Inhaltsverzeichnis

- 01 Einführung
- 02 Prozessmodelle
- 03 Konfigurationsmanagement
- 04 Requirements Engineering
- 05 Modellierung
 - 05.1 Überblick
 - 05.2 Geschäftsprozessmodellierung
 - 05.3 Use Cases
 - 05.4 Klassen, Objekte, Assoziationen
 - 05.5 Szenarien, Zustandsautomaten
 - 05.6 Benutzungsoberflächen, Dialoge, GUI
- 06 Qualitätsmanagement

Einführung (1)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Ausgangssituation
 - OOA-Modell liegt vor

- Nächster Schritt
 - Prototyp der Benutzungsoberfläche erstellen (Gestaltung der Oberfläche des zukünftigen Systems)
 - Synonym: Dialogspezifikation (GUI Prototyp)
 - Spezifikation der Anwenderschnittstelle (Statisches Aussehen – Anordnung, Screenshots)
 - Spezifikation der Aktionen der Anwenderschnittstelle (Dynamisches Verhalten – Reihenfolge der Screens)

SS 2018

Einführung (2)

- Warum Dialogspezifikation?
 - Kunde kann sich das System vorstellen (Feedback)
 - Kunde kann Abläufe plausibilisieren
 - Kunde kann aktiv mitgestalten
 (Ausnutzung vorhandenes Wissen Steigerung Akzeptanz)
 - Klärung von Widersprüchen
 - Hilfe bei der Datenmodellierung
- Erforderlich
 - Grundkenntnisse der Software-Ergonomie

Dialoggestaltung (1)

- Dialog
 - Interaktion zwischen einem Benutzer und einem Dialogsystem, um ein bestimmtes Ziel zu erreichen
- Unterscheidung (aus Benutzersicht)
 - Primärdialog
 - Arbeitsschritte, die zur direkten Aufgabenerfüllung dienen
 - Erst beendet, wenn die zu bearbeitende Aufgabe fertiggestellt ist
 - Sekundärdialog
 - Hilfsdienste, die zusätzliche Information liefern

Dialoggestaltung (2)

- Unterscheidung (aus technischer Sicht)
 - Modaler Dialog
 - Muss beendet sein, bevor eine andere Aufgabe der Anwendung durchgeführt werden kann (anderes Fenster aktiviert werden kann)
 - Nicht modaler Dialog
 - Aktueller Dialog kann unterbrochen werden, d.h. andere Aktionen durchführen während das ursprüngliche Fenster geöffnet bleibt
- Allgemeine Zielsetzung
 - Verwendung von möglichst vielen nicht modalen Dialogen
 - → optimierte Handlungsflexibilität

Dialoggestaltung (3)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Unterscheidung zwischen
 - SDI-Anwendung ("single document interface")
 - Ermöglicht dem Benutzer zu einem Zeitpunkt genau ein Dokument zu öffnen und zu bearbeiten
 - MDI-Anwendung ("multiple document interface")
 - Zu einem Zeitpunkt können beliebig viele Dokumente geöffnet sein

0

Dialoggestaltung (4)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Prinzipielle Alternativen Bedienungsarten
 - Objektorientierte Bedienung mit direkter Manipulation
 - Erst Objekt- und dann Funktionsauswahl
 - Beispiel: Selektion, Bewegen, Löschen oder Aktivieren eines Objekts (generische Funktionen)
 - Objektorientierte Bedienung mit Menüs und Fenstern
 - Erst Objekt- und dann Funktionsauswahl über Menü
 - Funktionsorientierte Bedienung mit Menüs und Fenstern
 - Erst Auswahl der Funktion und anschließend Wahl des Objekts
- Viele Anwendungen kombinieren die verschiedenen Bedienungsarten

371

Vom Klassendiagramm zur Dialogstruktur (1)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Ziel
 - Systematisches Ableiten einer Dialogstruktur aus dem Klassendiagramm
- Grundlegende Idee
 - Jede Klasse des Analysemodells wird auf ein Erfassungsfenster und ein Listenfenster abgebildet
 - Menübalken enthält je ein drop-down-Menü für Listenfenster und Erfassungsfenster

