

STAB57

An Introduction to Statistics

Agenda:

- 1. 知识点 1:bayesian inference
- 2. 知识点 2:inference
- 3. 知识点 3: prior 分类
- 4. 知识点 4: SLR 【学校 week11 内容】

提醒:

- 1. Assignment2 在学生系统 class 10, 别忘记写~
- 2. 接下来的 quiz 都是硬算
 - 3月25日-3月29日的 quiz:本节课知识点1-3.题目集中在知识点2后
 - 4月1日-4月5日的 quiz: 本节课知识点 4

知识点 1:BAYESIAN INFERENCE

- 1. Idea:
 - 回顾
 - 1) marginal distribution:

Continous RV - PDF: $f_X(x) = \int f_{X,Y}(x,y)dy$

Discrete RV- PMF: $f_X(x) = \sum_y f_{X,Y}(x, y)$

2) conditional distribution

$$f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

3) joint PMF:

$$f_{X,Y}(x,y) = f_{Y|X}(y \mid x)f_X(x) = f_{X|Y}(x \mid y)f_Y(y)$$

• Frequentist approach:

Likelihood function 来estimate

- 2. Bayesian inference:
 - θ是random variable, 并且相信有distribution

这个distribution叫 **prior distribution** of θ , 记为 $\pi(\theta)$

是θ的PDF

• 用 $\pi(\theta|s)$ 来研究data s

 $\pi(\theta|s)$ 为 **posterior distribution** of θ

summarizes what you know after the data has been observed.

3. Marginal distribution of s

$$m(s) = \int \pi(\theta) f(s|\theta) d\theta = \int \pi(\theta) L(s|\theta) d\theta$$

4. Posterior density of θ :

$$\pi(\theta|s) = \frac{\pi(\theta)f(s|\theta)}{m(s)} = \frac{\pi(\theta)L(s|\theta)}{m(s)}$$

知识点 2:INFERENCE - ESTIMATION USING POSTERIOR DISTRBUTION

- 1. Posterior distribution可以计算对应的posterior mean, posterior variance, ...
- 2. Posterior median可以通过posterior distribution的median计算
- 3. **Posterior mode**可以通过计算什么θ 可以使posterior density最大
- 4. Bayesian 的 CI 称为credible interval
- 5. HPD intervals:

Credible interval中的一个,满足 $C(s) = \{\varphi : \omega(\varphi|s) \ge c\}$ $\omega(\varphi|s)$ 是marginal posterior density of φ , c要满足credible interval

EXAMPLE 1

Suppose that in a population of stendets in course with large enrollment the mark, out of 100, on final exam is approximately distributed as $N(\mu, 9)$.

The instructor places a prior $\mu \sim N(65,1)$ on unknown parameter. A sample of 10 marks is obtained as given below.

- 46,
- 68,
- 34,
- 86,
- 75,
- 56.
- 77,
- 73,
- 64

53,

a. Determine the 95% credible interval for μ

 $(x_1,x_2,\ldots,x_n)\sim N(\mu,\sigma_0^2)$ where σ^2 is known and prior: $\mu\sim N(\mu_0,\tau_0^2)$

Posterior distribution is $N(\mu^*, \sigma^{*2})$ where,

$$\mu^* = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{n}{\sigma_0^2} \bar{x}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma_0^2}} \text{ and } \sigma^{*2} = \frac{1}{\frac{1}{\tau_0^2} + \frac{n}{\sigma_0^2}}$$

复杂的这种一般他会直接给你

b. Use the 95% credible interval for μ to test the hypothesis H_0 : $\mu = 65$

c. What is the mode of the posterior distribution of μ

EXAMPLE 2: E&R 7.1.2

determine the posterior mean and variance of θ for Bernoulli model

UTSC 导师:雅婧

EXAMPLE 3: E&R 7.1.3

In Example 7.1.2, what is the posterior probability that μ is positive, given that $n=10, \bar{x}=1$ when $\sigma_0^2=1, \mu_0=0$, and $\tau_0^2=10$?

