LOGICKÉ SYSTÉMY

Prednáška 4, 2014-2015

Ing. Adam Jaroš, PhD - prednášky, cvičenia

Ing. Michal Chovanec -cvičenia

Katedra technickej kybernetiky

Web predmetu: http://frtk.fri.uniza.sk

OPAKOVANIE - PREHĽAD NORMÁLNYCH FORIEM

Popis Karnaughovej mapy.

Normálne formy

- Pierceová funkcia
- Shafferová funkcia

Príklad

Kontaktná reprezentácia funkcie M3.

Riešenie

Kontaktná štrukturálna schéma.

Príklad

Kontaktná sieť a elektrická schéma s NAND a NOR. Logický obvod zadaný Karnaughovou mapou.

Riešenie

Optimálne konfigurácie sú zakreslené

- INDF (modrá farba)
- INKF (zelená farba)

INDF:
$$y = (a \cdot \bar{c}) + (\bar{a} \cdot c) + (\bar{b} \cdot c)$$

INKF:
$$y = (a+c) \cdot (\bar{a} + \bar{b} + \bar{c})$$

Riešenie pokračovanie

INDF:
$$y = (a \cdot \bar{c}) + (\bar{a} \cdot c) + (\bar{b} \cdot c)$$

INKF:
$$y = (a+c) \cdot (\bar{a} + \bar{b} + \bar{c})$$

Riešenie pokračovanie

INDF:
$$y = (a \cdot \bar{c}) + (\bar{a} \cdot c) + (\bar{b} \cdot c)$$

INKF:
$$y = (a+c) \cdot (\bar{a} + \bar{b} + \bar{c})$$

Riešenie

pokračovanie

Prepis do foriem

- INDF do 1. NSF
- INKF do 1. NPF.

INDF:
$$y = (a \cdot \bar{c}) + (\bar{a} \cdot c) + (\bar{b} \cdot c)$$

INKF:
$$y = (a+c) \cdot (\bar{a} + \bar{b} + \bar{c})$$

INDF zapísaná v 1. NSF: $y = (a|\bar{c})|(\bar{a}|c)|(\bar{b}|c)$

INKF zapísaná v 1. NPF: $y = (a \downarrow c) \downarrow (\bar{a} \downarrow \bar{b} \downarrow \bar{c})$

Spôsob kreslenia 1. vrstvy siete - inverzie vstupných premenných kreslíme len raz.

Príklad

Kontaktná sieť chodbového / schodiskového prepínača osvetlenia. Rozšírenie pre viac odbočiek.

Riešenie

Použijeme kontaktné prevedenia funkcie XOR.

Riešenie

pokračovanie

So špeciálnym typom—krížového prepínača je možné riešiť ľubovoľný počet odbočiek.

Krížový prepínač (princíp)

OPAKOVANIE – PRINCÍPY HĽADANIA "OPTIMÁLNEHO" RIEŠENIA – AKÉ KRITÉRIA MINIMALIZÁCIE POUŽIJEME?

- pravidelné konfigurácie
- použitie pravidiel Booleovej algebry (zátvorkové pravidlá)
- v praxi (súčiastková základňa; požiadavky na vlastnosti zapojenia napr. rýchlosť, odolnosť voči rušeniu, spotreba, rozmery, spoľahlivosť).
- vieme exaktne riešiť len úlohy
 s malým počtom premenných (heuristika)
- hľadanie optimálnych konfigurácií v logickom systéme s viacerými výstupmi globálna optimalizácia

a+a=a Zákon absorpcie:	a.a=a
a+a.b=a	a.(a+b)=a
Zákon absorpcie negácie:	
$a + \bar{a}.b = a + b$	$a.(\bar{a}+b)=a.b$
Distributívny zákon:	
a+(b.c)=(a+b).(a+c) Napr.: a+(a.b)=a	a.(b+c)=a.b+a.c $a.(a+b)=a$
$a.b + \bar{a}.b = b$	$(a+b).(\bar{a}+b)=b$
Neutrálnosť nuly a jednotky:	
a+0=a Agresívnosť nuly a jednotky:	a.1=a
a+1=1 Zákon vylúčenia tretieho:	a.0=0
$a + \bar{a} = 1$	$a.\bar{a}=0$
De Morganove zákony:	
$\overline{a+b} = \overline{a}.\overline{b}$	$\overline{a.b} = \overline{a} + \overline{b}$

Princíp spočíva vo vytváraní takých pravidelných konfigurácií, ktoré sa dajú aplikovať vo viacerých Karnaughových mapách súčasne.

