<u>Curs</u> 10

Cuprins

- 1 Sisteme de rescriere pentru termeni
- 2 Confluență. Perechi critice.
- 3 Terminarea sistemelor de rescriere
- 4 Algoritmul Knuth-Bendix

Sisteme de rescriere pentru termeni

Rescrierea termenilor

Fie \mathcal{L} un limbaj de ordinul I.

Definiție

O regulă de rescriere (pentru termeni) este formată din doi termeni $l, r \in Trm_{\mathcal{L}}$ astfel încât:

- 1 / nu este variabilă,
- 2 $Var(r) \subseteq Var(I)$.

Vom nota o regulă de rescriere prin:

$$l \rightarrow r$$
.

Reguli de rescriere

Exemplu

- □ Fie \mathcal{L} un limbaj în care $\mathbf{C} = \{a\}$ și $\mathbf{F} = \{f, g\}$ cu ari(f) = 1, ari(g) = 2.
- □ Reguli de rescriere:

 - \square $g(f(x),x) \rightarrow f(x)$
 - $\Box f(x) \rightarrow a$

Reguli de rescriere

Exemplu

- □ Fie \mathcal{L} un limbaj în care $\mathbf{C} = \{a\}$ și $\mathbf{F} = \{f, g\}$ cu ari(f) = 1, ari(g) = 2.
- □ Reguli de rescriere:
 - $\Box f(x) \rightarrow x$

 - \Box $f(x) \rightarrow a$
- □ Incorecte:
 - $\Box f(x) \rightarrow y$
 - \Box $a \rightarrow g(x,y)$
 - $\square x \to f(x)$

Sisteme de rescriere

Un sistem de rescriere pentru termeni (TRS) este o mulțime finită de reguli de rescriere pentru termeni.

Sisteme de rescriere

Un sistem de rescriere pentru termeni (TRS) este o mulțime finită de reguli de rescriere pentru termeni.

Exemplu

- □ Fie \mathcal{L} un limbaj în care $\mathbf{C} = \{a\}$ și $\mathbf{F} = \{f, g\}$ cu ari(f) = 1, ari(g) = 2.
- ☐ Sistem de rescriere:

$$R = \{f(x) \to x, g(f(x), x) \to f(x)\}\$$

- \square Fie $\mathcal L$ un limbaj de ordinul I
- \square Dacă $t \in \mathit{Trm}_{\mathcal{L}}$ și $x \in \mathit{Var}$ notăm $\mathit{nr}_{\mathsf{x}}(t) = \mathsf{numărul}$ de apariții ale lui x în t

- \square Fie $\mathcal L$ un limbaj de ordinul l
- \square Dacă $t \in \mathit{Trm}_{\mathcal{L}}$ și $x \in \mathit{Var}$ notăm $\mathit{nr}_{\mathsf{x}}(t) = \mathsf{numărul}$ de apariții ale lui x în t

Definiție

Fie z a.î. $z \notin Var$ (o variabilă nouă).

- \square Fie \mathcal{L} un limbaj de ordinul l
- \square Dacă $t \in Trm_{\mathcal{L}}$ și $x \in Var$ notăm $nr_{x}(t) = \text{numărul de apariții ale lui } x în t$

Definiție

Fie z a.î. $z \notin Var$ (o variabilă nouă). Un termen c se numește context dacă $nr_z(c) = 1$.

- \square Fie \mathcal{L} un limbaj de ordinul l
- \square Dacă $t \in Trm_{\mathcal{L}}$ și $x \in Var$ notăm $nr_{x}(t) = \text{numărul de apariții ale lui } x n t$

Definiție

Fie z a.î. $z \notin Var$ (o variabilă nouă). Un termen c se numește context dacă $nr_z(c) = 1$.

□ Dacă $t_0 \in \mathit{Trm}_{\mathcal{L}}$, definim substituția $\{z \leftarrow t_0\} : \mathit{Var} \cup \{z\} \rightarrow \mathit{Trm}_{\mathcal{L}}$ $\{z \leftarrow t_0\}(x) = \left\{ \begin{array}{cc} t_0, & \mathsf{dacă} \ x = z \\ x, & \mathsf{altfel} \end{array} \right.$

- \square Fie \mathcal{L} un limbaj de ordinul l
- \square Dacă $t \in \mathit{Trm}_{\mathcal{L}}$ și $x \in \mathit{Var}$ notăm $\mathit{nr}_{x}(t) = \mathsf{numărul}$ de apariții ale lui x în t

Definiție

Fie z a.î. $z \notin Var$ (o variabilă nouă). Un termen c se numește context dacă $nr_z(c) = 1$.

- □ Dacă $t_0 \in \mathit{Trm}_{\mathcal{L}}$, definim substituția $\{z \leftarrow t_0\} : \mathit{Var} \cup \{z\} \to \mathit{Trm}_{\mathcal{L}}$
 - $\{z \leftarrow t_0\}(x) = \begin{cases} t_0, & \text{dacă } x = z \\ x, & \text{altfel} \end{cases}$
- □ Pentru un context c, notăm:

$$c[z \leftarrow t_0] := \{z \leftarrow t_0\}(c)$$

Relația de rescriere generată de R

 $\hfill\Box$ Fie ${\cal L}$ un limbaj de ordinul I și R sistem de rescriere pentru termeni

Relația de rescriere generată de R

- \square Fie $\mathcal L$ un limbaj de ordinul I și R sistem de rescriere pentru termeni
- \square Pentru $t, t' \in Trm_{\mathcal{L}}$ definim relația $t \to_R t'$ astfel:

Relația de rescriere generată de R

- \square Fie $\mathcal L$ un limbaj de ordinul I și R sistem de rescriere pentru termeni
- □ Pentru $t, t' \in Trm_{\mathcal{L}}$ definim relația $t \rightarrow_{R} t'$ astfel:

```
t \rightarrow_R t' \Leftrightarrow t \text{ este } c[z \leftarrow \theta(I)] \text{ și} t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context}, I \rightarrow r \in R, \theta \text{ substituție}
```

- □ Observați că $t \rightarrow_R t'$ ddacă t' se poate obține din t înlocuind o instanță a lui l cu o instanță a lui r, unde $l \rightarrow r \in R$.
- $\square \rightarrow_R$ este relația de rescriere generată de sistemul de rescriere R.

