CRSI DESIGN HANDBOOK

Revised 1957

CONCRETE REINFORGING STEEL INSTITUTE

Digitized by:

ASSOCIATION FOR PRESERVATION TECHNOLOGY, INTERNATIONAL www.apti.org

BUILDING TECHNOLOGY HERITAGE LIBRARY

https://archive.org/details/buildingtechnologyheritagelibrary

From the collection of:

Association for Preservation Technology, Int.

Edward Jorden

C R S I DESIGN HANDBOOK

REVISED 1957

Prepared under the Direction
of the
Engineering Practice Committee
Concrete Reinforcing Steel Institute

by

R. C. Reese

Price \$600

CONCRETE REINFORCING STEEL INSTITUTE 38 SOUTH DEARBORN STREET, CHICAGO 3, ILLINOIS Copyright, 1952

By Concrete Reinforcing Steel Institute
PRINTED IN THE UNITED STATES OF AMERICA

FIRST EDITION, 1952 SECOND PRINTING, 1952 SECOND EDITION 1957

KINGSPORT PRESS, INC. KINGSPORT, TENNESSEE

CONTENTS

PRECISION	iv
INTRODUCTION	1-2
Basis of tables and their use.	
REINFORCING BARS	3-19
Standard sizes. ASTM A305 bars. Weights, areas, perimeters,	
combinations, minimum beam widths. Clearances. Laps,	
splices, slants, hooks. Wire gauges and welded wire fabric.	
DESIGN FORMULAS	20-65
Nomenclature. Rectangular beams, tee beams, double rein-	20-03
forced beams. Axially loaded columns, eccentrically loaded	
	*
columns. Ultimate strength design; theory, formulas, charts.	
Working stresses. Design constants. Charts, diagrams and	
tables. Deflection of beams. Moments and shears for various	
loads.	((OF
DESIGN METHODS	66-95
Continuity in structures. Three moment equation; moment	
distribution; frames with sidesway. Fixed end moments. Stiff-	
ness factor. Bending of beam bars. Stirrup design. Kern of a	
section. Properties of a section. Parabolas.	
DESIGN DATA	96-109
Weights of building materials. Bearing values of soils, walls,	
etc. Live loads for buildings. Contents of warehouses. Fire	
resistance ratings. Volumes of columns and caps. Bar sup-	
ports.	
DESIGN NOTES AND HINTS	110-114
SAFE LOAD TABLES	
Solid Slabs	115-130
Stair Slabs	131-135
Concrete Joists	136-186
Grain Storage Bins.	187-188
Two-way Flat Slabs.	189-209
Beams (Stirrup Combinations)	210-230
Lintels	231-232
Axially loaded Columns (Wts of spirals.)	233-273
Soil Load Test	274
Eccentrically loaded Columns.	275-360
Eccentrically loaded Columns	
Footings. Pile Foundations	361-376
Steel Pipe Columns	377-378
Retaining Walls. Basement Walls	379-395
Pit Walls	396-397
Two-way Dome Floor Slabs	419-425
Slabs on Ground	426
ASTM SPECIFICATIONS.	398-418
Billet bars, ASTM A15-54T. Rail bars, ASTM A16-54T. De-	
formations, ASTM A305-56T. Cold-Drawn Steel Wire, ASTM	
A82-34. Welded Steel Wire Fabric, ASTM A185-56T.	
Sample Specifications for Concrete Construction.	
MATHEMATICAL TABLES	427-442
INDEX	443-446

PRECISION OF COMPUTATIONS FOR REINFORCED CONCRETE

If the somewhat involved mathematical methods used in rigid frame analysis lead one to believe that the design of reinforced concrete structures requires a high degree of precision, the reverse is the case. Concrete is a job-made material, and control cylinders that do not vary more than ten per cent are remarkably good. Reinforcing bars are shop-made; yet variations in strength characteristics run three to five per cent; rolled weights can vary $3\frac{1}{2}$ per cent. Formwork is field-built; frequently a 2×8 or 2×10 (measuring, respectively, $7\frac{1}{2}$ and $9\frac{1}{2}$ in.) is used to form the soffit of an 8 or 10 in. beam. Bars that are held in place to an accuracy of between $\frac{1}{2}$ and $\frac{1}{2}$ in. are extremely well placed. Two-figure accuracy is sufficient for almost all problems in reinforced concrete design.

Concrete is weak in tension; reinforcing steel is supplied to make up that deficiency; the time and effort of the designer is best spent in recognizing and providing for such tensions wherever they may exist, not in striving for a high degree of precision by carrying figures to an unmeaning number of significant places.

On the other hand, the bulk of present computing is done on a 10 in. slide rule, reading easily to three significant figures. When numbers are subtracted, significant figures are often lost. It is, therefore, recommended, more for control of the computations, for ready checking, and to keep the computer alert, rather than for any effect on the completed structure, that figures be carried to three significant places or to the extent of a 10 in. slide rule. There is no point in computing loads to a fine determination only to lose the results in a moment computation, nor is it logical to carry moments to the suggested three significant figures when the loads were guessed to one-figure precision. For that reason, the following table is suggested as a rough guide, not as any hard and fast rule, but only to give some indication of a satisfactory procedure.

RECORD VALUES TO THE FOLLOWING PRECISION:-

Loads to nearest 1 psf; 10 plf; 100 lb concentration. Span lengths to about 0.01 ft ($\frac{1}{2}$ in. = 0.01 ft) Total loads and reactions to 0.1 kip Moments to nearest 0.1 kip-in., if readable Individual bar areas to 0.01 sq in. Concrete sizes to $\frac{1}{2}$ in. (supports are crimped at 1 in. intervals) Effective beam depth to 0.1 in.

INTRODUCTION

The object of this handbook is to present finished designs of reinforced concrete members, giving concrete sizes and reinforcement. In the safe load tables, the need for charts and diagrams has been eliminated; the designer enters a table with load and span and immediately obtains concrete outlines and reinforcing steel. The types of construction covered are summarized in the Table of Contents, a study of which will greatly facilitate the use of these tables.

The basic theories of concrete design, a few diagrams, and some simple charts have been included for the benefit of structural engineers who prefer to make their own design computations. A brief summary of formulas for ultimate strength design is included with necessary charts.

The designs given in these tables are particularly good for preliminary estimating, for establishing sizes and clearances, and for comparing different types of construction. While they are mathematically correct for the conditions stated at the start of each table, no handbook can replace the judgment of an experienced structural engineer in selecting types of structure, proper loads, stresses, and moment factors, in eliminating eccentricities, in providing adequate stiffness, and in obtaining satisfactory and economical structures.

Designs are based entirely upon the "Building Code Requirements for Reinforced Concrete (ACI 318-56)," with three exceptions:—(1) the maximum positive moment in end spans was taken as $wL^2/11$ (no restraint at outer end); (2) all bond computations are based upon deformed bars conforming to "Minimum Requirements for the Deformations of Deformed Steel Bars for Concrete Reinforcement (ASTM A305-53T)"; plain round bars or bars not meeting ASTM A305 can not be used satisfactorily with the values here given; (3) load capacities are extended beyond the 3:1 ratio of live to dead loads (ACI 318-56-701c).

Tabulated values for flexural members (except beams) give the maximum safe superimposed load obtained by computing the total capacity of a member as limited by flexure, shear, bond or any other consideration and deducting from the least of these the dead weight of the concrete in the member itself. In the case of beams, no useful purpose is served by deducting merely the weight of the beam and, therefore, in the beam tables only, the loads given are the total safe loads in pounds per lineal foot. The safe superimposed load includes live load, partitions, floor finishes, ceilings, and, in fact, everything except the dead weight of the concrete member.

Tabulated safe loads are the maximum obtainable within the stresses and factors of the 1956 ACI "Building Code Requirements for Reinforced Concrete" and should be used only by one familiar with reinforced concrete design. No increase above the tabulated values should be made.

To meet average conditions, tables are given for concrete testing 3000 psi only in standard 6 x 12 cylinders at 28 days and for deformed bars stressed 20,000 psi. Columns are worked also for the richer mixes of 3750 and 5000 psi. Weaker concretes can be worked fairly closely by direct ratio of their strength to 3000 psi, though at "balanced reinforcement" there can be quite a deviation.

U. S. Department of Commerce Simplified Practice Recommendation 26 establishes all bars as round and designates sizes by number as outlined on page 3. Throughout this book, this numbering system is used,

ASTM specification for "Minimum Requirements for the Deformations of Deformed Steel Bars for Concrete Reinforcement (ASTM A305-53T)" establishes the projection and spacing of deformations. Under "Building Code Requirements for Reinforced Concrete (ACI 318-56)," increased bond and diagonal tension values are permitted, provided bars meet this specification. These higher values are used throughout the book.

REFERENCES

Many useful data on reinforced concrete design are not reproduced here in their entirety. The reader is advised to procure a copy of the American Concrete Institute * "Building Code Requirements for Reinforced Concrete (ACI 318-56)," which is the recognized authority in this field; also a copy of the "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)," which supplies a great amount of information on the standard methods of delineating reinforced concrete.

He should also have a copy of the Concrete Reinforcing Steel Institute † "A Manual of Standard Practice for Reinforced Concrete Construction," 1956, which covers materials available, standard methods of fabricating, and standard practices of estimating and contracting for such items.

The Portland Cement Association ‡ issues material upon the techniques of construction and design procedures for reinforced concrete structures, most of which is available upon request.

The American Concrete Institute,* in addition to the codes and manuals described above, issues many reference books and a regular monthly publication, "Journal of the American Concrete Institute," devoted to all phases of the design of reinforced concrete structures and to better procedures for concrete proportioning, mixing, placing, and curing.

^{*} American Concrete Institute, 18263 West McNichols Road, Detroit 19, Michigan. † Concrete Reinforcing Steel Institute, 38 South Dearborn Street, Chicago 3, Illinois.

WEIGHT, AREA AND PERIMETER OF INDIVIDUAL BARS

STEEL REINFORCING BARS
U. S. Department of Commerce
Simplified Practice Recommendation 26

Bar Numbers and Weights

Bar #a	Weight Per Foot (lb)	Bar #a	Weight Per Foot (Ib)
2 6	0.167	7	2.044
3	0.376	8	2.670
4	0.668	9 c	3.400
5	1.043	10 c	4.303
6	1.502	116	5.313

Data on Standard Deformed Bars

Obsolete	Bar	Unit	Nominal Di	mensions—Rou	ınd Sections
Bar Designation (Size, in.)	Des- igna- tion	Weight Per Foot	Diameter	Cross-Sec-	Perimeter
Rounds:	* #	lb	in.	sq in,	in.
1/4	2 b	0.167	0.250	0.05	0.786
3/8	3	0.376	0.375	0.11	1.178
1/2	4	0.668	0.500	0.20	1.571
5/8	5	1.043	0.625	0.31	1.963
3/4	6	1.502	0.750	0.44	2.356
7/8	7	2.044	0.875	0.60	2.749
1	8	2.670	1.000	0.79	3.142
Squares:		,			
1	9 c	3.400	1.128	1.00	3.544
11/8	10 °	4.303	1.270	1.27	3.990
11/4	11 c	5.313	1.410	1.56	4.430

Dimensional Requirements for Deformed Steel Bars for Concrete Reinforcement ASTM Serial Designation A305*

	Defo	ormation Requir	ements.
Bar Designation Number ^a	Max Avg Spacing (in.)	Min Height (in.)	Max Gap (in.) Chord of 12½ Per Cent of Nom- inal Perimeter
3	0.262	0.015	0.143
4	0.350	0.020	0.191
5	0.437	0.028	0.239
6	0.525	0.038	0.286
. 7	0.612	0.044	0.334
8	0.700	0.050	0.383
9 0	0.790	0.056	0.431
10 °	0.889	0.064	0.487
11 0	0.987	0.071	0.540

^a Bar numbers are based on the number of eighths of an inch included in the nominal diameter of the bars. The nominal diameter of a deformed bar is equivalent to the diameter of a plain bar having the same weight per foot as the deformed bar.

^b Bar #2 in plain rounds only.

 $[^]c$ Bars of designation #9, #10 and #11 correspond to former 1-in. square, $1\frac{1}{8}$ -in. square and $1\frac{1}{4}$ -in. square sizes and are equivalent to those former standard bar sizes in weight and nominal cross-sectional areas.

^{*} Weights, diameters, areas and perimeters of ASTM A305 are given above in "Data on Standard Deformed Bars."

AREAS OF VARIOUS COMBINATIONS OF BARS AND MINIMUM WEB WIDTHS FOR BEAMS

For table of areas of various combinations of bars, see pages 5, 6 and 7.

This table gives all practicable combinations of bars of equal diameters or differing by one or two sizes to produce any desired steel area, A_s .

This table also gives the minimum width of beam web that will properly cover the bars placed in a single layer, on the basis of $1\frac{1}{2}$ in. protection over $\frac{3}{8}$ stirrup legs, with spaces between the bars equal to one bar diameter or one inch. (See figure below.) Beam widths are given in multiples of one-tenth inch. When bars are of different sizes, smaller bars are placed on outside.

Example:— $A_s = 2.38$ sq in. can be obtained with 4-#6 and 2-#5 bars, requiring a beam width of 13 in. or better, or with 4-#7 bars in a beam width of $10\frac{1}{2}$ in.

Aggregate should be chosen with maximum size three-quarters of the clear space between bars.

The following table gives minimum beam widths in multiples of onequarter inch for various numbers of *equal* sized bars spaced as on the figure above:-

MINIMUM BEAM WIDTHS-ACI CODE

Size		Num	ber of Bars i	n Single Lay	er of Reinford	cement		Add for Each
Bars	2	3	4	5	6	7	8	Added Ba
#4	53/4	71/4	83/4	101/4	113/4	131/4	143/4	11/2
#5	6	73/4	91/4	11	121/2	141/4	153/4	1 5/8
#6	61/4	8	93/4	111/2	131/4	15	163/4	1 3/4
#7	61/2	81/2	101/4	121/4	14	16	173/4	1 7/8
#8	63/4	83/4	103/4	123/4	143/4	163/4	183/4	2
#9	71/4	91/2	113/4	14	161/4	181/2	203/4	21/4
#10	73/4	101/4	123/4	151/4	173/4	201/4	23	25/8
#11	8	11	133/4	161/2	191/2	221/4	25	27/8

Table shows minimum beam widths when stirrups are used.

If no stirrups are required, deduct three-quarters of an inch from figures shown.

For additional bars, add dimension in last column for each added bar.

For bars of different sizes, determine from table the beam width for smaller size bars, and then add last column figure for each larger bar used, or see pages 5 to 7.

AREAS OF VARIOUS COMBINATIONS OF BARS AND MINIMUM WEB WIDTHS FOR BEAMS

A,	Bai	r Com	binatio	on	Min Web	As	Ba	Com	binatio	on	Min Web	As	Ba	r Con	nbinatio	on	Min Web
(sq in.)	Quant	Size	Quant	Size	Width (in.)	(sq in.)	Quant	Size	Quant	Size	Width (in.)	(sq in.)	Quant	Size	Quant	Size	Width (in.)
0.11	1	#3			4.2	1.13	3	#5	1	#4	9.2	1.73	3	#5	4	#4	13.7
0.20	1	#4		• • • •	4.3	1.13	4	#4	3	#3	12.9	1.75	5	#5	1	#4	12.4
0.31		#5			4.4	1.15	3	#4	5	#3	14.2	1.76	4	#6			9.8
0.31	1	#4	1	#3	5.7	1.19	2	#6	1	#5	7.9	1.79	1	#9	1	#8	7.0
0.40	2	#4		• • • •	5.8	1.20	2	#7	• • • • •	• • • •	6.5	1.80	3	#7		••••	8.4
0.42		#4	2	#3	7.0	1.22	2	#5	3	#4	10.5	1.81	2	#6	3	#5	11.2
0.44	1	#6		• • • •	4.5	1.22	1	#7	2	#5	7.9	1.82	2	#7	2	#5	9.8
0.51	1	#5	1	#4	5.9	1.22	5	#4	2	#3	13.0	1.84	1	#7	4	#5	11.2
0.51	2	#4	1	#3	7.2	1.23	1	#8	1	#6	6.5	1.84	4	#5	3	#4	13.8
0.53	1	#4	3	#3	8.4	1.24	4	#5	• • • • •	• • • •	9.3	1.88	2	#6	5	#4	13.8
0.60	1	#7			4.7	1.24	1	#6	4	#4	10.5	1.92	1	#7	3	#6	9.9
0.60	3	#4			7.3	1.24	4	#4	4	#3		1.92	3	#6	3	#4	12.5
0.62	2	#5			6.0	1.27	1	#10				1.93	3	#5	5	#4	15.2
0.62	2	#4	2	#3	8.5	1.28	2	#6	2	#4	9.3	1.94	3	#6	2	#5	11.3
0.64	1	#4	4	#3	9.8	1.31	1	#5	5	#4	11.9	1.95	5	#5	2	#4	13.9
0.64	1	#6	1	#4	6.0	1.32	3	#6			8.0	1.96	4	#6	1	#4	11.3
0.71	1	#5	2	#4	7.4	1.33	3	#5	2	#4	10.7	1.99	1	#8	2	#7	8.5
0.71	3	#4	1	#3	8.7	1.33	5	#4	3	#3	14.4	1.99	1	#6	5	#5	12.7
0.73	2	#4	3	#3	9.9	1.35	4	#4	5	#3	15.7	2.00	2	#9			7.2
0.75	1	#6	1	#5	6.2	1.37	1	#6	3	#5	9.4	2.02	2	#8	1	#6	8.5
0.75	1	#4	5	#3	11.2	1.39	1	#8	1	#7	6.7	2.04	4	#5	4	#4	15.3
0.79	1	#8			4.8	1.42	2	#5	4	#4	12.0	2.06	1	#10	1	#8	7.2
0.80	4	#4			8.8	1.44	4	#5	1	#4	10.8	2.07	4	#6	1	#5	11.4
0.82	2	#5	1	#4	7.5	1.44	1	#6	5	#4	12.0	2.08	2	#7	2	#6	10.0
0.82	3	#4	2	#3	10.0	1.44	5	#4	4	#3	15.8	2.11	1	#8	3	#6	10.0
0.84	2	#4	4	#3	11.3	1.48	1	#7	2	#6	8.2	2.11	3	#7	1	#5	10.0
0.84	1	#6	2	#4	7.5	1.48	2	#6	3	#4	10.8	2.12	2	#6	4	#5	12.8
0.88	2	#6			6.3	1.50	2	#6	2	#5	9.5	2.12	3	#6	4	#4	14.0
0.91	1	#5	3	#4	8.9	1.51	2	#7	1	#5	8.2	2.13	2	#7	3	#5	11.4
0.91	1	#7	1	#5	6.3	1.52	3	#6	1	#4	9.5	2.15	1	#7	5	#5	12.8
0.91	4	#4	1	#3	10.2	1.53	1	#7	3	#5	9.5	2.15	5	#5	3	#4	15.4
0.93	3	#5			7.7	1.53	3	#5	3	#4	12.2	2.16	4	#6	2	#4	12.8
0.93	3	#4	3	#3	11.4	1.55	5	#5			10.9	2.18	2	#8	1	#7	8.7
0.95		#4	5	#3	12.7	1.55	5	#4	5	#3	17.2	2.20	1	#9	2	#7	8.7
1.00		#9			4.9	1.56	1	#11			5.2	2.20	5	#6			11.5
1.00	5	#4			10.3	1.58	2	#8			6.8	2.24	4	#5	5	#4	16.8
1.02	2000	#5	2	#4	9.0	1.60	1	#9	1	#7		2.24	3	#7	1	#6	10.2
1.02	100	#4	2	#3	11.5	1.62	2	#5	5	#4		2.25	3	#6	3	#5	12.9
1.04		#7	ī	#6	6.4	1.63	3	#6	1	#5		2.27	1	#10	1	#9	7.4
1.04		#4	4	#3	12.8	1.64	4	#5	2	#4		2.32	3	#6	5	#4	15.5
1.04	1	#6	3	#4	9.0	1.64	2	#7	1	#6	8.3	2.35	5	#5	4	#4	16.9
1.06		#6	2	#5	7.8	1.67	1	#8	2	#6	100000	2.36	1	#7	4	#6	11.7
1.08		#6	1	#4	7.8	1.68	1	#6	4	#5		2.36	4	#6	3	#4	14.3
1.11	1	#5	4	#4	10.4	1.68	2	#6	4	#4	12.3	2.37	3	#8			8.8
1.11	5 1	#4	1	#3	11.7	1.72	3	#6	2	#4	11.0	2.38	4	#6	2	#5	13.0

AREAS OF VARIOUS COMBINATIONS OF BARS AND MINIMUM WEB WIDTHS FOR BEAMS

A,	Bai	r Com	nbinatio	nc	Min Web	A _s	Bai	r Com	nbinatio	n	Min Web	A,	Ba	r Com	binatio	>n	Min Web
(sq in.)	Quant	Size	Quant	Size	Width (in.)	(şq in.)	Quant	Size	Quant	Size	Width (in.)	(sq in.)	Quant	Size	Quant	Size	Web Width (in.)
2.40	4	#7	••••		10.3	3.12	2	#11		,	8.0	3,98	2	#8	4	#7	14.3
2.40	5	#6	1	#4	13.0	3.12	3	#7	3	#6	13.7	4.00	4	#9			11.7
2.42		#7	2	#5	11.7	3.13	5	#6	3	#5	16.4	4.00	1	#9	5	#7	14.4
2.43	2	#6	5	#5	14.4	3.16	4	#8			10.8	4.00	3	#7	5	#6	17.2
2.44	2	#7	4	#5	13.0	3.19	1	#8	4	#7	12.3	4.04	4	#8	2	#6	14.3
2.46	2	#8	2	#6	10.3	3.20	2	#9	2	#7	11.1	4.10	1	#11	2	#10	10.4
2.51	5	#6	1	#5	13.2	3.20	5	#6	5	#4	19.0	4.12	2	#10	2	#8	11.9
2.52	2	#7	3	#6		3.25	3	#8	2	#6	12.3	4.12	2	#11	1	#9	10.4
2.54 2.55	5	#10 #5	5	#4	575 FEB. 105	3.27 3.28	1 4	#10 #7	2 2	#9 #6	9.7 13.8	4.13 4.16	3	#8 #9	4	#6 #8	15.8
2.55	1	#8	4	#6	11.8	3.31	4	#6	5	#5	17.9	4.16	4	#7	4	#6	17.3
2.56	3	#6	4	#5	100 N 45 N 17 W	3.31	5	#7	1	#5	A STATE OF THE STA	4.17	3	#8	3	# 7	14.4
2.56	1	#11	1	#9		3.33	2	#10	i	#8		4.20	3	#9	2	#7	13.3
2.56	4	#6	4	#4	- C 1975	3.33	4	#7	3	#5		4.24	5	#7	4	#5	18.7
2.58	1	#9	2	#8	9.1	3.34	2	#8	4	#6	as the the	4.27	1	#10	3	#9	12.0
2.59	1	#8	3	#7		3.35	3	#7	5	#5	16.5	4.32	5	#7	3	#6	17.4
2.60	2	#9	1	#7	9.1	3.37	1	#9	3	#8	11.1	4.36	4	#8	2	#7	14.5
2.60	5	#6	2	#4	14.5	3.38	2	#8	3	#7	12.4	4.37	2	#9	3	#8	13.3
2.68	3	#7	2	#6		3.40	1	#9	4	#7	12.4	4.39	5	#8	1	#6	14.5
2.69	4	#6	3	#5	14.7	3.40	2	#7	5	#6	15.3	4.39	2	#11	1	#10	10.6
2.71	4	#7	1	#5	ATTORNEY (1970)	3.44	5	#7	1	#6	100000000000000000000000000000000000000	4.40	2	#9	4	#7	14.8
2.73	3	#7	3	#5	C.C. STOCKER	3.44	5	#6	4	#5		4.43	1	#10	4	#8	13.3
2.75	2	#7	5	#5	The state of the s	3.54	2	#10	1	#9	100000	4.48	4	#8	3	#6	16.0
2.76 2.78	4 2	#6 #8	5 2	#4	1000 and 1000	3.56 3.56	3	#11 #7	2 4	#9 #6	terms and the state of	4.54 4.55	5	#10 #8	2	#9 #7	12.3 14.7
2.79	2	#9	1	#8		3.57	3	#8	2	#7		4.55	5	#7	5	#5	20.3
2.80	1	#9	3	#8	continue con	3.58	2	#8	2	#8	and the same	4.56	1	#11	3	#9	12.2
2.80	i	#7	5	#6		3.60	3	#9	1	#8		4.57	3	#11	5	#6	17.5
2.80	5	#6	3	#4		3.60	4	#8	i	#6		4.58	3	#9	2	#8	13.6
2.81	3	#8	1	#6	. 100	3.62	5	#7	2	#5	page and the	4.58	2	#8	5	#7	16.2
2.82	5	#6	2	#5	14.8	3.64	1	#10	3	#8	11.3	4.60	3	#10	1	#8	12.3
2.83	1	#11	1	#10	0000	3.64	4	#7	4	#5	AND 10 10 - 1	4.60	4	#9	i	#7	13.6
2.84	4	#7	i	#6		3.69	3	#8	3	#6		4.60	4	#7	5	#6	19.0
2.85	1	#10	2	#8		3.72	4	#7	3	#6	S2000-11/2	4.68	3	#11			10.9
2.87	3	#6	5	#5	201 9 700	3.75	5	#6	5	#5		4.76	5	#7	4	#6	19.2
2.88	2	#9	2	#6	10.8	3.76	4	#8	1	#7	12.7	4.77	3	#8	4	#7	16.3
2.96	2	#7	4	#6		3.78	2	#8	5	#6	15.5	4.79	4	#9	1	#8	13.8
2.97	3	#8	1	#7		3.79	3	#9	1	#8		4.80	3	#9	3	#7	15.2
2.99	1	#8	. 5	#6		3.79	1	#8	5	#7	14.2	4.81	3	#10	1	#9	12.5
3.00	4	#6	4	#5		3.80	2	#9	3	#7		4.83	5	#8	2	#6	16.3
3.00	3	#9			9.4	3.81	3	#10			10.2	4.91	2	#10	3	#8	13.8
3.00	5	#7			12.2	3.88	5	#7	2	#6		4.92	4	#8	4	#6	17.8
3.00	5	#6	4	#4	17.5	3.93	5	#7	3	#5	17.0	4.95	1	#9	5	#8	15.1
3.02	4	#7	2	#5		3.95	5	#8				4.96	4	#8	3	#7	16.4
3.04	3	#7	4	#5	14.9	3.95	4	#7	5	#5	18.4	5.00	5	#9			14.0

AREAS OF VARIOUS COMBINATIONS OF BARS AND MINIMUM WEB WIDTHS FOR BEAMS

A,	Bai	r Com	binatio	on	Min Web	A,	Ba	r Con	binatio	ņ	Min	A,	Ba	r Con	binatio	on	Min Web
(sq in.)	Quant	Size	Quant	Size	Width (in.)	(sq in.)	Quant	Size	Quant	Size	Width (in.)	(sq in.)	Quant	Size	Quant	Size	Widt (in.)
5.00	2	#9	5	#7	16.6	6.24	4	#11			13.7	8.08	4	#10	3	#9	19.6
5.08	4	#10			12.7	6.27	1	#10	5	#9	16.5	8.12	2	#11	5	#9	19.6
5.12	5	#11	2	#9	12.7	6.35	5	#10			15.2	8.16	5	#9	4	#8	22.1
5.15	5	#8	2	#7	16.5	6.35	5	#8	4	#7	20.3	8.20	2	#11	4	#10	18.3
5.16	2	#9	4	#8	15.3	6.37	4	#9	3	#8	17.8	8.24	4	#10	4	#8	21.0
5.20	4	#9	2	#7	15.4	6.40	4	#9	4	#7	19.3	8.24	4	#11	2	#9	18.5
5.20	5	#7	5	#6	20.9	6.49	2	#10	5	#8	17.9	8.35	5	#10	2	#9	19.9
5.22	1	#10	5	#8	15.3	6.54	2	#10	4	#9	16.8	8.49	3	#11	3	#10	18.6
5.27	5	#8	3	#6	18.0	6.56	1	#11	5	#9	16.8	8.68	3	#11	4	#9	20.2
5.27	1	#10	4	#9	14.2	6.58	5	#9	2	#8	18.1	8.72	5	#10	3	#8	21.5
5.36	4	#8	5	#6	19.5	6.64	1	#11	4	#10	15.5	8.78	4	#11	2	#10	18.9
5.37	1	#11	3	#10	13.0	6.66	4	#10	2	#8	17.0	8.80	5	#11	1	#9	18.9
5.37	3	#9	3	#8	15.5	6.68	3	#11	2	#9	15.6	8.81	3	#10	5	#9	21.6
5.37	3	#8	5	#7	18.2	6.80	5	#9	3	#7	19.7	8.95	5	#9	5	#8	24.1
5.39	3	#10	2	#8	14.4	6.81	3	#10	3	#9	17.1	9.03	4	#10	5	#8	23.0
5.40	3	#9	4	#7	17.1	6.93	2	#11	3	#10	15.8	9.07	5	#11	1	#10	19.1
5.54	2	#10	3	#9	14.5	6.95	3	#9	5	#8	19.6	9.08	4	#10	4	#9	21.9
5.56	4	#8	4	#7	18.3	6.95	5	#8	5	#7	22.2	9.24	4	#11	3	#9	20.7
5.56	1	#11	4	#9	14.5	6.97	3	#10	4	#8	18.4	9.35	5	#10	3	#9	22.1
5.58	4	#9	2	#8	15.8	7.00	4	#9	5	#7	21,2	9.47	2	#11	5	#10	20.9
5.60	5	#9	1	#7	15.9	7.08	4	#10	2	#9	17.3	9.51	5	#10	4	#8	23.5
5.66	2	#11	2	#10	13.2	7.12	2	#11	4	#9	17.3	9.68	3	#11	5	#9	22.4
5.68	3	#11	1	#9	13.2	7.14		#10	1	#8	17.4	9.76	3	#11	4	#10	21.1
5.70	2	#10		#8	15.9	7.16	4	#9	4	#8	19.8	9.80	5	#11	2	#9	21.3
5.71	5	#8	4	#6	19.8	7.22	3	#11	2	#10	16.1	10.05	4	#11	3	#10	21.4
5.75	5	#8	3	#7	18.4	7.24	4	#11	1	#9	16.1	10.08	4	#10	5	#9	24.1
5.79	5	#9	1	#8	16.0	7.35	5	#10	1	#9	17.6	10.24	4	#11	4	#9	23.0
5.80	4	#9	3	#7	17.4	7.37	5	#9	3	#8	20.1	10.30	5	#10	5	#8	25.5
5.81	3	#10	2	#9	14.8	7.40	5	#9	4	#7	21.6	10.34	5	#11	2	#10	21.7
5.87	4	#10	1	#8	14.8	7.45	4	#10	3	#8	19.0	10.35	5	#10	4	#9	24.4
5.95	2	#9	5	#8	17.3	7.51	4	#11	1	#10	16.3	10.80	5	#11	3	#9	23.5
5.95	3	#11	1	#10	13.5	7.54	2	#10	5	#9	19.0	11.03	3	#11	5	#10	23.7
6.00	3	#9	5	#7	18.9	7.68	3	#11	3	#9	17.9	11.24	4	#11	5	#9	25.2
6.08	4	#10	1	#9	15.0	7.76	3	#10	5	#8	20.4	11.32	4	#11	4	#10	24.0
6.12	2	#11	3	#9	15.1	7.80	5	#11	• • • • •	• • • •	16.5	11.35	5	#10	5	#9	26.7
6.15	5	#8	5	#6	21.5	7.81	3	#10	4	#9	19.3	11.61	5	#11	3	#10	24.2
6.16	3	#9	4	#8	17.6	7.91	1	#11	5	#10	18.0	11.80	5	#11	4	#9	25.8
6.16	4	#8	5	#7	20.2	7.93	5	#10	2	#8	19.5	12.59	4	#11	5	#10	26.5
6.18	3	#10	3	#8	16.4	7.95	4	#9	5	#8	21.8	12.80	5	#11	5	#9	28.1
6.20	5	#9	2	#7	17.8	8.00	5	#9	5	#7	23.5	12.88	5	#11	4	#10	26.8

PERIMETERS FOR VARIOUS COMBINATIONS OF BARS

		0		1	2	3	4	5						
1		1.6		2.7	3.9	5.1	6.3	7.5		12				
2		3.1		4.3	5.5	6.7	7.9	9.0						
3	#4	4.7	#3	5.9	7.1	8.2	9.4	10.6						
4		6.3		7.5	8.6	9.8	11.0	12.2						2.5
5		7.9		9.0	10.2	11.4	12.6	13.7						fit in
1		2.0		3.5	5.1	6.7	8.2	9.8						
2		3.9		5.5	7.1	8.6	10.2	11.8						
3	#5	5.9	#4	7.5	9.0	10.6	12.2	13.7						
4		7.9		9.4	11.0	12.6	14.1	15.7		[7]				[]
5		9.8		11.4	13.0	14.5	16.1	17.7		1	2	3	4	5
1		2.4		4.3	6.3	8.2	10.2	12.2		3.9	5.5	7.1	8.6	10.2
2		4.7		6.7	8.6	10.6	12.6	14.5		6.3	7.9	9.4	11.0	12.6
3	#6	7.1	#5	9.0	11.0	13.0	14.9	16.9	#4	8.6	10.2	11.8	13.4	14.9
4		9.4		11.4	13.4	15.3	17.3	19.2		11.0	12.6	14.1	15.7	17.3
5		11.8		13.7	15.7	17.7	19.6	21.6		13.4	14.9	16.5	18.1	19.6
1		2.7		5.1	7.5	9.8	12.2	14.5		4.7	6.7	8.6	10.6	12.6
2		5.5		7.9	10.2	12.6	14.9	17.3		7.5	9.4	11.4	13.3	15.3
3	#7	8.2	#6	10.6	13.0	15.3	17.7	20.0	#5	10.2	12.2	14.1	16.1	18.1
4		11.0		13.4	15.7	18.1	20.4	22.8		13.0	14.9	16.9	18.8	20.8
5		13.7		16.1	18.5	20.8	23.2	25.5		15.7	17.7	19.6	21.6	23.6
1		3.1		5.9	8.6	11.4	14.1	16.9		5.5	7.9	10.2	12.6	14.9
2		6.3		9.0	11.8	14.5	17.3	20.0		8.6	11.0	13.4	15.7	18.1
3	#8	9.4	#7	12.2	14.9	17.7	20.4	23.2	#6	11.8	14.1	16.5	18.9	21.2
4		12.6		15.3	18.1	20.8	23.6	26.3		14.9	17.3	19.6	22.0	24.3
5		15.7		18.5	21.2	24.0	26.7	29.5		18.1	20.4	22.8	25.1	27.5
1		3.5		6.7	9.8	13.0	16.1	19.3		6.3	9.0	11.8	14.5	17.3
2		7.1		10.2	13.4	16.5	19.7	22.8		9.8	12.6	15.3	18.1	20.8
3	#9	10.6	#8	13.8	16.9	20.1	23.2	26.3	#7	13.4	16.1	18.9	21.6	24.4
4		14.2		17.3	20.5	23.6	26.7	29.9		16.9	19.7	22.4	25.2	27.9
5		17.7		20.9	24.0	27.1	30.3	33.4		20.5	23.2	26.0	28.7	31.5
1		4.0		7.5	11.1	14.6	18.2	21.7		7.1	10.3	13.4	16.6	19.7
2		8.0		11.5	15.1	18.6	22.2	25.7		11.1	14.3	17.4	20.5	23.7
3	#10	12.0	#9	15.5	19.1	22.6	26.1	29.7	#8	15.1	18.3	21.4	24.5	27.7
4		16.0		19.5	23.0	26.6	30.1	33.7		19.1	22.2	25.4	28.5	31.7
5		20.0		23.5	27.0	30.6	34.1	37.7		23.1	26.2	29.4	32.5	35.7
1		4.4		8.4	12.4	16.4	20.4	24.4		8.0	11.5	15.1	18.6	22.2
2		8.9		12.9	16.8	20.8	24.8	28.8		12.4	15.9	19.5	23.0	26.6
3	#11	13.3	#10	17.3	21.3	25.3	29.3	33.2	#9	16.8	20.4	23.9	27.5	31.0
4		17.7		21.7	25.7	29.7	33.7	37.7		21.3	24.8	28.4	31.9	35.4
5		22.2		26.1	30.1	34.1	38.1	42.1		25.7	29.2	32.8	36.3	39.9

The column headed 0 contains the total perimeter for bars of the size given in the second column, the number of bars, from 1 to 5, being specified in the first column.

Columns headed 1|2|3|4|5 add to Column 0 the perimeter of the number of bars called for across the top of the table of the size given just to the left of the number of bars.

Examples:—Perimeter of three #4 bars is found on Line 3 in Column 0 as 4.7 in.

Perimeter of three #4 plus four #3 bars is found on Line 3 in Column headed 4 as 9.4 in.

Perimeter of five #11 plus five #9 bars is found in the last line, last column as 39.9 in.

AREAS AND PERIMETERS OF BARS FOR SECTION OF SLAB ONE-FOOT WIDE

The first table gives the cross-sectional area per foot width of slab for various combinations of equal and unequal size bars. The spacing given is center to center of adjacent bars in inches, whether bars are of the same or different size. When different bar sizes are combined, large and small bars alternate.

The next table gives the total perimeter of bars per foot width of slab for various bar spacings. The spacing selected for entering the table should be that of the bars actually available for bond, disregarding any bars that have been bent out of the plane of stress.

Example in the use of Area Table on page 11. An area of 1.18 sq in. per foot width of slab is required. The column headed "#6 + #7" shows that 1.19 sq in. can be obtained with consecutive bars $5\frac{1}{4}$ in. c/c. The required area can also be obtained with #5 + #6 @ $3\frac{3}{4}$ * = 1.20 sq in. However, #6 + #7 @ 5 * = 1.25 sq in. has the advantage of spacing in even inches and will be used.

Example in the use of Perimeter Table on page 12. To obtain the perimeter for bond, assume first that this is a single span, so that alternate #6 bars would be bent up and bond figured on #7 @ 10 in. Enter the table and in column headed "#7" at a spacing of 10 in. find a perimeter of 3.3 in.

If this were a continuous span, the #7 bars would be bent up and bond for negative moment would be figured on two sets of #7 @ 10 in., which is equivalent to #7 @ 5 in. In column headed "#7" at a spacing of 5 in. find 6.6 in. Bond for the positive moment bars is figured on #6 @ 10 in. = 2.8 in.

^{*} According to "Building Code Requirements for Reinforced Concrete (ACI 318-56)," the spacing between two adjacent bars must not exceed three times the slab thickness, t.

AREAS OF BARS FOR SECTION OF SLAB ONE-FOOT WIDE

	Spac-	\$ 20 F 3	· 91	* 40	Combin	nations of B	Bar Nos			1.4
	(in.)	#2+#2.	#2+#3	#3+#3	#3+#4	#4+#4	#4+#5	#5+#5	#5+#6	#6+#6
1	2	0.30	0.48	0.66	0.93	1.20	1.53	1.86	2.25	2.64
2	21/4	0.27	0.42	0.59	0.82	1.07	1.36	1.65	2.00	2.35
3	21/2	0.24	0.38	0.53	0.74	0.96	1.22	1.49	1.80	2.11
4	23/4	0.22	0.35	0.48	0.68	0.87	1.12	1.35	1.64	1.92
5	3	0.20	0.32	0.44	0.62	0.80	1.02	1.24	1.50	1.76
6	31/4	0.18	0.29	0.41	0.57	0.74	0.94	1.14	1.38	1.62
7	31/2	0.17	0.28	0.38	0.53	0.69	0.87	1.06	1.28	1.51
8	33/4	0.16	0.26	0.35	0.50	0.64	0.82	0.99	1.20	1.41
9	4	0.15	0.24	0.33	0.47	0.60	0.77	0.93	1.13	1.32
10	41/4	0.14	0.23	0.31	0.44	0.56	0.72	0.88	1.06	1.24
11	41/2	0.13	0.22	0.29	0.42	0.53	0.68	0.83	1.00	1.17
12	43/4	0.13	0.20	0.28	0.39	0.51	0.64	0.78	0.95	1.11
13	5	0.12	0.19	0.26	0.37	0.48	0.61	0.74	0.90	1.06
14	51/4	0.11	0.18	0.25	0.36	0.46	0.58	0.71	0.85	1.01
15	51/2	0.11	0.17	0.24	0.34	0.44	0.56	0.68	0.82	0.96
16	53/4	0.10	0.16	0.23	0.32	0.42	0.53	0.65	0.78	0.92
17	6	0.10	0.16	0.22	0.31	0.40	0.51	0.62	0.75	0.88
18	61/2	0.09	0.15	0.20	0.29	0.37	0.47	0.57	0.70	0.81
19	7	0.09	0.14	0.19	0.27	0.34	0.44	0.53	0.65	0.75
20	71/2	0.08	0.13	0.18	0.25	0.32	0.41	0.50	0.60	0.70
21	8	0.08	0.13	0.17	0.24	0.30	0.38	0.47	0.56	0.66
22	81/2	0.07	0.11	0.16	0.22	0.28	0.36	0.44	0.53	0.62
23	9	0.07	0.11	0.15	0.21	0.27	0.34	0.41	0.50	0.59
24	91/2	0.06	0.10	0.14	0.20	0.25	0.32	0.39	0.48	0.56
25	10	0.06	0.10	0.13	0.19	0.24	0.31	0.37	0.45	0.53
26	101/2	0.06	0.09	0.13	0.18	0.23	0.29	0.35	0.43	0.50
27	11	0.05	0.09	0.12	0.17	0.22	0.28	0.34	0.41	0.48
28	111/2	0.05	0.08	0.11	0.16	0.21	0.27	0.32	0.39	0.46
29	12	0.05	0.08	0.11	0.16	0.20	0.26	0.31	0.38	0.44
30	13	****	• • • •	0.10	0.14	0.18	0.24	0.29	0.35	0.41
31	14	••••	• • • •	0.09	0.13	0.17	0.22	0.27	0.33	0.38
32	15	• • • •	• • • •	0.09	0.13	0.16	0.21	0.25	0.30	0.35

^{*} According to "Building Code Requirements for Reinforced Concrete (ACI 318-56)," the spacing between two adjacent bars must not exceed three times the slab thickness, t.

AREAS OF BARS FOR SECTION OF SLAB ONE-FOOT WIDE

			C	Combination	s of Bar N	OS				
#6+#7	#7+#7	<i>#</i> 7+#8	#8+#8	#8+#9	#9+#9	#9+#10	#10+#10	#10+#11	#11+#11	
2.77	3.20			2					D.	
2.50	2.88	3.34	3.79							
2.27	2.62	3.03	3.45							
2.08	2.40	2.78	3.16	3.58	4.00					
1.92	2.22	2.57	2.92	3.31	3.69					
1.78	2.06	2.38	2.71	3.06	3.43	3.89	4.36			-
1.66	1.92	2.22	2.53	2.86	3.20	3.63	4.06	4.53	4.99	-
1.56	1.80	2.09	2.37	2.69	3.00	3.41	3.81	4.25	4.68	
1.47	1.69	1.97	2.23	2.53	2.82	3.20	3.59	3.99	4.40	
1.39	1.60	1.85	2.11	2.38	2.67	3.02	3.39	3.77	4.16	
1.32	1.52	1.76	2.00	2.26	2.53	2.86	3.21	3.57	3.94	
1.25	1.44	1.67	1.90	2.15	2.40	2.72	3.05	3.39	3.74	
1.19	1.37	1.59	1.81	2.04	2.29	2.59	2.90	3.23	3.57	ı
1.13	1.31	1.51	1.72	1.95	2.18	2.48	2.77	3.09	3.40	1
1.09	1.25	1.45	1.65	1.86	2.09	2.37	2.65	2.96	3.26	l
1.04	1.20	1.39	1.58	1.79	2.00	2.27	2.54	2.83	3.12	-
0.96	1.11	1.28	1.46	1.65	1.85	2.09	2.35	2.61	2.88	
0.89	1.03	1.19	1.35	1.54	1.71	1.95	2.18	2.43	2.67	l
0.83	0.96	1:11	1.26	1.43	1.60	1.82	2.03	2.27	2.50	
0.78	0.90	1.04	1.19	1.34	1.50	1.70	1.91	2.12	2.34	
0.73	0.85	0.98	1.12	1.27	1.41	1.61	1.79	2.00	2.20	
0.69	0.80	0.93	1.05	1.20	1.33	1.52	1.69	1.89	2.08	
0.66	0.76	0.88	1.00	1.13	1.26	1.43	1.60	1.79	1.97	
0.63	0.72	0.84	0.95	1.08	1.20	1.36	1.52	1.70	1.87	ı
0.60	0.69	0.80	0.90	1.02	1.14	1.30	1.45	1.62	1.78	1
0.57	0.65	0.76	0.86	0.98	1.09	1.24	1.39	1.55	1.70	
0.55	0.63	0.73	0.82	0.93	1.04	1.19	1.33	1.48	1.63	
0.52	0.60	0.70	0.79	0.90	1.00	1.14	1.27	1.42	1.56	1
0.48	0.55	0.64	0.73	0.83	0.92	1.05	1.17	1.31	1.44	
0.45	0.51	0.60	0.68	0.77	0.86	0.98	1.09	1.22	1.34	
0.42	0.48	0.56	0.63	0.72	0.80	0.91	1.02	1.14	1.25	

SLANTS AND INCREMENTS FOR 45° BAR BENDS *

See also page 85.

O = Overall Bar Dimension

H = Height of Bend

S = Slant = 1.414 H to Nearest 1/2 Inch

I = Increment = S-H

Height H†	Slant Š	Incre- ment 2 Slants	Height H†	Slant S	Incre- ment 2 Slants 2I	Heighf H†	Slant S	Incre- ment 2 Slants 2I
			1-1	1-61/2	11	3-1	4-41/2	2-7
			1-2	1-8	1-0	3-2	4-51/2	2-7
			1-3	1-9	1-0	3-3	4-7	2-8
2	3	2	1-4	1-101/2	1-1	3-4	4-81/2	2-9
21/2	31/2	2	1-5	2-0	1-2	3-5	4-10	2-10
3	4	2	1-6	2-11/2	1-3	3-6	4-111/2	2-11
31/2	5	3	1-7	2-3	1-4	3-7	5-1	3-0
4	51/2	3	1-8	2-4	1-4	3-8	5-2	3-0
41/2	61/2	4	1-9	2-51/2	1-5	3-9	5-31/2	3-1
5	7	4	1-10	2-7	1-6	3-10	5-5	3-2
51/2	71/2	4	1-11	2-81/2	1-7	3-11	5-61/2	3-3
6	81/2	5	2-0	2-10	1-8	4-0	5-8	3-4
61/2	9	5	2-1	2-111/2	1-9	4-1	5-91/2	3-5
7	10	6	2-2	3-1	1-10	4-2	5-101/2	3-5
71/2	101/2	6	2-3	3-2	1-10	4-3	6-0	3-6
8	111/2	7	2-4	3-31/2	1-11	4-4	6-11/2	3-7
81/2	1-0	7	2-5	3-5	2-0	4-5	6-3	3-8
9	1-01/2	7	2-6	3-61/2	2-1	4-6	6-41/2	3-9
91/2	1-11/2	8	2-7	3-8	2-2	4-7	6-6	3-10
10	1-2	8	2-8	3-9	2-2	4-8	6-7	3-10
101/2	1-3	9	2-9	3-101/2	2-3	4-9	6-81/2	3-11
11	1-31/2	9	2-10	4-0	2-4	4-10	6-10	4-0
111/2	1-4	9	2-11	4-11/2	2-5	4-11	6-111/2	4-1
1-0	1-5	10	3-0	4-3	2-6	5-0	7-1	4-2

Increment For 2 Slants = $2 \times (S-H)$

Length of Truss Bars = 0 + 2I + Hooks.

All Dimensions Are Out To Out of Bar.

Scheduled length of bar is sum of the detail dimensions.

Fireproofing is usually $\frac{3}{4}$ " at top and $\frac{3}{4}$ " at bottom for slabs and joists, $\frac{1}{2}$ " top and $\frac{1}{2}$ " bottom for beams, to outer side of stirrups.

^{*}From "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)."

† H = out-to-out vertical drop of truss bar = out-to-out of concrete, less following where applicable:—(1) fireproofing at top, (2) fireproofing at bottom, (3) the diameter top, (4) stirrup diameter bottom, (5) diameter of cross-over bars, (6) allowance for bottom layer of bars and clearance between bars.

To determine the slant length enter the diagram with the length and height of bend and at the intersection read the slant length on the curved line.

^{*} From "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)."

STANDARD HOOKS

These details for standard hooks are taken from the ACI "Manual of Standard Practice for Detailing Reinforced Concrete Structures."

HOOKS WHICH MEET REQUIREMENTS OF ACI 318-56 AND CAN BE READILY FABRICATED WITH STANDARD EQUIPMENT

Recommended Sizes 180° Hook:-

Bar Size Hook Approx. J Н d A or G #2 2 31/2 3 #3 5 #4 #5 41/2 6 4 7 5 5 #6 8 6 6 #7 7 10 7 #8 1-1 10 #9 1-3 111/4 101/4 #10 1-5 1-01/2 111/4 1-7 #11 1-2 1-03/4

Recommended Sizes 9	0° Hook:-
---------------------	-----------

Bar Size d	Hook A or G	J
#2	31/2	4
#3	51/2	6
#4	71/2	81/4
#5	9	101/4
#6	101/2	1-01/2
#7	1-01/2	1-21/2
#8	1-21/2	1-5
#9	1-41/2	1-7
#10	1-61/2	1-91/2
#11	1-81/2	2-0

Recommended Sizes 135° Stirrup Hook:-

Hook	AorG	
Detailing	Dimension 6d or 2½ Min.	D*5d

Note:—When supporting bars are used, stirrup hooks may be bent to the diameter of the supporting bars.

Bar Size	Hook A or G	Approx.
#2	31/2	21/4
#3	4	21/2
#4	5	3
#5	6	33/4
#6	7	41/2

MINIMUM HOOKS THAT CAN BE FABRICATED WITH STANDARD EQUIPMENT

Minimum Sizes-180° Hook:-

Note:—This table to be used only for special conditions, where hooks smaller than recommended sizes are necessary. Not appropriate for hard grades of steel.

Bar Size d	Hook A or G	J	Approx.
#2	4	13/4	31/2
#3	5	23/4	4
#4	5	31/2	41/4
#5	6	41/4	43/4
#6	7	51/4	53/4
#7	9	6	61/2
#8	10	7	71/2
#9	11	8	81/2
#10	1-1	9	91/2
#11	1-2	10	101/2

Minimum Detailin				
₩ g	2	(P)	Aorg	
D.7d fo D.8d fo	r#2; r#8;	to #7 to #11	4d or 21/2 Min.	

Bar Size	Hook A or G	J
#2	3	31/2
#3	31/2	4
#4	31/2	5
#5	4	51/2
#6	41/2	61/2
#7	51/2	71/2
#8	61/2	9
#9	71/2	10
#10	81/2	111/2
#11	9	1-01/2

DATA ON AS&W WIRE GAUGES USED IN WELDED WIRE FABRIC*

AS&W Wire Gauge Numbers			$\begin{array}{c} \text{Weight} \\ \text{(lb/ft)} \end{array}$	
0000	0.3938	0.12180	0.4136	
000	0.3625	0.10321	0.3505	
00	0.3310	0.086049	0.2922	
0	0.3065	0.073782	0.2506	
ĭ	0.2830	0.062902	0.2136	
2	0.2625	0.054119	0.1838	
2 3 4 5	0.2437	0.046645	0.1584	
4	0.2253	0.039867	0.1354	
5	0.2070	0.033654	0.1143	
6	0.1920	0.028953	0.09832	
7	0.1770	0.024606	0.08356	
8	0.1620	0.020612	0.07000	
9	0.1483	0.017273	0.05866	
10	0.1350	0.014314	0.04861	
11 †	0.1205	0.011404	0.03873	
12 †	0.1055	0.0087417	0.02969	
13 †	0.0915	0.0065755	0.02233	
14 †	0.0800	0.0050266	0.01707	
15 †	0.0720	0.0040715	0.01383	
16 †	0.0625	0.0030680	0.01042	

WELDING RANGE OF TRANSVERSE WIRE GAUGES FOR LONGITUDINAL WIRE OF GIVEN GAUGE *

Gauge Longitudinal	Gauge Transverse Wire Range				
Longitudinal Wire	Maximum	Minimum			
0000	000	4			
000	000	4			
00	000	4 4 5 7			
0	000	7			
1	000	7			
2	000	9			
3	000	9 9			
4	000				
5	00	10			
2 3 4 5 6	0	10			
7	1	11			
7 8 9	3	12			
9	4	12			
10	1 3 4 6	12			
11	7	16			
12	8	16			
13	12	16			
14	12	16			
15	12	16			
16	12	16			

^{*} All mesh tables from "Design Manual for Welded Wire Fabric" of Wire Reinforcement Institute, Inc., 1955.

[†] Fabric in which both longitudinal and transverse wires are No. 11 gauge or lighter is furnished galvanized only.

COMMON STYLES OF WELDED WIRE FABRIC

ONE-WAY TYPES

Style Designation		ing of es (in.)		Wires Gauge	Sections (sq in.	nl Area * per ft)	Weight (lb per	
Designation	Longit.	Trans.	Longit.	Trans.	Longit.	Trans.	100 sq ft)	
2 x 12-0/6	2	12	0 .	6	.443	.029	166	
$2 \times 16 - 0/6$	2	16	0	6	.443	.022	163	
x 16-1/7	2	16	1	7	.377	.018	140	
2 x 16-2/8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16	2 3 4 5	8	.325	.015	119	
$2 \times 16 - 3/8$	2	16	3	8	.280	.015	104	
2 x 16-4/9	2	16	4	9	.239	.013	89	
$2 \times 16 - 5/10$	2	16	5	10	.202	.011	75	
2 x 16-6/10	2	16	6	10	.174	.011	65	
$2 \times 16 - 7/11$	2	16	7	11	.148	.009	55	
3 x 16—2/8	3 3 3	16	2	8	.216	.015	83	
3 x 16-3/8	3	16	3	8	.187	.015	72	
3 x 16-4/9	3	16	. 4	9	.159	.013	61	
4 x 16-3/8	4	16	3 4	8	.140	.015	56	
4 x 16-4/9	4	16	4	9	.120	.013	48	
x 16-5/10	4 4	16	5	10	.101	.011	40	
x 16-6/10	4	16	6	10	.087	.011	35	
x 16-7/11	4	16	7	11	.074	.009	30	
x 16-8/12	4	16	8	12	.062	.007	25	
x 16—9/12	4	16	9	12	.052	.007	21	
x 12-4/9	4	12	4	9	.120	.017	49	
$\times 12-5/7$	4	12	5	7	.101	.025	45	
x 12-5/10	4	12	5	10	.101	.014	42	
x 12-6/10	4 4 4	12	5 6 7	10	.087	.014	36	
x 12-7/11	4	12	7	11	.074	.011	31	
x 12-8/12	4	12	8	12	.062	.009	26	
x 12—9/12	4	12	9	12	.052	.009	22	
x 8-7/11	4	8	7	11	.074	.017	33	
$\times 8 - 8/12$	4	8	8	12	.062	.013	27	
$\times 8 - 9/12$	4	8	9	12	.052	.013	23	
x 8—10/12	4	8	10	12	.043	.013	20	
× 12-00/4	6	12	00	4	.172	.040	78	
x 12-0/0	6	12	0	0	.148	.074	81	
x 12-0/3	6	12	0	3	.148	.047	72	
x 12—1/1	6 6 6	12	1	1	.126	.063	69	
x 12-1/4	6	12	1	4	.126	.040	61	
x 12-2/2	6	12	2 2	2 5 3	.108	.054	59	
x 12-2/5	6	12	2	5	.108	.034	52	
x 12-3/3	6	12	3	3	.093	.047	51	
x 12-4/4	6	12	4	4	.080	.040	44	
x 12-6/6	6	12	6	6	.058	.029	32	

The above styles are used mostly in building construction.

Although the above styles are termed "one-way" fabrics—since in each case, the transverse wires are of minimum permissible size and have maximum permissible spacing—actually they have some transverse reinforcing effectiveness by virtue of the amount of transverse steel provided.

^{*&}quot;Building Code Requirements for Reinforced Concrete (ACI 318)" (306b) permits a maximum tensile stress of 30,000 psi in one-way slabs on spans of not more than 12 ft, so that the steel area if wire fabric is used in one-way slab tables under 12-ft span can be 3/3 of that given for bars (pp. 123-130).

COMMON STYLES OF WELDED WIRE FABRIC

TWO-WAY TYPES

Style Designation			Size of Wires AS&W Gauge		Sectional Area † (sq in. per ft)		Weight	
	Longit.	Trans.	Longit,	Trans.	Longit.	Trans.	100 sq	
2 x 2—10/10	2	2	10	10	.086	.086	60	
2 x 2-12/12 *	2 2	2	12	12	.052	.052	37	
2 x 2—14/14 *	2	2	14	14	.030	.030	21	
3 x 3—8/8	3	3	8	8	.082	.082	58	
$3 \times 3 - 10/10$	3	3	10	10	.057	.057	41	
3 x 3-12/12 *	3	3	12	12	.035	.035	25	
3 x 3—14/14 *	3	3	14	14	.020	.020	14	
4 × 4—4/4	4	4	4	4	.120	.120	85	
4 x 4-6/6	4	4	6	6	.087	.087	62	
4 x 4—8/8	4	4	8	8	.062	.062	44	
4 x 4—10/10	4	4	10	10	.043	.043	31	
4 x 4—12/12 *	4	4	12	12	.026	.026	19	
4 x 4—13/13 *	4	4	13	13	.020	.020	14	
6 x 6-0/0	6	6	0	0	.148	.148	107	
6 x 6-1/1	6	6	1		.126	.126	91	
6 x 6-2/2	6	6	2 3	² 3	.108	.108	78	
6 x 6-3/3	6	6	3	3	.093	.093	68	
6 x 6-4/4	6	6	4	4	.080	.080	58	
6 x 6-4/6	6	6	4	6	.080	.058	50	
6 x 6-5/5	6	6	5	5	.067	.067	49	
6 x 6-6/6	6	6	6		.058	.058	42	
6 × 6-7/7	6	6	7	7	.049	.049	36	
6 x 6-8/8	6	6	8	8	.041	.041	30	
6 x 6-9/9	6	6	9	9	.035	.035	25	
6 x 6-10/10	6	6	10	10	.029	.029	21	

A two-way fabric—for a given size of longitudinal wires—is any style in which the sectional area of transverse steel is greater than the minimum required for proper fabrication by reason of the transverse wires either having a spacing which is less than the permissible maximum, or being of larger size than the permissible minimum.

Two-way fabrics are not necessarily limited to styles in which longitudinal and transverse wires both have the same size and spacing as indicated in the above table.

^{*} Usually furnished only in galvanized wire.

^{† &}quot;Building Code Requirements for Reinforced Concrete (ACI 318)" (306b) permits a maximum tensile stress of 30,000 psi in one-way slabs on spans of not more than 12 ft, so that the steel area if wire fabric is used in one-way slab tables under 12-ft span can be $\frac{2}{3}$ of that given for bars (pp. 123-130).

FORMULAS, TABLES AND DIAGRAMS FOR REINFORCED CONCRETE DESIGN

NOMENCLATURE

- Area of a section or transformed area of a reinforced section.
- A_c Area of core of a spirally-reinforced column measured to the outside of the spiral; net area of concrete section of a composite column.
- Aa Gross area of spirally-reinforced or tied columns; total area of concrete encasement of a combination column.
- A_{τ} Area of steel or cast iron core in a composite column; area of steel core in a combination column.
- As A's Effective cross-sectional area of available reinforcing steel.
- Area of compressive reinforcement in flexural members.
- Area of temperature reinforcement.
- Total area of web reinforcement in tension within a distance of s (measured in a direction parallel to that of the main reinforcement) or the total area of all bars bent up in any one plane. Base length of shear diagram in inches.
- Angle between inclined web bars and axis of beam.
- A factor in column design; B = CD.
- bWidth of rectangular flexural member or width of flanges for T and I sections.
- Width of web in T and I flexural members.
- C Ratio of allowable concrete stress, f_a , in axially-loaded columns to allowable fiber stress for concrete in flexure; also resultant of compressive stress.
- Resultant of compression in concrete only.
- C_c C_s Resultant of compression in compressive reinforcement only.
- C Effective support size.
- $\frac{\epsilon}{2^2K}$ = a factor in column design varying from 3 to 9, where t is the overall depth of D column section and K is the least radius of gyration of the section; the diameter of spiral; deflection produced by a test load of a flexural member relative to the ends
- d The depth from compression face of a beam or slab to the centroid of longitudinal tensile reinforcement; also the diameter of a reinforcing bar.
- d' Distance from extreme compressive fiber to centroid of compressive reinforcement.
- $\stackrel{ ilde{E}_c}{E_s}$
- The modulus of elasticity of concrete in compression.

 The modulus of elasticity of reinforcing steel.

 Eccentricity of the axial load on a column measured from the gravity axis.
- Eccentricity measured from tensile steel axis.
- e^{s} e' F_a Nominal allowable axial unit stress $(0.225 f'_c + f_s p_q)$ for spiral columns and 0.8 of this value for tied columns.
- F_b Allowable bending unit stress that would be permitted if bending stress only existed.
- Nominal axial unit stress = axial load divided by area of member, A_g .
- f_a f_b f_c Bending unit stress (actual) = bending moment divided by section modulus of member. Computed stress in extreme fiber on compressive side of a reinforced concrete flexural member or computed concrete fiber stress in an eccentrically-loaded column, where the
- Ultimate compressive strength of concrete at 28 days, unless otherwise specified.
- Allowable unit stress in the metal core of a composite column.
- Allowable unit stress on unencased steel columns and pipe columns.
- Computed stress in tensile reinforcement of beams (for allowable working stresses see page 32). Nominal allowable stress in vertical column reinforcement (for allowable working stresses see page 32).
- f'_8 Computed stress in compressive reinforcement of beams and eccentrically loaded columns; also useful limit stress of spiral reinforcement, to be taken as 40,000 psi for hot-rolled bars of intermediate grade, 50,000 psi for bars of hard grade, and 60,000 psi for cold-drawn wire.
- Tensile unit stress in web reinforcement. f_v
- Ratio depth of steel to depth of concrete in eccentrically-loaded columns.
- $_{H}^{g}$ Unsupported length of column.
- h Any vertical height or distance.
- Moment of inertia of a section about the neutral axis for bending.
- Ratio of distance between centroid of compression and centroid of tension to the
- K Stiffness factor in frame design, i.e., the moment of inertia divided by the length.
- K_c Radius of gyration of concrete in concrete-filled pipe columns.

NOMENCLATURE

- Radius of gyration of a metal pipe section (in pipe columns). K_8
- Ratio of distance from extreme compressive fiber to neutral axis to the depth d.
- Span length of flat slab center-to-center of columns in the direction of which bending Ĺ is considered; also length of embedment to develop bond stress; span of member under load test (shorter span of flat slabs and of floors supported on four sides).
- Span length of slab or beam. Clear span for positive moment and shear and the average of the two adjacent clear ľ spans for negative moment.
- Corresponding spans adjacent to l'. 1111
- M External bending moment in lb-in.
- Resisting moment as determined by concrete. M_c
- Sum of the positive and the average negative bending moment at the critical design Mo
- sections of a flat slab panel. Resisting moment of internal stresses in lb-in. M_r
- Resisting moment as determined by reinforcing steel. M_s
- Axial load applied to reinforced concrete column; also number of stirrups. N
- Ratio of modulus of elasticity (E_s) to that of concrete $(E_c) = \frac{E_s}{E_c} = \frac{30,000}{f'_c}$. n
- N.A. Neutral axis.
- Total allowable axial load on a column whose length does not exceed ten times its least cross-sectional dimension; also external concentric load on footings or piles; also concentrated load on flexural members.
- P Total allowable axial load on a long column.
- Ratio of tensile reinforcement in beams = A_s/bd .
- Ratio of volume of spiral reinforcement to the volume of the concrete core (out-to-out of spirals) of a spirally-reinforced concrete column; also ratio of compressive reinforcement in beams = A'_{8}/bd .
- Net active soil pressure in footing design. p_a
- Ratio of the effective cross-sectional area of vertical reinforcement to the gross area, p_g
- A_g . Total soil pressure in footing design.
- Pounds per cubic foot. pcf
- Pounds per lineal foot. plf
- Pounds per square foot. psf Pounds per square inch.
- psi R M/bd^2 , the constant for flexural computations; also radius of circular column cap.
- Radius of circular column in inches
- Spacing of stirrups or bent bars in a direction parallel to that of the main reinforces ment; also spacing of main bars in solid slabs.
- Sum of perimeters of bars in one set.
- Resultant of tensile stresses.
- Overall depth of rectangular column section or the diameter of a round column; also depth of flange of a tee beam or thickness of a slab; thickness or depth of a member under load test.
- Thickness in inches of slab without drop panels, or through drop panel if any.
- Thickness in inches of slab with drop panels at points beyond the drop panel. t_2
- Bond stress per unit of surface area of bar.
- u V Total shear; also total vertical force.
- V'Excess of the total shear over that permitted on the concrete.
- Shearing unit stress.
- $v \\ v'$ Shearing stress taken by web reinforcement.
- Allowable intensity of diagonal tension (shear) resisted by concrete.
- $v_c \\ W$ Total load (wL)
- Uniformly distributed load per unit of length of beam or per unit of area of slab. w
- Distance between extreme fiber and resultant of compressive stresses; also intensity of horizontal shear per lineal inch.

Nomenclature for ultimate strength design are defined on page 28.

Symbols

- Sign of equality; i.e., equal to.
- More than, indicating that the value to the left is greater than that to the right of the > symbol.
- Less than, indicating that the value to the left is smaller than that to the right of the
- More than or equal to.
- Less than or equal to.
- Sum of, indicating the adding up of terms.

FORMULAS, TABLES AND DIAGRAMS FOR REINFORCED CONCRETE DESIGN

Although the purpose of this book is to provide finished designs giving concrete outlines and reinforcing steel for different loading conditions, it may be helpful to have the formulas for various stress computations of reinforced concrete grouped together in one place for easy reference.

References in this section marked "ACI" are to "Building Code Requirements for Reinforced Concrete (ACI 318-56)."

Transformed Areas

In general, it will be found with practice that it is simpler to use the method of "transformed areas" than to depend upon formulas. This method simply replaces the reinforcement with $n = \frac{E_s}{E_c}$ times as much concrete on the tension side of a member or (n-1) times as much on the compression side. It omits any tension concrete to produce the equivalent of a homogeneous member whose neutral axis (under flexure without direct stress) is at the centroid of the transformed area. If stresses vary as the distance from the neutral axis, all values can be determined by simple geometrical relationships.

FORMULAS—WORKING STRESS METHOD

1. Rectangular Beams with Tension Reinforcement.*

 f_* = tensile unit stress in steel.

 $f_c =$ compressive unit stress in extreme fiber of concrete.

 $E_s = \text{modulus of elasticity of steel.}$ $E_c = \text{modulus of elasticity of concrete.}$

 $n = \frac{E_s}{E_s}$

M =moment of resistance or bending moment in general.

b =breadth of beam.

d = depth of beam to center of steel.

^{*} For applications to specific numerical examples, see pages 116, 132, 211, 219, 224.

...

FORMULAS, TABLES AND DIAGRAMS

A, = cross-sectional area of tension steel reinforcement.

k = ratio of depth of neutral axis to depth d.

j = ratio of lever arm of resisting couple to depth d.

z =depth from compression face to resultant of the compressive stresses.

jd = d - z = arm of resisting couple.

$$p = ext{steel ratio } rac{A_s}{bd}$$
 $M = Tjd = A_s f_s jd = (f_s p j)bd^2 = Cjd = (\frac{1}{2}f_c k j)bd^2 = Rbd$
 $R_s = f_s p j \qquad R_c = \frac{1}{2}f_c k j$
 $k = \sqrt{2pn + (pn)^2} - pn \qquad z = rac{kd}{3} \qquad j = 1 - rac{k}{3}$
 $k = rac{1}{1 + rac{f_s}{nf_c}} \qquad p = rac{f_c}{2f_s}k$
 $f_s = rac{M}{A_s jd} \qquad f_c = rac{2M}{kjbd^2}$

Balanced Reinforcement: $p = rac{1}{rac{2f_c}{f_c}(rac{f_s}{nf_c} + 1)}$

For tables and diagrams giving values of these constants for different stresses and grades of concrete, see pages 33, 34, 36, 37, 38.

2. Tee Beams with Tension Reinforcement.*

ACI 705 limits b in symmetrical beams to $\frac{L}{4}$ and the projection either side of the stem to 8t, or one-half the distance to the next beam. In one-sided beams, it limits the projection beyond the stem to $\frac{L}{12}$, 6t, or one-half the distance to the next beam.

A. Flange thickness down to neutral axis:

This becomes a rectangular beam (see Item 1) of width b.

B. Shallow flange, neglecting stem:

It is always conservative to neglect compression in the stem and, unless the flange is extremely thin (say t < 0.15d), reasonably accurate.

* For application to specific numerical examples, see pages 140, 156, 172, 211.

Symbols have same meaning as for rectangular beams, Item 1 above; also

$$t =$$
flange thickness.

$$z = \frac{t}{3} \frac{(3kd - 2t)}{(2kd - t)}$$

$$jd = d - z = d - \frac{t}{3} \frac{(3kd - 2t)}{(2kd - t)}$$

$$M_{\bullet} = Tjd = A_{\bullet}f_{\bullet}jd = f_{\bullet}jpbd^{2} = \left(\frac{f_{\bullet}}{n}\right)pnjbd^{2} = C_{\bullet}\left(\frac{f_{\bullet}}{n}\right)bd^{2} = R_{\bullet}bd^{2}$$
where $C_{\bullet} = pnj$; $R_{\bullet} = f_{\bullet}pj$

$$M_c = Cjd = btj\Big(rac{2kd-t}{2k}\Big)f_c = rac{f_cjrac{t}{d}}{2k}\Big(2k-rac{t}{d}\Big)bd^2 = R_cbd^2 =$$

$$f_cigg(1-rac{t}{2kd}igg)rac{t}{d}jbd^2=C_cf_cbd^2$$
 where $C_c=igg(1-rac{t}{2kd}igg)rac{t}{d}j_i$ $R_c=f_cjrac{t}{d}igg(rac{2k-rac{t}{d}}{2k}igg)$

$$k = \frac{1}{\left(\frac{f_s}{nf_c} + 1\right)}$$

$$kd=rac{2ndA_s+bt^2}{2nA_s+2bt}; \hspace{1cm} k=rac{2pn+\left(rac{t}{d}
ight)^2}{2pn+2\left(rac{t}{d}
ight)}$$

$$f_c = \frac{Mkd}{bt(kd - \frac{t}{2})jd} = \frac{f_sk}{n(1-k)} \qquad f_t = \frac{M}{A_tjd} = \frac{f_cn(1-k)}{k}$$

$$j = \frac{6 - 6\left(\frac{t}{d}\right) + 2\left(\frac{t}{d}\right)^2 + \frac{\left(\frac{t}{d}\right)^3}{2pn}}{6 - 3\left(\frac{t}{d}\right)}$$

C. Shallow flange, including stem:

No formulas are presented here because this refinement is seldom necessary, no diagrams or tables are readily available, and the method of transformed areas is the simplest attack on the problem.

D. Doubly Reinforced Tee Beams:-

It is possible to reinforce a tee beam for compression, but, additional flange width being far more economical, compressive reinforcement would only be used when both the width and depth of beam are severely limited by space considerations. This relatively unusual case is best solved by the method of transformed areas.

For tables and diagrams giving values of these constants for different stresses and grades of concrete, see pages 35, 39, 40, 41.

3. Beams Reinforced for Both Tension and Compression.*

Under the elastic theory, the doubly reinforced beam (a) (figure on page 25), can be thought of as a rectangular beam (b) with balanced tension reinforcement plus a supplementary internal couple (c) of the compression in the top steel and the stress in the additional tension steel, the excess area over that required for balanced reinforcement. The diagrams usually provided for doubly reinforced beams are drawn with the added compression based upon nA_s instead of the value $(n-1)A_s$ required to compensate for the displaced concrete.

* For applications to examples, see "Negative Moment" on pages 157, 173 and "Negative Flexure" on pages 220 and 225.

For balanced reinforcement as in (b), R_b is easily computed or available from tables on page 33. For the couple in (c), the resisting moment, M_x , is the product of the compressive area (n-1)p'bd, the stress intensity $\left(\frac{kd-d'}{kd}\right)f_c$ and the arm (d-d'). From this, $R_x = \frac{M_x}{bd^2} = (n-1)p'\left(1-\frac{1}{k}\frac{d'}{d}\right)f_c\left(1-\frac{d'}{d}\right)$ and $R=R_b+R_x$. The extra tension steel, A_x , being further from the neutral axis and not displacing any flexurally stressed concrete, will be less in amount than A'_x , so $p_x = \left(\frac{kd-d'}{d-kd}\right)\left(\frac{n-1}{n}\right)p'$. If p_b is the ratio for balanced reinforcement, $p=p_b+p_x$. For any given set of stresses and $\frac{d'}{d}$ ratio, the relation of R to p and p' will plot a straight line, so curves are easily constructed for any set of values (see page 45).

The following formulas can be used, but the procedure just described should be simpler:—

$$k = \sqrt{2n(p + p'\frac{d'}{d}) + n^{2}(p + p')^{2}} - n(p + p')$$

$$z = \frac{\frac{1}{3}k^{3}d + 2p'nd'(k - \frac{d'}{d})}{k^{2} + 2p'n(k - \frac{d'}{d})}$$

$$f_{\bullet} = \frac{M}{pjbd^{2}} = \frac{nf_{c}(1 - k)}{k}$$

$$f'_{\bullet} = \frac{nf_{c}(k - \frac{d'}{d})}{k}$$

$$f_{e} = \frac{6M}{bd^{2}[3k - k^{2} + \frac{6p'n}{k}(k - \frac{d'}{d})(1 - \frac{d'}{d})]}$$

Note:—To approximate the effect of creep, the effectiveness of compressive reinforcement is taken as double that indicated by the elastic theory, providing that the unit stress does not then exceed that permitted in tension, $f_s = 20,000$ psi (ACI 706b).

For tables and diagrams giving values of these constants for different stresses and grades of concrete, see pages 42, 43, 44.

4. Web Reinforcement and Bond.*

Intensity of web shear: $-v = \frac{V}{b'jd}$ (ACI 801a)

Point where no web reinforcement is required:— $a = \left(\frac{v - v_c}{v}\right)$ times distance to zero shear. Then add stirrups, spaced not over d/2, for a distance d beyond this point (ACI)

shear. Then add stirrups, spaced not over d/2, for a distance d beyond this point (ACI 801d); for isolated continuous beams or frames, carry web reinforcement L/16 or d past extreme position of point of inflection to carry 2/3 total shear on any section.

Stress in a series of parallel bent bars (ACI 804d): $-f_{ij} = \frac{V's}{A_s jd(\sin\alpha + \cos\alpha)}$

Stress in vertical stirrups: $-f_v = \frac{V's}{A_v j d}$

Area of stirrups in distance s: $A_v = \frac{V's}{f_v j d} = \frac{v'bs}{f_v}$

Spacing of stirrups, where N equals the number of stirrups required:—

$$s = rac{f_v j d A_v}{V'}; \quad s = a \left(rac{\sqrt{N} - \sqrt{N} - rac{1}{2}}{\sqrt{N}} \right);$$
 $a \left(rac{\sqrt{N} - \sqrt{N} - 1rac{1}{2}}{\sqrt{N}} \right); \quad a \left(rac{\sqrt{N} - \sqrt{N} - 2rac{1}{2}}{\sqrt{N}} \right); ext{ etc.}$

 $\widehat{\text{Bond}}: -u = \frac{V}{\Sigma o j d} = \frac{v b}{\Sigma \sigma}$

Length to develop bar: $L = \frac{f_s D}{4u}$

5. Columns (Concentric Load).

A. Tied Columns † (ACI 1104a):-

 $P = A_g(0.18f'_c + 0.8f_sp_g).$

 A_g = gross area of column. f'_c = compressive strength of concrete.

f_e = nominal allowable stress in vertical reinforcement (40 per cent of minimum specified yield point, i.e., 16,000 psi for intermediate grade and 20,000 psi for rail or hard grade steel).

 p_q = ratio of area of vertical reinforcement to gross area, A_q .

B. Spirally Reinforced Columns ‡ (ACI 1103a):—

 $P = A_g(0.225 f'_c + f_s p_g)$

where the symbols have the same meaning as in 5-A above.

Spiral Reinforcement:—§

$$p' = 0.45 \left(\frac{A_g}{A_c} - 1\right) \frac{f'_c}{f'_c}$$
 (ACI 1103d)

where:-

p' = ratio of volume of spiral reinforcement to volume of concrete core, out-to-out of spirals.

f's = useful limit stress of spiral reinforcement; 40,000 psi for intermediate grade hot rolled rods; 50,000 psi for hard grade; and 60,000 psi for cold drawn wire.

C. Long Columns (H > 10t):—

$$P' = P(1.3 - 0.03 \frac{H}{t})$$
, where:—

- * See further explanation on pages 85-91 and examples on pages 212, 220, and 225.
- † For applications to specific numerical examples, see page 235.
- ‡ For applications to specific numerical examples, see pages 250 and 251.
- § For applications to specific numerical examples, see page 251.
- For table of reduction factors, see page 233; for numerical example, page 235.

P = allowable axial load on a short column.

H = unsupported height of column, > 10t.

t = side of column.

P' = maximum allowable axial load on a column where H > 10t.

This same reduction formula shall apply to an eccentrically loaded column if P is the allowable eccentrically applied load on a short column.

In long columns subjected to definite bending stress, $\frac{H}{I} \gtrsim 20$.

6. Eccentrically Loaded Columns:- *

A. Axial load and bending in one principal plane, $e < \frac{2}{3}t$ (uncracked section):-

$$\begin{split} \frac{f_a}{F_a} + \frac{f_b}{F_b} & \geq 1 & \text{(ACI 1109a)} & \left(C = \frac{P/A}{0.45f'_c}\right) \\ P &= N \left[1 + \frac{CDe}{t}\right] = N \left[1 + \frac{Be}{t}\right] \\ N &= \frac{P}{\left[1 + \frac{CDe}{t}\right]} = \frac{P}{\left[1 + \frac{Be}{t}\right]} & \text{For D, see page 277.} \\ & \text{For B, see pages 358-360.} \end{split}$$

B. Axial load and bending on both principal axes, $e < \frac{2}{3}t$ in each direction (uncracked section):-

$$\frac{f_a}{F_a} + \frac{f_{bx}}{F_b} + \frac{f_{by}}{F_b} \le 1 \tag{ACI 1109b}$$

C. Axial load and bending, $e > \frac{2}{3}t$ (cracked section):—

Design for doubly reinforced rectangular member undergoing direct stress and bending (example p. 279); assume concrete does not resist tension; take compression steel at twice its elastic value; limit maximum compression in concrete to 0.45f'c, stress in compression steel to its tension value, and stress in tensile steel (ACI 1109d)

e = eccentricity of resultant load measured from centroid.

 F_a = nominal allowable axial unit stress $(0.225f'_c + f_s p_q)$ for spiral columns and 0.8 of this value for tied columns.

 F_b = allowable bending unit stress that would be permitted if bending stress only

 f_a = nominal axial unit stress = axial load divided by area of member, A_q . f_b = bending unit stress (actual) = bending moment divided by section modulus

 f_{bx}, f_{by} = bending moment components about x and y principal axes divided by the section modulus of the transformed section relative to the respective axes.

FORMULAS-ULTIMATE STRENGTH METHOD †

Although all safe load tables in this book are based upon the working stress method, this section gives a résumé of the ultimate strength method and charts for its application.

* For applications to specific numerical examples, see pages 276, 297, 335.

† For additional information, see ASCE-ACI Joint Committee Report, Proceedings, ASCE, V. 81, Paper 809, Oct., 1955; ACI Journal, Jan., 1956, Proc. V. 52, pp. 505-524; PCA R/C V. 31, 1955, pp. 3-8; Proc., ASCE, V. 82, Paper ST4, July, 1956, and, in particular, Guide for Ultimate Strength Design of Reinforced Concrete, Whitney & Cohen, ACI Journal, Nov., 1956.

ULTIMATE STRENGTH DESIGN

The ultimate strength method increases dead, live, wind, earthquake, and similar loads by suitable load factors, U, and proportions members for ultimate capacity in bending, combined bending and axial load, or direct compression. Ultimate strength design applies only to flexure, not to bond or web reinforcement. For ultimate strength design, external moments and forces are still obtained by the theory of elastic frames (ACI 318-56, 600b).

Notations-Ultimate Strength Only. For working stress nomenclature, see pages 20-21.

Loads and load factors:-

U = ultimate strength capacity of section—the maximum combination of thrust and moment the member can sustain prior to failure.

B = effect of basic load consisting of dead load plus volume change due to creep, elastic action, shrinkage, and temperature.

L =effect of live load plus impact.

W =effect of wind load.

E =effect of earthquake forces.

K = load factor.

 M_u = ultimate resisting moment.

 P_b = ultimate (eccentric) load capacity of a column when failure of both tension steel and compression area occur simultaneously.

 P_o = ultimate strength of concentrically loaded short column. P_u = ultimate strength of eccentrically loaded short column.

 P'_{u} = limitation of eccentric load on long member.

Cross-sectional constants:-

 A_{sf} = steel area to develop a total compressive force equal to that of overhanging flange in tee sections.

 A_{st} = total area of longitudinal reinforcement = $A_s + A'_s$.

D =total diameter of circular section.

 D_s = diameter of circle circumscribing the longitudinal reinforcement in circular

e = eccentricity of axial load measured from the centroid of tensile reinforcement.

e' = eccentricity of axial load measured from plastic centroid of section. f_{ν} = yield point of reinforcement, not to be taken greater than 60,000 psi.

 k_u = defined by $k_u d$ = distance from extreme compressive fiber to neutral axis at ultimate strength.

 k_1 = ratio of average compressive stress to $0.85f'_c$. k_2 = ratio of distance between extreme compressive fiber and resultant of compressive stresses to distance between extreme fiber and neutral axis.

$$m = f_y/0.85 f'_c.$$
 $p_t = A_{st}/A_g.$ $m' = m - 1.$ $p_w = A_s/b'd.$ $p_w = A_s/b'd.$ $q = pf_y/f'_c.$

Load Factors. For structures in which, due to location or proportions, the effects of wind and earthquake loading can be properly neglected:—

$$U = 1.2B + 2.4L$$

 $U = K(B + L)$ Use greater.

For structures in which wind loading must be considered:—

$$U = 1.2B + 2.4L + 0.6W
U = 1.2B + 0.6L + 2.4W
U = K(B + L + W/2)
U = K(B + L/2 + W)
Use greater.$$

For those structures in which earthquake loading must be considered, substitute E for W in these equations.

The load factor, K, shall be taken equal to 2 for columns and members subjected to combined bending and axial load, and equal to 1.8 for beams and girders subject to bending only.

ULTIMATE STRENGTH DESIGN

General Theory. Ultimate strength design recognizes that strain varies as the distance from the neutral axis and that compressive stress therefore varies as the stress-strain curve of concrete in compression (see Fig.). For computation purposes this may be taken as a rectangle which, at ultimate capacity, has a mean stress intensity of $0.85f'_c$, and a depth a to make the area of the assumed rectangle equal to that of the actual stress-strain curve. Hence the bottom of the assumed stress prism does not coincide with the neutral axis of the member.

1. Rectangular Beams—Tensile Reinforcement Only (Under-reinforced).

$$\Sigma H = 0, \quad C = T, \quad 0.85 f_c' b a = A_s f_y = p b d f_y$$

$$\frac{a}{d} = \frac{p f_y}{0.85 f'_c} = p m \qquad a = \frac{A_s f_y}{0.85 b f'_c} = \frac{A_s m}{b}$$

$$j d = d \left(1 - \frac{a}{2} \right) = d \left(1 - \frac{p f_y}{1.70 f'_c} \right) = d \left(1 - \frac{0.59 p f_y}{f'_c} \right)$$

$$M_u = C j d = p b d^2 f_y \left(1 - \frac{0.59 p f_y}{f'_c} \right)$$

$$M_u = Cjd = bd^2f'_c q(1 - 0.59q) = Tjd = A_sf_yd (1 - 0.59p f_y/f'_c)$$
. for $f'_c \ge 5000$ psi, max. $p = 0.40f'_c/f_y$ for $f'_c > 5000$ psi, max. $p = [0.40 - 0.000025(f'_c - 5000)]f'_c/f_y$

$$M_u/bd^2 = pf_v (1 - 0.59p f_v/f'_c)$$
 $a/d = \left[1 - \sqrt{1 - \frac{2.35M_u}{f'_c bd^2}}\right]$ $p = 1/m - \sqrt{1/m^2 - \frac{2M_u}{f_v mbd^2}}$

Example. Check the ultimate bending moment in a 12 x 24 in. beam (d = 21.38) reinforced with 2-#9 and 1-#11 tension bars only, using ASTM hard grade bars with $f_y = 50,000$ psi. This is the beam designed by the working stress method on page 219.

From page 219, $A_s = 3.56$, p = 0.01387. From the diagram on page 31-C, with p = 0.01387, going across to $f_y = 50,000$ and down to $f'_c = 3000$, and across to left, read $M_u/bd^2 = 600$. (This can be computed as $M_u/bd^2 = pf_y \ (1 - 0.59p \ f_y/f'_c) = 0.01387 \times 50,000 \ (1 - 0.59 \times 0.01387 \times 50,000/3000) = 597$). Then $M_u = 597 \times 12 \times 21.38^2 = 3,270,000$ lb-in. This beam is well below the upper limitation (insuring tension failure) of $p = 0.40f'_c/f_y = 0.40 \times 3000/50,000 = 0.024$, but is above the lower limitation $p = 0.18f'_c/f_y = \frac{0.18 \times 3000}{50,000} = 0.0108$, showing that deflection and the effect of creep must be checked (ACI 318-56 A602e). (Pages 51, 52)

Note that with $f_y = 50,000$ psi the ultimate moment M_u is 3,270,000/1,316,000, or 2.48 times the moment by the working stress method on page 219.

This chart works equally well in reverse—entering with a computed value of M_u/bd^2 to find the required p, and then determining the steel area from this.

ULTIMATE STRENGTH DESIGN

2. Rectangular Beams—Compressive Reinforcement (Under-reinforced).

Doubly reinforced beams will not often be required for strength but compressive reinforcement aids greatly in reducing deflection and the effect of creep.

$$M_u = (A_s - A'_s)f_yd\left[\frac{1 - 0.59 (p - p')f_y}{f'_c}\right] + A'_sf_y (d - d')$$
 $(p - p')$ is not to exceed values given for p in Section 1.

Example. Check the ultimate bending moment in a doubly-reinforced beam 12 x 24 (d = 21.82 and d' = 2.54) reinforced with 2-#11 and 1-#9 tension bars and 2-#9 compression bars, using ASTM hard grade bars with $f_y = 50,000$ psi. This is the beam designed by the working stress method on pages 220 and 221.

Compute $p = 4.12/(12 \times 21.82) = 0.0157$ for this beam and compare it with the limitation of $p = 0.40 \times f'_c/f_y = 0.40 \times 3000/50,000 = 0.024$ for approximately balanced reinforcement showing that this is to be treated as a rectangular beam reinforced only for tension. However, p exceeds $0.18f'_{c}/f_{y} = 0.18 \times 3000/50,000 = 0.0108$ by a considerable amount so deflection and the effect of creep must be checked (ACI 318-56 A602c), (see pages 51, 52), and compressive reinforcement might still be desirable.

Example. Since, by ultimate strength design, this beam might not require compressive reinforcement, determine the areas of tension and compression steel if the ultimate bending moment is increased to 6,500,000 lb-in.

Use the same chart as for a rectangular beam with tension reinforcement. Separate the doubly-reinforced beam into two parts, one being a singly-reinforced beam with balanced reinforcement (see Fig.) and the other an internal couple of tension and compression steel with arm (d-d') and area of steel sufficient to make up the difference between the required moment and the moment obtained from balanced reinforcement.

$$A_s = A_{s1} + A_{s2}$$
 $M_1 = 0.306 f'_c b d^2$ $M_2 = M_u - M_1$ $M_u = M_1 + M_2$ $p_1 = 0.40 f'_c / f_y$ $T_2 = C_2 = M_2 / (d - d')$ $A_{s1} = p_1 b d$ $T_2 = C_2 = M_2 / (d - d')$ Total Section = Balanced Reinforcement + Compressive Couple

For balanced reinforcement with $f_y = 50,000$, p = 0.024 (see previous example), for which $M_u/bd^2 = 916$.

Total moment $M_u = 6,500,000 lb-in.$ Balanced reinforcement $M_1 = 916 \times 12 \times 21.82^2 = 5,250,000$ Left for steel couple $M_2 = 1.250,000 lb in.$

Since (d-d')=21.82-2.54=19.28, $C_s=T_2=1,250,000/19.28=64,600$ lb, and $A_{s'}=A_{s2}=64,600/50,000=1.23$ sq in. $A'_s=1.23$ sq in. requires, say, 1-#7 and 1-#8=1.38 sq in. Since $A_s=A_{s1}+A_{s2}$, and A_{s1} , for balanced reinforcement=0.024 \times 12 \times 21.82=6.28 sq in., $A_s=6.28+1.23=7.51$ sq in., say 4-#11 and 1-#10. This is obviously too much steel to be accommodated in a single layer in a 12 in. beam width. Since ultimate strength design takes care of flexure only and the final design must consider shear, bond, and probable deflection as well as the placement of bars

(items which are illustrated elsewhere), this example has been carried only far enough to illustrate the method. Since p-p'=0.024, which far exceeds $0.18f'_c/f_y$, a check must be made on deflection and the effects of creep (ACI 318-56, A602e), (pages 51, 52).

3. Tee Sections.

When $t > 1.18qd = (1.18p f_y/f_c)d$, design as a rectangular beam, as described in Section 1 above.

When $t < (1.18p f_y/f'_c)d:$ —

$$M_u = (A_s - A_{sf})f_y d \left[1 - 0.59 \left(p_w - p_f\right)f_y/f'_c\right] + A_{sf}f_y \left(d - 0.5t\right)$$

 $(p_w - p_f)$ is not to exceed values given for p in Section 1.

Tee beams are not so often required with ultimate strength design, but when used, the effective flange is limited to an overhang of 6t on each side of the web, and the effect of the flanges is evaluated as equivalent to compressive reinforcement, $A_{sf} = 0.85 \ f'_c \ (b - b')t/f_y$, located at mid-depth of the compression block. (See Fig.)

0.5t or 0.5a, where a =
$$\frac{A_{s1}f_y}{0.85f'_cb}$$

$$A_{ef} = \frac{(b - b')t \ 0.85f'_{c}}{f_{y}}$$

 A_{s1} = balanced reinforcement, stem only.

Then design as doubly-reinforced beam.

Example. Check the ultimate moment of the 10×20 in. tee beam reinforced with 4.54 sq in. of steel as shown on page 211, using ASTM hard grade bars with $f_y = 50,000$ psi.

For the beam stem, compute $p_w = 4.54/(10 \times 16.40) = 0.0276$, which is more than the limiting value found from $p = 0.40f'_c/f_y = 0.40 \times 3000/50,000 = 0.024$, so the stem alone is somewhat over-reinforced (so far as ultimate strength is concerned), and additional compression area is required to keep the stress $< 0.85f'_c$. Using the flange width of 20 in., compute the distance from the top of the beam to the bottom of the stress block (see

Fig.) as $a = \frac{A_s f_y}{0.85 f'_c b} = \frac{4.54 \times 50,000}{0.85 \times 3000 \times 20} = 4.45$ in. Thus the

bottom of the stress block is well within the 6½ in. slab thickness, so this is to be designed as a rectangular beam:—

$$M_u = 50,000 \times 4.54 \times \left(16.40 - \frac{4.45}{2}\right)$$
 = 3,210,000 lb-in.

or:-

$$M_u = 0.85 \times 3000 \times 20 \times 4.45 \left(16.40 - \frac{4.45}{2}\right) = 3,210,000 \text{ lb-in.}$$

Example. If the available width of flange in the previous problem had been 32 in., determine the minimum flange thickness and ultimate resisting moment.

It is permissible to use in calculations at a uniform compressive stress of $0.85f^{\prime}_{c}$ as much of the slab thickness as is required to resist the pull of the tension steel. This somewhat increases the arm of the internal couple and somewhat increases the ultimate moment without affecting the actual disposition of compression in the concrete, the rectangular stress block being only a convenient approximation at best.

The total tension can then be computed as $4.54 \times 50,000 = 227,000$ lb, which must also be the total compression distributed at $0.85 \times 3000 = 2550$ psi over a flange width of 32 in., whose depth can be determined as $\frac{227,000}{2550 \times 32} = 2.78$ in. This makes

the arm of the internal couple $16.40 - \frac{2.78}{2} = 15.01$ in. and the resisting moment:

$$M_u = 227,000 \times 15.01 = 3,420,000$$
 lb in.

which is 6½ per cent greater than in the previous example.

The ultimate capacity of this beam is approximately $\frac{3,210,000}{1,289,000} = 2\frac{1}{2}$ times that obtained on page 219 by the working stress method.

4. Concentrically Loaded Short Columns.

ACI 318-56 requires us to design all members sustaining direct axial load for a minimum eccentricity of 0.05t for spirally reinforced columns, 0.10t for tied columns, by the methods given in Section 5.

To facilitate the direct design of compression members with loads that can be assumed as reasonably concentric, two charts are offered (one for tied columns and one for spirally reinforced) in which the minimum eccentricities have been incorporated into the methods of Section 5, and the required values can then be read directly.

Example. By the ultimate strength method determine the ultimate carrying capacity of a tied column 35 in. square of 3000 psi concrete, reinforced with 18-#10 bars of ASTM intermediate grade steel, $f_y = 40,000$ psi, which is the example solved by the working stress method on page 235.

Compute
$$p_t = \frac{18 \times 1.27}{35 \times 35} = 0.01865$$
, $d/t = 32.5/35 = 0.93$, and $p_t m' = 0.01865 \left(\frac{40,000}{0.85 \times 3,000} - 1 \right) = 0.274$. Then from the chart on page 31-D read $K = 0.835$, from which $P_u = Kbtf'_c = 0.835 \times 35 \times 35 \times 3000 = 3,090,000$ lb.

This ultimate capacity is 3,090,000/954,100 = 3.24 times the safe working capacity determined on page 235.

Example. By the ultimate strength method determine the ultimate carrying capacity of a spirally reinforced round column, 40 in. diameter, reinforced with 28-#11 vertical bars of ASTM intermediate grade steel, $f_{y}=40{,}000$ psi, which is the example solved by the working stress method on page 250.

Compute
$$p_t = \frac{28 \times 1.56}{\pi \times 20 \times 20} = 0.0348$$
, $d/D = 37.5/40 = 0.94$, and $p_t m' = 0.0348 \left(\frac{40,000}{0.85 \times 3000} - 1\right) = 0.511$. Then from the chart on page 31-D read $K = 0.845$ and compute $P_u = KD^2 f'_c = 0.845 \times 40 \times 40 \times 3,000 = 4,050,000$ lb.

This ultimate capacity is 4,050,000/1,547,100 = 2.62 times the safe working capacity determined on page 250.

5. Bending and Axial Load.

A. Rectangular Section:

$$\begin{array}{l} P_{u} = 0.85 f'_{c} b dk_{u} k_{1} + A'_{s} f_{y} - A_{s} f_{s} \\ P_{u} e = 0.85 f'_{c} b d^{2} k_{u} k_{1} \left(1 - k_{2} k_{u}\right) + A'_{s} f_{y} \left(d - d'\right) \end{array}$$

Limitations:-

$$k_u < 1.$$
 $k_2/k_1 > 0.5.$
 $k_1 < 0.85$ when $f'_c < 5000$
 $k_1 < 0.85 - 0.00005(f'_c - 5000)$ when $f'_c > 5000.$

Probable failure in tension when $P_u = 0.85k_1\left(\frac{90,000}{90,000+f}\right)f'_cbd + A'_sf_y - A_sf_y$ and failure in compression when $P_u > P_b$.

Controlled by tension:-

$$P_{u} = 0.85f'_{c}bd p'm' - pm + (1 - e/d) + \sqrt{(1 - e/d)^{2} + 2[(e/d) (pm - p'm') + p'm' (1 - d'/d)]}$$

Controlled by compression:

$$P_u = rac{A'.f_y}{e'} + rac{1}{2} + rac{btf'_c}{d^2} + 1.18$$

Four charts are presented for eccentrically loaded compression members for values of d/t = 0.80, 0.85, 0.90, and 0.95. They apply equally well whether tension or compression controls, but in the latter case, enter with p_tm' instead of p_tm.

Example. By the ultimate strength method, determine the amount of reinforcement. using ASTM hard grade bars with $f_y = 50,000$ psi, required in a column 20 x 20 in., carrying a load of 400 kips, with an eccentricity of 7 in. This corresponds roughly with the column designed by the working stress method on page 279.

 $P_u = 400,000$; d = 17.5; d' = 2.5; d/t = 17.5/20 = 0.875, interpolate between charts on pages 31E-31F for d/t = 0.85 and 0.90.

Enter on left side with $P_u/f'_cbd = \frac{400,000}{3000 \times 20 \times 20} = 0.333$, and on the bottom with

 $P_u e/f'_c b d^2 = \frac{400,000 \times 7}{3000 \times 20 \times 20^2} = 0.117$, then estimate from curved lines $p_i m =$ $\frac{0.007 + 0.010}{2} = 0.085.$

$$\frac{2}{m = f_y/0.85 f'_c = 50,000/0.85 \times 3000 = 19.6.}$$

m' = m - 1 = 19.6 - 1 = 18.6. $p_t = 0.085/18.6 = 0.0046$ $A_s = 0.0046 \times 20 \times 20 = 1.84$ sq in., but ACI 1104a requires a minimum of $0.01 \times 20 \times 20 = 4.00$ sq in.

B. Circular Section:

controlled by tension:-

$$P_u = 0.85 f'_c D^2 \left[\sqrt{(0.85e'/D - 0.38)^2 + p_i m D_s/2.5D} - (0.85e'/D - 0.38) \right]$$

controlled by compression:

$$P_{u} = \frac{A_{s}f_{y}}{\frac{3e'}{D_{s}} + 1} + \frac{A_{0}f'_{c}}{\frac{9.6De'}{(0.8D + 0.67D_{s})^{2}} + 1.18}$$

C. Long Members:—
$$(H/t > 15)$$

 $P'_{y} = P_{\theta} (1.6 - 0.04 H/t)$

Charts are available * for solving circular members undergoing combined bending and direct stress as well as other problems in ultimate strength design. Those presented here will be found sufficient for the majority of problems.

^{*} Obtainable from American Concrete Institute, 18263 West McNichols Road, Detroit 19, Michigan.

CHART I

MOMENT CAPACITY OF RECTANGULAR SECTIONS
WITHOUT COMPRESSION REINFORCEMENT

Bending and axial load—d/t = 0.90 or 0.95, rectangular sections with symmetrical reinforcement.

Bending and axial load—d/t = 0.80 or 0.85, rectangular sections with symmetrical reinforcement.

ALLOWABLE UNIT WORKING STRESSES

From "Building Code Requirements for Reinforced Concrete (ACI 318-56)."

The table gives the allowable working stresses for various grades of concrete with bars whose deformations meet ASTM A305 and for those which do not. The stresses used throughout this book for bond and diagonal tension in computing safe load tables apply only to bars with deformations conforming to ASTM A305.

CONCRETE STRESSES

	For Any	Maxi-	For St	rength of	Concret	e Shown	Below			
Description	Strength of Concrete	mum	f'c							
Doscinpania	$n = \frac{30,000}{f'_c}$	Value psi	$ \begin{array}{c} 2000 \\ n = 15 \end{array} $	$ \begin{array}{c c} 2500 \\ n = 12 \end{array} $	$\begin{vmatrix} 3000 \\ n = 10 \end{vmatrix}$	$ \begin{array}{c} 3750 \\ n = 8 \end{array} $	$ \begin{array}{c} 5000 \\ n = 6 \end{array} $			
Flexure: f _c Extreme fiber stress in compression. Extreme fiber stress tension plain concrete footings.	0.45f'c 0.03f'c		900	1125 75	1350 90	1688 113	2250 150			
Shear: v (as a measure of diagonal tension) Beams with no web reinforcement. Beams with longitudinal bars	0.03f'c	90	60	75	90	90	90			
and with either stirrups or properly located bent bars Beams with longitudinal bars and a combination of stirrups and bent bars (the latter bent up suitably to carry at least $0.04f'_c)$	0.08f' _c 0.12f' _c 0.03f' _c	360 75	160 240 60	300 75	360 75	360 75	360 75			
Bond: u Deformed bars Top bars *	0.07f' _c 0.08f' _c	245 280	140	175 200	210 240	245 280	245 280			
All others	0.10f' _c 0.03f' _c	350 105	200 60	250 75	300 90	350 105	350 105			
top bars)	0.036f'c 0.045f'c	126 158	72 90	90 113	108 135	126 158	126 158			
Bearing: f_c On full area On one-third area or less \dagger	0.25f'c 0.375f'c		500 750	625 938	750 1125	938 1405	1250 1875			

* Bars near top of beams and girders having more than 12 in. of concrete under bars. † Increase permitted only when least distance between edges of loaded and unloaded areas is a minimum of one-fourth parallel side of loaded area. Allowable bearing on reasonably concentric area greater than one-third but less than full area shall be interpolated.

STEEL STRESSES

Tension (f_s) : 20,000 psi on rail steel, intermediate and hard grades of billet steel or of axle steel, and cold-drawn steel wire.

18,000 psi for structural grade billet or axle steel.

Web reinforcement (f_v) : same as f_s

Tension (one way slabs, spans \geq 12 ft) Bars $\frac{3}{8}\phi$ or less: 50% yield point but \geq 30,000 psi.

Compression (column verticals) (f_s): 40% yield point but \leq 30,000 psi.; (metal cores) (f_r): steel sections 16,000 psi; cast iron sections 10,000 psi; steel pipe—ACI 318–56 (1106b)

VALUE OF n, p, k, j, R FOR VARIOUS COMBINATIONS OF STEEL AND CONCRETE STRESSES FOR RECTANGULAR BEAMS AND SLABS

(WORKING STRESS METHOD)

C	d ka	-		$p = \frac{f_c}{2i}$ $p = \frac{f_c}{2i}$	j=1	$-\frac{k}{3}$			
As pt	fs = odfs	$R = V_2 f_0 k j =$	= pf _s j f _c :	= 0.45 f' _c					
f'c	1500	2000	2500	3000	3750	5000			
f _e	675	900	1125	1350	1687	2250			
n	20	15	12	10	8	6			
$f_s = 14,000$									
P	.01183	.01578	.01971	.02363	.02954	.03942			
k	.4909	.4909	.4909	.4909	.4909	.4909			
j	.8364	.8364	.8364	.8364	.8364	.8364			
R	138.5	184.8	230.8	277.0	346.2	461.8			
			$f_s = 16,000$						
p	.00965	.01288	.01609	.01930	.02412	.03218			
k	.4576	.4576	.4576	.4576	.4576	.4576			
$\frac{\tilde{j}}{j}$.8475	.8475	.8475	.8475	.8475	.8475			
R	130.8	174.6	218.1	261.6	326.8	436.0			
			f _s = 18,000						
p ·	.008035	.01071	.01339	.01605	.02005	.02678			
k	.4286	.4286	.4286	.4286	.4286	.4286			
j	.8571	.8571	.8571	.8571	.8571	.8571			
R	124.0	165.2	206.4	247.8	309.2	412.8			
			$f_s = 20,000$	p-10-2 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	1				
P	.006800	.009065	.0113	.01360	.01700	.02267			
k	.4030	.4030	.4030	.4030	.4030	.4030			
j	.8657	.8657	.8657	.8657	.8657	.8657			
R	117.8	157.0	196.0	235.4	294.2	392.6			
			f _s = 24,000						
P	.005062	.006750	.00843	.01012	.01263	.01688			
k	.3600	.3600	.3600	.3600	.3600	.3600			
j	.8800	.8800	.8800	.8800	.8800	.8800			
R	107.0	142.6	178.0	213.9	266.9	356.1			
			f _s = 30,000						
Р	.003490	.004650	.005822	.006980	.008720	.01164			
k	.3103	.3103	.3103	.3103	.3103	.3103			
j	.8966	.8966	.8966	.8966	.8966	.8966			
R	93.75	125.1	156.5	187.7	234.5	312.9			

CONCRETE REINFORCING STEEL INSTITUTE

DESIGN CONSTANTS—ALL PERCENTAGES REINFORCEMENT 20,000 psi STEEL AND 3,000 psi CONCRETE ONLY

	(WORKING STRESS METHOD)									
F	$b = \frac{A_s}{bd}$	$k = \sqrt{2p}$	n + (pn) ²	— pn	$j=1-\frac{k}{3}$	R _a =	= pf _s j	$R_c = \frac{1}{2} f_c k$	j	
Р	k	j	R _s	R _c	р	k	j	Rs	R _c	
0.0010	0.1317	0.9561	19.1	84.9	0.0114	0.3769	0.8744	199.3	222.4	
		0.9522	22.8	92.1	0.0116	0.3794	0.8735	202.6	223.7	
0.0014	0.1539	0.9487	26.5 30.2	98.5 104.4	0.0118	0.3819	0.8727	205.9	224.9 226.2	
0.0018	0.1726	0.9425	33.9	109.8	0.0122	0.3868	0.8711	212.5	227.4	
0.0020	0.1808	0.9397	37.5	114.6	0.0123	0.3880	0.8707	214.1	228.0	
0.0022	0.1889	0.9370	41.2	119.4	0.0124	0.3892	0.8703	215.8	228.6	
0.0024	0.1964	0.9345	44.8	123.8	0.0125	0.3904	0.8699	217.5	229.2	
0.0026	0.2035	0.9322	48.4	128.0	0.0126	0.3916	0.8695	219.1	229.8	
0.0028	0.2103 0.2168	0.9299	52.0	132.0	0.0127	0.3927	0.8691	220.7	230.3	
0.0032	0.2229	0.9277	55.6 59.2	135.7 139.2	0.0128	0.3939	0.8687	222.3	230.9	
					-	1	0.8683	224.0	231.5	
0.0034	0.2290	0.9237	62.8	142.7	0.0130	0.3962	0.8679	225.6	232.1	
0.0038	0.2403	0.9218	66.3	146.0	0.0131	0.3973 0.3985	0.8676 0.8672	227.3 228.9	232.6	
0.0040	0.2457	0.9181	73.4	152.2	0.0132	0.3996	0.8668	230.5	233.2 233.8	
0.0042	0.2509	0.9164	76.9	155.2	0.0134	0.4007	0.8664	232.2	234.3	
0.0044	0.2559	0.9147	80.4	158.0	0.0135	0.4018	0.8661	233.8	234.9	
0.0046	0.2608	0.9131	84.0	160.7	0.0136	0.4030	0.8657	235.4	235.4	
0.0048	0.2655	0.9115	87.5	163.3	0.0137	0.4041	0.8653	237.0	236.0	
0.0050	0.2701	0.9100	91.0	165.9	0.0138	0.4052	0.8649	238.7	236.5	
0.0052	0.2747	0.9084	94.4	168.4	0.0139	0.4062	0.8646	240.3	237.0	
0.0054	0.2790	0.9070	97.9	170.8	0.0140	0.4074	0.8642	241.9	237.6	
0.0056	0.2833	0.9056	101.4	173.1	0.0141	0.4084	0.8639	243.6	238.1	
0.0058	0.2875	0.9042	104.8	175.4	0.0142	0.4095	0.8635	245.2	238.6	
0.0062	0.2956	0.9015	108.3	177.6 179.8	0.0143	0.4105 0.4116	0.8632 0.8628	246.8	239.1 239.7	
0.0064	0.2994	0.9002	1150							
0.0066	0.3033	0.8989	115.2 118.6	181.9 184.0	0.0145 0.0146	0.4127 0.4137	0.8624	250.1 251.7	240.2 240.7	
0.0068	0.3070	0.8977	122.0	186.0	0.0147	0.4148	0.8617	253.3	240.7	
0.0070	0.3107	0.8964	125.5	187.9	0.0148	0.4158	0.8614	254.9	241.7	
0.0072	0.3142	0.8953	128.9	189.8	0.0149	0.4168	0.8611	256.6	242.2	
0.0074	0.3178	0.8941	132.3	191.8	0.0150	0.4179	0.8607	258.2	242.7	
0.0076	0.3212	0.8929	135.7	193.5	0.0152	0.4199	0.8601	261.4	243.7	
0.0078	0.3246	0.8918	139.1	195.4	0.0154	0.4219	0.8594	264.7	244.7	
0.0082	0.3279 0.3312	0.8907 0.8896	142.5 145.8	197.1 198.8	0.0156	0.4239 0.4259	0.8587 0.8581	267.9 271.1	245.7 246.6	
0.0004										
0.0084 0.0086	0.3344 0.3376	0.8885 0.8875	149.2 152.6	200.5	0.0160	0.4279	0.8574	274.3	247.6	
0.0088	0.3407	0.8864	156.0	202.2 203.8	0.0162	0.4298 0.4317	0.8567 0.8561	277.5 280.8	248.5	
0.0090	0.3437	0.8854	159.3	205.4	0.0166	0.4336	0.8555	284.0	249.4	
0.0092	0.3467	0.8844	162.7	206.9	0.0168	0.4355	0.8548	287.2	251.2	
0.0094	0.3497	0.8834	166.0	208.5	0.0170	0.4374	0.8542	290.4	252.2	
0.0096	0.3526	0.8825	169.4	210.0	0.0170	0.4374	0.8536	293.6	252.2	
0.0098	0.3554	0.8815	172.7	211.4	0.0174	0.4410	0.8530	296.8	253.9	
0.0100	0.3583	0.8806	176.1	212.9	0.0176	0.4428	0.8524	300.0	254.7	
0.0102	0.3610	0.8797	179.4	214.3	0.0178	0.4446	0.8518	303.2	255.6	
0.0104	0.3638	0.8787	182.7	215.7	0.0180	0.4464	0.8512	306.4	256.4	
0.0106	0.3665	0.8778	186.0	217.1	0.0185	0.4508	0.8497	314.3	258.5	
0.0108	0.3691	0.8770	189.4	218.5	0.0190	0.4551	0.8483	322.3	260.5	
0.0110	0.3718	0.8761 0.8752	192.7 196.0	219.8	0.0195	0.4592 0.4633	0.8469	330.2	262.5	
	0.07 44	0.07 32	170.0	221.1	0.0200	0.4033	0.8436	338.2	264.4	

VALUES OF $R = \frac{M}{bd^2}$ FOR TEE BEAMS, BALANCED REINFORCEMENT (WORKING STRESS METHOD) $f_s = 20,000 \text{ psi}$

	-				*8	Zim ter	,000 P							
f'c and	f _c					-		t d						
n		0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20	0.24	0.28	0.32	0.36	0.40
	500	26	34	40	46	52	57	61	64	69	73	74	*74	*74
1500	550	29	37	45	52	58	63	68	72	78	83	85	*85	*85
1500	600	32	41	49	57	64	70	75	80	88	93	97	98	*98
	650	35	45	54	62	70	77	83	88	97	104	108	110	*110
20	700 750	38 40	48 52	58 63	68 73	76 82	83	90	96 104	106	114	119	123	124
20	800	43	56	67	78	88	90 97	98 105	113	116	124 135	131	135	137
	900	49	63	76	89	100	110	120	128	144	156	165	1 <i>47</i> 1 <i>7</i> 2	150 176
						-								
	650	35	44	53	60	67	73	78	83	89	93	95	*95	*95
	700	37	48	57	66	73	80	86	91	99	104	106	107	*107
2000	750	40	51	62	71	79	87	93	99	108	114	118	119	*119
	800	43	55	66	76	85	93	101	107	117	125	129	131	*131
	900	49	62	75	87	97	107	116	123	136	145	152	156	157
15	1000	54	70	84	97	110	121	131	140	155	166	175	180	183
	1200	65	84	102	119	134	148	160	172	192	208	221	229	235
	1350	74	96	116	134	152	168	183	196	220	240	255	266	275
	800	43	54	65	74	82	90	96	101	109	114	116	*116	*116
	875	47	60	71	82	91	100	107	113	123	130	133	*133	*133
2500	950	51	65	78	90	100	110	118	126	137	145	150	152	*152
	1000	54	69	83	95	107	117	126	134	147	156	161	164	*164
	1125	61	78	94	108	122	134	145	154	170	181	190	195	196
12	1250	68	87	105	122	137	151	163	174	193	208	219	225	229
	1500	82	106	128	148	167	185	201	215	240	260	276	287	294
	1700	93	120	146	169	191	212	231	247	278	302	321	336	346
	975	52	66	79	90	101	109	117	124	134	140	142	*142	*142
	1050	56	71	86	98	110	120	128	136	148	156	159	160	*160
3000	1125	60	77	92	106	119	130	140	148	162	171	176	178	*178
	1200	65	83	99	114	128	140	151	161	176	187	194	197	*197
	1350	73	94	113	130	146	160	173	185	204	218	228	234	236
10	1500	81	105	126	146	164	181	196	209	232	250	262	271	275
	1800	98	126	153	178	201	222	241	258	288	312	331	344	353
	2025	111	143	174	202	228	252	274	295	330	359	382	399	411
	1200	64	81	97	111	123	134	144	152	164	171	173	*173	*173
	1300	69	88	106	121	136	148	159	168	183	192	196	197	*197
3750	1400	75	96	115	132	148	162	174	184	201	213	219	221	*221
1	1500	81	103	124	143	160	175	189	201	220	234	242	246	*246
	1700	92	118	142	164	184	202	219	233	257	276	288	295	298
8	1875	102	131	158	183	205	226	245	262	290	312	328	338	344
	2250	123	158	191	222	251	277	301	323	359	390	414	431	441
	2525	138	179	216	252	284	314	342	367	412	448	477	498	514
1	1500	79	101	120	137	151	165	176	186	200	206	208	*208	*208
	1700	90	115	138	158	176	193	206	218	237	249	254	*254	*254
5000	1875	100	128	154	177	197	216	233	247	269	285	294	297	*297
	2250	121	155	187	216	243	267	288	307	339	363	379	388	392
	2525	137	176	212	246	276	304	330	352	390	420	442	456	464
6	2800	152	196	237	275	310	342	371	397	441	477	505	524	536
	3000	163	211	255	296	334	368	400	430	479	520	550	573	588
	3300	180	231	282	328	371	409	445	478	535	581	619	646	665
		1												- 3.7

^{*} The values in boldface type indicate that the neutral axis is within the flange.

Acknowledgments:—Pages 36 to 44, inclusive, are reproduced by permission from Turneaure and Mauer "Principles of Reinforced Concrete Construction," John Wiley and Sons, Inc., 1935; Pages 45, 46, 47, from Sutherland and Reese "Reinforced Concrete Design," John Wiley and Sons, Inc., 1943; Page 48 is adapted from A. R. Lord "Handbook of Reinforced Concrete Building Design" of the ACI, 1928.

VALUES OF k AND j FOR RECTANGULAR BEAMS. (WORKING STRESS METHOD)

COEFFICIENTS OF RESISTANCE OF RECTANGULAR BEAMS. $M = Rbd^2$. (WORKING STRESS METHOD)

VALUES OF k AND j FOR TEE-BEAMS

For
$$f_s = 20,000$$
, $f_c = 1350$, $n = 10$, $\frac{f_s}{nf_c} = 1.48$.

COEFFICIENTS OF RESISTANCE OF TEE-BEAMS WITH RESPECT TO STEEL.

$$M_s = C_s \frac{f_s}{n} b d^2$$
.

COEFFICIENTS OF RESISTANCE OF TEE-BEAMS WITH RESPECT TO CONCRETE.

RECTANGULAR BEAMS REINFORCED FOR COMPRESSION. $M = f_c R b d^2$. (WORKING STRESS METHOD)

(Based upon the elastic theory with compressive reinforcement equal to (n + 1) times the displaced concrete.) See Note on page 45.

RECTANGULAR BEAMS REINFORCED FOR COMPRESSION. $M = f_c R b d^2$. (WORKING STRESS METHOD)

(Based upon the elastic theory with compressive reinforcement equal to (n + 1) times the displaced concrete.) See Note on page 45.

RECTANGULAR BEAMS REINFORCED FOR COMPRESSION. $M = f_c R b d^2$. (WORKING STRESS METHOD)

(Based upon the elastic theory with compressive reinforcement equal to (n + 1) times the displaced concrete.) See Note on page 45.

RECTANGULAR BEAMS REINFORCED FOR COMPRESSION. $M = Rbd^2$.

(WORKING STRESS METHOD)

 $f_c' = 3000 \text{ psi}$ $f_c = 1350 \text{ psi}$ $f_s = 20,000 \text{ psi}$ $f_s = 10$

(Based upon the elastic theory.) The lower dotted lines employ n times the displaced concrete instead of (n+1). Theoretically, the steel must be replaced by n times as much concrete, part of which goes into the space occupied by the steel, leaving $(n-1)A_s$ in wings outside the beam section. If these wings are given an area nA_s (as on pages 42-44), the steel is actually replaced by (n+1) times its area, a relatively minor refinement since the value of $n=\frac{E_s}{E_c}$ is rarely known to such a high degree of precision.

BENDING AND DIRECT COMPRESSION

(WORKING STRESS METHOD)

Moment about Tension Steel: $Nz = M_s$; then $R = \frac{M_s}{bd^2}$, M_s being the moment about the tension steel and R being taken from the lower chart on this page or from page 47.

Moment about Compression Steel: $Nz' = M_s'$; then $R' = \frac{M_s'}{bd^{2'}}$, M_s' being the moment about the compression steel and R being taken from the upper chart on this page.

BENDING AND DIRECT COMPRESSION

(WORKING STRESS METHOD)

(See explanation on page 46.)

TABLE OF STIRRUP SPACINGS WITH TRIANGULAR SHEAR VARIATION.

_	s or a	rst									Distance First	Number of Stirrups		
5th Group			Group	4th	3rd Group		Group	2nd	Group	Ist	Stirrup to Face	at One End		
7	Spacing	No.	Spacing	No.	Spacing	No.	Spacing	No.	Spacing	No.	of Support	EIIO		
,	0.110	1	0.08a	1	0.06 a	2	0.04 a	7	0.03 a	8	0.013 a	20		
,	0.120	1	0.080	1	0.06 a	3	0.040	6	0.03 a	7	0.013 a	19		
,	0.120	1	0.080	. /	0.060	4	0.040	5	0.03 a	6	0.0140	/8		
,	0.13a	1	0.09a	1	0.06 a	4	0.040	5	0.03 a	5	0.015 a	17		
,	0.130	1	0.09a	/	0.06 a	5	0.04 a	5	0.03 a	3	0.016 a	16		
,	0.140	1	0.080	2	0.06 a	4	0.04 a	5	0.03 a	2	0.017a	15		
	0.140	1	0.090	1	0.08 a	2	0.05 a	4	0.04 a	5 .	0.0180	14		
	0.140	1	0.09a	1	0.08 a	3	0.05a	3	0.040	4	0.019 a	13		
			0.150	1	0.12a	1	0.070	3	0.05 a	6	0.021 a	12		
			0.150	/	0.120	/	0.08a	3	0.05 a	5	0.023 o	//		
	,		0.160	/	0.120	1	0.080	4	0.05a	3	0.025 a	10		
			0.170	1	0.120	7	0.09a	3	0.060	3	0.028a	9		
			0.180	1	0.130	,	0.09a	3	0.07a	2	0.032a	8		
		-	0.700	_	0.20a	7	0.130	2	0.08a	3	0.036 a	7		
					0.220	1	0.15 a	7	0.10 a	3	0.04 a	6		
					033:	1	0.16	_	0.12a	2	0.05 a	5		
-	/				0.230	-	0.160			2	0.03 a	4		
		/				-	0.26a	/	0.16a					
	ried	Cari	/				0.30 a	1	0.210	1	0.09 a	3		
	rrups	Sti	/ by	/					0.37a	/	0.13 a	2		
	ncrete	by Co	Carried L	0	1					_	0.29 a	/		

See explanation on pages 86 to 91.

 Stirrups are to be carried on for a distance "d" (one beam depth).

SAFE LOAD CHARTS

The four charts on pages 49 and 50 are included not so much for design use as to show how a structural designer can prepare charts to solve almost any problem which involves the equating of groups of functions (such as bending moment to resisting moment or shear intensity to shear resistance). A series of lines radiating from one corner gives all values of one function (say, bending moment), while a series of lines radiating from an opposite corner gives all values of the other function (say, resisting moment). A line parallel to the proper coordinate axis from a point on one line across others equates the functions (bending moment to resisting moment), giving several choices of possible solutions.

For Charts I, II and III 1. Enter on left with total load (psf) in column giving proper moment factor. 2. Horizontal to span in feet. 3. Vertical to desired depth. 4. Horizontal to steel area.

DEFLECTIONS OF REINFORCED CONCRETE BEAMS

Example III—What is the probable short-time deflection of the beam in Ex. I if a restraining moment of 200 ki is applied at the left end and 300 ki at the right?

The uniform load produces downward deflection (a in fig.), maximum at midspan. Left end moment produces upward deflection (b), maximum left of center; right end moment produces upward deflection (c), maximum right of center. A summation to determine absolute maximum might be complicated, but, in view of the many assumptions, it is sufficiently accurate to add deflections at center (and quarter-points) to obtain the curve (d) so:—

$$\begin{array}{ll} \Delta \ \text{for uniform load} & = \frac{+WL^3}{76.8EI} = \frac{+1225\,\times\,20^4\,\times\,1728}{76.8\,\times\,3,000,000\,\times\,5832} = \,+0.252 \ \text{in.} \\ \Delta \ \text{for } 200^{ki} \ \text{left end moment} = \frac{-3M_AL^{2*}}{48EI} = \frac{-3\,\times\,200,000\,\times\,20^2\,\times\,144}{48\,\times\,3,000,000\,\times\,5832} = \,-0.041 \ \text{in.} \\ \end{array}$$

$$\Delta \text{ for } 300^{ki} \text{ right end moment} = \frac{-3M_B L^2}{48EI} = \frac{-3 \times 300,000 \times 20^2 \times 144}{48 \times 3,000,000 \times 5832} = \frac{-0.062 \text{ in.}}{+0.149 \text{ in.}}$$

It is quite likely that a greater deflection would actually develop as discussed in Ex. IV.

Example IV—What is the probable maximum deflection of the beam of Ex. III at the end of a five year period if the live load and end moments are all fairly continuously in place?

This example does not lend itself readily to simple mathematical analysis. The end slopes from moments computed by elastic frame methods, while reasonably accurate for short-time loading, might relieve themselves somewhat by creep in the concrete; certainly the deflection of the portion undergoing positive moment will be materially increased by such creep. Recent tests of continuous beams suggest that the long-time actual deflection can best be obtained by multiplying the short-time deflection by a factor, and $2\frac{1}{2}$ at present seems a fair value for this multiplier. Hence, $2\frac{1}{2} \times 0.149 = 0.373$ in.

One of the most effective ways of reducing deflection caused by long-time loading is by the use of compressive reinforcement.

* This can be checked by the conjugate beam method, the M/EI diagram being a triangle from zero at the right end to M_A/EI at the left end. Right reaction is $\frac{1}{3} \cdot \frac{1}{2} \cdot \frac{M_AL}{EI}$, center ordinate is $\frac{M_A}{2EI}$ and moment of reaction less load is $\frac{1}{3} \cdot \frac{1}{2} \cdot \frac{M_AL}{EI} \cdot \frac{L}{2} - \frac{M_A}{2EI} \cdot \frac{L}{2} \cdot \frac{1}{2} \cdot \frac{1}{3}$. $\frac{L}{2} = \frac{3M_AL^2}{48EI}$.

CANTILEVERED BEAM-UNIFORMLY DISTRIBUTED LOAD

Equivalent Tabular Load = 4wL
$R = V \dots = wL$
$V_x = V_x = V_x$
M_{max} (at fixed end) $=\frac{wL^2}{2}$
M_x $= \frac{wx^2}{2}$
Δ_{max} (at free end) $= \frac{wL^4}{8EI}$
Δ_x = $\frac{w}{24El}(x^4 - 4L^3x + 3L^4)$

CANTILEVERED BEAM-CONCENTRATED LOAD AT FREE END

Equivalent Tabular Load	=	8P
$R = V \dots \dots$	=	P
M _{max} (at fixed end)	=	PL
M_x	=	Px
Δ_{max} (at free end)	=	PL ³ 3EI
Δ_x	=	$\frac{P}{6FI}(2L^3-3L^2x+x^3)$

CANTILEVERED BEAM—CONCENTRATED LOAD AT ANY POINT

Equivalent Tabular Load ...
$$=$$
 $\frac{\partial F b}{L}$
 $R = V \text{ (when } x > a) \dots = P$
 $M_{max} \text{ (at fixed end)} \dots = Pb$
 $M_x \text{ (when } x > a) \dots = P(x - a)$
 $\Delta_{max} \text{ (at free end)} \dots = \frac{Pb^2}{6El}(3L - b)$
 $\Delta a \text{ (at point of load)} \dots = \frac{Pb^3}{3El}$
 $\Delta_x \text{ (when } x < a) \dots = \frac{Pb^2}{6El}(3L - 3x - b)$
 $\Delta_x \text{ (when } x > a) \dots = \frac{P(L - x)^2}{6El}(3b - L + x)$

Equivalent Tabular Load $=\frac{8}{3}W$

CANTILEVERED BEAM-LOAD INCREASING UNIFORMLY TO FIXED END

$R = V \dots = W$	
$V_x = V_{L^2}$	
M_{max} (at fixed end) $= \frac{WL}{3}$	
M_x $= \frac{Wx^3}{3t^2}$	
Δ_{max} (at free end) $= rac{WL^3}{15EI}$	
$\Delta_x \dots = \frac{W}{60EIL^2} (x^5 - 5L^4x +$	4L ⁵)

SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD

SIMPLE BEAM-UNIFORM LOAD PARTIALLY DISTRIBUTED

$$\begin{array}{l} R_1 = V_1 \; (\text{max when } a < c) \ldots = \frac{wb}{2L} (2c + b) \\ R_2 = V_2 \; (\text{max when } a > c) \ldots = \frac{wb}{2L} (2a + b) \\ V_x \quad \left[\text{when } x > a \; \text{and} \; < (a + b) \; \right] = R_1 - w(x - a) \\ M_{max} \left(\; \text{at} \; x = a + \frac{R_1}{w} \right) \ldots = R_1 \left(a + \frac{R_1}{2w} \right) \\ M_x \quad \left(\text{when } x < a \right) \ldots = R_1 x \\ M_x \quad \left[\text{when } x > a \; \text{and} \; < (a + b) \; \right] = R_1 x - \frac{w}{2} (x - a)^2 \end{array}$$

SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

 M_x [when x > (a + b)].... = $R_2(L - x)$

$$R_{1} = V_{1max}.... = \frac{wa}{2L}(2L - a)$$

$$R_{2} = V_{2}.... = \frac{wa^{2}}{2L}$$

$$V \quad (\text{when } x < a)... = R_{1} - wx$$

$$M_{max}\left(\text{at } x = \frac{R_{1}}{w}\right)... = \frac{R_{1}^{2}}{2w}$$

$$M_{x} \quad (\text{when } x < a)... = R_{1}x - \frac{wx^{2}}{2}$$

$$M_{x} \quad (\text{when } x > a)... = R_{2}(L - x)$$

$$\Delta_{x} \quad (\text{when } x < a)... = \frac{wx}{24EIL}[a^{2}(2L - a)^{2} - 2ax^{2}(2L - a) + Lx^{3}]$$

$$\Delta_{x} \quad (\text{when } x > a)... = \frac{wa^{2}(L - x)}{24EIL}(4xL - 2x^{2} - a^{2})$$

SIMPLE BEAM-UNIFORM LOAD PARTIALLY DISTRIBUTED AT EACH END

$$R_1 = V_1$$
... = $\frac{w_1 a(2L - a) + w_2 c^2}{2L}$

$$R_2 = V_2...$$
 = $\frac{w_2c(2L-c) + w_1a^2}{2L}$

$$V_{x}$$
 (when $x < \alpha$)..... $= R_1 - w_1 x$

$$V_x$$
 [when $x > a$ and $\langle (a + b) \rangle \dots = R_1 - w_1 a$

$$M_{max}\left(ext{at x} = rac{R_1}{w_1} ext{when } R_1 < w_1 ext{a}
ight) \dots = rac{R_1^2}{2w_1}$$

$$M_{max}\left(\operatorname{at} x = L - \frac{R_2}{w_2}\operatorname{when} R_2 < w_2 c\right). = \frac{R_2^2}{2w_2}$$

$$M_x$$
 (when $x < a$).... $= R_1 x - \frac{w_1 x^2}{2}$

$$M_x$$
 [when $x > a$ and $\langle (a+b) \rangle \dots = R_1 x - \frac{w_1 a}{2} (2x-a)$

$$M_x$$
 [when x > (a + b)] = $R_2(L - x) - \frac{w_2(L - x)^2}{2}$

SIMPLE BEAM-CONCENTRATED LOAD AT CENTER

$$R = V$$
..... $= \frac{F}{2}$

$$M_{max}$$
 (at point of load).... $=\frac{P_{M}}{A}$

$$M_x$$
 (when $x < \frac{l}{2}$).... $= \frac{Px}{2}$

$$\Delta_{max}$$
 (at point of load).... = $\frac{PL^3}{495}$

$$\Delta_x = \left(\text{when } x < \frac{1}{2} \right) \dots = \frac{Px}{48E!} (3L^2 - 4x^2)$$

SIMPLE BEAM-CONCENTRATED LOAD AT ANY POINT

Equivalent Tabular Load.....
$$=\frac{8Pab}{L^2}$$

$$R_1 = V_1 \text{ (max when } a < b\text{)} \dots = \frac{Pb}{L}$$

$$R_2 = V_2 \text{ (max when } a > b) \dots = \frac{Pa}{L}$$

$$M_{max}$$
 (at point of load).... = $\frac{Pab}{L}$

$$M_x$$
 (when $x < a$)..... $= \frac{Pb}{A}$

$$\Delta_{max} \left[at x = \sqrt{\frac{a(a+2b)}{3}} \text{ when } a > b \right]. = \frac{Pab(a+2b)\sqrt{3a(a+2b)}}{27EIL}$$

$$\Delta_a$$
 (at point of load).... = $\frac{Pa^2b^2}{3EIL}$

$$\Delta_x$$
 (when $x < a$)..... $= \frac{Pbx}{6EIL}(L^2 - b^2 - x^2)$

SIMPLE BEAM-TWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED

Equivalent Tabular Load ...
$$=\frac{8Pa}{L}$$
 $R = V \text{ [when } x < a, \text{ or } > (L-a)] ... = P$
 $M_{max} \text{ (between loads)} ... = Pa$
 $M_x \text{ (when } x < a) ... = Px$
 $\Delta_{max} \text{ (at center)} ... = \frac{Pa}{24EI} (3L^2 - 4a^2)$
 $\Delta_x \text{ (when } x < a) ... = \frac{Px}{6EI} (3La - 3a^2 - x^2)$

[when x > a and $\langle (L - a)] \dots = \frac{Pa}{AEI}(3Lx - 3x^2 - a^2)$

SIMPLE BEAM-TWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

$$\begin{array}{lll} R_1 = V_1 \, (\text{max when } a < b) & & & = \frac{P}{L} (L - a + b) \\ R_2 = V_2 \, (\text{max when } a > b) & & & = \frac{P}{L} (L - b + a) \\ V_x & & [\text{when } x > a \, \text{and} \, < (L - b)] & & = \frac{P}{L} (b - a) \\ M_1 & & (\text{max when } a > b) & & & = R_1 a \\ M_2 & & (\text{max when } a < b) & & & = R_2 b \\ M_x & & (\text{when } x < a) & & & = R_1 x \\ M_x & & [\text{when } x > a \, \text{and} \, < (L - b)] & & & = R_1 x - P(x - a) \end{array}$$

SIMPLE BEAM—TWO UNEQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

$$R_1 = V_1.... = \frac{P_1(L-a) + P_2b}{L}$$

$$R_2 = V_2.... = \frac{P_1a + P_2(L-b)}{L}$$

$$V_x \quad \text{[when } x > a \text{ and } < (L-b) \text{]}.... = R_1 - P_1$$

$$M_1 \quad \text{(max when } R_1 < P_1).... = R_1a$$

$$M_2 \quad \text{(max when } R_2 < P_2).... = R_2b$$

$$M_x \quad \text{(when } x < a).... = R_1x$$

$$M_x \quad \text{[when } x > a \text{ and } < (L-b) \text{]}.... = R_1x - P_1(x-a)$$

SIMPLE BEAM-TWO EQUAL CONCENTRATED MOVING LOADS

$$R_{1} \stackrel{\times}{\bigtriangleup} \stackrel{\alpha}{\downarrow} \stackrel{\alpha}{\downarrow} \qquad \qquad R_{2}$$

$$\begin{split} R_{lmax} &= V_{lmax} \quad (\text{at x} = 0)...... \\ &= P\bigg(2 - \frac{\alpha}{L}\bigg) \\ \text{when } \alpha < (2 - \sqrt{2})L = .586L \\ \text{under load 1 at x} &= \frac{1}{2}\bigg(L - \frac{\alpha}{2}\bigg) \\ \end{bmatrix}... &= \frac{P}{2L}\bigg(L - \frac{\alpha}{2}\bigg)^2 \\ \\ \begin{bmatrix} \text{when } \alpha > (2 - \sqrt{2})L = .586L \\ \text{with one load at center of span} \end{bmatrix}... &= \frac{PL}{4} \end{split}$$

SIMPLE BEAM-TWO UNEQUAL CONCENTRATED MOVING LOAD

$$R_{1max} = V_{1max} \quad (\text{at } x = 0) \dots = P_1 + P_2 \left(\frac{L - \sigma}{L}\right)$$

$$P_1 > P_2$$

$$P_2 \longrightarrow P_2$$

$$P_3 \longrightarrow P_2$$

$$P_4 \longrightarrow P_2$$

$$P_4 \longrightarrow P_2$$

$$P_5 \longrightarrow P_2$$

$$P_6 \longrightarrow P_2$$

$$P_7 \longrightarrow P_2$$

$$P_8 \longrightarrow P_3$$

$$P_8 \longrightarrow P_4$$

$$P_8 \longrightarrow P$$

SIMPLE BEAM-LOAD INCREASING UNIFORMLY TO ONE END

SIMPLE BEAM-LOAD INCREASING UNIFORMLY TO CENTER

BEAM OVERHANGING ONE SUPPORT-UNIFORMLY DISTRIBUTED LOAD

BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOAD ON OVERHANG

BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOAD BETWEEN SUPPORTS

Equivalent Tabular Load ...
$$= wL$$

$$R = V ... = \frac{wL}{2}$$

$$V_x ... = w\left(\frac{L}{2} - x\right)$$

$$M_{max} \text{ (at center)} ... = \frac{wL^2}{8}$$

$$M_x ... = \frac{wx}{2}(L - x)$$

$$\Delta_{max} \text{ (at center)} ... = \frac{5wL^4}{384EI}$$

$$\Delta x ... = \frac{wx}{24EI}(L^3 - 2Lx^2 + x^3)$$

$$\Delta x_1 ... = \frac{wL^3x_1}{24EI}$$

BEAM OVERHANGING ONE SUPPORT-CONCENTRATED LOAD AT END OF OVERHANG

 $R_1 = V_1 \dots = \frac{P_a}{I}$

$$R_2 = V_1 + V_2 . \qquad \qquad = \frac{P}{L}(L + a)$$

$$V_2 . \qquad \qquad = P$$

$$M_{max} \text{ (at } R_2) . \qquad \qquad = Pa$$

$$M_x \text{ (between supports)} . \qquad \qquad = \frac{Pax}{L}$$

$$M_{x_1} \text{ (for overhang)} . \qquad \qquad = P(a - x_1)$$

$$\Delta_{max} \left(\text{ between supports at } x = \frac{L}{\sqrt{3}} \right) . . = \frac{PaL^2}{9\sqrt{3}EI} = .06415 \frac{PaL^2}{EI}$$

$$\Delta_{max} \text{ (for overhang at } x_1 = a) . \qquad \qquad = \frac{Pax}{3EI}(L + a)$$

$$\Delta x \text{ (between supports)} . \qquad \qquad = \frac{Pax}{6EIL}(L^2 - x^2)$$

$$\Delta x_1 \text{ (for overhang)} . \qquad \qquad = \frac{Px_1}{6EI}(2aL + 3ax_1 - x_1^2)$$

BEAM OVERHANGING ONE SUPPORT—CONCENTRATED LOAD AT ANY POINT BETWEEN SUPPORTS

OFF	JKI-	-CONCENTRATED LOAD AT ANT FORM	II BETWEEN SOFTOKIS
	Equiv	ralent Tabular Load =	8Pab L ²
	$R_1 =$	V_1 (max when a $<$ b) =	Pb L
	$R_2 =$	V_2 (max when a $>$ b)	Pa L
	M _{max}	(at point of load)	Pab L
	M_x	(when $x < a$)	Pbx I
	Δ_{max}	$\left[\operatorname{at} x = \sqrt{\frac{a(a+2b)}{3}} \text{ when } a > b\right]. =$	$\frac{Pab(a+2b)\sqrt{3}a(a+2b)}{27EIL}$
2	Δα	(at point of load)	Pa ² b ² 3EIL
	Δχ	(when $x < \alpha$) =	$\frac{Pbx}{6EIL}(L^2-b^2-x^2)$
	Δχ	(when $x > \sigma$)	$\frac{Pa(L-x)}{6EIL}(2Lx-x^2-a^2)$
			D .

BEAM FIXED AT ONE END, SUPPORTED AT OTHER-UNIFORMLY DISTRIBUTED LOAD

Equivalent Tabular Load ...
$$= wL$$

$$R_1 = V_1 ... = \frac{3wL}{8}$$

$$R_2 = V_{2}max ... = \frac{5wL}{8}$$

$$V_x ... = R_1 - wx$$

$$M_{max} ... = \frac{wL^2}{8}$$

$$M_1 \left(at x = \frac{3}{8}L \right) ... = \frac{9}{128}wL^2$$

$$M_x ... = R_1x - \frac{wx^2}{2}$$

$$\Delta max \left[at x = \frac{L}{16}(1 + \sqrt{33}) = .4215L \right] ... = \frac{wL^4}{184.63EI}$$

$$\Delta x ... = \frac{wx}{48EI}(L^3 - 3Lx^2 + 2x^3)$$

BEAM FIXED AT ONE END, SUPPORTED AT OTHER—CONCENTRATED LOAD AT CENTER

BEAM FIXED AT ONE END, SUPPORTED AT OTHER—CONCENTRATED LOAD AT ANY POINT

BEAM FIXED AT BOTH ENDS-UNIFORMLY DISTRIBUTED LOADS

Equivalent Tabular Load	$=\frac{2wL}{3}$
R = V	$=\frac{wL}{2}$
V ₂	$w = w \left(\frac{L}{2} - x\right)$
M _{max} (at ends)	$.=\frac{wL^2}{12}$
M ₁ (at center)	$.=\frac{wL^2}{24}$
M _z	$ = \frac{w}{12} (6Lx - L^2 - 6x^2) $
Δ_{max} (at center)	$. = \frac{wL^4}{384EI}$
Δx	

BEAM FIXED AT BOTH ENDS-CONCENTRATED LOAD AT CENTER

Equivalent Tabular Load ...
$$= P$$

$$R = V ... = \frac{P}{2}$$

$$M_{max} \text{ (at center and ends)} = \frac{PL}{8}$$

$$M_x \left(\text{when } x < \frac{1}{2} \right) ... = \frac{P}{8} (4x - L)$$

$$\Delta_{max} \text{ (at center)} = \frac{PL^3}{192EI}$$

$$\Delta x \left(x < \frac{L}{2} \right) ... = \frac{Px^2}{48EI} (3L - 4x)$$

BEAM FIXED AT BOTH ENDS-CONCENTRATED LOAD AT ANY POINT

$$\begin{array}{lll} R_1 = V_1 \ (\text{max when } a < b) & & = \frac{Pb^2}{L^3} (3a + b) \\ R_2 = V_2 \ (\text{max when } a > b) & & = \frac{Pa^2}{L^3} (a + 3b) \\ M_1 & & (\text{max when } a < b) & & = \frac{Pab^2}{L^2} \\ M_2 & & (\text{max when } a > b) & & = \frac{Pa^2b}{L^2} \\ M_3 & & (\text{at point of load}) & & = \frac{2Pa^2b^2}{L^3} \\ M_4 & & (\text{when } x < a) & & = R_1x - \frac{Pab^2}{L^2} \\ M_{2x} & & (\text{when } a > b \text{ at } x = \frac{2aL}{3a + b}) & & = \frac{2Pa^3b^2}{3EI(3a + b)^2} \\ \Delta a & & (\text{at point of load}) & & = \frac{Pa^3b^3}{3EIL^3} \\ \Delta x & & (\text{when } x < a) & & = \frac{Pb^2x^2}{6EIL^3} (3aL - 3ax - bx) \end{array}$$

BEAM DIAGRAMS AND FORMULAS

CONTINUOUS BEAM-TWO EQUAL SPANS-UNIFORM LOAD ON ONE SPAN

Equivalent Tabular Load....
$$=\frac{49}{64}$$
wL
$$R_1 = V_1 ... = \frac{7}{2}$$
wL

$$R_1 = V_1 \dots = \frac{7}{16} wL$$

$$R_2 = V_2 + V_3... = \frac{5}{8} wL$$

$$R_3 = V_3 \dots = -\frac{1}{16} \text{wL}$$

$$V_2$$
.... = $\frac{9}{16}$ wL

$$M_{max}\left(\operatorname{at} x = \frac{7}{16}L\right).... = \frac{49}{512}wL^2$$

$$M_1$$
 (at support R_2)..... $=\frac{1}{16}wL^2$

$$M_s$$
 (when x < L).... = $\frac{wx}{16}$ (7L - 8x)

CONTINUOUS BEAM-TWO EQUAL SPANS-CONCENTRATED LOAD AT CENTER OF ONE SPAN

Equivalent Tabular Load
$$=\frac{13}{8}$$
P

$$R_{\mathfrak{J}} = R_{1} = V_{1} \dots = \frac{13}{32} P_{1}$$

$$R_2 = V_2 + V_3 \dots = \frac{11}{16}P$$

Shear
$$V_3$$
 $R_3 = V_3$ $= -\frac{3}{32}P$

$$V_2 = \frac{19}{32}P$$

$$M_{max}$$
 (at point of load) = $\frac{13}{64}$ PL

$$M_1$$
 (at support R_2).... $= \frac{3}{32}PL$

CONTINUOUS BEAM-TWO EQUAL SPANS-CONCENTRATED LOAD AT ANY POINT

$$R_1 = V_1 \dots = \frac{Pb}{4L^3} [4L^2 - \sigma(L+\sigma)]$$

$$R_2 = V_2 + V_3 \dots = \frac{P\sigma}{2L^3} [2L^2 + b(L+\sigma)]$$

$$R_3 = V_3... = -\frac{Pab}{4L^3}(L+a)$$

$$V_2... = \frac{Pa}{4L^3}[4L^2 + b(L+a)]$$

$$M_{max}$$
 (at point of load).... = $\frac{Pab}{AL^3}[4L^2 - a(L+a)]$

$$M_1$$
 (at support R_2).... $=\frac{Pab}{4I^2}(L+a)$

BEAM DIAGRAMS AND FORMULAS

BEAM FIXED BOTH ENDS-NO LOAD-ONE END OFFSET

(For offset in opposite direction reverse signs)

BEAM FIXED ONE END-NO LOAD-ONE END OFFSET

(For offset in opposite direction reverse signs)

BEAM FIXED BOTH ENDS-NO LOAD-APPLIED MOMENT

BEAM DIAGRAMS AND FORMULAS

BEAM FIXED ONE END-NO LOAD-APPLIED MOMENT

$$\begin{split} R_1 &= V \dots = -\frac{3M}{2L} \bigg(1 - \frac{b^2}{L^2} \bigg) & R_2 \dots = \frac{3M}{2L} \bigg(1 - \frac{b^2}{L^2} \bigg) \\ M_1 \dots &= \frac{M}{2} \bigg(1 - 3\frac{b^2}{L^2} \bigg) & M_2 \dots = \frac{3Mb}{2L} \bigg(1 - \frac{b^2}{L^2} \bigg) - M \\ M_3 \dots &= \frac{3Mb}{2L} \bigg(1 - \frac{b^2}{L^2} \bigg) \\ M_x \left(\text{when } x < a \right) \dots &= \frac{3M}{2L} \bigg(1 - \frac{b^2}{L^2} \bigg) (L - x) - M \\ M_x \left(\text{when } x > a \right) \dots &= \frac{3M}{2L} \bigg(1 - \frac{b^2}{L^2} \bigg) (L - x) \\ \Delta_x \left(\text{when } x < a \right) \dots &= \frac{Mx^2}{2EI} \bigg[\frac{3}{L} \bigg(1 - \frac{b^2}{L^2} \bigg) \bigg(\frac{x}{6} - \frac{L}{2} \bigg) + 1 \bigg] \\ \Delta_x \left(\text{when } x > a \right) \dots &= \frac{3M}{2EIL} \bigg(1 - \frac{b^2}{L^2} \bigg) \bigg(\frac{L^3}{3} - \frac{Lx^2}{2} + \frac{x^3}{6} \bigg) - \frac{Ma}{EI} (L - x) \\ \Delta_a \dots &= \frac{Ma^2}{2EI} \bigg[\frac{a(2L - a)(a - 3L)}{2L^3} + 1 \bigg] \end{split}$$

SIMPLE BEAM-NO LOAD-APPLIED MOMENT

$$R_{1} = V \dots = -\frac{M}{L} \qquad R_{2} \dots = \frac{M}{L}$$

$$M_{1} \dots = -\frac{Ma}{L} \qquad M_{2} \dots = \frac{Mb}{L}$$

$$M_{max} \dots = M_{1} \text{ if } a > b$$

$$= M_{2} \text{ if } a < b$$

$$M_{x} \text{ (when } x < a) \dots = -\frac{Mx}{L}$$

$$M_{x} \text{ (when } x > a) \dots = \frac{M}{L}(L - x)$$

$$\Delta_{x} \text{ (when } x > a) \dots = \frac{M(L - x)}{6EIL^{2}}(-a^{3} - 3a^{2}b + 2b^{3} + Lx^{2})$$

$$\Delta_{x} \text{ (when } x > a) \dots = \frac{M(L - x)}{6EIL^{2}}[-2a^{3} + 3ab^{2} + b^{3} - L(L - x)^{2}]$$

$$\Delta_{max} \text{ (if } a > b, \text{ at } x = \sqrt{-\frac{2}{3}L^{2} + 2aL - a^{2}}) =$$

$$\frac{M\sqrt{-\frac{2}{3}L^{2} + 2aL - a^{2}}}{6EIL^{2}} \text{ (-a^{3} - 3a^{2}b + 2b^{3} - \frac{2}{3}L^{3} + 2aL^{2} - a^{2}L)}$$

$$\Delta_{max} \text{ (if } a < b, \text{ at } (L - x) = \sqrt{-\frac{2}{3}L^{2} + 2bL - b^{2}}) =$$

$$\frac{M\sqrt{-\frac{2L^{2}}{3} + 2bL - b^{2}}}{6EIL^{2}} \text{ (-2a^{3} + 3ab^{2} + b^{3} + \frac{2}{3}L^{3} - 2bL^{2} + b^{2}L)}$$

CANTILEVERED BEAM-NO LOAD-APPLIED MOMENT

$$R = V. \qquad = 0$$

$$M_1. \qquad = -M$$

$$\Delta_x \text{ (when } x \leq a\text{)}. \qquad = \frac{Mx^2}{2EI}$$

$$\Delta_x \text{ (when } x \geq a\text{)}. \qquad = \frac{Ma}{EI} \left(x - \frac{a}{2}\right)$$

$$\Delta_{max} \text{ (when } x = L\text{)}. \qquad = \frac{Ma}{EI} \left(L - \frac{a}{2}\right)$$

All of the tables of safe carrying capacities for flexural members given in this book are based upon loads uniformly distributed along the span length of the member; also the ratios of live to dead load (i.e., 3:1), except in a few beam tables, and of span length under consideration to the lengths of adjoining spans (i.e., longer \geq 1.20 shorter) are assumed to be within the limits imposed by the ACI "Building Code Requirements for Reinforced Concrete (ACI 318-56)" (701c), permitting the use of arbitrary moment coefficients that will produce reasonably safe results.

When concentrated loads are encountered, it is possible to enter the safe uniform load tables with approximately equivalent uniform loads. When span lengths or the ratio of live to dead load vary beyond Code limits, it is best to compute the moments by the Three Moment Equation or by Moment Distribution as illustrated briefly in this section and explained at length in any standard text on continuity (rigid frames).

Concentrated Loads

Sometimes, as in the case of girders carrying beams, loads are concentrated, not uniformly applied. It is possible to determine an "equivalent uniform load" that will produce the same maximum positive or maximum negative bending moment as the series of concentrated loads. These equivalent total loads, W = wL, are given for a number of cases in the table on page 67, where +W produces same maximum positive moment and -W, the same maximum negative moment as do the concentrated loads. It is obvious that the shears, and the moments at other points than that where moment is maximum, will be quite different from the shears and moments produced by the concentrated loads. Hence the use of such equivalent uniform loading is not a safe way to make the final design of a flexural member. It may help in making a tentative selection for preliminary estimating purposes or in determining preliminary clearances. The table is given with this explanation as being of some guidance. Those not familiar with the general theory of bending would do well to obtain assistance in design for any cases that depart from the limitations imposed on each set of tables.

EQUIVALENT U	NIFORM LOAD FOR MAX	IMUM MOMENT
Single Span	End Span	Interior Span
W Max M = WL 8	$MaxM=$ $-\frac{WL}{8}$ $Max.+M=+\frac{9WL}{128}$	$W \qquad Max-M = \frac{WL}{12}$ $L \qquad Max + M = + \frac{WL}{24}$
$ \begin{array}{c c} & P & W=2P \\ \hline & L & \Delta & Max.M=\frac{PL}{4} \end{array} $	$+W = \frac{20P}{9}$ $-W = \frac{3P}{2}$ $\Delta \qquad L \qquad Max - M = -\frac{3PL}{16}$ $Max + M = +\frac{5PL}{32}$	$ \begin{array}{c c} & +W=3P \\ & -W=\underline{3P} \\ & \underline{2} \\ & \underline{Max-M}=-\underline{PL} \\ & \underline{8} \end{array} $ $ \begin{array}{c c} & & \underline{Max+M}=+\underline{PL} \\ & & \underline{8} \end{array} $
$ \frac{P}{2} \frac{P}{2} $ $ \frac{L}{3} \frac{L}{3} \frac{L}{3} $ $ \Delta \qquad L $ $ Max. M = \frac{4P}{3} $ $ Max. M = \frac{PL}{6} $	$\frac{P}{2} \frac{P}{2} + W = \frac{128P}{81}$ $-W = \frac{4P}{3}$ $\Delta \qquad L$ $Max - M = + \frac{PL}{9}$	$\frac{P}{2} \frac{P}{2} + W = \frac{4P}{3}$ $-W = \frac{4P}{3}$ $\frac{L}{3} \frac{L}{3} \frac{L}{3} \frac{L}{3}$ $Max - M^2 - \frac{PL}{9}$ $Max + M = + \frac{PL}{18}$
$ \frac{P}{3} \frac{P}{3} \frac{P}{3} $ $ \frac{L}{4} \frac{L}{4} \frac{L}{4} \frac{L}{4} \frac{L}{4} $ $ \Delta \qquad L \qquad Max. M = \frac{PL}{6} $	$ \frac{P}{3} \frac{P}{3} \frac{P}{3} + W = \frac{34P}{27} \\ -W = \frac{5P}{4} $ $ \Delta \qquad L \qquad Max-M = -\frac{5PL}{32} $ $ Max.+M = +\frac{17PL}{192} $	$\frac{P}{3} \frac{P}{3} \frac{P}{3} + W = \frac{3P}{2}$ $-W = \frac{5P}{4}$ $L \frac{L}{4} \frac{L}{4} \frac{L}{4} \frac{L}{4}$ $Max - M = + \frac{3PL}{48}$ $Max + M = + \frac{3PL}{48}$
$ \begin{array}{c cccc} & P & P & P & P \\ \hline 4 & A & P & A & A \\ & L & L & L & L & L \\ \hline 5 & 5 & 5 & 5 & 5 & 5 \end{array} $ $ \begin{array}{c cccc} & Max.M = \frac{3PL}{20} \end{array} $	$ \frac{P}{4} \frac{P}{4} \frac{P}{4} \frac{P}{4} + W = \frac{128P}{1000} \\ -W = \frac{6P}{5} $ $ \Delta L = \frac{1}{5} \frac{ L }{5} \frac{ L }{5} \frac{ L }{5} = \frac{1}{5} $ $ MaxM = +\frac{3PL}{1000} $	$\frac{P}{4} \frac{P}{4} \frac{P}{4} \frac{P}{4} \frac{P}{4} + W = \frac{6P}{5}$ $-W = \frac{6P}{5}$ $\frac{L}{5} \frac{L}{5} \frac{L}{5} \frac{L}{5} \frac{L}{5} = \frac{L}{5}$ $Max - M = -\frac{PL}{10}$ $Max + M = +\frac{PL}{20}$

+ W = total uniform load which will produce same maximum positive bending moment as is produced by the concentrated loads; - W, the same maximum negative moment.

