Хроматические числа

Гольцова Надежда

14 июля 2013 г.

Обзор результатов

Задача о нахождении хроматического числа плоскости была поставлена Э. Нелсоном в 1950 г. и остается не решенной до сих пор. Её формулировка: какое наименьшее число цветов необходимо для такой раскраски плоскости, при которой любые две точки на расстоянии 1 друг от друга покрашены в разные цвета?

Будем рассматривать этот вопрос не только для плоскости, но и для пространства с евклидовой метрикой. Введем необходимые определения:

Определение 1 Правильной раскраской пространства \mathbb{R}^n в m цветов называется такое отображение $F_m \colon \mathbb{R}^n \to \{1, 2, \dots, m\}$, что:

$$\forall X, Y \in \mathbb{R}^n \colon F_m(X) = F_m(Y) \Rightarrow |XY| \neq 1 \tag{1}$$

Определение 2 Хроматическим чилом пространства \mathbb{R}^n называется такое наименьшее натуральное число n, что существует правильная раскраска \mathbb{R}^n в m цветов:

$$\chi(\mathbb{R}^n) = \min\{m \in \mathbb{N} \mid \exists F_m\}$$
 (2)

Определение 3 Дистанционным графом G(V, E) в пространстве \mathbb{R}^n называется граф с множеством вершин $V \in \mathbb{R}^n$ и множеством рёбер:

$$E = \{(x, y) \in V \times V \mid |x - y| = 1\}$$
(3)

Известны асимптотические оценки для хроматического числа \mathbb{R}^n :

$$(1,239 + o(1))^n \le \chi(\mathbb{R}^n) \le (3 + o(1))^n \tag{4}$$

В данной работе нас будет интересовать оценки для хроматического числа пространств небольших размерностей, а также конкретные констркуции, с помощью которых эти оценки достигаются.

Утверждение 1 Для n = 1 имеем $\chi(\mathbb{R}^1) = 2$

Доказательство. Одного цвета для раскраски прямой, очевидно, не хватит. Для двух цветов существует правильная раскраска:

Целые числа разбивают прямую на отрезки длины 1. Будем красить полуинтервалы по правилу: [2k-1;2k) – в красный цвет, а [2k;2k+1) – в синий. Тогда одноцветных точек на единичном расстоянии не найдется. **Утверждение 2** Для n=2 выполнено $\chi(\mathbb{R}^2) \leq 7$

Доказательство. Рассмотрим разбиение плоскости на шестиугольники с диагональю, немного меньшей 1. Покрасим семь шестиугольников подряд в 7 цветов:

Диаметр каждого шестиугольника меньше 1, поэтому противоречий не возникло. Распространим раскраску на остальные шестиугольники:

Нетрудно проверить, что расстояние между одноцветными точками разных многоугольников больше единицы. ■

Утверждение 3 Для n=2 выполнено $\chi(\mathbb{R}^2) \geq 4$

Доказательство. Приведем дистанционный граф на плоскости, так называемое «Мозеровское веретено», для раскраски которого трех цветов не достаточно:

Рассмотрим два треугольника ABC и DBC со стороной 1, «склеенные» по ребру. Повернем конструкцию вокруг точки A таким образом, чтобы точка D и ее образ находились на расстоянии 1 друг от друга. Если точка A покрашена в цвет $\{1\}$, то точки B и C – в цвета $\{2\}$ и $\{3\}$. Значит, точка D – первого цвета. Если провести те же рассуждения в отношении точек A, B', C', D', получим что и точка D' первого цвета. Значит, раскраска не правильная, m.к. |DD'| = 1

Перейдем к оценкам для хроматического числа пространства \mathbb{R}^3 .

Утверждение 4 (Д.Е. Райский, 1970 г.)

Имеет место неравенство: $\chi(\mathbb{R}^3) \geq 5$

Доказательство. Построим дистанционный граф, который будет являться трехмерным обобщением «мозеровского веретена». Рассмотрим два правильных тетраэдра ABCD и A'BCD, «склеенные» по грани. Пусть каждое ребро этих тетраэдров имеет длину 1. Повернем конструкцию вокруг точки A' так, чтобы точки A и ее образ A" находились на расстоянии 1 друг от друга (образы точек при повороте обозначены двумя штрихами).

