AZƏRBAYCAN RESPUBLİKASI TƏHSİL NAZİRLİYİ AZƏRBAYCAN TEXNİKİ UNİVERSİTETİ

Fakultə: Energetika, elektrotexnika və avtomatika

Kafedra: Mühəndis Riyaziyyatı

Qrup: 679a2

Fənn: Riyaziyyat

SƏRBƏST İŞ № 1

Bakalavr: Məmmədova Nailə

Müəllim: dos. Bağırova Rəna

§1. Ədədi sıralar

1. Sıranın yığılması və cəmi. Tutaq ki,

$$u_1, u_2, ..., u_n, ...$$
 (1)

sonsuz ədədlər ardıcıllığı verilmişdir.

(1) ardıcıllığının hədlərindən düzəldilmiş

$$u_1 + u_2 + \dots + u_n + \dots$$
 (2)

ifadəsi ədədi sira və ya sadəcə sıra, $u_1, u_2, ..., u_n, ...$ isə uyğun olaraq sıranın 1-ci, 2-ci, ..., n-ci və s. həddi adlanır. n-ci həddə sıranın \ddot{u} mumi həddi də deyilir. (2) sırası qısa şəkildə

$$\sum_{n=1}^{\infty} u_n \tag{3}$$

kimi yazılır.

Aşağıdakı kimi işarələmələr aparaq:

 S_1 , S_2 , ..., S_n , ... sonlu cəmlər ardıcıllığına (1) sırasının uyğun olaraq 1-ci, 2-ci, ..., n-ci və s. $x\ddot{u}susi cəmləri$ deyilir.

Sıranın $\{S_n\}$ xüsusi cəmlər ardıcıllığının sonlu

$$\lim_{n \to \infty} S_n = S \tag{4}$$

limiti varsa, ona yığılan ədədi sıra, S ədədinə isə sıranın cəmi deyilir və

$$S = u_1 + u_2 + ... + u_n + ... = \sum_{k=1}^{\infty} u_k$$

kimi yazılır.

Əgər (4) limiti yoxdursa və ya $\pm \infty$ -a bərabərdirsə, onda (2) sırasına dağılan sıra deyilir və bu halda deyirlər ki, sıranın cəmi yoxdur.

2. Yığılan sıraların xassələri.

Xassə 1. Əgər $\sum_{n=1}^{\infty} u_n$ sırası yığılandırsa və cəmi S -ə bərabərdirsə, onda istənilən c sabiti üçün

$$cu_1 + cu_2 + \dots + cu_n + \dots$$
 (5)

sırası da yığılandır və onun cəmi cS -ə bərabərdir.

Nəticə. (3) sırası dağılan olduşda $\forall c \neq 0$ üçün (5) sırası da dağılan olar.

Xassə 2. Əgər $\sum_{n=1}^{\infty} u_n$ və $\sum_{n=1}^{\infty} v_n$ sıraları yığılandırsa və onların cəmləri uyğun olaraq s və σ -ya bərabərdirsə, onda həmin sıraların cəmi və ya fərqi adlanan $\sum_{n=1}^{\infty} (u_n \pm v_n)$ sıraları da yığılandır və onların cəmləri uyğun olaraq $s \pm \sigma$ -ya bərabərdir.

Xassə 3. Sıra yığılandırsa, onda ona sonlu sayda yeni hədlər əlavə etməklə və ya ondan sonlu sayda hədləri atmaqla alınan sıra da yığılandır.

Qeyd.
$$\sum_{n=1}^{\infty} u_n$$
 və $\sum_{n=1}^{\infty} v_n$ sıralarından biri yığılan, digəri isə dağılan olduqda

 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ sırası dağılan olur. Verilən sıraların hər ikisi dağılan olduqda isə

 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ sırasının yığılan və ya dağılan olması haqqında heç nə demək olmur.

1. Hədləri həndəsi silsilə əmələ gətirən

$$a + aq + aq^2 + ... + aq^{n-1} + ...$$
 (6)

sırasının yığılmasını araşdırın.

Həlli. Həndəsi silsilənin ilk n həddinin cəmi aşağıdakı düsturla təyin edilir:

$$S_n = \frac{a - aq^n}{1 - q} = \frac{a}{1 - q} - \frac{aq^n}{1 - q} \quad (q \neq 1).$$

1) |q| < 1 olduqda, $\lim_{n \to \infty} q^n = 0$ olduğundan

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{a}{1 - q} - \frac{aq^n}{1 - q} \right) = \frac{a}{1 - q}$$

olur. Deməli, bu halda (6) sırası yığılır və onun cəmi $S = \frac{a}{1-q}$ olur.

