MA2108 - Mathematical Analysis I Suggested Solutions

(Semester 2: AY2020/21)

Written by: Chow Yong Lam Audited by: Pan Jing Bin

Question 1

(a) Determine the convergence or divergence of each of the following series. Justify your answers.

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{8^n} \left(1 + \frac{2}{n}\right)^{n^2}$$
.

(ii)
$$\sum_{n=1}^{\infty} \frac{n^2 + n \cos n}{\sqrt{n^6 - n^3 + 3}}.$$

Solution

Let
$$a_n = \frac{(-1)^{n+1}}{8^n} (1 + \frac{2}{n})^{n^2}$$
.

By taking the root test, $|a_n|^{\frac{1}{n}} = |\frac{1}{8^n} (1 + \frac{2}{n})^{n^2}|^{\frac{1}{n}} = \frac{(1 + \frac{2}{n})^n}{8}$.

Note that $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = \lim_{n\to\infty} \frac{(1+\frac{2}{n})^n}{8} = \frac{e^2}{8} < 1$ Therefore, $\lim\sup_{n\to\infty} |a_n|^{\frac{1}{n}} < 1$ and the series converges.

(ii)

$$\begin{split} \sum_{n=1}^{\infty} \frac{n^2 + n \cos n}{\sqrt{n^6 - n^3 + 3}} &\geq \sum_{n=1}^{\infty} \frac{n^2 - n}{\sqrt{n^6 - n^3 + 3}} \\ &\geq \sum_{n=1}^{\infty} \frac{n^2 - n}{\sqrt{2n^6}} \\ &= \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{n^2 - n}{n^3} \\ &= \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} (\frac{1}{n} - \frac{1}{n^2}) \end{split}$$

Since $\sum_{n=1}^{\infty} (\frac{1}{n} - \frac{1}{n^2})$ diverges by p-series test, by Comparison test, the initial series diverges too.

(b) Let $f:(-3,\infty)\to\mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} \frac{x+11}{x+3} & \text{if } x \in (-3,\infty) \cap \mathbb{Q}, \\ x+6, & \text{if } x \in (-3,\infty) \cap (\mathbb{R} \setminus \mathbb{Q}). \end{cases}$$

Determine the points, if any, at which f is continuous. Justify your answer.

Solution

$$\frac{x+11}{x+3} = x+6$$

$$x^2 + 9x + 18 = x+11$$

$$x^2 + 8x + 7 = 0$$

$$x = -1 \text{ or } x = -7.$$

Let $f_1(x) = \frac{x+11}{x+3}$ and $f_2(x) = x+6$. At x = -1, $f_1(x) = f_2(x) = 5$ Since these two functions are both continuous on $(-3, \infty)$, $\forall \epsilon > 0$, $\exists \delta_1, \delta_2$ such that

$$|x+1| < \delta_1 \implies |f_1(x) - 5| < \epsilon$$

 $|x+1| < \delta_2 \implies |f_2(x) - 5| < \epsilon$.

Choose $\delta = \min(\delta_1, \delta_2)$, then

$$|x+1| < \delta \implies |f(x) - 5| < \epsilon$$
.

Now, let $g_1(x) = f_1(x) - f(x)$. Then,

$$g_1(x) = \begin{cases} 0, & \text{if } x \in (-3, \infty) \cap \mathbb{Q} \\ f_1(x) - f_2(x), & \text{if } x \in (-3, \infty) \cap (\mathbb{R} \setminus \mathbb{Q}). \end{cases}$$

Observe that $\forall x \in (-3, \infty) \cap (\mathbb{R} \setminus \mathbb{Q}) \setminus \{-1\}$, we have $g_1(x) \neq 0$.

Let $y \in ((-3, \infty) \cap (\mathbb{R} \setminus \mathbb{Q})) \setminus \{-1\}$ and choose $\epsilon = \frac{|g_1(y)|}{2}$. Then, $\forall \delta > 0, \exists p \in \mathbb{Q}$ such that $p \in (y - \delta, y + \delta) \implies |g_1(y) - g_1(p)| = |g_1(y)| > \epsilon$

Therefore, $g_1(x) = f_1(x) - f(x)$ is not continuous for all $x \in ((-3, \infty) \cap (\mathbb{R} \setminus \mathbb{Q})) \setminus \{-1\}$.

