Full_4 X_Xception_centr

June 13, 2023

1 Date: 9 2022

2 Method: Cross_Inception

3 Data: Pavia

4 Results v.05

```
[]: # Libraries
import pandas as pd
import numpy as np
import seaborn as sn
from sklearn.decomposition import PCA
```

```
[]: # Read dataset Pavia
from scipy.io import loadmat

def read_HSI():
    X = loadmat('Pavia.mat')['pavia']
    y = loadmat('Pavia_gt.mat')['pavia_gt']
    print(f"X shape: {X.shape}\ny shape: {y.shape}")
    return X, y

X, y = read_HSI()
```

```
X shape: (1096, 715, 102)
y shape: (1096, 715)
```

```
[]: # PCA
def applyPCA(X, numComponents): # numComponents=64
    newX = np.reshape(X, (-1, X.shape[2]))
    print(newX.shape)
    pca = PCA(n_components=numComponents, whiten=True)
    newX = pca.fit_transform(newX)
    newX = np.reshape(newX, (X.shape[0],X.shape[1], numComponents))
    return newX, pca, pca.explained_variance_ratio_
```

```
[]: # channel_wise_shift
     def channel_wise_shift(X,numComponents):
         X_copy = np.zeros((X.shape[0] , X.shape[1], X.shape[2]))
         half = int(numComponents/2)
         for i in range(0,half-1):
             X_{copy}[:,:,i] = X[:,:,(half-i)*2-1]
         for i in range(half,numComponents):
             X_{copy}[:,:,i] = X[:,:,(i-half)*2]
         X = X_{copy}
         return X
[]: # Split the hyperspectral image into patches of size windowSize-by-windowSize-
      \rightarrow pixels
     def Patches_Creating(X, y, windowSize, removeZeroLabels = True): #__
      →windowSize=15, 25
         margin = int((windowSize - 1) / 2)
         zeroPaddedX = padWithZeros(X, margin=margin)
         # split patches
         patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, X.
      ⇔shape[2]),dtype="float16")
         patchesLabels = np.zeros((X.shape[0] * X.shape[1]),dtype="float16")
         patchIndex = 0
         for r in range(margin, zeroPaddedX.shape[0] - margin):
             for c in range(margin, zeroPaddedX.shape[1] - margin):
                 patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c +__
      →margin + 1]
                 patchesData[patchIndex, :, :, :] = patch
                 patchesLabels[patchIndex] = y[r-margin, c-margin]
                 patchIndex = patchIndex + 1
         if removeZeroLabels:
             patchesData = patchesData[patchesLabels>0,:,:,:]
             patchesLabels = patchesLabels[patchesLabels>0]
             patchesLabels -= 1
         return patchesData, patchesLabels
     # pading With Zeros
     def padWithZeros(X, margin=2):
         newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.
      ⇔shape[2]),dtype="float16")
         x_offset = margin
         y_offset = margin
         newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X
         return newX
[]: # Split Data
     from sklearn.model_selection import train_test_split
```

```
[]: # Split Data
from sklearn.model_selection import train_test_split

def splitTrainTestSet(X, y, testRatio, randomState=345):
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=testRatio, random_state=randomState,stratify=y)
return X_train, X_test, y_train, y_test
```

```
[]: test_ratio = 0.5
     # Load and reshape data for training
     X0, y0 = read_HSI()
     \#X=XO
     #y=y0
     windowSize=15 # accuracy of
     # Score for fold 1: loss of 0.34631192684173584; accuracy of 89.49999809265137%
     # to test: 7, 9, 13, 15,
     width = windowSize
     height = windowSize
     img_width, img_height, img_num_channels = windowSize, windowSize, 3
     input_image_size=windowSize
     INPUT_IMG_SIZE=windowSize
     dimReduction=3
     InputShape=(windowSize, windowSize, dimReduction)
     #X, y = loadData(dataset) channel_wise_shift
     X1,pca,ratio = applyPCA(X0,numComponents=dimReduction)
     X2 shifted = channel_wise_shift(X1,dimReduction) # channel-wise shift
     #X2=X1
     #print(f"X0 shape: {X0.shape}\ny0 shape: {y0.shape}")
     #print(f"X1 shape: {X1.shape}\nX2 shape: {X2.shape}")
     X3, y3 = Patches_Creating(X2_shifted, y0, windowSize=windowSize)
     Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X3, y3, test_ratio)
    X shape: (1096, 715, 102)
    y shape: (1096, 715)
    (783640, 102)
[]: # Compile the model
     #incept_model.compile(optimizer='rmsprop', loss='categorical_crossentropy',_u
     → metrics=['accuracy'])
```

```
[]: print()
     import warnings
     warnings.filterwarnings("ignore")
     # load libraries
     from keras.initializers import VarianceScaling
     from keras.regularizers import 12
     from keras.models import Sequential
     from keras.layers import Dense
     from sklearn import datasets
     from sklearn.model_selection import StratifiedKFold
     import numpy as np
[]: # 9 classes names
     names = ['1. Water', '2. Trees', '3. Asphalt', '4. Self-Blocking Bricks',
                      '5. Bitumen', '6. Tiles', '7. Shadows',
                      '8. Meadows', '9. Bare Soil']
[]: from tensorflow.keras.applications import EfficientNetBO
     from keras.applications import densenet, inception_v3, mobilenet, resnet, u
     →vgg16, vgg19, xception
     from tensorflow.keras import layers
     from keras.layers import Dense, GlobalAveragePooling2D, Dropout, Flatten
     import tensorflow as tf
     #model = EfficientNetBO(weights='imagenet')
     def build_model(num_classes):
         inputs = layers.Input(shape=(windowSize, windowSize, 3))
         \#x = img\_augmentation(inputs)
         model = xception. Xception(weights='imagenet', include\_top=False, \_
      \hookrightarrow input\_tensor=inputs)
         #model1 = resnet.ResNet50(weights='imagenet')
         # Freeze the pretrained weights
         model.trainable = False
```