Solution: --Write the Three Moment Equation, omitting unnecessary terms:--

Determine the left end reaction as $R_L = 2mL - 0.3128mL = 1.6872mL$.

Section for zero shear and max. positive moment: $-x = \frac{1.6872 \text{ML}}{\Lambda_{AB}} = 0.4218 \text{L}$.

Positive moment:
$$\frac{1.0556.0}{2} = \frac{\frac{1.05780.1}{2} \times 0.3560.1^{\circ}}{2} = \frac{x_1 R}{2} = M + \dots \text{ the moment:}$$

$$\frac{x_1 w}{52.11} \cdot \text{xorqqe to } (x_1 w 880.0 \text{ se mitten as } 0.000)$$

across the structure, two spans at a time, resulting in a number of simultaneous equadirectly.* As the number of spans increases, it is necessary to work progressively Observation—For only two spans, the Three Moment Equation can be written

values; in fact algebraic values are often preferable, as they combine and cancel readily. The Three Moment Equation can be used with equal facility for numerical or algebraic tions which may become involved.

determine the absolute maximum moment over the first interior support. and no concentrated loads. If the live load can not exceed three times the dead load, Example II—Given four equal spans with equal moments of inertia, no end restraint

Write the Three Moment Equations for spans 1-2, 2-3 and 3-4, simplifying each one each way from there. the figure above, placing the live load on each side of the support and alternate spans Solution: The load arrangement for this moment to be a maximum should be as in

as soon as written:-

(I)
$$\epsilon \Delta u \Delta - = \epsilon M_1 + i M_2 \text{ os } \frac{\epsilon \Delta u \hbar}{4} - \frac{\epsilon \Delta u \hbar}{4} - \Delta L = \Delta u M_1 + (\Delta + \Delta) i M \Delta + 0$$

(2)
$$\frac{s L M_2}{4} - \frac{s L M_2}{4} - \frac{s L M_2}{4} - \frac{s L M_3}{4} - \frac{s L M_2}{4} - \frac{s L M_3}{4} - \frac{s L M_2}{4} + \frac{s L M_3}{4} - \frac{s L M_2}{4} + \frac{s L M_$$

(8)
$$\frac{L}{\hbar} = -\frac{L}{\hbar} \frac{L}{\hbar} + \frac{L}{\hbar} \frac{L}{\hbar} = -\frac{L}{\hbar} \frac{L}{\hbar} \frac{L}{\hbar}$$

$$4M_1 + 16M_2 + 4M_3 = -5wL^2$$
 (2)

$$(5) \quad \frac{5u\omega^2}{4} - = 5u\omega^2 + 2M$$

(4) (sometimes of (5) and (5) and (6) and (6)
$$\frac{15uL^2}{4} = \frac{15uL^2}{4}$$
 (1) $\frac{15uL^2}{4} = -30uL^2$ (1) (1)

(4) sequence (4) sequence (4) sequence (4)
$$\frac{105 \text{wL}^2}{4}$$

$$M_1 = -\frac{105wL^2}{224}$$
, or $-\frac{105w_1L^2}{896}$

* The equation
$$M_1=-\frac{(4+0.579)wL^3}{4\times3.666}$$
 can be written without the need of setting down the Three Moment Equation.

Solution:-Write the Three Moment Equation, omitting unnecessary terms:-

$$0 + 2M_1(L + 0.833L) + 0 = -\frac{4wL^3}{4} - \frac{w(0.833L)^3}{4}$$

Solving:- $M_1 = -\frac{(4 + 0.579)wL^2}{4 \times 3.666} = -0.3128wL^2$, which can also be written as $M_1 = -0.0782w_1L^2$.

Determine the left end reaction as $R_L = 2wL - 0.3128wL = 1.6872wL$.

Section for zero shear and max. positive moment:— $x = \frac{1.6872wL}{4w} = 0.4218L$.

Positive moment:—+ $M = \frac{R_L x}{2} = \frac{1.6872wL \times 0.4218L}{2} = 0.356wL^2$, which can

also be written as $0.089w_1L^2$, or approx. $\frac{w_1L^2}{11.25}$

Observation—For only two spans, the Three Moment Equation can be written directly.* As the number of spans increases, it is necessary to work progressively across the structure, two spans at a time, resulting in a number of simultaneous equations which may become involved.

The Three Moment Equation can be used with equal facility for numerical or algebraic values; in fact algebraic values are often preferable, as they combine and cancel readily.

Example II—Given four equal spans with equal moments of inertia, no end restraint and no concentrated loads. If the live load can not exceed three times the dead load, determine the absolute maximum moment over the first interior support.

Solution:—The load arrangement for this moment to be a maximum should be as in the figure above, placing the live load on each side of the support and alternate spans each way from there.

Write the Three Moment Equations for spans 1-2, 2-3 and 3-4, simplifying each one as soon as written:—

$$0 + 2M_1(L+L) + M_2L = -\frac{4wL^3}{4} - \frac{4wL^3}{4}, \quad \text{so } 4M_1 + M_2 = -2wL^2$$
 (1)

$$M_1L + 2M_2(L+L) + M_3L = -\frac{4wL^3}{4} - \frac{wL^3}{4}$$
, so $M_1 + 4M_2 + M_3 = -\frac{5wL^2}{4}$ (2)

$$M_2L + 2M_3(L+L) + 0 = -\frac{wL^3}{4} - \frac{4wL^3}{4}, \text{ so } M_2 + 4M_3 = -\frac{5wL^2}{4}$$
 (3)

$$4M_1 + 16M_2 + 4M_3 = -5wL^2 \qquad (2)$$

$$M_2 + 4M_3 = -\frac{5wL^2}{4} \quad (3)$$

$$4M_1 + 15M_2 = -\frac{15wL^2}{4}$$
 (Combining (2) and (3) to eliminate M_3) (4)

$$60M_1 + 15M_2 = -30wL^2 \quad (1)$$

$$56M_1 = -\frac{105wL^2}{4}$$
 (Combining (4) and (1) to eliminate M_2)

$$M_1 = -\frac{105wL^2}{224}$$
, or $-\frac{105w_1L^2}{896}$

^{*} The equation $M_1 = -\frac{(4+0.579)wL^2}{4\times3.666}$ can be written without the need of setting down the Three Moment Equation.

Observation—The continued application of the Theorem is here illustrated, and the simplicity of application to algebraic values shown.

These examples show how the Three Moment Equation can be used to solve for bending moments in continuous runs of beams. They could be extended indefinitely, as the theory of continuity is a subject in itself. If the moment over the first support is not zero, but is known by reason of a cantilevered end which produces a definite moment, that value (usually negative) can be substituted in the Three Moment Equation instead of zero.

The user is counselled to familiarize himself with this Equation and use it for cases that are outside the scope of these tables.

Moment Distribution

Moment Distribution is essentially a method of successive approximations and, when applied to continuous flexural members in a single line, is best understood as step (a) plus the repeated applications of steps (b) and (c) below:—

(a) Assume that all joints (supports) of the loaded run of beams are fixed, without rotation. The first step, then, is this:—

I—At each end of each span, compute the fixed end moment (F.E.M.) due to the loading of that span with joints assumed fixed.*

(b) For static equilibrium, the moment at the right end of the left span must equal that at the left end of the abutting right span, i.e., the moments acting on the joint must balance. The assumed fixed-end-moments will rarely be numerically equal and the second step is to relieve or "unlock" each of the joints, one at a time, and permit rotation until the moments on either side balance each other. The two meeting beams become resisting levers to take up the unbalanced moment in any joint, and will divide it in proportion to their relative stiffnesses as measured by the ratio I/L. This step is known as "distribution."

II—Having previously computed the relative stiffnesses (K = I/L) of the two beams, "distribute" the unbalanced moment at their junction in proportion to their stiffness.

(c) Since the adjoining beams described as resisting levers are considered artificially fixed at their far ends, it is impossible for them to receive a moment change at one end without inducing a moment at the other end, whose magnitude is a function of the shape of the beam. For a prismatic beam, this "carry-over" moment is one-half of the moment at the opposite end.

III—Carry over a portion (one-half for straight, prismatic beams) of the distributed moment to the opposite end of each beam.

^{*} Values for a number of loading conditions are given in the tables on pages 72-75.

(d) Because step III was performed subsequently to and independently of step II, the induced moment in step III unbalances what was previously a balanced condition at the joint where the carry-over moment was added. Hence it is necessary to repeat steps II and III as often as desired to obtain closer and closer approximations of the true values. The steps can be stopped at any time, but only after a distribution and before a carry-over.

IV—Repeat steps II and III for closer approximations, stopping after a distribution of unbalanced moments.

Signs—It is customary to consider the moment applied to a supporting joint by a loaded beam as positive when it tends to cause clockwise rotation of the joint. (Thus, in the figure below, the F.E.M. at the right end of beam ab, usually designated as M_{ba} , is negative; that at the left end of beam bc, M_{bc} , is positive. The sign of the carry-over moment is the same as that of the distributed moment which causes it.

One variation of this procedure must be explained before illustrating with examples. In the case of a freely supported end, it is too tedious to assume that end fully fixed and then work it back to a free end by successive approximations, though that is quite possible. Less computing is done if the stiffness coefficient of an end (freely-supported) span is taken as $\frac{3}{4}I/L$, and if the moment at the free end is assumed zero (as it must be) and at the interior end as that of a beam supported on one end and fixed on the other $\left(-\frac{wL^2}{8}\right)$ for a uniform load).

Example—To verify the derivation in Example I, page 68, assume $w_1 = 4$ klf, $w_2 = 1$ klf, L = 20 ft, and 0.833L = 16.67 ft, and compute the bending moment over the support by moment distribution.

Solution:—Write the end moments in each span:—0 and $\frac{wL^2}{8} = -200$ kf for the left

span, and $\frac{wL^2}{8} = +34.7$ kf for the right span. Determine the stiffnesses (I/L ratios) of the two spans. Since they have the same moment of inertia and similar end conditions and are each prismatic, their stiffnesses vary inversely as the spans, 1.0 for the left span and 1.2 for the right, so that the left span takes $\frac{1.0}{2.2}$, or 45 per cent of any unbal-

anced moment, and the right span takes $\frac{1.2}{2.2}$, or 55 per cent (written on the diagonal in the figure above).

The unbalanced moment is -200 + 34.7 = -165.3, so +165.3 is needed to resist this, of which 45 per cent, or 75.0, is provided by the beam in the left span and 55 per cent, or 90.3, by the beam in the right span. Because the beams were adjusted to a free outer end before starting, there is no carry-over and the work is complete. Adding the terms on each side of the support results in a negative moment of 125 ft-kips, in balance on either side of the support, and this compares with the value from Example I, page 68, which was $M_1 = -0.0782w_1L^2 = 125.1$ ft-kips.

COEFFICIENTS FOR MOMENTS IN BEAMS WITH FIXED ENDS (F.E.M.)

MOMENTS IN BEAMS OF CONSTANT SECTION AND WITH FIXED ENDS

M=mxWxL

m = coefficient taken from diagram

W = total load on beam

L = length of beam a = length in terms of L

COEFFICIENTS FOR MOMENTS IN BEAMS WITH FIXED ENDS (F.E.M.)

MOMENTS IN BEAMS OF CONSTANT CROSS-SECTION—ONE END FIXED

MOMENTS IN BEAMS OF CONSTANT SECTION - ONE END FIXED, ONE END FREE

M=m x W x L

m=coefficient taken from diagram
W=total load on beam
L=length of beam
a=length in terms of L

MOMENTS IN BEAMS OF CONSTANT CROSS-SECTION—ONE END FIXED

Observation—With moment distribution it is almost impossible to work with algebraic terms, but the successive steps make the use of numerical values quite simple. A clear mental picture of each step is possible, such as moment at the free end, fixed end moment, stiffness of members, participation in unbalanced moment, distribution of moment, and carry-over. Quick, practical results are available to the designer, carried to such degree of precision as he desires.

Example—To verify the value of negative moment over the first interior support for Example II, page 69, assume $w_1 = w_2 = w_4 = 4$ klf, $w_3 = 1$ klf, and L = 20 ft, and determine the bending moment over the first interior support.

Solution:—The moments (kf) at the outer ends as given on line (1), figure below, are 0; at the other supports in order, $\frac{wL^2}{8} = -200$; $\frac{wL^2}{12} = +133.3$, -133.3, +33.3, -33.3; and $\frac{wL^2}{8} = +200$. The stiffnesses of the four spans, taking the free-end spans as $\frac{3}{4}I/L$, are 0.75, 1.00, 1.00 and 0.75. The distribution factors at each joint work out:—0, $\frac{0.75}{1.75} = 0.43$, $\frac{1.00}{1.75} = 0.57$, $\frac{1.00}{2.00} = 0.50$, 0.50 and, again, 0.57, 0.43, 0.

					_				
	ab	ba	bc	cb	cd	dc	de	ed	
(1)	0	-200	+/33.3	-/33.3	+33.3	-33.3	+200	0	FEM
(2)	0	+28.6	+38.1	+50.0	+50.0	1-95.4	-71.3	0	Dist.
(3)	=	(-171.4)	(+171.4)	(-83.3)	(+83.3)	× (-128.7)	(+128.7)	-	Σ
(4)	0	0	+25.0	+19.1	-47.7	+25.0	0	0	C.O.
(5)	0	-10.7	-14.3	1+14.3	+14.3	1-14.3	-10.7	0	Dist.
(6)	-	(-182.1)	(+182.1)	X(-49.9)	(+49.9)	X (-118.0)	(+118.0)	-	Σ
(7)	0	0	+7.2	-7.2	-7.2	+7.2	0	0	C.O.
(8)	0	-3.1	-4.1	+7.2	+7.2	-4.1	-3.1	0	Dist.
(9)	0	-185.2	+185.2	-49.9	+49.9	-114.9	+114.9	0	Σ

The unbalanced moment over the first interior support of -66.7 is "distributed" as 28.6 and 38.1 on line (2); and moments at other supports as indicated on the same line of figures. Now all of the joints are "in balance," and a fair approximation of a result can be had from the next line of figures enclosed in parentheses on line (3). However, the individual beams are not in equilibrium because of the induced moments on their other ends, and it is necessary to "carry over" one-half of these moments as shown below the parentheses on line (4).

Repeating the "distribution" of these smaller, unbalanced moments gives the values on line (5). Should work be stopped at this point, the final values would be as shown in parentheses on line (6).

For comparison, compute the value from the result of Example II, page 69, as $M_1 = -\frac{105w_1L^2}{896} = 187.5$ ft-kips. Thus it is seen that, with two cycles of distribution,

a fairly good approximation is developing. Lines (7) and (8) repeat another cycle. It is felt that, in view of the many assumptions inherent in continuous structures, the value of 185.2 ft-kips (Line 9) is closely enough in agreement with the 187.5 ft-kips from Example II. The user may go through other cycles of distribution and carryover to see how the value gradually approaches the theoretical one.

The summations here shown in parentheses are not recorded in practical computations and are included here to illustrate the increasing precision, cycle by cycle.

Observation—Fairly reliable values can be obtained after a couple of cycles. The carry-overs show the degree of precision in each cycle and the work may be stopped when these CO values seem negligible. The computer has a clear picture of the action of the structure and the meaning of each step as he goes along—in fact, if he does not have such a clear picture, he should stop and get it.

For design purposes, it is usually sufficient to determine with reasonable accuracy the moment at a certain point for a maximum loading condition. Many methods have been proposed for shortening the computations. (As always, understand the method before trying simplifications.) For a workable result the effect of a load in the first span only of the figure on page 76 can be approximated as D_{bc} (FEM_{ba} - $\frac{1}{2}D_{ab}$ FEM_{ab}) and of a load in the second span only as $D_{ba}(-\text{FEM}_{bc} + \frac{1}{2}D_{cb}$ FEM_{cb}), where D is the distribution factor. Applied to this problem:

pplied to this problem:
1st Span
$$0.57(-200 - 0 \times 0) = -114.0 \text{ kf}$$

2nd Span $0.43\left(-133.3 - \frac{0.50 \times 133.3}{2}\right) = \frac{-71.6}{-185.6 \text{ kf}}$

The examples shown are not complicated and present the Three Moment Equation as a simpler device than it works out in practice. Moment Distribution can be extended to take care of columns as well as beams, and to take care of members with variable moments of inertia (such as haunched beams and arched beams of various shapes). Each is a helpful tool in its place and each should be thoroughly understood by a designer of concrete structures.

To illustrate the application of Moment Distribution to a simple bent which is symmetrical in its framing and symmetrical in its loading (thus preventing sidesway or lurch), the following example is given. For more complicated frames, for frames with unsymmetrical loading or unsymmetrical members, for frames with varying moments of inertia or for frames undergoing horizontal loads, consult any good text on Moment Distribution.

Example—For the three-legged symmetrical bent illustrated in the figure below with pin-connected column bases and a symmetrical load of 2 kips per running foot, the moments of inertia of the columns being as 1 and 2 and that of the beams as 3, compute the negative moments at the tops of the three columns.

Solution:—Since the columns are pinconnected at the base, take $\frac{3}{4}\frac{I}{L}$, but for the beams use $\frac{I}{L}$ to obtain the following:— $\frac{3}{4}\frac{I_{ab}}{L} = \frac{3}{4}\frac{I_{ef}}{L} = \frac{3}{4}\frac{1}{15} = 0.05, \text{ varies as } 1$ $\frac{3}{4}\frac{I_{cd}}{L} = \frac{3}{4}\frac{2}{15} = 0.10, \text{ varies as } 2$ $\frac{I_{bd}}{L} = \frac{I_{df}}{L} = \frac{3}{20} = 0.15, \text{ varies as } 3$ The distribution at joints b and f will then be $\frac{1}{1+3}$, or 0.25, in the column and $\frac{3}{1+3}$, or 0.75, in the beam. At joint d the distribution to the column will be $\frac{2}{3+2+3}$, or 0.25; and to each

beam, $\frac{3}{3+2+3}$, or 0.375.

In the figure on page 77, the *FEM*'s are computed as $\frac{2 \times 20 \times 20}{12} = 66.7$. One dis-

tribution is made as noted and one carry-over. The results are totalled to give the moments desired. Note that the figures outside of the outer legs represent the column moments; those inside the outer legs, the beam moments. At joint d the two lower computations represent the beam moments and the upper one the column moment.

Sidesway

A structure unsymmetrical in its framing or unsymmetrical in its loading will be subjected to sidesway or lurch, so joint moments computed for rotation only must be corrected for translation. Often the simplest procedure is to solve first for rotation, see what horizontal force would be required to prevent sidesway, and then correct the values for the effect of a negative force of this amount.

Example I—For a two-legged symmetrical framed bent with hinged columns and unsymmetrical load as shown in (a), determine the corner moments M_A and M_B .

The fixed end moments in the beam and the stiffness ratios are first determined, as on (a). Then in (b) a moment distribution is made, resulting in corner moments of -79.2 and +49.3 kf, respectively. From these, the horizontal reactions at the bottoms of the columns are computed as 6.34 and 3.94, respectively. Since these are not equal to each other, a horizontal force (F = 2.40 kips), shown dotted on (b), would be required to restore equilibrium. This means that while the bent would deflect as shown by heavy lines in (c), the distribution has assumed the presence of a nonexistent force F = 2.40 kips, holding the two upper corners directly over the bases of the columns, so it is necessary to add the effects of a force F' = 2.40 kips in the opposite direction, i.e., determine the corner moments that it develops and combine them with those obtained in (b). While this is relatively simple for this bent, a procedure will be followed in (e) that can be applied to more complicated bents. As shown in (d), a member free on one end and fixed at the other, if offset a certain distance, d, develops a moment at the attached end of $M_1 = \frac{3EIR}{L} = \frac{3EId}{L^2}$, while one fixed at both ends de-

velops a moment $M_2 = \frac{6EIR}{L} = \frac{6EId}{L^2}$. To determine the effects of a horizontal force,

in (e), for equal horizontal offsets at the top of each column (i.e., no change in length of the connecting beam), express the corner moments at the tops of the columns in terms of such offset (for example, assume here a value for Ed of, say, 100 units); distribute the moments and compute the horizontal forces to find F''=6.40 kips; then, as in (f),

the moments and shears for a force F'=2.40 kips will be $\frac{2.40}{6.40}$ of those shown on (e).

Then (b) and (f) are combined for the final moments, as tabulated in (g). For such a symmetrical case, this second distribution could be done mentally by making $H_L = H_R = F'/2 = 1.20$, and $M_A = M_B = 1.20 \times 12.5 = 15.0$, but the full explanation is given for convenience in discussing the next example.

Example II—For a two-legged unsymmetrically framed bent with unsymmetrical loads as shown in (a) in the figure, determine the corner moments M_A , M_B and M_C .

			2
F=3.09k 8/9 2/	3	1/9	2/3 F"= 8.65 K
1/9	1/3		1/3
+80 -64	-10.0	0 +8.89 $M_A = \frac{3EId}{h^2} = \frac{3EI_1d}{24 \times 24}$	0 -90.00
-8.89 -71.11 +42.67	+21.33 + 1.11		+60.0 +30.00
0 +21.33 -35.56	0	$+30.00$ = $\frac{EI_1d}{192}$	+ 4.45 0
-2.37 -18.96 +23.71	+11.85 -3.33		-2.97 -1.48
0 +11.86 -9.48	0	+1 32 Ma= 6E10 6E2110	+ 8.89 +4.44
-1.32 -10.54 +6.32 0 + 3.16 -5.27	+3.16 +0.17	+4.45	+0.66 0
-0.35 -2.81 +3.51	+ 1.76 -0.49	-3.96 = 9EIId	-0.44 -0.22
0 +1.76 -1.41	0	-0.22	-1.98 0
-0.20 -1.56 +0.94	+0.47 +0.03	+0.19 MB=9MA	+1.32 +0.66
0 +0.47 -0.78	0 0	+0.66 If Ed=100 units	+0.09 0
-0.05 -0.42 +0.52 0 +0.26 -0.21	+0.26 -0.07	-0.03 MA=10 Units	-0.30 0
-0.03 -0.23 +0.14	+0.07 0	+0.03 MB=90 units	+0.20 +0.10
-13.21	+38.90 -12.53	55.52.722	
A.M		H _R = 56.63+73.3	= +8.13
H _R =	$\frac{38.90}{2/3.16}$ $H_L = \frac{12.53}{24}$		∞1-90.00
$H_{L} = \frac{13.21}{24}$	=-3.64 =+0.52	Į.	0
-1055			+15.00
=+0.55 C.O.= +38.90	0=+19.45	(d) Translation C	nly
			-0.74
(b) Rotation On	ly		+ 2.22
MA=4.47 MB=20.2	MA= 3.09 x-12.53=-4.47	$M_A = -13.21 - 4.47 = -17$	
MA-44	0.00	11 42890-202=418	
= 3.09	MB=3.09 x-56.63=-20.2	Mc = +19.45-26.2 = - 6	75 0
3.9 /	Mc = 3.09 x-73.37=-26.2	1116 - 111.15 20.2	74 +0.33
Mc=-26.2	MC = 8.65 x - 13.31 = -26.2	HR = - 3.64 + 2.91 = - 0	
HR=2.91	HL = 3.09 x 0.52 = 0.19	11R - 3.64 - 2.41 0	-0.02
- mm	0.00		+0.05
HL=	HR= 3.09 x 8.13 = 2.91	Jointoinea	0
019)		-73.37
0.77			

The stiffness ratios and the fixed end moments in the beam are first determined in (a). Then a moment distribution is made in (b), resulting in corner moments at the tops of the columns of -13.21 and +38.90 kf, respectively. Then the horizontal reactions at the feet of the columns are computed, realizing that the carry-over moment at the foot of the fixed base column will be exactly half the moment at the top of the same column, and, therefore, the horizontal reaction is obtained by dividing the corner moment by two-thirds the height of the column. This gives reactions of 0.55 and 3.64, and since these are not equal to each other, a horizontal force of F=3.09 kips would be required to restore equilibrium, as shown dotted in (b). Again, this means that while the bent would deflect as indicated by the heavy lines in (c), the distribution has assumed the presence of a nonexistent force of F = 3.09 kips, holding the two upper corners directly over the bases of the columns. It becomes necessary to add the effects of a force F' = 3.09 kips in the opposite direction, i.e., determine the corner moments induced by this lateral force and combine them with those obtained in (b). As shown in the preceding example, the moments at the tops of the two columns for the same horizontal offset are in the ratio 1:9 as computed on (d). Assuming an indefinite displacement represented by Ed = 100 units would induce corner moments of 10 and 90 kf, respectively. A distribution gives corner moments at the tops of the columns of -12.53 and -56.63 and at the bottom of the fixed base column of -73.37 with horizontal reactions of +0.52 and +8.13, requiring a horizontal force F''=8.65 kips for equilibrium. Since 3.09 is all that is required, all values are reduced in the proportion 3.09/8.65 and recorded on (e). Finally, at (f), the values are combined for the final moments and horizontal reactions.

Observation—It is not possible to go much further into moment distribution in a handbook. These examples merely illustrate the possibilities of applying the method to framed bents.

STIFFNESS FACTOR

In designing by Moment Distribution (pp. 70-80), the unbalanced moment is "distributed" to the meeting beams in proportion to their stiffness and the degree of restraint of the far end, CK = CI/L. For far end fixed, C = 4; for far end simply supported, C = 3. When the far ends are fixed, C = 4 at all times and may be omitted from the calculation. When a structure is symmetrical both in itself and as to load, work with one-half of the structure, noting that C = 2 if an equal but reversed moment occurs at the far end of the central span, C = 6 if the far end moment is equal and in the same direction.

For computing stiffness, the length of the member is ordinarily taken as the distance from center to center of its supports, rather than the clear span.

The moment of inertia of the cross section can be obtained in one of two

ways:-

(a) For preliminary computations, use the moment of inertia of the gross outline of the concrete section, omitting the reinforcing steel. If the same method is applied to all of the members, this is fairly reasonable. In an ordinary continuous tee-beam, there is a tee section near midspan and a rectangular section at either end, and the point of inflection moves under different loading conditions, so a high degree of precision is not obtainable.

(b) Some designers, feeling that a heavily reinforced beam should have more stiffness than a lightly reinforced one, take the moment of inertia of the transformed area, though there is a question whether this is any more precise, and it can be done only after considerable preliminary designing to establish all

the needed data.

For the "I" of a rectangular section reinforced on both faces, good illustrations are shown in the examples on pages 276, 278, 297, and 335.

For a rectangular section with reinforcement on one side only, "I" would be computed in the same manner except that certain terms would drop out.

The moment of inertia of a tee-beam is difficult to appraise properly, because, being an integral part of a floor system, there is a question of how much slab should be included as a tee, e.g., the same as recommended for stress computations (ACI 318-56 705); also because the portions of the beam undergoing negative bending are rectangular; and also because of the bending up of longi-

MOMENT OF INERTIA OF TEE BEAMS

tudinal bars. The designer may compute "I" either for a homogeneous concrete tee section or for the transformed area. Since the stiffnesses must be available before frame analysis can be started and the design can not be completed without assuming stiffnesses, it is best, in preliminary work and work where extreme precision can not be expected, to take the "I" of a tee-beam as about 2 to 2.25 times that of the stem only. The chart can be used for a slightly more precise value.

BENDING OF BEAM BARS

Often for simplicity in placing, some of the tension bars in beams, slabs or joists are bent or "trussed" from the bottom in the central part of a span to the top at either support, and extended into the adjoining spans. Enough steel must be in the bottom at all points to provide resisting moment at least equal to the positive bending moment at that point under any position of the assumed load, and enough must be in the top to take care of the negative bending moment except that additional loose top bars can be added to make up any deficiency.

In a single span simply supported and uniformly loaded, the moment curve is parabolic (figure below) and bottom steel can be bent up just outside of the moment curve as shown in the figure and computed as follows (L being the span):—

$$x^2: \left(\frac{L}{2}\right)^2 = \frac{A_1}{A_1 + A_2}$$

For determining bend-up point of any percentage of tension bars:

$$x = \frac{L}{2} \sqrt{\frac{A_1}{A_1 + A_2}}$$
If $A_1 = A_2$, $x = 0.353L$

$$y = 0.147L = L/7 \text{ closely.}$$

For interior spans of continuous beams of approximately equal spans and uniformly loaded, ACI 701c establishes coefficients for positive and nega-

tive moment that give moment curves about as shown in the figure below, making it possible to compute bending points about as follows (L being the span):—

$$x^2: (0.353L)^2 = \frac{A_1}{A_1 + A_2}$$

For determining bend-up point of any percentage of tension bars:

$$x = 0.353L\sqrt{\frac{A_1}{A_1 + A_2}}$$
If $A_1 = A_2$, $x = 0.250L$

$$y = 0.250L = L/4$$

For the extension of truss bars into the adjoining span, if $A_3 = A_2$, each being proportional to $\frac{1}{2} \frac{wL^2}{11}$, $u = \frac{L}{2} \sqrt{\frac{3}{11}} = 0.261L$, and v = 0.239L = L/4 closely.*

For end spans of continuous beams uniformly loaded, the moment parabolas are no longer symmetrical. If l is the span and

^{*} ACI 902(a) requires that one-third of the bars be carried beyond this point of inflection 1/16L, d/2, or sufficient to develop by bond one-half the stress in the bars.

BENDING OF BEAM BARS

 $M=wl^2/11$, zero shear is $l\sqrt{2/11}$, or 0.426l from the free end. Then, $x=0.426l\sqrt{\frac{A_1}{A_1+A_2}}$. If $A_1=A_2$, y=0.125l, or l/8 from the free end; and from the continuous end $y \leq l$ (1.0-0.426-0.301)=0.273l, or 3/11l, slightly greater than l/4. Because of the many variables, y is often made l/7 from the free end and l/5 from the continuous end, leaving 0.657l horizontal near the middle of the span.

When A_1 and A_2 are not approximately equal or when the loads or spans vary considerably, values can be computed as shown or scaled from a fairly accurately sketched set of moment curves.

The curves on page 84 are helpful. For a single span, the percentage, $\frac{A_1}{A_1+A_2}$, can be read downwards from the vertex, and the location of the bend-up points in percentages of l are horizontally opposite. For end spans, the upper curve is drawn for $M=+wl^2/11$ and the lower one for $M=-wl^2/10$, so that all the bend-up and bend-down points are read in percentages of l. For continuous spans, the curves are drawn for $M=+wl^2/16$ and $M=-wl^2/11$, respectively.

Example I—If a beam on a single span of 20 ft is reinforced with 6-#8 bars, 3 straight and 3 trussed, how should they be bent up?

Solution—Refer to upper diagram on page 84. Bend the first bar according to the ratio obtained by dividing the number of bent bars between center of span and point in question to the total steel area, in this case 1:6 = 1/6 = 0.167, so y = 0.30l from either end. The second bar is bent up for 2/6 or 0.333, where y = 0.21l. The

third bar is bent for 3/6 or 0.50, where y = 0.147l.

Example II—If the beam in Example I were the end span of a continuous beam, how should the bars be bent up? Assume top steel consists of 3-#8 bars bent up in this span plus 3-#8 bars from adjoining span plus 1-#7 added straight top bar and determine bend-down points.

Solution—Refer to center diagram on page 84, using $wl^2/11$ curve for maximum positive moment. Bend up first bar (1/6 = 0.167) at y = 0.26l and 0.60l from free end; second bar (2/6 = 0.333) at y = 0.17l and 0.68l from free end; and third bar (3/6)

= 0.50) at y = 0.12l and 0.73l from free end.

For bending down bars, use the negative moment curve, $-wl^2/10$, and, since the bars differ in size, proportion by areas instead of number of bars. The #7 top bar is 0.60/5.34 = 0.113Å, and must extend 0.02l = 0.4 ft beyond the face of the support, but at least 17 bar diameters = 1.25 ft for bond, and as much more as required for practical placement. The three truss bars represent, respectively, 1.39/5.34 = 0.26Å, 2.18/5.34 = 0.40Å, and 2.97/5.34 = 0.557Å, and cannot bend down within 0.045l = 0.9 ft, 0.075l = 1.5 ft, and 0.10l = 2.0 ft of the face of the support, each of which can be increased as necessary to produce a 45° slope from the corresponding bend-up point. The bars from the adjacent span represent 3.76/5.34 = 0.705Å, 4.55/5.34 = 0.853Å, and 5.34/5.34 = 1.0Å, and must extend at least 0.13l = 2.6 ft, 0.17l = 3.4 ft, and 0.20l = 4.0 ft into this span, plus at least 12 diameters = 1.0 ft for anchorage. Often all three bars would be carried to l/4 = 5.0 ft, or even a little beyond that to be sure of covering the entire negative zone.

The tables on page 85 are helpful in detailing beat bars in terms of the clear span l.

BENDING OF BEAM BARS

DIAGRAMS FOR DETERMINING BEND POINTS For explanation see pages 82-83.

E₂ = 17 bar diameters (24 if 12" of concrete below bars), straight if possible, bent if necesFor slant, S, and increment, I = 2C, see page 14.

 $E_x=$ not less than $\frac{l''}{16}$ for span $l'\left(\frac{l'}{16}$ for span $l''\right)$, or d, or half-bond length past point of inflection, sometimes obtained by extending half the bars to $\frac{l'}{3}$ or $\frac{l''}{3}$, whichever is greater, and balance to $\frac{l'}{6}\left(\frac{l''}{6}\right)$, and sometimes obtained by extending all bars to $\frac{l'}{4}$ or $\frac{l''}{4}$, or 17 bar diameters past bend-down point (24 bar diameters if 12" of concrete below bars).

A is frequently taken as $\frac{l''}{5}$ for slabs and joists, $\frac{l''}{4}$ for beams, then

B is $\frac{3l''}{5}$ for slabs and joists, $\frac{l''}{2}$ for beams

- 3				PER	CENTAGE	S OF SP	AN LEN	ЭТН			
l' = Span	ľ/16	1/7	0.1 <i>5ľ</i> ′	l'/6 = 0.167l'	l'/5 = 0.20l'	ľ/4	l'/3 = 0.33l'	l' - l'/4 - l'/4 = l'/2	l' - l'/5 - l'/5 = 0.60l'	l' - l'/7 - l'/4 = 0.657 l'	l' - l'/7 - l'/7 = 5/7l'
8'-0	0'-6	1'-2	1'-2	1'-4	1'-7	2'-0	2'-8	4'-0	4'-10	5'-3	5'-9
8'-6	0'-6	1'-3	1'-3	1'-5	1'-9	2'-2	2'-10	4'-3	5'-1	5'-7	6'-1
9'-0	0'-7	1'-4	1'-4	1'-6	1'-10	2'-3	3'-0	4'-6	5'-5	5'-11	6'-5
9'-6	0'-7	1'-5	1'-5	1'-7	1'-11	2'-5	3'-2	4'-9	5'-8	6'-3	6'-9
10'-0	0'-8	1'-5	1'-6	1'-8	2'-0	2'-6	3'-4	5'-0	6'-0	6'-7	7'-2
10'-6	0'-8	1'-6	1'-7	1'-9	2'-1	2'-8	3'-6	5'-3	6'-4	6'-11	7'-6
11'-0	0'-8	1'-7	1'-8	1'-10	2'-2	2'-9	3'-8	5'-6	6'-7	7'-3	7'-10
11'-6	0'-9	1'-8	1'-9	1'-11	2'-4	2'-11	3'-10	5'-9	6'-11	7'-7	8'-3
12'-0	0'-9	1'-9	1'-10	2'-0	2'-5	3'-0	4'-0	6'-0	7'-2	7'-11	8'-7
12'-6	0'-9	1'-10	1'-11	2'-1	2'-6	3'-2	4'-2	6'-3	7'-6	8'-2	8'-11
13'-0	0'-10	1'-11	1'-11	2'-2	2'-7	3'-3	4'-3	6'-6	7'-10	8'-6	9'-3
13'-6	0'-10	1'-11	2'-0	2'-3	2'-8	3'-5	4'-5	6'-9	8'-1	8'-11	9'-8
14'-0	0'-11	2'-0	2'-1	2'-4	2'-10	3'-6	4'-7	7'-0	8'-5	9'-2	10'-0
14'-6	0'-11	2'-1	2'-2	2'-5	2'-11	3'-8	4'-9	7'-3	8'-8	9'-6	10'-4
15'-0	0'-11	2'-2	2'-3	2'-6	3'-0	3'-9	4'-11	7'-6	9'-0	9'-10	10'-9
15'-6 16'-0 16'-6 17'-0 17'-6	1'-0 1'-0 1'-0 1'-1	2'-3 2'-4 2'-4 2'-5 2'-6	2'-4 2'-5 2'-6 2'-7 2'-8	2'-7 2'-8 2'-9 2'-10 2'-11	3'-1 3'-2 3'-4 3'-5 3'-6	3'-11 4'-0 4'-2 4'-3 4'-5	5'-1 5'-3 5'-5 5'-7 5'-9	7'-9 8'-0 8'-3 8'-6 8'-9	9'-4 9'-7 9'-11 10'-2 10'-6	10'-2 10'-6 10'-10 11'-2 11'-6	11'-1 11'-5 11'-10 12'-2 12'-6
18'-0	1'-2	2'-7	2'-8	3'-0	3'-7	4'-6	5'-11	9'-0	10'-10	11'-10	12'-10
18'-6	1'-2	2'-8	2'-9	3'-1	3'-9	4'-8	6'-1	9'-3	11'-1	12'-2	13'-3
19'-0	1'-2	2'-9	2'-10	3'-2	3'-10	4'-9	6'-3	9'-6	11'-5	12'-6	13'-7
19'-6	1'-3	2'-9	2'-11	3'-3	3'-11	4'-11	6'-5	9'-9	11'-8	12'-10	13'-11
20'-0	1'-3	2'-11	3'-0	3'-4	4'-0	5'-0	6'-7	10'-0	12'-0	13'-2	14'-3
21'-0	1'-4	3'-0	3'-2	3'-6	4'-2	5'-3	6'-11	10'-6	12'-7	13'-10	15'-0
22'-0	1'-5	3'-2	3'-4	3'-8	4'-5	5'-6	7'-3	11'-0	13'-2	14'-5	15'-9
23'-0	1'-5	3'-3	3'-5	3'-10	4'-7	5'-9	7'-7	11'-6	13'-10	15'-1	16'-5
24'-0	1'-6	3'-5	3'-7	4'-0	4'-10	6'-0	7'-11	12'-0	14'-5	15'-9	17'-2
25'-0	1'-7	3'-7	3'-9	4'-2	5'-0	6'-3	8'-3	12'-6	15'-0	16'-5	17'-10
26'-0	1'-8	3'-9	3'-11	4'-4	5'-2	6'-6	8'-7	13'-0	15'-7	17'-1	18'-7
27'-0	1'-8	3'-10	4'-1	4'-6	5'-5	6'-9	8'-11	13'-6	16'-2	17'-9	19'-4
28'-0	1'-9	4'-0	4'-2	4'-8	5'-7	7'-0	9'-3	14'-0	16'-10	18'-5	20'-0
29'-0	1'-10	4'-2	4'-4	4'-10	5'-10	7'-3	9'-7	14'-6	17'-5	19'-1	20'-9
30'-0	1'-11	4'-4	4'-6	5'-0	6'-0	7'-6	9'-11	15'-0	18'-0	19'-9	21'-5

This section shows some simple methods for determining the size of stirrups in reinforced concrete beams and also their spacing, either read directly from a slide rule or, if preferred, from tables which are here presented.

Stirrups must be so designed that their total cross-sectional area provides, at $f_v = 20,000$ psi, sufficient strength to resist the force represented by the excess shear prism abcde ((e) in figure, page 87) and carried one beam depth beyond the point where web reinforcement is no longer required (ACI 801d). (Since the vertical component of diagonal tension in any distance s along the beam is proportional to the horizontal shear in that distance, vbs, the volume of the wedge or prism is proportional to, or represents, the vertical component of diagonal tension in one-half of the beam, and the portion of the prism above the $v_c = 90$ psi limit represents the load which must be carried by stirrups.) The stirrup diameter must be small enough to permit complete development in bond within the half-depth of the beam. The size and spacing must be such that when each stirrup is located at the centroid (approximately) of equal partial volumes of the excess shear prism, the spacing does not exceed d/2 (ACI 806),* and in addition stirrups must be carried a distance d beyond the theoretical distance a(ACI 801d).

The problem resolves itself mainly into simple procedures for locating stirrups at the centers of these partial volumes, as illustrated in the following examples:—

Example 1—Stationary Uniform Load; Triangular Shear Diagram. Determine the size and spacing of stirrups in an 8×12 in. (d = 9.7 in.) simple rectangular beam, uniformly loaded, neglecting the effect of bent-up tension bars.

Solution—The figure shows the load diagram (a) which produces an external shear diagram (b), a shear intensity diagram (c), with a longitudinal shear prism as shown in (d). In (e) on page 87 the longitudinal shear prism is divided into two sections, the un-

^{* &}quot;ACI" in this section refers to "Building Code Requirements for Reinforced Concrete (ACI 318-56)."

stippled portion showing the amount of shear taken by 3000 psi concrete at the 90 psi allowed by ACI 305a, leaving the stippled volume to be carried by web reinforcement at a stress of $f_v = 20,000$ psi. The computations on the diagram show how the required stirrup area of $A_v = 0.863$ sq in. was obtained, and is conveniently supplied by four U-shaped stirrups of #3 bar (0.88 sq in.). Although the bent-up longitudinal steel might care for a certain portion of this volume, it is usually best (and economical) to disregard the bent-up bars * because the designer can not foresee just what zone will be covered by the sloping portion of the bars, and, at best, the truss bars would replace only one or two stirrups. For the case of heavy girders, see Example 5.

In the figure above, the excess shear prism (representing that portion of the vertical component of diagonal tension which must be carried by the stirrups) is shown divided into four equal parts, each one representing the load on one stirrup. Theoretically the stirrups should be placed at the centroids of these volumes. It is entirely within the range of desired precision to consider that the upper set of dimensions (m values) locates these points. The subtractions indicated in the figure give the required spacings. The operation is carried through easily on a slide rule, using scratch paper for subtraction if required. The procedure is as follows:—

SET THE CROSS-HAIR AT THE VALUE OF a=34.8 in. (figure (e) above) ON THE D SCALE.

SET THE VALUE OF N ON THE B SCALE AT THE CROSS-HAIR. The index is now at the value of x_4 on the D scale.

SET THE CROSS-HAIR AT THE VALUE OF $(N - \frac{1}{2})$ ON THE B SCALE. The cross-hair then indicates the value of m_1 on the D scale. The difference between a and m_1 is s_1 , the distance of the first stirrup from the edge of the support.

SET THE CROSS-HAIR AT THE VALUE OF $(N-1\frac{1}{2})$ ON THE B SCALE. The cross-hair then indicates the value of m_2 on the D scale; m_1-m_2 gives the distance between the first two stirrups, s_2 .

CONTINUE THUS TO A SETTING FOR THE CROSS-HAIR ON THE B SCALE OF 1.5. This gives m_3 in the figure, and $m_2 - m_3$ equals s_3 .

FINALLY, MULTIPLY THE VALUE OF x_4 by $\frac{2}{3}$ TO GET m_4 (or, if the strict sequence above is followed, by 0.5 on the B scale; $\sqrt{0.5} = 0.70$). Subtracting $m_3 - m_4$ equals s_4 .

Thus s_1 , s_2 , s_3 and s_4 are 2.2, 5.1, 6.2 and 9.7 in., respectively, or closely enough 2, 5, 6, 9.

^{*} See pages 82-83 for bending of bars.

Since ACI 806 requires a maximum spacing of approximately d/2 (about 4.9 in. in this case), it becomes necessary to add stirrups from the point where the maximum spacing is first encountered for the rest of the distance, resulting in 2, $4\frac{1}{2}$, $4\frac{1}{2}$, $4\frac{1}{2}$, $4\frac{1}{2}$, $4\frac{1}{2}$, requiring a total of six stirrups, plus at least two more stirrups to satisfy ACI 801d. It might be better to use eight (or more) #2 stirrups spaced:—

"B"	8	7.5	6.5	5.5	4.5	3.5	2.5	1.5	0.5
"D"	34.8	33.7	31.4	28.8	26.1	23.0	19.4	15.1	8.7
Spacing	1.	1 2.	3 2.	6 2.	.7 3.	.1 3			$4^{1/2} + 4^{1/2} + 4^{1/2}$

Alternative Solution of Spacing—Similar results can be obtained from the table on page 48. Having determined a=34.8 and N=4, take from the table 0.07a, 0.16a, 0.16a and 0.26a and multiply to obtain 2.4, 5.5, 5.5 and 9, or, say, 2, 5, 6, 9, which is the same as the 2, 5, 6, 9 obtained previously, then add two stirrups as described above to satisfy ACI 801d.

Example 2—Movable Live Loads. If the load and span remain the same as in Example 1 but two-thirds of the total load is live load capable of being removed, design the stirrups.

Solution—The figure above shows that the maximum live shear at any point becomes $V = w_L x^2/2L$; at midspan $V = w_L L/8$, or exactly one-quarter of the live end shear. The external shear diagram is shown in (c) with practically 36 psi at midspan. The inclined surface is taken as a plane, though actually it is slightly concave, the assumption being on the safe side. As before, compute the value of a = 41.8 in. and $A_v = 1.04$ sq in. This area might be made with 5-#3 stirrups if the spacings work out within the maximum allowable (and then include two more spaced at d/2 to satisfy ACI 801d):—

"B"	5		4.5		3.5		2.5	,	1.5	5	0.5
"D"	41.8		39.6		35.0		29.5		22.9	9	13.2
Spacing		2.2		4.6		(5.5) 4		(6.6) 4	4	(9.7)) + 4 4

Example 3—Center-Concentrated Load; Rectangular Shear Prism. Given a center-concentrated load as shown in the figure on page 89, neglecting the dead weight of the beam, compute the excess shear volume, number of stirrups and their spacing.

Solution— A_v is computed on the figure as 2.98 sq in., requiring 14-#3 stirrups. The easiest method of spacing is to divide the 60-in. distance by fourteen stirrups, obtaining a constant spacing of $4\frac{1}{4}$ in., with a half-space at each end. (ACI 801d would not add any stirrups in this case.)

For future use, another method is illustrated, dividing the capacity of a stirrup by the longitudinal shear per running inch of beam. Each stirrup accounts for $0.22 \times 20,000 = 4400$ lb of longitudinal shear. The longitudinal shear amounts to $8 \times 124 = 992$ pli. The spacing becomes 4400/992 = 4.44 in.

Example 4—Uniform-plus-concentrated Load; Trapezoidal Shear Prism. Design stirrups for the combination of concentrated and uniform loads shown in the figure below on an 8 x 12 in. rectangular beam.

Solution—The shear prism is shown and the area and make-up of web reinforcement are computed on the diagram. The problem is to space the ten stirrups at the centers of equal shear prisms. It is possible to work out a formula for doing this, but a cut-and-try solution is quicker and easier to apply. Each stirrup would account for $2\times0.11\times20,000=4400$ lb of longitudinal shear, but since 2.20 sq in. were provided

for 2.05 sq in. required, use $\frac{2.05}{2.20} \times 4400 = 4100$ lb. In an 8 in. wide beam, this is equivalent to 513 lb per inch of thickness of beam stem. At the extreme end, the excess longitudinal shear is 124 psi, so that the first stirrup would be about one-half of $\frac{513}{124}$, or $2\frac{1}{4}$ in. from the support, where the longitudinal shear is $(124 - 2\frac{1}{4} \times 1.28)$,

or 121 psi, requiring stirrups $\frac{513}{121} = 4\frac{1}{4}$ in. c/c. The second stirrup might be $6\frac{3}{4}$ in. from the support, where the shear intensity is $(124 - 6\frac{3}{4} \times 1.28)$, or 115 psi, requiring $\frac{513}{115} = 4\frac{1}{2}$ in. c/c. The third stirrup, at $11\frac{1}{4}$ in. from the support, with a

shear of 109, requires a spacing of $\frac{513}{109} = 4\%$ in. c/c. The probable location, excess longitudinal shear and spacing for all of the stirrups are tabulated below:—

Stirrup Number	1	2	3	4	5	6	7	8	9	10
Dist from Support (in.)	21/4	63/4	111/4	16	211/2	27	33	391/2	47	$55\frac{1}{2}$
Longitudinal Shear (psi)	121	115	109	104	96	89	811/2	$73\frac{1}{2}$	$63\frac{1}{2}$	53
Spacing (in.)	21/4	41/2	43/4	5	51/4	$5\frac{3}{4}$	61/4	7	8	93/4

Since the maximum spacing can not exceed $d/2 = 4\frac{3}{4}$ in. (ACI 806), additional stirrups will be required anyhow, but this serves to illustrate the cut-and-try method. A variation of the above is to compute the spacing at either end and the center of the

trapezoid as $\frac{4100}{8 \times 124} = 4\frac{1}{8}$; $\frac{4100}{8 \times 47} = 11$; $\frac{4100}{8 \times 85\frac{1}{2}} = 6$; then space between by approximation as $2\frac{1}{4}$, $4\frac{1}{2}$, $4\frac{3}{4}$, 5, $5\frac{1}{4}$, $5\frac{3}{4}$, $6\frac{1}{4}$, 7, 8, $9\frac{3}{4}$. (ACI 801d would not add any stirrups in this case.)

Example 5—Girders using Bent-up Bars and Stirrups for Web Reinforcement. Design web reinforcement for a heavy rectangular reinforced concrete girder 14×33 in. (d=29%) in., two layers of steel) carrying 100,000 lb on a span of 16 ft, using truss bars where possible to eliminate stirrups.

Solution—This procedure is practical only on heavy girders, where it is deemed advisable to detail the girder to scale rather than tabulate in a schedule. The figure on

page 90 shows an elevation of the girder, the computation of moment, $R = \frac{M}{bd^2}$, and

tension reinforcement; while (b) shows the shear intensity diagram. In (c), an elevation of the girder is drawn and, from a parabolic moment curve, the points determined at which individual truss bars can be spared and bent up. The zone within which the diagonal bars are to be considered effective, that is, the middle three-quarters of the bent portion (ACI 804a), is indicated. In (d), the shear intensity diagram is divided into a lower portion (90 psi on the concrete) and an upper triangle to be carried by web reinforcement. On this triangle, stirrups are designed and spaced as described in Ex. 1 above. Then, by scale or computation, those stirrups which fall within the zone of effective width of inclined bars are automatically eliminated. A check should be made to see that the effective area of the truss bar is at least equal to that of the eliminated stirrups. The requirement of ACI 801d is pretty well fulfilled by the sloping portion of the bar that bends up nearest to midspan.

See page 48 for table of stirrup spacings.

MINIMUM TOTAL BEAM DEPTH (h) IN INCHES FOR VERTICAL STIRRUPS TO DEVELOP FULL STRESS

 $f'_c = 3000 \text{ psi}$ $f_v = 20,000 \text{ psi}$ u = 300 psi (deformed) 120 psi (plain)

Stirrups With Hooks

Stirrups Without Hooks

f ₆ '	Plain		Deformed		£1	Plain	Deformed			
	#2	#3	#4	#5	− f₀′	#2	#3	#4	#5	
2000	19	15	18	22	2000	33	24	31	37	
2500	17	13	16	19	2500	28	21	26	31	
3000	15	12	14	16	3000	24	18	23	27	
3750	13	11	13	15	3750	21	16	20	24	

PROPERTIES OF PARABOLA

TO DRAW A SYMMETRICAL PARABOLA

Method I

- 1. Given Base B, Height H.
- 2. Construct isosocles triangle, Base B. Height 2H.
- 3. Divide each equal leg into same number of equal parts.
- 4. Connect as shown.
- These connecting lines are tangent to inscribed parabola.

Method II

- 1. Given half-base b, Height H.
- Divide inclosing rectangle with same number of vertical and radiating lines.
- Intersections of similarly numbered verticals and rays are points on the curve.

$$h = \frac{H}{b^2}(b^2 - b_1^2)$$
$$b_1 = b\sqrt{\frac{H - h}{H}}$$

AREAS AND CENTROIDS OF PARABOLIC FIGURES

PARABOLIC SEGMENT

AREA BETWEEN PARABOLIC CURVE AND SECANT

AREA BETWEEN PARABOLIC CURVE AND TANGENT

INTERMEDIATE ORDINATES

$$x = H \sqrt{\frac{a}{b}}$$
$$y = H - x$$

POSITIVE MOMENT CONSISTENT WITH GIVEN NEGATIVE VALUES AT ENDS

$$X = \frac{L}{2} + \frac{M_B - M_A}{wL} + M_{max} = \frac{wL^2}{8} + \frac{M_B - M_A}{2} + \frac{(M_A - M_B)^2}{2wL^2}$$

$$\sigma = \sqrt{\frac{L^2}{4} + \frac{M_B + M_A}{w} + \frac{(M_A - M_B)^2}{w^2L^2}}$$

ABSCISSA FOR GIVEN ORDINATE; RELATION POSITIVE AND NEGATIVE MOMENTS

For Given Positive Moment $k = \sqrt{\frac{2}{\alpha}} - - - M = (\frac{1}{2} - k)wL^2$

For Given Negative Moment $k = \frac{1}{2} - \frac{M}{wl^2} - \alpha = \frac{2}{k^2} - \cdots + M = \frac{wl^2}{\alpha}$

KERN OF REINFORCED CONCRETE COMPRESSION MEMBERS

If the load on a column is slightly off the centroidal axis, the compressive stress on one side is reduced and on the other side increased. With increasing eccentricity, the reduced compression drops to zero and then changes to gradually increasing tension. The kern (or core) of a reinforced concrete compression member delimits the area of the cross section within which a force parallel to the longitudinal axis produces compression all across the column section; a force outside of the kern produces tension on part of the section.

HOMOGENEOUS SECTION

Square (for P applied on axis 1-1 or 2-2):

$$f = \frac{P}{A} \pm \frac{\text{Pec}}{I}$$
; when $f = 0$, $\frac{P}{A} = \frac{\text{Pec}}{I}$ and $e = \frac{I}{cA} = \frac{bd^3}{12\left(\frac{d}{2}\right)bd} = \frac{d}{6}$

hence the "middle-third" rule, that the applied load should fall within the middle third of the axis length to avoid tension.

It can be shown that the shaded area bounded by lines connecting these four points mark the kern within which the point of application of the load must lie if tension is to be avoided.

Rectangle (for P applied on axis x or y):-

$$e_x = \frac{db^3}{12\left(\frac{b}{2}\right)bd} = \frac{b}{6}$$

$$e_{y} = \frac{bd^{3}}{12\left(\frac{d}{2}\right)bd} = \frac{d}{6}$$

It can be shown that the shaded area bounded by lines connecting these four points mark the kern within which the point of application of the load must lie if tension is to be avoided.

Circle:—
$$e = \frac{I}{cA} = \frac{\pi r^4}{4 \cdot r \pi r^2} = \frac{r}{4}$$
, so the kern is a circle of radius $\frac{r}{4}$.

Octagon:—If the octagon is inscribed within a circle of radius R, the kern is 0.226R across the flats.

KERN OF REINFORCED CONCRETE COMPRESSION MEMBERS

REINFORCED CONCRETE SECTIONS

Rectangular Reinforced Tied Concrete Column (equal reinforcement in each of the faces perpendicular to the plane of bending):—

$$e = \frac{I}{cA} = \frac{\frac{bd^3}{12} + npbd\left(\frac{gd}{2}\right)^2}{\left(\frac{d}{2}\right)(bd + npbd)} = \frac{d}{6}\left[\frac{1 + 3npg^2}{1 + np}\right]$$

The kern of a rectangular reinforced column with equal bars in two faces will lie outside that of an unreinforced column if the value in the bracket exceeds unity, i.e., if $(1+3npg^2) > (1+np)$, or $3g^2 > 1$, i.e., $g > \sqrt{\frac{1}{3}}$, or > 0.58.

Round Reinforced Concrete Column (reinforcement considered as a closed ring):—

$$e = \frac{I}{cA} = \frac{\frac{\pi r^4}{4} + np\pi r^2 \left(\frac{g^2 r^2}{2}\right)}{(r)(\pi r^2 + np\pi r^2)} = \frac{r}{4} \left[\frac{1 + 2npg^2}{1 + np}\right]$$

The kern of a reinforced round column will lie outside that of an unreinforced column if the value in the bracket exceeds unity, i.e., if $(1 + 2npg^2) > (1 + np)$, or $2g^2 > 1$, i.e., $g > \sqrt{\frac{1}{2}}g$, or > 0.707.

Square Spirally Reinforced Concrete Column:-

$$e = \frac{I}{cA} = \frac{\frac{b^4}{12} + npb^2 \left(\frac{g^2b^2}{8}\right)}{\frac{b}{2}(b^2 + npb^2)} = \frac{b}{6} \left[\frac{1 + \frac{3npg^2}{2}}{1 + 2np} \right]$$

The kern of a spirally reinforced square column will always lie inside that of an unreinforced concrete column since the value in the bracket is always less than unity.

5 = 1	PR	OPERTIES	OF SECTION	NS	
Section	Area	Axis to Extreme Fiber	Moment of Inertia	Radius of Gyration	Section Modulus
Section	A	x	I	$r = \sqrt{I \div A}$	$S = I \div x$
	sq. in.	in.	in.4	in.	in.³
/x / d	d^2	$\frac{d}{2}$	$\frac{d^4}{12}$	$\frac{d}{\sqrt{12}} = 0.2887d$	$\frac{d^3}{6}$
x d d	d^2	d	$\frac{d^4}{3}$	$\frac{d}{\sqrt{3}} = 0.5773d$	$\frac{d^3}{3}$
/* / / / / / / / / / / / / / / / / / /	d^2	$\frac{d}{\sqrt{2}} = 0.7071d$	$\frac{d^4}{12}$	$\frac{d}{\sqrt{12}} = 0.2887d$	$\frac{d^3}{6\sqrt{2}} = 0.1179d^3$
/	$d^2-d_{1}^2$	$\frac{d}{2}$	$\frac{d^4-d_{1^4}}{12}$	$\sqrt{\frac{d^2 + d_1^2}{12}}$ $\sqrt{\frac{1}{12}} = 0.2887$	$\frac{d^4-d_{1^4}}{6d}$
1 d d d d d d d d d d d d d d d d d d d	$d^2-d_{1}^2$	$\frac{d}{\sqrt{2}} = 0.7071d$	$\frac{d^4-d_1^4}{12}$	$\sqrt{\frac{d^2 + d_1^2}{12}}$ $\sqrt{\frac{1}{12}} = 0.2887$	$\frac{\frac{d^4 - d_1^4}{6d\sqrt{2}}}{\frac{1}{6\sqrt{2}}} = 0.1179$
/ x d	bd	$\frac{d}{2}$	$\frac{bd^3}{12}$	$\frac{d}{\sqrt{12}} = 0.2887d$	$\frac{bd^2}{6}$
x d	bd	d	$\frac{bd^3}{3}$	$\frac{d}{\sqrt{3}} = 0.5773d$	$\frac{bd^2}{3}$
/ b / d	$bd-b_1d_1$	$\frac{d}{2}$	$\frac{bd^3 - b_1d_1{}^3}{12}$	$\sqrt{rac{bd^3-b_1d_1^3}{12(bd-b_1d_1)}}$	$\frac{bd^3 - b_1d_1^3}{6d}$
/ d	$\frac{\pi d^2}{4} = 0.7854d^2$	$\frac{d}{2}$	$\frac{\pi d^4}{64} = 0.0491d^4$	$\frac{d}{4}$	$\frac{\pi d^3}{32} = 0.0982d^3$
/ d, d	$\frac{\pi(d^2 - d_1^2)}{4}$ $\frac{\pi}{4} = 0.7854$	$\frac{d}{2}$	$\frac{\pi(d^4 - d_1^4)}{64}$ $\frac{\pi}{64} = 0.0491$	$rac{\sqrt{d^2+d_1^2}}{4}$	$\frac{\pi(d^4 - d_1^4)}{32d}$ $\frac{\pi}{32} = 0.0982$

DEAD WEIGHTS OF FLOORS, CEILINGS AND ROOFS, IN POUNDS PER SQUARE FOOT

	Weight (psf)
FLOORINGS:—	u .,
Cement finish, per inch of thickness. Cinder concrete fill, per inch of thickness. 3" creosoted wood blocks on ½" mortar base. 2" creosoted wood blocks on ½" mortar base. 3" creosoted wood blocks on ½" mastic bed. 2" creosoted wood blocks on ½" mastic bed. 2" teresoted wood blocks on ½" mastic bed. ½" hardwood floor on sleepers clipped to concrete without fill. 1½" terrazzo floor finish directly on slab. 1½" terrazzo floor finish on 1" mortar bed. 1" terrazzo finish on 2" concrete bed. 34" ceramic or quarry tile on ½" mortar bed. 34" cramic or quarry tile on 1" mortar bed. 34" linoleum or asphalt tile directly on concrete. 34" linoleum or asphalt tile on 1" mortar bed. 34" mastic floor. Hardwood flooring, ½" thick. Subflooring (soft wood), ¾" thick. Gypsum slab, per inch of thickness. Asphalt mastic finish, 1½ in. thick.	$egin{array}{cccccccccccccccccccccccccccccccccccc$
CEILINGS:—	
34" plaster directly on concrete, blocks or tile 34" plaster on metal lath furring 34" gypsum plaster on metal lath and channel suspended ceiling construction Plaster on rock lath and channel ceiling construction. Acoustical fiber tile directly on concrete blocks or tile. Acoustical fiber tile on rock lath and channel ceiling construction. Acoustical fiber tile on suspended wood furring strips.	1
ROOFS:—	
Five-ply felt and gravel (or slag). Three-ply felt and gravel (or slag). Five-ply felt composition roof, no gravel. Three-ply felt composition roof, no gravel. A sphelt strip shingles	3 3
Cement tile. Slate, ¼" thick.	
Slate, ½" thick. Sheathing, ¾" thick, Yellow Pine. Sheathing, ¾" thick, Spruce or Hemlock. Skylight with galvanized iron frame, ¼" wire glass. Gypsum, per inch of thickness. Poured gypsum on steel rails, per inch of thickness. Light-weight fill or insulation, porous glass, vermiculite, etc., per inch of	
Gypsum, per inch of thickness	5
Light-weight fill or insulation, porous glass, vermiculite, etc., per inch of	1409
Light-weight fill or insulation, cinder concrete, per inch of thickness	8 9 to 12
Shingle-type clay tile. Metal deck (20 gauge). Metal deck (18 gauge).	3
Corrugated metal (20 gauge) Flat cement tile, per inch of thickness	1/2

(For weights of concrete joists, see pages 142 to 154.)

Portland cement may be shipped in bulk or in sacks weighing 94 lb per sack, ordinarily considered 1 cu ft (4 sacks = 376 lb are referred to as a barrel).

DEAD WEIGHTS OF WALLS AND PARTITIONS, IN POUNDS PER SQUARE FOOT

	7	Weight (psf)	
	Un- plastered	One Side Plastered	Both Sides Plastered
VALLS:—		7 7 7	
4" brick wall	40	45	50
9" brick wall.	80	85	90
13" brick wall	120	125	130
17" brick wall	160	165	170
21" brick wall.	205	210	215
25" brick wall	245	250	255
4" concrete block	28	33	38
" concrete block	36	41	46
concrete block	51	56	61
concrete block	59	64	69
llow light-weight block (tile or cinder)	19	24	29
llow light-weight block (tile or cinder)	22	27	32
ollow light-weight block (tile or cinder)	33	38	43
hollow light-weight block (tile or cinder)	44	49	54
ick, 4" hollow concrete block backing	68	73	
k, 8" hollow concrete block backing	91	96	
, 12" hollow concrete block backing	119	124	
12 hollow concrete block backing	25	30	35
ta tile	33	38	43
tile	45	50	55
tile	20	30	33
ck	8		
glass, frame and sash	3		
namel on sheet steel			
glass, per inch of thickness	15		_
dboard (corrugated), per 1/4" of thick-	55		
	3	-	_
ork with 4" hollow tile backing	60	65	_
vith 8" hollow tile backing	75	80	
ONS:—	15	00	97
	17	22	27
	18	23	28
	25	30	35
le	31	36	41
le	35	40	45
m block	10	15	20
ım block	13	18	23
n block n block	16	21	26
ı block	17	22	27
ster, or metal studs, lath and 34" plaster	101 2		20
s, or metal studs, lath and 34" plaster	_	_	18
ions	4	4	0
r on gypsum block or clay tile		4	8

Partitions are sometimes arbitrarily allowed for as 12, 15, or 18 psf of floor area, which, at best, is not very precise. It is better to take off and weigh the partitions in a panel or two for any building of importance.

DEAD WEIGHTS OF MASONRY, IN POUNDS PER CUBIC FOOT

		Weight (p
MASONRY:—		
Cinder concrete fill	9	60
Concrete, cinder		100
Concrete slag		150
Concrete stone		144
Concrete reinforced stone		150
Brick masonry soft		110
Brick masonry common		125
Brick masonry, pressed		140
Dry rubble masonry, sandstone, bluestone		110
Dry rubble masonry, limestone, marble		125
Dry rubble masonry, granite, gneiss		130
Mortar rubble masonry, sandstone, bluestone		130
Mortar rubble masonry, limestone, marble		150
Mortar rubble masonry, granite, gneiss		155
Ashlar sandstone, bluestone		140
Ashlar limestone, marble		160
Ashlar granite, gneiss		165

BEARING CAPACITIES OF SOILS (Boston Building Code)

		Allowable Bearing Value
Class	Material	(Tons Per Sq Ft)
1	Massive bedrock without laminations, such as granite, diorite and other granite rocks; and also gneiss, traprock, folsite and thoroughly cemented conglomerates.	
	such as the Roxbury Puddingstone, all in sound condition (sound condition allows some cracks).	100 *
2	Laminated rocks, such as slate and schist, in sound	l
_	condition (some cracks allowed).	35
3	Shale in sound condition (some cracks allowed).	10
4	Residual deposits of shattered or broken bedrock of	f
	any kind except shale.	10
5	Hardpan.	10
6	Gravel, sand-gravel mixtures, compact.	5
7	Gravel, sand-gravel mixtures, loose; sand, coarse, com-	•
	pact.	4
8	Sand, coarse, loose; sand, fine, compact.	3
9	Sand, fine, loose.	1
10	Hard clay.	6
11	Medium clay.	4
12	Soft clay.	1
13	Rock flour or any deposit of unusual character not provided for herein.	(Values to be fixed by the Commis- sioner)

BEARING VALUES OF MASONRY WALLS

	Allowable Bearing
3000 psi concrete *	(psi) 750
2000 psi concrete *	500
1500 psi concrete *	375
Hard-burned common brick in cement mortar.	200
Soft common brick in cement mortar	150
Hard-burned common brick in lime mortar	150
Soft common brick in lime mortar.	120
Load-bearing back-up tile (cells vertical) †	150
Concrete blocks I in cement mortar	150
Cinder blocks ‡ in cement mortar	120
Stone masonry in cement mortar	250

* Values given are for full area loaded and may be increased to a maximum 50% greater if load covers one-third or less of the area; other values interpolated.

† Non-load-bearing tile or tile with cells horizontal are not desirable materials for sup-

porting loads.

Meeting ASTM C90-52; increase 75% if solid units.

STRENGTH OF MATERIALS Building Materials

			V				
Material	Average Ultimate Stress (psi)			Sa	fe Worl Stress (psi)	Modulus of	
	Compression	Ten- sion	Bend- ing	Compression	Bear- ing	Shear- ing	Elasticity (psi)
Masonry, granite				420	600		
Masonry, limestone, bluestone				350	500		•
Masonry, sandstone				280	400		
Masonry, rubble Masonry, brick, com-				140	250		_
mon	10000	200	600				-
Ropes, cast steel hoist-	10000	200	000				
ing		80000					
Ropes, standing, der-							
rick		70000					
Ropes, manila		8000					
Stone, bluestone	12000	1200	2500	1200	1200	200	7,000,000
Stone, granite, gneiss	12000	1200	1600	1200	1200	200	7,000,000
Stone, limestone,							
marble		800	1500	800	800	150	7,000,000
Stone, sandstone	5000	150	1200	500	500	150	3,000,000
Stone, slate	10000	3000	5000	1000	1000	175	14,000,000

BUILDING CODE REQUIREMENTS FOR LIVE LOADS IN POUNDS PER SQUARE FOOT

					Codes	Vega			
Occupancy	Basic Building Code BOCA 1955	Am. Std. Bldg. Code 1955 Nat. Bu- reau Stds.	Nat. Bd. of Fire Under- writers 1955	Inter- nat'l Confer- ence Bldg. Offi- cials 1955	New York 1957	Chi- cago 1956	Phila- delphia	De- troit	Southern Building Code Congress Southern Std. Bldg. Code 1954
Owellings, apartment and tenement houses, ho- tels, club houses, hos- pitals and places of detention:							A.		
Dwellings, private rooms and apartments	40 30	40	40 30	40	40 11	40	40	40	40 43
Public corridors, lobbies and dining rooms	100 29	100	100 29	100	100	100	100	100	100
School buildings: Class rooms and rooms for similar use	60 ²⁷	40	40	40 7	60 ¹²	40	50 ²⁵	50 ²⁵	40
Corridors and public parts of the building	- 100	100	100	100	100	100	100	100	100
Theaters, assembly halls etc. Auditoriums with fixed seats Lobbies, passageways, gymnasiums, grand- stands, stages and au- ditoriums or places of	60	60	60	50	75 ¹³	60	60 ²⁶	60	50
assemblage without fixed seats Stage floor	100 ⁸ 150	100 1 <i>5</i> 0	100 ⁸ 150	100 ⁸ 125	100	100 150	100	100 150	100 ⁸ 150
Office building: Office space Corridors and other	50 ^{2,3}	80	80 80	50 ^{2,3}	50 ¹¹	50 ^{21,3}	60	50 ³	50
public places Workshops, factories and mercantile establishments: Manufacturing—light Manufacturing—heavy Storage—light Storage—heavy Stores—retail Stores—wholesale	125 125 250 75 20 125	125	125 ² 125 ² 250 ²	75 125 125 250 75 100	120 120 ⁴¹ 120 120 ⁴¹ 75 ¹⁵ 75 ¹⁵	100 ⁴¹ 100 ⁴¹ 100 ⁴¹ 100 ⁴¹ 100 ⁴¹	120 ²⁸ 200 ²⁸ 120-150 ²⁸ 200 ²⁸ 100 ²⁸ 100 ²⁸	125 ³ 125 ³ 125 ³ 250 100 ³ 125	150 125 250
Garages: All types of vehicles Passenger cars only	175 ¹⁶ 75 ¹⁶	100	100-200 ⁴	100° 50°	175 ¹⁴ 75 ¹⁷	100 ⁹ 50 ²⁸	100 ⁴ 75	1753	
Libraries Stack rooms in schools Reading rooms All stairs and fire escapes, except in	150	150	150 60	125			100	150 60	100
private residences Roofs (flat) Sidewalks Wind	100 ⁴⁷ 20 ⁴⁹ 250 ⁴ Min 20 ¹⁰	100	100 ⁴⁸ 20 250 ⁴ 15-40 ⁵⁰	100 20 ⁵ 250 12-50	100 40 300 18 0-20 1	100 25 9 20 ²⁴	100 30 150 31 15-25 32	100 3 30 250 20	20 200 ⁴

BUILDING CODE REQUIREMENTS FOR LIVE LOADS IN POUNDS PER SQUARE FOOT

Notes:

- 115 psf up to 60 ft high, 20 psf over 60 ft.
- ² Or 2000 lb on any space 21/2 feet square.
- ⁸ Where partitions are subject to change add 20 psf to all other loads.
- ⁴ Or 8000 lb concentrated.
- ⁵ If area is 200 to 600 sf use 16 psf, over 600 sf, 12 psf.
- ⁷ 60 for library reading rooms and 125 for stackrooms.
- 8 150 for armories.
- 9 Or concentrated rear wheel of loaded truck in any position.
- 10 Increase 0.025 psf for each foot above 100 ft.
- ¹¹ Including corridors.
- 12 For rooms with fixed seats or, by special permission, other small rooms. 120 for library stackrooms.
- 13 60 for churches.
- 14 6000 lb concentrated. Trucking space 100% max. wheel load, 12,000 lb conc. min., 175 psf on floor construction, 120 psf on beams and girders.
- 15 100 for entire first floor.
- ¹⁶ Or 2000 lb concentrated. Trucking space, 150% max. wheel load; 175 psf on floor construction, 120 psf on beams and girders.
- ¹⁷ Or 2000 lb concentrated.
- ¹⁸ Or 12,000 lb concentrated for driveways over sidewalks.
- ¹⁹ 20 psf from top down to 100 ft level, zero below; 30 psf on tanks, stacks and exposed structures.
- ²⁰ 100 psf on floor at grade, upper floors 75 psf.
- 21 Or 2000 lb concentrated on any space $2\frac{1}{2}$ feet square.
- ²² Or 3000 lb concentrated on any space 4 feet square.
- 23 100 on first floor and alternate of 2000 lb on area $2\frac{1}{2}$ feet square.
- ²⁴ 20 for buildings less than 300 ft high; add 0.025 psf per ft above 300 ft.
- ²⁵ Only school class rooms with fixed seats. (Removable seats 80 psf)
- ²⁶ Churches only.
- ²⁷ Fixed seats, 60 psf; removable seats, 100 psf.
- ²⁸ Every floor beam 4000 lb concentrated.
- ²⁹ Corridors in hotels, hospitals and multifamily dwellings (except corridors serving public rooms in hotels), 60 psf; corridors in one and two family dwellings 40 psf.
- 30 On first floor, 40 psf; upper floors, 30 psf.
- ³¹ Interior courts, sidewalks, etc., not accessible to a driveway.
- ³² 15 psf up to 50 ft high, 20 psf from 50 to 200 ft, 25 psf over 200 ft high. Roofs over 30°, 20 psf on windward side, 10 psf on leeward.
- 84 Above first floor including corridors.
- 85 125 for first floor.
- 36 150 for first floor.
- ³⁷ Or 2500 lb concentrated on area 6 inches square with such concentrations spaced alternately 2 ft 4 in. and 4 ft 8 in. in one direction and 5 ft and 10 ft in the other direction.
- 38 Only structures with clear head room of 8 ft 6 in. or less. Or 1500 lb concentrated spaced as in 37.
- ³⁹ 50 for dwellings and apartments under 3 stories.
- ⁴⁰ For buildings less than 500 ft high.
- ⁴¹ The minimum for storage or manufacturing is 120 psf (100 psf, Chicago), but floors must be designed for any heavier loads contemplated and for any concentrations.
- ⁴² Including entire first floor but not including corridors on floors used for offices.
- ⁴³ 30 for one-story, one and two family dwellings.
- 44 10 for portions below 40 ft and 20 for portions above 40 ft.
- 45 150 psf for passenger cars; trucks-150 psf (3 to 10 tons incl. load), 200 psf (over 10 tons incl. load); concentrated load-150 per cent max. wheel load for passenger cars, 125 per cent max. axle load for trucks.
- 46.75 psf for open parking decks.
- ⁴⁷ 40 psf for one and two family dwellings; 300 lb concentrated load at center of any stair tread.
- 48 300 lb on 21/2 ft square at any location.
- ⁴⁹ Not less than 30 psf when subject to snow loads.
- 50 15 psf for building height < 30 ft; increase to 40 psf for building height > 1200 ft.
- 51 10 psf for portions below 30 ft; 40 psf for portions above 400 ft in Southern Inland Regions. Varies from 25 to 50 psf for Southern Coastal Regions.
- ⁵² First floor 100, upper floors 75.

RECOMMENDED LIVE LOADS FOR STORAGE WAREHOUSES

U. S. Department of Commerce, National Bureau of Standards

Material	Weight per Cubic Ft of Space (Ib)	Ht of Pile (ft)	Weight per Sq Ft of Floor (Ib)	Recmd. Live Load (psf)	Material	Weight per Cubic Ft of Space (Ib)	Ht of Pile (ft)	Weight per Sq Ft of Floor (Ib)	Recmd. Live Load (psf)
Building Materials Asbestos	50 45 75 59	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	300 270 450 354 432-630 300 265 300 270 198 102 226 312 216 180 350 288 228 300 167 294	300 to 400	Dry Goods, Cotton, Wool, etc. Burlap, in bales Carpets and rugs Coir Yarn, in bales. Cotton, in bales, American Cotton, in bales, Foreign Cotton bleached goods in cases Cotton Flannel, in cases Cotton Sheeting, in cases Cotton Yarn, in cases Excelsior, compressed Hemp, Italian, compressed Jute, compressed Linen Goods, in cases Linen Towels, in cases Silk and Silk Goods. Sisal, compressed Tow, compressed Wool, in bales, compressed Wool, in bales, not compressed Wool, in bales, not compressed Wool, Worsteds, in	43 30 33 30 40 28 12	668888888888888888888888888888888888888	258 180 264 240 320 224 96 184 200 152 176 240 328 250 240 240 360 168 232	200 to 250
White lead paste, in cans White lead, dry Red lead and Litharge, dry	174 86 132	3½ 4¾ 3¾	408		cases	27	8	216	

RECOMMENDED LIVE LOADS FOR STORAGE WAREHOUSES

U. S. Department of Commerce, National Bureau of Standards

Material	Weight per Cubic Ft of Space (Ib)	Ht of Pile (ft)	Weight per Sq Ft of Floor (lb)	Recmd. Live Load (psf)	Material	Weight per Cubic Ft of Space (Ib)	Ht of Pile (ft)	Weight per Sq Ft of Floor (Ib)	Recmd Live Load (psf)
Groceries, Wines,					Hardware, Etc.				
Liquors, etc.					Automobile Parts	40	8	320	
Beans, in bags	40	8	320		Chain	100	6	600	
Beverages	40	8	320		Cutlery	45	8	360	
Canned Goods, in					Door Checks	45	6	270	
cases	58	6	348		Electrical Goods				
Cereals	45	8	360		and Machinery	40	8	320	
Cocoa	35	8	280		Hinges	64	6	384	
Coffee, Roasted, in					Locks, in cases,				
bags	33	8	264		packed	31	6	186	
Coffee, Green, in					Machinery, Light	20	8	160	
bags	39	8	312		Plumbing, Fixtures	30	8	240	300
Dates, in cases	55	6	330		Plumbing, Supplies	55	6	330	to
Figs, in cases	74	5	370		Sash Fasteners	48	6	288	400
Flour, in barrels	40	5	200	250	Screws	101	6	606	
Fruits, Fresh	35	8	280	to	Shafting steel	125			
Meat and Meat				300	Sheet Tin, in boxes	278	2	556	
Products	45	6	270		Tools, Small, Metal	75	6	450	
Milk, Condensed	50	6	300		Wire Cables, on				
Molasses, in barrels.	48	5	240		reels			425	
Rice, in bags	58	6	348		Wire, Insulated Cop-				
Sal Soda, in barrels.	46	5	230		per in coils	63	5	315	
Salt, in bags	70	5	350		Wire, Galvanized		1		
Soap Powder, in				- 1	iron, in coils	74	41/2	333	
cases	38	8	304		Wire, Magnet, on		1		
Starch, in barrels	25	6	150		spools	75	6	450	
Sugar, in barrels	43	5	215				-		
Sugar, in cases	51	6	306		Miscellaneous				
Tea, in chests	25	8	200		Automobile tires	30	6	180	
Wines and Liquors,					Automobiles, un-		1	ŀ	
in barrels	38	6	228		crated	8		64	
		1			Books (solidly				
¥			1		packed)	65	6	390	
	- 1	1	- 1		Furniture	20			
0			- 1		Glass and China-				
		4			ware, in crates	40	8	320	
					Hides and Leather,			222 3222	
			1		in bales	20	8	160	
					Hides, Buffalo, in				
	1				bundles	37	8	296	
					Leather and Leather				
					goods	40	8	320	
					Paper, Newspaper,				
					and Strawboards	35	6	210	
			1	1	Paper, Writing and				
					Calendared	60	6	360	
				I	Rope, in coils	32	6	192	
		Che.			Rubber, Crude	50	8	400	
					Tobacco, bales	35	8	280	

FIRE RESISTIVE RATINGS OF CONCRETE CONSTRUCTION

The fire rating is the time, in hours, which a given member or construction will withstand the standard fire in accordance with the "Standard Methods of Fire Tests of Building Construction and Materials," ASTM E119. The following conditions determine the end point of the test and the rating is established by the first end point reached.

Bearing walls and floors must support their design load throughout the test and must not allow the passage of flames or hot gasses sufficient to ignite cotton waste held on the surface. An end point is reached when the specimen fails to support its load or when the temperature on the surface away from the fire rises an average of 250°F or 325°F at any one point. In practically all tests of concrete walls or floors the controlling end point has been this temperature rise on the unexposed surface.

The end point for columns, beams and girders is the time at which the member will no longer carry its design load.

20	-	-	n	

Туре	Description	Rating
Reinforced	4½" thick—¾" protection reinforcement—expanded slag aggregate	4 hr.
Concrete Slab	6" thick—1" protection reinforcement—air cooled slag aggregate	4 hr.
	6½" thick—1" protection reinforcement—other aggregates	4 hr.
	$5\frac{1}{2}$ " thick—1" protection reinforcement—other aggregates 6" thick with electrical raceways and junction boxes— $\frac{3}{4}$ " protection rein-	3 hr.
	forcement	3 hr.
	4½" thick—¾" protection reinforcement	2 hr.
	3" thick—¾" protection reinforcement	1 hr.
Reinforced Concrete Joist	3" top slab *—¾" protection reinforcement—ceiling 1" vermiculite-gypsum or perlite-gypsum plaster on metal lath	4 hr.
	2" top slab *—34" protection reinforcement—ceiling 34" vermiculite-	
	gypsum or perlite-gypsum plaster on metal lath	3 hr.
	3" top slab—34" protection reinforcement	1 hr.
	*—Increase slab thickness $2''$ where electrical raceways and junction boxes occur.	
Reinforced	4" lightweight aggregate concrete block with 2" concrete topping—¾"	
Concrete Joists	protection reinforcement	3 hr.
with Concrete	6" clay tile with 2" concrete topping—5%" sand-gypsum plaster	3 hr.
Block or Tile Fillers	4" clay tile with 1 ½" concrete topping—5%" sand-gypsum plaster	2 hr.
	CONCRETE WALLS	
Туре	Description	Rating
Reinforced	6½" thick—1" protection reinforcement	4 hr.
Concrete	5½" "—1" protection reinforcement	3 hr.
Walls	4½" " —¾" protection reinforcement	2 hr.

Note: portland cement stucco or plaster or gypsum plaster may be substituted

" -3/4" protection reinforcement

for an equivalent thickness of concrete.

1 hr.

FIRE RESISTIVE RATINGS OF CONCRETE CONSTRUCTION

HOLLOW CONCRETE MASONRY WALLS

Type	Description		linimum Equivalent Thickness Inches,* for Ratings of					
		4 hr.	3 hr.	2 hr.	1 hr.			
Hollow	Coarse aggregate, expanded slag, or pumice	4.7	4.0	3.2	2.1			
Concrete Masonry	Coarse aggregate, expanded clay or shale Coarse aggregate, limestone, cinders or un-	5.7	4.8	3.8	2.6			
Units	expanded slag	5.9	5.0	4.0	2.7			
	Coarse aggregate, calcareous gravel	6.2	5.3	4.2	2.8			
	Coarse aggregate, siliceous gravel	6.7	5.7	4.5	3.0			

^{*} Equivalent thickness is the average thickness of the solid material in the wall. It may be found by taking the total volume of a wall unit, subtracting the volume of core spaces, dividing this by the area of the face of the unit. Where walls are plastered or faced with brick the thickness of plaster or brick may be included in determining the equivalent thickness.

Where combustible members are framed into the wall, the wall must be of such thickness or be so constructed that the thickness of solid material between the end of each member and the opposite face of the wall, or between members set in from opposite sides, will be not less than 93% of the thickness shown in the table.

COLUMNS, BEAMS, GIRDERS AND TRUSSES

Type	Protection of Reinforcement	Rating
Reinforced Concrete Columns	1½" concrete—coarse aggregate limestone, calcareous gravel, trap rock or blast furnace slag—12" or larger column 2" concrete—coarse aggregate granite, sandstone, or siliceous gravel—16"	4 hr.
	or larger column 1½" concrete—coarse aggregate granite, sandstone or siliceous gravel— 16" or larger column	4 hr. 3 hr.
Reinforced Concrete	1½" concrete	4 hr.
Beams, Girders and Trusses	1" concrete	1 hr.

VOLUME OF CONCRETE IN COLUMNS Round Columns and Caps

Column		Vol Shaft		Volume	of Cap outsi	de of Shaft (cu ft)	
Diam (in.)	Area (sq in.)	Per Vert Ft (cu ft)	6'-0	5′-6	Diameter of 5'-0	Cap = D $4'-6$	4'-0	3'-6
12	113	.79	29.62	22.75	17.02	12.31	8.54	5.61
14	154	1.07	28.88	22.09	16.43	11.79	8.09	5.23
16	201	1.40	28.07	21.35	15.77	11.22	7.60	4.82
18	255	1.77	27.17	20.55	15.06	10.60	7.08	4.38
20	314	2.18	26.20	19.69	14.30	9.95	6.52	3.94
22	380	2.64	25.17	18.77	13.50	9.26	5.95	3.48
24	452	3.14	24.09	17.81	12.66	8.55	5.37	3.02
26	531	3.69	22.95	16.81	11.80	7.82	4.78	2.56
28	616	4.28	21.77	15.78	10.92	7.09	4.19	2.12
30	707	4.91	20.56	14.73	10.02	6.35	3.61	1.70
32	804	5.59	19.32	13.66	9.12	5.62	3.04	1.3
34	908	6.31	18.06	12.58	8.22	4.90	2.51	.95
36	1018	7.07	16.79	11.50	7.33	4.20	2.00	
38	1134	7.88	15.51	10.42	6.46	3.53	1.53	
40	1257	8.73	14.23	9.36	5.61	2.89	1.10	

To obtain the volume of column and cap:—

1. Multiply Dimension "H" in feet by "Volume of Shaft" (Col. 3).

2. From "Dia. of Column" and "Dia. of Cap" find volume of cap.

3. The sum of Items 1 and 2 equal the volume of one column. Formula for Volume of Cap outside of Shaft:-

$$V = \frac{\pi}{1728} \left[1\frac{1}{2}(R^2 - r^2) + \frac{1}{3}(R^3 - r^3) - r^2(R - r) \right]$$

$$V = \text{Volume of Cap in cu ft.} \qquad R = \text{Radius of cap in in.}$$

r = Radius of Shaft in in.

Square Columns

Column Size (in.)	Volume in Cubic Feet Per Vert Ft	Column Size (in.)	Volume in Cubic Feet Per Vert Ft
10 x 10	.70	25 x 25	4.34
11 x 11	.84	26 x 26	4.69
12 x 12	1.00	27×27	5.06
13 x 13	1.17	28 x 28	5.44
14 x 14	1.36	29 x 29	5.84
15 x 15	1.56	30 x 30	6.25
16 x 16	1.78	31 x 31	6.67
17 x 17	2.01	32 x 32	7.11
18 x 18	2.25	33 x 33	7.56
19 x 19	2.51	34×34	8.03
20 x 20	2.78	35 x 35	8.51
21 x 21	3.06	36 x 36	9.00
22 x 22	3.36	37 x 37	9.51
23 x 23	3.67	38 x 38	10.03
24 x 24	4.00	39 x 39	10.56
		40 x 40	11.11

SPECIFICATIONS FOR PLACING BAR SUPPORTS

All reinforcing steel shall be accurately located in the forms, and firmly held in place, before and during the placing of concrete, by means of wire supports adequate to prevent displacement during the course of construction and to keep the steel at a proper distance from the forms.

Bar supports are to be sufficient in number and sufficiently heavy to carry properly the steel they support. The wire sizes and number of supports shall not be less than the following:

ONE WAY SLAB CONSTRUCTION

Bars continuous over more than one panel.

If clear distance between beams is more than 6'-0" use 2 supports.

Bars not continuous.

Slab Supports—End Spacing 1'-0" Max. Maximum Intermediate Spacing 5'-0".

Individual High Chairs—(HC)—spaced not more than 4'-0" centers with not less than #5 support bars. Continuous High Chairs—(CHC)—may be substituted for High Chairs and #5 support bar.

JOIST-BEAM-GIRDER CONSTRUCTION

Beam and Joist Construction

Beam bars #9 and smaller.

Heavy Beam and Girder Construction Beam or Girder with bars larger than #9.

Maximum end spacing 2'-0"—Maximum intermediate spacing 5'-0" for both lower and upper layers.

No supports are to be provided for temperature mesh or bars in concrete joist floors. It is recommended that temperature bars be tied and spaced with #2 bars 4'-2" centers at right angles to temperature bars.

(Some designers support ends of bent bars in joists with #3 bar at each side of and parallel to supporting beam or wall, held above form by individual chairs—(BC) spaced approximately 25" on centers.)

FLAT SLAB CONSTRUCTION

Designates Slab Supports (SB) or (SS).
 Designates #5 Support Bar.
 X—Designates High Chairs—(HC).

Slab Supports—For spans over 24'-0" use 5 slab supports where 4 are shown on diagram.

Continuous High Chairs—CHC—May be substituted for High Chairs and #5 support bars.

Symbol	Bar Support	Top Wire *	Legs *	Description
SB	Slab Bolster	No. 4 Corrugated	34" high— No. 7 Over 34"— No. 5	Legs spaced 5" centers—Corrugation vertical or flat spaced 1" centers—Heights up to 2". Stocked in 34", 1", 1½", 2 heights and 5 and 10 foot lengths
SBR	Slab Bolster with Runners	No. 4 Corrugated	Same as SB	Same as SB with No. 7 Wire Runners
SS	Slab Spacer	No. 5 Smooth	Same as SB	Legs spaced to provide supporting legunder each bar. Minimum leg spacing 4"—Heights up to 2". Fabricated to order.
ВВ	Beam Bolster	No. 7 Smooth	No. 7	All legs spaced 2" centers—Maximum height 3". Stocked in 1", $1\frac{1}{2}$ ", 2" heights, in 5 foot lengths.
нвв	Heavy Beam Bolster	No. 4 Smooth	No. 4	Same as BB except maximum heigh 5".
BBU	Beam Bolster Upper	No. 7 Smooth	No. 7	All legs spaced 2" centers—Maximum height 3". Stocked in 1", 1½", 2" heights, in 5 foot lengths.
HBBU	Heavy Beam Bolster Upper	No. 4 Smooth	No. 4	Same as BBU except maximum height 5". Fabricated to order.
† BS	Beam Spacer	No. 7 Smooth	No. 7	Fabricated to order for desired bar spacing and beam width—Maximum height 3".
† HBS	Heavy Beam Spacer	No. 4 Smooth	No. 4	Same as BS except maximum height 5".
† BSU	Beam Spacer Upper	No. 7 Smooth	No. 7	Fabricated to order for desired based spacing and beam width—Maximum height 3".
† HBSU	Heavy Beam Spacer Upper	No. 4 Smooth	No. 4	Same as BSU except maximum height 5".
JC	Joist Chair	No. 8	No. 8	Made and stocked only in 4, 5, 0 inch widths and $\frac{3}{4}$ ", 1", $\frac{1}{2}$ " heights.
BC	Bar Chair	No. 8	No. 8	Made and stocked only in $\frac{3}{4}$ ", $\frac{1}{2}$ " and $\frac{1}{4}$ " heights.
нс	Individual High Chairs	No. 5 for 2 No. 4 over No. 2 over No. 0 over	4" to 6" 6" to 9"	Stocked in 1/4" increments from 2" to 61/2".
СНС	Continuous High Chairs	No. 2 for 2" to 6" No. 0 for over 6"	Same as HC	All legs 12" centers. Fabricated to order.
CHCU	Continuous High Chairs Upper	Same as CHC	Same as CHC	Same as CHC with No. 5 wire runners.
нснс	Heavy Continuous High Chairs	Same as CHC	Same as CHC	Legs 8" centers. Fabricated to order.

BAR SUPPORTS SPECIFICATIONS AND STANDARD NOMENCLATURE

Wire Specifications—Standard Bright Basic Wire

SLAB BOLSTER

SLAB SPACER

BAR CHAIR

BEAM BOLSTER

SLAB BOLSTER WITH RUNNERS

BEAM BOLSTER UPPER

BEAM SPACER

BEAM SPACER UPPER

HEAVY BEAM SPACERS (HBS & HBSU) SIMILAR

JOIST CHAIR—Three Standard Types Shown

HIGH CHAIR

CONTINUOUS HIGH CHAIR

CONTINUOUS HIGH CHAIR UPPER

HEAVY CONTINUOUS HIGH CHAIR (HCHC). Legs 8"o.c.

Legs can be furnished of galvanized wire or hot dipped galvanized after forming, when required, for small additional charge.

Types BC, HC, CHC, HCHC are supplied with straight legs as shown but can be furnished with upturned legs if so ordered.

Types SB, SS, BB, and BS are supplied with upturned legs as shown but can be had on special order with straight end bearing legs. This type of leg is designated by the suffix "A," i.e., slab bolster with end bearing leg is "SBA."

GENERAL SUGGESTIONS FOR DRAWINGS OF REINFORCED CONCRETE STRUCTURES

The following list of suggestions outlines a number of important items which should be covered on design drawings either by details or notes. Numerical values and sizes given are not intended to represent a standard of practice but merely to illustrate that the designer should specify clearly his individual preference or need.

- 1. All detailing, fabrication and erection of reinforcing bars, unless otherwise noted, must follow the ACI "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315-latest)."
- 2. All concrete not otherwise specified to be stone, gravel or slag concrete to test 3000 psi in standard 6 x 12 in. cylinders at 28 days.
- 3. Not less than $5\frac{1}{2}$ sacks of cement shall be used per cubic yard of concrete regardless of the strength obtained, not over $6\frac{1}{2}$ gallons of water per sack of cement, and not over 4 in. slump.
- 4. Reinforcing bars (except for column verticals when called for as hard grade) are to be intermediate grade, deformed, new billet steel meeting ASTM A15 (latest) *; or rail steel meeting ASTM A16 (latest).*
- 5. All bars (excepting #2 size) are to have deformations meeting ASTM A305 (latest).*
- 6. All bars are to be supported in the forms and spaced with wire bar supports meeting the requirements of the ACI "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315-latest)." †
- 7. All solid slabs ‡ (unless otherwise specified) shall have temperature steel consisting of (designer should state his requirements).
- 8. All slabs of concrete joist construction ‡ (unless otherwise specified) shall have (designer should here state the size and spacing of temperature bars or the gauge and mesh of welded wire fabric that he wants).
- 9. All concrete slabs on the ground ‡ that are not otherwise provided for shall have temperature reinforcement consisting of (designer supply size and spacing of bars or gauge and mesh of welded wire fabric).
- 10. Welded wire fabric must have end laps of one full mesh (tip to tip of longitudinal wires) and edge laps obtained by overlapping longitudinal selvage wires and wiring all laps securely together. Welded wire fabric should extend into supporting beams and walls for anchorage unless an expansion joint is called for.
- 11. Reinforce all walls (unless otherwise specified) with #4 bars @ 12 in. c/c horizontal and vertical. (Designer should cover wall reinforcement with descriptions on the drawings and use this note only for miscellaneous walls not otherwise provided for.)
- 12. Lap all splices 24 bar diameters (12 in. minimum) unless otherwise called for (24 diameters for top bars with 12" of concrete underneath); bend all horizontal wall bars and all wall footing bars 1'-0" around all corners.
- 13. Provide at least two #4 bars in top of wall footing under door and other openings, 4'-0" longer than the opening.

^{*} See pages 398-410.

[†] See pages 107-109.

[‡] Designer should clearly specify any other places to be reinforced with welded wire fabric or temperature bars.

GENERAL SUGGESTIONS FOR DRAWINGS OF REINFORCED CONCRETE STRUCTURES

14. Provide dowels in wall footings equivalent in size and number to vertical steel extending 24 bar dia. into footing and 24 bar dia. into wall. (Designer should check that this can be done.)

15. All areaways (unless otherwise specified) are to be doweled to main building with #4 bars @ 1'-0" c/c, hooked or embedded 24 bar diameters into

wall.

16. Lintels over all openings in interior partitions not otherwise covered are to be of precast concrete with thickness equal to the wall thickness. Depth shall be 8 in. for spans up to 6'-0", reinforced with 1-#4 bar for each 4 in. of wall thickness.

17. Removable steel forms for concrete joist construction shall be at least 16 gauge, smooth, not corrugated, 20 or 30 in. wide, with narrow widths where required and with ends tapered where called for at a standard taper

of 2 in. each side in 3'-0".

18. Unless otherwise shown, form around all openings, vents, etc. with double joists and headers if complete information on location is provided to supplier by the time shop drawings of form layouts are approved.

19. Structural concrete over forms of concrete joist construction is to be a minimum of 2 in. thick, but not less than what is called for in the sched-

ules.

20. Designer should indicate all special framings in concrete joist construction, including double or extra heavy joists under partitions,* distribution ribs, special spacings under batteries of toilets, and so on. Quite a few suggestions appear in the safe load tables on the succeeding pages.

21. Joists up to 8 in. wide parallel and adjacent to walls or beams need no reinforcement, providing they are integral with a bearing of concrete on the beam or wall. If independent of the wall or beam, they should have one full set of joist bars. When integral parallel joists are more than 8 in. in

width, use one full set of joist bars.

22. Submit shop drawings for reinforcing steel and shop drawings for forms in concrete joist construction to the engineer in triplicate and obtain ap-

proval before fabricating.

23. Designer should indicate, either on standard diagrams under the schedules or in notes, the bending of bars, amount of cover above top bars and under bottom bars, amount of lap of bottom bars at interior support, clear distance between outside of concrete and stirrup leg, amount of embedment at walls, cover over column bars, amount of lap at splices, and any other pertinent information.†

24. In masonry bearing walls, no chases, risers, conduits or toothing of masonry shall occur within 1'-6" of center-line of beam bearing or con-

centration.

25. Brick pilasters in backup walls where required for bearing are to be bonded into adjoining masonry.

† Many designers allow a stated tonnage of bars to be used as directed in the field for

special conditions.

^{*} Note that a heavier joist each side of a partition, possibly with thickened concrete over a line of shallower pans, interferes less with vertical stands of piping in partitions than does an extra wide joist directly underneath the partition.

GENERAL SUGGESTIONS FOR DRAWINGS OF REINFORCED CONCRETE STRUCTURES

- 26. All interior exposed corners of concrete columns and beams to have a ³/₄ in, x 45° chamfer.
- 27. When foundation walls span from basement to first floor, both basement floor slab and first floor slab shall be in place before any backfill is placed.
- 28. In two-way solid slabs, place short-span bars in the bottom layer.
- 29. Reinforced concrete beams are to have 8 in. bearing on walls, unless otherwise noted.
- 30. Solid slabs are to have at least 4 in. bearing on masonry walls, unless otherwise noted.
- 31. Where concrete beams frame into structural steel and no other detail is shown, structural steel fabricator shall provide at least two ¾ in. round anchor bolts with double nuts through the web or flanges of supporting steelwork, in addition to seat angles.
- 32. Provide two #3 stirrup tie bars in top of all concrete beams that have stirrups and do not have other top steel available for holding stirrups.
- 33. All reinforcing bars shall be securely wired together in the forms. Two-way mats of steel shall be tied at alternate intersections both ways; column ties and beam stirrups shall be tied sufficiently to hold them securely in place.

10 STEPS TO A SUCCESSFUL DESIGN

- 1. Study the framework of the building as a whole.
- 2. Prepare alternative freehand sketches, comparing various methods of framing.
- Establish column centers to come in partitions, to clear door and window openings, and to provide economical framing. Spacings of from 14 to 15 feet up to 20 to 25 feet are recommended.
- 4. Take rough preliminary sizes either from this handbook or by that rule of thumb which suggests making beam depth one inch per foot of span and width one-half of that—increasing somewhat for unusually heavy loads, decreasing for unusually light loads.
- Make quantity surveys and cost comparisons of all practicable schemes. This can be done quickly and roughly and still with a fair degree of accuracy.
- Select that compromise which achieves the best balance between low cost of the building and minimum interference with desired facilities.
- 7. Preliminary framing sketches, made freehand on thin paper, can be printed and distributed to architects, mechanical engineers, and others to establish the general program and eliminate unnecessary changes on finished drawings.
- 8. Have a sense of comparative values. A stair header has relatively little effect on the overall cost, but a whole line of spandrel beams on many stories can become a large item.
- In planning the building visualize how forms would be constructed. For economy, keep beams and columns simple, without haunches, brackets, widened ends or offsets.
- 10. Select a beam size suitable for the average load and span, using same breadth-width combination for as many load-span combinations as possible, varying reinforcement only; select steel form depth and use repeatedly from basement to roof regardless of load; use one or two column sizes per floor and use same size for three or four consecutive stories, and then reduce by several inches off one dimension of the column, next time off the other dimension.

(The following suggestions adapted from "A Manual of Standard Practice for Reinforced Concrete Construction," 1957, of the Concrete Reinforcing Steel Institute will repay careful reading.

STANDARD DETAILS OF DESIGN

A few brief suggestions regarding standard practice may assist the designer in giving his clients the most economical and satisfactory structure that can be designed.

It is recognized that absolute uniformity is neither possible nor desirable. It is felt, however, that while completed structures may differ widely from each other, the application of the principle of standardization in methods, and in the design of the individual parts of the various structures will result in economy of time and cost.

No attempt will be made to cover all the items in a building. However, a few basic principles are proposed.

Design. It is recommended that standard methods of design be followed, as given in the "Building Code Requirements for Reinforced Concrete (ACI 318-56)," published by the American Concrete Institute, except where unusual conditions require departure from this practice.

Code of Standard Practice. It is recommended that the designer examine the Code of Standard Practice of the Concrete Reinforcing Steel Institute so as to be familiar with the practices and customs current in the industry. It will rarely be found necessary to vary from the principles incorporated in this Code.

Sizes of Bars and Spirals. It is recommended that the standard sizes of bars and spirals as specified in the Code of Standard Practice, in accordance with Simplified Practice Recommendations of the United States Department of Commerce, be observed. (See page 3.)

This gives the designer a sufficient range of sizes from which to select the steel areas. The number of different sizes used in any one structure should be held to a minimum.

Grade of Steel. When new billet reinforcing steel is specified, it is recommended (except for column verticals) that it be of intermediate grade in accordance with the current specifications of the American Society for Testing Materials, Designation A15. Rail Steel should meet ASTM Designation A16. (See pp. 398-410.)

Length of Bars. It is recommended that as few different lengths as possible be used. This expedites shipment of steel and greatly simplifies storing and handling in the field. Lengths should be given to the nearest inch only, and, where practicable, to the nearest 3 in. Where it is important that the length called for be exact, a note to this effect should appear opposite the item on the bar list.

Beams and Girders. As far as practicable, the spacing, widths and depths of beams and girders should be uniform throughout the structure. Consideration should be given the relative costs of steel, concrete and form work when determining their width and depth.

Flat Slabs. Where flat slab design is used, the dimensions of the column capital and the size of the dropped panel should be unchanged throughout the

STANDARD DETAILS OF DESIGN

building. It is recommended that the diameter of the column capital equal .225l and the length of the dropped panel equal .33l.

Height of Stories. It is recommended that as many stories as possible in a building be of the same height. Where this is not possible, the lower stories should have the greater height.

Columns. Exterior columns should be the same width for the entire height of the structure. The space between columns should be of such size that an opening can be made to accommodate standard sizes of steel window sash.

The cross-sectional area of exterior columns should remain constant for at least two stories. Where the required area may be decreased, the change should be made in thickness only, the outside surface and the width of the column remaining constant, the inside surface only being set back.

Freestanding interior columns may be circular in cross-section. The diameter should be in even inches and changes should be made by intervals of two inches. Interior columns should be as small as is consistent with the structural requirements, and as far as practicable, the diameters of all columns should be constant throughout a single story.

The spacing of columns from center to center should be uniform. Column reinforcement should generally be of as large bars as is consistent with good practice.

Continuous spiral hooping should be used in preference to isolated hoops. Column steel should be spliced by allowing the column bars of the story below to project above the floor slab at least twenty (20) bar diameters for intermediate and hard grade new billet or rail steel deformed bars and forty (40) diameters for plain bars, unless adequate butt connections are provided to resist all stresses.

Footings. Where considerable variations exist in the depths to which different footings must be carried, a pedestal or pier on top of the footing may be used to reach the level at which the columns start. The connection of columns to the footing or pedestal should be made with dowels of the same size and number as the vertical bars in the column above. If footing depth is insufficient to develop the dowels, an additional quantity of smaller dowels should be used to transmit the entire stress in the steel by bond.

The number of different sizes of footings should be reduced to a minimum.

Forms. Building designs must be carried out so as to provide the maximum amount of repetition with the use of the minimum amount of forms. Owing to the constantly increasing cost, and to the decreasing quantity available, the conservation of form lumber requires attention.

It will often be found that steel forms will cost less than lumber when used throughout a season or when leased for each individual structure.

The greater uniformity of work built with steel forms will recommend their use to the average engineer.

Fabrication of Reinforcing Steel. It is recommended that all reinforcing steel be shop fabricated and so specified, as operations can be performed with greater accuracy by the special machinery in the shop.

Based upon "Building Code Requirements for Reinforced Concrete (ACI 318-56)," these tables give the safe carrying capacity (total load less dead weight of slab) in pounds per square foot for solid reinforced concrete slabs (a) with approximately balanced reinforcement (p = 0.0136) and (b) with approximately half that amount $(p = \frac{2}{3}\%)$ for the one set of stresses, viz., $f_s = 20,000$ psi, $f_c = 1350$ psi, and for four conditions of end restraint:—(1) single spans simply supported, (2) end spans free on one end and continuous on the other, (3) interior spans continuous on both ends, and (4) interior spans of capacity approximately equal to that of end spans of equal thickness when l'' = l' and $l'' = 1.2 \ l'$. (See figure on page 125.)

Safe carrying capacities were obtained by computing the least safe total load as determined by shear or bond or flexure, and by deducting the weight of the slab itself to obtain the safe superimposed load. The tabulated capacity includes live load, finishes, ceilings and everything but the dead weight of the structural concrete.

Limitations as to stresses, restraints, number of spans continuous, amount of fireproofing, bending of bars, etc. are given in part on the general data sheets preceding each table or pair of tables, and in part at the head of each table.

Bond and diagonal tension values are based upon deformed bars meeting ASTM A305. Plain round bars and deformed bars not meeting A305 will not give sufficient bond resistance to develop these loads.

In continuous spans, the top steel in the tables is computed for the adjoining span being equal to $1.2\ l'$ to obtain the maximum negative moment. The adjoining span may, by Code, be as small as $0.833\ l'$, in which case the total top steel may be reduced to 70 per cent of the total given in the tables. For intermediate values of adjoining span, it is sufficiently accurate to prorate between these values.

In continuous spans with balanced reinforcement for positive moment, the concrete near midspan is stressed to its maximum value under the Code. Since the negative moment is considerably greater than the positive, the concrete in the bottom at the support would be overstressed unless the bottom bars were extended into the support as shown on the sketches preceding each table to provide reinforcement at the higher compressive stress allowed in the ACI Code (Art. 706b), viz., double the elastic value but not in excess of the allowable tension value. It is important that this detail be followed in scheduling designs from these tables.

ACI 318-56-701(c) establishes moment factors for cases where the unit live load does not exceed three times the unit dead load. If the ratio is greater, the effect of unbalanced panel loads may require more accurate analysis (see pages 66-80). The dead load in such analyses includes not only the weight of the concrete slab (which is here deducted from the total load to obtain the safe superimposed load), but any ceilings, floor finishes, partitions, and similar immovable features. Hence it is not practicable to indicate in these tables the points where the unit live load is exactly equal to three times the unit dead load.

Temperature reinforcement in structural floor and roof slabs is scheduled using deformed bars meeting ASTM A305. If plain bars are used, increase the quantity 25 per cent, which is best done by decreasing the spacing to 80 per cent of that given.

Bar supports are to be furnished as per pages 107 to 109.

Since there is frequently a progressive deflection in concrete slabs due to time yield, it is often advisable (although the ACI Code omits this consideration) to limit the span-depth ratio, especially for floor slabs. These tables indicate the point where l'/t=32. The safe carrying capacities are computed for longer spans for use on roofs or where deflection is not a serious item.

For those who may wish to know how the tables were computed or desire to extend them beyond their present range, detailed computations are presented in the following typical examples:—

Example I—Single Span, Approximately Balanced Reinforcement—For the table on page 123, determine the safe carrying capacity on spans,* l', of 10 and 15 feet of a slab whose thickness (t) = 5 in.; reinforcement = #4 bars @ 4 in. c/c; weight of slab = 63 psf; steel percentage = 1.25%.

Unlike direct design, tables are worked in reverse, determining the total capacity of a definite slab for shear, bond and moment, selecting the smallest value and deducting the dead weight.

$$d = 5 - \frac{3}{4} - (\frac{1}{2} \times \frac{1}{2}) = 4 \text{ in.}$$

$$p = \frac{0.20}{4 \times 4} = 0.0125$$

From page 34, for p = 0.0125, take k = 0.390; j = 0.870; $R_c = 229.2$; $R_s = 217.5$. These can also be computed from the formulas on page 23.

Shear—
$$V = v_c b j d = 90 \times 12 \times 0.870 \times 4 = 3758 \text{ lb} = w l'/2$$

When
$$l' = 10'$$
-0", $w = \frac{2 \times 3758}{10} = 751$ psf. Subtracting 63 gives 688 psf. $= 15'$ -0", $w = \frac{2 \times 3758}{15} = 501$ psf. Subtracting 63 gives 438 psf.

Bond—
$$V = u\Sigma ojd = 300 \times 1.571 \times \frac{12}{8} \times 0.870 \times 4 = 2460 \text{ lb} = wl'/2$$

When
$$l' = 10'$$
-0", $w = \frac{2 \times 2460}{10} = 492$ psf. Subtracting 63 gives 429 psf. $= 15'$ -0", $w = \frac{2 \times 2460}{15} = 328$ psf. Subtracting 63 gives 265 psf.

Moment—
$$M = Rbd^2 = 217.5 \times 12 \times 4 \times 4 = 41,760 \text{ lb-in.} = wl'^2 12/8$$

When
$$l' = 10'$$
-0", $w = \frac{8 \times 41,760}{12 \times 10 \times 10} = \frac{278 \text{ psf. Subtracting}}{63 \text{ gives } 215 \text{ psf.}}$

$$= 15'$$
-0", $w = \frac{8 \times 41,760}{12 \times 15 \times 15} = \frac{123 \text{ psf. Subtracting}}{63 \text{ gives } 60 \text{ psf.}}$
As given in the table on page 123.

Temperature Steel— $A_t = 0.002bt = 0.002 \times 12 \times 5 = 0.120 \text{ sq in. per ft width}$ #3 @ 11 in. = 0.120 sq in. per ft width 11 < 5t or 25 in. and < 18 in.

^{*} A question arises on span lengths: moments in continuous beams and shears in all beams are computed on the clear span, while moments in single spans are figured c/c of bearings. In these tables for simplicity l' (page 122) is taken as the c/c span.

Bearing—It is not practicable to tabulate values for bearing on all sorts of wall materials; but, in each case, this should be checked. Safe bearing values are tabulated on page 99. If the wall in this example has a bearing value of 100 psi:—

When l'=10'-0, $V=5\times 278=1390$ lb; min bearing $=\frac{1390}{12\times 100}=1.16$, say 4 in. min l'=15'-0, $V=7.5\times 123=923$ lb; min bearing $=\frac{923}{12\times 100}=0.77$, say 4 in. min

Stiffening—Long runs of slab should have the bearings stiffened by a thickened edge beam with a bar at top and a bar at bottom; also, the corners of a building can be reinforced against curling with three or four bars on the bottom diagonally across each corner and with several bars in the top at right angles to the bottom layer extended well back into the floor.

Example II—End Span, Approximately Balanced Reinforcement—For the table on page 126, determine the safe carrying capacity on spans of 8 and 16 feet of a slab whose thickness, t, = 8 in.; reinforcement = #5 bars straight alternating with #6 trussed bars, in pairs $8\frac{1}{2}$ in. c/c; weight of slab = 100 psf; steel percentage = 1.28%, and with at least two additional spans l'' < 1.2 l' > 0.833 l'.

From page 34, for p = 0.0128, take k = 0.394; j = 0.869; $R_c = 230.9$; $R_s = 222.3$. These can also be computed from the formulas on page 23.

on page 23. $d = 8 - \frac{3}{4} - 0.34 \text{ Av.} = 6.91 \text{ in.}$ $p = \frac{(0.31 + 0.44)}{6.91 \times 8\frac{1}{2}} = 0.0128$

Shear, Continuous End— $V = v_c b j d = 90 \times 12 \times 0.869 \times 6.91 = 6490 \, \text{lb} = 1.15 \, w l'/2^*$

When
$$l' = 8' - 0''$$
, $w = \frac{6490 \times 2}{1.15 \times 8} = 1410$ psf. Subtracting 100 gives 1310 psf.
$$= 16' - 0'', w = \frac{6490 \times 2}{1.15 \times 16} = 705 \text{ psf.}$$
 Subtracting 100 gives 605 psf.

- Shear, Free End—Since the shear capacity is the same at the free end and the external shear is stated in the Code as wl'/2, the continuous end is the determining condition.
- Bond, Continuous End— $V = u\Sigma ojd = 300 \times 1.963 \times \frac{12}{8.5} \times 0.869 \times 6.91 = 5000 \text{ lb} = 0.70 \times 1.15 \text{ wl}'/2 \dagger$

When l' = 8'-0'', $w = \frac{5000 \times 2}{0.70 \times 1.15 \times 8} = 1550 \text{ psf.}$ Subtracting 100 gives 1450 psf.

= 16'-0", $w = \frac{5000 \times 2}{0.70 \times 1.15 \times 16}$ = 775 psf. Subtracting 100 gives 675 psf.

* The factor 1.15 represents the increase in the shear at the continuous end above that of a symmetrical span (ACI 701c).

† The factor 0.70 represents the percentage of the external end shear that is effective at the point of inflection, which is the maximum shear that needs to be carried by bond on the bottom bars (see page 173). The factor 1.15 represents the increase in the shear at the continuous end above that of a symmetrical span. The product of these two factors can be verified from the middle diagram on page 84 where the $-M = \frac{wl^2}{10}$ curve crosses the axis at 0.80l so $R_L = 0.40wl$ and $R_R = 0.60wl$; zero shear is at 0.40l and at the point of inflection the shear is $\frac{0.40}{0.60}$ 0.60wl = 0.40wl for comparison with 0.70 × 1.15 × $\frac{wl}{2} = 0.403wl$ as used in the computation.

Bond, Free End—
$$V = u\Sigma o j d = 300 \times 1.963 \times \frac{12}{8.5} \times 0.869 \times 6.91 = 5000 \text{ lb} = w l'/2$$

When $l' = 8'$ -0", $w = \frac{5000 \times 2}{8} = 1250 \text{ psf.}$ Subtracting 100 gives 1150 psf, as given in table on page 126.

=
$$16'$$
-0", $w = \frac{5000 \times 2}{16} = 625$ psf. Subtracting 100 gives 525 psf.

$$\begin{aligned} \textit{Positive Moment} - M = & Rbd^2 = 222.3 \times 12 \times 6.91 \times 6.91 = 127,400 \text{ lb-in.} = wl'^2 12/11 \\ \text{When } l' = 8' - 0'', w = \frac{127,400 \times 11}{12 \times 8 \times 8} = 1820 \text{ psf.} \end{aligned} \text{ Subtracting 100 gives 1720 psf.}$$

=
$$16'$$
-0", $w = \frac{127,400 \times 11}{12 \times 16 \times 16} = 455 \text{ psf.}$ Subtracting 100 gives 355 psf, as

given in table on page 126.

Negative Moment:—At the bottom of the table on page 126, bars are tabulated with this same slab depth for at least two more adjacent interior spans of l'' = l' and for l'' = 1.2l', which is the maximum difference permitted by ACI 318-56.

(a) Check negative moment on a span of 8'-0" for adjacent span l'' = l', reinforced with #5 bottom and #7 truss bars at 12 in. centers for each pair of bars.

Truss bars, span
$$l'$$
Truss bars, span l''
 $\#7 \ @ 12 = 0.60$
 $A_s = 0.91 \ {\rm sq \ in./ft}$

$$P = \frac{A_s}{bd} = \frac{0.91}{12 \times 6.85} = 0.01107;$$
 $R_s = 194.3$ and $j = 0.876$ (page 34)
When $l'' = l' = 8'-0''$, max. capacity = 1250 psf (determined by bond on

When l'' = l' = 8'-0'', max. capacity = 1250 psf (determined by bond on free end); max. $-M = \frac{wl'^212}{10} = 1.2 \times 1250 \times 8 \times 8 = 96,000$ lb-in.;

$$R = \frac{M}{bd^2} = \frac{96,000}{12 \times 6.85 \times 6.85} = 170 < 194.3, \text{ so } f_c < 1350;$$

$$f_s = \frac{M}{A_s j d} = \frac{96,000}{0.91 \times 0.876 \times 6.85} = 17,600 \text{ psi} < 20,000.$$

(b) Check negative moment on a span of 8'-0" for at least two more adjacent spans l''=1.2l'=9.6 ft, with #6 bottom and #8 truss bars at 12 in. centers for each pair of bars.

Truss bars, span
$$l'$$
 #6 @ $8.5 = 0.31$ sq in./ft l' #8 @ $12 = 0.79$ l' #8 @ $12 = 0.79$ l' l' #8 @ $12 = 0.79$ l' l' #8 @ $12 = 0.79$ l' l' #8 @ $12 = 0.31$ sq in./ft l' l' #8 l' #8

(c) Check negative moment on a span of 16 ft for at least two more adjacent spans l''=l'=16.0, with #5 bottom and #7 truss bars at 12 in. centers for each pair of bars. As in (a), p=0.01107, $R_s=194.3$; j=0.876; max. capacity = 455 psf (determined by positive moment); max. $-M=\frac{wl'^212}{10}=1.2\times455\times16\times16=140,000$ lb-in.

$$R = \frac{M}{bd^2} = \frac{140,000}{12 \times 6.85 \times 6.85} = 249 > 194.3, \text{ so } f_c > 1350 \text{ psi and compressive steel}$$
 is required (see page 119). Tensile top steel should be checked for this case, since

$$R > 194.3; A_s = \frac{M}{f_s j d} = \frac{140,000}{20,000 \times 0.876 \times 6.85}$$
 = 1.168 sq in./ft
Truss bars as in (a)
Add top bar for = $\frac{0.91}{0.258}$ sq in./ft

The note in the middle of page 125 recommends 1-#5 top bar at each #6 truss bar, which is #5 @ $8\frac{1}{2}$ = 0.437 sq in./ft.

(d) Check negative moment on a span of 16 ft for at least two more adjacent spans l'' = 1.2l' = 19.2 ft, with #6 bottom and #8 truss bars at 12 in. centers for each pair of bars. As in (b), p = 0.01346, $R_s = 233.2$, k = 0.401; j = 0.866, with max. capacity =

455 psf, max.
$$-M = \frac{w}{10} \left[\frac{l' + 1.2l'}{2} \right]^2 12 = 1.2 \times 455 \times 17.6 \times 17.6 = 169,000 \text{ lb-in.};$$

$$R = \frac{M}{bd^2} = \frac{169,000}{12 \times 6.81 \times 6.81} = 303 > 233.2, \text{ so } f_c > 1350 \text{ psi, and compressive steel}$$
 is needed (see below). The tensile top steel should be checked since $R > 233.2$:—

I (see below). The tensile top steel should be checked since Required
$$A_s = \frac{M}{f_s j d} = \frac{169,000}{20,000 \times 0.876 \times 6.81} = 1.43 \text{ sq in./ft}$$
Truss bar as in (c)

Add top bar for

$$= \frac{1.10}{0.33 \text{ sq in./ft}}$$

The note in the middle of page 125 recommends 1-#5 top bar at each #6 truss bar, which is #5 @ $8\frac{1}{2} = 0.437$ sq in./ft.

Compressive steel is not required at supports on a span of 8'-0" (Neg. Mom. (a) and (b), p. 118) but is required on a span of 16'-0" (Neg. Mom. (c) and (d), p. 118). No great refinement of computation is necessary because either the bottom bars are lapped past each other enough that one set of bottom bars is always available for compression. or both sets of bars are extended through the supports so that two sets of bars are available at the support and extend out only as far as required by the negative moment curve (say 17 bar dia. or l'/15 past support).

First consider case (c) under negative moment, where $A_s = 1.347$ sq in. per ft and one set of bottom (compression) bars provides #5 @ 12 in. (span l'') so $A'_{s} = 0.31$ sq in. per ft.

$$\frac{12x^2}{2} + 5.89 \times 1.06 + 13.47 \times 6.83 = (12x + 5.89 + 13.47)x$$

$$6x^2 + 19.36x = 98.09$$

$$x^2 + 3.227x + (1.614)^2 = 16.35 + 2.60 = 18.95$$

$$x = -1.614 \pm 4.36 = 2.75 \text{ in.}$$

$$C_c = 12 \times 2.75 \times \frac{1350}{2} = 22,280. \quad 22,280 \times 6.12 = 136,400 \text{ lb-in.}$$

$$C_s = 5.89 \times 1350 \times \frac{1.69}{2.75} = 4890. \quad 4,890 \times 5.81 = \underline{28,400} \quad \text{``}$$

Max. $M_R = 164,800$ lb-in. > 140,000 lb-in.

This is well above the 140,000 lb-in. of negative moment computed in (c) and very close to the 169,000 required in (d), while, in this latter case, the bars from l'' are #6 @ 12 in. with a tension area of 1.10 as against 0.91 for (c), so it is hardly necessary to repeat the computations to determine that a simple overlapping splice of the bottom bars will provide sufficient compressive reinforcement for both cases. From the foregoing it can be seen that the amount of compressive steel required increases with the span, and for safety under all possibilities, the distance E_4 on page 125 has been established at 17 bar diameters or l''/15 to provide two sets of compressive bars. The user can always make a more precise determination for any individual case.

Bond on Top Bars

When two or more bars of differing sizes undergo the same unit stress, the bond varies. The simplest procedure is to apportion the total external shear to any one bar size in the ratio that the a_s provided by that size of bar is to the total A_s and to use for Σo the perimeter of that size of bar. The larger bar is the critical one. Thus for the four cases discussed under Negative Moment on page 118:—

(a)
$$V = u \Sigma o j d \frac{A_s}{a_s} = 300 \times 2.749 \frac{12}{12} \times 0.876 \times 6.85 \times \frac{0.91}{0.60} = 7520 \text{ lb} = 1.15 \text{ } w8/2.$$

 $w = 1635 > 1250$

(b)
$$V = 300 \times 3.142 \frac{12}{12} \times 0.866 \times 6.81 \times \frac{1.10}{0.79} = 7750 = 1.15 \, w8/2. \ w = 1658 > 1250.$$

(c)
$$V = 300 \times 2.749 \frac{12}{12} jd \frac{1.347}{0.60} = 11,100 = 1.15 w 16/2$$
. $w = 1206 > 455$.

(d)
$$V = 300 \times 3.142 \frac{12}{12} jd \frac{1.537}{0.79} = 10,830 = 1.15w16/2$$
. $w = 1176 > 455$.

So bond on top bars is not a determining factor in any of these cases.

Temperature Steel
Bearing
Stiffening

Proceed along the same lines as in Example I.

Example III—Interior Span, Approximately Balanced Reinforcement—For the table on page 129, determine the safe carrying capacity on spans of 9 and 18 feet of a slab whose thickness, t, = 7 in.; reinforcement = #6 bottom, #6 truss, #6 top bars, in groups of one each @ $11\frac{1}{2}$ in. c/c; weight of slab = 88 psf; steel percentage = 1.30%; and with at least two additional spans on either end l'' or l''' < 1.2l' > 0.833 l'.

$$d = 7 - \frac{3}{4} - \frac{3}{8} = 5\frac{7}{8} \text{ in.}$$
$$p = \frac{0.44}{5\frac{3}{4} \times 5.88} = 0.0130$$

From the table on page 34:—
$$k = 0.396$$
 $j = 0.868$ $R_s = 225.6$

Shear—
$$V = v_c b j d = 90 \times 12 \times 0.868 \times 5.88 = 5530 \,\text{lb} = w l'/2$$

When
$$l' = 9'$$
-0", $w = \frac{2 \times 5530}{9} = 1230 \text{ psf.}$ Subtracting 88 gives 1142 psf.
$$= 18'$$
-0", $w = \frac{2 \times 5530}{18} = 615 \text{ psf.}$ Subtracting 88 gives 527 psf.

Bond (Positive Bars)

$$V = u\Sigma ojd = 300 \times 2.356 \times \frac{12}{11\frac{1}{2}} \times 0.868 \times 5.88 = 3770 \text{ lb} = 0.70 \text{ wl}'/2 *$$

When $l' = 9'$ -0", $w = \frac{2 \times 3770}{0.70 \times 9} = 1190 \text{ psf.}$ Subtracting 88 gives 1102 psf. As given in the table on page 129.
$$= 18'$$
-0", $w = \frac{2 \times 3770}{0.70 \times 18} = 598 \text{ psf.}$ Subtracting 88 gives 510 psf.

Positive Moment

$$M = R_s b d^2 = 225.6 \times 12 \times (5.88)^2 = 93,700 \text{ lb-in.} = \frac{wl'^2 12}{16}$$

^{*}The factor 0.70 represents the percentage of end shear effective at the point of inflection, where the bond on the bottom bars is a maximum, see footnote on page 173.

300 > 295 psf.

SAFE CARRYING CAPACITY OF SOLID SLABS

When
$$l' = 9'$$
-0", $w = \frac{93,700 \times 16}{12 \times 9 \times 9} = 1542 \text{ psf.}$ Subtracting 88 gives 1454 psf.
 $= 18'$ -0", $w = \frac{93,700 \times 16}{12 \times 18 \times 18} = 383 \text{ psf.}$ Subtracting 88 gives 295 psf. As given in the table on page 129.

Negative Moment

(a) When l'' = l':—

$$p = \frac{3 \times 0.44 \times 12}{11\frac{1}{2} \times 12 \times 5.88} = 0.0195; \quad R_s = 330.2 \quad (page 34) \quad [R_c = 262.5]$$

$$M_s = R_s b d^2 = 330.2 \times 12 \times (5.88)^2 = 137,000 \text{ lb-in.} = \frac{w l'^2 12}{11} *$$

When
$$l' = 9'$$
-0", $w = \frac{137,000 \times 11}{12 \times 9 \times 9} = 1550 \text{ psf.}$ Subtracting 88 gives $1462 > 1102 \text{ psf.}$
$$= 18'$$
-0", $w = \frac{137,000 \times 11}{12 \times 18 \times 18} = 388 \text{ psf.}$ Subtracting 88 gives $\frac{200}{100} > \frac{205}{100} \text{ psf.}$

But when $R_s = 330.2$, $f_c > 1350$ psi (see the table on page 34), so extend bottom bars for compressive reinforcement (see Example II).

(b) When l'' = 1.2l':—

$$M = 137,000 \text{ lb-in.} = \frac{w(1.1l')^2 12}{11} \text{ (See Example II)}$$

When
$$l' = 9'-0''$$
, $w = \frac{137,000 \times 11}{1.21 \times 9 \times 9 \times 12} = 1282$ psf. Subtracting 88 gives 1194 psf > 1102 psf.

When
$$l' = 18'$$
-0", $w = \frac{137,000 \times 11}{1.21 \times 18 \times 18 \times 12} = \frac{321}{321}$ psf. Subtracting 88 gives 233 < 295 psf.

In those cases where l'' = 1.2l' and where balanced reinforcement is used for positive moment, see page 128 under E_x and E_y and in this case change 1-#6 to 1-#8 top bar.

$$d'/d = \frac{1.125}{5.875} = 0.191$$

Then
$$p = \frac{(2 \times 0.44 + 0.79)}{11^{\frac{1}{4}} \times 5.82} = 0.0249$$
, and from page 45 $R_s = 425 > 330.2$

Using twice the actual compressive steel (ACI 706b):-

$$p' = \frac{2 \times 2 \times 0.44}{11\frac{1}{2} \times 5.82} = 0.0264; \quad R' = 360 \pm < 330.2$$

^{*} Though ACI 318-56 permits the use of $-M = wl^2/12$ for spans of 10 ft or less, for consistency $-wl'^2/11$ was used throughout these tables.

SOLID CONCRETE SLABS—SINGLE SPANS (OR SIMPLE SPANS SIMPLY SUPPORTED)

Applies to the Tables on pages 123 and 124.

 $E_1 = 6$ in. minimum for bottom bars.

 $E_2 = 17$ bar diameters (straight if possible, bent if necessary).

B = ordinarily 4 in, minimum but sufficient in any case to keep the bearing pressure on the wall within the allowable for the material of which the wall is made (see page 99).

x = distance between consecutive bottom bars = distance between consecutive truss bars = distance between pairs of bars.

Alternate bars are trussed as shown. (Sometimes only every fourth bar is trussed on outer end.)

* This embedment theoretically develops the bar on the basis of $L=\frac{f_s d}{4u}=\frac{20,000d}{4\times300}=$

16² d. Recent pull-out tests have indicated little or no stress in bars beyond a 10- to 13-diameter embedment.

SOLID CONCRETE SLABS—SINGLE SPANS (OR SIMPLE SPANS SIMPLY SUPPORTED)

Approx. Balanced Reinforcement

-				received II
ror general	instructions and	notes on the use of	f this table, see page	122. ¥

				****			,	add be	.90	,			and the same of th	
Slab Thickness (in.)	3 31/2	4	41/2	5	51/2	6	61/2	7	71/2	8	81/2	9	91/2	10
Temp. Bars # Spacing (in.) 1		#3 13½	#3 12	#3 11	#4 18	#4 16½	#4 15	#4	#4 13	#4 12½	#5 18	#5 17	#5 16	#5 151/2
Bottom and Truss Bars # Distance "x" (in.)		#4	#4	#4	#5 10	#5 10	#5 9	#5 8	#5 7	#5 7	#6 9	#6	#6 8	#6 8
Steel Percentage 1	.33 1.43	1.33	1.43	1.25	1.40	1.26	1.26	1.30	1.37	1.28	1.32	1.24	1.31	1.24
Weight of Slab (psf) 3	8 44	50	56	63	69	75	81	88	94	100	106	113	119	125
Span				1	Safe	Super	rimpos	ed Lo	ad (ps	f)		-		-
4'-6 3	36 739 48 574 75 457	686 604 539	1011 897 796	1167 1028 920	1291 1131 1011	1268	1769 1554 1401	1932 1732						
6'-0	20 370 79 304	480 411	720 595	832 710	923 835	1025 935	1269 1142	1562 1432	(C) (A) (C) (C)		1894			
7'-0	47 252 21 211 01 178	342 288 244	498 422 360	595 505 431	765 695 597	857 790 682	1059 977 841	1312 1211 1044	1631 1504 1298	1770 1635 1417	1744 1609 1494	1727	1931	
	151	209	310	371	516	590	729	907	1129	1233	1394	1497	1801	191
	70 129	179	268	322 280	449 393	514 451	636 559	793 698	989 873			1366	1644	1753
	18 94 0 81	133	203 178	245 215	346 305	397 351	493 437	617 548	773 689	845 753	996 888	1071	1292	1380 1233
10'-6		100	156	189	270	311	389	489	616	674	796			
11'-0	"	87	137	167	240	277	347	438	553	605	716	770	933	1107 997
11'-6 12'-0		75 65	121	147	191	247	311	393	498	545	646	695	843	902
12'-6		-	94	115	170	197	289	354	449	492	584	629 571	765 696	818 744
13'-0 13'-6			82 72	101	152 136	177 158	225	288 261	369 335	405 368	482 439	519 473	634 579	678 620
14'-0	(Me	ıx. Sp	1	779	122	142	183	236	305	335	401	432	530	568
$\frac{14'-6}{15'-0}$	= 32	for		69	109	127	165	214	278	306	367	395	486	521
	1 1	or Slo	ibs	60	97	114	149	195	253	279	336	362	447	478
15'-6 16'-0					86	102	134	177	231	255	308	332	411	440
16'-6					-	81	121	160	193	233	282	304 279	378	405 373
17'-0 17'-6						72	98 88	132	176 161	195 178	238 218	257 236	321 296	345 318
18'-0 18'-6		77.					79 70	108	147 134	163 149	201 184	217	274 253	294 271
19'-0 19'-6 20'-0							62	88 79 71	122 111 101	136 124 113	169 155 142	183 168 154	233 215 199	251 232 214

SOLID CONCRETE SLABS—SINGLE SPANS (OR SIMPLE SPANS SIMPLY SUPPORTED)

Approx. 2/3% Reinforcement

East managed	!	 se of this table	100

For genera	i instr	Uctions	ana	notes	on the	use o	r this t	able,	see po	ige 12	2.				
Slab Thickness (in.)	3	31/2	4	41/2	5	51/2	6 ,	61/2	7	71/2	8	81/2	9	91/2	10
Temp. Bars Spacing (in.)		#3 15½	#3 13½	#3 12	#3 11	#4 18	#4 16½	#4 15	#4 14	#4 13	#4 12½	#5 18	#5 17	#5 16	#5 15½
Bottom and Truss Bars Distance "x" (in.)		#3 12	#3 11	#4 16	#4 16	#4 12	#4 12	#5 18	#5 16	#5 14	#5 14	#6 18	#6 18	#6 16	#6 16
Steel Percentage	0.667	0.716	0.653	0.714	0.625	0.741	0.667	0.632	0.652	0.687	0.638	0.664	0.622	0.657	0.622
Weight of Slab (psf)	38	44	50	56	63	69	75	81	88	94	100	106	113	119	125
Span					,	Safe S	Superii	npose	d Load	d (psf)			-		
4'-0	207	362	481	497	572	877	983	877	1092	1364	1478	1452	1557	1871	1985
4'-6	162	287	383	436	502	773	865	770			1300	1276	1367	1641	1755
5'-0	124	224	301	386	446	689	772	686		1068			1222		1565
5′-6	96	178	240	347	399	619	695	616	772	966	1045	1024	1097	1326	1405
6'-0	75	142	194	292	337	527	590	559	697	877	951	934	999	1206	1282
6'-6 7'-0	58	115	158	199	278	439 369	492	510 467	637 587	801 738	870 800	850 784	912		1175
7'-6	45 34	75	106	166	193	312	351	430	500	633	684	724	778	1018 941	1081
8'-0		61	87	139	162	266	299	340	429	545	589	673	721	873	935
8'-6		49	71	117	136	228	256	292	370	472	510	611	655	797	848
9'-0		38	58	98	115	196	220	251	320	410	444	533	572	698	743
9'-6	,		47	82	96	168	190	217	278	359	389	468	502	614	654
10'-0			37	69	81	145	164	188	243	315	341	412	442	543	578
10′-6			29	57	67	125	142	163	212	277	300	364	390	481	513
11′-0				47	56	108	123	141	185	244	264	321	345	428	456
11′-6				38	46	93	106	122	164	215	233	285	306	381	407
12'-0				31	37	80	91	106	141	190	206	254	272	340	363
12′-6						68	78	91	123	167	182	225	242	304	325
13'-0						58	66	78	107	148	161	200	215	272	291
13′-6			9			48	56	66	93	130	142	178	191	244	261
14'-0		l	l	i	1	40	47	56	80	114	125	157	170	218	233
14'-6	$\frac{l'}{l} = 3$	Mo	ıx. Sp	an		33	39	47	69	100	109	140	151	195	209
15'-0	- = 3		for or Slo	bs			31	38	59	87	96	123	133	175	187
15'-6				1	1				49	76	83	109	118	156	167
16'-0									41	65	72	96	102	139	149
16'-6										56	62	84	90	124	133
17′-0										47	52	73	79	110	118
17′-6										39	44	63	68	97	104
18′-0											36	54	58	85	92
18′-6											3	45	49	74	80
19'-0												37	40		69
19'-6							120						33	55	60
20′-0														46	50

SOLID CONCRETE SLABS—END SPANS Applies to the Tables on pages 126 and 127.

 $E_1 = 6$ in. minimum for bottom bars.

 $E_2 = 17$ bar diameters* (straight if possible, bent if necessary).

 $E_3 = 6$ in. minimum with $\frac{2}{3}\%$ reinforcement.

 $E_4=$ not less than ${17 \text{ bar diameters} \atop l'/15\dagger}$ with balanced reinforcement.

 E_x = to meet ACI 902 (a) extend at least one-third of top bars l'/3 and the remainder l'/6; if necessary increase extension until bars are anchored 17 dias, past point of max, stress. (Bend-down points.)

Top bar = Truss bars from two sides provide all necessary negative reinforcement over support in these tables bar when l'' = l'. When $l'' = 1.2 \ l'$, add one top bar as follows for each truss bar in the end span:—

Truss Bar—#5, add 1-#4 Top. #6, add 1-#5 Top. #7, add 1-#5 Top.

B = ordinarily 4 in. minimum and sufficient in any case to keep the bearing pressure on the wall within the allowable for the material of which the wall s made (see page 99).

x = distance between consecutive bottom bars = distance between consecutive truss bars = distance between pairs of bars.

A = bottom bar in adjoining span, not shown.

The lines marked l''=l' and l''=1.2 l' at the bottom of the tables give the amount of reinforcing steel required in typical interior (fully-continuous) spans of the same slab thickness and with a span length equal to l' or 1.2 l', respectively, that will provide the same safe carrying capacity as that of the corresponding end span.

* This embedment theoretically develops the bar on the basis of $L = \frac{f_s d}{4u} = \frac{20,000d}{4 \times 300} =$

16\frac{2}{3}. Recent pull-out tests have indicated little or no stress in bars beyond a 10-13-diameter embedment.

† Embedment of bottom bars at interior support is determined by the fact that some of the bottom bars are required for compressive reinforcement. The exact length varies. The maximum is that which will develop the full compression in the bars at the higher unit stress permitted by the ACI Code (706b) and which will at the same time extend the needed distance across the moment curve. The capacity of the slab may be determined by shear, bond or flexure. The recommendation for E_4 will cover the worst condition. The user may at his option work out the needs of any particular problem (see pages 119 and 121).

		SOLI	D CC	NCR	ETE	SLAI	BS—E	ND	SPA	NS			empera bars	ture	
		- 4	ppro	x. Bo	lanc	ed R	einfo	rcen	nent			4	1		
For general instruct	ions c	and not	es on th	ne use (of this	table,	see po	ige 12	25.			-	X		
Slab Thickness (in.)	3	31/2	4	41/2	5	51/2	6	61/2	7	71/2	8	81/2	9	91/2	10 #5
Temp. Bars Spacing (in.)	#3 15	#3 15½	#3	#3 12	#3	18	#4 16½	#4 15	#4	#4 13	#4 12½	#5 18	#5 17	16	151/2
Bottom Bar Truss Bar		#3 #4	#3 #4	#4 #5	#4 #5	#4 #5	#5 #6	#5 #6	#5 #6	#5 #6	#5 #6	#6 #7	#6 #7	#6 #7	#6 #7
Distance "x" (in.)	11/2*	-	8	11	10	-	111/2*	11	10	9	8½* 1.28	11	1.32	1.25	9
Steel Percentage		1.22	1.29	1.34	1.28	1.34	75	1.26	88	94	100	106	113	119	125
Weight of Slab (psf)	38]	44	50	56	63	69	/3	01	00	74	100	100	113	117	125
Span					Safe	Supe	erimpo	sed Lo	oad (p			3 10			
4'-0 4'-6	286 248	422 370	643 570 508	714 629 561	909 802 715		1225 1080 967	1427 1249 1124		dotte three	d line	tion o e, live s slab	e loa	d ex	ceed
5'-0	221	328			645	868	871					1676			
5'-6 6'-0	198 178	295 266	459	504 457	585	791	791	924	1117	1311	1550	1524	1802		
6'-6	161	243	379	419	535	725	725	075.25.27				1399			
7'-0	148	220	349	384	492	668	1 2000000000000000000000000000000000000	780				1292			
7'-6	134	204	323	355	455	617		724				1199			
8'-0	123	188	299	330	423	57.6	575	673	815	91000	1	1044	Tax Common	100	
8'-6 9'-0	104 89	162 140	263 230	306 286	394 369	537 503	536 503	629 589	762 716		1002	979	1166	1241	153
9'-6 10'-0	76 65	121 105	200 176	269 251	347 322	475 441	471 445	554 521	1 200	Contract to			1097 1037		
10'-6		91	155	222	286	394	420	493	598	733	845	826	982	1051	124
11'-0			137	198	255	353	Carl Continue of	468			1	1	0.03.0	The state of the s	118
11'-6			121	176	228	317	1000 1000	443		1	1	1			112
12'-0			107	157	204	285	300000	407	1000000000	2000000		1			107
12'-6				140	183	257	311	369	453	556	646	677	130000		102
13'-0				126	165	233	1	335	1	-	100000		1000000	10000000	1
13'-6				112	148	211	257	304		1		1 000	100000000000000000000000000000000000000		1
14'-0				/	133	191		277	1			1		0000	2000
14'-6	l'		lax. Sp	oan	120	173		253	1	1	1	1		1	
15'-0	t	32 F	for loor Slo	abs	108	158	193	231					10.000 800		74
15'-6						143	176	193		1		10000000		574 530	1
16'-0		om ba					147	177	1	1		-			1
16'-6 17'-0		page 1					134	162	100000000	1		1		2000	55
17'-6		1	1	1	1		122	148	188	238	20000	1000	1000	424	51
18'-0								136	173	220	259	301	365	394	47
18'-6								124			5 5 5	20000	1	367	44
19'-0		1						113	146	187	222	259	316	341	41
19'-6									134	173	206	240	294	1	38
20'-0					1				123	160	191	223	274	296	36
"	REIN	FORCE	MENT	FOR I	NTERI	OR SF	AN C	F EQ	UAL	CAPA	CITY		,		_
Bottom Bar Truss Bar	#3	#3	#3	#4	#4	#4	#4	#4	#4	#4	#5	#5	#6	#6	#6
	#4	#4	#4	#5	#5	#5	#6	#6	#6 11½	#6	#7 12	#7 10½	#8	#8	121/
Distance "x" (in.)			11	14	101/2	-	#5	#5	#6	#6	#6	#6	#5	#5	#5
Bottom Bar Truss Bar Distance "x"(in.)	#3 #4	#3	#3	#3 #5	#4	#5	#7	#7	#8	#8	#8	#8	#8	#8	#8
Truss Bar Distance "x"(in.)	#4		71/2	9		121/2		101/2		121/2		11	10	10	9
S Distance & this		1	1	1		1	hes to		1	1		-	'		-

SOLID CONCRETE SLABS—END SPANS Approx. 3/3% Reinforcement

For general instru	ctions	and no	otes or	n the u	se of	this ta	ble, se	e pag	je 125					4	
Slab Thickness (in.)	3	31/2	4	41/2	5	51/2	6	61/2	7	71/2	8	81/2	9	91/2	10
Temp. Bars	#3	#3	#3	#3	#3	#4	#4	#4	#4	#4	#4	#5	#5	#5	#5
Spacing (in.)	15	151/2	131/2	12	11	18	161/2	15	14	13	121/2	18	17	16	151
Bottom Bar	#3	#3	#3	#4	#4	#4	#5	#5	#5	#5	#5	#6	#6	#6	#6
Truss Bar		#4	#4	#5	#5	#5	#6	#6	#6	#6	#6	#7	#7	#7	#7
Distance "x" (in.)	-	18	16	22	20	17	23	21	19	18	17	22	20,	19	18
Steel Percentage	0.668	0.645	0.640	0.667	0.642	0.671		0.660	0.669	0.651	-	0.643			_
Weight of Slab (psf)	38	44	50	56	63	69	75	81	88	94	100	106	113	119	12
Span						Safe S	ouperin	npose	d Load	(psf)					
											In the	portio	on of t	able d	bov
4'-0	208	224	311	343	442	599	599	734		1036		d line,			
4'-6	180	194	271	299	387	525	524	643	780	1006	ihree	times:	slab w	t(ACI	7010
5'-0	158	170	239	263	342	466	452	572	693	810					
5'-6	140	140	212	234	305	416	414	510	623	727	835	815	972	1091	123
6'-0	103	134	191	210	274	377	374	463	563	659	756	740	871	991	112
6'-6	82	121	172	189	248	342	318	420	513	601	692	674	803	906	102
7'-0	65	108	157	167	226	312	309	384	470	551	635	619	741	832	94
7'-6	52	98	142	156	207	286	284	354	433	507	585	569	682	770	87
		0.000	1 2.00	1000			10000		1 2 2 2	200					
8'-0	41	83	130	143	189	264	262	326	401	471	542	529	632	713	81
8'-6	32	69	111	132	175	246	242	302	372	437	504	492	588	665	75
9'-0		56	93	121	161	228	224	281	343	407	470	458	548	620	70
9'-6		46	79	112	149	212	209	261	323	382	441	428	513	581	66
10'-0		37	66	102	137	196	194	244	303	357	413	400	483	547	62
10'-6			55	88	118	171	183	229	284	336	389	376	451	515	58
			46	75	102	150	169	215	268	316	366	355	428	485	55
			40				1	203	252	298	347	335	405	460	52
				64	88	131	158				1				
12'-0				54	76	115	144	183	232	272	327	316	384	436	49
12'-6				45	65	100	127	162	206	244	286	299	363	424	47
13'-0				38	55	87	112	144	184	218	257	284	343	393	45
13'-6					47	76	98	128	164	195	231	270	328	373	43
14'-0	7/	(Max.	Span	7	66	86	113	147	175	208	244	298	342	38
14'-6	$\frac{l'}{t} =$	= 32	fo		/	57	75	100	131	157	187	220	270	310	35
15'-0	t		Floor	Slabs		- 5/	65	88	116	140	168	199	245	282	32
15'-6					1		56	77	103	125	151	179	222	257	29
16'-0							48	67	91	112	135	162	201	233	26
16'-6								58	81	99	121	146	183	212	24
17′-0								50	71	88	108	131	166	193	22
17'-6								43	62	78	97	118	150	175	20
18'-0									54	68	86	105	135	159	18
18'-6									46	60	76	94	122	144	17
19'-0										52	67	84	110	131	15
19'-6 20'-0										38	58 50	74 65	99 88	118	14
20 -0						1							00	100	1 12
					1				EQUA			1	l "-	l "-	1
Bottom Bar	#3	#3	#3	#3	#4	#4	#4	#4	#4	#4	#5	#5	#5	#5	#:
11033 DUI	#3	#3	#3	#4	#5	#5	#5	#5	#5	#5	#5	#6	#6	#6	#6
Distance X (in.		15	13	17	16	13	18	17	15	14	14	18	16	15	14
Bottom Bar	#3	#3	#3	#4	#4	#4	#5	#5	#5	#5 #6	#5 #6	#6 #7	#6 #7	#6 #7	#6
Truss Bar Distance "x" (in.)	#3	#4 18	#4 15	#5 18	#5 17	#5 15	#6 18	#6	#6 15	14	13	16	15	14	13
Distance x (in.	10	10	13	10	17	1.5	10								

SOLID CONCRETE SLABS—INTERIOR SPANS Applies to the Tables on pages 129 and 130.

 $E_3 = 6$ in. minimum with $\frac{2}{3}\%$ reinforcement. (Page 130)

 E_4 = not less than 17 bar diameters, nor less than l''/15,* with balanced reinforcement. (Page 129)

$$\mathbf{E}_{x} = \mathbf{E}_{y} = \begin{cases} \text{to meet ACI 902 (a) extend at least one-third of the top bars} \\ l'/3 \text{ and remainder at least } l'/6; \text{ if necessary increase extension until bars are anchored 17 dias. past point of max.} \\ \text{stress.} & \text{(Bend-down points)} \end{cases}$$

Extra top bars over support are required in these tables. When l'' or l'''=l', use bars scheduled in table; when l'' or $l'''=1.2\ l'$, increase top bars to sizes given below:—

- x = distance between consecutive bottom bars = distance between consecutive truss bars = distance between pairs of bars.
- 7 = additional top bars, one over each meeting pair of bottom bars, i.e., one for each set of straight and truss bars.
- A = bottom bar in adjoining span, not shown.

^{*} Embedment of bottom bars at interior support is determined by the fact that some of the bottom bars are required for compressive reinforcement. The exact length varies. The maximum is that which will develop the full compression in the bars at the higher unit stress permitted by the ACI Code (20,000 psi) and which will at the same time extend the needed distance across the moment curve. The capacity of the slab may be determined by shear, bond or flexure. The recommendation for E_4 will cover the worst condition. The user may at his option work out the needs of any particular problem (see pages 119 and 121).

SOLID CONCRETE SLABS—INTERIOR SPANS

Approx. Balanced Reinforcement

5 51/2

01/6

For general instructions and notes on the use of this table, see page 128. 41/2

Slab Thickness (in.) 3 31/2

13'-0

13'-6

14'-0

14'-6

15'-0

15'-6

16'-0

16'-6

17'-0

17'-6

18'-0

18'-6

19'-0

19'-6

20'-0

Oldb Tillckiless (II	1.7 3	372	4	472	3	372	0	0 1/2	/	11/2	8	81/2	9	91/2	10
Temp. Ba Spacing (in		#3 15½	#3 13½	#3 12	#3 11	#4 18	#4 16½	#4 15	#4 14	#4 13	#4 12½	#5 18	#5 17	#5 16	#5 15½
Bottom Bo Truss Bo Top Bar "T" Distance "x" (ir	ar #3 * #3	#4 #4 #4	#4 #4 #4	#4 #4 #4 8½†	#5 #5 #5	#5 #5 #5	#5 #5 #5 9½†	#6 #6 #6	#6 #6 #6	#6 #6 #6	#6 #6	#6 #6 #6	#7 #7 #7	#7 #7 #7	#7 #7 #7
Steel Percentag		1.33	1.33	1.33		1.31	1.31		_	1.30	1.28	1.33	1.28	1.30	1.30
Weight of Slab (ps	f) 38	44	50	56	63	69	75	81	88	94	100	106	113		125
Span		-	-	_	5	afe Su	perim	posed	Load	(psf)					
4'-0	608	685	998	1384	1372	1781	1	ı	I	ln th			-6 1-	L	bove
4'-6	528	602	881			1576	1045	1849							
5'-0	472	539	787	1099				1659				ne, liv s slat			
5'-6	425	486	712	989	980	1273	1575	1499	1854						
6'-0	371	442	648	902	893	1163	1437	1369	1692	1914		8			l
6'-6	311	396	594	829	820	1070			1559	1762	1883				
7'-0	263	335	549	765	757	989	1222	1159	1442	1626		1865	1985		
7'-6	224	287	509	710	702	916		1079		1514		1733			
8'-0	192	246	468	649	654	856	1060	1005	1252	1412	1511	1618	1717	1828	1939
8'-6	166	213	408	568	612	801	995	940	1172	1324	100000000000000000000000000000000000000	1517	0.00	No medical	
9'-0	144	185	358	501		752	935		1102	1246		1427			
9'-6	125	162	317	444	541	710	880	-	1039	1175		1346			14
10'-0	109	142	281	394	3 200000	646	810	786	on the same of	1112	1	1273			1
10'-6		124	251	353	447	580	729	715	932	1053	1127	1208	1282	1364	1447
11'-0	1		224	317	403	523	658	708	10 10 100	100000000000000000000000000000000000000	2 8 30000	1148	0.750,000	(101 0 00
11'-6			201	285	363	473	596	674				1093			
12'-0			180	257	329	428	541	624		910		1043			
12'-6					3,000,000	100000000000000000000000000000000000000	-		980000						
12 -0				233	298	389	493	569	707	841	931	997	1059	1127	1196

 955 1013 1079 1145

916 972 1034 1098

993 1054

955 1013

* See note under E_x and E_y on page 128.

on page 128.

