Selected Solutions to Assignment # 6

17.3. Let y_m, y_n be real eigenfunctions associated with $\mathcal{L}y = -(py')' - qy$ for $x \in [a, b]$, so that $\mathcal{L}y_k = \lambda_k \rho y_k$. Then

$$\int_{x_1}^{x_2} y_m \mathcal{L} y_n \, dx = -\int_{x_1}^{x_2} y_m [(py_n')' + qy_n] \, dx = \lambda_n \int_{x_1}^{x_2} y_m \rho y_n \, dx$$

and similarly for $\int y_n \mathcal{L} y_m$. Subtracting these and integrating by parts yields

$$(\lambda_n - \lambda_m) \int_{x_1}^{x_2} \rho y_m y_n \, dx = \int_{x_1}^{x_2} \left(y_m [-(py'_n)' - qy_n] + y_n [(py'_m)' + qy_m] \right) \, dx$$

$$= \int_{x_1}^{x_2} \left(y_n (py'_m)' - y_m (py'_n)' \right) \, dx + \int_{x_1}^{x_2} q \underbrace{\left(y_n y_m - y_n y_m \right)}_{0} \, dx$$

$$= \left[y_n (py'_m) - y_m (py'_n) \right]_{x_1}^{x_2} + \int_{x_1}^{x_2} p \underbrace{\left(y'_m y'_n - y'_n y'_m \right)}_{0} \, dx.$$

Let x_1 and x_2 be two successive zeros of y_m and suppose, without loss of generality, that $y_m > 0$ on (x_1, x_2) . Then $y'_m(x_1) > 0$ and $y'_m(x_2) < 0$. Assume that y_n does not change signs on $[x_1, x_2]$. Since $\lambda_n - \lambda_m > 0$ and p is positive, the left side of the equation is positive. Since y_m and p are positive and y'_m has different signs at the endpoints, $[y_n(py'_m) - y_m(py'_n)]_{x_1}^{x_2} = y_n(py'_m)|_{x_1}^{x_2}$ must be negative. This is contradicts that y_n does not change signs.

17.4 (a). We need to assume that y(x) is continuous. In that case, integrating the differential equation from $x = -\epsilon$ to $x = \epsilon$ gives us a condition which yields the eigenvalues:

$$0 = \int_{-\epsilon}^{\epsilon} y''(x) + a\delta(x)y(x) + \lambda y(x) dx = y'(\epsilon) - y'(-\epsilon) + ay(0) + \lambda \int_{-\epsilon}^{\epsilon} y(x) dx,$$

so, because y continuous implies that $\lim_{\epsilon \to 0^+} \int_{-\epsilon}^{\epsilon} y(x) \, dx = 0$, we have

$$(1) 0 = y'(0^+) - y'(0^-) + ay(0),$$

a jump condition for the first derivative. We also have the conditions

(2)
$$y(-\pi) = 0, \quad y(\pi) = 0, \quad \text{and} \quad y(0^+) = y(0^-).$$

The last of these is the continuity for y.

On the other hand, in the disconnected intervals $(-\pi,0)$ and $(0,\pi)$ we know $y'' + \lambda y = 0$ so

$$y(x) = \begin{cases} A\cos(\sqrt{\lambda}(x+\pi)) + B\sin(\sqrt{\lambda}(x+\pi)), & -\pi \le x \le 0, \\ C\cos(\sqrt{\lambda}(x-\pi)) + D\sin(\sqrt{\lambda}(x-\pi)), & 0 \le x \le \pi. \end{cases}$$

Note that these functions are shifted to be easily evaluated at $\pm \pi$, respectively. Indeed, the conditions (2) imply A=0, C=0, and B=-D, respectively. We are seeking an eigenfunction,

the magnitude of which is irrelevant, so we can choose $y(x) = \sin(\sqrt{\lambda}(x+\pi))$ for $-\pi \le x \le 0$ and $y(x) = -\sin(\sqrt{\lambda}(x-\pi))$ for $0 \le x \le \pi$. Jump condition (1) gives

$$0 = \cos(\sqrt{\lambda}(0-\pi))\sqrt{\lambda} + \cos(\sqrt{\lambda}(0+\pi))\sqrt{\lambda} + a\sin(\sqrt{\lambda}\pi)$$

and this simplifies to $\tan(\pi\sqrt{\lambda}) = 2\sqrt{\lambda}/a$ as claimed.

