

## Devoir de synthèse de Physique

2<br/>ème année, 25 Janvier 2019 : Correction et barême

| Partie 1 : Le transistor MOS                                                                                                                                                                                                                                                                                      | Points                                    | Total<br>ques-<br>tion |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|
| Question 1 Symétries: puisque les armatures sont considérées comme infinies, quel que soit $M$ situé dans l'espace inter-armatures, tout plan parallèle à $(\vec{u}_y, \vec{u}_z)$ passant par $M$ est plan de symétrie de la distribution de charges, ainsi que tout plan parallèle à $(\vec{u}_x, \vec{u}_z)$ . | 1                                         | 2                      |
| Le champ électrique ne possède donc qu'une composante le long de $(Oz)$ : $\vec{E}=E_z(x,y,z,)\vec{u}_z$                                                                                                                                                                                                          |                                           |                        |
| Invariances: la distribution de charges est invariante par translation le long de $(Ox)$ et de $(Oy)$ , le champ électrique ne dépend donc ni de $x$ ni de $y$ .                                                                                                                                                  | $\parallel$ 1                             |                        |
| Question 2 On prend une boîte de Gauss cylindrique d'axe $(Oz)$ (ou parallélépipède rectangle dont les arêtes sont parallèles aux axes du repère) avec deux surfaces $S$ dans les armatures => dessin avec la surface envisagée et les densités de charge $\sigma_{AO}$ et $\sigma_{B0}$ indiquées                | 1                                         | 3                      |
| Le théorème de Gauss implique : $ \oint \vec{E} \cdot d\vec{S} = \frac{(\sigma_{A0} + \sigma_{B0})S}{\epsilon_0} $                                                                                                                                                                                                | 1                                         |                        |
| Le champ est nul dans les armatures métalliques, le flux est nul à travers la surface cylindrique d'axe $Oz$ donc : $0 = \frac{(\sigma_{A0} + \sigma_{B0})S}{\epsilon_0}$                                                                                                                                         | 1                                         |                        |
| D'où il vient $\sigma_{A0} = -\sigma_{B0}$ Question 3  On doit utiliser : $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} = 0$ car il n'y a pas (nulle part) de charge volumique .                                                                                                                          | 1                                         | 4                      |
| La divergence se réduit à : $\frac{\partial E_z}{\partial z} = 0$                                                                                                                                                                                                                                                 | $\begin{vmatrix} & & 1 & & \end{vmatrix}$ |                        |
| D'où il vient : $E_z = A = \text{constante}$                                                                                                                                                                                                                                                                      | $\parallel$ 1                             |                        |
| Le théorème de Coulomb (ou les relations de passage) donnent la valeur du champ juste au dessus de l'armature (A) où : $E_z = \frac{\sigma_{A0}}{\epsilon_0}$ Donc, le champ étant constant, cette valeur est la même dans tout l'espace interarmature.                                                           | 1                                         |                        |
| Question 4                                                                                                                                                                                                                                                                                                        | 1                                         | 3                      |
| On a:<br>$U = \int_0^e \vec{E} . dz \vec{u}_z = \int_0^e \frac{\sigma_{A0}}{\epsilon_0} dz = \frac{\sigma_{A0}}{\epsilon_0} e$ $Donc: U = \frac{Q_{A0}}{\epsilon_0 S} e \text{ et } \frac{U}{Q_{A0}} = \frac{1}{\epsilon_0 S} e \text{ donc } C = \frac{\epsilon_0 S}{e}$                                         |                                           |                        |



| Question 5                                                                                                                                                                                                                                        | 2   | 2 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| A.N. $C = 0.21 \text{ fF}$                                                                                                                                                                                                                        |     |   |
| Question 6                                                                                                                                                                                                                                        | 2   | 5 |
| On prend une boîte de Gauss similaire à la question 2, mais cette fois avec une face                                                                                                                                                              |     |   |
| perpendiculaire à l'axe $(Oz)$ située à la côte $z$ comprise entre $0$ et $e$ .                                                                                                                                                                   |     |   |
| Cette fois, le flux de $\vec{E}$ à travers cette boîte de Gauss vaut $E_z S$                                                                                                                                                                      | 1   |   |
| D'après le théorème de Gauss on peut donc écrire :                                                                                                                                                                                                | 1+1 |   |
| Si $z < e_1$                                                                                                                                                                                                                                      |     |   |
