Introduction to Algorithms Lecture 12 MAX FLOW

Xue Chen xuechen1989@ustc.edu.cn 2025 spring in

Outline

- Introduction
- 2 The Ford-Fulkerson Method
- 3 Correctness: Max-Flow Min-Cut Theorem
- 4 Running Time

Flow networks are fundamental problems in many areas

- Resource allocation and scheduling
- ② Network routing
- Traffic control

Overview

Basic problem: Given each edge's limit, schedule the max amount of flows from s to t

Lots of interesting algorithms:

1 How to compute a flow? How to prove the flow is max?

Overview

Basic problem: Given each edge's limit, schedule the max amount of flows from s to t

Lots of interesting algorithms:

- How to compute a flow? How to prove the flow is max?
- 2 Duality: Max-Flow Min-Cut Theorem
- 3 Min-cut has lots of applications in data science ...

Formal Definition

A flow network G = (V, E) is a directed graph where each edge (u, v) has a capacity $c(u, v) \ge 0$.

Formal Definition

A flow network G = (V, E) is a directed graph where each edge (u, v) has a capacity $c(u, v) \ge 0$.

A flow $f: V \times V \to \mathbb{R}$ (with directions) satisfies:

- ① Capacity constraint: $0 \le f(u, v) \le c(u, v)$
- ② Flow conservation: For each $u \in V \setminus \{s, t\}$, flow-in $\sum_{v} f(v, u) = \text{flow-out } \sum_{v} f(u, v)$

Formal Definition

A flow network G = (V, E) is a directed graph where each edge (u, v) has a capacity $c(u, v) \ge 0$.

A flow $f: V \times V \to \mathbb{R}$ (with directions) satisfies:

- ① Capacity constraint: $0 \le f(u, v) \le c(u, v)$
- ② Flow conservation: For each $u \in V \setminus \{s, t\}$, flow-in $\sum_{v} f(v, u) = \text{flow-out } \sum_{v} f(u, v)$

Moreover, define the value of f as $|f| := \sum_{v} f(s, v) = \sum_{v} f(v, t)$.

Examples

Examples

Overview:

- Ford-Fulkerson Method: Residue graph and augmenting path
- 2 Correctness: Max-Flow Min-Cut Theorem
- 3 Greedy Methods control time

Outline

- Introduction
- 2 The Ford-Fulkerson Method
- 3 Correctness: Max-Flow Min-Cut Theorem
- 4 Running Time

A general paradigm

procedure FORD-FULKERSON(G) $f: V \times V \to R$ while \exists augmenting paths in residual network G_f do Pick such a path P

Augment/Push flow f on P

A general paradigm

procedure FORD-FULKERSON(G)

 $f: V \times V \rightarrow R$

while \exists augmenting paths in residual network G_f do

Pick such a path P

Augment/Push flow f on P

A general paradigm

procedure FORD-FULKERSON(G)

 $f: V \times V \rightarrow R$

while \exists augmenting paths in residual network G_f do Pick such a path P Augment/Push flow f on P

- However, the naive implementation does not work
- 2 Define augmenting path and residual graph formally

Capacities in Residual Graph G_f

Roughly, G_f consists of all edges with a capacitie>flow.

Two Types of Edges in G_f : For an original $(u, v) \in E$,

- ① its residual capacity $c_f(u, v) = c(u, v) f(u, v)$
- ② its reverse has capacity $c_f(v, u) = f(u, v)$

Capacities in Residual Graph G_f

Roughly, G_f consists of all edges with a capacitie>flow.

Two Types of Edges in G_f : For an original $(u, v) \in E$,

- ① its residual capacity $c_f(u, v) = c(u, v) f(u, v)$
- ② its reverse has capacity $c_f(v, u) = f(u, v)$

My implementation:

- ① Set reverset capacity c(v, u) = 0 for any $(u, v) \in E$ but guarantee f(v, u) = -f(u, v) for all edges at any moment
- ② Then $c_f(u, v) = c(u, v) f(u, v)$ for any u and v despite the direction

Augmenting Paths

An augmenting path P is a simple path $s \sim t$ in residual graph G_f

Augmenting Paths

An augmenting path P is a simple path $s \sim t$ in residual graph G_t

More about Augmenting a path

① Define P's residual capacity as $c_f(P) = \min\{c_f(u, v) = c(u, v) - f(u, v) : (u, v) \in P\}$, i.e., max residual along P

Augmenting Paths

An augmenting path P is a simple path $s \sim t$ in residual graph G_t

More about Augmenting a path

- ① Define P's residual capacity as $c_f(P) = \min\{c_f(u,v) = c(u,v) f(u,v) : (u,v) \in P\}$, i.e., max residual along P
- ② Then augment a flow of amount $c_f(P)$ along P
- 3 Increase |f| by $c_f(P)$

Analysis

```
procedure BASIC-FORD-FULKERSON(G)
f: V \times V \rightarrow R
while \exists augmenting paths in the residual network G_f do
Pick such a path P
Augment/Push flow f on P
```

Next

Oorrectness: Why does it find a maximum flow?

