

SEQUENCE LISTING

<110> Immunex Corporation
Anderson, Dirk M

<120> LECTIN SS3939 DNA AND POLYPEPTIDES

<130> 2883-US

<160> 9

<170> PatentIn version 3.1

<210> 1

<211> 2005

<212> DNA

<213> Homo sapiens

<400> 1

tgtcgccac gcctctgccc	gccagccccgc	tccaccgccc	tagcgcccga	gtgtcgaaaa	60
gcgcacccga	gtcgccat	gaggccggga	accgcgtac	aggccgtgct	gctggccgtg
ctgctgggtgg	ggctgcgggc	cgcacgggt	cgcctgctga	gtggcagcc	agtctgcccgg
ggagggacac	agaggcattt	ttataaaagtc	atttacttcc	atgataacttc	tcgaagactg
aactttttaggg	aagccaaaga	agcctgcagg	agggatggag	gccagctagt	cagcatcgag
tctgaagatg	aacagaaaact	gatagaaaag	ttcattgaaa	acctcttgcc	atctgatgg
gacttctgga	ttgggctcag	gaggcgtgag	gagaaacaaa	gcaatagcac	agcctgccag
gacctttatg	cttggactga	tggcagcata	tcacaattta	ggaactggta	tgtggatgag
ccgtcctgcg	gcagcgaggt	ctgcgtggc	atgtaccatc	agccatcgcc	acccgctggc
atcgaggccc	cctacatgtt	ccagtggaaat	gatgaccgg	gcaacatgaa	gaacaatttc
atttgcaaata	attctgatga	gaaaccagca	gttccttcta	gagaagctga	aggtgaggaa
acagagctga	caacacatgt	acttccagaa	gaaacacagg	aagaagatgc	caaaaaaaaca
tttaaagaaa	gtagagaagc	tgccttgaat	ctggccttaca	tcctaattccc	cagcattccc
cttctcctcc	tccttgggt	caccacagt	gtatgtggg	tttggatctg	tagaaaaaga
aaacgggagc	agccagaccc	tagcacaaag	aagcaacaca	ccatctggcc	ctctcctcac
cagggaaaca	gccccggac	cttacgttac	aatgtcataa	gaaaacaaag	cgaagctgac
ttagctgaga	cccgccaga	cctgaagaat	atttcattcc	gagtgtgttc	gggagaagcc
actcccgatg	acatgtttt	tgactatgac	aacatggctg	tgaacccatc	agaaagtggg
tttgtgactc	tggtgagcgt	ggagagtgga	tttgtgacca	atgacattta	ttagttctcc
ccagaccaaa	tggggaggag	taaggagtct	ggatgggtgg	aaaatgaaat	atatggttat
taggacatat	aaaaaaactga	aactgacaac	aatggaaaag	aaatgataag	caaaatcctc

ttatTTTcta taaggaaaat acacagaagg tctatgaaca agcttagatc aggtcctgtg 1320
gatgagcatg tggTcccac gaccTcctgt tggacccca cgtttggct gtatcTTta 1380
tcccagccag tcATccagct cgacCTtatg agaaggTacc ttGCCAGGT ctggcacata 1440
gtagagtCTC aataaATgtc actTggTTgg ttgtatctaa ctTTaaggg acagagCTT 1500
acCTggcagt gataaagatg ggctgtggag cttggAAAac cacCTctgtt ttCCttgCTC 1560
tatacAGcag cacatTTTat catacAGaca gaaaATCCAG aatCTTTCA aAGCCCACAT 1620
atggtagCAC aggtggcct gtgcATCGC aattCTCATA tCTgtTTTT tcaaAGAATA 1680
aaatCAAATA aAGAGCAGGA AACAGAGTGT tagtCTGTGT CTACAGCCCT TCCTCTGCAT 1740
gtggccACAG gggacCTTT tttgtttCTC CTGACATCCA GACTTGGAAA tatctaACTA 1800
cttgcaAAAC taaaaATGAG GCCAGGCGCA gtggCTGACG CCTGTAATCC CAGAACCTTG 1860
ggagACCAAG attggaggat agCTTgAGTT caggAGTTCC agACCTTCCT gggcaAAATA 1920
gtgagactCT gactCTACAa AAAATTAAA aattAGCAGG GcatGGTGGC atgcgcCTGC 1980
agtcccAGCT actcaggagg ccgag 2005

