UNCLASSIFIED

AD 260 728

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

TECHNICAL PROGRESS REPORT

CONTRACT DA-36-034-0RD-3296 RD

ORDNANCE CORPS PROJECT NUMBER - OMS 5010.1180 800.51.03

PREPARED FOR

U. S. ARMY ORDNANCE DISTRICT PHILADELPHIA, PA.

UNDER
TECHNICAL SUPERVISION — FRANKFORD ARSENAL
CONTROL NO. A5180

DEVELOPMENT OF HIGH PERFORMANCE ROCKET MOTOR CASE

QUARTERLY REPORT NUMBER 12

Period—April 1, 1961 to June 30, 1961

PRODUCT DEVELOPMENT DEPARTMENT
THE BUDD COMPANY

Philadelphia 32, Pennsylvania

PHILADELPHIA 32, PA.

PRODUCT DEVELOPMENT

ENGINEERING
QUARTERLY PROGRESS REPORT NUMBER 12

Period: April 1, 1961 to June 30, 1961

Contract: DA-36-034-0RD-3296RD

Ordnance Corps. Project Number: OMS-5010-1180800-51-03

ROCKET MOTOR CASE DEVELOPMENT

Control Number A-5180

Prepared by:

Beviewed by:

Approved by: W & Veau &

Manager-Product Development Dept.

R.A. Mauri

TABLE OF CONTENTS

		Fage Number
INTRODUCTION	عسور المعلى المعلى المعلى المعلى المعل	
MATERIALS EVALUAT	$ ext{PION}$ and which which which alone the contract of $ ext{c}$ and $ ext{c}$ and $ ext{c}$ and $ ext{c}$ and $ ext{c}$	
Discussion of I	Fracture Energy Testing	. 2
Specimen Identi	ification	11
Data on Ti-13V-	=11Cr=3A1== == == == == == == == == == == == ==	• 11
Data on AM 359	Steel	· 62
UNIAXIAL WELD JO	INT EVALUATION	- 68
	- PH 15-7 Mo Uniaxial Head nell to Shell Joints	. 68
Electron Beam V	Welded Joints - JLS - 300 Alloy	**************************************
HELICAL WELDED C	TLINDERS & & & & & & & & & & & & & & & & & & &	100
WORK CONTEMPLATED	D FOR NEXT PERIOD	1.06
	Fracture Energy Tests- Fatigue Crack Observations	- 10
Table 2.	Specimen Identification Chart	- 13
I	Chemical Composition of Seven Heats of Tr 13V-11Cr-3Al and Arc Welding Filler Wire	- 15
	Pensile Properties, Annealed Pi 13V-11Cr-3Al	19
	Tensile Properties, Cold Rolled and Aged Ti 13V-llCr-3Al	· 21
I	Tensile Properties, Solution Annealed and Aged at 900°F for 48 Hours, Ti 13V-11Cr-3Al	· 25
· .	Pensile Properties, Solution Annealed and Aged at 900°F for 72 Hours, Ti 13V-11Cr-3A1	· 23

				Page Number
T	able 8.	Fracture Energy Properties. Ti 13V-11Cr-3Al Solution Annealed and Aged @900°F, 72 Hours	9	31
T	able 9.	Fracture Energy Properties Ti-13V-11Cr-3Al Solution Annealed and Aged @900°F, 72 Hours	9	32
T:	able 10	Fracture Energy Properties Ti-13V-11Cr-3A1 Cold Rolled and Aged @ 900°F	à	33
T	able 11	Bend Properties, Solution Annealed, and Solution Annealed and Aged at 900°F for 72 Hours, Ti 13V-11Cr-	3A l	35
T	able 12	Bend Properties, Cold Rolle and Aged Ti 13V-11Cr-3Al -		36
T	able 13	Tensile and Tensile Shear Data of Resistance Spot Wein Ti 13V-11Cr-3Al		39
T	able 14	Stress Corrosion Data, Resistance Spot Welds in Ti 13V-11Cr-3A1	dirk. Owe Gree and	49
T	able 15	Stress-Corrosion Data, Resistance Spot Welds in Ti 13V-11Cr-3Al	nec one one one	50
T	able 16	TIG Welding Schedule, Ti 13V-11Cr-3Al, Annealed-	Umah Galif Galifo DMO	53
T	able 17	TIG Welding Schedule, Ti 13V-11Cr-3Al, Cold Rolle and Aged		54
T	able 18	Mechanical Properties, Arc Welded Specimens, Ti 13V-11Cr-3Al	යන යන සෞඛ යන	56
T	able 19	AM 359 Alloy - Chemical Composition	OHO HIND OHO OHO	64
T :	able 20	Heat Treatment and Mechanical Properties of AM 359 Steel Strip	ONO ONO ONO	65 [']

ð

2

3

A ST

1

		Page Number
Table 21	AM 355-PH 15-7 Mo Welded Joint Specimens, Joint Efficiencies	72,73
Table 22	AM 355 PH 15-7 Mc Welded Joint Specimens Correlation of Strain with Resistance Weld Design	74
Table 23	Comparison of Mechanical Properties - TIG Welding and Electron Beam on JLS 300 Alloy	80
Table 24	Chemical Composition JLS 300 Alley	81
Table 25	Electron Beam Welding Schedule - JLS 300 Alloy	84
Table 26	Electron Beam Welding Summary Ti-13V-11Cr-3Al Alloy-	88
Table 27	Condition and Properties of Ti-13V-11Cr-3Al Alloy Prior to Electron Beam Welding	9
Table 28	Welding Schedule Ti 13V-11Cr-3Al Electron Beam Welding =	93
Table 29	Mechanical Properties - Electron Beam Welding T1-13V=11Cr-3Al	97
Figure 1.	Fracture Energy Specimen Dwg. E 2434-0014	4
Figure 2.	Drill and Ream Fixture Type 'B' Specimen	6
Figure 3.	Electrode Discharge Machining Fixture - Center Notch Fracture Energy Testing	7
Figure 4.	Fixture for Fatigue Crack Initiation - Center Notch Fracture Energy Testing	8

4,

												Page umber
Figure	50	Pin Loa Center Energy	Note	h Fra	actui	ce •••••	anno was	we	one.	نسد		12
Figure	6.	Tensile Aging T Ti 13V-	ime	at 90)C°F	for	1. ⊙⊷a≥ 3aas	JMD.		-	, a uc	18
Figure	7.	Photomi Ti 13V- Solutio	llCr	-3Al,)	Z.) 3652-	≫. oc.	.pac	(um)	o=c	o=c	25
Figure	8.	Photomi Ti 13V- Solutio	ilCr	-3À1,	,	na uz		-see	*	3	586 5	26
Figure	9.	Photomi Ti 13V= Cold Ro	licr	-3A1;)	~	ano omo	 .	* 5	csec.	LSMC.	27
Figure	10.	Photomi Ti 13V- Cold Ro	licr	-3A1.	,] =	one one	i	345	-		28
Figure	11.	Photomi Ti 13V- Cold Re	crog	raphs -3Al,	, 5 ₉				æč			29
Figure	120	Resista Schedul Ti 13V-	e and	d Dat	a Sh	ie e f		uwa:	æ	∞-	~	3 8
Figure	13.	Photoma Hardnes Resista in Anne	s Tra	avers Spot	s≏ of W∈ld	ì	~3A.	l =		one.	gac.	41
Figure	14,	Photomi Nugget Zone St Resista Anneale	orogi and l ructi nce l	raph Heat ire i Spot	of V Affe n Weld	Veld ∙cte Lin	đ					
Figure	Ĭ.Ţ.,	Resista Schedul Ti 13V-	e and	d Dat	a Sh	iee f		ھين	8	œ	2 .	43
Figure	ie.	Phitoma Trawers Weld in	e of C≏lo	Resi 1 Rel	star	ıc e	Spor	t				î. ev
		6.1/	1 7	4 A								/ i 3m

.

- |

			Page Number
Figure	17。	Photomicrograph of Weld Region in Resistance Spot Welded Ti 13V-11Cr-3A1, Cold Rolled and Aged	46
Figure	18.	Photomacrograph and Hardness Traverse of TIG Weld, Solution Annealed Ti 13V-11Cr-3Al	58
Figure	19.	Photomacrograph and Hardness Traverse of TIG Weld, Cold Rolled and Aged Ti 13V-11Cr-3Al	59
Figure	20.	Photomicrographs of Welded Region in TIG Welded Ti 13V-11Cr-3Al, Solution Annealed	60
Figure	 C40	Protomic regraphs of Welded Regions in TIG Welded Ti 13V-11Cr-3Al, Cold Rolled and Aged	61
Figure	کد .	Stress Strain Diagrams AM 359 Alloy	66
Figure	23.	Photomicrograph AM 359 Alloy	67
Figure	ć4 .	AM 355 - PH 15-7 Mo Welded Joint Specimens Testing Arrangement	71
Figure	25.	Photographs - AM 355 PH 15-7 Mc Welded Joint Specimens After Fracture 76,77,	78,79
Figure	26.	Electron Beam Welding Fixture	83
Figure	27.	Photomicrograph, Electron Beam Weld, JLS 300 Allows	86
Figure	28.	Photomicrograph - Shear Crack JLS 300 A'love	27

j

.

*

				Page Number
	4}	Figure 29.	Radiograph Indications Ti 13V-11Cr-3A1 Alloy	94
	4	Figure 30.	Tensile Test Specimen 40° Weld Line Dwg. 2434-0115	95
	<u> </u>	Figure 31.	Sketch - Type of Fracture on Ti-13V-11Cr-3A1 Alloy Electron Beam Weldments	98
		Figure 32.	Geometric Relationship of Cylinder Diameter, Weld Helix Angle, Coil Width-	101
		Figure 33.	Effect of Helix Angle on the Yield Strength of a Cylinder	102
		Figure 34.	Photograph of Helical Welding Fixture and Arrangement = 10' Dia.Cylinder=	104
		Figure 35.	Photograph and Diagram of Explosive Sizing 10" Dia. Cylinder	105
	;	APPENDIX A Re	eport Distribution	107
		We Di	M 355-PH 15-7 Mc eld Joint Specimen rawings (Revised)	יין ניי (טי
į			nd Fixture Drawings	115
1		PI	est Detail on AM 355- H 15-7 Mo Weld cint Specimens	128

PREFACE

This progress report is submitted in conformance with the requirements of U.S. Army Ordnance Contract DA-36-034-ORD-3296 RD dated June 21, 1960, for the development of a high performance rocket motor case. The work to be performed by The Budd Company is to initiate and conduct a development program, the ultimate objective of which will result in a high performance rocket motor case, capable of being fabricated with reasonable ease, which will utilize the maximum strength potential of available materials. This will be accomplished through proper selection of materials, design of joints, and improvement of fabricating techniques.

Acknowledgment is made of the contribution to this report of Messrs. J. L. Herring and W. J. Hauck of The Budd Co., Product Development Dept.

INTRODUCTION

This is the twelfth progress report covering the work being conducted under Contract DA 36-034-ORD-3296RD by The Budd Company. The report will include work accomplished during the quarterly period April 1, 1961 to June 30, 1961 and will serve as the monthly report for June, 1961.

Evaluation of material selected for possible application to rocket motor cases continued during the quarterly period. This work included evaluation of Ti-13V-11Cr-3Al alloy and data is included in this report. Data on fracture energy testing and retests of stress corrosion specimens without edge seal protection is reported on JLS 300 alloy. Retesting of the initial heats 20% and 25% Nickel Steels incorporating modified heat treatments to improve mechanical properties was accomplished during the quarter. Results of tensile tests on AM 359 material is reported.

Testing of uniaxial weld joint specimens of AM 355-PH 15-7 Mo material, utilizing a combination of resistance and fusion welding, was accomplished during the quarter and results are included in this report. Work on uniaxial fusion welded butt joints employing tungsten inert arc process and electron beam processes continued during the quarter.

During the period a method of free state fusion butt welding cylindrical sections, having weld lines

preferentially oriented in a helical pattern, was developed. A discussion of this work is included in this report.

MATERIALS EVALUATION

Evaluation testing was completed on Ti-13V-11Cr-3Al alloy, JLS 300, and initial heats of 20%-25% Nickel Steel. Transverse and longitudinal tensile tests only were made on the AM 359 to confirm data obtained from results at Allegheny Ludlum. Evaluation is in process on the Ti-6Al-6V-2Sn alloy. Preliminary samples of ausrolled low alloy steels have been received. These samples were taken from 3 different heats. We plan to make a preliminary evaluation of these samples to obtain tensile and fracture energy data. This will involve approx. 12 specimens. Based on results of this data, a selection will be made of a heat for complete evaluation.

The Ti-8Al-10V alloy ordered for evaluation was received late in June and will be evaluated. The modified analysis of 20% and 25% Nickel steel have not been received to date but is expected within the next few days. Armco PH 12-8-6 alloy is also expected shortly. Discussion of Fracture Energy Testing

High strength sheet metals behave in a brittle manner in the presence of small flaws. This behavior is related to the type and geometry of the flaw, the environmental temperature, the state of stress and the metallurgical condition of the material. Pressure

vessels made from these materials also behave in a brittle manner in the presence of flaws. Quantitative data on the effects of changes in the parameters of the brittle behavior are required to provide design, fabrication and inspection criteria for manufacture of reliable vessels.

The test used to measure the brittle behavior characteristics must be relatively simple, practical to produce and economical to make. To meet these conditions, the recommendations of the ASTM Committee on Fracture Testing of High Strength Sheet Materials were followed. The center notch test specimen, in lieu of the edge notch specimen was selected on the basis of better reproducibility and economy.

The dimensions and tolerances used for the specimen are illustrated in Drawing E 2434-0014 Figure 1. It will be noted that the symmetry control and tolerances are related to the pin holes, and that the perpendicularity of the notch with relation to the tension stress line is tightly held. These conditions were established to minimize bending stresses during test and to provide reproducible test results.

The processes for preparation of the test specimens were developed to assure that only elastic deformation occurred during any operation, except for the fatigue crack initiation. This minimized changes in the fracture characteristics as a result of prior plastic deformation, as would occur during roll or press straightening. The

これではなるないをからしてもなることので

test specimen preparation sequence is as follows:

- 1. Square shear, oversize blank from sheet. Dye penetrant inspect to assure that edge flaws will clean up on subsequent processing.
- 2. Shape to outline dimensions required by Figure 1, and deburr.
- 3. Clean
- 4. Heat treat, where required.
- 5. Drill pin holes using the jig shown in Figure 2, deburr and clean.
- 6. Machine the center notch using the electric spark discharge process and the fixturing shown in Figure 3.
- 7. Clean, debur and inspect the notch at 50X, using a Kodak Optical Comparator.
- 8. Fatigue crack using high stress low cycle tension fatigue as shown in Figure 4.

