Introduction au Machine Learning

Présentation

- Le machine learning ???
- Comment ça marche ?
- La mise en oeuvre
- Quelques modèles

Le machine learning ???

Vocabulaire

- artificial intelligence (AI)
- machine learning (ML)
- deep learning (DL)

Définition

Le but du ML est de **prendre des décisions** ou **faire des prédictions** en se basant sur les **données**.

Les données sont primordiales.

Prendre des décisions

Faire des prédictions

Applications

- La recommandation de musique
- Le filtrage des mails
- Les feeds sur les réseaux sociaux
- Les assistants vocaux
- Les assistants type ChatGPT
- Les voitures autonomes

• ...

Les principaux types

- apprentissage supervisé
- apprentissage non-supervisé
- apprentissage par renforcement

L'apprentissage supervisé

Trouver une fonction f(X) telle que:

$$f(X) = Y$$

avec X: les exemples

avec Y: les étiquettes

L'apprentissage non-supervisé

Trouver des patterns ou des structures cachés dans des données.

Image

L'apprentissage par renforcement

Faire évoluer un agent dans un environnement afin qu'il apprenne à réaliser des actions qui le récompensent.

Comment ça marche?

L'entrainement d'un modèle

- 0. On initialise un modèle
- 1. On utilise le modèle pour faire une prédiction
- 2. On compare la prédiction à ce qu'on attend
- 3. On corrige le modèle
- 4. On recommence à partir de 1 jusqu'à être satisfait

Définir un critère d'évaluation de l'erreur

- Distance L1, L2
- Précision, rappel, score F1
- Distance de Levenshtein
- •

Éviter le sous-apprentissage et le surapprentissage

Un modèle de ML doit être capable d'estimer et de généraliser.

La mise en oeuvre

Cadrer le problème

- identifier le type du problème
- poser des hypothèses sur les données
- choisir un critère d'évaluation
- choisir un modèle
- choisir un algorithme pour l'apprentissage
- choisir un algorithme pour l'inférence

Quelques modèles

Les arbres de décision

Les forêts aléatoires

Un ensemble d'arbres de décision

Les réseaux de neurones

NEURAL NETWORK STRUCTURE INPUT HIDDEN OUTPUT LAYER LAYER LAYER INPUT 1 **INPUT 2 INPUT 3** OUTPUT **INPUT 4 INPUT 5** BIAS **ACTIVATE FUNCTION** OUTPUT INPUTS X30-WEIGHTS

Les KNN

Conclusion

Le Machine Learning vise à faire des prédictions ou prendre des décisions en se basant sur des données.

II faut:

- identifier le type du problème
- comprendre les données

Ressources pour aller plus loin:

- https://fr.wikipedia.org/wiki/Apprentissage_automatique
- https://scikit-learn.org/stable/user_guide.html
- cours en accès libre :
 - https://www.kaggle.com/learn
 - https://www.coursera.org/specializations/machinelearning-introduction
 - https://openlearninglibrary.mit.edu/courses/coursev1:MITx+6.036+1T2019/courseware/Week1/intro_ml