<210> 2
<211> 374
<212> PRT
<213> Homo sapiens

<400> 2

Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu Leu
1 5 10 15

Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Gly Gln Pro Val
20 25 30

Cys Arg Gly Gly Thr Gln Arg Pro Cys Tyr Lys Val Ile Tyr Phe His
35 40 45

Asp Thr Ser Arg Arg Leu Asn Phe Glu Glu Ala Lys Glu Ala Cys Arg
50 55 60

Arg Asp Gly Gly Gln Leu Val Ser Ile Glu Ser Glu Asp Glu Gln Lys
65 70 75 80

Leu Ile Glu Lys Phe Ile Glu Asn Leu Leu Pro Ser Asp Gly Asp Phe
85 90 95

Trp Ile Gly Leu Arg Arg Arg Glu Glu Lys Gln Ser Asn Ser Thr Ala
100 105 110

Cys Gln Asp Leu Tyr Ala Trp Thr Asp Gly Ser Ile Ser Gln Phe Arg
115 120 125

Asn Trp Tyr Val Asp Glu Pro Ser Cys Gly Ser Glu Val Cys Val Val
130 135 140

Met Tyr His Gln Pro Ser Ala Pro Ala Gly Ile Gly Gly Pro Tyr Met
145 150 155 160

Phe Gln Trp Asn Asp Asp Arg Cys Asn Met Lys Asn Asn Phe Ile Cys
165 170 175

Lys Tyr Ser Asp Glu Lys Pro Ala Val Pro Ser Arg Glu Ala Glu Gly
180 185 190

Glu Glu Thr Glu Leu Thr Thr Pro Val Leu Pro Glu Glu Thr Gln Glu
195 200 205

Glu Asp Ala Lys Lys Thr Phe Lys Glu Ser Arg Glu Ala Ala Leu Asn
210 215 220

Leu Ala Tyr Ile Leu Ile Pro Ser Ile Pro Leu Leu Leu Leu Val
225 230 235 240

Val Thr Thr Val Val Cys Trp Val Trp Ile Cys Arg Lys Arg Lys Arg
245 250 255

Glu Gln Pro Asp Pro Ser Thr Lys Lys Gln His Thr Ile Trp Pro Ser
260 265 270

Pro His Gln Gly Asn Ser Pro Asp Leu Glu Val Tyr Asn Val Ile Arg
275 280 285

Lys Gln Ser Glu Ala Asp Leu Ala Glu Thr Arg Pro Asp Leu Lys Asn
290 295 300

Ile Ser Phe Arg Val Cys Ser Gly Glu Ala Thr Pro Asp Asp Met Ser
305 310 315 320

Cys Asp Tyr Asp Asn Met Ala Val Asn Pro Ser Glu Ser Gly Phe Val
325 330 335

Thr Leu Val Ser Val Glu Ser Gly Phe Val Thr Asn Asp Ile Tyr Glu
340 345 350

Phe Ser Pro Asp Gln Met Gly Arg Ser Lys Glu Ser Gly Trp Val Glu
355 360 365

Asn Glu Ile Tyr Gly Tyr
370

<210> 3
<211> 618
<212> DNA
<213> Homo sapiens

<400> 3
gcgcacgggtc gcctgctgag tggcagcca gtctgccggg gagggacaca gaggcattgt 60
tataaaagtca tttacttcca tgatacttct cgaagactga actttgagga agccaaagaa 120
gcctgcagga gggatggagg ccagctagtc agcatcgagt ctgaagatga acagaaaactg 180
atagaaaaagt tcattgaaaa cctcttgcca tctgatggtg acttctggat tgggctcagg 240
aggcgtgagg agaaaacaaag caatagcaca gcctgccagg acctttatgc ttggactgtat 300
ggcagcatat cacaatttag gaactggtat gtggatgagc cgtcctgcgg cagcgaggtc 360
tgcgttgtca tgtaccatca gccatcgca cccgctggca tcggaggccc ctacatgttc 420
cagtggaatg atgaccggtg caacatgaag aacaattca tttgcaaata ttctgatgag 480
aaaccagcag ttccttctag agaagctgaa ggtgaggaaa cagagctgac aacacctgta 540
cttccagaag aaacacagga agaagatgcc aaaaaaacat taaaagaaag tagagaagct 600
gccttgaatc tggcttac 618

<210> 4
<211> 378
<212> DNA
<213> Homo sapiens

<400> 4
tggatctgta gaaaaagaaa acgggagcag ccagacccta gcacaaagaa gcaacacacc 60
