Chování firmy a formování nabídky na trhu výrobků a služeb

Produkční funkce a náklady firmy

Struktura přednášky

- Produkční a nákladová funkce firmy v krátkém období
- 2. Náklady firmy v dlouhém období
- 3. Příjmy firmy
- 4. Zisk ekonomický, účetní
- 5. Optimum firmy zlaté pravidlo maximalizace zisku

Pozn. grafy použité v prezentaci jsou převzaty z učebnic:

L. Macáková a kol. Mikroekonomie – základní kurz, Melandrium

T. Pavelka: Mikroekonomie, VŠEM

Výrobní proces – vstupy (VF, inputy)

https://www.google.com/search?q=pr oduction+function+cartoons

Firma - důvody existence firem

Firma = ekonomický subjekt, který:

- Nakupuje (najímá) VF
- přeměňuje VF ve výstup (za určitých technologických podmínek)
- prodává výstup (Q)

<u>cíl firmy</u>: max. zisku, resp. max. tržní hodnoty firmy <u>důvody existence:</u>

- výhody týmové spolupráce
- snížení nákladů spojených s uzavíráním kontraktů (transakční náklady)

Rozhodování firmy

cíl podnikání: max. ekonomický zisk, tj. max. rozdíl mezi příjmy a náklady

Produkční funkce → vzájemná závislost mezi vstupy a výstupem (INPUT-OUTPUT ANALYSIS)

Co hledáme?

efektivní kombinaci vstupů (VF)

umožňující vyrobit daný výstup (Q)

Maximální výstup (Q) při daných VF a technologii

PF = základ pro analýzu nákladů

Produkční funkce - definice

<u>Produkční funkce</u> = vztah mezi kombinací VF a **maximálním výstupem**, který firma může vyprodukovat při dané technologii → PF je <u>technicky efektivní</u>

obecná PF: Q = f (F_1 , F_2 , F_3 ,... F_n)

dvoufaktorová PF: Q = f(K,L)

PROČ NÁS ZAJÍMÁ PF?

- EFEKTIVNÍ VYUŽITÍ VSTUPŮ VEDE K CO NEJNIŽŠÍM NÁKLADŮM

"délka" období v mikroekonomii

- velmi krátké nelze změnit množství žádného vstupu (výrobce nemůže reagovat na poptávku)
- <u>krátké</u> lze měnit množství alespoň jednoho vstupu, ale ne všech, alespoň jeden je fixní (výrobce může měnit množství L, ale K je fixní)
- dlouhé lze měnit množství všech vstupů
 (výrobce může měnit množství L i Ka vzájemně je
 nahrazovat)
- velmi dlouhé lze měnit nejen všechny vstupy, ale také technologii
 ⇒ nejde o časové hledisko, ale o možnost kombinovat VF

Vlastnosti produkční funkce

Jak se změní Q, když t krát změníme VF?

- v krátkém období
 - výnosy z variabilního vstupu
- v dlouhém období
 - výnosy z rozsahu

Lack of manpower, or direct labor (variable factor of production) will lead to insufficient use of equipment (fixed factor of production).

Jaké množství variabilního vstupu zapojit do výroby?

And only if you can balance the constant and variable factors of production, the firm will achieve maximum production efficiency

Zdroj: https://en.ppt-online.org/170651

Optimalizace výrobních procesů s využitím simulací

návrh montáže čerpadel CP3 ve firmě Bosch 3D virtuální simulace montážních procesů s využitím simulované postavy pracovníka na pracovištích firmy Ford

Možnosti simulace výrobních procesů odkazy

https://www.technickytydenik.cz/rubriky/serialy/ze-zivota-vyzkumneho-centra/optimalizace-vyrobnich-procesu-a-virtualni-tovarna_38350.html

https://www.vseoprumyslu.cz/

https://skodaautodigilab.com/cs

https://www.denso.cz/fem-simulace

https://www.autodesk.cz/

https://www.plm.automation.siemens.com/global/cz/

Produkční funkce v krátkém období

Q = f(K konst., L)

3 základní veličiny:

