Metody numeryczne

Sprawozdanie 4

<u>Uogólniony (symetryczny) problem własny - wyznaczanie modów własnych</u> <u>struny w 1D</u>

Kateryna Andrusiak

27 marca 2020

1. Wstęp teoretyczny

Liczbę λ nazywamy wartością własną macierzy kwadratowej A, jeżeli istnieje niezerowy wektor \vec{x} , taki, że:

$$A\vec{x} = \lambda \vec{x} \tag{1}$$

Każdy niezerowy wektor \vec{x} spełniający powyższe równanie nazywamy wektorem własnym macierzy A odpowiadającym wartości własnej λ . Wektory i wartości własne opisują endomorfizm danej przestrzeni liniowej.

Czasem układ równań, którego chcemy znaleźć rozwiązanie, przyjmuje trudniejszą postać, wtedy mamy do czynienia z tzw. uogólnionym problemem własnym:

$$A\vec{x} = \lambda B\vec{x} \tag{2}$$

Jeśli macierz B jest nieosobliwa to problem uogólniony można przekształcić do postaci:

$$B^{-1}A\vec{x} = \lambda \vec{x} \tag{3}$$

Dla znalezienia B⁻¹ możemy posłużyć się <u>rozkładem LL^T</u> w przypadku, gdy A oraz B są macierzami symetrycznymi.

$$B = LL^T \tag{4}$$

$$BB^{-1} = I = LL^{T}(L^{T})^{-1}L^{-1}$$
(5)

$$B^{-1} = (L^T)^{-1}L^{-1} (6)$$

Wówczas wykorzystując rozkład LL^T można znaleźć macierz podobną do $\operatorname{B}^{-1}\operatorname{A}$

$$L^{T}(B^{-1}A)(L^{T})^{-1} = L^{T}(L^{T})^{-1}L^{-1}A(L^{T})^{-1} = L^{-1}A(L^{T})^{-1} = G$$
(7)

Dzięki temu przekształceniu, macierz G jest symetryczna jak A i posiada identyczne widmo wartości własnych, (ale inne wektory własne).

$$G\vec{y} = \lambda \vec{y} \tag{8}$$

Dla znalezienia G musimy najpierw znaleźć macierz F

$$F = A(L^T)^{-1} \tag{9}$$

Rozwiązując układ równań

$$FL^T = A \implies LF^T = A^T = A \tag{10}$$

a następnie wyznaczamy G

$$G = L^{-1}F \tag{11}$$

rozwiązując układ równań

$$LG = F \tag{12}$$

Rozkład LL^T wymaga wykonania $\frac{n^3}{6}$ mnożeń a wyznaczenie macierzy $G\frac{2}{3}n^3$. Macierz G jest symetryczna, więc w celu wyznaczenia jej wartości i wektorów własnych korzystamy z metod przeznaczonych dla tej klasy macierzy.

Dla wyznaczenia wartości i wektorów własnych macierzy symetrycznej(w tym hermitowskiej) możemy korzystać z metody Householdera, ta metoda jest stabilna numerycznie.

Wektory własne macierzy A wyznaczamy przekształcając wektory macierzy G lub rozwiązując układ

$$L^T \vec{x} = \vec{y} \tag{13}$$

2. Problem

Problem polega na wyznaczaniu częstości drgań własnych struny, której wychylenie w czasie i przestrzeni opisuje funkcja $\psi = \psi(x,t)$.

