pl bisection.wxmx 1 / 11

# **Practical 1: Bisection Method**

1

### 1.1

Pseudo code(from Cheney)

### Figure 1:

```
procedure Bisection(f, a, b, nmax, \varepsilon)
integer n, nmax; real a, b, c, fa, fb, fc, error
fa \leftarrow f(a)
fb \leftarrow f(b)
if sign(fa) = sign(fb) then
     output a, b, fa, fb
     output "function has same signs at a and b"
     return
end if
error \leftarrow b - a
for n = 0 to nmax do
     error \leftarrow error/2
     c \leftarrow a + error
     fc \leftarrow f(c)
     output n, c, fc, error
     if |error| < \varepsilon then
           output "convergence"
           return
     end if
     if sign(fa) \neq sign(fc) then
           b \leftarrow c
          fb \leftarrow fc
     else
           a \leftarrow c
          fa \leftarrow fc
     end if
end for
end procedure Bisection
```

pl\_bisection.wxmx 2 / 11

#### bisection method theorem

## Figure 2:

## **BISECTION METHOD THEOREM**

If the bisection algorithm is applied to a continuous function f on an interval [a, b], where f(a) f(b) < 0, then, after n steps, an approximate root will have been computed with error at most  $(b-a)/2^{n+1}$ .

2

```
(%i1) kill(all);
(%o0) done
```

pl bisection.wxmx 3 / 11

```
(%i1) bisect(g, a, b, kmax, e):=block(
         [ya, yb, ym, err, iter, k],
         define(f(x), g),
         ya:f(a),
         yb:f(b),
         if(signum(ya)=signum(yb)) then (print("fn has same sign at end points"))
         else
         (
            disp("iter
                                                                                 error"),
                                    m
                                                             ym
            err:(b-a),
            for k:1 thru kmax do
              err:err/2,
              m:a+err,
              ym:f(m),
              iter:k,
                                       ", m, "
                                                        ", float(ym),"
                                                                              ", err),
              print(iter, "
              if(abs(err)<e) then (return("bisection has converged") ),
              if(signum(ym) # signum(ya)) then (b:m, yb:ym)
              else (a:m, ya:ym)
            )
         )
       )
(\%o1) bisect(g, a, b, kmax, e):=block([ya, yb, ym, err, iter, k],
       define (f(x),g), ya:f(a), yb:f(b), if signum (ya) = signum (yb)
       then print (fn has same sign at end points) else (disp (
       iter
                                                  ym
                         m
                                                                      error
       ), err:b-a, for k thru kmax do (err:\frac{err}{2}, m:a+err, ym:f(m),
       iter:k, print
                                         , float (ym),
                                                              ,err),if err
       (iter,
                          ,m,
       <e then return(bisection has converged), if signum(ym)≠</pre>
       signum (ya) then (b:m,yb:ym) else (a:m,ya:ym))))
```

2.1

### 2.1.1

pl\_bisection.wxmx 4 / 11

| (%i2) | bisect( $x^3+2\cdot x$ | $^2-3\cdot x-1$ , 1.0, | 2.0, 20, 0.0005);    |       |  |  |  |
|-------|------------------------|------------------------|----------------------|-------|--|--|--|
|       | iter                   | m                      | ym                   | error |  |  |  |
|       | 1                      | 1.5                    | 2.375 0.5            |       |  |  |  |
|       | 2                      | 1.25                   | 0.328125             | 0.25  |  |  |  |
|       | 3                      | 1.125                  | -0.419921875         |       |  |  |  |
|       | 0.125                  |                        |                      |       |  |  |  |
|       | 4                      | 1.1875                 | -0.06762695312       | 5     |  |  |  |
|       | 0.062                  |                        |                      |       |  |  |  |
|       | 5                      | 1.21875                | 0.124725341796       | 5875  |  |  |  |
|       | 0.031                  |                        |                      |       |  |  |  |
|       | 6                      | 1.203125               | 0.015605             |       |  |  |  |
|       | 0.02717971801          |                        | 0.015625             |       |  |  |  |
|       | 7                      | 1.1953125              | -                    |       |  |  |  |
|       | 0.02056455612          |                        | 0.0078125            |       |  |  |  |
|       | 8<br>0.00322216749     | 1.19921875             | 0.00390625           |       |  |  |  |
|       | 9                      | 1.197265625            | 0.00390023           |       |  |  |  |
|       | 0.00869252532          |                        | 0.001953125          |       |  |  |  |
|       | 10                     | 1.1982421875           | 0.001333123          |       |  |  |  |
|       |                        |                        | -4                   |       |  |  |  |
|       | 0.00274051446          |                        | 9.765625 10          |       |  |  |  |
|       | 11                     | 1.19873046875          | _                    |       |  |  |  |
|       | 2.39492277614          | 7723 10 -4             | $4.8828125\ 10^{-4}$ | •     |  |  |  |
| (%o2) | bisection has co       | onverged               |                      |       |  |  |  |

