Northwestern University

MATH 291-3 Second Midterm Examination - Practice A Spring Quarter 2022 May 12, 2022

Last name: SOLUTIONS	Email address:
First name:	NetID:

Instructions

- This examination consists of 5 questions.
- Read all problems carefully before answering.
- You have 50 minutes to complete this examination.
- Do not use books, notes, calculators, computers, tablets, phones, smart watches, or similar devices.
- Possession of a digital communication device during a bathroom break will be treated as a *prima facie* violation of Northwestern's academic integrity policy.
- Write legibly and only inside of the boxed region on each page.
- Cross out any work that you do not wish to have scored.
- Show all of your work. Unsupported answers may not earn credit.

- 1. Determine whether each of the following statements is true or false. If true, then explain why. If false, then give a counterexample.
 - (a) If $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$ is C^1 and satisfies $\operatorname{div} \vec{F} = x$, then there does not exist a C^2 vector field \vec{G} with $\operatorname{curl} \vec{G} = \vec{F}$.
 - (b) If $f: \mathbb{R}^3 \to \mathbb{R}$ is C^2 , then the 2-form

$$\left(\frac{\partial f}{\partial y} - \frac{\partial f}{\partial z}\right) dy \wedge dz + \left(\frac{\partial f}{\partial z} - \frac{\partial f}{\partial x}\right) dz \wedge dx + \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy$$

is closed on \mathbb{R}^3 .

Solution: (a) is true. If such a \vec{G} existed, then $0 = \text{div}(\text{curl}\vec{G}) = \text{div}\vec{F}$. Since $\text{div}\vec{F} = x$ is not the zero function, we conclude that no such \vec{G} exists.

(b) is true. To see why, note that if ω is the given differential form, then (throwing out the terms that are 0 by antisymmetry)

$$d(fdx + fdy + fdz) = \frac{\partial f}{\partial y} dy \wedge dx + \frac{\partial f}{\partial z} dz \wedge dx + \frac{\partial f}{\partial x} dx \wedge dy + \frac{\partial f}{\partial z} dz \wedge dy + \frac{\partial f}{\partial x} dx \wedge dz + \frac{\partial f}{\partial y} dy \wedge dz$$
$$= \left(\frac{\partial f}{\partial y} - \frac{\partial f}{\partial z}\right) dy \wedge dz + \left(\frac{\partial f}{\partial z} - \frac{\partial f}{\partial x}\right) dz \wedge dx + \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy$$
$$= \omega.$$

Therefore $d\omega = d^2(fdx + fdy + fdz) = 0$, so ω is closed on \mathbb{R}^3 .

2. Write the following as a single iterated integral in polar coordinates.

$$\int_0^1 \int_y^1 (x^2 + y^2) \, dx dy + \int_1^2 \int_0^{\sqrt{2x - x^2}} (x^2 + y^2) \, dy dx$$

Note that the order of integration in the first expression is dxdx while in the second it is dydx.

Solution: The first iterated integral represents the double integral of $x^2 + y^2$ over the region in \mathbb{R}^2 enclosed by the triangle with vertices (0,0), (1,0), (1,1). The second iterated integral represents the double integral of $x^2 + y^2$ over the region in \mathbb{R}^2 that lies to the right of the line x = 1, and between y = 0 (the x-axis) and $y = \sqrt{2x - x^2}$ (the upper-half of the circle $y^2 + (x - 1)^2 = 1$ centered at (1,0) with radius 1). Therefore the sum of iterated integrals can be written as $\iint_D (x^2 + y^2) dA(x,y)$, where D is the region in the first quadrant enclosed by the line x = y, the x-axis, and the circle $(x - 1)^2 + y^2 = 1$.

The region can be described in polar coordinates by taking $0 \le \theta \le \frac{\pi}{4}$, and then for each θ allowing r to run from 0 (the origin) to the circle $(x-1)^2 + y^2 = 1$. In terms of r and θ , this last equation is $r^2 - 2r\cos(\theta) = 0$, so that $r(r-2\cos(\theta)) = 0$. Since r > 0 on the circle, we must have $r = 2\cos(\theta)$. Because $x^2 + y^2 = r^2$, we can express the original sum of integrals as an iterated integral in polar coordinates as

$$\int_0^{\pi/4} \int_0^{2\cos(\theta)} r^2 \cdot r \, dr d\theta.$$

3. Suppose $S \subset \mathbb{R}^3$ is a smooth C^1 surface with parametrization

$$\vec{X}(u,v) = (x(u,v), y(u,v), z(u,v)), \quad (u,v) \in E$$

where $E \subseteq \mathbb{R}^2$, and let $\vec{c}(t) = (u(t), v(t))$, $a \le t \le b$ be a parametrization of a smooth C^1 curve in E. The composition $\vec{X} \circ \vec{c} : [a, b] \to \mathbb{R}^3$ then describes a smooth C^1 curve on S. Show that for every $t \in [a, b]$,

$$(\vec{X} \circ \vec{c})'(t) \cdot N_{\vec{X}}(u(t), v(t)) = 0.$$

Hint: Show that $(\vec{X} \circ \vec{c})'(t)$ is a linear combination of $\vec{X}_u(u(t), v(t))$ and $\vec{X}_v(u(t), v(t))$. (The point is that $(\vec{X} \circ \vec{c})'(t)$ gives a vector tangent to S at the point $\vec{X}(u(t), v(t))$, so this verifies that $N_{\vec{x}}(u(t), v(t)) = (\vec{X}_u \times \vec{X}_v)(u(t), v(t))$ is orthogonal to every vector that is tangent to S at $\vec{X}(u(t), v(t))$, which is why $N_{\vec{X}}$ is indeed normal to S.)

