IBM3103 – Mathematical Methods for Biological and Medical Engineering

Fall 2021

Instructor: Carlos A. Sing Long Teaching Assistant: Carlos Castillo

Assignment #1

March 26, 2021

Due on April 9, 2021

Problem #1: The nullspace (30pts)

Consider a collection x_1, \ldots, x_n of n vectors in \mathbb{R}^d . To any vector $\alpha \in \mathbb{R}^n$ we can associate the linear combination¹

$$x(\boldsymbol{\alpha}) := \alpha_1 \boldsymbol{x}_1 + \ldots + \alpha_n \boldsymbol{x}_n.$$

Consider the following subset of \mathbb{R}^n

$$N := \{ \boldsymbol{\alpha} \in \mathbb{R}^n : \ x(\boldsymbol{\alpha}) = \mathbf{0} \}.$$

(a) Show that N is a subspace of \mathbb{R}^n . In other words, that

$$\forall \alpha, \beta \in N, a, b \in \mathbb{R} : a\alpha + b\beta \in N.$$

- (b) What can you say about the collection x_1, \ldots, x_n if $N = \{0\}$?
- (c) What can you say about the collection x_1, \ldots, x_n if N contains at least one non-zero vector?

Comment: If we define the matrix

$$\boldsymbol{X} := \begin{bmatrix} (x_1)_1 & \dots & (x_n)_1 \\ \vdots & \ddots & \vdots \\ (x_1)_d & \vdots & (x_n)_d \end{bmatrix}$$

then the subspace N is called the **nullspace** of X.

Problem #2: Polynomials and interpolation (30pts)

Consider d points t_1, \ldots, t_d on the interval [0, 1] given by

$$t_i = \frac{i-1}{d}$$
 $i \in \{1, \dots, d\}.$

You can think of these points as N instants between 0 and 1. Consider also the monomials

$$P_i(t) = t^j$$
.

¹Here we define the expression $x(\alpha)$ in terms of the right-hand side, so that there is no issue if you replace one by the other.

For example, $P_0(t) \equiv 1$, $P_1(t) = t$, $P_2(t) = t^2$, etc. Finally, consider the collection of vectors $\mathbf{p}_0, \dots, \mathbf{p}_n$ in \mathbb{R}^d defined as

$$m{p}_j := egin{bmatrix} P_j(t_1) \ dots \ P_j(t_d) \end{bmatrix} = egin{bmatrix} t_1^j \ dots \ t_d^j \end{bmatrix}.$$

In other words, the first component of p_j is the polynomial P_j evaluated at t_1 , the second component is P_j evaluated at t_2 , etc.

(a) Show that if n < d the collection p_0, \ldots, p_n is linearly independent. To show this, use the **fundamental theorem of calculus**: a polynomial of the form

$$Q(t) = a_0 + a_1 t + \ldots + a_n t^n$$

can be zero at most at n points unless $a_0 = \ldots = a_n = 0$.

- (b) Let d = 100 and n = 2. Using matplotlib plot any linear combination of p_0, p_1, p_2 you want, indicating the scalars you used. What kind of polynomials do you get by taking linear combinations of p_0, p_1, p_2 (e.g. constant, linear, etc.)? Can you generalize this idea when n > 2?
- (c) Let d = 4 and n = 3. Define the vector

$$\boldsymbol{f} = \begin{bmatrix} \cos(2\pi t_1) \\ \cos(2\pi t_2) \\ \cos(2\pi t_3) \\ \cos(2\pi t_4) \end{bmatrix}.$$

Using numpy find scalars $\alpha_0, \ldots, \alpha_3$ such that

$$\alpha_0 \mathbf{p}_0 + \ldots + \alpha_3 \mathbf{p}_3 = \mathbf{f}.$$

Furthermore, if $\alpha_0, \ldots, \alpha_3$ are the scalars you found, using matplotlib plot the functions

$$Q(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3$$
 and $f(t) = \cos(2\pi t)$

on the same figure. What can you say about Q and f? Comment: Note Q and f coincide at t_1, \ldots, t_4 . In this context, Q is an **interpolating polynomial** of f.

- (d) Explain why there are some regions of the interval [0,1] where Q is a good approximation to f and others where it is not as good an approximation.
- (e) Bonus (+10pts): Repeat (c) for d=6 and n=5. Is the polynomial Q closer to f?

Problem #3: Cipher (40pts)

In this question we will be using Python to solve a mystery. In the code Example.py that you can download from the course website, we have the systems BlackBox1 and BlackBox2. Both represent an encryption system to be cracked. In the context of this question, that means that each system receives a message, called plaintext, represented by a vector of positive integers $\alpha \in \mathbb{Z}_+^n$ and outputs an encrypted message $y \in \mathbb{Z}_+^n$. The encryption procedure is represented by a linear combination with some collection of keys $x_1, \ldots, x_n \in \mathbb{R}^n$

$$\boldsymbol{y} = \sum_{i=1}^{n} \alpha_i \boldsymbol{x}_i.$$

Each black box has a different collection of keys x_1, \ldots, x_n .

	Α	В	С	D	Е	F	G	Н	I	J	K	L	Μ	Ν	О	Р	Q	R	S	Т	U	V	W	Χ	Y	Z
Г	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Table 1. Dictionary. Each letter is represented by a number.

Example: Suppose n=2 and let's say our message is "HI" and the keys are "MA" and "TH." Then, we have

$$\left\{ \left[\begin{array}{c} M \\ A \end{array}\right], \left[\begin{array}{c} T \\ H \end{array}\right] \right\} = \left\{ \left[\begin{array}{c} 13 \\ 1 \end{array}\right], \left[\begin{array}{c} 20 \\ 8 \end{array}\right] \right\} \quad \text{and} \quad \boldsymbol{\alpha} = \left[\begin{array}{c} H \\ I \end{array}\right] = \left[\begin{array}{c} 8 \\ 9 \end{array}\right].$$

Thus, the encrypted message is

$$\boldsymbol{y} = \sum_{i=1}^{2} \alpha_i \boldsymbol{x}_i = \begin{bmatrix} 284 \\ 80 \end{bmatrix}.$$

- (a) Create a function str2num that transform a string to an array of numbers. Also, create another function num2str that does the opposite. Follow the rules of the dictionary in Table 1.
- (b) Find a method to "crack" the keys $x_1, \ldots, x_n \in \mathbb{R}^m$ of BlackBox1 by sending a series of messages α_k . Remember, you can not send a zero as it is not present in the dictionary of Table 1. Which is the minimum amount of messages k necessary to obtain the keys? What is the message hidden in the keys?
- (c) You have received the following mysterious message after passing through BlackBox1

$$y = [1186 \ 487 \ 866 \ 573 \ 732]^{t}$$
.

Which was the original message?

(d) Repeat question (b) but for BlackBox2. Is it possible to find the keys in this case? Justify your answer. Independent of the previous answer try to decipher the following encrypted message

$$y = [295 \ 331 \ 627 \ 368]^{t}$$
.