VOLUME 3 / ISSUE 3 / UIF:8.2 / MODERNSCIENCE.UZ

ARALASH TIPDAGI TENGLAMA UCHUN TRIKOMI MASALASI.

Chorieva S.T.

f.-m.f.f.d. (PhD), dots. TerDU.

Yuldosheva Ch.T.

1-kurs magistrant, TerDU.

Mamaraimov B.Q.

Aniq fanlar kafedrasi mudiri, TerDUAL.

https://doi.org/10.5281/zenodo.10781502

Annotatsiya. Aralash tipdagi tenglama uchun Trikomi masalasining qo'yilishi, ta'riflangan masalalarning yechimlarining yagonaligi yekstremum printsipi asosida isbotlanishi keltirilgan, Trikomidan keyingi ishlar va ular yechimlari haqida so'z yuritilgan.

Kalit so'zlar: aralash tipdagi tenglama, Trikomi masalasi, xarakteristika, singulyar integral tenglama, Bitsadze-Samarskiy masalasi.

TRICOMI'S PROBLEM FOR A MIXED-TYPE EQUATION.

Abstract. Tricomi's problem for a mixed type equation is presented, the uniqueness of the solutions of the described problems is proved based on the extremum principle, works after Tricomi and their solutions are discussed.

Key words: equation of mixed type, Tricomi problem, characteristic, singular integral equation, Bitsadze-Samarsky problem.

ЗАДАЧА ТРИКОМИ ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА.

Аннотация. Представлена задача Трикоми для уравнения смешанного типа, доказана единственность решения описанных задач на основе принципа экстремума, обсуждаются работы после Трикоми и их решения.

Ключевые слова: уравнение смешанного типа, задача Трикоми, характеристика, сингулярное интегральное уравнение, задача Бицадзе-Самарского.

Ko'plab ilmiy-amaliy tadqiqotlar aralash turdagi tenglamalar uchun lokal va nolokal chegaraviy masalalarni tadqiq etishga olib keladi. Bu masalalar ko'plab fizik, ximik va biologik jarayonlarning tabiiy matematik modeli hisoblanadi va ular gaz dinamikasida, aerodinamikada, gidrodinamikada, sirtlarning cheksiz kichik egilishi nazariyasida, matematik biologiyada va fanning boshqa bo'limlarida o'z tadbiqlarini topgandir. Tabiiy jarayonlarning matematik modellarini tadqiq etish aralash turdagi tenglamalarning nazariy asosini tashkil etadi.

Singulyar koeffitsientli aralash turdagi tenglamalar uchun, kichik hadlar oldidagi koeffitsientlari qabul qiladigan qiymatlariga qarab korrekt masalalarni qo'yish va ularni tadqiq etish ilmiy izlanishlarning muhim yo'nalishlaridan hisoblanadi. Aralash tipdagi tenglama deb, u o'rganilayotgan sohaning bir qismida yelliptik, qolgan qismida yesa giperbolik tipga tegishli bo'lgan tenglamaga aytiladi. Sohaning bu qismlari o'tish chiziqlari bilan ajratilgan bo'lib, unda tenglama parabolik tipda bo'ladi yoki tenglama aniqlanmagan.

Aralash turdagi tenglamalar uchun chegaraviy masalani 1920-yilda birinchi bo'lib italyan matematigi Franchesko Trikomi o'rgandi.

Ushbu Trikomi tenglamasi

VOLUME 3 / ISSUE 3 / UIF:8.2 / MODERNSCIENCE.UZ

$$y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{1}$$

y>0 yarim tekislikda uchlari A(-1,0) va B(1,0) nuqtada bo'lgan va y>0 yarim tekislikda yotuvchi $\Gamma:y=f(x)$ chiziq bilan, y<0 yarim tekislikda yesa (1) tenglamaning A va B nuqtalardan chiquvchi

$$AC: x-\frac{2}{3}(-y)^{\frac{3}{2}}=0$$

$$BC: x + \frac{2}{3}(-y)^{\frac{3}{2}} = 1$$

xaraktiristikalar bilan chegaralangan bir bog'lamli D sohada o'rganiladi.

Trikomi masalasi: D sohada (1) tenglamanig ushbu

$$u|_{\Gamma} = \varphi(s), \quad 0 \le s \le l$$

$$u\Big|_{AC} = \psi(x), \quad 0 \le x \le \frac{1}{2}$$

chegaraviy shartlarni qanoatlantiruvchi regulyar yechimi topilsin, bu yerda s Γ chiziqning

B(1;0) nuqtdan boshlab hisoblanga \widecheck{BM} yoyi uzunligi $\left(\left(M\left(\frac{x}{s}\right),y(s)\right)\in\Gamma\right),\ \varphi(s),\ \psi(x)$

berilgan uzliksiz silliq funksiyalar.

