	COMPUTER SCI CIAL INTELLIG		DEPARTMENT OF COMPUTER SCIENCE ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26
Course Coordinator Name		Dr. Vairachilai Shenbagavel		
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable AI (P)	
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00PM	
Duration	2 Hours	Applicable to Batch	23CSBTB44	

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	Green Cycle – E-Bike Company	

Context:

Green Cycle tracks how many social media reels affect demo test ride bookings.

Instagram Reels (x)	Test Rides (y)
1	20
2	35
3	48
1	25
2	38

Objective:

Analyze the effect of Instagram reel postings on the number of test ride bookings for Green Cycle by performing Linear Regression and interpreting SHAP values.

Requirements:

1. Perform Linear Regression Analysis

- Use the given dataset where:
 - Independent Variable (x): Instagram Reels
 - Dependent Variable (y): Test Rides

2. Calculate the Baseline Value

o Compute the mean of all test ride values (y values).

3. Calculate SHAP Values

- o For each record, calculate the difference between the predicted value and the baseline.
- o This difference is the SHAP value, attributed to the number of Instagram reels.

4. Compute Final Prediction

- o Use the linear regression model to calculate predicted test rides for each reel count.
- o Confirm that:

Final Prediction = Baseline + SHAP Value

5. Interpret the Results

- o Explain how the number of Instagram reels influenced each predicted test ride count.
- o Compare the predicted value to the actual value for each row.
- o Identify under prediction or over prediction, and provide reasoning.

Deliverables:

A notebook or document containing:

- Linear regression implementation with coefficients
- Baseline (mean of y)
- Table of SHAP values and predictions
- Explanation of how each input influenced the prediction
- Comparison of predicted vs actual values, with over/under prediction notes
- Summary analysis covering:
- Accuracy of the model
- Trend analysis
- SHAP interpretation insights

Q. No.	Question	Expected Time to complete
2	EduSmart – Subscription Renewals using Multiple Linear Regression and SHAP Analysis	

Objective:

Assess the impact of resolved customer support tickets and in-app messages on subscription renewals using Multiple Linear Regression and interpret results using SHAP values.

Given Dataset:

Tickets Resolved	In-App Messages	Renewal
(\mathbf{x}_1)	(X_2)	s (y)
10	5	70
12	3	60
15	6	80
8	2	50
7	4	55

Tasks:

1. Perform Multiple Linear Regression Analysis

- o Independent variables: Tickets Resolved and In-App Messages
- Dependent variable: Renewals

2. Compute the Baseline Value

Use the average of the renewals

3. Calculate SHAP Values

- o Calculate SHAP Value
- Distribute SHAP contributions between Tickets and Messages

4. Compute Model Predictions for Each Record

- o Apply the regression equation
- Ensure SHAP decomposition: Prediction = Baseline + SHAP(Tickets) + SHAP(Messages)

5. Interpret the SHAP Contributions

- o For each record, explain the role of each input
- o Compare actual vs predicted renewals
- Comment on overprediction or underprediction and justify it using SHAP

Q. No.	Question	Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.
 - Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value

- Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.
- 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For every prediction:
 - Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.
 - o Comment on overprediction or underprediction and possible reasons behind it.