R Notebook

Code ▼

Hide

```
#library
library(readr)
library(markovchain)
library(lubridate)
library(reshape2)
library(dplyr)
library(foreach)
library(doParallel)
library(markovchain)
library(Rsolnp)
library(fitdistrplus)
library(vars)
library(lubridate)
library(matlib)
library(xts)
library(ks)
library(rstatix)
library(ggplot2)
library(tidyverse)
library(VGAM)
library(Renext)
library(verification)
theme_set(theme_bw())
```

Source different functions

Hide

```
source("Briggs_Wilks_Resampling.R")
source("SWG1_parametric.R")
source("SWG2_parametric.R")
source("SWG3_semi_parametric.R")
```

Read station file

Hide

```
chemin.in="H:/SWG_Articles/Codes_Articles/kandi_memoire2.csv"
kandi_val<- read_csv(chemin.in, col_types = cols(year = col_character()))</pre>
```

Performance of SWGs developped in reproducing real climatology

```
ht_seuil=0.1
                    #rain threshold
distribution=2
                     #1 exponentiel, 2 Gamma distribution
nvear=50
                     # number of simulation
andebut=2031
                     # Arbitrary start year for simulation
seas=7
                     #from july to September for season
yearclimreal=as.character(1971:2020)
#Run SWG1
SWG1_param_sim=SWG1(chemin.in,yearclimreal,seas,distribution,nyear,andebut,ht_seuil)
#Run SWG2
SWG2_param_sim=SWG2(chemin.in,yearclimreal,seas,nyear,andebut,ht_seuil)
#Run SWG3
SWG3_Semi_param_sim=SWG3(chemin.in,yearclimreal,seas,nyear,andebut,ht_seuil)
```

Dry spells and Wet Spells comparaison With observed 1971-2020

```
#Dry Spells function
dry=function(x){
  d1=c(0,which(x>=ht_seuil))
  d2=c(which(x>=ht seuil),length(x))
  seq=(d2-d1)+1
  return(seq)
}
#Wet Spells function
wet=function(x){
  d1=c(0,which(x<ht_seuil))</pre>
  d2=c(which(x<ht_seuil),length(x))</pre>
  wet=(d2-d1)+1
  return(wet)
}
##### Dry Spells
seq_real=kandi_val%>%filter(between(mois,7,9))%>%
  transmute(year=year, PRCP)%>%
  group_by(year)%>%summarise(Obs=dry(PRCP))%>%
  transmute(Obs=Obs)
Obs_dry=cbind.data.frame(rep("Obs",dim(seq_real)[1]),seq_real$Obs)
colnames(Obs dry)=c("SWG","dry spells")
seq_SWG1=SWG1_param_sim$data_sim%>%
  transmute(year=year,rain)%>%
  group_by(year)%>%summarise(SWG1=dry(rain))%>%
  transmute(SWG1=SWG1)
SWG1_dry=cbind.data.frame(rep("SWG1",dim(seq_SWG1)[1]),seq_SWG1$SWG1)
colnames(SWG1_dry)=c("SWG","dry_spells")
seq_SWG2=SWG2_param_sim$data_sim%>%
  transmute(year=year,rain)%>%
  group by(year)%>%summarise(SWG2=dry(rain))%>%
  transmute(SWG2=SWG2)
SWG2_dry=cbind.data.frame(rep("SWG2",dim(seq_SWG2)[1]),seq_SWG2$SWG2)
colnames(SWG2_dry)=c("SWG","dry_spells")
seq_SWG3=SWG3_Semi_param_sim$data_sim%>%
  transmute(year=year,rain)%>%
  group by(year)%>%summarise(SWG3=dry(rain))%>%
  transmute(SWG3=SWG3)
SWG3 dry=cbind.data.frame(rep("SWG3",dim(seq SWG3)[1]),seq SWG3$SWG3)
colnames(SWG3_dry)=c("SWG","dry_spells")
dry_seq=rbind.data.frame(Obs_dry,SWG1_dry,SWG2_dry,SWG3_dry#,SWG4_dry
                         )
```

```
##### Wet Spells
Wet real=kandi val%>%filter(between(mois,7,9))%>%
 transmute(year=year,PRCP)%>%
 group_by(year)%>%summarise(Obs=wet(PRCP))%>%
 transmute(Obs=Obs)
Obs_Wet=cbind.data.frame(rep("Obs",dim(Wet_real)[1]),Wet_real$Obs)
colnames(Obs_Wet)=c("SWG","wet_spells")
Wet SWG1=SWG1 param sim$data sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG1=wet(rain))%>%
 transmute(SWG1=SWG1)
SWG1_wet=cbind.data.frame(rep("SWG1",dim(Wet_SWG1)[1]),Wet_SWG1$SWG1)
colnames(SWG1 wet)=c("SWG","wet spells")
Wet_SWG2=SWG2_param_sim$data_sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG2=wet(rain))%>%
 transmute(SWG2=SWG2)
SWG2_wet=cbind.data.frame(rep("SWG2",dim(Wet_SWG2)[1]),Wet_SWG2$SWG2)
colnames(SWG2_wet)=c("SWG","wet_spells")
Wet_SWG3=SWG3_Semi_param_sim$data_sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG3=wet(rain))%>%
 transmute(SWG3=SWG3)
SWG3_wet=cbind.data.frame(rep("SWG3",dim(Wet_SWG3)[1]),Wet_SWG3$SWG3)
colnames(SWG3_wet)=c("SWG","wet_spells")
Wet seq=rbind.data.frame(Obs Wet,SWG1 wet,SWG2 wet,SWG3 wet#,SWG4 wet
                                                                                           Hide
```

```
Spells_table1=cbind.data.frame(rep("Dry Spells",dim(dry_seq)[1]),dry_seq)
colnames(Spells_table1)=c("Spell","SWG","value")
Spells_table2=cbind.data.frame(rep("Wet Spells",dim(Wet_seq)[1]),Wet_seq)
colnames(Spells_table2)=c("Spell","SWG","value")
Spells_table=rbind.data.frame(Spells_table1,Spells_table2)
```

Hide

```
Spells_table%>%group_by(Spell, SWG)%>%summarise(value=round(mean(value),2))
```

`summarise()` has grouped output by 'Spell'. You can override using the `.groups` argument.

Spell <chr></chr>	SWG <chr></chr>	value <dbl></dbl>
Dry Spells	Obs	2.81
Dry Spells	SWG1	2.88
Dry Spells	SWG2	2.88
Dry Spells	SWG3	2.79
Wet Spells	Obs	3.13
Wet Spells	SWG1	3.04
Wet Spells	SWG2	3.04
Wet Spells	SWG3	3.16
8 rows		

Hide

Spells_table%>%group_by(Spell, SWG)%>%summarise(value=round(sd(value),2))

`summarise()` has grouped output by 'Spell'. You can override using the `.groups` argument.

Spell <chr></chr>	SWG <chr></chr>	value <dbl></dbl>
Dry Spells	Obs	1.24
Dry Spells	SWG1	1.32
Dry Spells	SWG2	1.31
Dry Spells	SWG3	1.21
Wet Spells	Obs	1.81
Wet Spells	SWG1	1.54
Wet Spells	SWG2	1.53
Wet Spells	SWG3	1.60
8 rows		

```
ggplot(Spells_table, aes(x=SWG,y=value,color=SWG))+
   geom_violin(size=1) +stat_summary(fun=mean, colour="darkred", geom="point", size=2,show.leg
end = T)+
   scale_color_manual(values=c("black","red","blue","green")) + ylim(1,max(Spells_table$valu
e))+ theme(axis.text.x = element_text(size = 11,face="bold"),axis.text.y = element_text(size
   = 11,face='bold'),axis.title = element_text(face = "bold",size = 12),legend.text = element_t
ext(size = 10,face = "bold"),legend.position="bottom",strip.text.x = element_text(size = 12,f
ace = "bold"))+
   labs(y = "Number of days", x="")+
   ggplot2::facet_wrap(facets= ~ Spell, dir="h",scales="free")+theme(strip.text.x = element_te
xt(size=14),strip.background=element_rect(fill="lightgrey"))+geom_point(aes(x=3, y=22), colou
r="darkred", size=3)+
   annotate(geom="text", x=3.5, y=22.4, label="Mean",color="black",size=4,face="bold")
```

Warning: Ignoring unknown parameters: face

Computing non-parametric tests of equality of mean, variance and distribution

Dry spells

#Wilcoxon test
wilcoxon_test <- dry_seq %>%
 wilcox_test(dry_spells ~ SWG) %>%
 add_significance()
print(wilcoxon_test[1:4,])

