МЕЗОНЫ

Легкие мезоны

 $I=1 (\pi, b, \rho, a): u\overline{d}, (u\overline{u}-d\overline{d})/\sqrt{2}, d\overline{u};$ $I=0 (\eta, \dot{\eta}, h, \dot{h}, \omega, \varphi, f, \dot{f}): c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

π^{\pm}	$I^{G}(J^{P}) = 1^{-}(0^{-})$
mc	$e^2 139,57018 \pm 0,00035 \mathrm{MpB}$
	$\tau (2,6033 \pm 0,0005) \cdot 10^{-8} \text{ c}$
	2000000000000000000000000000000000000
$\mu \ v_{\mu}$	
$\mu \ v_{\mu} \ \gamma$	$(2.00 \pm 0.25) \cdot 10^{-4}$
$e v_e$	$(1,230 \pm 0,004) \cdot 10^{-4}$
$e v_e \gamma$	$(7,39 \pm 0,05) \cdot 10^{-7}$
$e v_e \gamma e v_e \pi^0$	$(1,036 \pm 0,006) \cdot 10^{-8}$
$e v_e e^+ e^-$	$(3.2 \pm 0.5) \cdot 10^{-9}$
π^0	$I^{G}(J^{PC}) = 1^{-}(0^{-+})$
	e^2 134,9766 ± 0,0006 M ₃ B
nic.	$\tau (8,52 \pm 0.18) \cdot 10^{-17} \text{ c}$
	$98,823 \pm 0,034\%$
$e^+e^-\gamma$	
$e e \gamma$	$1,174 \pm 0,035\%$
$e^{+}_{+}e^{+}e^{-}e^{-}$	$(3,34 \pm 0,16) \cdot 10^{-5}$
e^+e^-	$(6,46\pm0,33)\cdot10^{-8}$
4γ	$< 2 \cdot 10^{-8}$
$\pi(1300)$	$I^{G}(J^{PC}) = 1^{-}(0^{-+})$
	$e^2 1300 \pm 100 \text{ M} \ni \text{B}$
	Г 200 ÷ 600 МэВ
ρ π	наблюдался
$\pi_1(1400)$	$I^{G}(J^{PC}) = 1^{-}(1^{-+})$
	$e^2 1354 \pm 25 \text{ M}{\circ}\text{B}$
mc	
mc	$f^2 1354 \pm 25 \text{ M}{\circ}\text{B}$ $f 330 \pm 35 \text{ M}{\circ}\text{B}$
$\eta \pi^0$	$ ho^2$ 1354 ± 25 MэB Г 330 ± 35 МэВ наблюдался
$\eta \pi^0$ $\eta \pi^-$	2 ² 1354 ± 25 МэВ Г 330 ± 35 МэВ наблюдался наблюдался
$\eta \pi^0$ $\eta \pi^ \pi_1(1600)$	$t^2 1354 \pm 25 \text{ MэB}$ Г $330 \pm 35 \text{ МэB}$ наблюдался наблюдался $I^G(J^{PC}) = I^-(1^{-+})$
$\eta \pi^0$ $\eta \pi^ \pi_1(1600)$	f^{2} 1354 ± 25 МэВ Г 330 ± 35 МэВ наблюдался наблюдался $f^{G}(J^{PC}) = f^{-}(f^{-+})$ f^{2} 1662- g^{+8} МэВ
mc $ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $ mc	t^{2} 1354 ± 25 MэВ t^{2} 330 ± 35 МэВ наблюдался наблюдался $t^{G}(J^{PC}) = t^{-}(t^{-+})$ t^{2} 1662 ₋₉ ⁺⁸ МэВ t^{2} 241 ± 40 МэВ
$ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $ $ mc $ $ b_{1}(1235) \pi $	f^{2} 1354 ± 25 МэВ f^{2} 330 ± 35 МэВ наблюдался наблюдался $f^{G}(J^{PC}) = f^{-}(f^{-+})$ f^{2} 1662 ₋₉ ⁺⁸ МэВ f^{2} 241 ± 40 МэВ наблюдался
mc $ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $ mc	t^{2} 1354 ± 25 MэВ t^{2} 330 ± 35 МэВ наблюдался наблюдался $t^{G}(J^{PC}) = t^{-}(t^{-+})$ t^{2} 1662 ₋₉ ⁺⁸ МэВ t^{2} 241 ± 40 МэВ
$ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $ $ mc $ $ b_{1}(1235) \pi $	f^{2} 1354 ± 25 МэВ f 330 ± 35 МэВ наблюдался наблюдался $f^{G}(J^{PC}) = f^{-}(f^{-+})$ f^{2} 1662-9 ⁺⁸ МэВ f^{2} 241 ± 40 МэВ наблюдался
$ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $ $ mc $ $ b_{1}(1235) \pi $ $ \eta'(958) \pi^{-} $ $ f_{1}(1285) \pi $	f^{2} 1354 ± 25 МэВ Г 330 ± 35 МэВ наблюдался наблюдался $f^{G}(J^{PC}) = f^{-}(f^{-+})$ f^{2} 1662 ₋₉ ⁺⁸ МэВ Г 241 ± 40 МэВ наблюдался наблюдался
$ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $	$S^2 1354 \pm 25 \text{ M}{}_{2}\text{B}$ $\Gamma 330 \pm 35 \text{ M}{}_{2}\text{B}$ наблюдался наблюдался $I^G(J^{PC}) = I^-(I^{-+})$ $S^2 1662_{-9}^{+8} \text{ M}{}_{2}\text{B}$ $\Gamma 241 \pm 40 \text{ M}{}_{2}\text{B}$ наблюдался наблюдался наблюдался $I^G(J^{PC}) = I^-(2^{-+})$
$ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $ $ mc $ $ b_{1}(1235) \pi $ $ \eta'(958) \pi^{-} $ $ f_{1}(1285) \pi $ $ \pi_{2}(1670) $	$S^2 1354 \pm 25$ МэВ $\Gamma 330 \pm 35$ МэВ наблюдался наблюдался $I^G(J^{PC}) = I^-(I^{-+})$ $S^2 1662_{-9}^{+8}$ МэВ $\Gamma 241 \pm 40$ МэВ наблюдался наблюдался наблюдался $I^G(J^{PC}) = I^-(2^{-+})$ $S^2 1672_{-9}^{-2} \pm 3_{-9}^{-2}$ МэВ
$ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $ $ mc $ $ b_{1}(1235) \pi $ $ \eta'(958) \pi^{-} $ $ f_{1}(1285) \pi $ $ \pi_{2}(1670) $	f^{2} 1354 ± 25 MэВ f^{2} 330 ± 35 МэВ наблюдался наблюдался $f^{G}(J^{PC}) = f^{-}(f^{-+})$ f^{2} 1662-9 ⁺⁸ МэВ f^{2} 241 ± 40 МэВ наблюдался наблюдался наблюдался $f^{G}(J^{PC}) = f^{-}(f^{-+})$ f^{2} 1672,2 ± 3,0 МэВ f^{2} 260 ± 9 МэВ
$ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $ $ mc $ $ b_{1}(1235) \pi $ $ \eta'(958) \pi^{-} $ $ f_{1}(1285) \pi $ $ \pi_{2}(1670) $ $ mc $ $ 3\pi $	f^{2} 1354 ± 25 МэВ f^{2} 330 ± 35 МэВ наблюдался наблюдался f^{2} (f^{PC}) = f^{-1} (f^{-1}) f^{2} 1662- g^{+8} МэВ f^{2} 241 ± 40 МэВ наблюдался наблюдался наблюдался f^{2} (f^{PC}) = f^{-1} (f^{-1}) f^{2} 1672,2 ± 3,0 МэВ f^{2} 260 ± 9 МэВ 95,8 ± 1,4%
$ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $ $ mc $ $ b_{1}(1235) \pi $ $ \eta'(958) \pi^{-} $ $ f_{1}(1285) \pi $ $ \pi_{2}(1670) $	f^{2} 1354 ± 25 MэВ f^{2} 330 ± 35 МэВ наблюдался наблюдался $f^{G}(J^{PC}) = f^{-}(f^{-+})$ f^{2} 1662-9 ⁺⁸ МэВ f^{2} 241 ± 40 МэВ наблюдался наблюдался наблюдался $f^{G}(J^{PC}) = f^{-}(f^{-+})$ f^{2} 1672,2 ± 3,0 МэВ f^{2} 260 ± 9 МэВ
$ \eta \pi^{0} $ $ \eta \pi^{-} $ $ \pi_{1}(1600) $ $ mc $ $ b_{1}(1235) \pi $ $ \eta'(958) \pi^{-} $ $ f_{1}(1285) \pi $ $ \pi_{2}(1670) $ $ mc $ $ 3\pi $	f^{2} 1354 ± 25 МэВ f^{2} 330 ± 35 МэВ наблюдался наблюдался f^{2} (f^{PC}) = f^{-1} (f^{-1}) f^{2} 1662- g^{+8} МэВ f^{2} 241 ± 40 МэВ наблюдался наблюдался наблюдался f^{2} (f^{PC}) = f^{-1} (f^{-1}) f^{2} 1672,2 ± 3,0 МэВ f^{2} 260 ± 9 МэВ 95,8 ± 1,4%

	C PC
$f_0(500)$	$I^{G}(J^{PC}) = 0^{+}(0^{++})$
	$mc^2 400 \div 550 \text{ M}{\circ}\text{B}$
	Г 400 ÷ 700 МэВ
$\pi \pi$	преобладающий
γγ	наблюдался
$f_0(980)$	$I^{G}(J^{PC}) = 0^{+}(0^{++})$
	$mc^2 990 \pm 20 \text{ M} \Rightarrow \text{B}$
	$\Gamma 40 \div 100 \text{ M} \odot \text{B}$
$\pi \frac{\pi}{-}$	преобладающий
KK	наблюдался
<u> </u>	наблюдался
$f_2(1270)$	$I^{G}(J^{PC}) = 0^{+}(2^{++})$
	mc^{2} 1275,1 ± 1,2 M9B Γ 185,1 _{-2,4} ^{+2,9} M9B 84,8 _{-1,2} ^{+2,4} % 7,1 _{-2,7} ^{+1,4} %
	Т 185,1 _{-2,4} ^{-2,5} МэВ
$\frac{\pi}{\pi^+}\frac{\pi}{\pi^-}2\pi^0$	84,8 _{-1,2} -, % ₀
	/,1-2,7 %0
$rac{KK}{2\pi^+} 2\pi^-$	$4.6 \pm 0.4\%$
	$2.8 \pm 0.4\%$ $(4.0 \pm 0.8) \cdot 10^{-3}$
$rac{\eta}{4\pi^0}$	$(4.0 \pm 0.8) \cdot 10$ $(3.0 \pm 1.0) \cdot 10^{-3}$
	$(3.0 \pm 1.0) \cdot 10$ $(1.64 \pm 0.19) \cdot 10^{-5}$
γγ	
$f_1(1285)$	$I^{G}(J^{PC}) = 0^{+}(1^{++})$
	mc^2 1282,9 ± 0,5 M ₂ B
4π	Γ 24,2 ± 1,1 M ₉ B 33,1 _{-1,8} ^{+2,1} %
$4\pi^0$	$<7.10^{-4}\%$
$\eta \pi^+ \pi^-$	
ηππ	$35 \pm 15\%$ $52,4_{-2,2}^{+1,9}\%$
$K\overline{K}\pi$	$9.0 \pm 0.4\%$
$\pi^{^+}\pi^{^-}\pi^0$	$(3.0 \pm 0.9) \cdot 10^{-3}$
$\rho^{^\pm} \; \pi^{^\mp}$	$< 3,1 \cdot 10^{-3}$
$\gamma \rho^0$	$5.5 \pm 1.3\%$
φγ	$(7.4 \pm 2.6) \cdot 10^{-4}$
$f_0(1370)$	$I^{G}(J^{PC}) = 0^{+}(0^{++})$
	mc^2 1200 ÷ 1500 МэВ
	Г 200 ÷ 500 МэВ
$\pi \pi$	наблюдался
η η	наблюдался
KK	наблюдался
<u> </u>	наблюдался
$f_1(1420)$	$I^{G}(J^{PC}) = 0^{+}(1^{++})$
	mc^2 1426,4 ± 0,9 M ₂ B
	Γ 54,9 ± 2,6 МэВ
$KK\pi$	преобладающий
φγ	наблюдался

	$I^{G}(J^{PC}) = 0^{+}(0^{-+})$
η	c^2 547,862 ± 0,018 M ₃ B
	$\Gamma 1.31 \pm 0.05$ кэВ
2γ	$39.41 \pm 0.20\%$
$3\pi^0$	$32,68 \pm 0.23\%$
$\pi^0 2\gamma$	$(2.7 \pm 0.5) \cdot 10^{-4}$
$\pi^+\pi^-\pi^0$	$22,92 \pm 0,28\%$
$\pi^+ \pi^- \gamma$	$4,22 \pm 0.08\%$
$e^+ e^- \gamma$	$(6.9 \pm 0.4) \cdot 10^{-3}$
$\mu^+\mu^-\gamma$	$(3,1 \pm 0,4) \cdot 10^{-4}$ < $5,6 \cdot 10^{-6}$
e^+e^-	
$\mu^+\mu^-$	$(5.8 \pm 0.8) \cdot 10^{-6}$
η (958)	$I^{G}(J^{PC}) = 0^{+}(0^{-+})$
	c^2 957,78 ± 0,06 M ₃ B
	$\Gamma 0.198 \pm 0.009 \text{ M} \cdot \text{B}$
$\pi_0^+ \pi^- \eta$	$42.9 \pm 0.7\%$
$ ho^0 \gamma \ \pi^0 \pi^0 \eta$	$29.1 \pm 0.5\%$
	$22.2 \pm 0.8\%$
ωγ	$2,75 \pm 0,23\%$ $2,20 \pm 0,08\%$
$\frac{\gamma}{3\pi^0}$	$(2.14 \pm 0.20) \cdot 10^{-3}$
$\mu^+\mu^-\gamma$	$(1.08 \pm 0.27) \cdot 10^{-4}$
$\pi^+\pi^-\pi^0$	$(3.8 \pm 0.4) \cdot 10^{-3}$
	$I^{G}(J^{PC}) = 0^{+}(0^{-+})$
$\eta(1295)$	$c^2 1294 \pm 4 \text{ M} \Rightarrow \text{B}$
	Γ 55 ± 5 M ₃ B
$\eta \; \pi^{\scriptscriptstyle +} \; \pi^{\scriptscriptstyle -}$	наблюдался
$a_0(980) \pi$	наблюдался
$\eta(1405)$	$I^{G}(J^{PC}) = 0^{+}(0^{-+})$
	$c^2 1408.9 \pm 1.8 \text{ M} \Rightarrow \text{B}$
	$\Gamma 51.0 \pm 2.9 \ \text{МэВ}$
$K\overline{K}\pi$	наблюдался
ηππ	наблюдался
$\eta(1475)$	$I^{G}(J^{PC}) = 0^{+}(0^{-+})$
	$c^2 1476 \pm 4 \text{ M}{\circ}\text{B}$
	$\Gamma 85 \pm 9 \text{ M}_{\text{3}}\text{B}$
$K\overline{K}\pi$	преобладающий
$K\overline{K}^*(892)+c.c.$	наблюдался
<u> </u>	наблюдался
$ ho(770)^{\pm}$	$I^{G}(J^{PC}) = 1^{+}(1^{})$
	c^2 775,26 ± 0,25 M ₃ B
	$\Gamma 149,1 \pm 0,8 \text{ M}{\circ}\text{B}$
$\pi \pi$	$\approx 100\%$
πγ	$(4.5 \pm 0.5) \cdot 10^{-4}$ $< 6 \cdot 10^{-3}$
$\pi \eta$	
$\pi \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \pi^0$	$< 2.0 \cdot 10^{-3}$

