Analysis II (Marciniak-Czochra)

Robin Heinemann

16. Juni 2017

Inhaltsverzeichnis

I	Met	rische und normierte Raume	1
	1.1	Metrische Räume	1
	1.2	Normierte Räume	3
	1.3	Hilberträume	4
2	Stet	igkeit und Differenzierbarkeit im \mathbb{R}^n	7
	2.1	Satz über implizite Funktionen und der Umkehrsatz	20
	2.2	Extremalaufgaben mit Nebenbedingungen	23
3	Gew	vöhnliche Differentialgleichungen	25
	3.1	Lineare Systeme	37
	3.2	Asymptotisches Lösungsverhalten bei Differentialgleichungen	42
1	Met	trische und normierte Räume	
1.1	l Me	etrische Räume	
		ion 1.1 Sei M eine Menge, $d: M \times M \to [0,\infty)$ heißt Metrik auf M genau dann v $\in M$	venn
	• ([O1) $d(x,y) = 0 \iff x = y$ (Definit	:heit)
	• (D	(Symmetrical D2) $d(x,y) = d(y,x)$	etrie)

Beispiel 1.2 1. Charakterische (diskrete) Metrik

• (D3) $d(x,z) \le d(x,y) + d(z,y)$

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & \text{sonst} \end{cases}$$

(Dreiecksungleichung)

2. Sei $X = \mathbb{K}^n(\mathbb{K} = \mathbb{R} \text{ oder } \mathbb{C})$ mit Metrik

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{n}{2}}$$

(euklidische Metrik)

3. Sei $X=\mathbb{R}^n$. Für $1\leq \phi \leq \infty$. Sei

$$d_{\phi}(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^{\phi}\right)^{\frac{n}{\phi}}$$

Ist $\phi = \infty$, so definieren wir

$$d_{\infty}(x,y) = \max_{i=1,\dots,n} |x_i - y_i|$$

4. $X = \mathbb{R}$ mit Metrik

$$d(x,y) = \frac{|x-y|}{1+|x-y|}$$

5. Der Raum der Folgen $a:\mathbb{N} \to \mathbb{R}$ (beziehungsweise $\mathbb{R}^\mathbb{N}$) kann mit der Metrik

$$d(x,y) = \sum_{k=0}^{\infty} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$

Definition 1.3 Sei M eine Menge mit Metrik d. Wir definieren für $x\in M, \varepsilon>0$, die offene ε -Kugel um x durch

$$K_{\varepsilon}(x) := \{ y \in M \mid d(x, y) < \varepsilon \}$$

und eine abgeschlossene Kugel durch

$$K_{\varepsilon}(x) := \{ y \in M \mid d(x, y) \le \varepsilon \}$$

 $A \subset M$ heißt **Umgebung** von $x \in M \iff \exists \varepsilon : K_{\varepsilon}(x) \subset A$

Konvergenz und Stetigkeit in metrischen Räumen

Definition 1.4 Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum (X,d) ist konvergent gegen einem $x\in X$ genau dann wenn $\forall \varepsilon>0 \exists n_0\in\mathbb{N}: \forall n\geq n_0d(x_n,x)<\varepsilon$

- **Satz 1.5** 1. Sei (X,d) ein metrischer Raum. Dann ist $A\subseteq X$ abgeschlossen genau dann wenn $(X_n)_{n\in\mathbb{N}}$ Folge in A mit $x_n\to x\implies x\in A$
 - 2. Seien $(X,d_1),(Y,d_2)$ zwei metrische Räume. Dann ist die Funktion stetig in $x\in X$ genau dann wenn $(x_n)_{n\in\mathbb{N}}$ Folge in X mit $x_n\to x\implies f(x_n)\to f(x)$.

Definition 1.6 (Cauchy Folgen und Vollständigkeit) Sei (X,d) ein metrischer Raum. Eine Folge $(x_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge falls $d(x_n,x_m)\to 0$ für $n,m\to\infty$. Der metrische Raum heißt **vollständig**, falls jede Cauchy-Folge konvergent ist.

1.2 Normierte Räume

Definition 1.7 Ein normierter Raum $(X, \|\cdot\|)$ ist ein Paar bestehend aus einem \mathbb{K} -Vektorraum X und einer Abbildung $\|\cdot\|: X \to [0, \infty)$ mit

1.
$$||x|| = 0 \iff x = 0$$

2.
$$\|\lambda x\| = |\lambda| \|x\| \forall \lambda \in \mathbb{K}, x \in X$$

3.
$$||x + y|| \le ||x|| + ||y|| \forall x, y \in X$$

Bemerkung 1. Die Norm $\|\cdot\|$ induziert auf X eine Metrik $d(x,y) = \|x-y\|$

2. Eine Metrik d auf einem Vektorraum definiert die Norm ||d(x,0)|| nur dann, wenn

$$\forall \lambda \in \mathbb{K} \forall x, y, z \in X : d(\lambda x, \lambda y) = |\lambda| d(x, y)$$
 (Homogenität)
$$d(x + z, y + z) = d(x, y)$$
 (Translationsinvarianz)

Definition 1.8 (Banachraum) Ein normierter Raum $(X,\|\cdot\|)$ heißt vollständig, falls X als metrischer Raum mit der Metrik $d(x,y)=\|x-y\|$ vollständig ist. Ein solcher vollständiger normierter Raum heißt **Banachraum**

Beispiel 1.9 1. $(\mathbb{R}^n, \|\cdot\|_2)$, wobei

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{n}{2}}$$

2. Sei K eine kompakte Menge:

$$C_{\mathbb{K}} := \{f: K \to \mathbb{K} \mid f \text{ stetig}\}$$

$$\|\cdot\|_{\infty} = \max_{\lambda \in K} |f(x)|$$

 $(C_{\mathbb{K}(K)}, \|\cdot\|_{\infty})$ ist ein Banachraum.

Bemerkung 1. Jede Cauchy-Folge in \mathbb{K}^n konvergiert, das heißt $(\mathbb{K}^n, \|\cdot\|)$ ist vollständig

2. Jede beschränkte Folge in \mathbb{K}^n besitzt eine konvergente Teilfolge. (Der Satz von Bolzano-Weierstraß gilt in \mathbb{R}^n) (Beweis für \mathbb{R}^n zum Beispiel in RR Ana2 Satz 1.1)

Satz 1.10 (Äquivalenz von Normen) Auf dem endlich dimensionalen Vektorraum \mathbb{K}^n sind alle Normen äquivalent zur Maximumnorm, das heißt zu jeder Norm $\|\cdot\|$ gibt es positive Konstanten w, M mit denen gilt

$$m\|x\|_{\infty} \leq \|x\| \leq M\|x\|_{\infty}, x \in \mathbb{K}^n$$

Beweis Sei $\|\cdot\|$ irgendeine Norm $\forall x \in \mathbb{K}^n$ gilt

$$||x|| \le \sum_{k=1}^{n} |x_k| ||e^{(k)}|| \le M||x||_{\infty}$$

mit

$$M := \sum_{k=1}^{n} \left\| e^{(k)} \right\|$$

Wir setzen

$$S_1 := \{x \in \mathbb{K}^m \mid ||x||_{\infty} = 1\}, m := \inf\{||x||, x \in S_1\} \ge 0$$

Zu zeigen m>0 (dann ergibt sich für $x\neq 0$ wegen $\|x\|_{\infty}^{-1}x\in S_1$ auch $m\leq \|x\|_{\infty}^{-1}\|x\|\implies 0< m\|x\|_{\infty}\leq \|x\|\quad x\in\mathbb{K}^n$) Sei also angenommen, dass m=0

Dann gibt eine eine Folge $(x^{(k)})_{k\in\mathbb{N}}\in S_1$ mit $\|x^{(k)}\|\xrightarrow{k\to\infty} 0$. Da die Folge bezüglich $\|\cdot\|_{\infty}$ beschränkt ist, gibt es nach dem B.-W. Satz eine Teilfolge auch von $(x^{(k)})$, die bezüglich $\|\cdot\|_{\infty}$ gegen ein $x\in\mathbb{K}^n$ konvergiert.

$$|1 - ||x||_{\infty}| = \left| \left| \left| x^{(k)} \right| \right|_{\infty} - \left| \left| x \right| \right|_{\infty} \right| \le \left| \left| x^{(k)} - x \right| \right|_{\infty} \to 0 \implies ||x||_{\infty} = 1 \implies x \in S_1$$

Anderseits gilt

$$\forall k \in \mathbb{N} : \|x\| \le \left\|x - x^{(k)}\right\| + \left\|x^{(k)}\right\| \le M \left\|x - x^{(k)}\right\|_{\infty} + \left\|x^{(k)}\right\| \xrightarrow{k \to \infty} \Longrightarrow x = 0$$
 \(\frac{\frac{1}{2}}{2}\text{u} \ x \in S_1

Definition 1.11 Eine Menge $M \subset K^n$ heißt kompakt (folgenkompakt), wenn jede beliebige Folge in M eine konvergente Teilfolge besitzt, deren Grenzwert ebenfalls in M enthalten ist.

Beispiel 1.12 Mit Hilfe von dem Satz von B.W. folgt, dass alle abgeschlossene Kugeln im \mathbb{R}^n ($K_r(a), a \in K^n$) kompakt sind. Ferner ist für beschränkte Mengen M der Rand ∂M kompakt. Jede endliche Menge ist auch kompakt.

1.3 Hilberträume

Definition 1.13 Sei $H\mathbb{K}$ Vektorraum. Ein **Skalarprodukt** auf eine Abbildung

$$(\cdot,\cdot):H\times H\to\mathbb{K}$$

mit

1.
$$\forall x, y, z \in H, \lambda \in \mathbb{K} : (z, x + \lambda y) = (z, x) + \lambda(z, y)$$

2.
$$\forall x, y \in H : (x, y) = \overline{(y, x)}$$

3.
$$\forall x \in H : (x, x) > 0 \land (x, x) = 0 \iff x = 0$$

 $(H,(\cdot,\cdot))$ nennt man einen Prähilbertraum.

Bemerkung Für $\mathbb{K} = \mathbb{C}$ ist das Skalarprodukt linear in der zweiten Komponente aber antilinear in der ersten $((\lambda x, y) = \bar{\lambda}(x, y))$.

Lemma 1.14 (Cauchy-Schwarz Ungleichung) Sei $(H, (\cdot, \cdot))$ Prähilbertraum, dann gilt

$$\forall x, y \in H : |(x,y)|^2 \le (x,x)(y,y)$$

Beweis Da die Ungleichung für y=0 bereits erfüllt ist, können wir ohne Beschränkung der Allgemeinheit annehmen $y\neq 0$. Für ein beliebiges $\alpha\in\mathbb{K}$ gilt

$$0 \le (x + \alpha y, x + \alpha y) = (x, x) + \bar{\alpha}(y, x) + \alpha(x, y) + \alpha \bar{\alpha}(y, y)$$

Setze nun $\alpha := -(x, y)(y, y)^{-1}$

$$= (x,x) - \overline{(x,y)}(y,y)^{-1} - (x,y)(y,y)^{-1}(x,y) - \left| (x,y)^2 \right| (y,y)^{-1}$$

$$= (x,x) - \underbrace{((y,x)(y,x) + (x,y)(x,y))(y,y)^{-1}}_{>0} - |(x,y)|^2 (y,y)^{-1}$$

$$\leq (x,x) - |(x,y)|^2 (y,y)^{-1}$$

$$\iff |(x,y)|^2 \leq (x,x)(y,y)$$

Korollar 1.15 Sei $(H,(\cdot,\cdot))$ ein Prähilbertraum, dann ist $\|x\|:=\sqrt{(x,x)}$ eine Norm auf H.

Beweis Es ist nur die Dreiecksungleichung zu beweisen, weil der Rest klar ist. Für $x,y\in H$ gilt

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\Re(x, y) \le ||x||^2 + ||y||^2 + 2|(x, y)| \le ||x||^2 + ||y||^2 + 2||x|| ||y||$$
$$= (||x|| + ||y||)^2$$

Definition 1.16 Ein Prähilbertraum $(H,(\cdot,\cdot))$ heißt Hilbertraum, falls $(H,\|\cdot\|)$ mit $\|x\|:=\sqrt{(x,x)}$ ein Banachraum ist.

Beispiel 1.17 1. $H = \mathbb{R}^n$ versehen mit $(x,y) := \sum_{i=1}^n x_i y_i$ ist ein Hilbertraum euklidisches Skalarprodukt

2.
$$H=\mathbb{C}^n$$
 mit $(x,y):=\sum_{i=1}^n \bar{x}_iy_i$ ist ein Hilbertraum euklidisches Skalarprodukt

3. Sei $l^2\mathbb{K}:=\{(x_k)_{k\in\mathbb{N}}\mid x_k\in\mathbb{K}, \forall k\in\mathbb{N}\wedge\sum_{i=1}^\infty |x_k|^2<\infty\}$ versehen mit $(x,y):=\sum_{i=1}^\infty \bar{x}_iy_i$ ist ein Hilbertraum.

$$\sum_{i=1}^{n} |x_i| |y_i| \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |y_i|^2\right)^{\frac{1}{2}} \le ||x||_{l^2} ||y||_{l^2} < \infty$$

Lemma 1.18 (Hölder-Ungleichung) Für das euklidische Skalarprodukt $(\cdot,\cdot)_2$ gilt für beliebige p,q mit $1< p,q<\infty$ und $\frac{1}{p}+\frac{1}{q}=1$ die Ungleichung

$$\forall x, y \in \mathbb{K}^n : |(x, y)_2| \le ||x||_p ||y||_q, ||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Darüber hinaus gilt die Ungleichung auch für $p=1, q=\infty$

Lemma 1.19 (Young'sche Ungleichung) Tür $p,q \in \mathbb{R}, 1 < p,q < \infty, \frac{1}{p} + \frac{1}{q} = 1$ gilt

$$\forall x, y \in \mathbb{K} : |(x, y)| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}$$

Lemma 1.20 (Minkowski-Ungleichung) Für ein beliebiges $p \in [1, \infty]$ gilt

$$\forall x, y \in \mathbb{K}^n : ||x + y||_p \le ||x||_p + ||y||_p$$

Satz 1.21 (Banachscher Fixpunktsatz) Sei (M,d) ein vollständiger, metrischer Raum und $f:M\to M$ ist eine strenge Kontraktion, das heißt

$$\exists 0 < \alpha < 1 \forall x, y \in M : d(f(x), f(y)) < \alpha d(x, y)$$

Dann existiert ein eindeutiger Fixpunkt von f, das heißt es existiert ein eindeutiges $x^* \in M$: $f(x^*) = x^*$

Beweis Existenz:

Wähle ein $x_0 \in M$ beliebig, aber fest und definiere dann $x_1 := f(x_0), x_2 := f(x_1), \dots$ Dann gilt für $n \leq m$

$$d(x_n, x_m) = d(f(x_{n-1}), f(x_{m-1})) < \alpha d(x_{n-1}, x_{m-1})$$

= $\alpha d(f(x_{n-2}), f(x_{m-2})) < \dots < \alpha^n d(x_0, x_{m-n})$

Nun gilt aber

$$d(x_0, x_{m-n}) \leq d(x_0, x_1) + d(x_1, x_2) + \dots + d(x_{m-n-1}, x_{m-n})$$

$$\leq d(x_0, x_1) + \alpha d(x_0, x_1) + \dots + a^{m-n-1} d(x_0, x_1)$$

$$= d(x_0, x_1) \sum_{i=0}^{m-n-1} \alpha^i \leq d(x_0, x_1) \sum_{i=0}^{\infty} \alpha^i$$

$$= \frac{d(x_0, x_1)}{1 - \alpha} < \infty$$

$$\implies d(x_n, x_m) \leq \frac{\alpha^n}{1 - \alpha} d(x_0, x_1)$$

Also ist $(x_k)_{k\in\mathbb{N}}$ Cauchy-Folge. Da (M,d) vollständig ist existiert $x^*\in M$, sodass $x_k\xrightarrow{k\to\infty} x^*$. Zeige, dass x^* Fixpunkt von f ist:

$$0 \le d(x^*, f(x^*)) \le d(x^*, x_k) + d(x_k, f(x^*))$$

$$\le d(x^*, x_k) + \alpha d(x_{k-1}, x^*) \xrightarrow{k \to \infty} 0$$

$$\implies f(x^*) = x^*$$

Eindeutigkeit: Angenommen $\exists x' \in M, x' \neq x^* : f(x') = x'$:

$$0 < d(x^*, x') = d(f(x^*), f(x')) < \alpha d(x^*, x') \implies \alpha > 1$$

2 Stetigkeit und Differenzierbarkeit im \mathbb{R}^n

Definition 2.1 Eine Funktion $f:D\subset\mathbb{K}^n\to\mathbb{K}^m, m,n\in\mathbb{N}\setminus\{0\}, D\neq\emptyset$, ist stetig in einem $a\in D$, wenn

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in D : ||x - a|| < \delta \implies ||f(x) - f(a)|| < \varepsilon$$

Bemerkung Es gelten auch im Mehrdimensionalen die Permanenzeigenschaften, das heißt f, g stetig $\implies f + g, f \circ g$ sind stetig.

Satz 2.2 Eine stetige Funktion $f:D\subset\mathbb{K}^n\to\mathbb{K}^m$ ist auf einer kompakten Menge $K\subset D$ beschränkt, das heißt für jede kompakte Menge K existiert eine Konstante M_k , sodass

$$\forall x \in K || f(x) || < M_k$$

Beweis Angenommen f wäre auf K unbeschränkt, dann gäbe es zu jedem $k \in \mathbb{N}$ ein $x_k \in K$ mit $\|f(x_k)\| > K$. Da K kompakt hat die Folge $(x_k)_{k \in \mathbb{N}}$ eine konvergente Teilfolge $(x_{k_j})_{j \in \mathbb{N}}$ für die gilt $x_{k_j} \xrightarrow{j \to \infty} x \in K$. Da f stetig $f(x_{k_j}) \to f(x)$ und $\|f(x)\| < \infty$, was im Widerspruch steht zu $\|f(x_k)\| \xrightarrow{k \to \infty} \infty$.

