# Mathematics for Computing Science (CS2013)

Formal Languages: Preliminaries

#### **Formal Languages**

- We have heard of or have used many languages
  - English, Polish, French, etc.
  - Java, Python, C, C#, etc.
- These are very different kinds of languages
- What is a language?
  - How can we decide if a sentence is indeed from a language?
  - Examples in English:
    - "Large red vans go fast." and "Colourless green ideas sleep furiously."
    - "Vans red large go fast."

#### **Formal Languages**

- Formal language has a well-defined test if a sentence belongs to it or not
- The test is based solely on the form of the sentence
  - No "meaning" involved
  - "Colourless green ideas sleep furiously" makes no sense, but it is a grammatically correct English sentence

# Symbols, Alphabet and Strings

- Symbols: atomic (basic) components of a formal language
  - Examples: digits 0-9, small letters a-z, special characters £, %, \*, etc.
  - They cannot be split apart into smaller sub-components
  - Akin to characters of a keyboard
- Alphabet: a finite set of symbols
  - Examples: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {a, b, c, d, e, ..., z}
  - We denote sets by italicised capital letters A, B, etc.
- String over an alphabet T: a finite sequence of symbols from T
  - Example strings over  $T = \{0, 1\}$  are 0011, 101, 1100, etc.
- Empty string  $\lambda$  (lambda): a special string with no symbols
  - Some textbooks also use  $\varepsilon$  (epsilon) to represent the empty string

#### **Definitions**

- We refer to strings as w (for "word")
  - We also use v to refer generically to a string
  - We may use subscripts (e.g.,  $w_1$ ,  $w_i$ ,  $v_2$ ) to differentiate strings
- Length of a string w, denoted as |w|, is the number of symbols w has
  - Examples: |010| = 3, |abba| = 4
  - Note that  $|\lambda| = 0$
- Strings w and v are equal, denoted as w = v, if they have exactly the same sequence of symbols
  - Examples: given  $w_1 = 010$ , v = 010,  $w_1 = v$
- Strings w and v are different, denoted as  $w \neq v$ , if they are not equal
  - Examples: given  $w_2 = 011$ , v = 010,  $w_2 \neq v$

## **Definitions (cont'd)**

- Concatenation of two strings w and v, denoted wv, is the sequence of symbols in w followed by the sequence of symbols in v
  - If w = abb and v = bab, then wv = abbbab, vw = bababb
  - Notice:  $w\lambda = \lambda w = w$  (empty string is "identity element" of concatenation)
- Concatenation is not commutative
  - wv not necessarily equal to vw
- Concatenation is associative
  - It is always the case that w(vu) = (wv)u

#### **Definitions (cont'd)**

- u is a substring of w if there are  $v_1$  and  $v_2$  such that  $w = v_1 u v_2$ 
  - Example: u = 10 is a substring of w = 01101 ( $v_1 = 01$ ,  $v_2 = 1$ )
  - Note: empty string  $\lambda$  is a substring of any string
  - Important:  $v_1$  and/or  $v_2$  can be the empty string  $\lambda$  (special cases see below)
- Prefix: u is a prefix of w if it is a substring of w and  $v_1 = \lambda$ 
  - Example: u = 011 is a prefix of w = 01101 ( $v_1 = \lambda$ ,  $v_2 = 01$ )
- Proper prefix: u is a proper prefix of w if  $w = uv_2$  and  $w \neq u$ 
  - Substring  $v_2$  cannot be  $\lambda$
- Suffix: u is a suffix of w if it is a substring of w and  $v_2 = \lambda$ 
  - Example: u = 101 is a suffix of w = 01101 ( $v_1 = 01$ ,  $v_2 = \lambda$ )
- Proper suffix: u is a proper suffix of w if  $w = v_1 u$  and  $w \neq u$ 
  - Substring  $v_1$  cannot be  $\lambda$

#### **Definitions (cont'd)**

- T\* is the infinite set of all strings over alphabet T
  - For  $T = \{0, 1\}, T^* = \{\lambda, 0, 1, 00, 11, 01, 10, 000, ...\}$
- $T^+ = T^* \{\lambda\}$  is the **set of all strings** over alphabet T of size 1 or more
- For any symbol  $a \in T$ ,  $a^n$  is the string of n a's concatenated
  - $0 \in \{0, 1\}, 0^3 = 000, 0^4 = 000$
  - We also use  $a^* = \{\lambda, a, aa, aaa, ...\}$  (all strings of a's)
  - We also use  $a^+ = \{a, aa, aaa, ...\}$  (all strings of a's of size 1 or more)
  - Important:  $a^n a^m = a^{n+m}$
- A language over alphabet T is any set of strings using symbols from T
  - Also called a T-language, or simply a language (when context makes T clear)
  - For  $T = \{0, 1\}$ ,  $L = \{\lambda, 0, 1, 0011, 0110\}$  is a T-language
  - L is a T-language if, and only if,  $L \subseteq T^*$

#### **Language Operations**

- Languages are sets
  - All set operations also applicable to languages
- Let A and B be languages over an alphabet T
  - $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$  (set union; strings in A or B)
  - $A \cap B = \{w \mid w \in A \text{ and } w \in B\}$  (set intersection; strings in A and B)
  - $\overline{A} = \{w \mid w \in T^* \text{ and } w \notin A\}$  (set complement; strings in  $T^*$  and not in A)
  - $AB = \{uv | u \in A \text{ and } v \in B\}$  (set concatenation; part from A and part from B)
- Language operations with various properties:
  - $A(B \cup C) = AB \cup AC$
  - $A(B \cap C) = AB \cap AC$

