10 October 2016

Exercise 5.8. Show that A_{10} contains an element of order 15.

Proof. Consider $\sigma \in A_{10} \subset S_{10}$ given by $\sigma = (12345)(678)$, the product of two disjoint cycles. Then $\sigma \in A_{10}$ as σ is the product of two even permutations and Theorem 5.7 states A_{10} is a sub-group of S_{10} , therefore closed. Notice $(12345)^{-1} = (12345)^4$ and $(678)^{-1} = (678)^2$, and clearly $(12345)^{-1} \neq (678)^n$ and $(678)^{-1} \neq (12345)^m$ for any $(n, m) \in \mathbb{Z}^2$. Because $|A_{10}| = \frac{10!}{2}$ is finite, $|\sigma| \neq \infty$ as $\sigma^n \in A_{10}$ for all $n \in \mathbb{Z}$ by Theorem 5.7 that A_n is a sub-group of S_n . Then

$$\sigma^{15} = [(12345)(678)]^{15}$$
= $(12345)^{15}(678)^{15}$ by Proposition 5.2 (that disjoint cycles commute) and Theorem 3.8.3
= $[(12345)^5]^3 [(678)^3]^5$ by Theorem 3.8.2
= $(id)^3 (id)^5$
= id

So $\sigma = (12345)(678) \in A_{10}$ is an element of A_{10} of order 15.

Exercise 5.13. Let $\sigma = \sigma_1 \cdots \sigma_m \in S_n$ be the product of disjoint cycles. Prove that the order of σ is the least common multiple of the lengths of the cycles $\sigma_1, \ldots, \sigma_m$.

Proof. Let $|\sigma| = k$. So

$$\sigma^k = (\sigma_1 \cdots \sigma_m)^k$$

$$= \sigma_1^k \cdots \sigma_m^k \quad \text{by Proposition 5.2 (that disjoint cycles commute) and Theorem 3.8.3}$$

$$= id \quad \text{because } \sigma^k = id \text{ as } |\sigma| = k$$

So $\sigma_i^k = id$ for $i \in ([1, m] \cap \mathbb{Z})$. So if So $\sigma_i^k = id$ then k must be a common multiple of the length of each σ_i . So the smallest k (that is, the order of σ) must be equal to the least common divisor of lengths of $\sigma_1, \ldots, \sigma_m$ by definition of least common multiple.

Exercise 5.16. Find all group of rigid motions of a tetrahedron. Show that this is the same group as A_4 .

Proof.

A regular tetrahedron centered at (0,0,0) with each face an equilateral triangle of side length $\frac{\sqrt{6}}{2}$

Consider the position of face $ACD \rightarrow A'C'D'$ for each rigid motion of the tetrahedron. The point A may assume 4 distinct locations. Once A is fixed, C may assume one of 3 remaining distinct locations. Once A and C are chosen, D may assume only 1 distinct location. So the order is $4 \times 3 \times 1 = 12$. The group of rigid rotations is given by $\rho_A = \begin{pmatrix} A & B & C & D \\ A & D & B & C \end{pmatrix}$, $\rho_A^2 = \begin{pmatrix} A & B & C & D \\ A & C & D & B \end{pmatrix}$, $\rho_B = \begin{pmatrix} A & B & C & D \\ B & A & C \end{pmatrix}$, $\rho_C = \begin{pmatrix} A & B & C & D \\ B & D & C & A \end{pmatrix}$, $\rho_C^2 = \begin{pmatrix} A & B & C & D \\ D & A & C & B \end{pmatrix}$, $\rho_D = \begin{pmatrix} A & B & C & D \\ B & C & A & D \end{pmatrix}$, $\rho_D^2 = \begin{pmatrix} A & B & C & D \\ B & C & A & D \end{pmatrix}$, $\rho_{AB,BC} = \begin{pmatrix} A & B & C & D \\ B & A & D & C \end{pmatrix}$, $\rho_{AC,BD} = \begin{pmatrix} A & B & C & D \\ C & D & A & B \end{pmatrix}$, and $id = \begin{pmatrix} A & B & C & D \\ A & B & C & D \end{pmatrix}$. By Proposition 5.8, $A_4 \subset S_4$ is of order $\frac{4!}{2} = 12$ and A_4 is given by

```
 A_4 = \{id, (12)(13), (12)(14), (12)(34), (13)(12), (13)(14), (13)(24), (14)(12), (14)(13), (14)(23), (23)(24), (24)(23)\} \quad \text{by definition} \\ = \{(24)(23), (23)(24), (14)(13), (13)(14), (14)(12), (12)(14), (13)(12), (12)(13), (12)(34), (13)(34), (14)(23), id\} \quad \text{by reordering} \\ = \{(234), (243), (134), (143), (124), (142), (123), (132), (12)(34), (13)(24), (14)(23), id\} \quad \text{as } (a_i a_k)(a_i a_j) = (a_i a_k a_j).
```

