Correction du devoir surveillé 6.

Exercice 1

1°) Soit $(A, B) \in (\mathcal{M}_n(\mathbb{R}))^2$ et $\lambda \in \mathbb{R}$. On note $A = (a_{i,j})$ et $B = (b_{i,j})$.

$$\operatorname{Tr}(\lambda A + B) = \sum_{i=1}^{n} (\lambda a_{i,i} + b_{i,i})$$
$$= \lambda \sum_{i=1}^{n} a_{i,i} + \sum_{i=1}^{n} b_{i,i}$$
$$= \lambda \operatorname{Tr}(A) + \operatorname{Tr}(B)$$

Ainsi, Tr est linéaire

Comme Tr est à valeurs dans \mathbb{R} , c'est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$

2°) Soient $(M, N) \in (\mathcal{M}_n(\mathbb{R}))^2$ et $\lambda \in \mathbb{R}$.

$$\begin{split} f(\lambda M+N) &= \operatorname{Tr}(A).\left(\lambda.M+N\right) - \operatorname{Tr}(\lambda.M+N).A \\ &= \operatorname{Tr}(A)\lambda.M + \operatorname{Tr}(A).N - \left(\lambda\operatorname{Tr}(M) + \operatorname{Tr}(N)\right).A \quad \text{car Tr linéaire et par propriétés de + et .} \\ &= \lambda.\left(\operatorname{Tr}(A).M - \operatorname{Tr}(M)A\right) + \operatorname{Tr}(A).N - \operatorname{Tr}(N).A \\ &= \lambda f(M) + f(N) \end{split}$$

Donc f est linéaire.

De plus, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $\operatorname{Tr}(A)M \in \mathcal{M}_n(\mathbb{R})$ et $\operatorname{Tr}(M)A \in \mathcal{M}_n(\mathbb{R})$ puisque $\operatorname{Tr}(A)$ et $\operatorname{Tr}(M)$ sont des réels, et donc $f(M) \in \mathcal{M}_n(\mathbb{R})$.

Ainsi, f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$

3°) $| \operatorname{Tr}(A) = 1 + 1 = 2$, c'est bien non nul

$$4^{\circ}) \text{ Soit } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2}(\mathbb{R}),$$

$$f(M) = 2.M - \text{Tr}(M) \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = 2 \begin{pmatrix} a & b \\ c & d \end{pmatrix} - (a+d) \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \text{ donc } \boxed{f(M) = \begin{pmatrix} a-d & 2b+a+d \\ 2c & d-a \end{pmatrix}.}$$

$$5^{\circ}$$
) Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}),$

$$M \in \operatorname{Ker}(f) \iff f(M) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\iff \begin{cases} a - d = 0 \\ 2b + a + d = 0 \\ 2c = 0 \\ d - a = 0 \end{cases}$$

$$\iff \begin{cases} d = a \\ b = -a \\ c = 0 \end{cases}$$

$$\iff M = \begin{pmatrix} a & -a \\ 0 & a \end{pmatrix}$$

Donc
$$\operatorname{Ker}(f) = \left\{ a. \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} / a \in \mathbb{R} \right\} = \operatorname{Vect}(A).$$

Comme A est non nulle, (A) est libre, et comme elle est génératrice de Ker(f), (A) est une base de Ker(f)

$$Im(f) = \{f(M) / M \in \mathcal{M}_{2}(\mathbb{R})\}\$$

$$= \left\{\begin{pmatrix} a - d & 2b + a + d \\ 2c & d - a \end{pmatrix} / (a, b, c, d) \in \mathbb{R}^{4} \right\}$$

$$= \left\{a \cdot \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} + d \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} / (a, b, c, d) \in \mathbb{R}^{4} \right\}$$

$$= Vect \left(\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}\right)$$

$$= Vect \left(\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}\right) car \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$

On a obtenu une famille génératrice de Im(f) formée de 3 vecteurs.

Or, d'après le théorème du rang, $\dim(\operatorname{Im}(f)) + \dim(\operatorname{Ker}(f)) = \dim(\mathcal{M}_2(\mathbb{R})) = 4$, et $\dim(\operatorname{Ker}(f)) = 1$, donc $\dim(\operatorname{Im}(f)) = 3$.

Donc
$$\left(\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}\right)$$
 est une base de $\text{Im}(f)$.

