LINEAR PROGRAMMING

MATTHEW GREENBERG

1. Separation

Theorem 1.1. Let S be a closed, convex subset of \mathbb{R}^n , let $x \in \mathbb{R}^n \setminus S$, and let $y^* \in S$ be the point closest to x. Then

$$(x - y^*) \cdot (y - y^*) \le 0$$

for all $y \in S$.

Proof. Let $y \in S$. The result clearly holds if $y = y^*$, so assume that $y \neq y^*$. Suppose, for the purpose of getting a contradition, that

$$(x - y^*) \cdot (y - y^*) > 0.$$

Let L be the line through y^* and y and let z be the point on L closest to x:

$$z = (1-t)y^* + ty$$
, where $t = \frac{(x-y^*) \cdot (y-y^*)}{\|y-y^*\|^2} > 0$.

By the law of cosines,

$$||x - y||^2 = ||x - y^*||^2 + ||y^* - y||^2 - 2(x - y^*)^T (y - y^*)$$

$$= ||x - y^*||^2 + ||y^* - y||^2 - 2t||y - y^*||^2$$

$$= ||x - y^*||^2 + (1 - 2t)||y^* - y||^2.$$

Therefore,

$$1 - 2t = \frac{\|x - y\|^2 - \|x - y^*\|^2}{\|y^* - y\|} > 0$$

as $||x - y^*|| < ||x - y||$, and it follows that

$$0 < t < \frac{1}{2}$$
.

Therefore, $z \in (y^*, y) \subseteq S$. By the Pythagorean theorem,

$$||x - z||^2 < ||x - z||^2 + ||z - y^*||^2 = ||x - y^*||^2,$$

contradicting the minimality of $||x - y^*||$.

Date: May 4, 2022.

Corollary 1.2. Let S be a closed, convex subset of \mathbb{R}^n and let $x \in \mathbb{R}^n \setminus S$. Then there is a vector $a \in \mathbb{R}^n$ such that

$$a \cdot x > a \cdot y$$
 for all $y \in S$.

Proof. Let $y^* \in S$ be the point of S closest to x and take $a = x - y^*$. \square

Exercise: Let S be a convex subset of \mathbb{R}^n . Prove that int $\bar{S} = \text{int } S$. In particular, $S = \mathbb{R}^n$ if and only if $\bar{S} = \mathbb{R}^n$.

Corollary 1.3. Let S be a convex subset of \mathbb{R}^n with $S \neq \mathbb{R}^n$. Then S is contained in some half-space.

Corollary 1.4. Let S be a nonempty, closed, convex cone in \mathbb{R}^n with $S \neq \mathbb{R}^n$. Then there is a nonzero vector $a \in \mathbb{R}^n$ such that $a \cdot y \leq 0$ for all $y \in S$.

Proof. Let $x \in \mathbb{R}^n \setminus S$. Then, by the preceding theorem, there is a vector $a \in \mathbb{R}^n$, such that $a \cdot x > a \cdot y$ for all $y \in S$. Since S is assumed nonempty, $a \neq 0$. Since S is a closed, convex cone, $0 \in S$. Therefore, $a \cdot x > 0$. Suppose $y \in S$ and $a \cdot y > 0$. Then

$$t := \frac{a \cdot x}{a \cdot y} > 0,$$

so $ty \in C$ as C is a cone. But then

$$a \cdot x > a \cdot (ty) = t(a \cdot y) = a \cdot x,$$

a contradiction.

Theorem 1.5. Let S be an n-dimensional, convex subset of \mathbb{R}^n . Let $y \in \mathbb{R}^n$, and let

$$N_y := \{ v \in \mathbb{R}^n : y + \varepsilon v \in S \text{ for some } \varepsilon > 0 \}$$

be the cone of feasible directions at y. Then $N_y = \mathbb{R}^n$ if and only if $y \in \text{int } S$.

Proof. Suppose $N_y = \mathbb{R}^n$. Then there is an $\varepsilon > 0$ such that $y \pm \varepsilon e_i \in S$ for all i = 1, ..., n. The convex hull of these points is contained in S and contains y in its interior, putting y in int S.

Conversely, suppose $N_y \neq \mathbb{R}^n$. By Corollary 1.4, there is a vector nonzero $a \in \mathbb{R}^n$ such that $a \cdot v \leq 0$ for all $v \in N_y$. In particular, $a \notin N_y$. Therefore, $y + \varepsilon a \notin S$ for any $\varepsilon > 0$. Therefore, $y \notin \text{int } S$. \square

Theorem 1.6. Let S be a convex subset of \mathbb{R}^n and let $x \in \mathbb{R}^n$. Then $x \in \text{bd } S$ if and only if there is a closed, convex cone $N_x \subsetneq \mathbb{R}^n$ such that $S \subseteq x + N_x$.

Theorem 1.7. Let S be an n-dimensional, convex subset of \mathbb{R}^n and let $x \in \text{bd } S$. Then there is a nonzero vector $a \in \mathbb{R}^n$ such that $a \cdot y \leq a \cdot x$ for all $y \in S$.

Proof. We can assume, without loss of generality, that S is closed. Since $x \in \operatorname{bd} S$, $x \notin \operatorname{int} S$. Therefore, $N_y \neq \mathbb{R}^n$ and, consequently, $N_y^* \neq \mathbb{R}^n$. Let $a \in -N_y^*$, so that $a \cdot v \leq 0$ for all $v \in N_y$. Let $y \in S$. Then $y - x \in N_y$, so $a \cdot (y - x) \leq 0$. Rearranging gives $a \cdot y \leq a \cdot x$. \square

Corollary 1.8. Let S be an n-dimensional, closed, convex subset of \mathbb{R}^n and let $x \in \operatorname{bd} S$. Then x is contained in a face of S of dimension < n.

Let S be a convex subset of \mathbb{R}^n . A hyperplane H in \mathbb{R}^n is called a supporting hyperplane of S if

- (1) S is contained in one of the closed half-spaces associated to H,
- (2) $\bar{S} \cap H \neq \emptyset$.

