## Europäisches Patentamt

**European Patent Office** 

Office européen des brevets



#### EP 0 823 498 A1 (11)

(12)

## **EUROPEAN PATENT APPLICATION**

(43) Date of publication:

11.02.1998 Bulletin 1998/07

(21) Application number: 97113248.5

(22) Date of filing: 31.07.1997

(51) Int. Ci.6: C30B 25/16, C30B 25/20, C30B 29/48

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE** 

Designated Extension States: AL LT LV ROSI

(30) Priority: 08.08.1996 JP 225818/96

(71) Applicant:

Japan Science and Technology Corporation Kawaguchi-shi, Saitama-ken 332 (JP)

(72) Inventor: Yoshida, Hiroshi Kawanishi-shi, Hyougo-ken, 666-01 (JP)

(74) Representative: Müller-Boré & Partner Patentanwälte **Grafinger Strasse 2** 81671 München (DE)

#### (54)Process for producing a heavily nitrogen doped ZnSe crystal

In a process for growing a ZnSe crystal by an MBE or MOCVD process, N2 gas dissociated by electromagnetic waves and vapor In are prepared at a ratio of N:In being 2:1. The atomic gases may be prepared by decomposing InN at a high temperature with electromagnetic irradiation and adding N2 gas to the decomposed product. The atomic gases are fed onto a substrate in a crystal growth region, so as to simultaneously dope ZnSe with In and N at a ratio of 1:2. A n-type dopant In substitutionally occupying a position of Zn makes a 1:1 couple with a p-type dopant N substitutionally occupying a position of Se, and another one N atom coordinates near the atomic couple and serves as an acceptor. As a result, the acceptor is kept in activated state up to higher concentration, and the ZnSe crystal can be heavily doped with the p-type dopant N.

FIG.1

ZnSe Crystal simultaneously doped with In, N



#### Descripti n

25

30

35

The present invention relates to a method of producing a p-type ZnSe crystal having low resistivity useful as a material for a blue laser, a blue light emitting device, etc.. ZnSe has been anticipated as a material for a blue laser, a blue light emitting device and so on, since its band gap corresponds to blue luminescence. A ZnSe crystal has been produced so far by a molecular beam epitaxy (MBE) process or a metal organic vapor deposition (MOCVD) process.

According to the MBE process, a metal element Zn and a non-metallic element Se are vaporized in an atmosphere at an ultra-high degree of vacuum so as to obtain an intensity of a molecular beam corresponding to vapor pressure of each element, and a crystal is grown up while controlling an atomic layer.

On the other hand, thermal decomposition of an organometallic compound is used for production of a ZnSe crystal in the MOCVD process.

In order to obtain a p-type ZnSe crystal, it is necessary to dope ZnSe with N during crystal growth. For N doping, gaseous  $N_2$  molecules for instance are dissociated with electromagnetic wave RF, and radical N is introduced to ZnSe epitaxially growing on a substrate.

Since ZnSe is doped with sole N during crystal growth in a conventional method, acceptor concentration of N is not increased more than 10<sup>18</sup> cm<sup>-3</sup>. Even if further addition of N to ZnSe is tried, it is impossible to increase concentration of the carrier due to the compensation mechanism; a N atom located at a substitutional position of Se transfers to an interstitial position when acceptor concentration of N exceeds 10<sup>18</sup> cm<sup>-3</sup> and turns to a donor (n-type), so that N atoms acting as p-type acceptors are diseffected by N atoms acting as p-type donors.

The object of the present invention is to offer a ZnSe single crystal having low resistivity heavily doped with N at acceptor concentration of 10<sup>19</sup>-10<sup>21</sup> cm<sup>-3</sup>.

According to the present invention, atomic N $^{+}$  gas prepared by dissociating N $_{2}$  gas with electromagnetic irradiation and a gaseous complementary element X acting as a n-type dopant are prepared at an atomic ratio of N:X being 2:1. The atomic gases are fed to a region where a ZnSe crystal is epitaxially grown on a substrate by MBE or MOCVD process.

The atomic gases having the ratio of N:X being 2:1 may be prepared by decomposing XN with electromagnetic irradiation at a high temperature and adding  $N_2$  gas to the decomposed product.

The substitutional element X may be In, Ga, AI etc.. In the hereunder explanation, the substitutional element X is represented by In.