 $x = layers.GlobalAveragePooling2D(name="avg_pool")(model.output)$

Rebuild top

```
x = layers.BatchNormalization()(x)
   x = model.output
   x = GlobalAveragePooling2D()(x)
   # let's add a fully-connected layer
   x = Dense(256, activation='relu')(x)
   x = Dropout(0.25)(x)
   top_dropout_rate = 0.2
   #x = layers.Dropout(top_dropout_rate, name="top_dropout")(x)
   outputs = layers.Dense(9, activation="softmax", name="pred")(x)
   # Compile
   model = tf.keras.Model(inputs, outputs, name="EfficientNet")
   optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
   model.compile(
        optimizer=optimizer, loss="categorical_crossentropy", u
\rightarrow metrics=["accuracy"]
   )
   return model
11111
```

```
[]: '\'\n#model = EfficientNetBO(weights=\'imagenet\')\n\n\ndef
                                   inputs = layers.Input(shape=(windowSize,
    build_model(num_classes):\n
    windowSize, 3))\n
                        #x = img_augmentation(inputs)\n
    xception.Xception(weights=\'imagenet\', include_top=False,
    input tensor=inputs)\n\n
                                #model1 =
    resnet.ResNet50(weights=\'imagenet\')\n\n\n
                                                   # Freeze the pretrained weights\n
    model.trainable = False\n\n
                                   # Rebuild top\n
                                                      x =
    layers.GlobalAveragePooling2D(name="avg_pool")(model.output)\n
    layers.BatchNormalization()(x)\n
                                          x = model.output\n\n
    GlobalAveragePooling2D()(x)\n
                                     # let\'s add a fully-connected layer\n
    Dense(256, activation=\'relu\')(x)\n
                                            x = Dropout(0.25)(x)\n
    top_dropout_rate = 0.2\n
                               #x = layers.Dropout(top_dropout_rate,
    name="top_dropout")(x)\n
                                outputs = layers.Dense(9, activation="softmax",
    name="pred")(x)\n\n
                                          model = tf.keras.Model(inputs, outputs,
                           # Compile\n
    name="EfficientNet")\n
                              optimizer =
    tf.keras.optimizers.Adam(learning rate=1e-3)\n
                                                      model.compile(\n
    optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]\n
    )\n
           return model\n'
```

```
[]: from tensorflow.keras.applications import EfficientNetB0
```

```
def build_model(num_classes):
         inputs = layers.Input(shape=(windowSize, windowSize, 3))
         \#x = imq\_auqmentation(inputs)
         #model = EfficientNetBO(include_top=False, input_tensor=inputs,__
      \rightarrow weights="imagenet")
         model = xception.Xception(weights='imagenet', include top=False,___
      →input_tensor=inputs)
         # Freeze the pretrained weights
        \#model.trainable = False
         # Rebuild top
         x = layers.GlobalAveragePooling2D(name="avg_pool")(model.output)
         x = layers.BatchNormalization()(x)
         top_dropout_rate = 0.2
         x = layers.Dropout(top_dropout_rate, name="top_dropout")(x)
         outputs = layers.Dense(9, activation="softmax", name="pred")(x)
         # Compile
         model = tf.keras.Model(inputs, outputs, name="EfficientNet")
         optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
         model.compile(
             optimizer=optimizer, loss="categorical_crossentropy", __
      →metrics=["accuracy"]
         return model
