Микроэкономика

Домашняя работа №12 (Аверьянов Тимофей ПМ 3-1)

Задача № 1. Рассчитать с исп. Excel спрос по Хиксу в краткосрочном периоде используя функцию Кобба-Дугласса из предыдущей задачи и след. исходные данные:

$$a_0 = 450000 + 10 \cdot i$$

$$\alpha = a = 0.5 - 0.01 \cdot i$$

$$\beta = b = 0.1 + 0.01 \cdot i$$

$$p_0 = 10^{-6} + 0.2 \cdot 10^{-6} \cdot i$$

$$p_1 = 0.1 + 0.01 \cdot i$$

$$p_2 = 0.024 + 0.01 \cdot i$$

$$q_0 = 1451000 - 100 \cdot i$$

$$b_1 = x_1^{(o)} = 6 + 0.1 \cdot i$$

Решение:

Изменим ранее введённые данные на заданные в задаче, мой номер по списку: i=1. Тогда получим следующие исходные данные:

Исходные данные			Номер по списку
a0	450010	i	1
a	0.49		
b	0.11		
p0	0.0000012		
p1	0.11		
p2	0.034		
q0	1450900		

Далее введём ограничение на первый фактор произовдства $x_1^{(o)} = 6 + 0.1 \cdot i$. И воспользуемся функцией Excel "Поиск решения":

$$\begin{cases} c = \sum_{i=1}^{n} p_i x_i \to \min \\ F(x_1, \dots, x_n) = q_0; \\ b_1 = x_1^{(o)} = 6 + 0.1 \cdot i; \\ x_1, \dots, x_n \ge 0; \end{cases}$$

Оптимизировать целев <u>у</u> ю	функцию:	\$D\$16		1
До: Максимум	• Минимум	<u>З</u> начения:	0	
Изменяя ячейки перемен	ных:			
\$D\$13				1
В <u>с</u> оответствии с ограниче	ниями:			
\$D\$12 = 6.1 \$D\$12:\$D\$13 >= 0			^	Д <u>о</u> бавить
\$D\$14 = \$D\$10				Измени <u>т</u> ь
				<u>У</u> далить
				Сбросить
				<u>З</u> агрузить/сохранить
Сделать переме <u>н</u> ные (без ограничений	неотрицательными	1	
Выберите метод решения:	иск решения нел	инейных задач мет	одом ОПГ	Параметры
Метод решения				
Для гладких нелинейных линейных задач - поиск эволюционный поиск ре	решения линейн			

В итоге получим:

Исходные данные			Номер по списку
a0	450010	i	1
a	0.49		
b	0.11		
р0	0.0000012		
p1	0.11		
p2	0.034		
q0	1450900		
Искомые величины			
x1	6.1		
x2	13.294438		
q	1450900		
у	1.74108		
С	1.1230109		
π	0.6180691		

Таким образом спрос по Хиксу равен $\vec{x}^* = (6.1, 13.294438)$. При этом издержки составят c = 1.1230109.

Задача №2.

$$\begin{cases} c = \sum_{i=1}^{n} p_i x_i \to \min \\ F(x_1, \dots, x_n) = q_0 \end{cases}$$
 (1)

$$\begin{cases} c = p_1 x_1 + p_2 x_2 \\ F(x_1, x_2) = q_0 \\ x_1 = b_1 = x_1^o \\ x_1, \dots, x_n \ge 0 \end{cases}$$
 (4')

Для моделей (1), (4') составить функции Лагранжа и необходимое условие экстремума, решать не нужно.

Решение:

Составим функцию Лагранжа и необходимое условие экстремума для (1):

$$L(x_1, x_2, \lambda) = \sum_{i=1}^{n} p_i x_i + \lambda (q_0 - F(x_1, \dots, x_n))$$

$$\begin{cases} \frac{\partial L}{\partial x_i} = p_i - \lambda \frac{\partial F}{\partial x_1} = 0; \\ \frac{\partial L}{\partial \lambda} = q_0 - F(x_1, \dots, x_n) = 0; \\ x_1, \dots, x_n \ge 0; \end{cases}$$

Теперь составим функцию Лагранжа и необходимое условие экстремума для (4'):

$$L(x_1, x_2, \lambda) = p_1 x_1 + p_2 x_2 + \lambda (q_0 - F(x_1, x_2))$$

$$\begin{cases} \frac{\partial L}{\partial x_1} = p_1 - \lambda \frac{\partial F}{\partial x_1} = 0; \\ \frac{\partial L}{\partial x_2} = p_2 - \lambda \frac{\partial F}{\partial x_2} = 0; \\ \frac{\partial L}{\partial \lambda} = q_0 - F(x_1, x_2) = 0; \\ x_1 = b_1 = x_1^o; \\ x_1, \dots, x_n \ge 0; \end{cases}$$