Определение местоположения по сигналу акселерометра

Zaynulina E. T., Kiseleva E. A., Protasov V. P., Fateev D. A., Bozhedomov N., Tolkanev A. A., Nochevkin V., Ryabov A.

October 2018

1 Краткий обзор

Данная статья посвящена использованию методов машинного обучения в задаче определения местоположения по показаниям носимых человеком сенсоров. Задача является актуальной и имеет такое применение, как, например, автоматическое включение/выключение энергозатратных сервисов при различном положении мобильного устройства. Поставленная задача решается по сигналам датчика телефона – акселерометра. Основной цель работы – это способ выбора и предобработки признаков, позволяющий уменьшить влияние шума на результат классификации и анализировать активность в независимости от пространственной ориентации мобильного устройства. Результаты, полученные в ходе вычислительного эксперимента, подтверждают применимость предложенного подхода.

Новизна: задача исследования ставится в терминах projection to the latent space (It is pretty much used that way in machine learning — you observe some data which is in the space that you can observe, and you want to map it to a latent space where similar data points are closer together.)

Ключевые слова: обработка сигналов; сенсоры; акселерометр; анализ данных; машинное обучение, инерциальные методы, позиционные методы

2 Введение

Задача определения местоположения произвольного телефона для любого пользователя является сложной по следующим причинам: манера движения, в частности походка, у людей сильно различается; характеристики одежды, карманов и сумок варьируются в широких пределах, ориентация телефона в пространстве может быть произвольной. Датчики мобильных устройств имеют значительный разброс параметров

3 Постановка задачи

При решении задачи используются данные, полученные с помощью инерционных датчиков. Эти данные представляются в виде многомерных временных рядов $s(t) \in \mathbb{R}^N$. Каждому временному ряду ставится в соответсвие вектор признаков. Эти вектора образуют матрицу признаков $X \in \mathbb{R}^{N \times T}$. По данной матрице предсказывается матрица траекторий пешехода вида $Y \in \mathbb{R}^{N \times T}$, а строками данной матрицы являются временные ряды y(t), демонстрирующие изменение положения по широте и долготе в течение времени. Модель имеет вид:

$$f: X \to Y$$

Используемые в задаче данные, были собраны с разных расположений датчиков: рюкзак, нога, рука, туловище. Поэтому задача разбивается на две: определение класса расположения датчика (P) и предсказание самой траектории перемещения на основе решения первой задачи:

$$f_1: X \to P = \{0, 1, 2, 3\}$$

 $f_2: X, P \to Y$

Для решения задач используемся метод опорных векторов(SVM) для случая линейной неразделимости классов, который минимизирует следующий функционал S(w|f,X,Y) и введём штраф за суммарную ошибку:

$$\min_{w, w_0} S(w, w_0) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\infty} \xi_i$$

где C - параметр настройки метода, ξ_i - набор дополнительных переменных характеризующих величину ошибки на объектах x_i , вектор w - перпендикуляр к разделяющей гиперплоскости.

При условиях:

$$y_i(w^T x_i + w_0) \ge 1 - \xi_i$$
$$\xi_i \ge 0 \ \forall i$$

Для оценки качества модели используется критерий суммы квадратов отклонений предсказанных координат от истинных, а также корреляция между предсказанной и истинной траекториями пешехода.

Формально постановку задачи следует записать следующим образом:

$$w^* = \arg\min_{w} S(w|f, X, Y).$$

4 Базовый алгоритм

В ходе получения матрицы признаков X в данных подавляются шумы высокой частоты с помощью применения Гауссового сглаживания с разными

параметрами для 6-ти каналов гиростабилизатора(IMU channels) и 2-ух скоростных каналов. Преобразуем сглаженные угловое и линейные ускорения в вектор признаков.

