AI 기반 피부 질환 진단 시스템

다중 모델 기반 AI 피부 질환 진단 및 분석 시스템

제출일: 2025년 1월 28일 **연구 분야**: 의료 AI 진단 시스템

1. 연구 개요

1.1 연구 배경 및 목적

피부 질환은 전 세계적으로 가장 흔한 건강 문제 중 하나로, 정확한 진단과 적시 치료가 환자의 삶의 질에 큰 영향을 미칩니다. 그러나 피부과 전문의의 부족과 지역적 의료 격차로 인해 많은 환자들이 적절한 진단을 받지 못하고 있습니다.

본 연구는 최신 AI 기술을 활용하여:

- 접근성 향상: 누구나 쉽게 피부 질환을 사전 검진할 수 있는 시스템 구축
- 진단 정확도 개선: 다중 AI 모델을 활용한 교차 검증으로 진단 신뢰도 향상
- 의료진 지원: 상세한 분석 보고서 생성으로 의료진의 진단 결정 지원
- 다국어 지원: 한국어, 영어, 베트남어 지원으로 글로벌 활용성 확대

1.2 데이터셋 활용

본 연구에서는 다양한 공개 피부 질환 데이터셋을 활용하였습니다:

- 주요 데이터셋: 피부 상태 이미지 데이터셋 (6개 카테고리, 2,394개 이미지)
 - o 여드름 (Acne): 399개 이미지
 - o 피부암 (Cancer): 399개 이미지
 - o 습진 (Eczema): 399개 이미지
 - o 각질화 (Keratosis): 399개 이미지
 - o 밀리아 (Milia): 399개 이미지
 - o 주사비 (Rosacea): 399개 이미지
- AlHub 피부계 병리 데이터: 조직병리 이미지 분할 데이터
 - 표피낭종, 지루각화증, 보웬병/편평상피암, 기저세포암, 멜라닌세포모반, 흑색종

2. 시스템 아키텍처

2.1 전체 시스템 구조

2.2 핵심 구성 요소

2.2.1 이미지 분류 모델 (YOLOv8-cls)

- 모델: Ultralytics YOLOv8 Classification
- **학습 데이터**: 2,394개 피부 질환 이미지 (6개 카테고리)
- 성능: 테스트 정확도 98.74%
- 처리 속도: 평균 4.8ms/이미지 (배치 처리 시 5.1ms/이미지)

2.2.2 의료 진단 언어 모델 (MedGemma-4B)

- 모델: Google MedGemma 4B (의료 특화 LLM)
- **파라미터**: 40억개
- 최적화: 4-bit 양자화 모델 사용 (VRAM 사용률 95% 이상)
- 특징: 의료 전문 용어 이해 및 상세 진단 보고서 생성
- 처리 시간: 평균 약 1분 (진단 생성 및 PDF 보고서)

2.2.3 실시간 스트리밍 처리

- 기술: Server-Sent Events (SSE)
- 장점: 진단 결과를 실시간으로 사용자에게 전달
- 사용자 경험: 대기 시간 체감 감소 및 상호작용성 향상

3. 주요 기능 및 혁신점

3.1 다중 AI 모델 앙상블

본 시스템은 단일 모델의 한계를 극복하기 위해 두 가지 AI 모델을 병렬로 활용합니다:

- 1. 1차 분류 (YOLOv8): 신속한 피부 질환 카테고리 분류
- 2. **2차 진단 (MedGemma)**: 상세한 의학적 분석 및 진단

이러한 앙상블 접근법을 통해:

- 높은 분류 정확도 달성 (98.74%)
- 분류 결과와 상세 진단의 교차 검증
- 다각도 분석을 통한 종합적 진단

3.2 실시간 스트리밍 진단

기존 시스템과 달리 본 시스템은 진단 과정을 실시간으로 스트리밍합니다:

- 즉각적 피드백: 분석 진행 상황을 실시간으로 확인
- **단계별 결과**: 분류 → 간단 분석 → 상세 진단 순차적 제공
- 사용자 만족도: 대기 시간 불안감 해소

3.3 전문 의료 보고서 자동 생성

Skin Diagnosis Report Patient information 1- issue havy 1- Age: 15 years 1- check creat and the control of the control of

