Thirty-Third AAAI Conference on Artificial Intelligence,
January 27 – February 1, 2019,
Honolulu, Hawaii, USA.

Non-Autoregressive Neural Machine Translation with Enhanced Decoder Input

Junliang Guo^{†*}, **Xu Tan**[‡], **Di He**[§], **Tao Qin**[‡], **Linli Xu**[†] and **Tie-Yan Liu**[‡]

[†]Anhui Province Key Laboratory of Big Data Analysis and Application,

School of Computer Science and Technology, University of Science and Technology of China

[‡]Microsoft Research

§Key Laboratory of Machine Perception (MOE), School of EECS, Peking University †guojunll@mail.ustc.edu.cn, linlixu@ustc.edu.cn, ‡{xuta,taoqin,tyliu}@microsoft.com, §di_he@pku.edu.cn

Reporter: Junliang Guo Date: 27 Jan, 2019

Outline

1 Introduction

2 Enhanced Non-Autoregressive Transformer

3 Experiments

4 Conclusion

Introduction

- Autoregressive Machine Translation
 - Generate a target sequence word by word from left to right

$$y_t = \mathbb{D}(y_{1:t-1}, \mathbb{E}(x))$$

- A natural bottleneck for the inference speed
- Non-Autoregressive Machine Translation
 - Generate all target tokens independently and simultaneously

$$y_t = \mathbb{D}(z, \mathbb{E}(x))$$

where z is the decoder input that is generated independent with y

Non-Autoregressive Machine Translation

> Given the decoder input $z=(z_1,\ldots,z_{T_y})$, the generation of y is defined as:

Negative log-likelihood loss function

$$L_{\text{neg}}(x, y; \theta_{\text{enc}}, \theta_{\text{dec}}) = -\sum_{t=1}^{T_y} \log P(y_t | z, x)$$

Models		Training	Inference	
AT models	RNNs based CNNs based Self-Attention based	× √ √	× × ×	
NAT models		√	\checkmark	

NART (ICLR18)

Takes a copy of source sentence, which is guided by a fertility predictor, as the decoder input

No target-side information is provided

Decoder has to handle a harder cross-language task

 Inferior accuracy, e.g., poor on long sentences, missing/duplicating words

Gu et.al., ICLR 2018

Outline

- 1 Introduction
- 2 Enhanced Non-Autoregressive Transformer

3 Experiments

4 Conclusion

Methodology

> We aim to make the decoder input contains target-side information

$$y_t = \mathbb{D}(\hat{y}, \mathbb{E}(x))$$

Two variants:

Phrase-Table Lookup

A straightforward idea is to feed target tokens as decoder input

Pre-train a phrase table on the training set by Moses

Segment and translate x greedily by phrase-table lookup

- Several shortages of Phrase-Table Lookup model
 - The quality of phrase table depends on the quality of dataset
 - It cannot update its quality autonomous cause it is not end-to-end trained
- We explore to provide target-side information in embedding space, instead of explicitly in token space

• We use a linear mapping f_G to map the source embedding matrix E_x into the target space:

$$E_{\tilde{z}} = f_G(E_x; W) = E_x W$$

• Propose two loss functions to ensure a plausible mapping W can be learned

Sentence-level alignment:

$$L_{\text{align}}(x, y) = \|f_G(e(x)) - e(y)\|_2$$

$$+ e(x) = \frac{1}{T_x} \sum_{i=1}^{T_x} e(x_i)$$

Word-level adversary learning:

$$L_{\text{adv}}(x, y) = \min_{W} \max_{\theta_D} V_{\text{word}}(f_G, f_D)$$
$$V_{\text{word}}(f_G, f_D) = \mathbb{E}_{e(y_i) \sim E_y} [\log f_D(e(y_i))] +$$
$$\mathbb{E}_{e(x_j) \sim E_x} [\log (1 - f_D(f_G(e(x_j))))]$$

★ To make the embedding of each token of the decoder input and the target cannot be distinguished by the discriminator D

The final loss function comes to:

$$\min_{\Theta} \max_{\theta_D} L(x, y) = L_{\text{neg}}(x, y; \theta_{\text{enc}}, \theta_{\text{dec}}) + \mu L_{\text{align}}(x, y; W) + \lambda L_{\text{adv}}(x, y; \theta_D, W)$$

1 Introduction

2 Enhanced Non-Autoregressive Transformer

3 **Experiments**

4 Conclusion

Settings

- > We evaluate our model on three datasets:
 - IWSLT14 De-En: 153k training pairs, deep small model
 - WMT14 En-De: 4.5M training pairs, base model
 - WMT16 En-Ro: 2.9M training pairs, base model

Baselines:

