The Structure of Mathematical Expressions

An ARXIV Case Study

Deyan Ginev and Bruce R. Miller

National Institute of Standards and Techonology

March 28, 2012

Contents

C	Contents		
1	Inti	roduction	3
	1.1	Motivation	3
	1.2	Related Resources	3
2	Me	thods	5
	2.1	Training Corpus	5
	2.2	Structural Annotation	5
	2.3	Annotation Vocabulary	6
3	A S	tudy of Mathematical Syntax	9
	3.1	Basics	9
	3.2	Discrete math	9
	3.3	Continuous math	10
	3.4	Other fields	12
4	Dis	cussion	19
5	Cor	uclusion	21

Introduction

In this study, we survey the notational diversity of present-day mathematical expressions, in order to uncover their linguistic phenomena. A practical motivation for this study is to provide a foundation for determining the boundary between syntactic and semantic phenomena in said expressions, from the perspective of language modeling. The ultimate goal of this project is to construct a grammar of mathematical expressions, which captures all relevant syntactic properties established in this study, and allows for the semantic analysis necessary to model and observe the semantic relationships.

1.1 Motivation

We want to enable machine-reading of formulas, in order to provide a variety of user-assistance services, such as semantic search, text-to-speech synthesis, semantic interactions (definition lookup), as well as computer algebra support ("evaluate subexpressions on demand") and ultimately computer verification ("does that proof step really hold?").¹

EdN:1

EdN:2

1.2 Related Resources

Notation census, beginnings of study are in Deyan's thesis, Naproche and FMathL have examples, but no real systematic study.²

 $^{1}\mathrm{EdNote}$: expand

²EDNOTE: expand

Methods

2.1 Training Corpus

The primary corpus on which we base this investigation is the Cornel pre-print archive "ARXIV"³, consisting of over 700,000 articles in 37 scientific subfields. EdN:3

arXiv Sandbox

 4 EdN:4

As a secondary resource, we we will also consult entry-level literature on high-school mathematics, in order to exhibit basic phenomena, as well as to demonstrate phenomena apriori known to the authors.⁵ EdN:5

2.2 Structural Annotation

As one of the goals of our study is to establish a first guess of an underspecified operator tree⁶, any annotation must at its core mark up the applicative logical EdN:6 structure of the mathematical expression. This process will build up a formula tree, the collection of which can later be used as a gold standard for developing a grammatical model of the language of symbolic mathematics.

³EDNOTE: cite here

 $^{^4{}m EdNOTE}$: Say that, on the ${
m ARXIV}$ front, we first start with the train sandbox from Deyan's thesis

⁵EDNOTE: Wikipedia? PEMDAS?

 $^{^6\}mathrm{EdNote}$: make sure the concepts are introduced and/or rephrase

Train1	Differential Geometry
	http://arxmliv.kwarc.info/files/9609/dg-ga.9609012
Train2	Quantum Physics
	http://arxmliv.kwarc.info/files/0910/0910.5733/
Train3	High Energy Physics - Theory
	http://arxmliv.kwarc.info/files/9407/hep-th.9407125/
Train4	Commutative Algebra
	http://arxmliv.kwarc.info/files/0809/0809.4873/
Train5	Statistics Theory
	http://arxmliv.kwarc.info/files/0905/0905.1486/
Train6	General Relativity and Quantum Cosmology
	http://arxmliv.kwarc.info/files/0807/0807.2507/
Train7	Cosmology and Extragalactic Astrophysics
	http://arxmliv.kwarc.info/files/0908/0908.2548
Train8	Exactly Solvable and Integrable Systems
	http://arxmliv.kwarc.info/files/0905/0905.2033
Train9	Geometric Topology
	http://arxmliv.kwarc.info/files/0809/0809.4477
Train10	Algebraic Geometry
	http://arxmliv.kwarc.info/files/0704/0704.0537

Table 2.1: Sandbox of Ten Random ARXIV Papers from Diverse Scientific Subfields

2.3 Annotation Vocabulary

Another core goal is to discover and describe interesting linguistic phenomena that occur naturally in our corpus. Examples of what we consider "interesting" are phenomena that induce ambiguity, or legitimize what would typically be ungrammatical fragments. Cases of ambiguity are well-known to follow from semantic overloading of symbols, implicit argument scopes of operations or eliding syntax, leaving the reader with the task of guessing the "invisible" dynamics. Use of custom shorthands, however, as well as custom notations in general, expands the grammar of symbolic mathematics, often in completely non-standard ways that can only be grasped through a deep understanding of the document at hand.

