Math 135 – Differential Equations

University of California, Los Angeles

Duc Vu

Fall 2021

This is math 135, officially known as Ordinary Differential Equations though we also delve into partial differential equations. It's taught by Professor Hester. We meet weekly on MWF from 12:00 pm to 12:50 pm for lecture. The main textbook used for the class is Differential Equations with Applications and Historical Notes 3^{rd} by Simmons. Other course notes can be found at my blog site. Please let me know through my email if you spot any concerning typos in the note.

Contents

1	Lec 1: Sep 27, 2021 1.1 Laplace Transforms	3
2	Lec 2: Sep 29, 2021 2.1 Laplace Transform (Cont'd)	5
3	Lec 3: Oct 1, 2021 3.1 Existence of Laplace Transform	7 7
4	Lec 4: Oct 4, 2021 4.1 Convolution	
5	Lec 5: Oct 6, 2021 5.1 Dirac Delta "Function"	11 11
6	Lec 6: Oct 08, 2021 6.1 Existence & Uniqueness of ODE Solutions	13 13
7	Lec 7: Oct 11, 2021 7.1 Picard Iteration	1 4
8	Lec 8: Oct 13, 2021 8.1 Continuity	16
9	Lec 9: Oct 15, 2021 9.1 Picard's Theorem	18 18
10	10.1 Fourier Series	22 22
11	Lec 11: Oct 20, 2021 11.1 Coefficients of Fourier Series	2 4

	12: Oct 22, 2021 Convergence of Fourier Series	27 27
13 Lec 13.1	13: Oct 27, 2021 Complex Fourier Series	29
14 Lec 14.1	14: Oct 29, 2021 Rescaling Intervals of Fourier Series	31 31
	15: Nov 1, 2021 The Relationship between Smoothness and Fourier Coefficients	32
16 Lec 16.1	16: Nov 3, 2021 Hilbert Spaces & Convergence in Norm	3 4
17 Lec 17.1	17: Nov 5, 2021 Pointwise Convergence of Fourier Series	36
List	of Theorems	
9.1	Convolution	18
List	of Definitions	
10.1 16.1 16.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22 34 34
16.5	Orthonormal System	34

$\S1$ Lec 1: Sep 27, 2021

§1.1 Laplace Transforms

Consider the following questions

- 1. What is a transform?
- 2. What is a Laplace transform?
- 3. What are some examples?
- 4. What are some general properties?
- 5. Why are they useful for differential equations?

Let's tackle these questions.

1. Notice that functions: sets \rightarrow sets. Transform is in higher hierarchy, i.e.,

Transform/Operator: functions \rightarrow functions

Example 1.1 • differentiation: $\frac{d}{dx}: f \mapsto f'$

- integration: $\int_{-\infty}^{\infty} dx : f \mapsto \int_{-\infty}^{\infty} f'(x) dx$
- multiplication by g(x): $f(x) \to g(x)f(x)$
- shifting: $f(x) \to f(x-a)$
- 2. Laplace transform \mathscr{L}

$$\mathscr{L}: f(t) \mapsto F(s) = \int_0^\infty f(t)e^{-st} dt$$

where $f:[0,\infty)\to\mathbb{R}$ and $F:\mathbb{C}\to\mathbb{C}$

3. Examples:

Example 1.2 •
$$f(t): t \mapsto 0 \implies \mathcal{L}[0] = 0$$

• f(t) = 1

$$\mathcal{L}[1] = \lim_{t \to \infty} \int_0^t e^{-st} dt$$

$$= \lim_{t \to \infty} \left[\frac{e^{-st}}{-s} \right]_0^t$$

$$= \lim_{t \to \infty} \left(\frac{e^{-st}}{-s} + \frac{1}{s} \right)$$

$$= \frac{1}{s} \text{ if } \operatorname{Re}(s) > 0$$

Example 1.3 • Consider

$$\begin{split} \mathscr{L}[t] &= \int_0^\infty t e^{-st} \, dt \\ &= \left[\frac{t e^{-st}}{-s} \right]_0^\infty + \frac{1}{s} \int_0^\infty e^{-st} \, dt \\ &= \frac{1}{s^2} \text{ if } \operatorname{Re}(s) > 0 \end{split}$$

We can generalize this as

$$\mathscr{L}[t^n] = \frac{1}{s^{n+1}}, \quad \operatorname{Re}(s) > 0, \ n \in \mathbb{N}$$

In addition,

$$\mathcal{L}[e^{at}] = \int_0^\infty e^{-(s-a)t} dt$$

$$= \frac{1}{s-a}, \quad \text{Re}(s) > a$$

$$\mathcal{L}[\cos \omega t] = \frac{s}{s^2 + \omega^2}$$

$$\mathcal{L}[\sin \omega t] = \frac{\omega}{s^2 + \omega^2}$$

4. Properties:

a) Linear!

$$\mathcal{L}[f+g] = \mathcal{L}[f] + \mathcal{L}[g]$$
$$\mathcal{L}[af] = a\mathcal{L}[f]$$

b) Consider:

$$\begin{split} \mathscr{L}\left[e^{at}f(t)\right] &= \int_0^\infty f(t)e^{-(s-a)t}\,dt\\ &= F(s-a) \quad \text{if } \operatorname{Re}(s-a) > 0 \end{split}$$

Multiply an exponential in t-space $\xrightarrow{\mathscr{L}}$ shift in s-space.

5. In reverse,

$$\mathscr{L}[f(t-a)] = \int_0^\infty f(t-a)e^{-st} dt = \int_0^\infty f(t')e^{-st'} dt'e^{-sa}$$

where t' = t - a. So

$$\mathcal{L}\left[f(t-a)\right] = F(s)e^{-sa}$$

Thus, a shift in t-space $\xrightarrow{\mathscr{L}}$ multiply an exponential in s-space.

6. Differentiation:

$$\mathcal{L}[f'] = \int_0^\infty f'(t)e^{-st} dt$$
$$= \left[fe^{-st}\right]_0^\infty + \int_0^\infty f(t)se^{-st} dt$$
$$= sF(s) - f(0)$$

$\S{2}$ Lec 2: Sep 29, 2021

§2.1 Laplace Transform (Cont'd)

Recap: $\mathcal{L}: f \to F$

$$\mathscr{L}[f(t)] = \int_0^\infty f(t)e^{-st} dt$$

where t > 0 and $s \in \mathbb{C}$.

