

Figure 1: Schematic of a modified vapor compression refrigeration cycle (VCRC) where the throttle valve has been replaced by a turbine. The term \dot{Q}_C (kW) denotes the cooling rate, while \dot{Q}_R denotes the rate that is removed from the condenser.

1. (XX pt) The vapor compression refrigeration cycle (VCRC) is a four step *open* process to cool systems. The teaching team proposed a modification to the original cycle in which the throttle valve is replaced by a turbine which can supply work to the compression step (Fig. 1). In the modified cycle, \mathcal{P}_{ij} connects operating point \mathcal{O}_i to \mathcal{O}_i :

 $\mathcal{P}_{12} \ (1 \ o \ 2)$: *isobaric* heating in an evaporator from \mathcal{O}_1 to \mathcal{O}_2

 $\mathcal{P}_{23}~(2~ o~3)$: adiabatic compression in a compressor from \mathcal{O}_2 to \mathcal{O}_3

 $\mathcal{P}_{34}~(3~\rightarrow~4)$: isobaric cooling in a condenser from \mathcal{O}_3 to \mathcal{O}_4

 \mathcal{P}_{41} $(4 \rightarrow 1)$: adiabatic expansion in a turbine from \mathcal{O}_4 to \mathcal{O}_1

Assume: (i) the cycle operates at steady-state; (ii) the working fluid R134A has a mass flow rate of \dot{m} = 0.167 kg s⁻¹; (iii) the turbine efficiency is η_T = 75%; (iv) compressor efficiency is η_C = 81%; (v) neglect changes in the kinetic and potential energy in the system and streams.

- a) (XX pt) Compute the missing state values in Table 1.
- b) (XX pt) Compute the missing heat and work rate values in Table 2.

- c) (XX pt) Compute the reversible (ideal) coefficient of performance $\omega = \dot{Q}_C/\dot{W}_{s,C}$ using the values in Table 1.
- d) (XX pt) Would you expect the ideal coefficient of performance to increase, decrease or stay the same if we did not recycle $\dot{W}_{s,T}$? (explain your answer).

Table 1: State table for the Vapor Compression Refrigeration Cycle (VCRC) problem using R134A as the working fluid. The quantity θ denotes the vapor quality (fraction of vapor).

O	T (°C)	P (MPa/kPa)	H (kJ/kg)	S (kJ/kg-K)	θ
\mathcal{O}_1					
\mathcal{O}_2	-60	15.89 kPa		1.8024	1.0
\mathcal{O}_3					1.0
\mathcal{O}_4	70		304.8		0.0

Table 2: Path table for the modified refrigeration problem using R134A as the working fluid.

Path	\dot{Q}_s (kW)	$\dot{W}_{s,T}$ (kW)	$\dot{W}_{s,C}$ (kW)	$\dot{W}_{s,T}^*$ (kW)	$\dot{W}_{s,C}^*$ (kW)
\mathcal{P}_{12}		0.0	0.0	0.0	0.0
\mathcal{P}_{23}	0.0				
\mathcal{P}_{34}		0.0	0.0	0.0	0.0
\mathcal{P}_{41}	0.0		0.0		
Cycle				N/A	N/A