Fig. 1 illustrates a model of a ZnSe crystal simultaneously doped with In and N.

Fig. 2 is a schematic view illustrating an MBE apparatus for growth of a ZnSe crystal.

Fig. 3 is a schematic view illustrating an MOCVD apparatus for growth of a ZnSe crystal.

Fig. 4 is a graph of electronic state density which shows that N substitutionally occupying a position of Se serves as a p-type acceptor, while In substitutionally occupying a position of Zn serves as a n-type donor.

When ZnSe is simultaneously doped with In acting as a n-type dopant and N acting as a p-type dopant at a ratio of In:N being 1:2, a donor In-Zn derived from In substitutionally occupying a position of Zn makes a couple with an acceptor N+Se derived from N substitutionally occupying a position of Se, and the replacement is stabilized due to an electrostatic energy generated by coupling +e with -e. The electrostatic energy stabilizes N which is further added to ZnSe. As a result, ZnSe is heavily doped with the p-type carrier (a hole) at acceptor concentration of 10<sup>19</sup>-10<sup>21</sup> cm<sup>-3</sup>, although the acceptor concentration does not exceeds 10<sup>18</sup> cm<sup>-3</sup> or so by addition of sole N.

The reason why simultaneous In and N doping effectively increases the concentration of the p-type carrier is supposed as follows: When ZnSe is simultaneously doped with In and N at a ratio of 1:2, In substitutionally occupies a position of Zn, and N substitutionally occupies a position of Se, as illustrated in a model shown in Fig. 1. The n-type dopant In makes an atomic 1:1 couple with the p-type dopant N, and another one N atom coordinates near the atomic couple and serves as an acceptor. Consequently, the acceptor maintains its activity up to a higher concentration level so as to enable heavy doping with the p-type dopant N at high concentration.

According to MBE process for growth of a ZnSe crystal, a substrate 2 is located in a vacuum chamber 1, and a Zn source 3 and a Se source 4 are individually faced to the substrate 2, as shown in Fig. 3. Zn and Se vapors are generated by heating the Zn source 3 and the Se source 4 with corresponding heaters 5, fed onto the substrate 2 and epitaxially grown as a ZnSe crystal 6 on the substrate 2.

During growth of the ZnSe crystal,  $N_2$  gas is irradiated with electromagnetic wave generated by a radio frequency (RF) coil 7 and dissociated to  $N^+$ . The resulting ionized  $N^+$  gas is fed to the crystal growth region. At the same time, vapor In generated by heating an In source 8 with a heater 5 is also fed to the crystal growth region. The vapor In may be also supplied from a vapor source.

When a flow rate of ionized  $N^+$  gas is controlled in relation with vapor In so as to adjust the atomic ratio of ionized  $N^+$  gas to vapor In at 2:1, the ZnSe crystal 6 growing on the substrate 2 becomes a p-type crystal heavily doped with N.

#### EP 0 823 498 A1

According to MOCVD process, an organic Zn gas  $g_1$ , an organic In gas  $g_2$ ,  $N_2$  gas  $g_3$  and an organic Se gas  $g_4$  are individually decomposed and dissociated to atomic Zn, In,  $N^+$  and Se with electromagnetic irradiation, and fed to a substrate 2. In this case, a flow rate of ionized  $N^+$  gas is also controlled in relation with vapor In so as to adjust an atomic ratio of ionized  $N^+$  gas to vapor In at 2:1. Due to the flow rate control, a ZnSe crystal 6 growing on the substrate 2 becomes a p-type crystal heavily doped with N.

The source of ionized N<sup>+</sup> and In vapor may be a compound of InN in any above-mentioned method of epitaxial crystal growth. In this case, InN is decomposed at a high temperature by irradiation with electromagnetic wave and supplied to a region for epitaxial crystal growth. Additional N<sub>2</sub> gas may be fed to the region for epitaxial crystal growth to adjust the atomic ratio of ionized N<sup>+</sup> gas to In vapor at 2:1.

N incorporated in the ZnSe crystal substitutionally occupies a position of Se and serves as a p-type acceptor  $N^+_{Se}$  while In substitutionally occupies a position of Zn and serves as a n-type donor  $\ln_{Zn}$ . When the ZnSe crystal is doped with N and In at a ratio of 1:1, an acceptor charged with +e makes a couple with a donor charged with -e, so as to stabilize an electrostatic energy. When another one N is added to the ZnSe crystal stabilized in this way, a position of Se is stably substituted by N. Consequently, ZnSe can be heavily doped with N.

