

Thermo-Elasticity for Large Deformations

Aniket Angre 3379505

Abigail Austin 3379550

Shlok Gupta 3379327

Ayush Pandey 3379369

Simulation Of Coupled Problems Using Finite Element Method

09.03.2020

Overview

- Introduction
- Motivation- Use in industries
- Why Non Linear?
- Equation Formulation
- Problem Formulation
- Results:
 - Pure Mechanical Loading
 - Pure Thermal Loading
 - Mixed Loading
 - Mesh convergence study for Maximum displacement

Introduction

Introduction

- Thermo-elasticity by definition addresses:
 - Mechanical deformation Elastic deformation
 - Thermal effects Temperature gradients, Heat flux
 - Their couplings Thermal expansion
- Hyper-elastic materials posses certain characteristics:
 - Fully recoverable large elastic deformations in order of 100 to 700 %
 - They show a highly nonlinear stress-strain relation
 - > Tension The material softens and then stiffens again
 - Compression A stiff response (incompressible)

Rubber

Hyper-elastic Seal

Motivation: Use in industries

Motivation: Use in industries

- Flexible adhesive joints, with very low elastic modulus and very large failure deformation
- Elastomeric pads in bridges, rail pads, car door seal, car tires
- Major stresses in Engine cylinder walls are due to temperature variation and mechanical impact
- Stresses experienced by a Pressure cooker are due to internal pressure and temperature variation
- Pressurized storage containers for liquified gases
- Industrial chimneys Self weight, pressure and temperature variation
- Turbo machinery High pressure leads to increase in temperature
- Casting and forging machinery
- Bird impact in aerospace

Why Non Linear?

Why Non Linear?

- Small vs large deformations
- Hyper-elastic materials (rubber and plastic) show a highly nonlinear stress-strain relation.
- Changes in geometry as the structure deforms are considered in formulating the constitutive and equilibrium equations.
- In case of contact we can have non linear boundary conditions (kinematic constraints).
 - As opposed to a linear static analysis, where the stiffness matrix remains constant, these effects result in a stiffness matrix which is not constant during the load application. As a result, a different solving strategy is required Newton Raphson Solver.

General structure of balance relations

- Local differential equations valid at every material point
 - Balance of mass

Assumption: Quasi-static : No acceleration
$$\rightarrow$$

- Balance of moment of momentum
- Balance of energy
- Entropy inequality (CDI)

$$\rho + \rho div \dot{\underline{x}} = 0$$

$$\int_{B_o} (Div \, \underline{P} + \rho_o \times (\underline{b} - \underline{\ddot{x}})) dV_o = \underline{0}$$

$$\int_{B_o} Div \, \underline{P} dV_o = \underline{0}$$

$$\underline{T} = \underline{T}^T$$

$$\int_{B} \rho \dot{\epsilon} \, dv = \int_{B} \left(\underline{T} \cdot \underline{D} + \rho r - div \underline{q} \right) dv$$

$$-\rho(\dot{\varphi} + \dot{\theta\eta}) + \underline{T} \cdot \underline{D} - \frac{1}{\theta} \underline{q} \cdot grad\theta \ge 0$$

Material Modelling

- Thermodynamic consistent constitutive modelling
- Axioms of Thermodynamics
 - Principle of determinisms
 - Principle of Equipresence
 - Principle of local action
 - Material Frame indifference

 $\underline{T} = 2\rho \underline{F} \frac{\partial \varphi}{\partial \underline{C}} \underline{F}^{T}$ $\eta = -\frac{\partial \varphi}{\partial \theta}$ $\frac{\partial \varphi}{\partial grad\theta} = 0 \quad \Longrightarrow \quad \varphi = \varphi(\underline{C}, \theta)$ $-\frac{1}{\theta} q \cdot grad\theta \ge 0$

