Отчет о практическом задании «Ансамбли алгоритмов для решения задачи регрессии. Веб-сервер».

Практикум 317 группы, ММП ВМК МГУ.

Булкин Антон Павлович.

Декабрь 2024.

Содержание

1	Вст	гупление	2
2	Обр	работка данных	3
	2.1	Анализ датасета	3
		2.1.1 Характеристика датасета	3
		2.1.2 Расположение объектов недвижимости	3
		2.1.3 Корреляция признаков и целевой переменной	4
		2.1.4 Дисперсии признаков	
	2.2	Преобразование выборки	6
3	Исс	Преобразование выборки	(
3	Исс	следование поведения алгоритма $RandomForest$ для задачи ре-	6
3	Исс	следование поведения алгоритма $RandomForest$ для задачи рессии в зависимости от параметров $n_estimators,\ max_features$	
3	Исс грес и <i>т</i>	следование поведения алгоритма $RandomForest$ для задачи рессии в зависимости от параметров $n_estimators,\ max_features$ max_depth	
3	Исс грес и т 3.1	следование поведения алгоритма $RandomForest$ для задачи рессии в зависимости от параметров $n_estimators, max_features$ max_depth Постановка задачи	
3	Исс грес и т 3.1	следование поведения алгоритма $RandomForest$ для задачи рессии в зависимости от параметров $n_estimators, max_features$ max_depth Постановка задачи	
3	Исс грес и т 3.1	следование поведения алгоритма $RandomForest$ для задачи рессии в зависимости от параметров $n_estimators$, $max_features$ max_depth Постановка задачи	

и m	$ax \hspace{0.1cm} depth$	11
	Постановка задачи	11
	Реализация	
	4.2.1 Подбор параметра $n_estimators$	12
	4.2.2 Подбор параметра <i>max_features</i>	12
	$4.2.3$ Подбор параметра max_depth	14
	$4.2.4$ Подбор параметра $learning_rate$	15
4.3	Выводы	16

1 Вступление

Данное задание посвящено реализации методов ансамблирования и решению задачи регрессии на основе данных о продажах недвижимости.

Задачами задания являлись:

- 1. Реализовать алгоритмы случайного леса и градиентного бустинга с использованием стандартных библиотек Python (numpy, scipy, matplotlib) и DecisionTreeRegressor из библиотеки scikit-learn.
- 2. Провести анализ работы алгоритмов, включая их параметры, такие как:
 - количество деревьев в ансамбле,
 - размерность подвыборки признаков для одной вершины дерева,
 - максимальная глубина деревьев
 - \bullet влияние параметра $learning_rate$.
- 3. Провести предобработку данных и исследовать их влияние на работу моделей.
- 4. Оценить алгоритмы по метрике RMSE, исследуя зависимость качества работы от изменения параметров.

2 Обработка данных

2.1 Анализ датасета

2.1.1 Характеристика датасета

Датасет House Sales in King County, USA содержит информацию о продажах недвижимости в округе Кинг (штат Вашингтон, США). Основные характеристики датасета:

- Датасет состоит из 21 613 записей и 21 признака.
- Столбец **price** является целевой переменной, представляющей стоимость объекта недвижимости.
- Остальные столбцы описывают различные характеристики объектов: местоположение, параметры строения, год постройки, площадь, количество спален, ванных комнат и т.д.
- В данных отсутствуют пропуски.
- Столбец price представляет собой дату в текстовом формате.
- Столбец id является ID объекта недвижимости.

2.1.2 Расположение объектов недвижимости

Рассмотрим расположение объектов недвижимости. (Рис. 1)

Рис. 1: Расположение случайных 2000 объектов недвижимости

Большая концентрация домов наблюдается в районе города Сиэтл и его пригородов, таких как Bellevue, Redmond, Kirkland, а также вдоль западного побережья озера Вашингтон. Менее плотная застройка наблюдается в восточной части карты, где расположены более лесные и природные зоны. Застройка вдоль главных автомагистралей и дорог указывает на зависимость доступности и плотности домов от транспортной инфраструктуры. Большинство точек сосредоточены в городской черте и прилегающих пригородах. Территории, покрытые лесами, горами, имеют низкую плотность или вовсе не включают дома. Видно, что дома расположены равномерно вдоль побережья, где вероятна высокая стоимость жилья из-за близости к воде.

