Prediction of Body Fat Percentage STAT 628 Module 2

Group 1
Yuchen Zeng
Ruixuan Zhao
Jiantong Wang
Hao Pan

Step 1: Raw Data Analysing and Cleaning

Method 1: The relationship between Body fat and density

Percentage of Body Fat (%) = 495/DENSITY - 450

IDNO	BODYFAT from raw data	BODYFAT from formula
96	17.3	0.4
48	6.4	14.1
76	18.3	14.1
182	0.0	-3.6
216	45.1	47.5

Dealing with the outliers:

We compare the predicted percentage of body fat and the input percentage of body fat and check which one is more reasonable.

- **IDNO-96:** We keep the original percentage of body fat, because the percentage of body fat from raw data is more reasonable;
- **IDNO-48,76:** We delete these observations because we don't know which part of the data is wrong;
- **IDNO-182:** We delete it because the percentage of body fat is too low;
- **IDNO-216:** We delete it because the percentage of body fat is too large.

Method 2: The formula of adiposity

BMI(Adiposity) = WEIGHT / HEIGHT^2 (kg/m^2)

IDNO	ADIPOSITY from raw data	ADIPOSITY from formula	WEIGHT	HEIGHT		
42	29.9	165.6	205.00	29.50		
163	24.4	27.4	184.25	68.75		
221	24.5	21.7	153.25	70.50		

Dealing with the outliers:

We compare the predicted adiposity and the input adiposity and check whether weights and heights from raw data are correct.

- **IDNO-42:** The height in raw data is 29.50 inches, which seems incorrect. We use the BMI formula to change it as 69.45 inches (It seems that it is a writing mistake);
- **IDNO-163,221:** We delete these observations because we think they are outliers which may influence the result of following statistical model.

Step 2: Visualizing Data

Making Boxplot to find potential outliers

Potential Outliers: (IDNO-39: Extreme Case)

E	BODYFAT	AGE	WEIGHT	HEIGHT	ADIPOSITY	NECK	CHEST	ABDOMEN	HIP	THIGH	KNEE	ANKLE	BICEPS	FOREARM	WRIST
39	33.8	46	363.15	72.25	48.9	51.2	136.2	148.1	147.7	87.3	49.1	29.6	45.0	29.0	21.4
41	33.1	45	262.75	68.75	39.1	43.2	128.3	126.2	125.6	72.5	39.6	26.6	36.4	32.7	21.4
236	33.6	65	224.50	68.25	33.9	38.8	119.6	118.0	114.3	61.3	42.1	23.4	34.9	30.1	19.4
104	17.8	43	165.50	68.50	24.8	31.1	93.1	87.3	96.6	54.7	39.0	24.8	31.0	29.4	18.8
45	8.4	39	125.25	68.00	19.1	31.5	85.1	76.0	88.2	50.0	34.7	21.0	26.1	23.1	16.1
35	31.1	41	247.25	73.50	32.2	42.1	117.0	115.6	116.1	71.2	43.3	26.3	37.3	31.7	19.7
166	34.7	35	228.25	69.50	33.3	40.4	114.9	115.9	111.9	74.4	40.6	24.0	36.1	31.8	18.8
150	19.1	26	241.75	74.50	30.7	41.8	108.3	102.9	114.4	72.9	43.5	25.1	38.5	33.8	19.6
238	31.4	67	227.75	72.75	30.3	41.3	115.8	113.4	109.8	65.6	46.0	25.4	35.3	29.8	19.5
188	36.5	42	244.25	76.00	29.8	41.8	115.2	113.7	112.4	68.5	45.0	25.5	37.1	31.2	19.9
31	12.3	32	182.00	73.75	23.6	38.7	100.5	88.7	99.8	57.5	38.7	33.9	32.5	27.7	18.4
84	25.8	67	167.00	67.50	26.0	36.5	98.9	89.7	96.2	54.7	37.8	33.7	32.4	27.7	18.2
157	12.8	30	136.50	68.75	20.3	35.9	88.7	76.6	89.8	50.1	34.8	21.8	27.0	34.9	16.9
172	24.6	36	226.75	71.75	31.0	41.5	115.3	108.8	114.4	69.2	42.4	24.0	35.4	21.0	20.1
220	12.8	55	126.50	66.75	20.0	33.4	88.8	78.2	87.5	50.8	33.0	19.7	25.3	22.0	15.8

