Rigidity transition in biological tissues

Student discussion group IMSc, Chennai

Vinay Vaibhav

September 24, 2019

Upto now

Embryonic development, cancer metastatis, wound healing:

- Early stage: large scale movement => fluid-like rheology
- Later stage: need to support forces and stresses => solid-like rheology

Many biological tissues are close to glass transition

- Caging: MSD and NGP
- Dynamical heterogeneity: Four point correlation function

Models for dense tissues

Active particle models

Active matter models + short-range repulsive/attractive interactions

Glass transition in self-propelled particle models is identical to adhesive colloids

Activity generates an effective adhesion

PRL 112, 220602 (2014)

PHYSICAL REVIEW LETTERS

week ending 6 JUNE 2014

Nonequilibrium Glassy Dynamics of Self-Propelled Hard Disks

Ludovic Berthier

Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France (Received 4 July 2013; revised manuscript received 22 May 2014; published 4 June 2014)

Jamming phase diagram for biological tissue

Density driven phase transition is impossible in confluent tissues

Rigidity transition in confluent tissues?

Ectoderm tissues have longer relaxation timescales => closer to glass transition

Need additional parameter to explain mechanical response in confluent tissues

Mechanical forces acting to regulate cell shapes

Cell-cell adhesion: cells can stick together

Active cytoskeleton: prevents too much distortion

Fluid filled: volume roughly fixed

Vertex model

How much work is required for a cell to migrate

$$E_{\mathrm{cell}} = k_A (A - A_0)^2 + k_P (P - P_0)^2$$
 A = cross-sectional area $P = \text{cross-sectional perimeter}$

$$= k_A (A - A_0)^2 + k_P (P^2 - 2P_0P + P_0^2)$$

Incompressibility

acto-myosin contractility Interfacial tension: adhesion and cortical tension

$$\epsilon = rac{1}{k_A A_0^2} \sum^N E_i = \sum_i [(a_i - 1)^2 + rac{(p_i - p_0)^2}{r}]$$
 Non-dimensionalized energy form

 p_i = rescaled shape function => increases with increasing adhesion \mathbf{r} = ratio between bulk stiffness and interface stiffness

Rearrangement and migration via T1 transition

Energy barriers and cell migration in densely packed tissues; Soft matter (2014) Unjamming and cell shape in the asthmatic airway epithelium; Nat. Mat. (2015)

Rearrangement and migration via T1 transition

Energy barriers and cell migration in densely packed tissues; Soft matter (2014) Unjamming and cell shape in the asthmatic airway epithelium; Nat. Mat. (2015)

Four-cell model

p₀ is the only control parameter here

Transition point $p_0^* = 3.813$ = perimeter of regular pentagon with unit area

Energy barrier statistics

Distribution of normalized energy barrier height for a large range of parameters; universal shape with k-gamma distribution

Mean energy barrier completely specifies the distribution and mechanical response

A density-independent rigidity transition in biological tissues; Nat. Phys. (2015)

Average energy barrier height vanishes at p_0 * ~ 3.813

We know: Jamming in inert matter

PRL 99, 178001 (2007)

PHYSICAL REVIEW LETTERS

week ending 26 OCTOBER 2007

Critical Scaling of Shear Viscosity at the Jamming Transition

Peter Olsson¹ and S. Teitel²

Jamming is controlled by: $\rho-\rho_c$

Rigidity transition controlled by po

Equivalence

Inert matter	Biological tissues
Yield stress	Average energy barrier height
Strain rate	Inverse perimeter modulus r
Density	Preferred perimeter p ₀

Modified Jamming phase diagram for biological tissue

Particulate matter: more adhesion means more gelation means solid-like

Modified Jamming phase diagram for biological tissue

Adhesion

ErbB2

jammed

fluidized

motility

Particulate matter: more adhesion means more gelation means solid-like

Opposite for confluent tissues

Confluent tissues: more adhesion means larger cell perimeters means more fluid-like

Modified Jamming phase diagram for biological tissue

Adhesion

ErbB2

jammed

fluidized

motility

Particulate matter: more adhesion means more gelation means solid-like

Opposite for confluent tissues

Confluent tissues: more adhesion means larger cell perimeters means more fluid-like

More adhesion can lead to unjamming in tissues

Confluent tissues with motility?

Confluent tissues with mitosis and apoptosis?

Confluent tissues with motility?

Confluent tissues with mitosis and apoptosis?

Active vertex model