WO 2005/054453 PCT/EP2004/013560

SEQUENCE LISTING

5	<110> BASF Aktiengesellschaft									
10	<120> 2-Methyl-6-solanylbenzoquinone methyltransferase as target for herbicides									
	<130> 20030911									
15										
	<160> 35									
20	<170> PatentIn version 3.1									
25	<210> 1									
	<211> 1355									
30	<212> DNA									
30	<213> Nicotiana tabacum									
35	<220>									
	<221> CDS									
40	<222> (110)(1117)									
	<223>									
45										
45	<400> 1 ctttttttc cgcttctcct ccaaaatccc atcaaaattg ataagcttct cttctgaagc	60								
	ttatcaaaac tatatgcagt aaaaaaaata acatcaaaaa tacatatcc atg gct tct Met Ala Ser	118								
50	1									
	tca ata cta agt gga gct gaa aat ttc aag att ctt agt ggt att tct Ser Ile Leu Ser Gly Ala Glu Asn Phe Lys Ile Leu Ser Gly Ile Ser	166								
55	5 10 15									
	cca tca gaa tta cac att aag tgt ttt cct caa aag ggt ctt gta aat Pro Ser Glu Leu His Ile Lys Cys Phe Pro Gln Lys Gly Leu Val Asn	214								
	20 25 30 35									
60	tac tca aga att cca aat acc aaa tca aga act cta aga aca aaa tgc Tyr Ser Arg Ile Pro Asn Thr Lys Ser Arg Thr Leu Arg Thr Lys Cys 40 45 50	262								
	agt gta tca tct tca aga cca gct tca caa cca aga ttt ata caa cac	310								

WO 2005/054453 PCT/EP2004/013560 2/22

									2122	L							•
	Ser	Val	Ser	Ser 55	Ser	Arg	Pro	Ala	Ser 60	Gln	Pro	Arg	Phe	Ile 65	Gln	His	
5	aaa Lys	aaa Lys	gaa Glu 70	gca Ala	ttt Phe	tgg Trp	ttt Phe	tac Tyr 75	aga Arg	ttc Phe	tta Leu	tct Ser	ata Ile 80	gta Val	tat Tyr	Asp gac	358
10	cat His	gtt Val 85	ata Ile	aat Asn	cca Pro	ggt Gly	cat His 90	tgg Trp	act Thr	gaa Glu	gat Asp	atg Met 95	aga Arg	gat Asp	gaa Glu	gca Ala	406
15	ctt Leu 100	gaa Glu	cca Pro	gct Ala	gaa Glu	tta Leu 105	aac Asn	agt Ser	aga Arg	caa Gln	ttg Leu 110	caa Gln	gtt Val	gtg Val	gat Asp	gtt Val 115	454
	ggt Gly	ggt Gly	GJA aaa	act Thr	gga Gly 120	ttt Phe	act Thr	act Thr	ctt Leu	ggc Gly 125	att Ile	gtg Val	aaa Lys	cat His	gtg Val 130	gat Asp	502
20	gct Ala	aag Lys	aat Asn	gtt Val 135	aca Thr	att Ile	att Ile	gat [.] Asp	caa Gln 140	tca Ser	cct Pro	cat His	caa Gln	ctt Leu 145	gcc Ala	aag Lys	550
25	gct Ala	aga Arg	gaa Glu 150	aag Lys	gaa Glu	cct Pro	ttg Leu	aaa Lys 155	gaa Glu	tgt Cys	aag Lys	ata Ile	ttg Leu 160	gaa Glu	gga Gly	gat Asp	598
30	gct Ala	gag Glu 165	gat Asp	ttg Leu	cct Pro	ttt Phe	cct Pro 170	act Thr	gat Asp	act Thr	ttt Phe	gat Asp 175	aga Arg	tat Tyr	gtt Val	tct Ser	646
35	gct Ala 180	gga Gly	agc Ser	att Ile	gag Glu	tat Tyr 185	tgg Trp	ccc Pro	gat Asp	cca Pro	cag Gln 190	cgc Arg	ggt Gly	atc Ile	aag Lys	gaa Glu 195	694
33	gca Ala	tac Tyr	cga Arg	gta Val	ctg Leu 200	acc Thr	ata Ile	ggt Gly	ggt Gly	gtt Val 205	Ala	tgc Cys	tta Leu	ata Ile	ggt Gly 210	cct Pro	742
40	gtg Val	tac Tyr	ccg Pro	acg Thr 215	Phe	tgg Trp	cta Leu	tct Ser	cgt Arg 220	Phe	ttt Phe	gca Ala	gat Asp	atg Met 225	tgg Trp	atg Met	790
45	ctc Leu	ttt Phe	cca Pro 230	Lys	gaa Glu	gaa Glu	gaa Glu	tat Tyr 235	ata Ile	gaa Glu	tgg Trp	ttc Phe	aaa Lys 240	Lys	gct Ala	ggt Gly	838
50	ttc Phe	gct Ala 245	Gln	gtt Val	aaa Lys	ctc Leu	aag Lys 250	agg Arg	att	ggc	cca Pro	aaa Lys 255	tgg Trp	tat Tyr	cgt Arg	ggt Gly	886
	gtc Val 260	Arg	cgc Arg	cat His	ggc	ttg Leu 265	Ile	atg Met	ggt Gly	tgt Cys	tct Ser 270	Val	act Thr	ggt Gly	gtc Val	aag Lys 275	934
55	cca Pro	tat	ttt Phe	999 999	gaa Glu 280	Ser	ccg Pro	ttg Leu	cag Gln	ctc Leu 285	Gly	ccg Pro	aag Lys	gtt Val	gag Glu 290	Asp	982
60	gtg Val	ago Ser	aag Lys	ect Pro 295	Val	aac Asn	cca Pro	ttc Phe	gca Ala 300	Phe	cto Lev	gtg Val	cga Arg	tto Phe 305	Leu	ctc Leu	1030
	ggc	ata	act	gct	gca	act	tat	tac	gtg	cto	gtt	, cca	ata	tac	atg	tgg	1078

