Ioannis P. A. Papadopoulos

$Weierstrass\ Institute$ papadopoulos@wias-berlin.de

EMPLOYMENT

BMS Dirichlet Postdoctoral Fellow, Weierstrass Institute Berlin

Nov. 2023 - date

- · Hosted by Prof. Dr. Michael Hintermüller at the Weierstrass Institute for Applied Analysis and Stochastics.
- · Research interests: nonlinear partial differential equations, quasi-variational inequalities, topology optimization, numerical analysis, scientific computing, finite element methods.

Research Associate, Imperial College London

Jul. 2021 - Nov. 2023

- · EPSRC Grant: Spectral element methods for fractional differential equations, with applications in applied analysis and medical imaging.
- · Leverhulme Trust Research Project Grant: Constructive approximation theory on and inside algebraic curves and surfaces.

The MathWorks, Inc., Cambridge

2019 - 2020

· Two 8 week placements with the GPU & deep learning group and the parallel toolbox group.

EDUCATION

PhD in Mathematics, University of Oxford, viva date: 24 Sep. 2021

2017 - 2021

- · Title: Computing multiple solutions of topology optimization problems.
- · Supervisors: Prof. Patrick Farrell and Prof. Endre Süli.
- · EPSRC Centre for Doctoral Training in Partial Differential Equations.

MSc in Mathematical Modelling and Scientific Computing, University of Oxford (Distinction)

2016 - 2017

· Dissertation: Computing and controlling transitions in multi-stable partial differential equations supervised by Prof. Patrick Farrell.

BSc in Mathematics, Imperial College London (First Class Honours)

2013 - 2016

· Scholarships: Imperial College London Undergraduate Research Bursary (2014) to undertake research during the summers of my undergraduate degree.

NOTABLE PRIZES

· IMA Leslie Fox Prize in Numerical Analysis, second place, for the numerical	
analysis of divergence-free finite element methods for the topology optimization of flu	uids. 2023
· MathWorks PhD scholarship	2017 – 2021
· Oxford three-minute thesis competition (first place)	2019
\cdot \mathbf{Durham} $\mathbf{Prize},$ awarded by Keble College for performance during an MSc.	2017
· Gerald Whitrow Prize, awarded for excellence during the final undergraduate	
examinations.	2016
· Dean's List , awarded to the top 10% of the cohort.	2016
· London Mathematical Society undergraduate research bursary	2015

SUPERVISING & TEACHING

Co-supervisor, Department of Mathematics, Imperial College London

2021 - 2022

- · Co-supervised two 4th year undergraduate dissertations.
- · Co-supervised a 2nd year group project on deflation who won the Winton Capital Second Year Project Prize.

Lecturer, Department of Mathematics, Imperial College London

2023

· Two hours in "Finite elements: numerical analysis" (Part 1, MATH60022).

Teaching Assistant/Tutor, Mathematical Institute, University of Oxford

2018 - 2021

- · Courses: continuous optimization (year 3/4 course), numerical linear algebra (year 3/4 course), functional analysis I (year 3 course), numerical solution of differential equations I (year 3 course), numerical solution of differential equations II (year 3 course), scientific computing and numerical analysis of PDEs (PhD course), further PDEs (MSc course).
- · Marking and presenting solutions of problems to students.

Tutor, Oxford Study Abroad Programme, University of Oxford

2020 - 2021

· Continuous Optimization - one-on-one tutoring covering the UCLA syllabus in 8 weeks.

MATHEMATICAL ENGAGEMENT

· Organizer of the RG8 Group Seminars at WIAS 2024–date

· Assistant in the Imperial-UCL Numerical Analysis Seminars 2022–2023

· Organizer of minisymposiums at CSE23 and Biannual NA conferences 2023

· President of the University of Oxford SIAM Student Chapter 2020–2021

· Founder of the Oxford numerical analysis reading group

2019-date

· Peer reviewer for Foundations of Computational Mathematics, SIAM Journal on Scientific Computing, SIAM Journal on Numerical Analysis, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Optimization Methods and Software, Structural and Multidisciplinary Optimization, Computer Methods in Applied Mechanics and Engineering, and Journal of Scientific Computing