Предположим, что существует правильная раскраска полученного дистанционного графа в 4 цвета. Так как вершины B, C, D общей грани тетраэдров покрашены в 3 разных цвета, а всего цветов – 4, то точка A будет покрашена в тот же цвет, что и точка A' (цвет $\{1\}$).

В тетраэдре A'B''C''D'' цвета точек B'', C'', D'' отличны от цвета точки A', значит, их цвета – $\{2\}$, $\{3\}$ и $\{4\}$ (не обязательно соответственно). Следовательно, точка A'' покрашена в цвет $\{1\}$, т.к. она удалена от B'', C'', D'' на запрещенное для одноцветных точек расстояние.

Но данная раскраска не является правильной, т.к. можно указать две точки A и A'' на единичном расстоянии, покрашенные в один и тот жее ивет.

Теорема 1 (О. Нечуштан, 2002 г, [4])

Имеет место неравенство: $\chi(\mathbb{R}^3) \geq 6$

Доказательство. Предположим, что существует правильная раскраска $\mathcal F$ пространства в 5 цветов. Рассмотрим пару точек S и T на единичном расстоянии друг от друга. Обозначим через Ω множество точек, находящихся на расстоянии 1 от S и от T. Ясно, что Ω – это окружность радиуса $\frac{\sqrt{3}}{2}$, и на ней можно выбрать последовательность точек P,V,W,Q так, чтобы |PV|=|VW|=|WQ|=1. Несложно вычислить, что $|PQ|=\frac{5}{3}$ и $|PW|=|QV|=\sqrt{\frac{8}{3}}$.

Повернем пространство вокруг прямой PQ так, чтобы точки V и ее образ V' находились на расстоянии 1 друг от друга. Если образы точек при повороте обозначить штрихами, то получим дистанционный граф $G = \{P, V, V', W, W', Q, S, S', T, T'\}.$

Будем называть отрезок AB одноцветным, если его вершины покрашены в один цвет, т.е. $\mathcal{F}(A) = \mathcal{F}(B)$, в противном случае – разноцветным.

4

Лемма 1 Для любой правильной раскраски \mathcal{F} в 5 цветов выполнено:

- 1. Если отрезок PQ одноцветный, то отрезки PW, QV, PW', QV' разноцветные.
- 2. Среди отрезков PQ, PW, QV ровно один одноцветный, как и среди отрезков PQ, PW', QV'.

Доказательство. Первый пункт следует из того, что отрезки PV, VW, WQ длины 1, и раскраска правильная. Точки S и T разного цвета, значит, для раскраски Ω запрещены 2 цвета. Следовательно, в раскраске точек P, Q, V, W используется не больше трех цветов. Значит, найдется одноцветный отрезок c вершинами e этих точках. Это может быть только PQ, PW или QV. Следовательно, среди PQ, PW, QV (u, аналогично, среди PQ, PW', QV') есть хотя бы один одноцветный.

Если одноцветный отрезок – это PQ, то по первому пункту леммы получаем, что он ровно один. Если PQ – разноцветный, а PW и QV – одноцветны, то отрезки PW', QV' (и еще PQ) – разноцветны. Но выше показано, что хотя бы один одноцветный среди них есть. Получаем утверждение второго пункта леммы.

Обозначим через Ψ множество точек, удаленных от V и V' на расстояние 1. Будем вращать окружность Ψ вокруг прямой PQ, и полученное тело обозначим через $\tau(\Psi)$.

Лемма 2 Если \mathcal{F} – правильная раскраска \mathbb{R}^3 в 5 цветов, и $\mathcal{F}(P) \neq \mathcal{F}(Q)$, то в раскраске $\tau(\Psi)$ не используется цвет точки Q.

Доказательство. Из леммы 1 следует, что один из отрезков QV и QV' будет одноцветным (иначе точки P, W, W' покрашены в один и тот жее цвет). Так как на окружности Ψ нет цветов точек V и V', то на Ψ нет цвета точки Q. Эти жее рассуждения можно применить и для образа окружности Ψ при повороте. Получим, что в раскраске $\tau(\Psi)$ не задействован цвет точки Q.