This implies that f(x) is not continuous for all $x \in ((-3, \infty) \cap (\mathbb{R} \setminus \mathbb{Q})) \setminus \{-1\}$.

(Note that the conclusion is obtained from the contrapositive of the following statement: If f(x), g(x) are continuous functions, so is f(x) + g(x).)

Therefore, f(x) is only continuous at x = -1.

(a) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f is uniformly continuous on \mathbb{R} and

$$3 < f(x) < 5$$
 for all $x \in \mathbb{R}$.

Consider the function $g: \mathbb{R} \to \mathbb{R}$ given by

$$g(x) = \frac{f(x)}{f(2x)}, \ x \in \mathbb{R}$$

Is it true that g is uniformly continuous on \mathbb{R} ? Justify your answer.

Solution

Recall that:

1. f being uniformly continuous in \mathbb{R} means that for all $x, y \in \mathbb{R}$,

$$\forall \epsilon > 0, \ \exists \delta > 0 \text{ s.t. } |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

2. 3 < f(x) < 5 for all $x \in \mathbb{R}$ implies that $\frac{1}{5} < \frac{1}{f(x)} < \frac{1}{3}$ for all $x \in \mathbb{R}$.

Let $\epsilon > 0$ be arbitrary, from (1), there exists $\delta > 0$ such that $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$. Then,

$$\begin{split} |x-y| &< \frac{\delta}{2} \implies g(x) - g(y) = \left| \frac{f(x)}{f(2x)} - \frac{f(y)}{f(2y)} \right| \\ &= \left| \frac{f(x)f(2y) - f(y)f(2x)}{f(2x)f(2y)} \right| \\ &< \frac{1}{9} \Big| f(x)f(2y) - f(y)f(2y) + f(y)f(2y) - f(y)f(2x) \Big| \\ &< \frac{1}{9} \Big| \big[f(2y)f(x) - f(2y)f(y) \big] + \big[f(y)f(2y) - f(y)f(2x) \big] \Big| \\ &< \frac{1}{9} \Big[|f(2y)||f(x) - f(y)| + |f(y)||f(2y) - f(2x)| \Big] \\ &< \frac{1}{9} \big[5\epsilon + 5\epsilon \big] \\ &< \frac{10\epsilon}{9}. \end{split}$$

Since ϵ is chosen arbitrarily, we conclude that g(x) is uniformly continuous on \mathbb{R} .

(b) Let (S,d) be a metric space, where d is a metric on a non-empty set S. Consider the function $\rho: S \times S \to \mathbb{R}$ given by:

$$\rho(x,y) = d(x,y) + \sqrt{d(x,y)}, x, y \in S$$

Is it true that ρ is a metric on S? Justify your answer.

Solution

Since d is a metric on S, it fulfills commutativity, positive-definiteness and triangle inequality.

1. Commutativity: For all $x, y \in S$, by the commutativity of d,

$$\rho(x,y) = d(x,y) + \sqrt{d(x,y)}$$
$$= d(y,x) + \sqrt{d(y,x)}$$
$$= \rho(y,x)$$

Thus it is a commutative operator.

2. Positive-definiteness:

If
$$x = y$$
, $\rho(x, x) = d(x, x) + \sqrt{d(x, x)} = 0$.
If $x \neq y$, $\rho(x, y) = d(x, y) + \sqrt{d(x, y)} > 0 + 0 = 0$ by positive-definiteness of d as a metric.
Therefore, ρ is positive-definite.

3. Triangle Inequality:

First, note that $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$ for all non-negative real numbers a, b. Squaring terms on both sides can verify this statement. Next, by the triangle inequality for metric d, we have that $d(x,z) \leq d(x,y) + d(y,z)$. Therefore, for any $x,y,z \in S$

$$\begin{split} \rho(x,z) &= d(x,z) + \sqrt{d(x,z)} \\ &\leq d(x,y) + d(y,z) + \sqrt{d(x,y) + d(y,z)} \\ &\leq d(x,y) + \sqrt{d(x,y)} + d(y,z) + \sqrt{d(y,z)} \\ &\leq \rho(x,y) + \rho(y,z) \end{split}$$

Therefore, ρ satisfies the triangle inequality.