- Evaluation of entropy inequality
- Helmholtz free energy function for isotropic hyper elastic materials

$$\psi = \frac{1}{\rho_o} \left[\frac{1}{2} \lambda (\ln J)^2 - \mu \ln J + \frac{1}{2} \mu \left(\frac{I_c}{3} \right) - 3 \alpha \kappa (\ln J) (\theta - \theta_o) - \rho_o c \left(\theta \ln \frac{\theta}{\theta_o} - \theta + \theta_o \right) \right]$$

Where,

 $\lambda, \mu \rightarrow$ Material constants (Lame constants)

 $\alpha \rightarrow$ Thermal expansion coefficient, c \rightarrow Heat capacity

 $\kappa \rightarrow$ Compression Modulus , $I_c \rightarrow tr \underline{C}$

Balance of Momentum

Weak Form:

$$\int_{B_o} Div \, \underline{P}. \, \delta \underline{u} dV_o = \underline{0}$$

Final Form →

$$\int_{B_o} \underline{S} \cdot \delta \underline{E} dV_o - \int_{\partial B_o} \underline{t_0} \cdot \delta \underline{u} dA_o = 0$$

Discretized Weak Form

$$G_{u} = \sum_{i=1}^{J} \delta \underline{du}^{I} \left[\int_{B_{o}} B^{T}(\underline{u}, \underline{X}) \cdot \underline{S} dV_{o} - \int_{\partial B_{o}} N^{I} \underline{t} dA_{o} \right]$$

Linearized Weak Form

$$\Delta DG_{u} = \sum^{I} \sum^{J} \delta \underline{du}^{I} \left[\int_{B_{0}} \left(B^{T^{I}}(\underline{u}, \underline{X}) \cdot \frac{\partial \underline{S}}{\partial \underline{E}} \cdot B^{J}(\underline{u}, \underline{X}) \right) dV_{o} \Delta d\underline{u}^{J} \right] - \sum^{I} \sum^{J} \delta \underline{du}^{I} \left[\int_{B_{0}} \left(B^{T^{I}}(\underline{u}, \underline{X}) \cdot \frac{\partial \underline{S}}{\partial \theta} \cdot N^{J}(\underline{X}) \right) dV_{o} \Delta d\theta^{J} \right]$$

Balance of Momentum

•
$$\underline{S} = \mu(\underline{I} - \underline{C}^{-1}) + \lambda \ln(J) \underline{C}^{-1} - 3\alpha_s k(\theta - \theta_0) \underline{C}^{-1}$$

$$\begin{array}{l} \bullet \quad \frac{d\underline{S}}{d\underline{E}} = -\mu \frac{d\underline{C}^{-1}}{d\underline{E}} - \lambda lnJ \frac{d\underline{C}^{-1}}{d\underline{E}} - \lambda \frac{dlnJ}{d\underline{E}} \otimes \underline{C}^{-1} - 3\alpha_S \kappa (\theta - \theta_o) \frac{d\underline{C}^{-1}}{d\underline{E}} \\ \\ \text{The derivatives} \rightarrow \qquad \qquad \frac{d\underline{C}^{-1}}{d\underline{E}} = - \big[C_{lm}^{-1} C_{nk}^{-1} + C_{ln}^{-1} C_{mk}^{-1} \big] \\ \\ \frac{dlnJ}{d\underline{E}} \otimes \underline{C}^{-1} = \underline{C}^{-1} \otimes \underline{C}^{-1} \\ \\ \frac{dS_{lk}}{dE_{mn}} = \left[\mu - \lambda lnJ + 3\alpha_S \kappa (\theta - \theta_o) \right] \big[C_{lm}^{-1} C_{nk}^{-1} + C_{ln}^{-1} C_{mk}^{-1} \big] + \lambda C_{lk}^{-1} C_{mn}^{-1} \end{aligned}$$

