# ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

#### AEL-09 3405 Op-Amp (2)

### วัตถุประสงค์ของการทดลอง

- 1. ศึกษาการใช้ op-amp ในการเปรียบเทียบสัญญาณ.
- 2. ศึกษาวงจร op-amp ที่มีการป้อนกลับแบบบวก.
- 3. ศึกษาวงจรกำเนิดสัญญาณสี่เหลี่ยมโดยใช้ op-amp.
- 4. ศึกษาวงจรกำเนิดสัญญาณ sine โดยใช้ op-amp.

ในการทดลองนี้ จะเป็นการศึกษาวงจร op-amp ที่ไม่ได้มีการป้อนกลับ, มีการป้อนกลับแบบบวก และที่มีการป้อนกลับแบบบวกและลบ. การใช้งานของ op-amp ที่ไม่ได้มีการป้อนกลับ มักใช้เป็นวงจร เปรียบเทียบแรงดันระหว่างขา input(+) และ input(-). ส่วน op-amp ที่มีการป้อนกลับแบบบวก ก็จะทำ หน้าที่เปรียบเทียบแรงดันเช่นกัน แต่แรงดันที่ขา input(+) จะมีค่าเปลี่ยนไปตาม output. การต่อ op-amp ทั้ง สองแบบมีการประยุกต์ใช้งานมากมาย เช่น วงจร flash converter ซึ่งเป็นวงจรที่แปลงสัญญาณ analog เป็น สัญญาณ digital ที่เร็วที่สุด, วงจรกำเนิดสัญญาณต่างๆ, ฯลฯ.

Op-amp ที่มีการป้อนกลับทั้งบวกและลบนั้น มักใช้ในการสร้างสัญญาณ sine. การป้อนกลับแบบ บวกจะทำโดยผ่านวงจรเลือกความถี่ (band-pass filter) เพื่อสร้างสัญญาณที่มีความถี่ตรงกับความถี่ที่ผ่าน วงจรเลือกความถี่ได้มากที่สุด. ส่วนการป้อนกลับแบบลบจะทำให้สัญญาณ sine ที่ได้มีขนาดจำกัด ไม่ใหญ่ จนกระทั่งถูกขลิบ.

#### 9.1. วงจรเปรียบเทียบแรงดัน (Voltage Comparator)

วงจรเปรียบเทียบแรงคัน ได้แสดงไว้ในรูปที่ 9.1. ในทางปฏิบัติ จะมีผลจาก input offset voltage เข้ามาเกี่ยวข้อง ทำให้ระดับแรงคันที่ขา input ทั้งสองอาจคลาดเคลื่อนไปเล็กน้อยในระดับ μV ถึง mV ขึ้นอย่กับ op-amp ที่ใช้.

$$v_{i1} - v_{o} = \begin{cases} +V_{cc} \text{ if } v_{i1} > v_{i2} \\ -V_{cc} \text{ if } v_{i1} < v_{i2} \end{cases}$$

รูปที่ 9.1 การใช้ op-amp เปรียบเทียบแรงคัน.

Op-amp บางตัวถูกออกแบบให้มีหน้าที่เปรียบเทียบสัญญาณโดยเฉพาะ ไม่เหมาะกับการนำไปใช้ ขยายสัญญาณโดยการป้อนกลับแบบลบ ซึ่งอาจทำให้เกิดการ oscillate ที่ output ได้. Op-amp เหล่านี้มีชื่อ เรียกว่า voltage comparator. เนื่องจาก voltage comparator มีพื้นฐานมาจาก op-amp จึงใช้สัญลักษณ์ เดียวกันกับ op-amp. ตัวอย่าง IC เช่น LM339 quad voltage comparators และ LM 393 dual voltage comparators.

Voltage comparator ส่วนใหญ่จะถูกออกแบบให้มี output เป็นแบบ open-collector เพื่อสามารถ ปรับระดับแรงดัน output ได้. ในการใช้งาน ต้องมีการต่อ pull-up resistor (ตัวต้านทานที่ต่อระหว่าง output กับแรงคันไฟบวก เช่น +5 V ) ไว้ด้วย ดังแสดงไว้ในรูปที่ 9.2. ถ้าแรงคันไฟเลี้ยงทางด้านลบของ voltage comparator ต่อลงกราวค์ แรงคัน input ทั้งสอง ( $v_{i1}$  และ  $v_{i2}$ ) จะต้องมีค่าอยู่ในช่วง 0 ถึง  $V_{CC}$  เท่านั้น.



