WO 97/10293

PCT/EP96/04016

1/22

A the second of the second of

REPLACEMENT SHEET (RULE 26)

IJ

WO 97/10293

PCT/EP96/04016

street goes were some greet to be greet greet or the street greet or the street greet gree

4/22

X15 150
X12 X11 X14 X15 X15
N X11 X12 X11 X12 X11 X X11 X X X X X X X
X12 122
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
83,3
ж 84,3
× 25
x6 65,8
X5 56,4
×E
x ₃ C,7E
X2 28,2
x 18,7

water (in relation to dry mass of fiber material)

native starch

a in wt.

test sample

X1-15

fiber material c = 100 wt. 8

b = 250 wt. 8

native starch

ſ	_	415	Γ	1	7	-	
		W	1		_		
		14			+ A	3	
		v13			100		
		55			184	107	
		15			i i	3	
		9	2		1	7	
		٩	13		1	225	
		٩	2			200	
		1	Ξ.			198	
		1	g			169	
		ļ	\$	1		150	
			7,	-		131	
			5	-		=	
			5	4		ă	5
				=		-	3
				DE LES			
				9 8	L		~

a = native starch in percent by weight

 $b = 500 \text{ wt. } \theta \text{ water in relation to fiber material (dry substance)}$

c = 100% fiber material

Fig. 4t

	T	T	ī
X ₁₅	150	22	200
XI4	131,4 140,8 150	46,9	187,7
x ₁₃	131,4	43,8	175,2
X12	122	25 28,3 31,3 34,9 37,7 40,7 43,8 46,9 50	112,7 124,7 137,8 150 162,7 175,2 187,7 200
x ₁₁	75 84,3 93,3 102,9 112,3 122	17,7	150
X9 X10	102,9	34,9	137,8
6X	63,3	11,3	124,7
Х8	ε'b8	28,3	112,7
×,	51	25	100
χę	8,28		87,7
x _S	56,4		75,2
χ̈́	47	15,7	62,7
x ₁	37,3	12,7	50
x ₂	28,2	9,4	37,8
χı	18,7	6,3	24,9
	ন	ਚ	a

test sample

X1-15

Fig. 5a

a in wt. 8 native starch
d in wt. 8 pregelatinized starch
e in wt. 8 total starch

b = 250 wt. θ water (in relation to dry mass

of fiber material)

c = 100 wt. 8 fiber material

	15		~	2	2	îl.
	14	7	<u>ই</u>	2	375	
	C),		쫎	\$	350	
	715		281	18	325	
[Ę		8	90	300	
	Ę		₹	19	275	
	₹.		ន	151	250	
	9		306	89	222	
	1,		186	8	200	
	æ		1691	185	175	
	2		150	S	3	
	=		13.	3	125	
	2		Ē	۱	5	
Ţ	72		3	-	2,00	
	1	i	K	1	2 5	3/8

a = native starch in wt. 8

d = pregelatinized starch in wt. %

e = total starch in wt. %

b = 500 wt.8 water in relation to fiber material (dry substance)

c = 100% fiber material

Fig. 5b

ratios

WO 97/10293

PCT/EP96/04016

Grade	:	Long fibers/ fiber bundles [mm]
1	i	0.96 - 1.44
2	i	1.92 - 2.40
3	i	2.40 - 2.88
4	ŧ	0.72 - 2.16
5	Ī	3.06 - 3.57
6	:	2.55 - 4.59
7		0.24 - 1.68
6		0.24 - 4.32

Fig. 6

WOLD CLOSING FORCE [kp]

and the state of t

ľ

the state of the second state of the state o

10/22

Use of fibers (fiber bundles) graded by fiber length according to Fig. 6

mold depth			•	<u>.</u>	- 30 mm	e						~ 50 пл	5	=		
fiber length	.a	~	n	ব	ည	2 3 4 5 6 7 8 1	~	ထ	-	~	0	4	ကြ	9	~	8
surface/ texture	+	+	+ .	4	+	t	4	,	+	+	+	+	+	+	+	'
strength/ stability	1	1	1	+	,	+	+	+	1		1	+		+	+	+
elasticity/ structure	ı	ı	١.	4 -		+	+	+	1	,	,	+	1	+	4-	+

mold depth			•	a 80 ma	百	e			· ·		•	№ 80 mm	E .	e.		
fiber length		7	~	3 4 5 6 7	2	و	7	8		~	m	3 4 5 6 7	'n	9	-	∞
surface/ texture	+	+	+	+ + +	+	+,	+	+	+	-+	+	+	+ .	+	4-	+
strength/ stability		ı	t	+	1	+	+	+	ı		1	+	1.	+	+	+
elasticity/ structure	1	•	ı	+	•	+	+	+	1	1		+	ı	÷	+	+

molded body according to requirements

molded body not according to requirements

Use of fiber mixtures of different fiber length according to Fig. 6

Fig. 9

combination of fiber lengths according to Fig. 6								
	4 4 %	7 + 2 + 3	4 + 2 + 3	8 7 + 2	+2+3+5	8 7	7+2+68	9 + 8
surface/ texture	+	J	+	+		+	4	+
strength/ stability	+	+	+	+	÷	4	+	+
elasticity/ structure	+	4	+	+	+	+	+	+
fiber material/starch 60: 40	40	: 55	: 45	90	50:50		45 : 55	
starch/water 0,4:	1	0,4:	: 1	0,4:1	. 1		0,3:1	

