Differentially Private Synthetic Tabular Data

Jingchen (Monika) Hu

Vassar College

Data Confidentiality

Outline

- Introduction
- $oldsymbol{2} \epsilon {
 m differential}$ privacy with Dirichlet-multinomial
- 3 Example: differentially private synthetic CE count table

Outline

- Introduction
- 2 $\epsilon-$ differential privacy with Dirichlet-multinomia
- Example: differentially private synthetic CE count table

Recap of differential privacy

- Definitions: database, query, output, sensitivity, privacy budge, and added noise
- Implications of key terms in differential privacy: the relationship between sensitivity (Δf) , privacy budget (ϵ) , and added noise

Recap of differential privacy

- Definitions: database, query, output, sensitivity, privacy budge, and added noise
- Implications of key terms in differential privacy: the relationship between sensitivity (Δf) , privacy budget (ϵ) , and added noise
- The Laplace Mechanism
 - lacktriangle adds random noise according to $\epsilon-$ differential privacy guarantee
 - \blacktriangleright the noise is drawn from a Laplace distribution centered at 0, with scale $\frac{\Delta f}{\epsilon}$
- DP properties: example queries to the confidential CE databse

Recap of synthetic data

- A conjugate Bayesian model for categorical variables:
 Dirichlet-multinomial; now for contingency tables
- Suppose we have a count vector \mathbf{y} of length I, with total number of records y. (the sum of \mathbf{y}). The multinomial sampling model follows:

$$\mathbf{y} \mid \boldsymbol{\theta} \sim \text{Multinomial}(y.; \boldsymbol{\theta}).$$
 (1)

Recap of synthetic data

- A conjugate Bayesian model for categorical variables:
 Dirichlet-multinomial; now for contingency tables
- Suppose we have a count vector \mathbf{y} of length I, with total number of records y. (the sum of \mathbf{y}). The multinomial sampling model follows:

$$\mathbf{y} \mid \boldsymbol{\theta} \sim \text{Multinomial}(y, \boldsymbol{\theta}).$$
 (1)

2 A conjugate prior for θ is Dirichlet:

$$\theta \sim \text{Dirichlet}(\alpha).$$
 (2)

Recap of synthetic data

- A conjugate Bayesian model for categorical variables:
 Dirichlet-multinomial; now for contingency tables
- Suppose we have a count vector \mathbf{y} of length I, with total number of records y. (the sum of \mathbf{y}). The multinomial sampling model follows:

$$\mathbf{y} \mid \boldsymbol{\theta} \sim \text{Multinomial}(y, \boldsymbol{\theta}).$$
 (1)

2 A conjugate prior for θ is Dirichlet:

$$\theta \sim \text{Dirichlet}(\alpha).$$
 (2)

3 Due to conjugacy, we come to a Dirichlet posterior for θ :

$$\theta \mid \mathbf{y} \sim \text{Dirichlet}(\mathbf{y} + \boldsymbol{\alpha}).$$
 (3)

Overview

- Can we make the Dirichlet-multinomial synthesizer satisfy ϵ -differential privacy?
- The original ϵ -differential privacy definition: a mechanism \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is ϵ -differentially private for all $\mathcal{S} \subseteq \mathrm{Range}(\mathcal{M})$ and for all $\mathbf{x}, \mathbf{y} \in \mathbb{N}^{|\mathcal{X}|}$ such that $\delta(\mathbf{x}, \mathbf{y}) = 1$:

$$\left| \ln \left(\frac{Pr[\mathcal{M}(\mathbf{x}) \in \mathcal{S}]}{Pr[\mathcal{M}(\mathbf{y}) \in \mathcal{S}]} \right) \right| \le \epsilon.$$
 (4)

• What to do for synthetic tabular data?

