Machine Learning Foundations - HW1

By: Wu-Jun Pei (B06902029)

1.

2.

It is easy to observe that

$$egin{aligned} E_{OTS} &= rac{1}{L} imes ext{(number of even numbers in } [N+1,N+L]) \ &= rac{1}{L} imes (\lfloor rac{N+L}{2}
floor - \lfloor rac{N}{2}
floor) \end{aligned}$$

3.

Since those every f are equally in probability, given D, there are still 2^L f's generating different outputs of the test input. Let g_1 be the hypothesis generated from A_1 and g_2 be the hypothesis generated from A_2 . It is easy to observe that the expected value of E_{OTS} is 0.5.

$$\mathbb{E}_f\{E_{OTS}(g_1,f)\} = \mathbb{E}_f\{E_{OTS}(g_2,f)\} = rac{1}{2}$$

4.

If $v \leq 0.1$, than the number of orange marbles is either 0 or 1. So the probability is

$$P = {10 \choose 0} \times (0.8)^0 \times (0.2)^{10} + {10 \choose 1} \times (0.8)^1 \times (0.2)^9$$

= $(0.2 + 8) \times (0.2)^9$
= 4.1984×10^{-6}

If $v \geq 0.9$, than the number of orange marbles is either 9 or 10. So the probability is

$$P = {10 \choose 9} \times (0.8)^9 \times (0.2)^1 + {10 \choose 10} \times (0.8)^{10} \times (0.2)^0$$

= $(2 + 0.8) \times (0.8)^9$
 ≈ 0.3758

5.

To get a green 1's, we need to choose dice from either group A or D, so the probability is

$$P = \frac{2^5}{4^5} = \frac{1}{32}$$

6.

To get some number that is purely green, we can discuss each number seperately.

Number	Possible Groups
1	A, D
2	B, D
3	A, D
4	В, С
5	A, C
6	В, С

we can ignore 3 and 6. So the probability is

$$P = 4 \times \frac{1}{32} - 4 \times \frac{1}{4^5}$$

$$= \frac{32}{256} - \frac{1}{256}$$

$$= \frac{31}{256}$$

The way I choose random seed is:

On the t^{th} round, the random seed is t^{29} .

