{m} = \frac{1}{m+1} \sum_{k=0}^{m} \binom{m+1}{k} n^{m+1-k}$$

10 常见错误

- 1. 数组或者变量类型开错,例如将 double 开成 int;
- 2. 函数忘记返回返回值;
- 3. 初始化数组没有初始化完全;
- 4. 对空间限制判断不足导致 MLE;
- 5. 对于重边未注意,
- 6. 对于 0、1base 未弄清楚, 用混
- 7. map 的赋值问题 (dis[] = find(dis[]))
- 8. 输出格式

L1 测试列表

- 1. 检测评测机是否开 02;
- 2. 检测 int128 以及 float128 是否能够使用;
- 3. 检测是否能够使用 C++11;
- 4. 检测是否能够使用 Ext Lib;

- 5. 检测程序运行所能使用的内存大小;
- 6. 检测程序运行所能使用的栈大小;
- 7. 检测是否有代码长度限制;
- 8. 检测是否能够正常返 Runtime Error (assertion、return 1、空指针);
- 9. 查清楚厕所方位和打印机方位;

12 Java

12.1 Java Hints

```
import java.util.*;
import java.math.*;
import java.io.*;
public class Main{
  static class Task{
   void solve(int testId, InputReader cin, PrintWriter cout) {
      // Write down the code you want
  };
  public static void main(String args[]) {
   InputStream inputStream = System.in;
   OutputStream outputStream = System.out;
   InputReader in = new InputReader(inputStream);
   PrintWriter out = new PrintWriter(outputStream);
   TaskA solver = new TaskA();
   solver.solve(1, in, out);
   out.close();
  static class InputReader {
   public BufferedReader reader;
   public StringTokenizer tokenizer;
   public InputReader(InputStream stream) {
```

```
reader = new BufferedReader(new InputStreamReader(stream), 32768);
      tokenizer = null;
    public String next() {
      while (tokenizer == null || !tokenizer.hasMoreTokens()) {
        try {
          tokenizer = new StringTokenizer(reader.readLine());
        } catch (IOException e) {
          throw new RuntimeException(e);
      return tokenizer.nextToken();
    public int nextInt() {
      return Integer.parseInt(next());
}:
// Arrays
int a[];
.fill(a[, int fromIndex, int toIndex],val); | .sort(a[, int fromIndex, int toIndex])
// String
String s;
.charAt(int i); | compareTo(String) | compareToIgnoreCase () | contains(String) |
length () | substring(int l, int len)
// BigInteger
.abs() | .add() | bitLength () | subtract () | divide () | remainder () |

    divideAndRemainder () | modPow(b, c) |

pow(int) | multiply () | compareTo () |
gcd() | intValue () | longValue () | isProbablePrime(int c) (1 - 1/2^c) |
nextProbablePrime () | shiftLeft(int) | valueOf ()
// BigDecimal
.ROUND CEILING | ROUND DOWN FLOOR | ROUND HALF DOWN | ROUND HALF EVEN | ROUND HALF UP
 \hookrightarrow | ROUND UP
.divide(BigDecimal b, int scale , int round_mode) | doubleValue () |

→ movePointLeft(int) | pow(int) |
```

setScale(int scale , int round_mode) | stripTrailingZeros () BigDecimal.setScale()方法用于格式化小数点 setScale(1)表示保留一位小数, 默认用四舍五入方式 setScale(1,BigDecimal.ROUND_DOWN)直接删除多余的小数位, 如 2.35会变成 2.3 setScale(1,BigDecimal.ROUND_UP)进位处理, 2.35变成 2.4 setScale(1,BigDecimal.ROUND_HALF_UP)四舍五入, 2.35变成 2.4 setScaler(1,BigDecimal.ROUND_HALF_DOWN)四舍五入, 2.35变成 2.3, 如果是 5 则向下舍 setScaler(1,BigDecimal.ROUND CEILING)接近正无穷大的舍入 setScaler(1,BigDecimal.ROUND_FLOOR)接近负无穷大的舍入,数字>0和 ROUND_UP 作用一样,数字<0和 ROUND_DOWN 作用一样 setScaler(1,BigDecimal.ROUND_HALF_EVEN)向最接近的数字舍入,如果与两个相邻数字的距离相等,则向相邻的偶数合金。 // StringBuilder StringBuilder sb = new StringBuilder (); sb.append(elem) | out.println(sb)

