ESP32-PICO-V3

技术规格书

关于本文档

本文档为用户提供 ESP32-PICO-V3 的技术规格信息。

文档版本

请至乐鑫官网 https://www.espressif.com/zh-hans/support/download/documents 下载最新版本文档。

修订历史

请至文档最后页查看修订历史。

文档变更通知

用户可以通过乐鑫官网订阅页面 <u>www.espressif.com/zh-hans/subscribe</u> 订阅技术文档变更的电子邮件通知。您需要更新订阅以接收有关新产品的文档通知。

证书下载

用户可以通过乐鑫官网证书下载页面 www.espressif.com/zh-hans/certificates 下载产品证书。

产品概述 1

1.1 特性

MCU

- 内置 ESP32 芯片, Xtensa® 双核 32 位 LX6 微处 理器,支持高达 240 MHz 的时钟频率
- 448 KB ROM
- 520 KB SRAM
- 16 KB RTC SRAM

Wi-Fi

- 802.11b/g/n
- 802.11n 数据速率高达 150 Mbps
- 支持 A-MPDU 和 A-MSDU 聚合
- 支持 0.4 μs 保护间隔
- 工作信道中心频率范围: 2412 ~ 2484 MHz

蓝牙®

• 蓝牙 V4.2 BR/EDR 和蓝牙 LE 标准

- Class-1、class-2 和 class-3 发射器
- AFH
- CVSD 和 SBC

硬件

- 模组接口: ADC、DAC、触摸传感器、 SD/SDIO/MMC 主机控制器、SPI、SDIO/SPI 从 机控制器、EMAC、电机 PWM、LED PWM、 UART、I²C、I²S、红外遥控、GPIO、脉冲计数 器、双线汽车接口(TWAI[®],兼容 ISO11898-1)
- 40 MHz 晶振
- 4 MB SPI flash
- 工作电压/供电电压: 3.0~3.6 V
- 建议工作温度范围: -40~85°C
- 封装尺寸: (7×7×0.94) mm

1.2 描述

ESP32-PICO-V3 是一款基于 ESP32 (ECO V3) 的系统级封装 (SiP) 产品,可提供完整的 Wi-Fi 和蓝牙® 功能,集 成1个4MB串行外围设备接口(SPI)flash。

ESP32-PICO-V3 的核心是 ESP32 (ECO V3) 芯片*。ESP32 是集成 2.4 GHz Wi-Fi 和蓝牙双模的单芯片方案,采 用台积电 (TSMC) 超低功耗的 40 纳米工艺。ESP32-PICO-V3 模组已将晶振、flash、滤波电容、RF 匹配链路等 所有外围器件无缝集成进封装内,不再需要外围元器件即可工作。此时,模组的组装和测试都在 SiP 层面完成, 因此 ESP32-PICO-V3 可以大大降低供应链的复杂程度并提升管控效率。

ESP32-PICO-V3 具备体积紧凑、性能强劲及功耗低等特点,适用于任何空间有限或电池供电的设备,比如可穿 戴设备、医疗设备、传感器及其他 IoT 设备。

相比其他 ESP32 系列芯片, ESP32-PICO-V3 增加了 GPIO20 管脚。另外, 考虑到芯片的安全性能, flash 管脚 DI, DO, /HOLD, /WP 均未引出。

说明:

- 更多有关 ESP32 的信息,请参考_《ESP32 技术规格书》。
- 更多有关 ESP32 ECO V3 的信息,请参考《ESP32 ECO V3 使用指南》。

1.3 应用

- 通用低功耗 IoT 传感器 Hub
- 通用低功耗 IoT 数据记录器
- 摄像头视频流传输
- OTT 电视盒/机顶盒设备
- 语音识别
- 图像识别
- Mesh 网络
- 家庭自动化
- 智能家居控制板