Theorem 1.9. Let \mathcal{H}_S be the set of supporting hyperplanes of S. For each $H \in \mathcal{H}_S$, choose $a_H \in \mathbb{R}^n$ and $b_H \in \mathbb{R}$ such that

$$H = \{ x \in \mathbb{R}^n : a_H \cdot x = b_H \}$$

and

$$S \subseteq \{x \in \mathbb{R}^n : a_H \cdot x \le b_H\} =: H^-.$$

Then

$$\bar{S} = \bigcap_{H \in \mathcal{H}_S} H^-.$$

Proof. Obviously, $\bar{S} \subset \bigcap_{H \in \mathcal{H}_S} H^-$. Suppose $x \notin \bar{S}$. Let y^* be the point in \bar{S} closest to x. Then

$$(x - y^*) \cdot (y - y^*) \le 0$$

for all $y \in \bar{S}$. Let $a = x - y^*$, let $b = a \cdot y^*$, and let

$$H = \{ z \in \mathbb{R}^n : a \cdot z = b \}.$$

Then $\bar{S} \subseteq H^-$ and $y^* \in \bar{S} \cap H$, so $H \in \mathcal{H}_S$. Since $y^* \neq x$,

$$a \cdot (x - y^*) = ||x - y^*||^2 > 0.$$

Therefore, $a \cdot x > b$ and $x \notin H^-$. Therefore, $x \notin \bigcap_{H \in \mathcal{H}_S} H^-$.

A face of S is the intersection of S with one of its supporting hyperplanes.

2. General position

Theorem 2.1. The following are equivalent for points $x_0, \ldots, x_k \in \mathbb{R}^n$:

- (1) x_0, \ldots, x_k are not contained in any (k-1)-dimensional, affine subspace of \mathbb{R}^n .
- (2) $x_1 x_0, \ldots, x_k x_0$ are linearly independent.

Proof.

- (1) implies (2): Suppose $x_1 x_0, \ldots, x_k x_0$ are linearly dependent. Then they lie in a (k-1)-dimensional subspace U of \mathbb{R}^n and $Z = U + x_0$ is a (k-1)-dimensional, affine subspace of \mathbb{R}^n containing x_0, \ldots, x_k .
- (2) implies (1): Suppose $x_0, \ldots, x_k \in Z$, where Z is a (k-1)-dimensional, affine subspace of \mathbb{R}^n . Then $U := Z x_0$ is a (k-1)-dimensional subspace of \mathbb{R}^n and, therefore, the vectors $x_1 x_0, \ldots, x_k x_0 \in U$ are linearly dependent.

Theorem 2.2. Let $x_0, \ldots, x_n \in \mathbb{R}^n$ and let

$$\Delta(x_0,\ldots,x_n) = \{t_0x_0 + \cdots + t_nx_n : t \in \Delta^n\}.$$

Then x_0, \ldots, x_n are in general position if and only if

$$\operatorname{int} \Delta(x_0, \dots, x_n) = \{t_0 x_0 + \dots + t_n x_n : t \in \operatorname{int} \Delta^n\}.$$

Proof.

$$\operatorname{int} \Delta(x_0, \dots, x_n) = x_0 + \operatorname{int} \Delta(0, x_1 - x_0, \dots, x_n - x_0)$$
$$= x_0 + \operatorname{int} \left\{ \sum_{i=1}^n t_i (x_i - x_0) : t_i \ge 0, \sum_{i=1}^n t_i \le 1 \right\}$$

Suppose x_0, \ldots, x_n are in general position. Then $x_1 - x_0, \ldots, x_n - x_0$ are a basis of \mathbb{R}^n and there is a unique linear automorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $f(e_i) = x_i - x_0$, where e_1, \ldots, e_n is the standard basis of \mathbb{R}^n . Applying f to the identity

int
$$\left\{ t \in \mathbb{R}^n : t_i \ge 0, \ \sum_{i=1}^n t_i \le 1 \right\} = \left\{ t \in \mathbb{R}^n : t_i > 0, \ \sum_{i=1}^n t_i < 1 \right\}$$

gives

$$\inf \left\{ \sum_{i=1}^{n} t_i (x_i - x_0) : t_i \ge 0, \ \sum_{i=1}^{n} t_i \le 1 \right\} \\
= \left\{ \sum_{i=1}^{n} t_i (x_i - x_0) : t_i > 0, \ \sum_{i=1}^{n} t_i < 1 \right\}.$$

Therefore,

$$x_0 + \operatorname{int} \left\{ \sum_{i=1}^n t_i (x_i - x_0) : t_i \ge 0, \sum_{i=1}^n t_i \le 1 \right\}$$

$$= x_0 + \left\{ \sum_{i=1}^n t_i (x_i - x_0) : t_i > 0, \sum_{i=1}^n t_i < 1 \right\}$$

$$= \left\{ \sum_{i=0}^n t_i x_i : t \in \operatorname{int} \Delta^n \right\}.$$

Conversely, suppose x_0, \ldots, x_n are not in general position. Then they lie in an (n-1)-dimensional, affine subspace Z of \mathbb{R}^n . As $\Delta(x_0, \ldots, x_n)$ is containe in Z and Z has empty interior, so does $\Delta(x_0, \ldots, x_n)$. On the other hand, $\{t_0x_0+\cdots t_nx_n: t \in \text{int }\Delta^n\}$ is obviously nonempty. \square

3. Affinity

An affine combination of points $x_1, \ldots, x_m \in \mathbb{R}^n$ is a point of the form $\sum t_i x_i$, where $\sum t_i = 1$.

A subset A of \mathbb{R}^n is a affine subspace of \mathbb{R}^n if it is closed under convex combination.

Lemma 3.1. Let $A \subset \mathbb{R}^n$. Then A is affine if and only if for every pair x, y of distinct points of A, the line through x and y is contained in A.

Lemma 3.2. The following are equivalent for a subset A of \mathbb{R}^n .

- (1) A is an affine subspace of \mathbb{R}^n .
- (2) A a is a linear subspace of \mathbb{R}^n for any $a \in A$.
- (3) A a is a linear subspace of \mathbb{R}^n for some $a \in A$.

Proof. (1) implies (2): Let A is an affine subspace of \mathbb{R}^n and let $a \in A$. Let $x, y \in A - a$. Then

$$x + y + a = (x + a) + (y + a) - a$$

is an affine combination of x+a, y+a, and a, all elements of A. Therefore, $x+y+a\in A$ and $x+y\in A-a$. Now let $x\in A-a$ and let $t\in \mathbb{R}$. Then

$$tx + a = t(x+a) + (1-t)a$$

is an affine combination of x+a and a, both in A. Therefore, $tx+a \in A$ and $tx \in A - a$. Thus, A - a is a linear subspace of \mathbb{R}^n .