Overview cont'd

• Now in synthetic tabular data:

Let \mathbf{y} denote the true count vector of length I, and \mathbf{x} denote another count vector with Hamming distance 1 from \mathbf{y} ($\delta(\mathbf{x},\mathbf{y})=1$) and $\sum_{i=1}^{I} x_i = \sum_{i=1}^{I} y_i$. Let y.* denote an ϵ -differentially private synthetic count vector, and $\boldsymbol{\theta}$ denote model parameters vector. In such setting, ϵ -differential privacy requires

$$\left| \ln \left(\frac{p(\mathbf{y}^* \mid \mathbf{y}, \boldsymbol{\theta})}{p(\mathbf{y}^* \mid \mathbf{x}, \boldsymbol{\theta})} \right) \right| \le \epsilon.$$
 (5)

Overview cont'd

• Now in synthetic tabular data:

Let \mathbf{y} denote the true count vector of length I, and \mathbf{x} denote another count vector with Hamming distance 1 from \mathbf{y} ($\delta(\mathbf{x},\mathbf{y})=1$) and $\sum_{i=1}^{I} x_i = \sum_{i=1}^{I} y_i$. Let $y.^*$ denote an ϵ -differentially private synthetic count vector, and $\boldsymbol{\theta}$ denote model parameters vector. In such setting, ϵ -differential privacy requires

$$\left| \ln \left(\frac{p(\mathbf{y}^* \mid \mathbf{y}, \boldsymbol{\theta})}{p(\mathbf{y}^* \mid \mathbf{x}, \boldsymbol{\theta})} \right) \right| \le \epsilon.$$
 (5)

• If we can the Dirichlet-multinomial synthesizer satisfy ϵ -differential privacy, we produce differentially private synthetic tabular data

Outline

- Introduction
- 2 $\epsilon-$ differential privacy with Dirichlet-multinomial
- 3 Example: differentially private synthetic CE count table

The procedure

Abowd and Vilhuber (2008) and Machanavajjhala et al. (2008)

- To generate a differentially private synthetic count vector \mathbf{y}^* given $y.^* = y$. (the total sum is fixed):
- **1** Sample θ^* from

$$\theta \mid \mathbf{y} \sim \text{Dirichlet}(\mathbf{y} + \alpha),$$
 (6)

where
$$\min(\alpha_i) \geq \frac{y_{\cdot,*}}{\exp(\epsilon)-1}$$
.

The procedure

Abowd and Vilhuber (2008) and Machanavajjhala et al. (2008)

- To generate a differentially private synthetic count vector \mathbf{y}^* given $y.^* = y.$ (the total sum is fixed):
- **1** Sample θ^* from

$$\theta \mid \mathbf{y} \sim \text{Dirichlet}(\mathbf{y} + \boldsymbol{\alpha}),$$
 (6)

where
$$\min(\alpha_i) \geq \frac{y^*}{\exp(\epsilon)-1}$$
.

Sample y* from

$$\mathbf{y}^* \mid \boldsymbol{\theta}^* \sim \text{Multinomial}(y.^*; \boldsymbol{\theta}^*),$$
 (7)

and the generated count vector \mathbf{y}^* satisfies ϵ -differential privacy.

Why it works?

• The posterior predictive distribution is:

$$p(\mathbf{y}^* \mid \mathbf{y}, \alpha) = \int p(\mathbf{y}^* \mid \boldsymbol{\theta}, \alpha) \times p(\boldsymbol{\theta} \mid \mathbf{y}, \alpha) d\boldsymbol{\theta}$$

$$= \int \frac{y^{*!}}{\prod_{i=1}^{I} y_i^{*!}} \times \prod_{i=1}^{I} \theta_i^{y_i^*} \times \frac{\Gamma(\sum_{i=1}^{I} y_i + \alpha_i)}{\prod_{i=1}^{I} \Gamma(y_i + \alpha_i)} \times \prod_{i=1}^{I} \theta_i^{y_i + \alpha_i - 1} d\boldsymbol{\theta}$$