- 智慧楼宇
- 工业自动化
- 智慧农业
- 音频设备
- 健康/医疗/看护
- Wi-Fi 玩具
- 可穿戴电子产品
- 零售&餐饮
- 智能 POS 应用

目录

1	产品概述	3
1.1	特性	3
1.2	描述	3
1.3	应用	4
2	功能块图	9
3	管脚定义	10
3.1	管脚布局	10
3.2	管脚描述	10
3.3	与 ESP32-PICO-D4 兼容性	12
3.4	Strapping 管脚	13
4	电气特性	15
4.1	绝对最大额定值	15
4.2	建议工作条件	15
4.3	直流电气特性 (3.3 V, 25 °C)	15
4.4	功耗特性	16
4.5	Wi-Fi 射频	17
	4.5.1 Wi-Fi 射频特性	17
	4.5.2 发射器性能规格 4.5.2 按收限性能规格	18 18
4.6	4.5.3 接收器性能规格 蓝牙射频	19
4.0	ニュ 初 例 4.6.1 接 收器 - 基础数据率 (BR)	19
	4.6.2 发射器 - 基础数据率 (BR)	19
	4.6.3 接收器 - 增强数据率 (EDR)	20
	4.6.4 发射器 - 增强数据率 (EDR)	21
4.7	低功耗蓝牙射频	21
	4.7.1 接收器	21
	4.7.2 发射器	22
5	原理图	23
6	外围设计原理图	24
7	封装信息	25
8	产品处理	00
8.1	存储条件	28 28
8.2	行相求什 ESD	28
8.3	回流焊温度曲线	28
		20
9	MAC 地址和 eFuse	29

10	学习资源	30
10.1	必读资料	30
10.2	必备资源	30
修i	丁历史	31

表格

1	管脚定义	10
2	ESP32-PICO-V3 与 ESP32-PICO-D4 六个管脚的用途差异	12
3	Strapping 管脚	13
4	绝对最大额定值	15
5	建议工作条件	15
6	直流电气特性 (3.3 V, 25 °C)	15
7	射频功耗	16
8	不同功耗模式下的功耗	17
9	Wi-Fi 射频特性	17
10	发射器性能规格	18
11	接收器性能规格	18
12	接收器特性 - 基础数据率 (BR)	19
13	发射器特性 - 基础数据率 (BR)	20
14	接收器特性 - 增强数据率 (EDR)	20
15	发射器特性 - 增强数据率 (EDR)	21
16	低功耗蓝牙接收器特性	21
17	低功耗蓝牙发射器特性	22

插图

1	ESP32-PICO-V3 功能块图	9
2	ESP32-PICO-V3 管脚布局(顶视图)	10
3	ESP32-PICO-V3 原理图	23
4	ESP32-PICO-V3 外围设计原理图	24
5	ESP32-PICO-V3 封装信息	25
6	ESP32-PICO-V3 封装图形	26
7	ESP32-PICO-V3 STENCIL	27
8	回流焊温度曲线	28

2 功能块图

图 1: ESP32-PICO-V3 功能块图

3 管脚定义

3.1 管脚布局

图 2: ESP32-PICO-V3 管脚布局 (顶视图)

说明:

管脚布局图显示了模组上管脚的大致位置。具体布局请参考图 5。

3.2 管脚描述

ESP32-PICO-V3 共有 48 个管脚, 具体描述参见表 1。

表 1: 管脚定义

名称	序号	类型	功能
VDDA	1	Р	模拟电源 (3.0 V ~ 3.6 V)
LNA_IN	2	I/O	射频输入输出
VDDA3P3	3	Р	模拟电源 (3.0 V ~ 3.6 V)

名称	序号	类型	功能
VDDA3P3	4	Р	模拟电源 (3.0 V ~ 3.6 V)
SENSOR_VP/I36	5	I	GPIO36, ADC1_CH0, RTC_GPIO0
SENSOR_CAPP/I37	6	I	GPIO37, ADC1_CH1, RTC_GPIO1
SENSOR_CAPN/I38	7	I	GPIO38, ADC1_CH2, RTC_GPIO2
SENSOR_VN/I39	8	I	GPIO39, ADC1_CH3, RTC_GPIO3
			高电平: 芯片使能;
EN	9	I	低电平: 芯片关闭;
			注意不能让 EN 管脚浮空。
VDET_1/I34	10	I	ADC1_CH6, RTC_GPIO4
VDET_2/I35	11	I	ADC1_CH7, RTC_GPIO5
201/ VD/IO20	10	1/0	32K_XP (32.768 kHz crystal oscillator input), ADC1_CH4,
32K_XP/IO32	12	I/O	TOUCH9, RTC_GPIO9
0.014 VAL/10.00	10	1/0	32K_XN (32.768 kHz crystal oscillator output), ADC1_CH5,
32K_XN/IO33	13	I/O	TOUCH8, RTC_GPIO8
IO25	14	I/O	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0
IO26	15	I/O	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1
IO27	16	I/O	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV
NATNAC/IO14	17	I/O	ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK,
MTMS/IO14	17	1/0	HS2_CLK, SD_CLK, EMAC_TXD2
MTDI/IO12	18 I/	I/O	ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ, HS2_DATA2,
		1/0	SD_DATA2, EMAC_TXD3
VDD3P3_RTC	19	Р	RTC IO 电源输入 (3.0 V ~ 3.6 V)
MTCK/IO13	20	I/O	ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID, HS2_DATA3,
WITORVIOTO	20	1/0	SD_DATA3, EMAC_RX_ER
MTDO/IO15	21	I/O	ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO, HSPICS0,
WIDO/IOTO	21	1/ 0	HS2_CMD, SD_CMD, EMAC_RXD3
102	22	I/O	ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0,
102		1/ 0	SD_DATA0
IO0	23	I/O	ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1,
	20	., 0	EMAC_TX_CLK
104	24	1/0	ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1,
			SD_DATA1, EMAC_TX_ER
NC	25		NC
VDD_SDIO	26	Р	VDD3P3_RTC 电源输出,请见表格下方说明 1
1020	27	I/O	GPIO20, 请见表格下方说明 3
SD2/IO9	28	1/0	GPIO9, SD_DATA2, HS1_DATA2, U1RXD, 请见表格下方说明 3
SD3/IO10	29	I/O	GPIO10, SD_DATA3, HS1_DATA3, U1TXD, 请见表格下方说明 3
CMD/IO11	30	1/0	请见表格下方说明 2、说明 3
CLK/IO6	31	1/0	请见表格下方说明 2、说明 3
SD0/IO7	32	I/O	GPIO7, SD_DATA0, HS1_DATA0, U2RTS, 请见表格下方说明 3
SD1/IO8	33	I/O	GPIO8, SD_DATA1, HS1_DATA1, U2CTS, 请见表格下方说明 3
IO5	34	I/O	GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK
NC	35		NC
NC	36	_	NC

