Reward Function

Carlos Padilla enigmak9@protonmail.com

ICN, UNAM

April 22, 2024

Table of Contents

Reward Function

Carlos Padilla

- **Reward Function**
- Overall Performance Metric
- Overall Perfomance Metric Part 2
- Overall Perfomance Metric Part 3
- Implementation

Reward Function - Part 1

Reward Function

Carlos Padilla

The reward function is defined as:

$$\xi_j = S_j P_j e^{\left(rac{(t_j^E) - t_j^R}{\sigma}
ight)^2} + (P_j^D)(d_j)(g(k))$$

Where:

- S_j indicates if task j is performed (1) or not (0).
- P_j indicates if task j is downloaded (1) or not (0).
- t_i^E is the task j actual execution time.
- t_j^R is the task j requested time.

▶ Back to TOC

Reward Function
Overall
Performance

Overall Perfomance Metric - Part 2

Overall Perfomance Metric - Part 3

Reward Function - Part 2

Reward Function Carlos Padilla

Reward Function

Continuing with the reward function parameters:

 \bullet α is the weight factor for SoC (State of Charge) goodness w.r.t task execution, where:

 α < 1 \Rightarrow more weight to performance and battery health

 $\alpha = 1 \Rightarrow$ same weight to P_i and R

 $\alpha > 1 \Rightarrow$ more weight to R

• E_{max} is the maximum charge (safety limit).

▶ Back to TOC

Reward Function - Part 3

Reward Function

Carlos Padilla

Reward Function

Overall Performand Metric

Overall Perfomance Metric - Part

Perfomance Metric - Part 3 E_L is the minimum charge (safety limit).

 ${\it N}$ is the number of sampling points between ground station power.

 δ is the dispersion in time from requested of execution (gaussian weight).

The modification for the function g(k) is as follows:

$$g(k) = \begin{cases} 1 & \text{if } k = 1 \\ 0.5 & \text{if } k = 2 \\ 0.25 & \text{if } k = 3 \\ 0 & \text{if } k \ge 4 \end{cases}$$

Overall Performance Metric

Reward Function

Carlos Padilla

Reward Function

Overall Performance Metric

Overall Perfomance Metric - Part 2

Overall Perfomance Metric - Part 3

mplementation

$$\xi = \sum_{i=1}^{J} \xi_j + \frac{\alpha}{N} \sum_{i=1}^{N} \left(\frac{E_i - E_L}{E_{max} - E_L} \right)$$

This equation defines the overall performance metric (ξ) for a nanosatellite, which may include considerations of energy efficiency, task management, and operational longevity.

Task Efficiency

Reward Function

Carlos Padilla

Reward Functi

Overall Performar Metric

Overall Perfomance Metric - Part 2

Overall Perfomance Metric - Part 3 Implementatio

$$\sum_{j=1}^{J} \xi_j$$

The first term sums the efficiencies (ξ_j) of individual tasks or subsystems (j) within the nanosatellite, reflecting how well each task performs relative to its energy consumption and operational objectives.

Energy Efficiency

Reward Function

Carlos Padilla

Overall

Performan Metric

Perfomance Metric - Part 2

Overall Perfomance

Metric - Part 3

$$\frac{\alpha}{N} \sum_{i=1}^{N} \left(\frac{E_i - E_L}{E_{max} - E_L} \right)$$

The second term represents the average, normalized measure of the battery's state of charge, weighted by α . It assesses the energy efficiency by considering the battery charge levels (E_i) at N different sampling points, bounded by the safety limits (E_{max} and E_L).

Notebook

Reward Function

Carlos Padilla

Overall Performan Metric

Overall Perfomance Metric - Part

Overall Perfomance Metric - Pari

Implementation