2.1.3 Корреляция признаков и целевой переменной

Рассмотрим корреляционную матрицу признаков. (Рис. 2)

Puc. 2: Корреляционная матрица признаков и target

На цену дома price больше всего влияют жилая площадь $sqft_living$, качество строительства grade и количество ванных комнат bathrooms. Вид на окрестности и площадь соседних домов также имеют умеренное влияние. Связь между разме-

ром дома, его качеством и жилой площадью высокая, что может вызвать мультиколлинеарность. Признаки, такие как $condition, yr_renovated$ и zipcode, имеют отрицательную цорреляцию с ценой.

Если признак имеет отрицательную корреляцию с целевой переменной, его можно оставить при обучении модели RandomForest. Важность признаков (feature importance) в RandomForest зависит от их вклада в уменьшение ошибки разделения, а не от направления корреляции. Отрицательная корреляция означает, что признак может быть полезен для предсказания, только в противоположном направлении. Деревья решений эффективно обрабатывают такие признаки. Они работают с пороговыми значениями и могут использовать признак с отрицательной корреляцией для разделения данных. Также, признак с отрицательной корреляцией может быть важным в сочетании с другими признаками, даже если его вклад по отдельности небольшой.

2.1.4 Дисперсии признаков

Рассмотрим величины дисперсии признаков. (Табл. 1)

Величина дисперсии
0.8650150097573724
0.5931512887355798
843533.6813681519
1715658774.1754544
0.29158800687709074
0.007485225502689098
0.5872426169774596
0.42346651239404876
1.3817032893476293
685734.6672685045
195872.66840094145
862.7972621659763
161346.2118623043
2862.7878348129493
0.01919990179600803
0.019832622017890593
469761.23994532257
745518225.3404043
0.21866475249044356
9.705142556192985
74.56430497102993

Таблица 1: Дисперсии признаков датасета

Дисперсия показывает степень разброса значений признаков. Наибольшая дисперсия наблюдается у признаков $sqft_lot$ и $sqft_living$, что отражает широкий диапазон размеров участков и жилых площадей. Признаки waterfront и lat и long имеют минимальную дисперсию, что говорит о слабо выраженных изменениях в данных. Промежуточные значения дисперсий у grade, bedrooms и bathrooms указывают на умеренный разброс данных, характерный для качественных категорий. Высокие дисперсии zipcode и $yr_renovated$ могут свидетельствовать о вариативности регионов и года реконструкции.

2.2 Преобразование выборки

Проведем преобразование выборки:

- Выделим целевую переменную в отдельную переменную Ү.
- Преобразуем значения признака date в формат datetime.
- Создадим при помощи данного признака 3 новых: year, month и day.
- Удалим лишние признаки.
- Разобьем выборку на *train* и *test* в соотношении 80:20.

3 Исследование поведения алгоритма RandomForest для задачи регрессии в зависимости от параметров $n_estimators, max_features$ и max_depth

3.1 Постановка задачи

Исследовать поведение алгоритма RandomForest для задачи регрессии в зависимости от следующих параметров:

- ullet количество деревьев в ансамбле $n_estimators$
- ullet размерность подвыборки признаков для одной вершины дерева $max_features$
- ullet максимальная глубина дерева (в том числе случай, когда глубина не ограничена) $max\ depth$

Исследование поведения метода подразумевало анализ следующих зависимостей:

- зависимость значения *RMSE* на отложенной выборке
- зависимость времени работы алгоритма

3.2 Реализация

Во всех экспериментах до подбора наилучшего параметра при прочих равных увсловиях брались как тестирующие значения параметры:

- $n_estimators = 250$
- max features = 5
- $max_depth = 10$

После нахождения наилучшего параметра - использовался он.

3.2.1 Подбор параметра n estimators

Будем рассматривать значения $n_{estimators}$ от 1 до 250.