[]: model = build_model(num_classes=9)
[]: def unfreeze_model(model):
         # We unfreeze the top 20 layers while leaving BatchNorm layers frozen
         for layer in model.layers[-20:]:
             if not isinstance(layer, layers.BatchNormalization):
                 layer.trainable = True
         optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
         model.compile(
             optimizer=optimizer, loss="categorical_crossentropy", __

→metrics=["accuracy"]

         )
[]: import matplotlib.pyplot as plt
     def plot_hist(hist):
```

```
plt.plot(hist.history["accuracy"])
plt.plot(hist.history["val_accuracy"])
plt.title("model accuracy")
plt.ylabel("accuracy")
plt.xlabel("epoch")
plt.legend(["train", "validation"], loc="upper left")
plt.show()
```

```
[]: from tensorflow.keras.losses import sparse_categorical_crossentropy
     from tensorflow.keras.optimizers import Adam
     from sklearn.model selection import KFold
     from tensorflow.keras import layers
     import numpy as np
     from sklearn.metrics import confusion_matrix, accuracy_score,_
     →classification_report, cohen_kappa_score
     import matplotlib.pyplot as plt
     from keras.applications.inception_resnet_v2 import InceptionResNetV2,_
     →preprocess_input
     from keras.layers import Dense, GlobalAveragePooling2D, Dropout, Flatten
     from keras.models import Model
     import tensorflow as tf
     # configuration
     confmat = 0
     batch size = 50
     loss_function = sparse_categorical_crossentropy
     no_classes = 9
     no epochs = 10
     optimizer = Adam()
     verbosity = 1
     num_folds = 5
     NN=len(Xtrain)
     #NN=2000
     NN=5000
     input_train=Xtrain[0:NN]
     target_train=ytrain[0:NN]
     input test=Xtest[0:NN]
     target_test=ytest[0:NN]
     # Determine shape of the data
     input_shape = (img_width, img_height, img_num_channels)
```

```
# Parse numbers as floats
#input_train = input_train.astype('float32')
#input_test = input_test.astype('float32')
# Normalize data
#input_train = input_train / 255
#input_test = input_test / 255
# Define per-fold score containers
acc_per_fold = []
loss_per_fold = []
Y_pred=[]
y_pred=[]
# Merge inputs and targets
inputs = np.concatenate((input_train, input_test), axis=0)
targets = np.concatenate((target_train, target_test), axis=0)
# Define the K-fold Cross Validator
kfold = KFold(n_splits=num_folds, shuffle=True)
\# K-fold Cross Validation model evaluation
fold no = 1
for train, test in kfold.split(inputs, targets):
  # model architecture
  # Compile the model
 #model.compile(optimizer='rmsprop', loss='categorical crossentropy',
 → metrics=['accuracy'])
   # Compile the model
 # model.compile(optimizer='rmsprop', loss='categorical_crossentropy',
 →metrics=['accuracy'])
 model = build_model(num_classes=9)
  #model.compile(loss=loss_function, optimizer='rmsprop',metrics=['accuracy'])
  #model.summary()
  #unfreeze_model(model)
 model.compile(loss=loss_function, optimizer='rmsprop',metrics=['accuracy'])
```

```
# Generate a print
print(f'Training for fold {fold_no} ...')
# Fit data to model
#model.summary()
history = model.fit(inputs[train], targets[train],
             validation_data = (inputs[test], targets[test]),
             epochs=no_epochs, verbose=2 )
plt.figure()
plot_hist(history)
# hist = model.fit(inputs[train], targets[train],
                    steps_per_epoch=(29943/batch_size),
  #
                    epochs=5,
                    validation data=(inputs[test], targets[test]),
  #
                    validation_steps=(8000/batch_size),