2) |q| > 1 olduqda isə $\lim_{n \to \infty} |q^n| = \infty$ və $\lim_{n \to \infty} \frac{a - aq^n}{1 - q} = \pm \infty$ olur, yəni $\lim_{n \to \infty} S_n$ yoxdur və deməli, (6) sırası dağılır.

3) q = 1 olduqda (6) sırası

$$a + a + ... + a + ...$$

şəklini alır. Onda

$$S_n = \underbrace{a + a + \dots + a}_n = na$$
 və $\lim_{n \to \infty} S_n = \lim_{n \to \infty} na = \infty$ $(a > 0)$

olur, yəni sıra dağılır.

4) q = -1 olduqda (6) sırası

$$a-a+a-a+...+(-1)^n a+...$$

şəklində olur və

$$S_n = \begin{cases} 0, & n - \text{c\"{u}t } \text{ odod olduqda} \\ a, & n - \text{tok odod olduqda} \end{cases}$$

olduğundan $\{S_n\}$ ardıcıllığının limiti olmur, yəni sıra dağılır.

Deməli, (6) sırası |q| < 1 olduqda yığılır, $|q| \ge 1$ olduqda isə dağılır.

Sıraların yığılmasını araşdırın:

$$2.\sum_{n=1}^{\infty}\ln\frac{n+1}{n}.$$

Həlli: Sıranın xüsusi cəminə görə

$$S_n = \ln 2 + \ln \frac{3}{2} + \ln \frac{4}{3} + \dots + \ln \frac{n+1}{n} = \ln \frac{2 \cdot 3 \cdot 4 \cdot \dots \cdot (n+1)}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} = \ln(n+1),$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \ln(n+1) = \infty.$$

Deməli, sıra dağılandır.

3.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
.

Həlli: Sıranın ilk *n* həddinin cəmi:

$$\begin{split} S_n &= \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = \\ &= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}. \\ &\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1. \end{split}$$

Deməli, sıra yığılır və sıranın cəmi S = 1.

4.
$$\arctan \frac{1}{2} + \arctan \frac{1}{8} + ... + \arctan \frac{1}{2n^2} + ...$$

Həlli. Məlum $\arctan x + \arctan y = \arctan \frac{x+y}{1-xy}$ düsturundan istifadə edərək n-ci xüsusi cəmi aşağıdakı kimi tapa bilərik:

$$S_1 = \arctan \frac{1}{2}$$
,
 $S_2 = S_1 + \arctan \frac{1}{8} = \arctan \frac{1}{2} + \arctan \frac{1}{8} = \arctan \frac{2}{3}$,
 $S_3 = S_2 + \arctan \frac{1}{18} = \arctan \frac{2}{3} + \arctan \frac{1}{18} = \arctan \frac{3}{4}$,
.....

$$S_n = \operatorname{arctg} \frac{n}{n+1}$$
.

Beləliklə, $S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \arctan \left(\frac{n}{n+1} \right) = \arctan \left(\frac{n}{n+1} \right) = \arctan \left(1 \right) = \frac{\pi}{4}$.

Deməli, sıra yığılır.

5.
$$1-1+1-1+...+(-1)^{n-1}+...$$

6.
$$1+3+5+...+(2n-1)+...$$

7.
$$2-4+6-8+...+(-1)^{n+1}2n+...$$

8.
$$1+2+3+...+n+...$$

9.
$$1+2+4+...+2^{n-1}+...$$

10.
$$\sum_{n=1}^{\infty} \frac{2}{3} \frac{1}{2^{n-1}}.$$

11.
$$-1+3-5+7-...+(-1)^n(2n-1)+...$$

12.
$$\sum_{n=1}^{\infty} 1$$

13.
$$1 + \frac{1}{5} + \frac{1}{5^2} + \dots + \frac{1}{5^{n-1}} + \dots$$

$$14. \sum_{n=1}^{\infty} (-n)$$

15.
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$
.

