Math 635 Lecture 35

Thomas Cohn

Degree Theory

Given $F: M_1 \to M_2$, where M_1 and M_2 are compact, connected, oriented manifolds of dimension $n = \dim M_1 = \dim M_2$. Then $\exists \deg(F) \in \mathbb{Z}$ such that

- a) $F^*: H^n(M_2) \to H^n(M_1)$ is "multiplication by deg F".
- b) $\forall a \in \Omega^n(M_2), \int_{M_1} F^* \alpha = \deg(F) \int_{M_2} \alpha.$
- c) If $q \in M_2$ is a regular value of F, so $F^{-1}(q) = \bigcup_{i=1}^N \{p_i\}$, then $\deg(F) = \sum_{i=1}^N (-1)^{p_i}$, where

$$(-1)^{p_i} = \begin{cases} 1 & dF_p \text{ preserves orientation} \\ -1 & \text{otherwise} \end{cases}$$

Application:

Thm: If $M_1 = \partial W$, and $f: M_1 \to M_2$ extends to a smooth function $\tilde{F}: W \to M_2$, then $\deg(F) = 0$.

$$M_1 \xrightarrow{F} M_2$$

$$\downarrow \downarrow \qquad \qquad \tilde{F}$$

$$W$$

Proof: Let $\alpha \in \Omega^p(M_2)$. Then

$$\int\limits_{M_1} F^*\alpha = \int\limits_{M_1} \iota^* \tilde{F}^*\alpha \stackrel{(1)}{=} \int\limits_{W} d\tilde{F}^*\alpha = \int\limits_{W} \tilde{F}^*d\alpha = 0$$

because α is a top-degree form, and (1) because of Stokes' theorem. \square

Cor: There is no C^{∞} map $\overline{B}^n \to S^n$ (where \overline{B}^n is the closed unit ball in \mathbb{R}^n) which is the identity on $S^n = \partial \overline{B}^n$.

Proof:
$$deg(I_{S^n}) = 1 \neq 0$$
. \square

(We presented some examples of Gauss-Bonnet and degree theory, but I'm not yet talented enough with TikZ to reproduce them.)

The Laplacian and Hodge Theory

Let (M, g) be a Riemannian manifold.

Defn: The gradient is

$$\nabla: C^{\infty}(M) \to \mathfrak{X}(M)$$

$$f \mapsto \nabla f$$

where ∇f is metric-dual to df. That is, $\forall v \in T_p M$, $\langle \nabla f(p), v \rangle = df_p(v)$.

 ∇ has a product rule: $\nabla(fg) = f\nabla g + g\nabla f$.

Defn: The divergence div : $\mathfrak{X}(M) \to C^{\infty}(M)$ is defined by $\forall X \in \mathfrak{X}(M)$, $\mathcal{L}_X \text{ Vol} = (\text{div } X) \text{ Vol}$, where $\text{Vol} \in \Omega^n(M)$ is a volume form.

1

Observe: This is really a local definition, and div is independent of orientation.

Properties:

- (a) In coordinate, $X = f^i \frac{\partial}{\partial x^i}$, then div $X = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} (\sqrt{g} f^i)$. (Note: we're using the shorthand $\sqrt{g} = \sqrt{\det(g_{ij})}$).
- (b) $\operatorname{div}(fX) = f \operatorname{div} X + X(f)$.
- (c) $(\operatorname{div} X)(p) = \operatorname{tr}(T_p M \ni v \mapsto (\nabla_v X)(p) \in T_p M).$

Thm: (Divergence Theorem) Let M be a manifold-with-boundary, with the boundary ∂M oriented by ν , an outward point unit normal vector field so that $\operatorname{Vol}_{\partial M} = \iota_{\nu} \operatorname{Vol}_{M}$. Then $\forall X \in \mathfrak{X}(M)$,

$$\int_{M} (\operatorname{div} X) \operatorname{Vol}_{M} = \int_{\partial M} \langle X, \nu \rangle \operatorname{Vol}_{\partial M}$$

The right-hand side is the flux of X out of M.

$$\mathbf{Cor:} \ (\operatorname{div} X)(p) = \lim_{\varepsilon \searrow 0} \frac{1}{\operatorname{Vol} B_{\varepsilon}(p)} \int_{B_{\varepsilon}(p)} (\operatorname{div} X) d\operatorname{Vol}_{M} \stackrel{\operatorname{Thm}}{=} \lim_{\varepsilon \searrow 0} \frac{1}{\operatorname{Vol} B_{\varepsilon}(p)} \int_{S_{\varepsilon}(p)} \langle X, \nu \rangle \operatorname{Vol}_{S_{\varepsilon}(p)}$$

$$\text{"(div } X)(p) \text{ is the infinitesimal flux per unit volume at } p.$$
"

Observe: If $\partial M = \emptyset$, then we get $\int_M (\operatorname{div} X) \operatorname{Vol}_M = 0$. Proof: The left-hand side is simply

$$\int_{M} \mathcal{L}_{X} \operatorname{Vol}_{M} = \int_{M} d(\iota_{X} \operatorname{Vol}_{M}) = \int_{\partial M} j^{*}(\iota_{X} \operatorname{Vol}_{M})$$

where $j:\partial M\hookrightarrow M$. Then, we check that $j^*(\iota_X\operatorname{Vol}_M)=\langle X,\nu\rangle\operatorname{Vol}_{\partial M}$. Use that $X=\langle X,\nu\rangle+\eta$, where η is tangent to ∂M . \square

Defn: The laplacian on functions is

$$\begin{array}{c} \Delta: C^{\infty}(M) \to C^{\infty}(M) \\ f \mapsto \Delta \, f = -\operatorname{div}(\nabla f) \end{array}$$

Note that some people don't use the negative sign.

Combining the previous formulas, in coordinates, we get

$$\Delta f = -\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}} \left(\sqrt{g} g^{ij} \frac{\partial f}{\partial x^{j}} \right)$$

$$= -\frac{1}{\sqrt{g}} \left(\sqrt{g} g^{ij} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} + \text{lower order terms} \right)$$

$$= -g^{ij} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} + \text{lower order terms}$$

So the highest order term only depend son the metric, not derivatives of the metric.

Next time, we'll consider the following commutative diagram:

$$C^{\infty}(M) \xleftarrow{\nabla} \underset{-\text{ div}}{\longleftarrow} \mathfrak{X}(M)$$

$$\parallel \qquad \qquad \parallel \wr \text{ metric dual}$$

$$C^{\infty}(M) \xleftarrow{d}_{\delta} \Omega^{1}(M)$$

We'll see that $\delta = d^*$ (the adjoint) if we use ℓ^2 inner products on $C^{\infty}(M)$ and $\Omega^1(M)$. On functions, $\Delta = \delta d = d^*d$.