Assignment Sheet of Ordinary Differential Equation

1. Obtain the differential equation of the system of confocal conics

$$\frac{x^2}{a^2+\lambda} + \frac{y^2}{b^2+\lambda} = 1, (Ans: (a^2 - b^2)y' = (xy' - y)(x + yy')$$

- in which λ is the arbitrary parameter and a,b are given constants.
- 2. Show that all circles of radius r are represented by the differential equation $\left\{1+\left(\frac{dy}{dx}\right)^2\right\}^{3/2}=r\frac{d^2y}{dx^2}.$
- 3. Water is flowing into a right circular conical vessel, 45 cm deep and 27 cm in diameter at the rate of 11 cc per minute. How fast is the water-level rising when the water is 30 cm deep? (*Ans: 0.043 cm/min*)

Solve the following first order differential equations after finding appropriate Integrating Factor when necessary.

- 4. $(e^x \sin y + e^{-y}) dx + (e^x \cos y x e^{-y}) dy = 0$
- 5. $(y^2e^{xy^2}+4x^3)dx+(2xye^{xy^2}-3y^2)dy=0$
- 6. $(3x^2y^4+2xy)dx+(2x^3y^3-x^2)dy=0$
- 7. $(x^2y-2xy^2)dx+(3x^2y-x^3)dy=0$
- 8. Show that e^x is an I.F. of the following differential equation : $(x^2 + y^2 + 2x)dx + 2ydy = 0$. Also, show that the particular solution passing through the point x = 1, y = 1 is : $x^2 + y^2 = 2e^{1-x}$.
- 9. $\{xy\sin(xy)+\cos(xy)\}y\ dx+\{xy\sin(xy)-\cos(xy)\}xdy=0$
- 10. $(2xy^4e^y+2xy^3+y)dx+(x^2y^4e^y-x^2y^2-3x)dy=0$
- 11. $\left(xy^2 e^{\frac{1}{x^3}}\right) dx x^2 y dy = 0$
- 12. $(xy^3+y)dx+2(x^2y^2+x+y^4)dy=0$
- 13. $y(xy+2x^2y^2)dx+x(xy-x^2y^2)dy=0$
- 14. $x^2(2ydx+3xdy)+y^2(-2ydx+2xdy)=0$
- 15. $(y^2e^x+2xy)dx-x^2dy=0$
- 16. $(x^3y^2+xy)dx=dy$
- 17. $\frac{dy}{dx} + \frac{y \ln y}{x} = \frac{y(\ln y)^2}{x^2}$
- 18. $\frac{dy}{dx} \frac{\tan y}{1+x} = (1+x)e^{x} \sec y$
- 19. ${y(1-x \tan x)+x^2\cos x}dx xdy = 0$

20.
$$(x+2y^3) + \frac{dy}{dx} = y$$

21.
$$(1+x)\cos y \frac{dy}{dx} - \sin y = (1+x)^2 e^x$$

22.
$$\sin y \frac{dy}{dx} = \cos x (2\cos y - \sin^2 x)$$

23.
$$\frac{dy}{dx} + y = y^3 (\cos x - \sin x)$$

24.
$$x \frac{dy}{dx} + y = y^2 \log x$$

25.
$$dr+(2r\cot\theta+\sin 2\theta)d\theta=0$$

26.
$$p^2+2xp-3x^2=0$$
 $p denotes $\frac{dy}{dx}$$

27.
$$p - \frac{1}{p} - \frac{x}{y} + \frac{y}{x} = 0$$

28.
$$p^2+2pycotx=y^2$$

29.
$$xyp^2+p(3x^2-2y^2)-6xy=0$$

30.
$$y=xp^2+p$$

31.
$$xp^2+(y-x)p-y=0$$

32.
$$p^3+2xp^2-y^2p^2-2xy^2p=0$$

33.
$$e^{y}-p^{3}-p=0$$

34.
$$y=px+sin^{-1}p$$
 – find general and singular solution

35.
$$y=px+p-p^2$$
 – find general and singular solution

36.
$$p=cos(y-px)$$
 – find general and singular solution

37.
$$p^2+y-x=0$$

Get the general solution of the following differential equations. (by D-operator method)

38.
$$(D^2+2)y=x^2$$

39.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = e^x \sin^2 x$$

40.
$$\frac{d^2y}{dx^2} - a^2y = \sec(ax)$$

41.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x$$

42.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x$$

43.
$$\frac{d^2y}{dx^2} + 2y = x^2e^{3x} + e^x\cos 2x$$

44.
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = (1 + \sin x)^2$$

45.
$$(D^2+2)y=x\cos x$$

46.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = x + e^x \cos x$$

$$\frac{d^2y}{dx^2} - y = x^2 \sin x$$

48.
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$$

49.
$$(D^2-7D+6)y=(x-2)e^x$$

50.
$$\frac{d^2y}{dt^2} + 4\frac{dx}{dt} + 4x = 3\sin 2t, \text{ given that } x = 0, \frac{dx}{dt} = 0 \text{ at } t = 0$$