Echivalența generată de \rightarrow_R

Echivalența generată de \rightarrow_R

☐ Închiderea tranzitivă:

$$t \stackrel{*}{\rightarrow_R} t' \Leftrightarrow t = t_0 \rightarrow_R \ldots \rightarrow_R t_n = t'$$

☐ Închiderea simetrică:

$$t \leftrightarrow_R t' \Leftrightarrow t \rightarrow_R t' \text{ sau } t' \rightarrow_R t$$

Echivalența generată de \rightarrow_R

☐ Închiderea tranzitivă:

$$t \stackrel{*}{\rightarrow_R} t' \Leftrightarrow t = t_0 \rightarrow_R \ldots \rightarrow_R t_n = t'$$

☐ Închiderea simetrică:

$$t \leftrightarrow_R t' \Leftrightarrow t \rightarrow_R t' \text{ sau } t' \rightarrow_R t$$

□ Echivalența generată de \rightarrow_R :

$$t \stackrel{*}{\leftrightarrow_R} t' \Leftrightarrow t = t_0 \leftrightarrow_R \ldots \leftrightarrow_R t_n = t'$$

Exemplu

- □ Fie \mathcal{L} un limbaj de ordinul l în care $\mathbf{C} = \{0\}$ și $\mathbf{F} = \{s, +\}$ cu ari(s) = 1, ari(+) = 2.
- ☐ Fie sistemul de rescriere

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}.$$

- \square Considerăm relația de rescriere \rightarrow_R generată de R.
- \square Să arătăm că s s 0+s s s $0 \stackrel{*}{\rightarrow}_R s$ s s s s s s s

Exemplu (cont.)

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}$$

 $\square \ t = s s 0 + s s s 0$

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(l)] \text{ si } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } l \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- $\Box t = s s 0 + s s s 0$
- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } I \to r \in R, \text{ } \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- $\Box t = s s 0 + s s s 0$
- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$

 - r = s(x + y)
- \square Substituție θ

```
\begin{array}{ccc} t \to_R t' & \Leftrightarrow & t \text{ este } c[z \leftarrow \theta(I)] \text{ si } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} \\ & c \text{ context, } I \to r \in R, \ \theta \text{ substituție} \end{array}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- $\Box t = s s 0 + s s s 0$
- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$
 - $\square I = x + s y$
 - r = s(x + y)
- \square Substituție θ
- \Box Contextul c = z

 - $\square c[z \leftarrow \theta(r)] = s(s s 0 + s s 0) = t'$

$$t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ si } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde}$$

$$c \text{ context, } I \to r \in R, \ \theta \text{ substituție}$$

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- $\Box t = s s 0 + s s s 0$
- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$
 - $\square I = x + s y$

$$r = s(x + y)$$

- \square Substituție θ
- \Box Contextul c = z
- \square În concluzie, avem $s s 0 + s s s 0 \rightarrow_R s(s s 0 + s s 0)$

Exemplu (cont.)

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ si } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ si } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde}
c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Acum considerăm t = s(s s 0 + s s 0)
- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$
 - $\square I = x + s y$

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$
- \square Substituție θ

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ si } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Acum considerăm t = s(s s 0 + s s 0)
- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$
 - $\square I = x + s y$
 - r = s(x + y)
- \square Substituție θ
- \square Contextul c := s(z)

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Acum considerăm t = s(s s 0 + s s 0)
- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$
 - $\square I = x + s y$

$$r = s(x + y)$$

- \square Substituție θ
- \square Contextul c := s(z)
 - $\square c[z \leftarrow \theta(I)] = s(s s 0 + s s 0) = t$
- \square În concluzie, avem $s(s s 0 + s s 0) \rightarrow_R s(s(s s 0 + s 0))$

Exemplu (cont.)

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Acum considerăm t = s(s(s s 0 + s 0))
- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$

 - r = s(x + y)
- \square Substituție θ

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ si } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde}
c \text{ context, } I \to r \in R, \text{ } \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Acum considerăm t = s(s(s s 0 + s 0))
- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$
 - $\square I = x + s y$
 - r = s(x + y)
- \square Substituție θ
- \square Contextul c := s(s(z))

```
t \to_R t' \Leftrightarrow t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context}, I \to r \in R, \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Regula de rescriere $x + s y \rightarrow s(x + y) \in R$
 - $\square I = x + s y$

$$r = s(x + y)$$

- \square Substituție θ
- \square Contextul c := s(s(z))
- \square În concluzie, avem $s(s(s s 0 + s 0)) \rightarrow_R s(s(s(s s 0 + 0)))$

Exemplu (cont.)

