CLT panel verification according to Sweedish wood - **CLT Handbook**

All static images are taken from this book

HP1: All material strenghts along x axis equal to the y ones, since the material is the same for each layer HP2: The panel is symmetric

Figure 3.27 CLT wall panel subject to transverse load and compressive force.

Loads

$$q_{d,SLE} = 0.62 \frac{kN}{m}$$

$$q_{d,SLU} = 7.5 \frac{kN}{m}$$

Geometry

$$b = 2.4 \text{ m}$$

$$l = 5 \,\mathrm{m}$$

Caratteristiche meccaniche legno C24←← ▼			
$\gamma_{M} = 1.45 \ k_{mod} = 1.1$			
$f_{\text{m,k}} = 24 \text{MPa}$	$f_{m,d} = 18.21 MPa$	$E_{0,\text{mean}} = 11000 \text{MPa}$	
$f_{t,0,k} = 14.5 \text{ MPa}$	$f_{t,0,d} = 11 \text{ MPa}$	$E_{0,05} = 7400 \mathrm{MPa}$	
$f_{t,90,k} = 0.4 \text{MPa}$	$f_{t,90,d} = 0.303 \text{MPa}$	$E_{90,\text{mean}} = 370 \text{MPa}$	
$f_{c,0,k} = 21 \text{ MPa}$	$f_{c,0,d} = 15.93 \text{ MPa}$	$G_{\text{mean}} = 690 \text{MPa}$	
$f_{c,90,k} = 2.5 \text{ MPa}$	$f_{c,90,d} = 1.9 \mathrm{MPa}$	$r_{\rm k} = 350 \rm kg/m^3$	
$f_{v,k} = 4 \text{ MPa}$	$f_{v,d} = 3.03 \mathrm{MPa}$	$r_{\text{mean}} = 420 \text{kg/m}^3$	

Caratteristiche del pannello in CLT		
$t_{x,net} = 120 \mathrm{mm}$	$t_{y,net} = 38 \mathrm{mm}$	
$A_{x,\text{full}} = 3792 \text{ cm}^2$	$A_{\rm y,full} = 7900 \rm cm^2$	
$A_{\rm x,net} = 2880 \rm cm^2$	$A_{\rm y,net} = 1900 \rm cm^2$	
$I_{x,net} = 70675.2 \text{ cm}^4$	$I_{y,net} = 17106.3 \text{ cm}^4$	
$W_{x,net} = 8946.23 \text{ cm}^3$	$W_{y,net} = 2165.36 \mathrm{cm}^3$	
$W_{z,x,net} = 115200 \text{ cm}^3$	$W_{z,y,net} = 158333 \text{ cm}^3$	
$S_{R,x,net} = 5664 \text{ cm}^3$	$S_{R,y,net} = 2802.5 \text{ cm}^3$	
$S_{x,net} = 6144 \text{ cm}^3$	$S_{y,net} = 2802.5 \text{ cm}^3$	
$i_{x,net} = 4.95 \text{ cm}$	$i_{y,net} = 3 \text{ cm}$	

$$k_{\text{SYS}} = \min\left(1.15; 1 + \frac{0.1 \cdot b}{m}\right) = \min\left(1.15; 1 + \frac{0.1 \cdot 2.4 \, \text{m}}{m}\right) = 1.15$$
 [Swedish Wood CLT Handbook §3.1.6]

$$E_{0,\text{mean}} \cdot A_{x,\text{net}} = 11000 \,\text{MPa} \cdot 288000 \,\text{mm}^2 = 3168000 \,\text{kN}$$

$$E_{0,\text{mean}} \cdot I_{x,\text{net}} = 11000 \,\text{MPa} \cdot 706752000 \,\text{mm}^4 = 7774.27 \,\text{kN} \cdot \text{m}^2$$

$$G_{\text{mean}} \cdot A_{\text{x,net}} = 690 \,\text{MPa} \cdot 288000 \,\text{mm}^2 = 198720 \,\text{kN}$$

