Introduction to the dataRetrieval package

Laura De Cicco¹ and Robert Hirsch¹

¹ United States Geological Survey

October 29, 2012

Contents

1	Intr	troduction to dataRetrieval 1							
	1.1	What is dataRetrieval?	1						
	1.2	What is EGRET?	1						
2	Get	etting Started							
	2.1	Installing dataRetrieval from gitHub:	2						
	2.2	Installing dataRetrieval from downloaded binary:	2						
	2.3	A Simple Web Retrieval Example	3						
3	Fun	Function Details 6							
	3.1	Daily Value Retrievals	6						
	3.2	Water Quality Retrievals	6						
	3 3	Site Information Retrievals	6						

1 Introduction to dataRetrieval

The dataRetrieval package was created to simplify the process of getting hydrologic data in the R environment. It has been specifically designed to work seamlessly with the EGRET package: Exploration and Graphics for RivEr Trends (EGRET)

1.1 What is dataRetrieval?

The dataRetrieval package was created to simplify hydrologic data retrieval. The options are web or user-produced files.....

1.2 What is EGRET?

Exploration and Graphics for RivEr Trends (EGRET): An R-package for the analysis of long-term changes in water quality and streamflow, including the water-quality method Weighted Regressions on Time, Discharge, and Season (WRTDS)...

2 Getting Started

This section describes the options for downloading and installing the dataRetrieval package.

2.1 Installing dataRetrieval from gitHub:

One can easily install the latest version of dataRetrieval directly from gitHub using the devtools package. devtools is available on CRAN. Simpley type the following commands into R to install the latest version of dataRetrieval available on github.

```
> library(devtools)
> install_github("dataRetrieval", "USGS-CIDA")
To then open the library, simpley type:
> library(dataRetrieval)
```

2.2 Installing dataRetrieval from downloaded binary:

Alternatively, the dataRetrieval pacakage is available for download at https://github.com/USGS-CIDA/WRTDS/downloads. If the package's tar.gz file is saved in R's working directory, then the following commands will fully install the package:

```
> install.packages("dataRetrieval_1.2.0.tar.gz",
+ repos=NULL, type="source")
```

If the downloaded file is stored in an alternative location, include the path in the install command. A Windows example looks like this (notice the direction of the slashes, they are in the opposite direction that Windows normally creates paths):

```
> install.packages(
+ "C:/RPackages/Statistics/dataRetrieval_1.2.0.tar.gz",
+ repos=NULL, type="source")

A Mac example looks like this:
> install.packages(
+ "/Users/userA/RPackages/Statistic/dataRetrieval_1.2.0.tar.gz",
+ repos=NULL, type="source")
```

Some users have found it necessary to delete the package folders before installing newer versions of either dataRetrieval or EGRET. If you are experiencing an issue after updating a package, trying deleting the package folder, the default location for Windows is something like this: C:/Users/ldecicco/Documents/R/win-library/2.15/dataRetrieval the default for a Mac: /Users/ldecicco/Library/R/2.15/library/dataRetrieval Then, re-install the package using the directions above. Moving to CRAN should solve this problem.

A Simple Web Retrieval Example 2.3

In this example, we use 3 dataRetrieval functions to get daily streamflow data and inorganic nitrogen sample results, and site information for a USGS gaging station with the ID 06934500. The station is Missouri River at Hermann, MO (which is discovered in the INFO dataset).

```
> Daily <- getDVData("06934500","00060","1970-10-01","2011-09-30")</pre>
```

There are 14975 data points, and 14975 days.

There are 0 zero flow days

If there are any zero discharge days, all days had 0 cubic meters per second added to the

> head(Daily)

	Date	Q	Julian	${\tt Month}$	Day	DecYear	${\tt MonthSeq}$	Qualifier	i	LogQ
1	1970-10-01	3879.408	44102	10	274	1970.747	1450	Α	1	8.263438
2	1970-10-02	3454.655	44103	10	275	1970.750	1450	Α	2	8.147478
3	1970-10-03	3029.903	44104	10	276	1970.753	1450	Α	3	8.016286
4	1970-10-04	2644.793	44105	10	277	1970.755	1450	Α	4	7.880348
5	1970-10-05	2293.665	44106	10	278	1970.758	1450	Α	5	7.737906
6	1970-10-06	2072.793	44107	10	279	1970.761	1450	Α	6	7.636652
	Q7 Q30									

