Fall 2021 ECE30017 Problem Solving through Computational Thinking

# Week 2

C1. Task Force

Deadline: 11:59 PM, 10 Septeber (Fri)

P2. Hospital Construction

Deadline: 11:59 AM, 14 Septeber (Tue)

# CI. Task Force

The marine corps wants to form a special task-force team for a critical mission. The team members are selected from their soldiers. The marine corps made the following member selection rule for a strong fellowship among the team members:

Every member of the special force team has at least k friends in the special force team.

Given the friendship relations between the soldiers, write a program that finds the maximum size of the special task-force team that satisfies this rule.

(Continued)



For example, suppose that there are 5 soldiers and their friendship relations are represented as a graph shown above. In the graph, a node represents a solider and an edge represents the friendship between a pair of soldiers. For k = 2, there are 3 teams that satisfy the rule, that is,  $\{2,3,4\}$ ,  $\{2,4,5\}$  and  $\{2,3,4,5\}$ . Hence, the answer is 4, which is the maximum number of team members over all possible teams satisfying the rule.

For k is 3, there is no teams that satisfy the rule. (Continued)

#### Requirements

#### **Input Data**

- The first line from the standard input has three integers n, k and f, where n is the number of soldiers, k is the minimum number of friends that a soldier has to have in order to join the team, and f is the total number of friendship relations, for  $1 \le k < n \le 2000$  and  $1 \le f \le \frac{n(n-1)}{2}$ . The soldiers have IDs from 1 to n.
- Each of the next f lines contains two integers that represent the IDs of two soldiers who are in a friendship.

#### **Output Data**

- Your program should print out the maximum size (an integer) of the special task-force team to the standard output.
- If there are no teams that satisfy the rule, print out 0 to the standard output.
- Your program should return the result within 0.5 seconds.

(Continued)

## **Examples of test data**

## Input data 1

| 5 2 6<br>1 2<br>3 2 |  |  |
|---------------------|--|--|
| 3 4<br>4 5          |  |  |
| 5 2 2 4             |  |  |

## Output data 1



## Input data 2

| 5 3 6 |  |
|-------|--|
|       |  |
| 1 2   |  |
| 3 2   |  |
| 5 2   |  |
| 3 4   |  |
|       |  |
| 4 5   |  |
|       |  |
| 5 2   |  |
|       |  |
| 2 4   |  |
| 1     |  |

## Output data 2

0

# Team for CI

- Team members must work together for writing a report
  - scores on report and presentation will be shared
  - peer evaluation will be followed
- Each member must construct a solution program individually
  - Team members must not share their program code

| 101 | 이인석 | 이찬효 |
|-----|-----|-----|
| 102 | 정성목 | 권혁찬 |
| 103 | 박건희 | 양희찬 |
| 104 | 이혜림 | 차경민 |
| 105 | 박은찬 | 홍순규 |
| 106 | 안제현 | 전영우 |
| 107 | 이수아 | 김영표 |
| 108 | 최시령 | 남진우 |
| 109 | 강석운 | 김해린 |
| 110 | 강동인 | 윤보영 |

# P2. Hospital Construction



#### **Problem description**

- There is a city where n buildings stand along a highway for  $1 \le n \le 10,000,000$ . The  $i^{\text{th}}$  building stands at point  $x_i$  on the highway for  $0 \le x_i < 10,000,000,000$  and there are  $g_i$  people staying in the  $i^{\text{th}}$  building for  $1 \le g_i \le 10,000$ .
- There is no hospital along this highway. Thus, the city government is going to construct a hospital for the people staying in the buildings along the highway. A building **is within a walking distance** from the hospital if the distance between the building and the hospital is less than or equal to k points for  $1 \le k \le 2,000,000$ .
- The city government wants to locate the hospital at a point along a highway such that as many people as possible are within the walking distance from the hospital.
- Write a program that finds the number of people staying in the walking distance when the hospital is constructed at a such point. (continued)

# P2. Hospital Construction

#### Requirements

- First two numbers given from the input are n and k. After that, n lines are given where  $i^{th}$  line has two numbers  $g_i$  and  $x_i$ .
- Your program should print out one number (i.e., the maximum number of people staying in walking distance from the hospital) within 0.5 second.
- The hospital could be built on the top of a building.

#### **Examples of input data and output**

# Input 4 3 4 7 10 15 2 2 5 1

### Output

