Real Analysis

Christopher K. Walsh

January 6, 2025

Contents

1	\mathbf{Rat}	tional and Real Numbers
	1.1	Set Theory
	1.2	Functions and Relations
		1.2.1 Relations
		1.2.2 Functions
	1.3	
		1.3.1 Arithmetic (of Rationals)
		1.3.2 Order
		1.3.3 Fields
	1.4	Constructing the Real Numbers
		1.4.1 Upper Bounds
		1.4.2 Dedekind Cuts

[&]quot;God made the integers; all else is the work of man." - Leopold Kronecker

Chapter 1

Rational and Real Numbers

1.1 Set Theory

Definition (Set):

A set is a collection of objects called elements of the set.

Example:

- 1. $S = \{1, 2, 3\} (= \{1, 2, 3, 3\})$
- 2. $E = \{\text{Even integers }\}$
- 3. {College students}

Notation:

- $x \in S$ means x is in S.
- $x \notin S$ means x is not in S.
- The empty set \emptyset is the set with no elements.
- $A \subseteq B$ means A is a subset of B (i.e. if $x \in A$, then $x \in B$).
- If $A \subseteq B$ but $B \subsetneq A$ A is a proper subset.

If $A \subseteq B$ and $B \subseteq A$ then A = B. Otherwise $A \neq B$.

We can define more sets in terms of other sets. Set Operations: Let A and B be sets.

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Compliment: $B A = \{x \mid x \in B \text{ and } x \notin A\}$
- Product: $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$

If U is a universal set (set of everything in context), we write $\bar{A} = U - A = \{x \mid x \in U \text{ and } x \notin A\}.$

1.2 Functions and Relations

It is also important to define some types of relations and functions.

1.2.1 Relations

Definition (Relation):

A (binary) **relation** R on a set S is a subset of $S \times S$. If $(a, b) \in R$, we write aRb.

Example (of relations): 1. L "loves" is a relation on $P \times P$ (where P is a set of all people).

2. The set $R = \{(0,0), (0,1), (2,2), (7,18)\}$ is a relation on \mathbb{Z}^+ . We would write 0R0, 0R1, 2R2, and 7R18.

Definition (Equivalence Relation):

An equivalence relation on a set S is a relation s.t.:

- 1. Reflexive: For each $a \in S$, $a \sim a$.
- 2. Symmetric: For $a, b \in S$, if $a \sim b$, then $b \sim a$.
- 3. Transitive: For $a, b, c \in S$, if $a \sim b$ and $b \sim a$

1.2.2 Functions

Functions in the general sense are also a type of relation.

Definition (Function):

A function, F from a set A to a set B is a relation s.t.: if aFb and aFb' then b = b'. This is a rule that assigns a unique $a \in A$ to a unique $b \in B$. Write $f : A \to B$ and f(a) = b.

1.3 The Rational Numbers

Assume Z, the integers, have arithmetic order. What is \mathbb{Q} ? Perhaps it's the set: $\left\{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\right\}$.

However, what does that fraction notation actually mean? When we first begin teaching fractions to children we talk about splitting things like cake into smaller pieces. If we have a whole cake made of 3 slices, we can give one person a slice so they have $\frac{1}{3}$ of the cake. If we have a cake of 6 slices, we could give them 2 slices instead. They would have $\frac{2}{6}$. These two fractions are equivalent though! We need more rigor (this is mathmematics of course).

We describe the equivalent fractions as equivalent ordered pairs $(1,3) \sim (2,6)$. These belong to the same equivalence class, $\left[\frac{1}{3}\right]$.

Definition (Rational Numbers):

The **rational numbers**, \mathbb{Q} , is the set $\left\{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\right\}$ where $\frac{m}{n}$ is an equivalence class of (m, n) with the relation $(m, n) \sim (p, q)$ if mq = np and $q, n \neq 0$

Proof. Is \sim an equivalence relation? Need to show \sim reflextive, symmetric, and transitive.