Example 2.1 • $\mathcal{L}[t^n] = \frac{1}{s^{n+1}}, n \in \mathbb{N}$

•
$$\mathscr{L}[e^{at}] = \frac{1}{s-a}$$

General properties of Laplace transform:

- linear
- $\bullet \ \, \text{shifting} \leftrightarrow \text{multiplying by exponential}$
- $\mathscr{L}[f'] = s\mathscr{L}[f] f(0)$

Let's now use Laplace transform to solve the following ODE

$$f'' + af' + bf = g(t),$$
 $f(0) = f_0, f'(0) = f'_0$

Apply \mathcal{L} ,

$$\mathcal{L}[f'' + af' + bf] = \mathcal{L}[g]$$

$$\mathcal{L}[f''] + a\mathcal{L}[f'] + b\mathcal{L}[f] = G(s)$$

Notice that

$$\mathcal{L}[f''] = s^2 F - sf(0) - f'(0)$$

So

$$(s^{2} + as + b) F(s) = G(s) + (s + a)f_{0} + f'_{0}$$
$$F(s) = \frac{G(s) + (s + a)f_{0} + f'_{0}}{s^{2} + as + b}$$

To get f(t) we need to invert \mathcal{L} .

Example 2.2

Consider:

$$f'' + 4f = 4t$$
, $f(0) = 1$, $f'(0) = 5$

Apply \mathcal{L} , we get

$$(s^{2}+4)F(s) = \frac{4}{s^{2}} + s + 5$$

$$F(s) = \frac{\frac{4}{s^{2}} + s + 5}{s^{2} + 4}$$

$$= \frac{4}{s^{2}(s^{2} + 4)} + \frac{s}{s^{2} + 4} + \frac{5}{s^{2} + 4}$$

Notice that we need to use partial fractions to decompose the first term.

$$\frac{4}{s^2(s^2+4)} = \frac{A}{s^2} + \frac{B}{s^2+4}$$
$$4 = A(s^2+4) + Bs^2$$
$$= (A+B)s^2 + 4A$$

So, A = 1, B = -1. Then,

$$F(s) = \frac{1}{s^2} - \frac{1}{s^2 + 4} + \frac{s}{s^2 + 4} + \frac{5}{s^2 + 4}$$

$$= \frac{1}{s^2} + \frac{4}{s^2 + 4} + \frac{s}{s^2 + 4}$$

$$\mathscr{L}[f] = \mathscr{L}[t + 2\sin 2t + \cos 2t]$$

$$\implies f = t + 2\sin 2t + \cos 2t$$

$\S3$ Lec 3: Oct 1, 2021

§3.1 Existence of Laplace Transform

Question 3.1. When is Laplace transform is allowed? When does Laplace transform exist?

$$\mathscr{L}[f] = \int_0^\infty f(t)e^{-st} dt$$

<u>Note</u>: Beware of ∞ – only trust limits.

$$\mathscr{L}\left[f\right] = \lim_{\tau \to \infty} \int_0^\tau f(t) e^{-st} \, dt$$

Laplace transform exists when this limit exists?

 $\lim_{\tau\to\infty} f^*(\tau)$ converges to $f_\infty \in \mathbb{R}$ if $\forall \varepsilon > 0, \exists M > 0$ s.t.

$$|f^*(\tau) - f_{\infty}| < \varepsilon$$
 for all $\tau > M$

Convergence test for integrals:

$$\lim_{\tau \to \infty} \int_0^{\tau} f(t) \, dt$$

Comparison Test: If |f(t)| < g(t) and $\int_0^\infty g(t) < \infty$ (converges) then

$$\int_0^\infty f(t) dt \le \int_0^\infty |f(t)| dt \le \int_0^\infty g(t) dt < \infty$$

i.e., $\int_0^\infty f(t) \, dt$ converges. Now, back to the Laplace transform

$$\mathscr{L}[f] = \int_0^\infty f(t)e^{-st} dt$$

What could break this integral?

- 1. fe^{-st} diverges/unbounded $(\lim_{t\to t^*} f(t) = \infty)$
- 2. fe^{-st} doesn't decay fast enough as $t \to \infty$.

What could prevent these issues?

- 1. Piecewise continuous: $\lim_{t\to t^-} f(t)$ and $\lim_{t\to t^+} f(t)$ exist.
- 2. Exponential order

$$|f(t)| < Me^{ct}$$
 for some $M > 0 \& c$

Have

$$c^{-t} \le 1 \cdot e^{-t} \qquad \forall t > 0$$
$$1 \le 1 \cdot e^{0t} \qquad \forall t > 0$$
$$t \le 1 \cdot e^{t} \qquad \forall t > 0$$

Theorem 3.1

If f is piecewise continuous and of exponential order c then $\mathscr{L}[f]$ exists for $s \in \mathbb{C}$ with $\mathrm{Re}(s) > c$.

Proof. Have

$$\mathcal{L}[f](s) = \int_0^\infty f(t)e^{-st} dt$$

$$\lim_{\tau \to \infty} \int_0^\tau f(t)e^{-st} dt \le \lim_{\tau \to \infty} \int_0^\tau |f(t)e^{-st}| dt$$

$$= \lim_{\tau \to \infty} \int_0^\tau |f(t)| e^{-srt} dt$$

$$\le \lim_{\tau \to \infty} \int_0^\tau Me^{ct} \cdot e^{-s_r t} dt$$

$$= \lim_{\tau \to \infty} M \left[\frac{e^{c-s_r)t}}{-(c-s_r)} \right]_0^\tau$$

$$= \frac{1}{s_r - c} \text{ if } s_r > c$$

$$< \infty$$

Thus, $\mathscr{L}[f]$ exists (for $\operatorname{Re}(s) > c$) by comparison test.

This is a sufficient condition but not necessary.

Example 3.2

Consider the function $f(t) = \frac{1}{\sqrt{t}}$

$$\mathcal{L}\left[\frac{1}{t^{\frac{1}{2}}}\right] = \int_0^\infty t^{-\frac{1}{2}} e^{-st} dt$$

$$= s^{-\frac{1}{2}} \int_0^\infty x^{-\frac{1}{2}} e^{-x} dx$$

$$= s^{-\frac{1}{2}} 2 \int_0^\infty e^{-z^2} dz$$

$$= \sqrt{\frac{\pi}{s}}$$

However, we can see that $\frac{1}{t^{\frac{1}{2}}}$ isn't continuous on $[0,\infty)$.

$\S4$ Lec 4: Oct 4, 2021

§4.1 Convolution

Question 4.1. Can we invert $\mathcal{L}[f] \cdot \mathcal{L}[g]$?