Measurements of test specimens indicate that dimensional control and symmetry were satisfactory. The notch radius varies from 0.001" to 0.005". This is adequate for subsequent fatigue cracking. The angle of the notch with respect to the center line established by the pin holes was held to less than 30 minutes from 90°. The length of the notch varies from 0.600" to 0.608", and its shift, left or right from the tension centerline was less than .005 inches total. The pin hole diameters are within the .004" tolerance allowed. These controls

Electrode and holder, Fracture Energy Specimen and Holding fixture for electrode discharge Spark Machining of Center Notch.

Fixturing for Tension-Tension fatigue Crack initiation of Center Notch Fracture Energy Specimen. Broken Specimen used to illustrate 90° angle between crack and fatigue stress.

provide adequate alignment for test.

その中の各種がありなかなったい

The fatigue crack length is controlled by visual observation. When the crack initially becomes visible the test machine is immediately shut down. The remaining cycles occurring after shut-down cause the crack to propagate to the required length. The specimen is then placed under a low static tension and the surface length of the cracks measured. Table I is a summary of fatigue load cycles vs. crack sizes for three different alloys. It will be noted that the visible crack length determined during the fatigue test, and the length of the same crack determined from examination of the fractured specimen show good correlation. The fatigue crack initiates at the center of the notch tips and it propagates normal to the longitudinal center line of the specimen. The amount of deviation from a 90° direction is almost unmeasurable. This condition of crack initiation has occurred for the Ti-13V-11Cr-3Al, Ti-6Al-6V. 25 Nickel, AM 355, and JLS 300 alloys tested to date. (of 44 specimens fatigue cracked, 42 were satisfactory). Two specimens broke in half during the fatigue cracking operation.

The fracture energy tests are made at room temperature using a 60,000 pound hydraulic universal testing machine. The ink staining technique recommended by the ASTM Committee is used for measurement of slow crack growth. The important aspects of the test are proper

FR. CTURE ENERGY TESTS - FATIGUE CRACK OBSERVATIONS

1

というとう いいこう するとのない 地震を変し

		Fatigue Conditions	nditions			Measurement of Crack length After fracture	ent of ength acture
Material and Condition	Specimen Number	Load (100 lbs.)	Cycles (1800Cpm)	Crack length (in.)	length (in.) Side 2	(in.) Side 1	(in.) Side 2
JLS 300, CRT 340,000 psi Yield Str.	FNBL = 1 FNBL = 2X	0 to 23 0 to 23	2500 6100	.03	.03	.025 .04	.05
Ti, 6Al, 6V, 2Sn.Annealed	LABL - 2 LABT - 2	0 to 26.4 0 to 26.4	12000 12000	.085	060.	.080	080
Ti, 13V, 11Cr, 3Al Sol.Ann. + Aged	DC1	0 to 200	5850	.050	040	040°	090•
72Hrs.	AM1. FC2	0 to 20 0 to 20	7100 11300	.020	.050	.040 .040	040.

Longest edge length of fatigue crack observed, after fracture, on surfaces of fracture, or surfaces of (1)

alignment of the specimen, sufficient but not excess ink, and controlled application of the tension load. Axial alignment is obtained through use of the pin grips shown in Figure 5. The amount of ink required is determined by experience. The specimen is strained using approximately a 0.010 inches per minute cross head speed, until fracture occurs.

Calculation of the fracture energy properties is done in accordance with the procedures published in the ASTM Bulletin, Jan., 1960 and discussed in detail in report No. 9 under testing procedures.

Fracture energy data is reported for the alloys tested during the period under each alloy heading in the report.

Specimen Identification

A newly revised specimen identification chart is shown in Table 2.

Data on Ti 13V-11Cr-3Al

In past reports we have included a general discussion of most of the materials which are being evaluated in this program. The all-beta titanium alloy has been on the commercial market since mid-1958 and in the last three years a large amount of data have been gathered on the processing, testing, and fabricating of this alloy. Therefore, the discussion of the basic material will be brief, with the assumption that most readers of these reports will have had an opportunity to learn elsewhere

FIG. 5

SPECIMEN IDENTIFICATION

Specimen number consists of a four letter group and one digit. The sequence is as follows:

Material Condition Specimen Direction Wo.in Group
Type

Materials	Code Letter		Code Letter
AM - 357 AM - 359	Ā	Sheet Tensile	A
AM - 359	B C	Fracture Energy, Center	
25% Ni	g	Notched	B
20% Ni	D	Sheet Tensile, "As Welded"	C
Ti-13V-11Cr-3Al	E	Sheet Tensile, Weld Dep.	
JLS - 300	P	Removed	D
25% Ni (Mod.)	<u>G</u>	Tensile Shear, Resist	_
20% Ni (Mod.)	H K L	Weld	E
Armco 12-8-6	<u> </u>	Fracture Energy, Center	_
T1-6A1-6V-28n		Notched	ł
Ti-8Al-10V	M N	Bend Specimen, Base	•
Ausrolled steel A-1 Ausrolled steel A-3	Ö	Metal	G
Ausrolled steel B-2	P	Bend Specimen, Welded,	**
WRSTALLED Breat P-5	F	Weld Dept. Removed	H
Conditions		Stress Corrosion, Resist	~
Oddivions		Veld	Ľ
Annealed	A	Dimensional Change	L
SCCRT	B	Specimen Arc Welding Plates	M
CRT	č	Photomicrographic Mounts	H
SCT	E	Photomacrographic Mounts	Ő
Ti, Single Age, 48 Hrs		Tensile Spec.Cleaning	P
Ti, Single Age, 72 Hrs		Sheet Tensile,>58 RC	Ř
Cold Rolled & Aged,		Tensile, Resist Weld,	-
200,000 psi	J	Criss-Cross	8
Cold Rolled & Aged,		Electron Beam, 90° Butt	
230,000 psi	K	Weld Tensile	T
25% and 20% Ni,			_
Stand.Heat Treat	L	DIRECTION	
Cold Rolled and Aged	N		
PH 12-8-6, Stand.		Indicated as L (longitudina	al)
Heat Treat	P	or T (transverse)	-
20% Ni, Isothermal Heat Treat	_	•	
Heat Treat	R		
25% Ni, Double	_		
Sub-Zero Cool	<u> </u>		
Cold Rolled 25%	T		-
Quenched + Tempered	U		
Quenched, Subzero	••		
Cooled + Temper.	W		

about the basic characteristics of the alloy.

Discussion and data in this report will be based on the results of the processing, testing, and fabrication experience gained at The Budd Company in this phase of the current program.

The beta titanium alloy is known by various names depending on the producer. It carries such designations as VCA-beta, 13-11-3, Ti-120 VCA and Ti-13V-11Cr-3Al. In this report the alloy will be referred to as Ti-13V-11Cr-3Al which is used by the producer of our test material and which is a self descriptive title.

Compositions of Materials Tested

Sheet stock, in various gages from 0.030" to 0.080", was purchased from Titanium Metals Corporation of America. We received seven different heats of material for our test program. This complicated the evaluation and required additional tensile tests to substantiate the properties of each heat. Table 3 shows the seven heat numbers and the chemical composition of each heat as reported by the producer. Also shown is the analysis of the filler wire used for arc welding.

Physical Properties of Ti 13V-11Cr-3Al

Density - 0.175 lb./cu. inch

Coef. of Thermal Expansion - 5.9 X 10⁻⁶ in./in./°F

(Room Temp. tc 1000°F)

Specific Heat - 0.13 BTU/lb./°F (to 200°F)
Poisson's Ratio - 0.3C4

CHEMICAL COMPOSITION OF TI 13V-11Cr-3A1

TO TO SECRETARIA CONTRACTOR SERVICES AND SECRETARIAS S

			SEVEN C	SEVEN COMMERCIAL HEATS	HEATS	.		
Heat Number	೮	Fe	Λ	C r	A 1	N ₂	Н	02
M9583	0.024	0.19	13.4	11.1	2.8	0.023	0.017	.133
M9584	0.019	0.16	13.5	10.6	2.8	0.025	0.013	.131
M9571	0.026	0.18	13.4	11.3	2.8	0.021	0.018	.100
M9853	0.027	0.20	13.5	11.2	2.8	0.025	0.005	.128
D51	0.024	0.19	13.4	10.9	2.9	0.020	0,007	.120
D575	0.020	0.15	13.4	10.7	3.0	0.031	200.0	.125
D260	0.025	0.17	13.4	11.0	2.9	0.022	0.017	.142
Filler Wire TIG Welding	0.01	0.19	13.0	10.3	2.9	0.02	0.0065	0.13
Analysis Range	90.0	0	12.5	10.0	2,5	0.08	0.02	0.20
0	Max.		14.5	12.0	3.5	Max.	Max.	Max.

TABLE 3

Modulus of Elasticity (room temp.)

Solution Annealed - 14.7 X 10⁶ psi.

Aged - 16.0 X 10⁶ psi.

Thermal Conductivity

4.0 BTU/hr./ft²/°F/ft. - @ 70°F

8.2 BTU/hr./ft²/°F/ft. - @ 800°F

Melting Practice

これとうことが、大きないとは、大きないのできないないできるないないできるとはないできないできないがあれています。

Each heat of beta titanium in this program has been double melted using the consumable electrode process for better control of the metallic and interstitial additions. The potential contamination by oxygen, nitrogen and hydrogen is minimized by the use of a vacuum in both the primary and secondary melting.

Heat Treatment

One distinct advantage of the Ti 13V-11Cr-3Al alloy is the lack of a requirement for a high temperature quench. Material may be purchased in the solution annealed or solution treated condition and may be strengthened with a simple aging treatment at a moderate temperature, usually between 800°F and 900°F. Solution annealing by the fabricator may be done at 1425°F + 25°F for 10 to 30 minutes. Quenching from this temperature is not required. Air cooling has proven to be satisfactory to obtain maximum strength after aging.

Above 800°F titanium has a strong tendency toward contamination by air. Therefore, an inert atmosphere has been used for all treatments above this temperature.

The length of time used for aging is usually between 10 to 100 hours depending on the properties required. Figure 6 is a reproduction of a chart published by Titanium Metals Corporation showing the tensile values that may be expected at various aging times at 900°F.

On this same chart we have inserted the minimum and maximum tensile and yield strengths determined by our own testing group with specimens aged to 48 and 72 hours.

Our results were uniformly scattered between these limits and the average values fall somewhat below the published curves.

Aging at 900°F was done in a 12 inch diameter by 12 inches high cylindrical retort using a constant 10 CFH flow of argon. The outside atmosphere was effectively excluded by use of a sand seal located at the top of the retort. Temperature was maintained within ± 10°F. A very light oxide which formed during aging was removed by a light sand blasting.

Tensile Properties

さら、こうとはいれるなる かとるかなるのはないののなかられるないとなってい

The tensile properties of annealed material are shown in Table 4. Three of the four heats of annealed stock were tested in this condition. The values are reasonably consistent and are normal for solution annealed Ti 13V-11Cr-3Al.

Material was also received in the cold rolled only, and cold rolled and aged conditions. The cold rolled only titanium was tested as received and after aging.

こうこと こうかんかがく あずのみ 教育を持ているのながらら あっている しょうてい しょうぶんじん ないない ないない ないない ないない ないない ないない ないしょうしょうしょう しょうしょう しょうしゅうしょう しょうしゅうしょう しょうしゅうしょう しょうしゅうしゅう

The results of these tests are shown in Table 5. The aging at 900°F proved to be very effective in improving the cold rolled only properties. The limited number of tests indicates little difference in tensile values and hardness when aged at 16, 48 and 72 hours. The specimens aged at 16 hours exhibited better ductility. However, this material was from a different heat.

Four heats of annealed stock were tested after aging at 900°F for 48 and 72 hours. The tensile values are shown in Tables 6 and 7. The minimum and maximum strengths are also shown superimposed on the Properties vs. Aging Time diagram (Figure 6). The figures obtained are lower than the producer's chart indicates. However, a band of values would probably overlap the points obtained in our tests. The 72 hour aging time, on an average, improved the tensile strength and yield strength 4% and 6%, respectively.

All of the 72 hour aged tensile specimens and six of the 48 hour aged tensile specimens were tested using "V" grips in the Universal testing machine. The specimens used for testing (dwg. no. 2434-0002) failed in tension across the area of the pin holes. This failure occurred despite careful preparation and polishing of the inner surface of the hole and despite the fact that the net cross section of the specimen at the hole was 86% greater than the cross-section of the specimen in the gage length.

いいこうにおきるだけではないのである。 なるない 金属を育せのかってないなるこうか

Yield Strength •2% Offset KSI 152 200 212 201 206 199 209

H

ENAL-2 ENAT-2

Same as Above Aged 72 Hrs.

HH

ENAL-3 ENAL-3

Cold Rolled Aged @ Mill 900°F, 16 Hrs. Ht.No.D260 0.032" Sheet

Rockwell Hardness

2 Inches

% Elong.

Ult.Tensile

Strength KSI

HEAT NOS. AS NOTED

MECHANICAL PROPERTIES OF Ti 13V-11Cr-3A1

0.030"-0.032" GAGE

Direct.

Spec. No.

Condition

COLD ROLLED

HH

ETAL-1

ETAT-1

Cold Rolled 25% Ht.No. M9571 0.030 Sheet

H

ENAL-1 ENAT-1

Cold Rolled 25% Aged@Budd Co. 900°F,48 Hrs. Ht.No. M9571 0.030" Sheet

C34

8.5

160 172

ω

843

50

223

843

4

212

211

\$

5.5

9

215

TABLE 5

* Broke Outside of Gage Length

	0.060 GAGE	Rockwell Hardness	C43 - 44		C44		i		0		í	
		% Elong. in 2 Inches	80	6	6.5	2	2	*	. 2	4.5	5.5	7.5
13V-11Cr-3A1	HEAT NOS. AS NOTED	Ult. Tensile Strength KSI	206	206	199	206	206	202	192	200	199	193
MECHANICAL PROPERTIES OF Ti 13V-11Cr-3A1		Yield Strength •2% Offset KSI	185	187	180	189	194	8	176	182	183	174
MECHANICAL	SCLUTION ANNEALED, AGE HARDENED 900°F, 48 HRS.	Direct.	μ 1	EH	н	E	H	E	H	E	1	E .
	ED, AGE	Spec. No.	EFAL-1	EFAT-1	EFAL-2	EFAT-2	EFAL-3	EFAT-3	EFAL-4	EFAT-4	EFAL-5	EFAT-5
	SOLUTION ANNEAL.	Heat No.	D31	Sheet 15	D31	Sheet 16	M9853	Sheet 13	M9583	Sheet 12	M9584	Sheet 1-1

MECHANICAL PROPERTIES OF Ti 13V-11Cr-3Al

COTTIMITON ANTRE	to to	OOO delward to))	17/-1011-7A1		!
SOLUTION ANNEADED, AGE MARDEMED 900'F, 72 HKB.	salen, Age	nakuenen 900	T, // HKD. HEAT	NOS. AS NOTED	O.OOO GAGE	AGE
Heat No.	Spec. No.	Direct.	Yield Strength •2% Offset KSI	Ult.Tensile Strength KSI	% Elong. Roc in Har 2 Inches	Rockwell Hardness
D31	EGAL-1	ы	188	210	9	
Sheet 1	EGAT-1	EI	200	215	2.5	
D31	EGAL-2	H	184	208	80	
Sheet 15	EGAT-2	E	188	209	6.5	
D31	EGAL-3	н	183	206	80	
Sheet 16	EGAT-3	Ē	193	212	4	
M9853	EGAL-4	ħ	200	207	1,	
Sheet 13	EGAT-4	E	204	211	*	
M9583	EGAL-5	П	182	200	5	
Sheet 12	EGAT-5	E	184	200	1 *	
M9584	EGAL-6	н	191	207	2.5*	
Sheet 1-1	EGAT-6	E 4	183	203	80	
0.080 Gage						

* Broke Outside of Gage Length

TABLE 7

Photomicrographs

The microstructures of material in various conditions are shown in Figures 7 through 11. The annealed material shown in Figure 7 exhibits elongated grains in the longitudinal direction despite the recrystallization of annealing. The very fine secondary phase which is only slightly visible in the annealed specimen EANL-1, Figure 6 is considerably more pronounced in the aged condition, as shown in Figure 8. Specimen EGNL-2 is a 2000X magnification of this structure. This secondary phase is most likely accicular alpha Ti forming in the otherwise all beta grains.

