Financial Econometrics

Junye Li

Department of Finance ESSEC Business School

What is Financial Econometrics

- Financial econometrics is about the statistical tools that are needed to analyze and address the specific types of questions that come up in finance.
- Nowhere in economics is the availability of data better than in financial markets.
 - Data recording enforced by regulations.
 - Computerized markets facilitate recording.

- The starting point of any financial model is uncertainty. Without uncertainty, finance would simply be applied microeconomics.
- Finance is all about risk and return tradeoffs.
 - Which risks are worth taking?
 - How much should I be compensated for taking a given risk?
- Risk due to uncertainty is therefore of central importance in finance, both in the models we build and in the object of econometric interest.

General Set-Up

- Let p_{it} denote the value of asset i at time t.
- The simple asset return can be calculated by

$$r_{it} = (p_{it} - p_{it-1})/p_{it-1}$$

where we assume zero dividend. If the dividend is non-zero,

$$r_{it} = (p_{it} + d_{it} - p_{it-1})/p_{it-1}$$

However, continuously compounded return is computed by

$$r_{it} = log(p_{it}/p_{it-1})$$

Denote the vector of returns on k assets as

$$R_t = [r_{1t}, r_{2t}, ..., r_{kt}]'$$

- At the time the investment decision is made, we don't know what the outcomes will be in the future for the vector of returns.
- Nevertheless, the investment decision can be reached without knowing the outcomes but with knowledge about how likely the different outcomes are --- the joint distribution.
- Let F_t denote an information set available at time
 t:
 - For example, it can be all past returns: R_{t-1} , R_{t-2} , R_{t-3} , ...
 - More generally, it can be any available information that might be useful in predicting returns

- A central object of interest is the joint distribution of returns in the t+1 given information F_t .
- If f(.) is the joint density function, then this conditional distribution is denoted by $f(R_{t+1}|F_t)$ and is generally the object of interest
- Basic modeling question is how to link F_t to the distribution of future returns R_{t+1} .

Examples

Estimates of the condition mean return

$$u_{t+1} = E[R_{t+1} | F_t]$$

are used to test market efficiency and build optimal portfolios.

 In Black-Scholes model, option pricing depends on volatility of the underlying asset, which can be estimated by

$$\sigma_{t+1} = Var(r_{t+1} \mid F_t).$$

S&P 500 Index

S&P 500 Index

Summary Statistics

Mean Std. Dev. Skewness Kurtosis
 0.07 0.15 -1.06 32.11

- Skewness is different from zero;
- Kurtosis is far away from 3;
- Both indicate that S&P 500 returns are not normally distributed.
- What do they look like if they are normal with mean 0.07 and standard deviation 0.15.

Simulated Returns

Absolute Returns

Squared Returns

Stylized Facts of Returns

- Stock returns are not normally distributed
 - Left-skewed (at least for index returns)
 - Fat-tailed
- Time-varying conditional mean
- Time-varying conditional standard deviation (volatility)

Road-Map

- We begin with dynamic time series models for the conditional mean:
 - Focus on univariate time series
 - ARMA models
- We then move to model the time-varying volatility:
 - ARCH/GARCH models (2003 Nobel Prize in Economics)
 - Extensions

Univariate Time Series Analysis

Junye Li

Finance Department ESSEC Business School

Introduction to Time Series and Autoregressive Models

- Time-Series Data and Dependence
- Checking for Dependence
- The Autocorrelation Function
- The AR(1) Model
- The AR(p) Model
- The Partial Autocorrelation Function
- Estimate AR(p) Model

Time-Series Data

- Time-series data are simply a collection of observations gathered over time.
- For now, consider only a single variable y.
- To emphasize that the data are time-series, we index observations by t.
- The data: $y_1, y_2, ..., y_t, ..., y_T$. The interval between observations can be daily, weekly, monthly and yearly.
- High-frequency data are even in second.

Stationary Time Series

- The foundation of time series analysis is stationarity.
- A time series is called <u>Strong Stationary</u> if $f(y_t, y_{t-1}, ..., y_{t-j}) = f(y_{t+s}, y_{t+s-1}, ..., y_{t+s-j})$ for all t and s.
- A time series is called <u>Weak Stationary</u> or Covariance Stationary if

$$E[y_t] = \mu$$
 (constant)
 $E[(y_t - \mu)(y_{t-i} - \mu)] = \gamma_i$ (constant)

Weak Stationarity

- The weak stationarity implies that the time plot of the data would show that the T values fluctuate with constant variation around a fixed level.
- In applications, weak stationarity enables one to make inference concerning future observations, e.g. predictions.
- If y_t is strictly stationary and its first two moments are finite, it is also weakly stationary. But the converse is not true in general.

• An Example: i.i.d data: $y_t = random \ number \ generated \ from \ N(0, 1)$

White Noise

• The basic building block in time series is a sequence ε_1 , ε_2 , ε_3 ,, whose elements have zero mean and constant variance

$$E[\varepsilon_t] = 0$$
, $Var[\varepsilon_t] = \sigma^2$
and $E[\varepsilon_t \varepsilon_s] = 0$

• This is called the white noise process. If we assume a normal distribution to ε_t , it is called Gaussian white noise.