Wenn zu viele Klassen vorliegen, werden sie zusätzlich gruppiert

Vom Klassendiagramm zur Dialogstruktur (2)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

Beispiel: Abbildung einer Klasse

73

Vom Klassendiagramm zur Dialogstruktur (3)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

Erfassungsfenster

- Bezieht sich immer auf ein einzelnes Objekt der Klasse
- Jedes Attribut wird (entsprechend seines Typs) auf ein grafisches Interaktionselement abgebildet
- Jede Operation wird auf eine Menüoption innerhalb eines pop-up-Menüs oder auf eine Schaltfläche (button) abgebildet
- Dient zum Erfassen und Ändern

Listenfenster

- Zeigt alle Objekte der Klasse (meist mit nur einen Teil der Attribute)
- Klassenattribute → Interaktionselement
- Klassenoperationen → Menüoptionen bzw. Schaltflächen

SS 2018

Vom Klassendiagramm zur Dialogstruktur (4)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

Erreichbarkeit von Erfassungs- und Listenfenster

Vom Klassendiagramm zur Dialogstruktur (5)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Abbildung von Assoziationen
 - Assoziationen erlauben durch ein Netz von Objekten zu navigieren
 - Erstellen und Entfernen von Objektbeziehungen wird in das Erfassungsfenster der betreffenden Klasse integriert

376

Vom Klassendiagramm zur Dialogstruktur (6)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

Abbildung einer 1-Assoziation

Vom Klassendiagramm zur Dialogstruktur (7)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

Abbildung einer many-Assoziation

78

SS 2018

Vom Klassendiagramm zur Dialogstruktur (8)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Abbildung Einfachvererbung
 - Konkrete Ober- und Unterklassen

2. Abstrakte Oberklasse und konkrete Unterklassen

Vom Klassendiagramm zur Dialogstruktur (9)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

Abbildung Einfachvererbung

3. Mehrstufige Vererbung

Gestaltungsregeln (1)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Benutzer muss optisch durch ein Fenster geführt werden
 - (Schlechtes) Beispiel:

Chaotisches Fenster-Layout

Gestaltungsregeln (2)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Gruppierung
 - Semantisch zusammengehörende Elemente sollen gruppiert werden → Reduzierung der Suchzeit

Strukturiertes Fenster-Layout

Gestaltungsregeln (3)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Steuerung der Aufmerksamkeit
 - Typischer Aufmerksamkeitsfluss (Europa, USA)
 - Beginn: Oben Links
 - Von Links nach Rechts
 - Hervorgehobene Elemente ziehen die Aufmerksamkeit an
 - Hervorhebungsmöglichkeiten
 - Größe
 - Farbe/Kontrast
 - Isolierung/Einzelstellung
 - Umrandung/abweichende Orientierung

33

Gestaltungsregeln (4)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Konsistente Verwendung von Farben
 - Ziel: Intuitives Verständnis der GUI, Einheitlichkeit
 - Z.B. Aktive/markierte Teile immer blau, inaktive Teile grau

Java Look and Feel Design
Guidelines provides essential
information for anyone
involved in the process of
creating cross-platform
Java applications and
applets. In particular, this
book offers design guidelines

Hilfe: Farbraster

Gestaltungsregeln (5)

- Harmonische Gestaltung
 - Proportionen durch Spaltenbildung
 - Balancierte und symmetrische Fenster
 - Einfache Fenster
 - Virtuelle Linien minimieren

Gestaltungsregeln (6)

- Konsistentes Verhalten
 - Ziel: Intuitives Verständnis der GUI
 - Z.B. alles mit gepunkteter Oberfläche kann bewegt werden

Gestaltungsregeln (7)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Ähnliche Struktur (wie andere Applikationen)
 - Ähnliche Menüstruktur
 - Ähnliche Einträge
 - Gleiche Shortcuts (Control -C, -V, -Z)
 - Ähnliche Bilder