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(l)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } l \to r \in R, \text{ } \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

 \square Acum considerăm t = s(s(s(s s 0 + 0)))

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Acum considerăm t = s(s(s(s s 0 + 0)))
- \square Regula de rescriere $x + 0 \rightarrow x \in R$
 - I = x + 0
 - \square r = x

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(l)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde} c \text{ context, } l \to r \in R, \text{ } \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Acum considerăm t = s(s(s(s s 0 + 0)))
- \square Regula de rescriere $x + 0 \rightarrow x \in R$

 - $\Gamma r = x$
- \square Substituție θ

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde}
c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Acum considerăm t = s(s(s(s s 0 + 0)))
- \square Regula de rescriere $x + 0 \rightarrow x \in R$

 - $\Gamma r = x$
- \square Substituție θ
- \square Contextul c := s(s(s(z)))

```
t \to_R t' \Leftrightarrow t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde}
c \text{ context, } I \to r \in R, \text{ } \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

- \square Acum considerăm t = s(s(s(s s 0 + 0)))
- \square Regula de rescriere $x + 0 \rightarrow x \in R$

 - $\Gamma r = x$
- \square Substituție θ
- \square Contextul c := s(s(s(z)))
 - $c[z \leftarrow \theta(l)] = s(s(s(s \circ 0 + 0))) = t$
- \square În concluzie, avem $s(s(s(s s 0 + 0))) \rightarrow_R s(s(s(s(s s 0)))))$

Exemplu (cont.)