Max. Span

for

Floor Slabs

Bottom bars extend through

support as per E_4 in figure

[†] It is desirable to keep these distances in even inches to suit slab bar chairs.

Slab Thickness (in.) 3

19'-0 19'-6 20'-0

SOLID CONCRETE SLABS—INTERIOR SPANS

Approx. 2/3% Reinforcement

61/2

71/2

108 136 163

98 124 149 229 266

212 246

194

179

81/2

91/2

10

For general instructions and notes on the use of this table, see page 128. 41/2

31/2

5 51/2

Temp. Bars Spacing (in.)		#3 15½	#3 13½	#3 12	#3 11	#4 18	#4 16½	#4 15	#4	#4 13	#4 12½	#5 18	#5 17	#5 16	#5 15½
Bottom Bar	#3	#3	#3	#4	#4	#4	#4	#5	#5	#5	#5	#6	#6	#6	#6
Truss Bar		#3	#3	#4	#4	#4	#4	#5	#5	#5	#5	#6	#6	#6	#6
Top Bar "T" *		#4	#4	#5	#5	#5	#5	#6	#6	#6	#6	#7	#7	#7	#7
Distance "x" (in.)		13	11	17	15	13	12	18	16	15	14	18	17	16	15
Steel Percentage	0.668	0.664	0.653	0.666	0.666	0.666	0.666	0.643	0.645	0.646	0.648	0.655	0.656	0.657	0.657
Weight of Slab (psf)	38	44	50	56	63	69	75	81	88	94	100	106	113	119	125
Span						Safe S	uperin	posed	Load	(psf)					
4'-0	313	493	705	692	901	1191	1435	1284	1597	1856	In the	portio	on of t	able	abov
4'-6	273	433	621	609	792	1051							live lo		
5'-0	243	386	554	543	707	936	1135	1011	1262	1466	three	times :	slab w	t (ACI	701c
3-0	240	000	~	0.0								1	1		1
5'-6	217	347	499	488	637	845	1025	911	1147	1326	1535	1504	1717	1951	
6'-0	188	302	438	442	579	768	935	829	1034	1206	1400	1369	1566	1781	
6'-6	154	252	366	404	528	704	855	758	950	1106	1285	1256	1437	1629	185
7'-0	128	211	309	371	487	648	789	699	874	1021	1185	1159	1327	1501	171.
7'-6	106	178	262	342	450	601	731	646	812	946	1100	1075	1229	1396	160
8'-0	89	151	224	310	415	535	672	602	755	881	1025	1004	1149	1301	147
8'-6	74	1129	193	268	360	467	586	563	704	823	960	936	1072	1220	138
9'-0	62	110	167	233	315	409	516	525	660	771	900	879	1007	1142	130
9'-6	52	94	145	203	276	360	455	493	622	727	846	826	947	1076	122
10'-0	43	80	125	178	242	317	402	464	575	675	796	781		1016	116
10'-6		69	109	156	214	282	359	415	504	604	712	738	847	963	110
20.00		07		-1		1	320	370	453	543	640	699	803	914	104
11'-0			95	136	190	251		333	407	489	579	667	762	868	99
11'-6			83	121	168	224	287			1	200000		N 3000	(2) (2) (2)	200
12'-0			72	106	149	200	257	299	367	441	523	604	697	799	90
12'-6				94	136	179	231	269	331	399	475	549	635	728	82
13'-0				82	118	160	208	243	299	362	431	499	578	664	75
13'-6		(A	Aax. S	nan	105	143	187	219	271	329	393	455	528	607	69
14'-0	$\frac{l'}{t} =$	32	for	pun	93	128	169	198	246	299	358	416	483	556	63
14'-6	t	F	loor S	labs		115	152	179	223	272	327	380	443	510	58
15'-0		1	1	1	1	103	137	162	203	248	299	348	406	469	53
15'-6			7				124	147	184	227	274	320	373	432	49
16'-0							112	133	168	207	250	293	343	398	45
16'-6				1			100	120	152	189	230	270	316	367	42
							90	108	1	172	210	248	291	339	38
17′-0					1		70	0.00	1			1		1	36
17'-6								97	126	157	193	228	268	313	36
18'-0								88		144	177	209	247	289	
18'-6									103	131	162	193	228	268	30
19'-0	H	1		1	1				93	119	148	177	210	247	28
10/4	11	1	1	1	1	1	1	1		100	134	143	104	229	26

* See note under E_x and E_y on page 128.

STAIR SLABS—SINGLE SPANS

There are many possible combinations of rise and run, surface finishes and landing arrangements.

Risers and runs vary from 6-on-12 to 8-on-9. Surfaces vary from troweling alundum grits into the finished concrete to adding asphalt tile or linoleum, and on up to $1\frac{1}{2}$ or 2 inches of terrazzo, stone or marble.

Landings may be a part of the floor construction (Type I) or an integral portion of the bottom of the stair (Type II) or built integrally at the top of the flight (Type III). Landing slabs might have their thickness reduced below that of the flight, being at a point where the bending moment is less. This refinement is only occasionally used and must be checked for strength. For Type II, the reinforcing steel is bent around the corner as in the diagram. For Type III, the bars should be bent and lapped around the re-entrant corner as shown, otherwise they would pull out. They are lapped a minimum of 20 bar diameters past each other and anchored in the top part of the slab. Landings are sometimes spanned crosswise of the flight to shorten the span of the stair slab.

STAIR SLABS—SINGLE SPANS

Stair slabs are properly designed as horizontal spans, using the horizontally-projected load per square foot, the horizontal projection of the clear span and the inclined depth from the heel of the step to the soffit of the stair slab. Stairs are usually poured after the main structure, resting in pockets in the supporting beams and doweled to them. While the dowels might develop restraint, it is customary to design stair slabs as single spans without continuity.

Safe carrying capacities were obtained by computing the least safe total load as determined by shear or bond or flexure, and by deducting the weight of the slab itself (including the triangular step) to obtain the safe superimposed load. The tabulated capacity includes live load, finishes, ceilings, balustrades, partitions and everything but the dead weight of the structural concrete. Live loads are usually from 75 to 100 psf and, on main staircases, as much as 125 psf.

Tables are included for stair slabs on spans from 5 to 14 feet (7 to 18 risers), with rise-to-run ratios of 8-to-9 and 7-to-10½, for one set of stresses, viz., $f_s = 20,000$ psi, $f_c = 1350$ psi, and for the one case of single spans, as continuity is ordinarily not a factor in stair design.

For convenience, these tables may be entered in two ways:—(1) the horizontal projection L may be used directly; (2) if only the story height is known, it can be subdivided into a number of equal risers and the number of risers used for entering the table.

Example—For page 134, determine the capacity of a 6-inch stair slab reinforced with #5 bars, 5 in. c/c, on a span of 12'-0" (corresponding to about 16 risers of 8-on-9 steps).

$$p = \frac{A_s \text{ (sq in. per 12 in.)}}{db} = \frac{0.31 \times 12}{5 \times 4.93 \times 12} = 0.0126$$

Solution:-

Resisting Moment: (See page 34), Max. Allowable $R_s = 219$

$$M = Rbd^2 = 219 \times 12 \times \overline{4.93}^2 = w \times \overline{12}^2 \times \frac{12}{8}$$

 $w = 296 \text{ psf (total)}$

Weight of Slab:—
$$6 \times \frac{12}{0} @ 12\frac{1}{2} = 100$$

$$\times \frac{1}{9} \text{ (dead weight)}$$

$$4 \times 12\frac{1}{2} = \frac{50^*}{146} \frac{150}{\text{ psf (dead weight)}}$$

$$\text{ (as given in the table on page 134)}$$

$$4 \times 12\frac{1}{2} = \frac{50^*}{146} \frac{150}{146} \text{ psf (dead weight)}$$

7. The proof of the proof of

Shear—
$$V = bdjv_c = 4.93 \times 12 \times \frac{7}{8} \times 90 = \frac{w \cdot 12}{2}$$

$$w = 776 \text{ psf}$$
 $V = \text{Soider} = 1.062 \times \frac{12}{3} \times \frac{7}{3} \times 4.02 \times \frac{12}{3}$

Bond—
$$V = \Sigma o j du = 1.963 \times \frac{12}{5} \times \frac{7}{8} \times 4.93 \times 300 = \frac{w \cdot 12}{2}$$

 $w = 1016 \text{ psf}$

Temperature Bars

$$A_s = 0.002 \times 6.00 \times 12 = 0.144$$

#3 @ 9 = 0.146

^{*} The series of 8" steps (8 x 9 triangles) is equivalent to a 4" horizontal slab.

RISE AND RUN OF STAIRS

Many rules have been proposed for the proper relation of rise to run, such as, rise + run = 17, rise \times run = 75, and $2 \times$ rise + run = 25; but a somewhat more comfortable stair results from the values in the following table:—

Rise	Run	Rise	Run	Rise	Run
6	125/8	7	103/4	Followi	ing Are
61/8	123/8	71/8	105/8	Extra	Steep
61/4	121/8	71/4	103/8	7 1/8	91/2
63/8	117/8	73/8	101/4	8	91/4
61/2	115/8	71/2	10	81/8	91/8
65/8	111/2	75/8	97/8	81/4	9
63/4	111/4	73/4	95/8	83/8	83/4
67/8	11			81/2	85/8

Stairs are usually limited to not less than 3 rises (because of the danger of tripping on one or two steps) and not more than about 18 rises in one flight between landings. The table below gives the vertical height for any number of rises and can be used for the length of run by taking one less run than the number of rises in the flight:—

TOTAL HEIGHT (OR LENGTH) (FT AND IN.)

Rise or Run						-	1	Number o	of Rises (a	r Run	s)					
(in.)	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
6	1-6	2-0	2-6	3-0	3-6	4-0	4-6	5-0	5-6	6-0	6-6	7-0	7-6	8-0	8-6	9-0
61/4	1-63/4	2-1	2-71/4	3-11/2	3-73/4	4-2	4-81/4	5-21/2	5-83/4	6-3	6-91/4	7-31/2	7-93/4	8-4	8-101/4	9-41/2
61/2	1-71/2	2-2	2-81/2	3-3	3-91/2	4-4	4-101/2	5-5	5-111/2	6-6	7-01/2	7-7	8-11/2	8-8	9-21/2	9-9
63/4	1-81/4	2-3	2-93/4	3-41/2	3-111/4	4-6	5-03/4	5-71/2	6-21/4	6-9	7-33/4	7-101/2	8-51/4	9-0	9-63/4	10-11/2
7	1-9	2-4	2-11	3-6	4-1	4-8	5-3	5-10	6-5	7-0	7-7	8-2	8-9	9-4	9-11	10-6
71/4	1-93/4	2-5	3-01/4	3-71/2	4-23/4	4-10	5-51/4	6-01/2	6-73/4	7-3	7-101/4	8-51/2	9-03/4	9-8	10-31/4	10-101/
71/2	1-101/2	2-6	3-11/2	3-9	4-41/2	5-0	5-71/2	6-3	6-101/2	7-6	8-11/2	8-9	9-41/2	10-0	10-71/2	11-3
73/4	1-111/4	2-7	3-23/4	3-101/2	4-61/4	5-2	5-93/4	6-51/2	7-11/4	7-9	8-43/4	9-01/2	9-81/4	10-4	10-113/4	11-71/2
8	2-0	2-8	3-4	4-0	4-8	5-4	6-0	6-8	7-4	8-0	8-8	9-4	10-0	10-8	11-4	12-0
81/4	2-03/4	2-9	3-51/4	4-11/2	4-93/4	5-6	6-21/4	6-101/2	7-63/4	8-3	8-111/4	9-71/2	10-33/4	11-0	11-81/4	12-41/2
81/2	2-11/2	2-10	3-61/2	4-3	4-111/2	5-8	6-41/2	7-1	7-91/2	8-6	9-21/2	9-11	10-71/2	11-4	12-01/2	12-9
83/4	2-21/4	2-11	3-73/4	4-41/2	5-11/4	5-10	6-63/4	7-31/2	8-01/4	8-9	9-53/4	10-21/2	10-111/4	11-8	12-43/4	13-11/2
9	2-3	3-0	3-9	4-6	5-3	6-0	6-9	7-6	8-3	9-0	9-9	10-6	11-3	12-0	12-9	13-6
91/4	2-33/4	3-1	3-101/4	4-71/2	5-43/4	6-2	6-111/4	7-81/2	8-53/4	9-3	10-01/4	10-91/2	11-63/4	12-4	13-11/4	13-101/
91/2	2-41/2	3-2	3-111/2	4-9	5-61/2	6-4	7-11/2	7-11	8-81/2	9-6	10-31/2	11-1	11-101/2	12-8	13-51/2	14-3
93/4	2-51/4	3-3	4-03/4	4-101/2	5-81/4	6-6	7-33/4	8-11/2	8-111/4	9-9	10-63/4	11-41/2	12-21/4	13-0	13-93/4	14-71/2
10	2-6	3-4	4-2	5-0	5-10	6-8	7-6	8-4	9-2	10-0	10-10	11-8	12-6	13-4	14-2	15-0
101/4	2-63/4	3-5	4-31/4	5-11/2	5-113/4	6-10	7-81/4	8-61/2	9-43/4	10-3	11-11/4	11-111/2	12-93/4	13-8	14-61/4	15-41/2
101/2	2-71/2	3-6	4-41/2	5-3	6-11/2	7-0	7-101/2	8-9	9-71/2	10-6	11-41/2	12-3	13-11/2	14-0	14-101/2	15-9
103/4	2-81/4	3-7	4-53/4	5-41/2	6-31/4	7-2	8-03/4	8-111/2	9-101/4	10-9	11-73/4	12-61/2	13-51/4	14-4	15-23/4	16-11/2
11	2-9	3-8	4-7	5-6	6-5	7-4	8-3	9-2	10-1	11-0	11-11	12-10	13-9	14-8	15-7	16-6
111/4	2-93/4	3-9	4-81/4	5-71/2	6-63/4	7-6	8-51/4	9-41/2	10-33/4	11-3	12-21/4	13-11/2	14-03/4	15-0	15-111/4	16-101/
111/2	2-101/2	3-10	4-91/2	5-9	6-81/2	7-8	8-71/2	9-7	10-61/2	11-6	12-51/2	13-5	14-41/2	15-4	16-31/2	17-3
113/4	2-111/4	3-11	4-103/4	5-101/2	6-101/4	7-10	8-93/4	9-91/2	10-91/4	11-9	12-83/4	13-81/2	14-81/4	15-8	16-73/4	17-71/2
12	3-0	4-0	5-0	6-0	7-0	8-0	9-0	10-0	11-0	12-0	13-0	14-0	15-0	16-0	17-0	18-0

STAIR SLABS—SINGLE SPANS

9 in. Run, 8 in. Rise

For description of use of table, see pages 131 ff.

Slab Thickness (t) (in.)

Approx. Balanced Reinforcement (p = 0.0136) $f_s = 20,000 \text{ psi}$ $f_c = 1350 \text{ psi}$ $v_c = 90 \text{ psi}$ u = 300 psi

Safe superimposed load in pounds per square foot includes weight of any plastered ceiling, finished treads and finished risers. (Weight of all concrete of stair slab and steps has already been deducted.)

41/2

51/2

61/2

31/2

3

	Bars	#3	#3	#4	#4	#4	#5	#5	#5	#5
	Spacing (in.)	4	3	5	4	4	5	5	41/2	4
Spacing of #	3 Temp. Bars (in.)	15	151/2	131/2	12	11	10	9	81/2	8
Weight of Conc	rete (psf hor. proj.)	101	109	117	125	134	142	150	158	167
Approx. No. of Risers *	Span (L) Horizontal			Sc	ife Supe	rimposed	Load (p	osf)		
7	5'-0	215						a		
7	5'-6	161								
8	6'-0	119	236							
8	6'-6	86	185							
9	7'-0	60	144	222						
10	7'-6		112	178						
10	8'-0		85	138	237					
11	8'-6		63	113	196					
12	9'-0			88	161	212				
12	9'-6			67	132	176				
13	10'-6				107	146				
14	10'-6				85	120	207	239		
14	11'-0				66	100	176	205		
15	11'-6					80	149	174		
16	12'-0					61	126	146	206	
16	12'-6						105	125	178	214
17	13'-0						86	104	152	187
18	13'-6						69	85	129	161
18	14'-0							69	109	138

^{*} The rise of stairs may vary from about 6 in. to 8 in. and the run from about 11 in. to 9 in.

STAIR SLABS—SINGLE SPANS

101/2 in. Run, 7 in. Rise

For description of use of table, see pages 131 ff.

Approx. Balanced Reinforcement (p = 0.0136)

 $f_s = 20,000 \text{ psi}$ $f_c = 1350 \text{ psi}$ $v_c = 90 \text{ psi}$ v = 300 psi

Safe superimposed load in pounds per square foot includes weight of any plastered ceiling, finished treads and finished risers. (Weight of all concrete of stair slab and steps has already been deducted.)

Slal	Slab Thickness (t) (in.)			4	41/2	5	51/2	6	61/2	7
	Bars	#3	#3	#4	#4	#4	#5	#5	#5	#5
	Spacing (in.)	4	3	5	4	4	5 .	5	41/2	4
Spacing	of #3 Temp. Bars	15	151/2	131/2	12	11	10	9	81/2	8
Weight of Concr	ete (psf hor. proj.)	91	98	105	112	120	128	135	142	150
Approx. No. of Risers *	Span (L) Horizontal			Sc	ıfe Supe	rimposed	l Load (psf)		Hill
la factoria	d Agrico June 2									
5	5'-0	225		× 1						
6	5'-6	171								
6	6'-0	129	247							
7	6'-6	96	196							
8	7'-0	70	155	234						
8	7'-6	59	123	190						
9	8'-0		96	150	250					
9	8'-6		74	125	209					
10	9'-0		55	100	174	226				
10	9'-6			79	145	190				
11	10'-0			61	120	160				
12	10'-6				98	134	221	254		
12	11'-0				79	114	190	220		
13	11'-6				63	94	163	289		
14	12'-0					75	140	163	222	
14	12'-6					57	119	140	194	231
15	13'-0						100	119	168	204
15	13'-6						83	100	145	178
16	14'-0						68	84	125	155
16	14'-6							69	105	133
17	15'-0	e'x							86	112
18	15'-6									92

^{*} The rise of stairs may vary from about 6 in. to 8 in. and the run from about 11 in. to 9 in.

Concrete joist construction consists of narrow ribs or joists and a top slab of concrete, the whole formed by creating longitudinal void spaces by means of permanent or removable forms of steel or removable forms of wood. Joist widths vary from 4 to 7 or 8 inches. Standard forms for the void spaces are usually 20 in. or 30 in. wide and have a depth of 6, 8, 10, 12 or 14 in. The top slab is usually 2, $2\frac{1}{2}$ or 3 in. thick, but not less than $\frac{1}{12}$ of the clear distance between ribs.

The following tables give the safe superimposed load in pounds per square foot (psf), i.e., the total carrying capacity as determined by the least of various factors such as shear, bond or flexure, with only the dead weight of the concrete deducted. Thus the safe superimposed load includes live load, partition allowance, floor finishes, fills, ceilings and everything but the dead weight of the concrete construction.

Since the tables are rather elaborate, a general outline of what is covered may be helpful. The tables are divided into three sections:—(1) single spans, (2) end spans, and (3) interior spans. Each of these sections has a short explanation, schedule of limitations, sketch of the recommended requirements and an illustrative example. Each section is subdivided into two parts, the first for 20-in. wide forms and the second for 30-in. wide forms. Within each such section, the tables are divided by depth of form, and finally various practicable thicknesses of top slab are given for each form depth.

All tables are based upon the recommendations of the "Building Code Requirements for Reinforced Concrete (ACI 318-56)," and in the case of end spans the positive moment is here taken as $wl'^2/11$, i.e., without restraint at the outer end. Bond and diagonal tension values are based upon deformed bars conforming to ASTM A305. Attention is directed to the fact that plain bars or deformed bars not meeting A305 cannot be used with these tables.

The arrangement of bars and chairs, and the bending, spacing, lapping and embedment of bars are all in accordance with "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)."

The load capacities are accurate for the particular conditions described, but there are so many variables in loads, stiffnesses, continuity and in the quality of materials that the services of a structural engineer are recommended for final designs of important structures.

TEMPERATURE REINFORCEMENT

Temperature reinforcement in the concrete top slab over forms and in a direction normal to the span of the joists shall be of bars or welded wire fabric at least equal in area to the values in the following table and increased where necessary for flexure, giving due consideration to concentrated loads:—

Thickness of Top Slab	Bars	Welded Wire Fabric
2 in. 2½ " 3 "	#2* @ 10 #2* @ 8 \$#2* @ 6½ or #3 @ 14 All tied with #2 @ 4'-2" c/c	6 in. mesh 8 ga. wire 6 " " 6 " " or 4 in. mesh 8 ga. wire 6 in. mesh 5 ga. wire

^{*} Plain round bars.

TAPERED ENDS

Conforming to U. S. Department of Commerce Simplified Practice Recommendation R87-32, tapered end forms are available which increase the effective joist width 2 in. on each side for 20 in. wide forms and $2\frac{1}{2}$ in. on each side for 30 in. wide forms in a distance of 3 ft from the end. Above and to the right of the zigzag line in the tables, tapered ends must be used or the tabulated values proportionately reduced. Below and to the left of these lines, square (nontapered) ends are adequate.

DEFORMATION WITH TIME

It is recommended that the maximum span for floor construction, particularly where partitions extend parallel to the joists, should be limited to 24 times total depth of construction (t). This limitation is indicated by a horizontal line across each table. This ratio is retained for single, end and interior conditions. For roofs, or where time-sagging is not important, span/depth ratios may exceed 24, if desired.

DISTRIBUTING RIBS

For floor construction, use distributing ribs with at least 1-#4 bar top and 1-#4 bar bottom as follows:—

One in the center of spans from 20 ft to 30 ft and two at the third points of spans over 30 ft.

STRESSES

As noted at the head of each set of tables, steel is stressed to 20,000 psi. Where it is necessary to use some other stress, vary the steel areas in direct proportion. Concrete is assumed to test 3000 psi, and n is taken as 10. If weaker concrete is used, the capacity should be reduced accordingly. The capacity can be increased with stronger concrete.

UNEOUAL CONTINUOUS SPANS

Bending moments are computed from the clear span for positive moment in continuous spans and from the average of the two adjacent clear spans for negative moment. The assumptions are made that the larger of two adjacent

spans does not exceed the shorter by more than 20 per cent and that the unit live load does not exceed three times the unit dead load. For cases outside of these limitations, the moments must be corrected by more accurate methods (see pages 66-80).

The values tabulated under End Spans apply accurately only when there are two additional approximately equal spans continuous with the one under consideration. If there is only one adjacent span, the negative moment should be $wl'^2/9$ instead of $wl'^2/10$, and those values that are governed by negative moment would be reduced accordingly. Values obtained from positive mo-

ment would not change.

The values tabulated under Interior Spans apply accurately only when there are two additional approximately equal spans continuous with each end of the one under consideration. If either end is continuous with an end span, the negative moment should be $wl'^2/10$ instead of $wl'^2/11$ and the safe load as governed by negative moment should be reduced accordingly. Values obtained from positive moment would not change. This condition can also be checked by reference to the same data in the tables for End Spans.

LIVE LOAD LIMITATIONS

ACI 318-56-701(c) establishes moment factors for cases where the unit live load does not exceed three times the unit dead load. If the ratio is greater, the effect of unbalanced panel loads may require more accurate analysis (see

pages 66-80).

The dead load in such analyses includes not only the weight of the concrete slab (which is here deducted from the total load to obtain the safe superimposed load), but any ceilings, floor finishes, partitions, and similar immovable features. Hence it is not practicable to indicate in these tables the points where the unit live load is exactly equal to three times the unit dead load. The safe superimposed loads have been tabulated to values somewhat above 300 psf and then stopped. The user is cautioned to check the ratio of live to dead loads in the higher capacities.

SINGLE SPAN

The general description of concrete joist construction on pages 136 to 138 should be read in connection with these explanations.

Tables on pages 142 to 154, inclusive, give the safe superimposed loads on single (noncontinuous) spans of concrete joist construction. For continuous spans, see the table on pages 158 to 186.

The arrangement of joists and of reinforcing bars should be as shown on the figure below:—

 $E_1 = 6$ in, minimum for bottom bars.

 $E_2 = 17$ bar diameters (24 diameters, when d > 12 in.), usually requiring a semicircular hook.

B = ordinarily 4 in. minimum (or preferably 6 in.) and sufficient in any case to keep the bearing pressure on the wall within the allowable for the material of which the wall is made (see page 99). Most designers prefer to have a continuous distribution rib of concrete bearing on the wall and reinforced with at least 1-#4 bar top and 1-#4 bar bottom whenever it is desired to spread the load along the wall bearing. When providing bearing on existing masonry walls, it is often sufficient merely to extend the joist stems into individual pockets cut into the wall, but it is then recommended that the stiffening rib be placed between the joists parallel and adjacent to the wall bearing.

Almost all usual combinations of form depth, top slab and joist reinforcement are presented herewith. To show how the tables for single spans were computed and to permit extension beyond the scope of the tables if required, an illustrative example is shown on the following page:—

^{*}Bond and diagonal tension values are based upon deformed bars meeting ASTM A305. Plain round bars or deformed bars not meeting ASTM A305 will not give sufficient bond resistance.

Example—Determine the safe carrying capacity on spans of 12 and 18 ft of 6-in. deep forms plus 2-in. of top slab with 5 in. wide joists at 25 in. centers and reinforced with 1-#7 straight bar and 1-#7 bent bar. Dead weight of the concrete construction is 42 psf.* (See page 142.)

Live load capacity determined by:-

(a) Shear

Max. Allowable
$$V = vbjd = 90 \times 5 \times \frac{7}{8} \times 7 = 2756$$
 lb = 2.08 $wl/2$ For $l = 12$; $w = 221$ psf. Subtracting 42 gives 179 psf. For $l = 18$; $w = 147$ psf. Subtracting 42 gives 105 psf.

(b) Bond

Max. Allowable
$$V = u\Sigma o j d = 300 \times 2.749 \times \frac{7}{8} \times 7.0 = 5050 \text{ lb} = 2.08 \ w l / 2$$

For $l = 12$; $w = 405 \text{ psf}$. Subtracting 42 gives 363 psf.
For $l = 18$; $w = 270 \text{ psf}$. Subtracting 42 gives 228 psf.

(c) Positive Moment t/d = 2/6.82 = 0.294

$$p = \frac{1.20}{25 \times 6.82} = 0.00704$$

Since this is less than balanced reinforcement, the table on page 35 will not apply, although the charts on pages 40-41 could be used.

Taking moments about slab center in the figure above and neglecting any small compression in the stem

$$kd = 1 + \frac{12}{62} \times 5.82 = 2.13$$
 in. (or just below the flange)
 $k = \frac{2.13}{6.32} = 0.312$ (see also chart on page 39)
 $z = c.$ of g. of trapezoid $= \frac{h}{3} \left(\frac{a+2b}{a+b} \right) = \frac{2}{3} \left(\frac{2.13+0.26}{2.13+0.13} \right) = 0.70$ in.
 $jd = 6.82 - 0.70 = 6.12$ in. $j = 0.901$ (see also chart on page 39)

Max. Allowable
$$M = f_s A_s jd = 20,000 \times 1.20 \times 6.12 = 147,000 \text{ lb-in.} = 2.08 \frac{wl^2 12}{8}$$

For
$$l=12$$
; $w=326$ psf. Subtracting 42 gives 284 psf. For $l=18$; $w=145$ psf. Subtracting 42 gives 103 psf. $In\ table,\ p.\ 142$

The 12 ft span can carry the capacity load as determined by moment without overstress in bond but with excessively high shear intensity so that computation of the shear capacity of a tapered end is required.

(d) Tapered End Shear

Max. Allowable
$$V = v_c b j d = 90 \times 9 \times \frac{7}{8} \times 7 = 4961 \text{ lb} = 2.08 \ w l / 2$$

For $l = 12$; $w = 397 \text{ psf}$. Subtracting 42 gives 355 psf.
For $l = 18$; $w = 265 \text{ psf}$. Subtracting 42 gives 223 psf.

* Dead weight is computed:—

2 in. top slab = 25 psf
Joist:
$$\frac{5+6.0}{2} \times \frac{6 \times 150}{2.08 \times 144} = \frac{17}{42} \text{ psf}$$

Summary—On a span of 18 ft the capacity is limited to 103 psf by tension in the reinforcing steel resisting positive moment, the compression in the concrete is less than the allowable (since p = 0.00704), and the bond (at 228 psf) and shear on a nontapered end (105 psf) are both adequate.

On a span of 12 ft the capacity by moment is 284 psf, the bond at 363 psf is more than adequate, but a tapered end (355 psf) is required as a nontapered end (179 psf) would be overstressed in diagonal tension.

CONCRETE JOIST SPACING

No. Rows	No. 5" Joists	Pan Width 19½"	Pan Width 19¾"	Pan Width 20"	Pan Width 201/4"	Pan Width 20½"
1	_	1'-71/2	1′-7¾	1′-8	1′-8¼	1'-81/2
2	1	3'-8	3'-81/2	3'-9	3'-91/2	3'-10
3	2	5'-81/2	5'-91/4	5'-10	5'-103/4	5'-111/2
4	3	7'-9	7'-10	7'-11	8'-0	8'-1
5	4	9'-91/2	9'-10¾	10'-0	10'-11/4	10′-2½
6	5	11′-10	11′-11½	12'-1	12'-21/2	12'-4
7	6	13′-101⁄2	14'-01/4	14'-2	14'-33/4	14'-51/2
8	7	15'-11	16'-1	16'-3	16'-5	16'-7
9	8	17'-111/2	18'-13/4	18'-4	18'-61/4	18'-81/2
10	9	20′-0	20′-21⁄2	20′-5	20'-71/2	20′-10
11	10	22′-01⁄2	22'-31/4	22'-6	22'-83/4	22'-111/
12	11	24'-1	24'-4	24'-7	24'-10	25'-1
13	12	26'-11/2	26'-43/4	26'-8	26'-111/4	27'-21/2
14	13	28'-2	28'-51/2	28'-9	29'-01/2	29'-4
15	14	30′-21⁄2	30′-6¼	30′-10	31′-1¾	31′-51⁄2
16	15	32′-3	32'-7	32′-11	33′-3	33′-7
17	16	34'-31/2	34'-73/4	35'-0	35'-41/4	35'-81/2
18	17	36'-4	36'-81/2	37'-1	37'-51/2	37'-10
19	18	38'-41/2	38'-91/4	39'-2	39'-63/4	39'-11'
20	19	40′-5	40′-10	41'-3	41′-8	42'-1
21	20	42'-51/2	42'-103/4	43'-4	43'-91/4	44'-21/2
22	21	44'-6	44'-111/2	45'-5	45'-101/2	46'-4
23	22	46'-61/2	47'-01/4	47'-6	47'-113/4	48'-51/2

CONCRETE JOIST CONSTRUCTION SINGLE SPAN—20 INCH WIDE FORMS

Safe Superimposed Load (psf)

For limitations and explanation of use of tables, see pages 139 to 141.

	Depth			6"	FORMS -	+ 2" CON	CRETE				
	Joists		4" Joists (② 24″ c/c	Wt 39	psf	5	" Joists (@ 25" c/c	Wt 42	osf
В	Bottom Bar Truss Bar	# 4 # 4	#5 #4	#5 #5	#6	#6	#5	#6	#6	#7	#7
	Truss bar	#4	#4	#3	#5	#6	#5	#5	#6	#6	#7
	9	177	233	288	352		271	334			eschia an
ee	10	136	181	226	278	328	212	261	310	370	
Span in Feet	11	105	143	180	223	263	168	209	248	298	344
an	12	82	114	145	181	215	134	169	202	244	284
	13	64	91	118	149	178	108	138	166	201	236
Length of	14	50	73	96	123	148	87	113	137	168	197
Le	15	39	59	79	102	124	70	92	114	140	166
	16		47	65	85	104	57	76	95	118	141
	17		37	53	71	88	46	63	79	100	120
	18			43	59	74	36	51	66 '	84	103

	Depth			6" F	ORMS +	- 2½" CO	NCRETE				
	Joists		4" Joists @	⊉ 24″ c/c	Wt 45	psf	5	" Joists (@ 25" c/c	Wt 48 p	osf
В	ottom Bar	#4	#5	#5	#6	#6	#5	#6	#6	#7	#7
	Truss Bar	#4	#4	#5	#5	#6	#5	#5	#6	#6	#7
	9	186	246	306	376		289	355			
-	10	142	191	239	295	350	224	278	331		
Fee	11	109	150	190	236	282	177	221	266	318	
2.	12	85	119	152	191	229	141	179	215	258	30
Length of Span in Feet	13	65	94	123	156	188	112	145	176	213	24
th of	14	50	75	100	129	156	91	119	145	177	21
eng	15	38	60	81	106	130	73	97	120	148	17
_	16		47	66	88	109	58	79	99	124	14
	17		36	53	74	91	46	64	82	104	12
	18			42	60	77	35	53	69	88	10
	19			33	49	64		42	57	74	9

CONCRETE JOIST CONSTRUCTION SINGLE SPAN—20 INCH WIDE FORMS

Safe Superimposed Load (psf)

		Depth			6"	FORMS	+ 3" C	ONCRET	ΓE				u.
		Joists	4"	' Joists @	24" c/c	Wt 52 p	osf		5″ J	oists @	25″ c/c	Wt 55 ps	af
- 1	Bottom Truss	Bar Bar	# 4 # 4	#5 #4	#5 #5	#6 #5	#6 #6	#5 #5		#6 #5	#6 #6	#7 #6	#7 #7
		9	195	258	323			303		378			
		10	148	200	251	212	371				250		
-		1	113	156	198	313 248	371 298	183		295 233	350 281	336	
Length of Span in Feet		2	87	123	158	201	241	147	-	187	226	273	32
2		3	66	97	127	163	198	117		151	184	225	26
Spar		3	00	**	127	100	1,,,			151 _	10-	220	
0		4	50	76	103	134	163	93	3	123	151	186	22
ngtr		5	37	60	83	110	136	74	4	100	125	155	18
P.		6		46	66	90	113	_ 58	3	81	103	130	15
	1	7		35	53	74	94	4.5	5	65	85	108	13
_	1	8			41	60	78	34	1	52	70	90	11:
	1	9			32	49	65			42	57	76	9.
-		0		=		39	53			32	46	63	8
						-							
	Dept	h			9" F	ORMS -	2" 66						-
_							- 2 CC	NCRETE		-			
	Joist		″ Joists (@ 24" c/c	c Wt 45		-2 ((-	ī) 25'' c/	c Wt 48	3 psf	
	om Ba	ts 4	#5	#5	c Wt 45	psf #6	#5	5″ J #6	loists @	#7	#7	#8	#:
		ts 4			c Wt 45	psf		5″ J	loists (##
	om Ba russ Ba	ts 4	#5	#5	c Wt 45	psf #6	#5	5″ J #6	loists @	#7	#7	#8	
	om Ba	r #4 r #4 181 141	#5 #4 239 189	#5 #5 298	#6 #5 365 294	#6 #6	#5 #5 280 223	5" J #6 #5 346 277	#6 #6	#7 #6	#7	#8	
Tr	om Ba russ Ba 10 11 12	181 141 112	#5 #4 239 189 152	#5 #5 298 238 192	#6 #5 365 294 240	#6 #6 350 287	#5 #5 280 223 180	5" J #6 #5 346 277 225	#6 #6 331 271	#7 #6	# 7 # 7	#8	
Tr	10 11 12	181 141 112 88	#5 #4 239 189 152 123	#5 #5 298 238 192	#6 #5 365 294 240 198	#6 #6 350 287 238	#5 #5 280 223	5" J #6 #5 346 277 225	#6 #6	#7 #6	#7 #7	#8 # 7	
Tr	om Ba russ Ba 10 11 12	181 141 112	#5 #4 239 189 152	#5 #5 298 238 192	#6 #5 365 294 240	#6 #6 350 287	#5 #5 280 223 180	5" J #6 #5 346 277 225	#6 #6 331 271	#7 #6	# 7 # 7	#8	
Tr	10 11 12	181 141 112 88	#5 #4 239 189 152 123	#5 #5 298 238 192	#6 #5 365 294 240 198	#6 #6 350 287 238	#5 #5 280 223 180	5" J #6 #5 346 277 225 185 1 152	#6 #6 331 271 224	#7 #6	#7 #7 317 266	#8 #7	#
Tr	10 11 12 13 14	181 141 112 88 70	#5 #4 239 189 152 123 100	#5 #5 298 238 192 157 129	#6 #5 365 294 240 198 164	#6 #6 #6 350 287 238 199	#5 #5 280 223 180 146	5" J #6 #5 346 277 225	#6 #6 331 271 224 186	#7 #6	#7 #7 317 266	#8 #7 313 266	30
Tr	10 11 12 13 14 15	181 141 112 88 70	#5 #4 239 189 152 123 100	#5 #5 298 298 238 192 157 129	#6 #5 365 294 240 198 164	#6 #6 #6 350 287 238 199	#5 #5 280 223 180 146 119	5" J #6 #5 346 277 225 185 152 127 106	#6 #6 331 271 224 186	#7 #6	#7 #7 317 266 226 192	#8 #7	30
Tr	10 11 12 13 14 15	181 141 112 88 70 55 43	#5 #4 239 189 152 123 100	#5 #5 298 238 192 157 129	#6 #5 365 294 240 198 164	#6 #6 350 287 238 199 167 141	#5 #5 280 223 180 146 119	5" J #6 #5 346 277 225 185 152	#6 #6 331 271 224 186	#7 #6	#7 #7 317 266	#8 #7 313 266	30 20 22
Tr	10 11 12 13 14 15 16 17	181 141 112 88 70 55 43	#5 #4 239 189 152 123 100 81 66 53	#5 #5 298 238 192 157 129 107 88 73	#6 #5 365 294 240 198 164 137 115	#6 #6 #6 350 287 238 199 167 141 121	#5 #5 280 223 180 146 119 97 80 65	5" J #6 #5 346 277 225 185 152 127 106 88	#6 #6 331 271 224 186 156 131	#7 #6 324 269 225 190 161 137	#7 #7 317 266 226 192 165	#8 #7 313 266 228 196	
Tr	10 11 12 13 14 15 16 17 18	181 141 112 88 70 55 43	#5 #4 239 189 152 123 100 81 66 53 42	#5 #5 298 238 192 157 129 107 88 73 60	#6 #5 365 294 240 198 164 137 115 97	#6 #6 287 238 199 167 141 121 102	#5 #5 280 223 180 146 119 97 80 65 53	5" J #6 #5 346 277 225 185 152 127 106 88 73	#6 #6 331 271 224 186 156 131 110 93	#7 #6	#7 #7 317 266 226 192 165 142	#8 #7 313 266 228 196 170	36 26 22 14
Tr	10 11 12 13 14 15 16 17 18	181 141 112 88 70 55 43	#5 #4 239 189 152 123 100 81 66 53 42	#5 #5 298 238 192 157 129 107 88 73 60 49	#6 #5 365 294 240 198 164 137 115 97 81 68	#6 #6 #6 350 287 238 199 167 141 121 102 87	#5 #5 280 223 180 146 119 97 80 65 53 43	5" J #6 #5 346 277 225 185 152 127 106 88 73 61	#6 #6 331 271 224 186 156 131 110 93 79	#7 #6	#7 #7 317 266 226 192 165 142	#8 #7 313 266 228 196 170	30 20 22 15
	10 11 12 13 14 15 16 17 18 19 20	181 141 112 88 70 55 43	#5 #4 239 189 152 123 100 81 66 53 42	#5 #5 298 238 192 157 129 107 88 73 60 49	#6 #5 365 294 240 198 164 137 115 97 81 68	#6 #6 #6 350 287 238 199 167 141 121 102 87 74	#5 #5 280 223 180 146 119 97 80 65 53 43	5" J #6 #5 346 277 225 185 152 127 106 88 73 61 50	#6 #6 #6 331 271 224 186 156 131 110 93 79 66	#7 #6	#7 #7 317 266 226 192 165 142 123	#8 #7	30 20 22 19 17

Above and to the right of the zigzag line, tapered ends are required.

For limitations and explanation of use of tables, see pages 139-141.

Depth				8" F	ORMS +	2½" C	ONCRET	E				
Joists	4" J	oists @	24″ c/c	Wt 51	psf		5" .	Joists @	25″ c/c	Wt 54	psf	
Bottom Bar Truss Bar	# 4 # 4	#5 #4	#5 #5	#6 #5	#6 #6	#5 #5	#6 #5	#6 #6	#7 #6	#7 #7	#8 #7	#8 #8
10 11 12 13 14 14 15 16 17 18 19 20 21	187 146 114 90 70 55 42 31	251 198 158 127 102 83 66 53 42 32	312 249 201 164 134 110 91 74 61 49 40 31	308 250 206 170 142 118 99 83 69 57 47	300 248 207 174 146 124 105 89 75 63	295 234 188 152 124 101 82 66 53 43 33	363 290 235 192 158 131 109 90 74 61 50 40	346 283 233 194 162 135 114 95 80 67 56	340 282 235 198 168 142 121 103 87 74	330 276 234 199 170 147 125 108 92	325 277 237 203 176 152 132	320 274 237 206 178 156 136
22 23				38	53 44		32	46 37	63 53	80 69	100 87	119 104
Joists) 24" c/c	Wt 58	psf	+ 3" CC	5"	Joists @				#0
Bottom Bar Truss Bar	#4 #4	#5 #4	#5 #5	#6 #5	#6 #6	#5 #5	#6 #5	#6 #6	# 7 #6	#7 #7	#8 #7	#8 #8
10 11 12 13 14 15 20 16 10 17 41 18 19 20 21 20	194 150 116 91 70 54 40	259 204 162 130 104 83 66 52 40 30	325 258 208 168 137 112 91 74 60 48 37	320 260 212 175 145 121 100 83 68 56 45 36	313 258 214 179 150 126 107 90 75 63 52	307 243 194 156 127 103 82 66 52 41	302 245 199 163 134 111 91 74 60 49 38 30	362 295 242 201 166 139 116 97 81 67 55 45	355 293 245 205 173 146 124 105 89 75 63	344 289 243 207 175 151 129 110 94 81	339 288 246 211 182 157 135	333 286 245 213 185 161 140 122
23					43			36	52	68	88	106

CONCRETE JOIST CONSTRUCTION SINGLE SPAN-20 INCH WIDE FORMS Safe Superimposed Load (psf)

For limitations and explanation of use of tables, see pages 139-141.

			-											
	Depth				1	0" FOR	MS + 2	CONC	CRETE					
	Joists	4" .	Joists @) 24" c/c	Wt 5	50 psf			5" Joist	s @ 25"	c/c 1	Wt 54 ps	f	
	om Bar	#4	#5	#5	#6	#6	#5	#6	#6	#7	#7	#8	#8	#9
Tr	uss Bar	#4	#4	#5	#5	#6	#5	#5	#6	#6	#7	#7	#8	#8
	15	73	106	137	176	213	126	162	198	242	286	338		
_	16	58	87	114	148	181	104	136	168	205	246	290	336	
ee	17	46	71	96	125	154	87	114	142	176	211	251	293	337
Ë	18	35	58	80	106	132	72	96	121	151	182	218	254	294
Length of Span in Feet	19		47	66	90	113	58	80	102	130	158	190	222	259
of S	20		37	55	76	98	47	67	88	112	138	166	195	228
븊	21			45	65	84	38	56	74	96	119	146	172	201
eng	22			37	55	72	31	46	63	83	105	128	152	180
_	23				46	62		38	53	72	91	113	134	160
	24				38	52		30	44	61	79	99	119	142
	25					44			36	52	69	87	105	126
	26					37			30	44	59	76	93	113
	27									37	51	67	83	101
	28									31	43	58	73	90
	Depth			-	10	" FORN	15 + 21/2	" CON	CRETE					
	Joists	4" 」	loists @	24" c/c	Wt 5	6 psf			5" Joists	s @ 25"	c/c \	Nt 60 ps	f	
	om Bar	#4	#5	#5	#6	#6	#5	#6	#6	#7	#7	#8	#8	#9
Tr	uss Bar	#4	#4	#5	#5	#6	#5	#5	#6	#6	#7	#7	#8	#8
	15	73	107	140	180	218	128	166	203	248	294	346		
	16	57	87	116	151	185	105	139	171	212	250	297	344	
+	17	44	71	97	127	157	87	116	145	181	214	256	297	
ee	18	33	57	80	108	135	71	97	123	154	185	222	259	301
gth of Span in Feet	19		45	66	91	115	58	81	104	132	160	193	227	263
Dan	20		24	5.4	7,	-00								
f S	20		36	54 44	76 64	98 84	46 36	67	88	113	138	169	198	232
0	- 1						30	56	74	97	120	147	174	205
± 6	22			35	54	72		45	63	83	104	129	153	181

Values below horizontal line are for spans in excess of 24 t. Above and to the right of the zigzag line, tapered ends are required.

For limitations and explanation of use of tables, see pages 139-141.

	Depth				1	0" FOR	MS + 3'	CONC	RETE					
	Joists	4".	Joists @	24" c/c	Wt	63 psf		5	" Joists	@ 25"	c/c	Wt 67 psf		
	tom Bar russ Bar	#4 #4	#5 #4	#5 #5	#6 #5	#6 #6	#5 #5	#6 #5	#6 #6	# 7 #6	# 7 # 7	#8 #7	# 8 #8	#9 #8
	15 16	71 55	107	142 117	184 154	189	130 106	170 142	208 175	256 217	302 258	307	207	
eel	1 <i>7</i>	41 30	69 55	97 79	129 108	136	87 70	118 98	148	184 1 <i>5</i> 7	220 189	264	307 267	30
	19		43	65	91	116	56	81	105	134	163	199	233	27
Lengin or apan in reer	20 21		32	52 41	76 63	98 83	44 33	66 54	88 74	114 98	140 121	173 150	203 178	23
	22 23			32	52 42	70 59		43 34	61 50	84 70	105 90		156 137	18
	24				33	49			40	59	77	98	120	14
	25 26					40 32			32	49 40	65 55		105 93	12
	27 28		entralisis (speciment) and aller	-						32	47 38		81 70	9

	Depth				12" F	ORMS -	+ 2" C	ONCRE	TE					
	Joists	4"	Joists @ 24 Wt 57 ps		5	" Joists	@ 25"	c/c	Wt 61 p	sf	6"		@ 26" 6 psf	c/c
	ttom Bar Truss Bar	#5 #5	#6 #5	#6 #6	#6 #6	#7 #6	# 7 #7	#8 #7	#8 #8	#9 #8	#8 #8	#9 #8	#9 #9	#10 #9
	18	98	129	160	147	185	223	266	309		290	336		
	19	82	110	138	126	159	194	232	271	314	253	294	334	
+	20	68	94	119	108	138	169	203	239	277	222	259	295	
Feet	21	57	80	102	92	119	147	179	211	246	195	229	262	303
Span in	22	47	68	88	78	103	129	158	187	218	172	202	233	270
Spai	23	38	57	76	66	89	112	139	166	194	152	180	207	241
of	24	30	47	65	56	77	98	123	147	173	134	159	184	216
£	25		39	55	47	66	86	108	131	155	118	142	165	194
Length	26		32	47	39	56	74	95	116	139	104	126	147	174
Fe	27			39	31	48	65	84	103	124	92	112	132	157
	28			32		40	56	74	92	111	81	100	118	141
	29					34	48	64	81	100	71	88	105	127
	30		No Tapere	d			41	56	72	89	62	78	94	115
	31		Ends Requir				34	49	63	79	54	69	84	103
	32		Linus Kedon	-	1			42	56	71	46	61	75	92
	33							36	49	63	40	53	67	83

For limitations and explanation of use of tables, see pages 139-141.

	Depth			A. a	12" FO	RMS+	21/2"	ONCR	ETE					
	Joists	4" Je	oists @ 24 Wt 63 ps		5′	['] Joists	@ 25′	c/c	Wt 67 p	sf	6"	Joists Wt 7	@ 26" 2 psf	c/c
В	ottom Bar Truss Bar	#5 #5	#6 #5	#6 #6	#6 #6	#7 #6	# 7 # 7	#8 #7	#8 #8	#9 #8	#8 #8	#9 #8	#9 #9	#10 #9
	18	98	130	162	149	188	225	269	315	J.	294	341		- Lander St. and S
	19	81	110	139	127	161	195	235	275	319	257	299		
_	20	67	93	119	108	139	169	205	241	282	224	263	300	
9	21	55	79	102	92	120	148	180	213	249	197	232	266	309
in F	22	45	66	88	78	103	129	158	188	221	173	205	236	275
Length of Span in Feet	23 24	35	55 45	75 64	65 55	89 76	112 97	139 122	167 147	196 175	153 133	180 160	209 186	246 219
o	25		37	54	45	65	84	107	130	156	118	142	166	197
gt	26			45	36	55	73	94	116	139	103	126	148	177
Len	27			37		46	62	82	102	124	90	111	132	159
	28			30		38	53	72	91	110	79	98	117	142
	29					31	45	62	80	98	67	87	104	128
	30			-			38	54	70	88	60	77	93	114
	31		No Tapere				31	46	61	78	51	67	82	103
	32	Er	nds Requir	red				39	53	69	43	59	73	92
	33							33	46	61	37	51	65	82

	Depth				12" F	ORMS -	+ 3″ C	ONCRE	TE					
	Joists	4" J	oists @ 2 Wt 69 ps		5	" Joists	@ 25′	′ c/c	Wt 74 p	sf	6"		@ 26" 8 psf	c/c
	ottom Bar Truss Bar	#5 #5	#6 #5	#6 #6	#6 #6	# 7 #6	#7 #7	#8 #7	#8 #8	#9 #8	#8 #8	#9 #8	#9 #9	#10 #9
	18	98	131	165	150	190	227	273	320		300	201		
	19	81 66	111 93	141 120	127	162 139	196 170	238	279 244	325 286	261 228	306 268	305	
_	21	53	78	102	90	119	148	181	215	252	199	236	269	316
Feet	22	43	65	87	76	102	128	158	189	223	175	208	239	281
an in	23	33	54 44	74 62	63 52	87 74	111	138	167	198	153	184	212	250
f Sp	25		35	52	42	62	95 82	121 106	147	176	134	162 142	189	223
Length of Span in	26 27			43 35	33	52 43	70 60	92 80	114 100	139 124	103 90	127 112	148 132	179 161
_	28					35	51	69	88	109	78	98	117	144
	29 30						42 34	60 51	77 67	96 85	67 58	86 74	104 93	128 114
	31 32		No Tapere					43 36	58 50	75 66	49 41	65 57	81 72	102
	33	Er	nds Requir	ea					42	57	34	48	63	81

CONCRETE JOIST CONSTRUCTION SINGLE SPAN-20 INCH WIDE FORMS

Safe Superimposed Load (psf)

Ear limitations and	explanation of use	af Aulilea	120 141
ror limitations an	explanation of use	of tables, see b	ddes 1.39-141.

	Depth				14" F	ORMS	+ 2" CC	ONCRETE					
	Joists		5"	Joists @	25″ c/c	Wt 68	3 psf		6".	Joists @) 26″ c/c	Wt 73	psf
E	Bottom Bar Truss Bar		#6 #6	# 7 #6	#7 #7	#8 #7	#8 #8	#9 #8	#8 #8	#9 #8	#9 #9	#10 #9	#10 #10
The State of	21	85	111	143	174	212	250	290	232	271	313		
	22	71	94	124	152	187	221	259	205	241	278	323	
+	23	59	80	108	134	166	196	230	181	214	249	289	332
Fee	24	49	69	93	117	146	175	207	160	192	222	259	30
u.	25	40	58	80	103	130	156	185	142	170	199	233	270
Length of Span in Feet	26	31	48	69	90	115	139	166	126	152	178	210	24
of	27		40	59	79	101	124	148	112	135	161	190	22
£	28		32	50 42	68 59	89 79	110 98	133 119	98 87	120 107	144	171	200
Leng	30			35	51	69	87	107	76	96	129	154	18
	31				43	60	77	96	66	85	104	126	150
	32				36	52	69	86	58	75	93	114	136
	33				30	45	60	77	50	67	83	103	124
	34					38	53	69	43	58	74	93	113
	35						46	61	37	51	66	83	103
	36						40	54	30	44	58	75	92
	37						34	47		38	51	67	83
	38							41		32	44	59	7:
	Depth				14" FO		- 2½″ C	ONCRET	11				
	Joists		5′	" Joists (@ 25" c/c	: Wt	75 psf		6".	Joists @	26" c/c	Wt 80	psf
E	Bottom Bar Truss Bar		#6 #6	#7 #6	#7 #7	#8 #7	#8 #8	#9 #8	#8 #8	#9 #8	#9 #9	#10 #9	#10 #10
	21	83	109	142	173	212	250	293	232	274	313		
	22	69	92	122	152	187	221	260	204	242	278	324	
	23	57	78	105	133	164	196	231	181	214	248	290	
eet	24	46	66	90	115	145	174	206	159	190	221	260	300
fn F	25	36	55	78	100	127	154	184	141	169	198	234	270
ban	26		45	66	87	112	136	165	123	151	176	209	244
S	27		36	56	76	98	122	147	109	133	158	188	220
4-	28			45	64	86	108	132	96	119	141	170	199
h of	11			38	55 47	75 65	95 84	117 105	84 73	105 93	126 113	152 137	180
Length of	29 30			31	4/	00							
Length of	29 30 31			31	39	56	74	94	63	82	100	124	
Length of	29 30 31 32			31		56 48	65	83	54	72	89	110	134
Length of	29 30 31		ann Marian III ann an Aire	31	39	56							134
Length of	29 30 31 32 33		***************************************	31	39	56 48	65 56 49	83 74 65	54 46 39	72 63 53	89 80 70	110 99 89	134
Length of	29 30 31 32 33			31	39	56 48 41	65 56	83 74	54 46	72 63	89 80	110 99	134
Length of Span fn Feet	29 30 31 32 33 34 35			31	39	56 48 41	65 56 49	83 74 65	54 46 39	72 63 53	89 80 70	110 99 89	134 121 110 98
Length of	29 30 31 32 33 34 35			31	39	56 48 41	65 56 49 42	83 74 65 57	54 46 39	72 63 53 45	89 80 70 61	89 79	147 134 121 110 98 89 80 71

CONCRETE REINFORCING STEEL INSTITUTE

Above and to the right of the zigzag line, tapered ends are required.

CONCRETE JOIST CONSTRUCTION SINGLE SPAN—20 INCH WIDE FORMS

Safe Superimposed Load (psf)
For limitations and explanation of use of tables, see pages 139-141.

14" FORMS + 3" CONCRETE

	Depth				14" I	ORMS -	+ 3″ CC	NCRETE					
	Joists		5"	Joists @	25" c/c	Wt 81	psf		6" J	oists @	26" c/c	Wt 86	psf
	ottom Bar Truss Bar	#6 #5	#6 #6	# 7 #6	#7 #7	#8 #7	#8 #8	#9 #8	#8 #8	#9 #8	#9 #9	#10 #9	#10 #10
	21	81	108	141	174	213	253	295	235	275	316		
	22	67	92	122	152	187	223	262	206	244	281	328	
	23	54	77	104	132	164	197	232	182	215	250	294	
	24	43	64	89	115	144	174	207	160	191	222	262	304
of Span in Feet	25	33	52	76	99	127	155	184	140	169	198	235	273
n in	26		42	64	86	111	136	165	123	150	176	210	246
bdo	27		33	53	73	97	121	147	108	133	157	189	222
of S	28			44	63	84	106	130	94	118	140	170	199

CONCRETE JOIST CONSTRUCTION SINGLE SPAN—30 INCH WIDE FORMS Safe Superimposed Load (psf)

For limitations and explanation of use of tables, see pages 139-141.

	Dep	th			6	" FORM	s + 21/2	" CONC	RETE				
	Jois	ts 4'	′ Joists (⊕ 34″ c/	c Wt 4	1 psf	5"	Joists @	35" c/c	Wt 43	psf	6" Joists Wt 4	@ 36" c/c 5 psf
	om Ba uss Ba	Contract of the Contract of th	#5	#5 #5	#6 #5	#6	#5 #5	#6 #5	#6 #6	#7 #6	#7 #7	#7 #6	#7
ir	uss ba	r #4	#4	#3	#3	#6	#3	#3	#0	#0	#/	#6	#7
	9	122	165	206	256	286	197	245	275	327		315	315
	10	91	125	160	200	238	152	190	227	272	291	262	279
eet	11	68	97	125	158	189	118	150	180	218	255	208	245
n F	12	51	75	98	126	153	92	119	145	176	207	168	198
Length of Span in Feet	13	37	57	77	101	124	72	95	117	143	170	136	162
of S	14		44	61	82	101	56	76	95	118	141	111	134
#	15		33	48	66	83	43	61	77	97	117	91	111
en	16			37	53	68	33	48	62	80	98	75	92
_	17				43	55		38	50	66	81	61	76
	18				33	45			40	54	68	49	63
	19					36			32	44	56	40	52

For limitations and explanation of use of tables, see pages 139-141.

	Dep	th				6" FOR!	MS + 3"	CONCE	RETE				
	Jois	ts 4	" Joists (@ 34″ c/	c Wt 4	18 psf	5"	Joists @	35″ c/c	Wt 50	psf		@ 36" c/c i2 psf
	om Ba		#5	#5	#6	#6	#5	#6	#6	#7	#7	#7	# 7
11	russ Bo	ir #4	#4	#5	#5	#6	#5	#5	#6	#6	#7	#6	#7
	9	126	171	217	269	302	207	258	290	347		335	335
	10	93	130	167	210	251	158	200	240	289	307	277	294
eet	11	68	99	129	164	199	121	156	190	229	269	220	259
F	12	50	75	100	131	159	94	123	151	185	218	176	209
Length of Span in Feet	13	35	57	79	104	128	73	97	121	150	178	143	170
Spo													İ
of	14		43	61	83	104	56	77	97	122	147	115	140
ath	15		31	47	66	85	42	61	79	100	121	94	115
en	16			35	53	68	31	48	63	82	101	76	95
	17				41	55		36	50	66	83	61	78
	18				31	44			39	54	69	49	64
	19					34			30	43	57	39	52
	20									34	46	30	42

	Depth					8" FOI	RMS+	2½″ C	ONCRI	ETE					
	Joists	4" Jo	oists @	34″ c/c	Wt	45 psf	5	" Joist	s @ 35°	" c/c	Wt 48	osf		sts @ : Vt 50 p	36" c/c
	om Bar uss Bar	#4 #4	#5 #4	#5 #5	#6 #5	#6 #6	#6 #5	#6 #6	#7 #6	# 7 # 7	#8 #7	#8 #8	#7 #7	#8 #7	#8 #8
	10	123	168	212	262	313	250	300	357						
	11	94	131	167	208	250	198	239	287	332			319		
	12	72	102	133	168	203	158	193	233	274	318		262	308	343
e	13	54	81	107	136	168	128	157	192	226	266	307	216	255	295
Length of Span in Feet	14	40	63	86	111	137	103	128	158	188	223	258	180	214	247
par	15	30	49	69	91	114	84	106	132	158	188	218	150	180	209
of S	16		38	55	74	94	68	87	110	132	160	186	126	152	178
#	17			43	61	78	54	72	92	112	136	160	106	129	152
eng	18			34	49	65	43	59	77	95	116	137	89	109	130
	19				39	54	34	48	64	80	99	118	74	93	111
	20				31	44		38	53	67	85	102	62	79	96
	21					36		30	43	57	72	88	52	67	82
	22								35	48	62	76	43	57	70
	23									39	52	65	35	48	60

For limitations and explanation of use of tables, see pages 139-141.

4	Depth					8" FO	RMS +	3" CO	NCRET	E					
	Joists	4" Joi	ists @	34" c/c	Wt 5	1 psf	5′	' Joists	@ 35"	c/c	Wt 54 p	sf		ists @ Nt 56 p	36" c/
0.00	tom Bar russ Bar	"	#5 #4	#5 #5	#6 #5	#6 #6	#6 #5	#6 #6	#7 #6	#7 #7	#8 #7	#8 #8	#7 #7	#8 #7	#8 #8
	10	127	173	219	272	325	259	313							
	11	96	134	172	217	260	205	248	300	350			340		
	12	72	105	137	174	211	164	200	243	286	336		274	324	
_	13	54	82	109	140	172	131	162	198	236	278	319	225	267	308
Length of Span in Feet	14	40	63	87	114	141	106	132	164	196	232	269	187	223	258
ın in	15		48	69	92	116	85	108	136	163	195	227	155	186	217
Spo	16		36	54	75	96	68	89	113	137	165	193	130	157	185
of	17			42	60	79	54	72	94	115	140	165	108	133	156
gth	18			32	48	65	42	59	78	97	119	141	91	113	134
Ler	19				38	53	32	47	64	81	101	121	75	95	115
	20				30	43		37	53	68	86	104	62	80	98
	21					34			43	56	73	89	51	67	83
	22								34	47	62	77	42	57	71
	23									38	52	65	34	47	60
	Depth				1	0" FO	RMS+	2½″ C	ONCRE	TE				- N	
	Joists		sts @ Wt 50	34" c/c psf		5″ Jois	ts @ 3.	5″ c/c	Wt 52	psf	6" Jo	oists @	36" c/	c Wt	55 psf
					-										
	om Bar	200		and the same	#6 #6	**	#7 #7	#8 #7	#8	#9 #8	#8	#9 #8	#9 #9	#10 #9	#10 #10
	uss Bar	#4 #:	5 #3	5 #6	#6	#6	#7	#7	#8	#8	#8	#8	#9 #9	#10 #9	#10 #10
	uss Bar	65 89	9 11	7 144	136	#6	#7	#7 238	#8 276	#8 318	#8 265	#8 305	#9	#9	#10
	15 16	65 89	5 #5 9 11 2 9	5 #6	136	#6 5 168 3 142	#7 200	#7 238 203	#8	#8	#8	#8	**	**	
Tru	15 16 17	#4 #3 65 89 51 73	5 #3 9 11 2 9 8 7	5 #6 7 144 6 120	#6 136 113 94	#6 5 168 6 142 6 119	#7 200 170 144	#7 238 203	#8 276 236	#8 318 273	#8 265 226	#8 305 261	300	#9	#10 307
Tro	15 16 17	#4 #3 65 89 51 73 39 58	5 #3 9 11 2 9 8 7 6 6	5 #6 7 144 6 120 9 101	#6 136 113 94	#6 3 168 3 142 4 119 9 101	#7 200 170 144 123	#7 238 203 174 149	#8 276 236 203	#8 318 273 236	#8 265 226 193	#8 305 261 225	#9 300 259	#9 307 272	#10 307 272
Tro	15 16 17 18	#4 #3 65 89 51 73 39 58 30 46	5 #3 9 11 2 9 8 7 6 6 6 5	5 #6 7 144 6 120 9 101 6 85	#6 113 113 94 79 65	#6 5 168 6 142 6 119 7 101 7 85	#7 200 170 144 123	#7 238 203 174 149 129	#8 276 236 203 176	#8 318 273 236 205	#8 265 226 193 166	#8 305 261 225 196	#9 300 259 226	#9 307 272 246	#10 307 272 246
Tro	15 16 17 18 19	#4 #3 65 89 51 73 39 58 30 46	5 #\$ 9 111 2 9 8 7 6 6 6 6 5	5 #6 7 144 120 9 101 6 85 4 71	#6 113 113 94 79 65	#6 5 168 3 142 4 119 9 101 5 85	#7 200 170 144 123 105	#7 238 203 174 149 129	#8 276 236 203 176 152	#8 318 273 236 205 178	#8 265 226 193 166 144	#8 305 261 225 196 169	#9 300 259 226 197	#9 307 272 246 223	#10 307 272 246 223
Tro	15 16 17 18 19 20 21 22	#4 #3 65 89 51 73 39 58 30 46	5 #\$ 9 111 2 9 8 7 6 6 6 6 5	5 #6 7 144 6 120 9 101 6 85 4 71 3 59 5 49	#6 136 113 94 79 65 54 44 35	#6 #6 168 142 101 101 55 85 472 460 50 50	#7 200 170 144 123 105 90 76 65	#7 238 203 174 149 129 111 96 83	#8 276 236 203 176 152	#8 318 273 236 205 178 156 137 120	#8 265 226 193 166 144	#8 305 261 225 196 169	#9 300 259 226 197	#9 307 272 246 223	#10 307 272 246 223 203
	15 16 17 18 19 20 21 22 23	#4 #3 65 89 51 73 39 58 30 46	5 #\$ 9 111 2 9 8 7 6 6 6 6 5	5 #6 7 144 16 120 19 101 6 85 4 71 3 59 5 49	#6 136 113 94 79 65 54 44 35	#6 #6 1 168 3 142 4 119 7 101 5 85 4 72 4 60 5 50 41	#7 2000 1 1700 1 1444 123 105 90 76 65 55	#7 238 203 174 149 129 111 96 83 71	#8 276 236 203 176 152 132 115	#8 318 273 236 205 178 156 137 120 105	#8 265 226 193 166 144 124 108	#8 305 261 225 196 169 148 129	#9 300 259 226 197 172 151	#9 307 272 246 223 201 177	#10 307 272 246 223 203 186
Tru	15 16 17 18 19 20 21 22	#4 #3 65 89 51 73 39 58 30 46	5 #\$ 9 111 2 9 8 7 6 6 6 6 5	5 #6 7 144 6 120 9 101 6 85 4 71 3 59 5 49	#6 136 113 94 79 65 54 44 35	#6 #6 168 142 101 101 55 85 472 460 50 50	#7 2000 1 1700 1 1444 123 105 90 76 65 55	#7 238 203 174 149 129 111 96 83 71	#8 276 236 203 176 152 132 115 100	#8 318 273 236 205 178 156 137 120	#8 265 226 193 166 144 124 108 93	#8 305 261 225 196 169 148 129 112	#9 300 259 226 197 172 151 133	#9 307 272 246 223 201 177 156	#10 307 272 246 223 203 186 170
Tru	15 16 17 18 19 20 21 22 23	#4 #3 65 89 51 73 39 58 30 46	5 #\$ 9 111 2 9 8 7 6 6 6 6 5	5 #6 7 144 6 120 9 101 6 85 4 71 3 59 5 49	#6 136 113 94 79 65 54 44 35	#6 #6 168 142 119 101 5 85 4 72 4 60 5 50 41	#7 2000 1 1700 1 1444 123 105 90 76 65 55	#7 238 203 174 149 129 111 96 83 71	#8 276 236 203 176 152 132 115 100 87	#8 318 273 236 205 178 156 137 120 105	#8 265 226 193 166 144 124 108 93 81	#8 305 261 225 196 169 148 129 112 98	#9 300 259 226 197 172 151 133 117	#9 307 272 246 223 201 177 156 138	#10 307 272 246 223 203 186 170 157
Tro	15 16 17 18 19 20 21 22 23 24	#4 #3 65 89 51 73 39 58 30 46	5 #\$ 9 111 2 9 8 7 6 6 6 6 5	5 #6 7 144 6 120 9 101 6 85 4 71 3 59 5 49	#6 136 113 94 79 65 54 44 35	#6 #6 168 142 119 101 5 85 4 72 4 60 5 50 41	#7 200 170 144 123 105 90 76 65 55 46	#7 238 203 174 149 129 1111 96 83 71 61	#8 276 236 203 176 152 132 115 100 87 76	#8 318 273 236 205 178 156 137 120 105 93	#8 265 226 193 166 144 124 108 93 81 70	#8 305 261 225 196 169 148 129 112 98 86	#9 300 259 226 197 172 151 133 117 102	#9 307 272 246 223 201 177 156 138 123	#10 307 272 246 223 203 186 170 157 143
Tro	15 16 17 18 19 20 21 22 23 24 25	#4 #3 65 89 51 73 39 58 30 46	5 #\$ 9 111 2 9 8 7 6 6 6 6 5	5 #6 7 144 6 120 9 101 6 85 4 71 3 59 5 49	#6 136 113 94 79 65 54 44 35	#6 #6 168 142 119 101 5 85 4 72 4 60 5 50 41	#7 2000 1170 144 123 105 76 65 55 46 38	#7 238 203 174 149 129 1111 96 83 71 61	#8 276 236 203 176 152 132 115 100 87 76 66	#8 318 273 236 205 178 156 137 120 105 93 81	#8 265 226 193 166 144 124 108 93 81 70 59	#8 305 261 225 196 169 148 129 112 98 86 74	300 259 226 197 172 151 133 117 102 90	#9 307 272 246 223 201 177 156 138 123	#10 307 272 246 223 203 186 170 157 143

For limitations and explanation of use of tables, see pages 139-141.

	Depth					10	' FOR	Ms + 3	B" COI	NCRETE						
	Joists	4"		@ 34" 56 psf	c/c	5"	Joists	@ 35"	c/c	Wt 58 p	osf	6" Jo	ists @	36″ c/	c Wt	61 psf
	om Bar uss Bar		#5 #5	#6 #5	#6 #6	#6 #6	#7 #6	#7 #7	#8 #7	#8 #8	#9 #8	#8 #8	#9 #8	#9 #9	#10 #9	#10 #10
Feet	15 16 17 18	64 49 37	89 71 57 44	118 97 80 65	146 122 102 84	138 115 95 78	172 144 121 102	204 173 146 124	245 209 178 153	284 242 208 181	302 266 236 210	271 231 197 170	314 269 231 200	309 266 231	316 283 253	316 283 253
Length of Span in Feet	20 21 22 23 24		34	52 42 33	58 47 38 30	52 42 33	85 71 59 48 40 31	90 76 64 54	131 113 96 82 71 59	156 134 117 101 88 76	182 158 138 121 105 92	126 109 94 81 69	173 149 130 113 98 85	176 153 135 118 103	219 205 180 159 140 124	208 191 175 161 145
	25 26							36	50 42	65 56	81 69	59 50	75 63	90 79	109 96	128 114
	27 28								35	47 40	60 52	42 34	54 46	69 59	85 75	101

	Depth			1	12" FO	RMS+	21/2"	CONCR	ETE					
	Joists		@ 34" c/c 54 psf	5	i" Joists	s @ 35	" c/c	Wt 57	psf	6" Jo	ists @	36" c/	c Wt 6	1 psf
-	om Bar russ Bar	#6 #5	#6 #6	#6 #6	#7 #6	# 7 # 7	#8 #7	#8 #8	#9 #8	#8 #8	#9 #8	#9 #9	#10 #9	#10 #10
	18	83	105	97	125	151	183	215	250	204	238	271	292	
	19 20	68 56	89 75	81 68	106	130 111	159	187 163	219 191	176 153	207 181	237 207	266 242	266 242
eet	21	46	63	56	76	96	119	142	169	133	158	183	214	222
E.	22	37	52	46	64	82	104	125	148	116	139	161	190	204
f Span in Feet	23 24		43 35	37 30	54 45	71 60	90 78	110 96	131 115	101 87	121 107	142 125	168 150	189 175
hod	25				37	51	67	84	102	76	94	111	133	157
Length of	26 27				30	42 35	58 50	73 64	90 79	66 56	82 72	97 86	119	141 126
	28						42	55	69	48	62	76	94	113
	29						35	46	61	40	54	66	83	101
-	30 31	No To	apered			na antido i dissortado	30	41	53 46	34	46 39	58 50	74 65	90 80
	32		equired	-				54	40		33	44	57	72
	33								34			38	50	64

For limitations and explanation of use of tables, see pages 139-141.

			. 01 1111111	union	J dila (cxpiana	11011 01	030 0	i idbic.	, see p	ages it	,, , , , , , ,			
	Depth					12" FOI	RMS+	3" C	ONCRE	TE					
	Joists	4" Joist Wt	s @ 34 60 psf	" c/c	5′	' Joists	@ 35′	′ c/c	Wt 63 p	osf	6" Jo	ists @	36″ c/	c Wt	67 psf
	tom Bar russ Bar	#6 #5	##		#6 #6	#7 #6	# 7 # 7	#8 #7	#8 #8	#9 #8	#8 #8	# 9 #8	#9 #9	#10 #9	#10 #10
	18	82	10	5	97	125	152	185	219	252	207	241	276	300	300
	19	67	8		80	105	130	159	189	222	178	210	241	272	272
	20	55 44	7.		66 54	89 75	95	137	164 143	194 171	154	183	210 184	247	247 226
Fee	22	35	5		44	63	81	103	125	149	116	140	162	192	208
.⊑													i		200
pau	23		4	3	35	52 42	68 58	88 76	109 95	131	101 87	122	142 126	170	192
of S	25	_	3	3		34	48	65	83	100	75	107 92	110	151 134	1 <i>77</i>
ŧ	26					•	40	55	71	89	63	81	97	1119	140
Length of Span in Feet	27						32	47	62	78	54	70	85	105	126
	28							39	52	67	45	60	74	93	112
	29							32	45	58	38	51	64	82	100
	30								38	50	31	43	56	72	89
	31	N-	Tapered						32	43		36	48	63	79
*	32		Require							37 31			41 35	55 48	70 62
													33	40	02
	Depth	1			14	" FOR	MS+2	2½″ C	ONCRE	TE					
	Joists	5″ J	oists @	35"	c/c W	1 62 psf	6'	Joists Wt	@ 36′ 66 psf	" c/c	7" Jo	oists @	37" c/	c Wt	70 psf
	tom Bar Truss Bar		# 7 # 7	#8 #7	#8 #8	#9 #8	#9 #8	#9 #9	#10 #9	#10 #10	#9 #9	#10 #9	#10 #10	#11 #10	#11 #11
	21	93	115	142	170	200	189	218	254	292	206	242	278	300	
	22	79	100	125			167	193		261	182	214	248	277	277
	23	67 56	86 74	109 95	2.00		147	171		232	160	190	220	256	256
Feet	25	47	63	82	-	-	114	135		208 186	141	169	197	229 206	238 221
ء.								100	7	100	123	150	170	200	221
pan	26 27	38	54 45	71 62			100	119		168	110	133	157	185	197
of S	28	31	37	53		_	77	94	12177001283	150 135	97	118 105	140	166	189 171
£	29	1	31	45			67	82	The state of the	121	75	93	112	135	154
Length of Span in Feet	30			38	51	66	59	73	91	110	65	83	101	121	139
	31			32	44	58	51	64	81	98	57	73	90	109	126
	32				38		43	56		88	49	64	80	98	114
	33	-			32	44	37	49	63	79	42	56	71	88	103
	34					37	30	42			35	48	63	79	93
	35 36					31		36 30				42 35	55 48	71	84
	37				Ø.			30	37	49		30	42	63 56	75 68
	38								31	43			36	49	60
	Valu	es below	horizo	ntal li	ne are	for spo	ns in e	YCASS .	of 24 +						

Safe Superimposed Load (psf)
For limitations and explanation of use of tables, see pages 139-141

			01 111111	idilons	ana e	kplanat	ion or i	use of	tables,	see po	iges 13	9-141.			
	Depth	-			14	4" FOR	Ms+	3" CO	NCRET	E					
	Joists	5″ Jo	oists @	35″ c/	c Wt	68 psf	6"		@ 36″ '2 psf	c/c	7" Jo	ists @	37" c/	c Wt	76 psf
Botto	om Bar	#7	# 7	#8	#8	#9	#9	#9	#10	#10	#9	#10	#10	#11	#11
Tro	uss Bar	#6	#7	#7	#3	#8	#8	#9	#9	#10	#9	#9	#10	#10	#11
	21	91	114	142	170	200	189	219	257	263	207	244	281	304	
	22	77	98	123	148	177	166	193	227	243	182	215	250	280	280
	23	64	84	107	130	155	145	170	202	224	160	190	222	256	259
	24	53	72	93	114	138	128	150	179	208	140	168	198	228	241
eet	25	44	61	80	100	121	112	133	160	187	124	150	177	205	224
Length of Span in Feet	26	36	51	69	87	107	99	117	142	168	108	132	157	184	210
bau	27		42	59	76	94	86	104	127	149	95	117	139	165	188
of S	28		34	50	66	83	75	92	113	134	83	104	124	148	170
ath	29			42	56	73	65	80	100	120	72	91	111	132	153
Leng	30			35	49	63	56	70	88	107	62	80	98	119	138
	31				41	55	48	61	78	96	54	70	87	106	124
	32				34	47	40	53	69	85	46	62	77	95	112
	33					41	34	46	61	76	38	53	68	85	101
	34					34		39	53	68	32	46	60	75	90
	35							32	46	59		39	52	67	81
	36								39	52		32	45	59	73
	37								34	46			39	52	64
	38									40			33	45	57

CONCRETE JOIST CONSTRUCTION—END SPAN

Read the general explanation of the arrangement of tables for Concrete Joist Construction on pages 136 to 138 before using these tables for end spans. The details of temperature reinforcement, tapered end forms, distribution ribs, and especially the type of deformed bars all apply equally well here.

STRESSES;— $f'_c = 3000 \text{ psi}$ $f_c = 1350 \text{ psi}$ $f_s = 20,000 \text{ psi}$ $v_c = 90 \text{ psi}$ $v_c = 300 \text{ psi}$

CODES:—"Building Code Requirements for Reinforced Concrete (ACI 318-56)"; "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)."

 $E_1 = 6$ in. minimum for bottom bars.

 $E_2=17$ bar diameters, (24 dia. for d>12''), (obtained by straight embedment if possible, bent if necessary).

^{*} These tables provide for a negative moment $M=wl'^2/10$ at the continuous end, which is applicable when there is more than one additional span beyond the interior support. In the case of a structure only two spans wide, this negative moment should be $M=wl'^2/9$. This would require increasing the total negative reinforcement by approximately 10 per cent, which is best done by increasing the extra top bar. It is also recommended that the bottom bars be extended distance E_4 in this case.

[†] Bond and diagonal tension values are based upon deformed bars meeting ASTM A305. Plain round bars or deformed bars not meeting ASTM A305 will not give sufficient bond resistance.

CONCRETE JOIST CONSTRUCTION—END SPAN

- E₃ = bottom bar to extend 6 in. into the support except when values in the load tables are printed in boldface type.
- E_4 = When the values in the load tables are printed in boldface type, bottom bar should extend not less than 17 bar diameters nor less than l''/10 * past the far face of the support.

$$E_x=$$
 not less than
$$\begin{cases} l'/4 \\ l''/4 \\ 17 \text{ bar diameters} \\ \text{past bend-down} \\ \text{point} & (24 \text{ dia.} \\ \text{when } d > 12 \text{ in.}). \end{cases}$$
 whichever is greatest.

(ACI 902(a) requires top bars to extend to l'/16, d, or half bond length past point of inflection.)

The top bar in the table is scheduled on the basis of the adjoining span providing a bent bar of area equal to that of the bent bar in the span under consideration; any considerable variation in negative moment by reason of changes in load, span length, or end restraint of the adjacent span must be worked out by the general principles of continuity (pages 66-81).

- B = ordinarily 4 in. minimum (or preferably 6 in.) and sufficient in any case to keep the bearing pressure on the wall within the allowable for the material of which the wall is made (see page 99). Most designers prefer to have a continuous distribution rib of concrete bearing on the wall and reinforced with at least one #4 bar top and one #4 bar bottom whenever it is desired to spread the load along the wall bearing. When providing bearing on existing masonry work, it is often sufficient merely to extend the joist stems into individual pockets cut into the wall, but it is then recommended that the stiffening rib be placed between the joists parallel and adjacent to the wall bearing.
- A = bottom bar in adjoining span, not shown.

Almost all usual combinations of form depth, top slab and reinforcement are presented herewith. To show how the tables for end spans were computed and to permit extension of the tables if required, an illustrative example is shown:—

Example—Determine the safe carrying capacity on spans of 16 and 21 feet of 8 in. deep forms plus $2\frac{1}{2}$ in. of top slab with 5 in. wide joists at 25 in. centers and reinforced with one #6 bottom bar, one #6 truss bar and one #4 top bar, as shown in the figure on the following page. (See page 160.)

Solution:-

The dead weight of the slab can be computed as on page 140 to be 54 psf.

Shear Max. allowable
$$V = v_c b j d = 90 \times 5 \times \frac{7}{8} \times 9.38 = 3700 \text{ lb};$$

$$2.08 \frac{w l' \times 1.15 \dagger}{2} = 3700 \text{ lb}$$

For
$$l'=16$$
; $w=193$ psf. Subtracting 54 gives 139 psf. For $l'=21$; $w=147$ psf. Subtracting 54 gives 93 psf. Use tapered ends to increase shear capacity

^{*} Embedment of bottom bar at interior support is determined by the fact that the bottom bar is required for compressive reinforcement. The exact length varies. The maximum is that which will develop the full compression in the bar at the higher unit stress permitted by the ACI Code (20,000 psi) (ACI 318-56, Art. 706-b) and which will at the same time extend the needed distance across the moment curve. The capacity of the joist may be determined by shear, bond or flexure. The recommendation for E_4 will cover the worst condition. The user may at his option work out the needs of any particular problem (see page 173). † Shear is increased at the continuous end as per ACI Code 701c.

CONCRETE JOIST CONSTRUCTION—END SPAN

Bond

Max. allowable
$$V=u\Sigma ojd=300\times 2.356\times \%\times 9.38=5810$$
 lb.

$$2.08 \frac{wl'}{2} = 5810; \qquad w = \frac{5586}{l'}$$

For
$$l' = 16$$
; $w = 349$ psf. Subtracting 54 gives 295 psf. For $l' = 21$; $w = 266$ psf. Subtracting 54 gives 212 psf.

Positive Moment

$$A_s = 2 - \#6 = 0.88 \text{ sq in.}$$

Since
$$t = 2.5$$
 in., it is likely that the neutral axis lies within the flange; if so:—

$$p = \frac{0.88}{25 \times 9.38} = 0.00375 < 0.0136$$
 (underreinforced)

from page 34,
$$k = 0.238$$
; $kd = 0.238 \times 9.38 = 2.23 < 2.5$ in.

from page 34,
$$j = 0.920$$

Max. allowable
$$M_s = A_s f_s jd = 0.88 \times 20,000 \times 0.920 \times 9.38 = 152,000 \text{ lb-in} = 0.000 \text{ lb-in}$$

$$2.08 \times \frac{wl'^2 \times 12}{11}$$

For
$$l' = 16$$
; $w = 261$ psf. Subtracting 54 gives 207 psf. In table, p. For $l' = 21$; $w = 152$ psf. Subtracting 54 gives 98 psf. 160

Tapered End

Max. allowable
$$V = v_c b j d = 90 \times 9 \times \frac{7}{8} \times 9.38 = 6640 \text{ lb};$$

 $2.08 \times \frac{wl' \times 1.15}{2} = 6640 \text{ lb}$

Shear

For
$$l' = 16$$
; $w = 347$ psf. Subtracting 54 gives 293 psf. For $l' = 21$; $w = 265$ psf. Subtracting 54 gives 211 psf.

Negative Moment
$$A_s = 2 - \#6 + 1 - \#4 = 1.08 \text{ sq in.}; \quad p = \frac{1.08}{9 \times 9.38}$$

$$0.0128 < 0.0136$$
 (underreinforced) from page 34, $k = 0.394$, $j = 0.869$

Max. allowable
$$M_s = A_s f_s jd = 1.08 \times 20{,}000 \times 0.869 \times 9.38 =$$

176,000 lb-in. =
$$2.08 \frac{wl'^2 12}{10}$$

For
$$l' = 16$$
; $w = 276$ psf. Subtracting 54 gives 222 psf.

For
$$l' = 21$$
; $w = 160$ psf. Subtracting 54 gives 106 psf.

$$R = \frac{M}{bd^2} = \frac{176,000}{9 \times 9.38^2} = 222 \text{ psi, so (from page 34 for } f_s = 20,000 \text{ psi)}$$

 $f_c < 1350$ psi and compressive reinforcement is not required.

For limitations and explanation of use of tables, see pages 155-157.

	Depth			6" F	ORMS +	2" CONC	RETE				
	Joists	4" Joist	s @ 24"	c/c	Wt	39 psf	5" Joi	ists @ 25	" c/c	Wt	42 psf
	Bottom Bar	#4	#5	#5	#6	#6	#5	#6	#6	#7	#7
	Truss Bar	#4	#4	#5	#5	#6	#5	#5	#6	#6	#7
	Top Bar	#4	#4	#4	#4	#4	#4	#4	#4	#5	#4
	9	250	322	322			305	- Part Mediate Company			
	10	201	264	286			270	333	333		
	11	159	211	256	310	310	242	298	298		
走	12	127	171	213	263	281	200	249	269	304	304
Span I' in Ft	13	103	141	176	218	235	164	205	244	277	277
oau											
S	14	83	116	146	183	201	136	172	205	246	246
	15	67	96	122	154	174	113	143	173	209	214
	16	54	79	103	131	153	95	121	147	178	189
	17	43	65	86	111	135	79	102	125	153	167
	18	34	54	73	95	116	65	87	107	132	150

	Depth			6" FC	RMS + 2	1/2" CON	CRETE				
	Joists	4" Joist	s @ 24"	c/c	Wt	45 psf	5" Joi	sts @ 25	′ c/c	Wt	48 psf
	Bottom Bar	#4	#5	#5	#6	#6	#5	#6	#6	#7	#7
	Truss Bar	#4	#4	#5	#5	#6	#5	#5	#6	#6	#7
	Top Bar	#4	#4	#4	#4	#4	#4	#4	#4	#5	#4
	9	265	342				324				
	10	212	280	303			286				
	11	168	223	271	328	328	256	317	317		
走	12	133	180	227	280	297	214	264	287	322	322
Span I' in Ft	13	107	147	186	232	248	174	219	260	293	293
pdo	14	86	121	155	194	212	143	182	219	260	260
•	15	70	100	129	163	183	119	152	184	223	226
	16	55	81	107	138	160	98	128	156	190	199
	17	43	67	90	118	141	82	109	132	162	176
	18	34	55	76	100	122	68	91	113	139	157
	19		45	63	85	105	56	77	97	121	142

For limitations and explanation of use of tables, see pages 155-157.

l	Depth			6" F	ORMS +	3" CONC	CRETE				
	Joists	4" Jois	ts @ 24"	c/c	Wt	52 psf	5" Joi	sts @ 25	" c/c	Wt	55 ps
	Bottom Bo	ar #4	#5	#5	#6	#6	#5	#6	#6	#7	#7
	Truss B	ar #4	#4	#5	#5	#6	#5	#5	#6	#6	#7
	Top B	ar #4	#4	#4	#4	#4	#4	#4	#4	#5	#4
	9	278	360		2						
	10	223	295	319			301				
	11	175	235	285	346		269				
I	12	139	188	238	295	313	223	279	301		
Span I' in Ft	13	111	153	195	244	261	182	229	274	309	309
pan	14	88	124	160	203	222	149	190	230	274	274
S	15	70	102	133	170	191	123	158	192	235	237
	16	55	83	111	143	167	102	133	163	200	208
	17	43	68	93	121	147	84	111	138	171	184
	18	33	55	76	102	127	68	93	117	146	164
	19		44	63	86	108	56	78	99	126	147
	20		34	52	73	93	45	65	84	108	131

Dep	th				8"	FORMS -	+ 2" CO	NCRETE					-
Joist	s	4" Jois	sts @ 24	" c/c	Wt	45 psf	5" Jo	oists @	25" c/c			Wt	48 psf
	Bar Bar Bar	#4 #4 #4	#5 #4 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4
pan / in F. 1	2 3 4 5 6 7 8 9	266 212 171 139 113 93 76 62 51 41	345 278 226 186 154 128 107 90 75 63	335 282 233 195 164 139 118 100 85	347 289 243 206 175 150 129 111	307 263 229 201 179 159 138	317 266 219 183 153 129 109 92 77	329 273 229 193 164 140 120	322 274 233 199 170 147 127	322 281 241 208 180 157	322 281 248 221 199 179	322 281 248 221 199 179	322 281 248 221 199 179
2			43 35	62 52	83 72	104 91	55 46	75 64	95 83	120	144	149 137	149
23	3			44	62	80	37	55	72	92	112	126	126

For limitations and explanation of use of tables, see pages 155-157.

E	Depth				8" FC	ORMS +	21/2" CC	ONCRET	E				
	loists	4" Jois	its @ 24	" c/c	Wt .	51 psf	5" Jo	oists @ 2	25" c/c			Wt s	54 psf
T	ttom Bar russ Bar Top Bar	#4 #4 #4	#5 #4 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4
~	10 11 12 13 14	277 220 177 144 116	364 292 237 194 160	349 296 244 204	303 254	321 275	331 280 230 191	344 286 239	336 287	337	337	337	33:
Span I' in Ft	15 16 17 18 19	95 77 62 50 40	133 111 92 77 63	171 144 122 103 88	215 183 156 133 114	238 209 185 163 142	160 134 112 94 79	201 171 145 123	243 207 177 151	292 250 216 187 162	293 259 230 207 187	293 259 230 207 187	29: 25: 23: 20: 18:
	20 21	31	52 43	74 62	99 84	123 107	66 55	90 76	113 98	141 123	169 149	169 154	16 15
1	22 23	e	34	52 43	72 62	93 80	45 37	65 55	84 72	107 93	131 115	141 130	14

D	epth				8"	FORMS -	+ 3" CO	NCRETE					
J	oists	4" Jois	ts @ 24	" c/c	Wt	58 psf	5" Je	oists @	25" c/c			Wt	61 psf
I	tom Bar russ Bar Top Bar	#4	#5 #4 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4
	10 11 12 13 14	288 228 182 147 118	303 245 200 164	308 254 211	314 264	333 284	345 291 239 198	359 297 248	351 298				
Span I' in Ft	15 16 17 18 19	96 77 61 49 38	136 112 93 77 63	176 148 124 104 88	222 188 160 136 117	246 216 191 168 145	164 137 114 95 79	208 175 148 126	252 214 183 156 134	304 261 224 194 167	304 268 238 213 192	304 268 238 213 192	304 268 238 213 192
	20 21 22		51 41 32	74 61 51	99 85 72	125 108 93	66 54 44	90 77 64	115 99 85	145 126 109	174 153 134	174 158 144	174 158 144
	23			42	61	80	35	53	72	95	117	133	133

For limitations and explanation of use of tables, see pages 155-157.

Dep	th				10	" FOR!	MS + 2"	CONC	RETE					
Jois	ts	4" Jois	ts @ 2	4" c/c	Wt 5	0 psf	5" Jo	oists @	25″ c/c		0	W.	Wt 5	4 psf
Tru	om Bar uss Bar op Bar	#4 #4 #4	#5 #4 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4	#9 #8 #6
Span I' in Ft	15 16 17 18 19 20 21 22 23 24	119 99 82 68 55 45 36	164 138 117 99 84 70 60 50 41	208 177 151 129 111 95 81 70 60	260 222 191 165 143 124 108 94 82	285 251 224 201 175 153 134 118 104	194 164 139 118 100 86 72 61 52 43	244 208 178 153 131 114 98 85 73 62	293 251 217 187 162 141 123 107 94	304 263 229 200 176 154 136 119	308 275 247 225 204 185 164 145	308 275 247 225 204 187 172 159	308 275 247 225 204 187 172 159	308 275 247 225 204 187 172 159
	25 26 27 28			43 36 30	61 53 46 39	80 70 61 54	35	53 45 38 31	71 62 53 46	93 82 72 63	114 102 91 80	137 127 112 101	137 127 118 111	137 127 118 111

Dep	oth				10	FORM	15 + 21/2	" CON	CRETE					
Jois	its	4" Joi	sts @ 2	4" c/c	Wt 5	6 psf	5" J	oists @	25" c/c	¥.	24		Wt 6	0 psf
Tr	om Bar uss Bar op Bar	#4 #4 #4	#5 #4 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4	#9 #8 #6
	15	121	168	214	269	294	200	252	302	17.00		6 8 00 00 0	8 9 4	
	16	100	141	181	229	259	168	213	259	313	318	318	318	318
	17	82	118	154	196	230	142	182	222	270	285	285	285	285
	18	67	100	132	169	206	121	157	192	235	255	255	255	255
Span I' in Ft	19	54	84	112	146	179	102	134	166	205	231	231	231	231
-	20	44	70	96	126	156	87	115	143	179	210	210	210	210
5	21	34	58	82	109	137	73	99	125	157	189	192	192	192
Sp	22		48	70	95	119	61	85	109	137	167	177	177	177
	23		39	59	82	104	51	73	94	121	147	163	163	163
	24		31	49	70	91	41	61	82	106	130	151	151	151
	25			41	61	80	34	52	71	93	115	139	139	139
	26			34	52	69		44	60	81	102	126	129	12
	27				44	60		36	52	71	90	113	120	120
	28				37	52			44	62	80	101	112	11:

For limitations and explanation of use of tables, see pages 155-157.

D	epth				1	O" FOR	M5 + 3	" CONC	RETE					
Jo	ists	4" Joi	ists @ 2	4" c/c	Wt	33 psf	5" 」	oists @	25" c/	c			Wt	57 psf
Tr	om Bar uss Bar op Bar	#4	#5 #4 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4	#9 #8 #6
Span I' in Ft	15 16 17 18 19 20 21 22 23	122 100 81 65 52 41 31	171 143 119 99 83 68 56 46 37	219 185 157 133 113 96 81 68 57	277 235 201 173 148 128 110 95 81	303 266 237 211 183 159 138 120 105	204 172 144 122 103 86 72 59 49	259 220 187 160 136 116 99 85 72	311 266 228 196 169 146 127	324 279 242 210 182 160 139 122	328 292 262 237 215 192 169 149	328 292 262 237 215 196 180	328 292 262 237 215 196 180 166	328 292 262 237 215 196 180
	24 25 26			47 38 31	69 59 50	91 79 68	39 30	60 51 41	81 69 59	106 93 81	131 116 102	152 141 127	152 141 130	152 141 130
	27 28				42 34	59 50		34	50 42	70 61	90 79	113 101	121	121

D	epth				1	2" FOR	Ms + 2	" CON	CRETE					
Jo	oists		sts @ 2 Vt 57 p		5"]	loists @	25" c/	c	Wt 6	1 psf	6" Jois	ts @ 26	" c/c W	t 66 ps
Tr	om Bai uss Bai op Bai	#5	#6 #5 #4	#6 #6 #4	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4	#9 #8 #6	#8 #8 #4	#9 #8 #6	#9 #9 #4	#10 #9 #7
	18	157 135	200 173	238 212	227 198	278 241	294 266	294 266	294 266	294 266	310	310	310	310
	20 21	116 100	151 132	186 164	173 151	214 188	243 222	243 222	243 222	243 222	284 260	284 260	284 260	284 260
in Fr	22	86	115	144	132	166	200	206	206	206	240	240	240	240
Span I' in Ft	23	74 63	100 87	127	115	146	1 <i>77</i>	189 175	189 175	189 175	222	222 206	222 206	222 206
S	25 26	54 45	76 66	98 87	88 77	115	140	162 152	162 152	162 152	188	191 178	191 178	191
	27	38	57	76	67	90	112	139	141	141	151	167	167	167
	28	31	49	67	58	79	100	125	131	131	136	157	157	157
	29		42	58	50	70	89	112	124	124	122	146	147	147
	30		35	51 44	42 36	61 53	79 70	101 91	116 109	116	110 99	132 120	138	138
	32			38	30	46	62 55	82 73	100 91	103 98	88	108	122	122

For limitations and explanation of use of tables, see pages 155-157.

Depth 12" FORMS + 2½" CONCRETE	
Wt 63 psf	
Top Bar #4 #4 #4 #4 #5 #4 #6 #4 #6 #4 #6 #4	#10 #9 #7
18 159 202 244 231 283 301 320 320 320 320 248 248 248 248 248 248 248 248 248 248 248 248 246 246 246 246 246 246 246 246 246 246 24	320 292 267 246 227 211 196 182 170 159 149 140 132 122 116
Depth 12" FORMS + 3" CONCRETE	
Joists 4" Joists @ 24" c/c Wt 69 psf 5" Joists @ 25" c/c Wt 74 psf 6" Joists @ 26" c/c W	78 psf
Bottom Bar #5 #6 #6 #6 #7 #7 #8 #8 #9 #9 Truss Bar #5 #5 #6 #6 #6 #6 #7 #7 #8 #8 #8 #9 Top Bar #4 #4 #4 #4 #5 #4 #6 #4 #6 #4 #6 #4	#10 #9 #7
18 161 207 251 234 288 310 310 310 310 19 137 179 219 203 251 281 281 281 281 281 330 330 330 20 117 154 191 176 219 255 255 255 255 301 301 301 21 101 134 167 153 192 231 233 233 233 276 276 276 22 86 116 146 132 168 205 214 214 214 254 254 254 3 72 100 128 115 148 180 197 197 197 235 235 235 24 61 86 112 100 130 159 182 182 182 214 217 217 5 25 51 74 98 86 114 141 168 168 168 192 202 202 26 41 63 85 74 99 125 154 156 156 171	330 301 276 254 235 217 202 187 175
28	163 153 143 134 127
33 34 49 68 87 97 76 96 116	119

For limitations and explanation of use of tables, see pages 155-157.

Dep	oth			-	14" F	ORMS -	- 2" CO	NCRETE					
Jois	its	5" Joists	@ 25'	′ c/c			Wt 6	8 psf	6" Joi	sts @ 2	6" c/c	Wt 7	3 psf
Botte	om Bar	#6	#6	#7	#7	#8	#8	#9	#8	#9	#9	#10	#10
	uss Bar	#5	#6	#6	#7	#7	#8	#8	#8	#8	#9	#9 #7	#10 #5
Т	op Bar	#4	#4	#5	#4	#6	#4	#6	#4	#6	#4		
	21	145	179	222	260	260	260	260	306	306	306	306	306
	22	126	156	196	236	240	240	240	283	283	283	283	283
	23	110	137	173	210	223	223	223	262	262	262	262	262 243
	24	95	120	154	188	207	207	207 192	243	243 227	243 227	243 227	227
	25	82	106	137	166	192	192	192	223	221	22/	221	22/
Span I' in Ft	26	71	92	121	149	179	179	179	201	212	212	212	212
٠.	27	61	81	107	134	166	167	167	180	198	198	198	198
2	28	52	70	95	120	150	156	156	163	186	186	186	186
Spo	29	44	61	84	107	134	147	147	147	174	174	174	174
	30	36	53	74	96	121	137	137	133	160	164	164	164
	31	30	45	65	85	109	129	129	119	146	155	155	155
	32	30	38	59	76	98	120	122	107	132	146	146	146
	33		32	50	67	89	109	115	97	120	138	138	138
	34		32	43	59	79	99	108	87	109	128	130	130
	35			37	52	71	89	102	78	98	117	123	123
	36			31	46	64	81	97	70	89	107	117	117
	37			٠.	40	61	73	91	62	80	97	111	111
	38				34	50	65	83	55	72	88	105	105
De	pth				14" FG	ORMS +	2½" C	ONCRET	E				
Joi	sts	5" Joist	s @ 25	" c/c			Wt 7	75 psf	6" Jo	ists @ 2	6" c/c	Wt 8	0 psf
Bott	om Bar	#6	#6	#7	#7	#8	#8	#9	#8	#9	#9	#10	#10
	uss Bar		#6	#6	#7	#7 √	#8	#8	#8	#8	#9	#9	#10
1	op Bar	#4	#4	#5	#4	#6	#4	#6	#4	#6	#4	#7	#5
	21	142	178	223	265	265	265	265	312	312	312	312	312
	22	123	156	1 197	237	244	244	244	288	288	288	288	288
	23	106	136	174	211	225	225	225	267	267	267	267	267
	24	91	119	154	187	208	208	208	247	247	247	247	247
	25	79	104	136	167	193	193	193	223	230	230	230	230
正	0.4	17	00	120	148	179	179	179	200	215	215	215	215
Span I' in Ft	26 27	67 56	90 78	106	132	164	167	167	180	200	200	200	200
=	28	47	68	93	118	147	156	156	162	188	188	188	188
bdo	29	39	58	82	105	131	147	147	145	175	176	176	176
0,	30	32	50	71	93	119	138	138	131	158	165	165	165
		1			82	106	129	129	117	143	155	155	155
	31		41	62					105	129	147	147	147
	31 32		41	62 54	72	95	118	121	105	127	147	14/	- Decor.
	31 32 33	a _g				95 85	118	114	94	117	138	138	138
	32			54	72	W 500				•			138
	32 33 34	- ·		54 46	72 64	85	106	114 107 101	94 84 75	117 106 95	138 126 115	138 130 123	138 130 123
	32 33			54 46 39	72 64 56	85 75	106 95	114	94	117	138 126 115 104	138 130 123 116	138 130 123 116
	32 33 34 35	-		54 46 39	72 64 56 48	85 75 67	95 86	114 107 101	94 84 75	117 106 95	138 126 115	138 130 123	138 130 123

For limitations and explanation of use of tables, see pages 155-157.

D	epth				14"	FORMS	+ 3" C	ONCRET	E				
J	oists	5" Jo	oists @ 2	5′′ c/c			Wt	81 psf	6" J	oists @	26″ c/c	Wt	86 psf
1000	ttom Bar Truss Bar Top Bar	#5	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4	#9 #8 #6	#8 #8 #4	#9 #8 #6	#9 #9 #4	#10 #9 #7	#10 #10 #5
Span I' in Ft	21 22 23 24 25 26 27 28 29 30 31 32 33 34	143 123 105 91 77 65 55 45 37	180 157 136 119 103 89 77 66 56 47 39 31	225 198 175 153 135 119 105 91 80 69 60 51 44 36	269 240 212 188 168 148 132 117 103 91 85 70 62 53	269 247 228 211 196 182 164 147 131 118 105 93 84	269 247 228 211 196 182 169 158 148 138 129 116 105	269 247 228 211 196 182 169 158 148 138	318 293 271 251 225 201 181 162 145 130 116 104 93 82	318 293 271 251 233 217 203 190 175 157 142 128 116 104	318 293 271 251 233 217 203 190 178 167 156 148 138 126	318 293 271 251 233 217 203 190 178 167 156 148 139 131	318 293 271 251 233 217 203 190 178 167 156 148 139
	35 36 37 38				46 39 33	65 57 50 43	84 75 67 59	100 94 86 77	73 64 56 49	94 84 75 66	113 103 93 83	123 117 110 104	123 117 110 104

CONCRETE JOIST CONSTRUCTION END SPAN—30 INCH WIDE FORMS Safe Superimposed Load (psf)

For limitations and explanation of use of tables, see pages 139-140.

De	pth				6′	' FORM	$s + 2\frac{1}{2}$	" CONC	RETE				
Jo	ists	4" Jois	ts @ 34'	" c/c	Wt 4	1 psf	5" Jo	5" Joists @ 35" c/c			13 psf		@ 36" c/c 5 psf
	om Bouss B	ar #4	#5 #4 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#7 #6 #5	#7 #7 #4	#7 #6 #5	#7 #7 #4
181	9 10 11	177 140 109	232 189 148	232 205 182	281 248 222	281 248 222	223 195 174	277 244 218	277 244 218	309 274 245	309 274 245	316 280 251	316 280 251
Span I' in Ft	12 13	85 66	118 95	151 122	189 155	201 166	144 116	180 148	197 177	222 201	222 201	226 205	226 205
Spa	15	52 39	76 61	100 82	128 106	141 120	93 76	121 100	148 123	177 151	177 153	171 143	187 172
	16	30	48 38	66 54	88 74	104 90	61 50	83 69	103 86	127 107	134 117	120 101	143 122
	18			39	61	77	40	56	72	91	103	85	104
	19		1	35	51	65	31	46	60	78	93	72	93

For limitations and explanation of use of tables, see pages 155-157.

D	epth					6" FOR	MS + 3"	CONC	RETE				
Joists		4" Joists @ 34" c/c			Wt 48 psf		5" Joists @ 35" c/c			Wt	50 psf	6" Joists Wt 5	@ 36" c/c 52 psf
	Bottom Bar		#5	#5	#6	#6	#5	#6	#6	#7	#7	#7	#7
	uss Bar		#4	#5	#5	#6	#5	#5	#6	#6	#7	#6	#7
Т	op Bar	#4	#4	#4	#4	#4	#4	#4	#4	#5	#4	#5	#4
	9	184	243	243	295	295	233	289	289	325	325	334	334
	10	146	197	214	261	261	204	256	256	288	288	295	295
	11	112	154	190	233	233	181	228	228	257	257	263	263
	12	87	121	157	197	210	149	188	204	232	232	236	236
Span I' in Ft	13	67	97	126	161	173	119	153	185	210	210	214	214
upo	14	51	76	102	132	145	96	125	154	185	185	179	196
S	15	38	61	82	102	123	77	102	126	157	158	149	177
	16		47	67	89	107	62	84	106	132	138	125	150
	17		36	54	74	92	49	68	88	111	121	105	127
	18			42	61	78	38	56	73	93	106	87	107
	19			33	49	65		45	60	79	94	73	91
	20				40	54		36	49	66	83	61	77

m Bar	Joists	@ 34'	′ c/c	VA/4 /		11						1)		
	1/4			VV 1 4;	5 psf	5".	Joists (35"	c/c	Wt 4	8 psf	11	Joists @ Nt 50 p	
ss Bar	**	#5	#5	#6	#6	#5	#6	#6	#7	#7	#8	#7	#8	#8
	#4	#4	#5	#5	#6	#5	#5	#6	#6	#7	#7	#7	#7	
p Bar	#4	#4	#4	#4	#4	#4	#4	#4	#5	#4	#6	#4	#6	#8
10	187	248	266	322	322	254	314	314						
OHD JONE	146	197	237	289	289	227	282	282	316	316	316	324		
12	116	158	200	248	261	190	236	254	286			G1027000	310	310
13	92	128	163	205	217	155	195	231	260					
14	73	104	135	170	185	127	161	195	231	231	231	244	260	28
15	58	85	112	143	159	105	134	164	100	200	200	004		
16	45	69	92											23
17	35				100000							10000000		210
18		45		N-1100	Carlo Carlo					000000000000000000000000000000000000000				187
10		25	150.0									142	166	166
.,		33 [- 30	71	91	50	66	84	106	124	124	122	147	150
20			43	61	78	38	55	71	90	111	111	105	128	136
21	1.0		35	50	66	30	45	60	78	97	100	91	111	123
22				42	57		37	50	67	84	91	78	07	113
23			•	35	47									100
	10 11 12 13 14 15 16 17 18 19 20 21	10	10	10	10	10	10 187 248 266 322 322 254 11 146 197 237 289 289 227 12 116 158 200 248 261 190 13 92 128 163 205 217 155 14 73 104 135 170 185 127 15 58 85 112 143 159 105 16 45 69 92 120 138 86 17 35 56 77 101 121 70 18 45 64 85 106 57 19 35 56 71 91 50 20 43 61 78 38 21 35 50 66 30	10 187 248 266 322 322 254 314 11 146 197 237 289 289 227 282 12 116 158 200 248 261 190 236 13 92 128 163 205 217 155 195 14 73 104 135 170 185 127 161 15 58 85 112 143 159 105 134 16 45 69 92 120 138 86 113 17 35 56 77 101 121 70 94 18 45 64 85 106 57 78 19 35 56 71 91 50 66 20 43 61 78 38 55 21 35 50 66 30 45	10 187 248 266 322 322 254 314 314 11 146 197 237 289 289 227 282 282 12 116 158 200 248 261 190 236 254 13 92 128 163 205 217 155 195 231 14 73 104 135 170 185 127 161 195 15 58 85 112 143 159 105 134 164 16 45 69 92 120 138 86 113 138 17 35 56 77 101 121 70 94 117 18 45 64 85 106 57 78 98 19 35 56 71 91 50 66 84 20 43 61 78 38 55 71 21 35 50 66 30 45 60	10 187 248 266 322 322 254 314 314 11 146 197 237 289 289 227 282 282 316 12 116 158 200 248 261 190 236 254 286 13 92 128 163 205 217 155 195 231 260 14 73 104 135 170 185 127 161 195 231 15 58 85 112 143 159 105 134 164 199 16 45 69 92 120 138 86 113 138 169 17 35 56 77 101 121 70 94 117 145 18 45 64 85 106 57 78 98 124 19 35 56 71 91 50 66 84 106 20 43 61 78 38 55 71 90 21 35 50 66 30 45 60 78 <	10 187 248 266 322 322 254 314 314 11 146 197 237 289 289 227 282 282 316 316 12 116 158 200 248 261 190 236 254 286 286 13 92 128 163 205 217 155 195 231 260 260 14 73 104 135 170 185 127 161 195 231 231 15 58 85 112 143 159 105 134 164 199 200 16 45 69 92 120 138 86 113 138 169 175 17 35 56 77 101 121 70 94 117 145 155 18 45 64 85 106 57 78 98 124 138 19 35 56	10 187 248 266 322 322 254 314 314 11 146 197 237 289 289 227 282 282 316 316 316 12 116 158 200 248 261 190 236 254 286 286 286 13 92 128 163 205 217 155 195 231 260 260 260 14 73 104 135 170 185 127 161 195 231 231 231 231 15 58 85 112 143 159 105 134 164 199 200 200 16 45 69 92 120 138 86 113 138 169 175 175 17 35 56 77 101 121 70 94 117 145 155 155 18 45 64 85 106 57	10 187 248 266 322 322 254 314 314 11 146 197 237 289 289 227 282 282 316 316 316 12 116 158 200 248 261 190 236 254 286 286 286 286 13 92 128 163 205 217 155 195 231 260 260 267 14 73 104 135 170 185 127 161 195 231 231 231 244 15 58 85 112 143 159 105 134 164 199 200 200 224 16 45 69 92 120 138 86 113 138 169 175 175 192 17 35 56 77 101 121 70 94 117 145 155 155 164 18 45 64 85 106 57 78 98 124 138 138 142 19 35 56 71 </td <td> 10</td>	10

For limitations and explanation of use of tables, see pages 155-157.

Dep	oth					8" FC	ORMS -	- 3" C	ONCRE	TE	-				
Jois	sts	4" Jois	ts @ :	34′′ c/c	Wt 5	51 psf	II	Joists (Wt 5	64 psf	6" J	oists @ Wt 56	36" c/
Tru	om Bar oss Bar op Bar	#4	#5 #4 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#7 #7 #4	#8 #7 #6	#8 #8 #4
Span I' in Ft	10 11 12 13 14 15 16 17 18 19 20 21 22	181 142 111 87 68 53 40	258 204 163 131 106 86 69 55 47 37	276 247 207 169 139 114 94 77 63 52 42 33	301 258 212 176 146 123 103 86 73 60 50 41	301 271 225 200 163 142 125 109 92 78 66 55	265 236 196 160 131 107 87 71 57 46	328 293 246 202 167 138 115 95 79 66 54 44 35	328 293 264 244 202 170 142 120 101 85 72 60	330 298 272 240 207 176 150 128 109 93 79 67	330 298 272 240 207 181 160 142 127 114 99 85	330 298 272 240 207 181 160 142 127 114 102 92	305 277 254 233 200 171 146 125 108 92 79	324 295 270 248 218 193 173 152 126 114 99	324 295 270 248 218 193 173 155 140 127 115
-	23				33	46	-	ess	41	57	73	84	68	86	104
Joi			Wt 50		11		MS + 2 @ 35"			2 psf	6″ Jo	oists @	36" c/	'c Wt	55 psf
Тор	Bar #4 Bar #4	4 #5	#6 #5 #4	#6	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4	#9 #8 #6	#8 #8 #4	#9 #8 #6	#9 #9 #4	#10 #9 #7	#10 #10 # 5
15 16 17 18 ± 19	89 7 73 8 60	98 83	179 151 128 109 92	172 152 135	207 176 149 128 110	249 214 184 159 137	249 218 194 173 156	249 218 194 173 156	249 218 194 173 156	249 218 194 173 156	295 260 232 207 187	295 260 232 207 187	295 260 232 207 187	295 260 232 207 187	295 260 232 207 187
E 20 21 22 23 24	30		78 66 57 47	86 73 63	93 80 69 58	119 103 89 77 67	141 126 110 96 84	141 128 117 107	141 128 117 107	141 128 117 107	170 155 142 130	170 155 142 130	170 155 142 130	170 155 142 130	170 155 142 130
25			32	46	42	57	73	90	90	90	103	110	110	120 110	110
26 27 28			7	38	34	49 42 35	64 55 48	83 72 63	83 77 71	83 77 71	91 81 71	102 95 87	102 95 88	102 95 88	102 95 88

For limitations and explanation of use of tables, see pages 155-157.

							_					-			
Depth	1				10	" FOR	Ms +	3" COI	NCRETE	l					
Joists	4'		@ 34' 56 psf		5".	Joists @	g 35''	c/c	Wt 58	psf	6" Joi	sts @	36" c/c	Wt	61 psf
Bottom Bar Truss Bar Top Bar	r #4	#5 #5 #4	#6 #5 #4	#6 #6 #4	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4	#9 #8 #6	#8 #8 #4	#9 #8 #6	#9 #9 #4	#10 #9 #7	#10 #10 #5
15 16 17 18 19	89 72 58 47	143 119 99 82 68	184 154 130 111 93	202 176 156 137 118	212 180 153 130 111	255 221 189 162 140	255 224 198 177 159	255 224 198 177 159	255 224 198 177 159	255 224 198 177 159	304 268 238 213 192	304 268 238 213 192	304 268 238 213 192	304 268 238 213 192	304 268 238 213 192
20 21 22 22 23 24	37	56 46 37 32	79 66 55 46 37	101 86 73 63 53	94 81 68 57 45	120 104 89 77 65	144 127 110 96 83	144 130 118 108 98	144 130 118 108 98	144 130 118 108 98	174 158 144 132 118	174 158 144 132 122	132 122	174 158 144 132 122	174 158 144 132 122
25 26			30	44 37	39 32	56 48	73 63	90 81	90 83	90 83	104 91	112 103		112 103	112
27 28				30		40 33	54 46	70 63	76 70	76 70	80 70	95 87		95 88	95 88
Depth					12′	" FORM	AS + 2	½″ co	ONCRE	TE II					
Joists	4" J	oists @ Wt 54	34" c	/c	5" Joi	ists @ 3	35" c/	c	Wt 57	psf	6" Joi	sts @	36" c/c	Wt	51 ps
	m Bar ss Bar p Bar	#6 #5 #4	#6 #6 #4	5	#6 #6 #4	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4	#9 #8 #6	#8 #8 #4	#9 #8 #6	#9 #9 #4	#10 #9 #7	#10 #10 #5
1 2 2	18 19 20 21 22	133 114 98 83 71	16 14 12 10	2 3	156 134 115 99	168 145 126	207 186 169 154 135	207 186 169 154 141	207 186 169 154 141	207 186 169 154 141	247 223 202 185 169	247 223 202 185 169	247 223 202 185 169	247 223 202 185 169	24: 22: 20: 18: 16:
Span	23 24 25 26 27	52 43 36	5 5	30 39 59 50 43	73 63 53 45 37	96 84 73 63 54	119 104 91 81 71	130 119 110 102 90	130 119 110 101 93	130 119 110 101 93	156 143 127 113 101	156 144 133 124 115	156 144 133 124 115	156 144 133 124 115	15 14 13 12 11
	28 29			36	31	46 39	61 53	80 71	87 81	87 81	89 79	107 97	107	107 100	10
	30 31 32 33					33	46 39 34	62 54 47 41	75 69 61 54	75 70 65 61	70 62 54 47	87 77 69 62	87 81	93 87 81 76	8

Tabulated values in boldface type require embedment E_4 explained on page 155. Above and to the right of the zigzag line, tapered ends are required.

For limitations and explanation of use of tables, see pages 155-157.

0.00															
Dep	oth				12	" FO	RMS +	- 3" CO	NCRET	E					
Jois	its 4"	Joists @ Wt 60		5	" Jois	its @	35" c/	′c	Wt 63	psf	6" Joists @ 36" c/c Wt 67 psf				
	ttom Bai Truss Bai Top Bai	#5	#6 #6 #4	# # # #	6	#7 #6 #5	#7 #7 #4	#8 #7 #6	#8 #8 #4	#9 #8 #6	#8 #8 #4	#9 #8 #6	#9 #9 #4	#10 #9 #7	#10 #10 #5
Span I' in Ft	18 19 20 21 22 23 24 25 26 27	135 115 97 83 70 59 49 41 33	166 143 123 107 92 79 68 58 49 41	15 13 11 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	57 35 15	773 196 169 146 127 110 95 83 71 60 52 45 37	211 188 172 155 136 118 103 90 79 69 60 51	211 188 172 155 142 130 119 110 100 88 78 68	211 188 172 155 142 130 119 110 101 93	211 188 172 155 142 130 119 110 101 93 86 79	251 227 204 187 172 158 144 128 113 100	251 227 204 187 172 158 145 134 124 114	251 227 204 187 172 158 145 134 124 114	251 227 204 187 172 158 145 134 124 114	251 227 204 187 172 158 145 134 124 114
	30			1		31	43	60	73	73	68	85	92	92	92
	31			_			37	52	67	68	59	75	86	86	86
	32						31	45	59	62	52	66	79	79	79
	33							38	52	58	44	59	73	74	74
Dep		Joists @	35" c/	c	14" Wt 62		11	2½" Co "Joists Wt			7'' Je	oists @	37" c/	c Wt	70 psf
Trus	n Bar #7 ss Bar #6 p Bar #5		#8 #7 #6	#8 #8 #4	#9 #8 #6	#9 #9 #4	#9 #8 #6		#10 #9 #7	#10 #10 #5	#9 #9 #4	#10 #9 #7	#10 #10 #5	#11 #10 #7	#11 #11 #5
2	21 151 22 132 23 116 24 101 25 89	181 161 142 125 111	181 166 152 140 129	181 166 152 140 129	181 166 152 140 129	181 166 152 140 129	199 184 170	199 184 170		217 199 184 170 158	251 231 213 197 183	251 231 213 197 183	251 231 213 197 183	251 231 213 197 183	251 231 213 197 183
Span l'i	26 77 27 67 28 58 29 50 30 42	76 66	119 109 96 85	119 111 103 97 90	119 111 103 97 90	119 111 103 97	137 128 118	137 128 119	128 119	147 137 128 119	171 159 144 129 116	171 159 149 139	171 159 149 139	171 159 149 139	171 159 149 139
3	31 36 32 30 33	50	67 59 52	84 76 67	84 78 73	84 78 73	95	5 104 5 98	104 98	104 98 92	104 93 84	122 115 104	122 116 108	122 116 108	122 116 108
3	34 35 36 37	32	39 34	59 53 46 41 35	68 64 59 54 48	68 64 59 55	54	74 67 3 59	81 76 71	86 81 76 71 67	75 67 59 52 46	93 84 76 68 61	96 90 84 76	96 90 85 80	96 90 85 80
	38 Tabul	ated va	lues in b			52 e req					11		-		

Above and to the right of the zigzag line, tapered ends are required.

For limitations and explanation of use of tables, see pages 155-157.

De	pth					14	" FOR	Ms + 3	" CON	CRETE	E						
Jo	ists	5" Jo	ists @	35″ c/	c	c Wt 68 psf				@ 36" '2 psf	c/c	7" Joists @ 37" c/c Wt 76 psf					
Botto	m Bo	ar #7	#7	#8	#8	#9	#9	#9	#9	#10	#10	#9	#10	#10	#11	#11	
Tru	ss Bo	ar #6	#7	#7	#8	#8	#9	#8	#9	#9	#10	#9	#9	#10	#10	#11	
Тс	р Вс	ar #5	#4	#6	#4	#6	#4	#6	#4	#7	#5	#4	#7	#5	#7	#5	
	21	150	182	182	182	182	182	220	220	220	220	256	256	256	256	256	
	22	131	161	166	166	166	166	201	201	201	201	236	236	236	236	236	
	23	115	141	153	153	153	153	186	186	186	186	217	217	217	217	217	
	24	99	124	141	141	141	141	171	171	171	171	200	200	200	200	200	
	25	86	110	130	130	130	130	158	158	158	158	186	186	186	186	186	
ŧ	26	75	96	119	119	119	119	147	147	147	147	173	173	173	173	173	
2.	27	65	84	107	111	111	111	137	137	137	137	160	161	161	161	161	
-	28	55	74	95	103	103	103	127	127	127	127	144	150	150	150	150	
Span I' in Ft	29	47	64	84	95	95	95	116	119	119	119	128	141	141	141	141	
,	30	39	55	74	88	88	88	104	110	110	110	115	131	131	131	131	
	31	33	51	65	82	82	82	93	103	103	103	102	123	123	123	123	
	32		40	56	73	77	77	82	97	97	97	91	113	115	115	115	
	33		34	50	65	71	71	74	90	90	90	81	102	108	108	108	
	34			42	57	66	66	65	81	84	84	73	91	102	102	102	
Se al	35	4		36	50	61	61	57	72	79	79	64	82	96	96	96	
	36			30	44	57	57	51	64	74	74	57	74	90	90	90	
	37				38	51	53	44	57	69	69	50	66	82	85	85	
	38				32	45	49	38	50	65	65	43	58	74	80	80	

CONCRETE JOIST CONSTRUCTION—INTERIOR SPAN

Read the general explanation of the arrangement of tables for Concrete Joist Construction on pages 136 to 138 before using these tables for interior spans. The details of temperature reinforcement, tapered end forms, distribution ribs, and especially the type of deformed bars all apply equally well here.

STRESSES:— CODES:—"Building Code Require- $f'_c = 3000 \text{ psi}$ $f_c = 1350 \text{ psi}$ $f_s = 20,000 \text{ psi}$ $v_c = 90 \text{ psi}^*$ $v = 300 \text{ psi}^*$ $v = 300 \text{ psi}^*$

- E_3 = bottom bar to extend 6 in. into the support except when values in the load tables are printed in boldface type.
- E_4 = When the values in the load tables are printed in boldface type, bottom bar should extend not less than 17 bar diameters nor less than I'''/10 past the far face of the support. Embedment of bottom bar at interior support is determined by the fact that the bottom bar is required for compressive reinforcement. The exact length varies. The maximum is that which will develop the full compression in the bar at the higher unit stress permitted by the ACI Code (20,000 psi) and which will at the same time extend the needed distance across the moment curve. The capacity

^{*} Bond and diagonal tension values are based upon deformed bars meeting ASTM A305. Plain round bars or deformed bars not meeting ASTM A305 will not give sufficient bond resistance.

CONCRETE JOIST CONSTRUCTION—INTERIOR SPAN

of the joist may be determined by shear, bond or flexure. The recommendation for E4 will cover the worst condition. The user may at his option work out the needs of any particular problem (see page 173).

$$E_{z} = \text{not less than} \begin{cases} l'/4 \\ l''/4 \\ 17 \text{ bar diameters} \\ \text{past bend-down} \\ \text{point} & (24 \text{ dia.} \\ \text{when } d > 12 \text{ in.}). \end{cases}$$
 whichever is greatest.
$$(ACI 902(a) \text{ requires top bars to} \\ \text{extend to } l'/16, d, \text{ or half bond} \\ \text{length past point of inflection.})$$
 whichever is greatest.
$$\text{past bend-down} \\ \text{point} & (24 \text{ dia.} \\ \text{when } d > 12 \text{ in.}). \end{cases}$$
 whichever is greatest.

The top bar in the table is scheduled on the basis of the adjoining span providing a bent bar of area equal to that of the bent bar in the span under consideration; any considerable variation in negative moment by reason of changes in load, span length, or end restraint of the adjacent span must be worked out by the general principles of continuity (pages 66-81).

A = bottom bar in adjoining span, not shown.

Almost all usual combinations of form depth, top slab and reinforcement are presented herewith. To show how the tables for interior spans were computed and to permit extension of the tables if required, an illustrative example is shown:-

Example—Determine the safe carrying capacity on spans of 18 and 26 feet of 10 in. deep forms plus 3 in. top slab with 5 in. wide joists at 25 in. centers and reinforced with one #7 bottom bar, one #7 truss bar and one #7 top bar. (See page 178.)

^{*} See note on bottom of page 173.

CONCRETE JOIST CONSTRUCTION—INTERIOR SPAN

$$p = \frac{1.20}{25 \times 11.82} = 0.00406 < 0.0136 \text{ (underreinforced)}$$

$$\text{from page } 34, k = 0.247; \quad kd = 2.92 \text{ in.} < 3 \text{ in.}; \quad j = 0.917$$

$$\text{Max. allowable } M_s = A_s f_s j d = 1.20 \times 20,000 \times 0.917 \times 11.82 = 260,000 \text{ lb-in.} = 2.08 \times \frac{wl'^2 \times 12}{16}$$

$$\text{For } l' = 18; w = 513 \text{ psf. Subtracting } 67 \text{ gives } 446 \text{ psf.}$$

$$\text{For } l' = 26; w = 246 \text{ psf. Subtracting } 67 \text{ gives } 179 \text{ psf.}$$

$$\text{Max. allowable } V = v_c b j d = 90 \times 9 \times \frac{1}{8} \times 11.82 = 8360 \text{ lb} = 2.08 \times \frac{wl'}{2}$$

$$\text{For } l' = 18; w = 447 \text{ psf. Subtracting } 67 \text{ gives } 380 \text{ psf.}$$

$$\text{For } l' = 26; w = 309 \text{ psf. Subtracting } 67 \text{ gives } 380 \text{ psf.}$$

$$\text{For } l' = 26; w = 309 \text{ psf. Subtracting } 67 \text{ gives } 242 \text{ psf.}$$

$$\text{Shear at Root of Tapered End}$$

$$V = 5 \times 11.82 \times \frac{1}{8} \times 90 = 4655 = 2.08 \times \frac{w(l' - 6.15)}{2}$$

$$\text{For } l' = 18; w = 378 \text{ psf. Subtracting } 67 \text{ gives } 311 \text{ psf. } l \text{ In table on } l \text{ For } l' = 26; w = 226 \text{ psf. Subtracting } 67 \text{ gives } 159 \text{ psf.} l \text{ page } 178$$

$$\text{Negative Moment } A_s = 3 - \#7 = 1.80 \text{ sq in.}; p = \frac{1.80}{9 \times 11.82} = 0.0169 > 0.0136 \text{ } (f_c > 1350)$$

$$\text{From page } 34, j = 0.854$$

$$\text{Max. allowable } M = A_s f_s j d = 1.80 \times 20,000 \times 0.854 \times 11.82 = 1.80 \times$$

363,500 lb-in. =
$$2.08 \times \frac{wl^{\prime 2} \times 12}{11}$$

For l'=18; w=494 psf. Subtracting 67 gives 427 psf. For l'=26; w=237 psf. Subtracting 67 gives 170 psf.

Tapered End Compression

For
$$l' = 18$$
; $w = 378$; $-M = \frac{2.08 \times 378 \times 18 \times 18 \times 12}{11} = 278,000$ lb-in.

For
$$l' = 26$$
; $w = 226$; $-M = \frac{2.08 \times 226 \times 26 \times 26 \times 12}{11} = 347,000 \text{ lb-in.}$

$$R = \frac{M}{bd^2} = \frac{347,000}{9 \times 11.82 \times 11.82} = 276 > 236$$
, so, from page 34 when $f_s = 20,000$, $f_c > 1350$ and bottom bars must be extended to act as compressive reinforcement.

^{* 0.70} is a factor to represent the shear at the point of inflection where the bond on the bottom bar is a maximum, see figure below.

For limitations and explanation of use of tables, see pages 171-173.

Dep	th			8" FC	DRMS + 2	1/2" CON	CRETE				
Jois	ts	4" Joist	s @ 24"	c/c Wt	51 psf		oists @ 25 Wt 54 ps			oists @ 26 Wt 57 ps	
	Bottom Bar Truss Bar Top Bar	#4 #4 #4	#4 #5 #5	#5 #5 #5	#5 #6 #5	#5 #5 #5	#5 #6 #5	#6 #6 #6	#5 #5 #5	#5 #6 #5	#6 #6
£	11 12 13 14 15	343 280 231 192 161	306 256 217	320 272	335	302 256	318		340 285 241	352 299	
Span I' in Ft	16 17 18 19 20	135 114 96 81 68	184 157 135 116 99	233 200 173 150	288 249 217 189 166	219 187 161 139 121	272 234 203 176 154	326 282 246 215 189	205 175 150 129 111	256 220 190 165 143	308 267 231 201 177
	21	57	85	113	146	103	135	166	94	125	154
	22 23	47 39	73 63	99 86	128 113	90 78	118 103	147 129	81 69	108 94	136 119

Depth	1			8" F	ORMS +	3" CONC	RETE				
Joists		4" Joists	@ 24"	c/c Wt	58 psf		ists @ 25 Wt 61 psf			ists @ 26 Wt 64 psf	
	Bottom Bar Truss Bar Top Bar	#4 #4 #4	#4 #5 #5	#5 #5 #5	#5 #6 #5	#5 #5 #5	#5 #6 #5	#6 #6 #6	#5 #5 #5	#5 #6 #5	#6 #6 #6
	11 12 13 14 15	358 291 240 199 166	318 266 224	333 283		314 266	329		354 297 251	310	
Span I' in Ft	16 17 18 19 20	138 116 97 81 68	190 162 138 118 101	241 207 178 154 133	300 258 224 195 171	226 193 166 143	283 242 210 182 159	339 293 256 223 195	212 181 154 132 112	266 228 196 170 147	324 27 24 20 18
	21 22	56 46	86 73	115 100	149 131	105 91	138 120	171 151	96 82	127 110	15 14
	. 23	37	62	87	115	78	105	133	70	96	12

For limitations and explanation of use of tables, see pages 171-173.

Dep	th				10"	FORMS -	+ 2" CO	NCRETE					
Jois	ts	4" Jois	ts @ 24	" c/c	Wt 5	0 psf	5'		@ 25" c 4 psf	/c		sts @ 20 Vt 58 ps	
Ti	tom Bar russ Bar Top Bar	#4	#4 #5 #4	#5 #5 #5	#5 #6 #5	#6 #6 #6	#5 #5 #5	#5 #6 #5	#6 #6 #6	#6 #7 #6	#5 #6 #5	#6 #6 #6	#6 #7 #6
Span I' in Ft	15 16 17 18 19 20 21 22 23 24	197 167 142 121 104 89 76 65 55 46	259 222 191 165 143 124 109 95 83 72	328 282 244 212 185 162 143 126 109 96	334 296 264 238 216 197 180 160 142 126	334 296 264 238 216 197 180 166 153 142	309 264 228 196 172 149 131 115 99 87	326 283 246 216 189 167 148 130	324 292 260 230 203 181 161 143	324 292 264 243 223 206 190	308 266 231 201 176 154 136 119 104	320 279 244 215 189 168 149	337 296 262 232 207 185 164
	25 26 27 28	39 32	62 54 46 39	85 75 65 57	112 100 89 79	132 123 112 101	76 66 57 49	102 90 79 70	127 114 102 91	159 143 128 116	92 80 70 62	116 104 92 81	147 131 117 105

Dep	th				10" F	ORMS +	- 21/2" C	ONCRET	E				
Joist	s	4" Jois	ts @ 24'	′ c/c	Wt 5	6 psf	5′		@ 25" c, 0 psf	/c		ists @ 20 Wt 64 ps	
Tr	om Bar uss Bar op Bar	#4 #4 #4	#4 #5 #4	#5 #5 #5	#5 #6 #5	#6 #6 #6	#5 #5 #5	#5 #6 #5	#6 #6 #6	#6 #7 #6	#5 #6 #5	#6 #6 #6	#6 #7 #6
	15 16 17 18 19	202 171 145 123 105	270 231 198 171 147	337 289 250 217 189	306 273 246 222	306 273 246 222	271 234 202 175	338 292 255 222	302 268	302 276	319 275 239 207	330 289 252	306
Span I' in Ft	20 21 22 23 24	90 76 64 54 45	128 111 96 83 72	165 144 126 112 98	202 185 163 145 128	202 185 170 157 145	152 132 115 101 87	194 171 150 133	237 209 186 165	250 230 212 196 181	181 158 138 122 106	194 172 152 134	270 239 212 188 168
	25	37	62	86	114	134	76	103	130	162	93	119	149
	26 27	30	52 45	75 66	101 90	125 114	66 57	91 80	116 103	145 131	81 73	105 92	134
	28		38	57	· 80	102	48	70	91	117	61	81	10

Depth

ui 23 ui 24

26 66

27 57

28 49

29 42

31 30

92 | 121

78 100

82 110

87 111

98 | 124

85 | 107

95 127

93 | 118

84 106

96 121

CONCRETE JOIST CONSTRUCTION INTERIOR SPAN—20 INCH WIDE FORMS Safe Superimposed Load (psf)

10" FORMS + 3" CONCRETE

For limitations and explanation of use of tables, see pages 171-173.

Joists	4" J	oists @	24" c/	c Wt 63	psf	5″ J	oists @	25" c	c Wt 6	7 psf	6'		@ 26" 71 psf	c/c
Bottom B Truss B Top B	ar #4	#4 #5 #4	#5 #5 #5	#5 #6 #5	#6 #6 #6	#5 #5 #5	#5 #6 #5	#6 #6 #6	#6 #7 #6	#7 #7 #7	#5 #6 #5	#6 #6 #6	#6 #7 #6	# 7 # 7 # 7
15 16 17 18	173	277 236 202 173 149	348 298 257 222 193	315 281 253 229	315 281 253 229	328 280 240 207 179	303 262 229	311 277	311 283	311 283	330 284 246 213	342 296 259	315	
20 un 21 22 23 24	89 75 63 52 43	128 111 96 82 70	168 146 128 112 98	207 189 167 147 130	207 189 174 160 147	155 134 116 101 87	200 175 154 135	243 214 189 167 148	257 235 216 199 185	257 235 216 199 185	186 162 141 123 107	199 175 154 136	278 246 217 193 171	304 281 257 231 206
25 26	34	60 51	85 74	115 102	136 126	75 65	104 91	131 116	165 147	172 159	93 81	119 105	152 135	183 164
27 28		42 35	55	90 79	114	55 46	79 69	91	132 118	149 139	70 60	92 81	120 107	148
Depth	10 100 1000	380	3 38		12" FC	ORMS +	- 2" CC	ONCRET	TE .	***************************************				
Joists		sts @ 24 Vt 57 ps		5"	Joists (@ 25"	c/c Wt	61 psf	6"	Joists (@ 26''	c/c	Wt 66	psf
ottom Bai Truss Bai Top Bai	#5 #	5 #3 5 #6 5 #3	5 #6	#5	#5 #6 #5	#6	#6 #7 #6	#7 #7 #7	#5 #5 #5	#5 #6 #5	#6 #6 #6	#6 #7 #6	#7 #7 #7	#7 #8 #6
19	173 2	53 28 21 25 94 23	8 258	206	261	314		31 <i>7</i> 291	220 191 166	278 243 213	335 294 259	317		
21	132 1	71 21 51 19	5 215	158	202	2 246	267	267 247	144 126	187 165	228 202	281 251	311 288	311 288

For limitations and explanation of use of tables, see pages 171-173.

				12"	FORM	15 + 2	½" CO	NCRET	E					
4".			c/c	5" Jo	ists @	25" c/	c Wt	67 psf	6"	Joists	@ 26'	′ c/c V	Vt 72 p	osf
ar #4 ar #5 ar #4	#5 #5 #5	#5 #6 #5	#6 #6 #6	#5 #5 #5	#5 #6 #5	#6 #6 #6	#6 #7 #6	#7 #7 #7	#5 #5 #5	#5 #6 #5	#6 #6 #6	#6 #7 #6	#7 #7 #7	#7 #8 #6
204	259 226	291 264	291 264	242 210	304 266	322	326	326	225 195	285 248	302			
153	198	240	240	184	233	283	299	299	169	217	265	325		
133 115	174 153	220 196	220 203	161 140	206 182	251 223	274 252	274 253	147 127	190 167	234 207	288 256	320 296	320 296
100	134	174	187	122	161	198	234	234	110	147	183	228	272	274
87	118	154	173	107	141	177	217	217	95	128	162	204	244	255
75	104	137	161	93	125	158	197	202	82	113	144	182	219	237
56	81	109	137	71	98	125	160	177	60	87	113	146	177	208
47	70	97	123	61	86	112	143	165	51	75	100	130	160	195
40	61	86	111	52	76	100	129	155	42	66	89	116	144	177
33	53	76	100	44	66	89	116	143	35	56	78	104	130	162
														146
	33	52	72	0.	43	62	85	107		34	52	74	95	121
				12	Z" FOR	MS+	3" COI	NCRETI	<u> </u>				-0	
4′′ J			:/c	5" Jo	ists @	25" c/	c Wt	74 psf	6"	Joists	@ 26"	c/c '	Wt 78	psf
ar #4			#6	#5	#5	#6	#6	#7	#5	#5	#6	#6	#7	#7
ar #5	#5	#6	#6	#5	#6	#6	#7	#7	#5	#6	#6	#7	#7	#8
ar #4	#3	#3	#0	#3	#3	#0	#0	#/	#3	#3	#0	#0	#/	#6
207	265	299	299	247	311	320			230	292	310			
179	265 231 202	299 270 246	299 270 246	247 214 186	311 272 238	329 290	304	304	230 199 172	292 254 222	310	333		
179 155 134	231 202 176	270 246 225	270 246 225	214 186 161	272 238 209	290 255	279	279	199 172 148	254 222 194	272 239	294		
179 155	231 202	270 246	270 246	214 186	272 238	290			199 172	254 222	272		303	303
179 155 134 116	231 202 176 155	270 246 225 200	270 246 225 207	214 186 161 141 123	272 238 209 184	290 255 226 202	279 256 237	279 256 237	199 172 148 129	254 222 194 170	272 239 211	294 262 233	303 277	280
179 155 134 116 100 87	231 202 176 155 136 119	270 246 225 200 177 157	270 246 225 207 191 176	214 186 161 141 123 106	272 238 209 184 162	290 255 226 202 179	279 256 237 220	279 256 237 220	199 172 148 129 111 96	254 222 194 170 149 131	272 239 211 187 165	294 262 233 207	303 277 248	280 261
179 155 134 116	231 202 176 155	270 246 225 200	270 246 225 207	214 186 161 141 123	272 238 209 184	290 255 226 202	279 256 237	279 256 237	199 172 148 129	254 222 194 170	272 239 211	294 262 233	303 277	280
179 155 134 116 100 87 74	231 202 176 155 136 119	270 246 225 200 177 157 139	270 246 225 207 191 176 163	214 186 161 141 123 106 93	272 238 209 184 162 143 126	290 255 226 202 179 158	279 256 237 220 200	279 256 237 220 205	199 172 148 129 111 96 89	254 222 194 170 149 131 114	272 239 211 187 165 145	294 262 233 207 185	303 277 248 223	280 261 243
179 155 134 116 100 87 74 64 54	231 202 176 155 136 119 105 91 80	270 246 225 200 177 157 139 124 110	270 246 225 207 191 176 163 151 139	186 161 141 123 106 93 80 69 58	272 238 209 184 162 143 126 111 97	290 255 226 202 179 158 141 126	279 256 237 220 200 178 160	279 256 237 220 205 190 178	199 172 148 129 111 96 89 70 59	254 222 194 170 149 131 114 100 87	272 239 211 187 165 145 129 114	294 262 233 207 185 165 147	303 277 248 223 200 180	280 261 243 227 212
179 155 134 116 100 87 74 64 54	231 202 176 155 136 119 105 91 80	270 246 225 200 177 157 139 124 110	270 246 225 207 191 176 163 151 139	186 161 141 123 106 93 80 69	272 238 209 184 162 143 126 111 97	290 255 226 202 179 158 141 126	279 256 237 220 200 178 160	279 256 237 220 205 190 178	199 172 148 129 111 96 89 70 59	254 222 194 170 149 131 114 100 87	272 239 211 187 165 145 129 114	294 262 233 207 185 165	303 277 248 223 200	280 261 243 227 212
179 155 134 116 100 87 74 64 54	231 202 176 155 136 119 105 91 80	270 246 225 200 177 157 139 124 110	270 246 225 207 191 176 163 151 139	214 186 161 141 123 106 93 80 69 58 49	272 238 209 184 162 143 126 111 97	290 255 226 202 179 158 141 126	279 256 237 220 200 178 160	279 256 237 220 205 190 178 166 156	199 172 148 129 111 96 89 70 59 49 41	254 222 194 170 149 131 114 100 87	272 239 211 187 165 145 129 114	294 262 233 207 185 165 147	303 277 248 223 200 180	280 261 243 227 212 198 180
	ar #4 ar #5 cr #4 176 153 133 115 100 87 75 65 47 40 33	#5 ar #4 #5 #5 ar #5 #5 ar #4 #5 #5 #5 ar #4 #5 #5 #5 #5 #5 #5 ar #4 #5 ar #4 #5 ar #4 #5 ar #5 #5 #5 #5	Wt 63 psf ar #4 #5 #5 ar #5 #5 #6 cr #4 #5 #5 204 259 291 176 226 264 153 198 240 115 153 196 100 134 174 87 118 154 75 104 137 65 92 122 56 81 109 47 70 97 40 61 86 33 53 76 46 68 39 60 33 52 4" Joists @ 24" 6 Wt 69 psf ar #4 #5 #5 ar #5 #5	ar #4 #5 #5 #6 ar #5 #5 #6 ar #5 #5 #6 ar #5 #5 #6 ar #4 #5 #5 #6 204 259 291 291 176 226 264 264 153 198 240 240 133 174 220 220 115 153 196 203 100 134 174 187 87 118 154 173 75 104 137 161 65 92 122 150 56 81 109 137 47 70 97 123 40 61 86 111 33 53 76 100 46 68 90 39 60 80 33 52 72 4" Joists @ 24" c/c Wt 69 psf ar #4 #5 #5 #6 ar #5 #5 #6	Wt 63 psf 5" Jo ar #4 #5 #5 #6 #5 ar #5 #5 #6 #5 #5 cr #4 #5 #5 #6 #5 204 259 291 291 242 176 226 264 264 210 153 198 240 240 184 133 174 220 220 161 115 153 196 203 140 100 134 174 187 122 87 118 154 173 107 75 104 137 161 93 65 92 122 150 81 56 81 109 137 71 47 70 97 123 61 40 61 86 111 52 33 53 76 100 44 46 68 90 37 39 60 80 31 33 52 72 5" Jo T2 4" Joists @ 24" c/c Wt 69 psf ar #4 #5 #5 #6 #5	Wt 63 psf 5 Joists @ ar #4 #5 #5 #6 ar #5 #5 #6 cr #4 #5 #5 #6 #5 #6 #5 #5 #6 #5 #6 204 259 291 291 242 304 176 226 264 264 264 210 266 153 198 240 240 184 233 133 174 220 220 161 206 115 153 196 203 140 182 100 134 174 187 122 161 87 118 154 173 107 141 75 104 137 161 93 125 65 92 122 150 81 111 56 81 109 137 71 98 47 70 97 123 61 86 40 61 86 111 52 76 33 53 76 100 44 66 46 88 90 37 58 39 60 80 31 51 33 52 72 43 4" Joists @ 24" c/c Wt 69 psf 5" Joists @ 4" Joists @ 24" c/c Wt 69 psf 5" Joists @ ar #4 #5 #5 #5 #6 #6 #5 #5 #6 #5 #5 #6	Wt 63 psf 5 Joists @ 25 c/ ar #4 #5 #5 #6 #5 #5 #6 ar #5 #5 #6 #5 #6 #6 #5 #6 #6 cr #4 #5 #5 #6 #5 #6 #8	Wt 63 psf 5 Joists @ 25" c/c Wt 60 ar #4 #5 #5 #6 #5 #5 #6 #6 #6 #6 #7 #6 #6 #7 #6 #6 #7 #6 #6 #6 #6 #7 #6 #7 #6 #6 #6 #6 #7 #6 #6 #8 #9 #8 #1 #1 #1 #1 #7 #1 #8 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1	Wt 63 psf S Joists @ 25° c/c Wt 67 psf ar #4 #5 #5 #6 #5 #5 #6 #6 #7 #8 #1 #1 #7 #7 #8 #1 #8 #1 #8 #8 #8	Wt 63 psf 5 Joists @ 25° c/c Wt 6/ psf 6 ar #4 #5 #5 #6 ar #5 #6 ar #5 #5 #6 #6 #6 #7 #5 #5 #6 #6 #6 #7 #7 #5 ar #4 #5 #5 #6 #6 #6 #5 #5 #6 #6 #6 #7 #5 #6 #6 #6 #7 #5 204 259 291 291 242 304 176 226 264 264 210 266 322 326 326 195 153 198 240 240 184 233 283 299 299 169 133 174 220 220 161 206 251 274 274 147 115 153 196 203 140 182 223 252 253 127 100 134 174 187 122 161 198 234 234 110 187 118 154 173 107 141 177 217 217 95 75 104 137 161 93 125 158 197 202 82 65 92 122 150 81 111 140 177 188 71 56 81 109 137 71 98 125 160 177 60 87 118 154 173 61 93 125 158 197 202 82 65 92 122 150 81 111 140 177 188 71 60 177 60 47 70 97 123 61 86 112 143 165 51 40 61 86 111 52 76 100 129 155 42 33 53 76 100 44 66 89 116 143 35 42 18 18 18 18 18 18 18 18 18 18 18 18 18	Wt 63 psf 5 Joists @ 25 c/c Wt 67 psf 6 Joists ar #4 #5 #5 #6 #5 #5 #6 #5 #5 #6 #7 #5 #5 #6 #5 #6 #6 #7 #5 #6 #5 #6 #6 #7 #5 #6 #5 #6 #6 #7 #5 #6 cr #4 #5 #6 #6 #7 #5 #6 #6 #7 #5 #6 #6 #7 #5 #6 #6 #7 #5 #6 #6 #7 #5 #6 #6 #7 #5 #5 #6 #6 #7 #5 #5 #6 #6 #7 #5 #5 #6 #6 #7 #5 #5 #6 #6 #7 #5 #5 #6 #6 #7 #5 #5 #6 #6 #7 #5 #5 #6 #6 #7 #5 #5 #6	S Joists @ 25 c/c Wt 6/7 pst S Joists @ 25 c/c Wt 6/7 pst S Joists @ 25 c/c Wt 6/7 pst S Joists @ 26 Joist & 26	S Joists @ 25 C Wt O Pst S Joists @ 26 C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O Pst S Joists @ 26 C C Wt O O C C Wt O Pst D C C Wt O O D C C Wt O Pst D C C Wt O O O O O O O O O	S Joists S

For limitations and explanation of use of tables, see pages 171-173.

