Appendices: Covariate tests

Table A1. Covariate tests for the July-September catch (S_t) . M is the base model with only prior season October-March catch (N_{t-1}) as the covariate. To the base model, the environmental covariates are added. ns-SST is nearshore (0-80km) and r-SST is regional (0-160km) SST. Similarly, ns-Chl is nearshore chlorophyll. The models are nested sets, e.g. 1, 2a, 3a and 1, 2b, 3b.

Model	Resid.	Adj. R^2	RMSE	AICc	LOOCV RMSE	LOOCV MdAE
catch only models 1983-2015 data null model: $ln(S_t) = ln(S_{t-1}) + \epsilon_t$ base (M) 1. $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	33 30	22	1.596 1.204	126.63 115.22	1.596 1.313	0.559 0.692
Precipitation						
$V_t =$ Jun-Jul Precipitation - satellite (S1) 2a. $ln(S_t) = M + \beta V_t$ 3a. $ln(S_t) = M + s(V_t)$	29.1 27.9	20 21	1.199 1.163	117.7 119.09	1.34 1.322	0.731 0.656‡
$V_t =$ Jun-Jul Precipitation - land gauges (S1) 2a. $ln(S_t) = M + \beta V_t$ 3a. $ln(S_t) = M + s(V_t)$	29.1 28	25 30	1.156 1.1	115.26 115.26	1.308 1.327	0.564‡‡ 0.62‡‡
$V_t =$ Apr-May Precipitation - satellite (S2) 2a. $ln(S_t) = M + \beta V_t$ 3a. $ln(S_t) = M + s(V_t)$	29.1 27.7	24 22	1.166 1.152	115.82 119.28	1.312 1.335	0.666 0.638‡
$V_t =$ Apr-May Precipitation - land gauges (S2) 2a. $ln(S_t) =$ M + βV_t 3a. $ln(S_t) =$ M + $s(V_t)$	29.1 27.2	27 25	1.144 1.12	114.56 118.98	1.329 1.37	0.78 0.642‡
Sea surface temperature						
$V_t = \text{Mar-May r-SST (S5)}$ 2a. $ln(S_t) = M + \beta V_t$ 3a. $ln(S_t) = M + s(V_t)$ 2b. $ln(S_t) = M + \beta V_{t-1}$ 3b. $ln(S_t) = M + s(V_{t-1})$	29 27.7 29.1 27.7	21 25 21 25	1.188 1.133 1.189 1.133	117.12 118.12 117.11 118.07	1.335 1.316 1.318 1.283	0.82 0.829 0.658 0.679
$V_t = \text{Oct-Dec ns-SST (L1)}$ 2a. $ln(S_t) = M + \beta V_{t-1}$ 3a. $ln(S_t) = M + s(V_{t-1})$	29.1 28.1	19 19	1.203 1.183	117.94 119.79	1.343 1.357	0.826 0.671
Upwelling						
$V_t = \text{Jun-Sep SST-derived UPW (L2)}$ 2a. $ln(S_t) = M + \beta V_t$	29	29	1.13	113.83	1.275	0.606‡‡

