

Modelling Constrained Optimization Problems

- Different approaches to modelling constrained optimization problems
- Basic modelling with MiniZinc
- Advanced modelling with MiniZinc
 - Predicates:
 - Global constraints
 - User defined constraints & tests
 - Reflection functions
 - Let expressions (local variables)
 - Negation and partial functions
 - Efficiency
 - Different problem models
 - Redundant constraints

Predicates

- MiniZinc allows us to capture complex constraint in a predicate. Predicate may be
 - Supported by the underlying solver, or
 - Defined by the modeller
- A predicate definition has the form
- An argument definition is a MiniZinc type declaration e.g.
 - int:x, array[1..10] of var int:y, array[int] of bool:b
- Note arrays do not need to be fixed size

Global constraints: all different

- all_different(array[int] of var int:x)
- Defines an assignment subproblem: all vars in the x array take a different value

• To use a global we need to include it, or include all globals with include "globals.mzn"

Global Constraints: inverse

- inverse(array[int] of var int:f, array[int] of var int:if) $f[i] = j \Leftrightarrow if[j] = i \quad (if \text{ is the inverse function } f^{l})$
- Helpful for assignment problems where we want both views of the problem
- array[1..n] of var 1..n: task;
 array[1..n] of var 1..n: worker;
 constraint inverse(task,worker);
- We can express constraints about tasks and workers constraint t[1] > t[2] /\ w[3] < w[4];
- task for worker 1 is numbered after task for worker 2
- worker of task 3 is numbered less than worker for task 4

Global constraints: cumulative

- A constraint for cumulative resource usage
- cumulative(array[int] of var int: s, array[int] of var int: d, array[int] of var int: r, var int: b)
 - Set of tasks with start times S, and durations d and resource usages r never require more than b resources at any time
- % piano, fridge, double bed, single bed, wardrobe chair, chair, table

```
d = [60, 45, 30, 30, 20, 15, 15, 15];

r = [3, 2, 2, 1, 2, 1, 1, 2]; b = 4;
```


Global constraints: table

- Enforce that array of variables take value from one row in a table:
- table(array[int] of var int: x, array[int,int] of int:t)
- Consider a table of car models
- % doors, sunroof, speakers, satnav, aircon models = [I 5, 0, 0, 0, 0 % budget hatch I 4, 1, 2, 0, 0 % standard saloon I 3, 1, 2, 0, 1 % standard coupe I 2, 1, 4, 1, 1 I]; % sports coupe constraint table(options, models);

Global constraints: regular

- Enforce that sequences of variables form a regular expression, defined by a DFA
- regular(array[int] of var int:x, int:Q, int: S; array[int,int] of int:d, int q0: set of int:F)
- Sequence X (taking vals 1..S) accepted by DFA with Q states, start state q0, final states F, and transition function: d
- One day off every 4 days, no 3 nights

	d 1	n 2	o 3
1	2	3	1
2	4	4	1
3	4	5	1
4	6	6	1
5	6	0	1
6	0	0	1

User Defined Constraints

MiniZinc (unlike most other mathematical modelling languages) allows the modeller to define their own:

```
predicates (var bool)tests (bool)
```

N-queens example:

```
int: n;
array [1..n] of var 1..n: q;
```

predicate

```
noattack(int: i, int: j, var int: qi, var int: qj) = qi != qj / qi + i != qj + j / qi - i != qj - j;
```

```
constraint
  forall (i in 1..n, j in i+1..n) (noattack(i, j, q[i], q[j]));
solve satisfy;
```

```
      q1 q2 q3 q4 q5 q6 q7 q8

      8

      7

      6

      5

      4

      3

      2

      1

      2

      3

      4

      5

      6

      6

      7

      8

      8

      1

      2

      1

      2

      3

      4

      5

      6

      6

      8

      1

      2

      3

      4

      4

      8

      1

      2

      3

      4

      5

      6

      6

      8

      1

      2

      3

      4

      5

      6

      6

      8

      9

      1

      2

      2

      3

      4
    </
```


Complex Output (aside)

- Sometimes the output form is not close to the natural model: Queens
 - variables are columns, output by rows
- Solution: complex output expression
- output [if fix(q[j]) == i then "Q" else "." endif ++ if j == n then "\n" else "" endif l i,j in 1..n];

Complex Output (aside)

- Q....Q.
- Sometimes the output form is not close to the natural model: Queens

- variables are columns, output rows numbers

..Q....