- Celkový produkt (TP_L) → celkový výstup firmy
- Mezní produkt (MP_L) → efektivita zapojení další jednotky VF
- Průměrný produkt (AP_L) → produktivita VF

TP, AP a MP

 MP (mezní produkt) = změna TP způsobená zapojením další jednotky VF do výroby

$$\begin{aligned} & \mathsf{MP}_{\mathsf{VF}} = \Delta \mathsf{TP}/\Delta \mathsf{VF}, \ \mathsf{resp.} \ \mathsf{MP}_{\mathsf{nt\'e} \ \mathsf{jednotky} \ \mathsf{VF}} = \mathsf{TP}_{\mathsf{n}} - \mathsf{TP}_{\mathsf{n-1}} \\ & (\mathsf{MP}_{\mathsf{VF}} = \Delta \mathsf{Q}/\Delta \mathsf{VF}, \ \mathsf{resp.} \ \mathsf{MP}_{\mathsf{n}} = \mathsf{Q}_{\mathsf{n}} - \mathsf{Q}_{\mathsf{n-1}}) \end{aligned}$$

$$\begin{split} &TP_{n \; jednotek \; VF} = MP_{1.jednotky \; VF} + MP_{2.jednotky \; VF} + MP_{3.jednotky \; VF} \\ &+ ... + MP_{n-t\acute{e} \; jednotky \; VF} \\ &AP_{VF} = TP/VF = Q/VF \\ &AP_{L} = TP/L = Q/L \end{split}$$

$$AP_{K}^{-} = TP/K = Q/K$$

Výroba (produkční funkce) v SR

Produkční funkce: Q = f(K,L)

Krátké období (SR – Short Run):

alespoň jeden VF je fixní

 \Rightarrow firma $\uparrow Q$ díky $\uparrow L$, K fixní

firma realizuje **výnosy z variabilního vstupu** ⇒

3 možnosti výnosů:

 $\uparrow Q > \uparrow L$ rostoucí (t krát zvýšíme L, produkce roste více než t krát), $\uparrow MP_L$

↑Q < ↑L klesající (t krát zvýšíme L, produkce roste méně než t krát), ↓MPL

↑Q = ↑L konstantní (t krát zvýšíme L, produkce roste t krát), konstantní MP_L

©M. Nečadová

Výroba v SR – příklad

fixní rozloha zahrádky, fixní vybavení (rýč, lopata), produkce se mění zaměstnáním dalších pracovníků (pozn. <u>všichni pracovníci jsou stejně šikovní</u>)

množství VF	celkový produkt (TP = Q)	mezní produkt (MP)	průměrný produkt (AP)
0	0		
1	150	+150	150
2	350	+200	175
3	500	+150	167
4	600	+100	150
5	650	+ 50	130
6	650	0	108
7	600	-50	86

Jak vysvětlíme klesající přírůstky produkce (MP)?

Zákon klesajících mezních výnosů

působí v krátkém období, tzn. předpoklad

- alespoň 1 vstup fixní,
- technologie se nemění
- = zákon výroby vyjadřující tuto skutečnost: pokud zvyšujeme 1 vstup (VF), celkový produkt roste stále pomaleji, resp. přírůstky produkce klesají, tj. mezní produkt klesá

Předp.: všechny jednotky variabilního vstupu (práce) mají stejnou schopnost vyrábět

Typická produkční funkce v SR

- $\uparrow L \Rightarrow \uparrow Q (TP_L)$ do bodu A (L< L₁):
- ↑Q > ↑L ⇒ TP roste konvexně, MP roste, tj. rostoucí výnosy z variabilního vstupu

napravo od bodu A $(L>L_1)$:

↑Q < ↑L ⇒ TP roste konkávně, MP klesá, tj. klesající výnosy z variabilního vstupu

Vztahy mezi veličinami - shrnutí

Celková (T) a mezní
 (M)

$$\uparrow T \leftrightarrow M > 0$$
 $T \max \leftrightarrow M = 0$
 $\downarrow T \leftrightarrow M < 0$

