

ANSYS Composite PrepPost 17.0

Tutorial Exercise 1

Goals:

- Basic composite workflow from a geometry to post-processing.
- Build a simple sandwich panel.

Load Case: Clamped panel under uniform pressure.

Open a new Workbench project and restore the archive "tutorial_1.wbpz".

Create a model using ACP (Pre), e.g., a plate.

Review the boundary conditions, and verify that the model is well-defined with the default material.
 Review the results with an isotropic material.

Add a Static Structural component to the existing analysis.

First composite materials have to be defined in ANSYS Workbench Engineering Data:

There are two possibilities:

- 1. Import preconfigured materials from the Composite Materials catalog (see figure below)
- 2. Create new materials In this example, you will create new materials as shown in the following slides.

Define a unidirectional material in ANSYS
Workbench Engineering Data with the following properties:

Hint
Uncheck the filter button to display
all properties in the toolbox

Define also a core material:

- Update *Model* and then refresh *Setup* in the *ACP (Pre)* component
- Open Setup of ACP (Pre) with a double-click on Setup (or Edit... in drop-down menu)

1

2

- In ACP further material data (*Fabrics, Stackup and Sub Laminates*) have to be defined.
- Define a new Fabric with the defined materials:
 - Carbon UD with 0.2 mm thickness,
 - Foam core with 15 mm thickness.

• Define a new *Stackup* with the UD Carbon. A *Stackup* is a pre-assembled tape also called non-crimp fabric (NCF).

Review the Biax properties through the Plot tab.

Click on apply to update the model & OK to close the window.

Define a Sub Laminate as shown below and plot the mechanical properties.

Define a new Rosette (using the default settings):

After the material definition the orientations and offset directions have to be defined.
 This is done with *Oriented Element Sets* which are defined now.

13

Define a new Oriented Selection Set (OSS):

- (1) The Orientation Point and Direction specify the offset direction.

 Toggle the button in the toolbar and select the OSS to check the offset direction.
- (2) The rosette of an OSS defines the material reference (0°) direction.

 Toggle the button to visualize the reference direction.

 (Click Update button if no orientation is displayed.)

• The OSS is now used to define the layup. The offset direction of the OSS and the order of the *Modeling Plies* define the stacking sequence, the reference direction and the relative angle of the modeling plies specify the fiber alignment.

Define 3 Ply Groups:

Create the first Modeling Ply:

1. Configure the first ply:

- 2. Define a second ply in the "sandwich_core" *Modeling Group* with the *Fabric* Core and a Ply angle of 0°.
- 3. Define a third ply in the "sandwich_top" *Modeling Group* with the *Fabric* UD_T700_200gsm and a Ply angle of 90°. Set *Number of Layers* to 3.

17

Update the model:

The ply definition should look like this:

- Return to ANSYS Project Schematic.
 - Update the ACP (Pre) Setup.
 - Update the *Model* of *Static Structural*.
 - Edit the Setup of Static Structural.

Add boundary conditions and applied load to the Mechanical model.

Return to ANSYS Project Schematic and update the whole project.

- Add a ACP (Post) System to the project
 - (1) Drag and Drop an ACP (Post) system over the ACP (Pre) system
 - (2) Link Solution of Static Structural to Results of ACP (Post)

- Update Results of ACP (Post)
- Enter Results of ACP (Post) by double clicking on the cell

The Solution is already imported from the *.rst file.

- **Create a plot to visualize the deformations:**
 - Insert a deformation plot under the solution
 - Set the deformation scale in the in the toolbar

24

- Toggle element edges and surface in the toolbar. <a> ≥
- View deformation results

- In the next step a combined *Failure Criteria* is configured to create an overall failure plot of the composite structure.
- For the 2 materials, the stress limits were defined in the Engineering Data at the beginning of this tutorial.
- Definitions: Create a Failure Criteria.

26

Chose the following failure criteria to define a combined failure criteria definition

- Insert a failure plot under the solution
- Activate checkboxes for critical layer and critical layer

1

28

Remove the deformation scale from the solution.

Update the model to see the overall failure plot:

- The contour plot shows the maximum inverse reserve factor of each element (through all layers, all selected failure criteria and integration points)
- The text plot indicates the critical layer and the critical failure mode.

- Sampling points and ply-wise plots can be used to investigate the results in more detail.
- Create a Sampling Point and select the element of interest.

- Insert a ply-wise stress plot for the transverse stresses s2
- Ply-wise plots only show results when a ply is selected.

 Select the Analysis Plies of the Sampling Point to visualize the stress distribution of a single ply.

- The through-the-thickness distribution of strains, stresses or failure results can be visualized in the Analysis tab of the Sampling Point.
- Change to the Analysis Tab of the Sampling Point to configure the through-the-thickness post-processing plot:

End of Tutorial 1 Thank you

