

病态线性回归模型系数的主成分一岭估计

◎ 熊幼林 (湖北师范学院 435002)

本文针对岭估计和主成分估计的不足,从模型病态的根本原因出发,将模型分解成两个线性回归模型,对参数的两部分分别采用 LS 估计和岭估计,从而定义了一个新的估计,即主成分—岭估计,通过研究该估计的性质,证明了在均方误差意义下,主成分—岭估计优于岭估计。0-c 型岭估计和 0-K 型广义岭估计,从而为病态线性回归模型系数的估计提供了一种改进的技术途径.

1. 引 言

考虑线性回归模型: $y=X\beta+e$,E(e)=0 , $Cov(e)=\sigma^2I_n$. (1.1)

其中,为 $n \times 1$ 随机观测向量 X 为 $n \times p$ 的设计矩阵且已中心化和标准化, $\operatorname{rank}(X) = p \beta$ 为 $p \times 1$ 的未知参数向量 ρ 为 $n \times 1$ 随机误差向量 ρ 为 n 阶单位矩阵. 存在 $\rho \times p$ 正交矩阵 ρ 使得 ρ 使得 ρ 使得 ρ 使得 ρ 使得 ρ 使得 ρ 使用 ρ 使用

$$y = Z\alpha + e \ E(e) = 0 \ \text{Cov}(e) = \sigma^2 I_n.$$
 (1.2)

 α 的 LS 估计为: $\hat{\alpha}=(Z'Z)^{-1}Z'y=\Lambda^{-1}Z'y$,从而原始参数 β 的 LS 估计为 $\hat{\beta}=\Phi\hat{\alpha}$. 当设计矩阵 X 的列向量之间出现复共线关系时 称模型(1.1) 为病态线性回归模型. 由文献可知 ,当且仅当 X'X 存在很小特征值时模型出现病态. 不妨

假设 λ_{r+1} ,… $\lambda_p\approx 0$ 此时 $\mathrm{MSE}(\beta)=\frac{\sigma^2\sum_{i=1}^r 1}{\lambda_i}$ 非常大. 因而在均方误差意义下 LS 估计不再是一个好的估计. 为了解决这个问题 统计学家们做了大量工作. 目前应用最为广泛的有两种方法: 一是 Hoerl 和 Kennard 于 1970 年提出的岭估计. 对模型(1.1) 。回归系数 β 的岭估计定义为:

 $\beta(k) = (XX + kI_p)^{-1}XY k > 0.$ (1.3) 二是主成分估计. 岭估计是以牺牲无偏性换取方差部分的大幅度减小 达到最终降低其均方误差的目的. 但从上述分析可知 真正使得 LS 估计变坏的原因在于 λ_{r+1} ,… λ_p 很小 ,因而增大 λ_{r+1} ,… λ_p 是有必要的. 对于主成分估计 ,虽然后面 p-r个主成分对因变量影响较小 但毕竟是影响 y 的一些因素 若轻易剔除 显然有失真之弊. 为了弥补这些不足 ,本文提出主成分 — 岭估计的设想.

2. 主成分 — 岭估计的定义

在模型(1.2) 中,不妨假设 λ_{r+1} , $\lambda_p \approx 0$, 令 $\Phi = (\Phi_1 : \Phi_2)$ 其中 Φ_1 为 $p \times r$ 矩阵 Φ_2 为 $p \times (p-r)$ 矩阵 则模型变为: $y = X(\Phi_1 \Phi_2)(\Phi_1' \Phi_2')^T \beta + e = Z_1 \alpha_1 + Z_2 \alpha_2 + e$.

其中
$$Z_1 = X\Phi_1$$
 $Z_2 = X\Phi_2$ $\alpha_1 = \Phi_1 \beta \alpha_2 = \Phi_2 \beta$. 记 $c =$

$$\frac{\sum\limits_{i=1}^{r}\lambda_{i}}{\sum\limits_{i=1}^{p}\lambda_{i}}$$
 称为前 r 个主成分的贡献率.

将模型(2.1) 变为: $cy = Z_1\alpha_1 + \frac{e}{2}$,

$$(1-c) y = Z_2 \alpha_2 + \frac{e}{2}.$$
 (2.2)

其中 E(e) = 0 $\mathcal{L}ov(e) = \sigma^2 I_n \ \rho$ 的取值可根据实际需要预先取定. 易见 以上几个模型本质是相同的.