Доказательство. Рассмотрим в пространстве две точки Q и R на расстоянии $\frac{5}{3}$ друг от друга. Обозначим через C следующую окружность: $C = \{X \in \mathbb{R}^3 \mid |QX| = \frac{5}{3}, |RX| = 1\}$. Сначала рассмотрим случай, когда в раскраске окружности C не используется цвет точки Q.

Для любой точки P на окружности C можно построить свое множество $\tau(\Psi_P)$. Применив лемму 2, получим, что в раскраске $\tau(\Psi_P)$ не используется цвет точки Q. Объединяя множества $\tau(\Psi_P)$ для каждой точки P, лежащей на окружности C, получим некоторое множество $T(\Psi)$:

$$T(\Psi) = \{ X \in \mathbb{R}^3 \mid \exists P \in C \colon X \in \tau(\Psi_P) \}. \tag{5}$$

В раскраске $T(\Psi)$ не используется цвет точки Q. Можно показать, что множество $T(\Psi)$ таково, что в него можно поместить граф Райского – граф с хроматическим числом, равным 5. Это значит, что на покраску множества $T(\Psi)$ вместе с точкой Q потребуется как минимум 6 цветов.

Если же на окружности C была точка R', покрашенная в тот же цвет, что и точка Q, то ее и возьмем в качестве точки R (точки окружности C были удалены от Q на то же расстояние, что и точка R). Тогда новая окружность C' (построенная по R') не будет содержать точек, одноцветных с Q, и задача сводится к предыдущему случаю.

Лучшая из известных верхних оценок для $\chi(\mathbb{R}^3)$ отличается от нижней более чем вдвое:

Теорема 2 (Д. Кулсон, 2000 г.) Выполнено соотношение $\chi(\mathbb{R}^3) \leq 15$

Дальше речь пойдет об оценках хроматического числа в больших размерностях, и нам понадобится понятие пестроты множества.

Определение 4 Зафиксируем некоторое множество $U \subset \mathbb{R}^n$. Пусть для правильной раскраски \mathcal{F} число $\pi'_{\mathcal{F}}(U)$ – это наибольшее такое k, что найдется движение \mathcal{O} пространства \mathbb{R}^n такое, что число цветов, затраченное на покраску множества $\mathcal{O}(U)$ в раскраске \mathcal{F} , равно k. Тогда пестротой множества U относительно пространства \mathbb{R}^n называют минимум чисел $\pi'_{\mathcal{F}}(U)$ по всем правильным раскраскам пространства \mathbb{R}^n .

$$\pi^{n}(U) = \pi(U \mid \mathbb{R}^{n}) = \min_{\mathcal{F}} \max_{\mathcal{O}} \chi'(\mathcal{O}(U)), \tag{6}$$

еде $\chi'(\mathcal{O}(U))$ – количество цветов, используемых в раскраске $\mathcal F$ при покраске множества O(U).

Теорема 3 Имеет место неравенство: $\chi(\mathbb{R}^4) \geq 7$ Покажем, как можно доказать эту теорему, если известна оценка на пестроту сферы.

Лемма 3 (А.Б. Купавский, [2])
$$\Pi pu \ n \geq 4 \ u \ r > \frac{1}{2\sqrt{\sqrt{3}-1}}, r \neq \sqrt{\frac{3}{8}}$$
, верна оценка
$$\pi^n(S_r^2) \geq 5. \tag{7}$$

Доказательство. Из леммы 3 следует, что при любой правильной раскраске \mathbb{R}^4 найдется двумерная сфера S^2 радиуса $\frac{\sqrt{3}}{2}$, при раскраске которой используется 5 цветов. Через центр этой сферы можно провести прямую, ортогональную трехмерной гиперплоскости, содержащей сферу. На этой прямой можно отметить две точки A и B на расстоянии $\frac{1}{2}$ от центра сферы, a, значит, на единичном расстоянии друг от друга:

При заданном радиусе точки сферы S^2 будут находиться на расстоянии 1 от точек A и B. Значит, необходимо как минимум 7 различных цветов $(\chi(S^2) \geq 5$ и ещё 2 цвета – для покраски точек A, B).