13 数学

13.1 常用数学公式

13.1.1 求和公式

1.
$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(4n^2-1)}{3}$$

2.
$$\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$$

3.
$$\sum_{k=1}^{n} (2k-1)^3 = n^2(2n^2-1)$$

4.
$$\sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

5.
$$\sum_{k=1}^{n} k^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

6.
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$

7.
$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

// TODO Java STL 的使用方法以及上面这些方法的检验

8.
$$\sum_{k=1}^{n} k(k+1)(k+2)(k+3) = \frac{n(n+1)(n+2)(n+3)(n+4)}{5}$$

13.1.2 斐波那契数列

1.
$$fib_0 = 0, fib_1 = 1, fib_n = fib_{n-1} + fib_{n-2}$$

2.
$$fib_{n+2} \cdot fib_n - fib_{n+1}^2 = (-1)^{n+1}$$

3.
$$fib_{-n} = (-1)^{n-1} fib_n$$

4.
$$fib_{n+k} = fib_k \cdot fib_{n+1} + fib_{k-1} \cdot fib_n$$

5.
$$gcd(fib_m, fib_n) = fib_{gcd(m,n)}$$

6.
$$fib_m|fib_n^2 \Leftrightarrow nfib_n|m$$

1.
$$D_n = (n-1)(D_{n-2} - D_{n-1})$$

2. $D_n = n! \cdot (1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{2!} + \dots + \frac{(-1)^n}{n!})$

13.1.4 莫比乌斯函数

$$\mu(n) = \begin{cases} 1 & \text{若} n = 1\\ (-1)^k & \text{若} n \text{无平方数因子}, \ \exists n = p_1 p_2 \dots p_k\\ 0 & \text{若} n \text{有大于1的平方数因数} \end{cases}$$

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{\textit{if }} n = 1 \\ 0 & \text{\textit{if }} \text{\textit{if }} \text{\textit{if }} \end{cases}$$

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(\frac{n}{d})$$

$$g(x) = \sum_{n=1}^{[x]} f(\frac{x}{n}) \Leftrightarrow f(x) = \sum_{n=1}^{[x]} \mu(n) g(\frac{x}{n})$$

13.1.5 伯恩赛德引理

设 G 是一个有限群, 作用在集合 X 上。对每个 g 属于 G, 今 X^g 表示 X中在 q 作用下的不动元素, 轨道数 (记作 |X/G|) 由如下公式给出:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

13.1.6 五边形数定理

设 p(n) 是 n 的拆分数,有

$$p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k-1} p\left(n - \frac{k(3k-1)}{2}\right)$$

13.1.7 树的计数

1. 有根树计数: n+1 个结点的有根树的个数为

$$a_{n+1} = \frac{\sum_{j=1}^{n} j \cdot a_j \cdot S_{n,j}}{n}$$

其中,

$$S_{n,j} = \sum_{i=1}^{n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j}$$

2. 无根树计数: 当 n 为奇数时, n 个结点的无根树的个数为

$$a_n - \sum_{i=1}^{n/2} a_i a_{n-i}$$

当 n 为偶数时, n 个结点的无根树的个数为

$$a_n - \sum_{i=1}^{n/2} a_i a_{n-i} + \frac{1}{2} a_{\frac{n}{2}} (a_{\frac{n}{2}} + 1)$$

3. n 个结点的完全图的生成树个数为

$$n^{n-2}$$

4. 矩阵 - 树定理: 图 G 由 n 个结点构成,设 A[G] 为图 G 的邻接矩阵、D[G] 为图 G 的度数矩阵,则图 G 的不同生成树的个数为 C[G] = D[G] - A[G] 的 有任意一个 n-1 阶主子式的行列式值。

