

ELECTRICAL TRANSDUCER

CE-T Series

Introduction

Shenzhen Sensor Electronic Technology Co., Ltd specializes in researching, developing and manufacturing of electrical transducers. Our advanced test instrumentation and engineering capabilities provide a most favorable environment for transducer manufacturing. Our quality and inspection departments are among the most advanced in China. The output of our production facility is over one hundred thousand units annually.

The most important aspect of our production is "Quality". Our products are manufactured and certified to the 2000 quality standards of ISO 9001. The transducers have been approved UL, CUL, CMC, CE, REACH and ROHS. The US Council of International Quality Authentication has recommended us for our high quality standards. Shenzhen Sensor Electronic Technology Co., Ltd. is the only manufacturer of electrical transducers in China to have obtained all of these certifications.

Our corporate psychology of Research & Development and efficient manufacturing has made us predominant worldwide in the electrical transducer market. Our diverse lines of products are used for signal isolation and modulation, analog and digital communication in standard and smart instrumentation networks. The complete line consists of nearly one hundred sub-categories with numerous standard and custom versions available in each of these sub-categories.

The CE Series of products is used for monitoring electrical parameters of current, voltage, power and frequency. Technologies such as electrical induction, Hall Effect and magnetic modulation are used in our product line for monitoring alternating and direct current systems.

The CE Series of products consists of three main categories.

CE-T series for providing analog output signal such as 0-5 Vdc and 4-20mA

CE-A series for providing digital output signal such as RS485/232

CE-H series for Hall Effect transducer.

The principal characteristics of our products are:

Micro miniaturization, utilizing surface Mounting technology.

Modularization, each function provided by a unique PCB.

High reliability, all components are high-reliable, precision grade.

Low power consumption, high efficiency regulators and dc-dc power supplies.

High dielectrics withstand voltage, designed into each product.

Single sided input power requirement, for easy installation.

High quality, reliability and low price have made our transducers most efficient for application in the areas of communication, electric power, automotive energy production, and industrial control. We have received high praise from thousands of customers. We currently provide our products to numerous countries.

OUR MANAGEMENT CONCEPT: Green is the symbol of life;

CE is a pledge of reliability.

OUR MISSION STATEMENT: Research, develop and manufacture a complete line of electrical monitoring products. Quality, Reliability and Customer satisfaction are our utmost concern.

CONTENTS

Ch	apter 1 Selection Guide	
1.1	Part Number	
1.2	Main Series List	2
Ch	apter 2 Product Overview	
2.1	Output Function Codes	3
2.2	Typical Operating Specifications	
2.3	Input / Output Graphs	4
Ch	apter 3 Details of the Electrical Transducer	
3.1	Current Transducer	5
3.2	Voltage Transducer	14
3.3	Frequency Transducer	20
3.4	Power Transducer:	22
3.5	Power Supply	24
Ch	apter 4 Case style and Mounting Diagram	
4.1	Case Styles and Outline Dimension	25
4.2	Mounting Dimensions (mm)	26
Ch	apter 5 Notes for Ordering	
5.1	Ordering Instructions	27
5.2	Installation Notes	27
5.3	Warranty service	28

Chapter 1 Part Number Selection Guide

1.1 Part Number

Please follow the instruction below to fix the full part number, one square one code, from left to right.

Typical Example

CE-IJ03-32BS2-0.5/0-5A: 1 element AC Current Transducer, Output: 0-5V, Power Supply: +12V, Window: Φ6.5mm, Case Style: S2, Accuracy: 0.5, Input Range: 0-5 A

1.2 Main Series List

MAIN SERIES I	IST FOR CI	E-T ANALOG ELE	CTRICAL PARAMETER	TRANSDUCER	
FU	NCTION TYI	SERIES	Page		
		1 1	CE-IJ03	_	
	4.0	1 element	CE-IJ03A (RMS)	5	
	AC	2.1	CE-IJ31	0	
		3 elements	CE-IJ31A (RMS)	8	
Current			CE-IZ01		
	D.C.		CE-IZ02	10	
	DC	1 element	CE-IZ04	10	
			CE-IZ06	-	
	AC&DC	1 element	CE-IH03	12	
	AG	1 phase	CE-VJ03	12	
			CE-VJ03A (RMS)	13	
		3-phase 3-wire	CE-VJ31		
7 7.1.	AC		CE-VJ31A (RMS)	15	
Voltage			CE-VJ41		
		3-phase 4-wire	CE-VJ41A (RMS)		
	DC	11	CE-VZ01	17	
	DC	1-phase	CE-VZ02	17	
F	A.C.	1 .1	CE-F01	19	
Frequency	AC	1-element	CE-F03		
		1 .1	CE-P02		
		1 element	CE-Q02		
Power	4.0	2	CE-P31	21	
	AC	3-phase 3-wire	CE-Q31	21	
		2	CE-P41		
		3-phase 4-wire	CE-Q41		
Power supply			CE-WYS	23	

