Examples of how to use shortex.sty

Created by Trevor Campbell, Jonathan Huggins, and Jeff Negrea Updated July 13, 2021

1 Brackets and bracket-like functions

You can specify a bracket size using $-1, \ldots, 4$, where -1 uses \left and \right, 0 uses nothing, and positive numbers use increasingly large fixed sizes. The default behavior is 0 when in text mode and -1 when in display mode.

Description	Example	Text style	Display style
Regular brackets (parentheses)	\rbra{\frac{x}{y}}	$\left(\frac{x}{y}\right)$	$\left(\frac{x}{y}\right)$
Curly brackets	\cbra[2]{\frac{x}{y}}	$\left\{\frac{x}{y}\right\}$	$\left\{\frac{x}{y}\right\}$
Square brackets	\sbra[4]{\frac{x}{y}}	$\left[rac{x}{y} ight]$	$\left[rac{x}{y} ight]$

Many other bracket-like, semantic commands are also available:

Description	Example	Text style	Display style
Absolute value	\abs{\frac{x}{y}}	$\left \frac{x}{y}\right $	$\frac{\left \frac{x}{y}\right }{\left \frac{x}{y}\right }$
Set	$\ \left\{ \frac{x}{y}, \frac{y}{z} \right\}$	$\left\{\frac{x}{y}, \frac{y}{z}\right\}$	$\left\{\frac{x}{y}, \frac{y}{z}\right\}$
Floor	\floor{\frac{x}{y}}	$\lfloor \frac{x}{y} \rfloor$	$\left\lfloor \frac{x}{y} \right\rfloor$
Ceiling	$\c \frac{x}{y}$	$\lceil \frac{x}{y} \rceil$	$\left\lceil \frac{x}{y} \right\rceil$
Norm	\norm{\frac{x}{y}}	$\ \frac{x}{y}\ $	$\left\ \frac{x}{y} \right\ $
Inner product	$\label{linear} $$ \displaystyle \lim_{x}{y}}{\frac{y}{z}}$	$\langle \frac{x}{y}, \frac{y}{z} \rangle$	$\left\langle \frac{x}{y}, \ \frac{y}{z} \right\rangle$
Cardinality	\card{\whA}	$\ \widehat{A}\ $	$\left\ \widehat{A} \right\ $

The norm and inner product commands also have versions with a subscript argument:

Description	Example	Text style	Display style
Norm with subscript	$\label{local_state} $$ \operatorname{x}{y}}{2}$	$\ \frac{x}{y}\ _2$	$\left\ \frac{x}{y} \right\ _2$
Inner product with subscript	$\label{linear} $$ \displaystyle \frac{x}{y}}{\frac{y}}{2}$	$\langle \frac{x}{y}, \frac{y}{z} \rangle_2$	$\left\langle \frac{x}{y}, \frac{y}{z} \right\rangle_2$

L_p Spaces and Operators

Description	Example	Text style	Display style
L_p space	\Lp{2}	L_2	L_2
L_p space for specified measure	\Lparg{2}{\hmu}	$L_2(\hat{\mu})$	$L_{2}\left(\hat{\mu}\right)$
	\Lparg[1]{2}{\hmu}	$L_2(\hat{\mu})$	$L_2(\hat{\mu})$
L_p norm	\Lpnorm{\hGamma}{2}	$\ \hat{\Gamma}\ _{L_2}$	$\left\ \hat{\Gamma} ight\ _{L_2}$
	\Lpnorm[-1]{\hGamma}{2}	$\left\ \hat{\Gamma} ight\ _{L_2}$	$\left\ \hat{\Gamma} \right\ _{L_2}$
L_p norm for specified measure	\Lpnormarg{\hGamma}{2}{\hmu}	$\ \hat{\Gamma}\ _{L_2(\hat{\mu})}$	$\left\ \hat{\Gamma} \right\ _{L_2(\hat{\mu})}$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\left\ \hat{\Gamma} \right\ _{L_2(\hat{\mu})}$	$\ \hat{\Gamma}\ _{L_2(\hat{\mu})}$
L_p inner product	\Lpinner{\hGamma}{\Gamma}{2}	$\langle \hat{\Gamma}, \; \Gamma \rangle_{L_2}$	$\left\langle \hat{\Gamma}, \; \Gamma \right\rangle_{L_2}$
	$\label{linear} $$ \coprod_{-1} {\operatorname{MGamma}_{2}} $$$	$\left\langle \hat{\Gamma}, \; \Gamma \right\rangle_{L_2}$	$\left\langle \hat{\Gamma}, \; \Gamma \right\rangle_{L_2}$
L_p inner product for specified measure	$\label{limit} $$ \coprod_{n=1}^{\dim a}_{\Omega}^{\Omega} $$$	$\langle \hat{\Gamma}, \; \Gamma \rangle_{L_2(\hat{\mu})}$	$\left\langle \hat{\Gamma}, \; \Gamma \right\rangle_{L_2(\hat{\mu})}$
	$\label{limits} $$ \coprod_{n=1}^{\Gamma} {\mathbb Z}_{n} .$	$\langle \hat{\Gamma}, \; \Gamma \rangle_{L_2(\hat{\mu})}$	$\langle \hat{\Gamma}, \; \Gamma \rangle_{L_2(\hat{\mu})}$

3 annotation commands

 \bar{A} \barA \bara \bar{a} \bar{A} \bA \bB \bar{B} \balpha $\bar{\alpha}$ $\bar{\Gamma}$ \bGamma \mathcal{A} \mcA $\hat{\mathcal{A}}$ \mbox{hmcA} \mfA \mathfrak{A} \mfa \mathfrak{a} \bmfA \mathfrak{A} \bmfa \mathfrak{a} \hat{A} \hA \ha \hat{a} \halpha $\hat{\alpha}$ $\hat{\Gamma}$ \h Gamma ${\bf \hat{A}}$ \bhA \bha â \bhalpha $\hat{\boldsymbol{\alpha}}$ $\hat{\boldsymbol{\Gamma}}$ \bhGamma \widehat{A} \whA \wha \widehat{a} \tdA \tilde{A} \tilde{a} \tda \tdalpha $\tilde{\alpha}$ $\tilde{\Gamma}$ \tdGamma ${\bf \tilde{A}}$ \btdA \btda $\tilde{\mathbf{a}}$ \btdalpha $\tilde{\alpha}$ $ilde{f \Gamma}$ \btdGamma \biA \boldsymbol{A} \bia \boldsymbol{a} $\hat{m{A}}$ \bhiA \bhia