

DEPARTAMENTO DE MATEMÁTICA

Matemática Discreta - 1° ano - 2° semestre E.I.(D + PL)

Ano letivo: 2018/2019 Folha Prática 4

Funções

- 1. Sejam $X = \{1, 2, 3\}, Y = \{1, 2, 3, 4\}, Z = \{1, 2\}.$
 - (a) Defina uma função $f: X \to Y$ que seja injetiva.
 - (b) Defina uma função $g: X \to Z$ que seja sobrejetiva.
 - (c) Defina uma função $h: X \to X$ que não seja injetiva nem sobrejetiva.
 - (d) Defina uma função $q:X\to X$ que seja bijetiva mas não seja a função identidade em X.
- 2. Considere a função $h: \mathbb{Z} \to \mathbb{Z}$ dada por h(n) = 4n 5.
 - (a) Analise se a função h é injetiva.
 - (b) Verifique se a função h é sobrejetiva.
- 3. Considere a função floor $| : \mathbb{R} \to \mathbb{Z}$.
 - (a) A função floor é injetiva? Justifique.
 - (b) Verifique se a função floor é sobrejetiva.
- 4. Suponha que α , β e γ são funções de um conjunto A nele próprio e que α é uma bijeção. Além disso, suponha também que $\alpha \circ \beta = \alpha \circ \gamma$. Será que se tem forçosamente $\beta = \gamma$? Justifique a sua resposta.
- 5. Considere as funções $f:A\longrightarrow B$ e $g:B\longrightarrow C$. Prove que:
 - (a) Se f e g são funções injetivas, então $g \circ f$ é injetiva.
 - (b) Se f e g são funções sobrejetivas, então $g \circ f$ é sobrejetiva.
- 6. Indique, justificando, o valor lógico das seguintes afirmações.
 - (a) Se $f:A\longrightarrow B$ é injetiva e A é um conjunto finito, então B é um conjunto finito.
 - (b) Se $f: A \longrightarrow A$ é injetiva mas não é sobrejetiva, então A é um conjunto infinito.
 - (c) Se $f: A \longrightarrow B$ é sobrejetiva e B é finito, então A é finito.
- 7. Seja 2N o conjunto de todos os naturais pares. Considere a função $h: \mathbb{N} \to 2\mathbb{N}$ dada por h(n) = 2n.
 - (a) Mostre que a função h é injetiva e sobrejetiva.
 - (b) Indique, justificando, o valor lógico da seguinte afirmação: "A cardinalidade do conjunto 2N é metade da do conjunto N.".

- 8. Mostre que os conjuntos \mathbb{N} e \mathbb{Z} são equipotentes.
- 9. Seja $n \in \mathbb{Z}$, mostre que

$$n - \left\lfloor \frac{1}{3}n \right\rfloor - \left\lfloor \frac{2}{3}n \right\rfloor$$

é igual ou a 0 ou a 1. (Sugestão: considere n escrito como elemento genérico das diferentes classes de equivalência da relação congruência módulo 3 no conjunto \mathbb{Z})

10. Seja $C = \{3, 5, 7\}$. Mostre que \mathbb{N} e $\mathbb{N} \setminus C$ são equipotentes.

Soluções

- 1. $X = \{1, 2, 3\}, Y = \{1, 2, 3, 4\}, Z = \{1, 2\}.$
 - (a) Por exemplo: f(1) = 2; f(2) = 4; f(3) = 1.
 - (b) Por exemplo: f(1) = 2; f(2) = 1; f(3) = 1.
 - (c) Por exemplo: f(1) = 1; f(2) = 3; f(3) = 1.
 - (d) Por exemplo: f(1) = 2; f(2) = 3; f(3) = 1.
- 2. $h: \mathbb{Z} \to \mathbb{Z}$ dada por h(n) = 4n 5. $h: \mathbb{Z} \to \mathbb{Z}$ dada por h(n) = 4n 5.
 - (a) A função h é injetiva pois, supondo que $h(n_1) = h(n_2) \Leftrightarrow 4n_1 5 = 4n_2 5$ e conclui-se que $n_1 = n_2$.
 - (b) A função h não é sobrejetiva. Por exemplo: não existe nenhum objeto em \mathbb{Z} que tenha imagem 1 (o objeto teria de ser $n = \frac{6}{4} = \frac{3}{2} \notin \mathbb{Z}$).
- $3. \mid \rfloor : \mathbb{R} \to \mathbb{Z}.$
 - (a) A função floor não é injetiva. Por exemplo, $\lfloor 2.3 \rfloor = \lfloor 2 \rfloor$ e $2.3 \neq 2$.
 - (b) Tendo em conta a definição de sobrejetividade temos de provar que para qualquer elemento m do conjunto de chegada \mathbb{Z} conseguimos obter um elemento $x \in \mathbb{R}$ tal que |x| = n. De facto, basta escolher $x = m \in \mathbb{R}$, |m| = m.
- 4. Se $\alpha \circ \beta = \alpha \circ \gamma$ então para qualquer $a \in A$ tem-se $\alpha(\beta(a)) = \alpha(\gamma(a))$, como α possui função inversa dado que é bijetiva, podemos aplicar a inversa $\alpha^{-1}(\alpha(\beta(a))) = \alpha^{-1}(\alpha(\gamma(a))) \Leftrightarrow \beta(a) = \gamma(a)$ para qualquer $a \in A$, ou seja, $\beta = \gamma$.
- 5. $f:A\longrightarrow B$ e $g:B\longrightarrow C$
 - (a) Esboço da prova: supor que $g(f(x_1)) = g(f(x_2))$ e, usando o facto de as funções g e f serem injetivas, concluir $x_1 = x_2$. Provando assim que $g \circ f$ é injetiva.
 - (b) Esboço da prova: considerar um elemento arbitrário $c \in C$ e, usando o facto de as funções g e f serem sobrejetivas, concluir que existe $a \in A$ tal que g(f(a)) = c. Provando assim que $g \circ f$ é sobrejetiva.

2

- 6. (a) Falsa. Contra-exemplo: $f: A \to B \text{ com } A = \{1, 2, 3\} \text{ e } B = \mathbb{N} \text{ com } f(1) = 1,$ f(2) = 2 e f(3) = 3 é uma função injetiva e B não é um conjunto finito.
 - (b) Esboço da prova: considerando A finito com n elementos concluir que |f(A)| = n e, portanto, A = f(A), ou seja, f terá de ser sobrejetiva, obtendo-se um absurdo quanto às condições iniciais de f.
 - (c) Falsa. Contra-exemplo, $f:A\longrightarrow B$, onde $A=\mathbb{N}$ e $B=\{1,2\},\ f(1)=1,\ f(n)=2, \forall n\geq 2, n\in\mathbb{N}.$
- 7. $h: \mathbb{N} \to 2\mathbb{N}, h(n) = 2n$.
 - (a) -
 - (b) A afirmação é falsa.
- 8. –
- 9. –
- 10. –