DESIGN OF MUFF COUPLING

Muff coupling (also called sleeve coupling) is a type of rigid coupling used to connect two shafts. It consists of a hollow cylindrical sleeve (muff) that fits over the ends of two shafts and is secured using a key and set screws or a pin.

Applications:

- Low to medium torque applications.
- Pumps, compressors, and small machinery.
- Situations where precise alignment is maintained.

Advantages:

- Simple and inexpensive.
- Easy to manufacture and install.
- Compact design.

Disadvantages:

- No flexibility; misalignment can cause stress.
- Difficult to dismantle for maintenance.
- Cannot absorb shocks or vibrations.

Design

Design a Muff Coupling to transmit 15KW power at 200 rpm. The allowable shear stress and crushing stress for the shaft and key material are 60 N/mm2 and 110 N/mm2 respectively. The allowable shear stress for the Cast Iron Muff is 18 N/mm2.

Using the above data, design a safe Muff Coupling and using the designed values make an assembly model and extract the following Views

- a. Sectional Front View
- b. Front View
- c. Bill of the Material

Solution:

Given:

Power P = 15KW

Speed N = 200 rpm

Allowable shear stress for shaft and Key $\tau = 60 \text{ N/mm2}$

Allowable crushing stress for shaft and key $\tau_c = 110 \text{ N/mm2}$

Allowable Shear stress for CI muff $(\tau_a)_{muff} = 18 \text{ N/mm2}$

1. Design of Shaft

a. Torque transmitted by the Shaft,

$T = \frac{9.55 \times 10^6 (P)}{N}$	Eq 3.3(a) DDHB
$T = \frac{9.55 \times 10^6 (15)}{200} = 716.25 \times 10^3 \text{ Nmm}$	
b. Diameter of the Shaft	
$D = \sqrt[3]{\frac{16T}{\pi \tau_a}}$	Eq. 13.3 (a) DDHB
$D = \sqrt[3]{\frac{16*716.25*10^{3}}{\pi*60}} = 39.32 \text{ mm}$	
From DDHB table number 3.5(a)	
Standard Diameter D = 40 mm	

2. Design of Muff

a. Diameter of Muff (Hub)	
D1 = 1.5 D	Eq. 13.3 (c) DDHB
D1 = 1.5 * 40 = 60 mm	
b. Length of the Muff	
L = 2.5 D + 50 mm	diagram 13.2 (a) DDHB
c. Check for Shear Stress in Muff	
Torque Transmitted by the Muff,	
$T = \frac{\pi}{16} \left[\frac{D_1^4 - D^4}{D} \right] \tau$	Eq. 13.3 (b) DDHB
$716.25 \times 10^{3} = \frac{\pi}{16} \left[\frac{60^{4} - 40^{4}}{40} \right] * \tau$	
$\left(\tau_{muff}\right)_{ind} = 14.03 \frac{N}{mm^2}$	
As,	
$\left(\tau_{muff}\right)_{ind} < \left(\tau_{muff}\right)_{a}$	
14.03 N/mm2 < 18 N/mm2	
Design is Safe	

3. Design of Key

Assume taper sunk key with taper 1:100

a. From Table 4.2 of DDHB, for shaft diameter 40mm,	
Width of the leave h = 12 mm. Height h = 0 mm.	
Width of the key $b = 12$ mm, Height $h = 8$ mm	
b. Length of the Key	
1 = L + 5mm = 150 + 5	
1 = 155 mm	
c. Check for Shear Stress in Key	
$T = 0.5 * \tau * b * D * l$	Eq. 4.5 (a) DDHB,
	neglecting negative
$716.25 \times 10^3 = 0.5 \times 12 \times 40 \times 155 \times \tau$	terms
$\tau = 19.25 N/mm2$	
As	
$ au_i < au_a$	
19.29 N/mm2 < 60 N/mm2	
Design is Safe	
d. Check for Crushing stress in Key	
Torque Transmitted,	
$T = 0.25 * \sigma_b * h * D * l$	Eq. 4.4 (b) DDHB
$716.25 \times 10^{3} = 0.25 * \sigma_b * 8 * 40 * 155$	
$\sigma_b = 57.76 N/mm2$	
As the crushing stress of the key induced < Allowable crushing stress	
57.76 N/mm2 < 110 N/mm2	
Design is Safe	

Designed Values

Diameter of the muff D1 = 60 mm

Note:

- 1. Students need to use these values to make 3D Part models of each component and assemble them in Solid Edge Software.
- 2. Should Take Print of each components and final Assembly in Orthographic View.
- 3. Final Picture should be a draft of the assembly with its Sectional Front View
- 4. The Draft should contain the Part List