Distributívny zákon Booleovej algebry – "zátvorkové pravidlá".

$$(a+b) \cdot (a+c) = a+b \cdot c$$
$$a \cdot b + a \cdot c = a \cdot (b+c)$$

Elektrická schéma zátvorkových pravidiel (ľavá a pravá strana rovnice)

Príklad

Aplikujte zátvorkové pravidlá

$$y = a \cdot \bar{c} + b \cdot d + \bar{c} \cdot d$$

Riešenie

Pre aplikovanie pravidla máme dve možnosti, premenné \overline{c} a d. Aplikujme pravidlo na prvý a posledný súčin:

$$y = \bar{c} \cdot (a+d) + b \cdot d$$

Výsledok zjednodušenia

Riešenie

pokračovanie

Pokračujme aplikovaním pravidla po **druhý krát**. K výrazu najskôr pripočítajme $\overline{c}\cdot d$

$$y = \bar{c} \cdot (a+d) + b \cdot d + \bar{c} \cdot d$$

= $\bar{c} \cdot (a+d) + d \cdot (b+\bar{c})$

Výsledok druhého zjednodušenia je na obrázku.

Záver

Každý súčin je vhodné použiť v zátvorkovej forme najviac 1 raz.

Ak rovnaký súčin použijem viac krát riešenie bude zložitejšie. Existujú výnimky!

Príklad

Aplikujte zátvorkové pravidlá.

Zapíšte výsledok do 1. NPF a 2. NSF.

$$y = (a + \overline{b}) \cdot (b + \overline{c}) \cdot (a + c)$$

Výsledok zjednodušenia.

 $\begin{bmatrix} a \\ \bar{b} \end{bmatrix}$ $\begin{bmatrix} b \\ \bar{c} \end{bmatrix}$ $\begin{bmatrix} a \\ c \end{bmatrix}$ $\begin{bmatrix} a \\ c \end{bmatrix}$

Platí rovnaký "záver" ako pri NDF.

Záver

Každý súčet je vhodné použiť v zátvorkovej forme najviac 1 raz.

Ak rovnaký súčet použijem viac krát riešenie bude zložitejšie. Existujú výnimky!

pokračovanie

Úpravu do 1. NPF prevedieme za pomoci substitúcie $K = \bar{b} \cdot c$:

$$y = (a + K) \cdot (b + \bar{c})$$

$$= (a \downarrow K) \downarrow (b \downarrow \bar{c})$$

$$= (a + K) \cdot \bar{K}$$

$$= a \cdot \bar{K} = \bar{a} \downarrow K$$

kde

$$K = \overline{b} \cdot c = \overline{\overline{\overline{b} \cdot c}} = \overline{b \vee \overline{c}} = b \downarrow \overline{c}$$

si upravíme s použitím De Morganovho pravidla a zákona absorpcie po dosadení dostaneme

$$y=\bar{a}\downarrow(b\downarrow\bar{c})$$

pokračovanie

Úpravu do 2. NSF prevedieme podobne za pomoci substitúcie

$$K = \overline{b} \cdot c = \overline{\overline{b} \cdot c} = (\overline{b}|c)|$$

a získame:

$$y=[a|(\bar{b}|c)]|$$

Elektrické schémy (vľavo-pôvodná sieť, vpravo-optimálna sieť s NOR a NAND)

Existujú logické obvody, u ktorých môžeme ich štruktúru popísať jednoduchšími obvodmi, ktoré sa opakujú. Takýto základný blok—obvod nazývame *iteratív*.

Pri návrhu logického obvodu s opakovanou štruktúrou najskôr hľadáme **popis** správania sa *iteratívu*.

- 1) Cieľom je vytvoriť *iteratív* čo najjednoduchší a s minimálnym počtom vstupných signálov.
- 2) Definujeme vzťahy medzi elementárnymi blokmi. Tomuto spôsobu návrhu hovoríme štrukturálna dekompozícia.

Tento prístup vedie na pomalšie systémy.

Patria tu napr. sčítačky, násobičky a iné.

Príklad

Navrhnite a zakreslite schému 8-bitovej binárnej sčítačky. Určte celkové oneskorenie sčítačky.

