PAT-NO:

JP411100231A

DOCUMENT-IDENTIFIER:

JP 11100231 A

TITLE:

INFRARED TRANSMISSIVE GLASS CERAMICS

PUBN-DATE:

April 13, 1999

INVENTOR-INFORMATION:

NAME

COUNTRY

SHIMATANI, NARUTOSHI

N/A

SAKAMOTO, AKIHIKO

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NIPPON ELECTRIC GLASS CO LTD

N/A

APPL-NO:

JP09279594

APPL-DATE:

September 25, 1997

INT-CL (IPC): C03C004/10, C03C010/14

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain glass ceramics free from the possibility of environmental pollution, suitable for a top plate of a cooking

utensil and

having a specific materially property by forming from a Li20-Al203-SiO2 based

glass ceramic having β -quartz solid solution as a main crystal

containing SnO2 and Cl as clarificants.

SOLUTION: This glass ceramics contains 0.1-2 wt.% SnO2 and 0.01-1 wt.% Cl as

the clarificants and has ≤5% transmissivity of visible ray of 500

length in 3 mm thickness, ≥70% infrared transmissivity of 1500 nm

length in 3 mm thickness and -5/°C to 30×10-7/°C average

coefficient of linear thermal expansion at 30-750° C. The

composition is by wt.% preferably SiO2 of 60-72, Al2O3 of 14-28, Li2 of 2.5-5.5, MgO of 0.1-3, ZnO of 0.1-3, CaO of 0-3, BaO of 0-5, Na2 of 0.1-1, K2 O of 0-1, TiO2 of 0.5-6, ZrO2 of 0-5, P2O4 of 0-3, V2O5 of 0. 01-0.5, \$002 of 0.1-2, Cl of 0.01-1.

COPYRIGHT: (C) 1999, JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-100231

(43)公開日 平成11年(1999)4月13日

(51) Int.Cl.⁸

識別記号

. **F** I

C 0 3 C 4/10 10/14 . C 0 3 C 4/10

10/14

審査請求 未請求 請求項の数3 FD (全 5 頁)

(21)出願番号

特願平9-279594

(71) 出題人 000232243

日本電気硝子株式会社

(22)出願日

平成9年(1997)9月25日

滋賀県大津市晴嵐2丁目7番1号

72) 発明者 唱谷 成俊

滋賀県大津市晴嵐2丁目7番1号 日本電

気硝子株式会社内

(72)発明者 坂本 明彦

被賀県大津市晴嵐2丁目7番1号 日本電

気硝子株式会社内

(54) 【発明の名称】 赤外線透過ガラスセラミックス

(57)【要約】

【課題】 環境を汚染するおそれがなく、調理器のトッププレートとして好適な赤外線透過ガラスセラミックスを提供する。

【解決手段】 β-石英固溶体を主結晶とし、清澄剤としてSnO2を0.1~2重量%、Clを0.01~1重量%含有するLi2 O-Al2 O3 - SiO2系ガラスセラミックスからなり、波長500nmにおける可視光の透過率が板厚3mmで5%以下、波長1500nmにおける赤外線透過率が板厚3mmで70%以上であり、30~750℃の範囲での平均線熱膨張係数が-5~30×10⁻⁷/℃であることを特徴とする。

【特許請求の範囲】

【請求項1】 β-石英固溶体を主結晶とし、清澄剤としてSnO2を0.1~2重量%、Clを0.01~1重量%含有するLi2O-Al2O3-SiO2系ガラスセラミックスからなり、波長500nmにおける可視光の透過率が板厚3mmで5%以下、波長1500nmにおける赤外線透過率が板厚3mmで70%以上であり、30~750℃の範囲での平均線熱膨張係数が-5~30×10-7/℃であることを特徴とする赤外線透過ガラスセラミックス。