An upper column (a) of Fig. 4 shows a density of state of the N-doped ZnSe crystal wherein N atom substituted for Se. It is noted that N served as a p-type acceptor. On the other hand, it is noted that In served as a n-type donor from the lower column (b) of Fig. 4 showing a density of the In-doped ZnSe crystal wherein In atom substituted for Zn. From these data on the density of state, it is understood that an electrostatic energy can be stabilized by simultaneous N and In doping.

### **EXAMPLE**

15

20

35

40

45

50

A ZnSe single crystal was used as a substrate 2 for growth of a ZnSe crystal thereon and located in a vacuum chamber 1 held at  $1.3 \times 10^{18}$  Pa. A ZnSe crystal was epitaxially grown at 250-400°C by supplying vapor Zn at a pressure of  $1.3 \times 10^{15}$  Pa., vapor Se at a pressure of  $1.3 \times 10^{15}$  Pa., vapor Se at a pressure of  $1.3 \times 10^{15}$  Pa., vapor Se at a pressure of  $1.3 \times 10^{15}$  Pa., respectively. Said ionized N<sup>+</sup> was prepared by irradiating N<sub>2</sub> gas with electromagnetic wave in a microwave range.

The obtained ZnSe crystal had an acceptor concentration which varied in response to a crystal growth temperature, as shown in Table 1. The ZnSe crystal was doped with N at a higher concentration at any crystal growth temperature, compared with a ZnSe crystal which was doped with sole N without feeding vapor In.

TABLE 1

| EFFECT OF SIMULTANE                        | OUS N AND In DOPING C<br>CENTRATION | ON ACCEPTOR CON-     |  |  |
|--------------------------------------------|-------------------------------------|----------------------|--|--|
| acceptor concentration (cm <sup>-3</sup> ) |                                     |                      |  |  |
| temperature of substrate (°C)              | simultaneous doping with N and In   | doping with sole N   |  |  |
| 250                                        | 1 × 10 <sup>18</sup>                | 1 × 10 <sup>17</sup> |  |  |
| 300                                        | 2 × 10 <sup>19</sup>                | 1 × 10 <sup>17</sup> |  |  |
| ` 350                                      | 2 × 10 <sup>20</sup>                | 3 × 10 <sup>17</sup> |  |  |
| 400                                        | 2 × 10 <sup>21</sup>                | 1 × 10 <sup>18</sup> |  |  |

The similar simultaneous In and N doping was adopted in MOCVD process. In this case, a ZnSe crystal was also heavily doped with a p-type carrier at an acceptor concentration of 10<sup>19</sup>-10<sup>21</sup> cm<sup>-3</sup>.

According to the present invention as aforementioned, ZnSe is simultaneously doped with a n-type dopant X and a p-type dopant N. Due to the simultaneous doping, a ZnSe crystal can be heavily doped with the p-type carrier at an acceptor concentration of 10<sup>19</sup>-10<sup>21</sup> cm<sup>-3</sup>, compared that the acceptor concentration of the p-type carrier has been not more than 10<sup>18</sup> cm<sup>-3</sup> or so in a conventional method.

The p-type ZnSe crystal obtained in this way exhibits excellent electric properties such as great p-type electronic conductivity and consequent low resistivity, since substantially all the N atoms incorporated in the crystal serve as active acceptors. Consequently, the doped ZnSe crystal is used as a material for an intensified blue laser, a blue light emitting device or the like in a high-density optical memory device, a full-color display, etc..