6°) Soit $M \in \text{Ker}(f)$. On a f(M) = 0 donc Tr(A)M - Tr(M)A = 0 ie Tr(A)M = Tr(M)A, et comme $\text{Tr}(A) \neq 0$, $M = \frac{\text{Tr}(M)}{\text{Tr}(A)}.A$.

Comme
$$\frac{\operatorname{Tr}(M)}{\operatorname{Tr}(A)} \in \mathbb{R}$$
, on a bien $M \in \operatorname{Vect}(A)$.

- 7°) D'après la question précédente, $Ker(f) \subset Vect(A)$.
 - Soit $M \in \text{Vect}(A)$. Il existe un réel λ tel que $M = \lambda.A$. Calculons : par linéarité de f, $f(M) = \lambda.f(A) = \lambda.(\text{Tr}(A).A - \text{Tr}(A).A) = 0$. Ainsi $M \in \text{Ker}(f)$. On en tire $\text{Vect}(A) \subset \text{Ker}(f)$.
 - Ainsi Ker(f) = Vect(A).
- 8°) On a $\mathrm{Im}(\mathrm{Tr})\subset \mathbb{R},$ donc $\dim(\mathrm{Im}(\mathrm{Tr}))\leq \dim(\mathbb{R})=1.$

Par ailleurs $Im(Tr) \neq \{0\}$ puisqu'il existe toujours des matrices de trace non nulle (par exemple, $Tr(I_n) = 1 + 1 + \cdots + 1 = n \neq 0$).

Ainsi, $\dim(\operatorname{Im}(\operatorname{Tr})) \geq 1$. Donc $\dim(\operatorname{Im}(\operatorname{Tr})) = 1$ i.e. $\dim(\operatorname{Im}(\operatorname{Tr})) = \dim(\mathbb{R})$.

Comme $\operatorname{Im}(\operatorname{Tr}) \subset \mathbb{R}$, on en déduit que $\overline{\operatorname{Im}(\operatorname{Tr}) = \mathbb{R}}$

D'après le théorème du rang, $\dim(\operatorname{Ker}(\overline{\operatorname{Tr}})) + \dim(\operatorname{Im}(\operatorname{Tr})) = \dim(\mathcal{M}_n(\mathbb{R})) = n^2$.

Ainsi
$$\dim(Ker(Tr)) = n^2 - 1$$
.

9°) D'après le théorème du rang, $\dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)) = \dim(\mathcal{M}_n(\mathbb{R})) = n^2$, et nous avons vu que $\operatorname{Ker}(f) = \operatorname{Vect}(A)$ avec A non nulle (car la trace de A est non nulle), donc $\dim(\operatorname{Ker}(f)) = 1$.

Ainsi, $\dim(\operatorname{Im}(f)) = n^2 - 1 = \dim(\operatorname{Ker}(\operatorname{Tr})).$

Soit $N \in \text{Im}(f)$. $\exists M \in \mathcal{M}_n(\mathbb{R}), N = f(M) = \text{Tr}(A).M - \text{Tr}(M).A$. Calculons:

$$\begin{split} \operatorname{Tr}(N) &= \operatorname{Tr}\left(\operatorname{Tr}(A).M - \operatorname{Tr}(M).A\right) \\ &= \operatorname{Tr}(A)\operatorname{Tr}(M) - \operatorname{Tr}(M)\operatorname{Tr}(A) \quad \text{ car Tr est linéaire} \\ &= 0 \end{split}$$

Ainsi $N \in \text{Ker}(\text{Tr})$.

On a montré $\operatorname{Im}(f) \subset \operatorname{Ker}(\operatorname{Tr})$. Grâce à l'égalité des dimensions, on en tire que $\operatorname{Im}(f) = \operatorname{Ker}(\operatorname{Tr})$.

- **10**°) On sait que {0} ⊂ Im(f) ∩ Ker(f) car Im(f) et Ker(f) sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$.
 - Soit $M \in \operatorname{Im}(f) \cap \operatorname{Ker}(f)$.

Alors $M \in \text{Ker}(f) = \text{Vect}(A)$ donc $\exists \lambda \in \mathbb{R}, M = \lambda.A$.

On a aussi $M \in \text{Im}(f) = \text{Ker}(\text{Tr})$ donc Tr(M) = 0, i.e. $\lambda \text{Tr}(A) = 0$ par linéarité de Tr.

