Punch Out Model Synthesis

A Stochastic Algorithm for Constraint Based Tiling Generation

Zzyv Zzyzek November 19th, 2024

Punch Out Model Synthesis

A Constraint Based Tiling Generation algorithm

- Contradiction resilience
- Works on large grids
- Minimal setup requirements

Pill Mortal Tile Set 64x64 cells, 190 tile count

Constraint Based Tiling Generation (CBTG) Problem

Find a valid grid realization

A realization is a single tile placement at each cell respecting constraints.

(Cells hold array of tiles)

64x64 cells, 159 tile count

Arc Consistency: all tiles in every cell have at least one valid neighbor in each direction

Basis for *Constraint Propagation* algorithm by repeatedly removing tiles without valid neighbors after tile choice

Block Level Solver: completely maintains Arc Consistency

Grid Level Solver: only keep minimal information for the entire grid but work on *block* sub-regions

Related Work

	WFC	BMS	MMS	POMS
Solver Type	Block	Block	Grid	Grid
Contradiction	No	Yes	Yes	Yes
Resilience	1,40	103	103	103
Block Step	n/a	n/a	Yes	No
Consistent	l II/a	II/ a	163	140
Indeterminate	Yes	Yes	No	Yes
Initial State	163	165	140	163
Ergodic	Yes	Yes	No	Yes

WFC: Wave Function Collapse (Gumin)

BMS: Breakout Model Synthesis (Hoetzlein)

MMS: Modify in Blocks Model Synthesis (Merrell)

POMS: Punch Out Model Synthesis

Related Work

Tile Arc Consistent Correlation Length (TACCL) (Hoetzlein)

How much influence does a tile choice have over long distances?

Finite correlation \rightarrow independent regions

Related Work

Tile Arc Consistent Correlation Length (TACCL)

TACCL

Isolated block, for all tiles:

- Fix tile at the center
- Take bounding box of constraint propagation

Heuristic for correlation length POMS block > TACCL

Grid partially realized

cells fully realized or marked indeterminate

Choose block

Pill Mortal 64×64 cells, 190 tiles 30×30 block

Forest Micro (ThKaspar) 128×128 cells, 159 tiles 48×48 block

Reversion and Erosion

Conclusion

Punch Out Model Synthesis (POMS) is an alternative when:

- Grid is large
- Resource are limited
- Minimal setup requirements are needed/desired

https://zzyzek.github.io

 $\verb|https://github.com/zzyzek/PunchOutModelSynthesis||$

https://zzyzek.github.io/PunchOutModelSynthesisWebDemo/

Thanks!

Automatic Tile Generation https://zzyzek.github.io/TileRuleHighlighter/

Rule Graph (Forest Micro) Rule Highlighter

Highlighted Runs

LUNARSIGNAL's Overhead Action RPG Overworld Tile Set (x10)

Highlighted Runs

0x72's Two Bit Micro Metroidvania Tile Set (x10)

Highlighted Runs

Kingel's *Minirogue* Tile Set (x10)

Wave Function Collapse (WFC) (Gumin)

- Block level solver (maintain AC for the block)
- One-shot solver, give up first contradiction
- Min. entropy heuristic to fix tiles

Breakout Model Synthesis (BMS) (Hoetzlein)

- Block level solver (maintain AC for the block)
- Stochastic backtracking, revert small region around contradiction point to indeterminate

Modify in Blocks Model Synthesis (MMS) (Merrell)

- Grid level solver (maintain summary info for grid, AC only for block)
- Needs fully resolved initial state
- Try to resolve block sub-regions, re-incorporating if resolution successful
- Never fails (block step consistency)
- Misses solution space if features larger than block and not already in grid (non-ergodic)

- Bitter lesson includes learning and search
- Trade off between resources used to learn vs. resources used for run time search
- "Parables of the Power of Planning in Al" by Noam Brown (https://www.youtube.com/watch?v=eaAonE58sLU)

Other Problems

- Salad
- Oatmeal
- Global Cohesion/(weak) Global Constraints

CBTG algorithms are good at maintaining local consistency but are bad at resolving global constraints

Weak global constraints (path connections, etc.) can confound POMS and other CBTG algorithms

Sometimes global constraints are weak enough to be overcome by solving local constraints

Potential Future Work

- Spectral Graph Decomposition methods for automatic biome detection
- AC4 speedups via templates
- Weak global constraints