→ IMPORTING LIBRARIES

import numpy as np
import pandas as pd
df=pd.read_csv('/content/diabetes.csv')
df

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Di
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
4		22		^.	^	^^ <i>'</i>	•

#FOR PRINTING FIRST 5 DATAS

df.head

<bound met<="" th=""><th>hod NDFran</th><th>me.head of</th><th>Pregnancies</th><th>Glucose</th><th>BloodPre</th><th>ssure</th><th>SkinThickness</th><th>Insulin</th><th>BMI</th><th>\</th></bound>	hod NDFran	me.head of	Pregnancies	Glucose	BloodPre	ssure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6				
1	1	85	66	29	0	26.6				
2	8	183	64	0	0	23.3				
3	1	89	66	23	94	28.1				
4	0	137	40	35	168	43.1				
• •	• • •	• • •	• • •	• • •	• • •					
763	10	101	76	48	180	32.9				
764	2	122	70	27	0	36.8				
765	5	121	72	23	112	26.2				
766	1	126	60	0	0	30.1				
767	1	93	70	31	0	30.4				

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1
	•••		
763	0.171	63	0
764	0.340	27	0
765	0.245	30	0
766	0.349	47	1
767	0.315	23	0

[768 rows x 9 columns]>

#FOR PRINTING LAST 5 DATAS

df.tail()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Di
769	10	101	76	10	100	აა ი	

df.info

<bound met<="" th=""><th>hod DataFi</th><th>rame.info of</th><th>Pregnancies</th><th>Glucose</th><th>BloodPr</th><th>essure</th><th>SkinThickness</th><th>Insulin</th><th>BMI</th><th>\</th></bound>	hod DataFi	rame.info of	Pregnancies	Glucose	BloodPr	essure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6				
1	1	85	66	29	0	26.6				
2	8	183	64	0	0	23.3				
3	1	89	66	23	94	28.1				
4	0	137	40	35	168	43.1				
• •	• • •	• • •	• • •	• • •	• • •	• • •				
763	10	101	76	48	180	32.9				
764	2	122	70	27	0	36.8				
765	5	121	72	23	112	26.2				
766	1	126	60	0	0	30.1				
767	1	93	70	31	0	30.4				

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1
	•••		
763	0.171	63	0
764	0.340	27	0
765	0.245	30	0
766	0.349	47	1
767	0.315	23	0

[768 rows x 9 columns]>

df.dtypes

Pregnancies	int64
Glucose	int64
BloodPressure	int64
SkinThickness	int64
Insulin	int64

BMI	float64
DiabetesPedigreeFunction	float64
Age	int64
Outcome	int64

dtype: object

▼ FOR FINDING MISSING DATAS

```
df.isna().sum()

Pregnancies
Glucose
BloodPressure
SkinThickness
Insulin
BMI
DiabetesPedigreeFunction
Age
Outcome
dtype: int64
```

▼ SEPERATING X AND Y

```
x=df.iloc[:,:-1].values
Х
    array([[ 6. , 148.
                       , 72. , ..., 33.6 , 0.627, 50.
               , 85.
                       , 66. , ..., 26.6 ,
                                               0.351, 31.
                 , 183.
                                       23.3 ,
                                               0.672, 32.
                                       26.2 ,
                                               0.245, 30.
                 , 121.
                       , 60.
                 , 126.
                                       30.1 ,
                                               0.349, 47.
                                                           ],
            1.
                 , 93.
                       , 70.
                                       30.4 ,
                                               0.315, 23.
                                                          11)
```

```
y=df.iloc[:,-1].values
y
```

```
array([1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
      1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
      0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,
      1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
      1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
      1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
      1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
      1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
      0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,
      1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1,
      1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
      1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
      1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
      0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0,
      1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
      0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
      0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
      0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0,
      0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
      0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
      1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
      1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
      1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
      0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
      0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
      0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
      1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
      0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
      0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
      0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
      0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
      1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0])
```