- Suppose that we know the returns from time 1 to time $T(y_1, y_2, ..., y_t, ..., y_\tau)$.
- What is your prediction for the next time (T+1) return, y_{T+1} ?
- If our observations are i.i.d, the prediction would simply the unconditional mean: the average of all past observations.
- However, in practice, we find that using information about y_T can give us a more precise prediction:
 - Most of financial data are not i.i.d

Checking for Dependence

- We can have a visual assessment from the time-series plot whether the observations are independent or not.
- Independence of observations means that knowing previous values does not help us to predict the next time value.
- To see whether y_{t-1} helps predict y_t , we can use the scatter plot

• Take the previous generated i.i.d data as an example

• Real Data: 10-year Bond Yield: clearly not i.i.d

The Autocorrelation Function

- The correlations between y and the lagged values of y are called autocorrelations.
- The autocorrelation function (ACF) is simply all of the autocorrelation values for all possible lags L.
- Consider a weakly stationary series y_t

$$\rho_{l} = \frac{Cov(y_{t}, y_{t-l})}{\sqrt{Var(y_{t})Var(y_{t-l})}} = \frac{Cov(y_{t}, y_{t-l})}{Var(y_{t})}$$

- The property $Var(y_t) = Var(y_{t-l})$ for a weakly stationary series is used;
- From the above definition, we have $\rho_0 = 1$, and $\rho_1 = \rho_{-1}$;
- For a given sample, the ACF can be estimated by

$$\hat{\rho}_{l} = \frac{\sum_{t=2}^{T} (y_{t} - \overline{y})(y_{t-l} - \overline{y})}{\sum_{t=1}^{T} (y_{t} - \overline{y})^{2}}$$

 Under some general conditions, this estimate is consistent.

- There seems to exist dependence of *y* on past values.
- The ACF gets smaller as the lag gets larger:
 - $-y_t$ is more strongly related to y_{t-1} than y_{t-2}
- How to evaluate significance of an autocorrelation:

|autocorrelation| > 2/sqrt(T)

• If *T* = 100, the cutoff is 0.20.

- We can test individual autocorrelation for significance, but which one should we take a look at?
- We may be interested in jointly testing whether the first k autocorrelations are all significant or not!!!
- The null hypothesis:

$$H_0$$
: $\rho_1 = \rho_2 = ... = \rho_k = 0$

Q-tests: Box-Pierce test and Ljung-Box test

Q-Tests

Box-Pierce Test:

$$Q = T \sum \rho^2_{i}$$

- It has a Chi-square distribution with degree of freedom k
- Ljung-Box Test:

$$Q = T(T+2) \sum (\rho^2_j/T-j)$$

It has better finite sample properties

A Financial Application

- In finance literature, a version of the CAPM is that the return of an asset is not predictable.
- This indicates that there should not exist autocorrelations.
- Testing for zero autocorrelations has been used as a tool to check the efficient market assumption.

The AR(1) Model

- If there is dependence in returns, we would like to have a model that can allow us to predict future returns from the past outcomes.
- Since there is information about y_t contained in the lagged values y_{t-1} , y_{t-2} , ..., the obvious way to try is a regression of y_t on its lags.
- The simplest model is the so-called AR(1) or the autoregressive model of order 1.

• The model:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$$
 where $\varepsilon_t = i.i.d\ N(0, \sigma^2)$

- y_t consists of two parts: the part that depends on the past observation $\beta_0 + \beta_1 y_{t-1}$
- and the part this is not predictable from the past ϵ_{t}
- The model is in the same form as the well-known linear regression models
- Interest rate and/or stochastic volatility models

Conditional mean and variance

E[y_t | y_{t-1}] = β₀ + β₁y_{t-1};
Var[y_t | y_{t-1}] = Var[ε_t] =
$$\sigma^2$$
;

- The AR(1) model says that y_t depends on the past only through y_{t-1}
- What does it mean:
 - knowing the past values y_{t-2} , y_{t-3} , ... does not help predict y_t if we already know the value of y_{t-1} .
 - In probability

$$f(y_t \mid y_{t-1}, y_{t-2}, ...) = f(y_t \mid y_{t-1})$$

= $N(\beta_0 + \beta_1 y_{t-1}, \sigma^2)$

Unconditional mean of AR(1)

$$E[y_t] = \beta_0 + \beta_1 E[y_{t-1}] + E[\epsilon_t]$$
=> $\mu = \beta_0 + \beta_1 \mu + 0$
=> $\mu = \beta_0 / (1 - \beta_1)$

- The mean exists if β_1 is different from one;
- The mean is zeros if and only if β_0 is zero;
- Using the above result, AR(1) model can be rewritten as

$$y_{t} = \beta_{0} + \beta_{1}y_{t-1} + \epsilon_{t}$$

$$=> y_{t} = \mu(1-\beta_{1}) + \beta_{1}y_{t-1} + \epsilon_{t}$$

$$=> y_{t} - \mu = \beta_{1}(y_{t-1} - \mu) + \epsilon_{t}$$

The unconditional variance

$$y_{t} - \mu = \beta_{1}(y_{t-1} - \mu) + \epsilon_{t}$$

$$=> E(y_{t} - \mu)^{2} = \beta_{1}^{2}E(y_{t-1} - \mu)^{2} +$$

$$2\beta_{1}E[(y_{t-1} - \mu) \epsilon_{t}] + E[\epsilon_{t}^{2}]$$

$$=> \gamma_{0} = \sigma^{2}/(1 - \beta_{1}^{2})$$

- $-\beta_1^2$ needs to be less than 1;
- The weak stationarity implies -1 < β_1 < 1;
- $-\beta_1$ measures the persistence of the dynamic dependence of an AR(1) time series.