	For limi														
Depth				WATER OF	- 11			" CON			-// .		07//		0 (
Joists	5" Joi	ists @	25" c/	c Wt 6	8 psf	6" Jo	ists @	26" c/	c Wt/	3 pst	/ Jo	isfs @	27" c/	c W1/	в рят
Bottom B	ar #5	#6	#6	#7	#7	#5	#6	#6	#7	#7	#6	#6	#7	#7	#8
Truss B		#6	#7	#7	#8	#6	#6	#7	# フ # フ	#8	#6 #6	# 7 #6	# フ # フ	#8 #6	#8 #8
Тор В	ar #5	#6	#6	#7	#6	#5	#6	#6	#/	# 0			π,	η O	// 0
21	238	290	310	310	310	221	271	333			254	313	001		
22	211	257	286	286	286	196	240 213	297 266	312	312	223 198	278 248	331 296		
23	187	230	265	265	265	173	190	237	284	291	175	221	266	318	
24	167	206	247	247	247	153	170	213	257	269	156	198	239	288	308
± 25	148	184	230	231	231	135	170	213	23/	207	130	170	207	200	000
	132	165	208	215	215	119	151	192	231	254	138	177	214	261	289
u 26 27 28	118	148	187	202	202	106	135	173	209	239	122	158	194	236	272
g 28	104	133	169	190	190	93	120	155	189	224	108	142	175	214	253
29	93	120	153	178	178	82	107	139	172	209	96	126	158	194	230
30	82	107	138	168	168	71	95	125	156	191	84	113	142	176	210
31	73	96	125	155	158	62	85	113	141	174	74	101	128	160	191
32		86	113	141	150	54	75	101	128	158	65	90	116	144	175
33	56	77	103	129	142	47	66	91	116	144	56	80	104	131	160
34		69	93	117	134	40 33	59 51	82 73	105	132 120	49	71 62	94 84	119	146 134
35	42	61	84	107	127	33	31	/3	73	120	7.	02	•		
1	36	54	76	97	121		44	65	86	111	35	55	75	99	122
36	30								~~		1		67	90	111
36 37	11	47	68	88	113		38	58	77	101		48	07	90	
	31		68	88	113		38 32	58 51	70	92		41	59	81	102
37	31	47	-		103		32	51	70	92					
37	31	47	61	80	103		32 AS + 2	51 ⁄₂″ CO	70 NCRET	92 E		41	59	81	102
37 38	31	47	-	80	103		32 AS + 2	51	70 NCRET	92 E	7" Jo	41		81	102
37 38 Depth Joists	31 5" Jo	47 41 oists @	61 25" c	80 /c Wt	14" 75 psf	6" Jo	32 AS + 2) ists @	51 ½" CO 26" c/	70 NCRET	92 E 80 psf		41 ists @	59 27'' c/	81	102
37 38 Depth Joists	31 5" Jo Bar #5	47 41 Dists @	61 25" c,	80	103		32 AS + 2	51 ⁄₂″ CO	70 NCRET c W1 #7 #7	92 E 80 psf #7 #8	#6 #6	41 ists @ #6 #7	59 27" c/ #7 #7	81 c Wt 1 #7 #8	102 85 psf #8 #8
37 38 Depth Joists Bottom B Truss B	31 5" Jo Bar #5	47 41 oists @	61 25" c	80 /c Wt #7	14" 75 psf	6" Jo #5	32 AS + 21 ists @ #6	51 ½" CO 26" c/ #6	70 NCRET	92 E 80 psf #7	#6	41 ists @ #6	59 27'' c/ #7	81 c Wt 1	102 85 psf #8
Joists Bottom B Truss B Top B	31 5" Jo Bar #5 Bar #6 Bar #5	47 41 Dists @ #6 #6	61 25" c, #6 #7 #6	#7 #7 #7	14" 75 psf #7 #8 #6	#5 #6 #5	32 AS + 2! ists @ #6 #6 #6	51 26" c/ #6 #7	70 NCRET c W1 #7 #7	92 E 80 psf #7 #8	#6 #6	41 ists @ #6 #7	59 27" c/ #7 #7	81 c Wt 1 #7 #8	102 85 psf #8 #8
37 38 Depth Joists Bottom B Truss B	31 31 3ar #5 3ar #6 3ar #5	47 41 Dists @ #6 #6	61 25" c, #6 #7	80 /c Wt #7 #7	14" 75 psf #7 #8	6" Jo #5 #6	32 AS + 2! ists @ #6 #6	51 26" c/ #6 #7 #6	70 NCRET white the second of	92 EE 80 psf #7 #8 #6	#6 #6 #6 256 225	#6 #7 #6	27" c/ #7 #7 #7	81 c Wt 1 #7 #8	102 85 psf #8 #8
Joists Bottom B Truss B Top B	31 31 31 32 33 34 35 36 36 37 46 36 37 47 47 47 47 47 47 47 47 47 4	47 41 Dists @ #6 #6 #6	61 25" c, #6 #7 #6	#7 #7 #7 #7	75 psf #7 #8 #6	#5 #6 #5	32 AS + 2! ists @ #6 #6 #6 #6	51 26" c/ #6 #7 #6 300 267	#7 #7 #7 #7	92 E 80 psf #7 #8 #6	#6 #6 #6 256 225 199	#6 #7 #6 317 281 249	27" c/ #7 #7 #7	#7 #8 #6	102 85 psf #8 #8
Joists Bottom B Truss B Top B 21 22 23 24	31 31 31 33 33 33 34 34 34 34 34 34 34	#6 #6 #6 294 260 232 205	#6 #7 #6 315 291 269 250	#7 #7 #7 315 291 269 250	75 psf #7 #8 #6 315 291 269 250	#5 #6 #5 224 197 174 153	32 AS + 21 ists @ #6 #6 #6 274 242 215	51 26" c/ #6 #7 #6 300 267 238	70 PNCRET W1 #7 #7 #7 318 282	92 E 80 psf #7 #8 #6	#6 #6 #6 256 225 199 175	#6 #7 #6 317 281 249	27" c/ #7 #7 #7 . 300 263	#7 #8 #6	102 85 psf #8 #8 #8
Joists Bottom B Truss B Top B 21 22 23	31 31 31 33 33 33 34 34 34 34 34 34 34	#6 #6 #6 294 260 232	#6 #7 #6 315 291 269	#7 #7 #7 291 269	75 psf #7 #8 #6 315 291 269	#5 #6 #5 224 197 174	32 AS + 2! ists @ #6 #6 #6 274 242 215	51 26" c/ #6 #7 #6 300 267	#7 #7 #7 #7	92 E 80 psf #7 #8 #6	#6 #6 #6 256 225 199	#6 #7 #6 317 281 249	27" c/ #7 #7 #7	#7 #8 #6	102 85 psf #8 #8
Depth Joists Bottom B Truss B Top B 21 22 23 24 25	31 31 36 36 36 36 36 37 46 36 37 46 36 37 46 37 47 47 47 47 47 47 47 47 47 4	#6 #6 #6 294 260 232 205	#6 #7 #6 315 291 269 250	#7 #7 #7 315 291 269 250	75 psf #7 #8 #6 315 291 269 250	#5 #6 #5 224 197 174 153	32 AS + 21 ists @ #6 #6 #6 274 242 215	51 26" c/ #6 #7 #6 300 267 238	70 PNCRET W1 #7 #7 #7 318 282	92 E 80 psf #7 #8 #6	#6 #6 #6 256 225 199 175	#6 #7 #6 317 281 249	27" c/ #7 #7 #7 . 300 263	#7 #8 #6	102 85 psf #8 #8 #8
Depth Joists Bottom B Truss B Top B 21 22 23 24 25	31 31 31 32 33 33 34 34 34 34 34 34 34 34	#6 #6 #6 294 260 232 205 185	#6 #7 #6 315 291 269 250 231	#7 #7 #7 291 269 250 233	75 psf #7 #8 #6 315 291 269 250 233	#5 #6 #5 224 197 174 153 134	32 AS + 2! ists @ #6 #6 #6 274 242 215 190 170	51 26" c/ #6 #7 #6 300 267 238 214	#7 #7 #7 #7 #7 318 282 258	92 BO psf #7 #8 #6	#6 #6 256 225 199 175 156	#6 #7 #6 317 281 249 222	27" c/ #7 #7 #7 #7 263 240	#7 #8 #6	102 85 psf #8 #8 #8
Depth Joists Bottom B Truss B Top B 21 22 23 24 25	31 31 31 32 33 34 34 34 34 34 34 34 34 34	#6 #6 #6 294 260 232 205 185	#6 #7 #6 315 291 259 250 231 207	#7 #7 #7 #7 291 269 250 233	75 psf #7 #8 #6 315 291 269 250 233 217 203 191	#5 #6 #5 224 197 174 153 134	32 AS + 2! ists @ #6 #6 #6 274 242 215 190 170 152 134 119	51 26" c/ #6 #7 #6 300 267 238 214 191 172 154	#7 #7 #7 318 282 258 232 210 189	92 80 psf #7 #8 #6 318 296 276 258 242 227	#6 #6 #6 256 225 199 175 156 138 121	#6 #7 #6 317 281 249 222 199 176 158 141	27" c/ #7 #7 #7 263 240 215 194	#7 #8 #6 322 289 262 237 214	#8 #8 #8 #8 314 295 277 254
37 38 Depth Joists Bottom B Truss B Top B 21 22 23 24 25 ± 26 .= 27 28 29 20 20 20 20 20 20 20 20 20 20	31 31 33	#6 #6 #6 294 260 232 205 185 166 148	#6 #7 #6 315 291 269 250 231 207 187 169 153	#7 #7 #7 315 291 269 250 233 217 203 191 179	75 psf #7 #8 #6 315 291 269 250 233 217 203 191 179	6" Jo #5 #6 #5 224 197 174 153 134 118 104 91	32 AS + 21 ists @ #6 #6 #6 274 242 215 190 170 152 134 119 106	51 26" c/ #6 #7 #6 300 267 238 214 191 172 154 139	70 PNCRET #7 #7 #7 318 282 258 232 210 189 171	92 #7 #8 #6 318 296 276 258 242 227 209	#6 #6 #6 256 225 199 175 156 138 121 107 94	#6 #7 #6 #317 281 249 222 199 176 158 141 126	27" c/ #7 #7 #7 300 263 240 215 194 174	#7 #8 #6 322 289 262 237 214 193	#8 #8 #8 314 295 277 254 231
37 38 Depth Joists Bottom B Truss B Top B 21 22 23 24 25 ± 26 = 27 = 28	31 31 33	#6 #6 #6 294 260 232 205 185 166 148	#6 #7 #6 315 291 269 250 231 207 187	#7 #7 #7 291 269 250 233 217 203 191	75 psf #7 #8 #6 315 291 269 250 233 217 203 191	#5 #6 #5 224 197 174 153 134 118 104 91	32 AS + 2! ists @ #6 #6 #6 274 242 215 190 170 152 134 119	51 26" c/ #6 #7 #6 300 267 238 214 191 172 154	#7 #7 #7 318 282 258 232 210 189	92 80 psf #7 #8 #6 318 296 276 258 242 227	#6 #6 #6 256 225 199 175 156 138 121	#6 #7 #6 317 281 249 222 199 176 158 141	27" c/ #7 #7 #7 263 240 215 194	#7 #8 #6 322 289 262 237 214	#8 #8 #8 #8 314 295 277 254
37 38 Depth Joists Bottom B Truss B Top B 21 22 23 24 25 ± 26 27 28 27 28 29 30	31 31 31 32 33 33 34 34 34 35 36 37 37 38 37 37 38 38 37 37 38 38 38 38 38 38 38 38 38 38	#6 #6 #6 294 260 232 205 185 166 148	#6 #7 #6 315 291 269 250 231 207 187 169 153 137	#7 #7 #7 315 291 269 250 233 217 203 191 179	75 psf #7 #8 #6 315 291 269 250 233 217 203 191 179	6" Jo #5 #6 #5 224 197 174 153 134 118 104 91	32 AS + 21 ists @ #6 #6 #6 274 242 215 190 170 152 134 119 106	51 26" c/ #6 #7 #6 300 267 238 214 191 172 154 139	70 PNCRET #7 #7 #7 318 282 258 232 210 189 171	92 #7 #8 #6 318 296 276 258 242 227 209	#6 #6 #6 256 225 199 175 156 138 121 107 94	#6 #7 #6 #317 281 249 222 199 176 158 141 126	27" c/ #7 #7 #7 300 263 240 215 194 174	#7 #8 #6 322 289 262 237 214 193	#8 #8 #8 314 295 277 254 231
37 38 Depth Joists Bottom B Truss B Top B 21 22 23 24 25 £ 26 £ 27 £ 28 £ 29 30 31	31 31 31 32 33 33 34 34 34 34 35 36 37 37 38 37 38 38 38 38 38 38 38 38 38 38	#6 #6 #6 294 260 232 205 185 166 148 132 118 106	#6 #7 #6 315 291 269 231 207 187 169 153 137	#7 #7 #7 315 291 269 250 233 217 203 191 179 169	75 psf #7 #8 #6 315 291 269 250 233 217 203 191 179 169	#5 #6 #5 197 174 153 134 118 104 91 79 69	32 AS + 2! ists @ #6 #6 #6 274 242 215 190 170 152 134 119 106 94	51 26" c/ #6 #7 #6 300 267 238 214 191 172 154 139 124	70 PNCRET #7 #7 #7 318 282 258 232 210 189 171 154	92 #7 #8 #6 318 296 276 258 242 227 209 190	#6 #6 #6 256 225 199 175 156 138 121 107 94 83	#6 #7 #6 317 281 249 229 176 158 141 126 111	27" c/ #7 #7 #7 263 240 215 194 174 157 141	#7 #8 #6 322 289 262 237 214 193 175	#8 #8 314 295 277 254 231 1
37 38 Depth Joists Bottom B Truss B Top B 21 22 23 24 25 ± 26 .: 27 .: 27 .: 28 .: 29 30 31 32	31 31 31 32 33 33 34 34 35 36 37 38 37 38 39 30 30 30 30 30 30 30 30 30 30	#6 #6 #6 294 260 232 205 185 166 148 132 118 106	#6 #7 #6 315 291 269 231 207 187 163 137 124 112	#7 #7 #7 315 291 269 233 217 203 191 179 169	75 psf #7 #8 #6 315 291 269 250 233 217 203 191 179 169	#5 #6 #5 197 174 153 134 118 104 91 79 69	32 AS + 2! ists @ #6 #6 #6 274 242 215 190 170 152 134 119 106 94	51 26" c/ #6 #7 #6 300 267 238 214 191 172 154 139 124	70 PNCRET #7 #7 #7 318 282 258 232 210 189 171 154 140	92 #7 #8 #6 318 296 276 258 242 227 209 190	#6 #6 #6 256 225 199 175 156 138 121 107 94 83	#6 #7 #6 317 281 249 222 199 176 158 141 126 111	27" c/ #7 #7 #7 263 240 215 194 174 157 141	#7 #8 #6 322 289 262 237 214 193 175	#8 #8 314 295 277 254 231 210 191
37 38 Depth Joists Bottom B Truss B Top B 21 22 23 24 25 £ 26 £ 27 £ 28 £ 29 30 31	31 31 31 32 33 33 34 34 35 36 37 38 37 38 39 30 30 30 30 30 30 30 30 30 30	#6 #6 #6 294 260 232 205 185 166 148 132 118 106	#6 #7 #6 315 291 269 250 231 207 187 169 153 137	#7 #7 #7 315 291 269 250 233 217 203 191 179 169	103 14" 75 psf #7 #8 #6 315 291 269 250 233 217 203 191 179 169 159 141	6" Jo #5 #6 #5 224 197 174 153 134 118 104 91 79 69 59 51 44	32 AS + 2! ists @ #6 #6 #6 274 242 215 190 152 134 119 106 94 83 73 64	51 26" c/ #6 #7 #6 300 267 238 214 191 172 154 139 124 112 100 89	70 PNCRET #7 #7 #7 318 282 258 232 210 189 171 154 140 126 114	92 80 psf #7 #8 #6 318 296 276 258 242 227 209 190 173 157 144	#6 #6 #6 256 225 199 175 156 138 121 107 94 83 72 62 53	#6 #7 #6 #7 281 249 222 199 176 158 141 126 111	27" c/ #7 #7 #7 300 263 240 215 194 157 141 127 113 102	#7 #8 #6 322 289 262 237 214 193 175	#8 #8 #8 314 295 277 254 231 210 191 175 159
37 38 Depth Joists Bottom B Truss B Top B 21 22 23 24 25 ± 26 27 5 29 30 31 32 33	31 5" Jo 3ar #5 3ar #6 3ar #5 241 213 189 167 148 131 116 103 91 80 70 61 63 64 45	#6 #6 #6 #6 294 262 205 185 166 148 132 118 106 94 84 74	#6 #7 #6 315 291 269 250 231 207 187 169 153 137 124 112	#7 #7 #7 315 291 269 250 233 217 203 191 179 169 153 139 127	103 14" 75 psf #7 #8 #6 315 291 269 250 233 217 203 191 179 169 159 149 141	6" Jo #5 #6 #5 224 197 174 153 134 118 104 91 79 69 59	32 AS + 2! ists @ #6 #6 #6 #6 274 242 215 190 170 152 134 119 106 94 83 73 64	51 26" CO 26" c/ #6 #7 #6 300 267 238 214 191 172 154 139 124 112 100 89	70 PNCRET #7 #7 #7 318 282 258 232 210 189 171 154 140 126 114 103	92 FE	#6 #6 #6 256 225 199 175 156 138 121 107 94 83 72 62 53	#6 #7 #6 #7 281 249 222 199 176 158 141 126 111	27" c/ #7 #7 #7 263 240 215 194 174 157 141 127 113 102	#7 #8 #6 322 289 262 237 214 193 175 159 143 131	#8 #8 #8 314 295 277 254 231 210 191 175 159 145
37 38 Depth Joists Bottom B Truss B Top B 21 22 23 24 25 ± 26 27 5 22 28 29 30 31 32 33 34 35	31 5" Jo 3ar #5 3ar #6 3ar #5 241 213 189 167 148 131 116 3 191 80 70 61 54 45 39	#6 #6 #6 294 260 230 230 185 166 148 132 118 106 94 84 74	#6 #7 #6 315 291 269 250 231 207 187 169 153 137 124 112 101	#7 #7 #7 315 291 269 233 217 203 191 179 169 153 139 127	103 14" 75 psf #7 #8 #6 315 291 269 250 233 217 203 191 179 169 159 149 141	6" Jo #5 #6 #5 224 197 174 153 134 118 104 91 79 69 59 51 44	32 AS + 2! ists @ #6 #6 #6 #6 274 242 215 190 170 152 134 119 106 94 83 73 64	51 26" CO 26" c/ #6 #7 #6 300 267 238 214 191 172 154 139 124 112 100 89 79 70	70 PNCRET #7 #7 #7 318 282 258 232 210 189 171 154 140 126 114 103 92	92 80 psf #7 #8 #6 318 296 276 258 242 227 209 190 173 157 144 130 119	#6 #6 #6 256 225 199 175 156 138 121 107 94 83 72 62 53	#6 #7 #6 #7 281 249 222 199 176 158 141 126 111 99 88 78	27" c/ #7 #7 #7 263 240 215 194 174 157 141 127 113 102	#7 #8 #6 322 289 262 237 214 193 175 159 143 131	#8 #8 #8 314 295 277 254 231 210 191 175 159 145 132
37 38 Depth Joists Bottom B Truss B 21 22 23 24 25 ± 26 ∴ 27 5 28 29 30 31 32 33 34 35 36	31 31 31 32 33 34 34 35 36 37 38 39 30 31 31 31 31 31 31 31 31 31 31	#6 #6 #6 294 260 230 230 185 166 148 132 118 106 94 84 74	#6 #7 #6 315 25" c, #6 25" c, 25" c, 15 207 187 169 153 137 124 112 101	#7 #7 #7 315 291 269 233 217 203 191 179 169 153 139 127	103 14" 75 psf #7 #8 #6 315 291 269 250 233 217 203 191 179 169 149 141 133 126 120	6" Jo #5 #6 #5 224 197 174 153 134 118 104 91 79 69 59 51 44	32 AS + 2! ists @ #6 #6 #6 #6 274 242 215 190 170 152 134 119 106 94 83 73 64 55 48 40	51 26" CO 26" c/ #6 #7 #6 300 267 238 214 191 172 154 139 124 112 100 89 79 70 62	70 PNCRET W1 #7 #7 #7 318 282 258 232 210 189 171 154 140 126 114 103 92 83	92 80 psf #7 #8 #6 318 296 276 258 242 227 209 190 173 157 144 130 119 108	#6 #6 #6 256 225 199 175 156 138 121 107 94 83 72 62 53	#6 #7 #6 #7 281 249 222 199 176 158 141 126 111 99 88 78	27" c/ #7 #7 #7 263 240 215 194 174 157 141 127 113 102	#7 #8 #6 322 289 262 237 214 193 175 159 143 131	#8 #8 #8 314 295 277 254 231 210 175 159 145 132 120
37 38 Depth Joists Bottom B Truss B Top B 21 22 23 24 25 ± 26 27 5 22 28 29 30 31 32 33 34 35	31 31 31 32 33 34 34 35 36 37 31 31 31 31 31 31 31 31 31 31	#6 #6 #6 294 260 230 230 185 166 148 132 118 106 94 84 74	#6 #7 #6 315 291 269 250 231 207 187 169 153 137 124 112 101	#7 #7 #7 315 291 269 233 217 203 191 179 169 153 139 127	103 14" 75 psf #7 #8 #6 315 291 269 250 233 217 203 191 179 169 159 149 141 133 126 120 110	6" Jo #5 #6 #5 224 197 174 153 134 118 104 91 79 69 59 51 44	32 AS + 2! ists @ #6 #6 #6 #6 274 242 215 190 170 152 134 119 106 94 83 73 64	51 26" CO 26" c/ #6 #7 #6 300 267 238 214 191 172 154 139 124 112 100 89 79 70	70 PNCRET #7 #7 #7 318 282 258 232 210 189 171 154 140 126 114 103 92	92 80 psf #7 #8 #6 318 296 276 258 242 227 209 190 173 157 144 130 119	#6 #6 #6 256 225 199 175 156 138 121 107 94 83 72 62 53	#6 #7 #6 #7 281 249 222 199 176 158 141 126 111 99 88 78	27" c/ #7 #7 #7 263 240 215 194 174 157 141 127 113 102	#7 #8 #6 322 289 262 237 214 193 175 159 143 131	#8 #8 #8 314 295 277 254 231 210 191 175 159 145 132

Above and to the right of the zigzag line, tapered ends are required.

For limitations and explanation of use of tables, see pages 171-173.

Depth					14	" FOR	MS+	3" CON	CRETI	E					
Joists	5" Jo	oists @	25" c/c	c Wt 8	81 psf	6" Jo	oists @	26" c/c	Wi	86 psf	7" Jo	ists @	27" c/	c Wt	91 psf
Bottom E	3ar #5	#6	#6	#7	#7	#5	#6	#6	#7	#7	#6	#6	#7	#7	#8
	Bar#6	#6	#7	#7	#8	#6	#6	#7	#7	#8	#6	#7	#7	#8	#8 #8
Top	Bar #5	#6	#6	#7	#6	#5	#6	#6	#7	#6	#6	#6	#7	#6	#0
21		297	321	321	321	227	278				259	321			
22		265	297	297	297	200	246	304			229	285	001		
23	-	235	274	274	274	175	218	271	324		201	253	304		
24		209	255	255	255	154	193	242	291	302	177	225	272	327 294	321
25	148	186	233	237	237	135	171	216	261	281	256	200	243	294	321
走 26	131	166	210	221	221	118	151	194	235	262	137	178	218	265	301
± 26 ∴ 27		148	189	206	206	103	135	173	211	246	121	159	195	239	281
E 28	102	133	170	193	193	90	119	155	191	231	107	141	176	216	257
S 29	90	118	152	183	183	78	106	138	172	211	93	125	157	195	233
30	78	105	137	170	170	67	93	124	155	192	81	111	141	177	212
.,	40	93	123	153	161	58	82	111	139	173	70	98	126	159	193
31		83	111	140	151	49	71	99	126	158	61	87	113	144	175
33	11	74	100	127	142	41	63	88	114	144	52	77	102	130	160
34		64	89	114	135	34	53	77	102	130	43	66	90	117	145
	-					-									
35	36	56	79	103	127		46	68	91	118	35	57	80	105	131
36	30	48	71	93	120		38	60	82 73	107 97		49	70 62	95 85	120 108
37	11	41	63	84	109	1	32	52						100000	
38	i	35	55	75	99			45	64	87		35	54	76	98

CONCRETE JOIST CONSTRUCTION INTERIOR SPAN—30 INCH WIDE FORMS Safe Superimposed Load (psf)

For limitations and explanation of use of tables, see pages 171-173.

Dept	h		6	" FORM	s + 21/2" CO	NCRETE			
Joists		4" Joists @	34" c/c		Wt 41 psf		@ 35" c/c 3 psf	6" Joists (Wt 4	@ 36" c/c 5 psf
	Bottom Bar Truss Bar	#4 #4	#4 #5	#5 #5	#5 #6	#5 #5	#5 #6	#5 #5	#5 #6 #5
	Top Bar	#4	#4	#5	#5	#5	#5	#5	#5
	9	271	271	329	329	336	336	323	323
	10	223	239	292	292	298	298	286	286
	11	177	215	261	261	267	267	256	256
正	12	142	191	237	237	227	241	218	231
u.	13	115	156	196	197	187	218	179	210
Span I' in Ft	14	94	129	164	167	156	194	148	186
Sp	15	76	107	138	144	131	164	123	156
	16	62	89	116	126	109	140	103	129
	17	50	74	97	110	91	118	86	112
	18	40	61	83	97	77	101	72	95
	19	32	51	70	87	65	86	60	80

For limitations and explanation of use of tables, see pages 171-173.

Dep	oth			6" FORMS+	3" CONCRE	TE .		
Jois	its	4" Joists @	34" c/c	Wt 48 psf		@ 35"c/c 50 psf		@ 36" c/c 52 psf
Botto	om Bar	#4	#4	#5	#5	#5	#5	#5
Tre	uss Bar	#4	#5	#5	#5	#6	#5	#6
Te	op Bar	#4	#4	#5	#5	#5	#5	#5
	9	285	285	347	355	355	342	342
	10	234	253	308	314	314	302	302
	11	185	224	276	281	281	270	270
d.	12	148	199	247	239	254	229	243
Span I' in Ft	13	119	162	205	196	230	187	220
an	14	96	133	171	163	206	154	196
S	15	78	110	143	135	172	128	164
	16	62	91	119	113	145	106	138
	17	49	75	100	94	123	88	116
	18	39	61	84	78	104	73	97
1	19	30	50	71	65	89	60	83
	20		41	59	54	75	49	69

Dept	h			8" F	ORMS + 2	1/2" CON	CRETE				
Joists		4" Joist	s @ 34"	c/c Wt	45 psf		oists @ 35 Wt 48 ps			oists @ 36 Wt 50 ps	
	Bottom Bar	#4	#4	#5	#5	#5	#5	#6	#5	#5	#6
	Truss Bar	#4	#5	#5	#6	#5	#6	#6	#5	#6	#6
	Top Bar	#4	#5	#5	#5	#5	#5	#6	#5	#5	#6
	10	292	309				-				
	11	233	278			344			331		
	12	189	250	306	306	299	312		287	300	
	13	154	207	257	257	247	284	307	237	273	33
	14	127	172	217	219	207	255	272	197	245	29
Span I' in Ft	15	105	144	183	191	174	216	237	165	207	25
-	16	86	121	156	166	147	184	208	139	176	21
par	17	71	102	132	147	124	158	186	117	150	18
S	18	59	86	113	131	106	136	166	99	128	15
	19	48	73	97	117	90	117	144	84	110	13
	20	39	61	83	106	77	101	126	71	95	111
	21	31	51	71	94	65	87	109	59	81	10:
	22		43	61	81	55	75	95	50	69	8
	23		35	52	71	46	65	83	41	59	7

For limitations and explanation of use of tables, see pages 171-173.

Dep	th			8″ F	ORMS +	3" CON	CRETE				
Joist	ts 4	" Joists	@ 34"	c/c Wt	51 psf	5" J	oists @ 3 Wt 54 ps	5′′c/c	6" J	oists @ 30 Wt 56 ps	6" c/c f
	Bottom Bar Truss Bar Top Bar	#4 #4 #4	#4 #5 #5	#5 #5 #5	#5 #6 #5	#5 #5 #5	#5 #6 #5	#6 #6 #6	#5 #5 #5	#5 #6 #5	#6 #6 #6
	10	303	323 291				,,,		<i>π</i> 3	π3	#0
	12 13	195 159	260 215	320 267	320 267	310 257	326 296	320	299 246	311 284	
	14	130	178	225	227	214	268	284	204	255	307
Span I' in Ft	15	107	148	190	196	180	226	246	171	215	26
_	16	87	124	160	171	151	192	217	143	182	22
Dd	17	72	104	136	151	128	163	192	120	154	19
S	18	58	87	116	134	108	139	172	101	132	16
	19	47	73	99	120	91	120	149	85	112	14
	20	38	61	84	108	77	103	129	71	97	12
	21		51	71	95	65	88	112	59	82	10
	22		41	61	82	54	76	98	49	70	9
	23		34	51	71	45	65	85	41	59	7

De	pth				10	" FORM	AS + 21/2	" CON	CRETE					
Joi	sts	4" Jois	its @ 34	l" c/c	Wt 5	50 psf	5" Joists	s @ 35	" c/c Wi	52 psf	6" Joist	s @ 36'	" c/c W1	55 ps
	om Bar		#4	#5	#5	#6	#5	#5	#6	#6	#5	#6	#6	#7
	uss Bar	#4	#5	#5	#6	#6	#5	#6	#6	#7	#6	#6	#7	#7
10	op Bar	#4	#4	#5	#5	#6	#5	#5	#6	#6	#5	#6	#6	#7
	15	132	180	227	234	234	218	272	293	293	260	311		
	16	110	153	194	206	206	185	232	259	259	222	267	307	307
	17	92	129	166	182	182	158	200	230	230	189	229	274	274
	18	76	110	143	164	164	135	173	207	207	163	199	243	247
土	19	64	93	123	146	146	116	150	183	187	141	173	212	224
Span I' in Ft														
-	20	53	80	106	132	132	100	130	160	170	121	151	186	204
bd	21	43	68	91	120	121	85	113	140	155	106	131	163	187
S	22	35	57	78	105	110	73	98	124	142	91	115	144	171
	23		48	68	92	100	63	86	109	131	79	101	127	153
	24		40	58	80	92	53	74	95	120	68	88	112	137
	05						100000					1		
	25		33	50	70	84	45	65	84	106	58	77	99	121
	26			42	61	78	38	56	74	95	50	67	88	108
	27			36	53	69	31	48	64	85	42	58	78	96
	28			30	46	61		41	56	75	35	50	68	82

For limitations and explanation of use of tables, see pages 171-173.

Depth					10	" FORM	15+3	" CON	CRETE						
Jotsts	4"	loists @	34" c	/c Wi	56 ps	f 5	" Joist	s @ 35	" c/c	Wt 58	psf	6′′ J	oists @ Wt 61		/c
Bottom Be Truss Be Top Be	ar #4	#4 #5 #4	#5 #5 #5	#:	6 #	6 #	5 7	6	46 46	#6 #7 #6	#7 #7 #7	#5 #6 #5	#6 #6 #6	#6 #7 #6	#7 #7 #7
15 16 17 18 19 19 20 21 22 23 24 25 26	134 111 92 76 63 51 41 33	184 155 131 111 94 79	234 5 199 170 145 4 125 9 107 7 92 5 79 7 68 8 57	24 21 18 16 15 13 12 10 8	1 2 1 2 66 1 67 1 60 1 35 1 22 1 06 1 30 1	41 22 111 186 1667 13550 1 35 11 001 993 84	24 2 90 2 62 2 38 1 18 1	81 3 40 2 06 2 77 2 53 1 33 1 15 1 00 1 86 1 74 1 64 55	02 66 36 13 88 64 43 25 09 03 83 73	266 236 213 192 174 158 144 132 122 108 95	302 266 236 213 192 174 158 144 132 122 113 105	268 229 195 167 144 107 92 79 67 58 49	321 276 237 204 177 154 134 117 102 88 76 66	318 283 250 217 191 167 147 129 113 100 88	318 283 255 231 210 192 176 157 139 122 109
28				1 4	44	60		39	55	74	89	34	49	68	
Depth Joists	4"]	oists @	34" c,	/c		FORM				l	Joists (@ 36"	c/c	Wt 61	psf
Bottom Bo Truss Bo Top Bo	ar #5	#5 #5 #5	#5 #6 #5	#6 #6 #6	#5 #5 #5	#5 #6 #5	#6 #6 #6	#6 #7 #6	#7 #7 #7	#5 #5 #5	#5 #6 #5	#6 #6 #6	#6 #7 #6	#7 #7 #7	#7 #8 #6
18 19 20 21 22	134 115 98 84 72	173 150 130 113 98	196 177 160 146 129	196 177 160 146 133	164 141 122 106 91	208 181 158 138 121	247 221 193 170 150	247 223 204 187 171	247 223 204 187 171	153 131 113 97 83	197 170 148 128 111	239 209 182 159 140	293 256 225 199 175	293 265 242 222 204	293 263 243 223 204
ui , 24 S 25 26 27	61 52 43 36 30	85 74 64 55 47	113 99 87 77 67	123 112 104 96 87	78 67 58 49	106 92 80 70 61	132 117 104 91 80	157 146 132 117 105	157 146 135 125 117	70 60 50 42 35	97 84 72 62 54	123 108 95 83 72	155 138 122 108	187 167 149 133	18 17 16 15
28 29	3.	40 34	59 51	77 69	34	52 45	71 62	93 83	109 101		45 38	63 55	85 75	106 95	13 11
30 31 32			44 38 32	61 54 47		38 33	54 48 41	74 66 58	93 84 75		32	47 41 34	66 58 51 44	85 76 67 59	10

Above and to the right of the zigzag line, tapered ends are required.

CONCRETE JOIST CONSTRUCTION INTERIOR SPAN—30 INCH WIDE FORMS

Safe Superimposed Load (psf)
For limitations and explanation of use of tables, see pages 171-173.

Donak									TUREL						
Depth	4//	la!-t	@ 34"	-1-	11			3" CO		Н					
Joists	4		60 psf	c/c	5" Jo	ists @	35" c	c Wt	63 psf	6"	Joists (@ 36"	c/c	Wt 6	psf
Bottom B		#5	#5	#6	#4	#5	#6	#6	#7	#5	#5	#6	#6	#7	#7
Truss B	Bar #5 Bar #4	#5 #5	#6 #5	#6 #6	#5 #5	#6 #5	#6 #6	#7 #6	# 7	#5	#6	#6	#7	#7	#8
	"				-		-		#7	#5	#5	#6	#6	#7	#6
18 19		176 152	200 179	200 179	166	212 184	253 225	253 228	253 228	155	173	245 213	300 261	300 272	300 272
20	98	131	162	162	123	160	197	207	207	113	149	185	229	248	248
21	83	113	147	148	105	139	172	189	189	96	129	161	201	227	227
22	11	98	130	135	91	122	152	173	173	82	112	141	178	208	208
23 July 25 26	59	85	114	123	78	106	134	159	159	70	97	124	157	189	192
_ 24	50	73	100	113	66	92	117	147	147	58	84	108	139	168	178
0 25	41 34	62 53	87 76	103	56 47	80 69	103	133 117	137 126	49	72 61	94 82	123	150 133	165 153
27	34	45	66	87	39	59	80	104	118	32	52	72	96	1119	142
								Ì							
28 29		37 31	57 49	77 67	32	51 43	70 61	93 82	109		44 36	62 53	84 74	106	132 119
30		J.	42	59		36	53	73	92		30	45	65	84	107
31			36	52		30	45	64	83	-		38	56	75	96
32			30	44			39	56	74			32	49	66	86
								40					4.0	F0	77
33				38			33	49	66				42	58	//
33 Depth				38	14'	FOR!	33 MS + 2		ONCRE"	re			42	38	
Depth	5" Jois	ts @ 3	5′′ c/c		14'		MS + 2		ONCRE"		7'' Jo	ists @	37" c/		70 ps
Depth Joists Bottom B	ar #5	#6	#6	Wt 6	52 psf #7	6" Joi	MS + 2 ists @ #6	1/2" CC 36" c/	ONCRE Wt	66 psf	#6	#6	37'' c/	'c Wt	70 ps
Depth Joists Bottom B Truss B	ar #5 Sar #6	#6 #6	#6 #7	Wt 6	#7 #8	6" Joi #5 #6	MS + 2 ists @ #6 #6	1/2" CC 36" c/ #6 #7	DNCRE	66 psf #7 #8	#6 #6	#6 #7	37'' c/ #7 #7	c Wt #7 #8	70 ps #8 #8
Depth Joists Bottom B Truss B Top B	ar #5 Sar #6 Sar #5	#6 #6 #6	#6 #7 #6	#7 #7 #7	#7 #8 #6	#5 #6 #5	#6 #6 #6	%" CC 36" c/ #6 #7 #6	#7 #7 #7	#7 #8 #6	#6 #6 #6	#6 #7 #6	37'' c/	'c Wt	70 ps
Depth Joists Bottom B Truss B Top B	Sar #5 Sar #6 Sar #5	#6 #6 #6	#6 #7 #6	#7 #7 #7	#7 #8 #6	#5 #6 #5	#6 #6 #6	%" CC 36" c/ #6 #7 #6	#7 #7 #7 #7	#7 #8 #6	#6 #6 #6	#6 #7 #6	37" c/ #7 #7 #7	#7 #8 #6	70 ps #8 #8 #8
Depth Joists Bottom B Truss B Top B	Sar #5 Sar #6 Sar #5	#6 #6 #6	#6 #7 #6	#7 #7 #7	#7 #8 #6 217	#5 #6 #5	#6 #6 #6 190 163	1/2" CC 36" c/ #6 #7 #6 235 208	#7 #7 #7 260 239	#7 #8 #6 260 239	#6 #6 #6	#6 #7 #6	37" c/ #7 #7 #7 265 236	#7 #8 #6	70 ps #8 #8 #8 299 275
Depth Joists Bottom B Truss B Top B	Sar #5 Sar #6 Sar #5	#6 #6 #6	#6 #7 #6	#7 #7 #7 217 199	#7 #8 #6	#5 #6 #5	#6 #6 #6	%" CC 36" c/ #6 #7 #6	#7 #7 #7 #7	#7 #8 #6	#6 #6 #6	#6 #7 #6	37" c/ #7 #7 #7	#7 #8 #6	70 ps #8 #8 #8
Depth Joists Bottom B Truss B Top B 21 22 23 24 25	164 144 127	#6 #6 #6	#6 #7 #6 217 199 184	#7 #7 #7 217 199 184	#7 #8 #6 217 199 184	#5 #6 #5 153 134 117	#6 #6 #6 #6 190 163 147	1/2" CC 36" c/ #6 #7 #6 235 208 184	#7 #7 #7 260 239 221	#7 #8 #6 260 239 221	#6 #6 #6	#6 #7 #6	37" c/ #7 #7 #7 265 236 211	#7 #8 #6 299 275 253	70 ps #8 #8 #8 299 275 256
Depth Joists Bottom B Truss B Top B 21 22 23 24 25	164 144 127 111 97	#6 #6 #6 201 177 157 138 124	#6 #7 #6 217 199 184 170 157	#7 #7 #7 #7 217 199 184 170 161	#7 #8 #6 217 199 184 170 161	6" Joi #5 #6 #5 153 134 117 102 88	#6 #6 #6 #6 190 163 147 128 115	%2" CC #6 #7 #6 235 208 184 164 146	#7 #7 #7 #7 260 239 221 195 178	#7 #8 #6 260 239 221 205 191	#6 #6 #6 179 156 137 119 106	#6 #7 #6 223 197 174 154 137	37" c/ #7 #7 #7 265 236 211 184 167	#7 #8 #6 299 275 253 227 203	70 ps #8 #8 #8 299 275 256 237 221
Depth Joists Bottom B Truss B Top B 21 22 23 24 25	164 144 127 111 97 85 74	#6 #6 #6 201 177 157 138 124 110 97	#6 #7 #6 217 199 184 170 157	#7 #7 #7 217 199 184 170 161	#7 #8 #6 217 199 184 170 161 147	6" Joi #5 #6 #5 153 134 117 102 88	#6 #6 #6 #6 190 163 147 128 115	72" CC 36" c/ #6 #7 #6 235 208 184 146 130 116	#7 #7 #7 #7 260 239 221 195 178	#7 #8 #6 260 239 221 205 191 178 167	#6 #6 #6 179 156 137 119 106	#6 #7 #6 223 197 174 154 137	37" c/ #7 #7 #7 265 236 211 184 167 149	#7 #8 #6 299 275 253 227 203 183 164	70 ps #8 #8 #8 299 275 256 237 221 206 193
Depth Joists Fortom B Truss B Top B 21 22 23 24 25	ar #5 6ar #6 6ar #5 164 144 127 1111 97 85 74	#6 #6 #6 201 177 157 138 124 110 97	#6 #7 #6 217 199 184 170 157 140 125 112	#7 #7 #7 199 184 170 161 147 137	#7 #8 #6 217 199 184 170 161 147 137 128	6" Joi #5 #6 #5 153 134 117 102 88 77 66 57	#6 #6 #6 #6 190 163 147 128 115	103 103 103 103 103 103 103 103 103 103	#7 #7 #7 260 239 221 195 178	#7 #8 #6 260 239 221 205 191 178 167 156	#6 #6 #6 179 156 137 119 106 93 80 70	#6 #7 #6 223 197 174 154 137 121 107 95	37" c/ #7 #7 #7 265 236 211 184 167 149 133	#7 #8 #6 299 275 253 227 203 183 164 148	70 ps #8 #8 #8 299 275 256 237 221 206 193 177
Depth Joists Softom B Truss B Top B	164 144 127 111 97 85 74	#6 #6 #6 201 177 157 138 124 110 97	#6 #7 #6 217 199 184 170 157	#7 #7 #7 217 199 184 170 161	#7 #8 #6 217 199 184 170 161 147	6" Joi #5 #6 #5 153 134 117 102 88	#6 #6 #6 #6 190 163 147 128 115	72" CC 36" c/ #6 #7 #6 235 208 184 146 130 116	#7 #7 #7 #7 260 239 221 195 178	#7 #8 #6 260 239 221 205 191 178 167	#6 #6 #6 179 156 137 119 106	#6 #7 #6 223 197 174 154 137	37" c/ #7 #7 #7 265 236 211 184 167 149	#7 #8 #6 299 275 253 227 203 183 164	70 ps #8 #8 #8 299 275 256 237 221 206 193
Depth Joists Bottom B Truss B Top B 21 22 23 24 25 L 26 L 27 L 28 05 29	ar #5 6ar #6 6ar #5 164 144 127 1111 97 85 74 65 56	#6 #6 #6 201 177 157 138 124 110 97 86 76	#6 #7 #6 217 199 184 170 157 140 125 112 100	#7 #7 #7 199 184 170 161 147 137 128 120	#7 #8 #6 217 199 184 170 161 147 137 128 120	6" Joi #5 #6 #5 153 134 117 102 88 77 66 57 49	#6 #6 #6 190 163 147 128 115 101 88 78 68	7/2" CC 36" c/ #6 #7 #6 235 208 184 146 130 116 103 92	#7 #7 #7 260 239 221 195 178 159 143 128 115	#7 #8 #6 260 239 221 205 191 178 167 156 142	#6 #6 #6 179 156 137 119 106 93 80 70 61	#6 #7 #6 223 197 174 154 137 121 107 95 84	37" c/ #7 #7 #7 265 236 211 184 167 149	#7 #8 #6 299 275 253 227 203 183 164 148 133	70 ps #8 #8 #8 299 275 256 237 221 206 193 177 160
Depth Joists Truss B Truss B Top B 21 22 23 24 25 1 26 1 27 1 28 2 29 3 30	164 144 127 111 97 85 74 65 56 49	#6 #6 #6 201 177 157 138 124 110 97 86 76 67	#6 #7 #6 217 199 184 170 157 140 125 112 100 90	#7 #7 #7 199 184 170 161 147 137 128 120 112	#7 #8 #6 217 199 184 170 161 147 137 128 120 112	6" Joi #5 #6 #5 153 134 117 102 88 77 66 57 49 41	#6 #6 #6 190 163 147 128 115 101 88 68 59	#6 235 208 184 146 130 116 103 92 81	#7 #7 #7 260 239 221 195 178 159 143 128 115 103	#7 #8 #6 260 239 221 205 191 178 167 156 142 129	#6 #6 #6 179 156 137 119 106 93 80 70 61 52	#6 #7 #6 223 197 174 154 137 121 107 95 84 73	37" c/ #7 #7 #7 265 236 211 184 167 149 133 119	#7 #8 #6 299 275 253 227 203 183 164 148 133 120	70 ps #8 #8 #8 299 275 256 237 221 206 193 177 160 145
Depth Joists Truss B Truss B Top B 21 22 23 24 25 1 26 1 27 1 28 2 29 30 31	164 144 127 1111 97 85 74 65 56 49	#6 #6 #6 201 177 157 138 124 110 97 86 76 67	#6 #7 #6 217 199 184 170 157 140 125 112 100 90	#7 #7 #7 199 184 170 161 147 137 128 120 112	#7 #8 #6 217 199 184 170 161 147 137 128 120 112	6" Joi #5 #6 #5 153 134 117 102 88 77 66 57 49 41	#6 #6 #6 190 163 147 128 115 101 88 68 59 51	#6 235 208 184 164 146 130 116 103 92 81	#7 #7 #7 260 239 221 195 178 159 143 128 115 103	#7 #8 #6 260 239 221 205 191 178 167 156 142 129	#6 #6 #6 179 156 137 119 106 93 80 70 61 52	#6 #7 #6 223 197 174 154 137 121 107 95 84 73	37" c/ #7 #7 #7 265 236 211 184 167 149 133 119 106 95	#7 #8 #6 299 275 253 227 203 183 164 148 133 120	70 ps #8 #8 299 275 256 237 221 206 193 177 160 145
Depth Joists Rottom B Truss B Truss B 21 22 23 24 25 □ 26 □ 27 □ 28 Ø 29 30 31 32	164 144 127 1111 97 85 74 65 56 49	#6 #6 #6 201 177 157 138 124 110 97 86 67 59 51	#6 #7 #6 217 199 184 170 157 140 125 112 100 90	Wt 6 #7 #7 #7 199 184 170 161 128 120 1112	#7 #8 #6 217 199 184 170 161 147 137 128 120 112	6" Joi #5 #6 #5 153 134 117 102 88 77 66 57 49 41	#6 #6 #6 190 163 147 128 115 101 88 68 59 51 44	#6 #7 #6 235 208 184 164 146 130 116 103 92 81	#7 #7 #7 260 239 221 195 178 159 143 128 115 103	#7 #8 #6 260 239 221 205 191 178 167 156 142 129	#6 #6 #6 179 156 137 119 106 93 80 70 61 52 44	#6 #7 #6 223 197 174 154 137 121 107 95 84 73 64 56	37" c/ #7 #7 #7 265 236 211 184 167 149 133 119 106 95	#7 #8 #6 299 275 253 227 203 183 164 148 133 120 108 97	70 ps #8 #8 299 275 256 237 221 206 193 177 160 145
Depth Joists Cottom B Truss B Truss B 21 22 23 24 25 £ 26 27 8 28 29 30 31 32 33	164 144 127 1111 97 85 74 65 56 49	#6 #6 #6 201 177 157 138 124 110 97 86 76 67	#6 #7 #6 217 199 184 170 157 140 125 112 100 90 80 71	#7 #7 217 199 184 170 161 147 128 120 112 101 91 82	#7 #8 #6 217 199 184 170 161 147 128 120 112 105 98 93	6" Joi #5 #6 #5 153 134 117 102 88 77 66 57 49 41	#6 #6 #6 190 163 147 128 115 101 88 59 51 44 37	#6 #7 #6 235 208 184 164 146 130 116 103 92 81 72 63 56	#7 #7 #7 260 239 221 195 178 159 143 128 115 103 92 82 74	#7 #8 #6 260 239 221 205 191 178 167 156 142 129 116 105 96	#6 #6 #6 179 156 137 119 106 93 80 70 61 52 44	#6 #7 #6 223 197 174 154 137 121 107 95 84 73 64 56 48	37" c/ #7 #7 #7 265 236 211 184 167 149 133 119 106 95	#7 #8 #6 299 275 253 227 203 183 164 148 133 120 108 97 88	#8 #8 299 275 256 237 221 206 193 177 160 145 132 119
Depth Joists Cottom B Truss B Truss B 21 22 23 24 25 □ 26 □ 27 □ 28 □ 29 30 31 32 33 34	164 144 127 1111 97 85 74 65 56 49	#6 #6 #6 201 177 157 138 124 110 97 86 67 59 51 44	#6 #7 #6 217 199 184 170 157 140 125 112 100 90 80 71 63	Wt 6 #7 #7 #7 217 199 184 170 161 147 128 120 112 101 82 74	52 psf #7 #8 #6 217 199 184 170 161 147 137 128 120 112 105 98 93	6" Joi #5 #6 #5 153 134 117 102 88 77 66 57 49 41	#6 #6 #6 190 163 147 128 115 101 88 59 51 44 37	#6 #7 #6 235 208 184 164 146 130 116 103 92 81 72 63 56	#7 #7 #7 260 239 221 195 178 159 143 128 115 103 92 82 74	#7 #8 #6 260 239 221 205 191 178 167 156 142 129 116 105 96 86	#6 #6 #6 179 156 137 119 106 93 80 70 61 52 44	#6 #7 #6 223 197 174 154 137 121 107 95 84 73 64 56 48	37" c/ #7 #7 #7 265 236 211 184 167 149 133 119 106 95 84 75 66	#7 #8 #6 299 275 253 227 203 183 164 148 133 120 108 97 88	70 ps #8 #8 #8 299 275 2256 237 221 206 193 177 160 145
Depth Joists Cottom B Truss B Truss B 21 22 23 24 25 26 27 82 29 30 31 32 33 34 35	164 144 127 1111 97 85 74 65 56 49	#6 #6 #6 201 177 157 138 124 110 97 86 67 59 51 44	#6 #7 #6 217 199 184 170 157 140 125 112 100 90 80 71 63	Wt 6 #7 #7 #7 199 184 170 161 147 128 120 111 82 74 66	#7 #8 #6 217 199 184 170 161 147 137 128 120 112 105 98 93	6" Joi #5 #6 #5 153 134 117 102 88 77 66 57 49 41	#6 #6 #6 190 163 147 128 115 101 88 59 51 44 37	#6 235 208 184 164 146 130 116 103 92 81 72 63 56	#7 #7 #7 260 239 221 195 178 159 143 128 115 103 92 82 74	#7 #8 #6 260 239 221 205 191 178 167 156 142 129 116 105 96 86 77	#6 #6 #6 179 156 137 119 106 93 80 70 61 52 44	#6 #7 #6 223 197 174 154 137 121 107 95 84 73 64 56 48	37" c/ #7 #7 #7 265 236 211 184 167 149 133 119 106 95 84 75 66 58	#7 #8 #6 299 275 253 227 203 183 164 148 133 120 108 97 88 78	70 ps #8 #8 #8 299 275 256 237 221 206 193 177 160 145 132 119 107

For limitations and explanation of use of tables, see pages 171-173.

Dept	h					14	" FOR	Ms + 3	" CON	CRETE						
Joists		5" Joi	sts @	35″ c/c	: Wt 6	8 psf	6" Jo	ists @	36" c/	c Wt 7	2 psf	7" Jo	ists @	37" c/	c Wt 7	6 psf
Botton	n B	ar #5	#6	#6	#7	#7	#5	#6	#6	#7	#7	#6	#6	#7	#7	#8
		ar #6	#6	#7	#7	#8	#6	#6	#7	#7	#8	#6	#7	#7	#8	#8
Top	рΒ	ar #5	#6	#6	#7	#6	#5	#6	#6	#7	#6	#6	#6	#7	#6	#8
	21	164	202	219	219	219	154	191	237	262	262	180	224	269	305	305
	22	144	179	202	202	202	134	168	210	243	243	158	198	239	281	281
	23	126	158	186	186	186	116	147	186	224	224	138	174	212	256	260
	24	110	139	172	172	172	101	129	165	200	208	120	154	189	228	241
	25	96	123	156	159	159	87	113	146	179	194	104	136	168	205	224
	26	83	108	140	148	148	75	99	130	160	180	90	120	150	183	209
44	27	72	96	125	137	137	64	87	115	143	167	79	106	133	164	195
) u	28	63	85	1111	128	128	55	76	102	128	157	68	93	119	147	177
pdo	29	54	74	99	120	120	46	66	90	114	143	59	81	105	132	160
	30	46	65	88	111	111	39	57	80	102	128	49	71	93	119	145
	31	39	56	78	99	105	32	49	70	91	115	41	62	82	106	130
	32	32	49	69	90	98	02	41	61	82	104	34	54	73	95	118
	33	32	42	62	81	92		35	53	73	91		46	65	85	106
	34		35	53	72	84		00	46	64	84		39	56	75	96
	_				- /2	80			39	56	75		32	49	67	86
	35		30	46	63								32	42	60	77
	36			40	56	75			33	49	67			36	52	69
	37			34	50	68				43	60					
1 1	38			30	44	60	l			36	53			31	45	62

WALLS FOR CIRCULAR GRAIN STORAGE BINS-INTERNAL PRESSURE

Horiz. radial pressure by Janssen's formula

Reinforcement is based upon grain (max. weight 50 pcf, min. angle of repose 28°). For heavier material (such as portland cement), increase steel to suit.

Design is for single bin, internally loaded. For cluster, check arch action of bin wall when interstice bin is loaded.

Wall thickness is determined by allowable bearing (540 psi at bottom of wall) while carrying its own weight plus roof, and 80% of total weight of grain in bin. (Min. thickness 6".)

Height of single freestanding circular bin is limited by overturning under 30 psf wind against empty bin and includes all values above zig-zag line in table below. When bins are clustered, height may be increased greatly.

For convenience in placing, specify horizontal bars to lie in same horizontal plane through the entire structure, to supply tiers of bars at uniform vertical spaces for entire height, varying bar sizes to suit.

		WALL R	EINFORCEMENT	(All walls 6" m	in.)	
Head		*	Inside diam	neter of bin		
Н	13'-0	15'-0	18'-0	20′-0	22'-0	24'-0
10	#3 @ 8	#3 @ 8	#3 @ 8	#3 @ 8	#3 @ 8	#3 @ 8
20	#3 @ 8	#3 @ 8	#3 @ 8	#4 @ 12	#4 @ 10	#4@9
30	#3 @ 8	#3 @ 8	#4 @ 12	#4 @ 12	#4 @ 9	#4 @ 8
40	#3 @ 8	#3 @ 8	#4 @ 12	#4@9	#4 @ 8	#4 @ 7
50	#3 @ 8	#3 @ 8	#4 @ 10	#4@9	#4 @ 7	#5 @ 9
60	#3 @ 8	#3 @ 8	#4 @ 10	#4 @ 8	#5 @ 11	#5 @ 9
70	#3 @ 8	#3 @ 8	#4 @ 10	#4 @ 8	#5 @ 10	#5 @ 9
80	#3 @ 8	#3 @ 8	#4 @ 10	#4 @ 8	#5 @ 10	#5 @ 9
90	#3 @ 8	#3 @ 8	#4 @ 10	#4 @ 8	#5 @ 10	#5 @ 9
100	#3 @ 8	#3 @ 8	#4 @ 10	#4 @ 8	#5 @ 10	#5 @ 9
110	#3 @ 8	#3 @ 8	#4 @ 10	#4 @ 8	# 5 @ 10	#5 @ 9
120	#3 @ 8	#3 @ 8	#4 @ 10	#4 @ 8	# 5 @ 10	#5 @ 9

CIRCULAR GRAIN STORAGE BINS-HOPPER BOTTOMS

Sometimes grain rests directly on foundation mat, but this necessitates use of power shovel for complete removal. Alternatively, hoppers of structural steel or concrete with sides sloped at least 8-on-12, feeding onto a conveyor system, eliminate shovelling by providing gravity feed.

Concrete hoppers are economically constructed as shown in figure, dihedral angles filled in to provide for a slope of at least 8-on-12. Hoppers are supported by pockets in side walls and columns on foundation mat with slabs, beams, and columns designed for the vertical pressures given in the table. Vertical pressure on bin bottoms for conditions given on page 187:—

$$V = \frac{wR}{k\mu'} \left[1 - e^{-\left(\frac{\mathbf{k}\mu'\mathbf{h}}{R}\right)^{-1}} \right]$$

MARKET PRESSURE ON DIN POTTOM /--!

Head			Diamet	er of Bins	2	
Н	13'-0	15'-0	18'-0	20'-0	22′-0	24'-0
20	507	552	603	627	654	678
30	581	646	728	773	815	852
40	616	695	798	860	916	968
50	630	720	840	913	982	1043
60	638	728	862	942	1020	1095
70	642	738	875	962	1048	1128
80	645	742	883	974	1064	1148
90	645	745	886	983	1072	1164
100	645	745	893	992	1090	1172
110	645	745	893	992	1090	1190
120	645	745	893	992	1090	1190

TWO-WAY FLAT SLABS—SQUARE PANELS WITH DROP PANELS

For two-way dome slabs, see pp. 419 ff.

Tables are presented for the slab thickness, width and thickness of drop panel, strips of reinforcing bars, weight of steel and volume of concrete per square foot of floor area on spans of 15 to 30 ft by one-foot intervals, for safe superimposed loads of 50, 100, 150, 200, 250, 300, 400 and 500 psf for typical square interior panels and for the strips perpendicular to the wall for exterior square panels that are built integrally with a spandrel beam or concrete wall.

All tables are based upon the recommendations of the "Building Code Requirements for Reinforced Concrete (ACI 318-56)," using one set of fiber stresses, viz., $f'_c = 3000$ psi and $f_s = 20{,}000$ psi, and are based upon using deformed bars whose deformations meet the requirements of ASTM A305.

As shown on page 190, the two-way slab is divided into two bands or strips of reinforcement, one over the columns and extending a quarter panel each side of the center-line, known as a "column strip," and one a half-panel wide between two column strips, known as a "middle strip." A second set of column and middle strips runs at right angles to the first, which explains the designation "two-way" slab. Each strip has straight bars in the bottom and truss bars that are in the bottom at midspan and in the top over the supports, and each strip may, in addition, have supplementary separate top bars when required. The structure must have at least three consecutive panels in a row in each direction to come within the ACI Code values for moments; if the building is narrower, a special analysis must be made which will have the effect of increasing the reinforcement. The successive spans must be of such lengths that they do not differ by more than twenty per cent of the longer span.

While values have been computed only for square panels, it is possible to estimate values for a rectangular panel fairly accurately by using the long side for one set of strips and the short side for the other. The ACI Code limits the ratio of long to short side to 1.33.

For exterior panels, it is possible to take the strips that are continuous, i.e., parallel to the discontinuous edge, from the table for Typical Interior Panels. The strips that are noncontinuous, i.e., perpendicular to the discontinuous edge, are given by the table for Strips Perpendicular to an Exterior Wall, provided that the exterior edge of the panel frames into a concrete column or concrete bearing wall integral with the slab. If the slab simply rests upon a masonry wall without any edge restraint, then the slab and drop panel thicknesses must be increased 15 per cent and the bars in the strips perpendicular to the exterior wall must be changed as follows from the values in the tables for Typical Exterior Panels:—

Positive steel in column strip:—Increase 50%.

Negative steel in column strip at wall:—Decrease to 17% of tabulated value. Negative steel in column strip over first interior column:—Increase 30%.

Positive steel in middle strip:—Increase 30%.

Negative steel in middle strip at exterior wall:—Decrease to 30% of tabulated value. Negative steel in middle strip at first interior row of columns:—Increase 33%.

TWO-WAY FLAT SLABS-SQUARE PANELS WITH DROP PANELS

For corner panels which are discontinuous on two edges, both sets of strips should be taken from the tables for Typical Exterior Panels; if both discontinuous edges rest upon masonry walls, the corrections above shall apply for both sets of strips.

The concrete quantities given per square foot of floor area include all structural concrete in slab and drop panel but do not include any material in the column capital, column, nor any floor finish above the structural slab. Note that the "safe superimposed load" represents live load, floor finishes, partition allowance, and everything except the weight of the concrete. For a table of quantities in columns and column capitals, see page 106.

The weight of steel is the average weight in pounds per sq ft of all bars in the slab but not including bars in beams, columns, walls or footings.

The effective depth of slab is computed on the basis of an allowance of $\frac{3}{4}$ in. cover over the bars in all cases, and, where bars cross each other, by an allowance of one bar diameter plus 0.03 in. for deformations.

While the scope of these tables is adequate for most purposes, it is not practicable to present all possible combinations. For those who wish to extend beyond the coverage of the tables as well as for those who wish to know how they were computed, the following examples will be instructive:—

Example—For the table on page 196, design a two-way typical interior flat slab panel 20'-0'' square for a safe superimposed load of 250 psf. Stresses:— $f_c = 1350$ psi, $f_s = 20,000$ psi. See ACI Code Art. 1002 and 1004.

Column Cap:—Size of cap is determined by keeping stresses around periphery within the allowable,* but 22½ per cent of the panel length (or 4'-6") is often used and will be tried here. Caps are often made in multiples of 6 in. to suit the standard steel forms available.

Drop Panel:—Size of panel is determined by keeping stresses around periphery within the allowable, but should be at least 0.33 of the panel length in the parallel direction.*

(7'-6" will be assumed here.)

Slab Thickness:—Slab thickness, t_2 , shall not be less than L/40, which equals 6 in., nor

less than $t_2 = 0.024 L \left(1 - \frac{2c}{3L}\right) \sqrt{\frac{w'}{f'c/2000}} + 1$, where c = diameter of column cap in feet, L = span in feet, and w' = uniform dead plus live load, psf, so

$$t_2 = 0.024 \times 20 \left(1 - \frac{2 \times 4.5}{3 \times 20} \right) \sqrt{\frac{345}{3000/2000}} + 1'' = 7.28 \text{ in.,}$$

and shall be sufficient to keep bending and shearing stresses within Code limits. For the present, $7\frac{1}{2}$ in. will be assumed.

Drop Panel Thickness:—ACI 318 requires the total thickness in drop panel to be at

least $t_1 = 0.028 L \left(1 - \frac{2c}{3L}\right) \sqrt{\frac{w'}{f_c'/2000}} + 1\frac{1}{2}'' = 0.028 \times 20 \left(1 - \frac{2 \times 4.5}{3 \times 20}\right) \sqrt{\frac{1}{1}} = 8.75 \text{ in., and not greater than } 1.5t_2 \text{ which is } 11\frac{1}{4} \text{ in. and is used here.}$

Total Bending Moment:— $M_o = 0.09 \ WLF \left(1 - \frac{2c}{3L}\right)^2$, where $F = 1.15 - \frac{c}{L}$, but ≥ 1.00 .

Superimposed load = $20 \times 20 \times 250$ = 100,000 lb Slab = $20 \times 20 \times 0.64 \times 150$ = 38,400 lb Drop = $7.5 \times 7.5 \times 0.31 \times 150$ = 2,600 lb 141,000 lb

^{*}The 1956 ACI Code is considerably less fixed in the proportions of the parts than previous codes, giving the designer more latitude in selecting outlines, but requiring that the conditions around the periphery of cap or drop and at all critical sections be within Code limits for stresses.

TWO-WAY FLAT SLABS—SQUARE PANELS WITH DROP PANELS

$$F = 1.15 - \frac{4.5}{20} = 0.925$$
 but must be ≥ 1.00 .

$$M_o = 0.09 \times 141,000 \times 20 \times 12 \times 1.00 \left(1 - \frac{2 \times 4.5}{3 \times 20}\right)^2 = 2,200,000 \text{ lb-in.}$$

Column Strip:—Positive moment = 0.20
$$M_o$$
 = 440,000 lb-in.
 $d = 7.5 - 0.75 - 0.25 = 6.5$ in. Take $b = \frac{3}{4} \times \text{panel width (ACI 1002c)}$:—
$$A_s = \frac{M}{jf_s d} = \frac{440,000}{\frac{7}{8} \times 20,000 \times 6.5} = 3.86 \text{ sq in.}^*$$

$$A_s = \frac{M}{jf_s d} = \frac{440,000}{\frac{7}{8} \times 20,000 \times 6.5} = 3.86 \text{ sq in.*}$$

$$19-\text{#4 bars} = 3.80 \text{ sq in.} \begin{cases} 9 \text{ Straight} \\ 10 \text{ Truss} \end{cases}$$

19-#4 bars =
$$3.80 \text{ sq in.} \begin{cases} 9 \text{ Straight} \\ 10 \text{ Truss} \end{cases}$$

$$R = \frac{M}{bd^2} = \frac{440,000}{\frac{3}{4} \times 120 \times 6.5 \times 6.5} = 116 < 236, \text{ so } f_c < 1350 \text{ psi}$$

Negative moment (computed for a series of equal spans as explained on page 189) = $0.50 M_o = 1,100,000 \text{ lb-in.}$

$$d \uparrow = 7.5 + 3.75 - 0.75 - 0.50 - 0.03 - 0.25 = 9.72$$
 in.

Take $b = \frac{3}{4} \times \text{drop width (ACI 1002c):}$

$$A_{s} = \frac{M}{if_{s}d} = \frac{1,100,000}{\frac{7}{8} \times 20,000 \times 9.72} = 6.47 \text{ sq in.} \ddagger 2 \times 10\text{-#4 truss bars} = 4.00 \text{ sq in.} \\ 12\text{-#4 top bars} = \frac{2.40 \text{ sq in.}}{6.40 \text{ sq in.}}$$

$$R = \frac{M}{bd^{2}} = \frac{1,100,000}{\frac{3}{4} \times 90 \times 9.72 \times 9.72} = 172 < 236, \text{ so } f_{c} < 1350 \text{ psi}$$

$$R = \frac{M}{bd^2} = \frac{1,100,000}{\frac{3}{4} \times 90 \times 9.72 \times 9.72} = 172 < 236, \text{ so } f_c < 1350 \text{ psi}$$

Middle Strip:—Positive moment = 0.15 M_0 = 330,000 lb-in.

d = 7.5 - 0.75 - 0.5 - 0.03 - 0.25 = 5.97, since the bars in the middle strip in one direction must rest on top of those at right angles, thus reducing the effective depth.

$$A_s = \frac{330,000}{\frac{7}{8} \times 20,000 \times 5.97} = 3.16 \text{ sq in.}$$
 15-#4 bars = 3.00 sq in. $\begin{cases} 7 \text{ Straight} \\ 8 \text{ Truss} \end{cases}$

Since the negative moment has the same numerical value and since the bars are all in one layer at the top and have a better moment arm, it is unnecessary to recompute the moment here; simply bend up one-half or slightly over one-half of the bars in this strip.

Shear around Column Cap:—This is figured on a vertical section around a circle with a radius that is larger than the cap radius by the total thickness of slab and drop panel less

$$v = \frac{V}{bjd} = \frac{(20 \times 20 - \pi \times 3.06 \times 3.06) \times 344}{2 \times \pi \times 36\frac{3}{4} \times \frac{7}{8} \times 9.72} = 66 \; \mathrm{psi} < 90 \; \mathrm{psi}$$

* The area furnished is about $1\frac{1}{2}$ per cent less than that computed as necessary assuming $j = \frac{7}{8}$. However, since p = 0.0065, based on three-fourths of the width of column band, j = 0.900 (page 34) and $A_s = 3.76$ sq in., so that the proposed steel is sufficient.

† This equals slab thickness plus drop thickness less fireproofing less top layer of bars (as lower layer has less moment arm) less 0.03 for deformations and less half the diameter of the lower layer of top bars.

† The area provided is about 1 per cent less than the computed area assuming $j = \frac{1}{8}$. However, since p = 0.00975, based on three-fourths of the width of drop panel, j = 0.882(page 34) and $A_s = 6.41$ sq in., so that the proposed steel is sufficiently close to the requirements.

§ Checking again, p = 0.0056, j = 0.906, $A_s = 3.05$ sq in., so that the 3.00 sq in. furnished is 12/3 per cent on the low side in the upper layer of bars. It would, of course, be simple enough to increase the steel, but with bar weights permitted to vary 3.5 per cent (page 402) and with the permissible tolerances of concrete construction, exact precision seems out of place.

TWO-WAY FLAT SLABS—SQUARE PANELS WITH DROP PANELS

Shear around Drop Panel:—This is figured on a vertical section around a square, each side of which lies at a distance beyond the drop panel equal to the slab thickness less $1\frac{1}{2}$ in. (ACI 1002c3):—

$$v = \frac{V}{bjd} = \frac{(20\times 20 - 8.5\times 8.5)\times 344}{4\times 102\times \frac{7}{8}\times 5.97} = 52.7~\mathrm{psi} < 90~\mathrm{psi}$$

It is impracticable to present a full study of flat slabs in a manual such as this or to tabulate more than a few typical cases. The negative moment and top steel in these tables is computed for a series of equal spans. In those cases where the adjoining span is longer or shorter than the span under consideration, adjustment must be made in the amount of top steel. Rectangular panels, openings through slabs, spans varying more than 20 per cent, panels with marginal beams or with interior beams, and many similar variations require special treatment best undertaken by a structural engineer.

Two-Way Flat Slab Placing Instructions

To eliminate placing bars underneath bands already laid, install bars and chairs in the sequence indicated by the numbers given in order below and shown in circles on the layout:—

- 1. Place lower slab bar spacers—shown -----
- 2. Place straight bars only-Bands A, C and E.
- 3. Place (close to drop) support bars and individual high chairs—Bands A—shown -x-x-x-.
- 4. Place bent bars and top bars—Bands A.
- 5. Place bent bars and top bars—Bands C and E.
- 6. Place straight bars only—Band D.
- 7. Place support bars and individual high chairs—Band D—shown -x—x—x-.
- 8. Place bent bars—Band D.
- 9. Place straight bars only-Band B.
- 10. Place support bars and individual high chairs—Band B—shown -x—x—x-
- 11. Place bent bars—Band B.

READY FOR CONCRETE.

Span	Safe		Drop			Each Co	lumn Strip		
Drop	Super- imposed	Slab Thickness f2	Panel Thickness		Straig	pht		Trussed	4
Сар	Load (psf)	(in.)	(t ₁ -t ₂) (in.)	Quant.	Bar No.	Length	Quant.	Bar No.	Lengt
L = 15'-0	50	43/4	21/2	5	#3	11'-9	4	#3	25'-9
	100	5	21/2	5	#3	11'-9	6	#3	25'-9
	150	51/2	23/4	6	#3	11'-9	7	#3	25'-9
D = 5'-6	200	53/4	3	4	#4	11'-9	5	#4	25'-9
	250	6	3	5	#4	11'-9	5	#4	25'-9
	300	61/4	31/4	5	#4	11'-9	6	#4	25'-9
C = 3'-0	400	63/4	31/4	6	#4	11'-9	7	#4	26'-0
	500	8	31/2	6	#4	11′-9	7	#4	26'-0
L = 16'-0	50	5	21/2	5	#3	12'-6	5	#3	27'-6
-	100	51/2	23/4	6	#3	12'-6	7	#3	27'-6
	150	53/4	3	8	#3	12'-6	8	#3	27'-6
D = 6'-0	200	6	3	5	#4	12'-6	5	#4	27'-6
	250	61/4	31/4	6	#4	12'-6	6	#4	27'-6
	300	61/2	31/4	6	#4	12'-6	7	#4	27'-6
C = 3'-6	400	7	31/2	7	#4	12'-6	8	#4	27'-9
	500	8	33/4	5	#5	12'-6	5	#5	27'-9
L = 17'-0	50	51/2	3	5	#3	13′-0	6	#3	29'-0
	100	53/4	3	7	#3	13'-0	8	#3	29'-0
	150	6	3	5	#4	13'-0	5	#4	29'-0
D = 6'-4	200	6	3	6	#4	13'-0	7	#4	29'-0
	250	61/2	31/4	7	#4	13'-0	7	#4	29'-0
	300	7	31/2	7	#4	13'-0	8	#4	29'-0
C = 3'-6	400	71/2	33/4	5	#5	13'-0	6	#5	29'-0
	500	8	4	6	#5	13'-0	6	#5	29'-0
L = 18'-0	50	6	3	6	#3	13'-9	6	#3	30′-9
	100	6	3	8	#3	13'-9	9	#3	30'-9
	150	61/4	31/2	6	#4	13'-9	6	#4	30'-9
D = 6'-9	200	61/2	31/4	7	#4	13'-9	7	#4	30'-9
	250	63/4	31/2	8	#4	13'-9	8	#4	30'-9
	300	71/4	33/4	8	#4	13'-9	9	#4	30'-9
C = 4'-0	400	8	4	6	#5	13'-9	6	#5	30'-9
	500	81/2	4	7	#5	13'-9	7	#5	30-'9

 $f_s = 20,000 \text{ psi}$ $f_c = 1,350 \text{ psi}$ $v_c = 90 \text{ psi}$ u = 300 psi

Each	Columi	n Strip			Each Mid	ddle Strip				Average
	Тор			Straigh	nt		Trussed	d	Weight	Cubic Feet of Concrete
Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Steel (psf)	Per Square Foot of Floor*
6	#3	10'-0	4	#3	10'-6	5	#3	22'-9	1.15	.425
6	#3	10'-0	4	#3	10'-6	5	#3	22'-9	1.74	.446
7	#3	10'-0	5	#3	10'-6	6	#3	22'-9	1.83	.491
4	#4	10'-0	6	#3	10'-6	7	#3	22'-9	2.13	.514
6	#4	10'-0	7	#3	10'-6	7	#3	22'-9	2.34	.532
7	#4	10'-0	4	#4	10'-6	5	#4	22'-9	2.63	.560
8	#4	10'-0	5	#4	10'-6	6	#4	23'-0	2.83	.604
9	#4	10'-0	5	#4	10'-6	5	#4	23'-0	3.03	.710
5	#3	10'-9	5	#3	11'-3	5	#3	24'-3	1.16	.446
6	#3	10'-9	5	#3	11'-3	5	#3	24'-3	1.42	.491
8	#3	10'-9	6	#3	11'-3	6	#3	24'-3	1.79	.514
7	#4	10'-9	7	#3	11'-3	7	#3	24'-3	2.13	.534
8	#4	10'-9	8	#3	11'-3	8	#3	24'-3	2.44	.560
7	#4	10'-9	5	#4	11'-3	5	#4	24'-3	2.67	.580
9	#4	10'-9	6	#4	11'-3	6	#4	24'-6	3.20	.625
8	#5	10′-9	6	#4	11′-3	7	#4	24'-6	3.59	.693
6	#3	11'-3	5	#3	12'-0	5	#3	25'-9	1.25	.494
8	#3	11'-3	5	#3	12'-0	6	#3	25'-9	1.62	.515
7	#4	11'-3	7	#3	12'-0	7	#3	25'-9	2.03	.535
6	#4	11'-3	8	#3	12'-0	9	#3	25'-9	2.46	.535
8	#4	11'-3	9	#3	12'-0	9	#3	25'-9	2.65	.580
8	#4	11'-3	5	#4	12'-0	6	#4	26'-0	2.90	.625
6	#5	11'-3	6	#4	12'-0	7	#4	26'-0	3.36	.669
8	#5	11'-3	7	#4	12'-0	8	#4	26'-0	3.72	.714
7	#3	12'-0	5	#3	12'-9	5	#3	27'-3	1.28	.535
8	#3	12'-0	6	#3	12'-9	7	#3	27'-3	1.74	.535
8	#4	12'-0	5	#4	12'-9	5	#4	27'-3	2.26	.560
8	#4	12'-0	5	#4	12'-9	6	#4	27'-3	2.60	.580
8	#4	12'-0	6	#4	12'-9	6	#4	27'-3	2.78	.604
9	#4	12'-0	6	#4	12'-9	7	#4	27'-3	3.06	.648
8	#5	12'-0	7	#4	12'-9	8	#4	27'-3	3.66	.714
9	#5	12'-0	8	#4	12'-9	9	#4	27'-3	4.12	.755

^{*} These cubic foot quantities include drop panel but not column capital.

Span	Safe	CL I	Drop			Each Co	lumn Strip		
Drop	Super- imposed	Slab Thickness t ₂	Panel Thickness		Straig	ht		Trusse	d
Сар	Load (psf)	(in.)	(t ₁ -t ₂) (in.)	Quant.	Bar No.	Length	Quant.	Bar No.	Length
L = 19'-0	50	6	3	7	#3	14'-3	7	#3	32'-3
	100	61/4	31/2	9	#3	14'-3	10	#3	32'-3
	150	61/2	31/2	7	#4	14'-3	8	#4	32'-3
D = 7'-3	200	7	31/2	7	#4	14'-3	8	#4	32'-6
	250	71/4	33/4	6	#4	14'-3	9	#4	32'-6
	300	73/4	4	6	#5	14'-6	6	#4	32'-6
C = 4'-0	400	81/2	41/4	7	#5	14'-6	7	#5	32'-6
	500	9	41/2	7	#5	14'-6	8	#5	32'-6
L = 20'-0	50	61/2	31/4	7	#3	15'-0	9	#3	34'-3
	100	63/4	31/2	10	#3	15'-0	11	#3	34'-3
	150	7	31/2	7	#4	15'-0	8	#4	34'-3
D = 7'-6	200	7	31/2	8	#4	15'-0	10	#4	34'-3
	250	71/2	33/4	9	#4	15'-0	10	#4	34'-3
	300	8	4	10	#4	15'-0	11	#4	34'-3
C = 4'-6	400	9	41/2	7	#5	15'-0	8	#5	34'-6
	500	10	5	8	#5	15'-0	8	#5	34'-6
L = 21'-0	50	7	31/2	8	#3	15'-9	10	#3	36'-0
	100	7	31/2	7	#4	15'-9	7	#4	36'-0
	150	7	31/2	8	#4	15'-9	9	#4	36'-0
D = 7'-9	200	71/2	3 3/4	9	#4	15'-9	10	#4	36'-0
	250	8	4	7	#5	15'-9	7	#5	36'-0
	300	81/2	41/4	7	#5	15'-9	8	#5	36'-0
C = 4'-6	400	91/2	43/4	8	#5	15'-9	9	#5	36'-0
	500	101/2	51/4	9	#5	15'-9	9	#5	36'-0
L = 22'-0	50	7	31/2	10	#3	16'-3	10	#3	37'-9
	100	7	31/2	8	#4	16'-3	8	#4	37'-9
	150	7	31/2	10	#4	16'-3	10	#4	37'-9
D = 8'-3	200	71/2	33/4	7	#5	16'-3	7	#5	37'-9
	250	8	4	8	#5	16'-3	8	#5	37'-9
	300	81/2	41/4	8	#5	16'-3	9	#5	37'-9
C = 5'-0	400	91/2	43/4	9	#5	16'-3	10	#5	37'-9
	500	101/2	51/4	10	#5	16'-3	11	#5	37'-9

 $f_s = 20,000 \text{ psi}$ $f_c = 1,350 \text{ psi}$ $v_c = 90 \text{ psi}$ v = 300 psi

Each	Column	n Strip			Each Mic	ddle Strip				Average
	Тор			Straigh	ıt		Trussec	4	Weight of Steel	Cubic Feet of Concrete
Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	(psf)	Per Square Foot of Floor*
9	#3	12'-9	5	#3	13'-6	6	#3	28'-9	1.42	.535
10	#3	12'-9	7	#3	13'-6	8	#3	28'-9	1.85	.562
8	#4	12'-9	6	#4	13'-6	6	#4	28'-9	2.57	.584
9	#4	12'-9	6	#4	13'-6	6	#4	29'-0	2.67	.625
11	#4	12'-9	7	#4	13'-6	7	#4	29'-0	3.04	.650
9	#5	12'-9	7	#4	13'-6	8	#4	29'-0	3.38	.693
9	#5	12'-9	5	#5	13'-6	6	#5	29'-0	3.90	.758
10	#5	12′-9	6	#5	13′-6	6	#5	29'-0	4.30	.825
8	#3	13'-3	6	#3	14'-0	7	#3	30′-3	1.55	.580
12	#3	13'-3	8	#3	14'-0	9	#3	30'-3	2.04	.605
8	#4	13'-3	10	#3	14'-0	10	#3	30′-3	2.49	.625
9	#4	13'-3	7	#4	14'-0	7	#4	30'-3	3.00	.625
12	#4	13'-3	7	#4	14'-0	8	#4	30'-3	3.24	.671
14	#4	13'-3	8	#4	14'-0	9	#4	30'-3	3.67	.713
9	#5	13'-3	6	#5	14'-0	6	#5	30'-6	4.00	.805
12	#5	13′-3	6	#5	14'-0	7	#5	30′-6	4.61	.885
9	#3	14'-0	7	#3	15'-0	7	#3	32'-0	1.62	.625
8	#4	14'-0	5	#4	15'-0	6	#4	32'-0	2.29	.625
10	#4	14'-0	7	#4	15'-0	7	#4	32'-0	2.81	.625
11	#4	14'-0	7	#4	15'-0	8	#4	32'-0	3.10	.670
8	#5	14'-0	8	#4	15'-0	9	#4	32'-0	3.50	.716
8	#5	14'-0	6	#5	15'-0	6	#5	32'-0	3.75	.760
10	#5	14'-0	6	#5	15'-0	7	#5	32'-0	4.30	.850
12	#5	14'-0	7	#5	15'-0	7	#5	32′-0	4.55	.931
13	#3	14'-9	8	#3	15'-6	8	#3	33'-6	1.60	.625
9	#4	14'-9	6	#4	15'-6	6	#4	33'-6	2.30	.625
12	#4	14'-9	7	#4	15'-6	8	#4	33'-6	3.04	.625
10	#5	14'-9	5	#5	15'-6	6	#5	33'-6	3.50	.670
12	#5	14'-9	6	#5	15'-6	7	#5	33'-6	4.07	.715
10	#5	14'-9	6	#5	15'-6	7	#5	33'-6	4.12	.760
12	#5	14'-9	7	#5	15'-6	8	#5	33'-6	4.70	.842
13	#5	14'-9	8	#5	15'-6	8	#5	33'-6	5.01	.931

^{*}These cubic foot quantities include drop panel but not column capital.

Span	Safe	Slab	Drop			Each Colum	n Strip		
Drop	Super- imposed	Thickness	Panel Thickness		Straig	ht		Trusse	d
Сар	Load (psf)	(in.)	(t ₁ -t ₂) (in.)	Quant.	Bar No.	Length	Quant.	Bar No.	Length
L = 23'-0	50	71/4	33/4	11	#3	17′-0	12	#3	39'-3
	100	71/2	33/4	8	#4	17'-0	9	#4	39'-3
	150	71/2	33/4	10	#4	17'-0	11	#4	39'-3
D = 8'-0	200	8	4	7	#5	17'-0	8	#5	39'-6
	250	81/2	41/4	8	#5	17'-0	9	#5	39'-6
	300	9	41/2	6	#6	17'-6	7	#6	39'-6
C = 5'-0	400	10	5	7	#6	17'-6	8	#6	39'-6
	500	12	5	7	#6	17'-6	8	#6	39'-6
L = 24'-0	50	71/2	3 3/4	7	#4	17'-6	8	#4	41'-0
	100	71/2	33/4	9	#4	17'-6	10	#4	41'-0
	150	8	4	7	#5	17'-6	8	#5	41'-0
D = 8'-9	200	81/2	41/2	8	#5	17'-6	9	#5	41'-0
	250	9	41/2	6	#6	18'-0	7	#6	41'-0
	300	91/2	43/4	7	#6	18'-0	7	#6	41'-0
C = 5'-6	400	11	43/4	7	#6	18'-0	8	#6	41'-0
	500	13	43/4	8	#6	18'-0	8	#6	41'-3
L = 25'-0	50	73/4	4	8	#4	18'-3	8	#4	43'-0
	100	8	4	10	#4	18'-3	10	#4	43'-0
	150	81/2	41/4	8	#5	18'-3	8	#5	43'-0
D = 9'-3	200	9	41/2	9	#5	18'-3	9	#6	43'-0
	250	91/2	43/4	7	#6	18'-3	7	#6	43'-0
	300	10	5	7	#6	18'-3	8	#6	43'-0
C = 5'-6	400	11	51/2	8	#6	18'-3	9	#6	43'-3
	500	13	51/2	9	#6	18′-3	9	#6	43'-3
L = 26'-0	50	81/4	41/4	8	#4	19'-0	9	#4	44'-6
	100	81/2	41/4	7	#5	19'-0	8	#5	44'-6
	150	83/4	41/2	9	#5	19'-0	9	#5	44'-6
D = 9'-6	200	9	43/4	10	#5	19'-6	10	#5	44'-9
	250	91/2	43/4	8	#6	19'-6	8	#6	44'-9
	300	101/2	5	8	#6	19'-6	9	#6	44'-9
C = 5'-6	400	111/2	53/4	9	#6	20'-0	10	#6	45'-0
	500	131/2	6	9	#6	20'-0	10	#6	45'-0

 $f_8 = 20,000 \text{ psi}$ $f_c = 1,350 \text{ psi}$ $v_c = 90 \text{ psi}$ v = 300 psi

Each	Columi	n Strip			Each Mi	ddle Strip				Average
	Тор			Straigh	nt		Trussed	4	of Steel	Cubic Feet of Concrete
Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	(psf)	Per Square Foot of Floor
13	#3	15'-3	9	#3	16'-3	9	#3	35'-0	1.88	.650
9	#4	15'-3	6	#4	16'-3	7	#4	35'-0	2.54	.670
12	#4	15'-3	8	#4	16'-3	9	#4	35'-0	3.18	.670
10	#5	15'-3	6	#5	16'-3	6	#5	35'-3	3.60	.714
10	#5	15'-3	6	#5	16'-3	7	#5	35'-3	4.00	.760
8	#6	15'-3	7	#5	16'-3	7	#5	35'-3	4.40	.803
9	#6	15'-3	8	#5	16'-3	8	#5	35'-3	4.98	.891
11	#6	15'-3	8	#5	16′-3	8	#5	35'-3	5.12	1.060
7	#4	16'-0	6	#4	17'-0	6	#4	36'-6	2.05	.670
11	#4	16'-0	7	#4	17'-0	8	#4	36'-6	2.64	.670
8	#5	16'-0	6	#5	17'-0	6	#5	36'-6	3.21	.714
11	#5	16'-0	6	#5	17'-0	7	#5	36'-6	3.66	.760
8	#6	16'-0	7	#5	17'-0	7	#5	36'-6	4.01	.803
10	#6	16'-0	8	#5	17'-0	8	#5	36'-6	4.46	.847
11	#6	16'-0	8	#5	17'-0	9	#5	36'-6	4.95	.972
13	#6	16'-0	8	#5	17′-0	9	#5	36′-9	5.25	1.139
10	#4	16'-6	6	#4	17'-6	6	#4	38'-0	2.11	.692
13	#4	16'-6	8	#4	17'-6	8	#4	38'-0	2.75	.715
10	#5	16'-6	6	#5	17'-6	7	#5	38'-0	3.45	.758
11	#5	16'-6	7	#5	17'-6	7	#5	38'-0	3.76	.803
9	#6	16'-6	5	#6	17'-6	6	#6	38'-0	4.29	.847
9	#6	16'-6	6	#6	17'-6	6	#6	38'-0	4.57	.892
10	#6	16'-6	7	#6	17'-6	7	#6	38'-3	5.21	.982
13	#6	16'-6	7	#6	17'-6	7	#6	38′-3	5.57	1.148
10	#4	17'-3	7	#4	18'-3	7	#4	39'-6	2.23	.714
9	#5	17'-3	6	#5	18'-3	6	#5	39'-6	3.02	.717
11	#5	17'-3	7	#5	18'-3	7	#5	39'-6	3.55	.760
13	#5	17'-3	8	#5	18'-3	8	#5	39'-6	4.04	.805
10	#6	17'-3	9	#5	18'-3	9	#5	40'-0	4.65	.848
9	#6	17'-3	9	#5	18'-3	9	#5	40'-0	4.76	.934
11	#6	17'-3	7	* #6	18'-3	8	#6	40'-0	5.59	1.026
13	#6	17'-3	7	#6	18'-3	8	#6	40'-0	5.78	1.195

^{*} These cubic foot quantities include drop panel but not column capital.

Span	Super- imposed Thickness Thick		Drop		Each Column Strip								
Drop	imposed	5,7,55,85	Panel Thickness		Straig	ght		Trusse	d				
Сар	Load (psf)	(in.)	(t ₁ -t ₂) (in.)	Quant.	Bar No.	Length	Quant. No.	Bar No.	Length				
L = 27'-0	50	81/2	41/4	9	#4	19'-6	10	#4	46'-0				
	100	9	41/2	8	#5	19'-6	8	#5	46'-0				
	150	9	41/2	9	#5	19'-6	10	#5	46'-0				
D = 10'-0	200	91/2	43/4	8	#6	20'-0	8	#6	46'-3				
	250	10	5	8	#6	20'-0	9	#6	46'-3				
	300	101/2	51/4	9	#6	20'-0	10	#6	46'-3				
C = 6'-0	400	12	6	10	#6	20'-0	11	#6	46'-3				
	500	131/2	6	8	# 7	21′-0	8	#7	46'-6				
L = 28'-0	50	81/2	41/4	10	#4	20'-3	11	#4	48'-0				
-	100	9	41/2	8	#5	20'-3	9	#5	48'-0				
	150	9	43/4	12	#5	20'-3	11	#5	48'-0				
D = 10'-6	200	10	5	13	#5	20'-3	12	#5	48'-3				
	250	101/2	51/4	10	#6	20'-6	10	#6	48'-3				
	300	111/2	51/2	10	#6	20'-6	10	#6	48'-3				
C = 6'-0	400	121/2	6	11	#6	20'-6	12	#6	48'-6				
	500	14	7	8	#7	21'-0	9	#7	48'-6				
L = 29'-0	50	83/4	41/2	7	#5	21′-0	8	#5	49'-9				
	100	91/4	43/4	9	#5	21'-0	10	#5	49'-9				
	150	91/2	5	11	#5	21'-0	13	#5	49'-9				
D = 11'-0	200	10	5	10	#6	21'-0	10	#6	49'-9				
	250	11	51/2	10	#6	21'-0	10	#6	50'-6				
	300	111/2	51/2	10	#6	21'-0	13	#6	50'-6				
C = 6'-6	400	13	61/4	12	#6	21'-0	13	#6	50'-9				
	500	141/2	7	9	#7	21'-6	10	#7	50'-9				
L = 30'-0	50	9	41/2	8	#5	21′-6	9	#5	51'-6				
	100	91/2	43/4	10	#5	21'-6	11	#5	51'-6				
	150	10	5	8	#6	22'-0	9	#6	51'-6				
D = 11'-3	200	101/2	51/4	10	#6	22'-0	111	#6	51'-6				
	250	111/2	51/2	11	#6	22'-0	11	#6	51'-6				
	300	12	53/4	9	#7	23'-0	9	#7	51'-6				
C = 6'-6	400	131/2	61/2	9	#7	23'-0	10	#7	51'-9				
	500	15	7	10	#7	23'-0	10	#7	52'-0				

 $f_s = 20,000 \text{ psi}$ $f_c = 1,350 \text{ psi}$ $\mathbf{v}_c = 90 \text{ psi}$ $\mathbf{v} = 300 \text{ psi}$

Each	h Colum	ın Strip			Each Mi	iddle Strip	ا م			
	Тор			Straig	jht		Trusse	·d	of	Average Cubic Feet of Concrete
Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Steel (psf)	Per Square Foot of Floor
12	#4	18'-0	7	#4	19'-0	8	#4	41'-0	2.41	.769
10	#5	18'-0	9	#4	19'-0	10	#4	41'-0	3.15	.803
11	#5	18'-0	11	#4	19'-0	12	#4	41'-0	3.72	.803
10	#6	18'-0	8	#5	19'-0	9	#5	41'-0	4.47	.846
11	#6	18'-0	9	#5	19'-0	10	#5	41'-0	4.88	.892
11	#6	18'-0	10	#5	19'-0	10	#5	41'-0	5.19	.937
13	#6	18'-0	9	#6	19'-0	8	#6	41'-0	5.86	1.072
12	#7	18'-0	9	#6	19'-0	9	#6	41′-3	6.47	1.195
13	#4	18'-6	8	#4	19'-9	9	#4	42'-9	2.58	.758
11	#5	18'-6	10	#4	19'-9	11	#4	42'-9	3.23	.802
12	#5	18'-6	14	#4	19'-9	15	#4	42'-9	3.87	.844
18	#5	18'-6	15	#4	19'-9	16	#4	42'-9	4.50	.934
13	#6	18'-6	11	#5	19'-9	12	#5	42'-9	4.90	1.021
15	#6	18'-6	11	#5	19'-9	12	#5	43'-0	5.41	1.064
15	#6	18'-6	12	#5	19'-9	13	#5	43'-0	6.13	1.153
11	#7	18'-6	9	#6	19'-9	9	#6	43'-0	6.38	1.246
9	#5	19'-3	9	#4	20′-6	9	#4	44'-3	2.70	.781
11	#5	19'-3	11	#4	20'-6	12	#4	44'-3	3.49	.805
14	#5	19'-3	15	#4	20'-6	16	#4	44'-3	4.19	.891
13	#6	19'-3	11	#5	20′-6	11	#5	44'-3	4.73	.934
14	#6	19'-3	11	#5	20′-6	12	#5	44'-6	5.27	.980
13	#6	19'-3	12	#5	20'-6	13	#5	44'-6	5.56	1.063
16	#6	19'-3	14	#5	20'-6	14	#5	44'-9	6.44	1.196
12	#7	19'-3	10	#6	20′-6	10	#6	44'-9	6.86	1.288
9	#5	20'-0	10	#4	21'-0	10	#4	45'-6	2.88	.803
12	#5	20'-0	12	#4	21'-0	12	#4	45'-6	3.66	.846
11	#6	20'-0	9	#5	21'-0	10	#5	45'-6	4.49	.892
13	#6	20'-0	12	#5	21'-0	12	#5	45'-6	5.10	.978
16	#6	20'-0	12	#5	21'-0	13	#5	45'-6	5.69	1.062
12	#7	20'-0	9	#6	21'-0	10	#6	45'-6	6.34	1.066
12	#7	20'-0	1	#6	21'-0	11	#6	45'-9	6.84	1.141
15	#7	20'-0	10	#6	21'-0	11	#6	45'-9	7.15	1.330

^{*} These cubic foot quantities include drop panel but not column capital.

TWO-WAY FLAT SLAB FLOORS, SQUARE PANELS— BANDS PERPENDICULAR TO AN EXTERIOR WALL For Bands Parallel to Walls or Not in End Spans, Use "Two-Way Flat Slab Floors, Square Panels—Interior Panels," Pages 194 to 201.

Span	Save		Drop				Each Column Strip						
Spair	Super- im-	Slab Thick-	Panel Thick-		Straig	ght		Truss	ed	To	p at Ex	t. Col.	
Drop	posed	ness	ness						1		<u> </u>	1	
Сар	Load (psf)	t ₂ (in.)	(t ₁ -t ₂) (in.)	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	
	50	43/4	21/2	5	#3	13'-6	5	#3	19'-6	7	#3	5'-6	
L = 15'-0	100	5	21/2	7	#3	13'-6	7	#3	19'-6	8	#3	5'-6	
	150	51/2	23/4	8	#3	13'-6	9	#3	19'-6	8	#3	5'-6	
	200	53/4	3	5	#4	13'-6	6	#4	19'-6	7	#4	5'-6	
D = 5'-6	250	6	3	6	#4	13'-6	7	#4	19'-9	7	#4	5'-6	
	300	61/4	31/4	7	#4	13'-6	7	#4	19'-9	8	#4	5'-6	
C = 3'-0	400	63/4	31/4	8	#4	13'-6	8	#4	19'-9	9	#4	5'-6	
	500	8	31/2	8	#4	13'-6	8	#4	19'-9	10	#4	5'-6	
	50	5	21/2	6	#3	14'-3	6	#3	21'-0	7	#3	5'-9	
	100	51/2	23/4	8	#3	14'-3	8	#3	21'-0	8	#3	5'-9	
L = 16'-0	150	53/4	3	9	#3	14'-3	10	#3	21'-0	10	#3	5'-9	
	200	6	3	6	#4	14'-3	7	#4	21'-0	7	#4	5'-9	
D = 6'-0	250	61/4	31/4	7	#4	14'-3	8	#4	21'-0	8	#4	5'-9	
	300	61/2	31/4	8	#4	14'-3	8	#4	21'-0	9	#4	5'-9	
C = 3'-6	400	7	31/2	8	#4	14'-3	9	#4	21'-0	10	#4	5'-9	
	500	8	33/4	6	#5	14'-3	7	#5	21'-0	8	#5	5'-9	
	50	51/2	3	6	#3	15'-0	7	#3	22'-0	8	#3	6'-3	
L = 17'-0	100	53/4	3	9	#3	15'-0	9	#3	22'-0	10	#3	6'-3	
	150	6	3	6	#4	15'-0	7	#4	22'-0	7	#4	6'-3	
D = 6'-4	200	6	3	7	#4	15'-0	8	#4	22'-0	8	#4	6'-3	
	250	61/2	31/4	8	#4	15'-0	9	#4	22'-0	9	#4	6'-3	
	300	7	31/2	9	#4	15'-0	9	#4	22'-3	11	#4	6'-3	
C = 3'-6	400	71/2	33/4	7	#5	15'-0	7	#5	22'-3	8	#5	6'-3	
	500	8	4	7	#5	15'-0	8	#5	22'-6	8	#5	6'-3	
	50	6	3	7	#3	16'-0	8	#3	23'-6	8	#3	6'-6	
L = 18'-0	100	6	3	10	#3	16'-0	11	#3	23'-6	11	#3	6'-6	
	150	61/4	31/4	7	#4	16'-0	8	#4	23'-9	8	#4	6'-6	
D = 6'-9	200	61/2	31/4	8	#4	16'-0	9	#4	23'-9	9	#4	6'-6	
	250	63/4	31/2	9	#4	16'-0	10	#4	23'-9	10	#4	6'-6	
C = 4'-0	300	71/4	33/4	10	#4	16'-0	11	#4	23'-9	12	#4	6'-6	
e e	400	8	4	7	#5	16'-0	8	#5	23'-9	8	#5	6'-6	
	500	81/2	4	8	#5	16'-0	9	#5	23'-9	10	#5	6'-6	

TWO-WAY FLAT SLAB FLOORS, SQUARE PANELS—BANDS PERPENDICULAR TO AN EXTERIOR WALL

 $f_a = 20,000 \text{ psi}$ $f_c = 1,350 \text{ psi}$ $v_c = 90 \text{ psi}$ v = 300 psi

ach	Colun	nn Strip				Each	Mide	dle Strip				Weight	Average
Тор	at In	t. Col.	Тор	at Ex	t. Col.		Straig	ght		Truss	ed	of Steel	Cubic Feet of Concrete
Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	(psf)	Per Square Foot of Floor*
6	#3	10'-0	5	#3	4'-3	5	#3	13'-0	5	#3	19'-6	1.25	.425
6	#3	10'-0	6	#3	4'-3	5	#3	13'-0	6	#3	19'-6	1.64	.446
7	#3	10'-0	7	#3	4'-3	6	#3	13'-0	7	#3	19'-6	1.94	.491
6	#4	10'-0	8	#3	4'-3	8	#3	13'-0	8	#3	19'-6	2.30	.514
6	#4	10'-0	9	#3	4'-3	8	#3	13'-0	9	#3	19'-6	2.59	.532
7	#4	10'-0	6	#4	4'-3	5	#4	13'-0	6	#4	19'-6	2.90	.560
9	#4	10'-0	7	#4	4'-3	6	#4	13'-0	7	#4	19'-6	3.46	.604
10	#4	10'-0	7	#4	4'-3	6	#4	13'-0	7	#4	19'-9	3.49	.710
6	#3	10'-9	5	#3	4'-6	5	#3	13'-9	5	#3	20'-9	1.28	.446
7	#3	10'-9	6	#3	4'-6	6	#3	13'-9	6	#3	20'-9	1.70	.491
9	#3	10'-9	8	#3	4'-6	7	#3	13'-9	8	#3	20'-9	2.07	.514
7	#4	10'-9	9	#3	4'-6	9	#3	13'-9	9	#3	20'-9	2.49	.534
8	#4	10'-9	6	#4	4'-6	6	#4	13'-9	6	#4	20'-9	2.86	.560
9	#4	10'-9	7	#4	4'-6	6	#4	13'-9	7	#4	20'-9	3.17	.580
9	#4	10'-9	8	#4	4'-6	7	#4	13'-9	8	#4	20'-9	3.59	.625
7	#5	10'-9	8	#4	4'-6	8	#4	13'-9	8	#4	21'-0	4.07	.693
6	#3	11'-6	6	#3	5'-0	5	#3	14'-6	6	#3	22'-0	1.44	.494
9	#3	11'-6	7	#3	5'-0	7	#3	14'-6	7	#3	22'-0	1.86	.515
6	#4	11'-6	9	#3	5'-0	9	#3	14'-6	9	#3	22'-0	2.36	.535
7	#4	11'-6	7	#4	5'-0	6	#4	14'-6	7	#4	22'-0	2.84	.535
8	#4	11'-6	7	#4	5'-0	7	#4	14'-6	7	#4	22'-0	3.10	.580
9	#4	11'-6	7	#4	5'-0	7	#4	14'-6	7	#4	22'-3	3.32	.625
7	#5	11'-6	9	#4	5'-0	8	#4	14'-6	9	#4	22'-3	3.92	.669
8	#5	11'-6	10	#4	5'-0	9	#4	14'-6	10	#4	22'-3	4.36	.714
7	#3	12'-0	6	#3	5'-3	6	#3	15'-6	6	#3	23'-3	1.50	.535
9	#3	12'-0	8	#3	5'-3	8	#3	15'-6	8	#3	23'-3	2.00	.535
7	#4	12'-0	6	#4	5'-3	6	#4	15'-6	6	#4	23'-3	2.60	.560
8	#4	12'-0	7	#4	5'-3	7	#4	15'-6	7	#4	23'-3	2.90	.580
9	#4	12'-0	8	#4	5'-3	8	#4	15'-6	8	#4	23'-3	3.22	.604
11	#4	12'-0	8	#4	5'-3	8	#4	15'-6	8	#4	23'-6	3.52	.648
	"	12'-0	6	#5	5'-3	6	#5	15'-6	6	#5	23'-6	4.13	.714
8	#5 #5	12'-0	7	#5	5'-3	7	#5	15'-6	7	#5	23'-6	4.70	.755

^{*} These cubic foot quantities include drop panel but not column capital.

TWO-WAY FLAT SLAB FLOORS, SQUARE PANELS— BANDS PERPENDICULAR TO AN EXTERIOR WALL For Bands Parallel to Walls or Not in End Spans, Use "Two-Way Flat Slab Floors, Square Panels—Interior Panels," Pages 194 to 201.

	Span	Save	Slab	Drop			50 0	Each C	Column S	Strip			
		Super- im-	Thick- ness	Panel Thick-		Straig	ght		Trusse	ed	То	p at Ex	t. Col.
	Drop Cap	Load (psf)	t ₂ (in.)	ness (t ₁ -t ₂) (in.)	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length
		50	6	3	9	#3	16'-9	9	#3	24'-6	9	#3	6'-9
	9	100	61/4	31/2	7	#4	16'-9	7	#4	24'-6	8	#4	6'-9
	L = 19'-0	150	61/2	31/2	9	#4	16'-9	9	#4	24'-6	11	#4	6'-9
		200	7	31/2	9	#4	16'-9	10	#4	24'-9	10	#4	6'-9
		250	71/4	33/4	10	#4	16'-9	11	#4	24'-9	12	#4	6'-9
-	D = 7'-3	300	73/4	4	7	#5	16'-9	8	#5	24'-9	9	#5	6'-9
		400	81/2	41/4	8	#5	16'-9	9	#5	25'-0	9	#5	6'-9
	C = 4'-0	500	9	41/2	9	#5	16'-9	10	#5	25'-0	10	#5	6'-9
		50	61/2	31/4	10	#3	17'-6	10	#3	26'-0	11	#3	7'-6
1		100	63/4	31/2	13	#3	17'-6	13	#3	26'-0	15	#3	7'-6
	L = 20'-0	150	7	31/2	9	#4	17'-6	9	#4	26'-0	10	#4	7'-6
		200	7	31/2	11	#4	17'-6	11	#4	26'-0	12	#4	7'-6
	D = 7'-6	250	71/2	33/4	12	#4	17'-6	12	#4	26'-0	13	#4	7'-6
		300	8	4	13	#4	17'-6	13	#4	26'-0	15	#4	7'-6
	C = 4'-6	400	9	41/2	9	#5	17'-6	10	#5	26'-3	10	#5	7'-6
		500	10	5	10	#5	17'-6	10	#5	26′-3	12	#5	7'-6
		50	7	31/2	11	#3	18'-6	11	#3	27'-3	12	#3	7'-9
		100	7	31/2	8	#4	18'-6	9	#4	27'-3	9	#4	7'-9
	L=21'-0	150	7	31/2	10	#4	18'-6	11	#4	27'-3	12	#4	7'-9
		200	71/2	3 3/4	12	#4	18'-6	12	#4	27'-3	13	#4	7'-9
	D = 7'-9	250	8	4	8	#5	18'-6	9	#5	27'-6	9	#5	7'-9
		300	81/2	41/4	9	#5	18'-6	9	#5	27'-6	11	#5	7'-9
	C = 4'-6	400	91/2	4 3/4	10	#5	18'-6	10	#5	27'-9	12	#5	7'-9
		500	101/2	51/4	11	#5	18′-6	11	#5	27′-9	13	#5	7'-9
		50	7	31/2	12	#3	19'-3	13	#3	28'-9	13	#3	8'-0
		100	7	31/2	10	#4	19'-3	10	#4	28'-9	11	#4	8'-0
	L=22'-0	150	7	31/2	12	#4	19'-3	12	#4	28'-9	14	#4	8'-0
		200	71/2	3 3/4	9	#5	19'-3	9	#5	28'-9	10	#5	8'-0
	D = 8'-3	250	8	4	10	#5	19'-3	10	#5	28'-9	12	#5	8'-0
	0.0	300	81/2	41/4	10	#5	19'-3	11	#5	28'-9	12	#5	8'-0
	C = 5'-0	400	91/2	4 3/4	12	#5	19'-3	12	#5	29'-0	13	#5	8'-0
		500	101/2	51/4	13	#5	19'-3	13	#5	29'-0	15	#5	8'-0

TWO-WAY FLAT SLAB FLOORS, SQUARE PANELS—BANDS PERPENDICULAR TO AN EXTERIOR WALL

 $f_8 = 20,000 \text{ psi}$ $f_c = 1,350 \text{ psi}$ $v_c = 90 \text{ psi}$ v = 300 psi

Each	Colur	nn Strip				Eacl	h Mid	dle Strip				Weight	Average		
Top	at In	t. Col.	Тор	at Ex	t. Col.		Strai	ght		Truss	ed	of	Cubic Feet of Concrete		
Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Steel (psf)	Per Square Foot of Floor*		
9	#3	12'-9	7	#3	5'-6	7	#3	16'-3	7	#3	24'-6	1.67	.535		
9	#4	12'-9	10	#3	5'-6	9	#3	16'-3	10	#3	24'-6	2.23	.562		
9	#4	12'-9	7	#4	5'-6	7	#4	16'-3	7	#4	24'-6	2.91	.584		
9	#4	12'-9	8	#4	5'-6	7	#4	16'-3	8	#4	24'-9	3.10	.625		
12	#4	12'-9	9	#4	5'-6	8	#4	16'-3	9	#4	24'-9	3.50	.650		
9	#5	12'-9	9	#4	5'-6	9	#4	16'-3	9	#4	24'-9	3.90	.693		
9	#5	12'-9	7	#5	5'-6	7	#5	16'-3	7	#5	25'-0	4.50	.758		
10	#5	12'-9	8	#5	5'-6	7	#5	16'-3	8	#5	25'-0	4.95	.875		
9	#3	13'-6	8	#3	5'-9	8	#3	17'-0	8	#3	26'-0	1.79	.580		
14	#3	13'-6	11	#3	5'-9	10	#3	17'-0	11	#3	26'-0	2.31	.605		
9	#4	13'-6	13	#3	5'-9	12	#3	17'-0	13	#3	26'-0	2.82	.625		
11	#4	13'-6	9	#4	5'-9	8	#4	17'-0	9	#4	26'-0	3.33	.625		
13	#4	13'-6	10	#4	5'-9	9	#4	17'-0	10	#4	26'-0	3.75	.671		
14	#4	13'-6	11	#4	5'-9	10	#4	17'-0	11	#4	26'-0	4.14	.713		
9	#5	13'-6	8	#5	5'-9	7	#5	17'-0	8	#5	26'-3	4.60	.805		
12	#5	13′-6	8	#5	5'-9	8	#5	17'-0	8	#5	26'-3	5.00	.885		
10	#3	14'-0	9	#3	6'-0	8	#3	18'-3	9	#3	27'-0	1.90	.625		
8	#4	14'-0	7	#4	6'-0	6	#4	18'-3	7	#4	27'-0	2.70	.625		
10	#4	14'-0	9	#4	6'-0	8	#4	18'-3	9	#4	27'-0	3.15	.625		
12	#4	14'-0	10	#4	6'-0	9	#4	18'-3	10	#4	27'-0	3.53	.670		
8	#5	14'-0	11	#4	6'-0	10	#4	18'-3	11	#4	27'-3	3.95	.715		
10	#5	14'-0	8	#5	6'-0	7	#5	18'-3	8	#5	27'-3	4.30	.760		
11	#5	14'-0	8	#5	6'-0	8	#5	18'-3	8	#5	27'-6	4.80	.850		
13	#5	14'-0	9	#5	6'-0	9	#5	18′-3	8	#5	27'-6	5.25	.931		
13	#3	14'-9	10	#3	6'-3	10	#3	19'-0	10	#3	28'-6	2.03	.625		
10	#4	14'-9	8	#4	6'-3	7	#4	19'-0	8	#4	28'-6	2.76	.625		
13	#4	14'-9	10	#4	6'-3	9	#4	19'-0	10	#4	28'-6	3.45	.625		
10	#5	14'-9	7	#5	6'-3	7	#5	19'-0	7	#5	28'-6	4.00	.670		
11	#5	14'-9	8	#5	6'-3	8	#5	19'-0	8	#5	28'-6	4.53	.715		
11	#5	14'-9	9	#5	6'-3	8	#5	19'-0	9	#5	28'-6	4.65	.760		
13	#5	14'-9	10	#5	6'-3	9	#5	19'-0	10	#5	28'-9	5.30	.842		
14	#5	14'-9	10	#5	6'-3	10	#5	19'-0	10	#5	28'-9	5.75	.931		

^{*} These cubic foot quantities include drop panel but not column capital.

TWO-WAY FLAT SLAB FLOORS, SQUARE PANELS—BANDS PERPENDICULAR TO AN EXTERIOR WALL For Bands Parallel to Walls or Not in End Spans, Use "Two-Way Flat Slab Floors, Square Panels—Interior Panels," Pages 194 to 201.

Span	Save	Slab	Drop				Each (Column	Strip			
	Super- im-	Thick- ness	Panel Thick-		Straig	ght		Truss	ed	То	p at Ex	t. Col.
Drop	posed Load (psf)	t ₂ (in.)	ness (t ₁ —t ₂) (in.)	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Lengt
1 , 2	50	71/4	33/4	14	#3	20'-0	14	#3	30'-0	16	#3	8'-3
L = 23'-0	100	71/2	33/4	10	#4	20'-0	11	#4	30'-0	11	#4	8'-3
	150	71/2	33/4	13	#4	20'-0	13	#4	30'-0	15	#4	8'-3
D = 8'-6	200	8	4	9	#5	20'-0	10	#5	30'-0	11	#5	8'-3
	250	81/2	41/4	10	#5	20'-0	11	#5	30'-0	13	#5	8'-3
C = 5'-0	300	9	41/2	8	#6	20'-3	9	#6	30'-0	11	#6	8'-3
-	400	10	5	9	#6	20'-3	9	#6	30'-0	11	#6	8'-3
	500	12	5	9	#6	20'-3	9	#6	30'-3	12	#6	8'-3
	50	71/2	33/4	9	#4	21'-0	9	#4	31'-0	10	#4	8'-9
L = 24'-0	100	71/2	33/4	12	#4	21'-0	12	#4	31'-0	16	#4	8'-9
	150	8	4	9	#5	21'-0	9	#5	31'-0	11	#5	8'-9
8 4 07	200	81/2	41/2	10	#5	21'-0	11	#5	31'-0	12	#5	8'-9
D = 8'-9	250	9	41/2	8	#6	21'-3	8	#6	31'-0	10	#6	8'-9
D = 0 -7	300	91/2	43/4	9	#6	21'-3	9	#6	31'-0	10	#6	8'-9
C = 5'-6	400	11	43/4	9	#6	21'-3		190	31'-6	12	Contract of the Contract of th	8'-9
C = 3-0	500	13	43/4	9	#6	21'-3	10	#6 #6	31'-6	13	#6 #6	8'-9
	50	73/4	4	10	#4	21′-6	10	#4	32'-6	13	#4	9'-0
L=25'-0	100	8	4	13	#4	21'-6	13	#4	32'-6	14	#4	9'-0
L=25-0	150	81/2	41/4	10	#5	21'-6	1	#5	32'-6	12	#5	9'-0
D = 9'-3	200	9	41/2	11	"	21'-6	10	100	32'-6			
D = A - 2	250	91/2			#5		12	#5		13	#5	9'-0
C = 5'-6	300	10	4 ³ / ₄ 5	13	#5	21'-6 21'-9	13	#5	32'-6 32'-9	15	#5	9'-0
C = 5 -0			150 Ti	10	#6	244 65 52	10	#6		12	#6	9'-0
	400 500	11	5½ 5½	10	#6 #6	21'-9 21'-9	11.	#6 #6	32'-9 33'-0	12	#6 #6	9'-0 9'-0
	50	81/4	41/4	11	#4	22'-6	11	#4	34'-0	13	#4	9'-3
L = 26'-0	100	81/2	41/4	14	#4	22'-6	14	#4	34'-0	16	#4	9'-3
20-0	150	83/4	41/2	11	#5	22'-6	11	#5	34'-0	12		9'-3
	200	9	4 1/2	12	#5 #5	22'-6	2 20	#5	34'-0		#5 #5	9'-3
D = 9'-6	250	91/2	43/4	5	*******	22'-9	13		7,500	14	100	
$D = \gamma - 0$	S Summer S		100	10	#6		10	#6	34'-0	12	#6	9'-3
C = 5'-6	300	101/2	5	10	#6	22'-9	11	#6	34'-0	12	#6	9'-3
C = 3-6	400	111/2	53/4	12	#6	22'-9	12	#6	34'-0	14	#6	9'-3
	500	131/2	6	12	#6	22'-9	13	#6	34'-3	14	#6	9'-

TWO-WAY FLAT SLAB FLOORS, SQUARE PANELS—BANDS PERPENDICULAR TO AN EXTERIOR WALL

 $f_s = 20,000 \text{ psi}$ $f_c = 1,350 \text{ psi}$ $v_c = 90 \text{ psi}$ $v_c = 300 \text{ psi}$

ach	Colun	nn Strip				Each		dle Strip				Weight	Average Cubic Feet
Тор	at In	t. Col.	Тор	at Ex	t. Col.		Straig	ght		Truss	ed	of Steel	of Concrete
Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	(psf)	Per Square Foot of Floor*
15	#3	15'-6	11	#3	6'-6	11	#3	19'-9	11	#3	29'-6	2.13	.650
10	#4	15'-6	9	#4	6'-6	8	#4	19'-9	9	#4	29'-6	2.83	.670
13	#4	15'-6	11	#4	6'-6	10	#4	19'-9	11	#4	29'-6	3.53	.670
10	#5	15'-6	8	#5	6'-6	7	#5	19'-9	8	#5	29'-6	4.05	.714
11	#5	15'-6	9	#5	6'-6	8	#5	19'-9	9	#5	29'-6	4.50	.760
8	#6	15'-6	9	#5	6'-6	9	#5	19'-9	9	#5	29'-6	4.95	.803
10	#6	15'-6	10	#5	6'-6	10	#5	19'-9	10	#5	29'-6	5.54	.891
12	#6	15'-6	10	#5	6'-6	10	#5	19'-9	10	#5	29'-6	5.75	1.060
9	#4	16'-0	7	#4	6'-9	7	#4	20'-9	7	#4	30'-9	2.34	.670
12	#4	16'-0	10	#4	6'-9	9	#4	20'-9	10	#4	30'-9	3.11	.670
10	#5	16'-0	8	#5	6'-9	7	#5	20'-9	8	#5	30'-9	3.73	.714
12	#5	16'-0	9	#5	6'-9	8	#5	20'-9	9	#5	30'-9	4.27	.760
9	#6	16'-0	9	#5	6'-9	9	#5	20'-9	9	#5	30'-9	4.68	.803
10	#6	16'-0	10	#5	6'-9	10	#5	20'-9	10	#5	30'-9	5.20	.847
11	#6	16'-0	11	#5	6'-9	10	#5	20'-9	11	#5	31'-3	5.67	.972
14	#6	16'-0	11	#5	6'-9	11	#5	20′-9	11	#5	31′-3	6.00	1.139
12	#4	16'-9	8	#4	7'-0	8	#4	21'-3	8	#4	32'-3	2.55	.692
14	#4	16'-9	10	#4	7'-0	10	#4	21'-3	10	#4	32'-3	3.18	.715
11	#5	16'-9	12	#4	7'-0	12	#4	21'-3	12	#4	32'-3	3.85	.758
12	#5	16'-9	14	#4	7'-0	14	#4	21'-3	14	#4	32'-3	4.40	.803
13	#5	16'-9	16	#4	7'-0	15	#4	21'-3	16	#4	32'-3	4.93	.847
11	#6	16'-9	11	#5	7'-0	11	#5	21'-3	11	#5	32'-6	5.59	.892
12	#6	16'-9	12	#5	7'-0	12	#5	21'-3	12	#5	32'-6	5.98	.982
13	#6	16'-9	12	#5	7'-0	12	#5	21'-3	12	#5	32'-9	6.27	1.148
13	#4	17'-6	9	#4	7'-3	9	#4	22'-3	9	#4	33'-6	2.67	.714
14	#4	17'-6	11	#4	7'-3	11	#4	22'-3	11	#4	33'-6	3.33	.717
12	#5	17'-6	14	#4	7'-3	13	#4	22'-3	14	#4	33'-6	4.03	.760
13	#5	17'-6	16	#4	7'-3	15	#4	22'-3	16	#4	33'-6	4.64	.805
11	#6	17'-6	111	#5	7'-3	11	#5	22'-3	11	#5	33'-6	5.28	.848
13	#6	17'-6	13	#5	7'-3	13	#5	22'-3	14	#5	33'-6	5.70	.976
13	#6	17'-6	14	#5	7'-3	13	#5	22'-3	14	#5	33'-6	6.45	1.026
14	#6	17'-6	14	#5	7'-3	13	#5	22'-3	14	#5	34'-0	6.70	1.195

^{*} These cubic foot quantities include drop panel but not column capital.

TWO-WAY FLAT SLAB FLOORS, SQUARE PANELS—BANDS PERPENDICULAR TO AN EXTERIOR WALL For Bands Parallel to Walls or Not in End Spans, Use "Two-Way Flat Slab Floors, Square Panels—Interior Panels," Pages 194 to 201.

Span	Save	Slab	Drop			- 1	Each C	Column S	Strip			
	Super- im- posed	Thick- ness	Panel Thick- ness		Straig	ght		Truss	ed	То	p at Ex	t. Col.
Drop Cap	Load (psf)	f ₂ (in.)	(t ₁ -t ₂) (in.)	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Lengti
L = 27'-0	50	81/2	41/4	12	#4	23'-3	12	#4	35'-0	12	#4	9'-9
27 -0	100	9	41/2	9	#5	23'-3	10	#5	35'-0	12	#5	9'-9
	150	9	41/2	12	#5	23'-3	12	#5	35'-0	13	#5	9'-9
	200	91/2	43/4	9	#6	23'-6	10	#6	35'-0	11	#6	9'-9
D = 10'-0	250	10	5	10	#6	23'-6	11	#6	35'-0	12	#6	9'-9
	300	101/2	51/4	11	#6	23'-6	12	#6	35'-0	13	#6	9'-9
C = 6'-0	400	12	6	13	#6	23'-6	13	#6	35'-3	13	#6	9'-9
	500	131/2	6	10	#7	24'-0	10	#7	35'-3	12	#7	9'-9
	50	81/2	41/4	13	#4	24'-0	14	#4	36'-3	14	#4	10'-0
L = 28'-0	100	9	41/2	11	#5	24'-0	11	#5	36'-3	12	#5	10'-0
	150	9	43/4	13	#5	24'-0	13	#5	36'-3	16	#5	10'-0
	200	91/2	43/4	10	#6	24'-3	11	#6	36'-6	12	#6	10'-0
D = 10'-6	250	101/2	51/4	12	#6	24'-3	12	#6	36'-6	12	#6	10'-0
	300	111/2	51/2	13	#6	24'-3	13	#6	36'-6	13	#6	10'-0
C = 6'-0	400	121/2	6	11	#7	24'-9	11	#7	36'-9	11	#7	10'-0
	500	14	7	11	#7	24'-9	11	#7	36'-9	12	#7	10'-0
	50	8 3/4	41/2	15	#4	25'-0	15	#4	37'-6	16	#4	10'-3
L = 29'-0	100	91/4	43/4	12	#5	25'-0	12	#5	37'-6	14	#5	10'-3
Lamenton Control of the Control of t	150	91/2	5	14	#5	25'-0	14	#5	37'-6	16	#5	10'-3
	200	10	5	11	#6	25'-3	12	#6	37'-6	15	#6	10'-3
D = 11'-0	250	11	51/2	12	#6	25'-3	13	#6	37'-6	12	#6	10'-3
	300	111/2	51/2	10	#7	25'-9	11	#7	37'-9	10	#7	10'-3
C = 6'-6	400	13	61/4	11	#7	25'-9	12	#7	37'-9	11	#7	10'-3
	500	141/2	7	12	#7	25'-9	13	#7	38′-3	12	#7	10'-3
	50	9	41/2	10	#5	25'-9	11	#5	39'-0	11	#5	10'-9
L = 30'-0	100	91/2	43/4	13	#5	25'-9	13	#5	39'-0	15	#5	10'-9
	150	10	5	11	#6	26'-0	11	#6	39'-3	12	#6	10'-9
D = 11'-3	200	101/2	51/4	12	#6	26'-0	12	#6	39'-3	15	#6	10'-9
	250	111/2	51/2	13	#7	26'-0	14	#6	39'-3	16	#6	10'-9
	300	12	53/4	11	#7	26'-6	11	#7	39'-6	11	#7	10'-9
C = 6'-6	400	131/2	61/2	12	#7	26'-6	12	#7	39'-6	14	#7	10'-9
	500	15	7	12	#7	26'-6	13	#7	39'-9	16	#7	10'-9

TWO-WAY FLAT SLAB FLOORS; SQUARE PANELS—BANDS PERPENDICULAR TO AN EXTERIOR WALL

 $f_a = 20,000 \text{ psi}$ $f_c = 1,350 \text{ psi}$ $v_c = 90 \text{ psi}$ v = 300 psi

ach	Colun	nn Strip				Each	Midd	dle Strip				Weight	Average
Top	at In	t. Col.	Тор	at Ex	t. Col.		Straig	ght		Truss	ed	of Steel	Cubic Feet of Concrete
Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	Quant.	Bar No.	Length	(psf)	Per Square Foot of Floor*
13	#4	18'-0	10	#4	7'-6	9	#4	23'-0	10	#4	34'-9	2.76	.759
10	#5	18'-0	12	#4	7'-6	12	#4	23'-0	12	#4	34'-9	3.49	.803
12	#5	18'-0	15	#4	7'-6	14	#4	23'-0	15	#4	34'-9	4.19	.803
10	#6	18'-0	11	#5	7'-6	11	#5	23'-0	11	#5	34'-9	4.95	.846
11	#6	18'-0	12	#5	7'-6	12	#5	23'-0	12	#5	34'-9	5.46	.892
12	#6	18'-0	13	#5	7'-6	13	#5	23'-0	13	#5	34'-9	5.90	.937
15	#6	18'-0	11	#6	7'-6	11	#6	23'-0	12	#6	35'-0	6.75	1.072
13	#7	18'-0	11	#6	7'-6	11	#6	23'-0	11	#6	35'-0	7.25	1.195
13	#4	18'-9	11	#4	7'-9	10	#4	23'-9	11	#4	36'-0	2.97	.758
11	#5	18'-9	14	#4	7'-9	13	#4	23'-9	14	#4	36'-0	3.73	.802
15	#5	18'-9	17	#4	7'-9	16	#4	23'-9	17	#4	36'-0	4.57	.806
11	#6	18'-9	12	#5	7'-9	12	#5	23'-9	12	#5	36'-3	5.24	.851
17	#6	18'-9	15	#5	7'-9	15	#5	23'-9	15	#5	36'-3	5.80	.980
17	#6	18'-9	15	#5	7'-9	15	#5	23'-9	16	#5	36'-3	6.40	1.064
13	#7	18'-9	12	#6	7'-9	12	#6	23'-9	13	#6	36'-3	7.52	1.153
13	#7	18'-9	12	#6	7'-9	12	#6	23'-9	13	#6	36'-3	7.55	1.246
16	#4	19'-6	12	#4	8'-0	11	#4	24'-9	12	#4	37′-3	3.15	.781
13	#5	19'-6	15	#4	8'-0	14	#4	24'-9	15	#4	37'-3	3.92	.805
20	#5	19'-6	18	#4	8'-0	17	#4	24'-9	18	#4	37'-3	4.66	.850
12	#6	19'-6	13	#5	8'-0	13	#5	24'-9	13	#5	37'-3	5.43	.893
16	#6	19'-6	15	#5	8'-0	15	#5	24'-9	16	#5	37'-3	6.05	.981
11	#7	19'-6	17	#5	8'-0	17	#5	24'-9	17	#5	37'-6	6.60	1.064
15	#7	19'-6	13	#6	8'-0	13	#6	24'-9	14	#6	37'-6	7.60	1.198
15	#7	19'-6	13	#6	8'-0	13	#6	24'-9	14	#6	38'-0	7.90	1.288
10	#5	20′-6	13	#4	8'-6	12	#4	25'-6	13	#4	38'-6	3.29	.803
13	#5	20'-6	16	#4	8'-6	15	#4	25'-6	16	#4	38'-6	4.07	.846
11	#6	20'-6	12	#5	8'-6	12	#5	25'-6	12	#5	38'-9	4.95	.892
14	#6	20'-6	14	#5	8'-6	13	#5	25'-6	14	#5	38'-9	5.70	.937
15	#6	20'-6	15	#5	8'-6	15	#5	25'-6	15	#5	38'-9	6.30	1.025
14	#7	20'-6	12	#6	8'-6	12	#6	25'-6	14	#6	39'-0	7.00	1.062
14	#7	20'-6	13	#6	8'-6	13	#6	25'-6	14	#6	39'-0	7.70	1.141
16	#7	20'-6	14	#6	8'-6	14	#6	25'-6	15	#6	39'-0	8.35	1.330

REINFORCED CONCRETE BEAMS (WORKING LOAD METHOD)

SINGLE SPAN SIMPLY SUPPORTED

The first set of tables, page 214, gives the total safe uniform load per lineal foot (live and dead) * on rectangular and tee beams for single spans simply supported at each end, computed in conformity with the American Concrete Institute's "Building Code Requirements for Reinforced Concrete (ACI 318-56)"; for span lengths varying from 10 to 30 feet in two-foot multiples; for one set of stresses, viz. $f_s = 20,000$ psi and $f_c = 1350$ psi; for depths from 12 to 30 inches, in two-inch multiples; for three stem widths (b') in each depth; with two choices of bar combination for each stem width, the first being that which produces balanced reinforcement (p = 0.0136) for a rectangular beam of the stem size given (b'), and the second about double that amount, requiring a rectangular beam of twice the width first given, or what is the same thing so far as calculations are concerned, the addition of a flange with width (b) twice that of the stem (b = 2b'). The depth of flange equals the depth to the neutral axis as fixed by the chosen stresses. In using these tables the tributary slab will practically always be thinner than the depth in the table. Approximate results satisfactory for many purposes will be given by widening the flange (b) so that the total area outside of the beam stem is the same as that given by the flange scheduled in the tables. This is slightly on the safe side and the tee may be computed accurately, if desired, always keeping within the limitations of ACI 705.

The necessary stirrups are given in the tables. For each safe load given, there is also scheduled a mark for a stirrup combination. The make-up of these combinations is tabulated on page 230. The first digit in the mark signifies the size of bar to use, the second (and possible third) digit gives the number of stirrups required in each end of the beam, and the final letter designates the required group spacing as given in the table. Since each variation of load, span or beam size requires a different stirrup arrangement, the combinations given, while on the safe side, are not always the most economical. The example on page 212 shows how a more exact arrangement can be determined. After designing stirrups as illustrated on pages 86-87 two stirrups were added at d/2 to comply with ACI 318-56 801(d).

Bond has been computed on the basis of deformed bars meeting ASTM A305. Plain round bars or deformed bars not meeting ASTM A305 will not afford sufficient bond to develop the values given in the tables.

The safe carrying capacity in these beam tables was obtained by taking the least of the values determined by shear, bond or flexure.

^{*} In the various slab tables throughout this book, the weight of the slab has been deducted so that the values given in the tables are the safe superimposed loads. In the case of beams, there is no advantage in deducting the minor weight of the beam stem, as it is the weight of the tributary slab that is the main element of dead load. So in these tables the capacity given is the total safe load, dead plus live.

REINFORCED CONCRETE BEAMS SINGLE SPAN SIMPLY SUPPORTED

One of the main advantages of reinforced concrete construction is the wide range of sizes open to the designer. Concrete beams may be wide and shallow, narrow and deep, or of more economical proportions with d equal to about two to three times b'. With deep beams, relatively little reinforcement is needed (though p must ≥ 0.005 b'd; ACI 702e1); while with shallow beams, a wide tee and considerably heavier reinforcement are required. Sometimes compressive steel is used when space is not available for a wide tee. It is impracticable to tabulate all possible beam sizes and steel combinations, so the following example may prove useful for those who wish to design beyond the scope of the tables or to see how they were prepared:—

Example—For the table on pages 214-215, determine the safe carrying capacity on a span of 20 feet of a 10 x 20 in. beam stem reinforced with 2-#10 bars in the bottom and 2-#9 bars trussed, placed in two layers; check the flange value of $6\frac{1}{2}$ x 20 in., and also the stirrup combination 310f.

Solution—Safe load tables reverse the process of design by selecting a section and determining its safe capacity. Take this as a tee beam and assume that the neutral axis is at the bottom of the flange. The centroid of the transformed section can be located thus*:—

$$\frac{20x^2}{2} - 45.4(16.40 - x) = 0$$

$$10x^2 + 45.4x = 745$$

$$x^2 + 4.54x = 74.5$$

$$x^2 + 4.54x + (2.27)^2 = 74.5 + 5.2 = 79.7$$

$$x = 6.66 \text{ in.} = 0.40d \text{ (closely)}$$

Hence, if the tee were 6.66 in. deep, it would extend all the way down to the neutral axis, making this in effect a rectangular beam. The difference between 6.5 and 6.66 is too slight to make any appreciable difference in the computation.

Flexure—The arm of the internal couple =
$$jd = 16.40 - \frac{6.66}{3} = 14.18$$
 in.
 $M_s = A_s f_s jd = 4.54 \times 20,000 \times 14.18 = 1,289,000$ lb-in. = $\frac{wl'^2 12}{8}$ | This is essentially a beam with "balanced reinforcement."

^{*} Computations in tables are carried to a greater degree of precision than is significant or customary in design offices.

REINFORCED CONCRETE BEAMS SINGLE SPAN SIMPLY SUPPORTED

$$w = \frac{M}{l'^2 \frac{12}{8}} = \frac{1,277,000 * \times 2}{3 \times 20 \times 20} = 2130 \text{ plf (in table)}$$

Bond-On 2-#10 bottom bars:-

$$V = \Sigma o j du = 2 \times 3.99 \times 14.18 \times 300 = 34,000 \text{ lb} = \frac{w l'}{2}$$

$$w = \frac{34,000}{10} = 3400$$
 plf, or more than allowed by flexure

Shear—For spacing stirrups, it is not practicable to work backwards, so take the capacity from flexure, 2130 plf, and design the web reinforcement to take care of this:—

$$v = \frac{V}{bjd} = \frac{2130 \times 10}{10 \times 14.18} = 151 < 360$$
 psi allowable

From the figure on page 211, allowing $v_c = 90$ psi on the concrete leaves 61 psi on the reinforcement, and the distance to be covered is easily computed:—

$$a = \frac{v_s}{\Delta v} \frac{l'}{2} = \frac{61}{126} \times 120 = 58 \text{ in.}$$

Then the total area of web reinforcement in one end of the beam can be computed:-

$$A_v = \frac{bv_s a}{2f_v} = \frac{10 \times 61 \times 58}{2 \times 20,000} = 0.88 \text{ sq in.}$$

Minimum requirement in distance a-4-#3 U-stirrups = 0.88 sq in.

The spacing figured by the method explained on pages 86-91 is 4, 8 (10) (15), since the spacing must not exceed d/2 (ACI 806a), use 5-#3 stirrups spaced 4, 8, 8, 8. 8. Moreover, the stirrups must cover a distance, ACI 801 (d), a + d = 58 + 16 = 74 in. spaced at not over d/2, or 9-#3 U-shaped stirrups spaced 4, 8 @ 8. The combination furnished in the table is:—10f = 10-#3 U-shaped stirrups spaced 2, 5, 7, 7 @ 8. This is more than adequate for this particular load and span, but an attempt was made in the table to keep a reasonable number of practicable stirrup combinations.

Had this been a continuous or restrained beam or frame without a monolithic slab to provide T-beam action, additional web reinforcement would have had to be provided as per ACI 801e.

^{*} If the beam is a freestanding tee beam, then M_c is the value to use. If the beam is monolithic with a floor slab, the width of tee, b, is arbitrary and a slightly greater width might be taken, increasing jd to $16.40 - \frac{6.50}{3} = 14.23$ in., and M_s to 1,292,000 lb-in., which is the determining value.

REINFORCED CONCRETE BEAMS SINGLE SPAN SIMPLY SUPPORTED

Applies to the tables on pages 214-217.

STRESSES:-

 $f_s = 20,000 \text{ psi}$ v = 360 psi

 $f'_c = 3000 \text{ psi}$ u = 300 psi for bottom bars

 $f_c = 1350 \text{ psi}$ = 210 psi for top bars with over 12" of concrete under

CODES:-

"Building Code Requirements for Reinforced Concrete (ACI 318-56)," also "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)."

 $E_1 = 6$ in. minimum for bottom bars

 $E_2 = 17$ bar diameters (24 diameters if d > 12 in.) (straight if possible, bent if necessary).

B = ordinary 8" minimum and sufficient in any case to keep the bearing pressure on the wall within the allowable for the material of which the wall is made (see page 99).

For stirrup combinations, see page 230.

Values in the tables are given as follows:-

Given Section $hb' \int$ 1st horizontal line:— b = b' = Rectangular Beam 2nd horizontal line:—b = 2b' = Tee Beam

For limitations and explanation of use of this table, see pages 210-213

	CI			`	s an			ř	`	this tab	TOTAL	SAFE (-			* (plf)-	_
	216	em	Flan	ige		Dai	Coni	bination	is	-			Span l	' in Fee	t		
			t =		Stre	aight	Tr	ussed	No.		10	1	12		14		16
	h (in.)	b' (in.)	0.4d	ь (in.)	No.	Size	No.	Size	Lay- ers	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load
1		6	_	6	2	#4	2	#4	2	_	784	_	544	_	399	_	306
2 3 4 5	12	10	3½ - 3½ 3½	8 16 10 20	2 2 2 3	#5 #7 #6 #6	1 2 1 2	#6 #6 #6 #7	1 2 1 2	210a — 212a	1201 1990 1493 2544		835 1380 1038 1768	28a — 28a	614 1016 761 1298	26a — 26a	470 778 583 994
6 7 8 9	14	10	41/2	8 16 10 20 12	2 2 2 2 2	#6 #8 #7 #9 #7	1 1 1 1 2	#6 #8 #6 #9 #6	1 2 1 1	24b 212b 24b 310b 24b	1734 2834 2190 3543 2580	210b — 211a	1200 1968 1520 2460 1791	29b — 210b	885 1444 1119 1810 1318		678 1108 855 1385 1010
11	_	12	41/2	24	2	#10	1	#10	1	3126	4803	312c	3500	3116	2570	212c	1970
12 13 14 15 16 17	16	10 12	5 5 5 	8 16 10 20 12 24	2 2 3 3 3 3 3	#6 #8 #5 #8 #6 #9	2 2 3 2 2 2	#5 #7 #5 #7 #6	2 2 2 2 1 2	25b 310c 25b 312d 26c 313a	2061 4009 2654 5147 3493 6004	23c 310d 23c 310d 25b 312d	1430 2780 1840 3570 2425 4165	210d — 212d 23c 310d	1050 2042 1350 2620 1780 3060	210d 210d 210d 212d	1565 1034 2020 1364 2342
18 19 20 21 22 23	18	8 10 12	6 6	8 16 10 20 12 24	3 2 2 4 2 3	#5 #9 #8 #7 #8 #8	{1 2 2 1 2 1 3	#5\ #4\ #7 #7 #8 #9 #8	2 1 2 1 2	26d 313b 26d 313b 26d 312e	2827 5371 3832 6714 4598 7153	25c 311c 25c 312f 25c 313b	1960 3730 2660 4660 3190 5600	24c 311c 24c 311c 24c 312f	1440 2740 1955 3420 2340 4110	212f — 310e — 311c	1103 2095 1498 2620 1795 3150
24 25 26 27 28 29	20	8 10 12	6½ - 6½ - 6½ - 6½	8 16 10 20 12 24	2 2 2 2 2 4	#7 #9 #8 #10 #9 #8	2 2 1 2 2 3	#5 #8 #8 #9 #6 #8	2 2 1 2 1 2	26f 49g 36f 312e 36f 411d	3546 6067 4876 6856 5872 10413	26d 410f 26f 313c 36f 411d	2465 4748 3385 5700 4075 7230	25c 410f 26d 313d 25d 410f	1810 3485 2486 4360 2995 5310	23d 311e 25d 312g 25d 312g	1388 2670 1902 3340 2290 4070
30 31 32 33 34 35	22	8 10 12	7½ - 7½ - 7½ - 7½	8 16 10 20 12 24	2 3 3 3 2 3	#7 #9 #6 #10 #8 #10	2 1 3 1 2 3	#6 #9 #6 #10 #8	2 2 2 2 1 2	36f 410g 36f 411f 36f 411f	4441 8601 5593 10601 6400 11531	36f 410i 36f 410h 36f 412g	3080 5975 3880 7370 5040 8970	26f 410i 26f 410i 26f 412h	2265 4390 2850 5400 3700 6590	25d 311g 25d 312h 26d 410i	1735 3360 2180 4140 2840 5050

^{*} Deduct dead load from these values.

Where dash occurs in stirrup column, no stirrups are required.

TOTAL SAFE CARRYING CAPACITY* (plf)— UNIFORMLY DISTRIBUTED

Span l^\prime in Feet

1	8	2	0	2	22	7	24		26	2	28	3	30	
Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	
_	242													1
_	371													2
-	614													3
	460	1			1					1				4
23a	785													5
	535	_	432											6
26b	875	23Ь	709		1									7
_	675		547	35	1									8
26Ь	1093	23Ь	886		1									9
_	795		645	041	1010	001	070							10
210Ь	1558	285	1260	26Ь	1040	23Ь	873							11
	636		515	_	426	-	358							12
28d	1236	27Ь	1002	25b	829	23c	695							13
-	817	-	663	-	548	-	460							14
29c	1586	27b	1285	26c	1061	24b	891							15
_	1079		873	-	722	-	606							16 17
28d	1852	275	1500	25b	1240	23c	1041							
_	871		707		584	_	490	_	418					18
211c	1660	29e	1342	28e	1110	27d	932	25c	795	24c	685		, 1	19
_	1180	_	958	_	792	-	665	_	567	-	_			20
211c	2070	29e	1680	28e	1390	27d	1165	25c	974	23c	858			21
-	1419		1150	-	950	-	798	_	678	_				22
2136	2488	211c	2019	29e	1668	27d	1400	26d	1192	24c	1030			23
_	1096	x	888	_	734	_	616	_	525	_	452	_	394	24
310f	2110	310f	1710	29g	1411	28f	1185	27f	1010	26f	871	25d	760	25
_	1503		1220	-	1008	_	845	-	721	_	622	-	542	26
311e	2640	310f	2130	211d	1770	29g	1485	27f	1265	26f	1092	25d	951	27
_	1810	-	1470	-	1214	-	1019	-	869	_	750		652	28
311e	3218	310f	2600	211d	2150	29g	1810	27f	1540	26f	1330	25d	1158	29
23e	1370	_	1110	-	918	_	770	-	657	-	567	-	493	30
310i	2650	310i	2150	212h	1780	210i	1490	29j	1274	27h	1098	26g	957	31
23e	1723	-	1396	-	1153	_	970	-	827	-	713	_	620	39
311g	3270	310i	2650	310i	2190	210h	1840	29j	1570	27h	1352	26g	1180	38
25c	2240		1815	- 6	1500	-	1260	2101	1075		928	274	808	34
313e	3985	313e	3230	310i	2670	310i	2240	210h	1910	29j	1645	27h	1435	38

d = h - (2'' + distance from bottom of bars to their centroid).

For limitations and explanation of use of this table, see pages 210-213.

	Ste	em	Flar	nge		Bar	Com	bination	ıs .		TOTAL		CARRYIN			* (plf)-	_
													Span l	'in Fee	t		
			t =		Str	aight	Tr	ussed	No.		10		12		14		16
	h (in.)	b' (in.)	0.4d	ь (in.)	No.	Size	No.	Size	Lay- ers	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load
1			_	10	3	#7	3	#5	2	37 <i>i</i>	6665	36h	4630	26h	3400	25f	2602
2		10	81/2	20	3	#9	{1 2	# 9 } #8}	2	411 <i>i</i>	11308	412k	9175	411 <i>i</i>	6740	411k	5160
3	24	12		12	2	#10	1	#9	1	39k	8761	38 <i>i</i>	6085	36h	4470	26h	3420
4	24	12	81/2	24	3	#10	3	#9	2	411 <i>i</i>	12696	413f	10580	412k	7998	412/	6110
5		14		14	2	#10	2	#8	1	381	8967	38 <i>i</i>	7120	37i	5225	26h	4000
6			81/2	28	3	#11	2	#11	2	412j	13978	413f	11650	413g	9200	4121	7050
7		10	_	10	3	#7	3	#6	2	39k	8222	37 _i	5700	29k	4190	27i	3210
8		10	9	20	2	#11	2	#11	2	49m	10239	410p	8520	411m	7300	4121	6076
9			_	12	2	#10	1	#10	1	3100	9790	39k	7250	37j	5330	28i	4080
10	26	12	9	24	3	#10	$\begin{cases} 2 \\ 1 \end{cases}$	#10 #9	2	411/	13949	413 <i>i</i>	11600	414c	9630	413j	7380
11		14	_	14	3	#9	2	#8	1	48k	12268	310o	8575	38k	6250	29k	4785
12		14	9	28	3	#11	3	#10	2	412j	15359	413i	12800	415b	10950	414c	8500
13		-	_	12	4	#7	4	#6	2			390	8000	38k	5890	210o	4500
14		12	91/2	24	6	#8	3	#9	3			417a	14490	415b	10630	414d	8130
15	28	14	_	14	4	#8	2	#8	2			310o	9252	38k	6800	37i	5200
16			91/2	28	4	#11	2	#11	2			418a	17690	4176	13200	416d	10100
17 18	-2	16	91/2	16	5	#11 #10	2	#10	2			490	11250	310r	8275	38k	6330
10			7/2	32		#10	3	#10				419a	19850	418a	14580	416d	11180
19		10		12	3	#9	2	#8	2					390	6820	37n	5215
20		12	101/2	24	4	#11	2	#10	2					417b	13250	416d	10150
21	30	14	_	14	4	#8	2	#9	2					310r	7875	390	6030
22			101/2	28	6	#9	3	#10	3					4196	14600	2.4	11190
23 24		16	101/2	16	8	#8 #9	6	#6 #8	2					47n	9100	390	6960
A.E			1072	32	0	#7	4	#0	3					421a	16520	419c	12670

^{*} Deduct dead load from these values.

Where dash occurs in stirrup column, no stirrups are required.

TOTAL SAFE CARRYING CAPACITY* (plf)— UNIFORMLY DISTRIBUTED

Span l' in Feet

	18	2	20	2	22	2	24	2	26	:	28	:	30	Γ
Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	
24f	2060	23e	1666	_	1380		1159	_	986	_	851	_	741	1
313g	4075	3121	3300	311k	2730	310m	2292	213g	1952	211 <i>j</i>	1685	291	1469	2
25f	2702	24f	2190	_	1810		1520	_	1296	_	1119	_	964	3
411k	4830	410m	3910	3121	3238	311k	2720	310m	2318	212k	2000	2101	1740	4
25f	3160	24f	2560	_	2118	_	1780	_	1515	_	1308	_	1140	5
4121	5560	411k	4510	410m	3730	3121	3135	310m	2670	213f	2300	210/	2000	6
26h	2518	25f	2055	24f	1698		1430	-	1215	_	1048	_	913	7
411n	4800	314d	3885	313k	3220	3120	2700	311n	2300	214d	1985	2121	1726	8
26h	3220	25f	2610	24f	2160	_	1815	_	1545	-	1332	-	1162	9
4120	5830	411n	4720	314d	3900	313k	3280	312o	2795	3109	2415	214c	2100	10
26h	3780	25f	3067	24f	2535	_	2130	_	1812	_	1564	_	1361	11
413j	6700	4120	5440	411n	4500	410q	3780	313k	3220	311n	2770	310q	2420	12
27i	3560	26h	2885	25f	2350	24f	2000	_	1705	_	1472	_	1282	13
413k	6420	4120	5200	316e	4300	314g	3620	313k	3080	3120	2660	310q	2320	14
27i	4110	(26h	3338	25f	2758	24f	2312	_	1970	_	1700	_	1480	15
414g	7975	413m	6460	3186	5340	316e	4490	314g	3820	313k	3300	311n	2870	16
29k	5000	26h	4050	25f	3350	24f	2815	_	2400	_	2070	-	1800	17
414g	8820	413m	7150	413k	5910	316e	4960	314g	4220	313k	3650	311n	3170	18
290	4125	271	3340	26h	2760	25f	2320	24f	1980		1708	_	1480	19
414g	8020	413p	6490	412s	5370	317c	4510	315e	3840	313p	3318	312s	2885	20
290	4760	271	3860	26h	3190	25f	2680	24f	2280	-	1970	_	1715	21
416e	8840	415e	7150	414h	5920	413p	4970	318c	4240	315e	3650	314h	3180	22
37n	5500	290	4450	26h	3680	25f	3090	24f	2640	-	2275	-	1980	23
4186	10000	416e	8100	414h	6700	414h	5620	413p	4790	316e	4130	314h	3599	24

d = h - (2'' + distance from bottom of bars to their centroid).

REINFORCED CONCRETE BEAMS (WORKING LOAD METHOD)

CONTINUOUS END SPAN

The table on page 222 gives the total safe uniform load per lineal foot (live and dead) * on reinforced concrete beams for the end span only of continuous runs of beams, computed in conformity with the American Concrete Institute's "Building Code Requirements for Reinforced Concrete (ACI 318-56)"; for span lengths varying from 10 to 30 feet in two-foot multiples; for one set of stresses, viz. $f_s = 20,000$ psi and $f_c = 1350$ psi; for depths from 12 to 30 inches in two-inch multiples; for three widths (b', page 221) in each depth; with bar combinations which for a rectangular beam of the size given produce balanced reinforcement (p = 0.0136).

There is no great advantage in listing much more heavily reinforced continuous beams, because negative bending quite sharply limits their maximum capacity. This may be seen in a general fashion by considering a continuous rectangular beam of about the width and depth covered by these tables. Consider the negative moment at the first interior support when the length of the interior span equals 1.2 times that of the end span, and the bending moment equals 1/10 of w times the square of the average span length (ACI 701c). Taking as a practical limit a steel ratio of perhaps 2 or $2\frac{1}{2}$ per cent, the value of $R = \frac{M}{bd^2}$ is around 450, and the (stem) width will then be $b' = \frac{M}{Rd^2}$ $\frac{w\ (1.1\ L)^2}{10\ \times\ 450d^2} = \frac{wL^2}{3710d^2}$

Turning to the positive moment in the end span, taking a bending moment of $wL^2/11$ (outer end freely supported without restraint), and computing the (flange) width (which is the same as the width of the tee beam in the previous tables, with superfluous concrete below the neutral axis removed), and taking $R = M/bd^2 = 235$ for balanced reinforcement, the flange width $b = \frac{M}{Rd^2} = \frac{wL^2}{11 \times 235d^2} = \frac{wL^2}{2585d^2}.$ So for equal resistance to positive and negative moment $b=\frac{3710}{2585}$ b'=1.43b'. Thus the maximum useable flange width in this special case is 1.43 times the stem width and the maximum practical reinforcement is 1.43 times that required for balanced reinforcement

of the stem. Beyond that limit, there is no advantage in increasing reinforcement or flange width.

^{*} In the various slab tables throughout this book, the weight of the slab has been deducted so that the values given in the tables are the safe superimposed loads. In the case of beams, there is no advantage in deducting the minor weight of the beam stem, as it is the weight of the tributary slab that is the main element of dead load. So in these tables the capacity given is the total safe load, dead plus live.

REINFORCED CONCRETE BEAMS CONTINUOUS END SPAN

The limitations and arrangement of the following table parallel so closely those of the single span that pages 210 to 213 should be studied carefully before reading further. This applies especially to stirrup arrangements and bond, and to the fact that bars must meet ASTM A305, and that carrying capacity is taken as the least of the limits set by shear, bond, positive or negative flexure.

The 1956 ACI Building Code recommends a value for positive moment in end spans of $wl'^2/11$ where the outer end is freely supported (and that is used here) or of $wl'^2/14$ where the outer end is monolithic with a reinforced concrete frame (which will usually increase the capacity over what is given here).

The following example may prove useful for those who wish to design beyond the scope of the tables or to see how they were prepared:—

Example—For the table on pages 222-223, determine the safe carrying capacity on an end span of 20 feet of a 12 x 24 in. beam stem reinforced with 2-#9 bottom bars, 1-#11 truss bar, all in one layer, with 1-#9 added top bar over the support at the con-

tinuous end, assuming 1-#11 truss bar bent up and carried through from the adjacent span. Check the stirrup combination 39l.

Solution—From the figure determine first the distance "x" down to the neutral axis by equating statical moments of the transformed areas about the neutral axis:—

$$\frac{12x^2}{2} = 35.6 \ (21.38 - x)$$

$$p = \frac{3.56}{12 \times 21.38} = 0.01367 > 0.0136$$

$$6x^2 + 35.6x = 761.2$$

$$x^2 + 5.93x + (2.97)^2 = 126.86 + 8.82 = 135.68$$

$$x = -2.97 \pm 11.64 = 8.67 \ \text{in.} (0.406d)$$

Positive Flexure—The arm of the internal couple, jd, = $21.38 - \frac{8.67}{3} = 18.5$ in.

$$M_s = A_s f_s j d = 3.56 \times 20,000 \times 18.5 = 1,317,000 \text{ lb-in.}$$
 $M_c = bkd \frac{f_c}{2} j d = 12 \times 8.67 \times \frac{1350}{2} \times 18.5 = 1,300,000$ practically "balanced reinforcement."

Since the amount of tension steel is accurately established, while the amount of compression concrete can usually be increased by assuming a slightly wider strip of slab in selecting b, use $M_s = 1,317,000$ lb-in. and compute the safe load:—

$$w = \frac{M}{l^2 \frac{12}{11}} = \frac{1,317,000}{20 \times 20 \times \frac{12}{11}} = 3020 \text{ plf}$$

Bond on Bottom Bars—The bond on the bottom bars is to be computed in that part of the positive bending zone which has the highest external shear, i.e., either the free end or the point of inflection of the continuous end. Since the ACI Building Code sets the shear at the free end at wl'/2 and it is unlikely that the shear at the point of inflection will normally be that large:—

$$V = \Sigma o j du = 2 \times 3.544 \times 18.5 \times 300 = 39,400 \text{ lb} = w l'/2$$

$$w = \frac{39,400}{10} = 3940 \text{ plf, or more than allowed by flexure.}$$

Shear—To allow for the fact that continuity in an end span increases the shear at the continuous end, ACI 701c requires an increase of 15 per cent over wl'/2. For spacing stirrups, it is not practicable to work backwards. Take the capacity of the beam at

REINFORCED CONCRETE BEAMS CONTINUOUS END SPAN

3020 plf as computed for positive bending and design the web reinforcement to take care of this:-

$$V = 1.15 \frac{wl'}{2} = 1.15 \times 3020 \times 10 = 34,700 \text{ lb}$$

 $v = \frac{V}{bjd} = \frac{34,700}{12 \times 18.5} = 156 \text{ psi} > 90 < 360 \text{ psi}$

Deducting $v_c = 90$ psi leaves 66 psi to be carried by stirrups. Although there is a bent bar which might displace a stirrup or two, the sloping portion frequently is not well located for that purpose (being bent for positive and negative bending); also, such refinement is mainly used in large girders where making detailed layouts justifies the effort. Here stirrups are standardized in groups large enough to be on the safe side but only occasionally the absolute minimum.

The distance to be covered by stirrups is found by dividing $v_s = 66$ psi by the change in shear per lineal inch of span, $z = \frac{w}{bjd(12)} = \frac{3020}{12 \times 18.5 \times 12} = 1.135 \text{ psi/in., then}$

$$a = \frac{66}{1.135} = 58 \text{ in.}$$

The total area of stirrups:—
$$A_v = \frac{bav_s}{2f_v} = \frac{12 \times 58 \times 66}{2 \times 20,000} = 1.15 \text{ sq in.}$$

Minimum requirement is 6-#3 U-stirrups = 1.32 sq in.

The spacing is figured by the method explained on pages 86-91 as 2, 6, 6, 7, 8, (12); but this last space exceeds d/2 (ACI 806a), and (ACI 801d) stirrups must cover a distance (a + d), spaced at not over d/2, so use 8-#3 U-stirrups at 2, 6, 6, 7, 8, 9, 10, 10.

Had this been a continuous or restrained beam or frame without a monolithic slab to provide T-beam action, additional web reinforcement would have had to be provided as per ACI 801e. The combination furnished in the table is 39l, or #3 stirrups, 9 at each end of the span, spaced 2, 5, 6, 7, 9, 10, 10, 10, 10, which is about as close as can be obtained with standardized groups.

The same arrangement will be used on the free end for simplicity in detailing and to

prevent reversal in the field.

Negative Flexure—By Code, the negative moment factor is to be taken as 1/10; the adjacent span is limited to a range between $\geq 0.833~l'$ to $\leq 1.20~l'$. With varying span lengths, different amounts of steel will be bent up. This computation is based upon the assumption that the adjacent span = 1.00 l' and the trussed bar in it is also $1-\hat{\#}11$. Then:-

$$-M = -wl^{\prime 2}/10$$

Since the added top bar increases A_8 over that used in "positive flexure" above, the beam is over-reinforced and compressive steel will be needed, obtained by lapping the bottom bars 20 diameters past each other, thus affording 2-#9 for compression. As shown below, compute x by taking moments about the bottom of the beam and doubling A'_{s} as per ACI 706b:—(See figure on page 221.)

doubling
$$A_s$$
 as per AC1 706b:—(See figure on page 221.)
$$\frac{12x^2}{2} + 38.00 \times 2.54 + 41.2 \times 21.82$$

$$x = \frac{12x + 38.00 + 41.2}{12x + 38.00 + 41.2}$$

$$6x^2 + 79.20x = 96.52 + 898.98 = 995.50$$

$$x^2 + 13.20 + (6.60)^2 = 165.92 + 43.56 = 209.48$$

$$x = 6.60 \pm 14.47 = 7.87 \text{ in.}$$

$$C_c = 12 \times 7.87 \times \frac{1350}{2} = 63,750 \text{ lb}$$

$$C_s = 38 \times 1350 \times \frac{5.33}{7.87} = 34,740 \text{ lb}$$

$$C = C_c + C_s = 98,490 \text{ lb}$$

$$z = 2.54 + \frac{63.75}{98.49} \times 0.08 = 2.59 \text{ in.}; \quad jd = 21.82 - 2.59 = 19.23 \text{ in.}$$

$$M_c = (C_c + C_s)jd = 98,490 \times 19.23 = 1,894,000 \text{ lb-in.}$$

REINFORCED CONCRETE BEAMS CONTINUOUS END SPAN

$$M_t = 4.12 \times 20,000 \times 19.23 = 1,585,000 \text{ lb-in.}$$

$$w = \frac{-M}{0.1 \, wl'^2} = \frac{1,585,000}{0.1 \times 20 \times 20 \times 12} = 3300 \, \text{plf} > 3020 \, \text{plf from positive flexure.}$$

These computations indicate the great range of choices open to the designer, the impracticability of anything approaching a complete set of beam tables, and the fact that continuity not only affects the moments and shears in this span but the amount of steel brought through from the adjacent span. Hence these tables can only serve for making preliminary estimates of sizes, and any major structure should be designed by computation.