รูปที่ 9.2 Voltage comparator ที่มี output แบบ open collector.

### 9.2. วงจร Op-Amp ที่มีการป้อนกลับแบบบวก

การป้อนกลับแบบบวก เป็นการนำสัญญาณ output ส่วนหนึ่ง ต่อเข้ากับขา input(+) ของ op-amp ทำ ให้แรงคันที่ขานี้ เปลี่ยนไปตามแรงคันของ output คังแสดงในรูปที่ 9.3. การต่อแบบนี้มีชื่อเรียกว่า regenerative comparator, Schmitt trigger หรือ hysteresis comparator. การต่อแบบนี้จะทำให้ แรงคัน output ของวงจร มีสองสถานะที่คงตัว คือ แรงคันสูงสุด (+ $V_{CC}$ ) หรือแรงคันต่ำสุด (- $V_{CC}$ ) เท่านั้น.



รูปที่ 9.3 วงจร inverting Schmitt-trigger.

จากรูปที่ 9.3 ถ้าสมมุติให้  $v_o$  มีค่าเป็น  $+V_{CC}$  ในตอนเริ่มต้น แรงดันที่ขา input(+) จะเป็น  $\frac{R_2(+V_{CC})}{R_1+R_2}$ . ดังนั้น ถ้าจะให้  $v_o$  เปลี่ยนมาเป็น  $-V_{CC}$  จะต้องให้  $v_i$  ขา input(-) มากกว่าแรงดันที่ขา input(+) นี้. เมื่อ  $v_o$  เป็น  $-V_{CC}$  แรงดันที่ขา input(+) จะเป็น  $\frac{R_2(-V_{CC})}{R_1+R_2}$ . ถ้าจะให้  $v_o$  เปลี่ยนมาเป็น  $+V_{CC}$  จะต้องให้  $v_i$  ขา input(-) น้อยกว่าแรงดันที่ขา input(+) นี้. ดังนั้น  $v_i$  ที่ทำให้  $v_o$  เปลี่ยนจาก  $+V_{CC}$  ไปเป็น  $-V_{CC}$  และ เปลี่ยนจาก  $-V_{CC}$  ไปเป็น  $+V_{CC}$  เป็นคนละค่ากัน ดังแสดงไว้ในกราฟ transfer characteristic ด้านขวาของรูป ที่ 9.3 ซึ่งคล้ายกับ hysteresis loop ในสารแม่เหล็ก.

วงจรประเภทนี้มีการประยุกต์ใช้งานมากมาย เช่น วงจรป้องกันสัญญาณรบกวน และวงจรกำเนิด สัญญาณ ซึ่งจะได้กล่าวถึงบางส่วนในหัวข้อถัดไป.

## 9.3. วงจรกำเนิดสัญญาณสี่เหลี่ยม

เราสามารถใช้วงจร op-amp ที่มีการป้อนกลับแบบบวก ให้กำเนิดสัญญาณสี่เหลี่ยมได้ ดังแสดงไว้ ในรูปที่ 9.4. สัญญาณที่ขา input(-) เป็นแบบ exponential function เนื่องจากต่ออยู่กับวงจร RC. ส่วน สัญญาณที่ขา input(+) จะมีขนาดลดลงตามวงจรแบ่งดันซึ่งประกอบด้วย R1 และ R2 และมีค่าเป็นบวกหรือ ลบตาม  $v_o$ .



รูปที่ 9.4 วงจรกำเนิดสัญญาณสี่เหลี่ยม.

คาบเวลาของสัญญาณสี่เหลี่ยมสามารถคำนวณได้จาก

$$T = 2RC \ln \left( 1 + \frac{2R_2}{R_1} \right).$$

สัญญาณสี่เหลี่ยมที่ได้ควรจะมี duty cycle 50%. แต่ในทางปฏิบัติ เนื่องจากขนาดของแรงดันสูงสุด และต่ำสุดของ  $v_o$  มีค่าไม่เท่ากันพอดี ทำให้ duty cycle อาจไม่ได้เท่ากับ 50% เช่นกัน.

