CE100 Algorithms and Programming II

Week-4 (Heap/Heap Sort)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

<iframe width=700, height=500 frameBorder=0 src="../ce100-week-4heap.md_slide.html"></iframe>

Heap/Heap Sort

Outline (1)

- Heaps
 - Max / Min Heap
- Heap Data Structure
 - Heapify
 - Iterative
 - Recursive

Outline (2)

- Extract-Max
- Build Heap

Outline (3)

- Heap Sort
- Priority Queues
- Linked Lists
- Radix Sort
- Counting Sort

Heapsort

- Worst-case runtime: O(nlgn)
- Sorts in-place
- Uses a special data structure (heap) to manage information during execution of the algorithm
 - Another design paradigm

Heap Data Structure (1)

- Nearly complete binary tree
 - Completely filled on all levels except possibly the lowest level

Heap Data Structure (2)

- Height of node i: Length of the longest simple downward path from i to a leaf
- Height of the tree: height of the root

Heap Data Structures (3)

• Depth of node i: Length of the simple downward path from the root to node i

Heap Property: Min-Heap

- The smallest element in any subtree is the root element in a min-heap
- ullet Min heap: For every node i other than root, $A[parent(i)] \leq A[i]$
 - Parent node is always smaller than the child nodes

Heap Property: Max-Heap

- The largest element in any subtree is the root element in a max-heap
 - We will focus on max-heaps
- ullet Max heap: For every node i other than root, $A[parent(i)] \geq A[i]$
 - Parent node is always larger than the child nodes

Heap Data Structures (4)

Heap Data Structures (5)

- Computing left child, right child, and parent indices very fast
 - **left(i) = 2i** ⇒ binary left shift
 - \circ right(i) = 2i+1 \Longrightarrow binary left shift, then set the lowest bit to 1
 - o parent(i) = floor(i/2) => right shift in binary
- ullet A[1] is always the **root** element
- ullet Array A has two attributes:
 - \circ length(A): The number of elements in A
 - \circ **n** = **heap-size(A)**: The number elements in heap
 - $n \leq length(A)$

Heap Operations : EXTRACT-MAX (1)

```
EXTRACT-MAX(A, n)
  max = A[1]
  A[1] = A[n]
  n = n - 1
  HEAPIFY(A, 1,n)
  return max
```


Heap Operations : EXTRACT-MAX (2)

• Return the max element, and reorganize the heap to maintain heap property

```
EXTRACT-MAX (A, n)
        = A[1]
 max
 A[1] = A[n]
                                          6
 HEAPIFY (A, 1,n)
 return max
                                    10
 max=?
```


Heap Operations: HEAPIFY (1)

Heap Operations: HEAPIFY (2)

- Maintaining heap property:
 - \circ Subtrees rooted at left[i] and right[i] are already heaps.
 - \circ But, A[i] may violate the heap property (i.e., may be smaller than its children)
- Idea: Float down the value at A[i] in the heap so that subtree rooted at i becomes a heap.

Heap Operations: HEAPIFY (2)

```
HEAPIFY(A, i, n)
  largest = i
  if 2i <= n and A[2i] > A[i] then
   largest = 2i;
  endif
  if 2i+1 <= n and A[2i+1] > A[largest] then
   largest = 2i+1;
  endif
  if largest != i then
    exchange A[i] with A[largest];
    HEAPIFY(A, largest, n);
  endif
```

Heap Operations: HEAPIFY (3)

```
HEAPIFY (A, i, n)
                                                initialize largest
  largest=i
                                                to be the node i
                                                                        compute the
  if 2i<=n and A[2i]>A[i]...
                                                check the left
                                                                        largest of:
                                                child of node i
                                                                        1) node i
    then largest=2i;
                                                                        2) left child of node i
  if 2i+1<=n and A[2i+1]>A[largest]
                                                check the right
                                                                        3) right child of node i
                                                child of node i
     then largest=2i+1;
  if largest!=i then
                                                exchange the largest
     exchange A[i] with A[largest]; •
                                                of the 3 with node i
     HEAPIFY(A, largest, n);
  endif
                                                recursive call on the
                                                subtree
```


Heap Operations: HEAPIFY (4)

Heap Operations: HEAPIFY (5)

Heap Operations: HEAPIFY (6)

```
HEAPIFY(A, 4, 9)
HEAPIFY(A,i,n)
 largest=i
 if 2i<=n and A[2i]>A[i]
   then largest=2i;
 if 2i+1<=n and A[2i+1]>A[largest]
    then largest=2i+1;
 if largest!=i then
   exchange A[i] with A[largest];
   HEAPIFY(A,largest,n);
 endif
           Recursive Call
            (Base Case)
```


Heap Operations: HEAPIFY (7)

```
HEAPIFY(A,i,n)
  largest=i
  if 2i<=n and A[2i]>A[i]
   then largest=2i;
  if 2i+1<=n and A[2i+1]>A[largest]
    then largest=2i+1;
  if largest!=i then
    exchange A[i] with A[largest];
    HEAPIFY(A,largest,n);
  endif
```


Heap Operations: HEAPIFY (8)

Intuitive Analysis of HEAPIFY

- Consider HEAPIFY(A, i, n)
 - \circ let h(i) be the height of node i
 - \circ at most h(i) recursion levels
 - Constant work at each level: $\Theta(1)$
 - \circ Therefore T(i) = O(h(i))
- Heap is almost-complete binary tree
 - $\circ \ h(n) = O(lgn)$
- ullet Thus T(n)=O(lgn)

Formal Analysis of HEAPIFY

- What is the recurrence?
 - Depends on the size of the **subtree** on which recursive call is made
 - In the next, we try to compute an **upper bound** for this **subtree**.