As multiple interesting observations can be made for a single large mathematical formula, it is natural to annotate multiple relevant subexpressions. More

Property	Keywords
Fixity	prefix, infix, postfix, superfix, subfix, circumfix, transfix, nofix ¹
Role (Symbols)	separator, modifier, relation, operator, metarelation
Role (Objects)	factor, term, statement, variable, constant, modified
Role (Structure)	tuple, sequence, expression, shorthand, notation
Composition	invisible, atom, complex, chained
Shallow Semantics	type, function, constructor, other
Linguistic	ellipsis, metonymy, ambiguity, vagueness, anaphora
Math Practices	framing

Table 2.2: Keyword Vocabulary for Syntactic Properties

concretely, for each phenomenon of interest, we annotate the greatest common subtree (GCT) of all participating subtrees. In case we find a long-range relationship in a large formula, the annotation would hence be placed on the formula root.

The annotations can be utilized for different purposes - browsing by specific phenomena, syntactic feature or lemma, training a classifier, etc. Thus, we take a compositional, standardized approach to providing labels from a fixed vocabulary for the relevant ontological classes of structural properties.

Chapter \mathcal{J}

A Study of Mathematical Syntax

3.1 Basics

Foundations

7 8 9 EdN:7 EdN:8 EdN:9

High School

10 11 EdN:10 EdN:11

3.2 Discrete math

Set Theoretic Notations

EdN:12 EdN:13

Logical Operators

14 EdN:14

 $^{^7\}mathrm{EdNote}$: arithmetic, grouping fences and equality

⁸EdNote: basic relations and orderings

⁹Ednote: arithmetic and algebraic sequences?

 $^{^{10}\}mathrm{EdNote}$ geometry here, otherwise a separate geometry subsection

 $^{^{11}\}mathrm{Ed}\mathrm{Note}\colon$ trigonometry, complex and rational numbers

 $^{^{12}\}mathrm{EdNote}\colon$ elementhood, inclusions, set constructors, overloaded arith ops

 $^{^{13}\}mathrm{EdNote}\colon$ also maps : domains -¿ codomains, xRy notations

 $^{^{14}\}mathrm{EdNote}$: classic logic, HOL, type theories

Combinatorics

EdN:15

15 16

EdN:16

Number Theory

EdN:17

17 18 19 20

EdN:18

EdN:19

EdN:20

Graph Theory

21 22 23

EdN:21

EdN:22

EdN:23

Algebra

EdN:24

24 25 26 27

EdN:25

EdN:26

EdN:27

Functions Theory

EdN:28

28

3.3 Continuous math

Calculus

EdN:29

29

¹⁵EdNote: Infinite sums

 $^{^{16}\}mathrm{Ed}\mathrm{Note}\colon$ binomials, combinations, permutations,

 $^{^{17}\}mathrm{EdNote}$: modulo modifiers

 $^{^{18}\}mathrm{EdNote}\colon$ tuples

 $^{^{19}{}m EdNote}$: divisibility notations $a\mid b$ and b/a

 $^{^{20}\}mathrm{EdNote}$: DLMF sneaky notations

 $^{^{21}\}mathrm{EdNote}\colon$ edge and vertex notations

 $^{^{22}\}mathrm{EdNote}\colon \mathsf{incidence}$ and adjacency notations

²³EDNote: Wiki is very nice: http://en.wikipedia.org/wiki/Glossary_of_graph_theory

 $^{^{24}\}mathrm{EdNote}$: vectors

 $^{^{25}\}mathrm{EdNote}\colon$ maps and complements

 $^{^{26}\}mathrm{EdNote}$: groups

²⁷EdNote: lattices

²⁸EdNote: talk about associativity of application and composition, ";" and "o" as notation variants, discuss complex examples

²⁹EdNote: differentials, integrals, limits, remember brownian motion integral notations!

Probability

 $^{30\ 31}$ EdN:30 EdN:31

Interval Notation and Arithmetic

32 EdN:32

Topology

33 EdN:33

Differential Geometry

Some intro text?