อุปกรณ์ใคที่มี output สองสถานะ มีชื่อเรียกทางเทคนิคว่า multivibrator. วงจรในรูปที่ 9.4 จึงมีชื่อ เรียกทางเทคนิคอีกอย่างหนึ่งว่า astable multivibrator เนื่องจากให้ output กลับไปมาระหว่างสองสถานะ. เราสามารถต่อ op-amp ให้เป็นวงจร monostable multivibrator (ซึ่งให้สถานะคงตัวเพียงสถานะเคียว อีก สถานะหนึ่งไม่คงตัว) หรือเป็นวงจร bistable multivibrator (ซึ่งมีสถานะคงตัวสองสถานะสลับกันตาม input). การต่อ op-amp ให้ทำหน้าที่เหล่านี้สามารถทำได้ แต่จะต้องต่ออุปกรณ์เพิ่มอีกหลายตัว. เนื่องจากมี IC ที่ถูกออกแบบให้ทำงานเป็น multivibrator โดยตรง เช่น LM555 (timer) และ LM556 (dual timer) เป็น ต้น การใช้ IC เหล่านั้นจะทำให้สะควกกว่าการใช้ op-amp.

### 9.4. วงจรกำเนิดสัญญาณ Sine

การกำเนิดสัญญาณรูป sine โดยใช้ op-amp นั้น เราจะป้อนกลับแบบวกผ่านวงจรที่มีคุณสมบัติ เลือกเฉพาะความถี่ที่ต้องการ และป้อนกลับแบบลบเพื่อทำให้ขนาดของ output ไม่ใหญ่เกินไป จนถูกขลิบ. วงจรเลือกความถี่นั้นอาจประกอบด้วย RC หรือ RLC ก็ได้. วงจรเลือกความถี่ที่แสดงในรูปที่ 9.5 ก เป็น วงจรที่มีตัวต้านทาน (R) และตัวเก็บประจุ (C) อย่างละสองตัว ป้อนส่วนหนึ่งของแรงดัน  $v_o$  ไปยังขา input(+). การป้อนกลับแบบลบเป็นวงจรแบ่งแรงดัน ซึ่งประกอบด้วย R1และ R2. วงจรนี้มีชื่อว่า Wien bridge oscillator. ถ้าวงจรมีการป้อนกลับแบบวกมากกว่าแบบลบ ขนาดของ  $v_o$  จะใหญ่ขึ้นเรื่อยๆจนถูก ขลิบ. แต่ถ้าการป้อนกลับแบบลบมากกว่าแบบวก วงจรจะไม่กำเนิดสัญญาฉออกมา.



รูปที่ 9.5 วงจรกำเนิดสัญญาณรูป sine.

การทำงานของวงจรได้แสดงไว้ในรูปที่ 9.5 ข. แรงคัน  $v_o$  เมื่อผ่านวงจรป้อนกลับแบบเลือกความถึ่ แล้ว ได้สัญญาณ  $v_{i1}$  ที่มีขนาดเล็กลงแต่มีเฟสคงเดิม. สัญญาณ  $v_o$  นี้ถูกขยายขึ้นมาโดยวงจรขยายแบบไม่ กลับขั้ว ด้วยอัตราขยาย 1+R1/R2. ถ้าเมื่อขยายแล้วได้สัญญาณเหมือนกับ  $v_o$  ทั้งขนาดและเฟส วงจรจะ กำเนิดสัญญาณที่ความถี่นี้ต่อไปได้เรื่อยๆ โดยมีขนาดและความถี่ไม่เปลี่ยนแปลงจากเดิม. แต่ถ้าขยายแล้ว ได้สัญญาณที่แตกต่างจาก  $v_o$  วงจรอาจไม่สามารถกำเนิดสัญญาณได้หรือสัญญาณที่กำเนิดมีขนาดใหญ่ขึ้น เรื่อยๆจนถูกขลิบ.