AI 진단 결과를 의료진이 활용할 수 있는 전문 보고서로 자동 변환:

보고서 구성:

- 환자 정보 및 메타데이터
- AI 분류 결과
- 상세 의학적 관찰 사항
- 감별 진단 고려사항
- 권장 치료 방법
- 추적 관찰 권고사항

3.4 다국어 지원 시스템

글로벌 활용을 위한 3개 언어 완벽 지원:

- 한국어: 국내 의료진 및 환자용
- 영어: 국제 표준 의료 커뮤니케이션
- 베트남어: 동남아시아 시장 확대

4. 기술적 구현

4.1 백엔드 아키텍처

```
# FastAPI 기반 RESTful API
app = FastAPI(title="AI Skin Diagnosis System")

# 주요 엔드포인트
POST /api/v1/diagnose # 종합 진단
POST /api/v1/analyze # 간단 분석
POST /api/v1/classify # 이미지 분류
POST /api/v1/diagnose-stream # 실시간 스트리밍 진단
```

4.2 프론트엔드 구현

```
// React 기반 반응형 웹 애플리케이션
- Material-UI 컴포넌트 활용
- 실시간 스트리밍 처리 (EventSource API)
- 드래그 앤 드롭 이미지 업로드
- 다국어 i18n 지원
```

4.3 AI 모델 최적화

YOLOv8 최적화:

```
model = YOLO('yolov8x-cls.pt')
# 학습 파라미터 최적화
results = model.train(
    data='skin_dataset',
    epochs=100,
    imgsz=640,
    batch=16,
    optimizer='AdamW',
    lr0=0.001
)
```

MedGemma 4-bit 양자화:

```
# 메모리 효율적인 4-bit 양자화
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True
)
```

5. 성능 평가

5.1 분류 모델 성능

질환 카테고리	정밀도	재현율	F1-Score
여드름	0.99	0.99	0.99
피부암	0.98	0.99	0.99
습진	0.99	0.98	0.99
각질화	0.99	0.97	0.98
밀리아	0.98	0.99	0.99
주사비	0.99	1.00	1.00
평균	0.99	0.99	0.99

5.2 진단 언어 모델 성능

- 처리 시간: 평균 약 1분/케이스 (진단 생성 및 PDF 보고서 포함)
- 메모리 사용: VRAM 사용률 95% 이상 (4-bit 양자화 모델)

5.3 시스템 통합 성능

- 분류 처리 시간: 평균 4.8ms/이미지
- **진단 및 보고서 생성**: 평균 약 1분
- 메모리 사용량: VRAM 95% 이상 사용 (4-bit 양자화 모델)

6. 데이터 처리 및 분석 과정

6.1 데이터 전처리

이미지 전처리는 모델 학습 및 추론을 위해 이미지 크기 조정과 정규화를 포함합니다.

6.2 특징 추출 및 분석

시스템은 이미지에서 다양한 시각적 특징을 추출하여 분류 및 진단에 활용합니다.

6.3 진단 결과 후처리

진단 결과는 의료진이 이해하기 쉬운 형태로 처리되어 PDF 보고서로 생성됩니다.

7. 실제 활용 사례 및 시연

7.1 시스템 시연 프로세스

본 시스템의 전체 작동 과정은 다음과 같습니다:

- 1. **서버 시작**: 백엔드 API 서버 및 웹 애플리케이션 구동
- 2. 이미지 업로드: 드래그 앤 드롭으로 피부 병변 이미지 업로드
- 3. 환자 정보 입력: 나이, 성별, 병력 등 메타데이터 입력
- 4. 실시간 분석: 스트리밍으로 진단 과정 확인
- 5. **보고서 생성**: PDF 형식의 전문 의료 보고서 다운로드

7.2 활용 시나리오

시나리오 1: 1차 의료기관

- 피부과 전문의가 없는 의원에서 초기 스크리닝
- AI 진단 결과를 바탕으로 전원 여부 결정

시나리오 2: 원격 진료

- 의료 접근성이 낮은 지역의 환자 진단
- 화상 상담 시 보조 진단 도구로 활용

시나리오 3: 의료 교육

- 의대생 및 전공의 교육 자료
- 다양한 피부 질환 사례 학습

8. 혁신성 및 차별화 요소

8.1 기술적 혁신

- 1. 하이브리드 AI 접근법
 - o 컴퓨터 비전(YOLOv8) + 자연어 처리(MedGemma) 융합
 - ㅇ 분류와 상세 진단의 결합

2. 엣지 컴퓨팅 최적화

- 4-bit 양자화로 일반 GPU에서도 구동 가능
- ㅇ 병원 내부 서버에 직접 설치 가능 (데이터 보안)