Solution: By the Chain Rule, $\vec{X} \circ \vec{c}$ is differentiable on [a, b] and

$$(\vec{X} \circ \vec{c})'(t) = D\vec{X}(\vec{c}(t))\vec{c}'(t)$$

$$= \begin{bmatrix} \vec{X}_u(u(t), v(t)) & \vec{X}_v(u(t), v(t)) \end{bmatrix} \begin{bmatrix} u'(t) \\ v'(t) \end{bmatrix}$$

$$= u'(t)\vec{X}_u(u(t), v(t)) + v'(t)\vec{X}_v(u(t), v(t)).$$

Therefore, for each $t \in [a, b]$,

$$(\vec{X} \circ \vec{c})'(t) \cdot (\vec{X}_u \times \vec{X}_v)(u(t), v(t)) = \det(u'\vec{X}_u + v'\vec{X}_v, \vec{X}_u, \vec{X}_v) = 0$$

because the vectors $u'(t)\vec{X}_u(u(t),v(t)) + v'(t)\vec{X}_v(u(t),v(t)), \vec{X}_u(u(t),v(t)), \vec{X}_v(u(t),v(t))$ form a linearly dependent set.

4. Suppose $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ is a C^2 vector field on \mathbb{R}^3 . Show that

$$\operatorname{curl}(\operatorname{curl}\vec{F}) = \nabla(\operatorname{div}\vec{F}) - \left(\operatorname{div}(\nabla P)\vec{i} + \operatorname{div}(\nabla Q)\vec{j} + \operatorname{div}(\nabla R)\vec{k}\right).$$

Start by computing the left-hand side.

Solution: Note first that for each C^2 function $f: \mathbb{R}^3 \to \mathbb{R}$, $\operatorname{div}(\nabla f) = \operatorname{div}(f_x \vec{i} + f_y \vec{j} + f_z \vec{k}) = f_{xx} + f_{yy} + f_{zz}$. Using this observation, we compute that

$$\begin{aligned} & \text{curl}(\text{curl}\vec{F}) = \text{curl}((R_y - Q_z)\vec{i} + (P_z - R_x)\vec{j} + (Q_x - P_y)\vec{k}) \\ & = (Q_{xy} - P_{yy} - P_{zz} + R_{xz})\vec{i} + (R_{yz} - Q_{zz} - Q_{xx} + P_{yx})\vec{j} + (P_{zx} - R_{xx} - R_{yy} + Q_{zy})\vec{k} \\ & = (Q_{yx} + R_{zx})\vec{i} + (R_{zy} + P_{xy})\vec{j} + (P_{xz} + Q_{yz})\vec{k} - (P_{yy} + P_{zz})\vec{i} - (Q_{xx} + Q_{zz})\vec{j} - (R_{xx} + R_{yy})\vec{k} \\ & = (P_{xx} + Q_{yx} + R_{zx})\vec{i} + (P_{xy} + Q_{yy} + R_{zy})\vec{j} + (P_{xz} + Q_{yz} + R_{zz})\vec{k} \\ & - (P_{xx} + P_{yy} + P_{zz})\vec{i} - (Q_{xx} + Q_{yy} + Q_{zz})\vec{j} - (R_{xx} + R_{yy} + R_{zz})\vec{k} \\ & = \nabla(P_x + Q_y + P_x) - \text{div}(\nabla P)\vec{i} - \text{div}(\nabla Q)\vec{j} - \text{div}(\nabla R)\vec{k} \\ & = \nabla(\text{div}\vec{F}) - -\text{div}(\nabla P)\vec{i} - \text{div}(\nabla Q)\vec{j} - \text{div}(\nabla R)\vec{k}. \end{aligned}$$

5. Let $g: \mathbb{R}^n \to \mathbb{R}$ and $f: \mathbb{R} \to \mathbb{R}$ be C^1 . Prove that $d(f \circ g) = (f' \circ g)dg$.

Solution: Note that the chain rule implies that, at each $\vec{x} \in \mathbb{R}^n$

$$d(f \circ g) = (f \circ g)_{x_1}(\vec{x})dx_1 + \dots + (f \circ g)_{x_n}(\vec{x})dx_n$$

= $f'(g(\vec{x}))g_{x_1}(\vec{x})dx_1 + \dots + f'(g(\vec{x}))g_{x_n}(\vec{x})dx_n$
= $f'(g(\vec{x}))(g_{x_1}(\vec{x})dx_1 + \dots + g_{x_n}(\vec{x})dx_n),$

so that $d(f \circ g) = (f' \circ g) dg$.