Riešenie

Matematický princíp sčítavania dvoch čísel bez znamienka.

$$\begin{array}{c} a_7 & a_0 \\ b_7 & b_0 \\ A: \ 1\ 0\ 1\ 1\ 0\ 1\ 0\ 1 \\ + \ B: \ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0 \\ \hline prenos: \ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0 \\ C: \ 1\ 1\ 1\ 0\ 1\ 0\ 0\ 1 \\ \end{array}$$

Z princípu je zrejmá štruktúra iteratívu.

Prípad nultého bitu môže byť vyriešený samostatne. Sčítavanie prvého bitu je

jednoduchšie (bez prenosu).

Riešenie

pokračovanie

Karnaughove mapy pre oba navrhnuté iteratívy.

pre bity 1.-7.

pre 0-tý bit

Riešenie

pokračovanie

NDF všetkých výstupných premenných.

$$\begin{split} c_i &= p_{i-1} \cdot \overline{a}_i \cdot \overline{b}_i + p_{i-1} \cdot a_i \cdot b_i + \overline{p}_{i-1} \cdot a_i \cdot \overline{b}_i + \overline{p}_{i-1} \cdot \overline{a}_i \cdot b_i \\ p_i &= p_{i-1} \cdot a_i + p_{i-1} \cdot b_i + a_i \cdot b_i \\ c_0 &= a_0 \cdot \overline{b}_0 + \overline{a}_0 \cdot b_0 \\ p_0 &= a_0 \cdot b_0 \end{split}$$

prepis do 1. NSF

$$c_{i} = (p_{i-1}|\bar{a}_{i}|\bar{b}_{i})|(p_{i-1}|a_{i}|b_{i})|(\bar{p}_{i-1}|a_{i}|\bar{b}_{i})(\bar{p}_{i-1}|\bar{a}_{i}|b_{i})$$

$$p_{i} = (p_{i-1}|a_{i})|(p_{i-1}|b_{i})|(a_{i}|b_{i})$$

$$c_{0} = (a_{0}|\bar{b}_{0})|(\bar{a}_{0}|b_{0})$$

$$p_{0} = (a_{0}|b_{0})|$$

Riešenie pokračovanie

Zapojenie jednobitovej plnej sčítačky.

Jednobitová plná sčítačka, realizácia použitím logických hradiel NAND.

$$\begin{array}{l} c_i = (p_{i-1}|\bar{a}_i|\bar{b}_i)|(p_{i-1}|a_i|b_i)|(\bar{p}_{i-1}|a_i|\bar{b}_i)(\bar{p}_{i-1}|\bar{a}_i|b_i)\\ p_i = (p_{i-1}|a_i)|(p_{i-1}|b_i)|(a_i|b_i)\\ c_0 = (a_0|\bar{b}_0)|(\bar{a}_0|b_0)\\ p_0 = (a_0|b_0)| \end{array}$$

Riešenie

pokračovanie

Výpočet oneskorenia sčítačky.

Uvažujme jednotkové obneskorenie každého hradla. Potom celkové oneskorenie 8-bitovej sčítačky rovné 3+2.7 = 17 časových jednotiek od okamžiku pripojenia vstupných čísel *a*, *b* až po získanie platného výsledku *c*.

Cena za *jednoduchý návrh* je *pomalé riešenie*.

Riešenie

pokračovanie Praktická aplikácia sčítačky.

V praxi sa častejšie používa zapojenie s hradlami XOR.

Zapíšme si výrazy pre polovičnú a plnú sčítačku.

Polovičná sčítačka:

$$c_i = a_i \oplus b_i$$
$$p_i = a_i \cdot b_i$$

Plná sčítačka:

$$c_{i} = (a_{i} \oplus b_{i}) \oplus p_{i-1} = a_{i} \oplus b_{i} \oplus p_{i-1}$$
$$p_{i} = a_{i} \cdot b_{i} + p_{i-1} \cdot (a_{i} \oplus b_{i})$$

Karnaughova mapa polovičnej sčítačky

PREDNÁŠKA 4

Intel Galileo Gen 2 Gen 4 Has 125-800

Témy prednášky:

- Nedokonalosť stavebných prvkov kombinačných systémov
- 1) Vznik hazardu a spôsoby jeho eliminácie
- 2) Časový priebeh zmien výstupu logickej siete
- 3) Príklady často používaných zapojení kombinačných obvodov
 - 1) Multiplexor MUX
 - 2) Demultiplexor DEMUX
 - 3) Komparátor
 - 4) Kóder CD a dekóder DEC

DYNAMICKÁ NEDOKONALOSŤ STAVEBNÝCH PRVKOV

Pri návrhu číslicových logických systémov musíme zohľadniť časové parametre stavebných prvkov.