名称	序号	类型	功能
VDD3P3_CPU	37	Р	CPU IO 电源输入 (1.8 V ~ 3.6 V)
IO19	38	I/O	GPIO19, VSPIQ, U0CTS, EMAC_TXD0
1022	39	I/O	GPIO22, VSPIWP, UORTS, EMAC_TXD1
U0RXD/IO3	40	I/O	GPIO3, U0RXD, CLK_OUT2
U0TXD/IO1	41	I/O	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2
IO21	42	I/O	GPIO21, VSPIHD, EMAC_TX_EN
VDDA	43	Р	模拟电源 (3.0 V ~ 3.6 V)
NC	44	_	NC
NC	45		NC
VDDA	46	Р	模拟电源 (3.0 V ~ 3.6 V)
NC	47		NC
NC	48	_	NC

说明:

- 1. 嵌入式 flash 连接至 VDD_SDIO,由 VDD3P3_RTC 通过约 6Ω 电阻直接供电。因此,VDD_SDIO 相对 VDD3P3_RTC 会有一定电压降。
- 2. CMD/IO11 和 CLK/IO6 管脚用于连接嵌入式 flash,不建议用作其他用途,具体请参考章节 5。
- 3. IO6/IO7/IO8/IO9/IO10/IO11/IO20 由 VDD_SDIO 供电, VDD_SDIO 电源关闭时则无法工作。
- 4. 外设管脚分配请参考_《ESP32 技术规格书》。

3.3 与 ESP32-PICO-D4 兼容性

在有些情况下可以改动很少或者不用改动硬件设计来将采用 ESP32-PICO-D4 的硬件产品升级为 ESP32-PICO-V3。在升级前,用户必须注意几点:

• ESP32-PICO-V3 与 ESP32-PICO-D4 有六个管脚的用途不同:

表 2: ESP32-PICO-V3 与 ESP32-PICO-D4 六个管脚的用途差异

管脚编号	ESP32-PICO-V3	ESP32-PICO-D4
25	空脚	GPIO16,用于连接内部 flash
27	GPIO20,可以使用	GPIO17,用于连接内部 flash
32	SD0 (GPIO7),可以使用	SD0 (GPIO7),用于连接内部 flash
33	SD1 (GPIO8),可以使用	SD1 (GPIO8),用于连接内部 flash
35	空脚	GPIO18,可以使用
36	空脚	GPIO23,可以使用

- ESP32-PICO-V3 上的内部 flash 数据管脚均未外接,而是内部连接到 GPIO16、GPIO17、GPIO18 和 GPIO23。
- ESP32-PICO-V3 无法外接 PSRAM。
- 如果 ESP32-PICO-D4 外接了 32.768 kHz 晶振,则需要参考 <u>《ESP32 ECO V3 使用指南》</u>中的相关内容进行硬件更新。

- 有关使用 ESP32 ECO V3 所需的软件更新和升级,请参考 《ESP32 ECO V3 使用指南》。
- 在更新硬件设计以兼容 ESP32-PICO-V3 后应进行电磁兼容性和 RF 性能测试。
- 要获取有关 ESP32-PICO-D4 的更多信息,请参考 《ESP32-PICO-D4 技术规格书》。