.y. <chr></chr>	group1 <chr></chr>	group2 <chr></chr>	n1 <int></int>	n2 <int></int>	statistic <dbl></dbl>	p <dbl></dbl>	p.adj <dbl></dbl>	p.adj.signif <chr></chr>
dry_spells	Obs	SWG1	2545	2444	3012011	0.034	0.181	ns
dry_spells	Obs	SWG2	2545	2450	3017242	0.030	0.181	ns
dry_spells	Obs	SWG3	2545	2575	3269246	0.876	1.000	ns
dry_spells	SWG1	SWG2	2444	2450	2992562	0.976	1.000	ns
4 rows								

```
#Ansari Bradley
Ansari_SWG1 <- ansari.test(Obs_dry$dry_spells,SWG1_dry$dry_spells)</pre>
Ansari_SWG2 <- ansari.test(Obs_dry$dry_spells,SWG2_dry$dry_spells)</pre>
Ansari_SWG3 <- ansari.test(Obs_dry$dry_spells,SWG3_dry$dry_spells)</pre>
#Ansari_SWG4 <- ansari.test(Obs_dry$dry_spells,SWG4_dry$dry_spells)
Ansari_SWG1
    Ansari-Bradley test
data: Obs_dry$dry_spells and SWG1_dry$dry_spells
AB = 3225205, p-value = 0.002755
alternative hypothesis: true ratio of scales is not equal to 1
                                                                                              Hide
Ansari_SWG2
    Ansari-Bradley test
data: Obs_dry$dry_spells and SWG2_dry$dry_spells
AB = 3215084, p-value = 0.03019
alternative hypothesis: true ratio of scales is not equal to 1
                                                                                              Hide
Ansari SWG3
    Ansari-Bradley test
data: Obs_dry$dry_spells and SWG3_dry$dry_spells
AB = 3286643, p-value = 0.1137
alternative hypothesis: true ratio of scales is not equal to 1
                                                                                              Hide
#Ansari SWG4
                                                                                              Hide
#Kolmogorov Sirminov
KS SWG1 <- ks.test(Obs dry$dry spells,SWG1 dry$dry spells)</pre>
Warning in ks.test(Obs_dry$dry_spells, SWG1_dry$dry_spells) :
  les valeurs p seront approximées en présence d'ex-aequos
                                                                                              Hide
KS_SWG2 <- ks.test(Obs_dry$dry_spells,SWG2_dry$dry_spells)</pre>
```

```
Warning in ks.test(Obs_dry$dry_spells, SWG2_dry$dry_spells) :
   les valeurs p seront approximées en présence d'ex-aequos
                                                                                             Hide
 KS_SWG3 <- ks.test(Obs_dry$dry_spells,SWG3_dry$dry_spells)</pre>
 Warning in ks.test(Obs_dry$dry_spells, SWG3_dry$dry_spells) :
   les valeurs p seront approximées en présence d'ex-aequos
                                                                                             Hide
 KS_SWG1
     Two-sample Kolmogorov-Smirnov test
 data: Obs_dry$dry_spells and SWG1_dry$dry_spells
 D = 0.035849, p-value = 0.08116
 alternative hypothesis: two-sided
                                                                                             Hide
 KS_SWG2
     Two-sample Kolmogorov-Smirnov test
 data: Obs_dry$dry_spells and SWG2_dry$dry_spells
 D = 0.039601, p-value = 0.03987
 alternative hypothesis: two-sided
                                                                                             Hide
 KS SWG3
     Two-sample Kolmogorov-Smirnov test
 data: Obs_dry$dry_spells and SWG3_dry$dry_spells
 D = 0.015552, p-value = 0.9163
 alternative hypothesis: two-sided
Wet Spells
                                                                                             Hide
```

```
wilcoxon_test <- Wet_seq %>%
  wilcox_test(wet_spells ~ SWG) %>%
  add_significance()
print(wilcoxon_test[1:3,])
```

.y. <chr></chr>	group1 <chr></chr>	group2 <chr></chr>	n1 <int></int>	n2 <int></int>	statistic <dbl></dbl>	p <dbl></dbl>	p.adj p.adj.signif <dbl> <chr></chr></dbl>
wet_spells	Obs	SWG1	2155	2256	2444762	0.724	1.000 ns
wet_spells	Obs	SWG2	2155	2250	2424245	0.997	1.000 ns
wet_spells	Obs	SWG3	2155	2125	2196017	0.014	0.055 ns
3 rows							

Hide

```
#Ansari-Bradley
Ansari_SWG1 <- ansari.test(Obs_Wet$wet_spells,SWG1_wet$wet_spells)
Ansari_SWG2 <- ansari.test(Obs_Wet$wet_spells,SWG2_wet$wet_spells)
Ansari_SWG3 <- ansari.test(Obs_Wet$wet_spells,SWG3_wet$wet_spells)
Ansari_SWG1</pre>
```

Ansari-Bradley test

data: Obs_Wet\$wet_spells and SWG1_wet\$wet_spells

AB = 2337325, p-value = 0.006558

alternative hypothesis: true ratio of scales is not equal to 1

Hide

Ansari_SWG2

Ansari-Bradley test

data: Obs_Wet\$wet_spells and SWG2_wet\$wet_spells

AB = 2337947, p-value = 0.01489

alternative hypothesis: true ratio of scales is not equal to 1

Hide

Ansari_SWG3

Ansari-Bradley test

data: Obs_Wet\$wet_spells and SWG3_wet\$wet_spells

AB = 2301228, p-value = 0.7062

alternative hypothesis: true ratio of scales is not equal to 1

```
#Kolmogorov-Sirminov
KS_SWG1 <- ks.test(Obs_Wet$wet_spells,SWG1_wet$wet_spells)
```

```
Warning in ks.test(Obs_Wet$wet_spells, SWG1_wet$wet_spells) :
  les valeurs p seront approximées en présence d'ex-aequos
                                                                                             Hide
KS_SWG2 <- ks.test(Obs_Wet$wet_spells,SWG2_wet$wet_spells)</pre>
Warning in ks.test(Obs_Wet$wet_spells, SWG2_wet$wet_spells) :
  les valeurs p seront approximées en présence d'ex-aequos
                                                                                             Hide
KS_SWG3 <- ks.test(Obs_Wet$wet_spells,SWG3_wet$wet_spells)</pre>
Warning in ks.test(Obs_Wet$wet_spells, SWG3_wet$wet_spells) :
  les valeurs p seront approximées en présence d'ex-aequos
                                                                                             Hide
KS_SWG1
    Two-sample Kolmogorov-Smirnov test
data: Obs_Wet$wet_spells and SWG1_wet$wet_spells
D = 0.020555, p-value = 0.7403
alternative hypothesis: two-sided
                                                                                             Hide
KS_SWG2
    Two-sample Kolmogorov-Smirnov test
data: Obs_Wet$wet_spells and SWG2_wet$wet_spells
D = 0.02376, p-value = 0.5633
alternative hypothesis: two-sided
                                                                                             Hide
KS SWG3
    Two-sample Kolmogorov-Smirnov test
data: Obs_Wet$wet_spells and SWG3_wet$wet_spells
D = 0.039565, p-value = 0.07018
alternative hypothesis: two-sided
```

Cumulative daily and seasonal rainfall comparaison With observed 1971-2020

Cumulative daily rainfall

Hide

```
# Cumulative daily rainfall
kand=kandi_val
kand$PRCP[kand$PRCP<ht_seuil]<-0
SWG1_param_sim$data_sim$rain[SWG1_param_sim$data_sim$rain<ht_seuil]<-0
SWG2_param_sim$data_sim$rain[SWG2_param_sim$data_sim$rain<ht_seuil]<-0
SWG3_Semi_param_sim$data_sim$rain[SWG3_Semi_param_sim$data_sim$rain<ht_seuil]<-0

cum_day=cbind.data.frame(kand%>%filter(between(mois,7,9))%>%dplyr::select(PRCP),SWG1_param_sim$data_sim$rain,SWG2_param_sim$data_sim$rain,SWG3_Semi_param_sim$data_sim$rain
)
colnames(cum_day)=c("Obs","SWG1","SWG2" ,"SWG3"
)

cum_day_gather=cum_day%>%gather(key = "SWG",value = value)
cum_day_gather=cbind.data.frame(rep("Cumulative daily rainfall",dim(cum_day_gather)[1]),cum_day_gather)
colnames(cum_day_gather)=c("cum","SWG","value")
```

Hide

cum_day_gather%>%group_by(SWG)%>%summarise(value=round(mean(value),1))

SWG <chr></chr>	value <dbl></dbl>
Obs	7.1
SWG1	7.4
SWG2	7.2
SWG3	8.0
4 rows	

Hide

cum_day_gather%>%group_by(SWG)%>%summarise(value=round(sd(value),1))

SWG <chr></chr>	value <dbl></dbl>
Obs	13.3
SWG1	14.0
SWG2	13.6

SWG <chr></chr>	value <dbl></dbl>
SWG3	15.1
4 rows	

Hide

```
ggplot(cum_day_gather, aes(x=SWG,y=value,color=SWG))+
  geom_boxplot(size=1) +stat_summary(fun=mean, colour="darkred", geom="point", size=2,show.le
gend = T)+
  scale_color_manual(values=c("black","red","blue","green","grey")) + ylim(0,150)+ theme(axi
s.text.x = element_text(size = 11,face="bold"),axis.text.y = element_text(size = 11,face='bold'),axis.title = element_text(face = "bold",size = 12),legend.text = element_text(size = 10,face = "bold"),legend.position="bottom",strip.text.x = element_text(size = 12,face = "bold"))+
  labs(y = "mm/day", x="")+
  ggplot2::facet_wrap(facets= ~ cum, dir="h",scales="free")+theme(strip.text.x = element_text
(size=14),strip.background=element_rect(fill="lightgrey"))+geom_point(aes(x=0.5, y=150), colo
ur="darkred", size=3)+
  annotate(geom="text", x=0.8, y=150, label="Mean",color="black",size=4,face="bold")
```

Warning: Ignoring unknown parameters: face

SWG 🖶 Obs 🔁 SWG1 🔁 SWG2 🔁 SWG3

Warning: Removed 8586 rows containing non-finite values (stat_density).