$\overline{ ho(770)^0}$	$I^{G}(J^{PC}) = 1^{+}(1^{})$
p(110)	mc^2 775,26 ± 0,25 M ₂ B
	Γ 149,1 ± 0,8 МэВ
ππ	pprox 100%
$\pi_0^+ \pi^- \gamma$	$(9.9 \pm 1.6) \cdot 10^{-3}$
$\pi^0 \gamma$	$(6.0 \pm 0.8) \cdot 10^{-4}$
$\eta \gamma \ \pi^0 \pi^0 \gamma$	$(3,00 \pm 0,20) \cdot 10^{-4}$ $(4,5 \pm 0,8) \cdot 10^{-5}$
$\mu^+ \mu^-$	$(4.55 \pm 0.28) \cdot 10^{-5}$
$e^+ e^-$	$(4,72 \pm 0.05) \cdot 10^{-5}$
$\pi^{+}_{\perp}\pi^{-}_{\perp}\pi^{0}_{\perp}$	$(1.01_{-0.36}^{+0.54} \pm 0.34) \cdot 10^{-4}$
$\pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$(1.8 \pm 0.9) \cdot 10^{-5}$
$\pi^{^{+}}\pi^{^{-}}\pi^{^{0}}\pi^{^{0}} = \pi^{^{0}}\pi^{^{0}} = \pi^{^{0}}\pi^{^{0$	$(1.6 \pm 0.8) \cdot 10^{-5}$ $< 1.2 \cdot 10^{-5}$
<i>n</i> e e	
$\rho(1450)$	$I^{G}(J^{PC}) = 1^{+}(1^{-})$
	$mc^2 1465 \pm 25 \text{ M}{\circ}\text{B}$
	$\Gamma 400 \pm 60 \text{ M} \cdot \text{B}$
$\pi \pi$	наблюдался
4π $e^+ e^-$	наблюдался наблюдался
	$I^G(J^{PC}) = 1^+(3^{})$
$\rho_3(1690)$	mc^2 1688,8 ± 2,1 M ₂ B
	$\Gamma 161 \pm 10 \text{ M} \cdot \text{B}$
4π	$71.1 \pm 1.9\%$
$\pi \pi$	$23.6 \pm 1.3\%$
$K\overline{K}\pi$	$3.8 \pm 1.2\%$
$K\overline{K}$	$1,58 \pm 0,26\%$
$\rho(1700)$	$I^{G}(J^{PC}) = 1^{+}(1^{})$
-	mc^2 1720 ± 20 M ₃ B
	$\Gamma 250 \pm 100 \text{ M}{\odot}\text{B}$
$2(\pi^+\pi^-)$	большая вероятность
ρππ	преобладающий
$\omega(782)$	$I^{G}(J^{PC}) = 0^{-}(1^{-})$
	mc^2 782,65 ± 0,12 M ₃ B Γ 8,49 ± 0,08 M ₃ B
$\pi^{^+}\pi^{^-}\pi^0$	$89,2 \pm 0,7\%$
$\pi^0 \ \gamma$	$8.28 \pm 0.28\%$
$\pi^{^+}\pi^{^-}$	$1,53_{-0,13}^{+0,110}$ %
$\eta \gamma \over \pi^0 e^+ e^-$	$(4.6 \pm 0.4) \cdot 10^{-4}$ $(7.7 \pm 0.6) \cdot 10^{-4}$
$\pi^0 \mu^+ \mu^-$	$(7,7\pm0,0)$ 10 $(1,3\pm0,4)\cdot10^{-4}$
$e^+ e^-$	$(7.28 \pm 0.14) \cdot 10^{-5}$
$\pi^0_{_+}\pi^0_{}\gamma$	$(6.6 \pm 1.1) \cdot 10^{-5}$
$\mu^+ \mu^-$	$(9.0 \pm 3.1) \cdot 10^{-5}$

$\omega(1420)$	$I^{G}(J^{PC}) = 0^{-}(1^{-})$	$a_0(1450)$	$I^{G}(J^{PC}) = 1^{-}(0^{++})$
	$c^2 1400 \div 1450 \text{ M}{\circ}\text{B}$	mo	$c^2 1474 \pm 19 \text{ M}{\circ}\text{B}$
	Γ 180 ÷ 250 МэВ		Γ 265 ± 13 M ₂ B
ρ π	преобладающий		
ωππ	наблюдался	$\pi \underline{\eta}$	наблюдался
$b_1(1235) \pi$	наблюдался	KK	наблюдался
$e^{+}e^{-}$	наблюдался	$\pi \eta'(958)$	наблюдался
		ω π π	наблюдался
$\omega(1650)$	$I^{G}(J^{PC}) = 0^{-}(1^{})$	$a_0(980) \pi \pi$	наблюдался
m	$c^2 1670 \pm 30 \text{ M}{\circ}\text{B}$	<u> </u>	наблюдался
	Γ 315 ± 35 M ₃ B	(1020)	$I^{G}(J^{PC}) = 0^{-}(1^{-})$
$ ho \pi$	наблюдался	$\varphi(1020)$	
ω π π	наблюдался		c^2 1019,461 ± 0,019 M ₂ B
ωη	наблюдался		$\Gamma 4,266 \pm 0,031 \text{ M}{\circ}\text{B}$
e^+e^-	наблюдался	K^+K^-	$48.9 \pm 0.5\%$
a. (1(70)	$I^{G}(J^{PC}) = 0^{-}(3^{-})$	$K_L^0 K_S^0$	$34.2 \pm 0.4\%$
$\omega_3(1670)$		$\rho \; \pi + \pi^+ \pi^- \pi^0$	$15,32 \pm 0,32\%$
m	$c^2 1667 \pm 4 \text{ M}_2\text{B}$	-	$1,309 \pm 0,024\%$
	$\Gamma 168 \pm 10 \text{ M} \Rightarrow \text{B}$	$\eta \gamma \over \pi^0 \gamma$	$(1,27\pm0,06)\cdot10^{-3}$
ρ π	наблюдался	$e^+ \stackrel{\cdot}{e}^-$	$(2,954 \pm 0,030) \cdot 10^{-4}$
$\omega \pi \pi$	наблюдался	$\mu^+ \mu^-$	$(2.87 \pm 0.19) \cdot 10^{-4}$
$b_1(1235) \pi$	возможно наблюдался	$\eta e^+ e^-$	$(1,15 \pm 0,10) \cdot 10^{-4}$
$a_0(980)$	$I^{G}(J^{PC}) = 1^{-}(0^{++})$	$\mu^+\mu^- \ \eta \ e^+e^- \ \pi^+\pi^-$	$(7.4 \pm 1.3) \cdot 10^{-5}$
m	$c^2 980 \pm 20 \text{ M} \rightarrow \text{B}$	$\omega \pi^0$	$(4.7 \pm 0.5) \cdot 10^{-5}$
	Γ 50 ÷ 100 M ₂ B	$oldsymbol{\pi}^{^+} oldsymbol{\pi}^{^-} oldsymbol{\gamma}$	$(4.1 \pm 1.3) \cdot 10^{-5}$
η π	преобладающий	$f_0(980) \gamma$	$(3,22 \pm 0,19) \cdot 10^{-4}$
$K\overline{K}$	наблюдался	π^{0} π^{0} γ	$(1,13 \pm 0,06) \cdot 10^{-4}$
γγ	наблюдался	$\pi^0 \; e^+ \; e^-$	$(1,12 \pm 0,28) \cdot 10^{-5}$
	$I^{G}(J^{PC}) = 1^{-}(1^{++})$	$\varphi(1680)$	$I^{G}(J^{PC}) = 0^{-}(1^{-})$
$a_1(1260)$	` ` ′ ` ` ′	φ(1000)	$c^2 1680 \pm 20 \text{ M} \Rightarrow \text{B}$
m	$c^2 1230 \pm 40 \text{ M} \cdot \text{B}$		$\Gamma 150 \pm 50 \text{ M} \Rightarrow \text{B}$
	Г 250 ÷ 600 МэВ		1 130 ± 30 Wi3D
$\rho \pi$	наблюдался	$K\overline{K}^*(892)+c.c.$	преобладающий
$\rho(1450) \pi$	наблюдался	$K_S^0 K \pi$	наблюдался
$f_0(500) \pi$	наблюдался	$K\overline{K}$	наблюдался
$f_0(1370) \pi$	наблюдался	$e^+ e^-$	наблюдался
$f_2(1270) \pi$ $K\overline{K}^*(892)+c.c.$	наблюдался наблюдался		$I^{G}(J^{PC}) = 0^{-}(3^{-})$
` ,		$\varphi_3(1850)$	$c^2 1854 \pm 7 \text{ M}{\circ}B$
πγ	наблюдался		$\Gamma 87_{-23}^{+28} \text{ M}_{9}\text{B}$
$a_2(1320)$	$I^{G}(J^{PC}) = 1^{-}(2^{++})$		1 67-23 IVI9D
m	c^2 1318,3 $_{-0,6}^{+0,5}$ МэВ	$K\overline{K}$	наблюдался
_	$\Gamma 107 \pm 5 \text{ M}{\circ}\text{B}$	$\overline{KK}^*(892)+c.c.$	наблюдался
3π	$70,1 \pm 2,7\%$		$I^{G}(J^{PC}) = 1^{+}(1^{+})$
η π	$14,5 \pm 1,2\%$	$b_1(1235)$	
ω π π	$10.6 \pm 3.2\%$		c^2 1229,5 ± 3,2 M ₂ B
$K\overline{K}$	$4.9 \pm 0.8\%$		$\Gamma 142 \pm 9 \text{ M}{\circ}\text{B}$
$\eta'(958) \pi$	$(5,3\pm0.9)\cdot10^{-3}$	ω π	преобладающий
$\pi^{\pm}\gamma$	$(2.68 \pm 0.31) \cdot 10^{-3}$	$\boldsymbol{\pi}^{\!$	$(1,6\pm0,4)\cdot10^{-3}$
-	$(9.4 \pm 0.7) \cdot 10^{-6}$	ηρ	наблюдался
$\stackrel{\gamma}{e^+}\stackrel{\gamma}{e^-}$	$<5.10^{-9}$	$K^{*}(892)^{\pm} K^{\mp}$	наблюдался
		II (0/2) II	, ,

Странные мезоны

 $K^{+}=u\bar{s}, K^{0}=d\bar{s}, \overline{K}^{0}=\bar{d}s, K^{-}=\bar{u}s$

K ⁺	$I(J^P) = 1/2(0^-)$
	$mc^2 493,677 \pm 0,016 \text{ M}{\circ}\text{B}$
	$\tau (1,2380 \pm 0,0021) \cdot 10^{-8} \mathrm{c}$
$e^+ v_e$	$(1,581 \pm 0,007) \cdot 10^{-5}$
$\mu^+ v_\mu$	$63,55 \pm 0,11\%$
$\pi^0 e^+ v_e$	$5,07 \pm 0,04\%$
$\pi^0 \mu^+ v_\mu \ \pi^0 \pi^0 e^+ v_e$	$3,353 \pm 0,034\%$
$\pi^0 \pi^0 e^+ v_e$	$(2,2\pm0,4)\cdot10^{-5}$
$\pi^+ \pi^- e^+ v_e$	$(4,254 \pm 0,032) \cdot 10^{-5}$
$\pi^+\pi^-\mu^+\nu_\mu$	$(1,4\pm0,9)\cdot10^{-5}$
$\pi^{\scriptscriptstyle +}\pi^0$	$20,66 \pm 0,08\%$
$\pi^{^+}\pi^0\pi^0$	$1,761 \pm 0,022\%$
$oldsymbol{\pi}^{^+} oldsymbol{\pi}^{^-} oldsymbol{\pi}^{^+}$	$5,59 \pm 0,04\%$
$\mu^+ v_\mu \gamma$	$(6.2 \pm 0.8) \cdot 10^{-3}$
$e^+ v_e \gamma$	$(9.4 \pm 0.4) \cdot 10^{-6}$
$\pi^0 e^+ v_e \gamma$	$(2,56 \pm 0,16) \cdot 10^{-4}$
$\pi^0 \mu^+ \nu_\mu \gamma \ \pi^+ \pi^0 \pi^0 \gamma$	$(1,25 \pm 0,25) \cdot 10^{-5}$ $(7,6_{-3,0}^{+6,0}) \cdot 10^{-5}$
$\pi^+ \pi^0 \pi^0 \gamma$	$(7,6_{-3,0}^{+6,0})\cdot 10^{-5}$
$\pi^{^+} \pi^{^+} \pi^{^-} \gamma$	$(1.04 \pm 0.31) \cdot 10^{-4}$
$\pi^+ \gamma \gamma$	$(9,2\pm0,7)\cdot10^{-7}$
$e^+ v_e v \overline{v}$	$< 6.10^{-5}$
$\mu^+ v_\mu v \overline{v}$	$< 6.0 \cdot 10^{-6}$
$e^+ v_e e^+ e^-$	$(2,48 \pm 0,20) \cdot 10^{-8}$
$\mu^{+} v_{\mu} e^{+} e^{-}$	$(7,06 \pm 0.31) \cdot 10^{-8}$
$e^{+}v_{a}u^{+}u^{-}$	$(1,7 \pm 0,5) \cdot 10^{-8}$
$\mu^+ v_\mu \mu^+ \mu^-$	$<4,1\cdot10^{-7}$
$\mu^{+} \nu_{\mu} \mu^{+} \mu^{-} $ $\pi^{+} e^{+} e^{-}$	$(3.00 \pm 0.09) \cdot 10^{-7}$
$\pi^{^+}\mu^{^+}\mu^{^-}$	$(9.4 \pm 0.6) \cdot 10^{-8}$
$\pi^+ \nu \overline{\nu}$	$(1,7 \pm 1,1) \cdot 10^{-10}$

 K^0 $50\% K_S$, $50\% K_L$ $I(J^P) = 1/2(0^-)$

 $mc^2 497,614 \pm 0,024 \text{ M} \Rightarrow \text{B}$

K_S^{0}	$I(J^P) = 1/2(0^-)$
	$c(0.8954 \pm 0.0004) \cdot 10^{-10} c$
$\pi^0 \ \pi^0$	$30,69 \pm 0,05\%$
$oldsymbol{\pi}^{^+} oldsymbol{\pi}^{^-}$	$69,20 \pm 0,05\%$
$\pi^{^+}\pi^{^-}\pi^0$	$(3.5_{-0.9}^{+1.1})\cdot 10^{-7}$
$\pi^+ \pi^- \gamma$	$(1,79 \pm 0,05) \cdot 10^{-3}$
$\pi^+\pi^-e^+e^-$	$(4,79 \pm 0,15) \cdot 10^{-5}$
$\pi^0 \gamma \gamma$	$(4.9 \pm 1.8) \cdot 10^{-8}$
γγ	$(2,63 \pm 0,17) \cdot 10^{-6}$
$\pi^{\pm} e^{\mp} v_e$	$(7,04 \pm 0,08) \cdot 10^{-4}$
$\pi^0 \; e^+ \; e^-$	$(3,0_{-1,2}^{+1,5})\cdot 10^{-9}$
$\pi^0\mu^+\mu^-$	$(2,9_{-1,2}^{+1,5})\cdot 10^{-9}$

