

SYN470R Datasheet

(300-450MHz ASK Receiver)

Version 1.0

目 录

1.	总体介绍	1
2.	产品特性:	2
3.	应用领域	2
4.	典型电路	3
5.	订购信息	3
6.	引脚排布	3
7.	引脚描述	4
8.	额定参数	5
9.	工作参数	5
10	功能描述	6
	10.1 选择芯片工作模式 7	
	10.2 选择解调滤波器带宽7	
	10.3 限幅电平和 C _{TH} 电容8	
	10.4 自动增益控制(AGC)与 C _{AGC} 电容8	
	10.5 参考振荡器与外部时钟9	
	10.5.1 FIXED 模式9	
	10.5.2 SWP 模式9	
	10.6 唤醒功能10	
	10.7 SHUTDOWN 功能10	
11.	典型应用1	1

1. 总体介绍

SYN470R是法国SYNOXO公司推出新一代的单片无线ASK/OOK(ON-OFF Keyed)接收芯片,主要应用于无线射频遥控领域。与上一代产品SYN400R相比,SYN470R具有更高的灵敏度。在433MHz应用环境下,灵敏度可以达到-107dBm,大大增加了接收距离。同时,SYN470R依然具有SYN400R同样的高集成度,高频信号接收功能全部集成于片内,以达到用最少的外围器件和最低的成本获得最可靠的接收效果。所以说SYN470R是真正意义上的"天线高频AM信号输入,数字信号输出"的单片接收器件。同时,SYN470R片内自动完成所有的RF及IF调谐,这样在开发和生产中就省略了手工调节的工艺过程,自然也降低了成本,增强了产品的竞争力。

SYN470R为16脚封装,提供完整的功能。另外,SYNOXO还提供简化功能的8脚封装的SYN480R。

SYN470R可以提供两种基本的工作模式: 固定模式(FIXED MODE)和扫频模式(SWP MODE)。

在FIXED工作模式下,SYN470R如同传统的超外差式接收机一样,片内产生固定频率的本振信号,您需要做的仅仅是外接一个石英晶振或输入外部时钟信号。但和传统的超外差式接收器类似,该接收模式下需要发射机的发射频率相对精确稳定,所以通常都需要使用石英晶振和声表面滤波SAW(Surface Acoustic Wave)。

在SWP工作模式下,SYN470R以高于基带数据传输的扫频频率对内部本振进行扫频,相当于更有效的"扩宽"了RF接收的带宽,性能完全等同于传统超再生接收器。因此,可以用廉价的外围器件和免调谐LC发射机。在这种工作模式下,外部参考石英晶振也可以用低成本±0.5%误差的陶瓷振荡器代替。

为使产品具有更长的待机时间,SYN470R具有两项独特的功能:

- (1) 关闭模式(Shutdown Mode)。用于停止操作,系统进入低功耗状态。
- (2)唤醒功能。芯片接收到有RF信号输入后会向主控制器发出一个"唤醒信号"叫醒CPU,通知其退出stand by状态。这些功能更有利于用户设计低功耗或超低功耗产品,如RKE & RFID

AM输入信号的解调及滤波都集成在SYN470R片内,从而不需要设计外部滤波器。用户可以通过设制SEL0和SEL1的状态来选择四个带宽滤波器中的任何一个。FIXED模式或SWP模式带宽范围都按2ⁿ模递变:

SYN470R/SYN480R

- (1) FIXED模式: 从0.625KHz到5KHz.
- (2) SWP模式: 从1.25KHz到10KHz.

用户可以设定滤波器以选择相应的数据传输率和代码解调格式。

2. 产品特性:

- 完全的单片UHF接收器件
- 频率范围300—440 MHz
- 接收灵敏度-106dBm(315MHz), -107dBm(433MHz)
- 传输速率2.5kbps (SWP), 10kbps (FIXED)
- 自动调谐,无需手动调节
- 无需外接滤波器和电感
- 低功耗:
 - 2.5mA (315MHz, 完全工作)
 - 0.9µA (关闭模式, shutdown mode)
 - 250µA(315MHz,10:1占空比)
- 唤醒功能用于使能外部解码板和MCU
- RF天线辐射非常低
- 标准的CMOS接口控制及解码数据输出
- 最经济的外围器件设计方案

3. 应用领域

- 遥控键盘
- 远距离 RFID
- 遥控扇/灯
- 遥控门

4. 典型电路

385.5 MHz 800 bps OOK接收方式

5. 订购信息

型号	解调带宽	工作模式	Shut Down	WAKEB	封装
				Output Flag	
SYN470R	用户可编程	Fixed or	Yes	Yes	16-Pin SOP
		Sweep			
SYN480R-SW48	5000Hz	Sweep	No	Yes	8-Pin SOP
SYN480R-FS12	1250Hz	Fixed	Yes	No	8-Pin SOP
SYN480R-FS24	2500Hz	Fixed	Yes	No	8-Pin SOP
SYN480R-FS48	5000Hz	Fixed	Yes	No	8-Pin SOP

