Milisecond Pulsars and Gravitational Radiation

Luis Padilla González

Universidad de Valparaíso

February 28, 2023

Overview

- Introduction
- 2 Milisecond Pulsars
- Gravitational Waves
- 4 Summary

Introduction

- 1967 First observed pulsating radio source by Jocelyn Bell.
- periods between 0.25 s and 1.3 s
- Emits beams of electromagnetic radiation out of its magnetic poles.

Up until 1982, most of the ~ 300 known pulsars had similar periods. But ...

Figure 1: Schematic view of a pulsar

Pulsars

Exceptions:

- Crab pulsar (1054A.D). period 33 ms
- Vela pulsar. period 89 ms
- Hulse-Taylor binary pulsar. period 59 ms

Crab and Vela pulsars had rapid slow-down rates.

Pulsars are rotating neutron stars, born in supernova explosions with periods 10-20 ms and gradually slowing down to periods of 1 s over million years.

Figure 2: The Crab Nebula - five observatories (2017)

Milisecond Pulsars

Milisecond Pulsar (MSP) 1937+21:

- period 1.558 ms (642 times per second)
- resulted from "recycling" of an old, slowly rotating neutron star through accretion from a low-mass companion.
- Mass transferred from the companion also carries angular momentum from the orbit to the neutron star, spinning it up and reactivating the pulsar emission process.

Figure 3: pulse profiles. Lorimer 2005

Milisecond Pulsars

Abscence of binary companion:

- Disruption of the binary by asymmetric mass loss in acretion-induced collapse of likely WD remnant of companion star → Ablation of companion
- "Black widow" pulsar PSR B1957+20

Figure 4: PSR B1957+20

$P - \dot{P}$ diagram

- over 1500 pulsars
- differences in magnetic fields and ages.
- magnetic field strengths $B \propto (P\dot{P})^{0.5}$
- characteristic age $\tau_c = P/(2\dot{P})$

Figure 5: $P - \dot{P}$ diagram, M. Kramer

Formation and evolution

Figure 6: evolutionary scenarios

Pulsars:

- Mildly recycled pulsars (P > 20 ms) with heavy companion (neutron star).
- Fully recycled pulsars (P < 20 ms). MSPs, with light companion (white dwarf)
- Pulsar-black hole possible

Companion of binary pulsars found so far: white dwarf, neutron star, pulsar, main-sequence star, planet.

Binary evolution tree

Figure 7: Binary evolution tree. Han, et al.

Timing binary Pulsars

5 post-Keplerian (PK) parameters. (Pb, x, e, w and T0)

Constraints on the masses of the pulsar m_p and the orbiting companion m_c can be placed by combining x and P_h to obtain the mass function

$$f_{\text{mass}} = \frac{4\pi^2}{G} \frac{x^3}{P_b^2} = \frac{(m_c \sin i)^3}{(m_p + m_c)^2},$$
 (11)

relativity (GR) the PK formalism gives the relativistic advance of periastron

$$\dot{\omega} = 3 \left(\frac{P_b}{2\pi} \right)^{-5/3} (T_{\odot}M)^{2/3} (1 - e^2)^{-1}, \tag{12}$$

the time dilation and gravitational redshift parameter

$$\gamma = e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c(m_p + 2m_c),$$
 (13)

the rate of orbital decay due to gravitational radiation

$$\dot{P}_{\rm b} = -\frac{192\pi}{5} \left(\frac{P_{\rm b}}{2\pi} \right)^{-5/3} \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left(1 - e^2 \right)^{-7/2} T_{\odot}^{5/3} m_{\rm p} m_{\rm c} M^{-1/3}$$
(14)

key point: given precisely measured Keplerian parameter, the only two unknows are the masses of pulsar and companion.

Testing General Relativity

Figure 8: Orbital decay in binary pulsar B1913+16

- Hulse & Taylor 1974.
- comparing third PK parameter with predicted value based on masses of other two.
- Measurments within 0.2% of GR prediction.
- First indirect evidence of gravitational waves.

EM waves and GW contrasted

Electromagnetic waves

- Oscillations of EM field propagating through spacetime
- Incoherent superposition of waves
- easily absorbed and scattered
- Most detectors very large compared to wavelength.
 Narrow field of view. Good angular resolution

Gravitational waves

- Oscillations of "fabric" of spacetime itself.
- Coherent emission by bulk motion of matter.
- Never significantly absorbed or scattered.
- Most detectors small compared to wavelength. See entire sky at once. Poor angular resolution.