- Solution: complex output expression
- output [if fix(q[j]) == i then show(j) else "" endif ++
 if j == n then "\n" else "" endif l i,j in 1..n];
- Output \longrightarrow 8 2
- Alternate Solution: add to model
- array[1..n] of var 1..n: r; % row vars constraint inverse(q,r); output [show(r[i]) ++ "\n" | i in 1..n];

Reflection Functions

- To help write generic tests and predicates, various reflection functions return information about array index sets, var set domains and decision variable ranges:
 - index_set(<1-D array>)
 - index_set_1of2(<2-D array>), index_set_2of2(<2-D array>)
 - ...
 - dom(<arith-dec-var>), lb(<arith-dec-var>), ub(<arith-dec-var>)
 - lb_array(<var-set>), ub_array(<var-set>)
- The latter class give "safe approximations" to the inferred domain, lowerbound and upperbound
 - Currently in mzn2fzn this is the declared or inferred bound

Extending assertions

- For predicates we introduce an extended assertion
 - assert(<bool-exp>, <string>, <bool-exp>)
- If first <bool-exp> evaluates to false prints
 <string> and aborts otherwise evaluates second
 <bool-exp>
- Useful to check user-defined predicate is called correctly

Using Reflection

- The disjunctive constraint:
 - cumulative where resource bound is 1 and all tasks require 1 resource.

All_different

• Write a predicate defining the all_different constraint that takes a 1-D array:

all_different(array[int] of var int:x)

Local Variables

- It is often useful to introduce local variables in a test or predicate
- The let expression allows you to do so let { <var-dec>, ... } in <exp>
 (It can also be used in other expressions)
- The var declaration can contain decision variables and parameters
 - Parameters must be initialized
- Example:

```
let {int: I = Ib(x), int: u = ub(x) div 2, var I .. u: y} in x = 2*y
```

Exercise: Local Variables

```
var -2..2: x1;
var -2..2: x2;
var -2..2: x3;
var int: II;
var int: uu;
constraint even(2 * x1 - x2 * x3);
predicate even(var int:x) =
    let \{ int: I = lb(x), int: u = ub(x) div 2, var I..u: y \} in
     x = 2 * y / l = ll / l u = uu;
output["I = ",show(II), " u = ",show(uu), "\n"];
```

What prints out?

Complex use of local variables

```
predicate lex_less_int(array[int] of var int: x,
                         array[int] of var int: y) =
   let { int: lx = min(index\_set(x)), int: ux = max(index\_set(x)),
       int: ly = min(index_set(y)), int: uy = max(index_set(y)),
       int: size = min(ux - lx, uy - ly),
       array[0..size+1] of var bool: b }
  in
   b[0] / 
   forall(i in 0..size) (
     b[i] = (x[lx + i] \le y[ly + i] / 
            (x[lx + i] < y[ly + i] \setminus b[i+1]))
   b[size + 1] = (ux - lx < uy - ly);
```

X is lexicographically less than Y

Meaning of Negation

- Local variables cannot appear in a negated context
 - not <bool-exp>
 - <bool-exp> -> <bool-exp>
 - < bool-exp > = < bool-exp > (or <->)
- This is because they wont get the right meaning predicate even(var int:x) = let {var int:y} in x = 2*y; constraint not even(z);
- Translates to (more about translation later)
 let { var int:y } in not (z = 2 * y)
- Solution: z = 2, y = 0 !
- Solvers don't support:
 - forall y. not (z = 2 * y)

Partial functions

Given declarations

```
var 0..1: x;
var 0..5: i;
array[1..4] of int:a = [1,2,3,4];
What are expected solutions for
```

- constraint 1 != 1 div x;
- constraint not(1 == 1 div x);
- constraint $x < 1 \setminus / 1 \text{ div } x != 1$;
- constraint a[i] >= 3;
- constraint not(a[i] < 2);</pre>
- constraint a[i] >= 2 -> a[i] <= 3;

Relational semantics

- A partial function creates answer false
 - at the nearest enclosing Boolean context
- Examples

Efficiency in MiniZinc

- Of course as well as correctly modelling our problem we also want our MiniZinc model to be solved efficiently
- Information about efficiency is obtained using the MiniZinc flags
 - solver-statistics [number of choice points]
 - statistics [number of choice points, memory and time usage]
- Extensive experimentation is required to determine relative efficiency

Improving Efficiency in MiniZinc

- Add search annotations to the solve item to control exploration of the search space.
- Use global constraints such as all_different since they have better propagation behaviour.
- Try different models for the problem.
- Add redundant constraints.