We have

$$\begin{split} F(s)G(s) &= \int_0^\infty f(t)e^{-st}\,dt \int_0^\infty g(t')e^{-st'}\,dt' \\ &= \int_0^\infty \int_0^\infty f(t)g(t')e^{-s(t+t')}\,dt'\,dt \end{split}$$

Let's define $\tau = t + t' \implies d\tau = dt'$

$$F(s)G(s) = \int_0^\infty \int_0^\infty f(t)g(t')e^{-s(t+t')} dt' dt$$

$$= \int_0^\infty \int_0^\infty f(t)g(\tau - t)e^{-s\tau} d\tau dt$$

$$= \int_0^\infty \left(\int_0^\tau f(t)g(\tau - t)e^{-s\tau} dt \right) d\tau$$

$$= \int_0^\infty \left(\int_0^\tau f(t)g(\tau - t) dt \right) e^{-s\tau} d\tau$$

$$= \mathcal{L} \left[\int_0^\tau f(t)g(\tau - t) dt \right]$$

Theorem 4.1 (Convolution)

We have

$$(f * g)(\tau) = \int_0^{\tau} f(t)g(\tau - t) dt$$
$$\mathscr{L}[f * g] = \mathscr{L}[f] \cdot \mathscr{L}[g]$$

§4.2 Application of Laplace Transform – Integral Equation

Consider:

$$f(\tau) = g(\tau) + \int_0^{\tau} k(\tau - t)f(t) dt$$

Notice

$$\mathbf{f} = \mathbf{g} + K \cdot \mathbf{f}$$
$$f(\tau) \approx f_i$$
$$g(\tau) \approx g_i$$
$$k(\tau - t) \approx K_{ij}$$

Have

$$f = g + k * f$$

and we use Laplace

$$\begin{split} \mathcal{L}\left[f\right] &= \mathcal{L}\left[g\right] + \mathcal{L}\left[k\right] \cdot \mathcal{L}\left[f\right] \\ \mathcal{L}\left[f\right] &= \frac{\mathcal{L}\left[g\right]}{1 - \mathcal{L}\left[k\right]} \end{split}$$

Example 4.2

Consider $f(t) = t^3 + \int_0^t \sin(t - \tau) f(\tau) d\tau$.

$$F(s) = \frac{3!}{s^4} + \mathcal{L}[\sin t] F(s)$$

$$\vdots$$

$$F(s) = 3!(s^{-4} + s^{-6})$$

$$f'(s) = 3!(s^{-4} + t^{-5})$$
$$f(t) = t^{3} + \frac{t^{5}}{20}$$

§5 Lec 5: Oct 6, 2021

§5.1 Dirac Delta "Function"

Visually:

The limit of a function concentrated at zero, with integral

$$\int_{-\infty}^{\infty} \delta(t) \, dt = 1$$

Formally:

$$\delta: \quad f(t) = \int_{-\infty}^{\infty} f(\tau)\delta(t-\tau) d\tau \implies f = f * \delta$$

 δ "picks out" a pointwise value of any function we integrate against/convolve with. For finite dimension, let $\mathbf{f} \in \mathbb{R}^n$ and $\mathbf{e}_i = [0, \dots, 0, 1, 0, \dots]$. So

$$f_i = \mathbf{f} \cdot \mathbf{e}_i$$

For infinite dimension, $f(t): \mathbb{R} \to \mathbb{R}$ for $t \in \mathbb{R}$,

$$f(t) = \int_{\mathbb{R}} f(\tau) \delta(t - \tau) d\tau$$

where $\delta(\tau - t) = \delta(t - \tau) = \delta_t(\tau)$. These two notions are analogous, in a sense. Solving a linear finite dimensional system

$$\mathbf{h} \in \mathbb{R}^n, \quad L \in \mathbb{R}^{n \times n}$$

Solve $L\mathbf{f} = \mathbf{h}$. If we know $L\mathbf{f}_i = \mathbf{e}_i$ where

 \mathbf{e}_i : unit vector

 \mathbf{f}_i : unit response vector

- 1. $\mathbf{h} = \sum h_i \mathbf{e}_i$
- 2. Linear superposition means

$$\mathbf{f} = \sum h_i \mathbf{f}_i$$

and

$$L\mathbf{f} = L\left(\sum_{i} h_{i}\mathbf{f}_{i}\right)$$

$$= \sum_{i} h_{i}L\mathbf{f}_{i}$$

$$= \sum_{i} h_{i}\mathbf{e}_{i}$$

$$= \mathbf{h}$$

Solving ∞ -dim ODE

$$f'' + af' + bf = h(t)(L[f] = h)$$

Let's say we know

$$g_t'' + ag_t' + bg = \delta_t$$

- 1. $h = h * \delta$
- 2. Then,

$$f = h * g$$

$$= \int_0^t g_t(\tau)h(\tau) d\tau$$

$$= \int_0^t g(t - \tau)h(\tau) d\tau$$

where g is known as the Green function.

$$e_i \approx \delta_t$$

 $\mathbf{f}_i \approx g_t \mathbf{f} = \sum_i h_i \mathbf{f}_i \approx f = h * g$

§6 Lec 6: Oct 08, 2021

§6.1 Existence & Uniqueness of ODE Solutions

Intuitively, f(t,x) is continuous seems like it guarantees a solution – this is not true!

1. Failure of existence over \mathbb{R} .

$$\frac{dx}{dt} = x^2, \quad x(0) = 1$$

We can easily solve this and obtain $x(t) = \frac{1}{1-t}$ which blows up in finite time.

2. What about uniqueness?

$$\frac{dx}{dt} = 3x^{\frac{2}{3}}, \quad x(0) = 0$$

This has infinite number of solution through (0,0) – non-unique. Notice that $x' = 3x^{\frac{2}{3}}$ is an autonomous ODE where the solution is $x(t) = t^3$. However, x(t) = 0 is also a solution which shows that solutions are not unique.

Question 6.1. What can prove existence and uniqueness?

- 1. Converting to "nicer" problem, DE \iff integral equation
- 2. Devise an iterative algorithm to approximate solutions (Picard iteration)
- 3. Prove the algorithm converges to a unique solution

§7 Lec 7: Oct 11, 2021

§7.1 Picard Iteration

Goal: Find sufficient conditions to prove existence and uniqueness of solution to ODE

$$\dot{x} = f(t, x(t)), \quad x(t_0) = x_0$$

Idea:

1. Smoother is better (integration is preferred over differentiation). Make things smoother by integrating

$$\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0$$

Then, we can transform it into an integral equation

$$x(t) = x_0 + \int_{t_0}^{t} f(t', x(t')) dt'$$

Notice that f is continuous and x is continuous imply x is differentiable.

2. Iteration: If we can't solve it at first, try again.

Example 7.1

Newton's root-finding algorithm

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

<u>Picard Iteration</u>: Iterative approximation to solutions of the integral equation

$$x(t) = x_0 + \int_{t_0}^{t} f(t', x(t)) dt'$$

Start with a guess for the function $x_0(t) = x_0$ (can be a constant)

$$x_{n+1}(t) = x_0 + \int_{t_0}^t f(t', x_n(t')) dt'$$

In general,

$$x_0(t) \xrightarrow{\text{Picard}} x_1(t) \xrightarrow{\text{Picard}} x_2(t) \xrightarrow{\text{Picard}} x_3(t) \xrightarrow{\sim} \dots$$

If $x_{n+1}(t) = x_n(t) = \overline{x}(t)$, then $\overline{x}(t)$ has to solve the IE. We want $\lim_{n\to\infty} x_n(t) \to x(t)$ solves IE.