Gly Ile Thr Ala Ala Thr Tyr Tyr Val Leu Val Pro Ile Tyr Met Trp 310 315 320

ctc aag gat caa atc acc ccg aaa ggt cag cca atc tga acaataagaa 1127
5 Leu Lys Asp Gln Ile Thr Pro Lys Gly Gln Pro Ile
325 330 335

gaacgtcaat ccaaagagaa gctctccaag cattctgttt gagagtacac cagtgaccac 1187

aaatctatca cggaacaaga aagtttttgg cgtcgttgca agggtgaatt tgttgcttta 1247
gtttgttagt tttgcagcct tagaaagggc cttttgtaaa gtttaatttc atggtaaaac 1307

ctagaaatca ttgtgactat tttctagttg tataatctat cagtcatg 1355

<210> 2

<211> 335

20

<212> PRT

<213> Nicotiana tabacum

25

35

55

<400> 2

Met Ala Ser Ser Ile Leu Ser Gly Ala Glu Asn Phe Lys Ile Leu Ser 30 1 5 10 15

Gly Ile Ser Pro Ser Glu Leu His Ile Lys Cys Phe Pro Gln Lys Gly
20 25 30

Leu Val Asn Tyr Ser Arg Ile Pro Asn Thr Lys Ser Arg Thr Leu Arg

Thr Lys Cys Ser Val Ser Ser Ser Arg Pro Ala Ser Gln Pro Arg Phe
50 55 60

Ile Gln His Lys Lys Glu Ala Phe Trp Phe Tyr Arg Phe Leu Ser Ile
65 70 75 80

Val Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met Arg 50 85 90 95

Asp Glu Ala Leu Glu Pro Ala Glu Leu Asn Ser Arg Gln Leu Gln Val 100 105 110

Val Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val Lys 115 120 125

60

His Val Asp Ala Lys Asn Val Thr Ile Ile Asp Gln Ser Pro His Gln
130

135

140

Leu Ala L	vs Ala	Arg	Glu	Lys	Glu	Pro	Leu	Lys	Glu	Сув	Lys	Ile	Leu	
145	-	_	150	_				155		_			160	