Satz 2.3 Eine stetige Funktion $f:D\subset\mathbb{K}^n\to\mathbb{R}$ nimmt auf jeder (nicht leeren) kompakten Menge $K\subset D$ ihr Minimum und Maximum an.

Beweis Nach Satz 2.2 besitzt f eine obere Schranke auf K

$$\mathcal{K} := \sup_{x \in K} f(x)$$

Dazu $(x_k)_{k\in\mathbb{N}}\subseteq K$, sodass $f(x_k)\xrightarrow{k\to\infty} \mathcal{K}$. Da K kompakt existiert eine konvergente Teilfolge $\left(x_{k_j}\right)_{j\in\mathbb{N}}$ und ein x_{max} , sodass $x_{k_j}\xrightarrow{j\to\infty} x_{max}$. Da f stetig, gilt $f\left(x_{k_j}\right)\to f(x_{max})$.

Bemerkung Auf diese Weise lassen sich die Ergebnisse der Stetigkeit aus dem Eindimensionalen ins Mehrdimensionale verallgemeinern.

Im folgenden Teil sei $D \subseteq \mathbb{R}^n$ offen, $\mathbb{K} = \mathbb{R}$

Definition 2.4 Eine Funktion $f:D\to\mathbb{R}$ heißt in einem Punkt $x\in D$ partiell differenzierbar bezüglich der i-ten Koordinatenrichtung, falls der Limes

$$\lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h} =: \frac{\partial f}{\partial x_i}(x) =: \partial_i f(x)$$

existiert. Existieren in allen Punkten $x \in D$ alle partiellen Ableitungen, so heißt f partiell differenzierbar. Sind alle partiellen Ableitungen stetig auf D, so heißt f stetig partiell differenzierbar. Eine Funktion $f: D \to \mathbb{R}^m$ heißt (stetig) partiell differenzierbar, wenn $f_i, i = 1, \ldots, m$ (stetig) partiell differenzierbar.

Bemerkung Die Ableitungsregeln aus dem Eindimensionalen übertragen sich auf partielle Ableitungen.

Beispiel 1. Polynome sind stetig partiell differenzierbar. Sei $p:D\subset\mathbb{R}^2\to\mathbb{R}, (x_1,x_2)\mapsto a_{01}x_2+a_{11}x_1x_2+a_{02}x_2^2+a_{21}x_1^2x_2$. Dann ist

$$\frac{\partial p}{\partial x_1}(x_1, x_2) = a_{11}x_2 + 2a_{21}x_1x_2 \quad \frac{\partial p}{\partial x_2} = a_{01} + a_{11}x_1 + 2a_{02}x_2 + a_{21}x_1^2$$

2. $\|\cdot\|_2: \mathbb{R}^k \setminus \{0\} \to \mathbb{R}$ ist stetig partiell differenzierbar, da

$$\frac{\partial \|\cdot\|}{x_i} = \frac{1}{2} \frac{2x_i}{\left(x_1^2 + \dots + x_k^2\right)^{\frac{1}{2}}} = \frac{x_i}{\|x\|_2}$$

3.
$$f: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto \frac{x_1 x_2}{(x_1^2 + x_2^2)^2}$$
 für $x \neq 0, f(0) = 0$

$$\frac{\partial f}{\partial x_1}(x) = \frac{x_2}{\left(x_1^2 + x_2^2\right)^2} - 4\frac{x_1^2 x_2}{\left(x_1^2 + x_2^2\right)^3}, x \neq 0$$

 $F\ddot{\mathbf{u}}\mathbf{r} x = 0 \text{ ist } f(0) = 0$

$$\implies \lim_{h \to 0} \frac{f(xe_i) - f(0)}{h} = 0$$

Sei $x_{\varepsilon}(\varepsilon,\varepsilon)$ und damit gilt $||x_{\varepsilon}||_2 \xrightarrow{\varepsilon \to 0} 0$

$$f(x_{\varepsilon}) = \frac{\varepsilon^2}{4\varepsilon^4} = \frac{1}{4\varepsilon^2} \xrightarrow{\varepsilon \to 0} \infty$$

Satz 2.5 Die Funktion $f:D\to\mathbb{R}$ habe in einer Kugelumgebung $K_r(x)\subset D$ eines Punktes $x\in D$ beschränkte partielle Ableitungen, das heißt

$$\sup_{y \in K_r(x)} \left| \frac{\partial f}{\partial x_i} \right| \le M, i = 1, \dots, n$$

dann ist f stetig in x.

Beweis Es genügt n=2. Für $(y_1,y_2)\in K_r(x)$

$$f(y_1, y_2) - f(x_1, x_2) = f(y_1, y_2) - f(x_1, y_2) + f(x_1, y_2) - f(x_1, x_2)$$

Nach dem 1-D Mittelwertsatz existieren $\xi, \eta \in K_r(x)$, sodass

$$|f(y_1, y_2) - f(x_1, x_2)| = \frac{\partial f}{\partial x_1}(\xi, y_2)(y_1 - x_1) + \frac{\partial f}{\partial x_2}(x_1, \eta)(y_2 - x_2)$$

$$\leq M(|y_1 - x_1| + |y_2 - x_2|)$$

Höhere partielle Ableitungen definieren sich durch sukzessives Ableiten, das heißt

$$\frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_k} f(x) = \frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}}$$

Beispiel

$$\frac{x_1}{x_2} := \frac{x_1^3 x_2 - x_1 x_2^3}{x_1^2 + x_2^2}$$

für $(x_1, x_2) \neq (0, 0), f(0, 0) = 0.$ f zweimal partiell differenzierbar, aber

$$\frac{\partial^2}{\partial x_1 \partial x_2} f(0,0) \neq \frac{\partial^2}{\partial x_2 \partial x_1} f(0,0)$$

Satz 2.6 Eine Funktion $f:D\to\mathbb{R}$ sei in einer Umgebung $K_r(x)\subset D$ eines Punktes $x\in D$ zweimal stetig partiell differenzierbar, dann gilt

$$\frac{\partial^2}{\partial x_i \partial x_j} f(x) = \frac{\partial^2}{\partial x_j \partial x_i} f(x), i, j = 1, \dots, n$$

Beweis n = 2. Sei $A := f(x_1 - h_1, x_2 + h_2) - f(x_1 + h_1, x_2) - f(x_1, x_2 + h_2) + f(x_1, x_2)$.

$$\varphi(x_1) := f(x_1, x_2 + h_2) - f(x_1, x_2) \implies A = \varphi(x_1 + h_1) - \varphi(x_1)$$

Mit dem Mittelwertsatz erhalten wir $A = h_1 \varphi'(x_1 + \theta_1 h_1), \theta_1 \in (0, 1).$

$$\varphi'(x_1) = \frac{\partial}{\partial x_1} f(x_1, x_2 + h_2) - \frac{\partial}{\partial x_1} f(x_1, x_2) = h_2 \frac{\partial^2}{\partial x_2 x_1} f(x_1, x_2 + \theta_1' h_2), \theta_1' \in (0, 2)$$

Analog verfahre man mit x_2 und erhalte für $\psi(x_2) := f(x_1 + h_1, x_2) - f(x_1, x_2)$

$$A = \psi(x_2 - h_2) - \psi(x_2) = h_2 \psi'(x_2 + \theta_2 h_2) = h_1 h_2 \frac{\partial^2}{\partial x_1 \partial x_2} f(x_1 + \theta_2 h_1, x_2 \theta'_2 h_2)$$

$$\implies \frac{\partial^2}{\partial x_2 \partial x_1} f(x_1 + \theta_1 h_1, x_2 + \theta'_1 h_2) = \frac{\partial^2}{\partial x_1 \partial x_2} f(x_1 + \theta_2 h_1, x_2 + \theta'_2 h_2)$$

$$\stackrel{h_1, h_2 \to 0}{\implies} \frac{\partial^2}{\partial x_2 \partial x_1} f(x_1, x_2) = \frac{\partial^2}{\partial x_1 \partial x_2} f(x_1, x_2)$$

Definition 2.7 $f: D \to \mathbb{R}$ partiell differenzierbar.

$$\operatorname{grad} f(x) := \left(\frac{\partial}{\partial x_1} f, \dots, \frac{\partial}{\partial x_n} f\right)^T \in \mathbb{R}^n$$

heißt **Gradient** von f in $x \in D$. Man schreibt $\nabla f(x) := \operatorname{grad} f \cdot f : D \to \mathbb{R}^n$ partiell differenzierbar.

$$\operatorname{div} f(x) := \frac{\partial}{\partial x_1} f_1(x) + \dots + \frac{\partial}{\partial x_n} f_n(x)$$

Es gilt:

div grad
$$f(x) := \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} f_i =: \Delta f(x)$$

Definition 2.8 $f: D \to \mathbb{R}^m$ partiell differenzierbar. Die Matrix der ersten partiellen Ableitungen

$$J_f := \left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{i=1,\dots,w\\j=1,\dots,n}} \in \mathbb{R}^{n \times w}$$

heißt die **Jacobi-Matrix** (manchmal auch **Fundametalmatrix**) von f in x. Im Fall n=m bezeichnet man $\det(J_f)$ als **Jacobideterminante**.

Definition 2.9 $f:D \to \mathbb{R}$ zweimal partiell differenzierbar. Die Matrix der zweiten Ableitungen

$$H_f(x) := \left(\frac{\partial^2}{\partial x_i \partial x_j} f\right)_{\substack{i=1,\dots,n\\j=1,\dots,w}} \in \mathbb{R}^{n \times m}$$

heißt Hesse-Matrix.

Definition 2.10 Sei $f: D \to \mathbb{R}^m$, dann nennen wir f in einem Punkt $x \in D$ (total differenzierbar), wenn die Funktion f in x sich linear approximieren lässt, das heißt es gibt eine lineare Abbildung $Df(x): \mathbb{R}^n \to \mathbb{R}^m$ (Differential) sodass in einer kleinen Umgebung von x gilt:

$$f(x+h) = f(x) + Df(x)h + w(h), h \in \mathbb{R}^n, x+h \in D$$

mit einer Funktion $w:D\to\mathbb{R}^m$, die die Eigenschaft hat

$$\lim_{\substack{x+h \in D \\ \|h\|_2 \to 0}} \frac{\|wh\|_2}{\|h\|_2} = 0$$

alternativ: $w(h) = \langle (\|h\|_2)$

Satz 2.11 Für Funktionen $f: D \to \mathbb{R}^m$ gilt:

1. Ist f in $x \in D$ differenzierbar, so ist f auch in x partiell differenzierbar und das Differential von f ist gegeben durch die Jacobi-Matrix.

2. Ist f partiell differenzierbar in einer Umgebung von x und sind zusätzlich die partiellen Ableitungen stetig in x, so ist f in x differenzierbar.

Beweis 1. Für differenzierbares f gilt für i = 1, 2:

$$\lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h} = \lim_{h \to 0} \left(Df(x)e_i + \frac{w(h)}{h} \right) = Df(x)e_i$$

2. Für ein stetig partiell differenzierbares f gilt mit $h = (h_1, h_2)$:

$$f(x+h) - f(x) = f(x_1 + h_1, x_2 + h_2) - f(x_1 + h_1, x_2) + f(x_1 + h_1, x_2) - f(x_1, x_2)$$

Mittelwertsatz

$$= h_2 \frac{\partial f}{\partial x_2} (x_1 + h_1, x_2 + \theta_2 h_2) + h_1 \frac{\partial f}{\partial x_1} (x_1 + \theta_1 h_1, x_2)$$

$$\theta_1, \theta_2 \in (0, 1)$$

$$= h_2 \left(\frac{\partial f}{\partial x_2} (x_1, x_2) + \omega_2 (h_1, h_2) \right) + h_1 \left(\frac{\partial f}{\partial x_1} (x_1, x_2) + \omega_1 (h_1, h_2) \right)$$

$$\omega_1(h_1, h_2) := \frac{\partial f}{\partial x_1} (x_1 + \theta_1 h_1, x_2) - \frac{\partial f}{\partial x_1} (x_1, x_2) \xrightarrow{h_1, h_2 \to 0} 0$$

$$\omega_2(h_1, h_2) := \frac{\partial f}{\partial x_2} (x_1 + h_1, x_2 + \theta_2 h_2) - \frac{\partial f}{\partial x_2} (x_1, x_2) \xrightarrow{h_1, h_2 \to 0} 0$$

Also ist f differenzierbar mit Ableitungen $Df(x) = \nabla f(x)$.

Bemerkung Es gelten folgende Implikationen: stetig partiell differenzierbar ⇒ (total) differenzierbar ⇒ partiell differenzierbar.

Satz 2.12 Seien $D_f \subset \mathbb{R}^n, Dg \subseteq \mathbb{R}^m$ offen und $g:D_g \to \mathbb{R}^n, f:D_f \to \mathbb{R}^r$. Ist g im Punkt $x \in D_g$ differenzierbar und f in $y = g(x) \in D_f$ differenzierbar, so ist die Komposition $h = f \circ g$ im Punkt x differenzierbar. Es gilt $D_x h(x) = D_y f(g(x)) \cdot D_x g(x)$. Hierbei ist · die Matrixmultiplikation.

Beweis Nach Voraussetzung $x \in D_g$ sodass $g(x) = y \in D_f$. Da sowohl f als auch g differenzierbar

$$g(x + h_1) = g(x) + D_x g(x) h_1 + \omega_g(h_1)$$

$$f(y + h_2) = f(y) + D_y f(y) h_2 + \omega_f(h_2)$$

$$\lim_{\substack{x+h_1 \in D_y \\ \|h_1\| \to 0}} \frac{\|\omega_g(h_1)\|}{\|h_1\|} = 0$$

$$\lim_{\substack{y+h_2 \in D_y \\ \|h_2\| \to 0}} \frac{\|\omega_f(h_2)\|}{\|h_2\|} = 0$$

$$(f \circ g)(x + h_1) = f(g(x + h_1)) = f(y + \eta), \quad \eta := D_x g(x) h_1 + \omega_g(h_1)$$

$$= f(y) + D_y f(y) \eta + \omega_f(\eta)$$

$$= f(y) + D_y f(y) D_x g(x) h_1 + D_y f(y) \omega_g(h_1) + \omega_f(D_x g(x) h_1 + \omega_g(h_1))$$

$$= (f \circ g)(x) + D_y f(y) D_x g(x) h_1 + \omega_{f \circ g}(h_1)$$

$$\omega_{f \circ g}(h_1) := D_y f(y) \omega_g(h_1) + \omega_f(D_x g(x) h_1 + \omega_g(h_1))$$

Es bleibt zu zeigen $\omega_{f \circ g} = \wr (h_1)$. Nach Voraussetzung gilt $\omega_{f \circ g} \xrightarrow{h_1 \to 0} 0$

Lemma 2.13 Sei $A:[a,b] \to \mathbb{R}^{n \times m}$ stetig, dann gilt

$$\left\| \int 0^1 A(s) ds \right\|_{M} \le \int_0^1 \|A(s)_M ds\|, \|A\|_{M} := \max\{|\lambda| \mid \lambda \in \sigma(A)\}$$

 $\int A = \left(\int a_{ij}
ight)_{ij}, \sigma(A) :=$ Menge der Eigenwerte von A

Satz 2.14 Sei $f:D o\mathbb{R}^m$ stetig differenzierbar mit J_f als Jacobi-Matrix, so gilt

$$f(x+h) - f(x) = \left(\int_0^1 J_f(x+sh)ds\right)h$$

Beweis Definiere $g_j(s) := f_j(x+sh)$, dann ist $g_{j_1} : [0,1] \to \mathbb{R}$, also gilt

$$f_j(x+sh) - f_j(x) = g_j(1) - g_j(0) = \int_0^1 g_j'(s) ds = \int_0^1 \sum_{i=1}^n \frac{\partial f_j}{\partial x_i}(x+sh) h_i ds$$

Bemerkung Im Fall m=1 kann man aus dem Mittelwertsatz für Integrale schließen, dass

$$f(x+h) - f(x) = \int_0^1 J_f(x+sh)h ds = J_f(x+\tau h)h$$

$$x_1 + h = x_2 \implies h = x_2 - x_1$$

Korollar 2.15 Sei $f: D \to \mathbb{R}^m$ stetig differenzierbar. Ferner sei $x \in D$ mit $K_r(x) \subset D, r > 0$, dann gilt

$$||f(x) - f(y)||_2 \le M||x - y||_2, y \in K_r(x), M := \sup_{z \in K_r(x)} ||J_f(z)||_M$$

das heißt die Abbildung ist in D lokal Lipschitz-stetig.

Beweis Nach Satz 2.14 gilt mit h = y - x

$$||f(y) - f(x)||_{2} = ||f(x+h) - f(x)_{2}|| = \left\| \int_{0}^{1} J_{f}(x+sh)h ds \right\|_{2}$$

$$\leq \int_{0}^{1} ||J_{f}(x+sh)h||_{2} ds \leq \int_{0}^{1} ||J_{f}(x+sh)||_{m} ||h||_{2} ds$$

$$\leq \sup_{0 \leq s \leq 1} ||J_{f}(x+sh)||_{2} \underbrace{||h||_{2}}_{||y-x||_{2}} \qquad \Box$$

Bemerkung Korollar 2.16 gilt mit beliebigen von Vektor-Matrix-norm induzierter Norm, siehe Übung 2.1.