定义: 在模型(2.2) 中 回归系数 $\alpha = (\alpha_1 \ \alpha_2)^T$ 的主成分 — 岭估计估计定义为:

 $\alpha^* \triangleq (\alpha_1^* \ \alpha_2^* (k))^T = (c \ (Z_1^* Z_1)^{-1} Z_1^* y, (1 - c) (Z_2^* Z_2 + k I_{p-r})^{-1} Z_2^* y)^T$ 相应地 原回归系数 $\beta = \Phi \alpha$ 的主成分一岭估计定义为: $\beta^* = \Phi(c \Lambda_1^{-1} Z_1^* y, (1 - c) (\Lambda_2 + k I_{p-r})^{-1} Z_2^* y)^T$. (2.3)

3. 主成分 一 岭估计的基本性质

引理 1 α_1 α_2 的估计 α_1^* α_2^* (k) 具有下列性质: (1) $c'\alpha_1^*$ 是 $c'\alpha_1$ 的最佳线性无偏估计; (2) α_2^* (k) 是 α_2 的一个有偏估计; (3) $Cov(\alpha_1^*) = \frac{\sigma^2 \Lambda_1^{-1}}{2} Cov(\alpha_2^* (k)) = \frac{\sigma^2 (\Lambda_2 + kI_{p-r})^{-1} \Lambda_2 (\Lambda_2 + kI_{p-r})^{-1}}{2}$. (2.4)

引理 2 β^* 具有以下基本性质: (1) β^* 是最小二乘估计 $\hat{\beta}$ 向原点的一种压缩 ,且存在 k>0 ,使得 β^* 是岭估计 $\hat{\beta}(k)$ 向原点的一种压缩; (2) β^* 比岭估计 $\hat{\beta}(k)$ 具有更小的 偏差.

4. 主成分 — 岭估计的均方误差

定理 1 β^* 的均方误差为: $MSE(\beta^*) = \frac{1}{2}\sigma^2 \sum_{i=1}^r \frac{1}{\lambda i} + \frac{1}{2}\sigma^2 \sum_{i=r+1}^p \frac{\lambda_i}{(\lambda_i + k)^2} + k^2 \sum_{i=r+1}^p \frac{a_i^2}{(\lambda_i + k)^2}.$ (4.1) 证明 $:: Cov(\beta^*) = Cov(\Phi\alpha^*) = \Phi Cov(\alpha^*) \Phi^*,$ $Cov(\alpha^*) = E[(\alpha_1^*, \alpha_2^*, (k))^T - E(\alpha_1^*, \alpha_2^*, (k))^T] \cdot [\alpha_1^*, \alpha_2^*, (k)]$

$$Cov(\alpha^*) = E[(\alpha_1^* \ \alpha_2^* (k))^T - E(\alpha_1^* \ \alpha_2^* (k))^T] \cdot [\alpha_1^*, \alpha_2^* (k))^T] \cdot [\alpha_1^*, \alpha_2^* (k)) - E(\alpha_1^* \ \alpha_2^* (k))] = \begin{pmatrix} Cov(\alpha_1^*) & Cov(\alpha_1^* \ \alpha_2^* (k)) \\ Cov(\alpha_2^* (k) \ \alpha_1^*) & Cov(\alpha_1^* (k)) \end{pmatrix},$$

 $\begin{array}{lll} \therefore \ \operatorname{tr}(\ \operatorname{Cov}(\ \boldsymbol{\beta}^*\)\) & = \ \operatorname{tr}(\ \boldsymbol{\Phi}\operatorname{Cov}(\ \boldsymbol{\alpha}^*\)\ \boldsymbol{\Phi}') & = \ \operatorname{tr}(\ \operatorname{Cov}(\ \boldsymbol{\alpha}^*\)\) \\ & = \ \operatorname{tr}(\ \operatorname{Cov}(\ \boldsymbol{\alpha}_1^*\)\) & + \ \operatorname{tr}(\ \operatorname{Cov}(\ \boldsymbol{\alpha}_2^*\ (\ \boldsymbol{k})\)\)\ . \end{array}$

由(2.4) 式知

tr(Cov(
$$\beta^*$$
)) = $\frac{1}{2}\sigma^2 \sum_{i=1}^r \frac{1}{\lambda i} + \frac{1}{2}\sigma^2 \sum_{i=r+1}^p \frac{\lambda_i}{(\lambda_i + k)^2}$.

故 MSE(β^*) = tr(Cov(β^*)) + || $E(\beta^*) - \beta$ || = $\frac{1}{2}\sigma^2\sum_{i=1}^r \frac{1}{\lambda_i} + \frac{1}{2}\sigma^2\sum_{i=r+1}^p \frac{\lambda_i}{(\lambda_i + k)^2} + k^2\sum_{i=r+1}^p \frac{a_i^2}{(\lambda_i + k)^2}$.

证明 $\Leftrightarrow g(k) = MSE(\hat{\beta}(k)) - MSE(\hat{\beta}^*).$

 $g(0) = \frac{1}{2}\sigma^2 \sum_{i=1}^p \frac{1}{\lambda i} > 0$ 而 g(k) 在 $k \ge 0$ 时连续,

 $\therefore \exists k^* > 0$, 当 $k \in (0 k^*)$ 时有 g(k) > 0 从而就有 $MSE(\beta^*) < MSE(\hat{\beta}(k))$.