

CHAPTER 5

Amplitude Modulation

(Part 3 of 4)

- Modulating signal is usually a complex signal known as Multi-tone modulating signals.
- An AM signal modulated by a multi-tone modulating signal is known as multi-tone AM signal.
- Consider a multi-tone modulating signal

$$v_s(t) = V_1 \cos 2\pi f_1 t + V_2 \cos 2\pi f_2 t$$
 where $V_1 > V_2$ and $f_2 > f_1$

$$v_{s}(t) = V_{1}\cos 2\pi f_{1}t + V_{2}\cos 2\pi f_{2}t \iff V_{s}(f) = \frac{V_{1}}{2}\delta(f - f_{1}) + \frac{V_{1}}{2}\delta(f + f_{1}) + \frac{V_{2}}{2}\delta(f - f_{2}) + \frac{V_{2}}{2}\delta(f + f_{2})$$

 $v_{AM}(t) = [V_c + V_s(t)] cos\pi f_c t$

+
$$v_s(t) \times cos2\pi f_c t$$

Standard equation for AM signals

$$\begin{aligned} V_{\text{AM}}(f) &= \\ &\frac{V_c}{2} \, \delta(f + f_c) + \frac{V_c}{2} \, \delta(f - f_c) \quad \text{carrier} \\ &+ \frac{1}{2} \left[V_s(f + f_c) + V_s(f - f_c) \, \right] \\ &\text{Shift } V_s(f) \text{ left by } f_c \end{aligned}$$

Spectrum of multi-tone AM signal

Shift V_s(f) left by f_c

Shift V_s(f) right by f_c

Spectrum of multi-tone AM signal

Single-sided amplitude spectrum

Modulating Signal $v_s(t) = V_1 \cos 2\pi f_1 t + V_2 \cos 2\pi f_2 t$

Combine negative and positive frequency components

Consider a multi-tone modulating signal below

Spectrum of a multi-tone modulating signals $v_s(t)$

$v_{AM}(t) = [V_c + V_s(t)] cos\pi f_c t$

+
$$v_s(t) \times cos2\pi f_c t$$

FT ←

Standard equation for AM signals

$$V_{AM}(f) =$$

$$\frac{V_c}{2} \delta(f + f_c) + \frac{V_c}{2} \delta(f - f_c) \quad \text{carrier}$$

$$+ \frac{1}{2} [V_s(f + f_c) + V_s(f - f_c)]$$
Shift $V_s(f)$ left by f_c Shift $V_s(f)$ right by f_c

Spectrum of AM signal

Multi-tone modulating signals

Shift V_s(f) left by f_c

Shift V_s(f) right by f_c

AM Modulation process shifts baseband frequencies to higher frequencies.

Bandwidth of multi-tone AM signal

$$B_{AM} = (f_c + f_H) - (f_c - f_H) = 2f_H$$

f_H: maximum frequency of modulating signal

Frequency domain description of AM signal

Single-sided amplitude spectrum of AM signal

Combine negative and positive frequency components

Example 5.4

A carrier signal with amplitude of 6 volt and frequency of 100 kHz is amplitude modulated by a modulating signal that has an amplitude spectrum as shown below. Plot the double-sided amplitude spectrum of the AM signal.

Solution

Standard equation for $V_{AM}(f)$

$$V_{AM}(f) = \frac{V_c}{2} \delta(f + f_c) + \frac{V_c}{2} \delta(f - f_c) + \frac{1}{2} [V_s(f + f_c) + V_s(f - f_c)]$$

$$\frac{V_c}{2} \delta(f + f_c) + \frac{1}{2} V_s(f + f_c)$$

Shift V_s(f) left by f_c

$$\frac{V_{c}}{2} \delta(f - f_{c}) + \frac{1}{2} V_{s}(f - f_{c})$$

Shift V_s(f) right by f_c

Demodulation

- The process of recovering the original modulating signal from a modulated carrier at the receiver.
- There are several techniques for demodulation of AM signal:
 - Coherent/synchronous detection,
 - Square-law detection and
 - Envelope detection.
- Envelope detection technique is the simplest and most widely used technique.

At transmitter:

The modulating signal is in the envelope of the AM signal.

At receiver:

The modulating signal can be recovered by extracting the envelope of the AM signal.

Envelope Detector

Recover the modulating by Extracting the envelope of the AM signal.

How the Envelope Detector works?

How the Envelope Detector works?

AM input wave

Envelope detected

- If the AM signal is over-modulated, the output of the envelope detector is distorted.
- Thus, m should not exceed 1.

Over-modulated AM signal

Distorted output of envelope detector

End

CHAPTER 5

(Part 3 of 4)