Strapping 管脚 3.4

ESP32 共有 5 个 Strapping 管脚。Strapping 管脚与 SiP 管脚对应关系如下,可参考章节 5 电路原理图:

- MTDI = IO12
- GPIO0 = IO0
- GPIO2 = IO2
- MTDO = IO15
- GPIO5 = IO5

软件可以读取寄存器 "GPIO_STRAPPING"中这 5 个管脚 strapping 的值。

在芯片的系统复位(上电复位、RTC 看门狗复位、欠压复位)放开的过程中, Strapping 管脚对电平采样并存储 到锁存器中, 锁存为 "O" 或"1", 并一直保持到芯片掉电或关闭。

每一个 Strapping 管脚都会连接内部上拉/下拉。如果一个 Strapping 管脚没有外部连接或者连接的外部线路处 于高阻抗状态,内部弱上拉/下拉将决定 Strapping 管脚输入电平的默认值。

为改变 Strapping 的值,用户可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32 上电复位 放开时的 Strapping 管脚电平。

复位放开后, Strapping 管脚和普通管脚功能相同。

配置 Strapping 管脚的详细启动模式请参阅表 3。

表 3: Strapping 管脚

内置 LDO (VDD_SDIO) 电压								
管脚 默认 3.3 V 1.8 V								
MTDI	下拉	0.0		1.0 V				
IVITOI	1.17	· ·						
		分	自动模式					
管脚	默认	SPI 启	动模式	下载启	动模式			
GPIO0	上拉	-	1	()			
GPIO2	下拉	无关项		0				
	系:	统启动过程中,	控制 U0TXD	打印				
管脚	默认	U0TXD j	正常打印	UOTXD _	.电不打印			
MTDO	上拉	-	1	()			
		SDIO 从机信	号输入输出时序	· 序				
下降沿采样 下降沿采样 上升					上升沿采样			
管脚	默认	下降沿输出	上升沿输出	下降沿输出	上升沿输出			
MTDO	上拉	0 0		1	1			
GPIO5	上拉	0	1	0	1			

说明:

• 固件可以通过配置一些寄存器比特位,在启动后改变"内置 LDO (VDD_SDIO) 电压"和"SDIO 从机信号输入输

出时序"的设定。

• SiP 集成的外部 SPI flash 工作电压为 3.3 V,因此在上电复位过程中需保持 Strapping 管脚 MTDI 为低电平。

4 电气特性

4.1 绝对最大额定值

超出绝对最大额定值表可能导致器件永久性损坏。这只是强调的额定值,不涉及器件在这些或其它条件下超出本技术规格指标的功能性操作。建议工作条件请参考表 5。

表 4: 绝对最大额定值

符号	参数	最小值	最大值	单位
VDD33	供电电压	-0.3	3.6	V
T_{store}	存储温度	-40	85	°C

说明:

关于电源域请参考《ESP32 技术规格书》 附录中表 IO_MUX。

4.2 建议工作条件

表 5: 建议工作条件

符号	参数	最小值	典型值	最大值	单位
VDD33	供电电压	3.0	3.3	3.6	V
I_{VDD}	外部电源的供电电流	0.5	-	-	А
Т	工作温度	-40	-	85	°C
Humidity	湿度	_	85	_	%RH

4.3 直流电气特性 (3.3 V, 25 °C)

表 6: 直流电气特性 (3.3 V, 25 °C)

符号	参数	最小值	典型值	最大值	单位
C_{IN}	管脚电容	-	2	-	рF
V_{IH}	高电平输入电压	0.75×VDD ¹	-	VDD1+0.3	V
V_{IL}	低电平输入电压	-0.3	-	0.25×VDD ¹	V
$ I_{IH} $	高电平输入电流	-	-	50	nA
$ I_{IL} $	低电平输入电流	-	-	50	nA
V_{OH}	高电平输出电压	0.8×VDD ¹	-	-	V
V_{OL}	低电平输出电压	-	-	0.1×VDD ¹	V

符号	参数	参数		典型值	最大值	单位
	高电平拉电流 (VDD ¹ = 3.3 V,	VDD3P3_CPU 电 源域 ^{1, 2}	-	40	-	mA
I_{OH}	$V_{OH} >= 2.64 \text{ V},$	VDD3P3_RTC 电 源域 ^{1, 2}	-	40	-	mA
	管脚输出强度设为 最大值)	VDD_SDIO 电源 域 ^{1,3}	-	20	-	mA
I_{OL}	低电平灌电流 $(VDD^1 = 3.3 \text{ V}, \text{V}_{OL} = 0.495 \text{ V},$ 管脚输出强度设为最大值)		-	28	-	mA
R_{PU}	上拉电阻		-	45	-	kΩ
R_{PD}	下拉电阻		-	45	-	kΩ
V_{IL_nRST}	CHIP_PU 关闭芯片的低	电平输入电压	-	-	0.6	V