CE100 Reminder: Binary trees

- For a complete binary tree:
 - $\circ~\#$ of nodes at depth d: 2^d
 - $\circ~\#$ of nodes with depths less than $d\!\!:\!2^d-1$

$$2^d = \text{node size at d}$$
 $2^2 = 4$

$$2^d - 1 = \text{node size less than d}$$
 $2^2 - 1 = 3 \Longrightarrow 2^0 + 2^1$

CE100 Formal Analysis of HEAPIFY (1)

- ullet Worst case occurs when last row of the subtree S_i rooted at node i is half full
- $ullet T(n) \leq T(|S_{L(i)}|) + \Theta(1)$
- ullet $S_{L(i)}$ and $S_{R(i)}$ are complete binary trees of heights h(i)-1 and h(i)-2, respectively

Formal Analysis of HEAPIFY (2)

ullet Let m be the number of **leaf nodes** in $S_{L(i)}$

$$egin{aligned} egin{aligned} & |S_{L(i)}| = \overbrace{m}^{ext.} + \overbrace{(m-1)}^{int.} = 2m-1 \ & |S_{R(i)}| = \overbrace{\frac{m}{2}}^{ext.} + (rac{m}{2}-1) = m-1 \ & |S_{L(i)}| + |S_{R(i)}| + 1 = n \end{aligned}$$

Formal Analysis of HEAPIFY (2)

$$egin{aligned} (2m-1)+(m-1)+1&=n\ m&=(n+1)/3\ |S_{L(i)}|&=2m-1\ &=2(n+1)/3-1\ &=(2n/3+2/3)-1\ &=rac{2n}{3}-rac{1}{3}\leqrac{2n}{3}\ T(n)&\leq T(2n/3)+\Theta(1)\ T(n)&=O(lgn) \end{aligned}$$

ullet By CASE-2 of Master Theorem $\Longrightarrow T(n) = \Theta(n^{log^a_b} lgn)$

Formal Analysis of HEAPIFY (2)

- Recurrence: T(n) = aT(n/b) + f(n)
- Case 2: $rac{f(n)}{n^{log_b^a}} = \Theta(1)$
- ullet i.e., f(n) and $n^{log^a_b}$ grow at similar rates
- Solution: $T(n) = \Theta(n^{log^a_b} lgn)$
 - $\circ \ T(n) \leq T(2n/3) + \Theta(1)$ (drop constants.)
 - $\circ \ T(n) \leq \Theta(n^{log_3^1} lgn)$
 - $\circ \ T(n) \leq \Theta(n^0 lgn)$
 - $\circ \ T(n) = O(lgn)$

HEAPIFY: Efficiency Issues

- Recursion vs Iteration:
 - In the absence of tail recursion, **iterative version** is in general **more efficient** because of the **pop/push** operations **to/from** stack at each **level of recursion**.

Heap Operations: HEAPIFY (1)

Recursive

```
HEAPIFY(A, i, n)
largest = i
if 2i <= n and A[2i] > A[i] then
  largest = 2i
if 2i+1 <= n and A[2i+1] > A[largest] then
  largest = 2i+1
if largest != i then
  exchange A[i] with A[largest]
  HEAPIFY(A, largest, n)
```


Heap Operations: HEAPIFY (2)

Iterative

```
HEAPIFY(A, i, n)
  j = i
 while(true) do
    largest = j
  if 2j <= n and A[2j] > A[j] then
    largest = 2j
  if 2j+1 <= n and A[2j+1] > A[largest] then
    largest = 2j+1
  if largest != j then
    exchange A[j] with A[largest]
    j = largest
  else return
```

Heap Operations: HEAPIFY (3)

Recursive

```
\begin{aligned} & \underbrace{\textit{HEAPIFY}(A,i,n)} \\ & \text{largest} \leftarrow i \\ & \text{if } 2i \leq n \text{ and } A[2i] > A[i] \text{ then } \text{largest} \leftarrow 2i \\ & \text{if } 2i + 1 \leq n \text{ and } A[2i + 1] > A[\text{largest}] \text{ then } \text{largest} \leftarrow 2i + 1 \\ & \text{if } \text{largest} \neq i \text{ then} \\ & \text{exchange } A[i] \leftrightarrow A[\text{largest}] \\ & \underbrace{\textit{HEAPIFY}}(A, \text{largest}, n) \end{aligned}
```

Iterative

```
HEAPIFY(A,i, n)

j ← i

while (true) do

largest ← j

if 2j \le n and A[2j] > A[j] then largest ← 2j

if 2j + 1 \le n and A[2j+1] > A[largest] then largest ← 2j + 1

if largest ≠ j then

exchange A[j] \leftrightarrow A[largest]

j ← largest

else return
```


Heap Operations: Building Heap CE100 Algorithms and Programming II

- Given an arbitrary array, how to build a heap from scratch?
- ullet Basic idea: Call HEAPIFY on each node bottom up
 - Start from the leaves (which trivially satisfy the heap property)
 - Process nodes in bottom up order.
 - \circ When HEAPIFY is called on node i, the subtrees connected to the left and right subtrees already satisfy the heap property.

Storage of the leaves

• Lemma: The last $\lceil \frac{n}{2} \rceil$ nodes of a heap are all leaves.

References

- Introduction to Algorithms, Third Edition | The MIT Press
- Bilkent CS473 Course Notes (new)
- Bilkent CS473 Course Notes (old)
- Insertion Sort GeeksforGeeks
- NIST Dictionary of Algorithms and Data Structures
- NIST Dictionary of Algorithms and Data Structures

TODO

