图像频域滤波

连续函数的傅里叶变换

$$F(u) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi ut} dt$$

$$F(u) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi ut}dt \qquad f(t) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ut}du$$

图像频域滤波

连续函数的傅里叶变换

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+uy)} dxdy$$

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+uy)} dudv$$

2D Guassian

图像频域滤波

卷积定理

$$f(t) * h(t) = \int_{-\infty}^{\infty} f(m)h(t-m)dm$$

 $f(t)*h(t) \Leftrightarrow F(u)H(u)$ $f(t)h(t) \Leftrightarrow F(u) * H(u)$

 $f(x, y) * h(x, y) \Leftrightarrow F(u, v)H(u, v)$ $f(x, y)h(x, y) \Leftrightarrow F(u, v) * H(u, v)$

卷积定理是频域滤波的基础

图像频域滤波

离散傅里叶变换

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{-j2\pi ux/M}, u = 0, 1, 2, ...M - 1$$

$$f(x) = \sum_{n=0}^{M-1} F(u)e^{j2\pi ux/M}, x = 0,1,2,...M-1$$

扩展到二维时,一个图像尺寸为M×N的函数f(x,y)的二维DFT:

$$F(u,v) = \sum_{v=0}^{M-1} \sum_{v=0}^{N-1} f(x,y) e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})}$$

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{M-1} F(u,v) e^{j2\pi (\frac{ux}{M} + \frac{vy}{N})} \quad \text{x=0,1...M-1}; \quad \text{y=0,1...N-1}$$

图像频域滤波

Shenzhen.bmp + noise

离散傅里叶变换的性质

二维DFT的傅立叶谱、相角、功率谱

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

$$\phi(u, v) = \arctan \frac{I(u, v)}{R(u, v)}$$

$$P(u,v) = |F(u,v)|^2 = R^2(u,v) + I^2(u,v)$$

$$F(0,0) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)$$

原点处的傅立叶变换等于 图像的平均灰度级.

图像频域滤波

对称性
$$F(u,v) = F^*(-u,-v)$$
 若f(x,y)是实函数

周期性
$$F(u,v) = F(u+M,v) = F(u,v+N) = F(u+M,v+N)$$

 $f(x,y) = f(x+M,y) = f(x,y+N) = f(x+M,y+N)$

DFT在u, v方向都是周期无穷的,周期由M, N决定 傅里叶逆变换得到的图像也是周期无穷的 DFT实现仅计算一个周期(仅处理M x N的数组)

图像频域滤波

平移性

$$f(x,y)e^{j2\pi\left(\frac{u_0x}{M}+\frac{v_0y}{N}\right)} \Leftrightarrow F(u-u_0,v-v_0)$$

$$f(x-x_0,y-y_0) \Leftrightarrow F(u,v)e^{-j2\pi(u_0x/M+v_0y/N)}$$

当
$$u_0=M/2, v_0=N/2$$
时,有:
$$e^{j2\pi(u_0x/M+v_0y/N)}=e^{j\pi(x+y)}=(-1)^{x+y}$$

因此可以得到:

$$f(x,y)(-1)^{x+y} \Leftrightarrow F(u-M/2,v-N/2)$$

$$f(x-M/2,y-N/2) \Leftrightarrow F(u,v)(-1)^{(u+v)}$$

图像频域滤波

分配律 $\Psi[f_1(x,y) + f_2(x,y)] = \Psi[f_1(x,y)] + \Psi[f_2(x,y)]$

 $\Psi[f_1(x,y)\cdot f_2(x,y)]\neq \Psi[f_1(x,y)]\cdot \Psi[f_2(x,y)]$

可分离性
$$F(u,v) = \sum_{\substack{x=0 \ M-1}}^{M-1} e^{-j2\pi ux/M} \frac{1}{N} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi vy/N}$$

$$= \sum_{x=0}^{M-1} F(x,v) e^{-j2\pi ux/M}$$
其中 $F(x,v) = \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi vy/N}$

其中
$$F(x,v) = \sum_{y=0}^{N-1} f(x,y)e^{-j2\pi vy/N}$$

图像频域滤波

卷积定理
$$f(x,y)*h(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) h(x-m,y-n)$$

 $f(x,y)*h(x,y) \Leftrightarrow F(u,v)H(u,v)$

 $f(x,y)h(x,y) \Leftrightarrow F(u,v) * H(u,v)$

图像频域滤波

Numpy 函数

f = np.fft.fft2(img)

fshift = np.fft.fftshift(f)

f1shift = np.fft.ifftshift(fshift)

img_back = np.fft.ifft2(f1shift)

频率增强原理

频率域平滑 (低通) 滤波器

频率域锐化(高通)滤波器

频率带通滤波器

频率带阻滤波器

图像频域滤波

卷积理论是频域技术的基础

设 g(x,y) = h(x,y) * f(x,y), 那么根据卷积定理在频域有:

G(u,v) = H(u,v)F(u,v)

其中G(u, v), H(u, v), F(u, v)分别是g(x, y), h(x, y), f(x, y)的傅里叶变换。

图像频域滤波

频率增强原理

$$g(x,y) = T^{-1} \{\, E_{\rm H} \, [\, T[\, f(x,y)\,]\,]\, \}$$

步骤:

- (1) 转换到频域
- (2) 在频域增强, 滤波
- (3) 转换回空域

图像频域滤波

低通滤波器

理想低通滤波器

$$H(u,v) = \begin{cases} 1 & D(u,v) \le D_0 \\ 0 & D(u,v) > D_0 \end{cases}$$

在半径为 D_0 的圆内,所有频率没有衰减地通过滤波器, 而在此半径的圆之外的所有 频率被完全衰减掉。

$$D(u,v) = [(u-M/2)^2 + (v-N/2)^2]^{1/2}$$

图像频域滤波

低通滤波器

如何确定滤波器的截止频率? 计算包含图像总功率值P₇特定量的圆环。

原点在频率域矩形的中心、半径为r的圆包含的功率占总功率 P_{τ} 的百分数为:

$$\alpha\% = 100 \sum \sum P(u, v) / P_T$$

根据对保留能量的要求来确定滤波器的截止频率

图像频域滤波

低通滤波器

(a)原图像,(b)-(f)分别用半径值为5,15,30,80和230的截止频率进行理想低通滤波的结果.

由这些滤波器滤去除的功率占总功率的8%, 5.4%, 3.6%, 2%和0.5%.

18

低通滤波器

高斯低通滤波器 $H(u,v) = e^{-D^2(u,v)/2\sigma^2}$

D(u,v)是距傅立叶变换原点的距离, σ 表示高斯曲线的扩散程度。 若使 $\sigma=D_0$,则可表示为: $H(u,v)=e^{-D^2(u,v)/2D_0^2}$

其中, Do 是截止频率.

高斯曲线的傅立叶反 变换也是高斯曲线

图像频域滤波

低通滤波器

(a)原图像 (b)-(f)用高斯低通滤波器滤波的结果.其截止频率半径分别为5,15,30,80和230.

图像频域滤波

高通滤波器

 $H_{hp}(u,v) = 1 - H_{lp}(u,v)$ 其中, $H_{hr}(u,v)$ 是相应低通滤波器的传递函数.

图像频域滤波

图像频域滤波

图像频域滤波

图像频域滤波	图像频域滤波
25	26
图像频域滤波	图像频域滤波