【請求項2】 重量百分率でSiO2 60~72%、Al2O3 14~28%、Li2O 2.5~5.5%、MgO 0.1~3%、ZnO 0.1~3%、CaO 0~3%、BaO 0~5%、Na2O 0.1~1%、K2O 0~1%、TiO2 0.5~6%、ZrO2 0~5%、P2O5 0~3%、V2O5 0.01~0.5%、SnO2 0.1~2%、Cl 0.01~1%の組成を有することを特徴とする請求項1の赤外線透過ガラスセラミックス。

【請求項3】 調理器のトッププレートとして用いられ 20 ることを特徴とする請求項1又は2の赤外線透過ガラスセラミックス。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は赤外線透過ガラスセラミックスに関し、特にスムーストップ型の調理器用トップ プレートとして用いられる赤外線透過ガラスセラミック スに関するものである。

[0002]

【従来の技術】調理器のトッププレートには、赤外線透 30 過率が高いこと、美観を損ねないように内部の発熱手段が透視し難いこと、機械的強度や化学的耐久性が高いこと、耐熱衝撃性が高いこと等が要求され、従来より濃褐色で赤外線透過率の高い低膨張のLi2 〇-A12 〇3 -Si〇2 系ガラスセラミックスが使用されている。この種の材料として、例えば特公昭60-54896号に V2 〇5 を添加したLi2 〇-A12 〇3 -Si〇2 系の赤外線透過ガラスセラミックスが開示されている。【〇〇〇3】ところでこの種のガラスセラミックスは、1400℃を超える高温溶融を必要とする。このためガ 40ラス中に添加される清澄剤には、高温での溶融時に清澄ガスを多量に発生することができるAs2 〇3 が使用されている。

[0004]

【発明が解決しようとする課題】バッチ溶融において、 場合に、必 原料中のAs2 O3 は400~500℃でAs2 O5 に を超えると 酸化された後、1200~1800℃で再びAs2 O3 美観が損な に還元され、酸素ガスを放出する。この酸素ガスがガラ 70%未満 ス中の泡に拡散することにより、泡の拡大、浮上促進が 被加熱物に起こり、泡が除去される。As2 O3 は、この作用によ 50 難になる。

2 り、ガラスの清澄剤として広く使用されており、特に高 温冷酔がな無なしました。 A L. O. - S.i O. - A L.

温溶融が必要なLi₂ O-Al₂ O₃ -SiO₂ 系ガラスセラミックスの清澄剤として非常に有効である。

【0005】しかしながらAs2 O3 は毒性が強く、ガラスの製造工程や廃ガラスの処理時等で環境を汚染する可能性がある。

【0006】本発明の目的は、環境を汚染するおそれがなく、調理器のトッププレートとして好適な赤外線透過ガラスセラミックスを提供することである。

10 [0007]

【課題を解決するための手段】本発明の赤外線透過ガラスセラミックスは、β-石英固溶体を主結晶とし、清澄剤としてSnO2を0.1~2重量%、Clを0.01~1重量%含有するLi2O-Al2O3-SiO2系ガラスセラミックスからなり、波長500nmにおける可視光の透過率が板厚3mmで5%以下、波長1500nmにおける赤外線透過率が板厚3mmで70%以上であり、30~750℃の範囲での平均線熱膨張係数が-5~30×10⁻⁷/℃であることを特徴とする。

[8000]

【作用】本発明の赤外線透過ガラスセラミックスは、清澄剤としてSnO2を0.1~2%(好ましくは0.3~1.8%)、C1を0.01~1%含有する。SnO2は1400℃以上の高温度域で、Snイオンの価数変化による化学反応(SnO2[4価]→SnO[2価])によって清澄ガスである多量の酸素ガスを放出する。一方、C1は塩化物としてガラス原料に添加され、ガラス融液中C1イオンの形で存在する。このC1イオンは、酸素ガスと同様、ガラスの温度が高くなるとともに泡に拡散し、泡の拡大、浮上促進を起こす。