- (2) implies (3): Obvious.
- (3) implies (1): Let $A \subset \mathbb{R}^n$, let $a \in A$, and suppose that A a is a linear subspace of \mathbb{R}^n . Suppose $\sum t_i a_i$ is an affine combination of $a_1, \ldots, a_n \in A$. Then

$$\sum t_i a_i = \sum t_i (a_i - a) + \sum t_i a$$

$$= \sum t_i (a_i - a) + a$$

$$\in (A - a) + a$$

$$= A.$$

Thus, A is an affine subspace of \mathbb{R}^n .

Let A be an affine subspace of \mathbb{R}^n . Call a vector $x \in \mathbb{R}^n$ a translation of A if $A + x \subseteq A$. Let T(A) be the set of all translations of A.

Lemma 3.3. Let A be an affine subspace of \mathbb{R}^n . Then:

- (1) For any $a \in A$, T(A) = A a.
- (2) T(A) is a linear subspace of \mathbb{R}^n .

Proof. It is clear that T(A) is closed under addition. To see that it's closed under scalar multiplication, let $x \in T(A)$ and let $t \in \mathbb{R}$. If $a \in A$, then $x + a \in A$ and

$$a + tx = (1 - t)a + t(x + a),$$

being a convex combination of elements of A, also belongs to A.

Let $x \in A - a$ and let $b \in A$. Then

$$b + x = b + (x + a) - a,$$

being a convex combination of elements of elements of A, belongs to A. Therefore, $A - a \subseteq T(A)$. Conversely, suppose $x \in T(A)$. Then $a + x \in A$, so $x \in A - a$. Thus, $T(A) \subseteq A - a$.

Lemma 3.4. Let $x, y \in \mathbb{R}^n$ and let V and W be a linear subspaces of \mathbb{R}^n . Then x + V = y + W if and only if V = W and $y - x \in V$. In

particular, the linear subspace W is uniquely determined by the affine subspace x+W.

Proof. Since $0 \in W$, $y \in x + W$ and $y - x \in W$. Let $v \in V$. Then x + v = y + w for some $w \in W$ and $v = (y - x) + w \in W$. Therefore, $V \subseteq W$. The reverse containment holds by symmetry, so V = W. \square

The dimension dim A of an affine subset A of \mathbb{R}^n is defined by

$$\dim A := \dim T(A)$$
.

The affine hull of a set $S \subseteq \mathbb{R}^n$, denoted aff S, is the set of affine combinations of finite subsets of S.

Lemma 3.5. Let $S \subseteq \mathbb{R}^n$. Then aff S is an affine subspace of \mathbb{R}^n .

4. Convexity

The $standard\ n$ -simplex is

$$\Delta^n = \{(t_0, \dots, t_n) \in [0, 1]^{n+1} : \sum t_i = 1\} \subseteq \mathbb{R}^{n+1}.$$

A convex combination of points $x_1, \ldots, x_m \in \mathbb{R}^n$ is a point of the form $\sum t_i x_i$, where $t \in \Delta^{m-1}$. A set $S \subset \mathbb{R}^n$ is convex if it is closed under convex combination.

A convex combination of points $x, y \in \mathbb{R}^n$ is a point of the form (1 - t)x + ty, where $t \in [0, 1]$.

Define the *closed interval* [x, y] to be the set of all convex combinations of x and y:

$$[x,y] = \{(1-t)x + ty : t \in [0,1]\}.$$

Lemma 4.1. The following are equivalent for $S \subset \mathbb{R}^n$:

- (1) S is convex.
- (2) $[x,y] \subseteq S$ for all $x,y \in S$.

Proof. (1) implies (2): Obvious.

(2) implies (1): Suppose (2) holds. Let $x_0, \ldots x_m \in S$ and let $t \in \Delta^m$. We prove that $y := \sum t_i x_i \in S$ by induction on m. The case m = 1 follows directly from our hypothesis. Now suppose that the result holds for m-1. Let

$$u_i = \frac{t_i}{1 - t_m}, \qquad i < m.$$

Then $u \in \Delta^{m-1}$ as

$$t_0 + \dots + t_{m-1} = 1 - t_m.$$

By the inductive hypothesis,

$$\sum_{i < m} u_i x_i \in S.$$

Therefore,

$$y = (1 - t_m)z + t_m x_m \in [z, x_m] \subseteq S.$$

A set $S \subseteq \mathbb{R}^n$ is *convex* if $[x,y] \subseteq S$ for all $x,y \in S$.

Lemma 4.2. Let A be an affine subset of \mathbb{R}^n . Then A is convex.

Proof. Convex combinations are affine combinations. \Box

Let S be a convex subset of \mathbb{R}^n . The dimension of S, denoted dim S, is defined by

$$\dim S = \dim \operatorname{aff} S.$$

Let X be a subset of \mathbb{R}^n . The *convex hull* of X, denoted conv X, is the set of convex combinations of finite subsets of X. It is easy to see that X is convex if and only if X = conv X.

Theorem 4.3 (Carathéodory). Let $X \subset \mathbb{R}^n$. Then every point in conv X is a combination of n+1 elements of X.

Proof. Suppose not. Then there is a point $x \in \mathbb{R}^n$ and a p > n+1 such that

- (1) x is a convex combination of p points $x_1, \ldots, x_p \in X$, and
- (2) x cannot be expressed as a convex combination of fewer than p points of X.

Let $t \in \Delta^{p-1}$ be such that

$$(\dagger) x = \sum_{i=1}^{p} t_i x_i.$$

By (2), we must have $t_i > 0$ for all i.

Identify \mathbb{R}^n with $\mathbb{R}^{n\times 1}$ and let

$$A = \begin{pmatrix} 1 & \cdots & 1 \\ x_1 & \cdots & x_p \end{pmatrix} \in \mathbb{R}^{(n+1) \times p}.$$

Since p > n + 1, the nullspace N(A) is nonzero. Let $s \in N(A)$ be such that $s_i > 0$ for some i. Then

$$\sum_{i=1}^{p} s_i = 0$$
 and $\sum_{i=1}^{p} s_i x_i = 0$.