The cold rolled only material in Figure 9 shows a grain structure similar to the solution annealed material. However, the sharply defined grains are elongated and strain lines are present as the result of the cold deformation.

Cold rolling and aging for 16 hours produced the structures shown in Figure 10. The elongated beta grains showing strain markings are typical. Not resolved in this photomicrograph is the accicular alpha phase that would be expected in the same manner as experienced with annealed and aged only material.

Material aged to 48 hours at 900°F after cold rolling as seen in Figure 11 shows the same general grain structure. However, the secondary alpha phase appears to be more nodular in form and there is little

Longitudinal 100X Mag. Specimen EANL - 1

Transverse

100X Mag.

Specimen EANT - 1

Ti 13V-11Cr-3A1 Ht. No. D31 0.060" Gage

Solution Annealed

Etchant: 2% HF + 40% HNO₃ + H_2O

Longitudinal

100X Mag.

Specimen EGNL - 1

Longitudinal

2000X Mag.

Specimen EGNL - 2

Ti 13V-11Cr-3Al 0.060" Gage Ht. No. D31 Solution Annealed + Aged 900°F, 72Hrs.

Etchant: 2% HF + HNO₃ + H₂O

FIGURE 8

Longitudinal

250X Mag.

Specimen ETNL - 1

Transverse

250X Mag.

Specimen ETNT - 1

Ti 13V-11Cr-3A1

Ht. No. M-9571

Etchant: 2% HF + 40% HNO₃ + H_2O

0.030" Gage Cold Rolled 25%

FIGURE 9

Longitudinal

250X Mag.

Specimen ENNL - 6

Transverse

250X Mag.

Specimen ENNT - 6

Ti 13V-11Cr-3Al

0.034" Gage

Ht.No. D260 Cold Rolled + Aged 900°F, 16Hrs.

Etchant: 2% HF + 40% HNO₃ + H_2O

Longitudinal

250X Mag.

Specimen ENNL - 1

Transverse

250X Mag.

Specimen ENNT - 1

Ti 13V-11Cr-3A1

0.030" Gage

Ht. No. M9571

Cold Rolled + Aged 900°F, 48Hrs.

Etchant: 2% HF + 40% HNO₃ + H_2O

FIGURE 11

evidence of the accicular structure at this magnification.

There also appears to be some grain boundary precipitant.

Fracture Energy

The fracture energy values of the Ti 13V-11Cr-3Al was measured in various heat treated, and cold rolled and aged conditions. Our method of testing is discussed elsewhere in this report. The specimen used is the center notch type (dwg. no. 2434-0014) initially cracked by a high stress, low cycle tensile fatigue process. The testing procedure used has been outlined in Quarterly Report No. 9.

The fracture energy data obtained from the testing of specimens from various heats of Ti 13V-11Cr-3Al are shown in Tables 8, 9 and 10. Tables 8 and 9 show the properties of material which had been solution annealed and aged at 900°F for 72 hours. Table 10 presents data on material which had been cold rolled and aged at 900°F for 16 and 48 hours.

Material taken from three different sheets of one heat (D31) and a single sheet of another heat (M9584) exhibited relatively good K_{Cl} values in the longitudinal direction. These values on an average were 33 to 54% better than the transverse figures. The critical crack index values are, of course, more widely spread between the longitudinal and transverse directions.

The other two heats of solution annealed and aged material (nos. M9853 and M9583) developed relatively

TABLE 8

(4)(0)(4)	(1=00	ж _{с1} ²	.047	, 045°	.017	•018	.050	.050	.027	.055	.045	•026	•054
7424	· ·	7 600	1.07	1.07	1.14	1.14	1.05	1.05	1.08	1.05	1.05	1.10	1.10
N CDWG- NO		^K C1 PSI \Hnch	72,200	70,800	45,300	47,100	73,000	73,400	54,700	76,500	69,300	54,800	52,800
ES OF Ti 13V-11Cr-3Al CENTER NOTCHED SPECIMEN (DWG, NO. 2434 - 0014)		gth %El. in 2 Inches	ø	9	2.5	2,5	හ	80	6.5	80	Ø	4	7
ES OF Ti 1		Ult.Strength KSI Our. 2	210	210	215	215	208	208	209	206	206	212	212
FRACTURE ENERGY PROPERTIES OF TI 13V-11Cr-3A1 D 900°F, 72 HRS. CENTER NOTCHED SPECIM		Yield Strength KSI Ovs.	188	188	200	200	184	184	188	183	183	193	193
FRACTURE SOLUTION ANNEALED, AGED 900°F,		Direct.	н	ı	Ŧ	T	ı	п	H	н	ч	H	H
ANNEALED.		Spec. No.	EGBL-1	KGBL-7	EGBT-1	EGBT-7	kGBL-2	KGBI-8	EGBT-2	EGBL-3	EGBL-9	EGBT-3	EGBT-8
SOLUTION		Heat No. and Gage	D31	Sht.1	•062		D31	Sht.15	•062	150	Sht.16	•062	

こうこうしていることのはないとなるのであるというとうのであっていていています

FRACTURE ENERGY PROPERTIES OF Ti 13V-11Cr-3A1

こうけんこうけんかいこうにはかれることがはないないとなるとないというにはないないないないできないからいなっていると

CENTER NOTCHED SPECIFIEN (DWG. NO. 2454 - COL4)	K _{C1} Gys. K _{C1} PSI Vinch x 106 HG/s.	1.144	1.144	1.20	1.17	1.04 .024	1.04		1.05	1.05 .043	000 1.05 .049	1.09	1.09 .022	
IMEN (D	Ø	49,100	46,000	33,7	33,500	49,8	48,6	40,600	40,400	62,000	72,000	50,600	50,600	
HED SPEC	th %El. in 2 Inches	1*	*-	*	*	5	5	*,	* H	∞	∞	2.5*	2.5*	
CHON HELINGO	Ult.Strength KSI CUR.	207	207	211	211	200	200	200	200	203	203	202	207	
, c. 1111.	Yield Strength KSI σγ.5.	200	200	204	204	182	182	184	184	183	183	191	161	
6 7 000 7 7 7 7 7	Direct.	н	ц	E	E	н	ы	E	H	н	н	E	Ħ	
ANNEALED,	Spec. No.	EGBL-4	EGBL-10	EGBT-4	EGBT-9	EGBL-5	EGBL-11	EGBT-5	EGBT-10	EGBL-6	EGBL-12	EGBT-6	EGBT-11	
SOLUTION ANNEALED, AGED 900°F,	Heat No. and Gage	M9853	Sht.13	• 090		M9583	Sht.12	•062		M9584	Sht.1-1			

* Tensile Specimen Broke Outside of Gage Length

δ

TABLE

TABLE 10

	~ 0014)	_{КС1} 2	•041	•041
	NO. 2434	7	1.14	1.14
	an (dwg.]	%El。 K _{Cl} in 2 Inches PSI √Inch	72,000	000,999
1.Cr-3A1	D SPECIM	%El. in 2 Inches	6	₹
TY OF T1 13V-1	CENTER NOTCHED SPECIMEN (DWG. NO. 2434 - 0014)	Ult. Strength KSI Cum.	215	216
FRACTURE ENERGY PROPERTY OF Ti 13V-11Cr-3A1		Yield Strength KSI V,S.	661.	200
FRACTU	¥ 2006	Direct.	н	ы
THE CANAL	AND AGED	Spec. No.	ENBL-3	KNBL1
תפנווסם תנוטט	COLD ROLLING AIND AGED 900°F	Heat No. and Gage	Aged 16Hrs. ENBL-3 Ht.No.D260 .028"	Aged 48Hrs. ENBL-1 Ht.No.9571 Sht.1

low values in both rolling directions. The analysis of the material, as reported by the supplier does not offer a reason for this difference.

The cold rolled and aged specimens developed relatively good $K_{\hbox{\footnotesize{Cl}}}$ values in the longitudinal direction. Transverse specimens will be tested at a later date.

All the specimens tested had yield strength to density ratios greater than one million. The $K_{\rm Cl}$ values and the critical crack index figures are generally superior to these values reported for high strength Q and T steels at the equivalent yield strength to density ratio.

Bend Testing

The results of bending specimens in the annealed, cold rolled and aged, and aged conditions are shown in Tables 11 and 12. The annealed material required a 1T to 2.3T bend radius when bent through 135° in a closed punch and die. Cold rolling to 25% reduction increased the bend radius to 3T. Aging after cold rolling markedly increased the bend radius requirements. The 48 hour aging produced 17T and greater bend radii values for 0.030 inch gage material.

The material aged at 900°F for 72 hours could not be accurately tested. The largest bend die in the set has a 0.500 inch radius. Indications were that both the 0.060 inch and 0.080 inch thick sheet stock required bend radii considerably greater than 8.3T and 6.3T,

BEND PROPERTIES OF II 13V-11Cr-3A1

さい とうされていかい できたい おまり 自然の はなな しゅうかん ないしん

		BEND	PROPERTIES	BEND PROPERTIES OF I'I 15V-IICF-5AI		
SPECIMENS	BENT	SPECIMENS BENT THROUGH 135°	ANGLE IN CI	ANGLE IN CLOSED PUNCH AND DIE		(DWG. NOS. 2434-0090-1-2)
Ht. No.	Gage	Direct.	Anne	Annealed	Aged	Aged 72 Hrs.900°F
			Spec.No.	Min."T"Ratio	Spec.No.	Min."T"Ratio
D31, Sht.1	.061	ь т	EAGL-1	2.3₫	EGGL-1	≫8.3 ₽
		EI	EAGT-1	2.0T	EGGL-1	№31
D31,Sht.15	•061	ı	EAGL2	1.0T	EGGL-2	8.3T
		E	EAGT=2	2.0T	BGGT-2	>8.3T
M-9583	.061	ы	C	i	KGGL-5	>8.3π
Spt.12		E	BAGT-5	2.0T	kggT=5	>8.3型
M-9584	. 084	IJ	G	8	9~T99Я	>6.31
Spt.1-1		E	EAGT-6	1.5T	EGGL-6	>6.3π
D31, Sht.16	• 060	ц	Ĉ	Ð	EGGL-3	>8.3T
		E	î	1	EGGT-3	>8.3T
M-9853	• 060	н	8	0	EGGL-4	>8.3T
Sht.13		EH	8	0	EGGT-4	>8.3 ™

"T" Ratio is the Radius of the Punch Divided by the Material Thickness

TABLE 11

BEND PROPERTIES OF Ti 13V-11Cr-3A1

・ こいいいとうかならるないないないないのとなっている

SPECIMENS BENT THROUGH 135° ANGLE IN CLOSED PUNCH AND DIE (DWG. NOS. 2454-0090-1-2)

Cold Rolled 25% Aged @ 900°F, 48 Hrs.	Spec.No. Min."T"Ratio	3	1	t	0	171	>17T
Cold Ro Aged @ 900	Spec.No.	0	ŧ	ŧ	9	ENGL-2	ENGT-2
Cold Rolled, Aged 900°F, 16 Hrs.	Spec.No. Min."T"Ratio	ı	8	>7r	>11T	i	ě
Cold Ro 900°F,	Spec.No.	9	0	ENGI-3	ENGT-3	0	Ĉ
Rolled 25% Min."T"Ratio		▼ 5T	>3.5T	ı	å	į	9
Cold R		ETGL-1	RTGT-1	9	ı	1	0
Direct.		П	E	П	E	ı	E
евве		.030		.032		•030	
Ht. No. Gage		M-9571 .030	Sht.1	D260	Sht.2	M-9571	Sht.1

"T" Ratio is the Radius of the Punch Divided by the Material Thickness

TABLE 12

respectively. These values would most likely be in the neighborhood of the 17T radii required for the 0.030 inch specimens.

Resistance Welding, Annealed Ti 13V-11Cr-3Al

Specimens in the solution annealed condition were resistance spot welded according to the schedule shown in Figure 12. The following specimens were included in this study.

Tension Shear, Type E, Dwg. No. 2434 - 0004 Cross Tension, Type S, Dwg. No. 2434- 0012 Photomacrographs and hardness traverse, Type O Photomicrograph, Type N

The type E and S specimens were made from 0.060" sheet taken from heat 9853, Sheet 13. These types of tests were discussed in Report No. 10. The results of this work are shown in Table 13.

Stress Corrosion, Type K. Dwg. No. 2434-0011

The material was prepared for welding by pickling in 40% H₂SO₄ at room temperature, followed by thorough rinsing in running water and air drying. A final acetone wipe was used prior to welding to insure cleanliness because of a drilling operation done after pickling.

