3 逆三角関数と双曲線関数

3.1 逆三角関数

ただし, 三角関数は周期関数なので, 定義域を適当に限定する必要がある.

ightharpoonup 逆正弦関数 $y = \sin^{-1} x$

正弦関数 $y = \sin x$ は、定義域を $x \in [-\pi/2, \pi/2]$ に限定すれば、ある $y \in [-1, 1]$ の値に対して x の値がただ一つに決まる(主値)。 つまり、逆関数が存在する。 これを逆正弦関数 (arcsine) といい、

$$y = \sin^{-1} x$$
 $\forall y = \arcsin x$ $(\iff x = \sin y)$

などと表す.定義域は $x \in [-1,1]$ で,値域は $y \in [-\pi/2,\pi/2]$ である.

例.
$$\sin^{-1}\frac{1}{2} = \frac{\pi}{6}$$
, $\sin^{-1}\frac{1}{3} = 0.3398369\cdots$ rad.

注意. $\sin^2 x = (\sin x)^2$ であるが, $\sin^{-1} x = (\sin x)^{-1} = \frac{1}{\sin x}$ ではない. $f^{-1}(x)$ と同じ記法である. 三角関数の n 乗を $\sin^n x$ のように書くのは, n が正の整数のときだけである.

ightharpoonup 逆余弦関数 $y = \cos^{-1} x$

余弦関数 $y = \cos x$ は、定義域を $x \in [0,\pi]$ に限定すれば、ある $y \in [-1,1]$ の値に対して x の値がただ一つに決まる(主値)。 つまり、逆関数が存在する。 これを逆余弦関数 (arccosine) といい、

$$y = \cos^{-1} x$$
 $\forall y = \arccos x$ $(\iff x = \cos y)$

などと表す. 定義域は $x \in [-1,1]$ で, 値域は $y \in [0,\pi]$ である.

数学 AI (奈須田) 第 5 週 ①

例.
$$\cos^{-1}\frac{1}{2} = \frac{\pi}{3}$$
, $\cos^{-1}\frac{1}{3} = 1.230959\cdots$ rad.

ightharpoonup 逆正接関数 $y = \tan^{-1} x$

正接関数 $y = \tan x$ は,定義域を $x \in (-\pi/2, \pi/2)$ に限定すれば,ある $y \in (-\infty, \infty)$ の値に対して x の値がただ一つに決まる(主値).つまり,逆関数が存在する.これを逆正接関数 (arctangent) といい,

などと表す.定義域は $x\in (-\infty,\infty)=\mathbb{R}$ (実数全体)で,値域は $y\in (-\pi/2,\pi/2)$ である.

例.
$$\tan^{-1} \sqrt{3} = \frac{\pi}{3}$$
, $\tan^{-1} \frac{1}{2} = 0.4636476 \cdots$ rad.

✓ その他

 $y = \sec x, y = \csc x, y = \cot x$ についても、同様に逆関数を考えられる。

問
$$y = \sec^{-1} x, y = \csc^{-1} x, y = \cot^{-1} x$$
 はどんな関数か?

問題3.1 次の値を求めよ.

(1)
$$y = \sin^{-1} \frac{\sqrt{3}}{2}$$

(2)
$$y = \sin^{-1} \frac{1}{\sqrt{2}}$$

(3)
$$y = \cos^{-1} \frac{\sqrt{3}}{2}$$

(5)
$$y = \tan^{-1} \frac{1}{\sqrt{3}}$$

$$(6) \quad y = \tan^{-1} 1$$

$$(7) \quad y = \sin^{-1}\left(-\frac{1}{2}\right)$$

(5)
$$y = \tan^{-1} \frac{1}{\sqrt{3}}$$
 (6) $y = \tan^{-1} 1$ (7) $y = \sin^{-1} \left(-\frac{1}{2}\right)$ (8) $y = \cos^{-1} \left(-\frac{1}{\sqrt{2}}\right)$

(9)
$$y = \sin^{-1} 0$$

問題 3.2 右図の直角三角形 ABC について、角 A, B を逆正弦関数を用いて表せ.

問題3.3 0 < x < 1 とする。図を用いて、 $\cos^{-1} x = \sin^{-1} \sqrt{1 - x^2}$ を証明せよ。

3.2 逆三角関数の導関数

•
$$(\sin^{-1} x)' = \frac{1}{\sqrt{1 - x^2}}$$
 $(x \neq \pm 1)$

•
$$(\cos^{-1} x)' = -\frac{1}{\sqrt{1-x^2}}$$
 $(x \neq \pm 1)$

•
$$(\tan^{-1} x)' = \frac{1}{1 + x^2}$$

関数 $y = \sin^{-1} \frac{x}{a}$ を微分せよ. ただし, a > 0 とする.

Ø

問題3.4 次の関数を微分せよ。ただし、 $a \neq 0$ とする。

$$(1) \quad y = \cos^{-1} 2x$$

$$(2) \quad y = \sin^{-1} \frac{x}{2}$$

$$(3) \quad y = \tan^{-1} \sqrt{x}$$

(1)
$$y = \cos^{-1} 2x$$
 (2) $y = \sin^{-1} \frac{x}{2}$ (3) $y = \tan^{-1} \sqrt{x}$ (4) $y = \frac{1}{a} \tan^{-1} \frac{x}{a}$