MATH130W1 2025: INTRODUCTION TO CALCULUS

Tutorial 2 Exercises: Week 2 work ($17^{th} - 21^{st}$ February 2025) Due 25^{th} / 26^{th} February 2025

Exercises from the Algebra notes:

Ex 1.10 Inequalities (p.43): 1 (c), (f), (g), 2, 3 (h), (k), (l), 4 (j), (r), 5, 7 (a), (b)

Ex 1.11 Absolute Values (p. 48): 1 (h), (i), 2 (d), (g), (l), (m), 3 (b), 4 (a)

Exercises from the prescribed text: Calculus, by J. Stewart (9th Ed.)

Inequalities - Appendix A (p. A9): 13, 19, 23, 25, 27, 29, 35, 37, 41

Absolute Value - Appendix A (p. A9): 5, 9, 11, 44, 45, 49, 51, 53, 55, 57, 61, 62, 65, 66

EXAMPLE 9 If |x-4| < 0.1 and |y-7| < 0.2, use the Triangle Inequality to estimate |(x+y)-11|.

SOLUTION In order to use the given information, we use the Triangle Inequality with a = x - 4 and b = y - 7:

$$|(x + y) - 11| = |(x - 4) + (y - 7)|$$

 $\leq |x - 4| + |y - 7|$
 $< 0.1 + 0.2 = 0.3$

|(x + y) - 11| < 0.3

Thus

A EXERCISES

1–12 Rewrite the expression without using the absolute-value symbol.

3.
$$|-\pi|$$

4.
$$|\pi - 2|$$

5.
$$|\sqrt{5} - 5|$$

7.
$$|x-2|$$
 if $x < 2$

8.
$$|x-2|$$
 if $x>2$

9.
$$|x + 1|$$

10.
$$|2x - 1|$$

11.
$$|x^2 + 1|$$

12.
$$|1 - 2x^2|$$

13–38 Solve the inequality in terms of intervals and illustrate the solution set on the real number line.

13.
$$2x + 7 > 3$$

14.
$$3x - 11 < 4$$

15.
$$1 - x \le 2$$

16.
$$4 - 3x \ge 6$$

17.
$$2x + 1 < 5x - 8$$

18.
$$1 + 5x > 5 - 3x$$

19.
$$-1 < 2x - 5 < 7$$

20.
$$1 < 3x + 4 \le 16$$

21.
$$0 \le 1 - x < 1$$

22.
$$-5 \le 3 - 2x \le 9$$

23.
$$4x < 2x + 1 \le 3x + 2$$

24.
$$2x - 3 < x + 4 < 3x - 2$$

25.
$$(x-1)(x-2) > 0$$

26.
$$(2x + 3)(x - 1) \ge 0$$

27.
$$2x^2 + x \le 1$$

28.
$$x^2 < 2x + 8$$

29.
$$x^2 + x + 1 > 0$$

30.
$$x^2 + x > 1$$

31.
$$x^2 < 3$$

30.
$$x^2 + x > 0$$

33.
$$x^3 - x^2 \le 0$$

32.
$$x^2 \ge 5$$

33.
$$x^3 - x^2 \le 0$$

34.
$$(x+1)(x-2)(x+3) \ge 0$$

35.
$$x^3 > x$$

36.
$$x^3 + 3x < 4x^2$$

37.
$$\frac{1}{r} < 4$$

38.
$$-3 < \frac{1}{x} \le 1$$

39. The relationship between the Celsius and Fahrenheit temperature scales is given by $C = \frac{5}{9}(F - 32)$, where C is the temperature scales is given by $C = \frac{5}{9}(F - 32)$.

ature in degrees Celsius and F is the temperature in degrees Fahrenheit. What interval on the Celsius scale corresponds to the temperature range $50 \le F \le 95$?

- **40.** Use the relationship between C and F given in Exercise 39 to find the interval on the Fahrenheit scale corresponding to the temperature range $20 \le C \le 30$.
- **41.** As dry air moves upward, it expands and in so doing cools at a rate of about 1°C for each 100-m rise, up to about 12 km.
 - (a) If the ground temperature is 20°C, write a formula for the temperature at height *h*.
 - (b) What range of temperature can be expected if a plane takes off and reaches a maximum height of 5 km?
- **42.** If a ball is thrown upward from the top of a building 128 ft high with an initial velocity of 16 ft/s, then the height h above the ground t seconds later will be

$$h = 128 + 16t - 16t^2$$

During what time interval will the ball be at least 32 ft above the ground?

43–46 Solve the equation for x.

43.
$$|2x| = 3$$

44.
$$|3x + 5| = 1$$

45.
$$|x+3| = |2x+1|$$

46.
$$\left| \frac{2x-1}{x+1} \right| = 3$$

47–56 Solve the inequality.

47.
$$|x| < 3$$

48.
$$|x| \ge 3$$

49.
$$|x-4| < 1$$

50.
$$|x - 6| < 0.1$$

51.
$$|x + 5| \ge 2$$

52.
$$|x + 1| \ge 3$$

53.
$$|2x - 3| \le 0.4$$

54.
$$|5x - 2| < 6$$

55.
$$1 \le |x| \le 4$$

56.
$$0 < |x - 5| < \frac{1}{2}$$

57–58 Solve for x, assuming a, b, and c are positive constants.