ACF of AR(1)

• The ACF:

$$\gamma_{l} = \beta_{1}\gamma_{l-1}$$
 and $\gamma_{l} = \gamma_{-l}$
 $\rho_{l} = \beta_{1}\rho_{l-1} = \beta_{1}^{l}$ because $\rho_{0} = 1$

- The starting value of the ACF of a weakly stationary AR(1) process is one;
- It then decays exponentially with the rate β_1

• In the AR(1) model, the value of θ_1 plays very important role in capturing the nature of the data.

• We take a look at the simulated data for different values of θ_1 .

 Each data set is simulated from the AR(1) model with parameter sets given as follows.

• The simulated data:

- Series 1: $\theta_0 = 1$, $\theta_1 = 0.8$, $\sigma = 0.1$
- Series 2: $\theta_0 = 1$, $\theta_1 = -0.8$, $\sigma = 0.1$
- Series 3: $\theta_0 = 0.1$, $\theta_1 = 1$, $\sigma = 0.5$
- Series 4: $\theta_0 = 0.1$, $\theta_1 = 1.1$, $\sigma = 0.5$

• Here the value of θ_1 is the most interesting thing. Other parameters are just arbitrarily given.

• Series 1: Simulated Data

• Series 1: ACF

• Series 2: Simulated Data

• Series 2: ACF

• Series 3: Simulated Data

• Series 3: ACF

The Random Walk Model

• When $\theta_1 = 1$, the AR(1) model is known as the random walk model

$$y_{t} = \theta_{0} + y_{t-1} + \varepsilon_{t}$$

$$Or \qquad y_{t} - y_{t-1} = \theta_{0} + \varepsilon_{t} = N(\theta_{0}, \sigma^{2})$$

 In the random walk model, the differenced series is i.i.d.

- The θ_0 is called the drift:
 - -- Positive drift: wandering upward;
 - -- Negative drift: wandering downward;
 - -- Zeros drift: the series meander around its starting value with no particular trend, but it can take very long time away its starting value.

• Series 4: Simulated Data

Summary

- $|\beta_1| < 1$:
 - The series has a mean level to which it reverts;
 - For the positive value, the series tends to wander above or below the mean level for a while;
 - For the negative value, the series tends to be above and below the mean level alternately;
 - The series is stationary: mean and variance do not change over time.

Summary

- $\beta_1 = 1$:
 - The series has no mean level, and thus is nonstationary;

- $|\beta_1| > 1$:
 - The series is explosive, and also non-stationary.

Forecasting

- Forecasting is an important application of time series analysis;
- Suppose we are at time t, and are interested in forecasting y_{t+h}
 - One-step-ahead forecast:

$$y_{t+1} = \beta_0 + \beta_1 y_t + \varepsilon_{t+1}$$

$$\hat{y}_{t+1} = E[y_{t+1} | F_t] = \beta_0 + \beta_1 y_t$$

- Suppose that the AR(1) model accurately describes the data and that the parameters are given by $\beta_0 = 1$, $\beta_1 = 0.8$, $\sigma^2 = 0.5$.
- If $y_T = 6$, our prediction for y_{T+1} would be obtained by plugging the parameters into the model

$$y_{T+1} = 1 + 0.8*(y_T = 6) + \varepsilon_{T+1}$$

= 5.8 + ε_{T+1}
and $E[y_{T+1}/F_t] = 5.8$

Two-step-ahead forecast:

$$y_{t+2} = \beta_0 + \beta_1 y_{t+1} + \varepsilon_{t+2}$$

$$\Rightarrow \hat{y}_{t+2} = E[y_{t+2} | F_t] = \beta_0 + \beta_1 E[y_{t+1} | F_t]$$

$$\Rightarrow \hat{y}_{t+2} = \beta_0 + \beta_1 (\beta_0 + \beta_1 y_t)$$

Multi-step-ahead forecast:

$$y_{t+h} = \beta_0 + \beta_1 y_{t+h-1} + \varepsilon_{t+h}$$

$$\Rightarrow \hat{y}_{t+h} = E[y_{t+h} | F_t] = \beta_0 + \beta_1 E[y_{t+h-1} | F_t]$$

$$\Rightarrow \hat{y}_{t+h} = \beta_0 + \beta_1 \hat{y}_{t+h-1}$$

The General AR(p) Model

 We can generalize the AR(1) model to let y_t depend on p lags of y:

$$y_t = \beta_0 + \beta_1 y_{t-1} + ... + \beta_p y_{t-p} + \epsilon_t$$

- If p = 2, we have AR(2) model.
 - Conditional mean and variance
 - Unconditional mean and variance
 - The autocorrelation function

PACF

- When we have a time series of data, how can we determine the order p;
- Of course, we can use ACF. But note that the ACF of AR(p) decays slowly and can not provide precise information on p;
- The partial autocorrelation function (PACF) is another useful tool for selection of p;

PACF

• The first partial autocorrelation is simply the estimated coefficient b_1 from the regression

$$y_t = b_0 + b_1 y_{t-1}$$

• The second partial autocorrelation is the estimate b_2 from the regression

$$y_t = b_0 + b_1 y_{t-1} + b_2 y_{t-2}$$

• In general, the *j-th* partial autocorrelation is the *j-th* estimate in a regression of y_t on y_{t-1} , ..., y_{t-j} .

