Classification and Support Vector Machine

Yiyong Feng and Daniel P. Palomar

The Hong Kong University of Science and Technology (HKUST)

ELEC 5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong

Outline of Lecture

- Problem Statement
- 2 Warm Up: Linear/Logistic Regression
 - Linear Regression
 - Regression with Huberized Loss
 - Logistic Regression
- 3 Support Vector Machine (SVM)
 - Linearly Separable SVM
 - Linearly Nonseparable SVM
 - Nonlinear SVM
 - Multiclass Learning
- 4 Application: Multiclass Image Classification

Outline of Lecture

- Problem Statement
- 2 Warm Up: Linear/Logistic Regression
 - Linear Regression
 - Regression with Huberized Loss
 - Logistic Regression
- 3 Support Vector Machine (SVM)
 - Linearly Separable SVM
 - Linearly Nonseparable SVM
 - Nonlinear SVM
 - Multiclass Learning
- 4 Application: Multiclass Image Classification

Classification Problem

• A set of input points with binary labels:

$$\mathbf{x}_i \in \mathbb{R}^n \to y_i \in \{-1, 1\}, \ i = 1, \dots, N$$

• How to classify the x_i 's?

Classification Problem

Separate the two classes using a linear model:

$$\hat{y} = \boldsymbol{\beta}^T \mathbf{x} + \beta_0$$

We can classify as follows:

$$\begin{cases} \text{predict "Pos Class"}, & \text{if sign } (\hat{y}) = +1 \\ \text{predict "Neg Class"}, & \text{if sign } (\hat{y}) = -1 \end{cases}$$

- Thus, misclassification happens if $sign(\hat{y}) \neq y!$
- Note that then the decision boundary is the hyperplane $\boldsymbol{\beta}^T \mathbf{x} + \beta_0 = 0$

Classification Problem

• Then our goal is to minimize the number of misclassifications:

$$\begin{array}{ll} \underset{\beta_0, \boldsymbol{\beta}, \{\hat{y}_i\}}{\text{minimize}} & \sum_{i=1}^{N} \mathbf{1}_{\{\operatorname{sign}(\hat{y}_i) \neq y_i\}} \\ \text{subject to} & \hat{y}_i = \boldsymbol{\beta}^T \mathbf{x}_i + \beta_0, \ \forall i \end{array}$$

 However, the objective loss function is nonconvex and nondifferentiable Problem Statement Warm Up SVM App: Image Multi-Classification

• What could we do?

Outline of Lecture

- Problem Statement
- 2 Warm Up: Linear/Logistic Regression
 - Linear Regression
 - Regression with Huberized Loss
 - Logistic Regression
- 3 Support Vector Machine (SVM)
 - Linearly Separable SVM
 - Linearly Nonseparable SVM
 - Nonlinear SVM
 - Multiclass Learning
- 4 Application: Multiclass Image Classification

Classification as Linear Regression

 A straightforward idea is to do linear regression, i.e., replacing the misclassification loss with the residual sum of squares loss:

$$\begin{array}{ll} \underset{\beta_0, \boldsymbol{\beta}, \{\hat{y}_i\}}{\text{minimize}} & \sum_{i=1}^N \left| \hat{y}_i - y_i \right|^2 \\ \text{subject to} & \hat{y}_i = \boldsymbol{\beta}^T \mathbf{x}_i + \beta_0, \ \forall i \end{array}$$

• Note that $|\hat{y}_i - y_i|^2 = |\hat{y}_i - y_i|^2 \cdot y_i^2 = (1 - y_i \hat{y}_i)^2$

From Loss Function Point of View

• Misclassification loss $\mathbf{1}_{\{\operatorname{sign}(\hat{y})\neq y\}}$; squared error loss $(\hat{y}-y)^2=(1-y_i\hat{y}_i)^2$

Decision Boundary

Linear Regression Regression with Huberized Loss Logistic Regression

• Can we do better?

• Some idea?

• Can we find some better loss function approximation?