Example 7.2

Consider $\dot{x}(t) = x(t), x(0) = 1$. This is equivalent to the following integral equation

$$x(t) = 1 + \int_0^t x(t') dt'$$

Picard:

$$x_0(t) = 1$$

$$x_1(t) = 1 + \int_0^t x_0(t') dt' = 1 + \int_0^t 1 dt'$$

$$= 1 + t$$

$$x_2(t) = 1 + \int_0^t 1 + t dt$$

$$= 1 + t + \frac{t^2}{2!}$$
:

 $x_n(t) = \sum_{k=0}^n \frac{t^k}{k!}$

Thus,

$$\lim_{n \to \infty} x_n(t) \to e^t$$

$\S 8 \mid \text{ Lec } 8 \colon \text{Oct } 13, 2021$

§8.1 Continuity

Limit of continuous function is not necessarily continuous.

Example 8.1

Consider $x_n(t) = t^n$ on [0,1]

$$\begin{aligned} x_0 &= 1 \\ x_1 &= t \\ x_2 &= t^2 \\ &\vdots \\ \overline{x} &= \lim_{n \to \infty} x_n = \begin{cases} 0, & t < 1 \\ 1, & t = 1 \end{cases} \end{aligned}$$

which is discontinuous.

<u>Idea</u>: We need "more" continuity. Given x, and given any $\varepsilon > 0$, if $|x - x'| < \delta(x, \varepsilon)$ then $|f(x) - f(x')| < \varepsilon$.

Example 8.2

Consider f(x) = x on \mathbb{R} . We can see that

$$|x - x'| < \varepsilon \quad \forall |x - x'| < \varepsilon$$

in which we pick $\delta(x,\varepsilon) = \varepsilon$.

How about $f(x) = x^2$ on \mathbb{R} ?

$$|x^2 - y^2| < \varepsilon$$

If we pick $\delta(x,\varepsilon) = \varepsilon$, then $|x-y| < \delta = \varepsilon$ which does not necessarily imply $|x^2 - y^2| < \varepsilon$ because

$$|x^{2} - y^{2}| = |(x + y)(x - y)|$$
$$= |x + y| |x - y|$$
$$\leq \varepsilon |x + y|$$

 $|f(x)-f(y)|>\varepsilon$. So we need to pick smaller δ as x and y get larger. It would work for $\delta=\frac{\varepsilon}{2\max(|x|,|y|)}$.

Question 8.1. Is $\frac{1}{x}$ continuous?

Ans: It depends on the domain. If we're talking about \mathbb{R} , it doesn't work at 0; on $(0, \infty)$, yes it's continuous.

Remark 8.4. Notice that the definition is similar to continuity except that δ doesn't depend on x.

Example 8.5

 x^2 on \mathbb{R} is not uniformly continuous but x^2 on $(a,b)\subseteq\mathbb{R}$ is continuous since

$$\delta = \frac{\varepsilon}{\max(|x|,|y|)} = \frac{\varepsilon}{\max\left(|a|,|b|\right)}$$

Remark 8.6. Uniform continuity also depends on the domain as continuity does.

Exercise 8.1. Is $x^{\frac{1}{2}}$ uniformly continuous on [0,1]?

Lipschitz Continuity: "gradient is bounded"

$$\frac{|f(x) - f(y)|}{|x - y|} < L < \infty$$

We can pick $\delta = \frac{\varepsilon}{L}$ everywhere.

Example 8.7 • x^2 on \mathbb{R} is not Lipschitz but it is on a finite interval.

• $x^{\frac{1}{2}}$ is not Lipschitz continuous on [0, 1]. However, it's uniformly continuous.

$\S 9$ Lec 9: Oct 15, 2021

§9.1 Picard's Theorem

Let's prove local existence of the theorem.

Theorem 9.1 (Picard)

If f(t,x) and $\partial_x f(t,x)$ are continuous function on a bounded rectangle $R = [t_1,t_2] \times [x_1,x_2]$ and (t_0,x_0) is in interior of R $(t_1 < t_0 < t_2, x_1 < x_0 < x_2)$. Then \exists a smaller rectangle $R' = [t_0 - a, t_0 + a] \times [x_0 - b, x_0 + b]$ s.t. ODE

$$\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0$$

has a solution in R'.

<u>Note</u>: Since R closed and bounded, then f, $\partial_x f$ are bounded, i.e.,

$$\max_{R} f(t, x) = M$$
$$\max_{R} \partial_{x} f(t, x) = L$$

Thus, f is Lipschitz.

Proof Outline:

- 1. Solving ODE \iff Soling IE
- 2. Approximate solutions using Picard iteration

$$x_0(t) = x_0, \quad x_n(t) = x_0 + \int_{t_0}^t f(t', x_{n-1}(t')) dt'$$

3. Prove Picard iterates converges

$$\lim_{n\to\infty} x_n(t) \to \overline{x}(t)$$

- 4. Prove limit $\overline{x}(t)$ solves IE.
- 5. Prove limit $\overline{x}(t)$ is continuous.

- 6. Prove limit $\overline{x}(t)$ is unique.
- 7. How big is $R' = [t_0 a, t_0 + a] \times [x_0 b, x_0 + b]$?

Pick
$$a \ni aL < 1 \& b = Ma \le |x_0 - x_1| |x_0 - x_2|$$

Proof. 2. Prove Picard iterates converge

a) We have

$$\lim_{n \to \infty} x_n(t) \iff \lim_{n \to \infty} x_0(t) + \sum_{k=1}^n x_k(t) - x_{k-1}(t)$$

telescoping sum!

b) Series $x_0(t) + \sum_{k=1}^n x_k(t) - x_{k-1}(t)$ converges by Weierstrass M-test – If $|f_n(x)| < M_n$ $\forall n \in \mathbb{N}, x \in D$ and $\sum_{n=0}^{\infty} M_n$ converges, then

$$\sum_{n=0}^{\infty} f_n(x)$$

converges absolutely and uniformly.

i) Show $x_i(t)$ are all in $R' \subseteq R$ so we can use bounds L, M.

$$|x_{0}(t) - x_{0}| = 0$$

$$|x_{1}(t) - x_{0}| = \left| \int_{t_{0}}^{t} f(t', x_{0}(t')) dt' \right|$$

$$\leq \int_{t_{0}}^{t} |f(t', x_{0}(t'))| dt$$

$$\leq \int_{t_{0}}^{t} M dt$$

$$\leq Ma = b$$

Thus, $x_1(t)$ is in the rectangle. By induction, every $x_n(t)$ in $R' \subseteq R$.