FOR THE TABLE ON PAGES 222 AND 223:-

STRESSES:-

 $f_8 = 20,000 \text{ psi} \quad v = 360 \text{ psi}$

 $f'_c = 3000 \text{ psi} \quad v = 300 \text{ psi for bottom bars}$

 $f_c = 1350 \text{ psi}$ = 210 psi for top bars with $v_c = 90 \text{ psi}$ over 12" of concrete under

 $v_c = 90 \text{ psi}$ over 12'' of concrete und them

CODES:--

"Building Code Requirements for Reinforced Concrete (ACI 318-56)," also "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)."

 $E_1 = 6$ in, minimum for bottom bars.

 $E_2 = 17$ bar diameters, usually requiring a semicircular hook. (24 bar diameters for depths over 12 in.) $E_3 =$ bottom bar to extend 6 in. into the support except when values in the load tables are printed in bold-

= bottom bar to extend 0 in. into the support except when values in the load tables are printed in bar face type.

E₄ = When the values in the load tables are printed in boldface type, bottom bars must lap bars of adjoining span 20 diameters so that they may serve for compressive reinforcement, as shown in example in the text.

 $E_x = l'/4$ or l''/4 or 17 bar dias. (24 dias., d > 12 in.) past bend-down point, whichever is greatest

ACI 902a requires the extending of top bars past innermost position of point of inflection l/16, d, or half-bond length; if point of inflection is at l/5 of center-to-center span, if beam depth is l/12, and if column face is l/15, the given ratios, which are easily applied, work out fairly well, but must be checked for actual use.

B = Ordinarily 8 In. minimum and sufficient in any case to keep the bearing pressure on the wall within the allowable for the material of which the wall is made. (See page 99.)

A = Bars in adjoining span, not shown.
For stirrup combinations, see page 230.

CONTINUOUS REINFORCED CONCRETE BEAMS—END SPAN

For limitations and explanation of use of this table, see page 221.

	St	em		Ba	r Co	mbina	tion	s			TOTAL		ORMLY		PACITY *	(plf)—	-
	•												$Span\ l'$	in Fee	t		
			Str	raight	Tru	ssed	S. S.	Т	ор		10		12		14	1	6
	h (in.)	ь' (in.)	No.	Size	No.	Size	No. Layers	No.	Size	Stir- rup	Safe Load	Stir- rup	Safe Load	Stir- rup	Safe Load	Stir- rup	Safe Load
			140.	3126						Mark		Mark		Mark		Mark	
1	10	6	2	#4	1	#5 #7	2	1	#4	28a 24a	1028	25a 24a	714 964	24a	524 795	_	401 609
2	12	10	1 2	#6 #5	1 2	#5	1	1	#4	28a	1931	25a	1341	23a	986	_	755
4		8	1	#7	1	#8	1	1	#4	26b	1659	27a	1380	27a	1183	26b	910
5	14	10	{1	#6}	1	#8	1	1	#3	286	2614	286	1980	27a	1459	26Ь	1115
6		12	1 2	#5) #6	2	#7	1	1	#4	286	2853	286	2375	27a	1810	26b	1385
7		8	2	#5	1	#8	2	1	#4	37b	2620	28d	1890	27b	1460	26c	1120
8	16	10	2	#6	1	#9	1	1	#4	37b	3254	38d	2660	28d	1952	26c	1497
9	10	12	{1 1	# 7 #6	2	#7	1	1	#6	37Ь	3629	38d	3020	210c	2480	28d	1900
10		8	${1 \choose 1}$	#6 #5	2	#6	2	1	#5	38e	3328	38e	2659	29d	1950	28e	1492
11	18	10	2	#6	2	#7	2	1	#4	37d	3625	38e	3020	38e	2435	29d	1861
12		12	2	#7	2	#8	1	1	#4	37d	4468	38e	3720	38e	3190	38e	2476
13		8	2	#6	1	#9	2	1	#4	39f	4118	39f	3345	38f	2460	29f	1880
14	20	10	{;	#7 #6	2	#7	2	1	#6	37e	4577	39g	3820	39g	3119	38f	2400
15		12	2	#7	2	#8	1	1	#6	36f	5042	38e	4200	38f	3600	38f	3040
16		8	2	#6	2	#7	2	1	#4	37g	4589	39g	3825	39i	3120	39i	2385
17	22	10	{2 1	#6 \ #5	3	#6	2	1	#8	310g	6527	311f	5225	39i	3840	38h	2940
18		12	3	#6	3	#7	2	1	#6	39h	6884	311 <i>f</i>	5725	311f	4675	39i	3580
19	_	10	3	#6	2	#8	2	1	#6	311f	7635	313f	6350	312j	4792	310/	3665
20	24	12	2	#9	1	#11	1	1	#9	39h	7928	311f 312i	6600 7400	312 <i>j</i> 313 <i>f</i>	5660 6350	312j 312j	4650 5080
21		14	3	#7	3	#8	2	1	#5	310j	8891	3121	7400	3131			
22	0.	10	{2 2	#6} #5	2	#8	2	1	#8	314a	10253	314b	7775	313 <i>i</i>	5710	311m	4375
23	26	12	3	#7	2	#9	2	1	#7	312i	9748	314b	8110	315a 316a	6850 7900	313i 315a	5240 6045
24		14	3	#8	2	#10	2	1	#7	312m	11067	314b	9200	316b	8070	315a	6180
25 26	28	12	4 3	#6 #8	3 2	#8 #10	2	1	#6			316b 314e	10040	316b	8600	316c	7145
27	20	16	4	#7	4	#8	2	1	#6			4110	11720	412n	10050	412p	8199
28	-	12	5	#6	4	#7	2	1	#9					319a	9530	317e	7300
29	30	14	5	#6	4	#8	2	1	#6					414f	11100	4130	8500
30		16	5	#7	4	#8	2	1	#9					414j	12510	414k	9600

^{*} Deduct dead load from these values.

Where dash occurs in stirrup column, no stirrups are required. Extend bottom bars to E_4 (page 221) for values in boldface type.

CONTINUOUS REINFORCED CONCRETE BEAMS—END SPAN

TOTAL SAFE CARRYING CAPACITY* (pif)— UNIFORMLY DISTRIBUTED

Span l' in Feet

1	8	2	o	2	22	2	24	2	26	2	28	3	80	
Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	
_	317	_	257	_	212		178							1
	481	_	389	_	322	_	270							9
	596		483		399		336							4
23b	720	_	582	_	481	_	405	_	345	_	297			
23b	882	_	714	_	590	_	496	_	422	_	364			5
23b	1093	_	885	_	732	-	615	_	524	_	452			6
25b	884	23c	715	_	591	-	497	_	423	_	365	_	318	7
25b	1181	23c	956	_	790	_	664	_	565	_	488	_	425	8
26c	1500	246	1215	_	1005	_	844	_	719	_	619	_	540	9
26e	1180	25c	954	24c	790	-	664	_	565	_	488		424	10
27d	1470	25c	1191	24c	985		827	_	705	_	608	_	530	11
28e	1955	26e	1585	25c	1310	23d	1100		937		808	_	704	12
28f	1487	27f	1205	26e	995	24d	837	23d	712	_	615	-	535	13
37f	1900	27e	1535	26e	1270	24d	1068	23d	908	_	783	_	682	14
37f	2404	28e	1950	26f	1610	24d	1352	23d	1152	_	995	_	865	18
39i	1888	29g	1530	27h	1263	26g	1060	25e	904	24d	780	23d	679	16
38h	2320	28h	1880	27g	1555	26g	1306	24e	1112	23e	960	_	835	17
38h	2830	210g	2290	28h	1895	26g	1590	25e	1355	24d	1170	23e	1008	18
391	2900	212j	2345	210/	1940	28j	1630	27h	1388	26g	1198	24e	1030	18
310/	3680	391	3020	212j	2462	29i	2070	27j	1762	26g	1520	25e	1325	20
310/	4010	391	3255	212j	2690	29i	2260	27j	1925	26g	1660	24e	1448	21
310p	3460	39n	2800	212n	2318	210/	1947	28/	1657	27h	1430	27h	1245	22
311 <i>m</i>	4140	310p	3354	39n	2770	212n	2330	29m	1984	27k	1711	27h	1490	28
313 <i>i</i>	4780	311m	3865	39n	3200	39n	2682	210/	2285	28j	1975	26h	1700	24
313 <i>i</i>	4880	312p	3960	310s	3270	39p	2750	212n 213i	2340 2703	211o 211o	2020	281 29m	1760 2030	25
314f 315a	5645 6455	313i 314f	4560 5245	311p 312p	3780 4330	39p 310s	3165 3640	39n	3100	2110 212n	2678	29m	2330	27
315d	5760	314k	4660	312r	3860	311r	3245	39a	2762	2130	2382	211o	2078	28
317e	6700	314k	5430	314k	4482	312r	3770	310s	3220	215d	2775	212p	2417	29
318a	7580	316g	6140	314k	5070	313o	4260	311r	3630	39p	3119	213i	2730	30

d = h - (2'' + distance from bottom of bars to their centroid).

REINFORCED CONCRETE BEAMS

(WORKING LOAD METHOD)

CONTINUOUS INTERIOR SPANS

The table on page 228 gives the total safe uniform load per lineal foot (live and dead) * on reinforced concrete beams for the interior spans only of continuous runs of beams, computed in conformity with the American Concrete Institute's "Building Code Requirements for Reinforced Concrete (ACI 318-56)"; for span lengths varying from 10 to 30 feet in two-foot multiples; for one set of stresses, viz. $f_s = 20,000$ psi and $f_c = 1350$ psi; for depths from 12 to 30 inches in two-inch multiples; for three widths (b', page 227) in each depth; with bar combinations to produce balanced reinforcement (p = 0.0136) for a rectangular beam of the size given.

There is no great advantage in listing much more heavily reinforced continuous beams, because negative bending quite sharply limits their maximum capacity. Following the argument developed for this same situation for the continuous end of an end span, it can be shown that the limit is nearer

$$\left(\frac{11 \times 450}{16 \times 235 \times (1.1)^2}\right) = 1.09 \text{ than } 1.43 \text{ (see page 218)}.$$

The limitations and arrangement of the following table parallel so closely those of the single span that pages 210 to 213 should be studied carefully before reading further. This applies especially to stirrup arrangements and bond, and to the fact that bars must meet ASTM A305, and that carrying capacity is taken as the least of the limits set by shear, bond, positive or negative flexure.

The following example may prove useful for those who wish to design beyond the scope of the tables or to see how they were prepared:—

Example—For the table on page 228-229, determine the safe carrying capacity on an interior span (of a continuous run) of 22 feet of a 14×26 in. beam stem reinforced with 3-#6 bottom bars, 2-#9 truss bars, all in one layer, and 1-#8 top bar over each support, assuming 2-#9 truss bars bent up and extended through from adjacent span. Check the stirrup combination 38l.

^{*} In the various slab tables throughout this book, the weight of the slab has been deducted so that the values given in the tables are the safe superimposed loads. In the case of beams, there is no advantage in deducting the minor weight of the beam stem, as it is the weight of the tributary slab that is the main element of dead load. So in these tables the capacity given is the total safe load, dead plus live.

REINFORCED CONCRETE BEAMS CONTINUOUS INTERIOR SPANS

Positive Flexure—The arm of the internal couple, $jd = 23.52 - \frac{8.45}{2} = 20.7$ in.

$$M_s = A_s f_s j d = 3.32 \times 20,000 \times 20.7 = 1,375,000 \text{ lb-in.}$$
 a somewhat under-
 $M_c = bkd \frac{f_c}{2} j d = 14 \times 8.45 \times \frac{1350}{2} \times 20.7 = 1,655,000 \text{ lb-in.}$ reinforced beam.

$$w = \frac{M}{l'^2 \frac{12}{16}} = \frac{1,375,000}{22 \times 22 \times \frac{12}{16}} = 3790 \text{ plf (3720 in table)}$$

Bond on Bottom Bars—The bond on the bottom bars is to be computed in that part of the positive bending zone which has the highest external shear, i.e., the point of inflection. Since the maximum positive moment is $wl'^2/16$, the point of inflection is 0.147 l' from the support (chart, page 84), at which point the shear is approximately 70 per cent of wl'/2.

From the form of
$$W$$
 /2.
 $V = \Sigma o j du = 3 \times 2.356 \times 20.7 \times 300 = 43,900 \text{ lb}$
 $w = \frac{43,900}{0.70 \times 11} = 5700 \text{ plf} > 3790 \text{ plf}$, or more than allowed by flexure.

Shear-For spacing stirrups, it is not practicable to work backwards, so take the capacity of the beam at 3790 plf as computed for positive bending and design the web reinforcement to take care of this: *-

$$V = \frac{wl'}{2} = 3790 \times 11 = 41,690 \text{ lb}$$

 $v = \frac{V}{hid} = \frac{41,690}{14 \times 20.7} = 144 > 90 < 360 \text{ psi}$

Deducting $v_c = 90$ psi leaves 54 psi to be carried by stirrups. Compute the distance to be covered by stirrups:—

$$a = \frac{54}{144} \times 11 \times 12 = 49\frac{1}{2}$$
 in.

The total area of stirrups:-

$$A_v = \frac{bav_s}{2f_v} = \frac{14 \times 49\frac{1}{2} \times 54}{2 \times 20,000} = 0.935 \text{ sq in.}$$

Minimum requirement is 5-#3 U-stirrups = 1.10 sq in.

The spacing is figured by the method explained on pages 86-91 as $2\frac{1}{2}$, $5\frac{1}{2}$, $6\frac{1}{2}$, 8, $11\frac{1}{2}$, without exceeding d/2 (ACI 806a). ACI 801d requires that stirrups cover a distance (a + d), spaced at not over d/2, so use 7-#3 U-stirrups, spaced 3, 5, 6, 8, 11, 12, 12. The combination furnished in the table is 38l, or #3 stirrups, 8 at each end of the span, spaced 2, 6, 6, 7, 11, 11, 11, 11, which is about as close as can be expected with a standardized group.

Had this been a continuous or restrained beam or frame without a monolithic slab to provide T-beam action, additional web reinforcement would have had to be provided as per ACI 801e.

Negative Flexure—By Code, the negative moment is to be taken as $wL^2_{av}/11$, and the adjacent span is limited to a range between ≥ 0.833 l' and ≥ 1.20 l'. With varying span lengths, different amounts of steel will be bent up. This computation is based upon the assumption that the adjacent span = 1.00 l' and the truss bars in it are also 2-#9. Then:-

$$-M = -wl'^2/11$$

^{*} Assuming live load over one-half the span, the maximum live shear should not be taken as zero at midspan but as wl'/8 (one-quarter of the end shear); against this the bent-up bars provide some web reinforcement.

REINFORCED CONCRETE BEAMS CONTINUOUS INTERIOR SPANS

Since the added top bar increases As over the area used in "positive flexure," and since p is quite a bit over 0.0136, the beam is overreinforced and compressive steel is needed. obtained by lapping the bottom bars 20 diameters past each other, thus affording 3-#6 for compression. From the figure below, compute x by taking moments about the bottom of the beam and doubling A's as per ACI 706b:-

$$x = \frac{\frac{14x^2}{2} + (25.08 \times 2.38) + (47.9 \times 23.95)}{14x + 23.76 + 47.9}$$

$$7x^2 + 72.98x = 59.69 + 1147.21 = 1206.9$$

 $x^2 + 10.43x + (5.22)^2 = 172.41 + 27.25 = 199.66$
 $x = -5.22 \pm 14.14 = 8.92$ in.

$$C_c = \frac{8.92 \times 1350 \times 14}{2} = 84,300 \, \text{lb}$$

$$C_* = 25.08 \times \frac{6.54}{8.92} \times 1350 = \underline{24,800 \text{ lb}}$$

$$C = C_c + C_s$$
 = 109,100 lb
 $z = 2.38 + \frac{84.3}{109.1} \times \left(\frac{8.92}{3} - 2.38\right) = 2.84 \text{ in.}; jd = 23.95 - 2.84 = 21.1 in.$

$$M_c = 108,150 \times 21.1 = 2,283,000 \text{ lb-in.}$$

 $M_s = 4.79 \times 20,000 \times 21.1 = 2,022,000 \text{ lb-in.}$

$$M_s = 4.79 \times 20,000 \times 21.1 = 2,022,000 \text{ lb-in.}$$

$$w = \frac{2,022,000 \times 11}{22 \times 22 \times 12} = 3830 \text{ plf} > 3790 \text{ plf}, \text{ so positive moment}$$

governs (when $l'' \geq l'$).

Bond on Negative Bars-The maximum end shear:-

$$V = 3790 \times 11 = 41,690 \, \text{lb}$$

This is taken by 4-#9 + 1-#8 bars. $\frac{4.00}{4.79}$ or 34,800 lb is taken by the #9 bars and $\frac{0.79}{4.79}$ or 6890 lb is taken by the #8 bar. Then $u = \frac{V}{\Sigma ojd} = \frac{34,800}{(4 \times 3.544)21.1} = 117 \text{ psi} < 210 \text{ psi}$

6890 lb is taken by the #8 bar. Then
$$u = \frac{V}{\Sigma ojd} = \frac{34,800}{(4 \times 3.544)21.1} = 117 \text{ psi} < 210 \text{ psi}$$

on the #9 bars and $\frac{0090}{3.142 \times 21.1}$ = 104 psi on the #8 bar, so the computed shear is well within the allowable for top bars.

Comment-The bending and extension of truss bars, possible staggering of bends, length of top bar, extension or lap of bottom bars, and so on can be computed, but the foregoing is sufficient to illustrate the make-up of the tables.

Under the extreme case of l'' = 1.20 l', it would be necessary to check negative flexure to make sure both that the extra top bar combined with the truss bars from the two spans provides sufficient tension steel (adding extra top steel if needed) and that the bottom bars provide sufficient compression steel (extending the bars through the support if necessary to increase the area available and carrying them out to a point where the concrete alone provides adequate compression resistance).

CONTINUOUS REINFORCED CONCRETE BEAMS—INTERIOR SPANS

Applies to the tables on pages 228 and 229.

STRESSES:-

 $f_s = 20,000 \text{ psi } v = 360 \text{ psi}$

 $f'_c = 3000 \text{ psi}$ u = 300 psi for bottom bars

 $f_c = 1350 \text{ psi}$ = 210 psi for top bars with $v_c = 90 \text{ psi}$ over 12" of concrete under them CODES:-

"Building Code Requirements for Reinforced Concrete (ACI 318-56)," also "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)."

 $E_1 = 6$ in. minimum for bottom bars.

 $E_2 = 17$ bar diameters (24 diameters when d > 12 in.), usually requiring a semicircular hook.

 E_3 = bottom bar to extend 6 in. into the support except when values in the load tables are printed in bold-face type.

E₄ = When the values in the load tables are printed in boldface type, bottom bars must lap bars of adjoining span 20 diameters so that they may serve for compressive reinforcement, as shown in the example in the text.

$$E_x = \begin{cases} \frac{l'}{4} \\ \frac{l''}{4} \\ 24 \text{ bar diameters} \end{cases}$$
 whichever is greatest

 $E_y = \begin{cases} \frac{l'}{4} \\ \frac{l'''}{4} \\ 17 \text{ bar dias. (24} \\ \text{dias., } d > 12 \text{ in.)} \\ \text{past bend-down} \\ \text{point} \end{cases}$ whichever

ACI 902a requires the extending of top bars past the innermost position of the point of inflection l/16, d, or half-bond length; if point of inflection is at l/5 of center-to-center span, if beam depth is l/12, and if column face is l/15, the given ratios, which are easily applied, work out fairly well, but must be checked for actual use.

A = Bars in adjoining span, not shown.

For stirrup combinations, see page 230.

CONTINUOUS REINFORCED CONCRETE BEAMS—INTERIOR SPANS

For limitations and use of this table, see page 227.

-	St	em		Bo	ır Co	mbina	ition	\$	A 10		TOTAL		ORMLY			(plf)—	-
										= 5			Span l^\prime	in Feet			
ľ			Str	raight	Tru	ssed	2	7	Гор		10	1	12	1	14	1	16
	h (in.)	b' (in.)	No.	Size	No.	Size	No. Layers	No.	Size	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load
1		6	2	#3	1	#5	2	1	#3	26a	1128	23a	734		539		413
2 3	12	8 10	2 2	#3 #4	1 2	#6 #5	1	1	#3 #3	25a 26a	1481 2115	23a 25a	1030 1470	=	756 1080	_	579 826
4		8	1	#6	1	#7	1	1	#5	26b 27a	2041 2726	27a 27a	1700 2225	27a 26b	1430 1638	26b 25a	1096 1253
5 6	14	10	2 2	#4 #5	1 2	#8	1	1	#5 #6	28c	3417	28c	2820	28c	2070	26a	1588
7		8	2	#4	1	#7	1	1	#5	28c	3154	26d	2190	25c	1610	24c	1231
8	16	10	{1 1	#5 #4	1	#8	1	1	#5	28c	3588	28c	2790	25c	2050	24c	1570
9		12	2	#5	2	#6	1	1	#6	28c	4005	28c	3305	25c	2430	24c	1860
10		8	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	#5 #4	2	#5	2	1	#6	37c	3903	37c	2715	27c	1990	26d	1526
11	18	10	2	#5	2	#6	1	1	#6	37c	4587	37c	3685	27c	2710	26d	2075
12		12	$\begin{cases} 1 \\ 1 \end{cases}$	#6\ #5	2	#7	1	1	#4	36d	5027	37c	4190	37c	3310	26d	2530
13		8	2	#4	2	#6	2	1	#4	37c	3930 5171	37e 37e	3280 4260	37e 36f	2539 3130	27e 27c	1940 2400
14 15	20	10	2 2	#5 #6	2 2	#6	1	1	#6	37c 37c	6172	37e 37e	5140	38f	4300	37e	3290
16		8	2	#5	2	#6	2	1	#5	37e	5503	38f	4320	37h	3180	37h	2432
17 18	22	10 12	4 2	# 4 #6	3 2	#5 #7	2	1	#8	39h 37c	7616 6870	38g 37e	5295 5720	38f 38f	3890 4800	28g 37h	2980 3672
19		10	3	#5	2	#7	2	1	#6	310	9162	310k	6575	38;	4830	37;	3700
20	24	12	3	#6	1	#10		1	#9	312i	11325	312 <i>i</i>	8450	310k	6210	39k	4750
21		14	3	#6	3	#7	1	1	#7	310j	11346	312i	9440	311h	7375	39k	5650
22		10	3	#5	2	#7	2	1	#8	311h	10035	311 <i>h</i>	7820	310k	5750	38;	4400
23 24	26	12 14	3	#5 #6	2	#8	1	1	#7	39h 310n	10035 12382	311 <i>h</i> 312 <i>i</i>	8370 10300	311h 313h	6780 8840	39k 312n	5199 703 0
25		12	4	#5	3	#7	2	1	#7			314e	11540	313/	8495	312n	6500
26 27	28	14	3 4	#6 #5	2	#9 #7	1 2	1	#8 #7			311h 312i	10710 12100	311q 314e	9200 10400	311 <i>I</i> 313 <i>h</i>	7325 8175
28	_	12	5	#5	4	#6	2	1	#9	-	-	-		314i	9900	313n	7570
29	30	14	5	#5	4	#7	2	1	#8					318d	12200	316f	9330
30		16	5	#6	4	#7	2	1	#9					317d	12610	315c	966

^{*} Deduct dead load from these values.

Where dash occurs in stirrup column, no stirrups are required. Extend bottom bars to E_4 (page 227) for values in boldface type.

CONTINUOUS REINFORCED CONCRETE BEAMS—INTERIOR SPANS

TOTAL SAFE CARRYING CAPACITY* (pif)— UNIFORMLY DISTRIBUTED

Span l^\prime in Feet

1	8	2	20	2	22	:	24	2	26	7	28	3	30	
Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	Stir- rup Mark	Safe Load	
=	326 457 652	=	264 370 528	_ _ _	218 306 436	_	183 257 367							1 2 3
24a — 23c	867 990 1252	=	701 802 1015	_	580 662 839		487 556 705	_ _ _	415 474 600	_	358 408 517			4 5 6
23c	973	_	787	_	651	_	546	_	466	_	402	-	350	7
23c	1240	-	1000	-	830	-	697	_	543	_	512	-	446	8
23c	1470	_	1190		984	_	825	_	704		606	_	529	9
24c	1206	23c	976	_	807	_	678	_	577	_	498	-	434	10
25c	1640	24c	1328	-	1100	-	922	-	786	-	677	-	590	11
26d	2000	24c	1625	23c	1341	-	1128	-	960	_	828	-	721	12
26f 26d	1534 1892	25c 24d 26f	1240 1534 2105	24c 23c 25c	1028 1268 1740		864 1065 1462	=	735 907 1245		635 783 1075	=	552 682 935	13 14 15
27e	2600					-							690	-
27e 27e	1920 2352	26f 26f	1558	25e 25e	1288 1575	24d 23d	1080	23d	920 1128	-	793 972		845	16
27e 27e	2900	27c	2350	24d	1942	23d	1630	-	1390	_	1200	_	1045	18
37h 37i 38i	2900 3760 4460	28f 37j 210k	2365 3040 3615	26h 27j 28g	1955 2520 2990	26f 26h 26h	1645 2115 2510	24f 25f 25f	1400 1800 2140	23d 24f 24f	1208 1550 1845	23d 23d	1050 1350 1608	19 20 21
37k	3480	29k	2820	28j	2330	26h	1958	25f	1668	24e	1440	23e	1251	29
38 <i>j</i> 311 <i>l</i>	4100 5550	37k 39m	3320 4500	28k 38l	2742 3720	26h 37k	2310 3130	25f 28k	1965 2660	24e 26h	1696 2300	23e 25f	1479 2000	24
310r 310r 311/	5140 5790 6450	39m 38l 39m	4160 4680 5230	381 37k 381	3440 3875 4325	210k 29k 210k	2890 3260 3635	28k 27l 28k	2460 2775 3100	27k 25g 25g	2121 2390 2672	25g 24e 24e	1850 2083 2325	20
312q 314j 313n	5985 7380 7630	310f 313n 311I	4848 5975 6180	39r 310t 310r	4000 4940 5110	38m 310t 38m	3365 4150 4300	210r 38m 37n	2870 3540 3660	281 37n 27m	2475 3050 3160	27k 37n 27k	2155 2660 2750	28

d = h - (2'' + distance from bottom of bars to their centroid).

STIRRUP COMBINATIONS

The method of computing stirrups is illustrated in the examples on pages 212, 220 and 225 and explained in detail on pages 86 ff.

For the beam tables in this section, certain combinations of stirrups were standardized. With uniform loads, the spacing will theoretically change with every variation in length of span, but these combinations were selected as providing sufficient web reinforcement without being too wasteful of material.

Each combination is identified both in the table of carrying capacity and in the table of stirrup combinations by a numerical designation or "mark." The first digit in the mark in the table of carrying capacity gives the numerical bar size of which the stirrup is made and does not appear in the table of stirrup combinations below. The second (and possible third) digit gives the number of U-shaped stirrups in each end of the beam. The final letter indicates the stirrup spacing as given in the following table.

Spacings are given from face of support towards center of span.

Mark	Spacing on each end	Mark	Spacing on each end	Mark	Spacing on each end
3a	2 4 4	9h	134457999	12m	1 2 2 3 3 3 3 4 5 7 11 11
36	3 5 5	9i	245679999	12n	1 3 3 4 4 5 5 7 9 11 11 11
3c	266	9j	267999999	120	256669111111111111
3d	488	9k	2 4 4 4 6 9 10 10 10	12p	2 4 4 4 5 6 6 8 11 12 12 12
3e	699	91	2 5 6 7 9 10 10 10 10	12g	1 4 4 4 4 5 5 7 10 13 13 13
4a	2555	9m	2 4 5 6 7 11 11 11 11	12r	2 4 5 5 5 6 8 8 13 13 13 13
46	2666	9n	266891111111	12s	266668911 13 13 13 13
4c	2777	90	2 4 4 5 7 9 12 12 12	13a	1 2 3 3 3 4 4 5 6 6 6 6 6
4d	4888	9p	2 6 7 8 10 12 12 12 12	136	1 2 3 3 4 4 4 6 7 7 7 7 7
4e	6999	99	2 6 7 7 8 13 13 13 13	13c	1 2 3 3 4 4 4 5 7 8 8 8 8
4f	3 8 10 10	10a	144444444	13d	1 3 4 4 5 5 5 7 8 8 8 8 8
5a	3 4 4 4 4	106	1 3 4 4 5 5 5 5 5 5	13e	1 4 4 5 5 6 6 8 9 9 9 9 9
5b	26666	10c	1445666666	13f	1 3 3 3 3 4 4 5 6 8 10 10 10
5c	27777	100	2566666666	139	1 4 4 4 4 5 5 7 9 10 10 10 10
5d	28888	10a	267777777	13h	1 2 3 3 3 4 4 4 6 8 11 11 11
5e	69999	10f	2578888888	131	1 3 3 4 4 4 5 5 7 10 11 11 11
5f	3 8 10 10 10	10g	1 3 5 5 6 6 8 9 9 9	13	1 4 4 5 5 6 6 6 9 11 11 11 11
5g	3 7 10 12 12	106	2 4 5 6 6 9 9 9 9 9	13k	2 5 5 5 6 6 8 8 11 11 11 11 11
6a	2 4 4 4 4 4	10i	2577999999	13/	1 2 3 3 3 3 3 4 5 5 8 12 12
6b	2 5 5 5 5 5	10j	1 2 3 3 4 4 5 7 10 10	13m	1 5 5 5 5 5 7 7 10 12 12 12 12
6c	266666	10k	1 3 4 4 5 6 8 10 10 10	13n	1 3 3 3 4 4 4 5 5 9 13 13 13
6d	257777	10/	2 4 5 5 6 7 10 10 10 10	130	1 4 4 4 4 5 5 6 8 11 13 13 13
6e	477777	10m	3 7 7 9 10 10 10 10 10 10	13p	2 5 5 5 6 6 7 8 10 13 13 13 13
6f	368888	10n	1 2 2 3 3 4 5 6 11 11	14a	1 2 2 2 3 3 3 3 3 4 5 8 11 11
69	479999	100	1 3 4 4 4 5 8 11 11 11	146	1 2 3 3 3 3 3 3 4 5 6 8 11 11
6h	2 6 10 10 10 10	10p	2 4 5 6 8 8 11 11 11 11	14c	1 3 4 4 4 4 5 5 6 8 11 11 11 11
7a	2 4 5 5 5 5 5	10g	3 7 8 9 11 11 11 11 11 11	14d	1 4 4 4 5 5 5 6 6 9 11 11 11 11
76	2666666	10r	1 4 4 5 5 6 10 12 12 12	14e	1 2 2 2 2 3 3 3 4 5 5 7 12 12
7c	2467777	10s	2 5 5 7 7 9 12 12 12 12	14f	1 3 3 3 4 4 4 4 5 6 7 10 12 12
7d	3677777	10#	1 4 5 5 5 7 9 13 13 13	14g	1 4 4 4 5 5 5 6 7 9 12 12 12 12
7e	2568888	11a	1 3 3 4 4 5 5 5 5 5 5	14h	2 4 4 5 5 6 6 7 8 10 12 12 12 12
7f	3788888	116	25555555555	14i	1 2 2 3 3 3 3 3 4 5 5 8 13 13
7g	2679999	11c	2 4 4 5 6 7 7 7 7 7 7	141	1 2 3 3 3 3 4 4 4 6 6 10 13 13
7h	3899999	111	13455668888	14k	1 3 3 4 4 4 4 5 5 7 11 13 13 13
7i	2 5 7 9 10 10 10	lle	26678888888	15a	1 2 3 3 3 3 4 4 4 5 6 9 11 11 11
	2 6 8 10 10 10 10	116	13344668999	156	1 3 3 3 4 4 4 5 5 5 7 11 11 11 11
7i	2 6 8 11 11 11 11		25577999999	15c	1 2 2 2 3 3 3 3 3 4 4 6 8 13 13
7k		llg	1 2 3 3 4 4 5 7 10 10 10	15d	1 3 3 3 3 4 4 4 5 5 6 7 10 13 13
71	2 5 7 9 12 12 12	116		15e	
7m	2 4 6 7 10 13 13	111	1 3 4 4 5 5 6 10 10 10 10		1 4 4 4 5 5 6 6 6 8 9 13 13 13 13
7n	3 6 8 11 13 13 13	11;	2 4 5 6 6 6 9 10 10 10 10	160	1 2 2 2 3 3 3 3 3 4 4 4 6 8 11 11
80	2 4 4 4 4 4 4 4	11k	2 6 6 6 8 10 10 10 10 10 10	166	1 2 2 2 3 3 3 3 3 4 4 5 6 8 12 12
86	1 4 5 5 5 5 5 5	11/	1 3 4 4 5 5 7 9 11 11 11	16c	1 2 2 3 3 3 3 3 4 4 5 5 6 9 12 12
8c	13455666	11 <i>m</i>	2 4 4 5 6 8 8 11 11 11 11	16d	1 3 3 3 4 4 4 4 5 5 6 8 11 12 12 12
8d	25666666	11n	26688111111111111	16e	1 3 4 4 4 4 5 5 5 7 7 9 12 12 12 12
8e	25777777	110	1 4 4 4 4 6 7 10 12 12 12	16f	1 2 2 2 2 3 3 3 3 4 4 4 6 8 13 13
8f	26788888	11p	2 4 5 5 6 7 9 12 12 12 12	16g	1 2 3 3 3 3 4 4 4 4 5 6 7 10 13 13
8g	2 4 5 5 8 9 9 9	119	1 3 3 3 4 4 4 6 8 13 13	17a	1 2 2 3 3 3 3 3 4 4 4 5 6 8 11 11 11
8h	25779999	111	2 5 5 5 7 7 9 13 13 13 13	176	1 2 3 3 3 3 4 4 4 4 5 5 7 10 12 12 12
81	2 4 4 6 9 10 10 10	12a	1 2 3 3 4 4 4 4 4 4 4	17c	1 3 4 4 4 4 5 5 5 5 7 7 9 12 12 12 12
8 <i>i</i>	2 5 6 7 10 10 10 10	126	1 2 3 3 3 4 5 5 5 5 5 5	17d	1 1 2 2 2 2 2 3 3 3 3 3 4 5 7 13 13
8k	2 4 5 6 9 11 11 11	12c	1 4 4 4 5 5 5 5 5 5 5 5	17e	1 2 2 3 3 3 3 3 4 4 4 5 5 7 10 13 13
81	266711111111	12d	133344566666	18a	1 2 2 2 3 3 3 3 3 3 4 4 5 6 8 12 12 12
8m	2 6 7 8 12 13 13 13	12e	123344457777	186	1 3 3 3 3 3 3 4 4 4 5 5 6 7 11 12 12 12
9a	24444444	12f	134455677777	18c	1 3 3 4 4 4 4 4 5 5 6 6 7 9 12 12 12 12
96	3 5 5 5 5 5 5 5 5	12g	134456688888	18d	1 1 2 2 2 2 2 2 3 3 3 3 3 4 5 7 13 13
9c	266666666	12h	134456679999	190	1 2 2 2 2 2 2 2 3 3 3 4 4 4 5 5 9 12 12
9d	1 4 4 5 6 7 7 7 7	121	1 2 2 3 3 3 4 5 7 10 10 10	196	1 2 2 3 3 3 3 3 3 3 4 4 5 5 7 9 12 12 12
9a	256777777	12i	1 3 3 3 4 4 5 6 8 10 10 10	19c	1 2 3 3 3 3 3 3 4 4 4 4 5 6 7 10 12 12 12
9f	145568888	12k	1 4 4 4 5 5 6 7 10 10 10 10	210	1 2 2 2 2 2 3 3 3 3 3 3 4 4 4 5 6 9 12 12
	255788888	121	2 4 4 5 6 7 7 9 10 10 10 10	210	
	4 3 3 / 0 0 0 0 0	1 41	4 7 7 3 0 / / 7 10 10 10 10	11	

PRECAST REINFORCED CONCRETE LINTELS IN CONCRETE BLOCK WALLS

Lintels are tabulated per 4 in. thickness of wall; for 8 in. thickness double the width and reinforcement, and for a 12 in. wall, triple it. Lintels given have a capacity to carry only an equilateral triangle of 32 psf masonry with a base of $(L+8\ in.)$ on a clear span of L; no provisions are made for beams, purlins, or other concentrated loads.

LIN	TELS IN	BLOCK	WALLS	(per 4 i	n. thickr	ness)
Clear	Total Length	Min.	Height	Reinfor	cement	Weigh
Span L	L+ 1'-4"	f' _c (psi)	of Lin- tel (in.)	Bot- tom	Тор	of Lin- tel (Ib)
4'-0	5'-4		75/8	1-#3	1-#2	170
5'-0	6'-4	2000	75/8	1-#3	1-#2	203
6'-0	7'-4		75/8	1-#3	1-#2	235
7'-0	8'-4		75/8	1-#4	1-#2	266
8'-0	9'-4	2500	75/8	1-#4	1-#2	299
9'-0	10'-4		75/8	1-#6	1-#2	331
10'-0	11'-4		115/8	1-#5	1-#2	544
11'-0	12'-4	2000	115/8	1-#5	1-#2	592
12'-0	13'-4		115/8	1-#6	1-#2	640
13'-0	14'-4	2500	115/8	1-#8	1-#3	688

For wall to arch over opening and put only a triangular load on the lintel, there must be:— (1) an unbroken, solid wall above the vertex of the triangle equal to about one-third the height of the triangle, and (2) no included concentrations of load.

Bottom bars only may be used if the lintel is plainly marked, properly handled, and always kept right side up. If plainly marked, but likely to be stressed by drooping in handling, use top bars for transportation purposes. If lintel is not marked and can be installed upside down, use same size bars in top as are scheduled for bottom.

Check texture of exposed surfaces of lintel to harmonize with exposed blocks. Either light weight or standard concrete may be used.

For uniformly loaded lintels see page 232.

CARRYING CAPACITY OF REINFORCED CONCRETE LINTELS

The table on page 231 gives lintel designs to carry an equilateral triangle of wall. These tables give the safe superimposed uniformly distributed load per lineal foot on 8 x 8 and 12 x 12 in. lintels on spans of 4'-0" to 12'-0".

	8 >	8 in. 1	Nomina	Lintels	(7 ½ x	7%)	
Clear		Rei	nforcer	nent		Length	Weight
Open- ing L	2-#3	#3 + #4	2-#4	#4 + #5	2-#5	of Lin- tel	of Lin- tel (lb)
4'-0	697	1010	1320	1545	1870	5'-4"	340
5'-0	452	662	870	1130	1386	6'-4"	405
6'-0	309	460	612	800	980	7'-4"	469
7'-0	218	330	446	586	730	8'-4"	533
8'-0	157	247	336	446	556	9'-4"	597
9'-0	93	186	258	346	436	10'-4"	661
10'-0	78	136	192	264	338	11'-4"	725
11'-0	58	108	157	219	280	12'-4"	790
12'-0	40	82	124	176	228	13'-4"	854

Concentrated loads can be approximated by the equivalent uniform loads on page 67, which are fairly accurate for flexure but should be investigated for shear.

The reinforcement must be placed in the bottom of the lintel, and can be the only reinforcement if lintel is plainly marked, carefully handled, and always kept right side up; otherwise see notes on page 231.

To left of heavy line, $f'_c=2500$ or 3000 psi but to right of heavy line $f'_c > 3000$ psi.

8 wide x 12 in. high Nominal Lintels (7 1/8 x 11 1/8)

Clear			Reinfo	rcement			Length of	Weight of
Opening L	2-#4	#4 + #5	2-#5	#5 + #6	2-#6	#6 + #7	Lintel	Lintel (lb)
4'-0"	2140	3020	3020	3020	3020	3020	5'-4"	513
5'-0"	1420	1830	2400	2400	2400	2400	6'-4"	609
6'-0"	995	1295	1445	1980	1980	1980	7'-4"	704
7'-0"	725	950	1065	1450	1690	1690	8'-4"	800
8'-0"	545	725	815	1115	1325	1460	9'-4"	896
9'-0"	420	565	635	880	1045	1255	10'-4"	992
10'-0"	315	430	490	680	815	980	11'-4"	1088
11'-0"	260	390	405	575	690	830	12'-4"	1184
12'-0"	205	290	330	470	570	690	13'-4"	1280

Below and to left of heavy line, $f'_c=2500$ or 3000 psi, but above and to right of heavy line, $f'_c > 3000$ psi. Either light weight or standard concrete may be used.

The above tables give uniformly distributed safe superimposed load per lineal foot; no allowance for beams, purlins, or other concentrations.

AXIALLY LOADED SQUARE TIED CONCRETE COLUMNS

These tables give the safe carrying capacity in kips (1000-lb units) for concentrically loaded square tied reinforced concrete columns of ordinary length (ratio of unsupported height of column to least side, H/t, equal to or less than 10), for concretes of 3000 *, 3750 * and 5000 * psi ultimate strength, with vertical bars of intermediate grade steel (yield point = 40,000 psi) or hard grade steel (yield point = 50,000 psi), computed in accordance with the "Building Code Requirements for Reinforced Concrete (ACI 318-56)." For columns eccentrically loaded, see tables on pages 281 to 360, inclusive.

Tables are given on page 274 for the safe concentric load in kips on steel pipe columns of standard, extra heavy and double extra heavy steel pipe.

The user is referred to the "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)" for much helpful information about exact details of columns and the arrangement of reinforcing bars.

Whenever the ratio of H/t exceeds 10, the tabulated capacity is to be reduced according to the ACI formula, P' = P (1.3-0.03 H/t). The useable percentage of P for any desired H/t may be taken from the following table:—

H/t	$(1.3-0.03\ H/t)$	H/t	(1.3-0.03~H/	<i>t</i>)
11	0.97	20	0.70	Maximum for
12	0.94	21	0.67	columns eccentri-
13	0.91	22	0.64	cally loaded
14	0.88	23	0.61	
15	0.85	24	0.58	
16	0.82	25	0.55	
17	0.79	26	0.52	
18	0.76	27	0.49	
19	0.73			

Where lapped splices are used for vertical steel, the bars shall extend above the construction joint (usually the top of the structural slab) 20 nominal bar diameters for intermediate grade, rail or hard grade bars with deformations meeting ASTM A305, as evaluated in the following table:—

Bar Size:-		#6		#8		#10	#11
Lap:-	1'-01/2	1'-3	1'-51/2	1'-8	1'-101/2	2'-11/2	$2'-4\frac{1}{2}$

^{*}Three thousand psi concrete is usually readily available either ready mixed or job mixed. The use of 3750 psi concrete ordinarily requires a little more care and control and should be used only when job conditions are known to produce this strength. Although 5000 psi concrete can be produced consistently, its use should be restricted to those cases where a program of unusually careful proportioning, control and testing is available to guarantee at least this breaking strength.

AXIALLY LOADED SQUARE TIED CONCRETE COLUMNS

In lapped splices, column verticals may be offset just below the construction joint at a slope of 1 in. horizontal to 6 in. vertical to come inside of and in contact with the verticals above and ties may be added to care for the stresses developed. Where the offset would exceed about 4 in., separate dowels should be used. [See ACI "Manual of Standard Practice for Detailing Reinforced Concrete Structures," page 13.] [See ACI Code 1103(c)4.]

Tie spacing is tabulated as determined by the reinforcement but must never exceed the least side of the column. Allow 1½ in. minimum protection over the outside of the ties. Arrange ties as shown in the figure below. Number of ties per set, bar size and spacing between sets of ties are given in the Safe Load Tables. The maximum spacing of column ties is given in the table on page 235.

For a table giving the volumes of concrete in round columns, capitals and square columns, see page 106.

The axial capacity of a round tied column can be approximated by taking 82% * of the capacity of a square tied column with side equal to the diameter

If access to the interior of a column is necessary, a different pattern of ties may be substituted, provided ties are so designed that each vertical bar is securely braced against movement in any direction.

^{*} This varies from 81.2% when $A_{\bullet} = 0.01$ of the square column to 88.8% when $A_{\bullet} = 0.04$ of the round column, taking into account all grades of steel and concrete.

AXIALLY LOADED SQUARE TIED CONCRETE COLUMNS

MAXIMUM SPACING OF COLUMN TIES

Vertical Bar Size	Size and Spa Maximum S Least C		t to Exceed
	#2	#3	#4
#5	10	10	10
#6	12	12	12
#7	12	14	14
#8	12 *	16	16
#9	12 *	18	18
#10	12 *	18	20
#11	12 *	18	22

^{* #2} ties are not recommended for #8 or larger verticals.

and with the same number of vertical bars. The axial capacity of a rectangular tied column is fairly close to that of a square column whose side is the mean of the two sides of the rectangle and with the same amount of vertical steel. The minimum side dimension of a main column of reinforced concrete should not be less than 8 in. nor the area less than 120 sq in.

While the scope of these tables is adequate for most purposes, it is not practicable to present all possible combinations of concrete and steel here. For those who want to design a column outside the range of these tables and for those who wish to know how they are computed, the following example will be instructive:-

Example—For the table on page 237, determine the safe axial carrying capacity of a column 35 in. square of 3000 psi concrete reinforced with 18-#10 bars, intermediate grade.

$$P = 0.80 \, A_{\sigma} \, (0.225 \, f'_c + f_s p_{\sigma}) = 540 \, A_{\sigma} + 12,800 \, A_s * 540 \times 35 \times 35 = 661.5 \, \text{kips (Line 2, last column)} 12,800 \times 18 \times 1.27 = 292.6 \, \text{kips (Column 2, last line)}$$

$$P=954.1$$
 kips † (Last line, last column)

Ties—Spacing $\gtrsim 16$ bar dia. $\gtrsim 16 \times 1.27 \gtrsim 20$ in.
 $\gtrsim \text{column side } \gtrsim 35$ in.
 $\gtrsim 48$ tie dia. $\lesssim \frac{48}{48} \times \frac{3}{48} \lesssim 18$ in. if #3 ties
 $\frac{48}{48} \times \frac{1}{44} \lesssim 12$ in. if #2 ties

so use 5 sets of #3 @ 18 (Last line, third and fourth columns)

Example—If the column in the previous example were 46'-8" in unsupported height, what would its safe load be?

$$\frac{H}{t} = \frac{46.67 \times 12}{35} = 16$$

$$P = 954.1 (1.3 - 0.03 \times 16)$$

$$= 954.1 \times 0.82 \ddagger = 782 \text{ kips}$$

• For nomenclature, see pages 20-21.

† This value can also be taken from the table on page 233.

[†] To be on the side of safety, decimal fractions are always dropped in these column tables and never rounded upward.

		Column Si	de (in.)	11	12	13	14	15	16	17	18	19	20	21
			540 Ag	65.3	77.7	91.2	105.8	121.5	138.2	156.0	174.9	194.9	216.0	238.
		Tie	s			91			5					
Vert Bars	12,800 A ₈ (kips)	Quant * and Size	Spcg (in.)					1 4						
4-#5	15.8	1-#2	10	81					2					
4-#6	22.5	1-#2	12	87	100	113								
4-#7	30.7	1-#2	12	96	108	121	136	152						
6-#6	33.7	2-#2	12	99	111	124	139	155	171				E o	
4-#8	40.4	1-#3	16	105	118	131	146	161	178	196	19			
8-#6	45.0	2-#2	12	110	122	136	150	166	183	201	219			
4-#9	51.2	1-#3	18	116	128	142	157	172	189	207	226	246	267	
6-#8	60.6	2-#3	16	125	138	151	166	182	198	216	235	255	276	298
4-#10	65.0	1-#3	18		142	156	170	186	203	221	239	259	281	303
6-#9	76.8	2-#3	18			168	182	198	215	232	251	271	292	31
4-#11	79.8	1-#3	18			171	185	201	218	235	254	274	295	317
6-#10	97.5	2-#3	18				203	219	235	253	272	292	313	33:
8-#9	102.4	2-#3	18					223	240	258	277	297	318	34
6-#11	119.8	2-#3	18						258	275	294	314	335	35
10-#9	128.0	3-#3	18						266	284	302	322	344	36
12-#9	153.6	3-#3	18								328	348	369	39
8-#11	159.7	2-#3	18		0 5 1						334	354	375	39
14-#9	179.2	4-#3	18						0	7		374	395	41
12-#10	195.0	3-#3	18									Shirt.	411	43
10-#11	199.6	3-#3	18				hown						415	43
14-#10	227.5	4-#3	18	but	must	neve	reinfor r exce	ed the	е		, Vi-			
12-#11	239.6	3-#3	18		imn.	imensi	on c	or the	9			n 50	77.1	
16-#10	260.0	4-#3	18										7	
14-#11	279.5	4-#3	18											
18-#10	292.6	5-#3	18											

22	23	24	25	26	27	28	29	30	31	32	33	34	35
261.3	285.6	311.0	337.5	365.0	393.6	423.3	454.1	486.0	518.9	552.9	588.0	624.2	661.5
								÷					
×													
								IN		ONCRET = 3,000 LDE VEI	psi	RS	
326							22						B
338	362	387											
341	365	390											
358	383	408	435	462	491								
363	388	413	439	467	496	525							1
381	405	430	457	484	513	543	573	605					
389	413	439	465	493	521	551	582	614	646				1%
414	439	464	491	518	547	576	607	639	672	706	741	777	. 76
421	445	470	497	524	553	583	613	645	678	712	747	783	821
440	464	490	516	544	572	602	633	665	698	732	767	803	840
456	480	506	532	560	588	618	649	681	713	747	783	819	856
460	485	510	537	564	593	622	653	685	718	752	787	823	861
488	513	538	565	592	621	650	681	713	746	780	815	851	889
500	525	550	577	604	633	662	693	725	758	792	827	863	901
	545	571	597	625	653	683	714	746	778	812	848	884	921
	4%	590	617	644	673	702	733	765	798	832	867	903	941
	7/0	603	630	657	686	715	746	778	811	845	880	916	954

		Column S	side (in.)	11	12	13	14	15	16	17	18	19	20	21
			675 A	, 81.6	97.2	114.0	132.3	151.8	172.8	195.0	218.7	243.6	270.0	297.6
-	1	Tie	s											
Vert Bars	12,800 A ₈ (kips)	Quant * and Size	Spcg (in.)									D		
4-#5	15.8	1-#2	10	97										
4-#6	22.5	1-#2	12	104	119	136								
4-#7	30.7	1-#2	12	112	127	144	163	182						
6-#6	33.7	2-#2	12	115	130	147	166	185	206					
4-#8	40.4	1-#3	16	122	137	154	172	192	213	235				
8-#6	45.0	2-#2	12	126	142	159	177	196	217	240	263			
4-#9	51.2	1-#3	18	132	148	165	183	203	224	246	269	294	321	
6-#8	60.6	2-#3	16	142	157	174	192	212	233	255	279	304	330	358
4-#10	65.0	1-#3	18		162	179	197	216	237	260	283	308	335	362
6-#9	76.8	2-#3	18			190	209	228	249	271	295	320	346	374
4-#11	79.8	1-#3	18			193	212	231	252	274	298	323	349	377
6-#10	97.5	2-#3	18				229	249	270	292	316	341	367	395
8-#9	102.4	2-#3	18		-		17	254	275	297	321	346	372	400
6-#11	119.8	2-#3	18				,		292	314	338	363	389	417
10-#9	128.0	3-#3	18						300	323	346	371	398	425
12-#9	153.6	3-#3	18								372	397	423	451
8-#11	159.7	2-#3	18		-						378	403	429	457
14-#9	179.2	4-#3	18									422	449	476
12-#10	195.0	3-#3	18			-							465	492
10-#11	199.6	3-#3	18			ng sho				15			469	497
14-#10	227.5	4-#3	18	but i	must i	by re never	excee	d the						
12-#11	239.6	3-#3	18	least colun		nensio	n of	the						
16-#10	260.0	4-#3	18											
14-#11	279.5	4-#3	18											
18-#10	292.6	5-#3	18											

22	23	24	25	26	27	28	29	30	31	32	33	34	35
326.7	357.0	388.8	421.8	456.3	492.0	529.2	567.6	607.5	648.6	691.2	735.0	780.3	826.8
										·			
							6	IN	f'c =	ONCRET = 3,750 LDE VEI		RS	
								-				,	
391 403	433	465											
406	436	468											
424	454	486	519	553	589								
429	459	491	524	558	594	631							
446	476	508	541	576	611	649	687	727					
454	485	516	549	584	620	657	695	735	776				1%
480	510	542	575	609	645	682	721	761	802	844	888	933	1 /6
486	516	548	581	616	651	688	727	767	808	850	894	940	986
505	536	568	601	635	671	708	746	786	827	870	914	959	1006
521	552	583	616	651	687	724	762	802	843	886	930	975	1021
526	556	588	621	655	691	728	767	807	848	890	934	979	1026
554	584	616	649	683	719	756	795	835	876	918	962	1007	1054
566	596	628	661	695	731	768	807	847	888	930	974	1019	1066
	617	648	681	716	752	789	827	867	908	951	995	1040	1086
	4%	668	701	735	771	808	847	887	928	970	1014	1059	1106
	,	681	714	748	784	821	860	900	941	983	1027	1072	1119

		Column S			12	- 12, 13	14	15	16	17	18	19	20	21
			900 A _a	108.9	129.6	152.1	176.4	202.5	230.4	260.1	291.6	324.9	360.0	396.9
		Tie	s											
Vert Bars	12,800 · A _s (kips)	Quant * and Size	Spcg (in.)											
4-#5	15.8	1-#2	10	124										
4-#6	22.5	1-#2	12	131	152	174								
4-#7	30.7	1-#2	12	139	160	182	207	233						
6-#6	33.7	2-#2	12	142	163	185	210	236	264					
4-#8	40.4	1-#3	16	149	170	192	216	242	270	300				
8-#6	45.0	2-#2	12	153	174	197	221	247	275	305	336			
4-#9	51.2	1-#3	18	160	180	203	227	253	281	311	342	376	411	
6-#8	60.6	2-#3	16	169	190	212	237	263	291	320	352	385	420	457
4-#10	65.0	1-#3	18		194	217	241	267	295	325	356	389	425	461
6-#9	76.8	2-#3	18			228	253	279	307	336	368	401	436	473
4-#11	79.8	1-#3	18			231	256	282	310	339	371	404	439	476
6-#10	97.5	2-#3	18				273	300	327	357	389	422	457	494
8-#9	102.4	2-#3	18					304	332	362	394	427	462	499
6-#11	119.8	2-#3	18						350	379	411	444	479	516
10-#9	128.0	3-#3	18						358	388	419	452	488	524
12-#9	153.6	3-#3	18								445	478	513	550
8-#11	159.7	2-#3	18								451	484	519	556
14-#9	179.2	4-#3	18									504	539	576
12-#10	195.0	3-#3	18										555	591
10-#11	199.6	3-#3	18				wn is						559	596
14-#10	227.5	4-#3	18	but i	must n	ever e	nforce exceed	the !						
12-#11	239.6	3-#3	18	least colum		ension	of	the						
16-#10	260.0	4-#3	18											
14-#11	279.5	4-#3	18											
18-#10	292.6	5-#3	18											

22	23	24	25	26	27	28	29	30	31	32	33	34	35
435.6	476.1	518.4	562.5	608.4	656.1	705.6	756.9	810.0	864.9	921.6	980.1	1040.4	1102.5
												,	
								IN		ONCRE = 5,000 ADE VE	psi	RS	
500			<u> </u>										
512	552	595											
515	555	598											
533	573	615	660	705	753								
538	578	620	664	710	758	808							
555	595	638	682	728	775	825	876	929					
563	604	646	690	736	784	833	884	938	992				107
589	629	672	716	762	809	859	910	963	1018	1075	1133	1194	1%
595	635	678	722	768	815	865	916	969	1024	1081	1139	1200	1262
614	655	697	741	787	835	884	936	989	1044	1100	1159	1219	1281
630	671	713	757	803	851	900	951	1005	1059	1116	1175	1235	1297
635	675	718	762	808	855	905	956	1009	1064	1121	1179	1240	1302
663	703	745	790	835	883	933	984	1037	1092	1149	1207	1267	1330
675	715	758	802	848	895	945	996	1049	1104	1161	1219	1280	1342
	736	778	822	868	916	965	1016	1070	1124	1181	1240	1300	1362
	107	797	842	887	935	985	1036	1089	1144	1201	1259	1319	1382
	4%	811	855	901	948	998	1049	1102	1157	1214	1272	1333	1395

		Column	Side (in.) 11	12	13	14	15	16	17	18	19	20	21
			675 A ₀	81.6	97.2	114.0	132.3	151.8	172.8	195.0	218.7	243.6	270.0	297
	14,000	Tie	es											
Vert Bars	16,000 A _s (kips)	Quant * and Size	Spcg (in.)											
4-#5	19.8	1-#2	10	101										
4-#6	28.1	1-#2	12	109	125	142								
4-#7	38.4	1-#2	12	120	135	152	170	190						
6-#6	42.2	2-#2	12	123	139	156	174	194	215					
4-#8	50.5	1-#3	16	132	147	164	182	202	223	245				
8-#6	56.3	2-#2	12	137	153	170	188	208	229	251	275			
4-#9	64.0	1-#3	18	145	161	178	196	215	236	259	282	307	334	
6-#8	75.8	2-#3	16	157	173	189	208	227	248	270	294	319	345	37
4-#10	81.2	1-#3	18		178	195	213	233	254	276	299	324	351	37
6-#9	96.0	2-#3	18			210	228	247	268	291	314	339	366	39
4-#11	99.8	1-#3	18			213	232	251	272	294	318	343	369	39
6-#10	121.9	2-#3	18				254	273	294	316	340	365	391	41
8-#9	128.0	2-#3	18					279	300	323	346	371	398	42
6-#11	149.7	2-#3	18						322	344	368	393	419	44
10-#9	160.0	3-#3	18						332	355	378	403	430	45
12-#9	192.0	3-#3	18								410	435	462	48
8-#11	199.6	2-#3	18								418	443	469	49
14-#9	224.0	4-#3	18									467	494	52
12-#10	243.8	3-#3	18										513	54
10-#11	249.6	3-#3	18			ng sho							519	54
14-#10	284.4	4-#3	18	but i	must i	by re never	excee	d the						
12-#11	299.5	3-#3	18	colun		nensio	n of	the						
16-#10	325.1	4-#3	18											
14-#11	349.4	4-#3	18											
18-#10	365.7	5-#3	18											

22	23	24	25	26	P =	28	29	30	31	32	33	34	35
326.7	357.0	388.8	421.8	456.3	492.0	529.2	567.6	607.5	648.6	691.2	735.0	780.3	826.8
								НА		ONCRE = 3,750 ADE VE	psi	RS	
407												-	
422	453	484											
426	456	488											
448	478	510	543	578	613								-
454	485	516	549	584	620	657							
476	506	538	571	606	641	678	717	757					
486	517	548	581	616	652	689	727	767	808				1%
518	549	580	613	648	684	721	759	799	840	883	927	972	1/0
526	556	588	621	655	691	728	767	807	848	890	934	979	1026
550	581	612	645	680	716	753	791	831	872	915	959	1004	1050
570	600	632	665	700	735	773	811	851	892	935	978	1024	1070
576	606	638	671	705	741	778	817	857	898	940	984	1029	1076
611	641	673	706	740	776	813	852	891	933	975	1019	1064	1111
626	656	688	721	755	791	828	867	907	948	990	1034	1079	1126
	682	713	746	781	817	854	892	932	973	1016	1060	1105	1151
	4%	738	771	805	841	878	917	956	998	1040	1084	1129	1176
	70	754	787	822	857	894	933	973	1014	1056	1100	1146	1192

		Column			12	13	14	15	16	17	18	19	20	21
900 A _a				108.9	129.6	152.1	176.4	202.5	230.4	260.1	291.6	324.9	360.0	396.9
Ties														
Vert Bars	16,000 A _s (kips)	Quant * and Size	Spcg (in.)			-								
4-#5	19.8	1-#2	10	128										
4-#6	28.1	1-#2	12	137	157	180								
4-#7	38.4	1-#2	12	147	168	190	214	240						
6-#6	42.2	2-#2	12	151	171	194	218	244	272					
4-#8	50.5	1-#3	16	159	180	202	226	253	280	310				
8-#6	56.3	2-#2	12	165	185	208	232	258	286	316	347			
4-#9	64.0	1-#3	18	172	193	216	240	266	294	324	355	388	424	
6-#8	75.8	2-#3	16	184	205	227	252	278	306	335	367	400	435	472
4-#10	81.2	1-#3	18		210	233	257	283	311	341	372	406	441	478
6-#9	96.0	2-#3	18			248	272	298	326	356	387	420	456	492
4-#11	99.8	1-#3	18			251	276	302	330	359	391	424	459	496
6-#10	121.9	2-#3	18				298	324	352	382	413	446	481	518
8-#9	128.0	2-#3	18					330	358	388	419	452	488	524
6-#11	149.7	2-#3	18						380	409	441	474	509	546
10-#9	160.0	3-#3	18						390	420	451	484	520	556
12-#9	192.0	3-#3	18								483	516	552	588
8-#11	199.6	2-#3	18								491	524	559	596
14-#9	224.0	4-#3	18			81						548	584	620
12-#10	243.8	3-#3	18										603	640
10-#11	249.6	3-#3	18		Tie spacing shown is de-							646		
14-#10	284.4	4-#3	18	but	termined by reinforcement but must never exceed the									
12-#11	299.5	3-#3	18		least dimension of the column.									
16-#10	325.1	4-#3	18											
14-#11	349.4	4-#3	18											
18-#10	365.7	5-#3	18											

22	23	24	25	26	27	28	29	30	31	32	33	34	35
35.6	476.1	518.4	562.5	608.4	656.1	705.6	756.9	810.0	864.9	921.6	980.1	1040.4	1102.5
												-	
								НА		ONCRET = 5,000 ADE VI	psi	ARS	
			0										
516			- [
531	572	614											
535	575	618											
557	598	640	684	730	778						2		
563	604	646	690	736	784	833							
585	625	668	712	758	805	855	906	959					
595	636	678	722	768	816	865	916	970	1024				107
627	668	710	754	800	848	897	948	1002	1056	1113	1172	1232	1%
635	675	718	762	808	855	905	956	1009	1064	1121	1179	1240	1302
659	700	742	786	832	880	929	980	1034	1088	1145	1204	1264	1326
679	719	762	806	852	899	949	1000	1053	1108	1165	1223	1284	1346
685	725	768	812	858	905	955	1006	1059	1114	1171	1229	1290	1352
720	760	802	846	892	940	990	1041	1094	1149	1206	1264	1324	1386
735	775	817	862	907	955	1005	1056	1109	1164	1221	1279	1339	1402
	801	843	887	933	981	1030	1082	1135	1190	1246	1305	1365	1427
	4%	867	911	957	1005	1055	1106	1159	1214	1271	1329	1389	1451
	7/0	884	928	974	1021	1071	1122	1175	1230	1287	1345	1406	1468

AXIALLY LOADED SPIRALLY REINFORCED CONCRETE COLUMNS, ROUND OR SQUARE

These tables give the safe carrying capacity in kips (1000-lb units) for concentrically loaded spirally reinforced round or square concrete columns of ordinary length (ratio of unsupported height to least side, H/t, equal to or less than 10), for concretes of 3000 *, 3750 * and 5000 * psi ultimate strength, with vertical bars of intermediate grade steel (yield point = 40,000 psi) or hard grade steel (yield point = 50,000 psi), computed in accordance with the "Building Code Requirements for Reinforced Concrete (ACI 318-56)."

The tables usually give a choice between spirals made of intermediate grade hot rolled rod (yield point = 40,000 psi) or of cold drawn wire (yield point = 60,000 psi). Since the heaviest practicable spiral is $\frac{5}{8}\phi$ @ 2 in. pitch and since some of the larger square columns require more spiral reinforcement than intermediate grade would supply, hard grade spirals of hot rolled rod (yield point = 50,000 psi) are specified in such cases until their capacity is insufficient, after which the tables indicate that cold drawn wire should be used or a double spiral, one inside the other.

For eccentrically loaded spirally reinforced columns, square or round, see pages 281-360.

Designers are cautioned that for prompt delivery only one grade of spiral should be used on any one contract, and, generally, intermediate grade, cold drawn, and hard grade steel are available in the order named.

While these tables are adequate for selecting column sizes from determined loads, the services of a structural engineer are recommended for accuracy in computing loads and designing to avoid eccentricities. The user is referred to the "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)" for much helpful information about exact details of columns and arrangement of reinforcing bars.

Whenever the ratio of H/t exceeds 10, the tabulated capacity is to be reduced according to the ACI formula, $P' = P (1.3 - 0.03 \ H/t)$. The useable percentage of P for any desired H/t may be taken from the table on page 233.

Where lapped splices are used for vertical steel, the bars shall extend above the horizontal construction joint (usually the top of the structural slab) 20 nominal bar diameters for intermediate grade, rail or hard grade bars with deformations meeting ASTM A305, as evaluated in the table on pages 13 and 233.

^{*}Three thousand psi concrete is usually readily available either ready mixed or job mixed. The use of 3750 psi concrete ordinarily requires a little more care and control and should be used only when job conditions are known to produce this strength. Although 5000 psi concrete can be produced consistently, its use should be restricted to those cases where a program of unusually careful proportioning, control and testing is available to guarantee at least this breaking strength.

AXIALLY LOADED SPIRALLY REINFORCED CONCRETE COLUMNS

In lapped splices, column verticals may be offset just below the construction joint at a slope of 1 in. horizontal to 6 in. vertical to come inside of and in contact with the verticals above (see page 13). Where the offset would exceed about 4 in., separate dowels should be used. (See "Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)," page 13.)

Spirally reinforced concrete columns (round or square) are to have a minimum clear protection of $1\frac{1}{2}$ in. outside the spiral. Spirals are to have $1\frac{1}{2}$ finishing turns top and bottom and 2 vertical spacers for spirals up to 20 in. outside diameter, 3 for 20 to 30 in. and 4 for 30 in. outside diameter and larger.

The 1956 ACI "Building Code Requirements for Reinforced Concrete" permits up to 8 per cent of vertical bars. These tables are plainly marked

16						12.0		
Outside Diameter of	Spiral Size				Bar Size		,	
Column	SIEC .	#5	#6	#7	#8	#9	#10	#11
14	3∕8Φ	12	11	10	9	7	6	_
15	$\frac{3}{8}\phi$	13	12	11	10	8	7	6
16	$\frac{3}{8}\phi$	15	13	12	11	9	8	6
17	$\frac{3}{8}\phi$	16	15	14	12	11	9	7
18	$\frac{3}{8}\phi$	18	16	15	14	12	10	8
19	$\frac{3}{8}\phi$	19	18	16	15	13	11	9
20	$\frac{3}{8}\phi$	21	19	18	16	14	12	10
21	$\frac{1}{2}\phi$	22	20	19	17	15	13	11
22	$\frac{1}{2}\phi$	23	22	20	18	16	14	11
23	$\frac{1}{2}\phi$	25	23	21	20	17	15	12
24	$\frac{1}{2}\phi$	26	24	22	21	18	16	13
25	$\frac{1}{2}\phi$	28	26	24	22	19	17	14
26	$\frac{1}{2}\phi$	29	27	25	23	20	18	15
27	$\frac{1}{2}\phi$	31	28	26	25	21	19	16
28	$\frac{5}{8}\phi$	32	30	28	26	22	20	17
29	5∕8 ¢	33	31	29	27	23	21	17
30	5/84	35	32	30	28	25	22	18
31	5/8 P	36	34	31	29	26	23	19
32	5/8¢	38	35	33	31	27	24	20
33	$\frac{5}{8}\phi$	39	37	34	32	28	25	21
34	$\frac{5}{8}\phi$	41	38	35	33	29	26	22

AXIALLY LOADED SPIRALLY REINFORCED CONCRETE COLUMNS

with a zigzag line above which a clear spacing of 1½ nominal bar diameters or 1 in. minimum can be maintained between the spliced ends of vertical bars from below when carried up inside of and in contact with the verticals above. Larger percentages of vertical steel below the zigzag line require (1) vertical bars larger than the #11 maximum size now in the U. S. Department of Commerce Simplified Practice Recommendation 26 or (2) the butt-welding of vertical bars, one on top of the other, or (3) the use of an additional inner concentric spiral. In lapping vertical bars, no more need be brought up from below than the equivalent of the steel in the column above, arranged in a symmetrical pattern.

Table on page 249 gives the maximum number of various sized verticals that can be accommodated in one ring within different diameters of spirals.

The designer must keep in mind that beam bars often have to extend through the spaces between column verticals. It is generally considered permissible for the horizontal and vertical bars to have point contact in passing, after allowing for the projection of the deformations. Frequently a large-scale layout is helpful in establishing clearances and sometimes a full-size template is used in the field to get the correct orientation of column verticals before the beam bars are installed.

For a table giving the volumes of concrete in round columns, capitals and square columns, see page 106.

While the scope of these tables is adequate for most purposes, it is not practicable to present all possible combinations of concrete and steel here. For those who want to design a column outside the range of these tables and for those who wish to know how they were computed, the following examples will be instructive:—

Example—For the table on page 252, compute the safe axial carrying capacity of a spirally reinforced round concrete column 40 in. in diameter, reinforced with 28-#11 verticals, and proportion the spirals; $f'_c = 3000$ psi, $f_s = 16,000$ psi:—

 $P = A_g (0.225 f'_c + f_s p_g) = 675 A_g + 16,000 A_s * \pi \times 20 \times 20 \times 675 = 848.2 \text{ kips (Line 6, last column)} 16,000 \times 28 \times 1.56 = 698.9 \text{ kips (Column 2, last line)}$

 $P = \frac{698.9 \text{ kips (Column 2, last line)}}{1.56 + 1.547.1 + 1.56}$ (Last line, last column)

Spirals— $p' = 0.45 \left(\frac{A_g}{A_c} - 1\right) \frac{f'_c}{f'_s}$ $p' = 0.45 \left(\frac{\pi 20 \times 20}{\pi 18.5 \times 18.5} - 1\right) \frac{f'_c}{f'_s}$ $= 0.076 \frac{f'_c}{f'_s}$

Hot Rolled Intermediate Grade ($f'_s = 40,000$):— $p' = 0.076 \frac{3,000}{40,000} = 0.0057 =$

0.57% 37 in. core 3%\$\phi\$ @ 2 in. pitch = 0.59% (Table on page 271)

(ACI Code Limitations:—Not less than $\frac{1}{4}\phi$ wire; not less than $1\frac{3}{8}$ in. clear; not over 3 in. clear; not over one-sixth the core diameter = $\frac{37}{6}$ = $6\frac{1}{6}$ in. pitch.)

* For nomenclature, see pages 20-21.

[†] To be on the side of safety, decimal fractions are always dropped in these column tables and never rounded upward.

AXIALLY LOADED SPIRALLY REINFORCED CONCRETE COLUMNS

Cold Drawn (f'_s = 60,000):—
$$p' = 0.076 \frac{3,000}{60,000} = 0.0038 = 0.38\%$$

37 in. core $\frac{3}{6}\phi$ @ 3 in. pitch = 0.39% (Table on page 271)

Example—For the table on page 261, compute the safe axial carrying capacity of a spirally reinforced column 40 in. square of 3750 psi concrete with 28-#11 vertical bars, and proportion the spirals; $f_s = 16,000$ psi:—

$$P = A_g (0.225 f'_c + f_s p_g) = 843.75 A_g + 16,000 A_s$$

$$843.75 \times 40 \times 40 = 1350.0$$
 kips (Line 6, last column) $16,000 \times 28 \times 1.56 = 698.8$ kips (Column 2, last line)

$$P = 2048.8 * \text{kips} (\text{Last line, last column})$$

Spirals—
$$p' = 0.45 \left(\frac{40 \times 40}{\pi 18.5 \times 18.5} - 1 \right) \frac{f'_c}{f'_s}$$

$$p' = 0.219 \frac{f'_c}{f'_s}$$

Hot Rolled Intermediate Grade (f'_s = 40,000):— $p' = 0.219 \frac{3,750}{40,000} = 0.0205 = 2.05\%$

Too heavy a spiral (see the table on page 270), so use hard grade rod.

Hot Rolled Hard Grade (f'_s = 50,000):—
$$p' = 0.219 \frac{3,750}{50,000} = 0.0164 = 1.64\%$$

37 in. core $\frac{5}{8}\phi$ @ 2 in. pitch = 1.67% (Table on page 270)

Cold Drawn (f'_s = 60,000):
$$-p' = 0.219 \frac{3,750}{60,000} = 0.0137 = 1.37\%$$

37 in. core $\frac{5}{8}\phi$ @ $2\frac{1}{4}$ in. pitch = 1.49% (Table on page 270)

For those wishing to obtain percentages of core columes represented by various practicable spirals, table on page 270 is provided. Its use is clearly shown in the following:—

Example—For a 48 in. core, determine the percentage of a $\frac{5}{2}\phi$ spiral with a 2 in. pitch:—

$$p' = \frac{\text{Volume of Steel per Vertical Foot}}{\text{Volume of Core per Vertical Foot}} = \frac{\pi D}{\frac{12}{\text{pitch}}} \frac{A_s}{A_s}$$
(Table on page 270)
$$p' = \frac{4A_s}{D \times \text{pitch}}$$
$$p' = \frac{4 \times 0.31}{48 \times 2} = 1.29\%$$

Weights of spirals may be obtained from the table on page 272, the notes at the bottom of the page being self-explanatory.

Height of Spirals. The spiral shall extend from the floor level in any story or from the top of footing to the level of the lowest horizontal reinforcement in slab or beam above. In a column with a capital, the spiral shall extend to the plane at which the diameter or width of the capital is twice that of the column.

^{*} To be on the side of safety, decimal fractions are always dropped in these column tables and never rounded upward.

SPIRALLY REINFORCED ROUND COLUMNS—Safe Axial Load in Kips ${\it P}=$ 675 ${\it A_g}+$ 16,000 ${\it A_s}$

Outsid	e Dia	Col (in.)	16	18	20	22	24	26	28	30	32	34	36	38	40
Hot Rolled Spire	als	Rod dia	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Intermediate Gra		Pitch	13/4	13/4	13/4	2	2	2	2	2	2	2	2	2	2
		Wire	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Cold Drawn Spir	rals	Pitch	2	21/2	23/4	3	3	3	3	3	3	3	3	3	3
	673	$5 A_g$ (kips)	135.7	171.8	212.1	256.6	305.4	358.4	415.6	477.1	542.9	612.8	687.1	765.5	848.2
Vert Bars Quant-Size	16	,000 A _s (kips)					74				+				
6-#6		42.2	177	214	. 7.02					12	CONC	DETE			
6-#7		57.6	193	229	269	314					c = 3	000 ps			
6-#8		75.8	211	247	287	332	381		INT. GRADE VERT. BARS						
6-#9		96.0	231	267	308	352	401	454							
6-#10		121.9	257	293	334	378	427	480	537	599		34			
8-#9		128.0	263	299	340	384	433	486	543	605		15			
6-#11		149.8	285	321	361	406	455	508	565	626	692	762			
8-#10		162.6	298	334	374	419	468	521	578	639	705	775			1%
8-#11		199.7	335	371	411	456	505	558	615	676	742	812	886	965	
10-#11		249.6	385	421	461	506	555	608	665	726	792	862	936	1015	1097
12-#11		299.5	78	471	511	556	604	657	715	776	842	912	986	1065	1147
14-#11		349.4	742 8		561	606	654	707	765	826	892	962	1036	1114	1197
16-#11		399.4			611	656	704	757	815	876	942	1012	1086	1164	1247
18-#11		449.3				705	754	807	864	926	992	1062	1136	1214	1297
20-#11		499.2					804	857	914	976	1042	1112	1186	1264	1347
22-#11		549.1					854	907	964	1026	1092	1161	1236	1314	1397
24-#11		599.1						957	1014	1076	1141	1211	1286	1364	1447
26-#11	- 1	649.0					==	1007	1064	1126	1191	1261	1336	1414	1497
28-#11	10	698.9					8	%	1114	1176	1241	1311	1386	1464	1547

Values below and to the left of the intermediate zigzag line require more vertical bars than can be accommodated in one ring (see page 249).

SPIRALLY	REINFORCED	ROUND	COLUMNS—Safe	Axial Load in Kips
			$A_a + 16,000 A_s$	N 400

					0.40		g	10,0	00 7	8	,		,		,
Outsid	e Dia	Col (in.)	16	18	20	22	24	26	28	30	32	34	36	38	40
Hot Rolled Spi	rals	Rod dia	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Intermediate Gr		Pitch	2	21/2	23/4	23/4	23/4	23/4	23/4	23/4	3	3	3	3	3
Cold Drawn Sp	irale	Wire	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
cold Didwii Sp	irais	Pitch	2	21/4	21/4	21/4	21/4	21/4	21/4	21/4	21/2	21/2	21/2	21/2	21/2
. 8	43.75	A_g (kips)	169.6	214.7	265.0	320.7	381.7	447.9	519.5	596.4	678.5	766.0	858.8	956.9	1060.
Vert Bars Quant-Size		000 A _s (kips)													
6-#6		42.2	211	256											
6-#7		57.6	227	272	322	378					c = 3,	750 ps			
6-#8		75.8	245	290	340	396	457		11	VI. GI	RADE	VERT	. BAR	S	4
6-#9		96.0	265	310	361	416	477	543							
6- #10	1	21.9	291	336	386	442	503	569	641	718					
8-#9	1	28.0	297	342	393	448	509	575	647	724					
6-#11	1	49.8	319	364	414	470	531	597	669	746	828	915			
8-#10	1	62.6	332	377	427	483	544	610	682	759	841	928			
8-#11	1	99.7	369	414	464	520	581	647	719	796	878	965	1058	1156	1%
10-#11	2	249.6	419	464	514	570	631	697	769	846	928	1015	1108	1206	1309
12-#11	2	99.5		514	564	620	681	747	819	895	978	1065	1158	1256	1359
14-#11	3	49.4			614	670	731	797	868	945	1027	1115	1208	1306	1409
16-#11	3	99.4			664	720	781	847	918	995	1077	1165	1258	1356	1459
18-#11	4	49.3				770	831	897	968	1045	1127	1215	1308	1406	1509
20-#11	4	99.2					880	947	1018	1095	1177	1265	1358	1456	1559
22-#11	5	49.1					930	997	1068	1145	1227	1315	1407	1506	1609
24-#11	5	99.0						1046	1118	1195	1277	1365	1457	1555	1659
26-#11	6	49.0					20	1096	1168	1245	1327	1415	1507	1605	1709
28-#11	6	98.9					89	8	1218	1295	1377	1464	1557	1655	1759

SPIRALI	LY REIN	VFOI	RCED	RO = 1	UND 125	CO A _g +	LUMI - 16,0	NS	Safe 4 _s	Axi	al Lo	ad in	Kips	
Outside Dia	Col (in.)	16	18	20	22	24	26	28	30	32	34	36	38	40
Hot Rolled Spirals	Rod dia	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Intermediate Grade	Pitch	2	2	2	2	2	2	2	21/4	21/4	21/4	21/4	21/4	21/4
	Wire	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Cold Drawn Spiral	Pitch	13/4	13/4	13/4	13/4	1 3/4	13/4	13/4	13/4	1 3/4	13/4	1 3/4	13/4	1 3/4
1125	A_g (kips)	226.1	286.2	353.4	427.6	508.9	597.2	692.7	795.2	904.7	1021.4	1145.1	1275.8	1413.6
Vert Bars 1 Quant-Size	16,000 A ₈ (kips)													
6-#6	42.2	268	328								ONCR	ETE		
6-#7	57.6	283	343	411	485				IN	f'c	= 5,00		ARS	
6-#8	75.8	301	362	429	503	584				1				
6-#9	96.0	322	382	449	523	604	693							
6-#10	121.9	348	408	475	549	630	719	814	917					
8-#9	128.0	354	414	481	555	636	725	820	923					
6-#11	149.8	375	436	503	577	658	747	842	945	1054	1171			
8-#10	162.6	388	448	516	590	671	759	855	957	1067	1184			1%
8-#11	199.7	425	485	553	627	708	796	892	994	1104	1221	1344	1475	
10-#11	249.6	475	535	603	677	758	8 847	942	1044	1154	1271	1394	1525	1663
12-#11	299.5		585	652	727	808	896	992	1094	1204	1320	1444	1575	1713
14-#11	349.4			702	777	858	946	1042	1144	1254	1370	1494	1625	1763
16-#11	399.4			752	827	908	996	1092	1194	1304	1420	1544	1675	1813
18-#11	449.3				876	958	1046	1142	1244	1354	1470	1594	1725	1862
20-#11	499.2					100	8 1096	1191	1294	1403	1520	1644	1775	1912
22-#11	549.1					105	8 1146	1241	1 1344	1453	1570	1694	1824	1962
24-#11	599.0						1196	129	1 1394	1503	1620	1744	1874	2012
26-#11	649.0						1240	6 134	1 144	4 155	1670	1794	1924	2062
28-#11	698.9					1	8%	139	1 149	4 160	1720	1844	1974	2112

SPIRALLY REINFORCED ROUND COLUMNS—Safe Axial Load in Kips $P=675~A_g+20{,}000~A_s$

						2.9	,,		8						
Outsid	de Dia	Col (in.)	16	18	20	22	24	26	28	30	32	34	36	38	40
Hot Rolled Spir		Rod dia	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Intermediate Gr	ade	Pitch	13/4	13/4	13/4	2	2	2	2	2	2	2	2	2	2
Cold Drawn Sp	in-l-	Wire	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Cold Drawn Sp	oirais	Pitch	2	21/2	23/4	3	3	3	3	3	3	3	3	3	3
	675	Ag(kips)	135.7	171.8	212.1	256.6	305.4	358.4	415.6	477.1	542.9	612.8	687.1	765.5	848.2
Vert Bars Quant-Size		,000 A ₈ (kips)													
6-#6		52.8	188	224							CONC	DETE			
6-#7		72.0	207	243	284	328			ш		c = 3,	000 ps		De	
6-#8		94.8	230	266	306	351	400		HARD GRADE VERT. BARS						
6-#9		120.0	255	291	332	376	425	478							
6-#10		152.4	288	324	364	409	457	510	568 629						
8-#9		160.0	295	331	372	416	465	518	575	637	-				
6-#11		187.2	322	359	399	443	492	545	602	664	730	800			
8-#10		203.2	338	375	415	459	508	561	618	680	746	816			1%
8-#11		249.6	385	421	461	506	555	608	665	726	792	862	936	1015	
10-#11		312.0	447	483	524	568	617	670	727	789	854	924	999	1077	1160
12-#11	:	374.4		546	586	631	679	732	790	851	917	987	1061	1139	1222
14-#11	4	436.8			648	693	742	795	852	913	979	1049	1123	1202	1285
16-#11		499.2			711	755	804	857	914	976	1042	1112	1186	1264	1347
18-#11		561.6				818	867	920	977	1038	1104	1174	1248	1327	1409
20-#11		524.0					929	982	1039	1101	1166	1236	1311	1389	1472
22-#11	(686.4					991	1044	1102	1163	1229	1299	1373	1451	1534
24-#11	7	748.8						1107	1164	1225	1291	1361	1435	1514	1597
26-#11		811.2						1169	1226	1288	1354	1424	1498	1576	1659
28-#11	8	373.6					89	'—— %	1289	1350	1416	1486	1560	1639	1721

Values below and to the left of the intermediate zigzag line require more vertical bars than can be accommodated in one ring (see page 249).

SPIRALLY REINFORCED ROUND COLUMNS—Safe Axial Load in Kips $P=843.75~A_a+20,000~A_s$

			r	= 0	43./	O Ag	+ 20	,000	A ₈						
Outside D	Outside Dia Col (in.)				20	22	24	26	28	30	32	34	36	38	40
Hot Rolled Spire	als	Rod dia	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Intermediate Gra		Pitch	2	21/2	23/4	23/4	23/4	23/4	23/4	23/4	3	3	3	3	3
4		Wire	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Cold Drawn Spir	rais	Pitch	2	21/4	21/4	21/4	21/4	21/4	21/4	21/4	21/2	21/2	21/2	21/2	21/2
84	13.75	Ag (kips)	169.6	214.7	265.0	320.7	381.7	447.9	519.5	596.4	678.5	766.0	858.8	956.9	1060.2
Vert Bars Quant-Size	5-5-7307	,000 A_s (kips)												72	
6-#6		52.8	222	267							CONC	PETE			
6-#7		72.0	241	286	337	392			ша	f'	, = 3,	750 ps	i T. BA	DC.	
6-#8		94.8	264	309	359	415	476		ne	IKD G	KADE	VER	i. DA		
6-#9		120.0	289	334	385	440	501	567							
6-#10		152.4	322	367	417	473	534	600	671	748					
8-#9		160.0	329	374	425	480	541	607	679	756					
6-#11		187.2	356	401	452	507	568	635	706	783	865	953			
8-#10		203.2	372	417	468	523	584	651	722	799	881	969			1%
8-#11		249.6	419	464	514	570	631	697	769	846	928	1015	1108	1206	1 /0
10-#11	5 2	312.0	481	526	577	632	693	759	831	908	990	1078	1170	1268	1372
12-#11		374.4	e#.	589	639	695	756	822	893	970	1052	1140	1233	1331	1434
14-#11		436.8			701	757	818	884	956	1033	1115	1202	1295	1393	1497
16-#11		499.2			764	819	880	947	1018	1095	1177	1265	1358	1456	1559
18-#11		561.6				882	943	1009	1081	1158	1240	1327	1420	1518	1621
20-#11		624.0					1005	1071	1143	1220	1302	1390	1482	1580	1684
22-#11		686.4				5	1068	1134	1205	1282	1364	1452	1545	1643	1746
24-#11		748.8						1196	1268	1345	1427	1514	1607	1705	1809
26-#11		811.2						8%	1330	1407	1489	1577	1670	1768	1871
28-#11		873.6						0%	1393	1470	1552	1639	1732	1830	1933

SPIRALLY	REINFORCED	ROUND	COLUMNS—Safe	Axial Load in Kips	
	P	= 1125 /	$A_g + 20,000 A_s$		

Outside Di	a Col (in.)	16	18	20	22	24	26	28	30	32	34	36	38	40
Hot Rolled Spiral	s Rod dia	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Intermediate Grade	Pitch	2	2	2	2	2	2	2	21/4	21/4	21/4	21/4	21/4	21/4
	Wire	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Cold Drawn Spira		13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	1 3/4
1125	A _g (kips)	226.1	286.2	353.4	427.6	508.9	597.2	692.7	795.2	904.7	1021.4	1145.1	1275.8	1413.6
Vert Bars Quant-Size	20,000 A _s (kips)				=			il u						
6-#6	52.8	278	339					11						
6-#7	72.0	298	358	425	499	,				f'c	= 5,00	0 psi		
6-#8	94.8	320	381	448	522	603			НА	RD G	RADE	VERT.	BARS	
6-#9	120.0	346	406	473	547	628	717							
6-#10	152.4	378	438	505	580	661	749	845	947					
8-#9	160.0	386	446	513	587	668	757	852	955					
6-#11	187.2	413	473	540	614	696	784	879	982	1091	1208			.50
8-#10	203.2	429	489	556	630	712	800	895	998	1107	1224		-8	
8-#11	249.6	475	535	603	677	758	846	942	1044	1154	1271	1394	1525	1%
30-#11	312.0	538	598	665	739	820	909	1004	1107	1216	1333	1457	1587	1725
12-#11	374.4		660	727	802	883	971	1067	1169	1279	1395	1519	1650	1788
14-#11	436.8			790	864	945	1034	1129	1232	1341	1458	1581	1712	1850
16-#11	499.2			852	926	1008	1096	1191	1294	1403	1520	1644	1775	1912
18-#11	561.6				989	1070	1158	1254	1356	1466	1583	1706	1837	1975
20-#11	624.0					1132	1221	1316	1419	1528	1645	1769	1899	2037
22-#11	686.4					1195	1283	1379	1481	1591	1707	1831	1962	2100
24-#11	748.8						1346	1441	1544	1653	1770	1893	2024	2162
26-#11	811.2				D.		1408	1503	1606	1715	1832	1956	2087	2224
28-#11	873.6					8	' %	1566	1668	1778	1895	2018	2149	2287

SPIRALLY REINFORCED	SQUARE COLUMNS—Safe	Axial Load in Kips
	$P = 675 A_a + 16,000 A_a$	

				P =	= 0/3	A ₀ -	- 10,0)00 A	8					
	Side of C	Column (in.)) 16	17	18	19	20	21	22	23	24	25	26	27
	Hot Rolled Spir	Rod die	a 5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/6
Inte	ermediate Gra	de Pitcl	h 2	21/4	21/2	21/2	23/4	23/4	21/2	21/2	21/2	21/2	21/2	21/2
	Cold Drawn Spirals	Wire	e ½	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	Opiiuis	Pitcl	h 2	21/4	21/2	21/2	21/2	21/2	21/2	21/2	21/2	21/2	21/4	21/4
		675 A _g (kips) 172.8	195.0	218.7	243.6	270.0	297.6	326.7	357.0	388.8	421.8	456.3	492.0
	Vert Bars Quant-Size	16,000 As (kips)		,										
	6-#6	42.2	215											
ĺ	6-#7	57.6	230	252	276									
ĺ	6-#8	75.8	248	270	294	319	345	373						
	6-#9	96.0	268	291	314	339	366	393	422	453	484			
	6-#10	121.9	294	316	340	365	391	419	448	478	510	543	578	613
	8-#9	128.0	300	323	346	371	398	425	454	485	516	549	584	620
	6-#11	149.8	322	344	368	393	419	447	476	506	538	571	606	641
	8-#10	162.6	335	357	381	406	432	460	489	519	551	584	618	654
	8-#11	199.6	372	394	418	443	469	497	526	556	588	621	655	691
	10-#11	249.6	422	444	468	493	519	547	576	606	638	671	705	741
	12-#11	299.5	472	494	518	543	569	597	626	656	688	721	755	791
	14-#11	349.4		544	568	593	619	647	676	706	738	771	805	841
	16-#11	399.4		,	618	643	669	697	726	756	788	821	855	891
	18-#11	449.2				692	719	746	775	806	838	871	905	941
	20-#11	499.2					769	796	825	856	888	921	955	991
	22-#11	549.1						846	875	906	937	970	1005	1041
	24-#11	599.0							925	956	987	1020	1055	1091
	26-#11	648.9							• 07	1005	1037	1070	1105	1140
	28-#11	698.8							8%		1087	1120	1155	1190

Outside diameter of spiral should be 3 in. less than the side of the column.

SPIRALLY REINFORCED SQUARE COLUMNS—Safe Axial Load in Kips $P=675~A_g+16{,}000~A_s$

28	29	30	31	32	33	34	35	36	37	38	39	40
5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
21/4	21/4	21/4	21/4	21/4	21/4	2	2	2	2	2	2	2
1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	5/8
21/4	21/4	21/4	21/4	2	2	2	2	2	2	2	2	3
529.2	567.6	607.5	648.6	691.2	735.0	780.3	826.8	874.8	924.0	974.7	1026.6	1080.0
						11	f'c	ONCRE = 3,000 ADE VE	psi	es		
657												
679	717	757										
691	730	770	811									
728	767	807	848	890	934	979	1026					
778	817	857	898	940	984	1029	1076	1124	1173	1224	1276	1%
828	867	907	948	990	1034	1079	1126	1174	1223	1274	1326	1379
878	917	956	998	1040	1084	1129	1176	1224	1273	1324	1376	1429
928	967	1006	1048	1090	1134	1179	1226	1274	1323	1374	1426	1479
978	1016	1056	1097	1140	1184	1229	1276	1324	1373	1423	1475	1529
1028	1066	1106	1147	1190	1234	1279	1326	1374	1423	1473	1525	1579
1078	1116	1156	1197	1240	1284	1329	1375	1423	1473	1523	1575	1629
1128	1166	1206	1247	1290	1334	1379	1425	1473	1523	1573	1625	1679
		1256	1297	1340	1383	1429	1475	1523	1572	1623	1675	1728
1178	1216	1230	1277	.040								20

Side of Co	olumn (in.)	16	17	18	19	20	21	22	23	24	25	26	27
Hot Rolled Spire	Rod dia	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
Int. Grade *	Pitch	2	21/4	21/4	21/4	21/4	2	2	2	2	2	2	2
Hot Rolled Spira	Rod dia												
Hard Grade *	Pitch					Use Int	ermedi	ate Gr	ade				
Cold Drawn	Wire	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	5/8	5/8
Spirals *	Pitch	2	21/4	21/4	2	2	2	2	2	2	2	3	3
843	3.75 A _g (kips)	216.0	243.8	273.3	304.5	337.5	372.0	408.3	446.3	486.0	527.3	570.3	615
Vert Bars Quant-Size	16,000 A _s (kips)												
6-#6	42.2	258											
6-#7	57.6	273	301	330									
6-#8	75.8	291	319	349	380	413	447						
6-#9	96.0	312	339	369	400	433	468	504	542	582			
6-#10	121.9	337	365	395	426	459	493	530	568	607	649	692	73
8-#9	128.0	344	371	401	432	465	500	536	574	614	655	698	74
6-#11	149.8	365	393	423	454	487	521	558	596	635	677	720	76
8-#10	162.6	378	406	435	467	500	534	570	608	648	689	732	77
8-#11	199.6	415	443	472	504	537	571	607	645	685	726	769	81
10-#11	249.6	465	493	522	554	587	621	657	695	735	776	819	86
12-#11	299.5	515	543	572	604	637	671	707	745	785	826	869	91
14-#11	349.4		593	622	653	686	721	757	795	835	876	919	96
16-#11	399.4			672	703	736	771	807	845	885	926	969	101
18-#11	449.2				753	786	821	857	895	935	976	1019	106
20-#11	499.2					836	871	907	945	985	1026	1069	111
22-#11	549.1						921	957	995	1035	1076	1119	116
24-#11	599.0							1007	1045	1085	1126	1169	121
26-#11	648.9								1095	1134	1176	1219	126
28-#11	698.8							8	%	1184	1226	1269	131

Outside diameter of spiral should be 3 in. less than the side of the column.

^{*} To facilitate deliveries and eliminate errors, use only one grade of spiral on any one contract, generally available in the order intermediate grade hot rolled rod, cold drawn wire and hard grade hot rolled rod.

28	29	30	31	32	33	34	35	36	37	38	39	40
					U	se Hard	Grade					
5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
21/4	21/4	21/4	21/4	21/4	21/4	2	2	2	2	2	2	2
5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
23/4	23/4	23/4	23/4	23/4	21/2	21/2	21/2	21/2	21/2	21/2	21/4	21/4
661.5	709.5	759.3	810.8	864.0	918.8	975.3	1033.5	1093.5	1155.0	1218.3	1283.3	1350.0
						INT.		CRETE ,750 psi VERT. I	BARS			
789						2.5						0.2
811	859	909										
824	872	921	973				V				1	н
861	909	958	1010	1063	1118	1174	1233					107
911	959	1008	1060	1113	1168	1224	1283	1343	1404	1467	1532	1%
961	1009	1058	1110	1163	1218	1274	1333	1393	1454	1517	1582	1649
1010	1058	1108	1160	1213	1268	1324	1382	1442	1504	1567	1632	1699
1060	1108	1158	1210	1263	1318	1374	1432	1492	1554	1617	1682	1749
1110	1158	1208	1260	1313	1368	1424	1482	1542	1604	1667	1732	1799
1160	1208	1258	1310	1363	1418	1474	1532	1592	1654	1717	1782	1849
1210	1258	1308	1359	1413	1467	1524	1582	1642	1704	1767	1832	1899
1260	1308	1358	1409	1463	1517	1574	1632	1692	1754	1817	1882	1949
1310	1358	1408	1459	1512	1567	1624	1682	1742	1803	1867	1932	1998
1360	1408	1458	1509	1562	1617	1674	1732	1792	1853	1917	1982	2048

SPIRALLY REINFORCED SQUARE COLUMNS—Safe Axial Load in Kips $P=1125\,A_a+16,000\,A_s$

		F. 1.	P =	1125	A_g	- 10,	000 A	18					
Side of Co	olumn (in.)	16	17	18	19	20	21	22	23	24	25	26	27
Hot Rolled Spire	Rod dic	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	Hee	Cold D	\\	W:
Hard Grade		2	2	2	2	2	2	2	2	Use	Cola L	rawn	wire
Cold Drawn	Wire	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
Spirals*	Pitch	2	21/4	21/2	21/2	21/2	21/2	21/4	21/4	21/4	21/4	21/4	21/4
. 11	$125 A_g$ (kips	288.0	325.1	364.5	406.1	450.0	496.1	544.5	595.1	648.0	703.1	760.5	820.1
Vert Bars Quant-Size	16,000 A _s (kips)												
6-#6	42.2	330											
6-#7	57.6	345	382	422									
6-#8	75.8	363	400	440	481	525	571						
6-#9	96.0	384	421	460	502	546	592	640	691	744			
6-#10	121.9	409	447	486	528	571	618	666	717	769	825	882	942
8-#9	128.0	416	453	492	534	578	624	672	723	776	831	888	948
6-#11	149.8	437	474	514	555	599	645	694	744	797	852	910	969
8-#10	162.6	450	487	527	568	612	658	707	757	810	865	923	982
8-#11	199.6	487	524	564	605	649	695	744	794	847	902	960	1019
10-#11	249.6	537	574	614	655	699	745	794	844	897	952	1010	1069
12-#11	299.5	587	624	664	705	749	795	844	894	947	1002	1060	1119
14-#11	349.4		674	713	755	799	845	893	944	997	1052	1109	1169
16-#11	399.4			763	805	849	895	943	994	1047	1102	1159	1219
18-#11	449.2				855	899	945	993	1044	1097	1152	1209	1269
20-#11	499.2					949	995	1043	1094	1147	1202	1259	1319
22-#11	549.1						1045	1093	1144	1197	1252	1309	1369
24-#11	599.0							1143	1194	1247	1302	1359	1419
26-#11	648.9					×			1244	1296	1352	1409	1469
28-#11	698.8							8	%	1346	1401	1459	1518
28-#11	698.8							8	%	1346	1401	1459	1518

Values below and to the left of the intermediate zigzag line require more vertical bars than can be accommodated in one ring (see page 249).

Outside diameter of spiral should be 3 in. less than the side of the column.

^{*} To facilitate deliveries and eliminate errors, use only one grade of spiral on any one contract, generally available in the order intermediate grade hot rolled rod, cold drawn wire and hard grade hot rolled rod.

SPIRALLY REINFORCED	SQUARE CO	LUMNS—Safe	Axial Load in Kips
F	$= 1125 A_a +$	- 16,000 A.	·-

28	29	30	31	32	33	34	35	36	37	38	39	40

Use Cold Drawn Wire

5/8	5/8	5/8	5/8	5/8	5/8	5/8		Use D	ouble C	oncentric	Spirals	
2	2	2	2	2	2	2	p'= .0196	.0193	.0190	.0188	.0185	.0183
882.0	946.1	1012.5	1081.1	1152.0	1225.1	1300.5	1378.1	1458.0	1540.1	1624.5	1711.1	1800.0
							INT.	f'c = 5,0 GRADE	000 psi	ARS		
1010	1118											
1031	1095	1162	×									
1044	1108	1175	1243		-						1	. "
1081	1145	1212	1280	1351	1424	1500	1577			- 1		.07
1131	1195	1262	1330	1401	1474	1550	1627	1707	1789	1874	1960	1%
1181	1245	1312	1380	1451	1524	1600	1677	1757	1839	1924	2010	2099
1231	1295	1361	1430	1501	1574	1649	1727	1807	1889	1973	2060	2149
1281	1345	1411	1480	1551	1624	1699	1777	1857	1939	2023	2110	2199
1331	1395	1461	1530	1601	1674	1749	1827	1907	1989	2073	2160	2249
1381	1445	1511	1580	1651	1724	1799	1877	1957	2039	2123	2210	2299
1431	1495	1561	1630	1701	1774	1849	1927	2007	2089	2173	2260	2349
1481	1545	1611	1680	1751	1824	1899	1977	2057	2139	2223	2310	2399
1530	1595	1661	1730	1800	1874	1949	2027	2106	2189	2273	2360	2448
1580	1644	1711	1779	1850	1923	1999	2076	2156	2238	2323	2409	2498

SPIRALLY REINFORCE	SQUARE COLUMNS-Safe	Axial Load in Kips
	$P = 675 A_a + 20,000 A_a$	

				•		J.g			8					
	Side of Co	olumn (in.)	16	17	18	19	20	21	22	23	24	25	26	27
	Hot Rolled Spire	Rod dia	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
	ermediate Grad	-	2	21/4	21/2	21/2	23/4	23/4	21/2	21/2	21/2	21/2	21/2	21/2
	Cold Drawn	Wire	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	V ₂	V ₂	1/2
	Spirals*	Pitch	2	21/4	21/2	21/2	21/2	21/2	21/2	21/2	21/2	21/2	21/4	21/4
	6	75 Ag(kips)	172.8	195.0	218.7	243.6	270.0	297.0	326.7	357.0	388.7	421.8	456.3	492.0
	Vert Bars Quant-Size	20,000 A ₈ (kips)												
	6-#6	52.8	225											
	6-#7	72.0	244	267	290									
	6-#8	94.8	267	289	313	338	364	391						
	6-#9	120.0	292	315	338	363	390	417	446	477	508			
	6-#10	152.4	325	347	371	396	422	449	479	509	541	574	608	644
	8-#9	160.0	332	355	378	403	430	457	486	517	548	581	616	652
	6-#11	187.2	360	382	405	430	457	484	513	544	575	609	643	679
	8-#10	203.2	376	398	421	446	473	500	529	560	591	625	659	695
	8-#11	249.6	422	444	468	493	519	546	576	606	638	671	705	741
	10-#11	312.0	484	507	530	555	582	609	638	669	700	733	768	804
	12-#11	374.4	547	569	593	618	644	671	701	731	763	796	830	866
÷	14-#11	436.8		631	655	680	706	733	763	793	825	858	893	928
	16-#11	499.2			717	742	769	796	825	856	887	921	955	991
	18-#11	561.6				805	831	858	888	918	950	983	1017	1053
	20-#11	624.0					894	921	950	981	1012	1045	1080	1116
	22-#11	686.4						983	1013	1043	1075	1108	1142	1178
	24-#11	748.8							1075	1105	1137	1170	1205	1240
	26-#11	811.2								1168	1199	1233	1267	1303
	28-#11	873.6							8	%	1262	1295	1329	1365

Outside diameter of spiral should be 3 in. less than the side of the column.

* To facilitate deliveries and eliminate errors, use only one grade of spiral on any one contract, generally available in the order intermediate grade hot rolled rod, cold drawn wire and hard grade hot rolled rod.

SPIRALLY	REINFORCED	SQUARE	COLUMNS—Safe	Axial Load in Kips
			$a + 20,000 A_s$	

28	29	30	31	32	33	34	35	36	37	38	39	40
5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
21/4	21/4	21/4	21/4	21/4	21/4	2	2	2	2	2	2	2
1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	5/8
21/4	21/4	21/4	21/4	2	2	2	2	2	2	2	2	3
529.2	567.6	607.5	648.6	691.2	735.0	780.3	826.8	874.8	924.0	974.7	1026.6	1080.
						H		ONCRE = 3,000 ADE V	psi	ARS		
689					-							
716	754	794										
732	770	810	851									
778	817	857	898	940	984	1029	1076					
841	879	919	960	1003	1047	1092	1138	1186	1236	1286	1338	1%
903	942	981	1023	1065	1109	1154	1201	1249	1298	1349	1401	1454
966	1004	1044	1085	1128	1171	1217	1263	1311	1360	1411	1463	1516
1028	1066	1106	1147	1190	1234	1279	1326	1374	1423	1473	1525	1579
1090	1129	1169	1210	1252	1296	1341	1388	1436	1485	1536	1588	1641
1153	1191	1231	1272	1315	1359	1404	1450	1498	1548	1598	1650	1704
1215	1254	1293	1335	1377	1421	1466	1513	1561	1610	1661	1713	1766
1278	1316	1356	1397	1440	1483	1529	1575	1623	1672	1723	1775	1828
1340	1378	1418	1459	1502	1546	1591	1638	1686	1735	1785	1837	1891
	1441	1481	1522	1564	1608	1653	1700	1748	1797	1848	1900	1953

28-#11

873.6

Side of C	Column (in.)	16	17	18	19	20	21	22	23	24	25	26	27
Hot Rolled Spira	Rod dia	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
Int. Grade *	Pitch	2	21/4	21/4	21/4	21/4	2	2	2	2	2	2	2
Hot Rolled Spira	Rod dia												
Hard Grade *	Pitch	1				Use	Interme	diate	Grade				
Cold Drawn	Wire	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	5/8	5/8
Spirals *	Pitch	2	21/4	21/4	2	2	2	2	2	2	2	3	3
843	$3.75 A_g$ (kips)	216.0	243.8	273.3	304.5	337.5	372.0	408.3	446.3	486.0	527.3	570.3	615
Vert Bars Quant-Size	20,000 A ₈ (kips)												
6-#6	52.8	268											
6-#7	72.0	288	315	345									
6-#8	94.8	310	338	368	399	432	466						
6-#9	120.0	336	363	393	424	457	492	528	566	606			
6-#10	152.4	368	396	425	456	489	524	560	598	638	679	722	76
8-#9	160.0	376	403	433	464	497	532	568	606	646	687	730	77:
6-#11	187.2	403	431	460	491	524	559	595	633	673	714	757	80
8-#10	203.2	419	447	476	507	540	575	611	649	689	730	773	81
8-#11	249.6	465	493	522	554	587	621	657	695	735	776	819	86
10-#11	312.0	528	555	585	616	649	684	720	758	798	839	882	92
12-#11	374.4	590	618	647	678	711	746	782	820	860	901	944	989
14-#11	436.8		680	710	741	774	809	845	883	922	964	1007	105
16-#11	499.2			772	803	836	871	907	945	985	1026	1069	111
18-#11	561.6				866	899	933	969	1007	1047	1088	1131	117
20-#11	624.0					961	996	1032	1070	1110	1151	1194	123
22-#11	686.4						1058	1094	1132	1172	1213	1256	130
24-#11	748.8							1157	1195	1234	1276	1319	136
26-#11	811.2								1257	1297	1338	1381	1420

Values below and to the left of the intermediate zigzag line require more vertical bars than can be accommodated in one ring (see page 249).

8%

1359

1400

1488

1443

Outside diameter of spiral should be 3 in. less than the side of the column.

^{*} To facilitate deliveries and eliminate errors, use only one grade of spiral on any one contract, generally available in the order intermediate grade hot rolled rod, cold drawn wire and hard grade hot rolled rod.

28	29	30	31	32	33	34	35	36	37	38	39	40
					U	Jse Hard	Grade					
5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
21/4	21/4	21/4	21/4	21/4	21/4	2	2	2	2	2	2	2
5/8	5/6	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
23/4	23/4	23/4	23/4	23/4	21/2	21/2	21/2	21/2	21/2	21/2	21/4	21/4
661.5	709.5	759.3	810.8	864.0	918.8	975.3	1033.5	1093.5	1155.0	1218.3	1283.3	1350.0
									-			
		<u> </u>						CRETE				
						HARI		,750 psi E VERT.	BARS			
												
921			<u> </u>									-
821	896	246		<u> </u>								
		946	1014									
864	912	962	1014									
911	959	1008	1060	1113	1168	1224	1283					1%
973	1021	1071	1122	1176	1230	1287	1345	1405	1467	1530	1595	
1035	1083	1133	1185	1238	1293	1349	1407	1467	1529	1592	1657	1724
1098	1146	1196	1247	1300	1355	1412	1470	1530	1591	1655	1720	1786
1160	1208	1258	1310	1363	1418	1474	1532	1592	1654	1717	1782	1849
1223	1271	1320	1372	1425	1480	1536	1595	1655	1716	1779	1844	1911
1285	1333	1383	1434	1488	1542	1599	1657	1717	1779	1842	1907	1974
1347	1395	1445	1497	1550	1605	1661	1719	1779	1841	1904	1969	2036
1410	1458	1508	1559	1612	1667	1724	1782	1842	1903	1967	2032	2098
1472	1520	1570	1622	1675	1730	1786	1844	1904	1966	2029	2094	2161
										-		

SPIRALLY REINFORCED SQUARE COLUMNS—Safe Axial Load in Kips $P=1125\,A_g+20{,}000\,A_s$

Side of C	Column (in.)	16	17	18	19	20	21	22	23	24	25	26	27
Hot Rolled Spire	Rod dic	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8				
Hard Grade*	Pitch	2	2	2	2	2	2	2	2	Use	Cold	Drawn	Wire
Cold Drawn	Wire	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8	5/8
Spirals*	Pitch	2	21/4	21/2	21/2	21/2	21/2	21/4	21/4	21/4	21/4	21/4	21/4
1	125 A _g (kips)	288.0	325.1	364.5	406.1	450.0	496.1	544.5	595.1	648.0	703.1	760.5	820
Vert Bars Quant-Size	20,000 A _s (kips)			72			v						
6-#6	52.8	340											
6-#7	72.0	360	397	436									
6-#8	94.8	382	419	459	500	544	590						
6-#9	120.0	408	445	484	526	570	616	664	715	768			
6-#10	152.4	440	477	516	558	602	648	696	747	800	855	912	972
8-#9	160.0	448	485	524	566	610	656	704	755	808	863	920	980
6-#11	187.2	475	512	551	593	637	683	731	782	835	890	947	1007
8-#10	203.2	491	528	567	609	653	699	747	798	851	906	963	1023
8-#11	249.6	537	574	614	655	699	745	794	844	897	952	1010	1069
10-#11	312.0	600	637	676	718	762	808	856	907	960	1015	1072	1132
12-#11	374.4	662	699	738	780	824	870	918	969	1022	1077	1134	1194
14-#11	436.8		761	801	842	886	932	981	1031	1084	1139	1197	1256
16-#11	499.2			863	905	949	995	1043	1094	1147	1202	1259	1319
18-#11	561.6		1		967	1011	1057	1106	1156	1209	1264	1322	1381
20-#11	624.0					1074	1120	1168	1219	1272	1327	1384	1444
22-#11	686.4						1182	1230	1281	1334	1389	1446	1506
24-#11	748.8							1293	1343	1396	1451	1509	1568
26-#11	811.2								1406	1459	1514	1571	1631
28-#11	873.6							89	70	1521	1576	1634	1693

Values below and to the left of the intermediate zigzag line require more vertical bars than can be accommodated in one ring (see page 249).

Outside diameter of spiral should be 3 in. less than the side of the column.

^{*} To facilitate deliveries and eliminate errors, use only one grade of spiral on any one contract, generally available in the order intermediate grade hot rolled rod, cold drawn wire and hard grade hot rolled rod.

28	29	30	31	32	33	34	35	36	37	38	39	40
					Use	Cold Dra	wn Wire	AL N		E 12 16		v
5/8	5/8	5/8	5/8	5/8	5/8	5/8		Use Do	ouble Co	ncentric	Spirals	
2	2	2	2	2	2	2	p'= .0196	.0193	.0190	.0188	.0185	.0183
882.0	946.1	1012.5	1081,1	1152.0	1225.1	1300.5	1378.1	1458.0	1540.1	1624.5	1711.1	1800.0
							3		4 1		16	
							HARD	CONC f'c = 5, GRADE	000 psi	BARS	,	
1042												Я
1069	1133	1199					2 2	2	4			
1085	1149	1215	1284						1			·
1131	1195	1262	1330	1401	1474	1550	1627			-		.07
1194	1258	1324	1393	1464	1537	1612	1690	1770	1852	1936	2023	1%
1256	1320	1386	1455	1526	1599	1674	1752	1832	1914	1998	2085	2174
1318	1382	1449	1517	1588	1661	1737	1814	1894	1976	2061	2147	2236
381	1445	1511	1580	1651	1724	1799	1877	1957	2039	2123	2210	2299
443	1507	1574	1642	1713	1786	1862	1939	2019	2101	2186	2272	2361
506	1570	1636	1705	1776	1849	1924	2002	2082	2164	2248	2335	2424
568	1632	1698	1767	1838	1911	1986	2064	2144	2226	2310	2397	2486
630	1694	1761	1829	1900	1973	2049	2126	2206	2288	2373	2459	2548
693	1757	1823	1892	1963	2036	2111	2189	2269	2351	2435	2522	2611
755	1819	1886	1954	2025	2098	2174	2251	2331	2413	2498	2584	2673

SPIRALS AS PERCENTAGES OF CORE VOLUME (out to out of spirals)

See explanation on page 251.

Core Dia	-			in. Die itch (in.				-			in. Di itch (in.			
(in.)	2	21/4	21/2	23/4	3	31/4	31/2	2	21/4	21/2	23/4	3	31/4	**
11		ja .												
12	5.17							3.33						
13	4.77	8						3.08						
14	4.44	3.94	8					2.86	2.54					
15	4.13	3.68	3.31					2.67	2.37	2.13				
16	3.88	3.45	3.10					2.50	2.22	2.00				
17	3.65	3.24	2.92	2.65		0 0 0		2.35	2.09	1.88	1.71			
18	3.45	3.06	2.76	2.51	2.30			2.22	1.97	1.78	1.62	1.48		
19	3.26	2.90	2.61	2.37	2.18			2.11	1.87	1.68	1.53	1.40		
20	3.10	2.76	2.48	2.25	2.07	1.91		2.00	1.78	1.60	1.45	1.33	1.23	
21	2.95	2.63	2.36	2.15	1.97	1.82	1.69	1.90	1.69	1.52	1.38	1.27	1.17	
22	2.82	2.51	2.26	2.05	1.88	1.74	1.61	1.82	1.62	1.45	1.32	1.21	1.12	
23	2.70	2.40	2.16	1.96	1.80	1.66	1.54	1.74	1.55	1.39	1.26	1.16	1.07	1
24	2.59	2.30	2.07	1.88	1.72	1.59	1.48	1.67	1.48	1.33	1.21	1.11	1.03	1
25	2.48	2.21	1.98	1.80	1.65	1.53	1.42	1.60	1.42	1.28	1.16	1.07	0.98	1
26	2.39	2.12	1.91	1.73	1.59	1.47	1.36	1.54	1.37	1.23	1.12	1.03	0.95	1
27	2.30	2.04	1.84	1.67	1.53	1.41	1.31	1.48	1.32	1.19	1.08	0.99	0.91	1
28	2.21	1.97	1.77	1.61	1.48	1.36	1.27	1.43	1.27	1.14	1.04	0.95	0.88	1
29	2.14	1.90	1.71	1.55	1.43	1.32	1.22	1.38	1.23	1.10	1.00	0.92	0.85	
30	2.07	1.84	1.65	1.50	1.38	1.27	1.18	1.33	1.19	1.07	0.97	0.89	0.82	1
31	2.00	1.78	1.60	1.45	1.33	1.23	1.14	1.29	1.15	1.03	0.94	0.86	0.79	1
32	1.94	1.72	1.55	1.41	1.29	1.19	1.11	1.25	1.11	1.00	0.90	0.83	0.77	1
33	1.88	1.67	1.50	1.37	1.25	1.15	1.07	1.21	1.08	0.97	0.88	0.80	0.74	
34	1.82	1.62	1.46	1.33	1.22	1.12	1.04	1.18	1.04	0.94	0.85	0.78	0.72	
35	1.77	1.58	1.42	1.29	1.18	1.09	1.01	1.14	1.02	0.91	0.83	0.76	0.70	1
36	1.72	1.53	1.38	1.25	1.15	1.06	0.98	1.11	0.98	0.89	0.80	0.74	0.68	
37	1.67	1.49	1.34	1.22	1.12	1.03	0.96	1.08	0.96	0.86	0.78	0.72	0.66	
38	1.63	1.45	1.30	1.19	1.09	1.00	0.93	1.05	0.94	0.84	0.76	0.70	0.65	
39	1.59	1.41	1.27	1.16	1.06	0.98	0.91	1.02	0.91	0.82	0.74	0.68	0.63	
40	1.55	1.38	1.24	1.13	1.03	0.95	0.88	1.00	0.89	0.80	0.72	0.66	0.61	
41	1.51	1.34	1.21	1.10	1.01	0.93	0.86	0.98	0.87	0.78	0.71	0.65	0.60	
42	1.48	1.31	1.18	1.07	0.98	0.91	0.84	0.95	0.85	0.76	0.69	0.63	0.58	
43	1.44	1.28	1.15	1.05	0.96	0.88	0.82	0.93	0.83	0.74	0.67	0.62	0.57	
44	1.41	1.25	1.13	1.02	0.94	0.86	0.80	0.91	0.81	0.72	0.66	0.60	0.56	
45	1.38	1.22	1.10	1.00	0.92	0.85	0.79	0.89	0.79	0.71	0.64	0.59	0.54	
46	1.35	1.20	1.08	0.98	0.90	0.83	0.77	0.87	0.77	0.69	0.63	0.58	0.53	-
47	1.32	1.17	1.06	0.96	0.88	0.81	0.75	0.85	0.76	0.68	0.62	0.56	0.52	-
48	1.29	1.15	1.03	0.94	0.86	0.79	0.74	0.83	0.74	0.66	0.60	0.55	0.51	

SPIRALS AS PERCENTAGES OF CORE VOLUME (out to out of spirals) See explanation on page 251.

			1/8 in. Die Pitch (in.				3 =			. Dia (in.)		
13/4	2	21/4	21/2	23/4	3	31/4	1 3/4	2	21/4	21/2	23/4	3
2.29							1.04					
2.09	1.83						0.95	0.83				
1.93	1.69						0.88	0.77				
									0.40			
1.80	1.57	1.40					0.82	0.71	0.63	0.50		
1.68	1.47	1.30	1.17				0.76	0.67	0.59	0.53		
1.57	1.38	1.22	1.10	004			0.71	0.62	0.56	0.50	0.40	
1.48	1.29	1.15	1.03	0.94	0.01		0.67	0.59	0.52	0.47	0.43	0.27
1.40	1.22	1.09	0.98	0.89	0.81		0.63	0.56	0.49	0.44	0.40	0.37
1.32	1.16	1.03	0.93	0.84	0.77		0.60	0.53	0.47	0.42	0.38	0.35
1.26	1.10	0.98	0.88	0.80	0.73	0.68	0.57	0.50	0.44	0.40	0.36	0.33
1.20	1.05	0.93	0.84	0.76	0.70	0.64	0.54	0.48	0.42	0.38	0.35	0.32
1.14	1.00	0.89	0.80	0.73	0.67	0.62	0.52	0.45	0.40	0.36	0.33	0.30
1.09	0.96	0.85	0.76	0.70	0.64	0.59	0.50	0.43	0.39	0.35	0.32	0.29
1.05	0.92	0.81	0.73	0.67	0.61	0.56	0.48	0.42	0.37	0.33	0.30	0.28
1.05	0.92	0.81	0.73	0.64	0.59	0.54	0.46	0.42	0.36	0.33	0.30	0.27
0.97	0.85	0.75	0.68	0.62	0.56	0.52	0.44	0.40	0.34	0.32	0.29	0.26
	0.83	0.73	0.65	0.59	0.54	0.52	0.44	0.37	0.34	0.30	0.27	0.25
0.93	0.82	0.72	0.63	0.57	0.52	0.48	0.42	0.36	0.33	0.30	0.26	0.23
0.90	0.79	0.70	0.03	0.57	0.52	0.46	0.41	0.30	0.32	0.27	0.20	
0.87	0.76	0.67	0.61	0.55	0.51	0.47	0.39	0.34	0.31	0.28	0.25	
0.84	0.73	0.65	0.58	0.53	0.49	0.45	0.38	0.33	0.29	0.26		
0.81	0.71	0.63	0.56	0.51	0.47	0.43	0.37	0.32	0.28	0.25	- 1	
0.78	0.68	0.61	0.55	0.50	0.46	0.42	0.36	0.31	0.27	0.25		
0.76	0.66	0.59	0.53	0.48	0.44	0.41	0.34	0.30	0.27			
0.74	0.64	0.57	0.51	0.47	0.43	0.39	0.33	0.29	0.26			
0.71	0.62	0.56	0.50	0.46	0.43	0.37	0.33	0.27	0.25			
0.69	0.61	0.54	0.49	0.44	0.42	0.37	0.31	0.27	0.23			
0.68	0.59	0.52	0.47	0.43	0.39	0.36	0.30	0.27				
0.66	0.57	0.51	0.46	0.42	0.38	0.35	0.30	0.26				
							5					
0.64	0.56	0.50	0.45	0.41	0.37	0.34	0.29	0.25				
0.62	0.55	0.49	0.44	0.40	0.36	0.34	0.28	0.25				
0.61	0.53	0.47	0.43	0.39	0.35	0.33	0.27					
0.59	0.52	0.46	0.42	0.38	0.35	0.32	0.27		- 14			
0.58	0.51	0.45	0.41	0.37	0.34	0.31	0.26					
0.57	0.50	0.44	0.40	0.36	0.33	0.31	0.26					
0.55	0.48	0.43	0.39	0.35	0.32	0.30	0.25					
0.54	0.47	0.43	0.39	0.34	0.32	0.30	0.20					
0.53	0.46	0.41	0.37	0.34	0.31	0.28				-		
0.52	0.45	0.40	0.36	0.33	0.30	0.28			Si .			

WEIGHTS OF SPIRALS PER VERTICAL FOOT * See explanation on page 251.

	II		_				-	1						
Core Dia		A & &I		's in. Di 'itch (in					100		in. Di			
(in.)	2	21/4	21/2	23/4	3	31/4	31/2	2	21/4	21/2	23/4	3	31/4	31/
11														
12	19.7							12.6						
13	21.3							13.6						
14	22.9	20.4						14.7	13.0					
15	24.6	21.8	19.7				-	15.7	14.0	12.6				
16	26.2	23.3	21.0					16.8	14.9	13.4				
17	27.9	24.8	22.3	20.3			- 1	17.8	15.9	14.3	13.0			
18	29.5	26.2	23.6	21.4	19.7			18.9	16.8	15.1	13.7	12.6		
19	31.1	27.7	24.9	22.6	20.8	Þ		20.0	17.7	16.0	14.5	13.3	-	
20	32.8	29.1	26.2	23.8	21.8	20.2		21.0	18.6	16.8	15.3	14.0	12.9	
21	34.4	30.6	27.5	25.0	22.9	21.2	19.7	22.0	19.6	17.6	16.0	14.7	13.6	12
22	36.0	32.0	28.8	26.2	24.0	22.2	20.6	23.1	20.5	18.5	16.8	15.4	14.2	13
23	37.7	33.5	30.1	27.4	25.1	23.2	21.5	24.1	21.4	19.3	17.6	16.1	14.9	13
24	39.3	35.0	31.5	28.6	26.2	24.2	22.5	25.2	22.4	20.2	18.3	16.8	15.5	14
25	41.0	36.4	32.8	29.8	27.3	25.2	23.4	26.2	23.3	21.0	19.1	17.5	16.1	15
26	42.6	37.9	34.1	31.0	28.4	26.2	24.3	27.3	24.3	21.8	19.9	18.2	16.8	15
27	44.2	39.3	35.4	32.2	29.5	27.2	25.3	28.3	25.2	22.7	20.6	18.9	17.4	16
28	45.9	40.8	36.7	33.4	30.6	28.2	26.2	29.4	26.1	23.5	21.4	19.6	18.1	16
29	47.5	42.2	38.0	34.6	31.7	29.2	27.2	30.4	27.1	24.4	22.2	20.3	18.7	17
30	49.2	43.7	39.3	35.7	32.8	30.2	28.1	31.5	28.1	25.2	22.9	21.0	19.4	18
31	50.8	45.3	40.5	36.9	33.9	31.2	29.0	32.5	29.0	26.1	23.7	21.7	20.1	18
32	52.5	46.7	41.7	38.1	35.0	32.2	29.9	33.6	29.9	26.9	24.4	22.4	20.7	19
33	54.1	48.1	43.1	39.3	36.1	33.2	30.9	34.6	30.9	27.7	25.2	23.1	21.4	19
34	55.7	49.6	44.4	40.5	37.2	34.2	31.9	35.7	31.9	28.6	26.0	23.8	22.0	20
35	57.4	51.0	45.7	41.7	38.3	35.2	32.8	36.7	32.8	29.4	26.7	24.5	22.7	21
36	59.1	52.5	47.0	42.8	39.4	36.2	33.7	37.8	33.7	30.3	27.5	25.2	23.3	21
37	60.7	53.9	48.3	44.1	40.5	37.3	34.7	38.8	34.7	31.1	28.3	25.9	24.0	22
38	62.3	55.4	49.6	45.2	41.6	38.3	35.6	39.9	35.6	31.9	29.0	26.6	24.6	22
39	63.9	56.8	50.9	46.4	42.7	39.3	36.5	40.9	36.5	32.8	29.8	27.3	25.2	23
40	65.6	58.3	52.2	47.6	43.8	40.3	37.5	42.0	37.5	33.6	30.6	28.0	25.9	24
41	67.3	59.7	53.5	48.8	44.8	41.3	38.4	43.0	38.4	34.4	31.3	28.7	26.6	24
42	68.9	61.2	54.8	50.0	45.9	42.3	39.3	44.1	39.3	35.3	32.1	29.4	27.2	25
43	70.5	62.7	56.1	51.1	47.0	43.3	40.3	45.1	40.3	36.1	32.8	30.1	27.8	25
44	72.1	64.1	57.5	52.4	48.1	44.3	41.2	46.2	41.2	37.0	33.6	30.8	28.5	26
45	73.8	65.5	58.7	53.6	49.2	45.3	42.2	47.3	42.2	37.8	34.4	31.5	29.1	27
46	75.5	67.0	60.1	54.7	50.3	46.3	43.1	48.3	43.1	38.6	35.1	32.2	29.8	27
47	77.1	68.5	61.4	55.9	51.4	47.3	44.1	49.4	44.1	39.5	35.9	32.9	30.4	28
48	78.7	70.0	62.7	57.1	52.5	48.3	45.0	50.4	45.0	40.4	36.7	33.6	31.1	28

^{*}The weights given include wire for regular loops only. Weight must be added for 1½ turns top and bottom required for embedment, equivalent to one-half the tabular weight for 2-in. pitch. Weight of spacers must also be added. A ½-in. channel spacer weighs ¾ lb per lin. ft. Two spacers are required for spirals 20 in. or less in diameter, three for spirals 20 to 30 in., and four for spirals over 30 in. in diameter.

WEIGHTS OF SPIRALS PER VERTICAL FOOT * See explanation on page 251.

			3/8 in. Di		•	8		231.	1/4 in.	Dia	CERT SE	
			Pitch (in			4			Pitch			
1 3/4	2	21/4	21/2	23/4	3	31/4	13/4	2	21/4	21/2	23/4	3
7.43							3.30					
8.10	7.09					1	3.60	3.15	1			
8.78	7.68						3.90	3.41				
9.45	8.27	7.35	10 11				4.20	3.67	3.26			
10.1	8.85	7.87	7.08				4.50	3.94	3.50	3.15		
10.8	9.44	8.39	7.55				4.80	4.20	3.73	3.36		
11.5	10.0	8.92	8.02	7.30			5.10	4.46	3.96	3.56	3.24	
12.1	10.6	9.44	8.50	7.73	7.08		5.40	4.72	4.20	3.78	3.43	3.15
12.8	11.2	9.97	8.97	8.15	7.48		5.70	4.98	4.43	3.98	3.62	3.32
13.5	11.8	10.5	9.44	8.59	7.87	7.28	6.00	5.25	4.66	4.20	3.82	3.50
14.2	12.4	11.0	9.92	9.02	8.26	7.64	6.30	5.51	4.90	4.41	4.01	3.67
14.8	13.0	11.5	10.4	9.45	8.66	8.00	6.60	5.77	5.13	4.62	4.20	3.85
15.5	13.6	12.1	10.9	-9.88	9.05	8.36	6.90	6.03	5.36	4.83	4.39	4.02
16.2	14.2	12.6	11.3	10.3	9.45	8.72	7.20	6.30	5.60	5.04	4.58	4.20
16.9	14.8	13.1	11.8	10.7	9.84	9.09	7.50	6.56	5.83	5.25	4.77	4.37
17.5	15.4	13.6	12.3	11.2	10.2	9.45	7.80	6.82	6.06	5.46	4.96	4.55
18.2	15.9	14.2	12.7	11.6	10.6	9,81	8.10	7.08	6.30	5.67	5.15	4.72
18.9	16.5	14.7	13.2	12.0	11.0	10.2	8.40	7.34	6.53	5.88	5.34	
19.6	17.1	15.2	13.7	12.5	11.4	10.5	8.70	7.60	6.77	6.09	5.53	
20.2	17.7	15.7	14.2	12.9	11.8	10.9	8.99	7.87	7.00	6.30		
20.9	18.3	16.2	14.7	13.4	12.2	11.3	9.14	8.13	7.23	6.51	1	
21.6	18.9	16.8	15,2	13.8	12.6	11.7	9.57	8.39	7.46	6.72		
22.3	19.5	17.3	15.6	14.2	13.0	12.0	9.87	8.66	7.70		8 1	
22.9	20.1	17.8	16.1	14.6	13.4	12.4	10.2	8.92	7.93			
23.6	20.7	18.3	16.6	15.1	13.8	12.8	10.5	9.18	8.17			
24.3	21.3	18.9	17.1	15.5	14.2	13.1	10.8	9.44				
24.9	21.9	19.4	17.5	15.9	14.6	13.5	11.1	9.71				
25.6	22.4	19.9	18.0	16.4	15.0	13.8	11.4	9.97				
26.3	23.0	20.4	18.5	16.8	15.4	14.2	11.7	10.25			- 1	
27.0	23.6	21.0	19.0	17.2	15.8	14.6	12.0	10.50				
27.6	24.2	21.5	19.4	17.7	16.2	14.9	12.3					
28.3	24.8	22.0	19.9	18.1	16.6	15.3	12.6))			
29.0	25.4	22.5	20.4	18.5	16.9	15.7	12.9		1			
9.6	26.0	23.0	20.8	18.9	17.3	16.0	13.2					
0.3	26.6	23.6	21.3	19.4	17.7	16.4	13.5					. 1
1.0	27.2	24.1	21.8	19.8	18.1	16.8				900 g		
1.7	27.8	24.6	22.3	20.2	18.5	17.1					1	
	THE COURT	WILL ELSONS										

^{*} The weights given include wire for regular loops only. Weight must be added for $1\frac{1}{2}$ turns top and bottom required for embedment, equivalent to one-half the tabular weight for 2-in. pitch. Weight of spacers must also be added. A $\frac{1}{2}$ -in. channel spacer weighs $\frac{1}{2}$ lb per lin. ft. Two spacers are required for spirals 20 in. or less in diameter, three for spirals 20 to 30 in., and four for spirals over 30 in. in diameter.

SOIL LOAD TEST

Information on subsoil conditions is best obtained by:-

(1) Observation of nearby structures, and a determination of their bearing intensity and amount of settlement.

(2) Digging an open pit to a depth below the desired bearing level and judging the soil

strata on the basis of familiarity with local soils.

(3) Exploratory borings, driving a casing by means of a drop weight (frequently 140 pounds dropping 30 in.), recording the number of blows to drive the casing a known distance, and comparing with data from other borings, to approximate the safe bearing capacity; also the obtaining of undisturbed samples from within the casing and, for clay, testing triaxial shear and free column compression as an added method of estimating safe bearing value.

(4) Applying physical load test to a square (sometimes circular) bearing block directly

on the stratum where footings will rest, applied in the following manner:

Method A (proving soil capacity):-

Assume a design load. Build platform like sketch.

Load platform with assumed design load.

Leave until periodic measurements show no further settlement for a period of 24 hours. Add four increments (each equal to 25 per cent of the design load) at 4-hour intervals. Leave total (double design) load until no measurable settlement occurs during a period of 24 hours.

Readings are to be taken to $\frac{1}{32}$ in. every hour for the first 6 hours and every 12 hours

thereafter.

When design load causes settlement of less than 3% in. and twice the design load of less than 1 in., the design load shall be allowed (but medium clay shall not exceed 4 tons psf, or soft clay 1 ton psf).

Method B (investigating soil capacity):-

When design load is not assumed in advance, place load in increments of, say, 2000 pounds or appropriate to the total load.

Add no further increment until readings at half-hour intervals show no further settlement at end of one hour.

Add second increment and check every half hour until there is no further settlement for a period of one hour.

Continue increments and measurements until total applied load is at least double the desired design load or until excessive settlement begins to occur.

If possible, leave load 48 hours, taking readings every 8 hours.

Remove the load, measure the recovery, plot a load-time-settlement curve to determine safe bearing value.

The accompanying graph shows such a curve, with slight time settlements at loads above 7000 psf, and a decided time settlement at 12,000 psf, and only a moderate recovery. In this case, 7000 psf was selected as a fairly high safe bearing value from such a curve.

ECCENTRICALLY LOADED CONCRETE COLUMNS

These tables are adapted from those of I. E. Morris * and give a very rapid solution of that difficult problem of a reinforced concrete member undergoing combined bending and direct compression. This condition arises in arch ribs, where flexural members frame monolithically into their supporting columns, where loads are applied to columns through brackets as in the case of crane girders, and in many similar situations. For the determination of column moments in rigid frames, see page 75.

Three sets of tables are given:—(1) for square tied columns, (2) for spirally reinforced square columns, and (3) for spirally reinforced round columns. Two grades of concrete are tabulated; $f'_c = 3000$ psi and 3750 psi. All practicable combinations of vertical steel are included.

Loads are expressed in kips (1000-lb units). Eccentricities of the applied load, N, are given in inches from 0 to 12 or 14. The vertical steel is given in the column headed "bars." The tables can obviously be used equally well for concentric loads by taking the values in the column "e = 0." If the applied moment is given instead of the eccentricity of the load, simply divide M in lb-in. by N in pounds to get e in inches.

SECTION I—SQUARE TIED COLUMNS

In the section dealing with square tied columns, only one fiber stress is used in the vertical bars, viz., $f_s = 0.8 \times 20,000 = 16,000$ psi (applicable to hard grade bars), but a reduction factor is given at the bottom of each column in the table when it is necessary to use a stress of $f_s = 0.8 \times 16,000 = 12,800$ psi † (applicable to intermediate grade bars). This reduction factor involves an error of not over about 3 per cent. For those desiring greater precision, tables giving B = CD values for a stress of $f_s = 12,800$ psi are included at the end of this section and B/t = CD/t values are tabulated for each column listed. See ACI Code 1104, 1107-1109 for the methods and formulas used here.

One-half of the bars given in the table are to be placed in each of the two faces of the column which are perpendicular to the plane of bending (see figure below).

One-half of total vertical steel in each of two col. faces perpendicular to the plane of bending.

^{* &}quot;Allowable Loads on Eccentrically Loaded Concrete Columns" by I. E. Morris, Atlanta, Ga., 1947.

 $[\]dagger$ In a symmetrical, uncracked section, the compressive stress will exceed the tensile stress and the allowable f_s will be that for columns and not for flexure.

The values given for square tied columns may be easily extended to include rectangular tied columns as follows:—Assume the load to be supported is 100 kips with an eccentricity of 4 in. on a column whose sides parallel to the plane of bending are limited to 12 in. Table on page 281 shows that a 12×12 column reinforced with 4-#8 bars will carry 62 kips with a 4 in. eccentricity. Accordingly, the sides of the column perpendicular to the plane of bending should

be $\left(\frac{100}{62} = 1.62\right) \times 12$ in., or 19.44 in., say, 12×20 . For the steel area, take

 $1.62 \times 4 \times 0.79 = 5.12$ sq in. Any combination of bars that will give this area will be adequate and should be divided equally between the two faces of the column that are perpendicular to the plane of bending. Possible selections include either 2-#10 = 2.54 sq in. or 2-#8 and 1-#9 = 2.58 sq in. in each face.

Whenever the ratio H/t (unsupported height to least side of column) exceeds 10, the tabulated values are to be reduced according to the ACI long column formula, viz., P' = P (1.3 - 0.03 H/t). With eccentrically loaded columns, H/t is not to exceed 20. For tabulation of values, see page 233.

The spacing of ties in these tied columns can be taken from the corresponding tables for axially loaded square tied columns in the preceding section, pages 236 to 247, inclusive. For the few cases where bending predominates, shear can readily be checked.

While the scope of these tables is quite complete, some illustrative examples are shown for those who wish to design beyond the range of the tables or to see how they were prepared.

Example I—For the table on page 283, verify the value N=206 kips with an eccentricity of 3 in. for a 20 in. square tied column of 3000 psi concrete reinforced with 6-#8 vertical bars, using $f_s=0.8\times 20{,}000=16{,}000$ psi, $f_c=0.8\times 0.225$ $f'_c=540$ psi, and n=10.

To verify the tabular value of N, determine whether the sum of the ratio of nominal direct stress to the nominal allowed compressive stress and the ratio of computed bending stress to allowed bending stress ≥ 1 . Since the point of application is well within the middle third of the 20 x 20 section, the load will act within the kern of the transformed section,* producing compression over the entire area. Solve by the elastic theory using the transformed section:—

^{*} See page 93.

Neutral axis is $\frac{73 \times 20}{786} = 1.86$ in. outside face of column.

$$f'_c = 10 \frac{17.5 + 1.86}{21.86} \times 859 = 7610$$
 psi Comp.

Average allowable compressive stress with axial load, $\frac{P}{A} = \frac{291,800}{442.6} = 659 \text{ psi.}$

By the method of ACI 1109a, $\frac{f_a}{F_a} + \frac{f_b}{F_b} \le 1$, and cancelling A_g in the denominators of both f_a and F_a , we can write $\frac{N}{P} + \frac{f_b}{F_b} \le 1$, or $\frac{206,000}{291,800} + \frac{393}{1350} \le 1$, so 0.707 + 0.293 = 1.

A somewhat lengthier method was used in the 1951 ACI code to get the same result. Since these tables are based upon the use of hard grade bars and the conversion to intermediate grade is facilitated by the tabulated CD (now called B) factors of the previous code, their use is explained. The allowable eccentric load may be de-

termined from
$$N = \frac{P}{\left(1 + \frac{CDe}{t}\right)}$$
 [which is equivalent to $N = \frac{P}{\left(1 + \frac{Be}{t}\right)}$ (ACI 1109c)]

where P is the capacity for concentric axial load, e is the eccentricity, t is the column width perpendicular to the axis of bending, C is the ratio of allowable compressive stress in axially loaded column to allowable bending stress, and the D term is obtained as follows:—

$$f_c = \frac{N}{A} + \frac{Nec}{I} = \frac{N}{A} \left(1 + \frac{et}{2R^2}\right)$$
 where $A = A_g + (n-1) p_g A_g$.

The term $\frac{et}{2R^2} = \frac{et^2}{2tR^2} = \frac{De}{t}$. For a square unreinforced column, D = 6.

CASE I-Square Tied Column:-

$$D = \frac{t^2}{2R^2} = \frac{t^2A}{2I} = \frac{t^2}{2} \frac{[t^2 + (n-1)p_0t^2]}{\left[\frac{t^4}{12} + (n-1)p_0t^2\frac{(gt)^2}{4}\right]} = \frac{1 + (n-1)p_0}{\frac{1}{6} + (n-1)\frac{p_0g^2}{2}}$$

CASE II—Square Spiralled Column:—

$$D = \frac{t^2}{2} \frac{[t^2 + (n-1)p_0t^2]}{\left[\frac{t^4}{12} + \frac{(n-1)p_0t^2\left(\frac{gt}{2}\right)^2}{2}\right]} = \frac{1 + (n-1)p_0}{\frac{1}{6} + (n-1)\frac{p_0g^2}{4}}$$

CASE III—Round Spiralled Column:—

Example I—Second Solution

The verification of Ex. I can also be made by using the formula just explained:

The verification of Ex. I can also be made by using the formula just explained:
$$N = \frac{P}{\left(1 + \frac{CDe}{t}\right)} = \frac{P}{\left(1 + \frac{Be}{t}\right)}.$$
 Using the formulas derived for Case I on page 277,

compute g (the figure on page 277) as $\frac{15}{20}=0.75$, and p_g as $\frac{6\times0.79}{20\times20}=0.01185$, then

$$D = \frac{1 + (n-1)p_g}{\frac{1}{6} + 0.5(n-1)p_g g^2} = \frac{1 + 0.1067}{0.1667 + 0.5 \times 0.1067 \times 0.75^2} = 5.63, \text{ and}$$

$$C = \frac{P/A}{0.45f'e} = \frac{659}{1350} = 0.489$$

 $\frac{B}{t} = \frac{CD}{t} = 0.489 \times \frac{5.63}{20} = 0.138$. This can also be obtained directly from page 283 opposite 6-#8 bars in the column headed CD/t.

$$N = \frac{P}{\left(1 + \frac{CDe}{t}\right)} = \frac{P}{\left(1 + \frac{Be}{t}\right)} = \frac{291,800}{(1 + 0.138 \times 3)} = 206 \text{ kips}$$

Example II—Use the same data as in Ex. I except reduce the steel stress in the vertical bars to $f_8 = 0.8 \times 16,000 = 12,800$ psi, and check the approximate value $N = 0.940 \times 206 = 193$ kips.

$$\frac{P}{A_g} = \frac{276,600}{400} = 692 \text{ psi}$$

$$m \frac{N/A_g}{A_g} + \frac{Nec/I}{A_g} = \frac{193,000/400}{193,000} + \frac{193,000 \times 3 \times 10/15,730}{193,000} = \frac{193,000 \times 3 \times 10/15}{193,000} = \frac{193,000 \times 10/1$$

Then
$$\frac{N/A_g}{P/A_g} + \frac{Nec/I}{F_b} = \frac{193,000/400}{692} + \frac{193,000 \times 3 \times 10/15,730}{1350} = 0.700 + 0.273 = 0.973 < 1.00$$

so the value obtained in this way is 23/4 per cent below the allowable.

Example IIa—Solve Ex. II using B = CD values on page 358.

As before, p = 0.01185 and g = 0.75, so from the table for $f'_c = 3000$, B = CD = 2.58,

and
$$N = \frac{P}{\left(1 + \frac{CDe}{t}\right)} = \frac{P}{\left(1 + \frac{Be}{t}\right)} = \frac{276,600}{\left(1 + \frac{2.58 \times 3}{20}\right)} = 199,000$$

To check:
$$\frac{199,000/400}{692} + \frac{199,000 \times 3 \times 10/15,730}{1350} = 0.720 + 0.281 = 1.001,$$

so using the B = CD value is more precise than using the approximate factors.

Example III—If the column in Ex. I had been 26'-8" high, what effect would this have had on the value N=206 kips allowed when $H/t \ge 10$?

$$\frac{H}{t} = \frac{26.67}{1.67} = 16$$
 $\left(1.3 - 0.03 \frac{H}{t}\right) = 0.82 *$

Then the safe allowable eccentric load, $N = 0.82 \times 206 = 168.9$ kips.

Example IV—For the same data as in Ex. I, increase the eccentricity of the load to 7 in. so that the resultant will definitely be outside of the kern of the section, yet definitely within the two-thirds of t limit placed by ACI 1109(a) and (d), and check the value N=148 kips in the table on page 283.

ACI 1109(a) states that when the ratio of eccentricity e/t does not exceed $\frac{2}{3}$, the combined fiber stress in compression may be computed on the basis of recognized theory applying to uncracked sections. This means that the formula for combined bending and direct stress may be applied for a load outside of the kern of the section, provided that the maximum eccentricity does not exceed two-thirds the width of the member, t, and that tension may be considered as developing in the concrete on the side away from the eccentrically applied load. Then:—

$$\begin{array}{ll} \text{Unit direct stress} &= \frac{N}{A} &= \frac{148,000}{442.6} &= 334 \text{ psi} \\ \\ \text{Unit bending stress} &= \frac{Nec}{I} = \frac{148,000 \times 7 \times 10}{15,730} = \frac{658 \text{ psi}}{15,730} \\ &\quad \text{Actual stresses} \\ & \begin{cases} \overline{992} \text{ psi Max Comp} \\ 324 \text{ psi Max Tens} \end{cases}$$

Since either nominal direct stress or actual direct stress will produce the same results if used consistently in both numerator and denominator and since we already have the actual direct stresses, use them in the formula $\frac{f_a}{F_a} + \frac{f_b}{F_b} \gtrsim 1$:—

$$\frac{334}{659} + \frac{658}{1350} = 0.507 + 0.488 = 0.995 < 1.00$$

Another method, as in the second solution of Ex. I, using the values developed there is:—

$$N = \frac{P}{\left(1 + \frac{Be}{t}\right)} = \frac{291,800}{(1 + 0.138 \times 7)} = 148,000 \text{ lb}$$

Example IVa—To see the effect of applying the theory of the cracked section (no tension in the concrete), work Ex. IV on the basis of a cracked section, although according to ACI 1109(d) this method is not to be applied for e < 2/3t. From the figure on page 280, ΣM about the point of application of the load must equal zero, so:—

$$-\begin{bmatrix} \text{Conc. Comp.} \\ \frac{1}{2}f_{c}20x \end{bmatrix} \begin{bmatrix} \text{Arm} \\ \frac{x}{3} - 3 \end{bmatrix} + \begin{bmatrix} \text{Steel Comp.} \\ f_{c}\frac{x - 2.5}{x}21.3 \end{bmatrix} \begin{bmatrix} \text{Arm} \\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} \text{Tension} \\ f_{c}\frac{17.5 - x}{x}23.7 \end{bmatrix} \begin{bmatrix} \text{Arm} \\ 14.5 \end{bmatrix} = 0$$

$$x^{3} - 9x^{2} + 99.7x - 1797 = 0 \qquad x = 12.5 \text{ in.}$$

^{*} This value can also be taken from the table on page 233.

Also, EV must be zero:-

$$\frac{1}{2}f_c 20x + f_c \frac{x - 2.5}{x} 21.3 - f_c \frac{17.5 - x}{x} 23.7 - 148,000 = 0$$

$$125 f_c + 17.04 f_c - 9.48 f_c = 148,000$$

$$f_e = \frac{148,000}{132.6} = 1115 \text{ psi Max Comp}$$

$$f_{\bullet} = 1115 \times 10 \times \frac{10}{12.5} = 8940 \text{ psi Comp}$$

$$f_{\bullet} = 1115 \times 10 \times \frac{5}{12.5} = 4470 \text{ psi Tens}$$

The unit direct stress being 334 psi (Ex. IV), the unit bending stress must be 1115-334=781 psi, and $\frac{334}{659}+\frac{781}{1350}=0.507+0.578=1.085>1.000$

From these figures, the maximum actual compressive stress, neglecting tension in the concrete on the opposite side of the neutral axis, is somewhat greater than the maximum allowable. The maximum compressive stress is not too greatly affected whether or not we include tension in the concrete, but on the opposite side of the column the minimum compression or maximum tension will differ very greatly.

Ex. IV (uncracked section) indicates 324 psi tension in the extreme fiber of the concrete, which is in the range of the rather undependable ultimate tensile strength. Ex. IVa (cracked section), transfers this to a 4470 psi tension in the reinforcement. The corresponding change in the arm of the internal couple is what changes the compressive stress somewhat.

Also the compression steel will tend to carry twice its elastic value, shifting the neutral axis and relieving the situation somewhat.