QQplot daily cumulative

```
sx <- sort(cum_day_gather[cum_day_gather$SWG=="Obs",]$value)</pre>
sy <- sort(cum_day_gather[cum_day_gather$SWG=="SWG1",]$value)</pre>
lenx <- length(sx)</pre>
leny <- length(sy)</pre>
if (leny < lenx)sx <- approx(1L:lenx, sx, n = leny)$y</pre>
if (leny > lenx)sy <- approx(1L:leny, sy, n = lenx)$y
type=rep("SWG1",length(sy))
mmm=cbind.data.frame(sx,sy,type)
sx <- sort(cum_day_gather[cum_day_gather$SWG=="Obs",]$value)</pre>
sy <- sort(cum_day_gather[cum_day_gather$SWG=="SWG2",]$value)</pre>
lenx <- length(sx)</pre>
leny <- length(sy)</pre>
if (leny < lenx)sx <- approx(1L:lenx, sx, n = leny)$y
if (leny > lenx)sy <- approx(1L:leny, sy, n = lenx)$y
type=rep("SWG2",length(sy))
mmm1=cbind.data.frame(sx,sy,type)
sx <- sort(cum_day_gather[cum_day_gather$SWG=="0bs",]$value)</pre>
sy <- sort(cum_day_gather[cum_day_gather$SWG=="SWG3",]$value)</pre>
lenx <- length(sx)</pre>
leny <- length(sy)</pre>
if (leny < lenx)sx <- approx(1L:lenx, sx, n = leny)$y
if (leny > lenx)sy <- approx(1L:leny, sy, n = lenx)$y</pre>
type=rep("SWG3",length(sy))
mmm2=cbind.data.frame(sx,sy,type)
mm=rbind.data.frame(mmm,mmm1,mmm2)
ggplot(mm,aes(mm$sx,mm$sy)) +geom_point()+ggplot2::theme(legend.position="bottom", axis.text.
x = element_text(vjust = 1, size = 11, hjust = 1, face="bold"),axis.text.y = element_text(size
= 11, face='bold'), axis.title = element_text(face = "bold", size = 12),
                                                                               strip.text.x = ele
ment_text(
 size = 12,face = "bold"
)) + ggplot2::facet wrap(facets= ~ type, dir="h") + ggplot2::xlab(label="Observed daily cumul
ative rainfall [mm/day]") + ggplot2::ylab(label="Synthetic cumulative rainfall [mm/day]")+xli
m(30,125)+ylim(30,125)+geom_abline(intercept = 0, slope = 1,color="red",size=1)
```

```
Warning: Use of `mm$sx` is discouraged. Use `sx` instead.
Warning: Use of `mm$sy` is discouraged. Use `sy` instead.
Warning: Removed 12845 rows containing missing values (geom_point).
```


Statistics tests

Hide

```
wilcoxon_test <- cum_day_gather %>%
  wilcox_test(value ~ SWG) %>%
  add_significance()
print(wilcoxon_test[1:4,])
```

. y. <chr></chr>	group1 <chr></chr>	group2 <chr></chr>	n1 <int></int>	n2 <int></int>	statistic <dbl></dbl>	p <dbl></dbl>	<pre>p.adj p.adj.signif <dbl> <chr></chr></dbl></pre>
value	Obs	SWG1	4600	4600	10639563	0.622	1.000 ns
value	Obs	SWG2	4600	4600	10702849	0.309	0.927 ns
value	Obs	SWG3	4600	4600	10394936	0.127	0.508 ns
value	SWG1	SWG2	4600	4600	10638674	0.625	1.000 ns
4 rows							

```
#Ansari-Bradley
Ansari_SWG1 <- ansari.test(cum_day$0bs,cum_day$SWG1)
Ansari_SWG2 <- ansari.test(cum_day$0bs,cum_day$SWG2)
Ansari_SWG3 <- ansari.test(cum_day$0bs,cum_day$SWG3)
#Ansari_SWG4 <- ansari.test(cum_day$0bs,cum_day$SWG4)
Ansari_SWG1</pre>
```

Ansari-Bradley test data: cum day\$Obs and cum day\$SWG1 AB = 10757719, p-value = 0.0003297 alternative hypothesis: true ratio of scales is not equal to 1 Hide Ansari_SWG2 Ansari-Bradley test data: cum_day\$Obs and cum_day\$SWG2 AB = 10688554, p-value = 0.03003 alternative hypothesis: true ratio of scales is not equal to 1 Hide Ansari_SWG3 Ansari-Bradley test data: cum_day\$Obs and cum_day\$SWG3 AB = 10671389, p-value = 0.07681 alternative hypothesis: true ratio of scales is not equal to 1 Hide #Ansari SWG4 Hide #Kolmogorov-Sirminov KS_SWG1 <- ks.test(cum_day\$0bs,cum_day\$SWG1)</pre> Warning in ks.test(cum_day\$0bs, cum_day\$SWG1) : les valeurs p seront approximées en présence d'ex-aequos Hide KS_SWG2 <- ks.test(cum_day\$0bs,cum_day\$SWG2)</pre> Warning in ks.test(cum_day\$0bs, cum_day\$SWG2) : les valeurs p seront approximées en présence d'ex-aequos Hide KS SWG3 <- ks.test(cum day\$0bs,cum day\$SWG3)</pre>

Warning in ks.test(cum_day\$Obs, cum_day\$SWG3) :
les valeurs p seront approximées en présence d'ex-aequos

Hide

KS_SWG1

Two-sample Kolmogorov-Smirnov test

data: cum_day\$Obs and cum_day\$SWG1
D = 0.021957, p-value = 0.2175
alternative hypothesis: two-sided

Hide

KS_SWG2

Two-sample Kolmogorov-Smirnov test

data: cum_day\$0bs and cum_day\$SWG2
D = 0.020652, p-value = 0.2804
alternative hypothesis: two-sided

Hide

KS_SWG3

Two-sample Kolmogorov-Smirnov test

data: cum_day\$0bs and cum_day\$SWG3
D = 0.026522, p-value = 0.07866
alternative hypothesis: two-sided

Cumulative seasonal rainfall

```
cum season=cbind.data.frame(kandi val%>%filter(between(mois,7,9))%>%
group_by(year)%>%summarise(PRCP=sum(PRCP,na.rm = T))%>%
 dplyr::select(PRCP),SWG1_param_sim$cm_seas_sim$rain,SWG2_param_sim$cm_seas_sim$rain,SWG3_Se
mi param sim$cm seas sim$rain)
# ,SWG3_nonparam%>%group_by(yearsim)%>%
     summarise(PRCP=sum(PRCP,na.rm = T))%>%dplyr::select(PRCP)
#)
colnames(cum_season)=c("Obs","SWG1","SWG2","SWG3"
cum_season_gather=cum_season%>%gather(key = "SWG",value = value)
cum_season_gather=cbind.data.frame(rep("Seasonal cumulative rainfall",dim(cum_season_gather)[
1]),cum_season_gather)
colnames(cum_season_gather)=c("cum","SWG","value")
#### Number of days
nb_days_season=cbind.data.frame(kandi_val%>%filter(between(mois,7,9),PRCP>0.85)%>%
group_by(year)%>%summarise(PRCP=length(PRCP))%>%
  dplyr::select(PRCP),
SWG1_param_sim$data_sim%>%filter(rain>0.85)%>%
group_by(year)%>%summarise(rain=length(rain))%>%
 dplyr::select(rain),
SWG2_param_sim$data_sim%>%filter(rain>0.6)%>%group_by(year)%>%summarise(rain=length(rain))%>%
dplyr::select(rain),
SWG3_Semi_param_sim$data_sim%>%filter(rain>0.85)%>%
group_by(year)%>%summarise(rain=length(rain))%>%
 dplyr::select(rain))
colnames(nb_days_season)=c("Obs","SWG1","SWG2","SWG3"
nb_days_season_gather=nb_days_season%>%gather(key = "SWG",value = value)
nb_days_season_gather=cbind.data.frame(rep("Number of wet days",dim(nb_days_season_gather)[1
]),nb days season gather)
colnames(nb days season gather)=c("cum", "SWG", "value")
```

```
terc=quantile(cum season$0bs,probs = seq(0,1,1/3))
ggplot(cum_season_gather, aes(x=SWG,y=value,color=SWG))+
  geom_boxplot(size=1) +stat_summary(fun=mean, colour="darkred", geom="point", size=2,show.le
gend = T)+
 scale_color_manual(values=c("black","red","blue","green","grey")) + ylim(250,1250)+ theme(a
xis.text.x = element_text(size = 11,face='bold"),axis.text.y = element_text(size = 11,face='b
old'),axis.title = element_text(face = "bold",size = 12),legend.text = element_text(size = 10
,face = "bold"),legend.position="bottom",strip.text.x = element_text(size = 12,face = "bold")
))+
 labs(y = "mm/season", x="")+geom_hline(yintercept = terc[2], linetype=2, color = "black", s
ize=1)+
 geom_hline(yintercept = terc[3], linetype=3, color = "black", size=1)+
 ggplot2::facet_wrap(facets= ~ cum, dir="h",scales="free")+theme(strip.text.x = element_text
(size=14),strip.background=element_rect(fill="lightgrey"))+geom_point(aes(x=0.5, y=1250), col
our="darkred", size=3)+
  annotate(geom="text", x=0.8, y=1250, label="Mean",color="black",size=4,face="bold")+
 geom_segment(aes(x=1.5, y=1240,xend=1.8,yend= 1240),color="black",size=1,linetype=2)+annota
te(geom="text", x=2, y=1250, label="First tercile",color="black",size=3.2,face="bold")+geom_s
egment(aes(x=3, y=1240,xend=3.3,yend= 1240),color="black",size=1,linetype=3)+annotate(geom="t
ext", x=3.6, y=1250, label="Second tercile",color="black",size=3.2,face="bold")
```