Chapter 2 Product Overview

2.1 Output Function Codes

Code	Symbol	Definition	Applications				
1	Vg	Tracking Voltage Output	0-5Vrms, suitable for AC or peak value sampling system, quick response, and high precision.				
2	Ig	Tracking Current Output	AC tracking current output, suitable for AC or peak value sampling system, high precision, and quick response.				
3	Vz	DC Voltage Output	0-5VDC, can be connected directly to A/D converter, digit panel, indicator, PLC				
4	Iz	DC Current Output	0-20mADC, suitable for long distance signal transmission, resistance to interference.				
5	Iy	DC Current Output	4-20mADC, suitable for long distance signal transmission, resistance to interference.				
6	Vy	DC Voltage Output	1-5VDC, can be connected directly to A/D converter, digit panel, indicator,				
7	Id	2-wire DC Current	4-20mADC,2-wire,loop powered connection, resistance to interference.				
8	Vd	DC Voltage Output	0-10VDC, can be connected direct to digit panel, indicator etc. (auxiliary Power supply ≥15V).				
J	J	Relay contact	Apply to offside alarm for AC/DC current and voltage				
F	F	OC frequency signal output	0~5kHz,0~10kHz frequency signal, photoelectric isolation OC output				
Т	Т	Special Output	Reserved for special output configurations.				

2.2 Typical Operating Specifications

T4	To at Com 3242 am	Data		
Item	Test Condition	Accuracy 0.2	Accuracy 0.5	
Thermal Drift	+12V, 25℃	≤200ppm/°C	≤500ppm/°C	
Output Ripple	+12V, 25℃	10mV	15mV	
Output Load	+12V, 25°C Vz (3) output +12V, 25°C	≥2KΩ ≤250Ω		
Operating Temperature	Iz (4) and Iy (5) output +12V	0~50 °C		
Humidity	+12V	≤95%(no dew)		
Isolation With standing Voltage	0.5mA,1 min.	≤2500 V dc		
Power Consumption (mW)	+24V	See specifications		

2.3 Input / Output Graphs.

Bi-direction input vs bi-directional output

Uni-direction input vs 0-20 mA output

Uni-direction input vs 4~20 mA output

Chapter 3 Details of the Electrical Transducer

3.1 Current Transducer

3.1.1 1-element AC Current Transducer

Specifications:

Coming	Operating Isolation		Response	Overload	Power Consump	Mounting	
Series	Series Principle Voltage Time	Capacity	Vz,Vd,Vg, Iz Output	Iy Output			
CE-IJ03 CE-IJ03A	Electro- Magnetic	2500 VDC	≤250mS ≤15uS(Vg,Ig) ≤3S(self-powered &split core)	20 times or <5/sec at 500A	360	450	PCB Din Rail Screw

Part Numbers:

Average values solid core series

	des sona core series		1	1		
Solid core series	Output	Power Supply	Window (mm)	Case Style	Accuracy %	Rated Input
	3:0~5V DC (Vz)	2: 12V	В: Ф6.5	H1	0.5	0.5A, 1A, 5A, 10A, 15A, 25A
	3:0~5V DC (Vz) 4:0~20mA (Iz) 5:4~20mA (Iy) 8:0~10V DC (Vd)**	2:12V 3:15V 4:24V	L : Ф36	Н7	1.0	50A~1000A
		2:12V 3:15V 4:24V	M: none			0.5A, 1A, 5A
СЕ-IJ03	1:0~5V RMS (Vg) 3:0~5V DC (Vz) 4:0~20mA (Iz) 5:4~20mA (Iy) 6:1~5Vdc (Vy) 7:4~20mA (Id)*		B : Φ6.5	S2 S3		5A, 10A, 15A, 25A
		5:±12V 6:±15V	Е: Ф20	S3***	0.5	30A, 50A, 75A, 100A 120A, 150A, 200A, 250A, 300A
	8:0~10V DC (Vd)**		M: none			1A, 2A,5A
		8: 110V	В: Ф6.5	SK		5A, 10A, 15A, 25A
		9: 220V	Е: Ф20			30A, 50A, 75A, 100A 120A, 150A, 200A, 250A, 300A

^{*} Loop resistance from 0 to 250 Ω . Contact factory for loop resistance above 250 Ω ; Select 24V Power supply for output of 4~20mA Id

^{** 12}V Power supply is not available for 0-10V(Vd) output;

^{***}For ES3 case solution, the min. rated input could be low to 20mA, please contact us for details

True RMS series

True RMS series	Output	Power Supply	Window (mm)	Case Style	Accuracy %	Rated Input
		2:12V	M: none	S2		0.5A, 1A, 5A
		3:15V	B : Φ6.5			5A, 10A, 15A, 25A
	3:0~5V DC (Vz)	4:24V 5:±12V	D . 4 0.3	S 3		
CE-IJ03A	4:0~20mA (Iz) 5:4~20mA (Iy) 8:0~10V DC (Vd)	6: ±15V	Е: Ф20	SK	0.5	1A, 5A,10A, 20A
		8: 110V 9: 220V		SK		30A, 50A, 75A, 100A 120A, 150A, 200A, 250A, 300A
		2:12V 3:15V 4:24V	G : Φ31	S4		5A,10A,15A,25A,30A,
			F : Φ29	S6	1.0	50A, 75A, 100A 120A, 150A, 200A, 250A, 300A