16.
$$\sum_{n=1}^{\infty} \left(\frac{5}{2} + (-1)^n \cdot \frac{1}{2} \right)$$

17.
$$\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \dots + \frac{2n+1}{n^2(n+1)^2} + \dots$$
 18. $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{4^n}$.

$$18. \sum_{n=1}^{\infty} \frac{2^n + 3^n}{4^n} .$$

19.
$$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \dots + \frac{1}{(3n-2)(3n+1)} + \dots$$
 20. $\frac{1}{1 \cdot 4} + \frac{1}{2 \cdot 5} + \dots + \frac{1}{n(n+3)} + \dots$

20.
$$\frac{1}{1\cdot 4} + \frac{1}{2\cdot 5} + \dots + \frac{1}{n(n+3)} + \dots$$

21.
$$\frac{1}{1 \cdot 7} + \frac{1}{3 \cdot 9} + \dots + \frac{1}{(2n-1)(2n+5)} + \dots$$

22.
$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{n(n+1)(n+2)} + \dots$$

23.
$$\frac{5}{6} + \frac{13}{36} + \dots + \frac{3^n + 2^n}{6^n} + \dots$$
 24. $\sum_{i=1}^{\infty} \left(1 - \frac{1}{2^n}\right)$.

24.
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{2^n}\right)$$
.

Aşağıdakı sıraların ümumi həddinin düsturunu yazın:

25.
$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \dots$$

26.
$$\frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \frac{7}{8} + \dots$$

27.
$$\frac{1}{2} + \frac{3}{4} + \frac{5}{8} + \frac{7}{16} + \dots$$

28.
$$\frac{2}{15} + \frac{6}{75} + \frac{12}{375} + \frac{20}{1875} + \dots$$

Aşağıdakı sıraların cəmini tapın:

29. a)
$$\sum_{n=0}^{\infty} \left(\frac{11}{12}\right)^n$$
, b) $\sum_{n=0}^{\infty} \left(-\frac{3}{4}\right)^n$, c) $\sum_{n=0}^{\infty} 7 \cdot \left(\frac{2}{3}\right)^n$.

Verilmiş xüsusi cəmlərə əsasən sıraları yazın və onların cəmini tapın:

30. a)
$$S_n = \frac{n+1}{n}$$
, b) $S_n = \frac{-1+2^n}{2^n}$.

$$31.S_n = \arctan$$

32.
$$S_n = \frac{(-1)^n}{n}$$
.

Göstəriş. $u_n = S_n - S_{n-1}, n > 1$.

3. Sıranın yığılması üçün zəruri və kafi şərtlər. (3) sırasını $S = S_n + R_n$ şəklində yazaq. Burada

$$R_n = u_{n+1} + u_{n+2} + \dots + u_{n+m} + \dots = \sum_{k=n+1}^{\infty} u_k$$

ifadəsi (3) sırasının qalıq həddi adlanır.

Teorem. (3) sırasının yığılan olması üçün onun qalıq həddinin limitinin $n \to \infty$ -da sıfra bərabər olması ($\lim_{n \to \infty} R_n = 0$) zəruri və kafidir.

Koşi kriteriyası. (3) sırasının yığılan olması üçün aşağıdakı şərtin ödənilməsi zəruri və kafidir:

$$(\forall \varepsilon > 0) \ (\exists r \in N) \ (\forall n \ge r \land \forall p \in N) : \ \left| S_{n+p} - S_n \right| = \left| \sum_{k=n+1}^p u_k \right| < \varepsilon.$$

4. Sıranın yığılması üçün zəruri sərt.

Teorem. $\partial g \ni r(3)$ sırası yığılandırsa, onda $n \to \infty$ -da onun n-ci həddinin limiti sıfra bərabərdir:

$$\lim_{n\to\infty}u_n=0.$$

İsbatı. (3) sırasının n-ci həddini $u_n = S_n - S_{n-1}$ kimi yaza bilərik. Beləki şərtə görə sıra yığılandır, onda $\lim_{n \to \infty} S_n = S$ və $\lim_{n \to \infty} S_{n-1} = S$. Beləliklə,

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0.$$

Qeyd edək ki, bu əlamət yığılmanın yalnız zəruri şərtidir, kafi deyil.

Məsələn, harmonik sıra adlanan

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

sırası dağılır, lakin $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n} = 0$.

Bu sıranın dağılan olduğunu göstərək. Bunun üçün əvvəlcə sıranın ilk 2n və n hədlərinin cəmini yazaq:

$$S_{2n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n},$$

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Bunların fərqi $S_{2n} - S_n = \frac{1}{n+1} + ... + \frac{1}{2n}$ olacaqdır. Bu cəmdə hər bir

toplananı $\frac{1}{2n}$ -lə əvəz etsək, belə bir köməkçi bərabərsizlik alarıq:

$$S_{2n} - S_n > \frac{1}{2n} + ... + \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2} \text{ va ya } S_{2n} - S_n > \frac{1}{2}.$$

Əksini fərz edək, yəni harmonik sıra yığılır, onda $\lim_{n\to\infty} S_n = \lim_{n\to\infty} S_{2n} = S$ və

bərabərsizlikdə limitə keçsək, $S - S \ge \frac{1}{2}$ və ya $0 \ge \frac{1}{2}$ alarıq. Bu isə ziddiyyət təşkil edir, yəni harmonik sıra dağılandır.

