CS 6190: Probabilistic Modelling Spring 2019

Homework 0

Handed out: 26 Aug, 2019 Due: 11:59pm, 5 Sep, 2019

- You are welcome to talk to other members of the class about the homework. I am more concerned that you understand the underlying concepts. However, you should write down your own solution. Please keep the class collaboration policy in mind.
- Feel free discuss the homework with the instructor or the TAs.
- Your written solutions should be brief and clear. You need to show your work, not just the final answer, but you do *not* need to write it in gory detail. Your assignment should be **no more than 10 pages**. Every extra page will cost a point.
- Handwritten solutions will not be accepted.
- The homework is due by midnight of the due date. Please submit the homework on Canvas.

Warm up[100 points + 10 bonus]

1. [10 points] Given two events A and B, prove that

$$p(A \cup B) \le p(A) + p(B)$$
$$p(A \cap B) \le p(A)$$
$$p(A \cap B) \le p(B)$$

When will the equality conditions hold?

2. [5 points] Let $\{A_1, \ldots, A_n\}$ be a collection of events. Show that

$$p(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} p(A_i).$$

When does the equality hold? (Hint: induction)

3. [20 points] We use $\mathbb{E}(\cdot)$ and $\mathbb{V}(\cdot)$ to denote a random variable's mean (or expectation) and variance, respectively. Given two discrete random variables X and Y, where $X \in \{0,1\}$ and $Y \in \{0,1\}$. The joint probability p(X,Y) is given in as follows:

	Y = 0	Y = 1
X = 0	3/10	1/10
X = 1	2/10	4/10

(a) [10 points] Calculate the following distributions and statistics.

- i. the the marginal distributions p(X) and p(Y)
- ii. the conditional distributions p(X|Y) and p(Y|X)
- iii. $\mathbb{E}(X)$, $\mathbb{E}(Y)$, $\mathbb{V}(X)$, $\mathbb{V}(Y)$
- iv. $\mathbb{E}(Y|X=0)$, $\mathbb{E}(Y|X=1)$, $\mathbb{V}(Y|X=0)$, $\mathbb{V}(Y|X=1)$
- v. the covariance between X and Y
- (b) [5 points] Are X and Y independent? Why?
- (c) [5 points] When X is not assigned a specific value, are $\mathbb{E}(Y|X)$ and $\mathbb{V}(Y|X)$ still constant? Why?
- 4. [10 points] Assume a random variable X follows a standard normal distribution, i.e., $X \sim \mathcal{N}(X|0,1)$. Let $Y = e^{-X^2}$. Calculate the mean and variance of Y.
 - (a) $\mathbb{E}(Y)$
 - (b) $\mathbb{V}(Y)$
- 5. [10 points] Derive the probability density functions of the following transformed random variables.
 - (a) $X \sim \mathcal{N}(X|0,1)$ and $Y = X^3$.

$$\text{(b)} \quad \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right] \sim \mathcal{N} \left(\left[\begin{array}{c} X_1 \\ X_2 \end{array} \right] \mid \left[\begin{array}{c} 0 \\ 0 \end{array} \right], \left[\begin{array}{cc} 1 & -1/2 \\ -1/2 & 1 \end{array} \right] \right) \text{ and } \left[\begin{array}{c} Y_1 \\ Y_2 \end{array} \right] = \left[\begin{array}{cc} 1 & 1/2 \\ -1/3 & 1 \end{array} \right] \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right].$$

- 6. [10 points] Given two random variables X and Y, show that
 - (a) $\mathbb{E}(\mathbb{E}(Y|X)) = \mathbb{E}(Y)$
 - (b) $\mathbb{V}(Y) = \mathbb{E}(\mathbb{V}(Y|X)) + \mathbb{V}(\mathbb{E}(Y|X))$

(Hints: using definition.)

- 7. [15 points] Given a logistic function, $f(\mathbf{x}) = 1/(1 + \exp(-\mathbf{a}^{\top}\mathbf{x}))$ (\mathbf{x} is a vector),
 - (a) derive $\nabla f(\mathbf{x})$
 - (b) derive $\nabla^2 f(\mathbf{x})$
 - (c) show that $-log(f(\mathbf{x}))$ is convex

Note that $0 \le f(\mathbf{x}) \le 1$.

- 8. [10 points] Derive the convex conjugate for the following functions
 - (a) $f(x) = -\log(x)$
 - (b) $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}$ where $\mathbf{A} \succ 0$
- 9. [10 points] Derive the (partial) gradient of the following functions
 - (a) $f(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \left(\mathcal{N}(\mathbf{a} | \mathbf{A} \boldsymbol{\mu}, \mathbf{S} \boldsymbol{\Sigma} \mathbf{S}^{\top}) \right)$, derive $\frac{\partial f}{\partial \boldsymbol{\mu}}$ and $\frac{\partial f}{\partial \boldsymbol{\Sigma}}$,
 - (b) $f(\Sigma) = \log (\mathcal{N}(\mathbf{a}|\mathbf{b}, \mathbf{K} \otimes \Sigma))$ where \otimes is the Kronecker product (Hint: check Minka's notes).
- 10. [Bonus][10 points] Show that for any square matrix $X \succ 0$, log |X| is concave to X.