Package 'THIMA'

December 19, 2018

Type Package

Title Testing targeted mediation effect in microbiome data

Version 0.1.1

Authors Haixiang Zhang, Jun Chen, Zhigang Li, Lei Liu

Maintainer Haixiang Zhang haixiang Zhang @tju.edu.cn

Description We propose an estimating and testing procedure for a targeted mediator of interest in the presence of a large number of mediators. Specially, we present a de-biased Lasso estimate for the targeted mediator and derive its standard error estimator, which can be used to develop a joint significance test procedure for the mediation effect in microbiome compositional data.

Depends R (>= 3.3), hdi, MASS

ilr Isometric Logratio Transformation

Description

ilr is used to transform the compositional data from the simplex S^p to Euclidean space R^{p-1} .

Usage

ilr (target.ID, M)

Arguments

target.ID the index of targeted mediator

M a matrix of high-dimensional compositional mediators. Rows represent samples,

columns represent variables

Value

MT a matrix after *ilr*-based transformation

References

- [1] Egozcue, J., Pawlowsky-Glahn, V., Mateu-Figueras, G. and BarcelÓ-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. *Mathematical Geology*, 35, 279-300.
- [2] Haixiang Zhang, Jun Chen, Zhigang Li, Lei Liu (2018). Testing for targeted mediation effect with application to human microbiome data. *Submitted*.

Examples

```
library(MASS)
tid <- 3 # The index of targeted mediator, i.e., the third mediator is the targeted mediator
n <- 100 # sample size
p <- 200 # the number of mediators
E <- matrix(rexp(n*p,1),n,p)
M <- matrix(0,n,p)
for (i in 1:n){
    M[i,] <- E[i,]/sum(E[i,]) # generate compositional mediators
}</pre>
MT <- ilr(target.id = tid, M) # the ilr-based transformation for the targeted mediator
```

thima

Targeted High-dimensional Mediation Analysis

Description

thima is used to test the mediation effect in high-dimensional microbiome compositional data

Usage

```
thima(target.ID, X, MT, Y,...)
```

Arguments

target.ID	the index of targeted mediator
X	a vector of exposure
MT	a matrix of high-dimensional mediators after ilr -based transformation. Rows represent samples, columns represent variables
Υ	a vector of outcome
	other arguments passed to hdi

Value

target.ID ID of the targeted mediator

```
alpha_hat coefficient estimate of exposure (X) → targeted mediator (M)

alpha_hat_SE the standard error for alpha_hat

beta_hat coefficient estimate of the targeted mediator (M) → outcome (Y)
 (adjusted for exposure and high-dimensional nuisance mediators)

beta_hat_SE the standard error for beta_hat

P-value of the joint significance test
```

References

Haixiang Zhang, Jun Chen, Zhigang Li, Lei Liu (2018). Testing for targeted mediation effect with application to human microbiome data. *Submitted*.

Examples

```
library(MASS)
library(hdi)
tid <- 5 # The index of targeted mediator
n <- 100 # sample size
p <- 200 # the number of mediators
E \leftarrow matrix(rexp(n*p,1),n,p)
M \leftarrow matrix(0,n,p)
for (i in 1:n){
  M[i,] <- E[i,]/sum(E[i,]) # generate compositional mediators
MT <- ilr(target.ID =tid, M) # the ilr-based transformation for M ID
##### The following codes generate X and Y
c <- 1 # the intercept term in Y
gamma <- 0.5
beta <- matrix(0,1,p-1)
b0 < c(1,0.25,0.30,0.35,0.55)
L <- length(b0)
beta[1:L] <- b0
X \leftarrow matrix(rnorm(n, mean=0, sd=1.5), n, 1)
X <- matrix(as.numeric(scale(X)),nrow(scale(X)),ncol(scale(X)))
XM <- cbind(X,MT)
B <- t(t(c(gamma, beta))) # (p) times 1
e <- rnorm(n,0,1)
Y <- c + XM%*%B + t(t(e))
thima.fit <- thima(target.ID = tid, X, MT, Y) # using the package THIMA
print(thima.fit)
```