26 Повнота, передкомпактність, компактність

§26.1 Фільтр Коші

Означення 26.1. Фільтр \mathfrak{F} у топологічному векторному просторі X називається фільтром Коші, якщо для будьякого околу нуля U існує такий елемент $A \in F$, що $A - A \subset U$. Такий елемент A називається малим порядку U.

Теорема 26.1

Якщо фільтр \mathfrak{F} має границю, то \mathfrak{F} — фільтр Коші.

Доведення. Нехай $\lim \mathfrak{F} = x$ і $U \in \mathfrak{R}_0$. Виберемо $V \in \mathfrak{R}_0$ з $V - V \subset U$. За теоремою 1.1 (п.1) існує такий елемент $A \in \mathfrak{F}$, що $A \subset x + V$ Отже,

$$A - A \subset (x + V) - (x + V) \subset V - V \subset U.$$

Теорема 26.2

Нехай \mathfrak{F} — фільтр Коші на ТВП X і x — гранична точка \mathfrak{F} . Тоді $\lim \mathfrak{F} = x$.

Доведення. Нехай x+U — довільний окіл точки x, де $U\in\mathfrak{R}_0$. Виберемо окіл $V\in\mathfrak{R}_0$ з $V+V\subset U$ і множину $A\in F$, малу порядку $V\colon A-A\subset V$. За означенням граничної точки, множини A і x+V перетинаються, тобто існує $y\in A\cap (x+V)$. Тоді

$$x + U \supset x + V + V \supset y + V \supset y + A - A \supset y + A - y = A.$$

Таким чином, окіл x+U містить елемент фільтра \mathfrak{F} , отже, $x+U\in F$.

§26.2 Повнота і фільтри

Означення 26.2. Множина A у ТВП X називається **повною**, якщо будь-який фільтр Коші на X, що містить A як елемент, має границю, що належить A.

Зауваження 26.1 — Зокрема, топологічний векторний простір X називається повним, якщо будь-який фільтр Коші в X має границю.

Теорема 26.3

Нехай X — підпростір топологічного векторного простору E і $A\subset X$ — повна в X підмножина. Тоді A є повною як підмножина простору E.

Доведення. Нехай \mathfrak{F} — фільтр Коші на E, що містить A як елемент. Тоді, зокрема $X \in \mathfrak{F}$, то слід \mathfrak{F}_X фільтра \mathfrak{F} на X є фільтром. Легко бачити, що \mathfrak{F}_X — це фільтр Коші на X, що містить A як елемент. Отже, через повноту A у X фільтр \mathfrak{F}_X має в X границю $a \in A$. Ця ж точка a буде границею фільтра \mathfrak{F} в E.

Теорема 26.4

Повна підмножина A хаусдорфового ТВП X є замкнутою.

Зауваження 26.2 — Зокрема, якщо підпростір хаусдорфового ТВП є повним в індукованій топології, то цей підпростір є замкнутим.

§26.3 Передкомпактність і компактність

Доведення. Нехай точка $x \in X$ належить замиканню множини A. Нам потрібно довести, що $x \in A$. Розглянемо сімейство $\mathfrak D$ усіх перетинів вигляду $(x+U) \cap A$, де $U \in \mathfrak R_0$. Усі такі перетини не порожні, і $\mathfrak D$ задовольняє усі аксіоми бази фільтра. Фільтр $\mathfrak F$, породжений базою $\mathfrak D$, мажорує фільтр $\mathfrak R_x$ усіх околів точки x, отже, $x = \lim \mathfrak F$. Зокрема, $\mathfrak F$ — це фільтр Коші. За побудовою, наша повна множина A є елементом фільтра $\mathfrak F$; отже, відповідно до означення, фільтр $\mathfrak F$ має границю в A. Через єдиність границі $x \in A$, що і було потрібно довести.

Означення 26.3. Множина A у ТВП X називається **передкомпактом**, якщо для будь-якого околу нуля U існує така скінченна множина $B \subset X$, що $A \subset U + B$. Така множина B називається, за аналогією з ε -сіттю, U-сіттю множини A.

Теорема 26.5

Щоб підмножина A хаусдорфового ТВП X була компактом, необхідно і достатньо, щоб A була одночасно передкомпактом і повною множиною в X.

§26.4 Поглинання і обмеженість

Означення 26.4. Нехай X — топологічний векторний простір. Будемо говорити, що окіл нуля $U \in \mathfrak{R}_0$ поглинає множину $A \subset X$, якщо існує таке число N > 0, що $A \subset tU$ для будь-якого $t \geq N$.

Означення 26.5. Множина $A \subset X$ називається **обмеженою**, якщо вона поглинається кожним околом нуля.

Теорема 26.6

Властивості обмежених підмножин топологічного векторного простору X:

- 1. Нехай $A\subset X$ обмежена множина. Тоді для будьякого околу $U\in\mathfrak{R}_0$ існує таке число N>0, що $A\subset tU$ для будь-якого $t\geq N$.
- 2. Об'єднання скінченної кількості обмежених множин обмежене.
- 3. Будь-яка скінченна множина є обмеженою.
- 4. Будь-який передкомпакт у X є обмеженим.

Доведення.

1. Нехай $V \in \Omega_0$ — врівноважений окіл, що міститься в U за теорем. 25.2 (п. 2). Виберемо таке число N>0, що $A\subset NV$. Тоді для будь-якого $t\geq N$ маємо

$$A \subset NV = t(Nt^{-1}V) \subset tV \subset tU.$$

2. Нехай A_1, A_2, \dots, A_n — обмежені множини, U — окіл нуля. За попереднім пунктом

$$\forall A_k \quad \exists N_k : \quad \forall t \ge N \quad A_k \subset tU.$$

Покладемо $N=\max_k N_k,\ k=1,2,\ldots,n.$ Тоді $\forall t\geq N$ усі включення $A_k\subset tU$ виконуються одночасно, тобто $\bigcup_{k=1}^n A_k\subset tU.$

- 3. Одноточкова множина є обмеженою, оскільки окіл нуля є поглинаючою множиною. Отже, за попереднім пунктом, будь-яка скінченна множина як скінченне об'єднання одноточкових множин є обмеженою.
- 4. Нехай A передкомпакт в X, U окіл нуля. Виберемо врівноважений окіл $V \in \Omega_0$, такий що $V + V \subset U$. За означенням передкомпакта, існує така скінченна множина $B \subset X$, що $A \subset B + V$. Відповідно до попереднього пункту, можна знайти такий коефіцієнт N > 0, що $B \subset NV$. Тоді

$$A \subset B + V \subset NV + V \subset N(V + V) \subset NU.$$

§26.5 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 502–504).