Step 1 Reflective: Let $(p,q) \in \mathbb{Q}$. Show $(p,q) \sim (p,q)$ Since ab = ba, $(p,q) \sim (p,q)$

Step 2 Symmetry: Let $(p,q), (m,n) \in \mathbb{Q}$. Assume $(p,q) \sim (m,n)$. Show $(m,n) \sim (p,q)$. $(p,q) \sim (m,n) \implies pn = qm$ $\implies qm = pn$ $\implies mq = np$ $\implies (m,n) \sim (p,q) \checkmark$

Step 3 Transitive: Let $(p,q), (m,n), (a,b) \in \mathbb{Q}$. Assume $(p,q) \sim (m,n)$ and $(m,n) \sim (a,b)$. Show $(p,q) \sim (a,b)$.

Need cancellation law on \mathbb{Z} : if ab = ac and $a \neq 0$ then b = c.

$$(p,q) \sim (m,n) \implies pn = qm \text{ and } (m,n) \sim (a,b) \implies mb = na$$

Case 1: p = 0 $p = 0 \implies pn = qm = 0$ $\implies m = 0 \text{ since } q \neq 0$ $\implies mb = na = 0$ $\implies a = 0 \text{ since } n \neq 0$ $\implies pb = qa = 0$ $\implies (p,q) \sim (a,b) \checkmark$

Case 2: m = 0

Similar to Case 1. ✓

Case 3: $p, m \neq 0$

Multiplying pn = qm by ab: ab(pn) = ab(qm).

 $\implies na(pb) = mb(qa)$

 $\implies pb = qa$ by cancellation law $(m \neq 0 \text{ and } mb = na) \implies (p,q) \sim (a,b) \checkmark$

1.3.1 Arithmetic (of Rationals)

Our definitions of arithmetic on \mathbb{Q} be well-defined. For example, we could define addition as follows:

$$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$$

However,

$$\frac{1}{2} + \frac{1}{3} = \frac{2}{5}$$
$$\frac{2}{4} + \frac{3}{7} = \frac{3}{7}$$

 $\frac{1}{2}$ and $\frac{2}{4}$ are in the same equivalent class, but $\frac{2}{5}$ and $\frac{3}{7}$ are not. This is not well-defined. We want a definition of addition not dependent on our representatives chosen.

Now, $\frac{a}{b} + \frac{c}{d} = \frac{0}{1}$. This is well-defined but not helpful.

Definition (Addition in \mathbb{Q}):

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

If this well-defined?

Proof. Assume $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. Show $(ad+bc,bd) \sim (a'd'+b'c',b'd')$. $(a,b) \sim (a',b') \implies ab' = ba'$ $(c,d) \sim (c',d') \implies cd' = dc'$

$$b'd'(ad + bc) = b'd'ad + b'd'bc$$

$$= (d'd)(ab') + (b'b)(cd')$$

$$= (d'd)(ba') + (b'b)(dc')$$

$$= (bd)(a'd') + (bd)(c'b')$$

$$= bd(a'd' + c'b')$$

$$\implies (ad + bc, bd) \sim (a'd' + b'c', b'd') \checkmark$$

Definition (Multiplication in \mathbb{Q}):

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

If this well-defined?

Proof. Assume $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. Show $(ac,bd) \sim (a'c',b'd')$.

$$(a,b) \sim (a',b') \implies ab' = ba'$$

$$(c,d) \sim (c',d') \implies cd' = dc'$$

$$acb'd' = (ab')(cd')$$
$$= (ba')(dc')$$
$$= (a'c')(bd)$$

$$\implies (ac, bd) \sim (a'c', b'd') \checkmark$$

In what way does \mathbb{Q} extend \mathbb{Z} ?

The correspondence is $\frac{n}{1} \longleftrightarrow n$. Addition and multiplication is the same in \mathbb{Q} as in \mathbb{Z} .

Note. We can define subtraction by adding the negative of a number (multiply by -1).