# Language Operations (Cont'd)

- $A^n = AAA...A$ , that is A concatenated with itself n times
  - In special,  $A^0 = \{\lambda\}$
- We thus have
  - $\bullet A^* = A^0 \cup A^1 \cup A^2 \cup ...$
  - $\bullet A^+ = A^1 \cup A^2 \cup A^3 \cup ...$
  - $(A^*)^* = A^*$  (idempotence of \*)
- A\* is the Kleene closure of A

#### **Orderings**

- $T = \{a_1, a_2, ...\}$  an alphabet with an ordering  $\succ$  over its symbols,  $a_i \succ a_j$ 
  - Remember: elements of a set have no order
  - We formally represent order via a relation >

#### Strings over *T* ordered in two ways:

- 1. Dictionary order take into account > only
- 2. Lexical order take into account length and ≻

#### **Orderings**

- $T = \{a_1, a_2, ...\}$  an alphabet with an ordering  $\succ$  over its symbols,  $a_i \succ a_j$
- 1. Dictionary order:
  - Strings beginning with  $a_i$  are ordered before strings beginning  $a_j$ , if  $a_i > a_j$ .
  - Within groups of strings beginning with the same symbol, strings are ordered by their second symbol, etc.
  - $\lambda$  is always the first string
  - To allow comparison, if strings have different lengths, then fill up the shorter one with  $\lambda$ 's on the right

#### **Orderings**

- $T = \{a_1, a_2, ...\}$  an alphabet with an ordering  $\succ$  over its symbols,  $a_i \succ a_j$
- 2. Lexical order:
  - Strings are ordered by their length, with the shortest first
  - Within groups of strings of the same length, strings are ordered in dictionary order
  - $\lambda$  is always the first string

## **Specifying Languages**

Suppose an alphabet *T* and the following *T*-languages

- $L_1 = \{a^n \mid n=1, 2, 3, ...\}$ , for  $a \in T$  what's in  $L_1$ ?
- $L_2 = \{a^n \mid n=1, 4, 6, 9, 16, ...\}$ , for  $a \in T$  what's in  $L_2$ ?
- $L_3 = \{a^n \mid n=1, 4, 9, 48, ...\}$ , for  $a \in T$  what's in  $L_3$ ?

#### Problem:

Devise a clear and precise way to define infinite languages

## Languages and "machines"

- "Machines": rudimentary and very abstract kinds of computers
  - No hardware/software
  - Explained/formalised via mathematics
- Languages represent a problem; machines find solutions
- There are different types of questions:
  - Is 234456788 a prime number? (yes/no question or decision problem)
  - What is 386<sup>677</sup>? (function problem)
  - What is the best move of a chess game? (find one from many options)
  - How to go from Aberdeen to Edinburgh? (how to achieve a result)

# Languages and "machines" (cont'd)

- Some of these problems are very hard
  - Some solutions may take too long (centuries even with powerful computers)
  - Some do not have a solution!
- Formal languages are useful abstractions of actual problems
  - Compact description (no need for pages and pages of text, diagrams, etc.)
  - Unambiguous (it's a mathematical formulation)
  - No irrelevant details
  - Capture many instances of real-life problems
- Study problems abstractly
  - We can see solutions we might otherwise miss
  - We can see equivalent/related problems

#### **Recognising Languages**

- Problem of defining languages: how we could recognise them
- Recognise a language:
  - Given a language description L and a string w find out if  $w \in L$
- Problem statement:

"Is there a method of recognising infinite languages?"

- Alternative formulation:
  - Input: description of an infinite language L and a string w
  - Devise an algorithm (an effective procedure) to find out if  $w \in L$ 
    - The algorithm should always stop (termination)
    - The algorithm should always give the correct answer (correctness)
    - The algorithm should give the answer in feasible time (complexity)

# Recognising Languages (cont'd)

#### Our approach:

- Devise an abstract machine specific to a language description L
- The machine takes as input a candidate string w and produces an answer yes ( $w \in L$ ) or no ( $w \notin L$ )
- These machines are called finite state automata
  - Also called finite automata or finite state machines (FSM)

## Finite (State) Automata

- Very simple kind of computer
  - Limited memory and simple operation
  - Many controllers (door, central heating, etc.) use automata, though
- Intuitively:
  - FSA has a finite number of states (hence the "finite state")
  - It receives individual symbols of a string as input, one at a time
  - Control of execution moves from one state to another, following transitions
  - Each transition (edge) has a label, indicating the value the current input is for that edge to be followed
  - It has a start state, and one or more final states
  - When we run out of symbols (string comes to an end) we stop
  - If we stop in a final state the string is accepted, otherwise it is rejected

# Finite (State) Automata (Cont'd)

• FSA to recognise all strings from  $T = \{0, 1\}$  ending with 1



## Summary

- Formal languages
  - What they are
  - Why study them
  - Operations on formal languages
  - How to describe formal languages
  - Languages and machines
- Finite state automata (FSA)
  - Informal presentation of FSAs

## **Further reading**

- Chapter 0 "Introduction to the theory of computation", by Michael Sipser (there are copies in the library)
- Chapter 1 of "An Introduction to Formal Languages and Automata", by Peter Linz (PDF available on-line)