Values to the left of the vertical line $\left(e < \frac{2t}{3}\right)$ in the table are based upon uncracked sections; those to the right of the vertical line upon cracked sections. In those few cases to the right of the vertical line where an uncracked section produces lesser capacity, the lesser value is here used.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f_c' = 3000 \text{ psi}$ $f_s = 0.8 \times 20,000 = 16,000 \text{ psi}$

						COL	JMN :	SIZE-	12" x	12"							
Bars *		CD				: 2		11.1	M/N	= e (in.)	11			ż		
bars .	Р	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#6	.0122	.240	106	85	71	61	54	48	43	39	36	26	23	21	18	16	15
4-#7	.0167	.265	116	92	77	65	57	51	46	41	38	30	27	24	22	20	19
4-#8	.0220	.272	128	101	82	70	62	54	48	43	40	34	31	28	25	23	22
4-#9	.0278	.288	142	109	89	75	65	57	51	46	42	39	35	31	29	26	24
4-#10	.0355	.296	159	121	98	83	71	63	56	50	46	43	39	36	33	30	28
For f ₈ =	= 0.8 ×	16,000					144										
= 12	,800 psi	multi-															
	ply by			.930	.940	.940	.945	.955	.955	.955	.955	1	†	1	1	1	1

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f_c'=3000~{ m psi}$ $f_s=0.8 imes20,000=16,000~{ m psi}$

						COL	UMN	SIZE-	-14" x	14"							
		CD							M/N	= e	(in.)						
Bars *	Р	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#7	.0122	.207	144	120	102	89	79	71	65	59	55	51	41	37	34	30	27
4-#8	.0162	.214	157	129	110	95	84	76	69	63	58	53	47	42	39	36	33
4-#9	.0204	.223	170	139	118	102	90	80	73	66	61	56	52	48	43	40	37
4-#10	.0258	.234	187	152	127	110	97	86	78	71	65	60	56	52	49	45	42
4-#11	.0322	.242	206	165	138	118	104	92	83	76	69	64	60	56	53	50	47
6-#6	.0135	.212	148	123	105	91	81	73	66	60	56	52	43	39	35	32	29
6-#7	.0183	.217	164	136	114	99	87	78	71	64	59	55	50	45	41	38	35
6-#8	.0242	.230	182	148	125	108	95	85	77	70	65	60	55	52	47	44	41
6-#9	.0306	.240	202	162	136	117	103	91	82	75	69	63	59	55	52	49	46
6-#10	.0390	.254	228	182	150	129	113	100	90	81	75	69	64	60	57	53	50
-	= 0.8 × ,800 psi		3 2										- 50				
	ply by		Ţ.	.930	.940	.940	.945	.955	.955	.955	.955	.955	†	†	†	†	†

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

 $[\]dagger$ Below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f_s = 0.8 \times 20,000 = 16,000 \text{ psi}$ $f'_c = 3000 \text{ psi}$

					COL	UMN	SIZE-	—16 ′′	x 16'	,	199						
		CD							M/N	√ = e	(in.)						
Bars *	P	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#8 4-#9 4-#10 4-#11 6-#6 6-#7 6-#8 6-#10	.0124 .0156 .0198 .0245 .0103 .0141 .0185 .0297 .0365	.176 .179 .189 .198 .173 .178 .186 .196 .201	189 202 219 238 180 196 214 234 260 288	161 171 184 199 153 166 181 196 216 238	140 149 159 170 134 145 156 168 186 203	124 132 140 149 118 128 137 147 162 177	111 118 125 133 106 114 123 131 144 157	100 106 112 120 96 104 111 118 130 141	92 97 103 109 88 95 101 108 118 128	85 90 94 100 81 87 93 99 108 117	78 83 87 92 75 81 86 91 100 108	73 77 81 85 70 75 80 85 93	68 72 76 80 66 70 75 79 86 93	60 67 71 75 55 64 70 74 81 87	55 61 67 70 50 58 66 70 76 82	50 56 63 67 41 54 61 66 72 77	45 52 59 63 38 50 57 62 68 73
6-#11 8-#6 8-#7 8-#8 8-#9 8-#10	.0137 .0188 .0247 .0312 .0397	.178 .187 .198 .203 .211	194 215 239 266 301	165 181 200 221 248	143 156 171 189 212	126 138 150 165 184	113 123 133 147 163	103 111 120 132 146	94 101 109 120 133	86 93 100 110 122	80 86 92 101 112	75 80 86 94 104	70 75 80 88 97	63 70 75 82 90	58 66 71 77 85	53 62 67 73 80	49 57 63 69 76
	0.8 × 16,0 psi multiply			.930	.940	.940	.945	.955	.955	.955	.955	.955	.965	†	†	†	†

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f'_c = 3000 \text{ psi}$ $f_s = 0.8 \times 20,000 = 16,000 \text{ psi}$

		CD							M/N	l = e	(in.)						
Bars *	P	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#9	.0123	.156	239	207	182	163	147	134	123	114	106	99	93	88	83	76	70
4-#10	.0157	.160	256	220	194	173	156	142	130	121	112	105	98	93	88	83	79
4-#11	.0192	.167	275	236	206	183	165	150	137	127	118	110	103	97	92	87	82
6-#7	.0111	.154	233	202	178	159	144	132	121	112	104	98	92	86	82	72	66
6-#8	.0146	.159	251	217	192	170	153	140	128	119	110	103	97	91	86	82	76
6-#9	.0185	.165	271	232	204	181	163	148	136	126	117	109	102	96	91	86	82
6-#10	.0235	.175	297	253	220	195	175	158	145	134	124		108	102	96	91	86
6-#11	.0289	.178	325	276	240	212	190	172	157	145	134	125	117	110	104	98	93
8-#6	.0109	.153	231	200	177	158	143	131	120	112	104	97	91	86	81	71	65
8-#7	.0148	.159	252	217	191	170	154	140	129	119	111	104	97	92	87	82	
8-#8	.0195	.167	276	236	207	184	165	150	138	127	118	110	103	97	92	87	83
8-#9	.0247	.175	303	258	224	199	178	162	148	136	126	118	110	104	98	92	88
8-#10	.0313	.180	338	286	248	219	196	178	162	149	138	129	121	113	107	101	96
8-#11	.0385	.186	375	316	273	241	215	194	177	163	151	140	131	123	116	110	104
For f ₈ =	0.8 × 16,0	000 =					2.5										
12,800	psi multipl	y by		.930	.940	.940	.945	.955	.955	.955	.955	.955	.965	.965	.965	1	1

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

† To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f_c = 3000 \; \mathrm{psi}$ $f_s = 0.8 \times 20,000 = 16,000 \; \mathrm{psi}$

COLUMN SIZE-20" x 20" M/N = e (in.) CD Bars * P 4-#9 .0100 .136 4-#10 .0127 .138 4-#11 .0156 .141 6-#8 .0118 .138 6-#9 .0150 .140 6-#10 .0190 .146 6-#11 .0234 .151 8-#7 .0120 .138 8-#8 .0158 .141 8-#9 .0200 .147 8-#10 .0254 .153 8-#11 .0312 .156 10-#6 .0110 .136 10-#7 .0150 .140 10-#8 .0198 .147 10-#9 .0250 .152 10-#10 .0317 .156 10-#11 .0390 .162 For $f_s = 0.8 \times 16,000 =$.930 | .940 | .940 | .945 | .955 | .955 | .955 | .955 | .965 | .965 | .965 | .965 12,800 psi multiply by t

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

 $[\]dagger$ Below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f'_c=3000~{ m psi}$ $f_s=0.8 imes20,000=16,000~{ m psi}$

COLUMN SIZE-22" x 22"

						Omia	JIZL		^ 22								
Bars*		CD							M/N	= е	(in.)						
Dars*	P	†	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#10	.0105	.124	342	304	274	249	229	211	196	183	172	162	153	145	137	131	125
4-#11	.0129	.126	361	321	288	262	240	222	206	192	180	169	160	151	144	137	130
6-#9	.0124	.125	357	317	285	260	238	220	204	190	179	168	159	150	143	136	130
6-#10	.0158	.128	383	340	305	276	253	234	217	202	189	178	168	159	151	144	137
6-#11	.0193	.133	411	363	325	294	268	247	229	213	199	187	176	167	158	150	143
8-#8	.0131	.126	362	322	289	263	241	222	206	192	180	170	160	152	144	137	131
8-#9	.0165	.130	389	344	309	280	256	236	218	204	191	179	169	160	152	145	138
8-#10	.0210	.134	424	374	335	302	276	254	235	219	205	192	181	172	163	154	148
8-#11	.0258	.139	461	405	361	326	297	272	252	234	218	205	193	182	173	164	156
10-#7	.0124	.125	357	317	285	260	238	220	204	190	178	168	159	150	143	136	130
10-#8	.0163	.129	387	343	308	279	255	235	218	203	191	179	169	160	152	145	138
10-#9	.0206	.134	421	371	332	300	274	252	234	218	204	191	180	170	161	153	147
10-#10	.0263	.140	464	406	362	326	297	273	252	234	219	205	193	183	173	164	157
10-#11	.0323	.142	511	447	398	358	326	298	276	256	240	224	211	199	189	180	171
12-#6	.0109	.124	346	308	278	252	231	214	198	185	174	164	154	146	139	133	127
12-#7	.0149	.127	376	334	300	272	250	230	213	199	187	175	166	157	149	142	136
12-#8	.0196	.133	413	364	327	296	270	248	230	214	200	188	177	168	159	151	144
12-#9	.0248	.138	453	398	355	320	292	268	248	230	215	202	190	179	190 0 1	162	100000000000000000000000000000000000000
12-#10	.0315	.142	505	442	394	354	322	296	273	254	237	222	209	197	187	178	100000
12-#11	.0387	.147	561	490	435	390	354	324	298	276	258	241	227	214	203	193	184
For $f_s =$	0.8 × 16,0	00 =															
12,800	osi multiply	by		.930	.940	.940	.945	.955	.955	.955	.955	.955	.965	.965	.965	.965	.965

 $^{^{*}}$ One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f'_c=3000~{ m psi}$ $f_s=0.8 imes20,000=16,000~{ m psi}$

COLUMN SIZE-24" x 24"

Bars *		CD							M/I	V = е	(in.)						
DOI'S	P	t	0	1	2	3	Ą	5	6	7	8	9	10	11	12	13	1
4-#11	.0108	.111	411	370	337	308	285	264	247	232	218	206	195	185	176	168	1
6-#9	.0104	.111	407	367	333	305	282	262	244	229	216	204	193	183	175	167	1
6-#10	.0132	.114	433	389	353	323	298	276	257	241	226	214	202	192	183	174	1
6-#11	.0162	.116	461	413	374	342	315	292	272	254	239	226	214	203	193	184	1
8-#8	.0110	.113	412	370	335	306	282	262	244	228	214	203	192	182	173	165	1
8-#9	.0139	.115	439	394	357	326	300	279	260	243	229	216	204	194	184	176	1
8-#10	.0176	.117	474	424	384	351	323	299	278	261	245	231	218	207	197	188	1
8-#11	.0216	.120	511	456	412	376	345	320	297	278	261	246	232	220	210	200	1
10-#7	.0104	.111	407	366	333	305	282	262	244	229	216	204	193	183	175	166	1
10-#8	.0137	.114	437	392	356	326	300	278	259	243	228	216	204	194	184	176	1
10-#9	.0174	.117	471	422	382	348	322	297	277	259	244	230	217	206	196	187	1
10-#10	.0220	.120	514	459	414	378	347	321	299	279	262	247	234	221	210	201	1
10-#11	.0270	.123	561	500	450	410	376	348	323	301	283	266	252	238	227	216	2
12-#7	.0125	.113	426	383	348	319	294	272	254	238	224	212	200	190	181	173	1
12-#8	.0164	.116	463	415	376	334	316	293	273	256	240	226	214	204	194	185	1
12-#9	.0208	.119	503	459	407	371	341	316	294	274	258	243	230	218	207	198	1
12-#10	.0265	.123	555	494	445	406	372	344	320	298	280	263	249	236	224	214	2
2-#11	.0325	.124	611	544	490	446	409	378	351	328	307	289	273	258	246	234	2
or f _s =	0.8 × 16,0	00 =															_
12,800	si multiply	by		930	940	040	.945	055	OFF	OFF	OFF	OFF	045	015	015	015	0

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f'_c = 3000 \; \mathrm{psi}$ $f_s = 0.8 \times 20,000 = 16,000 \; \mathrm{psi}$

COLUMN SIZE-26" x 26"

		CD							M/N	l = e	(in.)						
Bars *	Р	CD	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#10	.0113	.103	487	441	404	372	345	322	301	283	267	253	240	228	218	208	199
6-#11	.0138	.106	515	466	425	391	362	337	315	296	279	264	250	238	227	217	207
8-#9	.0118	.104	493	446	408	376	348	324	303	285	269	255	242	230	219	210	201
8-#10	.0150	.106	528	478	435	401	371	345	323	303	286	270	256	244	232	222	212
8-#11	.0184	.109	565	510	465	426	394	366	342	320	302	285	270	257	245	234	224
10-#8	.0117	.104	491	445	406	374	347	323	302	284	268	254	241	229	218	209	200
10-#9	.0148	.106	525	475	434	398	369	343	321	301	284	269	255	242	231	221	211
10-#10	.0188	.109	568	511	466	427	396	367	343	322	303	286	272	258	246	235	225
10-#11	.0235	.112	615	553	503	461	425	395	368	345	325	306	290	276	262	251	240
12-#7	.0106	.103	480	435	398	367	340	317	297	279	263	249	236	225	215	206	197
12-#8	.0140	.106	517	467	426	393	363	338	316	297	280	265	251	239	228	218	208
12-#9	.0177	.108	557	504	459	421	389	362	338	317	299	282	268	255	243	232	222
12-#10	.0227	.111	609	548	498	456	422	392	366	343	323	305	289	274	261	249	239
12-#11	.0277	.114	665	597	542	495	457	424	395	370	348	329	311	295	281	268	256
14-#7	.0124	.104	499	452	414	380	352	328	307	289	272	258	244	232	222	212	203
14-#8	.0163	.107	542	490	447	410	380	353	330	310	292	276	262	249	237	227	217
14-#9	.0207	.110	589	530	482	442	409	380	355	332	313	296	280	266	254	242	232
14-#10	.0263	.114	650	584	530	484	446	414	386	362	340	320	304	288	274	262	251
14-#11	.0323	.114	714	640	581	531	490	455	424	397	373	352	334	317	301	287	275
15 200 00 00 000	0.8 × 16,0												245	045	045	045	04
12,800	psi multiply	by		.930	.940	.940	.945	.955	.955	.955	.955	.955	.965	.965	.965	.965	.90

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f'_c = 3000 \; \mathrm{psi}$ $f_s = 0.8 \times 20,000 = 16,000 \; \mathrm{psi}$

COLUMN SIZE-28" x 28"

		CD							M/	N = 6	(in.)						
Bars *	Р	1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	1.
6-#11	.0119	.097	573	523	480	444	413	386	362	342	323	-	-	-	-	-	-
" - "			0,0	020	100	777	713	300	302	342	323	300	291	2//	265	253	24
8-#9	.0102	.095	551	504	464	429	400	374	351	331	313	297	283	269	258	246	23
8-#10	.0130	.097	586	535	491	454	423	395	370	350	330	313	298	284	271	259	24
8-#11	.0160	.099	623	567	521	481	446	416	391	368	348	330	313	298	285		26
10-#8	.0101	.095	549	502	461	427	398	373	350	330	312	296	282	269	256	246	23
10-#9	.0128	.097	583	532	489	451	421	392	369	348	328	311	296	282	269	258	24
10-#10	.0162	.099	626	570	522	483	449	419	392	370	349	331	314	300	286	274	26
10-#11	.0199	.102	673	610	560	516	479	446	418	393	371	351	333	317	303	289	27
12-#8	.0121	.097	575	525	482	445	415	387	363	343	324	307	292	278	266	254	24
12-#9	.0153	.099	615	560	514	475	440	412	386	363	343	325	309	295	281	269	25
12-#10	.0195	.101	667	605	554	512	475	443	415	391	369	350	332	316	302	289	277
12-#11	.0238	.104	723	655	599	550	511	475	445	419	394	374	354	337	322	308	29.
14-#7	.0107	.095	557	509	468	434	403	378	355	334	316	300	286	271	260	249	238
14-#8	.0129	.097	600	547	502	465	433	404	379	358	338	320	305	290	277	265	253
14-#9	.0178	.101	647	587	538	496	461	430	403	380	358	339	322	307	293	280	268
14-#10	.0227	.103	708	641	587	541	501	468	438	411	388	367	349	332	317	303	290
14-#11	.0278	.106	772	698	636	586	541	504	472	443	418	395	375	356	340	325	310
16-#7	.0122	.097	577	526	484	447	416	389	364	344	325	308	293	279	266	255	244
16-#8	.0162	.098	625	570	522	483	449	419	394	371	350	332	316	301	287	275	262
16-#9	.0204	.102	679	616	564	520	482	450	420	396	374	356	336	319	305	292	279
16-#10	.0258	.106	748	676	616	568	525	489	457	429	405	383	363	345	329	315	301
16-#11	.0317	.106	822	744	678	625	577	537	503	471	445	421	399	379	362	346	331
or $f_s = 0$	0.8 × 16,00	00 =											-		_		
12,800 p	si multiply	by		930	.940	.940	.945	.955	.955	.955	.955	.955	.965	.965	.965	.965	.965

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f_c = 3000 \text{ psi}$ $f_s = 0.8 \times 20,000 = 16,000 \text{ psi}$

COLUMN SIZE-30" x 30"

Bars*		CD			al .				M/N	√ = e	(in.)		1.0				
bars	Р	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
8-#10	.0112	.087	649	597	553	514	481	452	426	404	383	364	347	332	317	305	29
8-#11	.0134	.089	686	630	583	542	506	475	447	423	401	381	363	347	332	319	30
10-#9	.0111	.087	646	595	550	513	480	451	425	402	381	363	346	331	316	304	29
10-#10	.0141	.089	689	632	585	544	509	476	449	424	402	382	364	348	333	320	30
10-#11	.0173	.091	736	675	623	578	540	506	476	450	426	405	386	368	352	337	32
12-#8	.0105	.087	638	587	544	505	474	445	419	397	376	358	341	326	312	300	28
12-#9	.0133	.089	678	623	576	535	500	469	442	418	396	376	359	343	328	315	30
12-#10	.0169	.091	730	669	617	574	535	502	472	446	423	402	382	365	349	334	32
12-#11	.0207	.092	786	720	664	616	575	539	506	479	454	430	410	392	373	358	34
14-#8	.0123	.088	663	610	565	525	490	460	435	410	389	370	353	337	323	309	29
14-#9	.0155	.089	710	651	604	560	524	491	463	437	415	394	376	359	343	330	31
14-#10	.0197	.091	771	706	653	605	565	530	499	471	447	425	404	385	369	353	33
14-#11	.0242	.093	835	764	705	648	609	570	536	505	479	455	432	412	395	378	36
16-#7	.0107	.087	640	590	545	507	475	446	420	398	378	359	342	327	313	300	28
16-#8	.0141	.089	688	632	585	544	508	476	449	424	402	382	364	348	333	320	30
16-#9	.0178	.091	742	680	627	582	544	510	480	454	430	408	388	370	355	340	32
16-#10	.0225	.093	811	742	685	635	591	554	521	492	465	442	420	401	383	367	35
16-#11	.0276	.095	885	809	744	689	641	600	564	531	503	477	454	433	414	396	37
18-#7	.0120	.088	659	606	560	521	487	458	431	408	386	368	350	335	321	307	29
18-#8	.0158	.089	713	655	606	563	526	494	465	439	416	396	377	361	345	331	3
18-#9	.0200	.092	774	707	653	606	566	530	498	470	445	424	403	385	367	353	33
18-#10	.0254	.094	852	779	719	664	620	580	545	514	486	462	439	419	400	383	30
For f _s =	0.8 × 16,0			.930		.940											

 $^{^{*}}$ One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f_c'=3750~{ m psi}$ $f_s=0.8 imes20,000=16,000~{ m psi}$

COLL	BABE	SIZE-	30//	30//
LULU	MIN	317 -	- X	12

Bars *	_	CD t							M/M	V = е	(in.)						
burs	р	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#6	.0122	.233	125	101	85	73	65	58	52	48	44	30	26	22	19	17	1.5
4-#7	.0167	.235	135	109	92	79	69	62	56	51	47	34	30	27	25	22	20
4-#8	.0220	.241	148	119	100	86	75	67	60	55	50	38	34	31	28	26	24
4-#9	.0278	.256	161	128	106	91	80	70	63	58	53	43	38	35	32	29	27
4-#10	.0355	.285	178	138	113	96	83	73	65	59	54	48	44	39	36	33	31
	0.8 × 16,0 psi multiply			.930	.940	.940	.945	.955	.955	.955	.955	†	†	†	†	†	†

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f_s' = 3750 \; \mathrm{psi}$ $f_s = 0.8 \times 20,000 = 16,000 \; \mathrm{psi}$

COLUMN SIZE-14" x 14"

Bars *	_	CD t							M/I	٧ = e	(m.)						
bars	Р	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#7	.0122	.200	170	142	121	106	95	85	77	71	65	61	47	41	35	31	27
4-#8	.0162	.208	183	152	130	112	100	90	81	74	68	64	53	48	43	39	35
4-#9	.0204	.216	196	162	137	119	105	94	85	78	72	67	59	53	49	45	41
4-#10	.0258	.223	213	174	147	128	113	101	91	83	76	71	66	60	55	50	47
4-#11	.0322	.235	232	187	157	136	119	106	96	87	80	74	69	65	61	56	52
6-#6	.0135	.206	174	145	124	108	95	86	78	71	66	61	49	44	38	33	29
6-#7	.0183	.212	190	157	133	116	103	92	84	76	70	65	56	50	46	42	39
6-#8	.0242	.220	208	170	145	125	111	99	90	82	75	70	64	58	53	49	45
6-#9	.0306	.233	228	185	156	136	118	105	95	87	80	76	68	64	60	55	51
6-#10	.0390	.245	254	203	170	147	128	115	103	93	85	79	74	69	65	61	57
For f _e =	0.8 × 16,0	00 =															
The state of the state of	osi multiply			.930	.940	.940	.945	.955	.955	.955	.955	.955	+	+	+	+	+

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

 $[\]dagger$ To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N_s is the same for 16,000 psi steel.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities

 $f'_c = 3750 \; \mathrm{psi} \qquad \qquad f_s = 0.8 \times 20,000 = 16,000 \; \mathrm{psi}$

COLUMN	SIZE-1	16" x	16"
--------	--------	-------	-----

		CD							M/N	√ = e	(in.)						
Bars *	P	CD	0	. 1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#8	.0124	.172	224	191	166	148	133	120	110	102	94	88	82	68	61	52	46
4-#9	.0156	.176	237	201	175	155	139	126	115	106	98	92	86	_75	69	63	58
4-#10	.0198	.182	254	215	186	164	147	133	121	112	104	96	90	84	_77	71	66
4-#11	.0245	.188	273	230	198	175	156	141	128	118	109	101	95	89	84	_79	_73
6-#6	.0103	.168	215	184	161	143	129	117	107	99	92	86	80	62	52	45	39
6-#7	.0141	.173	231	197	172	152	136	124	113	104	97	90	85	72	66	59	52
6-#8	.0185	.179	249	211	183	162	145	131	120	110	102	95	89	81	74	69	64
6-#9	.0235	.187	269	227	196	172	154	139	127	116	108	100	94	88	83	_77	72
6-#10	.0297	.198	295	246	211	185	165	148	135	124	114	106	99	93	87	82	78
6-#11	.0365	.205	323	268	229	200	178	160	145	132	122	114	106	99	93	88	83
8-#6	.0137	.173	229	195	170	151	135	123	112	104	96	90	84	71	65	58	51
8-#7	.0188	.180	250	212	184	162	145	132	120	111	102	95	89	82	75	69	64
8-#8	.0247	.188	274	230	199	175	156	141	129	118	109	102	95	89	84	79	74
8-#9	.0312	.200	301	251	215	188	167	150	137	125	116	107	100	94	88	84	79
8-#10	.0397	.207	336	278	237	207	184	165	150	137	126	117	109	103	96	91	86
For f _s =	0.8 × 16,0	000 =															
12,800	osi multiply	by		.930	.940	.940	.945	.955	.955	.955	.955	.955	.965	†	†	1	†

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f'_c = 3750 \text{ psi}$ $f_s = 0.8 \times 20,000 = 16,000 \text{ psi}$

COLUMN SIZE-18" x 18"

		CD							M/N	1 = e	(in.)						
Bars *	P	+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#9	.0123	.153	283	245	217	194	176	160	148	137	127	119	112	105	100	85	74
4-#10	.0157	.156	300	260	229	204	185	168	155	143	133	125	117	110	104	95	88
4-#11	.0192	.161	319	275	241	215	194	177	162	150	139	130	122	115	109	103	98
6-#7	.0111	.151	277	240	213	191	173	158	145	135	125	117	110	104	98	78	68
6-#8	.0146	.154	295	256	225	202	182	167	153	142	132	124	116	109	104	92	8.5
6-#9	.0185	.159	315	272	239	213	192	175	161	149	139	130	122	114	108	103	9:
6-#10	.0235	.166	341	292	256	228	205	186	171	158	146	137	128	121	114	108	10:
6-#11	.0289	.175	369	314	273	247	217	197	180	166	154	143	134	126	119	113	107
8-#6	.0109	.150	275	239	212	190	172	157	145	134	125	117	110	104	98	76	67
8-#7	.0148	.155	296	256	226	202	183	167	153	142	132	124	116	109	103	93	86
8-#8	.0195	.161	320	276	242	216	194	177	163	150	140	131	122	115	109	103	98
8-#9	.0247	.167	347	298	260	231	208	189	173	160	149	138	130	122	115	109	104
8-#10	.0313	.178	382	324	282	249	223	202	184	170	158	147	137	129	122	116	109
8-#11	.0385	.183	419	354	307	270	242	219	200	184	170	158	148	139	131	124	118
For f _s =	0.8 × 16,0	000 =															
	psi multiply			.930	.940	.940	.945	.955	.955	.955	.955	.955	.965	.965	.965	+	+

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

[†]Below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities

 $f_c' = 3750 \text{ psi}$

 $f_s = 0.8 \times 20,000 = 16,000 \text{ psi}$

COLUMN SIZE-20" x 20"

Bars *	p	CD							M/I	N = 6	(in.)						
	P		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#9	.0100	.131	334	295	265	240	219	201	187	174	163	153	144	137	130	123	90
4-#10	.0127	.135	351	309	276	250	228	210	194	180	169	158	149	141	134	1	1
4-#11	.0156	.138	370	325	290	262	238	219	202	188	176	165		1	1	1	
6-#8	.0118	.134	346	305	273	247	225	207	192	178	167	157	148	140	132	126	111
6-#9	.0150	.137	366	322	287	259	236	217	201	187	174	164	154	146	138	132	
6-#10	.0190	.142	392	343	305	275	250	229	212	197	184	172	162	153	145	1	
6-#11	.0234	.146	420	366	325	292	265	243	224	207	194	181	171	161	153	1	138
8-#7	.0120	.134	347	306	274	248	226	208	192	179	168	157	148	140	133	126	111
8-#8	.0158	.138	371	326	291	262	239	220	203	189	176	165	156	147	140	1	126
8-#9	.0200	.142	398	349	310	279	254	233	215	200	186	1 0 0.00	164	155	147	1	133
8-#10	.0254	.148	433	377	334	300	272	249	229	213	198	186	175	165	156	148	
8-#11	.0312	.155	470	407	358	321	290	265	243	225	210	196	184	174	164	156	
10-#6	.0110	.133	340	300	269	243	222	204	189	176	165	155	146	138	131	125	104
10-#7	.0150	.137	366	322	287	259	236	217	201	187	174	164	154	146	138	132	123
10-#8	.0198	.142	396	346	308	278	252	232	214	198	186	174	164	154	146	139	132
10-#9	.0250	.147	430	375	332	298	271	248	228	212	198	185	174	164	156	148	141
10-#10	.0317	.155	473	410	361	323	292	266	245	227	211	198	186	175	165	157	149
10-#11	.0390	.159	520	448	394	352	318	290	266	246	229	214	200	189	179	21721	161
CONTRACTOR OF THE PARTY OF	$0.8 \times 16,00$.930	.940	.940	.945	.955	.955	.955	.955	.955	.965	.965	.965	.965	†

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

[†] Concrete governs and safe load, N, is the same for 16,000 psi steel.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f_c=3750~{ m psi}$ $f_s=0.8 imes20,000=16,000~{ m psi}$

COLUMN SIZE-22" x 22"

		CD							M/N	= e (in.)						
Bars *	P	t	0 €	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4-#10	.0105	.120	408	364	329	300	274	255	237	222	208	196	186	176	167	159	152
4-#11	.0129	.123	427	380	343	312	286	264	246	229	215	203	191	182	173	165	157
6-#9	.0124	.123	423	376	340	309	284	262	244	227	214	201	190	180	171	163	155
6-#10	.0158	.125	449	399	359	326	300	276	256	240	224	211	200	189	180	171	163
6-#11	.0193	.130	477	421	378	343	314	289	268	250	234	220	207	196	186	177	169
8-#8	.0131	.123	428	381	344	314	287	265	246	230	216	203	192	182	173	165	157
8-#9	.0165	.126	455	404	363	331	302	279	259	242	226	214	201	191	181	173	164
8-#10	.0210	.131	490	433	388	352	322	296	274	256	239	225	212	200	191	181	173
8-#11	.0258	.134	527	464	415	375	342	314	291	271	253	238	224	212	201	191	182
10-#7	.0124	.123	423	376	340	309	284	262	244	227	214	201	190	180	171	163	155
10-#8	.0163	.126	453	403	362	329	302	278	258	240	226	212	201	190	181	172	164
10-#9	.0206	.130	487	431	386	350	320	295	274	255	238	224	212	200	190	181	173
10-#10	.0263	.135	530	466	417	377	344	316	293	272	255	240	226	213	202	192	183
10-#11	.0323	.140	577	505	450	406	370	339	314	291	272	255	240	227	215	204	195
12-#6	.0109	.121	412	367	331	302	278	256	238	223	209	197	186	177	168	160	153
12-#7	.0149	.125	442	393	354	322	295	272	253	236	221	208	197	186	177	169	161
12-#8	.0196	.130	479	424	380	345	315	290	269	251	235	221	208	197	187	178	170
12-#9	.0248	.134	519	457	410	370	338	311	288	268	251	236	222	210	200	189	181
12-#10	.0315	.140	571	501	446	403	366	336	310	288	270	253	238	225	213	202	193
12-#11	.0387	.144	627	548	487	438	398	365	336	312	292	273	257	242	230	218	208
CE 200 E	0.8 × 16,0 psi multiply			.930	.940	.940	.945	.955	.955	.955	.955	.955	.965	.965	.965	.965	.965

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 0.8 \times 20,000 = 16,000 \text{ psi}$

COLUMN SIZE-24" x 24"

10-#11 .0270 .120 639 12-#7 .0125 .111 50-12-#8 12-#8 .0164 .113 54-12-#8	437 460 484 0 441	398 419 439	3 369 365 384 402	341 337 354	5 316 313	296	7 277	8 261	9 246	10 234	223	12	13	14
6-#9 .0104 .110 48. 6-#10 .0132 .111 51. 6-#11 .0162 .113 53. 8-#8 .0110 .109 49. 8-#9 .0139 .111 51. 8-#10 .0176 .114 55. 8-#11 .0216 .118 58. 10-#7 .0104 .108 48. 10-#8 .0137 .111 51. 10-#9 .0174 .114 54. 10-#10 .0220 .118 59. 10-#11 .0270 .120 63. 12-#7 .0125 .111 50. 12-#8 .0164 .113 54.	437 460 484 0 441	398 419 439	365 384	337	313		277	261	246	234	223	212	202	100
6-#10 .0132 .111 51 6-#11 .0162 .113 53 8-#8 .0110 .109 490 8-#9 .0139 .111 51; 8-#10 .0176 .114 55; 8-#11 .0216 .118 58; 10-#7 .0104 .108 48; 10-#8 .0137 .111 51; 10-#9 .0174 .114 54; 10-#10 .0220 .118 59; 10-#11 .0270 .120 63; 12-#7 .0125 .111 504;	460	419 439	384			000					1			19.
6-#11 .0162 .113 534 8-#8 .0110 .109 496 8-#9 .0139 .111 513 8-#10 .0176 .114 553 8-#11 .0216 .118 584 10-#7 .0104 .108 483 10-#8 .0137 .111 513 10-#9 .0174 .114 544 10-#10 .0220 .118 593 10-#11 .0270 .120 633 12-#7 .0125 .111 504 12-#8 .0164 .113 544	484	439		354		292	274	258	244	231	219	209	200	191
8-#8 .0110 .109 496 8-#9 .0139 .111 513 8-#10 .0176 .114 553 8-#11 .0216 .118 586 10-#7 .0104 .108 483 10-#8 .0137 .111 513 10-#9 .0174 .114 543 10-#10 .0220 .118 593 10-#11 .0270 .120 633 12-#7 .0125 .111 504	441		402		329	307	288	271	256	242	230	220	209	200
8-#9 .0139 .111 512 8-#10 .0176 .114 555 8-#11 .0216 .118 589 10-#7 .0104 .108 483 10-#8 .0137 .111 513 10-#9 .0174 .114 549 10-#10 .0220 .118 593 10-#11 .0270 .120 639 12-#7 .0125 .111 504 12-#8 .0164 .113 54		100		371	344	321	300	283	268	253	240	229	216	208
8-#10 .0176 .114 55. 8-#11 .0216 .118 58. 10-#7 .0104 .108 48. 10-#8 .0137 .111 51. 10-#9 .0174 .114 54. 10-#10 .0220 .118 59. 10-#11 .0270 .120 63. 12-#7 .0125 .111 50. 12-#8 .0164 .113 54.	465	402	369	341	317	296	278	262	247	234	223	212	203	194
8-#11 .0216 .118 581 10-#7 .0104 .108 483 10-#8 .0137 .111 513 10-#9 .0174 .114 549 10-#10 .0220 .118 593 10-#11 .0270 .120 639 12-#7 .0125 .111 504 12-#8 .0164 .113 544		423	388	358	332	310	291	274	259	245	233	222	212	202
10-#7 .0104 .108 48: 10-#8 .0137 .111 51: 10-#9 .0174 .114 54: 10-#10 .0220 .118 59: 10-#11 .0270 .120 63: 12-#7 .0125 .111 50: 12-#8 .0164 .113 54:	495	450	411	379	352	328	307	288	272	258	245	233	222	213
10-#8 .0137 .111 513 10-#9 .0174 .114 543 10-#10 .0220 .118 593 10-#11 .0270 .120 633 12-#7 .0125 .111 504 12-#8 .0164 .113 543	527	476	435	400	370	345	322	303	286	270	256	244	232	222
10-#9 .0174 .114 549 10-#10 .0220 .118 599 10-#11 .0270 .120 639 12-#7 .0125 .111 500 12-#8 .0164 .113 540	438	399	366	339	315	294	276	260	246	233	222	219	202	193
10-#10 .0220 .118 59: 10-#11 .0270 .120 63: 12-#7 .0125 .111 50: 12-#8 .0164 .113 54:	464	421	386	357	331	310	290	273	258	244	232	221	211	202
10-#11 .0270 .120 63 12-#7 .0125 .111 50 12-#8 .0164 .113 54	492	447	409	377	350	326	306	287	271	256	244	232	221	212
12-#7 .0125 .111 504 12-#8 .0164 .113 54	530	480	437	402	372	347	324	304	287	272	258	245	234	224
12-#8 .0164 .113 54	570	515	470	431	399	371	347	326	307	290	275	262	250	238
	454	412	378	349	324	302	284	267	252	239	227	216	206	198
"-	486	441	405	372	346	323	302	284	269	254	241	230	219	210
12-#9 .0208 .118 58	520	470	430	395	366	341	319	299	282	267	254	241	230	219
12-#10 .0265 .120 633	565	510	465	428	396	368	344	323	304	288	273	260	248	236
12-#11 .0325 .123 689	612	552	502	460	425	395	369	346	326	307	291	277	264	252
For $f_s = 0.8 \times 16,000 =$ 12,800 psi multiply by		.940	046	0.45	055	055	055	055	055	045	045	045	045	04

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities $f'_c = 3750 \text{ psi}$ $f_s = 0.8 \times 20,000 = 16,000 \text{ psi}$

COLUMN SIZE-26" x 26"

Bars *		CD							M/I	V = е	(in.)						
Bars +	P	+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#10	.0113	.101	578	525	480	443	412	384	360	339	320	303	288	274	261	250	239
6-#11	.0138	.103	606	550	503	464	430	400	375	352	332	315	299	285	272	259	248
8-#9	.0118	.101	584	530	485	448	416	388	364	342	324	306	290	277	264	253	242
8-#10	.0150	.104	619	560	511	472	437	407	381	358	338	320	303	289	276	264	252
8-#11	.0184	.107	656	594	540	496	460	428	400	376	354	334	317	302	287	274	262
10-#8	.0117	.101	582	529	484	446	414	387	363	341	322	305	290	276	263	252	241
10-#9	.0148	.103	616	558	511	471	436	407	381	358	338	320	304	289	276	264	252
10-#10	.0188	.107	659	595	542	498	461	429	401	379	355	336	318	303	288	275	264
10-#11	.0235	.109	706	637	580	532	491	457	427	400	377	356	338	321	306	292	279
12-#7	.0106	.100	571	520	476	440	409	381	357	336	318	301	286	272	260	249	238
12-#8	.0140	.103	608	551	505	465	431	401	376	353	334	316	300	286	272	260	249
12-#9	.0177	.106	648	586	534	492	455	424	396	372	351	332	314	299	285	272	261
12-#10	.0227	.109	700	631	575	528	488	454	424	397	374	354	335	319	304	290	277
12-#11	.0277	.111	756	680	619	566	524	486	454	426	401	378	358	340	324	310	296
14-#7	.0124	.102	590	535	490	452	420	391	366	344	325	308	292	278	265	254	243
14-#8	.0163	.104	633	574	524	482	447	416	390	366	345	327	310	295	281	269	258
14-#9	.0207	.108	680	615	560	513	475	441	413	387	365	345	327	311	296	283	271
14-#10	.0263	.111	741	666	606	556	514	476	445	418	393	371	352	334	318	303	290
14-#11	.0323	.115	805	722	655	599	551	511	476	446	419	396	375	355	338	323	309
For f _s =	0.8 × 16,0	00 =															
12,800	si multiply	by		.930	940	940	.945	955	955	055	055	055	065	045	045	045	065

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities

 $f'_c = 3750 \text{ psi}$ $f_s = 0.8 \times 20,000 = 16,000 \text{ psi}$

COLUMN SIZE-28" x 28"

		CD							M/N	1 = e	(in.)				0		de la constitución de la constit
Bars *	P	t t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#11	.0119	.094	679	620	571	529	494	461	434	410	387	368	350	334	319	305	293
8-#9	.0102	.092	657	601	555	515	481	450	424	400	379	360	342	327	312	300	287
8-#10	.0130	.095	692	631	581	539	501	469	440	415	393	373	355	338	323	310	296
8-#11	.0160	.097	729	665	610	565	525	490	460	431	410	389	370	352	337	322	308
10-#8	.0101	.092	655	600	554	514	480	449	422	398	378	358	341	326	311	298	286
10-#9	.0128	.095	689	629	579	535	499	467	438	414	391	371	353	336	322	308	29
10-#10	.0162	.097	732	668	613	566	528	493	462	436	412	391	372	354	338	324	309
10-#11	.0199	.100	779	709	650	599	556	519	486	458	433	410	390	371	354	339	324
12-#8	.0121	.094	681	622	574	531	495	464	435	411	389	369	351	335	320	306	294
12-#9	.0153	.096	721	659	605	560	521	487	458	432	408	387	368	351	335	321	307
12-#10	.0195	.100	773	702	644	595	552	515	483	455	430	407	387	368	351	336	32
12-#11	.0238	.101	829	753	690	636	591	551	516	486	459	435	412	393	375	359	34
14-#7	.0107	.092	663	607	560	520	485	454	427	403	382	363	345	330	315	302	290
14-#8	.0129	.095	706	645	594	549	511	479	450	424	401	381	362	345	330	316	30
14-#9	.0178	.100	753	685	627	579	537	501	470	443	419	396	376	357	342	327	31
14-#10	.0227	.101	814	739	676	625	580	541	507	477	451	427	405	386	368	352	33
14-#11	.0278	.104	878	795	728	669	620	576	540	509	479	454	430	409	390	374	358
16-#7	.0122	.094	683	624	575	533	496	465	436	411	390	370	352	336	321	307	29:
16-#8	.0162	.096	731	668	614	569	529	494	464	437	414	392	373	356	340	325	31
16-#9	.0204	.100	785	714	654	604	560	524	491	462	436	413	392	374	357	341	32
16-#10	.0258	.103	854	774	708	652	604	564	528	496	468	443	420	400	382	365	35
16-#11	.0317	.105	928	840	765	705	651	606	567	531	503	475	450	428	408	390	37
	0.8 × 16,0																
12,800	osi multiply	by		.930	.940	.940	.945	.955	.955	.955	.955	.955	.965	.965	.965	.965	.96

^{*} One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

SQUARE TIED COLUMNS—Safe Load in Kips for Various Eccentricities

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 0.8 \times 20,000 = 16,000 \text{ psi}$

COLUMN SIZE-30" x 30"

		CD							M/N	= e ((in.)						
Bars *	P	1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
8-#10	.0112	.086	771	710	657	614	574	540	509	481	457	435	415	396	380	365	350
8-#11	.0134	.087	808	744	688	640	600	563	530	502	476	453	432	413	395	370	364
10-#9	.0111	.086	768	708	655	611	571	537	506	479	455	433	413	395	378	362	348
10-#10	.0141	.087	811	747	691	644	602	565	534	505	479	455	434	415	397	381	366
10-#11	.0173	.089	858	787	729	677	633	594	559	528	501	476	454	434	415	398	382
12-#8	.0105	.086	760	700	649	605	565	531	501	474	450	428	409	391	374	359	345
12-#9	.0133	.087	800	736	681	634	594	557	526	497	472	448	428	409	391	376	361
12-#10	.0169	.089	852	782	725	673	629	590	555	525	497	473	451	431	412	395	380
12-#11	.0207	.091	908	831	767	712	665	624	587	555	526	500	475	454	435	415	400
14-#8	.0123	.087	785	723	669	622	583	547	515	489	464	440	420		384	369	354
14-#9	.0155	.087	832	765	709	660	617	580	546	516	490	466			406	390	375
14-#10	.0197	.091	893	817	755	701	655	10000	578	546	517	491	468	445	427	408	393
14-#11	.0242	.091	957	876	810	751	701	658	620	585	555	526	501	479	458	438	421
16-#7	.0107	.086	762	702			566		503	475	452				1		
16-#8	.0141	.087	810	745	690		601	565	532		478	454			396		1
16-#9	.0178	.089	864	794	734	682	637	598	563	531	504	1			418		38
16-#10	.0225	.091	933	855	790	732	684	10000	604	570	540	514	100000	10000	1	1	41
16-#11	.0276	.093	1007	920	850	786	734	687	646	610	576	549	521	497	476	456	43
18-#7	.0120	.087	781	719	1		580		513	486	1						-
18-#8	.0158	.087	835	769	711	661	620	582	549	519					1		1
18-#9	.0200	.091	896	SHOULD IN	758	704	656	10000	580	547	1	100					1
18-#10	.0254	.092	974	890	822	764	712	667	627	592	561	534	507	484	462	444	42
For $f_s =$	0.8 × 16,	,000 =															
12,800	psi multiply	v bv		.930	.940	.940	.945	.955	.955	.955	.955	.955	.965	.965	.965	.965	.96

^{*}One-half of the bars are to be placed in each of the two faces of the column that are perpendicular to the plane of bending.

ECCENTRICALLY LOADED CONCRETE COLUMNS SECTION II—SPIRALLY REINFORCED SQUARE COLUMNS

This second section covers eccentric loads on spirally reinforced square concrete columns and parallels exactly the previous section, so the explanation on pages 275 to 280, inclusive, should be read before going on with the following description.

The necessary amount of spiral reinforcement can be taken from the tables for axially loaded spirally reinforced square concrete columns on pages 264 to 267, inclusive. The vertical bars are spaced uniformly around a ring just inside of and in contact with the spiral.

While the scope of these tables is sufficient for most purposes, some illustrative examples are shown for those who wish to design beyond their range or to see how they were prepared.

Example—For the table on page 300, verify the value N = 177 with an eccentricity of 2 in. for a 16 in. spirally reinforced square column of 3000 psi concrete reinforced with 6-#8 bars, using $f_s = 20,000 \text{ psi}$, $f_c = 675 \text{ psi}$, n = 10.

Since the point of application is well within the middle third of the 16 x 16 section, the load probably acts within the kern of the transformed section,* producing compression over the entire area. Solve by the elastic theory, using the transformed section:—

6-#8 Bars= 4.74 sq in == 42.7 sq in.

Capacity	
(Concentric Axial Loading)	Moment of Inertia
256 @ 675 = 172,800	$256 \times \frac{16^2}{12} = 5460$
$6 \times 0.79 @ 20,000 = 94,800$	$\frac{1 + 42.7 \times (5.5)^2}{2} = \frac{646}{6106 \text{ in.}^4}$
	D 0106 in.4
$= \frac{177,000}{298.7} = 593 \text{ psi}$	
$r = \frac{177,000 \times 2 \times 8}{6106} = \frac{464 \text{ psi}}{1057 \text{ psi}}$	Max Comp
	(Concentric Axial Loading) 256 @ 675 = 172,800 $6 \times 0.79 @ 20,000 = 94,800$ in. $\frac{267,600}{267,600}$ $= \frac{177,000}{298.7} = 593 \text{ psi}$ $= \frac{177,000 \times 2 \times 8}{6106} = 464 \text{ psi}$

Neutral axis is
$$\frac{129 \times 16}{928} = 2.23$$
 in. outside column side; $f_s = 10 \times \frac{13.5 + 2.23}{18.23} \times \frac{10.5 + 2.23}{18.23}$

1057 = 9120 psi Comp.

The tabulated value, N = 177 kips, is verified by the method outlined on page 276,

Ex. I, viz.
$$\frac{f_a}{F_a} + \frac{f_b}{F_b} \le 1$$
; $\frac{177,000}{267,600} + \frac{464}{1350} = 0.660 + 0.343 = 1.003$

By the method of the 1951 Code (see page 277):—
$$R^{2} = \frac{6106}{298.7} = 20.4$$

$$D = \frac{16 \times 16}{2 \times 20.4} = 6.27$$

$$f_{a} = \frac{267,600}{298.7} = 896$$

$$C = \frac{896}{1350} = 0.663$$

$$I = \frac{\pi}{64} \left(D_1^4 - D_2^4 \right) = \frac{Ar_m^2}{2}$$

^{*} See page 93.

[†] The transformed steel area is assumed to be a ring with a mean radius r_m of 5.5 in.

ECCENTRICALLY LOADED SPIRALLY REINFORCED SQUARE COLUMNS

$$B/t = CD/t = 0.663 \times \frac{6.27}{16} = 0.260$$
 (or from Table on page 300, $\frac{CD}{t} = 0.258$)

$$f_p = 896 \frac{\left(1 + 6.27 \times \frac{2}{16}\right)}{\left(1 + \frac{0.663 \times 6.27 \times 2}{16}\right)} = 1055$$
 psi allowable as compared with 1057 psi

actual stress as computed above.

The simplified method illustrated in Ex. I—Second Solution on page 278 can also be applied here with some saving of time:-

$$D = \frac{1 + (n-1)p_g}{\frac{1}{6} + 0.25(n-1)p_g^2}$$
, where $p_g = 6 \times \frac{0.79}{256} = 0.01852$ and $g = \frac{11}{16} = 0.688$, so that

$$D = \frac{1 + 0.167}{0.167 + 0.25 \times 0.167 \times 0.688^2} = 6.25, \text{ and } \frac{B}{t} = \frac{CD}{t} = 0.663 \times \frac{6.25}{16} = 0.259, \text{ and } N = \frac{268,000}{1 + 0.259 \times 2} = 177 \text{ kips}$$

$$N = \frac{268,000}{1 + 0.259 \times 2} = 177 \text{ kips}$$

Example—With the same data as in the previous example, show that when the eccentricity is increased to 6 in., the allowable eccentric load, N, is reduced to 105 kips as given in the table on page 300.

As explained on page 279, when the eccentricity is less than two-thirds the width of the column, the method of an uncracked section can be applied under the ACI Code,* and using the values established in the previous example:

Unit direct stress
$$=\frac{N}{A}=\frac{105,000}{298.7}=353 \text{ psi}$$
Unit bending stress $=\frac{Nec}{I}=105,000\times 6\times \frac{8}{6106}=\frac{826 \text{ psi}}{1179 \text{ psi Max Comp}}$
473 psi Max Tens

$$\frac{f_a}{F_a} + \frac{f_b}{F_b} = \frac{105,000}{267,600} + \frac{826}{1350} = 0.392 + 0.611 = 1.003$$

Using the shorter method described on page 278:—

$$N = \frac{268,000}{(1+0.259\times6)} = 105 \text{ kips}$$

^{*} When tension in the concrete is neglected and when the vertical steel is considered as placed in a ring, the stress prism for the steel becomes a sloping portion of a hollow cylinder whose properties are somewhat involved trigonometrically. (See Sutherland and Reese "Reinforced Concrete Design," John Wiley & Sons, Inc., 1943, pages 124-125.) A cutand-try method is about the only satisfactory approach to the cubic and trigonometric equations involved. Since the variation in the maximum compression as computed on page 280 was about 10 per cent and since often the data are not known any more precisely than this and since an accurate determination is too time-consuming for ordinary use, it is felt that any further development of this problem more properly belongs in a textbook than in a handbook.

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	SIZE-14	"×14"
--------	---------	-------

Bars	_	CD t							M/N	V = е	(in.)						
burs	P	<i>t</i>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#5	.0095	.260	169	134	111	95	83	73	66	60	55	50	27	23	20	18	16
8-#5	.0126	.273	182	143	118	100	87	77	69	62	57	53	32	29	25	22	20
10-#5	.0158	.290	194	151	123	104	90	79	71	64	59	54	35	32	29	26	23
6-#6	.0135	.277	185	145	119	101	88	78	71	63	58	53	33	30	26	23	21
7-#6	.0157	.288	194	151	123	105	90	80	71	64	59	54	35	32	29	26	23
8-#6	.0180	.298	202	156	126	107	92	81	73	66	60	55	37	33	30	28	25
9-#6	.0202	.306	211	161	131	110	95	84	75	67	61	56	38	35	32	29	27
6-#7	.0184	.300	204	157	128	107	93	82	73	66	60	55	37	33	30	28	26
7-#7	.0214	.310	216	165	133	112	97	85	76	68	62	57	39	35	32	30	27
8-#7	.0254	.328	228	172	138	114	99	87	77	69	63	58	42	38	34	31	29
6-#8	.0252	.327	227	171	137	115	99	86	77	69	63	58	41	37	34	31	29
7-#8	.0282	.337	243	182	145	121	104	91	80	72	66	60	43	39	36	33	31
8-#8	.0322	.349	258	191	152	126	108	94	84	75	68	62	47	42	38	35	33
6-#9	.0306	.344	252	188	149	124	106	93	82	74	67	62	45	41	37	34	32
7-#9	.0357	.359	272	200	159	132	112	98	86	77	70	64	49	44	40	37	34
6-#10	.0390	.375	284	206	162	134	114	99	88	79	71	65	51	46	42	39	36
For f _s =	16,000 psi	multiply							.970	.970	.975	.975	†	†	†	†	†

SPIRALLY REINFORCED SQUARE COLUMNS— Safe Load in Kips for Various Eccentricities

 $f_c' = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	SIZE-	15"	- 15/
COLUMN	SIZE	13 3	CIO

Bars	_	CD t							M/M	√ = e	(in.)						
bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#6	.0117	.253	205	164	136	117	102	90	81	74	68	63	58	35	31	27	24
9-#6	.0176	.277	231	181	148	126	109	97	87	79	72	66	61	42	38	35	32
6-#7	.0160	.271	224	176	145	124	107	95	85	77	71	65	60	40	36	33	29
7-#7	.0187	.282	236	184	151	128	111	98	88	79	72	67	62	43	39	36	33
8#-7	.0213	.291	248	192	157	132	114	101	90	82	74	68	63	45	41	38	35
9-#7	.0240	.301	260	200	162	137	118	104	93	84	76	70	65	47	43	40	37
6-#8	.0211	.290	247	191	156	132	114	101	90	82	74	68	63	45	41	38	35
7-#8	.0246	.303	263	202	164	138	119	104	93	84	77	70	65	47	43	40	37
8-#8	.0281	.317	278	211	170	142	122	108	96	86	79	72	67	51	46	43	39
6-#9	.0267	.311	272	207	168	141	121	106	95	86	78	72	66	49	45	41	38
7-#9	.0311	.327	292	220	176	147	126	111	98	89	81	74	68	53	48	45	41
8-#9	.0355	.341	312	232	185	154	132	115	102	92	84	77	71	56	51	47	44
6-#10	.0339	.336	304	228	182	151	130	113	101	91	82	76	70	55	50	46	43
6-#11	.0416	.361	339	249	197	162	139	121	107	96	87	80	74	61	56	51	48
	and the same of th																
by				.935	.940	.950	.960	.965	.970	.970	.975	.975	.980	†	†	†	†

Outside diameter of spiral should be 3 in. less than side of column.

† To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

SPIRALLY REINFORCED SQUARE COLUMNS-

Safe Load in Kips for Various Eccentricities

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	SIZE-	16" × 1	16"

		CD							M/N	l = е	(in.)					4	
Bars	P	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#6 9-#6	.0103 .01 <i>55</i>	.229	226 252	184 202	155 168	134 144	118 126	105 112	96 101	87 92	80 87	74 78	69 72	42 49	36 45	41	26 37
6-#7	.0140	.244	245	198	165	142	124	111	100	91	83	77	71	48	43	39	36
7-#7	.0164	.251	257	206	172	147	129	114	103	94	86	79	73	51	46	42	38
9-#7	.0210	.266	281	222	184	156	137	121	108	98	90	83	77	56	51	47	43
11-#7	.0258	.281	305	238	196	166	144	127	114	103	94	85	80	61	56	51	47
6-#8	.0185	.258	268	213	177	152	132	117	105	96	88	81	75	53	48	44	40
7-#8	.0216	.268	284	224	185	158	137	123	109	99	91	84	77	57	52	47	43
8-#8	.0246	.276	299	234	192	163	142	125	112	102	93	86	79	60	55	50	46
9-#8	.0278	.286	315	244	201	170	147	130	116	105	96	88	82	63	58	53	49
6-#9	.0234	.274	293	230	189	161	140	124	111	101	92	85	79	59	53	49	45
7-#9	.0273	.285	313	244	200	169	147	129	116	105	96	89	82	63	57	53	49
8-#9	.0312	.297	333	257	210	177	152	134	120	109	99	91	86	67	61	56	52
6-#10	.0298	.294	325	250	205	173	149	132	118	107	97	89	83	65	59	55	50
7-#10		.307	351	268	218	183	158	139	124	112	102	94	86	70	64	59	55
6-#11	.0366	.311	360	275	222	186	161	141	126	113	103	95	88	72	66	66	56
7-#11	.0426	.329	391	294	235	197	169	148	132	119	108	99	91	78	71		61
For $f_s =$ by	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.975	.975	.980	†	t	t	†

SPIRALLY REINFORCED SQUARE COLUMNS— Safe Load in Kips for Various Eccentricities

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-17" x 17"

					COL	Omi	3124		~				MANUFACTURE CONTRACTOR				
	÷	CD							M/N	I = е	(in.)						
Bars	p	-t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#7 9-#7	.0125 .0187	.223 .245	267 303	218 243	185 203	160 174	141 153	126 136	114 123	104 112	96 102	89 94	83 88	77 82	51 60	55	39 51
11-#7 6-#8 8-#8	.0228 .0164 .0219	.258 .237 .254	327 290 321	260 234 255	197 213	184 169 182	161 149 159	143 133 141 150	128 120 127 134	116 109 116 122	107 100 106 111	98 93 98 103	91 86 91 95	85 80 85 89	65 57 63 71	52 59 65	55 48 54 60
10-#8 6-#9 8-#9 10-#9	.0273 .0208 .0277 .0346	.271 .251 .272 .291	353 315 355 395	278 252 279 306	229 210 230 250	195 180 195 211	157 170 182	140 150 161	126 135 144	114 122 130	105 112 119	97 103 109	90 95 101	84 89 94	62 71 79	57 65 73	53 60 67
6-#10 7-#10 8-#10	.0264 .0308 .0352	.268 .281 .292	347 373 398	274 291 308	226 239 251	192 202 212	167 176 183	148 155 162	133 139 145	121 126 131	110 115 119	102 106 110	94 98 101	88 91 94	69 74 79	63 68 73	58 63 67
6-#11 7-#11	.0324 .0378	.285 .300	382 413	297 318	243 258	206 217	178 188	158 165	141	128	116	107	103	92 96	76 82	70 76	65 70
For f _s =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.975	.975	.980	.985	†	†	t

Outside diameter of spiral should be 3 in. less than side of column.

† To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-18" v 18	
	18

Bars	P	CD							M/N	√ = e	(in.)						
buis	μ	t	0	1	2	3	4	5	6	7	8 .	9	10	11	12	13	14
6-#7	.0111	.207	291	241	206	180	159	143	130	119	110	102	95	89	84	52	45
9-#7	.0167	.223	327	267	226	196	173	154	140	128	118	109	101	95	89	64	59
11-#7	.0204	.234	351	286	239	206	182	162	146	133	123	113	105	99	92	70	64
6-#8	.0146	.219	314	258	218	190	168	150	136	123	114	106	99	92	87	61	56
7-#8	.0171	.224	330	270	228	198	174	156	141	129	119	109	102	95	89	65	59
8-#8	.0195	.232	345	281	236	204	179	160	145	132	121	112	104	97	91	68	63
9-#8	.0220	.240	361	292	244	210	184	164	148	135	124	114	106	100	93	72	66
11-#8	.0268	.252	393	314	261	224	196	174	157	142	130	120	112	104	98	78	73
6-#9	.0185	.230	339	276	232	201	177	158	143	130	120	110	103	96	91	67	62
7-#9	.0216	.238	359	290	243	210	184	164	148	135	124	115	106	99	93	72	66
8-#9	.0247	.247	379	304	254	218	190	170	153	139	127	118	109	102	96	76	70
9-#9	.0278	.254	399	319	264	226	198	176	158	144	132	121	113	105	99	80	7
10-#9	.0308	.263	419	332	275	235	204	181	163	148	135	125	116	108	101	84	78
6-#10	.0235	.243	371	299	249	214	188	168	151	137	126	116	108	101	95	74	69
7-#10	.0274	.251	397	318	265	227	198	176	158	144	132	122	113	106	99	79	7:
8-#10	.0314	.265	422	334	276	236	205	182	163	148	135	125	116	108	101	84	78
9-#10	.0353	.275	448	353	290	246	214	189	170	154	141	129	120	112	105	89	83
6-#11	.0289	.256	406	323	269	230	201	178	160	145	133	123	114	106	100	81	7
7-#11	.0338	.271	437	344	284	241	210	186	166	151	138	127	118	110	103	87	8
8-#11	.0385	.283	469	366	300	254	220	195	174	158	144	132	123	114	107	93	87
For f _e =	16,000 psi	multiply								41							
by				.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	†	t

[†] To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-19" x 19"

3		CD							M/N	√ = e	(in.)		110				
Bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14,
6-#8	.0131	.200	339	282	242	212	188	169	154	141	130	121	113	106	100	70	65
7-#8	.0153	.206	355	294	251	219	194	175	159	145	134	124	116	109	102	75	69
8-#8	.0175	.212	370	305	260	226	200	180	163	149	137	127	118	111	104	79	73
9-#8	.0197	.217	386	317	269	234	206	185	168	153	141	131	122	114	107	82	76
10-#8	.0219	.223	402	328	278	241	212	190	172	157	144	134	124	116	109	86	80
11-#8	.0241	.229	418	340	287	248	218	195	176	160	148	136	127	119	111	90	83
6-#9	.0166	.209	364	301	257	224	198	178	161	148	1000 119	1	1 1	110		77	71
7-#9	.0194	.217	384	316	268	233	206	184	167	152	100 000	130	83,577,633	113	107	82	76
8-#9	.0221	.224	404	330	279	241	213	190	172	157	145	134	50,000	116	109	87	80
9-#9	.0249	.231	424	344	290	250	220	197	178	162	149	138	128	120	112	91	85
10-#9	.0277	.238	444	358	301	259	227	203	183	166	153	141	131	123	115	96	89
11-#9	.0305	.244	464	372	312	268	235	209	188	171	157	145	135	126	118	100	93
6-#10	.0211	.221	396	324	275	238	210	188	170	155		132		115	108	85	78
7-#10	.0246	.230	422	343	289	250	220	196	177	162	1	137	128	120	112		84
8-#10	.0281	.239	447	360	302	260	228	204	184	167	77.55.555	142	200000	123	115		89
9-#10	.0316	.247	473	379	316		238	212	190	173	159	147		127	119	102	9.
10-#10	.0352	.255	498	406	330	282	246	219	197	179	164	151	140	131	123	108	100
- ,				'		1				1 - /		'	1		1 1	1	
6-#11	.0259	.234	431	349	294	253	223	199	179	163	150	139	129	120	113	93	86
7-#11	.0302	.244	462	1179501111116	310	267	234	208	187	170	156	144	134	125	118	100	9:
8-#11	.0346	.254	494	394	327	280	245	218	196	178	163	150	139	130	122	107	9
9-#11	.0388	.263	525	416	344	293	256	227	204	185	169	156	145	135	126	114	10
For $f_s =$	16,000 psi	multiply			.940									.980		+	t

[†] To right of vertical line concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-20" x 20"

		CD							M/N	√ = e	(in.)						
Bars	P	†	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#8	.0118	.185	365	308	266	235	210	190	173	159	147	137	128	120	113	107	70
7-#8	.0138	.191	381	320	276	242	216	195	178	163	151	140	131	123	116	109	78
8-#8	.0158	.197	396	331	284	249	221	199	182	167	154	145	134	125	118	111	83
9-#8	.0178	.201	412	343	294	257	229	206	187	171	158	147	137	128	121	114	87
10-#8	.0198	.207	428	356	304	265	235	211	191	175	161	150	140	131	123	116	91
11-#8	.0217	.211	444	368	313	273	241	216	196	179	165	153	143	134	126	119	96
12-#8	.0237	.216	460	378	322	279	247	221	200	183	169	157	146	137	128	121	98
6-#9	.0150	.195	390	327	281	247	220	198	180	165	153	142	132	124	117	110	80
7-#9	.0175	.200	410	342	293	256	228	205	187	171	158	147	137	128	121	114	86
8-#9	.0200	.207	430	356	305	266	235	212	192	176	162	151	140	131	124	117	92
9-#9	.0225	.213	450	372	316	275	243	218	197	181	167	154	144	135	127	119	96
10-#9	.0250	.220	470	385	327	283	250	223	203	185	171	157	147	138	129	122	100
11-#9	.0275	.224	490	401	338	293	258	232	209	192	176	163	151	142	133	126	104
6-#10	.0191	.204	422	351	301	262	233	210	191	174	160	149	139	130	122	116	89
7-#10	.0222	.212	448	370	316	275	242	218	198	181	167		144	135	127	119	95
8-#10	.0254	.212	473	388	327	285	252	225	204	186	171	158	147	138	129	122	102
9-#10	.0234	.226	499	407	344	298	262	234	212	194	178	165	153	143	135	127	102
10-#10	.0317	.232	524	427	360	309	272	243	219	200	184	50.000	158	148	139	131	112
6-#11	.0234	.215	457	376	320	278	246	220	200	182	168	156	145	136	124	120	97
7-#11	.0273	.224	488	399	337	293	258	231	208	190	175	162	151	141	133	125	103
8-#11	.0312	.231	520	423	356	307	270	242	218	199	183	169	157	147	138	130	110
9-#11	.0351	.240	551	444	372	320	281	250	226	206	189	174	162	152	142	134	116
For f _e =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	†

 $[\]dagger$ To right of vertical line and below horizontal line concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN S	IZE-21"	x 21"
----------	---------	-------

D		CD							M/N	l = e	(in.)						
Bars	Р	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#8	.0108	.174	393	334	291	258	232	210	192	177	164	153	143	135	127	120	114
7-#8	.0125	.179	409	347	301	266	238	216	197	182	168	157	147	138	130	123	11
8-#8	.0143	.184	424	358	310	273	244	221	201	185	172	160	149	140	132	125	11
9-#8	.0161	.188	440	370	320	281	251	227	207	190	176	163	153	143	135	128	12
10-#8	.0179	.192	456	383	329	289	258	233	212	194	180	167	156	147	138	130	12
11-#8	.0197	.197	472	394	338	296	264	238	216	198	183	170	159	149	140	132	12
12-#8	.0215	.201	488	406	348	304	270	243	221	203	187	174	162	152	143	135	12
6-#9	.0136	.182	418	354	306	270	242	219	200	184	170	159	148	139	131	124	11
7-#9	.0159	.188	438	369	318	280	250	226	206	189	175	163	152	143	134	127	12
8-#9	.0181	.193	458	384	331	290	258	233	212	195	180	168	156	147	138	131	12
9-#9	.0204	.198	478	399	342	300	267	240	218	200	185	172	160	150	142	134	12
10-#9	.0227	.204	498	413	353	309	274	246	224	205	189	175	164	153	144	137	12
11-#9	.0249	.209	518	428	365	318	282	253	230	210	194	180	168	157	148	139	13
12-#9	.0272	.214	538	442	376	327	290	260	235	215	198	184	171	160	151	142	13
6-#10	.0173	.191	450	377	325	286	255	230	210	193	178	165	155	145	137	129	12
7-#10	.0202	.198	476	397	341	298	268	239	217	200	184	171	160	150	141	133	12
8-#10	.0230	.204	501	416	356	311	276	248	225	206	190	177	165	154	145	137	13
9-#10	.0259	.211	527	435	370	322	286	256	232	213	196	182	169	159	149	141	13
10-#10	.0288	.218	552	453	384	334	295	264	239	219	201	186	174	162	153	144	13
6-#11	.0212	.201	485	403	346	302	268	242	220	201	186	172	161	151	142	134	12
7-#11	.0248	.209	516	427	364	317	281	252	229	209	193	179	167	156	147	139	13
8-#11	.0283	.217	548	450	382	332	293	263	238	218	200	185	173	162	152	143	13
9-#11	.0318	.223	579	473	400	347	306	274	248	226	208	192	179	168	158	148	14
For f _s =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.98

 $f'_c=3000~\mathrm{psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-22" x 22"

		CD							M/N	1 = e	(in.)						
Bars	Р	+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7-#8	.0114	.167	438	376	329	292	263	239	219	203	188	176	164	155	147	138	132
8-#8	.0131	.172	453	387	337	299	269	244	223	206	191	178	167	157	148	140	133
9-#8	.0147	.176	469	399	347	307	275	250	228	211	195	182	170	160	151	143	136
10-#8	.0163	.179	485	412	357	316	283	255	234	215	199	186	174	163	154	146	139
11-#8	.0179	.183	501	425	367	324	290	262	239	220	204	190	177	167	157	148	141
12-#8	.0196	.187	517	435	377	330	295	267	243	224	207	192	180	169	160	150	143
6-#9	.0124	.170	447	382	335	297	267	242	222	204	190	177	166	156	147	140	132
7-#9	.0145	.176	467	400	346	307	275	249	228	210	195	181	170	159	150	142	135
8-#9	.0165	.179	487	415	358	318	284	258	236	216	200	187	175	164	155	147	139
9-#9	.0186	.184	507	426	370	327	292	263	240	222	205	190	178	168	158	149	142
10-#9	.0206	.190	527	442	381	336	300	270	247	227	210	194	182	170	160	152	144
11-#9	.0227	.194	547	460	396	345	308	277	252	232	213	200	186	174	164	155	147
12-#9	.0248	.199	567	474	403	355	315	283	258	237	219	202	189	178	167	158	150
6-#10	.0157	.178	479	407	353	313	280	253	233	213	198	184	172	162	153	145	137
7-#10	.0183	.184	505	426	370	325	290	263	240	222	205	190	178	167	157	149	142
8-#10	.0210	.191	530	446	383	338	302	272	248	227	211	195	183	170	161	152	145
9-#10	.0236	.196	556	465	397	352	312	280	257	235	217	201	188	176	166	157	148
10-#10	.0262	.202	581	485	413	362	322	290	264	242	223	207	193	181	170	161	153
11-#10	.0289	.207	606	500	430	374	332	298	270	247	228	212	197	186	174	164	155
6-#11	.0193	.186	514	433	375	330	295	267	244	223	207	193	180	169	160	151	143
7-#11	.0226	.194	545	457	391	345	309	277	252	232	213	200	187	175	165	155	147
8-#11	.0258	.201	577	480	412	360	320	287	261	240	222	206	192	180	169	160	151
9-#11	.0290	.207	608	500	430	374	332	298	270	247	228	212	197	186	174	164	155
10-#11	.0323	.212	639	530	450	390	347	310	282	258	237	220	205	192	181	170	161
For f _s =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.985

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-23" x 23"

_		CD							M/N	1 = e	(in.)						*1
Bars	P	+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7-#8	.0105	.155	468	405	357	319	289	264	242	224	209	195	184	173	163	155	14
8-#8	.0120	.157	483	418	367	328	296	270	249	230	214	200	188	177	167	159	15
9-#8	.0134	.163	499	429	376	335	302	275	252	233	216	202	190	179	169	160	1:
10-#8	.0150	.167	515	442	386	343	309	280	257	237	220	205	193	182	172	162	1.
11-#8	.0164	.169	531	454	397	352	316	287	263	243	225	210	197	186	175	166	1
12-#8	.0179	.172	547	467	407	361	324	294	269	248	230	215	201	189	178	169	1
6-#9	.0114	.157	477	412	363	324	293	267	245	227	211	197	185	175	165	156	1
7-#9	.0132	.162	497	428	375	334	301	274	252	233	216	202	189	178	169	160	1
8-#9	.0152	.167	517	443	387	344	310	281	258	238	221	206	193	182	172	163	1
9-#9	.0170	.170	537	459	401	356	319	290	266	245	227	212	199	187	177	167	1
10-#9	.0189	.173	557	475	414	367	329	298	273	252	233	218	204	191	181	171	1
11-#9	.0208	.177	577	490	426	377	337	306	279	258	239	222	208	196	185	175	1
12-#9	.0227	.179	597	506	440	388	348	315	288	265	245	228	214	201	189	179	1
6-#10	.0144	.166	509	437	382	340	306	278	255	235	219	204	191	180	170	161	1
7-#10	.0168	.169	535	458	400	355	319	290	266	245	227	212	199	187	177	167	1
8-#10	.0192	.173	560	477	416	368	331	300	275	253	235	219	205	193	182	172	1
9-#10	.0217	.178	586	498	432	382	342	310	283	261	241	225	210	198	187	177	1
10-#10	.0240	.183	611	516	447	395	352	319	291	268	248	231	216	202	191	181	1
11-#10	.0264	.191	636	532	460	404	358	325	296	272	251	234	218	205	193	182	1
6-#11	.0177	.171	544	464	405	359	323	293	268	248	230	214	201	189	178	169	1
7-#11	.0207	.176	575	489	425	376	337	306	280	257	239	222	208	196	184	175	1
8-#11	.0237	.181	607	514	446	393	352	319	291	267	248	231	216	203	192	181	1
9-#11	.0266	.187	638	537	464	408	365	330	300	276	255	237	222	209	196	186	1
10-#11	.0295	.194	669	559	482	423	377	340	309	284	262	243	227	213	201	190	1
11-#11	.0324	.199	700	584	500	438	389	351	318	292	270	250	234	219	206	195	1
For f _s =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.9

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-24" x 24"

	1	_ co	1					1.47	M/I	V = e	(in.)	-		11			
Bars	р	CD	0	1	2	3	4	5	6	7	8	9	10	11	1,0	1.0	
						3	4	3	0		8	У	10	11	12	13	14
10-#7	.0104	.149	509	443	392	352	319	292	269	251	233	218	205	193	182	174	16
12-#7	.0125	.153	533	462	408	366	332	302	278	248	238	224	211	199	188	175	17
8-#8	.0110	.150	515	448	396	355	322	294	271	251	234	219	206	194	184	174	16
10-#8	.0137	.157	547	474	416	372	336	306	282	261	243	227	213	201	190	180	17
12-#8	.0164	.162	579	499	438	390	351	320	294	272	252	236	221	208	197	187	17
6-#9	.0104	.149	509	443	392	352	319	292	269	250	233	218	205	193	182	174	16
8-#9	.0139	.158	549	474	418	373	337	307	282	261	243	227	213	201	190	180	17
10-#9	.0174	.164	589	506	444	395	356	324	297	274	255	238	223	210	199	188	17
11-#9	.0191	.166	609	522	457	406	366	333	305	282	262	245	229	215	204	193	18
12-#9	.0208	.169	629	538	471	418	376	341	313	288	268	250	234	220	208	197	18
14-#9	.0243	.176	669	569	496	438	393	356	326	300	278	259	242	228	215	204	19
6-#10	.0132	.155	541	468	413	369	334	305	280	259	241	226	212	200	189	179	17
7-#10	.0154	.160	567	489	430	384	346	315	289	268	249	232	218	206	194	184	17
8-#10	.0176	.164	592	508	446	397	358	325	298	276	256	239	224	211	199	189	17
9-#10	.0198	.167	618	531	464	412	371	337	309	285	265	247	232	218	206	195	18
10-#10	.0220	.171	643	551	481	426	382	342	318	293	272	254	238	224	211	200	19
12-#10	.0265	.180	694	588	511	452	404	365	334	307	284	265	248	233	220	208	19
13-#10	.0286	.182	719	608	528	466	417	377	344	316	293	273	255	240	226	214	20
6-#11	.0162	.161	576	496	436	388	351	319	293	271	252	235	221	208	197	186	17
7-#11	.0190	.166	607	522	457	406	365	332	305	281	261	244	229	215	203	193	18
8-#11	.0217	.171	639	547	476	423	380	345	316	291	270	252	236	222	210	198	18
9-#11	.0244	.176	670	569	496	438	393	357	326	300	279	259	243	229	216	204	19
10-#11	.0271	.180	701	594	516	456	408	369	337	310	287	268	251	235	222	210	19
11-#11	.0298	.186	732	618	534	470	420	379	346	318	294	274	256	240	227	215	20
For f _s =	16,000 psi	multiply	2	.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.98

 $f'_e = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-25" x 25"

Bars		CD							M/N	= e	(in.)		5		-		
bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	1
12-#7	.0115	.144	566	495	439	395	359	329	303	282	263	246	232	219	207	197	1
8-#8	.0101	.142	548	480	427	384	349	320	296	275	257	241	226	214	203	193	1
10-#8	.0126	.147	580	506	448	402	365	334	308	286	266	249	235	222	210	199	1
12-#8	.0151	.154	612	530	468	418	378	345	318	294	274	256	241	227	215	203	1
6-#9	.0096	.142	542	474	422	380	345	317	292	272	254	238	224	211	200	190	
8-#9	.0128	.149	582	507	448	402	365	334	307	285	266	248	234	221	209	198	1
0-#9	.0160	.155	622	538	477	425	384	350	322	298	278	260	244	230	217	206	1
1-#9	.0176	.157	642	555	489	436	395	359	330	306	285	266	250	235	222	211	1
12-#9	.0192	.160	662	570	502	447	403	368	338	312	291	271	255	240	227	215	1
14-#9	.0224	.165	702	602	527	470	422	385	353	326	303	282	265	249	236	223	1
6-#10	.0122	.145	574	501	445	400	363	333	307	285	266	249	234	221	209	198	
7-#10	.0142	.152	600	520	460	412	373	341	314	290	271	253	238	224	212	202	1
8-#10	.0162	.155	625	541	477	427	386	352	324	300	279	261	245	231	219	207	
9-#10	.0184	.159	651	561	494	440	398	362	333	308	287	268	252	237	224	212	1
10-#10	.0203	.161	676	582	511	456	411	374	343	318	295	276	259	244	230	218	1
11-#10	.0223	.165	701	602	527	469	422	384	352	325	302	282	264	249	235	223	1
12-#10	.0244	.169	727	622	543	483	434	394	361	333	309	288	270	254	240	228	1
13-#10	.0264	.172	752	642	559	495	445	404	370	341	316	295	276	260	245	232	1
6-#11	.0150	.154	609	528	466	416	377	344	316	293	272	255	240	226	214	203	
7-#11	.0174	.157	640	554	487	435	393	358	329	305	283	265	249	235	222	210	1
8-#11	.0200	.161	672	579	509	453	409	372	342	316	294	274	258	243	229	217	1
9-#11	.0225	.165	703	603	528	470	423	385	353	326	303	283	265	250	236	224	1
10-#11	.0250	.170	734	627	548	486	437	397	363	335	311	290	272	255	241	228	1
11-#11	.0274	.173	765	652	568	504	452	410	375	346	321	299	280	263	249	235	1
12-#11	.0300	.179	796	675	586	518	463	420	383	353	327	304	285	268	253	239	
For f. =	16,000 psi	multiply	-	9 /					1								
by				.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	1.

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-26" x 26"

			-														
Bars	_	CD t							M/N	۷ = e	(in.)						
bars	P	1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
9-#8	.0105	.138	598	527	469	424	386	354	328	304	284	267	252	238	225	214	204
11-#8	.0128	.142	630	551	491	443	403	368	340	316	295	277	261	246	233	221	211
13-#8	.0152	.148	661	576	511	457	415	380	350	325	303	284	267	252	238	226	215
15-#8	.0175	.151	693	602	532	477	432	395	364	338	314	294	275	260	247	234	223
7-#9	.0103	.137	596	525	468	423	386	354	328	305	285	267	252	238	226	214	205
8-#9	.0118	.139	616	542	483	435	396	364	336	313	292	274	258	244	231	220	209
9-#9	.0133	.144	636	556	495	444	404	370	341	317	296	278	261	246	233	222	211
10-#9	.0148	.148	656	572	507	455	412	377	348	323	300	282	265	250	236	224	214
11-#9	.0163	.149	676	589	521	468	424	388	357	331	309	288	272	256	242	230	219
12-#9	.0177	.151	696	605	535	480	434	397	366	328	316	296	278	268	248	235	224
13-#9	.0192	.153	716	620	549	491	444	406	374	346	322	303	283	267	253	240	228
15-#9	.0222	.158	756	653	575	513	463	422	388	359	334	312	293	276	261	248	236
6-#10	.0113	.138	608	535	477	430	392	360	333	310	289	271	256	242	229	218	208
8-#10	.0150	.148	659	575	509	457	414	379	350	324	302	283	266	251	238	225	215
10-#10	.0188	.153	710	615	544	487	440	402	371	343	319	299	281	264	251	238	226
12-#10	.0226	.159	761	657	578	515	465	424	390	360	335	313	294	277	262	248	236
14-#10	.0263	.165	812	696	610	543	489	445	408	377	350	327	306	289	272	258	245
6-#11	.0138	.145	643	562	498	448	407	373	344	320	298	279	263	248	235	223	212
7-#11	.0161	.149	674	586	519	466	422	386	356	329	307	288	271	256	242	230	218
8-#11	.0184	.152	706	613	541	485	440	402	370	342	319	298	280	264	250	237	226
9-#11	.0208	.156	737	638	561	503	454	415	381	353	328	306	288	272	257	244	232
10-#11	.0230	.159	768	663	583	520	470	428	393	364	338	316	296	280	264	250	238
11-#11	.0254	.164	799	686	602	535	483	439	403	372	346	323	303	284	269	255	242
13-#11	.0300	.171	862	735	642	570	512	465	425	393	364	340	318	299	283	267	254
For f _a =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.985

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLLIMN	SIZE-27" x 27	111

Bars	_	CD t							M/I	٧ = e	(in.)						
bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
14-#8	.0153	.143	713	624	552	499	453	416	383	356	332	312	293	277	262	249	23
16-#8	.0174	.145	745	651	578	519	472	432	398	370	345	323	304	287	272	258	24
18-#8	.0196	.148	776	675	598	537	487	446	411	381	355	332	312	295	279	265	25
10-#9	.0137	.140	692	607	540	487	443	407	376	349	326	306	288	272	258	245	23
12-#9	.0165	.144	732	640	568	511	464	425	392	364	340	319	300	283	268	255	24
14-#9	.0193	.147	772	673	598	538	486	445	410	380	354	332	312	295	279	265	25
16-#9	.0220	.152	812	705	622	558	505	461	424	393	366	343	322	303	287	273	25
6-#10	.0150	.132	644	569	509	461	421	388	359	334	313	294	277	262	249	237	22
7-#10	.0122	.134	670	590	528	478	436	401	371	345	323	304	286	271	257	244	23
8-#10	.0139	.140	695	610	543	489	445	408	377	351	328	307	289	273	259	246	23
9-#10	.0158	.143	721	630	560	504	458	420	388	360	336	315	297	280	266	252	24
10-#10	.0174	.145	746	651	578	520	472	432	399	370	345	323	304	287	272	258	24
11-#10	.0192	.147	771	672	596	535	485	444	409	380	354	331	312	295	279	265	25
12-#10	.0209	.150	797	692	612	550	498	455	420	389	362	339	319	301	284	270	25
13-#10	.0227	.153	822	713	629	563	510	465	428	396	369	346	325	306	290	275	26
14-#10	.0243	.156	848	733	646	577	521	476	438	405	377	352	331	312	295	280	26
15-#10	.0262	.158	873	754	663	592	535	487	445	414	385	360	338	319	301	286	27
6-#11	.0128	.138	679	596	532	480	437	401	371	345	322	302	285	269	255	243	23
8-#11	.0172	.145	742	648	575	517	469	430	396	368	343	322	302	286	271	257	24
9-#11	.0193	.147	773	674	597	536	486	445	410	381	355	332	313	295	279	265	25
10-#11	.0214	.149	804	700	619	555	504	460	424	393	367	343	322	304	288	274	26
11-#11	.0236	.154	835	723	638	571	516	471	433	401	374	350	328	310	293	278	26
12-#11	.0257	.158	866	747	658	587	530	483	444	411	382	357	335	316	299	283	26
13-#11	.0277	.161	898	774	679	605	546	497	456	422	392	367	344	324	306	290	27
For $f_s =$	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.98

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-28" x 28"

Bars	P	CD							M/I	N = (e (in.)						
		t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	1
10-#8	.0101	.127	687	610	547	497	456	420	390	364	341	320	302	287	272	259	24
12-#8	.0121	.129	719	638	572	519	475	438	405	378	354	333	314	298			1
14-#8	.0141	.135	750	660	590	534	487	448	415	386	360	339	319	302	286	272	1
8-#9	.0102	.127	689	612	550	499	458	422	391	366	332	322	304	288	273	260	24
10-#9	.0128	.132	729	644	576	521	477	439	406	379	355	333	1	1	282	268	25
12-#9	.0153	.137	769	676	604	545	497	456	421	392	367	346	324		291	276	26
14-#9	.0179	.141	809	709	631	568		475	439	407	380	357	336	1000	301	286	-
7-#10	.0113	.128	707	628	564	511	467	431	400	373	349	329	310	294	279	265	25
8-#10	.0130	.133	732	646	579	524	478	440	408	379	355	334	314	297	282	268	25
9-#10	.0146	.136	758	668	595	539	490	451	418	388	363	340	321	304	288	274	26
10-#10	.0162	.138	783	690	615	554	505	464	429	399	372	349	329	312	295	281	26
11-#10	.0178	.141	808	708	630	568	517	475	438	407	380	356	336	317	301	286	27
12-#10	.0194	.142	834	730	650	585	532	488	450	418	391	367	345	325	308	293	27
13-#10	.0211	.146	859	750	665	597	542	497	458	424	396	372	349	330	312	296	28
14-#10	.0227	.148	885	<i>77</i> 1	683	613	555	509	470	435	405	379	357	337	319	302	28
6-#11	.0120	.129	716	635	570	517	472	435	403	376	353	331	313	296	281	268	25
7-#11	.0139	.135	747	658	588	531	485	446	412	384	359	337	318	300	285	271	25
8-#11	.0159	.138	779	685	610	551	502	461	427	396	370	347	327	310	294	279	26
9-#11	.0179	.141	810	710	631	569	518	475	439	408	380	357	336	318	301	286	27
10-#11	.0199	.143	841	735	654	590	535	490	453	420	392	368	346	327	310	294	28
11-#11	.0219	.147	872	760	674	604	550	503	463	430	401	374	353	334	315	300	28
12-#11	.0239	.150	903	786	695	624	565	516	476	442	411	385	362	341	323	306	29
13-#11	.0259	.153	935	811	716	642	580	530	488	452	420	394	370	348	330	313	29
14-#11	.0318	.163	966	830	730	650	585	532	489	451	419	392	368	346	327	310	29
For $f_s = 1$	16,000 psi r	multiply		.935	.940	.950	.960	965	970	970	970	075	075	080	095	005	.98

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	SIZE-29	x 29"
--------	---------	-------

		CD							M/N	= e (in.)						
Bars	P	+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
19-#8	.0178	.133	868	766	675	620	566	521	483	449	420	395	373	352	334	-	303
21-#8	.0198	.136	-	2.00	706	638	582	535	495	460	430	404	381	360	341	325	309
11-#9	.0131	.126	787	698	628	571	523	483	448	418	392	369	348	330	313	298	283
12-#9	.0131	.129		715	642	581	532	491	455	424	397	373	352	334	317	302	28
12-#9	.0143	.131	2.2	731	655	594	543	499	463	431	404	380	358	338	321	306	29
14-#9	.0166	.132		749	670	607	554	510	473	440	412	387	365	345	328	312	29
		104	247	715	684	618	564	519	480	447	418	393	370	350	333	316	30
15-#9	.0178	.134	1	765 781	684	631	575	529	490	455	426	401	377	357	338	322	30
16-#9	.0190	.135	887	781 798	713	644	588	540	490	465	434	408	384	363	344	328	31
17-#9	.0202	.136	907	814	725	654	595	547	506		438	411	388	367	347	330	31
18-#9	.0215	.139	927	814	125	034	375	34,	300	7, 5	700	7					
8-#10	.0120	.124	770	685	617	561	514	475			386	364	344	326	310	295	28
9-#10	.0136	.127	795	705	634	575	527	486	1		394	100000	350		315	300	2
10-#10	.0151	.130	821	726	652	711.7 10.0 10.0	539	497	1		402		356	10000000	320	304	
11-#10	.0166	.132	846	747	670	606	554	510	000				365			312	
12-#10	.0184	.134	872	869	688	1	567	522		100000		395				318	1 -
13-#10	.0196	.136	897	889	705	637	581	534	494	459	430	403	380	359	341	324	3
14-#10	.0210	.137	922	811	724	653	595	547			7 0000		CHRISTIA	100		331	1
15-#10	.0232	.140	948	1	740		608	558	515					100000		1	
16-#10	.0242	.142	973	1	758	682	621	569	525	488	456	427	402	379	360	342	3
8-#11	.0148	.130	817	722	648	588	536	494	458	427	399	375	354	335	318		
9-#11	.0148	.132	848		100000000000000000000000000000000000000	D. Section				0.000	20000000	388	365	1			
10-#11	.0186	.135	879			1 (5.400.00	(507.00)	1				397	374	22. 10. 15. 17.	0.00		
11-#11	.0205	.137	911				00.00			465			384		2 10 10	1	
12-#11	.0223	.140	942					554	512	2 476	9 1				-	10000	
13-#11	.0240	.142	973	September 1	758	682	621	569			100						- 1
14-#11	.0260	.145	1004		779	700	636	582	537	7 498	465	436	410	387	366	348	3
For f. =	= 16,000 ps	i multiply															
by	- 10,000 p-	, m.ep.,		935	.940	950	.960	.96	5 .970	3 .970	.970	.975	.97!	.980	.985	.985	5 .

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-30" x 30"

Bars		CD							M/N	√ = e	(in.)						
bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	1
9-#9	.0100	.117	788	705	639	583	538	497	463	434	407	384	363	345	327	312	29
11-#9	.0122	.120	828	740	668	610	560	517	481	450	422	398	376	356	340	324	30
13-#9	.0144	.124	868	773	696	633	580	536	498	465	436	411	388	367	349	333	3
15-#9	.0167	.128	908	805	723	655	600	554	514	479	448	422	398	377	358	340	32
8-#10	.0113	.119	811	725	655	598	550	509	474	443	415	392	370	352	334	318	30
9-#10	.0127	.121	837	746	674	614	564	521	485	454	425	400	379	359	341	326	3
10-#10	.0141	.124	862	766	690	628	576	531	494	461	432	408	384	364	346	330	3
11-#10	.0155	.126	887	788	709	645	590	550	505	471	442	416	393	372	354	337	3
12-#10	.0169	.128	913	810	729	660	604	557	517	482	451	425	400	379	360	343	3
3-#10	.0183	.130	938	830	745	675	617	568	527	491	460	432	408	386	366	349	3
4-#10	.0198	.132	964	850	763	690	631	580	538	500	469	440	415	393	372	355	3
5-#10	.0212	.133	989	871	781	707	645	594	550	511	478	450	424	401	381	362	3
16-#10	.0226	.136	1014	893	796	721	656	604	559	520	486	456	430	407	386	366	3
17-#10	.0240	.137	1040	915	816	736	672	618	570	531	496	466	439	415	393	374	3
6-#11	.0104	.117	795	712	644	588	542	501	467	437	411	388	366	348	330	315	3
7-#11	.0121	.120	826	738	666	608	558	516	480	449	422	397	376	356	338	323	3
8-#11	.0139	.124	858	764	688	625	574	530	492	460	430	406	383	362	345	329	3
9-#11	.0156	.126	889	790	710	645	590	545	506	472	443	417	393	372	354	337	3
0-#11	.0173	.128	920	816	733	665	609	561	521	486	455	428	404	382	363	345	3
1-#11	.0190	.131	951	841	754	683	624	575	533	496	464	437	412	389	370	352	3
2-#11	.0208	.133	982	866	775	702	640	590	546	509	475	447	422	398	378	360	3
3-#11	.0225	.136	1014	894	798	721	657	604	559	520	486	455	430	407	386	366	3
4-#11	.0242	.137	1045	920	820	740	676	620	574	534	499	469	441	417	395	375	3
5-#11	.0260	.140	1076	945	841	758	690	634	585	544	508	476	449	424	402	382	3
For f _s =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.91

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	CITE.	21// -	21//
COLLINAN	\1/P	X Y	

					COL	OMIA	3126	-31	X 31								
		CD							M,	/N =	e (in.)						
Bars	P	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
16-#8	.0132	.118	901	805	729	665	612	566	527	493	463	436	413	392	373	355	339
20-#8	.0165	.123	964	858	773	704	646	596	554	518	486	458	432	409	389	371	354
12-#9	.0125	.117	888	795	720	657	605	560	522	488	458	432	409	388	369	352	337
14-#9	.0146	.120	928	828	748	682	627	580	539	504	473	446	422	400	380	362	346
16-#9	.0167	.123	968	862	777	707	647	600	557	520	488	460	434	412	391	373	355
18-#9	.0188	.126	1008	895	805	732	671	619	574	536	502	473	446	423	401	382	365
20-#9	.0208	.129	1048	929	834	756	691	637	591	551	515	485	458	439	412	392	374
8-#10	.0105	.113	851	765	694	636	586	544	507	475	447	422	399	379	361	345	329
10-#10	.0132	.118	902	807	729	666	613	567	528	494	464	437	414	393	373	356	340
11-#10	.0145	.120	927	828	747	682	626	579	539	504	473	445	421	399	380	362	346
12-#10	.0159	.123	953	849	765	696	639	590	548	512	480	452	427	410	385	367	350
13-#10	.0172	.124	978	870	783	713	654	604	551	524	491	462	437	413	393	374	357
14-#10	.0185	.126	1003	891	802	728	668	616	572	536	501	470	444	421	399	380	363
15-#10	.0199	.128	1029	912	817	743	681	627	582	542	508	477	451	427	412	386	368
16-#10	.0212	.129	1054	934	838	760	695	641	594	554	518	488	460	436	414	394	374
17-#10	.0225	.130	1080	956	857	778	711	655	607	566	530	498	469	445	422	403	383
18-#10	.0238	.133	1105	976	873	791	722	664	615	572	536	503	474	449	426	410	386
8-#11	.0130	.118	898	803	726	663	610	564	525	491	462	435	412	391	372	354	338
9-#11	.0146	.121	929	829	748	682	626	579	538	503	472	445	420	398	379	361	345
10-#11	.0162	.123	960	855	770	701	643	594	552	515	484	456	430	407	388	369	352
11-#11	.0178	.125	992	882	793	721	661	671	567	529	495	467	440	417	397	378	360
12-#11	.0195	.127	1023	907	816	741	679	626	581	542	508	477	451	427	410	386	368
13-#11	.0210	.128	1054	934	839	761	697	643	596	556	520	489	462	438	416	395	377
14-#11	.0228	.131	1085	959	860	779	712	655	607	566	530	498	470	444	422	401	383
15-#11	.0244	.134	1116	985	880	796	726	668	619	576	538	506	477	451	428	414	388
16-#11	.0260	.136	1148	1011	903	816	744	684	632	588	550	516	487	460	436	415	395
For f _a =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.985

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SI	ZE-32" x 32"
-----------	--------------

					301	-0.	- JIZE	. 02	A 02								
Bars	P	CD		836 760 695 640 595 555 520 489 462 437 415 396 377 870 787 720 664 614 573 535 504 475 450 427 406 387 906 820 747 687 636 594 555 520 490 465 441 420 400 978 875 795 730 674 626 585 548 516 487 461 439 418 587 771 706 650 604 564 527 496 469 444 421 402 383 871 789 721 665 616 575 537 505 477 451 428 408 387 893 807 736 680 628 585 548 515 485 459 435 414 395 893 807 736 680 628 585 548 515 485 459 435 414 395 893 807 736 680 628 585 548 515 485 459 435 414 395 893 807 736 680 628 585 548 515 485 459 435 414 395 893 807 736 680 628 585 548 515 485 459 435 414 395 893 807 736 680 628 585 548 515 485 459 435 414 401 402 805 805 805 805 805 805 805 805 805 805													
buis	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
12-#9	.0117	.113	931	836	760	695	640	595	555	520	489	462	437	415	396	377	360
14-#9	.0137	.116	971	870	787	720	664	614	573	535	504	475	450	427	406	387	370
16-#9	.0156	.118	1011	906	820	747	687	636	594	555	520	490	465	441	420	400	38:
18-#9	.0176	.121	1051	938	846	771	709	655	610	570	535	504	475	451	429	409	39
20-#9	.0195	.124	1091	970	875	795	730	674	626	585	548	516	487	461	439	418	400
10-#10	.0124	.113	945	849	771	706	650	604	564	527	496	469	444	421	402	383	366
11-#10	.0136	.115	970	871	789	721	665	616	575	537	505	477	451	428	408	389	37
12-#10	.0149	.117	996	893	807	736	680	628	585	548	515	485	459	435	414	395	378
13-#10	.0161	.119	1021	914	825	754	692	640	596	557	523	494	466	443	421	401	383
14-#10	.0173	.120	1047	935	845	770	707	654	608	569	534	503	476	451	429	408	390
15-#10	.0186	.123	1072	955	860	785	719	664	617	575	541	509	481	456	434	414	394
16-#10	.0198	.124	1097	975	880	799	734	676	629	588	550	519	490	464	441	420	402
17-#10	.0211	.125	1123	1002	900	818	750	692	642	600	562	529	500	474	450	428	409
18-#10	.0224	.126	1148	1020	916	835	764	705	655	610	571	539	508	481	458	436	415
8-#11	.0122	.113	941	845	766	704	648	601	561	525	494	467	441	419	400	381	364
9-#11	.0137	.115	972	871	790	722	665	616	575	538	506	478	452	428	408	390	372
10-#11	.0152	.117	1003	900	814	743	685	634	590	553	519	490	463	438	418	398	381
11-#11	.0167	.120	1034	924	835	760	700	647	601	567	528	497	470	446	424	404	386
12-#11	.0183	.122	1065	950	856	780	716	662	615	575	540	509	480	455	432	412	394
13-#11	.0198	.124	1097	975	880	800	734	678	629	588	550	520	490	464	441	420	401
14-#11	.0213	.125	1128	1003	901	820	750	694	645	601	564	530	501	475	451	430	410
15-#11	.0228	.127	1159	1030	924	839	769	709	657	614	575	540	510	484	459	437	418
16-#11	.0244	.129	1190	1054	946	859	785	724	671	625	586	550	520	493	467	445	424
	6,000 psi i	multiply															
by				.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.985

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

		11
COLUMN	CI7E-22	" ~ 33"

Bars	_	CD							M/	N =	e (in.)			٠			
bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
13-#9	.0119	.109	995	900	819	751	694	645	602	565	531	503	476	454	431	413	39
15-#9	.0138	.112	1035	930	845	775	715	664	619	580	546	516	488	464	441	422	40
17-#9	.0156	.115	1075	965	875	800	737	683	636	596	560	529	501	475	452	432	4
19-#9	.0175	.117	1115	998	904	825	760	704	655	614	576	544	514	487	464	443	4
10-#10	.0117	.108	989	894	814	746	690	642	601	564	530	501	475	453	431	411	3
11-#10	.0128	.110	1014	915	831	763	705	655	611	573	540	510	484	459	438	418	4
12-#10	.0140	.113	1040	934	849	778	715	665	620	580	546	516	488	463	442	421	4
13-#10	.0152	.114	1065	956	869	794	732	679	633	593	557	525	498	474	450	429	4
14-#10	.0163	.115	1091	980	888	811	748	694	646	605	569	537	508	482	459	438	4
15-#10	.0175	.117	1116	1000	905	825	761	705	655	615	576	545	515	488	464	443	4
16-#10	.0187	.118	1141	1021	925	844	775	719	670	626	587	554	524	498	473	451	4
17-#10	.0198	.120	1167	1041	940	856	789	730	678	634	595	561	530	503	478	455	4
18-#10	.0210	.121	1192	1061	960	875	804	743	691	646	606	571	540	511	487	464	4
19-#10	.0221	.123	1218	1083	978	890	816	755	701	654	614	578	546	518	492	470	4
8-#11	.0115	.108	985	890	810	744	688	640	599	562	529	500	474	450	430	409	3
9-#11	.0129	.110	1016	915	834	764	706	655	613	574	540	510	484	460	438	418	4
10-#11	.0143	.113	1047	940	854	782	720	669	625	584	550	520	491	466	444	424	4
11-#11	.0157	.115	1078	967	877	801	740	685	638	597	561	530	502	475	453	432	4
12-#11	.0172	.116	1109	994	900	824	757	702	654	611	575	542	514	488	464	442	4
13-#11	.0186	.118	1141	1021	924	842	725	718	669	625	587	553	524	497	475	451	4
14-#11	.0201	.120		1048	946	863	793	734	682	637	598	564	534	505	480	458	4
15-#11	.0215	.122	1203-		968	881	810	748	695	650	610	574	542	514	488	465	4
16-#11	.0229	.124		1098	990	900	825	762	708	661	620	584	551	522	496	474	4
17-#11	.0244	.125	1266	1126	1012	920	844	780	724	675	633	595	563	534	506	482	4
For $f_s =$	16,000 ps	i multiply															
by				.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.5

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	SIZE-	14" x	14"

Bars	P	CD							٨	M/N =	= e (ir	1.)					
	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	1.
6-#5	.0095	.254	202	161	134	114	100	89	80	72	66	61	29	24	21	18	1
8-#5	.0126	.262	215	171	141	120	105	93	84	1 -		64	36	31	27	23	2
10-#5	.0158	.273	227	178	147	`25	109	96	1	1	1	66	41	35	31	27	2
6-#6	.0135	.266	218	172	142	122	106	94	84	76	70	64	38	31	28	25	2
7-#6	.0157	.273	227	179	147	125	109	96	86		1 5 5	66	40	35	31	27	2
8-#6	.0180	.283	235	183	150	127	110	97	87	79		66	42	38	34	30	2
9-#6	.0202	.291	244	189	154	130	113	99	89	80	73	67	44	40	36	33	3
6-#7	.0184	.284	237	185	151	128	111	98	88	79	73	67	42	38	35	31	2
7-#7	.0214	.296	249	193	157	132	114	101	90		74	68	45	40	37	34	3
8-#7	.0254	.310	261	199	161	135	117	102	91	82	75	69	47	43	39	36	3
6-#8	.0252	.309	260	199	161	135	117	102	91	82	75	69	47	43	39	36	3
7-#8	.0282	.319	276	210	169	141	122	107	95	86	78	71	50	45	41	38	3
8-#8	.0322	.331	291	219	175	146	125	110	98	88	80	73	53	48	44	40	3
6-#9	.0306	.326	285	215	173	144	124	109	97	87	79	73	52	47	43	39	3
7-#9	.0357	.341	305	228	182	151	129	113	100	93	82	75	55	50	46	42	3
6-#10	.0390	.350	317	235	187	155	132	115	103	92	84	77	57	52	48	44	4
or $f_s = 0$	16,000 psi r	nultiply		.935	940	950	.960	045	070	070	075	075	†	†	†	†	†

 $[\]dagger$ To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	SIZE-15" x 15"
--------	----------------

Bars		CD	M/N = e (in.)																	
	P	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14			
6-#6 9-#6	.0117 .0176	.239	243 269	196 213	164 176	142 150	124 131	111	100	91 95	83 87	77 80	72 74	38 48	32 44	28 39	25 35			
6-#7 7-#7 8-#7 9-#7	.0160 .0187 .0213	.258 .267 .275 .284	262 274 286 298	208 216 224 232	173 178 184 190	148 152 157 161	129 132 136 140	114 117 120 123	103 105 108 110	93 95 98 100	86 87 89 91	79 80 82 84	73 75 76 78	47 49 52 54	39 45 47 49	36 41 43 45	32 36 40 42			
6-#8 7-#8 8-#8	.0211 .0246 .0281	.275 .286 .297	285 301 316	223 234 244	184 191 198	156 162 167	136 140 144	120 124 127	107 111 114	97 100 103	89 91 94	82 84 86	76 78 80	52 55 58	47 50 53	43 46 48	40 42 45			
6-#9 7-#9 8-#9	.0267 .0311 .0355	.292 .306 .319	310 330 350	240 253 265	195 205 214	165 172 179	143 148 154	126 130 135	113 116 120	102 105 108	93 96 98	85 88 90	79 81 84	56 60 64	51 55 58	47 50 54	44 47 50			
6-#10 6-#11	.3339 .0416	.314 .336	342 377	260 282	210 225	176 188	152 161	133 141	118 125	107 112	97 102	89 94	83 86	63 68	57 63	53 58	49 53			
For $f_8 = 16,000$ psi multiply by				.935	.940	.950	.960	.965	.970	.970	.975	.975	.980	†	†	†	†			

SPIRALLY REINFORCED SQUARE COLUMNS-

Safe Load in Kips for Various Eccentricities

 $f_c' = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-16" x 16"

					COL	O/MIN	3122		~											
		CD	M/N = e (in.)																	
Bars p	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
6-#6 9-#6	.0103 .0155	.223	269 295	220 238	186 200	161 172	143 151	127 134	115 122	105 111	98 102	90 94	84 87	45 57	41 51	33 45	29 39			
6-#7 7-#7 9-#7 11-#7	.0140 .0164 .0210 .0258	.234 .241 .254 .268	288 300 324 348	234 240 259 274	196 203 215 227	170 175 184 193	149 153 161 168	133 136 143 149	120 123 129 133	109 112 117 121	101 103 107 111	93 95 99 103	87 88 92 95	54 58 65 70	53 59 64	39 46 54 59	35 41 50 54			
6-#8 7-#8 8-#8 9-#8	.0185 .0216 .0246 .0278	.247 .255 .265 .273	311 327 342 358	249 261 270 282	209 217 224 231	179 185 190 197	157 162 166 171	139 144 147 151	126 130 132 136	114 118 120 123	105 108 110 113	97 99 101 103	90 92 94 96	61 65 68 72	56 59 62 66	51 54 57 60	50 53 56			
6-#9 7-#9 8-#9	.0234 .0273 .0312	.262 .272 .281	336 356 376	267 280 294	221 231 241	188 196 204	164 171 177	146 151 156	131 136 140	119 123 127	109 112 116	100 103 107	93 96 99	67 71 75	61 65 69	56 60 63	52 55 59			
6-#10 7-#10	.0298 .0347	.279 .289	368 394	287 307	236 250	200 211	173 182	154 161	138 144	125 130	115 119	105 109	97 101	74 79	67 72	62 66	57 62			
6-#11 7-#11	.0366 .0426	.293 .309	403 434	313 332	254 268	215 227	186 194	164 171	147 152	133 137	121 125	111 115	103 106	80 87	73 79	68 73	63 67			
For f ₈ =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.975	.975	.980	†	†	t	†			

Outside diameter of spiral should be 3 in. less than side of column.

† To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

SPIRALLY REINFORCED SQUARE COLUMNS-Safe Load in Kips for Various Eccentricities $f_c' = 3750 \text{ psi}$ $f_s = 20,000 \text{ psi}$

COLUMN	\$17E	711 -	17"
COLUMN	2176	/ X	1/

_		CD			12			4	M/N	√ = e	(in.)						•
Bars	P	+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#7 9-#7 11-#7 6-#8 8-#8 10-#8 6-#9 8-#9 10-#9 6-#10 7-#10 8-#10	.0125 .0187 .0228 .0164 .0219 .0273 .0208 .0277 .0346 .0264 .0308 .0352	.215 .233 .244 .226 .241 .255 .238 .256 .273 .253 .264	316 352 376 339 370 402 364 404 444 396 422 447	260 285 302 277 298 320 294 322 348 316 334 350	221 240 253 234 250 266 247 267 287 263 276 288	192 207 217 202 215 228 212 228 244 225 235 245		152 163 169 159 168 176 166 177 188 175 182 188	138 147 152 144 151 159 150 159 168 157 163 169	126 134 139 131 138 144 136 145 153 143 148 153	116 123 127 121 126 132 125 132 139 131 136 140	108 114 118 112 117 122 116 122 128 121 125 129	100 106 109 104 108 113 108 113 119 112 116 119	94 99 102 97 101 106 101 106 111 105 108 111	55 69 75 65 74 80 72 80 88 78 85 89	47 63 68 58 67 73 66 73 81 72 78 82	42 58 63 51 62 68 61 68 75 66 72 76
6-#11 7-#11	.0324	.268 .280	431	340 361	281 296	239 251	208 218	184 192	165 172	150 156	137 142	126 131	11 <i>7</i> 121	109	86 92	79 85	73 78
For f _s =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.975	.975	.980	.985	t	†	†

SPIRALLY REINFORCED SQUARE COLUMNS-Safe Load in Kips for Various Eccentricities $f_s = 20,000 \text{ psi}$ $f_c'=3750~\mathrm{psi}$

COLUMN SIZE-18" x 18"

						011111	0.25										
_		CD							M/N	√ = e	(in.)						
Bars	Р	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#7 9-#7 11-#7	.0111 .0167 .0204	.200 .215 .225	345 381 405	289 314 331	246 267 280	216 232 242	192 205 213	173 184 191	157 167 172	144 152 157	133 140 145	123 130 134	115 121 125	108 113 117	102 107 110	56 74 79	50 66 73
6-#8 7-#8 8-#8 9-#8 11-#8	.0146 .0171 .0195 .0220 .0268	.209 .215 .222 .228 .241	368 384 399 415 447	304 316 327 339 360	259 269 277 285 302	226 233 239 247 260	200 206 211 217 228	180 185 189 194 203	164 168 172 175 183	150 153 157 160 167	138 141 144 147 153	128 131 133 136 141	119 122 124 127 131	111 114 116 118 124	105 107 109 111 115	74 78 81 88	60 66 72 75 82
6-#9 7-#9 8-#9 9-#9	.0185 .0216 .0247 .0278 .0308	.222 .227 .238 .244 .250	393 413 433 453 473	322 337 350 365 379	272 285 294	236 246 254 262 272	208 217 222 230 237	186 194 198 205 210	169 175 179 184 190	154 160 163 167 172	142 147 149 154 158	131 136 138 142 146	122 126 128 132 135	114 118 120 123 127	108 111 113 115 119	77 81 86 90 94	71 75 79 83 87
6-#10 7-#10 8-#10 9-#10	.0235 .0274 .0314 .0353	.235 .242 .251 .258	425 451 476 502	344 364 380 399	289 304 317 331	249 261 272 283	219 229 238 248	196 204 211 220	179 184 190 197	161 168 173 179	148 154 159 164	137 142 146 152	127 132 136 140	119 123 127 131	111 116 119 123	84 89 94 100	77 82 87 92
6-#11 7-#11 8-#11	.0289 .0338 .0385	.247 .256 .265	460 491 523	368 391 414	309 325 342	264 278 292	231 243 254	206 215 226	186 194 202	169 176 184	155 161 168	143 149 155	133 138 144	124 129 134	116 120 125	91 98 104	84 91 96
For $f_s =$ by	16,000 psi	multiply	ris con	.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	†	†

Outside diameter of spiral should be 3 in. less than side of column.

† To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-19" x 19"

Bars	_	CD t							М	/N =	e (in.	.)					
bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#8	.0131	.192	400	335	289	254	226	204	186	170	158	146	137	129	121	81	67
7-#8	.0153	.198	416	348	298	261	232	209	190	174	161	150	140	131	123	86	7
8-#8	.0175	.203	431	358	307	268	238	214	194	178	164	152	142	133	126	90	8
9-#8	.0197	.208	447	370	316	275	244	219	199	182	168	156	145	136	128	94	8
10-#8	.0219	.213	463	381	325	282	250	224	203	186	171	159	148	138	130	98	9
11-#8	.0241	.218	479	393	334	289	256	229	207	190	175	162	151	141	132	102	9
6-#9	.0166	.200	425	354	303	265	236	212	192	177	163	152	142	133	125	89	8
7-#9	.0194	.207	445	368	314	274	243	219	198	182	168	155	145	136	128	94	8
8-#9	.0221	.213	465	383	326	284	241	225	204	186	172	159	148	139	131	99	9
9-#9	.0249	.219	485	398	337	292	258	231	210	192	176	163	152	142	134	103	9
10-#9	.0277	.225	505	412	348	301	268	237	215	196	180	167	155	145	136	108	10
11-#9	.0305	.231	525	426	359	310	273	243	220	200	184	171	158	148	139	113	10
6-#10	.0211	.211	457	377	321	280	248	222	202	184	170	158	147	137	129	97	9
7-#10	.0246	.219	483	396	336	291	257	230	209	191	176	162	151	142	133	103	9
8-#10	.0281	.226	508	414	350	303	267	238	216	197	181	167	156	146	137	108	10
9-#10	.0316	.233	534	432	364	314	276	246	223	203	186	172	160	150	141	115	10
10-#10	.0352	.240	559	450	378	325	285	254	229	208	191	177	164	154	144	120	11
6-#11	.0259	.222	492	402	341	295	261	233	211	193	177	164	153	143	134	105	9
7-#11	.0302	.231	523	425	358	308	272	242	219	200	184	170	158	148	139	112	10
8-#11	.0346	.239	555	448	375	323	284	253	228	208	191	176	164	153	143	119	11
9-#11	.0388	.246	586	470	393	337	295	263	237	215	197	182	169	158	148	127	11
For $f_s =$	16,000 psi	multiply															
by				.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	†	1

 $[\]dagger$ To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	SIZE-20" x 20"

	,				- 750												-
Bars	p	CD t							٨	1/N =	= e (in	.)	10				
buis		t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#8	.0118	.179	432	366	319	282	252	229	208	191	178	165	155	145	137	130	72
7-#8	.0138	.184	448	379	328	289	259	234	214	196	182	169	158	149	140	133	84
8-#8	.0158	.189	463	390	336	296	264	239	218	200	185	172	161	151	142	134	95
9-#8	.0178	.192	479	402	346	304	271	244	223	204	189	176	164	154	145	137	
10-#8	.0198	.198	495	412	354	310	276	249	226	207	192	178	166	156	1	138	103
11-#8	.0217	.201	511	426	365	319	284	255	232	212	196	182	170	159	150	142	107
12-#8	.0237	.206	527	437	374	326	290	259	236	216	199	185	172	161	152	144	111
6-#9	.0150	.186	457	384	334	293	262	237	217	199	183	172	160	152	142	134	91
7-#9	.0175	.192	477	400	345	303	271	243	222	204	188	175	164	8 (8000)	145	137	98
8-#9	.0200	.198	497	415	355	311	277	250	228	208	192	179	167	157	147	139	104
9-#9	.0225	.203	517	430	368	321	286	255	233	214	197	183	170	160	150	142	109
10-#9	.0250	.209	537	443	379	329	292	263	237	218	201	186	174	163	152	144	114
11-#9	.0275	.215	557	458	389	338	299	277	242	222	204	190	177	166	155	147	119
6-#10	.0191	.195	489	410	351	308	274	247	226	207	191	177	165	155	147	139	101
7-#10	.0222	.202	515	429	367	320	286	257	234	214	198	183	171	161	151	142	108
8-#10	.0254	.212	540	446	380	331	292	263	238	218	200	186	173	162	153	144	115
9-#10	.0286	.218	566	464	394	343	303	271	245	224	206	191	178	167	157	148	121
10-#10	.0317	.222	591	484	409	355	313	281	254	232	213	197	184	172	162	152	127
6-#11	.0234	.206	524	434	370	324	288	258	235	215	198	184	172	161	151	143	110
7-#11	.0273	.214	555	457	389	338	299	268	244	222	205	190	177	166	156	147	118
8-#11	.0312	.221	587	481	407	353	312	279	252	230	212	196	183	171	161	151	126
9-#11	.0351	.228	618	504	426	367	323	289	261	239	219	203	189	177	166	156	134
For f _s =	16,000 psi i	multiply								=							
by				.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	†

Outside diameter of spiral should be 3 in. less than side of column.

† To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-21" x 21"

		CD							М	/N =	e (in.))					
Bars	Р	+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#8	.0108	.169	467	399	349	310	279	253	232	100000000000000000000000000000000000000	199	185	174	163	154	146	139
7-#8	.0125	.173	483	411	359	318	285	259	237	218	202	189	177	166	157	148	141
8-#8	.0143	.176	498	424	368	326	292	265	242	223	207	193	180	170	160	152	144
9-#8	.0161	.181	514	435	377	333	298	270	246		210	195	183	172	Superior III	153	145
10-#8	.0179	.184	530	447	387	341	305	276	252		214	200	186	175	165	156	148
11-#8	.0197	.187	546	460	397	350	312	282	257	236		203	190	179	168	159	151
12-#8	.0215	.191	562	472	407	357	318	287	262	241	222	207	193	181	171	161	153
6-#9	.0136	.175	492	419	364	322	289	262	240	221	205	191	179	168	WASSELVI.	150	143
7-#9	.0159	.180	512	434	376	332	298	270	246	226		195	183	172		153	145
8-#9	.0181	.185	532	449	388	342	306	276	252		1	200	187	175		156	148
9-#9	.0204	.189	552	464	400	352	100 00 00	1000000	259	Acres 100	NAME OF THE OWNER, OWNE	204	191	179	169	160	152
10-#9	.0227	.194	572	479	412	362	1		264		- Common on	208	2 2 20	183		162	154
11-#9	.0249	.198	592	494	424		330	1	270			- Course	199	186	0000	166	157
12-#9	.0272	.203	612	509	436	380	338	304	276	253	233	216	202	189	178	168	159
6-#10	.0173	.183	524	442	384	338	302	274	000000000	The Control of		1	1			1	147
7-#10	.0202	.189	550	462	399	351	313	1	200000000000000000000000000000000000000	-	-	1	10000 130				151
8-#10	.0230	.195	575	481		. t.				CTR 04055	- Madelana	-	0.000	200000000000000000000000000000000000000	2000	1	154
9-#10	.0259	.200	601	501	1				1			215	-	12000000	10000	167	158
10-#10	.0288	.206	626	519	443	387	343	308	280	256	236	219	205	192	180	170	161
6-#11	.0212	.191	559	469	404	355	316		1077 (1000)	1	100000	1	1	1		1	1
7-#11	.0248	.198	590	492	423	370	-			- CO 1000	-	-	1	2000			1
8-#11	.0283	.205	622	516	441	385	342		1		1	WALES	1	1	10000	1	1
9-#11	.0318	.211	653	539	459	399	354	317	288	264	243	225	210	196	185	174	16.
For f _s =	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.98

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-22" x 22"

										•							
Bars	P	CD							•	M/N =	= e (ir	1.)					
		t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7-#8	.0114	.162	519	446	393	350	315	287	264	244	226	212	198	187	177	167	159
8-#8	.0131	.165	534	459	401	358	322	293	268	249	230	215	1		1500 0	100000	
9-#8	.0147	.168	550	471	412	366	329	299	275	253	234	1		1000	100		1
10-#8	.0163	.172	566	484	423	375	335	305	278	257	240	222	208	0.090	12/1/2010	1	1
11-#8	.0179	.175	582	495	431	382	343	312	284	263	242	227	212	Come nec			
12-#8	.0196	.179	598	503	440	390	350	315	290	265	245	228	213		1	1	1
6-#9	.0124	.164	528	453	397	353	320	290	266	246	228	213	200	188	178	169	160
7-#9	.0145	.168	548	469	411	364	328	297	273	253	234	218	203	192	1000		
8-#9	.0165	.172	568	485	422	375	336	304	280	257	240	223	208	196	185		1
9-#9	.0186	.176	588	500	435	383	345	312	286	263	243	227	212	200	189	179	170
10-#9	.0206	.181	608	513	446	393	352	318	292	268	248	232	216	202	192	181	172
11-#9	.0227	.185	628	530	457	404	361	326	297	273	252	236	220	207	195	184	
12-#9	.0248	.189	648	545	470	415	370	333	304	280	258	239	223	211	198	187	178
6-#10	.0157	.173	560	479	416	368	332	300	275	253	235	219	205	193	182	173	164
7-#10	.0183	.176	586	500	435	385	344	312	285	263	243	227	212	201	189	179	170
8-#10	.0210	.182	611	509	442	390	350	315	288	266	246	228	213	200	190	180	170
9-#10	.0236	.187	637	535	463	407	363	329	300	275	254	237	222	208	196	185	175
10-#10	.0262	.192	662	555	480	422	376	337	308	282	262	243	227	212	200	189	180
11-#10	.0289	.199	687	573	490	430	384	342	313	287	265	246	229	215	202	191	181
6-#11	.0193	.178	595	508	440	389	348	315	290	266	247	229	214	201	190	180	170
7-#11	.0226	.185	626	530	457	403	360	325	297	273	252	235	212	207	195	184	174
8-#11	.0258	.191	658	551	475	417	373	337	307	281	261	242	226	211	200	189	179
9-#11	.0290	.199	689	572	491	433	385	345	314	287	266	247	230	216	203	192	182
10-#11	.0323	.203	720	600	512	448	398	360	326	298	275	256	237	223	210	198	188
For f _s =	16,000 psi	multiply															
by				.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.985

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-23" x 23"

Bars		CD							М	/N =	e (in	.)					
bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7-#8	.0105	.152	557	483	427	382	346	316	291	269	251	235	221	208	197	187	17
8-#8	.0120	.154	572	495	438	391	354	323	297	275	256	240	225	212	201	190	18
9-#8	.0134	.157	588	508	447	400	361	329	303	280	260	244	229	215	204	193	1
10-#8	.0150	.159	604	521	458	409	369	336	309	286	266	248	233	219	208	197	1
11-#8	.0164	.162	620	534	468	417	376	342	314	290	270	252	237	223	210	199	1
12-#8	.0179	.165	636	546	478	425	383	348	320	295	274	256	240	226	213	202	1
6-#9	.0114	.153	566	491	433	388	351	321	295	273	254	238	223	211	199	189	1
7-#9	.0132	.157	586	506	446	398	360	328	301	279	260	242	228	215	203	193	1
8-#9	.0152	.159	606	523	460	410	370	338	310	287	266	249	234	220	208	197	1
9-#9	.0170	.163	626	538	472	420	379	345	317	292	271	254	238	224	212	201	1
10-#9	.0189	.167	646	554	484	430	388	352	323	298	276	258	242	227	215	203	1
11-#9	.0208	.171	666	569	496	440	395	359	329	303	281	262	245	231	218	206	1
12-#9	.0227	.175	686	584	508	450	403	366	334	308	286	266	249	234	221	209	1
6-#10	.0144	.159	598	516	453	405	365	333	306	283	263	246	231	217	205	195	1
7-#10	.0168	.163	624	536	471	419	378	344	316	291	271	253	237	224	211	200	1
8-#10	.0192	.166	649	556	487	433	390	354	325	299	279	260	244	230	217	205	1
9-#10	.0217	.172	675	575	502	445	400	363	332	306	284	264	248	233	220	209	1
10-#10	.0240	.176	700	595	518	458	411	372	340	313	291	271	253	238	225	213	2
11-#10	.0264	.179	725	615	534	472	422	382	349	322	298	277	260	244	230	218	2
6-#11	.0177	.164	633	544	476	424	382	348	319	295	273	256	240	226	CC-500. 0	202	1
7-#11	.0207	.170	664	567	496	440	395	359	328	303	281	262	246	231	218	207	1
8-#11	.0237	.175	696	592	515	456	410	371	339	313	290	270	253	238	224	212	2
9-#11	.0266	.179	727	617	536	473	423	383	350	322	299	278	260	245	231	219	2
10-#11	.0295	.184	758	640	554	488	436	395	360	331	306	285	267	251	236	224	2
11-#11	.0324	.188	789	664	573	502	450	406	371	341	315	293	274	257	242	229	2
For $f_s =$ by	16,000 psi	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.9

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	CITE.	2411 -	2411

	_	CD							M	/N =	e (in.	.)					
Bars	P	1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
10-#7	.0104	.145	606	529	469	422	383	351	324	300	280	263	247	236	221	210	200
12-#7	.0125	.149	630	548	485	436	394	361	334	310	288	269	253	239	226	215	204
8-#8	.0110	.146	612	534	474	426	387	354	327	300	282	264	249	235	223	211	20
10-#8	.0137	.151	644	560	495	444	402	367	338	313	294	273	257	242	229	217	207
12-#8	.0164	,155	676	585	516	461	417	381	350	324	302	282	265	250	236	224	213
6-#9	.0104	.145	606	529	470	422	384	351	324	301	281	263	247	233	221	210	200
8-#9	.0139	.151	646	562	497	445	403	368	339	314	293	274	257	243	230	218	20
10-#9	.0174	.157	686	592	522	466	422	384	354	327	304	285	267	252	238	226	21
11-#9	.0191	.160	706	608	535	477	431	392	360	333	310	289	272	256	242	229	21
12-#9	.0208	.164	726	624	547	487	438	400	366	338	314	294	275	259	245	232	22
14-#9	.0243	.169	766	656	572	508	456	416	380	351	326	304	284	268	253	240	22
6-#10	.0132	.150	638	556	491	441	399	365	336	312	290	272	255	241	228	217	20
7-#10	.0154	.154	664	575	507	454	411	375	345	320	298	278	261	246	233	221	21
8-#10	.0176	.157	689	597	526	469	423	386	355	329	306	286	268	253	239	227	21.
9-#10	.0198	.163	715	614	539	481	432	394	362	334	311	290	272	256	242	229	21
10-#10	.0220	.165	740	636	556	495	446	406	372	344	319	298	279	263	249	235	22
12-#10	.0265	.172	791	675	588	522	468	425	389	359	333	310	291	274	258	245	23
13-#10	.0286	.176	816	694	603	534	479	434	397	365	339	316	296	278	262	248	23
6-#11	.0162	.155	673	583	514	460	416	379	349	323	301	281	264	249	236	223	21:
7-#11	.0190	.160	704	606	534	476	429	391	359	332	308	289	271	255	241	229	21
8-#11	.0217	.165	736	632	554	493	443	403	370	341	317	296	278	262	247	234	22
9-#11	.0244	.169	767	657	573	509	457	416	381	351	326	304	285	268	254	240	22
10-#11	.0271	.173	798	681	594	526	472	428	392	361	335	313	293	275	260	246	23
11-#11	.0298	.177	829	705	613	542	486	440	402	370	343	320	300	281	265	251	23
200	16,000 psi	multiply													5,000,000	Here and the	
by				.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.98

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	SI7E-25	" × 25"

		CD							M	/N =	e (in.)					
Bars	Р	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
12-#7	.0115	.141	671	588	523	471	429	393	363	337	315	296	278	263	249	236	225
8-#8	.0101	.139	653	573	511	461	419	385	356	331	309	290	273	258	245	233	222
10-#8	.0126	.143	685	600	532	479	436	399	368	342	319	299	282	266	252	239	228
12-#8	.0151	.147	717	625	554	497	451	412	381	353	330	308	290	274	259	246	233
6-#9	.0096	.139	647	568	506	456	415	381	352	328	306	287	271	256	242	230	220
8-#9	.0128	.144	687	600	534	480	436	400	369	342	319	299	282	266	252	239	228
10-#9	.0160	.149	727	633	560	502	456	417	384	355	332	310	292	276	261	248	23
11-#9	.0176	.151	747	650	573	513	465	425	392	364	338	317	298	281	266	252	240
12-#9	.0192	.154	767	663	587	524	475	433	399	369	344	321	302	285	269	255	243
14-#9	.0224	.159	807	697	613	547	494	450	413	382	356	332	312	294	277	263	250
6-#10	.0122	.142	679	594	528	476	433	397	367	340	318	298	280	265	251	238	22
7-#10	.0142	.145	705	615	546	490	446	409	377	350	326	306	288	272	257	244	23
8-#10	.0162	.149	730	635	562	504	457	418	385	357	333	311	293	276	262	248	23
9-#10	.0184	.153	756	655	580	518	469	428	394	365	340	318	299	282	267	253	24
10-#10	.0203	.156	781	676	598	532	481	438	402	373	347	324	305	287	272	258	24
11-#10	.0223	.159	806	696	612	546	492	449	412	381	354	331	311	293	277	263	25
12-#10	.0244	.165	832	714	625	556	501	456	418	386	359	335	314	295	279	265	25
13-#10	.0264	.165	857	736	644	573	516	469	430	397	369	345	323	304	287	272	25
6-#11	.0150	.147	714	623	552	495	449	411	379	352	328	307	289	272		245	23
7-#11	.0174	.151	745	647	572	512	464	424	390	362	337	316	296	280	265	251	23
8-#11	.0200	.156	777	672	592	530	478	436	401	372	345	323	304	286	271	257	24
9-#11	.0225	.159	808	697	613	547	494	450	413	382	355	332	312	294		263	25
10-#11	.0250	.163	839	721	633	563	508	462	0.000 /2	391	364	340	319	300	284	269	25
11-#11	.0274	.165	870	747	654	582	524	476	437	403	375	350	328	309	292	276	26
12-#11	.0300	.170	901	770	672	596	536	487	446	411	381	356	333	314	296	280	20
For f _e =	16,000 psi	multiply															
by				.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.9

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	SIZE-26	' x 26"
--------	---------	---------

Bars	_	CD							M	/N =	e (in	.)				72 258 246 80 266 254 88 274 261 95 280 266 72 259 247 78 264 251 83 269 256 86 272 259 91 276 263 95 280 266 00 284 270 08 293 278 76 262 250											
pars	P	1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	1.										
9-#8	.0105	.135	712	627	561	507	463	425	393	366	342	322	303	286	272	258	24										
11-#8	.0128	.138	744	655	583	526	479	440	407	379	353	332	313	296	280	266	25										
13-#8	.0152	.141	775	679	605	545	495	455	420	390	364	342	322	304	288	274	26										
15-#8	.0175	.145	807	705	625	563	511	468	432	401	374	350	330	311	295	280	26										
7-#9	.0103	.134	710	626	560	506	462	425	394	366	343	321	304	287	272	259	24										
8-#9	.0118	.136	730	643	574	519	473	435	402	374	350	328	309	293	278	264	25										
9-#9	.0133	.138	750	660	588	530	483	444	410	382	356	334	315	298	283	269	25										
10-#9	.0148	.141	770	675	600	541	493	452	418	388	362	340	320	302	286	272	25										
11-#9	.0163	.143	790	690	615	553	502	460	425	394	368	346	325	307	291	276	26										
12-#9	.0177	.146	810	707	626	564	511	468	433	400	374	351	330	311	295	280	26										
13-#9	.0192	.148	830	724	641	575	521	477	440	409	380	356	335	316	300	284	27										
15-#9	.0222	.152	870	755	667	598	541	495	455	421	394	368	346	326	308	293	27										
6-#10	.0113	.135	722	636	569	514	469	431	399	371	347	326	307	290	276	262	25										
8-#10	.0150	.141	773	677	604	544	495	454	419	389	364	341	321	303	287	273	26										
10-#10	.0188	.148	824	718	635	570	512	474	436	405	377	353	332	313	297	282	20										
12-#10	.0226	.153	875	759	670	600	543	495	456	423	393	368	346	326	309	292	27										
14-#10	.0263	.159	926	800	703	627	566	516	474	439	408	381	358	337	318	302	28										
6-#11	.0138	.139	757	665	593	535	486	446	413	384	358	336	316	299	284	270	25										
7-#11	.0161	.143	788	688	612	551	500	460	425	393	367	344	324	306	290	276	26										
8-#11	.0184	.147	820	715	634	569	516	472	435	404	377	352	332	314	296	282	26										
9-#11	.0208	.151	851	740	654	586	530	485	447	415	386	362	339	320	303	287	27										
10-#11	.0230	.154	882	765	675	604	546	499	458	425	396	370	348	328	310	294	28										
11-#11	.0254	.157	913	790	695	620	560	511	470	435	405	379	355	335	316	300	28										
13-#11	.0300	.163	976	840	736	656	591	538	494	456	424	396	371	350	331	314	29										
For f _s =	16,000 psi	multiply																									
by				.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.91										

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

		000 000
COLUMN	SI7E-27	" × 27"

		CD							M/	'N =	e (in.)					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Bars	P	CD †	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
14-#8	.0153	.136	836	736	657	594	541	497	460	428	400	375	354	335	317	302	287
16-#8	.0174	.140	868	761	678	611	556	510	472	438	409	384	361	342	324	308	293
18-#8	.0196	.143	899	786	699	629	572	524	483	449	419	393	37 0	349	331	314	299
10-#9	.0137	.134	815	718	642	581	530	488	451	420	393	369	348	329	312	297	283
12-#9	.0165	.138	855	751	670	605	551	506	467	435	406	381	359	340	322	306	291
14-#9	.0193	.143	895	783	696	626	569	521	481	447	417	391	368	347	329	313	298
16-#9	.0220	.147	935	815	722	649	588	538	496	461	430	402	378	357	338	321	306
6-#10	.0150	.129	767	679	610	553	506	466	432	403	377	354	335	317	301	286	273
7-#10	.0122	.131	793	700	628	569	520	479	444	413	386	364	343	325	308	293	280
8-#10	.0139	.134	818	721	645	584	532	490	453	422	394	370	349	330	313	298	284
9-#10	.0158	.138	844	741	662	597	544	498	462	429	401	376	354	335	318	302	288
10-#10	.0174	.140	869	762	679	612	557	511	472	438	410	384	362	342	324	308	293
11-#10	.0192	.142	894	783	696	627	570	523	482	448	418	392	369	348	330	314	299
12-#10	.0209	.146	920	803	711	640	580	532	490	455	424	398	374	353	334	317	302
13-#10	.0227	.147	945	824	730	654	595	544	502	466	433	406	382	361	342	324	309
14-#10	.0243	.150	971	844	747	670	607	554	511	474	442	413	386	366	347	329	316
15-#10	.0262	.152	996	865	764	684	619	566	521	482	449	420	394	372	352	334	318
6-#11	.0128	.133	802	708	634	573	523	481	446	415	388	365	344	325	309	294	280
8-#11	.0172	.139	865	759	677	610	556	7.500	1	438	409	384	362	342	324	308	293
							-71	504	483	449	419	393	370	349	331	314	300
9-#11	.0193	.142	896	785	698	628	571	524 539	1000000	462	430	404	380	358	340	322	307
10-#11	.0214	.144	927	810	719	647	588		5.04.00	468	437	409	384	363	343	326	310
11-#11	.0236	.149	958	833	738	662	615		15.000	479	446	417	392	370	350	332	310
12-#11 13-#11	.0257	.152	989	859 884	758 779	696				488	454	425	1	376	355	337	32
	16,000 psi								-				-				
by	10,000 psi	monipiy		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.98

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-28" x 28"

												-					
Bars	p	CD	t 0 1 2 3 4 5 6 7 8 9 124 819 729 657 596 548 505 470 439 411 387 3 127 851 756 679 616 565 520 483 451 423 397 3										ų.				
	,	*	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
10-#8	.0101	.124	819	729	657	596	548	505	470	439	411	387	366	346	329	314	1 29
12-#8	.0121	.127	851	756	679	616	565	520	483	451				1	2 122		-
14-#8	.0141	.130	882	780	700	635	580	535	496	462	433	406	384	1	1		
8-#9	.0102	.124	821	730	659	598	549	507	470	440	412	388	366	347	330	314	30
10-#9	.0128	.129	861	764	685	621	568			0.00	200		-		1	-	1
12-#9	.0153	.132	901	796	713	645	590	543	1000000	2000	100000	1000000	-	-	1	1	1
14-#9	.0179	.136	941	829	740	670	610	560	518				1	1		0.70.70	100
7-#10	.0113	.125	839	746	671	610	560	517	480	448	420	395	373	354	336	320	30.
8-#10	.0130	.129	864	766	688	624	570		1		425	0000 00		(remedice	(0.000		-
9-#10	.0146	.131	890	787	705	639	584		498	465	435				-	1	1
10-#10	.0162	.133	915	807	724	655	597	550	510	474	444	417			353	336	-
11-#10	.0178	.136	940	828	739	668	609	560	518	481	450	422	1	1	357	340	00.10000
12-#10	.0194	.137	966	850	759	685	625	574	530	494	461	433	21 00 22	385	365	347	
13-#10	.0211	.140	991	870	775	698	635	583	539	500	467	438	100000	390	370	352	1
14-#10	.0227	.143	1017	890	790	712	646	593	548	508	474	446	419	396	375	356	
6-#11	.0120	.127	848	755	676	614	564	519	481	450	421	395	374	354	336	320	306
7-#11	.0139	.130	879	778	698	631	578	532	494	460	430	405	382	362	343	326	312
8-#11	.0159	.133	911	804	720	652	595	547	507	472	442	415	391	370	352	334	318
9-#11	.0179	.136	942	830	740	670	610	560	519	482	451	423	399	378	358	340	324
10-#11	.0199	.139	973	855	762	688	625	575	531	494	461	433	407	385	365	347	330
11-#11	.0219	.142	1004	880	782	705	641	587	542	504	470	441	415	392	371	353	336
12-#11	.0239	.145	1035	905	802	721	655	600	554	514	480	449	423	400	378	359	342
13-#11	.0259	.147	1067	930	825	740	673	615	567	526	490	459	432	408	386	367	349
14-#11	.0318	.154	1098	951	840	750	680	620	570	529	492	460	432	408	386	366	348
For $f_s = 1$	16,000 psi i	multiply		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.985

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	SI7F-29"	× 29"

					COLC	MILE	JIZL										
		CD		100					M/I	V = e	(in.)						
Bars	P	+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
19-#8	.0178	.129	1011	896	804	729	667	614	570	532	497	468	442	418	397	378	360
21-#8	.0198	.132	1042	921	824	746	682	628	582	542	507	477	449	425	403	384	366
11-#9	.0131	.123	930	828	746	679	623	576	535	499	469	442	417	395	376	358	341
12-#9	.0143	.124	950	846	761	692	634	586	545	508	477	449	424	404	382	363	347
13-#9	.0154	.125	970	862	776	705	646	597	554	517	485	456	431	408	388	369	353
14-#9	.0166	.126	990	878	789	718	658	607	564	526	493	464	438	415	394	376	356
15-#9	.0178	.129	1010	896	804	729	666	614	570	531	497	467	441	418	397	378	360
16-#9	.0190	.131	1030	911	816	739	675	622	576	537	502	472	445	421	400	381	364
17-#9	.0202	.132	1050	926	830	751	686	632	585	547	511	480	452	428	406	386	368
18-#9	.0202	.134	1070	944	844	763	696	640	593	553	517	486	458	433	411	391	373
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								540	500	494	464	437	413	392	372	355	339
8-#10	.0120	.121	913	814	735	670	615	569	529 540	504	473	445	420	10000	379	361	344
9-#10	.0136	.123	938	833	752	685	629	581	551	514	482	454	428	406	386	367	351
10-#10	.0151	.125	964	857	771	701	643	593	661	523	491	461	435	413	392	373	356
11-#10	.0166	.127	989	877	789	716	656	605	571	532	491	468	442	418	397	377	360
12-#10	.0184	.130	1015	899	806	730	668		1	541	506	476	448	424	403	383	366
13-#10	.0196	.132	1040	919	824	719	681	627	580	341	300	4/0	440	424	400	500	
14-#10	.0210	.133	1065	940	842	762	698	640	592	552	516	485	458	432	410	391	372
15-#10	.0210	.136	1091	960	858	775	708	650	601	559	523	491	463	437	415	395	376
16-#10	.0242	.137	1116	882	877	792	722	663	613	570	533	500	471	446	422	401	383
			040	853	768	698	640	591	549	512	480	452	427	404	384	366	349
8-#11	.0148	.125	960	879	791	717		COMP SAN	6 18		491	462	437	413	392	374	357
9-#11	.0167	.127	SECURE 01 4	908	812		1		2000000	0000000		471	444	421	399	380	362
10-#11	.0186	.130	1022 1054	930	832						510	480	452		406	386	368
11-#11	.0205	.133	1034	955	V.50000000		704	1		1	520	488	460	435	412	392	374
12-#11	.0223	.136	1116	982		110 100 100 1010	722				533	500	0.50		1	401	383
13-#11	.0240	.137	11147	1006		1000	100	20000		-		100000000000000000000000000000000000000	1100	452	428	407	388
14-#11	.0200	1.140				-	-	_	_	-		-	-	-	-	-	-
For f _s =	16,000 p: y by	si		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.985

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-30" x 30"

		CD							M/	N =	e (in.)						
Bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
9-#9	.0100	.115	940	844	765	699	644	597	556	520	490	462	437	415	395	377	360
11-#9	.0122	.117	980	879	795	725	668	618	575	540	506	477	452	428	408	388	37
13-#9	.0144	.120	1020	911	822	750	690	637	593	554	520	490	464	440	418	398	38
15-#9	.0167	.123	1060	944	850	775	710	656	610	570	535	504	475	451	428	409	38
8-#10	.0113	.117	963	863	781	713	657	609	566	530	498	470	445	421	400	382	36
9-#10	.0127	.118	989	885	800	730	671	621	580	541	509	479	454	430	410	390	37
10-#10	.0141	.119	1014	907	820	748	686	636	591	553	520	490	463	439	417	398	38
11-#10	.0155	.122	1039	925	835	760	699	645	600	560	526	495	468	443	421	401	31
12-#10	.0169	.123	1065	950	855	779	714	660	614	572	537	505	478	453	430	411	3
13-#10	.0163	.125	1090	970	872	793	726	670	623	581	545	513	484	459	436	415	3
14-#10	.0198	.128	1116	990	890	807	738	681	632	590	551	520	490	464	441	419	4
15-#10	.0212	.129	1141	1011	909	825	754	685	644	600	563	528	498	473	448	427	4
16-#10	.0226	.131	1166	1032	925	837	765	705	654	609	570	536	505	478	454	431	4
17-#10	.0240	.133	1192	1050	944	854	778	716	664	618	578	544	512	484	460	438	4
6-#11	.0104	.115	947	850	770	704	649	600	560	524	493	465	440	418	398	380	3
7-#11	.0121	.117	978	876	793	724	666	617	575	539	505	477	451	428	406	388	3
8-#11	.0139	.119	1010	904	816	745	685	634	590	550	517	488	461	438	416	396	3
9-#11	.0156	.122	1041	928	838	762	700	646	600	561	527	497	469	444	422	402	3
10-#11	.0173	.124	1072	953	860	780	716	661	615	575	537	506	478	453	430	411	3
11-#11	.0190	.126	1103	980	880	801	734	677	629	586	550	518	488	463	440	419	3
12-#11	.0208	.129	1134	1005	901	819	749	690	640	596	559	525	495	470	445	425	4
13-#11	.0225	.131	1166	1030	925	838	765	705	654	609	570	536	505	478	454	431	4
14-#11	.0242	.133	1197	1056	945	856	780	723	666	620	580	545	514	485	462	438	4
15-#11	.0260	.135	1228	1081	966	875	796	733	679	631	590	555	523	494	469	446	4
For f _s =	16,000 ps	i		.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.9

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN	CITE 01/	03//
COLUMN	SIZE-31	x 31"

Bars	p	CD							M/	N = 6	(in.)						
Duis	,	- t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	1
16-#8	.0132	.115	1064	954	865	791	728	675	629	589	554	523	495	470	447	426	40
20-#8	.0165	.118	1127	1007	912	833	766	709	660	617	580	546	517	491	467	445	4
12-#9	.0125	.115	1051	944	855	782	720	668	622	582	548	517	489	464	442	422	4
14-#9	.0146	.116	1091	978	888	810	748	691	643	602	566	534	505	480	456	435	4
16-#9	.0167	.118	1131	1012	915	836	769	712	662	620	582	548	519	493	469	446	4
18-#9	.0188	.122	1171	1044	942	857	787	728	676	632	592	559	528	500	475	453	4
20-#9	.0208	.125	1211	1076	969	881	808	746	692	646	606	570	538	510	485	462	4
8-#10	.0105	.112	1014	912	829	759	700	650	606	569	535	505	478	454	433	413	3
10-#10	.0132	.115	1065	956	866	792	730	676	630	590	555	524	495	470	443	427	1
11-#10	.0145	.116	1090	977	885	809	745	690	643	602	566	534	505	479	456	435	1
12-#10	.0159	.118	1116	999	903	825	758	702	654	611	574	541	512	486	462	440	4
13-#10	.0172	.118	1141	1010	923	844	776	718	668	625	587	554	524	497	473	450	1
14-#10	.0185	.120	1166	1040	940	857	788	729	678	634	595	560	530	502	478	456	1
15-#10	.0199	.124	1192	1061	955	869	777	736	684	638	598	564	532	504	479	456	1
16-#10	.0212	.125	1217	1081	974	886	812	749	696	649	609	573	541	513	487	464	4
17-#10	.0225	.127	1243	1102	992	900	824	760	705	658	617	580	548	519	492	469	4
18-#10	.0238	.128	1268	1124	1010	917	839	774	718	669	627	589	556	527	500	476	4
8-#11	.0130	.115	1061	952	863	789	727	674	628	588	553	522	494	469	446	425	4
9-#11	.0146	.116	1092	974	879	801	736	680	632	591	555	523	494	468	445	424	4
10-#11	.0162	.118	1123	1004	908	830	763	706	657	615	578	544	515	489	465	443	4
11-#11	.0178	.120	1155	1031	932	850	781	722	672	628	590	556	525	498	473	451	4
12-#11	.0195	.123	1186	1056	951	867	795	735	683	637	598	563	532	503	479	457	4
13-#11	.0210	.124	1217	1093	976	887	814	752	698	652	611	575	543	515	489	466	4
14-#11	.0228	.127	1248	1106	996	904	828	764	709	661	619	582	550	521	494	471	4
15-#11	.0244	.129	1279	1132	1016	922	843	777	721	672	629	592	558	529	502	478	4
16-#11	.0260	.130	1311	1160	1040	943	863	795	737	686	643	604	570	539	512	487	4
for $f_s = 1$ multiply	6,000 psi by			.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.9

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

	SIZE-32"	
COLUMN	SIZE-37	¥ .57

Bars		CD							M/	N = 0	e (in.)						
bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
12-#9	.0117	.110	1104	995	905	830	766	712	665	624	588	555	526	500	476	455	43
14-#9	.0137	.112	1144	1029	935	857	791	734	685	642	604	570	540	514	488	466	44
16-#9	.0156	.114	1184	1062	965	882	812	754	704	660	619	584	553	525	500	476	45
18-#9	.0176	.117	1224	1097	992	906	835	773	720	675	633	596	565	535	509	485	46
20-#9	.0195	.120	1264	1130	1020	930	855	790	735	687	645	608	575	545	518	494	47
10-#10	.0124	.110	1118	1008	916	841	776	721	674	631	595	562	532	506	482	460	44
11-#10	.0136	.112	1143	1030	935	855	790	733	684	640	603	569	540	513	487	466	4
12-#10	.0149	.113	1169	1050	954	874	805	746	696	651	614	580	549	520	496	473	4.
13-#10	.0161	.114	1194	1071	972	890	820	760	709	665	624	589	558	530	504	480	40
14-#10	.0173	.115	1220	1095	991	907	835	775	721	675	635	600	567	539	512	489	4
15-#10	.0186	.118	1245	1115	1009	920	845	784	730	682	640	604	571	543	516	492	4
16-#10	.0198	.120	1270	1134	1024	935	859	794	738	690	648	610	578	548	520	496	47
17-#10	.0211	.121	1296	1155	1042	950	875	808	751	702	659	621	586	556	529	504	4
18-#10	.0224	.123	1321	1178	1060	966	885	819	760	710	666	627	593	562	535	510	4
8-#11	.0122	.110	1114	1005	914	839	774	719	671	630	593	560	531	505	480	459	4:
9-#11	.0137	.112	1145	1030	935	857	792	734	685	642	604	570	540	514	488	467	4
10-#11	.0152	.113	1176	1055	960	880	810	751	701	656	617	584	552	524	500	476	4.
11-#11	.0167	.115	1207	1081	980	898	826	766	714	669	629	594	561	533	507	484	4
12-#11	.0183	.117	1238	1109	1002	916	845	781	726	681	640	604	570	541	515	491	47
13-#11	.0198	.120	1270	1133	1023	934	858	795	739	690	648	610	577	547	520	496	4
14-#11	.0213	.121	1301	1160	1050	955	878	811	755	705	662	623	590	558	531	506	4
15-#11	.0228	.124	1332	1186	1070	970	890	822	764	714	669	630	595	563	535	510	4
16-#11	.0244	.125	1363	1211	1090	991	910	840	780	728	682	641	606	575	545	520	49
for $f_s = 1$ multiply		i		.935										.980			

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-33" x 33"

D		CD			U 1	V			M/N	√ = e	(in.)		-				
Bars	Р	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
13-#9	.0119	.106	1179	1065	972	895	826	770	720	676	639	603	572	544	519	496	47
15-#9	.0138	.108	1219	1100	1002	920	850	791	740	695	654	618	586	556	531	506	48.
17-#9	.0156	.111	1259	1132	1030	944	871	809	755	709	666	630	596	565	540	515	49
19-#9	.0175	.113	1299	1168	1060	971	894	830	774	725	681	645	610	578	552	526	50
10-#10	.0117	.106	1173	1060	970	892	825	768	719	675	636	601	570	542	517	495	47
11-#10	.0128	.107	1198	1082	986	906	840	780	730	685	645	610	579	551	524	501	48
12-#10	.0140	.108	1224	1106	1010	930	860	800	749	703	664	626	595	565	539	515	49
13- #10	.0152	.110	1249	1124	1022	940	866	805	751	705	664	628	595	565	538	514	4
14-#10	.0163	.111	1275	1148	1042	956	884	820	755	718	676	639	605	574	547	521	50
15 -#10	.0175	.113	1300	1168	1060	971	895	830	775	725	682	646	610	579	552	526	50
16-#10	.0187	.115	1325	1190	1078	985	909	842	785	735	690	651	616	585	557	531	5
17- #10	.0198	.116	1351	1211	1098	1003	925	856	798	746	703	662	626	595	565	540	5
18-#10	.0210	.117	1376	1232	1115	1019	939	869	808	758	711	671	635	601	572	545	5
19-#10	.0221	.118	1402	1258	1135	1037	951	882	821	768	721	679	643	611	581	554	5
8-#11	.0115	.106	1169	1058	962	886	820	763	714	10000 10	632	597	566	539		491	4
9-#11	.0129	.107	1200	1084	989	909	841	782	731	687	646	612	580	552	0.00	503	4
10-#11	.0143	.109	1231	1111	1012	930	858	796	745	699	658	621	590	560	534	510	4
11-#11	.0157	.111	1262	1138	1031	948	875	813	758	711	670	632	599	568	542	517	4
12-#11	.0172	.112	1293	1162	1058	970	895	830	774	725	682	644	610	580	551	527	5
13-#11	.0186	.115	1325	1190	1078	985	909	842	2 00000	77 (1883)76	690	651	616	200	2.83	531	5
14-#11	.0201	.116	1356	1215	1100	1008	926	859		200	704	663	628	596	566	541	5
15-#11	.0215	.117	1387	1241	1122	1025	945	875	815		716	675	639	605	575	550	5
16-#11	.0229	.120	1418	1268	1143	1042	958	886	825	770	724	681	645	611	581	554	5
17-#11	.0244	.121	1450	1292	1168	1064	976	904	840	785	738	695	656	622	592	564	5
	16,000 p	osi				. cò	1	5 %								005	
multiply	y by		1	.935	.940	.950	.960	.965	.970	.970	.970	.975	.975	.980	.985	.985	.9

ECCENTRICALLY LOADED CONCRETE COLUMNS SECTION III—SPIRALLY REINFORCED ROUND COLUMNS

This third section covers eccentric loads on spirally reinforced round concrete columns and parallels exactly the first section, so the explanation on pages 275-280 and 297-298 should be read before going on with the following description.

The necessary size and pitch of spiral reinforcement can be taken from the tables for axially loaded spirally reinforced round columns on pages 252 to 257, inclusive. The vertical bars are spaced uniformly around a ring just inside of and in contact with the spiral.

While the scope of these tables is sufficient for most purposes, some illustrative examples are shown for those who wish to design beyond their range or merely to see how they were prepared.

Example—For the table on page 337, verify the value N=135 with an eccentricity of 2 in. for a 16 in. round spirally reinforced column of 3000 psi concrete reinforced with 6-#8 bars, using $f_s=20{,}000$ psi, $f_c=675$ psi, n=10.

6.#8 Bars = 4.74 sq in. = 42.7 sq in.

Since the point of application is within R/4 of the center of the 16 in. round section, the load apparently acts within the kern of the transformed section,* producing compression over the entire area. Solve by the elastic theory using the transformed section:—

Area of Capacity Section Transformed Section (Axial Loading) Moment of Inertia Concrete
$$\frac{\pi}{4}$$
 (16)² = 201.0 201 @ 675 = 135,700 201 $\times \frac{8^2}{4}$ = 3216 Bars 9 \times 6 \times 0.79 = $\frac{42.7}{243.7}$ sg in. $\frac{6}{230,500}$ b $\frac{94,800}{230,500}$ b $\frac{1}{42.7}$ $\times \frac{(5.5)^2}{2}$ = $\frac{646}{3862}$ in. $\frac{6}{3862}$ in. $\frac{1}{42.7}$ sg in.

Unit direct stress
$$=\frac{N}{A}=\frac{135,000}{243.7}=554$$
 psi

Unit bending stress =
$$\frac{Nec}{I} = \frac{135,000 \times 2 \times 8}{3862} = \frac{559}{1113} \text{ psi Max Comp}$$

5 psi possible tension, showing

that the load is really just outside of the kern of the section.

$$f_s = 10 (1113 - 2.5 \times 1118/16) = 9380 \text{ psi comp}$$

* See page 93.

† The transformed steel area is assumed to be a ring with a mean radius r_m of 5.5 in.

$${\rm I}\,=\frac{\pi}{64}\,(D_1^4-\,D_2^4)\,=\frac{A\,r_m^2}{2}$$

ECCENTRICALLY LOADED SPIRALLY REINFORCED ROUND CONCRETE COLUMNS

The allowable combined stress for this condition is obtained by using the same procedure as on page 277 viz., $\frac{f_a}{F_c} + \frac{f_b}{F_c} = 1$:—

$$\frac{135,000}{230,500} + \frac{559}{1350} = 0.585 + 0.414 = 0.999.$$

By the method of the 1951 code, using the simplified procedure of Ex. I-Second Solu-C = 946/1350 = 0.701

tion, page 278:—
$$f_a = \frac{230,500}{243.7} = 946 \text{ psi}$$

$$A+2 243.7 \times 16 \times 16$$

$$D = \frac{At^2}{21} = \frac{243.7 \times 16 \times 16}{2 \times 3862} = 8.08$$

$$\frac{B}{t} = \frac{CD}{t} = \frac{0.701 \times 8.08}{16} = 0.354$$

$$\frac{B}{t} = \frac{CD}{t} = \frac{0.701 \times 8.08}{16} = 0.354 \qquad N = \frac{P}{1 + \frac{Be}{t}} = \frac{230,500}{(1 + 0.354 \times 2)} = 135 \text{ kips}$$

The above value for D can also be obtained:— $p_q = \frac{6 \times 0.79}{201} = 0.0236;$

$$g = \frac{11}{16} = 0.688$$

$$D^* = \frac{1 + (n-1) p_g}{\frac{1}{9} + 0.25 (n-1) p_g g^2} = \frac{1 + 0.212}{0.125 + 0.25 \times 0.212 \times (0.688)^2} = 8.08$$

When the load falls outside of the kern of the section and the ratio $e/t < \frac{2}{3}$, as explained on page 279, ACI 1109a permits design for an uncracked section.

Example—Show that using the data from the previous example but increasing the eccentricity to 6 in. reduces the value of N to 74 kips. Taking the values established in the previous example gives:-

Unit direct stress
$$=\frac{N}{A}=\frac{74,000}{243.7}=304 \text{ psi}$$

Unit bending stress =
$$\frac{Nec}{I} = \frac{74,000 \times 6 \times 8}{3862} = \frac{920 \text{ psi}}{1224 \text{ psi Max Comp}}$$
616 psi Max Tens

$$N = \frac{P}{1 + \frac{Be}{t}} = \frac{230,500}{1 + 0.354 \times 6} = 74 \text{ kips}$$

^{*} See page 278.

[†] If tension is neglected in the concrete on the side of the neutral axis opposite from the load (theory of the cracked section), then it is necessary to balance moments about the point of application of the load and also to balance forces perpendicular to the cross section of the column as illustrated on pages 279-280. With the vertical reinforcement arranged in a ring around the column, the resulting cubic and trigonometric equations are rather involved. (See Sutherland and Reese "Reinforced Concrete Design," John Wiley & Sons, Inc., 1943, pages 124-125.) This is beyond the scope of a handbook such as this and properly belongs in a textbook on the subject.