$$= \frac{y^{*!}}{\prod_{i=1}^{I} y_i^{*!}} \times \frac{\Gamma(\sum_{i=1}^{I} y_i + \alpha_i)}{\prod_{i=1}^{I} \Gamma(y_i + \alpha_i)} \times \frac{\prod_{i=1}^{I} \Gamma(y_i^* + y_i + \alpha_i)}{\Gamma(\sum_{i=1}^{I} y_i^* + y_i + \alpha_i)}.$$
(8)

ullet To satisfy $\epsilon-$ differential privacy, we require

$$\left|\log\left(\frac{p(\mathbf{y}^*\mid\mathbf{y},\alpha)}{p(\mathbf{y}^*\mid\mathbf{x},\alpha)}\right)\right| = \left|\log\left(\frac{\prod_{i=1}^{I}\Gamma(\alpha_i+x_i)}{\prod_{i=1}^{I}\Gamma(\alpha_i+y_i)} \times \frac{\prod_{i=1}^{I}\Gamma(y_i^*+\alpha_i+y_i)}{\prod_{i=1}^{I}\Gamma(y_i^*+\alpha_i+x_i)}\right)\right| \le \epsilon$$
(9)

- x has Hamming distance 1 from y (i.e. $\delta(x, y) = 1$)
- $\sum_{i=1}^{I} x_i = \sum_{i=1}^{I} y_i$ (total sum is fixed)

- Assume the the only differences in \mathbf{x} and \mathbf{y} exist between the pairs $(x_i, x_{i'})$ and $(y_i, y_{i'})$
- Without loss of generality, assume $x_i = y_i 1$ and $x_{i'} = y_{i'} + 1$

$$\frac{p(\mathbf{y}^* \mid \mathbf{y}, \boldsymbol{\alpha})}{p(\mathbf{y}^* \mid \mathbf{x}, \boldsymbol{\alpha})} = \frac{\alpha_i + y_i}{\alpha_{i'} + y_{i'} - 1} \times \frac{y_{i'}^* + \alpha_{i'} + y_{i'} - 1}{y_i^* + \alpha_i + y_i},$$
(10)

where $y_i^* + y_{i'}^* \le y^*$.

$$\frac{p(\mathbf{y}^* \mid \mathbf{y}, \boldsymbol{\alpha})}{p(\mathbf{y}^* \mid \mathbf{x}, \boldsymbol{\alpha})} = \frac{\alpha_i + y_i}{\alpha_{i'} + y_{i'} - 1} \times \frac{y_{i'}^* + \alpha_{i'} + y_{i'} - 1}{y_i^* + \alpha_i + y_i}$$

- Maximized when $y_{i'} = 1, y_i^* = 0$ and $y_{i'}^* = z$.
- Minimized when $y_{i'} = 0$, $y_{i'}^* = 0$ and $y_i^* = z$.

$$\frac{\alpha_i}{\mathbf{y}.^* + \alpha_i} \le \frac{p(\mathbf{y}^* \mid \mathbf{y}, \boldsymbol{\alpha})}{p(\mathbf{y}^* \mid \mathbf{x}, \boldsymbol{\alpha})} \le \frac{\mathbf{y}.^* + \alpha_{i'}}{\alpha_{i'}}.$$
 (11)

• Now to satisfy ϵ -differential privacy where $\left|\log\left(\frac{p(\mathbf{y}^*|\mathbf{y},\alpha)}{p(\mathbf{y}^*|\mathbf{x},\alpha)}\right)\right| \leq \epsilon$, we require

$$\epsilon = \log\left(\frac{y^{*} + \min(\alpha_i)}{\min(\alpha_i)}\right), \tag{12}$$

which results in

$$\min(\alpha_i) \ge \frac{y^*}{\exp(\epsilon) - 1}.$$
 (13)

Outline

- Introduction
- 2ϵ -differential privacy with Dirichlet-multinomial
- 3 Example: differentially private synthetic CE count table

CE data

Table 1: Variables used in the CE database. Data taken from the 2017 CE public use microdata samples.