说明:

- 1. VDD 是 I/O 的供电电源。关于电源域请参考_《ESP32 技术规格书》 附录中表 IO_MUX。
- 2. VDD3P3_CPU 和 VDD3P3_RTC 电源域管脚的单个管脚的拉电流随管脚数量增加而减小,从约 40 mA 减小到约 29 mA。
- 3. VDD_SDIO 电源域的管脚不包括连接 flash 和/或 PSRAM 的管脚。

4.4 功耗特性

ESP32 采用了先进的电源管理技术,可以在不同的功耗模式之间切换。关于不同功耗模式的描述,详见_《ESP32 技术规格书》中章节 RTC 和低功耗管理。

工作模式 描述 平均值 (mA) 峰值 (mA) 802.11b, 20 MHz, 1 Mbps, @19.5 dBm 368 233 802.11g, 20 MHz, 54 Mbps, @14 dBm 258 181 TX 248 802.11n, 20 MHz, MCS7, @13 dBm 178 Active (射频工作) 802.11n, 40 MHz, MCS7, @13 dBm 162 205 802.11b/g/n, 20 MHz 110 111 RX 802.11n, 40 MHz 116 117

表 7: 射频功耗

说明:

- 功耗数据是基于 $3.3 \, \text{V}$ 电源、 $25 \, ^{\circ}\text{C}$ 环境温度,在 RF 接口处完成的测试结果。所有发射数据均基于 100% 的占空比测得。
- 测量 RX 功耗数据时,外设处于关闭状态,CPU 处于 idle 状态。

表 8: 不同功耗模式下的功耗

工作模式	描述		功耗典型值
		240 MHz	30 ~ 68 mA
Modem-sleep	CPU 处于工作状态	160 MHz	27 ~ 44 mA
		正常速度: 80 MHz	20 ~ 31 mA
Light-sleep	_		0.8 mA
	ULP 协处理器处于工作状态		150 μA
Deep-sleep	超低功耗传感器监测模式		100 μA @1% duty
Deep-sieep	RTC 定时器 + RTC 存储器		10 μΑ
	仅有 RTC 定时器处于工作状态		5 μΑ
关闭	CHIP_PU 脚拉低,芯片处于关闭状态		1 μΑ

说明:

- 测量 Modem-sleep 功耗数据时,CPU 处于工作状态,cache 处于 idle 状态。
- 在 Wi-Fi 开启的场景中,芯片会在 Active 和 Modem-sleep 模式之间切换,功耗也会在两种模式间变化。
- Modem-sleep 模式下, CPU 频率自动变化, 频率取决于 CPU 负载和使用的外设。
- Deep-sleep 模式下,仅 ULP 协处理器处于工作状态时,可以操作 GPIO 及低功耗 I²C。
- 当系统处于超低功耗传感器监测模式时,ULP 协处理器或传感器周期性工作。ADC 以 1% 占空比工作,系统功 耗典型值为 100 μ A。

4.5 Wi-Fi 射频

4.5.1 Wi-Fi 射频特性

表 9: Wi-Fi 射频特性

参数		描述		
工作信道中心频率范围 1		2412 ~ 2484 MHz		
Wi-Fi 协议		IEEE 802.11b/g/n		
		11b: 1, 2, 5.5, 11 Mbps		
数据速率	20 MHz	11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps		
双 加还平		11n: MCS0-7, 72.2 Mbps (Max)		
	40 MHz	11n: MCS0-7, 150 Mbps (Max)		

说明:

- 1. 工作信道中心频率范围应符合国家或地区的规范标准。软件可以配置工作信道中心频率范围。
- 2. 使用 IPEX 天线的模组输出阻抗为 50 Ω ,不使用 IPEX 天线的模组可无需关注输出阻抗。

4.5.2 发射器性能规格

表 10: 发射器性能规格

参数	条件	典型值	单位
	11b, 1 Mbps	19.5	
	11b, 11 Mbps	19.5	
	11g, 6 Mbps	18	
 输出功率 ¹	11g, 54 Mbps	14	dBm
和山勿卒	11n, HT20, MCS0	18	abiii
	11n, HT20, MCS7	13	
	11n, HT40, MCS0	18	
	11n, HT40, MCS7	13	

说明:

根据产品或认证的要求,用户可以配置目标功率。

4.5.3 接收器性能规格

表 11: 接收器性能规格

参数	条件	典型值	单位
接收灵敏度	1 Mbps	-97	dBm
	2 Mbps	-94	
	5.5 Mbps	-91	
	11 Mbps	-88	
	6 Mbps	-92	
	9 Mbps	-91	
	12 Mbps	-89	
	18 Mbps	-87	
	24 Mbps	-84	
	36 Mbps	-80	
	48 Mbps	-76	
	54 Mbps	-75	
	11n, HT20, MCS0	-91	
	11n, HT20, MCS1	-88	
	11n, HT20, MCS2	-85	
	11n, HT20, MCS3	-83	
	11n, HT20, MCS4	-80	
	11n, HT20, MCS5	-75	
	11n, HT20, MCS6	-74	
	11n, HT20, MCS7	-72	
	11n, HT40, MCS0	-88	
	11n, HT40, MCS1	-85	
	11n, HT40, MCS2	-82	
	11n, HT40, MCS3	-80	

参数	条件	典型值	单位
	11n, HT40, MCS4	-76	
	11n, HT40, MCS5	-72	
	11n, HT40, MCS6	-71	
	11n, HT40, MCS7	-69	
最大接收电平	11b, 1 Mbps	5	dBm
	11b, 11 Mbps	5	
	11g, 6 Mbps	0	
	11g, 54 Mbps	-8	
	11n, HT20, MCS0	0	
	11n, HT20, MCS7	-8	
	11n, HT40, MCS0	0	
	11n, HT40, MCS7	-8	
邻道抑制	11b, 11 Mbps	35	dB
	11g, 6 Mbps	27	
	11g, 54 Mbps	13	
	11n, HT20, MCS0	27	
	11n, HT20, MCS7	12	
	11n, HT40, MCS0	16	
	11n, HT40, MCS7	7	

4.6 蓝牙射频

4.6.1 接收器 - 基础数据率 (BR)

表 12: 接收器特性 - 基础数据率 (BR)

参数	条件	最小值	典型值	最大值	单位
灵敏度 @0.1% BER	_	-90	-89	-88	dBm
最大接收信号 @0.1% BER	_	0	_	_	dBm
共信道抑制比 C/I	_	_	+7	_	dB
	F = F0 + 1 MHz	_	_	-6	dB
	F = F0 -1 MHz	_	_	-6	dB
M 사용 사용 무슨 네트리카 프리티스 스 //	F = F0 + 2 MHz	_	_	-25	dB
邻道选择性抑制比 C/I	F = F0 -2 MHz	_	_	-33	dB
	F = F0 + 3 MHz	_	_	-25	dB
	F = F0 -3 MHz	_	_	-45	dB
	30 MHz ~ 2000 MHz	-10	_	_	dBm
世 外 阳 安	2000 MHz ~ 2400 MHz	-27	_	_	dBm
带外阻塞	2500 MHz ~ 3000 MHz	-27	_	_	dBm
	3000 MHz ~ 12.5 GHz	-10			dBm
互调	_	-36	_		dBm

4.6.2 发射器 - 基础数据率 (BR)

表 13: 发射器特性 - 基础数据率 (BR)

参数	条件	最小值	典型值	最大值	单位
射频发射功率(见表 13 下方说明)	_	_	0	_	dBm
增益控制步长	_	_	3	_	dB
射频功率控制范围	_	-12		+9	dBm
20 dB 带宽	_	_	0.9	_	MHz
	$F = F0 \pm 2 MHz$	_	-55	_	dBm
邻道发射功率	$F = F0 \pm 3 \text{ MHz}$	_	-55	_	dBm
	$F = F0 \pm > 3 MHz$	_	-59	_	dBm
$\Delta \ f1_{avg}$	_	_		155	kHz
$\Delta~f2_{ ext{max}}$	_	127			kHz
$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	_	_	0.92	_	_
ICFT	_	_	-7	_	kHz
漂移速率	_	_	0.7	_	kHz/50 μ s
偏移 (DH1)	_	_	6	_	kHz
偏移 (DH5)	_		6	_	kHz

说明:

从 0 到 7, 共有 8 个功率级别,发射功率范围从-12 dBm 到 9 dBm。功率电平每增加 1 时,发射功率增加 3 dB。默认 情况下使用功率级别 4,相应的发射功率为 0 dBm。

4.6.3 接收器 - 增强数据率 (EDR)

表 14: 接收器特性 - 增强数据率 (EDR)