  #
                    initial epoch=20,
                    verbose=1 )
plt.figure()
# Generate generalization metrics
scores = model.evaluate(inputs[test], targets[test], verbose=0)
print(f'Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]};__
→{model.metrics_names[1]} of {scores[1]*100}%')
acc_per_fold.append(scores[1] * 100)
loss_per_fold.append(scores[0])
# confusion matrix
Y_pred = model.predict(inputs[test])
y pred = np.argmax(Y pred, axis=1)
#target_test=targets[test]
confusion = confusion_matrix(targets[test], y_pred)
df_cm = pd.DataFrame(confusion, columns=np.unique(names), index = np.
→unique(names))
df cm.index.name = 'Actual'
df cm.columns.name = 'Predicted'
plt.figure(figsize = (9,9))
sn.set(font_scale=1.4)#for label size
sn.heatmap(df_cm, cmap="Reds", annot=True,annot_kws={"size": 16}, fmt='d')
plt.savefig('cmap.png', dpi=300)
print(confusion_matrix(targets[test], y_pred))
```

```
confmat
          = confmat + confusion;
  # Increase fold number
  fold_no = fold_no + 1
# == average scores ==
print('-----')
print('Score per fold')
for i in range(0, len(acc_per_fold)):
 →print('-----')
 print(f'> Fold {i+1} - Loss: {loss_per_fold[i]} - Accuracy:__
 →{acc_per_fold[i]}%')
print('-----')
print('Average scores for all folds:')
print(f'> Accuracy: {np.mean(acc_per_fold)} (+- {np.std(acc_per_fold)})')
print(f'> Loss: {np.mean(loss_per_fold)}')
print('-----')
Overall_Conf = pd.DataFrame(confmat, columns=np.unique(names), index = np.
→unique(names))
Overall Conf.index.name = 'Actual Overall'
Overall_Conf.columns.name = 'Predicted Overall'
plt.figure(figsize = (10,8))
sn.set(font_scale=1.4)#for label size
sn.heatmap(Overall_Conf, cmap="Reds", annot=True,annot_kws={"size": 16},__
\rightarrowfmt='d')
plt.savefig('cmap.png', dpi=300)
print(Overall_Conf)
# Notes for next trial
# windowsize=25 > will work
# windowsize=5 --> Only Basyesian will work
# Need to test (7, 9, 11, 13, 15) window sizes
# When the accuracy is decreasing, it's not right.
# When need to get acc over 0.7
Training for fold 1 ...
Epoch 1/10
```

```
Training for fold 1 ...

Epoch 1/10

250/250 - 207s - loss: 0.8361 - accuracy: 0.7336 - val_loss: 0.9933 - val_accuracy: 0.7275 - 207s/epoch - 830ms/step

Epoch 2/10

250/250 - 201s - loss: 0.3387 - accuracy: 0.9075 - val_loss: 0.1749 -
```

```
val_accuracy: 0.9680 - 201s/epoch - 806ms/step
Epoch 3/10
250/250 - 241s - loss: 0.2152 - accuracy: 0.9426 - val loss: 6.2874 -
val_accuracy: 0.6280 - 241s/epoch - 962ms/step
Epoch 4/10
250/250 - 252s - loss: 0.1856 - accuracy: 0.9539 - val_loss: 1.7030 -
val_accuracy: 0.9315 - 252s/epoch - 1s/step
Epoch 5/10
250/250 - 256s - loss: 0.1201 - accuracy: 0.9647 - val_loss: 0.3575 -
val_accuracy: 0.9665 - 256s/epoch - 1s/step
Epoch 6/10
250/250 - 211s - loss: 0.0937 - accuracy: 0.9711 - val loss: 0.1008 -
val_accuracy: 0.9710 - 211s/epoch - 844ms/step
Epoch 7/10
250/250 - 211s - loss: 0.0867 - accuracy: 0.9772 - val_loss: 0.0528 -
val_accuracy: 0.9860 - 211s/epoch - 845ms/step
Epoch 8/10
250/250 - 215s - loss: 0.0828 - accuracy: 0.9801 - val loss: 0.1079 -
val_accuracy: 0.9725 - 215s/epoch - 860ms/step
Epoch 9/10
250/250 - 211s - loss: 0.0620 - accuracy: 0.9837 - val_loss: 0.0815 -
val_accuracy: 0.9775 - 211s/epoch - 843ms/step
Epoch 10/10
250/250 - 186s - loss: 0.0590 - accuracy: 0.9844 - val_loss: 0.9210 -
val_accuracy: 0.8710 - 186s/epoch - 743ms/step
```



```
Score for fold 1: loss of 0.9210289716720581; accuracy of 87.09999918937683%
63/63 [=======] - 2s 28ms/step
ΓΓ667
              29
                   0