Dynamika struny rządzi równanie falowe (N-naciąg struny, $\rho(x)$ – liniowy rozkład gestości):

$$\frac{N}{\rho(x)}\frac{\partial^2 \psi}{\partial x^2} = \frac{\partial^2 \psi}{\partial t^2} \tag{14}$$

Dokonujemy separacji zmiennych:

$$\psi(x,t) = u(x)\theta(t) \tag{15}$$

$$\frac{N}{\rho(x)} \frac{1}{u} \frac{\partial^2 u}{\partial x^2} = \frac{1}{\theta} \frac{\partial^2 \theta}{\partial t^2} = const = -\lambda \qquad (\lambda = \omega^2, \omega - częstość własna drgań)$$
 (16)

dzięki czemu otrzymujemy równanie różniczkowe zależne tylko od zmiennej położeniowej

$$-\frac{\partial^2 u}{\partial x^2} = \lambda \frac{\rho(x)}{N} u \tag{17}$$

Struna przymocowana jest w punktach $\pm L/2$ (L-długość struny). Wprowadzamy siatkę równoodległych węzłów: $x = x_i$, $u(x) = u_i$, $\rho(x) = \rho_i$. Odległość pomiędzy węzłami wynosi:

$$\Delta x = \frac{L}{n+1} \tag{18}$$

a położenie w przestrzeni wyznaczamy tak

$$x_i = -\frac{L}{2} + \Delta x \cdot (i+1), \qquad i = 0, 1, 2, ..., n-1$$
 (19)

Teraz możemy dokonać dyskretyzacji równania (17) podstawiając trójpunktowy iloraz różnicowy centralny za drugą pochodną

$$-\frac{u_{i-1} - 2u_i + u_{i+1}}{\Lambda x^2} = \lambda \frac{\rho_i}{N} u_i$$
 (20)

co można zapisać w postaci

$$A_{n\times n} \cdot \vec{u} = \lambda B_{n\times n} \cdot \vec{u} \tag{21}$$

co stanowi tzw. uogólniony problem własny, w którym elementy macierzowe są zdefiniowane następująco

$$A_{i,i} = (-\delta_{i,i+1} + 2\delta_{i,i} - \delta_{i,i-1})/\Delta x^2$$
 (22)

$$B_{i,j} = \frac{\rho_i}{N} \delta_{i,j} \tag{23}$$

gdzie

$$\delta_{i,j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \tag{24}$$

jest deltą Kroneckera.

Dla rozwiązania problemu otrzymaliśmy następujące parametry:

Długość struny: L=10, ilość kroków: n=200, naciąg struny: N=1;

Liniowy rozkład gęstości: $\rho(x) = 1 + 4\alpha x^2$.

Parametr: $\alpha \in [0, 100]$ z krokiem $\Delta \alpha = 2$.

3. Wyniki

Rysunek 1. Wykres zmiany wartości własnych w funkcji parametru α .

Jak widać na rysunku 1, pierwsze pierwiastki spadają dość szybko, a następnie dążą do zera.

Rysunek 2. Wykres wektorów własnych odpowiadających 6 najniższym wartościom własnym dla $\alpha = 0$.

W tym przypadku wektory własne są nieparzystymi wielokrotnościami "połówek" sinusa z jednakową amplitudą oraz różnymi częstotliwościami.

Rysunek 3. Wykres wektorów własnych odpowiadających 6 najniższym wartościom własnym dla $\alpha = 100$.

Dla $\alpha=100$, środek struny staje się masywny, przez co wektory 1,3,5 mają płaską centralną część oraz różnią się amplitudami.

4. Wnioski

Jak widać, uogólniony problem własny (2) jest równoważny "zwykłemu" problemowi własnemu (8). Ponadto, jeżeli A (2) jest symetryczna (i dodatnio określona), także G (8) jest symetryczna (i dodatnio określona). Można również powiedzieć, że uogólnione wektory własne są ortogonalne względem iloczynu skalarnego generowanego przez symetryczną i dodatnio określoną macierz B. Uogólnione wektory własne stanowią także bazę w przestrzeni \mathbb{R}^N , nieortogonalną względem "naturalnego" iloczynu skalarnego.

Równanie falowe sprowadziliśmy do uogólnionego problemu własnego, dzięki czemu udało się znaleźć wartości oraz wektory własne. Z wyników możemy wnioskować, że każdy kolejny wyraz wektorów własnych ma coraz większą częstotliwość i układa się na krzywych podobnie ruchu drgającemu.