【0009】本発明のガラスセラミックスは、β-石英 固溶体を主結晶とするLi2 O-Al2 O3 -SiO2 系ガラスセラミックスである。Li2 O-Al2 O3 -SiO2 系ガラスセラミックスは、β-石英固溶体やβ -スポジュメンを析出し、高い機械的強度や化学的耐久 性を示すものであるが、β-スポジュメンの析出量が多 くなるとガラスセラミックスが白濁して外観上問題があ るだけでなく、熱膨張係数が高くなり、また赤外線透過 率が低下して好ましくない。このため本発明ではβ-石 英固溶体を主結晶とすることを特徴とする。

【0010】本発明のガラスセラミックスは、波長500nmにおける可視光の透過率が板厚3mmで5%以下、波長1500nmにおける赤外線透過率が板厚3mmで70%以上である。トッププレートとして使用した場合に、波長500nmにおける可視光の透過率が5%を超えると、調理器内部の発熱手段が透けて見えるため美観が損なわれる。波長1500nmにおける透過率が70%未満であると、加熱手段から放射される赤外線が被加熱物に十分に到達せず、効率よく加熱することが困難にたる

3/21/05, EAST Version: 2.0.1.4

【0011】また本発明のガラスセラミックスは、30~750℃の範囲での平均線熱膨張係数が-5~30×10-7/℃である。熱膨張係数がこの範囲から外れると熱衝撃によって破損し易くなる。

【0012】上記特性を有する赤外線透過ガラスセラミックスとして、例えば重量百分率でSiO2 60~72%、Al2O3 14~28%、Li2O 2.5~5.5%、MgO 0.1~3%、ZnO 0.1~3%、CaO 0~3%、BaO 0~5%、Na2O 0.1~1%、K2O 0~1%、TiO2 0.5~6%、ZrO2 0~5%、P2O5 0~3%、V2O5 0.01~0.5%、SnO2 0.1~2%、Cl 0.01~1%の組成を有するガラスセラミックスを使用することができる。組成範囲をこのように限定した理由を以下に述べる。

【0013】 SiO_2 が60%より少ないと熱膨張係数が大きくなりすぎる。一方、72%より多いとガラス溶融が困難になる。 SiO_2 の好適な範囲は $61\sim70\%$ である。

【0014】Al2 O3 が14%より少ないと化学的耐 20 久性が低下し、またガラスが失透し易くなる。一方、2 8%より多いとガラスの粘度が大きくなりすぎてガラス 溶融が困難になる。Al2 O3 の好適な範囲は16~2 5%である。

【0015】Li2 Oが2.5%より少ないと結晶物が白濁し易くなり、また熱膨張係数が大きくなりすぎる。一方、5.5%より多い場合も白濁し易くなり、またガラスが失透し易くなる。Li2 Oの好適な範囲は3~5%である。

【0016】MgO及びZnOがそれぞれ0.1%より 30 加する。 少ないと結晶性が低くなり、結晶化が困難になる。一 【002 方、それぞれ3%より多いと結晶物が白濁し、また熱勝 00℃で 張係数が大きくなりすぎる。MgO及びZnOの好適な 【002 範囲は何れも0.2~2.5%である。 2~4時

【0017】CaOが3%及びBaOが5%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。 CaO及びBaOの好適な範囲は、0~2%及び0~4 %である。

【0018】Na2 Oが0.1%より少ないと結晶性が低くなり、1%より多いと結晶物が白濁し、また熱膨張 40係数が大きくなりすぎる。Na2 Oの好適な範囲は0.1~0.8%である。

