

Beam-Halo Alignment

Jim Pivarski, Alexei Safonov, Aysen Tatarinov, Vadim Khotilovich

Texas A&M University

15 March, 2010

- Analysis of beam halo data, missing chambers
- Closure constraint
- Alignment results, compared with photogrammetry
- Resolution versus integrated luminosity projections
- Infrastructure developments

- About 1 million events in 40 minutes
- Distribution of beam-halo used in CSC-Overlaps alignment

In more detail...

4/15 Jim Pivarski

- Divided up by station
- Some overlaps are missing

Innermost radius set by trackreconstruction requirements

Missing overlaps

Jim Pivarski 5/15

- ▶ 4 complete rings, 6 "almost complete" rings, out of 15
 - "almost": only one gap, which we can fill by assuming closure

Missing overlaps

Jim Pivarski 6/15

- ▶ 4 complete rings, 6 "almost complete" rings, out of 15
 - "almost": only one gap, which we can fill by assuming closure
- ▶ Most of the problems are edge CFEBs (1 or 5)

► Closure per chamber
$$=\frac{1}{N}\sum_{i}^{N}\Delta(r\phi)_{i}-\Delta(r\phi)_{i+1}$$
 $N=18$ or 36

- ▶ independent of alignment
- can only be computed for complete rings
- non-zero value interferes with alignment of incomplete rings

	2008	2010
ME+3/1		$+$ 298 \pm 9 μ m
ME-2/1	$-$ 40 \pm 23 μ m	
ME - 3/1	$-$ 20 \pm 28 μ m	$+$ 486 \pm 9 μ m
ME - 3/2		$+$ 572 \pm 27 μ m
ME-4/1		$+$ 440 \pm 10 μ m

▶ Strip-width effect in 2008 (before correction): 800 μ m

- ▶ What's different between the 2008 and 2010 data? Magnetic field
- Radial component of magnetic field can affect beam-halo, parallel with the beamline; field is significantly radial in endcap
- ▶ In the algorithm, tracks are assumed to propagate linearly (over a 10's of cm distance through gas volume)
- Perhaps we're seeing a bias from curving tracks?

- No. Select straight |p| > 100 GeV tracks
- No significant effect on closure:

	2008 (no field)	2010, all momenta	$ p >100\;{ m GeV}$
ME+3/1		$+$ 298 \pm 9 μ m	$+188\pm53~\mu{ m m}$
ME-3/1	$-$ 20 \pm 28 μ m	$+$ 486 \pm 9 μ m	$+483\pm50~\mu\mathrm{m}$

- ► Δ circumference = $N \cdot$ closure-per-chamber = $2\pi \Delta$ radius
- Should try realistic disk-bending simulation from Oleg
- With correct closure in complete rings, we can align "almost complete" rings by assuming closure = zero, but it wouldn't be valid now

Inner ring results

Complete rings only

First complete outer-ring

Jim Pivarski

Connecting rings to tracker

Jim Pivarski

▶ Established technique with cosmics; completes endcap alignment with 400 μ m accuracy at 5 pb⁻¹ if rings can be aligned internally

Reference-Target algorithm

Jim Pivarski

13/15

- ► Alignment of each chamber relative to the tracker individually: does not require complete rings
- ► Comparison of CSC-Overlaps against Reference-Target would be a powerful systematics check, even if only in a few rings
- ▶ Aysen Tatarinov (TAMU) is learning the system from the inside out, and solved the problem of Minuit failing in some low-statistics fits

Infrastructure developments

Jim Pivarski 14/15

- ► Alignment Quality Monitor, by Vadim Khotilovich
- ▶ One application: server for hardware/track-based comparison plots

Conclusions

Jim Pivarski 15/15

- Beam-halo run was fruitful
 - obtained up-to-date constants for 4 rings
 - discovered a new closure issue
 - 2007 photogrammetry is still relevant
- Next steps have all been tested in data and resolution vs. integrated luminosity estimated
- New alignment group members are becoming well-versed and expanding functionality of the system