知识点 3:PRIOR 分类

1. Conjugate prior:

result in a posterior distribution that belongs to the same family of distribution as the prior

2. Improper priors:

 $\pi(\theta)$ 不是 proper PDF

3. Non-informative priors:

If we have no prior information, we want a prior with minimal influence on the inference. We then use priors that are non-informative or vague

没有 information

知识点 4:SLR

1. Pearson Correlation Coefficient:

- 测量 strength + direction, 线性关系的强弱
- Population correlation:

Standardize
$$X$$
 and $Y: Z_x = \frac{x - \mu_x}{\sqrt{\text{Var}(X)}}, Z_y = \frac{Y - \mu_y}{\sqrt{\text{Var}(Y)}}$

$$\text{Corr}(X, Y) = \text{Cov}(Z_x, Z_y) = \rho_{xy} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)}\sqrt{\text{Var}(Y)}}$$

• Sample correlation:

Standardize *X* and *Y*:
$$Z_x = \frac{X - X}{S_x}$$
, $Z_y = \frac{Y - Y}{S_y}$

$$\operatorname{Corr}(X,Y) = \operatorname{Cov}(Z_x, Z_y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}} = r = r_{xy}$$

• Sample correlation 是 population correlation 的 estimate

2. Correlation 的性质:

- $-1 \le Corr \le 1$
- Strength 看绝对值大小
 - | Corr | =1: perfect linear
 - | Corr | \rightarrow 1 : strong association
 - | Corr | =0: independent, uncorrelated
 - $| \text{Corr} | \rightarrow 0 : \text{weak association}$
- Direction 看正负
 - Corr > 0 : positive association
 - Corr < 0 : negative association

3. 做 regression 的第一步其实是画 scatterplot 来确定 quantitative variables 之间的 relationship

Interpretation of scatterplot:

- Direction of the line:
 - the line is going upward \Rightarrow the correlation is positive.
 - the line is going downward \Rightarrow then the correlation is negative.
- Closeness of the points to the line suggests the strength of the correlation
 - points are closely clustered around the line ⇒ strong correlation
 - points are not so close to the line ⇒ moderate/weak correlation
- If the points look totally random \Rightarrow No relationship between X and Y

AUSUMPTIONS ABOUT SLR

> Simple Linear Regression:

$$y_i = \beta_1 + \beta_2 x_i + \epsilon_i$$

 y_i : Response or dependent variable

 x_i : Predictor or independent variable, treated as fixed

 β_1 and β_2 : parameters, regression coefficients

 ϵ_i : Random Error

Goal: to be able to predict y for a given value of x

Assumptions about ϵ_i :

- For purpose of deriving the statistical inferences only, utilized while constructing tests of hypothesis and confidence interval for parameters
- Identically: Have equal variance $Var(\epsilon_i) = \sigma^2$
- Independently: independent of each other
- Distributed: normally distributed: $\epsilon_i \sim N(0, \sigma^2)$
- \triangleright About y_i :
 - $\bullet \quad E(y_i) = \beta_1 + \beta_2 x_i$
 - $Var(y_i) = Var(\epsilon_i) = \sigma^2$
 - Normal distribution: $y_i \sim N(\beta_1 + \beta_2 x_i, \sigma^2)$

THE METHOD OF LEAST SQAURES

> Interpretation of Regression Line:

$$E(y_i) = \beta_1 + \beta_2 x_i$$

- β_1 is the y-intercept of the line: the point at which the line intersects the y-axis.
- β_2 is the slope of the line: the change (amount of decrease or increase) in mean response y in its unit for every one unit increase in x
- Goal: fit the data points by finding the line that is closest to the data.

> Method of least square:

- The values of β_1 and β_2 are unknown
- The estimate of β_1 and β_2 are β_1 and β_2
- Goal: estimate β_1 and β_2 by minimizing the sum of squares of the difference between the observations and the line in the scatterplot.

the vertical difference between the observations and the line in the scatterplot

 \mathbb{F}_{p} : minimize SSE= $Q = \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i)^2$

• Estimates are least-square estimates or ordinary least square estimates(OLS)

> OLS

• Fitted line or fitted linear regression model:

$$y = \hat{\beta}_1 + \hat{\beta}_2 x$$

With intercept

$$\hat{\beta}_1 = \bar{y} - \hat{\beta}_2 \bar{x}$$

With slope

$$\hat{\beta}_2 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})Y_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

• Predicted value:

$$\widehat{y}_i = \widehat{\beta}_1 + \widehat{\beta}_2 x_i$$

• Residual: the difference between the observed value and the fitted (or predicted value)

$$e_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_1 + \hat{\beta}_2 x_i)$$