1.3.2 Order

Definition (Order):

An **order** on a set S is a relation < satisfying:

- 1. (Trichotomy) If $x, y \in S$, exactly one is true: x < y, x = y, y < x.
- 2. (Transitivity) If $x, y, z \in S$, x < y and y < z, x < z.

Example:

In \mathbb{Z} , say m < n if n - m is positive, i.e. in \mathbb{N} .

Example:

In $\mathbb{Z} \times \mathbb{Z}$, say (a, b) < (c, d) if a < c or (a = c or b < d). This is called the dictionary order.

Example:

In \mathbb{Q} , say $\frac{m}{n}$ is positive if mn > 0. This is well-defined.

Proof. Assume $(m, n) \sim (p, q)$ and mn > 0. Show pq > 0.

Suppose, to the contrary, pq < 0.

$$(m,n) \sim (p,q) \implies mq = np$$

 $\implies (mq)^2 = mqnp$

By assumption, mnpq < 0, a contradiction since mn > 0. Thus, pq > 0.

So
$$\frac{a}{b} < \frac{c}{d}$$
 if $\frac{c}{d} + \frac{-a}{b}$ is positive.

Write y > x for x < y and $x \le y$ for x < y or x = y.

Theorem 1. $x^2 = 2$ has no solution in \mathbb{Q} .

Proof (by contradiction). Suppose, to the contrary, that x^2 has a solution in \mathbb{Q} , i.e. $x = \frac{p}{q}$ where $p, q \in \mathbb{Z}$. Also assume p, q are in "lowest terms," i.e. they have no common factors. (We can do this using elements in the equivalence classes of \mathbb{Q} .) So $\left(\frac{p}{q}\right)^2 = 2$, hence

 $p^2=2q^2$. Then p^2 is even (divisible by 2). Then p is even. (If p was odd, p^2 would be odd.) So p=2m for some $m\in\mathbb{Z}$, hence $p^2=4m^2=2q^2$. Then $2m^2=q^2$. Then q^2 is even, hence q is even. This contradicts the fact that p,q are in "lowest terms." So, $x^2=2$ must have no solution in \mathbb{Q} .

1.3.3 Fields

Definition (Field):

A field is a set F with two operations $+, \times$ satisfying axioms:

- A1. F is closed under +. (Adding two things in the set gives you something in the set.)
- A2. + is commutative.
- A3. + is associative.
- **A4.** F has an additive identity, call it 0.
- **A5.** Every element has an additive inverse.
- **M1.** F is closed under \times .
- $M2. \times is commutative.$
- $M3. \times is associative.$
- **M4.** F has an multiplicative identity, call it 1, and $1 \neq 0$.
- M5. Every element except 0 has an multiplicative inverse.
- **D1.** \times distributes over +.

Example:

In \mathbb{Q} , the 0 element is $\begin{bmatrix} 0\\ \overline{1} \end{bmatrix}$ and the 1 element is $\begin{bmatrix} 1\\ \overline{1} \end{bmatrix}$.

Definition (Ordered Field):

An **ordered field** is a field with an order s.t. order is preserved by field operations.

- 1. If y < z, then x + y < x + z.
- 2. If y < z and x > 0, then xy < xz.

Note. \mathbb{Z} is a ring not a field. There are no multiplicative inverses. \mathbb{Q} is an ordered field!

1.4 Constructing the Real Numbers

1.4.1 Upper Bounds

Now, we seen in the previous section that \mathbb{Q} has "gaps". $x^2 = 2$ has no solution in \mathbb{Q} .

We need to fill in these gaps somehow while not knowing where the gaps and holes are.

Definition (Upper Bound):

Let $E \subset S$ ordered. If there exists $\beta \in S$ such that for all $x \in E$, $x \leq \beta$, then β is an **upper bound (u.b.)** for E. We say E is bounded above.

A lower bound can be defined similarly with "greater than or equal to."

Example:

Consider the set $A = \{x \mid x^2 < 2\}$. 2 is an u.b. for A. $\frac{2}{3}$ is also an u.b. for A.