Warning: Ignoring unknown parameters: face
Warning: Ignoring unknown parameters: face
Warning: Ignoring unknown parameters: face

SWG 🖶 Obs 🔁 SWG1 幸 SWG2 達 SWG3

```
ggplot(nb_days_season_gather, aes(x=SWG,y=value,color=SWG))+
    geom_boxplot(size=1) +stat_summary(fun=mean, colour="darkred", geom="point", size=2,show.le
    gend = T)+
    scale_color_manual(values=c("black","red","blue","green","grey")) + ylim(35,65)+ theme(axi
    s.text.x = element_text(size = 11,face="bold"),axis.text.y = element_text(size = 11,face='bold'),axis.title = element_text(face = "bold",size = 12),legend.text = element_text(size = 10,f
    ace = "bold"),legend.position="bottom",strip.text.x = element_text(size = 12,face = "bold"))+
    labs(y = "Number of days/season", x="")+
    ggplot2::facet_wrap(facets= ~ cum, dir="h",scales="free")+theme(strip.text.x = element_text
    (size=14),strip.background=element_rect(fill="lightgrey"))+geom_point(aes(x=0.5, y=60), colou
    r="darkred", size=3)+
    annotate(geom="text", x=0.8, y=60, label="Mean",color="black",size=4,face="bold")
```

```
Warning: Ignoring unknown parameters: face
Warning: Removed 15 rows containing non-finite values (stat_boxplot).
Warning: Removed 15 rows containing non-finite values (stat_summary).
```


SWG 🖶 Obs 🔁 SWG1 🔁 SWG2 🔁 SWG3

Consistency between the probabilities of the categories of PRESASS seasonal forecasts format and those obtained from disaggregated forecasts

```
#Select season
saison_real=kandi_val%>%filter(between(mois,7,9))%>%
  filter(between(year,1981,2010))%>%group_by(year)%>%
  summarise(PRCP=sum(PRCP,na.rm = T))%>%
  dplyr::select(PRCP)

tercile=quantile(saison_real$PRCP,probs = seq(0,1,1/3))
```

The probabilities of seasonal cumulative rainfall above-average

Hide

```
#SWG1-parametric
nyear=1000
result_jour1=list(0)
result cum1=list(0)
prevu=c(0.05,0.35,0.6)
prev=list(0)
i=1
repeat{
  prevu=prevu+c(0.05,0,-0.05)
  prev[[i]]=prevu
  yearclimcond=year_cond=Briggs_wilks_resampling(chemin.in,seas,prevu,n)
  x=SWG1(chemin.in,yearclimcond,seas,distribution,nyear,andebut,ht_seuil)
  result_cum1[[i]]=x$cm_seas_sim
  i=i+1
  if(i==11){
    break()
  }
}
#computing prob
prevision=c("10-35-55","15-35-50","20-35-45","25-35-40","30-35-35","35-35-30","40-35-25","45-
35-20", "50-35-15", "55-35-10")
table freqPA1=NULL
frequence=NULL
#table freq=NULL
for(i in 1:10){
   nb=length(which(result cum1[[i]]$rain>=tercile[3]))/1000
   frequence=c(frequence, round(nb, 2))
}
nom=rep("SWG1",10)
table_freq1=cbind.data.frame(prevision,frequence,nom)
table freqPA1=rbind.data.frame(table freqPA1, table freq1)
```

```
#SWG2 parametric
nyear=1000
result_jour1=list(0)
result cum1=list(0)
prevu=c(0.05,0.35,0.6)
prev=list(0)
i=1
repeat{
  prevu=prevu+c(0.05,0,-0.05)
  prev[[i]]=prevu
  yearclimcond=Briggs_wilks_resampling(chemin.in, seas, prevu, n)
  x=SWG2(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
  result_cum1[[i]]=x$cm_seas_sim
  i=i+1
  if(i==11){
    break()
  }
}
#computing prob
prevision=c("10-35-55","15-35-50","20-35-45","25-35-40","30-35-35","35-35-30","40-35-25","45-
35-20", "50-35-15", "55-35-10")
table_freqPA2=NULL
frequence=NULL
#table freq=NULL
for(i in 1:10){
   nb=length(which(result_cum1[[i]]$rain>tercile[3]))/1000
   frequence=c(frequence,round(nb,2))
}
nom=rep("SWG2",10)
table_freq1=cbind.data.frame(prevision,frequence,nom)
table_freqPA2=rbind.data.frame(table_freqPA2,table_freq1)
```

```
#SWG3-semi-parametric
nyear=1000
result_jour1=list(0)
result cum1=list(0)
prevu=c(0.05,0.35,0.6)
prev=list(0)
i=1
repeat{
  prevu=prevu+c(0.05,0,-0.05)
  prev[[i]]=prevu
  yearclimcond=Briggs_wilks_resampling(chemin.in, seas, prevu, n)
  x=SWG3(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
  result_cum1[[i]]=x$cm_seas_sim
  i=i+1
  if(i==11){
    break()
  }
}
#computing prob
prevision=c("10-35-55","15-35-50","20-35-45","25-35-40","30-35-35","35-35-30","40-35-25","45-
35-20", "50-35-15", "55-35-10")
table_freqPA3=NULL
frequence=NULL
#table freq=NULL
for(i in 1:10){
   nb=length(which(result_cum1[[i]]$rain>tercile[3]))/1000
   frequence=c(frequence,round(nb,2))
}
nom=rep("SWG3",10)
table_freq1=cbind.data.frame(prevision, frequence, nom)
table_freqPA3=rbind.data.frame(table_freqPA3,table_freq1)
```

Hide

```
table_freqA=rbind.data.frame(table_freqPA1,table_freqPA2,table_freqPA3)
```

```
ggplot(data=table_freqA,aes(x=prevision,y=frequence))+
  geom_bar(stat = "identity", position=position_dodge())+scale_y_continuous(breaks = seq(0,0.6,0.05))+
  ggplot2::theme(legend.position="bottom", axis.text.x = element_text(angle = 90, vjust = 1, si
  ze = 10, hjust = 1,face="bold"),axis.text.y = element_text(size = 11,face='bold'),axis.title
  = element_text(face = "bold",size = 12)) +
    ggplot2::facet_wrap(facets= ~ nom,ncol=4, scales="free_x") +ggplot2::xlab(label="Forecast p
  robability")+
    ggplot2::ylab(label="Relative frequency of Above-average seasonal rainfall")+geom_segment(aes(x=0, y=0.6,xend=11,yend=0.05),color="red",size=1,position="identity")+
    geom_segment(aes(x=5, y=0.5,xend=6,yend=0.5),color="red",size=2)+
    annotate(geom="text", x=8, y=0.5, label=" y=-x+1",color="black",size=4,face="bold")
```

```
Warning: Ignoring unknown parameters: face
```