Notice this matches the set A_4 as listed in Chapter 5, **Example 8.**

Since the order of the rigid motions of a tetrahedron equals the order of A_4 , to show that the two groups are equivalent we must show that every rigid motion of a tetrahedron is the product even number of permutations. Label A, B, C, D as 1, 2, 3, 4 respectively. Then

- (234) corresponds to ρ_A (124) corresponds to ρ_C (12)(34) corresponds to (14)(23) corresponds to ((243) to ρ_A^2) ((142) to ρ_C^2) $\rho_{AB,BC}$ $\rho_{AB,BC}$
- (134) corresponds to ρ_B (123) corresponds to ρ_D (13)(24) corresponds to The identity id corre((143) to ρ_B^2) ((132) to ρ_D^2) $\rho_{AC,BD}$ sponds to itself

Notice every rigid motion of is the product of an even number of permutations as for each $x \in \{\text{group of rigid motions of a tetrahedron}\}\$, $x \in A_4$. So the group of rigid motions of a tetrahedron is the same as A_4 as

$$\{ \text{group of rigid motions of a tetrahedron} \} = \{ \rho_A, \rho_A^2, \rho_B, \rho_B^2, \rho_C, \rho_D^2, \rho_D, \rho_D^2, \rho_{((AB)(BC))}, \rho_{((AC)(BD))}, \rho_{((AD)(BC))} \}$$
 from way above
$$= \{ (234), (243), (134), (143), (124), (142), (123), (132), (12)(34), (13)(24), (14)(23), id \}$$
 from above
$$= \{ id, (12)(34), (13)(24), (14)(23), (123), (123), (124), (142), (134), (143), (234), (243) \}$$
 by reordering
$$= A_4 \quad \text{as listed in Chapter 5, Example 8. and above } \square$$

Exercise 5.19. Prove that D_n is non-abelian for $n \geq 3$.

Proof. By Theorem 5.10, we know that the group D_n consists of all products of the two elements r and s satisfying the relations

$$r^{n} = id$$

$$s^{2} = id$$

$$srs = r^{-1}$$

for $n \geq 3$.

Let $n \geq 3$ and label r, s such that $r^n = id$ and $s^2 = id$, which is certainly possible by Theorem 5.10. Now assume for a contradiction of D_n is abelian. Then

$$srs = (sr)s = (rs)s$$
 by assumption that D_3 is abelian $= r(ss) = rs^2$ by associativity of elements in D_n as D_n is a sub-group of S_n by Theorem 5.9 $= r(id)$ by Theorem 5.15 and chose of $s \in D_n$ $= r$

However srs = r is a contradiction to Theorem 5.10 that $srs = r^{-1}$ as this would imply

$$rr^{-1} = id \implies r(srs) = id$$
 by Theorem 5.10
 $\implies r(r) = id$ by calculation above that $srs = r$
 $\implies r^2 = id$

and $r^2 = id$ cannot happen for $r \in D_n$ for $n \ge 3$ as r is necessarily of order n and 0 < n. So our original assumption that 0 < n is abelian must be false, so 0 < n must be non-abelian for 0 < n.

Exercise 5.23. If σ is a cycle of odd length, prove that σ^2 is also a cycle.