Frecuency Bands and detectors

Gravitational Waves

- The gravitational-wave field, h^{GW}_{ik} Symmetric, transverse, traceless (TT); two polarizations: +, x
- + Polarization

$$h_{xx}^{\text{GW}} = h_{+}(t - z/c) = h_{+}(t - z)$$

$$h_{yy}^{\rm GW} = -h_+(t-z)$$

Lines of force

$$\ddot{x}_j = rac{1}{2} \ddot{h}_{jk}^{ ext{GW}} x_k \qquad \ddot{x} = \ddot{h}_+ x \ \ddot{y} = -\ddot{h}_+ y$$

$$h_{xy}^{\mathrm{GW}} = h_{yx}^{\mathrm{GW}} = h_{\times}(t-z)$$

GW Generation

4□▶ 4□▶ 4 Ē▶ 4 Ē▶ Ē 90

Laboratory sources of GWs

Me waving my arms

$$\begin{split} \mathcal{P}^{\rm quad} &\sim \frac{(10~{\rm kg})(5~{\rm m/s})^2}{1/3~{\rm s}} \sim 100{\rm W} \\ \frac{dE_{\rm GW}}{dt} &\sim 4\times 10^{52}\,{\rm W} \left(\frac{100\,{\rm W}}{4\times 10^{52}\,{\rm W}}\right)^2 \sim 10^{-49}\,{\rm W} \end{split}$$

Each graviton carries an energy

$$\hbar\omega = (7 \times 10^{-34} \text{joule s})(2Hz) \sim 10^{-33} \text{joule}$$

I emit 10^{-16} gravitons s⁻¹ ~ 3 gravitons each 1 billion yrs......

· A rotating two tonne dumb bell

$$M = 10^3 \mathrm{kg}, \quad L = 5 \mathrm{m}, \quad \Omega = 2\pi \times 10/s$$

$$\mathcal{P}^{\mathrm{quad}} \sim \Omega M (L\Omega)^2 \sim 10^{10} \, \mathrm{W}$$

$$\frac{dE_{\mathrm{GW}}}{dt} \sim 4 \times 10^{52} \, \mathrm{W} \left(\frac{10^{10} \, \mathrm{W}}{4 \times 10^{52} \, \mathrm{W}} \right)^2 \sim 10^{-33} \, \mathrm{W} \quad \hbar \left(2\Omega \right) \sim 10^{-32} \mathrm{joule}$$

I graviton emitted each 10 s At $r = (1 \text{ wavelength}) = 10^4 \text{ km}, h_+ \sim h_\times \sim 10^{-43}$

Generation and detection of GWs in lab is hopeless

Binary Star System

Binary Star System: Circular Orbit
$$I_{jk} = \int \rho x_j x_k d^3 x \qquad \text{trace} = \mu a^2 = \text{const}$$

$$I_{xx} = \mu a^2 \cos^2 \Omega t, \quad I_{yy} = \mu a^2 \sin^2 \Omega t, \quad I_{xy} = \mu a^2 \cos \Omega t \sin \Omega t$$

$$\ddot{\mathcal{I}}_{xx} = \ddot{I}_{xx} = -2\mu (a\Omega)^2 \cos 2\Omega t, \quad \ddot{\mathcal{I}}_{yy} = \ddot{I}_{yy} = 2\mu (a\Omega)^2 \cos 2\Omega t$$

$$\ddot{\mathcal{I}}_{xy} = \ddot{I}_{xy} = -2\mu (a\Omega)^2 \sin 2\Omega t$$

$$\mathbf{0}$$

$$\mathbf{E}_{\mathcal{G}}$$

$$\ddot{\mathcal{I}}_{\theta\theta} = \ddot{I}_{xx} \cos^2 \theta + \ddot{I}_{zz} \sin^2 \theta$$

$$\ddot{\mathcal{I}}_{\theta\theta} = \ddot{\mathcal{I}}_{xy}, \quad \ddot{\mathcal{I}}_{\theta\phi} = \ddot{\mathcal{I}}_{xy} \cos \theta$$

$$\mathbf{0}$$

$$\mathbf{$$

- · Angular dependence comes from TT projection
- As seen from above, θ =0, circular polarized: $h_+ = A\cos 2\Omega t$, $h_\times = A\sin 2\Omega$
- As seen edge on, $\theta = \pi/2$, linear polarized: $h_+ = A \cos 2\Omega t$, $h_\times = 0$

