CHAPTER 4. INVERSE MANIPULATOR KINEMATICS

Inverse kinematics vs. direct (or forward) kinematics

Problem \ Space	Joint Space		Cartesian Space
Forward Kinematics	q (known)	\rightarrow	$^{0}T_{n}(\mathbf{q})$ (unknown)
Inverse Kinematics	q (unknown)	←	${}^{0}T_{n}(\mathbf{q})$ (known)

Solvability

■ Given ${}^{0}T_{n}$ → find $q_{1}, q_{2}, ..., q_{n}$ (Cartesian space → joint space)

Nonlinear transcendental equations

Existence and Uniqueness

• Workspace: volume of space which the manipulator's end-effector can reach

Dexterous workspace: end-effector can reach with all orientations. At each point, end-effector can be arbitrarily oriented.

Reachable workspace: end-effector can reach in at least one orientation.

- {dexterous workspace} ⊂ {reachable workspace}

• Number of solutions depends on link parameters, joint limits, and number of joints.

If [DOF or number of unknowns] = [number of equations] \rightarrow unique solution

If [DOF or number of unknowns] < [number of equations] → solution may not exist; manipulator cannot attain general goal positions and orientations in 3D space.

If [DOF or number of unknowns] > [number of equations] → multiple solutions may exist; kinematically redundant (flexible, dexterous, controllable); optimization is required.

(Note: For complete position and orientation of the end-effector, the number of equations is 6. However, in general, the number of equations depends on a given task as well as the manipulator.)

Methods of Solution

Solvable: all the sets of joint variables can be determined for a given position and orientation.
 Closed form solutions – analytic expressions or polynomial of degree 4 or less
 Numerical solutions (e.g., Bisection method, Newton-Raphson method, Secant method, Muller's method, Brent's algorithm, etc.)

Foundations of Robotics

- Closed form solution methods of kinematic equations
 - 1) Algebraic solution: specify end-effector frame relative to base frame → manipulate given equations
 - 2) Geometric solution: decompose spatial geometry of the manipulator into several plane geometry
 → use plane geometry to solve for joint angles

(Note: Frequently, the mix of algebraic and geometric approaches is used.)

- A sufficient condition that a manipulator with 6 revolute joints will have a closed form solution is that three neighboring joint axes intersect at a point.
- Recall: Two-argument arctangent function $\phi = \operatorname{atan2}(y,x)$ Defined on all four quadrants $(-\pi \le \phi < \pi)$

Case	Quadrants	$\phi = \operatorname{atan2}(y, x)$
x > 0	1, 4	$\phi = \arctan(y/x)$
x = 0	1, 4	$\phi = \underbrace{\operatorname{sgn}(y)}_{=\pm 1} (\pi/2)$
<i>x</i> < 0	2, 3	$\phi = \arctan(y/x) + \operatorname{sgn}(y) \cdot \pi$

Algebraic Solution by Reduction to Polynomial

- Let $u = \tan \frac{\theta}{2}$ and substitute $\cos \theta = \frac{1 u^2}{1 + u^2}$, $\sin \theta = \frac{2u}{1 + u^2}$ (Weierstrass Substitution)
 - \Rightarrow Transcendental (e.g., trigonometric) equations in $\theta \Rightarrow$ polynomial equations in u (Note: polynomials up to degree 4 have closed form solutions.)
- Closed form solvable manipulators: Manipulators which are sufficiently simple to be solved by algebraic equations of up to degree 4.

Repeatability and Accuracy

- Taught point: point that the manipulator is moved to physically, and then the joint position sensors are read, and the joint angles are stored; teach and playback
- Repeatability of manipulator: specification of how precisely a manipulator can return to a taught point
- Computed point: point in a manipulator's workspace which was never taught; if a goal position and orientation are specified in Cartesian space, required joint variables must be solved for by computing inverse kinematics.
- Accuracy: Precision with which a computed point can be attained. Accuracy of a manipulator is bounded by the repeatability.

Foundations of Robotics

Example: 2R Planar Manipulator

Determine θ_1 and θ_2 in terms of p_x and p_y .

