Example 6.1. Let X be a random variable with the following probability distribution:

Find E(X) and $E(X^2)$ and using the laws of expectation, evaluate

(Gauhati Univ. B.Sc., 1992)

Solution.
$$E(X) = \sum x \cdot p(x)$$

 $= (-3) \times \frac{1}{6} + 6 \times \frac{1}{2} + 9 \times \frac{1}{3} = \frac{11}{2}$
 $E(X^2) = \sum x^2 p(x)$
 $= 9 \times \frac{1}{2} + 36 \times \frac{1}{2} + 81 \times \frac{1}{3} = \frac{93}{2}$

$$E[2X+1)^{2} = E[4X^{2}+4X+1] = 4E(X^{2})+4E(X)+1$$

$$= 4 \times \frac{93}{2}+4 \times \frac{11}{2}+1 = 209$$

$$= \left[2(-3)+1\right]^{2} \left\{\frac{1}{6}\right\} + \left[2(6)+1\right]^{2} \left\{\frac{1}{2}\right\} + \left[2(9)+1\right]^{2} \left\{\frac{1}{3}\right\}$$

$$= \left(-\frac{5}{6}\right)^{2} + \frac{13}{2} + \frac{19}{3} = \frac{25}{6} + \frac{169}{3} + \frac{361}{3} = 26$$

Expected Value for Binomial Discrete Random Variable

The Expected Value for a binomial random variable is calculated using the formula P(x) * X.

P(x) is the probability of success, and X is the number of trials.

Successes or failures in ;
$$b(x) = {^{n}C_{x}} b^{x} (1-p)^{n-x}$$

X measures the num of successes in 'n trials of an event

$$E(x) = \sum_{x=0}^{n} {^{n}C_{x}} b^{x} (1-p)^{n-x} = n b(1-p)$$

Example: You work as a financial analyst for a development company, for instance. Your manager just instructed you to determine which future development initiatives are most likely to succeed and pick that one. Upon completion, Project A is predicted to have a 0.4 per cent chance of reaching a value of \$2 million and a 0.6 per cent chance of reaching a value of \$500,000. Upon completion, Project B has a 0.3 per cent chance of being valued at \$3 million and a 0.7 per cent chance of being valued at \$200,000.

Answer:

You must determine the expected value of each project and contrast the values to choose the best project. The following formula can be used to get the EV:

EV (Project A) equals [0.4 x \$2,000,000] plus [0.6 x \$500,000] to arrive at \$1,100,000.

EV (Project B) equals [0.3 \$3,000,000] plus [0.7 \$200,000] for a total of \$1,040,000.

Project A's EV is higher than Project B's EV. As a result, Project A should be chosen by your company.

$$\times 40\% \rightarrow 2.00,000$$
 $\times 40\% \rightarrow 500,000$
 $\times 30\% \rightarrow 3.000,000$
 $\times 2.00,000$
 $\times 2.00,000$

Probability Density Function

In probability theory, the probability that a random variable will fall into a specific range of values rather than taking on a single value is defined by a **probability density function** (PDF).

The probability function expressing the density of a continuous random variable between a particular range of values is defined by the probability density function (PDF). In other words, the probability density function yields the likelihood that a continuous random variable will have a particular value.

Expected Value for Multiple events Continuous Random Variable

The expected value of a random variable is just the companion of the random variable. You can calculate the EV of a continuous random variable using this formula:

 $E(x) = \int_{-\infty}^{\infty} x f(x) dx$

Where f(x) is the probability density function, representing a function for the density curve. The " \int " symbol is called an integral, equivalent to finding the area under a curve.

Let X be a continuous random variable with PDF

$$fx(x) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Find the expected value of E(X).

$$X \rightarrow \text{continuous } x.v. : X \sim \exp(\lambda) \text{ distribution}.$$

$$f(x) = \lambda e^{-\lambda x} \text{ range} : X \ge 0$$

$$E(X) = \int_{0}^{\infty} f(x) \cdot x \, dx = \int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} \, dx$$

$$\lambda \int_{0}^{\infty} \chi e^{-\lambda \chi} dx = \lambda \left[\chi \int_{0}^{\infty} e^{-\lambda x} dx - \int_{0}^{\infty} 1 \cdot \frac{e^{-\lambda x}}{-\lambda} dx \right]_{0}^{\infty}$$

$$=\lambda \left[\left[\chi \frac{e^{-\lambda u}}{-\lambda} \right]_{0}^{*} + \frac{1}{\lambda} \left[\frac{e^{-\lambda u}}{-\lambda} \right]_{0}^{*} \right]$$

$$= \chi \left[\left\{ 0 - \left(\frac{1}{\lambda} \right) \right\} + \frac{1}{\lambda} \left(\frac{1}{\lambda} \right) \right]$$

$$= 0 + \left[\frac{1}{\lambda} \right] = \left[\frac{1}{\lambda} \right]$$

Expected Value Problem - 2

Question: You toss a fair coin three times. X is the <u>number of heads</u> which appear. What is the Expected Value?