6. 引脚排布

SOP16和SOP8封装引脚图

7. 引脚描述

Pin Number	Pin Number	引脚名	引脚功能
16-Pin Pkg.	8-Pin Pkg.		
1		SEL0	和 SEL1 一起用来选择解调滤波器带宽。此引脚由内部
			上拉到 VDD
			IC 的返回地。旁路电容应直接联接 VDDRF 和 VSSRF,
2, 3	1	VSSRF	PCB 走线尽可能短。为得到最好的性能,仅在电源引入
2, 3	1	VBSKI	端使 VSSRF和 VSSBB 联通(确保 VSSBB 电流从 VSSRF
			馈地有独立的回路)
4	2	ANT	RF 信号输入脚,内部交流耦合。联接此脚到接收天线。
			输入阻抗很高(FET 门),大概有 2pF 的分布电容。当
			环境噪音很大时候,需在 ANT 和 VSSRF 间加一个带通
			调滤波器网络作为接收选频和输入过载保护。
5	3	VDDRF	电源正 VDDBB 和 VDDRF 应在引脚焊盘处直接相连,
	3	122111	还需加去耦电容到 VSSRF, PCB 走线尽可能短。
6		VDDBB	电源正 VDDBB 和 VDDRF 应在引脚焊盘处直接相连
7	4	СТН	获取调制波的平均值,用于内部数据比较器的参考信
			号。可以看作是一个阻抗为 118K 的低通 RC 滤波器,
			可用误差为+/-20%的陶瓷电容代替
8		NC	未使用的引脚
9		VSSBB	基带部分返回地。旁路电容和输出电容应连结到
			VSSBB, PCB 走线应尽可能短,为得到最好的性能,仅
			在电源引入端使 VSSRF 和 VSSBB 联通(确保 VSSBB
			电流从 VSSRF 馈地有独立的回路)
10	5	DO	数据信号输出,和 CMOS 电平兼容
11	6	SHUT	输入脚,关闭模式控制端。正常工作时应下拉到地,此
			引脚由内部上拉到 VDD
12		WAKEB	输出脚,当IC检测到有RF信号输入时输出低电平,和
			CMOS 电平兼容
13	7	CAGC	AGC(Automatic Gain Control) 电容,推荐使用 0.47uF
			或更大的电容可以得到最好的效果。用低泄露电容在断
	_		续操作时
14		SEL1	和 SELO 一起用来选择解调滤波器带宽。此引脚由内部
			上拉到 VDD
			IC 片内调谐定时参考。在此脚和 VSSBB 连接一个陶瓷
			振荡器和石英晶振,也可以输入外部 0.5Vpp 的时钟信
15	8	REFOSC	号,可用不带电容的陶瓷振荡器。工作在 FIXED 模式,
13	0	KLI OSC	必须用石英晶振;工作在 SWP 模式可以选用陶瓷振荡
			器或石英晶振
16		SWEN	IC 的模式控制脚 SWEN=HIGH 时: SWP 模式
10		DWEN	SWEN=LOW 时: FIXED 模式
			SWEN-LOW #J: TIMED (大八

8. 额定参数

电源电压(V _{DDRF} , V _{DDBB})	+7V	
I/O 端口电压 (V _{I/O})	V_{SS} -0.3 to V_{DD} +0.3	
节点温度 (T _J)	+150°C	
储藏温度范围(Ts)	−65°C to +150°C	
焊接温度(焊接时间10秒)	+260°C	

9. 工作参数

射频频率范围	300MHz to 440MHz
电源电压 (VDDRF, VDDBB, 300~370MHz)	+3.0V to +5.5V
电源电压 (VDDRF, VDDBB, 370~440MHz)	+3.3V to +5.5V
参考晶振输入范围	$0.1V_{PP}$ to $1.5V_{PP}$
工作环境温度范围 (TA)	−30°C to +85°C

防静电 ESD 灵敏度:符合 1ESD 级(2000V)

测试要求(手工模式,HBM),依据 MIL-STD-883C 标准,采用方法: Method 3015。 要求防静电储存,防静电操作

10. 功能描述

如图所示: SYN470R 分为四个功能块:

- UHF 降频变换器
- OOK 解调器
- 参考时钟及控制
- 唤醒功能

用它组成一个完整的 UHF 接收器,只需要 2 个电容 (C_{TH}, C_{AGC}) 和 1 个时钟器件 (通常为陶瓷振荡器),当然外部还需要 1 个电源滤波电容,4 个输入控制脚 (SEL0、SEL1、SWEN、SHUT)用来选择芯片的工作模式和带宽,芯片内部已有上拉电阻,不再需要外加上拉电阻。