 Průměrná (A) a mezní (M)

$$\uparrow A \leftrightarrow M > A$$

 $\downarrow A \leftrightarrow M < A$
 $A \max (\min) \leftrightarrow M = A$

Náklady firmy

- 1. Typy nákladů v ekonomické teorii
- 2. Náklady v krátkém období
 - Průběh krátkodobých nákladů
 - Vlastnosti krátkodobých nákladových křivek

Nákladová funkce - vymezení

$$TC = f(Q)$$

$$p_{L} \cdot L + p_{K} \cdot K$$

 je odvozena z produkční funkce a je k ní graficky inverzní (v krátkém období)

PROČ? → "prohozené osy"

Nákladová funkce (TC) = vztah mezi <u>finančními prostředky</u> vynaloženými na VF (náklady) a výší výstupu Q za daných podmínek (daná úroveň technologie a dané ceny VF)

→ minimální náklady firmy na různé úrovně Q

Ekonomické pojetí nákladů

- TC = explicitní náklady + implicitní náklady
- explicitní (účetní, peněžní) = reálně vynaložené výdaje na výrobu Q, firma je hradí externím dodavatelům služeb VF

 implicitní (NOP) = alternativní náklady VF ve vlastnictví majitele firmy, firma je reálně neplatí (ušlý příjem z VF ve vlastnictví majitele firmy)

Další typy nákladů v ekonomii:

- zapuštěné (utopené) náklady
- = náklady, které neovlivní volbu mezi alternativními příležitostmi, protože jsou vynaloženy v každém případě (např. FC v SR)
- výdaje, které firma nemůže získat zpět → alternativní náklady jsou nulové (např. nákup speciálního výrobního zařízení pro jeden účel)
- transakční náklady = náklady (časové i peněžní) na vyjednávání a uzavírání smluv a kontraktů

Náklady firmy v krátkém období

mají 2 složky: náklady variabilní (na L) a fixní (na K) STC = FC + VC, tj. STC = $p_L \cdot L + p_K \cdot K$ (K je fixní)

Fixní náklady - FC

jsou konstantní při nulové i při extrémní výrobě (např. nájem za výrobní halu)

 $FC = K \cdot P_K$ P_K cena K (cena za službu VF, uvádí se nájemné, resp. úroková míra)

Variabilní náklady - VC

mění se v závislosti na objemu produkce a na produktivitě vstupů

$$VC = L \cdot P_L$$
 $P_L \cdot \dots \cdot$ cena L (cena za službu VF, tj. mzda, resp. mzdová sazba)

©M. Nečadová

Mezní náklady

Mezní náklady - MC (Marginal Costs)

$$MC = \frac{\Delta TC}{\Delta Q} = \frac{\Delta VC}{\Delta Q}$$

Průměrné náklady

Průměrné náklady - AC (Average Costs), resp. SAC

$$AC = \frac{TC}{Q}$$

$$SAC = AFC + AVC$$

Průměrné fixní a variabilní náklady

• Průměrné fixní náklady - AFC

$$AFC = \frac{FC}{Q}$$

Průměrné variabilní náklady - AVC

$$AVC = \frac{VC}{Q}$$

Křivky FC a VC firmy

Křivka FC – horizontální - konst. množství K a konst. cena K)

Křivka VC – rostoucí v závislosti na výnosech z L

(konst. cena práce)

Náklady firmy v SR

VC rostou konkávně → MC klesají
VC rostou konvexně →

MC rostou VC rostou lineárně →

MC konstantní

Jednotkové náklady firmy v SR

Graficky inverzní vztah mezi krátkodobou PF a krátkodobými náklady

- $TP_L \rightarrow VC$
- $AP_L \rightarrow AVC$
- $MP_1 \rightarrow MC$

Výroba v dlouhém období

- dlouhé období (LR Long Run): možnost měnit všechny VF, tj. všechny vstupy variabilní
- → firma ↑Q díky ↑L i ↑K (oba VF mění proporcionálně, tj. t-krát)
- ⇒ firma má možnost substituce vstupů a realizuje výnosy z rozsahu:
 Výnosy z rozsahu:

