A/B Testing Project

Dataset - https://www.kaggle.com/datasets/zhangluyuan/ab-testing/code?select=ab_data.csv

Reference Course - https://www.udacity.com/course/ab-testing--ud257

Disclaimer - This is just to showcase some skill, the dataset needs more features to make better explainable conclusions.

1. Experiment Introduction and Hypothesis Testing

The aim is to formulate and test the hypothesis for comparing the conversion rate between Old web page vs New web page.

Two Tailed test:

```
H_0: p = p_0
```

 $H_{\alpha}: p \neq p_0$

At confidence interval of 95% - α = 0.05

2. Data and Preprocessing

```
import pandas as pd
import numpy as np
```

Import Data

```
df = pd.read_csv('ab_data.csv')
```

Independent Variables: -

Control Group is shown Old web page.

Treatment Group is shown New web page.

Dependent Variable: -

Converted (0 or 1) represents a buy or click.

```
0
2
   661590 2017-01-11 16:55:06.154213 treatment
                                                      new_page
0
3
   853541 2017-01-08 18:28:03.143765 treatment
                                                      new page
0
4
   864975 2017-01-21 01:52:26.210827
                                                      old page
                                          control
1
df.shape
(294478, 5)
```

Check for null values and data type

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 294478 entries, 0 to 294477
Data columns (total 5 columns):
#
     Column
                   Non-Null Count
                                     Dtype
 0
     user id
                   294478 non-null
                                     int64
 1
                   294478 non-null
     timestamp
                                     object
2
     group
                   294478 non-null
                                     object
 3
                   294478 non-null
     landing page
                                     object
 4
                   294478 non-null
     converted
                                     int64
dtypes: int64(2), object(3)
memory usage: 11.2+ MB
```

Data Description

```
df.describe()
             user id
                           converted
       294478.000000
count
                       294478.000000
       787974.124733
                            0.119659
mean
        91210.823776
                            0.324563
std
       630000.000000
                            0.000000
min
25%
       709032.250000
                            0.000000
50%
       787933.500000
                            0.000000
75%
       866911.750000
                            0.000000
       945999.000000
                            1.000000
max
pd.crosstab(df['group'], df['landing page'])
landing_page new_page old_page
group
                   1928
                           145274
control
treatment
                145311
                             1965
df.converted.mean()
```

0.11965919355605512

Check for duplicate user_id

```
session_counts = df['user_id'].value_counts(ascending=False)
multi_users = session_counts[session_counts > 1].count()

print(f'There are {multi_users} users that appear multiple times in the dataset')

There are 3894 users that appear multiple times in the dataset
```

Remove duplicate user_id

```
users_to_drop = session_counts[session_counts > 1].index

df = df[~df['user_id'].isin(users_to_drop)]
print(f'The updated dataset now has {df.shape[0]} entries')

The updated dataset now has 286690 entries
```

Re-check for duplicate user_id

```
df[df.user_id.duplicated(keep=False)]

Empty DataFrame
Columns: [user_id, timestamp, group, landing_page, converted]
Index: []
```

Assumptions to calculate sample size: -

Lets Assume the baseline conversion rate is 11% based on the past data and through the experiment the organization is aiming for 14% conversation rate.

The function sms.proportion_effectsize(0.11, 0.14) is calculating the effect size based on a proportion for two independent samples, in this case with proportions of 0.11 and 0.14.

The function sms.NormalIndPower().solve_power(effect_size, power=0.8, alpha=0.05, ratio=1) is used to calculate the sample size required for the study. Here power=0.8 and alpha=0.05 are the statistical power and significance level used for the calculation, respectively, and ratio=1 indicates that the sample sizes for the two groups are equal.

In the context of hypothesis testing in statistics, power is the probability that a test correctly rejects the null hypothesis when the alternative hypothesis is true. The power of a statistical test is generally defined as $1 - \beta$, where β is the probability of Type II error.

Type II error occurs when the null hypothesis is false, but we fail to reject it. So, the power of a test is essentially the test's ability to detect an effect if there is one.

Finally, required_n = ceil(required_n) rounds up the number to ensure it is a whole number, since we can't have a fraction of a sample.