PACF

- An AR(p) model has a slowly decaying autocorrelation function.
- But it has non-zero first p partial autocorrelations and zero ones thereafter.
- In practice, whenever we have a time series, we usually need both ACF and PACF, since you will see later on MA(q) model has very different ACF and PACF.

How to Estimate AR(p) Model

- It is in linear form. Can we use OLS?
 - OLS assumptions: AR(1) with zeros constant

$$E[y_t \, \varepsilon_t] = E[(\theta_1 y_{t-1} + \varepsilon_t) \, \varepsilon_t]$$

$$= \theta_1 E[y_{t-1} \, \varepsilon_t] + E[\varepsilon_t \, \varepsilon_t]$$

$$= E[\varepsilon_t \, \varepsilon_t] \neq 0$$

- Finite-sample properties based on the strict exogeneity do not hold;
- However, the OLS estimator in AR(p) models has good large-sample properties.

How to Estimate AR(p) Model

- MLE can be always applied as long as we know the distribution of ε_t
- For the AR(1) model:

```
f(y_{T}, ..., y_{1}) = f(y_{T} | y_{T-1}, ..., y_{1})f(y_{T-1}, ..., y_{1})
= f(y_{T} | y_{T-1}, ..., y_{1})f(y_{T-1} | y_{T-2}, ..., y_{1})
f(y_{T-2}, ..., y_{1})
...
= f(y_{T} | y_{T-1})f(y_{T-1} | y_{T-2})...f(y_{1})
```

Information Criteria

- There are several information criteria available to determine the order p of an AR process. All of them are likelihood-based;
- If we assume Gaussian noise ε ,
 - Akaike Information Criterion (AIC)

$$AIC = \ln(\hat{\sigma}^2) + \frac{2}{T}p$$

 $AIC = \ln(\hat{\sigma}^2) + \frac{2}{T}p$ — Schwartz-Bayesian Information Criterion (BIC)

$$BIC = \ln(\hat{\sigma}^2) + \frac{\ln(T)}{T} p$$

Selection Rule

- To use AIC and/or BIC to select an AR model, one computes AIC (BIC) for all orders from 0 to p.
- Select the order of k that has the minimum values.
- In practice, we firstly use PACF, and then use AIC or BIC.
- An example

An Example

TABLE 2.1 Sample Partial Autocorrelation Function and Some Information Criteria for the Monthly Simple Returns of CRSP Value-Weighted Index from January 1926 to December 2008

p	1	2	3	4	5	6
PACF	0.115	-0.030	-0.102	0.033	0.062	-0.050
AIC	-5.838	-5.837	-5.846	-5.845	-5.847	-5.847
BIC	-5.833	-5.827	-5.831	-5.825	-5.822	-5.818
p	7	8	9	10	11	12
PACF	0.031	0.052	0.063	0.005	-0.005	0.011
AIC	-5.846	-5.847	-5.849	-5.847	-5.845	-5.843
BIC	-5.812	-5.807	-5.805	-5.798	-5.791	-5.784

The Moving Average Models

- The White Noise model
- The MA(1) Model
- The MA(q) Model
- ACF and PACF for MA(q) models
- How to estimate MA(q) models

White Noise Revisited

- A white noise time series is simply a mean zeros series with all autocorrelations equal to zero;
- Example: $y_t = \varepsilon_{t_j}$ where is i.i.d N(0, σ^2). This is simply the i.i.d normal time series we met before.
- We could extend this model by giving a mean: $y_t = \mu + \varepsilon_t$

 We can make the above model more interesting by the following extension:

$$y_t = \mu + \varepsilon_t + \vartheta \varepsilon_{t-1}$$

 The model is different from the AR model since we construct the time series for y as a combination of two random draws from a normal.

• The expectation of y_t

$$E(y_t) = E(\mu + \varepsilon_t + \vartheta \varepsilon_{t-1}) = \mu$$

• The variance of y_t

$$Var(y_t) = E(y_t - \mu)^2$$

$$= E(\varepsilon_t^2 + 2\vartheta \varepsilon_t \varepsilon_{t-1} + \vartheta^2 \varepsilon_{t-1}^2)$$

$$= (1 + \vartheta^2)\sigma^2$$

• The first autocovariance

$$\gamma_1 = E[(y_t - \mu) (y_{t-1} - \mu)] = \vartheta \sigma^2$$

 Can you see that higher autocovariances are all zero?

$$\gamma_j = E(y_t - \mu) (y_{t-j} - \mu) = 0 \text{ for } j > 1$$

The jth autocorrelation is defined as

$$\rho_j = \gamma_j / \gamma_0$$

• For the MA(1) model, we have

$$\rho_1 = \vartheta \sigma^2 / (1 + \vartheta^2) \sigma^2 = \vartheta / (1 + \vartheta^2)$$

$$\rho_i = 0 \quad \text{for } i > 1$$

• Notice that both y_t and y_{t-1} depend on ε_{t-1}

$$y_{t} = \mu + \varepsilon_{t} + \vartheta \varepsilon_{t-1}$$
$$y_{t-1} = \mu + \varepsilon_{t-1} + \vartheta \varepsilon_{t-2}$$

- Even though ε_t is i.i.d, y_t are correlated.
- For technical reasons, we will restrict $|\vartheta| \le 1$.
- To better understand how the model works, let us take a look at the simulated data.