Comme $Tr(A) \neq 0$, on en tire que $\lambda = 0$, d'où M = 0.

Ainsi, $\operatorname{Im}(f) \cap \operatorname{Ker}(f) \subset \{0\}$, et par double inclusion, $\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\}$.

- D'après le théorème du rang, on a aussi $\dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)) = \dim(\mathcal{M}_n(\mathbb{R}))$, ce qui permet de conclure que $\operatorname{Im}(f) \oplus \operatorname{Ker}(f) = \mathcal{M}_n(\mathbb{R})$.
- 11°) Comme $f \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$, f est un projecteur de $\mathcal{M}_n(\mathbb{R})$ si et seulement si $f \circ f = f$. Calculons, pour tout $M \in \mathcal{M}_n(\mathbb{R})$:

$$\begin{split} f\circ f(M) &= f\left(f(M)\right) = f\left(\text{Tr}(A)M - \text{Tr}(M)A\right) \\ &= \text{Tr}(A)f(M) - \text{Tr}(M)f(A) \quad \text{par linéarité de } f \\ &= \text{Tr}(A)f(M) \quad \text{car } f(A) = 0 \text{ (montré en question 7)} \end{split}$$

Ainsi $f \circ f = \text{Tr}(A).f$, et comme f n'est pas le vecteur nul de $\mathcal{L}(\mathcal{M}_n(\mathbb{R}))$, $\text{Tr}(A).f = f \iff \text{Tr}(A) = 1$. Ainsi : f projecteur $\iff \text{Tr}(A) = 1$.

Exercice 2

 $\mathbf{1}^{\circ}$) a) Soit $(P,Q) \in \mathbb{R}[X]^2, (\lambda,\mu) \in \mathbb{R}^2$,

$$\begin{split} \Delta(\lambda P + \mu Q) &= (\lambda P + \mu Q)(X + 1) - (\lambda P + \mu Q)(X) \\ &= \lambda P(X + 1) + \mu Q(X + 1) - \lambda P(X) - \mu Q(X) \\ &= \lambda (P(X + 1) - P(X)) + \mu (Q(X + 1) - Q(X)) \\ &= \lambda \Delta(P) + \mu \Delta(Q) \end{split}$$

Donc Δ est linéaire. De plus, Δ est bien à valeurs dans $\mathbb{R}[X]$.

Donc Δ est un endomorphisme de $\mathbb{R}[X]$.

- b) Soit $k \in \mathbb{N}$.
 - ★ Si k = 0 alors $\Delta(X^k) = (X + 1)^0 X^0 = 1 1 = 0$ donc $\deg(\Delta(X^0)) = -\infty$
 - \star Si $k \ge 1$ alors

$$\Delta(X^k) = (X+1)^k - X^k = \sum_{i=0}^k \binom{k}{i} X^i - X^k \qquad \text{par la formule du binôme}$$

$$= X^k + \binom{k}{k-1} X^{k-1} - X^k + R \qquad \text{où } R \text{ est un polynôme de degré} < k-1$$

$$= kX^{k-1} + R$$

Comme $k \neq 0$ et $\deg(R) < k - 1$, on en déduire que $\operatorname{deg}(\Delta(X^k)) = k - 1$.

2°) a) P est un polynôme non constant de $\mathbb{C}[X]$ donc, par le théorème de d'Alembert-Gauss, P admet au moins une racine α dans $\mathbb{C}: P(\alpha) = 0$.

On pose alors, pour $n \in \mathbb{N}$, $H_n : P(\alpha + n) = 0$.

- \star H_0 est vraie.
- ★ Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. P(X+1) = P(X) donc, en évaluant en $\alpha + n$, $P(\alpha + n + 1) = P(\alpha + n)$. Or, par H_n , $P(\alpha + n) = 0$ donc $P(\alpha + n + 1) = 0$: H_{n+1} est vraie.
- \star On a montré par récurrence que : $\forall n \in \mathbb{N}, P(\alpha + n) = 0$.

Ainsi, le polynôme P admet une infinité de racines. C'est donc le polynôme nul. C'est exclu puisque P n'est pas constant.

