

planetmath.org

Math for the people, by the people.

conditions for a collection of subsets to be a basis for some topology

Canonical name ConditionsForACollectionOfSubsetsToBeABasisForSomeTopology

Date of creation 2013-03-22 14:21:49 Last modified on 2013-03-22 14:21:49

Owner waj (4416) Last modified by waj (4416)

Numerical id 4

Author waj (4416) Entry type Proof

 $\begin{array}{ll} {\rm Classification} & {\rm msc} \ 54A99 \\ {\rm Classification} & {\rm msc} \ 54D70 \\ \end{array}$

Not just any collection of subsets of X can be a basis for a topology on X. For instance, if we took \mathcal{C} to be all open intervals of length 1 in \mathbb{R} , \mathcal{C} isn't the basis for any topology on \mathbb{R} : (0,1) and (.5,1.5) are unions of elements of \mathcal{C} , but their intersection (.5,1) is not. The collection formed by arbitrary unions of members of \mathcal{C} isn't closed under finite intersections and isn't a topology.

We'd like to know which collections \mathcal{B} of subsets of X could be the basis for some topology on X. Here's the result:

Theorem. A collection \mathcal{B} of subsets of X is a basis for some topology on X if and only if:

- 1. Every $x \in X$ is contained in some $B_x \in \mathcal{B}$, and
- 2. If B_1 and B_2 are two elements of \mathcal{B} containing $x \in X$, then there's a third element B_3 of \mathcal{B} such that $x \in B_3 \subset B_1 \cap B_2$.

Proof. First, we'll show that if \mathcal{B} is the basis for some topology \mathcal{T} on X, then it satisfies the two conditions listed.

 \mathcal{T} is a topology on X, so $X \in \mathcal{T}$. Since \mathcal{B} is a basis for \mathcal{T} , that means X can be written as a union of members of \mathcal{B} : since every $x \in X$ is in this union, every $x \in X$ is contained in some member of \mathcal{B} . That takes care of the first condition.

For the second condition: if B_1 and B_2 are elements of \mathcal{B} , they're also in \mathcal{T} . \mathcal{T} is closed under intersection, so $B_1 \cap B_2$ is open in \mathcal{T} . Then $B_1 \cap B_2$ can be written as a union of members of \mathcal{B} , and any $x \in B_1 \cap B_2$ is contained by some basis element in this union.

Second, we'll show that if a collection \mathcal{B} of subsets of X satisfies the two conditions, then the collection \mathcal{T} of unions of members of \mathcal{B} is a topology on X.

- $\emptyset \in \mathcal{T}$: \emptyset is the null union of zero elements of \mathcal{B} .
- $X \in \mathcal{T}$: by the first condition, every X is contained in some member of \mathcal{B} . The union of all the members of \mathcal{B} is then all of X.
- \mathcal{T} is closed under arbitrary unions: Say we have a union of sets $T_{\alpha} \in \mathcal{T}$...

$$\bigcup_{\alpha \in I} T_{\alpha} = \bigcup_{\alpha \in I} \bigcup_{\beta \in J_{\alpha}} B_{\beta}$$

(since each T_{α} is a union of sets in \mathcal{B})

$$= \bigcup_{\beta \in \bigcup_{\alpha \in I} J_{\alpha}} B_{\beta}$$

Since that's a union of elements of \mathcal{B} , it's also a member of \mathcal{T} .

• \mathcal{T} is closed under finite intersections: since a collection of sets is closed under finite intersections if and only if it is closed under pairwise intersections, we need only check that the intersection of two members T_1, T_2 of \mathcal{T} is in \mathcal{T} .

Any $x \in T_1 \cap T_2$ is contained in some $B_x^1 \subset T_1$ and $B_x^2 \subset T_2$. By the second condition, $x \in B_x^1 \cap B_x^2$ gets us a B_x^3 with $x \in B_x^3 \subset B_x^1 \cap B_x^2 \subset T_1 \cap T_2$. Then

$$T_1 \cap T_2 = \bigcup_{x \in T_1 \cap T_2} B_x^3$$

which is in \mathcal{T} .