145

Glu Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Thr Phe Asp Arg 5

·Tyr Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg Gly 10

Ile Lys Glu Ala Tyr Arg Val Leu Thr Ile Gly Gly Val Ala Cys Leu

15

215

Met Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe Lys

Ile Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ala Asp

25 Lys Ala Gly Phe Ala Gln Val Lys Leu Lys Arg Ile Gly Pro Lys Trp

Tyr Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val Thr 30

Gly Val Lys Pro Tyr Phe Gly Glu Ser Pro Leu Gln Leu Gly Pro Lys 280 35

Val Glu Asp Val Ser Lys Pro Val Asn Pro Phe Ala Phe Leu Val Arg

40 Phe Leu Leu Gly Ile Thr Ala Ala Thr Tyr Tyr Val Leu Val Pro Ile 310 315

Tyr Met Trp Leu Lys Asp Gln Ile Thr Pro Lys Gly Gln Pro Ile 45 325 . 330

<210> 3 50

20

<211> 1017

<212> DNA

55 <213> Arabidopsis thaliana

<220> . 60 <221> CDS

<222> (1)..(1017)

<223>

5	<400 atg	gcc	tct	ttg	atg	ctc	aac	a aa	gcc	att	acc	ttc	ccc	aaa	ggt	tta	48
	Met 1	Ala	Ser	Leu	Met 5	Leu	Asn	GIA	Ala	11e 10	Thr	Phe	Pro	Lys	G1y 15	Leu	
10					tcc Ser												96
15					acc Thr												144
20					agc Ser												192
25					cac His												240
20					gac Asp 85												288
30					gct Ala												336
35					gtc Val												384
40					aag Lys												432
45					aaa Lys												480
70					gat Asp 165												528
50	_	_		_	tct Ser	_		_					_	_	_	_	576
55					gaa Glu												624
60	tgt Cys	ctc Leu 210	atc Ile	ggc	cct Pro	gtc Val	tac Tyr 215	cca Pro	acc Thr	ttc Phe	tgg Trp	ctc Leu 220	tct Ser	cgc Arg	ttc Phe	ttt Phe	672
	tct Ser 225	gat Asp	gtc Val	tgg Trp	atg Met	ctc Leu 230	ttc Phe	ccc Pro	aag Lys	gag Glu	gaa Glu 235	gag Glu	tac Tyr	att Ile	gag Glu	tgg Trp 240	720

6/22 ttc aag aat gcc ggt ttc aag gac gtt cag ctc aag agg att ggc ccc 768 Phe Lys Asn Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro

aag tgg tac cgt ggt gtt cgc agg cac ggc ctt atc atg gga tgt tct 816 Lys Trp Tyr Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser 265

gtc act ggt gtt aaa cct gcc tcc ggt gat tct cct ctc cag ctt ggt 10 864 Val Thr Gly Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly

cca aag gaa gag gac gta gag aag cct gtc aac aac ccc ttc tcc ttc 912 15 Pro Lys Glu Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe 295

960 ttg gga cgc ttc ctc ctg gga act cta gca gct gcc tgg ttt gtg tta Leu Gly Arg Phe Leu Leu Gly Thr Leu Ala Ala Ala Trp Phe Val Leu 20

atc cct atc tac atg tgg atc aag gat cag atc gtt ccc aaa gac caa 1008 Ile Pro Ile Tyr Met Trp Ile Lys Asp Gln Ile Val Pro Lys Asp Gln 325 330