On a bien obtenu une contradiction

b) \star Si $P \in \mathbb{R}_0[X]$ alors P est constant. Donc, P(X+1) = P(X) d'où $\Delta(P) = 0 : P \in \text{Ker}(\Delta)$. Ainsi, $\mathbb{R}_0[X] \subset \text{Ker}(\Delta)$. ★ Soit $P \in \text{Ker}(\Delta)$ i.e. P(X+1) = P(X) alors, par 2a, P est constant car sinon on arrive à une contradiction. Donc $P \in \mathbb{R}_0[X]$.

Ainsi,
$$\operatorname{Ker}(\Delta) \subset \mathbb{R}_0[X]$$
.

Finalement,
$$\left[\operatorname{Ker}(\Delta) = \mathbb{R}_0[X]\right]$$

 3°) a) Soit P un polynôme non constant de $\mathbb{R}[X]$.

On note $p = \deg(P)$. Alors $p \ge 1$.

P s'écrit : $P = \sum_{k=0}^{p} a_k X^k$ où $(a_0, \dots, a_p) \in \mathbb{R}^{p+1}$ et $a_p \neq 0$.

$$\Delta(P) = \sum_{k=0}^{p} a_k \Delta(X^k) \quad \text{par linéarité de } \Delta$$
$$= a_p \Delta(X^p) + \underbrace{\sum_{k=0}^{p-1} a_k \Delta(X^k)}_{R}$$

$$\deg(R) \le \max(\deg(\Delta(1)), \dots, \deg(\Delta(X^{p-1}))).$$

Or, par 1,
$$\deg(\Delta(X^k)) = \begin{cases} -\infty & \text{si } k = 0\\ k - 1 & \text{si } k \ge 1 \end{cases}.$$

Donc deg(R) < p-1 et $deg(\Delta(X^p)) = p-1$ et $a_p \neq 0$.

Donc $\deg(\Delta(P)) = p - 1$. Ce qui s'écrit : $\deg(\Delta(P)) = \deg(P) - 1$

b) Soit $n \geq 1$. Soit $P \in \mathbb{R}_n[X]$.

Si P est constant alors $\Delta(P) = 0$. Sinon, $\deg(\Delta(P)) = \deg(P) - 1 \le n - 1$. Donc, $\Delta(\mathbb{R}_n[X]) \subset \mathbb{R}_{n-1}[X]$.

D'où $\Delta(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$ donc $\mathbb{R}_n[X]$ est stable par Δ

 $\mathbf{4}^{\circ}) \star \operatorname{Ker}(\Delta_n) = \{ P \in \mathbb{R}_n[X] / \Delta(P) = 0 \} = \operatorname{Ker}(\Delta) \cap \mathbb{R}_n[X] \operatorname{donc} \left| \operatorname{Ker}(\Delta_n) = \mathbb{R}_0[X] \right|$

★ On a vu : $\Delta(\mathbb{R}_n[X]) \subset \mathbb{R}_{n-1}[X]$ d'où $\mathrm{Im}(\Delta_n) \subset \mathbb{R}_{n-1}[X]$. Or, d'après le théorème du rang,

$$\dim \operatorname{Im}(\Delta_n) = \dim(\mathbb{R}_n[X]) - \dim \operatorname{Ker}(\Delta_n)$$
$$= n + 1 - 1 = n$$
$$= \dim \mathbb{R}_{n-1}[X]$$

Récapitulons, on a : $\begin{cases} \operatorname{Im}(\Delta_n) \subset \mathbb{R}_{n-1}[X] \\ \dim \operatorname{Im}(\Delta_n) = \dim \mathbb{R}_{n-1}[X] \end{cases}$ On en déduit que : $|\operatorname{Im}(\Delta_n)| = \mathbb{R}$

 5°) Soit $Q \in \mathbb{R}[X]$.

Alors, il existe $p \in \mathbb{N}$ tel que $Q \in \mathbb{R}_p[X]$. Alors $Q \in \operatorname{Im}(\Delta_{p+1})$.

Donc, $\exists P \in \mathbb{R}_{p+1}[X], Q = \Delta_{p+1}(P) = \Delta(P).$

Donc, Δ est surjective.

 6°) ★ Montrons que F est un sev de $\mathbb{R}[X]$.

 $F \subset \mathbb{R}[X]$ par définition de F.

 $F \neq \emptyset \text{ car } 0 \in F.$

Soit $(P,Q) \in F^2, \lambda \in \mathbb{R}$.

$$(\lambda P + Q)(0) = \lambda P(0) + Q(0) = 0 \text{ car } (P, Q) \in F^2$$

Donc, $\lambda P + Q \in F$.