 34 EdN:34 EdN:35

 $^{^{30}\}mathrm{EdNote}$ Bayes formula with multiple denotations of P

 $^{^{31}\}mathrm{EdNote}$: Various conditional and joint probability notations

 $^{^{32}\}mathrm{EdNote}$: introduce interval notations, then move to interval arithmetic

 $^{^{33}\}mathrm{EdNote}$: manifold constructors and notations

 $^{^{34}\}mathrm{EdNote}$: more on \pmod{x} notations

 $^{^{35}\}mathrm{EdNote}$: Complex named enttity: "U(1) Chern-Simons gauge theory."

EdN:36EdN:37 36 37

Other fields 3.4

Quantum Physics

EdN:38EdN:39 38 39 :

 $^{^{36}\}mathrm{EdNote}$: Scripts give you new names or new objects $^{37}\mathrm{EdNote}$: Prime scripts can be used for both naming and operating $^{38}\mathrm{EdNote}$: Bra-ket notation

 $^{^{39}\}mathrm{EdNote}$ computer science, biology, chemistry...

	Expression	Denotation	Annotation	
1.	$W \in \mathcal{P} \cap \mathcal{Z}$	set membership	infix relation	
	Discussion: set ops precede set relations, [Tra	ain1]		
2.	$ u: \overset{n}{\times} \mathbb{V} \to \mathbb{R} $	a map	typed modifier	
	$\textbf{Discussion:}\ n\text{-}\mathrm{ary\ cross-product,\ [Train1]}$			
3.	$\mathcal{Z}^* = \{ X \in \mathcal{V} \mid \omega(X, W) \in \mathbb{Z}, \text{ for all } W \in \mathcal{Z} \}$	definition to set	typed modifier	
	Discussion: NL mixins, quantified relation, [Train1]		
4.	$\operatorname{span}_{\mathbb{R}}\{W_1,\ldots,W_g\}$	span of a set	prefix operator modified	
	Discussion: set operators can take fenced yet not simply grouped arguments, [Train1]			
5.	$\mathcal{BS}_{\mathcal{P}} = igcup_{\mathbf{q} \in (\mathbb{Z}/k\mathbb{Z})^g} \Lambda_{\mathbf{q}}$	definitional assignment	infix relation	
	Discussion: n-ary union, ranges over subscript, [Train1]			
6.	$L_{12} = L_{\mathcal{P}_1} \cap L_{\mathcal{P}_2} \neq 0$	non-transversal intersection	modified chained	
	Discussion: acts as relation, is it modified or chained?, [Train1]			
7.	$\alpha \in GL(g,\mathbb{Z}) \subset Sp(2g,\mathbb{Z})$	statement	infix relation	
	Discussion: membership comes after set inclu	usion, due to well-typedness!, [Train	1]	

Table 3.1: Set Theory Notations, Part 1

	Expression	Denotation	Annotation
1.	$(\mathcal{V}/\mathcal{Z},k\omega)$	symplectic torus	circumfix constructor
	Discussion: [Train1]		
2.	\mathcal{Z}	self-dual lattice	atom notation
	Discussion: [Train1]		
3.	(\mathcal{V},ω)	symplectic vector space	circumfix constructor
	Discussion: [Train1]		
4.	$Lag(\mathcal{V})$	Lagrangian Grassmannian	circumfix constructor
	Discussion: [Train1]		
5.	$Lag_4(\mathcal{V})$	4-fold covering space	prefix constructor
	Discussion: [Train1]		
6.	\mathcal{M}_{Σ}	moduli space	subfix constructor
	Discussion: [Train1]		
7.	Σ	Riemann surface	atom variable
	Discussion: [Train1]		
8.	$H^1(\Sigma;\mathbb{R})$	chomology space	transfix constructor
	Discussion: [Train1]		
9.	$H^1(\Sigma;\mathbb{R})/H^1(\Sigma;\mathbb{Z})$	torus	infix operator
	Discussion: [Train1]		
10.	(M,ω)	symplectic manifold	circumfix constructor
	Discussion: [Train1]		
11.	$f \in \mathcal{C}^{\infty}(M)$	smooth function	atom modified
	Discussion: [Train1]		
12.	X_f	field	subfix constructor
	Discussion: [Train1]		
13.		interior product	complex infix operator
	Discussion: Formed via	a \mathop in TEX, [Train1]	
14.	$[\omega] \in H^2(M;\mathbb{R})$	cohomology class	complex variable modified
	Discussion: [Train1]		
15.	(\cdot,\cdot)	notation patter, hermitian metric	notation tuple
	Discussion: [Train1]		