	-
K_L^{0}	$I(J^P) = 1/2(0^-)$
1	$\tau (5,116 \pm 0,021) \cdot 10^{-8} \mathrm{c}$
$\pi^{\pm} e^{\mp} v_e$	$40,55 \pm 0,11\%$
$\pi^{\pm} \mu^{\mp} v_{\mu}$	$27,04 \pm 0,07\%$
(π µ атом) v	$(1.05 \pm 0.11) \cdot 10^{-7}$
$\pi^0 \pi^{\pm} e^{\mp} v$	$(5,20\pm0,11)\cdot10^{-5}$
$\pi^{\pm} e^{\mp} v e^{+} e^{-}$	$(1,26\pm0,04)\cdot10^{-5}$
$3\pi^0$	$19,52 \pm 0,12\%$
π^+ $\pi^ \pi^0$	$12,54 \pm 0,05\%$
$\pi_0^+\pi_0^-$	$(1,967 \pm 0,010) \cdot 10^{-3}$
$\pi^0 \pi^0$	$(8,64 \pm 0,06) \cdot 10^{-4}$
$\pi^{\pm}_{+} e^{\mp} v_e \gamma$	$(3.79 \pm 0.06) \cdot 10^{-3}$
π^{\pm} μ^{\mp} ν_{μ} γ	$(5,65 \pm 0,23) \cdot 10^{-4}$
$\pi^+\pi^-\gamma$	$(4.15 \pm 0.15) \cdot 10^{-5}$
$\pi^0 2\gamma \ \pi^0 \gamma e^+ e^-$	$(1,273 \pm 0,033) \cdot 10^{-6}$ $(1,62 \pm 0,17) \cdot 10^{-8}$
$\frac{\lambda}{2\gamma}$	$(5,47 \pm 0,04) \cdot 10^{-4}$
$e^+e^-\gamma$	$(9,4 \pm 0,4)\cdot 10^{-6}$
$\mu^+ \mu^- \gamma$	$(3.59 \pm 0.11) \cdot 10^{-7}$
$e^+e^-\gamma\gamma$	$(5.95 \pm 0.33) \cdot 10^{-7}$ $(1.0_{-0.6}^{+0.8}) \cdot 10^{-8}$
$\mu_{\perp}^{+}\mu_{\perp}^{-}\gamma\gamma$	$(1,0_{-0,6}^{+0,8})\cdot 10^{-8}$
$\mu^+\mu^- \ e^+e^-$	$(6,84 \pm 0,11) \cdot 10^{-9}$ $(9_{-4}^{+6}) \cdot 10^{-12}$
ρρ	(9-4).10
$\pi^+\pi^-e^+e^-$	$(3,11 \pm 0,19) \cdot 10^{-7}$
$\pi^{+}\pi^{-}e^{+}e^{-}$ $\mu^{+}\mu^{-}e^{+}e^{-}$ $e^{+}e^{-}e^{+}e^{-}$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)$ $K^{*} (892)^{\pm} mc^{2}$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)$ $K^{*} (892)^{\pm} mc^{2}$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M}_{9}B$ $^{3} 50,8 \pm 0,9 \text{ M}_{9}B$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)^{\pm} mc^{2}$ $K^{*} (892)^{0} mc^{2}$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M}_{3}B$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)^{\pm} mc^{2}$ $K^{*} (892)^{0} mc^{2}$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \cdot \text{B}$ $^{3} 50,8 \pm 0,9 \text{ M} \cdot \text{B}$ $^{4} 895,81 \pm 0,19 \text{ M} \cdot \text{B}$ $^{4} 47,4 \pm 0,6 \text{ M} \cdot \text{B}$
$π^{+}π^{-}e^{+}e^{-}$ $μ^{+}μ^{-}e^{+}e^{-}$ $e^{+}e^{-}e^{+}e^{-}$ $K^{*}(892)$ $K^{*}(892)^{\pm}mc^{2}$ $K^{*}(892)^{0}mc^{2}$ K	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \Rightarrow \text{B}$ $^{2} 50,8 \pm 0,9 \text{ M} \Rightarrow \text{B}$ $^{2} 895,81 \pm 0,19 \text{ M} \Rightarrow \text{B}$ $^{2} 47,4 \pm 0,6 \text{ M} \Rightarrow \text{B}$ $\approx 100\%$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)$ $K^{*} (892)^{\pm} mc^{2}$ $K^{*} (892)^{0} mc^{2}$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \cdot \text{B}$ $^{3} 50,8 \pm 0,9 \text{ M} \cdot \text{B}$ $^{4} 895,81 \pm 0,19 \text{ M} \cdot \text{B}$ $^{4} 47,4 \pm 0,6 \text{ M} \cdot \text{B}$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)$ $K^{*} (892)^{\pm} mc^{2}$ $K^{*} (892)^{0} mc^{2}$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \cdot \text{B}$ $^{3} 50,8 \pm 0,9 \text{ M} \cdot \text{B}$ $^{4} 895,81 \pm 0,19 \text{ M} \cdot \text{B}$ $^{4} 47,4 \pm 0,6 \text{ M} \cdot \text{B}$ $\approx 100\%$ $(2,46 \pm 0,21) \cdot 10^{-3}$ $(9,9 \pm 0,9) \cdot 10^{-4}$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)$ $K^{*} (892)^{\pm} mc^{2}$ $K^{*} (892)^{0} mc^{2}$ $K^{*} K^{0} \gamma$ $K^{\pm} \gamma$ $K_{1} (1270)$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \cdot \text{B}$ $^{3} 50,8 \pm 0,9 \text{ M} \cdot \text{B}$ $^{4} 895,81 \pm 0,19 \text{ M} \cdot \text{B}$ $^{4} 47,4 \pm 0,6 \text{ M} \cdot \text{B}$ $\approx 100\%$ $(2,46 \pm 0,21) \cdot 10^{-3}$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)^{\pm} mc^{2}$ $K^{*} (892)^{0} mc^{2}$ $K^{*} (892)^{0} mc^{2}$ $K^{*} \chi$ $K^{+} \chi$ $K^{0} \chi$ $K^{\pm} \chi$ $K_{1} (1270)$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \cdot \text{B}$ $^{3} 50,8 \pm 0,9 \text{ M} \cdot \text{B}$ $^{4} 895,81 \pm 0,19 \text{ M} \cdot \text{B}$ $^{4} 47,4 \pm 0,6 \text{ M} \cdot \text{B}$ $\approx 100\%$ $(2,46 \pm 0,21) \cdot 10^{-3}$ $(9,9 \pm 0,9) \cdot 10^{-4}$ $I(J^{P}) = 1/2(1^{+})$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)$ $K^{*} (892)^{\pm} mc^{2}$ $K^{*} (892)^{0} mc^{2}$ $K^{*} K^{0} \gamma$ $K^{\pm} \gamma$ $K_{1} (1270)$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \cdot \text{B}$ $^{3} 50,8 \pm 0,9 \text{ M} \cdot \text{B}$ $^{4} 895,81 \pm 0,19 \text{ M} \cdot \text{B}$ $^{4} 47,4 \pm 0,6 \text{ M} \cdot \text{B}$ $\approx 100\%$ $(2,46 \pm 0,21) \cdot 10^{-3}$ $(9,9 \pm 0,9) \cdot 10^{-4}$ $I(J^{P}) = 1/2(1^{+})$ $^{4} 1272 \pm 7 \text{ M} \cdot \text{B}$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)^{\pm} mc^{2}$ $K^{*} (892)^{0} mc^{2}$ $K^{*} (892)^{0} mc^{2}$ $K^{*} \chi$ $K^{+} \chi$ $K^{0} \chi$ $K^{\pm} \chi$ $K_{1} (1270)$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \cdot \text{B}$ $^{3} 50,8 \pm 0,9 \text{ M} \cdot \text{B}$ $^{4} 895,81 \pm 0,19 \text{ M} \cdot \text{B}$ $^{4} 47,4 \pm 0,6 \text{ M} \cdot \text{B}$ $^{4} (2,46 \pm 0,21) \cdot 10^{-3}$ $(9,9 \pm 0,9) \cdot 10^{-4}$ $I(J^{P}) = 1/2(1^{+})$ $^{4} 1272 \pm 7 \text{ M} \cdot \text{B}$ $^{5} 90 \pm 20 \text{ M} \cdot \text{B}$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)^{\pm} mc^{2}$ $K^{*} (892)^{0} mc^{2}$ $K^{*} (892)^{0} mc^{2}$ $K^{*} \chi$ $K^{0} \gamma$ $K^{\pm} \gamma$ $K_{1} (1270)$ mc^{2} $K \rho$ $K_{0}^{*} (1430) \pi$ $K^{*} (892) \pi$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \cdot \text{B}$ $^{3} 50,8 \pm 0,9 \text{ M} \cdot \text{B}$ $^{4} 895,81 \pm 0,19 \text{ M} \cdot \text{B}$ $^{4} 47,4 \pm 0,6 \text{ M} \cdot \text{B}$ $^{6} 100\%$ $(2,46 \pm 0,21) \cdot 10^{-3}$ $(9,9 \pm 0,9) \cdot 10^{-4}$ $I(J^{P}) = 1/2(1^{+})$ $^{4} 1272 \pm 7 \text{ M} \cdot \text{B}$ $^{5} 90 \pm 20 \text{ M} \cdot \text{B}$ $^{4} 42 \pm 6\%$ $28 \pm 4\%$ $16 \pm 5\%$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*}(892)$ $K^{*}(892)^{\pm} mc^{2}$ $K^{*}(892)^{0} mc^{2}$	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \cdot \text{B}$ $^{3} 50,8 \pm 0,9 \text{ M} \cdot \text{B}$ $^{4} 74,4 \pm 0,6 \text{ M} \cdot \text{B}$ $\approx 100\%$ $(2,46 \pm 0,21) \cdot 10^{-3}$ $(9,9 \pm 0,9) \cdot 10^{-4}$ $I(J^{P}) = 1/2(1^{+})$ $^{4} 1272 \pm 7 \text{ M} \cdot \text{B}$ $^{5} 90 \pm 20 \text{ M} \cdot \text{B}$ $^{4} 2 \pm 6\%$ $28 \pm 4\%$ $16 \pm 5\%$ $11,0 \pm 2,0\%$
$\pi^{+} \pi^{-} e^{+} e^{-}$ $\mu^{+} \mu^{-} e^{+} e^{-}$ $e^{+} e^{-} e^{+} e^{-}$ $K^{*} (892)$ $K^{*} (892)^{\pm} mc^{2}$ $K^{*} (892)^{0} mc^{2}$ $K^{*} \chi^{*} $	$(3,11 \pm 0,19) \cdot 10^{-7}$ $(2,69 \pm 0,27) \cdot 10^{-9}$ $(3,56 \pm 0,21) \cdot 10^{-8}$ $I(J^{P}) = 1/2(1^{-})$ $^{2} 891,66 \pm 0,26 \text{ M} \cdot \text{B}$ $^{3} 50,8 \pm 0,9 \text{ M} \cdot \text{B}$ $^{4} 895,81 \pm 0,19 \text{ M} \cdot \text{B}$ $^{4} 47,4 \pm 0,6 \text{ M} \cdot \text{B}$ $^{6} 100\%$ $(2,46 \pm 0,21) \cdot 10^{-3}$ $(9,9 \pm 0,9) \cdot 10^{-4}$ $I(J^{P}) = 1/2(1^{+})$ $^{4} 1272 \pm 7 \text{ M} \cdot \text{B}$ $^{5} 90 \pm 20 \text{ M} \cdot \text{B}$ $^{4} 42 \pm 6\%$ $28 \pm 4\%$ $16 \pm 5\%$