2 Running time: Is it polynomial in $n \cdot m$?

Outline

- 1 Introduction
- 2 The Ford-Fulkerson Method
- 3 Correctness: Max-Flow Min-Cut Theorem
- 4 Running Time

Definition

- ① General Cut: Given a graph G = (V, E), a cut is a partition (S, \overline{S}) where $S \subsetneq V$ and $S \neq \emptyset$
- ② Cuts in flow network: only consider cut S where source $s \in S$ and sink $t \notin S$

Definition

- ① General Cut: Given a graph G = (V, E), a cut is a partition (S, \overline{S}) where $S \subsetneq V$ and $S \neq \emptyset$
- ② Cuts in flow network: only consider cut S where source $s \in S$ and sink $t \notin S$
- Out Capacity: Given edge capacity c on E,

$$c(S, \overline{S}) = \sum_{(u,v) \in E: u \in S, v \in \overline{S}} c(u, v)$$

Definition

- ① General Cut: Given a graph G = (V, E), a cut is a partition (S, \overline{S}) where $S \subsetneq V$ and $S \neq \emptyset$
- ② Cuts in flow network: only consider cut S where source $s \in S$ and sink $t \notin S$
- Out Capacity: Given edge capacity c on E,

$$c(S, \overline{S}) = \sum_{(u,v) \in E: u \in S, v \in \overline{S}} c(u, v)$$

- Graph cut is a fundamental object in CS: data mining, social networks, ...
 - Today, only consider S with minimum capacity called min-cut

① In contrast to $c(S, \overline{S}) = \sum_{(u,v) \in E \cap S \times \overline{S}} c(u,v)$, define the flow f on cut (S, \overline{S}) as

$$f(S,\overline{S}) = \sum_{(u,v)\in E\cap S\times \overline{S}} f(u,v) - \sum_{(u,v)\in E\cap \overline{S}\times S} f(u,v)$$

1 In contrast to $c(S, \overline{S}) = \sum c(u, v)$, define the flow f on $(u,v) \in E \cap S \times \overline{S}$ cut (S, \overline{S}) as

$$f(S, \overline{S}) = \sum_{(u,v) \in E \cap S \times \overline{S}} f(u,v) - \sum_{(u,v) \in E \cap \overline{S} \times S} f(u,v)$$

2 Lemma 26.5 in CLRS: For any flow f and cut (S, \overline{S}) , $f(S, \overline{S}) = |f|$

1 In contrast to $c(S, \overline{S}) = \sum c(u, v)$, define the flow f on $(u,v) \in E \cap S \times \overline{S}$ cut (S, \overline{S}) as

$$f(S, \overline{S}) = \sum_{(u,v) \in E \cap S \times \overline{S}} f(u,v) - \sum_{(u,v) \in E \cap \overline{S} \times S} f(u,v)$$

- 2 Lemma 26.5 in CLRS: For any flow f and cut (S, \overline{S}) , $f(S, \overline{S}) = |f|$
- Corollary 26.6 in CLRS: $|f| \le c(S, \overline{S})$ for any f and S

Max-Flow Min-Cut Theorem (THM 26.6 in CLRS)

- 1 f is a maximum flow
- 2 No augmenting path in G_f
- $|f| = c(S, \overline{S})$ for some cut S

Max-Flow Min-Cut Theorem (THM 26.6 in CLRS)

- 1 f is a maximum flow
- ② No augmenting path in G_f
- - (1) \Rightarrow (2): Otherwise $\exists P$ s.t. augmenting P makes a larger flow

Max-Flow Min-Cut Theorem (THM 26.6 in CLRS)

- ① f is a maximum flow
- ② No augmenting path in G_f
- - (1) \Rightarrow (2): Otherwise $\exists P$ s.t. augmenting P makes a larger flow
 - (2) \Rightarrow (3): Consider $S = \{v : s \rightsquigarrow v \text{ in } G_f\}$ after the Big while loop

Max-Flow Min-Cut Theorem (THM 26.6 in CLRS)

- 1 f is a maximum flow
- ② No augmenting path in G_f
- - (1) \Rightarrow (2): Otherwise $\exists P$ s.t. augmenting P makes a larger flow
 - (2) \Rightarrow (3): Consider $S = \{v : s \leadsto v \text{ in } G_f\}$ after the Big while loop
 - (3) \Rightarrow (1): from Corollary 26.6, $|f| \leqslant c(S, \overline{S})$ for any S.

Outline

- Introduction
- 2 The Ford-Fulkerson Method
- 3 Correctness: Max-Flow Min-Cut Theorem
- 4 Running Time

Time Complexity

One more issue

Basic version of Ford-Fulkerson Algorithm does not guarantee a polynomial-time.

Example: Figure 26.7 from CLRS

Time Complexity

One more issue

Basic version of Ford-Fulkerson Algorithm does not guarantee a polynomial-time.

Example: Figure 26.7 from CLRS

Question

How to improve running time?