                       0
                           0
                               0 207]
       0
           0
 Γ
   0 71
               0
                   0
                       0
                           0
                               0
                                   07
           0
 Γ
                           2
                                   07
   0
       4 37
               2
                   0
                       1
                               0
 0
                                  0]
   0
           0 35
                   0
                       0
                           0
                               0
 Γ 1
       0 0
               2 103
                       0
                           0
                               0
                                   07
 ΓΟ
       2 0
               0
                  0 120
                          1
                                   07
 Γ
   0
       3
          0
                  0
                       0 83
                                  01
               0
 Γ 0
       0
           0
               3 0
                       0
                           0 585
                                   0]
       0
           0
               0 0
                       1
                           0 0 41]]
Training for fold 2 ...
Epoch 1/10
250/250 - 188s - loss: 1.4509 - accuracy: 0.5096 - val_loss: 1.3032 -
val_accuracy: 0.6645 - 188s/epoch - 751ms/step
Epoch 2/10
250/250 - 172s - loss: 0.3862 - accuracy: 0.8857 - val_loss: 13.8235 -
val_accuracy: 0.5430 - 172s/epoch - 687ms/step
Epoch 3/10
250/250 - 176s - loss: 0.2133 - accuracy: 0.9371 - val_loss: 0.3055 -
val_accuracy: 0.9285 - 176s/epoch - 702ms/step
Epoch 4/10
250/250 - 161s - loss: 0.1449 - accuracy: 0.9559 - val_loss: 2.6323 -
val_accuracy: 0.9070 - 161s/epoch - 646ms/step
Epoch 5/10
250/250 - 165s - loss: 0.1310 - accuracy: 0.9609 - val_loss: 2.0419 -
val_accuracy: 0.9620 - 165s/epoch - 660ms/step
Epoch 6/10
250/250 - 167s - loss: 0.1523 - accuracy: 0.9647 - val_loss: 0.1607 -
val_accuracy: 0.9780 - 167s/epoch - 667ms/step
Epoch 7/10
250/250 - 180s - loss: 0.0952 - accuracy: 0.9736 - val_loss: 0.0548 -
val_accuracy: 0.9840 - 180s/epoch - 719ms/step
Epoch 8/10
250/250 - 209s - loss: 0.0845 - accuracy: 0.9768 - val_loss: 0.0547 -
val_accuracy: 0.9875 - 209s/epoch - 835ms/step
Epoch 9/10
250/250 - 212s - loss: 0.0653 - accuracy: 0.9836 - val_loss: 0.1220 -
val_accuracy: 0.9695 - 212s/epoch - 848ms/step
Epoch 10/10
250/250 - 203s - loss: 0.0674 - accuracy: 0.9830 - val_loss: 0.0432 -
val_accuracy: 0.9860 - 203s/epoch - 811ms/step
<Figure size 432x288 with 0 Axes>
```



```
Score for fold 2: loss of 0.043157752603292465; accuracy of 98.60000014305115%
63/63 [========= ] - 3s 35ms/step
[[975
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0]
 0
      96
           7
               4
                   0
                       0
                           0
                               0
                                   0]
   0
       1
          27
                   9
                                   0]
               1
                       0
                           0
                               0
 0
              34
                   0
                           0
                                   0]
 83
                                   0]
       0
           0
               0
                       0
 Γ
       1
           1
               0
                   1 110
                           1
                                   07
