0.1 Grassmann 多様体の交叉理論

0.1.1 一般の位置

前節で導入したように、 \mathbb{P}^n の固定された旗に対して、ある特定の位置条件にある線形部分多様体をパラメータづける空間が Schubert 多様体であった。したがって今度は複数の旗に対してそれぞれの Schubert 多様体がどのように交わるかを記述することを考える。ここで重要になるのが 2 つの旗が一般の位置にあるという条件である。これが第 3 章冒頭に述べた「ある程度一般の状況」という言葉の意味である。一般の位置にある 2 つの旗の Schubert 多様体に対してはその次元がうまくふるまうことが知られており、それによって交点の数え上げに整った代数的・組み合わせ的計算が現れる。

定義 0.1.1.1. F^{\bullet} , E^{\bullet} を \mathbb{C}^n の旗とする。各 k において

$$F^k \cap E^{n-k} = 0$$

が成り立つとき、 F^{\bullet} , E^{\bullet} は一般の位置にあるという。

例 0.1.1.2. 旗 F^{\bullet} に対して $F^k = \langle v_{k+1}, \cdots, v_n \rangle$ となる基底 v_1, \cdots, v_n をとる。 F_{on}^k を

$$F_{op}^k = \langle v_1, \cdots, v_{n-k} \rangle$$

とすれば

$$F_{op}^{n-k} \cap F^k = \langle v_1, \cdots, v_k \rangle \cap \langle v_{k+1}, \cdots, v_n \rangle = 0$$

となるから、 $F^{\bullet}, F^{\bullet}_{on}$ は一般の位置にある。 F^{\bullet}_{on} を F^{\bullet} の反対旗という。

例 0.1.1.3. F^{\bullet} を標準旗とする。 $g \in GL_n(\mathbb{C})$ を $g = (v_1, \dots, v_n) = (a_{ij})$ とすれば

$$gF^k = \langle v_{k+1}, \cdots, v_n \rangle$$

である。 F^{\bullet} , gF^{\bullet} が一般の位置にあるための必要十分条件は、各 k において

$$e_{k+1}, \cdots, e_n, v_{n-k+1}, \cdots, v_n$$

が一次独立となることである。すなわち $\det(e_{k+1},\cdots,e_n,v_{n-k+1},\cdots,v_n)\neq 0$ である。よって F^{\bullet},gF^{\bullet} が 一般の位置にあるような g のなす $\mathrm{GL}_n(\mathbb{C})$ の部分集合は Zariski 開集合である。Zariski 開集合は稠密であるので、ほとんどすべての旗は一般の位置にあるといってよい。

命題 0.1.1.4. F^{\bullet} , E^{\bullet} を一般の位置にある旗とする。 \mathbb{C}^n の基底 v_1, \cdots, v_n を適当にとって、

$$F^k = \langle v_{k+1}, \cdots, v_n \rangle, \quad E^{n-k} = \langle v_1, \cdots, v_k \rangle$$

となるようにできる。

 $Proof. \dim(E^{n-k} \cap F^{k-1}) = 1$ を示す。まず $E^{n-k} \cap F^k = 0$ より

$$dim(E^{n-k} + F^k) = \dim E^{n-k} + \dim F^k - \dim(E^{n-k} \cap F^k) = n$$

よって $\dim(E^{n-k} + F^{k-1}) = n$ であるから

$$\dim(E^{n-k} \cap F^{k-1}) = \dim E^{n-k} + \dim F^{k-1} - \dim(E^{n-k} + F^{k-1})$$
$$= k + (n - k + 1) - n$$
$$= 1$$

そこで v_k を $E^{n-k}\cap F^{k-1}$ の生成元とする。 $\dim E^{n-1}=1$ だから $E^{n-1}=\langle v_1\rangle$ である。 $E^{n-k}=\langle v_1,\cdots,v_k\rangle$ であるとする。

$$v_{k+1} \in E^{n-k-1} \cap F^k$$

であり $F^k\cap E^{n-k}=0$ であるから $v_{k+1}\notin E^{n-k}$ となる。よって $E^{n-k-1}=\langle\,v_1,\cdots,v_k,v_{k+1}\,\rangle$ 。同様に $F^k=\langle\,v_{k+1},\cdots,v_n\,\rangle$ も示せる。

以下 F^{\bullet} を標準旗とする。命題 0.1.1.4 より F^{\bullet} と F^{\bullet}_{st} に対して考察すれば