1. Ans

(a) Since each node has a dedicated channel to every other node, $H_{avg}=1$ $T_{rmin}=H_{avg}T_r=15ns$ $T_s=\frac{L}{d}=31.25ns$ As $T_w=0$ $T_0=H_{avg}T_{rmin}+T_s=46.25ns$

(b)
$$T_{rmin}=H_{avg}T_r=240ns$$

$$T_s=\frac{L}{d}=31.25ns$$
 As $T_w=0$
$$T_0=H_{avg}T_{rmin}+T_s=271.25ns$$

2. Ans

For a big n stages, N=2ⁿ nodes
The geometric calculation denotes that

avg =
$$10(n - 1 + \sqrt{1 + 2^{2n-6}} + \sqrt{1 + 2^{2n-8}} + \cdots)$$

for that in fig4.3, avg = $10(n-1)$,
i.e. it is $(\sqrt{1 + 2^{2n-6}} + \sqrt{1 + 2^{2n-8}} + \cdots)$ shorter

3. Ans

$$Tr = 20ns$$

k	n	w	Θ_{ideal}	W_n	W_{s}	Т
2	12	2	8	5	2	376
4	6	4	8	10	4	248
8	4	8	8	16	8	224
16	3	16	8	21	16	273
64	2	32	4	32	32	656
4096	1	64	0.125	64	64	20488

The minimal latency occurs when n=4. However, the latency of 224 ns when n=3 is close enough that it would probably be chosen to gain the packaging and wire length advantages of a lower dimension.