

Dual Autoencoder Network with Swap Reconstruction for Cold-Start Recommendation

Bei Wang, Chenrui Zhang, Hao Zhang, Xiaoqing Lyu, Zhi Tang Wangxuan Institute of Computer Technology Peking University

Oct. 2020

Outline

- Background
- Our Approach
- Experiments

Background

Cross-domain Recommendation

> Challenge

Cold-start issue in recommendation

Transfer and share user preference among different domains

Background

Motivation

Limitations of existing methods

- Two-stage embedding-and-mapping framework, not in an end-to-end manner
- not optimized for the cross-domain recommendation objective, leading to suboptimal representation
 - → time-consuming
- Insufficiently model the high-order structural information
- Only leverage the data of source domain to learn a mapping function

Outline

- Background
- Our Approach
- Experiments

Overview

- Capture the high-order collaborative information for user preference learning
- Transfer the representations close to the ground-truth in the target latent space

Dual Autoencoder Network (DAN)

- Encoder
 - Learns the latent representation of users/items in each domain
- Decoder
 - Two-branched
 - Transfers users under a domain swapping strategy

GCN-based Encoder

Updated representation

$$Z^{(l)} = LeakyReLU(\widetilde{D}^{-1}\widetilde{A}Z^{(l-1)}W_g)$$
(1)

Optimizing representation of each domain

$$\mathcal{L}^X = \sum_{(u,i,i')\in\mathcal{R}^X} -\ln\sigma(z_u^T z_i - z_u^T z_{i'}) + \lambda \|\Theta\|_2^2$$
 (2)

Two-Branched Decoder

The output of the first branch

$$z_u^{Y'} = W_{d1}^T \left(Tanh(W_{d2}^T z_u^X + b_{d2}) \right) + b_{d1}$$
 (3)

The output of the second branch

$$\tilde{u}^Y = D^X(z_u^X) = W_{d3}Tanh(z_u^{Y'}) + b_{d3}$$
(4)

Reconstruction Constrains

Paired reconstruction loss

$$\mathcal{L}_{p}^{X} = \sum_{u \in \mathcal{U}^{O}} \|D^{X}(z_{u}^{X}) - \mathbf{u}^{Y}\|_{2}^{2}$$
 (5)

Swap loss of the cross-domain reconstruction

$$\mathcal{L}_{S}^{X} = \sum_{u \in \mathcal{U}^{O}} \|D^{Y}(z_{u}^{X}) - \mathbf{u}^{X}\|_{2}^{2}$$
 (6)

Cold-Start Recommendation

Prediction score

$$\hat{p}_{ui}^{Y'} = z_u^{Y'} \cdot z_i^Y \tag{7}$$

Cross-domain recommendation objective

$$\mathcal{L}^{X2Y} = \sum_{u \in \mathcal{U}^O} -\ln\sigma \left(\hat{p}_{ui}^{Y'} - \hat{p}_{ui'}^{Y'} \right) + \lambda \|\Theta\|_2^2$$
 (8)

Objective of the whole bi-directional model

$$\mathcal{L} = (\mathcal{L}^X + \mathcal{L}^Y) + (\mathcal{L}^{X2Y} + \mathcal{L}^{Y2X}) + (\mathcal{L}_p^X + \mathcal{L}_p^Y) + (\mathcal{L}_s^X + \mathcal{L}_s^Y)$$
(9)

Outline

- Background
- Our Approach
- Experiments

Experiments

Datasets

Table 1: Statistics of two cross-domain scenarios (Inter. denotes interactions and Overlap, denotes overlapping users)

Datasets	#Users	#Items	#Inter	density	#Overlap	
Books	10,040	22,044	672,664	0.30%	5,739	
CDs and Vinly	6,557	7,433	178,905	0.37%		
CDs and Vinly	10,992	14,680	185,041	0.11%	2,397	
Movies and TV	10,514	8,184	149,480	0.17%	2,397	

Experiments

Results

Table2: Cold-start recommendation performances of two cross-domain scenarios.

Dataset	Metrics	EMCDR-BPR	SSCDR	DAN
Books CDs and Vinly	HR@10	0.0959	0.1143	0.1459
	HR@20	0.1184	0.1353	0.1728
	NDCG@10	0.0921	0.1137	0.1417
	NDCG@20	0.1006	0.1206	0.1508
CDs and Vinly Movie	HR@10	0.2249	0.2565	0.2864
	HR@20	0.2713	0.3019	0.3353
	NDCG@10	0.2314	0.2632	0.2941
	NDCG@20	0.2507	0.2814	0.3134

- ✓ Model high-order collaborative information
- ✓ Directly leverage cross-domain recommendation objective
- ✓ Mutually enhances the domain data with designed reconstruction constraints

Thanks! Q&A