Karim Samaha

Switzerland, Lausanne Ecublens 1024

(+41) 076 271 28 35

★ karimsamaha98@gmail.com

© live:karimsamaha98

A karimsamaha98.github.io

in linkedin.com/in/karim-samaha

OBJECTIVE

A self-motivated electronics hobbyist, looking to leverage his extensive fast-prototyping skills, both in hardware and software, in the development of innovative robotics and automation solutions.

EDUCATION

Swiss Federal Insitute of Technology (EPFL), September 2020-Present Switzerland

 $Master's in \ Robotics, Microengineering GPA 5.5/6$

American University of Beirut

Lebanon

Bachelor of Engineering, Mechanical Engineering GPA 4/4

Collège Notre Dame de Nazareth

Lebanon

French Baccalauréat TS

17.47/20

PROFESSIONA EXPERIENCE

PROFESSIONAL Synkers, Local Tutoring Company, Lebanon

June 2018-Present

Certified Tutor

• Tutoring university courses related to engineering and sciences both in groups and in private.

American University of Beirut, Lebanon September 2018-June 2020

Undergraduate Research Assistant with Prof. Daniel Asmar at the Mechanical Engineering Department

- \bullet Worked closely with different mobile robots such as the Pioneer 3AT and the KUKA Youbot.
- Participated in a research project related to computer vision and machine learning.

University of Waterloo, Canada

May-August 2019

Research Intern with Prof. John Zelek at the Systems Design Department

- Implemented a deep neural network for camera calibration from video sequences.
- Developed a new image generation algorithm using Unity as a game engine.

ACADEMIC PROJECTS

Tensegrity-Based Morphing Wing

February 2021-June 2021

Semester Project

- Explored the feasibility of morphing tensegrity structures in an aerodynamic setting
- Designed, modelled and manufactured a tensegrity-based wing that can achieve roll and pitch control through morphing

Autonomous Navigation System for a Drone February 2021-June 2021 Aerial Robots

- Implemented an autonomous navigation algorithm on the Crazyflie drone using Python
- The navigation system relies on a velocity controller which uses optical flow for stability and range sensors in a potential field framework for obstacle avoidance

Camera Controller Design using an FPGA September 2020-January 2021 Embedded Systems

- Designed a camera controller for the TRDB-D5M CMOS camera using Intel Quartus and NIOS
- The controller reads pixel values in real-time from the CMOS sensor, processes them, and stores them in memory.

TECHNICAL SKILLS

Modeling and Manufacturing

- Modeling mechanical components using AutoCAD, Creo or Solidworks.
- Performing stress and motion analysis on Solidworks.
- Building mechanical components using different manufacturing processes (3D printing, CNC, Drilling, Lathing, Milling).

Electronics

- Programming microprocessors or microcontrollers (Raspberry Pi, Arduino, PIC, MSP432).
- Designing and testing embedded systems on FPGA using Nios and Intel Quartus.
- Building complex electronics systems using multiple sensors, actuators and communication interfaces.

Programming Skills Python, OpenCV, Tensorflow, Keras, Numpy, C++, MATLAB, C#, LabVIEW, Linux, GitHub

IT Microsoft Office, Adobe Photoshop, Adobe Illustrator, Techsmith Camtasia Soft Skills Organized, Creative, Hardworking, Ambitious, Maker

LANGUAGES

CEFR C2 in English, French and Arabic CEFR A2 in German

HONORS AND AWARDS

First Place in FYP Accelerator Program 2020 Spring 2020 Spring 2016-Spring 2020 Dean's Honor List First Place in FEA Robotics Competition Fall 2016-2017

EXTRACURR-**ICULARS**

01Tutor, Interactive Learning Platform

July 2020-Present

Developing an online interactive learning platform with MOOC. The platform offers university students an accessible and innovative means to consolidate their knowledge in engineering and sciences

HiveMate, Vision System for Bee Swarm Prevention September 2019-Present

Developing a vision system capable of identifying swarm cells withing a hive. The intricate design consisting of a rotating fish-eye camera coupled to a convolutional network estimates the presence of swarm cells attached at the bottom of the frames.

IEEE Robotics Hackaton

February 2019

Designed a quadruped robot capable of replicating the creep gait using Solidworks as a modelling tool and an Arduino as a microcontroller. The robot can be used for the inspection of tight spaces such as ventilations and electrical systems.

PERSONAL DETAILS

Age 23, Single

Type B Permit, No Military Obligation