Let i_0 be an index such that

$$\frac{t_{i_0}}{s_{i_0}} = \min\left\{\frac{t_i}{s_i} : s_i > 0\right\}$$

and solve for x_{i_0} in terms of x_i , $i \neq i_0$:

$$x_{i_0} = -\sum_{i \neq i_0} \frac{s_i}{s_{i_0}} x_i$$

Substituting into (†) gives

(‡)
$$x = \sum_{i \neq i_0} r_i x_i, \qquad r_i := t_i - \frac{t_{i_0}}{s_{i_0}} s_i.$$

If $s_i \leq 0$, then $r_i > 0$ as t_i , t_{i_0} , and s_{i_0} are all positive. If $s_i > 0$, then $r_i \geq 0$ by definition of i_0 .

Since $r_{i_0} = 0$ and $s_1 + \cdots + s_p = 0$,

$$\sum_{i \neq i_0} r_i = \sum_{i=1}^p r_i = \sum_{i=1}^p t_i - \frac{t_{i_0}}{s_{i_0}} \sum_{i=1}^p s_i = 1 - 0 = 1.$$

Thus, (‡) expresses x as a convex combination of the p vectors x_i , $i \neq i_0$, contradicting (2).

Corollary 4.4. Let $K \subset \mathbb{R}^n$ be a compact set. Then conv K is compact.

Proof. Define

$$f: \Delta^n \times K^{n+1} \longrightarrow \mathbb{R}^n$$

by

$$f(t,(x_0,\ldots,x_n)) = \sum_{i=0}^{n} t_i x_i.$$

Then f is continuous and, by Carathéodory's Theorem, has image conv K. The result follows.

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

for all $x, y \in \mathbb{R}^n$ and all $t \in [0, 1]$.

Lemma 4.5. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. Then

$$S := \{ x \in \mathbb{R}^n : f(x) \le M \}$$

is convex.

Proof. Let $x, y \in S$ and let $t \in [0, 1]$. Then

$$f((1-t)x+ty) \le (1-t)f(x)+tf(y) \le (1-t)M+tM=M,$$
 implying $(1-t)x+ty \in S$. \Box

Theorem 4.6. Let $S \subseteq \mathbb{R}^n$ be a convex set and let $f : \mathbb{R}^n \to \mathbb{R}$ be strictly convex. Suppose that $x^* \in S$ and $x^{**} \in S$ satisfy

$$f(x^*) = \inf\{f(x) : x \in S\} = f(x^{**}).$$

Then $x^* = x^{**}$.

Proof. By the convexity of $S, y := \frac{1}{2}(x^* + x^{**}) \in S$. If $x^* \neq x^{**}$, then

$$f(y) < \frac{1}{2}(f(x^*) + f(x^{**})) = \inf\{f(x) : x \in S\}$$

by the strict convexity of f. This contradicts the minimality of $f(x^*)$.

Theorem 4.7. Let $S \subseteq \mathbb{R}^n$ be convex and let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Suppose $x^* \in S$ is a local minimum of f on S, i.e., there is an $\varepsilon > 0$ such that

$$f(x^*) \le f(x)$$
 for all $x \in S$, $||x - x^*|| < \varepsilon$.

Then x^* is a global minimum of f on S, i.e.,

$$f(x^*) \le f(x)$$
 for all $x \in S$.

Proof. Suppose $x^{**} \in S$ satisfies $f(x^{**}) < f(x^*)$. Let

$$t = \frac{\varepsilon}{2\|x^* - x^{**}\|}$$

and let

$$y = (1 - t)x^* + tx^{**}.$$

Then $y \in S$ and

$$||y - x^*|| = \frac{\varepsilon}{2} < \varepsilon.$$

Moreover,

$$f(y) \le (1 - t)f(x^{**}) + tf(x^*) < f(x^*),$$

contradicting the local minimality of x^* .

5. Fourier-Motzkin Elimination

Lemma 5.1. Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix linear isomorphism and let $P \subseteq \mathbb{R}^n$ be a polyhedron. Then AP is a polyhedron.

Proof. It suffices to consider the case where P is a half space, which is easily dealt with:

$$A\{x \in \mathbb{R}^n : ax \le b\} = \{y \in \mathbb{R}^n : (aA^{-1})y \le b\}$$

Theorem 5.2 (Fourier-Motzkin Elimination). Let $\pi : \mathbb{R}^n \to \mathbb{R}^{n-1}$ be projection onto the first n-1 coordinates:

$$f(x_1,\ldots,x_n)=(x_1,\ldots,x_{n-1})$$

Let $P \subseteq \mathbb{R}^n$ be a polyhedron. Then f(P) is a polyhedron.

Proof. Suppose

$$P = \{ x \in \mathbb{R}^n : Ax \le b \},$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m \times 1}$. Let I_- , I_0 , and I_+ be the sets of indices i for which $a_{in} < 0$, $a_{in} = 0$, and $a_{in} > 0$, respectively.

A point (x_1, \ldots, x_{n-1}) belongs to f(P) if and only if

$$(\dagger) \qquad \sum_{j=1}^{n-1} a_{ij} x_j \le b_i \quad \text{for all} \quad i \in I_0$$

and there is an $x_n \in \mathbb{R}$ such that

$$(\ddagger) \qquad \sum_{i=1}^{n} a_{ij} x_j \le b_i \quad \text{for all} \quad i \in I_- \cup I_+.$$

System (‡) is equivalent to

$$x_n \ge \frac{b_i}{a_{in}} - \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} x_j \qquad \text{for all } i \in I_-,$$

$$x_n \le \frac{b_i}{a_{in}} - \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} x_j \qquad \text{for all } i \in I_+.$$

Therefore, and there is an $x_n \in \mathbb{R}^n$ satisfying (\ddagger) if and only if

$$\frac{b_p}{a_{pn}} - \sum_{j=1}^{n-1} \frac{a_{pj}}{a_{pn}} x_j \le \frac{b_q}{a_{qn}} - \sum_{j=1}^{n-1} \frac{a_{qj}}{a_{qn}} x_j \quad \text{for all} \quad p \in I_-, \ q \in I_+.$$

$$\sum_{j=1}^{n-1} \left(\frac{a_{qj}}{a_{qn}} - \frac{a_{pj}}{a_{pn}} \right) x_j \le \frac{b_q}{a_{qn}} - \frac{b_p}{a_{pn}}, \quad p \in I_-, \ q \in I_+.$$

This theorem is false with "polyhedron" replaced by "closed, convex set":

$$C := \{(x, y) \in \mathbb{R}^2 : x \ge e^y\}$$

is closed and convex, but

$$\{x \in \mathbb{R} : (x,y) \in C \text{ for some } y \in \mathbb{R}\} = (0,\infty]$$

is not closed.

