자료구조 Data Structure 조행래

자료구조의 기본 개념

알고리즘의 복잡도 계산

학습 목표

- 알고리즘의 복잡도를 정의할 수 있다.
- 알고리즘의 복잡도를 표현할 수 있다.
- 알고리즘의 복잡도를 계산할 수 있다.

1. 성능 분석

- 프로그램의 평가 기준
 - 주어진 문제를 해결
 - 정확성(Correctness)
 - 문서화(Documentation)
 - 모듈화(Modularization)
 - 가독성(Readability)
 - 공간 효율(Space efficiency)
 - 시간 효율(Time efficiency)

필수적인 요소좋은 프로그래밍 습관성능과 관련

- 성능 분석(Complexity theory, Simulation) vs.
 성능 측정(Benchmarking)
- 복잡도(Complexity)의 정의
 - 공간 복잡도: 프로그램 실행에 사용되는 메모리
 - 시간 복잡도: 프로그램 실행에 걸리는 시간

2. 시간 복잡도(Time Complexity)

- 실행에 걸리는 시간(Tp) = 컴파일 시간 + 실행 시간
 - 컴파일 시간은 고정 & 한번만 필요
 - 질문: T_p 를 어떻게 계산할까?
 - Tp는 컴파일러 option과 하드웨어 사양에 따라 가변
 - 프로그램 단계 수를 활용하자.
- 프로그램 단계 수(Program Step)
 - 정의: 실행 시간이 프로그램의 특성과는 무관한 프로그램의 문법적인 혹은 논리적인 단위
 - 프로그램 단계 수의 계산
 - 프로그램에 count를 증가시키는 문장을 추가
 - 테이블 방식을 이용

테이블 방식의 예(1)

Statement	s/e	Frequency	Total step
Float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum = 0;	1	1	1
int i;	0	0	0
for $(i = 0; i < n; i++)$	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total			2n+3

^{*} s/e (steps/execution): 명령문에 대한 단계 수

테이블 방식의 예(2)

Statement	s/e	Frequency	Total step
Float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
return rsum(list, n-1)+ list[n-1];	1	n	n
return list[0];	1	1	1
}	0	0	0
Total			2n+2

테이블 방식의 예(3)

Statement	s/e	Frequency	Total step
void add(int a [] [MAX_SIZE])	0	0	0
{	0	0	0
int i, j;	0	0	0
for (i = 0; i < rows; i++)	1	rows+1	rows+1
for $(j = 0; j < cols; j++)$	1	rows ⋅ (cols+1)	rows · cols + rows
c[i][j] = a[i][j] + b[i][j];	1	rows · cols	rows · cols
}	0	0	0
Total	2rows · cols + 2rows + 1		

3. 점근 표기법(O, Ω, Θ)

■ 동기

- 정확한 프로그램 단계 수를 계산하는 것은 쉽지 않다.
- 프로그램 단계 수의 정의 자체가 정확하지 않다.
- 100n + 10과 30n + 30의 비교

■ 접근 방법

- $T_p(n) = n^2 + 100n$ 이라고 가정
- n이 충분히 클 경우, 임의의 c₃에 대해 T_p(n) > c₃n

Big-Oh (O)

- 정의(Big-Oh): f(n) = O(g(n)) iff
 - \exists (c and $n_0 > 0$) such that
 - $f(n) \leq cg(n)$ for all $n, n \geq n_0$.

Example

- 3n + 2 = O(n) as $3n + 2 \le 4n$ for all $n \ge 2$
- 100n + 6 = O(n) as $100n + 6 \le 101n$ for all $n \ge 6$
- $10n^2 + 4n = O(n^2)$ as $10n^2 + 4n \le 11n^2$ for all $n \ge 5$
- $6*2^n + n^2 = O(2^n)$ as $6*2^n + n^2 \le 7*2^n$ for all $n \ge 4$
- $3n + 2 = O(n^2)$, $10n^2 + 4n = O(n^3)$

Omega (Ω)

- 정의(Omega): $f(n) = \Omega(g(n))$ iff
 - \exists (c and $n_0 > 0$) such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$.
 - g(n)은 f(n)의 lower bound

Example

- $3n + 2 = \Omega(n)$ as $3n + 2 \ge 3n$ for all $n \ge 1$
- $10n^2 + 4n = \Omega(n^2)$ as $10n^2 + 4n \ge 10n^2$, $\forall n \ge 1$
- $6*2^n + n^2 = \Omega(2^n)$ as $6*2^n + n^2 \ge 6*2^n$, $\forall n \ge 1$
- $3n + 2 = \Omega(1)$, $10n^2 + 4n = \Omega(n)$, $6*2^n + n^2 = \Omega(n^2)$

Theta (⊕)

- 정의(Theta): $f(n) = \Theta(g(n))$ iff
 - \exists (c₁, c₂, and n₀ > 0) such that c₁g(n) \leq f(n) \leq c₂g(n) for all n, n \geq n₀.
 - g(n)은 f(n)의 lower bound이면서 upper bound임

Example

- $3n + 2 = \Theta(n)$ as $3n + 2 \ge 3n$ for all $n \ge 2$ and $3n + 2 \le 4n$ for all $n \ge 2$
- $10n^2 + 4n + 2 = \Theta(n^2)$, $6*2^n + n^2 = \Theta(2^n)$
- $3n + 2 \neq \Theta(1)$, $3n + 2 \neq \Theta(n^2)$

예제 알고리즘들의 근사 표현

- $T_{sum}(n) = 2n + 3 = \Theta(n)$
- $T_{rsum}(n) = 2n + 2 = \Theta(n)$
- $T_{add}(row, col) = 2row * col + 2row + 1 = \Theta(row * col)$
- 이진 검색: Θ(log₂ n)
 - T(n) = T(n/2) + 1
 - T(1) = 1

대표적인 복잡도 함수의 그래프

요약 정리

- 복잡도의 정의를 이해
- 알고리즘의 시간 복잡도를 분석하는 방법 이해
- 복잡도를 점근 표기법으로 표현하는 방법을 이해