25 1017 ccc atc tga Pro Ile

30 <210> 4

5

<211> 338

35 <212> PRT

<213> Arabidopsis thaliana

40 <400> 4

Met Ala Ser Leu Met Leu Asn Gly Ala Ile Thr Phe Pro Lys Gly Leu 45

Gly Ser Pro Gly Ser Asn Leu His Ala Lys Ser Ile Pro Arg Pro Thr

50 Leu Leu Ser Val Thr Arg Thr Ser Thr Pro Arg Leu Ser Val Ala Thr 40

Lys Cys Ser Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro 55 50 55

Arg Phe Ile Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu 60 70

Ser Ile Val Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp 85

5	Met	Arg	Asp	Asp 100	Ala	Leu	Glu	Pro	Ala 105	Asp	Leu	Ser	His	Pro 110	Asp	Met
	Arg	Val	Val 115	Asp	Val	Gly	Gly	Gly 120	Thr	Gly	Phe	Thr	Thr 125	Leu	Gly	Ile
10	Val	Lys 130	Thr	Val	Lys	Ala	Lys 135	Asn	Val	Thr	Ile	Leu 140		Gln	Ser	Pro
15	His 145	Gln	Leu	Ala	Lys	Ala 150	Lys	Gln	Lys	Glu	Pro 155	Leu	Lys	Glu	Суз	Lys 160
20	Ile	Val	Glu	Gly	Asp 165	Ala	Glu	Asp	Leu	Pro 170	Phe	Pro	Thr	Asp	Tyr 175	Ala
25	Asp	Arg	Tyr	Val 180	Ser	Ala	Gly	Ser	Ile 185	Glu	Tyr	Trp	Pro	Asp 190	Pro	Gln
	Arg	Gly	Ile 195	Arg	Glu	Ala	Tyr	Arg 200	Val	Leu	Lys	Ile	Gly 205	Gly	Lys	Ala
30	Cys	Leu 210		Gly	Pro	Val	Tyr 215		Thr	Phe	Trp	Leu 220	Ser	Arg	Phe	Phe
35	Ser 225	_	Val	Trp	Met	Leu 230	Phe	Pro	Lys	Glu	Glu 235	Glu	туг	Ile	Glu	Trp 240
40	Phe	Lys	Asn	Ala	Gly 245		Гуз	Asp	Val	Gln 250		Lys	Arg	Ile	Gly 255	Pro
45	Lys	Trp	Tyr	Arg 260	_	Val	Arg	Arg	His 265		Leu	Ile	Met	Gly 270		Ser
	Val	Thr	Gly 275		Lys	Pro	Ala	Ser 280		Asp	Ser	Pro	Leu 285		Leu	. Gly
50 <u>.</u>	Pro	Lys 290		. Glu	Asp	Val	Glu 295		Pro	Val	. Asn	Asn 300		Phe	Ser	Phe
55	Leu 305	_	Arg	J Phe	. Leu	Leu 310		Thr	Lev	ı Ala	Ala 315		Trp) Phe	Val	Leu 320
60	Ile	Pro) Ile	: Tyr	Met 325		ıle	. Lys	Asp	Glr 330		val	. Pro	. Lys	Asp 335	Gln
	Pro	Ile	2													

<210> 5 <211> 774 <212> DNA <213> Arabidopsis thaliana 10 <220> 15 <221> CDS <222> (1)..(774) <223> 20 <400> 5 48 tgc agc agc agc gtg tcg tct tcc cgg cca tcg gcg caa cct agg Cys Ser Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro Arg 96 ttc att cag cac aag aag gag gct tac tgg ttc tac agg ttc tta tcc Phe Ile Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu Ser 30 atc gta tac gac cat gtc atc aat cct ggg cat tgg acc gag gat atg 144 Ile Val Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met 35 192 aga gac gac gct ctt gag cca gcg gat ctc agc cat ccg gac atg cga Arg Asp Asp Ala Leu Glu Pro Ala Asp Leu Ser His Pro Asp Met Arg 40 gtg gtc gat gtc ggc ggc gga act ggt ttc act act ctg ggc ata gtc 240 Val Val Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val aaq aca gtg aag gcc aag aat gtg acc att ctg gac cag tcg cca cat 288 45 Lys Thr Val Lys Ala Lys Asn Val Thr Ile Leu Asp Gln Ser Pro His cag ctg gcc aaa gca aag caa aag gag ccg ttg aaa gaa tgc aag atc 336 Gln Leu Ala Lys Ala Lys Gln Lys Glu Pro Leu Lys Glu Cys Lys Ile 50 100 gtc gag gga gat gct gag gat ctt cct ttt cca acc gat tat gct gac 384 Val Glu Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Tyr Ala Asp 120 115 55 aga tac gtt tct gct gga agc att gag tac tgg ccg gac ccg cag agg 432 Arg Tyr Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg 130 gga ata agg gaa gcg tac agg gtt ctc aag atc ggt ggc aaa gcg tgt 480 Gly Ile Arg Glu Ala Tyr Arg Val Leu Lys Ile Gly Gly Lys Ala Cys 145