atctggccct ctccatcacca gggaaacagc ccggacactag aggtctacaa tgtcataaga 120
aaacaaagcg aagctgactt agctgagacc cggccagacc tgaagaatat ttcattccga 180
gtgtgttcgg gagaagccac tcccgatgac atgtcttgcg actatgacaa catggctgtg 240
aacccatcag aaagtgggtt tgtgactctg gtgagcgtgg agagtggatt tgtgaccaat 300
gacatttatg agttctcccc agaccaaata gggaggagta aggagtctgg atgggtggaa 360
aatgaaatat atggttat 378

<210> 5
<211> 206
<212> PRT

<213> Homo sapiens

<400> 5

Ala Thr Gly Arg Leu Leu Ser Gly Gln Pro Val Cys Arg Gly Gly Thr
1 5 10 15

Gln Arg Pro Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg
20 25 30

Leu Asn Phe Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gly Gln
35 40 45

Leu Val Ser Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe
50 55 60

Ile Glu Asn Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg
65 70 75 80

Arg Arg Glu Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr
85 90 95

Ala Trp Thr Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp
100 105 110

Glu Pro Ser Cys Gly Ser Glu Val Cys Val Val Met Tyr His Gln Pro
115 120 125

Ser Ala Pro Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp
130 135 140

Asp Arg Cys Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu
145 150 155 160

Lys Pro Ala Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu
165 170 175

Thr Thr Pro Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys
180 185 190

Thr Phe Lys Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr
195 200 205

<210> 6

<211> 126

<212> PRT

<213> Homo sapiens

<400> 6

Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys
1 5 10 15

Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn Ser Pro Asp
20 25 30

Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu Ala Asp Leu Ala
35 40 45

Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe Arg Val Cys Ser Gly
50 55 60

Glu Ala Thr Pro Asp Asp Met Ser Cys Asp Tyr Asp Asn Met Ala Val
65 70 75 80

Asn Pro Ser Glu Ser Gly Phe Val Thr Leu Val Ser Val Glu Ser Gly
85 90 95

Phe Val Thr Asn Asp Ile Tyr Glu Phe Ser Pro Asp Gln Met Gly Arg
100 105 110

Ser Lys Glu Ser Gly Trp Val Glu Asn Glu Ile Tyr Gly Tyr
115 120 125

<210> 7

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
antigenic peptide used in fusion proteins

<400> 7

Asp Tyr Lys Asp Asp Asp Asp Lys
1 5

<210> 8

<211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: leucine zipper polypeptide

<400> 8

Pro Asp Val Ala Ser Leu Arg Gln Gln Val Glu Ala Leu Gln Gly Gln
1 5 10 15

Val Gln His Leu Gln Ala Ala Phe Ser Gln Tyr
20 25

<210> 9
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: leucine zipper polypeptide

<400> 9

Arg Met Lys Gln Ile Glu Asp Lys Ile Glu Glu Ile Leu Ser Lys Ile
1 5 10 15

Tyr His Ile Glu Asn Glu Ile Ala Arg Ile Lys Lys Leu Ile Gly Glu
20 25 30

Arg