Spektralsequenzen

© Tim Baumann, http://timbaumann.info/uni-spicker

Sei \mathcal{A} im Folgenden eine abelsche Kategorie.

Def. Eine (homologische) Spektralsequenz (SS) besteht aus

- Objekten $E_{p,q}^r \in \text{Ob}(\mathcal{A})$ für alle $p, q \in \mathbb{Z}$ und $r \geq 1$,
- Morphismen $d_{p,q}^r: E_{p,q}^r \to E_{p-r,q+r-1}^r$ mit $d_{p-r,q+r-1}^r \circ d_{p,q}^r = 0$
- und Isos $\alpha: H_{p,q}(E^r) := \ker(d_{p,q}^r) / \operatorname{im}(d_{p+r,q-r+1}^r) \xrightarrow{\cong} E_{p,q}^{r+1}$.

Sprechweise. • Die Morphismen $d_{p,q}^r$ heißen Differentiale.

• Die Gesamtheit $E^r := \{E^r_{p,q}\}_{p,q}$ mit $r \in \mathbb{N}$ fest heißt r-te Seite.

Bem. Man stellt Seiten in einem 2-dim Raster dar:

Bem. Bei einer kohomologischen Spektralsequenz sind die Indizes vertauscht und die Differentiale laufen $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$.

Def. Eine Spektralsequenz **konvergiert**, falls für alle $p,q\in\mathbb{Z}$ ein $R\in\mathbb{N}$ existiert, sodass für alle $r\geq R$ die Differentiale von und nach $E_{p,q}^r$ null sind und damit $E_{p,q}^\infty:=E_{p,q}^R\cong E_{p,q}^{R+1}\cong E_{p,q}^{R+2}\ldots$ Der **Grenzwert** der SS ist die Unendlich-Seite $E^\infty:=\{E_{p,q}^\infty\}_{p,q}$.

Notation. $E^r \Rightarrow E^{\infty}$

Def. Eine SS degeneriert auf Seite R, wenn $d_{n,q}^r = 0$ für alle $r \ge R$.

Bem. Das entspricht der gleichmäßigen Konv. aus der Analysis.

Bem. Viele Spektralsequenzen leben im ersten Quadranten, d. h. $E^r_{p,q}=0$ wenn p<0oder q<0. Das impliziert, dass für $p,\,q$ fest und r groß alle Differentiale von und nach $E^r_{p,q}$ aus dem ersten Quadranten heraus- oder hineinführen und damit Null sind.

Def. Ein exaktes Pärchen in \mathcal{A} ist gegeben durch Objekte $A, E \in \mathrm{Ob}(\mathcal{A})$ und Morphismen wie folgt

sodass das Dreieck an jeder Ecke exakt ist.

Bem. Für das Differential $d := j \circ k : E \to E$ gilt $d^2 = 0$.

Def. Sei ein exaktes Pärchen wie oben gegeben. Dann gibt es ein **abgeleitetes Pärchen**

$$\begin{array}{ll} \text{mit} & \bullet \ E' \coloneqq \ker(d)/\operatorname{im}(d), \quad \bullet \ A' \coloneqq i(A) \subset A, \\ \bullet \ i' \coloneqq i|_{A'} & \bullet \ j'(i(a)) \coloneqq [j(a)] \in E' & \bullet \ k'([e]) \coloneqq k(e) \end{array}$$

Lem. Das abgeleitete Pärchen eines exakten Pärchens ist exakt.

Bem. Man erhält nun aus einem exakten Pärchen eine Spektralsequenz (im nachfolgenden Sinne) durch iteriertes Ableiten. Bem. Man kann auch die r-te Seite als einzelnes Obj. E^r auffassen. Dann ist eine **Spektralsequenz** gegeben durch Objekte E^r , $r \geq 1$, Differentiale $d^r: E^r \to E_r$ mit $d^r \circ d^r = 0$ und Isomorphismen $\alpha^r: H(E^r) := \ker(d^r)/\operatorname{im}(d^r) \to E^{r+1}$.