 $f'_c = 3000 \text{ psi}$ $f_s = 20,000 \text{ psi}$

COLUMN	SIZE-14 IN.	DIAMETER

		CD			1-		٠		M/N	√ = e	(in.)						
Bars	Р	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#5	.0121	.355	141	104	82	68	58	51	45	40	37	34	19	17	16	14	13
8-#5	.0161	.375	154	112	88	72	62	54	47	42	38	35	22	20	18	16	15
10-#5	.0201	.395	166	119	93	76	64	56	49	44	40	36	24	22	20	18	17
6-#6	.0171	.382	157	114	89	73	62	54	48	43	39	35	22	20	18	16	15
7-#6	.0200	.395	166	119	93	76	64	56	49	44	40	36	24	22	20	18	17
8-#6	.0228	.408	174	124	96	78	66	57	50	45	41	37	26	23	21	20	18
9-#6	.0257	.421	183	129	99	81	68	59	52	46	42	38	27	25	22	21	19
6-#7	.0234	.411	176	125	97	79	66	58	51	45	41	37	26	23	21	19	18
7-#7	.027 3	.428	188	132	101	82	69	60	53	47	42	39	28	25	23	21	19
8-#7	.0312	.445	200	138	106	86	72	62	54	49	44	40	30	27	25	23	21
6-#8	.0308	.442	199	138	106	86	72	62	54	49	44	40	30	27	25	23	21
7-#8	.0359	.463	215	147	112	90	75	65	57	51	46	42	32	29	27	25	23
8-#8	.0410	.482	230	155	117	94	78	67	59	52	47	43	35	32	29	27	25
6-#9	.0390	.475	224	152	115	92	77	66	58	52	47	42	34	31	28	26	24
7-#9	.0454	.498	244	163	122	98	82	70	61	54	49	44	37	34	31	28	26
6-#10	.0495	.508	256	170	127	101	84	72	63	56	50	46	39	35	32	30	28
	16,000 psi	<u> </u>	250				.960					.980	†	†	†	†	†

SPIRALLY REINFORCED ROUND COLUMNS-

Safe Load in Kips for Various Eccentricities

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-16 IN. DIAMETER

									-	_	-	_	_				
		CD t							M/I	V = e	(in.)						
Bars	р	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#6 9-#6	.0131 .0197	.311 .337	189 215	144 161	116 128	98 107	84 92	74 80	(ASS)	60 64		50 53			26 32	24 29	22 27
6-#7 7-#7 9-#7 11-#7	.0179 .0209 .0269 .0328	.331 .342 .364 .382	208 220 244 268	156 164 179 194	125 130 141 152	104 108 117 125	93 99	78 81 86 92	72 77	63 65 69 73	59 62		50 53	41	30 33 38 41	28 30 34 38	26 28 32 35
6-#8 7-#8 8-#8 9-#8	.0236 .0275 .0314 .0353	.352 .366 .378 .390	231 247 262 278		135 142 149 156	112 118 123 128	100 104	84 87 91 94	74 77 80 83		63 65	58 59	53 55	38 41 44 47	35 38 41 43	32 35 37 40	29 32 35 37
6-#9 7-#9 8-#9	.0298 .0348 .0398	.373 .388 .404	256 276 296		147 155 164	121 127 134	103 108 113	89 94 98			64 67 70	59 61 64	54 56 59	43 47 51	38 43 46	35 39 42	32 37 39
6-#10 7-#10	.0379 .0443	.398 .416	288 314	206 222	160 171	131 140	111 118	96 102	85 90	76 80	69 73	63 66	58 61	50 54	45 49	42 45	39 42
6-#11 7-#11	.0466 .0544	.422 .441	323 354	227 246	175 188	142 152	120 128	104 110	91 97	82 87	74 78	67 71	62 66	55 60	51 56	47 51	43 48
For f ₈ =	16,000 psi	multiply		.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	†	†	†	†

Outside diameter of spiral should be 3 in. less than outside diameter of column.

† To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-18 IN. DIAMETER

Bars		CD t		16					M/N	V = е	(in.)						
bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#7	.0141	.280	244	191	156	133	115	102	91	82	75	69	64	60	56	38	3.
9-#7	.0212	.305	280	214	174	146	126	111	99	89	81	75	69	64	60	46	42
11-#7	.0259	.320	304	230	185	155	133	117	104	94	85	78	72	67	63	51	47
6-#8	.0186	.296	267	206	168	141	122	108	96	87	79	73	67	63	59	43	39
7-#8	.0217	.307	283	217	175	147	127	112	100	90	82	75	70	65	60	46	42
8-#8	.0248	.317	298	226	182	153	131	115	103	93	84	77	72	66	62	50	40
9-#8	.0279	.326	314	237	190	159	136	119	106	96	87	80	74	68	64	53	49
11-#8	.0341	.344	346	257	205	170	146	127	113	102	92	84	78	72	67	59	55
6-#9	.0235	.312	292	222	180	151	130	114	102	92	84	77	71	66	62	49	4:
7-#9	.0275	.325	312	235	189	158	136	119	106	95	87	80	73	68	64	53	49
8-#9	.0314	.335	332	249	199	166	142	124	110	99	90	83	76	71	66	57	53
9-#9	.0353	.347	352	261	208	172	147	129	114	103	93	85	79	73	68	60	50
10-#9	.0392	.357	372	274	217	180	153	133	118	106	96	88	81	76	70	64	59
6-#10	.0299	.332	324	243	195	162	139	122	108	98	89	81	75	70	65	55	5
7-#10	.0349	.346	350	260	207	172	147	128	114	102	93	85	78	73	68	60	5.
8-#10	.0399	.359	375	276	218	181	154	134	119	107	97	89	82	76	71	65	60
9-#10	.0448	.370	401	293	230	190	162	141	125	112	101	93	85	79	74	69	6.
6-#11	.0367	.350	359	266	211	175	150	130	116	104	94	86	80	74	69	62	5
7-#11	.0429	.366	390	285	225	186	158	138	122	109	99	91	84	78	72	68	6
8-#11	.0490	.380	422	306	240	197	168	145	129	115	104	96	88	82	76	71	6
For $f_{\varepsilon} =$	16,000 psi i	multiply															
by				.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	†	1

[†] To right of vertical line concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-20 IN. DIAMETER

		CD							M/N	۷ = e	(in.)						
Bars	P	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#8	.0151	.252	307	245	204	175	153	136	122	111	102	94	87	81	76	72	52
7-#8	.0176	.259	323	256	213	182	159	141	126	115	105	97	90	84	79	74	55
8-#8	.0201	.265	338	267	221	188	164	145	130	118	108	100	93	86	81	76	59
9-#8	.0226	.271	354	278	229	194	169	150	134	122	111	102	95	88	83	78	63
10-#8	.0252	.278	370	289	238	201	175	155	139	126	115	106	98	91	85	80	66
11-#8	.0277	.285	386	300	246	208	180	159	142	129	118	108	100	93	87	82	70
12-#8	.0302	.291	402	312	254	215	186	164	147	132	121	111	103	96	90	84	73
6-#9	.0191	.263	332	263	218	186	162	143	129	117	107	99	91	85	80	75	57
7-#9	.0223	.271	352	277	228	194	169	149	134	122	111	102	95	88	83	78	63
8-#9	.0255	.279	372	291	239	202	176	155	139	126	115	106	98	91	86	82	67
9-#9	.0287	.287	392	304	249	210	182	161	144	130	119	109	101	94	88	83	71
10-#9	.0318	.294	412	318	259	219	189	167	149	135	123	113	105	97	91	85	76
11-#9	.0351	.301	432	332	270	227	196	172	154	139	127	116	108	100	94	88	80
6-#10	.0243	.276	364	285	234	199	173	153	137	124	113	104	97	90	84	79	65
7-#10	.0283	.286	390	303	248	210	182	160	144	130	118	109	101	94	88	83	71
8-#10	.0324	.295	415	320	261	220	190	168	150	135	123	113	105	98	91	86	76
9-#10	.0364	.304	441	338	274	231	199	175	156	141	129	118	109	102	95	89	82
10-#10	.0404	.313	466	354	286	240	207	182	162	146	133	122	113	105	98	92	87
6-#11	.0298	.289	399	310	253	214	185	163	146	132	120	111	102	95	89	84	73
7-#11	.0348	.301	430	330	268	226	195	172	153	138	126	116	107	100	93	87	80
8-#11	.0398	.311	462	352	285	239	206	181	161	145	132	122	112	104	98	92	86
9-#11	.0447	.320	493	374	300	252	216	190	169	152	138	127	117	109	102	96	90
For f _s =	16,000 psi	multiply															10.1
by	, ,			.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	t

 $[\]dagger$ To right of vertical line concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-22 IN. DIAMETER

_		CD							M/N	l = e	(in.)						
Bars	Þ	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7-#8	.0146	.226	368	300	253	219	193	172	156	142	131	121	113	105	99	93	88
8-#8	.0166	.232	383	311	261	226	199	177	160	146	134	124	115	108	101	95	90
9-#8	.0187	.238	399	322	270	233	204	182	164	150	137	127	118	110	103	97	92
10-#8	.0208	.243	415	334	279	240	210	187	169	154	141	130	121	113	106	100	94
11-#8	.0229	.248	431	345	288	247	216	192	173	158	144	133	124	116	108	102	96
12-#8	.0250	.253	447	356	297	254	222	197	178	161	148	136	127	118	111	104	98
. //0	0150	000	377	306	258	223	196	175	158	144	133	123	114	107	100	94	89
6-#9	.0158	.230	397	321	269	232	204	182	164	149	137	127	118	110	103	97	92
7-#9	.0184	100000000000000000000000000000000000000	417	335	280	241	211	188	169		141	131	121	113	106	100	94
8-#9	.0211	.244	437	350	291	250	218	194	175	159	146	134	125	117	109	103	97
9-#9	.0237	.256	457	364	302	258	226	200	180	164	150	138	128	120	112	106	100
10-#9	.0263	.262	477	378	313	267	233	207	186	168	154	142	132	123	115	108	102
11-#9	.0316	.267	497	392	324	276	240	213	191	173	158	146	135	126	118	111	105
12-#9	.0316	.207	47/	372	324	2/0	240	213	171	173	130	140	100	120	110		100
6-#10	.0208	.241	409	330	276	237	208	186	167	152	140	129	120	112	105	99	94
7-#10	.0234	.249	435	348	290	249	218	194	174	158	145	134	125	116	109	103	97
8-#10	.0267	.257	460	366	304	260	227	201	181	164	150	139	129	120	113	106	100
9-#10	.0301	.264	486	384	318	271	236	210	188	170	156	144	134	124	117	110	104
10-#10	.0334	.270	511	402	332	382	246	217	195	177	162	149	138	129	120	113	107
11-#10	.0368	.277	536	420	344	292	254	225	201	182	167	153	142	132	124	116	110
, "11	.0246	.252	444	355	295	253	221	196	177	161	147	136	126	118	110	104	98
6-#11	.0248	.261	475	376	312	266	232	206	185	168	154	142	132	123	115	108	102
7-#11	.0328	.270	507	399	329	280	244	216	194	175	160	148	137	128	120	112	106
8-#11	.0328	.278	538	421	346	293	255	225	202	183	167	154	142	133	124	117	110
9-#11 10-#11	.0370	.285	569	443	362	307	266	235	210	190	173	160	148	138	129	121	114
			-		-		-										
For f _s =	16,000 psi	multiply		.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.980

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN TO THE PARTY	CITE OF	 DIA METER
		DIAMETER

		CD	1	-					M/N	l = e	(in.)						
Bars	P	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
10-#7	.0133	.202	425	353	302	265	235	211	192	176	162	151	141	132	124	117	111
12-#7	.0159	.207	449	372	317	277	245	220	200	183	169	157	146	137	129	122	115
8-#8	.0140	.203	431	358	307	268	238	214	194	178	164	152	142	133	125	118	112
10-#8	.0175	.211	463	382	326	284	251	225	204	187	172	160	149	139	131	124	117
12-#8	.0210	.218	495	406	345	299	264	237	214	196	180	167	156	146	137	129	122
6-#9	.0133	.202	425	353	302	265	235	211	192	176	162	151	141	132	124	117	111
8-#9	.0177	.211	465	384	327	285	252	226	205	188	173	160	150	140	132	124	118
10-#9	.0221	.220	505	414	350	304	269	240	218	199	183	170	158	148	139	131	124
11-#9	.0243	.224	525	429	362	314	277	248	224	204	188	174	162	152	142	134	127
12-#9	.0265	.228	545	443	374	323	285	254	230	210	193	179	166	155	146	137	130
14-#9	.0310	.236	585	473	397	342	301	268	242	220	202	187	174	163	153	144	136
6-#10	.0169	.210	457	378	322	280	248	223	202	185	170	158	147	138	130	122	116
7-#10	.0197	.215	483	397	338	294	260	233	211	193	177	164	153	144	135	127	120
8-#10	.0225	.221	508	416	352	305	269	241	218	199	183	170	158	148	139	131	124
9-#10	.0253	.226	534	436	368	318	280	250	227	207	190	176	164	153	144	136	128
10-#10	.0281	.231	559	454	382	330	290	259	234	214	196	182	169	158	148	139	132
12-#10	.0337	.240	610	492	412	354	311	277	250	228	209	193	179	168	157	148	140
13-#10	.0365	.244	635	510	426	366	321	286	257	234	215	199	184	172	162	152	144
6-#11	.0207	.217	492	404	343	298	263	236	214	195	180	167	155	145	136	129	122
7-#11	.0242	.224	523	427	361	313	276	246	223	204	187	173	161	151	142	134	127
8-#11	.0276	.230	555	451	380	328	289	258	233	213	195	181	168	157	148	139	132
9-#11	.0311	.236	586	474	398	343	301	269	243	221	203	188	174	163	153	144	136
10-#11	.0345	.242	617	497	416	357	313	279	252	229	210	194	180	168	158	149	141
11-#11	.0379	.247	648	520	433	372	326	290	261	237	218	201	187	174	164	154	145
For f _s =	16,000 psi	multiply		.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.980

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLL	 CITE	01	 DIAMETER	

					LOMI	· JILI		114.	DIAM	LILK							
		CD t							M/I	V = e	(in.)						
Bars	P	†	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
9-#8	.0134	.187	500	421	364	320	286	258	236	216	200	186	174	164	154	146	138
11-#8	.0164	.193	532	446	384	337	300	271	247	226	209	194	182	170	160	152	144
13-#8	.0193	.198	563	470	403	353	314	283	257	236	218	202	189	177	167	157	149
15-#8	.0223	.204	595	494	422	369	328	294	267	245	226	210	196	183	172	163	154
7-#9	.0132	.186	498	420	363	320	285	258	236	216	200	186	174	164	154	146	138
8-#9	.0151	.190	518	435	375	330	294	266	242	222	206	191	178	168	158	149	141
9-#9	.0169	.194	538	450	387	340	303	273	249	228	211	196	183	172	162	153	145
10-#9	.0188	.197	558	466	400	350	312	281	256	235	217	201	188	176	166	157	149
11-#9	.0207	.200	578	481	412	361	321	289	263	241	222	206	193	180	170	160	152
12-#9	.0226	.204	598	496	424	371	329	296	269	246	227	211	197	184	173	164	155
13-#9	.0245	.207	618	512	437	381	338	304	276	252	233	216	201	189	177	167	158
15-#9	.0282	.214	658	542	461	401	355	318	288	263	243	225	210	196	184	174	165
6-#10	.0143	.188	510	429	371	326	291	263	240	220	204	190	177	166	157	148	140
8-#10	.0191	.198	561	468	402	352	313	282	256	235	217	201	188	176	166	157	149
10-#10	.0239	.206	612	507	433	378	335	301	274	250	231	214	200	187	176	166	158
12-#10	.0287	.214	663	546	464	404	357	320	290	266	245	227	211	198	186	175	166
14-#10	.0335	.221	714	585	495	429	379	339	307	280	258	239	222	208	196	184	174
6-#11	.0176	.195	545	456	392	344	306	276	251	230	213	198	185	173	163	154	146
7-#11	.0206	.200	576	480	411	360	320	288	262	240	221	206	192	180	169	160	152
8-#11	.0235	.206	608	504	430	376	333	300	272	249	229	213	199	186	175	165	156
9-#11	.0264	.211	639	527	449	391	346	311	282	258	238	220	205	192	181	171	162
10-#11	.0294	.216	670	551	468	406	359	322	292	267	245	227	212	198	187	176	166
11-#11	.0323	.220	701	574	487	422	373	334	302	276	254	235	219	205	192	182	172
13-#11	.0382	.228	764	622	525	453	399	357	322	294	270	250	233	218	205	193	182
For f _s =	16,000 psi	multiply		.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.980

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-28 IN. DIAMETER

	1	1	1														
Bars	P	CD			,				M/	N = (e (in.)		u'.				
	•	†	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
10-#8	.0128	.172	574	490	427	379	340	309	283	260	242	225	211	198	187	177	168
12-#8	.0154	.177	606	515	447	396	355	321	294	271	251	234	219	205	194		1
14-#8	.0179	.181	637	539	468	413	369	334	306	281	260	242	227	213	201	190	30. 0
8-#9	.0130	.172	576	492	428	380	341	310	284	261	242	226	212	199	100	170	140
10-#9	.0162	.178	616		1	401	360	326	298	274		237	212	208	188	178	169
12-#9	.0195	.184	656			423	378	341	312		265	247	231	217	204	186	176
14-#9	.0227	.190	696	585	505	443	396	357	325	299	276	257	240	225	212	193	183
				1									-10		1	200	170
7-#10	.0144	.175	594	505	440	390	350	317	290	267	247	231	216	203	192	181	172
8-#10	.0165	.179	619	525	455	403	361	327	298	275	254	237	222	208	197	186	177
9-#10	.0186	.183	645	545	472	416	372	337	307	283	262	244	228	214	202	191	181
10-#10	.0206	.186	670	565	488	430	384	347	317	291	269	250	234		207	196	186
11-#10	.0227	.190	695	584	504	443	395	356	325	298	276	256	240	225	212	200	190
12-#10	.0248	.193	721	604	520	456	406	367	334	306	283	264	246	231	217	205	195
13-#10	.0268	.196	746	624	535	470	418	377	343	314	290	270	252	236	222	210	199
14-#10	.0289	.199	772	644	552	483	430	387	352	322	298	277	258	242	228	215	204
6-#11	.0152	.177	603	512	445	394	353	320	292	269	0.50	000	010				
7-#11	.0177	.181	634	537	465	411	368	333	304	279	250	233	218	205	193	183	173
8-#11	.0203	.186	666	561	485	428	382	345	315	289	268	241	226	212	200	189	179
9-#11	.0228	.190	697	585	505	444	396	357	326	299	276	257	240	219	206	195	185
10-#11	.0253	.194	728	610	525	460	410	370	336	309	286	265	248	232	219	201	190
11-#11	.0278	.198	759	633	544	476	424	382	347	318	294	273	255	239	225	212	201
12-#11	.0304	.201	790	658	564	493	438	394	358	328	303	281	262	246	232	212	207
13-#11	.0330	.205	822	682	583	509	452	406	368	338	312	289	270	252	232	224	212
14-#11	.0355	.208	853	706	602	525	465	418	379	348	320	297	277	259	244	230	218
E	14 000 - 1	let I	_														
by	16,000 psi	multiply		025	045	040	046	045	0/5	075	005						
Бу				.933	.945	.900	.960	.965	.965	.9/5	.980	.980	.980	.980	.980	.980	.980
								-		_				************			

 $f'_c = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-30 IN. DIAMETER

		CD						2	M/N	l = e	(in.)						
Bars	Р	CD †	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
9-#9	.0127	.158	657	569	502	449	405	370	341	315	294	274	258	243	230	218	207
11-#9	.0156	.162	697	600	526	469	423	385	353	327	304	284	266	250	237	224	213
13-#9	.0184	.166	737	632	554	493	443	403	370	340	316	296	278	261	246	234	222
15-#9	.0212	.170	777	663	579	513	461	419	383	354	328	306	287	270	254	241	229
8-#10	.0144	.160	680	585	515	458	414	377	346	320	297	278	261	246	232	220	209
9-#10	.0162	.163	706	608	534	476	430	392	360	332	309	288	271	255	241	229	217
10-#10	.0180	.166	731	628	550	490	441	402	368	340	316	294	276	260	246	233	221
11-#10	.0198	.168	756	650	566	503	452	411	378	348	322	302	283	266	251	238	226
12-#10	.0216	.171	782	669	584	518	465	423	387	357	332	309	290	272	257	244	231
13-#10	.0234	.173	807	688	600	532	476	433	396	366	338	316	296	278	263	248	236
14-#10	.0252	.175	833	710	618	546	490	445	406	374	347	324	303	285	269	254	242
15-#10	.0270	.178	858	730	634	560	501	454	415	382	354	330	309	291	274	259	246
16-#10	.0287	.180	883	746	648	572	512	463	423	389	360	336	314	295	278	264	250
17-#10	.0305	.182	909	767	665	587	526	475	434	400	370	345	322	302	285	270	256
6-#11	.0132	.158	664	574	505	450	406	370	340	315	292	274	256	242	228	216	206
7-#11	.0154	.162	695	598	525	468	423	384	352	326	304	284	265	250	236	224	213
8-#11	.0176	.165	727	624	546	486	438	398	366	338	314	292	274	258	244	231	220
9-#11	.0199	.168	758	650	568	505	453	412	378	349	323	302	283	266	252	238	226
10-#11	.0221	.172	789	675	588	522	470	426	391	360	334	312	292	275	260	246	234
11-#11	.0243	.174	820	698	609	538	484	438	401	370	343	319	300	282	266	251	239
12-#11	.0265	.177	851	725	630	558	500	453	415	382	354	329	308	290	274	259	246
13-#11	.0287	.180	883	750	651	575	515	466	427	393	364	339	317	298	281	266	252
14-#11	.0309	.182	914	772	670	591	529	478	437	402	372	347	324	304	287	271	258
15-#11	.0331	.185	945	798	690	609	545	492	449	413	382	356	333	312	294	279	264
For f _s =	16,000 psi	multiply		.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.980

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-32 IN. DIAMETER

Bars		CD							M/N	= е	(in.)						
bars	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
12-#9	.0149	.152	783	680	600	538	487	445	410	379	354	331	311	294	277	264	250
14-#9	.0174	.155	823	714	629	562	508	463	426	394	368	344	323	304	288	273	260
16-#9	.0199	.157	863	746	656	585	529	432	444	410	381	356	335	316	298	283	269
18-#9	.0224	.161	903	776	682	609	549	499	458	424	394	368	345	324	306	290	27
20-#9	.0249	.164	943	810	710	630	570	518	475	439	408	382	357	336	318	301	286
10-#10	.0158	.152	797	690	610	547	495	452	416	385	358	336	315	297	281	266	254
11-#10	.0174	.155	822	711	628	561	508	463	426	394	367	344	322	304	288	273	260
12-#10	.0190	.156	848	733	645	575	520	475	436	403	374	350	329	310	294	278	264
13-#10	.0205	.159	873	755	663	592	535	486	447	414	385	360	337	318	300	285	27
14-#10	.0221	.161	899	774	680	606	547	498	458	422	393	367	344	324	307	291	27
15-#10	.0237	.162	924	794	696	620	659	510	468	431	400	374	352	331	313	296	28
16-#10	.0253	.164	949	815	714	635	571	520	476	441	409	382	358	338	318	302	28
17-#10	.0268	.166	975	835	730	649	585	531	486	450	418	389	365	344	324	308	29
18-#10	.0284	.168	1000	855	748	665	596	542	497	458	425	396	372	350	330	313	297
8-#11	.0155	.152	793	688	608	545	494	450	415	384	358	335	315	297	281	267	25
9-#11	.0175	.154	824	714	629	562	509	464	427	395	368	344	323	304	288	274	26
10-#11	.0194	.157	855	740	650	580	524	478	440	406	378	353	332	313	296	280	26
11-#11	.0213	.160	886	765	671	600	540	493	453	419	389	364	341	321	304	288	27
12-#11	.0233	.162	917	788	691	616	555	505	464	428	398	372	348	328	310	294	27
13-#11	.0252	.164	949	815	714	635	571	520	476	440	409	382	358	337	318	302	28
14-#11	.0272	.167	980	840	735	652	588	535	490	452	420	392	368	346	326	309	29
15-#11	.0291	.169	1011	862	753	667	600	545	499	461	427	399	373	350	332	314	29
16-#11	.0310	.171	1042	892	780	690	622	565	518	476	443	410	386	362	342	325	30
For $f_s =$ multipl	16,000 psi y by			.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.98

 $f'_{c} = 3000 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-34 IN. DIAMETER

		CD						1	M/N	= e	(in.)						
Bars	P	CD †	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
15-#9	.0165	.144	914	798	709	636	578	530	489	454	423	396	373	352	334	316	302
17-#9	.0187	.147	954	832	736	661	601	550	506	470	439	410	386	365	345	328	312
19-#9	.0209	.150	994	865	765	685	621	568	524	485	452	423	398	375	356	337	321
10-#10	.0140	.141	868	760	676	610	555		470	437	408	382	360	340	323	307	292
11-#10	.0154	.143	893	781	696	626	570	522	483	448	419	393	370	348	330	314	299
12-#10	.0168	.145	919	804	712	640	581	533	491	456	426	398	375	354	335	318	304
13-#10	.0182	.147	944	824	730	657	595	545	503	466	435	408	384	362	343	326	310
14-#10	.0196	.148	970	845	749	670	608	556	512	475	443	414	390	368	348	331	314
15-#10	.0210	.150	995	865	766	686	622	569	524	486	453	424	398	376	356	337	321
16-#10	.0224	.152	1020	885	781	700	635	1	533	494	460	430	405	382	361	343	326
17-#10	.0238	.153	1051	910	805	720	650	1	546	506	471	440	414	390	369	350	334
18-#10	.0252	.155	1071	930	820	734	655	1	558	517	481	450	422	399	376	357	340
19-#10	.0266	.156	1097	950	835	748	675	616	566	525	488	455	428	405	382	362	334
8-#11	.0137	.140	864	755	674	610	552	507	468	435	405	381	359	339	322	305	290
9-#11	.0155	.143	895	781	695		568		480	446	416	390	367	346		312	297
10-#11	.0172	.145	926	810	720		586		495	100000	10203000	402	378	358		321	300
11-#11	.0172	.148	957	834	736		598		505			408	383	362	342	325	309
12-#11	.0206	.149	988	860	760	100000	617	1	520	482		420	395	373	354	335	319
13-#11	.0224	.152	1020	885	781	700	635	The second	533	494		430	405	382	361	343	32
14-#11	.0241	.154	1051	911	805		653	1	550	509	473	443	416	392	372	352	33.
15-#11	.0258	.156	1082	936	826				560	519	483	452	424	400	378	359	34
16-#11	.0275	.157	1113	964	846				574	531	494	462	434	408	386	366	34
17-#11	.0292	.159	1145	990	870	1 2	1	639	586	543	505	472	442	417	394	374	35
18-#11	.0310	.161	1176	1011	890	792	715	651	598	552	514	480	451	425	402	380	36
For f _s =	= 16,000 p	>si		.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.98

SPIRALLY REINFORCED ROUND COLUMNS— Safe Load in Kips for Various Eccentricities $f'_c = 3750 \text{ psi}$ $f_s = 20,000 \text{ psi}$

Bars	P	CD	-														
		'	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	.0121 .0161 .0201	.342 .360 .377	167 180 192	124 132 139	99 105 109	82 86 90	70 74 76	62 64 66	55 57 59	49 51 53	45 46 48	41 42 44	22 25 27	20 22 25	17 20 22	15 18 21	1;
7-#6 8-#6	.0171 .0200 .0228 .0257	.365 .377 .387 .399	183 192 200 209	134 140 144 149	106 109 113 116	87 90 92 95	74 77 78 80	65 67 68 70	57 59 60 62	51 53 54 55	47 48 49 50	43 44 45 46	25 27 29 31	23 25 26 28	21 22 24 26	19 20 22 23	17 19 20 22
7-#7	.0234 .0273 .0312	.390 .404 .420	202 214 226	145 152 159	113 118 123	93 97 100	79 82 84	68 71 73	60 62 64	54 56 57	49 51 52	45 46 47	30 32 34	26 29 30	24 26 28	22 24 25	20
7-#8	.0308 .0359 .0410	.418 .436 .453	225 241 256	159 168 176	123 129 134	100 104 108	84 88 91	73 76 78	64 67 69	57 59 61	52 54 55	47 49 50	33 36 38	30 32 35	28 30 32	25 27 29	23
7-#9	.0390 .0454 .0495	.447 .468	250 270 282	173 184 190	132 140 144	107 112 115	90 94 96	77 81 83	68 71 72	60 63 65	55 57 58	50 52 53	37 41 43	33 37 39	31 34 35	28 31 33	26 29 30

SPIRALLY REINFORCED ROUND COLUMNS— Safe Load in Kips for Various Eccentricities $f'_c = 3750 \text{ psi}$ $f_s = 20,000 \text{ psi}$

				CO	LUM	N SIZ	E—16	IN.	DIAN	LETER							
Bars	_	CD							M/I	V = e	(in.)						
bars	Р	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#6 9-#6	.0131 .0197	.301 .323	223 249	171 188	139 151	117 126	101	89 95			65	60	56 59	33 39	30 36	26	24
6-#7	.0179	.317	242	184	148	124	107	94	83	75	68	63	58	38	34	31	29
7-#7	.0209	.327	254	192	154	128	110	97	86	78	70	64	59	41	37	34	31
9-#7	.0269	.345	278	207	164	137	117	102	90	81	74	68	62	46	41	38	35
11-#7	.0328	.362	302	222	175	145	123	108	95	85	78	71	65	50	46	42	39
6-#8	.0236	.336	265	198	158	132	113	99	88	79	72	66	61	43	39	36	33
7-#8	.0275	.348	281	208	166	137	118	103	91	82	74	68	63	46	42	39	36
8-#8	.0314	.359	296	218	172	143	122	106	94	84	76	70	64	49	45	41	38
9-#8	.0353	.370	312	228	179	148	126	109	97	87	79	72	66	52	48	44	41
6-#9	.0298	.354	290	214	170	140	120	105	93	83	76	69	64	48	44	40	37
7-#9	.0348	.368	310	226	178	147	125	109	96	87	78	72	66	52	47	43	40
8-#9	.0398	.381	330	239	187	154	131	113	100	90	82	74	68	55	51	47	43
6-#10	.0379	.377	322	234	184	151	128	112	99	88	80	73	68	54	49	45	42
7-#10		.392	348	250	195	160	135	118	104	93	84	77	71	59	54	50	46
6-#11	.0466	.398	357	255	199	163	138	119	105	94	85	78	72	60	55	51	47
7-#11	.0544	.417	388	274	212	172	145	126	111	99	90	82	75	66	61	56	52
For f ₈ =	16,000 psi	multiply	e.	.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	t	†	†	†

Outside diameter of spiral should be 3 in. less than outside diameter of column.

† To right of vertical line and below zigzag horizontal line of each group, concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-18 IN. DIAMETER

		CD							M/N	1 = e	(in.)						
Bars	P	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#7	.0141	.271	287	226	187	158	138	122	109	99	90	83	77	72	67	42	39
9-#7	.0212	.291	323	250	204	172	149	132	118	106	97	89	83	77	72	51	47
11-#7	.0259	.305	347	266	216	181	156	137	123	111	101	93	86	80	74	56	52
6-#8	.0186	.284	310	241	198	167	145	128	114	104	95	87	81	75	70	48	44
7-#8	.0217	.293	326	252	206	174	150	132	118	107	97	90	83	77	72	52	48
8-#8	.0248	.302	341	262	212	179	154	136	121	110	100	92	85	79	74	55	51
9-#8	.0279	.310	357	272	220	185	159	140	125	113	103	94	87	81	76	58	54
11-#8	.0341	.326	389	293	236	196	169	148	132	118	108	99	91	85	79	65	60
6-#9	.0235	.298	335	258	210	177	153	134	120	109	99	91	84	78	73	54	50
7-#9	.0275	.309	355	271	219	184	159	139	124	112	102	94	87	81	75	58	53
8-#9	.0314	.319	375	284	229	192	165	144	129	116	106	97	89	83	78	62	57
9-#9	.0353	.329	395	297	238	199	171	149	133	120	109	100	92	86	80	66	61
10-#9	.0392	.338	415	310	248	206	176	154	137	123	112	103	95	88	82	70	65
6-#10	.0299	.315	367	279	225	189	162	143	127	115	104	96	88	82	77	60	56
7-#10	.0349	.327	393	296	237	198	170	149	133	120	109	100	92	86	80	66	61
8-#10	.0399	.339	418	312	249	208	178	155	138	124	113	103	95	88	82	71	66
9-#10	.0448	.350	444	329	261	217	185	162	143	129	117	107	99	92	85	76	70
6-#11	.0367	.332	402	302	241	201	173	151	134	121	110	101	93	86	81	67	62
7-#11	.0429	.345	433	322	256	213	182	159	141	126	115	105	97	90	84	74	69
8-#11	.0490	.359	465	342	270	224	191	166	147	132	120	110	101	94	88	80	74
For f _s =	16,000 psi	multiply					-	-									,
by				.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	1	†

[†] To right of vertical line concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-20 IN. DIAMETER

Bars	p	CD							M/	N = 0	e (in.)						
·		t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6-#8	.0151	.243	360	289	242	208	183	162	146	133	122	113	105	98	92	86	51
7-#8	.0176	.249	376	301	251	215	188	168	151	137	126	116	108	101	94		6:
8-#8	.0201	.256	391	312	258	221	193	171	154	140	128	118	110	1	96		67
9-#8	.0226	.262	407	322	267	228	199	177	159	144	132	121	113	105	98	22.02	70
10-#8	.0252	.267	423	334	276	235	204	181	163	147	135	124	115	107	100	95	7
11-#8	.0277	.272	439	345	284	242	210	186	167	151	138	127	118	110	103	97	78
12-#8	.0302	.278	455	356	292	248	215	190	170	154	141	130	120	112	105	98	81
6-#9	.0191	.253	385	307	256	219	191	170	153	139	127	118	109	102	95	90	6.5
7-#9	.0223	.260	405	321	266	227	198	176	158	144	131	121	112	105	98	92	70
8-#9	.0255	.268	425	335	277	236	205	182	163	148	135	125	115	108	101	95	74
9-#9	.0287	.275	445	349	287	244	212	187	168	152	139	128	119	111	103	97	79
10-#9	.0318	.281	465	363	297	259	219	193	173	157	143	132	122	114	106	100	84
11-#9	.0351	.288	485	376	308	260	225	199	178	161	147		125	116	109	102	88
6-#10	.0243	.265	417	330	273	232	202	179	161	146	134	123	114	106	100	94	73
7-#10	.0283	.274	443	347	286	243	211	187	167	152	139	128	118	110	103	97	79
8-#10	.0324	.282	468	365	299	253	220	194	174	157	144	132	122	114	107	100	84
9-#10	.0364	.298	494	383	313	265	230	202	181	163	149	137	127	118	111	104	90
10-#10	.0404	.297	519	400	325	274	237	209	186	169	154	141	131	122	114	107	95
6-#11	.0298	.277	452	354	291	247	214	189	170	154	141	129	120	112	104	98	81
7-#11	.0348	.287	483	375	307	260	225	198	177	161	147	135	125	116	109	102	88
8-#11	.0398	.296	515	397	323	273	236	208	185	168	153	140	130	121	113	106	95
9-#11	.0447	.304	546	419	340	286	247	217	193	174	159	146	135	126	118	110	101
For $f_s =$	16,000 psi i	multiply															-
by				.935	.945	.960	.960	965	.965	975	080	080	080	080	080	000	†

Outside diameter of spiral should be 3 in. less than outside diameter of column.

† To right of vertical line concrete governs and safe load, N, is the same for 16,000 psi steel.

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-22 IN. DIAMETER

		CD							M/N	√ = e	(in.)						
Bars	Р	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7-#8	.0146	.220	432	354	300	260	230	206	186	170	156		135	126	119		106
8-#8	.0166	.225	447	365	308	267	235	210	190	173	160	148	138	129	121		108
9-#8	.0187	.229	463	377	317	274	242	216	195	178	163	151	141	132	124		110
10-#8	.0208	.233	479	388	327	282	248	221	200	182	167	155	144	134	126	119	112
11-#8	.0229	.238	495	400	335	289	254	226	204	186	170	158	146	137	128	121	114
12-#8	.0250	.242	511	411	344	296	260	231	209	190	174	161	150	140	131	123	116
6-#9	.0158	.223	441	360	305	264	233	208	189	172	158	147	137	128	120	113	107
7-#9	.0138	.223	461	375	316	273	240		194	1	163	150	0.000	131	123	116	109
8-#9	.0184	.234	481	390	327	283	248	222	200	183	168	155	9 18 18 19	134	126	126	112
8-#9 9-#9	.0211	.240	501	404	339	292	256	228	206	188	172	159	148	138	130	122	115
10-#9	.0263	.245	521	418	349	300	263	234	211	182	176	163	151	141	132	124	118
11-#9	.0290	.250	541	433	360	309	270		216	80	180	166		144	135	127	120
12-#9	.0316	.255	561	447	372	1	278		222	1	185			147	138	130	123
12-11-			*													1	
6-#10	.0208	.232	473	384	CERCOL	14000 80 1			1					-	1/25000000	118	10,100,00
7-#10	.0234	.239	499	402	1000000	COLUMN TO SERVICE	255		205	1				-		1	-
8-#10	.0267	.245	524	420			IN-DEATHER.		100000000000000000000000000000000000000	(0000 200)	2200 10				1	1	
9-#10	.0301	.252	550	439					51100000000	COCCONCASO.	100000000	20/00/20	200	1			
10-#10	.0334	.258	575	457					225		100000000	4.0	01200 0	Cita in	0.000		1
11-#10	.0368	.264	600	474	392	334	292	259	232	211	193	178	165	154	144	135	128
6-#11	.0246	.241	508	409	343	295	259	230	208	189	174	160	149	139	131	123	110
7-#11	.0288	.250	539		1		1	100000000000000000000000000000000000000	1010100000	0000000	100	166	154	144	135	127	120
8-#11	.0328	.257	571	454				-	1	204	187	172	160	149	140	132	12
9-#11	.0370	.265	602						1			178	165	154	144	135	12
10-#11	.0411	.271	633	10000	5 55 50	20000000		268	240	218	199	184	170	159	148	140	13:
For $f_s =$	16,000 psi	multiply		.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.98

f' = 3750 psi

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-24 IN. DIAMETER

Bars		CD							M/I	N = e	(in.)						
bars	P	1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
10-#7	.0133	.196	502	420	360	316	281	254	231	212	195	182	170	159	150	141	13
12-#7	.0159	.201	526	438	375	328	291	262	238	218	202	187	175	164	154	146	13
8-#8	.0140	.198	508	424	364	318	283	255	232	213	196	182	170	160	151	142	13
10-#8	.0175	.204	540	448	383	335	297	267	242	222	205	190	178	166	156	148	14
12-#8	.0210	.210	572	472	403	351	311	279	253	232	213	198	185	173	162	100	1
6-#9	.0133	.196	502	420	360	316	281	254	231	212	195	182	170	159	150	141	13
8-#9	.0177	.204	542	450	385	336	299	268	244	223	206	191	178	167	157	149	14
10-#9	.0221	.212	582	480	408	356	315	282	256	234	216	200	186	175	164	155	14
11-#9	.0243	.216	602	495	420	365	323	289	262	240	220	204	190	178	168	158	15
12-#9	.0265	.220	622	510	432	375	331	296	268	245	225	209	194	182	171	161	15
14-#9	.0310	.226	662	540	456	394	348	311	281	256	236	218	203	190	178	168	15
6-#10	.0169	.202	534	444	380	332	295	266	242	221	204	189	177	166	156	147	13
7-#10	.0197	.208	560	463	395	344	306	274	249	228	210	195	182	170	160	151	14
8-#10	.0225	.213	585	482	410	357	316	283	257	235	216	200	187	175	164	155	14
9-#10	.0253	.218	611	501	426	369	326	292	265	242	223	206	192	180	169	159	15
10-#10	.0281	.222	636	520	440	382	337	301	273	249	229	212	198	185	174	164	15
12-#10	.0337	.230	687	559	471	407	358	320	289	263	242	224	208	195	183	172	16
13-#10	.0365	.235	712	576	484	418	367	327	295	269	247	229	213	199	186	176	16
6-#11	.0207	.210	569	470	400	349	309	277	252	230	212	197	184	172	162	153	14
7-#11	.0242	.216	600	494	419	364	322	288	261	239	220	204	190	178	167	158	14
8-#11	.0276	.221	632	518	438	380	335	300	272	248	228	212	197	184	173	163	15
9-#11	.0311	.227	663	540	456	394	347	310	280	256	235	218	203	190	178	168	15
10-#11	.0345	.232	694	564	474	409	360	321	290	264	243	225	209	195	183	173	16
11-#11	.0379	.236	725	586	492	424	373	332	300	273	251	232	216	202	189	178	16
For f _e =	16,000 psi	multiply		.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.98

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-26 IN. DIAMETER

		CD	1						M/N	l = e	(in.)						
Bars	Р	CD t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
9-#8	.0134	.182	590	499	432	382	341	309	282	260	240	224	209	196	185	175	166
11-#8	.0164	.187	622	524	452	398	356	321	293	269	249	232	217	204	192	181	172
13-#8	.0193	.192	653	548	472	415	369	333	304	279	258	239	224	210	198	187	177
15-#8	.0223	.196	685	573	492	431	384	346	315	289	267	248	232	217	204	193	183
7-#9	.0132	.180	588	498	432	382	342	309	283	260	241	224	210		186	176	167
8-#9	.0151	.184	608	513	444	392	350	316	289	266	246	229	214	201	189	179	170
9-#9	.0169	.187	628	529	457	402	359	324	296	272	252	234	219	206	194	182	
10-#9	.0188	.191	648	544	469	412	367	332	302	277	256	238	223	209	197	186	10000
11-#9	.0207	.194	668	560	481	422	376	339	309	283	262	243	227	213	201	190	180
12-#9	.0226	.196	688	575	494	433	385	10000	316	290	268	249	232	218	205	194	18
13-#9	.0245	.200	708	590	506	442	394		322	295	272	253	236	221	208	197	18
15-#9	.0282	.205	748	620	530	463	411	369	335	307	283	263	245	230	216	204	19
6-#10	.0143	.183	600	507	439	387	346	313	286			-			1	178	1
8-#10	.0191	.191	651	547	471	414	369	100000000	304							187	8.0
10-#10	.0239	.198	702	586	503	440	392	353	321	294	1000	252			208	196	
12-#10	.0287	.206	753	625	533	465		371	337	The state of the s	100000000000000000000000000000000000000	Section over	and the same of	1	1	205	1
14-#10	.0335	.212	804	663	565	492	435	390	354	324	298	276	258	241	227	214	20
6-#11	.0176	.188	635	534	463	406	362	327	298	274	253				A 80000	DE ROMO	200
7-#11	.0206	.193	666	558	480	422	376	0.000.000.000	A COLOR OF THE	2000	1					190	
8-#11	.0235	.198	698	582	500	438	389		Description of	The same of the		100000000000000000000000000000000000000		1		195	
9-#11	.0264	.202	729	606	519	454	403	362			1000000	Distance of	20000000			1	
10-#11	.0294	.207	760	630	537	469	415	373				-		The State of the S	The state of the s	-	
11-#11	.0323	.211	791	653	556	484	429	385			1				outres M	1	
13-#11	.0382	.218	854	701	595	516	456	408	370	338	311	288	268	251	236	223	2
For f _a =	16,000 psi	i multiply									-200	200	200	200	200	200	
by				.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.7

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE—28 IN. DIA	

Bars	p	CD t	M/N = e (in.)														
			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
10-#8	.0128	.168	677	580	507	450	405	368	337	311	289	270	253	238	225	213	202
12-#8	.0154	.172	709	605	527	468	420	381	349	322	299	278	261	245	231	219	208
14-#8	.0179	.175	740	630	548	485	435	394	361	333	308	287	269	253	238	226	214
8-#9	.0130	.168	679	581	509	451	406	369	338	312	290	270	253	238	225	213	203
10-#9	.0162	.173	719	612	534	473	425	385	353	325	301	281	263	248	234	221	210
12-#9	.0195	.178	759	644	560	495	443	401	367	338	313	292	273	257	242	229	217
14-#9	.0227	.183	799	675	585	516	461	417	381	350	324	302	282	265	250	236	224
7-#10	.0144	.170	697	596	520	462	415	377	345	318	295	276	253	243	230	217	206
8-#10	.0165	.173	722	615	536	475	427	387	354	327	303	282	264	249	235	222	211
9-#10	.0186	.177	748	636	552	489	488	397	363	334	310	288	270	254	240	227	21:
10-#10	.0206	.180	773	655	568	502	449	406	371	342	316	295	276	259	244	231	220
11-#10	.0227	.183	798	674	584	515	460	417	380	350	324	301	282	265	250	236	224
12-#10	.0248	.186	824	695	601	529	472	427	390	358	331	308	288	271	255	241	229
13-#10	.0268	.189	849	714	616	542	484	436	398	365	338	314	294	276	260	246	23:
14-#10	.0289	.192	875	734	632	555	495	446	407	373	345	320	300	281	265	250	237
6-#11	.0152	.171	706	603	526	466	419	380	348	321	298	278	260	245	231	219	208
7-#11	.0177	.175	737	628	546	484	434	393	359	331	307	286	268	252	238	225	214
8-#11	.0203	.179	769	652	566	500	448	406	370	342	316	294	276	259	244	231	219
9-#11	.0228	.183	800	675	586	516	461	418	381	350	324	302	283	266	250	237	22
10-#11	.0253	.186	831	700	605	533	476	430	393	361	334	310	290	273	257	243	230
11-#11	.0278	.190	862	724	624	549	490	442	403	370	342	318	297	279	263	248	23
12-#11	.0304	.194	893	747	643	565	503	453	412	379	350	325	304	285	268	254	240
13-#11	.0330	.196	925	775	664	582	519	467	425	390	360	334	313	293	276	261	247
14-#11	.0355	.199	956	797	683	599	532	479	435	399	369	342	320	300	282	266	252
For $f_s = 16,000$ psi multiply by				.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.980

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-30 IN. DIAMETER

Bars	P	CD t	M/N = e (in.)														
			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
9-#9	.0127	.154	776	673	595	533	481	440	405	375	349	327	307	289	274	260	247
11-#9	.0156	.158	816	705	620	554	500	456	420	388	360	337	317	298	282	268	254
13-#9	.0184	.162	856	738	648	578	521	475	436	402	374	350	328	310	292	277	264
15-#9	.0212	.165	896	770	675	600	540	491	451	417	387	361	338	319	301	285	271
8-#10	.0144	.156	799	691	609	545	491	449	413	382	356	332	312	294	278	264	251
9-#10	.0162	.159	825	714	628	560	507	462	425	394	366	342	321	302	286	271	258
10-#10	.0180	.161	850	731	643	573.	517	471	433	400	372	347	326	307	290	275	262
11-#10	.0198	.163	875	751	660	586	529	481	441	408	379	354	332	312	295	280	266
12-#10	.0216	.166	901	775	678	604	544	495	454	420	388	363	340	320	302	287	272
13-#10	.0234	.168	926	795	695	616	555	504	462	426	394	370	346	325	308	291	276
14-#10	.0252	.170	952	814	710	630	566	515	471	435	403	376	352	332	313	296	282
15-#10	.0270	.172	977	833	726	645	580	525	481	443	412	384	359	338	318	302	286
16-#10	.0287	.174	1002	855	745	658	591	535	490	453	420	390	366	344	325	307	292
17-#10	.0305	.176	1028	875	760	674	603	547	501	461	426	397	372	351	330	313	296
6-#11	.0132	.154	783	679	600	535	485	443	407	377	351	328	308	291	275	261	248
7-#11	.0154	.158	814	704	619	552	498	455	418	386	359	336	316	298	281	267	254
8-#11	.0176	.161	846	730	641	571	515	470	432	399	372	347	326	307	290	274	261
9-#11	.0199	.163	877	754	660	587	530	482	442	408	380	354	332	313	296	280	266
10-#11	.0221	.166	908	780	681	607	545	496	455	420	390	365	342	321	304	288	273
11-#11	.0243	.169	939	805	702	624	560	511	466	430	400	372	349	329	310	294	279
12-#11	.0265	.171	970	828	723	645	576	523	478	442	410	383	358	336	318	301	286
13-#11	.0287	.174	1002	855	745	658	591	535	490	453	420	390	366	344	325	307	292
14-#11	.0309	.176	1033	880	764	675	605	548	500	462	428	399	373	350	331	313	298
15-#11	.0331	.179	1064	905	786	695	624	565	515	476	441	411	384	361	341	322	306
For $f_s = 16,000 \text{ psi}$ multiply by			.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.980	

SPIRALLY REINFORCED ROUND COLUMNS— Safe Load in Kips for Various Eccentricities

 $f'_{c} = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-32 IN. DIAMETER

Bars	р	CD							M/N	1 = e	(in.)						
Durs	P	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
12-#9	.0149	.147	918	811	710	636	580	530	488	453	423	395	372	352	332	316	30
14-#9	.0174	.150	958	834	737	660	600	548	505	467	435	408	384	362	342	325	30
16-#9	.0199	.153	998	855	765	685	619	565	520	482	448	420	394	372	352	334	31
18-#9	.0224	.156	1038	897	790	705	638	580	534	495	460	430	404	380	360	341	32
20-#9	.0249	.159	1078	930	819	730	659	600	551	510	475	444	416	392	370	351	33
10-#10	.0158	.148	932	813	720	645	585	536	494	458	426	400	376	354	336	318	30
11-#10	.0174	.150	957	831	735	660	598	546	504	467	435	407	383	361	342	324	30
12-#10	.0190	.152	983	852	754	675	610	557	513	475	442	415	389	366	347	329	31
13-#10	.0205	.154	1008	875	773	692	625	572	526	488	453	425	399	376	356	338	32
14-#10	.0221	.156	1034	895	790	706	639	583	536	495	462	433	405	382	362	344	32
15-#10	.0237	.157	1059	915	805	716	647	591	544	502	466	436	410	387	366	346	33
16-#10	.0253	.159	1084	934	821	733	660	602	553	512	475	445	417	393	372	352	33
17-#10	.0268	.161	1110	953	838	746	674	614	562	520	484	452	424	398	376	357	340
18-#10	.0284	.162	1135	975	856	764	686	625	575	530	492	460	432	406	385	365	34
8-#11	.0155	.148	928	810	716	643	583	534	492	456	425	398	374	353	335	317	30:
9-#11	.0175	.150	959	834	738	661	600	548	505	468	436	408	384	362	333	325	310
10-#11	.0194	.152	990	858	758	680	614	560	516	478	445	417	392	369	349	332	317
11-#11	.0213	.155	1021	885	780	698	630	575	530	490	456	427	400	378	358	339	32
12-#11	.0233	.157	1052	910	800	715	645	588	540	500	465	435	408	386	364	345	32
13-#11	.0252	.159	1084	935	821	733	661	603	554	511	475	445	416	393	372	352	333
14-#11	.0272	.161	1115	960	841	750	676	615	565	523	486	454	426	400	378	358	34
15-#11	.0291	.163	1146	985	865	770	694	632	580	535	497	465	436	411	388	368	34
16-#11	.0310	.165	1177	1005	885	785	710	642	588	548	507	473	443	418	393	373	35
	16,000 p	si		14													
multipl	у Ьу			.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.9

Outside diameter of spiral should be 3 in. less than outside diameter of column.

SPIRALLY REINFORCED ROUND COLUMNS— Safe Load in Kips for Various Eccentricities

 $f'_c = 3750 \text{ psi}$

 $f_s = 20,000 \text{ psi}$

COLUMN SIZE-34 IN. DIAMETER

		CD							M/N	= е	(in.)						
Bars	р	†	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
15-#9	.0165	.140	1067	943	840	756	689	631	584	542	506	475	446	423	400	380	362
17-#9	.0187	.143	1107	968	860	775	704	645	596	552	515	484	455	430	408	388	368
19-#9	.0209	.145	1147	1000	886	798	724	663	611	566	529	496	466	440	416	396	376
10-#10	.0140	.137	1021	899	800	722	658	605	560	520	485	455	430	406	385	366	349
11-#10	.0154	.139	1046	920	820	740	672	617	570	530	495	465	438	414	392	372	355
12-#10	.0168	.141	1072	940	835	752	685	629	580	540	504	472	445	420	398	379	360
13-#10	.0182	.142	1097	960	855	770	700	641	591	550	514	482	454	428	405	385	367
14-#10	.0196	.144	1123	980	870	784	710	651	600	558	520	487	459	434	410	389	371
15-#10	.0210	.145	1148	915	810	730	661	605	659	517	484	454	426	402	381	362	344
16-#10	.0224	.147	1173	1022	905	813	738	675	622	577	537	504	473	447	424	402	382
17-#10	.0238	.148	1204	1050	930	833	755	690	635	589	550	514	484	457	432	411	390
18-#10	.0252	.150	1224	1066	944	846	766	701	645	598	558	522	490	463	438	415	396
19-#10	.0266	.151	1250	1083	958	859	768	710	653	605	565	528	496	468	442	420	400
	n g																
8-#11	.0137	.137	1017	895	798	720	655	602	557	518	483	454	427	405	384	365	347
9-#11	.0155	.139	1048	920	820	740	674	618	571	530	496	466	439	415	393	364	356
10-#11	.0172	.141	1079	945	840	758	690	632	585	544	507	475	448	423	401	381	363
11-#11	.0189	.143	1110	970	864	775	705	645	595	555	516	485	455	430	407	387	368
12-#11	.0206	.145	1141	996	885	795	723	661	610	567	529	495	466	440	416	395	377
13-#11	.0224	.147	1173	1022	906	815	740	676	624	578	540	505	475	450	425	404	384
14-#11	.0241	.148	1204	1050	926	830	754	689	635	588	548	512	482	455	430	409	
15-#11	.0258	.151	1235	1071	948	850	770	705	648	602	560	525	492	464	440	416	397
16-#11	.0275	.152	1266	1098	970	868	785	716	660	611	569	534	500	471	446	1 5 5 7	
17-#11	.0292	.154	1298	1123	994	888	804	734	675	625	581	544	511	483	455	432	20 00000
18-#11	.0310	.155	1329	1150	1011	905	818	746	686	635	590	552	519	490	463	439	417
For f _s =	= 16,000	psi		.935	.945	.960	.960	.965	.965	.975	.980	.980	.980	.980	.980	.980	.980

Outside diameter of spiral should be 3 in. less than outside diameter of column.

B = CD VALUES FOR $f_s = 16,000$ psi

In each of the three preceding sections, values of eccentrically applied loads on concrete columns are tabulated for a steel tension of $f_s = 20,000$ psi and factors are given to reduce these values for $f_s = 16,000$ psi. While using these factors is sufficiently accurate for practical purposes, it is possible to come somewhat closer by using the B = CD values given in the following tables.

Example—In Ex. II on page 278, the actual and allowable stresses were computed for a 20 in. square tied concrete column with 6-#8 vertical bars and an eccentricity of 3 in. when $f'_c = 3000$ psi, $f_s = 0.8 \times 16,000 = 12,800$ psi and n = 10. Check this from the table on page 358.

$$\begin{split} p_{g} &= \frac{6 \times 0.79}{20 \times 20} = 0.01185 \text{ and } g = \frac{11}{16} = 0.688. \text{ From the table on page } 358, B = CD = \\ 2.64, \text{ so } \frac{B}{t} &= \frac{CD}{t} = 0.132. \\ P &= \begin{cases} \text{Concrete} & 20 \times 20 \ @ 540 &= 216,000 \ \text{lb} \\ \text{Bars} & 6 \times 0.79 \ @ 12,800 &= \frac{60,600}{276,600} \ \text{lb} \\ \end{cases} \\ N &= \frac{P}{1 + \frac{CDe}{t}} = \frac{P}{1 + \frac{Be}{t}} = \frac{276,600}{1 + 0.132 \times 3} = 198 \text{ kips} \end{split}$$

According to Ex. II, page 278, the eccentric load, N, could be increased approximately in the ratio $\frac{1.000}{0.973} \times 193 = 198$ kips. This checks and indicates that the factor in this case is $2\frac{3}{4}$ per cent on the safe side.

VALUES OF B = CDSQUARE COLUMNS WITH TIES $f_s = 0.8 \times 16,000 = 12,800 \text{ psi}$

	CD (g	= .65)	CD (g	= .70)	CD (g	= .75)	CD (g	= .80)	CD (g	= .85)
Po	f'c =	f'c =	f'c =	$f'_c =$						
	3000	3750	3000	3750	3000	3750	3000	3750	3000	3750
.010	2.65	2.60	2.58	2.55	2.54	2.51	2.49	2.46	2.45	2.46
.011	2.68	2.62	2.58	2.58	2.55	2.54	2.51	2.49	2.45	2.47
.012	2.73	2.64	2.63	2.59	2.58	2.55	2.53	2.49	2.47	2.47
.013	2.75	2.67	2.65	2.60	2.60	2.55	2.55	2.52	2.50	2.47
.014	2.77	2.68	2.67	2.60	2.63	2.55	2.58	2.50	2.50	2.47
.015	2.80	2.72	2.69	2.62	2.64	2.57	2.59	2.53	2.52	2.47
.016	2.82	2.73	2.71	2.64	2.67	2.59	2.62	2.53	2.52	2.46
.017	2.82	2.74	2.73	2.65	2.68	2.60	2.63	2.55	2.53	2.4
.018	2.83	2.76	2.76	2.67	2.70	2.62	2.63	2.57	2.53	2.50
.019	2.86	2.77	2.78	2.67	2.70	2.64	2.63	2.59	2.53	2.50
.020	2.87	2.80	2.80	2.68	2.72	2.64	2.65	2.59	2.55	2.5
.021	2.88	2.81	2.83	2.71	2.73	2.67	2.65	2.62	2.55	2.5
.022	2.89	2.82	2.84	2.73	2.74	2.68	2.65	2.63	2.57	2.5
.023	2.92	2.84	2.87	2.75	2.77	2.70	2.67	2.64	2.57	2.5
.024	2.94	2.86	2.88	2.78	2.78	2.71	2.67	2.64	2.55	2.5
.025	2.97	2.87	2.88	2.80	2.77	2.72	2.68	2.65	2.57	2.5
.026	3.00	2.90	2.91	2.82	2.80	2.75	2.70	2.67	2.60	2.5
.027	3.01	2.91	2.93	2.84	2.82	2.74	2.68	2.66	2.58	2.5
.028	3.03	2.93	2.93	2.87	2.82	2.77	2.72	2.67	2.62	2.5
.029	3.04	2.94	2.93	2.88	2.83	2.78	2.70	2.68	2.60	2.5
.030	3.05	2.96	2.94	2.91	2.84	2.81	2.70	2.70	2.60	2.6
.031	3.07	2.97	2.96	2.92	2.85	2.83	2.72	2.70	2.62	2.5
.032	3.07	2.99	2.94	2.93	2.84	2.81	2.72	2.70	2.60	2.6
.033	3.08	3.01	2.96	2.94	2.85	2.83	2.69	2.72	2.58	2.6
.034	3.10	3.03	2.98	2.93	2.87	2.85	2.72	2.72	2.60	2.0
.035	3.10	3.05	2.98	2.94	2.85	2.83	2.68	2.73	2.58 2.60	2.0
.036	3.12	3.06	2.98	2.96	2.87	2.84	2.70	2.73		2.
.037	3.14	3.07	3.00	2.98	2.90	2.87	2.72	2.74	2.62	2.
.038	3.15	3.08	2.98	2.97	2.88	2.87	2.72	2.76	2.60	2.
.039	3.17	3.09	2.99	2.98	2.88	2.87	2.72	2.76	2.62	2.
.040	3.20	3.11	3.02	3.00	2.91	2.89	2.74	2.76	2.02	2.

VALUES OF B = CDSQUARE COLUMNS WITH SPIRALS $f_s = 16,000 \text{ psi}$

	CD (g	= .65)	CD (g	= .70)	CD (g	= .75)	CD (g	= .80)	CD (g	= .85
Po	$f'_c = 3000$	f' _c = 3750	f' _c = 3000	f' _c = 3750	f' _c = 3000	f' _c = 3750	f' _c = 3000	$f'_c = 3750$	$f'_c = 3000$	f'c = 375
.010	3.52	3.42	3.52	3.44	3.46	3.40	3.42	3.35	3.38	3.3
.011	3.57	3.47	3.56	3.47	3.50	3.42	3.45	3.38	3.40	3.3
.012	3.60	3.51	3.60	3.50	3.54	3.45	3.48	3.42	3.42	3.3
.013	3.67	3.52	3.66	3.52	3.60	3.47	3.54 3.57	3.43 3.45	3.47	3.3
.014	3.72	3.56	3.69	3.53	3.62	3.50	3.3/	3.43	3.50	
.015	3.75	3.60	3.72	3.60	3.65	3.54	3.60	3.47	3.54	3.4
.016	3.81	3.65	3.75 3.78	3.63	3.68 3.72	3.57 3.60	3.62 3.66	3.51 3.54	3.56	3.4
.018	3.86	3.75	3.80	3.72	3.75	3.66	3.67	3.60	3.61	3.5
.019	3.90	3.78	3.84	3.75	3.78	3.70	3.68	3.63	3.63	3.5
.020	3.95	3.83	3.87	3.78	3.82	3.72	3.72	3.66	3.65	3.6
.021	3.97	3.87	3.92	3.82	3.87	3.75	3.75	3.69	3.68	3.6
.022	4.06	3.92	4.00	3.85	3.93	3.78	3.80	3.72	3.75	3.6
.023	4.10	3.93	4.03	3.86	3.97	3.80	3.83	3.72	3.77	3.6
.024	4.14	3.95	4.06	3.90	4.00	3.84	3.87	3.75	3.80	3.0
.025	4.18	4.00	4.10	3.94	4.03	3.88	3.90	3.78	3.83	3.7
.026	4.23	4.04	4.12	3.97	4.06	3.91	3.92	3.82	3.86	3.7
.027	4.26	4.08	4.14	4.02	4.10	3.95 3.97	3.95	3.84	3.90	3.7
.029	4.32	4.12	4.19	4.06	4.13	4.00	4.00	3.86	3.92	3.8
.030	4.35	4.16	4.25	4.10	4.15	4.03	4.05	3.90	3.95	3.
.031	4.39	4.22	4.28	4.13	4.19	4.06	4.10	3.92	3.98	3.8
.032	4.41	4.25	4.35	4.16	4.22	4.10	4.13	3.95	4.00	3.9
.033	4.45	4.27	4.40	4.18	4.25	4.11	4.18	3.96	4.03	3.9
.034	4.49	4.30	4.42	4.20	4.28	4.13	4.20	3.97	4.06	3.9
.035	4.54	4.34	4.45	4.22	4.33	4.16	4.24	4.01	4.10	3.9
.036	4.59	4.39	4.48	4.25	4.36	4.19	4.27	4.05	4.12	3.9
.037	4.62	4.42	4.51	4.30	4.41	4.22	4.30	4.10	4.15	4.0
.038	4.66	4.42	4.55	4.31 4.35	4.47	4.23 4.25	4.33 4.35	4.11	4.18	4.0
.040	4.76	4.48	4.62	4.40	4.53	4.28	4.40	4.18	4.24	4.0
.041	4.78	4.49	4.67	4.41	4.55	4.30	4.41	4.19	4.24	4.0
.042	4.83	4.50	4.68	4.45	4.57	4.32	4.42	4.22	4.27	4.1
.043	4.86	4.55	4.72	4.48	4.60	4.35	4.45	4.27	4.30	4.1
.044	4.90	4.57	4.75	4.49	4.62	4.37	4.46	4.28	4.31	4.1
.045	4.92	4.60	4.77	4.50	4.64	4.39	4.48	4.30	4.32	4.1
.046	4.96	4.64	4.80	4.55	4.66	4.43	4.50	4.32	4.34	4.1
.047	5.00	4.66	4.81 4.84	4.56 4.57	4.68	4.45	4.52	4.33	4.34	4.1
.049	5.05	4.70	4.85	4.58	4.70 4.72	4.47 4.50	4.55 4.56	4.36	4.34	4.2
.050	5.10	4.75	4.87	4.60	4.74	4.54	4.57	4.40	4.35	4.2
.051	5.12	4.78	4.93	4.64	4.76	4.57	4.60	4.43	4.37	4.2
.052	5.18	4.80	4.97	4.65	4.78	4.58	4.64	4.43	4.40	4.2
.053	5.19 5.20	4.84 4.86	4.99 5.02	4.71	4.80 4.83	4.60	4.65	4.45	4.41	4.3
								4.46	4.43	4.3
.055 .056	5.22 5.28	4.90	5.08 5.11	4.75 4.79	4.85	4.66	4.70 4.73	4.48	4.45	4.3
	5.32	4.96	5.15	4.80	4.94	4.68	4.76	4.52	4.50 4.52	4.3
.057										4.3/
.058	5.34	5.00	5.16	4.85	4.95	4.70	4.77	4.54	4.53	4.38

the backgrounds of show windows; (3) using a "strap" or "cantilevered" footing, where the bearing block is made large enough to carry all of the fulcrum loads, and a strap or cantilevered beam is provided back to an opposite interior column to balance the exterior column load across the bearing block; * and (4) a combined footing where the bearing block is made large enough so that one or more exterior columns and one or more interior columns rest upon the same block, which then becomes a partial mat with the same requirements regarding capacity for down-loads, and coincidence of upward and down-loads.

Combined footings can differ so much in the ratio of loads on interior and exterior columns, the distance between column centers, and the like that it is practically impossible to tabulate a sufficient range of choices. Therefore, illustrative problems for both a strap footing and a combined one are presented.

A word of caution—no tables or methods of computation can replace judgment, especially in dealing with soil conditions, where a clay, for example, may look as hard and firm as could be desired during one season, and at another time may be very questionable as a foundation material.

1. DESIGN OF A STRAP FOOTING.

Example—Given an exterior wall carrying 195 kips, whose exterior face is 20'-0" from the center of an interior column, making the distance center to center 19'-6". Using a soil pressure of not over 5000 psf, concrete strength of 3000 psi and steel at 20,000 psi, design a strap footing.

^{*} A variation of this is to run a strap back into the building and, if there is no interior column readily available, provide sufficient dead weight of concrete to act as a balance for the eccentricity.

Solution:—(See figure on page 362.)

Size of Bearing Block:-

If the bearing block be assumed 4'-6" wide, the distance from center of block to center of exterior column is 1.75 ft and to center of interior column is 17.75 ft, so, taking moments about the center of the bearing block, the uplift at the interior column (a downward load

on the strap) is
$$\frac{1.75 \times 195,000}{17.75} = 19,200 \text{ lb.}$$

Weight of footing, assumed =
$$\frac{214,200 \text{ lb}}{18,000 \text{ lb}}$$

(Estimate as 8 to 9% of total load) = $\frac{232,200 \text{ lb}}{232,200 \text{ lb}}$

Area required =
$$\frac{232,000}{5,000}$$
 = 46.4 sf. Use 4'-6" × 10'-4" = 46.5 sf.

Net active bearing =
$$\frac{214,200}{4.5 \times 10.33}$$
 = 4610 psf.

Assume projection beyond edge of strap as 4'-1" and design as a cantilever, using a strip 1'-0" wide:-

Shear at distance, d, from edge of strap (i.e. 4'-1'' - 2'-0'' = 2'-1''from end of block) = $V = 4610 \times 2.08 = 9600 \text{ lb}$

$$M = 4610 \times 2.08^2 \times \frac{12}{2} = 461,000 \text{ lb-in.}$$

Try 28 in. depth,
$$d = 24$$
 in.,

$$v = V/bjd = \frac{9600}{12 \times \frac{7}{8} \times 24} = 38 \text{ psi} < 75$$

Block might be sloped or stepped down towards outer end but may be more economical carried straight through.

$$R = M/bd^2 = \frac{461,000}{12 \times 24 \times 24} = 67 \text{ psi} < 235.$$

For bars in bearing block see page 364.

Size of Strap:—Neglecting weight of strap,

Zero shear (max. moment) is $\frac{195,000}{10.33 \times 4610} = 4.10$ ft. from bldg line.

$$M = 195,000 \left(\frac{4.10}{2} - 0.50 \right) 12 = 3,625,000 \text{ lb-in.}$$

$$V = 19,200 \text{ lb}$$

Try 28 in. depth,
$$d = 24$$
 in.,

$$b_m = M/Rd^2 = \frac{3,625,000}{235 \times 24 \times 24} = 26.8 \text{ in. at } 4.10 \text{ ft from bldg line.}$$

$$b_v = V/vjd = \frac{19,200}{75 \times \frac{7}{8} \times 24} = 12.2$$
 in. throughout. Use 14 in.

Make strap 28 in. deep by 14 in. wide on edge of interior footing, about 26.8 in. wide 4.10 ft from bldg line, and 26 in. wide at edge of exterior footing.

Steel in Strap:
$$-A_s = M/f_s jd = \frac{3,625,000}{17,500 \times 24} = 8.62 \text{ sq in.}$$

Use
$$9-\#9 = 9.00$$
 sq in.
Number of top bars left for bond at interior column =

Number of top bars left for bond at interior column =
$$N = V/jdou = \frac{19,200}{\frac{7}{8} \times 24 \times 3.5 \times 210} = \frac{1\frac{1}{4} \text{ (Extend 3 and cut 6 short as below)}}{\text{short as below)}}$$

$$2-2/9 \times 19.5 + 1'-5'' = 6'-0''$$

$$2-4/9 \times 19.5 + 1'-5'' = 10'-3''$$

$$2-6/9 \times 19.5 + 1'-5'' = 14'-6''$$

Steel in Bearing Block:—
$$A_s = \frac{M}{f_s j d} = \frac{442,500 \times 4.5}{17,500 \times 24} = 4.74 \text{ sq in.}$$

$$8 - \#7 = 4.80 \text{ sq in.}$$

$$u = \frac{vb}{\Sigma o} = \frac{73 \times 54}{8 \times 2.79} = 180 < 300 \text{ psi.}$$

At distance d, beyond face of strap (i.e., at 5'-2''-1'-1''-2'-0''=2'-1'' from end of bearing block):—

$$v_x = \frac{4610 \times 2.08}{12 \times \frac{7}{8} \times 24} = 38 < 75$$
 psi, so no stirrups are required.

Cross bars are proportioned arbitrarily as 8-#5 @ 16 in.

Check Weight:— $10.33 \times 4.5 \times 2.33$ @ 150 = 16,300 lb (not including strap) < 18,000 lb, assumed.

2. DESIGN OF A COMBINED FOOTING.

Example—Given an exterior wall carrying 195 kips as in the preceding problem, whose exterior face is 20'-0" from the center of an interior column carrying 310 kips and 1.6 ft square, making the distance center to center 19'-6". Using a soil pressure of not over 5000 psf, concrete strength of 3000 psi and steel at 20,000 psi, design a combined footing.

Solution:—With columns 19.5 ft on centers and loads of 195 and 310 kips, the centroid of down-loads is $\left(0.5 + \frac{310}{505} 19.5\right) = 12.47$ ft from the exterior face of the exterior column, so a rectangular footing must be 24.94 ft, say 25'-0" long to center on the same line.

The width is computed to furnish the required area:-

= 195,000 lb > 505,000 lbLoad on exterior column Load on interior column = 310,000 lb

Weight of footing, assumed

(Estimate 9 to 10% of total load) = 48,000 lb 553,000 lb

$$b = \frac{553,000}{5000 \times 25.0} = 4.43$$
 ft, say 4'-6".

Net soil pressure = $\frac{505,000}{4.5 \times 25.0}$ = 4490 psf.

From exterior face to zero shear is computed:-

$$x = \frac{195,000}{4.5 \times 4490} = 9.65 \,\text{ft}.$$

Maximum bending moment, $M = 195,000 \times \left(\frac{9.65}{2} - 0.50\right) \times 12 = 10,120,000$ lb-in.

$$d = \sqrt{\frac{M}{Rb}} = \sqrt{\frac{10,120,000}{235 \times 54}} = 28.2, \text{ use 29 in.}; t = 2'-9''.$$
ecause of tension in the top of the footing maximum shear

Because of tension in the top of the footing maximum shear is computed at the face of the interior column, (5.00 + 0.80 from inner end of footing):-

 $V = 310,000 - 5.80 \times 4.5 \times 4490 = 193,000 \,\mathrm{lb}$

$$v = V/bjd = \frac{193,000}{54 \times \frac{7}{8} \times 29} = 141 \text{ psi, so stirrups are required.}$$
Shown at incide force of exterior columns at 105,000 at 4.50 × 4.50

Shear at inside face of exterior column = $195,000 - 4.50 \times 1 \times 4490 = 174,800$ lb

$$v = V/bjd = \frac{174,800}{54 \times \frac{7}{8} \times 29} = 128 \text{ psi (stirrups)}$$

Computation of stirrups is shown in the figure on page 364. (See also pages 86-91.)

Top steel:
$$-A_s = M/f_s jd = \frac{10,120,000}{17,500 \times 29} = 20.0 \text{ sq in.}$$

$$13 - \#11 = 20.3 \text{ sq in.}$$

13-#11 = 20.3 sq in. Number of straight top bars:— $N = \frac{V}{uojd} = \frac{193,000}{210 \times 4.43 \times \frac{7}{8} \times 29} = 8.2 \text{ straight.}$ Use 9 straight, bend 4.

Bottom bars in cantilever: $-M = \frac{4.50 \times 4490 \times \overline{4.20 \times 12}}{2} = 2,140,000 \text{ lb-in.}$

$$A_s = \frac{M}{f_s j d} = \frac{2,140,000}{17,500 \times 29} = 4.22 \,\mathrm{sq}\,\mathrm{in}.$$

$$3-\#11 = 4.68$$
 sq in. (4 bent)

Since the point of inflection is only about 1.3 ft to the right of the interior column $(310 \times 1.3 = 403; 4.5 \times 4490 \times 6.3 \times 3.15 = 401)$ bottom bars in addition to truss bars and stirrup ties are not needed.

Bending bars:—(moment curve assumed parabolic and symmetrical about vertex at zero shear point)

Outside of zero shear:-

Bend 2 at
$$X_1 = 9.65 \sqrt{2/13} = 3.80$$
 ft (5'-9" from bldg line)

Bend 2 at
$$X_2 = 9.65 \sqrt{4/13} = 5.38$$
 ft (1'-6" outside of above)

Inside of zero shear:

Bend 2 at
$$X_3 = 10.35 \sqrt{2/13} = 4.04$$
 ft (4'-0" from ¢ interior col.)

Bend 2 at
$$X_4 = 10.35 \sqrt{4/13} = 5.71$$
 ft (1'-8" outside of above)

Cross bending at interior column:—[design as a cantilever for $\frac{310,000}{2}$ lb with arm =

$$(1'-1\frac{1}{2}'' - 5'') = 8\frac{1}{2}''; M = 1,320,000 \text{ lb-in.}]$$

$$(1'-1\frac{1}{2}'' - 5'') = 8\frac{1}{2}''; M = 1,320,000 \text{ lb-in.}]$$

$$A_s = \frac{M}{f_s j d} = \frac{1,320,000}{17,500 \times 29} = 2.60 \text{ sq in.}$$

Use 6-#6 crosswise = 2.64 sq in.

Check assumed weight: $-4.50 \times 25.0 \times 2.75 \times 150 = 46,400 \text{ lb}$

 $f_e = 20,000 \text{ psi}$ $f'_c = 3000 \text{ psi}$ $f_c = 1350 \text{ psi}$ $v_c = 75 \text{ psi}$ $v_c = 240 \text{ psi}$

These tables give the safe total superimposed load (with dead weight of the footing deducted) that can be carried by reinforced concrete square individual column footings for soil capacities of 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 8,000 and 10,000 psf. The 1956 ACI "Building Code Requirements for Reinforced Concrete" has been followed.

Shear and bond stresses are based upon reinforcing bars with deformations meeting the requirements of ASTM A305. With this type of bar, hooking of the mat reinforcement is unnecessary and straight bars are used. Plain round bars or bars with deformations not meeting A305 cannot be used with these tables.

Designs are based upon a uniform depth, since the extra expense of sloped or stepped footings more than offsets the cost of added concrete to obtain the simple prism.

One grade of concrete is tabulated ($f'_c = 3000$ psi). If weaker concrete than this is used, the depths of footings must be increased to suit.

The columns in the tables headed "Maximum Size of Dowels" give the largest dowel which can be developed between the top of the footing and a point 3 in. above the subgrade for four conditions of allowable bond stress:—

Case 1: when the vertical column bars are of intermediate grade, deformed bars in tied columns, stressed 12,800 psi.

Case 2: intermediate grade bars in spirally reinforced columns or hard grade bars in tied columns, stressed 16,000 psi.

Case 3: hard grade bars in spirally reinforced concrete columns, stressed 20,000 psi.

Case 4: using dowels embedded 20 diameters in the footing.*

Where footing is too shallow to develop dowels, use a larger number of smaller bars to increase bond or thicken footing either throughout or with a cap.

Not all possible designs are presented here. For those who wish to design beyond the scope of these tables, or merely see how they were prepared, the following example is presented:—

Example:—For the table on page 371 check the capacity of a 12 ft square footing on 5000 psf soil.

Tables are worked in reverse of an actual design; i.e., by determining the net capacity of a selected footing.

Solution-

P = 664.3 kips (from table on page 371)

Footing
$$Wt = \frac{12 \times 12 \times 2.58 \text{ @ }150}{1000} = \frac{55.7 \text{ kips}}{720.0 \text{ kips}} = 0.084 P \text{ (for estimating weight)}$$

^{*} The 1956 ACI Building Code requires that column verticals be lapped 20 diameters at the floor line, but this is partly to transmit possible bending moments, partly to get adequate practical lap and partly to allow for any possible variations in thickness of floor finishes. Many designers feel that it is impracticable to transmit moment into the footings and that the dowels need only transfer the vertical load in the bars at allowable bond stress.

Total Soil Pressure,
$$p_t = \frac{720.0 \times 1000}{12 \times 12} = 5,000 \text{ psf}$$

Net Soil Pressure, $p_a = \frac{664.3 \times 1000}{12 \times 12} = 4,610 \text{ psf}$

Shear on a Section 6'-0" Square: *-

$$v = \frac{V}{bdj} = \frac{(12 \times 12 - 6 \times 6)4610}{4 \times 6 \times 12 \times 26.1 \times \frac{7}{8}} = 75.7 \text{ psi vs } 75 \text{ psi allowed}$$

Moment on a Section at the Face of the Column, using 0.85 times the cantilever moment (ACI 1204 e):—

$$M = 0.85 \times 4610 \times (12 \times 5.17) \times 31 = 7,540,000 \text{ lb-in.}$$

$$R = \frac{M}{bd^2} = \frac{7,540,000}{144 \times 26.1 \times 26.1} = 76.8 < 235 \text{ so } \begin{cases} f_c < 1350 \text{ psi (table on p. 34)} \\ j = 0.916 \end{cases}$$

$$A_s = \frac{M}{f_s j d} = \frac{7,540,000}{20,000 \times 0.916 \times 26.1} = 15.77 \text{ sq in.}$$
 13-#10 Bars = 16.5 sq in.

Bond on Bars at the Face of the Column:-

$$u = \frac{V}{\Sigma o j d} = \frac{4610 \times 12 \times 5.17}{13 \times 3.99 \times 0.916 \times 26.1} = 230 < 240 \text{ psi allowed}$$

* It is possible to determine the depth required for shear in a fairly simple manner.

$$d = \frac{[B^2 - (c + 2d)^2]p_a}{12 \times 4 \times v_c j(c + 2d)}$$
if $C = \frac{p_a}{504v_c}$ and $k = \frac{C}{B}$, then:
$$\frac{d}{B} = \frac{\sqrt{2C + 4C^2 + \frac{1}{4}k^2 - \frac{1}{2}k(1 + 4C)}}{2 + 4C}$$

For description of soil load test procedure, see page 274.

For explanation and limitations of these tables, see pages 366 to 368.

SOIL PRESSURE-1000 psf

Ca-			Max. Size	1	Way `	Bars Each	Mat	Min.	Thick-	
pacity (kips)	Case 4	Case 3	Case 2	Case 1	Spacing c/c (in.)	Bar- Size	Quant. of Bars	Col. Size (in.)	ness t (in.)	Size B
21.7		•		#5	13	#4	5	10	101/2	5'-0
26.3				#5	111/2	#4	6	10	101/2	5'-6
31.3				#5	16	#5	5	10	101/2	6'-0
36.7	1 1			#5	111/2	#5	7	10	101/2	6'-6
42.3		7.8		#6	15	#6	6	10	11	7'-0
47.8			#5	#6	. 16	#6	6	10	12	7'-6
54.4			#5	#6	121/2	#6	8	10	12	8'-0
60.5			#6	#7	131/2	#6	8	10	13	8'-6
67.9	25		#6	#7	11	#6	10	10	13	9'-0
74.4		#5	#6	#8	111/2	#6	10	10	14	9'-6
81.3		#5	#7	#9	16	#7	8	10	15	10'-0
89.6		#5	#7	#9	143/4	#7	9	10	15	10'-6
96.8	#5	#5	#7	#9	131/2	#7	10	10	16	11'-0

SOIL PRESSURE-2000 psf

		Min.	Mat	Bars Eac	h Way	less	Max. Size		common analysis	Ca-
Size B	Thick- ness t (in.)	Col. Size (in.)	Quant. of Bars	Bar Size	Spacing c/c (in.)	Case 1	Case 2	Case 3	Case 4	pacity (kips)
3'-0	101/2	10	3	· #4	14	#5				16.8
3'-6	101/2	10	4	#4	111/2	#5				22.9
4'-0	101/2	10	5	#4	10	#5				29.9
4'-6	101/2	10	7	#4	71/2	#5				37.8
5'-0	11	10	6	#5	101/2	#6			la	46.6
5'-6	12	10	7	#5	91/2	#6	#5		-	56.0
6'-0	13	10	6	#6	121/2	#7	#6			66.2
6'-6	14	10	7	#6	111/2	#8	#7	#5		77.1
7'-0	15	10	8	#6	11	#9	#7	#5		88.8
7'-6	15	12	7	#7	131/2	#9	#7	#5		102.0
8'-0	16	12	8	#7	121/2	#9	#7	#6	#5	115.2
8'-6	17	12	7	#8	151/2	#10	#8	#6	#5	129.2
9'-0	18	14	7	#8	161/2	#11	#9	#7	#6	143.8
9'-6	18	14	8	#8	15	#11	#9	#7	#6	160.2
10'-0	19	14	9	#8	14	#11	#9	#7	#6	176.3
10'-6	20	14	8	#9	161/2	#11	#10	#8	#6	192.9
11'-0	20	16	9	#9	151/2	#11	#10	#8	#6	211.7
11'-6	21	16	10	#9	141/2	#11	#10	#8	#7	229.8
12'-0	22	16	10	#9	15	#11	#11	#9	#7	248.4

For explanation and limitations of these tables, see pages 366 to 368.

SOIL PRESSURE-3000 psf

	71.1	Min.	Mat	Bars Eac	h Way	loop	Max. Size			Ca-
Size B	Thick- ness t (in.)	Col. Size (in.)	Quant. of Bars	Bar Size	Spacing c/c (in.)	Case 1	Case 2	Case 3	Case 4	pacity (kips)
3'-0	101/2	10	4	#4	91/2	#5				25.8
3'-6	101/2	10	6	#4	7	#5		-		35.1
4'-0	101/2	10	7	#4	61/2	#5				45.9
4'-6	11	10	9	#4	534.	#6		,		58.0
5'-0	13	10	7	#5	81/2	#7	#6		1 40 00	70.9
5'-6	14	10	8	#5	81/4	#8	#6			85.4
6'-0	14	12	-8	#6	9	#8	#6			101.7
6'-6	16	12	8	#6	10	#9	#7	#6	#5	118.3
7′-0	17	12	7	#7	121/2	#10	#8	#6	#5	136.6
7'-6	17	14	8	#7	111/2	#10	#8	#6	#5	156.8
8'-0	18	14	10	#7	91/2	#11	#9	#7	#6	177.6
8'-6	19	16	8	#8	131/4	#11	#9	#7	#6	199.6
9'-0	20	16	7	#9	161/2	#11	#10	#8	#6	222.7
9'-6	21	16	8	#9	15	#11	#10	#8	#7	247.1
10'-0	22	16	9	#9	13¾	#11	#11	#9	#7	272.5
10'-6	23	16	10	#9	13	#11	#11	#9	#8	299.1
11'-0	24	16	11	#9	121/4	#11	#11	#9	#8	326.7
11'-6	25	16	12	#9	113/4	#11	#11	#10	#8	355.5
12'-0	26	16	13	#9	111/4	#11	#11	#10	#9	385.2

SOIL PRESSURE-4000 psf

×	Thick-	Min.	Mat	Bars Eac	h Way	\$	Max. Size			Ca-
Size B	ness t (in.)	Col. Size (in.)	Quant. of Bars	Bar Size	Spacing c/c (in.)	Case 1	Case 2	Case 3	Case 4	pacit (kips
3'-0	101/2	10	5	#4	7	#5				34.
3'-6	101/2	10	7	#4	51/2	#5				47.4
4'-0	11	10	9	#4	5	#6				61.1
4'-6	13	10	10	#4	5	#7	#6			77.7
5'-0	14	10	8	#5	71/4	#8	#6	#5		95.
5'-6	15	12	9	#5	71/4	#9	#7	#5		115.
6'-0	16	12	8	#6	9	#9	#7	#6	#5	136.
6'-6	17	14	9	#6	83/4	#10	#8	#6	#5	160.
7'-0	18	14	11	#6	71/2	#11	#9	#7	#6	185.
7'-6	19	16	9	#7	10	#11	#9	#7	#6	211.
8'-0	20	16	-11	#7	8 3/4	#11	#10	#8	#6	240.
8'-6	21	16	10	#8	101/4	#11	#10	#8	#7	270.
9'-0	22	16	9	#9	121/4	#11	#11	#9	#7	301.
9'-6	24	16	9	#9	13	#11	#11	#9	#8	333.
10'-0	25	16	10	#9	121/4	#11	#11	#10	#8	368.
10'-6	26	16	12	#9	101/2	#11	#11	#10	#9	405.
11'-0	27	16	13	#9	101/4	#11	#11	#11	#9	443.
11'-6	28	16	14	#9	10	#11	#11	#11	#9	482
12'-0	29	18	15	#9	91/2	#11	#11	#11	#10	523.

For explanation and limitations of these tables, see pages 366 to 368.

SOIL PRESSURE-5000 psf

	Thick-	Min.	Mat	Bars Eacl	n Way	lean	Max. Size	of Dowels		Ca-
Size B	ness t (in.)	Col. Size (in.)	Quant. of Bars	Bar Size	Spacing c/c (in.)	Case 1	Case 2	Case 3	Case 4	pacity (kips)
3'-0	101/2	10	6	#4	51/2	#5				43.8
3'-6	101/2	10	9	#4	41/4	#5				59.6
4'-0	12	10	10	#4	41/2	#6	#5		8.5	77.6
4'-6	14	10	9	#5	53/4	#8	#6	#5	W-	97.7
5'-0	15	12	9	#5	61/2	#9	#7	#5		120.3
5'-6	15	14	11	#5	53/4	#9	#7	#5	8	145.6
6'-0	17	14	9	#6	8	#10	#8	#6	#5	172.4
6'-6	18	14	11	#6	7	#11	#9	#7	#6	201.7
7'-0	20	14	12	#6	63/4	#11	#10	#8	#6	232.7
7'-6	21	14	11	#7	8	#11	#10	#8	#7	266.5
8'-0	22	14	13	#7	71/4	#11	#11	#9	#7	302.4
8'-6	23	16	11	#8	91/4	#11	#11	#9	#8	340.5
9'-0	24	16	12	#8	9	#11	#11	#9	#8	380.7
9'-6	26	16	13	#8	83/4	#11	#11	#10	#9	421.9
10'-0	27	16	12	#9	10	#11	#11	#11	#9	466.3
10'-6	28	18	13	#9	193/4	#11	#11	#11	#9	512.7
11'-0	29	18	14	#9	91/2	#11	#11	#11	#10	561.2
11'-6	31	18	12	#10	1134	#11	#11	#11	#10	610.1
12'-0	31	20	13	#10	111/4	#11	#11	#11	#10	664.3

SOIL PRESSURE-6000 psf

		Min.	Mat	Bars Eacl	n Way	lass	Max. Size	of Dowels		Ca-
Size B	Thick- ness t (in.)	Col. Size (in.)	Quant. of Bars	Bar Size	Spacing c/c (in.)	Case 1	Case 2	Case 3	Case 4	pacity (kips)
3'-0	101/2	10	8	#4	4	#5				52.8
3'-6	12	10	9	#4	41/4	#6	#5	#5	E.	71.7
4'-0	13	10	11	#4	4	#7	#6	#6	8	93.4
4'-6	14	12	10	#5	5	#8	#6	#6	<u> </u>	117.9
5'-0	16	14	10	#5	53/4	#9	#7	#7	#5	145.0
5'-6	17	14	11	#5	53/4	#10	#8	#8	#5	175.1
6'-0	18	14	11	#6	61/4	#11	#9	#9	#6	207.9
6'-6	20	14	12	#6	61/4	#11	#10	#10	#6	242.9
7'-0	21	14	11	#7	71/2	#11	#10	#10	#7	281.2
7'-6	22	14	12	#7	71/2	#11	#11	#11	#7	322.0
8'-0	23	16	11	#8	83/4	#11	#11	#11	#8	365.6
8'-6	25	16	12	#8	81/2	#11	#11	#11	#8	410.9
9'-0	26	16	11	#9	10	#11	#11	#11	#9	459.7
9'-6	27	18	12	#9	91/2	#11	#11	#11	#9	511.1
10'-0	28	18	13	#9	91/4	#11	#11	#11	#9	565.0
10'-6	29	20	14	#9	9	#11	#11	#11	#10	621.6
11'-0	31	20	12	#10	111/4	#11	#11	#11	#10	679.2
11'-6	32	20	14	#10	10	#11	#11	#11	#11	740.6
12'-0	33	22	15	#10	93/4	#11	#11	#11	#11	804.7

For explanation and limitations of these tables, see pages 366 to 368.

SOIL PRESSURE-8000 psf

				3011	PRESSURE-	0000 ps.				
	Thick-	Min.	Mat	Bars Each	n Way	(see	Max. Size	of Dowels	and the same of th	Ca-
Size B	ness t (in.)	Col. Size (in.)	Quant. of Bars	Bar Size	Spacing c/c (in.)	Case 1	Case 2	Case 3	Case 4	pacity (kips)
3'-0	11	10	10	#4	31/4	#6				70.8
3'-6	13	10	11	#4	31/2	#7	#6			96.0
4'-0	14	12	12	#4	33/4	#8	#6	#5		125.2
4'-6	15	14	11	#5	41/2	#9	#7	#5		158.2
5'-0	16	14	13	#5	41/4	#9	#8	#6	#5	195.0
5'-6	18	14	12	#6	51/4	#11	#9	#7	#6	235.2
6'-0	20	14	13	#6	51/4	#11	#10	#8	#6	279.0
6'-6	21	14	12	#7	61/4	#11	#10	#8	#7	326.9
7'-0	22	16	13	#7	61/4	#11	#11	#9	#7	378.5
7'-6	24	16	12	#8	71/4	#11	#11	#9	#8	433.1
8'-0	25	18	13	#8	71/4	#11	#11	#10	#8	492.0
8'-6	27	18	14	#8	71/4	#11	#11	#11	#9	553.6
9'-0	28	20	13	#9	81/4	#11 .	#11	#11	#9	619.6
9'-6	29	20	14	#9	8	#11	#11	#11	#10	689.3
10'-0	31	20	15	#9	8	#11	#11	#11	#10	761.3
10'-6	32	22	13	#10	93/4	#11	#11	#11	#11	837.9
11'-0	34	22	14	#10	91/2	#11	#11	#11	#11	916.6
11'-6	35	24	15	#10	91/4	#11	#11	#11	#11	1000.2
12'-0	35	26	17	#10	81/2	#11	#11	#11	#11	1089.1

SOIL PRESSURE-10,000 psf

	Thick-	Min.	Mat	Bars Each	Way	(see	Max. Size	of Dowels		Ca-
Size B	ness f (in.)	Col. Size (in.)	Quant. of Bars	Bar Size	Spacing c/c (in.)	Case 1	Case 2	Case 3	Case 4	pacity (kips)
3'-0	12	10	9	#5	31/2	#6	#5			88.6
3'-6	13	12	10	#5	3 3/4	#7	#6			120.5
4'-0	14	14	12	#5	31/2	#8	#6	#5		157.2
4'-6	16	14	13	#5	3 3/4	#9	#7	#6	#5	198.4
5'-0	17	14	15	#5	33/4	#10	#8	#6	#5	244.7
5'-6	19	14	14	#6	41/2	#11	#9	#7	#6	295.3
6'-0	20	16	15	#6	41/2	#11	#10	#8	#6	351.0
6'-6	22	16	14	#7	51/4	#11	#11	#9	#7	410.9
7'-0	24	16	15	#7	51/4	#11	#11	#9	#8	475.3
7'-6	25	18	16	#7	51/2	#11	#11	#10	#8	544.9
8'-0	26	20	14	#9	63/4	#11	#11	#10	#9	619.2
8'-6	28	20	14	#9	71/4	#11	#11	#11	#9	697.2
9'-0	29	22	15	#9	7	#11	#11	#11	#10	780.7
9'-6	31	22	16	#9	7	#11	#11	#11	#10	867.6
10'-0	32	24	17	#9	7	#11	#11	#11	#11	960.0
10'-6	34	24	15	#10	81/4	#11	#11	#11	#1.1	1055.6
11'-0	35	26	16	#10	81/4	#11	#11	#11	#11	1157.1
11'-6	36	28	18	#10	71/2	#11	#11	#11	#11	1263.0
12'-0	38	28	19	#10	71/2	#11	#11	#11	#11	1371.6

CONCRETE PILE FOOTINGS

30-Ton Piles 3'-0" c. to c.*

T		Bars
		Short Way
_	Bars La	ng Way

f_8	=	20,000	psi	
	_	2000		

n = 10

 $f_c = 3000 \text{ psi}$ $f'_c = 1350 \text{ psi}$ v = 75 psi v = 240 psi

4	-			Dars	Long Wa	<u>y</u> _	r _c = 1350 ps	51	U	- 240	psı
No. Piles	PLAN	Col- umn	d and		orce- ent	Piles	PLAN	Col-	d and	Reinf	orce-
No.	T LOIN	Load (kips)	t (in.)	Short way	Long way	No.		Load (kips)	t (in.)	Short way	Long way
	5-0		18/22	4-#5	8-#5		8-4		28/32	12-#6	13-#6
2	2 0 0 9	115	22/26	4-#5	7-#5	7		396	32/36	11-#6	11-#6
	Min. column 12x12		24/28	3-#5	6-#5	1 - 1	6000		34/38	10-#6	10-#6
	(a) 21			ea.	ays of:		Min. column 20 x 20	-			
			18/22		-#5		8.0		30/34	17-#6	16-#6
3	16 16	174	21/25	8-	#5		2000	452	34/38	15-#6	14-#6
	Min.column 12×12		24/28	7-	# 5	8	23.25		36/40	14-#6	13-#6
	50		17/21	17-#5	17-#5		10 4@16 10 Min. column 20 x 20				
4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		20/24			-	8-0		34/38	17-#6	17-#6
	Min. column 16 x 16		24/28	12-#5	12-#5	9	0 0 0 2	506	38/42	16-#6	16-#6
	63		23/27	17-#5	17-#5				42/46	14-#6	14-#6
5	6.3	286	26/30	15-#5	15-#5		10 30 30 10 Min. column 22 x 22	7			
	10 0 0		30/34	13-#5	13-#5						
-	Min. column 16±16		26/30	17 #5	16 #4		1/0 0 0 121		37/41		
	\$50 O							562	40/44	16-#5	14-#7
6	प्राप्त प्राप्त	9,	30/34			10		5.	44/48	15-#5	13-#7
	Min. column 18 x 18		34/38	13-#5	13-#6		12 6€16 12 Min.column 24 x 24		10		_ 1
		7									

^{*} Piles are here assumed as carrying 30 tons each, with no reduction for the effect of neighbo<mark>ring</mark> piles in the cluster.

 $f_s = 20,000 \text{ psi}$ n = 10 $f'_c = 3,000 \text{ psi}$ v = 75 ps

5		Bars Long W		c = 3,00			40 psi
No. Piles	de Constant	PLAN		Column Load (Kips)	d and t (in.)	Reinfor Short way	Long way
12	11-0 10 3@3-0	10	Min. Column 27 x 27	676	35/40	10-#8 8-#8	19-#7
12		0 0	Mill. Coloniii 27 X 27	662	48/53	10-#7	14-#7
	10 6@1.6	10		781	37/42	20-#7	20-#7
14	12 0 0 0		Min. Column $24'' \phi$	772	43/48	17-#7	18-#7
	2.5 3.5 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	0		765	48/53	10-#9	16-#7
	10. 3@3.0	10	=	890	41/46	18-#8	18-#8
16	2 0 0 0		Min. Column $26^{\prime\prime}\phi$	883	46/51	21-#7	21-#7
	000000000000000000000000000000000000000	0		874	52/57	11-#9	11-#9
	12.6	10		992	46/51	16-#8	22-#8
18	\$ 0 0		Min. Column $26'' \phi$	982	52/57	14-#8	15-#9
	9:/88			972	58/63	17-#7	17-#8
-	14-0			1100	47/52	19-#8	27-#8
20	12000	0 0	Min. Column $28'' \phi$	1086	54/59	17-#8	23-#8
	0 0 0 0	0 0 0		1075	60/65	15-#8	17-#9

^{*} Piles are here assumed as carrying 30 tons each, with no reduction for the effect of neighboring piles in the cluster.

WOOD PILE FOOTINGS 15-Ton Piles 2'-6" c. to c.*

 $f_8 = 20,000 \text{ psi}$ $f'_{c} = 3000 \text{ psi}$

 $f_c = 1350 \text{ psi}$

n = 10 v = 75 psiu = 240 psi

Bars Long Way

Piles	21.414	Col-	d	Reinf	orce- ent		NAM	Col-	d		orce-
No. Piles	PLAN	Load (kips)	t (in.)	Short	Long		PLAN	Load (kips)	t	Short	Long way
	4.6		9/13	4-#5	8-#5		7-4		19/23	11-#5	12-#5
2	13 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	58	12/16	3-#5	6-#5	7		199	21/25	10-#5	11-#5
_	Min. column 12×12		15/19	3-#5	5-#5	,	25.2		24/28	9-#5	9-#5
	© 2		12/16		of:		12 4@13 12 Min. column 15 x 15		-		
3				7-			7.0		18/22	12-#6	12-#6
П	Min. column 12 x 12	86	15/19				0 0 0 0	226	21/25	10-#6	10-#6
			18/22	5-		8			24/28	9-#6	9-#6
	9 0 0 5		13/17				10 4@1-3 10 Min. column 16 x 16				
4	10 13 13 10 Min. column 12 x 12	115	15/19			_	7-0		21/25		
	5-8		15/19	12-#5	12-#5	9	5 0 0 0 3		23/27		
5	8.5	141	18/22	10-#5	10-#5		0 0 0		26/30	10-#6	10-#6
	10 1.10 1.10 10		20/24	9-#5	9-#5		Min. column 17 x 17		-		
	Min. column 13×13		18/22	12 #5	10.#4		9-10		23/27	14-#5	12-#7
6		171	20/24			10		281	26/30	12-#5	11-#7
0	4.6		23/27			. 0			30/34	11-#5	9-#7
	10 2.6 2.6 10 Min. column 14x14		-0, 2,	. 5 5	J J		12 6@13 12 Min. column 18 × 18		-		

^{*} Piles are here assumed as carrying 15 tons each, with no reduction for the effect of neighboring piles in the cluster.

ALLOWABLE CONCENTRIC LOADS ON STEEL PIPE COLUMNS

ST			

Ushanad	Nominal Diameter—Weight Per Foot												
Unbraced Length (ft)	1	2		10		1	3	6	5	4	31/2	3	
(11)	49.56	43.77	40.48	34.24	31.20	28.55	24.70	18.97	14.62	10.79	9.11	7.58	
6	246	217	200	169	154	140	121	92	70	50	42	33	
8	244	216	199	168	153	138	120	90	68	47	38	30	
10	243	214	196	166	151	136	118	86	64	44	35	26	
12	240	212	194	164	149	133	115	82	61	40	30	21	
14	237	210	190	161	147	129	112	79	56	34	25	18	
16	234	207	187	158	144	125	109	74	51	30	22	16	
18	231	204	182	154	141	121	105	69	45	26	19	13	
20	227	200	178	151	137	115	100	63	41	23	17		
22	222	196	172	146	133	109	95	56	37	21	15		

			EXTRA	STRONG				
I to be seen at		N	ominal Di	ameter-	Weight	Per Foot		
Unbraced Length	12	10	8	6	5	4	31/2	3
(ft)	65.42	54.74	43.39	28.57	20.78	14.98	12.51	10.25
6	325	271	213	139	99	70	58	45
8	323	268	210	135	96	65	53	40
10	320	265	206	131	91	60	47	35
12	317	261	201	125	85	54	40	28
14	313	257	196	119	79	47	34	24
16	309	252	189	112	71	40	30	21
18	304	246	182	103	63	36	26	.18
20	299	239	173	94	56	32	23	
22	293	232	164	84	51	28		
24	286	224	155	77	46	25		

Unbraced	Nominal Diameter—Weight Per Foot												
Length (ft)	8	6	5	4	31/2	3							
(11)	72.42	53.16	38.55	27.54	22.85	18.58							
6	355	257	183	130	103	80							
8	350	249	176	118	93	70							
10	343	240	165	108	82	59							
12	334	228	154	94	68	48							
14	324	213	140	79	58	40							
16	312	200	125	70	50	34							
18	299	182	109	61	43								
20	284	163	98	54	38								
22	269	147	88	47									
24	250	135	80										
26	230	124	72										

For concretefilled pipe columns, see page 378.

Loads below heavy line are for secondary members with L/r ratios between 120 and 200. Properties of steel from which pipe is made are assumed to be those of ASTM A7. If pipe is made of other steel, safe loads should be suitably modified.

The walls tabulated here are designed to have a factor of safety against overturning varying from a little less than 2 to a little over $2\frac{1}{2}$, with a toe pressure not exceeding 4000 psf (except in the case of walls over 15 ft high with sloping backfill when the earth pressure runs up to 5000 psf). The passive resistance of any earth at the toe of the wall has been neglected. Generally, and especially in moist clay soils, a lug or key projecting down below the main footing level is desirable to assist in preventing sliding.

While these tables cover quite a wide range, it may be necessary to compute values beyond the scope of the book, or someone may want to see how the tabulated values were worked out, so the following example is included:—*

Example—For the table on page 384, prepare the design of a cantilevered retaining wall 10 feet high from top of footing to top of wall, the surface of the earth fill being level at

the top of the wall with no surcharge.

The outlines of the concrete, batter, and the location of the stem on the footing are matters of experience and of trial, quite a few proportions having been investigated before arriving at the values given. However, the checking of the tabulated values is fairly simple, taking concrete at 150 pcf and backfill at 100 pcf, with $\phi = 33^{\circ}40'$, stresses being as tabulated at the head of the table.

Stability-

Resisting Moment—

 $Overturning\ Moment\ (from\ the\ table\ on\ page\ 394):--$

$$0.5734 \ wh^3 = 0.5734 \times 100 \times 11.17^3 = 79,850 \ \text{lb-in.} = - \underline{6,654} \ \text{lb-ft}$$

$$5395)10,011$$

Resultant base pressure acts at x = 1.85 ft from toe.

^{*}For a more extended treatment of retaining wall design, see Sutherland and Reese "Reinforced Concrete Design," John Wiley & Sons, Inc., 1943.

Factor against Overturning—
$$\frac{16,665}{6,654} = 2.50$$
 (as in table, page 384)

Pressure on Soil—Eccentricity of resultant pressure on base =

$$\begin{aligned} \frac{5.33}{2} - 1.85 &= 0.82 \text{ ft} < \frac{5.33}{6}. \text{ So the force lies within the middle third of the base.} \\ p_1 &= \frac{P}{A} \pm \frac{Mc}{I} = \frac{P}{bh} + \frac{6Pe}{bh^2} = \frac{5395}{5.33} + \frac{6 \times 5395 \times 0.82}{1 \times (5.33)^2} \\ &= 1012 + 932 = 1944 \text{ psf} \\ p_2 &= 1012 - 932 = 80 \text{ psf} \end{aligned} \text{ In table, p. 385}$$

Stem

Shear—From the table on page 394, the horizontal thrust for
$$h=10$$
 is 1433 lb.
$$v=\frac{V}{bjd}=\frac{1433}{12\times\frac{7}{8}\times11\frac{1}{2}}=12\,\mathrm{psi}<90\,\mathrm{psi}$$

Moment—The bending moment increases rapidly (as the cube of the height) from top to bottom of stem and the effective depth of the reinforcing steel also increases somewhat. In the following figure, the required amount of reinforcement is computed at several levels and a curve of required A_{\bullet} is drawn. Economy results by

selecting dowels from the footing into the stem that are of proper size, spacing and length to take care of the peak of the curve for required A_s , while, at the top of these dowels, less reinforcement is necessary and only a portion of this need extend to the top of the wall. The amount of steel is computed in the above figure. The spacings of bars in the wall and footing are kept uniform to produce a simple pattern for the erectors.

Bond—On dowels:—
$$u = \frac{vs}{\Sigma_0} = \frac{12 \times 8}{1.571} = 61 \text{ psi} < 300 \text{ psi}$$

Bond on vertical bars at various levels should be similarly investigated.

Toe

Shear—ACI 1205a permits computing shear on a plane at distance, d, from the face of the wall, where

$$V = 0.43 \frac{1769 + 1619}{2} = 728 \text{ lb}$$

 $v = \frac{V}{bjd} = \frac{728}{12 \times \frac{7}{8} \times 10\frac{3}{4}} = 7 \text{ psi} < 90 \text{ psi}$

More conservatively, shear can be computed on the face of the wall

$$\begin{split} V &= 1.38 \frac{1769 \, + 1305}{2} = 2044 \text{ lb} \\ v &= \frac{V}{bjd} = \frac{2044}{12 \times \frac{7}{8} \times 10^{3} 4} = 18 \text{ psi} < 90 \text{ psi} \end{split}$$

For this wall, either value is well on the conservative side.

Moment about Face of Stem—
$$M=1305\times 1.33\times 0.67=1163$$
 lb-ft
$$464\times \frac{1.33}{2}\times \frac{2\times 1.33}{3}=\frac{+276}{1439}$$
 lb-ft = 17,300 lb-in.
$$A_{\bullet}=\frac{M}{f_{\bullet}jd}=\frac{17,300}{20,000\times \frac{7}{8}\times 10\frac{3}{4}}=0.092 \text{ sq in.}$$
 #4 @ 24 = 0.10 sq in.

Bond-Bond is to be computed at the face of the wall, ACI 1205-d

$$u = \frac{vs}{\Sigma_0} = \frac{18 \times 24}{1.571} = 275 \text{ psi} < 300 \text{ psi}$$

V = 3326 - 1627 = 1699 lb

Heel

Shear—While ACI 1205a would seem to permit computing shear on a plane at distance, d, from the back of the wall, it is more conservative and probably desirable to compute on a plane at the back of the wall

$$v = \frac{V}{bjd} = \frac{1699}{12 \times \frac{7}{8} \times 10^{3}4} = 15.1 \text{ psi} < 90 \text{ psi}$$

$$\frac{2.83 \text{ ft.}}{2.83 \times 10 \times 100} = 2830 \text{ m}$$

$$\frac{2.83 \times 10 \times 100}{3326 \text{ m}} = \frac{2830 \times$$

$$M$$
 about back of stem = $3326 \times \frac{2.83}{2} = 4700$ lb-ft
$$1627 \times 1.01 = -\frac{1643}{3057}$$
 lb-ft
$$3057$$
 lb-ft = $36,700$ lb-in.
$$A_s = \frac{M}{f_s j d} = \frac{36,700}{20,000 \times \frac{7}{8} \times 10\frac{3}{4}} = 0.195 \text{ sq in.}$$
 #5 @ $16 = 0.23 \text{ sq in.}$ (from the table on page 384).
$$Bond-u = \frac{vs}{\Sigma_0} = \frac{15.1 \times 16}{1.963} = 123 \text{ psi} < 300 \text{ psi}$$

The designs in the other tables follow the same procedure. It is unnecessary to work out complete examples. A few observations will be helpful. For a sloping backfill, the resultant pressure is parallel to the slope; its vertical component was included in computing overturning and resisting moments. In the case of the highway and railroad surcharges, it was assumed that the increased intensity of thrust was effective the full height of the wall. If the line of travel is established somewhat back from the stem, it is possible to draw a sloping pressure line down from the nearest edge of the load to the back of the wall and omit the increased intensity above the intersection. (See the figure below.)

The case of an adjoining building exercising a thrust directly against the back of the wall is one requiring special study. Roughly, such a wall would work out about as much heavier than the case of a railroad surcharge as that case is heavier than a wall with an ordinary horizontal backfill.

In all of these tables, the top of the wall is arbitrarily taken as 8 in. thick. This is about the minimum through which proper concrete can be cast with all of the reinforcement in place. For the higher walls, some authorities recommend at least a 12 in. thickness. The user may increase the top thickness without changing the bottom thickness or reinforcing steel, if he cares to do so, the increased weight adding slightly to the resistance to overturning.

CANTILEVERED RETAINING WALLS-BACKFILL LEVEL-NO SURCHARGE

Vertical steel in back of wall may be:—

O + T only

 $\begin{cases} O + T \text{ only} \\ O \text{ only} & M + Q + N + Q \\ M + N \text{ alt.} & \text{(as shown)} \end{cases}$

Comparison of bar spacings in table will indicate combination, spacings being accumulative from a selected M or O bar.

Wt. of earth = 100 pcf L of Internal Friction = ϕ = 33° 40′ f_s = 20,000 psi f'_c = 3,000 psi f_c = 1,350 psi v = 90 psi v = 300 psi

O & T bars alternate, or occur O + T + T, except in walls without key, where only O bars are required.

					R	EINFORG	EMEN	T							
Height		М			N			Q			Р			0	
of Wall = h (ft)	Bar Size	Length (ft)	Spcg (in.)		Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)
3 4 5	=		=	=	=	=	=	=	=	#3 #3 #3	1'-3 1'-3 1'-9	18 18 18	#3 #3 #3	4'-3 5'-5 6'-5	18 18 18
6 7 8 9	#3 #3 #3	7'-10 8'-10 9'-10	161/2			7½, 15 5½, 11 16				#3 #3 #4 #4 #5	2'-3 2'-6 2'-9 3'-3 3'-6	16 10 15 11	#3 #3 #3 #4	7'-10 9'-2 5'-1 3'-10 5'-6	10 221/2
√11 12 13 14 15	#3 #3 #4 #4 #5	10'-10 11'-10 12'-10 13'-10 14'-10	24 20 26 20	#3 #3 #4 #4 #5	6'-0 7'-0 7'-0 7'-6 8'-0	24 20 26 20 26	#3 #3 #4 #4 #5	5'-0 5'-0 5'-0 5'-0 6'-0	12 10 13 10 13	#4 #5 #4 #4 #5	4'-0 4'-3 4'-6 4'-9 5'-3	12 10 6½ 5 6½	#4 #4	5'-8 6'-6 6'-2 6'-3 7'-3	18 10 19½ 15
16 17 18 19 20	#5 #6 #6 #7 #7	15'-10 16'-10 17'-10 18'-10 19'-10	26 24 26	#5 #6 #6 #7 #7	8'-0 8'-6 9'-6 10'-0 10'-6	22 26 24 26 24	#5 #6 #6 #7 #7	6'-0 6'-6 7'-0 6'-6 7'-0	11 13 12 13 12	#5 #6 #6 #7 #6	5'-9 6'-3 6'-6 7'-3 7'-3	5½ 6½ 6 6½ 6	#6 #7 #7 #8 #8	6'-10 7'-6 7'-9 8'-4 8'-6	16½ 13 12 19½ 24

CANTILEVERED RETAINING WALLS—BACKFILL LEVEL—NO SURCHARGE

CONCRETE OUTLINES

Height of	_				Base P	ressure	Resisting	Overturn-		Concrete
Wall=h (ft)	B (ft)	(ft)	(ft)	(ft)	at Toe (psf)	at Heel (psf)	Moment (Ib-ft)	ing Moment (Ib-ft)	$\frac{M_R}{M_O}$	(cu ft pe lin. ft of wall)
3	1'-9	0'-10½	0'-4	0'-6½	885	0 0	726	279	2.60	4.2
4	2'-2	0'-11	0'-5	0'-10	1,136		1,359	570	2.38	5.5
5	2'-8	0'-11	0'-5	1'-4	1,361		2,390	991	2.41	6.7
6 7 8 9	3'-3 3'-10 4'-3 4'-9 5'-4	1'-0 1'-0 1'-1 1'-1 1'-2	0'-8 1'-0 1'-1 1'-1 1'-4	1'-7 1'-10 2'-1 2'-7 2'-10	1,415 1,398 1,643 1,851 1,944	0 89 38 60 80	4,100 6,300 8,760 12,310 16,665	1,638 2,448 3,582 4,892 6,675	2.50 2.58 2.44 2.51 2.50	8.7 10.0 11.9 12.5 16.5
11	5'-10	1'-2	1'-6	3'-2	2,051	108	21,400	8,600	2.49	17.6
12	6'-6	1'-3	1'-8	3'-7	2,129	207	28,900	10,980	2.63	20.4
13	7'-0	1'-4	1'-8	4'-0	2,403	161	36,300	14,101	2.58	23.0
14	7'-8	1'-4	2'-1	4'-3	2,332	290	45,700	17,256	2.65	25.0
15	8'-1	1'-5	2'-1	4'-7	2,608	239	54,700	21,158	2.59	28.0
16	8'-6	1'-5	2'-2	4'-11	2,799	211	64,000	25,253	2.53	29.7
17	9'-0	1'-6	2'-3	5'-3	3,008	197	76,300	30,325	2.52	32.9
18	9'-6	1'-7	2'-4	5'-7	3,207	197	90,000	35,898	2.50	36.5
19	10'-2	1'-7	2'-6	6'-1	3,264	286	107,700	41,654	2.58	38.5
20	10'-5	1'-8	2'-6	6'-3	3,119	646	119,300	48,650	2.46	42.0

						RI	INFO	RCEMEN	IT					
0 0	Ь		T			F			L		-	Н		Weight of
a (ft)	b (ft)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Quant. of Bars		Spcg (in.)	Quant. of Bars	Bar Size	Spcg (in.)	Bars (lb per lin. ft of wall)
0'-10 0'-11 0'-11			=		#3 #3 #3	2'-10 3'-10 4'-10	18	7 8 9	#3 #3 #3	12 12 12	2 3 3	#3 #3 #3	18 18 18	5.22 6.39 7.40
1'-3 1'-7 1'-9 1'-9 2'-1	6'-7 7'-7 3'-4 2'-1 3'-5	#3 #3 #4	2'-10 2'-10 3'-5		#3 #3 #3 #4	5'-10 6'-10 7'-10 8'-10 9'-10	12 12 12	11 12 14 15	#3 #3 #3 #4	12 12 12 12 12	4 7 8 9 10	#3 #3 #3 #4	18 12 12 12 12	10.21 16.18 18.26 21.07 35.8
2'-3 2'-6 2'-7 3'-0 3'-1	3'-5 4'-0 3'-7 3'-3 4'-2	#4 #4 #5 #5 #6	4'-3 4'-10 4'-6 4'-1 5'-2	6, 12 10 6½, 13 5, 10 6½, 13	#4 #4 #4 #4	10'-10 11'-10 12'-10 13'-10 14'-10	12 12 12	19 20 21 23 25	#4 #4 #4 #4	12 12 12 12 12	11 12 13 14 15	#4 #4 #4 #4	12 12 12 12 12	43.2 50.2 55.8 66.2 79.7
3'-2 3'-4 3'-6 3'-8 3'-9	3'-8 4'-2 4'-3 4'-8 4'-9	#6 # 7 #7 #8 #8	4'-8 5'-2 5'-4 5'-9 5'-11	5½, 11 13 12 6½, 13 6, 12, 18	#4 #4 #4 #4	15'-10 16'-10 17'-10 18'-10 19'-10	12 12 12	27 28 29 30 31	#4 #4 #4 #4	12 12 12 12 12	16 17 18 19 20	#4 #4 #4 #4	12 12 12 12 12	90.5 108.9 120.7 144.9 157.3

CANTILEVERED RETAINING WALLS—SURFACE OF EARTH SLOPING ($\phi=33^{\circ}40'$)

Vertical steel in back of wall may be:

M+N+1Q M+Q+N+Q(O+Tonly O only

M + Nalt. (as shown) Comparison of bar spacings in table will indicate combination, spacings being accumulative from a selected M or O bar.

> Wt of earth = 100 pcf L of Internal Friction = $\phi = 33^{\circ} 40'$

 $f_c = 20,000 \text{ psi}$ $f'_c = 3,000 \text{ psi}$ = 1,350 psi

90 psi 300 psi

O & T bars alternate, or occur O + T + T except in walls without key, where only O bars are required.

					REIN	NFOR	CEMEN	1T							
Height		W			N			Q			Р			0	
of Wall = h (ft)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)
3 4 5	=	=	=	=	=	=		=	=	#3 #3 #3		18 18 13	#3 #3 #3	4'-7 5'-11 7'-4	18 18 13
6 7 8 9	#4 #4 #4	7'-10 8'-10 9'-10	11	#4		13				#3 #3 #4 #5 #5	2'-9 3'-0 3'-6 4'-0 4'-9	16 11 14 11 13	#3 #3 #4 #4 #5	8'-9 10'-2 6'-3 6'-10 6'-8	16 11 14 11 13
11 12 13 14 15	#5 #6 #5 #6	10'-10 11'-10 12'-10 13'-10 14'-10	16 17 15	#5 #6 #5 #6	5'-0 5'-0 5'-6 6'-0 7'-6	14 16 17 15 18	#5 #5 #6	 4'-0 4'-0 4'-6	17 15 18	#4 #6 #5 #7 #7	4'-9 5'-3 5'-6 6'-6 6'-9	7 16 8½ 15 12	#6 #7 #8 #8 #8	7'-5 7'-11 8'-10 9'-3 9'-8	
16 17 18 19 20	#7 #7 #7 #8 #9	15'-10 16'-10 17'-10 18'-10 19'-10	18 19½ 16½	#7 #7	7'-6 9'-0 9'-0 9'-0 10'-0	19½ 18 19½ 16½ 20		4'-6 5'-6 5'-9 6'-0 6'-0	19½ 18 19½ 16½ 10	#8 #9	7'-3 7'-9 8'-3 8'-9 9'-3	13 12 13 11	#10	10'-6 11'-3 11'-9 12'-3 12'-9	13 12 13 11 10

CANTILEVERED RETAINING WALLS—SURFACE OF EARTH SLOPING ($\phi=33^{\circ}40'$)

					CONCRETI	OUTLINI	ES .			
Height of	В		Ь		Base P	ressure	Resisting	Overturning	44-	C
Wall = h (ft)	(ft)	(ft)	(ft)	(ft)	At Toe (psf)	At Heel (psf)	Moment (Ib-ft)	Moment (Ib-ft)	MR	(cf per If of wall)
3 4 5	2'-6 3'-2 3'-10	0'-11 1'-0 1'-1	0'-7 0'-9 1'-0	1'-0 1'-5 1'-9	1,072 1,421 1,699	25 49 62	2,397 5,072 9,092	1,130 2,527 4,660	2.12 2.01 1.95	5.05 6.93 9.04
6 7 8 9	4'-6 5'-3 5'-11 6'-8 7'-5	1'-2 1'-3 1'-4 1'-5 1'-6	1'-3 1'-6 1'-9 2'-0 2'-3	2'-1 2'-6 2'-10 3'-3 3'-8	1,990 2,238 2,512 2,753 3,018	62 105 118 176 210	14,900 23,400 33,600 47,900 65,800	7,750 12,100 17,600 25,000 34,300	1.92 1.93 1.91 1.92 1.92	11.39 13.97 16.7 19.8 23.0
11 12 13 14 15	8'-1 8'-10 9'-6 10'-3 11'-0	1'-7 1'-8 1'-9 1'-10 1'-11	2'-6 2'-9 3'-0 3'-3 3'-6	4'-0 4'-5 4'-9 5'-2 5'-7	3,298 3,536 3,805 4,058 4,310	210 266 286 329 375	85,300 111,000 139,000 173,000 214,000	44,900 57,900 72,800 90,900 112,000	1.90 1.91 1.90 1.91 1.91	26.3 30.0 33.7 37.8 42.1
16 17 18 19 20	11'-10 12'-7 13'-4 14'-2 15'-0	2'-0 2'-1 2'-2 2'-3 2'-4	3'-10 4'-1 4'-4 4'-8 5'-0	6'-0 6'-5 6'-10 7'-3 7'-8	4,477 4,719 4,959 5,104 5,300	470 524 582 696 774	262,000 314,000 373,000 443,000 521,000	135,000 162,000 193,000 226,000 264,000	1.94 2.04 1.94 1.96 1.97	46.7 51.5 56.6 61.9 67.4

0	аЬ		T			F			L			Н		Weight of
a (ft)	b (ft)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Quant. of Bars	Bar Size	Spcg (in.)	Quant. of Bars	Bar Size	Spcg (in.)	Bars (Ib per lin. f of wall)
1′-1	3'-6	_	_	_	#3	2'-10	18	7	#3	12	2	#3	18	5.37
1'-4 1'-8	4'-7 5'-8	_	_	=	#3 #3	3'-10 4'-10	18 18	8 9	#3 #3	12	3	#3 #3	18 18	6.70 8.66
2'-0	6'-9	#3	4'-6	16	#3	5'-10	18	11	#3	12	4	#3	18	11.12
2'-4	7'-10		4'-6	11	#3	6'-10		12	#3	12	7	#3	12	16.08
2'-8	3'-7	#4	4'-6	14	#3	7'-10		14	#3	12	8	#3	12	23.85
3'-0	3'-10	#4	4'-6	11	#3	8'-10		15	#3	12	9	#3	12	31.54
3'-4	3'-4	#5	4'-6	13	#4	9'-10	12	17	#4	12	10	#4	12	48.86
3'-8	3'-9	#6	5'-0	14	#4	10'-10	12	20	#4	12	11	#4	12	63.4
4'-0	3'-11		5'-0	16		11'-10	12	21	#4	12	12	#4	12	74.6
4'-4	4'-6	#8	5'-8	17		12'-10	12	22	#4	12	13	#4	12	83.8
4'-8	4'-7	#8	6'-0	15		13'-10	12	24	#4	12	14	#4	12	100.8
5'-0	4'-8	#8	6'-0	12	#4	14'-10	12	26	#4	12	15	#4	12	119.7
5'-5	5'-1	#9	6'-6	13		15'-10	12	29	#4	12	16	#4	12	146.3
5'-11	5'-4	#9	6'-9	12		16'-10	12	30	#4	12	17	#4	12	167.2
6'-1	5'-8	#10	7'-3	13		17'-10	12	31	#4	12	18	#4	12	189.1
6'-6	5'-9	#10	7'-3	11		18'-10	12	32	#4	12	19	#4	12	236.3
6'-11	5'-10	#10	7'-6	10	#4	19'-10	12	33	#4	12	20	#4	12	276.2

CANTILEVERED RETAINING WALLS-HIGHWAY SURCHARGE

Vertical steel in back of wall may be: $\begin{cases} O+T \text{ only} & M+N+1Q\\ O \text{ only} & M+Q+N+Q\\ M+N \text{ alt.} & (as shown) \end{cases}$ Comparison of bar spacing in table will indicate combination, spacings being accumulative from a selected M or O bar.

Wt of earth = 100 pcf L of Internal Friction = ϕ = 33° 40′ f_s = 20,000 psi f'_c = 3,000 psi f_c = 1,350 psi v = 90 psi u = 300 psi

O & T bars alternate, or occur O + T + T except in walls without key, where only O bars are required.

					RE	INFO	CEM	ENT							
Height		М			N			Q			P			0	
of Wall = h (ft)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Bar Size		Spcg (in.)	Bar Size		Spc (in.
3 4 5		=	=	Ξ	Ξ		=			#3 #3 #3	1'-6 1'-9 2'-3	18 13 13	#3 #3 #3	4'-11 6'-2 7'-5	18 13 13
6 7 8 9	#4 #5 #6	7'-10 8'-10 9'-10	16							#4 #4 #6 #6	2'-9 3'-0 3'-3 4'-0 4'-3	12 8 6½ 16 13	#3 #4 #4 #5 #5	8'-9 10'-1 6'-0 6'-8½ 7'-1	12 16 13 16 13
11 12 13 14	#5 #4 #4 #5 #6	10'-10 11'-10 12'-10 13'-10 14'-10	18 16½ 19½		5'-9 8'-0 9'-0 9'-6 10'-6	20 18 16½ 19½ 19½		6'-0 6'-0 7'-0 7'-0	18 16½ 19½ 19½		4'-6 5'-0 5'-3 5'-9 6'-0	10 12 11 13 12	#5 #6 #6 #7 #7	6'-10 8'-0 8'-3 9'-1 8'-4	10 12 11 13 12
16 17 18 19 20	#6 #6 #6 #7 #7	15'-10 16'-10 17'-10 18'-10 19'-10	16½ 15 18		11'-0 12'-0 13'-0 14'-0 15'-0	19½ 16½ 15 18	#6 #6 #7 #8 #8	8'-0 8'-6 9'-6 11'-0 11'-6	19½ 16½ 15 18		7'-0 7'-0 7'-6	13 11 10 12 10	#8 #8 #8 #9	9'-11 10'-4 10'-8 11'-5 10'-1	13 11 10 12 10

CANTILEVERED RETAINING WALLS-HIGHWAY SURCHARGE

CON	CRETE	OUT	INIEC

Height of	В		Ь		Base P	ressure	Resisting	Overturning	M	Consusta
Wall = h (ft)	(f1)	(ft)	(ft)	(ft)	at Toe (psf)	at Heel (psf)	Moment (Ib-ft)	Moment (Ib-ft)	$\frac{M_R}{M_O}$	(cf per li of wall)
3	3'-0	0'-10	1'-1	1'-1	752	0	1,899	900	2.11	5.04
5	3'-51/2	0'-101/2	1'-3	1'-4	878	0	3,418	1,581	2.16	6.42
5	4'-1	0'-11	1'-5	1'-9	1092	0	5,186	2,501	2.07	8.07
6	4'-8	0'-111/2	1'-7	2'-11/2	1230	0	7,833	3,698	2.12	9.75
7	5'-2	1'-0	1'-9	2'-5	1384	0	10,967	5,194	2.11	11.41
6 7 8 9	5'-9	1'-1	2'-0	2'-8	1524	0	15,162	7,133	2.12	13.7
9	6'-3	1'-11/2	2'-2	2'-111/2	1683	0	19,820	9,372	2.11	15.7
10	6'-91/2	1'-2	2'-4	3'-31/2	1824	0	25,641	12,017	2.13	17.8
11	7'-31/2	1'-21/2	2'-6	3'-7	1974	0	32,183	15,121	2.13	19.8
12	7'-9	1'-3	2'-8	3'-10	2143	0	39,207	18,681	2.10	21.9
13	8'-4	1'-4	2'-10	4'-2	2281	0	48,979	22,890	2.14	24.9
14	8'-91/2	1'-41/2	3'-0	4'-5	2452	0	58,266	27,538	2.11	27.3
15	9'-4	1'-5	3'-2	4'-9	2591	0	69,950	32,765	2.13	29.8
16	9'-91/2	1'-51/2	3'-4	5'-0	2751	0	81,599	38,550	2.12	32.2
17	10'-4	1'-6	3'-6	5'-4	2880	0	96,094	45,000	2.14	34.9
18	10'-10	1'-7	3'-8	5'-7	3052	0	111,690	52,371	2.13	37.6
19	11'-3	1'-71/2	3'-10	5'-91/2	3232	0	126,583	60,228	2.10	41.4
20	11'-9	1'-8	4'-1	6'-0	3303	9	145,196	68,800	2.11	44.1

-			-	-		-	100
ĸ	EIF	VI-	OK	CE	M		I V

0 0	b		T			F			L			Н		Weight of
a (ft)	b (ft)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (f1)	Spcg (in.)	Quant. of Bars		Spcg (in.)	Quant. of Bars	Bar Size	Spcg (in.)	Bars (Ib per lin. ft
1'-6 1'-8½ 1'-11	3'-5 4'-51/2 5'-6	- #3	 2'-6	<u>_</u>	#3 #3 #3	2'-10 3'-10 4'-10	18 18 18	7 8 10	#3 #3 #3	12 12 12	2 3 3	#3 #3 #3	18 18 18	5.45 7.46 10.30
2'-1½ 2'-6 2'-8 2'-10½ 3'-1	6'-61/2 7'-7 3'-4 3'-10 4'-0	#3 #4 #4 #5 #5	2'-9 3'-3 4'-3 4'-9 4'-9	12 16 13 16 13	#3 #3 #3 #4	5'-10 6'-10 7'-10 8'-10 9'-10	12 12 12	12 13 15 16 18	#3 #3 #3 #4	12 12 12 12 12	4 7 8 9	#3 #3 #3 #4	18 12 12 12 12	13.13 19.77 26.8 33.1 54.6
3'-3½ 3'-6 3'-9 3'-11½ 4'-2	3'-61/2 4'-6 4'-6 5'-11/2 4'-2	#5 #6 #6 #7 #7	4'-6 5'-6 5'-6 6'-4 5'-3	10 12 11 13 12	#4 #4 #4 #4	10'-10 11'-10 12'-10 13'-10 14'-10	12 12 12	20 21 22 24 26	#4 #4 #4 #4	12 12 12 12 12	11 12 13 14 15	#4 #4 #4 #4	12 12 12 12 12	60.1 72.0 83.8 101.8 117.8
4'-4½ 4'-7 4'-10 5'-0½ 5'-4	5'-61/2 5'-9 5'-10 6'-41/2 4'-9	#8 #8 #8 #9	7'-0 8'-0 7'-0 7'-6 7'-0	13 11 10 12 10	#4 #4 #4 #4	15'-10 16'-10 17'-10 18'-10 19'-10	12 12 12	28 29 30 31 32	#4 #4 #4 #4	12 12 12 12 12	16 17 18 19 20	#4 #4 #4 #4	12 12 12 12 12	139.7 163.0 181.7 220.3 248.4

CANTILEVERED RETAINING WALLS-RAILWAY SURCHARGE

Vertical steel in back of wall may be: $\begin{cases} O+T \text{ only } M+N+1Q \\ O \text{ only } M+Q+N+Q \\ M+N \text{ alt } (as shown) \end{cases}$ Comparison of bar spacings in table will indicate combination, spacings being accumulative from a selected M or O bar.

Wt. of earth = 100 pcf L of Internal Friction = ϕ = 33° 40′ f_* = 20,000 psi f'_c = 3,000 psi f_c = 1,350 psi v = 90 psi v = 300 psi

O & T bars alternate or occur O + T + T except in walls without key, where only O bars are required.

				REI	NFOR	CEME	NT							
	М			N			Q			P			0	
		Spcg (in.)			Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Bar Size		Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)
E	=	=	Ξ	=	=	=	=		#7 #7 #7	3'-6 3'-9 3'-9	18 18 14	#3 #3 #4	5'-10 7'-6 9'-0	18 9 14
#5 #5 #4	7'-10 8'-10	14 12	<u>-</u> #4		_ _ 12		=	=	#8 #9 #9 #8	4'-6 4'-9 5'-0 5'-3	17 18 14 12	#5 #6 #6	10'-5 7'-7 7'-7 8'-7	17 18 14 12
#5 #5 #5 #5	10'-10 11'-10 12'-10 13'-10	16 14 13 18	#5 #6 #6 #6	5'-9 6'-0 6'-6 10'-0	16 14 13 18	#6	6'-0		#10 #10 #10 #10	6'-0 6'-6 6'-6 7'-0	16 14 13 12	#8 #8 #8 #8	9'-11 10'-4 10'-8 11'-0	14 13 12
#6 #7 #7 #7	15'-10 16'-10 17'-10 18'-10	18 18 16½ 15	#7 #7 #7 #7	11'-3 11'-3 11'-6 11'-6	18 18 16½ 15	#7 #7 #8 #8	6'-9 7'-0 7'-0 7'-0	18 18 16½ 15	#11 #11 #9 #9	7'-9 8'-0 8'-3 8'-6	12 12 6½ 5	#9 #9 #9	11'-8 12'-0 12'-5 12'-10	12 12 11 10 9
	Size	#5 6'-10 #5 12'-10 #6 15'-10 #7 18'-10 #7 18'-10	Bar Length Spcg Size (ft) (in.)	Bar Length Spcg Bar Size (ft) (in.) Size	M N N N	M	M N Spcg Bar Length Spcg Bar Size (ft) (in.) Size (ft) Size (ft) Size Size	Bar Length Spcg Size (ft) (in.) Size (ft) (in.) Size (ft) (in.) Size (ft) (in.) Size (ft) (f	M	M	M	M	M	M

CANTILEVERED RETAINING WALLS—RAILWAY SURCHARGE

CONCRETE	OLITICALES.

Height of	В	_	Ь		Base Pi	essure	Resisting	Overturning		
Wall = h (ft)	(ft)	(ft)	(ft)	(ft)	at Toe (psf)	at Heel (psf)	Moment (Ib-ft)	Moment (Ib-ft)	$\frac{M_R}{M_O}$	(cf per If of wall)
3	5'-1	0'-11	1'-10	2'-4	735	0	5,413	2,492	2.17	7.41
4	5'-11	1'-0	2'-4	2'-7	852	0	8,979	4,180	2.15	9.68
5	6'-7	1'-1	2'-8	2'-10	1,018	0	13,226	6,367	2.08	11.98
6	7'-4	1'-2	2'-11	3'-3	1,171	0	19,263	9,140	2.11	14.71
6 7	8'-0	1'-3	3'-3	3'-6	1,313	0	25,957	12,432	2.09	17.41
8	8'-8	1'-4	3'-7	3'-9	1,451	0	33,980	16,371	2.08	20.3
	9'-4	1'-5	3'-11	4'-0	1,577	0	43,714	20,984	2.08	23.5
10	10'-0	1'-6	4'-3	4'-3	1,699	9	54,795	26,235	2.09	26.8
11	10'-6	1'-7	4'-5	4'-6	1,890	0	66,050	32,222	2.05	30.1
12	11'-2	1'-8	4'-8	4'-10	2,021	0	81,107	39,006	2.08	33.8
13	11'-9	1'-9	4'-10	5'-2	2,188	0	96,976	46,519	2.08	37.7
14	12'-4	1'-10	5'-0	5'-6	2,343	12	114,726	54,888	2.09	41.6
15	12'-11	1'-11	5'-3	5'-9	2,493	13	134,313	64,193	2.09	45.8
16	13'-6	2'-0	5'-4	6'-2	2,670	24	156,851	74,309	2.11	50.1
17	14'-1	2'-1	5'-6	6'-6	2,833	29	180,983	85,429	2.12	54.7
18	14'-9	2'-2	5'-8	6'-11	2,974	76	210,560	97,549	2.16	59.7
19	15'-3	2'-3	5'-10	7'-2	3,146	58	237,054	110,598	2.14	64.3
20	15'-10	2'-4	6'-0	7'-6	3,296	76	268,602	124,688	2.15	69.3

	EI					

O abT		F			in Language			н			Weight of			
a (ft)	b (ft)	Bar Size	Length (ft)	Spcg (in.)	Bar Size	Length (ft)	Spcg (in.)	Quant. of Bars		Spcg (in.)	Quant. of Bars		Spcg (in.)	Bars (Ib per lin. ft of wall)
2'-4	3'-6	_		_	#3	2'-10	18	8	#3	12	2	#3	18	10.44
2'-11	4'-7	#3	3'-0	9	#3	3'-10	18	9	#3	12	3	#3	18	15.22
3'-4	5'-8	#4	3'-6	14	#3	4'-10	18	10	#3	12	3	#3	18	19.44
3'-8	6'-9	#5	3'-9	17	#3	5'-10		12	#3	12	4	#3	18	25.79
4'-1	3'-6	#6	3'-9	18	#3	6'-10	18	14	#3	12	7	#3	12	36.5
4'-6	3'-1	#6	4'-0	14	#3	7'-10	12	16	#3	12	8	#3	12	48.3
4'-11	3'-8	#6	4'-6	12	#3	8'-10	12	18	#3	12	9	#3	12	56.4
5'-4	3'-9	#7	4'-9	14	#4	9'-10	12	20	#4	12	10	#4	12	75.9
5'-7	4'-4	#8	5'-3	16	#4	10'-10	12	22	#4	12	11	#4	12	91.9
5'-11	4'-5	#8	5'-6	14	#4	11'-10	12	24	#4	12	12	#4	12	110.8
6'-2	4'-6	#8	5'-9	13		12'-10	12	26	#4	12	13	#4	12	122.1
6'-5	4'-7	#8	6'-0	12	#4	13'-10	12	28	#4	12	14	#4	12	139.1
6'-9	4'-8	#9	6'-3	13	#4	14'-10	12	30	#4	12	15	#4	12	168.5
6'-11	4'-9	#9	6'-3	12		15'-10	12	32	#4	12	16	#4	12	185.1
7'-2	4'-10		6'-3	12		16'-10	12	33	#4	12	17	#4	12	200.3
7'-5	5'-0	#9	6'-6	11		17'-10	12	35	#4	12	18	#4	12	226.0
7'-10	5'-0	#9	6'-6	10		18'-10	12	36	#4	12	19	#4	12	261.9
7'-11	5'-1	#9	6'-9	9	#4	19'-10	12	37	#4	12	20	#4	12	296.4

RETAINING WALLS

SPECIAL ELL-SHAPED WALLS

Other types of retaining wall are frequently used, the most common being an ell shape, used where the face of the stem is exactly on a property line and the base can not project beyond this point. Two cases of ell-shaped walls are common:—(1) where the heel projects back under the earth which is at the high level, (2) where the heel projects under the earth which is at the low level. In the first case, a fair approximation can be made by shifting the position of the stem to the front of the toe for any of the four cases illustrated on pages 384 to 391. In the latter case, the base of the wall would have to be increased by 33½ to 50 per cent to obtain stability. The number of conditions of special walls is so great that it is impracticable to tabulate them all, but the above modifications to the tables, coupled with the earth pressure tables on pages 394 and 395 and the outline of a wall design illustrated in the example on page 380 ff, should enable the user to satisfy his needs.

BASEMENT WALLS SPANNED VERTICALLY

Another common case of walls resisting earth pressure occurs in basement walls spanned vertically from basement floor slab to first floor slab. The table on page 393 suggests suitable reinforcement for walls of 8-, 10-, 12- and 15-inch thickness on story heights from 7 to 18 feet, all based upon a surcharge of 300 psf to represent ordinary working loads on top of the backfill. Should neighboring buildings, adjoining railroad tracks, or other conditions impose a heavier surcharge, the wall reinforcement and thickness should be increased accordingly.

A table is also given for the maximum vertical heights of unreinforced basement walls of the same thicknesses to keep the tension developed by bending within 100 psi both for 300 psf surcharge and for no surcharge at all.

In all cases of vertically spanned walls, a word of caution on the design drawings is advisable to see that the contractor installs both the basement floor slab and the first floor slab and has them able to receive thrust before backfilling against the basement wall. Of course, both slabs should bear against the wall to afford horizontal support.

RETAINING WALLS

BASEMENT WALLS SPANNED VERTICALLY

Angle of Repose
$$-\phi = 33^{\circ}40'$$

$$p_a = wh_1 \frac{1 - \sin \phi}{1 + \sin \phi} \qquad H = \frac{p + p_1}{2}h$$

$$w = 100 \qquad x = \frac{h}{3} \left(\frac{p + 2p_1}{p + p_1} \right)$$

STRESSES:-

$$f_s = 20,000 \text{ psi}$$

 $f'_c = 3,000 \text{ psi}$
 $f_c = 1,350 \text{ psi}$

$$f'_c = 3,000 \text{ ps}$$

$$r_c = 1,350 \text{ p}$$

 $r_c = 90 \text{ p}$

$$v_c = 90 \text{ psi}$$

Wall Thickness (t)	8"	10″	12"	15"	
Clear Height	Reinforcer	ment on Interior Side of	Wall		

of Basement										
(h)	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.		
	#4 @ 14" #4 @ 12"		#4 @ 13" #4 @ 13"	#5 @ 12" #5 @ 12"			#5 @ 13½" #5 @ 13½"			
9'-0 10'-0 11'-0 12'-0	#4 @ 11" #5 @ 13" #6 @ 14" #6 @ 11½" #7 @ 12"	#4 @ 10" #4 @ 10" #4 @ 10"	#4 @ 13" #4 @ 10½" #5 @ 13" #5 @ 10½"	#5 @ 12" #5 @ 12" #5 @ 12" #5 @ 12" #5 @ 12"	#4 @ 11" #4 @ 11" #4 @ 10" #5 @ 12"	#5 @ 10" #5 @ 10" #5 @ 10"	#5 @ 13½" #5 @ 13½" #5 @ 13½" #5 @ 13½"	#6 @ 12" #6 @ 12" #6 @ 12"		
14'-0 15'-0 16'-0 17'-0 18'-0	#8 @ 12"				#7 @ 121/2'' #8 @ 14''	#5 @ 10"	#6 @ 12" #7 @ 13½" #7 @ 11½"	#6 @ 12" #6 @ 12" #6 @ 12" #6 @ 12" #6 @ 12"		

Often a pair of bars is added at top and at bottom of a wall to provide longitudinal beam action from footing to footing, pile cap to pile cap, or to bridge across soft and firm subsoil conditions.

MAXIMUM HEIGHTS IN FEET OF UNREINFORCED BASEMENT WALLS (KEEPING TENSION ₹ 100 PSI).

Wall Thickness (t)	Surcharge = 300 psf (Diagram above)	No Surcharge
8"	6.9	8.2
10"	8.0	9.7
12"	9.4	11.0
15"	11.1	12.7

RETAINING WALLS EARTH AND WATER PRESSURES

- p—Intensity of horizontal pressure (psf) at any depth (h).
- depth (h).

 H—Total horizontal pressure (lb) above A-B.
- M—Moment (Ib-in.) of H
 about an axis lying in
 Section A-B.
- Section A-B.

 \$\phi\$—Angle of repose = 33°40′ (1 on 1½).

 Rankine Theory.

Depth	Earth	Horizontal (v	v = 100 pcf)	Earth Slop	Water (w = 62.5 pcf)				
"h"	p = 0.2867 wh	$H = \frac{ph}{2} = 0.1434 \text{ wh}^2$	$M = \frac{Hh}{3} 12 = 0.5734 \text{ wh}^3$	p = 0.6927 wh	$H = \frac{ph}{2} = 0.3463 \text{ wh}^2$	$M = \frac{Hh}{3} 12 = 1.3853 \text{ wh}^3$	p = wh	$H = \frac{wh^2}{2}$	M = 2wh³
ft	psf	lb -	lb-in.	psf	lb	lb-in.	psf	lb	lb-in.
1	29	14	69	89	35	138	63	31	125
2	57	57	459	139	139	1,108	125	125	1,000
3	86	129	1,548	208	312	3,740	188	281	3,375
4	115	229	3,670	277	554	8,866	250	500	8,000
5	143	358	7,167	346	866	17,310	313	781	15,620
6	172	516	12,380	416	1,247	29,920	375	1,125	27,000
7	201	702	19,660	485	1,697	47,510	438	1,531	42,870
8	229	917	29,350	554	2,216	70,920	500	2,000	64,000
9	258	1,161	41,800	623	2,805	100,900	563	2,531	91,120
10	287	1,433	57,340	693	3,463	138,500	625	3,125	125,000
11 12 13 14	315 344 373 401	1,735 2,064 2,423 2,810	76,320 99,080 125,900 157,300	762 831 901 970	4,190 4,987 5,852 6,787	184,300 239,300 304,300 380,100	688 750 813 875	3,781 4,500 5,281 6,125 7,031	166,300 216,000 274,600 343,000 421,800
15 16 17	430 459 487	3,225 3,670 4,143	193,500 234,800 281,700	1039 1108 1178	8,865 10,000	467,500 567,400 680,500	938 1000 1063	8,000 9,031	512,000 614,100
18	516	4,645	334,400	1247	11,220	807,900	1125	10,120	729,000
19	545	5,175	393,200	1316	12,500	950,100	1188	11,280	857,300
20	573	5,734	458,700	1385	13,850	1,108,000	1250	12,500	1,000,000
21	602	6,322	531,000	1455	15,270	1,282,000	1313	13,780	1,157,000
22	631	6,938	610,500	1524	16,760	1,475,000	1375	15,120	1,331,000
23	659	7,583	697,600	1593	18,310	1,685,000	1438	16,530	1,520,000
24	688	8,257	792,600	1662	19,940	1,915,000	1500	18,000	1,728,000
25	717	8,959	895,900	1732	21,640	2,164,000	1563	19,530	1,953,000
26	745	9,690	1,007,000	1801	23,410	2,434,000	1625	21,120	2,197,000
27	774	10,450	1,128,000	1870	25,245	2,726,000	1688	22,780	2,460,000
28	803	11,230	1,258,000	1940	27,150	3,041,000	1750	24,500	2,744,000
29	831	12,050	1,398,000	2009	29,120	3,378,000	1813	26,280	3,048,000
30	860	12,900	1,548,000	2078	31,160	3,740,000	1875	28,120	3,375,000
31	889	13,770	1,708,000	2147	33,270	4,126,000	1938	30,030	3,723,000
32	917	14,670	1,878,000	2217	35,460	4,539,000	2000	32,000	4,096,000
33	946	15,610	2,060,000	2286	37,710	4,978,000	2063	34,030	4,492,000
34	975	16,570	2,253,000	2355	40,030	5,444,000	2125	36,120	4,913,000
35	1003	17,560	2,458,000	2424	42,420	5,939,000	2188	38,280	5,359,000

RETAINING WALLS EARTH PRESSURE WITH SURCHARGE

- -Intensity of horizontal pressure (psf) at any
- depth (h-3) or (h-10).

 Total horizontal pressure (lb) above A-B.
- -Moment (lb-in.) of H about an axis lying in Section A-B.
- -Angle of repose = $33^{\circ}40'$ (1 on $1\frac{1}{2}$). -Weight of earth = 100 pcf.
- Rankine Theory.

		ontal Surcharge	-3'-0" High =	300 psf	Horizontal Surcharge—10'-0" High = 1000 psf					
Depth of AB be- low sur- face	of Hori- zontal Pressure at A-B	Total Horizontal Pressure above A-B	Arm of Total Horiz. Pressure	Moment of H about Sect. A-B	Intensity of Hori- zontal Pressure at A-B	Horizontal Pressure above A-B	Arm of Total Horiz. Pressure	Moment of H about Sect. A-B		
	P	$H = \frac{(h-3)}{2}(p+p_1)$	$\frac{x = (h-3)(p+2p_1)}{3(p+p_1)}$	M = 12 Hx	P	$\frac{H=\frac{(h-10)}{2}(p+p_1)}$	$\frac{x = \frac{(h-10)(p+2p_1)}{3(p+p_1)}$	M = 12 Hx		
ft	psf	lb	fı	lb-in.	psf	lb	ft	lb-in.		
1	115	100	0.476	574	315	301	0.492	1,777		
2	143	229	0.917	2,520	343	630	0.970	7,333		
3	172	387	1.333	6,190	372	989	1.435	17,031		
4	201	574	1.732	11,930	401	1,376	1.889	31,191		
5	229	787	2.121	20,031	429	1,791	2.334	50,162		
6 7 8 9	258 287 315 344 373	1,032 1,305 1,604 1,935 2,295	2.500 2.871 3.238 3.600 3.957	30,960 44,960 62,325 83,592 109,000	458 487 515 544 573	2,236 2,710 3,209 3,741 4,302	2.769 3.197 3.619 4.034 4.444	74,298 103,966 139,360 181,100 229,400		
11	401	2,678	4.314	138,700	601	4,886	4.850	284,400		
12	430	3,096	4.666	173,400	630	5,504	5.250	346,800		
13	459	3,542	5.017	213,300	659	6,151	5.646	416,800		
14	487	4,011	5.367	258,300	687	6,820	6.040	494,400		
15	516	4,515	5.714	309,600	716	7,525	6.429	580,600		
16	545	5,048	6.060	367,100	745	8,259	6.814	675,400		
17	573	5,601	6.406	430,600	773	9,013	7.199	778,700		
18	602	6,192	6.750	501,600	802	9,804	7.579	891,700		
19	631	6,811	7.092	579,700	831	10,620	7.957	1,015,000		
20	659	7,450	7.436	664,800	859	11,460	8.340	1,148,000		
21	688	8.127	7.777	758,500	888	12,340	8.700	1,290,000		
22	717	8,833	8.118	860,500	917	13,240	9.070	1,441,000		
23	745	9,556	8.460	970,200	945	14,170	9.450	1,608,000		
24	774	10,320	8.800	1,090,000	974	15,130	9.810	1,781,000		
25	803	11,110	9.139	1,219,000	1003	16,130	10.180	1,972,000		
26	831	11,920	9.479	1,356,000	1031	17,130	10.550	2,170,000		
27	860	12,770	9.818	1,505,000	1060	18,180	10.910	2,380,000		
28	889	13,650	10.150	1,663,000	1089	19,260	11.270	2,605,000		
29	917	14,540	10.490	1,830,000	1117	20,360	11.640	2,845,000		
30	946	15,480	10.830	2,012,000	1146	21,500	12.000	3,097,000		
31	975	16,440	11.170	2,204,000	1175	22,660	12.350	3,358,000		
32	1003	17,420	11.500	2,404,000	1203	23,840	12.710	3,636,000		
33	1032	18,440	11.840	2,620,000	1232	25,070	13.070	3,932,000		
34	1061	19,500	12.180	2,850,000	1261	26,320	13.430	4,243,000		
35	1089	20,560	12.520	3,089,000	1289	27,580	13.780	4,561,000		

WALLS FOR PITS

Pits are frequent in industrial and commercial structures. There are several ways of designing the walls to resist the lateral pressure of the earth. Walls tabulated below were designed for a surcharge of 300 psf, $f_s = 20,000$ psi, $f'_c = 3,000$ psi, n = 10, (p = 28.6 psf).

If there is any possibility of seepage or spillage, pit floors should be sloped to a suitable drain or sump (with grease or oil trap if conditions require). Pits should have ladder rungs for easy access. Under wet soil conditions, pit walls should be waterproofed with exterior membrane, ironiting, or integral waterproofing, to suit degree of exposure, with a continuous waterstop in construction joints. Floor slabs around pits often rest in a recess around top of wall to maintain floors flush with top of pit. Provide inserts for any pipe railings, curb angles, floor beams, or gratings.

Case I—Rectangular, relatively deep, open-top pits of moderate length and width. For rectangular, moderately deep pits, especially when the bottom slab is not structurally integral, it is often economical to span the side walls as slabs from end wall to end wall, and the end walls from side wall to side wall, reinforcing around the corners to develop negative moments.

When $B > \frac{3}{4}L$, use distance L and same inside bars for all four walls; when $B < \frac{3L}{4}$, design as quadrangular frame.

Bars B are to be spaced same as Bars A and one size larger, viz., #5 for #4, and #6 for #5.

U-!-ba					Bars A	for Lei	ngth L					Wall Thick- ness and
Height H	10'-0	11′-0	12'-0	13'-0	14'-0	15'-0	16'-0	17'-0	18'-0	19'-0	20'-0	Bars C
7'-0	#4@12	#4@12	#4@12	#4@12	#4@12	#4@12	#4@12	#4@11	#4@10	#4@9	#4@8	912
8'-0	#4@12	#4@12	#4@12	#4@11	#4@10	#4@9	#4@9	#4@8	#4@8	#5@12	#5@11	t = 8" = #4@12
9'-0	#4@12	#4@12	#4@11	#4@10	#4@9	#4@8	#5@12	# 5 @11	# 5 @10	#5@9	#5@9	, t
10'-0	#4@11	# 4 @10	#4@9	#4@8	#4@8	# 5 @11	# 5 @10	#5@9	#5@8	#5@8	# 5@1 1	010
11'-0	#4@10	#4@9	#4@8	# 5 @11	# 5 @10	#5@9	#5@8	#5@8	#5@10	#5@9	#5@9	= 10" = #4@10
12'-0	#4@9	#4@8	#5@11	# 5 @10	#5@9	#5@8	#5@8	#5@10	#5@9	#5@8	#5@8	+ "
13'-0	#4@8	#5@11	#5@10	#5@9	#5@8	#5@9	# 5 @10	#5@9	#5@8	#5@10	#5@9	012
14'-0	#5@11	# 5 @10	#5@10	#5@8	#5@10	#5@9	#5@8	#5@8	#5@9	#5@9	#5@8	= 12" = #5@12
15'-0	#5@10	#5@9	#5@8	# 5 @10	#5@9	#5@8	#5@8	#5@10	#5@8	#5@8	#6@10	- 11

WALLS FOR PITS

Case II—Long, relatively shallow, open-top pits. For pits over, say, 20 ft on a side or with broken sides so that end walls can not lean against side walls, the simplest wall design is one vertically cantilevered from the floor slab. Wall thicknesses and reinforcement for various heights are scheduled.