Taylor-Entwicklung und Extremwerte in \mathbb{R}^n

Definition 2.16 (Multiindex Notation) Ein n-dimensionaler **Multiindex** ist ein Tupel $\alpha = (\alpha_1, \dots, \alpha_n)$ mit $\alpha_i \in \mathbb{N}$. Für Multiindizes sind die **Ordnung** $|\alpha|$ und die Fakultät $\alpha!$ definiert durch

$$|\alpha| := \alpha_1 + \alpha_2 + \dots + \alpha_n$$

 $\alpha! := \alpha_1! \cdot \dots \cdot \alpha_n!$

Für $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ wird gesetzt

$$x^{\alpha} := x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_n}$$

Für eine $|\alpha|$ -mal stetig differenzierbare Funktion wird gesetzt

$$\partial^{\alpha} f := \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n} f := \frac{\partial^{|\alpha|} f}{\partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}}$$

Bemerkung Wegen der Stetigkeit der Ableitung ist dieser Ausdruck unabhängig von der Reihenfolge der partiellen Ableitungen. Wir definieren

$$\sum_{|\alpha|=0}^{r} a_{\alpha} := \sum_{k=0}^{r} \sum_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha|=k}} a_{\alpha}$$

Beispiel 2.17 Für n=3 sind die Multiindizes $\alpha=(\alpha_1,\alpha_2,\alpha_3)$ der Ordnung $|\alpha|=2$ gegeben durch

$$(2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0,1), (0,0,1)$$

Die zugehörigen partiellen Ableitungen sind

$$\partial^{\alpha} f = \left(\partial_{x_1}^2 f, \partial_{x_2}^2 f, \partial_{x_3}^2 f, \partial_{x_1} \partial_{x_2} f, \partial_{x_2} \partial_{x_3} f, \partial_{x_2} \partial_{x_3} f\right)$$

$$\alpha! = (2, 2, 2, 1, 1, 1)$$

Schließlich ist

$$\sum_{|\alpha|=2} \partial^{\alpha} f = \partial_{x_1}^2 f + \partial_{x_2}^2 f + \partial_{x_3}^2 f + \partial_{x_1} \partial_{x_2} f + \partial_{x_2} \partial_{x_3} f + \partial_{x_2} \partial_{x_3} f$$

Satz 2.18 (Taylor-Formel) Sei $D\subset\mathbb{R}^n$ eine offene Menge und $f:D\to\mathbb{R}$ eine (r+1) -mal stetig differenziebare Funktion. Dann gilt für jeden Vektor $h\in\mathbb{R}^n$ mit $x+sh\in D, s\in[0,1]$ die Taylor-Formel

$$f(x+h) = \sum_{|\alpha| \le r} \frac{\partial^{\alpha} f(x)}{\alpha!} h^{\alpha} + R_{r+1}^{f}(x,h)$$

in differentieller Form

$$R_{r+1}^{f}(x,h) = \sum_{|\alpha|=r+1} \frac{\partial^{\alpha} f(x+\theta h)}{\alpha!} h^{\alpha}, \theta \in (0,1)$$

oder in integraler Form

$$R_{r+1}^{f}(x,h) = (r+1) \int_{0}^{1} \sum_{|\alpha|=r+1} \frac{\partial^{\alpha} f(x+th)}{\alpha!} h^{\alpha} (1-t)^{r} dt$$

Beweis Wir nehmen $g:[0,1]\to\mathbb{R}$ mit g(t):=f(x+th). g ist (r+1) mal stetig differenzierbar mit der k-ten Ableitung

$$g^{(k)}(t) = \sum_{i_1,\dots,i_k=1}^n \partial_{i_k} \dots \partial_{i_1} f(x+th) h_{i_1} \dots h_{i_k}$$

Wir zeigen des durch Induktion nach k (mit Hilfe von Kettenregel). Für k=1 gilt

$$g'(t) = \frac{\mathrm{d}}{\mathrm{d}t} f(x_1 + th_1, \dots, x_n + th_n) = \sum_{i=1}^n \partial_i f h_i$$

Sei die Behauptung als richtig angenommen für $k-1 \geq 1$. Dann gilt

$$g^{(k)}(t) = \frac{\mathrm{d}}{\mathrm{d}t} g^{(k-1)}(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{i_1,\dots,i_{k-1}=1}^n \partial_{i_{k-1}} \dots \partial_{i_1} f(x+th) h_1 \dots h_{i_{k-1}} \right)$$

$$= \sum_{i=1}^n \partial_i \left(\sum_{i_1,\dots,i_{k-1}=1}^n \partial_{i_{k-1}} \dots \partial_{i_1} f(x+th) h_{i_1} \dots h_{i_{k-1}} \right) h_1$$

$$= \sum_{i_1,\dots,i_k=1}^n \partial_{i_k} \dots \partial_{i_1} f(x+th) h_{i_1} \dots h_{i_k}$$

Es gilt

$$\partial_{i_k} \dots \partial_{i_1} f(x+th) h_{i_1} \dots h_{i_k} = \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n} f(x+th) h_1^{\alpha_1} \dots h_n^{\alpha_n}$$

(der Index $i \in \{1,\ldots,n\}$ kommt genau α_i mal vor und wegen Vertauschbarkeit der Ableitungen). Die Anzahl der k-Tupel (i_1,\ldots,i_k) von Zahlen $i_j \in \{1,\ldots,n\}$, bei denen die Zahl $i \in \{1,\ldots,n\}$ genau α_i -mal vorkommt mit $\alpha_1+\cdots+\alpha_n=k$ ist

$$\frac{k!}{\alpha_1! \dots \alpha_n!}$$

(Lemma unten) Wir bekommen

$$g^{(k)}(t) = \sum_{|\alpha|=k} \frac{k!}{\alpha_1! \dots \alpha_n!} \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n} f(x+th) h_1^{\alpha_1} \dots h_n^{\alpha_n}$$
$$= \sum_{|\alpha|=k} \frac{k!}{\alpha!} \partial^{\alpha} f(x+th) h^{\alpha}$$

Wir wenden die 1-dimensionale Taylor-Formel auf g(t) an. $\exists \theta \in [0,1]$ sodass

$$g(1) = \sum_{k=0}^{r} \frac{g^{k}(0)}{k!} + \frac{g^{(r+1)}(\theta)}{(r+1)!} = \sum_{k=0}^{n} \frac{g^{(k)}}{k!} + \frac{1}{r!} \int_{0}^{1} g^{(r+1)}(t)(1-t)^{r} dt$$

Man erhält

$$\frac{g^{(k)}(0)}{k!} = \sum_{|\alpha|=k} \frac{\partial^{\alpha} f(x)}{\alpha!} h^{\alpha}$$

$$\frac{g^{(r+1)}(\theta)}{(r+1)!} = \sum_{|\alpha|=r+1} \frac{\partial^{\alpha} f(x+\theta h)}{\alpha!} h^{\alpha}$$

$$\frac{1}{r!} \int_{0}^{1} g^{(r+1)}(t) (1-t)^{r} dt = (r+1) \int_{0}^{1} \sum_{|\alpha|=r+1} \frac{\partial^{\alpha} f(x+th)}{\alpha!} h^{\alpha} (1-t)^{r} dt$$

Dies impliziert die Taylor-Formel mit den Restgliedern in differentieller oder integraler Form. \Box

Lemma 2.19 (2.20) Sei $\alpha=(\alpha_1,\ldots,\alpha_n)$ mit $|\alpha|=k\geq 1$. Dann ist die Anzahl $N_\alpha(k)$ der k-Tupel von Zahlen $i_j=\{1,\ldots,n\}$, bei denen die Zahl $i\in\{1,\ldots,n\}$ genau α_i -mal vorkommt, bestimmt durch

$$N_{\alpha}(k) = \frac{k!}{\alpha_1! \dots \alpha_n!}$$

Beweis Wir ordnen die Indizes in dem k-Tupel

$$(i_1,\ldots,i_k) = \left(\underbrace{1,\ldots,1}_{\alpha_1},\underbrace{2,\ldots,2}_{\alpha_2},\ldots,\underbrace{n,\ldots,n}_{\alpha_n \text{ mal}}\right)$$

 $\alpha_1 + \cdots + \alpha_n = k$. Die Anzahl der möglichen Permutationen der k Elemente des k-Tupel ist k!. Das k-Tupel bleibt unverändert bei Permutationen von gleichen Elementen i. Insgesamt bekommen wir

$$N_{\alpha}(k) = \frac{k!}{\alpha!} \qquad \Box$$

Korollar 2.20 (2.21) Sei $D \subset \mathbb{R}^n$ eine offene Menge und $f:D \to \mathbb{R}$ eine r+1 mal stetig differenzierbare Funktion. Dann gilt für $x \in D$ und $h \in \mathbb{R}^n$ mit $x+sh \in D, s \in [0,1]$:

$$f(x+h) = \sum_{|\alpha| \le r+1} \frac{\partial^a f(x)}{\alpha!} h^{\alpha} + \omega_{r+1}(x,h)$$

wobei $\omega_{r+1}(x,0) = 0$ und $\omega_{r+1}(x,h) = i \left(\|h\|_2^{r+1} \right)$.

 $\operatorname{Im}\operatorname{Fall} r=0\operatorname{gilt}$

$$f(x+h) = f(x) + (\nabla f(x), h)_2 + \omega_1(x, h)$$

Im Fall r = 1 gilt:

$$f(x+h) = f(x) + (\nabla f(x), h)_2 + \frac{1}{2}(H_f(x)h, h)_2 + \omega_2(x, h)$$

Beweis

$$f(x+h) = \sum_{|\alpha| \le r} \frac{\partial^{\alpha} f(x)}{\alpha!} h^{\alpha} + \sum_{|\alpha| = r+1} \frac{\partial^{\alpha} f(x+\theta h)}{\alpha!} h^{\alpha}$$
$$= \sum_{|\alpha| \le r+1} \frac{\partial^{\alpha} f(x)}{\alpha!} h^{\alpha} + \sum_{|\alpha| = r+1} r_{\alpha}(x,h) h^{\alpha}$$

wobei

$$r_{\alpha}(x,h) := \frac{\partial^{\alpha} f(x+\theta h) - \partial^{\alpha} f(x)}{\alpha!}$$

 $\lim_{h\to 0} r_{\alpha}(x,h)=0$, wegen der Stetigkeit von $\partial^{\alpha} f$ für $|\alpha|=r+1$. Wir setzen $\omega_{r+1}(x,h):=\sum_{|\alpha|=r+1} r_{\alpha}(x,h)h^{\alpha}$. Es gilt

$$\lim_{h \to 0} \frac{\omega(h)}{\|h\|_2^{r+1}} = 0$$

weil

$$\frac{|h^{\alpha}|}{\|h\|_{2}^{\alpha}} = \frac{|h_{1}^{\alpha_{1}}| \cdot \ldots \cdot h_{n}^{\alpha_{n}}}{\|h\|_{2}^{\alpha_{1}} \cdot \ldots \cdot \|h\|_{2}^{\alpha_{n}}} \le 1 \qquad |\alpha| = r + 1$$

Für r=0 gilt

$$f(x+h) = \sum_{|\alpha| \le 1} \frac{\partial^{\alpha} f(x)}{\alpha!} h^{\alpha} + \omega_1(x,h)$$

$$= f(x) + \sum_{|\alpha| = 1} \frac{\partial^{\alpha} f(x)}{\alpha!} h^{\alpha} + \omega_1(x,h)$$

$$= f(x) + \sum_{i=1}^{n} \partial_i f(x) h_i + \omega_1(x,h)$$

$$= f(x) + (\nabla f(x), h)_2 + \omega_1(x,h)$$

Für r=1

$$f(x+h) = \sum_{|\alpha| \le 2} \frac{\partial^{\alpha} f(x)}{\alpha!} h^{\alpha} + \omega_2(x,h)$$

$$= f(x)(\nabla f(x), h)_2 + \sum_{|\alpha| = 2} \frac{\partial^{\alpha} f(x)}{\alpha!} h^{\alpha} + \omega_2(x,h)$$

$$= f(x) + (\nabla f(x), h)_2 + \frac{1}{2} \sum_{i,j=1}^n \partial_i \partial_j f(x) h_i h_j + \omega_2(x,h)$$

$$= f_1(x) + (\nabla f(x), h)_2 + \frac{1}{2} (H_f(x)h, h)_2 + \omega_2(x,h)$$

Definition 2.21 Sei $D \subset \mathbb{R}^n$ eine offene Menge, $x \in D$ und $f: D \to \mathbb{R}$ beliebig oft differenzierbar.

$$F_{\infty}^{f}(x+h) = \sum_{|\alpha|=0}^{\infty} \frac{\partial^{\alpha} f(x)}{\alpha!} h^{\alpha}$$

heißt die Taylor-Reihe von f in x

Korollar 2.22 Sei $D \subset \mathbb{R}^n$ eine offene Menge, $f:D \to \mathbb{R}$ beliebig oft differenzierbar. Dann konvergiert die Taylor-Reihe von f und stellt f dar, wenn

$$R_{r+1}^f(x,h) \xrightarrow{r \to \infty} 0 \quad x \in D$$

Hinreichend dafür ist, dass die partielle Ableitung gleichmäßig beschränkt sind:

$$\sup_{|\alpha| \ge 0} \sup_{x \in D} |\partial^{\alpha} f(x)| < \infty$$

Beweis

$$\left\| R_{r+1}^f(x,h) \right\|_{\infty} \le \sum_{|\alpha|=r+1} \frac{\left| \partial^{\alpha} f(x+\theta h) \right|}{\alpha!} \|h\|_{\infty}^{|\alpha|} \le M(f) \sum_{|\alpha|=r+1} \frac{1}{\alpha!} \|h\|_{\infty}^{|\alpha|} \to 0$$

Definition 2.23 Eine Funktion $f:D\to\mathbb{R}$ hat in einem Punkt $x\in D\subset\mathbb{R}^n$ ein lokales Extremum, wenn auf einer $K_\sigma(x)\subset\mathbb{R}^n$ (Kugelumgebung) gilt

$$f(x) = \sup_{y \in K_{\sigma}(x) \cap D} f(y) \quad \text{oder} \quad f(x) = \inf_{y \in K_{\sigma}(x) \cap D} f(x)$$

Das Extremum heißt strikt, wenn es in $K_{\sigma}(x) \cap D$ nur in dem Punkt angenommen wird. Das Extremum heißt global, wenn $f(x) = \sup_{y \in D} f(y)$ (oder $\inf_{y \in D}$)

Satz 2.24 (Notwendige Extremalbedingung) Sei $f:D\to\mathbb{R}$ stetig differenzierbar, D offen. Hat f in einem Punkt $\hat{x}\in D$ ein lokales Extremum, so gilt $\nabla f(\vec{x})=0$

Beweis Angenommen $f: D \to \mathbb{R}$ hat in $x \in D$ ein lokales Extremum. Wir nehmen $g_i(t) := f(\vec{x} + te^{(1)}), i = 1, \ldots, n, e^{(i)}$ Einheitsvektor in \mathbb{R}^n . g_i ist auf einem nichtleeren $(-\delta_i, \delta_i) \subset \mathbb{R}$ definiert und hat lokales Extremum in $t = 0 \implies g_i'(0) = 0$

$$0 = g_i'(0) = \sum_{j=1}^n \partial_j f(\vec{x}) \delta_{ij} = \partial_i f(\vec{x}) \quad i = 1, \dots, n \implies \nabla f(\vec{x}) = 0$$

Satz 2.25 (Hinreichende Extremalbedingung) Sei $D \subset \mathbb{R}^n$ offen und $f:D \to \mathbb{R}$ zweimal stetig differenzierbar und $\nabla f(\vec{x}) = 0$ in einem $\vec{x} \in D$. Ist die Hesse Matrix $H_f(x)$ in \vec{x} positiv definit (das heißt alle Eigenwerte positiv), so liegt in \vec{x} ein striktes lokales Minimum. Ist sie negativ definit (das heißt alle Eigenwerte negativ), so liegt in \vec{x} ein striktes lokales Maximum. Ist sie indefinit (hat sowohl positive als auch negative Eigenwerte), so kann in \vec{x} kein lokales Extremum liegen.

Beweis Nach Korollar 2.21 gilt

$$f(x+h) = f(x) + (\nabla f(x), h)_2 + \frac{1}{2}(H_f(x)h, h)_2 + \omega_2(x, h)$$

wobei

$$\lim_{\substack{h \to 0 \\ h \neq 0}} \frac{\omega_2(x, h)}{\|h\|_2^2} = 0$$

$$\nabla f(\vec{x}) = 0 \implies f(\vec{x} + h) - f(\vec{x}) = \frac{1}{2} (H_f(\vec{x})h, h)_2 + \omega_2(\vec{x}, h)$$

Ist $H_f(\vec{x})$ positiv definit, so gilt

$$(H_f(\vec{x})h, h)_2 \ge \lambda ||h||_2^2, h \in \mathbb{R}^n$$

wobei λ der kleinste Eigenwert ist.

$$\implies f(\vec{x} + h) - f(\vec{x}) \ge \frac{1}{2}\lambda \|h\|_2^2 + \omega(\vec{x}, h)$$

Für kleines $\|h\|_2 < \sigma, h \neq 0$ ist

$$|\omega_2(\vec{x},h)| < \frac{1}{2}\lambda ||h||_2^2$$

und somit

$$f(\vec{x} + h) - f(\vec{x}) > \frac{1}{2}\lambda ||h||_2^2 - \frac{1}{2}\lambda ||h||_2^2 = 0$$

 \implies \vec{x} ist ein lokales Maximum. Ist $H_f(\vec{x})$ negativ definit \implies \vec{x} ist ein lokales Maximum (analog).

Ist $H_f(\vec{x})$ indefinit $\implies \exists \lambda_+ > 0$ (mit Eigenvektor z_+) und $\exists \lambda_- < 0$ (mit EV z_-)

$$(H_f(\vec{x})z_+, z_+)_2 = \lambda_+ ||z_+||_2^2 > 0$$

$$(H_f(\vec{x})z_-, z_-)_2 = \lambda_- ||z_-||_2^2 < 0$$

Für genübend kleines t>0 gilt dann

$$f(\vec{x} + tz_{+}) - f(\vec{x}) > 0$$
 $f(\vec{x} + tz_{-}) - f(\vec{x}) < 0$

 \implies kein Extremum in \vec{x}

Beispiel 2.26 1. $f_1(x) = a + x_1^2 + x_2^2$

$$\nabla f_2(x) = (2x_1, 2x_2) = 0 \iff \vec{x}_1 = 0 \land \vec{x}_2 = 0$$

$$H_{f_1}(x) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

positiv definit $\implies \vec{x} = 0$ ist Minimum.

