112A. Petya and Strings, implementation/strings, 800, x75000+ http://codeforces.com/problemset/problem/112/A

解题思路: 先把所有的字母都更改为小写字母方便比较; python 的字符串可以比较大小,运用该命令即可。

```
a=input().lower()
b=input().lower()
if a>b:
    print(1)
elif a<b:
    print(-1)
else:
    print(0)</pre>
```

263A. Beautiful Matrix, implementation, 800, x75000+

http://codeforces.com/problemset/problem/263/A

解题思路:需要分成行列两次循环来确定元素 1 的位置;输出时需要注意列表是从 0 开始,所以与中间元素的距离实际是与 2 做比较。

```
for i in range(5):
    l=input().split()
    for j in range(5):
        if l[j]=='1':
            print(abs(i-2)+abs(j-2))
            break
```

339A. Helpful Maths, greedy/implementation/sortings/strings, 800, \times 71000+

http://codeforces.com/problemset/problem/339/A

解题思路:按照'+'号先对字符串进行切分,然后再将切分后的字符串排序,最后再用 join 函数将排序后的字符串连起来。此题切分的仅为 1, 2, 3, 这样的做法没有问题;但是需要注意到如果数字大于 10 的话,字符串的排序和阿拉伯数字排序不同!

```
l=input().split('+')
print('+'.join(sorted(1)))
```

281A. Word Capitalization, implementation/strings, 800, x68000+ http://codeforces.com/problemset/problem/281/A

解题思路:需要将字符串第一个元素与之后的元素分开做;只将第一个元素大写,再加上原字符串的后半部分即可。注意如果使用 capitalize ()函数会将后面的元素便为小写!

```
l=input()
print(l[0].upper()+l[1:])
```

//选做:

230B. T-primes, binary search, implementation, math, number theory, 1300, x29581

http://codeforces.com/problemset/problem/230/B

解题思路:

需要打出数据范围内的质数表,然后输入的数据根据下标查找它的平方根是不是质数即可。质数表需要按照 sieve of Eratosthenes 素数筛选法,循环找出**10**⁶内的质数即可。

根据提示,我先自己在网上学习了 sieve of Eratosthenes 素数筛选法,并且根据筛 法的思路自己写了一遍代码,然后反复修改程序运行时间长的问题,最后终于在 python3 上 AC, 过程还是比较困难的,但是也让我对算法的时间复杂度有了更深的认识。

My Submissions							
#	When	Who	Problem	Lang	Verdict	Time	Memory
97045116	Oct/29/2020 10:44 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Accepted	1622 ms	9300 KB
97042290	Oct/29/2020 09:12 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Accepted	1402 ms	12800 KB
97042247	Oct/29/2020 09:10 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Accepted	1372 ms	12700 KB
97042207	Oct/29/2020 09:08 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Wrong answer on test 7	1184 ms	12600 KB
97009088	Oct/28/2020 22:26 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Time limit exceeded on test 7	2000 ms	9300 KB
97008842	Oct/28/2020 22:23 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Time limit exceeded on test 7	2000 ms	9300 KB
97008571	Oct/28/2020 22:19 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Time limit exceeded on test 7	2000 ms	9300 KB
97007480	Oct/28/2020 22:06 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Time limit exceeded on test 7	2000 ms	9800 KB
97007411	Oct/28/2020 22:05 ^{UTC+8}	anlanamy	B - T-primes	PyPy 3	Accepted	1152 ms	23900 KB
<u>97006598</u>	Oct/28/2020 21:56 ^{UTC+8}	anlanamy	B - T-primes	РуРу 3	Runtime error on test 5	404 ms	2100 KB
<u>96861990</u>	Oct/27/2020 21:31 ^{UTC+8}	anlanamy	B - T-primes	РуРу 3	Accepted	1028 ms	27300 KB
<u>96861917</u>	Oct/27/2020 21:31 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Time limit exceeded on test 18	2000 ms	12900 KB
96855844	Oct/27/2020 20:23 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Time limit exceeded on test 18	2000 ms	12700 KB
<u>96855696</u>	Oct/27/2020 20:22 ^{UTC+8}	anlanamy	B - T-primes	PyPy 3	Accepted	964 ms	27300 KB
<u>96831357</u>	Oct/27/2020 14:38 ^{UTC+8}	anlanamy	B - T-primes	PyPy 3	Time limit exceeded on test 7	2000 ms	24300 KB
96831223	Oct/27/2020 14:36 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Time limit exceeded on test 7	2000 ms	24700 KB
96830935	Oct/27/2020 14:32 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Time limit exceeded on test 1	2000 ms	20400 KB
96828997	Oct/27/2020 14:01 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Time limit exceeded on test 5	2000 ms	19800 KB
<u>96828758</u>	Oct/27/2020 13:57 ^{UTC+8}	anlanamy	B - T-primes	Python 3	Wrong answer on test 2	186 ms	300 KB

在尝试的过程当中总结如下:

- 1、质数表中的数据直接设为 bool 类型,可以节省内存;
- 2、直接按照下标修改全表(并查询全表)比建立新的质数列表(再进行在质数列表中查询)快;
- 3、由于大部分的数不是完全平方数, 所以分两步的判断条件比一步判断更快;
- 4、将输入列表排序找最大数可能反而会增加程序运行时长,因为排序的时间复杂度大概在0(n)左右
- 5、解决 python3 超时的关键原因: 其实找到 10^6 以内的质数只需要在 10^3 以内遍历就可以,因为根据 sieve of Eratosthenes 素数筛选法,我们把不大于 i 质数的倍数都去除后,实际上已经将 i^2 内的全部非质数剔除。这样只循环 10^3 次,就大大节省时间了。

解题代码:

//1. (python3 1372ms)

l=[True]*1000001

l[0]=l[1]=False

for i in range(1001):

if l[i]==True:

```
for j in range(2*i,1000001,i):
          l[j]=False
n=int(input())
k=[int(x) for x in input().split()]
for i in range(n):
   if k[i]**0.5!=int(k[i]**0.5):
      print('NO')
   else:
      print('YES' if l[int(k[i]**0.5)]==True else 'NO')
//2. (python3 1402ms)
l=[True]*1000001
1[0]=1[1]=False
for i in range(1001):
   if l[i]==True:
      for j in range(2*i,1000001,i):
          l[j]=False
n=int(input())
k=[int(x) for x in input().split()]
for i in range(n):
                               int(k[i]**0.5)==k[i]**0.5
   print('YES'
                      if
                                                               and
l[int(k[i]**0.5)]==True else 'NO')
//3. (python3 1622ms)
n=int(input())
k=[int(x) for x in input().split()]
m=max(k)
m1=int(m**0.5+1)
l=[True]*m1
1[0]=1[1]=False
for i in range(int(m1**0.5+1)):
   if l[i]==True:
      for j in range(i,m1-i,i):
          l[i+j]=False
for i in range(n):
   if k[i]**0.5!=int(k[i]**0.5):
      print('NO')
   else:
      print('YES' if l[int(k[i]**0.5)]==True else 'NO')
```