- NART (Gu et al., ICLR 2018)
- Latent Transformer (LT) (Kaiser et al., ICML 2018)
- Iterative Refinement NAT (IR-NAT) (Lee et al., EMNLP 2018)

Translation Accuracy

Models	WM En-De	T14 De-En	WMT16 En-Ro	IWSLT14 De-En	Latency /	Speedup
LSTM-based S2S (Wu et al. 2016)	24.60	/	/	28.53^{\dagger}	/	/
Transformer (Vaswani et al. 2017)	27.41^{\dagger}	31.29^{\dagger}	35.61^\dagger	32.55^\dagger	607 ms	$1.00 \times$
LT (Kaiser et al. 2018)	19.80	/	/	/	105 ms	5.78×
LT (rescoring 10 candidates)	21.00	/	/	/	/	/
LT (rescoring 100 candidates)	22.50	/	/	/	/	/
NART (Gu et al. 2017)	17.69	21.47	27.29	22.95^\dagger	39 ms	$15.6 \times$
NART (rescoring 10 candidates)	18.66	22.41	29.02	25.05^{\dagger}	79 ms	$7.68 \times$
NART (rescoring 100 candidates)	19.17	23.20	29.79	/	257 ms	$2.36 \times$
IR-NAT (Lee, Mansimov, and Cho 2018)	21.54	25.42	29.66	/	$254^{\dagger}~\mathrm{ms}$	$2.39 \times$
Phrase-Table Lookup	6.03	11.24	9.16	15.69		/
ENAT Phrase-Table Lookup	20.26	23.23	29.85	25.09	25 ms	$24.3 \times$
ENAT Phrase-Table Lookup (rescoring 9 candidates)	23.22	26.67	34.04	28.60	■ 50 ms	$12.1 \times$
ENAT Embedding Mapping	20.65	23.02	30.08	24.13	24 ms	$25.3\times$
ENAT Embedding Mapping (rescoring 9 candidates)	24.28	26.10	34.51	27.30	49 ms	$12.4 \times$

Comparison in Length Buckets

- NART performs worse on longer sentences
- We achieve more accuracy improvements on these sentences by feeding enhanced decoder input

Case Study

Source:	hier ist ein foto, das ich am nrdlichen ende der baffin-inseln aufnahm, als ich mit inuits auf die narwhal-jagd ging. und dieser mann, olaya, erzhlte mir eine wunderbare geschichte seines grovaters.	
Target:	this is a photograph i took at the northern tip of baffin island when i went narwhal hunting with some inuit people, and this man, olayuk, told me a marvelous story of his grandfather.	
Teacher:	here's a photograph i took up at the northern end of the fin islands when i went to the narwhal hunt, and this man, olaya, told me a wonderful story of his grandfather.	
NART:	here's a photograph that i took up the north end of the baffin fin when i with iuits went to the narwhal hunt, and this guy guy, ollaya. & It; em & gt; & It; / em & gt;	
PT:	so here's a photo which i the northern end the detected when i was sitting on on the went. and this man, told me a wonderful story his's.	
ENAT Phrase:	here's a photograph i took up at the end of the baffin islands i went to the nnarwhal hunting hunt, and this man, olaaya told me a wonderful story of his grandfather.	
ENAT Embedding:	here's a photograph that i took on the north of the end of the baffin islands, when i went to nuits on the narhal hunt, and this man, olaya, told me a wonderful story of his grandfather.	
Source:	ich freue mich auf die gesprche mit ihnen allen!	
Target:	i look forward to talking with all of you.	
Teacher:	i'm happy to talk to you all!	
NART:	i'm looking to the talking to to you you.	
PT:	i look forward to the conversations with you all!	
ENAT Phrase:	i'm looking forward to the conversations with all of you.	
ENAT Embedding:	i'm looking forward to the conversations to all of you.	

Ablation Study

Approach	Decoder Input	NAT Result
Word-Table Lookup	3.54	19.16
Phrase-Table Lookup	6.03	20.33

We conduct a **weaker word-to-word** translation to compare with the **phrase-to-phrase** translation to demonstrate the impact of phrase-table quality to the translation accuracy

$L_{ m align}$	L_{adv}	BLEU score
$\sqrt{}$	$\sqrt{}$	24.13
\checkmark	\checkmark	23.53 23.74

The ablation study among the proposed two loss functions of embedding mapping: **sentence-level** alignment and **word-level** adversary learning

1 Introduction

Enhanced Non-Autoregressive Transformer

3 Experiments

4 Conclusion

Conclusion

We demonstrate that the inferior accuracy of non-autoregressive machine translation models comes from the weak target-side information carried in the input to decoder

- We propose two different models to enhance the target-side information in the decoder input, through Phrase-Table Lookup and Embedding Mapping
- We conduct extensive experiments on benchmark datasets to demonstrate the efficacy of proposed models

Thanks!