Nəticə. Əgər (3) sırası üçün $\lim_{n\to\infty}u_n$ limiti yoxdursa və ya sıfırdan fərqli sonlu ədədə bərabərdirsə, onda sıra dağılır.

 $\lim_{n\to\infty} u_n$ -i hesablamaqla sıraların yığılmasını araşdırın.

33.
$$\sum_{n=1}^{\infty} \frac{n+1}{2n+1}$$
.

Həlli. Sıranın ümumi həddinin limitini

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{n+1}{2n+1} = \lim_{n\to\infty} \frac{1+\frac{1}{n}}{2+\frac{1}{n}} = \frac{1}{2} \neq 0 \text{ olduğundan sıra dağılır.}$$

34.
$$\sum_{n=1}^{\infty} \frac{n+2}{\ln(n+1)} .$$

Həlli. Belə ki, $n \to \infty$ -da $(n+2) \to \infty$ və $\ln(n+1) \to \infty$ olduğundan $\lim_{n \to \infty} u_n$ -i tapmaq üçün Lopital qaydasını tətbiq edək:

$$\lim_{x \to \infty} \frac{x+2}{\ln(x+1)} = \lim_{x \to \infty} \frac{(x+2)'}{(\ln(x+1))'} = \lim_{x \to \infty} \frac{1}{\frac{1}{x+1}} = \lim_{x \to \infty} (x+1) = \infty.$$

Deməli, $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{n+2}{\ln(n+1)} = \infty$ və nəticəyə görə sıra dağılandır.

35.
$$\frac{2}{3} + \frac{4}{5} + \frac{6}{7} + \dots + \frac{2n}{2n+1} + \dots$$

Həlli: $\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{2n}{2n+1}=\lim_{n\to\infty}\frac{2}{2+\frac{1}{2}}=1$. Sıranın yığılması üçün zəruri

şərt ödənmir və deməli, sıra dağılandır.

$$36. \sum_{n=1}^{\infty} \cos \frac{1}{n}.$$

37.
$$\frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \dots + \frac{2n-1}{2n} + \dots$$

38.
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)^3}$$
.

39.
$$0,6+0,51+0,501+...+[0,5+(0,1)^n]+...$$

40.
$$\sum_{n=1}^{\infty} n \arctan \frac{1}{n}$$
.

41.
$$\frac{1}{2} + \frac{2}{5} + \frac{3}{8} + \dots + \frac{n}{3n-1} + \dots$$

42.
$$1-1+1-...+(-1)^{n-1}+...$$

43.
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 2}.$$

44.
$$\sum_{n=1}^{\infty} \frac{n+2}{2n-3}$$
.

45.
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{(n+2)^3}.$$

46.
$$\sum_{n=1}^{\infty} \frac{5^n}{n+1}$$
.

47.
$$\sum_{n=1}^{\infty} \arctan \frac{n^2+1}{n+3}$$
. 48. $\sum_{n=1}^{\infty} \sin \frac{1}{n}$.

$$48. \sum_{n=1}^{\infty} \sin \frac{1}{n}.$$

49.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{\ln(n+1)}$$
. **50.** $\sum_{n=1}^{\infty} \frac{1}{(2+(-1)^n)^n}$. **51.** $\sum_{n=1}^{\infty} \left(1+\frac{3}{n}\right)^n$.

50.
$$\sum_{n=1}^{\infty} \frac{1}{(2+(-1)^n)^n}$$

51.
$$\sum_{n=1}^{\infty} \left(1 + \frac{3}{n}\right)^n$$

52.
$$\sum_{n=1}^{\infty} \frac{n}{3n-1}$$
.

$$53. \sum_{n=1}^{\infty} \ln \frac{3n-1}{2n+3}.$$

54.
$$\sum_{n=1}^{\infty} \cos \frac{1}{n^2}$$
.

55.
$$\sum_{n=1}^{\infty} \operatorname{arcctg} \frac{n+1}{n^2-3}$$
. 56. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[n+1]{10}}$.

56.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\binom{n+1}{10}}$$

57.
$$\sum_{n=1}^{\infty} \frac{2n}{3^n}$$
.

58.
$$\sum_{n=1}^{\infty} \frac{2n}{\sqrt{n^2+1}}.$$

59.
$$\sum_{n=1}^{\infty} \frac{n+3}{3n^2-1}.$$