2.
$$f_2(x) = a - x_1^2 - x_2^2$$

$$\nabla f_2(x) = (-2x_1, -2x_2) \implies \vec{x} = 0, H_{f_2}(x) = \begin{pmatrix} -2 & 0\\ 0 & -2 \end{pmatrix}$$

negativ definit $\implies \vec{x} = 0$ ist Maximum.

Bemerkung Ist die Hesse Matrix in einer Nullstelle das Gradienten semidefinit (des heißt $\exists \lambda_i = 0$), so lassen sich keine allgemeinen Aussagen über lokale Extrema machen.

2.1 Satz über implizite Funktionen und der Umkehrsatz

Problemstellung: $F(x,y) = x^2 + y^2 - 1$. Betrachte F(x,y) = 0

$$\implies y(x) = \pm \sqrt{1 - x^2}$$

Satz 2.27 (Satz über implizite Funktionen) Sei $U_1 \subseteq \mathbb{R}^n$, $U_2 \subseteq \mathbb{R}^m$ offene Menge und $F: U_1 \times U_2 \to \mathbb{R}^m$, $(x,y) \mapsto F(x,y)$ sei eine stetig differenzierbare Funktion. Sei $(a,b) \in U_1 \times U_2$ mit F(a,b) = 0. Die $(m \times n)$ Matrix

$$\frac{\partial F}{\partial y} := \left(\frac{\partial F_i}{\partial l_j}\right)_{i,j=1,\dots,m}$$

in (a,b) invertierbar. Dann gibt es offene Mengen $V_1\subseteq U_1,V_2\subseteq U_2,V_1$ Umgebung von a, V_2 Umgebung von b sowie eine eindeutige stetig differenzierbare Funktion $\varphi:V_1\to V_2$ mit $\varphi(a)=b$ und $F(x,\varphi(x))=0 \forall x\in V_1$. (Eindeutigkeit: Ist $(x,y)\in V_1\times V_2$ mit $F(x,y)=0\implies y=\varphi(x)$.)

Beweis Ohne Beschränkung der Allgemeinheit (a, b) = (0, 0). Wir setzen

$$B := \frac{\partial F}{\partial y}(0,0) \in \mathrm{GL}(m,\mathbb{R})$$

und betrachten $G:U_1\times U_2\to\mathbb{R}^m$ durch $G(x,y):=y-B^{-1}F(x,y)$ definiert. G ist stetig differenzierbar, weil F es ist. Dann gilt

$$\frac{\partial G}{\partial y} = \mathbb{1} - B^{-1} \frac{\partial F}{\partial y}(x, y)$$

mit

$$\frac{\partial G}{\partial y}(0,0) = \mathbb{1} - B^{-1}B = 0$$

Es gilt: $F(x,y) = 0 \iff G(x,y)y$.

Aufgrund der Stetigkeit von $\frac{\partial G}{\partial y}$ gibt es $W_1\subseteq U_1,W_2\subseteq U_2$ (jeweils um 0), sodass

$$\left\| \frac{\partial G}{\partial y} \right\|_2 \le \frac{1}{2} \, \forall (x, y) \in W_1 \times W_2$$

Wähle r>0, sodass $V_2:=\{y\in\mathbb{R}^n\mid \|y\|_2\leq r\}\subseteq W_2$ und da G(0,0)=0 gibt es offene Umgebung $V_1\subset W_1$, sodass

$$\sup_{x \in V_1} \|G(x,0)\|_2 =: \varepsilon \le \frac{r}{2}$$

Es gilt für alle $x \in V_1$ und $y, \eta \in V_2$:

$$||G(x,y) - G(x,y)|| \le \frac{1}{2}||y - \eta||$$

Ferner gilt

$$||G(x,y)|| \le ||G(x,y) - G(x,0)|| + ||G(x,0)||$$

$$\le \frac{1}{2}||y|| + \frac{r}{2} \le \frac{r}{2} + \frac{r}{2} = r$$

Die Abbildung $y\mapsto G(x,y)$ bildet V_2 in sich selbst ab und ist eine Kontraktion. Also existiert ein eindeutiger Fixpunkt y nach Banachschem Fixpunktsatz sodass G(x,y)=y beziehungsweise $y=\varphi(x), F(x,\varphi(x))=0$. Wir setzen

$$A := \{ \varphi \in C_b(V_1, \mathbb{R}^m) \mid \|\varphi\|_{\infty} \le r \} = \{ \varphi \in C_b(V_1, \mathbb{R}^m) \mid \varphi(V_1) \subset V_2 \}$$

Definiere $\Phi: A \to A, \varphi \mapsto G(x, \varphi(x))$.

$$\|\Phi(\varphi_1) - \Phi(\varphi_2)\|_{\infty} = \sup_{x \in V_1} \|G(x, \varphi_1(x)) - G(x, \varphi_2(x))\| \le \frac{1}{2} \sup_{x \in V_1} \|\varphi_1(x) - \varphi_2(x)\|$$
$$= \frac{1}{2} \|\varphi_1 - \varphi_2\|_{\infty}$$

 $\implies \text{ es existiert ein eindeutiges } \varphi \in C_b(V_1,\mathbb{R}^m) \text{ mit } \Phi(\varphi) = \varphi \iff G(x,\varphi(x)) = \varphi(x). \text{ Nach eventueller Verkleinerung von } V_1 \text{ könne wir annehmen, dass } \frac{\partial F}{\partial y} \text{ in jedem Punkt } (x,(\varphi(x))), x \in V_1 \text{ invertierbar ist. Wir zeigen de Differenziebarkeit von } \varphi \text{ nur in 0}.$

$$A:=\frac{\partial F}{\partial x}(0,0)\in M(m\times n,\mathbb{R}),\quad B:=\frac{\partial F}{\partial y}(0,0)\in \mathrm{GL}(m,\mathbb{R})$$

Aus der Differenzierbarkeit von F in (0,0) folgt: $F(x,y)=Ax+By+\omega(x,y)$. Nun gilt $F(x,\varphi(x))=0 \forall x \in V_1$, das heißt

$$\varphi(x) = -B^{-1}Ax - B^{-1}\omega(x, \varphi(x))$$

Es muss also gezeigt werden, dass $\omega(x, \varphi(x)) = l(\|(x, \varphi(x))\|)$. Zeige dazu, dass es eine Umgebung $V_1 \subset V_1$ von 0 gibt und eine Konstate K > 0, sodass

$$\|\varphi(x)\| \le K\|x\| \, \forall x \in V_1' \quad p_1 := \|B^{-1}A\| \quad c_2 := \|B^{-1}\|$$

und wegen $\omega(x,y)=\prime(\|x,y\|)$ gibt es zu $\varepsilon:=1/(2c_2)$ eine Umgebung $V'\subset V_1\times V_2$ von 0,0, sodass

$$\|\omega(x,y)\| = \varepsilon \|(x,y)\| \le \frac{1}{2c_2} (\|x\| + \|y\|) \, \forall (x,y) \in V'$$

Wegen der Stetigkeit von φ gibt es eine Nullumgebung $V_1' \subset V_1$, sodass der Graph $\varphi \mid_{V_1'}$ ganz in V' enthalten ist. Dahit gilt

$$\|\omega(x,\varphi(x))\| \le \frac{1}{2c_2}(\|x\| + \|\varphi(x)\|)$$

Außerdem gilt

$$\|\varphi(x)\| \le c_1 \|x\| + c_2 \|\omega(x, \varphi(x))\|$$

$$leq\left(c_1 + \frac{1}{2}\right) \|x\| + \frac{1}{2} \|\varphi(x)\|$$

$$\implies \|\varphi(x)\| \le 2\left(c_1 + \frac{1}{2}\right) \|x\|$$

Beispiel 2.28 $F(x,y) = x^2 + y^2 - 1 = 0 \implies D_y F = 2y$. Wir können demnach in einer Umgebung von $(\hat{x}^2, \hat{y}^2), \hat{x}^2 + \hat{y}^2 - 1 = 0$ mit $\hat{y} \neq 0$ eindeutig nach y auflösen und erhalten

$$y = \pm \sqrt{1 - x^2}$$

Definition 2.29 (2.27) Sei $D \subset \mathbb{R}^n$ offen und $f: D \to \mathbb{R}^n$ heißt **regulär** in einem Punkt $\hat{x} \in D$, wenn f in einer Umgebung $K_{\delta}(\hat{x}) \subset D$ von \hat{x} stetig differenzierbar und die Jacobi-Matrix J_f regulär ist. (invertierbar). f heißt regulär in D, wenn f in jedem Punkt regulär ist.

Satz 2.30 (Satz von der Umkehrabbildung) Sei $D \subset \mathbb{R}^n$ offen, $f: D \to \mathbb{R}^n$ regulär in einem Punkt $\hat{x} \in D$. Dann gibt es eine offene Umgebung $V(\hat{x}) \subset D$, die von f bijektiv auf eine offene Umgebung $U(\hat{y}) \subset \mathbb{R}^n$ ($\hat{y} = f(\hat{x})$) abgebildet wird. Die Umkehrabbildung ist ebenfalls regulär in \hat{y} . $f^{-1}: U(\hat{y}) \to V(\hat{x})$. Für die Funktionalmatrix und -determinante gilt:

$$J_{f^{-1}}(\hat{y}) = (J_f(\hat{x}))^{-1}, \quad \det J_{f^{-1}}(\hat{y}) = \frac{1}{\det J_f(\hat{x})}$$

Beweis Sei $\hat{x} \in D$ und definiere $\hat{y} := f(\hat{x})$. Betrachte $F : \mathbb{R}^n \times D \to \mathbb{R}^n$, F(x,y) = y - f(x) und offenbar gilt $F(\hat{y},\hat{x}) = 0$ und $D_x F(y,x) = -J_f(x)$ und damit regulär in \hat{x} . Nach dem Satz über implizite Funktionen existieren Umgebungen $U(\hat{y})$ und $U(\hat{x})$, sowie eine eindeutige, stetige differenzierbare Funktion $\varphi: U(\hat{y}) \to U(\hat{x})$ sodass $0 = F(y,\varphi(y)) = y - f(\varphi(y)), y \in U(\hat{y})$. Das bedeutet zu jedem $y \in U(\hat{y})$ kann man genau ein $x = \varphi(y) \in U(\hat{x})$ finden mit y = f(x). Wir setzen

$$V(\hat{x}) := U(\hat{x}) \cap f^{-1}(U(\hat{y})) = \{ x \in U(\hat{x}) \mid f(x) \in U(\hat{y}) \}$$

 $V(\hat{x})$ offen. Fermer wird $V(\hat{x})$ bijktiv von f abgebildet mit zugehörgen Umkehrabbildung $f^{-1}=\varphi$. Wegen $J_{f\circ f^{-1}}=J_{\mathrm{id}}=I$ und der Ketteregel gilt

$$J_f(x) \cdot J_{f^{-1}}(f(x)) = I \implies J_{f^{-1}}(f(x)) = (J_f(x))^{-1}$$

Beispiel 2.31 Transformation der Polarkoordinaten auf kartesische Koordinaten. Polarkoodinaten: $(r, \theta) \rightarrow$ kartesische Koordinaten (x_1, x_2) .

$$(x_1, x_2) = f(r, \theta) := (r \cos \theta, r \sin \theta)$$
 $f : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}^2$

$$J_f(r,\theta) = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} \quad \det J_f(r,\theta) = r > 0$$

f ist also auf $D=\mathbb{R}_+ imes\mathbb{R}$ regulär. Nach dem Satz über Umkherabbildung ist f also überall in D lokal umkehrbar

$$J_{f^{-1}}(x_1, x_2) = J_f(r, \theta)^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -r^{-1} \sin \theta & r^{-1} \cos \theta \end{pmatrix}$$

Umrechnung in die Variablen $(x_1, x_2) = (r \cos \theta, r \sin \theta)$ liefert

$$r = \sqrt{x_1^2 + x_2^2}, \cos \theta = \frac{x_1}{r}, \sin \theta = \frac{x_2}{r}$$

$$J_{f^{-1}}(x_1, x_2) = \frac{1}{\sqrt{x_1^2 + x_2^2}} \begin{pmatrix} x_1 \sqrt{x_1^2 + x_2^2} & x_1 \sqrt{x_1^2 + x_2^2} \\ -x_2 & x_1 \end{pmatrix}$$

Wir haben bekommen die Jacobi-Matrix von f^{-1} ohne f^{-1} explizit zu berechnen. Wir berechnen jetzt die f^{-1} $f: U \to V$ wit $U:=\mathbb{R}_+ \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), V:=\mathbb{R}_+ \times \mathbb{R}$ ist bijktiv

$$f^{-1}(x_1, x_2) \left(\sqrt{x_1^2 + x_2^2}, \arctan\left(\frac{x_2}{x_1}\right) \right)$$

2.2 Extremalaufgaben mit Nebenbedingungen

Sei $f:D\to\mathbb{R}$ und $g:D\to\mathbb{R}$ differenziebare Funktionen auf einer offenen Meng $D\subset\mathbb{R}^n$. Wir suchen $\hat{x}\in D$, sodass

$$f(\hat{x}) = \inf\{f(x) \mid x \in U(\hat{x}), g(\hat{x}) = 0\}$$

für eine Umgebung $U(\hat{x})$ von \hat{x} , oder

$$f(\hat{x}) = \sup\{f(x) \mid x \in U(\hat{x}), g(\hat{x}) = 0\}$$

Satz 2.32 (Lagrange Multiplikatoren) Sei $D \subset \mathbb{R}^n$ offen und $f,g:D \to \mathbb{R}$ stetig differenzierbar. Ferner sei $\hat{x} \in D$ ein Punkt, in dem f ein lokales Extremum unter der Nebenbegingung $g(\hat{x}) = 0$ hat. Das heißt

$$f(\hat{x}) = \inf_{x \in U \cap Ng} f(x)$$

$$\sup_{x \in U \cap Ng} f(x)$$

wobei $Ng:=\{x\in D\mid g(x)=0\}$. Ist dass $\nabla g(\hat{x})\neq 0$, so gilt es ein $\hat{\lambda}\in\mathbb{R}$

$$\nabla f(\hat{x}) = \hat{\lambda} \nabla g(\hat{x})$$

Der Parameter $\hat{\lambda}$ ist der sogenannte **Lagrange-Multiplikator**.

Beweis Wegen $\nabla g(\hat{x}) \neq 0$ können wir (nach evetueller Umnummerierung der Koordinaten) annehmen, dass $\partial_n g(\hat{x}) \neq 0$

$$\hat{x} := (\hat{x}', \hat{x}_n) \in \mathbb{R}^n, \hat{x}' \in \mathbb{R}^{n-1}$$

Nach dem Impliziten Funktionen Satz existieren für die Gleichung $F(x',x_n):=g(x)=0$ die Umgebungen $U(\hat{x}')\subset\mathbb{R}^{n-1}$ und $U(\hat{x}_n)\subset\mathbb{R}$ mit $U(\hat{x}')\times U(\hat{x}_n)\subset D$ und eine eindeutige Funktion $\varphi:U(\hat{x}')\to U(\hat{x}_n)$ stetig differenzierbar und sodass

$$F(x', \varphi(x')) = 0 \quad x' \in U(\hat{x})$$

$$Ng \cap (U(\hat{x}_n) \times U(\hat{x})) = \{x \in U(\hat{x}_n) \times U(\hat{x}') : x_n = \varphi(x')\}$$

Mit Hilfe der Kettenregel bekommen wir

$$\partial_i g(\hat{x}) + \partial_n g(\hat{x}) \partial_i \varphi(\hat{x}') = 0 \quad i = 1, \dots, n-1$$

Da f auf Ng im Punkt \hat{x} ein lokales Extremum hat, hat die Funktion $f(x',\varphi(x'))$ auf $U(\hat{x}')$ ein lokales Extremum.

$$\implies 0 = \partial_i f(\hat{x}) + \partial_n f(\hat{x}) \partial_i \varphi(\hat{x}) \quad i = 1, \dots, n-1$$

$$\implies \partial_n f(\hat{x}) = \hat{\lambda} \partial_n g(\hat{x}) \qquad \hat{\lambda}_n := \frac{\partial_n f(\hat{x})}{\partial_n g(\hat{x})}$$

$$\implies \partial_i f(\hat{x}) = \hat{\lambda} \partial_i g(\hat{x}) \quad i = 1, \dots, n$$

$$\implies \nabla f(\hat{x}) = \hat{\lambda} \nabla g(\hat{x})$$

Bemerkung Jedes lokale Minimum \vec{x} der Funktion f unter der Nebenbedingung $g(\hat{x}) = 0$ korrespondiert zu einem sogenanntem "stationären Punkt der Lagrange Funktion"

$$\mathcal{L}(x,\lambda) := f(x) - \lambda g(x) \quad (x,\lambda) \in D \times \mathbb{R}$$

$$\nabla_{x,\lambda} \mathcal{L}(\hat{x}, \hat{y}) = \begin{pmatrix} \nabla_x f(\hat{x}) - \hat{\lambda} \nabla_x g(\hat{x}) \\ g(\hat{x}) \end{pmatrix} = 0$$

Beispiel 2.33 $f(x):=(x_1\cdot\ldots\cdot x_n)^2, f:\mathbb{R}^n\to\mathbb{R}$. Wir suchen das Maximum von f auf der Sphäre $S_1=\{x\in\mathbb{R}^n\mid \|x\|_2=1\}$ das heißt

$$g(x) := ||x||_2 - 1 = \sum_{i=1}^{n} x_1^2 - 1$$

Nebenbedingung: g(x) = 0. $s \subset \mathbb{R}^n$ kompakt $\implies f$ nimmt auf S_1 sein Maximum und Minimum an.

$$|_{x \in S_1} f(x) = 0$$
 $\max_{x \in S_1} f(x) > 0$

Ferner $\nabla g(x)=2x\neq 0$ auf S_1 . Nach dem Satz 2.30 sind die Extremalpunkte die Lösungen $(x,\lambda)\in\mathbb{R}^n\times\mathbb{R}$ vom Gleichungssystem

$$\partial_i f(x) = \lambda \partial_i g(x) \quad i = 1, \dots, n$$

$$\implies 2(x_1 \cdot \dots \cdot x_n)^2 = 2\lambda x_i$$

$$\implies (x_1 \cdot \dots \cdot x_n)^2 = \lambda x_i^2 \quad i = 1, \dots, n$$

Weil $x_i \neq 0$ im Maximum $\implies \lambda \neq 0$

$$\implies \sum_{i=1}^{n} (x_1 \cdot \dots \cdot x_n)^2 = \lambda \sum_{i=1}^{n} x_i^2 = \lambda$$

$$\implies n(x_1 \cdot \dots \cdot x_n)^2 = \lambda$$

$$\implies x_i^2 = \frac{1}{n} \quad i = 1, \dots, n$$

3 Gewöhnliche Differentialgleichungen

Grundbegriffe

Zu einer gegebenen Funktion $f: \mathbb{R} \to \mathbb{R}$ suchen wir eine differenzierbare Funktion $x: \mathbb{R} \to \mathbb{R}$, deren Ableitung durch $f(\cdot)$ beschrieben wird. Wir suchen also eine Funktion sodass

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = f(t)\forall t \in \mathbb{R}$$

Bemerkung zur Notation

$$x' = f$$
$$\dot{x} = f$$

Beispiel 3.1 Für gegebene Geschwindigkeit (in Ableitung von Zeit) suchen wir die Position des Körpers auf einer festen eindimensionalen Achse.

