Hypothesis Testing for a Population Mean

Javier Zapata
PSTAT 5A – Statistics
Summer Session B, 2018
UC Santa Barbara

Ex: Age of people in California

- Suppose you are studying the age of the people in California.
- After some studies you conclude that the age behaves like a Normal Distribution with some parameters μ and σ .
- Then you watch the news and a Senator of California claims that:

"The average age of people in California is greater than 40"

How can you test the validity of such claim?

Figuring out the Hypothesis

- Think of this as the process of choosing between two hypothesis: "The average age of people in California is greater than 40"
 - Someone says: $\mu \leq 40$ (and we call it the null hypothesis H_0)
 - And the other says: $\mu > 40$ (and we call it the alternative hypothesis H_A)

Figuring out the Hypothesis

• Claim: "The average age of people in California is greater than 40"

$$H_0$$
: $\mu \le 40$ vs H_A : $\mu > 40$

• Claim: "The average age of people in California is smaller than 40"

$$H_0$$
: $\mu \ge 40$ vs H_A : $\mu < 40$

• Claim: "The average age of people in California is not 40"

$$H_0$$
: $\mu = 40$ vs H_A : $\mu \neq 40$

 Note: In all these cases, the equality ALWAYS goes into to the null hypothesis H₀ From now on let's stick to this case:

"The average age of people in California is greater than 40"

$$H_0: \mu \le 40 \text{ vs } H_A: \mu > 40$$

If you believe that H_0 : $\mu \leq 40$

1. To settle this dispute:

- Assume the null hypothesis $H_0: \mu \leq 40$ is the truth
- And give your maximum benefit of the doubt to the alternative hypothesis $H_A:\mu>40$

Where would you place the Normal distribution under these two conditions?

- 2. You sample some data and obtain the sample mean \overline{x}
 - If $\bar{x} \leq 40$, then you can't reject H_0

- 2. You sample some data and obtain the sample mean \bar{x}
 - If $\bar{x} \leq 40$, then you can't reject H_0
 - What If $\bar{x} > 40$? You would like to reject only if its much bigger than $\mu = 40$
 - How far to the right is too big? You need a rejection criterion!

- 2. You sample some data and obtain the sample mean \bar{x}
 - Let the <u>p-value</u> be the probability of obtaining some more extreme than what you observe. In the figure below, the p-value is THE AREA TO THE RIGHT.
 - Let α be the significance level

• The other two cases are analogous:

$$H_0$$
: $\mu \ge 40$ vs H_A : $\mu < 40$
 H_0 : $\mu = 40$ vs H_A : $\mu \ne 40$

• Look at the hypothesis testing document in Gaucho Space for the rest of the details.