•
$$\frac{\partial S}{\partial \theta} = -3\alpha_S k \underline{C}^{-1}$$

Balance of Energy

Weak Form:

$$\int_{B_o} \underline{q}_o \cdot Grad\delta\theta dV_o - \int_{B_o} (\rho_o c\dot{\theta} + 3\alpha_s \kappa\theta \underline{D} \cdot \underline{I} - \rho_o r) \delta\theta dV_o = \int_{\partial B_o} \underline{q}_0 \cdot \underline{N} \delta\theta dA_o$$
 Where ,
$$q_o = -J\alpha_\theta Grad\theta \underline{C}^{-1}$$

Discretized Weak Form

$$G_{\theta} = \sum^{I} \delta d\theta^{I} \left[\int_{B_{o}} B^{I} \left(\underline{\underline{u}}, \underline{X} \right) \cdot q_{0,lin} dV_{o} - \int_{B_{o}} N^{I} \rho_{0} C \theta dV_{o} - \int_{B_{o}} N^{I} 3\alpha_{s} \kappa \theta tr \underline{\dot{E}} dV_{o} - \int_{B_{o}} N^{I} \rho_{0} r dV_{o} - \int_{B_{o}} N^{I} q_{0,lin} \underline{N} dA_{o} \right]$$

Linearized Weak Form

$$\begin{split} \Delta D G_{\theta} &= \sum_{I}^{I} \sum_{J}^{J} \delta d\theta^{I} \int_{B_{o}} \left(B^{T^{I}}(\theta) . \frac{\partial q_{\{o,lin\}}}{\partial G r a d\theta} . B^{J}(\theta) \right) dV_{o} \Delta d\theta^{J} - \sum_{I}^{I} \sum_{J}^{J} \delta d\theta^{I} \int_{B_{o}} \left(N^{I} \frac{\partial Bal \; Energy}{\partial \dot{\theta}} \frac{\delta}{\beta \Delta t} . N^{J} \right) dV_{o} \Delta d\theta^{J} \\ &- \sum_{I}^{I} \sum_{J}^{J} \delta d\theta^{I} \int_{B_{o}} \left(N^{I} \frac{\partial Bal \; Energy}{\partial \theta} N^{J} \right) dV_{o} \Delta d\theta^{J} - \sum_{I}^{I} \sum_{J}^{J} \delta \theta^{I} \int_{B_{o}} \left(N^{I} \frac{\partial Bal \; Energy}{\partial \dot{\theta}} \frac{\delta}{\beta \Delta t} . B^{J}(\underline{u}, \underline{X}) \right) dV_{o} \Delta d\underline{u}^{J} \end{split}$$

Balance of Energy

•
$$\left(\frac{\partial q_{0,lin}}{\partial Grad\theta}\right) = -\alpha_{\theta}\underline{I}$$

•
$$\frac{\partial Bal\ Energy}{\partial \dot{\theta}} = \rho_0 C$$

•
$$\frac{\partial Bal\ Energy}{\partial \theta} = 3\alpha_S k \cdot tr \dot{E}$$

•
$$\frac{\partial Bal\ Energy}{\partial \underline{\dot{E}}} = 3\alpha_S k\theta \underline{I}$$

Time Discretization: Newmark Beta

$$\underline{\dot{X}}_{t+\Delta t} = \underline{\dot{X}} + \left[(1 - \delta) \underline{\ddot{X}}_t + \delta \left(\underline{\ddot{X}}_{t+\Delta t} \right) \right] \Delta t$$

$$\Delta \underline{\dot{x}} = \frac{\delta}{\beta \Delta t} \Delta \underline{x}$$

$$\underline{X}_{t+\Delta t} = \underline{X} + \underline{\dot{X}}_t \Delta t + \left[\left(\frac{1}{2} - \beta \right) \underline{\ddot{X}}_t + \beta \left(\underline{\ddot{X}}_{t+\Delta t} \right) \right] \Delta t^2$$

$$\Delta \underline{\ddot{x}} = \frac{1}{\beta \Delta t^2} \Delta \underline{x}$$

