

Sobre el teorema de los números primos en progresiones aritmética

Mateo Andrés Manosalva Amaris Trabajo dirigido por John Jaime Rodriguez Departamento de Matemáticas, Universidad Nacional de Colombia

Resumen

El teorema de los números primos nos dice que en el límite, el cociente $\frac{\pi(x)\log x}{x}$ tiende a 1, es decir, que $\pi(x) \sim \frac{x}{\log x}$ donde $\pi(x)$ es la función contadora de primos. En progresiones aritméticas a + kq con (a, q) = 1, tenemos que $\pi(a, q, x)$; la función contadora restringida a la progresión, tiene el comportamiento asintótico $\pi(a,q,x) \sim \frac{x}{\phi(q)\log x}$, es decir, los primos se distribuyen uniformemente en las clases de residuos módulo q. En este trabajo se presentará la prueba de este resultado y las ideas subyacentes. Para esto, haremos uso de la teoría Tauberiana, lo que nos permitirá presentar una prueba detallada y corta, que se seguirá estudiando la no nulidad de $L(\chi, s)$ y algunas propiedades de los caracteres y series de Dirichlet.

El Teorema de Dirichlet

Desde los tiempos de Euclides se sabe que existen infinitos números primos, sin embargo no se conocía mucho mucho sobre su distribución,

- ¿Existen infinitos números primos de la forma a + kn?
- ¿Cómo se distribuyen los números primos en cada una de las clases de equivalencia módulo n?.

El argumento de Euclides provenía de ver que si existen finitos números primos, digamos p_1, \ldots, p_n , entonces $p_1p_2\cdots p_n+1$ es un primo adicional.

Teorema (Dirichlet) Dados a y d primos relativos, existen infinitos primos de la forma

$$a, a + d, a + 2d, a + 3d, ...$$

Teorema (Euler) La suma $\sum_{p} \frac{1}{p}$ es divergente.

La idea de Euler consiste en explotar la identidad

$$\prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1} = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \Re(s) > 1$$

de donde obtiene que

$$\log(\zeta(s)) = \sum_{p}^{\infty} \left(\sum_{k=1}^{\infty} \frac{1}{k(p)^{ks}} \right) = \sum_{p} \frac{1}{p^s} + \sum_{p} \left(\sum_{k=2}^{\infty} \frac{1}{kp^{ks}} \right), \quad \Re(s) > 1$$

La idea de Dirichlet

Sea f(n) la función característica de la progresión aritmética, es decir

$$f(n) = \begin{cases} 1, & n \equiv a \pmod{m} \\ 0, & n \not\equiv a \pmod{m} \end{cases}$$

en el caso de que f(n) sea completamente multiplicativa tendríamos un producto de Euler

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{n} \left(1 - \frac{f(p)}{p^s} \right)^{-1}, \quad \Re(s) > 1$$

y así por argumentos análogos a los de Euler se tendría que

$$\log\left(\sum_{n=1}^{\infty} \frac{f(n)}{n^s}\right) = \sum_{p \equiv a \bmod m} \frac{1}{p^s} + O(1)$$

Lamentablemente, f(n) generalmente no es multiplicativa.

Caracteres

Definición: Sea G un grupo, χ es un carácter de G si $\chi: G \to \mathbb{C}^{\times}$ y satisface que para todo $a, b \in G$, $\chi(ab) = \chi(a)\chi(b).$

Teorema (Ortogonalidad) Sea G un grupo abeliano finito. Entonces

(i) Si χ y ψ son caracteres de G

$$\sum_{g \in G} \psi(g) \overline{\chi}(g) = \begin{cases} |G|, & \text{si } \psi = \chi; \\ 0, & \text{e.o.c.} \end{cases}$$

(ii) Si g y h son elementos de G

$$\sum_{\chi \in \widehat{G}} \chi(g) \overline{\chi}(h) = \begin{cases} |G|, & \text{si } g = h \\ 0, & \text{e.o.c.} \end{cases}$$

El conjunto de caracteres forma un grupo con la multiplicación puntual, lo denotamos \widehat{G}

Definición: Sea $f: G \to \mathbb{C}$, definimos su transformada de Fourier como la función $\widehat{f}: \widehat{G} \to \mathbb{C}$ dada por

$$\widehat{f}(\chi) = \sum_{g \in G} f(g) \overline{\chi}(g).$$

Teorema (Representación de Fourier) Dada $f: G \to \mathbb{C}$, tenemos la representación en "serie" de Fourier

$$f(g) = \frac{1}{|G|} \sum_{\chi \in \widehat{G}} \widehat{f}(\chi) \chi(g).$$

Diremos que un carácter de Dirichlet es una extensión periódica de un carácter de $(\mathbb{Z}/m\mathbb{Z})^{\times}$ a \mathbb{N} Obtenemos la expresión

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \frac{1}{\varphi(m)} \sum_{\chi} \chi(a^{-1}) \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s},$$

y la prueba se sigue de estudiar la expresión

$$\frac{1}{\varphi(m)} \sum_{\chi} \chi(a^{-1}) \log L(s, \chi) = \sum_{p \equiv a \bmod m} \frac{1}{p^s} + O(1).$$

Teorema (De La Vallée Poussin)

$$\pi(a, m, x) \sim \frac{x}{\varphi(m) \log x}$$

Primero vamos a estudiar que ocurre con primos de la forma 2k + 1. La expreción toma la forma

$$\pi(x) \sim \frac{x}{\log x}.$$

El camino para probar este teorema es ver que $\psi(x) = \sum_{n < x} \Lambda(n) \sim x$, donde $\Lambda(n)$ es la función de Von

Mangolth,
$$\Lambda(n) = \begin{cases} \log(p) & \text{si } n = p^k, k \ge 1 \\ 0 & \text{e.o.c} \end{cases}$$

Teoremas tauberianos

Proposición: Sea $\sum_{n=0}^{\infty} a_n x^n$, $x \in \mathbb{R}$ una serie de potencias centrada en 0 y con radio de convergencia 1, si

$$\sum_{n=0}^{\infty} a_n = A, \text{ entonces } \lim_{x \to 1^-} \sum_{n=0}^{\infty} a_n x^n = A.$$

Los teoremas tauberianos son recíprocos condicionales del teorema de Abel.