• Series 1: $\mu = 2$, $\vartheta = -0.9$, $\sigma = 2$

• Series 1: ACF

• Series 2: $\mu = 2$, $\vartheta = 0.9$, $\sigma = 2$

• Series 2: ACF

• Series 3: $\mu = 2$, $\vartheta = 0.1$, $\sigma = 2$

• Series 3: ACF

Interpreting MA(1) Model

- The MA(1) says that y_t is determined by a current shock ε_t and a lagged shock ε_{t-1} ;
- If ϑ is positive, an unexpected large shock yesterday will make y_t today large;
- If ϑ is negative, an unexpected large shock yesterday will make y_t today small;
- In sum, the value of *y* today depends on the surprise from yesterday.

The MA(q) Model

- We have seen that in MA(1) model, y_t is correlated to y_{t-1} ;
- What do you expect for the correlation between y_t and y_{t-2} ;
- We know y_t depends on ε_t and ε_{t-1} ;
- And y_{t-2} depends on ε_{t-2} and ε_{t-3} ;
- Since is ε_t i.i.d, we should expect that the correlation between y_t and y_{t-j} is zero for all j > 1.

• Series 2: $\mu = 2$, $\vartheta = 0.9$, $\sigma = 2$

- We can allow for richer dependence in y_t by allowing y_t to depend on more lagged values of ε_t
- The MA(q) model says that

$$y_t = \mu + \varepsilon_t + \sum \vartheta_j \varepsilon_{t-j}$$

• So the value of y_t depends on ε_t and its q past values.

For example, a MA(2) model looks like this:

$$y_{t} = \mu + \varepsilon_{t} + \vartheta_{1} \varepsilon_{t-1} + \vartheta_{2} \varepsilon_{t-2}$$

- ε_t is i.i.d normally distributed;
- Now y_t and y_{t-2} should be correlated since both of them depend on ε_{t-2}

$$y_{t-2} = \mu + \varepsilon_{t-2} + \vartheta_1 \varepsilon_{t-3} + \vartheta_2 \varepsilon_{t-4}$$

• The expectation of y_t in MA(q)

$$E(y_t) = \mu$$

• The variance of y_t

Var
$$(y_t)$$
 = E $(y_t - \mu)^2$
= $(1 + \vartheta_1^2 + \vartheta_2^2 + ... + \vartheta_q^2)\sigma^2$

The autocovariances for j = 1, 2,, q

$$\gamma_{j} = E(y_{t} - \mu) (y_{t-j} - \mu)$$

$$= (\vartheta_{j} + \vartheta_{j+1} \vartheta_{1} + \vartheta_{j+2} \vartheta_{2} + \dots + \vartheta_{q} \vartheta_{q-j}) \sigma^{2}$$
and for j > q,
$$\gamma_{i} = 0$$

For example, for an MA(2) model

$$\gamma_0 = (1 + \vartheta_1^2 + \vartheta_2^2)\sigma^2$$

$$\gamma_1 = (\vartheta_1 + \vartheta_2 \vartheta_1)\sigma^2$$

$$\gamma_2 = \vartheta_2 \sigma^2$$

$$\gamma_3 = \gamma_4 = \dots = 0$$

• For any values of ϑ_{1} , ϑ_{2} , ... ϑ_{q} , the MA(q) is covariance stationary.

- From the above discussion, we have the following result: For an MA(q) model, the first q autocorrelations will be non-zero, whereas all q + j autocorrelations will be zero for j > 0;
- What does the PACF look like in a MA model?
- It turns out that the partial autocorrelations decay slowly.
- Do you still remember that in an AR model, what do ACF and PACF look like?

Summary of ACF and PACF

	AR(p) Model	MA(q) Model
ACF	Slowly decaying	Non-zero for the first q and zero thereafter
PACF	Non-zero for the first p and zero thereafter	Slowly decaying

Estimation of MA(q)

- Maximum likelihood estimation is commonly used to estimate MA models. There are two approaches.
- Conditional likelihood method
 - Initial shock (ε_0) is assumed to be zero;
 - A recursive procedure;
- Exact likelihood method
 - Treat initial shock as a parameter

Forecasting

For MA(1) model

$$y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$$

Then the 1-step-ahead forecast is:

$$\hat{y}_{t+1} = E[y_{t+1} | F_t] = \mu + \theta \varepsilon_t$$

And 2-step-ahead forecast

$$\hat{y}_{t+2} = E[y_{t+2} | F_t] = \mu$$

- What is the multi-step-ahead forecast?
- For MA(2) model?