The probabilities of seasonal cumulative rainfall below average

```
#SWG1-parametric
nyear=1000
result_jour1=list(0)
result cum1=list(0)
prevu=c(0.6,0.35,0.05)
prev=list(0)
i=1
repeat{
  prevu=prevu+c(-0.05,0,0.05)
  prev[[i]]=prevu
  yearclimcond=year_cond=Briggs_wilks_resampling(chemin.in,seas,prevu,n)
  x=SWG1(chemin.in,yearclimcond,seas,distribution,nyear,andebut,ht_seuil)
  result_cum1[[i]]=x$cm_seas_sim
  i=i+1
  if(i==11){
   break()
  }
}
#computing prob
prevision=c("10-35-55","15-35-50","20-35-45","25-35-40","30-35-35","35-35-30","40-35-25","45-
35-20", "50-35-15", "55-35-10")
table freqPB1=NULL
frequence=NULL
#table_freq=NULL
for(i in 1:10){
   nb=length(which(result_cum1[[i]]$rain>=tercile[3]))/1000
   frequence=c(frequence,round(nb,2))
}
nom=rep("SWG1",10)
table_freq1=cbind.data.frame(prevision, frequence, nom)
table_freqPB1=rbind.data.frame(table_freqPB1,table_freq1)
```

```
#SWG2 parametric
nyear=1000
result_jour1=list(0)
result cum1=list(0)
prevu=c(0.6,0.35,0.05)
prev=list(0)
i=1
repeat{
  prevu=prevu+c(-0.05,0,0.05)
  prev[[i]]=prevu
  yearclimcond=Briggs_wilks_resampling(chemin.in, seas, prevu, n)
  x=SWG2(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
  result_cum1[[i]]=x$cm_seas_sim
  i=i+1
  if(i==11){
    break()
  }
}
#computing prob
prevision=c("10-35-55","15-35-50","20-35-45","25-35-40","30-35-35","35-35-30","40-35-25","45-
35-20", "50-35-15", "55-35-10")
table_freqPB2=NULL
frequence=NULL
#table freq=NULL
for(i in 1:10){
   nb=length(which(result_cum1[[i]]$rain>tercile[3]))/1000
   frequence=c(frequence,round(nb,2))
}
nom=rep("SWG2",10)
table_freq1=cbind.data.frame(prevision,frequence,nom)
table_freqPB2=rbind.data.frame(table_freqPB2,table_freq1)
```

```
#SWG3-semi-parametric
nyear=1000
result_jour1=list(0)
result cum1=list(0)
prevu=c(0.6,0.35,0.05)
prev=list(0)
i=1
repeat{
  prevu=prevu+c(-0.05,0,0.05)
  prev[[i]]=prevu
  yearclimcond=Briggs_wilks_resampling(chemin.in, seas, prevu, n)
  x=SWG3(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
  result_cum1[[i]]=x$cm_seas_sim
  i=i+1
  if(i==11){
    break()
  }
}
#computing prob
prevision=c("10-35-55","15-35-50","20-35-45","25-35-40","30-35-35","35-35-30","40-35-25","45-
35-20", "50-35-15", "55-35-10")
table_freqPB3=NULL
frequence=NULL
#table freq=NULL
for(i in 1:10){
   nb=length(which(result_cum1[[i]]$rain>tercile[3]))/1000
   frequence=c(frequence,round(nb,2))
}
nom=rep("SWG3",10)
table_freq1=cbind.data.frame(prevision, frequence, nom)
table_freqPB3=rbind.data.frame(table_freqPB3,table_freq1)
```

Hide

```
table_freqB=rbind.data.frame(table_freqPB1,table_freqPB2,table_freqPB3)
```

```
ggplot(data=table_freqB,aes(x=prevision,y=frequence))+
  geom_bar(stat = "identity", position=position_dodge())+scale_y_continuous(breaks = seq(0,0.6,0.05))+
  ggplot2::theme(legend.position="bottom", axis.text.x = element_text(angle = 90, vjust = 1, si
  ze = 10, hjust = 1,face="bold"),axis.text.y = element_text(size = 10,face='bold'),axis.title
  = element_text(face = "bold",size = 11))+ ggplot2::facet_wrap(facets= ~ nom, ncol = 4, scale
  s="free_x")+ ggplot2::xlab(label="Forecast probability")+
        ggplot2::ylab(label="Relative frequency of below average seasonal rainfall")+geom_segment(aes(x=0, y=0.05,xend=11,yend=0.6),color="red",size=1,position="identity")+
        geom_segment(aes(x=1, y=0.5,xend=2,yend=0.5),color="red",size=2)+
        annotate(geom="text", x=3, y=0.5, label=" y=x",color="black",size=4,face="bold")
```

```
Warning: Ignoring unknown parameters: face
```


Comparison of disaggregated forecasts to climatology (Obs. 1981-2010)

15-35-50

```
nyear=30
prevu=c(0.15,0.35,0.50)
n=1000
yearclimcond=year_cond=Briggs_wilks_resampling(chemin.in,seas,prevu,n)
P1_15_35_50=SWG1(chemin.in,yearclimcond,seas,distribution,nyear,andebut,ht_seuil)
P2_15_35_50=SWG2(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
P3_15_35_50=SWG3(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
```

```
cum15_35_50season=cbind.data.frame(kandi_val%>%filter(between(mois,7,9),between(year,1981,201
0))%>%
group_by(year)%>%summarise(PRCP=sum(PRCP,na.rm = T))%>%
    dplyr::select(PRCP),P1_15_35_50$cm_seas_sim$rain,P2_15_35_50$cm_seas_sim$rain,P3_15_35_50$c
m_seas_sim$rain)
colnames(cum15_35_50season)=c("Obs","SWG1","SWG2","SWG3")
cum15_35_50season_gather=cum15_35_50season%>%gather(key = "SWG",value = value)
```

Hide

```
library(tidyverse)
dens = split(cum15_35_50season_gather,cum15_35_50season_gather$SWG) %>% map_df(function(d){
 dens = density(d$value, adjust=0.1, from=min(cum15_35_50season_gather$value) - 0.05*diff(ra
nge(cum15 35 50season gather$value)),
                 to=max(cum15_35_50season_gather$value) + 0.05*diff(range(cum15_35_50season_g
ather$value)))
 data.frame(x=dens$x, y=dens$y, cd=cumsum(dens$y)/sum(dens$y), SWG=d$SWG[1])
})
dens1=dens
dens1=cbind.data.frame(dens1,rep("Forecast probability 15-35-50",dim(dens1)[1]))
colnames(dens1)=c("x","y","cd","SWG","tt")
ggplot() +
 geom_line(data=dens1, aes(x, 1-cd, colour=SWG), size=1)+
 labs(y = "Probability", x="Cumulative seasonal rainfall [mm/season]")+
 scale_x_continuous(breaks = seq(300,1200,100))+
 scale_color_manual(values=c("black", "red", "blue", "green")) +
 theme(legend.position="bottom", legend.background = element_rect(fill="lightgrey", size=0.5,
linetype="solid"),legend.title=element_blank(),axis.text.x = element_text(size = 10,face="bol
d"),axis.text.y = element_text(size = 10,face='bold'),axis.title = element_text(face = "bold"
,size = 11),legend.text = element_text(size = 10,face = "bold"))+
 ggplot2::facet wrap(facets= ~ tt, ncol = 4, scales="free x")+
 geom_rect(aes(xmin = tercile[2],xmax = tercile[3],ymin = -Inf, ymax = Inf, fill = "Average")
 Range"), alpha = .2,color="slategray2")+
 geom_vline(xintercept = 799.4, linetype="dotted", color = "black", size=1)+
 geom_segment(aes(x=820, y=0.875,xend=895,yend= 0.875),color="black",size=1,linetype="dotte"
  annotate(geom="text", x=1020, y=0.885, label="Observed for year 2008",color="black",size=3,
face="bold")
```

Warning: Ignoring unknown parameters: face

50-35-15

```
hide

nyear=30
prevu=c(0.5,0.35,0.15)
n=1000
yearclimcond=year_cond=Briggs_wilks_resampling(chemin.in,seas,prevu,n)

P1_50_35_15=SWG1(chemin.in,yearclimcond,seas,distribution,nyear,andebut,ht_seuil)

P2_50_35_15=SWG2(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)

P3_50_35_15=SWG3(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
```

Hide

```
library(tidyverse)
dens = split(cum50_35_15season_gather,cum50_35_15season_gather$SWG) %>% map_df(function(d){
  dens = density(d$value, adjust=0.1, from=min(cum50 35 15season gather$value) - 0.05*diff(ra
nge(cum50 35 15season gather$value)),
                 to=max(cum50_35_15season_gather$value) + 0.05*diff(range(cum50_35_15season_g
ather$value)))
 data.frame(x=dens$x, y=dens$y, cd=cumsum(dens$y)/sum(dens$y), SWG=d$SWG[1])
})
dens1=dens
dens1=cbind.data.frame(dens1,rep("Forecast probability 20-50-30",dim(dens1)[1]))
colnames(dens1)=c("x","y","cd","SWG","tt")
ggplot() +
 geom_line(data=dens1, aes(x, 1-cd, colour=SWG),size=1)+
 labs(y = "Probability", x="Cumulative seasonal rainfall [mm/season]")+
 scale_x_continuous(breaks = seq(300,1200,100))+
 scale_color_manual(values=c("black", "red","blue","green")) +
 theme(legend.position="bottom", legend.background = element_rect(fill="lightgrey", size=0.5,
linetype="solid"),legend.title=element_blank(),axis.text.x = element_text(size = 9,face="bol
d"),axis.text.y = element_text(size = 9,face='bold'),axis.title = element_text(face = "bold",
size = 10),legend.text = element text(size = 10,face = "bold"))+
 ggplot2::facet wrap(facets= ~ tt, ncol = 4, scales="free x")+
  geom_rect(aes(xmin = tercile[2],xmax = tercile[3],ymin = -Inf, ymax = Inf, fill = "Average
 Range"), alpha = .2,color="slategray2")+
 geom_vline(xintercept = 735.9, linetype="dotted", color = "black", size=1)+
 geom_segment(aes(x=820, y=0.875,xend=895,yend= 0.875),color="black",size=1,linetype="dotte"
 annotate(geom="text", x=1020, y=0.885, label="Observed for year 2003",color="black",size=3,
face="bold")
```