And for the expert user:

- Extend the constraint solver to provide a problem specific global constraint.
- Extend the constraint solver to provide a problem specific search routine.

Modelling Effectively

- Modelling is (like) programming
 - You can write efficient and inefficient models
- Take care to avoid some simple traps
 - Bound variables as tightly as possible
 - Avoid var int if possible
 - Avoid introducing unnecessary variables
 - Make loops as tight as possible

Bound your variables

```
var int: x;
var int: y;
constraint x <= y /\ x > y;
solve satisfy;
Takes an awful long time to say no answer
var -1000..1000: x;
var -1000..1000: y;
```

• Is almost instant

Unconstrained variables

- Takes a long time to say no
- Remove the bool array its instant!
- Sometimes unconstrained vars arise from matrix models where not all vars are used

Efficient loops

- Think about loops, just like in other programs int: count = sum [1 | i, j, k in NODES where i<j // j<k /\ adj[i,j] /\ adj[i,k] /\ adj[j,k]];
- Compare this to

```
int: count = sum( i, j in NODES where
    i < j /\ adj[i,j])(
        sum([1 | k in NODES where j < k
        /\ adj[i,k] /\ adj[j,k]]));;</pre>
```


Global Constraints

- Where possible you should use global constraints
- MiniZinc provides a standard set of global constraints in the file globals.mzn
- To use these you simply include the file in the model
 - include "globals.mzn"
- Exercise: Rewrite N-queens to use all_different.
- Exercise: Look at globals.mzn

Different Problem Modellings

- Different views of the problem lead to different models
- Depending on solver capabilities one model may require less search to find answer
- Look for model with fewer variables
- Look for more direct mapping to primitive constraints.
- Empirical comparison may be needed

Different Problem Modellings

Simple assignment problem:

- n workers and
- *n* products
- Assign one worker to each product to maximize profit

Instance:

n=4 & profit matrix =

	<i>p</i> 1	p2	<i>p</i> 3	<i>p</i> 4
$\overline{w1}$	7	1	3	4
<i>w</i> 2	8	2	5	1
w3	4	3	7	2
w4	3	1	6	3

Exercise: Model this in MiniZinc

MIP-style model

```
int: n;
array[1..n,1..n] of int: profit;
array[1..n,1..n] of var 0..1: assign;
constraint
   forall(w in 1..n) (
     sum(t in 1..n) (assign[t,w]) = 1);
constraint
   forall(t in 1..n) (
     sum(w in 1..n) (assign[t,w]) = 1);
solve maximize
  sum( w in 1..n, t in 1..n) (
    assign[t,w]*profit[t,w]);
```

Assign task to worker

```
include "globals.mzn";
int: n;
array[1..n,1..n] of int: profit;
array[1..n] of var 1..n: task;
constraint all_different(task);
solve maximize
  sum(w in 1..n) (
    profit[w,task[w]]);
```

Assign worker to task

```
include "globals.mzn";
int: n;
array[1..n,1..n] of int: profit;
array[1..n] of var 1..n: worker;
constraint all_different(worker);
solve maximize
  sum(t in 1..n) (
    profit[worker[t],t]);
```

Redundant Constraints

- Sometimes solving behaviour can be improved by adding redundant constraints to the model
- The magic series model will run faster with redundant constraints:

```
int: n;
array[0..n-1] of var 0..n: s;

constraint
  forall(i in 0..n-1) (
     s[i] = sum(i in 0..n-1)(bool2int(s[j]=i)));
constraint
     sum(i in 0..n-1) (s[i]) = n;
constraint
     sum(i in 0..n-1) (s[i]*i) = n;
solve satisfy;
```

