Rules for Assigning Oxidation Numbers

Exercise: Assign oxidation numbers to the atoms in the following species:

HCI	LiH	HClO ₃	H ₃ PO ₄	H ₂ O
H → +1	Li → +1	H → +1	H → +1	H → +1
Cl → -1	H → -1	Cl → +5	P → +7	O → -2
11.0		O → -2	O → -2	
H ₂ O ₂	CaO	CaF ₂	NO ₃ -	S ₂ O ₃ - ²
H → +1	Ca → +2	Ca → +2	N → +5	$S \rightarrow +2$
0 → -1	0 → -2	F → -1	$0 \rightarrow -2$	$0 \rightarrow -2$
Cl-	ClO-	ClO ₂ -	ClO ₃ -	ClO ₄ -
Cl → -1	Cl → +1	Cl → +3	Cl → +5	Cl → +7
	0 → -2	0 → -2	O → -2	O → -2

Redox Half-Reactions

Assignment

(1) Al+3 + 3e-
$$\rightarrow$$
 Al reduction
O-2 \rightarrow 2e- + O₂ oxidation
Al+3

(2)
$$2HBr \rightarrow H_2 + Br_2$$

 $2H+ + 2e- \rightarrow H_2$ reduction
 $2Br- \rightarrow 2e- + Br_2$ oxidation
 $2H+ 2Br- \rightarrow H_2 + Br_2$

(3)
$$NaBr_2 + H_2O \rightarrow NaOH + 2HBr$$

 $Na+2 + e- \rightarrow Na+$ reduction
 $2Br- \rightarrow e- + 2Br$ oxidation

Balancing Redox Equations

- 1. $3\text{CuO} + 2\text{NH}_3 \rightarrow 3\text{Cu} + \text{N}_2 + 3\text{H}_2\text{O}$
- 2. $10HNO_3 + I_2 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O$
- 3. $3H_2S + 2HNO_3 \rightarrow 3S + 2NO + 4H_2O$
- 4. $2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5Fe_2(SO_4)_3$
- 5. $K_2Cr_2O_7 + 6HI + 8HCI \rightarrow 2KCI + 2CrCl_3 + 3I_2 + 7H_2O$
- 6. $8AI + 3NaNO_3 + 5NaOH + 18H_2O \rightarrow 3NH_3 + 8NaAl(OH)_4$
- 7. $3\text{CuS} + 8\text{HNO}_3 \rightarrow 3\text{Cu(NO}_3)_2 + 3\text{S} + 2\text{NO} + 4\text{H}_2\text{O}$
- 8. $2MnSO_4 + 5PbO_2 + 3H_2SO_4 \rightarrow 2HMnO_4 + 5PbSO_4 2H_2O_4$
- 9. $3P_4 + 20HNO_3 + 8H_2O \rightarrow 12H_3PO_4 + 20NO$
- 10. $2KMnO_4 + 5H_2O_2 + 6HCl \rightarrow 2MnCl_2 + 2KCl + 5O_2 + 8H_2O$

Extra Balancing Equations: Redox

- 1. $5\text{Co} + 2\text{MnO}_4^{-1} + 16\text{H}^+ \rightarrow 5\text{Co}^{+2} + 2\text{Mn}^{+2} + 8\text{H}_2\text{O}$
- 2. $Cl_2 + 2OH^- \rightarrow ClO^- + Cl^- + H_2O$
- 3. $5I^{-} + IO_3^{-} + 6H^{+} \rightarrow 3I_2 + 3H_2O$
- 4. $CrO_7^{-2} + 3SO_3^{-2} + 8H^+ \rightarrow 2Cr^{+3} + 3SO_4^{-2} + 4H_2O$
- 5. $I_2 + 5CI_2 + 6H_2O \rightarrow 2IO_3^- + 10CI^- + 12H^+$
- 6. $14H^{+} + 3S^{-2} + Cr_{2}O7^{-2} \rightarrow 3S + 2Cr^{+3} + 7H_{2}O$
- 7. $S^{-2} + 6NO_3^- + 8H^+ \rightarrow SO_2 + 6NO_2 + 4H_2O$
- 8. $2H_2O_2 \rightarrow O_2 + 2H_2O$
- 9. $3\text{Fe}_3\text{O}_4 + 8\text{Al} \rightarrow 9\text{Fe} + 4\text{Al}_2\text{O}_3$
- 10. $Cu + 2NO_3^- + 4H^+ \rightarrow Cu^{+2} + 2NO_2^- + 2H_2O$
- 11. $5\text{Fe}^{+2} + \text{MnO}_4^- + 8\text{H}^+ \rightarrow 5\text{Fe}^{+3} + \text{Mn}^{+2} + 4\text{H}_2\text{O}$
- 12. $H_2S + 2NO_3^- + 2H^+ \rightarrow S + 2NO_2 + 2H_2O$