Famous Huber Loss

• Huber Loss (with parameter M):

$$\phi_{hub}(x) = \begin{cases} |x|^2 & |x| < M \\ M(2|x| - M) & |x| \ge M \end{cases}$$

• Select M=2, define loss as $\phi_{hub} (1-y\hat{y})$:

Famous Huber Loss

- Actually, we don't need to penalize when $y\hat{y} > 0!$
- Define

$$\phi_{hub_pos}(x) = \begin{cases} \phi_{hub}(x) & x \ge 0\\ 0 & x < 0 \end{cases}$$

• Select M=2, define loss as $\phi_{hub_pos}\left(1-y\hat{y}\right)$:

Minimize the "Huberized" Loss

 Then, we take the "Huberized" loss as the approximation and intend to minimize it:

where $\phi_{hub\ pos}(x)$ with M=2 looks like:

Decision Boundary

Linear Regression Regression with Huberized Loss Logistic Regression

• Can we find more approximations?

Logistic Model

• Given a data point $\mathbf{x} \in \mathbb{R}^n$, model the probability of label $y \in \{-1, +1\}$ as (recall that $\hat{y} = \boldsymbol{\beta}^T \mathbf{x} + \beta_0$):

$$P(Y = y|\mathbf{x}) = \frac{1}{1 + e^{-y \cdot \hat{y}}}$$

• Here, the function $g\left(z\right)=\frac{1}{1+e^{-z}}$ is called logistic function:

Logistic Model

• The above probability formula amounts to modeling the log-odds ratio as linear model \hat{y} :

$$\log \frac{P(Y = 1|\mathbf{x})}{P(Y = -1|\mathbf{x})} = \log \frac{1 + e^{\hat{y}}}{1 + e^{-\hat{y}}} = \hat{y} = \beta^T \mathbf{x} + \beta_0$$

Classification rule:

$$\begin{cases} \text{predict "Pos Class"}, & \text{if sign } (\hat{y}) = +1 \\ \text{predict "Neg Class"}, & \text{if sign } (\hat{y}) = -1 \end{cases}$$

 The above classification rule is exactly the same as we wanted before!

Negative Log-likelihood as Loss

 Armed with logistic model, we can have the likelihood function:

$$LH(\beta, \beta_0) = \prod_{i=1}^{N} P(Y = y_i | \mathbf{x}_i) = \prod_{i=1}^{N} \frac{1}{1 + e^{-y_i \cdot \hat{y}_i}}$$

The loss function can be defined as negative log-likelihood:

$$Loss\left(\boldsymbol{\beta}, \beta_{0}\right) = -\log LH\left(\boldsymbol{\beta}, \beta_{0}\right) = \sum_{i=1}^{N} \log \left(1 + e^{-y_{i} \cdot \hat{y}_{i}}\right)$$

Logistic Regression

Now, minimize the loss function (i.e., maximize the likelihood):

$$\begin{array}{ll} \underset{\beta_0,\beta,\{\hat{y}_i\}}{\operatorname{minimize}} & \sum_{i=1}^N \log \left(1 + e^{-y_i \cdot \hat{y}_i}\right) \\ \text{subject to} & \hat{y}_i = \boldsymbol{\beta}^T \mathbf{x}_i + \beta_0, \ \forall i \end{array}$$

From Loss Function Point of View

• Misclassification loss $\mathbf{1}_{\{\operatorname{sign}(\hat{y})\neq y\}}$; squared error loss $(\hat{y}-y)^2$; Class Huber $\phi_{hub_pos}\,(1-y\hat{y})$; Negative log-likelihood $\log\,(1+e^{-y\cdot\hat{y}})$

Decision Boundary

Outline of Lecture

- 1 Problem Statement
- 2 Warm Up: Linear/Logistic Regression
 - Linear Regression
 - Regression with Huberized Loss
 - Logistic Regression
- 3 Support Vector Machine (SVM)
 - Linearly Separable SVM
 - Linearly Nonseparable SVM
 - Nonlinear SVM
 - Multiclass Learning
- 4 Application: Multiclass Image Classification

Optimal Separating Hyperplane

- So many hyperplanes can separate the two classes
- BUT, what is the optimal separating hyperplane?
- Optimal separating hyperplane should:
 - separate the two classes, and
 - maximize the distance to the closest point from either class.