Split core series

Split core series	Output	Power Supply	Window (mm)	Case Style	Accuracy %	Rated Input
CE-IJ03 (average value)	3:0~5V DC (Vz) 8:0~10V DC (Vd)	0: self powered	G : Φ31	S4	1.0	20A,50A,75A,100A,15 0A,200A
(average value)	3:0~5V DC (Vz)	2: 12V				5A,10A,15A,25A,30A,
CE-IJ03A (true RMS)	4:0~20mA (Iz) 5:4~20mA (Iy) 8:0~10V DC (Vd)	3: 15V 4: 24V	F : Φ29	S6		50A, 75A, 100A 120A, 150A, 200A, 250A, 300A

Self powered series

Self-powered series	Output	Power Supply	Window (mm)	Case Style	Accuracy	Rated Input
	1: tracking voltage(Vg)		M: none	S2		1A, 2A, 5A
	2: tracking current(Ig)		Β: Φ 6.5	52		1A, 2A, 5A, 10A, 15A, 25A
	J: relay output*					2A, 5A, 10A,
CE-IJ03	3:0~5VDC (Vz) 8:0~10VDC(Vd)	0: none	Ε: Φ 20	S3	1.0	20A, 50A, 70A, 100A, 150A, 200A
	3:0~5V DC (Vz) 8:0~10V DC (Vd)		G : Φ31	S4		20A,50A,75A,100 A,150A,200A

^{*}It can connect with AC/DC current/voltage load directly.

Part Number Example: CE-IJ03-54ES3-0.5/0~50A

Description: 1-element AC Current Transducer, average value, Output: 4~20mA, Power supply: +24V DC, Aperture: Φ20mm, Case style: S3, Accuracy: 0.5%, Input: 0~50A AC.

Connections Diagrams (See Chapter4 for mounting dimensions)

Power supply

Fig. 3.1.1 for CE-IJ03 Case-H1

Fig. 3.1.3 for CE-IJ03, CE-IJ03A Terminal Input, Voltage Output, Case-S

Fig. 3.1.4 for CE-IJ03, CE-IJ03A Terminal Input, Current Output, Case-S,

Fig. 3.1.5 for CE-IJ03, CE-IJ03A Window Input, Voltage Output, Case style S

Fig. 3.1.6 for CE-IJ03, CE-IJ03A Window Input, Current Output, Case style S

Fig. 3.1.7 for CE-IJ03, Power Supply 220V/110V Window Input, Case style S

Fig. 3.1.8 for CE-IJ03, Power Supply220V/110V terminal Input, Current Output, Case style S

Fig. 3.1.9 for CE-IJ03 , Power supply 220/110V Terminal Input, Case style SK

Fig. 3.1.10 for CE-IJ03 , Power supply 220/110V Window Input, Case style SK

Fig.3.1.11 CE-IJ03-x0GS4 with voltage output

Fig. 3.1.12 for CE-IJ03 Window Input, Case style H7

- 1. Multi-point current sensing and control panels
- 2. Monitor lighting elements
- 3. Monitor heating elements
- 4. Remote current sensing
- 5. Monitor motor faults

- 1. The size of window must be fit for the conducting wire to pass through. When the rated current $\leq 5A$, terminal input is available
- 2. All connections of the positive and negative polarities must be correct. The output signal and the power supply must be grounded in common at terminal 6.
- 3. If other meter is used to read the value of the output, please make sure its accuracy is higher.

3.1.2 3-elements AC Current Transducer

Specifications:

					Power Cons	umption	
Series	Operating	Isolation	Response Time	Overload	(mW	7)	Mounting
Selles	Principle	Voltage	Response Time	Capacity	Vz,Vd,Vg,	Iy	Wounting
					Iz Output	Output	
CE-IJ31 CE-IJ31A	Electro- magnetic	2500VDC	≤250mS	20 times or <5/sec at 500A	350	480	Din Rail/ Screw

Part Numbers:

Series	Output	Power Supply	Window (mm)	Case Style	Accuracy %	Rated Input
СЕ-IJ31	1: tracking voltage(Vg) 2: tracking current(Ig)	0: self powered	В: Ф6.5	S3	0.5	1A, 2A, 5A, 10A,
CE-IJ31 CE-IJ31A*	1: 0~5V RMS (Vg) 3: 0~5V DC (Vz) 4: 0~20 mA (Iz) 5: 4~20 mA (Iy) 8: 0~10V DC (Vd)	2: 12V				15A, 25A
		3: 15V 4: 24V	D : Φ11	S5	0.5	5A, 50A, 100A
	3: 0~5V DC (Vz)		M: None		0.5	1A, 2A, 5A,
	4: 0~20 mA (Iz) 5: 4~20 mA (Iy)** 6: 1~5V (Vy) 8: 0~10V DC (Vd)	8: 110V 9: 220V	В: Ф6.5	SK		1A, 2A, 5A, 10A, 15A, 20A,25A

^{*}Tracking output (Vg,Iz,Vd) type not available in series CE-IJ31A

Part Number Example: CE-IJ31-32BS3-0.5/0~5A

Description: 3 elements AC Current Transducer, average values, Output: 0-5Vdc, Power supply: +12Vdc, Aperture: Φ6.5mm, Case style: S3, Accuracy: 0.5 %, Input: 0-5A AC.