Ainsi, F est un sous-espace vectoriel de $\mathbb{R}[X]$

 \star Montrons que : $\mathbb{R}[X] = F \oplus \text{Ker}\Delta$.

On a déjà : $\{0\} \subset F \cap \text{Ker}(\Delta)$.

Réciproquement, soit $P \in F \cap \text{Ker}(\Delta)$. Montrons que P = 0.

On a donc $P \in \text{Ker}(\Delta) = \mathbb{R}_0[X]$ donc P est constant. Or $P \in F$ donc P(0) = 0, donc la constante est nulle : P = 0.

Donc, $F \cap \text{Ker}(\Delta) = \{0\}.$

 \star Soit $P \in \mathbb{R}[X]$. On peut décomposer P de la manière suivante :

$$P = \underbrace{P - P(0)}_{Q} + P(0)$$

 $P(0) \in \mathbb{R}_0[X] = \text{Ker}(\Delta) \text{ et } Q(0) = P(0) - P(0) = 0 \text{ donc } Q \in F.$

D'où, $\mathbb{R}[X] = F + \operatorname{Ker}(\Delta)$

On en déduit que : $\mathbb{R}[X] = F \oplus \text{Ker}\Delta$.

7°) a) Δ est surjective donc $\exists P_1 \in \mathbb{R}[X], \ Q = \Delta(P_1)$.

Par la question précédente, $P_1 = P + \lambda$ où $\lambda \in \mathbb{R}$ et $P \in F$, i.e. P(0) = 0. Ainsi,

$$\begin{aligned} Q &= \Delta(P+\lambda) \\ &= \Delta(P) + \Delta(\lambda) \qquad \text{par linéarité de } \Delta \\ &= \Delta(P) \text{ car } \lambda \in \text{Ker}(\Delta) \end{aligned}$$

On a bien trouvé $P \in \mathbb{R}[X]$ tel que P(0) = 0 et $\Delta(P) = Q$

b) Soit deux polynômes P_1 et P_2 tels que $\Delta(P_1) = Q$, $P_1(0) = 0$, et $\Delta(P_2) = Q$, $P_2(0) = 0$.

On a donc $\Delta(P_1) - \Delta(P_2) = 0$, i.e. $\Delta(P_1 - P_2) = 0$ par linéarité de Δ .

Donc $P_1 - P_2 \in \text{Ker}(\Delta)$, donc $P_1 - P_2$ est constant.

Mais $(P_1 - P_2)(0) = P_1(0) - P_2(0) = 0$, donc la constante est nulle.

D'où $P_1 = P_2$.

D'où l'unicité de
$$P:\exists\,!\,P\in\mathbb{R}[X], egin{cases} \Delta(P)=Q\\ P(0)=0 \end{cases}$$

On suppose que $Q \neq 0$. Donc $\Delta(P) \neq 0$ donc $P \notin \operatorname{Ker} \Delta = \mathbb{R}_0[X]$. Ainsi, P n'est pas constant, donc le degré de $\Delta(P)$ vaut $\deg(P) - 1$ par la question 3a. Donc $\deg(Q) = \deg(P) - 1$.

Ce qui s'écrit $\deg(P) = \deg(Q) + 1$.

8°) X+1-X=1 i.e. $\Delta(X)=1$. De plus, X(0)=0 donc, par unicité de $P_1, \overline{P_1=X}$

9°) On pose, pour $n \ge 1 : R_n = \frac{X(X-1)\cdots(X-n+1)}{n!}$.

On a : $R_n(0) = 0$.

Si n = 1 alors $\Delta(R_1) = \Delta(X) = 1 = P_0$.

Si $n \geq 2$,

$$\Delta(R_n) = \frac{(X+1)X\cdots(X-n+2)}{n!} - \frac{X(X-1)\cdots(X-n+1)}{n!}$$

$$= \frac{X(X-1)\cdots(X-n+2)}{n!}(X+1-(X-n+1))$$

$$= \frac{X(X-1)\cdots(X-n+2)}{(n-1)!}$$

$$= R_{n-1}$$

Par unicité de la suite (P_n) , on en déduit que : $\boxed{P_n = \frac{X(X-1)\cdots(X-n+1)}{n!}}$

10°) Soit $n \in \mathbb{N}^*$. On remarque que : $\forall i \in \{0, ..., n\}, \deg(P_i) = i$.