57.
$$a(bx - c) \ge bc$$

58.
$$a \le bx + c < 2a$$

59–60 Solve for x, assuming a, b, and c are negative constants.

59.
$$ax + b < c$$

$$60. \ \frac{ax+b}{c} \le b$$

61. Suppose that |x-2| < 0.01 and |y-3| < 0.04. Use the Triangle Inequality to show that |(x+y)-5| < 0.05.

62. Show that if $|x + 3| < \frac{1}{2}$, then |4x + 13| < 3.

63. Show that if a < b, then $a < \frac{a+b}{2} < b$.

64. Use Rule 3 to prove Rule 5 of (2).

65. Prove that |ab| = |a| |b|. [Hint: Use Equation 4.]

66. Prove that
$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$
.

67. Show that if 0 < a < b, then $a^2 < b^2$.

68. Prove that $|x - y| \ge |x| - |y|$. [*Hint:* Use the Triangle Inequality with a = x - y and b = y.]

69. Show that the sum, difference, and product of rational numbers are rational numbers.

70. (a) Is the sum of two irrational numbers always an irrational number?

(b) Is the product of two irrational numbers always an irrational number?

B Coordinate Geometry and Lines

Just as the points on a line can be identified with real numbers by assigning them coordinates, as described in Appendix A, so the points in a plane can be identified with ordered pairs of real numbers. We start by drawing two perpendicular coordinate lines that intersect at the origin O on each line. Usually one line is horizontal with positive direction to the right and is called the x-axis; the other line is vertical with positive direction upward and is called the y-axis.

Any point P in the plane can be located by a unique ordered pair of numbers as follows. Draw lines through P perpendicular to the x- and y-axes. These lines intersect the axes in points with coordinates a and b as shown in Figure 1. Then the point P is assigned the ordered pair (a, b). The first number a is called the x-coordinate of P; the second number b is called the y-coordinate of P. We say that P is the point with coordinates (a, b), and we denote the point by the symbol P(a, b). Several points are labeled with their coordinates in Figure 2.

FIGURE 1

FIGURE 2

By reversing the preceding process we can start with an ordered pair (a, b) and arrive at the corresponding point P. Often we identify the point P with the ordered pair (a, b) and refer to "the point (a, b)." [Although the notation used for an open interval (a, b) is

Exercises

- **1.** (a) Negative (b) Positive **3.** $6\sqrt{10}$ **5.** $\frac{4}{15}$
- **7.** $\frac{110}{3}$ **9.** $\frac{11}{12} 4/e$ **11.** $f(x, y) = e^y + xe^{xy} + K$
- **13.** 0 **15.** 0 **17.** -8π **25.** $\frac{1}{6}(27 5\sqrt{5})$
- **27.** $(\pi/60)(391\sqrt{17}+1)$ **29.** $-64\pi/3$ **31.** 0
- **33.** $-\frac{1}{2}$ **35.** 4π **37.** -4 **39.** 21

PROBLEMS PLUS ■ PAGE 1251

7. (d)
$$\frac{4\sqrt{2}\pi^2}{25}$$
 (e) $2\pi^2 r^2 R$

APPENDIXES

EXERCISES A ■ PAGE A9

- **1.** 18 **3.** π **5.** $5-\sqrt{5}$ **7.** 2-x
- **9.** $|x+1| = \begin{cases} x+1 & \text{for } x \ge -1 \\ -x-1 & \text{for } x < -1 \end{cases}$ **11.** $x^2 + 1$
- 13. $(-2, \infty)$ $\xrightarrow{-2} 0$
- **17.** (3, ∞) **19.** (2, 6)
- **21.** (0, 1]
- **25.** $(-\infty, 1) \cup (2, \infty)$ **27.** $\left[-1, \frac{1}{2}\right]$ $\xrightarrow{-1}$ $\frac{1}{2}$
- **29.** $(-\infty, \infty)$ **31.** $(-\sqrt{3}, \sqrt{3})$
- **37.** $(-\infty, 0) \cup (\frac{1}{4}, \infty)$
- **39.** $10 \le C \le 35$ **41.** (a) $T = 20 10h, 0 \le h \le 12$
- (b) $-30 \,^{\circ}\text{C} \le T \le 20 \,^{\circ}\text{C}$ **43.** $\pm \frac{3}{2}$ **45.** 2, $-\frac{4}{3}$

- **47.** (-3,3) **49.** (3,5) **51.** $(-\infty,-7] \cup [-3,\infty)$
- **53.** [1.3, 1.7] **55.** $[-4, -1] \cup [1, 4]$
- **57.** $x \ge (a + b)c/(ab)$ **59.** x > (c b)/a

EXERCISES B ■ PAGE A15

- **1.** 5 **3.** $\sqrt{74}$ **5.** $2\sqrt{37}$ **7.** 2 **9.** $-\frac{9}{2}$
- **21.** y = 6x 15 **23.** 2x 3y + 19 = 0
- **25.** 5x + y = 11 **27.** y = 3x 2 **29.** y = 3x 3
- **31.** y = 5 **33.** x + 2y + 11 = 0 **35.** 5x 2y + 1 = 0
- **37.** $m = -\frac{1}{3}$, **39.** m = 0, **41.** $m = \frac{3}{4}$, b = 0

53. (0, -4) **55.** (a) (4, 9) (b) (3.5, -3) **57.** (1, -2)