3. 실시간 스트리밍 기술

- ㅇ 의료 진단 실시간 스트리밍 구현
- o 사용자 경험 개선

8.2 임상적 가치

- 1. 진단 보조 도구
 - o 의료진의 진단 결정 지원
 - ο 견해 차이 해소를 위한 제2 의견 제공

2. 의료 격차 해소 가능성

ㅇ 전문의 부족 지역에서 보조 진단 도구로 활용 가능

3. 잠재적 의료 비용 절감

ㅇ 조기 스크리닝을 통한 적시 치료 지원

9. 한계점 및 개선 방향

9.1 현재 한계점

1. 데이터 편향

- ㅇ 특정 피부 타입에 편중 가능성
- o 희귀 질환 데이터 부족

2. 규제 승인

- o 의료기기 인증 필요
- ㅇ 임상 시험 데이터 추가 필요

3. **설명 가능성**

- o AI 판단 근거의 투명성 개선 필요
- ㅇ 의료진이 이해할 수 있는 설명 제공

9.2 향후 개선 계획

1. 데이터 다양성 확대

- ㅇ 다양한 피부 타입 데이터 수집
- ㅇ 희귀 질환 데이터셋 구축

2. **모델 성능 향상**

- ㅇ 추가적인 모델 아키텍처 연구
- ㅇ 희귀 질환 대응 방안 모색

3. **임상 검증**

o 의료 환경에서의 실제 활용성 검증 필요

10. 결론

본 연구에서는 공개된 보건의료 빅데이터를 활용하여 AI 기반 피부 질환 진단 시스템을 개발했습니다. YOLOv8과 MedGemma 를 결합한 하이브리드 접근법으로 98.74%의 높은 분류 정확도를 달성했으며, 실시간 스트리밍과 다국어 지원을 통해 실용성을 극대화했습니다.

핵심 성과

1. 기술적 성과

- YOLOv8 분류 모델 테스트 정확도 98.74% 달성
- 4-bit 양자화 MedGemma 모델로 효율적인 진단 생성
- 실시간 스트리밍으로 사용자 경험 혁신

2. 임상적 기여

- ㅇ 6대 주요 피부 질환 자동 진단
- ㅇ 전문 의료 보고서 자동 생성
- ㅇ 의료진 진단 결정 지원

3. **사회적 영향**

- o 의료 접근성 향상
- o 의료 격차 해소
- ㅇ 조기 진단으로 인한 의료비 절감

본 시스템은 보건의료 빅데이터의 활용 가능성을 실증적으로 보여주며, AI 기술이 실제 의료 현장에서 어떻게 가치를 창출할 수 있는지를 명확히 제시합니다. 향후 지속적인 개선과 임상 검증을 통해 실제 의료 서비스로 발전시켜 국민 건강 증진에 기여하고

참고문헌

- 1. AlHub (2024). 피부계 병리 이미지 데이터셋. <u>https://aihub.or.kr/</u>
- 2. Ultralytics (2024). YOLOv8 Documentation. https://docs.ultralytics.com/
- 3. Google Research (2024). MedGemma: Medical Language Model. https://ai.google.dev/

부록

A. 시스템 요구사항

- 하드웨어
 - GPU: NVIDIA RTX 3060 이상 (VRAM 6GB+)
 - RAM: 16GB 이상Storage: 50GB 이상
- 소프트웨어
 - o OS: Ubuntu 20.04 / Windows 10
 - Python: 3.8+
 - o CUDA: 11.8
 - o Docker (선택사항)

B. 오픈소스 라이선스

본 프로젝트는 MIT 라이선스 하에 공개되며, 학술 및 연구 목적으로 자유롭게 사용 가능합니다.

제출일: 2025년 1월 28일

이 보고서는 프로젝트의 모든 과정과 결과를 실제 구현된 시스템을 기반으로 작성한 기술 문서입니다.