We conclude that ρ is a metric on S.

(a) Consider the sequence (x_n) given by

$$x_1 = 4$$
, and $x_{n+1} = \frac{x_n^2 - 5x_n + 15}{3}$ for all $n \in \mathbb{N}$.

Is it true that (x_n) converges? Find also its limit if it converges. Justify your answers.

Remark: The approximate values of the first few terms of (x_n) are as follows:

$$x_1 = 4, \ x_2 = 3.67, \ x_3 = 3.37, \ x_4 = 3.17, \ x_5 = 3.07, \ x_6 = 3.02, \ x_7 = 3.01, \cdots$$

Solution

Since $3 < x_1 < 5$,

$$x_2 - x_1 = \frac{11}{3} - 4 < 0$$
$$x_2 - 3 = \frac{11}{3} - 3 > 0$$

Therefore, $3 < x_2 < x_1 < 5$. Now, assume that $3 < x_n < 5$ for an arbitrary $n \in \mathbb{N}$, then

$$x_{n+1} - x_n = \frac{x_n^2 - 5x_n + 15 - 3x_n}{3} = \frac{x_n^2 - 8x_n + 15}{3} = \frac{(x_n - 5)(x_n - 3)}{3} < 0$$
$$x_{n+1} - 3 = \frac{x_n^2 - 5x_n + 15 - 9}{3} = \frac{x_n^2 - 5x_n + 6}{3} = \frac{(x_n - 2)(x_n - 3)}{3} > 0$$

Therefore, $3 < x_{n+1} < x_n < 5$. By Mathematical Induction, $3 < ... < x_{n+1} < x_n < x_{n-1} < ... < x_1 = 4$. The sequence is bounded and decreasing, so it is convergent. Let $x = \lim n \to \infty(x_n)$. Then,

$$x = \frac{x^2 - 5x + 15}{3}$$
$$x^2 - 5x + 15 = 3x$$
$$x^2 - 8x + 15 = 0$$
$$(x - 5)(x - 3) = 0$$

Since the sequence is decreasing, the limit of the sequence (x_n) is 3.

(b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f is continuous on R, $f(x) > 0 \ \forall x \in \mathbb{R}$ and f(1) = f(5). Is it true that there exists $c \in [1, 2]$ such that

$$\frac{1}{f(c)} + \frac{1}{f(c+2)} = \frac{1}{f(c+1)} + \frac{1}{f(c+3)}?$$

Justify your answer.

Solution

First observe that

$$\frac{1}{f(c)} + \frac{1}{f(c+2)} = \frac{1}{f(c+1)} + \frac{1}{f(c+3)}$$

$$\iff \frac{f(c+2) + f(c)}{f(c+2)f(c)} = \frac{f(c+1) + f(c+3)}{f(c+1)f(c+3)}$$

$$\iff f(c)f(c+1)f(c+3) + f(c+2)f(c+1)f(c+3) = f(c)f(c+2)f(c+3) + f(c)f(c+2)f(c+1).$$

Let g(x) = f(x+1)f(x+3)[f(x)+f(x+2)] - f(x+2)f(x)[f(x+3)+f(x+1)]. By the continuity of f(x), g(x) is continuous. Then,

$$\begin{split} g(1) &= f(2)f(4)[f(1) + f(3)] - f(3)f(1)[f(2) + f(4)] \\ g(2) &= f(3)f(5)[f(2) + f(4)] - f(4)f(2)[f(5) + f(3)] = f(3)f(1)[f(2) + f(4)] - f(4)f(2)[f(1) + f(3)] = -g(1) \end{split}$$

If g(1) = 0, take c = 1, then

$$f(c)f(c+1)f(c+3) + f(c+2)f(c+1)f(c+3) = f(c)f(c+2)f(c+3) + f(c)f(c+2)f(c+1)$$

and the desired equality will be fulfilled.

If $g(1) \neq 0$, WLOG assume g(1) < 0, then g(2) > 0. By the continuity of g(x) and the Intermediate Value Theorem, there exists $c \in [1,2]$ such that the desired equality is fulfilled. Therefore, the statement is true.