Signed Distance

decision boundary:

$$\boldsymbol{\beta}^T \mathbf{x} + \beta_0 = 0$$

signed distance

$$\frac{1}{\|\boldsymbol{\beta}\|} \boldsymbol{\beta}^T (\mathbf{x} - \mathbf{x}_0)$$
$$= \frac{1}{\|\boldsymbol{\beta}\|} (\boldsymbol{\beta}^T \mathbf{x} + \beta_0)$$

Maximize the Margin

• Then the "margin" is defined as

$$\frac{1}{\|\boldsymbol{\beta}\|} y \left(\boldsymbol{\beta}^T \mathbf{x} + \beta_0 \right)$$

Now, maximize the distance to the closest point from either class

$$\begin{array}{ll} \underset{\beta_0, \boldsymbol{\beta}, M}{\operatorname{maximize}} & M \\ \operatorname{subject to} & \frac{1}{\|\boldsymbol{\beta}\|} y_i \left(\boldsymbol{\beta}^T \mathbf{x}_i + \beta_0 \right) \geq M, \ \forall i \end{array}$$

Support Vector Machine

• For any β and β_0 satisfying these inequalities, any positively scaled multiple satisfies them too, then arbitrarily set

$$\|\boldsymbol{\beta}\| = \frac{1}{M}$$

The above problem amounts to

$$\begin{array}{ll} \underset{\beta_0, \boldsymbol{\beta}}{\text{minimize}} & \|\boldsymbol{\beta}\| \\ \text{subject to} & y_i \left(\boldsymbol{\beta}^T \mathbf{x}_i + \beta_0\right) \geq 1, \ \forall i \end{array}$$

Boundary and Support Vectors

Linearly Separable SVM Linearly Nonseparable SVM Nonlinear SVM Multiclass Learning

- The case we considered before is linearly separable
- What if it's linearly nonseparable?

Linearly Nonseparable Case

Linearly Nonseparable Case

• Relax the constraints by Introducing positive slack variables ξ_i 's:

$$y_i\left(\boldsymbol{\beta}^T\mathbf{x}_i + \beta_0\right) \ge 1 - \xi_i$$

• And then penalize $\sum_i \xi_i$ in the objective function:

$$\begin{array}{ll} \underset{\beta_{0},\boldsymbol{\beta},\{\xi_{i}\}}{\text{minimize}} & \frac{1}{2} \left\|\boldsymbol{\beta}\right\|^{2} + C \sum_{i=1}^{N} \xi_{i} \\ \text{subject to} & \xi_{i} \geq 0, \ y_{i} \left(\boldsymbol{\beta}^{T} \mathbf{x}_{i} + \beta_{0}\right) \geq 1 - \xi_{i}, \ \forall i \end{array}$$

ullet Linearly separable case corresponds to $C=\infty$

The SVM as a Penalization Method

Revisit the primal problem:

$$\begin{array}{ll} \underset{\beta_{0},\boldsymbol{\beta},\{\xi_{i}\}}{\text{minimize}} & \frac{1}{2} \left\|\boldsymbol{\beta}\right\|^{2} + C \sum_{i=1}^{N} \xi_{i} \\ \text{subject to} & \xi_{i} \geq 0, \; y_{i} \left(\boldsymbol{\beta}^{T} \mathbf{x}_{i} + \beta_{0}\right) \geq 1 - \xi_{i}, \; \forall i \end{array}$$

Consider the optimization problem:

$$\begin{array}{ll} \underset{\beta_0,\beta,\{\hat{y}_i\}}{\text{minimize}} & \sum_{i=1}^{N} \left[1 - y_i \hat{y}_i\right]^+ + \frac{\lambda}{2} \left\|\boldsymbol{\beta}\right\|^2 \\ \text{subject to} & \hat{y}_i = \boldsymbol{\beta}^T \mathbf{x}_i + \beta_0, \ \forall i \end{array}$$

where loss is $\sum_{i=1}^{N} [1 - y_i \hat{y}_i]^+$ (called hinge loss)

• Two problems are equivalent with $\lambda=1/C$ (linearly separable case corresponds to $\lambda=0$)

From Loss Function Point of View

• Misclassification loss $\mathbf{1}_{\{\operatorname{sign}(\hat{y})\neq y\}}$; squared error loss $(\hat{y}-y)^2$; Class Huber $\phi_{hub_pos}\,(1-y\hat{y})$; Negative log-likelihood loss $\log\left(1+e^{-y\cdot\hat{y}}\right)$; Hinge loss $\left[1-y_i\hat{y}_i\right]^+$

Solving SVM I

The Lagrange function is

$$L(\beta, \beta_0, \xi_i, \alpha_i, \mu_i) = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{N} \xi_i$$
$$- \sum_{i=1}^{N} \mu_i \xi_i - \sum_{i=1}^{N} \alpha_i \left[y_i \left(\beta^T \mathbf{x}_i + \beta_0 \right) - (1 - \xi_i) \right]$$

where $\alpha_i \geq 0$ and $\mu_i \geq 0$, $\forall i$, are dual variables

• Setting derivatives w.r.t. β , β_0 , $\{\xi_i\}$ to zero

$$\boldsymbol{\beta} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i, \quad 0 = \sum_{i=1}^{N} \alpha_i y_i, \quad \alpha_i = C - \mu_i \quad \forall i$$

