- Q1 At some point x2>> E
- Q₁ $\frac{d^2 x}{dx^2} = \frac{1}{2} \frac{1}{4} \left(\frac{1}{4} e^{-\frac{x^2}{2}} + \frac{1}{4} e^{\frac{x^2}{2}} \right) = \frac{1}{2} \frac{1}{4} \frac{1}{4}$ + a part that is negligible in the current large x limit.
- Q3 It's not normal it able
- $\frac{dx}{dx} = \frac{dh}{dx} e^{-x/h} x h e^{-x/h}$ $\frac{d^2x}{dx^2} = \frac{d^2h}{dx^2} e^{-x/h} 2x \frac{dh}{dx} e^{-x/h} h e^{-x/h} + x^2 h e^{-x/h}$
 - divide of exit
 - $\frac{d^{2}h}{dx^{2}} 2x\frac{\partial h}{\partial x} + (\epsilon 1)h = 0$
- Qs K comes down, subtract one from the pover then multiply on another x
- Q6 because the K >0 + K >1 contributions to the sum are o based on what's out front

 (K)(K-1)
- Q7 (k+2)(k+1) ak+2 = 2kak- (e-1) ak
 - ak+2 = 2k (E-1) ak
- Q8 Because it was a 2nd order Egn,

- Qq Phy suto the recursion num water 2k (in + 1 1) = 2k 2n so when k = n, $a_{k+2} = 0$. Then we plug 0 back in to

 get a_{k+4} and that will be 0 and so on.
- Q16 $a_2 = 0-0$ a_0 g_0 all even a_k are 0
- Q11 $a_1 = 0 4$ $a_0 \Rightarrow a_1 = -2$
- $Y_{1} = (a_{0} x^{0} + a_{1} x^{2}) e^{-x/2}$ $= a_{0}(1-2x^{2}) e^{-x/2}$