$K_1(1400)$	$I(J^P) = 1/2(1^+)$
	2 1403 ± 7 M ₂ B
	Γ 174 ± 13 M ₂ B
$K^*(892) \pi$ $K \rho$	$94 \pm 6\%$ $3 \pm 3\%$
$K f_0(1370)$	$2 \pm 2\%$
K_{ω}	$1.0 \pm 1.0\%$
γK^0	наблюдался
K*(1410)	$I(J^P) = 1/2(1^-)$
	2 1414 ± 15 M ₂ B Γ 232 ± 21 M ₂ B
$K^{*}(892) \pi$	>40%
K (892) π K π	$6.6 \pm 1.3\%$
$K\rho_{\alpha}$	< 7%
γK^0	наблюдался
$K_0^*(1430)$	$I(J^P) = 1/2(0^+)$
	2 1425 ± 50 M ₂ B
$K\pi$	Г 270 ± 80 МэВ 93 ± 10%
N //	
$K_2^*(1430)$	$I(J^P) = 1/2(2^+)$
	2 1425,6 ± 1,5 M ₂ B
	$\Gamma 98.5 \pm 2.7 \text{ M}{\circ}\text{B}$
$K_2^*(1430)^0$ mc	2 1432,4 ± 1,3 M ₂ B 2 109 ± 5 M ₂ B
$K_2^*(1430)^0$ mc	2 1432,4 ± 1,3 M ₃ B Γ 109 ± 5 M ₃ B
$K_2^*(1430)^0 mc$ $K \pi$ $K_1^*(892) \pi$	2 1432,4 ± 1,3 M ₃ B Γ 109 ± 5 M ₃ B 49,9 ± 1,2% 24,7 ± 1,5%
$K_{2}^{*}(1430)^{0} mc$ $K \pi$ $K^{*}(892) \pi$ $K^{*}(892) \pi$	2 1432,4 ± 1,3 M ₃ B Γ 109 ± 5 M ₃ B 49,9 ± 1,2% 24,7 ± 1,5% 13,4 ± 2,2%
$K_{2}^{*}(1430)^{0} mc^{-}$ $K \pi$ $K^{*}(892) \pi$ $K^{*}(892) \pi \pi$ $K \rho$	2 1432,4 ± 1,3 M ₃ B 2 109 ± 5 M ₃ B 49,9 ± 1,2% 24,7 ± 1,5% 13,4 ± 2,2% 8,7 ± 0,8%
$K_2^*(1430)^0 mc$ $K \pi$ $K^*(892) \pi$ $K^*(892) \pi$	2 1432,4 ± 1,3 M ₃ B Γ 109 ± 5 M ₃ B 49,9 ± 1,2% 24,7 ± 1,5% 13,4 ± 2,2% 8,7 ± 0,8% 2,9 ± 0,8%
$K_{2}^{*}(1430)^{0} mc^{-}$ $K \pi$ $K^{*}(892) \pi$ $K^{*}(892) \pi \pi$ $K \rho$ $K \omega$	2 1432,4 ± 1,3 M ₃ B 2 109 ± 5 M ₃ B 49,9 ± 1,2% 24,7 ± 1,5% 13,4 ± 2,2% 8,7 ± 0,8%
$K_{2}^{*}(1430)^{0} mc$ $K \pi$ $K^{*}(892) \pi$ $K^{*}(892) \pi \pi$ $K \rho$ $K \omega$ $K^{+} \gamma$ $K \eta$ $K^{*}(1680)$	² $1432,4 \pm 1,3 \text{ M} \Rightarrow \text{B}$ $109 \pm 5 \text{ M} \Rightarrow \text{B}$ $49,9 \pm 1,2\%$ $24,7 \pm 1,5\%$ $13,4 \pm 2,2\%$ $8,7 \pm 0,8\%$ $2,9 \pm 0,8\%$ $(2,4 \pm 0,5) \cdot 10^{-3}$ $(1,5_{-1,0}^{+3,4}) \cdot 10^{-3}$ $I(J^P) = 1/2(1^-)$
$K_{2}^{*}(1430)^{0} mc$ $K \pi$ $K^{*}(892) \pi$ $K^{*}(892) \pi \pi$ $K \rho$ $K \omega$ $K^{+} \gamma$ $K \eta$ $K^{*}(1680)$	² $1432,4 \pm 1,3 \text{ M} \Rightarrow \text{B}$ $109 \pm 5 \text{ M} \Rightarrow \text{B}$ $49,9 \pm 1,2\%$ $24,7 \pm 1,5\%$ $13,4 \pm 2,2\%$ $8,7 \pm 0,8\%$ $2,9 \pm 0,8\%$ $(2,4 \pm 0,5) \cdot 10^{-3}$ $(1,5_{-1,0}^{+3,4}) \cdot 10^{-3}$ $I(J^{P}) = 1/2(1^{-})$ ² $1717 \pm 27 \text{ M} \Rightarrow \text{B}$
$K_{2}^{*}(1430)^{0}$ mc $K \pi$ $K^{*}(892) \pi$ $K^{*}(892) \pi \pi$ $K \rho$ $K \omega$ $K^{+} \gamma$ $K \eta$ $K^{*}(1680)$	² $1432,4 \pm 1,3 \text{ M} \Rightarrow \text{B}$ $109 \pm 5 \text{ M} \Rightarrow \text{B}$ $49,9 \pm 1,2\%$ $24,7 \pm 1,5\%$ $13,4 \pm 2,2\%$ $8,7 \pm 0,8\%$ $2,9 \pm 0,8\%$ $(2,4 \pm 0,5) \cdot 10^{-3}$ $(1,5_{-1,0}^{+3,4}) \cdot 10^{-3}$ $I(J^{P}) = 1/2(1^{-})$ ² $1717 \pm 27 \text{ M} \Rightarrow \text{B}$ $1322 \pm 110 \text{ M} \Rightarrow \text{B}$
$K_{2}^{*}(1430)^{0}$ mc $K\pi$ $K^{*}(892)\pi$ $K^{*}(892)\pi\pi$ $K \rho$ $K \omega$ $K^{+} \gamma$ $K \eta$ $K^{*}(1680)$	² $1432,4 \pm 1,3 \text{ M} \Rightarrow \text{B}$ $109 \pm 5 \text{ M} \Rightarrow \text{B}$ $49,9 \pm 1,2\%$ $24,7 \pm 1,5\%$ $13,4 \pm 2,2\%$ $8,7 \pm 0,8\%$ $2,9 \pm 0,8\%$ $(2,4 \pm 0,5) \cdot 10^{-3}$ $(1,5_{-1,0}^{+3,4}) \cdot 10^{-3}$ $I(J^{P}) = 1/2(1^{-})$ ² $1717 \pm 27 \text{ M} \Rightarrow \text{B}$ $1322 \pm 110 \text{ M} \Rightarrow \text{B}$
$K_{2}^{*}(1430)^{0}$ mc $K \pi$ $K^{*}(892) \pi$ $K^{*}(892) \pi \pi$ $K \rho$ $K \omega$ $K^{+} \gamma$ $K \eta$ $K^{*}(1680)$	² $1432,4 \pm 1,3 \text{ M} \Rightarrow \text{B}$ $109 \pm 5 \text{ M} \Rightarrow \text{B}$ $49,9 \pm 1,2\%$ $24,7 \pm 1,5\%$ $13,4 \pm 2,2\%$ $8,7 \pm 0,8\%$ $2,9 \pm 0,8\%$ $(2,4 \pm 0,5) \cdot 10^{-3}$ $(1,5_{-1,0}^{+3,4}) \cdot 10^{-3}$ $I(J^{P}) = 1/2(1^{-})$ ² $1717 \pm 27 \text{ M} \Rightarrow \text{B}$
Kπ Kπ K*(892) π K*(892) π K ρ K ω K* γ K η K*(1680) MC Kπ K ρ K π K ρ K π K ρ K π	² $1432,4 \pm 1,3 \text{ M} \Rightarrow \text{B}$ $109 \pm 5 \text{ M} \Rightarrow \text{B}$ $49,9 \pm 1,2\%$ $24,7 \pm 1,5\%$ $13,4 \pm 2,2\%$ $8,7 \pm 0,8\%$ $2,9 \pm 0,8\%$ $(2,4 \pm 0,5) \cdot 10^{-3}$ $(1,5_{-1,0}^{+3,4}) \cdot 10^{-3}$ $I(J^{P}) = 1/2(1^{-})$ ² $1717 \pm 27 \text{ M} \Rightarrow \text{B}$ $1717 \pm 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10$
$K_{2}^{*}(1430)^{0}$ mc K_{π} $K^{*}(892) \pi$ $K^{*}(892) \pi \pi$ K_{ρ} K_{ω} $K^{+}_{\gamma} \gamma$ K_{η} $K^{*}(1680)$ K_{σ} K_{ρ} $K^{*}(892) \pi$ $K_{2}(1770)$	² $1432,4 \pm 1,3 \text{ M} \Rightarrow \text{B}$ $109 \pm 5 \text{ M} \Rightarrow \text{B}$ $49,9 \pm 1,2\%$ $24,7 \pm 1,5\%$ $13,4 \pm 2,2\%$ $8,7 \pm 0,8\%$ $2,9 \pm 0,8\%$ $(2,4 \pm 0,5) \cdot 10^{-3}$ $(1,5_{-1,0}^{+3,4}) \cdot 10^{-3}$ $I(J^{P}) = 1/2(1^{-})$ ² $1717 \pm 27 \text{ M} \Rightarrow \text{B}$ $1322 \pm 110 \text{ M} \Rightarrow \text{B}$
$K_{2}^{*}(1430)^{0}$ mc $K\pi$ $K^{*}(892) \pi$ $K(892) \pi \pi$ $K\rho$ $K\omega$ $K^{+}\gamma$ $K\eta$ $K^{*}(1680)$ $K\pi$ $K\rho$ $K^{*}(892) \pi$ $K\pi$ $K\rho$ $K^{*}(892) \pi$	² $1432,4 \pm 1,3 \text{ M} \Rightarrow \text{B}$ $109 \pm 5 \text{ M} \Rightarrow \text{B}$ $49,9 \pm 1,2\%$ $24,7 \pm 1,5\%$ $13,4 \pm 2,2\%$ $8,7 \pm 0,8\%$ $2,9 \pm 0,8\%$ $(2,4 \pm 0,5) \cdot 10^{-3}$ $(1,5_{-1,0}^{+3,4}) \cdot 10^{-3}$ $I(J^{P}) = 1/2(1^{-})$ ² $1717 \pm 27 \text{ M} \Rightarrow \text{B}$ 1717 ± 2
$K_{2}^{*}(1430)^{0}$ mc $K\pi$ $K^{*}(892) \pi$ $K(892) \pi \pi$ $K\rho$ $K\omega$ $K^{+}\gamma$ $K\eta$ $K^{*}(1680)$ $K\pi$ $K\rho$ $K^{*}(892) \pi$ $K\pi$ $K\rho$ $K^{*}(892) \pi$	² $1432,4 \pm 1,3 \text{ M} \Rightarrow \text{B}$ $109 \pm 5 \text{ M} \Rightarrow \text{B}$ $49,9 \pm 1,2\%$ $24,7 \pm 1,5\%$ $13,4 \pm 2,2\%$ $8,7 \pm 0,8\%$ $2,9 \pm 0,8\%$ $(2,4 \pm 0,5) \cdot 10^{-3}$ $(1,5_{-1,0}^{+3,4}) \cdot 10^{-3}$ $I(J^{P}) = 1/2(1^{-})$ ² $1717 \pm 27 \text{ M} \Rightarrow \text{B}$ $1322 \pm 110 \text{ M} \Rightarrow \text{B}$ $1322 \pm 110 \text{ M} \Rightarrow \text{B}$ $134_{-2,1}^{+5,0} \%$ $144_{-2,1}^{+5,0} \%$ $144_{-2,1}^{-5,0} \%$
$K_{2}^{*}(1430)^{0}$ mc $K\pi$ $K^{*}(892) \pi$ $K^{*}(892) \pi \pi$ $K\rho$ $K\omega$ $K^{+}\gamma$ $K\eta$ $K^{*}(1680)$ $K\pi$ $K\rho$ $K^{*}(892) \pi$ $K_{2}(1770)$	² $1432,4 \pm 1,3 \text{ M} \Rightarrow \text{B}$ $109 \pm 5 \text{ M} \Rightarrow \text{B}$ $49,9 \pm 1,2\%$ $24,7 \pm 1,5\%$ $13,4 \pm 2,2\%$ $8,7 \pm 0,8\%$ $2,9 \pm 0,8\%$ $(2,4 \pm 0,5) \cdot 10^{-3}$ $(1,5_{-1,0}^{+3,4}) \cdot 10^{-3}$ $I(J^{P}) = 1/2(1^{-})$ ² $1717 \pm 27 \text{ M} \Rightarrow \text{B}$ $1322 \pm 110 \text{ M} \Rightarrow \text{B}$ $1322 \pm 10 \text{ M} \Rightarrow \text{B}$ $134_{-2,1}^{+5,0} \%$ $144_{-2,1}^{+5,0} \%$ $144_{-2,1}^{-5,0} \%$