| $E_z S = \frac{\sigma_{A1} S}{\epsilon_0} \implies E_z = \frac{\sigma_{A1}}{\epsilon_0}$                                                                                                                                                          |     |   |
| $\mathbf{Si}_{2} \sim \mathbf{e}_{1}$                                                                                                                                                                                                             |     |   |
| $E_z S = \frac{(\sigma_{A1} + \sigma_z)S}{\epsilon_0} \implies E_z = \frac{\sigma_{A1} + \sigma_z}{\epsilon_0}$                                                                                                                                   |     |   |
| Question 7                                                                                                                                                                                                                                        | 1   | 3 |
| Le champ électrique ne possède qu'une composante normale à l'interface contenant                                                                                                                                                                  |     |   |
| $\sigma_z$ . La composante tangentielle est donc nulle et nécessairement continue                                                                                                                                                                 |     |   |
| La composante normale du champ $\vec{E}$ au voisinage de $z=e_1$ subit une discontinuité                                                                                                                                                          |     |   |
| de ·                                                                                                                                                                                                                                              |     |   |
| $\vec{E}(e_1^+) - \vec{E}(e_1^-) = \frac{\sigma_{A1} + \sigma_z}{\epsilon_0} - \frac{\sigma_{A1}}{\epsilon_0} = \frac{\sigma_z}{\epsilon_0}$ ce qui est bien conforme aux relations de                                                            |     |   |
| passage connues. $\epsilon_0$ $\epsilon_0$                                                                                                                                                                                                        |     |   |
| Question 8                                                                                                                                                                                                                                        |     | 6 |
| On a                                                                                                                                                                                                                                              |     |   |
| $U = \int_0^e \vec{E} \cdot dz \vec{u}_z = \int_0^{e_1} \frac{\sigma_{A1}}{\epsilon_0} dz + \int_{e_1}^e \frac{\sigma_{A1} + \sigma_z}{\epsilon_0} dz = \frac{\sigma_{A1}}{\epsilon_0} e_1 + \frac{\sigma_{A1} + \sigma_z}{\epsilon_0} (e - e_1)$ |     |   |
| $U = \frac{\sigma_{A1}}{\epsilon_0} e + \frac{\sigma_z}{\epsilon_0} (e - e_1) \text{ d'où } \sigma_{A1} = \frac{\epsilon_0 U}{e} - \sigma_z (1 - \frac{e_1}{e})$                                                                                  | 3   |   |
| Sans la présence de $\sigma_z$ le même calcul donne : $\sigma_{A0} = \frac{\epsilon_0 U}{e}$                                                                                                                                                      | 2   |   |
| On a donc $\Delta \sigma = -\sigma_z (1 - \frac{e_1}{e})$                                                                                                                                                                                         | 1   |   |
| Question 9                                                                                                                                                                                                                                        | 2   | 7 |
| On sait que $\vec{E} = -\vec{\nabla}V$ . Donc la pente de la chute de potentiel entre $z = 0$ et $z = e$                                                                                                                                          |     |   |
| est proportionnelle à la valeur du champ.                                                                                                                                                                                                         |     |   |
| $z < e_1 : V(z) = -\frac{\sigma_{A1}}{\epsilon_0} z + A$                                                                                                                                                                                          |     |   |
| $\epsilon_0 \\ \sigma_{A1} + \sigma_z$                                                                                                                                                                                                            |     |   |
| $z > e_1 : V(z) = -\frac{\sigma_{A1}^0 + \sigma_z}{\epsilon_0} z + B$                                                                                                                                                                             |     |   |
| Avec les conditions aux limites imposées, on a :                                                                                                                                                                                                  | 2   |   |
| A = U Avec la continuité des potentiels, on peut trouver aussi :                                                                                                                                                                                  |     |   |
| $A = \frac{\sigma_{A1}}{\epsilon_0}e + \frac{\sigma_z}{\epsilon_0}(e - e_1) = U$                                                                                                                                                                  |     |   |
| $\int_{D_z}^{c_0} \sigma_{A1}^{c_0} + \sigma_z^{c_0}$                                                                                                                                                                                             |     |   |
| $B = \frac{\sigma_{A1} + \sigma_z}{\epsilon_0} e$                                                                                                                                                                                                 |     |   |
| Finalement, on a:                                                                                                                                                                                                                                 | 3   |   |
