SY31 - TD02: Statistiques pour la mesure

Exercice 1

On dispose de deux capteurs A et B permettant de mesurer la distance jusqu'à une cible (en mètre). Après avoir positionné les capteurs à 10 mètres d'une cible, on effectue 10 mesures et on observe les valeurs suivantes :

- 1. Quel est le capteur le plus juste?
- 2. Quel est le capteur le plus fidèle?

Supposons pour la suite de l'exercice, que le capteur A ne soit pas biaisé et que le capteur B soit affecté par un biais de mesure constant de +15 cm. On suppose également que les erreurs de mesures des capteurs A et B suivent une loi normale d'écart-type $\sigma_A=2$ m et $\sigma_B=0.5$ m, respectivement.

3. Calculer pour chaque capteur la probabilité d'avoir une erreur de mesure supérieure à 10 cm. Afin d'avoir une mesure plus précise, on effectue n mesures et on utilise la movenne de ces mesure

Afin d'avoir une mesure plus précise, on effectue n mesures et on utilise la moyenne de ces mesures comme résultat final de mesure.

- **4.** Donner une valeur de n pour laquelle la probabilité d'avoir une erreur supérieure à 10 cm avec le capteur A devient plus petit qu'avec le capteur B.
- 5. Combien de mesures est-il nécessaire d'avoir avec le capteur A pour garantir une erreur de mesure inférieure à 10 cm avec une confiance de 95%. (On rappelle que $u_{0.975} = 1.96$.)
- 6 (bonus). Qu'en est-il du capteur B?

Exercice 2

On a relevé la série de mesures suivantes :

$$0, 2, 2, 3, 1, 3, 1, 2, 0, 1, 4, 0, 2, 1, 2, 1, 3, 1, 0, 2.$$

- 1. Calculer la moyenne empirique et l'écart-type empirique.
- 2. On rappelle l'inégalité de Bienaymé-Tchebycheff :

$$\forall \epsilon > 0, \ \mathbb{P}(|X - \mathbb{E}(X)| \ge \epsilon) \le \frac{\operatorname{Var}(X)}{\epsilon^2}.$$

Montrer qu'on a

$$\forall h > 0, \ \mathbb{P}\left(|X - \mathbb{E}\left(X\right)| \le h \cdot \operatorname{sd}\left(X\right)\right) \ge 1 - \frac{1}{h^2}, \quad \operatorname{avec} \ \operatorname{sd}(X) = \sqrt{\operatorname{Var}(X)}.$$

- 3. Estimer un intervalle contenant plus des 3/4 de ces effectifs.
- 4. Quelle fraction de l'effectif contient réellement l'intervalle précédent?

Fonction de répartition de la loi normale centrée réduite

- Si $X \sim \mathcal{N}(\mu, \sigma^2)$, alors $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$, $\mathbb{E}(X) = \mu$ et $\mathrm{Var}(X) = \sigma^2$.
- Si $X \sim \mathcal{N}(\mu, \sigma^2)$, alors $U = (X \mu)/\sigma \sim \mathcal{N}(0, 1)$ suit la loi normale centrée-réduite et on note Φ sa fonction de répartition.
- La table qui suit donne les valeurs de la fonction de répartition de la loi normale centrée réduite $\Phi(x)$ pour les valeurs de x positives.
- Pour les valeurs négatives de x, on utilisera la relation $\Phi(x) = 1 \Phi(-x)$.

