

目录

摘要		I
ABST	TRACT	II
第1章 1.1	结构 节	
第 2章 2.1 2.2	文字 举例	
第 3 章 3.1	公式 初学I ^A T _E X常见的数学符号误用	4
第4章	图片	5
第5章	表格	6
第6章	引用	7
第7章	版式	8
第8章 8.1 8.2 8.3	辅助Typora	
第9章	进阶	10
致谢		11
	til:	19

摘要

简单明了. **关键词:** X; Y; Z

ABSTRACT

 $\label{eq:clear & Simple.}$ Keywords: X; Y; Z

第1章 结构

1.1 节

1.1.1 小节

第2章 文字

2.1 举例

书写,用心. 段之间以空行分隔.

2.2 代码抄录

可以直接列出代码(设定缩进距离为2,每行编号并从0开始):

```
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
cout << i * j << ' ';</pre>
```

也可以使用VerbatimInput命令直接包含代码文件。 代码变量是i, 复杂的是int i = 0。

第3章 公式

最常见的是行内公式,例如集合X中的元素a,初学者容易直接使用普通符号而不是数学模式.另外一个问题是斜体,最好使用斜体方式.

行间公式一般带编号, 我们可使用label引用, 例如公式3.1给出了渐近记号.

$$\log(n!) = \Theta(n \log n) \tag{3.1}$$

注意写一段就编译一段,这样容易查错,特别是公式.

3.1 初学IATEX常见的数学符号误用

我们给出几个典型例子(括号内附有代码).

- 是 $\log x$ (\$\log{}x\$)而不是logx(\$log x\$);
- 是 $min(\$\min\$)$ 和 $max(\$\max\$)$ 而不是 $min(\$\min\$)$ 和 $max(\$\max\$)$;
- 是Pr(\$\Pr\$)而不是*Pr*(\$Pr\$);
- 是 $\sin x$ (\$\sin{}x\$)和 $\cos x$ (\$\cos{}x\$)而不是 $\sin x$ (\$\sin x\$)和 $\cos x$ (\$\cos{x}\$);
- 是 $x \times y$ (\$x \times y\$)而不是x * y(\$x * y\$);
- 是arg(\$\arg\$)而不是arg(\$arg\$);

第4章 图片

一般采用浮动的图,以选项[!htbp]标记,如图4.1所示,注意其中还有两个子图4.1a和4.1b.

(a) 算法

(b) 还是算法

图 4.1 主图

如果有特殊的需要,可以用固定位置的图片,在后面加上[h]选项即可,例如图4.2。

图 4.2 算法三部曲.

当然也不一定能够完全在当前位置,可能当前位置不够会挤到下一页. 不要用屏幕截图,实验结果可以用软件的导出图,¹ 数据可以导出文本利用表格或者抄录形式.

¹得用PNG格式, 其他的展示型图像可以用JPG格式.

第5章 表格

一般采用浮动的表格,以选项[!htbp]标记,注意表格不能写"如下所示"要写"如??所示". 表5.1使用了单元格不同位置的标记(例如c/1/r标记).

	Books	
1	Introduction to Algorithms	3
2	The Algorithm Design Manual	2
3	Algorithms	4

表 5.1 算法三部曲

表5.2下面还有子表5.2a和5.2b, 注意命名不同.

表 5.2 主表

0	1	2	3				
4	5	6	7				
(a) 子素(土洪制)							

(a) 子表(十进制)

000	001	010	011
100	101	110	111

(b) 子表(二进制)

最好要把每一页填满,这样排版问题会少很多。

第6章 引用

最常见的引用是参考文献的引用. 例如参考文献[1]的标记为SX(也即\bibitem{SX}),于是我们可以使用\cite{SX}实现引用参考文献[1]的效果,而这本书便是使用IATEX排版.

引用需要排次序, 所以需要两次编译, 第1次识别所有的标记并编号, 第2次将编号填入并显示.

其他引用一般使用label给出标记,再用ref命令引用. 例如以\label{eq:log_factorial}给出公式标记eq:log_factorial, 再用\ref{eq:log_factorial}引用得到3.1. 为了区别不同的标记,可用前缀配合冒号区分: 公式的前缀eq,图的前缀fig,表的前缀tab. 列举如下:

- 公式标记为eq:log_factorial, 也即公式3.1.
- 图标记为fig:books, 也即图4.2.
- 表标记为tab:trilogy, 也即表5.1.

第7章 版式

我们在NCL.def引入的版式设计非常少,如果需要调整可改动该文件,例如更改页眉的九章论文,或者公式或者图表的编号格式.

如果每章首页不需要任何页眉页脚,可使用我们定义的echapter命令. 当然还有其他方法: https://tex.stackexchange.com/questions/19738/why-doesnt-pagestyleempty-work-on-the-first-page-of-a-chapter.

另外, thesis.tex和abstract.tex也有少量排版设定, 可酌情增减.

第8章 辅助

如今有很多辅助工具可以帮助我们更好地完成IATEX文档.

8.1 Typora

Typora是一个"所见即所得"MarkDown编辑器(https://typora.io),特别是很好地配合MathJax显示IFTEX公式.平时可以先用这个软件写一点片段,若能正确展示,再复制到TEX文件中,可以提高文本编写效率.

8.2 Microsoft Math Solver

Microsoft Math Solver("微软数学")这款APP的主要功能是求解数学问题, 但是我们可以用来处理复杂的公式, 在平板上手写识别后可以复制IFIEX源代码.

8.3 表格自动转换

对于数据量较大的表格,可以寻找转换工具(也有很多在线版本),会节约很多时间. 另外,实验数据最好由编程语言提供的软件包转换.

第9章 进阶

致谢

感谢Donald E. Knuth和Leslie Lamport, 感谢TeX和LeTeX.

参考文献

[1] Steven S. Skiena [著], 谢勰 [译]. 算法设计指南 (第2版) [M]. 北京: 清华大学出版社, 2017.