Finite Element Mesh, Boundary Conditions and Loads

Equation System:

$$\Delta DG_{u} = \sum_{i}^{I} \sum_{\beta}^{J} \delta \underline{u}^{i} \left[\int_{B_{o}} \left(B^{T^{I}}(\underline{u}, \underline{X}) \cdot \frac{\partial \underline{S}}{\partial \underline{E}} \cdot B^{J}(\underline{u}, \underline{X}) \right) dV_{o} \Delta d\underline{u}^{J} \right] - \sum_{i}^{I} \sum_{\beta}^{J} \delta \underline{u}^{i} \left[\int_{B_{o}} \left(B^{T^{I}}(\underline{u}, \underline{X}) \cdot \frac{\partial \underline{S}}{\partial \underline{\theta}} \cdot N^{J}(\underline{X}) \right) dV_{o} \Delta d\theta^{J} \right]$$

$$\left[\delta d\underline{u} \quad \delta d\theta \right] \left\{ \left[\underbrace{\underline{K}uu}_{\underline{K}\theta u} \quad \underbrace{\underline{K}u\theta}_{K\theta \theta} \right] \left[\Delta d\underline{u}_{\underline{\theta}} \right] - \left[\underbrace{\underline{R}u}_{R\theta} \right] \right\} = \underline{\mathbf{0}}$$

$$\Delta DG_{\theta} = \sum_{i}^{I} \sum_{\beta}^{J} \delta d\theta^{I} \int_{B_{o}} \left(B^{T^{I}}(\theta) \cdot \frac{\partial q_{\{o,lin\}}}{\partial Grad\theta} \cdot B^{J}(\theta) \right) dV_{o} \Delta d\theta^{J}$$

$$- \sum_{i}^{I} \sum_{\beta}^{J} \delta d\theta^{I} \int_{B_{o}} \left(N^{I} \rho_{o} C \cdot \frac{\delta}{\beta \Delta t} \cdot N^{J} \right) dV_{o} \Delta d\theta^{J}$$

$$- \sum_{i}^{I} \sum_{\beta}^{J} \delta d\theta^{I} \int_{B_{o}} \left(N^{I} \frac{\delta}{\beta \Delta t} 3\alpha_{S} \kappa \theta \underline{I} \cdot B^{J}(\underline{u}, \underline{X}) \right) dV_{o} \Delta d\underline{u}^{J}$$

Implementation of Finite Element Code

• Shape functions: Tri-Linear Functions

Green Lagrange strain tensor

$$E_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i} + u_{k,i} u_{k,j})$$

$$\boldsymbol{E}(\boldsymbol{u}) = \begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \\ 2E_{12} \\ 2E_{23} \\ 2E_{13} \end{bmatrix} = \begin{bmatrix} u_{1,1} \\ u_{2,2} \\ u_{3,3} \\ u_{1,2} + u_{2,1} \\ u_{2,3} + u_{3,2} \\ u_{1,3} + u_{3,1} \end{bmatrix} + \begin{bmatrix} 1/2 \left(u_{1,1} \ u_{1,1} + u_{2,1} \ u_{2,1} + u_{3,1} \ u_{3,1} \right) \\ 1/2 \left(u_{1,2} \ u_{1,2} + u_{2,2} \ u_{2,2} + u_{3,2} \ u_{3,2} \right) \\ 1/2 \left(u_{1,3} \ u_{1,3} + u_{2,3} \ u_{2,3} + u_{3,3} \ u_{3,3} \right) \\ u_{1,1} \ u_{1,2} + u_{2,1} \ u_{2,2} + u_{3,1} \ u_{3,2} \\ u_{1,2} \ u_{1,3} + u_{2,2} \ u_{2,3} + u_{3,2} \ u_{3,3} \\ u_{1,1} \ u_{1,3} + u_{2,1} \ u_{2,3} + u_{3,1} \ u_{3,3} \end{bmatrix}$$