13.
$$Cl_2 + SO_2 + 2H_2O \rightarrow SO_4^{-2} + 2C\Gamma + 4H^+$$

14.
$$Cr_2O_7^{-2} + 6\Gamma + 14H^+ \rightarrow 2Cr^{+3} + 3I_2 + 7H_2O$$

15.
$$2H^+ + H_2O_2 + 2Cl^- \rightarrow Cl_2 + 2H_2O$$

16.
$$4H^+ + MnO_2 + 2Fe^{+2} \rightarrow Mn^{+2} + 2Fe^{+3} + 2H_2O$$

17.
$$2NO_3^- + 3Sn^{+2} + 8H^+ \rightarrow 2NO + 3Sn^{+4} + 4H_2O$$

Others:

1.
$$5U^{+4} + 2MnO_4^{-1} + 2H_2O \rightarrow 2Mn^{+2} + 5UO_2^{+2} + 4H^+$$

2.
$$SeO_3^{-2} + 4I^{-} + 6H^{+} \rightarrow Se + 2I_2 + 3H_2O$$

3.
$$4Zn + NO_3^- + 5H_2O \rightarrow 4ZnO_2^{-2} + NH_3 + 7H^+$$

4.
$$Pt + 6NO_3^- + 6Cl^- + 12H^+ \rightarrow PtCl_6 + 6NO_2 + 6H_2O$$

Predict whether the following are likely to react. Write equations only where you predict a reaction will be likely Part A

1. metal + acid
$$\rightarrow$$
 hydrogen $Zn + 2H^+ \leftrightarrow Zn^{+2} + H_{2(g)}$

2.
$$Cu, Na^+, I^-$$

 $Cu \rightarrow Cu^+ + e^ E^\circ = -0.52$
 $Cu \rightarrow Cu^{+2} + 2e^ E^\circ = -0.34$
 $2I \rightarrow I_2 + 2e^ E^\circ = -0.54$
 $Na^+ + e^- \rightarrow Na$ $E^\circ = -2.71$

All -ve therefore no reaction

3. Ni, Cl

$$Ni \rightarrow Ni^{+3} + 3e^{-}$$
 rare! (not listed)
ox $Ni \rightarrow Ni^{+2} + 2e^{-}$ $E^{\circ} = +0.24$
red $Cl_2 + 2e^{-} \rightarrow 2Cl^{-}$ $E^{\circ} = +1.36$

+ve E°

$$Ni + Cl_2 \rightarrow Ni^{+2} + 2Cl^{-}$$
 $E^{\circ} = 1.60$

 K_{sp} of $Mg(NO_3)_2$ is $5.6*10^{-12}$ so this ppt will form

$$Mg(NO_3)_2 + NaOH \leftrightarrow Mg(OH)_{2(s)} + Na^+ + 2NO_3^-$$

K_{sp} of BaSO₄ is 1.1*10⁻¹⁰ so this ppt will form

$$Ba(NO_3)_2 + K_2SO_4 \rightarrow BaSO_{4(s)} + 2K^+ + 2NO_3^-$$

6.
$$Cl_2$$
, NO_3^- , Ag^+
 $red Cl_2 + 2e^- \rightarrow 2Cl^ E^\circ = +1.36$
Acid red $NO_3^- + 3e^- \rightarrow NO$ $E^\circ = +0.96$
Acid red $NO_3^- + 2e^- \rightarrow HNO_2E^\circ = +0.94$
 $red Ag^+ + e^- \rightarrow Ag$ $E^\circ =$