The Ti 13V-11Cr-3Al alloy in the annealed condition is readily resistance weldable. The weld nuggets formed prove to be sound and reproducible. The weld nugget extends to the limits of the electrode contact diameter and there is little or no heat affected zone detectable is

MATERIALS RESEARCH LABORATORY

Resistance Welding Data Sheet

Date May 4, 1961

Project 5017

Welding Machine	Material and Gage
150 KVA Sciaky Single Phase	0.060" Ti-13V-11Cr-3A1 (Code E)
Dekatron Pulse Counting Electrodes	Material Condition
5/8" Dia. RWMA, Group A. Class 3,	Solution Anneal and Pickled
2 1/2" Rad. Welding	Schedule
Electrode Force, lbs.	Phase Shift,% 48
Net 1500	Squeeze Time Cycles 10
Forge None	Hold Time Cycles 50
Weld Cycles 10	Weld Diam., Ins234
Impulses 1	HAZ Diam Ins
Cooling Cycles None	Penetration,% 66
Transformer Setting 2 Series 2	Electrode Indent,% 12.5
Remarks and Special Functions	
Spec. No. EAO-1	

MECHANICAL PROPERTIES

イナン・シューサー いき 安安 大変 ないまっているこうけっち しつのかい あれいしゃる

CIMENS			H
RESISTANCE SPOT WELDED SPECIMENS	HT. NO. AS NOTED	Specimen)	Type
FANCE SPOT	HT. NO.	ear (Type E S	Load,
RESIS		Tensile (Type S Specimen) Tensile-Shear (Type E Specimen)	Spec
		Specimen)	$\operatorname{\mathbb{T}ype}$
		(Type S	Load
Cr-3A1		Tensile	Spec.
Ti 13V-11Cr-3Al	0.060" GAGE	Condition	

_	T Ratio					59.5%					41.1%	
le(Type S Specimen) Tensile-Shear(Type E Specimen)	Type Failure	Shear	Shear	Shear	Shear	- Pala de sublimo	Shear	Shear	Shear	Shear		
ar(Type	Load, 1bs.	4990	5215	5150	5150	5061	4830	5375	5350	5285	5210	
Pensile-She	Spec. No.	EAE-1	EAE-2	EAE-3	EAE-4	Aver.	ENE-1	ENE-2	ENE-3	ENE-4	Aver.	
Specimen)	Type Failure	Plug	Plug	Plug	Shear		Fract.*	Fract.*	Fract.*	Fract.*		
e(Type S	Load 1bs.	3210	3195	2790	2870	3016	1890	2290	2380	2035	2149	
Tensi	Spec. No.	EAS-1	EAS-2	EAS-3	EAS-4	Aver.	ENS-1	30 ENS-2	ENS-3	ENS-4	Aver.	
Condition		Solution	Ht.No.9853	Sheet 13			Cold Rolled and	Aged@y00 r, Shrseens-2 Ht.no.D575				

* Specimen Fractured Across Area of Weld Due to Bending

TABLE 13

at the surface. The electrode indentation is normal for this gage material. Sheet separation is expected to be greater than normal because of the relative ease with which this alloy is forged during the welding cycle.

Note the "fin" which is extruded between the sheets at the edge of the nugget, shown in the photomacrograph in Figure 13.

A micro hardness survey across the nugget is also shown in Figure 13. The hardness is relatively uniform from the base metal through the weld nugget. This is typical for solution treated beta titanium.

The photomicrographs of the heat affected zone and weld nugget of the resistance spot weld structure are shown as a composite in Figure 14. Specimen EAN-1 shows mostly weld nugget. The heat affected zone is shown by Specimen EAN-2. The large grain, equiaxed in the HAZ and columnar in the nugget is typical. The heat affected zone is narrow and blends into the base metal with no definite demarkation of the boundary. The grains are clean and free from grain boundary constituents.

Resistance Welding, Cold Rolled and Aged Ti 13V-11Cr-3Al

Ti 13V-11Cr-3Al in the cold rolled and aged condition was evaluated for resistance spot welding in a similar manner as the annealed material. The alloy in this condition was readily welded using the same welding schedule as for the solution annealed stock. This schedule and other pertinent data are shown in Figure 15.

MICRO HARDNESS TRAVERSE

WELD CROSS SECTION
KENTRON MICRO HARDNESS TESTER
DIAMOND PYRAMID PENETRATOR

SPEC. NO. BAO-1 WELD TYPE Resistant	ce Spot MAG, 10X
ETCHANT 2% HF + 10% HN03 + H20	
MATERIAL T1 13V-11Cr-3A1 GAGE _	060"
CONDITION Solution Annealed,	
WELD DIA. INS. 0.234 HAZ	DIA. INS. 0.234
PENETRATION % 66 ELECTRODE	INDENTATION % 12.5

FIG. ________

Ti 13V-11Cr-3Al, Annealed
100X Mag.

Resistance Spot Weld Etchant: 2% HF + 10% HNO₃

Figure 14

MATERIALS RESEARCH LABORATORY

Resistance Welding Data Sheet

Date May 11, 1961

Project 5017

Welding Machine	Material and Gage
150 KVA Single Phase AC with Dekatron Timing Control	O_060" Ti-13V-11Cr-3A1 (Code E)
Electrodes	Material Condition
	Cold Worked & Aged to 200 Kpsi Y.S
2 1/2" Rad. Welding	Heat D575, Sht. #1 Schedule
Electrode Force, 1bs.	Phase Shift,% 48
Net 1500 Forge	Squeeze Time Cycles 50 Hold Time Cycles 50
Weld Cycles 10	Weld Diam., Ins 0.236
Impulses 1	HAZ Diam Ins 0.280
Cooling Cycles None	Penetration,% 68
Transformer Setting 2 Series 2	Electrode Indent,% 7
Remarks and Special Functions	
Spec. No. EJO - 1	

The weld diameters are the same for the two conditions. The heat affected zone is more distinct in the cold worked material. A photomacrograph of the cross-section of a typical nugget is shown in Figure 16. The hardness traverse in Figure 16 shows complete and essentially uniform annealing of the nugget material with a rapid transition to the base metal hardness in the heat affected zone.

The electrode indentation is typical of titanium base alloys. The sheet separation is more pronounced than with other materials, being approximately 8% of the sheet thickness.

The results of the testing of the tensile-shear and the cross-tension specimens are shown in Table 13. There is a slight increase in the tensile-shear values as compared to the annealed specimens. However, a substantial decrease is realized in the cross tension strength. The cross tension specimens failed by fracturing in bending across the area of the weld nugget. See Report No. 10 for a complete description of these tests and photographs of specimens and test fixtures. As a result of the low cross-tension values the ratio of tensile to tensile-shear is lower than would be expected from a cold rolled austenitic stainless steel. However, this is usually the case with titanium base alloys.

Photomicrographs of the base metal, heat affected zone and weld nugget are shown in Figure 17. These

MICRO HARDNESS TRAVERSE

WELD CROSS SECTION
KENTRON MICRO HARDNESS TESTER
DIAMOND PYRAMID PENETRATOR

SPEC. NOI					<u>•</u> MA(3. <u>9x</u>	
MATERIAL _	_						
WELD DIA. PENETRATIO	INS	0.236		HAZ D	IA. INS	0.280	
			. 16				

FIG. ______

Base Metal Heat Affected Zone Specimen EJN-1

医生物性毒素 在现在是一种的现在分词 医神经病 医神经病 医神经病 医神经病 医神经病 医神经病

いっこうできるとうない のはない かんしんしょうしょう

Weld Nugget Specimen EJN-2

Ti 13V-11Cr-3Al, Cold Rolled and Aged 100X Mag.

Resistance Spot Weld Etchant: 2% HF + 10% HNO₃

Figure 17

photographs at 100X show the extent of recrystallization and grain growth within the heat affected zone. The elongated grain and cold worked structure is found near the base metal (dark area) and heat affected zone boundary. A relatively fine background structure is seen within the equiaxed beta grains. This fine structure may be alpha titanium which is not clearly resolved at this magnification. The weld nugget shows large columnar beta grains and a lesser defined dendritic structure. Again, the precipitate is distributed through the grains. The lower left corner of Specimen EJN-2 shows equiaxed grains of the heat affected zone.

Stress Corrosion, Resistance Spot Welds

The description of the test used to measure the susceptibility of resistance spot welds to stress corrosion cracking may be found in Report No. 11.

As with all materials in this program a limited stress corrosion study has been made. We have exposed the Ti 13V-11Cr-3Al to two concentrations of magnesium chloride (5% and 20%) in a boiling aqueous solution for periods of time up to 126 hours.

One heat of annealed stock and one heat in the cold rolled and aged condition were used for the test specimens. Two resistance spot welds were made in each specimen using the welding schedule shown in Figure 12. The edges of the specimen were sealed with a synthetic rubber substance to prevent penetration of the solution

between the two pieces joined by the weld. The results of these tests are shown in Table 14.

The annealed specimens withstood the corrosive medium in both the 5% and 20% concentrations of MgCl₂ for the maximum test time. The cold rolled and aged material showed no cracking in the 5% MgCl₂ but did develop typical stress corrosion cracks at 8 1/2, 74, 103 and 126 hours for the four specimens in the 20% concentration. This spread of results is to be expected with a test of this type.

To evaluate the effect of preventing the solution from penetrating between the specimen halves a run was made in 20% MgCl₂ with the specimens unsealed. The results of these tests, which were run 78 1/2 hours, are shown in Table 15.

The tests made with unsealed specimens did not indicate any increase in the severity of the exposure. Only one very small crack developed in the 78 1/2 hour cycle.

TIG Welding, Ti 13V-11Cr-3Al Alloy Sheet

Solution annealed and cold rolled Ti 13V-11Cr-3Al sheet was Tungsten Inert Gas welded using beta titanium filler wire. Radiographic examination showed that all weldments contained scattered porosity of 0.008" to 0.020" diameter along the fusion line. Tensile tests of specimens machined from areas with 0.012" diameter and smaller porosity indicated the yield and tensile strengths of the weldments were normal; that is, the same as solution

Resistance Spot Welded Specimens, Type K STRESS-CORROSION DATA OF Ti 13V-11Cr-3A1 0.060"-0.064" GAGE

SEALED EDGES

The state of the second

こう とうしょ これに これはのないないないないないないないのできる

A THE CANADA CONTRACTOR OF THE CONTRACTOR OF THE

Condition and Heat Number	Spec. No.	Type of Solution	Specific Gravity Start Fini	Gravity Finish	Total Hours	Results
Solution Annealed	EAK-1	5%MgC12*	1.020@83°F	1.023@73°F	116	OK
Ht.No.M-9853	BAK-2	5%M_C12*	1.020@83°F	1.023@73°F	116	NO
	EAK-3	5%MgC12*	1.020@83°F	1.023@73°F	116	NO
	EAK-4	5%M C12*	1.020@85°F	1.023@73°F	116	OK
Cold Rolled and	ENK-1	5%MgC12*	1.020@83°F	1.023@73°F	116	NO.
Aged@900°F,8Hrs.	ENK-2	5%Mgc12*	1.020@83°F	1.023@73°F	116	МО
Ht.No.D575	ENK-3	5%Mgc12*	1.020@83°F	1.023@73°F	116	МО
	ENK-4	5%M C12*	1.020@83°F	1.023@73°F	116	OK
Solution Annealed	EAK-5	20%M_C12*	1.075@89°F	1.078@90°F	126	MO
Ht.No.M-9853	EAK-6	20%Mgc12*	1.075@89°F	1.078@90°F	126	MO
	EAK-7	20%M_C12*	1.075@89°F	1.078@90°F	126	NO
	EAK-8	20% KC12*	1.075@89°F	1.078@90°F	126	OK
Cold Rolled and	ENK-5	20%M_C12*	1.075@89°F	1.078@90°F	126	Cracked 74 Hrs.
Aged@900°F,8Hrs.	ENK-6	20%Mgc12*	1.075@89°F	1.078@90°F	126	Cracked 126 Hrs.
Ht.No.D575	ENK-7	20%H_C12*	1.075@89°F	1.078@90°F	126	Cracked 103 Hrs.
	ENK-8	20% $^{\circ}$ $^{\circ}$	1.075@89°F	1.078@90°F	126	Cracked 8% Hrs.

See Page 101 of Report No. 9 for * Boiling aqueous solutions. complete test procedure.

STRESS-CORROSION DATA OF Ti 13V-11Cr-3A1

そいというできているというないというでは、大きなないのできませんないのできます。

TO STATE ASSESSMENT AND ADDRESS OF THE PERSON OF THE PERSO	RESISTANCE SPOT WELDED SPECIFIENS, TIPE K	EDGES OF SPECIMENS NOT SEALED
-	U.UOU	

	0000	\$ 0 mm B			Betsi	
Heat Number	No.	Solution	Start	Specific Gravicy tart Finish	Hours	Results
Cold Rolled and	ENK-9	20%M_CL2*	1.076@89°F	1.082@89°F	78%	МО
Aged@900°F, SHrs.	KNK-1.0	20%M_C11_*	1.076@89°F	1.082@89°F	78%	OK
Ht.No. D575	ENK-11	20%M_C11_*	1.076@89°F	1.082@89°F	78%	OK
	ENK-12	20%Mgc12*	1.076@89°F	1.082@89°F	78%	One very

See Page 101 of Report No. 9 for complete * Boiling aqueous solution. test procedure. annealed stock. Welding schedules to obtain full penetration and adequate weld metal reinforcement were readily established and were reproducible.

Materials.

The O.060" thick beta titanium sheet was procured from the Titanium Metals Corporation in the annealed condition and in the cold rolled and aged condition. The O.030" annealed beta titanium filler wire was procured from ARMETCO, Wooster, Ohio. The chemical compositions of the sheet and filler wire are shown in Table 3. The mechanical properties of the materials are listed in Tables 4 through 7.

Preparation of Samples for Welding.

Coupons for welding were cold sheared from the sheet stock and dye penetrant inspected to insure freedom from shear cracks. The edge to be welded was ground to a 63 microinch finish. The ground edge was dye penetrant inspected for grinding cracks and shear cracks that may have been missed during the first inspection. No cracks were found. The coupons were cleaned by immersing for one minute in a water solution of 40% by volume of concentrated H₂SO₄, followed by water rinsing and air drying. Just prior to welding, the ground edge and an area back about one inch from the edge on both surfaces, was mechanically cleaned with 400 grit emery paper and thoroughly washed with acetone. The filler wire was mechanically cleaned in a similar manner just prior to welding the ccupons.

Joint Design.

A single pass butt joint was used. The welding edges were prepared such that a 0.001" feeler gage could not be placed in the joint when the edges were butted under slight pressure. The weld metal deposit was parallel to the longitudinal direction of the sheet (direction of rolling), and the weld metal reinforcement aim was 40 to 50 percent total, equally distributed top and bottom. The size of the finished weldment was approximately 10" wide by 12" long. The general characteristics of the joint design, except for the amount of reinforcement, are shown in Figure 1 of Progress Report #10, April, 1961.

Welding

The tungsten inert gas welding equipment consisted of a Vickers 300 ampere rectified power source, an AIRCO MOD. C torch, and an AIRCO high frequency starter.

Auxillary equipment consisted of a copper root shield, a 5/8" nozzle, copper chill bars and C-clamps. A follower shield was not used. This equipment, with a ceramic in lieu of a metal nozzle, is illustrated in pages 10 and 11 of Progress Report #10, April, 1961.

The welding schedules developed and used for production of the test weldments are shown in Tables 16 and 17.

These schedules provided reproducible test weldments without difficulty.

