Binary Numbers

Chun-Jen Tsai National Chiao Tung University 09/20/2012

Signals (1/2)

- ☐ An signal is a function of time (or space)
 - The range of the function represents physical quantity of information
- □ All signals are analog by nature (i.e. both range and domain are real numbers); however, for digital systems, we only process digital signals

Signals (2/2)

- ☐ For digital systems, the variable (i.e. output of the function) takes on discrete values
 - Two-level (binary) values are the most prevalent
- ☐ Binary values are represented abstractly by:
 - digits 0 and 1
 - symbols False (F) and True (T)
 - symbols Low (L) and High (H)
 - states On and Off

Digital Number Systems

- □ A digital number system only allows discrete numbers (e.g. integers)
 - The base (or radix) of the number system can be any positive integers
- □ If the base is r (represented as a decimal number), we can convert any base-r number to a decimal number (base-10 number) as follows:

$$\dots a_4 a_3 a_2 a_1 a_0 \cdot a_{-1} a_{-2} \dots$$

$$= \dots r^{4} \cdot a_{4} + r^{3} \cdot a_{3} + r^{2} \cdot a_{2} + r^{1} \cdot a_{1} + r^{0} \cdot a_{0} + r^{-1} \cdot a_{-1} + r^{-2} \cdot a_{-2} + \dots$$

Examples of Digital Numbers

☐ Base-2 number (aka. binary number):

$$(11010.11)_2 = (26.75)_{10}$$

= 1×2⁴ +1×2³ +0×2² +1×2¹ +0×2⁰ +1×2⁻¹ +1×2⁻²

□ Base-5 number:

$$(4021.2)_5$$

= $4 \times 5^3 + 0 \times 5^2 + 2 \times 5^1 + 1 \times 5^0 + 2 \times 5^{-1} = (511.5)_{10}$

☐ Base-16 number:

$$(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46,687)_{10}$$

Binary Arithmetic

Addition

■ Subtraction

Augend: 101101

Addend: +100111

Sum: 1010100

Minuend: 101101

Subtrahend: -100111

Difference: 000110

■ Multiplication

Multiplicand: 1011

Multiplier: × 101

Partial Products: 1011

0000-

1011--

Product: 110111

Number-Base Conversion (1/3)

 \Box Convert decimal $(41)_{10}$ to binary:

	Quotient		Remainder	Coefficient
41/2 =	20	+	1/2	$a_0 = 1$
20/2 =	10	+	0	$a_1 = 0$
41/2 =	20	+	0	$a_2 = 0$
41/2 =	20	+	1/2	$a_3 = 1$
41/2 =	20	+	0	$a_4 = 0$
41/2 =	20	+	1/2	$a_5 = 1$
\rightarrow (41) ₁₀	= (a ₅ a ₄ a ₃ a ₂ a	₁ a ₀) ₂ =	$(101001)_2$	

Number-Base Conversion (2/3)

- ☐ The conversion process can be done conveniently in a tabular form
 - Example: convert decimal $(153)_{10}$ to octal. The base r is 8.

Integer	Remainder
153	
19	1
2	3
0	2

$$=(231)_8$$

Number-Base Conversion (3/3)

 \square Convert $(0.6875)_{10}$ to binary:

	Integer Fraction			Coefficient			
$0.6875 \times 2 =$	1	+	0.3750	$a_{-1} = 1$			
$0.3750 \times 2 =$	0	+	0.7500	$a_{-2} = 0$			
$0.7500 \times 2 =$	1	+	0.5000	$a_{-3} = 1$			
$0.5000 \times 2 =$	1	+	0.0000	$a_{-4} = 1$			

$$\rightarrow (0.6875)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4})_2 = (0.1011)_2$$

 \Box To convert a decimal fraction to a number of base r, multiplication should be by r instead of 2.

Octal and Hexadecimal Numbers

- ☐ Why do we use octal or hex notations?
 - Easy to read
 - Easy to convert

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Signed Numbers

□ Leopold Kronecker (according to H. Weber, 1893):

"God made the natural numbers; all else is the work of man."

