

<u>Gameboard</u>

Physics

Fields Gravitational Fields

Essential Pre-Uni Physics F6.4

Essential Pre-Uni Physics F6.4

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

Mass of Earth = $5.98 \times 10^{24} \, \mathrm{kg}$

Radius of Earth = $6400\,\mathrm{km}$

The Moon's orbit round the Earth has a radius of $3.8 \times 10^8 \, \mathrm{m}$. Calculate the Moon's speed in its orbit.

<u>Gameboard</u>

Physics

Fields Gravitational Fields

Essential Pre-Uni Physics F6.5

Essential Pre-Uni Physics F6.5

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

Mass of Earth = $5.98 \times 10^{24} \, \mathrm{kg}$

Radius of Earth = $6400 \, \mathrm{km}$

Part A Orbiting the Earth

If you want something to orbit the Earth at a height of $200\,\mathrm{km}$ above the surface, at what speed must it travel? Give your answer to 3 significant figures.

Part B Time period

What is the time period of the orbit in Part A? Give your answer to 3 significant figures.

Gameboard:

STEM SMART Physics 41 - School of Fields - Orbits

<u>Gameboard</u>

Physics

Fields

Gravitational Fields

Essential Pre-Uni Physics F6.6

Essential Pre-Uni Physics F6.6

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

Mass of Earth = $5.98 \times 10^{24} \, \mathrm{kg}$

Radius of Earth = $6400 \, \mathrm{km}$

Part A Kepler's Third Law

Starting from $F = \frac{GMm}{r^2}$ and $F = \frac{mv^2}{r}$, derive Kepler's 3rd Law relating the radius of an orbit r to the mass of the planet M and the orbital speed v.

Give your answer in a form where r is on the left hand side of the equation and all other terms are on the right hand side.

The following symbols may be useful: G, M, pi, r, v

Part B Time period

Repeat the question, but this time to relate r and M to the time period T.

Gameboard:

STEM SMART Physics 41 - School of Fields - Orbits

<u>Home</u> <u>Gameboard</u> Physics Mechanics Circular Motion Orbits 26.3

Orbits 26.3

Calculate the radius of the Moon's orbit around the Earth given that Moon takes approximately 27 days to orbit the Earth and the mass of the Earth is $6.0 \times 10^{24} \, \mathrm{kg}$.

Gameboard:

STEM SMART Physics 41 - School of Fields - Orbits

Home Gameboard Physics Mechanics Circular Motion Orbits 26.5

Orbits 26.5

Calculate the orbital period of Jupiter in units of Earth years given that the mass of the Sun, $M=2.0\times 10^{30}~{\rm kg}$, the mass of Jupiter, $m=1.9\times 10^{27}~{\rm kg}$ and the average radius of Jupiter's orbit around the sun is $R=7.8\times 10^8~{\rm km}$.

Gameboard:

STEM SMART Physics 41 - School of Fields - Orbits

Home Gameboard Physics Mechanics Circular Motion Orbits 26.7

Orbits 26.7

61 Cygni is a wide binary star system. It contains two stars of nearly equal mass which orbit once around their mid point every $659\,\mathrm{years}$. They are $1.26\times10^{13}\,\mathrm{m}$ apart. Assuming that the two stars have equal mass, calculate:

Part A Speed the speed of the stars.

Part B Total mass

the total mass of the system.

Gameboard:

STEM SMART Physics 41 - School of Fields - Orbits

<u>Home</u> <u>Gameboard</u> Physics Mechanics Circular Motion Orbits 26.2

Orbits 26.2

A positron of charge +q and mass m enters a magnetic field B travelling at a speed v perpendicular to the direction of the magnetic field.

Part A	Radius of orbit
Dei	rive an expression for r in terms of q,B,m and $v.$
The	following symbols may be useful: B, m, q, r, v

Part B From positron to proton

If we now change the particle from a positron to a proton, keeping the magnetic field and the velocity of the particle the same, what would happen? Complete the sentence below.

The proton will move in a		with			
Items:					
circular non-circular	straight orbit	line a smaller	a larger	the same	varying

Gameboard:

STEM SMART Physics 41 - School of Fields - Orbits

Home Gameboard Physics Mechanics Circular Motion Orbits 26.9

Orbits 26.9

In a particle accelerator protons are accelerated in the +x-direction until they have a velocity of $v=6.5\times 10^6\,\mathrm{m\,s^{-1}}$. They then pass into a magnetic field of strength $0.1\,\mathrm{T}$ that is oriented in the +y-direction.

Part A Direction of motion

are A Brection of motion
In which direction do the protons accelerate when they first enter the magnetic field?
$\bigcirc +x$ direction
$igcup_{-x}$ direction
$igcup_{+y}$ direction
$\bigcirc -y$ direction
-+z direction
-z direction
art B Radius
What is the radius of the orbital path that the protons take?

Gameboard:

STEM SMART Physics 41 - School of Fields - Orbits

<u>Gameboard</u>

Physics

Fields Magnetic Fields

Essential Pre-Uni Physics H6.4

Essential Pre-Uni Physics H6.4

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

Part A Momentum of a muon

Work out the momentum of a muon (same charge as an electron, but mass $=207 \times \ \mathrm{electron\ mass})$ taking a curved path with a $90\,\mathrm{cm}$ radius perpendicular to a $0.0076\,\mathrm{T}$ magnetic field.

Part B Momentum of an electron

Work out the momentum of an electron which would take the same path in the same field as question H6.4.