$$X$$
 $P(x)$ $E(x) = 1.5$

0 $\frac{1}{9}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{7}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{3}{1}$ $\frac{3}{1}$ $\frac{3}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

Solution:

Step 1: Figure out the possible values for X. For a three coin toss, you could get anywhere from 0 to 3 heads. So your values for X are 0, 1, 2 and 3.

Step 2: Figure out your probability of getting each value of X. You may need to use a sample space (The sample space for this problem is: {HHH TTT TTH THT HTT HHT HTH THH]}). The probabilities are: 1/8 for 0 heads, 3/8 for 1 head, 3/8 for two heads, and 1/8 for 3 heads.

Step 3: Multiply your X values in Step 1 by the probabilities from step 2. E(X) = O(1/8) + 1(3/8) + 2(3/8) + 3(1/8) = 3/2. The EV is 3/2.

Question: Let X be a continuous random variable with PDF

$$f_X(x) = \begin{cases} 3/x^4 & x \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

Find the expected value.

$$f(x): \frac{3}{x^4} \quad ; \quad x \ge 1$$

$$E(X) = \int_{1}^{\infty} \frac{3}{x^{4}} \cdot x \, dx = \int_{1}^{\infty} \frac{3}{x^{3}} dx = 3 \int_{1}^{\infty} x^{-3} dx$$

$$= 3 \left[x^{-3+1} \right]_{1}^{\infty} = \frac{3}{-2} \left[x^{-2} \right]_{1}^{\infty} = -\frac{3}{2} \left\{ 0 - 1 \right\} = \frac{3}{2}$$

Introduction to Set Theory

In the area of mathematical logic known as **set theory**, we study sets and their characteristics. A set is a grouping or collection of objects. These things are frequently referred to as elements or set members.

A set is, for instance, a team of cricket players. We can say that this set is finite because a cricket team can only have 11 players at a time.

A collection of English vowels is another illustration of a finite set.

However, many sets, including the sets of whole numbers, imaginary numbers, real numbers, and natural numbers, have an unlimited number of members.

$$\{x: x \in (0,1)\}$$

{z: xeIN}

 $\mathbb{N}: \{1, 2, 3, 4, \dots \}$

Definition of Set

A set is a clearly defined group of things or people. Numerous examples from everyday life, including the number of rivers in India and the hues in a rainbow, can be used to relate sets.

Examples of set:

Set representing all the leap years between 1995 and 2015

A ={1996,2000,2004,2008,2012}

- Finite set: The number of items is finite in a finite set. eg. { A , B , 34 , 6% . 1 }
- · Infinite set: Set with an unlimited number of elements:

 9. N

 Empty set: A set that is empty has no elements. 9

 επρέχ set is dended by φ

- Singleton set: It only contains one component. $oldsymbol{q}$ $\{A\}$

- Equal set: If two sets contain the same elements, they are equivalent. $eq \cdot x = \{3, 1, 2\}$ $y = \{1, 2, 3\}$
- Equivalent set: If two sets have the same amount of elements, they are equivalent: X = { A, 13, C} Y= {1,2,8}
- · Power set: A collection of all conceivable subsets.
- Universal set: Any set that contains every set being considered is referred to as a universal set.

 contains all
- · Subset: A is a subset of B when all of set A's elements are members of set B.

possible claments of the analysis

 $A = \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$ B= {10,30,50}) B is a subset of A C: {2,5,10,15} C is not a subset of A

POWER SET

I set containing all possible subsets. X = {A,B, 1, 2}: \$, {A}, {B}, {C}, {D}, {A,B}, {A,1} {A, 2}, {B, 1}, {B, 2}, {1, 2}, {A, B, 1}, {A, 8, 2} {A, 1, 2}, {B, 1, 2}, {A, B, 1, 2}