Theorem 5.3. Let $P \subseteq \mathbb{R}^n$ be a polyhedron and let $A \in \mathbb{R}^{m \times n}$. Then

$$Q := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{n+m} : x \in P \text{ and } y = Ax \right\}$$

is a polyhedron.

Proof. Suppose

$$P = \{ x \in \mathbb{R}^n : Bx \le c \}.$$

Then

$$Q = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{n+m} : (B \quad 0) \begin{pmatrix} x \\ y \end{pmatrix} \le c \text{ and } (A \quad -I) \begin{pmatrix} x \\ y \end{pmatrix} = 0 \right\}$$

is evidently a polytope.

Theorem 5.4. Let $P \subseteq \mathbb{R}^m$ and $Q \subseteq \mathbb{R}^n$ be polyhedra. Then $P \times Q \subseteq \mathbb{R}^{m+n}$ is a polyhedron.

Proof. Suppose

$$P = \{x \in \mathbb{R}^m : Ax \le b\} \quad \text{and} \quad Q = \{y \in \mathbb{R}^n : Cx \le d\}.$$

Then

$$P \times Q = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{m+n} : \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \leq \begin{pmatrix} b \\ d \end{pmatrix} \right\}$$

is evidently a polyhedron.

Let $P, Q \subseteq \mathbb{R}^n$ be polytopes. Define

$$P+Q=\{x+y:x\in P,\ y\in Q\}.$$

Theorem 5.5. P + Q is a polytope.

Proof. P+Q is the image of $P\times Q$ under the linear map $(x,y)\mapsto x+y$.

Corollary 5.6. Let $P \subseteq \mathbb{R}^n$ be a polyhedron and let $A \in \mathbb{R}^{m \times n}$. Then $AP \subseteq \mathbb{R}^m$ is a polytope.

6. Cones

A conic combination of vectors $x_1, \ldots, x_m \in \mathbb{R}^n$ is a vector of the form $\sum t_i x_i$ where $t_i \geq 0$ for all i. A subset C of \mathbb{R}^n is a cone if it is closed under conic combination.

The *conic hull* of a set $S \subseteq \mathbb{R}^n$, denoted cone S, is the set of convex combinations of finite subsets of S.

Lemma 6.1. A subset C of \mathbb{R}^n is a cone if and only if $C = \operatorname{cone} C$.

Lemma 6.2. Let C be a cone in \mathbb{R}^n . Then C is convex.

Proof. Convex combinations are conic combinations.

Let $\mathcal{F} \subset \mathbb{R}^{n \times 1}$ and let $x^* \in \mathcal{F}$. Let

$$C = \{c \in \mathbb{R}^{1 \times n} : cx^* = \inf\{cx : x \in \mathcal{F}\}\}.$$

The C is a cone.

A cone $C \subseteq \mathbb{R}^n$ is *finitely generated* if is the conic hull of a finite set of points.

Lemma 6.3. Let $x_1, \ldots, x_m \in \mathbb{R}^n$ be linearly independent. Then $\operatorname{cone}\{x_1, \ldots, x_m\}$ is closed.

Proof. Let $x_{m+1}, \ldots, x_n \in \mathbb{R}^n$ be such that $x_1, \ldots, x_m, x_{m+1}, \ldots, x_n$ is a basis of \mathbb{R}^n . Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n and define a linear automorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ by $f(e_i) = x_i$. In particular, f is closed. Let

$$C = \{t \in \mathbb{R}^n : t_1, \dots, t_m \ge 0, \ t_{m+1}, \dots, t_n = 0\}.$$

Then C is closed and cone $\{x_1, \ldots, x_m\} = f(C)$. Since f is closed, so is cone $\{x_1, \ldots, x_n\}$.

Theorem 6.4. Let C be a finitely generated cone in \mathbb{R}^n . Then C is closed.

Proof. Let $y \in C$. Let X be a subset of $\{x_1, \ldots, x_m\}$ of minimal size such that $y \in \text{cone } X$. We may assume, without loss of generality, that $X = \{x_1, \ldots, x_\ell\}$ and write

$$(\dagger) y = \sum_{i=1}^{\ell} t_i x_i \quad \text{with} \quad t_i > 0.$$

Suppose X is linearly dependent. Then there are scalars s_i , at least one of which is positive, such that

$$\sum_{i=1}^{\ell} s_i x_i = 0.$$

Without loss of generality, we may assume that

$$\frac{s_1}{t_1} \le \dots \le \frac{s_\ell}{t_\ell}.$$

It follows that $s_{\ell} > 0$. Therefore,

$$(\ddagger) t_{\ell} \frac{s_i}{s_{\ell}} \le t_i, i < \ell.$$

Solve for x_{ℓ} in terms of $x_1, \ldots, x_{\ell-1}$:

$$x_{\ell} = -\sum_{i=1}^{\ell-1} \frac{s_i}{s_{\ell}} x_i$$

Substituting into (†), we get

$$y = \sum_{i=1}^{\ell-1} \left(t_i - t_\ell \frac{s_i}{s_\ell} \right) x_i.$$

By (\ddagger) , this is a conic combination, contradicting the minimality of ℓ . Therefore, X must be linearly independent as claimed.

Let \mathcal{X} be the set of linearly independent subsets of $\{x_1, \ldots, x_m\}$. It follows from the above that

$$\operatorname{cone}\{x_1,\ldots,x_m\} = \bigcup_{X\in\mathcal{X}} \operatorname{cone} X.$$

By the preceding lemma, each set cone X is closed. Since \mathcal{X} is finite, cone $\{x_1, \ldots, x_m\}$ is closed, too.

7. Remedial linear algebra

Theorem 7.1. Let W be a subspace of \mathbb{R}^n . Then W has an orthonormal basis.

Theorem 7.2. Let W be a subspace of \mathbb{R}^n and let $v \in \mathbb{R}^n$. Then there are unique vectors $v_W \in W$ and $v_{W^{\perp}} \in W^{\perp}$ such that $v = v_W + v_{W^{\perp}}$.