Izoh: u(x, y) funksiya (1) tenglamaning regulyar yechimi deyiladi, agarda bu funksiya ushbu shartlarni qanoarlantirsa:

- 1) u(x, y) *D* yopiq sohada uzluksiz;
- 2) u_x , u_y birinchi tartibli hosilalar \overline{D} yopiq sohaning barcha (A va B nuqtadan tashqari) nuqtalarida uzluksiz;
- 3) ikkinchi tartibli hosilalar D ochiq sohaning barcha (balkim parabolik buzilish chizig'idan tashqari) nuqtalarda uzluksiz;
 - 4) u(x, y) funksiya $D|_{AB}$ sohada (1) tenglamani qanoatlantiradi.

Trikomi o'z masalasini Γ chiziq

$$\left(x - \frac{1}{2}\right)^2 + \frac{4}{9}y^3 = \frac{1}{4}$$

normal chiziqning ixtiyoriy kichik uzunlikdagi AA' va BB' yoylar bilan tugaydi, sohaning qolgan qismida yesa normal soha $D_{\scriptscriptstyle 0}$ dan tashqarida yotibdi deb faraz qilib o'rgangan. Trikomi masalasi

$$v(x) = \frac{\partial u(x,0)}{\partial y}$$

VOLUME 3 / ISSUE 3 / UIF:8.2 / MODERNSCIENCE.UZ

noma'lun funksiyaga nisbatan ushbu

$$v(x) = \frac{1}{\pi\sqrt{3}} \int_{0}^{1} \left(\frac{t}{x}\right)^{\frac{2}{3}} \left(\frac{1}{t-x} - \frac{1}{t+x-2xt}\right) v(t)dt + \int_{0}^{1} k(x,t)v(t)dt = F(x)$$
(2)

singulyar integral tenglamani yechishga olib kelinadi, bu yerda k(x,t) – Fredgol'm yadrosi. Trikomi masalasi uchun ushbu yekstrimum prinsipi o'rinlidir: Trikomi masalasining yechimi, agar u AC haraktristikada nolga teng bo'lsa, o'zining musbat maksimumini va manfiy minimumini AB ochiq kesmada yerishmaydi. Bu prinsip birinchi marta A. B. Bitsadze tomonidan isbotlangan.

Trikomi masalasi uchun ekstremum printsipini

$$yu_{xx} + u_{yy} + a(x, y)u_{x} + b(x, y)u_{y} + c(x, y)u = 0$$
(3)

a(x, y) = 0, b(x, y) = 0 shart asosida isbotlanadi.

Ekstremum prinsipining ahamiyati shundan iboratki, undan Trikomi masalasi yechimining yagonaligi kelib chiqadi.

Aralash turdagi tenglamalar sohasida faoliyat yuritayotgan mutaxassislar uchun singulyar koeffitsientli aralash turdagi tenglamalar uchun nolokal masalalarni tadqiq etish ular faoliyatining ajralmas qismiga aylanib qoldi. Singulyar koeffitsientli buziluvchan va aralash turdagi tenglamalar uchun chegaraviy masalalar nazariyasi oʻziga xos muhim xususiyatlarga ega, masalalarning korrekt qoʻyilishiga tenglamaning kichik hadlari oldidagi koeffitsientlar kuchli ta'sir koʻrsatadi, ya'ni kichik hadlar oldidagi koeffitsientlarning qabul qiladigan qiymatlariga qarab, tenglama yechimi yoki ularning hosilalari tenglama tipi oʻzgaradigan chiziq atrofida chegaralangan yoki chegaralanmagan boʻlishi mumkin, va bu holda boshlangʻich shartlar bu tenglamalar uchun salmoq bilan beriladi.

Frankl-Bitsadze-Samarskiy masalasi.

Ushbu

$$signy |y|^{m} u_{xx} + u_{yy} + (\beta_{0} / y) u_{y} = 0$$
 (4)

tenglamani o'rganildi. (4) tenglama z = x + iy, kompleks tekisligining lmz > 0 yuqori yarim tekisligida uchlari A(-1,0) va B(1,0) nuqtalarda va yuqori yarim tekislikda joylashgan $\Gamma: y = f(x)$ chizig'i bilan, $\operatorname{Im} z < 0$ pastki yarim tekislikda yesa (4) tenglamaning AC va BC xarakteristikalari bilan chegaralangan bir bog'lamli D sohada o'rganiladi.

VOLUME 3 / ISSUE 3 / UIF:8.2 / MODERNSCIENCE.UZ

Ishda (4) tenglama uchun Bitsadze-Samarskiy masalasining shartlarini parallel xarakteristikalardagi qiymatlarining kasr tartibli xosilalarini o'zida birlashtirgan masalaning korrektligi o'rganilgan. Ta'riflangan masalaning yagonaligi yekstremum printsipi yordamida, mavjudligi yesa integral tenglamalar usulida isbotlangan. Integral tenglamalardan singulyar integral tenglamalar, Viner-Xopf integral tenglamasi, Fredgol'mning II-tur integral tenglamalar nazariyalaridan foydalanilgan.

