OHWR Generic setup tutorial

20 Jun. 2012

${\bf Contents}$

1	Intr	roduction	2
2	Har	rdware Tools	2
	2.1	Xilinx ISE	2
		2.1.1 Xilinx USB JTAG cable	2
		2.1.2 Xilinx Environment	2
	2.2	HDLMake	3
	2.3	Fake modelsim error	3
3	Software Tools		3
	3.1	Global apt-get	4
	3.2	LM32 Cross-compiler:	4
	3.3	Texinfo & Markdown (Pandoc)	4
		3.3.1 Texinfo	4
		3.3.2 Markdown	4
4	4 Installing gnurabbit PCIe driver		4
5	ОН	W Repositories Structure	5

1 Introduction

This guide has been written to obtain a quick development environment for an ohwr.org user.

We have used Ubuntu 12.04 (LTS) 32bits to perform the installation of the different components.

2 Hardware Tools

The common tools for all the hardware project in ohwr.org are:

- Xilinx ISE
- Hdlmake (Python)
- Git
- Subversion

To install git and subversion just look at Global apt-get

2.1 Xilinx ISE^1

You can follow this http://www.george-smart.co.uk/wiki/Xilinx_JTAG_Linux to install Xilinx ISE on Linux. The following steps try to briefly resume the steps after the Xilinx ISE installation for a 32 bits platform

2.1.1 Xilinx USB JTAG cable

First we download the required libraries

```
sudo apt-get install gitk git-gui libusb-dev build-essential libc6-dev fxload
```

Then we download the driver source

```
cd /opt/Xilinx
sudo git clone git://git.zerfleddert.de/usb-driver
```

Then we compile the driver:

```
cd usb-driver/
sudo make
```

And finally we set it up

```
./setup_pcusb /opt/Xilinx/13.2/ISE_DS/ISE/
```

2.1.2 Xilinx Environment

Then we add Xilinx ISE to the **PATH** and create a **XILINX** variable by editing \${HOME}/.bashrc and adding:

¹We have installed Xilinx ISE 13.2 on a 32bit linux platform in this tutorial, you might changes some parameters to fit your instalation


```
export XILINX=/opt/Xilinx/13.2/ISE_DS/
PATH=$PATH:$XILINX/ISE/bin/lin
```

2.2 HDLMake

Download from git by executing the following command.

```
git clone git://ohwr.org/misc/hdl-make.git
```

And then install by putting hdlmake executable somewhere in the PATH

• If you have root access we suggest you do copy or link hdlmake to the /usr/local/bin, this way hdlmake will be installed for all users:

```
sudo ln -s /opt/hdlmake/hdlmake /usr/local/bin/hdlmake
```

• If you don't have root access the best way is to modify the path variable by editing \$\{\text{HOME}\}/.\text{bashrc} and adding:

```
PATH=$PATH:~/hdlmake/
```

Finally you should check that it work hdlmake --help

2.3 Fake modelsim error

This operation might be not usefull on all computer

You need to perform the following steps

```
sudo mkdir /opt/modelsim
cd /opt/modelsim
touch modelsim.ini
mkdir linux
touch linux/vsim
chmod +x linux
```

Setting the environment (editing \$\{\text{HOME}\}/.\text{bashrc}) you must also add modelsim (vsim executable to the path), because it needs to find modelsim.ini

```
export MODELTECH=/opt/modelsim
PATH=$PATH:${MODELTECH}/linux
```

3 Software Tools

The common tools used for the sofware project in ohwr are

- Git
- Subversion
- build-essentials: Contains various binaries to build source code
- Kernel sources: Might be usefull to compile drivers \mathcal{C} kernel modules
- minicom: Hyperterminal for linux
- LM32 cross compiler

3.1 Global apt-get

Just enter the following command

sudo apt-get install git subversion build-essential build-dep linux minicom

3.2 LM32 Cross-compiler:

You can install soc-lm32 cross compiler by downloading & extracting it to /opt/

```
wget http://www.das-labor.org/files/madex/lm32_linux_i386.tar.bz2
sudo tar -xvjf lm32_linux_i386.tar.bz2 -C /opt/
export PATH=/opt/lm32/bin/:$PATH
```

To use it you just need to export the CROSS_COMPILER variable:

```
export CROSS_COMPILER="/opt/lm32/bin/lm32-elf-"
```

3.3 Texinfo & Markdown (Pandoc)

3.3.1 Texinfo

Some documentation are written in texinfo format .texi

To compile them you just need to install it

```
sudo apt-get install texinfo
```

And then you should run make in the documentation folder. You can also try

```
texi2pdf --batch <filename>.texi
```

3.3.2 Markdown

Markdown is the syntax used to easily generate pretty-formated documentation using plane text. This document is written using the markdown syntax (And all .mkd documents)

The syntax is described http://daringfireball.net/projects/markdown/

However we use a special markdown syntax and we generate the tools using pandoc:

- Setup²: sudo apt-get install pandoc
- Syntax: http://johnmacfarlane.net/pandoc/README.html#pandocs-markdown
- Simple call: pandoc --toc -o output.pdf input.mkd

4 Installing gnurabbit PCIe driver

This driver (rawrabbit kernel module) must be installed in all the projects that use **SPEC** card (FMC DIO, FMC ADC, PTS, Starting Kit, ...) As this tutorial is created for ubuntu distribution we propose the "cleanest" way to install it.

²If you use pandoc version older than 1.9, you might have problem to generate pdf directly from markdown.

- 1. First, compile the module
- 2. Add the module file rawrabbit.ko in /lib/modules/\$(uname -r)/kernel/drivers/pci.
- 3. Edit /etc/modules file and add a new line containing rawrabbit
- 4. Run sudo update-initramfs -u
- 5. and finally (after rebooting) the new module must be loaded as expected

5 OHW Repositories Structure

As one can be easily lost inside the OHWR, we have tried to quickly resume the structure of the repositories

- HDLCore lib: Sharing generic core for all OHWR projects
 - White Rabbit Core Collection: Module specific to WR boards (WRS, SPEC, ...)

```
* wr softpll
```

- * wr_lm32
- * wr_endpoint
- * ...
- DDR3 & QDRII
- LM32
- Whishbone Crossbar
- Whishbone serializer
- Whishbone Slave Generator: Should be use when we want to create a new WB slave

- ..

- White Rabbit: Contains specific project for WR protocols and WR boards
 - WR Switch hardware
 - WR Switch Software
 - WR Switch HDL
 - WR NIC
 - PPSi

- ...

- FMC Projects: Contains all FMC mezzanines & the carriers
 - SPEC, SVEC, SPEXI, ...
 - DIO, ADC, TDC, ...

_ ..

- Miscellaneous Projets
 - Production Test Suite: Test of specific boards, such as SPEC, DIO, ...
 - HDLMake: Software to compile hdl core for OHWR project (modules from various repository)

– ...