В качестве базового алгоритма используется каскадная регрессия состоящая из модели вида:

- подаются данные на вход SVM классификатора, который уже их разделяет на 4 класса: нога, сумка, рука, тело
- далее полученные данные идут вход на 2 SVR-регрессора для каждого класса, которые обучаются на тренировочных данных, которые в итоге выдают скорости передвижения человека для каждого временного блока. Именно 2 SVR-регрессора для предсказания двумерной скорости в IMU-стабилизированной системе координат, игнорируя вертикальную составляющую.

Но полученные векторы скоростей содержат ошибки, которые связаны с неточностями инерционных датчиков: системой ротации. Поэтому делается предположение о низкочастотных смещениях в линейном ускорении. Этот подход не имеет явных физических обоснований, но позволяет обойти явное моделирование шумов / смещений и сводит задачу к задаче минимизации:

$$\begin{split} \min_{\{x_I^1, x^{5}1_I, \dots\}} V_{bias} &= \min_{\{x_I^1, x^{5}1_I, \dots\}} \sum_{f \in F_2} \|v_C^F - v_R^f\| + \lambda \sum_{f \in F_1} \|x_I^f\|^2, \\ v_C^f &= R_{SW}^f \sum_{f'=1}^f R_{WI}^{f'} (a_I^{f'} + x_I^{f'}), \end{split}$$

где f - единица блока выборки, F - блок выборки, v_C^F - скорректированное значение скорости, v_R^f - предсказанное значение скорости, I - система координат устройства, W - глобальная система координат, S - IMU-стабилизированная система координат, R_{AB} - матрица перехода из системы координат B в систему координат A.

Для каждого класса создается SVR-регрессор, предсказывающий угловые скорости пешехода в каждом временном блоке.

На контрольной выборке для SVM-классификатора и каждого SVRрегрессора подбираются оптимальные значения гиперпараметров.

По полученным значениям скоростей восстанавливается траектория пешехода.

После получения из данных матрицы признаков X

Формально алгоритм описывается следующим образом:

```
Вход: X, Y_{class}, Y, X_{test}

    initialize classifier options

 2: classifier = SVMClassifier (classifier options);

 classifier.fit(X, Y<sub>class</sub>)

 4: для cls in classes:
        initialize regressor cls optons
 5:
        regressor cls = SVRRegressor(regressor cls optons)
        regressor\_cls.fit(X[X[ind] \in cls], Y)[Y[ind] \in cls])
 8: Y_{test-class} = classifier.predict(X_{test})
 9: для cls in classes:
        Velocity\_cls = regressor\_cls.predict(X_{test}[Velocity\_class[ind] == cls]
10:
        x_I^1, x^5 1_I, \dots = \underset{\{x_I^1, x^5 1_I, \dots\}}{\operatorname{arg\,min}} V_{bias\_cls}
11:
       \begin{aligned} Velocity\_cls &= R_{SW}^f \sum_{f'=1}^f R_{WI}^{f'} (a_I^{f'} + x_I^{f'}) \\ Trajectory\_cls \text{ recovery depending on } Velocity\_cls \end{aligned}
12:
14: return Full trajectory
```

5 Эксперимент

Цель эксперимента: найти параметры модели для более точного предсказания исходной траектории.

В ходе эксперимента используются данные в статье, исследуемой алгоритм RIDI[14]. Данные были собраны с помощью инерционных датчиков смартфона с разным расположением: в руке, на ноге, в сумке и на поясе. Выборки содержат траектории с временным блоком в 100 минут и частотой сигнала 200 Гц.

В качестве объекта рассматривается положение в определенный момент времени i. Признаками объекта являются угловые скорости и линейные ускорения в стабилизированной системе координат датчиков в моменты времени $i-window_size,\ldots,i$, где $window_size$ - размер окна (равен 200). Целевыми переменными являются метки классов, характеризующие то, в каком положении находился смартфон при получении определенных данных, а также скорости в данный момент времени i, которые вычисляются через координаты пешехода и прошедшее время. По полученным данным после уточнения скоростей с помощью оптимизации функции V_{bias} строится предсказанная траектория пешехода.