参数	条件	最小值	典型值	最大值	单位	
	π /4 DQPSK					
灵敏度 @0.01% BER						
最大接收信号 @0.01% BER	_	_	0	_	dBm	
共信道抑制比 C/I	_	_	11	_	dB	
	F = F0 + 1 MHz		-7	_	dB	
邻道选择性抑制比 C/I	F = F0 -1 MHz	_	-7	_	dB	
	F = F0 + 2 MHz	_	-25	_	dB	
	F = F0 -2 MHz	_	-35	_	dB	
	F = F0 + 3 MHz	_	-25	_	dB	
	F = F0 –3 MHz	_	-45	_	dB	
	8DPSK					
灵敏度 @0.01% BER	_	-84	-83	-82	dBm	
最大接收信号 @0.01% BER	_	_	-5	_	dBm	
共信道抑制比 C/I	_	_	18	_	dB	
	F = F0 + 1 MHz	_	2	_	dB	
	F = F0 -1 MHz	_	2	_	dB	
◇7 > ★ + fr 生計 以、○ /I	F = F0 + 2 MHz	_	-25	_	dB	
→ 邻道抑制比 C/I	F = F0 –2 MHz	_	-25	_	dB	

参数	条件	最小值	典型值	最大值	单位
	F = F0 + 3 MHz	_	-25	_	dB
	F = F0 –3 MHz	_	-38	_	dB

4.6.4 发射器 - 增强数据率 (EDR)

表 15: 发射器特性 - 增强数据率 (EDR)

参数	条件	最小值	典型值	最大值	单位
射频发射功率(见表 13 下方说明)	_	_	0	_	dBm
增益控制步长	_	_	3	_	dB
射频功率控制范围	_	-12	_	+9	dBm
$\pi/4$ DQPSK max w0	_	_	-0.72	_	kHz
π /4 DQPSK max wi	_	_	-6	_	kHz
$\pi/4$ DQPSK max lwi + w0l	_	_	-7.42	_	kHz
8DPSK max w0	_	_	0.7	_	kHz
8DPSK max wi	_	_	-9.6	_	kHz
8DPSK max lwi + w0l	_	_	-10	_	kHz
	RMS DEVM	_	4.28	_	%
π/4 DQPSK 调制精度	99% DEVM	_	100	_	%
	Peak DEVM	_	13.3		%
	RMS DEVM	_	5.8		%
8 DPSK 调制精度	99% DEVM	_	100		%
	Peak DEVM		14		%
带内杂散发射	$F = F0 \pm 1 MHz$		-46		dBm
	$F = F0 \pm 2 MHz$	_	-44		dBm
	$F = F0 \pm 3 MHz$	_	-49	_	dBm
	F = F0 + /-> 3 MHz	_		-53	dBm
EDR 差分相位编码	_	_	100		%

4.7 低功耗蓝牙射频

4.7.1 接收器

表 16: 低功耗蓝牙接收器特性

参数	条件	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	-94	-93	-92	dBm
最大接收信号 @30.8% PER	_	0	_		dBm
共信道抑制比 C/I	_		+10		dB
	F = F0 + 1 MHz	_	-5		dB
邻道抑制比 C/I	F = F0 -1 MHz		- 5	_	dB
	F = F0 + 2 MHz		-25		dB
	F = F0 −2 MHz		-35	_	dB
	F = F0 + 3 MHz	_	-25		dB

参数	条件	最小值	典型值	最大值	单位
	F = F0 –3 MHz	_	-45		dB
带外阻塞	30 MHz ~ 2000 MHz	-10	_		dBm
	2000 MHz ~ 2400 MHz	-27	_	_	dBm
	2500 MHz ~ 3000 MHz	-27	_	_	dBm
	3000 MHz ~ 12.5 GHz	-10	_	_	dBm
互调		-36			dBm

4.7.2 发射器

表 17: 低功耗蓝牙发射器特性

参数	条件	最小值	典型值	最大值	单位
射频发射功率 (见表 13 下方说明)	_		0		dBm
增益控制步长	_	_	3		dB
射频功率控制范围	_	-12		+9	dBm
	$F = F0 \pm 2 MHz$	_	-55		dBm
邻道发射功率	$F = F0 \pm 3 \text{ MHz}$		-57	_	dBm
	$F = F0 \pm > 3 \text{ MHz}$		-59		dBm
$\Delta f1_{ ext{avg}}$	_		_	265	kHz
$\Delta \ f2_{\sf max}$	_	210		_	kHz
$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	_		+0.92		_
ICFT	_	_	-10		kHz
漂移速率	_		0.7		kHz/50 μ s
偏移	_	_	2	_	kHz

S

5 原理图

模组内部元件的电路图。

图 3: ESP32-PICO-V3 原理图

外围设计原理图

模组与外围器件(如电源、天线、复位按钮、JTAG接口、UART接口等)连接的应用电路图。

图 4: ESP32-PICO-V3 外围设计原理图

说明:

为确保芯片上电时的供电正常, EN 管脚处需要增加 RC 延迟电路。RC 通常建议为 R = 10 k Ω , C = 1 μ F, 但具体数值仍 需根据模组电源的上电时序和芯片的上电复位时序进行调整。芯片的上电复位时序图可参考《ESP32 技术规格书》中 的电源管理章节。

7 封装信息

图 5: ESP32-PICO-V3 封装信息

图 6: ESP32-PICO-V3 封装图形

图 7: ESP32-PICO-V3 STENCIL

8.1 存储条件

密封在防潮袋 (MBB) 中的产品应储存在 < 40°C/90% RH 的非冷凝大气环境中。

模组的潮湿敏感度等级 (MSL) 为 3 级。

真空袋拆封后,在 25 ± 5 °C、60% RH 下,必须在 168 小时内使用完毕,否则就需要烘烤后才能二次上线。

8.2 **ESD**

• 人体放电模式 (HBM): 2000 V

• 充电器件模式 (CDM): 500 V

• 空气放电: 6000 V

• 接触放电: 4000 V

8.3 回流焊温度曲线

图 8: 回流焊温度曲线

说明:

建议模组只过一次回流焊。

MAC 地址和 eFuse 9

芯片 eFuse 已烧写 48 位 mac_address, 芯片工作在 station、AP、BLE 或 Ethernet 模式时,实际使用的 MAC 地址与 mac_address 的对应关系如下:

• Station 模式: mac_address

• AP 模式: mac_address + 1

• BLE 模式: mac_address + 2

• Ethernet 模式: mac_address + 3

1 Kbit 的 eFuse 中 256 bit 为系统专用 (MAC 地址和芯片设置), 其余 768 bit 保留给用户程序, 包括 flash 加密和 芯片 ID。

10 学习资源

10.1 必读资料

访问以下链接可下载有关 ESP32 的文档资料。

• 《ESP32 技术规格书》

本文档为用户提供 ESP32 硬件技术规格简介,包括概述、管脚定义、功能描述、外设接口、电气特性等。

• 《ESP32 ECO V3 使用指南》

本文介绍 ESP32 ECO V3 较之前硅片的主要变化。

• 《ESP32 勘误表及解决办法》

本文收录了 ESP32 芯片的硬件问题并给出解决方法。

• 《ESP-IDF 编程指南》

ESP32 相关开发文档的汇总平台,包含硬件手册,软件 API 介绍等。

• 《ESP32 技术参考手册》

该手册提供了关于 ESP32 的具体信息,包括各个功能模块的内部架构、功能描述和寄存器配置等。

• ESP32 硬件资源

压缩包提供了 ESP32 模组和开发板的硬件原理图, PCB 布局图, 制造规范和物料清单。

• 《ESP32 硬件设计指南》

该手册提供了 ESP32 系列产品的硬件信息,包括 ESP32 芯片,ESP32 模组以及开发板。

《ESP32 AT 指令集与使用示例》

该文档描述 ESP32 AT 指令集功能以及使用方法,并介绍几种常见的 AT 指令使用示例。其中 AT 指令包括基础 AT 指令,Wi-Fi 功能 AT 指令,TCP/IP 相关 AT 指令等;使用示例包括单连接 TCP 客户端,UDP 传输,透传,多连接 TCP 服务器等。

• 《乐鑫产品订购信息》

10.2 必备资源

以下为有关 ESP32 的必备资源。

• ESP32 在线社区

工程师对工程师 (E2E) 的社区,用户可以在这里提出问题,分享知识,探索观点,并与其他工程师一起解决问题。

• ESP32 GitHub

乐鑫在 GitHub 上有众多开源的开发项目。

• ESP32 工具

ESP32 flash 下载工具以及《ESP32 认证测试指南》。

• ESP-IDF

ESP32 所有版本 IDF。

• ESP32 资源合集

ESP32 相关的所有文档和工具资源。

修订历史

日期	版本	发布说明
		更新 TWAI™ 为 TWAI®
2021-02-09	V1.2	删除章节 6: 外围设计原理图中的 VDD33 放电电路图和复位电路图
		更新图 8: 回流焊温度曲线下方的说明
		在章节 1.1 中增加 TWAI™;
2020-11-27	V1.1	更新 RC 延迟电路中的电容值为 1 μF;
		添加图 6 和图 7。
2020-04-16	V1.0	首次发布。

免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息,所有引用的信息均为"按现状"提供,乐鑫不对信息的准确性、真实性做任何保证。

乐鑫不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不 提供任何其他乐鑫提案、规格书或样品在他处提到的任何保证。

乐鑫不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何侵犯知识产权的行为负责。本文档在此未以禁止反言或其他方式授予任何知识产权许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2021 乐鑫信息科技(上海)股份有限公司。保留所有权利。