Binary Star System

Energy Loss ⇒Inspiral; frequency increase: "Chirp"

$$\begin{split} \frac{dE_{\text{GW}}}{dt} &= \frac{1}{5} \left[(\dot{\mathcal{I}}_{xx}^{"})^2 + (\dot{\mathcal{I}}_{yy}^{"})^2 + 2(\dot{\mathcal{I}}_{xy}^{"})^2 \right] = \frac{32}{5} \mu^2 a^4 \Omega^6 = \frac{32}{5} \frac{\mu^2 M^3}{a^5} \\ \frac{dE_{\text{binary}}}{dt} &= \frac{d}{dt} \left(\frac{-\mu M}{2a} \right) = -\frac{32}{5} \frac{\mu^2 M^3}{a^5} \\ a &= a_o (1 - t/\tau)^{1/4}, \qquad \tau_o = \frac{5}{256} \frac{a_o^4}{\mu M^2} = \frac{5\mathcal{M}}{256(\mathcal{M}\Omega)^{8/3}} \end{split} \qquad \qquad \mathcal{M} = \text{chirp mass} = \mu^{3/5} M^{2/5}$$

- Observables:
 - from h_+ & h_x ~ cos(2Ωt+phase): GW frequency f=Ω/π
 - from df/dt = -3f/8 τ_0 : Time to merger τ_0 and chirp mass \mathcal{M}
 - from GW amplitudes $h_+^{\rm amp} = -2(1+\cos\theta) \frac{\mu(a\Omega)^2}{r} = -2(1+\cos\theta) \frac{\mathcal{M}(\pi\mathcal{M}f)^{2/3}}{r}$ and $h_\times^{\rm amp} = -4\cos\theta \frac{\mathcal{M}(\pi\mathcal{M}f)^{2/3}}{r}$: Orbital inclination angle θ and distance to source r^r
- At Cosmological Distances: $\mathcal{M}(1+z)$, Luminosity distance
 - complementary to EM astronomy, where z is the observable

Inspiral Waveforms

Figure 9: Waveforms from the inspiral of compact binary. Newtonian Gravity for orbital evolution. Quadpole-moment approximation for wave generation.

High-Spin High-Mass Xray Binaries

Draft version July 29, 2022 Typeset using IATEX twocolumn style in AASTeX63

Do high-spin high mass X-ray binaries contribute to the population of merging binary black holes?

Monica Gallegos-Garcia, ^{1,2} Maya Fishbach, ² Vicky Kalogera, ^{1,2} Christopher P L Berry, ^{3,2} and Zoheyr Doctor²

ABSTRACT

Gravitational-wave observations of binary black hole (BBH) systems point to black hole spin magnitudes being relatively low. These measurements appear in tension with high spin measurements for high-mass X-ray binaries (HMXBs). We use grids of MESA simulations combined with the rapid population-synthesis code COSMIC to examine the origin of these two binary populations. It has been suggested that Case-A mass transfer while both stars are on the main sequence can form high-spin BHs in HMXBs, Assuming this formation channel, we show that depending on critical mass ratios for the stability of mass transfer, 48–100% of these Case-A HMXBs merge during the common-envelope phase and up to 42% result in binaries too wide to merge within a Hubble time. Both MESA and COSMIC show that high-spin HMXBs formed through Case-A mass transfer can only form merging BBHs within a small parameter space where mass transfer can lead to enough orbital shrinkage to merge within a Hubble time. We find that only up to 11% of these Case-A HMXBs result in BBH mergers, and at most 20% of BBH mergers came from Case-A HMXBs. Therefore, it is not surprising that these two spin distributions are observed to be different.

¹ Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
² Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA),1800 Sherman, Evanston, IL 60201, USA
³ SUPA, School of Physics and Astronomy, University of Clasgow, Clasgow G12 8QQ, UK

High-Spin High-Mass Xray Binaries

Our main conclusions are:

- Case-A HMXBs do not tend to form BBHs. When using only COSMIC simulations to model the full binary evolution, we find that at most 2% of Case-A HMXBs result in BBHs. When combining the COSMIC population with grids of BH-H-rich star MESA simulations, we find at most 12% form BBHs.
- 2. Case-A HMXBs contribute only a small fraction to the total merging BBH population. When considering all the BBHs for the range of masses investigated here, only 7% had a Case-A HMXB progenitor. When considering the individual mass ranges, the most massive H-rich donor, M_{donor} = (45±2.5)M_☉, had the largest fraction with at most 20% of BBHs having a Case-A HMXB progenitor.
- 3. The scenario of Case-A MT while both stars are on the MS allows for the formation of high-spin HMXBs while forming a minority of BBHs, such that the expected population of GW sources would contain primarily low-spin BHs.

Referencias

Duncan Lorimer

Binary and Milisecond Pulsars

Max Planck Institute for Gravitational Physics

Kip S. Thorne

Gravitational Radiation: A New Window Onto the Universe

California Institute of Technology, Pasadena, CA 91125 USA

Thanks for your attention