Kommen fast in jedem Menü vor

Kommen fast in jeder Toolbar vor

Werkzeuge (1)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

MS Visio

Werkzeuge (2)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

GUI-Builder (NetBeans)

Dynamik des Dialogs

- Aktionen des Dialogs
 - Was passiert, wenn Button X gedrückt wird?
- Zustände eines Formulars (Dialogzustände)
 - = Zustandsabhängige Aktivierung von Steuerelementen
- Fachliche Verarbeitung inkl. Fehlerbehandlung
 - = Plausibilisierung, Finden von Eingabefehlern
- Aktualisierung von Daten in der Anzeige
- Folge der Formulare (Dialoglandkarte)

Aktionen des Dialogs / Formulars

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Für jedes verwendbare / "anklickbare" Element der Oberfläche
 - Buttons, Tabellen, Trees, Eingabefelder, ComboBoxen ...
 - Menüs, Toolbars, ...
- Was soll passieren wenn Element verwendet wird?
 - Ein Schritt in einem Anwendungsfall?
 - Dialogwechsel?
 - Änderung der Darstellung (z.B. Sortieren einer Tabelle?)
 - Tab-Reihenfolge, Fokusmanagement?
- Wann kann Element verwendet werden?
 - In welchem Dialogzustand ist es aktiv?
 - Wer darf das Element verwenden (Berechtigungen)?

1

Standardaktionen

- Mausklicks Erwartete Reaktionen
 - Links: Aktion ausführen (z.B. Button unter dem Mauszeiger)
 - Rechts: Kontextmenü (am Ort des Mauszeigers)
 - Wheel: Scrollen (z.B. im aktiven Fenster)
- Tastatur
 - Eingaben im Feld mit Focus
 - Navigation mit Tab und Pfeilen
 - Mnemonics
 - Shortcuts(z.B. Strg-s, Strg-v, Strg-c, Strg-x, ...)

Dialogzustände (1)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Formulare/Dialoge haben einen Zustand
 - Daten frisch geladen (clean) vs. Daten geändert (dirty)
 - Ein Datensatz ist selektiert, keiner selektiert
 - Daten im Clipboard (copy, paste, cut)
 - Benutzer hat bestimmte Rechte nicht
 - Mehrere Schritte in der Verarbeitung schon erledigt
 - Fehler in Eingabedaten gefunden
- Zustand ist in der Oberfläche sichtbar
 - Typisch: Über aktivierte / deaktivierte Steuerelemente
 - Zustandsleiste, Hintergrundfarbe von Eingabefeldern, ...
- Zustandsautomat sollte dazu spezifiziert werden

3

Dialogzustände (2) – Dialogstruktur als Zustandsautomat

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

Prof. Dr. Martin Deubler Software Engineering 1 SS 2018 **394**

Prüfung auf Fehler

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Prüfzeitpunkte festlegen
 - Nach jedem getippten Zeichen
 - Wechsel des Eingabefokus (bei Verlassen einer Komponente)
 - Speichern / Drucken / Senden der Daten
 - Verlassen des Dialogs (OK Buttons)
 - Verlassen der Anwendung
 - . . .

Plausibilitäten aus der Dialogstatik verwenden

Fehleranzeige

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

 Es muss festgelegt werden wie Fehler angezeigt werden

Dialoglandkarte (1)

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

Dialoglandkarte

- Ablauf über mehrere Formulare hinweg
- Navigation zwischen verschiedenen Formularen
- Übersicht über die vorhandenen Formulare
- Dokumentation der Landkarte
 - Ablauf als Zustandsdiagramm (UML) dokumentieren
 - Minimal: Screenshots mit Pfeilen verbinden, z.B. an Pinnwand
 - Professionelle Ergänzung: Click-Through Prototypen (z.B. Balsamiq)

Dialoglandkarte (2)

- Screenshots auf Pinnwand mit Pfeilen verbinden
- Abläufe mit dem Kunden zusammen durchspielen
 - Was soll passieren wenn ich da drücke?
 - Wie komme ich in den Dialog X?

