Aufgabe 1. (2 Punkte) Man bestimme alle \mathbb{R} -linearen Abbildungen $\mathbb{R} \to \mathbb{R}$.

Aufgabe 2. (2 Punkte) Es sei $f\colon U\to V$ eine lineare Abbildung und $T\subset U$ eine Teilmenge. Man zeige:

$$\langle f(T) \rangle = f(\langle T \rangle).$$

Aufgabe 3. (3 Punkte) Es sei $f: \mathbb{R}^3 \to \mathbb{R}^2$ die durch $(x, y, z) \mapsto (x + y + z, y + 2z)$ definierte lineare Abbildung. Man bestimme ker f und zeige, dass f surjektiv ist.

Aufgabe 4. (3 Punkte) Es seien V, W endlich-dimensionale k-Vektorräume und $f: V \to W$ eine surjektive lineare Abbildung. Man zeige $W \oplus \ker f \simeq V$.

- * Aufgabe 5. (5 Punkte) Es sei V ein k-Vektorraum. Ein Endomorphismus $f \in \operatorname{Hom}_k(V,V)$ heißt idempotent, falls die Gleichung $f \circ f = f$ gilt.
 - (i) Es sei f ein idempotenter Endomorphismus. Man zeige $\ker f \oplus \operatorname{im} f = V$.
 - (ii) Es sei $I \subset \operatorname{Hom}_k(V,V)$ die Teilmenge der idempotenten Endomorphismen. Es sei $S \subset \mathfrak{P}(V) \times \mathfrak{P}(V)$ die Teilmenge der Paare von Unterräume (U,W) sodass $U \oplus W = V$. Man zeige: die durch $f \mapsto (\ker f, \operatorname{im} f)$ definierte Abbildung $I \to S$ ist bijektiv.
- * Aufgabe 6. (5 Punkte) Der Dualraum $\operatorname{Hom}_k(W,k)$ eines k-Vektorraumes W wird mit W^* bezeichnet. Es sei V ein k-Vektorraum. Man betrachte die durch $\chi(v)(\varphi) = \varphi(v)$ definierte Abbildung $\chi \colon V \to (V^*)^*$ (d.h. für jedes $v \in V$ ist $\chi(v)$ eine lineare Abbildung $V^* \to k$, welche durch $\varphi \mapsto \varphi(v)$ definiert ist).

Man zeige:

- (i) Die Abbildung χ ist injektiv.
- (ii) Die Abbildung χ ist genau dann surjektiv, wenn V endlich-dimensional ist.