All Red reactions therefore no reaction occurs

Part B

1.
$$Fe^{+2}$$
, CI, Cu^{+1}

1.
$$Fe^{+2}$$
, Cl, Cu^{+1}
1) ox $Fe^{+2} \rightarrow Fe^{+3} + e^{-}E^{\circ} = -0.77$

2) red Fe⁺² + 2e⁻
$$\rightarrow$$
 Fe_(s) $E^{\circ} = -0.44$

3) ox
$$2Cl^{-} \rightarrow Cl_2 + 2e^{-}$$
 $E^{\circ} = -1.36$

4) red
$$Cu^{+1} + e^{-} \rightarrow Cu$$
 $E^{\circ} = +0.52$

4) red
$$Cu^{+1} + e^{-} \rightarrow Cu$$
 $E^{\circ} = +0.52$
5) ox $Cu^{+1} \rightarrow Cu^{+2} + e^{-}$ $E^{\circ} = -0.15$

1,2 (2 irons
$$\rightarrow$$
 NR)
2,3 \rightarrow E° is neg. \rightarrow NR
4,1 \rightarrow E° is neg. \rightarrow NR
4,3 \rightarrow E° is neg. \rightarrow NR

$$2,3 \rightarrow E^{\circ}$$
 is neg. \rightarrow NR $4,3 \rightarrow E^{\circ}$ is neg. \rightarrow NR $2,5 \rightarrow E^{\circ}$ is neg. \rightarrow NR $4,5 \rightarrow 2$ coppers \rightarrow NR

Therefore no reaction occurs

1) red
$$K^+ + e^- \rightarrow K$$
 $E^{\circ} = 2.92$

2) red
$$Cr_2O_7^{-2} + 14H^+ + 6e^- \rightarrow 7H_2O + 2Cr^{+3}$$
 $E^- = +1.33$

3) red Na⁺ + e⁻
$$\rightarrow$$
 Na E° =-2.71

4) ox
$$H_2SO_3^{-2} \rightarrow SO_4^{-2} + 2e^- + 4H^+$$
 $E^{\circ} = -0.17$ acid

$$1,4 \rightarrow E^{\circ}$$
 is neg. $\rightarrow NR$

$$2.4 \rightarrow E^{\circ} \text{ is pos.} \rightarrow r*n$$

$$3,4 \rightarrow E^{\circ}$$
 is neg. $\rightarrow NR$

$$8H^{+}Cr_{2}O_{7}^{-2} + 3SO_{3}^{-2} \rightarrow 3SO_{4}^{-2} + 2Cr^{+3} + 4H_{2}O_{3}^{-2}$$