Connections Diagram (See Chapter4 for mounting dimensions)

Fig. 3.1.13 CE-IJ31, CE-IJ31A Case style S

^{**} Loop resistance from 0 to 250 Ω . Contact factory for loop resistance above 250 Ω

Fig. 3.1.14 CE-IJ31, CE-IJ31A Case style SK, window input

Fig. 3.1.15 CE-IJ31, CE-IJ31A Case style SK, terminal connection

Fig. 3.1.16 CE-IJ31 Case style S5

- 1. Phase fired controlled heaters
- 2. Quickly varying motor loads
- 3. Chopped wave form drivers
- 4. Harmonic currents

- 1. The output signal and the power supply must be grounded in common at terminal 6.
- 2. For application above 25 Amp, It is suggested to use an external current transformer. Connect the secondary output of the current transformer to the input of the transducers.
- 3. There is no polarity requirement for the input signal connection.

3.1.3 1-element DC Current Transducer

Specifications:

					Power Cons	umption	
Series	Operating	Isolation	Response	Overload	(mW	7)	Manustina
	Principle	Voltage	Time	Capacity	Vz,Vd,Vg,	Iy	Mounting
					Iz Output	Output	
CE-IZ01	Photoelectric Isolation/Treble Isolation*		≤300mS	2 Times	800	1000	D.GD
CE-IZ02	Modulation Isolation	2500VDC	≤300mS	10/sec	200	300	PCB /Din Rail
CE-IZ04	Hall Effect Isolation		≤100mS(solid core) ≤200mS(split core)	20 times or <5/sec	350 550	550 600	/ Screw
CE-IZ06	Modulation Isolation		≤100mS	at 500A	600	700	

^{*}Treble Isolation: the input, output and power supply are isolated from each other.

Part Numbers:

Series	Output	Power supply	Window (mm)	Case style	Accuracy	Rated input range
		2 :12V		H2		5mA,20mA,50mA
CE-IZ01	30~5VDC (Vz)	3:15V 4:24V		S1		100mA,200mA,500mA
	40~20mA (Iz)		M	S2	0.2	1A, 2A, 5A
CE 1702	54~20mA (Iy)* 61~5VDC(Vy)		M: none	H2	0.5	5mA, 20mA, 50mA
CE-IZ02	80~10V DC (Vd) FOC frequency	2:12V 3:15V		S1		0.1A,0.2A,0.5A,1A
	1'OC frequency	4: 24V		S2		1A, 2A, 5A
CE-IZ04		5:±12V 6:±15V	Е : ф 20		1.0	25A, 50A, 80A, 100A,
CE 1706				S3		120A,150A,200A,300A
CE-IZ06						2A,5A,10A,20A

^{*}Loop resistance from 0 to 250 Ω . Contact factory for loop resistance above 250 Ω

Split core series

Split core Series	Output	Power Supply	Window (mm)	Case Style	Accuracy	Rated Input
CE-IZ04	3: 0~5VDC (Vz) 4:0~20mA (Iz) 5:4~20mA (Iy) 8:0~10V DC (Vd)	2:12V 3:15V 4:24V 5:±12V	G : ф 31	S4	1.0	30A, 50A, 80A, 100A, 120A,150A, 200A, 300A

Part Number Example: CE-IZ01-32MS2-0.2/0-1A

Description: 1- Element DC Current Transducer, average RMS, Output: 0~5V DC, Power supply: +12V DC, No window (Terminal input), Accuracy: 0.2%, Case style: S2, Input: 0-1A.

Connections Diagram (see Chapter 4 for mounting dimensions)

Fig. 3.1.17 CE-IZ01 Case style S1

Fig.3.1.18 CE-IZ02, Voltage output, Cast style S

Fig. 3.1.19 CE-IZ02

Current output, Case style S2

Fig 3.1.20 CE-IZ02

Frequency output, S2 case

Fig. 3.1.21 CE-IZ04, CE-IZ06

Voltage Output, Case style S

Fig. 3.1.22 CE-IZ04, CE-IZ06

Window Input, Current Output, Case style S

Fig. 3.1.23 CE-IZ04, CE-IZ06

Frequency Output, Case style S

Fig. 3.1.24 CE-IZ04,CE-IZ06

Window input, bi-directional power supply

Fig. 3.1.25 CE-IZ02

Current output, case style H2

Fig. 3.1.26 CE-IZ02

Voltage Output, Case style H2

Typical Applications:

- 1. Power supply management
- 2. DC motor drives
- 3. Battery chargers and systems
- 4. Mobile applications

