Data Mining

Marc Reyes

Department of Software Technology

May 2025

Overview & Objectives

- Introduction to data mining and the KDD process.
- Examination of core techniques:
 - Classification
 - Clustering
 - Association Rule Mining (Apriori & FP-Growth)
 - Regression
 - Anomaly Detection
- Discussion of evaluation metrics, software tools, and ethical considerations.

Learning Objectives

- Define data mining and its significance in extracting actionable insights.
- Master the underlying mathematics behind advanced data mining techniques.
- Analyze and implement real-world computer science applications using rigorous evaluation metrics.

What is Data Mining?

Definition:

• The process of discovering hidden patterns, trends, and relationships in large datasets using mathematical models and algorithms.

Key Elements:

- Data: The raw material (structured or unstructured).
- Algorithms: Mathematical models used to extract insights.
- Domain Knowledge: Expertise required for proper interpretation.

Data Mining vs. Related Fields

Data Mining vs. Machine Learning:

 Focuses on pattern discovery using measures like entropy, information gain, and the Gini index:

$$Gini(S) = 1 - \sum_{i=1}^n p_i^2$$

Data Mining vs. Data Analytics:

Data Analytics is hypothesis-driven, while data mining is exploratory.

The KDD Process: Data Collection

• Data Collection:

 Gather data from diverse sources such as databases, sensors, public datasets, or web scraping.

The KDD Process: Data Preprocessing

- Data Preprocessing:
 - Clean and transform data.
 - Example: Normalization

$$x' = rac{x - \mu}{\sigma}$$

The KDD Process: Data Exploration

• Data Exploration:

 Perform statistical analysis and visualization to understand data distributions and identify trends.

The KDD Process: Data Mining

- Data Mining:
 - Apply advanced algorithms to extract patterns from the processed data.

The KDD Process: Evaluation & Deployment

• Evaluation:

Assess models using quantitative metrics.

• Deployment:

Integrate insights into real-world decision-making.

Data Collection & Preprocessing: Data Collection

• Sources:

Databases, sensors, public datasets, web scraping.

Data Collection & Preprocessing: Cleaning

- Cleaning Techniques:
 - Remove noise and handle missing values.
 - Example: Z-score

$$z = rac{x - \mu}{\sigma}$$

Data Collection & Preprocessing: Transformation

- Transformation Techniques:
 - Normalize data using min-max scaling:

$$x' = rac{x - x_{\min}}{x_{\max} - x_{\min}}$$

Exploratory Data Analysis (EDA)

Purpose:

Understand distributions, identify trends, and detect outliers.

Techniques:

- Statistical summaries (Mean, Variance, Standard Deviation).
- Visualizations (Histograms, Scatter Plots, Box Plots).
- Correlation Coefficient:

$$r=rac{\sum (x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum (x_i-ar{x})^2\sum (y_i-ar{y})^2}}$$

Classification Techniques: Overview

• Objective:

Assign data points to predefined categories.

• Common Methods:

Decision Trees, Logistic Regression, k-Nearest Neighbors.

Classification: Decision Trees (Entropy)

• Entropy Formula:

$$Entropy(S) = -\sum_{i=1}^n p_i \log_2(p_i)$$

Classification: Decision Trees (Gini Index)

• Gini Index Formula:

$$Gini(S) = 1 - \sum_{i=1}^n p_i^2$$

Classification: Logistic Regression

• Logistic Regression Model:

$$P(y=1|x)=rac{1}{1+e^{-(eta_0+eta_1x_1+\cdots+eta_nx_n)}}$$

Classification: k-Nearest Neighbors

• Euclidean Distance:

$$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Clustering Techniques: Overview

- Objective:
 - Group similar data points without predefined labels.
- Common Method:
 - k-Means Clustering.

Clustering: k-Means (Centroid Calculation)

• Centroid Calculation:

$$\mu_j = rac{1}{|C_j|} \sum_{x_i \in C_j} x_i$$

Clustering: k-Means (Euclidean Distance)

• Euclidean Distance:

$$d(x_i,\mu_j) = \sqrt{\sum_{k=1}^n (x_{ik}-\mu_{jk})^2}$$

Association Rule Mining: Overview

- Objective:
 - o Discover relationships among items (market basket analysis).

Association Rule Mining: Support

• Support Formula:

$$Support(X) = rac{ ext{Number of transactions containing } X}{N}$$

Association Rule Mining: Confidence

• Confidence Formula:

$$Confidence(X
ightarrow Y) = rac{Support(X \cup Y)}{Support(X)}$$

Association Rule Mining: Lift

• Lift Formula:

$$Lift(X
ightarrow Y) = rac{Support(X \cup Y)}{Support(X) imes Support(Y)}$$

Association Rule Mining: Additional Measures

• Leverage:

$$Leverage = Support(X \cup Y) - Support(X) \times Support(Y)$$

Conviction:

$$Conviction = rac{1 - Support(Y)}{1 - Confidence(X
ightarrow Y)}$$

Apriori Algorithm: Candidate Generation

Candidate Generation Formula:

$$C_k = \{X \cup Y \mid X, Y \in L_{k-1}, \ |X \cap Y| = k-2\}$$

Apriori Algorithm: Pruning

• Pruning Condition:

$$L_k = \{X \in C_k \mid \text{all } (k-1)\text{-subsets of } X \text{ are in } L_{k-1}\}$$