TIG FUSION WELDING SCHEDULE FOR Ti, 13V, 11Cr, 3A1, 0.060" SOLUTION ANNEALED SHEET

Item	Description
Electrode Type Size Stickout	2% thoriated tungsten 3/32*, tapered point. 3/8".
Torch Type Attack angle Lead angle	AIRCO Mod. C. 90°. Zero,
Root Shield Type Groove size Gas ports	Copper, Budd Co. dwg. E2434-0121, (see prog. report #10, fig. 4). 0.040" deep by 1/4" wide. 1/16" diameter, spaced 3/4" apart.
Nozzle	
Chill Bars	Copper, 3/4" X 3-1/4" with 45° bevel to a 1/8" land.
ARC Voltage	12 volts at electrode tip.
DSSP Amperage	190 to 195 amperes.
Shielding Gas Nozzle Root Follower	Argon, 25 cubic feet per hour Argon, 3 cubic feet per hour Follower shield was not used
Filler Wire Type Feed	0.030" diameter, annealed beta titanium. 18" per minute.
Welding Speed	7 1/2" per minute.
Preheat-Postheat	None used.
Power Source	Vicker's, 300 ampere, rectified
Start. Mech.	AIRCO HF-1

TABLE 16

TIG FUSION WELDING SCHEDULE FOR Ti, 13V, 11Cr, 3A1 0.060" SHEET COLD ROLLED AND AGED TO 230 kpsi U. T. S.

Item

Description

Electrode

Type Size Stickout 2% thoriated tungsten 3/32", tapered point 3/8".

Torch

Type Attack angle Lead angle AIRCO Mod. C. 90°.

Zero

Root Shield

Туре

Copper, Budd Co. dwg. E2434-0121, (see prog. report #10). 0.040" deep by 3/16" wide. 1/16" dia. spaced 3/4" apart.

Groove size Gas ports

Copper, 3/4" X3-1/4" with 45° beyel to a 1/8" land.

Chill Bars

oc for oo a rio range

Nozzle

Metal, 5/8" diameter.

ARC Voltage

12 volts at electrode tip.

DSCP Amperage

180 to 190 amperes.

Shielding Gas

Nozzie Root Follower Argon, 30 cubic feet per hour. Argon, 3 cubic feet per hour Follower shield was not used

Filler Wire Type

0.030" diameter, annealed beta titanium

Feed

おおいちょうかん かんしんしゅう かんかんしゅう

18 inches per minute.

Welding Speed

7-1/2" per minute.

Preheat-Postheat

None

Power Source

Vicker's 300 amp. rectified.

Start. Mech.

AIRCO HF-1.

TABLE 17

Radiographic Examination of Weldments

Weldments were radiographed using a 200 KV Mitchell source, a 0.005" thick stainless steel penetrameter, and the following technique:

145 KV, 4.5 Ma., Kodak M Film 2 1/2 Min. Exposure, 36" FFD 5 Minutes Development Time

All welds contained scattered fusion line porosity varying from 0.008" to 0.020" diameter. There was no evidence of cracks, craters, inclusions or serious undercutting.

Tensile and Bend Test Results.

こうでというというとない 一番なるないのとなり あのかっちょうこう

Tensile and bend tests were machined from areas of the weldments containing porosity indications of 0.012" diameter and less. The procedures for preparation of the test specimens, and the testing procedures are described in Progress Report #9, March, 1961. The mechanical properties of the weldments are listed in Table 18. These properties are typical of fusion welded beta titanium. The bending characteristics of the weldments are as follows:

Solution Annealed Weldments

Controlled bending parallel to the weld axis to an angle of 135 degrees can be accomplished about a radius of 2.4 times the base metal thickness. Free bending through 180 degrees results in cracking along the fusion line.

MECHANICAL PROPERTIES-TIG WELDMENTS, Ti 13V-11Cr-3A1

日本教教教を記れる時であるというまでは、あていまないのできます。 しんけいしゃく・・・

こうしょうこうけんかい 一定は明日の間があれないないでは、おきているいからしていていかいからいないないはないのでは、

O.060" GAGE SHEET

Fracture Location (7)		BM HAZ HAZ HAZ	HAZ HAZ HAZ HAZ	
%Elong. 2" %"	1 1 1	4 4 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	12 8 21	14 12 16 14
le %E]	17 18 20	21 21 21 21 21 21 21 21 21 21 21 21 21 2		и ги и и
Ult.Tensile Strength KSI	136 135 137	126 136 137 138	168 162 163 165	134 130 124 144
Tield Strength 0.2% Offset KSI	134 132 134	124 134 134 135	163 160 160 161	134 130 124 143
Štress Area T x W, Inches(≥)	• • •	.067 X .503 .065 X .505 .065 X .505 .067 X .506	***	.074 X .484 134 .072 X .503 136 .075 X .483 124
Spec. No.(1)	EACT-1 EACT-2 EACT-3	EADT-2 EADT-2 EADT-3 EADT-4	EJCT-1 EJCT-2 EJCT-3	EJDT-1 EJDT-2 EJDT-3 EJDT-4
Condition	(3) Ht.No. 9853	(4) Ht.No.9853	(5) Ht.No.D575	(6) EJDT-1 .0' Ht.No.D575 EJDT-2 .0' EJDT-3 .0'

Base metal transverse to rolling direction (4) Same as (3), weld reinforcement removed Weld parallel to rolling direction and before testing (5) Cold Rolled 25%, Aged to 250 KSI U.T.S., welded, tested (1)

(7) BM=base metal; HAZ=heat affected zone; WD=weld deposit

Same as (5), reinforcement removed before (9) Transverse to tensile stress. Original dimensions at area of fracture Solution annealed, welded, tested. 30

Cold Rolled and Aged, as Welded

At a radius of 3.9 times the base metal thickness, bending parallel to the weld axis through an angle of 135 degrees results in cracking of the base metal. At a radius of 2.9 times the thickness of the base metal cracking occurs in the weld metal.

The 135 degree bend test is described in Progress Report #9, March, 1961.

Macrostructures and Hardness Gradients.

Typical macrostructures and hardness traverses of weld bead cross sections for the solution annealed condition and the cold rolled and aged condition are shown in Figures 18 and 19 respectively. The hardness gradient of the weld metal and heat affected zone are essentially the same for both conditions. That is, there is insufficient difference to account for the difference in the bend radius between weldments of solution annealed and cold rolled and aged sheet. Typical weld dimensions, applicable to both base metal conditions, are as follows:

Weld width top - 0.200" to 0.208"

Weld width bottom - 0.125" to 0.133"

Weld thickness - 0.085" to 0.091"

Microstructure of Weldments

Typical microstructures of the weldments are shown in Figures 20 and 21. The microstructure of the aswelded solution annealed sheet is typical of fusion welded beta titanium. The deposited weld metal is

MICRO HARDNESS TRAVERSE

WELD CROSS SECTION
KENTRON MICRO HARDNESS TESTER
DIAMOND PYRAMID PENETRATOR

	2 WELD TYPE _	TIG	MAG	12X
ETCHANT 2% H	F + 10% HNO ₃ + H ₂ O			
MATERIAL	Ti 13V-11Cr-3Al		GAGE —	0.060
	As welded (cold rol			
	tanium filler wire			
WELD SIZE	Top 0.208 in., Bo	ttom 0.133		

.030" dia. Filler Wire. Ti 13V, 11Cr, 3Al,

FIG. 20

Base Metal

Weld Metal

FIG. 21

composed of large columnar grains containing twin and/or strain indications. The relatively narrow heat affected zone shows large equiaxed grains. The cold rolled and aged as-welded structure (Fig. 21) is very similar to Figure 20. The dark areas in the weld metal are believed to be the result of the metallographic polishing procedure. Conclusions

The Ti 13V-11Cr-3Al sheet is readily weldable. tensile properties of as welded solution annealed sheet are essentially the same as the base metal. The bend ductility of these weldments is very good. The tensile properties of weldments made from cold rolled and aged sheet are essentially the same as those for the solution annealed condition. The bend ductility of these weldments is slightly inferior to that of weldments made in solution annealed sheet. Complete penetration with controlled weld reinforcement was readily obtained. Slight variations from the welding schedule did not lead to significant changes in the characteristics of the weldments.

Data on AM 359 Steel

AM 359 alloy steel strip was heat treated and tensile tested. The ratio of ultimate tensile strength to density varied from 0.80 to 0.82 million inch. ratio is too low for further consideration of the alloy in the current program, subject to the producer developing process techniques for increasing the strength level.

AM 359 is a precipitation hardening semiaustenitic steel produced by Allegheny Ludlum Steel Corporation. In the form of bar stock it is heat treatable to approximately 250,000 psi ultimate tensile strength. In the form of sheet and strip the tensile strength potential appeared to be about 280,000 psi. At this tensile strength level, the alloy would be suitable for use in cold forming rocket motor end closures that could be heat treated to a tensile strength-density ratio of approximately 0.98 X 10⁶ inch. The chemical composition of the alloy are listed in Table 19. The annealed tensile properties of .060" strip are listed in Table 20. It will be noted that in the annealed condition the ratio of yield strength to tensile strength is very low and that the elongation is very high. This indicates that the alloy can readily be cold formed. Figure 23, is a photomicrograph showing the annealed austenitic structure.

Samples of annealed .060 strip were heat treated in accordance with the producers recommendations and tensile tested. (The tensile test specimen and the testing procedures employed are described in progress reports #6, and #9 respectively). The heat treatment practice and test results are listed in Table 20.

Typical stress-strain diagrams are shown in Figure 22.

A photomicrograph of the heat treated structure is shown in Figure 23. The voids are areas where a precipitate, probably carbide was removed during polishing of the

大学によって 関本を変えるをから こういきこ

AM 359, ALLOY STEEL - CHEMICAL COMPOSITION

	Percent by	Weight
Element	Specification Limits	Analysis of Mtl. Tested
Carbon	0.17 to 0.21	0.20 to 0.21
Mangane se	0.50 to 1.10	0.66
Phosphorus	0.040 Max.	0.021
Sulphur	0.030 Max.	0.017
Silicon	0.50 Max.	0.39
Chromium	13.5 to 14.5	14.34
Nickel	6.5 to 75	7.13
Molybdenum	2.5 to 3.0	2.52
Aluminum	0.80 to 1.35	1.00

HEAT TREATMENT AND MECHANICAL PROPERTIES OF AM 359 STEEL STRIP .060 THICK

Ē

,					
Heat Treatment	Specimen Number	(1)	Yield Strength 0.2% KSI	Ult.Tensile Strength KSI	Elong. % 2"
Annealed 1860° F	BAAL - 1	н	45	142	56
Air Cooled	BAAL - 2	ы	45	134	9
	BAAL - 3	н	45.5	122	55
	BAAL = 4	H	46	130	52
	BAAT - 1	EH	64	159	38
	BAAT = 2	E	46	142	47
	BAAT - 3	EH	48.5	152	28
	BAAT - 4	EH	50	148	47
Annealed 1860°F,	BEAL - 1	н	202	230	8.5
Alr Cooled 1750'F	BEAL - 2	H	198	228	8
-100°F-6Hr.	BEAL = 3	ы	195	226	11.5
Air Warm, 1750°F -10 Min. Air Gool.=	BEAL - 4	ц	197	227	7.5
100°F-6Hr. Air Warm,	BEAT - 1	H	204	231	7.5
955 F-IMES., Air Cool	BEAT - 2	H	201	230	2
	BEAT - 3	EH	201	230	9
	BEAT - 4	EH	1%	225	6

(1) L = Longitudinal Tensile T = Transverse Tensile

TABLE 20

Annealed 1860°F A.C.

Anneal 1860°F, A.C. 1750°F, A.C. -100°F, A.W. 1750°F, A.C. -100°F, A.W. Temper 935°F, A.C.

Photomicrographs
AM 359 Steel Strip .060" Thick 250X
Ferric Chloride Etch

specimen. The retained austenite (light areas) is very high, indicating there is a possibility of adjusting the heat treatment to obtain higher strength levels. Conclusions.

It is believed that heat treatment procedures can be developed to obtain higher tensile strengths in AM 359 steel, to approach the ultimate strength to density ratio of 1×10^6 inch desired for this program.

UNIAXIAL WELD JOINT EVALUATION

無情為治疗,其等在無理院或者以及其情以 1、其心治水治 ·

Data on AM 355 - PH 15-7 Mo Uniaxial Head to Shell and Shell to Shell Joints

Hydrostatic testing of resistance welded wrapped chambers on previous programs, using AM 355 material for shells and PH 15-7 Mo for closure, indicated the need for a closer examination of the weld joint designs. Failure in these tests occurred in the head to shell welded joints. Analysis of these failures revealed that the reinforcing doublers did not carry the membrane loads from the closure to the shell due to the inadequacy of the spot weld pattern in the doublers. A series of 9 uniaxial welded joint specimens were designed and tested to obtain data to develop a more efficient joint design, and verify the analysis reported in Appendix F, report number 6. The results of these tests are reported herein.

The design variables for these joints were in two major areas:

1) The relative position and size of the spot resistance welds.

2) The relative size and number of seam welds immediately adjacent to the fusion weld.

これではない 電気を見ると あいかはないという

Seam welds adjacent to the fusion welds were required to: (1) Seal interface areas and prevent contamination during fusion welding, (2) Increase annealed area to provide additional strains to offset discontinuity strains inherent in the particular design concept tested.

The material selected for the cylinder case simulation specimen was AM-355 in condition SCCRT. This alloy is a stainless steel of the transformation - age hardenable type. Condition SCCRT is obtained by solution annealing, exposure at -100°F, cold rolling and tempering. It has a guaranteed ultimate tensile strength of 290,000 psi for thicknesses up to 0.080 inches.

The heat treatable steel for the end closure simulation was PH 15-7 Mc, condition RH 1050. This alloy is a transformation - percipitation hardenable stainless steel. Condition RH 1050 is obtained by solution annealing, exposure at -100°F and aging at 1050°F. This heat treatment gives an ultimate tensile strength of 220,000 psi.

Certifications, tensile tests and chemical analysis were obtained for all the materials, including the welding wire, used in making the specimens. Spot resistance, seam resistance and fusion weld schedules were established prior to assembly operations for maximum weld strength values. This data was included in report Number 6.

The specimens were tested on a 200,000 lb. Baldwin Southwark testing machine. Special grip and adapters were employed in head mountings and special extensomer damps were used to permit measurement of strains over an 8" gage length. Fig. 24 is a schematic sketch showing the test arrangement.

From the test data and examination of the joints after failure several conclusions on the overall design may be made. They are:

- 1) The doubler spot welds must be designed to take higher loads, by increasing the number of spot welds and/cr increasing the doubler length. In every case the doubler spot welds sheared before joint failure. This confirms the conclusions reached from analysis of the results of hydrostatic testing of large chambers.
- 2) The double row of seam welds through the entire pile-up produced the highest overall strains because of the greater overall ductility of the seam welds.
- 3) Joint designs shown on drawings E2434-0009 and E2434-0010 appeared to be the most desirable.