- 1. If the input signal is bi-directional DC or pulse DC, please indicate in your order.
- 2. In case a current (>1A) is input through the terminals, it is advisable to connect terminals 1&2 in parallel, and terminals 3&4 in parallel respectively in order to reduce the input resistance at the terminals.
- 3. CE-IZ01 works on Treble isolation Principle, the output signal and the Power supply may not be grounded in common. (While that of other part numbers must be grounded in common)

3.1.4 AC/DC Current Transducer

Specifications:

Series	Operating Principle	Isolation Voltage	Response Time	Overload Capacity	Power Consumption (mW)	Mounting
CE-IH03	Hall effect	2500VDC	≤30mS	20 times or <5/sec at 500A	360	Din Rail/ Screw

Part Numbers:

Series	Output	Power Supply	Window (mm)	Case Style	Accuracy %	Rated Input
CE-IH03	1: 0~5VDC(Vz)&0-5Vrms* T: 0~3VDC(Vz)&0-3Vrms	2:12V 3:15V	E : φ 20	S3	1.0	50A,75A,100A, 150A,200A,
	. ,	4 :24V	G: ф 31	S4		250A,300A

^{*}It outputs AC with AC input, and outputs DC with DC input

Part Number Example: CE-IH03-32ES3-0.5/0~100A

Description: 1 element AC/DC Current Transducer, Output: 0-5Vdc&0-5Vrms, Power supply: +12Vdc, Aperture: $\Phi20mm$, Case style: S3, Accuracy: 1.0%, Input: 0-100A AC/DC.

Connections Diagram (See Chapter 4 for mounting dimensions)

Fig. 3.1.27 CE-IH03 Voltage output, case style S

Typical Application:

- 1. Inverter and multi-frequency drives
- 2. Multi-mode ground paths carrying both AC and DC signals
- 3. Feed back loop building block

3.2 Voltage Transducer

3.2.1 1-phase AC Voltage Transducer

Specifications:

	Operating Isolation		Response	0 . 1 1	Power Consumption (mW)		
Series		Time	Overload Capacity	Vz,Vd, Vg,,Iz Output	Iy Output	Mounting	
CE-VJ03	Electromagnetic	2500 VDC	400mS	2 Times	50(H1)	250	PCB/
CE-VJ03A	Isolation		15uS(Ig,Vg)	10/sec	200(S)	230	Din rail/Screw

Part Numbers:

Series	Output	Power Supply	Window(mm)	Case Style	Accuracy %	Rated Input	
CE-VJ03	3: 0~5VDC(Vz)	2:12V 3:15V		H1****	0.5		
	1: tracking voltage(Vg)	016		H1/H2/		10V, 50V, 100V, 110V, 220V,250V, 380V,400V, 500V,1000V	
	2: tracking current(Ig)	0: self powered		S1/S2	1.0		
	1:0~5VRMS(Vg)*	2: 12V					
	3: 0~5VDC(Vz)	3: 15V	M: none	S2			
	4: 0~20mA(Iz)	4: 24V		S3	0.2		
CE-VJ03	5:4~20mA(Iy)**	5:±12V		55			
CE-VJ03A	6:1 ~5VDC(Vy)*	6: ±15V			0.5		
	7: 4~20mA(Id)***	8: 110V		S3			
	8: 0~10V DC (Vd)*	9: 220V					

^{*} Output types (Vg,Vy,Vd,) and accuracy 0.2 are not available in series CE-IJ03A.

Part Number Example: CE-VJ03-52MS2-0.2/0~250V

Description: 1-phase AC Voltage Transducer, Output: 4~20mA, Power supply: +12V, Without Window (terminal input), Accuracy: 0.2, Case style: S2 Input: 0~250V.

Connections Diagram (see Chapter 4 for mounting dimensions)

Fig. 3.2.1 CE-VJ03, case style H1

Fig. 3.2.2 CE-VJ03, CE-VJ03A Voltage Output, Case style S

^{**} Loop resistance from 0 to 250 Ω . Contact factory for loop resistance above 250 Ω

^{***} Select 24V Power supply for output of 4~20mA Id;

^{****} This case style needs an extra voltage divider

Fig. 3.2.3 CE-VJ03, CE-VJ03A Current Output, Case style S

Fig. 3.2.4 CE-VJ03 Loop power, Case style S

Fig. 3.2.5 CE-VJ03, self powered Tracking output, case style H1

Fig. 3.2.6 CE-VJ03, self powered Tracking output, case style S

- 1. Monitor for over/under voltage
- 2. Power monitoring
- 3. Multi-point instrumentation needs
- 4. Sense phase loss

- 1. Selection of output signal: Please select Power supply >15V when you need 0~10V output.
- 2. The H1 type must be used with corresponding current limiting resistor. The current limiting resistance should not be near the output terminal (to avoid larger voltage drop).
- 3. The output signal and the Power supply must be grounded in common. Please keep right polarity connection, don't in error set.