| V Pente $rac{\sigma_{A1}}{\epsilon_0}$                                                                                                                                                                                                           |     |   |
| $\frac{\sigma_{A1} + \sigma_{z}}{\epsilon_{0}}$                                                                                                                                                                                                   |     |   |
| $\epsilon_0$                                                                                                                                                                                                                                      |     |   |
|                                                                                                                                                                                                                                                   |     |   |
|                                                                                                                                                                                                                                                   |     |   |
| e <sub>1</sub> e z                                                                                                                                                                                                                                |     |   |
|                                                                                                                                                                                                                                                   |     |   |



| Question 10                                                                                                                                                                                                                                                                                                                                                 | 2                       | 2       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|
| <b>Bonus</b> : dans les conditions imposées : $\sigma_z > 0$ , la présence de la charge fixe fait                                                                                                                                                                                                                                                           |                         | (bonus) |
| diminuer le courant dans le canal, et donc la puissance disponible pour les                                                                                                                                                                                                                                                                                 |                         |         |
| applications.                                                                                                                                                                                                                                                                                                                                               |                         |         |
| Question 11                                                                                                                                                                                                                                                                                                                                                 | 1 1                     | 5       |
| Dans l'espace interarmatures, en utilisant le théorème de Gauss intégral avec la                                                                                                                                                                                                                                                                            |                         |         |
| même boîte de Gauss que dans la question 6, on trouve :                                                                                                                                                                                                                                                                                                     |                         |         |
| $\oint \epsilon \vec{E} \cdot d\vec{S} = \sigma_{A2} \text{ donc}$ :                                                                                                                                                                                                                                                                                        |                         |         |
| $E_z = \frac{\sigma_{A2}}{\epsilon_1} \text{ si } z < e_1$                                                                                                                                                                                                                                                                                                  |                         |         |
|                                                                                                                                                                                                                                                                                                                                                             |                         |         |
| $E_z = \frac{\sigma_{A2}^2}{\epsilon_2} \text{ si } e_1 < z < e$                                                                                                                                                                                                                                                                                            |                         |         |
| On a donc: $\int_{e_1}^{e_1} \sigma_{12} = \int_{e_2}^{e} \sigma_{12} = \sigma_{12}$                                                                                                                                                                                                                                                                        | $\parallel$ 2           |         |
| $U = \int_0^e \vec{E} \cdot dz \vec{u}_z = \int_0^{e_1} \frac{\sigma_{A2}}{\epsilon_1} dz + \int_{e_2}^e \frac{\sigma_{A2}}{\epsilon_2} dz = \frac{\sigma_{A2}}{\epsilon_1} e_1 + \frac{\sigma_{A2}}{\epsilon_2} (e - e_1)$                                                                                                                                 |                         |         |
| Ce qui donne :                                                                                                                                                                                                                                                                                                                                              | $\parallel  _{1}  \mid$ |         |
