$\begin{array}{c} \text{Math 31AH: Spring 2021} \\ \text{Homework 1} \\ \text{Due 5:00pm on Friday } 10/1/2021 \end{array}$

Problem 1: Arithmetic of sets. Determine whether the following three equalities hold for all sets A, B, and C. If equality does not hold, determine whether we have the containments \subseteq or \supseteq . Prove your claims.

- (1) $A \cap (B C) = (A \cap B) (A \cap C)$.
- (2) $A \cup (B C) = (A \cup B) (A \cup C)$.
- $(3) A \times (B C) = (A \times B) (A \times C).$

Problem 2: Vectors on the circle. Let S be the unit circle in the plane \mathbb{R}^2 centered at the origin, i.e.

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

True or false: there exist elements $\mathbf{v}, \mathbf{w} \in S$ such that $\mathbf{v} + \mathbf{w} \in S$. Prove your claim.

Problem 3: Ill-defined functions. Each of the following "functions" is not well-defined. Explain why they are not well-defined.

- (1) $f: \mathbb{C} \to \mathbb{C}$, where $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}$ is the set of complex numbers and $f(z) := \frac{1}{z^2 + 3}$.
- (2) $g: \mathbb{Q} \to \mathbb{Z}$, where $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is the set of integers, $\mathbb{Q} = \{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\}$ is the set of rational numbers, and $g(\frac{a}{b}) = a b$.
- (3) $h: X \to \mathbb{R}_{>0}$, where $X := \{(x,y) \in \mathbb{R}^2 : y = x^2 1\}$ is a parabola in the plane, $\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$ are the positive reals, and h(x,y) = y.

Problem 4: Binary operations. Decide whether the given binary operations \star on the given sets S are well-defined. Prove your claim.

- (1) $S = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$ and $(x, y) \star (x', y') := (x + x', y + y')$.
- (2) $S = \mathbb{R} \text{ and } x \star y := \frac{x}{y^2 + 1}.$
- (3) $S = \mathbb{C}$ and $x \star y := \frac{x}{y^2 + 1}$.

Problem 5: Multiplication in fields. Let \mathbb{F} be a field and let $a, b \in \mathbb{F}$ be nonzero elements. Prove that $ab \neq 0$. (Hint: Use 'proof by contradiction'. Assume to the contrary that ab = 0 with $a, b \neq 0$. Prove that this forces one of a, b to be zero.)

Problem 6: Characteristic of a field. Let \mathbb{F} be a field. The *characteristic* of \mathbb{F} , written char(\mathbb{F}), is the minimum positive integer n such

that we have

$$\overbrace{1+1+\cdots+1}^{n}=0$$

inside \mathbb{F} . If no such n exists, the field \mathbb{F} is said to have *characteristic* zero and we write $\operatorname{char}(\mathbb{F}) = 0$.

Let \mathbb{F} be a field with $\operatorname{char}(\mathbb{F}) = n > 0$. Prove that n is prime. (Hint: Use Problem 5 in a clever way.)

Problem 7: A four-element field? Let $S = \{0, 1, 2, 3\}$ and define binary operations +, \cdot on S to be addition and multiplication modulo $4.^1$ Do these binary operations turn S into a field? Prove your claim.

Problem 8: A non-field. Let \mathbb{F} be a field. Define binary operations + and \cdot on $\mathbb{F}^2 = \{(a,b) : a,b \in \mathbb{F}\}$ by the 'coordinatewise' rules

$$(a,b) + (a',b') := (a+a',b+b')$$
 and $(a,b) \cdot (a',b') := (a \cdot a',b \cdot b')$

Prove that these binary operations do **not** turn \mathbb{F}^2 into a field.

Problem 9: (Optional; not to be handed in.) When $\mathbb{F} = \mathbb{R}$ is the field of real numbers, we can endow \mathbb{R}^2 with the structure of a field via the alternative binary operations

$$(x,y)+(x',y'):=(x+x',y+y')$$
 and $(x,y)\cdot(x',y'):=(xx'-yy',xy'+x'y)$

Explain why this is the field \mathbb{C} of complex numbers in disguise. Can these rules be used to define a field structure on \mathbb{F}^2 for any field \mathbb{F} ? Why or why not?

¹More precisely, given $x, y \in S$ we define $x + y \in S$ to be the remainder of the (usual) sum of x, y upon division by 4 and let $x \cdot y \in S$ be the remainder of the (usual) product of x, y upon division by 4.