Definition (Least Upper Bound):

If there exists an $\alpha \in S$ such that:

- 1. α is an upper bound of E
- 2. If $\gamma < \alpha$, then γ is not an upper bound of E.

Then α is called a **least upper bound (lub)** of E or the **suprenum** of E. Write $\alpha = \sup E$.

Example:

Let $S = \mathbb{Q}$.

1.
$$E = \left\{ \frac{1}{2}, 1, 2 \right\} \left[\sup E = 2 \right]$$

2.
$$E = \{x \in \mathbb{Q} \mid x < 0\} \ | \sup E = 0$$

3.
$$E = \mathbb{Q} \left[\sup E \text{ does not exist} \right]$$

4.
$$E = A$$
 (as defined above) sup E does not exist

Definition (Least Upper Bound Property):

A set S has the **least upper bound property** if every nonempty subset of S that has an upper bound has a least upper bound.

1.4.2 Dedekind Cuts

Definition (Dedekind Cut):

A **Dedekind cut** α is a subset of $\mathbb Q$ such that:

1.
$$\alpha \neq \emptyset$$
, \mathbb{Q}

2. If
$$p \in \alpha$$
, $q \in \mathbb{Q}$ and $q < p$, then $q \in \alpha$. (Closed downward)

3. If
$$p \in \alpha$$
, then $p < r$ for some $r \in \alpha$. (No largest number)

Example:

$$\alpha = \{x \in \mathbb{Q} \mid x < 0\} \text{ is a cut.}$$

- 1. $\alpha \neq 0, \mathbb{Q} \checkmark$
- 2. Let $p \in \alpha$, $q \in \mathbb{Q}$. Assume q < p. By the transitivity property of order, q < 0. Thus, $p \in \alpha$.
- 3. Let $p \in \alpha$ and $r \in \alpha$ such that $r = \frac{q}{2}$. Since $q < 0, q < \frac{q}{2}$. Thus q < r. \checkmark

Example:

 $\gamma = \{r \mid r \leq 2\}$ is not a cut. This set does have a largest element, 2.

Definition (Rational Numbers):

Let $\mathbb{R} = \{ \alpha \mid \alpha \text{ is a cut } \}.$

We also define the following:

- $\alpha < \beta$ to mean $\alpha \subseteq \beta$. This is an order.
- $\alpha + \beta = \{r + s \mid r \in \alpha \text{ and } s \in \beta\}$. (This means \mathbb{R} is a field.)
- $\alpha \cdot \beta$
 - 1. For positive cuts $\{\alpha \mid \alpha > 0^*\} = \mathbb{R}_+$: If $\alpha, \beta \in \mathbb{R}_+$, let $\alpha \cdot \beta = \{p \mid p \leq rs \text{ for some } r \in \alpha, s \in \beta, and r, s > 0\}$.
 - 2. For cases with negative cuts, $\alpha \cdot \beta = \begin{cases} (-\alpha)(-\beta) & \text{if } \alpha < 0^*, \ \beta < 0^* \\ -[(-\alpha)\beta] & \text{if } \alpha < 0^*, \ \beta > 0^* \\ -[\alpha(-\beta)] & \text{if } \alpha > 0^*, \ \beta < 0^* \end{cases}$

where the products are the same as defined for postive cuts and $-\alpha$, $-\beta$ are the additive inverses of α , β respectively. (The additive inverses are defined below.)

Theorem 2. \mathbb{R} is an ordered field with the least upper bound property. \mathbb{R} contains \mathbb{Q} as a subfield.

Proofs Showing $\mathbb R$ is an Ordered Field

The following section proves Theorem 2.

Proof.

Step 1: We must show there is order on \mathbb{R} .

Let $\alpha, \beta, \gamma \in \mathbb{R}$. We must show that they demonstrate both trichotomy and transitivity.

1. Trichotomy:

It is clear that at most one of the following can be true: $\alpha < \beta$, $\alpha = \beta$, $\beta < \alpha$. For example, if $\alpha < \beta$, then $\alpha \subsetneq \beta$ and by the definition of a proper subset, $\alpha \neq \beta$ and β is not a proper subset of α .

