Comparator

Two-Bit Comparator

Α	В	С	D	LT	EQ	GT
0	0	0 0 1	0	0	1	0
		0	1	1	0	0 0 0
		1	0	1	0	0
		1	1	1	0	0
0	1	0 0	0	0	0 0 1	0 1 0 0 0
			1	0		0
		1	0	1	0	0
		1	1	1	0	
1	0	0	0	0	0	1
		0	1	000	0	1
		1	0	0	1	0
		1	1	1	0	0
1	1	0	0	0	0	1
		0	1	0	0 0 0	1
		1	1 0	0 0 0	0	1
		1	1	0	1	0

we'll need a 4-variable Karnaugh map for each of the 3 output functions

Two-Bit Comparator (cont'd)

K-map for EQ

K-map for GT

$$LT = A'B'D + A'C + B'CD$$

$$EQ = A'B'C'D' + A'BC'D + ABCD + AB'CD' = (A \times C) \cdot (B \times D)$$

$$GT = BC'D' + AC' + ABD'$$

Equality Comparator

$$Z = X XNOR Y$$

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

4-bit Equality Detector

4-Bit Equality Comparator

4-bit Magnitude Comparator

How can we find A_GT_B?

How many rows would a truth table have?

$$2^8 = 256!$$

Find A_GT_B

Because A3 > B3 i.e. A3 . B3' = 1

Therefore, one term in the logic equation for A_GT_B is A3. B3'

If
$$A = 1101$$
 and $B = 1011$ is $A > B$? Why?

Because
$$A3 = B3$$
 and $A2 > B2$
i.e. $C3 = 1$ and $A2 \cdot B2' = 1$

Therefore, the next term in the logic equation for A_GT_B is C3 . A2 . B2'

If
$$A = 1010$$
 and $B = 1001$ is $A > B$? Why?

Because
$$A3 = B3$$
 and $A2 = B2$ and $A1 > B1$

i.e.
$$C3 = 1$$
 and $C2 = 1$ and $A1 \cdot B1' = 1$

Therefore, the next term in the logic equation for A_GT_B is C3. C2. A1. B1'

Because
$$A3 = B3$$
 and
 $A2 = B2$ and
 $A1 = B1$ and
 $A0 > B0$
i.e. $C3 = 1$ and $C2 = 1$ and
 $C1 = 1$ and $A0 \cdot B0' = 1$

Therefore, the last term in the logic equation for A_GT_B is C3. C2. C1. A0. B0'

Find A_LT_B

TTL 74x85

TTL 74x85

> if
$$(A>B)$$
 | $t=0$, eq=0, $gt=1$
> if $(A | $t=1$, eq=0, $gt=0$
| if $(A=B)$ | $t=1$, eq=e, $gt=g$
| eq gt | eq$

➤ The three I, e and g inputs are used when cascading.

Comparator (continued...)

Let us now cascade four of the 74x85 to construct a 16 bit comparator.

TTL 74x682

≻8-bit Comparator

- Arithmetic conditions derived from 74x682 outputs?
- And their circuits?

Maximum Finder

Design a maximum finder