3.2.2 3-phase AC Voltage Transducer

Specifications:

	O manual in a	T 1.2	Response	Overload	Power Cons (mW		Mounting
Series	Operating Principle	Isolation Voltage	Time	Capacity	Vz,Vd, Vg,Iz Output	Iy Output	
CE-VJ31							
CE-VJ31A	Electromagnetic	2500 V DC	≤250mS	2 Times	400	500	Screw/
CE-VJ41	Isolation		15uS(Ig,Vg)	10/sec	400	500	Din rail
CE-VJ41A							

Part Numbers:

3 phase 3 wire series

3 phase 3 wire Series	Output	Power Supply	Window (mm)	Case Style	Accuracy %	Rated Input
CE-VJ31 CE-VJ31A	1: 0~5V RMS (Vg)* 3: 0~5V DC (Vz) 4: 0~20 mA (Iz) 5: 4~20 mA (Iy)** 8: 0~10V DC (Vd)	2: 12V 3: 15V 4: 24V	M	\$3 \$K \$5	0.5	10V, 50V, 100V, 110V, 220V, 250V,
CE-VJ31	3: 0~5V DC (Vz) 4: 0~20 mA (Iz) 5: 4~20 mA (Iy)** 6: 1~5V (Vy) 8: 0~10V DC (Vd)	8: 110V 9: 220V	M: none	SK	0.5	380V,400V, 500V, 600V

3 phase 4 wire series

3 phase 4 wire Series	Output	Power Supply	Window (mm)	Case Style	Accurac y %	Rated Input
CE-VJ41 CE-VJ41A	1: 0~5V RMS (Vg)* 3: 0~5V DC (Vz) 4: 0~20 mA (Iz) 5: 4~20 mA (Iy)** 8: 0~10V DC (Vd) 1:tracking voltage (Vg) 2:tracking current (Ig)	2: 12V 3: 15V 4: 24V 0:self powered	M: none	S3 SK S5 S3	0.5	10V, 50V, 100V, 110V, 220V, 250V, 380V,400V, 500V,
CE-VJ41	3: 0~5V DC (Vz) 4: 0~20 mA (Iz) 5: 4~20 mA (Iy)** 6: 1~5V (Vy) 8: 0~10V DC (Vd)	8: 110V 9: 220V		SK		600V

^{*} Tracking output (Vg) type not available in CE-VJ31A&VJ41A,

Part Number Example: CE-VJ41-32MS3-0.5/0~250V

Description: 3-phase 4-wire AC Voltage Transducer, Output: 0-5V, Power supply:+12V, no window, Case style: S3, Accuracy: 0.5, Input: 0-250V.

^{**} Loop resistance from 0 to 250 Ω . Contact factory for loop resistance above 250 Ω .

Connections Diagram (see Chapter 4 for mounting dimensions)

Fig. 3.2.7 CE-VJ31, CE-VJ31A Case style S3

Fig. 3.2.8 CE-VJ41, CE-VJ41A Case style S3

Fig. 3.2.9 CE-VJ31, CE-VJ31A Case style SK

Fig.3.2.10 CE-VJ41, CE-VJ41A Case style SK

Fig.3.2.11 CE-VJ41, self powered, Case style S3

Typical Application:

- 1. Harmonic voltages
- 2. Chopped waveform drivers
- 3. Quickly varying voltage supplies
- 4. Phase fired controlled devices

- 1. In case the input is 3-phase-3-wire system, the first output corresponds to the line voltage between Vab, the second output corresponds to line voltage between Vbc, and the third output corresponds to line voltage between Vca. In case the input is 3-phase-4-wire, three outputs correspond respectively to phase voltage of A, B and C phases.
- 2. The output signal and the power supply must be grounded in common. Please keep right polarity connection, don't in error set.

3.2.3 1-phase DC Voltage Transducer

Specifications:

	Operating Principle	Isolation Voltage	Response Time	Overload	Powe		
Series					Consumption	Mounting	
				Capacity	Vz,Vd,Vg,Iz Output	Iy Output	
CE-VZ01	Linear Photoelectric Isolation Treble Isolation*	2500 VDC	≤ 200mS	2 Times 10 /sec	800	1000	PCB / Din rail/ Screw
CE-VZ02	Electromagnetic Isolation		2001115	107500	200	300	Sciew

^{*} Treble Isolation: the input, output and power supply is isolated from each other.

Part Numbers:

Series	Output	Power Supply	Window (mm)	Case Style	Accuracy (%)	Rated Input	
CE-VZ02	3: 0~5V DC (Vz)			H2		≤300V	
CE-VZ01	4: 0~20mA (Iz)* 5: 4~20mA (Iy)*	2: 12V 3: 15V 4: 24V		S1 S2	0.2**	10mV, 50mV, 75mV,	
CE-VZ02	6: 1~5V DC(Vy)		M: none	52	0.5	0.5V,1V, 5V, 10V,	
	8:0~10V DC(Vd) F:OC frequency 1 output	8:110V 9:220V		S3		50V,75V,100V,200V, 500V, 1000V	

^{*} Loop resistance from 0 to 250Ω . Contact factory for loop resistance above 250Ω .