Softwareergonomie

- Ergonomische Anforderungen an die Dialoggestaltung
 - Europäische Norm ISO 9241-110
 - Aufgabenangemessenheit
 - Selbstbeschreibungsfähigkeit
 - Steuerbarkeit
 - Erwartungskonformität
 - Fehlertoleranz
 - Individualisierbarkeit
 - Lernförderlichkeit

Aufgabenangemessenheit

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Benutzer muss so unterstützt werden, dass er seine Arbeitsaufgabe effektiv und effizient erledigen kann
- Beispiel
 - Formularbasierte Oberflächen

Feste Bearbeitungsfolge

→ computergesteuerte
Bearbeitung (Formulare)

Selbstbeschreibungsfähigkeit (1)

- Jeder einzelne Dialogschritt
 - muss durch Rückmeldung des Dialogsystems unmittelbar verständlich sein
 - oder dem Benutzer auf Anfrage erklärt werden.
- Beispiel
 - Hilfesysteme / Assistenten

Selbstbeschreibungsfähigkeit (2)

- Beispiel
 - Rückmeldung: Fortschrittsanzeige + Abbrechbarkeit

Steuerbarkeit

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Ein Dialog ist steuerbar, wenn der Benutzer in der Lage ist,
 - den Dialogablauf zu starten
 - sowie seine Richtung und Geschwindigkeit zu beeinflussen,

bis das Ziel erreicht ist.

- Empfehlungen
 - Arbeitsmittel und Wege für den Benutzer frei wählbar (z.B. mit Wizzard oder ohne)
 - Vorgehen in leicht überschaubaren Dialogschritten
 - Dialog kann beliebig unterbrochen und wieder aufgenommen werden
 - Mehrstufiges undo und redo
 - Sicherheitsabfragen bei kritischen Funktionen

Erwartungskonformität

- Ein Dialog ist erwartungskonform,
 - wenn er konsistent ist
 - und den Merkmalen des Benutzers entspricht
 - z.B. seinen Kenntnissen aus dem Arbeitsgebiet, seiner Ausbildung und seiner Erfahrung sowie den allgemein anerkannten Konventionen.
- Empfehlungen
 - Dialogverhalten ist einheitlich
 - Bei ähnlichen Arbeitsaufgaben sind die Dialoge einheitlich gestaltet
 - Zustandsänderungen, die für den Dialog relevant sind, werden dem Benutzer mitgeteilt
 - Eingaben in Kurzform werden als Langtext bestätigt

Fehlertoleranz

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Ein Dialog ist fehlertolerant, wenn das beabsichtigte Arbeitsergebnis
 - trotz erkennbarer fehlerhafter Eingaben
 - entweder mit kleinem oder minimalem Korrekturaufwand
 - seitens des Benutzers erreicht werden kann.
- Hinweise
 - Markierung fehlerhafter Eingaben
 - Cursor zum Fehler
 - Kommentare

SS 2018

Individualisierbarkeit

05 Modellierung / 05.6 Benutzungsoberflächen, Dialoge, GUI

- Ein Dialog ist individualisierbar, wenn das Dialogsystem
 - Anpassungen an die Erfordernisse der Arbeitsaufgabe
 - sowie an die individuellen Fähigkeiten und Vorlieben des Benutzers

zulässt.

- Möglichkeiten
 - Anpassbarkeit an Sprache des Nutzers
 - Oberfläche anpassen (Farben, Tabellenbreiten)
 - Sichtbare Funktionalität konfigurieren (Personalisierung)
 - Power-User Modus anbieten

Lernförderlichkeit

- Ein Dialog ist lernförderlich, wenn er den Benutzer beim Erlernen des Dialogsystems unterstützt und anleitet.
- Beispiel: Wizard bei Powerpoint

Style Guides

- Gestaltungsregelwerk (Style Guide)
 - Schreibt vor wie die Benutzungsoberfläche von Anwendungen zu gestalten ist
 - Bestimmt das Aussehen von Fenstern, Menüs und Interaktionselementen
 - Soll sicherstellen, dass das "Look and Feel" über verschiedene Anwendungen hinweg gleich bleibt (einheitliche Gestaltung)