Efficient Simulation of Light-Tailed Sums

Brennan Hall

UC Santa Barbara

March 19, 2019

Overview

- Background
 - Rare Event Simulation
 - Importance Sampling
- Optimal State Dependent Exponential Tilting
 - Motivation
 - Algorithm
- Numerical Results

Goal

We aim to present an importance sampling based methodology for rare-event simulation that provides an estimator with bounded relative error.

Rare Event Simulation

• Let $\{X_i\}_{i=1}^n$ be a sequence of iid *d*-dimensional random variables distributed under measure **P** and

$$S_n = X_1 + \ldots + X_n$$

Of interest is estimating

$$\alpha_n = \mathbf{P}(S_n/n \in A) = \mathbf{E}[Y]$$

for $Y = \mathbb{1}_{\{S_n/n \in A\}}$ for a closed and convex set A.

• One issue for finding an estimator of α_n is determining whether its accuracy deteriorates as $\alpha_n \downarrow 0$.

Shortfalls of Standard Methods

• If the event $\{S_n/n \in A\}$ is rare under **P**, the variance of the estimator

$$Q_K = (Y_1 + \ldots + Y_K)/K$$

is large compared to $\mathbf{E}[Q_K]$.

• Large number of Monte Carlo simulations are required to estimate α_M to a given relative accuracy, eg. coefficient of variation

$$\frac{\sigma/\sqrt{M}}{\alpha_n} = \frac{\sqrt{\alpha_n(1-\alpha_n)}}{M\sqrt{\alpha_n}} \approx \frac{1}{\sqrt{M\alpha_n}}$$

where $\alpha_n \downarrow 0$.

Importance Sampling

- Used to reduce variance of Q_K by a change of measure so that the number of MC simulations needed is reduced.
- Sample $\{\bar{Y}_i\}_{i=1}^n$ from the distributioon defined by the Radon-Nikodym derivative, $\mathbf{f} = \frac{d\mathbf{P}}{d\mathbf{P}_a}$ for $\mathbf{P} \ll \mathbf{P}_{\theta}$.
- Instead of Q_K , consider

$$ar{Q}_{\mathcal{K}} = rac{1}{\mathcal{K}} \sum_{i=1}^{\mathcal{K}} ar{Y}_i \mathbf{f}(ar{Y}_i)$$

Note: \mathbf{f} is restricted to a parametrized family of alternative sampling distributions since some distributions are inappropriate to use.

Optimal Exponential Tiliting

ullet Let $F(\cdot) = \mathbf{P}(X \leq \cdot)$ and ψ be the log-MGF of X , then

$$dF_{\theta} = \exp\left\{\theta x - \psi(\theta)\right\} dF$$

is said to be exponentially tilted by the parameter θ .

• $Z = \frac{dF}{dF_{\theta}}$ is an exponential martingale with $\mathbf{E}[Z] = 1$ guarantees existence of F_{θ} [Girsanov 1960].

Examples:

- $\mathcal{N}(\mu, \sigma^2) \to \mathcal{N}(\mu + \theta \sigma^2, \sigma^2)$
- $Gamma(\alpha, \beta) \rightarrow Gamma(\alpha, \beta \theta)$

OET Efficiency

Definition

An estimator Q is logarithmically efficient if

$$\liminf_{n\uparrow\infty} \frac{\log \mathbf{E}[Q^2]}{\log \mathbf{E}[Q]^2} = 1$$

Proposition ([Asmussen, Glynn 2007])

OET is the only iid importance sampling algorithm that provides at least logarithmic efficiency.

Motivation for improving on OET

Consider in the d = 1-dimensional case

- Set $A = (\beta, \infty)$, $\beta > 0$ so $Y = \mathbb{1}_{\{S_n > n\beta\}}$.
- Under OET, we get LE for unbiased estimator \bar{Q}_K with ${\bf Var}(\bar{Q}_K) \to 0$ but the squared coefficient of variation,

$$\frac{\mathsf{Var}(\bar{Q}_{\mathsf{K}})}{\mathsf{E}[\bar{Q}_{\mathsf{K}}]^2} \to \infty, \text{ as } n \uparrow \infty$$

unless K increases exponentially with n.

- OET adds bias to increments when S_n near $n\beta$.
- Use conditional knowledge of current state Optimal State-Dependent Exponential Tilting – to obtain bounded relative error.

OSDET

Dynamically update OET at each step based on the current step.

• Update parameter θ_w to sample from F_{θ_w} through the Legendre transform

$$J(w) = \sup_{\theta \ge 0} \left\{ \theta w - \psi(\theta) \right\}$$

with

$$J'(w) = \psi'^{-1}(w) = \theta_w$$

- $J(\cdot)$ is convex along \mathbb{R} and is twice continuously differentiable (besides w = 0).
- Under certain conditions before random walk completes, apply OET for remaining time.

Algorithm

Set $w = \beta > n^{-1/2}$, L = 1, s = 0, $\bar{s} = 0$, k = 0, $\lambda > 2\beta$. Repeat Step (1) until n = k or $w \le (n - k)^{-1/2}$ or $w > \lambda$.

1 Sample X from F_{θ_w}

$$L \leftarrow \exp\{-\theta_w X + \psi(\theta_w)\} L$$

$$s \leftarrow s + X$$

$$k \leftarrow k + 1$$

$$w \leftarrow (n\beta - s)/(n - k)$$

② If k < n, sample X_{k+1}, \ldots, X_n from F_{θ_w}

$$\bar{s} \leftarrow X_{k+1} + \ldots + X_n$$

 $L \leftarrow \exp \left\{ -\theta_w \bar{s} + (n-k) \psi(\theta_w) \right\} L$

Estimator

The algorithm provides an unbiased, BRE estimator:

$$Y_n = \mathbb{1}_{\{S_n > n\beta\}} \prod_{j=1}^n \exp\{-\theta_j X_j + \psi(\theta_j)\}$$

Unbiased:

$$\mathbf{E}[Y_n] = \mathbf{E}\left[\mathbb{1}_{\{S_n > n\beta\}} \prod_{j=1}^n \exp\left\{-\theta_j X_j + \psi(\theta_j)\right\}\right]$$
$$= \prod_{j=1}^n \int_{\omega: \{S_n > n\beta\}} \frac{1}{Z_j} dF_{\theta_j} = \mathbf{P}(S_n > n\beta)$$

BRE:

$$\sup_{n\geq 1}\frac{\tilde{\mathbf{E}}\big[Y_n^p\big]}{\mathbf{P}\big(S_n>n\beta\big)^p}<\infty$$

$\mathbf{P}(S_n > n\beta)$ with $X \sim \mathcal{N}(0,1)$, $\alpha_n \to 0$.

Fix number of MC trials, K = 1000, and $\beta = 1$.

Brennan Hall (UCSB)

$\mathbf{P}(S_n > n\beta)$ with $X \sim \mathcal{N}(0,1)$, $cv(Q_K)$ bounded

Fix number of MC trials, K = 1000, and $\beta = 1$.

Brennan Hall (UCSB)

References

Asmussen, S. and Glynn, P.W., 2007. Stochastic simulation: algorithms and analysis (Vol. 57). Springer Science & Business Media.

- Girsanov, I.V., 1960. "On transforming a certain class of stochastic processes by absolutely continuous substitution of measures". Theory of Probability & Its Applications, 5(3), pp.285-301.
 - Dupuis, P. and Wang, H., 2004. "Importance sampling, large deviations, and differential games". Stochastics: An International Journal of Probability and Stochastic Processes, 76(6), pp.481-508.