A Flexible Finite Mixture Model Family for Analyzing Underdispersed Discrete Data, With Negative Weights

(Joint Statistical Meetings 2019)

Martial Luyts Geert Molenberghs Geert Verbeke Koen Matthijs

Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat)

Katholieke Universiteit Leuven, Belgium

martial.luyts@kuleuven.be

www.ibiostat.be

Interuniversity Institute for Biostatistics and statistical Bioinformatics

Contents

1. Introductory material		 •	•					1
1.1. Demographic, historical data of Moerzeke								2
2. Methodology								6
2.1. Strategy			•				•	7
2.1.1. Choosing flexible dispersed basic distributions $p_j(y \mid \theta_j)$		 •	•	•				8
2.1.2. Allowing for negative weights			•				•	10
3. Analyzing the Moerzeke data					-	-		14
3.1. Findings with the extended FMM approach								15

Part 1:

Introductory material

1.1 Demographic, historical data of Moerzeke

• Moerzeke is a small village in the center of Flanders (Belgium)

- It is a geographical isolate
- Mainly populated by farmers until well into the 20th century
- Fertility was traditionally high and dropped at the beginning of the 20th century

- The information in the database is drawn from church and civil registers
- The database contains information of individuals who were born, married or died in Moerzeke

• Focus is laid on the (discrete) longevity (measured per decades), i.e., a discretised time-to-event outcome

Part 2:

Methodology

2.1 Strategy

• Based on the given histogram, we give preference to a finite mixture model (FMM) approach:

$$p(Y = y \mid \boldsymbol{\theta}) = \sum_{j=1}^{k} \pi_j \cdot p_j(y \mid \boldsymbol{\theta}_j), \quad \pi_j \ge 0 \text{ and } \sum_{j=1}^{k} \pi_j = 1$$

- We extend the traditional FMM approach to a more flexible framework, by
 - 1. Choosing flexible dispersed basic distributions $p_j(y \mid \theta_j)$
 - 2. Allowing for negative weights

$$p(Y = y \mid \boldsymbol{\theta}) = \sum_{j=1}^{k} \pi_j \cdot p_j(y \mid \boldsymbol{\theta}_j), \quad \pi_j \ge 0 \quad \text{and} \quad \sum_{j=1}^{k} \pi_j = 1$$

Additional constraints:

$$p(Y = y \mid \boldsymbol{\theta}) \ge 0, \forall y \text{ and } \mathsf{Var}(Y) \ge 0$$

2.1.1 Choosing flexible dispersed basic distributions

- Log-linear Poisson models are in standard use in count data
 - Main limitation: Restricted mean-variance relationship, i.e.,

$$\mathsf{E}_j(Y) = \lambda_j \text{ and } \mathsf{Var}_j(Y) = \lambda_j$$
 (= **EQUIDISPERSION**)

• Extended and alternative approaches have been developed that can flexibly handle over- and underdispersed situations

• Some examples:

Element	Notation	Distribution				
Model		Poisson	Discrete normal			
PMF	$p_j(y \mid \boldsymbol{\theta}_j)$	$\frac{e^{-\lambda_j}\lambda_j^y}{y!}$	$\Phi\left(\frac{y-\lambda_j+0.5}{\sigma_j}\right) - \Phi\left(\frac{y-\lambda_j-0.5}{\sigma_j}\right)$			
Parameter(s)	$oldsymbol{ heta}_j$	$\lambda_j > 0$	$(\lambda_j;\sigma_j)\in {\rm I\!R}$			
Mean	$\mathrm{E}_{j}(Y)$	λ_j	λ_j			
Variance	$\operatorname{Var}_j(Y)$	λ_j	$\sigma_j^2 + 0.083333$			
Dispersion		Only equi	Over/equi/under			
Model		Double Poisson	Discrete Weibull			
PMF	$p_j(y \mid \boldsymbol{\theta}_j)$	$K(\lambda_j, \phi_j) \phi_j^{1/2} e^{-\phi_j \lambda_j} \frac{e^{-y} y^y}{y!} \left(\frac{e \lambda_j}{y}\right)^{\phi_j y}$	$\lambda_j^{y^{\rho_j}} - \lambda_j^{(y+1)^{\rho_j}}$			
Constant		$\frac{1}{K(\lambda_j,\phi_j)} \approx 1 + \frac{1-\phi_j}{12\phi_j\lambda_j} \left(1 + \frac{1}{\phi_j\lambda_j}\right)$				
Parameter(s)	$oldsymbol{ heta}_j$	$\lambda_j > 0; \phi_j \in \mathbb{R}$	$0 < \lambda_j < 1; \rho_j > 0$			
Mean	$\mathrm{E}_{j}(Y)$	λ_j	$\sum_{n=1}^{+\infty} \lambda_j^{n^{ ho_j}}$			
Variance	$\operatorname{Var}_j(Y)$	λ_j/ϕ_j	$2\sum_{n=1}^{+\infty}n\lambda_j^{n^{\rho_j}}-\mathrm{E}_j(Y)-[\mathrm{E}_j(Y)]^2$			
Dispersion		Over/equi/under	Over/equi/under			

