

Types of errors

Jeffrey Leek Johns Hopkins Bloomberg School of Public Health

Basic terms

In general, **Positive** = identified and **negative** = rejected. Therefore:

True positive = correctly identified

False positive = incorrectly identified

True negative = correctly rejected

False negative = incorrectly rejected

Medical testing example:

True positive = Sick people correctly diagnosed as sick

False positive = Healthy people incorrectly identified as sick

True negative = Healthy people correctly identified as healthy

False negative = Sick people incorrectly identified as healthy.

http://en.wikipedia.org/wiki/Sensitivity_and_specificity

Key quantities

 $\begin{array}{lll} \textbf{Sensitivity} & \rightarrow & \text{Pr (positive test } | \text{ disease)} \\ \textbf{Specificity} & \rightarrow & \text{Pr (negative test } | \text{ no disease)} \\ \textbf{Positive Predictive Value} & \rightarrow & \text{Pr (disease } | \text{ positive test)} \\ \textbf{Negative Predictive Value} & \rightarrow & \text{Pr (no disease } | \text{ negative test)} \\ \textbf{Accuracy} & \rightarrow & \text{Pr (correct outcome)} \\ \end{array}$

http://en.wikipedia.org/wiki/Sensitivity_and_specificity

Key quantities as fractions

Screening tests

Assume that some disease has a 0.1% prevalence in the population. Assume we have a test kit for that disease that works with 99% sensitivity and 99% specificity. What is the

General population

General population as fractions

At risk subpopulation

At risk subpopulation as fraction

Sensitivity

Specificity

Positive Predictive Value

 \rightarrow 9900 / (9900+100) = 99%

 \rightarrow 89100 / (900+89100) = 99%

ightarrow 9900 / (9900+900) pprox 92%

Key public health issue

Vast Study Casts Doubts on Value of Mammograms

By GINA KOLATA FEB. 11, 2014

One of the largest and most meticulous studies of mammography ever done, involving 90,000 women and lasting a quarter-century, has added powerful new doubts about the value of the screening test for women of any age.

It found that the death rates from breast cancer and from all causes were the same in women who got mammograms and those who did not. And the screening had harms:

One in five cancers found with

Key public health issue

For continuous data

Mean squared error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (Prediction_i - Truth_i)^2$$

Root mean squared error (RMSE):

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(Prediction_{i}-Truth_{i})^{2}}$$

Common error measures

- 1. Mean squared error (or root mean squared error)
 - · Continuous data, sensitive to outliers
- 2. Median absolute deviation
 - · Continuous data, often more robust
- 3. Sensitivity (recall)
 - If you want few missed positives
- 4. Specificity
 - If you want few negatives called positives
- 5. Accuracy
 - Weights false positives/negatives equally
- 6. Concordance
 - · One example is kappa