(a) Let (S,d) be a metric space, where d denotes a metric on a non-empty set S. Let $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ be two functions, both continuous on S. Consider the subset of S given by:

$$G = \{x \in S : \max(f(x), g(x)) > 4 \text{ and } \min(f(x), g(x)) > 2\}.$$

Is it true that G is open in S? Justify your answer. Here for $a, b \in \mathbb{R}$, $\max(a, b)$ and $\min(a, b)$ denote the maximum and minimum of a and b respectively.

Solution

We define four sets

$$A_1 = \{x \in S \mid f(x) > 4\}; \ A_2 = \{x \in S \mid g(x) > 4\}; \ B_1 = \{x \in S \mid f(x) > 2\}; \ B_2 = \{x \in S \mid g(x) > 2\}.$$

Then, $G = B_1 \cap B_2 \cap (A_1 \cup A_2)$. But observe that $A_1 = f^{-1}((4, \infty))$ is the preimage of an open set under a continuous function. Thus A_1 is open. Similarly, A_2, B_1 and B_2 are also open. It then follows that G is open as well.

(b) Let (\mathbb{R}^2, d_2) be the Euclidean plane, where d_2 denotes the Euclidean metric on \mathbb{R}^2 . For each $n \in \mathbb{N}$, let A_n be the subset of \mathbb{R}^2 given by:

$$A_n = \{(x_1, x_2) \in \mathbb{R}^2 : \frac{1}{2n+1} \le \sqrt{x_1^2 + x_2^2} \le \frac{1}{2n}\}.$$

Let $A = \{(0,0)\} \cup \bigcup_{n \in \mathbb{N}} A_n$. Is it true that A is a compact subset of \mathbb{R}^2 ? Justify your answer.

Solution

We define a sequence of sets as follows:

$$B_{1} = \left\{ (x_{1}, x_{2}) \in \mathbb{R}^{2} : \sqrt{x_{1}^{2} + x_{2}^{2}} > \frac{1}{2} \right\}$$

$$B_{2} = \left\{ (x_{1}, x_{2}) \in \mathbb{R}^{2} : \frac{1}{4} < \sqrt{x_{1}^{2} + x_{2}^{2}} < \frac{1}{3} \right\}$$

$$B_{n} = \left\{ (x_{1}, x_{2}) \in \mathbb{R}^{2} : \frac{1}{2n} < \sqrt{x_{1}^{2} + x_{2}^{2}} < \frac{1}{2n - 1} \right\} \text{ for all } n > 2.$$

Since B_1 is the complement to $\{(x_1, x_2) \in \mathbb{R}^2 : \sqrt{x_1^2 + x_2^2} \le \frac{1}{2}\}$ which is closed, thus B_1 is an open set.

We will now prove that for all $n \geq 2$, B_n is an open set. Fix arbitrary $n \geq 2$ and $(x,y) \in B_n$. Further denote $d = \sqrt{x^2 + y^2}$. We have $\frac{1}{2n} < d < \frac{1}{2n-1}$. Let $\delta = \min(\frac{1}{2n-1} - d, d - \frac{1}{2n})$.

Then, for all $(p,q) \in N_{\delta/2}((x,y))$, we have

$$\sqrt{p^2 + q^2} < d + \frac{\delta}{2}$$

$$< d + \left(\frac{1}{2n - 1} - d\right)$$

$$= \frac{1}{2n - 1}.$$

Similarly,

$$\sqrt{p^2 + q^2} > d - \frac{\delta}{2}$$

$$> d - \left(d - \frac{1}{2n}\right)$$

$$\ge \frac{1}{2n}.$$

Therefore, $N_{\delta/2}((x,y)) \subseteq B_n$.

Thus, B_n is open for all $n \in \mathbb{N}$, which implies that $\bigcup_{n \in \mathbb{N}} B_n$ is open.

Since A is the complement of the union above, A is closed. Furthermore, A is bounded because $A \subseteq \{(x_1, x_2) \in \mathbb{R}^2 : \sqrt{x_1^2 + x_2^2} \le \frac{1}{2}\}$. Since A is closed and bounded in \mathbb{R}^2 , A is compact. The statement is true.

(a) For each of the following limits, either find the limit or show that the limit does not exist. Justify your answers. Here for $a \in \mathbb{R}$, the floor |a| of a denotes the greatest integer less than or equal to a.

