Root finding is the same as DBMS if there are no duplicates in the last number of the last column. Otherwise, this is what I propose as a simplified version of finding the MMS root. Let's say we have this matrix:

0	1	2	3
	1	2	3
		1	2
			1
			1

Since the last 1 of the last column is a duplicate of the previous one before it, it is cancelled out.

0	1	2	3
	1	2	3
		1	2
			1
			1

()(1,1)(2,2,1)(3,3,2,1,1) has the same root as ()(1,1)(2,2,1)(3,3,2,1).

If there are 2 or more doubles right next to each other, then cancel out all of the duplicates such that they are right next to each other.

2	3	4	5
2	3	4	5
1	2	3	4
	1	2	3
	1	2	3
		1	2
		1	2
			1
			1

 $\dots(2,2,1)(3,3,2,1,1)(4,4,3,2,2,1,1)(5,5,4,3,3,2,2,1,1)$ has the same root as $\dots(2,2,1)(3,3,2,1,1)(4,4,3,2,2,1,1)(5,5,4,3,2,1)$.

0 1 2 3

1	2	3
1	1	2
		1
		1
		1

()(1,1,1)(2,2,1)(3,3,2,1,1,1) has the same root as ()(1,1,1)(2,2,1)(3,3,2,1).

1	2	3	4
	1	2	3
	1	2	3
		1	2
		1	2
		1	2
			1
			1
			1
			1

...(1)(2,1,1)(3,2,2,1,1,1)(4,3,3,2,2,2,1,1,1,1) has the same root as ...(1)(2,1,1)(3,2,2,1,1,1)(4,3,2,1).