Proof. Let u_1, \ldots, u_r be an orthonormal basis of W and set

$$v_W = \sum_{j=1}^r (u_j^T v) u_j, \quad v_{W^{\perp}} = v - v_W$$

Then $v = v_W + v_{W^{\perp}}$ and it's easy to check that $v_{W^{\perp}} \in W^{\perp}$.

To prove uniqueness, suppose $v_W, v_W' \in W$ and $v_{W^{\perp}}, v_{W^{\perp}}' \in W^{\perp}$ satisfy

$$v_W + v_{W^{\perp}} = v_W' + v_{W^{\perp}}'.$$

Then

$$v_W - v_W' = v_{W^{\perp}}' - v_{W^{\perp}},$$

putting $v_W - v_{W'}$ in $W \cap W^{\perp} = \{0\}$. Therefore, $v_W = v'_W$, and it follows that $v_{W^{\perp}} = v'_{W^{\perp}}$, proving uniqueness.

Corollary 7.3. Let W be a subspace of \mathbb{R}^n . Then:

- (1) $\dim W + \dim W^{\perp} = n$,
- $(2) (W^{\perp})^{\perp} = W.$

Corollary 7.4.

Theorem 7.5 (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$. Then

$$\dim C(A) + \dim N(A) = n.$$

Proof. Let $U \in \mathbb{R}^{n \times q}$ be a basis matrix of N(A) and let $W \in \mathbb{R}^{m \times r}$ be a basis matrix of C(A). Then, by the definition of the column space, there is a matrix $V \in \mathbb{R}^{n \times r}$ such that W = AV. The linear independence of the column of V follows immediately from that of the columns of W.

I claim that the $\begin{bmatrix} U & V \end{bmatrix} \in \mathbb{R}^{m \times (q+r)}$ is a basis matrix of \mathbb{R}^n . To see that its columns span \mathbb{R}^n , let $x \in \mathbb{R}^n$. Then $Ax \in C(A)$ so there is a $z \in \mathbb{R}^r$ such that Ax = Wz. It follows that $x - Vy \in N(A)$ as

$$A(x - Vy) = Ax - AVy = Ax - Wy = Ax - Ax = 0.$$

Therefore, x - Vz = Uy for some $y \in \mathbb{R}^q$. Rearranging, we have

$$x = Uy + Vz = \begin{bmatrix} U & V \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix},$$

putting x in the column space of $\begin{bmatrix} U & V \end{bmatrix}$. Thus, the columns of $\begin{bmatrix} U & V \end{bmatrix}$ span \mathbb{R}^n .

To see that the columns of $\begin{bmatrix} U & V \end{bmatrix}$ are linearly independent, suppose Uy + Vz = 0.

Then

$$0 = A0 = A(Uy + Vz) = AUy + AVz = 0 + Wz = Wz.$$

Since the columns of W are linearly independent, z=0. Consequently, Uy=0 and, by the linear independence of the columns of U, y=0. Thus, the columns of $\begin{bmatrix} U & V \end{bmatrix}$ are linearly independent.

Corollary 7.6. Let $A \in \mathbb{R}^{m \times n}$. Then

$$C(A) = N(A^T)^{\perp}.$$

Proof. The inclusion $C(A) \subseteq N(A^T)^{\perp}$ is obvious: if $b = Ax \in C(A)$ and $y \in N(A^T)$, then

$$y^T b = y^T (Ax) = (y^T A)x = 0x = 0,$$

implying $b \in N(A^T)^{\perp}$.

Conversely, suppose $y \in C(A)^{\perp}$. Then

$$(A^T y)^T x = y^T (Ax) = 0$$

for all $x \in \mathbb{R}^n$, implying $A^T y = 0$. Therefore, $y \in N(A^T)$ and we've shown that $C(A)^{\perp} \subseteq N(A^T)$. Taking orthogonal complements, we get

$$N(A^T)^{\perp} \subseteq (C(A)^{\perp})^{\perp} = C(A).$$

Corollary 7.7. Let $A \in \mathbb{R}^{m \times n}$. Then

$$\dim C(A) = \dim C(A^T).$$

Proof.

$$\dim C(A) = \dim N(A^T)^{\perp}$$

$$= m - \dim N(A^T)$$

$$= \dim C(A^T)$$

Theorem 7.8. Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^m$. Then exactly one of the following conclusions hold:

- (1) Ax = b has a solution.
- (2) There is a $y \in \mathbb{R}^m$ such that $y^T A = 0$ and $y^T b \neq 0$.

Proof. Suppose (1) doesn't hold. Then $b \notin C(A)$. As $C(A) = N(A^T)^{\perp}$, there is a $y \in N(A^T)$ such that $y^T b \neq 0$. Since $y \in N(A^T)$, we have $y^T A = 0$. Therefore, (2) holds.

8. Convex sets

Theorem 8.1. Let $C \subseteq \mathbb{R}^n$ be a nonempty, closed, convex set and let $b \in \mathbb{R}^n \setminus C$. Then there is a unique $c^* \in C$ such that

$$||b - c^*|| = \inf_{c \in C} ||b - c||.$$

Proof. Let $c_0 \in C$ and let $r = ||b - c_0||$. Then

$$C_r := C \cap \{ y \in \mathbb{R}^n : ||b - y|| \le r \}$$

is a nonempty, compact set not containing b. Therefore, there is a $c^* \in C_r$ such that

$$||b - c^*|| = \inf_{c \in C_r} ||b - c||.$$

If $c \in C \setminus C_r$, then

$$||b - c^*|| \le r < ||b - c||.$$

Therefore,

$$||b - c^*|| = \inf_{c \in C} ||b - c||.$$

It remains to prove the unicity of c^* . Suppose that $c^{**} \in C$ satisfies

$$||b - c^{**}|| = ||b - c^{*}||.$$

Then

$$c^{***}:=\frac{1}{2}(c^*+c^{**})\in C$$

by convebity. By the Pythagorean Theorem,

$$||b - c^*||^2 = ||b - c^{**}||^2 + ||c^{**} - c^{***}||^2$$

Since $||b-c^{**}||=||b-c^*||$, it follows that $c^{***}=c^{**}$ and, by definition of c^{***} , that $c^{**}=c^{*}$.