Table 21 shows a summary of actual versus calculated joint strengths and the failure sequence observed for each joint. Table 22 is a correlation of actual strains measured during the test with the number and pileup of spot and seam welds in each joint design tested.

AM 355, PH 15-7 MO UNIAXIAL WELD JOINT DESIGN COMPARISON OF JOINT EFFICIENCIES, FRACTURES AND FAILURE LOCATION

あっているの様を、からいます。 これであってもっしょう

Location of Joint Failure	Outer Seam Weld HAZ	Fusion Weld	Fusion Weld HAZ in PH 15-7 Mo Plate	Fusion Weld HAZ in PH 15-7 Mo Plate	a) Spot Weld in dou b ler to shell plate	b) Outer seam weld HAZ	Seam Weld HAZ
Location of Initial Fracture	Sheared Spot Welds	Sheared Spot Welds doubler to PH 15-7 Mo Plate	Sheared Spot Welds doubler to PH 15-7 Mo Plate	Sheared Spot Welds doubler to PH 15-7 Mo Plate	a) Sheared Spot Welds in Shell Plate Assembly	b) Sheared one Plate of double thickness shell plate assembly from fusion weld	Sheared Spot Weld in doubler to shell plate assembly
Maximum Strain in/in	.0256	.0125	.0132	.0212	.0162		•0056
Joint Efficiency**	92	87	107	108	2		بو
Unit Failure Load*	30,500	28,900	35,600	35,900	23,650		25,200
Specimen No. B480-SK-	-0007	-0008	6000-	-0010	-0011		-0012

Location of Joint Failure	Inner Seam Weld HAZ	At first fracture	Inner Seam Weld HAZ
Location of Initial Fracture	Sheared Spot Weld in doubler to shell plate assembly	Tensile Failure Outer Spot Weld in doubler to shell plate assembly	Sheared Spot Welds doubler to shell plate assembly
Maximum strain in/in	.0194	.0188	.0100
Joint Efficiency**	102	111	62
Unit Failure Load*	33,700	37,000	26,200
Specimen No. B480-SK-	-0013	-0014	-0015

一般の変形を変えるというないがあるというないというないないないないないないないないできます。

これは、これないのないないないとなっているまであるいと

pounds per linear inch of fusion weld

**Joint Efficiency based on strength of two sheets with 1.20" field weld spacing. This represents the basic sheet as shown in the joint design stress analysis, Appendix F. Quarterly Report No. 6. Joint efficiencies greater than 100% indicates that the stress analysis is conservative.

All specimens had an 8 inch gage length with extensometer mounted beyond the doublers. NOTE:

TABLE 21

CORRELATION OF MAXIMUM STRAIN WITH NUMBER AND PILE-UP THICKNESS OF SPOT AND SEAM WELDS IN JOINT DESIGN

こうじょうきょう かんしょう おおおおおお かいかい 大変がある あんかん かいいい こうけい いいい こうしょう

Maximum Strain in/in	.0256	.0125	.0132	.0212	•0162	•0056	.0194	•0188	.0100
Calculated Load on Spot Welds at Failure, lbs.	11,300	8,250	10,000	10,500	14,050*	9,670	9,500	10,300	7,500
Seam Welds in Shell Plate Assembly Pile-up	3t	4 . t	2t 2t	4t:	4t	44	4t 2t + 2t	4 t	4t 2t + 2t
Seam Welc Plate	Q	ď	ਜਜ	2	2	٦		N	તન
pot Welds Pile-up Thickness	3t	4t	4¢	4t	3t	3t	34 4 t	4 4 4 4	4t 3t
Doubler Spot P No.Weld Th	2	~	ત્ય	2	ч	Н	нн	ਜਜ	HH
Specimen Number B48-SK-	-0007	-0008	6000-	-0010	-0011	-0012	-0013	-0014	-0015

*NOTE: Under doubtful assumption load = 🛟 between sheets

Appendix B includes revised specimen drawings reflecting the addition of bearing plate reinforcements, and drawings of the special test fixtures used in tensile testing the specimens.

Appendix C reports in detail the sequence of failure and load versus strain diagrams for each specimen type.

Figure 25 includes photographs of the AM 355-PH 15-7 Mo specimens after fracture. Location of the fracture with respect to weld patterns are illustrated.

Electron Beam Welded Joints - JLS 300 Steel

古典者の思いいは思想の食品を養養者を養養するないになるときのとなって、これでい

JLS 300, .040 strip, cold rolled and tempered to 340,000 psi yield strength, was electron beam welded. Metallographic examination revealed the presence of shear cracks caused by overdrafting of the strip during rolling. Subsequent work has been delayed because of this defective base metal condition. The results of the work completed to date are presented herein.

The mechanical properties of electron beam welded specimens and comparable T.I.G. specimens are shown in Table 23. Chemical composition of the .040 JLS 300 strip is shown in Table 24. Coupons were cold sheared from the strip, then ground to remove edge cracks, dye penetrant inspected and mechanically cleaned to remove a light oxide scale.

The joint designs are shown in Appendix B, progress report #9, March, 1961, drawings E2434-O116 and E2434-O117. The important characteristics of the joint are

I

I

I

I

AM-355 SCCRT, PH 15-7 MO WELDED TENSILE TEST SPECIMENS SHOWING FRACTURE LOCATIONS

AM-355 SCCRT, PH 15-7 MO WELDED TENSILE TEST SPECIMENS SHOWING FRACTURE LOCATIONS

SPECIMEN B480-SK-0013 HEAD TO SHELL JOINT

SPECIMEN B480-SK-0014 HEAD TO SHELL JOINT

SPECIMEN B480-SK-0015 HEAD TO SHELL JOINT

AM-355 SCCRT, PH 15-7 MO WELDED TENSILE TEST SPECIMEN SHOWING FRACTURE LOCATIONS

SPECIMEN B480-SK-0010 HEAD TO SHELL JOINT

SPECIMEN B480-SK-0011 HEAD TO SHELL JOINT

SPECIMEN B480-SK-0012 HEAD TO SHELL JOINT

FIGURE 25

AM-355 SCCRT, PH 15-7 MO WELDED TENSILE TEST SPECIMENS SHOWING FRACTURE LOCATIONS

SPECIMEN B480-SK-0007 SHELL TO SHELL JOINT

SPECIMEN B480-SK-0008 HEAD TO SHELL JOINT

SPECIMEN B480-SK-0009 HEAD TO SHELL JOINT

JLS 300 COLD ROLLED AND TEMPERED STRIP - COMPARISON OF MECHANICAL PROPERTIES OF TIG AND ELECTRON BEAM WELDMENTS

からか はいい かんかい かんしょう いっこう いっこう かいい かんしん しゅうしん いっかい

The second secon

		74 571	CINGUIGHAN INVENTION OF THE STATE OF TO			
Test Number	Condition	다 일 당 다	0.2% Yield Strength KSI	Ultimate Tensile Strength KSI	Elong. % 2"	Elong. in %" Across Weld Area
Base Metal	Strip-040" X 62", CR, Tempered	H E	340 to 346 330 to 333	344 to 347	to 347 1.5 to 2.5 to 353	
TIG Welded	Base Metal as Welded	н	92 to 94	208 to 210	208 to 210 2.5 to 3.0 10 to 12%	10 to 12%
TIG Welded	Base Metal, Weld Reinforcement Removed	ы	86 to 90	200 to 206	200 to 206 2.5 to 3.0 10 to 12%	10 to 12%
FTC 4-1 FTC 4-2 FTC 4-3	Base Metal as Electron Beam Welded	рда	137	200 196 202	2 2 2	12% 12% (1) 12%

Width of weld zone prior to test varied from 0.080" to 0.090". After test the width varied from 0.115" to 0.120". The localized elongation varied between 35 and 38 percent. (1)

TABLE 25

CHEMICAL COMPOSITION JLS 300, 040" STRIP ELECTRON BEAM WELDED

Element	Percent by Weight
Carbon	0.115
Manganese	1.27
Phosphorus	0.020
Sulphur	0.013
Silicon	0.69
Chromium	17.20
Nickel	5.12
Nitrogen	0.08

cleanliness, freedom from cracks and a fit up having less than 0.001" gap.

The micro-cracks in the base metal apparently caused excessive porosity and oxides in the weld metal. It was determined that a multi-pass weld considerably reduced these unsatisfactory conditions. Two, 2 pass and one 3 pass electron beam weldments have been made and are currently being evaluated.

The Bristol Machine & Tool Co. Inc., Forestville, Conn. welded all specimens, using Hamilton-Zeiss high voltage electron beam welding equipment. Eight to ten bead on sheet tests were made to establish the welding schedule. The specimens were then loaded in the fixture shown in Fig. 26 (see electron beam welding of beta titanium) and welded under a vacuum of 10⁻⁴ mm. of Hg. The welding schedule employed is listed in Table 25.

All weldments exhibited excessive porosity and exide inclusions when single pass welding was used. Two or three weld passes resulted in radiographic clear weldments.

One single pass weldment was mechanically tested; the weld metal being 90° to the direction of tensile loading. The validity of the test results is open to question because of the presence of micro cracks in the heat affected zone. It will be noted, however, that the tensile yield strength of the weldment is 30% to 35% higher than similar weldments made by the tungsten inert

WELDING FIXTURE SCALE: HALF-SIZE (BRISTOL MACHINE & TOOL CO. INC.)

FIGURE 26

ELECTRON BEAM WELDING SCHEDULE JLS 300, 040 STRIP COLD ROLLED AND TEMPERED TO 340 KSI YIELD STR.

Voltage

- 110 K. . V.

Current

- 1.8 Mil. amps.

Deflection

(Parallel to Weld)

- .050 (relative #, approx = to inches beam deflection)

Welding Speed

- 25 inches per minute

Beam Diameter

- .006"

Focus of Beam

- Surface of Specimen

Filament

- Tungsten Coil, 40 Mil. amp.

current

Vacuum

 -10^{-4} mm of Hg.

Number of Passes

_ 1

arc process employing AM 355 filler wire. This is attributed to the fine weld metal grain size and the very narrow heat affected zone.

Figure 27 is a photomicrograph across the weld zone. The weld metal is fine grained. The fusion line and HAZ consists of somewhat larger grains of austenite graduating into tempered martensite. There is also a small amount of ferrite (white areas) along the fusion line and throughout the HAZ. A microcrack extending from the HAZ into the base metal is shown in the right hand photomicrograph. Figure 28 is a photomicrograph of the type of shear cracking found in the base metal.

Electron Beam Welding of Ti-13V-11Cr-3Al Alloy Sheet

The effects of the angle of inclination of the weld deposit line to the applied tensile load, the prior metallurgical condition of the base metal, and of the type of postweld treatment were measured for Ti, 13V, llCr, 3Al, electron beam weldments. Preliminary analysis of the data indicates that 0.060" sheet cold rolled and aged to 225 ksi tensile strength gives weldments having the best combination of strength and ductility when the angle of the weld deposit to the tensile load is about 20° and postweld treatments are not employed. A more thorough analysis of the data is in process and the results will be included in a subsequent progress report.

The scope of the program is listed in Table 26.

Base Metal

Material and Condition

JIS 300 Steel Strip, cold rolled, tempered to 240 Ksi yield strength, 040" thick. Electron beam welded at a vacuum of 10 mm of Hg. Zeiss Equipment. 110 KV, 1.7 milliamperes. Note crack in base metal, extending into heat affected zone.

Etchant - Electrolytic - Oxalic Acid. MAG. 100X

FIG. 27

Material and Condition

JLS 300 Steel Strip 040" thick. Cold rolled and tempered to 340 Ksi yield strength. Cracks parallel to direction of rolling and surfaces of strip.

Etchant - Electrolytic, Oxalic Acid

Mag 100X

ELECTRON BEAM WELDMENTS - JOINT DESIGN STUDY SCOPE OF PROGRAM
Ti-13V-11Cr-3A1 ALLOY SHEET

Total Contract

「一個のでは、「一個のでは、「一個のでは、「一個のでは、「一個のでは、「一個のでは、「一個のでは、「一個のでは、「一個のでは、「「」」」というできます。「「「「「」」」というできます。「「「」」、「「

こうしょう かんしゅうかん 養にをはながられる はないこう いっしん

			Identification	
Condition Prior to Welding	Postweld Heat Treatment	20°Angle .060"X6"X10"	40°Angle 060"X8"X10"	90°Angle 060X10X7
Solution Annealed	None	None	None	HT-D31 Sht 16(C2)
	Age Harden 900°F 40 Hr.	None	None	HT.D31 Sht 16 (C-1)
Cold Rolled 25% Age Hardened 900°F	None	HTD575 (J6)	HT-D575 (J-5)	HTD575 (J-7)
Ultimate Tensile Strength	Age Harden 900°F 40 Hrs.Stress Relief 1025°F 10 Min.	None	None	HT-D575 (J-8)
Solution Anneal, Age Harden 72Hr.	None	HT-D31 Sbt 16(C-6)	HT.D31 Sbt 16(C-5)	HT.D31 Sht 16 (C-3)
)00 F (I)	Duplex Heat Treat	None	None	HT.D31 Sht 16 (C-4)

Preparation of samples and welding delayed because of porosity found in weldments made from solution annealed and cold rolled and aged material. 3

Three joint designs, three base material conditions, and two postweld treatments were used. The joint designs of 20°, 40° and 90° were selected on the basis of previous research experience which indicated that for the lower modulus material about 20° is the optimum angle and 90° the least desirable angle for optimum joint strength and ductility, where the deposited weld metal strength is lower than the base metal strength. A literature survey indicated that the tensile ductility, in the presence of discontinuities, of cold rolled and aged sheet may be somewhat better than that of solution annealed and aged sheet; hence both conditions were included. The postweld treatments were included to determine whether electron beam weldments reacted in the same manner as T.I.G. fusion weldments. That is, single aging yields a brittle structure and duplex aging yields a ductile structure, where the base metal has not been cold rolled.

Sheet material 0.060" thick by 36" wide sheet procured from the Titanium Metals Corporation was used. Sheets were procured in the cold rolled and aged condition and in the solution annealed condition. The solution annealed and aged samples were prepared by The Budd Company Research Laboratory. The samples for welding were cold sheared from the sheet and the edges dye penetrant inspected to determine the extent of shear cracks. None were found. The edges of the samples were ground to a 63 microinch finish and reinspected to assure freedom

from cracks. The perpendicularity of the edge to the upper and lower surfaces was within 15 minutes, and the edge camber was negligible. The samples were then cleaned at room temperature in a water solution containing 40% by volume of concentrated H_2SO_4 . Prior to welding the edges were cleaned with acetone to remove dirt and grease that may have accumulated during transit and storage. The metallurgical condition, and the mechanical properties of the samples are listed in Table 27.