- ☐ How do we represent singed binary numbers?
 - Complements of numbers
 - Sign-magnitude notation
 - Excess notation[†]

Complements of Numbers (1/2)

- ☐ Two types of complements for base-*r* system: the radix complement and diminished radix complement.
 - The first one is called the r's complement and the second one is called the (r-1)'s complement
- □ Diminished Radix Complement
 - The (r-1)'s complement of an n-digit number N in base r is defined as $(r^n-1)-N$.
- ☐ Example: base-10 complement

The 9's complement of 546700 is 999999 - 546700 = 453299.

The 9's complement of 012398 is 999999 - 012398 = 987601.

Complements of Numbers (2/2)

- □ Radix Complement
 - The r's complement of an n-digit number N in base r is defined as $r^n N$ for $N \neq 0$ and as 0 for N = 0.
 - The r's complement is obtained by adding 1 to the (r-1)'s complement, since $r^n N = [(r^n 1) N] + 1$.
- ☐ Example: Base-10 complement

The 10's complement of 012398 is 987602 The 10's complement of 246700 is 753300

☐ Example: Base-2 complement

The 2's complement of 1101100 is 0010100 The 2's complement of 0110111 is 1001001

Subtraction with Complement

- □ The subtraction of two n-digit unsigned numbers M N in base r can be done as follows:
 - Add the minuend M to r's complement of the subtrahend N. Note that $M + (r^n - N) = M - N + r^n$.
 - If $M \ge N$, the sum will produce and end carry r^n , which can be discarded; what is left is the result M N.
 - If M < N, the sum does not produce an end carry and is equal to $r^n (N M)$, which is the r's complement of (M N).

Example of Subtraction

☐ Using 10's complement, subtract 72532 — 3250

$$M = 72532$$
10's complement of $N = \pm 96750$
Sum = 169282
Discard end carry $10^5 = \pm 100000$
Answer = 69282

☐ Using 10's complement, subtract 3250 – 72532

$$M = 03250$$
10's complement of $N = \pm 27468$
Sum = 30718

Subtraction with End Carry

□ Compute X - Y where X = 1010100 and Y = 1000011 using 2's complement:

$$X = 1010100$$

2's complement of $Y = \pm 0111101$
Sum = 10010001
Discard end carry $2^7 = -10000000$
Answer. $X - Y = 0010001$

Subtraction by (r-1)'s complement

☐ In previous example, compute (a) X - Y and (b) Y - X using 1's complement:

(a)
$$X-Y=1010100-1000011$$

 $X=1010100$
1's complement of $Y=\pm 0111100$
Sum = 10010000
End-around carry = ± 1
Answer. $X-Y=0010001$

(b)
$$Y - X = 1000011 - 1010100$$

 $Y = 1000011$
1's complement of $X = \pm 0101011$
Sum = 1101110

Signed Binary Numbers

Signed Binary Numbers

	e	Signed Magnitud	Signed-1's Complement	Signed-2's Complement	Decimal
		0111	0111	0111	+7
		0110	0110	0110	+6
		0101	0101	0101	+5
In all forms,		0100	0100	0100	+4
•		0011	0011	0011	+3
a 1 in MSB		0010	0010	0010	+2
/ represents		0001	0001	0001	+1
negative		0000	0000	0000	+0
numbers	*	1000	1111	_	-0
		1001	1110	1111	-1
		1010	1101	1110	-2
		1011	1100	1101	-3
		1100	1011	1100	-4
		1101	1010	1011	-5
		1110	1001	1010	-6
		1111	1000	1001	-7
18/35		_	_	1000	-8

Binary Codes

- □ Binary numbers are easy for computer to manipulate, but, when we have to represents "things" that are non-binary in nature, we have to design a new coding rule:
 - BCD code
 - Gray code
 - ASCII code
 - Error-detecting code

BCD Code (1/3)

Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- A number with k decimal digits will require 4k bits in BCD.
 Decimal 396 is represented in BCD with 12bits as 0011 1001 0110.
- 2. A decimal number in BCD is the same as its equivalent binary number only when the number is between 0 and 9.
- 3. The binary combinations 1010 through 1111 are not used and have no meaning in BCD.