3.
$$Zn^{+2}$$
, SO_4^{-2} , NH_4^+ , CO_3^{-2}

ZnCO₃ has $K_{sp} = 1.2*10^{-10}$ so a ppt will form

4. Again AgCl
$$(k_{sp}=1.86*10^{-10})$$
 will form

1) red
$$K^+ + e^- \to K$$
 $E^{\circ} = -2.92$

2) red
$$2H^+ + 2e^- \rightarrow H_2$$
 $E^\circ = 0$

3) ox
$$2Cl^{-} \rightarrow Cl_2 + 2e^{-}$$
 $E^{\circ} = -1.36$

4) red MnO₄ +5e
$$\rightarrow$$
 Mn⁺² E°=+1.52

$$3,1 \rightarrow E^{\circ}$$
 is neg. $\rightarrow NR$

$$3,2 \rightarrow E^{\circ}$$
 is neg. $\rightarrow NR$

$$3,4 \rightarrow E^{\circ}$$
 is pos. $\rightarrow r*n$

$$MnO_4^- + Cl^- \rightarrow Mn^{+2} + Cl_2$$

Balance

$$5e^{-} + 8H^{+} + MnO_{4}^{-} \rightarrow Mn^{+2} + 4H_{2}O$$

$$2Cl \rightarrow Cl_2 + 2e^{-}$$

$$16H^{+} + 2MnO_{4}^{-} + 10Cl^{-} \rightarrow 5Cl_{2} + 2Mn^{+2} + 8H_{2}O$$

6. Cu, Fe⁺³, Cl⁻¹
1) ox Cu
$$\rightarrow$$
 Cu⁺ + e⁻¹
2) ox Cu \rightarrow Cu⁺² + 2e⁻¹
3) red Fe⁺³ + e⁻¹ \rightarrow Fe
4) red Fe⁺³ + 3e⁻¹ \rightarrow Fe
5) ox 2Cl⁻¹ \rightarrow Cl₂ + 2e⁻¹

$$E^{\circ} = -0.52$$

$$E^{\circ} = -0.34$$

$$E^{\circ} = +0.77$$

$$E^{\circ} = \text{successive steps } E^{\circ} = +0.33$$

$$E^{\circ} = -1.36$$
3,1 \rightarrow is pos. \rightarrow r*n $E^{\circ} = 0.25$
3,2 \rightarrow is pos. \rightarrow r*n $E^{\circ} = 0.43$
3,5 \rightarrow is neg. \rightarrow NR

The E° is like a K_{eq} and determines how far a reaction proceeds thus E° =0.43 is the dominant reaction.

$$2Fe^{+3} + Cu \rightarrow Cu^{+2} + 2Fe^{+2}$$

$$2,1 \rightarrow \text{is neg.} \rightarrow \text{NR}$$
 $3,1 \rightarrow \text{is neg.} \rightarrow \text{NR}$ $2,4 \rightarrow \text{is neg.} \rightarrow \text{NR}$ $3,4 \rightarrow \text{is neg.} \rightarrow \text{NR}$ $2,5 \rightarrow \text{is neg.} \rightarrow \text{NR}$ $3,5 \rightarrow \text{is neg.} \rightarrow \text{NR}$

No reaction

8.
$$Fe^{+2}$$
, SO_4^{-2} , K^+ , MnO_4^{-1}
1) $red K^+ + e^- \rightarrow K$ $E^\circ = -2.92$
2) $red MnO_4^- + 5e^- \rightarrow Mn^{+2}$ $E^\circ = +1.52$
3) $ox SO_4^{-2} \rightarrow S_2O_8^{-2} + 2e^ E^\circ = -2.05$
4) $red SO_4^{-2} + 2e^- \rightarrow H_2SO_3$ $E^\circ = +0.17$
5) $red Fe^{+2} + 2e^- \rightarrow Fe_{(s)}$ $E^\circ = -0.44$
6) $ox Fe^{+2} \rightarrow Fe^{+3} + e^ E^\circ = -0.77$
3,1 \rightarrow is $neg \rightarrow NR$ $6,1 \rightarrow$ is $neg \rightarrow NR$
3,2 \rightarrow is $neg \rightarrow NR$ $6,2 \rightarrow$ is $pos \rightarrow r^*n E^\circ = +0.75$
3,4 \rightarrow is $neg \rightarrow NR$ $6,3 \rightarrow$ is $neg \rightarrow NR$
3,5 \rightarrow is $neg \rightarrow NR$ $6,5 \rightarrow$ is $neg \rightarrow NR$
Fe⁺² + $MnO_4^- \rightarrow Mn^{+2} + Fe^{+3}$
 $5e^- + 8H^+ + MnO_4^- \rightarrow Mn^{+2} + 4H_2O$
 $Fe^{+2} \rightarrow Fe^{+3} + e^-$
 $8H^+ + MnO_4^- + 5Fe^{+2} \rightarrow Mn^{+2} + 5Fe^{+3} + 4H_2O$