ARMA(p, q) Models

- Combine the AR(p) model and the MA(q) model together, we obtain the so-called ARMA(p, q) model.
- And this works very well in practice.
- The simplest ARMA(1, 1) model looks like:

$$y_{t} = \beta_{0} + \beta_{1}y_{t-1} + \varepsilon_{t} + \theta \varepsilon_{t-1}$$

$$\varepsilon_{t-i} \text{ is i.i.d normal (0, σ^{2})}$$

Properties of ARMA(1, 1)

Taking expectation, we have

$$E[y_t] = \beta_0 + \beta_1 E[y_{t-1}] + E[\varepsilon_t] + \theta E[\varepsilon_{t-1}]$$

$$\Rightarrow \mu = \frac{\beta_0}{1 - \beta_1}$$

Autocovariance: rewrite ARMA(1, 1)

$$y_{t} - \mu = \beta_{1}(y_{t-1} - \mu) + \varepsilon_{t} + \theta \varepsilon_{t-1}$$

Variance

$$Var(y_t) = \beta_1^2 Var(y_{t-1}) + \sigma^2 + \theta^2 \sigma^2 + 2\beta_1 \theta Cov(y_{t-1} \varepsilon_{t-1})$$

$$\Rightarrow \gamma_0 = \frac{(1 + 2\beta_1 \theta + \theta^2)\sigma^2}{1 - \beta_1^2}$$

Autocovariance

$$- \text{ If } I = 1$$

$$\gamma_{1} = \beta_{1} \gamma_{0} + \theta \sigma^{2} \Rightarrow \rho_{1} = \beta_{1} + \frac{\theta \sigma^{2}}{\gamma_{0}}$$

$$- \text{ If } I > 1$$

$$\gamma_{1} = \beta_{1} \gamma_{1-1} \Rightarrow \rho_{1} = \beta_{1} \rho_{1-1}$$

To generalize, the ARMA(p, q) model looks like:

$$y_{t} = \mu + \theta_{1}y_{t-1} + ... + \theta_{p}y_{t-p} + \varepsilon_{t} + \vartheta_{1}\varepsilon_{t-1} + ... + \vartheta_{q}\varepsilon_{t-q}$$

$$\varepsilon_{t-j} \text{ is i.i.d normal } (0, \sigma^{2})$$

- The model becomes difficult to interpret;
- And it is also difficult to determine p and q using ACF and PACF;
- However, we can use the same approach as before: try different models of AR, MA and ARMA.

Estimate the ARMA Model

- The MLE is the most convenient and neat way to estimate the ARMA model
- Then How to construct the likelihood function
 - Using an iterative approach.
- Maximize the likelihood and obtain the parameter estimates and standard deviation.
- Construct statistics to implement hypothesis analysis.

Unit-Root Non-Stationarity

- So far, we have focused on time series that are stationary.
- In some studies, interest rates, foreign exchange rates, or the price series of an asset are of interest.
- These series tend to be non-stationary.
- The best known example of unit-root nonstationary time series is the random-walk model, which we already saw.

Random Walk

A time series y_t is a random walk if it satisfies

$$y_t = y_{t-1} + \varepsilon_t$$

where y_0 is a real number denoting the starting value and ε_t is a white noise series.

- The random walk is a special AR(1) model with coefficient of y_{t-1} is unit.
- It is therefore not weakly stationary. We call it a unit-root non-stationary time series.

- The random walk model has widely been considered as a statistical model for the movement of the log stock prices.
- Under such a model, the stock price is not predictable or mean-reverting.
- To see this, the 1-step ahead fore cast is

$$\hat{y}_{t+1} = E[y_{t+1} \mid y_t, y_{t-1}, \dots] = y_t$$

and the 2-step-ahead forecast is

$$\hat{y}_{t+2} = E[y_{t+2} \mid y_t, y_{t-1}, ...] = y_t$$

In fact, we have

$$\hat{y}_{t+h} = E[y_{t+h} \mid y_t, y_{t-1}, ...] = y_t$$

- Thus, for all forecasting horizons, point forecasts of a random walk model are simply the value of the series at the forecast origin.
- The MA representation is

$$y_t = \mathcal{E}_t + \mathcal{E}_{t-1} + \mathcal{E}_{t-2} + \dots$$

• Variance of h-step ahead forecast: $h\sigma^2$

- The usefulness of point forecast diminishes as h increases – unpredictable;
- Unconditional variance of y_t is unbounded, indicating that y_t can assume any values for a sufficiently large t.
- The impact of any past shock does not decay over time – permanent effect or long memory.
- The sample ACFs are all approaching one as the sample size increases.

Random Walk with Drift

 If we introduce a drift in a random walk model, we then have

$$y_t = \mu + y_{t-1} + \varepsilon_t$$

where $\mu = E[y_t - y_{t-1}]$ and ε_t is a white noise.

Iterative substitution results in

$$y_t = \mu t + y_0 + \varepsilon_t + \varepsilon_{t-1} + \varepsilon_{t-2} + \dots + \varepsilon_1$$

there exists a time trend. If μ is positive, y_t eventually goes to infinity; if μ is negative, y_t would converge to negative infinity.

Random Walk with Positive Drift

Trend-Stationary Time Series

 A closely related model that exhibits linear trend is the trend-stationary time series

$$y_t = \mu + \beta_1 t + r_t$$

where is r_t a stationary time series with mean zero, for example, an AR(1) process without constant.

 y_t grows linearly in time with rate β₁ and hence can exhibit behavior similar to that of a random walk with drift.

