

EEE60204

ROBOTICS, DYNAMICS AND CONTROL

Group Assignment (30 %)

DATE: 25 February 2025

MODULE COORDINATOR: Dr Steven Eu Kok Seng

NAME	ID	SIGNATURE

Instructions:

- 1. Your submitted copy (Microsoft Word document) should include this cover page and all your answer sheets with detailed calculations.
- 2. Your report should not be more than 20 pages with font style of Times New Roman, font size of 12, and 1.5-spacing.
- 3. The assignment submission deadline is 19 March 2025, 5 PM.
- 4. Marks of 5% per day will be deducted from the total mark obtained for late submissions
- 5. This assignment contributes 30% to the final

Return of student marked assessment tasks. Please check ($\sqrt{\ }$) the necessary column.

 Electronically to the individual student via the University learning management system			
Collect during class, only by the student			
Collection from the school or a staff member upon presentation of their student ID card			
Collection from module coordinator, lecturer or tutor by prior arrangement			

^{*} For online assessment such as forum, quiz, test, survey and etc., return of students marked assessment tasks are published in TIMES.

Deliverables:

- 1) Group Report
- 2) Contributions table
- 3) Video presentation (screen recording of the robot simulation and its movement)
- 4) Source code in a zip file

Name	Student ID	Work done	Contribution percentage	Signature

Report Outline:

Section A: Introduction

- 1. Outline the objectives of utilizing ROS 2 MoveIt 2.
- 2. Discuss the advantages and disadvantages of ROS 2 MoveIt 2.

Section B: Task Planning

- 1. Define the work envelope, specifying the range of X and Y coordinates.
- 2. Determine the initial placement of objects.
- 3. Establish the pattern for output placements.

Section C: Coding

- Explain the logical flow of the code.
- Implement object addition.
- Perform grasping operations.
- Execute object placement.

Section D: Analysis of Robotic Arm Path Planning

- 1. Examine all possible movement paths.
- 2. Justify the selection of the optimal path.

Section E: Obstacle Avoidance (Optional)

• Assess path planning strategies when obstacles are introduced.

Section F: Conclusion

• Summarize the work and propose future improvements.