§6. Сравнение бесконечно малых функций. Символ "o" и его свойства

Пусть функции $\alpha(x)$ и $\beta(x)$ являются бесконечно малыми при $x \to a$.

Определение 6.1. Если существует $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = C \neq 0, \infty$, то $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного порядка при $x \to a$.

Пример 6.1. Показать, что функции $\sin^2 2x$ и x^2 — бесконечно малые одного порядка при $x \rightarrow 0$.

► Поскольку $\lim_{x\to 0} \frac{\sin^2 2x}{x^2} = \lim_{x\to 0} \left(\frac{\sin 2x}{2x}\right)^2 \cdot 4 = 4 \neq 0, \infty$, то по определению 6.1 заключаем, что $\sin^2 2x$ и x^2 величины одного порядка при $x\to 0$.

Определение 6.2. Если существует $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = 0$, то $\alpha(x)$ называется величиной более высокого порядка малости, чем $\beta(x)$ при $x\to a$.

Обозначение: $\alpha(x) = o(\beta(x))$ при $x \rightarrow a$ ($\alpha(x)$ есть "o" малое от $\beta(x)$).

Так, $\sin^2 2x$ имеет более высокий порядок малости, чем x при $x \to 0$ (или $\sin^2 2x = o(x)$ при $x \to 0$), поскольку $\lim_{x \to 0} \frac{\sin^2 2x}{x} = \lim_{x \to 0} \left(\frac{\sin 2x}{2x} \right)^2 \cdot 4x = 0$.

Свойства символа "о"

Пусть $\beta(x) \rightarrow 0$ при $x \rightarrow a$.

1.
$$o(\beta) \pm o(\beta) = o(\beta)$$
.

2.
$$o(c\beta) = o(\beta)$$
, $co(\beta) = o(\beta)$ и $o(c\beta + o(\beta)) = o(\beta)$ для $\forall c \neq 0$.

3.
$$(o(\beta))^n = o(\beta^n)$$
 и $\beta^n o(\beta) = o(\beta^{n+1})$ при $\forall n \in \mathbb{N}$.

▶1.
$$\lim_{x\to a} \frac{o(\beta) \pm o(\beta)}{\beta(x)} = \lim_{x\to a} \left(\frac{o(\beta)}{\beta(x)} \pm \frac{o(\beta)}{\beta(x)} \right) = \lim_{x\to a} \frac{o(\beta)}{\beta(x)} \pm \lim_{x\to a} \frac{o(\beta)}{\beta(x)} = 0 + 0 = 0$$
, отсюда,

в силу определения 6.2, следует доказываемое равенство.

2.

$$\lim_{x \to a} \frac{o(c\beta)}{\beta(x)} = \lim_{x \to a} \frac{co(c\beta)}{c\beta(x)} = c \lim_{x \to a} \frac{o(c\beta)}{c\beta(x)} = c \cdot 0 = 0, \lim_{x \to a} \frac{co(\beta)}{\beta(x)} = c \lim_{x \to a} \frac{o(\beta)}{\beta(x)} = c \cdot 0 = 0,$$

отсюда следуют первые два из доказываемых равенств (определение 6.2);

$$\lim_{x \to a} \frac{o(c\beta + o(\beta))}{\beta(x)} = \lim_{x \to a} \frac{o(c\beta + o(\beta))}{c\beta + o(\beta)}$$

$$\cdot \frac{c\beta + o(\beta)}{\beta(x)} = \lim_{x \to a} \frac{o(c\beta + o(\beta))}{c\beta + o(\beta)} \cdot \left(c + \frac{o(\beta)}{\beta(x)}\right) = 0 \cdot (c + 0) = 0, \text{ отсюда следует третье из}$$

доказываемых равенств.

3.
$$\lim_{x\to a}\frac{(o(\beta))^n}{\beta^n(x)}=\lim_{x\to a}\left(\frac{(o(\beta)}{\beta(x)}\right)^n=0$$
, $\lim_{x\to a}\frac{\beta^n o(\beta)}{\beta^{n+1}(x)}=\lim_{x\to a}\frac{o(\beta)}{\beta(x)}=0$, отсюда, в силу

упомянутого определения, следуют доказываемые равенства. ◀

Так, для $\beta(x) = x \to 0$ имеем равенства: 1) $o(x) \pm o(x) = o(x)$; 2) o(2x) = o(x), 2o(x) = o(x) и o(2x + o(x)) = o(x); 3) $(o(x))^3 = o(x^3)$ и $x^3o(x) = o(x^4)$.

Замечание 6.1. Если $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = \infty$, то по теореме 4.2 $\lim_{x\to a} \frac{\beta(x)}{\alpha(x)} = 0$. Тогда $\beta(x) = o(\alpha(x))$ при $x\to a$ (определение 6.2).

Определение 6.3. Если не существует $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)}$, то бесконечно малые $\alpha(x)$ и $\beta(x)$ называются несравнимыми при $x \to a$.

Так, бесконечно малые $\alpha(x) = x \sin(1/x)$ и $\beta(x) = x$ несравнимы при $x \rightarrow 0$,

поскольку
$$\frac{\alpha(x)}{\beta(x)} = \frac{x\sin(1/x)}{x} = \sin\frac{1}{x}$$
, a $\lim_{x\to 0} \sin\frac{1}{x}$ не существует (пример 1.3).

Замечание 6.2. Сравнить две бесконечно малые функции — значит, установить, что они являются бесконечно малыми одного порядка, или что одна из них более высокого порядка, чем другая, или что они несравнимы. При этом вычисляется предел отношения данных функций в случае, если он существует.

Пример 6.2. Сравнить бесконечно малые $\alpha(x) = e^{x^2 - 2x} - e^{-1}$, $\beta(x) = x - 1$, $x \to 1$.

 $\lim_{x \to 1} \frac{e^{(x-1)^2} - 1}{(x-1)^2} = 1, \quad \text{поэтому} \quad \lim_{x \to 1} \frac{\alpha(x)}{\beta(x)} = 0 \quad \text{и} \quad \alpha(x) = o(\beta(x)) \quad \text{при} \quad x \to 1$ (определение 6.2). \blacktriangleleft

Определение 6.4. Бесконечно малая $\alpha(x)$ называется бесконечно малой k-го порядка по отношению к бесконечно малой $\beta(x)$ при $x \to a$, если существует $\lim_{x \to a} \frac{\alpha(x)}{\beta^k(x)} = C \neq 0, \infty$.

Например, функция $\alpha(x) = \sin^2 2x$ имеет 2-ой порядок малости относительно $\beta(x) = x$ (k=2) при $x \to 0$, ибо $\lim_{x \to 0} \frac{\alpha(x)}{\beta^2(x)} = \lim_{x \to 0} \frac{\sin^2 2x}{x^2} = 4 \neq 0$, ∞ (пример 6.1).

Пример 6.3. Определить порядок бесконечно малой $\alpha(x) = \ln(x^3 - 3x^2 + 3x)$ относительно бесконечно малой $\beta(x) = x - 1$ при $x \to 1$.

Посколь-ку $\lim_{x \to 1} \frac{\ln((x-1)^3+1)}{(x-1)^3} = 1$, то $\lim_{x \to 1} \frac{\alpha(x)}{\beta^k(x)} = \lim_{x \to 1} \frac{(x-1)^3}{(x-1)^k} = 1 \neq 0$, ∞ при

k=3. Поэтому порядок малости $\alpha(x)$ относительно $\beta(x)$ при x → 1 равен 3. ◀