Serial No.: 09/808,395 Filed: March 14, 2001

Page : 2 of 15

Amendments to the Specification:

Please replace the paragraph beginning at page 18, line 6 with the following amended paragraph:

The products of FIGS. 1, 5 and 8 may be economically formed by the process and apparatus illustrated in FIG. 9. Extruder barrel 42 melts and forces the molten plastic 40 through a slot-form die 41. The extruded plastic enters the nip 44 between base roll 48 and mold roll 46, the latter containing mold cavities shaped to form the hooks of a strip-form hook fastener component of the well known hook and loop type (or fastener stems, only, for later forming of loop-engageable features, e.g. by flame heating the distal ends of molded stems followed by engagement with a forming surface such as a cooled bar or a cooled forming roll, see U.S. Serial No. 09/231,124 -referred to below). Simultaneously with introduction of the molten plastic 40, a pre-formed carrier web 110, which for FIGS. 5 and 8 is at least elastically stretchy in the crossmachine direction, enters the nip 44 and is <u>in situ</u> laminated to the back surface of the hook fastener material, opposite the side on which loop-engageable hooks or stems for such hooks, are being molded. (By "in situ" is meant that bonding action or laminating pressure is applied while the resin is in the mold cavities of the mold roll.) Grooves or interruptions in the base layer of hook material are formed between the hook bands during the molding of the hook layer by oversized rings 49 located at spaced apart intervals on the pressure roll (FIG. 9A, or e.g. for forming the product of Fig. 1, by oversized spacer rings 49 between the mold rings 76 which are stacked together along the axis in the conventional way to form the mold roll 46). "Oversize" here refers to rings having larger outer diameter than the outer diameter of the mold rings. The oversize of rings 49' reduces the spacing (in limited regions 55) between the mold roll 46 surface and the pressure roll 48 and causes the plastic resin 40 to form a very thin base layer or a groove in the respective regions of base layer 122. In some cases (see FIG. 9C), according to the invention the oversized rings 49' are adjusted in position closer to the base roll 48 than the thickness t of the preformed elastic carrier such that peripheral portions 77 of the over-size rings indent resiliently the substance of the carrier sheet and prevent entry of molten resin in the

Serial No.: 09/808,395 Filed: March 14, 2001

Page : 3 of 15

corresponding regions. In the alternative of Fig. 9D, the oversized rings 49' themselves are formed of resilient material such as a hard elastomer, and in their peripheral regions 77 the mating portions of the rings and the carrier 110' engage with pressure further limiting or fully eliminating resin from these regions. The carrier 110 in this case need not be elastomeric, and may for instance be a nonwoven loop material or other flexible sheet.

Please replace the paragraph beginning at page 21, line 11 with the following amended paragraph:

The strip of nonwoven loop material has a first surface 14 with hook-engageable loops 12 and a second relatively smooth surface 16. The strip of hook material 20 has a first surface 22 with integrally molded fastener elements 26 and a second smooth surface 24. The fastener elements may be, e.g., single crook hooks, palm tree-shaped hooks, or hooks of mushroom shape. The strip of hook material 20 can be initially formed with integral molded stems only, the loop engaging head shaped formed subsequently. An example is by flat-topping the stem to form a mushroom shape, e.g. by the advantageous use of a flame of burning gas jets to rapidly soften the extreme ends of the stems, followed by engagement by a cooled forming bar or a forming roll, such as is described in U.S. Application SERIAL NO. 09/231,124 filed January 15, 1999 and PCT EP 00/00329, the entire contents of each of which is hereby incorporated by reference. The smooth surfaces of the hook and loop strips overlap distance d and are attached at joint 28 so that the loops and hooks extend in opposite directions of the wrap tie. A pressure sensitive adhesive layer 30 covers the remainder of the smooth surface 24 of the hook strip 20. For a face-to-face attachment of the hook and loop strips (FIG. 1F), i.e., attaching the surface of the loop strip having the loops to the surface of the hook strip having the hooks, the base portion of the hook strip 20 has an integral extension 29 without hooks for overlapping the loops of the loop strip 10. The pressure sensitive adhesive layer 30 is covered with a release liner 32, such as silicon-coated paper. The release liner 32 overlaps longitudinally the loop component such that a portion of the release liner is exposed for grasping. In one example, the tie is 0.5 inch wide, dimension w, the loop strip is 3 inch long, dimension l, the hook strip is 0.75 inch long,