Теперь покажем, как можно получить оценки на пестроту самих сфер (в зависимости от радиуса и размерности пространства, в которое сфера вложена). Не будем приводить вычислений для допустимого радиуса г сферы, отметим лишь, что радиус г и размерность пространства подобраны таким образом, чтобы описанные ниже конструкции было возможно реализовать. Будем ссылаться на следующую лемму:

Лемма 4 (А.Б. Купаский, [2]) Пусть Sp_x^n – правильный n-мерный симплекс со стороной x, а радиус описанной вокруг него сферы равен α . Тогда для любого $\alpha > \frac{n}{2n+2}$

$$\pi^{2n}(Sp_x^n) = n+1 \tag{8}$$

Теорема 4 (А.Б. Купавский [2])

$$\Pi pu \ n > 7 \ u \ r \in \left(\sqrt{\frac{\left(1+\sqrt{\frac{n}{2(n+1)}}\right)^2}{n^2+6n+4+\sqrt{8n(n+1)}}} + \frac{n}{2n+2}, \sqrt{\frac{\left(\sqrt{n+2}+\sqrt{2}\right)^2+n^3}{(2n+2)n^2}}\right)$$
 выполне-

но:

$$\pi^{2n+2}(S_r^n) \ge 2n+2\tag{9}$$

Доказательство. Зафиксируем правильную раскраску \mathbb{R}^{2n+2} , радиус r из теоремы и будем искать сферу S_r^n , покрашенную в 2n+2 ивета. Из леммы 4 следует, что при некоторых условиях на радиус α описанной сферы найдется n-мерный симплекс Sp^n (далее обозначен как W), покрашенный в n+1 ивет. Описанную вокруг этого симплекса сферу обозначим S^{n-1} . Сфера S^{n-1} содержится в некоторой сфере S_r^n . При фиксированном радиусе r можно подобрать радиус α сферы S^{n-1} таким образом, чтобы в S_r^n содержалось множество V из n+1 точки со свойствами:

- 1. Точки множества V удалены друг от друга на расстояние 1, то есть, образуют единичный симплекс Sp_1^n .
- 2. Каждая точка множества V удалена от n вершин симплекса W на расстояние 1, то есть, удалена на расстояние, отличное от единицы, только от одной вершины симплекса W.

Итак, множество V – это симплекс Sp_1^n со стороной 1. Описанная вокруг него сфера $S_{r'}^{n-1}$ (вложенная в S_r^n) лежит в n-мерной плоскости, параллельной аналогичной плоскости для S^{n-1} .

Будем вращать симплекс V вокруг плоскости, содержащей S^{n-1} . Каждая вершина v симплекса V опишет (n+1)-мерную сферу, в которую можно вписать (n+1)-мерный симплекс Sp_1^{n+1} со стороной 1. Поэтому можно выбрать только те повороты $o_1, o_2, \ldots, o_{n+2}$ пространства, которые переводят вершину v в вершины симплекса Sp_1^{n+1} . Множество таких вращений обозначим \mathcal{O} , а симплекс, полученный в результате применения вращений из \mathcal{O} к вершине v, обозначим $\mathcal{O}(v)$.

Для каждой вершины v_i симплекса V $(i \in \{1, 2, ..., n+1\})$ обозначим через w_i ту единственную вершину симплекса W, расстояние до которой отлично от 1. Так как цвета точек $o_1(v_i)$, $o_2(v_i)$, ..., $o_{n+2}(v_i)$ различны, то среди этих точек можно выбрать как минимум n+1 точку, покрашенную не в цвет w_i . Получаем для каждой вершины v_i симплекса V (n+1)-элементное подмножество точек (n+2)-элементного множества $\mathcal{O}(v_i)$. Симплекс V имеет n+1 вершину, значит, по принципу Дирихле, найдется поворот, например, o_1 , при котором $o_1(v_i)$ и w_i покрашены в разные цвета для любого i. Симплексы $o_1(V)$ и W вложены в некоторую v_i покрашено v_i на покраску которой затрачено v_i 2 цвета, т.к. любые две вершины симплексов v_i и v_i покрашены в разные цвета.