#### EP 0 823 498 A1

### Claims

10

15

20

25

35

40

45

50

55

- 1. A method of producing a ZnSe crystal heavily doped with N serving as a p-type dopant, comprising the steps of:
- 5 disposing a ZnSe single crystal as a substrate in a vacuum chamber;
  - preparing Zn and Se vapors by heating a Zn source and a Se source by heaters, respectively;
  - dissociating N<sub>2</sub> gas to ionized N<sup>+</sup> gas with electromagnetic irradiation;
  - supplying said Zn and Se vapors together with said ionized N<sup>+</sup> gas to a region for epitaxial growth on said substrate;
  - simultaneously supplying a gaseous complementary element X which crystallographically substitutes for Zn to said region for epitaxial crystal growth; and
  - epitaxially growing a ZnSe crystal doped with N and X on said substrate,
  - wherein flow rates of said gaseous N<sup>+</sup> and X supplied to said region for epitaxial crystal growth are controlled at an atomic ratio of N<sup>+</sup>:X being 2:1.
  - 2. A method of producing a ZnSe crystal heavily doped with N serving as a p-type dopant, comprising the steps of:
    - disposing a ZnSe single crystal as a substrate in a vacuum chamber;
    - preparing Zn and Se vapors by decomposing organozincic and organoselenic compounds with electromagnetic irradiation:
    - preparing ionized N\* gas by decomposing an N-containing compound with electromagnetic irradiation;
    - supplying said Zn and Se vapors together with said ionized N<sup>+</sup> gas to a region for epitaxial crystal growth on said substrate:
    - simultaneously supplying a gaseous complementary element X which crystallographically substitutes for Zn to said region for epitaxial crystal growth; and
    - epitaxially growing a ZnSe crystal doped with N and X on said substrate,
    - wherein flow rates of said gaseous  $N^+$  and X supplied to said region for epitaxial crystal growth are controlled at an atomic ratio of  $N^+$ :X being 2:1.
- 30 3. The method of producing a ZnSe crystal heavily doped with N according to Claim 1 or 2, wherein the complementary element X is an element selected from In, Ga, Al.
  - 4. The method of producing a ZnSe crystal heavily doped with N according to Claim 1 or 2, wherein the complementary element X is In, and prepared by decomposition of InN with electromagnetic irradiation.

4

FIG.1

ZnSe Crystal simultaneously doped with In, N



FIG.2





 $\label{eq:FIG.4} FIG.4 \\ \mbox{Density of State of N and In-doped ZnSe Crystals}$ 





# EUROPEAN SEARCH REPORT

Application Number EP 97 11 3248

|                                                         | DOCUMENTS CONSID                                                                                                                                                                                        | ERED TO BE RELEVANT                                      |                                                      |                                            |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|--------------------------------------------|
| Category                                                | Citation of document with<br>of relevant pass                                                                                                                                                           | indication, where appropriate, ages                      | Relevant<br>to claim                                 | CLASSIFICATION OF THE APPLICATION (InLCL6) |
| A                                                       | US 4 735 910 A (MI<br>* claims 1,3 *                                                                                                                                                                    | TSUYU TSUNEO ET AL)                                      | 1,2                                                  | C30825/16<br>C30825/20<br>C30829/48        |
| A                                                       | growth of nitrogen-<br>doping technique"<br>THIRD INTERNATIONAL<br>COMPOUNDS, MONTERE<br>1987,<br>vol. 86, no. 1-4,                                                                                     |                                                          | 1,2                                                  | 630025740                                  |
| A                                                       | OHKAWA K ET AL: "I<br>ACCEPTORS INTO ZNSI<br>DURING MBE GROWTH"<br>JOURNAL OF CRYSTAL<br>vol. 111, no. 1 / 0<br>pages 797-801, XP00<br>* the whole document                                             | E USING A RADICAL BEAM GROWTH, 14, 2 May 1991, 100298452 | 1,2                                                  | TECHNICAL FIELDS<br>SEARCHED (Int.Cl.6)    |
| A                                                       | DE 42 32 504 A (AI) * claims 1-8 *                                                                                                                                                                      | CTRON GMBH)                                              |                                                      | C30B                                       |
|                                                         | The present search report has                                                                                                                                                                           | been drawn up for all claims                             |                                                      | ΔŌ                                         |
|                                                         | Place of search                                                                                                                                                                                         | Date of completion of the search                         | T                                                    | Examiner                                   |
|                                                         | MUNICH                                                                                                                                                                                                  | 20 October 1997                                          | Kiliaan, S                                           |                                            |
| X : perti<br>Y : perti<br>docu<br>A : techi<br>O : non- | ATEGORY OF CITED DOCUMENTS<br>outlarly relevant if taken alone<br>outlarly relevant if combined with and<br>ment of the same category<br>notogical background<br>written disclosure<br>mediate document | L : document oited for                                   | ment, but publis<br>the application<br>other reasons | hed on, ar                                 |