```
t \to_R t' \quad \Leftrightarrow \quad t \text{ este } c[z \leftarrow \theta(I)] \text{ și } t' \text{ este } c[z \leftarrow \theta(r)], \text{ unde}
c \text{ context, } I \to r \in R, \ \theta \text{ substituție}
```

$$R = \{x + 0 \rightarrow x, \ x + s \ y \rightarrow s(x + y)\}\$$

În concluzie, am obținut

Rescrierea termenilor

Fie $\mathcal L$ un limbaj de ordinul I.

regulă de rescriere
$$I \rightarrow r$$
 I , r termeni din $Trm_{\mathcal{L}}$ sistem de rescriere (TRS) R mai multe $I \rightarrow r$ relația de rescriere \rightarrow_R generată de R echivalența $\stackrel{*}{\leftrightarrow}_R$ generată de \rightarrow_R

 $(Trm_{\mathcal{L}}, R)$ este un sistem de rescriere abstract.

Confluență. Perechi critice.

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de constantă e, un simbol de funcție i de aritate 1 și un simbol de funcție f de aritate 2.

Fie sistemul de rescriere

$$R = \{ f(f(x, y), u) \to f(x, f(y, u)), \ f(i(x_1), x_1) \to e \}$$

Observăm că avem următoarele rescrieri

$$f(f(i(x_1), x_1), u)$$
 $f(i(x_1), f(x_1, u))$
 $f(e, u)$

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de constantă e, un simbol de funcție i de aritate 1 și un simbol de funcție f de aritate 2.

Fie sistemul de rescriere

$$R = \{ f(f(x, y), u) \to f(x, f(y, u)), \ f(i(x_1), x_1) \to e \}$$

Observăm că avem următoarele rescrieri

$$f(f(i(x_1), x_1), u)$$

$$f(i(x_1), f(x_1, u))$$

$$f(e, u)$$

Cum putem identifica astfel de cazuri pentru un sistem de rescriere oarecare?

Fie $\mathcal L$ un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

Definiție

Fie $\mathcal L$ un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

Definiție

Fie $\mathcal L$ un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

Definiție

- 2 există un subtermen t al lui l_1 care nu este variabilă $(l_1 = c[z \leftarrow t], \text{ unde } nr_z(c) = 1, t \text{ nu este variabilă})$

Fie $\mathcal L$ un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

Definiție

- 2 există un subtermen t al lui l_1 care nu este variabilă $(l_1 = c[z \leftarrow t]$, unde $nr_z(c) = 1$, t nu este variabilă)
- θ există θ c.g.u pentru t și θ (i.e. $\theta(t) = \theta(\theta_2)$).

Fie \mathcal{L} un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

Definiție

Fie $l_1 \rightarrow r_1$, $l_2 \rightarrow r_2 \in R$ astfel încât:

- 2 există un subtermen t al lui l_1 care nu este variabilă $(l_1 = c[z \leftarrow t]$, unde $nr_z(c) = 1$, t nu este variabilă)
- 3 există θ c.g.u pentru t și l_2 (i.e. $\theta(t) = \theta(l_2)$).

Perechea $(\theta(r_1), \theta(c)[z \leftarrow \theta(r_2)])$ se numește pereche critică.

$$R = \{ f(f(x,y), u) \to f(x, f(y, u)), \ f(i(x_1), x_1) \to e \}$$

$$R = \{ f(f(x, y), u) \to f(x, f(y, u)), \ f(i(x_1), x_1) \to e \}$$

$$R = \{ f(f(x, y), u) \to f(x, f(y, u)), f(i(x_1), x_1) \to e \}$$

- 2 Luăm subtermenul t = f(x, y) al lui $l_1 = f(f(x, y), u)$

$$R = \{ f(f(x, y), u) \to f(x, f(y, u)), \ f(i(x_1), x_1) \to e \}$$

- 2 Luăm subtermenul t = f(x, y) al lui $l_1 = f(f(x, y), u)$
- 3 $\theta = \{x \mapsto i(x_1), y \mapsto x_1\}$ c.g.u. pt. $t \neq i_2 = f(i(x_1), x_1)$.

Exemple

$$R = \{ f(f(x, y), u) \to f(x, f(y, u)), \ f(i(x_1), x_1) \to e \}$$

- $Var(f(f(x,y),u)) = \{x,y,u\} \text{ si } Var(f(i(x_1),x_1)) = \{x_1\}$
- 2 Luăm subtermenul t = f(x, y) al lui $l_1 = f(f(x, y), u)$
 - $I_1 = c[z \leftarrow t]$ pt. contextul c = f(z, u)
- 3 $\theta = \{x \mapsto i(x_1), y \mapsto x_1\}$ c.g.u. pt. $t \neq i_2 = f(i(x_1), x_1)$. $f(f(i(x_1), x_1), u)$

$$f(i(x_1), f(x_1, u))$$

$$f(i(x_1), f(x_1, u))$$

$$f(e, u)$$

Pereche critică: $(f(i(x_1), f(x_1, u)), f(e, u))$

Confluență și perechi critice

Fie $\mathcal L$ un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

Teoremă (Teorema Perechilor Critice)

Dacă R este noetherian, atunci sunt echivalente:

- R este confluent,
- $t_1 \downarrow_R t_2$ pentru orice pereche critică (t_1, t_2) .

Consecință

Corolar

Confluența unui TRS noetherian este decidabilă.

Algoritm:

- \cdot pt. or. pereche de reguli de rescriere $\emph{l}_1
 ightarrow \emph{r}_1$ și $\emph{l}_2
 ightarrow \emph{r}_2$
- · se încearcă generarea perechilor critice (t_1, t_2)
- · pt. or. pereche critică (t_1,t_2) , se arată că $t_1\downarrow_R t_2$

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

Exemplu

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

 \square R este noetherian.

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- \square R este noetherian.
- □ Determinăm perechile critice:

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- \square R este noetherian.
- □ Determinăm perechile critice:
 - Regulile $l_1 = f(f(x)) \rightarrow x = r_1$ și $l_2 = f(f(y)) \rightarrow y = r_2$.

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- \square R este noetherian.
- □ Determinăm perechile critice:
 - Regulile $I_1 = f(f(x)) \to x = r_1$ și $I_2 = f(f(y)) \to y = r_2$. Subtermenii lui I_1 care nu sunt variabile sunt f(f(x)) și f(x).

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- □ Determinăm perechile critice:
 - Regulile $I_1 = f(f(x)) \to x = r_1$ și $I_2 = f(f(y)) \to y = r_2$. Subtermenii lui I_1 care nu sunt variabile sunt f(f(x)) și f(x).
 - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică: $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- ☐ Determinăm perechile critice:
 - Regulile $I_1 = f(f(x)) \to x = r_1$ și $I_2 = f(f(y)) \to y = r_2$. Subtermenii lui I_1 care nu sunt variabile sunt f(f(x)) și f(x).
 - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică: $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$
 - $t := f(x), c = f(z), \theta := \{x \leftarrow f(y)\}$ Perechea critică: $\theta(r_1) = f(y), \theta(c)[z \leftarrow \theta(r_2)] = f(y)$

Exempli

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- ☐ Determinăm perechile critice:
 - Regulile $I_1 = f(f(x)) \to x = r_1$ și $I_2 = f(f(y)) \to y = r_2$. Subtermenii lui I_1 care nu sunt variabile sunt f(f(x)) și f(x).
 - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică: $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$
 - $t := f(x), c = f(z), \theta := \{x \leftarrow f(y)\}$ Perechea critică: $\theta(r_1) = f(y), \theta(c)[z \leftarrow \theta(r_2)] = f(y)$
- \square Perechile critice sunt (y, y) și (f(y), f(y)).

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- □ Determinăm perechile critice:
 - Regulile $l_1 = f(f(x)) \rightarrow x = r_1$ și $l_2 = f(f(y)) \rightarrow y = r_2$. Subtermenii lui l_1 care nu sunt variabile sunt f(f(x)) și f(x).
 - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică: $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$
 - $t := f(x), c = f(z), \theta := \{x \leftarrow f(y)\}$ Perechea critică: $\theta(r_1) = f(y), \theta(c)[z \leftarrow \theta(r_2)] = f(y)$
- \square Perechile critice sunt (y, y) și (f(y), f(y)).
- \square Deoarece $y \downarrow y$ și $f(y) \downarrow f(y)$, sistemul de rescriere R este confluent.

Terminarea sistemelor de rescriere