Step 3: Statistical Modeling

After cleaning data, three models are bulit in different ways:

- (a) Model inspired by US army
- (b) Model inspired by cylinder
- (c) Model from Exhaustive method

The formula below is how US army compute bodyfat for men:

$$BodyFat \sim \log(Waist-Neck) + \log(Height)$$

Given that data of waist are not provided and to simplify the model, Waist - Neck is replaced by Abdomen

The final model is:

 $BodyFat \sim \log(Abdomen) + \log(Height)$

It's known that there's a strong linear relationship between body fat and reciprocal of body density. Thus, It's a good idea to estimate reciprocal of body density. From the definition of density, it can be derived that:

$$\rho = \frac{m}{V} = \frac{\text{Weight}}{\pi r^2 \text{Height}} = \frac{\text{Weight} \times \text{Height}}{\pi r^2 \text{Height}^2} = \frac{\text{BMI} \times \text{Height}}{\pi r^2}$$

Volume of each person must equals to a certain cylinder with equal height and a certain radius r. Both radius r and BMI can be considered a linear function of abdomen.

Some terms are ignored to simply the model, the final formula is:

$$BodyFat \sim \frac{1}{\rho} = \frac{\pi r^2}{BMI \times Height} \sim \frac{(\alpha Abdomen + \beta)^2}{Height \times (aAbdomen + b)} \sim \frac{1}{Height} \left(Abdomen + 1 + \frac{1}{Abdomen}\right)$$

Exhaustive method is the easiest but most time-consuming way to built a good model. The result of exhaustive model is shown below.

	X	mindex	n	predictors	rsquare	adjr	predrsq	ср	aic	sbic	sbc	msep	fpe	арс	hsp
1	7	1	1	ABDOMEN	6.478017e- 01	0.646358275	0.63726116	73.97764	1438.179	739.0771	1448.695	20.09186	20.09053	0.3579720	0.08201031
10	13	10	1	FOREARM	1.292661e- 01	0.125697564	0.11276513	539.18615	1660.844	959.0469	1671.360	49.67276	49.66947	0.8850082	0.20275270
11	14	11	1	WRIST	1.234173e- 01	0.119824756	0.11011352	544.43348	1662.491	960.6796	1673.007	50.00642	50.00310	0.8909529	0.20411462
12	1	12	1	AGE	8.436381e- 02	0.080611198	0.07030696	579.47066	1673.213	971.3119	1683.729	52.23431	52.23084	0.9306466	0.21320833
13	11	13	1	ANKLE	6.595369e- 02	0.062125634	0.04114211	595.98744	1678.110	976.1687	1688.626	53.28455	53.28101	0.9493585	0.21749517
14	3	14	1	HEIGHT	2.208779e- 07	-0.004098139	-0.01819175	655.15815	1694.895	992.8202	1705.411	57.04700	57.04321	1.0163932	0.23285262
15	32	15	2	WEIGHT ABDOMEN	7.080663e- 01	0.705663519	0.69825412	21.91079	1394.013	695.5229	1408.034	16.79158	16.78880	0.2991420	0.06853935
16	84	16	2	ABDOMEN WRIST	6.868582e- 01	0.684280881	0.67479081	40.93780	1411.264	712.3695	1425.286	18.01144	18.00845	0.3208737	0.07351852
17	62	17	2	NECK ABDOMEN	6.825572e- 01	0.679944471	0.67141610	44.79649	1414.620	715.6480	1428.642	18.25883	18.25580	0.3252809	0.07452830
18	78	18	2	ABDOMEN HIP	6.805648e- 01	0.677935729	0.66886836	46.58393	1416.159	717.1518	1430.181	18.37342	18.37037	0.3273225	0.07499605
19	43	19	2	HEIGHT ABDOMEN	6.795636e- 01	0.676926292	0.66585525	47.48217	1416.929	717.9040	1430.950	18.43101	18.42795	0.3283484	0.07523111
20	80	20	2	ABDOMEN KNEE	6.649717e- 01	0.662214258	0.65198367	60.57344	1427.884	728.6108	1441.905	19.27032	19.26712	0.3433006	0.07865696

The combination with highest rsquare is Weight and abdomen.

