Mathématique

Série nº 2 — Suites de fonctions

Ex 2.1 – Pour chacun des cas suivants, étudier les convergences simple et uniforme sur l'ensemble X de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ de X dans \mathbf{R} :

- 1. $X = \mathbf{R} \text{ et } f_n(x) = \frac{n^2 x^4}{1 + n^2 x^2}$.
- 2. X = [0,1] et $f_n(x) = x^n(1-x^2)$.
- 3. $X = [0, +\infty[$ puis $X = [a, +\infty[$ avec a > 0 et $f_n(x) = \arctan(nx)$.
- 4. $X = \mathbf{R}$ et $f_n(x) = [nx]/n$, [x] désignant la partie entière de x.

 $\mathbf{Ex}\ \mathbf{2.2} - \mathrm{Soit}\ (f_n)_{n \geq 1}$ la suite de fonctions de [0,1] dans \mathbf{R} définie par

$$f_n(x) := (n-1)x \text{ si } x \in [0, 1/n]$$
 et $f_n(x) := 1-x \text{ si } x \in [1/n, 1].$

Montrer que $(f_n)_{n \ge 1}$ converge uniformément sur tout [a, 1] avec $0 < a \le 1$, mais pas sur [0, 1].

Ex 2.3 -

1. Soit $(f_n)_{n\geq 1}$ la suite de fonctions de **R** dans **R** définie par

$$f_n(x) := \sqrt{x^2 + \frac{1}{n}}.$$

Montrer que $(f_n)_{n\geqslant 1}$ converge uniformément. Montrer que pour tout $n\geqslant 1$, f_n est dérivable; que peut-on dire de la limite de $(f_n)_{n\geqslant 1}$. Comparer à un résultat du cours.

2. Soit $(f_n)_{n\geqslant 1}$ la suite de fonctions de ${\bf R}$ dans ${\bf R}$ définie par

$$f_n(x) \coloneqq \frac{1}{n}\sin(nx).$$

Montrer que $(f_n)_{n\geqslant 1}$ converge uniformément. Étudier la convergence de la suite des dérivées. Comparer à un résultat du cours.

3. Soit $(f_n)_{n\geq 1}$ la suite de fonctions de **R** dans **R** définie par

$$f_n(x) := \arctan(\frac{x}{n}).$$

Montrer que $(f'_n)_{n\geqslant 1}$ converge uniformément. Montrer que $(f_n)_{n\geqslant 1}$ converge uniformément sur toute partie bornée. La suite $(f_n)_{n\geqslant 1}$ converge-t-elle uniformément sur \mathbf{R} ?

Ex 2.4 -

1. Étudier la limite simple et uniforme sur [0,1] de la suite de fonctions $(f_n)_{n\geqslant 0}$ puis déterminer $\lim_{n\longrightarrow\infty}\int_0^1 f_n(x)\,dx$ dans les cas suivants :

(a)
$$f_n(x) = \frac{ne^x}{n+x}$$
; (b) $f_n(x) = \frac{x^5}{(1+x^2)^n}$.

2. On considère, pour $n \ge 0$ et $|x| \le 1$, $f_n(x) = \max(0, 1 - n|x|)$. Déterminer la limite simple de la suite $(f_n)_{n \ge 0}$ ainsi que $\lim_{n \to \infty} \int_{-1}^{1} f_n(x) dx$. La convergence est-elle uniforme sur [-1, 1]?