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = f(t)\forall t \in \mathbb{R}$$

Wir müssen noch die Position zu irgendeinem Zeitpunkt kennen. Das heißt die Lösung ist nicht eindeutig solange wir keinen Wert $x(t_0) \in \mathbb{R}$ festlegen. Das Problem

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = f(t)$$
$$x(t_0) = x_0$$

lässt sich lösen wenn $f:\mathbb{R} \to \mathbb{R}$ stetig ist. Dann besagt nämlich des Hauptsatz der Integralrechnung, dass

$$x(\cdot): \mathbb{R} \to \mathbb{R}, t \to x_0 + \int_{t_0}^t f(s) ds$$

differenzierbar ist und die Ableitung f(t) begrenzt ist.

Ziel:

- Existenz von Lösung
- · Eindeutigkeit von Lösung
- · Verhalten

Beispiel 3.2

$$\frac{\mathrm{d}x}{\mathrm{d}t} = rx$$

r: Konstante. In $t_0 = 0$: $x(0) = x_0$

$$x(\cdot) = c \cdot e^{rt}$$

$$x_0 = x(0) = c$$

$$\implies x(t) = x_0 e^{rt}$$

Definition 3.3 Gegeben sei eine nicht leere Teilmenge $D \subset \mathbb{R} \times \mathbb{R}^m$ und eine Funktion $f:D \to \mathbb{R}^m$. Dann nennt man

$$x' = f(\cdot, x)$$

eine explizite Gewöhnliche Differenzialgleichung (GDGL)(ODE - ordinary differential equation) 1. Ordnung. Im Fall m=0 wird die Gleichung als **Skalar** bezeichnet. Eine solche Differentialgleichung heißt **autonom** falls f nicht explizit von t abhängt (sonst: **nichtautonom**). Für m>1 bekommen wir ein System von Gewöhnlichen Differentialgleichungen. Eine Funktion $x:I\to\mathbb{R}^m,I\subset\mathbb{R}$, heißt eine Lösung der Differentialgleichung, wenn

- 1. $\forall t \in R \subset \mathbb{R} \text{ liegt } (t, x(t)) \in D$
- 2. $x(\cdot)$ ist differenzierbar, das heißt

$$\forall t \in I \exists x'(t) = \lim_{\substack{h \to 0 \\ t+h \in I}} \frac{x(t+h) - x(t)}{h} \in \mathbb{R}^m$$

3.
$$\forall t \in I \text{ gilt } x'(t) = f(t, x(t))$$

Bei **Anfangswertproblemen** zu dieser Gewöhnlichen Differentialgleichung ist noch ein Tupel $(t_0, x_0) \in D$ gegeben und gesucht ist eine Funktion die Bedingungen 1. bis 3. und $x(t_0) = x_0$ erfüllt.

Konstruktion von Lösungen

Geometrische Interpretation: Eine skalare Gleichung x'=f(t,x) bestimmt ein Richtungsfeld, das heißt $\forall (t,x) \in \mathbb{R}^2$ wird durch x'=f(t,x) eine Steigung gegeben. Gesucht sind x(t) deren Graph $G(x)=\{(t,x)\}$ in jedem Punkt die vorgegebene Steigung hat. In einfachen Fällen kann mit

aus ihrem Richtungsfeld die mögliche Lösung ergeben.

Methode der Trennung der Variablen

Wir betrachten die separable Differentialgleichung

$$x' = f(x,t) = a(t)g(x)$$

Sei x einen Lösung. Falls $g(t) \neq 0$ bekommen wir

$$\int_{t_0}^t \frac{x'(s)}{g(x(s))} \mathrm{d}s = \int_{t_0}^t a(s) \mathrm{d}s$$

Mit Hilfe der Substitution z:=x(s) ergibt sich (mit $\frac{\mathrm{d}z}{\mathrm{d}x}=x'(s)$)

$$\int_{x_0}^{x(t)} \frac{1}{g(z)} dz = \int_{t_0}^t a(s) ds$$

Beispiel 3.4 (3.4)

$$\begin{cases} x' = x^2 \\ x(t_0) = x_0 \end{cases}$$

$$\int_{x_0}^{x(t)} \frac{dz}{z^2} = \int_{t_0}^{t} 1 ds$$
$$-\frac{1}{z} \Big|_{x_0}^{x(t)} = t - t_0$$
$$t - t_0 = \frac{1}{x_0} - \frac{1}{x(t)}$$
$$x(t) = \frac{x_0}{1 - x_0(t - t_0)}$$

Falls $t_0 = 0, x(0) = 1$:

Dies ist keine **globale** ($\forall t \in \mathbb{R}_+$) Lösung, da man x(t) nicht nach $t = t^*$ fortsetzen kann.

Methode der Variation der Konstanten

Wir betrachten die Differentialgleichung $x'=a(t)x(t)+b(t), t\in I=[t_0,t_0+\tau]\subset\mathbb{R}$ mit den stetigen Funktionen $a,b:I\to\mathbb{R}$ Die zugehörige homogene Differentialgleichung y'=ay hat eine Lösung in der Form

$$y(t) = c \exp \int_{t_0}^t a(s) ds, \quad c \in \mathbb{R}$$

(Seperation der Variablen). Sei y(t) eine Lösung mit c=1. Zur Bestimmung einer Lösung der **inhomogenen Differentialgleichung** wird c als Funktion von t angesetzt. Ansatz: x(t)=c(t)y(t)

$$\implies x'(t) = c'(t)y(t) + c(t)y'(t)$$

$$= c'(t) \exp \int_{t_0}^t a(s) ds + a(t)x(t)$$

$$\stackrel{?}{=} a(t)x(t) + b(t) \iff c'(t) \exp \left(\int_{t_0}^t a(x) ds\right) = b(t)$$

Wir bekommen

$$c(t) = \int_{t_0}^{t} \exp\left(-\int_{t_0}^{\tau} a(s) ds\right) b(\tau) d\tau + r$$

mit einer freien Konstanten $r \in \mathbb{R}$. Damit wird

$$x(t) = \exp\left(\int_{t_0}^t a(s)ds\right) \int_{t_0}^t \exp\left(-\int_{t_0}^t a(s)ds\right) b(\tau)d\tau + r \exp\left(\int_{t_0}^t a(s)ds\right)$$

Durch die Wahl der Konstanten $r = x_0$ ergibt sich $x(t_0) = x_0$

$$\implies x(t) = \exp\left(\int_{t_0}^t a(s)ds\right) \left[x_0 + \int_{t_0}^t \exp\left(-\int_{t_0}^\tau a(s)ds\right)b(\tau)d\tau\right]$$

Beispiel 3.5

$$x' = ax(t) + b(t), \quad x(0) = x_0$$

a: Konstante

$$\implies x(t) = x_0 e^{at} + \int_{t_0}^t e^{a(t-\tau)} b(\tau) d\tau$$
$$\left(c(t)e^{at}\right)' = c'e^{at} + ce^{at}a = ae^{at} + b$$
$$\implies c' = b(t)e^{-at}$$
$$c(t) = \int_{t_0}^t b(\tau)e^{-a\tau} d\tau$$
$$x(t) = x_0 e^{at} + c(t)e^{at}$$

Anfangswertproblem

$$x' = f(t, x)$$
$$x(0) = x_0$$

Integralgleichung:

$$x' = f(t,x) \iff x(t) = x_0 + \int_{t_0}^t f(x,x(s)) ds$$

Existenzsatz von Peano

Satz 3.6 (Peano) Die Funktion f(t, x) sei **stetig** auf einem Zylinder

$$D = \{(t, x) \in \mathbb{R}^1 \times \mathbb{R}^m \mid |t - t_0| \le \alpha, ||x - x_0|| \le \beta\}$$

Dann existiert eine Lösung x(t) auf dem Intervall $I:=[t_0-T,t_0+T]$ wobei

$$T := \min\left(\alpha, \frac{\beta}{M}\right), \quad M := \max_{(t,x) \in D} \|f(t,x)\|$$

Beweis Mit Hilfe der Differenzenmethode konstruieren wir eine Folge von stückweisen linearen Funktionen, welche eine Teilfolge besitzt, die (gleichmäßig) gegen eine Lösung des Anfangswertproblems konvergiert. Ohne Beschränkung der Allgemeinheit genügt es das Halbintervall $I=[t_0,t_0+T]$ zu betrachten. Zu einem Schrittweitenparameter h>0 wird eine äquidistante Unterteilung des I gewählt.

$$t_0 < \dots < t_N = t_0 + T$$
 $h = t_n - t_{n-1}$

Ausgehend von $x_0^h:=x_0$ erzeugt dann das sogenannte Eulersche Polygonzugverfahren Werte für x_n^h durch

$$x_n^h = x_{n-1}^h + hf(t_{n-1}, x_{n-1}^h), n \ge 0$$

Diese diskreten Funktionswerte werden linear interpoliert zu einer stetigen Funktion:

$$x_n^h(t) := x_{n-1}^h + (t - t_{n-1})f(t_{n-1}, x_{n-1}^h)$$

Schritt 1: Wir zeigen $\operatorname{Graph}(x^n) \subset D$.

Sei $(t, x^h(t)) \in D$ für $t_0 \le t \le t_{k-1}$. Es gilt

$$(x(t)^h)' = f(t_{k-1}, x_{k-1}^h), t \in [t_{k-1}, t_k]$$

Nach Konstruktion gilt dann für $t \in [t_{k-1}, t_k]$

$$x^{h}(t) - x_{0} = x^{h}(t) - x_{k-1}^{h} + \sum_{i=1}^{k-1} \left(x_{i}^{h} - x_{i-1}^{h} \right)$$

$$= (t - t_{k-1}) f\left(t_{k-1}, x_{k-1}^{h} \right) + h \sum_{i=1}^{k-1} f\left(t_{i-1}, x_{i-1}^{h} \right)$$

$$\implies \left\| x^{h}(t) - x_{0} \right\| \leq (t - t_{k-1}) M + (t_{k-1} - t_{0}) M = (t - t_{0}) M$$

Also $(t, x^h(t)) \in D$ für $0 \le t \le t_k$

Schritt 2: Wir zeigen gleichgradige Stetigkeit

Seien dazu $t, \tilde{t} \in I, \tilde{t} \leq t$ mit $t \in [t_{k-1}, t_k], \tilde{t} \in [t_{j-1}, t_j]$ für gewisse $t_j \leq t_k$. Im Fall $t, \tilde{t} \in [t_{k-1}, t_k]$ gilt

$$x^{h}(t) - x^{h}(\tilde{t}) = (t - \tilde{t}) f(t_{k-1}, x^{h}(t_{k-1}))$$

$$\implies ||x^{h}(t) - x^{h}(\tilde{t})|| \le M(t - \tilde{T})$$

Für $t_j < t_k$

$$x^{h}(t) - x^{h}(\tilde{t}) = (t - t_{k-1})f(t_{k-1}, x_{k-1}^{h}) + h \sum_{i=j}^{k-1} f(t_{i-1}, x_{i-1}^{h}) + (t_{j-1} - \tilde{t})f(t_{j-1}, x_{j-1}^{h})$$

$$= (t - t_{k-1})f(t_{k-1}, x_{k-1}^{h}) + h \sum_{i=j+1}^{k-1} f(t_{i-1}, x_{i-1}^{h}) + (h + t_{j-1} - \tilde{t})f(t_{j-1}, x_{j-1}^{h})$$

$$\implies ||x^{h}(t) - x^{h}(\tilde{t})|| \le M((t - t_{k-1}) + (t_{k-1} - t_{j}) + (t_{j} - \tilde{t})) \le M|t - \tilde{t}|$$

Also $x_{h>0}^h$ gleichgradig stetig. Die Funktionen sind auch gleichmäßig beschränkt:

$$||x^h(t)|| \le ||x^h(t) - x_0|| + ||x_0|| \le MT + ||x_0||, t \in (t_0, t_0 + T)$$

Arzela-Ascoli Satz: \exists eine Nullfolge $(h_i)_{i\in\mathbb{N}}$ und stetiges x(t) sodass

$$\left\| x^{h_i}(t) - x(t) \right\| \xrightarrow{i \to \infty} 0$$

und $Graph(x) \subset D$

Schritt 3 Es bleibt zu zeigen, dass die Grenzfunktion x der Integralgleichung genügt. Für $t \in [t_{k-1,t_k}] \subset I$ sehen wir $x^i(t) := x^{h_i}(t)$. $\forall i \in \mathbb{N}$ gilt:

$$x^{i}(t) = x_{k-1}^{i} + (t - t_{k-i}) f(t_{k-i}, x_{k-i}^{i}) = \cdots =$$

$$= x_{0} + \sum_{j=1}^{k} (t_{j} - t_{j-1}) f(t_{j-i}, x_{j-i}^{i}) + (t - t_{k-i}) f(t_{k-1}, x_{k-i}^{i})$$

$$= x_{0} + \sum_{j=1}^{k} \int_{t_{0}}^{t_{j-i}} f(t_{j-i}, x_{j-i}^{i}) ds + \int_{t_{k-i}}^{t} f(t_{k-i}, x_{k-i}^{i}) ds$$

$$= x_{0} + \sum_{j=1}^{k} \int_{t_{j-1}}^{t_{j}} [f(t_{j-1}, x_{j-1}^{i}) - f(s, x^{i}(s))] ds + \int_{t_{k-1}}^{t} [f(t_{k-1}, x_{k-1}^{i}) - f(s, x^{i}(s))] ds + \int_{t_{0}}^{t} f(s, x^{i}(s)) ds$$

Die Folge $(x^i)_{i\in\mathbb{N}}$ ist gleichgradig stetig und die Menge der Funktionen f(x,t) ist gleichmäßig stetig (auf der kompakten Menge D). $\forall \varepsilon>0 \exists \delta_\varepsilon$ sodass für $|t-t'|<\delta_\varepsilon$ gilt

$$||x^{i}(t) - x^{i}(t')|| \le \varepsilon' < \varepsilon$$

und weiter für

$$|t - t'| < \delta_{\varepsilon}, ||x - x'|| < \varepsilon' \implies ||f(t, x) - f(t', x')|| < \varepsilon$$

Für hinreichend großes $i \geq i_{\varepsilon}$ (das heißt hinreichend kleines h_i) folgt damit

$$\max_{s \in [t_{k-i}, t_k]} \left\| f\left(t_{k-1}, x^i(t_{k-1})\right) - f\left(s, x^i(s)\right) \right\| \le \varepsilon$$
$$\left| x^i(t) - x_0 - \int_{t_0}^t f\left(s, x^i(s)\right) \mathrm{d}s \right| \le \varepsilon |t - t_0|$$

Die gleichmäßige Konvergenz $x^i \to x$ auf I impliziert auch die gleichmäßige Konvergenz $f(\cdot, x^i(\cdot)) \xrightarrow{i \to \infty} f(\cdot, x(\cdot))$. \Longrightarrow Für hinreichend großer $i \ge i_\varepsilon$ bekommen wir

$$\left| x(t) - x_0 - \int_{t_0}^t f(s, x(s)) ds \right| \le \varepsilon |t - t_0|$$

Wegen der beliebigen Wahl von $\varepsilon>0$ folgt, dass die Grenzfunktion x die Integralgleichung löst. \square

Satz 3.7 (3.7 Fortsetzungssatz) Sei die Funktion f(t,x) stetig auf einem abgeschlossenem Bereich D des $\mathbb{R}^1 \times \mathbb{R}^m$, mit $(t_0,x_0) \in D$ und sei x eine Lösung der Anfangswertaufgabe auf einem Intervall $I=[t_0-B,t_0+T]$. Dann ist die lokale Lösung x nach rechts und nach links auf ein maximales Existenzintervall $I_{max}=(t_0-T_*,t_0+T_*)$ (stetig differenzierbar) fortsetzbar, solange der $\operatorname{Graph}(x)$ nicht auf dem Rand von D stößt. Dabei kann der $\operatorname{Graph}(x):=\{(t,x(t)\mid t\in I_{max})\}$ unbeschränkt sein sowohl durch $t\to t_0+T^*=\infty$ als auch $\|x(t)\|\xrightarrow{t\to t_0+T^*}0$

Beweis Ohne Beschränkung der Allgemeinheit behalten wir nur $[t_0, t_0 + T_*]$. Der Peano Satz liefert Existenz einer Lösung x^0 auf $[t_0, t_1], t_1 := t_0 + T_0$ mit

$$T_0 := \min\left(\alpha_0, \frac{\beta_0}{M_0}\right)$$

 T_0 hängt nur von α_0, β_0, M_0 ab. Wir lösen die Gleichung mit Anfangspunkt $(t_0, x(t_1))$ auf dem Bereich

$$\{(t, x) \in D \mid |t - t_0| \le \alpha_1, ||x - x_0|| \le \beta_1\}$$

Die so gewonnenen Lösungsstücke x^0 , x^1 ergeben zusammengesetzt eine stetige und (wegen Stetigkeit von f) differenzierbare Funktion x auf dem Intervall $[t_0, t_0 + T_0 + T_1]$. In t_1 gilt:

$$(x^{0}(t_{1}))' = f(t_{1}, x^{0}(t_{1})) = f(t, x^{1}(t_{1})) = (x^{1}(t_{1}))'$$

Nach Konstruktion ist x(t) lokale Lösung der Anfangswertaufgabe. Dieser Prozess lässt sich fortsetzen solang der Graph(x) nicht an den Rang von D stößt.