+ molded body according to requirements

molded body not according to requirements

WO 97/10293

PCT/EP96/04016

12/22

in wt.8	×	K2	×	*	×	×	×	×	×	01×	X13	X12	¥13.	X1	× :	
fiber material to total mass	26,7	25,8	25	24,2	23,5	22,8	22,2	21,6	21,1	20,5	20	3,61	61	26,7 25,8 25 24,2 23,5 22,8 22,2 21,6 21,1 20,5 20 19,5 19 10,6 18,2	18,2	
total starch to total mass	9'9	5,6	12,5	15,2	17,7	20,1	22,2	24,3	26,2	28,2	9,7 12,5 15,2 17,7 20,1 22,2 24,3 26,2 28,2 10 11,7 33,4 34,	11,7	13,4	6,6 9,7 12,5 15,2 17,7 20,1 22,2 24,3 26,2 28,2 30 31,7 33,4 54,9 16,3		
water to total mass	66,7	64,5	62,5	9'09	8,u2	57,1	35,6	54,1	52,7	51,3	50	48,3	47,6	66,7 64,5 62,5 60,6 50,8 57,1 55,6 54,1 52,7 51,3 50 48,8 47,6 46,5 45,5	15,5	
pregelatinized starch to total mass	1,6	2,4	1,2	3,8	4,4	យ	3,2 3,8 4,4 5 5,5 6,1 6	6,1	9,9	7,1	7,5	7,9	8,4	1,6 2,4 3,2 3,8 4,4 5 5,5 6,1 6,6 7,1 7,5 7,9 8,4 8,7 9	6	

Fig. 10

-); test samp.

Percent by weight in mass

13/22

yi.is test sample

in wt. 8	1,4	72	y3	ž	ş	E	۲,			710	711	117 F	113	714	2
fiber/mass	14.3	13,8	1	12.9	12,5	12,1						10,3	10,0	11,6	
total starch/mass	14.3	17.2		22.6	25.0	27,3						38.5	40'0	28,4	. !
pregel, starch/mass	20.7	5	5.0	5.8	5.3	6,8	7.1	8'.	8,3	80.0	9,2	9.6	10,01	11,8	12,9
water/mass	-	69 0	1	64.5	62.5	60.3	ĺ		1	l	1	51,3	50,0	58.8	

Fig. 12

Trays

dimensions

112 \times 200 \times 17.5 mm

Pots

dimensions

 \oslash 125 mm, vol. 500 ml, height 76 mm

Recipe:

Y14

Coating: cellulose acetate (CA)

TS: 4.5% - 15 wt. % dry substance in spray solution

 η : 20 - 4000 mPas (viscosity)

Application: spraying, casting, dipping

Layers:

1 - 3 (quantity)

Solvent:

acetone

Shape	Thick-	Coating	Method	Re	sistance	
	ness			water 100°C	oil	water
				-	(cold)	(cold)
				1h	3 days	3 days
pot	89 μm	3.8 g	casting	+	+	+
tray	79 <i>µ</i> m	2.3 g	casting	+	+	+
pot	65 μm	2.8 g	spraying	· +	+	+
tray	68 <i>µ</i> m	2.0 g	spraying	+	+	+
tray	58 μm	1.7 g	spraying	+	+	+
pot	34 μm	1.5 g	spraying			_
tray	27 μm	0.8 g	spraying			_

dimensions Trays

112 x 200 x 17.5 mm

Pots

dimensions

 \varnothing 125 mm, vol. 500 ml, height 76 mm

Recipe:

Y14

Coating: cellulose acetate propionate(CAP)

TS: 9% - 20 wt. % dry substance in spray solution

η: 200 - 6000 mPas (viscosity)

Application: spraying, casting, dipping

Layers:

1 - 3 (quantity)

Solvent: acetone

Shape	Thickness	Method		Resistance	:
	·		water 100°C	oil cold	water cold
			1h	3 days	3 days
pot	88 µm	casting	+	+	+
tray	88 µm	casting	+	+	+
pot	58 μm	spraying	+	+	+
tray	70 μm	spraying	+	+	+
tray	56 μm	spraying	+	+	+
pot	33 μm	spraying	-	_	_
tray	22 μm	spraying			- .

Fig. 14

Trays

dimensions

43 \$

112 x 200 x 17.5 mm

Pots

dimensions

 \varnothing 125 mm, vol. 500 ml, height 76 mm

No.	Foil	Thick	Deep-	Deep-	Resistance		
		-ness	drawing	drawing	water	oil	water
			quality in	quality in	100°C	cold	cold
			tray	tray			
1	poly-	100 μm	. +	-	-	+	+
	ester	15Ö μm	+	_		+ .	+
	amide						
2	poly-	70 μm	+	_		+	+
	ester						
3	poly-	50 μm	_	_	-	+	· +
	lactic	100 μm	_	_	-	+	+
	acid						
	(rigid)						
4	poly-	50 μm	+	_	+	+	+
	lactic	100 μm	+	+	+	+	+
1	acid						
	(elast.)						

Foil	Melting	point
1	approx.	120°C
2	approx.	85°C
3	approx.	115°C
4	approx.	130°C

PCT/EP96/04016

18/22

Cellulose acetate / Cellulose acetate propionate

	Softener 10-30 wt.%						
		softener					
	Diethyl-	Triacetin	Tributyl	Acetyl			
	phthalate		citrate	tributyl			
				citrate			
CA	V+/H+	V+/H+	V-/H-	V-/H-	но		
CAP	V+/H+	V+/H+	V+/H+	V+/H+	H +		

+ = good O = medium

- = poor

V = compatibility

H = adhesion

Fig. 16

Fig. 19

Fig. 20