STATA – Erzeugen von Deskriptions- und Regressionstabellen 1 tabstat

Andreas Filser

November 2021

Erzeugen von Deskriptions- und Regressionstabellen

Metrische Variablen beschreiben

- grundsätzliche Struktur:
 - Befehl ausführen ggf. mit speziellem

tabstat

Mit tabstat können wir eine ganze Reihe statistischer Kennzahlen für metrische/kontinuierliche Merkmale berechnen. Die Syntax hat dabei das folgende Format: tabstat varlist, s(*option*) c(stat|var)

Hier eine Übersicht der Kennzahlen:

Option	Kennzahl
mean	arithm. Mittel
median	Median
count	Anzahl der Beobachtungen ohne Missings
n	entspricht count
sum	Summe der Ausprägungen
max	Maximum
min	Minimum
range	Spannweite $= \max - \min$
variance	Varianz
sd	Standardabweichung
cv	Variationskoefficient (sd/mean)
skewness	Schiefe
kurtosis	Wölbung
pX	X. Perzentil (5,10,25,50,75,90,95,99)
iqr	Interquartilsdistanz = p75 - p25
q	Entspricht p25 p50 p75

Hier ein Bespielbefehl für die Berechnung des arith. Mittels, des Medians, der Varianz und des Varianzkoeffizienten mit tabstat:

tabstat zpalter, s(mean median var cv)

variable	mean	sd	min	max	N
zpalter	47.19228	11.33762	15	87	19836

	Mean	SD	Min	Max	N
Bruttoverdienst	3,532.11	3,530.93	1	72000	16635

	Mean	SD	Min	Max	N	Missings
Bruttoverdienst	3,532.11	3,530.93	1.00	72,000.00	16,635	3,377

Table

	Gender		
Ausbildungsabs.	männlich	weiblich	Total
Ohne Berufsabschluss	594	497	1091
duale o. schulische Berufsausbildung/einf.,mittl. Beamte	4371	4926	9297
Aufstiegsfortbildung (Meister, Techniker, kfm. AFB u.ä.)	1073	652	1725
Fachhochschule, Universität/ geh., höhere Beamte	4015	3839	7854
Total	10053	9914	19967

	Gender		
Ausbildungsabs.	männlich	weiblich	Total
Ohne Berufsabschluss	594	497	1091
duale o. schulische Berufsausbildung/einf.,mittl. Beamte	4371	4926	9297
Aufstiegsfortbildung (Meister, Techniker, kfm. AFB u.ä.)	1073	652	1725
Fachhochschule, Universität/ geh., höhere Beamte	4015	3839	7854
Total	10053	9914	19967

Anhang

format

Hier eine kurze (unvollständige) Erklärung zu den fmt()-Optionen, mehr unter help format oder hier

$\mbox{\ensuremath{\%}} w\,.\,d exttt{f}$

- Mit w geben wir die Gesamtbreite des Outputs an die Vorzeichen und Dezimaltrenner mitgezählt
- d gibt die Zahl der Dezimalstellen
- Grundsätzlich wird von "rechts" gezählt The result is right-justified.

Aus der Stata-Hilfe:

The number 5.139 in %12.2f format displays as

```
----+---1--
5.14
```

$\mbox{\ensuremath{\hspace{-0.07cm}{}}$} w.d$ fc

Analog zu %w.df, jedoch werden Kommata für bessere Lesbarkeit eingefügt. Auch die Kommata zählen für die Breite w.

Während "

Mit w**,**dfc können wir das Format für Dezimal- und Tausendertrenner ändern: Dezimalstellen werden mit einem , abgetrennt, 1000er mit .