Latent variables and Restricted Boltzmann Machines

Latent variables enhance expressive power of generative models by encoding complex correlations between data

K-means $E 0, 1 \in \mathbb{Z}$ M_m

Latent variables enhance expressive power of generative models by encoding complex cornelations between data

Z - h for hidden in this case

X -> V for orbible

Latent vornables enhance expressive power of gluerative models by encoding complex conclations between data Z -> h for hidden in this case

X -> U for 'orbible"

V Uh system

· spin systems (physics again relevant for UL...)

of the spin (j.-.)

mean field: all couplings Ji; #0

energy $E(V) = -\sum_{i} \alpha_{i} V_{i} - \frac{1}{2} \sum_{ij} J_{ij} V_{i} V_{j}$

$$J_{ij} = \sum_{M=1}^{M} W_{iM} W_{Mi}$$

 $J_{ij} = \sum_{M=1}^{N} W_{iM} W_{jM}$ Hubbard - Stratomerich trans. (his with Gaussian start.) 巨(い)=-2のいい-生意了いい

Vinble layer o hidden layer Jis removed: no direct interaction between "spins" vi k V; (also NO h,h, interaction) bipartite system (Uh) - I aivi + 12 I hr I vi Winh

Restricted Boltzmann Maduines

inspired by previous considerations, evenous $E(v,h) = -\sum a(v_i) - \sum b(h_n) - \sum v_i W_i h$

luerojy $E(v,h) = -\sum_{i} \alpha_{i}(v_{i}) - \sum_{i} b(h_{m}) - \sum_{i} v_{i} W_{i} h_{m}$ Junctions

 $a_i(.)$ $b_n(.)$

Restricted Boltzmann Machines

inspired	by previous co	mriolerations,	
	$E(r,h) = -\sum_{i}^{\infty} a_{i}$		J vi Winh
Junchian ai(.)	Λ	Bernoulli Loyers binary U; E {0,1}	gaunian Vi E IR
b _M (.)	a: (Vi) a; v;	U; 2 26;2
Jalso other	versions, by/h	b, h,	26 m

Restricted Boltzmann Maduines

inspired	by	previous	considerations,
U	U	()	

energy
$$E(v,h) = -\sum_{i} \alpha_{i}(v_{i}) - \sum_{m} b(h_{m}) - \sum_{i} v_{i}W_{im}h_{m}$$

Junchions ai(.) bn(.)

	1	
B	permoulli Loyers	Gausian
	binary U; E {0,1}	$v_i \in \mathbb{R}$
a; (v;)	a; Vi	U; 2 26;2
b _m (h _m)	b _m h _m	hm 2 2 6 2

Restricted Boltzmann Maduines

luerous
$$E(v,h) = -\sum_{i} a_{i}v_{i} - \sum_{m} b_{m}h_{m} - \sum_{i}v_{i}W_{im}h_{m}$$

Correlations induced by Carteut Variables __ , see the review

training
parameters
$$\theta = \{W_{ip}, a_i, b_p\}$$

$$O_j = \partial_{\theta_j} E_{\theta}(v,h) \qquad O_j(x) = O_j(v,h)$$

$$\partial_{\theta_j}(-L(\theta)) = \langle O_j \rangle_{olaba} - \langle O_j \rangle_{model} \qquad (195)$$

for example du E = - vi hn

thanks to the simple linear applarance of term v: Winh hence training via (195) follows these grashient companents of -2(0) to minimize it: - dwin d = (-V: hp)olata - (-V: hp)model - da; L = (-Vi) data - (-Vi) model

- 2 by L = <-h m) alata - <-h model

hence training via (195) follows these grashient components of L(0) to maximize

Dir L = < V; hp)olata - < V; hp)model da; L= < Vi) data - (Vi) model 25 L = < h m) lata - < h model

maximire bog-likelihood

Dwin L = < V; hn) olata - < V; hn) model da; L= < Vi) data - (Vi) model 25 L= <hm2, lata - <hm2 model some interpretation: optimum Where predictions of model match the averages from data

maximme bog-likelihood

de Crihndolata - Crihndoll da; L= < Vi) data - (Vi) model 2 = < h m) leta - < h model gram "olata"

Th

maximme bog-likelihood

de stip de source de source de la service de da; L= < Vi) data - < Vi) model 2 = < hm2, lata - < hm2 model run MC to generate v'& h'

Gibbs sampling

much simplified by bipartite structure of

restricted B.M. (no interaction between

v's and between h's)

=) constitionally independent variables

Gibbs sampling much simplified by bipartite structure of restricted B.M. (no interaction between v's and between h's) => conshitionally instependent variables $P(V|h) = \prod_{i} P(V_i|h),$ ひららびら $\int h = \frac{1}{2}h_{\mu}$ $p(h|v) = \prod_{p} p(h_{p}|v)$ (212) // probabilities are factori7ed

We can draw each hy independently from the others ("restricted"!) according to it? $p(h_{M}|V)$ $p(h|v) = \prod_{p} p(h_{p}|v)$ probabilities are factori7ed

We can draw each "independently from the others ("restricted"!) according to it? p (U: 1h)

 $\delta(\pi) = \frac{1}{1 + e^{-\pi}}$ for Bernoulli layers (refolefinsing sigmoid $P(V_i = 1 \mid h) = G(a_i + \sum_{p} W_{ip} h_p)$ $\rho(h_{\mu}=1|V) = \sigma(b_{\mu}+\sum_{i}W_{i\mu}v_{i}) \qquad (213)$

Fill h

fill h with probabilities from (213)

Alternating Gibbs sampling

U(0)

U(1)

M(1)

h(2)

Gipps sompling Alternating h(2) negative

Alternating Gibbs sampling at t=0 (.....) data

Contrastive Divergence (CD-n) f=0 M= 2 (for example) "model" evaluated nather than t -> 00

Contrastive Divergence (CD-1) t=o moolel e most extreme example of CD · fortest · it works...

Mini batches

Mini batches

More	Meading in the review:
	im tialization
	regulari7ation
	learning rates
	persistent contrastive divergence
	deep Boltzmann machines
	deep Boltzmann machines (many hichlen Payers)

Summary: after training

- RBM has hidden layer that responds to data and can send back fantasy data with similar features
- · generative
- · denoising

· reading Ws => understand data