(i)
$$\lim_{x \to 9} \left(2\lfloor 2x \rfloor + \lfloor \frac{12}{\sqrt{x}} \rfloor \right) \sin x.$$
(ii)
$$\lim_{x \to 0} \left(\frac{1}{2x^2 + 5} - \frac{1}{6x^2 + 5} \right) \frac{\sin \frac{1}{x}}{x}.$$

Solution

(i)

$$\lim_{x \to 9^{+}} (2\lfloor 2x \rfloor + \lfloor \frac{12}{\sqrt{x}} \rfloor) \sin x = \sin(9)(2 \times 18 + 3) = 39 \sin(9)$$
$$\lim_{x \to 9^{-}} (2\lfloor 2x \rfloor + \lfloor \frac{12}{\sqrt{x}} \rfloor) \sin x = \sin(9)(2 \times 17 + 4) = 38 \sin(9)$$

The limit does not exist because both one-sided limits are not equal, as shown above.

(ii)
The limit exists, and the value is zero. This is because:

$$\lim_{x \to 0} \left(\frac{1}{2x^2 + 5} - \frac{1}{6x^2 + 5} \right) \frac{\sin\frac{1}{x}}{x} = \lim_{x \to 0} \frac{4x^2}{(2x^2 + 5)(6x^2 + 5)} \cdot \frac{x\sin\frac{1}{x}}{x^2}$$

$$= \lim_{x \to 0} \left(x\sin\frac{1}{x} \right) \cdot \lim_{x \to 0} \frac{4}{(2x^2 + 5)(6x^2 + 5)}$$

$$= 0 \cdot \frac{4}{25}$$

$$= 0$$

since $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$ by squeeze theorem.

(b) Let (a_n) and (ϵ_n) be two sequences of real numbers such that $a_n \geq 0$ and $\epsilon_n \geq 0$ for all $n \in \mathbb{N}$,

$$\lim_{n\to\infty} \epsilon_n = 0 \text{ and } a_{n+1} \le \frac{n^2 a_n}{(n+1)^2} + \frac{\epsilon_n}{n+1}$$

for all $n \in \mathbb{N}$. Is it true that (a_n) converges? Find also its limit if (a_n) converges. Justify your answer.

Solution

Expressing a_{n+1} in terms of a_1 and terms in ϵ_n , we have

$$a_{n+1} \le \frac{n^2 a_n}{(n+1)^2} + \frac{\epsilon_n}{n+1}$$

$$\le \frac{n^2}{(n+1)^2} \left[\frac{(n-1)^2 a_{n-1}}{n^2} + \frac{\epsilon_{n-1}}{n} \right] + \frac{\epsilon_n}{n+1}$$

$$= \frac{(n-1)^2}{(n+1)^2} a_{n-1} + \frac{n\epsilon_{n-1}}{(n+1)^2} + \frac{(n+1)\epsilon_n}{(n+1)^2}.$$

Repeating this process, we obtain

$$a_{n+1} \le \left(\frac{1}{n+1}\right)^2 a_1 + \left(\frac{1}{n+1}\right)^2 \sum_{i=1}^n (i+1)\epsilon_i.$$

Let $\epsilon > 0$ be arbitrary. Since $\lim_{n \to \infty} \epsilon_n = 0$, $\exists k \in \mathbb{N}$ such that $\forall k' > k$, we have $\epsilon_{k'} < \epsilon$. Then, $\forall n \in \mathbb{Z}_{\geq 1}$,

$$\frac{1}{(k+n+1)^2} \sum_{i=1}^n (k+i+1)\epsilon_{k+i} < \frac{\epsilon}{(k+n+1)^2} \sum_{i=1}^n (k+i+1)$$

$$= \frac{\epsilon}{(k+n+1)^2} \cdot \frac{(n)(2k+n+3)}{2}$$

$$\leq \frac{\epsilon}{(k+n+1)^2} \cdot \frac{(k+n+1)(2k+n+3)}{2}$$

$$\leq \epsilon \cdot \frac{2k+n+3}{2k+2n+2}$$

$$\leq \epsilon.$$

Now, let $M = a_1 + \sum_{i=1}^k (i+1)\epsilon_i$. There exists $N \in \mathbb{Z}_{\geq 1}$ such that $\frac{M}{(N+k)^2} < \epsilon$. Then $\forall n \geq (N+k)$,

