

[Photo]

2.	Probability transition Matrix
	Si Si Si Si St C.
	S4 0 4 1 4 4 0
	S5 0 0 0 4 ½ 0
	S66 0 0 16 4 1
	Absorbing State: Si, S6
	Transition State: S_2 , S_3 , S_4 , S_5 Abs Canonical Form: $P = \frac{7r}{Abs}$ ($\frac{1}{2}$) S_2 , S_3 , S_4 , S_5 ($\frac{1}{2}$)
	S2 S3 S4 S5 S, S6
	P=52/20 4000
	S ₃ 0 0 8 0 0 0 S ₄ 4 1 4 4 0 0
-	Sr 0 0 4 ½ 0 0
	16 0) 0
3.	(a) $N = 2 \begin{pmatrix} 8 & 4 & 4 & 2 \\ 8 & 4 & 4 & 2 \\ \hline 3 & 16 & 4 & 3 & 6 \\ 4 & 3 & 8 & 4 & 3 \\ \hline 5 & 2 & 3 & 4 & 3 & 8 \\ \hline 3 & 4 & 3 & 8 & 3 \\ \hline \end{pmatrix}$
	3 6 4 3 6 4 3 6 4
	5 (2 4 4 8 3)
	(b) absorption probability $B = \frac{1}{3} \begin{pmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{2} & \frac{3}{4} \end{pmatrix}$
	(c) $Np = [\frac{2}{2}, \frac{1}{2}, 2, \frac{2}{2}]$ (d) $Bp = [\frac{1}{2}, \frac{1}{2}]$
	$(d) B_n = \begin{bmatrix} \frac{1}{2}, \frac{1}{2} \end{bmatrix}$

4.	Regardless of storting state, the process will eventually be absorbed at probability of I as it is MC and P^{∞} . him $Q^n = 0$, eventually 0 probability will be in transition state which probability of absorbed state will be I.
5.	N43 = \(\frac{8}{3} \) in N, start from 3 end at 4 turns out at probability of \(\frac{3}{3} \) before absorbed.
6.	So S
	1. $S_{2}: \frac{8}{3} + \frac{1}{6} + \frac{4}{3} + \frac{2}{3} = \frac{29}{6}$ $S_{3}: \frac{4}{3} + \frac{4}{3} + \frac{8}{3} + \frac{4}{3} = \frac{29}{3}$ $S_{4}: \frac{4}{3} + \frac{1}{3} + \frac{8}{3} + \frac{4}{3} = \frac{11}{3}$ $S_{5}: \frac{2}{3} + \frac{1}{6} + \frac{4}{3} + \frac{8}{3} = \frac{29}{6}$ From the fundamental matrix N , the steps expected for $S_{2}: \frac{29}{3}$, $S_{3}: \frac{29}{3}$, $S_{4}: \frac{29}{3}$, $S_{5}: \frac{29}{3}$, S
8	Starting state Pesult after a long time Sz 0.75 -> state 1, 0.25 -> state 6 S3 0.5 -> state 1, 0.5 -> state 6 S4 0.5 -> state 1, 0.5 -> state 6 S5 0.25 -> state 1, 0.5 -> state 6 S5 0.25 -> state 1, 0.5 -> state 6 Starting state 1, 0.
	Bp = $[\frac{1}{2}, \frac{1}{2}]$ From the absorption probability matrix B with equal probability in each starting state, from the absorption probability matrix B with equal probability in each starting state, use can get result that $\frac{1}{2}$ to 1, and $\frac{1}{2}$ to state 6.

Ī