Очарованные мезоны

$D^+=c\overline{d}$, $D^0=$	$= c \overline{u}, \overline{D}^0 = \overline{c} u, D^- = \overline{c} d$
D^{+}	$I(J^P) = 1/2(0^-)$
m	$ac^2 1869,61 \pm 0,10 \text{ M}{\circ}\text{B}$
	$\tau (1040 \pm 7) \cdot 10^{-15} \mathrm{c}$
$e^+ v_e$	$< 8.8 \cdot 10^{-6}$
$\mu^+ v_\mu$	$(3.82 \pm 0.33) \cdot 10^{-4}$
$\tau^+ v_{\tau}$	$<1,2\cdot10^{-3}$
$\overline{K}^{0}e^{+}v_{e}$	$8,83 \pm 0,22\%$
$\frac{K}{K} {}^{0} \mu^{+} \nu_{\mu}$	$9.2 \pm 0.6\%$
$K \pi^{\mu} v_{\mu}$ $K \pi^{+} e^{+} v_{e}$	$4.00 \pm 0.10\%$
$K \pi^+ \mu^+ \nu_{\mu}$	$3.8 \pm 0.4\%$
$K^-\pi^+\pi^0\mu^+\nu_\mu$	$< 1.6 \cdot 10^{-3}$
$\pi^0 e^+ v_e$	$(4.05 \pm 0.18) \cdot 10^{-3}$
$K_{\mathrm{S}}^{}0}\pi^{^{+}}$	$1,47 \pm 0,07\%$
$K_{\mathrm{L}}^{}0}\pi^{^{+}}$	$1,46 \pm 0,05\%$
$K^{-}2\pi^{+}$	$9,13 \pm 0,19\%$
$K_{\rm S}^{\ 0} \pi^+ \pi^0$	$6.99 \pm 0.27\%$
$K^{-}2\pi^{+}\pi^{0}$	$5,99 \pm 0,18\%$
$K_{ m S}^{\ 0}_{\ +\ 0}^{\ 2}\pi^{^+}\pi^{^-}$	$3,12 \pm 0,11\%$
$\begin{matrix} \pi^+ \pi^0 \\ 2\pi^+ \pi^- \end{matrix}$	$(1.19 \pm 0.06) \cdot 10^{-3}$
$\pi^+ 2\pi^0$	$(3.18 \pm 0.18) \cdot 10^{-3}$ $(4.6 \pm 0.4) \cdot 10^{-3}$
$2\pi^+\pi^-\pi^0$	$(4.0 \pm 0.4)^{110}$ $1.13 \pm 0.08\%$
\mathcal{N}_0	$I(I^{r}) = 1/2(0)$
D^0	$I(J^P) = 1/2(0^-)$
	$I(J^{T}) = 1/2(0^{-})$ $ac^{2} 1864,84 \pm 0.07 \text{ M} \cdot \text{B}$ $\tau (410,1 \pm 1.5) \cdot 10^{-15} \text{ c}$
m	$c^2 1864,84 \pm 0,07 \text{ M} \Rightarrow \text{B}$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$
$K^-e^+v_e$ $K^-\mu^+v_\mu$	$ac^2 1864,84 \pm 0,07 \text{ M}{\circ}\text{B}$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$	$c^2 1864,84 \pm 0,07 \text{ M} \Rightarrow \text{B}$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$ $K^{*}(892)^{-}\mu^{+}v_{\mu}$	$c^2 1864,84 \pm 0,07 \text{ M} \Rightarrow \text{B}$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$ $K^{*}(892)^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{0}e^{+}v_{e}$	$c^2 1864,84 \pm 0,07 \text{ M} \Rightarrow \text{B}$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$ $K^{*}(892)^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{0}e^{+}v_{e}$ $K^{-}0\pi^{-}e^{+}v_{e}$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,30}\%$ $2,7_{-0,7}^{+0,90}\%$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$ $K^{*}(892)^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{0}e^{+}v_{e}$ $\overline{K}^{0}\pi^{-}e^{+}v_{e}$ $\pi^{-}e^{+}v_{e}$	$c^{2} 1864,84 \pm 0.07 \text{ M}_{3}B$ $\tau (410,1 \pm 1.5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0.05\%$ $3,31 \pm 0.13\%$ $2,16 \pm 0.16\%$ $1,91 \pm 0.24\%$ $1,6_{-0.5}^{+1.30}\%$ $2,7_{-0.7}^{+0.90}\%$ $(2,89 \pm 0.08) \cdot 10^{-3}$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$ $K^{*}(892)^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{0}e^{+}v_{e}$ $\overline{K}^{0}\pi^{-}e^{+}v_{e}$ $\pi^{-}e^{+}v_{e}$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,30}\%$ $2,7_{-0,7}^{+0,90}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$ $K^{*}(892)^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{0}e^{+}v_{e}$ $K^{-}0\pi^{-}e^{+}v_{e}$ $\pi^{-}e^{+}v_{e}$ $\pi^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{+}$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,3}\%$ $2,7_{-0,7}^{+0,9}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$ $K^{*}(892)^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{0}e^{+}v_{e}$ $\overline{K}^{0}\pi^{-}e^{+}v_{e}$ $\pi^{-}e^{+}v_{e}$ $\pi^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{0}\pi^{0}$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,30}\%$ $2,7_{-0,7}^{+0,90}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$ $1,19 \pm 0,04\%$
$K^-e^+v_e$ $K^-\mu^+v_\mu$ $K^*(892)^-e^+v_e$ $K^*(892)^-\mu^+v_\mu$ $K^-\pi^0e^+v_e$ $\overline{K}^0\pi^-e^+v_e$ $\pi^-e^+v_e$ $\pi^-\mu^+v_\mu$ $K^-\pi^+$ $K_S^0\pi^0$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,30}\%$ $2,7_{-0,7}^{+0,90}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$ $1,19 \pm 0,04\%$ $(10,0 \pm 0,7) \cdot 10^{-3}$
$K^-e^+v_e$ $K^-\mu^+v_\mu$ $K^*(892)^-e^+v_e$ $K^*(892)^-\mu^+v_\mu$ $K^-\pi^0e^+v_e$ $\overline{K}^0\pi^-e^+v_e$ $\pi^-e^+v_e$ $\pi^-\mu^+v_\mu$ $K^-\pi^0$ $K_L^0\pi^0$ $K_S^0\pi^+\pi^-$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,3}\%$ $2,7_{-0,7}^{+0,9}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$ $1,19 \pm 0,04\%$ $(10,0 \pm 0,7) \cdot 10^{-3}$ $2,83 \pm 0,20\%$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$ $K^{*}(892)^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{0}e^{+}v_{e}$ $\overline{K}^{0}\pi^{-}e^{+}v_{e}$ $\pi^{-}e^{+}v_{e}$ $\pi^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{+}$ $K_{S}^{0}\pi^{0}$ $K_{L}^{0}\pi^{0}$ $K_{S}^{0}\pi^{+}\pi^{-}$ $K^{-}\pi^{+}\pi^{0}$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,3}\%$ $2,7_{-0,7}^{+0,9}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$ $1,19 \pm 0,04\%$ $(10,0 \pm 0,7) \cdot 10^{-3}$ $2,83 \pm 0,20\%$ $13,9 \pm 0,5\%$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$ $K^{*}(892)^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{0}e^{+}v_{e}$ $\overline{K}^{0}\pi^{-}e^{+}v_{e}$ $\pi^{-}e^{+}v_{e}$ $\pi^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{+}$ $K_{S}^{0}\pi^{0}$ $K_{L}^{0}\pi^{0}$ $K_{S}^{0}\pi^{+}\pi^{-}$ $K^{-}\pi^{+}\pi^{0}$ $K_{S}^{0}2\pi^{0}$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,3}\%$ $2,7_{-0,7}^{+0,9}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$ $1,19 \pm 0,04\%$ $(10,0 \pm 0,7) \cdot 10^{-3}$ $2,83 \pm 0,20\%$ $13,9 \pm 0,5\%$
$K^-e^+v_e$ $K^-\mu^+v_\mu$ $K^*(892)^-e^+v_e$ $K^*(892)^-\mu^+v_\mu$ $K^-\pi^0e^+v_e$ $\overline{K}^0\pi^-e^+v_e$ $\pi^-\mu^+v_\mu$ $K^-\pi^0$ $K_L^0\pi^0$ $K_L^0\pi^0$ $K_S^0\pi^+\pi^ K^-\pi^+\pi^0$ $K_S^02\pi^0$ $K^-2\pi^+\pi^-$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,3}\%$ $2,7_{-0,7}^{+0,9}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$ $1,19 \pm 0,04\%$ $(10,0 \pm 0,7) \cdot 10^{-3}$ $2,83 \pm 0,20\%$ $13,9 \pm 0,5\%$ $(9,1 \pm 1,1) \cdot 10^{-3}$ $8,08_{-0,19}^{+0,21}\%$
$K^{-}e^{+}v_{e}$ $K^{-}\mu^{+}v_{\mu}$ $K^{*}(892)^{-}e^{+}v_{e}$ $K^{*}(892)^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{0}e^{+}v_{e}$ $\overline{K}^{0}\pi^{-}e^{+}v_{e}$ $\pi^{-}e^{+}v_{e}$ $\pi^{-}\mu^{+}v_{\mu}$ $K^{-}\pi^{+}$ $K_{S}^{0}\pi^{0}$ $K_{L}^{0}\pi^{0}$ $K_{S}^{0}\pi^{+}\pi^{-}$ $K^{-}\pi^{+}\pi^{0}$ $K_{S}^{0}2\pi^{0}$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,3}\%$ $2,7_{-0,7}^{+0,9}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$ $1,19 \pm 0,04\%$ $(10,0 \pm 0,7) \cdot 10^{-3}$ $2,83 \pm 0,20\%$ $13,9 \pm 0,5\%$
$K^-e^+v_e$ $K^-\mu^+v_\mu$ $K^*(892)^-e^+v_e$ $K^*(892)^-\mu^+v_\mu$ $K^-\pi^0e^+v_e$ $\overline{K}^0\pi^-e^+v_e$ $\pi^-\mu^+v_\mu$ $K^-\pi^0$ $K_S^0\pi^0$ $K_L^0\pi^0$ $K_S^0\pi^+\pi^ K^-\pi^+\pi^0$ $K_S^02\pi^0$ $K^-2\pi^+\pi^-\pi^0$ $K^-2\pi^+\pi^-\pi^0$ $K^-2\pi^+\pi^-\pi^0$ $\pi^+\pi^-$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,3}\%$ $2,7_{-0,7}^{+0,9}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$ $1,19 \pm 0,04\%$ $(10,0 \pm 0,7) \cdot 10^{-3}$ $2,83 \pm 0,20\%$ $13,9 \pm 0,5\%$ $(9,1 \pm 1,1) \cdot 10^{-3}$ $8,08_{-0,19}^{+0,21}\%$ $5,2 \pm 0,6\%$ $4,2 \pm 0,4\%$ $(1,402 \pm 0,026) \cdot 10^{-3}$
$K^-e^+v_e$ $K^-\mu^+v_\mu$ $K^*(892)^-e^+v_e$ $K^*(892)^-\mu^+v_\mu$ $K^-\pi^0e^+v_e$ $\overline{K}^0\pi^-e^+v_e$ $\pi^-\mu^+v_\mu$ $K^-\pi^0$ $K_S^0\pi^0$ $K_L^0\pi^0$ $K_S^0\pi^+\pi^ K^-\pi^+\pi^0$ $K_S^02\pi^0$ $K^-2\pi^+\pi^ K_S^0\pi^+\pi^-\pi^0$ $K^-2\pi^+\pi^-\pi^0$ $K^-2\pi^+\pi^-\pi^0$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,3}\%$ $2,7_{-0,7}^{+0,9}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$ $1,19 \pm 0,04\%$ $(10,0 \pm 0,7) \cdot 10^{-3}$ $2,83 \pm 0,20\%$ $13,9 \pm 0,5\%$ $(9,1 \pm 1,1) \cdot 10^{-3}$ $8,08_{-0,19}^{+0,21}\%$ $5,2 \pm 0,6\%$ $4,2 \pm 0,4\%$ $(1,402 \pm 0,026) \cdot 10^{-3}$ $(8,20 \pm 0,35) \cdot 10^{-4}$
$K^-e^+v_e$ $K^-\mu^+v_\mu$ $K^*(892)^-e^+v_e$ $K^*(892)^-\mu^+v_\mu$ $K^-\pi^0e^+v_e$ $\overline{K}^0\pi^-e^+v_e$ $\pi^-\mu^+v_\mu$ $K^-\pi^0$ $K_S^0\pi^0$ $K_L^0\pi^0$ $K_S^0\pi^+\pi^ K^-\pi^+\pi^0$ $K_S^02\pi^0$ $K^-2\pi^+\pi^-\pi^0$ $K^-2\pi^+\pi^-\pi^0$ $K^-2\pi^+\pi^-\pi^0$ $\pi^+\pi^-$	$c^{2} 1864,84 \pm 0,07 \text{ M}_{3}B$ $\tau (410,1 \pm 1,5) \cdot 10^{-15} \text{ c}$ $3,55 \pm 0,05\%$ $3,31 \pm 0,13\%$ $2,16 \pm 0,16\%$ $1,91 \pm 0,24\%$ $1,6_{-0,5}^{+1,3}\%$ $2,7_{-0,7}^{+0,9}\%$ $(2,89 \pm 0,08) \cdot 10^{-3}$ $(2,37 \pm 0,24) \cdot 10^{-3}$ $3,88 \pm 0,05\%$ $1,19 \pm 0,04\%$ $(10,0 \pm 0,7) \cdot 10^{-3}$ $2,83 \pm 0,20\%$ $13,9 \pm 0,5\%$ $(9,1 \pm 1,1) \cdot 10^{-3}$ $8,08_{-0,19}^{+0,21}\%$ $5,2 \pm 0,6\%$ $4,2 \pm 0,4\%$ $(1,402 \pm 0,026) \cdot 10^{-3}$

$D^*(2007)^0$	$I(J^P) = 1/2(1^-)$
	mc^2 2006,96 ± 0,10 M ₃ B Γ < 2,1 M ₃ B
$D^0_{\cdot} \pi^0$	$61.9 \pm 2.9\%$
$D^0 \gamma$	$38,1 \pm 2,9\%$
$D^*(2010)^{\pm}$	$I(J^P) = 1/2(1^-)$
	mc^2 2010,26 ± 0,07 МэВ Γ 83,4 ± 1,8 кэВ
$D^0\pi^{^+}$	$67.7 \pm 0.5\%$
$D^+ \pi^0$	$30.7 \pm 0.5\%$
$D^+ \gamma$	$1,6 \pm 0,4\%$
$D_0^*(2400)^0$	$I(J^P) = 1/2(0^+)$
,	$mc^2 2318 \pm 29 \text{ M}{\circ}\text{B}$
	Γ 267 ± 40 M ₂ B
$oldsymbol{D}^+ oldsymbol{\pi}^0$	наблюдался
$D_1(2420)^0$	$I(J^P) = 1/2(1^+)$
$D_1(2420)^0$	mc^2 2421,4 ± 0,6 M ₂ B
	mc^2 2421,4 ± 0,6 M ₂ B Γ 27,4 ± 2,5 M ₂ B
$D^*(2010)^+\pi^-$	mc^2 2421,4 ± 0,6 МэВ Γ 27,4 ± 2,5 МэВ наблюдался
$D^*(2010)^+\pi^- \ D^0\pi^+\pi^-$	mc^2 2421,4 ± 0,6 МэВ Γ 27,4 ± 2,5 МэВ наблюдался наблюдался
$D^*(2010)^+\pi^-$	mc^2 2421,4 ± 0,6 МэВ Γ 27,4 ± 2,5 МэВ наблюдался наблюдался $I(J^P) = 1/2(2^+)$
$D^*(2010)^+\pi^- \ D^0\pi^+\pi^-$	mc^2 2421,4 ± 0,6 МэВ Γ 27,4 ± 2,5 МэВ наблюдался наблюдался
$D^*(2010)^+\pi^- \ D^0\pi^+\pi^-$	mc^2 2421,4 ± 0,6 МэВ Γ 27,4 ± 2,5 МэВ наблюдался наблюдался $I(J^P) = 1/2(2^+)$ mc^2 2462,6 ± 0,6 МэВ
$D^{*}(2010)^{+}\pi^{-}$ $D^{0}\pi^{+}\pi^{-}$ $D_{2}^{*}(2460)^{0}$	mc^2 2421,4 ± 0,6 МэВ Γ 27,4 ± 2,5 МэВ наблюдался наблюдался $I(J^P) = 1/2(2^+)$ mc^2 2462,6 ± 0,6 МэВ Γ 49,0 ± 1,3 МэВ
$D^{*}(2010)^{+}\pi^{-}$ $D^{0}\pi^{+}\pi^{-}$ $D_{2}^{*}(2460)^{0}$ $D^{+}\pi^{-}$	mc^2 2421,4 ± 0,6 МэВ Γ 27,4 ± 2,5 МэВ наблюдался наблюдался $I(J^P) = 1/2(2^+)$ mc^2 2462,6 ± 0,6 МэВ Γ 49,0 ± 1,3 МэВ наблюдался наблюдался
$D^*(2010)^+ \pi^ D^0 \pi^+ \pi^ D_2^*(2460)^0$ $D^+ \pi^ D^*(2010)^+ \pi^-$	mc^2 2421,4 ± 0,6 МэВ Γ 27,4 ± 2,5 МэВ наблюдался наблюдался $I(J^P) = 1/2(2^+)$ mc^2 2462,6 ± 0,6 МэВ Γ 49,0 ± 1,3 МэВ наблюдался наблюдался $I(J^P) = 1/2(2^+)$ mc^2 2464,3 ± 1,6 МэВ
$D_{0}^{*}(2010)^{+}\pi^{-}$ $D_{0}^{0}\pi^{+}\pi^{-}$ $D_{2}^{*}(2460)^{0}$ $D_{0}^{+}\pi^{-}$ $D_{0}^{*}(2010)^{+}\pi^{-}$ $D_{0}^{*}(2460)^{\pm}$	mc^2 2421,4 ± 0,6 МэВ Γ 27,4 ± 2,5 МэВ наблюдался наблюдался $I(J^P) = 1/2(2^+)$ mc^2 2462,6 ± 0,6 МэВ Γ 49,0 ± 1,3 МэВ наблюдался наблюдался $I(J^P) = 1/2(2^+)$ mc^2 2464,3 ± 1,6 МэВ Γ 37 ± 6 МэВ
$D^*(2010)^+ \pi^ D^0 \pi^+ \pi^ D_2^*(2460)^0$ $D^+ \pi^ D^*(2010)^+ \pi^-$	mc^2 2421,4 ± 0,6 МэВ Γ 27,4 ± 2,5 МэВ наблюдался наблюдался $I(J^P) = 1/2(2^+)$ mc^2 2462,6 ± 0,6 МэВ Γ 49,0 ± 1,3 МэВ наблюдался наблюдался $I(J^P) = 1/2(2^+)$ mc^2 2464,3 ± 1,6 МэВ

Очарованные странные мезоны $D_s^+ = c \bar{s}, \ D_s^- = \bar{c} s$

$$D_s^+ = c \overline{s}, D_s^- = \overline{c} s$$

L	$D_{\rm s} = C S$, $D_{\rm s} = C S$
D_s^{\pm}	$I(J^P) = 0(0^-)$
-	mc^2 1968,30 ± 0,11 M ₃ B
	$\tau (500 \pm 7) \cdot 10^{-15} \mathrm{c}$
$e^+ v_e$	$< 8.3 \cdot 10^{-5}$
$\mu^+ v_\mu$	$(5.56 \pm 0.25) \cdot 10^{-3}$
$\tau^+ v_{ au}$	$5,54 \pm 0,24\%$
$\varphi e^+ v_e$	$2,49 \pm 0,14\%$
$\eta e^+ v_e$	$2,67 \pm 0,29\%$
$K^+K_S^0$	$1,49 \pm 0,06\%$
$K^+K^-\pi^+$	$5,39 \pm 0,21\%$
$K^*(892)^+ \overline{K}^0$	$5,4 \pm 1,2\%$
$K^{+}K^{-}\pi^{+}\pi^{0}$	$6.3 \pm 0.7\%$
$K_{\rm S}^{\ 0} K^{-} 2\pi^{+}$	$1,66 \pm 0,11\%$
$2\pi^{+}\pi^{-}$	$1.09 \pm 0.05\%$
$\pi^{+} 2\pi^{0}$	$(6.5 \pm 1.3) \cdot 10^{-3}$
$\eta \pi^+$	$1,69 \pm 0,10\%$ $(7,9 \pm 0,8) \cdot 10^{-3}$
$3\pi^{+}2\pi^{-}$ $\eta \rho^{+}$	$(7.9 \pm 0.8)^{10}$ $8.9 \pm 0.8\%$
$\stackrel{\eta}{\omega}\stackrel{\rho}{\pi^+}\pi^0$	$2.8 \pm 0.7\%$
$3\pi^{+} 2\pi^{-} \pi^{0}$	$4.9 \pm 3.2\%$
$\eta'(958) \rho^+$	$12.5 \pm 2.2\%$
$K_{\rm S}^{0} \pi^{+}$	$(1,21 \pm 0,06) \cdot 10^{-3}$
K^+ η	$(1,76 \pm 0,35) \cdot 10^{-3}$
$K^+ \pi^+ \pi^-$	$(6.5 \pm 0.4) \cdot 10^{-3}$
$K^0\pi^+\pi^0$	$1,00 \pm 0,18\%$
$K_{\rm S}^{\ 0} \ 2\pi^+ \pi^-$	$(3.0 \pm 1.1) \cdot 10^{-3}$
p n	$(1,3 \pm 0,4) \cdot 10^{-3}$
$D_s^{*\pm}$	$I(J^P) = 0(?^?)$
	mc^2 2112,1 ± 0,4 M ₂ B
	Γ < 1,9 M ₂ B
$D_s^+ \gamma$	$94.2 \pm 0.7\%$
$D_s^+ \gamma D_s^+ \pi^0$	$5.8 \pm 0.7\%$
$D_{\rm s0}^{*}(2317)^{\pm}$	$I(J^P) = 0(0^+)$
250 (2017)	$mc^2 2317,7 \pm 0,6 \text{ M}{\circ}\text{B}$
	Γ < 3,8 MeB
$D_{\mathrm{s}}^{+}\pi^{0}$	наблюдался
	$I(J^P) = 0(1^+)$
$D_{\rm s1}(2460)^{\pm}$	mc^2 2459,5 ± 0,6 M ₃ B
	Γ < 3,5 M ₃ B
$D_{\mathrm{s}_{\perp}}^{^{*+}}\pi^{0}$	$48 \pm 11\%$
$D_s \mathcal{H}$ $D_s^+ v$	$18 \pm 4\%$
$D_s \gamma D_s^+ \pi^+ \pi^-$	$4.3 \pm 1.3\%$
$D_{s}^{+} \gamma$ $D_{s}^{+} \pi^{+} \pi^{-}$ $D_{s}^{*+} \gamma$ $D_{s}^{*} (2317)^{+} \gamma$	< 8%
$D_s^*(2317)^+ \nu$	3,7-2,4+5,0%
3 () 1	- ,· _ ,¬ · · ·

