Math 104 Worksheet 12

UC Berkeley, Summer 2021 Thursday, July 22

Let X and Y be two sets, and let $f: X \to Y$, let $E \subseteq X$, and let $A, B \subseteq Y$.

Exercise 1. Prove the following assertions.

(a)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Proof. $x \in f^{-1}(A \cap B) \iff f(x) \in A \cap B \iff f(x) \in A \text{ and } f(x) \in B \iff x \in f^{-1}(A) \text{ and } x \in f^{-1}(B) \iff x \in f^{-1}(A) \cap f^{-1}(B).$

(b)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
.

(c)
$$f^{-1}(A^c) = (f^{-1}(A))^c$$
.

(d)
$$f^{-1}(A) \subseteq f^{-1}(B)$$
 if $A \subseteq B$.

(e)
$$E \subseteq f^{-1}(f(E))$$

(f) Find a counterexample to show that the statement $E = f^{-1}(f(E))$ is not always true.

Let (X, d_X) and (Y, d_Y) be two metric spaces, and let $f: X \to Y$. The following are three definitions of continuity at a point $x_0 \in X$.

- 1. (ε - δ definition) For any $\varepsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \varepsilon$ whenever $x \in X$ and $d_X(x, x_0) < \delta$.
- 2. (sequential definition) For any sequence (x_n) in X converging to x_0 , the sequence $f(x_n)$ converges to $f(x_0)$.
- 3. (topological definition) For any open set U in Y such that $f(x_0) \in U$, there exists an open set V in X such that $x_0 \in V \subseteq f^{-1}(U)$.

Theorem. The three definitions above are equivalent.

Exercise 2. Prove the preceding theorem.

(a) Prove $(2) \Rightarrow (1)$.

(b) Prove $(1) \Rightarrow (3)$.

(c) Prove $(3) \Rightarrow (2)$.

Exercise 3. Using the topological definition of continuity at a point, prove that f is continuous (on its domain) if and only if $f^{-1}(U)$ is open in X for every open set U in Y. (A function is continuous if and only if the preimage of every open set is open.)