Power set of X = { \$\phi\$, {A}, {B}, {C}, {D}, {A,B}, {A,1} {A, 2}, {B, 1}, {B, 2}, {1, 2}, {A, B, 1}, {A, B, 2} {A, 1,2}, {B, 1, 2}, {A, B, 1, 2}

clements = 16 = n2; n -> # clements in your original set

Symbo	ı	Symbol Name	Meaning	Example
()	{ }	set	a collection of elements	A = {1, 7, 9, 13, 15, 23}, B = {7, 13, 15, 21}
AUB	AUB	union	Elements that belong to set A or set B	A U B = {1, 7, 9, 13, 15, 21, 23}
ANB	AnB	intersection	Elements that belong to both the sets, A and B	A ∩ B = (7, 13, 15)
A⊆B		subset	subset has few or all elements equal to the set	(7, 15) ⊆ (7, 13, 15, 21)
A⊄B		not subset	left set is not a subset of right set	(1, 21) ¢ B
A⊂B		proper subset / strict subset	subset A has fewer elements than the set B	(7, 13, 15) ⊂ (1, 7, 9, 13, 15, 23)
A⊃B	7	proper superset / strict superset	set A has more elements than set B	(1, 7, 9, 13, 15, 23) ⊃ (7, 13, 15)
A⊇B	2	superset	set A has more elements or equal to the set B	(1, 7, 9, 13, 15, 23) ⊃ (7, 13, 15, 21)
Ø		empty set	Ø=()	C = (Ø)

1 X = {A, B, 1, 2}

; {A, B, 1, 2} ⊆ {A, B, 1, 2}

Symbol	Symbol Name	Meaning	Example
P (C)	power set	all subsets of C	C = (4,7), P(C) = ([). (4), (7), (4,7)) Given by 2°, s is number of elements in set C
A⊅B	not superset	set X is not a superset of set Y	(1, 2, 5) ⊅(1, 6)
A = B	equality	both sets have the same members	(7, 13,15) = (7, 13, 15)
A \ B or A-B	relative complement	objects that belong to A and not to B	(1, 9, 23)
A c	complement	all the objects that do not belong to set A but belong to the universal set	We know, U = (1, 2, 7, 9, 13, 15, 21, 23, 28, 30) A ^c = (2, 21, 28, 30)
АΔВ	symmetric difference	objects that belong to A or B but not to their intersection	A Δ B = (1, 9, 21, 23)
a∈B	element of	set membership	B = (7, 13, 15, 21), 13 ∈ B

 $X = \{1, 7, 9, 13, 15, 23\}$ $Y = \{7, 15, 13, 21\}$ $X-Y = \{1, 9, 23\}$ $Y - X = \{21\}$ $X = \{1, 9, 23\}$ $Y = \{1, 9, 21, 23\}$

Symbol	Symbol Name	Meaning	Example
(a,b)	ordered pair	collection of 2 elements	(1, 2)
x∉A ∉	not element of	no set membership	A = {1, 7, 8, 13, 15, 23}, 5 ∉ A
IBI, #B	cardinality	the number of elements of set B	B = (7, 13, 15, 21), B =4
A×B	cartesian product	set of all ordered pairs from A and B	(3,5) × (7,8) = ((3,7), (3,8), (5,7), (5, 8))
N,	natural numbers / whole numbers set (without zero)	N ₁ = (1, 2, 3, 4, 5,)	6 ∈ N,
N _o	natural numbers / whole numbers set (with zero)	N _o = {0, 1, 2, 3, 4,}	0 ∈ N ₀
Q	rational numbers set	Q= (x x=a/b, a, b∈Z)	2/6 ∈ Q
z	integer numbers set	Z= {3, -2, -1, 0, 1, 2, 3,}	-6 ∈ Z
R	real numbers set	R={x -∞ < x <∞}	6.343434 ∈ R

SET OPERATIONS:

- Union
 Intersection
 Difference
- 4. Symmetric difference

Question: If $U = \{a, b, c, d, e, f\}$, $A = \{a, b, c\}$, $B = \{c, d, e, f\}$, $C = \{c, d, e\}$, find $(A \cap B) \cup (A \cap C)$

{c}

 $(A \cap B) = \{c\}$ $(A \cap C) = \{c\}$ $(A \cap C) = \{c\}$

Question: If U = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, A = {3, 5, 7, 9, 11} and B = {7, 8, 9, 10, 11}, Then find (A - B)'.

Question: Class XI is made up of 200 students in total. One hundred and twenty of them study mathematics, fifty study commerce, and thirty studies. Find the number of students who

- i) Study mathematics but not commerce
- ii) Study commerce but not mathematics
- iii) Study mathematics or commerce