ii) Show $\sum_{i=1}^{\infty} |x_i(t) - x_{i-1}(t)|$ is bounded. Define $\Delta = \max_{R'} |x_1(t) - x_0|$. Then

$$|x_{2}(t) - x_{1}(t)| = \left| \int_{t_{0}}^{t} f(t', x_{1}(t')) - f(t', x_{0}(t')) dt' \right|$$

$$\leq \int_{t_{0}}^{t} |f(t', x_{1}(t')) - f(t', x_{0}(t'))| dt'$$

$$\leq \int_{t_{0}}^{t} L|x_{1}(t') - x_{0}(t')| dt'$$

$$\leq \Delta a L$$

and

$$|x_3(t) - x_2(t)| = \left| \int_{t_0}^t f(t, x_2(t)) - f(t, x_1(t)) dt \right|$$

$$\leq \int_{t_0}^t |f(t, x_2(t)) - f(t, x_1(t))| dt$$

$$\leq \int_{t_0}^t L |x_2(t') - x_1(t')| dt'$$

$$\leq L (\Delta a L) (t - t_0)$$

$$\leq \Delta (a L)^2$$

Every $|x_n(t) - x_{n-1}(t)|$ depends on $|x_{n-1}(t) - x_{n-2}(t)|$ recursively. The general pattern is

$$|x_n(t) - x_{n-1}(t)| \le \Delta (aL)^{n-1}$$

$$\sum_{n=1}^{\infty} |x_n - x_{n-1}| \le \sum_{n=0}^{\infty} \Delta (aL)^n$$

$$= \frac{\Delta}{1 - aL}$$

$$\le \infty$$

Thus, $\sum x_n - x_{n-1}$ converges absolutely and uniformly by the Weierstrass M-test. Therefore,

$$\lim_{n \to \infty} x_n(t) = \overline{x}(t) \text{ exists!}$$

3. \overline{x} solves I.E.

<u>Idea</u>: We know $|\overline{x} - x_n|$ gets small so break $|\overline{x} - x_0 - \int_{t_0}^t f(t', \overline{x}(t')) dt'|$ into pieces like $|\overline{x} - x_n(t)|$.

subtract
$$x_n(t) - x_0 - \int_{t_0}^{t} f(t', x_{n-1}(t')) dt' = 0$$

Let $\kappa = \left| \overline{x} - x_0 - \int_{t_0}^t f(t', \overline{x}(t')) dt' \right|.$

$$\kappa = \left| -(x_n - x_0 - \int_{t_0}^t f(t', x_{n-1}(t')) dt' \right|$$

$$\leq |\overline{x} - x_n| + \left| \int_{t_0}^t f(t, \overline{x}) - f(t, x_{n-1}) dt \right|$$

$$\leq |\overline{x} - x_n| + \int_{t_0}^t |f(t, \overline{x}) - f(t, x_{n-1})| dt$$

$$\leq |\overline{x} - x_n| + aL |\overline{x} - x_{n-1}|$$

which approaches 0 as $n \to \infty$ because $\lim_{n \to \infty} x_n = \overline{x}$.

4. $\overline{x} = \lim_{n \to \infty} x_n$ is continuous, i.e., given $\varepsilon > 0$, $\exists \delta > 0$ s.t.

$$|t - t'| < \delta \implies |\overline{x}(t) - \overline{x}(t')| < \varepsilon$$

Idea: Split into known things

$$|\overline{x}(t) - \overline{x}(t')| = |\overline{x}(t) - x_n(t) + x_n(t) - x_n(t') + x_n(t') - \overline{x}(t)|$$

$$\leq |\overline{x}(t) - x_n(t)| + |x_n(t) - x_n(t')| + |x_n(t') - \overline{x}(t)|$$

We pick n s.t. $|\overline{x}(t) - x_n(t)| < \frac{\varepsilon}{3} \,\forall t$ which is possible because Weierstrass implies uniform convergence. Then pick δ s.t.

$$|x_n(t) - x_n(t')| < \frac{\varepsilon}{3} \quad \forall |t - t'| < \delta$$

which is possible because x_n is continuous.

5. \overline{x} is unique.

Idea: Prove $|\overline{x} - \tilde{x}| \leq |\overline{x} - \tilde{x}|$.

• If \tilde{u} is other solution, it also exists in R'.

Proof. (by contradiction) If not, then

$$|\tilde{x}(t_*) - x_0| = b = Ma$$

for some $|t_* - t| < a$. But

$$|\tilde{x}(t_*) - x_0| = \left| \int_{t_0}^{t_*} f(t', \tilde{x}(t')) dt' \right|$$

$$\leq \int_{t_0}^{t_*} |f(t', \tilde{x}(t'))| dt'$$

$$\leq M(t_* - t_0)$$

$$< Ma = b$$

Contradiction!

• Have

$$\begin{aligned} |\overline{x}(t) - \tilde{x}(t)| &= \left| \int_{t_0}^t f\left(t', \overline{x}(t')\right) - f\left(t', \tilde{x}(t')\right) dt' \right| \\ &\leq \int_{t_0}^t |f\left(t', \overline{x}(t')\right) - f\left(t', \tilde{x}(t')\right)| dt' \\ &\leq \int_{t_0}^t L \max |\overline{x}(t') - \tilde{x}(t')| dt \\ &\leq La \max |\overline{x}(t') - \tilde{x}(t')| \\ \max |\overline{x}(t) - \tilde{x}(t)| &\leq \max |\overline{x}(t) - \tilde{x}(t)| \end{aligned}$$

which is only possible if $\overline{x}(t) - \tilde{x}(t) = 0$, i.e., solution is unique.

§10 Lec 10: Oct 18, 2021

§10.1 Fourier Series

Goal: Solve linear PDE: 3 canonical examples

1. Heat/Diffusion equation

$$\partial_t u(t,x) - \partial_x^2 u(t,x) = 0$$

2. Wave equation

$$\partial_t^2 u = \partial_x^2 u$$

3. Laplace equation:

$$\partial_x^2 u + \partial_y^2 u = 0$$

Question 10.1. How do we solve linear PDEs?

Use linearity to split big problems into small ones that you can solve (find the eigenvectors). Then we split $1 \text{ PDE} \to \infty$ ODEs. First, let's define Fourier series.

Definition 10.1 (Fourier Series) — Fourier Series is a function written as a sum of sines and cosines

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \sin(nx) + b_n \cos(nx)$$
$$= \sum_{-\infty}^{\infty} c_n e^{inx}$$

where $c_n = c_r + ic_{in}$.

They have amazing properties:

- 1. They can approximate almost anything
 - analytic function
 - smooth function
 - periodic function
 - differentiable function
 - continuous/discontinuous function
- 2. They simplify differentiation!

$$\frac{d}{dx}e^{ikx} = ike^{ikx}$$
$$\frac{d^2}{dx^2}\sin kx = -k^2\sin kx$$
$$\frac{d^2}{dx^2}\cos kx = -k^2\cos kx$$

Just like Laplace transform, Fourier series transform differentiation into multiplication problem (easier to deal with).

3. Fourier series are orthogonal

or
$$\int_{-\pi}^{\pi} \sin mx \cos nx \, dx = 0$$
 or
$$\int_{-\pi}^{\pi} \sin mx \sin nx \, dx = 0 \quad \text{if } m \neq n$$
 or
$$\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = 0 \quad \text{if } m \neq n$$

This gives easy formulas

From these facts follow from linear algebra, because Fourier series are eigenfuncitons of differentiation. They are the correct basis to solve linear PDEs.

