

ESCUELA DE FINANZAS, ECONOMÍA Y GOBIERNO PROGRAMA DE ECONOMÍA

ASIGNATURA : Econometría 2

CÓDIGO : EC0251 VIGENCIA : 2023-1

INTENSIDAD HORARIA : 3 horas semanales

MODALIDAD : Magistral

CRÉDITOS : 3

PRE-REQUISITOS : Econometría 1

CO-REQUISITOS : Ninguno SEMESTRE : 2023-2

DOCENTES : Gustavo A. García (ggarci24@eafit.edu.co)
HORARIO CLASE : Martes 9:00 a.m. - 10:30 a.m. Aula 17204

Jueves 9:00 a.m. - 10:30 a.m. Aula 17301

HORARIO ATENCIÓN : Martes 3:00 p.m. - 5:00 p.m. (Cita previa)

I. Justificación

Este curso ofrece a los estudiantes los fundamentos teóricos y prácticos relacionados con varias herramientas utilizadas en el análisis empírico de fenómenos económicos. En particular, se estudian estructuras de datos temporales, datos de panel, extensiones a los modelos de cortes transversal y fenómenos de variable respuesta dicotómica. Para esto se requiere conocer las implicaciones que conlleva relajar algunos de los supuestos del modelo lineal, tales como la independencia serial, exogeneidad y linealidad; supuestos que son bastante cuestionables en algunas aplicaciones cuantitativas.

II. Objetivo general

Conocer, desarrollar y aplicar algunas técnicas econométricas que permitan realizar análisis cuantitativos de algunos fenómenos económicos que generalmente son dinámicos, estocásticos y simultáneos.

III. Competencias genéricas

- Pensamiento crítico: a través de aplicaciones econométricas el estudiante integra la teoría económica, la inferencia estadística y la economía matemática para el análisis de datos económicos, y las implicaciones que de estos se deducen.
- Razonamiento cuantitativo: aplicación de principios económicos, estadísticos, y
 matemáticos para el análisis de datos económicos. La implementación de
 dichos principios requiere el uso de software especializado, el cual los
 estudiantes deben manipular a nivel intermedio.
- Capacidad de comunicación oral y escrita: los estudiantes deben presentar de manera oral y escrita el análisis econométrico de una aplicación que deben seleccionar considerando el conocimiento adquirido en el curso.
- Trabajo en equipo: trabaja de manera colaborativa con sus pares en el desarrollo de ejercicios y aplicaciones econométricas.

Competencias específicas del programa:

- Comprender la interacción entre la teoría económica, la estadística, la economía matemática y la computación para realizar análisis económico a partir de datos de esta índole.
- Aplicar conceptos intermedios de la econometría y utilizar herramientas adecuadas para realizar análisis económicos a partir de datos observados.

IV. Objetivos y resultados de aprendizaje

Objetivos de Aprendizaje	Resultados de Aprendizaje	Unidad didáctica relacionada
Comprender los supuestos básicos de mínimos cuadrados ordinarios (MCO) y mínimos cuadrados generalizados (MCG) en el caso de heterocedasticidad, e identificar cuando dichas técnicas deben ser utilizadas.	Aplicar e interpretar, según el contexto (cumplimiento o incumplimiento de supuestos), el estimador MCO o MCG con datos de corte transversal.	Repaso mínimos cuadrados ordinarios (MCO) y mínimos cuadrados generalizados.
Comprender, implementar e interpretar mínimos cuadrados generalizados (MCG) y mínimos cuadrados generalizados factibles (MCGF) con datos de series temporales.	Identificar, estimar e interpretar modelos de regresión con series de tiempo en presencia de autocorrelación.	Regresión lineal con series de tiempo.
Comprender, implementar e interpretar modelos cointegrados y la prueba de causalidad de Granger	Conocer las consecuencias de realizar regresiones con series no estacionarias (raíces unitarias), implementar e interpretar las pruebas de raíces unitarias, y estimar modelos de series de tiempo con este tipo de series. Entender y realizar pruebas de causalidad de Granger.	Regresión lineal con series de tiempo.
Comprender la diferencia entre causalidad y asociación, y entender, estimar e interpretar modelos causales.	Entender, estimar e interpretar modelos a través de la técnica de variable instrumental. Entender el problema de identificación de parámetros y las denominadas restricciones de exclusión en el estimador de variable instrumental. Entender la diferencia entre un modelo de la forma reducida y la forma estructural. Entender el problema de identificación de parámetros y las denominadas restricciones de exclusión en el estimador de los sistemas de ecuaciones simultáneas, al igual que su estimación e interpretación.	Causalidad.
Comprender, estimar y analizar modelos de variable dependiente binaria.	Comprender, estimar y analizar los modelos logit y probit, al igual que sus efectos marginales.	Modelos de elección discreta.
Comprender las estructuras de datos de panel. Estimar y analizar los estimadores básicos comúnmente utilizados.	Estimar modelos de efectos fijos y efectos aleatorios, y analizar los resultados de dichos procedimientos.	Datos de panel.