Part Number Example: CE-VZ02-52MS1-0.2/0-75mV

Description: DC voltage Transducer, Output: 4-20mA, Power supply: +12V, No window, Case Style: S1, Accuracy: 0.2, Input Voltage: 0-75mV.

Connections Diagram (see Chapter 4 for mounting dimensions)

Fig. 3.2.12 CE-VZ01

Current output, Case style S

Fig. 3.2.13 CE-VZ02

Voltage Output, Case style S

^{**0.2} accuracy only be available while the input is more than 500mV.

Fig. 3.2.14 CE-VZ02 Current Output, Case style S

Power Supply **Fig.3.2.15** CE-VZ01, CE-VZ02 Frequency Output

Fig. 3.2.16 CE-VZ02 Voltage Output, Case style H2,

Fig. 3.2.17 CE-VZ02 Current Output, Case style H2,

- 1. Mobile applications
- 2. Power Supply over/under sensing
- 3. Power sensing
- 4. Battery chargers and systems

- 1. In case the input signal is bi-directional DC or pulsed DC, please give clear indication in your order.
- 2. Since CE-VZ01 is provided with treble isolations, the output signal and power supply may not be grounded in common. (While that of other series must be grounded in common.)

3.3 Frequency Transducer

Specifications:

					Power Consu	mption		
Series	Operating	Isolation	Response	Overload	(mW)		Mounting	
Series	Principle	Voltage	Time	Capacity	Vz, Vd,Vg,Iz	Iy	Mounting	
					Output	Output		
CE-F01	Photoelectric	2500V D.C	200~600	2 Times	200	250	PCB/	
CE-F03	Isolation	2500V DC	mS	10/sec	400	450	Din rail/ Screw	

Part Numbers:

Series	Output	Power	Input	Case Accuracy		Rated Input	
		Supply	Waveform	Style	(%)	Frequency	Voltage
CE-F01	3:0~5VDC (Vz) 4: 0~20mA (Iz)* 5: 4~20mA (Iy)*	2: 12V 3: 15V 4: 24V	R: Arbitrary wave pass zero F: Square Wave. Z: Sine curve wave. O:OC frequency signal T: TTL electricity level	S2 S3	0.5	45Hz, 100Hz, 1KHz, 2KHz, 5KHz.	50V, 110V, 250V, 400V, 500V.
CE-F03	8:0~10VDC (Vd)	8: 110V 9:220V	Z: Sine curve wave.			40~60Hz 45~55Hz 45~65Hz 50~70Hz	

^{*} Loop resistance from 0 to 250Ω . Contact factory for loop resistance above 250Ω .

Part Number Example: CE-F01-32FS3-0.5/0~55Hz (250V)

Description: Frequency Transducer, Square Wave Signal (250V), Output: $0\sim5V$, Power supply: +12V, Case style: S3, Accuracy: 0.5, Input: $0\sim55Hz$.

Connections Diagram (see Chapter 4 for mounting dimensions)

Fig. 3.3.3 CE-F01 OC Frequency Input, Voltage Output

OC Frequency Input, Current Output

- 1. Power quality monitoring
- 2. Applications monitor generator sets
- 3. Multi-frequency control and monitoring
- 4. Inverter drives and systems

- 1. Response of amplitude of frequency signal must not be lower than 20% of rated voltage.
- 2. There is no polarity requirement for the input signal connection.
- 3. The output signal and the Power supply must be grounded in common. Please ensure all connections right.

3.4 Power Transducer:

Specifications

Series	Operating Principle	Isolation Voltage	Response Time	Overload Capacity	Power Consumption	Mounting	
Selles					Vz,Vd,Vg,Iz Output	Iy Output	iviounung
CE-P02 CE-Q02				Current:	300	420	
CE-P31	Electro-			20Times			Screw/ Din
CE-Q31 CE-P41 CE-Q41	magnetic Isolation	2500V DC	≤700mS	5/sec Voltage: 2 Times	840	960	rail
CE-C02	Isolation			10/sec			

Part Numbers

Power series

Series	Output	Power	Window (mm)	Case Style	Accuracy %	Rated Input	
		Supply				Voltage	Current
CE-P02 CE-Q02	3: 0~5V DC (Vz)	2: 12V 3: 15V 4: 24V 8: 110V 9: 220V	Е: Ф20	SK		75V, 110V, 220V, 250V, 380V, 400V, 500V 5A, 1	5A-300A
CE-P02 CE-Q02 CE-P31	4: 0~20mA (Iz)* 5: 4~20mA (Iy)*	2: 12V 3: 15V 4: 24V	Β: Φ6.5	S3	0.5		5A, 10A, 15A,20A, 25A.
CE-Q31 CE-P41 CE-Q41		8: 110V 9: 220V	D. 4 0.3	SK			

^{*} Loop resistance from 0 to 250Ω . Contact factory for loop resistance above 250Ω .