Theorem 8.2 (Separating Hyperplane Theorem). Let $C \subset \mathbb{R}^n$ be a nonempty, closed, convex set and let $b \in \mathbb{R}^n \setminus C$. Then there is a vector $y \in \mathbb{R}^n$ such that

$$y^T c < y^T b$$

for all $c \in C$.

Theorem 8.3 (Farkas's Lemma). Let $A \in \mathbb{R}^{m \times n}$, let $b \in \mathbb{R}^m$, and suppose that Ax = b has no solution with $x \geq 0$. Then there is a $y \in \mathbb{R}^m$ such that $y^T A \geq 0$ and $y^T b < 0$.

Proof. Let

$$C=\{Ax:x\geq 0\}.$$

Then C is a nonempty, closed (why?), convex set not containing b. Therefore, there is a $y \in \mathbb{R}^m$ such that $y^Tb < y^Tc$ for all $c \in C$. Since $0 \in C$, we have $y^Tb < 0$. For every $c \in C$ and every t > 0 we have $tc \in C$, implying

$$\frac{1}{t}y^Tb < \frac{1}{t}y^T(tc) = y^Tc.$$

Letting $t \to \infty$ gives $y^T c \ge 0$. Taking c to be the columns of A gives $y^T A > 0$.

9. Duality

Let

$$A = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix} \in \mathbb{R}^{m \times n},$$

let $b \in \mathbb{R}^{m \times 1}$, and let $c \in \mathbb{R}^{1 \times n}$. Define

$$\mathcal{F} = \{ x \in \mathbb{R}^{n \times 1} : Ax \ge b \},$$

$$\mathcal{G} = \{ y \in \mathbb{R}^{1 \times m} : y \ge 0 \text{ and } yA = c \}.$$

Theorem 9.1 (Weak Duality). Let $x \in \mathcal{F}$ and let $y \in \mathcal{G}$. Then

$$yb \le cx$$
.

Proof. We have:

$$yb \le yAx$$
 (as $b \le Ax$ and $y \ge 0$)
= cx (as $yA = c$)

Theorem 9.2 (Strong Duality). Suppose there is a point $x^* \in \mathcal{F}$ such that

$$cx^* = \inf_{x \in \mathcal{F}} cx.$$

Then c belongs to the cone spanned by the constraints a_i active at x^* :

$$c \in \operatorname{cone}\{a_i : a_i x^* = b_i\}$$

In other words, there is a point $y^* \in \mathcal{G}$ such that

$$y_i^*(b_i - a_i x^*) = 0 \quad \text{for all } i.$$

Moreover,

$$cx^* = y^*b = \sup\{yb : y \in \mathcal{G}\}.$$

Proof. Let $I = \{i : a_x^* = b_i\}$. By Farkas's Lemma, to show that $c \in \text{cone}\{a_i : i \in I\}$, it suffces to show that

$$a_i v \ge 0$$
 for all $i \in I$ implies $cv \ge 0$.

So suppose $a_i v \geq 0$ for all $i \in I$. If $i \in I$ and $\varepsilon > 0$, then

$$a_i(x^* + \varepsilon v) = a_i x^* + \varepsilon a_i v \ge b_i$$

while if $i \notin I$ and $\varepsilon > 0$ is sufficiently small, then

$$a_i(x^* + \varepsilon v) = a_i x^* + \varepsilon a_i v > b_i.$$

Therefore, for sufficiently small $\varepsilon > 0$,

$$x^* + \varepsilon v \in \mathcal{F}$$

and, by the optimality of x^* ,

$$cx^* \le c(x^* + \varepsilon v).$$

It follows that $cv \geq 0$.

Since $c \in \text{cone}\{a_i : i \in I\}$, there is a vector $y^* \ge 0$ such that $y_i^* = 0$ for all $i \notin I$ and

$$c = yA = \sum_{i \in I} y_i a_i.$$

In particular, $y^* \in \mathcal{G}$. Also,

$$cx^* = yAx^* = \sum_{i \in I} y_i^* a_i x^* = \sum_{i \in I} y_i^* b_i = \sum_i y_i^* b_i = y^* b.$$

The identity

$$y^*b = \sup\{yb : y \in \mathcal{G}\}\$$

now follows from weak duality.

10. Polyhedra

A polyhedron is the solution set of a system of finitely many linear inequalities of the form $a_i x \leq b_i$.

A *polytope* is the convex hull of a finite set of points.

Theorem 10.1. A polytope is a polyhedron.

Proof. Suppose P is the convex hull of $x_1, \ldots, x_n \in \mathbb{R}^m$. Define $f: \mathbb{R}^n \to \mathbb{R}^m$ by

$$f(t_1,\ldots,t_n)=\sum_i t_i x_i.$$

Then f is a linear map and $P = f(\Delta^{n-1})$. Therefore, P is a polyhedron.

Let $C \subset \mathbb{R}^n$ be a closed and convex.

A face of C is a set of the form

$$F = \{x \in C : \ell(x) = b\},\$$

where ℓ is a linear functional on \mathbb{R}^n , $b \in \mathbb{R}$, and $\ell(x) \leq b$ for all $x \in C$. Note that faces of C are, themselvess, closed and convex.

If $F \neq \emptyset$ and $F \neq C$, then F is called a proper face of C.

A point $v \in C$ is called an extreme point of C If $x, y \in C$ and $v = \frac{1}{2}(x+y)$ imply v = x = y.

Theorem 10.2. Let $F = \{x \in C : \ell(x) \leq b\}$ be a face of C and let v be an extreme point of F. Then v is an extreme point of C.

Proof. Suppose $v = \frac{1}{2}(x+y)$ with $x, y \in C$. As $\ell(v) = b$,

$$b = \ell(v) = \ell(\frac{1}{2}(x+y)) = \frac{1}{2}(\ell(x) + \ell(y)).$$

As $\ell(x) \leq b$ and $\ell(y) \leq b$, we must have

$$b = \ell(x) = \ell(y),$$

implying $x, y \in F$. Since v is an extreme point of F, v = x = y. It follows that v is an extreme point of C.

