Modelovací techniky UML

Z FITwiki

Obsah

- 1 Charakteristika jazyka UML
 - 1.1 Struktura jazyka
 - 1.2 Mechanismy rozšiřitelnosti UML
- 2 Charakteristika, základní prvky a použití diagramů UML
 - 2.1 Diagram tried
 - 2.2 Diagram prípadov užitia
 - 2.2.1 Špecifikácia prípadov užitia
 - 2.3 Diagramy interakcie
 - 2.3.1 Diagram sekvence
 - 2.3.2 Diagram komunikace
 - 2.3.3 Přehledový diagram interakce
 - 2.4 Stavový diagram
 - 2.5 Diagram aktivity
 - 2.6 Ostatné diagramy

Charakteristika jazyka UML

Jazyk pro specifikování, vizualizaci, konstruování a dokumentování artefaktů softwarových systémů, právě tak jako modelování podniku a jiných ne softwarových systémů. UML představuje kolekci nejlepších inženýrských praktik, které se ukázaly úspěšné při modelování rozsáhlých a složitých systémů.

Struktura jazyka

Stavební bloky - základní modelovací prvky jazyka, vztahy a diagramy.

- Prvky (things) modelovací prvky jazyka.
- Vztahy (relationships) modelování vazeb mezi prvky.
- Diagramy pohledy do modelů v UML, způsob vizualizace toho, co systém bude dělat (diagramy úrovně analýzy) nebo jak to bude dělat (diagramy úrovně návrhu).

Obecné mechanismy - obecné způsoby, které nabízí UML k dosažení konkrétních cílů.

- Specifikace grafická a textová dimenze modelu
- Doplňky (adornments) např. zobrazení atributů
- Obecná dělení (common divisions)
 - Klasifikátor/instance abstraktní pojem vs. konkrétní výskyt
 - Rozhraní/implementace co prvek dělá vs. jak to dělá
- Mechanismy rozšiřitelnosti
 - Omezení (constraints) {....} podmínka nebo pravidlo vztahující se ke konkrétnímu modelovacímu prvku v modelu, které musí být dodrženo
 - Stereotypy (stereotypes) «object type» nové, uživatelem definované prvky, které jsou odvozeny z existujících modelovacích prvků jazyka UML modifikací jejich významu
 - Připojené hodnoty (tagged values) název = hodnota definování nových vlastností modelovacích prvků zavedením klíčových slov pro ně a připojení hodnot těchto vlastností ke konkrétnímu prvku

modelu

Architektura - pohled jazyka UML na architekturu modelovaného systému.

- UML chápe architekturu systému jako organizační strukturu systému, včetně dekompozice na části, jejich propojení, interakci, mechanismy a hlavní principy návrhu systému.
- koncepce ,4 + 1 pohled" na architekturu systému (Philippe Kruchten).
 - Logický zachycuje slovník domény (množina tříd a objektů), jak implementují požadované chování.(Diagramy: tříd, objektů, balíčků, stavového automatu)
 - Procesů modeluje proveditelná vlákna a procesy jako "aktivní třídy" (třídy s vlastním vláknem řízení) (Diagramy: aktivity)
 - Implementační modeluje soubory a komponenty tvořící fyzický kód systému a jejich závislosti. (Diagramy: balíčků, komponent)
 - Nasazení fyzické nasazení artefaktů na množině výpočetních uzlů. (Diagramy: nasazení)
 - Případů použití základní požadavky na systém v podobě množiny případů použití. (Diagramy: případů použití, interakce)

Mechanismy rozšiřitelnosti UML

- Omezení (doplňující textová informace, definuje podmínku/pravidlo vztahující se k prvku modelu; standardně vyjadřovány pomocí Object Constrain Language, zapisovány ve složených závorkách) {x!=1}
- Stereotypy (nové, uživatelem definované prvky odvozené z existujících prvků UML modifikací významu; zobrazují se použitím symbolu prvku ze kterého je stereotyp odvozen s uvedením názvu stereotypu ve dvojitých lomených závorkách) «subsystem»
- Připojené hodnoty (definice nových vlastností prvků zavedením klíčových slov pro ně) keyword1=value1, keyword2=value2

Charakteristika, základní prvky a použití diagramů UML

Použitie opísané zo slidov. Kde nebolo, je označenie (???)

Diagram tried

- vizualizuje triedy, ich štruktúru a vzťahy k ostatným triedam
- prvky:
 - Triedy množiny objektov, ktoré zdieľajú rovnakú špecifikáciu rysov, obmedzené a sémantiky
 - Rysy triedy atribúty a operácie operácia je čo trieda robí, metóda je implementácia operácie
- vzťahy:
 - asociácia reprezentácia väzieb objektov (meno, meno role, násobnosť, navigovateľnosť) (defualtná násobnosť nie je!)
 - agregácia modelovanie vzťahu celok časť (objednávka položky objednávky)
 - kompozícia silnejšia forma agregácie vlastník je zodpovedný za vytváranie a rušenie častí
- generálizácia, špecializácia princíp nahraditeľnosti môžeme použiť špecialnejší prvok všade tam, kde je vyžadovaný všeobecnejší
- použitie: modelovanie statickej štruktúry, návrh (???)