INFERENCE IN SLR

- \hat{eta}_2 :
 - $\bullet \quad E(\hat{\beta}_2) = \beta_2$
 - $\bullet \quad Var(\hat{\beta}_2) = \frac{\sigma^2}{\sum_{i=1}^n (x_i \bar{x})^2}$
 - $\hat{\beta}_2$ is unbiased estimator of β_2
- $\hat{\beta}_1: \qquad \qquad \hat{\beta}_1: \qquad \qquad E(\hat{\beta}_1) = \beta_1$
 - $Var(\hat{\beta}_1) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}}{S_{XX}}\right)^2$
 - $\hat{\beta}_1$ is unbiased estimator of β_1
- $\widehat{\sigma^2}$: 我直接写了和 anova 匹配的公式
 - OLS: $\widehat{\sigma^2} = \frac{SSE}{n-2} = MSE$
 - Unbiased estimator of σ^2
 - MLE : $\frac{SSE}{n}$ biased
- CI for β_2 :

$$\hat{\beta}_2 \pm t_{(1+\gamma)/2,(df=n-2)} * SE(\hat{\beta}_2)$$

- T test for β_2 :
 - Testing H_0 : $\beta_2 = 0$ (no relationship between X and Y)
 - $T = \frac{\widehat{\beta}_2}{SE(\widehat{\beta}_2)} \sim t_{(n-2)}$

MAXIMUM LIKELIHOOD FUNCTION(MLE)

 \triangleright Likelihood function for y_i :

$$f(y_i|x,\beta_0,\beta_1,\sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{1}{2}} \exp\left\{-\frac{[y_i - (\beta_0 + \beta_1 x)]^2}{2\sigma^2}\right\}$$

$$L(y_1, \dots, y_n) = \prod_{i=1}^n f(y_i|x,\beta_0,\beta_1,\sigma^2) = \left[\frac{1}{2\pi\sigma^2}\right]^{\frac{n}{2}} \exp\left\{-\frac{\sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i)]^2}{2\sigma^2}\right\}$$

 \triangleright Log- Likelihood function for y_i :

$$\begin{split} LL(y_1, \dots, y_n) &= \ln \left(\left[\frac{1}{2\pi\sigma^2} \right]^{\frac{n}{2}} \exp \left\{ -\frac{\sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i)]^2}{2\sigma^2} \right\} \right) \\ &= -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i)]^2 \end{split}$$

> Normal equations:

By find partial derivatives w.r.t. β_0 , β_1 and set to 0

$$n\beta_0 + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$
$$\beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i$$

ANOVA

> Sum of squares decomposition:

Total sum of square (TSS) =
$$\sum_{i=1}^{n} (y_i - \bar{y})^2$$

Regression sum of square (RSS) =
$$\hat{\beta}_2^2 \sum_{i=1}^n (x_i - \bar{x})^2$$

Error/Residual sum of square (ESS) =
$$\sum_{i=1}^{n} (y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i)^2$$

$$TSS = RSS + ESS$$

> Anova table:

Source	df	Sum of Square (SS)	,
X	1	$b_2^2 \sum_{i=1}^n (x_i - \bar{x})^2$	$b_2^2 \sum_{i=1}^n (x_i - \bar{x})^2$
Error	n-2	$\sum_{i=1}^{n} (y_i - b_1 - b_2 x_i)^2$	s^2
Total	n-1	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	-

- \rightarrow F test:
 - State Hypothesis:

 $H_0: \beta_2 = 0 = x$ contributes no information for predicting y

 H_a : $\beta_2 \neq 0 = x$ is useful for predicting y

• Find Test Statistics:

$$F^* = \frac{\frac{RSS}{1}}{\frac{ESS}{n-2}} = \frac{MSR}{MSE} \sim F(1, n-2)$$

- Decision rule:
 - 1) P-value approach: p-value = $P(T > t_{obs})$

Reject H_0 if p-value $< \alpha$

2) Rejection region approach: Reject H_0 if $t_{obs} > F(\alpha; 1, n-2)$

> Coefficient of determination:

the proportion of variation in Y that can be explained by the model.

$$R^2 = \frac{RSS}{TSS}$$

For simple linear regression (only one X variable),

$$r^2 = R^2 \Longrightarrow r = \sqrt{R^2}$$

EXAMPLE 4: E&R 10.3.7

A student takes weekly quizzes in a course and receives the following grades

over 12 weeks. X = week and Y = grade.

Week	Grade	Week	Grade
1	65	7	74
2	55	8	76
3	62	9	48
4	73	10	80
5	68	11	85
6	76	12	90

UTSC 导师:雅婧