V prípade rýchlych systémov je to predovšetkým časové oneskorenie hradla alebo celého obvodu.

Časové i ďalšie parametre **získavame od výrobcu súčiastky** z katalógu (datasheets).

Jedna súčiastka môže byť vyrobená rôznymi technologickými postupmi. Pri zložitejších systémoch musíme zvážiť ich vzájomnú kompatibilitu.

Pri kombinačných obvodoch nám niekedy časové oneskorenie neprekáža. Avšak vždy s ním musíme počítať pri návrhu sekvenčných systémov.

VLASTNOSTI STAVEBNÝCH PRVKOV – HRADIEL

Základné vlastnosti hradiel rady 74xx

- technológia výroby (TTL, CMOS, HS-CMOS, AHS-CMOS, BiCMOS, Shottky, ...)
- rýchlosť obvodu
- rozsah napájacieho napätia (+Ucc, +Vcc, od 1.25V až 18V)
- spotreba (obvykle rastie s vyššou pracovnou frekvenciou)
- zaťažiteľnosť a vetvenie (fan-out)
- veľkosť puzdra obvodu (DIL, SOP, ...)

řada	technologie	log. úroveň (V)	rozsah Uc (V)	Ic (μ A)	tpd max (ns]	vstup	výstup
MOS 4000	Standard CMOS	5.0	3.0 ~ 18.0	20		CMOS	CMOS
74 HC	High Speed CMOS	5.0	2.0 ~ 6.0	80	21	CMOS	CMOS
74 HCT	High Speed CMOS / TTL	5.0	4.5 ~ 5.5	80	30	TTL	CMOS
74 AC	Advanced CMOS	5.0	3.0 ~ 5.5	40	6.5	CMOS	CMOS
74 ACT	Advanced CMOS / TTL	5.0	4.5 ~ 5.5	40	8.0	TTL	CMOS
74 AHC	Advanced High Speed CMOS	5.0	2.0 ~ 5.5	40	7.5	CMOS	CMOS
74 AHCT	Advanced High Speed CMOS / TTL	5.0	4.5 ~ 5.5	40	7.7	TTL	CMOS
74 BCT	BiCMOS	5.0	4.5 ~ 5.5	90 mA	6.6	TTL	TTL
74 LV	Low Voltage CMOS	3.3	2.0 ~ 5.5	20	14	LV CMOS	LV TTL
74 LVC	Low Voltage CMOS / TTL	3.3	1.65 ~ 3.6	10	4.0	LV TTL	LV CMOS
74 LS	Low Power Schottky TTL	5.0	4.75 ~ 5.25	95 mA	12	TTL	TTL
74 ALS	Advanced Low Power Schottky TTL	5.0	4.5 ~ 5.5	58mA	10	TTL	TTL
74 F	Fast TTL	5.0	4.5 ~ 5.5	120 mA	6	TTL	TTL

logická úroveň (V) jmenovitá hodnota napětí logické úrovně H

Uc (V) napájecí napětí

Ic (μA) spotřeba nezatíženého hradla tpdmax (ns) zpoždění výstupního signálu

ČASOVÝ PRIEBEH VÝSTUPU LOGICKÉHO HRADLA

Ideálny a reálny (zjednodušený) časový priebeh prechodu signálu cez logický člen.

Medzi významné parametre logického hradla patrí

- časové oneskorenie
- tvarové skreslenie výstupného napätia oproti ideálnemu priebehu

Logické hradlo sa správa ako dynamický systém s určitými frekvenčnými vlastnosťami.

ČASOVÝ PRIEBEH VÝSTUPU LOGICKÉHO HRADLA

Zmena vstupnej a výstupnej hodnoty nenastáva však okamžite ale postupne.

Výrobcovia používajú rôzne riešenia, každé ma svoje výhody a nevýhody. Jedná sa o technologickú záležitosť a s postupom času sa vlastnosti tranzistorov použitých pre zostavenie hradiel zlepšujú.

Matematický popis logického—obdĺžnikového signálu vyjadríme napr. s Fourierovým rozkladom ako súčet harmonických signálov s rozdielnou amplitúdou a fázou.