Ainsi, la famille (P_0, \ldots, P_n) est une famille de polynômes non nuls échelonnée en degré donc elle forme une famille libre de $\mathbb{R}_n[X]$. Or elle a n+1 éléments et dim $\mathbb{R}_n[X]=n+1$.

Donc, (P_0, \ldots, P_n) est une base de $\mathbb{R}_n[X]$

11°)
$$\star$$
 $P_1 = X$, $P_2 = \frac{X^2 - X}{2}$. On en déduit : $X^2 = 2P_2 + P_1$.
 \star $P_1 = X$, $P_2 = \frac{X^2 - X}{2}$, $P_3 = \frac{X(X - 1)(X - 2)}{6} = \frac{X^3 - 3X^2 + 2X}{6}$. D'où,
$$X^3 = 6P_3 + 3X^2 - 2X$$
$$= 6P_3 + 3(2P_2 + P_1) - 2P_1$$
$$X^3 = 6P_3 + 6P_2 + P_1$$

12°) a) Soit $n \in \mathbb{N}^*$.

D'après la question 7, en posant $Q=X^n, \; \exists ! A_n \in \mathbb{R}[X], \begin{cases} \Delta(A_n)=X^n \\ A_n(0)=0 \end{cases}$.

De plus, comme $X^n \neq 0$, $\deg(A_n) = \deg(X^n) + 1 = n + 1$.

Donc $\exists ! A_n \in \mathbb{R}_{n+1}[X], \begin{cases} \Delta(A_n) = X^n \\ A_n(0) = 0 \end{cases}$

b) Soit $(n, p) \in (\mathbb{N}^*)^2$. On a : $A_n(X + 1) - A_n(X) = X^n$. Donc, pour tout $k \in \{0..., p\}$, $A_n(k + 1) - A_n(k) = k^n$. On somme de k = 0 à k = p.

$$\sum_{k=0}^p (A_n(k+1)-A_n(k))=\sum_{k=0}^p k^n$$

$$A_n(p+1)-A_n(0)=\sum_{k=0}^p k^n$$
 par téléscopage
$$\boxed{A_n(p+1)=S_{n,p}}$$

c) On pose : $B_n = \sum_{k=0}^n \alpha_k P_{k+1}$. On a bien : $B_n(0) = \sum_{k=0}^n \alpha_k P_{k+1}(0) = 0$.

De plus, comme Δ est linéaire, $\Delta(B_n) = \sum_{k=0}^n \alpha_k \Delta(P_{k+1}) = \sum_{k=0}^n \alpha_k P_k$. Donc $\Delta(B_n) = X^n$.

Par unicité du polynôme A_n , on a : $A_n = \sum_{k=0}^n \alpha_k P_{k+1}$.

- d) On a vu : $X^2 = 2P_2 + P_1$. Donc, $A_2 = 2P_3 + P_2$. On a vu : $X^3 = 6P_3 + 6P_2 + 6P_1$. Donc, $A_3 = 6P_4 + 6P_3 + P_2$.
- e) Soit $p \in \mathbb{N}^*$.

★
$$S_{2,p} = A_2(p+1) = 2P_3(p+1) + P_2(p+1) = 2 \times \frac{(p+1)p(p-1)}{6} + \frac{p(p+1)}{2} = \frac{p(p+1)}{6}(2(p-1)+3).$$
Donc, $S_{2,p} = \frac{(p+1)p(2p+1)}{6}$.

★ De même :

$$S_{3,p} = A_3(p+1) = 6\frac{(p+1)p(p-1)(p-2)}{24} + 6\frac{(p+1)p(p-1)}{6} + \frac{p(p+1)}{2}$$

$$S_{3,p} = \frac{p(p+1)}{4}((p-1)(p-2) + 4(p-1) + 2) = \frac{p(p+1)}{4}(p^2 - 3p + 2 + 4p - 4 + 2) = \frac{p(p+1)p(p^2 + p)}{4}$$

$$Donc \left[S_{3,p} = \frac{p^2(p+1)^2}{4} \right].$$

Exercice 3

 $\mathbf{1}^{\circ}$) a) f et id_E sont dans $\mathcal{L}(E)$, donc p et q aussi puisque $\mathcal{L}(E)$ est stable par combinaison linéaire.