Arbori de reducere

Fie \mathcal{L} un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

- \square Arborele de reducere al unui termen t este definit astfel:
 - \square rădăcina arborelui are eticheta t,
 - \square descendenții nodului cu eticheta u sunt etichetați cu termenii u' care verifică $u \to_R u'$.

Arbori de reducere

Fie \mathcal{L} un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

- \square Arborele de reducere al unui termen t este definit astfel:
 - \square rădăcina arborelui are eticheta t,
 - \square descendenții nodului cu eticheta u sunt etichetați cu termenii u' care verifică $u \rightarrow_R u'$.
- □ Orice nod al unui arbore de reducere are un număr finit de descendenți deoarece *R* este o mulțime finită.

Arborele de reducere

- $\Box \text{ Fie } R = \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}\$
- \square Arborele de reducere al termenului s(0) + s(0+0)

Terminare

Propoziție

Sunt echivalente:

- R este noetherian,
- 2 oricărui termen t îi poate fi asociat un număr natural $\mu(t) \in \mathbb{N}$ astfel încât $t \to_R t'$ implică $\mu(t) > \mu(t')$.

Terminare

Propoziție

Sunt echivalente:

- R este noetherian,
- 2 oricărui termen t îi poate fi asociat un număr natural $\mu(t) \in \mathbb{N}$ astfel încât $t \to_R t'$ implică $\mu(t) > \mu(t')$.

Demonstrație

 $(2\Rightarrow 1)$ $\mathbb N$ nu conține lanțuri infinite $n_1>n_2>\cdots>n_k>\cdots$.

Terminare

Propoziție

Sunt echivalente:

- R este noetherian,
- 2 oricărui termen t îi poate fi asociat un număr natural $\mu(t) \in \mathbb{N}$ astfel încât $t \to_R t'$ implică $\mu(t) > \mu(t')$.

Demonstrație

- $(2 \Rightarrow 1)$ N nu conține lanțuri infinite $n_1 > n_2 > \cdots > n_k > \cdots$.
- $(1\Rightarrow 2)$ Într-un sistem de rescriere noetherian orice termen are un arbore de reducere finit și definim

$$\mu(t) = \hat{n}$$
alţimea arborelui de reducere asociat lui t .

Evident
$$t \to_R t' \Rightarrow \mu(t) > \mu(t')$$
.

Fie \mathcal{L} un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

Definiție

O ordine strictă > pe $Trm_{\mathcal{L}}$ se numește ordine de reducere dacă

Fie \mathcal{L} un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

Definiție

- O ordine strictă > pe $Trm_{\mathcal{L}}$ se numește ordine de reducere dacă
 - □ este *well-founded*:
 - nu există lanțuri descrescătoare infinite, i.e. nu există o secvență infinită de termeni t_0, t_1, t_2, \ldots astfel încât $t_0 > t_1 > t_2 > \ldots$

Fie \mathcal{L} un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

Definiție

- O ordine strictă > pe $Trm_{\mathcal{L}}$ se numește ordine de reducere dacă
 - □ este *well-founded*:
 - nu există lanțuri descrescătoare infinite, i.e. nu există o secvență infinită de termeni t_0, t_1, t_2, \ldots astfel încât $t_0 > t_1 > t_2 > \ldots$
 - □ este compatibilă cu simbolurile de funcții:
 - dacă $s_1 > s_2$, atunci $f(t_1, \ldots, t_{i-1}, s_1, t_{i+1}, \ldots, t_n) > f(t_1, \ldots, t_{i-1}, s_2, t_{i+1}, \ldots, t_n)$, pentru orice simbol de funcție f de aritate n

Fie \mathcal{L} un limbaj de ordinul I și R un sistem de rescriere pentru termeni.

Definiție

O ordine strictă > pe Trm_L se numește ordine de reducere dacă
□ este well-founded:
□ nu există lanțuri descrescătoare infinite, i.e. nu există o secvență infinită de termeni t₀, t₁, t₂,... astfel încât t₀ > t₁ > t₂ > ...
□ este compatibilă cu simbolurile de funcții:
□ dacă s₁ > s₂, atunci f(t₁,..., t_{i-1}, s₁, t_{i+1},..., t_n) > f(t₁,..., t_{i-1}, s₂, t_{i+1},..., t_n), pentru orice simbol de funcție f de aritate n
□ este închisă la substituții:
□ dacă s₁ > s₂, atunci θ(s₁) > θ(s₂) pentru orice substituție θ

Exemplu

Relația de ordine strictă > pe $\mathit{Trm}_{\mathcal{L}}$ definită prin

$$s > t$$
 ddacă $|s| > |t|$,

unde |t| este lungimea termenului t (numărul de simboluri din t fără paranteze)

Exemplu

Relația de ordine strictă > pe $Trm_{\mathcal{L}}$ definită prin

$$s > t$$
 ddacă $|s| > |t|$,

unde |t| este lungimea termenului t (numărul de simboluri din t fără paranteze)

□ este well-founded și compatibilă cu operațiile

Exemplu

Relația de ordine strictă > pe $\mathit{Trm}_{\mathcal{L}}$ definită prin

$$s > t$$
 ddacă $|s| > |t|$,

unde |t| este lungimea termenului t (numărul de simboluri din t fără paranteze)

- □ este well-founded și compatibilă cu operațiile
- ☐ în general, nu este închisă la substituții:

$$|f(f(x,x),y)| = 5 > 3 = |f(y,y)|$$

Exemplu

Relația de ordine strictă > pe $\mathit{Trm}_{\mathcal{L}}$ definită prin

$$s > t$$
 ddacă $|s| > |t|$,

unde |t| este lungimea termenului t (numărul de simboluri din t fără paranteze)

- □ este well-founded și compatibilă cu operațiile
- ☐ în general, nu este închisă la substituții:

$$|f(f(x,x),y)| = 5 > 3 = |f(y,y)|$$

dar pentru substituția $\theta(y) = f(x, x)$ avem

$$|\theta(f(f(x,x),y))| = |f(f(x,x),f(x,x))| = 7$$

 $|\theta(f(y,y))| = |f(f(x,x),f(x,x))| = 7$

Exemplu

Relația de ordine strictă > pe $\mathit{Trm}_{\mathcal{L}}$ definită prin

$$s > t$$
 ddacă $|s| > |t|$,

unde |t| este lungimea termenului t (numărul de simboluri din t fără paranteze)

- □ este well-founded și compatibilă cu operațiile
- ☐ în general, nu este închisă la substituții:

$$|f(f(x,x),y)| = 5 > 3 = |f(y,y)|$$

dar pentru substituția $\theta(y) = f(x, x)$ avem

$$|\theta(f(f(x,x),y))| = |f(f(x,x),f(x,x))| = 7$$

 $|\theta(f(y,y))| = |f(f(x,x),f(x,x))| = 7$

Deci nu este, în general, ordine de reducere.

Exemplu

Relația de ordine strictă > pe $Trm_{\mathcal{L}}$ definită prin

|s|>t ddacă |s|>|t| și $nr_x(s)\geq nr_x(t)$, pentru orice $x\in Var$

este o ordine de reducere.

Exemplu

Ordinea lexicografică $>_{lpo}$ indusă pe mulțimea de termeni $\mathit{Trm}_{\mathcal{L}}$ de o relație de ordine strictă > pe limbajul \mathcal{L} este o ordine de reducere.

Exemplu

Ordinea lexicografică $>_{lpo}$ indusă pe mulțimea de termeni $\mathit{Trm}_{\mathcal{L}}$ de o relație de ordine strictă > pe limbajul \mathcal{L} este o ordine de reducere.

 $s >_{lpo} t ddacă$

Exemplu

Ordinea lexicografică $>_{lpo}$ indusă pe mulțimea de termeni $\mathit{Trm}_{\mathcal{L}}$ de o relație de ordine strictă > pe limbajul \mathcal{L} este o ordine de reducere.

$$s>_{lpo}t$$
 ddacă $(\mathsf{LPO1})\ t\in \mathit{Var}(s)\ {
m si}\ s
eq t,\ {
m sau}$

Exemplu

Ordinea lexicografică $>_{lpo}$ indusă pe mulțimea de termeni $\mathit{Trm}_{\mathcal{L}}$ de o relație de ordine strictă > pe limbajul \mathcal{L} este o ordine de reducere.

$$s>_{lpo}t$$
 ddacă $(\mathsf{LPO1})\ t\in \mathit{Var}(s)\ \mathsf{si}\ s
eq t,\ \mathsf{sau} \ (\mathsf{LPO2})\ s=f(s_1,\ldots,s_m),\ t=g(t_1,\ldots,t_n)\ \mathsf{si}$

Exemplu

Ordinea lexicografică $>_{lpo}$ indusă pe mulțimea de termeni $Trm_{\mathcal{L}}$ de o relație de ordine strictă > pe limbajul \mathcal{L} este o ordine de reducere.

Exemplu

Ordinea lexicografică $>_{lpo}$ indusă pe mulțimea de termeni $Trm_{\mathcal{L}}$ de o relație de ordine strictă > pe limbajul \mathcal{L} este o ordine de reducere.