Боттом мезоны

$$B^+=u\,\overline{b}$$
, $B^0=d\,\overline{b}$, $\overline{B}^0=\overline{d}\,b$, $B^-=\overline{u}\,b$

B^+	$I(J^P) = 1/2(0^-)$
	2 5279,26 ± 0,17 M ₃ B
	$\tau (1,638 \pm 0,004) \cdot 10^{-12} \mathrm{c}$
l^+v_l что-либо	$10,99 \pm 0,28\%$
$\frac{D_s^{*-}K^+l^+v_l}{D^0\pi^+}$	$(6,1\pm1,0)\cdot10^{-4}$
$\overline{m{D}}^{0} m{\pi}^{^{+}}$	$(4.81 \pm 0.15) \cdot 10^{-3}$
$\boldsymbol{D^0\rho^+}$	$1,34 \pm 0,18\%$
$\overline{m{D}}^{ \dot{0}} m{\pi}^{\!\scriptscriptstyle{+}} m{\pi}^{\!\scriptscriptstyle{+}} m{\pi}^{\!\scriptscriptstyle{-}}$	$(5.7 \pm 2.2) \cdot 10^{-3}$
$D^0 \omega \pi^+$	$(4.1 \pm 0.9) \cdot 10^{-3}$
$D^-\pi^+\pi^+$	$(1,07 \pm 0,05) \cdot 10^{-3}$
$D_{\rm sJ}(2457)^{+}\overline{D}^{*}(2007)^{0}$	
	$1,71 \pm 0,24\%$
$\overline{D}^*(2007)^0 D_s^{*+}$	* *
$D_{s}^{(*)+}\overline{D}^{**0}$	$2,7 \pm 1,2\%$
$\overline{D}^*(2007)^0 D^*(2007)^0$	$1,12 \pm 0,13\%$
K^{+}	
$(\overline{D} + \overline{D}^*)(D + D^*)$	$4,05 \pm 0,30\%$
K	
$\eta_{\rm c} K^*(892)^{+}$	$(1,0_{-0,4}^{+0,5})\cdot 10^{-3}$
$J/\psi(1S) K^{+}$	$(1,027 \pm 0,031)\cdot 10^{-3}$
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{0}$	$(1.8 \pm 0.6) \cdot 10^{-3}$
4 ⁻ ⁺ - ⁺ - ⁻	$(2.2 \pm 0.7) \cdot 10^{-3}$
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{+} \pi^{-}$	$(2,2\pm0,7)\cdot10^{-3}$
B^0	$I(J^P) = 1/2(0^-)$
B^0	$I(J^P) = 1/2(0^-)$ 2 5279,58 ± 0,17 M3B
B^0	$I(J^P) = 1/2(0^-)$
B^0	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ M} \cdot \text{B}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$
B^0 mc^2 $l^+ v_l$ что-либо	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ M} \rightarrow \text{B}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$
$m{B^0}$ $m{mc^2}$ $m{l}^+ m{v_l}$ что-либо $m{K^\pm}$ что-либо	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ M} \rightarrow \text{B}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$
B^0 mc^2 $I^+ v_I$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ M}_{2}\text{B}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$
B^0 mc^2 $l^+ v_l$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^-$	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ M} \text{ B}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$
B^0 mc^2 $I^+ v_I$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ M}_{2}\text{B}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$
B^0 mc^2 $I^+ v_l$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D_s^{*+}$	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ M}_{2}\text{B}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$
B^0 mc^2 $I^+ v_I$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D_s^{*+}$ $D^*(2010)^- D^*(2007)^0$	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ M}_{2}\text{B}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$
B^0 mc^2 $I^+ v_l$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D_s^{*+}$ $D^*(2010)^- D^*(2007)^0$ K^+	$I(J^{P}) = 1/2(0^{-})$ ${}^{2} 5279,58 \pm 0,17 \text{ M}{}_{9}\text{B}$ ${}^{3} (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$ $1,06 \pm 0,09\%$
B^0 mc^2 $I^+ v_I$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D_s^{*+}$ $D^*(2010)^- D^*(2007)^0$ K^+ $(\overline{D} + \overline{D}^*)(D + D^*)$	$I(J^{P}) = 1/2(0^{-})$ ${}^{2} 5279,58 \pm 0,17 \text{ M}{}_{9}\text{B}$ ${}^{3} (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$ $1,06 \pm 0,09\%$
B^0 mc^2 $I^+ v_I$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D_s^{*+}$ $D^*(2010)^- D^*(2007)^0$ K^+ $(\overline{D} + \overline{D}^*)(D + D^*)$ K	$I(J^{P}) = 1/2(0^{-})$ ${}^{2} 5279,58 \pm 0,17 \text{ M9B}$ ${}^{3} (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$ $1,06 \pm 0,09\%$ $3,68 \pm 0,26\%$
B^0 mc^2 $I^+ v_l$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D^{*+}$ $D^*(2010)^- D^*(2007)^0$ K^+ $(\overline{D} + \overline{D}^*)(D + D^*)$ K B^*	$I(J^{P}) = 1/2(0^{-})$ ${}^{2} 5279,58 \pm 0,17 \text{ M} \Rightarrow \text{B}$ ${}^{2} (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$ $1,06 \pm 0,09\%$ $3,68 \pm 0,26\%$ $I(J^{P}) = 1/2(1^{-})$
B^0 mc^2 $I^+ v_l$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D^{*+}$ $D^*(2010)^- D^*(2007)^0$ K^+ $(\overline{D} + \overline{D}^*)(D + D^*)$ K B^*	$I(J^{P}) = 1/2(0^{-})$ ${}^{2} 5279,58 \pm 0,17 \text{ M} \Rightarrow \text{B}$ ${}^{2} (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$ $1,06 \pm 0,09\%$ $3,68 \pm 0,26\%$ $I(J^{P}) = 1/2(1^{-})$ ${}^{2} 5325,2 \pm 0,4 \text{ M} \Rightarrow \text{B}$
B^0 mc^2 $I^+ v_l$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D^{*+}$ $D^*(2010)^- D^*(2007)^0$ K^+ $(\overline{D} + \overline{D}^*)(D + D^*)$ K B^*	$I(J^{P}) = 1/2(0^{-})$ ${}^{2} 5279,58 \pm 0,17 \text{ M} \Rightarrow \text{B}$ ${}^{2} (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$ $1,06 \pm 0,09\%$ $3,68 \pm 0,26\%$ $I(J^{P}) = 1/2(1^{-})$
B^0 mc^2 $I^+ v_I$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D^{*+}_{s}$ $D^*(2010)^- D^*(2007)^0$ K^+ $(\overline{D} + \overline{D}^*)(D + D^*)$ K B^*	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ MpB}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$ $1,06 \pm 0,09\%$ $3,68 \pm 0,26\%$ $I(J^P) = 1/2(1^-)$ $^2 5325,2 \pm 0,4 \text{ MpB}$ преобладающий
B^0 mc^2 $I^+ v_I$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D^*(2007)^0$ K^+ $(\overline{D} + \overline{D}^*)(D + D^*)$ K B^* mc^2 $B \gamma$	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ MpB}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$ $1,06 \pm 0,09\%$ $3,68 \pm 0,26\%$ $I(J^P) = 1/2(1^-)$ $^2 5325,2 \pm 0,4 \text{ MpB}$ преобладающий $I(J^P) = 1/2(1^+)$
B^0 mc^2 $I^+ v_I$ что-либо K^\pm что-либо $D^*(2010)^- \pi^+ \pi^0$ $D^*(2010)^- \pi^+ \pi^+ \pi^ \pi^0$ $D^*(2010)^- D^*(2007)^0$ K^+ $(\overline{D} + \overline{D}^*)(D + D^*)$ K B^* mc^2 $B \gamma$	$I(J^P) = 1/2(0^-)$ $^2 5279,58 \pm 0,17 \text{ MpB}$ $^2 (1519 \pm 5) \cdot 10^{-15} \text{ c}$ $10,33 \pm 0,28\%$ $78 \pm 8\%$ $1,5 \pm 0,5\%$ $1,76 \pm 0,27\%$ $1,77 \pm 0,14\%$ $1,06 \pm 0,09\%$ $3,68 \pm 0,26\%$ $I(J^P) = 1/2(1^-)$ $^2 5325,2 \pm 0,4 \text{ MpB}$ преобладающий

Странные боттом мезоны

$$B_s^0 = s \, \overline{b}, \quad \overline{B}_s^0 = \overline{s} \, b$$

$B_s^{\ 0}$	$I(J^P) = 0(0^-)$
	5366,77 ± 0,24 МэВ
τ	$(1,512 \pm 0,007) \cdot 10^{-12} \mathrm{c}$
$oldsymbol{D_s}^-$ что-либо	$93 \pm 25\%$
$l v_l X$	$10,5 \pm 0,8\%$
$D_s^- I^+ v_l$ что-либо	
$D_s^-\pi^+$	$(3.04 \pm 0.23) \cdot 10^{-3}$
$D_s^- \rho^+$	$(7.0 \pm 1.5) \cdot 10^{-3}$
$D_s^-\pi^+\pi^+\pi^-$	$(6,3\pm1,1)\cdot10^{-3}$
$D_{s}^{*}D_{s}^{-}D_{s}^{-}$ $D_{s}^{*-}D_{s}^{+}$ $D_{s}^{*-}\rho^{+}$ $D_{s}^{*+}D_{s}^{-}+D_{s}^{*-}D_{s}^{+}$ $D_{s}^{*+}D_{s}^{*-}$	$(4,4\pm0,5)\cdot10^{-3}$
$D_{s_{*}}^{-}\pi^{+}$	$(2.0 \pm 0.5) \cdot 10^{-3}$
$D_{s}^{-}\rho^{+}$	$1,03 \pm 0,26\%$
$D_{s_{s+}}^{-}D_{s_{s+}}^{-}+D_{s-}^{-}D_{s-}^{-}$	$1,28 \pm 0,23\%$
$D_{s}^{"}D_{s}^{"}$	$1,85 \pm 0,30\%$
$D_{s}^{(r)} D_{s}^{(r)}$	$4.5 \pm 1.4\%$
$J/\psi(1S) \varphi$	$(1,07\pm0,09)\cdot10^{-3}$
B_s^*	$I(J^P) = 0(1)$
mc^2	5415,4 _{-2,1} ^{+2,4} МэВ
$B_s \gamma$	преобладающий
$B_{\rm s1}(5830)^0$	$I(J^P) = 0(1^+)$
	$5828,7 \pm 0,4 \text{ M}{\circ}\text{B}$
B*+ K	преобладающий
$B_{\rm s2}^{*}(5840)^{0}$	$I(J^P)=0(2^+)$
mc^2	$5839,96 \pm 0,20 \text{ M} \Rightarrow \text{B}$
B ⁺ K ⁻	преобладающий

Очарованные боттом мезоны

$$B_{c}^{+}=c\overline{b}, B_{c}^{-}=\overline{c}b$$

$$B_c^+$$
 $I(J^P) = 0(0^-)$ $mc^2 6276,6 \pm 1,1 \text{ MэВ}$ $\tau (45,2 \pm 3,3) \cdot 10^{-14} \text{ c}$ $J/\psi(1\text{S}) I^+ v_I$ что- $(5,2_{-2,1}^{+2,4}) \cdot 10^{-6}$ либо $J/\psi(1\text{S}) \pi^+$ наблюдался $J/\psi(1\text{S}) \pi^+\pi^-$ наблюдался $0^*(2010)^+\overline{D}^0$ $< 6,2 \cdot 10^{-3}$

