Chapter 16 – Symmetric Encryption

University of Illinois ECE 422/CS 461

Cryptography (or Cryptology)

 Studies techniques for secure communication in the presence an adversary who has control over the communication channel

Goal of this Lecture

- By the end of this lecture you should know the following about symmetric encryption:
 - Interface
 - Security definition
 - Common paradigms
 - Recommended scheme and modes of operation
 - Difference between symmetric and asymmetric encryption
 - Next lecture: asymmetric encryption

 Allows both parties to send messages in private (an eavesdropper cannot understand)

- Allows both parties to send messages in private (an eavesdropper cannot understand)
- Alice and Bob must share a secret key

- Allows both parties to send messages in private (an eavesdropper cannot understand)
- Alice and Bob must share a secret key

- Allows both parties to send messages in private (an eavesdropper cannot understand)
- Alice and Bob must share a secret key

Outline

- Review (broken) encryption schemes in history
 - Did not think through security definition and model
- Security definition and threat model of encryption in modern cryptography

- Common paradigms & recommended schemes
- Symmetric and asymmetric encryption

Caesar Cipher

- First recorded use of encryption
 - Julius Caesar (100-44 BC)
- Replace each letter with one a fixed number of places down the alphabet
 - E.g., if secret shift (key) k = 3, then
 - Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - Ciphertext: DEFGHIJKLMNOPQRSTUVWXYZABC
 - Plaintext: I came I saw I conquered
 - Ciphertext: L fdph L vdz L frqtxhuhg
- How to break?
 - Brute force all possible shifts

Substitution Cipher

- Secret key is a secret permutation of alphabet
 - Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - Ciphertext: GERFHSBVTKPLWUDYCXAOJNZIMQ

- What's the secret key? How many possible keys?
- 26! possible permutations. Can't brute-force.

– How to break?

Break Substitution Cipher

English letter frequency analysis

Enigma

 A substitution cipher where the permutation table slowly changes

Used by Germany during War World II

 Eventually broken by a British team led by Alan Turing

Lessons from Historic Encryption

- Need a clear and rigorous security definition that we can test a scheme against
- Try hard to test/break your encryption scheme
 - "Any fool can create an encryption algorithm that he himself can't break", paraphrased from Schneier

Do NOT roll your own crypto!

Lessons from Historic Encryption

- Need a clear and rigorous security definition that we can test a scheme against
- Try hard to test/break your encryption scheme
- Do NOT roll your own crypto!
- Assume secret keys and public algorithm
 - Kerckhoffs's Principles (1883): It should not require secrecy [except for key], and it should not be a problem if it [the algorithm] falls into enemy hands.
 - Claude Shannon (1949): the enemy knows the system

Lessons from Classic Encryption

- Need a clear and rigorous security definition that we can test a scheme against
- Try hard to test/break your encryption scheme
- Do NOT roll your own crypto!
- Assume secret keys and public algorithm
- Assume eavesdropper obtains some (or many) plaintext-ciphertext pairs (of its choosing!)
 - If we consider a single letter, even Caesar cipher and substitution cipher are secure!

Modern Definition of Encryption

- A game with attacker Eve:
 - We (proponent of a cipher) pick a random key k

Encryption does not hide message length

- Eve picks two messages m₀ and m₁ of equal length
- We flip a coin b \leftarrow {0, 1} and give Eve Enc(k, m_b)

Eve guesses b. Encryption is insecure if Eve wins
 with > 0.5 + ε probability; secure if ≈ 0.5 probability

Modern Definition of Encryption

- A game with attacker Eve:
 - We (proponent of a cipher) pick a random key k
 - Eve can ask for encryptions of any messages
 - I.e., pick any m and get back Enc(k, m), and repeat any (feasible) number of times
 - Eve picks two messages m₀ and m₁ of equal length
 - We flip a coin b \leftarrow {0, 1} and give Eve Enc(k, m_b)
 - Eve can ask for encryptions of any messages
 - Eve guesses b. Encryption is insecure if Eve wins
 with > 0.5 + ε probability; secure if ≈ 0.5 probability

Indistinguishability under Chosen Plaintext Attacks (IND-CPA)

- A game with attacker Eve:
 - We (proponent of a cipher) pick a random key k
 - Eve can ask for encryptions of any messages
 - Eve picks two messages m₀ and m₁ of equal length
 - We flip a coin b \leftarrow {0, 1} and give Eve Enc(k, m_b)
 - Eve can ask for encryptions of any messages
 - Eve guesses b. Secure iff Eve wins with ≈ 0.5 probability.

Is IND-CPA Too Stringent?

- A game with attacker Eve:
 - We (proponent of a cipher) pick a random key k
 - Eve can ask for encryptions of any messages
 - Eve picks two messages m₀ and m₁ of equal length
 - We flip a coin b \leftarrow {0, 1} and give Eve Enc(k, m_b)
 - Eve can ask for encryptions of any messages
 - Eve guesses b. Secure iff Eve wins with ≈ 0.5 probability.
- What if Eve asks for Enc(k, m₀) and Enc(k, m₁) and compares with Enc(k, m_b)? An easy win?

Is IND-CPA Too Stringent?

 What if Eve asks for Enc(k, m₀) and Enc(k, m₁) and compares with Enc(k, m_b)? An easy win?

No, IND-CPA is achievable!

- Need randomized encryption
 - Encryption of the same message (under the same key) must change every time!

