11. Übungsblatt zur Vorlesung Theoretische Physik I Abgabe bis: 19.01.18 Webseite zur Vorlesung:

WS 17/18 Priv.-Doz. U. Löw

https://moodle.tu-dortmund.de/course/view.php?id=9519

Aufgabe 1: Verengtes Rohr

(10 Punkte)

Ein Zylinderförmiges Rohr mit einem Durchmesser von R_1 = 50 mm ist auf einem Zwischenstück verengt und besitzt dort nur noch einen Radius von R_2 = 25 mm. An der verengten Stelle ist von unten ein weiteres Rohr mit einem Radius von R_3 = 10 mm angeschlossen, dessen Ende sich in einem Wasserbecken befindet. Durch das Rohr fließen 6 L Wasser pro Sekunde.

- a) Welcher Unterdruck entsteht an der verengten Stelle?
- b) Kann durch das senkrechte Rohr das untere Wasser 1 m hoch gezogen werden?

Aufgabe 2: Zusatzaufgabe

(+10 Punkte)

- a) Bestimmen Sie das elektrische Feld eines unendlich langen Drahtes.
- b) Bestimmen Sie das magnetische Feld eines unendlich langen Drahtes mit dem Durchmesser R_0 . Betrachten Sie dabei auch das Feld innerhalb des Leiters.
- c) Bestimmen Sie das magnetische Feld einer Torroidspule mit innerem Radius r_1 und äußerem Radius r_2 . Betrachten Sie dabei alle Bereiche ($r < r_1, r_1 < r < r_2, r > r_2$).

Aufgabe 3: Navier-Stokes

(10 Punkte)

Ein zylinderförmiger Stab mit Radius R_1 bewegt sich mit der Geschwindigkeit u parallel zu seiner Achse in einem zu ihm koaxialen zylinderförmigen Rohr mit Radius R_2 . Der Raum zwischen dem Stab und dem Rohr ist mit einer inkompressiblen Flüssigkeit gefüllt. Die Strömung ist stationär.

Wählen Sie an das Problem angepasste Zylinderkoordinaten (r, θ, z) . Sie können davon ausgehen, dass die Geschwindigkeit \vec{v} der Flüssigkeit nur von dem radialen Abstand von der Symmetrieachse abhängt und immer in z-Richtung zeigt.

- (a) Welche Gleichung für v_z erhalten Sie ausgehend von der Navier-Stokes-Gleichung?
- (b) Welche Randbedingungen gelten? D.h. geben Sie $v_z(r = R_1)$ und $v_z(r = R_2)$ an.
- (c) Lösen Sie die Navier-Stokes-Gleichung für diesen Fall. D.h. berechnen Sie $v_z(r)$.