```
s>_{lpo}t ddacă  (\mathsf{LPO1})\ t\in \mathit{Var}(s)\ \mathsf{si}\ s \neq t,\ \mathsf{sau}   (\mathsf{LPO2})\ s=f(s_1,\ldots,s_m),\ t=g(t_1,\ldots,t_n)\ \mathsf{si}   (\mathsf{LPO2a})\ \mathsf{exist}\ i,\ 1\leq i\leq m\ \mathsf{astfel}\ \mathsf{nncat}\ s_i\geq_{lpo}t,\ \mathsf{sau}   (\mathsf{LPO2b})\ f>g\ \mathsf{si}\ s>_{lpo}t_i,\ \mathsf{pentru}\ \mathsf{orice}\ j,\ 1\leq j\leq n
```

Exemplu

Ordinea lexicografică $>_{lpo}$ indusă pe mulțimea de termeni $\mathit{Trm}_{\mathcal{L}}$ de o relație de ordine strictă > pe limbajul \mathcal{L} este o ordine de reducere.

```
\begin{split} s>_{lpo}t & \text{ddacă}\\ & \text{(LPO1)}\ t\in \textit{Var}(s)\ \text{si}\ s\neq t,\ \text{sau}\\ & \text{(LPO2)}\ s=f(s_1,\ldots,s_m),\ t=g(t_1,\ldots,t_n)\ \text{si}\\ & \text{(LPO2a)}\ \text{există}\ i,\ 1\leq i\leq m\ \text{astfel}\ \text{încât}\ s_i\geq_{lpo}t,\ \text{sau}\\ & \text{(LPO2b)}\ f>g\ \text{si}\ s>_{lpo}t_j,\ \text{pentru}\ \text{orice}\ j,\ 1\leq j\leq n\\ & \text{(LPO2c)}\ f=g,\ s>_{lpo}t_j,\ \text{pentru}\ \text{orice}\ j,\ 1\leq j\leq n,\ \text{si}\ \text{există}\ i,\ 1\leq i\leq m\ \text{astfel}\ \text{încât}\ s_1=t_1,\ldots,s_{i-1}=t_{i-1}\ \text{si}\ s_i>_{lpo}t_i. \end{split}
```

```
\begin{split} s>_{lpo}t & \text{ddacă}\\ & \text{(LPO1)}\ t\in Var\ \text{si}\ s\neq t,\ \text{sau}\\ & \text{(LPO2)}\ s=f(s_1,\ldots,s_m),\ t=g(t_1,\ldots,t_n)\ \text{si}\\ & \text{(LPO2a)}\ \text{există}\ i,\ 1\leq i\leq m\ \text{astfel}\ \hat{\text{nncât}}\ s_i\geq_{lpo}t,\ \text{sau}\\ & \text{(LPO2b)}\ f>g\ \text{si}\ s>_{lpo}t_j,\ \text{pentru orice}\ j,\ 1\leq j\leq n\\ & \text{(LPO2c)}\ f=g,\ s>_{lpo}t_j,\ \text{pentru orice}\ j,\ 1\leq j\leq n,\ \text{si}\ \text{există}\ i,\ 1\leq i\leq m\\ & \text{astfel}\ \hat{\text{nncât}}\ s_1=t_1,\ldots,s_{i-1}=t_{i-1}\ \text{si}\ s_i>_{lpo}t_i. \end{split}
```

- \square Fie $\mathcal L$ un limbaj de ordinul I cu un simbol de constantă e, un simbol de funcție i de aritate 1 și un simbol de funcție f de aritate 2.
- \square Considerăm i > f > e.