ctc atc ggc cct gtc tac cca acc ttc tgg ctc tct cgc ttc ttt tct

	9/22	
	Leu Ile Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ser 165 170 175	
5	gat gtc tgg atg ctc ttc ccc aag gag gaa gag tac att gag tgg ttc Asp Val Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe 180 185 190	576
10	aag aat gcc ggt ttc aag gac gtt cag ctc aag agg att ggc ccc aag Lys Asn Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro Lys 195 200 205	624
15	tgg tac cgt ggt gtt cgc agg cac ggc ctt atc atg gga tgt tct gtc Trp Tyr Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val 210 215 220	672
10	act ggt gtt aaa cct gcc tcc ggt gat tct cct ctc cag ctt ggt cca Thr Gly Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly Pro 225 230 235 240	720
20	aag gaa gag gac gta gag aag cct gtc aac aac ccc ttc tcc ttc ttg Lys Glu Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe Leu 245 250 255	768
25	gga cgc Gly Arg	774
30	<210> 6	
	<211> 258 <212> PRT	
35	<213> Arabidopsis thaliana	
40	<400> 6	
	Cys Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro Arg 1 5 10 15	
45	Phe Ile Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu Ser 20 25 30	
50	Ile Val Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met 35 40 45	
55	Arg Asp Asp Ala Leu Glu Pro Ala Asp Leu Ser His Pro Asp Met Arg 50 55 60	
_	Val Val Asp Val Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val 65 70 75 80	
60	Lys Thr Val Lys Ala Lys Asn Val Thr Ile Leu Asp Gln Ser Pro His 85 90 95	

Gln Leu Ala	Lys	Ala	Lys	Gln	Lys	Glu	Pro	Leu	Lys	Glu	Cys	Lys	Ile
	100					105					110		

- 5 Val Glu Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Tyr Ala Asp 115 120 125
- Arg Tyr Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg
- Gly Ile Arg Glu Ala Tyr Arg Val Leu Lys Ile Gly Gly Lys Ala Cys 145 150 155 160
 - Leu Ile Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ser 165 170 175
- 20
 Asp Val Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe
 180
 185
 190
- 25 Lys Asn Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro Lys 195 200 205
- Trp Tyr Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val 210 215 220
- Thr Gly Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly Pro 225 230 235 240
 - Lys Glu Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe Leu 245 250 255
- 40 Gly Arg
- 45 <210> 7
 - <211> 768
- <212> DNA
- 50 <213> Arabidopsis thaliana
- 55 <220>
 - <221> CDS
- <222> (1)..(768)
- <223>

11/22 <400> 7 age age age gtg teg tet tee egg eea teg geg caa eet agg tte att 48 Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro Arg Phe Ile 5 cag cac aag aag gag get tac tgg ttc tac agg ttc tta tec atc gta 96 Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu Ser Ile Val 10 tac gac cat gtc atc aat cct ggg cat tgg acc gag gat atg aga gac 144 Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met Arg Asp gac gct ctt gag cca gcg gat ctc agc cat ccg gac atg cga gtg gtc 192 15 Asp Ala Leu Glu Pro Ala Asp Leu Ser His Pro Asp Met Arg Val Val gat gtc ggc gga act ggt ttc act act ctg ggc ata gtc aag aca 240 Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val Lys Thr 20 75 gtg aag gcc aag aat gtg acc att ctg gac cag tcg cca cat cag ctg 288 Val Lys Ala Lys Asn Val Thr Ile Leu Asp Gln Ser Pro His Gln Leu 25 gcc aaa gca aag caa aag gag ccg ttg aaa gaa tgc aag atc gtc gag 336 Ala Lys Ala Lys Gln Lys Glu Pro Leu Lys Glu Cys Lys Ile Val Glu 105 30 gga gat gct gag gat ctt cct ttt cca acc gat tat gct gac aga tac 384 Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Tyr Ala Asp Arg Tyr 120 gtt tet get gga age att gag tae tgg eeg gae eeg eag agg gga ata 432 35 Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg Gly Ile 135 agg gaa gcg tac agg gtt ctc aag atc ggt ggc aaa gcg tgt ctc atc 480 Arg Glu Ala Tyr Arg Val Leu Lys Ile Gly Gly Lys Ala Cys Leu Ile 40 150 155 gge cet gte tac cea ace tte tgg etc tet ege tte ttt tet gat gte 528 Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ser Asp Val 45 576 tgg atg ctc ttc ccc aag gag gaa gag tac att gag tgg ttc aag aat Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe Lys Asn gcc ggt ttc aag gac gtt cag ctc aag agg att ggc ccc aag tgg tac 50 624 Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro Lys Trp Tyr 195 200 cgt ggt gtt cgc agg cac ggc ctt atc atg gga tgt tct gtc act ggt 672 55 Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val Thr Gly 210 215 qtt aaa cct qcc tcc qqt gat tct cct ctc cag ctt ggt cca aag gaa 720 Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly Pro Lys Glu 60 225 230 240 gag gac gta gag aag cct gtc aac aac ccc ttc tcc ttc ttg gga cgc 768 Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe Leu Gly Arg