2.1.2 Allowing for negative weights

- Adds more flexible to the FMM framework
- But what added value does this creates?
- **Example:** 2-component mixture of Poisson models

$$\begin{split} p(Y = y \mid \lambda_1, \lambda_2) &= \pi_1 \frac{e^{-\lambda_1} \lambda_1^y}{y!} + (1 - \pi_1) \frac{e^{-\lambda_2} \lambda_2^y}{y!}, \\ \mathsf{E}(Y) &= \pi_1 \lambda_1 + (1 - \pi_1) \lambda_2, \\ \mathsf{Var}(Y) &= \pi_1 \lambda_1^2 + (1 - \pi_1) \lambda_2^2 - [\pi_1 \lambda_1 + (1 - \pi_1) \lambda_2]^2 \\ &+ \pi_1 \lambda_1 + (1 - \pi_1) \lambda_2, \end{split}$$

ullet The new constraints extends the boundary of weight π_1 from [0,1] to $[R_1,R_2]$

• Remark: $[0,1] \subset [R_1,R_2]$

• Characteristics:

$$\mathsf{DI} = \frac{\mathsf{Var}(Y)}{\mathsf{E}(Y)}, \qquad \mathsf{ZI} = 1 + \frac{\log[p(Y=0\mid \lambda_1, \lambda_2)]}{\mathsf{E}(Y)}.$$

- DI > 1: Overdispersion
- DI = 1: Equidispersion
- DI < 1: Underdispersion

- ZI > 0: Zero-inflation
- ZI = 0: No excess of zeros
- ZI < 0: Zero-deflation

Part 3: Analyzing the Moerzeke data

3.1 Findings with the extended FMM approach

• Mixtures of 2 similar elementary components are considered

		Mixt. Poissons	Mixt. discrete normals	Mixture double-Poissons	Mixt. discrete-Weibulls
Effect	Par.	Est. (s.e.)	Est. (s.e.)	Est. (s.e.)	Est. (s.e.)
Intensity 1	λ_1	5.4661 (0.1113)	4.5533 (0.2484)	4.6775 (0.1675)	0.9999 (3.2E - 8)
Std. dev. 1	σ_1	()	1.6430 (0.1174)	()	()
Dispersion 1	ϕ_1	()	()	$1.3853 \ (0.1064)$	()
	$ ho_1$	()	()	()	8.3960 (0.6059)
Intensity 2	λ_2	5.0918 (0.1307)	7.3614 (0.0626)	7.3376 (0.0484)	0.9956 (0.0014)
Std. dev. 2	σ_2	()	$0.8862\ (0.0438)$	()	()
Dispersion 2	ϕ_2	()	()	8.4797 (0.6981)	()
	$ ho_2$	()	()	()	$3.3182 \ (0.2914)$
Mixing prob.	π_1	3.1892 (1.2438)	0.3833 (0.0449)	$0.3956 \ (0.0305)$	0.7194 (0.0702)
-2 log-lik.		5814.1	5324.2	5358.9	5310.9
AIC		5820.1	5334.2	5368.9	5320.9
BIC		5835.7	5360.3	5395.0	5347.0