วงจรเลือกความถี่ในรูปที่ 9.5 ก จะให้ขนาดของแรงดันป้อนกลับสูงสุดเมื่อ  $f_{mid}=\frac{1}{2\pi RC}$  และที่ ความถี่นี้  $\frac{v_{i1}}{v_o}=\frac{1}{3}$ . ดังนั้น อัตราขยายของวงจรไม่กลับขั้วควรจะมีค่าเท่ากับ  $\frac{1}{3}$  นี้ด้วย. ในทางปฏิบัติ เราจะ ไม่สามารถปรับให้การป้อนกลับแบบบวกและลบมีขนาดที่สมดุลกันด้วยการเลือกค่าตัวต้านทานมาใส่ใน วงจร. เราจะใช้วิธีสร้างตัวต้านทานที่มีความไม่เป็นเชิงเส้นเล็กน้อย เพื่อควบคุมขนาดของ  $v_o$ . ถ้าขนาด สัญญาณต่ำหรือไม่มีสัญญาณ เราจะให้มีการป้อนกลับแบบบวกมากกว่าแบบลบ เพื่อให้วงจรสามารถกำเนิด สัญญาณขึ้นมาได้. แต่เมื่อสัญญาณมีขนาดใหญ่แล้ว เราจะให้มีการป้อนกลับแบบบวกเท่ากับแบบลบ เพื่อจะคงขนาดสัญญาณที่ได้เอาไว้.

ในรูปที่ 9.5 ก นี้ สมมุติให้สัญญาณ  $v_o$  มีขนาดเล็ก ไดโอดทั้งสองตัวไม่นำกระแส. เราจะเลือกให้ 1+R1/R2 มากกว่า 3 เพียงเล็กน้อย. เมื่อสัญญาณ  $v_o$  มีขนาดใหญ่ ไดโอดสามารถนำกระแสได้ จะทำให้ได้  $R_{ST}$  ขนานกับ R1 ซึ่งทำให้อัตราขยายแรงดันเปลี่ยนไปเป็น  $1+(R1//R_{ST})/R2$ . เราต้องเลือกค่า  $R_{ST}$  เพื่อทำ ให้อัตราขยายค่าใหม่นี้น้อยกว่า 3 เล็กน้อย. ถ้าเราเลือกค่าของตัวต้านทานต่างๆอย่างเหมาะสม จะทำให้ ความเพี้ยนของสัญญาณ sine ต่ำกว่า 1% ได้.

## 9.5. อุปกรณ์ที่ใช้ในการทดลอง

| Op-amp เบอร์ LM741                                                                          | 1 | ตัว     |
|---------------------------------------------------------------------------------------------|---|---------|
| R 1/4W 5% $10\text{k}\Omega$                                                                | 2 | ตัว     |
| R 1/4W 5% 1k $\Omega$ , 2.7k $\Omega$ , 3.9k $\Omega$ , 5.6k $\Omega$ , 8.2k $\Omega$ ค่าละ | 1 | ตัว     |
| R 1/4W 5% 12k $\Omega$ , 120k $\Omega$ ค่าละ                                                | 1 | ตัว     |
| C 15nF                                                                                      | 2 | ตัว     |
| C 100nF                                                                                     | 1 | ตัว     |
| ใคโอค 1N4148                                                                                | 2 | ตัว     |
| แหล่งจ่ายแรงคัน                                                                             | 1 | เครื่อง |
| Digital Multimeters                                                                         | 2 | ตัว     |
| Oscilloscope                                                                                | 1 | เครื่อง |

#### 9.6. การทดลอง

#### 9.6.1. วงจรเปรียบเทียบแรงดัน

ต่อวงจรตามรูปที่ 9.6. ปรับ  $V_S$  ให้มีค่าประมาณ 15  $V_S$ 

วัค  $v_{i2}$  = \_\_\_\_\_ V.

วัด  $v_o =$  \_\_\_\_\_ V.

ปรับ  $V_S$  ให้มีค่าประมาณ 5 V.

วัด  $v_o =$ \_\_\_\_\_ V.

ปรับ  $V_S$  เพื่อหาแรงคัน  $V_S$  ที่ทำให้  $v_o$  เปลี่ยนระดับแรงคัน.

วัด  $V_S =$  \_\_\_\_\_\_ V. ( $V_S$  ที่ทำให้  $v_o$  เปลี่ยนระดับแรงดัน.)



รูปที่ 9.6 วงจรเปรียบเทียบแรงคัน.