В ходе эксперимента исследовалась зависимость качества моделей на контрольной выборке в зависимости от параметров SVM-регрессоров. Во всех моделях в качестве ядер были выбраны радиальные базисные функции, подбирались такие параметры как коэффициент штрафа C и ядерный коэффициент γ . Качество измерялось с помощью кросс-валидации. Из ре-

зультатов эксперимента следует, что для каждого расположения смартфона и каждого канала данных должны быть выбраны свои параметры модели. Это подтверждает разумность классификации типа расположения смартфона перед непосредственным предсказанием траектории.

Графики зависимости качества предсказания модели от параметров:

- 1. Выборка 1 состоит из 30742 объектов (8728 объектов класса рука, 6106 объектов класса нога, 7758 объектов класса тело, 8150 объектов класса сумка).
- 2. Выборка 2 состоит из 42731 объектов (13204 объектов класса рука, 8083 объектов класса нога, 11105 объектов класса тело, 10339 объектов класса сумка).
- 3. Выборка 3 состоит из 35892 объектов (9458 объектов класса рука, 7304 объектов класса нога, 13306 объектов класса тело, 5824 объектов класса сумка).

Рис. 1: Рука, канал 0

Рис. 2: Рука, канал 1

Рис. 3: Нога, канал 0

Рис. 4: Нога, канал 1

Рис. 5: Сумка, канал $0\,$

Рис. 6: Сумка, канал 1

Рис. 7: Тело, канал $0\,$

Рис. 8: Тело, канал 1

Для всех классов и выборок оптимальные значения параметра γ близки к 0.001, 0.01, поэтому при дальнейшем обучении моделей на большом количестве данных при заранее не заданных параметрах SVM-регрессоров, при поиске по сетке для параметра γ будут использоваться только эти значения. Тогда для построенных моделей оптимальными параметрами будут следующие:

	Рука	Нога	Сумка	Тело
С	10	1	1	1
γ	0.01	0.001	0.01	0.001

По полученным значениям ошибок на кросс-валидации были выбраны оптимальные модели. С помощью этих моделей были построены траектории для каждого класса расположения смартфона (в качестве тестовой выборки была использована выборка Zhicheng). При этом траектории были построены для случаев, когда дополнительная корректировка весов с помощью оптимизации V_{bias} не производилась (сиреневая линия) и когда производилась (синяя линяя). Истинная траектория обозначена красным цветом.

6 Выводы

Путем изначального определения расположения смартфона у человека (класс в данной задаче), были подобраны более подходящие параметры для моделей, которые увеличили точность построенных траекторий.

В ходе данной работы были повторены результа статьи для алгоритма RIDI[14]. При работе с данными и для их улучшения был использован фильтр Гаусса.

Рис. 10: Траектории

В дальнейшем планируется применить полученную модель для дополнительно собранных данных, а также улучшить методы обработки данных для уменьшения шума (применение фильтра Калмана) и посмотреть другие способы оптимизации модели.

7 Приложения

Таблица 1: Зависимости МSE (m^2/s^2) от параметров моделей для выборки 1

	$\gamma = 0.1$	0.01051	0.00826	0.00448	0.00754	0.00689	0.01568	0.00751	0.01131
	$\gamma = 0.01$	0.01011	0.00703	0.00212	0.00642	0.00702	0.01496	0.00469	0.00873
C=10	$\gamma = 0.001$	0.01029	0.00714	0.00212	0.00651	0.00731	0.0151	0.00457	0.00863
	$\gamma = 0.0001$	0.01032	0.00716	0.00213	0.00652	0.00734	0.01512	0.00456	0.00862
	_	<u> </u>	_	_	_	0.00683	_	_	0.01142
						0.00604			0.00905
C=1	$\gamma = 0.001$	0.00948	0.00676	0.00205	0.00626	0.00613	0.01492	0.00464	0.00898
	$\gamma = 0.0001$	0.00949	0.00676	0.00205	0.00626	0.00614	0.01494	0.00463	0.00898
Ропроссов	donad a	Сумка, 0	Сумка, 1	Тело, 0	Тело, 1	Рука, 0	Рука, 1	Hora, 0	Hora, 1