BCD Code (2/3)

☐ Example:

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (10111001)_2$$

□ BCD Addition:

BCD Code (3/3)

- ☐ Carry processing in BCD addition:
 - 184 + 576 = 760

BCD	1	1	1 	
	0001	1000	0100	184
	<u>+ 0101</u>	<u>0111</u>	<u>0110</u>	+576
Binary sum	0111	10000	1010	
Add 6		<u>0110</u>	<u>0110</u>	
BCD sum	0111	0110	0000	760

Other Decimal Codes

☐ Weighted codes and self-complementing codes

Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Gray Code

- ☐ Gray code is designed in a way that only 1-bit difference is present between two neighboring numbers
- Great for encoding continually varying numbers

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

ASCII Code (1/2)

American Standard Code for Information Interchange (ASCII)

!	,			b ₇ b	06 b 5			
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	6	7	G	W	g	\mathbf{W}
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	•	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	0	DEL

ASCII Code (2/2)

- □ American Standard Code for Information Interchange
- □ A popular code used to represent information sent as character-based data.
- ☐ It uses 7-bits to represent:
 - 94 Graphic printing characters.
 - 34 Non-printing characters
- □ Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return)
- Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).

ASCII Design Properties

- □ ASCII has some interesting properties:
 - Digits 0 to 9 span Hexadecimal values $(30)_{16}$ to $(39)_{16}$
 - Upper case A Z span (41)₁₆ to (5A)₁₆
 - Upper case a z span $(61)_{16}$ to $(7A)_{16}$
 - Lower to upper case conversion (and vice versa) occurs by flipping bit 6
 - Delete (DEL) is all bits set, a carryover from when punched paper tape was used to store messages.
 - Punching all holes in a row erased a mistake!

Error-Detecting Code

- □ To detect errors in data communication and processing, redundant bits are added to code words to detect and/or correct errors.
- □ A simple form of error-detecting code is parity coding.
 A parity bit is an extra bit added to a code word to make the total number of 1's either even or odd.
- □ For error-correcting codes, "code distance" between any two code word should be large enough so that bit errors will not cause ambiguity in decoding.

Binary Storage and Registers

- □ Registers
 - A binary cell is a device that possesses two stable states and is capable of storing one of the two states.
 - A register is a group of binary cells. A register with n cells can store discrete quantity of information that contains n bits.
- □ Register Transfer
 - A transfer of the information stored in one register to another.
 - One of the major operations in digital system.

Example of Transfer of Information

30/35

Transfer Through Processing Unit

□ A register transfer operation may pass trough an arithmetic unit so that the original information will be modified before it is stored back to another register.

Binary Logic

- □ Binary logic consists of binary variables and a set of logical operations.
- ☐ The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with each variable having values 1 or 0.
- ☐ Three basic logical operations: AND, OR, and NOT.

Truth Tables of Logical Operations

	AND		OR			NOT			
X	y	$x \cdot y$	X	y	x + y	Х	x'		
0	0	0	0	0	0	0	1		
0	1	0	0	1	1	1	0		
1	0	0	1	0	1		•		
1	1	1	1	1	1				

Electrical Form of Logic Values

☐ A binary logic signal can be represented by the voltage of the electrical current:

33/35

Logic Gates (1/2)

☐ Graphical symbols for logic gates:

- (a) Two-input AND gate
- (b) Two-input OR gate
- (c) NOT gate or inverter

■ Wave forms (signals) of binary logic operations

AND:
$$x \cdot y$$
 0 0 1 0 0

OR:
$$x + y = 0$$
 1 1 0

NOT:
$$x'$$
 1 0 0 1 1

Logic Gates (2/2)

☐ A logic gate can have more than two inputs as well:

- (a) Three-input AND gate
- (b) Four-input OR gate