Table 3.2: Differential Geometry Notations, Part $\boldsymbol{1}$

	Expression	Denotation	Annotation
16.	$-2\pi\mathrm{i}\omega$	complex number	invisible prefix infix operator expression
	Discussion: [Train1]		
17.	$(\mathcal{L}, abla)$	prequantum line bundle	circumfix constructor
	Discussion: [Train1]		
18.	$U \subset M$	open subset	modified atom
	Discussion: [Train1]		
19.	$\mathcal{L} _{U}$	restricted line bundle	modified atom
	Discussion: postfix restriction via " $ _{U}$	", [Train1]	
20.	$s \in \Gamma(U; \mathcal{L})$	nonzero section	modified atom
	Discussion: [Train1]		
21.	$\nabla s = -2\pi \mathrm{i}\thetas$	equation	relation
	Discussion: [Train1]		
22.	$\omega _U = d\theta$	equation	relation
	Discussion: [Train1]		
23.	T_xM	bundle	metonymy infix invisible constructor
	Discussion: metonymy for tangent bundle, concat is a space-constructor, [Train1]		
24.	$\omega _{\mathcal{P}_x} \equiv 0$	equivalence	relation
	Discussion: [Train1]		
25.	$\dim \mathcal{P}_x = \frac{1}{2} \dim T_x M$	equality	relation
	Discussion: dim has lower precedence	e than invisible bundle-formation,	[Train1]
26.	$[X,Y] \in \mathcal{X}_{\mathcal{P}}(M)$	commutator is in set	relation
	Discussion: used as verb phrase in se	ntence, [Train1]	
27.	$ abla^{\mathcal{P}}$	covariant differentiation	scripted prefix op
	Discussion: big op?, [Train1]		
	$\nabla^{\mathcal{P}}: \mathcal{X}_{\mathcal{D}}(M) \times \mathcal{X}_{\mathcal{D}}(M) \longrightarrow \mathcal{X}_{\mathcal{D}}(M)$		
28.	$\nabla^{\mathcal{P}}: \mathcal{X}_{\mathcal{P}}(M) \times \mathcal{X}_{\mathcal{P}}(M) \longrightarrow \mathcal{X}_{\mathcal{P}}(M)$ $(X, Y) \longmapsto \nabla_X^{\mathcal{P}} Y,$	domain specification	type modifier
	Discussion: alignment splits type stat	tement, trailing comma [Train1]	
29.	$(\nabla_X^{\mathcal{P}} Y) \perp \omega = X \perp d(Y \perp \omega).$	definitional assignment	infix relation
	Discussion: trailing dot, [Train1]		
30.	$\Pi_{\mathcal{P}}: M \to M/\mathcal{P}$	canonical projection map	type modifier
	Discussion: [Train1]		