 0
           0
               0
                   0
                       0
                          80
                               0
                                   0]
 0 534
                                   0]
   0
       0
           0
               0
                   0
                       0
               0
                   0
                       0
                           1
                                  33]]
```

```
Training for fold 3 ...

Epoch 1/10

250/250 - 225s - loss: 0.7617 - accuracy: 0.7688 - val_loss: 0.7705 - val_accuracy: 0.8000 - 225s/epoch - 900ms/step

Epoch 2/10

250/250 - 214s - loss: 0.2617 - accuracy: 0.9216 - val_loss: 0.2535 - val_accuracy: 0.9485 - 214s/epoch - 857ms/step

Epoch 3/10

250/250 - 207s - loss: 0.1870 - accuracy: 0.9467 - val_loss: 0.0707 - val_accuracy: 0.9765 - 207s/epoch - 828ms/step

Epoch 4/10
```

```
250/250 - 186s - loss: 0.1347 - accuracy: 0.9639 - val_loss: 0.0912 -
val_accuracy: 0.9735 - 186s/epoch - 744ms/step
Epoch 5/10
250/250 - 181s - loss: 0.0951 - accuracy: 0.9720 - val_loss: 0.0523 -
val_accuracy: 0.9850 - 181s/epoch - 722ms/step
Epoch 6/10
250/250 - 184s - loss: 0.1060 - accuracy: 0.9730 - val_loss: 6.1422 -
val_accuracy: 0.6715 - 184s/epoch - 738ms/step
Epoch 7/10
250/250 - 195s - loss: 0.0784 - accuracy: 0.9793 - val_loss: 0.0569 -
val_accuracy: 0.9770 - 195s/epoch - 781ms/step
Epoch 8/10
250/250 - 196s - loss: 0.0687 - accuracy: 0.9830 - val_loss: 0.4723 -
val_accuracy: 0.9635 - 196s/epoch - 786ms/step
Epoch 9/10
250/250 - 181s - loss: 0.0503 - accuracy: 0.9862 - val_loss: 3.6070 -
val_accuracy: 0.8265 - 181s/epoch - 725ms/step
Epoch 10/10
250/250 - 177s - loss: 0.0433 - accuracy: 0.9875 - val_loss: 0.0637 -
val_accuracy: 0.9825 - 177s/epoch - 708ms/step
<Figure size 432x288 with 0 Axes>
```



```
Score for fold 3: loss of 0.06372090429067612; accuracy of 98.25000166893005%
63/63 [======== ] - 2s 30ms/step
[[884]
       0
           0
               0
                   0
                        0
                           0
                               0
                                   0]
 0
      96
           4
               0
                   0
                       0
                           0
                               0
                                   0]
   0
       1
               0
                   3
                                   0]
          43
                        1
                           0
                               0
 4
           2
              34
                   2
                           0
                                   0]
 2
                  92
                       0
                                   0]
           1
               0
 Γ
       0
           1
               0
                   0 141
                           0
                                   07
 2
           2
               0
                   0
                       3
                          73
                               0
                                   0]
 1
                           0 553
                                   2]
   1
           0
               0
                   0
                       0
   2
               0
                   0
                       0
                                  49]]
                           0
                               0
Training for fold 4 ...
Epoch 1/10
250/250 - 183s - loss: 0.7109 - accuracy: 0.7980 - val_loss: 0.4502 -
val_accuracy: 0.8890 - 183s/epoch - 733ms/step
```