Power Factor series

Series	Output	Power Supply	Window (mm)	Case Style	Accuracy %	Rated Input	
						Voltage	Current
CE-C02	3: 0~5V DC (Vz)	2: 12V 3: 15V	Е: Ф20		0.5	75V, 110V,	5A-300A
	4: 0~20mA (Iz)* 5: 4~20mA (Iy)*	4: 24V 8: 110V 9: 220V	Β: Φ6.5	S 3		220V, 250V, 380V, 400V, 500V.	5A, 10A, 15A,20A, 25A.

Part Number Example: CE-P41-52BS3-0.5/0~250V*0~5A

Description: 3-phase 4-wire Active Power Transducer, Output: 4~20mA, Power supply: +12V, Window: Φ6.5mm, Accuracy: 0.5, Case style: S3, Input voltage: 0~250V, Current: 0~5A,

Connections Diagram (see Chapter 4 for mounting dimensions)

Fig. 3.4.1 CE-P02, CE-Q02

Fig. 3.4.2CE-P02, CE-Q02

Voltage Output, Case style S

Fig. 3.4.3 CE-P31, CE-Q31 Voltage Output, Case style S

Fig. 3.4.4 CE-P31, CE-Q31 Current Output, Case style S,

Fig. 3.4.5 CE-P41, CE-Q41

Voltage Output, Case style S

Fig. 3.4.7 CE-P02, CE-Q02

Fig. 3.4.9 CE-P31, CE-Q31 Voltage Output, Case style SK

Fig. 3.4.11 CE-P41, CE-Q41 Voltage Output, Case style SK

Fig. 3.4.6 CE-P41, CE-Q41 Current Output, Case style S

Fig. 3.4.8 CE-P02, CE-Q02 Current Output, Case style SK

Fig. 3.4.10 CE-P31, CE-Q31 Current Output, Case style SK

Fig. 3.4.12 CE-P41, CE-Q41 Current Output, Case style SK

- 1. Motor Efficiency
- 2. Multi-point power sensing
- 3. Energy Management
- 4. Remote power sensing over long distances

Notice:

- 1. The input current must pass through the window in the direction shown in reference diagram of connections.
- 2. The output signal of 3-phase power transducer corresponds to total power of three phases.
- 3. In case the current to be measured is larger than 25A, it would be advisable to add AC current mutual inductor (CT) to each phase and take the secondary signal as input signal.

3.5 Power Supply

Fig. 3.5.2 Connections of CE-WYS-2

Unit: mm

Note: CE-WYS-1 and CE-WYS-2 are switching mode regulated power supply with positive voltage output. The voltage output of CE-WYS-1A is not adjustable. The voltage output of CE-WYS-1B linear regulated power supply is adjustable. CE-WYS-2 is of S3 case style.

Chapter 4 Case style and Mounting Diagram

4.1 Case Styles and Outline Dimension

4.2 Mounting Dimensions (mm)

For Case style S1, S2, S3 and S4

For Case style H1 (Top view)

For Case style H2 (Top view)

Chapter 5 Notes for Ordering

5.1 Ordering Instructions

- 1. Ensure a complete correct part number and product descriptions are used according to instructions in Chapter 1. The ordering information must include the complete description including input and output parameters such as rated value, output functions, power supply and case style etc. Included with your order must be quantity, delivery and shipping requirements. Provide complete company name, address, fax number, and email address. Be sure to provide the name of the contact person that we can contact with any questions.
- 2 The complete order must be signed by both the seller and buyer.
- 3. Payment is by irrepealably L/C at sight for large quantities or 50% in advance and the remaining to be paid before shipment for small quantity.

5.2 Installation Notes

- 1. Verify the part number and description are correct according to the packing list and product labels.
- 2. Apply power to the transducers only after a through checking of the input signal, power supply according to connections diagram.
- 3. The power supply voltage must be within $\pm 2\%$ with noise less than 0.4%. Vpp
- 4. The transducers with current output may only be used with load resistance of less than 250 Ω . The voltage output transducers must be connected to a load of greater that $2K \Omega$
- 5. The transducers should only be used in environments having no static electricity, excessive dust, corrosive or explosive gases.
- 6. Please ensure the terminal screws are tightened securely and reliably before the electrical testing with a multi-meter directly on the terminals
- 7. Calibration of the units with equipment that has accuracy ratings greater than the rating of the transducers. Ensure that the equipment and transducers have been operating for a minimum of 15 minutes before calibration.
- 8. The transducers should not be used in environments with strong electromagnetic interference. Standard precautions such as shielding the input and/or output lines should be observed. All lines should be kept as short as possible. If a group of transducers are mounted together, keep a space more than 10 mm between adjacent units. A 35mm (width) track is to be used for DIN rail mounting with Φ 3 screw for PCB surface mounting.
- 9. The transducers have been calibrated before delivery. Please contact the company if readjustments

are required.

10. Do not remove or destroy the product labels.

5.3 Warranty service

 SHENZHEN SENSOR ELECTRONIC TECHNOLOGY CO., LTD. guarantees the original purchaser of our products a 24-month warranty from date of purchase. Repairs or other modifications made by unauthorized persons to the transducer will make all warranties, express or implied, null and void. Warranty does not include any component replacement if damages caused by improper use.