【0019】K2 Oが1%より多いと結晶物が白濁し、また熱膨張係数が大きくなりすぎる。K2 Oの好適な範囲は0~0.8%である。

【0020】TiO₂が0.5%より少ないと結晶性が低くなり、6%より多いとガラスが失透し易くなり、また色調が濃くなりすぎて赤外線の透過率が低下する。T

i O2 の好適な範囲は O. 5~5%である。

【0021】ZrO2 が5%より多いとガラスが失透し 易くなる。ZrO2 の好適な範囲は0.5~4.5%で ある

4

【0022】P2 O5 が3%より多いと結晶物が白濁 し、また熱膨張係数が大きくなりすぎる。P2 O5 の好 適な範囲は0~2.5%である。

 5.5%、MgO 0.1~3%、ZnO 0.1~3
 【0023】V2 O5 が0.01%より少ないと色調が 薄くなり、可視光での透過率が高くなりすぎる。一方、 0.1~1%、K2 O 0~1%、TiO2 0.5~ 10 0.5%より多いと色調が濃くなりすぎ、赤外線透過率 6%、ZrO2 0~5%、P2 O5 0~3%、V2 が低くなりすぎる。V2 O5 の好適な範囲は0.03~ 05 0.01~0.5%、SnO2 0.1~2%、

【0024】SnO2 が0.1%より少ないと清澄効果がなく、2%より多いと色調が濃くなりすぎる。またガラス溶融が困難になったり、失透し易くなる。SnO2の好適な範囲は0.3~1.8%である。

【0025】C1が0.01%より少ないと清澄効果がなく、1%より多いと化学的耐久性が低下する。

【0026】上記組成を有する赤外線透過ガラスセラミックスは、以下のようにして製造することができる。
【0027】まず重量百分率でSiO2 60~72
%、Al2 O3 14~28%、Li2 O 2.5~
5.5%、MgO 0.1~3%、ZnO 0.1~3
%、CaO 0~3%、BaO 0~5%、Na2 O 0.1~1%、K2 O 0~1%、TiO2 0.5~
6%、ZrO2 0~5%、P2 O5 0~3%、V2 O5 0.01~0.5%の組成となるようにガラス原料を調合する。このとき清澄利原料としてSnO2 を 0.1~2%及び塩化物をC1換算で0.03~5%添

【0028】次に調合したガラス原料を1550~17 00℃で4~20時間溶融した後、成形する。

【0029】続いてガラス成形体を700~800℃で2~4時間保持して核形成を行い、さらに800~900℃で1~3時間熱処理して結晶化させることにより、上記組成を有する赤外線透過ガラスセラミックスを得ることができる。

【0030】なお得られたガラスセラミックスは、切断、研磨等の後加工を施したり、表面に絵付け等を施して、トッププレート等の用途に供される。

[0031]

【実施例】以下、実施例に基づいて本発明の赤外線透過 ガラスセラミックスを説明する。

【0032】表1~3は本発明の実施例(試料No. 1~10)及び参考例(試料No. 11)を示している。 【0033】

【表1】

3/21/05, EAST Version: 2.0.1.4

5

	武料Ko.	1	2	3	4
ガラス組成 重量%	Si Oa AlaOa LiaO MgO ZnO CaO BaO NaaO KaO Ti Oa ZrOa VaOa SnOa Cl	81. 0 23. 0 4. 4 0. 8 0. 4 3. 0 0. 5 2. 5 2. 0 1. 0 1. 0 7 0. 1	83. 0 21. 0 4. 5 0. 8 0. 5 3. 0 0. 6 2. 6 1. 5 0. 3 1. 4 0. 5	85. 0 21. 0 4. 1 0. 5 0. 7 2. 0 0. 2 0. 8 2. 5 1. 5 0. 2 0. 9	85.09 23.97 0.65 1.70 0.60 1.03 0.03 0.03
	白襴の育無	無	無	無	無
	析出結晶	一碳酸钠	8-碳酸料	}-碳酸	6-石質型物
透過	5 200 n.m 1500 n.m	1. 5 86. 0	0. 0 80. 0	2. 0 83. 0	3. 0 87. 0
平X ()	神熱膨張係数 (10-7/で)	12	1 4	9	8
	を つきでは では できます。 できまます。 できます。 できます。 できます。 できます。 できます。 できます。 できまする。 できる。 でる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。	15	10	13	13

