KQS COACHING C	ENTER
-----------------------	-------

Date: Class: XI Paper: Chemistry Time: 60 minutes Max. Marks: 15 Test # 1
NAME:
Q1: Solve the following i. 15.5m, 651.8cm, and 4291m ii. $\frac{56 \times 725 \times 273}{760 \times 298}$ Q2: Define (i) Molecular Mass (ii) Molecular Formula (iii) Avogadro's number (iv) Mole. Q3: Calculate the mass of Carbondioxide (CO ₂) that can be obtained by heating 30g of limestone (CaCO ₃) and also calculate the mass of Calcium Oxide (CaO). CaCO ₃ > CaO + CO ₂ Q4: Calculate the volume of CO ₂ gas produced at Standard Temperature and pressure by the combustion of 40g of CH $CH_4 + 2O_2> CO_2 + 2H_2O$ Q5: What volume of O ₂ at S.T.P is required to burn 500dm³ of Ethene C ₂ H ₂ gas ? What volume of CO ₂ will be formed? $C_2H_4 + 3O_2> 2CO_2 + 2H_2O$ Q6: i. Calculate the number of atoms in 9.2g of Na (Na = 23 a.m.u.). ii. Calculate the mass in grams of 3.01x10 ²⁰ molecules of glucose (C ₆ H ₁₂ O ₆).
KQS COACHING CENTER
Date: Class: XI Paper: Chemistry
NAME: F.NAME:
Q1: Solve the following $56 \times 725 \times 273$
i. 15.5m, 651.8cm, and 4291m ii. $\frac{1}{760 \times 298}$ Q2: Define (i) Molecular Mass (ii) Molecular Formula (iii) Avogadro's number (iv) Mole. Q3: Calculate the mass of Carbondioxide (CO ₂) that can be obtained by heating 30g of limestone (CaCO ₃) and also calculate the mass of Calcium Oxide (CaO) . CaCO ₃ > CaO + CO ₂ Q4: Calculate the volume of CO ₂ gas produced at Standard Temperature and pressure by the combustion of 40g of CH $CH_4 + 2O_2> CO_2 + 2H_2O$ Q5: What volume of O ₂ at S.T.P is required to burn 500dm ³ of Ethene C ₂ H ₂ gas ? What volume of CO ₂ will be formed? $C_2H_4 + 3O_2> 2CO_2 + 2H_2O$ Q6: i. Calculate the number of atoms in 9.2g of Na (Na = 23 a.m.u.). ii. Calculate the mass in grams of 3.01x10 ²⁰ molecules of glucose (C ₆ H ₁₂ O ₆).
KQS COACHING CENTER
Date: Class: XI Paper: Chemistry Time: 60 minutes Max. Marks: 15 Test # 1
NAME: F.NAME:
Q1: Solve the following i. 15.5m, 651.8cm, and 4291m ii. $\frac{56 \times 725 \times 273}{760 \times 298}$ Q2: Define (i) Molecular Mass (ii) Molecular Formula (iii) Avogadro's number (iv) Mole. Q3: Calculate the mass of Carbondioxide (CO ₂) that can be obtained by heating 30g of limestone (CaCO ₃) and also calculate the mass of Calcium Oxide (CaO). CaCO ₃ > CaO + CO ₂ Q4: Calculate the volume of CO ₂ gas produced at Standard Temperature and pressure by the combustion of 40g of CH $CH_4 + 2O_2> CO_2 + 2H_2O$
Q5: What volume of O_2 at S.T.P is required to burn $500 dm^3$ of Ethene C_2H_2 gas? What volume of CO_2 will be formed? $C_2H_4 + 3O_2> 2 CO_2 + 2H_2O$ Q6: i. Calculate the number of atoms in 9.2g of Na (Na = 23 a.m.u.).
ii. Calculate the mass in grams of 3.01×10^{20} molecules of glucose ($C_6 H_{12} O_6$).