```
\begin{split} s>_{lpo}t & \text{ddacă}\\ & \text{(LPO1)}\ t\in Var\ \text{si}\ s\neq t,\ \text{sau}\\ & \text{(LPO2)}\ s=f(s_1,\ldots,s_m),\ t=g(t_1,\ldots,t_n)\ \text{si}\\ & \text{(LPO2a)}\ \text{există}\ i,\ 1\leq i\leq m\ \text{astfel}\ \hat{\text{nncât}}\ s_i\geq_{lpo}t,\ \text{sau}\\ & \text{(LPO2b)}\ f>g\ \text{si}\ s>_{lpo}t_j,\ \text{pentru orice}\ j,\ 1\leq j\leq n\\ & \text{(LPO2c)}\ f=g,\ s>_{lpo}t_j,\ \text{pentru orice}\ j,\ 1\leq j\leq n,\ \text{si}\ \text{există}\ i,\ 1\leq i\leq m\\ & \text{astfel}\ \hat{\text{nncât}}\ s_1=t_1,\ldots,s_{i-1}=t_{i-1}\ \text{si}\ s_i>_{lpo}t_i. \end{split}
```

- \square Fie \mathcal{L} un limbaj de ordinul I cu un simbol de constantă e, un simbol de funcție i de aritate 1 și un simbol de funcție f de aritate 2.
- \square Considerăm i > f > e.
- ☐ Atunci avem:
 - $\Box f(x,e) >_{lpo} x din (LPO1)$

```
\begin{split} s>_{lpo}t & \text{ddacă} \\ & \text{(LPO1)}\ t \in \textit{Var}\ \text{si}\ s \neq t,\ \text{sau} \\ & \text{(LPO2)}\ s = f(s_1,\ldots,s_m),\ t = g(t_1,\ldots,t_n)\ \text{si} \\ & \text{(LPO2a)}\ \text{există}\ i,\ 1 \leq i \leq m\ \text{astfel}\ \hat{\text{lncat}}\ s_i \geq_{lpo}t,\ \text{sau} \\ & \text{(LPO2b)}\ f>g\ \text{si}\ s>_{lpo}t_j,\ \text{pentru orice}\ j,\ 1 \leq j \leq n \\ & \text{(LPO2c)}\ f=g,\ s>_{lpo}t_j,\ \text{pentru orice}\ j,\ 1 \leq j \leq n,\ \text{si}\ \text{există}\ i,\ 1 \leq i \leq m \\ & \text{astfel}\ \hat{\text{lncat}}\ s_1 = t_1,\ldots,s_{i-1} = t_{i-1}\ \text{si}\ s_i>_{lpo}t_i. \end{split}
```

- \square Fie \mathcal{L} un limbaj de ordinul I cu un simbol de constantă e, un simbol de funcție i de aritate 1 și un simbol de funcție f de aritate 2.
- \square Considerăm i > f > e.
- Atunci avem:
 - $\Box f(x,e) >_{lpo} x din (LPO1)$
 - \square $i(e) >_{lpo} e \text{ din (LPO2a) deoarece } e \ge_{lpo} e$