Proposición (Tauber, 1897) Sea $f(x) = \sum_{n=0}^{\infty} a_n x^n$ una serie de potencias que converge absolutamente para |x| < 1. Si $\lim_{x \to 1^-} f(x) = A$ y se cumple la condición $a_n = o\left(\frac{1}{n}\right)$, entonces f(1) = A.

Teorema de Wiener-Ikehara

Sean $a_n \ge 0$ y $F(s) = \sum_{s=0}^{\infty} \frac{a_n}{n^s}$ una serie absolutamente convergente. Supongamos que se cumplen las siguientes condiciones:

- La función F(s) se extiende a una función analítica en la región $\Re(s) \ge 1$ con un único polo simple en s = 1, cuyo residuo es 1.
- $A(x) = \sum_{n \le x} a_n = O(x).$

Entonces, se tiene que A(x) = x + o(x) cuando $x \to \infty$.

Aplicando el teorema anterior a la serie de Dirichlet $-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$, se obtiene el TNP, como corolario de $\zeta(1+it)\neq 0$, para todo $t\neq 0$.

Teorema (Korevaar y Zagier) Para $t \ge 0$, sea f(t) una función acotada y localmente integrable y sea

$$g(s) := \int_0^\infty f(t)e^{-st}dt,$$

para $\Re(s) > 0$. Si g(s) tiene continuación analítica a $\Re(s) \ge 0$, entonces $\int_0^\infty f(t) dt$ existe y es igual a g(0). La prueba consiste en estimar la integral

$$I_C = \frac{1}{2\pi i} \int_C (g(s) - g_T(s)) e^{sT} \left(1 + \frac{s^2}{R^2} \right) \frac{1}{s} ds = g(0) - g_T(0),$$

donde C es el siguiente contorno

Obtenemos

$$g(0) = \lim_{T \to \infty} g_T(0).$$

Teorema (Korevaar y Zagier) Sean $a_n \ge 0$ y $A(x) = \sum_{n \le x} a_n$, si la integral $\int_1^\infty \frac{A(x) - x}{x^2} dx$ converge, entonces $A(x) \sim x$

Aplicando lo anterior y sabiendo que

$$\sum_{n=1}^{\infty} a_n n^{-s} - \frac{s}{s-1} = s \int_1^{\infty} \frac{A(t) - t}{t^{s+1}} dt,$$

se obtiene una prueba del teorema tauberiano.

Distribución de los primos en progresiones aritmética

En progresiones aritmética la idea es la misma, el teorema tauberiano se puede extender a una serie de Dirichlet con coeficientes complejos, aplicamos el teorema a la función

$$\sum_{n=a \text{ m\'od } m} \frac{\Lambda(n)}{n^s} = \frac{1}{\varphi(m)} \sum_{\gamma} \overline{\chi(a)} \left(-\frac{L'}{L}(s, \chi) \right)$$

 $\sum_{n \equiv a \bmod m} \frac{\Lambda(n)}{n^s} = \frac{1}{\varphi(m)} \sum_{\chi} \overline{\chi(a)} \left(-\frac{L'}{L}(s, \chi) \right)$ que tiene residuo $\frac{1}{\varphi(m)}$. Esto nos da que $\sum_{\substack{n \leq x \\ n \equiv a \bmod m}} \Lambda(n) \sim \frac{x}{\varphi(m)}$, lo que prueba el TNP en progresiones aritmética.

La desventaja de los teoremas tauberianos es que no nos permiten controlar el error, puesto que sus estimación son del orden o-pequeña.

Los casos
$$4k+1$$
 y $4k+3$

Tenemos que $(\mathbb{Z}/4\mathbb{Z})^{\times} = \{1,3\}$, tendremos dos carácteres de Dirichlet, el trivial que manda todo a 1, y otro que envía al 1 en 1 y al 3 en -1.

$$L(s,\chi_0) = \prod_{p \equiv 1} \left(1 - \frac{1}{p^s} \right)^{-1} \prod_{p \equiv 3} \left(1 - \frac{1}{p^s} \right)^{-1} = \left(1 - \frac{1}{2^s} \right) \zeta(s), \quad L(s,\chi_1) = \sum_{n=1}^{\infty} \frac{\chi_1(n)}{n^s} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^s},$$

obtenemos que

$$\log(L(s,\chi_0)) = \sum_{p\equiv 1(4)} \frac{1}{p^s} + \sum_{p\equiv 3(4)} \frac{1}{p^s} + O(1), \quad \log(L(s,\chi_1)) = \sum_{p\equiv 1(4)} \frac{1}{p^s} - \sum_{p\equiv 3(4)} \frac{1}{p^s} + O(1)$$

Referencias

[1] R Murty. Problems in analytic number theory. Springer Science & Business Media, 2007.