Покажем, что можно обобщить доказательство теоремы 4 на случай, когда семейство $\mathcal O$ вращений переводит вершину v в некоторый дистанционный граф G(v) с хроматическим числом, не меньшим n+2. В частности, в качестве G(v) можно рассмотреть единичный симплекс Sp_1^{n+1} , что и было сделано при доказательстве теоремы 4.

Утверждение 5 Пусть симплексы W и V располагаются в пространстве так, как было описано в доказательстве теоремы 4. Рассмотрим

семейство \mathcal{O} вращений вокруг плоскости, содержащей симплекс W, таких, что образы каждой вершины v_i образуют дистанционный граф $G(v_i)$, причём $\chi(G(v_i)) \geq n+2$. Тогда существует такое вращение $o \in \mathcal{O}$, что для любого $i \in \{1, 2, \ldots, n+1\}$ цвет w_i не совпадает с цветом $o(v_i)$.

Доказательство. Сначала выберем из семейства \mathcal{O} те и только те вращения, при которых образ вершины v_1 покрашен в цвет, отличный от цвета w_1 . Полученное множество вращений обозначим \mathcal{O}_1 . Заметим, что для каждой вершины v_i симплекса V граф $\mathcal{O}_1(v_i)$ имеет хроматическое число, равное, по крайней мере, n+1. Действительно, если это не так, и существует правильная раскраска $\mathcal{O}_1(v_i)$ в n цветов, то раскрасим в новый (n+1)-й цвет (пусть — черный) образы вершины v_i при вращениях из множества $\mathcal{O}\setminus\mathcal{O}_1$. Полученная раскраска графа $G(v_i)$ в n+1 цвет будет правильной, т.к. любые две вершины черного цвета удалены друг от друга на незапрещенное расстояние. Это так, потому что при правильной раскраске графа $\mathcal{O}(v_1)$ аналогичные им вершины (получающиеся при тех же вращениях пространства) были покрашены в один и тот же цвет. Итак, $\chi(\mathcal{O}_1(v_i)) \geq n+1$.

Далее построим аналогично множество \mathcal{O}_2 для вершины v_2 : из множества \mathcal{O}_1 выберем те и только те вращения, при которых цвет образа вершины v_2 отличен от цвета w_2 . Можно провести аналогичные рассуждения и получить, что хроматическое число графа $\mathcal{O}_2(v_i)$ не меньше п (для всех вершин v_i). Продолжим строить по аналогии множества \mathcal{O}_3 , \mathcal{O}_4 , ..., \mathcal{O}_{n+1} . При переходе к каждому следующему множеству хроматическое число графа $\mathcal{O}_{j+1}(v_i)$ будет не более чем на 1 меньше хроматического числа графа $\mathcal{O}_j(v_i)$. Таким образом, $\chi(\mathcal{O}_{n+1}(v_i)) \geq ((n+2)-(n+1))=1$. Это означает, что множество \mathcal{O}_{n+1} не пусто, и существует поворот о $\in \mathcal{O}_{n+1} \subset \ldots \subset \mathcal{O}_2 \subset \mathcal{O}_1 \subset \mathcal{O}$, при котором цвета $o(v_i)$ и w_i отличаются.

Новые результаты

Результаты данного раздела, возможно, являются фольклорными, однако автор не встречал их в литературе по данной тематике.

Утверждение 6 При любой правильной раскраске плоскости найдется прямая l, в раскраске которой используется хотя бы 3 различных цвета:

$$\pi^2(l) \ge 3 \tag{10}$$

Доказательство. Предположим, что существует правильная раскраска плоскости такая, что любая прямая раскрашена ровно в 2 цвета (прямая не может быть покрашена в один цвет, т.к. на ней есть точки на расстоянии 1). Рассмотрим правильный треугольник ABC со стороной длины 1. Прямые, содержащие его стороны, разбивают плоскость на 7 частей. Так как плоскость нельзя покрасить в число цветов, меньшее 4, то можно выбрать точку D, цвет которой будет отличаться от тех трех цветов, использующихся для раскраски ABC. Если точка D лежит на одной из проведенных прямых, то эта прямая и будет раскрашена как минимум в 3 цвета. Без ограничения общности, остается рассмотреть три случая расположения точки D (все три случая изображены на одном рисунке):

Прямые AD и BC в таких случаях не будут параллельны. Пусть E — точка пересечения AD и BC. Тогда с одной стороны, точка E должна быть цвета точки A или точки D, а с другой — цвета B или C. Получаем противоречие.