• Differential operator (L) which maps the displacement vector variation to the Green Lagrange strain by addition of constant part and deformation-dependent part

$$\mathbf{D}_{\varepsilon} = \begin{bmatrix} \frac{\partial}{\partial X_{1}} & 0 & 0 \\ 0 & \frac{\partial}{\partial X_{2}} & 0 \\ 0 & 0 & \frac{\partial}{\partial X_{3}} \\ \frac{\partial}{\partial X_{2}} & \frac{\partial}{\partial X_{1}} & 0 \\ 0 & \frac{\partial}{\partial X_{3}} & \frac{\partial}{\partial X_{2}} \\ \frac{\partial}{\partial X_{3}} & 0 & \frac{\partial}{\partial X_{1}} \end{bmatrix} + \begin{bmatrix} u_{1,1} \frac{\partial}{\partial X_{1}} & u_{2,1} \frac{\partial}{\partial X_{1}} & u_{3,1} \frac{\partial}{\partial X_{1}} \\ u_{1,2} \frac{\partial}{\partial X_{2}} & u_{2,2} \frac{\partial}{\partial X_{2}} & u_{3,2} \frac{\partial}{\partial X_{3}} \\ u_{1,3} \frac{\partial}{\partial X_{3}} & u_{2,3} \frac{\partial}{\partial X_{3}} & u_{2,3} \frac{\partial}{\partial X_{1}} + u_{2,1} \frac{\partial}{\partial X_{2}} & u_{3,2} \frac{\partial}{\partial X_{1}} + u_{3,1} \frac{\partial}{\partial X_{2}} \\ u_{1,3} \frac{\partial}{\partial X_{1}} + u_{1,1} \frac{\partial}{\partial X_{2}} & u_{2,2} \frac{\partial}{\partial X_{1}} + u_{2,1} \frac{\partial}{\partial X_{2}} & u_{3,2} \frac{\partial}{\partial X_{1}} + u_{3,1} \frac{\partial}{\partial X_{2}} \\ u_{1,3} \frac{\partial}{\partial X_{1}} + u_{1,1} \frac{\partial}{\partial X_{3}} & u_{2,3} \frac{\partial}{\partial X_{2}} + u_{2,2} \frac{\partial}{\partial X_{3}} & u_{3,3} \frac{\partial}{\partial X_{2}} + u_{3,2} \frac{\partial}{\partial X_{3}} \\ u_{1,3} \frac{\partial}{\partial X_{1}} + u_{1,1} \frac{\partial}{\partial X_{3}} & u_{2,3} \frac{\partial}{\partial X_{1}} + u_{2,1} \frac{\partial}{\partial X_{3}} & u_{3,3} \frac{\partial}{\partial X_{1}} + u_{3,1} \frac{\partial}{\partial X_{3}} \end{bmatrix}$$