13.1.8 欧拉公式

平面图的顶点个数、边数和面的个数有如下关系:

$$V - E + F = C + 1$$

其中, V 是顶点的数目, E 是边的数目, F 是面的数目, C 是组成图形的连通部分的数目。当图是单连通图的时候,公式简化为:

$$V - E + F = 2$$

13.1.9 皮克定理

给定顶点坐标均是整点(或正方形格点)的简单多边形,其面积 A 和内部格点数目 i、边上格点数目 b 的关系:

$$A = i + \frac{b}{2} - 1$$

13.1.10 牛顿恒等式

设

$$\prod_{i=1}^{n} (x - x_i) = a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n$$

$$p_k = \sum_{i=1}^{n} x_i^k$$

则

$$a_0 p_k + a_1 p_{k-1} + \dots + a_{k-1} p_1 + k a_k = 0$$

特别地,对于

$$|A - \lambda E| = (-1)^n (a_n + a_{n-1}\lambda + \dots + a_1\lambda^{n-1} + a_0\lambda^n)$$

$$p_k = Tr(\mathbf{A}^k)$$

13.2 平面几何公式

13.2.1 三角形

1. 半周长

$$p = \frac{a+b+c}{2}$$

2. 面积

$$S = \frac{a \cdot H_a}{2} = \frac{ab \cdot sinC}{2} = \sqrt{p(p-a)(p-b)(p-c)}$$

3. 中线

$$M_a = \frac{\sqrt{2(b^2 + c^2) - a^2}}{2} = \frac{\sqrt{b^2 + c^2 + 2bc \cdot cosA}}{2}$$

4. 角平分线

$$T_a = \frac{\sqrt{bc \cdot [(b+c)^2 - a^2]}}{b+c} = \frac{2bc}{b+c} \cos \frac{A}{2}$$

5. 高线

$$H_a = bsinC = csinB = \sqrt{b^2 - (\frac{a^2 + b^2 - c^2}{2a})^2}$$

6. 内切圆半径

$$\begin{split} r &= \frac{S}{p} = \frac{arcsin\frac{B}{2} \cdot sin\frac{C}{2}}{sin\frac{B+C}{2}} = 4R \cdot sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2} \\ &= \sqrt{\frac{(p-a)(p-b)(p-c)}{p}} = p \cdot tan\frac{A}{2}tan\frac{B}{2}tan\frac{C}{2} \end{split}$$

7. 外接圆半径

$$R = \frac{abc}{4S} = \frac{a}{2sinA} = \frac{b}{2sinB} = \frac{c}{2sinC}$$

13.2.2 四边形

 D_1, D_2 为对角线, M 对角线中点连线, A 为对角线夹角, p 为半周长

1.
$$a^2 + b^2 + c^2 + d^2 = D_1^2 + D_2^2 + 4M^2$$

- 2. $S = \frac{1}{2}D_1D_2sinA$
- 3. 对于圆内接四边形

$$ac + bd = D_1D_2$$

4. 对于圆内接四边形

$$S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$$

13.2.3 正 n 边形

R 为外接圆半径, r 为内切圆半径

1. 中心角

$$A = \frac{2\pi}{n}$$

2. 内角

$$C = \frac{n-2}{n}\pi$$

3. 边长

$$a=2\sqrt{R^2-r^2}=2R\cdot sin\frac{A}{2}=2r\cdot tan\frac{A}{2}$$

4. 面积

$$S = \frac{nar}{2} = nr^2 \cdot tan\frac{A}{2} = \frac{nR^2}{2} \cdot sinA = \frac{na^2}{4 \cdot tan\frac{A}{2}}$$

13.2.4 圆

1. 弧长

$$l = rA$$

2. 弦长

$$a = 2\sqrt{2hr - h^2} = 2r \cdot \sin\frac{A}{2}$$

3. 弓形高

$$h = r - \sqrt{r^2 - \frac{a^2}{4}} = r(1 - \cos\frac{A}{2}) = \frac{1}{2} \cdot arctan\frac{A}{4}$$