Solving SVM II

• Dual function:

$$\begin{split} g\left(\alpha_{i},\mu_{i}\right) &= \inf_{\boldsymbol{\beta},\beta_{0},\{\xi_{i}\}} L\left(\boldsymbol{\beta},\beta_{0},\xi_{i},\alpha_{i},\mu_{i}\right) \\ &= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} + C \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \left(\alpha_{i} + \mu_{i}\right) \xi_{i} \\ &- \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} - \beta_{0} \sum_{i=1}^{N} \alpha_{i} y_{i} + \sum_{i=1}^{N} \alpha_{i} \\ &= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \end{split}$$

Solving SVM III

• Dual problem:

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \\ \text{subject to} & 0 \leq \alpha_i \leq C, \ \forall i \\ & \sum_{i=1}^{N} \alpha_i y_i = 0. \end{array}$$

- Dual problem is a QP!
- Vector-matrix representation of the objective:

$$\mathbf{1}^{T} \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^{T} \left(\operatorname{Diag} \left(\mathbf{y} \right) \mathbf{X}^{T} \mathbf{X} \operatorname{Diag} \left(\mathbf{y} \right) \right) \boldsymbol{\alpha}$$

KKT Conditions

 KKT equations characterize the solution to the primal and dual problems

$$\xi_{i} \geq 0, \ y_{i} \left(\boldsymbol{\beta}^{T} \mathbf{x}_{i} + \beta_{0} \right) \geq 1 - \xi_{i}, \ \forall i$$

$$0 = \sum_{i=1}^{N} \alpha_{i} y_{i}, \ 0 \leq \alpha_{i} \leq C, \ \forall i$$

$$\boldsymbol{\beta} = \sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}, \ \alpha_{i} = C - \mu_{i}, \ \forall i$$

$$0 = \mu_{i} \xi_{i}, \ \alpha_{i} \left[y_{i} \left(\boldsymbol{\beta}^{T} \mathbf{x}_{i} + \beta_{0} \right) - (1 - \xi_{i}) \right] = 0, \ \forall i$$

Finding Decision Boundary

• Given optimal dual α_i^{\star} 's, we have:

$$\boldsymbol{\beta}^{\star} = \sum_{i=1}^{N} \alpha_i^{\star} y_i \mathbf{x}_i.$$

- Support Vectors: those observations i with nonzero α_i^{\star}
- For any $0 < \alpha_i^{\star} < C$, we have $\xi_i = 0$, and $y_j\left(\sum_{i=1}^N \alpha_i^\star y_i \mathbf{x}_i^T \mathbf{x}_j + \beta_0\right) = 1$, hence we can solve for β_0^\star
- Decision function becomes:

$$D(\mathbf{x}) = \operatorname{sign}(\hat{y}) = \operatorname{sign}(\boldsymbol{\beta}^{\star T} \mathbf{x} + \beta_0^{\star}) = \operatorname{sign}\left(\sum_{i=1}^{N} \alpha_i^{\star} y_i \mathbf{x}_i^T \mathbf{x} + \beta_0^{\star}\right)$$

 Observation: in the dual problem and the above decision function, the only operation on x_i 's is the inner product!

Decision Boundary

- Large C: focus attention more on points near the boundary \Rightarrow small margin
- Small C: involves data further away \Rightarrow large margin

Decision Boundary: Revisit Linearly Separable Case

Decision Boundary: Linearly Nonseparable Case

Linearly Separable SVM Linearly Nonseparable SVM Nonlinear SVM Multiclass Learning

- For the linearly separable/nonseparable cases, so far SVM works well!
- But, what if the linear decision boundary doesn't work any more?