| $C = \frac{S}{\underline{e_1} + \underline{e - e_1}}$                                                                                                                                                                                                                                                                                                       |                         |         |
| $\frac{e_1}{e_1} + \frac{e - e_1}{e_1}$                                                                                                                                                                                                                                                                                                                     |                         |         |
| $\epsilon_1$ $\epsilon_2$ A épaisseur $e$ égale, la capacité est au moins 4 fois plus grande avec cet empilement.                                                                                                                                                                                                                                           | $\parallel  _{1}  \mid$ |         |
| Question 12                                                                                                                                                                                                                                                                                                                                                 | 1                       | 6       |
| Première solution :                                                                                                                                                                                                                                                                                                                                         |                         |         |
| On considère une petite portion du canal d'épaisseur $dz$ et de volume $WLdz$ . Cette                                                                                                                                                                                                                                                                       |                         |         |
| portion subit toute la chute de tension $V_{SD}$ et est traversée par une fraction $dI$ du                                                                                                                                                                                                                                                                  |                         |         |
| courant. Sa résistance élémentaire $dR$ s'écrit donc : $dR = \frac{V_{SD}}{dI}$                                                                                                                                                                                                                                                                             |                         |         |
| $dI = \vec{j}(z).\vec{dS}$ On prend une surface $dS = Wdz$ orientée par $\vec{u}_y$                                                                                                                                                                                                                                                                         |                         |         |
| On a donc: $dI = j(z)Wdz$                                                                                                                                                                                                                                                                                                                                   |                         |         |
| Par ailleurs dans ce même élément : $V_{DS} = \int \vec{E}_{SD} . d\vec{l} = \int E_{SD} dy = \int \rho(z) j(z) dy$                                                                                                                                                                                                                                         |                         |         |
| $V_{DS} = (\rho_0 - \alpha z)j(z)L$                                                                                                                                                                                                                                                                                                                         |                         |         |
| Ce qui donne $dR = \frac{(\rho_0 - \alpha z)j(z)L}{j(z)Wdz} = \frac{(\rho_0 - \alpha z)L}{Wdz}$                                                                                                                                                                                                                                                             | $\parallel$ 3           |         |
|                                                                                                                                                                                                                                                                                                                                                             |                         |         |
| On associe les éléments dR en parallèle $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                |                         |         |
| $\frac{1}{R} = \int \frac{1}{dR} = \frac{Wdz}{L(\rho_0 - \alpha z)} = -\frac{W}{\alpha L} \left[ \ln(\rho_0 - \alpha z) \right]_{-a}^0 = -\frac{W}{\alpha L} \ln \frac{\rho_0}{\rho_0 + \alpha a}$ $\text{Donc } R = \frac{\alpha L}{W \ln(1 + \frac{\alpha a}{\rho_0})}$                                                                                   | $\parallel$ 3           |         |
| $Donc R = \frac{\alpha \tilde{L}}{2\pi L}$                                                                                                                                                                                                                                                                                                                  |                         |         |
| $W \ln(1 + \frac{\alpha a}{\alpha})$                                                                                                                                                                                                                                                                                                                        |                         |         |
| Seconde solution: (accepter l'une ou l'autre)                                                                                                                                                                                                                                                                                                               | $\ $ (3)                |         |