Model	Resid.	Adj. R^2	RMSE	AICc	LOOCV RMSE	LOOCV MdAE
$3a. ln(S_t) = M + s(V_t)$	27.5	28	1.105	116.92	1.306	0.55‡‡‡
2b. $ln(S_t) = M + \beta V_{t-1}$	29.1	21	1.189	117.12	1.366	0.67
3b. $ln(S_t) = M + s(V_{t-1})$	27.2	27	1.108	118.33	1.407	0.726
$V_t = \text{Jun-Sep ns-SST (L2)}$						
$2a. ln(S_t) = M + \beta V_t$	29.1	28	1.139	114.33	1.292	$0.585 \ddagger \ddagger$
$3a. ln(S_t) = M + s(V_t)$	27.9	35	1.055	$112.65\dagger$	$1.238 \ddagger$	0.641‡
$2b. \ ln(S_t) = M + \beta V_{t-1}$	29.1	21	1.187	117	1.356	0.631‡
3b. $ln(S_t) = M + s(V_{t-1})$	27.5	19	1.174	120.9	1.435	0.653‡
$V_t = \text{Jun-Sep Bakun-UPW (L2)}$				44400		0.00=1
$2a. \ln(S_t) = M + \beta V_t$	29.1	27	1.14	114.39	1.391	0.637‡
3a. $ln(S_t) = M + s(V_t)$	27.6	43	0.984	109.12††	1.354	0.733
2b. $ln(S_t) = M + \beta V_{t-1}$ 3b. $ln(S_t) = M + s(V_{t-1})$	$29.1 \\ 27.7$	$\frac{22}{22}$	$1.18 \\ 1.157$	$116.62 \\ 119.55$	$1.432 \\ 1.622$	$0.673 \\ 0.668$
$so. \ tn(S_t) = M + s(V_{t-1})$	21.1	22	1.137	119.55	1.022	0.008
Ocean climate						
$V_t = 2.5$ -year ave r-SST (A1)						
$2a. ln(S_t) = M + \beta V_t$	29.1	32	1.103	$112.17\dagger$	1.286	$0.63 \ddagger$
$3a. ln(S_t) = M + s(V_t)$	27.8	37	1.037	111.84†	1.288	$0.49\ddagger\ddagger$
$V_t = \text{ONI (A2)}$						
$2a. ln(S_t) = M + \beta V_{t-1}$	29.1	21	1.193	117.36	1.355	0.707
3a. $ln(S_t) = M + s(V_{t-1})$	27.4	20	1.164	120.73	1.358	0.606‡‡
$V_t = \text{Sep-Nov DMI (A3)}$						
$2a. ln(S_t) = M + \beta V_{t-1}$	29.1	19	1.204	117.87	1.328	0.733
3a. $ln(S_t) = M + s(V_{t-1})$	27	16	1.184	123.21	1.374	0.811
$V_t = \text{DMI 3-yr ave (A3)}$						
$2a. ln(S_t) = M + \beta V_t$	29.1	30	1.12	$113.06\dagger$	1.343	0.521‡‡‡
$3a. ln(S_t) = M + s(V_t)$	28.2	36	1.052	111.53†	1.342	0.59‡‡
catch only models 1998-2015 data null model: $ln(S_t) = ln(S_{t-1}) + \epsilon_t$	18		0.616	35.89	0.616	0.425
base (M) 1. $ln(S_t) = \alpha + p(ln(N_{t-1})) + \epsilon_t$	15	16	0.364	25.81	0.010 0.478	0.425 0.228
	10	10	0.001	20.01	0.110	0.220
Chlorophyll						
$V_t = \text{Jul-Sep ns-CHL (L3)}$						
$2a. ln(S_t) = M + \beta V_t$	14	12	0.361	29.36	0.536	0.24
3a. $ln(S_t) = M + p(V_t)$	13	16	0.339	31.75	0.763	0.274
2b. $ln(S_t) = M + \beta V_{t-1}$	14	10	0.364	29.73	0.489	0.251
3b. $ln(S_t) = M + p(V_{t-1})$	13	3	0.364	34.35	0.572	0.299
$V_t = \text{Oct-Dec ns-CHL (L3)}$	1.4	11	0.969	90 C	0.514	0.00
2a. $ln(S_t) = M + \beta V_{t-1}$ 3a. $ln(S_t) = M + p(V_{t-1})$	14 13	$\begin{array}{c} 11 \\ 23 \end{array}$	$0.363 \\ 0.325$	29.6	0.514	0.26
$a. \ m(s_t) = w_t + p(v_{t-1})$	19	∠3	0.323	30.27	0.527	0.242

Notes: The nested F-tests are given in Supporting Information. LOOCV = Leave one out cross-validation. RMSE = root mean square error. MdAE = median absolute error. AICc = Akaike Information Criterion corrected for small sample size. \dagger and $\dagger\dagger$ = AICc greater than 2 and greater than 5 below model M (base catch model). \ddagger , $\ddagger\ddagger$, and $\ddagger\ddagger$ = LOOCV RMSE 5%, 10% and 20% below model M, respectively. t indicates current season (Jul-Jun) and t-1 is prior season. Thus a Jan-Mar covariate with t-1 would be in the same calendar year as the Jul-Sep catch, though in a prior fishing season. With the exception that for covariates that are calendar year (Jan-Dec) or multiyear, t is the current calendar year.

Table A2. Covariate tests for the October-March catch (N_t) . M is the base model with prior season October-March catch (N_{t-1}) and July-September catch two seasons prior (S_{t-2}) as the covariates. To the base model, the environmental covariates are added. ns-SST is nearshore (0-80km) and r-SST is regional (0-160km) SST. Similarly, ns-Chl is nearshore chlorophyll. The models are nested sets, e.g. 1, 2a, 3a and 1, 2b, 3b.

