$10_8 \ (K10a_{114})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{14} + u^{13} - 9u^{12} - 8u^{11} + 30u^{10} + 23u^9 - 45u^8 - 30u^7 + 28u^6 + 20u^5 - 2u^4 - 6u^3 - 2u^2 + u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}}=0,$ with total 14 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{14} + u^{13} - 9u^{12} - 8u^{11} + 30u^{10} + 23u^9 - 45u^8 - 30u^7 + 28u^6 + 20u^5 - 2u^4 - 6u^3 - 2u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7} - 4u^{5} + 4u^{3} - 2u \\ u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{8} + 5u^{6} - 7u^{4} + 2u^{2} + 1 \\ -u^{10} + 6u^{8} - 11u^{6} + 6u^{4} - u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{13} - 8u^{11} + 23u^{9} - 30u^{7} + 20u^{5} - 6u^{3} + u \\ u^{13} - 7u^{11} + 15u^{9} - 8u^{7} - 4u^{5} + 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{10} 28u^8 + 64u^6 + 4u^5 52u^4 16u^3 + 12u^2 + 12u 6u^4 + 12u^2 + 12$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_6 \ c_7$	$u^{14} - u^{13} + \dots + u - 1$
c_3, c_4, c_5 c_8, c_9	$u^{14} - u^{13} + \dots - u - 1$
c_{10}	$u^{14} - 5u^{13} + \dots - 9u + 11$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_7	$y^{14} + 17y^{13} + \dots + 3y + 1$
c_3, c_4, c_5 c_8, c_9	$y^{14} - 19y^{13} + \dots + 3y + 1$
c_{10}	$y^{14} - 11y^{13} + \dots - 873y + 121$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.970951 + 0.194954I	-3.69538 + 2.85844I	-9.69586 - 5.54876I
u = -0.970951 - 0.194954I	-3.69538 - 2.85844I	-9.69586 + 5.54876I
u = 1.084880 + 0.290974I	-11.72400 - 4.55664I	-11.05347 + 3.73465I
u = 1.084880 - 0.290974I	-11.72400 + 4.55664I	-11.05347 - 3.73465I
u = 0.838105	-1.62716	-4.88720
u = -0.339787 + 0.534810I	-7.27107 + 1.74781I	-6.82316 - 3.51408I
u = -0.339787 - 0.534810I	-7.27107 - 1.74781I	-6.82316 + 3.51408I
u = 0.183882 + 0.352310I	-0.154017 - 0.948871I	-3.14842 + 7.14990I
u = 0.183882 - 0.352310I	-0.154017 + 0.948871I	-3.14842 - 7.14990I
u = -1.69593	-10.7537	-6.14500
u = 1.71487 + 0.04545I	-13.27980 - 3.79315I	-10.02102 + 3.81094I
u = 1.71487 - 0.04545I	-13.27980 + 3.79315I	-10.02102 - 3.81094I
u = -1.74398 + 0.07530I	17.6407 + 6.0832I	-11.74201 - 2.65432I
u = -1.74398 - 0.07530I	17.6407 - 6.0832I	-11.74201 + 2.65432I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_7	$u^{14} - u^{13} + \dots + u - 1$
c_3, c_4, c_5 c_8, c_9	$u^{14} - u^{13} + \dots - u - 1$
c_{10}	$u^{14} - 5u^{13} + \dots - 9u + 11$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_7	$y^{14} + 17y^{13} + \dots + 3y + 1$
c_3, c_4, c_5 c_8, c_9	$y^{14} - 19y^{13} + \dots + 3y + 1$
c_{10}	$y^{14} - 11y^{13} + \dots - 873y + 121$