To show at least one of them must be true, suppose the first two statements are false. Then α is not a subset of β . By definition of a proper subset, there exists some $a \in \alpha$ such that $a \notin \beta$. Consider some $b \in \beta$. Since β is closed downward, b < a. This also means $b \in \alpha$ since α is also closed downward. This shows that $\beta \subsetneq \alpha$. Thus $\beta < \alpha$. We conclude that at least one of these statements must be true.

2. Transitivity:

We assume that $\alpha < \beta$ and $\beta < \gamma$. By definition of <, $\alpha \subsetneq \beta$ and $\beta \subsetneq \gamma$. By definition of a proper subset, $\alpha \subsetneq \gamma$ and we conclude that $\alpha < \gamma$.

We have shown the cuts demonstrate order.

Step 2: Next, we must show that addition is closed (A1).

Let $\alpha, \beta \in \mathbb{R}$ and $\gamma = \{r + s \mid r \in \alpha \text{ and } b \in \beta\}$. To show addition is closed, we must show that γ is a cut.

- 1. First, we must show that $\gamma \neq \emptyset$, \mathbb{Q} . It should be clear that γ cannot be the empty set. Since $\alpha, \beta \neq \mathbb{Q}$, there exists $c \notin \alpha, d \notin \beta$. Now a < c and b < d for all $a \in \alpha, b \in \beta$. Thus a + b < c + d. Therefore $c + d \notin \gamma$. We conclude that $\gamma \neq \emptyset$, \mathbb{Q} .
- 2. Second, we must show that γ is closed downward. Let $p \in \gamma, q \in \mathbb{Q}$. Assume q < p. Since $p \in \gamma$, there exists $r \in \alpha$ and $s \in \beta$ such that p = r + s so q < r + s. This means q - s < r. Since α is closed downward, $q - s \in \alpha$. Then q = q - s + s where $q - s \in \alpha$ and $s \in \beta$. We have shown that γ is closed downward.
- 3. Third, we must show that γ has no largest number. Let $p \in \gamma$. Then there exists some $a \in \alpha$ and $b \in \beta$ such that p = a + b. Since both cuts α, β have no largest number, there exists $c \in \alpha$ and $d \in \beta$ where a < c and b < d. Thus $c + d \in \gamma$ and p < c + d. We have shown that γ has no largest member.

We have shown that γ meets the definition of a cut.

Step 3: **A2** and **A3** follows since addition in \mathbb{Q} is commutative and associative.

Step 4: We must show that $0^* = \{q \in \mathbb{Q} \mid q < 0\}$ is the additive identity for \mathbb{R} (A4). In other words, we must show that $\alpha + 0^* = \alpha$. Let $\alpha \in \mathbb{R}$.

- 1. First, we must show that $\alpha + 0^* \subset \alpha$. Let $a \in \alpha$ and $b \in 0^*$. Since b < 0, a + b < a. Thus $a + b \in \alpha$ (since α is closed downward). We conclude that $\alpha + 0^* \subset \alpha$.
- 2. Second, we must show that $\alpha \subset \alpha + 0^*$. Let $a, b \in \alpha$. Since α has no largest member, we can pick a, b such that b > a. Then $a - b \in 0^*$ and similar to before $a = b + (a - b) \in \alpha + 0^*$. We conclude that $\alpha \subset \alpha + 0^*$.

Thus we conclude that $\alpha + 0^* = \alpha$.

Step 5: Next, we must show that the additive inverse for $\alpha \in \mathbb{R}$ is $\beta = \{p \in \mathbb{Q} \mid \text{ there exists } r > 0 \text{ s.t. } -p-r \notin \alpha\}$ (A5). Let $\alpha \in \mathbb{R}$.

- 1. First, we must show that β is a cut.
 - i. We must show that β is non-trivial. Since $\alpha \neq \emptyset$, there exists some $a \in \alpha$. Since α is closed downward, $a - b \in \alpha$ for all b > 0. Thus $-a \notin \beta$ so $\beta \neq \mathbb{Q}$.