н	,	BARS				
п	1	A	В	С		
0 to 4'-0	8"	#4 @ 12	#4 @ 12	#4 @ 12		
5'-0	8"	#5 @ 12	#4 @ 12	#4 @ 12		
6'-0	8"	#5 @ 10	#4 @ 12	#4 @ 12		
7'-0	8''	#6 @ 10	#4 @ 12	#4 @ 12		
8'-0	10"	#6 @ 10	#5 @ 12	#5 @ 12		
9'-0	10"	#7 @ 11	#5 @ 12	#5 @ 12		
10'-0	10"	#7 @ 9	#5 @ 12	#5 @ 12		

Case III—Cases I and II may be combined into a wall fixed on three sides, free at the top, undergoing trapezoidal earth pressure, which, of course, is somewhat more economical utilization of the reinforcement.

Height	Bars A or B, Each Way, Each Face, in Length L									Wall		
Н	10'-0	11'-0	12'-0	13'-0	14'-0	15'-0	16'-0	17'-0	18'-0	19'-0	20'-0	Thickness t
7'-0	#4@12	#4@12	#4@12	#4@12	#4@12	#4@12	#5@12	#5@12	#5@12	#5@12	#5@12	8′′
8'-0	#4@12	#4@12	#4@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	10//
9'-0	#4@12	#4@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	10′′
10'-0	#4@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	10//
11'-0	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	12"
12'-0	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	2.511
13'-0	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	15"
14'-0	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12		
15'-0	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12	#5@12			

Case IV—Walls for pits with top slabs may be treated as basement walls. See page 393.

Tentative Specifications for BILLET-STEEL BARS FOR CONCRETE REINFORCEMENT 1

ASTM Designation: A 15-54 T

Issued, 1950; Revised, 1952, June and October 1954.2

These Tentative Specifications have been approved by the sponsoring committee and accepted by the Society in accordance with established procedures, for use pending adoption as standard. Suggestions for revisions should be addressed to the Society at 1916 Race St., Philadelphia 3, Pa.

Scope

1. (a) These specifications cover two classes of billet-steel concrete reinforcement bars: namely, plain and deformed. A deformed bar is defined as a bar which conforms to the latest issue of the Tentative Specifications for Minimum Requirements for the Deformations of Deformed Steel Bars for Concrete Reinforcement (ASTM Designation: A 305).³ The standard sizes of deformed bars with number designations shall be those listed in Table I. The standard sizes of plain bars shall be designated by their nominal diameters.

TABLE I.—DEFORMED BAR DESIGNATION NUMBERS, UNIT WEIGHTS, AND NOMINAL DIMENSIONS.

	0.1	No	minal Dimensi	ons
Bar Designation Number ^a	Unit Weight, lb. per ft.	Diameter, in.	Cross-Sectional Area, sq. in.	Perimeter, in.
ь	0.167	0.250	0.05	0.786
3	0.376	0.375	0.11	1.178
4	0.668	0.500	0.20	1.571
5	1.043	0.625	0.31	1.963
6	1.502	0.750	0.44	2.356
7	2.044	0.875	0.60	2.749
8		1.000	0.79	3.142
9		1.128	1.00	3.544
10	4.303	1.270	1.27	3.990
11	5.313	1.410	1.56	4.430

^a Bar numbers are based on the number of eighths of an inch included in the nominal diameter of the bars. The nominal diameter of a deformed bar is equivalent to the diameter of a plain bar having the same weight per foot as the deformed bar.

^b ½-in. bar in plain round only.

^c Bars of designation Nos. 9, 10, and 11 correspond to the former 1-in. square, 1½-in. square, and 1½-in. square sizes and are equivalent to those former standard bar sizes in weight and nominal cross-sectional areas.

Note.—The above table including the footnotes is in agreement with U. S. Department of Commerce Simplified Practice Recommendation 26-50 covering Steel Reinforcing Bars.

² Latest revisions accepted by the Society at the Annual Meeting, June, 1954, and by the Administrative Committee on Standards, October 4, 1954.

Prior to their publication as tentative, these specifications were published as standard from 1911 to 1950, being revised in 1912, 1913, 1914, 1930, 1933, 1935, 1939 and 1950.

³ See page 408.

¹Under the standardization procedure of the Society, these specifications are under the jurisdiction of the ASTM Committee A-1 on Steel.

(b) Plain and deformed bars are of three grades: namely, structural, intermediate, and hard.

Process

2. (a) The steel shall be made by one or more of the following processes:

open-hearth, electric-furnace, or acid-bessemer.

(b) The bars shall be rolled from billets directly reduced from ingots of properly identified heats of open-hearth or electric-furnace steel, or lots of acid-bessemer steel.

Chemical Composition

3. The steel shall conform to the following requirements as to chemical composition:

Ladle Analysis

4. (a) An analysis of each heat of open-hearth or electric-furnace steel shall be made to determine the percentages of carbon, manganese, phosphorus, and sulfur.

(b) Carbon and manganese determinations shall be made of each blow of bessemer steel, and determinations for phosphorus and sulfur repre-

senting the average of the blows applied for each 8-hr. period.

(c) The analyses prescribed in Paragraphs (a) and (b) shall be made by the manufacturer from test ingots taken during the pouring of the heats or blows. The chemical composition thus determined shall be reported to the purchaser or his representative, and the percentage of phosphorus shall conform to the requirements specified in Section 3.

Check Analysis

5. An analysis may be made by the purchaser from finished bars representing each heat of open-hearth or electric-furnace steel, and each blow or lot of ten tons of bessemer steel. The phosphorus content thus determined shall not exceed that specified in Section 3 by more than 25 per cent.

Tensile Properties

6. (a) The material shall conform to the requirements as to tensile properties prescribed in Table II.

(b) The yield point shall be determined by the drop of the beam or

halt in the gage of the testing machine.

(c) For plain bars over $\frac{3}{4}$ in. in diameter, a deduction from the percentages of elongation prescribed in Table II of 0.25 per cent shall be made for each increase of $\frac{1}{32}$ in. of the specified diameter above $\frac{3}{4}$ in.

(d) For deformed bars over No. 6 bar (nominal diameter 3/4 in.) a deduction from the percentages of elongation prescribed in Table II of 1.00 per cent shall be made for each increase in bar number.

TABLE II.—TENSILE REQUIREMENTS.

		Plain Bars	3	D	eformed B	ars
	Struc- tural Grade	Inter- mediate Grade	Hard Grade	Struc- tural Grade	Inter- mediate Grade	Hard Grade
Tensile strength, psi	55 000 to 75 000	70 000 to 90 000	80 000 min.	55 000 to 75 000	70 000 to 90 000	80 000 min
Yield point, min., psi	33 000	40 000	50 000	33 000	40 000	50 000
Elongation in 8 in., min., per cent	tens. str. but not less than 20 per cent a	tens. str. but not less than 16 per cent a	1 100 000 a tens. str.	tens. str. but not less than 16 per cent ^b	tens. str. but not less than 12 per cent ^b	$\frac{1\ 000\ 000\ ^{b}}{\text{tens. str.}}$

a See Section 6 (c) and (e).

(e) For plain bars under $\frac{1}{16}$ in. in diameter, a deduction from the percentages of elongation prescribed in Table II of 0.5 per cent shall be made for each decrease of $\frac{1}{16}$ in. of the specified diameter below $\frac{1}{16}$ in.

(f) For No. 3 deformed bar (nominal diameter \(^{3}\%\) in.) a deduction from the percentage of elongation prescribed in Table II of 1.00 per cent shall be made.

TABLE III.—BEND TEST REQUIREMENTS FOR PLAIN BARS.ª

Diameter of Bar, in.	Structural Grade	Intermediate Grade	Hard Grade
Under ¾	$ \begin{array}{c} 180 \text{ deg.} \\ d = t \end{array} $	$ \begin{array}{c} 180 \text{ deg.} \\ d = 2t \end{array} $	$ \begin{array}{c} 180 \text{ deg.} \\ d = 4t \end{array} $
3/4 and over	$ \begin{array}{c} 180 \text{ deg.} \\ d = t \end{array} $	$\begin{array}{c} 90 \text{ deg.} \\ d = 2t \end{array}$	$\begin{array}{c} 90 \text{ deg.} \\ d = 4t \end{array}$

^a On plain bars whose application is in unbent form such as load transfer dowels, the cold bend test shall be waived.

Note.—d = diameter of pin around which specimen is bent, andt = diameter of the specimen.

Bending Properties

7. (a) The bend test specimen shall stand being bent, at room temperature, around a pin without cracking on the outside of the bent portion. The requirements for degree of bending and sizes of pins prescribed in Table III for plain bars or Table IV for deformed bars shall be observed.

(b) The bend test shall be made on specimens of sufficient length to

insure free bending and with apparatus which provides:

(1) Continuous and uniform application of force throughout the duration of the bending operation,

b See Section 6 (d) and (f).

(2) Unrestricted movement of the specimen at points of contact with the apparatus, and

(3) Close wrapping of the specimen around the pin or mandrel

during the bending operation.

(c) Other methods of bend testing may be used, but failures due to such methods shall not constitute a basis for rejection.

TABLE IV.—BEND TEST REQUIREMENTS FOR DEFORMED BARS.

Bar Designation Number	Structural Grade	Intermediate Grade	Hard Grade
Under No. 6	180 deg. $d = 2t$	90 deg. $d = 3t$	$\begin{array}{c} 90 \text{ deg.} \\ d = 4t \end{array}$
Nos. 6, 7, 8	180 deg. $d = 3t$	$\begin{array}{c} 90 \text{ deg.} \\ d = 4t \end{array}$	90 deg. $d = 5t$
Nos. 9, 10, 11	$ \begin{array}{c} 180 \text{ deg.} \\ d = 4t \end{array} $	$\begin{array}{c} 90 \text{ deg.} \\ d = 5t \end{array}$	$\begin{array}{c} 90 \text{ deg.} \\ d = 6t \end{array}$

Note.—d = diameter of pin around which the specimen is bent, andt = diameter of the specimen.

Test Specimens

8. Tension and bend test specimens from plain or deformed bars shall be of the full section of bars as rolled. For tension tests of deformed bars the sectional area used for unit stress determinations shall be calculated from the length and weight of the test specimen (Note).

Note.—The area in square inches may be calculated by dividing the weight per linear inch of specimen in pounds by 0.2833 (weight of 1 cu. in. of steel), or by dividing the weight per linear foot of specimen in pounds by 3.4 (weight of steel 1 in. square and 1 ft. long).

Number of Tests

9. (a) One tension test and one bend test shall be made from each heat of open-hearth or electric-furnace steel, and from each blow or lot of ten tons of bessemer steel. If, however, material from one heat or blow differs \% in. or more in diameter in the case of plain bars, or by three or more designation numbers in the case of deformed bars, one tension and one bend test shall be made from both the largest and smallest plain bars, and from the highest and lowest designation number of the deformed bars rolled.

(b) If any test specimen develops flaws, it may be discarded and an-

other specimen substituted.

(c) If the percentage of elongation of any tension test specimen is less than that specified in Section 6 and any part of the fracture is outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

Permissible Variations in Weight

10. The permissible variations in weight shall not exceed the limits prescribed in Table V.

Finish

11. The bars shall be free from injurious defects and shall have a work-manlike finish.

TABLE V.—PĒRMISSĪBLE VARIATIONS FROM THEORETICAL WEIGHTS.

Note.—The theoretical weights for deformed bars listed in Table I and the established standard weights for plain bars rolled to fractions of inches shall be used to establish conformance to this table.

Di de An	Permissible Variations from Theoretical Weights			
Diameter of Bars, in.	Lot, ^a Over or Under, per cent	Individual Bar, Under, per cent		
Plain bars:	5	10		
Under 3/8	3.5	6		
3/8 and over	STATE OF THE PARTY	6		
Deformed bars, all sizes	3.5	0		

^a The term "lot" means all the bars of the same nominal weight per linear foot in a carload.

Marking

12. The brand of the manufacturer shall be legibly rolled on all deformed bars. For the purpose of identification, a distinctive pattern is considered to be a manufacturer's brand. When loaded for mill shipment, all bars shall be properly separated and tagged with the manufacturer's test identification number.

Inspection

13. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works that concern the manufacture of the material ordered. The manufacturer shall afford the inspector, without charge, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analysis) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

Rejection

14. (a) Unless otherwise specified, any rejection based on tests made in accordance with Section 5 shall be reported to the manufacturer within five working days from the receipt of samples by the purchaser.

(b) Material that shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.

Rehearing

15. Samples tested in accordance with Section 5 that represent rejected material shall be preserved for two weeks from the date rejection is reported to the manufacturer. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

Tentative Specifications for RAIL-STEEL BARS FOR CONCRETE REINFORCEMENT ASTM Designation: A 16-54 T

ISSUED, 1950; Revised, 1952, 1954.2

These Tentative Specifications have been approved by the sponsoring committee and accepted by the Society in accordance with established procedures, for use pending adoption as standard. Suggestions for revisions should be addressed to the Society at 1916 Race St., Philadelphia 3, Pa.

Scope

1. These specifications cover two classes of rail-steel concrete reinforcement bars: namely, plain and deformed. A deformed bar is defined as a bar which conforms to the latest issue of the Tentative Specifications for Minimum Requirements for the Deformations of Deformed Steel Bars for Concrete Reinforcement (ASTM Designation: A 305).³ The standard sizes of deformed bars with number designations shall be those listed in Table I. The standard sizes of plain bars shall be designated by their nominal diameters.

TABLE I.—DEFORMED BAR DESIGNATION NUMBERS, UNIT WEIGHTS, AND NOMINAL DIMENSIONS.

Bar		No	minal Dimension	ons
Designation Number a	Unit Weight, lb. per ft.	Diameter, in.	Cross-Sectional Area, sq. in.	Perimeter in.
b	0.167	0.250	0.05	0.786
3	0.376	0.375	0.11	1.178
4	0.668	0.500	0.20	1.571
5	1.043	0.625	0.31	1.963
6	1.502	0.750	0.44	2.356
7	2.044	0.875	0.60	2.749
8	2.670	1.000	0.79	3.142
90	3.400	1.128	1.00	3.544
10 °	4.303	1.270	1.27	3.990
11 6	5.313	1.410	1.56	4.430

^a Bar numbers are based on the number of eighths of an inch included in the nominal diameter of the bars. The nominal diameter of a deformed bar is equivalent to the diameter of a plain bar having the same weight per foot as the deformed bar.

b 1/4-in. bar in plain round only.

^c Bars of designation Nos. 9, 10, and 11 correspond to the former 1-in. square, 1½-in. square, and 1½-in. square sizes and are equivalent to those former standard bar sizes in weight and nominal cross-sectional areas.

Note.—The above table including the footnotes is in agreement with U. S. Department of Commerce Simplified Practice Recommendation 26-50 covering Steel Reinforcing Bars.

² Latest revision accepted by the Society at the Annual Meeting, June, 1954.

Prior to their publication as tentative, these specifications were published as standard from 1913 to 1950, being revised in 1914, 1933, 1935, and 1950.

³ See page 408.

¹Under the standardization procedure of the Society, these specifications are under the jurisdiction of the ASTM Committee A-1 on Steel.

Manufacture

2. The bars shall be rolled from standard section Tee rails. No other materials such as those known by the terms "rerolled," "rail-steel equivalent," and "rail-steel quality" shall be substituted.

Tensile Properties

3. (a) The material shall conform to the requirements as to tensile properties prescribed in Table II.

TABLE II.—TENSILE REQUIREMENTS.

	Plain Bars	Deformed Bars
Tensile strength, min., psi	80 000 50 000	80 000 50 000
Elongation in 8 in., min., per cent	1 100 000 a	1 000 000 b
	tens. str.	tens. str.

^a See Section 3 (c) and (e).

(b) The yield point shall be determined by the drop of the beam or halt in the gage of the testing machine.

(c) For plain bars over $\frac{3}{4}$ in. in diameter, a deduction from the percentages of elongation prescribed in Table II of 0.25 per cent shall be made for each increase of $\frac{1}{32}$ in. of the specified diameter above $\frac{3}{4}$ in.

(d) For deformed bars over No. 6 bar (nominal diameter ¾ in.) a deduction from the percentages of elongation prescribed in Table II of 1.00

per cent shall be made for each increase in bar number. (e) For plain bars under 7_{16} in. in diameter a deduction from the percentages of elongation prescribed in Table II of 0.5 per cent shall be made

for each decrease of $\frac{1}{32}$ in. of the specified diameter below $\frac{7}{16}$ in. (f) For No. 3 deformed bar (nominal diameter $\frac{3}{8}$ in.) a deduction from the percentage of elongation prescribed in Table II of 1.00 per cent shall be made.

Bending Properties

4. (a) The bend test specimen shall stand being bent, at room temperature, around a pin without cracking on the outside of the bent portion. The requirements for degree of bending and sizes of pins prescribed in Table III for plain bars or Table IV for deformed bars shall be observed.

(b) The bend test shall be made on specimens of sufficient length to

insure free bending and with apparatus which provides:

(1) Continuous and uniform application of force throughout the duration of the bending operation,

(2) Unrestricted movement of the specimen at points of contact with the apparatus, and

b See Section 3 (d) and (f).

(3) Close wrapping of the specimen around the pin or mandrel during the bending operation.

TABLE III.—BEND TEST REQUIREMENTS FOR PLAIN BARS.^a

Diameter of Bar, in.	Bend Test Requirement
Under 34	$ \begin{array}{c} 180 \text{ deg.} \\ d = 4t \end{array} $
⁸ ⁄ ₄ and over	$\begin{array}{l} 90 \text{ deg.} \\ d = 4t \end{array}$

^a On plain bars whose application is in unbent form such as load transfer dowels, the cold bend test shall be waived.

Note.—d = diameter of pin around which the specimen is bent, and

t = diameter of the specimen.

TABLE IV.—BEND TEST REQUIREMENTS FOR DEFORMED BARS.

Bar Designation Number	Bend Test Requirement
Under No. 6 (nominal diameter ¾ in.)	90 deg. $d = 6t$
No. 6 and over	$ 90 \text{ deg.} \\ d = 6t $

Note.—d = diameter of pin around which the specimen is bent, and t = diameter of the specimen.

(c) Other methods of bend testing may be used, but failures due to such methods shall not constitute a basis for rejection.

Test Specimens

5. Tension and bend test specimens from plain or deformed bars shall be of the full section of bars as rolled. For tension tests of deformed bars the sectional area used for unit stress determination shall be calculated from the length and weight of the test specimen (Note).

Note.—The area in square inches may be calculated by dividing the weight per linear inch of specimen in pounds by 0.2833 (weight of 1 cu. in. of steel), or by dividing the weight per linear foot of specimen in pounds by 3.4 (weight of steel 1 in. square and 1 ft. long).

Number of Tests

6. (a) One tension test and one bend test shall be made from each lot of ten tons or fraction thereof of each size or bar designation number rolled from rails varying not more than 10 lb. per yd. in nominal weight.

(b) If any test specimen develops flaws, it may be discarded and an-

other specimen substituted.

TABLE V.—PERMISSIBLE VARIATIONS FROM THEORETICAL WEIGHTS.

Note.—The theoretical weights for deformed bars listed in Table I and the established standard weights for plain bars rolled to fractions of inches shall be used to establish conformance to this table.

Di	Permissible Variations from Theoretical Weights			
Diameters of Bars, in.	Lot, ^a Over or Under, per cent	Individual Bar, Under, per cent		
Plain bars: Under ¾ ¾ and over Deformed bars, all sizes	5 3.5 3.5	10 6 6		

^a The term "lot" means all the bars of the same nominal weight per linear foot in a carload.

(c) If the percentage of elongation of any tension test specimen is less than that specified in Section 3 and any part of the fracture is outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

Permissible Variations in Weight

7. The permissible variations in weight shall not exceed the limits prescribed in Table V.

Finish

8. The bars shall be free from injurious defects and shall have a work-manlike finish.

Marking

9. The brand of the manufacturer shall be legibly rolled on all deformed bars. For the purpose of identification, a distinctive pattern is considered to be a manufacturer's brand. When loaded for mill shipment, all bars shall be properly separated and tagged with the manufacturer's test identification number.

Inspection

10. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works that concern the manufacture of the material ordered. The manufacturer shall afford the inspector, without charge, all reasonable facilities to satisfy him that the material is being furnished in

accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

Rejection

11. Material that shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.

Tentative Specifications for

MINIMUM REQUIREMENTS FOR THE DEFORMATIONS OF DEFORMED STEEL BARS FOR CONCRETE REINFORCEMENT 1

ASTM Designation: A 305-56 T

Issued, 1950; Revised, 1953, 1956.2

These Tentative Specifications have been approved by the sponsoring committee and accepted by the Society in accordance with established procedures, for use pending adoption as standard. Suggestions for revisions should be addressed to the Society at 1916 Race St., Philadelphia 3, Pa.

Scope

1. These requirements are intended to define the surface deformations on deformed concrete reinforcement bars. Nothing herein is intended to conflict in any way with the Specifications for Steel Bars for Concrete Reinforcement (ASTM Designations: A 15, A 16, and A 160).³

Definitions

- 2. (a) As used within the scope and intent of these requirements, the term "Deformed Concrete Reinforcing Bar" shall mean any deformed steel bar intended for use as reinforcement in reinforced concrete construction, which conforms to the Specifications for Billet-Steel Bars for Concrete Reinforcement (ASTM Designation: A 15), Rail-Steel Bars for Concrete Reinforcement (ASTM Designation: A 16), or Axle-Steel Bars for Concrete Reinforcement (ASTM Designation: A 160), and of which the surface is provided with lugs or protrusions (hereinafter called "deformations") which (1) inhibit longitudinal movement of the bar relative to the concrete which surrounds the bar in such construction and (2) conform to the provisions of Section 3.
- (b) The term "bar number" as used herein refers to the numerical designations of the bars as tabulated in Table I under the column headed "Bar Designation Number."

Requirements

3. (a) Deformations shall be spaced along the bar at substantially uniform distances. The deformations on opposite sides of the bar shall be similar

in size and shape.

(b) The deformations shall be placed with respect to the axis of the bar so that the included angle is not less than 45 deg. Where the line of deformations forms an included angle with the axis of the bar of from 45 to and including 70 deg., the deformations shall alternately reverse in direction on each side, or those on one side shall be reversed in direction from those on

² Latest revision accepted by the Administrative Committee on Standards, May 2,

1956.

Prior to their present publication as tentative, these specifications were published as tentative from 1947 to 1949, being adopted in 1949 and published as standard from 1949 to 1950.

 $^{^1}$ Under the standardization procedure of the Society, these specifications are under the jurisdiction of the ASTM Committee A-1 on Steel.

³ See page 398. ⁴ See page 403.

MINIMUM REQUIREMENTS FOR THE DEFORMATIONS OF DEFORMED STEEL BARS FOR CONCRETE REINFORCEMENT

the opposite side. Where the line of deformations is over 70 deg., a reversal in direction is not required.

(c) The average spacing or distance between deformations on each side of the bar shall not exceed seven-tenths of the nominal diameter of the bar.

(d) The overall length of deformations shall be such that the gap between the extreme ends of the deformations on opposite sides of the bar shall not exceed 12½ per cent of the nominal perimeter of the bar. Where the extreme ends terminate in a longitudinal rib, the width of the longitudinal rib shall be considered the gap. Where more than two longitudinal ribs are involved, the total width of all longitudinal ribs shall not exceed 25 per cent of the nominal perimeter of the bar; furthermore, the summation of gaps shall not exceed 25 per cent of the nominal perimeter of the bar. The nominal perimeter of the bar shall be 3.14 times the nominal diameter.

TABLE I.—DIMENSIONAL REQUIREMENTS FOR DEFORMED STEEL BARS FOR CONCRETE REINFORCEMENT.

			nal Dime und Secti		Deformation Requirements			
	Unit Weight, lb. per ft.	Di- ameter, in.	Cross- Sec- tional Area, sq. in.	Perim- eter, in.	Maximum Average Spacing, in.	Mini- mum Height, in.	Maximum Gap (Chord of 12½ per cent of Nominal Perimeter), in.	
3	0.376	0.375	0.11	1.178	0.262	0.015	0.143	
4	0.668	0.500	0.20	1.571	0.350	0.020	0.191	
5	1.043	0.625	0.31	1.963	0.437	0.028	0.239	
6	1.502	0.750	0.44	2.356	0.525	0.038	0.286	
7	2.044	0.875	0.60	2.749	0.612	0.044	0.334	
8	2.670	1.000	0.79	3.142	0.700	0.050	0.383	
9 6	3.400	1.128	1.00	3.544	0.790	0.056	0.431	
10 b		1.270	1.27	3.990	0.889	0.064	0.487	
11 b	5.313	1.410	1.56	4.430	0.987	0.071	0.540	

^a Bar numbers are based on the number of eighths of an inch included in the nominal diameter of the bars. The nominal diameter of a deformed bar is equivalent to the diameter of a plain bar having the same weight per foot as the deformed bar.

^b Bars of designation Nos. 9, 10, and 11 correspond to the former 1-in. square, 1½-in. square, and 1½-in. square sizes and are equivalent to those former standard bar sizes in weight and nominal cross-sectional areas.

(e) The average height of deformations shall be not less than the following percentages of the nominal diameter of the bar:

MINIMUM REQUIREMENTS FOR THE DEFORMATIONS OF DEFORMED STEEL BARS FOR CONCRETE REINFORCEMENT

	Minimum Height of
	Deformations, per
Deformed Bar	cent of nominal
Designation Number	diameter of bar
3	4
4	4
5	47 /
6 to 11 incl	

(f) The spacing, height, and gap of deformations shall conform to the requirements prescribed in Table I.

Measurements

4. (a) The average spacing of deformations shall be determined by dividing a measured length of the bar specimen by the number of individual deformations and fractional parts of deformations on any one side of the bar specimens. A measured length of the bar specimen shall be considered the distance from a point on a deformation to a corresponding point on any other deformation on the same side of the bar.

(b) The average height of deformations shall be determined from measurements made on not less than two typical deformations. Determinations shall be based on three measurements per deformation, one at the center of the overall length and the other two at the quarter points of the overall length.

length.

Number of Test Specimens

5. To indicate adequately the conformity to these requirements, one bar specimen shall be obtained from each ten tons or fraction thereof of the lot.⁴

Rejection

6. Insufficient height, insufficient circumferential coverage, or excessive spacing of deformations shall not constitute cause for rejection unless it has been clearly established by determinations on each lot ⁴ that typical deformation height, gap, or spacing do not conform to the minimum requirements prescribed in Section 3. No rejection may be made on the basis of measurements if fewer than ten adjacent deformations on each side of the bar are measured.

⁴ A lot is defined as all the bars of one bar number and pattern of deformation.

Standard Specifications for COLD-DRAWN STEEL WIRE FOR CONCRETE REINFORCEMENT 1 ASTM Designation: A 82–34

Adopted, 1927; Revised, 1933, 1934²

REAFFIRMED IN 1946 WITHOUT CHANGE.

This Standard of the American Society for Testing Materials is issued under the fixed designation A 82; the final number indicates the year of original adoption as standard or, in the case of revision, the year of last revision.

Scope

1. These specifications cover cold-drawn steel wire to be used as such, or in fabricated form, for the reinforcement of concrete, in gages not less than 0.080 in. nor greater than 0.625 in.

Basis of Purchase

2. When wire is ordered by gage number, the following relation between the gage number and the diameter in inches shall apply, unless otherwise specified:

Gage Number	Equivalent Diameter, in.	Gage Number	Equivalent Diameter, in.
0000000	0.4900	5	0.2070
000000	0.4615	6	0.1920
00000	0.4305	7	0.1770
0000	0.3938	8	0.1620
000	0.3625	9	0.1483
00	0.3310	10	0.1350
0	0.3065	11	0.1205
i	0.2830	12	0.1055
2	0.2625	13	0.0915
3	0.2437	14	0.0800
4	0.2253		

Process

3. (a) The steel shall be made by one or more of the following processes: open-hearth, electric-furnace, or acid-bessemer.

(b) The wire shall be cold drawn from rods that have been hot rolled from billets.

Tensile Properties

4. (a) The material, except as specified in Paragraphs (b) and (c), shall conform to the following requirements as to tensile properties:

Tensile strength, min., psi	80 000
Yield point, min., psi	8 tens. str.
Beduction of area, min., per cent	30

(b) For material to be used in the fabrication of mesh, a minimum tensile strength of 70,000 psi. shall be permitted.

² Prior to adoption as standard, these specifications were published as tentative from 1921 to 1927, being revised in 1927.

¹Under the standardization procedure of the Society, these specifications are under the jurisdiction of the A.S.T.M. Committee A-1 on Steel.

COLD-DRAWN STEEL WIRE FOR CONCRETE REINFORCEMENT

(c) For material testing over 100,000 psi. tensile strength, the reduc-

tion of area shall be not less than 25 per cent.

(d) The yield point shall be determined by the drop of the beam or halt in the gage of the testing machine. In case no definite drop of the beam or halt in the gage is observed until final rupture occurs, the test shall be construed as meeting the requirement for yield point in Paragraph (a).

Bending Properties

5. The bend test specimen shall stand being bent cold through 180 deg. without cracking on the outside of the bent portion, as follows:

Diameter of Wire	Bend Test
0 3 in or under	bend around a pin the diameter of which is
	equal to the diameter of the specimen
Over 0 3 in	bend around a pin the diameter of which is
Over old III	equal to twice the diameter of the specimen

Test Specimens

6. Tension and bend test specimens shall be of the full section of the wire as drawn.

Number of Tests

7. (a) One tension test and one bend test shall be made from each ten tons or less of each size of wire.

(b) If any test specimen shows defects or develops flaws, it may be discarded and another specimen substituted.

Permissible Variations in Gage

8. The dimensions of the wire, on any diameter, shall not vary more than plus or minus 0.003 in. from the specified nominal diameter. The difference between the maximum and minimum diameters, as measured on any given cross-section of the wire, shall not be more than 0.003 in.

Finish

9. The wire shall be free from injurious defects and shall have a work-manlike finish with smooth surface.

Inspection

10. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, without charge, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

Rejection

11. Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.

Tentative Specifications for WELDED STEEL WIRE FABRIC FOR CONCRETE REINFORCEMENT 1 ASTM Designation: A 185-56 T

ISSUED, 1953; Revised, 1954, 1956.2

These Tentative Specifications have been approved by the sponsoring committee and accepted by the Society in accordance with established procedures, for use pending adoption as standard. Suggestions for revisions should be addressed to the Society at 1916 Race St., Philadelphia 3, Pa.

Scope

1. These specifications cover welded wire fabric to be used for the reinforcement of concrete.

Description

2. The term "welded wire fabric" as herein used designates a material composed of cold-drawn steel wires fabricated into sheet (or so-called "mesh") formed by the process of electric welding. The finished material shall consist essentially of a series of longitudinal and transverse wires arranged substantially at right angles to each other and welded together at all points of intersection.

Grade of Wire

3. The wire used in the manufacture of welded wire fabric shall conform to the Standard Specifications for Cold-Drawn Steel Wire for Concrete Reinforcement (ASTM Designation: A 82).³

Fabrication

4. (a) The wires shall be assembled by automatic machines or by other suitable mechanical means which will assure accurate spacing and alignment of all members of the finished fabric.

(b) Longitudinal and transverse members shall be securely connected at every intersection by a process of electrical-resistance welding which em-

ploys the principle of fusion combined with pressure.

(c) Wire of proper grade and quality when fabricated in the manner herein required shall result in a strong, serviceable mesh-type product having substantially square or rectangular openings. It shall be fabricated and finished in a workmanlike manner, shall be free from injurious defects, and shall conform to these specifications.

Mechanical Properties

5. (a) All wire of the finished fabric shall meet the minimum requirements for tensile properties and shall also withstand the bend test as prescribed for the wire before fabrication in the Standard Specifications for Cold-Drawn Steel Wire for Concrete Reinforcement (ASTM Designation: A 82).³

² Latest revision accepted by the Administrative Committee on Standards May 2,

1956.

³ See page 411.

¹ Under the standardization procedure of the Society, these specifications are under the jurisdiction of the ASTM Committee A-1 on Steel.

Prior to their present publication as tentative, these specifications were published as tentative from 1936 to 1937. They were published as standard from 1937 to 1956. Tentative Specifications were issued as a revision of the Standard, and published from 1953 to 1956, being revised in 1954 and 1956.

(b) In order to assure adequate weld shear strength between longitudinal and transverse wires, weld shear tests as described in Section 6 (c) shall be made. The minimum average shear value of the weld in pounds for fabric having a wire size differential of up to and including four gages shall be not less than 35,000 multiplied by the area of the longitudinal wire in square inches. Typical examples of a wire size differential of four gages are as follows:

Longitudinal	Transverse
No. 0 gage	No. 4 gage
No. 2 gage	No. 6 gage

(c) Fabric having a wire gage differential between longitudinal and transverse wires of five or greater shall not be subject to a weld shear requirement.

Tension Tests and Weld Shear Tests

6. (a) Tests for determination of conformance to the requirements of Section 5 (a) may be made on the mesh after fabrication either across or between the welds.

(b) Reduction of area may be determined by measuring the ruptured section of a specimen which has been tested either across or between the welds. However, in the case of a specimen which has been tested across a weld, the measurement shall be made only when rupture has occurred at a sufficient distance from the center of the weld to permit an accurate measurement of the fractured section.

(c) Weld shear tests for determination of conformance to the requirements of Section 5 (b) shall be conducted using a fixture of such design as to prevent rotation of the transverse wire. The transverse wire shall be placed in the anvil of the testing device which is secured in the tensile machine and the load then applied to the longitudinal wire. Four welds selected at random from a specimen representing the entire weld of the fabric, exclusive of the selvage wire, shall be tested for weld shear strength.

The lot shall be deemed to conform to the requirements for weld shear strength if the average of the four samples is equal to, or exceeds 35,000 psi. If this average fails to meet the prescribed minimum value, all the welds across the specimen shall then be tested. The fabric will be acceptable if the average of all weld shear test values across the specimen meets the prescribed minimum value.

Bend Tests

7. The bend test shall be made on a specimen between the welds.

Test Specimens

8. (a) Test specimens for testing tensile properties shall be obtained by cutting from the finished fabric, units of suitable size to enable proper performance of the intended tests.

(b) Specimens used for testing tensile properties across a weld shall have the welded joint located approximately at the center of the strand being tested, and the cross wire forming the welded joint shall extend approximately 1 in. beyond each side of the welded joint.

(c) Test specimens for determining weld shear properties shall be obtained by cutting from the finished fabric a section, including one transverse wire, across the entire width of the sheet or roll. From this specimen, four welds exclusive of the selvage, shall be selected at random for testing.

(d) Tests for conformance to dimensional characteristics shall be

made on full sheets or rolls.

(e) If any test specimen shows defects or develops flaws it may be discarded and another substituted.

Number of Tests

9. (a) One test for conformance with the provisions of Section 5 (a)

shall be made for each 75,000 sq ft of fabric or fraction thereof.

(b) One specimen for each 300,000 sq ft of fabric or fraction thereof as defined in Section 8 (c) shall be tested for conformance to the requirements of Section 5 (b).

Gages, Spacing, and Dimensions

10. Gages, spacing, and arrangement of wires, and dimensions of units in flat sheet form or rolls shall conform to the requirements specified by the purchaser.

Width of Fabric

11. (a) The width of fabric shall be considered to be the center-to-center distance between outside longitudinal wires, unless otherwise specified.

(b) Transverse wires shall not project beyond the centerline of each longitudinal edge wire more than a distance of 1 in., unless otherwise specified.

Permissible Variations in Wire Diameter

12. The permissible variation in diameter of any wire in the finished fabric shall conform to the tolerances prescribed for the wire before fabrication in the ASTM Specifications A 82.1

Spacings

13. The average spacing of wires shall be such that the total number contained in a sheet or roll is at least equal to that determined by the specific spacing, but the center-to-center distance between individual wires may vary not more than $\frac{1}{4}$ in. from the specified spacing.

Over all Dimensions

14. (a) The over all length of flat sheets, measured on any wire, may vary

 \pm 1 in. or 1 per cent, whichever is greater.

(b) In case the width of flat sheets or rolls is specified as the over all width (tip-to-tip length of cross wires), the width shall not be more than 1 in. greater or less than the specified width.

Rolls or Sheets

15. Welded wire fabric may be furnished either in flat sheets or in rolls as specified by the purchaser. Rolls of fabric made of 10 gage wire or larger shall be furnished with a core diameter of not less than 10 in.

¹ See page 411.

Bundling

16. (a) When fabric is furnished in flat sheets, it shall be assembled in bundles of convenient size containing not more than 150 sheets and securely fastened together.

(b) When fabric is furnished in rolls, each roll shall be secured so as to

prevent unwinding during shipping and handling.

Marking

17. Each bundle of flat sheets and each roll shall have attached thereto a suitable tag bearing the name of the manufacturer, description of the material and such other information as may be specified by the purchaser.

Inspection

18. The inspector representing the purchaser shall have free entry at all times while work on the contract of the purchaser is being performed to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, without charge, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

Rejection and Retests

19. (a) Material which does not meet the requirements of these specifications may be rejected. Unless otherwise specified, any rejection shall be reported to the manufacturer within five days from the time of selection of test

specimens.

(b) In case a specimen fails to meet the tension, or bend test, the material shall not be rejected until two additional specimens taken from other wires in the same sheet or roll, have been tested. The material shall be considered as meeting these specifications in respect to any prescribed tensile property, provided the tested average for the three specimens, including the specimen originally tested, is at least equal to the required minimum for the particular property in question and provided further that none of the three specimens develops less than 80 per cent of the required minimum for the tensile property in question. The material shall be considered as meeting these specifications in respect to bend test requirements, provided both additional specimens satisfactorily pass the prescribed bend test.

(c) Any material which shows injurious defects subsequent to its acceptance at the manufacturer's works may be rejected and the manufacturer

shall be promptly notified.

(d) Welded joints shall withstand normal shipping and handling without becoming broken; but the presence of broken welds, regardless of cause, shall not constitute cause for rejection unless the number of broken welds per sheet exceeds 4 per cent of the total number of joints in a sheet, or if the material is furnished in rolls, 4 per cent of the total number of joints in 150 sq ft of fabric and, furthermore, provided not more than one-half the permissible maximum number of broken welds are located on any one wire.

(e) In case rejection is justified, by reason of failure to meet the weld

shear requirements, four additional specimens shall be taken from four different sheets or rolls and tested in accordance with Section 6 (c). If the average of all the weld shear tests does not meet the requirement the lot shall be rejected.

In case rejection is justified by reason of failure to meet the requirements for dimensions, the amount of material rejected shall be limited to those individual sheets or rolls which fail to meet these specifications. If, however, the total number of sheets or rolls thus rejected exceeds 25 per cent of the total number in the shipment, the entire shipment may be rejected.

Rehearing

20. Rejected materials shall be preserved for a period of at least two weeks from the date of inspection, during which time the manufacturer may make claim for a rehearing and retesting.

SPECIFICATIONS FOR CONCRETE WORK

The following specifications are not intended to be all-inclusive or absolutely complete, but they are intended to give the specification writer who may not have material in this particular field at his fingertips a typical arrangement that is suitable for the average small reinforced concrete framed structure. The specification writer can make adjustments for weather conditions, exposures, type of construction or local materials or workmanship, but there may be some advantage in an outline of this sort for convenient reference.

- C1—General. All bidders are referred to the "General Conditions of the Contract," which shall be a part of this specification.
- **C2—Scope.** This Contractor shall furnish all materials, equipment and labor necessary to construct all plain and reinforced concrete work, including footings, foundation walls, slabs on the ground, and any structural concrete, as well as any drain racks, pits (*state any other similar items*), floor fills or any other miscellaneous concrete either of a decorative or utilitarian character.
- C3—Lines and Levels. This Contractor shall employ an experienced surveyor to pick up the reference points established under "Excavation" and to supply all necessary lines and levels to insure that all finished concrete work is straight, true and square.
- C4—Portland Cement. All cement used for structural and architectural concrete work shall be portland cement conforming to the American Society for Testing Materials Spec. C150 (latest), types I or III, or airentraining portland cement, ASTM C175 (latest), type IA, or IIIA.

Cement shall be delivered on the job in bags containing one cubic foot (approx. 94 lbs.) each (unless a special arrangement to use bulk cement has been developed). Each consignment of cement shall be so piled as to be segregated from every other consignment and shall be housed in a waterproof shed and stored on a floor or platform above the general ground level, and shall be well protected from dampness. No cement which has partially hardened or been otherwise damaged shall be used on this job. Retempering of cement shall not be permitted under any circumstances.

C5—Fine Aggregate. Fine aggregate shall preferably be sand, and particles shall be coarse, sharp and clean. Limestone screenings, pulverized rock, or fine gravel will not be accepted. Sand shall be free from dust, loam, dirt, vegetable matter, or any other foreign or deleterious material. When dry, sand shall all pass a screen having 1/4" square meshes and not more shall pass a 100-mesh screen than a maximum of 6 per cent. Decantation tests may be made to limit the amount of loam.

Aggregates, in addition to these specifications, shall meet the requirements of ASTM C33 (latest). (If the use of light weight aggregates is contemplated, refer to ASTM C330 (latest).)

C6—Coarse Aggregate. Aggregate used in concrete work shall be either screened, crushed rock, or natural gravel, washed and graded, or blast-furnace slag. In any case, coarse aggregate shall be regularly graded from a maximum

of 1" (or state maximum size acceptable) down to a minimum of \(\frac{1}{4}\)", and must be clean, hard and durable, free from any long, splintery pieces (or a maximum of five per cent by weight), and free from dust, dirt, vegetable or organic matter. Mixed aggregates will not be permitted, such as, crusher run stone or bankrun gravel, because of the uneven ratio of fine to coarse materials. Coarse aggregates shall be cleaned, screened and regraded for uniformity.

C7—Water. It is anticipated that tap-run water will be used for mixing concrete, but any water that is potable shall be deemed suitable for this purpose.

C8—Admixtures. No admixtures of any kind shall be incorporated into this concrete without the written approval of the Architect (*Engineer*). As herein provided for, up to one per cent of calcium chloride by weight of cement may be added in freezing weather, but only with the written approval of the Architect (*Engineer*).

C9—Ready-mixed Concrete. In general, the use of ready-mixed concrete is favored and shall conform to ASTM C94. The quality of materials shall be as specified above. Care shall be taken to see that over-mixing of materials in a delayed truck does not damage the entire batch. Even with air-entraining cement, the maximum period from the time when water is added and mixing starts until the concrete is delivered into the forms shall in no case exceed 1½ hours, and the inspector shall watch the various batches so that whenever segregation or partial setting raises a question as to the quality of the concrete, it shall not be put into the forms.

C10—Reinforcing Steel. Reinforcing steel (except for column verticals, which shall be hard grade billet, or rail steel) shall be deformed bars meeting ASTM A15- (latest) for Open-Hearth, Intermediate-Grade, New-Billet Bars, or ASTM A16- (latest) for Rail Steel Bars. Bars shall be free from flaws, cracks or other defects of rolling, shall be true to size and shape, and shall be free of loose scales of rust. A thin coating of firmly attached rust shall not be cause for rejection. Bars shall be free from heavy dirt, paint, grease, oil, or other destroyers of bond. They shall be prefabricated to detail and delivered on the job plainly tagged and ready to set. Furnish shop detail drawings, all according to ACI 315 (latest) in quadruplicate and obtain approval before fabricating bars.

C11—Bar Supports. Reinforcing Steel, except for footings, shall be supported and spaced in the forms with approved types of wire bar supports meeting the requirements of the Concrete Reinforcing Steel Institute Specifications and spaced according to those recommendations.

C12—Welded Wire Fabric. Welded wire fabric shall be rectangularly welded wires of gauges and spacings specified and shall be delivered on the job in rolls and there straightened and placed. Tags designating the wire size and spacing shall be left on each roll until ready for use. Welded wire fabric shall have end laps of one full mesh tip to tip of longitudinal wires and edge lap obtained by overlapping longitudinal selvage wires and wiring all laps securely together. Tuck ends of welded wire mesh well down into edge beams or walls. Do not leave unreinforced border strips.

C13—Measuring Concrete Materials. The method of measuring the materials, including water for concrete or mortar, shall be one which will insure separate and uniform proportion of each of the materials at all times, controlling by weight.

C14—Inspection and Testing. All reinforcing steel shall have certified mill test reports as to its chemical and physical properties. (If independent laboratory tests are desired elaborate.)

C15—Proportions. Concrete shall be proportioned by the water-cement ratio method. The proportioning of materials shall be based on the requirements for a plastic and workable mix with the use of not less than 5-½ sacks of cement per cubic yard and not more than 6-½ gallons of water per sack of cement, including the surface water carried by the aggregate. The proportion of fine to coarse aggregate shall be adjusted to produce maximum workability, but in no case shall the ratio of fine to coarse aggregate be less than ½ nor more than 1, i.e. the fine aggregate shall be ½ to ½ and the coarse aggregate ½ to ¾ of the total fine and coarse aggregate. Concrete shall be placed with a slump of approximately 4" if manually spaded into place and 3" if internal vibrators are used.

Concrete shall develop an ultimate compressive strength, f'_{o} , of at least 3000 psi in standard 6" x 12" cylinders at 28 days, moist cured in the laboratory. (If 2500 psi or other strength is acceptable for walls, footings, or in other places, elaborate here.)

C16—Mixing. All concrete shall be mixed by machine. The ingredients of the concrete shall be mixed to the required consistency herein specified and the mixing shall be continued at least 1-½ minutes after all materials are in the drum before any part of the batch is discharged from the drum. The drum shall be completely emptied before receiving materials for the succeeding batch. The volume of the mixed materials for the batch should not exceed the manufacturer's rated capacity for the drum in cubic feet of mixed materials.

The mixer must be equipped with a water storage and measuring device (which can be locked) and with a suitable charging hopper. Ready-mixed concrete may be used if it complies with all the requirements of this specification.

C17—Forms. If the earth will stand reasonably vertical and firm during excavating and concreting, no forms need be constructed for isolated footings or footing courses.

Forms for walls below grade may be built of used lumber (or of prefabricated standard panels) and shall be tight enough to prevent leakage of concrete. They shall be straight enough to maintain reasonably straight surfaces.

Forms for walls that will be exposed in the finished building shall have the surface in contact with the exposed concrete formed with plywood, Presdwood, Celotex form liner or other suitable material for producing smoothly finished surfaces, or surfaces of specified texture.

Forms for concrete joist construction may consist of a series of inverted troughs of metal or wood properly supported and with suitable soffits, designed to produce straight and true joists with such tapered ends or stiffening ribs as are shown or specified, but ridges or offsets caused by the overlapping of individual pieces will be acceptable provided they do not exceed $\frac{3}{16}$ in.

All formwork shall be framed with an adequate number of sufficiently stiff studs and bracing to insure against any noticeable deflection during or after pouring. Snap Ties, except for exposed architectural walls, are recommended as a means of holding opposite wall forms in place. Wire ties may be used if they are cut back an inch from the surfaces of the walls immediately after the forms are stripped and the depression pointed with cement grout. Grout shall consist of one part cement to one and one-half parts of screened sand.

Wall forms shall remain in place until the concrete has hardened sufficiently to be self-sustaining. No outside pressure should be placed on this concrete before removal of all forms.

Before any section of concrete is to be poured, this Contractor shall check with all other trades and see that all inserts, openings, bolts, sleeves, pockets and slots that may be desired are incorporated into the section about to be poured.

C18—Removal of Forms. In general, girder, beam and joist sides only and column forms may be removed within 24-48 hours after concrete is placed, and wall forms in about the same length of time provided no backfill is placed against the walls until they are adequately supported (until basement and first floor slabs are in place and hardened).

Girder, beam, and joist soffit forms shall remain in place with adequate shoring underneath until (a) 48 hours after floor above has been placed, (b) until test cylinders from that section have attained 75 per cent of their specified ultimate strength, f'_{c} , (c) until all excess construction loads have been removed, and (d), in the case of light design loads and particularly in cold weather, until the slabs above are capable of carrying the wet concrete and construction loads without aid from the floor that is to be decentered.

Approval of the Architect (*Engineer*) shall be obtained before removing any forms, but the responsibility for the preserving of straight lines, true surfaces, and a satisfactory result, including the protection of surfaces and corners from damage or abrasion are the Contractor's responsibility.

C19—Sleeves, Anchors, and Hangers. The Contractor shall consult with all other trades and ascertain where sleeves, anchors, inserts or hangers are required and shall assist these Contractors in setting same. Wherever pipes pass through walls above the floor line, neatly box out suitable openings.

The Contractor shall obtain from the various trades the sizes and locations of all pipes or ducts passing through concrete and shall provide proper formwork to leave openings to accommodate these installations.

The Contractor shall properly secure in the concrete all inserts and supports for pipe, conduit, etc. furnished by others. He shall locate and set in place all angle iron guards, anchors, expansion bolts, and any other iron or metal provisions which may be furnished by other trades.

Provide all sleeves and pockets where ducts, sewerage, plumbing, water, electrical conduits, gas or other piping of any nature may pass through foundation walls or other concrete work.

C20—Placing Reinforcement. Reinforcement shall be placed in the exact locations shown on the plans; shall, in general, be spaced and supported in the forms with bar supports equal to those specified by the Concrete Reinforcing Steel Institute in its Code of Standard Practice or the American Concrete Institute's Detailing Manual, spaced in conformity with such codes; and shall be wired together at intersections so that it will be securely and accurately held in place during the placing of concrete.

C21—Placing Concrete. Concrete shall be placed in a manner that will permit the most thorough compacting and shall be worked into all the recesses. Concrete shall be placed in its final position as soon as possible after mixing and must be in place within $1\frac{1}{2}$ hours after the water has been added to the dry materials. It should be placed in one continuous operation from construction joint to construction joint.

Joints shall be formed, not simply stopped off, and such forms shall generally be perpendicular to stress lines. Construction joints are best made at points of minimum shear, as for example, midspan of slabs, joists, and beams. If joints are made at any other point, the Architect (*Engineer*) will design a shear-key of concrete with crossed reinforcing bars to develop the shear. Column joints are usually at the underside of caps or floor systems and at tops of footings, floor systems or inverted beams.

In placing, concrete shall not be allowed to drop a distance of more than six feet through free space.

Wall and column footings shall be placed in one continuous operation, i.e., caps and bases at one time; but footings shall be placed ahead of the walls or columns that they support. Build in a beveled key into the top of all wall footings on the center of walls to be carried.

Internal vibration is desirable, providing that it is not overdone. Care should be taken to keep the vibrators off the reinforcing steel. If internal vibrators are not available, hand-spading of the concrete into all recesses will be required.

Where work is stopped so that the concrete has hardened before placing is resumed, the surface shall be left level or square but roughened and covered with wet burlap. When starting again to place, clean the surface of all foreign matter and laitance, roughen up with a suitable metal tool, drench with water and slush with a thin layer of mortar made of one part cement

and two parts sand. Furnish and set dowels in all construction joints as called for on the plans or as directed by the Architect (Engineer).

- C22—Protection of Concrete Work. Exposed surfaces shall be protected by wet burlap or canvas covering from sun, wind and rain and this shall be frequently wetted in dry and hot weather so that the entire surface is kept wet for a period of one week; or liquid curing compound satisfactory to the Architect (Engineer) may be used, applied as directed. When ambient temperature falls below 40°F, heat aggregates and mixing water, clear all forms, reinforcement and subgrade of snow and ice, and cover all freshly placed concrete with tarpaulins and provide heat with oil-burning salamanders or steam lines to maintain a temperature of at least 70°F for at least four days after placing concrete, and as much longer as directed by the Architect (Engineer). (In northern climates and unusual exposures, elaborate in more detail.)
- C23—Defective Work. Upon removal of the forms, all stone pockets and honeycomb shall be pointed up with cement grout, one part cement to two parts sand.
- C24—Pits and Machine Foundations. Form and place any pits and machine foundations shown on the plans. No exterior forms need be used if the earth will stand reasonably vertical and firm, otherwise both sides of the walls must be formed. In all cases, the interior side and any exposed concrete work must be formed. Furnish and install all anchor bolts, manhole covers and curb angles that are required in these foundations.
- C25—Shop Drawings. This Contractor shall cause to be prepared and shall submit in quadruplicate and obtain approval, before fabrication, of shop drawings that clearly show the layout of all reinforcing steel of every kind. Such steel drawings shall show the bending of all bent bars, and shall be prepared strictly in accordance with ACI 315 (latest).
- **C26—Slabs on Ground.** Slabs on ground are to be (state requirements such as full 6'' thick of 3000 psi concrete reinforced with one layer of $6 \times 6 \times 8/8$ welded wire fabric).
- C27—Floor Finish. Where asphalt tile finish floors occur, the Contractor shall bring the top of the concrete slab to a true level, approximately ½ of an inch below the level of the finished tile flooring, and shall finish the surface with a steel trowel or trowelling machine to be smooth, straight and true. From then until the asphalt tile is to be placed, the Contractor shall protect the slab against marring or scratching in any way.

Where exposed concrete floor finish is to be used, this Contractor shall float the top surface of the slab smooth and true and shall finish it with a wood float to give a reasonably smooth but slightly rough-cast floated finish.

In toilets, concrete floor finish described above shall be steel trowelled to a smooth hard surface, pitched where so called for to floor drains.

All concrete finished floors shall be treated with three coats of liquid floor hardener applied according to the manufacturer's directions.

- C28—Concrete Trim. Form and place all concrete trim of every description called for on the plans, including any sills, copings, base courses, steps, curbs, poured lintels, and any other items. They shall be formed neatly and to straight lines with well-braced sides, and, after stripping, the exposed surfaces shall be carborundum-rubbed sufficiently to take off any fins or excressences and to fill in any pores, after which all grout shall be rubbed off with a burlap sack.
- C29—Special Work. (Specification writer shall include such specifications for any special work such as underpinning, patching sidewalks or pavements, repairing adjoining work, building pits, tanks, vaults, hoppers, swimming pools, etc. as the size and importance of the work requires.)
- C30—Cleaning. On completion of this Contract, clean down all exposed concrete work and remove from the premises form lumber, cement sacks, and any other debris caused by this work.

TWO-WAY DOME FLOOR SLABS—SQUARE PANELS

For Two-way Flat Slabs see pages 189-209

Tables are presented for height of dome, thickness of top slab, total slab thickness, size of drop panel, column or column cap, reinforcing steel in each joist, and the weight of steel and volume of concrete per square foot of floor area, for 30 in. wide domes and 6 in. wide joists on spans of 21, 24, 27, 30, 33, 36, and 39 ft, for safe superimposed loads of 50, 100, and 150 psf, for typical square interior panels, and for joists perpendicular to the wall for square exterior panels that are built integrally with exterior columns.

All tables are based upon the recommendations of the "Building Code Requirements for Reinforced Concrete (ACI 318-56)," using one set of fiber stresses, viz; $f'_c = 3000$ psi and $f_s = 20,000$ psi, and are based upon using deformed bars whose deformations meet the requirements of ASTM A305.

As shown on page 420, the two-way dome slab has rows of joists at right angles to each other, with domes omitted around the columns to form "drop panels," and either the columns are of sufficient size to keep the diagonal tension within allowable values or a flaring cap is provided. Shallower domes are sometimes used around the drop panel to provide space for heavy top bars. Joists in each direction are divided into two bands or strips, one over the columns and extending the width of the drop panel, designed to provide reinforcement for the column strip, and the other filling in between consecutive column strips and designed to provide reinforcement for the middle strip. A second set of similar strips of joists runs at right angles to the first. Each joist has a straight bottom bar and a truss bar which is in the bottom of the slab between column centers and bent up into the top of the slab on each column center-line. When shears exceed the relatively low values allowed for v_c , flat, welded, ladder-like stirrups are added, usually just for the length of a single dome. Additional straight bars are required both ways in the top of each drop panel. A layer of 6 x 6-#6/#6 welded wire fabric is recommended in the top slab over the domes in all cases, and this is to be increased or supplemented if unusually heavy concentrated loads are contemplated.

The structure must have at least three consecutive panels in a row in each direction to come within the ACI Code values for moments; if the building is narrower a special analysis must be made which will have the effect of increasing the reinforcement. The successive spans must be of such lengths that they do not differ by more than twenty per cent of the longer span.

The panels tabulated are in multiples of 3 ft so that joists space out exactly, spans of 21, 30, and 33 ft having a joist on the column center and spans of 24, 27, 36, and 39 ft having a row of domes on the column center, arranged this way to provide the proper size of drop panel. Narrower domes are available to fill out column spacings that are not multiples of 3 ft, and suppliers vary considerably in standards (there being no U. S. Department of Commerce Standard Practice, as yet), so the designer will have to obtain detailed information as to what is most readily available at any given job site.

TWO-WAY DOME FLOOR SLABS-SQUARE PANELS

While values have been given only for square panels, it is possible to estimate values for a rectangular panel by using the long side for one set of joists and the short side for the other. The ACI Code limits the ratio of long-to-short side to 1.33. Because of the considerable width of domes and the two-way nature of the slab, the designer would do well to sketch out the spacings for a typical panel and correlate with the column spacings as a part of the early planning.

For exterior panels, it is possible to take the joists that are continuous, i.e., parallel to the discontinuous edge, from the tables for Typical Interior Panels. The strips that are noncontinuous, i.e., perpendicular to the discontinuous edge, are given by the table for Strips Perpendicular to an Exterior Wall, provided that the exterior edge of the panel frames into a concrete column or concrete bearing wall integral with the slab. If the slab simply rests upon a masonry wall without any edge restraint, then the bars in the joists perpendicular to the exterior wall must be changed from the values in the table for Typical Exterior Panels as follows:—

Positive steel in column strip:—Increase 50%.

Negative steel in column strip at wall:—Decrease to 17% of tabulated value.

Negative steel in column strip over first interior column:—Increase 30%.

Positive steel in middle strip:-Increase 30%.

Negative steel in middle strip at exterior wall:—Decrease to 60% of tabulated value. Negative steel in middle strip at first interior row of columns:—Increase 33%.

For corner panels which are discontinuous on two edges, both sets of strips should be taken from the tables for Typical Exterior Panels, and if both discontinuous edges rest upon masonry walls, the corrections above shall apply to each set of strips.

To guard against excessive diagonal tension stresses in the slab around the column head, the tables give the minimum diameter of support (i.e., column or cap) that will keep $v_c \geq 0.03 f'_c$ (ACI 1002(c) 2) when 50 per cent of the total negative flexural reinforcement is within the periphery, or $v_c \geq 0.025 f'_c \geq 85$ psi when 25 per cent is so located, and prorated for intermediate percentages. For moderate loads and spans, such sizes are not excessive as column diameters, but for heavier loads on longer spans a conical cap seems desirable. These tables do not consider the use of any of the types of "shear head" reinforcement suggested to eliminate caps.

The concrete quantities given per square foot of floor area include all structural concrete in slab and drop panel but do not include any material in the supporting beams, column capital, column, nor any floor finish above the structural slab. "Safe superimposed load" represents live load, floor finishes, partition allowance, and everything except the weight of the structural concrete. For a table of quantities in columns and column capitals, see page 106.

The weight of main steel is the average weight in pounds per square foot of all longitudinal straight and truss bars in the slab but not including stirrups, welded wire fabric, nor bars in beams, columns, walls, or footings, while the weight of stirrups is the average weight in pounds per square foot of entire slab of the stirrups alone, when these are called for in the joists.

TWO-WAY DOME FLOOR SLABS—SQUARE PANELS

The effective depth of slab is computed on the basis of an allowance of $\frac{3}{4}$ inch cover over the bars in all cases, and, where bars cross each other, by an allowance of one bar diameter plus 0.03 in. for deformations, but the bars each way were finally selected to satisfy the greater of the steel requirements in the two directions.

While the scope of these tables is adequate for most purposes, it is not practicable to cover all possible combinations, and those which are covered must be regarded as suitable for estimating or checking purposes but requiring careful analysis for actual design problems. For those who wish to extend beyond the coverage of these tables as well as for those who wish to know how they were computed, the following example will be instructive:—

Example—For the table on page 424, design a two-way dome slab for a 30 ft square interior panel with 100 psf superimposed load, using a 14 + 3 slab ($t_1 = 17$ in.); stresses, $f'_c = 1350$ psi, $f_s = 20,000$ psi, n = 10.

Lay out the domes as 10 rows of 10 domes less 4 x 4 for drop panel or 84 total, each of

which displaces 970 lb of concrete (table on page 423).

$$30 \times 30 \ @ \begin{cases} 100 & \text{LL} \\ \underline{212.5} \text{ for } 17^{\prime\prime} \text{ slab} \\ \overline{312.5} \text{ Total} &= 281,500 \text{ lb} \\ \text{Less } 84 \text{ domes } @ 970 \text{ lb} &= \underline{81,500} \\ W &= \underline{200,000} \text{ lb} \end{cases}$$

Shear at Edge of Drop Panel: There are 4 sides of 5 joists each or 20 joists to resist this shear.

Twenty joists @ $6 \times 15.5 \times \frac{7}{8} \times 90 = 146,500$ lb. The net shear is $200,000 - 12.5 \times 12.5$ @ 312.5 = 151,200 lb > 146,500, so stirrups are to be furnished along the first row of domes from the drop.

Shear at First Row Outside of Drop:—Repeating the computation to see if the stirrups need be longer than the width of a single dome, $v_c = \frac{200,000 - 18.5 \times 18.5 \times 312.5}{28 \times 6 \times \frac{7}{26} \times 15.5} = 41$

psi < 90, so stirrups are not needed past the first row of domes.

Shear around Column Head:—A sketch would suggest that one pair of joist bars and $2 \times 5 = 10$ top bars are within the periphery $C + 2(t_1 - 1\frac{t_2}{2}) = 26 + 2 \times 15.5 = 57$ in. This is $^12\cancel{t_2}_8 = 43$ per cent of all the top bars. In these tables, it is always possible to have 25% of the steel over the column permitting at least $v_c = 0.025$ $f'_c = 75$ psi; it is rarely possible to have 50%, which would permit $v_c = 0.03f'_c = 90$ psi. Prorate here to $v_c = 85$ psi. While a direct solution might be made (page 368), assume C = 26 in., then the diameter of the periphery is 57 in. = 4.75 ft. Load outside the periphery is $200,000 - \frac{\pi \times 4.75^2 \times 312.5}{4} = 194,500$ lb, and $v_c = \frac{194,500}{\pi \times 57 \times \frac{7}{8} \times 15.5} = 80$ psi < 85 psi.

Because of the desirability of guarding against any possibility of diagonal tension failure around the column head, it is considered better to keep v_c relatively low (close to 75 psi), so C = 28 in. is investigated:—

 $v_c = \frac{200,000 - 0.7854 \times 4.92^2 \times 312.5}{\pi \times 59 \times 76 \times 15.5} = 77.5$ psi, and this size will be used.

Bending Moment. Because the relative stiffnesses of joists and drop panel are about the same as in a standard two-way flat slab, coefficients will be taken from ACI 1004(f).

$$M_o = 0.09 \text{ WFL} \left(1 - \frac{2c}{3L}\right)^2$$
, where $F = 1.15 - \frac{2.33}{30} = 1.072$, so $M_o = 0.09 \times 200,000 \times 1.072 \times 30 \times 12 \left(1 - \frac{2 \times 2.33}{3 \times 30}\right)^2 = 6,250,000 \text{ lb-in.}$, which is subdivided:—

TWO-WAY DOME FLOOR SLABS-SQUARE PANELS

	Colum	n Strip	Middle	Strip
	Negative	Positive	Negative	Positive
Percentage of M_o	50	20	15	15
Moment kip-in.	3125	1250	938	938
d (in.)	15.1	15.88	15.1	15.1
A_s (sq. in.)	11.9	4.53	3.55	3.55

Positive Moment, Column Strip:—5 Joists @ 1-#6 straight and 1-#6 truss bar = 4.40 sq in. <4.53.

Positive Moment, Middle Strip:—5 Joists @ 1-#5 straight and 1-#6 truss bar = 3.75 sq in. > 3.55.

For the entire width of panel, there is furnished 8.15 sq in. > 8.08 sq in. required.

Negative Moment, Column Strip:-

Truss bars = 2×5 @ 0.44 = 4.40 sq in.

Top bars = 18 @ 0.44 = 7

12.32 sq in. > 11.9 sq in.

Negative Moment, Middle Strip:—5 Joists @ $2 \times 0.44 = 4.40$ sq in. > 3.55 sq in. required. With $p = \frac{0.88}{6 \times 15.1} = 0.0097 < 0.0136$ it is unnecessary to check f_c .

Check Compression in Concrete of Drop Panel:—Use three-quarters of drop width = 92.5 in. (ACI 1002(c)1)

$$R = \frac{M}{bd^2} = \frac{3,125,000}{92.5 \times 15.1 \times 15.1} = 148 < 236$$
, so $f_c < 1350$ psi (p. 34).

Placing of bars in two-way dome floor slabs can follow the order given on page 193.

Ŋ.	12	
377	30"	8",10",12",14"
TYP	ICAL	DOME

	DO	OME DATA		
		Weight of	With 3"	top slab
Depth (in.)	Volume (cf per dome)	displaced concrete (lb per dome)	Equiv. slab thickness (in.)	Weight (psf)
8	3.9	580	5.8	73
10	4.8	720	6.6	83
12	5.7	850	7.4	93
14	6.5	970	8.3	104

TYPICAL WELDED JOIST STIRRUP

#3 stirrups are ordinarily used.

#4 stirrups (same detail) where called for in table on pages 424-425.

TWO-WAY DOME FLOOR SLABS—SQUARE PANELS

For two-way flat slabs see pages 189 to 209.

For general instructions and notes on the use of this table, see pages 419-423.

Span							Interior Sq	uare Pan	el		
Орин		Form Depth		Min. Col.		Each Column Strip				Each iddle Strip	W. 1
	Live Load	Plus Top	t ₁	or Cap. "C"			Bars			Bars	Wt.† of Steel
Drop	(psf)	Slab	(in.)	(in.)	No. Jst.	Trussed Straight	**Top	Stirrups per Joist*	No. Jst.	Trussed Straight	(psf)
L = 21'-0"	50	8+3	11	20	3	#5 x 35′-6	2 #4 x 14'-0		4	#4 x 32'-3	1.67
D = 6'-6"	100	8+3	11	20	3	#4 x 16'-3 #6 x 35'-6 #5 x 16'-3	8 #4 x 12'-6 2 #5 x 14'-0 8 #5 x 12'-6	2-#3	4	#4 x 21'-0 #4 x 32'-3 #4 x 21'-0	2.20
	150	10 + 3	13	20	3	#6 x 35'-6 #5 x 16'-3	2 #5 x 14'-0 10 #5 x 12'-6	2-#3	4	#5 x 32'-3 #4 x 21'-0	2.54
L = 24'-0"	50	8+3	11	20	4	#5 x 40'-6 #5 x 16'-3	3 #5 x 16'-0 9 #5 x 14'-6	_	4	#5 x 36'-9 #4 x 24'-0	2.22
D = 9'-6"	100	10 + 3	13	20	4	#6 x 40'-6 #5 x 16'-3	3 #5 x 16'-0 9 #5 x 14'-6	2-#3	4	#5 x 36'-9 #5 x 24'-0	2.60
	150	12+3	15	22	4	#6 x 40'-6 #5 x 16'-3	3 #5 x 16'-0 12 #5 x 14'-6	2-#3	4	#5 x 37'-0 #5 x 24'-0	2.76
L = 27'-0"	50	10+3	13	20	4	#6 x 45'-6 #5 x 19'-3	3 #5 x 18'-0 11 #5 x 16'-3	-	5	#5 x 41'-3 #4 x 27'-0	2.47
D = 9'-6"	100	12+3	15	22	4	#6 x 46'-0 #6 x 19'-6	3 #6 x 18'-0 11 #6 x 16'-3	2-#3	5	#5 x 41'-6 #5 x 27'-0	3.01
	150	14+3	17	24	4	#7 x 46'-0 #6 x 19'-6	3 #6 x 18'-0 10 #6 x 16'-3	2-#3	5	#5 x 41'-6 #5 x 27'-0	3.22
L = 30'-0"	50	12+3	15	22	5	#6 x 51'-0 #5 x 19'-3	4 #6 x 20'-0 10 #6 x 18'-0	_	5	#5 x 46'-0 #5 x 30'-0	2.82
D = 12'-6"	100	14+3	17	28	5	#6 x 51'-0 #6 x 19'-6	4 #6 x 20'-0 14 #6 x 18'-0	2-#3	5	#6 x 46'-0 #5 x 30'-0	3.40
	150	14+3	17	38	5	#7 x 51'-0 #6 x 19'-6	4 #6 x 20'-0 14 #6 x 18'-0	2-#3	.5	#6 x 46'-0 #6 x 30'-0	3.85
L = 33'-0"	50	14+3	17	24	5	#7 x 56'-0 #6 x 22'-6	4 #6 x 22'-0 12 #6 x 20'-0	-	6	#5 x 50'-6 #5 x 33'-0	3.22
D = 12'-6''	100	14 + 3	17	38	5	#7 x 56'-0 #7 x 23'-0	4 #7 x 22'-0 12 #7 x 20'-0	2-#3	6	#6 x 50'-6 #5 x 33'-0	3.92
	150	14+3	17	51	5	#8 x 56'-0 #7 x 23'-0	4 #7 x 22'-0 12 #7 x 20'-0	2-#3	6	#6 x 50'-6 #6 x 33'-0	4.41
L = 36'-0"	50	14+3	17	33	6	#7 x 61'-0 #6 x 22'-6	5 #6 x 24'-0 16 #6 x 21'-6	_	6	#6 x 55'-0 #6 x 36'-0	3.80
D = 15'-6"	100	14+3	17	50	6.	#7 x 61'-0 #7 x 23'-0	5 #7 x 24'-0 15 #7 x 21'-6	2-#3	6	#7 x 55'-0 #6 x 36'-0	4.52
	150	14+3	17	67	6	#8 x 61'-0 #7 x 23'-0	5 #7 x 24'-0 15 #7 x 21'-6	2-#3	6	#7 x 55'-0 #7 x 36'-0	5.06
L = 39'-0"	50	14+3	17	45	6	#7 x 66'-0 § #7 x 26'-0	5 #7 x 26'-0 16 #7 x 23'-6	2-#3	7	#6 x 59'-6 #6 x 39'-0	4.20
D = 15'-6"	100	14 + 3	17	63	6	#8 x 66'-0 § #7 x 26'-0	5 #7 x 26'-0 18 #7 x 23'-6	4-#3	7	#7 x 59'-6 #6 x 39'-0	4.95
	150	14+3	17	84	6	#8 x 66'-0 \\ #8 x 26'-3		4-#4	7	#7 x 59'-6 #7 x 39'-0	5.66

^{* 2-#3} means 1-#3 ladder stirrup (page 423) one dome length out from drop panel, each end each joist; 4-#3 means 2-#3 ladder stirrups for two dome lengths out from drop panel, each end each joist; 4-#4 means 2-#4 ladder stirrups for two dome lengths out from drop panel, each end each joist.

^{**} Top bars are spaced evenly between truss bars of joists in column strip.

[†] Weight of steel per sq ft is the average weight in pounds per sq ft of all longitudinal straight, truss, and top bars in the slab but not including stirrups or welded wire fabric.

TWO-WAY DOME FLOOR SLABS—SQUARE PANELS

 $f_s = 20,000 \text{ psi}$ $f_c = 1350 \text{ psi}$ $v_c = 75 \text{ to } 90 \text{ psi}$ v = 300 psi

					Stri	ps Perpendic	ular to ar	Exterior Wall		
Wt.	Av.‡ Cu.	Wt.†	Wt.			Column Str	ip			Middle Strip
of Stir-	Ft. Conc.	of Steel	of Stir-	Top Bars		Bars	3	**Top bars		Bars
rups (psf)	(psf)	(psf)	rups (psf)	at Ext. Col.**	No. Jst.	Trussed Straight	Stirrups per Joist*	at First Int. Col.	No. Jst.	Trussed Straight
_	.529	1.93	`-	6 #4 x 8'-3	3	#5 x 29'-9	_	4 #4 x 14'-0	4	#4 x 28'-
0.12	.529	2.62	0.12	8 #4 x 7'-6 6 #5 x 8'-3	3	#5 x 16'-3 #6 x 29'-9	2-#3	12 #4 x 12'-6 4 #5 x 14'-0	4	#4 x 21'- #5 x 28'-
0.13	.589	2.89	0.13	6 #5 x 7'-6 6 #5 x 8'-3 8 #5 x 7'-6	3	#6 x 16'-3 #6 x 30'-0 #6 x 16'-3	2-#3	8 #5 x 12'-6 4 #5 x 14'-0 10 #5 x 12'-6	4	#5 x 21'- #5 x 28'- #5 x 21'-
_	.544	2.48		6 #5 x 9'-6 6 #5 x 8'-9	4	#6 x 34'-0 #5 x 16'-3	_	3 #5 x 16'-0 9 #5 x 14'-6	4	#5 x 32'- #5 x 24'-
0.14	.625	2.98	0.14	9 #5 x 9'-6 6 #5 x 8'-9	4	#6 x 34'-0 #6 x 16'-6	2-#3	3 #5 x 16'-0 12 #5 x 14'-6	4	#6 x 32'-
0.15	.705	3.34	0.15	9 #5 x 9'-6 7 #5 x 8'-9	4	#7 x 34'-3 #6 x 16'-6	2-#3	3 #5 x 16'-0 14 #5 x 14'-6	4	#5 x 24'- #6 x 32'- #6 x 24'-
	.603	2.81	_	7 #5 x 10'-6 9 #5 x 9'-6	4	#6 x 38'-3 #6 x 19'-6	-	6 #5 x 18'-0 12 #5 x 16'-3	5	#5 x 36'- #5 x 27'-
0.12	.694	3.44	0.12	6 #6 x 10'-6 7 #6 x 9'-6	4	#7 x 38'-6 #6 x 19'-6	2-#3	3 #6 x 18'-0 12 #6 x 16'-3	5	#6 x 36'-
0.13	<i>.7</i> 76	3.80	0.13	7 #6 x 10'-6 9 #6 x 9'-6	4	#7 x 38'-9 #7 x 20'-0	2-#3	4 #6 x 18'-0 12 #6 x 16'-3	5	#5 x 27'- #6 x 36'- #6 x 27'-
_	.725	3.33	_	8 #6 x 11'-9 6 #6 x 10'-9	5	#7 x 42'-6 #6 x 19'-6	_	4 #6 x 20'-0 10 #6 x 18'-0	5	#6 x 40'- #6 x 30'-
0.13	.815	4.01	0.13	8 #6 x 11'-9 10 #6 x 10'-9	5	#7 x 42'-9 #7 x 20'-0	2-#3	4 #6 x 20'-0	5	#7 x 40'-
0.13	.815	4.53	0.13	10 #6 x 10'-9 10 #6 x 11'-9 8 #6 x 10'-9	5	#8 x 42'-9 #7 x 20'-0	2-#3	14 #6 x 18'-0 4 #6 x 20'-0 16 #6 x 18'-0	5	#6 x 30'- #7 x 40'- #7 x 30'-
	.797	3.71	_	8 #6 x 12'-9 10 #6 x 11'-9	5	#7 x 46'-6 #7 x 23'-0	_	4 #6 x 22'-0 14 #6 x 20'-0	6	#6 x 44'- #6 x 33'-
0.11	.797	4.52	0.11	8 #7 x 12'-9 8 #7 x 11'-9	5	#8 x 46'-9 #7 x 23'-0	2-#3	4 #7 x 22'-0 14 #7 x 20'-0	6	#7 x 44'- #6 x 33'-
0.11	.797	5.15	0.11	10 #7 x 12'-9 10 #7 x 11'-9	5	#8 x 46'-9 #8 x 23'-3	2-#3	4 #7 x 22'-0 16 #7 x 20'-0	6	#7 x 44'- #7 x 33'-
-	.820	4.37	_	8 #7 x 13'-9 10 #7 x 12'-9	6	#7 x 50'-6 #7 x 23'-0		5 #7 x 24'-0 15 #7 x 21'-6	6	#7 x 47'- #6 x 36'-
0.11	.820	5.21	0.11	10 #7 x 13'-9 10 #7 x 12'-9	6	#8 × 50'-6 #7 × 23'-0	2-#3	5 #7 x 24'-0 17 #7 x 21'-6	6	#8 x 47'-
0.11	.820	5.74	0.11	10 #7 x 13'-9 15 #7 x 12'-9	6	#8 x 50'-6 #8 x 23'-3	2-#3	5 #7 x 24'-0 20 #7 x 21'-6	6	#7 x 36'- #8 x 47'- #7 x 36'-
0.10	.806	4.94	0.10	10 #7 x 14'-9 11 #7 x 13'-6	6	#8 x 54'-6 #8 x 26'-3	2-#3	5 #7 x 26'-0 18 #7 x 23'-6	7	#7 x 51'- #7 x 39'-
0.19	.806	6.23	0.19	11 #7 x 14'-9 13 #7 x 13'-6	6	#9 x 54'-6 #8 x 26'-3	4-#3	5 #7 x 26'-0 20 #7 x 23'-6	7	#8 x 51'-
0.33	.806	6.55	0.33	13 #7 x 14'-9 15 #7 x 13'-6	6	#9 x 54'-6 #9 x 26'-3	4-#4	6 #7 x 26'-0 25 #7 x 23'-6	7	#7 x 39'-4 #8 x 51'-4 #8 x 39'-

[‡] Average cu ft of concrete per sq ft of floor includes ribs, top slabs and drop panels but not column caps.

 $[\]S$ Bars over $60^{\prime}\text{-}0^{\prime\prime}$ long may not be in stock and are difficult to ship, so a lapped splice may be desirable.

When top bars are #7 or larger, use shallow domes to provide cover (page 420).

SLABS ON GROUND*

For any slab on the ground, adequate preparation of subgrade for drainage and compaction is of prime importance. Dowelled expansion joints and weakened plane contraction joints should be carefully located, including expansion joints at all walls.

The design of slabs on the ground to distribute concentrated or uniform loads involves the elastic properties of the subsoil and the slab itself. An analysis can be made but is quite involved. Slabs for the very lightest occupancy should be not less than 4" thick, and slabs for other occupancies may be empirically selected, the following being about minimum:—

Occupancy **	Min. Slab Thickness	Reinforcement ‡
Sub-slabs under other slabs	2"	None
Domestic or light commercial (loaded less than 100 psf)	4"	One layer 6 x 6 10/10 welded wire fabric, minimum for ideal conditions; 6 x 6 8/8 for average conditions.
Commercial—institutional—barns (loaded 100-200 psf)	5"	One layer 6 x 6 8/8 welded wire fabric or one layer 6 x 6 6/6.
Industrial (loaded not over 400-500 psf) and pavements for industrial plants, gas stations, and garages	6"	One layer 6 x 6 6/6 welded wire fabric or one layer 6 x 6 4/4.
Industrial (loaded 600–800 psf) and heavy pavements for industrial plants, gas stations, and garages	6"	Two layers 6 x 6 6/6 welded wire fabric or two layers 6 x 6 4/4
Industrial (loaded 2000 psf) †	7''	Two mats of bars (one top, one bottom), each of #4 bars @ 12" c/c, each way
Industrial (loaded 3000 psf) †	8''	Two mats of bars (one top, one bottom), each of #5 bars @ 12" c/c, each way
Industrial (loaded 4000–5000 psf) †	9"	Two mats of bars (one top, one bottom), each of #5 bars @ 12" c/c, each way

^{*} For further details, see "Concrete Floors on Ground," and "Concrete Airport Pavement," Portland Cement Association, 33 West Grand Avenue, Chicago, Illinois, 1952.

** For loads in excess of, say, 500 psf, use at least 3000 psi quality controlled con-

† For loads in excess of, say, 1500 psf the subsoil conditions should be investigated with extra care

† Place first layer of reinforcement 2 in. below top of slab; second layer, 2 in. up from bottom of slab.

TRIGONOMETRIC FORMULAS

Radius,
$$1 = \sin^3 A + \cos^2 A$$

 $= \sin A \operatorname{cosec} A = \cos A \operatorname{sec} A = \tan A \cot A$
Sine $A = \frac{\cos A}{\cot A} = \frac{1}{\operatorname{cosec} A} = \cos A \tan A = \sqrt{1 - \cos^2 A} = BC$

Cosine
$$A = \frac{\sin A}{\tan A} = \frac{1}{\sec A} = \sin A \cot A = \sqrt{1 - \sin^2 A} = AC$$

Tangent
$$A = \frac{\sin A}{\cos A} = \frac{1}{\cot A} = \sin A \sec A = FD$$

Cotangent
$$A = \frac{\cos A}{\sin A} = \frac{1}{\tan A} = \cos A \csc A = GH$$

Secant
$$A = \frac{\tan A}{\sin A} = \frac{1}{\cos A} = AD$$

Cosecant
$$A = \frac{\cot A}{\cos A} = \frac{1}{\sin A} = AG$$

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\cot (A \pm B) = \frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}$$

$$\sin A + \sin B = 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$

$$\tan A + \tan B = \frac{\sin (A + B)}{\cos A \cos B}$$

$$\sin A - \sin B = 2 \cos \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$

$$\tan A - \tan B = \frac{\sin (A - B)}{\cos A \cos B}$$

$$\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$

$$\cot A + \cot B = \frac{\sin (B + A)}{\sin A \sin B}$$

$$\cos B - \cos A = 2 \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$

$$\cot A - \cot B = \frac{\sin (B - A)}{\sin A \sin B}$$

$$\sin 2A = 2 \sin A \cos A$$

$$\tan 2A \qquad = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$\cot 2A = \frac{\cot^2 A - 1}{2}$$

$$\sin \frac{1}{2}A = \sqrt{\frac{1-\cos A}{2}} \quad \cos \frac{1}{2}A = \sqrt{\frac{1+\cos A}{2}}$$

$$\tan \frac{1}{2}A = \frac{\sin A}{1 + \cos A}$$

$$\cot \frac{1}{2}A = \frac{\sin A}{1 - \cos A}$$

$$\sin^2 A = \frac{1 - \cos 2A}{2}$$

$$1 + \cos 2A$$

$$\cot^2 A = \frac{1 + \cos 2A}{1 - \cos 2A}$$

$$\sin^2 A - \sin^2 B = \sin (A + B) \sin (A - B)$$

$$\tan^2 A = \frac{1 - \cos 2A}{1 + \cos 2A}$$
 $\cot^2 A = \frac{1 + \cos^2 A}{1 - \cos^2 A}$ $\cos (A - B)$

$$\frac{\sin A \pm \sin B}{\cos A + \cos B} = \tan \frac{1}{2}(A \pm B)$$

$$\frac{\sin A \pm \sin B}{\cos B - \cos A} = \cot \frac{1}{2}(A \mp B)$$

Quad- rant	I	11	Ш	IV		Angle		Angle a < 90°						
Angles	0° to 90°	90° to 180°	180° to 270°	270° to 360°	30°	45°	60°	Angle	sin	cos	tan	cot		
Func- tions		Values v	ary from			quivale values		φ°	φ°	φ°	φ°	φ°		
sin	+0 to +1	+1 to +0	-0 to -1	-1 to -0	1/2	½√2	1/2√3	0° ± a	±sin a	+cos a	± tan a	$\pm \cot a$		
cos	+1 to +0	-0 to -1	-1 to -0	+0 to +1	1/2√3	½√2	1/2	90° ± a	$+\cos a$	∓sin a	∓cot a	$\mp \tan a$		
tan	+0 to +∞	- ∞ to -0	+0 to +∞	- ∞ to -0	1/3√3	1	$\sqrt{3}$	180° ± a	∓sin a	$-\cos a$	$\pm \tan a$	± cot a		
cot	+ ∞ to +0	-0 to -∞	+ ∞ to +0	-0 to -∞	√3	1	1/3 √3	270° ± a	$-\cos a$	$\pm \sin a$	$\mp \cot a$	$\mp \tan a$		

TRIGONOMETRIC SOLUTION OF TRIANGLES

$$S = \frac{a+b+c}{2}$$

		b b
Given	Sought	Formulas
		Right-Angled Triangles
a, c	A, B, b	$\sin A = \frac{a}{c}, \qquad \cos B = \frac{a}{c}, \qquad \qquad b = \sqrt{c^2 - a^2}$
	Area	$Area = \frac{a}{2}\sqrt{c^2 - a^2}$
a, b	A, B, c	$\tan A = \frac{a}{b}, \qquad \tan B = \frac{b}{a}, \qquad c = \sqrt{a^2 + b^2}$
	Area	Area = $\frac{ab}{2}$
A, a	B, b, c	$B = 90^{\circ} - A, b = a \cot A, \qquad c = \frac{a}{\sin A}$
	Area	$Area = \frac{a^2 \cot A}{2}$
A, b	B, a, c	$B = 90^{\circ} - A, a = b \tan A, \qquad c = \frac{b}{\cos A}$
	Area	$Area = \frac{b^2 \tan A}{2}$
A, c	B, a, b	$B = 90^{\circ} - A, a = c \sin A, \qquad b = c \cos A$
	Area	Area = $\frac{c^2 \sin A \cos A}{2} = \frac{c^2 \sin 2A}{4}$
		Oblique-Angled Triangles
a, b, c	A	$\sin \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{bc}}, \cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}, \tan \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$
	В	$ \frac{1}{\sin\frac{1}{2}B} = \sqrt{\frac{(s-a)(s-c)}{ac}}, \cos\frac{1}{2}B = \sqrt{\frac{s(s-b)}{ac}}, \tan\frac{1}{2}B = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} $
	C	$ \frac{1}{\sin \frac{1}{2}C} = \sqrt{\frac{(s-a)(s-b)}{ab}}, \cos \frac{1}{2}C = \sqrt{\frac{s(s-c)}{ab}}, \tan \frac{1}{2}C = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} $
	Area	Area = $\sqrt{s(s-a)(s-b)(s-c)}$
a, A, B	b, c	$b = \frac{a \sin B}{\sin A}, \qquad c = \frac{a \sin C}{\sin A} = \frac{a \sin (A + B)}{\sin A}$
	Area	Area = $\frac{1}{2} ab \sin C = \frac{a^2 \sin B \sin C}{2 \sin A}$
a, b, A	В	$\sin B = \frac{b \sin A}{a}$
	c	$c = \frac{a \sin C}{\sin A} = \frac{b \sin C}{\sin B} = \sqrt{a^2 + b^2 - 2ab \cos C}$
	Area	$Area = \frac{1}{2} ab \sin C$
a, b, C	A	$\tan A = \frac{a \sin C}{b - a \cos C} \qquad \tan \frac{1}{2} (A - B) = \frac{a - b}{a + b} \cot \frac{1}{2} C$
	с	$c = \sqrt{a^2 + b^2 - 2ab \cos C} = \frac{a \sin C}{\sin A}$
	Area	Area = $\frac{1}{2} ab \sin C$ $2bc \cos A$, $b^2 = a^2 + c^2 - 2ac \cos B$, $c^2 = a^2 + b^2 - 2ab \cos C$

	1	NAIL	JRAL TRIC	ONOMET	KIC FUNC	TIONS		
Degrees				SINES				-
De	0′	10'	20′	30′	40'	50'	60'	
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01454	0.01745	8
1	0.01745	0.02036	0.02327	0.02618	0.02908	0.03199	0.03490	8
2	0.03490	0.03781	0.04071	0.04362	0.04653	0.04943	0.05234	8
3	0.05234	0.05524	0.05814	0.06105	0.06395	0.06685	0.06976	8
4	0.06976	0.07266	0.07556	0.07846	0.08136	0.08426	0.08716	8
5	0.08716	0.09005	0.09295	0.09585	0.09874	0.10164	0.10453	8
6	0.10453	0.10742	0.11031	0.11320	0.11609	0.11898	0.12187	8
7	0.12187	0.12476	0.12764	0.13053	0.13341	0.13629	0.13917	8
8	0.13917	0.14205	0.14493	0.14781	0.15069	0.15356	0.15643	8
9	0.15643	0.15931	0.16218	0.16505	0.16792	0.17078	0.17365	8
10	0.17365	0.17651	0.17937	0.18224	0.18509	0.18795	0.19081	7
11	0.19081	0.19366	0.19652	0.19937	0.20222	0.20507	0.20791	7
2	0.20791	0.21076	0.21360	0.21644	0.21928	0.22212	0.22495	7
3	0.22495	0.22778	0.23062	0.23345	0.23627	0.23910	0.24192	7
4	0.24192	0.24474	0.24756	0.25038	0.25320	0.25601	0.25882	7
5	0.25882	0.26163	0.26443	0.26724	0.27004	0.27284	0.27564	7
6	0.27564	0.27843	0.28123	0.28402	0.28680	0.28959	0.29237	7
7	0.29237	0.29515	0.29793	0.30071	0.30348	0.30625	0.30902	7
8	0.30902	0.31178	0.31454	0.31730	0.32006	0.32282	0.32557	7
9	0.32557	0.32832	0.33106	0.33381	0.33655	0.33929	0.34202	7
0	0.34202	0.34475	0.34748	0.35021	0.35293	0.35565	0.35837	6
1	0.35837	0.36108	0.36379	0.36650	0.36921	0.37191	0.37461	6
2	0.37461	0.37730	0.37999	0.38268	0.38537	0.38805	0.39073	6
3	0.39073	0.39341	0.39608	0.39875	0.40142	0.40408	0.40674	6
4	0.40674	0.40939	0.41204	0.41469	0.41734	0.41998	0.42262	6.
5	0.42262	0.42525	0.42788	0.43051	0.43313	0.43575	0.43837	6
6	0.43837	0.44098	0.44359	0.44620	0.44880	0.45140	0.45399	6
7	0.45399	0.45658	0.45917	0.46175	0.46433	0.46690	0.46947	6
8	0.46947	0.47204	0.47460	0.47716	0.47971	0.48226	0.48481	6
9	0.48481	0.48735	0.48989	0.49242	0.49495	0.49748	0.50000	6
0	0.50000	0.50252	0.50503	0.50754	0.51004	0.51254	0.51504	59
1	0.51504	0.51753	0.52002	0.52250	0.52498	0.52745	0.52992	5
2	0.52992	0.53238	0.53484	0.53730	0.53975	0.54220	0.54464	57
3	0.54464	0.54708	0.54951	0.55194	0.55436	0.55678	0.55919	50
4	0.55919	0.56160	0.56401	0.56641	0.56880	0.57119	0.57358	5.5
5	0.57358	0.57596	0.57833	0.58070	0.58307	0.58543	0.58779	54
6	0.58779	0.59014	0.59248	0.59482	0.59716	0.59949	0.60182	53
7	0.60182	0.60414	0.60645	0.60876	0.61107	0.61337	0.61566	52
8	0.61566	0.61795	0.62024	0.62251	0.62479	0.62706	0.62932	51
9	0.62932	0.63158	0.63383	0.63608	0.63832	0.64056	0.64279	50
0	0.64279	0.64501	0.64723	0.64945	0.65166	0.65386	0.65606	49
1	0.65606	0.65825	0.66044	0.66262	0.66480	0.66697	0.66913	48
2	0.66913	0.67129	0.67344	0.67559	0.67773	0.67987	0.68200	47
3	0.68200	0.68412	0.68624	0.68835	0.69046	0.69256	0.69466	46
4	0.69466	0.69675	0.69883	0.70091	0.70298	0.70505	0.70711	45
6	60′	50'	40'	30′	20'	10'	0′	Degrees
5				COSINES				g
				COUNTED				۵

Ses		3 N		COSINES				
Degrees	0′	10'	20'	30'	40'	50′	60'	Sings
0	1.00000	1.00000	0.99998	0.99996	0.99993	0.99989	0.99985	89
1	0.99985	0.99979	0.99973	0.99966	0.99958	0.99949	0.99939	88
2	0.99939	0.99929	0.99917	0.99905	0.99892	0.99878	0.99863	87
3	0.99863	0.99847	0.99831	0.99813	0.99795	0.99776	0.99756	86
4	0.99756	0.99736	0.99714	0.99692	0.99668	0.99644	0.99619	8
5	0.99619	0.99594	0.99567	0.99540	0.99511	0.99482	0.99452	8
6	0.99452	0.99421	0.99390	0.99357	0.99324	0.99290	0.99255	8:
7	0.99255	0.99219	0.99182	0.99144	0.99106	0.99067	0.99027	8:
8	0.99027	0.98986	0.98944	0.98902	0.98858	0.98814	0.98769	8
9	0.98769	0.98723	0.98676	0.98629	0.98580	0.98531	0.98481	8
10	0.98481	0.98430	0.98378	0.98325	0.98272	0.98218	0.98163	79
11	0.98163	0.98107	0.98050	0.97992	0.97934	0.97875	0.97815	7
12	0.97815	0.97754	0.97692	0.97630	0.97566	0.97502	0,97437	7
13	0.97437	0.97371	0.97304	0.97237	0.97169	0.97100	0.97030	7
14	0.97030	0.96959	0.96887	0.96815	0.96742	0.96667	0.96593	7
15	0.96593	0.96517	0.96440	0.96363	0.96285	0.96206	0.96126	7
16	0.96126	0.96046	0.95964	0.95882	0.95799	0.95715	0.95630	7:
17	0.95630	0.95545	0.95459	0.95372	0.95284	0.95195	0.95106	7
18	0.95106	0.95015	0.94924	0.94832	0.94740	0.94646	0.94552	7
19	0.94552	0.94457	0.94361	0.94264	0.94167	0.94068	0.93969	7
20	0.93969	0.93869	0.93769	0.93667	0.93565	0.93462	0.93358	6
21	0.93358	0.93253	0.93148	0.93042	0.92935	0.92827	0.92718	. 6
22	0.92718	0.92609	0.92499	0.92388	0.92276	0.92164	0.92050	6
23	0.92050	0.91936	0.91822	0.91706	0.91590	0.91472	0.91355	6
24	0.91355	0.91236	0.91116	0.90996	0.90875	0.90753	0.90631	6
25	0.90631	0.90507	0.90383	0.90259	0.90133	0.90007	0.89879	6
26	0.89879	0.89752	0.89623	0.89493	0.89363	0.89232	0.89101	6
27	0.89101	0.88968	0.88835	0.88701	0.88566	0.88431	0.88295	6
28	0.88295	0.88158	0.88020	0.87882	0.87743	0.87603	0.87462	6
29	0.87462	0.87321	0.87178	0.87036	0.86892	0.86748	0.86603	6
30	0.86603	0.86457	0.86310	0.86163	0.86015	0.85866	0.85717	5
31	0.85717	0.85567	0.85416	0.85264	0.85112	0.84959	0.84805	5
32	0.84805	0.84650	0.84495	0.84339	0.84182	0.84025	0.83867	5
33 34	0.83867	0.83708 0.82741	0.83549 0.82577	0.83389 0.82413	0.83228 0.82248	0.83066 0.82082	0.82904 0.81915	5
					0.01040	0.01070	0.00000	5
35	0.81915	0.81748	0.81580	0.81412	0.81242	0.81072	0.80902	5
36	0.80902	0.80730	0.80558	0.80386	0.80212 0.79158	0.78980	0.78801	5
37	0.79864	0.79688	0.79512	0.79335 0.78261	0.78079	0.77897	0.77715	5
38 39	0.78801 0.77715	0.78622 0.77531	0.77347	0.77162	0.76977	0.76791	0.76604	5
40	0.76604	0.76417	0.76229	0.76041	0.75851	0.75661	0.75471	4
40	0.75471	0.75280	0.75088	0.74896	0.74703	0.74509	0.74314	4
42	0.74314	0.74120	0.73924	0.73728	0.73531	0.73333	0.73135	4
43	0.73135	0.72937	0.72737	0.72537	0.72337	0.72136	0.71934	4
44	0.71934	0.71732	0.71529	0.71325	0.71121	0.70916	0.70711	4
Cosines	60′	50'	40'	30'	20'	10'	0'	

		NATU	RAL TRIG	ONOMET	RIC FUNC	TIONS		
Degrees				TANGENTS				Cotangents
Deg	0'	10'	20'	30′	40'	50'	60'	Cotan
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01455	0.01746	89
1	0.01746	0.02036	0.02328	0.02619	0.02910	0.03201	0.03492	88
2	0.03492	0.03783	0.04075	0.04366	0.04658	0.04949	0.05241	87
3	0.05241	0.05533	0.05824	0.06116	0.06408	0.06700	0.06993	86
4	0.06993	0.07285	0.07578	0.07870	0.08163	0.08456	0.08749	85
5	0.08749	0.09042	0.09335	0.09629	0.09923	0 10216	0.10510	84
6	0.10510	0.10805	0.11099	0.11394	0.11688	0.11983	0.12278	83
7	0.12278	0.12574	0.12869	0.13165	0.13461	0.13758	0.14054	82
8	0.14054	0.14351	0.14648	0.14945	0.15243	0.15540	0.15838	81
9	0.15838	0.16137	0.16435	0.16734	0.17033	0.17333	0.17633	80
10	0.17633	0.17933	0.18233	0.18534	0.18835	0.19136	0.19438	79
11	0.19438	0.19740	0.20042	0.20345	0.20648	0.20952	0.21256	78
12	0.21256	0.21560	0.21864	0.22169	0.22475	0.22781	0.23087	77
13 14	0.23087	0.23393	0.23700	0.24008	0.24316	0.24624	0.24933	76
14	0.24933	0.25242	0.25552	0.25862	0.26172	0.26483	0.26795	75
15	0.26795	0.27107	0.27419	0.27732	0.28046	0.28360	0.28675	74
16	0.28675	0.28990	0.29305	0.29621	0.29938	0.30255	0.30573	73
17	0.30573	0.30891	0.31210	0.31530	0.31850	0.32171	0.32492	72
18	0.32492	0.32814	0.33136	0.33460	0.33783	0.34108	0.34433	71
19	0.34433	0.34758	0.35085	0.35412	0.35740	0.36068	0.36397	70
20	0.36397	0.36727	0.37057	0.37388	0.37720	0.38053	0.38386	69
21	0.38386	0.38721	0.39055	0.39391	0.39727	0.40065	0.40403	68
22	0.40403	0.40741	0.41081	0.41421	0.41763	0.42105	0.42447	67
23	0.42447	0.42791	0.43136	0.43481	0.43828	0.44175	0.44523	66
24	0.44523	0.44872	0.45222	0.45573	0.45924	0.46277	0.46631	65
25	0.46631	0.46985	0.47341	0.47698	0.48055	0.48414	0.48773	64
26	0.48773	0.49134	0.49495	0.49858	0.50222	0.50587	0.50953	63
27	0.50953	0.51320	0.51688	0.52057	0.52427	0.52798	0.53171	62
28	0.53171	0.53545	0.53920	0.54296	0.54674	0.55051	0.55431	61
29	0.55431	0.55812	0.56194	0.56577	0.56962	0.57348	0.57735	60
30	0.57735	0.58124	0.58513	0.58905	0.59297	0.59691	0.60086	59
31	0.60086	0.60483	0.60881	0.61280	0.61681	0.62083	0.62487	58
32	0.62487	0.62892	0.63299	0.63707	0.64117	0.64528	0.64941	57
33	0.64941	0.65355	0.65771	0.66189	0.66608	0.67028	0.67451	56
34	0.67451	0.67875	0.68301	0.68728	0.69157	0.69588	0.70021	55
35	0.70021	0.70455	0.70891	0.71329	0.71769	0.72211	0.72654	54
36	0.72654	0.73100	0.73547	0.73996	0.74447	0.74900	0.75355	53
37	0.75355	0.75812	0.76272	0.76733	0.77196	0.77661	0.78129	52
38	0.78129	0.78598	0.79070	0.79544	0.80020	0.80498	0.80978	51
39	0.80978	0.81461	0.81946	0.82434	0.82923	0.83415	0.83910	50
40	0.83910	0.84407	0.84906	0.85408	0.85912	0.86419	0.86929	49
41	0.86929	0.87441	0.87955	0.88473	0.88992	0.89515	0.90040	48
42	0.90040	0.90569	0.91099	0.91633	0.92170	0.92709	0.93252	47
43 44	0.93252 0.96569	0.93797 0.97133	0.94345	0.94896 0.98270	0.95451 0.98843	0.96008 0.99420	0.96569 1.00000	46 45
	60'	50'	40'	30'	20′	10'	0'	
Tangents								Degrees
Tan				COTANGENTS	5			Deć

		NAT	JRAL TRIC	SONOMET	RIC FUNC	TIONS		
Degrees				COTANGENT	s			Tangents
Deg	₹ 0′	10′	20′	30′	40′	50′	60'	Tang
0	. ∞	343.77371	171.88540	114.58865	85.93979	68.75009	57.28996	89
1	57.28996	49.10388	42.96408	38.18846	34.36777	31.24158	28.63625	88
2	28.63625	26.43160	24.54176	22.90377	21.47040	20.20555	19.08114	87
3	19.08114	18.07498	17.16934	16.34986	15.60478	14.92442	14.30067	86
4	14.30067	13.72674	13.19688	12.70621	12.25051	11.82617	11.43005	85
5	11.43005	11.05943	10.71191	10.38540	10.07803	9.78817	9.51436	84
6	9.51436	9.25530	9.00983	8.77689	8.55555	8.34496	8.14435	83
7	8.14435	7.95302	7.77035	7.59575	7.42871	7.26873	7.11537	82
8	7.11537	6.96823	6.82694	6.69116	6.56055	6.43484	6.31375	81
9	6.31375	6.19703	6.08444	5.97576	5.87080	5.76937	5.67128	80
10	5.67128	5.57638	5.48451	5.39552	5.30928	5.22566	5.14455	79
11	5.14455	5.06584	4.98940	4.91516	4.84300	4.77286	4.70463	78
12	4.70463	4.63825	4.57363	4.51071	4.44942	4.38969	4.33148	77
13	4.33148	4.27471	4.21933	4.16530	4.11256	4.06107	4.01078	76
14	4.01078	3.96165	3.91364	3.86671	3.82083	3.77595	3.73205	75
15	3.73205	3.68909	3,64705	3.60588	3.56557	3.52609	3.48741	74
16	3.48741	3.44951	3.41236	3.37594	3.34023	3.30521	3.27085	73
17	3.27085	3.23714	3.20406	3.17159	3.13972	3.10842	3.07768	72
18	3.07768	3.04749	3.01783	2.98869	2.96004	2.93189	2.90421	71
19	2.90421	2.87700	2.85023	2.82391	2.79802	2.77254	2.74748	70
20	2.74748	2.72281	2.69853	2.67462	2.65109	2,62791	2.60509	69
21	2.60509	2.58261	2.56046	2.53865	2.51715	2.49597	2.47509	68
22	2.47509	2.45451	2.43422	2.41421	2.39449	2.37504	2.35585	67
23	2.35585	2.33693	2.31826	2.29984	2.28167	2.26374	2.24604	66
24	2.24604	2.22857	2.21132	2.19430	2.17749	2.16090	2.14451	65
25	2.14451	2.12832	2.11233	2.09654	2.08094	2.06553	2.05030	64
26	2.05030	2.03526	2.02039	2.00569	1.99116	1.97680	1.96261	63
27	1.96261	1.94858	1.93470	1.92098	1.90741	1.89400	1.88073	62
28	1.88073	1.86760	1.85462	1.84177	1.82907	1.81649	1.80405	61
29	1.80405	1.79174	1.77955	1.76749	1.75556	1.74375	1.73205	60
30	1.73205	1.72047	1.70901	1.69766	1.68643	1.67530	1.66428	59
31	1.66428	1.65337	1.64256	1.63185	1.62125	1.61074	1.60033	58
32	1.60033	1.59002	1.57981	1.56969	1.55966	1.54972	1.53987	57
33	1.53987	1.53010	1.52043	1.51084	1.50133	1.49190	1.48256	56
34	1.48256	1.47330	1.46411	1.45501	1.44598	1.43703	1.42815	55
35	1.42815	1.41934	1.41061	1.40195	1.39336	1.38484	1.37638	54
36	1.37638	1.36800	1.35968	1.35142	1.34323	1.33511	1.32704	53
37	1.32704	1.31904	1.31110	1.30323	1.29541	1.28764	1.27994	52
38	1.27994	1.27230	1.26471	1.25717	1.24969	1.24227	1.23490	51
39	1.23490	1.22758	1.22031	1.21310	1.20593	1.19882	1.19175	50
40	1.19175	1.18474	1.17777	1.17085	1.16398	1.15715	1.15037	49
41	1.15037	1.14363	1.13694	1.13029	1.12369	1.11713	1.11061	48
42	1.11061	1.10414	1.09770	1.09131	1.08496	1.07864	1.07237	47
43	1.07237	1.06613	1.05994	1.05378	1.04766	1.04158	1.03553	46
44	1.03553	1.02952	1.02355	1.01761	1.01170	1.00583	1.00000	45
Cotangents	60′	50′	40'	30′	20′	10′	0′	8
Cotan				TANGENTS				Degrees

		NATU	IRAL TRIG	SONOMET	RIC FUNC	TIONS		
Degrees				SECANTS				Cosecants
Deg	0′	10′	20′	30′	40′	50′	60′	Cose
0	1.00000	1.00000	1.00002	1.00004	1.00007	1.00011	1.00015	89
1	1.00015	1.00021	1.00027	1.00034	1.00042	1.00051	1.00061	88
2	1.00061	1.00072	1.00083	1.00095	1.00108	1.00122	1.00137	87
3	1.00137	1.00153	1.00169	1.00187	1.00205	1.00224	1.00244	86
4	1.00244	1.00265	1.00287	1.00309	1.00333	1.00357	1.00382	85
5	1.00382	1.00408	1.00435	1.00463	1.00491	1.00521	1.00551	84
6	1.00551	1.00582	1.00614	1.00647	1.00681	1.00715	1.00751	83
7	1.00751	1.00787	1.00825	1.00863	1.00902	1.00942	1.00983	82
8	1.00983	1.01024	1.01067	1.01111	1.01155	1.01200	1.01247	81
9	1.01247	1.01294	1.01342	1.01391	1.01440	1.01491	1.01543	80
10	1.01543	1.01595	1.01649	1.01703	1.01758	1.01815	1.01872	79
11	1.01872	1.01930	1.01989	1.02049	1.02110	1.02171	1.02234	78
12	1.02234	1.02298	1.02362	1.02428	1.02494	1.02562	1.02630	77
13	1.02630	1.02700	1.02770	1.02842	1.02914	1.02987	1.03061	76
14	1.03061	1.03137	1.03213	1.03290	1.03368	1.03447	1.03528	75
15	1.03528	1.03609	1.03691	1.03774	1.03858	1.03944	1.04030	74
16	1.04030	1.04117	1.04206	1.04295	1.04385	1.04477	1.04569	73
17	1.04569	1.04663	1.04757	1.04853	1.04950	1.05047	1.05146	72
18	1.05146	1.05246	1.05347	1.05449	1.05552	1.05657	1.05762	71
19	1.05762	1.05869	1.05976	1.06085	1.06195	1.06306	1.06418	70
20	1.06418	1.06531	1.06645	1.06761	1.06878	1.06995	1.07115	69
21	1.07115	1.07235	1.07356	1.07479	1.07602	1.07727	1.07853	68
22	1.07853	1.07981	1.08109	1.08239	1.08370	1.08503	1.08636	67
23	1.08636	1.08771	1.08907	1.09044	1.09183	1.09323	1.09464	66
24	1.09464	1.09606	1.09750	1.09895	1.10041	1.10189	1.10338	65
25	1.10338	1.10488	1.10640	1.10793	1.10947	1.11103	1.11260	64
26	1.11260	1.11419	1.11579	1.11740	1.11903	1.12067	1.12233	63
27	1.12233	1.12400	1.12568	1.12738	1.12910	1.13083	1.13257	62
28	1.13257	1.13433	1.13610	1.13789	1.13970	1.14152	1.14335	61
29	1.14335	1.14521	1.14707	1.14896	1.15085	1.15277	1.15470	60
30	1.15470	1.15665	1.15861	1.16059	1.16259	1.16460	1.16663	59
31	1.16663	1.16868	1.17075	1.17283	1.17493	1.17704	1.17918	58
32	1.17918	1.18133	1.18350	1.18569	1.18790	1.19012	1.19236	57
33	1.19236	1.19463	1.19691	1.19920	1.20152	1.20386	1.20622	56
34	1.20622	1.20859	1.21099	1.21341	1.21584	1.21830	1.22077	55
35	1.22077	1.22327	1.22579	1.22833	1.23089	1.23347	1.23607	54
36	1.23607	1.23869	1.24134	1.24400	1.24669	1.24940	1.25214	53
37	1.25214	1.25489	1.25767	1.26047	1.26330	1.26615	1.26902	52
38	1.26902	1.27191	1.27483	1.27778	1.28075	1.28374	1.28676	51
39	1.28676	1.28980	1.29287	1.29597	1.29909	1.30223	1.30541	50
40	1.30541	1.30861	1.31183	1.31509	1.31837	1.32168	1.32501	49
41	1.32501	1.32838	1.33177	1.33519	1.33864	1.34212	1.34563	48
42	1.34563	1.34917	1.35274	1.35634	1.35997	1.36363	1.36733	47
43	1.36733	1.37105	1.37481	1.37860	1.38242	1.38628	1.39016	46
44	1.39016	1.39409	1.39804	1.40203	1.40606	1.41012	1.41421	45
Secants	60′	50′	40′	30′	20′	10′	0′	Degrees
S				COSECANTS				De

		NATU	RAL TRIG	ONOMET	RIC FUNC	TIONS		
ees				COSECANTS			8	Secants
Degrees	0′	10'	20'	30′	40′	50′	60′	Sec
0		343.77516	171.88831	114.59301	85.94561	68.75736	57.29869	89
1	57.29869	49.11406	42.97571	38.20155	34.38232	31.25758	28.65371	88
2	28.65371	26.45051	24.56212	22.92559	21.49368	20.23028	19.10732	87
3	19.10732	18.10262	17.19843	16.38041	15.63679	14.95788	14.33559	86
4	14.33559	13.76312	13.23472	12.74550	12.29125	11.86837	11.47371	85
5	11.47371	11.10455	10.75849	10.43343	10.12752	9.83912	9.56677	84
6	9.56677	9.30917	9.06515	8.83367	8.61379	8.40466	8.20551	83
7	8.20551	8.01565	7.83443	7.66130	7.49571	7.33719	7.18530	82
8	7.18530	7.03962	6.89979	6.76547	6.63633	6.51208	6.39245	81
9	6.39245	6.27719	6.16607	6.05886	5.95536	5.85539	5.75877	80
10	5.75877	5.66533	5.57493	5.48740	5.40263	5.32049	5.24084	79
11	5.24084	5.16359	5.08863	5.01585	4.94517	4.87649	4.80973	78
12	4.80973	4.74482	4.68167	4.62023	4.56041	4.50216	4.44541	77
13	4.44541	4.39012	4.33622	4.28366	4.23239	4.18238	4.13357	76
14	4.13357	4.08591	4.03938	3.99393	3.94952	3.90613	3.86370	75
15	3.86370	3.82223	3.78166	3.74198	3.70315	3.66515	3.62796	74
16	3.62796	3.59154	3.55587	3.52094	3.48671	3.45317	3.42030	73
17	3.42030	3.38808	3.35649	3.32551	3.29512	3.26531	3.23607	72
18	3.23607	3.20737	3.17920	3.15155	3.12440	3.09774	3.07155	71
19	3.07155	3.04584	3.02057	2.99574	2.97135	2.94737	2.92380	70
20	2.92380	2,90063	2.87785	2.85545	2.83342	2.81175	2.79043	69
21	2.79043	2.76945	2.74881	2.72850	2.70851	2.68884	2.66947	68
22	2.66947	2.65040	2.63162	2.61313	2.59491	2.57698	2.55930	67
23	2.55930	2.54190	2.52474	2.50784	2,49119	2.47477	2.45859	66
24	2.45859	2.44264	2.42692	2.41142	2.39614	2.38107	2.36620	65
25	2.36620	2.35154	2,33708	2,32282	2.30875	2,29487	2.28117	64
26	2.28117	2.26766	2.25432	2.24116	2.22817	2.21535	2,20269	63
27	2.20269	2.19019	2,17786	2.16568	2.15366	2,14178	2.13005	62
28	2.13005	2.11847	2.10704	2.09574	2.08458	2.07356	2.06267	61
29	2.06267	2.05191	2.04128	2.03077	2.02039	2.01014	2.00000	60
30	2.00000	1,98998	1.98008	1,97029	1.96062	1.95106	1.94160	59
31	1.94160	1.93226	1.92302	1,91388	1.90485	1.89591	1.88709	58
32	1.88708	1.87834	1.86970	1.86116	1.85271	1.84435	1.83608	57
33	1.83608	1.82790	1.81981	1.81180	1.80388	1.79604	1.78829	56
34	1.78829	1.78062	1.77303	1.76552	1.75808	1.75073	1.74345	55
35	1.74345	1.73624	1,72911	1.72205	1.71506	1.70815	1.70130	54
36	1.70130	1.69452	1.68782	1.68117	1.67460	1.66809	1.66164	53
37	1.66164	1.65526	1.64894	1.64268	1.63648	1.63035	1.62427	52
38	1.62427	1.61825	1.61229	1.60639	1.60054	1.59475	1.58902	51
39	1.58902	1.58333	1.57771	1.57213	1.56661	1.56114	1.55572	50
40	1.55572	1.55036	1.54504	1.53977	1.53455	1.52938	1.52425	49
41	1.52425	1.51918	1.51415	1.50916	1.50422	1.49933	1.49448	48
42	1.49448	1.48967	1.48491	1.48019	1.47551	1.47087	1.46628	47
43	1.46628	1.46173	1.45721	1.45274	1.44831	1.44391	1.43956	46
44	1.43956	1.43524	1.43096	1.42672	1.42251	1.41835	1.41421	45
ants	60'	50'	40′	30′	20′	10'	0'	ees
Cosecants			è	SECANTS				Degrees

FUNCTIONS OF NUMBERS, 1 to 50											
			Square	Cube		1000	No. =	Diameter			
No.	Square	Cube	Root	Root	Logarithm	x Reciprocal	Circum	Area			
1	1	1	1.0000	1.0000	0.00000	1000.000	3.142	0.785			
2	4	8	1.4142	1.2599	0.30103	500.000	6.283	3.141			
3	9	27	1.7321	1.4422	0.47712	333.333	9.425	7.068			
4	16	64	2.0000	1.5874	0.60206	250.000	12.566	12.566			
5	25	125	2.2361	1.7100	0.69897	200.000	15.708	19.635			
6	36	216	2.4495	1.8171	0.77815	166.667	18.850	28.274			
7	49	343	2.6458	1.9129	0.84510	142.857	21.991	38.484			
8	64	512	2.8284	2.0000	0.90309	125.000	25.133	50.265			
9	81	729	3.0000	2.0801	0.95424	111.111	28.274	63.617			
10	100	1000	3.1623	2.1544	1.00000	100.000	31.416	78.539			
11	121	1331	3.3166	2.2240	1.04139	90.9091	34.558	95.033			
12	144	1728	3.4641	2.2894	1.07918	83.3333	37.699	113.097			
13	169	2197	3.6056	2.3513	1.11394	76.9231	40.841	132,732			
14	196	2744	3.7417	2.4101	1.14613	71.4286	43.982	153.938			
15	225	3375	3.8730	2.4662	1.17609	66.6667	47.124	176.715			
16	256	4096	4.0000	2.5198	1.20412	62.5000	50.265	201.062			
17	289	4913	4.1231	2.5713	1.23045	58.8235	53.407	226,980			
18	324	5832	4.2426	2.6207	1.25527	55.5556	56.549	254.469			
19	361	6859	4.3589	2.6684	1.27875	52.6316	59.690	283.529			
20	400	8000	4.4721	2.7144	1.30103	50.0000	62.832	314.159			
21	441	9261	4.5826	2.7589	1.32222	47.6190	65.973	346.361			
22	484	10648	4.6904	2.8020	1.34242	45.4545	69.115	380.133			
23	529	12167	4.7958	2.8439	1.36173	43.4783	72.257	415.476			
24	576	13824	4.8990	2.8845	1.38021	41.6667	75.398	452.389			
25	625	15625	5.0000	2.9240	1.39794	40.0000	78.540	490.874			
26	676	17576	5.0990	2.9625	1.41497	38.4615	81.681	530.929			
27	729	19683	5.1962	3.0000	1.43136	37.0370	84.823	572.555			
28	784	21952	5.2915	3.0366	1.44716	35.7143	87.965	615.752			
29	841	24389	5,3852	3.0723	1.46240	34.4828	91.106	660.520			
30	900	27000	5.4772	3.1072	1.47712	33.3333	94.248	706.858			
31	961	29791	5.5678	3.1414	1.49136	32.2581	97.389	754.768			
32	1024	32768	5.6569	3.1748	1.50515	31.2500	100.53	804.248			
33	1089	35937	5.7446	3.2075	1.51851	30.3030	103.67	855.299			
34	1156	39304	5.8310	3.2396	1.53148	29.4118	106.81	907.920			
35	1225	42875	5.9161	3.2711	1.54407	28.5714	109.96	962.113			
36	1296	46656	6.0000	3.3019	1.55630	27.7778	113.10	1017.88			
37	1369	50653	6.0828	3.3322	1.56820	27.0270	116.24	1075,21			
38	1444	54872	6.1644	3.3620	1.57978	26.3158	119.38	1134.11			
39	1521	59319	6.2450	3.3912	1.59106	25.6410	122.52	1194.59			
40	1600	64000	6.3246	3.4200	1.60206	25.0000	125.66	1256.64			
41	1681	68921	6.4031	3.4482	1.61278	24.3902	128.81	1320.25			
42	1764	74088	6.4807	3.4760	1.62325	23.8095	131.95	1385.44			
43	1849	79507	6.5574	3.5034	1.63347	23.2558	135.09	1452.20			
44	1936	85184	6.6332	3.5303	1.64345	22.7273	138.23	1520.53			
45	2025	91125	6.7082	3.5569	1.65321	22.2222	141.37	1590.43			
46	2116	97336	6.7823	3.5830	1.66276	21.7391	144.51	1661.90			
47	2209	103823	6.8557	3.6088	1.67210	21.2766	147.65	1734.94			
48	2304	110592	6.9282	3.6342	1.68124	20.8333	150.80	1809.56			
49	2401	117649	7.0000	3.6593	1.69020	20.4082	153.94	1885.74			
50	2500	125000	7.0711	3.6840	1.69897	20.0000	157.08	1963.50			

		FUN	ICTIONS	OF NUM	BERS, 51	to 100		
			Square	Cube		1000	No. = [Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum	Area
51	2601	132651	7.1414	3.7084	1.70757	19.6078	160.22	2042.82
52	2704	140608	7.2111	3.7325	1.71600	19.2308	163.36	2123.72
53	2809	148877	7.2801	3.7563	1.72428	18.8679	166.50	2206.18
54	2916	157464	7.3485	3.7798	1.73239	18.5185	169.65	2290.22
55	3025	166375	7.4162	3.8030	1.74036	18.1818	172.79	2375.83
56	3136	175616	7.4833	3.8259	1.74819	17.8571	175.93	2463.01
57	3249	185193	7.5498	3.8485	1.75587	17.5439	179.07	2551.76
58	3364	195112	7.6158	3.8709	1.76343	17.2414	182.21	2642.08
59	3481	205379	7.6811	3.8930	1.77085	16.9492	185.35	2733.97
60	3600	216000	7.7460	3.9149	1.77815	16.6667	188.50	2827.43
61	3721	226981	7.8102	3.9365	1.78533	16.3934	191.64	2922.47
62	3844	238328	7.8740	3.9579	1.79239	16.1290	194.78	3019.07
63	3969	250047	7.9373	3.9791	1.79934	15.8730	197.92	3117.25
64	4096	262144	8.0000	4.0000	1.80618	15.6250	201.06	3216.99
65	4225	274625	8.0623	4.0207	1.81291	15.3846	204.20	3318.31
66	4356	287496	8.1240	4.0412	1.81954	15.1515	207.35	3421.19
67	4489	300763	8.1854	4.0615	1.82607	14.9254	210.49	3525.65
68	4624	314432	8.2462	4.0817	1.83251	14.7059	213.63	3631.68
69	4761	328509	8.3066	4.1016	1.83885	14.4928	216.77	3739.28
70	4900	343000	8.3666	4.1213	1.84510	14.2857	219.91	3848.45
71	5041	357911	8.4261	4.1408	1.85126	14.0845	223.05	3959.19
72	5184	373248	8.4853	4.1602	1.85733	13.8889	226.19	4071.50
73	5329	389017	8.5440	4.1793	1.86332	13.6986	229.34	4185.39
74	5476	405224	8.6023	4.1983	1.86923	13.5135	232.48	4300.84
75	5625	421875	8.6603	4.2172	1.87506	13.3333	235.62	4417.86
76	5776	438976	8.7178	4.2358	1.88081	13.1579	238.76	4536.46
77	5929	456533	8.7750	4.2543	1.88649	12.9870	241.90	4656.63
78	6084	474552	8.8318	4.2727	1.89209	12.8205	245.04	4778.36
79	6241	493039	8.8882	4.2908	1.89763	12.6582	248.19	4901.67
80	6400	512000	8.9443	4.3089	1.90309	12.5000	251.33	5026.55
81	6561	531441	9.0000	4.3267	1.90849	12.3457	254.47	5153.00
82	6724	551368	9.0554	4.3445	1.91381	12.1951	257.61	5281.02
83	6889	571787	9.1104	4.3621	1.91908	12.0482	260.75	5410.61
84	7056	592704	9.1652	4.3795	1.92428	11.9048	263.89	5541.77
85	7225	614125	9.2195	4.3968	1.92942	11.7647	267.04	5674.50
86	7396	636056	9.2736	4.4140	1.93450	11.6279	270.18	5808.80
87	7569	658503	9.3274	4.4310	1.93952	11.4943	273.32	5944.68
88	7744	681472	9.3808	4.4480	1.94448	11.3636	276.46	6082.12
89	7921	704969	9.4340	4.4647	1.94939	11.2360	279.60	6221.14
90	8100	729000	9.4868	4.4814	1.95424	11.1111	282.74	6361.73
91	8281	753571	9.5394	4.4979	1.95904	10.9890	285.88	6503.88
92	8464	778688	9.5917	4.5144	1.96379	10.8696	289.03	6647.61
93	8649	804357	9.6437	4.5307	1.96848	10.7527	292.17	6792.91
94	8836	830584	9.6954	4.5468	1.97313	10.6383	295.31	6939.78
95	9025	857375	9.7468	4.5629	1.97772	10.5263	298.45	7088.22
96	9216	884736	9.7980	4.5789	1.98227	10.4167	301.59	7238.23
97	9409	912673	9.8489	4.5947	1.98677	10.3093	304.73	7389.81
98	9604	941192	9.8995	4.6104	1.99123	10.2041	307.88	7542.96
99	9801	970299	9.9499	4.6261	1.99564	10.1010	311.02	7697.69
100	10000	1000000	10.0000	4.6416	2.00000	10.0000	314.16	7853.98

PROPERTIES OF THE CIRCLE

Circumference of Circle of Diameter $1 = \pi = 3.14159265$

Circumference of Circle = $2 \pi r$

Diameter of Circle = Circumference x 0.31831

Diameter of Circle of equal periphery as square = side x 1.27324 Side of Square of equal periphery as circle = diameter x 0.78540

Diameter of Circle circumscribed about square = side x 1.41421

Side of Square inscribed in Circle = diameter x 0.70711

Arc,
$$a = \frac{\pi r A^{\circ}}{180} = 0.017453 \, r A^{\circ}$$

Angle,
$$A = \frac{180^{\circ}a}{\pi r} = 57.29578 \frac{a}{r}$$

Radius,
$$r = \frac{4b^2 + c^2}{8b}$$
 Diameter, $d = \frac{4b^2 + c^2}{4b}$

Chord,
$$c = 2\sqrt{2br - b^2} = 2r\sin\frac{A^{\circ}}{2}$$

Rise,
$$b = r - \frac{1}{2}\sqrt{4r^2 - c^2} = \frac{c}{2}\tan\frac{A^{\circ}}{4} = 2r\sin^2\frac{A}{4}$$

Rise,
$$b = r + y - \sqrt{r^2 - x^2}$$
, $y = b - r + \sqrt{r^2 - x^2}$, $x = \sqrt{r^2 - (r + y - b^2)}$

$$\pi = 3.14159265, \log = 0.4971499$$

$$\frac{1}{\pi} = 0.3183099,$$
 $\log = 9.5028501-10$

$$\pi^2 = 9.8696044,$$
 $\log = 0.9942997$

$$\frac{1}{\pi^2} = 0.1013212,$$
 $\log = 9.0057003-10$

$$\sqrt{\pi} = 1.7724539,$$
 $\log = 0.2485749$

$$\sqrt{\frac{1}{\pi}} = 0.5641896,$$
 $\log = 9.7514251-10$

$$\frac{\pi}{180} = 0.0174533,$$
 $\log = 8.2418774-10$

$$\frac{180}{\pi} = 57.2957795,$$
 $\log = 1.7581226$

AREAS OF CIRCULAR SEGMENTS

For Ratios of Rise and Chord

 $Area = b \times C \times coefficient$

	Area = b x C x coefficient										
A°	Coeffi- cient	<u>С</u> Р	Α°	Coeffi- cient	ь[С	Α°	Coeffi- cient	P C	Α°	Coeffi- cient	P C
1	.6667	.0022	46	.6722	.1017	91	.6895	.2097	136	.7239	.3373
2	.6667	.0044	47	.6724	.1040	92	.6901	.2122	137	.7249 .7260	.3404
3	.6667	.0066	48	.6727 .6729	.1063 .1086	93 94	.6906 .6912	.2148	138	.7270	.3469
5	.6667 .6667	.0087	49 50	.6732	.1109	95	.6918	.2200	140	.7281	.3501
6	.6667	.0131	51	.6734	.1131	96	.6924	.2226	141	.7292	.3534
7	.6668	.0153	52	.6737	.1154	97	.6930	.2252	142	.7303	.3567
8	.6668	.0175	53	.6740	.1177	98	.6936	.2279	143	.7314	.3600
9	.6669	.0197 .0218	54 55	.6743 .6746	.1200 .1224	100	.6942	.2305	144	.7325 .7336	.3633
11	.6670	.0240	56	.6749	.1247	101	.6954	.2358	146	.7348	.3700
12	.6671	.0262	57	.6752	.1270	102	.6961	.2385	147	.7360	.3734
13	.6672	.0284	58	.6755	.1293	103	.6967	.2412	148	.7372	.3768
14	.6672	.0306	59	.6758	.1316	104	.6974	.2439	149	.7384	.3802
15	.6673	.0328	60	.6761	.1340	105	.6980	.2466	150	.7396	.3837
16	.6674	.0350	61	.6764	.1363	106	.6987	.2493	151	.7408	.3871
17	.6674	.0372	62	.6768	.1387	107	.6994	.2520	152	.7421	.3906
18	.6675	.0394	63	.6771	.1410	108	.7001 .7008	.2548	153 154	.7434 .7447	.3942
19	.6676	.0416	64	.6775 .6779	.1434	110	.7015	.2603	155	.7460	.4013
20	.6677	.0437		.0//7	.1437						
21	.6678	.0459	66	.6782	.1481	111	.7022	.2631	156	.7473	.4049
22	.6679	.0481	67	.6786	.1505	112	.7030	.2659	157	.7486	.4085
23	.6680	.0504	68	.6790 .6794	.1529 .1553	113	.7037 .7045	.2687 .2715	159	.7500 .7514	.4122
24 25	.6681	.0526 .0548	70	.6797	.1577	115	.7052	.2743	160	.7528	.4196
23								5			
26	.6684	.0570	71	.6801	.1601	116	.7060	.2772	161	.7542	.4233
27	.6685	.0592	72	.6805	.1625	117	.7068 .7076	.2800	162	.7557 .7571	.4308
28 29	.6687	.0614	73 74	.6809	.1649	119	.7084	.2858	164	.7586	.4346
30	.6690	.0658	75	.6818	.1697	120	.7092	.2887	165	.7601	.4385
31	.6691	.0681	76	.6822	.1722	121	.7100	.2916	166	.7616	.4424
32	.6693	.0703	77	.6826	.1746	122	.7109	.2945	167	.7632	.4463
33	.6694	.0725	78	.6831	.1771	123	.7117	.2975	168	.7648	.4502
34	.6696	.0747	79	.6835	.1795	124	.7126	.3004	169	.7664	.4542
35	.6698	.0770	80	.6840	.1820	125	.7134	.3034	170	.7680	.4582
36	.6700	.0792	81	.6844	.1845	126	.7143	.3064	171	.7696	.4622
37	.6702	.0814	82	.6849	.1869	127	.7152	.3094	172	.7712 .7729	.4663
38 39	.6704	.0837	83 84	.6854	.1894	128	.7161 .7170	.3124	174	.7746	.4745
40	.6708	.0882	85	.6864	.1944	130	.7180	.3185	175	.7763	.4787
41	.6710	.0904	86	.6869	.1970	131	.7189	.3216	176	.7781	.4828
42	.6712	.0927	87	.6874	.1995	132	.7199	.3247	177	.7799	.4871
43	.6714	.0949	88	.6879	.2020	133	.7209	.3278	178	.7817	.4914
44	.6717	.0972	89	.6884	.2046	134	.7219	.3309	179	.7835	.4957
45	.6719	.0995	90	.6890	.2071	135	.7229	.3341	180	.7854	.5000

WEIGHTS AND MEASURES UNITED STATES SYSTEM

Linear Measure

Inches	Feet		Yards		Rods		Furlongs	Miles
1.0 =	0.08333	=	0.02778	=			0.0001=0=0	= 0.00001578
12.0 =	1.0	=	0.33333	=	0.0606061	=	0.000151515	= 0.00018939
36.0 =	3.0	==	1.0	=	0.1818182	=	0.00454545	= 0.00056818
198.0 =	16.5	=	5.5	=	1.0	=	0.025	= 0.003125
7920.0 =	660.0	=	220.0	=	40.0	=	1.0	= 0.125
63360.0 =	0000	=	1760.0	=	320.0	=	8.0	= 1.0

Square and Land Measure

Sq inches 1.0 =	Square feet 0.006944	=	Square yards 0.000772		Sq rods		Acres	Sq miles
144.0 =	1.0	=	0.111111		0.03306		0.000207	
1296.0 =	9.0	=	1.0	=			0.000	= 0.0000098
39204.0 =	272.25	=	30.25	=	1.0	=	0.00625	
0,20	43560.0	===	4840.0	=	160.0	=	1.0	= 0.0015625
	1000000		3097600.0	=	102400.0	=	640.0	= 1.0

Liquid Measure

					U.S.		Cubic
Gills	Pints	3	Quart	S	Gallons		feet
1.0 =	0.25	=	0.125	=	0.03125	=	0.00418
4.0 =							0.01671
8.0 =	2.0	=	1.0	=	0.250	*	0.03342
32.0 =	8.0	=	4.0	=	1.0	=	0.1337
					7.48052	=	1.0

Dry Measure

Pints		Quarts		Pecks	(Cubic fee	t	Bushels
1.0	=	0.5	=	0.0625	=	0.01945	=	0.01563
2.0	==	1.0	=			0.03891		
16.0	=	8.0	=	1.0	=	0.31112	=	0.25
51.42627	=	25.71314	=	3.21414	=	1.0	=	0.80354
64.0	=	32.0	=	4.0	=	1.2445	=	1.0

Avoirdupois Weights

Grains	***	Drams 0.03657	_	Ounces 0.002286	=			Tons 0.0000000714
27.34375	=	1.0	=	0.0625	=	0.003906		0.00000195
437.5	=	16.0	=	1.0	=	0.0625	=	0.00003125
7000.0	=	256.0	=	16.0	=	1.0	=	0.0005
14000000.0	=	512000.0	=	32000.0	=	2000.0	=	1.0

CONVERSION FACTORS

Multiplying	Ву	Gives
acres	0.404687	hectares
"	4.04687×10^{-8}	square kilometers
ares	1076.39	square feet
board feet	144 sq in. \times 1 in.	cubic inches
board reet	0.0833	cubic feet
continuotora	3.28083×10^{-2}	feet
centimeters	0.3937	inches
1.		cubic feet
cubic centimeters	3.53145×10^{-5}	cubic inches
	6.102×10^{-2}	cubic menes cubic centimeters
cubic feet	2.8317×10^{4}	Control of the Contro
" "	2.8317×10^{-2}	cubic meters
	6.22905	gallons, British Imperial
	28.3170	liters
" "	2.38095×10^{-2}	tons, British Shipping
" "	0.025	tons, U.S. Shipping
cubic inches	16.38716	cubic centimeters
cubic meters	35.3145	cubic feet
66 66	1.30794	cubic yards
cubic yards	0.764559	cubic meters
degrees, angular	0.0174533	radians
degrees, Fahrenheit (less 32° F)	0.5556	degrees, Centigrade
" Centigrade	1.8	degrees, Fahrenheit (less 32° F)
	0.13826	kilogram meters
foot pounds	30.4801	centimeters
feet "	0.304801	meters
"	304.801	millimeters
"		
	1.64468×10^{-4}	miles, nautical
gallons, British Imperial	0.160538	cubic feet
" " "	1.20091	gallons, U.S.
	4.54596	liters
gallons, U. S.	0.832702	gallons, British Imperial
" "	0.13368	cubic feet
" "	231.	cubic inches
" "	3.78543	liters
grams, metric	2.20462×10^{-3}	pounds, avoirdupois
hectares	2.47104	acres
"	1.076387×10^{5}	square feet
"	3.86101×10^{-3}	square miles
inches	2.54001	centimeters
""	2.54001×10^{-2}	meters
46	25.4001	millimeters
	2.20462	pounds
kilograms	9.84206×10^{-4}	long tons
44		short tons
	1.10231×10^{-3}	foot pounds
kilogram meters	7.233	
kilograms per meter	0.671972	pounds per foot
kilograms per square centimeter	14.2234	pounds per square inch
kilograms per square meter	0.204817	pounds per square foot
	9.14362×10^{-5}	long tons per square foot
kilograms per square millimeter	1422.34	pounds per square inch
	0.634973	long tons per square inch
kilograms per cubic meter	$6.24283 imes 10^{-2}$	pounds per cubic foot
kilometers	0.62137	miles, statute
"	0.53959	miles, nautical

CONVERSION FACTORS

CONVERSION FACTORS							
Multiplying	Ву	Gives					
liters	0.219975	gallons, British Imperial					
46	0.26417	gallons, U. S.					
44	3.53145×10^{-2}	cubic feet					
meters	3.28083	feet					
44	39.37	inches					
44	1.09361	yards					
miles, statute	1.60935	kilometers					
"	0.8684	miles, nautical (knots)					
miles, nautical (knots)	6080.204	feet					
	1.85325	kilometers					
44 46 66	1.1516	miles, statute					
millimeters	3.28083×10^{-3}	feet					
**	3.937×10^{-2}	inches					
pounds, avoirdupois	453.592	grams, metric					
	0.453592	kilograms					
66 66	4.464×10^{-4}	tons, long					
46	4.53592×10^{-4}	tons, metric					
pounds per foot	1.48816	kilograms per meter					
pounds per square foot	4.88241	kilograms per square meter					
pounds per square inch	7.031×10^{-2}	kilograms per square centimeter					
	7.031×10^{-4}	kilograms per square millimeter					
pounds per cubic foot	16.0184	kilograms per cubic meter					
radians	57.29578	degrees, angular					
square centimeters	0.1550	square inches					
square feet	9.29034×10^{-4}	ares					
" "	9.29034×10^{-6}	hectares					
44 44	0.0929034	square meters					
square inches	6.45163	square centimeters					
"	645.163	square millimeters					
square kilometers	247.104	acres					
" "	0.3861	square miles					
square meters	10.7639	square feet					
" "	1.19599	square yards					
square miles	259.0	hectares					
" "	2.590	square kilometers					
square millimeters	1.550×10^{-3}	square inches					
square yards	0.83613	square meters					
tons, long	1016.05	kilograms					
" "	2240.	pounds					
44 44	1.01605	tons, metric					
44 44	1.120	tons, short					
tons, long, per square foot	1.09366×10^{-4}	kilograms per square meter					
tons, long, per square inch	1.57494	kilograms per square millimeter					
tons, metric	2204.62	pounds					
" "	0.98421	tons, long					
**	1.10231	tons, short					
tons, short	907.185	kilograms					
" "	0.892857	tons, long					
	0.907185	tons, netric					
tons, British Shipping	42.00	cubic feet					
" " "	0.952381	tons, U. S. Shipping					
tons, U. S. Shipping	40.00	cubic feet					
" " "	1.050	tons, British Shipping					
yards	0.914402	meters					
Jun 140	U-/177U4	mouts					

DECIMAL EQUIVALENTS OF AN INCH AND OF A FOOT											
Fract o Inch o	f	Inch Equiva- lents to Foot Fractions	Fracti of Inch or	2.50	Inch Equiva- lents to Foot Fractions	Fract o Inch o		Inch Equiva- lents to Foot Fractions	Frac o Inch o	f	Inch Equiva- lents to Foot Fraction
	.0052	1/16 1/8			3-1/16 3-1/8	8	.5052 .5104	6-1/16 6-1/8		.7552 .7604	9-1/16 9-1/8
/64	.015625 .0208 .0260	3/16 1/4 5/16		2708	3-3/16 3-1/4 3-5/16	33/64	.515625 .5208 .5260	6-3/16 6-1/4 6-5/16	49/64	.765625 .7708 .7760	9-3/16 9-1/4 9-5/16
/32	.03125 .0365 .0417	3/8 7/16 1/2	.,	.28125 .2865 .2917	3-3/8 3-7/16 3-1/2	17/32	.53125 .5365 .5417	6-3/8 6-7/16 6-1/2	25/32	.78125 .7865 .7917	9-3/8 9-7/16 9-1/2
64	.046875 .0521 .0573	9/16 5/8 11/16	,	.296875 .3021 .3073	3-9/16 3-5/8 3-11/16	35/64	.546875 .5521 .5573	6-9/16 6-5/8 6-11/16	51/64	.796875 .8021 .8073	9-9/16 9-5/8 9-11/1
/16	.0625 .0677 .0729	3/4 13/16 7/8	-/	.3125 .3177 .3229	3-3/4 3-13/16 3-7/8	9/16	.5625 .5677 .5729	6-3/4 6-13/16 6-7/8	13/16	.8125 .8177 .8229	9-3/4 9-13/1 9-7/8
5/64	.078125 .0833 .0885	15/16 1 1-1/16	21/64	.328125 .3333 .3385	3-15/16 4 4-1/16	37/64	.578125 .5833 .5885	6-15/16 7 7-1/16	53/64	.828125 .8333 .8385	9-15/1 10 10-1/16
3/32	.09375 .0990 .1042	1-1/8 1-3/16 1-1/4	11/32	.34375 .3490 .3542	4-1/8 4-3/16 4-1/4	19/32	.59375 .5990 .6042	7-1/8 7-3/16 7-1/4	27/32	.84375 .8490 .8542	10-1/8 10-3/16 10-1/4
7/64	.109375 .1146 .1198	1-5/16 1-3/8 1-7/16	23/64	.359375 .3646 .3698	4-5/16 4-3/8 4-7/16	39/64	.609375 .6146 .6198	7-5/16 7-3/8 7-7/16	55/64	.859375 .8646 .8698	10-5/16 10-3/8 10-7/16
1/8	.1250 .1302 .1354	1-1/2 1-9/16 1-5/8	3/8	.3750 .3802 .3854	4-1/2 4-9/16 4-5/8	5/8	.6250 .6302 .6354	7-1/2 7-9/16 7-5/8	7/8	.8750 .8802 .8854	10-1/2 10-9/1 10-5/8
9/64	.140625 .1458 .1510	1-11/16 1-3/4 1-13/16	25/64	.390625 .3958 .4010	4-11/16 4-3/4 4-13/16	41/64	.640625 .6458 .6510	7-11/16 7-3/4 7-13/16	57/64	.890625 .8958 .9010	10-11/ 10-3/4 10-13/
5/32	.15625 .1615 .1667	1-7/8 1-15/16 2	13/32	.40625 .4115 .4167	4-7/8 4-15/16 5	21/32	.65625 .6615 .6667	7-7/8 7-15/16 8	29/32	.90625 .9115 .9167	10-7/8 10-15/ 11
1/64	.171875 .1771 .1823	2-1/16 2-1/8 2-3/16	27/64	.421875 .4271 .4323	5-1/16 5-1/8 5-3/16	43/64	.67187 .6771 .6823	8-1/16 8-1/8 8-3/16	59/64	.921875 .9271 .9323	11-1/1 11-1/8 11-3/1
3/16	.1875 .1927 .1979	2-1/4 2-5/16 2-3/8	7/16	.4375 .4427 .4479	5-1/4 5-5/16 5-3/8	11/16	.6875 .6927 .6979	8-1/4 8-5/16 8-3/8	15/16	.9375 .9427 .9479	11-1/4 11-5/1 11-3/8
13/64	.203123 .2083 .2135	2-7/16 2-1/2 2-9/16	29/64	.453125 .4583 .4635	5-7/16 5-1/2 5-9/16	45/64	.70312 .7083 .7135	5 8-7/16 8-1/2 8-9/16	61/64	.95312 .9583 .9635	5 11-7/1 11-1/2 11-9/1
7/32	.21875 .2240 .2292	2-5/8 2-11/16 2-3/4	15/32	.46875 .4740 .4792	5-5/8 5-11/16 5-3/4	23/32	.71875 .7240 .7292	8-5/8 8-11/16 8-3/4	31/32	.96875 .9740 .9792	11-5/8 11-11/ 11-3/4
15/64	.23437 .2396 .2448	5 2-13/16 2-7/8 2-15/16		.484375 .4896 .4948	5-13/16 5-7/8 5-15/16		.73437 .7396 .7448	8-13/16 8-7/8 8-15/16		.98437 .9896 .9948	5 11-13, 11-7/8 11-15,
1/4	.2500	3	1/2	.5000	6	3/4	.7500	9	1	1.0000	12

INDEX

A	Beams—Continued
ACI	minimum web widths, 4-7
Code, 2	rectangular, formulas, 22, 23
Detailing Manual, 2	charts, 36-38
Journal, 2	constants, 33-34
ASTM Specifications	examples of design, 116-121, 211-212,
Billet Bars, 398	219-221
Deformations, 408	stirrup combinations, 230
Rail Steel Bars, 403	spacing, 48, 86-91
Steel Wire, 411 Welded Wire Fabric, 413	tee, formulas, 23, 24
Areas	charts, 39-41
bars, 3	constants, 35 examples of design, 140, 157, 173, 211-
bars in slab one-foot wide, 9-11	212
circular segments, 438	safe load chart, 50
combinations of bars, 4-7	ultimate strength design, 27-30
parabolas, 92	web reinforcement, formulas, 26
parasons, 92	web reinforcement, 86-91
B	Bearing
Bar Supports, 107-109	allowable stresses on concrete, 32
Bars	masonry walls, 99
area in one-foot wide slab, 9-11	slab on wall, 117
area of combinations, 4-7	soils, 98
areas, individual, 3	Bents, sidesway, 78-80
bending in beams, 82-85	Bond
deformations, 1, 3	allowable stress, 32
hooks for, 16	beam bars, 212, 219, 225
numbering of deformed, 3	design formulas, 26
perimeters for combinations, 8	examples of design, 116-120
perimeters in slab one-foot wide, 9, 12	footings, 363, 365, 368
Simplified Practice, 2	joists, 140, 157, 173
slants and increments, 14, 15	retaining walls, 382, 383
weights and areas of individual, 3	stair slabs, 132
Basement walls, 392-393	stirrups, minumum beam depth, 91
Beams	Building codes
allowable stresses, 32	ACI, 2
bars, bending of, 82-85	live load requirements, 100, 101
hooks, 16	
slants and increments, 14, 15	C
splices, 13	CD values (solumns in handing)
carrying capacity, 210-230	CD values (columns in bending)
end spans, 218-223	example, 357
interior spans, 224-229	round columns with spirals, 360 square columns with spirals, 359
simple spans, 210-217	square columns with ties, 358
deflection, 51-52 design formulas, 22-26	CRSI
doubly reinforced, formulas, 24, 25	Manual, 2
charts, 42-45	Carry-over factor, 70, 71
example of design, 119, 220, 226	Ceiling, weight of, 96
loading diagrams 53-65	Chairs for supporting bars, 107-109

Dead loads, 96-98 Circles Decimal equivalents for an inch and a foot, areas, 435-436 areas of segments, 438 Deflection, beams, 53-65 circumferences, 435, 436 Deflection, reinforced concrete beams, 51-52 diameters, 435, 436 Depths, minimum beam, to develop stirrups, properties, 437 Clearances Design, ultimate strength method, 27-31 F beam bars, 4 working stress method, 22-27, 32-48 column verticals, 13 Design hints, 112, 113-114 Column caps, volumes in, 106 Detailing Manual, ACI, 2 See Flat Slabs. Distribution of moments, 70-80 Columns Drawings, notes on, 110-112 allowable stresses, 32 axially loaded, 233-273 spirally reinforced, 248-269 carrying capacity of round, 252-257 Earth bearing capacity, 99 carrying capacity of square, 258-269 design formulas, 26 pressure, table of, 394-395 safe load testing, 274 design of, 250-251 Eccentrically loaded concrete columns square tied, 233-257 See Columns. carrying capacity, 236-247 Elevators, grain, 397 design formulas, 26 Equivalent uniform load, 67 design of, 235 eccentrically loaded, 275-360 CD values, 357-360 Fabric, welded wire, 17-19 design formulas, 27 design problems, 276-280 Fire resistive ratings, 104-105 Fixed-End-Moments, 72-75 kern of section, 93, 94 spirally reinforced round, 337-356 Flat slabs, two-way, 189-209 carrying capacity, exterior panels, 202-209 spirally reinforced square, 299-334 interior panels, 194-201 square tied, 281-296 design example, 191-193 pipe, steel, 377 pipe, steel, concrete filled, 378 two-way dome slabs, 419-425 Floors, weight of, 96 reduction factor, 233 **Footings** ties, spacing, 13, 236-246 verticals, lap of, 13, 233 Combined, design of, 364-365 carrying capacity, pile footings, concrete, maximum number within spirals, 13, 249 373, 374 volumes of concrete, 106 wood, 375, 376 Computations, precision, iv carrying capacity, square individual foot-Concrete joist construction, 136-186 ings, 369-372 end span, 155-170 square individual column footings, design interior span, 171-186 of, 367-368 single span, 139-154 strap, design of, 362, 363 safe load chart, 49 types, 361 Concrete specifications, 418 ff Concrete stresses, 32 **Formulas** beam constants, 53-65 Continuity in structures, 66-81 beams, doubly reinforced, 24, 25 Conversion factors, 440-441 rectangular, 22, 23 tee, 23, 24 "D" value, eccentrically loaded columns, 27, circle, 437 columns, axially loaded, 26 277, 297, 336 eccentrically loaded, 27 formulas, round spiralled columns, 278 long, 26 square spiralled columns, 277 "D," eccentrically loaded columns, 277-278 square tied columns, 277

Formulas—Continued
kern, 93, 94
moment distribution, 70-80
nomenclature, 20, 21
spirals, 26
stiffness factor, 81
Three Moment Equation, 68-70
trigonometric, 427
web reinforcement, 26
Functions
numbers, 435-436
trigonometric, 429-434

G
Gauges
welded wire fabric, 17-19

н

Hook details, 16

Masonry

Grain elevators, 397

Ground floor slabs, 426

wire, 17

I

Joists
See Concrete Joist Construction.

K

Kern, compression members, 93-94

Laps and spacing of bars, 13

L

column verticals, 13, 233
Lintels, precast, 231-232
Loads
beams, concentrated on, 66-67
dead, 96-98
live, Building Code Requirements, 100-101
live, storage warehouses, 102-103
safe (See individual member)
testing, soil, 274
Logarithms, 435-436

M

walls, bearing values of, 99

weight of, 98
Materials, strength of, 99
Moment distribution, 70-80
Moments
continuous structures, 66-81
design of beams, 211, 219, 224
concrete joist construction, 140, 157, 173
footings, 363, 365, 368
retaining walls, cantilevered, 380-382

Moments—Continued slabs, 116-121, 132 stair slabs, 132 equivalent uniform load, 67 fixed end, 72-75 formulas for beams, 53-65 Three Moment Equation, 68-70 Morris, I. E., 275

N

Nomenclature, 20, 21 Numbers, functions, 435-436

P

Parabola, 92 Partitions, weight of, 97 Perimeters bars in one-foot wide slab, 9, 12 combinations of bars, 8 Pile footings concrete, 373-374 wood, 375-376 Pipe columns, capacity, 377 concrete filled, 378 Pit walls, 396-397 Portland Cement Association, 2 Precision of computations, iv Pressure earth and water, 394-395 masonry walls, 99 soil, 98 **Properties** circle, 437 sections, 95

Radius of gyration, eccentrically loaded columns, 27 Ratings, fire resistive, 104-105 Reinforcement compressive, design formulas, 25 design charts, 42-47 example in beams, 220, 226 example in slabs, 119, 121 temperature, concrete joist construction, 137 slabs, 117 stairs, 132 Retaining walls, 379-395 basement walls, 392-393 design example, cantilevered wall, 380-383 design tables backfill level, no surcharge, 384-385 highway surcharge, 388-389 railway surcharge, 390-391

Specifications—Continued Retaining walls-Continued Deformations, 408 surface of earth sloping, 386-387 Bail Steel Bars, 403 earth and water pressures, 394-395 Steel Wire, 411 Ribbed slabs Welded Wire Fabric, 413 See Concrete Joist Construction. Concrete work, 418 ff Rigid frames, 77-80 Federal, 407 Rise of stairs, 133-135 Spirals Roof, weight of, 96 core volumes, percentage of, 270-271 Run of stairs, 133-135 design example, 250-251 design formulas, 26 S weights of, 272-273 Splices Sections, properties of, 95 beams, tension, 13 Segments, area of circular, 438 columns, 13 Stair slabs, carrying capacity, 134-135 allowable working stresses, 32 Steel stresses, 32 column cap, 192, 422 Stem width of, minimum, 4-7 concrete joist construction, 140, 156, 172 Stiffness factor, 70, 81 design example, 116, 117, 120 Stirrups diagrams, beams, 53-65 beams, concrete, 210 drop panel, 193, 422 chart, 50 footings, 363, 365, 368 formulas for various beam loadings, 53-65 design, 212, 220, 225 design formulas, 26 retaining walls, cantilevered, 381-382 hooks, 16 stair slabs, 132 minimum beam depth to develop, 91 Sidesway of rigid bent, 78-80 spacing, method of, 86-91 Slabs standard combinations, 230 flat, two-way, 189-209 table, 48 carrying capacity, exterior panels, 202-Strength of materials, 99 Stresses interior panels, 194-201 allowable unit, for various grades of condesign example, 191-193 crete and steel, 32 on ground, 426 building materials, 99 solid carrying capacity, end spans, 125-127 Suggestions for designers, 110-114 Supports, Bar, 107-109 interior spans, 128-130 Symbols, list of standard, 20-21 single spans, 122-124 design examples, 116-121 safe load tables, 115-130 Tables, use of, 1 safe load chart, 49 Temperature reinforcement stair, 131-135 concrete joists, 137 two-way dome floor slabs, 419-425 design in slab, 117 carrying capacity, 424-425 solid slabs, 117 design example, 422-423 Slants and increments for 45° bar bends, 14. stair slabs, 132 Three Moment Equation, 68-69 15 Soils, bearing capacity, 98 arrangement in tied columns, 234 load testing, 274 maximum spacing in columns, 13, 235 Spacing Transformed area, 22 beam bars, 4-7 examples, 116, 117, 119, 120, 140, 157, column ties, 13 172, 211, 219, 224, 276, 297, 335 column verticals, 13 Trigonometric formulas, 427 Specifications functions, 429-434 ASTM triangles, solution of, 428 Billet Bars, 398

Two-way flat slabs (See Flat Slabs) Two-way dome floor slabs (See Flat Slabs)

U

Use of tables, 1 Ultimate strength design, 27-31 F

V

Values of n, p, k, j, R charts, 36, 47 rectangular beams, 33-34 tee beams, 35 Volumes, concrete, round columns, 106 round column caps, 106 square columns, 106

W

Walls
basement (See Basement Walls)
pit, 396-397
retaining (See Retaining Walls)
weight of, 97
Warehouse live loads, 102-103
Water pressure, 394
Weights and measures, 439
floors, ceilings and roofs, 96
masonry, 98
round bars, 3
walls and partitions, 97
Width, minimum beam, 4-7
Wire fabric, welded, 17-19
Wire gauges, 17