§11 Lec 11: Oct 20, 2021

§11.1 Coefficients of Fourier Series

Question 11.1. How do we calculate Fourier Series $a_n, b_n = ?$

Consider the domain: $[-\pi, \pi]$, finite dimensions N, vector

$$\mathbf{u} = \sum u_i \mathbf{e}_i$$

How do we calculate u_i ?

$$\mathbf{u} \cdot \mathbf{e}_i = \left(\sum_{i=1}^N u_i e_i\right) \cdot e_j$$
$$= \sum_{i=1}^N u_i \left(e_i - e_j\right)$$
$$= \sum_{i=1}^N \delta_{ij}$$

where

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

We want to do this in ∞ dimensions – inner product

$$N: \langle u, v \rangle = u \cdot v = \sum_{i=1}^{N} u_i v_i$$
$$\infty: \langle u, v \rangle \propto \int_a^b u(x) v(x) \, dx$$

Inner Product: $\langle u, v \rangle \to \mathbb{R}$ takes in two function & spits out a number. It has to satisfy the following properties

1. Bilinear

$$\langle au + bv, \rangle = a\langle u, vw \rangle + b\langle v, w \rangle$$

- 2. Symmetric $\langle u, v \rangle = \langle u, v \rangle$.
- 3. Positivity: $\langle u, u \rangle > 0$ unless u = 0.

Inner products are important

- They imply a norm $||u|| = \sqrt{\langle u, u \rangle}$
- Cauchy-Schwarz Inequality

$$\langle u,v\rangle^2 \leq \langle u,u\rangle\langle v,v\rangle$$

• Triangle inequality

$$||u+v|| < ||u|| + ||v||$$

Exercise 11.1. Prove these properties.

Now, we will use inner products to calculate Fourier. Define

$$\langle u, v \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} u(x)v(x) dx$$

Under this inner product, $\sin kl$, $\cos kl$ are orthogonal functions, i.e.,

$$\langle \sin kx, \cos lx \rangle = 0 \quad \forall k, l$$

 $\langle \sin kx, \sin lx \rangle = 0 \quad \text{if } k \neq l$
 $\langle \cos kx, \cos lx \rangle = 0 \quad \text{if } k \neq l$

 $\underline{Note}: 1 = \cos 0x$

Proof. Left as exercise, but use

$$\cos((k+l)x) = \cos kx \cos lx - \sin kx \sin lx$$

$$\sin((k+l)x) = \sin kx \cos lx + \sin lx \cos kx$$

Also,

$$\langle \sin kx, \sin kx \rangle = 1$$

 $\langle \cos kx, \cos kx \rangle = 1$ $k \neq 0$
 $\langle 1, 1 \rangle = 2$

We have

$$f(x) = \frac{a_0}{2} + \sum a_k \cos kx + b_k \sin kx$$

$$\langle f, \cos lx \rangle = \langle \frac{a_0}{2} + \sum a_k \cos kx + b_k \sin kx, \cos lx \rangle$$

$$= \frac{a_0}{2} \langle 1, \cos lx \rangle + \sum_{k=1}^{\infty} a_k \langle \cos kx, \cos lx \rangle + \sum_{k=1}^{\infty} b_n \langle \sin kx, \cos lx \rangle$$

$$\langle f, \cos lx \rangle = a_l$$

$$\langle f, \sin lx \rangle = b_l$$

So we can write any function f(x)

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

where

$$a_k = \langle f, \cos kx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$
$$b_k = \langle f, \sin kx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx$$

Question 11.2. Are these orthogonal functions under $\langle u, v \rangle$?

Question 11.3. Are there any other kind of L^2 inner product?

Example 11.1

Consider f(x) = x

We have

$$x = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

$$a_k = \langle x, \cos kx \rangle$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos kx \, dx$$

$$= 0 - 0 - 0 = 0 \quad \text{(integration by parts)}$$

$$b_k = \langle x, \sin kx \rangle$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin kx \, dx$$

$$= \frac{1}{\pi} \left[-\pi \frac{\cos k\pi}{k} - (-(-\pi)) \frac{\cos(-k\pi)}{k} \right] \quad \text{(integration by parts)}$$

$$= \frac{2(-1)^{k+1}}{k}$$

Thus,

$$x \sim \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{k} \sin kx$$

To show that infinite series converges

$$\sum_{k=1}^{\infty} \left| \frac{2(-1)^{k+1}}{k} \right| < 2 \sum_{k=1}^{\infty} \frac{1}{k}$$

which is conclusive (by Weierstrass-M test).

$\S12$ Lec 12: Oct 22, 2021

§12.1 Convergence of Fourier Series

Consider the last example from last lecture

$$f(x) = x \sim \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{k} \sin kx$$

Question 12.1. In what sense does it converge? (What's happening at $\pm \pi$)

Fourier series must be 2π periodic (because $\cos kx$, $\sin kx$ are 2π -periodic) so the y must converge to a 2π -periodic extension of the function.

$$\tilde{f}(x+2\pi) = \tilde{f}(x)$$

<u>Note</u>: x is C' (derivative continuous) but \tilde{x} is not C'. It is piecewise C' (C': f continuous and $\frac{df}{dx}$ is continuous).

Piecewise C' on [a, b]

f is C' except at finitely many points. At any bad point we have

$$\begin{cases} f(x^{-}) = \lim_{h \to 0} f(x - h) & \text{if } f(x^{+}) \neq f(x^{-}) \text{ jump} \\ f(x^{+}) = \lim_{h \to 0} f(x + h) & \text{if } f(x^{+}) = f(x^{-}) \\ f'(x^{-}) = \lim_{h \to 0} f'(x - h) & \text{if } f(x^{+}) = f(x^{-}) \\ f'(x^{+}) = \lim_{h \to 0} f'(x + h) & \text{but } f'(x^{+}) \neq f(x^{-}) \text{ corner} \end{cases}$$

Theorem 12.1 (Fourier Convergence)

If $\tilde{f}(x)$ is 2π -periodic, piecewise C' function, then its Fourier series converges to \tilde{f} everywhere except jump points x where the series converges to $\frac{f(x^+)+f(x^-)}{2}$

Question 12.2. Recall the example at the beginning, why is there no cosines for x?

Odd/even symmetries!

Fact 12.1. We have

$$odd + odd = odd$$

 $even + even = even$

and

$$odd \times odd = even$$

 $even \times even = even$
 $odd \times even = odd$

and

$$\int_{-a}^{a} \text{odd } dx = 0$$

$$\int_{-a}^{a} \text{even } dx = 2 \int_{0}^{a} \text{even } dx$$

This implies odd functions f have sine series and even functions have cosine series.

$\S13$ Lec 13: Oct 27, 2021

Recap:

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

where the coefficients are calculated as follows

$$a_k = \langle f, \cos kx \rangle$$

$$b_k = \langle f, \sin kx \rangle$$

$$\langle u, v \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} u(x)v(x) dx$$

Symmetry simplifies a_k , b_k . Fourier series converges for periodic and piecewise C^1 functions.

