INF01 118

UFRGS

Técnicas Digitais para Computação

Síntese de FSM com FF JK

Aula 25

Exemplo de projeto completo

- incluindo especificação inicial
- usando flip-flops JK

1. Especificação inicial

Problema: construir um circuito que, tendo uma entrada,

- a) pisque uma lâmpada a cada 2 pulsos positivos de entrada X (a sequência de X = L H L H L contém 2 pulsos positivos)
- b) deixe a lâmpada permanentemente acesa após 10 pulsos positivos da entrada

Circuito será síncrono com o relógio

A cada transição positiva do clock, verifica-se a entrada E
 E = 1 veio pulso

E = 0 não veio pulso

- deve haver mecanismo que desabilite contagem enquanto X não volta ao valor 0
- a lâmpada piscará pela duração do período do clock
- cada pulso de X deve ser contado exatamente uma vez não pode ser perdido não pode ser contado em dobro
- pulsos de E são gerados para ter duração em 'High' de apenas um período do clock pela máquina sequencial síncrona abaixo:

Construção de um Fluxograma de Estados

Fluxograma de Estados

A cada transição positiva do clock o sistema avança para um próximo estado

Como tratar o contador?

- Acrescentar uma saída C

```
= 0 nenhuma ação
= 1 Contador = Contador + 2
```

- Acrescentar uma entrada T (teste)

Separação entre Bloco Operacional e Bloco de Controle

- Bloco Operacional : onde estão o contador e o comparador
- Bloco de Controle : é o que estamos projetando

2. Máquinas de Mealy e Moore

- exemplos das aulas anteriores
 - saídas = f (estado atual, entradas)

Máquina de Mealy

- exemplo da lâmpada
 - valor da saída (lâmpada acesa / apagada) depende apenas do estado atual
 - saidas = f (estado atual)

Máquina de Moore

- isto ficará evidente no diagrama e na tabela de estados

3. Diagrama de Estados (FSM) - Moore

4. Tabela de Estados

Estado Atual	Saídas	Entradas	Próx. Estado
S0	Y=0	E =0	S0
	C=0	E =1	S1
S 1	Y=0	E=0	S1
	C=0	E =1	S2
S2	Y=1	T=0	S0
	C=1	T=1	S3
S3	Y=1	E=X	S3
	C=X	T=X	

Implementação da função de próximo estado: Usará uma "matriz de referência", notação mais conveniente para implementação com flip-flops JK

Implementação das funções de saída : Será vista posteriormente

5. Matriz de Referência (ou mapa de próximo estado)

Supondo a seguinte codificação de estados

6. Tabela de Transição de Estados

• lembrando tabela de excitação do FF JK

	Qn Qn+1	J K	
0	$0 \rightarrow 0$	0 X	(00 e 01 servem)
α	$0 \longrightarrow 1$	1 X	(10 e 11 servem)
β	$1 \longrightarrow 0$	X 1	(01 e 11 servem)
1	1 → 1	X 0	(00 e 10 servem)

• quatro transições possíveis serão representadas pelos seguintes símbolos

AB E	T 00	01	11	10
00	00	00	01	01
01	01	01	10	10
11	11	11	11	11
10	00	11	11	00

00 01 **11 10** 00 00 0 α 0α 00 01 01 α β α β 01 11 11 11 11 11 $\beta 0$ $\beta 0$ 1α **1** α **10**

• Tabela de Transição de Estados para o exemplo

- obtida a partir da Matriz de

Referência

exemplo

7. Equações de entrada dos FFs

- transições 0 e α importam para J
- transições β e 1 importam para K
- e são indiferentes para K
- e são indiferentes para J

0 0	0 0	0 α	0 α
0 1	01	αβ	αβ
11	11	11	11
βο	1 α	1 α	β 0

Tab. Trans. Estados	Eq. Entrada	
"0" (0 → 0)	J = 0	
" α " $(0 \longrightarrow 1)$	J = 1	

Para o FF A só interessa o 1º valor de cada par na tabela de transição de estados

Equação J_A

$$J_A = B \cdot E$$

0 0	0 0	0 α	0 α
0 1	01	αβ	αβ
11	11	11	11
βο	1 α	1 α	β 0

Para o FF A só interessa o 1º valor de cada par na tabela de transição de estados

Equação K_A

$$K_A = \overline{B} \cdot \overline{T}$$

0 0	0 0	0 α	0 α
01	01	αβ	αβ
11	11	11	11
β 0	1 α	1 α	β 0

Tab. Trans. Estados	Eq. Entrada	
"0" (0 → 0)	J = 0	
" α " $(0 \longrightarrow 1)$	J = 1	

Equação J_B

Para o FF B só interessa o segundo valor na tabela de transição de estados

$$J_{R} = \overline{A} \cdot E + A \cdot T$$

0 0	0 0	0 α	0 α
01	01	αβ	αβ
11	11	11	11
β 0	1 α	1 α	βο

Equação K_B

$$K_{\rm B} = \overline{A}$$
. E

8. Equações de saída

- Lembrar que esta é uma máquina de Moore

Tabela Verdade

Estado Atual		Saídas	
<u>A</u>	В	Y	C
0	0	0	0
0	1	0	0
1	0	1	1
1	1	1	X

Equação para Y

$$Y = \overline{A} \cdot B + A \cdot B = A$$

Equação para C

$$C = A$$