Table 3.3: Differential Geometry Notations, Part 2 $\,$

	Expression	Denotation	Annotation	
31.	T^g	g-dimensional torus	complex object	
	Discussion: script means dimensionality[Train1]			
32.	q_1,\ldots,q_g	coordinate functions	enumerative sequence	
	Discussion: [Train1]			
33.	X_{q_1},\ldots,X_{q_g}	Hamiltonian vector fields	enumerative sequence	
	Discussion: [Train1]			
34.	$q_1 \circ \Pi_{\mathcal{P}}, \dots, q_g \circ \Pi_{\mathcal{P}}$	functions	enumerative sequence	
	Discussion: sequence elements are applicative of	bjects, [Train1]		
35.	$\gamma_1(\Lambda), \dots, \gamma_g(\Lambda)$	basis for a homology group	enumerative sequence	
	Discussion: [Train1]			
36.	$j_i(y) = \int \theta$, where $y = \Pi_{\mathcal{P}}(\Lambda)$,	definitional assignment	infix relation	
	$\gamma_i(\Lambda)$ Discussion: integral has no binder, nat. lang. n	nodifier, punctuation, [Train1]		
37.	$\operatorname{Det} \mathbb{V} = \overset{n}{\wedge} \mathbb{V}$	definitional assignment	infix relation	
51.	Discussion: n -ary wedge?, hidden binder on \mathbb{V} ,	_	iiiix relation	
38.	$\kappa\left(X_{j_1}\big _{\Lambda},\ldots,X_{j_g}\big _{\Lambda}\right)=1$.	canonically defined density	infix relation	
38. $\kappa(X_{j_1} _{\Lambda}, \dots, X_{j_g} _{\Lambda}) = 1$. canonically defined density infix relation Discussion: bars as postfix, within a sequence [Train1]				
39.	$(\nabla_W^{\mathcal{P}} \nu)(X_1^*, \dots, X_g^*) = W(\nu(X_1^*, \dots, X_g^*)),$	definitional assignment ¹	infix relation	
55.	$(V_W \nu)(\Lambda_1, \dots, \Lambda_g) = W(\nu(\Lambda_1, \dots, \Lambda_g)),$ Discussion: applied function is fenced, [Train1]	delimitional assignment	minx relation	
40.		complex		
40.	$0 \longrightarrow \Omega^0_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}) \xrightarrow{\nabla^{\mathcal{P}}} \Omega^1_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}) \xrightarrow{\nabla^{\mathcal{P}}} \cdots \xrightarrow{\nabla^{\mathcal{P}}} \Omega^g_{\mathcal{P}}(\mathcal{L}_{\mathcal{P}}) \longrightarrow 0 \text{complex} $ type?			
	Discussion: arrows as transitions, ellipsis, [Train			
41.	$\overset{k}{\wedge}\mathcal{P}^*\otimes\mathcal{L}_{\mathcal{P}}$	line bundle	applicative constructor?	
	Discussion: which operator binds first?,[Train1]			
42.	$c_{\Lambda} = \int_{\Lambda} f_{\Lambda} \hat{\kappa}$	definitional assignment	infix relation	
	Discussion: bound variable in integral subscript[Train1]			
43.	$H^g(M;\mathcal{P},\mathcal{L}_{\mathcal{P}}) \cong \mathop{\oplus}\limits_{\Lambda \subset \mathcal{BS}_{\mathcal{P}}} S_{\Lambda}$	natural isomorphism	infix relation	
	Discussion: n -ary \oplus , congruence, [Train1]			
44.	(s,s')	function on Λ	circumfix constructor	
	Discussion: shorthand constructor for a function, [Train1]			
45.	$\int_{\Lambda} (s, s') \mu * \mu'$	integral application	prefix application	
	A Discussion: binder in subscript, infix operator '	*" binds stronger than invisible ap	ply [Train1]	

Table 3.4: Differential Geometry Notations, Part 3 $\,$

	Expression	Denotation	Annotation		
46.	$\langle\langle\cdot,\cdot\rangle angle:\mathcal{H}_{\mathcal{P}_2} imes\mathcal{H}_{\mathcal{P}_1} o\mathbb{C}$	sesquilinear pairing pattern	type modifier		
	Discussion: operator pattern, along with operator type [Train1]				
47.	$\omega = \sum_{i=1}^{g} dp^{i} \wedge dq^{i}$	symplectic form	infix relation		
	Discussion: sum over wedge applications, [Train1]				
48.	$p^i = \text{constant}$				
	Discussion: bad text/math modality, RHS outside	e of math[Train1]			
49.	$W \cdot (X, \lambda) = (X + W, \epsilon(W) e^{\pi i k \omega(W, X)} \lambda),$	\mathcal{Z} -action definition	infix relation		
	Discussion: defines operator \cdot , arguments quantified	ed via NL following the math express	ion,[Train1]		
50.	$l (l \leq g)$	dimension	modified object		
	Discussion: invisible modifier, using fenced relation	n,[Train1]			
51.	$(W_1,\ldots,W_g;W_1^{\perp},\ldots,W_g^{\perp})$	symplectic basis	circumfix constructor		
	Discussion: distinction between commas and semi	colon, [Train1]			
52.	$i=1,\ldots,g$	definitional range	infix relation		
	Discussion: defined to be a sequence? or modifying restriction over a range?, [Train1]				
53.	$X \in \mathcal{V}, W \in \mathcal{P}$	conjunction of statements	sequence of relations		
	Discussion: comma denotes NL "and" between two relational statements,[Train1]				
54.	$k \omega(W_i, X) \in \mathbb{Z}, \qquad i = 1, \dots, g,$	statement	modified relation		
	Discussion: four scopes of commas, also hinted by	spacing, [Train1]			
55.	$q_i \pmod k$	modulo	invisible modifier		
	Discussion: fenced modifier argument, prefix mod	?,[Train1]			
56.	$\Lambda_{\mathbf{q}=(q_1,\ldots,q_g)}: k\omega(W_i,X) = q_i \pmod{k}, i = 1,\ldots,g.$	orbit description	infix relation		
	Discussion: complex expression, rich in phenomen	a,[Train1]			
57.	$\hat{\Lambda}_{\mathbf{q},1} = \{ X \in \mathcal{V} \mid k \omega(W_i, X) = q_i + kl_i, \ i = 1, \dots, g \}.$	definitional assignment	infix relation		
	Discussion: modified relation!,[Train1]				
58.	$\{\sigma_{\mathbf{q}} = s_{\mathbf{q}} \otimes \delta_{\mathbf{q}}\}_{\mathbf{q} \in (\mathbb{Z}/k\mathbb{Z})^g}$	standard unitary basis if $\mathcal{H}_{\mathcal{P}}$	set constructor		
	Discussion: relational modifier to set constructor argument, subscripted set range, [Train1]				
59.	$k\omega(W_i, T_j) = \delta_{ij}$ $i, j = h + 1, \dots, g$	statement	infix relation		
	Discussion: spaces determine equality scopes, act as conjunctions; equality on sequence and range[Train1]				
60.	$[1] = [(l_1, \dots, l_g)] \in \mathbb{Z}^g / \omega(2, 1) \mathbb{Z}^g$	equivalence class	doubly modified object		
	Discussion: two relations modify [1], chained modified	ifying? or nested modifying?[Train1]			

