This is the analysis on wine data quality from kaggle. The data set has 4898 observations with the class variable 'quality' on the scale of 1 - 10 range.

Normalization:

Original Class variables distribution:

	quality	count
0	6	2198
1	3	20
2	5	1457
3	9	5
4	4	163
5	8	175
6	7	880

The extreme low and high class has very less count compared to the class in the middle. So the class has been reduced to the range "Low", "Medium", "High".

Undersampling:

There is an imbalance in the dataset after the class has been reduced to "Low", "Medium", "High".

To deal with it stratified sampling has been done the dataset. After that the distribution has been reduced to:

	quality	count
0	High	1060
1	Low	1078
2	Medium	1011

Feature Selection:

Following heatmap is created to find the correlation between the variables

From the chart, it is evident that there is a strong correlation between the density and residual sugar as well as between the total sulfur dioxide and free sulfur dioxide. So, one feature has been removed between the pairs and accuracy, f1-score has been calculated to find out which is the best feature in the pairs. So, we found out that there is high accuracy when dropping the feature free sulfur dioxide and density.

Feature	Decision Tree - Accuracy
total sulfur dioxide and density	0.5663590
free sulfur dioxide and density	<mark>0.5950792</mark>
total sulfur dioxide and residual sugar	0.5724541
free sulfur dioxide and residual sugar	0.5854921

Principal Component Analysis:

Following table shows the pcaFeatures (by weighted sums) to find orthogonal directions of maximum variance. It has a tuple of (eigenvectors, `RDD` of scores, eigenvalues). Eigenvectors is a multi-dimensional array where the number of rows equals the length of the arrays in the input `RDD` and the number of columns equals 3. The `RDD` of scores has the same number of rows as `data` and consists of arrays of length 3. Eigenvalues is an array of length d (the number of features).

```
pcaFeatures
[-176.52109231240544,0.953114906178876,-11.480159664959078]
[-130.86253868448225,21.148918749176485,5.152966126208715]
[-101.56366694584099,-3.5484737726864894,-1.1708994508110688]
[-191.87569176299675,3.4045071682030277,1.4883166424660763]
[-191.87569176299675,3.4045071682030277,1.4883166424660763]
[-101.56366694584099,-3.5484737726864894,-1.1708994508110688]
[-139.16209994016236,6.682688895277058,0.38126217006329155]
[-176.52109231240544,0.953114906178876,-11.480159664959078]
[-130.86253868448225,21.148918749176485,5.152966126208715]
[-131.61653791341118,6.863264429987194,5.593801454673983]
[-63.535192022347815,5.916684491874887,2.4521410215420407]
[-109.6035672652093,12.192737853893329,1.6463318013292367]
[-76.41372887119383,4.255649503959447,3.251299462210956]
[-150.32826755633715,-8.77495941700684,6.858360674878846]
[-177.32361682238408,5.365374155012407,-9.99958158489786]
[-115.22364755809386,2.3803767412359154,4.919367335358098]
[-103.22023857592676,-2.949266752305727,4.668606209457103]
[-79.79053280916112,-8.313103488034857,3.7817429724780087]
[-169.19419104428871,28.50758847663812,7.531902492510495]
[-137.34341432527427,2.031659620982571,-0.15089050076385757]
```

only showing top 20 rows

Algorithm:

Four Model is built on the wine quality dataset out of which 3 classification algorithms and 3 regression algorithms.

- 1. Linear Regression
- 2. Decision Tree Classification and Regression
- 3. Random Forest Classification and Regression
- 4. Support Vector Machine Classification. Since SVM is a binary classifier OneVsRest classifier is used which supports multiclass values.

Classification Algorithm:

Algorithm	Accuracy	F1-Score
Decision Tree without	0.579587628866	0.556737226561
Normalization		
Decision Tree with	0.655079242454	0.621779242175
Normalization		
Random Forest without	0.569531841958	0.539147670961
Normalization		
Random Forest with	0.634561154012	0.624691358025
Normalization		
SVM – OneVsRest without	0.567110157368	0.547018102814
Normalization		
SVM – OneVsRest with	0.648109820486	0.622325941107
Normalization		

Regression Algorithm:

Algorithm	RMSE	
Decision Tree without	0.794942090862	
Normalization		
Decision Tree with	0.776409755839	
Normalization		
Random Forest without	0.753327043668	
Normalization		
Random Forest with	0.642378711939	
Normalization		
Linear Regression without	1.05893575031	
Normalization		
Linear Regression with	0.782533132629	
Normalization		