Kinematic equations

Homogeneous transformation between links:
$${}^{0}T_{2} = {}^{0}T_{1}{}^{1}T_{2} = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

End-effector's position and orientation: ${}^{R}T_{H} = \begin{bmatrix} \cos\phi & -\sin\phi & 0 & p_{x} \\ \sin\phi & \cos\phi & 0 & p_{y} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

1) Calculation of θ_2

$$p_x = a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2) = a_1 c_1 + a_2 c_{12}$$
 and $p_y = a_1 \sin \theta_1 + a_2 \sin(\theta_1 + \theta_2) = a_1 s_1 + a_2 s_{12}$

$$\Rightarrow p_x^2 + p_y^2 = a_1^2 + a_2^2 + 2a_1a_2(c_1c_{12} + s_1s_{12}) = a_1^2 + a_2^2 + 2a_1a_2c_2 \text{ (also from law of cosines)}$$

$$\Rightarrow c_2 = \cos \theta_2 = \frac{p_x^2 + p_y^2 - a_1^2 - a_2^2}{2a_1 a_2} \Rightarrow \text{ The solution exists only if } -1 \le \frac{p_x^2 + p_y^2 - a_1^2 - a_2^2}{2a_1 a_2} \le 1. \text{ If not, the}$$

target point is outside of the reachable workspace.

$$s_2 = \sin \theta_2 = \pm \sqrt{1 - c_2^2}$$
; $\theta_2 = \tan 2(s_2, c_2)$ \rightarrow redundancy – elbow-up vs. elbow-down

2) Calculation of θ_1

$$\begin{aligned} p_x &= a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2) = a_1 c_1 + a_2 c_{12} = a_1 c_1 + a_2 (c_1 c_2 - s_1 s_2) = (a_1 + a_2 c_2) c_1 - a_2 s_2 s_1 \\ p_y &= a_1 \sin \theta_1 + a_2 \sin(\theta_1 + \theta_2) = a_1 s_1 + a_2 s_{12} = a_1 c_1 + a_2 (c_1 s_2 + s_1 c_2) = (a_1 + a_2 c_2) s_1 + a_2 s_2 c_1 \end{aligned}$$

Method 1 for θ_1 :

$$(a_1 + a_2c_2)c_1 - (a_2s_2)s_1 = p_x$$
 and $(a_2s_2)c_1 + (a_1 + a_2c_2)s_1 = p_y$

$$(a_1 + a_2c_2)c_1 - (a_2s_2)s_1 = p_x \text{ and } (a_2s_2)c_1 + (a_1 + a_2c_2)s_1 = p_y$$
Cramer's formula $\Rightarrow c_1 = \frac{(a_1 + a_2c_2)p_x + a_2s_2p_y}{(a_1 + a_2c_2)^2 + (a_2s_2)^2} \text{ and } s_1 = \frac{-a_2s_2p_x + (a_1 + a_2c_2)p_y}{(a_1 + a_2c_2)^2 + (a_2s_2)^2}$

$$\theta_1 = \operatorname{atan} 2(s_1, c_1) = \operatorname{atan} 2(-a_2 s_2 p_x + (a_1 + a_2 c_2) p_y, (a_1 + a_2 c_2) p_x + a_2 s_2 p_y)$$

Method 2 for θ_1 :

Foundations of Robotics

$$\frac{p_y}{p_x} = \frac{(a_1 + a_2c_2)s_1 + a_2s_2c_1}{(a_1 + a_2c_2)c_1 - a_2s_2s_1} = \frac{\frac{s_1}{c_1} + \frac{a_2s_2}{a_1 + a_2c_2}}{1 - \frac{s_1}{c_1} \frac{a_2s_2}{a_1 + a_2c_2}}$$
Let $\tan \gamma = \frac{a_2s_2}{a_1 + a_2c_2}$ or $\gamma = \operatorname{atan2}(a_2s_2, a_1 + a_2c_2)$

$$\frac{p_y}{p_x} = \frac{\tan \theta_1 + \tan \gamma}{1 - \tan \theta_1 \tan \gamma} = \tan(\theta_1 + \gamma) \implies \theta_1 = \operatorname{atan2}(p_y, p_x) - \gamma$$

$$\implies \theta_1 = \operatorname{atan2}(p_y, p_x) - \operatorname{atan2}(a_2s_2, a_1 + a_2c_2)$$