10.1. Extreme points of polyhedra. Let

$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} \in \mathbb{R}^{m \times n}$$

and let $P = \{x \in \mathbb{R}^{n \times 1} : Ax \le b\}.$

For $x \in P$, let I_x be the active set of x:

$$I_x = \{i : a_i x = b_i\}$$

Theorem 10.3. Let $v \in P$. Then v is an extreme point of P if and only if

$$\operatorname{span}\{a_i : i \in I_x\} = \mathbb{R}^{1 \times n}.$$

11. Recession Cones

For subset X of \mathbb{R}^n and a point $x \in X$, define the recession cone to X at x by

$$R_{X,x} = \{ v \in \mathbb{R}^n : x + tv \in X \text{ for all } t \ge 0 \}.$$

Lemma 11.1. Let C be convex and let $x \in C$. Then $R_{C,x}$ is closed under addition.

Proof. Let $v, w \in R_{C,x}$. Then $x + 2v \in C$, $x + 2w \in C$, and

$$x + (v + w) = \frac{1}{2}(x + 2v) + \frac{1}{2}(x + 2w) \in [x + 2v, x + 2w] \subseteq C.$$

Theorem 11.2. Let C be a nonempty, closed, convex subset of \mathbb{R}^n . Then $R_{C,x} = R_{C,y}$ for all $x, y \in C$. *Proof.* Let $x, y \in C$. If suffices to show that if $v \in R_{C,x}$ then $y + v \in C$. Let $v \in R_{C,x}$ and define

$$t_n = \frac{\|v\|}{\|x + nv - y\|}, \qquad z_n = (1 - t_n)y + t_n(x + nv).$$

If n is suffciently large, then $0 \le t_n \le 1$ and $z_n \in [y, x + nv] \subseteq C$ by the convexity of C. It's routine to check that $z_n \to y + v$ as $n \to \infty$. Since C is closed, $y + v \in C$.

The preceding theorem justifies abbreviating $R_{C,x}$ to R_C for C closed and convex.

12. Basic solutions

Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^m$. A vector $x^* \in \mathbb{R}^n$ is a basic solution of Ax = b if $Ax^* = b$ and there are sets of indices

$$M \subseteq \{1, \dots, m\}$$
 and $N \subseteq \{1, \dots, n\}$

such that $x_i^* = 0$ for all $i \in N$ and

$$\operatorname{rank} \begin{pmatrix} A[M,:] \\ I[N,:] \end{pmatrix} = n.$$

Note that $Ax^* = b$ and $x_i^* = 0$ for all $i \in N$ imply

$$\begin{pmatrix} A[M,:]\\ I[N,:] \end{pmatrix} x^* = \begin{pmatrix} b[M]\\ 0 \end{pmatrix}.$$

Lemma 12.1. Let $x^* \in \mathbb{R}^n$ and let $B = \{i : x_i^* \neq 0\}$. Then x^* is a basic solution of Ax = b if and only if A[:, B]z = b has unique solution $z = x^*[B]$.

Proof. First, observe that if $\{1, \ldots, n\} = B \sqcup N$ then

$$\left\{x \in \mathbb{R}^n : \begin{pmatrix} A \\ I[N,:] \end{pmatrix} x = \begin{pmatrix} b \\ 0 \end{pmatrix} \right\} = \left\{x \in \mathbb{R}^n : Ax = b, \ x[N] = 0\right\}$$

and the mapping

$$\{x \in \mathbb{R}^n : Ax = b, \ x[N] = 0\} \longrightarrow \{z \in \mathbb{R}^k : A[:,B]z = b\}$$

defined by $x \mapsto x[B]$ is a bijection.

Now let $x^* \in \mathbb{R}^n$ and let $B = \{i : x_i^* \neq 0\}$. Suppose $z = x^*[B]$ is the unique solution of A[:,B]z = b. Then

$$\begin{pmatrix} A \\ I[N,:] \end{pmatrix} x = \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

has unique solution $x = x^*$. In particular,

$$\operatorname{rank}\begin{pmatrix}A\\I[N,:]\end{pmatrix}=n.$$

Therefore, x^* is a basic solution of Ax = b.

Conversely, suppose that x^* is a basic solution of Ax = b. Then $Ax^* = b$ and there are sets of indices

$$M \subseteq \{1, \dots, m\}$$
 and $N \subseteq \{1, \dots, n\}$

such that $x_i^* = 0$ for all $i \in N$ and

$$\operatorname{rank} \begin{pmatrix} A[M,:] \\ I[N,:] \end{pmatrix} = n.$$

We have $B \subseteq \{1, \ldots, n\} \setminus N$.

Theorem 12.2. Suppose rank A = m. Then x^* is a basic solution of Ax = b if and only if $Ax^* = b$ and there is a set $B \subseteq \{1, ..., n\}$ of size m such that rank A[:, B] = m and $x_i^* = 0$ for all $i \notin B$.

Proof. Suppose that $Ax^* = b$ and that there is a set $B \subseteq \{1, ..., n\}$ of size m such that rank A[:, B] = m and $x_i^* = 0$ for all $i \notin B$. Take $M = \{1, ..., m\}$ and $N = \{1, ..., n\} \setminus B$. By design, $x_i^* = 0$ for all $i \in N$. To show that

$$\operatorname{rank}\begin{pmatrix} A[M,:]\\ I[N,:] \end{pmatrix} = n,$$

is suffices to show that x^* is the unique solution of

$$\begin{pmatrix} A \\ I[N,:] \end{pmatrix} x = \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

If x is any solution of this equation, then Ax = b and x[N] = 0. Therefore,

$$b = Ax = A[:,B]x[B].$$

Since rank A[:,B] is assumed equal to m, the $m \times m$ matrix A[:,B] is invertible and

$$x[B] = A[:,B]^{-1}b.$$

Thus, (†) has a unique solution. Therefore, x^* is a basic solution of Ax = b.

Conversely, suppose that x^* is a basic solution of Ax = b. Then $Ax^* = b$ and there are sets of indices

$$M \subseteq \{1, \dots, m\}$$
 and $N \subseteq \{1, \dots, n\}$

such that $x_i^* = 0$ for all $i \in N$ and

$$\operatorname{rank} \begin{pmatrix} A[M,:] \\ I[N,:] \end{pmatrix} = n.$$

We may assume, without loss of generality, that |M| + |N| = n. Let $B = \{1, \ldots, n\} \setminus N$. Then

$$A[:,B]z = b$$

has a unique solution: $z=x^*[B]$ is clearly such a solution, and if z is any such solution, then the vector $x\in\mathbb{R}^n$ characterized by x[B]=z and x[N]=0 a solution of Ax=b. Since x^* is the unique solution of Ax=b, it follows that $z=x^*[B]$.