245

<210> 8 <211> 256 <212> PRT <213> Arabidopsis thaliana 10 <400> 8 15 Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro Arg Phe Ile Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu Ser Ile Val 20 25 20 Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met Arg Asp 25 Asp Ala Leu Glu Pro Ala Asp Leu Ser His Pro Asp Met Arg Val Val 30 Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val Lys Thr 35 Val Lys Ala Lys Asn Val Thr Ile Leu Asp Gln Ser Pro His Gln Leu 90 Ala Lys Ala Lys Gln Lys Glu Pro Leu Lys Glu Cys Lys Ile Val Glu 40 Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Tyr Ala Asp Arg Tyr 120 45 Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg Gly Ile 50 Arg Glu Ala Tyr Arg Val Leu Lys Ile Gly Gly Lys Ala Cys Leu Ile 150 155 160 145 Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ser Asp Val 55 165 Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe Lys Asn 60 185 180

Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro Lys Trp Tyr 200

195

205

5	Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val Thr Gly 210 215 220	
10	Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly Pro Lys Glu 225 230 235 240	
10	Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe Leu Gly Arg 245 250 255	
15	<210> 9	
	<211> 910	
20	<212> DNA	
	<213> Nicotiana tabacum	
25	· <220>	
	<221> CDS	
30	<222> (1)(600)	
	<223>	
35	<400> 9	
	gcg gcc gct gat caa tca cct cat caa ctt gcc aag gct aga gaa aag Ala Ala Ala Asp Gln Ser Pro His Gln Leu Ala Lys Ala Arg Glu Lys 1 10 15	48
40	gaa cct ttg aaa gaa tgt aag ata ttg gaa gga gat gct gag gat ttg Glu Pro Leu Lys Glu Cys Lys Ile Leu Glu Gly Asp Ala Glu Asp Leu 20 25 30	96
ΛE	cct ttt cct act gat act ctt gat aga tat gtt tct gct gga ggc att Pro Phe Pro Thr Asp Thr Leu Asp Arg Tyr Val Ser Ala Gly Gly Ile	144
45	35 40 45	
50	gag tat tgg ccc gat cca cag cgc ggt atc aag gaa gca tac cga gta Glu Tyr Trp Pro Asp Pro Gln Arg Gly Ile Lys Glu Ala Tyr Arg Val 50 55 60	192
	ctg acc ata ggt ggt gtt gcc tgc tta ata ggt cct gtg tac ccg acg Leu Thr Ile Gly Gly Val Ala Cys Leu Ile Gly Pro Val Tyr Pro Thr 65 70 75 80	240
55	ttt tgg cta tct cgt ttc ttt gca gat atg tgg atg ctc ttt cca aaa Phe Trp Leu Ser Arg Phe Phe Ala Asp Met Trp Met Leu Phe Pro Lys	288
60	85 90 95	336
60	gaa gaa gaa tat ata gaa tgg ttc aaa aaa gct ggt ttc gct caa gtt Glu Glu Glu Tyr Ile Glu Trp Phe Lys Lys Ala Gly Phe Ala Gln Val 100 105 110	330

