Lecture 2 Estimation with Serially Correlated Errors

9.5.1 Least Squares Estimation

- Suppose we proceed with least squares estimation without recognizing the existence of serially correlated errors. What are the consequences?
 - 1. The least squares estimator is still a linear unbiased estimator, but it is no longer best
 - 2. The formulas for the standard errors usually computed for the least squares estimator are no longer correct
 - Confidence intervals and hypothesis tests that use these standard errors may be misleading

- It is possible to compute correct standard errors for the least squares estimator:
 - HAC (heteroskedasticity and autocorrelation consistent) standard errors, or Newey-West standard errors
 - These are analogous to the heteroskedasticity consistent standard errors

9.5
Estimation with
Serially Correlated
Errors

9.5.1 Least Squares Estimation

■ Let's reconsider the Phillips Curve model:

Eq. 9.29

$$\widehat{INF} = 0.7776 - 0.5279DU$$

(0.0658) (0.2294) (incorrect se)
(0.1030) (0.3127) (HAC se)

9.5.1 Least Squares Estimation

■ The t and p-values for testing H_0 : $\beta_2 = 0$ are:

$$t = \frac{-0.5279}{0.2294} = -2.301$$
 $p = 0.0238$ (from LS standard errors)
 $t = \frac{-0.5279}{0.3127} = -1.688$ $p = 0.0950$ (from HAC standard errors)

9.5.2 Estimating an AR(1) Error Model

■ Return to the Lagrange multiplier test for serially correlated errors where we used the equation:

$$e_t = \rho e_{t-1} + v_t$$

- Assume the v_t are uncorrelated random errors with zero mean and constant variances:

$$E(v_t) = 0$$
 $var(v_t) = \sigma_v^2$ $cov(v_t, v_s) = 0$ for $t \neq s$

9.5.2 Estimating an AR(1) Error Model

- Eq. 9.30 describes a first-order autoregressive model or a first-order autoregressive process for e_t
 - The term AR(1) model is used as an abbreviation for first-order autoregressive model
 - It is called an autoregressive model because it can be viewed as a regression model
 - It is called **first-order** because the right-handside variable is e_t lagged one period

9.5.2a Properties of an AR(1) Error

■ We assume that:

■ The mean and variance of e_t are:

$$E(e_t) = 0$$
 $var(e_t) = \sigma_e^2 = \frac{\sigma_v^2}{1 - \rho^2}$

 $-1 < \rho < 1$

The covariance term is:

$$cov(e_t, e_{t-k}) = \frac{\rho^k \sigma_v^2}{1 - \rho^2}, \qquad k > 0$$

9.5.2a Properties of an AR(1) Error

■ The correlation implied by the covariance is:

Eq. 9.35

$$\rho_{k} = \operatorname{corr}(e_{t}, e_{t-k})$$

$$= \frac{\operatorname{cov}(e_{t}, e_{t-k})}{\sqrt{\operatorname{var}(e_{t}) \operatorname{var}(e_{t-k})}}$$

$$= \frac{\operatorname{cov}(e_{t}, e_{t-k})}{\operatorname{var}(e_{t})}$$

$$= \frac{\rho^{k} \sigma_{v}^{2}}{(1 - \rho^{2})}$$

$$= \rho^{k}$$

$$= \rho^{k}$$

■ Setting k = 1:

$$\rho_1 = \operatorname{corr}(e_t, e_{t-1}) = \rho$$

- ρ represents the correlation between two errors that are one period apart
 - It is the **first-order autocorrelation** for *e*, sometimes simply called the autocorrelation coefficient
 - It is the population autocorrelation at lag one for a time series that can be described by an AR(1) model
 - r_1 is an estimate for ρ when we assume a series is AR(1)

 \blacksquare For an AR(1) model, we have:

$$\hat{\rho}_1 = \hat{\rho} = r_1 = 0.549$$

■ For longer lags, we have:

$$\hat{\rho}_2 = \hat{\rho}^2 = (0.549)^2 = 0.301$$
 $\hat{\rho}_3 = \hat{\rho}^3 = (0.549)^3 = 0.165$
 $\hat{\rho}_4 = \hat{\rho}^4 = (0.549)^4 = 0.091$
 $\hat{\rho}_5 = \hat{\rho}^5 = (0.549)^5 = 0.050$

9.5.2b Nonlinear Least Squares Estimation

 \blacksquare Our model with an AR(1) error is:

$$y_t = \beta_1 + \beta_2 x_t + e_t$$
 with $e_t = \rho e_{t-1} + v_t$

with
$$-1 < \rho < 1$$

– For the v_t , we have:

 $E(v_t) = 0$ $var(v_t) = \sigma_v^2$ $cov(v_t, v_{t-1}) = 0$ for $t \neq s$

$$y_t = \beta_1 + \beta_2 x_t + \rho e_{t-1} + v_t$$

– For the previous period, the error is:

$$e_{t-1} = y_{t-1} - \beta_1 - \beta_2 x_{t-1}$$

– Multiplying by ρ :

$$\rho e_{t-1} = e_t y_{t-1} - \rho \beta_1 - \rho \beta_2 x_{t-1}$$

9.5 Estimation with Serially Correlated Errors

9.5.2b Nonlinear Least Squares Estimation

■ Substituting, we get:

Eq. 9.43

$$y_t = \beta_1(1 - \rho) + \beta_2 x_t + \rho y_{t-1} - \rho \beta_2 x_{t-1} + v_t$$

$$y_t = \beta_1(1 - \rho) + \beta_2 x_t + \rho y_{t-1} - \rho \beta_2 x_{t-1} + v_t$$

– Suppose now that we consider the model:

$$y_{t} = \delta + \theta_{1} y_{t-1} + \delta_{0} x_{t} + \delta_{1} x_{t-1} + v_{t}$$

- This new notation will be convenient when we discuss a general class of autoregressive distributed lag (ARDL) models
 - -Eq. 9.47 is a member of this class

■ Note that Eq. 9.47 is the same as Eq. 9.47 since:

$$\delta = \beta_1(1 - \rho)$$
 $\delta_0 = \beta_2$ $\delta_1 = -\rho\beta_2$ $\theta_1 = \rho$

– Eq. 9.46 is a restricted version of Eq. 9.47 with the restriction $\delta_1 = -\theta_1 \delta_0$ imposed

Serially Correlated ASSUMPTION FOR MODELS WITH A LAGGED DEPENDENT VARIABLE

TSMR2A In the multiple regression model $y_t = \beta_1 + \beta_2 x_{t2} + \dots + \beta_K x_K + v_t$ Where some of the x_{tk} may be lagged values of y, v_t is uncorrelated with all x_{tk} and their past values. ■ Applying the least squares estimator to Eq. 9.47 using the data for the Phillips curve example yields:

Eq. 9.49

 $\widehat{INF}_t = 0.3336 + 0.5593INF_{t-1} - 0.6882DU_t + 0.3200DU_{t-1}$ (se) (0.0899) (0.0908) (0.2575) (0.2499)

9.5.4 Summary of Section 9.5 and Looking Ahead

- We have described two ways of overcoming the effect of serially correlated errors:
 - 1. Estimate the model using least squares with *HAC* standard errors
 - 2. Use least squares to estimate the model with a lagged *x* and a lagged *y*, but without the restriction implied by an AR(1) error specification