

Mathématiques

Classe: 4^{ème} Mathématiques

Série n° 21: Révision

Nom du prof : Fraj Zemni

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

5 pts

Le plan est rapporté à un repère orthonormé direct (O, u, v).

Soit a un nombre complexe non nul différent de (-i)

On considère dans
$$\mathbb{C}$$
 l'équation : (E): $z^2 - (1 + ia + \overline{a})z + \overline{a} + i|a|^2 = 0$

I) 1) Vérifier que \overline{a} est une solution de (E) puis déetrminer l'autre solution.

Dans la suite de l'exercice on considère les points A, B et M d'affixes respectives $u = \overline{a}$, v = 1 + ia et a.

- 2) On pose $a = e^{i\alpha}$ où $\alpha \in \left[\frac{\pi}{2}, \pi\right]$.
 - a) Ecrire le nombre complexe $\frac{v}{u}$ sous la forme exponentielle .
 - b) Déterminer le point M tel que le triangle OAB est rectangle en 0.
- II) On suppose que $a = m + \frac{1}{2}i$, $m \in \mathbb{R}$
 - 1) Vérifier que $1 + ia = i\overline{a}$
 - 2) Soit f l'application du plan dans lui-même qui à tout point M(z) associe le point M'(z') tel que $z' = -iz + 2i\overline{a}$, on donne Ω le point d'affixe $(1+i)\overline{a}$
 - a) Montrer que f(A) = B.
 - b) Montrer que $(\overrightarrow{\Omega A}, \overrightarrow{\Omega B}) = -\frac{\pi}{2}[2\pi]$.
 - 3) a) Montrer que f est une isométrie.
 - b) Montrer que f est une rotation de centre Ω et d'angle $-\frac{\pi}{2}$.
 - c) En déduire que O, A, B et Ω sont situés sur un même cercle.

Exercice 2:

(5) 40 min

6 pts

Le plan est orienté dans le sens direct. Dans la figure ci-contre,

ABC est un triangle direct, non rectangle et non isocèle.

GAC et EBA sont des triangles directs, rectangles et isocèles respectivement e G et en E.

L, K, I et J sont les milieux respectifs des cotes [BC], [GE], [EL]

et [GL], F et H sont les symétriques de G et J par rapport à L.

On note R_1 et R_2 les rotations de même angle $\frac{\pi}{2}$ et de centres

respectifs G et E. S_L désigne la symétrie centrale de centre L

Caractériser R₂oS_LoR₁.

- c) Justifier que le quadrilatère LJKI est un carré.
- **2)** Soit φ la symétrie glissante de vecteur \overrightarrow{LK} et d'axe Δ passant par I.

On pose $g = \phi \circ S_{(LE)}$, où $S_{(LE)}$ est la symétrie orthogonale d'axe (LE).

- a) Montrer que $\Delta = (IH)$.
- **b)** Montrer que g(J) = I et g(L) = E.
- c) Prouver que g est une rotation de centre K et d'angle $-\frac{\pi}{2}$.
- 3) Soit f l'antidéplacement qui envoie J en I et L en E.
 - a) Justifier que f est une symétrie glissante.
 - b) Donner les éléments caractéristiques de f.
- **4)** Soit M un point du plan. On désigne par M' et M" les images de M respectivement par f et g.
 - a) Déterminer (g \circ f $^{-1}$)(I) et (g \circ f $^{-1}$)(E). Caractériser alors g \circ f $^{-1}$.
 - **b)** En déduire que M' et M" sont symétriques par rapport à une droite fixe que l'on précisera.

5 pts

Soit f la fonction définie sur $\left|-\frac{1}{2},\frac{1}{2}\right|$ par $f(x) = \tan(\pi x)$.

- 1) a) Montrer que f réalise une bijection de $\left|-\frac{1}{2},\frac{1}{2}\right|$ sur un intervalle J à préciser
 - b) Montrer que pour tout x de $J:\ f^{-1}(x)+f^{-1}(-x)=0$.
 - c) Montrer que f^{-1} est dérivable sur J et que $(f^{-1})'(x) = \frac{1}{\pi(1+x^2)}$
- 2) On considère la fonction $g(x) = \begin{cases} \frac{f^{-1}(x)}{x} & \text{si } x > 0 \\ \frac{1}{\pi} & \text{si } x = 0 \end{cases}$
 - a) Montrer que g est continue à droite en 0
 - b) Montrer que pour tout réel x positif : $\frac{x}{\pi(1+x^2)} \le f^{-1}(x) \le \frac{x}{\pi}$
 - c) En déduire la dérivabilité de g à droite en 0.
- 3) Soit (U) la suite définie sur \mathbb{N}^* par : $U_n = \sum_{k=1}^n f^{-1} \left(\frac{k}{n^2}\right)$
 - a) Montrer que pour tout $1 \le k \le n : \frac{k}{\pi(1+n^2)} \le f^{-1}\left(\frac{k}{n^2}\right) \le \frac{k}{\pi n^2}$
 - b) Déduire que pour tout $n \ge 1$: $\frac{n(n+1)}{2\pi(1+n^2)} \le U_n \le \frac{n+1}{2\pi n}$
 - c) Déterminer alors $\displaystyle \lim_{n \to +\infty} U_n$.