x ₂	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.0
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.0
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.0
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9
1.4	0.9192 0.9332	0.9207 0.9345	0.9222 0.9357	0.9236 0.9370	0.9251 0.9382	0.9265 0.9394	0.9279 0.9406	0.9292 0.9418	0.9306 0.9429	0.
1.6	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9
1.7	0.9452	0.9463	0.9474	0.9484	0.9493	0.9599	0.9608	0.9525	0.9625	0.9
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.
3.1	$0.9^{3}03$	$0.9^{3}06$	$0.9^{3}10$	$0.9^{3}13$	$0.9^{3}16$	$0.9^{3}18$	$0.9^{3}21$	$0.9^{3}24$	0.9^{3}_{2} 26	0.9
3.2	0.9 ³ 31	0.9 ³ 34	0.9 ³ 36	0.9 ³ 38	0.9340	$0.9^{3}42$	0.9 ³ 44	0.9346	0.9348	0.
3.3	$0.9^{3}52$	$0.9^{3}53$	$0.9^{3}55$	$0.9^{3}57$	$0.9^{3}58$	$0.9^{3}60$	$0.9^{3}61$	$0.9^{3}62$	$0.9^{3}64$	0.9
3.4	$0.9^{3}66$ $0.9^{3}77$	$0.9^{3}68$ $0.9^{3}78$	$0.9^{3}69$ $0.9^{3}78$	$0.9^{3}70$ $0.9^{3}79$	$0.9^{3}71$ $0.9^{3}80$	$0.9^{3}72$ $0.9^{3}81$	0.9^373 0.9^381	$0.9^{3}74$ $0.9^{3}82$	0.9^375 0.9^383	0.9
3.5	0.9^{3}	$0.9^{3}78$ $0.9^{3}85$	$0.9^{3}78$ $0.9^{3}85$	$0.9^{3}79$ $0.9^{3}86$	$0.9^{3}80$ $0.9^{3}86$	$0.9^{3}81$ $0.9^{3}87$	$0.9^{3}81$ $0.9^{3}87$	$0.9^{3}82$ $0.9^{3}88$	$0.9^{3}88$	0.9
3.6	$0.9^{3}84$ $0.9^{3}89$	$0.9^{3}85$ $0.9^{3}90$	$0.9^{4}85$ $0.9^{4}00$	$0.9^{4}86$ $0.9^{4}04$	$0.9^{4}08$	$0.9^{4}87$ $0.9^{4}12$	$0.9^{4}87$ $0.9^{4}15$	$0.9^{4}88$ $0.9^{4}18$	$0.9^{4}88$ $0.9^{4}22$	0.9
3.7	$0.9^{4}28$	$0.9^{4}31$	$0.9^{4}33$	$0.9^{4}36$	$0.9^{4}38$	$0.9^{4}41$	$0.9^{4}43$	$0.9^{4}46$	0.9^{22} $0.9^{4}48$	0.9
3.9	0.9^{28} 0.9^{4}	$0.9^{4}54$	$0.9^{4}56$	$0.9^{4}58$	$0.9^{4}59$	0.9^{41} $0.9^{4}61$	$0.9^{4}63$	$0.9^{4}64$	0.9^{48} $0.9^{4}66$	0.
4.0	$0.9^{4}68$	$0.9^{4}70$	$0.9^{4}71$	$0.9^{4}72$	$0.9^{4}73$	$0.9^{4}74$	$0.9^{4}75$	$0.9^{4}76$	$0.9^{4}77$	0.
4.1	$0.9^{4}79$	$0.9^{4}80$	$0.9^{4}81$	$0.9^{4}82$	$0.9^{4}83$	$0.9^{4}83$	$0.9^{4}84$	$0.9^{4}85$	$0.9^{4}85$	0.9
4.2	$0.9^{4}87$	$0.9^{4}87$	$0.9^{4}88$	$0.9^{4}88$	$0.9^{4}89$	$0.9^{4}89$	$0.9^{4}90$	$0.9^{5}02$	$0.9^{5}07$	0.9
