# Práctica 5: método Monte-Carlo

I E G

#### 1 de diciembre de 2021

#### Resumen

En esta práctica se usa el método Monte-Carlo que es idóneo para situaciones en las cuales algún valor o alguna distribución no es conocida en este caso tomaremos como ejemplo de que se conoce el valor de una integral (1) y se calcula mediante el método Monte-Carlo como casa de estudio [4] se trabaja estadísticamente la convergencia de la precisión del estimado del integral con el método Monte-Carlo comparando con el valor producido por Wolfram Alpha, en términos del número de decimales correctos, aumentando el tamaño de muestra.

$$\int_{3}^{7} f(x)dx \tag{1}$$

$$f(x) = \frac{1}{exp(x) + exp(-x)}$$
(2)

#### 1. Desarrollo

Para efectos de esta práctica, se utiliza el paquete estadístico R versión 4.0.2 [2]. Se pretende calcular el valor de la integral (1) para la función (2) empleando el método Monte-Carlo, y comparar el valor obtenido por Wolfram Alpha de 0.048834 [1] para la generación del código previamente reportado en [4] se utiliza también la herramienta de paralelización para que el código se ejecute con cuatro núcleos y realiza la generación de datos variando las muestras de  $10^1 a 10^7$  con 150 réplicas, posteriormente grafica en diagramas caja-bigote.

# 2. Experimento

El programa ejecuta las operaciones para calcular un valor [3] con cierto grado de precisión y lo compara con un valor de la referencia de Wolfram Alpha y verifica el numero de decimales coincididos para la precisión de el calculo obtenido de cada muestra, como se observa en la figura 1 como incrementa el valor de los decimales coincididos demostrando que con mayor número muestras es más preciso el valor calculado.

### 3. Conclusiones

En conclusión el método resulta muy útil para el cálculo con precisión de valores desconocidos y en aplicaciones varias de ingeniería.

### Referencias

- [1] Wolfram Alpha, 2020. URL https://www.wolframalpha.com/.
- [2] The R Foundation. The R Project for Statistical Computing, 2020. URL https://www.r-project.org/.



Figura 1: Diagramas de caja - bigote.

- [3] N. Pérez. Práctica 5: método Monte-Carlo, 2021. URL https://github.com/nataliaperez0/Simulation/blob/main/Tarea5/Tarea5.tex.
- [4] E. Schaeffer. Práctica 5: método Monte-Carlo, 2021. URL https://elisa.dyndns-web.com/teaching/comp/par/p5.html.