4. 扇形面积

$$S_1 = \frac{rl}{2} = \frac{r^2 A}{2}$$

5. 弓形面积

$$S_2 = \frac{rl - a(r - h)}{2} = \frac{r^2}{2}(A - sinA)$$

13.2.5 棱柱

1. 体积

$$V = Ah$$

A 为底面积, h 为高

2. 侧面积

$$S = lp$$

l 为棱长, p 为直截面周长

3. 全面积

$$T = S + 2A$$

13.2.6 棱锥

1. 体积

$$V = Ah$$

A 为底面积, h 为高

2. 正棱锥侧面积

$$S = lp$$

l 为棱长, p 为直截面周长

3. 正棱锥全面积

$$T = S + 2A$$

13.2.7 棱台

1. 体积

$$V = (A_1 + A_2 + \sqrt{A_1 A_2}) \cdot \frac{h}{3}$$

 A_1, A_2 为上下底面积, h 为高

2. 正棱台侧面积

$$S = \frac{p_1 + p_2}{2}l$$

 p_1, p_2 为上下底面周长, l 为斜高

3. 正棱台全面积

$$T = S + A_1 + A_2$$

13.2.8 圆柱

1. 侧面积

$$S = 2\pi rh$$

2. 全面积

$$T = 2\pi r(h+r)$$

3. 体积

$$V = \pi r^2 h$$

13.2.9 圆锥

1. 母线

$$l = \sqrt{h^2 + r^2}$$

2. 侧面积

$$S=\pi rl$$

3. 全面积

$$T = \pi r(l+r)$$

4. 体积

$$V = \frac{\pi}{3}r^2h$$

13.2.10 圆台

1. 母线

$$l = \sqrt{h^2 + (r_1 - r_2)^2}$$

2. 侧面积

$$S = \pi(r_1 + r_2)l$$

3. 全面积

$$T = \pi r_1(l + r_1) + \pi r_2(l + r_2)$$

4. 体积

$$V = \frac{\pi}{3}(r_1^2 + r_2^2 + r_1 r_2)h$$

13.2.11 球

1. 全面积

$$T = 4\pi r^2$$

2. 体积

$$V = \frac{4}{3}\pi r^3$$

13.2.12 球台

1. 侧面积

$$S = 2\pi rh$$

2. 全面积

$$T = \pi(2rh + r_1^2 + r_2^2)$$

3. 体积

$$V = \frac{\pi h[3(r_1^2 + r_2^2) + h^2]}{6}$$

13.2.13 球扇形

1. 全面积

$$T = \pi r (2h + r_0)$$

h 为球冠高, r_0 为球冠底面半径

2. 体积

$$V = \frac{2}{3}\pi r^2 h$$

13.3 积分表

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x$$

$$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$$

$$\int \frac{1}{a^2+x^2} dx = \frac{1}{2} \ln |a^2 + x^2|$$

$$\int \frac{x^2}{a^2+x^2} dx = x - a \tan^{-1} \frac{x}{a}$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} a^2 \ln |x + \sqrt{x^2 \pm a^2}|$$

$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} a^2 \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$

$$\int \frac{x^2}{\sqrt{x^2 \pm a^2}} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} + \frac{1}{2} a^2 \ln |x + \sqrt{x^2 \pm a^2}|$$

$$\int \frac{1}{\sqrt{a^2 \pm a^2}} dx = \ln |x + \sqrt{x^2 \pm a^2}|$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}$$

$$\int \frac{x}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2}$$

$$\int \frac{x}{\sqrt{a^2 - x^2}} dx = \sqrt{x^2 \pm a^2}$$

$$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2}$$

$$\int \sqrt{x^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^3/2} \ln |2ax + b + 2\sqrt{a(ax^2 + bx + c)}|$$

$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$

$$\int \sin^3 ax dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$

$$\int \sin^3 ax dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax$$

$$\int \cos^3 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a}$$

$$\int \cos^3 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a}$$

$$\int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a}$$

$$\int \tan ax dx = -\frac{1}{a} \ln \cos ax$$

$$\int \tan ax dx = -\frac{1}{a} \ln \cos ax$$

$$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$

$$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$

$$\int x \cos ax dx = \frac{2x \cos ax}{a} + \frac{4a^2x^2 - 2}{a^3} \sin ax$$

$$\int x \sin ax dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2}$$

$$\int x^2 \sin ax dx = \frac{2x \cos ax}{a} + \frac{\sin ax}{a^2}$$

$$\int x^2 \sin ax dx = \frac{2x \cos ax}{a} + \frac{\sin ax}{a^2}$$

$$\int x^2 \sin ax dx = \frac{2x \cos ax}{a} + \frac{\sin ax}{a^2}$$