Analytic Geometry

April 4, 2023

1 Orthogonal Complement

This chapter focuses on the inspection of vector spaces that are orthogonal to each other, which is an important concept for dimensionality reduction from a geometric perspective.

Consider a D-dimensional vector space V and an M-dimensional subspace $U \subseteq V$. Then its orthogonal complement U^{\perp} is a (D-M)-dimensional subspace of V and contains all vectors in V that are orthogonal to every vector in U. Furthermore, $U \cap U^{\perp} = \{\mathbf{0}\}$ so that any vector $\mathbf{x} \in V$ can be uniquely decomposed into

$$\boldsymbol{x} = \sum_{m=1}^{M} \lambda_m \boldsymbol{b}_m + \sum_{j=1}^{D-M} \psi_j \boldsymbol{b}_j^{\perp}, \quad \lambda_m, \psi_j \in \mathbb{R}$$
 (1)

where $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_M)$ basis of U and $(\boldsymbol{b}_1^{\perp},\ldots,\boldsymbol{b}_{D-M}^{\perp})$ is a basis of U^{\perp} .

Therefore, the orthogonal complement can also be used to describe a plane U (two-dimensional subspace) in a three-dimensional vector space. More specifically, the vector \boldsymbol{w} with $\|\boldsymbol{w}\| = 1$, which is orthogonal to the plane U, is the basis vector of U^{\perp} . The vector \boldsymbol{w} is called the *normal vector* of U.