MA398 Exercise Sheet 2, Week 4

2. Intrujve enplanation:

If the Columns of Q are orthonormal: of length 1 and perpendicular to each offer, then we know that

 $Q = [q_1, q_2 \dots q_n], q_i \in \mathbb{C}^n$

 $\langle 9i, 9j \rangle = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$

DO E would be I on the major diagonal where i = i , and O everywhere else.

3. Prove the following Theorem:

Prove the following Theorem.

"If $A \in \mathbb{C}^{n \times n}$ is Hermitian then there is a unitary Q and a real $\Lambda \in \mathbb{R}^{n \times n}$ such that

Hint: Remember that a Hermitian matrix is one that is equal to its own conjugate transpose, i.e., $A = A^*$. You might want to <u>utilize the Spectral Theorem</u> for Hermitian matrices in your proof, which states that every Hermitian matrix can be diagonalized by a unitary matrix.

Answer: Firstly, we need to understand what Hermitian means in the context of complex matrices. A matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian if it is equal to its own conjugate transpose, i.e., $A = A^*$.

Now, let us prove the theorem:

Proof:

3.

The Spectral Theorem for Hermitian matrices states that a Hermitian matrix A can be diagonalized by a unitary matrix, i.e., there exists a unitary matrix Q and a diagonal matrix Λ such that $A = Q\Lambda Q^*$.

We need to show that the diagonal elements of Λ are real. This can be deduced from the property of Hermitian matrices that their eigenvalues are real.

Consider the equation $Ax = \lambda x$, where x is an eigenvector corresponding to the eigenvalue λ .

Taking the complex conjugate transpose of both sides, we get $(Ax)^* = \lambda^* x^*$.

This becomes $\underline{x}^*A^* = \lambda^*x^*$.

Since A is Hermitian, we can replace A^* with A. This gives us $x^*A = \lambda^*x^*$

 $x^*A = \lambda x^*$ Therefore, we can be left multiply eigenvector framepse) But we know from the original eigenvalue equation that $\underline{x}^*A = \lambda x^*$ Therefore, we can equate $\lambda = \lambda^*$, which implies that λ is real.

Therefore, all the diagonal elements of Λ , which are the eigenvalues of A, are real. Thus, we have shown that if A is Hermitian, then there exists a unitary matrix Q and a real diagonal matrix Λ such that $A = Q\Lambda Q^*$.

This concludes the proof.

5.	5. (Geometric series for matrices) Let $\ \cdot\ $ be a matrix norm on $\mathbb{C}^{n\times n}$. Assume that $\ X\ <1$ for some $X\in\mathbb{C}^{n\times n}$. Show that,
	(a) $I - X$ is invertible with $(I - X)^{-1} = \sum_{i=0}^{\infty} X^{i}$, (b) $\ (I - X)^{-1}\ \le (1 - \ X\)^{-1}$. Answer: For every $m \in \mathbb{N}$ from $X^{i} = \frac{1 - \ X\ ^{m+1}}{1 - \ X\ }$ (1)
	where the properties of a matrix norm were used. The right hand side converges as $m \to \infty$ since $ X < 1$ (geometric series). An analogous argument shows that $n \mapsto \sum_{i=0}^{n} X^{i}$ is a Cauchy sequence. As a consequence, $\sum_{i=0}^{\infty} X^{i}$ exists and $X^{i} \to 0$ as $i \to \infty$ in $\mathbb{C}^{n \times n}$. We infer that
	$(I-X)\sum_{i=0}^{\infty}X^i=\lim_{m\to\infty}(I-X)\sum_{i=0}^{m}X^i=\lim_{m\to\infty}(I-X^{m+1})=I. \qquad \left(\text{ question } \alpha\right)$
	Letting $m \to \infty$ in the right hand side of (1) we obtain the second claim:
	$\ (I-X)^{-1}\ = \lim_{m \to \infty} \ \sum_{i=0}^m X^i\ \le \lim_{m \to \infty} \frac{1 - \ X\ ^{m+1}}{1 - \ X\ } = (1 - \ X\)^{-1}.$