Nonlinear Decision Surface

Feature Transformation

Naive method:

• use a curve instead of a line ⇒ not efficient

Feature Transformation:

- pre-process the data with $h: \mathbb{R}^n \mapsto \mathcal{H}, \ \mathbf{x} \mapsto h(\mathbf{x})$
- \mathbb{R}^n : input space; \mathcal{H} : feature space

After Feature Transformation

• Using the features $h(\mathbf{x})$ as inputs:

$$\hat{y} = \boldsymbol{\beta}^T h\left(\mathbf{x}\right) + \beta_0$$

Dual problem:

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j h\left(\mathbf{x}_i\right)^T h\left(\mathbf{x}_j\right) \\ \text{subject to} & \sum_{i=1}^{N} \alpha_i y_i = 0, \ 0 \leq \alpha_i \leq C, \ \forall i \end{array}$$

• The decision function:

$$D(\mathbf{x}) = \operatorname{sign}\left(\boldsymbol{\beta}^{T} h(\mathbf{x}) + \beta_{0}\right) = \operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} y_{i} h(\mathbf{x}_{i})^{T} h(\mathbf{x}) + \beta_{0}\right)$$

where β_0 can be determined, as before, by solving $y_i\hat{y}_i=1$ for any \mathbf{x}_i for which $0<\alpha_i< C$

Kernelized SVM

• In fact, we need not specify the transformation $h(\mathbf{x})$ at all, but require only knowledge of the kernel function that computes inner products in the transformed space, i.e.:

$$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \triangleq h\left(\mathbf{x}_{i}\right)^{T} h\left(\mathbf{x}_{j}\right)$$

• Dual problem:

$$\begin{array}{ll} \underset{\{\alpha_i\}}{\operatorname{maximize}} & \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K\left(\mathbf{x}_i, \mathbf{x}_j\right) \\ \text{subject to} & \sum_{i=1}^{N} \alpha_i y_i = 0, \ 0 \leq \alpha_i \leq C, \ \forall i \end{array}$$

• The decision function:

$$D(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + \beta_{0}\right)$$

where β_0 can be determined, as before, by solving $y_i \hat{y}_i = 1$ for any \mathbf{x}_i for which $0 < \alpha_i < C$

Kernel

- ullet K should be a symmetric positive (semi-) definite function
- The previous linearly SVM corresponds to $K(\mathbf{x}_i, \mathbf{x}_j) \triangleq \mathbf{x}_i^T \mathbf{x}_j$
- Popular kernels:

$$\begin{array}{ll} p \text{th Degree polynomial:} & K\left(\mathbf{x}_i, \mathbf{x}_j\right) = \left(1 + \mathbf{x}_i^T \mathbf{x}_j\right)^p \\ \text{Gaussian radial kernel:} & K\left(\mathbf{x}_i, \mathbf{x}_j\right) = e^{-\|\mathbf{x}_i - \mathbf{x}_j\|^2/\sigma^2} \\ \text{Neural network:} & K\left(\mathbf{x}_i, \mathbf{x}_j\right) = \tanh\left(\kappa_1 \mathbf{x}_i^T \mathbf{x}_j + \kappa_2\right) \end{array}$$

Steps for Applying SVM

Steps:

- In-sample training:
 - Select the parameter C
 - **2** Select the kernel function $K(\mathbf{x}_i, \mathbf{x}_i)$ and related parameters
 - **3** Solve the dual problem to obtain α_i^{\star}
 - Compute β_0^{\star} , and then classify according to $\operatorname{sign}\left(\sum_{i=1}^{N} \alpha_i^{\star} y_i K\left(\mathbf{x}_i, \mathbf{x}\right) + \beta_0^{\star}\right)$
- Out-of-sample testing:
 - Use the trained model to test out-of-samples
 - ② If the out-of-sample test is not good, adjust parameter C, or kernels, and re-train the model until the out-of-sample result is good enough

Decision Boundary by Gaussian Radial Kernel

Linearly Separable SVM Linearly Nonseparable SVM Nonlinear SVM Multiclass Learning

More than two classes?

• What if there are more than TWO classes?

Multiclass Classification Setup

- Labels: $\{-1, +1\} \to \{1, 2, \dots, K\}$
- Classification decision rule: $f: \mathbf{x} \in \mathbb{R}^n \mapsto \{1, 2, \dots, K\}$

Multiclass Classification Methods

- Main ideas:
 - Decompose the multiclass classification problem into multiple binary classification problems
 - Use the majority voting principle or a combined decision from a committee to predict the label
- Common approaches:
 - One-vs-Rest (One-vs-All) approach
 - One-vs-One (Pairwise, All-vs-All) approach

One-vs-Rest Approach

Steps:

- Solve K different binary problems: classify class i as +1 versus the rest classes for all $j \in \{1, \ldots, K\} \setminus i$ as -1
- ② Assign a test sample to the class $\arg\max_{i} f_{i}(\mathbf{x})$, where $f_{i}(\mathbf{x})$ is the solution from the *i*-th problem

Properties:

- Simple to implement, performs well in practice
- Not optimal (asymptotically)

One-vs-Rest Example: Step 1, training

One-vs-Rest Example: Step 1, training...