- But there is a big difference
 - Random walk with drift:

$$E[y_t] = y0 + \mu t,$$

$$Var[y_t] = t\sigma^2,$$
 both are time dependent

– Trend-stationary:

 $E[y_t] = \mu + \beta_1 t$, which depends on time, $Var[y_t] = Var[r_t]$ which is finite and time-invariant.

General Non-Stationary Models

- For a time series y_t , if the first-order difference $\Delta y_t = y_t y_{t-1}$ follows a stationary ARMA(p, q) process, we call yt an Autoregressive integrated moving-average (ARIMA) model, ARIMA(p, 1, q).
- In finance, price series are commonly believed to be non-stationary, but log return series, $r_t = ln(P_t) ln(P_{t-1})$, is stationary.

Unit-Root Test

 To test whether a time series yt follows a random walk or a random walk with drift, we use the model

$$y_{t} = \beta_{1} y_{t-1} + e_{t}$$

 $y_{t} = \beta_{0} + \beta_{1} y_{t-1} + e_{t}$

• Consider the null hypothesis H_0 : $\beta_1 = 1$. A convenient test is the t-test of the least-square estimate.

- This is called Dickey-Fuller unit-root test (DF).
- For the first case, the least-square gives

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{T} y_{t-1} y_{t}}{\sum_{t=1}^{T} y_{t-1}^{2}}, \hat{\sigma}_{e} = \frac{\sum_{t=1}^{T} (y_{t} - \hat{\beta}_{1} y_{t-1})^{2}}{T - 1}$$

The t-ratio is

$$DF \equiv t - ratio = \frac{\hat{\beta}_{1} - 1}{std(\hat{\beta}_{1})} = \frac{\sum_{t=1}^{T} y_{t-1} e_{t}}{\hat{\sigma}_{e} \sqrt{\sum_{t=1}^{T} y_{t-1}^{2}}}$$

The Augmented DF Test

- Fore many economic time series, ARIMA models might be more appropriate than the simple random walk model.
- The Augmented DF test assumes that the time series follows

$$y_{t} = c_{t} + \beta y_{t-1} + \sum_{i=1}^{P-1} \phi_{i} \Delta y_{t-i} + e_{t}$$

where c_t is a deterministic function of time, and $\Delta y_i = y_i - y_{i-1}$

Then, we have ADF test as

$$ADF - test = \frac{\hat{\beta} - 1}{std(\hat{\beta})}$$

The above model can be rewritten as

$$\Delta y_{t} = c_{t} + \beta_{c} y_{t-1} + \sum_{i=1}^{P-1} \phi_{i} \Delta y_{t-i} + e_{t}$$

• Now the null hypothesis becomes H_0 : $\beta_c = 0$

$$ADF - test = \frac{\hat{\beta}_c}{std(\hat{\beta}_c)}$$

Example I

Log series of US quarterly GDP: 1947.I –
 2008.IV

Test for Unit Root: Augmented DF Test Null Hypothesis: there is a unit root

Type of Test: t-test
Test Statistic: -1.701
P-value: 0.4297

Coefficients:

Value Std. Error t value Pr(>|t|)
lag1 -0.0008 0.0005 -1.7006 0.0904
lag2 0.3799 0.0659 5.7637 0.0000
lag3 0.1883 0.0696 2.7047 0.0074
...
lag10 0.1784 0.0637 2.8023 0.0055
constant 0.0134 0.0045 2.9636 0.0034

Regression Diagnostics:

R-Squared 0.2877

Adjusted R-Squared 0.2564

Durbin-Watson Stat 1.9940

Residual standard error: 0.009318 on 234 degrees of freedom

Example II

• S&P 500 index: Jan 3, 1950 – Apr 16, 2008

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: t-test
Test Statistic: -1.998
P-value: 0.602

Coefficients:

	Value	Std. Error	t value	Pr(> t)
lag1	-0.0005	0.0003	-1.9977	0.0458
lag2	0.0722	0.0083	8.7374	0.0000
lag3	-0.0386	0.0083	-4.6532	0.0000
lag4	-0.0071	0.0083	-0.8548	0.3927
lag15	0.0133	0.0083	1.6122	0.1069
constant	0.0019	0.0008	2.3907	0.0168
time	0.0020	0.0011	1.8507	0.0642

Regression Diagnostics:

R-Squared 0.0081

Adjusted R-Squared 0.0070

Durbin-Watson Stat 1.9995

Residual standard error: 0.008981 on 14643 degrees of freedom

Heteroskedastic and Autocorrelated Errors

- In many applications, the relationship between two time series is of major interest.
- An obvious example is the market model in finance that relates the excess returns of an individual stock to those of a market index.
- The term structure of interest rates in another example.
- These examples lead naturally to the consideration to a linear regression in the form

$$y_t = \alpha + \beta x_t + e_t$$

where y_t and x_t are two time series and e_t denotes the error term.

- The least square method is often used to estimate this model
 - If et is a white noise, then the LS method produces consistent estimates;
- In practice, however, it is common that e_t is serially correlated.

- In this case, we have a regression model with time series errors, and the LS estimates may not be consistent.
- We investigate this issue by considering the relationship between two U.S. weekly interest rate series:
 - r_{1t}, the 1-year maturity treasury rate
 - $-r_{3t}$, the 3-year maturity treasury rate
 - Both series run from Jan 5, 1962 to April 10, 2009,
 in total 2467 observations.