Satz 3.8 (Regularität) Sei x eine Lösung der Anfangswertaufgabe auf dem Intervall I. Falls $f \in C^m(D)$ für ein $m \geq 1$ rst, dann $x \in C^{m+1}(I)$

Beweis Aus der Beziehung $x(t) = x_0 t \int_{t_0}^t f(s,x(s)) \mathrm{d}s, t \in I$ bekommen wir, dass für $f \in C^1(D)$, x zweimal stetig differenzierbar ist mit der Ableitung $x''(t) = \partial t f(t,x(t)) + \nabla_x f(t,x(t)) x'(t)$. Durch wiederholte Anwendung deses Argument folgt die Behauptung.

Eindeutigkeit?

Beispiel 3.9

$$\begin{cases} x' = \sqrt{x} \\ x(0) = 0 \end{cases}$$

$$\int_0^{x(t)} z^{-\frac{1}{2}} dz = \int_0^t ds \implies 2x^{-\frac{1}{2}} = t + c \implies x = \frac{t^2}{4}$$

aber $x \equiv 0$ ist auch eine Lösung. Jede

$$x(t) = \begin{cases} 0 & 0 \le t \le c \\ \frac{1}{4}(t-c)^2 & t \ge c \end{cases}$$

ist auch eine Lösung.

Satz 3.10 (Picard-Lindelöf) Sei $D \subset \mathbb{R}^{n \times 1}$ offen, $f \in C(D, \mathbb{R}^n)$ und $(t_0, x_0) \in D$. Falls f(t, x) lokal lipschitz stetig bezüglich x ist, gleichmäßig in t_0 , dann existiert eine eindeutige lokale stetig differenzierbare Lösung von

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

Beweis Wir betrachten die Integralgleichung

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$$

Wir wenden den Banachschen Fixpunktsatz an. Schritt 1:

$$\exists \delta > 0 : K := \{(t_0, x) \in \mathbb{R} \times \mathbb{R}^{n+1} \mid |t - t_0| \le \alpha, ||x - x_0|| \le \delta\} \subset D$$

f(t,x) erfüllt die Lipschitz Bedingung auf K

$$||f(t,x) - f(t,y)|| \le L_k ||x - y|| \quad (t_0, x), (t, y) \in K$$

Da K kompakt und f stetig ist, gibt es eine Konstante M>0

$$||f(t,x)|| \le M \quad (t_0,x) \in K$$

Wir setzen $\varepsilon:=\min(\delta,\delta/m,1/(2L_k)), I_\varepsilon=[t_0-\varepsilon,t_0+\varepsilon]$ und definieren den Vektorraum $V=C(I_\varepsilon).$ V mit der Norm $\|\cdot\|_\infty$ ($\|x\|_\infty:=\max_{t\in I_\varepsilon}\|x(t)\|$) ist ein Banachraum. Schritt 2: Für $x\in V_0:=\{v\in V\mid \max_{t\in I_\varepsilon}\|v(t_0)-x_0\|\leq \delta\}\subset V$ definieren wir die Abbildung: $g:V\to V$ durch

$$g(x)(t) := x_0 + \int_{t_0}^{t} f(s, x(s)) ds$$

Es gilt für $f \in I_{\varepsilon}, x \in V_0$:

$$||g(x)(t) - x|| \le \int_{t_0}^t ||f(s, x(s))|| ds \le M \underbrace{|t - t_0|}_{\le \varepsilon} \le M\varepsilon \le \delta$$

das heißt die Abbildung g bildet die Teilmenge $V_0\subset V$ in sich ab. $g:V_0\to V_0,V_0\subset V$. Für zwei Funktionen $x,y\in V_0$ gilt (aus Lipschitz Stetigkeit von $f(t,\cdot)$):

$$||g(x)(t) - g(y)(t)|| \le \int_{t_0}^t ||f(s, x(s)) - f(s, y(s))|| ds \le L_k |t - t_0|||x - y||_{\infty}$$

$$\le \underbrace{L_k \varepsilon}_{1/2} ||x - y||_{\infty} \le \frac{1}{2} ||x - y||_{\infty}$$

das heißt g ist auf V_0 eine Kontraktion. Nach dem Banachschem Fixpunktsatz hat g in V_0 genau einen Fixpunkt x^* das heißt

$$x^* = g(x^*)(t) = x_0 + \int_{t_0}^t f(sx^*(s)) ds \quad t \in I_{\varepsilon}$$

das heißt: x^* löst die Integralgleichung.

Bemerkung Die Lösung x^* erhält man durch im Banachraum $V=C(I_\varepsilon)$ konvergente Fixpunktiteration (sogenannte "suksessive Approximation")

$$x^{k}(t) := x_0 + \int_{t_0}^{t} f(s, x^{k-1}(s)) ds \quad t.I_{\varepsilon}$$

für eine Startfunktion x_0 .

Beispiel 3.11

$$x' = Ax$$
 (A ist eine reelle $n \times n$ Matrix) $x(0) = x_0$

wir bekommen n Gleichungen. Es gilt für $t < \varepsilon(x)$:

$$g(x_0)(t) = x_0 + \int_{t_0}^t Ax_0 ds = (I + tA)x_0 =: x_1$$
$$g^m(x)(t) = \sum_{k=1}^m \frac{(tA)^k}{k!} \xrightarrow{m \to \infty} x^*(t) = \sum_{k=0}^\infty \frac{(tA)^k}{k!} x_0$$

Tatsächlich konvergiert die Reihe. Sie kann gliedweise nach t differenziert werden, und stellt daher die Lösung da.

- **Bemerkung** 1. Ein nicht autonomes System $x'=f(t,x), x\in\mathbb{R}^n$ kann immer zu einem autonomen System in \mathbb{R}^{n+1} durch hinzufügen von $x_{n+1}(t):=t$ (beziehungsweise $x'_{n+1}=1$) gemacht werden.
 - 2. ein System m -ter Ordnung für $x(t) \in \mathbb{R}^n$

$$x^{(n)}(t) = f\left(t, x, x'(t), \dots, x^{(n-1)}(t)\right)$$
$$x(t_0) = x_0, x'(t_0) = x_1, \dots, x^{(n-1)}(t_0) = x_{n-1}$$

lässt sich als System erster Ordnung schreiben, indem man $z_i(t) = x^{(i)}(t), i = 0, \dots, m-1$ setzt und erhält denn:

$$\underbrace{z'_{m-1}(t)}_{x^{(n)}(t)} = \underbrace{f(t, x, z_1, \dots, z_{m-1})}_{z'_i(t) = x_{i+1}(t)}$$

Beispiel 3.12 (Logistische Gleichung)

$$x' = x(t - x)$$
$$x(0) = x_0$$

Homogene Lösung:

$$x' = ax$$
$$x(0) = x_0$$
$$x(t) = x_0 e^{at}$$

Picard-Lindelöf Satz \Longrightarrow eindeutige Lösung (aber Lokalität) (rechte Seite ist C^1). Beschränktheit: $x(t) < \max\{x_0, K\} < \infty$. Im allgemeinen Fall: wir suchen x = M, sodass $f(M) \le 0 \forall x \ge M, x'(t) \le 0$, das heißt x(t) kann nicht weiter wachsen. das heißt $I = \{x \mid x \le M\}$ ist invariant, das heißt $x_0 \in I \Longrightarrow x(t) \in I \forall t \in \mathbb{R}$. Es gibt uns gleichmäßige Beschränktheit. Nichtnegativität heißt $\{x \mid x \ge 0\}$ ist invariant. Es gilt falls $f(0) \ge 0$, das heißt $x'(t)|_{x=0} \ge 0$ $x' = ax \Longrightarrow$ keine gleichmäßige Beschänktheit.

$$x' = \frac{ax}{t+x}x \le ax$$

 $\implies x(t) < x(t)e^{at} \implies$ globle Lösungen existieren.

Lemma 3.13 (Gronwallsches Lemma) Die stückweise stetige Funktion $w(t) \geq 0$ genüge mit zwei Konstanten $a,b \geq 0$ der Integralgleichung

$$w(t) \le a \int_{t_0}^t w(s) \mathrm{d}s + b, t \ge t_0$$

Dann gilt die Abschätzung

$$w(t) \leq e^{a(t-t_0)}b, t \geq t_0$$

Beweis Für die Funktion

$$\psi(t) := a \int_{t_0}^t w(s) \mathrm{d}s + b$$

gilt $\psi'(t) = aw(t)$. Somit gemäß Voraussetzung:

$$\psi'(t) \le a\psi(t)$$

$$\implies (e^{-at}\psi(t))' = e^{-at}\psi'(t) - ae^{-at}\psi(t) = e^{-at}(\psi'(t) - \psi(t)) \le 0$$

das heißt $e^{-at}\psi(t)$ ist monoton fallend

$$\implies e^{-at}w(t) \le e^{-at}\psi(t) \le \psi(t_0)e^{-at_0} = b^{-at_0}, t \ge t_0$$

$$w(t) \ge e^{(t-t_0)}b, t \ge t_0$$

Bemerkung Es gibt verschiedene Verallgemeinerungen, zum Beispiel

$$w(t) \le \int_{t_0}^t a(s)w(s)\mathrm{d}sb(t), t \ge t_0$$

mit einer stetigen Funktion $a(t) \ge 0$ und einer nichtfallenden Funktion $b(t) \ge 0$ so folgt

$$w(t) \le \exp\biggl(\int_{t_0}^t a(s) \mathrm{d} s\biggr) b(t), t \ge t_0$$

Eine wichtige Anwendung des Lemma von Gronwall ist

Satz 3.14 (Globale Existenz bei linearem Wachstum) Für $-\infty \le T_0 < t_0 < T_0 \le \infty$ sei $f \in C([T_1, T_2], \mathbb{R}^m)$, sodass

$$|f(t,x)| \le \alpha(t) + \beta(t)|x|, T_1 < t < T_2$$

dann existiert $\forall x_0 \in \mathbb{R}^m$ die Lösung von

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$$

auf (T_1, T_2) . Insbesondere existiert die Lösung des linearen Systems x' = A(t)y(t) + b(t) global falls $A(t) \in C^0(\mathbb{R}, \mathbb{R}^{m \times m})$ und $b \in C^0(\mathbb{R}, \mathbb{R}^m)$ gilt.

Beweis Nehme an für ein $x_0 \in \mathbb{R}^m$ wäre $T_+(x) < T_2$, dann gibt es eine Konstante $C = C(T_+(x_0))$, sodass für $t_0 \le t \le T_+(x) |\alpha(t)| \le C$ und $|\beta(t)| \le C$ gilt. Mithilfe von Integration folgt

$$|x(t)| \le |x_0| + C \int_{t_0}^t (1 + |x(s)|) ds, t_0 \le t < T_+(x_0)$$

setze im Lemma von Gronwall w(t):=1+|x(t)|, a(t):=1+|x|, b(t):=C und erhalte

$$w(t) \le e^{C(t-t_0)}(1+|x_0|) \iff |x(t)| \le e^{C(t-t_0)}(1+|x_0|) - 1$$

 $\implies x(t)$ bleibt beschränkt für $t\in (0,T_+(x_0))$ und kann daher fortgesetzt wirden. Damit folgt $T_+(x_0)=T_2$. Analog erhält man $T_-(x)=T_1$

Satz 3.15 (Lipschitzstetigkeit / Abhängigkeit von Anfangsdaten) Sei f(t,x) stetig auf $D \subset \mathbb{R}^1 \times \mathbb{R}^m$ und genüge einer Lipschitz Bedingung. Dann gilt für zwei Lösungen x,y der Differentialgleichung $x'=f(t,x), t\in I$ auf einem gemeinsamen Existenzintervall I

$$||x(t) - y(t)|| \le e^{L(t-t_0)} ||x(t_0) - y(t_0)||$$

mit der Lipschitz Konstante $L=L_k$ von f auf einer beschränkten Teilmenge $K\subset D$ welche die Graphen von x und y enthält.

Beweis Sei $K\subset D$ eine beschränkte Teilmenge, welche die Graphen von x und y enthält. Für u(t)=x(t)-y(t) gilt

$$u(t) = \int_{t_0}^{t} (f(s, x(s)) - f(s, y(s))) ds + x(t_0) - y(t_0)$$
$$||u(t)|| \le L_k \int_{t_0}^{t} ||u(s)|| ds + ||x(t_0) - y(t_0)||$$

das heißt eine stetige Funktion $w(t) = \|u(t)\|$ genügt einer linearen Integralgleichung. Wir wenden Lemma von Gronwall an und bekommen die Aussage.

Bemerkung Aus der Bedingung folgt, dass die durch den Existenzsatz von Peano und den Fortsetzungsatz gelieferte lokale Lösung x eindeutig bestimmt ist.

Beweis Seien x, y zwei Lösungen zu gleichem Anfangspunkt

$$||x(t) - y(t)|| \le 0, t \in I \implies x(t) = y(t)$$

Beispiel 3.16 (Beschränktheit)

$$x' = xy - ax$$
$$y' = -xy - by$$

3.1 Lineare Systeme

Wir betrachten lineare inhomogene Differentialgleichungen der Form

$$\begin{cases} u'(t) = A(t)u(t) + b(t) & t \ge t_0 \\ u(t_0) = u_0 \in \mathbb{R}^n \end{cases}$$

wobe
i $A:[t_0,\infty)\to\mathbb{R}^{n\times n},b:[t_0,\infty)\to\mathbb{R}^n$ stetig seien. Für n=1hat man bereits per Variation der Konstanten

$$u(t) = \Phi(t) \left(u_0 + \int_0^t \Phi^{-1}(s)b(s)ds \right), \quad \Phi(t) = \exp\left(\int_{t_0}^t A(s)ds \right)$$

Für $A \in \mathbb{R}^{n \times n}$ folgt mit Übung 6.1 analoges Resultat mit

$$\Phi(t) = \exp(A(t - t_0))$$

Zunächst homogener Fall $b \equiv 0$

Satz 3.17 (Homogene Lineare Systeme) Seien $A:[t_0,\infty)\to\mathbb{R}^{n\times n},b:[t_0,\infty)\to\mathbb{R}^n$ stetig, dann gelten:

- 1. Die Menge H der Lösungen des linearen Systems u'(t) = A(t)u(t) bildet einen \mathbb{R} Vektorraum.
- 2. Zu jeder Basis $\{u_0^1,\ldots,u_0^n\}$ des \mathbb{R}^n bilden die zugehörigen Lösungen der n Anfangswertaufgaben

$$\begin{cases} (u^{i})'(t) = A(t)u'(t) \\ u'(t_{0}) = u'_{0} \end{cases} i = 1, \dots, n$$

eine Basis $\{u^1, \dots, u^n\}$ des Lösungsraums H, das heißt dim H=n

3. Ist $\{u^1,\ldots,u^n\}$ eine Basis von H, dann ist für jedes $t\geq t_0\{u^1(t),\ldots,u^n(t)\}$ eine Basis in \mathbb{R}^n

Beweis 1. Übung: Die Addition ist konponentenweise definiert, zum Beispiel für $\alpha, \beta \in \mathbb{R}, u, v \in H$

$$\implies (\alpha u + \beta v)'(t) = \alpha u'(t) + \beta v'(t) = A(t)(\alpha u + \beta v)(t)$$

2. Seien $\{u_0^1,\ldots,u_0^n\}$ eine Basis von \mathbb{R}^n , $\{u^1,\ldots,u^n\}$ zugeörige Lösungen mit $u'(t_0)=u_0^i$. Lineare Unabhängigkeit: Seien $\alpha_i\in\mathbb{R}$ mit

$$\sum_{i=1}^{n} \alpha_i u^i = 0 \iff \sum_{i=1}^{n} \alpha_i u'(t) = 0 \forall t \ge t_0$$

so ist für $t = t_0$:

$$\sum_{i=1}^{n} \alpha_i u_0^i = 0 \xrightarrow{\text{Basis}} \alpha_i = 0 \forall i = 1, \dots, n$$

Maximalität: Nehmen wir eine weitere Lösung u^{n+1} mit $u^{n+1}(t_0)=u_0^{n+1}$ zu $\{u^1,\ldots,u^n\}$ hinzu und nehmen an diese sei linear unabhängig, dann folgt für $t=t_0$, dass $\{u_0^1,\ldots,u_0^{n+1}\}$ linear unabhängig in $\mathbb{R}^n \not \Longrightarrow \dim H=n$

Definition 3.18 Eine Basis $\{\varphi^1,\ldots,\varphi^n\}$ des Lösungsraums von u'(t)=A(t)u(t) (für zum Beispiel $\varphi'(t_0)=e_i$) heißt **Fundamentalsystem** der linearen Gleichung. Zusammengefasst lässt sich dies in der **Fundamentalmatrix** $\Phi=\left(\varphi^1,\ldots,\varphi^n\right)$ it den Spaltenvektoren φ^i schreiben. Nach Satz 3.15 ist $\Phi(t)$ für jedes $t\geq t_0$ invertierbar und es gilt

$$\Phi'(t) = A(t)\Phi(t)$$

(mit zum Beispiel $\Phi(t_0) = E_n$) (vergleiche Exponentialmatrix $\exp(A(t-t_0))$ für A konstant)

Bemerkung Bildet man die sogenannte Wronski-Determinante $\det(U(t))$ für eine Lösungsmenge $\{u^1(t),\ldots,u^n(t)\}$ der linearen Gleichung

$$\begin{cases} u'(t) = A(t)u(t) & t \ge t_0 \\ u(t_0) = u_0 \in \mathbb{R}^{n \times n} \end{cases}$$

so lässt sich mit $\det(U(t)) \neq 0$ auf ein Fundamentalsystem testen. Dies ist nach Satz 3.15 gleichbedeutend mit $\det(U(t_0)) \neq 0$

Satz 3.19 Seien $t_0 \in \mathbb{R}, A: [t_0, \infty) \to \mathbb{R}^{n \times n}, b: [t_0, \infty) \to \mathbb{R}^n$ stetig. Sei $u_0 \in \mathbb{R}^n$, dann ist die eindeutige Lösung von

$$\begin{cases} u'(t) = A(t)u(t) + b(t) & t \ge t_0 \\ u(t_0) = u_0 \end{cases}$$

gegeben durch

$$u(t) = \Phi(t) \left(u_0 + \int_{t_0}^t \Phi^{-1}(s)b(s) ds \right) \forall t \ge t_0$$

wobei Φ eine Fundamentalmatrix ist der homogenen Gleichung zu $\Phi(t_0) = E_n$ sei.