$$p \circ p = (f - 2 id_E) \circ (f - 2 id_E)$$

$$= f \circ f + f \circ (-2 id_E) - 2 id_E \circ f - (2 id_E) \circ (-2 id_E)$$

$$= f^2 - 2f - 2f + 4 id_E$$

$$= 5f - 6 id_E - 4f + 4 id_E \qquad \text{car } f^2 = 5f - 6 id_E$$

$$= f - 2 id_E$$

$$= p$$

Changeons de méthode pour q: on peut utiliser la formule du binôme puisque f et $3 \operatorname{id}_E$ commutent.

$$q \circ q = (3 \operatorname{id}_E - f)^2$$

$$= 9 \operatorname{id}_E - 6f + f^2$$

$$= 9 \operatorname{id}_E - 6f + 5f - 6 \operatorname{id}_E$$

$$= -f + 3 \operatorname{id}_E$$

$$= q$$

Ainsi, $p \in \mathcal{L}(E)$, $q \in \mathcal{L}(E)$, $p \circ p = p$ et $q \circ q = q$, donc p et q sont des projecteurs de E.

b)

$$p \circ q = (f - 2 \operatorname{id}_E) \circ (-f + 3 \operatorname{id}_E)$$
$$= -f^2 + 3f + 2f - 6 \operatorname{id}_E$$
$$= -f^2 + 5f - 6 \operatorname{id}_E$$
$$p \circ q = 0_{\mathcal{L}(E)}$$

De même, on obtient $q \circ p = 0_{\mathcal{L}(E)}$

c) Effectuons une combinaison linéaire entre les 2 lignes définissant p et q permettant de se débarrasser de id_E :

$$\begin{array}{rcl}
p & = & f - 2 \operatorname{id}_E \\
q & = & -f + 3 \operatorname{id}_E \\
\hline
3p + 2q & = & f
\end{array}$$

Ainsi, f = 3p + 2q

d) On pose, pour $n \in \mathbb{N}$, $H_n : f^n = 3^n p + 2^n q$.

 \bigstar Pour n=0: $f^0=\mathrm{id}_E$. De plus, $3^0p+2^0q=p+q=\mathrm{id}_E$. Donc H_0 est vraie.

 \star On suppose que H_n est vraie pour un rang n fixé dans \mathbb{N} .

$$f^{n+1} = f^n \circ f$$

$$= (3^n p + 2^n q) \circ (3p + 2q) \text{ par } H_n \text{ et par la question précédente}$$

$$= 3^{n+1} p \circ p + (3^n \times 2) p \circ q + (2^n \times 3) q \circ p + 2^{n+1} q \circ q$$

$$= 3^{n+1} p + 2^{n+1} q \text{ car } p \circ p = p, \ q \circ q = q, \ p \circ q = 0, \ q \circ p = 0$$

Ainsi, H_{n+1} est vraie.

***** On a montré par récurrence que : $\forall n \in \mathbb{N}, \ f^n = 3^n p + 2^n q$

2°) a) Soit $u = (x, y) \in \mathbb{R}^2$, $v = (x', y') \in \mathbb{R}^2$, $\lambda \in \mathbb{R}$. Montrons que $f(\lambda u + v) = \lambda f(u) + f(v)$.

$$f(\lambda u + v) = f(\lambda(x, y) + (x', y'))$$

$$= f(\lambda x + x', \lambda y + y')$$

$$= ((\lambda x + x') - (\lambda y + y'), 2(\lambda x + x') + 4(\lambda y + y'))$$

$$= (\lambda(x - y) + x' - y', \lambda(2x + 4y) + 2x' + 4y')$$

$$= \lambda(x - y, 2x + 4y) + (x' - y', 2x' + 4y')$$

$$= \lambda f(u) + f(v)$$

Ainsi, f est linéaire. De plus, f va de \mathbb{R}^2 dans \mathbb{R}^2 donc f est un endomorphisme de \mathbb{R}^2

b) Soit $u = (x, y) \in \mathbb{R}^2$.

$$f^{2}(u) = f^{2}(x, y) = f(f(x, y))$$

$$= f(x - y, 2x + 4y)$$

$$= ((x - y) - (2x + 4y), 2(x - y) + 4(2x + 4y))$$

$$= (-x - 5y, 10x + 14y)$$

$$(5f - 6 id_{\mathbb{R}^{2}})(u) = 5f(u) - 6u$$

$$= (5x - 5y, 10x + 20y) - (6x, 6y)$$

$$= (-x - 5y, 10x + 14y)$$

Ainsi, $f^2(u) = (5f - 6 \operatorname{id}_{\mathbb{R}^2})(u)$, ceci pour tout $u \in \mathbb{R}^2$. Finalement, $f^2 = 5f - 6 \operatorname{id}_{\mathbb{R}^2}$.

c) $p = f - 2 \operatorname{id}_{\mathbb{R}^2}$.