Warning: Ignoring unknown parameters: face

Hide

NA

Hide

```
nyear=30
prevu=c(0.5,0.35,0.15)
n=1000
yearclimcond=year_cond=Briggs_wilks_resampling(chemin.in,seas,prevu,n)
P1_50_35_15=SWG1(chemin.in,yearclimcond,seas,distribution,nyear,andebut,ht_seuil)
P2_50_35_15=SWG2(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
P3_50_35_15=SWG3(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
```

Hide

```
library(tidyverse)
dens = split(cum50 35 15season gather,cum50 35 15season gather$SWG) %>% map df(function(d){
  dens = density(d$value, adjust=0.1, from=min(cum50 35 15season gather$value) - 0.05*diff(ra
nge(cum50 35 15season gather$value)),
                 to=max(cum50_35_15season_gather$value) + 0.05*diff(range(cum50_35_15season_g
ather$value)))
 data.frame(x=dens$x, y=dens$y, cd=cumsum(dens$y)/sum(dens$y), SWG=d$SWG[1])
})
dens1=dens
dens1=cbind.data.frame(dens1,rep("Forecast probability 50-35-15",dim(dens1)[1]))
colnames(dens1)=c("x","y","cd","SWG","tt")
ggplot() +
 geom_line(data=dens1, aes(x, 1-cd, colour=SWG),size=1)+
 labs(y = "Probability", x="Cumulative seasonal rainfall [mm/season]")+
 scale_x_continuous(breaks = seq(300,1000,100))+
 scale_color_manual(values=c("black", "red", "blue", "green")) +
 theme(legend.position="bottom", legend.background = element_rect(fill="lightgrey", size=0.5,
linetype="solid"),legend.title=element_blank(),axis.text.x = element_text(size = 9,face="bol
d"),axis.text.y = element_text(size = 9,face='bold'),axis.title = element_text(face = "bold",
size = 10),legend.text = element text(size = 10,face = "bold"))+
 ggplot2::facet wrap(facets= ~ tt, ncol = 4, scales="free x")+
  geom_rect(aes(xmin = tercile[2],xmax = tercile[3],ymin = -Inf, ymax = Inf, fill = "Average
 Range"), alpha = .2,color="slategray2")+
 geom_vline(xintercept = 543.4, linetype="dotted", color = "black", size=1)+
 geom_segment(aes(x=700, y=0.875,xend=750,yend= 0.875),color="black",size=1,linetype="dotte"
 annotate(geom="text", x=825, y=0.885, label="Observed for year 1990",color="black",size=3,f
ace="bold")
```

Warning: Ignoring unknown parameters: face

Hide

NA

20-50-30

```
Hide
```

```
nyear=30
prevu=c(0.2,0.5,0.3)
n=1000
yearclimcond=year_cond=Briggs_wilks_resampling(chemin.in,seas,prevu,n)
P1_20_50_30=SWG1(chemin.in,yearclimcond,seas,distribution,nyear,andebut,ht_seuil)
P2_20_50_30=SWG2(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
P3_20_50_30=SWG3(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
```

Hide

```
library(tidyverse)
dens = split(cum20_50_30season_gather,cum20_50_30season_gather$SWG) %>% map_df(function(d){
  dens = density(d$value, adjust=0.1, from=min(cum20 50 30season gather$value) - 0.05*diff(ra
nge(cum20 50 30season gather$value)),
                 to=max(cum20_50_30season_gather$value) + 0.05*diff(range(cum20_50_30season_g
ather$value)))
 data.frame(x=dens$x, y=dens$y, cd=cumsum(dens$y)/sum(dens$y), SWG=d$SWG[1])
})
dens1=dens
dens1=cbind.data.frame(dens1,rep("Forecast probability 20-50-30",dim(dens1)[1]))
colnames(dens1)=c("x","y","cd","SWG","tt")
ggplot() +
 geom_line(data=dens1, aes(x, 1-cd, colour=SWG),size=1)+
 labs(y = "Probability", x="Cumulative seasonal rainfall [mm/season]")+
 scale_x_continuous(breaks = seq(300,1200,100))+
 scale_color_manual(values=c("black", "red","blue","green")) +
 theme(legend.position="bottom", legend.background = element_rect(fill="lightgrey", size=0.5,
linetype="solid"),legend.title=element_blank(),axis.text.x = element_text(size = 9,face="bol
d"),axis.text.y = element_text(size = 9,face='bold'),axis.title = element_text(face = "bold",
size = 10),legend.text = element_text(size = 10,face = "bold"))+
 ggplot2::facet_wrap(facets= ~ tt, ncol = 4, scales="free_x")+
  geom_rect(aes(xmin = tercile[2],xmax = tercile[3],ymin = -Inf, ymax = Inf, fill = "Average
 Range"), alpha = .2,color="slategray2")+
 geom_vline(xintercept = 735.9, linetype="dotted", color = "black", size=1)+
 geom_segment(aes(x=820, y=0.875,xend=895,yend= 0.875),color="black",size=1,linetype="dotte"
 annotate(geom="text", x=1020, y=0.885, label="Observed for year 2003",color="black",size=3,
face="bold")
```

Warning: Ignoring unknown parameters: face

Comparison of disaggregation results to observed above, deficit or normal years

```
#Select season
saison=kandi_val%>%filter(mois%in%seas:(seas+2))%>%transmute(year=year,mois=mois,rain=PRCP)%
>%group_by(year)%>%summarise(rain=sum(rain))
for_tercil=as.vector(saison%>%filter(between(year,1981,2010))%>%select(rain))
#compute terciles
tercile=quantile(for_tercil$rain,probs = seq(0,1,1/3))

# Find years in each categorial

Byear=as.vector(subset(saison, rain<tercile[2],select = year)$year)

Ayear=as.vector(subset(season, rain>tercile[3],select = year)$year

r)
Nyear=as.vector(subset(season, rain>tercile[2]&rain<=tercile[3],select = year)$year)
```

Above years

```
nyear=length(Ayear)
prevu=c(0.15,0.35,0.5)
n=1000
yearclimcond=year_cond=Briggs_wilks_resampling(chemin.in,seas,prevu,n)
Ayear_1=SWG1(chemin.in,yearclimcond,seas,distribution,nyear,andebut,ht_seuil)
Ayear_2=SWG2(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
Ayear_3=SWG3(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
```

Normal years

Hide

```
nyear=length(Nyear)
prevu=c(0.2,0.5,0.3)
n=1000
yearclimcond=year_cond=Briggs_wilks_resampling(chemin.in,seas,prevu,n)

Nyear_1=SWG1(chemin.in,yearclimcond,seas,distribution,nyear,andebut,ht_seuil)

Nyear_2=SWG2(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)

Nyear_3=SWG3(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
```

Below years

Hide

```
nyear=length(Byear)
prevu=c(0.5,0.35,0.15)
n=1000
yearclimcond=year_cond=Briggs_wilks_resampling(chemin.in,seas,prevu,n)

Byear_1=SWG1(chemin.in,yearclimcond,seas,distribution,nyear,andebut,ht_seuil)

Byear_2=SWG2(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)

Byear_3=SWG3(chemin.in,yearclimcond,seas,nyear,andebut,ht_seuil)
```