# 2.1.2

plot

pl\_bisection.wxmx 5 / 11

## (%i3) wxdraw2d(

```
xaxis = true, xaxis_type = solid,
yaxis = true, yaxis_type = solid,
explicit(x^3+2·x^2-3·x-1, x, 1, 2)
);
```

(%t3)



(%o3)

2.2

2.2.1

pl\_bisection.wxmx 6 / 11

| (%i4)             | bisect(ta          | n(%pi·x)-x- <mark>6</mark> , | 0.40,    | 0.48,  | 20,   | 0.0005);      |            |
|-------------------|--------------------|------------------------------|----------|--------|-------|---------------|------------|
|                   | iter               | m                            |          |        | y     | /m            | error      |
|                   | 1                  | 0.44                         |          | -1.1   | 9781  | 6418886826    |            |
|                   | 0.03999999999998   |                              |          |        |       |               |            |
|                   | 2 0.45999999999999 |                              |          |        |       |               |            |
|                   | 1.455815           | 088305811                    |          | 0.0199 | 9999  | 999999999     |            |
|                   | 3                  | 0.45                         |          | -0.1   | 3624  | 8485324959    |            |
| 0.009999999999999 |                    |                              |          |        |       |               |            |
|                   | 4                  | 0.455                        |          | 0.57   | 71366 | 62290413843   |            |
|                   |                    | 0.0049999999                 | 999999   | 997    |       |               |            |
|                   | 5                  | 0.4525                       |          | 0.3    | 19894 | 448766616348  |            |
|                   | 0.0024999999999998 |                              |          |        |       |               |            |
|                   | 6                  | 0.45125                      | <b>,</b> | 0      | .0270 | 0526743252288 | 34         |
|                   | 0.0012499999999999 |                              |          |        |       |               |            |
|                   | 7                  | 0.45062                      | 25       |        | _     |               |            |
|                   | 0.055631           | .0035476173                  |          | 6.249  | 9999  | 99999997 10   | 4          |
|                   | 8                  | 0.45093                      | 375      | 0.2    | _     |               |            |
|                   |                    |                              |          |        |       |               | <b>-</b> 4 |
|                   | 0.014552           | 237456134561                 |          | 3.12   | 24999 | 999999998 10  |            |

(%o4) bisection has converged

## 2.2.2

plot

pl\_bisection.wxmx 7 / 11

(%t5)



(%o5)

2.3

2.3.1

pl\_bisection.wxmx 8 / 11

| (%i6) | bisect(x^                                                                   | 3-2·sin(x), | 0.50,  | 2.00,               | 20,                         | 0.0005);       |       |
|-------|-----------------------------------------------------------------------------|-------------|--------|---------------------|-----------------------------|----------------|-------|
|       | iter                                                                        | m           |        |                     |                             | ym             | error |
|       | 1                                                                           | 1.25        |        | 0.                  | 0551                        | 557612888276   |       |
|       |                                                                             | 0.75        |        |                     |                             |                |       |
|       | 2                                                                           | 0.87!       | 5      | -                   | -0.86                       | 55165129472054 | 2     |
|       |                                                                             | 0.375       |        |                     |                             |                |       |
|       | 3                                                                           | 1.062       | 25     |                     | -0.5476869797091422         |                |       |
|       | 0.1875                                                                      |             |        |                     |                             |                |       |
|       | 4                                                                           | 1.150       | 525    | -0.2847914007983883 |                             |                | 883   |
|       |                                                                             | 0.09375     |        |                     |                             |                |       |
|       | 5                                                                           | 1.203       | 3125   |                     | _                           |                |       |
|       | 0.124798                                                                    | 6155094702  | 2      | 0.0                 | 0468                        | 75             |       |
|       | 6                                                                           | 1.220       | 55625  |                     | -                           | _              |       |
|       | 0.03735980652509796<br>7 1.23828125<br>0.00825801590073083<br>8 1.232421875 |             |        | 0                   | 0.0234375                   |                |       |
|       |                                                                             |             |        | ,                   |                             |                |       |
|       |                                                                             |             |        | O                   | .011                        | 71875          |       |
|       |                                                                             |             |        | <b>'</b> 5          |                             | _              |       |
|       | 0.014710                                                                    | 2162426930  | 8(     | 0                   | .0058                       | 359375         |       |
|       | 9 1.2353515625<br>0.003266014170569153                                      |             |        |                     |                             | _              |       |
|       |                                                                             |             |        |                     | 0.0029296875                |                |       |
|       | 10                                                                          |             | 368164 |                     |                             |                |       |
|       | 0.002486011901918328<br>11 1.2360839843<br>-4<br>3.924970675475148 10       |             |        |                     | 0.00                        | 146484375      |       |
|       |                                                                             |             |        | 84375               |                             | <del>-</del>   |       |
|       |                                                                             |             |        |                     | 7.32421875 10 <sup>-4</sup> |                |       |
|       | 12 1.2364501953                                                             |             |        |                     | 5                           |                |       |
|       | 0.001046                                                                    | 1332704125  | 85     |                     | $3.662109375\ 10^{-4}$      |                |       |
| (%06) |                                                                             | has converg |        |                     | 5.00                        | 210337310      |       |
|       |                                                                             |             |        |                     |                             |                |       |