Soit $u = (x, y) \in \mathbb{R}^2$,

$$p(u) = f(u) - 2u = f(x,y) - 2(x,y) = (x - y, 2x + 4y) - (2x, 2y) = (-x - y, 2x + 2y)$$
Ainsi,
$$p: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \mapsto (-x - y, 2x + 2y)$$

- d) p est <u>une</u> projection. C'est <u>la</u> projection sur Im(p) parallèlement à Ker(p). Déterminons Im(p) et Ker(p).
 - \star Soit $u = (x, y) \in \mathbb{R}^2$.

$$u \in \text{Ker}(p) \iff p(u) = 0_{\mathbb{R}^2}$$

 $\iff (-x - y, 2x + 2y) = (0, 0)$
 $\iff y = -x$

Ainsi, $Ker(p) = \{(x, -x)/x \in \mathbb{R}\} = \{x(1, -1)/x \in \mathbb{R}\} \text{ donc } Ker(p) = Vect((1, -1))$

★ Im(p) = Vect(p(e₁), p(e₂)) où (e₁, e₂) est la base canonique de \mathbb{R}^2 . $p(e_1) = p(1, 0) = (-1, 2)$ et (e₂) = $p(0, 1) = (-1, 2) = p(e_1)$ donc $\boxed{\text{Im}(p) = \text{Vect}((-1, 2))}$

p est la projection sur la droite $D_1 = \text{Vect}((-1,2))$ parallèlement à la droite $D_2 = \text{Vect}((1,-1))$

e) On sait $p + q = \mathrm{id}_{\mathbb{R}^2}$ (cf. 1d pour n = 0). Donc, $q = \mathrm{id}_{\mathbb{R}^2} - p$.

Ainsi, pour tout $u = (x, y) \in \mathbb{R}^2$,

$$q(u) = u - p(u) = (x, y) - (-x - y, 2x + 2y) = (2x + y, -2x - y).$$

Ainsi,
$$q: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x,y) \mapsto (2x+y, -2x-y)$$

q est le projecteur associé à p donc q est la projection sur D_2 parallèlement à D_1

- **f)** On remarque que : $\forall n \in \mathbb{N}$, $(a_{n+1}, b_{n+1}) = f(a_n, b_n)$. Pour $n \in \mathbb{N}$, on pose $H_n : (a_n, b_n) = f^n(a_0, b_0)$.
 - ★ $f^0(a_0, b_0) = id(a_0, b_0) = (a_0, b_0)$ donc H_0 est vraie.
 - ★ Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. $(a_{n+1},b_{n+1}) = f(a_n,b_n) = f(f^n(a_0,b_0)) \text{ par } H_n.$ Donc $(a_{n+1},b_{n+1}) = f \circ f^n(a_0,b_0) = f^{n+1}(a_0,b_0)$. Donc H_{n+1} est vraie.
 - \star On a montré par récurrence que : $\forall n \in \mathbb{N}, (a_n, b_n) = f^n(a_0, b_0) = f^n(1, 2).$

Soit $n \in \mathbb{N}$. Par 1d, $f^n = 3^n p + 2^n q$. Donc,

$$(a_n, b_n) = 3^n p(1, 2) + 2^n q(1, 2)$$

$$= 3^n (-3, 6) + 2^n (4, -4)$$
 par 2c et 2e
$$= (-3^{n+1}, 2 \times 3^{n+1}) + (2^{n+2}, -2^{n+2})$$

$$= (-3^{n+1} + 2^{n+2}, 2(3^{n+1} - 2^{n+1}))$$

Donc, pour tout $n \in \mathbb{N}$, $a_n = 2^{n+2} - 3^{n+1}$ et $b_n = 2(3^{n+1} - 2^{n+1})$