3 možnosti výnosů z rozsahu:

 $\uparrow Q > \uparrow L a K$ rostoucí (oba VF zvýšíme t krát,

produkce roste více než t krát)

↑Q<↑L a K klesající

 $\uparrow Q = \uparrow L \ a \ K$ konstantní

©M. Nečadová 32

náklady v dlouhém období (LTC, LAC a LMC)

neexistují FC, firmy mohou odejít z odvětví

předpoklad: ceny VF(L a K) konst.

s růstem Q roste množství použitých VF resp. rostou náklady na VF – *viz vertikální osa*)

průběh LTC závisí na produkční funkci, resp. na *výnosech z rozsahu*

LTC rostou konkávně → rostoucí výnosy z rozsahu → LMC klesají LTC rostou konvexně → klesající výnosy z rozsahu → LMC rostou

Příjmy firmy

nákladové veličiny → v různých tržních strukturách stejné (průběh dán typem výnosů)

X

příjmové veličiny → průběh se liší podle tržní struktury (podle organizace trhu: DK či NDK)

- celkový příjem TR (Total Revenue)
- mezní příjem MR (Marginal Revenue)
- průměrný příjem AR (Average Revenue)

Celkový příjem (TR)

Závisí

- na množství prodané produkce (Q)
- a ceně výrobku (P)

$$TR = Q \cdot P$$

- dokonalá konkurence firma nemůže ovlivnit cenu, TR roste lineárně s rostoucím Q
- nedokonalá konkurence firma stanovuje cenu,
 TR s růstem Q nejprve roste a od určitého Q klesá

Křivka TR

dokonalá konkurence

nedokonalá konkurence

Mezní a průměrný příjem (MR, AR)

Mezní příjem

$$MR = \frac{\Delta TR}{\Delta Q}$$

Průměrný příjem

$$AR = \frac{TR}{Q}$$
 $tedy$ $AR = \frac{P \cdot Q}{Q}$ $tak\check{z}e$ $AR = P$

Křivka MR a AR

dokonalá konkurence

nedokonalá konkurence

Ekonomické rozhodování podnikatele

VARIANTA A

nákup nové výrobní linky TC = explicitní N + implicitní N = 5,1 mil. Kč

Jak naložit s 5 mil. Kč, které vlastní?

VARIANTA B

Nákup vládních
dluhopisů s
průměrnou roční
mírou výnosu 2 % →
roční výnos = 100
tis. Kč = NOP
(implicitní náklady)
při volbě varianty A

Za jakých podmínek bude ekonomický zisk varianty A kladný?

Zisk firmy (π)

$$\pi = TR - TC$$

Ekonomický pohled

Účetní pohled

PŘÍJMY			
EXPLICITNÍ	IMPLICITNÍ	EKONOMICKÝ	
NÁKLADY	NÁKLADY	ZISK	

PŘÍJMY		
EXPLICITNÍ	Ú Č E T N Í	
NÁKLADY	Z I S K	

Účetní zisk = TR – "explicitní náklady"

Ekonomický *zisk* = "*TR*" – "explicitní" – "implicitní"

normální zisk = implicitní náklady (tj. obvyklý výnos z využití daných VF)

3 možnosti:

EZ > 0 TR > TC

AR > AC

<u>účetní zisk > implicitní N (tato varianta</u> <u>využití VF je lepší než alternativa</u>)

$$EZ < 0$$
 $TR < TC$

$$EZ = 0$$
 $TR = TC$

Optimální výstup firmy (q*)

- <u>Cíl firmy:</u> max.EZ (π), tj. max. rozdíl mezi TR a
 TC
- Optimální výstup firmy (q*)= úroveň produkce, při které je ekonomický zisk max.→firma nemá důvod měnit q
- Podmínka optima → tzv. zlaté pravidlo maximalizace zisku
- q*: MR = MC

Jak maximalizovat ek. zisk?

Pokud je při dané produkci q:

- MR > MC, firma by měla ↑q (a tak ↑EZ)
- MR < MC, firma by měla ↓q (a tak ↑EZ)