FP-Growth Algorithm: FP-Tree & Conditional Pattern Base

Conditional Pattern Base:

 $\{(\beta, \text{count}) \mid \beta \text{ is a prefix path in the FP-tree for a given prefix } \alpha\}$

FP-Growth Algorithm: Frequent Pattern Extraction

• Frequent Pattern Extraction:

$$\operatorname{FPGrowth}(T_lpha) = \{lpha \cup eta \mid eta \in \operatorname{FPGrowth}(T_lpha)\}$$

Regression Techniques: Linear Regression

• Linear Regression Model:

$$y = \beta_0 + \beta_1 x_1 + \cdots + \beta_n x_n + \epsilon$$

Regression: Evaluation Metrics

• Residual Sum of Squares (RSS):

$$RSS = \sum_{i=1}^m (y_i - \hat{y}_i)^2$$

• Coefficient of Determination (\mathbb{R}^2):

$$R^2 = 1 - rac{RSS}{TSS}, \quad TSS = \sum_{i=1}^m (y_i - ar{y})^2$$

Anomaly Detection: Mahalanobis Distance

• Mahalanobis Distance:

$$D_M(x) = \sqrt{(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

Evaluation Metrics: Classification

• Precision:

$$Precision = rac{TP}{TP + FP}$$

• Recall:

$$Recall = rac{TP}{TP + FN}$$

• F1 Score:

$$F1 = 2 imes rac{Precision imes Recall}{Precision + Recall}$$

Evaluation Metrics: Clustering & Statistical Tests

• Silhouette Score:

$$s = rac{b-a}{\max(a,b)}$$

• Chi-Square Test:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Tools & Software for Data Mining

Popular Platforms:

- Python (scikit-learn, Pandas, NumPy)
- R (caret, dplyr, ggplot2)
- Weka (GUI-based tool)
- RapidMiner & Orange (Visual interfaces)

Real-World Applications of Data Mining

Industries & Applications:

- Marketing: Customer segmentation and recommendation systems.
- Finance: Fraud detection and risk analysis.
- Healthcare: Diagnostic support and personalized treatment planning.
- E-commerce: Product recommendations and sentiment analysis.

Challenges and Ethical Considerations

Challenges:

- Handling high-dimensional data (the curse of dimensionality).
- Scalability and computational efficiency (e.g., $O(n \cdot k \cdot t)$ for k-means).
- Data quality issues such as noise and missing values.

Ethical Considerations:

Privacy, bias, and transparency.

Case Study: Market Basket Analysis Using Association Rule Mining

Project Example:

Market Basket Analysis in a Large Supermarket Chain

Dataset:

- Instacart Online Grocery Shopping Dataset
 - Over 3 million orders, 200,000+ unique products, 200,000+ customers.
 - Key columns: order_id, user_id, product_id, add_to_cart_order, reordered, order_dow, order_hour_of_day, etc.

Case Study: Data Collection & Preprocessing

Phases:

1. Data Collection:

Obtain the extensive Instacart dataset covering millions of transactions.

2. Preprocessing:

Clean the dataset by removing duplicates and standardizing product codes.

Case Study: Mining Techniques - Apriori

Mining Using Apriori:

Generate candidate itemsets:

$$C_k = \{X \cup Y \mid X, Y \in L_{k-1}, \; |X \cap Y| = k-2\}$$

ullet Prune candidates by ensuring every (k-1)-subset is frequent.

Case Study: Mining Techniques - FP-Growth

Mining Using FP-Growth:

- Build an FP-tree to represent the dataset compactly.
- Extract the conditional pattern base:

 $\{(\beta, \text{count}) \mid \beta \text{ is a prefix path in the FP-tree for a given prefix } \alpha\}$

• Recursively extract frequent patterns:

$$\operatorname{FPGrowth}(T_{\alpha}) = \{ \alpha \cup \beta \mid \beta \in \operatorname{FPGrowth}(T_{\alpha}) \}$$

Case Study: Evaluation & Deployment

Evaluation:

- Compute Support, Confidence, Lift, Leverage, and Conviction for each rule.
- Identify high-value rules (e.g., $Support(Bread \rightarrow Butter) = 0.15$, Confidence = 0.50, Lift = 2.5).

Deployment:

• Use the mined rules to optimize store layouts, personalize promotions, and improve inventory management.

Summary & Key Takeaways

Recap:

- Definition and significance of data mining.
- The complete KDD process: data collection, preprocessing, exploration, mining, evaluation, and deployment.
- Core techniques: classification, clustering, and advanced association rule mining (with detailed math for Apriori and FP-Growth), regression, and anomaly detection.
- Advanced mathematical concepts: Gini index, Information Gain Ratio, Mahalanobis distance, Chi-Square test, candidate generation formulas, and conditional pattern base extraction.

Questions & Discussion

Discussion Prompts:

- Which mathematical technique do you find most applicable to real-world computer science problems?
- What challenges do you foresee when working with large-scale datasets like Instacart's?
- How can we balance technical innovation with ethical considerations in data mining?

Thank You

Marc Reyes

Questions & Comments Welcome