Homework 1 ECE2500 CRN:82943

Jacob Abel

September 4, 2018

Problem 1: There are many different examples of Instruction Set Architectures (ISAs). Give three examples of ISAs other than MIPS. For each example, give the following details:

- What differentiates the ISA from MIPS?
- What similarities does the ISA share with MIPS?
- What devices or applications most often use the ISA?

1. x86

- Unlike MIPS, x86 is a CISC architecture and therefore is more expensive to implement. x86 also has a variable instruction width unlike MIPS. Also x86 is little endian while MIPS can be either big or little endian.
- Both MIPS and x86 are register based ISAs.
- Most modern laptops and desktops are x86.

2. ARM

- ARM often implements branch prediction and has an extremely varied/heterogeneous architecture unlike MIPS which despite allowing extensions, tends to be much more homogeneous.
- Both ARM and MIPS are RISC ISAs, have fixed instruction widths, and are bi-endian.
- Mobile devices and IoT devices often use ARM.

3. z/Architecture

- z/Architecture is primarily big endian, is CISC instead of RISC, and has variable width instructions unlike MIPS.
- MIPS and z/Architecture are largely dissimilar except that they are both register based architectures.
- This ISA is primarily used on IBM mainframes.

Problem 2: Assume that the base address of the array, A, is stored in \$s0. The following table gives the memory addresses of $A[0], \ldots, A[3]$ along with the values stored in the corresponding memory location.

	Stored Value	Memory Address
A[0]	-3	4
A[1]	7	8
A[2]	-6	12
A[3]	11	16

What are the values stored in registers \$s0, \$s1, \$s2, and \$s3 after executing the following MIPS instructions?

	Instructions	Changed Values
sw	\$s0, 0(\$s0)	A[0] = 4, $$s0 = 4$
lw	\$s1, 0(\$s0)	A[0]=4, $$s0=4$, $$s1=4$
lw	\$s2, 8(\$s0)	A[0]=4, $$s0=4$, $$s1=4$, $$s2=-6$
add	\$s3, \$s1, \$s2	A[0]=4, $$s0=4$, $$s1=4$, $$s2=-6$, $$s3=-2$

Final Register Values: $\$s0=4,\,\$s1=4,\,\$s2=-6,\,\$s3=-2$

Problem 3: Convert each of the following C statements into MIPS instructions. Assume that the variables a, b, and c are stored in s0, s1, and s2, respectively. The base addresses of the arrays A and B are stored in s3 and s4, respectively. Assume the arrays A and B contain integers.

2.
$$A[3] = b + a + 2^{11}$$

addi \$t0, \$s0, 0x0800
add \$t0, \$t0, \$s1
sw \$t0, 12(\$s3)

3.
$$B[5] = A[6] - c + B[b]$$

lw \$t0, 24(\$s3)

sl1 \$t1, \$s1, 2

addu \$t1, \$t1, \$s4

lw \$t1, 0(\$t1)

sub \$t2, \$t0, \$s2

add \$t2, \$t2, \$t1

sw \$t2, 20(\$s4)

4.
$$A[1] = B[a-c] + b - c$$

sub \$t0, \$s0, \$s2
s11 \$t0, \$t0, 2
addu \$t0, \$t0, \$s4
lw \$t0, 0(\$t0)
add \$t0, \$t0, \$s1
sub \$t0, \$t0, \$s2
sw \$t0, 4(\$s3)