V. Descripción detallada de los contenidos

1. Repaso mínimos cuadrados ordinarios (MCO) y mínimos cuadrados generalizados

- 1.1 mínimos cuadrados ordinarios
- 1.2 mínimos cuadrados generalizados

Lecturas:1

- G, Caps. 7-11
- W, Caps. 3-8

2. Regresión lineal con series de tiempo

- 2.1 Tendencias y raíces unitarias
- 2.2 Procesos autorregresivos y de medias móviles
- 2.3 Modelos ARIMA
- 2.4 Modelos de rezagos distribuidos
- 2.5 Modelos ADL
- 2.6 Modelos ARMAX
- 2.7 Introducción a Modelos Autorregresivos Vectoriales

Lecturas:

- L, Caps. 2-3
- G, Caps. 12 y 21
- W, Caps. 10-12 y 18

3. Causalidad

- 3.1 Variable instrumental y mínimos cuadrados en dos etapas
- 3.2 Modelos de ecuaciones simultáneas

Lecturas:

- G, Caps. 18-20
- W, Caps. 15 y 16

4. Datos de panel

- 4.1 Modelo de efectos fijos
- 4.2 Modelo de efectos aleatorios
- 4.3 Prueba de Hausman.

Lecturas:

- G, Cap. 16
- W, Caps. 13 y 14

5. Modelos de elección discreta

- 5.1 Modelo lineal de probabilidad
- 5.2 Modelo logit
- 5.3 Modelo probit

Lecturas:

- G, Cap. 15
- W, Cap. 17

¹ Libros guía: G=Gujarati (2010); L= Lütkepohl (2004); W=Wooldridge (2013).

VI. Evaluación

Evaluación	Resultados de aprendizaje	%	Fecha
Quiz 1	Comprende e implementa modelos de regresión lineal con datos de corte trasversal en software especializado.	5%	Semana 4
Quiz 2	Comprende e implementa modelos de regresión lineal con datos de series de tiempo en software especializado.	10%	Semana 6
Parcial 1	Entiende la teoría de modelos de regresión lineal con series de tiempo, e interpreta en una manera adecuada los resultados de los mecanismos de estimación.	25%	Semana 8
Quiz 3	Comprende e implementa modelos orientados a estimar efectos causales en software especializado usando variable instrumental.	5%	Semana 10
Quiz 4	Comprende e implementa modelos orientados a estimar efectos causales en software especializado usando ecuaciones simultáneas.	5%	Semana 12
Parcial 2	Entiende la teoría de modelos básicos de efectos causales e interpreta en una manera adecuada los resultados de los mecanismos de estimación.	20%	Semana 13
Trabajo aplicado	Comprende, implementa y analiza los modelos enseñados durante el curso en un ambiente en un problema empírico. Trabaja de forma colaborativa en un ambiente de equipo, y expresa de forma idónea a nivel oral y escrito los resultados obtenidos.	15%	Semana 15
Parcial 3	Tiene una visión holística a profundidad de la temática enseñada a nivel teórico y aplicado.	15%	Semana 17

VII. Metodología

- El curso se desarrollará mediante la combinación de exposiciones magistrales de los diferentes temas por parte del profesor y desarrollo de problemas cuantitativos en clase.
- Se desarrollarán simulaciones y aplicaciones en software especializado (R o Stata) en aulas de cómputo.
- El estudiante debe dedicar la totalidad de 6 horas de trabajo independiente, con el fin de afianzar los conocimientos adquiridos y cumplir con las responsabilidades dispuestas por el docente en clase.
- En grupos se debe entregar por escrito y exponer un trabajo empírico final.
- La materia contará con el apoyo de monitores para resolver las dudas presentadas durante el curso en términos teóricos y/o computacionales.