51.
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y = 8e^{3x}\sin 4x + 2^x$$

Get the general solution by the method of variation of parameters

52.
$$\frac{d^2y}{dx^2} + a^2y = \csc ax$$

53.
$$\frac{d^2y}{dx^2} + y = \sec x$$

54.
$$\frac{d^2y}{dx^2} + a^2y = \sec ax$$

$$55. \qquad \frac{d^2y}{dx^2} + y = \tan x$$

56.
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{1}{1 + e^{-x}}$$

57.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x$$

58.
$$\frac{d^2y}{dx^2} + y = \frac{1}{1 + \sin x}$$

Solve the following (Cauchy-Euler) differential equations :

59.
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = \sin(\log x) + x \cos(\log x)$$

60.
$$x^{2} \frac{d^{2}y}{dx^{2}} + 4x \frac{dy}{dx} + 2y = \log x$$

61.
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 4y = x \sin(\log x)$$

62.
$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$$

63.
$$x^{2} \frac{d^{2}y}{dx^{2}} + 5x \frac{dy}{dx} + 4y = x \log x$$

64.
$$x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} - 3y = x^{2} \log x$$

65.
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x$$

66.
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = x\sin(\log x)$$

64.
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = \sin [2 \log (1+x)]$$

65.
$$(3x+2)^2 \frac{d^2y}{dx^2} + 5(3x+2) \frac{dy}{dx} - 3y = x^2 + x + 1$$

Solution of the differential equations

4.
$$e^x \sin y + xe^{-y} = c$$

5.
$$e^{xy^2} + x^4 - y^3 = c$$

6.
$$x^2y^3 + \frac{x^2}{y} = c$$

7.
$$\frac{x}{y} + \log \frac{y^3}{x^2} = c$$

9.
$$\log|\sec(xy)| + \log|x| - \log|y| = c$$

10.
$$x^2e^y + \frac{x^2}{v} + \frac{x}{v^3} = c$$

11.
$$\frac{y^2}{2x^2} - \frac{1}{3}e^{\frac{1}{x^3}} = c$$

12.
$$\frac{1}{2}x^2y^4 + xy^2 + \frac{1}{3}y^6 = c$$

$$13. \qquad \log \frac{x^2}{y} = \frac{1}{xy} + c$$

14.
$$\log(x^2y^3) + \frac{y^2}{x^2} = c$$

$$e^x + \frac{x^2}{y} = c$$

16.
$$\frac{1}{y} = x^2 - 2 + ce^{-x^2/2}$$

17.
$$\frac{1}{\text{xlogy}} = \frac{1}{2x^2} + c$$

18. Siny=
$$(1+x)(e^x+c)$$

19.
$$y=x^2\cos x+\cos x$$

20.
$$x=y^3+cy$$

21. Siny=
$$(1+x)$$
 (ex+c)

22.
$$\cos y = \frac{1}{2}\sin^2 x - \frac{1}{2}\sin x + \frac{1}{4} + ce^{-2\sin x}$$

23.
$$y^{-2} = \frac{2}{5}(\cos x - 3\sin x) + ce^{2x}$$

24.
$$\frac{1}{v} = (\log x + 1) + cx$$

25.
$$x^3y^2 + \frac{x^2}{y} = c$$

26.
$$(2y+3x^2-2c)(2y-x^2-2c)=0$$

27.
$$(xy-c)(y^2-x^2-2c)=0$$

28.
$$(y+y\cos x-c)(y-y\cos x-c)=0$$

29.
$$(y-cx^2)(y^2+3x^2-2c)=0$$

30.
$$y=xp^2+p$$

 $y=p\{p (logp-p+c) (p-1)^{-2}+1\}$

31.
$$(y-x+c)(xy+c)=0$$

32.
$$(y-c)(y+x^2-c)(xy+cy+1)=0$$

33.
$$y=log(p^3+p)$$

 $x=2tan^{-1}p-p^{-1}+c$

34. General solution
$$y=cx+sin^{-1}c$$
 Singular solution $y=\sqrt{x^2-1}+sin^{-1}\left(\frac{\sqrt{x^2-1}}{x}\right)$

35. General solution
$$y=cx+c-c^2$$

Singular solution $4y=(x+1)^2$

36. General solution
$$y = cx + cos^{-1}c$$

$$y = \sqrt{x^2 - 1} + \cos^{-1}\left(\frac{1}{x}\sqrt{x^2 - 1}\right)$$

37.
$$x=c-2\{p+\log (p-1)\}$$

 $y=c-2\left\{\frac{1}{2}p^2+p+\log (p-1)\right\}$

38.
$$c_1 \cos \sqrt{2}x + c_2 \sin \sqrt{2}x + \frac{1}{2}(x^2 - 1)$$

39.
$$e^{x} \left(c_{1} \cos \sqrt{3x} + c_{2} \sin \sqrt{3x} \right) + \frac{1}{6} e^{x} + \frac{1}{2} e^{x} \cos 2x$$