dry and wet spells comparaison

```
##### Dry Spells Above years
seq_real_Ayear=kandi_val%>%filter(between(mois,7,9),year%in%Ayear)%>%
 transmute(year=year,PRCP)%>%
 group_by(year)%>%summarise(Obs=dry(PRCP))%>%
 transmute(Obs=Obs)
Obs_dry_Ayear=cbind.data.frame(rep("Obs. Excess years/15-35-50",dim(seq_real_Ayear)[1]),rep(
"Obs",dim(seq_real_Ayear)[1]),seq_real_Ayear$Obs)
colnames(Obs_dry_Ayear)=c("type","SWG","dry_spells")
seq SWG1 Ayear=Ayear 1$data sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG1=dry(rain))%>%
 transmute(SWG1=SWG1)
SWG1_dry_Ayear=cbind.data.frame(rep("Obs. Excess years/15-35-50",dim(seq_SWG1_Ayear)[1]),rep(
"SWG1", dim(seq_SWG1_Ayear)[1]), seq_SWG1_Ayear$SWG1)
colnames(SWG1_dry_Ayear)=c("type","SWG","dry_spells")
seq SWG2 Ayear=Ayear 2$data sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG2=dry(rain))%>%
 transmute(SWG2=SWG2)
SWG2_dry_Ayear=cbind.data.frame(rep("Obs. Excess years/15-35-50",dim(seq_SWG2_Ayear)[1]),rep(
"SWG2",dim(seq_SWG2_Ayear)[1]),seq_SWG2_Ayear$SWG2)
colnames(SWG2_dry_Ayear)=c("type","SWG","dry_spells")
seq_SWG3_Ayear=Ayear_3$data_sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG3=dry(rain))%>%
 transmute(SWG3=SWG3)
SWG3_dry_Ayear=cbind.data.frame(rep("Obs. Excess years/15-35-50",dim(seq_SWG3_Ayear)[1]),rep(
"SWG3",dim(seq_SWG3_Ayear)[1]),seq_SWG3_Ayear$SWG3)
colnames(SWG3_dry_Ayear)=c("type","SWG","dry_spells")
#### Dry spells normal years
seq_real_Nyear=kandi_val%>%filter(between(mois,7,9),year%in%Nyear)%>%
 transmute(year=year,PRCP)%>%
 group by(year)%>%summarise(Obs=dry(PRCP))%>%
 transmute(Obs=Obs)
Obs_dry_Nyear=cbind.data.frame(rep("Obs. Average years/20-50-30",dim(seq_real_Nyear)[1]),rep(
"Obs", dim(seq real Nyear)[1]), seq real Nyear$Obs)
colnames(Obs_dry_Nyear)=c("type","SWG","dry_spells")
seq SWG1 Nyear=Nyear 1$data sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG1=dry(rain))%>%
 transmute(SWG1=SWG1)
SWG1_dry_Nyear=cbind.data.frame(rep("Obs. Average years/20-50-30",dim(seq_SWG1_Nyear)[1]),rep
("SWG1",dim(seq SWG1 Nyear)[1]),seq SWG1 Nyear$SWG1)
colnames(SWG1_dry_Nyear)=c("type","SWG","dry_spells")
```

```
seq_SWG2_Nyear=Nyear_2$data_sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG2=dry(rain))%>%
 transmute(SWG2=SWG2)
SWG2_dry_Nyear=cbind.data.frame(rep("Obs. Average years/20-50-30",dim(seq_SWG2_Nyear)[1]),rep
("SWG2",dim(seq_SWG2_Nyear)[1]),seq_SWG2_Nyear$SWG2)
colnames(SWG2_dry_Nyear)=c("type","SWG","dry_spells")
seq SWG3 Nyear=Nyear 3$data sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG3=dry(rain))%>%
 transmute(SWG3=SWG3)
SWG3_dry_Nyear=cbind.data.frame(rep("Obs. Average years/20-50-30",dim(seq_SWG3_Nyear)[1]),rep
("SWG3",dim(seq_SWG3_Nyear)[1]),seq_SWG3_Nyear$SWG3)
colnames(SWG3_dry_Nyear)=c("type","SWG","dry_spells")
#### below years
seq_real_Byear=kandi_val%>%filter(between(mois,7,9),year%in%Byear)%>%
 transmute(year=year,PRCP)%>%
 group_by(year)%>%summarise(Obs=dry(PRCP))%>%
 transmute(Obs=Obs)
Obs_dry_Byear=cbind.data.frame(rep("Obs. Below years/50-35-15",dim(seq_real_Byear)[1]),rep("O
bs",dim(seq_real_Byear)[1]),seq_real_Byear$0bs)
colnames(Obs_dry_Byear)=c("type","SWG","dry_spells")
seq_SWG1_Byear=Byear_1$data_sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG1=dry(rain))%>%
 transmute(SWG1=SWG1)
SWG1_dry_Byear=cbind.data.frame(rep("Obs. Below years/50-35-15",dim(seq_SWG1_Byear)[1]),rep(
"SWG1",dim(seq_SWG1_Byear)[1]),seq_SWG1_Byear$SWG1)
colnames(SWG1_dry_Byear)=c("type","SWG","dry_spells")
seq_SWG2_Byear=Byear_2$data_sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG2=dry(rain))%>%
 transmute(SWG2=SWG2)
SWG2_dry_Byear=cbind.data.frame(rep("Obs. Below years/50-35-15",dim(seq_SWG2_Byear)[1]),rep(
"SWG2",dim(seq_SWG2_Byear)[1]),seq_SWG2_Byear$SWG2)
colnames(SWG2_dry_Byear)=c("type","SWG","dry_spells")
seq_SWG3_Byear=Byear_3$data_sim%>%
 transmute(year=year,rain)%>%
 group by(year)%>%summarise(SWG3=dry(rain))%>%
 transmute(SWG3=SWG3)
SWG3_dry_Byear=cbind.data.frame(rep("Obs. Below years/50-35-15",dim(seq_SWG3_Byear)[1]),rep(
"SWG3",dim(seq_SWG3_Byear)[1]),seq_SWG3_Byear$SWG3)
colnames(SWG3_dry_Byear)=c("type","SWG","dry_spells")
dry_seq_comp=rbind.data.frame(Obs_dry_Ayear,SWG1_dry_Ayear,SWG2_dry_Ayear,SWG3_dry_Ayear,Obs_
dry_Nyear,SWG1_dry_Nyear,SWG2_dry_Nyear,SWG3_dry_Nyear,Obs_dry_Byear,SWG1_dry_Byear,SWG2_dry_
Byear,SWG3_dry_Byear)
```

Hide

```
ggplot(dry_seq_comp, aes(x=SWG,y=dry_spells,color=SWG))+
   geom_violin(size=1) +stat_summary(fun=mean, colour="darkred", geom="point", size=2,show.leg
end = T)+
   scale_color_manual(values=c("black","red","blue","green")) + ylim(1,max(Spells_table$valu
e))+ theme(axis.text.x = element_text(size = 10,face="bold",angle = 90),axis.text.y = element
   _text(size = 11,face='bold'),axis.title = element_text(face = "bold",size = 12),legend.text =
element_text(size = 10,face = "bold"),legend.position="bottom",strip.text.x = element_text(si
ze = 12,face = "bold"))+
   labs(y = "Number of days", x="")+
   ggplot2::facet_wrap(facets= ~ type, ncol = 3,scales="free")+theme(strip.text.x = element_te
xt(size=10),strip.background=element_rect(fill="lightgrey"))+geom_point(aes(x=3, y=22), colou
r="darkred", size=3)+
   annotate(geom="text", x=3.5, y=22.4, label="Mean",color="black",size=4,face="bold")
```

```
##### Wet Spells
##### wet Spells Above years
Wet_real_Ayear=kandi_val%>%filter(between(mois,7,9),year%in%Ayear)%>%
 transmute(year=year, PRCP)%>%
 group_by(year)%>%summarise(Obs=wet(PRCP))%>%
 transmute(Obs=Obs)
Obs_wet_Ayear=cbind.data.frame(rep("Obs. Excess years/15-35-50",dim(Wet_real_Ayear)[1]),rep(
"Obs", dim(Wet_real_Ayear)[1]), Wet_real_Ayear$Obs)
colnames(Obs_wet_Ayear)=c("type","SWG","wet_spells")
Wet_SWG1_Ayear=Ayear_1$data_sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG1=wet(rain))%>%
 transmute(SWG1=SWG1)
SWG1_wet_Ayear=cbind.data.frame(rep("Obs. Excess years/15-35-50",dim(Wet_SWG1_Ayear)[1]),rep(
"SWG1",dim(Wet_SWG1_Ayear)[1]),Wet_SWG1_Ayear$SWG1)
colnames(SWG1_wet_Ayear)=c("type","SWG","wet_spells")
Wet_SWG2_Ayear=Ayear_2$data_sim%>%
 transmute(year=year,rain)%>%
 group by(year)%>%summarise(SWG2=wet(rain))%>%
 transmute(SWG2=SWG2)
SWG2_wet_Ayear=cbind.data.frame(rep("Obs. Excess years/15-35-50",dim(Wet_SWG2_Ayear)[1]),rep(
"SWG2",dim(Wet_SWG2_Ayear)[1]),Wet_SWG2_Ayear$SWG2)
colnames(SWG2_wet_Ayear)=c("type","SWG","wet_spells")
Wet_SWG3_Ayear=Ayear_3$data_sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG3=wet(rain))%>%
 transmute(SWG3=SWG3)
SWG3_wet_Ayear=cbind.data.frame(rep("Obs. Excess years/15-35-50",dim(Wet_SWG3_Ayear)[1]),rep(
"SWG3",dim(Wet SWG3 Ayear)[1]),Wet SWG3 Ayear$SWG3)
colnames(SWG3 wet Ayear)=c("type","SWG","wet spells")
#### wet spells normal years
Wet real Nyear=kandi val%>%filter(between(mois,7,9),year%in%Nyear)%>%
 transmute(year=year,PRCP)%>%
 group_by(year)%>%summarise(Obs=wet(PRCP))%>%
 transmute(Obs=Obs)
Obs wet Nyear=cbind.data.frame(rep("Obs. Average years/15-35-50",dim(Wet real Nyear)[1]),rep(
"Obs", dim(Wet real Nyear)[1]), Wet real Nyear$Obs)
colnames(Obs_wet_Nyear)=c("type","SWG","wet_spells")
Wet SWG1 Nyear=Nyear 1$data sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG1=wet(rain))%>%
 transmute(SWG1=SWG1)
SWG1_wet_Nyear=cbind.data.frame(rep("Obs. Average years/15-35-50",dim(Wet_SWG1_Nyear)[1]),rep
("SWG1",dim(Wet_SWG1_Nyear)[1]),Wet_SWG1_Nyear$SWG1)
```

```
colnames(SWG1_wet_Nyear)=c("type","SWG","wet_spells")
Wet SWG2 Nyear=Nyear 2$data sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG2=wet(rain))%>%
 transmute(SWG2=SWG2)
SWG2_wet_Nyear=cbind.data.frame(rep("Obs. Average years/15-35-50",dim(Wet_SWG2_Nyear)[1]),rep
("SWG2",dim(Wet_SWG2_Nyear)[1]),Wet_SWG2_Nyear$SWG2)
colnames(SWG2_wet_Nyear)=c("type","SWG","wet_spells")
Wet_SWG3_Nyear=Nyear_3$data_sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG3=wet(rain))%>%
 transmute(SWG3=SWG3)
SWG3_wet_Nyear=cbind.data.frame(rep("Obs. Average years/15-35-50",dim(Wet_SWG3_Nyear)[1]),rep
("SWG3",dim(Wet_SWG3_Nyear)[1]),Wet_SWG3_Nyear$SWG3)
colnames(SWG3_wet_Nyear)=c("type","SWG","wet_spells")
#### below years
Wet_real_Byear=kandi_val%>%filter(between(mois,7,9),year%in%Byear)%>%
 transmute(year=year,PRCP)%>%
 group_by(year)%>%summarise(Obs=wet(PRCP))%>%
 transmute(Obs=Obs)
Obs_wet_Byear=cbind.data.frame(rep("Obs. Below years/15-35-50",dim(Wet_real_Byear)[1]),rep("O
bs",dim(Wet_real_Byear)[1]),Wet_real_Byear$Obs)
colnames(Obs_wet_Byear)=c("type","SWG","wet_spells")
Wet_SWG1_Byear=Byear_1$data_sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG1=wet(rain))%>%
 transmute(SWG1=SWG1)
SWG1_wet_Byear=cbind.data.frame(rep("Obs. Below years/15-35-50",dim(Wet_SWG1_Byear)[1]),rep(
"SWG1", dim(Wet SWG1 Byear)[1]), Wet SWG1 Byear$SWG1)
colnames(SWG1 wet Byear)=c("type","SWG","wet spells")
Wet SWG2 Byear=Byear 2$data sim%>%
 transmute(year=year,rain)%>%
 group by(year)%>%summarise(SWG2=wet(rain))%>%
 transmute(SWG2=SWG2)
SWG2 wet Byear=cbind.data.frame(rep("Obs. Below years/15-35-50",dim(Wet SWG2 Byear)[1]),rep(
"SWG2",dim(Wet_SWG2_Byear)[1]),Wet_SWG2_Byear$SWG2)
colnames(SWG2_wet_Byear)=c("type","SWG","wet_spells")
Wet SWG3 Byear=Byear 3$data sim%>%
 transmute(year=year,rain)%>%
 group_by(year)%>%summarise(SWG3=wet(rain))%>%
 transmute(SWG3=SWG3)
SWG3_wet_Byear=cbind.data.frame(rep("Obs. Below years/15-35-50",dim(Wet_SWG3_Byear)[1]),rep(
"SWG3",dim(Wet SWG3 Byear)[1]),Wet SWG3 Byear$SWG3)
colnames(SWG3_wet_Byear)=c("type","SWG","wet_spells")
wet_seq_comp=rbind.data.frame(Obs_wet_Ayear,SWG1_wet_Ayear,SWG2_wet_Ayear,SWG3_wet_Ayear,Obs_
```

