Burst Spectrum as a Cue to Stop Consonant Voicing

English Production and Perception Results

Eleanor Chodroff and Colin Wilson Johns Hopkins University

 $\begin{tabular}{ll} voice onset time \\ F1 onset \\ F1 transition \\ F_0 contour \\ relative amplitude of aspiration \\ following vowel duration \\ \end{tabular}$

spectral shape of the burst:

lower frequencies for voiced stops

"Since most of our lax [voiced] stops were pronounced with vocal-cord vibration, their spectra contained a strong low-frequency component...

The lax stops also show a significant drop in level in the high frequencies. This high-frequency loss is a consequence of the lower pressure associated with the production of lax stops and is therefore a crucial cue for this class of stops."

Halle, Hughes, and Radley (1957)

Background: Production

	Ċ	lorsal	.S	
/k	/	/g/	Δ	7
194	40	191	0 30)+
220	61	226	8 -7	*
			H	$\mathbf{I}\mathbf{z}$

- + = Zue (1976) using peak frequency
- ❖ = Parikh and Loizou (2005) using peak frequency
- = Sundara (2005) using mean frequency (CoG)

see also Van Alphen and Smits (2004), Vicenik (2010), Kirkham (2011)

Background: Production

production study

laboratory and TIMIT experiments

 $/p,t,k,b,d,g/x/i,i,e,\epsilon,æ,\wedge,a,o,o,u/x/t/$

N=18 (4 male)

resampled at 16kHz pre-emphasized above 1000Hz high-pass filtered at 200Hz segmented from transient to voicing

Laboratory Production: Methods

analysis as in Forrest et al. (1988), Hanson and Stevens (2003), Flemming (2007)

- Computed 64-point FFT for 7 consecutive 3ms Hamming windows, shifted by 1ms
- 7 PSDs averaged to give a smoothed spectrum
- Center of Gravity (CoG)
 calculated from smoothed
 spectrum: amplitude-weighted
 mean frequency

$$CoG = f_1p(1) + ... + f_{32}p(32)$$

Laboratory Production: Measurement

Laboratory Production: Results

Mixed-effects linear regression

Fixed effects sum-coded and maximal random effect structure

voice
$$\beta_{\text{voice}} = 122, p < .01$$

$$\times$$
 place $\beta_{labial} = -633$, p < .001; $\beta_{coronal} = 916$, p < .001

$$\times$$
 gender $\beta_{gender} = 86$, p < .01

Significant interactions examined with post-hoc comparisons

	labial	coronal	dorsal
male	$\beta_{\text{voice}} = 224$ $p < .001$	$\beta_{\text{voice}} = 224$ $p < .05$	n.s.
female	$\beta_{\text{voice}} = 253$ $p < .001$	n.s.	n.s.

Crucially, the pattern of significance remains the same when tokens with glottal pulses near the release are excluded.

Laboratory Production: Analysis

630 different AE speakers

Word-initial, pre-vocalic /p, t, k, b, d, g/

Words with high token freq. removed (too, to, do, carry, dark)

Phoneme	Tokens	Phoneme	Tokens
/p/	661	/b/	668
/t/	579	/d/	547
/k/	1179	/g/	415

TIMIT: Results

Mixed-effects linear regression

Fixed effects sum-coded and maximal random effect structure

voice
$$\beta_{\text{voice}} = 320, p < .001$$

$$\times$$
 place $\beta_{labial} = -314$, p < .001; $\beta_{coronal} = 762$, p < .001

$$\times$$
 gender $\theta_{gender} = 205$, p < .001

Significant interactions examined with post-hoc comparisons

	labial	coronal	dorsal
male	$\beta_{\text{voice}} = 555$ $p < .001$	$\beta_{\text{voice}} = 460$ $p < .001$	$(\beta_{\text{voice}} = 112 \\ p < .001)$
female	$\beta_{\text{voice}} = 396$ $p < .001$	$\beta_{\text{voice}} = 280$ $p < .001$	$(\beta_{\text{voice}} = 113$ $p < .05)$

Crucially, the pattern of significance remains the same, except for the dorsals, when tokens with glottal pulses near the release are excluded.

TIMIT: Analysis

perception study

laboratory and Mechanical Turk experiments

/t/-burst VOT continuum

/d/-burst VOT continuum

Trading relation between burst and VOT

Keating (1979) Nittrouer (1999) Caldwell and Nittrouer (2013)

Background: Perception

Laboratory Perception: Stimuli

Laboratory Perception: Stimuli

Order of labial and coronal conditions counterbalanced

Within condition: 8 blocks of 14 stimuli in random order

Laboratory Perception: Methods and analysis

Laboratory Perception: Results

Laboratory Perception: Results

Laboratory Perception: Results

Laboratory Perception: Results

Crowdsourcing service increasingly used in psycholinguistics and phonetic studies

Greater diversity in participant population and listening conditions (noise!)

Labials

- 12 headphones
- 3 external speakers
- 1 internal speakers

Coronals

- 9 headphones
- 4 external speakers
- 3 internal speakers

Mechanical Turk: Methods

Spectral shape of the burst is a cue to anterior stop consonant voicing

Higher CoG for voiceless labials and coronals

Spectral shape influences voicing identification

Repp (1978), Allopenna et al. (1998), Benkí (2001), Stevens (2002), McMurray et al. (2008a)

Place and voice perception are interdependent

Cues to phonetic distinctions at burst landmark

Early cue to voicing and incremental perception

Thank you!

Production: Results by Gender

	Labial		Coronal		Dorsal		
Vowel	/p/	/b/	/t/	/d/	/k/	/g/	
/i/	3582	3473	5278	5024	4031	4108	
/ɪ/	3452	3107		4999	3893	3882	
/e/	3447	2822	5253	4849	3868	3884	
/ε/	3196	2587	5192	4777	3796	3840	
/æ/	3142	2507	5161	4627	3725	3816	
/^/	3329	2694	5079	4682	3190	3291	
/u/	3597	3247	4734	4534	3270	3172	
/o/	3250	2830	4635	4400	3115	3170	
/c/	3150	2508	4697	4244	2713	2868	
/a/	3123	2575	4712	4460	2953	3254	

Mechanical Turk: Results

TIMIT: Spectral Shape

Study	Language	Measure	/p/	/b/	/t/	/d/	/k/	/g/
Zue 1976	Am. English	Peak			3600	3300	1940	1910
Parikh and Loizou 2005	Am. English	Peak	1910	1163	5649	5225	2261	2268
Sundara 2005	Ca. English	CoG			4900	4400		
Kirkham 2011	Br. English	CoG			5220	4888		
Van Alphen and Smits 2004	Dutch	CoG	1160	830	3540	2140		
Sundara 2005	Ca. French	CoG			3800	3000		
Vicenik 2010	Georgian	CoG	4000	3200	5300	4600	3100	3100

CoG = Center of Gravity (mean frequency)

Background: Production