Two greedy approaches

Two greedy approaches

1 Finding the shortest augmenting path (i.e. with fewest edges) leads to at most *nm* paths, called Edmonds-Karp

Two greedy approaches

- Finding the shortest augmenting path (i.e. with fewest edges) leads to at most nm paths, called Edmonds-Karp
- ② Finding the fattest augmenting path (i.e. with largest residual) leads to at most $m \cdot \log |f^*|$ paths

Greedy I

procedure EDMONDS-KARP(G)

 $f: V \times V \rightarrow R$

while \exists augmenting paths in the residual network G_f **do** Find augmenting path P with fewest edges

//Question: How to do it? Time?

Augment/Push flow f on P

Greedy I

procedure EDMONDS-KARP(G)

 $f: V \times V \rightarrow R$

while \exists augmenting paths in the residual network G_f **do** Find augmenting path P with fewest edges

//Question: How to do it? Time?

Augment/Push flow f on P

Theorem 26.7 in CLRS

For any v, the shortest-path distance $\delta_f(s, v)$ in the residual network G_f increases monotonically with each flow.

Theorem 26.7 in CLRS

For any v, the shortest-path distance $\delta_f(s, v)$ in the residual network G_f increases monotonically with each flow.

Theorem 26.7 in CLRS

For any v, the shortest-path distance $\delta_f(s, v)$ in the residual network G_f increases monotonically with each flow.

For controliction, consider the 1st moment and closet or violate it

- **1** By def, $\delta_{f'}(s, u) = \delta_{f'}(s, v) 1$
- ② By our choice of v, u is good $\Rightarrow \delta_{f'}(s, u) \geqslant \delta_f(s, u)$

Theorem 26.7 in CLRS

For any v, the shortest-path distance $\delta_f(s, v)$ in the residual network G_f increases monotonically with each flow.

For controliction, consider the 1st moment and closet a violate it shortest path of Sfls, V)

After anymentation, Sfr(s,v) < Sfls,v)

- ① By def, $\delta_{f'}(s, u) = \delta_{f'}(s, v) 1$
- ② By our choice of v, u is good $\Rightarrow \delta_{f'}(s, u) \geqslant \delta_f(s, u)$
- 3 Key claim: $(u, v) \notin G_f$

Theorem 26.7 in CLRS

For any v, the shortest-path distance $\delta_f(s, v)$ in the residual network G_f increases monotonically with each flow.

- **1** By def, $\delta_{f'}(s, u) = \delta_{f'}(s, v) 1$
- ② By our choice of v, u is good $\Rightarrow \delta_{f'}(s, u) \geqslant \delta_f(s, u)$
- ③ Key claim: $(u, v) \notin G_f$
- ④ Only way that $(u, v) \notin G_f$ but $(u, v) \in G_{f'}$ is that the shortest augmenting path in G_f has the reverse (v, u) leads to a contradiction

Theorem 26.7 in CLRS

For any v, the shortest-path distance $\delta_f(s, v)$ in the residual network G_f increases monotonically with each flow.

Theorem 26.8 in CLRS

The Edmonds-Karp ALGO augments at most O(nm) paths.

procedure GREEDYII(G)

 $f: V \times V \rightarrow R$

while \exists augmenting paths in the residual network G_f do Find augmenting path P with largest residual capacity //Question: How to do it? Time?

Augment/Push flow f on P

procedure GREEDYII(G)

 $f: V \times V \rightarrow R$

while \exists augmenting paths in the residual network G_f do Find augmenting path P with largest residual capacity //Question: How to do it? Time?

Augment/Push flow f on P

THM: Running time of Greedy II

The above greedy approaches finds at most $m \cdot \ln |f^*|$ paths where f^* is the amount of max-flow.

THM: Running time of Greedy II

The above greedy approaches finds at most $m \log |f^*|$ paths where f^* is the amount of max-flow.

THM: Running time of Greedy II

The above greedy approaches finds at most $m \log |f^*|$ paths where f^* is the amount of max-flow.

Given f*, consider the best way to decompose it — how many augmenting paths?

THM: Running time of Greedy II

The above greedy approaches finds at most $m \log |f^*|$ paths where f^* is the amount of max-flow.

- Given f*, consider the best way to decompose it how many augmenting paths?
- ② Consider each unit flow in f^* as an element, reformulate the problem as set cover
- 3 Question: What are the subsets here?

THM: Running time of Greedy II

The above greedy approaches finds at most $m \log |f^*|$ paths where f^* is the amount of max-flow.

- Given f*, consider the best way to decompose it how many augmenting paths?
- ② Consider each unit flow in f^* as an element, reformulate the problem as set cover
- Question: What are the subsets here?
- 4 Recall that the greedy method in set cover needs $OPT \cdot \log |U|$ where OPT is the best solution and |U| is # elements

Summary

- Ford-Fulkerson Method
- ② Residue graphs and augmenting paths: reverse edges!

Summary

- Ford-Fulkerson Method
- ② Residue graphs and augmenting paths: reverse edges!
- 3 Two greedy algorithms implement Ford-Fulkerson method

Summary

- Ford-Fulkerson Method
- Residue graphs and augmenting paths: reverse edges!
- Two greedy algorithms implement Ford-Fulkerson method
- Many extensions: Max-Matching, Min-cost Max-Flow, ...

Questions?