§13.1 Complex Fourier Series

Recall the Euler's formula

$$e^{ikx} = \cos kx + i\sin kx$$

Also,

$$\cos kx = \frac{e^{ikx} + e^{-ikx}}{2}$$
$$\sin kx = \frac{e^{ikx} - e^{-ikx}}{2i}$$

So,

$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx \quad \leftrightarrow \quad \sum_{k=-\infty}^{\infty} c_k e^{ikx}$$

We want $c_k = \langle f, e^{ikx} \rangle$

$$\langle e^{ikx}, e^{ikx} \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{2ikx} dx$$

which is not necessarily positive and we want it to be strictly positive, i.e., norm.

$$\int_{-\pi}^{\pi} e^{2ikx} dx = \left[\frac{e^{2ikx}}{2ik}\right]_{-\pi}^{\pi}$$

$$= \frac{e^{2\pi ki} - e^{-2\pi ki}}{2ik}$$

$$= \frac{\sin 2\pi k}{k}$$

$$= 0$$

To fix this, let's define Hermitian inner product

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx$$

where $x \in (-\pi, \pi]$ and $f, g : (-\pi, \pi] \to \mathbb{C}$. So

$$c_k = \langle f, e^{ikx} \rangle$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

Question 13.1. How do Fourier series work with integration?

Integration makes things smoother. We have

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$
$$\int f(x) dx \sim \int \frac{a_0}{2} dx + \sum_{k=1}^{\infty} a_k \int \cos kx dx + b_k \int \sin kx dx$$

Question 13.2. Is this okay?

Notice that

$$\int \cos kx \, dx = \frac{\sin kx}{k} \quad \int \sin kx \, dx = \frac{-\cos kx}{k}$$

Problem: If f(x) = 1, then

$$\int_0^x f \, dx \sim 2 \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k} \sin kx$$

Constants terms in Fourier series are bad under integration.

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

Integration is fine if the function has mean 0

$$\int_{-\pi}^{\pi} f(x) \, dx = 0$$

Compare f(x) = 1 and g(x) = x.

Remark 13.1. Fourier series need piecewise C^1 . To have Fourier of f', it must be C^1 so f must be continuous (can have corners but not jumps).

$$f = a_0 + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$
$$f' = kb_k \cos kx - ka_k \sin kx$$

if f is continuous.

Summary:

 \bullet Integrate: divide by k

 \bullet Differentiation: multiply by k

§14 Lec 14: Oct 29, 2021

§14.1 Rescaling Intervals of Fourier Series

We know Fourier series on $[-\pi, \pi]$. What about [-l, l]? We use coordinate transformation

$$y = \frac{\pi}{l}x$$
$$F(y) = f(x(y))$$
$$F(y(x)) = f(x)$$

We have

$$F(y) = f\left(x(y)\right) = f\left(\frac{l}{\pi}y\right)$$

So $F(y) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos ky + b_k \sin ky$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} F(y) \cos ky \, dy$$
$$= \frac{1}{\pi} \int_{-l}^{l} F(y(x)) \cos ky(x) \frac{\pi}{l} \, dx$$
$$= \frac{1}{l} \int_{-l}^{l} f(x) \cos \left(\frac{k\pi}{l}x\right) \, dx$$

So

$$f(x) = F(y(x)) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{k\pi}{l} x + b_k \sin \frac{k\pi}{l} x$$

We can find b_k similarly.

Lec 15: Nov 1, 2021

$\S 15.1$ The Relationship between Smoothness and Fourier Coefficients

Smoother functions (more differentiable) have faster decaying Fourier coefficients. (infinitely differentiable leads to exponential decay).

Example 15.1 • Discontinuous function $\rightarrow c_k \propto \frac{1}{k}$

- $C^0 \to c_k \propto \frac{1}{k^2}$
- $C^1 \to c_k \propto \frac{1}{k^3}$ $C^2 \to c_k \propto \frac{1}{k^4}$ Why?

Recall these definitions

Definition 15.2 — $\forall \varepsilon, x \; \exists N \; \text{s.t.}$

$$|f_n(x) - f(x)| < \varepsilon \quad \forall n > N(x)$$

Then, $f_n(x) \to f(x)$ (pointwise convergence).

Definition 15.3 — $\forall \varepsilon, \exists N \text{ s.t.}$

$$|f_n(x) - f(x)| < \varepsilon \quad \forall n > N, \quad \forall x$$

Then, $f_n(x) \to f(x)$ (uniform convergence).

Series converges $\sum_{k=1}^{\infty} f_k(x) \to g(x)$ if

$$s_n(x) = \sum_{k=1}^n f_k(x) \to g(x) \text{ as } n \to \infty$$

<u>Weierstrass M-test</u>: If $|f_n(x)| < M_n$ and $\sum_{n=1}^{\infty} M_n < \infty$, then $\sum_{n=1}^{\infty} f_n(x)$ converges (absolutely/uniformly). So the limit is continuous if f_n are continuous. Consider a complex Fourier series

$$f \sim \sum_{k=-\infty}^{\infty} c_n e^{ikx}$$

Theorem 15.4

If $\sum_{k=-\infty}^{\infty} |c_k| < \infty$, then the Fourier series is "good", i.e., the limit of the Fourier series is continuous.

Proof. Weierstrass!

$$\left|c_k e^{ikx}\right| \le \left|c_k\right| \left|e^{ikx}\right| = \left|c_k\right|$$

Corollary 15.5

If $|c_k| < \frac{M}{|k|^{\alpha}}$ where $\alpha > 1$. Then Fourier series is continuous.

Proof. $\sum_{k=1}^{\infty} \frac{M}{k^{\alpha}} < \infty$ for $\alpha > 1$ by comparison test.

 \underline{Note} :

$$f \sim \sum_{k=-\infty}^{\infty} c_k e^{ikx}$$
$$f' \sim \sum_{k=-\infty}^{\infty} ikc_k e^{ikx}$$

Differentiation: $c_k \to ikc_k$ or $|c_k| \to k|c_k|$

Theorem 15.6

If $\sum_{k=1}^{\infty} |k|^n |c_k| < \infty$ where $f \sim \sum_{k=-\infty}^{\infty} c_k e^{ikx}$, then $f^{(n)}$ is continuous (f is $C^n)$

Proof. Have

$$f^{(n)} \sim \sum_{k=-\infty}^{\infty} (ik)^n c_k e^{ikx}$$

then Weierstrass $|(ik)^n c_k e^{ikx}| \le |k|^n c_k$

Corollary 15.7

If $|c_k| < \frac{M}{|k|^{\alpha}}$ where $\alpha > n+1$ then f is n times differentiable.

Proof. Comparison test: $c_k = \frac{1}{k^2}$, then

$$|c_k| < \frac{1}{k^{1.5}} \propto \frac{1}{k}$$

So,

$$\frac{1}{k^2} \to C^0$$

$$\frac{1}{k^3} \to C^1$$

$$\frac{1}{k^4} \to C^2$$

$$\vdots$$

$\S16$ Lec 16: Nov 3, 2021

§16.1 Hilbert Spaces & Convergence in Norm

Goal: Prove Fourier series converge "in norm". First, we need some definitions.