250/250 - 185s - loss: 0.3008 - accuracy: 0.9101 - val_loss: 13.0653 -

250/250 - 171s - loss: 0.1945 - accuracy: 0.9442 - val_loss: 0.7509 -

val_accuracy: 0.9285 - 185s/epoch - 741ms/step

val_accuracy: 0.9365 - 171s/epoch - 683ms/step

Epoch 2/10

Epoch 3/10

Epoch 4/10

```
250/250 - 214s - loss: 0.1762 - accuracy: 0.9511 - val_loss: 0.1980 -
val_accuracy: 0.9370 - 214s/epoch - 856ms/step
Epoch 5/10
250/250 - 205s - loss: 0.1123 - accuracy: 0.9660 - val_loss: 0.0768 -
val_accuracy: 0.9735 - 205s/epoch - 821ms/step
Epoch 6/10
250/250 - 219s - loss: 0.1042 - accuracy: 0.9729 - val_loss: 1.0592 -
val_accuracy: 0.9100 - 219s/epoch - 874ms/step
Epoch 7/10
250/250 - 221s - loss: 0.0930 - accuracy: 0.9765 - val_loss: 0.0700 -
val_accuracy: 0.9810 - 221s/epoch - 884ms/step
Epoch 8/10
250/250 - 194s - loss: 0.0598 - accuracy: 0.9844 - val_loss: 0.0287 -
val_accuracy: 0.9905 - 194s/epoch - 777ms/step
Epoch 9/10
250/250 - 198s - loss: 0.0713 - accuracy: 0.9827 - val_loss: 0.0545 -
val_accuracy: 0.9850 - 198s/epoch - 794ms/step
Epoch 10/10
250/250 - 195s - loss: 0.0528 - accuracy: 0.9862 - val_loss: 0.0690 -
val_accuracy: 0.9785 - 195s/epoch - 782ms/step
<Figure size 432x288 with 0 Axes>
```



```
Score for fold 4: loss of 0.0689583271741867; accuracy of 97.85000085830688%
63/63 [========= ] - 2s 32ms/step
[[899
       0
            1
               0
                   0
                           0
                               0
                                   0]
 0
      77
            6
               7
                   0
                           1
                               0
                                   0]
   0
       1
          30
               0
                   3
                                   0]
                       0
                           0
                               0
 0
           0
              39
                   0
                           0
                                   0]
 3
                  77
                                   0]
       0
               0
                       0
 Γ
       0 14
               0
                   0 127
                           1
                                   07
 0
           0
                   0
                       0
                          99
                               0
                                   0]
               1
 0 575
                                   0]
   0
       0
           0
               1
                   0
                       0
               0
                   0
                       0
                                  34]]
                           0
                               0
Training for fold 5 ...
```

```
Epoch 1/10
250/250 - 201s - loss: 0.8894 - accuracy: 0.7170 - val_loss: 1.2928 - val_accuracy: 0.7270 - 201s/epoch - 805ms/step
Epoch 2/10
250/250 - 195s - loss: 0.2875 - accuracy: 0.9126 - val_loss: 4.7491 - val_accuracy: 0.5755 - 195s/epoch - 780ms/step
Epoch 3/10
250/250 - 196s - loss: 0.2189 - accuracy: 0.9352 - val_loss: 12.2001 - val_accuracy: 0.5310 - 196s/epoch - 782ms/step
Epoch 4/10
```

```
250/250 - 195s - loss: 0.1664 - accuracy: 0.9538 - val_loss: 0.0718 -
val_accuracy: 0.9770 - 195s/epoch - 782ms/step
Epoch 5/10
250/250 - 196s - loss: 0.1092 - accuracy: 0.9681 - val_loss: 0.0463 -
val_accuracy: 0.9850 - 196s/epoch - 784ms/step
Epoch 6/10
250/250 - 195s - loss: 0.1175 - accuracy: 0.9689 - val_loss: 0.2958 -
val_accuracy: 0.9770 - 195s/epoch - 782ms/step
Epoch 7/10
250/250 - 196s - loss: 0.0760 - accuracy: 0.9768 - val_loss: 0.0466 -
val_accuracy: 0.9885 - 196s/epoch - 783ms/step
Epoch 8/10
250/250 - 195s - loss: 0.0865 - accuracy: 0.9784 - val loss: 0.1726 -
val_accuracy: 0.9745 - 195s/epoch - 782ms/step
Epoch 9/10
250/250 - 195s - loss: 0.0871 - accuracy: 0.9781 - val_loss: 0.0523 -
val_accuracy: 0.9890 - 195s/epoch - 781ms/step
Epoch 10/10
250/250 - 194s - loss: 0.0651 - accuracy: 0.9836 - val_loss: 0.0530 -
val_accuracy: 0.9870 - 194s/epoch - 778ms/step
<Figure size 432x288 with 0 Axes>
```



```
Score for fold 5: loss of 0.0529952198266983; accuracy of 98.69999885559082%
63/63 [======== ] - 3s 34ms/step
[[919
       0
           0
               0
                  0
                              0
                                  0]
0 99
           1
               0
                  0
                          1
                                  0]
   0
       8 35
                                 0]
               0
                  0
       0
              41
                  0
                                 0]
                 75
       0
              7
                                  0]
      1
           0
             0
                  0 101
                         1
                                  07
       0
           0
               0
                  0
                      0
                         96
                                  0]
                          0 575
0
       0
           0
               0
                  0
                      0
                                  1]
                      0
                                 33]]
Score per fold
```