The joint designs are shown on drawings in Appendix B, Progress Report #9, March, 1961, drawings E2434-0116 and E2434-0117. The important characteristics of the joints are cleanliness, freedom from cracks, perpendicularity and straightness of the edge so that a 0.001" feeler gage could not be placed in the joint when two pieces are butted together under slight pressure. The length of the welded joint was limited by the amount of jig movement available in the electron beam vacuum chamber.

The Bristol Machine and Tool Co., Inc., Forestville, Conn., welded all specimens, using Hamilton-Zeiss high voltage electron beam welding equipment.

About 10 bead on sheet welds were made to establish the welding schedule for use in welding the samples for test. On determination of a welding schedule, the samples were loaded in the fixture shown in Figure 26

TABLE 27

ON BEAM WELDING
BEAM
F SHEET PRIOR TO ELECTRON B
E G
PRIOR
SHELT
OF
PROPERTIES OF SHE
- MECHANICAL PROPERTI
1
3A1
licr
13V.
T.

ľ.

Identity and Conditions ((1)	0.2% Yield Strength (KSI)	Ultimate Tensile Strength (KSI)	Elong。 % 2"	^K Cl 1000 psi in
l g	H	188	210	0.9	7.1
+ Age Harden 900°F = 72Hr.	нн	184 183	208	8.0	23
	H	200	215	2,5	9+
	EH	188	209	6.5	55
HT.D575, Cold rolled	П	208	225	6.5	(2)
25% Age Hardened 900°F	H	220	235	5,5	(2)

1) Longitudinal - Transverse

(2) In Process

and welded. The welding schedules employed for the test weldments are listed in Table 28.

Radiographic Examination of Weldments

The weldments were radiographed by the Magnaflux Corporation, Hartford, Conn. using a Balto, 300 KVP, 5ma machine a thin stainless steel penetrameter and the following technique: 120 KV, 5ma, 36" FFD, Kodak AA film, 6 minutes development time. Examination of the radiographs indicated that some of the weldments were considerably more porous than anticipated. To date, the source of the contamination has not been definitely established. However, it is believed that inadequate cleaning and/or interstitical gas content are the predominating factors. Fig. 29 lists the radiograph indications found in the weldments. As a result of this condition, and of cracking during preparation the number of specimens available for test was reduced by 33%.

Tensile Testing of the Weldments

Coupons for tensile test were machined from the weldments as shown in Appendix B, progress report #9, March, 1961. Where possible, the coupons were removed from radiographic clear areas. However, some of the specimens contained porosity as large as 020° diameter, which apparently had little or no effect on the resultant tensile properties. The coupons were machined to the form and dimensions shown in Figure 30, Dwg. E2434-0015 (Figure 2 shows a 40° angle weldment. All specimens

ELECTRON BEAM WELDING SCHEDULES Ti, 15V, 11Cr, 5A1, 060" SHEET (1)

7. •

Specimen Type	Condition of Material Prior to Welding	Voltage KV	Current MA	Beam Deflection (2)	
C=1	Solution Annealed	120	2.5	075	
G-2	Solution Annealed + Age Harden	120	2.3	075	
J-5	CR 25% + Age Harden	120	2.6	020	
J~6	CR 25% + Age Harden	120	2.6	020	
7-2	CR 25% + Age Harden	120	2.6	020	
J=8	CR 25% + Age Harden	120	2.6	020	

(1)

Welding speed - 25 inches per minute all samples.

Focal spot - .006" dia. at metal surface.

Joint gap less than .001"

Filament - Tungsten coil at 40 Mil. Amperes relative meter reading Number shown is approx. length in inches.

Deflection was parallel to direction of welding. (2)

TABLE 28

RADIOGRAPH INDICATIONS, ELECTRON BEAM WELDMENTS. Ti, 134, 11Cr, 3 At, SHEET.

had the same form and dimensions except for the angle of the weld deposit). Where postweld heat treatment was required, the coupons were rough machined, heat treated and then ground to finished size. Cracks were observed in specimens J7-1 and J7-3 after heat treatment, and they were discarded. The cracking apparently originated during the rough machining operation (blanking die shown in progress report #9, March 1961). The grid noted in Figure 2 was applied to some of the specimens to allow time-sequence pictures of the deformation occuring during test. The grid is a series of 0.1" X 0.1" squares ink stamped over the gage area of the specimen. To provide sharp lines and good contrast, ink having the following formula was used:

31 grams of rosin and 2.3 ounces of Dupont Victoria Green Aniline dye in 100cc of methanol.

The tensile test procedures described in progress report #9, March, 1961, were used, except for the specimens containing the grid. These specimens were tested in a Tatnall Mod. UWR Universal Testing Machine employing hydraulically leaded V-grips. A 35MM Exacto V camera manually operated was used to obtain time sequence shots of the deformation patterns. The mechanical properties are listed in Table 29. The types of fractures obtained are shown in Figure 31.

Metallographic work, and analysis of the deformation patterns is in process, hence no conclusions will be made in this report.

MECHANICAL PROPERTIES ELECTRON BEAM WELDMENTS T1, 13V, 11Cr, 3A1, ALLOY SHEET

これとうという 地位の名の教育の意思をあるいるをある サンス・ハン・スタ てんかない しゅうちゅうじ あとるない 最初の はないない

Sample					Elongation	1	% -		
Number	Condition of Weldment	Yield Strength to KSI	Ultimate Tensile Strength KSI	= X	¥"	E T	2"	Frac	Fracture
C1-1	1 2	Missed	162	×	*		% I	Britt]	Brittle, Weld
C1-2	900°F, 40 Hr. (909	Excessive F	Porosity -	not	heat tr	treated.			
C2-1	Solution Annealed,	146	146	4	4				Metal
02-2 02-3	Weld. (90°)	.	139 144	0 0	0 0	ဖြ	1 1	Base 1 Base 1	Metal Metal
T5=1=2	Gold Rolled 25%; Aged	141	147	28	14		376 1		fetal
J5-1-2	F to 225 KSI	(1)	147	Q	8	r.			fetal
J5~2~1	Ultimate Tensile	140.5	145	58	12		7 7		Metal
15-2-2	Strength Welded (40°)	(1)	145	8	9	و	1	Weld	Metal
J6-1	Cold Rolled 25% Aged	151	188	ဆ	ω	-	4	(2)	
J6-2	225 KS	Excessive I	Porosity			C		: (
J6-3 J6-4	Ultimate Tensile Strength Welded (20°)	(1) To be Tested	187	C	0	7	0	(2)	
J7-1	CR 25%, 900°F, Age to	Specimen Cr	in	Prepa	Preparation	8	1% 1	Weld Metal	1etal
17-3	ge 900 R. 102 (909	eп	Cracked in	Prepa	Preparation				
J8-1	2%	Not Tested	1				•		
J8-2 J8-3	uts.	EE	159 151	0 8	9 0	ow.	11	Weld 1	retal Metal

TABLE 29

SKETCHES OF TYPICAL TENSILE
FRACTURES IN ELECTRON BEAM WELDMENTS OF - TL, 13V, 11Cr, 3A1, SHEET.

SPECIMEN-CZ-1.

SOLUTION ANNEALED, WELD, BASE METAL FRACTURE.

DUCTILE FRACTURE, HECKING AND GOOD ELONGATION.

SPECIMEN-CI-I.

SOLUTION ANNEALED, WELD, AGE HARDEN.

BRITTLE FRACTURE WELD METAL.

WELD.

SPECIMEN-J5-2-1.

COLD POLLED 25%, AGE HARDEN, WELD

DUCTILE FAILURE IN WELD METAL.

40° WELD ANGLE

FAILED BY SHEARING ALONG WELD. GOOD DUCTILITY AUD SLIDING.

SPECIMEN-J6-1.

COLD POLLED 25% AGE HARDEN, WELD,

Base Metal Weld Metal Failure. Considerable Deformation along Entire Gage Length, Bending and Necking Occured. It is anticipated that the metallographic studies and interpretation of the mechanical test results will be completed in the next period. The investigation of the effects of joint design and treatment on the properties of solution annealed and aged titanium sheet electron beam weld will also be initiated in the next period.

HELICAL WELDED CYLINDERS

In report number 11 we discussed generally, designs of cylindrical sections using strip materials in high strength conditions. A helical fusion butt welded cylinder having the weld line preferentially oriented to reduce the normal stress sustained across the weld line is being considered.

Geometric elements which control this design of cylinder are: Material coil width, helix angle, and cylinder diameter. Figure 32 shows the relationship of these elements. A weld line helix angle of approximately 18° to 25° appears to be optimum, based on previous tests of small cylinders. This would apply where the weld strength is in the area of 60% to 80% of the yield strength of the base metal. We expect to develop data on this using uniaxial tensile joint specimens and subscale cylinder tests.

Figure 33 shows a qualitative relationship between helix angle and the ratio of membrane hoop stress to yield strength of the base material. It can be seen that as the helix angle decreases there is a corresponding increase in this stress ratio. We are currently obtaining actual data from uniaxial weld joint specimens with welds oriented at 90° ~ 40° and 20° to the line of load application. A yield criteria for various materials in different heat treat conditions will be determined. From this data, actual values for each

THE BUDD COMPANY PRODUCT DEVELOPMEN DEVELOPMENT PHILADELPHIA, PA. RELATIONSHIP OF CYLINDER DIAMETER, CYLINDER DIA. INCHES W=18. W= 12" 9=M WELD HELIX ANGLE, COIL WIDTH GEOMETRIC 3 F16URE - 32. 2 -0 W-WIDTH OF COIL 0 Se Of 2 25_ 20 $\overline{\alpha}_{l}$ 0 ANGLE DEGREES MECD CINE HECIX

PREPARED BY:	THE BUDD COMPANY	PAGE NO. OF
CHECKED BY:	PRODUCT DEVELOPMENT	REPORT NO.
DAYE		PROJECT NO.
		Ţ

YIELD STRENGTH OF A CYLINDER

material considered can be plotted and optimum helix angles can be established. From tests of sub-scale 20° cylinders we expect to obtain actual data to confirm the valicity of the design and the cumulative effect bending stresses, etc. on the performance of the cylinder.

A parallel program to the development of analytical data is being conducted on the method of welding helical butt welded cylinders. A fixture was rigged up using a stationary shoe, and roller drive to feed coil strip, under the welding head. This was done using 6" wide strip and a 10" diameter cylinder. The material welded was .020" thick Type 301 stainless steel. Figure 34 is a photograph showing the welding operation on a 36" long cylinder. A total of six cylinders have been welded using the rigged up fixture, which we feel amply demonstrates the feasibility of the method.

We are currently designing a fixture capable of welding 20" Dia. cylinders for the sub-scale program. This fixture will have sufficient power in the drive, and accuracy to enable us to weld cylinders in various alloys with reliable repeatability.

In addition to the welding development of 10" cylinders noted above, we are working on an explosive sizing technique. Figure 35 shows a photograph and schematic design of an experimental setup used to size a 10" cylinder. The .020" thick cylinder was sized to between 1% and 2% of its diameter explosively in a steel

HELICAL WELDING FIXTURE AND ARRANGEMENT - 10" CYLINDER

EXPLOSIVE SIZING ARRANGEMENT

10" DIA. TYPE 301 STAINLESS

SHELL

SCHEMATIC DIAGRAM OF EXPLOSIVE SIZING

ARRANGEMENT

FIG.- 35

tube having a 3/8" thick wall. An explosive charge, calculated to yield the Type 301 stainless steel shell was used. Variations in wall shape of the stainless tube caused by weld shrinkage were removed and we expect that a good stress relief of the wall was obtained. We expect to make a metallurgical examination of the cylinder to determine the effect on properties of the weld and parent metal as a result of explosive sizing.

WORK CONTEMPLATED FOR NEXT PERIOD

Evaluation of the Ti-8Al-10V alloy recently received will be made during the period. Tensile and fracture energy tests of preliminary samples of ausrolled low alloy steel will be made. We will determine from the preliminary tests, the heat from which additional evaluation will be made.

Problems at the mills have delayed delivers of the PH 12-8-6 alloy and the 20% - 25° nickel alloys. Recent status indicates deliveries of these alloys during the next period.

Design of a welding fixture for 20" dia. helical weld cylinders will continue during the next period.

The contract for research on controlled ingot solidification to be conducted at Massachusetts Institute of Technology is at the Philadelphia Ordnance District for approval by the Contracting Officer. We expect to release this to M.I.T. within the next period.

APPENDIX A REPORT DISTRIBUTION

	No. of Copies
Office of the Director of Defense Research & Engineering Room 3E-1028, The Pentagon Washington 25, D. C. ATTN: Mr. J. C. Barrett	1
Advanced Research Project Agency The Pentagon Washington 25, D. C. ATTN: Dr. W. G. May	1
Commander Army Research Office Arlington Hall Station Arlington 12, Virginia	1
Office Chief of Ordnance Department of the Army Washington 25, D. C. ATTN: ORDTB-Materials	1
Commanding General Aberdeen Proving Ground Aberdeen Proving Ground, Maryland ATTN: Dr. C. Pickett, C & CL	1
Commanding General Army Ballistic Missile Agency Redstone Arsenal, Alabama ATTN: Dr. G. H. Reisig	1
Commanding General U. S. Army Rocket & Guided Missile Agency Redstone Arsenal, Alabama ATTN: ORDXR-OCP, Mr. R. L. Wetherington	1
Commanding General Frankford Arsenal Philadelphia 37, Pa. ATTN: ORDBA, Dr. H. Gisser ORDBA, Mr. H. Markus ORDBA, 5215	1 1 17
Reproducible Complete List Revised Report #9	Ţ
<u>-</u>	

	No. of Copies
Commanding Officer Ordnance Materials Research Office Watertown Arsenal Watertown 72, Mass. ATTN: RPD	1
Commanding Officer Picatinny Arsenal Dover, New Jersey ATTN: Plastic & Packaging Laboratory	1
Commanding Officer Rock Island Arsenal Rock Island, Illinois ATTN: Materials Section, Laboratory	1
Commanding Officer Watertown Arsenal Watertown 72, Mass. ATTN: ORDBE-LX	2
Commander Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia ATTN: TIPDR	10
Chief, Bureau of Naval Weapons Department of the Navy Room 2225 Munitions Building Washington 25, D. C. ATTN: RMMP	1
Commander U. S. Naval Ordnance Laboratory White Oak Silver Spring, Maryland ATTN: Code WM	1
Commander U. S. Naval Ordnance Test Station China Lake, California ATTN: Technical Library Branch	1