Definition 16.1 (L^2 integrable) — f is L^2 integrable if $||f||^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx < \infty$.

Definition 16.2 (Hilbert Space) — Hilbert space is vector space of L^2 integrable function

Proof. Have

- Has a 0 (0 function)
- Closed under addition

$$||f + g|| \le ||f|| + ||g|| < \infty$$

• Closed under scalar multiplication

$$||cf|| = |c|||f|| < \infty$$

• test other axioms ...

Note: L^2 function have Fourier series.

Proof.
$$|c_k| = |\langle f, e^{ikx} \rangle| \le ||f|| ||e^{ikx}|| < \infty$$
 (Cauchy-Schwarz).

 $Note: L^2$ functions are "abnormal" TBA

Fact 16.1. Hilbert spaces are complete (every "convergent" sequence has a limit that is L^2)

Definition 16.3 — "Convergent" means Cauchy sequence for sequence $a_n \to a$. We need

Cauchy:
$$\forall \varepsilon, \exists N \ni |a_m - a_n| < \varepsilon \quad \forall m, n > N$$

<u>Aside</u>: Completeness is the difference between rationals \mathbb{Q} , and reals \mathbb{R} (\mathbb{Q} isn't complete because π is limit of sequence in \mathbb{Q} but $\pi \notin \mathbb{Q}$). Completeness matters for taking limits.

Definition 16.4 (Convergence in Norm) —
$$f_n(x) \to f(x)$$
 if $||f_n(x) - f(x)|| \to 0$ as $n \to \infty$.

We'll prove Fourier series converge to their function in norm in a general way for a general ∞ -dim vector space V with an inner product.

Definition 16.5 (Orthonormal System) — Orthonormal system $\phi_1, \phi_2, \ldots \in V$

$$\langle \phi_i, \phi_j \rangle = \delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

Definition 16.6 (General Fourier Series) — $f \sim \sum_{k=1}^{\infty} c_k \phi_k$ where $c_l = \langle f, \phi_l \rangle$ and c_k comes from $\langle f, \phi_l \rangle$ on both sides.

Theorem 16.7

The truncated Fourier series

$$s_n = \sum_{k=1}^{\infty} c_k \phi_k$$

is the best approximation to f in least squares sense, that is, consider $V_n = \operatorname{span} \{\phi_1, \dots, \phi_n\}$ and take any $p_n = \sum_{k=1}^n d_k \phi_k \in V_n$ then

$$||s_n - f|| \le ||p_n - f|| \quad \forall p_n \in V_n$$

Proof. We have

$$p_n = \sum_{k=1}^n d_k \phi_k$$
$$s_n = \sum_{k=1}^n c_k \phi_k$$
$$c_k = \langle f, \phi_k \rangle$$

Then,

$$||p_n||^2 = \langle p_n, p_n \rangle$$

$$= \langle \sum_{k=1}^n d_k \phi_k, \sum_{l=1}^n d_l \phi_l \rangle$$

$$= \sum_{k=1}^n \sum_{l=1}^n d_k d_l \langle \phi_k, \phi_l \rangle$$

$$= \sum_{k=1}^n \sum_{l=1}^n d_k d_l \delta_{kl}$$

$$= \sum_{k=1}^n |d_k^2|$$

and

$$||p_n - f||^2 = \langle p_n - f, p_n - f \rangle$$

$$= \langle p_n, p_n \rangle - 2 \langle p_n, f \rangle + \langle f, f \rangle$$

$$= \sum_{k=1}^n |d_k|^2 - 2 \left(\sum_{k=1}^n d_k \langle \phi_k, f \rangle \right) + ||f||^2$$

$$= \sum_{k=1}^n |d_k - c_k|^2 - \sum_{k=1}^n |c_k|^2 + ||f||^2$$

Pick $d_k = c_k$ – norm minimized by s_n .

§17 Lec 17: Nov 5, 2021

§17.1 Pointwise Convergence of Fourier Series

We know Fourier series converge in norms for continuous, piecewise C^1 , periodic functions. But Fourier series seemed to work even for discontinuous functions too (Gibbs phenomenon!). Today we will prove it works pointwise for discontinuous function if $s_n = \sum_{k=-n}^n c_k e^{ikx}$. Prove

$$\lim_{n \to \infty} s_n(x) = \frac{1}{2} (f(x^+) + f(x^-))$$

1. Use the formulas for c_k

$$s_n = \sum_{k=-n}^{n} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{-iky} \, dy \right) e^{ikx}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \left(\sum_{k=-n}^{n} e^{ik(x-y)} \right) dy_?$$

Notice that $\sum_{k=-n}^{n} e^{ikx}$ is a geometric series

$$\sum_{k=-n}^{n} e^{ikx} = e^{-inx} \left(\frac{e^{i(2n+1)x} - 1}{e^{ix} - 1} \right)$$

$$= \vdots$$

$$= \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{\sin\frac{1}{2}x}$$

So

$$s_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \frac{\sin\left(\left(n + \frac{1}{2}\right)(x - y)\right)}{\sin\frac{1}{2}(x - y)} dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x + y) \frac{\sin\left(n + \frac{1}{2}\right)y}{\sin\frac{1}{2}y} dy$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} f(x + y) \frac{\sin\left(n + \frac{1}{2}\right)y}{\sin\frac{1}{2}y} dy + \frac{1}{2\pi} \int_{-\pi}^{0} f(x + y) \frac{\sin\left(n + \frac{1}{2}\right)y}{\sin\frac{1}{2}y} dy$$

WTS:

$$\lim_{n \to \infty} top = f(x^{+})$$
$$\lim_{n \to -\infty} bottom = f(x^{-})$$

Note

$$\frac{1}{\pi} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})y}{\sin y} \, dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=-n}^{n} e^{iky} \, dy$$
= 1

which is valid if only e^{i0} counts.

2. Prove a difference integral $\rightarrow 0$ by showing that it's a Fourier coefficient. Prove

$$\frac{1}{2\pi} \int_0^{\pi} \left(f(x+y) - f(x^+) \right) \frac{\sin\left(n + \frac{1}{2}\right) y}{\sin\frac{1}{2}y} \, dy = 0$$

Notice that

$$g(y) \equiv \frac{f(x+y) + f(x^+)}{\sin \frac{1}{2}y}$$

is piecewise continuous $\forall y \in [0,\pi]$. We need $\int_0^\pi g(y) \sin\left(n + \frac{1}{2}\right) y dy = 0$. Note that

$$\sin\left(n + \frac{1}{2}\right)y = \sin\frac{1}{2}y\cos ny + \cos\frac{1}{2}y\sin ny$$

Then,

$$\int_0^\pi \left(g(y)\sin\frac{y}{2}\right)(0)ny + \left(g(y)\cos\frac{y}{2}\sin ny\right)$$

But we know Fourier coefficients decay for all L^2 integrable functions. So these terms $\to 0$ and we prove pointwise convergence.