EXAMPLE:

Determine the shortest routes with their distances between node—1 & node—5. Also between node—2 & node—3 using Floyd's algorithm.

SOLUTION:

ERATION — 0:

1	2	3	4	5

$$1 \mid -3 \mid 10 \mid \infty \mid \infty$$

2	3	 ∞	5	∞

$$D_0 = 3$$

$$S_0 = 3$$

$$\mid 1 \mid$$

$$\infty$$

$$\infty$$

ITERATION - 1:

• Set k = 1, thus PIVOT column -1 and row -1.

- Improvements can be made for d_{23} and d_{32} .
 - 1. Replace d_{23} by $d_{21} + d_{13} = 3 + 10 = 13$ & Set $S_{23} = 1$.
 - 2. Replace d_{32} by $d_{31} + d_{12} = 10 + 3 = 13 \& Set <math>S_{32} = 1$.

$$| 5 | \infty \infty \infty 4 -$$

1	2	3	4	5

1		_	3	4	J
-	•				

$$2 \mid 1 - 1 \mid 4 \mid 5$$

$$S_1 = S_1 + S_2 + S_3$$

ITERATION – 2:

• Set k = 2, thus PIVOT column -2 and row -2.

- Improvements can be made for d₁₄ and d₄₁.
 - 1. Replace d_{14} by $d_{12} + d_{24} = 3 + 5 = 8 \& Set <math>S_{14} = 2$.
 - 2. Replace d_{41} by $d_{42} + d_{21} = 5 + 3 = 8 \& Set <math>S_{41} = 2$.

$$1 \begin{vmatrix} -3 & 10 & 8 & \infty & 1 \end{vmatrix} - 2 & 3 & 2 & 5$$

$$\overline{2}$$
 3 - 13 5 ∞

$$| 5 | \infty \infty \infty 4 -$$

ITERATION – 3:

- Set k = 3, thus PIVOT column 3 and row 3.
- Improvements can be made for d₁₅ and d₂₅.
 - 1. Replace d_{15} by $d_{13} + d_{35} = 10 + 15 = 25 \& Set <math>S_{15} = 3$.
 - 2. Replace d_{25} by $d_{23} + d_{35} = 13 + 15 = 28 \& Set <math>S_{25} = 3$.

$$| \overline{2} | 3 - 13 5 28$$

$$| 5 | \infty \infty \infty 4 -$$

1		<i></i>	3	<i></i>	
2	1		1	4	3

ITERATION – 4:

- Set k = 4, thus PIVOT column 4 and row 4.
- Improvements can be made for d_{25} , d_{52} , d_{23} , d_{32} , d_{35} , d_{53} , d_{15} and d_{51} .
 - 1. Replace d_{25} by $d_{24} + d_{45} = 5 + 4 = 9$ & Set $S_{25} = 4$.
 - 2. Replace d_{52} by $d_{54} + d_{42} = 4 + 5 = 9$ & Set $S_{52} = 4$.
 - 3. Replace d_{23} by $d_{24} + d_{43} = 5 + 6 = 11$ & Set $S_{23} = 4$.
 - 4. Replace d_{32} by $d_{34} + d_{42} = 6 + 5 = 11 \& Set <math>S_{32} = 4$.
 - 5. Replace d_{35} by $d_{34} + d_{45} = 6 + 4 = 10 \& Set <math>S_{35} = 4$.
 - 6. Replace d_{53} by $d_{54} + d_{43} = 4 + 6 = 10 \& Set S_{53} = 4$.
 - 7. Replace d_{15} by $d_{14} + d_{45} = 8 + 4 = 12 \& Set <math>S_{15} = 4$.
 - 8. Replace d_{51} by $d_{54} + d_{41} = 4 + 8 = 12$ & Set $S_{51} = 4$.

	1	2	3	4	5			1	2	3	4	5
1	_	3	10	8	12		1		2	3	2	4
$\overline{2}$	3	_	11	5	9		2	1	_	4	4	4
$D_4 = \overline{3}$	10	11	_	6	10	$, S_4 =$	3	1	4	_	4	4
4	8	5	6		4		4	2	2	3		5
$\overline{)}$ 5	12	9	10	4	_		5	4	4	4	4	
	_											

ITERATION - 5:

- Set k = 5, thus PIVOT column–5 and row–5.
- No further Improvements are possible thus:
- 1. $d_{15} = 12$ ROUTE = $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$
 - "Route is $1 \rightarrow 5$ if $S_{15} = 5$ but $S_{15} = 4$. So, Route is $1 \rightarrow 4 \rightarrow 5$ if $S_{14} = 4$ but = 2. So, Route is $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$ if $S_{12} = 2$."
- 2. Route Node 2 to Node 3 is: $2 \rightarrow 4 \rightarrow 3$
 - "Route is $2 \rightarrow 4$ if $S_{24} = 4$. Route is $4 \rightarrow 3$ if $S_{43} = 3$. So, Route from node -2 to node -3 is: $2 \rightarrow 4 \rightarrow 3$