Model	Resid.	Adj. R^2	RMSE	AICc	LOOCV RMSE	LOOCV MdAE
catch only models 1983-2014 data						
null model: $ln(N_t) = ln(N_{t-1}) + \epsilon_t$	32		0.999	92.86	0.999	0.256
base (M) 1. $ln(N_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	29.1	46	0.824	87.74	0.955	0.323
Precipitation						
$V_t = \text{Jun-Jul Precipitation - satellite (S1)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	44	0.824	90.54	0.99	0.353
$3a. ln(N_t) = M + s(V_t)$	26.9	46	0.791	91.48	1.037	0.354
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	45	0.819	90.12	0.989	0.315
3b. $ln(N_t) = M + s(V_{t-1})$	26.8	44	0.804	92.81	1.021	0.337
$V_t = \text{Jun-Jul Precipitation - land gauges (S1)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	54	0.745	84.14†	0.964	0.351
3a. $ln(N_t) = M + s(V_t)$	26.9	60	0.685	82.15††	$0.906 \ddagger$	0.246‡‡‡
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	45	0.815	89.8	1.01	0.339
3b. $ln(N_t) = M + s(V_{t-1})$	27	43	0.814	93.03	1.05	0.356
$V_t = \text{Apr-May Precipitation - satellite (S2)}$						
$v_t = \text{Apr May Treexplosion}$ Satisfact (S2) 2a. $ln(N_t) = M + \beta V_t$	28.1	44	0.823	90.49	0.968	0.36
$3a. \ln(N_t) = M + \beta V_t$	26.1 26.8	42	0.819	94.15	0.996	0.457
2b. $ln(N_t) = M + \beta(V_t)$	28.1	45	0.82	90.2	0.958	0.374
3b. $ln(N_t) = M + s(V_{t-1})$	26.8	45	0.794	92.14	0.954	0.381
$V_t = \text{Apr-May Precipitation - land gauges (S2)}$						
$v_t = 150$ May Free prototon Find gauges (82) 2a. $ln(N_t) = M + \beta V_t$	28.1	47	0.799	88.49	0.913	0.368
$3a. \ ln(N_t) = M + s(V_t)$	26.1 26.2	46	0.781	92.98	0.93	0.389
2b. $ln(N_t) = M + \beta(V_t)$	28.1	44	0.824	90.51	0.965	0.314
3b. $ln(N_t) = M + s(V_{t-1})$	26.1	42	0.808	95.37	0.994	0.359
Sea surface temperature						
$V_t = \text{Mar-May r-SST (S5)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	46	0.805	89.1	0.961	0.34
3a. $ln(N_t) = M + \beta V_t$	26.7	47	0.784	91.39	0.961	0.423
$2b. ln(N_t) = M + \beta V_{t-1}$	28.1	50	0.778	86.86	0.941	0.475
3b. $ln(N_t) = M + s(V_{t-1})$	26.6	51	0.751	89.12	0.928	0.398
$V_t = \text{Oct-Dec ns-SST (L1)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	45	0.817	89.96	0.981	0.416
$3a. ln(N_t) = M + s(V_t)$	27.1	44	0.81	92.42	0.99	0.434
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	46	0.806	89.15	0.964	0.289‡‡
3b. $ln(N_t) = M + s(V_{t-1})$	27.1	45	0.8	91.62	1.019	0.324
√ · · · · · · · · · · · · · · · · · · ·						