| $I = \iint_{S} \vec{j}(z) \cdot d\vec{S} = \iint_{S} \underbrace{\frac{E_{SD}}{\rho(z)}}_{S} W dz = \iint_{S} \frac{WE_{SD}dz}{(\rho_{0} - \alpha z)} = -\frac{WE_{SD}}{\alpha} (ln \frac{\rho_{0}}{\rho_{0} + \alpha a})$ D'où $R = \frac{E_{SD}L\alpha}{WE_{SD}ln(1 + \frac{\rho_{0}}{\alpha a})} = \frac{\alpha L}{W ln(1 + \frac{\alpha a}{\rho_{0}})}$ |                         |         |
| $D'où R = \frac{E_{SD}L\alpha}{E_{SD}L\alpha} = \frac{\alpha L}{\alpha L}$                                                                                                                                                                                                                                                                                  | (3)                     |         |
| $WE_{SD}ln(1+rac{ ho_0}{\alpha a}) = Wln(1+rac{\alpha a}{\alpha a})$                                                                                                                                                                                                                                                                                      | (9)                     |         |
| $\alpha a \qquad \qquad \rho_0$ Question 13                                                                                                                                                                                                                                                                                                                 | 2                       | 2       |
| Application numérique : $R=14~\Omega$                                                                                                                                                                                                                                                                                                                       |                         | _       |
| (attention: $10^{-4} \Omega.cm = 10^{-6} \Omega.m$ )                                                                                                                                                                                                                                                                                                        |                         |         |
|                                                                                                                                                                                                                                                                                                                                                             | Total                   | 48 + 2  |

| Partie 2 : les moteurs synchrones | Points | Total |
|-----------------------------------|--------|-------|
|                                   |        | ques- |
|                                   |        | tion  |
|                                   |        |       |



| Question 1                                                                                                                                                                                                                                | 2               | 4 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|
| Direction : Le plan perpendiculaire à l'axe $(Ox)$ passant par $O$ est un plan de                                                                                                                                                         |                 |   |
| symétrie de la distribution de courant. Le champ magnétique est donc                                                                                                                                                                      |                 |   |
| perpendiculaire à ce plan (ou : tous les plans contenant l'axe avec rédaction                                                                                                                                                             |                 |   |
| correcte).                                                                                                                                                                                                                                |                 |   |
| D'où $\vec{B(O)} = B_x \vec{u}_x$                                                                                                                                                                                                         |                 |   |
| Sens: En outre, d'apres la figure 4, dans la base cylindrique $(u_r, u_\theta, u_x)$ , le courant                                                                                                                                         | $\parallel$ 2   |   |
| $i$ dans les solénoides, tourne dans le sens $\theta$ positif autour de l'axe Ox. Le théorème                                                                                                                                             |                 |   |
| d'Ampere, implique donc que le champ $ec{B}$ créé par les deux solénoides est orienté                                                                                                                                                     |                 |   |
| dans le sens positif de l'axe $Ox$ .                                                                                                                                                                                                      |                 |   |
| Question 2                                                                                                                                                                                                                                | 1               | 7 |
| Schéma simplifié du système électrique                                                                                                                                                                                                    |                 |   |
| $\frac{\underline{u(t)} = (R_0 + R + jL\omega_0) \underline{i_1}}{\underline{u(t)} = (R_0 + R + jL\omega_0 + \frac{1}{jC\omega_0}) \underline{i_2}}$                                                                                      | 1+1             |   |
| $\frac{-}{u(t) - (R_0 + R + iL\omega_0 + \frac{1}{-\omega_0})i_0}$                                                                                                                                                                        |                 |   |
| $\frac{u(t)}{R} = \frac{(10) + 1t + jL\omega_0 + jC\omega_0}{jC\omega_0} = \frac{i2}{2}$                                                                                                                                                  |                 |   |
| Exiger que l'équation soit en complexe (obligatoire pour la suite)                                                                                                                                                                        |                 |   |