x.ndim

2

y.ndim

1

▼ IMPORTING TRAIN TEST SPLIT

```
from sklearn.model selection import train test split
x train,x test,y train,y test=train test split(x,y,test size=0.30,random state=42)
x train
    array([[ 1. , 95. , 60. , ..., 23.9 , 0.26 ,
          [ 5. , 105. , 72. , ..., 36.9 , 0.159,
               , 135. , 68. , ..., 42.3 ,
                                                 0.365, 24.
          . . . ,
          [ 10. , 101. , 86. , ..., 45.6 , 1.136, 38.
                 , 141. , 0. , ..., 42.4 , 0.205, 29. ],
          Γ 0.
                , 125. , 96. , ..., 22.5 , 0.262, 21.
x test
    array([[6.00e+00, 9.80e+01, 5.80e+01, ..., 3.40e+01, 4.30e-01, 4.30e+01],
          [2.00e+00, 1.12e+02, 7.50e+01, ..., 3.57e+01, 1.48e-01, 2.10e+01],
          [2.00e+00, 1.08e+02, 6.40e+01, ..., 3.08e+01, 1.58e-01, 2.10e+01],
          [0.00e+00, 1.27e+02, 8.00e+01, ..., 3.63e+01, 8.04e-01, 2.30e+01],
          [6.00e+00, 1.05e+02, 7.00e+01, ..., 3.08e+01, 1.22e-01, 3.70e+01],
          [5.00e+00, 7.70e+01, 8.20e+01, ..., 3.58e+01, 1.56e-01, 3.50e+01]])
y train
    0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
          0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0,
```

```
1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0,
0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0,
0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1,
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0,
0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,
0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,
1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0,
1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1,
0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0,
0, 1, 0, 0, 0, 0, 1, 1, 0])
```

y_test

▼ NORMALISATION USING STANDARD SCALER

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x test)
x train=scaler.fit transform(x train)
x test=scaler.fit transform(x test)
x train
     array([-0.8362943, -0.80005088, -0.53576428, ..., -1.06015343,
             -0.61421636, -0.94861028],
            [ 0.39072767, -0.49054341, 0.12804365, ..., 0.64646721,
             -0.90973787, -0.43466673],
            [-1.14304979, 0.43797901, -0.09322566, ..., 1.35537117,
             -0.30699103, -0.77729576],
            [1.92450513, -0.6143464, 0.90248622, ..., 1.78859026,
              1.94892066, 0.42190587],
            [-1.14304979, 0.62368349, -3.8548039, ..., 1.36849903,
             -0.77514391, -0.34900947],
            [-1.14304979, 0.12847154, 1.45565949, ..., -1.24394334,
             -0.60836445, -1.03426754]])
x test
     array([[0.52338715, -0.73944644, -0.44460031, ..., 0.23273334,
             -0.15228198, 0.7860505],
            [-0.59092098, -0.28934861, 0.32999837, ..., 0.43377686,
             -1.07730552, -1.05908052],
            [-0.59092098, -0.41794799, -0.17121254, ..., -0.14570152,
             -1.04450327, -1.05908052],
            \lceil -1.14807505, 0.19289907, 0.5578215, \ldots, 0.5047334,
              1.0745223 , -0.89134133],
            [0.52338715, -0.51439752, 0.10217523, ..., -0.14570152,
             -1.16259138, 0.28283295],
            [0.24481012, -1.41459319, 0.64895076, ..., 0.44560295,
             -1.05106372, 0.11509377]])
```

MODEL IMPLEMENTATION

KNN MODEL

from sklearn.neighbors import KNeighborsClassifier

```
knn model=KNeighborsClassifier(n neighbors=3)
knn model.fit(x train,y train)
y pred=knn model.predict(x test)
y_pred
     array([0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
            0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0,
            0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
            0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1,
            0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
            0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
            0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
            0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
            1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0])
y test
     array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,
            0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1,
            0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
            0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1,
            0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1,
            0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1,
            0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
            0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0,
            0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0,
            1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
```

1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0])

▼ PERFORMANCE EVALUATION

Colab paid products - Cancel contracts here

✓ 0s completed at 1:05 PM

X