Upwelling

Model	Resid. df	$\begin{array}{c} \text{Adj.} \\ R^2 \end{array}$	RMSE	AICc	LOOCV RMSE	LOOCV MdAE
$\overline{V_t} = \text{Jun-Sep SST-derived UPW (L2)}$						
$2a. \ln(N_t) = M + \beta V_t$	28.1	55	0.741	83.77†	0.913	0.447
$3a. \ln(N_t) = M + s(V_t)$	26.2	57	0.699	86	1.017	0.456
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	44	0.824	90.53	1.007	0.322
3b. $ln(N_t) = M + s(V_{t-1})$	26.1	47	0.772	92.41	1.084	0.35
$V_t = \text{Jun-Sep ns-SST (L2)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	52	0.76	$85.38\dagger$	0.914	0.432
$3a. ln(N_t) = M + s(V_t)$	26.6	52	0.742	88.38	0.965	0.519
$2b. ln(N_t) = M + \beta V_{t-1}$	28.1	46	0.812	89.55	0.97	0.333
3b. $ln(N_t) = M + s(V_{t-1})$	26.6	44	0.798	93.16	0.995	0.307‡
$V_t = \text{Jun-Sep Bakun-UPW (L2)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	47	0.805	89.03	0.948	0.37
$3a. ln(N_t) = M + s(V_t)$	26.6	48	0.775	91.12	0.945	0.309
$2b. ln(N_t) = M + \beta V_{t-1}$	28.1	45	0.817	89.96	0.951	0.342
3b. $ln(N_t) = M + s(V_{t-1})$	26.7	45	0.794	92.29	0.965	0.392
Ocean climate						
$V_t = 2.5$ -year ave r-SST (A1)						
2a. $ln(N_t) = M + \beta V_t$	28.1	57	0.726	82.37††	$0.844\ddagger\ddagger$	0.324
$3a. \ln(N_t) = M + s(V_t)$	26.9	65	0.642	78.08††	0.758‡‡‡	0.351
$V_t = \text{ONI (A2)}$						
2a. $ln(N_t) = M + \beta V_t$	28.1	49	0.79	87.82	0.916	0.453
$3a. \ln(N_t) = M + s(V_t)$	27.5	48	0.785	89.25	0.929	0.44
$V_t = \text{Sep-Nov DMI (A3)}$						
2a. $ln(N_t) = M + \beta V_t$	28.1	49	0.787	87.66	0.978	0.425
$3a. \ln(N_t) = M + s(V_t)$	25.8	49	0.754	92.23	1.119	0.493
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	45	0.819	90.09	0.95	0.336
3b. $ln(N_t) = M + s(V_{t-1})$	26	44	0.791	94.41	0.947	0.339
$V_t = \text{DMI 3-yr ave (A3)}$						
2a. $ln(N_t) = M + \beta V_t$	28.1	56	0.731	82.78†	$0.844\ddagger\ddagger$	0.345
$3a. \ ln(N_t) = M + s(V_t)$	27.2	60	0.688	81.51††	0.818‡‡	0.362
catch only models 1998-2014 data						
null model: $ln(N_t) = ln(N_{t-1}) + \epsilon_t$	17		0.432	21.96	0.432	0.133
base (M) 1. $ln(N_t) = \alpha + p(ln(N_{t-1})) + \epsilon_t$	14	27	0.334	22.28	0.422	0.369
Chlorophyll						
$V_t = \text{Jul-Sep ns-CHL (L3)}$						
$2a. \ln(N_t) = M + \beta V_t$	13	24	0.327	25.71	0.441	$0.344 \ddagger$
$3a. \ln(N_t) = M + p(V_t)$	12	19	0.325	30.47	0.496	0.333^{+}_{-}
2b. $ln(N_t) = M + \beta V_{t-1}$	13	31	0.311	23.95	0.418	0.348^{+}_{2}
3b. $ln(N_t) = M + p(V_{t-1})$	12	26	0.311	28.89	1.616	0.362

Model	Resid. df	Adj. R^2	RMSE	AICc	LOOCV RMSE	LOOCV MdAE
$V_t = \text{Oct-Dec ns-CHL (L3)}$						
2a. $ln(N_t) = M + \beta V_t$	13	24	0.327	25.71	0.445	0.336‡
$3a. \ln(N_t) = M + p(V_t)$	12	35	0.29	26.6	$0.391\ddagger$	$0.217 \ddagger \ddagger$
2b. $ln(N_t) = M + \beta V_{t-1}$	13	45	0.277	$20.11\dagger$	$0.364\ddagger\ddagger$	$0.235 \ddagger \ddagger \ddagger$
3b. $ln(N_t) = M + p(V_{t-1})$	12	41	0.277	25.06	0.384‡	0.278‡‡‡

Notes: The nested F-tests are given in Supporting Information. LOOCV = Leave one out cross-validation. RMSE = root mean square error. MdAE = median absolute error. AICc = Akaike Information Criterion corrected for small sample size. \dagger and $\dagger\dagger$ = AICc greater than 2 and greater than 5 below model M (base catch model). \ddagger , $\ddagger\ddagger$, and $\ddagger\ddagger$ = LOOCV RMSE 5%, 10% and 20% below model M, respectively. t indicates current season (Jul-Jun) and t-1 is prior season. Thus a Jan-Mar covariate with t-1 would be in the same calendar year as the Jul-Sep catch, though in a prior fishing season. With the exception that for covariates that are calendar year (Jan-Dec) or multiyear, t is the current calendar year.