Таблица 2: Зависимости МSE (m^2/s^2) от параметров моделей для выборки 2

							_	_	
	$\gamma = 0.1$	$\overline{}$	0.01406	0.00448	0.00629	0.02282	_	0.00789	0.01488
		0.01234	0.01065	0.00212	0.00537	0.02155	0.0234	0.0055	0.01306
C=10			0.01051	0.00212	0.0055	0.02176	0.02342	0.00544	0.0131
	~					0.02176	0.02342	0.00544	0.0131
	$\gamma = 0.1$	0.01519	0.01406	0.00448	0.00631	0.02657	0.02552	0.00789	0.01489
$\begin{array}{c cccc} C=1 \\ \hline 1 & \gamma=0.001 & \gamma=0.01 \\ \hline 0.0125 & 0.0125 \\ \hline 0.01013 & 0.01029 \\ \hline 0.00205 & 0.00206 \\ \hline 0.002699 & 0.02676 \\ \hline 0.02699 & 0.02676 \\ \hline 0.0246 & 0.02451 \\ \hline \end{array}$	0.02451	0.00546	0.01295						
	$\gamma = 0.001$	0.0125	0.01013	0.00205	0.00511	0.02699	0.0246	0.0054	0.01289
	l		0.01013	0.00205	0.00511	0.02699	0.0246	0.0054	0.01289
Регрессор	donnad in I	Сумка, 0	Cymka, 1	Тело, 0	Тело, 1	Рука, 0	Рука, 1	Hora, 0	Hora, 1

Таблица 3: Зависимости МSE (m^2/s^2) от параметров моделей для выборки 3

			$= 0.01 \gamma = 0.1$ $0.0583 0.00753$						
	$0.001 \mid \gamma = 0.01 \mid$		0.00583	1591 0.00583 1247 0.00241					591 0.00583 247 0.00241 384 0.00391 055 0.00537 176 0.02155 989 0.00975 403 0.00405
$\gamma = 0.001$ $\gamma =$		0.00591 0.0							
		77600	1+700.0	0.00384		0.0055	0.0055	0.0055 0.02176 0.00991	0.0055 0.02176 0.00991 0.00403
$\gamma = 0$.	_	0.0074	0.0041	0 006	0.000	0.0063	0.0063	$\begin{array}{c} 0.0063 \\ \hline 0.0265 \\ \hline 0.0115 \\ \end{array}$	0.0063 0.0265 0.0115 0.0061
			0.00239	0.00389	2000.0	0.00504	0.00504	0.00504 0.00504 0.02676 0.01016	0.00504 0.02676 0.01016 0.00401
	$\gamma = 0.001$	0.00579	0.00241	0.00379	20000	0.00511	0.00511	0.00511 0.02699 0.01024	0.00511 0.02699 0.01024 0.00395
	$\gamma = 0.0001$	0.00579	0.00242	0.00379		0.00511	0.00511	0.00511 0.02699 0.01025	0.00511 0.02699 0.01025 0.00394
Derneccon		0,	ъ, 1	0,		0, 1	o, 1 a, 0	o, 1 a, 0 a, 1	(0, 1) (a, 0) (a, 1) (a, 0) (a, 0)
	$ \dot{\gamma} - 0.0001 \dot{\gamma} - 0.001 \dot{\gamma} = 0.01 \dot{\gamma} = 0.01 \dot{\gamma} = 0.001 \dot{\gamma} = 0.001 \dot{\gamma} = 0.01 $	$ \gamma = 0.001 \gamma = 0.01 \gamma = 0.1 \gamma = 0.0001 \gamma = 0.001 \gamma = 0.01 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Список литературы