VIII. Descripción analítica de contenidos

VIII.			Lecturas	
Semana	Horas	Tema	G=Gujarati W=Wooldridge L= Lütkepohl B=Baltagi	
		I. Regresiones con series de tiempo		
1 Julio 18	1.5	Repaso de MCO y supuestos Repaso de MCG y supuestos	G, Caps. 7-11 W, Caps. 3-8	
2 Julio 25 - 27	3	Autocorrelación	G, Cap. 12 W, Caps. 10, 11 y 12	
3 Agosto 1 - 3	3	Introducción a series de tiempo	G, Cap. 21 W, Caps. 10 y 11	
4 Agosto 8 - 10	3	Modelos ARIMA Construcciones de series de tiempo en el Laboratorio Financiero Quiz 1	G, Caps. 7-11, 12 W, Caps. 10 y 11	
5 Agosto 15 - 17	3	Modelos de rezagos distribuidos Modelos ADL	G, Cap. 21 W, Cap. 18	
6 Agosto 22 - 24	3	Modelos ARMAX	G, Cap. 21 W, Cap. 18	
7 Agosto 29 - 31	3	Quiz 2 Introducción a modelos VAR	L, Cap. 2 y 3	
8 Septiembre 5	-	Parcial 1		
		II. Causalidad: variables instrumentales y ecuaciones simultáneas		
9 Septiembre 12 - 14	3	Variables instrumentales y MC2E	W, Cap. 15	
10 Septiembre 19 - 21	3	Variables instrumentales y MC2E Quiz 3	W, Cap. 15	
11 Septiembre 26 - 28	3	Modelo de ecuaciones simultáneas y sesgo de simultaneidad en MCO Identificación	G, Caps. 18, 19 y 20 W, Cap. 16	
12 Octubre 3 - 5	3	Prueba de simultaneidad Estimación Quiz 4	G, Caps. 18, 19 y 20 W, Cap. 16	
Semana de receso Octubre 10 - 12		Semana de receso		
13 Octubre 17	1.5	Modelo SUR	B, Cap. 10	
13 Octubre 19	-	Parcial 2		
		III. Modelos de datos de panel		
14 Octubre 24 - 26	3	Modelo de MCO agrupados (<i>Pooling</i>) Modelo de efectos fijos (<i>within</i>) y de diferencias en diferencias Modelos de efectos aleatorios Prueba de Hausman	G, Cap. 16 W, Cap. 13, 14	
15 Octubre 31 - Nov 2	3	Entrega y presentación trabajo final		
		IV. Modelos de elección discreta		
16 Noviembre 7 - 9	3	Modelo lineal de probabilidad Modelos Logit y Probit	G, Cap. 15 W, Cap. 17	
17 Noviembre 14	1.5	Efectos parciales o marginales Curvas de probabilidad	G, Cap. 15 W, Cap. 17	
17 Noviembre 16	-	Parcial 3		

- Clases: julio 17 a noviembre 18
- Asamblea general: septiembre 7 (jueves) de las 10am a las 2pm (NO se evalúa en todo el día y no hay clase entre las 10am – 2pm)
- Jornadas universitarias: octubre 2-8 (durante la semana no se pueden realizar evaluaciones)
- 70% de la nota hasta noviembre 10

IX. Bibliografía

Libros guía

- Gujarati, D. & Porter, D. (2010). 5a Edición. Econometría. Mc Graw Hill.
- Wooldridge, J. (2013). Introducción a la Econometría. 5a Edición, Cengage Learning
- Baltagi, B. (2011). Econometrics. Fifth Edition, Springer.

Libros complementarios

- Lütkepohl, H., & Krätzig, M. (Eds.). (2004). *Applied Time Series Econometrics*. Cambridge University Press.
- Rosales, R., Perdomo, J., Morales, C., & Urrego, A. (2010). Fundamentos de Econometría Intermedia: Teoría y Aplicaciones, Apuntes de Clase CEDE.
- Stock, J. & Watson, M. (2003). *Introduction to Econometrics*. Addison Wesley.

Libros para uso de paquetes estadísticos

- Baum, C. (2006). An Introduction to Modern Econometrics Using Stata. Stata Press.
- Becketti, S. (2013). Introduction to Time Series Using Stata. Stata Press.
- Cameron, A. C. & Trivedi, P. K. (2010). Microeconometrics Using Stata. Revised Edition. Stata Press.
- Cowpertwait, P. S., & Metcalfe, A. V. (2009). *Introductory Time Series with R*. Springer Science & Business Media.
- Heiss, F. (2016). Using R for Introductory Econometrics. CreateSpace Independent Publishing Platform
- Hyndman, R.J. & Athanasopoulos, G. *Forecasting: Principles and Practice*. https://www.otexts.org/fpp/.
- Shumway, R. H., & Stoffer, D. S. (2006). *Time Series Analysis and its Applications: with R Examples*. Springer Science & Business Media.
- García, G., Franco, A., & Manzur, M. (2021). <u>Una Breve Introducción a R.</u>