Redundant Constraints

• An extreme kind of redundancy is to combine different models for a problem using channeling constraints.

```
int: n;
array[1..n,1..n] of int: profit;
array[1..n] of var 1..n: task;
array[1..n] of var 1..n: worker;
constraint all_different(task);
constraint all_different(worker);
constraint
  forall( w in 1..n) (w = worker[task[w]]);
constraint
  forall( t in 1..n) (t = task[worker[t]]);
solve maximize
  sum(t in 1..n) (
    profit[worker[t],t]);
```

Redundant Constraints

- There are globals for channeling constraints.
 - inverse(x,y): x[i] = j <-> y[j] = i
- A better combined model

```
int: n;
Include "inverse.mzn";
array[1..n,1..n] of int: profit;
array[1..n] of var 1..n: task;
array[1..n] of var 1..n: worker;
% constraint all_different(task); % redundant
% constraint all_different(worker);
constraint inverse(task,worker);
solve maximize sum(t in 1..n) (profit[worker[t],t]);
```


Labelling

- Recall that in CP the construction of the search tree can have a huge effect on efficiency
- The search strategy is often called labelling.
- There are two choices made in labelling
 - which variable to label
 - which value in the domain to try
- Default labelling
 - try variables in order of the given list
 - try value in order min to max (returned by dom)
- However we can use different strategies. These can lead to dramatic performance improvement.

First Fail Labelling

• One useful heuristic is the first-fail principle

"To succeed, try first where you are most likely to fail"

- At each step choose the variable with the smallest domain.
- Do this dynamically based on the domain size after propagation.

Annotations

- MiniZinc allows the user to annotate their model with information for the underlying solver to guide how it solves it
- Such annotations do not change the model's meaning but can greatly affect efficiency
- Example annotations are
 - <var-decl> :: is_output means that this is an output variable.
 - Note that an output item overrides is_output annotations
 - <constraint> :: bounds
 - <constraint> :: domain
 - specifies the type of propagation to use with the constraint

Search Annotations

- MiniZinc allows control of search using annotations on the solve item
- For integer variables these have form

```
int_search(vars, var_select, choice, explore)
```

- vars is a 1D array specifying the var int variables affected by the annotation;
- var_select is the variable selection strategy
 - input_order, first_fail, anti_first_fail, smallest, largest, occurrence, most_constrained, max_regret
- choice is the value choice strategy
 - indomain, indomain_max, indomain_split, ...
- explore is the search strategy
 - complete, bbs(s), fail, ...

See the FlatZinc specification for more details

http://www.g12.csse.unimelb.edu.au/minizinc/downloads/doc-0.10/flatzinc-spec.pdf

Search Annotations

• For the N-queens model you might use

Extending the Constraint Solver

- MiniZinc can be executed using ECLiPSe, Mercury G12 solving platform, or Gecode.
- These allow new global constraints to be added to the solver
- They also allow new search strategies to be added
 - we'll talk about search strategies later

Summary

- Advanced models in MiniZinc use predicates to define complex subproblem constraints
 - Global constraints (give better solving)
 - User defined constraints & tests (Give better readability)
- We need to be careful with negation and local variables
- Efficiency depends on the model formulation
- Developing an efficient decision model requires considerable experimentation

Zinc

- However MiniZinc is not a very powerful modelling language.
- MiniZinc is a subset of Zinc.
- Zinc extends MiniZinc providing
 - Tuples, enumerated constants, records, discriminated union
 - Var sets over arbitrary finite types
 - Arrays can have arbitrary index sets.
 - Overloaded functions and predicates.
 - Constrained types
 - User defined functions.
 - More powerful search parameterized by functions.
- Coming soon...

Exercise 1: Predicates

- Write a predicate definition for
 - near_or_far(var int:x, var int:y, int:d1, int:d2)
 which holds if difference in the value of x and y is either at most d1 or at least d2.
 - Can you optimize its definition for simple cases?
- Write a predicate definition for
 - sum_near_or_far(array[int] of var int:x, int: d1, int:d2) which holds if the sum of the x array is at most d1 or at least d2

Exercise 2: Comparing Models

- Try out the different versions of the assignment problem on the problems from examples.pdf (add an extra worker G to the unbalanced example with costs all 30)
 - Compare the number of choices required to solve using mzn -statistics
 - Try all five models, which is best?
 - Try different solvers?