Convolutional Neural Networks

BITS F312: Neural Networks and Fuzzy Logic

Lab 06

Convolution Layer

- Element-wise multiply the pixel values in the matrix with the values in the filter and add all of them.
- Then move filter by "stride" number of steps each time to the right until you reach the end, then move down.
- Repeat for all channels and apply a non-linearity function (e.g. ReLU).

Convolution Layer: Properties

- Locality: Each neuron is related to only a few other neurons.
- Translational invariance: If a pattern (e.g. a cat) moves in the image, the ConvNet will still detect that pattern.
- Local Stationarity: Similar patches are shared across data domains, that is, always check for a repeating pattern and never for an object.
- Multi-scale: Simple structures combine to compose slightly more abstract structures and so on.

Max Pooling Layer

- ► Take a window of some size and move it like a filter in a Convolutional layer, and at each instance choose the pixel in the window with the maximum value.
- Typical values:
 - Filter size = (2, 2)
 - ► Stride = 2

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

General Architecture

- Repeating blocks, where each block consists of one or several Convolution Layers followed by a Max Pooling layer.
- ▶ This is followed by a series of Fully Connected (Dense) layers.
- Regularization is achieved by Dropout, Data Augmentation, L1 and L2 loss.

General Architecture

Problems that CNNs can solve

- Computer Vision
 - ► Face recognition
 - Scene labelling
 - Image classification
 - Action recognition
 - Pose estimation
 - Document analysis (OCR)
 - Neural style transfer
 - Object detection
- Natural Language Processing
 - Speech recognition
 - ► Text classification

And more...

Object Detection, Localization and Segmentation

- Object detection: A set of objects is given. Predict if any of these objects are present in the image and if yes, then which one?
- Object Localization: Draw a bounding box around the object if it is present along with object detection.
- Image Segmentation: Assign a label to each pixel in the image, that is, draw exact boundaries around all objects in image.

Object Detection, Localization and Segmentation

Object Localization

- Solution: Regression
 - P(object being present)
 - X coordinate of center
 - Y coordinate of center
 - Height of bounding box
 - Width of bounding box
 - ► Label for class 1
 - ► Label for class 2
 - ► Label for class 3

$$\mathbf{Y} = \begin{bmatrix} p_c \\ b_x \\ b_y \\ b_h \\ b_w \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Object Localization

Object Localization

- Multiple objects?
- Sliding windows
- Problems:
 - ► Time complexity
 - ▶ Need to run the algorithm many times

Convolutional Implementation of Sliding Windows

TO:

Convolutional Implementation of Sliding Windows

Convolutional Implementation of Sliding Windows

Result of running ConvNet in the upper left corner with a 14x14x3 region in the original image

You Only Look Once (YOLO)

Break image into a grid (e.g. (19 x 19) grid).

YOLO: Label Generation

- ► For each cell where the center of an object lies, the label will be:
- $[1, b_x, b_y, b_h, b_w, c_1, c_2, c_3].$
- For each cell where the centre of an object does not lie, the label will be:
- [0, ?, ?, ?, ?, ?, ?, ?]
- Labels are combined into a tensor of shape (19, 19, 8).
- Note that b_x , b_y , b_h and b_w are specified relative to the cell boundaries.

YOLO: Intersection over Union (IoU)

- ▶ IoU = area of intersection/area of union
- "Correct" if IoU >= 0.5.
- Accuracy = # of correct samples / # of total samples

YOLO: Non-Max Suppression

- To make sure that each object is detected only once.
- Algorithm:
 - \triangleright Discard all boxes with p_c <= 0.6.
 - \triangleright Check which box has highest value of p_c . Let this be B.
 - ► Check which boxes have high IoU with B (>= 0.5) and remove them.
 - Add B to solution and remove it from consideration and repeat from Step 2.

YOLO: Anchor Boxes

- If you have multiple objects in same cell, anchor boxes are the solution.
- Also helps in better convergence.
- Different shapes of anchor boxes change labels accordingly.

YOLO: Putting it together

- Step 1: Break image into cells.
- Step 2: Decide on anchor boxes.
- Step 3: Generate labels according to cells and anchor boxes.
- ▶ Step 4: Run Convnet to get output tensor.
- Step 5: Remove redundant boxes using Non-max suppression.
- Step 6: Predict "correct" or not by checking IoU with label.

Text Classification

- Problem: Classify a document according to its text.
- Solution: CNNs (effective because they capture the salient features only).
- ► Embeddings: Numerical representations of words (will be explained in later labs).
- ▶ 1D CNN: Contains 1D Convolution Layer

Text Classification: CNN Architecture

Face Verification and Recognition

Face Verification

- Input an image of a person and name / ID of that person.
- Predict if the two are the same people.

Face Recognition

- We have a database of K people.
- Input an image and output the ID of the person if that person is in the database or 'None' if he/she is not.

One-Shot Learning

- You only have one example of the face of that person as an example to recognize again.
- Traditional ConvNet will have problems because the output layer will be equal to number of people and the model will become too complex to train.
- Achieved by training a Siamese Network which learns a similarity function instead of a direct mapping.

One-Shot Learning

 $dist(x_i, x_j) \le t$: 'same person'

 $dist(x_i, x_j) > t$: 'different person'

dist(., .) is usually the Euclidean norm and x_i and x_j are the images.

Siamese Network

- Instead of using the images directly, learn encodings and use them.
- ► Hence, dist $(x_i, x_j) = (|f(x_i) f(x_j)|_2)^2$.
- Learn parameters so that this quantity is small if x_i and x_j are the same person and large if they are different people.
- Two ways to train: Triplet loss and binary classification.

Lab Question

The Omniglot Dataset

```
TIXTYPALIATEDUVIDICIVUDARAGNIIAI # FRATT
品でなりてす™はりしななるもにK レレフピリンシュをひのとナ 3 m 3 m v
PMDDIPHHIIIAREDNY@JUDSSUGUANO RARRO
可由我们对的对方,不不不用口下的一个工士并且可以能够的证明的问题。
とのととなっているととととととなるとは、これからのそれでき
LUYNYGOYSTWWWSAMUB:: * · · bHP4CAY54=
```

Lab Question

The Omniglot Dataset

- Developed for 'human-like' learning, i.e., how humans learn new concepts from just a few examples.
- Contains 1623 characters, each having 20 samples, across 50 alphabets (30 in training, 20 in testing) for One-Shot learning.