Image processing

1. Feature Engineering for Image Data

What It Means

Feature engineering in the context of image data involves converting raw pixel values into a form that machine learning algorithms can use effectively typically vectors or tensors.

Why It's Needed

Machine learning models cannot process raw image files (like .jpg , .png) directly. Instead, these images must be numerically encoded to represent spatial and visual information (colors, shapes, textures, etc.).

Key Concepts

- Image → Tensor: An image is transformed into a multidimensional array (tensor) — e.g., a color image becomes a 3D array (height × width × channels).
- Feature Vector: You can flatten or reduce these tensors into 1D arrays for algorithms like k-means or SVM, though CNNs work directly with tensors.

2. Handling Colour Images

RGB Color Channels

Color images use the **RGB color model**, which includes:

- Red Channel
- Green Channel
- Blue Channel

Each channel is a 2D matrix of pixel intensity values between 0 and 255 (for 8bit images).

Image Shape

For example, an image of size 32×32 will have:

```
Shape: (32, 32, 3)
```

Where:

- 32 is the height
- 32 is the width
- is the number of color channels (R, G, B)

Grayscale Conversion

Sometimes color images are converted to **grayscale** by averaging or using weighted sums of the RGB channels to simplify the feature extraction process.

3. Incorporating Local Context Using Convolutions

♦ What is a Convolution?

A **convolution** is a mathematical operation where a small matrix called a **filter** or **kernel** slides across the image to compute **dot products** with local patches.

For a 3×3 filter applied to a 5×5 image patch:

```
[1 0 -1] [img11 img12 img13]
[1 0 -1] * [img21 img22 img23]
[1 0 -1] [img31 img32 img33]
```

Why Use Convolutions?

- Preserve spatial locality neighboring pixels often share semantic meaning.
- Extract **meaningful patterns** edges, corners, textures.
- Mimic human visual perception where localized features are crucial.

Filter Types

Filters (kernels) can be:

- Smoothing (e.g., mean filter: all ones divided by size)
- Edge detection (e.g., Sobel, Prewitt)

Sharpening (emphasize borders)

Output

After applying a filter:

- You get a new image (convolved feature map).
- Each value represents a local pattern match between the filter and the input image patch.

Stacking Feature Maps

You can apply multiple filters to get a stack of feature maps — each highlighting a different type of pattern. These form the input to deeper layers in CNNs or can be flattened into feature vectors for classical ML.

🔧 1. Basic Methods of Image Feature Extraction

A. Raw Pixel Intensities

- Approach: Flatten the 2D (grayscale) or 3D (RGB) image into a 1D vector.
- Example:
 - Grayscale image 28×28 → vector of size 784
 - RGB image 32×32×3 → vector of size 3072

import numpy as np image = ... # a 32×32×3 image features = image.flatten() # shape becomes (3072,)

- **V Pros**: Simple and quick
- X Cons: Ignores spatial relationships and patterns

B. Statistical Features

- Histogram of pixel values: Captures intensity distribution.
- Mean, Variance, Skewness of each channel.
- Often used in medical or texture-based image analysis.

```
mean = np.mean(image, axis=(0, 1))
std = np.std(image, axis=(0, 1))
```

C. Convolution-based Features (Manual Filters)

- Use 3×3, 5×5, etc., **kernels** to extract local features like edges, corners, textures.
- Apply convolution → flatten the result → use as features.

```
from scipy.signal import convolve2d
```

```
kernel = np.ones((3, 3)) / 9 # simple blur filter
convolved = convolve2d(gray_image, kernel, mode='valid')
features = convolved.flatten()
```

This simulates part of what CNNs do automatically.

2. Intermediate Techniques

A. PCA (Principal Component Analysis)

- Reduces dimensionality while retaining variance.
- Converts flattened image vectors into a lower-dimensional space.

from sklearn.decomposition import PCA

```
pca = PCA(n_components=50)
features = pca.fit_transform(flat_images)
```

B. Histogram of Oriented Gradients (HOG)

- Captures edge orientations.
- Common in object detection (e.g., pedestrian detection).

from skimage.feature import hog

features = hog(image, pixels_per_cell=(8, 8), cells_per_block=(2, 2), multic hannel=True)

🔖 3. Advanced Methods

A. Pre-trained CNN Feature Extractors

- Use models like ResNet, VGG, or MobileNet pretrained on ImageNet.
- Remove the classification layer and extract from a hidden layer.

from tensorflow.keras.applications import VGG16 from tensorflow.keras.applications.vgg16 import preprocess_input from tensorflow.keras.models import Model

model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224,3))

feature_extractor = Model(inputs=model.input, outputs=model.output)

features = feature_extractor.predict(preprocess_input(image_batch)) flattened_features = features.reshape(features.shape[0], -1)

- Captures very rich hierarchical features
- Vi Highly effective for transfer learning and clustering

B. Autoencoders

- Train an encoder-decoder network to reconstruct the image.
- Use the bottleneck layer as the feature vector.

encoder_output = encoder.predict(image_batch)

Best Practices

- Normalize pixel values: Scale between 0 and 1 or use standardization (mean=0, std=1)
- Resize images: Ensure consistent shape across dataset

• Augmentation: For better generalization, augment with flips, rotations, etc.

⊀ Summary Table

Method	Feature Type	Complexity	Captures Spatial Info
Raw pixels	Flat vector	Low	XNo
Manual convolutions	Local patterns	Low-Medium	✓ Some
PCA	Reduced linear components	Medium	X Mostly global
HOG	Edge orientations	Medium	✓ Yes
Pre-trained CNNs	Deep hierarchical features	High	✓ Strong
Autoencoders	Latent representations	High	✓ Strong

1. Downsizing Images

What It Means

Downsizing an image refers to **reducing its resolution** — i.e., making it smaller in terms of width and height (fewer pixels).

Why It's Done

- Reduce computational cost: Smaller images require less memory and processing.
- Speed up training: Especially in deep learning where input size significantly affects performance.
- Standardize input: Most ML models and CNN architectures require fixedsize input (e.g., 224×224 for VGG).

Example

Original size: 256×256

Downsized to: 64×64

Each image goes from 65,536 pixels \rightarrow 4,096 pixels.

How It's Done

Using cv2 (OpenCV) or PIL:

```
import cv2
resized = cv2.resize(image, (64, 64))
```

Trade-offs

- Information loss: Important details like edges or fine textures may be lost.
- V Best to keep enough resolution to preserve features relevant to the task.

2. Downsizing Color (Reducing Color Depth or Channels)

What It Means

There are two main interpretations:

A. Reducing Color Depth (Bit Depth)

- Reducing the number of bits used to represent color intensity.
- From 8 bits/channel (256 values) → 4 bits/channel (16 values), etc.

This reduces file size and can simplify features but may lead to visible color banding.

B. Converting Color Images to Grayscale

- Reducing from 3 channels (RGB) to 1 channel (Grayscale).
- Common when color information isn't essential.

```
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
```

- RGB image shape: (32, 32, 3)
- Grayscale image shape: (32, 32)

Why It's Done

- Simplifies models: Less input data.
- · Speeds up processing.

• Avoids unnecessary complexity if color isn't needed (e.g., digit recognition).

◆ Trade-offs

• Color-based features are lost, which might be crucial in tasks like traffic light detection or object classification in natural images.

Summary

Aspect	Downsizing Images	Downsizing Color
What it reduces	Spatial resolution	Color information
Input dimension	From H×W to smaller H×W	From 3 channels → 1 channel
Use case	Efficiency, standardization	When color is non-essential
Trade-off	Blurry/loss of detail	Loss of color cues