$c\overline{c}$ мезоны

$\eta_{\rm c}(1{ m S})$	$I^{G}(J^{PC}) = 0^{+}(0^{-+})$
mc^2	2 2983,6 ± 0,7 M ₂ B
Γ	$32.2 \pm 0.9 \text{ M}{\circ}\text{B}$
$\eta'(958) \pi \pi$	$4.1 \pm 1.7\%$
- · · · ·	100 0 70/
$\rho \rho K (892)^0 K^- \pi^+ + \text{c.c.}$	$2,0 \pm 0,7\%$
$K^*(892) \overline{K}^*(892)$	$(7,0\pm1,3)\cdot10^{-3}$
$K^{*0} \overline{K}^{*0} \pi^{+} \pi^{-}$	$1,1 \pm 0,5\%$
$\varphi K^+ K^-$	$(2.9 \pm 1.4) \cdot 10^{-3}$
$\varphi \varphi$	$(1.76 \pm 0.20) \cdot 10^{-3}$
$f_2(1270) f_2(1270)$	$(9.8 \pm 2.5) \cdot 10^{-3}$
$f_2(1270) f_2(1525)$	$(9.7 \pm 3.2) \cdot 10^{-3}$
$K\overline{K}\pi$	$7.3 \pm 0.5\%$
$\eta \pi^+ \pi^-$	$1,7 \pm 0,5\%$
$K^+K^-\pi^+\pi^-$	$(6.9 \pm 1.1) \cdot 10^{-3}$
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$3.5 \pm 0.6\%$
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	$(7.5 \pm 2.4) \cdot 10^{-3}$
$2(K^+K^-)$	$(1,47 \pm 0,31) \cdot 10^{-3}$
$2(\pi^+\pi^-)$	$(9.7 \pm 1.2) \cdot 10^{-3}$
$3(\pi^+\pi^-)$	$1.8 \pm 0.4\%$
$p\overline{p}$	$(1,52 \pm 0,16) \cdot 10^{-3}$
$\Lambda \overline{\Lambda}$	$(10.9 \pm 2.4) \cdot 10^{-4}$
(0.0)	TG(TPC) = 0+(0-+)
$\eta_{\rm c}(2{\rm S})$	$I^{G}(J^{PC}) = 0^{+}(0^{-+})$
$ \eta_{\rm c}(2{\rm S}) $ $ mc^2$	
$ \eta_{c}(2S) $ $ mc^{2} $	2 3639,4 ± 1,3 MəB 5 11,3 _{-2,9} ^{+3,2} MəB
mc^{2} Γ $K\overline{K}\pi$	
<i>тс</i> ² Г	2 3639,4 ± 1,3 M ₂ B 2 11,3 $_{-2,9}$ $^{+3,2}$ M ₂ B 2 1,9 ± 1,2% 2 1,4 ± 1,0%
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	2 3639,4 ± 1,3 M ₃ B 5 11,3 _{-2,9} $^{+3,2}$ M ₃ B 1,9 ± 1,2%
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\Upsilon\Upsilon$	2 3639,4 ± 1,3 M ₂ B 2 11,3 $_{-2,9}$ $^{+3,2}$ M ₂ B 2 1,9 ± 1,2% 2 1,4 ± 1,0%
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma\gamma$ $J/\psi(1S)$	$3639,4 \pm 1,3 \text{ M} \rightarrow \text{B}$ $11,3_{-2,9}^{+3,2} \text{ M} \rightarrow \text{B}$ $1,9 \pm 1,2\%$ $1,4 \pm 1,0\%$ $(1,9 \pm 1,3) \cdot 10^{-4}$ $I^{G}(J^{PC}) = 0^{-}(1^{})$
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\frac{\gamma\gamma}{J/\psi(1S)}$ mc^{2}	2 3639,4 ± 1,3 M ₂ B 2 11,3 _{-2,9} $^{+3,2}$ M ₂ B 2 1,9 ± 1,2% 2 1,4 ± 1,0% 2 (1,9 ± 1,3)·10 ⁻⁴
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\frac{\gamma\gamma}{J/\psi(1S)}$ mc^{2}	2 3639,4 ± 1,3 M ₂ B 3 11,3 _{-2,9} $^{+3,2}$ M ₂ B 3 1,9 ± 1,2% 3 1,4 ± 1,0% 4 (1,9 ± 1,3)·10 ⁻⁴ 4 6 (6 7 6) = 6 (1 $^{-1}$) 3 3096,916 ± 0,011 M ₂ B
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\frac{\gamma\gamma}{J/\psi(1S)}$ mc^{2}	2 3639,4 ± 1,3 МэВ 3 11,3 $_{-2,9}^{+3,2}$ МэВ 3 1,9 ± 1,2% 3 1,4 ± 1,0% 4 (1,9 ± 1,3)·10 ⁻⁴ 4 6 6 6 6 6 6 6 10.11 МэВ 3 92,9 ± 2,8 кэВ
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma\gamma$ $J/\psi(1S)$ mc^{2} Γ $e^{+}e^{-}$ $\mu^{+}\mu^{-}$	2 3639,4 ± 1,3 M ₃ B 3 11,3 - _{2,9} + ^{3,2} M ₃ B 1,9 ± 1,2% 1,4 ± 1,0% (1,9 ± 1,3)·10 ⁻⁴ $I^{G}(J^{PC}) = 0^{-}(1^{})$ 3 3096,916 ± 0,011 M ₃ B 3 92,9 ± 2,8 K ₃ B 5,971 ± 0,032%
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma\gamma$ $J/\psi(1S)$ mc^{2} Γ $e^{+}e^{-}$	2 3639,4 ± 1,3 M9B 3 11,3 $_{-2,9}^{+3,2}$ M9B 1,9 ± 1,2% 1,4 ± 1,0% (1,9 ± 1,3)·10 ⁻⁴ $I^{G}(J^{PC}) = 0^{-}(1^{})$ 2 3096,916 ± 0,011 M9B 592,9 ± 2,8 к9B 5,971 ± 0,032% 5,961 ± 0,033%
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma \gamma$ $J/\psi(1S)$ mc^{2} I $e^{+}e^{-}$ $\mu^{+}\mu^{-}$ ggg γgg $\rho \pi$	2 3639,4 ± 1,3 M ₃ B 3 11,3 - _{2,9} $^{+3,2}$ M ₃ B 1,9 ± 1,2% 1,4 ± 1,0% (1,9 ± 1,3)·10 ⁻⁴ 4 6
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma \gamma$ $J/\psi(1S)$ mc^{2} $e^{+}e^{-}$ $\mu^{+}\mu^{-}$ ggg γgg $\rho \pi$ $a_{2}(1320) \rho$	f^{2} 3639,4 ± 1,3 M9B 11,3 -2,9 ^{+3,2} M9B 1,9 ± 1,2% 1,4 ± 1,0% (1,9 ± 1,3)·10 ⁻⁴ $f^{G}(J^{PC}) = 0^{-}(1^{})$ f^{G} 3096,916 ± 0,011 M9B 592,9 ± 2,8 K9B 5,971 ± 0,032% 5,961 ± 0,033% 64,1 ± 1,0% 8,8 ± 1,1% 1,69 ± 0,15% 1,09 ± 0,22%
mc^{2} $KK\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma \gamma$ $J/\psi(1S)$ mc^{2} $\mu^{+}\mu^{-}$ ggg γgg $\rho \pi$ $a_{2}(1320) \rho$ $\omega \pi^{+}\pi^{+}\pi^{-}\pi^{-}$	f_{1}^{2} 3639,4 ± 1,3 M9B 11,3 -2,9 +3,2 M9B 1,9 ± 1,2% 1,4 ± 1,0% (1,9 ± 1,3)·10 ⁻⁴ $f_{1}^{G}(J^{PC}) = 0^{-}(1^{})$ 3096,916 ± 0,011 M9B 5,971 ± 0,032% 5,961 ± 0,033% 64,1 ± 1,0% 8,8 ± 1,1% 1,69 ± 0,15% 1,09 ± 0,22% (8,5 ± 3,4)·10 ⁻³
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma\gamma$ $J/\psi(1S)$ mc^{2} $e^{+}e^{-}$ $\mu^{+}\mu^{-}$ ggg γgg $\rho \pi$ $a_{2}(1320) \rho$ $\omega \pi^{+}\pi^{+}\pi^{-}\pi^{-}$ $\omega \pi^{+}\pi^{-}\pi^{0}$	2 3639,4 ± 1,3 M9B 3 11,3 $_{-2,9}^{+3,2}$ M9B 3 1,9 ± 1,2% 3 1,4 ± 1,0% 4 (1,9 ± 1,3)·10 ⁻⁴ 4 $^{$
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma\gamma$ $J/\psi(1S)$ mc^{2} I $e^{+}e^{-}$ $\mu^{+}\mu^{-}$ ggg $\rho\pi$ $a_{2}(1320) \rho$ $\omega\pi^{+}\pi^{+}\pi^{-}\pi^{-}$ $\omega\pi^{+}\pi^{-}\pi^{0}$ $\omega\pi^{+}\pi^{-}\pi^{0}$	2 3639,4 ± 1,3 M9B 3 11,3 $_{-2,9}^{+3,2}$ M9B 1,9 ± 1,2% 1,4 ± 1,0% (1,9 ± 1,3)·10 ⁻⁴ 3 4 $^{$
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma \gamma$ $J/\psi(1S)$ mc^{2} U $e^{+}e^{-}$ $\mu^{+}\mu^{-}$ U U U U U U U	2 3639,4 ± 1,3 M ₃ B 3 11,3 $_{-2,9}^{+3,2}$ M ₃ B 1,9 ± 1,2% 1,4 ± 1,0% (1,9 ± 1,3)·10 ⁻⁴ 3 4 2 4
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma \gamma$ $J/\psi(1S)$ mc^{2} U $e^{+}e^{-}$ $\mu^{+}\mu^{-}$ U U U U U U U	2 3639,4 ± 1,3 M9B 3 11,3 $_{-2,9}^{+3,2}$ M9B 1,9 ± 1,2% 1,4 ± 1,0% (1,9 ± 1,3)·10 ⁻⁴ 4 1 $^{$
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ YY $J/\psi(1S)$ mc^{2} U U U U U U U	2 3639,4 ± 1,3 M9B 3 11,3 $_{-2,9}^{+3,2}$ M9B 1,9 ± 1,2% 1,4 ± 1,0% (1,9 ± 1,3)·10 ⁻⁴ 2 3 3096,916 ± 0,011 M9B 3 92,9 ± 2,8 κ9B 5,971 ± 0,032% 5,961 ± 0,033% 64,1 ± 1,0% 8,8 ± 1,1% 1,69 ± 0,15% 1,09 ± 0,22% (8,5 ± 3,4)·10 ⁻³ (4,0 ± 0,7)·10 ⁻³ (8,6 ± 0,7)·10 ⁻³ (1,100 _{-0,40} ^{+0,22})·10 ⁻³ (1,1-0,6 ^{+1,0})·10 ⁻³ (1,15 ± 0,26)·10 ⁻³
mc^{2} $K\overline{K}\pi$ $K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\gamma \gamma$ $J/\psi(1S)$ mc^{2} U $e^{+}e^{-}$ $\mu^{+}\mu^{-}$ U U U U U U U	2 3639,4 ± 1,3 M9B 3 11,3 $_{-2,9}^{+3,2}$ M9B 1,9 ± 1,2% 1,4 ± 1,0% (1,9 ± 1,3)·10 ⁻⁴ 2 3 3096,916 ± 0,011 M9B 3 92,9 ± 2,8 κ9B 5,971 ± 0,032% 5,961 ± 0,033% 64,1 ± 1,0% 8,8 ± 1,1% 1,69 ± 0,15% 1,09 ± 0,22% (8,5 ± 3,4)·10 ⁻³ (4,0 ± 0,7)·10 ⁻³ (8,6 ± 0,7)·10 ⁻³ (1,100 _{-0,40} ^{+0,22})·10 ⁻³ (1,1-0,6 ^{+1,0})·10 ⁻³ (1,15 ± 0,26)·10 ⁻³

 $(5,12\pm0,30)\cdot10^{-3}$ $K^{+}\overline{K}^{*}(892)^{-}+c.c.$ $(4,39\pm0,31)\cdot10^{-3}$ $K^{0}\overline{K}^{*}(892)^{0}+\text{c.c.}$ $(3.8 \pm 1.4) \cdot 10^{-3}$ $K_1(1400)^{\pm}K^{\mp}$ $\omega \hat{\pi}^0 \pi^0$ $(3.4 \pm 0.8) \cdot 10^{-3}$ $(3.0 \pm 0.5) \cdot 10^{-3}$ $b_1(1235)^{\pm} \pi^{\mp}$ $(3.4 \pm 0.5) \cdot 10^{-3}$ $\omega K^{\pm} K_S^0 \pi^{\mp}$ $(2.3 \pm 0.6) \cdot 10^{-3}$ $b_1(1235)^0 \pi^0$ $(2,2\pm0,4)\cdot10^{-3}$ $n K^{\pm} K_S^0 \pi^{\mp}$ $(2,18 \pm 0,23) \cdot 10^{-3}$ $\varphi K^{*}(892) K + \text{c.c.}$ $(1,7 \pm 0,32) \cdot 10^{-3}$ $\omega K\overline{K}$ $(1,66 \pm 0,23) \cdot 10^{-3}$ $\varphi \ 2(\pi^+\pi^-)$ $(1.6 \pm 0.5) \cdot 10^{-3}$ $\Delta(1232)^{++} p \pi^{-}$ $(1,74 \pm 0,20) \cdot 10^{-3}$ ωη $(1.83 \pm 0.24) \cdot 10^{-3}$ $\varphi K \overline{K}$ ${\cal \Xi}^0 \, \overline{\Xi}^{\, 0}$ $(1,20 \pm 0,24) \cdot 10^{-3}$ $2(\pi^{+}\pi^{-})\pi^{0}$ $4.1 \pm 0.5\%$ $3(\pi^{+}\pi^{-})\pi^{0}$ $2.9 \pm 0.6\%$ $\pi^+\pi^-\pi^0$ $2,11 \pm 0.07\%$ $\pi^+ \pi^- \pi^0 K^+ K^ 1,79 \pm 0,29\%$ $(9,0\pm3,0)\cdot10^{-3}$ $4(\pi^{+}\pi^{-})\pi^{0}$ $\pi^+\pi^-K^+K^ (6.6 \pm 0.5) \cdot 10^{-3}$ $\pi^+ \pi^- K^+ K^- \eta$ $(1.84 \pm 0.28) \cdot 10^{-3}$ $(2,45 \pm 0,31)\cdot 10^{-3}$ $\pi^0 \pi^0 K^+ K^ (6,1\pm1,0)\cdot10^{-3}$ $K \overline{K} \pi$ $(3.57 \pm 0.30) \cdot 10^{-3}$ $2(\pi^{+}\pi^{-})$ $(4,3 \pm 0,4) \cdot 10^{-3}$ $3(\pi^+\pi^-)$ $2(\pi^+\pi^-\pi^0)$ $1.62 \pm 0.21\%$ $(2,29 \pm 0,24) \cdot 10^{-3}$ $2 (\pi^+ \pi^-) \eta$ $(2,120 \pm 0,029) \cdot 10^{-3}$ p p $p \overline{p} \pi^0$ $(1,19\pm0,08)\cdot10^{-3}$ $p p \pi^{+} \pi^{-}$ $(6.0 \pm 0.5) \cdot 10^{-3}$ $(2.09 \pm 0.16) \cdot 10^{-3}$ n n $(4 \pm 4) \cdot 10^{-3}$ $n n \pi^+ \pi^ \Sigma^+ \overline{\Sigma}^ (1,50 \pm 0,24) \cdot 10^{-3}$ $(1,29 \pm 0,09) \cdot 10^{-3}$ $\Sigma^0 \overline{\Sigma}^0$ $(4,7 \pm 0,7) \cdot 10^{-3}$ $2(\pi^{+}\pi^{-})K^{+}K^{-}$ $(2,12\pm0,09)\cdot10^{-3}$ $p n \pi^{-}$ $(1,61 \pm 0,15) \cdot 10^{-3}$ $\Lambda \overline{\Lambda}$ $\gamma \pi^+ \pi^- 2\pi^0$ $(8.3 \pm 3.1) \cdot 10^{-3}$ $(6.1 \pm 1.0) \cdot 10^{-3}$ γηππ $(4.5 \pm 0.8) \cdot 10^{-3}$ γρρ $(5,15\pm0,16)\cdot10^{-3}$ $\gamma \eta (958)$ $\gamma 2\pi^+ 2\pi^ (2.8 \pm 0.5) \cdot 10^{-3}$ $(2,1\pm0,6)\cdot10^{-3}$ $\gamma K^+ K^- \pi^+ \pi^-$