Table 3.5: Differential Geometry Notations, Part 4 $\,$

	Expression	Denotation	Annotation
61.	${}^t\mathbf{q}_1$?	scripted atom
	Discussion: prescript t , but what does it mean?	, [Train1]	
62.	$\sum_{n \in \mathbb{N}} \sum_{i \in \mathbb{N}} \cdots$	nested summation	prefix operator apply
	q_2 $0 \le q_{2i} \le k \det \omega(2,1) - 1$ $0 \le q_{2i} \le k \det \omega(2,1) -1$ Discussion: stacked subscripts, and subscript se	vauanca[Train1]	
63.	$\bigoplus_{i=1}^g \mathbb{Z} W_{1i} \oplus \bigoplus_{i=1}^g \mathbb{Z} W_{1i}^{\perp}$?	information
00.		•	infix apply
64.		function declaration	
04.	$ au: Lag(\mathcal{V}) imes Lag(\mathcal{V}) imes Lag(\mathcal{V}) ightarrow \mathbb{Z}$		typed modifier
65	Discussion: \times is weaker than invisible application $I = I = I = I = I = I = I = I = I = I $		
65.	$L_1, L_2, L_3, L_4 \in Lag(\mathcal{V})$	set membership	infix relation
20	Discussion: multirelation? membership holds fo		
66.	$r \equiv \pmod{q}$	equivalence	infix relation
	Discussion: second-order relation, r is used as a		pply, [Train1]
67.	$U_{\mathcal{P}}(b) = F_{\mathcal{P},b\mathcal{P}} \circ b : \mathcal{H}_{\mathcal{P}} \to \mathcal{H}_{\mathcal{P}}$	unitary operator definition	typed modifier
	Discussion: modifier for assignment, followed by	y modifier for type, [Train1]	
68.	$(W_i' = bW_i; W_i'^{\perp} = bW_i^{\perp})$	symplectic basis	circumfix constructor
	Discussion: two modified arguments to the main	n constructor, [Train1]	
69.	$(x,c) \in \mathcal{T} \times Sp(2g,\mathbb{R}) \stackrel{b}{\longrightarrow} (b(x),bc) \in \mathcal{T} \times Sp(2g,\mathbb{R})$	left action	arrow transition
	Discussion: \times is not used in a typing sense, but	in a cross-product sense, inducing	; a different arrow interplay [Train1]
70.			
	Discussion: [Train1]		
71.			
	Discussion: [Train1]		
72.			
	Discussion: [Train1]		
73.			
	Discussion: [Train1]		
74.			
	Discussion: [Train1]		
75.			
	Discussion: [Train1]		

Table 3.6: Differential Geometry Notations, Part 5 $\,$

Discussion

Conclusion