	14/22	
	Lys Leu Lys Arg Ile Gly Pro Lys Trp Tyr Arg Gly Val Cys Arg His 115 120 125	
5	ggc ttg atc atg ggt tgt tct gtg act ggt gtc aag cca tat ttt ggg Gly Leu Ile Met Gly Cys Ser Val Thr Gly Val Lys Pro Tyr Phe Gly 130 135 140	432
10	gaa tot oog tig oag oto ggt oog aag git gag gat gig ago aag oot Glu Ser Pro Leu Gln Leu Gly Pro Lys Val Glu Asp Val Ser Lys Pro 145 150 155 160	480
15	gta aac cca ttc gta ttt ctc gtg cga ttc ctc ctt ggc ata act gct Val Asn Pro Phe Val Phe Leu Val Arg Phe Leu Leu Gly Ile Thr Ala 165 170 175	528
.0	gca act tat tac gtg ctc gtt cca ata tac atg tgg ctc aag gat caa Ala Thr Tyr Tyr Val Leu Val Pro Ile Tyr Met Trp Leu Lys Asp Gln 180 185 190	576
20	atc acc ccg aaa ggt cag cca atc tgaacaataa gaagaacgtc aatccaaaga Ile Thr Pro Lys Gly Gln Pro Ile 195 200	630
05	gaagetetee aageattetg tttgagagta caccagtgae cacaaateta teaeggaaca	690
25	agaaagtttt tggcgtcgtt gcaagggtga atttgttgct ttagtttgtt agttttgcag	750
	ccttagaaag ggccttttgt aaagtttaat ttcatggtaa aacctagaaa tcattgtgac	810
30	tattttctag tigtataatc tatcagtcat gitctittat cacgagitga gaaaactcgi	870
	cgaaataaat accagtaata cgttatttgc cagcggccgc	910
35	<210> 10	
	<211> 200	
	<212> PRT	
40	<213> Nicotiana tabacum	
	(213) Attottana tabatam	
45	<400> 10	
	Ala Ala Ala Asp Gln Ser Pro His Gln Leu Ala Lys Ala Arg Glu Lys 1 5 10 15	•
50	Glu Pro Leu Lys Glu Cys Lys Ile Leu Glu Gly Asp Ala Glu Asp Leu 20 25 30	
55	Pro Phe Pro Thr Asp Thr Leu Asp Arg Tyr Val Ser Ala Gly Gly Ile 35 40 45	
60	Glu Tyr Trp Pro Asp Pro Gln Arg Gly Ile Lys Glu Ala Tyr Arg Val 50 55 60	
	Leu Thr Ile Gly Gly Val Ala Cys Leu Ile Gly Pro Val Tyr Pro Thr 65 70 75 80	

Phe Trp Leu Ser Arg Phe Phe Ala Asp Met Trp Met Leu Phe Pro Lys 90 5 Glu Glu Glu Tyr Ile Glu Trp Phe Lys Lys Ala Gly Phe Ala Gln Val 100 10 Lys Leu Lys Arg Ile Gly Pro Lys Trp Tyr Arg Gly Val Cys Arg His Gly Leu Ile Met Gly Cys Ser Val Thr Gly Val Lys Pro Tyr Phe Gly 15 Glu Ser Pro Leu Gln Leu Gly Pro Lys Val Glu Asp Val Ser Lys Pro 20 150 Val Asn Pro Phe Val Phe Leu Val Arg Phe Leu Leu Gly Ile Thr Ala 165 25 Ala Thr Tyr Tyr Val Leu Val Pro Ile Tyr Met Trp Leu Lys Asp Gln 30 Ile Thr Pro Lys Gly Gln Pro Ile 35 <210> 11 <211> 16 <212> DNA 40 <213> Artificial sequence 45 <220> <223> Primer <400> 11 16 50 agaattcgcg gccgct <210> 12 55 <211> 32 <212> DNA