ψ(2S)	$I^{G}(J^{PC}) = 0^{-}(1^{})$	$\chi_{c0}(1P)$ $I^{G}(J^{PC}) = 0^{+}(0^{++})$	
	mc^2 3686,109 _{-0,014} $^{+0,012}$ МэВ Γ 299 ± 8 кэВ	mc^2 3414,75 ± 0,31 M ₂ B Γ 10,5 ± 0,6 M ₂ B	
$e^+e^ \mu^+\mu^ \tau^+\tau^ ggg$ γgg	$(7,89 \pm 0,17) \cdot 10^{-3}$ $(7,9 \pm 0,9) \cdot 10^{-3}$ $(3,1 \pm 0,4) \cdot 10^{-3}$ $10,6 \pm 1,6\%$ $1,03 \pm 0,29\%$	$ \begin{array}{lll} 2(\pi^{+}\pi^{-}) & 2,24 \pm 0,18\% \\ \pi^{+}\pi^{-}\pi^{0}\pi^{0} & 3,3 \pm 0,4\% \\ 4\pi^{0} & (3,2 \pm 0,4) \cdot 10^{-3} \\ \pi^{+}\pi^{-}K^{+}K^{-} & 1,75 \pm 0,14\% \\ K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0} & 1,11 \pm 0,26\% \\ K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0} & (5,4 \pm 0,2) \cdot 10^{-3} \end{array} $	
$J/\psi(1S) \pi^{+} \pi^{-}$ $J/\psi(1S) \pi^{0} \pi^{0}$ $J/\psi(1S) \eta$ $J/\psi(1S) \pi^{0}$ $3(\pi^{+} \pi^{-}) \pi^{0}$	$34,45 \pm 0,30\%$ $18,13 \pm 0,31\%$ $3,36 \pm 0,05\%$ $(1,268 \pm 0,032) \cdot 10^{-3}$ $(3,5 \pm 1,6) \cdot 10^{-3}$	$K^{+}K^{-}\pi^{0}\pi^{0}$ $(5,4\pm0,9)\cdot10^{-3}$ $K^{+}\pi^{-}K^{0}\pi^{0} + \text{c.c.}$ $2,44\pm0,33\%$ $3(\pi^{+}\pi^{-})$ $1,20\pm0,18\%$ $\gamma J/\psi(1S)$ $1,27\pm0,06\%$	
$2(\pi^{+}\pi^{-})\pi^{0}$ $2(\pi^{+}\pi^{-}\pi^{0})$ $2(\pi^{+}\pi^{-})\eta$ $K^{+}K^{-}\pi^{+}\pi^{-}\eta$	$(2.9 \pm 1.0) \cdot 10^{-3}$ $(4.7 \pm 1.5) \cdot 10^{-3}$ $(1.2 \pm 0.6) \cdot 10^{-3}$	$\chi_{c1}(1P)$ $I^{G}(J^{PC}) = 0^{+}(1^{++})$ $mc^{2} 3510,66 \pm 0,07 \text{ M} \Rightarrow B$ $\Gamma 0,84 \pm 0,04 \text{ M} \Rightarrow B$ $3(\pi^{+} \pi^{-})$ $(5,8 \pm 1,4) \cdot 10^{-3}$	
$K^{+}K^{-}2(\pi^{+}\pi^{-}K^{+}K^{-}2(\pi^{+}\pi^{-}K^{-}K^{-}1270)^{\pm}K^{-}K^{+}K^{-}\pi^{+}\pi^{-}\pi^{-}\chi^{-}\chi^{-}\chi^{-}(1P)$	$\begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} & (1,00 \pm 0,31) \cdot 10^{-3} \\ \end{array} & (1,9 \pm 0,9) \cdot 10^{-3} \\ \end{array} \\ \begin{array}{ll} \end{array} & (1,00 \pm 0,28) \cdot 10^{-3} \end{array}$	$ \begin{array}{lll} 2(\pi^{+}\pi^{-}) & (5,5\pm1,1) \cdot 10^{-3} \\ 7(\pi^{+}\pi^{-}\pi^{0}\pi^{0}) & (7,6\pm2,6) \cdot 10^{-3} \\ \pi^{+}\pi^{-}\pi^{0}\pi^{0} & 1,22\pm0,16\% \\ \pi^{+}\pi^{-}K^{+}K^{-} & (4,5\pm1,0) \cdot 10^{-3} \\ K^{+}K^{-}\pi^{0}\pi^{0} & (1,14\pm0,28) \cdot 10^{-3} \\ \gamma J/\psi(1\mathbf{S}) & 33,9\pm1,2\% \end{array} $	
$ \gamma \chi_{c0}(1P) \gamma \chi_{c1}(1P) \gamma \chi_{c2}(1P) $	$9,99 \pm 0,27\%$ $9,55 \pm 0,31\%$ $9,11 \pm 0,31\%$	$\chi_{c2}(1P)$ $I^G(J^{PC}) = 0^+(2^{++})$	
$\gamma \eta_{\rm c}(1{\rm S})$	$(3,4\pm0,5)\cdot10^{-3}$	mc^2 3556,20 ± 0,09 МэВ Г 1,93 ± 0,11 МэВ	
$\psi(3770)$ $D^{0} \overline{D}^{0}$ $D^{+} \overline{D}^{-}$	$I^{G}(J^{PC}) = 0^{-}(1^{-})$ mc^{2} 3773,15 ± 0,33 M ₂ B Γ 27,2 ± 1,0 M ₂ B $52 \pm 5\%$ $41 \pm 4\%$	$ 2(\pi^{+}\pi^{-}) $	
$J/\psi \pi^+ \pi^-$	$(1,93\pm0,28)\cdot10^{-3}$	$\pi^{+} \pi^{-} K^{+} K^{-}$ $K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$ $(8,8 \pm 1,0) \cdot 10^{-3}$ $1,23 \pm 0,34\%$	
$\psi(4040)$ $e^+ e^-$ $D^0 \overline{D}^0$	$I^{G}(J^{PC}) = 0^{-}(1^{-})$ $mc^{2} 4039 \pm 1 \text{ MэB}$ $\Gamma 80 \pm 10 \text{ МэВ}$ $(1,07 \pm 0,16) \cdot 10^{-5}$ наблюдался	$ \begin{array}{lll} 3(\pi^{+}\pi^{-}) & (8,6 \pm 1,8) \cdot 10^{-3} \\ \pi \pi & (2,33 \pm 0,12) \cdot 10^{-3} \\ \rho^{0}\pi^{+}\pi^{-} & (3,8 \pm 1,6) \cdot 10^{-3} \\ p \overline{p}\pi^{+}\pi^{-} & (1,32 \pm 0,34) \cdot 10^{-3} \\ p \overline{n}\pi^{-} & (0,89 \pm 0,10) \cdot 10^{-3} \end{array} $	
$oldsymbol{D}^+ \overline{oldsymbol{D}}^- \ oldsymbol{D}^* \overline{oldsymbol{D}}^*$	наблюдался наблюдался	$ \frac{\gamma J/\psi(1S)}{\chi_{c2}(2P)} $ $ \frac{19,2 \pm 0,7\%}{I^G(J^{PC}) = 0^+(2^{++})} $	
$D_{s}^{+}D_{s}^{-}$ $J/\psi \pi^{+} \pi^{-}$ $J/\psi \pi^{0} \pi^{0}$ $\chi_{c1} \gamma$ $\chi_{c2} \gamma$ $\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$ $\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	наблюдался $< 4 \cdot 10^{-3}$ $< 2 \cdot 10^{-3}$ $< 1,1 %$ $< 1,7 %$ $< 1,1 %$ $< 3,2 %$	mc^2 3927,2±2,6 МэВ Γ 24±6 МэВ P наблюдался наблюдался наблюдался наблюдался	

$b\overline{b}$ мезоны

	мезины
Υ (1S)	$I^{G}(J^{PC}) = 0^{-}(1^{})$
	2 9460,30 ± 0,26 M ₂ B
Γ	$54,02 \pm 1,25$ кэВ
$oldsymbol{ au}^+ oldsymbol{ au}^-$	$2,60 \pm 0,10\%$
$e^+ e^-$	$2,38 \pm 0,11\%$
$\mu^+ \mu^-$	$2,48 \pm 0,05\%$
ggg	$81,7 \pm 0,7\%$
$\gamma g g$	$2,2 \pm 0,6\%$
η (958) что-либо	
<i>J/ψ</i> (1S) что-либо	$(6.5 \pm 0.7) \cdot 10$
D *(2010) [±] что-либо	
$egin{array}{cccc} \gamma & \pi^+ & \pi^- \ \gamma & \pi^0 & \pi^0 \end{array}$	$(6,3\pm1,8)\cdot10^{-5}$ $(1,7\pm0,7)\cdot10^{-5}$
$\gamma K^+ K^-$	$(1,14\pm0,13)\cdot10^{-5}$
•	
Υ (2S)	$I^{G}(J^{PC}) = 0^{-}(1^{})$
	2 10,02326 ± 0,00031 ГэВ
	$31,98 \pm 2,63$ кэВ
Υ (1S) $\pi_{\alpha}^{+}\pi_{\alpha}^{-}$	$17,85 \pm 0,26\%$
Υ (1S) π^0 π^0	$8.6 \pm 0.4\%$
$ au^+_+ au^$	$2,00 \pm 0,21\%$
$\mu^{+}_{-}\mu^{-}_{-}$	$1.93 \pm 0.17\%$
e^+e^-	$1,91 \pm 0,16\%$ < $6 \cdot 10^{-3}$
$J/\psi(1S)$ что-либо	$58.8 \pm 1.2\%$
ggg γgg	$8.8 \pm 1.1\%$
$\gamma \chi_{b1}(1P)$	$6.9 \pm 0.4\%$
$\gamma \chi_{b2}(1P)$	$7.15 \pm 0.35\%$
$\gamma \chi_{b0}(1P)$	$3.8 \pm 0.4\%$
$\gamma \eta_b(1S)$	$(3.9 \pm 1.5) \cdot 10^{-4}$
Υ (1D)	$I^{G}(J^{PC}) = 0^{-}(2^{})$
mc^2	2 10163,7 ± 1,4 M ₂ B
γγ Υ (1S)	наблюдался
$\pi^{+}\pi^{-}\Upsilon(1S)$	$(6.6 \pm 1.6) \cdot 10^{-3}$
$\chi_{\rm b0}(1P)$	$I^{G}(J^{PC}) = 0^{+}(0^{++})$
	2 9859,44±0,42±0,31 M ₂ B
$\gamma \Upsilon (1S)$ $D^0 X$	1,76±0,35% < 10,4%
$2\pi^{+} 2\pi^{-} K^{+} K^{-}$	$(1.1 \pm 0.6) \cdot 10^{-4}$
	$I^{G}(J^{PC}) = 0^{+}(1^{++})$
$\chi_{\rm b1}(1P)$	
	2 9892,78 ± 0,26 ± 0,31 M ₂ B
$\gamma \Upsilon(1S)$	$33.9 \pm 2.2\%$
$D^0 X$	$12.6 \pm 2.2\%$
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	$(2.0 \pm 0.6) \cdot 10^{-4}$
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0} \ 2\pi^{+}2\pi^{-}2\pi^{0}$	$(1,3\pm0,5)\cdot10^{-4}$
<i>Σπ Σπ Σπ</i>	$(8,0\pm2,5)\cdot10^{-4}$

```
I^{G}(J^{PC}) = 0^{+}(2^{++})
\chi_{b2}(1P)
                           mc^2 9912,21 ± 0,26 ± 0,31 M<sub>2</sub>B
                                    19,1 \pm 1,2\%
y Y (1S)
D^0 X
                                   < 7,9%
\pi^{\scriptscriptstyle +}\,\pi^{\scriptscriptstyle -}\,\textit{K}^{\scriptscriptstyle +}\,\textit{K}^{\scriptscriptstyle -}\,\pi^0
                                   (8\pm5)\cdot10^{-5}
2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}
                                   (5,3\pm2,4)\cdot10^{-4}
2\pi^{+} 2\pi^{-} 2\pi^{0}
                                   (3.5 \pm 1.4) \cdot 10^{-4}
                                   (1,1\pm0,4)\cdot10^{-4}
2\pi^+ 2\pi^- K^+ K^-
2\pi^{+} 2\pi^{-} K^{+} K^{-} \pi^{0}
                                   (2,1\pm0,9)\cdot10^{-4}
2\pi^{+} 2\pi^{-} K^{+} K^{-} 2\pi^{0}
                                   (3.9 \pm 1.8) \cdot 10^{-4}
3\pi^{+} 3\pi^{-}
                                   (7.0\pm3.1)\cdot10^{-5}
3\pi^{+} 3\pi^{-} 2\pi^{0}
                                   (1,0\pm0,4)\cdot10^{-3}
                                   I^{G}(J^{PC}) = 0^{+}(0^{++})
\chi_{\rm b0}(2P)
                           mc^2 10232,5 ± 0,4 ± 0,5 M<sub>3</sub>B
γ Y (2S)
                                   4.6 \pm 2.1\%
                                   (9\pm6)\cdot10^{-3}
\gamma \Upsilon (1S)
D^0 X
                                    < 8,2%
2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}
                                   < 2.2 \cdot 10^{-4}
2\pi^{+} 2\pi^{-} 2\pi^{0}
                                   < 2.4 \cdot 10^{-4}
2\pi^{+} 2\pi^{-} K^{+} K^{-}
                                   < 1.5 \cdot 10^{-4}
2\pi^{+} 2\pi^{-} K^{+} K^{-} \pi^{0}
                                   < 2.2 \cdot 10^{-4}
2\pi^{+} 2\pi^{-} K^{+} K^{-} 2\pi^{0}
                                   < 1.1 \cdot 10^{-3}
3\pi^{+} 2\pi^{-} K^{-} K_{S}^{0} \pi^{0}
                                   <7.10^{-4}
                                    < 1.2 \cdot 10^{-3}
3\pi^{+} 3\pi^{-} 2\pi^{0}
3\pi^{+} 3\pi^{-} K^{+} K^{-}
                                   < 1.5 \cdot 10^{-4}
3\pi^{+} 3\pi^{-} K^{+} K^{-} \pi^{0}
                                   <7.10^{-4}
4\pi^{+} 4\pi^{-}
                                   < 1.7 \cdot 10^{-4}
4\pi^{+} 4\pi^{-} 2\pi^{0}
                                    < 6.10^{-4}
                                   I^{G}(J^{PC}) = 0^{+}(1^{++})
\chi_{\rm b1}(2P)
                           mc^2 10255,46 ± 0,22 ± 0,50 M<sub>2</sub>B
                                   1,63<sub>-0,34</sub><sup>+0,40</sup>%
\omega \Upsilon (1S)
γ Y (2S)
                                    19.9 \pm 1.9\%
y Y (1S)
                                   9.2 \pm 0.8\%
                                   (9,1\pm1,3)\cdot10^{-3}
\pi \pi \chi_{b1}(1P)
D^0 X
                                   8.8 \pm 1.7\%
\pi^+ \pi^- K^+ K^- \pi^0
                                   (3,1\pm1,0)\cdot10^{-4}
2\pi^{+}\pi^{-}K^{-}K_{S}^{0}
                                   (1,1\pm0,5)\cdot10^{-4}
2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}
                                   (7,7\pm3,2)\cdot10^{-4}
2\pi^{+} 2\pi^{-} 2\pi^{0}
                                   (5.9 \pm 2.0) \cdot 10^{-4}
                                   (1,2\pm0,4)\cdot10^{-4}
3\pi^{+}3\pi^{-}
                                   I^{G}(J^{PC}) = 0^{+}(2^{++})
\chi_{\rm b2}(2P)
                           mc^2 10268,65 ± 0,22 ± 0,50 M<sub>3</sub>B
                                   1,10_{-0.30}^{+0.34}\%
\omega \Upsilon (1S)
                                    10,6 \pm 2,6\%
\gamma \Upsilon (2S)
                                   7,0 \pm 0,7\%
\gamma \Upsilon (1S)
                                   (5,1\pm0,9)\cdot10^{-3}
\pi \pi \chi_{b1}(1P)
D^0 X
                                    < 2.4\%
2\pi^{+} 2\pi^{-} 2\pi^{0}
                                   (3.9 \pm 1.6) \cdot 10^{-4}
```