> Fold 1 - Loss: 0.9210289716720581 - Accuracy: 87.09999918937683%

> Fold 4 - Loss: 0.0689583271741867 - Accuracy: 97.85000085830688%

> Fold 5 - Loss: 0.0529952198266983 - Accuracy: 98.69999885559082%

Average scores for all folds:

> Accuracy: 96.10000014305115 (+- 4.509878480314604)

> Loss: 0.22997223511338233

> Loss: 0.22997223511338									
Predicted Overall	1.	Water	2.	Trees	3. 1	Asphalt	\		
Actual Overall									
1. Water		4344		0		1			
2. Trees		0		439		18			
3. Asphalt		0		15		172			
4. Self-Blocking Bricks		0		4		2			
5. Bitumen		1		2		5			
6. Tiles		2		4		16			
7. Shadows		0		5		2			
8. Meadows		1		1		0			
9. Bare Soil		8		0		0			
Predicted Overall	4.	Self-Bl	ock	ing Br	icks	5. Bit	umen	6. Tiles	\
Actual Overall									
1. Water					29		0	0	
2. Trees					11		0	0	
3. Asphalt					3		15	2	
4. Self-Blocking Bricks					183		2	0	
5. Bitumen					9		430	0	
6. Tiles					0		1	599	
7. Shadows					1		0	3	
8. Meadows					4		0	0	
9. Bare Soil					0		0	1	
Predicted Overall	7.	Shadows	8	. Mead	ows	9. Bare	Soil		
Actual Overall									
1. Water		C			0		207		
2. Trees		2	2		0		0		
3. Asphalt		2	2		1		0		
4. Self-Blocking Bricks		C)		0		0		
5. Bitumen		C)		0		0		
6. Tiles		4	ŀ		1		0		
7. Shadows		431	L		0		0		
8. Meadows		C)	2	822		3		

<Figure size 432x288 with 0 Axes>

9. Bare Soil

1

190

Γ	٦	:	print(classification	report (targets	testl. v	pred.	target	names =	names))	
	_	•	DT THO	OTADDIT TOAUTON	TOPOTO	COULECOD	_ 0 0 0 0 1 , ,	prou,	our goo	Hamob	munico,	

	precision	recall	f1-score	support
1. Water	1.00	1.00	1.00	919
2. Trees	0.92	0.98	0.95	101
3. Asphalt	0.95	0.80	0.86	44
4. Self-Blocking Bricks	0.85	1.00	0.92	41
5. Bitumen	1.00	0.90	0.95	83
6. Tiles	1.00	0.96	0.98	105
7. Shadows	0.98	1.00	0.99	96
8. Meadows	1.00	1.00	1.00	576
9. Bare Soil	0.97	0.94	0.96	35
accuracy			0.99	2000
macro avg	0.96	0.95	0.96	2000
weighted avg	0.99	0.99	0.99	2000