1 NA NA

2 NA NA

NA

3 NA 4 NA NA

5 NA NA

6 NA NA

```
> Sample <-getSampleData("06934500","00631","1970-10-01","2011-09-30")
```

```
Date ConcLow ConcHigh Uncen ConcAve Julian Month Day DecYear MonthSeq
1 1979-09-26
                1.10
                         1.10
                                  1
                                       1.10 47384
                                                       9 269 1979.734
                                                                           1557
```

> head(Sample)

```
2 1979-10-16
            0.42
                     0.42
                                0.42 47404
                                             10 289 1979.788
                                                              1558
3 1979-11-27 2.00
                     2.00
                            1 2.00 47446
                                             11 331 1979.903
                                                              1559
4 1979-12-18 1.70
                    1.70
                            1 1.70 47467
                                             12 352 1979.960
                                                              1560
                            1 1.30 47509
5 1980-01-29 1.30
                    1.30
                                            1 29 1980.078
                                                              1561
                            1 1.10 47532
                                             2 52 1980.141
6 1980-02-21 1.10
                     1.10
                                                              1562
               CosDY
```

SinDY

- 1 -0.9946999 -0.1028210
- 2 -0.9712570 0.2380333
- 3 -0.5724040 0.8199718
- 4 -0.2463613 0.9691781
- 5 0.4699767 0.8826788
- 6 0.7733507 0.6339785

> INFO <-getMetaData("06934500","00631", interactive=FALSE)

> colnames(INFO)

[1]	"agency.cd"	"site.no"	"station.nm"
[4]	"site.tp.cd"	"lat.va"	"long.va"
[7]	"dec.lat.va"	"dec.long.va"	"coord.meth.cd"
[10]	"coord.acy.cd"	"coord.datum.cd"	"dec.coord.datum.cd"
[13]	"district.cd"	"state.cd"	"county.cd"
[16]	"country.cd"	"map.nm"	"map.scale.fc"
[19]	"alt.va"	"alt.meth.cd"	"alt.acy.va"
[22]	"alt.datum.cd"	"huc.cd"	"basin.cd"
[25]	"topo.cd"	"construction.dt"	"inventory.dt"
[28]	"drain.area.va"	"contrib.drain.area.va"	"tz.cd"
[31]	"local.time.fg"	"reliability.cd"	"project.no"
[34]	"queryTime"	"drainSqKm"	"staAbbrev"
[37]	"param.nm"	"param.units"	"paramShortName"
[40]	"paramNumber"	"constitAbbrev"	

> INFO\$station.nm

[1] "Missouri River at Hermann, MO"

> Sample <- mergeReport()</pre>

Discharge Record is 14975 days long, which is 41 years First day of the discharge record is 1970-10-01 and last day is 2011-09-30The water quality record has 437 samples The first sample is from 1979-09-26 and the last sample is from 2011-09-29 Discharge: Minimum, mean and maximum 394 2660 20900 Concentration: Minimum, mean and maximum 0.02 1.3 4.2 Percentage of the sample values that are censored is 1.4 %

In the next section, we will go into detail the available functions in dataRetrieval, their required input and generated output.

- 3 Function Details
- 3.1 Daily Value Retrievals
- 3.2 Water Quality Retrievals
- 3.3 Site Information Retrievals

References

- [1] Helsel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages. http://pubs.usgs.gov/twri/twri4a3/
- [2] Hirsch, R. M., Moyer, D. L. and Archfield, S. A. (2010), Weighted Regressions on Time, Discharge, and Season (WRTDS), with an Application to Chesapeake Bay River Inputs. JAWRA Journal of the American Water Resources Association, 46: 857-880. doi: 10.1111/j.1752-1688.2010.00482.x http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2010.00482.x/full
- [3] Sprague, L. A., Hirsch, R. M., and Aulenbach, B. T. (2011), Nitrate in the Mississippi River and Its Tributaries, 1980 to 2008: Are We Making Progress? Environmental Science & Technology, 45 (17): 7209-7216. doi: 10.1021/es201221s http://pubs.acs.org/doi/abs/10.1021/es201221s