Diagram prípadov užitia

- generalizácia aktérov aj prípadov užitia (moc sa nepoužíva)
- abstraktny akter
- <<include>> jeden prípad užita vždy zahŕňa iný (výber z účtu kontrola zostatku)
- <extend>> jeden prípad užita môže vyžadovať vykonanie iného prípadu (výber peňazí vytlačenie potvrdenia)
- špecifikácia prípadov užitia slovný popis jednotlivých prípadov (meno, popis, aktéri, hlavný tok, alternatívne toky, ...)
- použitie: základný model pri analýze požiadavkov

Špecifikácia prípadov užitia

textová reprezentácia pripadov použitia, podrobnejšia

- Meno pripadu použitia
- Identifikátor
- Popis

- Aktéri: primárny, sekundárny
- Preconditions
- Hlavný tok riadenia
- Postconditions
- Alternatívne toky riadenia

Diagramy interakcie

- použití: návrh komunikace která zajistí požadované chování
- typy:

Diagram sekvence

- komunikace jako posloupnost zpráv které si účastníci posílají, uspořádané v čase
- posielanie správ medzi aktérmi (inštanciami)
 - asynchronne (plna ciara, otvorena sipka)
 - synchronne (plna ciara, plna sipka)
 - vytvorenie objektu (ciarkovana ciara)
 - zpetne volanie nezobrazujeme
- každý aktér má čiaru života (vymedzuje úsek aktivity), aktéri sú inštancie
- kombinované fragmenty(UML 2):
 - podmientky: opt, alt
 - cykly: loop, break
 - paralelne prevedenie: par

Diagram komunikace

- zdůrazňuje strukturní vztahy mezi objekty (jak o sobě ví)
- podobný diagramu sekvencie, ale bez dvojdimenzionálnosti
- vhodné pre počiatočný brainstorming rýchlejšie kreslenie

Přehledový diagram interakce

- pro modelování toku řízení ukazuje jak množina jednodušších akcí realizuje složité chování
- ukazuje interakcie (napr. prípady užitia) a ich výskyty
- rovnaká syntax ako diagram aktivít ale ukazuje vložené interakcie a ich výskyty namiesto uzlov akcií a objektov

Stavový diagram

- vychadza z konecneho automatu
- zachytenie stavov a aktivít objektov v týchto stavoch, udalostí, ktoré vedú k zmene stavu a akcií, ktoré súvisia so zmenou stavu
- stav objektu je určený hodnotami jeho atribútov a väzbami na iné objekty
- udalosti:
 - udalosť volania požiadavka na vykonanie akcie
 - udalosť signálu prijatie signálu
 - udalosť zmeny boolovský výraz, udalosť nastáva pri zmene z false na true
 - časová udalosť nastáva v špecifikovanom okamžiku
- akcia okamžitá a neprerušená, spojená s udalosťou
- aktivita dlhšia, môže byť prerušená, spojená so stavom
- prechod: udalost[podmienka]/akcia
- použitie: navrh, analýza (???)

Diagram aktivity

- vychádza z Petriho sietí
- modeluje aktivitu workflow ...
- Uzly:
 - uzly akcií atomické jednotky činnsotí

- riadiace uzly riadia toky (podmienky, vetvenie, zlúčenie)
- uzly objektov reprezentujú objekty
- Hrany:
 - riadiace toky tok riadený aktivitou
 - toky objektov
- použitie: analýza (???)

Ostatné diagramy

- diagram komponentov
 - implementačný diagram
 - závislosti medzi kompnentami
 - komponenta je modulárna časť, ktorá zapúzdruje svoj obsah a jej prejav je nahraditeľný v jej okolí
 - vonkajšie chovanie je definované -> poskytované a požadované rozhranie
- diagram nasadenia
 - implementačný diagram
 - nasadenie softwarových prvkov na fyzickú architektúru a komunikácia medzi fyzickými prvkami
 - uzly zariadenia a uzly prostredia
- diagram objekotv
 - snímok vytvorený podľa diagramu tried
 - použitie: pomocný diagram pre vysvetlenie zložitejšej štruktúry v diagrame tried
- diagram balíčkov
 - balíčky (zoskupenie prvkov modelu) a vzťahy medzi nimi
- diagram zloženej štruktúry
 - zostáva z prepojených prvkov, kotré spolupracujú na dosiahnutí cieľa
- diagram kolaborácie
 - štruktúra spolupracujúcich prvkov (rolí), kde každý vykonáva špecializovanú funkciu a spolu vytvárajú požadovanú funkcionalitu

Citováno z "http://wiki.fituska.eu/index.php?title=Modelovac%C3%AD_techniky_UML&oldid=13275" Kategorie: Státnice MIS | Analýza a návrh informačních systémů | Státnice AIS | Státnice 2011

Stránka byla naposledy editována 5. 6. 2016 v 10:37.