Epreuve écrite

Examen de fin d'études secondaires 2013	Numéro d'ordre du candidat
Section: B/C	4
Branche : Physique	

1. Mouvement dans un champ magnétique (2+6+2+2+4=16 points)

Une particule de charge q et de masse m pénètre avec une vitesse initiale $\vec{v_0}$ dans un champ magnétique uniforme \vec{B} .

- a.) Quelle sera la nature du mouvement de la particule lorsque $\vec{v_0}$ est parallèle à \vec{B} ? Justifier !
- b.) Maintenant, on suppose que le champ \vec{B} sort du plan de la feuille, que la charge est négative et que $\vec{v_0}$ est dirigée vers la droite (en étant perpendiculaire \vec{B}).
 - b.1.) Montrer que le mouvement de la particule est plan, uniforme et circulaire, puis établir l'expression du rayon r de la trajectoire en fonction de m, q, v_0 et B. Ajouter une figure claire et précise.
 - b.2.) Si l'intensité du champ magnétique est réduite à la moitié, comment faut-il modifier la vitesse initiale afin que le rayon de la trajectoire reste inchangé?
 - b.3.) Etablir l'expression de la fréquence de révolution de la particule chargée.
 - b.4.) Calculer l'intensité d'un champ magnétique dans lequel un électron effectue un mouvement circulaire uniforme de fréquence 839,5 MHz. Comment cette fréquence va-t-elle varier si la norme de la vitesse initiale est triplée ? Justifier !

2. Ondes progressives et stationnaires (3+2+3+4=12 points)

- a.) L'extrémité O d'une corde est reliée à un vibreur transversal S_1 . On suppose qu'il n'y a pas réflexion à l'autre extrémité de la corde. On définit un axe Ox parallèle à la corde, orienté dans le sens de propagation des ondes et tel que $x_0=0$. L'équation de l'onde progressive créée par S_1 s'écrit $y_1(x,t)=0,04\cdot\sin(50\pi t-4\pi x-\frac{\pi}{2})$ (toutes les grandeurs sont indiquées en unités SI).
 - a.1.) Ecrire l'équation horaire de la source S_1 , puis déterminer l'amplitude, la fréquence et la période de son mouvement. Quelle est la position de la source à l'instant initial?
 - a.2.) Calculer la longueur d'onde de l'onde progressive puis la position de 2 points de la corde qui sont en opposition de phase par rapport à S_1 .
- b.) Maintenant, on fixe un deuxième vibreur S_2 à l'autre extrémité la corde. La distance entre S_1 et S_2 vaut L=2 m. L'équation de l'onde progressive engendrée par S_2 sur la corde s'écrit $y_2(x,t)=0,04\cdot\sin(50\pi t+4\pi x+\frac{\pi}{2})$
 - b.1.) Ecrire l'équation horaire de la source S_2 , puis vérifier que S_1 et S_2 vibrent en opposition de phase.
 - b.2.) Etablir l'équation de l'onde stationnaire qui apparaît sur la corde et qui résulte de la superposition des ondes venant de S_1 et de S_2 .

Epreuve écrite

Examen de fin d'études secondaires 2013 Numéro d'ordre du candidat Section : B/C

Branche: Physique

3. Relativité restreinte (2+5+2+3+1=13 points)

- a.) Enoncer les postulats d'Einstein.
- b.) Etablir, à partir d'une expérience par la pensée, l'équation qui donne la relation entre un intervalle de temps propre Δt_{propre} et un intervalle de temps impropre $\Delta t_{impropre}$.
- c.) Un électron est accéléré, à partir du repos, sous une tension de 180kV.
 - c.1.) Calculer son énergie cinétique et son énergie totale.
 - c.2.) Calculer la vitesse de l'électron.
- d.) Expliquer brièvement pourquoi il est impossible qu'un électron ne se déplace à la vitesse de la lumière.

4. Radioactivité (6+2+2+2+3+2+2=19 points)

- a.) Etablir la loi de la décroissance radioactive.
- b.) Enoncer les lois de conservation valables pour les réactions nucléaires.
- c.) Définir la demi-vie d'un noyau radioactif. Quelle est son unité SI?
- d.) «Pour un noyau radioactif donné, il est possible de prévoir la date précise à laquelle il va se désintégrer si on connaît sa demi-vie.» Est-ce que cette affirmation est vraie ou fausse ? Justifier !
- e.) Le potassium (K) est essentiel au fonctionnement des systèmes musculaire et nerveux des êtres vivants. Un corps humain contient en moyenne $140\,\mathrm{g}$ de potassium, dont seulement une partie de 0.0117% n'est due à l'isotope radioactif ^{40}K . Pourtant, le potassium radioactif contribue de façon essentielle à l'irradiation naturelle de l'homme. Il subit une désintégration β^- et sa demi-vie équivaut à $1.3\cdot10^9$ années.
 - e.1.) Ecrire l'équation bilan de la désintégration du ⁴⁰K. Quelles sont les particules produites par la désintégration d'un tel noyau?
 - e.2.) Calculer le nombre de noyaux de potassium radioactifs présents dans le corps humain (la masse d'un noyau de ^{40}K équivaut à 39,963999 u).
 - e.3.) Calculer l'activité du potassium radioactif dans le corps humain.