RSA*Conference2016

San Francisco | February 29 - March 4 | Moscone Center

SESSION ID: PDAC-W02

Applying Auto-Data
Classification Techniques for
Large Data Sets

Anchit Arora

Program Manager InfoSec, Cisco

The proliferation of data and increase in complexity

1995 2006 2014 2020 The Internet of 9 to 5 in the Emergence of Internet & The Human BYOD & **Everything** office mobility Network Externalization **Pace** Enterprise data collection to increase 40 to 60 % Volume per year* Experts predict the amount of data generated Big data architectures, low storage cost, annually to increase 4300% by 2020 * Increase of data retention 80% of data generated today is unstructured **Complexity** Data generated worldwide will reach 44 zettabytes by 2020* Complex work models: always accessible, remote & mobile workers Definition of perimeter: Cloud, Customer & partners Users choose devices (BYOD)

Auto-classification: The why and what

- Desired business outcome: At Cisco we want to provide additional sensitivity context to structured and unstructured data, to be able to apply controls more effectively
- Scope: Our aim is to have an automated classification capability for all structured data systems, and provide capability to better govern/control generation of unstructured data which is created as a result of export from structured data systems using label/field association to each record set

Use-case: From structured to unstructured

CISCO

An unstructured data use-case: box.com

- Box.com is an external cloud platform used by Cisco for collaboration and storage of data
- Security questions to ask:
 - What is this data?
 - What's the source of the data?
 - Who owns this data?
 - What's the sensitivity of the data?
 - Is all data equally sensitive (this is the essence for optimal security)?
 - What's the level of security required?

Should we ask the user to govern security?

- Can we expect the user to make the right security decision with all this complexity involved in decision making?
 - The user needs to be very knowledgable to make the right decision
- The answer is No: But however many systems are designed to have users govern security -
 - Recognize data categories in systems with unstructured data
 - Classify data in any data system
 - Set data securitypolicy
 - Securely export data out of the system
- Making the shift from user governed to data owner governed

How to make the shift to a data owner model?

Across various data types: Engineering, Customer, Finance, HR

Conceptual approach

cisco

Classification mostly unknown

RSA Conference 2016

Structured data case study: Engineering & Customer data protection in context of bug Information

A case study: Bug information

Millions of bugs + product bugs, 3 approaches available to protect:

- 1. Treat all bugs equally, and apply 'very strict' controls on all bugs
 - In heterogenic data models, most data is 'Over'-protected
 - Limits business ability and User experience
- 2. Treat all bugs equally, and apply 'loose' controls on all bugs
 - Results in 'Under'-protected data
- 3. Apply the right amount of protection on a bug, based on sensitivity
 - Balanced security and cost applied just the right amount of security!

Setting the foundation for auto-class

Inventory Process

Identify

 Identify the most sensitive IP and IP's appropriate owner(s)

Define

 Define data use and access rules for the most sensitive IP

Translate

 Translate rules into IT enforceable policies

The inventory process engages the business to build out the data taxonomy and a model of the sensitivity

The proof is in the numbers!!

Manual approach

Parameter	Value				
Average time to classify a single bug	5 minutes				
Total number of bugs	7 Million				
Time to classify	35 Million minutes				
Cost/min of SME analyst	\$ 0.83/Min				
Cost to classify	\$ 29 Million				

Additional costs to consider for manual:

Training: For consistent user behavior Change to business: Cleaning legacy Change to applications and Infrastructure

Auto-Classification approach

Parameter	Value
Average time to classify a single bug*	0.002 minutes
Total number of bugs	7 Million
Time to classify	14,000 Minutes
Estimated cost for Infrastructure and resources required to classify	\$ 0.25 Million

Accuracy Results
83%

The most sensitive data is just a small portion

How did we execute the methodology?

A 6 step workflow, for structured data (SoR)

Engage		Attribute	•	Develop	>	Validate	•	Integrate		Protect
--------	---------	-----------	---	---------	-------------	----------	---	-----------	--	---------

#	Phase	Scope
1	Engage	Identify SoR and engage stakeholders to communicate expectations, R&R, Identify data workflow (user stories) and data categories. Plan and establish scope and planning of the SoR integration
2	Attribute	Analysis of data, database fields, record and build a data sensitivity model / algorithm to be able to classify the data
3	Develop	Development of attribution and scoring algorithm into the classification engine and perform indexing of datasets
4	Validate	Validation and tuning of classification results of the classification engine to ensure accuracy of the output
5	Integrate	Integration of classification data with the source system
6	Protect	Planning and implementation of protective measures in the source system for sensitive data classes

Building an attribution model

How to create a similar solution for your organization?

Engage

- SystemIdentification
- •Stakeholder identification
- Source system data fields
- Field analysis
- Field type analysis
- Data record analysis
- Define Dictionary
- Candidate fields
- Feasibility
- Socialization

Attribute

- •Field value assignment
- •Field correlation
- Weight scoring
- Sensitivity scoring

Develop

- Classification engine Infrastructure Setup
- Classification engine configuration
- Coding of classification algorithm

Validate

- •Sample size scoping
- •Sample size indexing
- •Validation of sample set
- Statistical validation of sample set
- Tune
- •Result socialization

Integrate

- Design
- User stories
- Source system tagging (application tagging)
- StakeholderSocialization

Protect

- Access control
- Behavior monitoring

- •Source System Secure design
- •Source System compliance
- Export control
- •Import control
- Data Loss

Now what? - Prevent, Detect and Educate

RS∧Conference2016

cisco

Q&A

Anchit Arora

Program Manager
InfoSec, Data Security Analytics Team
ancarora@cisco.com