 D^+ va D^- orqali D sohaning mos ravishda y>0 va y<0 yarim tekislikda yotuvchi qismlarini belgilaymiz, C_0 va C_1 orqali yesa E(c,0) nuqtadan chiquvchi xarakteristikalarning mos ravishda AC va BC xarakteristikalar bilan kesishish nuqtasini belgilaymiz, bu yerda $c \in I = (-1,1) - y = 0$ o'qining intervali.

q(x) orqali [c,1] kesmani [-1,c] kesmaga akslantiruvchi funksiyani kiritamiz. Bu yerda $q'(x) < 0, \ q(1) = -1, \ q(c) = c$. Bu xossalarga yega bo'lgan funktsiya sifatida ushbu chiziqli funktsiyani keltiramiz $q(x) = \rho - kx$, bu yerda $k = (1+c)/(1-c), \ \rho = 2c/(1-c)$.

FBS masalasining qo'yilishi. D sohada ushbu shartlarni qanoatlantiruvchi u(x, y) funksiya topilsin:

- 1. $u(x, y) \in C(\overline{D})$;
- 2. $u(x, y) \in C^2(D^+)$ va bu sohada (4) tenglamani qanoatlantiradi;
- 3. u(x, y) funksiya D^- sohada (4) tenglamaning D^- sohada R_1 sinfga tegishli yachimi;
- 4. I intervalda ushbu ulanish sharti bajariladi

$$\lim_{y \to -0} \left(-y\right)^{\beta_0} \frac{\partial u}{\partial y} = \lim_{y \to +0} y^{\beta_0} \frac{\partial u}{\partial y} , \quad x \in I \setminus \{c\} , \tag{5}$$

shu bilan birga bu limitlar $x=\pm 1$, x=c nuqtalarda $1-2\beta$ kichik tartibdagi maxsuslikka yega bo'lishi mumkin. Bu yerda $\beta=(m+2\beta_0)/2(m+2)$ ushbu shartlar bajariladi

5.
$$u(x,y)|_{\sigma} = \varphi(x), \quad -1 \le x \le 1 \tag{6}$$

$$a_0(x)D_{-1,x}^{1-\beta}u[\theta(q(x))] + b_0(x)D_{c,x}^{1-\beta}u[\theta^*(x)] = c_0(x), \quad x \in [c,1] \ c \le x \le 1.$$
 (7)

$$u(q(x),0) = \mu u(x,0) + f(x), \quad x \in [c,1]$$
(8)

VOLUME 3 / ISSUE 3 / UIF:8.2 / MODERNSCIENCE.UZ

Bu yerda $D_{c,x}^{1-\beta}$, $D_{-1,x}^{1-\beta}$ – kasr tartibli differentsial operatorlar $\theta_0(x)$, $\theta_1(x)$, AC va BC xarakteristikalarni $M(x_0,0)$, $x_0 \in [c,1]$ nuqtadan chiquvchi xarakteristikalar bilan kesishish nuqtasining affiksi

$$\theta(x_0) = \frac{x_0 - 1}{2} - i \left(\frac{m + 2}{4} (1 + x_0) \right)^{\frac{2}{m + 2}}, \qquad \theta^*(x_0) = \frac{x_0 - c}{2} - i \left(\frac{m + 2}{4} (x_0 + c) \right)^{\frac{2}{m + 2}}$$
(9)

 $\varphi(x)$, $\psi(x)$, $a_0(x)$, $b_0(x)$, $c_0(x)$ o'zining aniqlanish sohasi yopig'ida uzluksiz differentsiallanuvchi funktsiyalar bo'lib ular uchun ushbu shartlar bajariladi

$$a_0^2(x) + b_0^2(x) \neq 0 \tag{10}$$

 $\varphi(x)$ funktsiya esa ushbu ko'rinishda ifodalanadi

$$\varphi(x) = (1 - x^2)\widetilde{\varphi}(x). \tag{11}$$

Ta'riflangan masalalarning yechimlarining yagonaligi ekstremum printsipi asosida, mavjudligi esa singulyar integral tenglamalar nazariyasi, Viner-Xopf tenglamalar nazariyasi va Fredgol'm integral tenglamalar nazariyasi yordamida isbotlangan. Ko'pgina duch kelingan nostandart holatlar muvofaqiyatli hal etilgan.

REFERENCES

- 1. Salaxitdinov M.S. Matematik fizika tenglamalari. Toshkent. «O'zbekiston», 1994.
- 2. Smirnov M.M. Uravneniya smeshannogo tipa. M.: Vыsshaya shkola.1985, -304.