```
import statsmodels.stats.api as sms
from math import ceil
effect size = sms.proportion effectsize(0.11, 0.14) # Calculating
effect size based on our expected rates
required n = sms.NormalIndPower().solve power(
    effect size,
    power=0.8,
    alpha=0.05,
    ratio=1
                                                        # Calculating
sample size needed
required n = ceil(required n)
                                                        # Rounding up
to next whole number
print(required n)
1902
```

Sample Collection from both Control Group and Treatment Group

```
control sample = df[df['group'] == 'control'].sample(n=required n,
random state=22)
treatment sample = df[df['group'] == 'treatment'].sample(n=required n,
random state=22)
ab test = pd.concat([control sample, treatment sample], axis=0)
ab test.reset index(drop=True, inplace=True)
ab test.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3804 entries, 0 to 3803
Data columns (total 5 columns):
                   Non-Null Count
#
     Column
                                   Dtype
- - -
                                   _ _ _ _ _
    user id
                   3804 non-null
                                   int64
0
    timestamp 3804 non-null group 3804 non-null
1
                                   object
2
                  3804 non-null
                                   object
     group
3
    landing_page 3804 non-null
                                   obiect
     converted 3804 non-null int64
dtypes: int64(2), object(3)
memory usage: 148.7+ KB
ab_test['group'].value_counts()
control
             1902
             1902
treatment
Name: group, dtype: int64
```

Mean and Standard Deviation of Control Group and Treatment Group

```
import scipy.stats as stats

conversion_rates = ab_test.groupby('group')['converted']

std_p = lambda x: np.std(x, ddof=0)  # Std. deviation of the proportion
se_p = lambda x: stats.sem(x, ddof=0)  # Std. error of the proportion (std / sqrt(n))

conversion_rates = conversion_rates.agg([np.mean, std_p, se_p]) conversion_rates.columns = ['conversion_rate', 'std_deviation', 'std_error']

conversion_rates.style.format('{:.3f}')

<pandas.io.formats.style.Styler at 0x25c4c2005b0>
```

The Mean and Standard Deviation of Control Group and Treatment Group are fairly close indicating not much of significance difference between groups even before test.

3. Plot of Connversion for Control Group and Treatment Group

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(8,6))

sns.barplot(x=ab_test['group'], y=ab_test['converted'], ci=False)

plt.ylim(0, 0.17)
plt.title('Conversion rate by group', pad=20)
plt.xlabel('Group', labelpad=15)
plt.ylabel('Converted (proportion)', labelpad=15);

C:\Users\achal\AppData\Local\Temp\ipykernel_10568\3362076549.py:6:
FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', False)` for the same effect.

sns.barplot(x=ab_test['group'], y=ab_test['converted'], ci=False)
```

Conversion rate by group

4. Testing the Hypothesis: -

The goal is to determine if the proportion of successes (conversions) is significantly different between the two groups. The test statistic is a Z-score (Z-stat).

The two-proportion Z-test is used when you have two samples and you want to see if the success rates are significantly different from each other.

At other times, a binomial test may be used when you have one sample and you want to compare the observed success rate to a hypothesized success rate.

```
from statsmodels.stats.proportion import proportions_ztest,
proportion_confint

control_results = ab_test[ab_test['group'] == 'control']['converted']
treatment_results = ab_test[ab_test['group'] == 'treatment']
['converted']

n_con = control_results.count()
```

```
n_treat = treatment_results.count()
successes = [control_results.sum(), treatment_results.sum()]
nobs = [n_con, n_treat]

z_stat, pval = proportions_ztest(successes, nobs=nobs)
(lower_con, lower_treat), (upper_con, upper_treat) =
proportion_confint(successes, nobs=nobs, alpha=0.05)

print(f'z statistic: {z_stat:.2f}')
print(f'p-value: {pval:.3f}')
print(f'ci 95% for control group: [{lower_con:.3f}, {upper_con:.3f}]')
print(f'ci 95% for treatment group: [{lower_treat:.3f},
{upper_treat:.3f}]')

z statistic: 0.50
p-value: 0.619
ci 95% for control group: [0.109, 0.138]
ci 95% for treatment group: [0.104, 0.133]
```

5. Conclusions: -

For a two-tailed test at a 95% confidence level (significance level of α = 0.05), the critical Z values are approximately -1.96 and +1.96. suggesting that the result is not statistically significant at the 95% confidence level and fails to reject the null hypothesis.

The p-value of 0.619 > 0.05 and thus, insignificant to reject null hypothesis H_0 .

The confidence values of treatment group are not approaching to 14% aim expectation.

The confidence values of treatment group does not show increment compared to control group instead has only slightly decreased.

Thank you