THE SECOND SECON

	No. of Copies
Department of the Navy Office of Naval Research Washington 25, D. C. ATTN: Code 423	1
Department of the Navy Special Projects Office Washington 25, D. C. ATTN: SP 271	1
U. S. Air Force Directorate of Research & Development Room 4D-313, The Pentagon Washington 25, D. C. ATTN: Lt. Col. J. B. Shipp, Jr.	1
Wright Air Development Division Wright-Patterson Air Force Base Ohio ATTN: Materials Central (WWRCEE)	5
Technical Library (FTOOT) Air Force Flight Test Center Edwards Air Force Base California	5
AMC Aeronautical Systems Center Wright Patterson Air Force Base Dayton, Ohio ATTN: Manufacturing and Materials Technology Div. (LMBMO)	2
National Aeronautics and Space Administration Washington, D. C. ATTN: Mr. R. V. Rhode	1
George C. Marshall Space Flight Center National Aeronautics and Space Administration Redstone Arsenal, Alabama ATTN: Dr. W. Lucas	1
Defense Metals Information Center Battelle Memorial Institute Columbus, Ohio	1

	Copies
George C. Marshall Space Flight Center Huntsville, Alabama ATTN: Mr. William A. Wilson M-F & AE-M	1
Superintendent U. S. Naval Weapons Plant Washington 25, D. C. ATTN: Code 722	1
Commanding Officer Picatinny Arsenal Dover, New Jersey ATTN ORDBB-UP4 Plastics Technical Evaluation Center (PLASTEC)	1
Commander, Wright Air Development Division ATTN Gail E. Eichelman WWRCEE-1 Wright Patterson Air Force Base, Ohio	1
Commanding General J. S. Army Ballistic Missile Agency Huntsville, Alabama ATTN: Mr. H. Hinrichs Propulsion Laboratory	1
Commanding Officer J. S. Army Ordnance District 128 N. Broad Street Philadelphia 2, Pa.	1

	No. of Copies
Solid Propellant Information Agency Applied Physics Laboratory The Johns Hopkins University Silver Spring, Maryland	3
Advanced Metals Research Corp. 625 McGrath Highway Somerville, Mass. ATTN: Mr. Lewis	. 1
Alloyd Research Corp. 35 Cambridge Parkway Cambridge, Mass. ATTN: Dr. S. S. White	1
Battelle Memorial Institute 505 King Avenue Columbus 1, Ohio ATTN: Mr. R. Monroe Mr. G. Faulkner	1
Borg-Warner Ingersoll Kalamazoo Division 1810 N. Pitcher St. Kalamazoo, Michigan ATTN: Mr. L. E. Hershey Mr. R. E. Angerman	1 1
The Budd Company Product Development Division Philadelphia 32, Pa. ATTN: Mr. R. C. Dethloff	1
Curtiss-Wright Corp. Wright Aeronautical Division Wood-Ridge, New Jersey ATTN: Mr. H. Hahn	1
Arthur D. Little, Inc. 15 Acorn Park Cambridge 40, Mass.	1

	No. of Copies
Aerojet-General Corporation ATTN: R. G. Weitz	1
Head, Technical Information Office P. O. Box 1947	
Sacramento 9, California	
ARDE-Portland, Inc. 71 Austin Street	1
Newark 2, New Jersey ATTN: E. Brummel	
Atlantic Research Corporation Shirley Highway and Edsall Road	1
Alexandria, Virginia ATTN: Mr. E. A. Olcott	
Hercules Powder Company	1
Allegheny Ballistics Laboratory Post Office Box 210	,
Cumberland, Maryland ATTN: Dr. R. Steinberger	
Lyon, Inc.	1
Detroit, Michigan ATTN: Mr. W. Martin	
Manufacturing Laboratories 249 Fifth Street	
Cambridge 42, Mass. ATTN: Dr. P. Fopiano	1
Dr. V. Radcliffe	1
Massachusetts Institute of Technology Cambridge, Mass.	
ATTN: Professor Backofen Professor Flemings	1
Mellon Institute	
4400 Fifth Avenue Pittsburgh 13, Pa.	
ATTN: Mr. C. J. Owen Dr. H. L. Anthony	1
Ohio State University Research Foundation	1
Columbus, Ohio ATTN: Dr. McMaster	
ALIN. Dr. Honaster	

	No. of Copies
The Perkin-Elmer Corp. Main Avenue Norwalk, Connecticut ATTN: Mr. J. Beardsley	1
Pratt and Whitney Aircraft East Hartford Connecticut	
ATTN: Mr. W. Dahl Mr. C. Baxter	1 1
Dr. L. Jaffe, Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, California	1
Ailegheny Ludlum Steel Corp. Research Center Brackenridge, Pa. ATTN: Mr. R. A. Lula	1
Republic Steel Corporation Research Center Independence, Ohio ATTN: Mr. H. P. Munger	1
Reactive Metals Corp. Niles, Ohic ATTN: Mr. H. Lundstrom	1
Jones and Laughlin Steel Corp. 45 South Montgomery Ave. Youngstown, Ohic ATTN: Mr. W. L. Steinbrenner	1
Armco Steel Corporation General Offices Middletown, Ohio ATTN: Mr. J. Barnett	1
Titanium Metals Corp. 233 Broadway New York, N.Y. ATTN: Mr. G. Erbin	1

APPENDIX B

THE PERSON OF TH

のでは、「「「「「」」というでは、「「」」というでは、「「」」というでは、「」」というでは、「、「」」というでは、「、」」というでは、「、」」というでは、「、」」というでは、「、」」というでは、「、」」というでは、「、」

Property Company of the Company of t

The second of th

これのではないのでは、これのでは、これのは、これのは、これのでは、これの

· 商、在學文書等,可以選擇一學所以文內

いきこうというのは、後、はは我は後のないのでは、これのできるのできるのできるのできるのでは、これのできるとは、これのできるとのできるとのできるというないのできるというできるというできるというできるという

APPENDIX C

PREPARED BY: FOX.C.R.	THE BUDD COMPANY PRODUCT DEVELOPMENT	PAGE NO.	97
CHECKED BY:	THE STATE OF THE S	REPORT NO.	
DATE:	AM-355 SCIRT, PH 15-7 MO UNIAXIAL	PROJECT NO.	
	WELDED JOINT DESIGNS		

DISCUSSION OF JOINT FAILURE

TENSILE TEST SPECIMEN B 480-SK-0007 Shell to Shell Joint

- 1. Initial failure occured in the doubler spot welds. These welds sheared from the two thickness shell plate structure.
- 2. The load was then transferred to the two thickness shell plate structure, producing joint failure in the heat affected zone of the outer seam weld.
- 3. The maximum load was 30,500 pounds per linear inch of fusion weld with a maximum strain of 0.0256 inches per inch.
- 4. There was noticeable straining (necking) at the seam weld areas on both sides of the fusion weld.
 - 5. A graph of the Load in pounds per linear inch of fusion weld versus the fotal Strain in inches per inch is shown on the following page.

PREPARED BY: FOX, C.R.	THE BUDD COMPANY PRODUCT DEVELOPMENT PHILABELPHIA, PA.	PAGE NO. OF
DATE:	AM-355 SCCRT, PH-15-7-MO UNIAXIAL WELDED JOINT DESIGNS	PROJECT NO.

DISCUSSION OF JOINT FAILURE

TENSILE TEST SPECIMEN B 480-SK-0008 Head to Shell Joint

It was noted that one of the spot welds which failed had a noticeably smaller weld nugget at the sheared surface. This was a contributory factor to the early spot failure.

- 2. The joint failed in the fusion weld at a load of 28,850 pounds per linear inch of fusion weld.

 A maximum strain of 0.0125 inches per inch was recorded.
- 3. There was a noticeable straining (necking) in the seam weld area.
- 4. A graph of the Load in pounds per linear inch of fusion weld versus the Total Strain in inches per inch is shown on the following page.

AM-355 SCCRT, PH 15-7 Mo UNIAXIAL WELDED JOINT DESIGNS TENSILE TEST SPECIMEN B 480-SK-0008 Head to Shell Joint

PREPARED BY: FOX, C.R.	THE BUDD COMPANY PRODUCT DEVELOPMENT PHILABELPHIA, PA.	PAGE NO. OF
DATE	AM-355 SCCRT, PH 15-7 MO UNIAXIAL WELDED JOINT DESIGNS	PROJECT NO.

DISCUSSION OF JOINT FAILURE

TENSILE TEST SPECIMEN B 480-SE-0009 Head to Shell Joint

- 5. The joint failed at 35,500 pounds per linear inch of fusion weld with a maximum strain of 0.01325 inches per inch.
- 4. A graph of the Load in pounds per linear inch
 of fusion weld versus the Total Strain in inches
 per inch is shown on the following page.

AM-355 SCCRT, PH 15-7 Mo UNIAXIAL WELDED JOINT DESIGNS TENSILE TEST SPECIMEN B 480-SK-0009 Head to Shell Joint

PREPARED BY: Fox, C.R.	THE BUDD COMPANY PRODUCT DEVELOPMENT	PAGE NO. OF
CHECKED BY:		REPORT NO.
DATE:	AM-355 SCORT, PH 15-7 NO UNIAXIAL WELDED JOINT DESIGNS	PROJECT NO.

DISCUSSION OF JOINT FAILURE

TEMSILE TEST SPECIMEN B 480-5K-0010 Head to Shell Joint

- Initial failure occurred in the spat welds holding the AM-355 doubler to the PH 15-7 No plate. These spot welds failed in shear.
- 2. There was noticeable straining in the fusion and seam weld areas prior to the spot weld failure. When the doubler on the PH 15-7 No plate was no longer transmitting a load, severe straining began in the PH 15-7 No plate fusion weld heat affected some, resulting in joint failure.
- 5. The joint failed at 35,810 pounds per linear inch of fusion weld with a maximum strain of 0.0212 inches per inch.
- 4. A graph of the Load in pounds per linear inch of fusion weld versus the Total Strain in inches per inch is shown on the following page.

PREPARED BY: FOX, C.R.	THE BUDD COMPANY PRODUCT DEVELOPMENT	PAGE NO. OF
DATE	AM-355 SCCRT. PH 15-7 MO UNIAXIAL WELDED JOINT DESIGNS	PROJECT NO.

DISCUSSION OF JOINT FAILURE

TENSILE TEST SPECIMEN B 480-SE-0011
Head to Shell Joint

- 1. The initial fractures occurred at:
 - a) The outer seam weld heat affected zone in one thickness of the basic two thickness shell plate structure.
 - b) The spot weld interfaces between the sheets of the basic two thickness shell plate structure.

After the initial fractures, the long doubler attached to one thickness of the basic two thickness shell plate structure were the only load carrying members on the shell plate assembly side of the fusion weld.

- 2. The initial fractures were at a load of 23,460 pounds per linear inch of fusion weld. After the initial fractures the load fell to 17,150 pounds per linear inch of fusion weld. Joint failure was at 18,430 pounds per linear inch of fusion weld. There was a small amount of straining (necking) in the fusion weld and a maximum recorded strain of 0.01625 inches/inch.
- 3. A graph of the Load in pounds per linear inch of fusion weld versus the Total Strain in inches per inch is shown on the following page.

PREPARED BY: FOX, C.R.	THE BUDD COMPANY PRODUCT DEVELOPMENT	PAGE NO. OF
CHECKED BY	PHILADELPHIA, PA.	REPORT NO.
DATE:	AM-355 SCCRT, PH 15-7 MO UNIAXIAL	PROJECT NO.
	WELDED JOINT DESIGNS	

DISCUSSION OF JOINT FAILURE

TENSILE TEST SPECIMEN B 480-SK-0012
Head to Shell Joint

- Initial failure occurred in the spot weld holding the doubler to the two thickness shell plate structure. This spot weld failed in shear.
- 2. There was a small amount of straining (necking) in the fusion weld. The most noticeable straining occurred in the shell plate assembly seam weld heat affected zone. This was the failure area.
- 3. The joint failed at a load of 25,180 pounds per linear inch of fusion weld with a maximum strain of 0.00563 inches per inch.
- 4. A graph of the Load in pounds per linear inch
 of fusion weld versus the Total Strain in
 inches per inch is shown on the following page.

PREPARED SVI FOX. C.R.	THE BUDD COMPANY PRODUCT DEVELOPMENT PHILADELPHIA, PA.	PAGE NO. OF	
		REPORT NO.	
DATE	AN-355 SCORT, PH 15-7 NO UNIAXIAL	PROJECT NO.	
	WEIDED JOINT DESIGNS		

THE REPORT OF THE PROPERTY OF

DISCUSSION OF JOINT FAILURE

TENSILE TEST SPECIMEN B 480-SK-0013 Head to Shell Joint

- 1. Initial failure occurred in the spot welds holding the doublers to the basic two thickness shell plate structure. These spot welds failed in shear.
- 2. There was a small amount of straining (necking) in the fusion weld with very nearly uniform yielding up to joint failure. Failure was in the four pile-up seam weld heat affected zone between the inner and outer seam welds.
- 5. The joint failed at a load of 33,710 pounds per linear inch of fusion weld with a maximum strain of 0.01938 inches per inch.
- 4. A graph of the Load in pounds per linear inch of fusion weld versus the Total Strain in inches per inch is shown on the following page.

PREPARED BY: FOX. C.R.	THE BUDD COMPANY PRODUCT DEVELOPMENT PHILADELPHIA, PA.	PAGE NO. OF
DATE	AM-355 SCCRT, PH 15-7 MO IMIAXIAL WELDED JOINT DESIGNS	PROJECT NO.

DISCUSSION OF JOINT PAILURE

TENSILE TEST SPECIMEN B 480-8E-0014 Head to Shell Joint

- 1. The joint failed in tension through the outer spot weld on the long doubler of the shell plate assembly.
- 2. Analysis of the failure indicated that this was the weakest point in the design and failure could be expected around 35,800 pounds per linear inch of fusion weld. The load at failure was 37,960 pounds per linear inch of fusion weld.
- 5. There was a very definite amount of straining (necking) in the fusion weld with a maximum recorded strain of 0.01875 inches per inch.
- 4. A graph of the Load in pounds per linear inch of fusion weld versus the Total Strain in inches per inch is shown on the following page.

PREPARED BY. FOX. C.R.	THE BUDD COMPANY PRODUCT DEVELOPMENT	PAGS NO. 97
CHRCKED GA!	PHILADELPHIA, PA.	REPORT NO.
DATE:	AM-355 SCCRT. PH 15-7 MO UNIAXIAL	PROJECT NO.
	VELDED JOINT DESIGNS	

DISCUSSION OF JOINT FAILURE

TENSILE TEST SPECIMEN B 480-SE-0015 Head to Shell Joint

- Initial failure occurred in the spot welds
 holding the doublers to the basic two thickness
 shell plate structure. These spot welds
 failed in shear.
- 2. There was very little straining (necking) in the fusion weld area. The maximum apparent strain was in the shell plate assembly at the point of failure. Failure was in the four pile-up seam weld heat affected zone between the inner and outer seam welds.
- 5. The joint failed at a load of 26,200 pounds per linear inch of fusion weld with a maximum secorded strain of 0.010 inches per inch.
- 4. A graph of the Load in pounds per linear inch
 of fusion weld versus the Total Strain in inches
 per inch is shown on the following page.