Implementation of Finite Element Code – Important snippets

```
# Loop for implementation of linear entries

self.epsilon[gp][0] = self.gradU[gp][0][0]

self.epsilon[gp][1] = self.gradU[gp][1][1]

self.epsilon[gp][2] = self.gradU[gp][2][2]

self.epsilon[gp][3] = self.gradU[gp][0][1] + self.gradU[gp][1][0]

self.epsilon[gp][4] = self.gradU[gp][1][2] + self.gradU[gp][2][1]

self.epsilon[gp][5] = self.gradU[gp][2][0] + self.gradU[gp][0][2]

# Loop to add all non linear entrieds into E

for j in range(0,3):

self.epsilon[gp][0] += 0.5 * self.gradU[gp][j][0] * self.gradU[gp][j][0]

self.epsilon[gp][1] += 0.5 * self.gradU[gp][j][1] * self.gradU[gp][j][1]

self.epsilon[gp][2] += 0.5 * self.gradU[gp][j][2] * self.gradU[gp][j][2]

self.epsilon[gp][3] += self.gradU[gp][j][1] * self.gradU[gp][j][2]

self.epsilon[gp][4] += self.gradU[gp][j][1] * self.gradU[gp][j][2]

self.epsilon[gp][5] += self.gradU[gp][j][0] * self.gradU[gp][j][2]
```

```
# Linear theory - Heat flux is deformation independent
self.qlin[gp][0] = -self.alphaT * self.gradTheta[gp][0]
self.qlin[gp][1] = -self.alphaT * self.gradTheta[gp][1]
self.qlin[gp][2] = -self.alphaT * self.gradTheta[gp][2]
```

```
# mC = ( lmu - llambda * ln(J) + 3.0 * alphaS * kappa * (theta - thetaO)) * (C^-1 x C^-1)^T + llambda * (C^-1 x C^-1)
invCinvCT = zeros((3, 3, 3, 3), dtype=float64)
invCinvC = zeros((3, 3, 3, 3), dtype=float64)
mCconst1 = self.lmu - self.llambda * log(J) + 3.0 * self.alphaS * self.kappa * (self.theta[gp] - self.theta0[gp])
mCconst2 = self.11ambda
# Formulation of (C^-1 \times C^-1)^T and (C^-1 \times C^-1)
index = [[0,0], [1,1], [2,2], [0,1], [1,2], [0,2]]
for 1 in range (0.3):
    for k in range (0,3):
                                     \# k = a
        for m in range (0,3):
            for n in range (0.3): \# n = 5
                invCinvCT[1][k][m][n] = invCauchy[1][m] * invCauchy[n][k] + invCauchy[1][n] * invCauchy[m][k]
                invCinvC[1][k][m][n] = invCauchy[1][k] * invCauchy[m][n]
 # Formulation of mC which is changing at every gauss point of the element
for i in range (0.6):
    for j in range (0,6):
        self.mC[gp][i][i] = mCconst1 * invCinvCT[index[i][0]][index[i][1]][index[i][0]][index[i][1]] \
                            + mCconst2 * invCinvC[index[i][0]][index[i][1]][index[j][0]][index[j][1]]
```

Load vs. Deformation – Pure Mechanical Loading

- Small strain theory → linearised E and q
 → linear results throughout
- Large strain theory → non linear E formulation
 → additional geometric stiffness
- Tensile Load → deformation is reducing in comparison with the linear theory
- Compressive Load → non linearity of curve is not pronounced

Load vs. Deformation – Mixed Loading

Load vs. Deformation – Mixed Loading

• Thermo-elasticity with small strains considers linearised E and linearised q.

	LINEAR		NON-LINEAR	
α	Z - displacement			
	1 st Load Step	Last Load Step	1 st Load Step	Last Load Step
0.0001	-0.005 <u>17115</u>	0.12 <u>4248263</u>	-0.005 <u>2514249</u>	0.12 <u>56020314</u>
0.00001	-0.007 <u>902588</u>	0.017 <u>9542813</u>	-0.007 <u>7980955</u>	0.017 <u>8963899</u>
0	-0.008332539 <u>7</u>	-0.008332539 <u>0</u>	-0.008332156 <u>7</u>	-0.008332156 <u>8</u>

• Fz = -100000 & q = -500000

Heat Flux vs. Deformation – Pure Thermal Loading

We get a linear graph → linear heat flux theory.

Mesh Convergence Study

Load	8 Elements	27 Elements	64 Elements
1e6	0.0744 <u>642054</u>	0.0744 <u>597857</u>	0.0744 <u>597857</u>
5e6	0.332 <u>3761857</u>	0.332 <u>364331</u>	0.332 <u>364331</u>
1e7	0.5184983087	0.5185321238	0.5185690033

Load	8 Elements	27 Elements	64 Elements
1e6	0.0754666549	0.0756117875	0.0760184981
5e6	0.3335196949	0.3336648635	0.3340613036
1e7	0.5197699119	0.5199717548	0.5203819076

Vielen Dank!

Aniket Angre	3379505
Abigail Austin	3379550
Shlok Gupta	3379327
Ayush Pandey	3379369