Def. Eine **Filtrierung** eines A-Moduls M ist eine aufsteigende Folge ... $\subseteq F_pM \subseteq F_{p+1}M \subseteq ...$ von Untermodulen von M mit $p \in \mathbb{Z}$, sodass $0 = \cap_p F_pM$ und $M = \cup_p F_pM$.

Bem. Sei . . . $\subseteq X_p \subseteq X_{p+1} \subseteq .$. . eine aufsteigende Filtrierung eines topologischen Raumes X. Man kann dann die Homologiegruppen schön übersichtlich in ein Raster schreiben:

Die langen exakten Sequenzen von Raumpaaren liegen treppenstufenartig in diesem Raster. Man erhält aus den langen Morphismen wie in den l.e.S. (rechts, rechts, runter) exaktes Pärchen (A,E) mit $A_{n+1,p} \coloneqq H_n(X_p)$ und $E^1_{n,p} \coloneqq H_n(X_p,X_{p-1})$.

Die Leray-Serre-Spektralsequenz

Def. Eine **Serre-Faserung** ist eine stetige Abb. $p: E \to B$, die die Homotopieliftungseigenschaft für alle CW-Komplexe A erfüllt, d. h. für alle H, H_0 wie unten, sodass das Quadrat kommutiert, gibt es ein diagonales \tilde{H} , sodass die Dreiecke kommutieren:

Lem. Die Homotopieliftungseig, ist genau dann für alle CW-Komplexe erfüllt, wenn sie für die Kuben $A = [0, 1]^n$ erfüllt ist.

Bem. Jeder stetige Weg $\gamma:[0,1]\to B$ in B induziert eine Homotopieäquivalenz $\gamma_*:p^{-1}(\gamma(0))\to p^{-1}(\gamma(1))$ zwischen den Fasern über Anfangs- und Endpunkt. Wenn B wegzshgd ist, so sind alle Fasern homotopieäquivalent und man notiert $F\to E\to B$ für die Faserung, wobei F die Faser über einem beliebigen Punkt ist. Man erhält eine Wirkung der Fundamentalgr. $\pi_1(B)$ auf der Homologie $H_k(F)$ durch

$$\pi_1(B) \to \operatorname{Aut}(H_k(F)), \quad [(\gamma : [0,1] \to B)] \mapsto (\gamma_* : F \to F)_*$$

Thm. Sei $F \to E \to B$ eine Serre-Faserung, B wegzshgd und G eine ab. Gruppe. Angenommen, $\pi_1(B)$ wirkt trivial auf $H_*(F;G)$. Dann gibt es die (Leray-)Serre-Spektralsequenz mit

$$E_{p,q}^2 = H_p(B; H_q(F; G)),$$

deren Eintrag $E_{p,n-p}^{\infty}$ der Quotient F_n^p/F_n^{p-1} in einer Filtration $0 \subseteq F_n^0 \subseteq \ldots \subseteq F_n^n = H_n(X;G)$ von $H_n(X;G)$ ist.

Bem. Wenn G ein Vektorraum ist, so folgt $H_n(X;G) \cong \bigoplus_p E_{p,n-p}^{\infty}$.

Thm. Sei $F \to E \to B$ eine Serre-Faserung, B wegzshgd und G eine ab. Gruppe. Angenommen, $\pi_1(B)$ wirkt trivial auf $H^*(F;G)$. Dann ex. die (Leray-)Serre-Spektralsequenz für Kohomologie mit

$$E_2^{p,q} = H^p(B; H^q(F;G)),$$

deren Eintrag $E_{\infty}^{p,n-p}$ der Quotient F_p^n/F_{p+1}^n in einer Filtration $0 \subseteq F_n^n \subseteq \ldots \subseteq F_0^n = H^n(X;G)$ von $H^n(X;G)$ ist.