Beweis Differentation liefert mit Produktregel

$$u'(t) = \Phi'(t) \left(u_0 + \int_{t_0}^t \Phi^{-1}(s)b(s)ds \right) + \Phi(t)\Phi^{-1}(t)b(t)$$

$$= A(t)\Phi(t) \left(u_0 + \int_{t_0}^t \Phi^{-1}(s)b(s)ds \right) + b(t)$$

$$= A(t)u(t) + b(t)$$

Bemerkung Ist $u(t_0)$ nicht vorgeschrieben, ergeben sich Lösungen der inhomogenen Gleichung als Summe homogener Lösungen $u^i \in H$ und einer speziellen Lösung der inhomogenen Gleichung. Zum Beispiel:

$$u_s(t) = \Phi(t) \left(c + \int_{t_0}^t \Phi^{-1}(s)b(s) ds \right), c \in \mathbb{R}^n$$

und irgendein Fundamentalsystem Φ

Beispiel 3.20 (3.18) $x'(t) = Ax(t), A.\mathbb{R}^{2\times 2}$. Ansatz: $x(t) = ve^{\lambda t}, \lambda \in \mathbb{C}, v = (v_1, v_2)^T \in \mathbb{C}^2$. Einsetzten in die Gleichung

$$\implies \lambda v e^{\lambda t} = (\lambda v_1 e^{\lambda t}); \lambda v_2 e^{\lambda t} = A \begin{pmatrix} v_1 e^{\lambda t} \\ v_2 e^{\lambda t} \end{pmatrix}$$

 $\lambda v e^{\lambda t} = Av e^{\lambda t} \implies \lambda v = Av \implies x(t)$ eine Lösung falls λ ein Eigenwert, v zugehöriger Eigenvektor ist.

$$\det(A - \lambda I) = 0$$

Fall 1: $\lambda_1, \lambda_2 \in \mathbb{R}, \lambda_1 \neq \lambda_2$. Wir haben 2 Lösungen $ve^{\lambda_1 t}, \tilde{e}^{\lambda_2} t$. Die allgemeine Lösung des Systems ist dann gegeben durch

$$x(t) = c_1 v e^{\lambda_1 t} + c_2 \tilde{v} e^{\lambda_2 t}, \quad c_1, c_2 \in \mathbb{R}$$

 c_1,c_2 kann man aus den Anfangsdaten finden. Das qualtiative Verhaltenn der Lösung ist von Vorzeichen λ_1,λ_2 abhängig.

- $\lambda_1, \lambda_2 > 0$: instabiler Knoten
- $\lambda_1 < 0 < \lambda_2$: Sattel

Fall2: $\lambda_1, \lambda_2 \in \mathbb{C}$. In diesem Fall sind λ_1, λ_2 konjugierte $\lambda_{1,2} = a \pm ib$ und $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + i \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$

zu λ_1 und $\tilde{v}=\begin{pmatrix}v_1\\v_2\end{pmatrix}-i\begin{pmatrix}w_1\\w_2\end{pmatrix}$ zu λ_1 . Analog zu Fall 1 kann die allgemeine Lösung des Systems dargestellt werden

$$x(t) = c_1 v e^{(a+bi)t} + c_2 \tilde{v} e^{(a-bi)t}$$

$$= c_1 v e^{at} (\cos bt + i \sin bt) + c_2 \tilde{v} e^{at} (\cos bt + i \sin bt)$$

$$c_1, c_2 \in \mathbb{C}$$

Die Lösung des Systems für reelle Anfangsdaten sind reell und die reelwertige Lösung ist gegeben durch

$$x(t) = \tilde{c}_1 e^{at} (\Re v \cos bt + \Im v \sin bt) + \tilde{c}_2 e^{at} (\operatorname{im} v \cos bt + \Re v \sin bt) \quad \tilde{c}_1, \tilde{c}_2 \in \mathbb{R}$$

Beweis Um das zu zeigen benutzen wir, dass die Summe aus dem Realteil und dem Imaginärteil allgemeiner komplexer Lösung eine reelle Lösung ist und

$$A(\Re v) = a\Re v + b\Im v$$

$$A(\Im v) = b\Re v + a\Im v$$

Einsetzen der Lösung in die Gleichung und ausnutzen der letzten Gleichung liefert den Beweis.

- $\Re \lambda_i > 0, i = 1, 2$: instabiler Fokus
- $\Re \lambda_1 < 0, r = 1, 2$: stabiler Fokus
- $\Re \lambda_i = 0$: Zentrum

Fall 3: $\lambda_1 = \lambda_2$: Die Matrix ist nicht diagonalisierbar. Beispiel:

$$x' = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

$$x'_2 = \lambda x_2 \implies x_2(t) = v_2 e^{\lambda t} \quad v_2 \text{const.}$$

$$x'_1 = \lambda x_1 + v_2 e^{\lambda t}$$

$$\implies x_1(t) = \left(v_1 + \int_0^t v_2 e^{\lambda s} e^{-\lambda s} ds\right) e^{\lambda t}$$

$$= (v_1 + v_2 t) e^{\lambda t} = v_1 e^{\lambda t} + v_2 t e^{\lambda t}$$

$$x' = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$

$$x_3(t) = v_3 e^{\lambda t}$$

$$x_2(t) = (v_2 + v_3 t) e^{\lambda t}$$

$$x_1(t) = \left(v_1 + v_2 t + v_3 \frac{t^2}{2}\right) e^{\lambda t}$$

Die gut erkennbare Struktur der einzelnen Komponenten (als Produkt aus Polynomen und Exponentialfunkion) lässt sich durch vollständige Induktion für Systeme mit beliebig vielen linearen Gleichungen nachweisen.

Lemma 3.21 Sei $A \in \mathbb{R}^{n \times n}$ und $\mathcal{L} = \{ \varphi \in C^1(\mathbb{R}, \mathbb{R}^n) \mid \varphi = Al \}$ der Lösungsraum der zugehörigen homogenen Differentialgleichung. Dann gilt:

1. Sei $v \in \mathbb{R}^n \setminus \{0\}$ ein Eigenvektor von A zu Eigenwert λ ($Av = \lambda v$). Dann gilt:

$$\varphi(t) := ve^{\lambda t} \in \mathcal{L}$$

- 2. Seien $v_i \in \mathbb{R}^n \setminus \{0\}$, n linear unabhänigie Eigenvektoren mit Eigenwerten $\lambda_i \in \mathbb{R}$. Dann bilden die Funktionen $v_i e^{\lambda_i t}$ eine Basis von \mathcal{L}
- 3. Sei $v\in\mathbb{C}^n\setminus\{0\}$ ein Eigenvektor zu Eigenwerten $\lambda\in\mathbb{C}\setminus\mathbb{R}$. Sei $\lambda=a+bi, v:=v+iw$. Dann gilt $\varphi_1,\varphi_2\in\mathcal{L}$ wobei

$$\varphi_1 = (v\cos bt - w\sin bt)e^{at}$$

$$\varphi_2 = (v\sin bt + w\cos bt)e^{at}$$

Beweis 1. $\varphi' = \lambda v e^{\lambda t} = A v e^{\lambda t} = A \varphi$

- 2. Die Funktionen sind unabhängig für t=0 und liegen in \mathcal{L} .
- 3. Die Funktion $u \in C^1(\mathbb{R}, \mathbb{C}^n), u = ve^{\lambda t}$ erfüllt die Gleichung u' = Au. Es gilt:

$$u := ve^{\lambda t} = e^{(a+ib)}(v+iw) = (v+iw)(\cos bt + i\sin bt)e^{at}$$

das heißt: $\varphi_1 := \Re u, \varphi_2 := \Im u$ Da A reell ist $\implies \Re u' = \Re Au = A\Re u, \Im u' = \Im Au = A\Im u \implies \varphi_1, \varphi_2$ sind Lösungen. \square

Satz 3.22 Sei $A \in \mathbb{R}^{n \times n}$. Dann ist die Lösung der Anfangswertaufgabe

$$\begin{cases} \phi'(t) = A\phi(t) \\ \phi(t_0) = \mathrm{id} \end{cases}$$

Gegeben durch $\phi(t)=\exp(tA)$. Die Menge aller Lösungen $\mathcal L$ der Differentialgleichung u'(t)=Au(t) ist

$$\mathcal{L} = \{ \phi(t)e_i \mid i = 1, \dots, n \}$$

Beweis Man rechnet nach, dass alle Komponenten $\exp(tA)_{ij}, i, j=1,\dots,n$ gleichmäßig und absolut konvergieren. Insbesondere ist $\exp(tA)$ glatt. Außerdem vertauschen Ableitungen und Summanden. Daher

$$\frac{\mathrm{d}}{\mathrm{d}T}\phi(t) = \sum_{k=0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t} \frac{(tA)^k}{k!} = A \sum_{k=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t} \frac{(tA)^{k-1}}{(k-1)!} = A\phi(t)$$

Satz 3.23 Zu einer beliebigen Matrix $A \in \mathbb{R}^{n \times n}$ existiert eine invertierbare Matrix S sodass die Matrix $S^{-1}AS$ die Jordannormalform hat, das heißt

$$S^{-1}AS = \begin{pmatrix} J_1 & & \\ & J_2 & \\ & & J_k \end{pmatrix}$$

Die Blöcze J_k haben für ein $\lambda_i \in \mathbb{C}$ die Form

$$J_i = \begin{pmatrix} \lambda_i & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_i \end{pmatrix}$$

Beweis Lineare Algebra. Dimension von J_i hängt von Vielfachheit von λ_i ab.

Mit Hilfe der Jordanschennormalform lässt sich die Exponentialfunkiton von Matrizen ausrechnen. Die Anwendung der Exponentialfunktion auf die Blockmatrix lässt sich explizit ausrechnen.

3.2 Asymptotisches Lösungsverhalten bei Differentialgleichungen

Frage: Welche Eigenschaften haben die Lösungen für $t \to \infty$. Wir konzentrieren uns jetzt auf autonome Differentialgleichungen.

Beispiel 3.24 x' = x(1 - x). Konstante Lösung

$$\bar{x}_1 := x(t) = 1 \forall t \in \mathbb{R}_+$$

 $x_0 = \bar{x}_1$, das heißt $|x_0 - \bar{x}_1| = \varepsilon$. \bar{x}_1 stabil, weil $x(t) \xrightarrow{t \to \infty} \bar{x}_1$

$$ar{x}_1 = x(t) = 0$$
 (konstante Lösung) $x_0 = ar{x}_2 + arepsilon$ (instabil)

Definition 3.25 (Attraktoren) Sei $\Omega \subset \mathbb{R}^m$ offen, $t_0 \in \mathbb{R}$, $f \in C^0(\Omega)$ $(f : \Omega \to \mathbb{R}^m)$. Ein Punkt $\bar{x} \in \Omega$ heiße **lokaler Attraktor** der Differentialgleichung x'(t) = f(x(t)) falls es eine offene Umbebung U von x_0 gibt, dass für sedes $x_0 \in U$ die Lösung der Gleichung gegen \bar{x} konvergiert, das heißt

$$x(t) \xrightarrow{t \to \infty} \bar{x}$$

Falls die Lösung der Differentialgleichung gegen \bar{x} konvergiert $\forall x_0 \in \Omega$ dann heißt \bar{x} globaler Attraktor.

Satz 3.26 1. Sei $x \in C^1(\mathbb{R})$ eine Lösung der Differentialgleichung x(t)' = f(x(t)) mit $x(t) \xrightarrow{t \to \infty} \bar{x}$ Dann gilt $f(\bar{x}) = 0$

2. Sei \bar{x} ein lokaler Attraktor der Anfangswertaufgabe. Dann gilt $f(\bar{x}) = 0$

3. Sei $f \in C^1(\mathbb{R})$. Es gelte $f(\bar{x}) = 0$ und $f'(\bar{x}) \left(= \frac{\mathrm{d}f}{\mathrm{d}x} \big|_{x=\bar{x}} \right) < 0$ für ein $\bar{x} \in \mathbb{R}$. Dann ist \bar{x} ein lokaler Attraktor der Anfangswertaufgabe

Beweis 1. Da f stetig ist, gilt $x'(t) = f(x(t)) \to f(\bar{x})$. Zusammen mit $x(t) \to \bar{x}$ folgt daraus $f(\bar{x}) = 0$

- 2. Aus 1. und Definition von Attraktor
- 3. Es gibt ein $\varepsilon>0$, sodass f>0 in $(\bar x-\varepsilon,\bar x), f<0$ in $\bar x,\bar x+\varepsilon$. Sei x(t) eine Lösung der Anfangswertaufgabe mit $x(t_0)\in(\bar x-\varepsilon,\bar x+\varepsilon)$. Dann fällt |x(t)| monoton. Daher gibt es eine $x_1\in(\bar x-\varepsilon,\bar x+\varepsilon)$ mit $x(t)\to x_1$ für $t\to\infty$. Das $f\neq 0$ für $x\in(\bar x-\varepsilon,\bar x+\varepsilon)$ nach 1. folgt $x_1=\bar x$

Definition 3.27 (3.24 Stationäre Punkte) Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ und x' = f(x). Jeder Punkt $\bar{x} \in \mathbb{R}^n$ mit $f(\bar{x}) = 0$ ist ein sogenannter **stationärer Punkt** (Gleichgewichtpunkt, kritischer Punkt). Zum Beispiel: $x' = ax, \bar{x} = 0$ stationärer Punkt, aber Attraktor nur falls a < 0

Beispiel 3.28 (3.25) $x' = x^2 + \lambda$ mit einem Parameter $\lambda \in \mathbb{R}$. Stationäre Punkte:

$$f(\bar{x}) = x^{-2} + \lambda = 0 \implies \begin{cases} \bar{x} = \pm \sqrt{|\lambda|} & \lambda < 0 \\ \bar{x} = 0 & \lambda = 0 \\ \text{keine} & \lambda > 0 \end{cases}$$

Das zugehörigen Anfangswertproblem mit x(0)=0 lässt sich lösen durch Separation der Variablen. Für $\lambda<0$ $x(t)=-\sqrt{|\lambda|}\tanh\left(t\sqrt{|\lambda|}\right)$. Für $\lambda=0\implies x(t)=0$.

$$\begin{split} \lambda > 0 &\implies f > 0 \\ \lambda < 0 & \\ x \uparrow \quad f(x) > 0 \implies x^2 + \lambda > 0 \\ y \uparrow \quad f(x) < 0 \implies x \in \left(-\sqrt{|\lambda|}, \sqrt{|\lambda|}\right) \end{split}$$

⇒ Bifurkation Diagram (Verzweigung).

Definition 3.29 $\Lambda \subset \mathbb{R}^m$ und $f: \mathbb{R}^n \times \Lambda \to \mathbb{R}^n$ seien gegeben. $\bar{x} \in \mathbb{R}^n$ sei ein stationärer Punkt von $x' = f(x, \lambda_0)$ zu einem $\lambda_0 \in \Omega$. Die Differentialgleichung $x' = f(x, \lambda)$ besitzt in (\bar{x}, λ_0) eine **Verzweigung** (Bifurkation) wenn gilt: Die Anzahl von stationären Punkten von $x' = f(x, \mu_k) \in K_r(\bar{x})$ ist ungleich der Anzahl stationärer Punkte von $x' = f(x, \nu_k) \in K_r(\bar{x})$ für zwei Folgen $(\mu_n)_{n \in \mathbb{N}}$, $(\nu_n)_{n \in \mathbb{N}}$ in Λ die gegen λ_n konvergieren, für jede Kugel $K_r(\bar{x}) \subset \mathbb{R}^n$ und hinreichend großem $n \in \mathbb{N}$. In unserem Beispiel

$$\mu_n = \frac{1}{n} \to 0 = \lambda_0$$

$$\nu_n = -\frac{1}{n} \to 0 = \lambda_0$$

Bemerkung Bei der Suche nach Bifurkationen geht es also um die Lösung von $f(x,\lambda)=0$ mit einem Parameter λ . Der Satz über implizite Funktionen gibt uns Bedingungen, unter denen eine solche Gleichung nach x lokal eindeutig aufgelöst werden kann. Notwendige Bedingung für Bifurkation: $x'=f(x,\lambda)$ in $(\bar x,\lambda_0)$ eine Bifurkation besitzt dann kann die partielle Ableitung $\delta_1 f(\bar x,\lambda_0):\mathbb{R}^n\to\mathbb{R}$ nicht invertierbar sein.