The above analysis actually requires $\lambda \geq 0$ because we solve $y'' + \lambda y = 0$ by sines and cosines. Let $\lambda = +\mu^2$. The condition on λ is now $\tan(\pi\mu) = 2\mu/a$. The solutions of this equation are shown in figure 1 in the case a=2.

FIGURE 1. The eigenvalues solve $\tan(\pi\mu) = 2\mu/a$; case a=2 shown. Note that the horizontal axis is μ but the values of $\lambda = +\mu^2$, the eigenvalues, are indicated.

(b). If $\lambda < 0$ then the solutions of $y'' + a\delta(x)y + \lambda y = 0$ are

$$y(x) = \begin{cases} A \cosh(\mu(x+\pi)) + B \sinh(\mu(x+\pi)), & -\pi \le x \le 0, \\ C \cosh(\mu(x-\pi)) + D \sinh(\mu(x-\pi)), & 0 \le x \le \pi \end{cases}$$

where $\lambda=-\mu^2$. Again A=C=0 and B=-D so $y(x)=\sinh(\sqrt{\lambda}(x+\pi))$ for $-\pi \le x \le 0$ and $y(x)=-\sinh(\sqrt{\lambda}(x-\pi))$ for $0 \le x \le \pi$. The jump condition indeed gives $\tanh(\pi\mu)=2\mu/a$. Plotting a few cases indicates that there is at most one solution, with $\mu>0$ and $\lambda<0$. It only occurs if the slope of $f(\mu)=2\mu/a$ at $\mu=0$ is less than the slope of $g(\mu)=\tanh(\pi\mu)$ at $\mu=0$. But this is indeed the condition $a>2/\pi$ claimed in the hint.

17.8. Fix x and let $f(h) = e^{2hx - h^2}$. Expand in series in about h = 0:

$$f(0) = e^{2hx - h^2} \Big|_{h=0} = e^0 = 1, \qquad f'(0) = 2(x - h)f(h)|_{h=0} = 2x$$

$$f''(0) = 2(x - h)f'(h) - 2f(h)|_{h=0} = 4x^2 - 2$$

$$f'''(0) = 2(x - h)f''(h) - 2xf'(h) - 2f'(h)|_{h=0} = 8x^3 - 12x$$

$$f^{(iv)}(0) = 2(x - h)f'''(h) - (4x + 2)f''(h) - 2f'(h)|_{h=0} = 16x^4 - 48x^2 + 12$$

These are the coefficients in $\sum_{0}^{\infty} \frac{H_m(x)}{n!} h^m$, and they are the first five Hermite polynomials.

Note that e^{-x^2} is an even function. For p=2, q=3, note $H_2(x)H_3(x)$ is an odd polynomial, so $\int_{-\infty}^{\infty} e^{-x^2} H_2(x) H_3(x) dx = 0$. For p=2, q=4, the integral is

$$\int_{-\infty}^{\infty} e^{-x^2} (64x^6 - 244x^4 - 144x^2 - 24) dx = 64 \frac{6!\sqrt{\pi}}{2^6 3!} - 224 \frac{4!\sqrt{\pi}}{2^4 2!} - 144 \frac{2!\sqrt{\pi}}{2^2 1!} - 24 \frac{\sqrt{\pi}}{2} = 0.$$

For $H_3^2(x) = 64x^3 - 192x^4 + 144x^2$, the value is $64\frac{6!\sqrt{\pi}}{2^63!} - 192\frac{4!\sqrt{\pi}}{2^42!} + 144\frac{2\sqrt{\pi}}{2^2} = 48\sqrt{\pi}$. These all match (17.52).