TALKS

Highlighted talks (selected from over 40 presentations):

A semismooth Newton method for obstacle-type quasivariational inequalities

· Firedrake'24 workshop

September 2024

Numerical analysis of a topology optimization problem for Stokes flow/linear elasticity

· IMA Leslie Fox Prize Competition (second place)

June 2023

· Joint UCL-Imperial College London Numerical Analysis Seminar

November 2022

A sparse hp-finite element method for rectangles, disks, annuli, and cylinders

· Bath Numerical Analysis Seminar

October 2023

· Flatiron Institute (New York)

July 2023

Sparse spectral methods for fractional PDEs

· ICOSAHOM 2023 August 2023

· CSE23 in Amsterdam March 2023

· University of Leicester CSE Mathematics Seminar October 2022

Computing multiple solutions of topology optimization problems

· USNCCM17 in Albuquerque, New Mexico

July 2023

· GAMM 2022 Conference - Young Researcher's minisymposium

August 2022

· Oxbridge Applied Mathematics "Woolly Owl" Meeting

September 2021

- [7] I. P. A. Papadopoulos, Numerical analysis of the SIMP model for the topology optimization problem of minimizing compliance in linear elasticity, Numerische Mathematik, (2024); https://doi.org/10.1007/s00211-024-01438-3.
- [6] I. P. A. Papadopoulos, T. S. Gutleb, R. M. Slevinsky, S. Olver, Building hierarchies of semiclassical Jacobi polynomials for spectral methods in annuli, SIAM Journal on Scientific Computing, 46(6), pp. A3448-A3476 (2024); https://doi.org/10.1137/23M160846X.
- [5] I. P. A. Papadopoulos, S. Olver, A sparse spectral method for fractional differential equations in one-spatial dimension, Advances in Computational Mathematics, 50, 69 (2024), https://doi.org/10.1007/s10444-024-10164-1.
- [4] I. P. A. Papadopoulos, P. E. Farrell, Preconditioners for computing multiple solutions in three-dimensional fluid topology optimization, SIAM Journal on Scientific Computing, 45 (2023), pp. B853-B883, https://doi.org/10.1137/22M1478598.
- [3] I. P. A. Papadopoulos, Numerical analysis of a discontinuous Galerkin method for the Borrvall-Petersson topology optimization problem, SIAM Journal on Numerical Analysis, 60 (2022), pp. 2538–2564, https://doi.org/10.1137/21M1438943.
- [2] I. P. A. Papadopoulos, E. Süli, Numerical analysis of the topology optimization of Stokes flow, Journal of Computational and Applied Mathematics, 12 (2022), p. 114295, https://doi.org/10.1016/j.cam.2022.114295.
- [1] I. P. A. Papadopoulos, P. E. Farrell, T. M. Surowiec, Computing multiple solutions of topology optimization problems, SIAM Journal on Scientific Computing, 43 (2021), pp. A1555–A1582, https://doi.org/10.1137/20M1326209.

PREPRINTS

- [12] A. Alphonse, C. Christof, M. Hintermüller, I. P. A. Papadopoulos, A globalized inexact semismooth Newton method for nonsmooth fixed-point equations involving variational inequalities, (2024); https://arxiv.org/abs/2409.19637.
- [11] I. P. A. Papadopoulos, S. Olver, A sparse hierarchical hp-finite element method on disks and annuli, (2024); https://arxiv.org/abs/2402.12831.
- [10] K. Knook, S. Olver, I. P. A. Papadopoulos, Quasi-optimal complexity hp-FEM for Poisson on a rectangle, (2024); https://arxiv.org/abs/2402.11299.
- [9] T. S. Gutleb, I. P. A. Papadopoulos, Explicit fractional Laplacians and Riesz potentials of classical functions, (2023); https://arxiv.org/abs/2311.10896.
- [8] I. P. A. Papadopoulos, T. S. Gutleb, J. A. Carrillo, S. Olver, A frame approach for equations involving the fractional Laplacian, (2023); https://arxiv.org/abs/2311.12451.