<220>

60

<213> Artificial sequence

	WO 2005/0	54453		16/22	PCT/EP2004/013560
	<223>	Primer			
5	<400> ctcatgo	12 egge egegegeaad	gcaattaat	g tg	32
	<210>	13			
10	·<211>	32			
10	<212>	DNA			
	<213>	Artificial sec	quence		
15					
	<220>				
20	<223>	Primer			
20	<400> tcatgo	13 ggcc gcgagatcc	a gttcgatgt	a ac	32
25	<210>	14			
	<211>	21			
30	<212>	DNA			
30		Artificial se	quence		
35	<220>				
	<223>	Primer			
40	<400> gtggat	14 tgat gtgatatct	c c		21
	<210>	15			
45	<211>	21			
	<212>	DNA			•
50	<213>	Artificial se	equence		
	<220>				
55	<223>	Primer			
	<400> gtaag	15 gatct gagctacad	ca t		21
60) <210>	16			
	<211>	22			

WO 2005/054453

<223> Primer

W	O 2005/0	54453	18/22	PCT/EP2004/013560
	<400> ggggtti	19 caca atgatacaat gatc		24
5	<210>	20		
	<211>	18		
10	·<212>	DNA		
	<213>	Artificial sequence		
15	<220>			
	<223>	Primer		
20	<400> atgagc	20 agca gcgtgtcg		18
	<210>	21		
25	<211>	20		
	<212>	DNA .		
30	<213>	Artificial sequence		
	<220>			
35	<223>	Primer		
	<400> gcgtcc	21 caag aaggagaagg		20
40	-010-	22		
	<210> <211>			
45	<211>			
-10		Artificial sequence		
50				
30	<220>			
	<223>	Primer		
55	<400> atgtgd	22 zagca gcagcagc		18
	<210>	23 .		
60	<211>	20		

<212> DNA

<213> Artificial	sequence
------------------	----------

5 <220>

<223> Primer

·<400> 23

10 gcgtcccaag aaggagaagg 20

<210> 24

15 <211> 18

<212> DNA

<213> Artificial sequence

20

<220>

25 <223> Primer

<400> 24

atgtgcagca gcagcagc 18

30

<210> 25

<211> 19

35 <212> DNA

<213> Artificial sequence

40

<220>

<223> Primer

45 <400> 25

tcagcgtccc aagaaggag 19

<210> 26 50

<211> 18

<212> DNA

55 <213> Artificial sequence

<220> .

<223> Primer

<400> 26

atgagcagca gcgtgtcg 18

<210> 27 5 <211> 20 <212> DNA <213> Artificial sequence 10 <220> 15 <223> Primer <400> 27 tcagatgggt tggtctttgg 20 20 <210> 28 <211> 18 25 <212> DNA <213> Artificial sequence 30 <220> <223> Primer 35 <400> 28 atgagcagca gcgtgtcg 18 <210> 29 40 <211> 19 <212> DNA 45 <213> Artificial sequence <220> 50 <223> Primer <400> 29 gatgggttgg tctttggga 19 55 <210> 30 <211> 18 . 60

<212> DNA

<213> Artificial sequence

<220> 5 <223> Primer <400> 30 atgtgcagca gcagcagc 18 10 <210> 31 <211> 19 15 <212> DNA <213> Artificial sequence 20 <220> <223> Primer 25 <400> 31 gatgggttgg tctttggga 19 <210> 32 30 <211> 18 <212> DNA 35 <213> Artificial sequence <220> 40 <223> Primer <400> 32 atgagcagca gcgtgtcg 18 45 <210> 33 <211> 19 50 <212> DNA <213> Artificial sequence 55 <220> <223> Primer 60 <400> 33 tcagcgtccc aagaaggag 19

WO 2005/054453		22/22	PCT/EP2004/013560	
	<210>	34	22/22	
	<211>	18		
5	<212>	DNA		
	<213>	Artificial sequence		
40		•	·	
10	<220>			
	<223>	Primer		
15		34 agca gcagcagc		18
20	<210>	35		
20	<211>	21		
	<212>	DNA		
25	<213>	Artificial sequence		
		•		
30	<220>			
50	<223>	Primer		
	<400> gaagga	35 tcag atgggttggt c		21

gaaggatcag atgggttggt c

35