ugr Universidad de Granada	Fundamentos Físicos y Tecnológicos	Práctica de Laboratorio 1	
Apellidos:			Firma:
Bolaños Quesada			
Nombre:	DNI:	Grupo:	
Manuel Vicente	77688712W	DGIIM 2.2	

- 1. Simula un circuito divisor de tensión con una fuente de tensión de valor V en serie con dos resistencias de R_1 y R_2 . Coloca sondas que permitan medir la tensión entre los extremos de cada resistencias (que llamaremos V_1 y V_2 respectivamente) así como la corriente que atraviesa cada una (que llamaremos I_1 e I_2 respectivamente).
 - a) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para V, R_1 y R_2 que se muestran en ella:

V	R_1	R_2	V_1	V_2
10 V	$1 \text{ k}\Omega$	$1 \text{ k}\Omega$	5 V	5 V
10 V	$1 \text{ k}\Omega$	$2 k\Omega$	3.33 V	6.67 V
10 V	$1 \text{ k}\Omega$	$4 \text{ k}\Omega$	2 V	8 V

b) ¿En qué resistencia se observa una mayor diferencia de potencial entre sus extremos? Justifica tu respuesta.

En la R_2. Como su resistencia es mayor, la diferencia de potencial entre sus extremos es mayor, para que se siga cumpliendo la Ley de Ohm.

c) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para V, R_1 y R_2 que se muestran en ella:

V	R_1	R_2	V_1	V_2	$\frac{V_2}{V_1}$	I_1	I_2
1 V	$2.2 \text{ k}\Omega$	$4.7~\mathrm{k}\Omega$	0.319 V	0.681 V	2.134	0.145 mA	0.145 mA
5 V	$2.2 \text{ k}\Omega$	$4.7 \mathrm{~k}\Omega$	1.59 V	3.41 V	2.134	0.725 mA	0.725 mA
10 V	$2.2 \text{ k}\Omega$	4.7 kΩ	3.19 V	6.81 V	2.134	1.45 mA	1.45 mA

d) Calcula el cociente de las resistencias $\frac{R_2}{R_1}$ y compáralo con los resultados de la columna $\frac{V_2}{V_1}$ ¿Existe alguna relación entre los mismos? ¿Cuál es la justificación teórica de este hecho?

R2/R1 = 1.136, que es prácticamente lo mismo que V2/V1. Debería ser lo mismo, pero por errores de medida, no obtenemos exactamente el mismo resultado.Como por R1 y por R2 pasa la misma intensidad, es decir, l1 = l2, aplicando la Ley de Ohm obtenemos lo siguiente:

V1/R1 = I1 = I2 = V2/R2 --> R2/R1 = V2/V1

- 2. Simula un circuito divisor de corriente con una fuente de corriente de valor I en serie con dos resistencias en paralelo de valores R_1 y R_2 . Coloca sondas que permitan medir la tensión entre los extremos de cada resistencias (que llamaremos V_1 y V_2 respectivamente) así como la corriente que atraviesa cada una (que llamaremos I_1 e I_2 respectivamente).
 - a) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para I, R_1 y R_2 que se muestran en ella:

I	R_1	R_2	I_1	I_2
1 mA	$1 \text{ k}\Omega$	$1 \text{ k}\Omega$	0.5 mA	0.5 mA
1 mV	$1 \text{ k}\Omega$	$2 k\Omega$	0.667 mA	0.333 mA
1 mA	$1 \text{ k}\Omega$	$4 \text{ k}\Omega$	0.8 mA	0.2 mA

b) ¿Por qué resistencia circula una mayor intensidad de corriente? Justifica tu respuesta.

Por la resistencia R1, ya que la resistencia que opone es menor. Circula una mayor intensidad de corriente, para que así se cumpla la Ley de Ohm (la tension se mantiene constante en las resistencias).

c) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para I, R_1 y R_2 que se muestran en ella:

I	R_1	R_2	V_1	V_2	I_1	I_2	$\frac{I_2}{I_1}$
1 mA	$2.2 \text{ k}\Omega$	$4.7 \text{ k}\Omega$	1.5 V	1.5 V	0.681 mA	0.319 mA	0.468
5 mA	$2.2 \text{ k}\Omega$	$4.7 \mathrm{~k}\Omega$	7.49 V	7.49 V	3.41 mA	1.59 mA	0.466
10 mA	$2.2 \text{ k}\Omega$	$4.7 \text{ k}\Omega$	15V	15 V	6.81 mA	3.19 mA	0.468

d) Calcula el cociente de las resistencias $\frac{R_2}{R_1}$ y compáralo con los resultados de la columna $\frac{I_2}{I_1}$ ¿Existe alguna relación entre los mismos? ¿Cuál es la justificación teórica de este hecho?

$$R2/R1 = 2.1363$$

Es fácil darse cuenta que R2/R1 es la inversa de I2/I1, es decir, R2/R1 = I1/I2. Veamos, que, efectivamente, se cumple eso:

Tenemos que la tensión de R1 y de R2 es la misma, por lo que, aplicando la ley de Ohm obtenemos: R1 * I1 = V1 = V2 = R2 * I2 -- > R2/R1 = I1/I2.

3. Simula el siguiente circuito teniendo en cuenta que I=1 mA, V=5 V, R_1 =1 k Ω , R_2 =2 k Ω , R_3 =3 k Ω , R_4 =4 k Ω y R_5 =5 k Ω . Calcula para cada elemento (fuente o resistencia) la diferencia de potencial entre sus extremos así como la intensidad que lo atraviesa.