4.3	$0.9^{5}15$	$0.9^{5}18$	$0.9^{5}22$	$0.9^{5}25$	$0.9^{5}29$	$0.9^{5}32$	$0.9^{5}35$	$0.9^{5}38$	$0.9^{5}41$	0.9
4.4	$0.9^{5}46$	$0.9^{5}48$	$0.9^{5}51$	$0.9^{5}53$	$0.9^{5}55$	$0.9^{5}57$	$0.9^{5}59$	$0.9^{5}61$	$0.9^{5}63$	0.9
4.5	$0.9^{5}66$	$0.9^{5}68$	$0.9^{5}69$	$0.9^{5}71$	$0.9^{5}72$	$0.9^{5}73$	$0.9^{5}74$	$0.9^{5}76$	$0.9^{5}77$	0.9
4.6	$0.9^{5}79$	$0.9^{5}80$	$0.9^{5}81$	$0.9^{5}82$	$0.9^{5}83$	$0.9^{5}83$	$0.9^{5}84$	$0.9^{5}85$	$0.9^{5}86$	0.9
4.7	$0.9^{5}87$	$0.9^{5}88$	$0.9^{5}88$	$0.9^{5}89$	$0.9^{5}89$	$0.9^{5}90$	$0.9^{6}03$	$0.9^{6}08$	$0.9^{6}12$	0.9
4.8	$0.9^{6}21$	$0.9^{6}25$	$0.9^{6}28$	$0.9^{6}32$	$0.9^{6}35$	$0.9^{6}38$	$0.9^{6}41$	$0.9^{6}44$	$0.9^{6}47$	0.9
4.9	$0.9^{6}52$	$0.9^{6}54$	0.9^{6}_{-57}	$0.9^{6}59$	$0.9^{6}61$	$0.9^{6}63$	$0.9^{6}65$	$0.9^{6}67$	$0.9^{6}68$	0.9
5.0	$0.9^{6}71$	$0.9^{6}73$	$0.9^{6}74$	$0.9^{6}75$	$0.9^{6}77$	$0.9^{6}78$	$0.9^{6}79$	$0.9^{6}80$	$0.9^{6}81$	0.9
5.1	$0.9^{6}83$ $0.9^{7}00$	$0.9^{6}84$	$0.9^{6}85$	$0.9^{6}86$	$0.9^{6}86$	$0.9^{6}87$	$0.9^{6}88$	$0.9^{6}88$	$0.9^{6}89$	0.9
5.2	0.9700	0.9^{7}_{-06}	$0.9^{7}_{2}11$	0.9^{7}_{-15}	0.9^{7}_{20}	0.9^{7}_{24}	0.9^{7}_{28}	0.9^{7}_{-32}	0.9^{7}_{-35}	0.
5.3	$0.9^{7}42$	$0.9^{7}45$	$0.9^{7}48$	0.9^{7}_{51}	0.9^{7}_{54}	0.9^{7}_{-56}	0.9^{7}_{58}	0.9^{7}_{-61}	0.9^{7}_{53}	0.
5.4	0.9767	$0.9^{7}68$	$0.9^{7}70$	$0.9^{7}72$	$0.9^{7}73$	$0.9^{7}75$	$0.9^{7}76$	$0.9^{7}77$	0.9779	0.9
5.5	$0.9^{7}_{7}81$	$0.9^{7}_{7}82$	$0.9^{7}_{9}83$	$0.9^{7}_{0}84$	$0.9^{7}_{9}85$	0.9786	0.9787	0.9787	$0.9^{7}_{0}88$	0.
5.6	0.9789	0.9790	0.9805	0.9810	0.9815	0.9820	0.9824	0.9829	0.9833	0.
5.7	0.9840	0.9844	$0.9^{8}_{0}47$	0.9850	0.9853	0.9855	0.9858	0.9860	0.9863	0.9
5.8	0.9867	0.9869	$0.9^{8}71$	$0.9^{8}72$	$0.9^{8}74$	0.9875	0.9877	$0.9^{8}78$	$0.9^{8}79$	0.9
5.9	$0.9^{8}82$	$0.9^{8}83$	$0.9^{8}84$	$0.9^{8}85$	$0.9^{8}86$	$0.9^{8}87$	$0.9^{8}87$	0.9^888	$0.9^{8}89$	0.9

[—] La notation 0.9^d xx se lit comme $0.\underbrace{9\cdots 9}_d$ xx.

— Au delà de la table, on pourra utiliser : $\Phi(x) \approx 1 - \frac{\exp\left(-\frac{x^2}{2}\right)}{x\sqrt{2\pi}}$.