| D'où : $I_1 = \frac{C_0}{\sqrt{(D+D_1)^2 + (I_{CL})^2}}$                                                                                                                                                                                  | 1+1             |   |
| $\begin{aligned} & \text{D'où}: I_1 = \frac{U_0}{\sqrt{(R+R_0)^2 + (L\omega_0)^2}} \\ & I_2 = \frac{U_0}{\sqrt{(R+R_0)^2 + (L\omega_0 - \frac{1}{C\omega_0})^2}} \end{aligned}$                                                           |                 |   |
| $I_2 = \frac{1}{\sqrt{(D_1 + D_1)^2 + (I_1 + I_2)^2}}$                                                                                                                                                                                    |                 |   |
| $\sqrt{(R+R_0)^2+(L\omega_0-\overline{C\omega_0})^2}$                                                                                                                                                                                     |                 |   |
| Et $\varphi_1 = arctan(\frac{L\omega_0}{R+R})$                                                                                                                                                                                            | $\parallel$ 1+1 |   |
| Et $\varphi_1 = arctan(\frac{L\omega_0}{R + R_0})$ $\varphi_2 = arctan(\frac{L\omega_0 - \frac{1}{C\omega_0}}{R + R_0})$                                                                                                                  |                 |   |
| $\varphi_2 = arctan(\frac{-c\omega_0}{R + R_0})$                                                                                                                                                                                          |                 |   |
| En cas d'erreur de signe, compter juste si tout est cohérent (si la seule faute est de                                                                                                                                                    |                 |   |
| ne pas avoir pris en compte le « moins » dans l'expression donnée de $i_1$ et $i_2$ ).                                                                                                                                                    |                 |   |
| Question 3                                                                                                                                                                                                                                | 2               | 2 |
| Pour avoir $I_1 = I_2$ il faut $(L\omega_0)^2 = (L\omega_0 - \frac{1}{C\omega_0})^2$                                                                                                                                                      |                 |   |
| Soit: $C = \frac{1}{2L\omega_0^2}$                                                                                                                                                                                                        |                 |   |
|                                                                                                                                                                                                                                           |                 |   |
|                                                                                                                                                                                                                                           |                 | 2 |
| Le champ $\vec{B}$ est obtenu par le principe de superposition :                                                                                                                                                                          |                 |   |
| $\vec{B}_T = KI_1 cos(\omega_0 t - \varphi_1) \ \vec{u}_x + KI_2 cos(\omega_0 t - \varphi_2) \ \vec{u}_y$                                                                                                                                 |                 |   |
| Mais comme $I_1=I_2$ et $\varphi_2=\varphi_1+\frac{\pi}{2},$ on peut écrire :                                                                                                                                                             |                 |   |
| $\vec{B}_T = KI_1 cos(\omega_0 t - \varphi_1) \ \vec{u}_x + KI_1 sin(\omega_0 t - \varphi_1) \ \vec{u}_y$                                                                                                                                 |                 |   |
| Question 5                                                                                                                                                                                                                                |                 | 2 |
| On peut ré-écrire $\vec{B}$ sous la forme :                                                                                                                                                                                               |                 |   |
| $\vec{B}_T = KI_1 cos(\omega_0 t - \varphi_1) \ \vec{u}_x + KI_1 sin(\omega_0 t - \varphi_1) \ \vec{u}_y = B_x \ \vec{u}_x + B_y \ \vec{u}_y$                                                                                             |                 |   |
| Or $B_x^2 + B_y^2 = K^2 I_1^2$ est l'équation d'un cercle de rayon $KI_1$ . Le champ décrit bien                                                                                                                                          |                 |   |
| un cercle (accepter toute formulation équivalente).                                                                                                                                                                                       |                 |   |
| Question 6                                                                                                                                                                                                                                |                 | 1 |
| $\theta(t) = (\omega - \omega_0)t + \theta_0$                                                                                                                                                                                             | -               |   |
|                                                                                                                                                                                                                                           | 1               | 2 |
| $\left  \begin{array}{c} \left\  \vec{\Gamma} \right\  = M_0 \left\  \vec{B_T} \right\  \left  sin(\vec{M}, \vec{B_T}) \right  = M_0 \left\  \vec{B_T} \right\  \left  sin\left[ (\omega - \omega_0)t + \theta_0 \right] \right  \right $ |                 |   |
| Le moteur ne peut fonctionner que pour $\omega = \omega_0$ car sinon la valeur moyenne de la                                                                                                                                              | 1               |   |
