Lecture 18: Input and Output

Today's Goals

- Input and Output (I/O)
 - Port-mapped I/O
 - Memory-mapped I/O
- How to use I/O of HCS12 on Dragon12+

What are Input and Output?

- I/O allows microprocessors to communicate with other devices such as switches, LCD screens, and keypads.
- Important terms
 - Pin and Port:

Directions

Full-duplex and Half-duplex

Asynchronous and Synchronous

Accessing I/O

Memory-mapped vs. Port-mapped I/O

 I/O can be accessed by a program just much like accessing memory addresses.

There are two different approaches.

Memory-mapped I/O

Port-mapped I/O

I/O in HCS12

- Ports
 - A, B, E, H, J, K, L, M, P, S, T, U, V, and W. (naming is somewhat random)
- These ports can be used as general-purpose I/O.

Ports B, H, and P

General purpose (used either input or output)

- There are 8 pins in each these ports (B, H, and P).
- Each port has corresponding memory address that shows the values of the 8 pins.

- B: \$0001

- H: \$0260

- P: \$0258

When they are used as input ports

- When they are used as output ports
 - The program stores a value into the location
 - The hardware set the voltage according to the value.
- How do we determine if a port is being used as input or output?

Data Direction Registers

- Data direction registers
 - A general purpose I/O must be set whether input or output.
- Each port has its own register and the pins of each port can be configured separately.

\$0003: DDR for B

\$0262: DDR for H

\$025A: DDR for P

 To configure the ports, store a value into the corresponding DDR based on the values below.

- Note:
 - When a pin is configured for an input, storing a value to its data bit is ignored.
 - When a pin is configured for an output, the voltage at the pin is ignored.

Port B, P, and H in the Dragon12+

Port B − 7 segment digits

- HCS12 has already been connected to hardware.
- Port B
 - Port B supplies the values to the 7-segment digits
 - Each digit actually has 8 LEDs including decimal point.
 - The diagram shows which bit controls each LED.
 - The pins of Port B are connected to all four digits in the Dragon12+.

Port B, P, and H in the Dragon12+

Port P – Selecting a 7-segment digit

- 7 segment digit selection
 - Port P is used to select which of the four 7-segment LED digits are enabled.
 - Remember that the display pattern is determined by <u>Port B</u>.
 - Those digits that are not selected will be off (all LEDs off).
 - Note: only lower 4 bits are used .
- Enable/Disable

Port B, P, and H in the Dragon12+

Port H – switch input

- Port H is used to read the 8-DIP switches and 4 push buttons.
 - Only four pins that monitor both switches.
 - Note 1: No way to distinguish which is being pressed.

_

DIP switches

Push Buttons

Example Program

- Write a program
 - Turns on one LED segment of <u>DIGIT3</u> at a time.
 - When the program begins, only segment 0 should be on.
 - Every time BUTT3 is pressed,
 the current LED segment turns off
 and the next one
 (see the numbers on the figure) turns on.

DATASTART equ \$1000 PROGSTART equ \$2000

; Ports on Dragon12+

0	2 = 4 9 0 1	
	equ	\$0001
	equ	\$0003
	equ	\$0260
	equ	\$0262
	equ	\$0258
	equ	\$025A
		equ equ equ

Switch Bounce

- When a switch is asserted, we expect a signal something like the top right picture.
- However, signals has a transient period.
- When a switch (or button) is asserted (or pressed), the actual signal can be the bottom right figure.
 - For a short period of time, the switch signal is bouncing.
- That is why the program detects multiple buttons.

PORTB	EQU	\$0001
DDRB	EQU	\$0003
PORTH	EQU	\$0260
DDRH	EQU	\$0262
PORTP	EQU	\$0258
DDRP	EQU	\$025A
	ORG	\$2000

Switch Debounce

File: d12plus.inc

PORTB DDRB PORTH DDRH PORTP DDRP	EQU EQU EQU EQU EQU	\$0001 \$0003 \$0260 \$0262 \$0258 \$025A	
DOUT DINP DIGITO DIGIT1 DIGIT2 DIGIT3	EQU EQU EQU EQU EQU	\$FF \$00 \$FE ; \$FD ; \$FB ; \$F7 ;	%11111110 %11111101 %11111011 %11110111
BUTT0 BUTT1 BUTT2 BUTT3	EQU EQU EQU	\$08 ; \$04 ; \$02 ; \$01 ;	%00001000 %00000100 %00000010 %00000001

INCLUDE d12plus.inc

ORG \$2000

```
; Purpose:
   Define constants for D12PLUS
; History:
   2/21/2010: Prof. Kwon created
;-----
; Memory mapping of Dragon12+
DATASTART equ $1000
PROGSTART equ $2000
; Constants
TRUE equ $FF
FALSE equ $00
; Ports on Dragon12+
PORTB equ $0001
DDRB equ $0003
PORTH equ $0260
DDRH equ $0262
PORTP equ $0258
DDRP equ $025A
;-----
; Logical name of the ports on Dragon12+
SEGPATTN equ
          PORTB
PSHBUTTN equ PORTH
DIGITNUM equ PORTP
;-----
; General I/O port configuration
DOUT
       equ $FF
DINP
   equ
          $00
```

File: d12plus.inc

File: d12plus.inc - continued

```
;-----
; DIGIT 7-segment LEDs on Dragon12+
; DIGIT3, DIGIT2, DIGIT1, DIGIT 0 from the left
          equ $F7 ; %11110111
DIGIT0
DIGIT1
           equ $FB ; %11111011
equ $FD ; %11111101
DIGIT2
DIGIT3 equ $FE ; %11111110
;-----
; Push buttons on Dragon12+
                                                  File: lec18.asm
; BUTT3, BUTT2, BUTT1, BUTT0 from the left
BUTTO equ $08 ; %00001000
                                                           INCLUDE d12plus.inc
BUTT1 equ $04 ; %00000100
BUTT2 equ $02 ; %00000010
BUTT3 equ $01 ; %00000001
                                                  MXDLY
                                                           equ
                                                               $6000
                                                           ORG
                                                                PROGSTART
```

Questions?

Wrap-up

What we've learned

What to Come