ČASOVÝ PRIEBEH VÝSTUPU LOGICKÉHO HRADLA

Fourierová transformácia

$$y(x) = A \cdot \sum_{n=1}^{\infty} \frac{1}{(2n-1)} \sin(2n-1) \cdot x$$

VLASTNOSTI TECHNOLOGICKÝCH HRADIEL V INTEGROVANÝCH OBVODOCH –IO

Pri návrhu logických obvodov nás zaujímajú nasledovné vlastnosti použitých hradiel—integrovaných obvodov:

- elektrické vlastnosti nám určujú spotrebu energie, napájacie napätia a prúdovú spotrebu, taktiež správanie sa vstupu (napr. impedancia) a výstupu
- prevádzkové a technické parametre predstavujú bežne rozsahy pracovných teplôt, typ a veľkosť puzdra, tvary vývodov, technológia montáže
- medzi najdôležitejšie časové parametre patrie doba nábehu, doba poklesu
 a rýchlosť logických hradiel (maximálna pracovná frekvencia, ktorú dokáže
 prenášať na výstup), zvlnenie výstupného napätia a iné.

Tieto údaje získavame od výrobcu z katalógu súčiastok.

VLASTNOSTI TECHNOLOGICKÝCH HRADIEL V INTEGROVANÝCH OBVODOCH –IO

Ukážka katalógového listu obvodu TTL rady 74xx

DM7400 Quad 2-Input NAND Gates

General Description

This device contains four independent gates each of which performs the logic NAND function.

Ordering Code:

	Order Number	Package Number	Package Description			
	DM7400M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow			
DM7400N N14A		N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide			

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

 $Y = \overline{AB}$

Inp	Output	
Α	В	Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

H = HIGH Logic Level L = LOW Logic Level

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
Іон	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			16	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I = -12 mA			-1.5	V
V _{OH}	HIGH Level Output	V _{CC} = Min, I _{OH} = Max	2.4	3.4		V
	Voltage	V _{IL} = Max	2.4	3.4		· v
V _{OL}	LOW Level Output	V _{CC} = Min, I _{OL} = Max		0.2	0.4	V
	Voltage	V _{IH} = Min		0.2	0.4	, , , , , , , , , , , , , , , , , , ,
I _I	Input Current @ Max Input Voltage	V _{CC} = Max, V _I = 5.5V			1	mA
I _{IH}	HIGH Level Input Current	V _{CC} = Max, V _I = 2.4V			40	μA
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-1.6	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 3)	-18		-55	mA
Гссн	Supply Current with Outputs HIGH	V _{CC} = Max		4	8	mA
Iccl	Supply Current with Outputs LOW	V _{CC} = Max		12	22	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time.

VLASTNOSTI TECHNOLOGICKÝCH HRADIEL V INTEGROVANÝCH OBVODOCH – IO

Ukážka katalógového listu obvodu TTL rady 74xx pokračovanie

Switching Characteristics						
at $V_{CC} = 5V$ and $T_A = 25$ °C						
Symbol	Parameter	Conditions	Min	Max	Units	
t _{PLH}	Propagation Delay Time	C _L = 15 pF		22	ns	
	LOW-to-HIGH Level Output	$R_L = 400\Omega$		22	IIS	
t _{PHL}	Propagation Delay Time			15	ns	
	HIGH-to-LOW Level Output			15	113	

detail – t_{pHL} a t_{pLH}

VLASTNOSTI TECHNOLOGICKÝCH HRADIEL V INTEGROVANÝCH OBVODOCH – IO

Integračný článok (R-C člen) – princíp (vpravo) pôsobenie integračného článku

HAZARD V LOGICKÝCH OBVODOCH

Hazard je také správanie kombinačného systému, ktoré vzniká v dôsledku zmien vstupných signálov (nie je popísané Karnaughovou mapou).

Rozpoznávame dva typy hazardov statický a dynamický.

Poznámka: Označenie vychádza z toho v akej hodnote hazard nastáva.

Podmienkou existencie dynamického hazardu v kombinačnom obvodu je prítomnosť statického hazardu.

HAZARD V LOGICKÝCH OBVODOCH

Statický hazard v LO

IDENTIFIKÁCIA HAZARDU A SPÔSOBY JEHO ODSTRÁNENIA

Zistenie prítomnosti hazardu

Existenciu statického hazardu vieme určiť z rozmiestnenia pravidelných konfigurácií v Karnaughovej mape.

Ak sa dve konfigurácie neprekrývajú, tak v zapojení vždy existuje statický hazard, ak sa zmenia príslušné vstupné premenné súčasne.