[0034]

		_
*	4	【表2】
•	•	1222 /. 1

	試料llo.	5	. 6	7	8
ガラス組成 重量%	Si O 2 A 1 2 O 5 A 1 2 O 5 A 1 2 O 6 A 1 2 O 6 A 1 O 6	66. 0 2 4. 2 5 0 . 4 5 0 . 4 4 3 8 2 6 4 1 . 3 8 2 6 4 4 5 0 . 4 5 0 . 4 5 0 . 4 5 0 . 4 5 0 . 4 5 0 .	88. 0 22. 4 4. 0 0. 4 0. 8 0. 6 3. 0 1. 2 0. 1	67. 0 19. 0 3. 5 0. 6 0. 4 1. 5 0. 4 0. 3 2. 8 1. 3 0. 2 1. 1 0. 2	68. 0 18. 0 4. 8 0. 7 0. 5 0. 5 2. 0 0. 1 1. 2 0. 4
白糖の有無		無	無	無	规
析出結晶		6-6英國的	4-石英語解	1-破離	8-石列聯修
透過率 500 nm 1500 nm		1.8 81.0	1. 2 82. 0	0. 4 83. 0	2. 0 86. 0
平均線熱膨張係数 (×10-1/で)		8	7	8	1
清 造 性 (泡数/kg)		5	23	8	20

【0035】 【表3】

	武科的 .	8	10	1 1	
ガラス組成 重量%	SiO ₂ Al ₂ O ₆ Li ₂ O M8O ZnO CaO BaO Na ₂ O K ₂ O TIO ₂ P ₂ O ₅ SnO ₂ CI As ₂ O ₃	89. 0 17. 5 4. 2 0. 7 0. 3 1. 0 0. 7 1. 9 1. 0 0. 1	88.000 15.000 20.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.00	67. 0 0 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6	
	白躅の有無	無	無無		
	析出結晶	6-石英国选件	月-石質問題	6-石英国选择·	
	5本 500nm 1500nm	0. 0 79. 0	1. 2	3. 0 87. 0	
	均線熱膨張係数 ×10-1/℃)	0	- 2	0	
清 稳 性 (複数/kg)		15	5	10	

【0036】各試料は次のようにして調製した。

 8

でまで昇温し、2時間保持して核形成を行った。続いて 80℃/hの速度で850℃まで昇温し、1時間保持し て結晶化を行った後、炉冷した。

【0038】このようにして得られた各試料は、濃褐色から黒色で白濁のない外観を呈し、光沢のある平滑な表面を有していた。X線回折装置による測定の結果、何れの試料も主結晶としてβ-石英固溶体を折出していることが分かった。また25×30mmの大きさの光学研磨を施した3mm厚の試料片を作成し、分光光度計を用いて500nm及び1500nmの波長における透過率を測定した。その結果、何れの試料も500nmの波長において3.0%以下、1500nmの波長において79.0%以上の透過率を示した。さらに試料を50mm×5mmφの無垢棒に加工し、30~750℃の温度域での平均線熱膨張係数を測定したところ、-2~14×10-7/℃であった。

【0039】次に清澄性の評価を行った。評価は、1550~1650℃で4~8時間溶融し、ロール成型して 試料を作製した後、試料中の単位重量当たりの泡数を計 数することによって行った。その結果、実施例であるNo.1~10の各試料は、清澄剤としてAs2O3を用いた参考例とほぼ同等の清澄性を示した。

[0040]

【発明の効果】以上説明したように、本発明の赤外線透過ガラスセラミックスは、清澄剤としてAs2 O3 を用いる必要がないために、環境を汚染するおそれがない。また赤外線透過率が高く、可視光の透過率が低い。しかも機械的強度、化学的耐久性、耐熱衝撃性等の特性に優れるため、特にスムーストップ型の調理器のトッププレートとして好適である。