Variable Name	Variable information
UrbanRural	Binary; the urban $/$ rural status of CU: $1 = Urban$, $2 = Rural$.
Income	Continuous; the amount of CU income bfore taxes in past 12 months.
Race	Categorical; the race category of the reference person: $1 = \text{White}$, $2 = \text{Black}$, $3 = \text{Native American}$, $4 = \text{Asian}$, $5 = \text{Pacific Islander}$, $6 = \text{Multi-race}$.
Expenditure	Continuous; CU's total expenditures in last quarter.

The contingency table of Race categories

```
require(readr)
CEdata <- read_csv("CEdata.csv")
Race_Count <- CEdata %>% count(Race)
Race_Count
```

```
## # A tibble: 6 x 2
##
      Race
     <dbl> <int>
##
         1
             816
             109
## 2
## 4
              39
         5
             6
         6
              17
## 6
```

Step 1: calculate α

ullet Expression for lpha

epsilon <- 5

$$\min(\alpha_i) \ge \frac{y^*}{\exp(\epsilon) - 1}$$

• Use privacy budget $\epsilon = 5$

```
alpha_min <- sum(Race_Count$n)/(exp(epsilon) - 1)</pre>
alpha_min
## [1] 6.742953
alpha_vector <- rep(alpha_min, dim(Race_Count)[1])</pre>
alpha_vector
```

[1] 6.742953 6.742953 6.742953 6.742953 6.742953

Step 2: sample θ^*

y is the original count vector of Race categories.

```
y_vector <- Race_Count$n</pre>
y_vector
```

```
## [1] 816 109 7 39 6 17
```

• With the calcuated alpha vector, sample θ^* from Dirichlet($\mathbf{y} + \alpha$)

```
require(gtools)
set.seed(123)
theta_DPsyn <- rdirichlet(n = 1, alpha = y_vector + alpha_vector)</pre>
theta_DPsyn
```

```
[,1] [,2] [,3] [,4] [,5]
##
                                                      [,6]
## [1,] 0.7804585 0.1242675 0.007558385 0.04464151 0.01837218 0.02470187
```

Step 3: sample y^*

• With the sampled theta_DPsyn, we can sample \mathbf{y}^* from Multinomial $(y.^*; \boldsymbol{\theta}^*)$

Step 3: sample y^* cont'd

Put original and synthetic side-by-side

```
##
     original DPsynthetic
## 1
           816
                        776
## 2
           109
                        118
## 3
                          6
## 4
            39
                         53
            6
                         22
## 5
## 6
            17
                         19
```

Summary and discussion

- ullet The choice of privacy budget ϵ has great influence on the resulted differentially private synthetic contingency table
- What are your thoughts?

Summary and discussion

- ullet The choice of privacy budget ϵ has great influence on the resulted differentially private synthetic contingency table
- What are your thoughts?
- The higher the value of ϵ , the higher the utility

Summary and discussion

- The choice of privacy budget ϵ has great influence on the resulted differentially private synthetic contingency table
- What are your thoughts?
- The higher the value of ϵ , the higher the utility
- Other differentially private synthetic tabular data models:
 - beta-binomial (McClure and Reiter, 2012)
 - 2 gamma-Poisson (Quick, 2019)

References

- Abowd, J. M., and L. Vilhuber. (2008). How Protective Are Synthetic Data? Privacy in Statistical Databases, 239–46.
- Machanavajjhala, A., D. and Kifer, J. and Abowd, J.and Gehrke, and L. Vilhuber. (2008). Privacy: Theory Meets Practice on the Map. The IEEE 24th International Conference on Data Engineering, 277–86.
- McClure, D., and J. P. Reiter. (2012). Differential Privacy and Statistical Disclosure Risk Measures: An Investigation with Binary Synthetic Data. Transactions on Data Privacy 5: 535–52.
- Quick, H. (2019). Generaing Poisson-distributeed differentially private synthetic data. arXiv:1906.00455.