```
\begin{split} s>_{lpo}t & \text{ddacă} \\ & \text{(LPO1)}\ t \in Var\ \text{si}\ s \neq t,\ \text{sau} \\ & \text{(LPO2)}\ s = f(s_1,\ldots,s_m),\ t = g(t_1,\ldots,t_n)\ \text{si} \\ & \text{(LPO2a)}\ \text{există}\ i,\ 1 \leq i \leq m\ \text{astfel}\ \hat{\text{nncât}}\ s_i \geq_{lpo}t,\ \text{sau} \\ & \text{(LPO2b)}\ f>g\ \text{si}\ s>_{lpo}t_j,\ \text{pentru orice}\ j,\ 1 \leq j \leq n \\ & \text{(LPO2c)}\ f=g,\ s>_{lpo}t_j,\ \text{pentru orice}\ j,\ 1 \leq j \leq n,\ \text{si}\ \text{există}\ i,\ 1 \leq i \leq m \\ & \text{astfel}\ \hat{\text{nncât}}\ s_1 = t_1,\ldots,s_{i-1} = t_{i-1}\ \text{si}\ s_i>_{lpo}t_i. \end{split}
```

- \square Fie \mathcal{L} un limbaj de ordinul I cu un simbol de constantă e, un simbol de funcție i de aritate 1 și un simbol de funcție f de aritate 2.
- \square Considerăm i > f > e.
- Atunci avem:
 - $\Box f(x,e) >_{lpo} x din (LPO1)$

 - $||i(f(x,y))>_{lpo} f(i(y),i(x))|$ din (LPO2b) deoarece i>f si, din (LPO2c), avem $i(f(x,y))>_{lpo} i(y)$ și $i(f(x,y))>_{lpo} i(x)$

Teoremă

Următoarele sunt echivalente:

- 11 Un sistem de rescrire R este noetherian.
- **2** Există o ordine de reducere > care satisface l > r pentru orice $l \rightarrow r \in R$.

- □ Procedură pentru a completa un TRS noetherian.
- □ Intrare: R un sistem de rescriere (TRS) noetherian.
- ☐ leşire:
 - \square T un sistem de rescriere (TRS) = completarea lui R.
 - eşec

□ INTRARE: R un sistem de rescriere (TRS) noetherian.

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:
 - $\blacksquare \mathsf{CP} := \mathsf{CP}(\mathsf{T}) = \{(t_1, t_2) \mid (t_1, t_2) \mathsf{ pereche critică } \mathsf{\hat{n}} \mathsf{ T} \}$

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

 - **2** Dacă $t_1 \downarrow t_2$, oricare $(t_1, t_2) \in CP$, atunci STOP (*T completarea lui R*).

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

 - 2 Dacă $t_1 \downarrow t_2$, oricare $(t_1, t_2) \in CP$, atunci STOP (*T completarea lui R*).
 - 3 Dacă $(t_1, t_2) \in CP$, $t_1 \not\downarrow t_2$ atunci:
 - dacă $fn(t_1) > fn(t_2)$ atunci $T := T \cup \{fn(t_1) \rightarrow fn(t_2)\}$,
 - dacă $fn(t_2) > fn(t_1)$ atunci $T := T \cup \{fn(t_2) \rightarrow fn(t_1)\}$,
 - altfel, STOP (completare eșuată).

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

 - Dacă $t_1 \downarrow t_2$, oricare $(t_1, t_2) \in CP$, atunci STOP (*T completarea lui R*).
 - \blacksquare Dacă $(t_1, t_2) \in CP$, $t_1 \not\downarrow t_2$ atunci:
 - dacă $fn(t_1) > fn(t_2)$ atunci $T := T \cup \{fn(t_1) \rightarrow fn(t_2)\}$,
 - dacă $fn(t_2) > fn(t_1)$ atunci $T := T \cup \{fn(t_2) \rightarrow fn(t_1)\}$,
 - altfel, STOP (completare eșuată).
- ☐ IEŞIRE: T completarea lui R sau eşec.

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

 - 2 Dacă $t_1 \downarrow t_2$, oricare $(t_1, t_2) \in CP$, atunci STOP (*T completarea lui R*).
 - 3 Dacă $(t_1, t_2) \in CP$, $t_1 \not\downarrow t_2$ atunci:
 - dacă $fn(t_1) > fn(t_2)$ atunci $T := T \cup \{fn(t_1) \rightarrow fn(t_2)\}$,
 - $\blacksquare \ \mathsf{dac} \ \mathsf{\mathit{fn}}(t_2) > \mathsf{\mathit{fn}}(t_1) \ \mathsf{\mathit{atunci}} \ \mathsf{T} := \mathsf{T} \ \cup \ \{ \mathsf{\mathit{fn}}(t_2) \to \mathsf{\mathit{fn}}(t_1) \},$
 - altfel, STOP (completare eșuată).
- ☐ IEŞIRE: T completarea lui R sau eşec.

Atenție! Succesul completării depinde de ordinea de reducere >.

Exempli

- \square Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție * de aritate 2.
- □ Fie $R = \{(x * y) * (y * v) \rightarrow y\}.$
- □ Vrem să determinăm completarea sistemului *R* aplicând algoritmul Knuth-Bendix.
- □ INIŢIALIZARE:
 - $T = R = \{(x * y) * (y * v) \rightarrow y\},\$
 - Ordine de reducere:

$$s>t$$
 ddacă $|s|>|t|$ și $nr_x(s)\geq nr_x(t)$, pentru orice $x\in X$

Exemplu

□ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Exemplu

☐ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui l_1 care nu sunt variabile:

$$(x * y), (y * v), (x * y) * (y * v).$$

Exemplu

☐ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui l_1 care nu sunt variabile:

$$(x*y), (y*v), (x*y)*(y*v).$$

□ $t := x * y, c = z * (y * v), \theta := \{x \leftarrow x' * y', y \leftarrow y' * v'\}$ $\theta(r_1) = y' * v', \theta(c)[z \leftarrow \theta(r_2)] = y' * ((y' * v') * v)$ Perechea critică: (y' * v', y' * ((y' * v') * v)).

Exemplu

☐ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui l_1 care nu sunt variabile:

$$(x*y), (y*v), (x*y)*(y*v).$$

- $\begin{array}{c} \blacksquare \ \ t := x * y, \ c = z * (y * v), \ \theta := \{x \leftarrow x' * y', y \leftarrow y' * v'\} \\ \theta(r_1) = y' * v', \ \theta(c)[z \leftarrow \theta(r_2)] = y' * ((y' * v') * v) \\ \text{Perechea critică:} \ \ (y' * v', y' * ((y' * v') * v)). \end{array}$

Exemplu

☐ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui l_1 care nu sunt variabile:

$$(x * y), (y * v), (x * y) * (y * v).$$

- $\begin{array}{c} \blacksquare \ \ t := x * y, \ c = z * (y * v), \ \theta := \{x \leftarrow x' * y', y \leftarrow y' * v'\} \\ \theta(r_1) = y' * v', \ \theta(c)[z \leftarrow \theta(r_2)] = y' * ((y' * v') * v) \\ \text{Perechea critică:} \ \ (y' * v', y' * ((y' * v') * v)). \end{array}$
- $t := (x * y) * (y * v), c = z, \theta := \{x \leftarrow x', y \leftarrow y', v \leftarrow v'\}$ $\theta(r_1) = y', \theta(c)[z \leftarrow \theta(r_2)] = y'$ Perechea critică: (y', y').

Exemplu

□ Perechile critice:

1
$$(y'*v', y'*((y'*v')*v)),$$

$$(x' * y', (x * (x' * y')) * y'),$$

(y', y').

Exempli

- □ Perechile critice:
 - (y' * v', y' * ((y' * v') * v)),
 - (x'*y',(x*(x'*y'))*y'),
 - (y', y').
- □ Avem

 - $\square (x*(v*y))*y>v*y$

Exemplu

- □ Perechile critice:
 - 1 (y' * v', y' * ((y' * v') * v)),2 (x' * y', (x * (x' * y')) * y'),
 - (y', y').
- □ Avem

 - $\square (x * (v * y)) * y > v * y$
- Considerăm

$$T := T \cup \{y * ((y * x) * v) \rightarrow y * x, (x * (v * y)) * y \rightarrow v * y\}$$

 \square T este complet și este completarea lui R_E .

Pe săptămâna viitoare!