Proof. Let $\sigma = (\sigma_1, \dots, \sigma_k)$ for some odd integer k. Then σ may be written as $\sigma = (\sigma_1 \sigma_k) (\sigma_1 \sigma_{k-1}) \cdots (\sigma_1 \sigma_3) (\sigma_1 \sigma_2)$, a finite product of transpositions. Then

$$\sigma^{2} = \left(\left(\sigma_{1} \sigma_{k} \right) \left(\sigma_{1} \sigma_{k-1} \right) \cdots \left(\sigma_{1} \sigma_{3} \right) \left(\sigma_{1} \sigma_{2} \right) \right)^{2}$$

$$= \left[\left(\sigma_{1} \sigma_{k} \right) \left(\sigma_{1} \sigma_{k-1} \right) \cdots \left(\sigma_{1} \sigma_{3} \right) \left(\sigma_{1} \sigma_{2} \right) \right] \left[\left(\sigma_{1} \sigma_{k} \right) \left(\sigma_{1} \sigma_{k-1} \right) \cdots \left(\sigma_{1} \sigma_{3} \right) \left(\sigma_{1} \sigma_{2} \right) \right] \quad \text{by definition of exponentiation}$$

Then σ^2 is given by $\sigma^2(\sigma_\ell) = \sigma(\sigma(\sigma_\ell)) = \sigma(\sigma_{\ell+1}) = \sigma_{\ell+2}$ for $\ell = 1, 2, ..., k-2$. So $\sigma^2 : \sigma_1 \mapsto \sigma_3$, and $\sigma^2 : \sigma_3 \mapsto \sigma_5$, and eventually we will arrive at $\sigma^2 : \sigma_{k-2} \mapsto \sigma_k$ as k is an odd number. Then $\sigma^2(\sigma_k) = \sigma(\sigma_1) = \sigma_2$. $\sigma^2(\sigma_\ell) = \sigma(\sigma(\sigma_\ell)) = \sigma(\sigma_{\ell+1}) = \sigma_{\ell+2}$ for $\ell = 1, 2, ..., k-2$. So $\sigma^2 : \sigma_2 \mapsto \sigma_4$, and $\sigma^2 : \sigma_4 \mapsto \sigma_6$, and eventually we will arrive at $\sigma^2 : \sigma_{k-3} \mapsto \sigma_{k-1}$ as k is an odd number so k-3 is even. Then $\sigma_{k-1} \mapsto \sigma_1$ as $\sigma_1 \mapsto \sigma_3$ as before. So $\sigma^2 = (\sigma_3, \sigma_5, ..., \sigma_{k-2}, \sigma_k, \sigma_2, \sigma_4, ..., \sigma_{k-1}, \sigma_1)$ is a cycle. \square

Exercise 5.26. Prove that any element in S_n can be written as a finite product of the following permutations.

(a)
$$(12), (13), \dots, (1n)$$

(b)
$$(12), (23), \ldots, (n-1, n)$$

(c)
$$(12), (12 \dots n)$$

Proof. Let $\sigma \in S_n$.

(a) Then by Theorem 5.3, σ can be written as the product of disjoint cycles $\sigma = a_1 a_2 \cdots a_k$. For $i = 1, \ldots k$, let $a_i = (\alpha_{i_1}, \ldots, \alpha_{i_\ell})$. Then $a_i : \alpha_{i_m} \mapsto \alpha_{i_{m+1}}$ for $m = 1, \ldots, \ell - 1$ and $a_i : \alpha_{i_\ell} \mapsto \alpha_1$. Consider $a'_i = (\alpha_{i_1} a_{i_\ell})(a_{i_1} a_{i_{\ell-1}}) \cdots (a_{i_1} a_{i_3})(a_{i_1} a_{i_2})$, which is a product of $(12), (13), \ldots, (1n)$. Then $a'_i : \alpha_{i_m} \mapsto \alpha_{i_{m+1}}$ for $m = 1, \ldots, \ell - 1$ and $a'_i : \alpha_{i_\ell} \mapsto \alpha_1$. So $a_i = a'_i$ for all i. So

$$\sigma = a_1 a_2 \cdots a_k
= a'_1 a'_2 \cdots a'_k \quad \text{as } a_i = a'_i
= ((a_{1_1} a_{1_\ell}) \cdots (a_{1_1} a_{1_2})) ((a_{2_1} a_{2_\ell}) \cdots (a_{2_1} a_{2_2})) \cdots ((a_{k_1} a_{k_\ell}) \cdots (a_{k_1} a_{k_2}))$$

which is a product of $(12), (13), \ldots, (1n)$

Exercise 6.1. Suppose that G is a finite group with an element g of order 5 and an element h of order 7. Why must $|G| \ge 35$?