wet_Nyear,SWG1_wet_Nyear,SWG2_wet_Nyear,SWG3_wet_Nyear,Obs_wet_Byear,SWG1_wet_Byear,SWG2_wet_Byear)

Hide

```
ggplot(wet_seq_comp, aes(x=SWG,y=wet_spells,color=SWG))+
  geom_violin(size=1) +stat_summary(fun=mean, colour="darkred", geom="point", size=2,show.leg
end = T)+
  scale_color_manual(values=c("black","red","blue","green")) + ylim(1,max(Spells_table$valu
e))+ theme(axis.text.x = element_text(size = 10,face="bold",angle = 90),axis.text.y = element
  _text(size = 11,face='bold'),axis.title = element_text(face = "bold",size = 12),legend.text =
element_text(size = 10,face = "bold"),legend.position="bottom",strip.text.x = element_text(si
ze = 12,face = "bold"))+
  labs(y = "Number of days", x="")+
  ggplot2::facet_wrap(facets= ~ type, ncol = 3,scales="free")+theme(strip.text.x = element_te
xt(size=10),strip.background=element_rect(fill="lightgrey"))+geom_point(aes(x=3, y=22), colou
r="darkred", size=3)+
  annotate(geom="text", x=3.5, y=22.4, label="Mean",color="black",size=4,face="bold")
```

Cumul day observation

```
# Cumulative daily rainfall
kand=kandi_val
kand$PRCP[kand$PRCP<ht_seuil]<-0
#Above years
Ayear_1$data_sim$rain[Ayear_1$data_sim$rain<ht_seuil]<-0
Ayear_2$data_sim$rain[Ayear_2$data_sim$rain<ht_seuil]<-0
Ayear_3$data_sim$rain[Ayear_3$data_sim$rain<ht_seuil]<-0
cum_day_Ayear=cbind.data.frame(kand%>%filter(between(mois,7,9),year%in%Ayear)%>%dplyr::select
(PRCP),Ayear_1$data_sim$rain,Ayear_2$data_sim$rain,Ayear_3$data_sim$rain)
colnames(cum_day_Ayear)=c("Obs","SWG1","SWG2" ,"SWG3")
cum_day_Ayear_gather=cum_day_Ayear%>%gather(key = "SWG",value = value)
cum_day_Ayear_gather=cbind.data.frame(rep("Obs. Excess years/15-35-50",dim(cum_day_Ayear_gath
er)[1]),cum_day_Ayear_gather)
colnames(cum_day_Ayear_gather)=c("cum","SWG","value")
#Normal or Average years
Nyear_1$data_sim$rain[Nyear_1$data_sim$rain<ht_seuil]<-0
Nyear_2$data_sim$rain[Nyear_2$data_sim$rain<ht_seuil]<-0
Nyear_3$data_sim$rain[Nyear_3$data_sim$rain<ht_seuil]<-0</pre>
cum_day_Nyear=cbind.data.frame(kand%>%filter(between(mois,7,9),year%in%Nyear)%>%dplyr::select
(PRCP), Nyear_1$data_sim$rain, Nyear_2$data_sim$rain, Nyear_3$data_sim$rain)
colnames(cum_day_Nyear)=c("Obs","SWG1","SWG2" ,"SWG3")
cum_day_Nyear_gather=cum_day_Nyear%>%gather(key = "SWG",value = value)
cum_day_Nyear_gather=cbind.data.frame(rep("Obs. Average years/20-50-30",dim(cum_day_Nyear_gat
her)[1]),cum day Nyear gather)
colnames(cum day Nyear gather)=c("cum","SWG","value")
#Below years
Byear_1$data_sim$rain[Byear_1$data_sim$rain<ht_seuil]<-0</pre>
Byear_2$data_sim$rain[Byear_2$data_sim$rain<ht_seuil]<-0
Byear_3$data_sim$rain[Byear_3$data_sim$rain<ht_seuil]<-0
cum_day_Byear=cbind.data.frame(kand%>%filter(between(mois,7,9),year%in%Byear)%>%dplyr::select
(PRCP),Byear_1$data_sim$rain,Byear_2$data_sim$rain,Byear_3$data_sim$rain)
colnames(cum_day_Byear)=c("Obs","SWG1","SWG2" ,"SWG3")
cum_day_Byear_gather=cum_day_Byear%>%gather(key = "SWG",value = value)
cum day Byear gather=cbind.data.frame(rep("Obs. Below years/50-35-15",dim(cum day Byear gathe
r)[1]),cum_day_Byear_gather)
colnames(cum_day_Byear_gather)=c("cum","SWG","value")
```

cum_comp=rbind.data.frame(cum_day_Ayear_gather,cum_day_Nyear_gather,cum_day_Byear_gather)

Hide

```
ggplot(cum_comp, aes(x=SWG,y=value,color=SWG))+
   geom_boxplot(size=1) +stat_summary(fun=mean, colour="darkred", geom="point", size=2,show.le
gend = T)+
   scale_color_manual(values=c("black","red","blue","green","grey")) + ylim(0,150)+ theme(axi
s.text.x = element_text(size = 11,face="bold"),axis.text.y = element_text(size = 11,face='bold'),axis.title = element_text(face = "bold",size = 12),legend.text = element_text(size = 10,f
ace = "bold"),legend.position="bottom",strip.text.x = element_text(size = 12,face = "bold"))+
   labs(y = "mm/day", x="")+
   ggplot2::facet_wrap(facets= ~ cum, dir="h",scales="free")+theme(strip.text.x = element_text
(size=14),strip.background=element_rect(fill="lightgrey"))+geom_point(aes(x=0.5, y=150), colo
ur="darkred", size=3)+
   annotate(geom="text", x=0.8, y=150, label="Mean",color="black",size=4,face="bold")
```