Azioni agenti

$$M_{\text{Ed,y}} = \frac{q_{\text{d,SLU}} \cdot l^2}{8} = \frac{7.5 \text{ kN/m} \cdot (5 \text{ m})^2}{8} = 23.44 \text{ kNm}$$

$$M_{\rm Ed.x} = 0 \, \rm kNm$$

$$V_{\text{Ed,xz}} = q_{\text{d,SLU}} \cdot l = 7.5 \text{ kN/m} \cdot 5 \text{ m} = 37.5 \text{ kN}$$

$$V_{\text{Ed.vz}} = 0 \text{kN}$$

$$V_{\text{Ed,xy}} = 0 \text{kN}$$

$$V_{\text{Ed,yx}} = 0 \text{kN}$$

Momento flettente attorno y e x

$$\sigma_{\text{m,y,d}} = \frac{M_{\text{Ed,y}}}{W_{\text{x,net}}} = \frac{23.44 \text{ kNm}}{8946228 \text{ mm}^3} = 2.62 \text{ MPa}$$

$$\sigma_{\text{m,x,d}} = \frac{M_{\text{Ed,x}}}{W_{\text{y,net}}} = \frac{0 \text{ kNm}}{2165359 \text{ mm}^3} = 0 \text{ MPa}$$

$$\frac{\sigma_{\text{m,y,d}}}{k_{\text{sys}} \cdot f_{\text{m,d}}} = \frac{2.62 \,\text{MPa}}{1.15 \cdot 18.21 \,\text{MPa}} = 0.125 \le 1 = 1 \,\text{Ok} \,\checkmark$$

$$\frac{\sigma_{\text{m,x,d}}}{k_{\text{sys}} \cdot f_{\text{m,d}}} = \frac{0 \text{ MPa}}{1.15 \cdot 18.21 \text{ MPa}} = 0 \le 1 = 1 \text{ Ok } \checkmark$$

$$\frac{\sigma_{\mathsf{m,y,d}}}{k_{\mathsf{sys}} \cdot f_{\mathsf{m,d}}} + \frac{\sigma_{\mathsf{m,x,d}}}{k_{\mathsf{sys}} \cdot f_{\mathsf{m,d}}} = \frac{2.62 \, \mathrm{MPa}}{1.15 \cdot 18.21 \, \mathrm{MPa}} + \frac{0 \, \mathrm{MPa}}{1.15 \cdot 18.21 \, \mathrm{MPa}} = 0.125 \le 1 = 1 \, \mathrm{Ok} \, \checkmark$$

Momento flettente attorno z in direzione x

TODO

Wz

Momento flettente attorno z in direzione y

TODO

Wz

Taglio perpendicolare al piano

TODO

+rolling shear

Taglio nel piano

$$\tau_{\text{v,xy,d}} = \frac{V_{\text{Ed,xy}}}{A_{\text{x,net}}} = \frac{0 \text{ kN}}{288000 \text{ mm}^2} = 0 \text{ kPa}$$

$$\tau_{\text{v,yx,d}} = \frac{V_{\text{Ed,yx}}}{A_{\text{v,net}}} = \frac{0 \text{ kN}}{190000 \text{ mm}^2} = 0 \text{ kPa}$$

$$\frac{\tau_{v,xy,d}}{f_{v,d}} = \frac{0 \text{ kPa}}{3.03 \text{ MPa}} = 0 \le 1 = 1 \text{ Ok } \checkmark$$

$$\frac{\tau_{v,yx,d}}{f_{v,d}} = \frac{0 \text{ kPa}}{3.03 \text{ MPa}} = 0 \le 1 = 1 \text{ Ok } \checkmark$$

Taglio tra i pannelli

TODO

Figure 3.19 Bending stresses in CLT panel with moment about y-axis.

Figure 3.20 Bending stresses in CLT panel with moment about x-axis.

Figure 3.21 CLT panel with moment about z-axis.

Figure 3.22 CLT panel with bending moment about z-axis.

Figure 3.23 Shear stresses from shear force $V_{\rm xz,d}$ in CLT panel.

Figure 3.24 Shear stresses from shear force $V_{\rm yz,d}$ in CLT panel.

Figure 3.25 Shear stresses in relation to layer thickness in CLT panel.

Figure 3.26 Shear stress between the layers of a CLT panel.