ในรายงานให้อภิปรายโดยเปรียบเทียบค่า  $v_{i2}$  ที่วัดได้กับค่า  $V_S$  ที่ทำให้  $v_o$  เปลี่ยนระดับแรงดัน.

# 9.6.2. วงจร Op-Amp ที่มีการป้อนกลับแบบบวก

ต่อวงจรตามรูปที่ 9.7. ให้วัดแรงดันที่จุดต่างๆ เพื่อเขียน transfer characteristic ระหว่างแรงดัน  $v_o$  และ  $V_S$ . ลงในพื้นที่ในรูปที่ 9.8.



รูปที่ 9.7 วงจร op-amp ที่มีการป้อนกลับแบบบวก.



รูปที่ 9.8 Transfer characteristic ของวงจรในรูปที่ 9.7.

ในรายงานให้อภิปรายเปรียบเทียบกราฟ transfer characteristic ที่ได้จากการทดลองกับทฤษฎี.

## 9.6.3. วงจรกำเนิดสัญญาณสี่เหลี่ยม

ต่อวงจรตามรูปที่ 9.9. ใช้ oscilloscope คูรูปคลื่นของ  $v_{i1}$ ,  $v_{i2}$ , และ  $v_o$ . บันทึกรูปคลื่นแรงคันทั้ง สามบนพื้นที่กราฟเคียวกัน.



รูปที่ 9.9 วงจรกำเนิดสัญญาณสี่เหลี่ยม และพื้นที่วาดสัญญาณ.

ให้ปิดแหล่งจ่ายไฟ. ต่อ probe ของ oscilloscope เพื่อวัดสัญญาณของแหล่งจ่ายไฟด้านบวกและ  $v_o$ . เปิดสวิทช์ของแหล่งจ่ายไฟ. บันทึกรูปกลื่นสัญญาณ  $v_o$  ขณะที่เริ่มต้นจ่ายไฟในรูปที่ 9.10.



รูปที่ 9.10 พื้นที่วาดสัญญาณเมื่อเริ่มต้นจ่ายไฟฟ้า.

ในรายงานให้อภิปรายเปรียบเทียบความถี่และ duty cycle ของสัญญาณ  $v_o$  ที่วัดได้กับทฤษฎี.

#### 9.6.4. วงจรกำเนิดสัญญาณ Sine

ต่อวงจรตามรูปที่ 9.11. ใช้ oscilloscope คูรูปกลื่นของ  $v_{i1}$ ,  $v_{i2}$ , และ  $v_o$ . บันทึกรูปกลื่นแรงคันทั้ง สามบนพื้นที่กราฟเดียวกัน.

วัดขนาดของ  $v_o$  = \_\_\_\_\_\_  ${
m V_{pp}}.$  วัดความถี่ของ  $v_o$  = \_\_\_\_\_\_ Hz



รูปที่ 9.11 วงจรกำเนิคสัญญาณ sine และพื้นที่วาคสัญญาณ.

ถ้าตัด  $R_{ST}$  ออกจากวงจร จะได้ output เป็นอย่างไร.

ให้ปิดแหล่งจ่ายไฟ. ต่อตัวด้านทาน  $R_{ST}$  ลงในวงจร และต่อ probe ของ oscilloscope เพื่อวัด สัญญาณของแหล่งจ่ายไฟด้านบวกและ  $v_o$ . เปิดสวิทช์ของแหล่งจ่ายไฟ. บันทึกรูปคลื่นสัญญาณ  $v_o$  ขณะที่ เริ่มต้นจ่ายไฟฟ้าลงในรูปที่ 9.12.



รูปที่ 9.12 พื้นที่วาคสัญญาณเมื่อเริ่มต้นจ่ายไฟฟ้า.

ในรายงานให้อภิปรายเปรียบเทียบความถี่ของสัญญาณ  $v_o$  ที่วัดได้กับทฤษฎี.

# 9.7. สรุปสิ่งที่ได้เรียนรู้

ให้สรุปสิ่งที่เรียนรู้ทั้งหมดจากการทดลองแยกเป็นอีกหัวข้อหนึ่งในท้ายรายงาน โดยสรุปเรียง ตามลำดับเรื่องที่ทดลอง.