Odstránenie hazardu

- Univerzálne riešenie—odstránenie statického hazardu na výstupe—spočíva v kompenzácii oneskorenia v príslušnej vetve logickej siete a to zaradením prídavných oneskorujúcich hradiel do navrhnutej schémy.
- Špecifické riešenie spočíva v pridaní redundantnej konfigurácie v Karnaughovej mape, ktorá premostí susediace konfigurácie.

IDENTIFIKÁCIA HAZARDU A SPÔSOBY JEHO ODSTRÁNENIA

Príklad

Navrhnite zapojenie s logickými hradlami NAND, ktoré neobsahuje hazard.

Riešenie

Zapíšme optimálne konfigurácie úlohy z obrázku a preveď me výraz do 1. NSF.

V zapojení existuje statický hazard, čo vidieť z umiestnenia konfigurácií v Karnaughovej mape. Rozhodujúce hradlo je zakreslené oranžovou farbou.

$$y = \bar{b} \cdot \bar{c} + a \cdot b$$
$$= (\bar{b}|\bar{c})|(a|b)$$

IDENTIFIKÁCIA HAZARDU A SPÔSOBY JEHO ODSTRÁNENIA

Príklad

pokračovanie

- Jedným z možných riešení je oneskorenie výstupu pripojením kondenzátora s vhodnou kapacitou "oproti zemi" na výstup tohto hradla. V súčinnosti s výstupnou impedanciou hradla tak tvorí "spomaľujúci" R-C článok.
- Druhým lepším riešením by bolo zaradenie bufera na výstup tohto logického hradla, ktorý si vytvoríme z bežného hradla vhodným zapojením.
- Tretie riešenie spočíva v premostení konfigurácií v obr. 3a ďalšou konfiguráciou. Výsledok návrhu zapojenia bez hazardov je na obrázku.

ČASOVÝ PRIEBEH ZMENY VÝSTUPU LOGICKEJ SIETE—SIMULÁCIA ČINNOSTI

Sledovanie zmien výstupov hradiel v zapojeniach logických obvodov je častou úlohou návrhára.

K meraniu priebehov sa používajú v súčasnosti digitálne osciloskopy, ktoré sú vybavené pamäťovými funkciami.

Zjednodušenie simulácie činnosti LO v čase

Predpokladajme pri kreslení "simulácie" činnosti logického obvodu rovnaké časové oneskorenie u všetkých hradiel.

Taktiež sa obmedzíme na hazardy spôsobené zmenou len jednej vstupnej premennej. (Predpokladáme, že bežne je to "najčastejší" prípad)

ČASOVÝ PRIEBEH ZMENY VÝSTUPU LOGICKEJ SIETE—SIMULÁCIA ČINNOSTI

Príklad

Zakreslite simuláciu činnosti LO (bez zapojeného kondenzátora C) tak, aby zachytával priebeh hazardu.

Riešenie

Simulujeme zmenu len jednej vstupnej premennej v čase, ktorá spôsobuje hazard na výstupe zapojenia.

Jedná sa o vstupnú premennú b.

V aplikačnej praxi sa určité zapojenia kombinačných obvodov často opakujú, preto sa vyrábajú v podobe integrovaných obvodov – IO (angl. IC – Integrated Circuit).

Multiplexor - MUX

Demultiplexor - DEMUX

Komparátor

Kóder - CD

Dekóder - DEC

Sčítačka - plná, polovičná

Multiplexor - MUX

Funkcia: prepnutie 1 vstupu z viacerých možných (spravidla ich počet je mocnina čísla 2, t.j. 2, 4, 8 a 16) na výstup.

Multiplexor - MUX

Demultiplexor - DEMUX

Funkcia: prepínanie jediného vstupu na 1 z viac možných (spravidla ich počet je mocnina čísla 2, t.j. 2, 4, 8 a 16).

Komparátor

Funkcia: porovnanie dvoch n-bitových čísiel. Plná verzia komparátora obsahuje všetky tri výstupy, viď. obrázok. V praxi však často používame len jediný výstup komparátora.

Komparátor

zapojenie 4-bitového úplného komparátora.

Použitie hradiel XNOR zapojenie značne zjednodušuje.

Kóder - CD

Funkcia: prevod kódu 1 z N (spravidla ich počet je mocnina čísla 2, t.j. 2, 4, 8 a 16 alebo práve 10 t.j. BCD resp. 9-klávesnica bez "nuly") najčastejšie na binárne číslo.

Sčítačka

Viac bitová sčítačka vytvorená z plnej jednobitovej sčítačky