Рис. 3: Зависимость RMSE от количества деревьев в ансамбле

На рисунке 3 представлены графики зависимости значения RMSE на обучающей и отложенной выборке от параметра $n_estimators$. Как можно заметить из графиков, наилучшее значение RMSE достигается при $n_estimators = 171$.

3.2.2 Подбор параметра max features

Будем рассматривать значения $max_features$ среди следующего множества значений: $\{1,\ 2,\ 3,\ 4,\ 5,\ 7,\ 9,\ 10,\ 12,\ 15,\ 17,\ 19,\ 21\}.$

Рис. 4: Зависимость RMSE от размерности подвыборки признаков для одной вершины дерева

Рис. 5: Зависимость времени работы алгоритма от размерности подвыборки признаков для одной вершины дерева

На рисунках 4 и 5 представлены графики зависимости RMSE и времени работы алгоритма от параметра $max_features$. Как можно заметить из графиков, наилучшее значение RMSE достигается при $max_features = 9$. Вне зависимости от того, что модель с данным параметром обучается дольше большинства других моделей, мы будем использовать его как наилучший, так как он обеспечивает наилучшее значение целевой функции (RMSE).

3.2.3 Подбор параметра *max depth*

Будем рассматривать значения max_depth среди следующего множества значений: $\{2,\ 4,\ 6,\ 8,\ 10,\ 15,\ 20,\ 25,\ 30,\ 40,\ 50,\ 80,\ None\}$. Последний параметр соответствует неограниченной максимальной глубине дерева.

Рис. 6: Зависимость RMSE от максимальной глубины дерева

Рис. 7: Зависимость времени работы алгоритма от максимальной глубины дерева

На рисунках 6 и 7 представлены графики зависимости RMSE и времени работы алгоритма от параметра max_depth . Как можно заметить из графиков, наилучшее значение RMSE достигается при $max_depth = 30$. Вне зависимости от того, что модель с данным параметром обучается дольше большинства других моделей, мы будем использовать его как наилучший, так как он обеспечивает наилучшее значение целевой функции (RMSE).

3.3 Выводы

Проведенные эксперименты показали следующие лучшие параметры модели RandomForest для задачи регрессии при прочих равных условиях:

- $n_estimators = 171$
- $max_features = 9$
- $max_depth = 30$

Обучим модель RandomForest с наилучшими подобранными параметрами и рассмотрим результаты.

Значение RMSE	Время работы алгоритма
147736.15936707004	21.98995065689087

Таблица 2: Значение RMSE и времени обучения лучшей модели ${\it RandomForest}$

В таблице 2 приведены значение RMSE на отложенной выборке и время работы алгоритма с подобранными параметрами.

4 Исследование поведения алгоритма GradientBoosting для задачи регрессии в зависимости от параметров $n_estimators, max_features$ и max_depth

4.1 Постановка задачи

Исследовать поведение алгоритма RandomForest для задачи регрессии в зависимости от следующих параметров:

- \bullet количество деревьев в ансамбле $n_estimators$
- ullet размерность подвыборки признаков для одной вершины дерева $max_features$
- максимальная глубина дерева (в том числе случай, когда глубина не ограничена) max_depth
- параметра learning rate

Исследование поведения метода подразумевало анализ следующих зависимостей:

- ullet зависимость значения RMSE на отложенной выборке
- зависимость времени работы алгоритма

4.2 Реализация

Во всех экспериментах до подбора наилучшего параметра при прочих равных увсловиях брались как тестирующие значения параметры:

- $n_estimators = 250$
- max features = 5
- $max_depth = 10$

После нахождения наилучшего параметра - использовался он.

4.2.1 Подбор параметра n estimators

Будем рассматривать значения n estimators or 1 до 250.

Рис. 8: Зависимость RMSE от количества деревьев в ансамбле

На рисунке 8 представлены графики зависимости значения RMSE на обучающей и отложенной выборке от параметра $n_estimators$. Как можно заметить из графиков, наилучшее значение RMSE достигается при $n_estimators = 211$.