One-vs-Rest Example: Step 2, test

- Test point $\mathbf{x} = \begin{bmatrix} 0 & 2 \end{bmatrix}^T$, by $f_i(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta}^i + \beta_0^i$, we have $f_1(\mathbf{x}) = -1.0783$, $f_2(\mathbf{x}) = 0.5545$, and $f_3(\mathbf{x}) = -2.2560$
- Assign $\begin{bmatrix} 0 & 2 \end{bmatrix}^T$ to class 2!

One-vs-One Approach

Steps:

- Solve $\binom{K}{2}$ different binary problems: classify class i as +1 versus each class $j \neq i$ as -1. Each classifier is called f_{ij}
- ② For prediction at a point, each classifier is queried once and issues a vote. The class with the maximum number of votes is the winner

Properties:

- Training process is efficient: small binary problems
- There are too many problems when K is large (If K=10, we need to train 45 binary classifiers)
- Simple to implement, performs competitively in practice

One-vs-One Example: Step 1, training

One-vs-One Example: Step 1, training...

One-vs-One Example: Step 2, test

- The same test point $\mathbf{x} = \begin{bmatrix} 0 & 2 \end{bmatrix}^T$:
 - $f_{12}(\mathbf{x}) = -0.7710 < 0$, vote to class 2
 - $f_{23}(\mathbf{x}) = 1.0336 > 0$, vote to class 2
 - $f_{13}(\mathbf{x}) = 0.7957 > 0$, vote to class 1
- Conclusion: class 2 wins!

Outline of Lecture

- Problem Statement
- 2 Warm Up: Linear/Logistic Regression
 - Linear Regression
 - Regression with Huberized Loss
 - Logistic Regression
- 3 Support Vector Machine (SVM)
 - Linearly Separable SVM
 - Linearly Nonseparable SVM
 - Nonlinear SVM
 - Multiclass Learning
- 4 Application: Multiclass Image Classification

Application: Histogram-based Image Classification

 Multiclass: air shows, bears, Arabian horses, night scenes, and several more classes not shown here

App: Histogram-based Image Multi-Classification, Modeling

Why not put image pixels into a vector? Drawbacks:

- large size
- lack of invariance with respect to translations

Histogram-based Image representation

- color space: Hue-Saturation-Value (HSV)
- ullet # of bins per color component =16
- $\mathbf{x} \in \mathbb{R}^{4096}$: histogram of the picture, dimension $=16^3=4096$
- $y \in \{airshows, bears, ...\}$: the class labels

App: Histogram-based Image Multi-Classification, SVM

Applied SVMs:

- linear SVM
- Poly 2: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$
- Radial basis function

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\rho d(\mathbf{x}_i, \mathbf{x}_j)}$$

where the distance measure $d\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)$ can be

- Gaussian: $d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i \mathbf{x}_j\|^2$
- Laplacian (ℓ_1 distance): $d\left(\mathbf{x}_i, \mathbf{x}_j\right) = |\mathbf{x}_i \mathbf{x}_j|$
- χ^2 : $d(\mathbf{x}_i, \mathbf{x}_j) = \sum_k \frac{\left(\mathbf{x}_i^{(k)} \mathbf{x}_j^{(k)}\right)^2}{\mathbf{x}_i^{(k)} + \mathbf{x}_j^{(k)}}$

App: Histogram-based Image Multi-Classification, Result

Criteria: error rate in percentage

Benchmark, K-nearest neighbor (KNN) method

Database	KNN ℓ_2	KNN χ^2	
Corel14	47.7	7 26.5	
Corel7	51.4	35.4	

SVM

Database	linear	Poly 2	Radial basis function		
			Gaussian	Laplacian	χ^2
Corel14	36.3	33.6	28.8	14.7	14.7
Corel7	42.7	38.9	32.2	20.5	21.6

For Further Reading

- Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The elements of statistical learning. Springer New York, 2009.
 - Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik, "Support vector machines for histogram-based image classification,"

 IEEE Transactions on Neural Networks. 10(5):1055–1044, 1999.

Thanks

For more information visit:

http://www.danielppalomar.com