Serial No.: 09/808,395 Filed: March 14, 2001

Page : 4 of 15

dimension 11, and the overlap area 128 is 0.4 inch long, dimension d, all components having the same width w. The thickness of the loop material may vary between about 0.150 inch and 0.0100 inch, and the thickness of the hook material may vary between about 0.100 inch and 0.010 inch. For further description of such products, reference is made to U.S. Application Serial No.09/187,936 Patent 6,205,623 filed November 6, 1998 (of which this application is a continuation in part), and to PCT/US99/25748, each of which is incorporated by reference.

Please replace the paragraph beginning at page 23, line 4 with the following amended paragraph:

A more complete description of the process employed (except details of the one-direction feature of forming stretchy products is not described) may be found in U.S. Patent application 09/262,159 6,329,016, entitled Loop Material For Touch Fastening, filed March 3, 1999, disclosure of which is hereby incorporated by reference.

Please replace the paragraph beginning at page 23, line 26 with the following amended paragraph:

Additional configurations of a wrap tie include among others the following: the stretchy loop strip 10 has loops on both surfaces 14 and 16 (FIG. 12B), the loop strip 10 overlaps and attaches to the entire back surface 24 of the hook strip 20, with the adhesive layer 30 being intimately bonded to the loop side 14 of the strip (FIG. 12C), the hook strip 20 attaches across its entire back to the middle of the loop strip 10 (FIG. 12D), and an elongated hook strip 20, which may be of formed and stretched material as disclosed in U.S. Serial No. 09/070,876 filed April 30, 1998 and its parent application, each of which is hereby incorporated by reference, is attached to a short loop strip 10 (FIG. 12E).

Please replace the paragraph beginning at page 24, line 4 with the following amended paragraph:

Serial No.: 09/808,395 Filed: March 14, 2001

Page : 5 of 15

In preferred embodiments, the nonwoven loop material 10 (FIG. 12) is very thin, but still self-supporting, and has relatively free fibers forming loops extending from one side or both sides of a continuous, tangled mat of fibers. In preferred embodiments the nonwoven loop material 10 comprises a needled fabric of staple fibers which has been stretched longitudinally and stabilized, to form a stretchy fabric of the form depicted in FIGS. 13A and 13B, see U.S. Application Serial No. 09/262,159 Patent 6,329,016 referenced in the preceding description. In such a fabric the individual fibers of the mat follow no definite pattern as in a woven product, but extend in various directions within the plane of the fabric mat, albeit because of the predominance of stretching in one direction, the fibers are predominantly aligned in that direction and offer little resistance to stretching in the perpendicular direction. The loops that extend from the loop product are of the same fibers that comprise the mat but extend beyond the general mass of the mat, out of the plane of the mat, generally from associated knots 180, in the form of well anchored loop trees 250 (FIG. 13C).

Please replace the paragraph beginning at page 26, line 21 with the following amended paragraph:

For more detail about the general operation of apparatus such as that of FIG. 16, the reader is referred to U.S. Patent application 09/152,044 6,174,476, entitled, Molding Fastener Products Having Backings, filed September 11, 1998, which discloses full width laminates made with loop materials.

Please replace the paragraph beginning at page 37, line 2 with the following amended paragraph:

In the example, as described above, and now illustrated in FIGS. 43 and 44, nonwoven batt 630 (formed e.g., as described in the above-incorporated U.S. Patent application 09/262,159 6,329,016), relatively stretchable in all directions, is passed through needling stations N1 and N2, where it is needled to form a nonwoven mat having hook-engageable loops. Subsequently, the needled web passes through tension control nip rolls, S1 prior to application of a binder (as

Serial No.: 09/808,395 Filed: March 14, 2001

Page : 6 of 15

discussed above) at coating station C and then through tension applying nip S2. The speed of the rolls at station S2 is greater than those at S1 so that the web is stretched in the machine direction, while it is maintained in a relaxed state cross-wise, enabling the necked down condition illustrated in FIG. 44. The web, fully elongated in the machine direction, and having fluid elastomeric binder applied to its back surface, is then passed through curing oven V, where the material is stabilized to provide a hook-engageable material which is elastically stretchy in its cross-machine direction only.