

show me the discrete approximation sum of frequency bin size deltalambda and how it converges to the integral as deltalmbda goes to 0 which makes n go to infinity or how deltalambda and N are inverses of each other

Absolutely. Here's the straightforward and explicit answer using textbook harmonic analysis and spectral theory.

Suppose your oscillatory synthesis/inversion formulas are:

• Synthesis:
$$X(t) = \int_{-\infty}^{\infty} \phi_t(\lambda) \, F(\lambda) \, d\lambda$$

$$ullet$$
 Inversion: $F(\omega) = \int_{-\infty}^{\infty} X(t) \, \overline{\phi_t(\omega)} \, dt$

Discrete Approximation

Partition the frequency axis into bins of width $\Delta\lambda$, with centers λ_j , so that $\lambda_j=\lambda_0+j\Delta\lambda$ and $j=1,\ldots,N$, where $N\Delta\lambda$ covers the frequency interval of interest.

The integral becomes the Riemann sum:

$$\int_a^b F(\lambda)\,d\lambda \ pprox \ \sum_{j=1}^N F(\lambda_j)\,\Delta\lambda$$

So, the continuous representation is approximated by the sum:

$$X(t) pprox \sum_{j=1}^N \phi_t(\lambda_j) \, F(\lambda_j) \, \Delta \lambda$$

Similarly, the inversion becomes:

$$F(\lambda_k)pprox \sum_{l=1}^M X(t_l)\, \overline{\phi_{t_l}(\lambda_k)}\, \Delta t$$

where t_l are sample points in time (and Δt is a time step).

Limit as $\Delta\lambda o 0$, $N o\infty$

- As $\Delta\lambda \to 0$, the frequency resolution increases and the sum approaches the continuous integral.
- ullet For a fixed bandwidth (b-a) covered, $N=rac{b-a}{\Delta\lambda}$, so as $\Delta\lambda o 0$, $N o\infty$.
- ullet Thus, $\Delta\lambda$ and N are inversely related:

$$N = rac{ ext{Bandwidth}}{\Delta \lambda} \implies \Delta \lambda = rac{ ext{Bandwidth}}{N}$$

Explicit Statement of Convergence

For any sufficiently regular (e.g., L^2) function F and orthonormal system $\phi_t(\lambda)$, the Riemann sum

$$\sum_{j=1}^N \phi_t(\lambda_j) F(\lambda_j) \Delta \lambda$$

tends to

$$\int_a^b \phi_t(\lambda) F(\lambda) d\lambda$$

as $\Delta\lambda o 0$, i.e., as $N o \infty$.

Short Table for Clarity

Continuous	Discrete (bin size = $\Delta\lambda$)	Limit
\$ \int \phi_t(\lambda)F(\lambda)d\lambda \$	<pre>\$ \sum_{j=1}^N \phi_t(\lambda_j)F(\lambda_j)\Delta\lambda \$</pre>	\$ \lim_{\Delta\lambda\to 0} \sum \rightarrow \int \$
$N=(b-a)/\Delta\lambda$	$\Delta \lambda = (b-a)/N$	$N o\infty,\Delta\lambda o 0$

Summary:

- You discretize the frequency variable into bins of size $\Delta\lambda$.
- The integral becomes a sum over these bins.
- ullet As $\Delta\lambda o 0$, $N o\infty$, the sum converges to the integral.
- N and $\Delta\lambda$ are inverses (for fixed bandwidth).

Formula:

$$oxed{X(t)pprox \sum_{j=1}^N \phi_t(\lambda_j) F(\lambda_j) \, \Delta \lambda \stackrel{N o\infty}{\longrightarrow} \int \phi_t(\lambda) F(\lambda) d\lambda}$$

If you want the proof is simply the Riemann sum convergence theorem, since $\phi_t(\lambda)F(\lambda)$ is L^2 and the partition gets arbitrarily fine as $\Delta\lambda\to 0$.