$$a_{n+1} \le \left(\frac{1}{n+1}\right)^2 a_1 + \left(\frac{1}{n+1}\right)^2 \sum_{i=1}^n (i+1)\epsilon_i$$

$$= \left(\frac{1}{n+1}\right)^2 a_1 + \left(\frac{1}{n+1}\right)^2 \sum_{i=1}^k (i+1)\epsilon_i + \left(\frac{1}{n+1}\right)^2 \sum_{i=k+1}^n (i+1)\epsilon_i$$

$$= \frac{M}{(n+1)^2} + \frac{1}{(n+1)^2} \sum_{i=k+1}^n (i+1)\epsilon_i$$

$$< \epsilon + \frac{1}{(n+1)^2} \sum_{i=1}^{n-k} (k+i+1)\epsilon_{k+i}$$

$$< \epsilon + \epsilon$$

$$= 2\epsilon.$$

Since the choice of $\epsilon > 0$ is arbitrary, we conclude that for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\forall n > N$, $a_{n+1} < 2\epsilon$. Therefore, the sequence $\{a_n\}_{n=1}^{\infty}$ converges, and the limit is zero.

(a) Use the $\epsilon - \delta$ definition of limit to show that

$$\lim_{x \to 3} \frac{x^2 - 5}{3x - 7} = 2.$$

Solution

Let $\epsilon > 0$ be arbitrary. By picking $\delta = \min\left\{\frac{1}{3}, 3\epsilon\right\}$, we have:

$$0 < |x - 3| < \delta \implies \left| \frac{x^2 - 5}{3x - 7} - 2 \right| = \left| \frac{x^2 - 6x + 9}{3x - 7} \right|$$
$$= |x - 3| \left| \frac{x - 3}{3x - 7} \right|$$
$$< |x - 3| \left| \frac{x - 3}{3x - 9} \right|$$
$$= \frac{1}{3} |x - 3|$$
$$< \epsilon$$

And thus the statement is proven. Note: the number $\frac{1}{3}$ is deduced from solving an inequality $\left|\frac{x-3}{3x-7}\right| < \frac{1}{3}$.

(b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f is continuous on \mathbb{R} and for all $x \in \mathbb{R} \setminus \{2\}$,

$$|f(x) - 2| < |x - 2|.$$

Consider the sequence (x_n) given by

$$x_1 = 10$$
, and $x_{n+1} = f(x_n)$ for all $n \in \mathbb{N}$.

Is it true that (x_n) converges? Justify your answer.

Solution

Notice that the sequence $\{|x_n-2|\}_{n=1}^{\infty}$ is decreasing. We claim that $\{|x_n-2|\}_{n=1}^{\infty}$ converges to zero as $n\to\infty$.

Assume that $\{|x_n-2|\}_{n=1}^{\infty}$ converge to some $\epsilon > 0$. Observe that the set $U = [-8, 2-\epsilon] \cup [2+\epsilon, 10]$ is compact. Since the function $\left|\frac{f(x)-2}{x-2}\right|$ is continuous in U, by the Extreme Value Theorem, there exists $M \in [0,1)$ such that:

$$\sup_{x \in U} \left| \frac{f(x) - 2}{x - 2} \right| = M.$$

For all $n \in \mathbb{N}$,

$$|x_{n+1} - 2| = |f(x_n) - 2|$$

$$\leq M|x_n - 2|$$

$$= M|f(x_{n-1}) - 2|$$

$$\leq \cdots$$

$$\leq M^n|x_1 - 2| = 8M^n.$$

Since $M \in [0,1)$, there exists $n \in \mathbb{N}$ such that $M^n < \frac{\epsilon}{8}$. Then $|x_{n+1} - 2| \le 8M^n < \epsilon$. Therefore, $|x_n - 2|$ converges to zero as $n \to \infty$ (contradiction).

As $n \to \infty$, since $|x_n - 2|$ converges to zero, the sequence $x_n - 2$ converges to zero. Thus, (x_n) converges to 2.