One-Time Pad

- Perfect (but impractical) encryption [Shannon 1949]
- The secret key shared by Alice and Bob is an infinitely long random binary string, called pad
- Plaintexts and ciphertexts are also binary strings
- Enc/Dec work by XORing with pad bit by bit
 - $-c = Enc(k, m): c[i] = pad[i] \oplus m[i]$
 - $-m = Dec(k, c): m[i] = pad[i] \oplus c[i]$
- One-time: never reuse portions of pad
- Perfect secrecy (ε=0 in IND-CPA). Why?

IND-CPA for One-Time Pad

- A game with attacker Eve:
 - We (proponent of a cipher) pick a random key (pad)
 - Eve can ask for (any number of) pad ⊕ m
 - Eve picks two messages m₀ and m₁ of equal length
 - − We flip a coin b \leftarrow {0, 1} and give Eve pad \oplus m_b
 - Eve can ask for (any number of) pad \bigoplus m
 - Eve guesses b. Secure iff Eve wins with ≈ 0.5 probability
- Again, crucial to never reuse pad!
- Every ciphertext bit c[i] is 0 or 1 with 50/50 chance completely independent of the value of m[i]

One-Time Pad

 Impractical: need to share unrealistically long keys (pad)

But we can borrow its principle

Stream Cipher

- To obtain a practical encryption scheme, we just need to generate a long & random pad
 - Alice and Bob share k. Both compute

pad =
$$H(k||1) || H(k||2) || H(k||3) || ...$$

 If H is pseudorandom, infeasible to distinguish pad from a truly random one-time pad

$$-c[i] = pad[i] \oplus m[i] \qquad m[i] = pad[i] \oplus c[i]$$

Stream Cipher

- Using a pseudorandom crypto hash function as one-time pad is fine but not best option
 - Cryptoanalysis of hash functions focus on collision resistance rather than pseudorandomness
 - Also an overkill, no need for arbitrarily long input
- The "right" primitive is pseudorandom function (PRF), which takes fixed-length inputs
- Stream Cipher is perfectly reasonable. Has some use (e.g., Salsa20), though not mainstream.

Current Mainstream: Block Cipher

- Under a fixed key k, 1-to-1 mapping between the 2ⁿ plaintexts and 2ⁿ ciphertexts
 - Enc and Dec are inverse permutations of each other
- Without knowing k, infeasible to distinguish from a truly random permutation

Current Mainstream: Block Cipher

- Isn't this just a substitution cipher that operates on a much larger (2ⁿ) alphabet?
- Isn't it deterministic? Didn't we say substitution cipher and deterministic cipher are insecure?
- Yes, yes and yes ... Will address these soon.

Block Cipher

- DES (Data Encryption Standard)
 - Standardized by FIPS in 1976
 - Key size λ = 56, block size n = 64
 - 2⁵⁶ was reasonable security back then but too weak now
 - Weakened in 1992, broken in 1997

Block Cipher

- AES (Advanced Encryption Standard)
 - Standardized by NIST in 2001
 - Block size n = 128, key size λ = 128, 192, or 256
 - Correspond to AES-128, AES-192, AES-256

Ten rounds of this

AES-128

Block Cipher

- AES (Advanced Encryption Standard):
 - Standardized by NIST in 2001
 - Block size n = 128, key size λ = 128, 192, or 256
 - Correspond to AES-128, AES-192, AES-256
 - Slightly weakened in 2011 (2^{126.1}, 2^{189.7}, 2^{254.4})
 - Still the leading and recommended scheme today
 - Why is AES not replaced despite weakened?
 - Possibly because a block cipher is harder to design (need to be invertible with the key)

Block Cipher

- Why use block cipher over stream cipher?
 - One bad reason: block cipher's abstraction matches layman intuition for encryption
 - Better reason: more use → better studied → more likely to be secure → more use

Block Cipher Modes: ECB

Electronic codebook = as a substitution cipher

IND-CPA

- A game with attacker Eve:
 - We (proponent of a cipher) pick a random key k
 - Eve can ask for encryptions of any messages
 - Eve picks two messages m₀ and m₁ of equal length
 - We flip a coin b \leftarrow {0, 1} and give Eve Enc(k, m_b)
 - Eve can ask for encryptions of any messages
 - Eve guesses b. Insecure if Eve wins with $0.5 + \epsilon$ probability.
- Eve asks for $Enc(k, m_0)$ and $Enc(k, m_1)$ and compares with $Enc(k, m_b)$. An easy win!

Electronic Codebook (ECB) Mode

Avoid!!!

- Unfortunately, the default mode of most libraries
- Deterministic encryption, not IND-CPA secure

Plaintext

randomized encryption

ECB mode

Counter (CTR) Mode

Cipher Block Chaining (CBC) Mode

Block Cipher Modes Summary

ECB: as substitution cipher. Avoid!

- CTR: as stream cipher and one-time pad
- CBC: add more dependency among blocks
- Other less common modes: CFB, OFB, ...

- Some modes also provide integrity, e.g., GCM
 - A legit argument for block cipher over stream cipher (which needs orthogonal mechanisms for integrity)

Symmetric Encryption Summary

- Shared key k, c = Enc(k, m), m = Dec(k, c)
- Security definitions: allow Eve to get many plaintext-ciphertext pairs (e.g., IND-CPA)
- Must use randomized encryption
- Paradigms: stream cipher and block cipher
- Currently mainstream: AES, but avoid ECB mode