Definition 3.30 \bar{x} sei ein stationärer Punkt einer autonomen Differentialgleichung x'=f(x) mit $f:\mathbb{R}^n \to \mathbb{R}^n$. \bar{x} heißt stabil (im Simme von Lyapunov (Ljaupnow)) wenn es zu jedem $\varepsilon>0$ einen Radius $\delta>0$ mit folgenden Eigenschaften gibt: Jede Lösung $x:[0,T)\to\mathbb{R}^n$ mit $|x(0)-\bar{x}|<\delta$ kann zu einer Lösung auf $[0,\infty)$ fortgesetzt werden und

$$|x(t) - \bar{x}| < \varepsilon \forall t > 0$$

 \bar{x} heißt asymptotische stabil, wenn \bar{x} stabil ist und zuzätzlich

$$\exists r > 0 : x : [0, \infty) \to \mathbb{R}^n : |x(0) - \bar{x}| < r$$

die Forderung

$$\lim_{t \to \infty} x(t) = \bar{x}$$

erfüllen. \bar{x} heißt instabil wenn \bar{x} nicht stabil ist.

Lemma 3.31 Sei die Matrix $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$. Wenn der Nullpunkt $\bar{x} = 0$ stabil bezüglich der homogenen Differentialgleichung x' = Ax ist, dann ist der stationäre Punkt der inhomogenen Differentialgleichung y' = Ay + b ebefalls stabil.

Beweis Verschiebung
$$x = y - \bar{y}$$
, wobei $\bar{y} = -A^{-1}b$

Aus der Theorie der linearen Differntialgleichungen folgt:

Lemma 3.32 $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ seien die paarweise verschiedenen Eigenwerte von A und $\alpha \in \mathbb{R}$, sodass

$$\max\{\Re \lambda_i \mid i=1,\ldots,n\} < \alpha$$

Dann $\exists c \geq 0 \text{ sodass } \forall \text{ Lösungen } x() : \mathbb{R}_+ \to \mathbb{R}^n \text{ von } x' = Ax \text{ gilt}$

$$|x(t)| \le c|x(0)|e^{\alpha t}$$

Korollar 3.33 Nullpunkt ist asymptotisch stabil bezüglich der Gleichung x' = Ax falls alle $\Re \lambda_i < 0, i = 1, \dots, n, \lambda_i$ Eigenwerte von A

Satz 3.34 Die Matrix $A \in \mathbb{R}^{n \times n}$ besitze einen Eigenwert $\lambda \in \mathbb{C}$ mit $\Re \lambda > 0$. Dann gibt es \forall Radien r > 0 eine Lösung $x : \mathbb{R}_+ \to \mathbb{R}^n$ von x' = Ax mit

$$|x(0)| \le r \land |x(t)| \xrightarrow{t \to \infty} \infty$$

Also ist der Nullpunkt instabil.

Beweis v_0 sei Eigenvektor zu λ (mit $\Re \lambda > 0$) und $|v_0| \le r$. $t \to e^{\lambda t} v_0$ ist eine Lösung (komplex) von x' = Ax. Dabei strebt

$$|x(t)| \le e^{\Re \lambda t} |v_0| \xrightarrow{t \to \infty} \infty$$

Zusammenfassung für lineare Systeme

Eigenwerte der Matrix A bestimmen die Stabilität des stationären Punktes

- 1. alle $\lambda_i < 0$ reell $\implies \bar{x} = 0$ asymptotisch stabil (Knoten)
- 2. λ_i reell und mindestens ein $\lambda_i > 0 \implies$ stationärer Punkt instabil
 - falls alle $\lambda_i > 0 \rightarrow$ instabil Knoten
 - sonst Sattelpunkt
- 3. $\lambda_i \in \mathbb{C} \implies$ Oszillationen, wobei mit $\lambda_i = \alpha + \beta i$
 - $\alpha < 0 \implies$ Oszillation mit fallender Amplitude (stabiler Fokus)
 - $\alpha > 0 \implies$ Oszillation mit wachsender Amplitude (instabiler Fokus)
 - $\alpha = 0 \implies$ Oszillation mit konstanter Amplitude (Zentrum) keine asymptotische Stabilität, aber stabil im Sinne von Lyapunov
- 4. Falls vielfache $\lambda_i \Longrightarrow$ Jordan Blöche \Longrightarrow polynomiale Komponenten in der Lösung

Motivation für Linearisierung von nichtlinearen Systemen

$$x'=f(x)=\underbrace{f(\bar{x})}_{=0}+\underbrace{Df(\bar{x})(x-\bar{x})}_{Ax+b}+\underbrace{g(x)}_{+g(x)\;\text{klein}}$$

$$f(\bar{x})=0$$

Satz 3.35 (Linearisierungssatz, Satz von Hartman-Grobman) Sei $f:\mathbb{R}^n\to\mathbb{R}$ stetig differenzierbar mit f(0)=0. Die Jacobi Matrix $Df(x)\in\mathbb{R}^{n\times n}$ besitze nur Eigenwerte mit $\Re\lambda\neq 0$ (das heißt stationärer Punkt ist hyperbolisch). Dann gibt es Umgebungen $U,V\subset\mathbb{R}^n$ von 0 und stetige Abbildung $\psi:U\to V$ mit folgenden Eigenschaften:

- 1. $\psi: U \to V$ ist bijektiv und ψ^{-1} ist ebenfalls stetig
- 2. $x:[t_0,t_1] \to U$ durchläuft genau die Punkte einer Lösung x'=f(x) mit den Werten in U wenn

$$y = \psi \circ x : [t_0, t_1] \to \mathbb{R}^n$$

die Punkte einer Lösung der linearen Gleichung

$$y' = Df(0)y$$

mit den Werten in V durchläuft.

Bemerkung Die Systeme sind topologisch konjugiert.

Satz 3.36 (Stabilität von nichtlinearen Systemen) Die Matrix A besitze die Eigenwerte mit $\Re \lambda_i \le -\alpha < 0$. Außerdem sei $g: \mathbb{R}^n \to \mathbb{R}^n$ stetig mit einem linearen Wachstum, das heißt $\exists k > 0: |g(t,x)| \le k(1+|x|) \forall (t,x) \in [0,T] \times \mathbb{R}^n$ und

$$\lim_{x \to 0} \frac{|g(x)|}{|x|} = 0$$

Dann ist der Nullpunkt asymptotisch stabil bezüglich der Differentialgleichung x' = Ax + g(x).

Beweis Jede Lösung lässt sich stetig zu einer Lösung auf $[0,\infty)$ fortsetzen. Wir nehmen ϕ die Matrixfunktion zu einem Lösungs-Fundamentalsystem von x'=Ax mit $\phi(0)=\mathrm{id}$. Die Variation der Konstanten führt zu

$$x(t) = \phi(t)(x(0)) + \int_0^t \phi(s)^{-1} g(x(s)) ds$$

Also löst die Hilfsfunktion

$$\tilde{x}: \mathbb{R}_+ \to \mathbb{R}^n, t \mapsto \phi(t)x(0) = x(t) - \int_0^t \phi(t)\phi(s)^{-1}g(x(s))\mathrm{d}s$$

die zugehörige homogene Differentialgleichung $\tilde{x}'=A\tilde{x}$ mit $\tilde{x}(0)=x(0)$. $\exists c>0$, sodass jede Lösung y von y'=Ay erfüllt

$$|y(t)| \le c|y(0)|e^{-\alpha t} \forall t \ge 0$$

$$|\phi(t)| \le ce^{-\alpha t}$$

$$|\phi(t)\phi(s)^{-1}| \le ce^{-\alpha(t-s)} \forall 0 \le s \le t$$

(denn $t \to \phi(t)\phi(s)^{-1}$ induziert eine Lösungsmatrix von y' = Ay mit $y(s) = \mathrm{id}$.) Wir erhalten:

$$|x(t)| \le |\tilde{x}(t)| + \int_0^t \left| \phi(t)\phi(s)^{-1} \right| |g(x(s))ds| \le c|x(0)|e^{-\alpha t} + \int_0^t ce^{-\alpha(t-s)} |g(x(s))|ds$$

Aus Vorraussetzung $\lim_{x\to 0} |g(x)|/|x| = 0$ gibt es einen Radius $\rho > 0$ mit $|g(z)| \le \alpha/(2c)|z| \forall z \in \bar{K}_{\rho}(0)$. Wir betrachten x' = Ax + g(x) mit $|x(0)| \le \rho/(2(1+c))$. Stetigkeit von x garantiert, dass

$$T_{x(\cdot)} = \sup\{t \ge 0 \mid |x(\cdot)| \le \rho\}$$

positiv oder ∞ . $\forall t \in [0, T_{x(\cdot)}]$ können wir |x(t)| weiter abschätzen

$$|x(t)| \le c|x(0)|e^{-\alpha t} + \int_0^t ce^{-\alpha(t-s)} \frac{\alpha}{2c} |x(s)| ds$$

$$\implies e^{\alpha t} |x(t)| \le c|x(0)| + \int_0^t e^{\alpha s} \frac{\alpha}{2} |x(s)| ds$$

$$\implies e^{\alpha t} |x(t)| \le c|x(0)|e^{\frac{\alpha}{2}t}$$

$$\implies |x(t)| \le c|x(0)|e^{-\frac{\alpha}{2}t} \le \frac{\rho}{2}$$

$$\implies T_{x(\cdot)} = \infty$$

und der Nullpunkt ist asymptotisch stabil.

Satz 3.37 (3.33 Instabilitätssatz) Die Matrix A habe mindestens einen Eigenwert λ mit $\Re \lambda > 0$. Sei g stetig mit linearem Wachstum und

$$\lim_{x \to 0} \frac{|g(x)|}{|x|}$$

Dann ist der Nullpunkt instabil bezüglich der Differntialgleichung

$$x' = Ax + g(x)$$

(ohne Beweis)

Bemerkung Stabilitätssatz und Instabilitätssatz lassen sich direkt auf nichtlineare Differentialgleichungen anwenden, wenn die rechte Seite differenzierbar ist. Denn nach Definition von Totaler Ableitung erfüllt die Restfunkton $\varphi_{\bar{x}}(\cdot)$ in

$$f(x) = \underbrace{f(\bar{x})}_{=0} + \underbrace{Df(\bar{x})(x - \bar{x})}_{A(x - \bar{x})} + \underbrace{\varphi_{\bar{x}}(x)}_{=g}$$

die Voraussetzungen der beiden Sätze.

Korollar 3.38 $f: \mathbb{R}^n \to \mathbb{R}^n$ sei differnzierbar und besitze einen stationären Punkt $\bar{x} \in \mathbb{R}^n$. Dann gilt

- 1. Wenn die Jacobi-Matrix $Df(\bar{x}) \in \mathbb{R}^{n \times n}$ nur Eigenwerte mit $\Re \lambda_i < 0$ besitzt, dann ist \bar{x} asymptotisch stabil.
- 2. Wenn mindestens ein $\Re \lambda_i > 0$ ist, ist die Lösung instabil.

Bemerkung • Bei $\Re \lambda = 0$ sind entsprechende Schlussfolgerungen über die Stabilität nicht möglich

• Satz 3.32 und Satz 3.33 \iff Satz von Grobmann-Hartmann

Beispiel 3.39

$$\begin{cases} x' = x(1-x) \\ x(0) = x_0 \end{cases}$$

Stabilität: f'(x) = 1 - 2x

Stationäre Punkte: $\bar{x}_1 = 0, \bar{x}_2 = 1$

$$f'(x)\mid_{x=\bar{x}_1}=1>0\implies \bar{x}_1$$
 instabil
$$f'(x)\mid_{x=\bar{x}_2}=-1>0\implies \bar{x}_2$$
 asymptotisch instabil

Definition 3.40 Als **Phasenraum** bezeichnet man den Raum, der durch die Variablen das Systems aufgespannt wird. Ein Punkt im Phasenraum nennt man **Zustand** des Systems

Bemerkung Das Richtungsfeld gibt den Verlauf der Trajektorien an. Der exakte Verlauf der Frajektorie ist für ein System

$$\begin{cases} x_1' = f(x_1, x_2) \\ x_2' = g(x_1, x_2) \end{cases}$$

gegeben durch

$$\frac{\mathrm{d}x_1}{\mathrm{d}x_2} = \frac{f(x_1, x_2)}{g(x_1, x_2)}$$

Beispiel 3.41 (Methode des ersten Integrals)

$$\begin{cases} x_1' = x_1 \\ x_2' = -x_1 x_2 \end{cases} \implies \frac{\mathrm{d}x_2}{\mathrm{d}x_1} = -x_2 \implies x_2(x_1) = ce^{-x_1}$$

Durch jeden Punkt (x_1, x_2) geht eine eindeutige Kurve.

Beispiel 3.42 (Lotke-Volterra)

$$\begin{cases} u' = au - buv = f(u, v) \\ v' = cuv - dv = g(u, v) \end{cases}$$

(Größe der Beutepopulation)

- 1. Existenz und Eindeutigkeit aus P.-L. Satz
- 2. Nichtnegativität der Lösung:

•
$$f(u,v)|_{u=0} = 0 \implies u(t) \ge 0$$
 falls $u_0 \ge 0$

•
$$g(u,v)\big|_{v=0}=0 \implies v(t)\geq 0$$
 falls $v_0\geq 0$

3. Gleichgewichtzustände (Stationäre Punkte)

$$\begin{cases} f(\bar{u}, \bar{v}) = 0 \implies \bar{u}(a - b\bar{v}) = 0 \iff \bar{u} = 0 \lor \bar{v} = \frac{a}{b} \\ g(\bar{u}, \bar{v}) = 0 \implies \bar{v}(c\bar{u} - d) = 0 \iff \bar{v} = 0 \lor \bar{u} = \frac{d}{c} \end{cases}$$

⇒ Stationäre Punkte:

$$(\bar{u}_1, \bar{v}_1) = (0, 0), (\bar{u}_2, \bar{v}_2) = \left(\frac{d}{c}, \frac{a}{b}\right)$$

Stabilität der stationären Punkte: Jacobi Matrix:

$$J(u,v) = \begin{pmatrix} a-bv & -bv \\ cv & cu-d \end{pmatrix}, J(u,v)\big|_{(0,0)} = \begin{pmatrix} a & 0 \\ 0 & -d \end{pmatrix}$$

 $\implies \lambda_1 = a, \lambda_2 = -d. \ (0,0)$ ist ein Sattel (instabil nach Grobmann-Hartmann-Satz).

$$J(u,v)\big|_{\left(\frac{d}{c},\frac{a}{b}\right)} = \begin{pmatrix} 0 & -\frac{bd}{c} \\ \frac{ca}{b} & 0 \end{pmatrix}$$

$$(-\lambda)^2 + ad = 0 \iff \lambda_{1,2} = \pm \sqrt{ad}i$$

⇒ die Anwendung von Grobman-Hartmann ist nicht möglich. Wir rechnen das erste Integral:

$$\frac{\mathrm{d}v}{\mathrm{d}u} = \frac{v}{u} \frac{cu - d}{a - bv}$$

$$\implies \int \frac{a - bv}{v} \mathrm{d}v = \int \frac{cu - d}{u} \mathrm{d}u$$

$$\int \left(\frac{a}{v} - b\right) \mathrm{d}v = \int \left(c - \frac{d}{u}\right) \mathrm{d}u$$

$$a \ln v - bv = cu - d \ln u + c$$

$$v^a e^{-bv} e^{-cu} u^d = c =: F(u, v)$$

 $\implies F(u,v)$ ist konstant entlang Trajektorien. Die Lösungen sind also periodisch. Für Oszillationen mit Periode T gilt:

$$\frac{u'}{u} = a - bv \implies \ln\left(\frac{u(T)}{u_0}\right) = aT - b\int_0^T u(s)ds$$

$$v \uparrow \iff v' > b$$

$$cuv - dv = v(cu - d), v > 0 \land u > \frac{d}{c} \implies 0 = aT - b \int_0^T v(s) ds$$

 $u\equiv 0$ und $v\equiv 0$ sind Isoklinen

Lyapunov Funktion (globale Stabilität)

$$x' = f(x)$$

Wir suchen nach einer Funktion L(x(t)), die entlang der Lösung nicht wächst. (\implies "Energie")

Definition 3.43 Sei $U \subset \mathbb{R}^n$ offen und sei $f \in C^0(U,\mathbb{R}^n)$ lokal Lipschitzstetig. Eine Lyapunovfunktion für x' = f(x) ist eine Funktion $L \in C^1(U,[0,\infty))$ mit

$$\nabla L(x) f(x) < 0$$

für $x \in U$. Falls sogar

$$\nabla L(x)f(x) < 0 \forall x \in U \setminus \{x \mid f(x) = 0\}$$

gilt, dann heißt L strikte Lyapunov-Funktion, das heißt L(x(t)) fällt, falls x(t) kein stationärer Punkt ist.

Satz 3.44 Sei \bar{x} ein stationärer Punkt.

- Falls es eine Lyapunov-Funktion auf einer offenen Umgebung U von $\bar x$ gibt mit $L(\bar x)=0, L(x)>0$ für $x\neq \bar x$, dann ist $\bar x$ stabil
- Falls es eine strikte Lyapunov-Funktion auf einer Umbebung U von \bar{x} mit $L(\bar{x})=0, L(x)>0$ für $x\neq \bar{x}$ und L'(x)<0, dann ist \bar{x} asymptotisch stabil.

$$(L(x))' = L'(x)x'$$

(ohne Beweis)