The simple model from exhaustive method is:

BodyFat~ Abdomen + Weight

Model Performance

The adjusted R square of the three models are listed below:

	Model 1	Model 2	Model 3
Adjusted R sqaure	0.6971	0.703	0.7057
Residual standard error	4.132	4.091	4.073

It's hard to tell which model is better from this table.

Step 4: Model Selection and Diagnose

Model Selection

Cross validation methods are taken to do model selection.

The results are listed below:

	Model 1	Model 2	Model 3
mean of MSE	4.072	4.044	4.111
standard error of MSE	0.510	0.406	0.392

The three models are almost equally good, but model 2 and model 3 is a bit better than model 1 due to low standard error of MSE.

Model Diagnose

Model 2

Model Diagnose

Model 3

Additional Deletetion of Data

For each of the three models, IDNO-39 seems to be a leverage point and if you take a glance on data of 39, you would also consider 39 as an outlier.

	BODYFAT	AGE	WEIGHT	HEIGHT	ADIPOSITY	NECK	CHEST	ABDOMEN	HIP	THIGH	KNEE	ANKLE	BICEPS	FOREARM	WRIST
39	33.8	46	363.15	72.25	48.9	51.2	136.2	148.1	147.7	87.3	49.1	29.6	45	29	21.4

Because this is an extreme case with max WEIGHT, max NECK, max ADIPOSITY, max CHEST, ...,max HIP, max THIGH,..., we delete it and fit our final models: **Model 2** and **Model 3**.

The final model 2 is:

$$BodyFat = -21.62 - \frac{248324.17}{Abdomen \times Height} + 15.97 \frac{Abdomen}{Height} + \frac{4095.9}{Height}$$

Rule of thumb:

Your BodyFat (%) =
$$-22$$

$$-\frac{24000}{\text{Your Abdomen circumference (cm)} \times \text{Your Height (inches)}}$$

$$+16\frac{\text{Your Abdomen circumference (cm)}}{\text{Your Height (inches)}}$$

$$+\frac{4100}{\text{Your Height (inches)}}$$

The final model 3 is:

Body Fat =
$$-41.96048 + 0.89851$$
Abdomen -0.12384 **Weight**

Rule of thumb:

Step 5: Shiny APP

Here is the interface of our Shiny APP

BodyFat Calculator 0/100 Your information Circumference of abodmen 29.1% 50 Unit inch Choose one measurement Weight Note: you can choose only one measurement from weight You body fat percentage is: 29.1%. and height you know and ignore the other one. The result may be a little different. You are: Weight 70 Average Unit O kg) lb Contact us E-mail: yzeng58@wisc.edu Height Telephone number: 608-886-6291 175 Unit o cm inch Apply Changes

Your information Circumference of abodmen 50 Unit o cm O inch Choose one measurement Weight • Note: you can choose only one measurement from weight and height you know and ignore the other one. The result may be a little different. Weight 70 Unit kg Height 175 Unit o cm o inch Apply Changes

You body fat percentage is: 29.1%.

You are:

Average

._____

Contact us

E-mail: yzeng58@wisc.edu Telephone number: 608-886-6291

Your information Circumference of abodmen 80 Unit o cm) inch Choose one measurement Height Weight Height Weight 70 Unit kg O lb Height 175 Unit o cm o inch **Apply Changes**

You body fat percentage is: 45.1%.

You are:

Obese

Contact us

E-mail: yzeng58@wisc.edu Telephone number: 608-886-6291

Your information

Circumference of abodmen

Your body fat is 60.9 %.

Extremely above the normal range! Please check your input.

Extremely above the normal range: I lease check your input.

Contact us

E-mail: yzeng58@wisc.edu Telephone number: 608-886-6291

Strength and Weakness

Strength:

- The model we use is quite simple, which only requires two variables as input but gives a fairly good R square.
- It also provides us some flexibility that you can either input abdomen and height or abdomen and weight.

Weakness:

• The confidence interval is kind of wide.

Thank you!