- A naïve way to investigate the relationship between these two series is to use the simple model $r_{3t} = \alpha + \beta r_{1t} + e_t$.
- The estimated model is

$$r_{3t} = 0.832 + 0.930r_{1t} + e_t, \qquad \hat{\sigma}_e = 0.523$$

where the standard deviations of the two coefficients are 0.024 and 0.004, respectively.

 However, the residuals indicate that the model is seriously inadequate.

- The residual ACF is highly significant and decays slowly, showing a pattern of a unit-root non-stationary time series.
- Instead of using levels, we use changes,
 - $-c_{1t} = r_{1t} r_{1t-1},$ $-c_{3t} = r_{3t} r_{3t-1},$ and consider the linear regression $c_{3t} = \beta c_{1t} + e_t$
- The fitted model is given by $c_{3t} = 0.792c_{1t} + e_t$ the standard deviation is 0.007 and R^2 is 82.5%.

- The residual ACF again shows some significant serial correlations, but magnitudes become much smaller.
- This weak serial dependence in errors can be captured by ARMA models.
- We therefore have a linear regression model with time series errors.
- We specify a MA(1) model for the residual, and modify the model to

$$c_{3t} = \beta c_{1t} + e_t, \qquad e_t = a_t - \theta_1 a_{t-1},$$

- Now at is assumed to be a white noise.
- This model can be easily estimated using MLE.
 The fitted model is

```
c_{3t} = 0.794c_{1t} + e_t, e_t = a_t + 0.1823a_{t-1}, \hat{\sigma}_a = 0.0678, Coefficients:

ma1 c1
0.1823 0.7936
s.e. 0.0196 0.0075

sigma^2 estimated as 0.0046: log likelihood=3136.62, aic=-6267.23
```

And R^2 is about 83.1%

Summary

- 1. Fit a linear regression model and check serial correlations of the residuals.
- 2. If the residuals are unit-root nonstationary, take the first difference of both dependent and independent variables. Go to step 1.
- 3. If the residuals appear to be stationary, identify an ARMA model for the residuals.
- 4. Perform estimation.

Consistent Covariance Estimation

- As discussed before, there may exist situations in which the error term has serial correlations and/or conditional heteroskedasticity.
- But our main objective is to make inference concerning the regression coefficients.
- In situations under which the OLS estimates of the coefficients remain consistent, methods are available to provide consistent estimate of the covariance matrix.

- Two methods are widely used:
 - The heteroskedasticity consistent (HC) estimator (White, 1980)
 - The heteroskedasticity and autocorrelation consistent (HAC) estimator (Neway and West, 1987)
- Consider the regression model

$$y_t = x'_t \beta + e_t$$

The OLS estimate

$$\hat{\beta} = \left[\sum_{t=1}^{T} x_{t} x'_{t} \right]^{-1} \sum_{t=1}^{T} x_{t} y_{t}, Cov(\hat{\beta}) = \sigma_{e}^{2} \left[\sum_{t=1}^{T} x_{t} x'_{t} \right]^{-1}$$

- In the presence of serial correlations or conditional heteroskedasticity, the above covariance matrix estimate is inconsistent.
- The estimator of White (1980) is given by

$$Cov(\hat{\beta})_{HC} = \left[\sum_{t=1}^{T} x_t x_t'\right]^{-1} \left[\sum_{t=1}^{T} \hat{e}_t x_t x_t'\right]^{-1} \left[\sum_{t=1}^{T} x_t x_t'\right]^{-1}$$

The estimator of Neway and West (1987)

$$Cov(\hat{\beta})_{HAC} = \left[\sum_{t=1}^{T} x_t x_t'\right]^{-1} \hat{C}_{HAC} \left[\sum_{t=1}^{T} x_t x_t'\right]^{-1}$$

And

$$\hat{C}_{HAC} = \sum_{t=1}^{T} \hat{e}_t x_t x_t' + \sum_{j=1}^{I} w_j \sum_{t=j+1}^{T} (x_t e_t e_{t-j} x_{t-j}' + x_{t-j} e_{t-j} e_t x_t')$$

- Where l is a truncation parameter and $\mathbf{w_j}$ is a weight function.
- Neway and West (1987) suggest choosing to be the integer part of $4(T/100)^{2/9}$, and w_j can be $w_j = 1 \frac{j}{1+J}$
- This estimator essentially uses a nonparametric method.

A. Simple OLS

Coefficients:

```
Value Std. Error t value Pr(>|t|)
(Intercept) -0.0001 0.0014 -0.0757 0.9397
c1 0.7919 0.0073 107.9063 0.0000
```

Regression Diagnostics:

R-Squared 0.8253

Adjusted R-Squared 0.8253

Durbin-Watson Stat 1.6456

Residual Diagnostics:

```
Stat P-Value
Jarque-Bera 1644.6146 0.0000
Ljung-Box 230.0477 0.0000
```

• B. White (1980)

Coefficients:

```
Value Std. Error t value Pr(>|t|)
(Intercept) -0.0001 0.0014 -0.0757 0.9396
c1 0.7919 0.0163 48.4405 0.0000
```

C. Neway and West (1987)

Coefficients:

```
Value Std. Error t value Pr(>|t|)
(Intercept) -0.0001 0.0016 -0.0678 0.9459
c1 0.7919 0.0198 39.9223 0.0000
```