10.1 选择芯片工作模式

SWEN: 选择芯片工作模式。当 SWEN 输入低电平,芯片工作于固定(FIXED)模式; 当 SWEN 输入高电平,芯片工作于扫频(SWP)模式。

在 SWP 模式下,芯片内部震荡器(LO)会在一定范围内扫动(扫动频率远大于数据波特率),这样能增加 RF 带宽。因此,当发射和接收中心频点不太准时(例如发射为一低成本的 LC 震荡),建议使用 SWP 工作模式(注意:内部震荡器扫动不会影响 IF 带宽)。为减少内部震荡器扫动对接收的影响,在 SWP 模式下,数据波特率应小于 2.5Kbps。否则,建议使用 FIXED 模式。

在发射频率非常准确(例如使用 SAW),用户应尽可能使用 FIXED 模式,在 FIXED 模式下,内部震荡器(LO)固定,此时外部时钟应采用晶体震荡器。

10.2 选择解调滤波器带宽

SEL0、SEL1: 选择解调滤波器带宽。用户应根据需要选择解调滤波器带宽:

CELO	SEL1	解调带宽		
SEL0		SWP 模式	FIXED 模式	
1	1	5000Hz	10000 Hz	
0	1	2500 Hz	5000 Hz	
1	0	1250 Hz	2500 Hz	
0	0	625 Hz	1250 Hz	

10.3 限幅电平和 Cπ电容

去除解调信号的直流部分,逻辑数据限幅完全取决于外部电容 C_{TH} 和芯片内部电阻 RSC (switched-cap resistor),如图所示,芯片内部电阻 RSC 为 $118K\Omega$,一旦选择好限幅电平时间常数,很容易就可计算 C_{TH} 的电容值。限幅电平时间常数根据解码器类型、数据格式和波特率不同而不同,但通常介于 5-50ms。

在静止(无发送)期间,DO 输出由噪音引起的无规律方波,这可能影响某些解码器的工作,解决这个问题的一般方法是在 CTH 加入一小偏置,使噪音不能触发内部的比较器。通常偏置 20-30mV 就够了,根据偏置的极性来确定是在 CTH 与电源或与地之间连接一个几兆的电阻。因为 SYN470R 具有自动增益控制(AGC),输入比较器的噪音总是一样的,压制噪音偏置不会随接收噪音的变化而改变。注意:加入压制噪音偏置会适当减少接收距离。

10.4 自动增益控制 (AGC) 与 CAGC 电容

自动增益控制(AGC)能增加输入动态范围。衰落与激励时间常数之比固定为 10:1,但激励时间常数能通过选择 C_{AGC} 的值来改变。

为了增大系统动态范围,在控制电平达到静态值时,应尽量减低 AGC 控制波纹(最好低于 10mv)。推荐 C_{AGC} 应大于等于 0.47uF。

10.5 参考振荡器与外部时钟

根据用户需要,可选择以下三种外部时钟:

- 陶瓷振荡器
- 晶体振荡器
- 外部时钟信号(如 MCU 输出时钟),幅度大约 0.5V_{pp}

用户应根据发射频率和工作模式来确定时钟的值(详细如下):

10.5.1 FIXED 模式

内部本振频率 f_{LO} 与输入发射频率 f_{TX} 之差应等于 IF 中心频率,以下等式用于计算给定发射频率下的本振频率:

$$f_{LO} = f_{TX} \pm (0.86 \frac{f_{TX}}{315})$$

选定两个值中的一个来计算参考时钟 fT 的值,公式如下:

$$f_{T} = \frac{F_{LO}}{64.5}$$

以下列出了一些常用发射频率的参考时钟

发射频率 f _{TX} (MHz)	参考时钟 f _T (MHz)
315	4.8970
390	6.0630
418	6.4983
433.92	6.7458

10.5.2 SWP 模式

在 SWP 模式下,选择参考时钟 f_T 的公式如下:

$$f_T = \frac{F_{LO}}{64.25}$$

10.6 唤醒功能

SYN470R 的唤醒功能能进一步减小无线接收系统的功率,当 SYN470R 在解调输出信号检测到一个恒定的数据头,WAKEB 脚便输出一逻辑电平,此输出电平去唤醒其他的外部电路,如解码器、单片机等。注意: 当新片在 SHUTDOWN 模式时,唤醒功能不可用。

10.7 SHUTDOWN 功能

当 SHUT 脚输入高电瓶,芯片进入低功耗 STANDBY 模式,消耗电流小于 1uA。 此脚内部被上拉,正常工作时必须下拉到地。

11. 典型应用

下图给出了 SYN470R 的典型应用,工作频率为 315MHz,数据率 1Kbps 如需改变天线,请调整耦合电容 C4 的值

Item	Part Number	Manufacturer	Description
U1	SYN470R	Synoxo	UHF Reveiver
U2	HT-12D	Holtek	Logic Decoder
CR1	CSA6.00MG	Murata	6.00MHz Ceramic Resonator
D1	SSF-LX100LID	Lumex	Red LED
R1			68K 1/4W 5%
R2		Vishay	1K 1/4W 5%
C1		Vishay	4.7uF dipped tantalum capacitor
C3		Vishay	4.7uF dipped tantalum capacitor
C2		Vishay	2.2uF dipped tantalum capacitor
C4		Vishay	8.2pF COG ceramic capacitor