Proof. Let $g = (g_1g_2g_3g_4g_5)$ and $h = (h_1h_2h_3h_4h_5h_6h_7)$. By Corollary 6.6, the orders of g and h, (5 and 7 respectively) must divide the number of elements in G, so |G| is 35 at least, or larger.

Exercise 6.3. Prove or disprove: Every sub-group of the integers has finite index.

Proof. This is false. Let
$$H = \{1\}$$
. Then H is a sub-group of \mathbb{Z} and $[\mathbb{Z} : H] = \#\mathcal{L}_H = \#\{g \cdot 1 : g \in \mathbb{Z}\} = \infty$

Exercise 6.5. List the left and right co-sets of the sub-groups in each of the following.

(a) $\langle 8 \rangle$ in \mathbb{Z}_{24}

(b) $\langle 3 \rangle$ in U(8)

(d) A_4 in S_4

(f) D_4 in S_4

Solution.

(a) The left and right co-sets of $\langle 8 \rangle$ in \mathbb{Z}_{24} are the same as addition is commutative in \mathbb{Z}_{24} . So the left and right co-set are

$0+\langle 8\rangle$	=	$8+\langle 8 \rangle$	=	$16+\langle 8 \rangle$	=	$\{0, 8, 16\}$
$1+\langle 8 \rangle$	=	$9+\langle 8\rangle$	=	$17+\langle 8 \rangle$	=	$\{1, 9, 17\}$
$2+\langle 8\rangle$	=	$10+\langle 8 \rangle$	=	$18+\langle 8 \rangle$	=	$\{2, 10, 18\}$
$3+\langle 8 \rangle$	=	$11+\langle 8 \rangle$	=	$19+\langle 8\rangle$	=	${3,11,19}$
$4+\langle 8 \rangle$	=	$12+\langle 8 \rangle$	=	$20+\langle 8 \rangle$	=	$\{4, 12, 20\}$
$5+\langle 8 \rangle$	=	$13+\langle 8 \rangle$	=	$21+\langle 8 \rangle$	=	$\{5, 13, 21\}$
$6+\langle 8\rangle$	=	$14+\langle 8 \rangle$	=	$22+\langle 8\rangle$	=	$\{6, 14, 22\}$
$7+\langle 8 \rangle$	=	$15+\langle 8 \rangle$	=	$23+\langle 8 \rangle$	=	$\{6, 14, 22\}$

(b) The left and right co-sets of $\langle 3 \rangle$ in U(8) are the same as multiplication is commutative in \mathbb{Z}_8 . $U(8) = \{1, 3, 5, 7\}$ and $\langle 3 \rangle = \{1, 3\}$, so the left and right co-sets are:

$$1 \cdot \{3, 1\} = \{3, 1\}$$
$$3 \cdot \{3, 1\} = \{1, 3\}$$
$$5 \cdot \{3, 1\} = \{7, 5\}$$
$$7 \cdot \{3, 1\} = \{5, 7\}$$

(d) The order of A_4 in S_4 is 2, so the left co-sets equals the right co-sets. So the left and right co-sets of

$$A_4 = \{(234), (243), (134), (143), (124), (142), (123), (132), (12)(34), (13)(24), (14)(23), id\}$$

are

$$A_4 = \{(234), (243), (134), (143), (124), (142), (123), (132), (12)(34), (13)(24), (14)(23), id\}$$
$$(12)A_4 = \{(1234), (1243), (1342), (1432), (24), (14), (23), (34), (1324), (1423), (12)\}$$

(f) From Chapter 5 Example 9., $D_4 = \{(1234), (13)(24), (1432), id, (24), (13), (12)(34), (14)(32)\}$. So the left co-sets are

$$D_4 = \{(1234), (13)(24), (1432), id, (24), (13), (12)(34), (14)(32)\}$$

$$(12)D_4 = \{(12), (234), (2413), (143), (34), (1423), (132), (124)\}$$

$$(14)D_4 = \{(14), (123), (1342), (243), (1243), (23), (134), (142)\}$$