Утверждение 7 Пусть раскраска плоскости такова, что для любого $\epsilon > 0$ нельзя выбрать круг радиуса ϵ , покрашенный ровно в один цвет. Тогда при такой раскраске для любого $\delta > 0$ можно найти 3 точки разных цветов, попадающие в круг радиуса δ .

Доказательство. Зафиксируем $\delta > 0$. Предположим, что все круги радиуса δ покрашены ровно в 2 цвета (условие запрещает им быть покрашенными в один цвет). Замостим плоскость кругами радиуса δ (с пересечениями):

Выберем некоторый круг, и пусть он раскрашен в красный и синий цвета. Тогда любой «соседний» с ним круг тоже раскрашен в красный и синий цвета, т.к. их пересечение содержит круг маленького радиуса, который по условию не может быть только одного цвета. Итак, цвета в раскраске «соседних» кругов те же, что и в раскраске выбранного круга. Таким образом можно «дойти» до каждой точки плоскости. Получаем, что плоскость раскрашена правильно всего в 2 цвета, чего быть не может. ■

Замечание 1 Существует число $\delta > 0$ и правильная раскраска плоскости, при которой нельзя указать 4 точки разных цветов, которые можно «накрыть» кругом радиуса δ .

Доказательство. Рассмотрим раскраску плоскости, которая использовалась для оценки $\chi(\mathbb{R}^2) \leq 7$. Остается выбрать число δ достаточно маленьким.

Утверждение 8 Рассмотрим в пространстве \mathbb{R}^3 равнобедренный треугольник ABC с основанием AB длины 1. Пусть r – длина высоты, проведенной κ основанию, и $r > \frac{1}{2}$. Множество, состоящее из вершин этого треугольника обозначим через Δ . Имеем

$$\pi^3(\Delta) = 3 \tag{11}$$

Доказательство. Зафиксируем r. Покажем сначала, что если в пространстве найдется окружность S_r^1 радиуса r, покрашенная хотя бы в 3 цвета, то утверждение будет доказано. Рассмотрим прямую, проходящую через центр O окружности S_r^1 перпендикулярно плоскости, ее содержащей. На этой прямой отметим точки A и B на расстоянии $\frac{1}{2}$ от точки O. Так как окружность S_r^1 покрашена хотя бы в 3 цвета, то найдется точка $C \in S_r^1$, цвет которой будет отличен от двух цветов A и B. Значит, удалось обнаружить трехцветное множество Δ .

Остается случай, когда все окружности радиуса r покрашены в 2 цвета. Рассмотрим две точки D и E на расстоянии 2r друг от друга, покрашенные в разные цвета. Такие точки найдутся, потому что в любом равнобедренном треугольнике c длинами сторон 2r, 2r, 1 одна из боковых сторон будет покрашена в 2 разных цвета (используем, что $r > \frac{1}{2}$). Все окружности c диаметром DE двуцветны по предположению, а значит и сфера S_r^2 , являющаяся объединением этих окружностей, также покрашена только в цвета точек D и E. Однако тот факт, что двумерная сфера покрашена в 2 цвета, противоречит теореме Π . Ловаса:

Теорема 5 (Л.Ловас 1983 г.) При $r>\frac{1}{2}$ имеет место $\chi(S^n_r)\geq n+1.$

Для n=2 получаем $\chi(S_r^2)\geq 3$. Значит, сфера S_r^2 не может быть покрашена в 2 цвета, и получено противоречие.

Литература

- [1] А.Б. Купавский: «О поднятии оценки хроматического числа \mathbb{R}^n в бо́льшую размер-ность», Доклады Российской Академии Наук, **429:3** (2009), 305 308.
- [2] А.Б. КУПАВСКИЙ: «О раскрасках сфер, вложенных в \mathbb{R}^n », Матем. сборник, **202:6** (2011), 83–110.
- [3] А.М Райгородский: Хроматические числа, МЦНМО, Москва, 2003.
- [4] O. Nechushtan: «On the space chromatic number», Discrete Math., 256 (2002), 499-507.