# 2.3.2

plot

pl bisection.wxmx 9 / 11

## (%i7) wxdraw2d(

```
xaxis = true, xaxis_type = solid,
yaxis = true, yaxis_type = solid,
explicit(x^3-2·sin(x), x, 0.5, 2)
);
```

(%t7)



(%07)

3

Exercise

Also plot the curves

## 3.1

Figure 3:

- 1. Verify that each of the following equations has a root on the interval (0, 1). Next, perform the bisection method to determine  $p_3$ , the third approximation to the location of the root, and to determine  $(a_4, b_4)$ , the next enclosing interval.
  - (a)  $\ln(1+x) \cos x = 0$
- (b)  $x^5 + 2x 1 = 0$

(c)  $e^{-x} - x = 0$ 

(d)  $\cos x - x = 0$ 

#### Figure 4:

In Exercises 2-5, verify that the given function has a zero on the indicated interval. Next, perform the first five (5) iterations of the bisection method

### Figure 5:

**2.** 
$$f(x) = x^3 + x^2 - 3x - 3$$
,  $(1, 2)$ ,  $p = \sqrt{3}$ 

3. 
$$f(x) = \sin x$$
, (3,4),  $p = \pi$ 

3. 
$$f(x) = \sin x$$
,  $(3,4)$ ,  $p = \pi$   
4.  $f(x) = 1 - \ln x$ ,  $(2,3)$ ,  $p = e$ 

5. 
$$f(x) = x^6 - 3$$
,  $(1, 2)$ ,  $p = \sqrt[6]{3}$ 

## 3.3

#### Figure 6:

16. For each of the functions given below, use the bisection method to approximate all real zeros. Use an absolute tolerance of  $10^{-6}$  as a stopping criterion.

(a) 
$$f(x) = e^x + x^2 - x - 4$$

(a) 
$$f(x) = e^x + x^2 - x - 4$$
  
(b)  $f(x) = x^3 - x^2 - 10x + 7$ 

(c) 
$$f(x) = 1.05 - 1.04x + \ln x$$

pl\_bisection.wxmx 11 / 11

| (%i8) | bisect( $x^2-2$ , | 1.00, 2.00,    | 20, 0.0005); |           |       |
|-------|-------------------|----------------|--------------|-----------|-------|
|       | iter              | m              | ym           |           | error |
|       | 1                 | 1.5            | 0.25         | 0.5       |       |
|       | 2                 | 1.25           | -0.4375      | 0.25      |       |
|       | 3                 | 1.375          | -0.109375    |           |       |
|       | 0.125             |                |              |           |       |
|       | 4                 | 1.4375         | 0.06640625   |           |       |
|       | 0.0625            |                |              |           |       |
|       | 5                 | 1.40625        | -0.022460    | )9375     |       |
|       | 0.031             |                | 0 001700     | 515605    |       |
|       | 6                 | 1.421875       | 0.021728     | 515625    |       |
|       | 0.015             |                | 4 272        | 1600275   |       |
|       | 7                 | 1.4140625      | -4.2724      | 1609375   |       |
|       | 10                | 0.0078125      |              |           |       |
|       | 8                 | 1.41796875     |              |           |       |
|       | 0.01063537597     | 765625         | 0.00390625   |           |       |
|       | 9                 | 1.416015625    |              |           |       |
|       | 0.00510025024     |                | 0.00195312   | 5         |       |
|       | 10                | 1.415039062    | 25           | 4         |       |
|       | 0.00233554840     | 00878906       | 9.765625 10  | <u>-4</u> |       |
|       | 11                | 1.414550783    | 125          |           |       |
|       | 9.53912734985     | -4<br>53516 10 | 4.8828125    | -4        |       |
| (%08) | bisection has c   |                | 4.0020123    | 10        |       |