40.
$$c_1 \cos ax + c_2 \sin ax + \frac{x \sin ax}{a} + \frac{\cos ax \log \cos ax}{a^2}$$

41.
$$(c_1+c_2x)e^x + \frac{1}{6}x^3e^x$$

42.
$$c_1 + c_2 e^{2x} - \frac{1}{2} e^x x \cos x$$

43.
$$c_1 \cos \sqrt{2}x + c_2 \sin \sqrt{2}x + \frac{e^{3x}}{11} \left(x^2 - \frac{12}{11}x + \frac{50}{121} \right) + \frac{e^x}{17} (4\sin 2x - \cos 2x)$$

44.
$$e^{-\frac{x}{2}} \left(A \cos \frac{\sqrt{3}x}{2} + B \sin \frac{\sqrt{3}x}{2} \right) + \frac{1}{26} (3\cos 2x - 2\sin 2x) - 2\cos x + \frac{3}{2}$$

45.
$$c_1 \cos \sqrt{2}x + c_2 \sin \sqrt{2}x + x \cos x + 2 \sin x$$

46.
$$e^{x}(c_{1}\cos x + c_{2}\sin x) + \frac{1}{2}(x+1) + \frac{1}{2}xe^{x}\sin x$$

47.
$$c_1 e^x + c_2 e^{-x} - \frac{1}{2} x^2 \sin x - x \cos x$$

48.
$$c_1 e^x + c_2 e^{2x} + \frac{e^{3x}}{2} \left(x - \frac{3}{2} \right) + \frac{1}{20} (3\cos 2x - \sin 2x)$$

49.
$$c_1 e^x + c_2 e^{6x} + \left(\frac{9}{25}x - \frac{1}{10}x^2\right) e^x$$

50.
$$x = \frac{1}{8}(3+6t)e^{-2t} - \frac{3}{8}\cos 2t$$

51.
$$e^{3x}(c_1\cos 2x + c_2\sin 2x) - \frac{2}{3}e^{3x}\sin 4x + \frac{2^x}{(\log 2)^2 - 6\log 2 + 13}$$

52.
$$y=(c_1-x/a)\cos ax + \left[c_2+\left(\frac{1}{a^2}\right)\log \sin ax\right]\sin ax$$

53.
$$y=c_1 \cos x + c_2 \sin x + \cos x \log (\cos x) + x \sin x$$

54.
$$y=c_1\cos ax + c_2\sin ax - \frac{1}{a^2}\cos ax\log(\sec ax) + \frac{1}{a}x\sin ax$$

55.
$$y=c_1\cos x + c_2\sin x - \cos x\log (\sec x + \tan x)$$

56.
$$y=(e^x+e^{2x})\log(1+e^x)+(c_1-1-x)e^x+(c_2-x)e^{2x}$$

57.
$$y=c_1+c_2e^{2x}-\frac{1}{2}e^x\sin x$$

58.
$$y=c_1\cos x + c_2\sin x + \sin x \log(1+\sin x) - x\cos x - 1$$

59.
$$y=c_1x+\frac{c_2}{x}-\frac{1}{2}\sin(\log x)+\frac{x}{5}[2\sin(\log x)-\cos(\log x)]$$

60.
$$c_1 x^{-1} + c_2 x^{-2} + \frac{1}{2} \log x - \frac{3}{4}$$

61.
$$y=x\left\{c_1\cos(\sqrt{3}\log x)+c_2\sin(\sqrt{3}\log x)\right\}+\frac{1}{2}x\sin(\log x)$$

62.
$$y = \frac{1}{x}(c_1 + c_2 \log x) + \frac{1}{x}\log \frac{x}{1 - x}$$

63.
$$y=x^{-2}(c_1+c_2\log x)+\frac{x}{9}\left(\log x-\frac{2}{3}\right)$$

64.
$$y = \frac{c_1}{x} + c_2 x^3 - \frac{1}{9} x^2 (3 \log x + 2)$$

65.
$$y=x(c_1\cos\log x+c_2\sin\log x)+x\log x$$

66.
$$y=x[a\cos(\log x)+b\sin(\log x)]-\frac{1}{2}\log x\cos(\log x)$$

67.
$$y=c_1\cos\log(1+x)+c_2\sin\log(1+x)-\frac{1}{3}\sin[2\log(1+x)]$$

68.
$$y=c_1(3x+2)^{\frac{1}{3}}+c_2(3x+2)^{-1}+\frac{1}{27}\left[\frac{1}{15}(3x+2)^2+\frac{1}{4}(3x+2)^{-7}\right]$$