17.10. Let ϕ_j be orthogonalized functions, with hats representing normalized functions. Orthonormalizing monomials over the interval $[0, \infty]$ with weight e^{-x} produces

$$\widehat{\phi_0} = \frac{1}{\langle 1|e^{-x}|1\rangle} = \frac{1}{1} = 1, \qquad \phi_1 = x - \widehat{\phi_0}\langle \widehat{\phi_0}|e^{-x}|x\rangle = x - 1 = \widehat{\phi}_1,$$

$$\phi_2 = x^2 - \widehat{\phi_0}\langle \widehat{\phi_0}|e^{-x}|x^2\rangle - \widehat{\phi_1}\langle \widehat{\phi_1}|e^{-x}|x^2\rangle = x^2 - 1 \cdot 2 - (x - 1) \cdot 4 = x^2 - 4x + 2,$$

$$\widehat{\phi_2} = \frac{\phi_2}{\langle \phi_2|e^{-x}|\phi_2\rangle} = \frac{x^2 - 4x + 2}{2}$$

Comparing these to the recursion in exercise 17.9, namely $L_{n+1} - (2n+1-x)L_n + n^2L_{n-1}$, we get

$$\widehat{\phi}_{n+1} = \frac{(-1)^{n+1}}{(n+1)!} [(2n+1-x)\widehat{\phi}_n - n^2 \widehat{\phi}_{n-1}], \quad n = 1, 2, \dots$$

for the orthonormal polynomial, which is $\widehat{\phi}_3 = (x^3 - 9x^2 + 18x - 6)/6$ in the n = 2 case.

17.11. (a) The operator $L = \frac{d}{dx} + x$ acting on the given space is *not* Hermitian:

$$\langle f|Lg\rangle = \int_{-\infty}^{\infty} f^*(x)g'(x)dx + \int_{-\infty}^{\infty} xf^*(x)g(x)dx$$
$$= \underbrace{f^*(x)g(x)|_{-\infty}^{\infty}}_{0} + \int_{-\infty}^{\infty} g(x)(-f'^*(x) + xf^*(x))dx \neq \langle Lf|g\rangle.$$

(b) $L = -i\frac{d}{dx} + x^2$ is Hermitian on this space:

$$\langle f|Lg\rangle = \int_{-\infty}^{\infty} f^*(x)(-ig'(x) + x^2g(x))dx = \underbrace{\int_{-\infty}^{\infty} -if^*(x)g'(x)dx}_{I} + \int_{-\infty}^{\infty} f^*(x)x^2g(x))dx$$
$$I = -i\underbrace{f'^*(x)g(x)\big|_{-\infty}^{\infty}}_{0} + i\int_{-\infty}^{\infty} f'^*(x)g(x)dx = \int_{-\infty}^{\infty} \left(-if'(x)\right)^*g(x)dx$$

so
$$\langle f|Lg\rangle = \int_{-\infty}^{\infty} \left(-if'(x) + x^2f(x)\right)^* g(x)dx = \langle Lf|g\rangle$$
.

(c) $L = ix \frac{d}{dx}$ is not Hermitian:

$$\langle f|Lg\rangle = \int_{-\infty}^{\infty} f^*(x)(ixg'(x))dx = \underbrace{ixf^*(x)g(x)|_{-\infty}^{\infty}}_{0} - i\int_{-\infty}^{\infty} (f^*(x) + xf'^*(x))g(x)dx$$
$$= \int_{-\infty}^{\infty} \left(ixf'(x) + xf(x)\right)^* g(x)dx \neq \langle Lf|g\rangle$$

(d) $L = i \frac{d^3}{dx^3}$ is Hermitian:

$$\langle f|Lg\rangle = \int_{-\infty}^{\infty} f^*(x)(ig'''(x))dx = \underbrace{if^*(x)g''(x)\big|_{-\infty}^{\infty}}_{0} - i\int_{-\infty}^{\infty} f'^*(x)g''(x)dx$$

$$= -i\underbrace{f'^*(x)g'(x)\big|_{-\infty}^{\infty}}_{0} + i\int_{-\infty}^{\infty} f''^*(x)g'(x)dx$$

$$= i\underbrace{f''^*(x)g(x)\big|_{-\infty}^{\infty}}_{0} + \int_{-\infty}^{\infty} (if'''(x))^*g(x)dx = \langle Lf|g\rangle$$

In each of the above cases, the boundary terms vanish because we assume that the functions to which L applies decay sufficiently fast, and that their derivatives decay sufficiently fast. Precision on this issue is a more advanced topic. See chapter VIII of M. Reed & B. Simon, Methods of Modern Mathematical Physics: *I. Functional Analysis*, Revised and Enlarged Edition, Academic Press 1980.

Though the above calculations suffice, in proving that an operator L is *not* Hermitian it is probably best to find a particular pair of functions f,g in the domain of L and show $\langle f|Lg\rangle \neq \langle Lf|g\rangle$.