4.2.2 Подбор параметра max features

Будем рассматривать значения $max_features$ среди следующего множества значений: $\{1, 2, 3, 4, 5, 7, 9, 10, 12, 15, 17, 19, 21\}$.

Рис. 9: Зависимость RMSE от размерности подвыборки признаков для одной вершины дерева

Рис. 10: Зависимость времени работы алгоритма от размерности подвыборки признаков для одной вершины дерева

На рисунках 9 и 10 представлены графики зависимости RMSE и времени работы алгоритма от параметра $max_features$. Как можно заметить из графиков, наилучшее значение RMSE достигается при $max_features = 19$. Вне зависимости

от того, что модель с данным параметром обучается дольше большинства других моделей, мы будем использовать его как наилучший, так как он обеспечивает наилучшее значение целевой функции (RMSE).

4.2.3 Подбор параметра *max depth*

Будем рассматривать значения max_depth среди следующего множества значений: $\{2,\ 4,\ 6,\ 8,\ 10,\ 15,\ 20,\ 25,\ 30,\ 40,\ 50,\ 80,\ None\}$. Последний параметр соответствует неограниченной максимальной глубине дерева.

Рис. 11: Зависимость RMSE от максимальной глубины дерева

Рис. 12: Зависимость времени работы алгоритма от максимальной глубины дерева

На рисунках 11 и 12 представлены графики зависимости RMSE и времени работы алгоритма от параметра max_depth . Как можно заметить из графиков, наилучшее значение RMSE достигается при $max_depth = 6$. Вне зависимости от того, что модель с данным параметром обучается дольше большинства других моделей, мы будем использовать его как наилучший, так как он обеспечивает наилучшее значение целевой функции (RMSE).

4.2.4 Подбор параметра learning rate

Будем рассматривать значения *learning_rate* среди множества чисел, расположенных от 0.01 до 1, взятых в количестве двадцати штук.

Рис. 13: Зависимость RMSE от параметра learning rate

Рис. 14: Зависимость времени работы алгоритма от параметра learning rate

На рисунках 13 и 14 представлены графики зависимости RMSE и времени работы алгоритма от параметра learning_rate. Как можно заметить из графиков, наилучшее значение RMSE достигается при learning_rate = 0.2705263157894737.

4.3 Выводы

Проведенные эксперименты показали следующие лучшие параметры модели RandomForest для задачи регрессии при прочих равных условиях:

- *n_estimators* = 211
- $max_features = 19$
- $max_depth = 6$
- $\bullet \ learning_rate = 0.2705263157894737$

Обучим модель GradientBoosting с наилучшими подобранными параметрами и рассмотрим результаты.

Значение RMSE	Время работы алгоритма
123530.98922074263	46.27242064476013

Таблица 3: Значение RMSE и времени обучения лучшей модели GradientBoosting

В таблице 3 приведены значение RMSE на отложенной выборке и время работы алгоритма с подобранными параметрами.

5 Итог

В ходе работы проведён анализ методов ансамблирования для задачи регрессии на данных о продажах недвижимости. Реализованы алгоритмы RandomForest и GradientBoosting, исследованы их параметры и выявлены оптимальные. Random Forest показал лучшие результаты при параметрах $n_estimators = 171$, $max_features = 9$ и $max_depth = 30$, обеспечив RMSE 147736.16 за 21.99 секунды, тогда как для GradientBoosting оптимальными стали $n_estimators = 211$, $max_features = 19$, $max_depth = 6$ и $learning_rate = 0.27$, что привело к RMSE 123530.99 за 46.27 секунд. Отличия в параметрах объясняются разными подходами моделей: RandomForest снижает шум через усреднение множества глубоких деревьев, а GradientBoosting акцентируется на последовательном исправлении ошибок, используя меньшую глубину деревьев для предотвращения переобучения. Таким образом, GradientBoosting обеспечивает лучшую точность, а RandomForest — более быстрое выполнение.

Список литературы

[1] Материалы семинаров ММРО и Практикума 3 курса ВМК МГУ, https://github.com/mmp-practicum-team/mmp_practicum_fall_2024/blob/main/Seminars/08-text-processing-and-logreg/seminar.pdf