| valeur algébrique du couple est nulle.                                                                                                                                                                                                    |                 |   |



| Question 8                                                                                    | 1     | 1      |
|-----------------------------------------------------------------------------------------------|-------|--------|
| Le flux s'écrit : $\phi = \vec{B}_T . \vec{S} = \left\  \vec{B}_T \right\  S \cos(\theta(t))$ |       |        |
| On a alors $\frac{d\phi}{dt} = -S \ \vec{B_T}\  \hat{\theta(t)} sin(\theta(t))$               |       |        |
| Question 9                                                                                    | 2     | 2      |
| il y a induction dans le rotor car le flux varie avec le temps, qui se traduit par l'ajout    |       |        |
| d'un générateur de tension d'induction mutuelle dans le circuit électrique du rotor,          |       |        |
| donc variation de $i$ due à cette tension supplémentaire (ou formulation équivalente).        |       |        |
| Question 10                                                                                   | 2     | 2      |
| Le moment magnétique envoie du flux dans le stator également (lignes de champ                 |       |        |
| créées par $\vec{M}$ qui sont envoyées dans le circuit du stator). Donc il faudrait rajouter  |       |        |
| également un terme d'induction mutuelle dans le circuit de la figure 5 (ou                    |       |        |
| formulation équivalente).                                                                     |       |        |
| Question 11                                                                                   | 2     | 4 + 2  |
| Schéma avec induction mutuelle quelle que soit la façon dont elle est notée dans le           |       |        |
| circuit (deux circuits avec une double flèche au dessus de laquelle on indique le             |       |        |
| coefficient d'induction mutuelle $M$ , ou présence de générateurs d'induction dans les        |       |        |
| deux circuits).                                                                               |       |        |
| Equation électrique, avec toujours $M$ le coefficient d'induction mutuelle :                  | 2     |        |
| $u_r(t) = R_r i(t) + L_r \frac{di(t)}{dt} + M(t) \frac{d(i_1(t) + i_2(t))}{dt}$               |       |        |
| Bonus si quelqu'un remarque que $M$ varie avec le temps                                       | 2     |        |
|                                                                                               | Total | 29 + 2 |

| Partie 3 : Ondes                                                                                       | Points | Total   |
|--------------------------------------------------------------------------------------------------------|--------|---------|
|                                                                                                        |        | ques-   |
|                                                                                                        |        | tion    |
| Question 1                                                                                             | 1      | 1       |
| L'onde se propage le long de $Oy$                                                                      |        |         |
| Question 2                                                                                             | 1      | 1       |
| Elle n'est pas uniforme (son amplitude dépend des coordonnées de                                       |        |         |
| l'espace)(L'amplitude varie dans le plan d'onde).                                                      |        |         |
| Question 3                                                                                             | 2      | 2       |
| Elle est polarisée le long de $Oy$                                                                     |        |         |
| Question 4                                                                                             | 1      | 1       |
| Elle est longitudinale (direction de polarisation = direction de propagation)                          |        |         |
| Question 5                                                                                             | 1+1    | 2       |
| On obtient la longueur d'onde avec $k\lambda = 2\pi$ , soit $\lambda = 31.7$ cm                        |        |         |
| La vitesse de propagation est obtenue par $k = \frac{\omega}{v}$ Donc $v = \frac{2\pi.915.10^6}{19.8}$ |        |         |
| $v = 2.9.10^8 \ m.s^{-1} $ 19.8                                                                        |        |         |
| Question 6                                                                                             | 3      | 6       |
| Si on se met le long de l'axe Oz, alors on a $x=0$ et $y=0$ , si en plus on fixe $t=\frac{T}{2}$ ,     |        | +2      |
| alors il reste:                                                                                        |        | (bonus) |
| $S_y = -S_0 e^{-\delta z }$                                                                            |        |         |



| S <sub>y</sub> Z                                                                                          | 3 (dessin)    |         |
|-----------------------------------------------------------------------------------------------------------|---------------|---------|
| Bonus si l'axe z possède des valeurs en cohérence avec la valeur de $\delta$                              | 2             |         |
| Question 7                                                                                                | 2             | 5       |
| Au point $O(0;0;0)$ l'expression de l'onde se réduit à : $\vec{S}(x,y,z,t) = S_0 cos(\omega t) \vec{u}_y$ |               |         |
| $S_y$ est donc un cosinus d'amplitude $S_0$                                                               |               |         |
| Le point $M(0;7.9~{\rm cm};0)$ est situé à $\lambda/4$ , il vibre donc en quadrature par rapport au       | 2             |         |
| point $O$ (la phase du cosinus est donc de $\pi/2$ )                                                      |               |         |
| Dessin associé aux deux ondes, déphasées de $\pi/2$ (vérifier que les fonctions dessinées                 | $\parallel$ 1 |         |
| sont bien en quadrature, temps de propagation $\frac{T}{4}$ )                                             |               |         |
|                                                                                                           | Total         | 18+2    |
|                                                                                                           |               | (bonus) |