Since $\alpha \in \mathbb{Q}$, there exists some $c \notin \alpha$. Consider d = -c - 1. Then $-d - 1 \notin \alpha$ (since c = -d - 1). Thus $d \in \beta$ so $\beta \neq \emptyset$.

- ii. We must show that β is closed downward. Let $p \in \beta$, $q \in \mathbb{Q}$. We assume that q < p. There exists some r > 0 s.t. $-p - r \notin \alpha$. Since q < p, -q - r > -p - r. Thus $-q - r \notin \alpha$ (since α is closed downward), so $q \in \beta$. We conclude that β is closed downward.
- iii. We must show that β has no largest member. Consider j = f + (h/2). Then j > f, and $-j - (h/2) = -f - h \notin \alpha$. Then $j \in \beta$. Thus we find β also has no largest member.

We conclude that β satisfies the definition of a cut.

- 2. Second, we must show that $\alpha + \beta = 0^*$.
 - i. We need to show that $\alpha + \beta \subset 0^*$. Let $s \in \alpha$ and $t \in \beta$. By definition of β , there exists u > 0 s.t. $-t - u \notin \alpha$. Then -t - u > s and it follows that s + t < -u < 0. Therefore $s + t \in 0^*$.
 - ii. We also need to show that $0^* \subset \alpha + \beta$. Let $v \in 0^*$ and w = -v/2. Then w > 0. By the Archimedean property of \mathbb{Q} , there exists $n \in \mathbb{Z}$ s.t. $nw \in \alpha$ and $(n+1)w \notin \alpha$. Consider x = -(n+2)w. Now $-x = nw + 2w \implies -x - w = nw + w = (n+1)w \notin \alpha$. By definition of β , $x \in \beta$. We find v = -2w = -(n+2)w + nw = p + x and conclude that $v \in \alpha + \beta$.

This shows that $\alpha + \beta = 0^*$.

We have proved that β is the additive inverse for α and that \mathbb{R} satisfies all the addition axioms. Next we will show that \mathbb{R} satisfies the multiplication axioms.

<u>Step 6:</u> We must show that \mathbb{R} is closed under multiplication (**M1**). We will only consider the positive case for multiplication (because I am lazy and the whole thing is tedious. Most books only do the addition axioms.)

Let $\alpha, \beta \in \mathbb{R}_+$ and $\alpha\beta = \{p \mid p \leq ab, a \in \alpha, b \in \beta, \text{ and } a, b > 0\}$. We must prove $\alpha\beta \in \mathbb{R}$ as before.

i. Since α, β are non-trivial, there exists some $a \in \alpha, b \in \beta$ s.t. a, b > 0. Now $ab \leq ab$. Thus $ab \in \alpha\beta$ so $\alpha\beta \neq \emptyset$.

There also exists some $c \notin \alpha, d \notin \beta$ s.t. c > a and d > b for all $a \in \alpha$ and $b \in \beta$. Now cd > ab for all $a \in \alpha, b \in \beta$. Thus $cd \notin \alpha\beta$ so $\alpha\beta \neq \mathbb{Q}$.

- ii. Let $p \in \alpha\beta$, $q \in \mathbb{Q}$, and q < p. Now p < ab for some $a \in \alpha$, $b \in \beta$. By order of \mathbb{Q} , $q so <math>q \in \alpha\beta$.
- iii. Since α, β have no largest member, we can pick some c > a and d > b s.t. $c \in \alpha$ and $d \in \beta$. Thus $p \leq ab < cd$, so $ab \in \alpha\beta$.

We have shown that $\alpha\beta$ satisfy all three properties of a cut.

<u>Step 6:</u> We must show that multiplication in \mathbb{R} is commutative (**M2**) and associative (**M3**). Let $p \in \alpha\beta$. Now $p \leq ab$ for some $a \in \alpha$, $b \in \beta$, a, b > 0. Since multiplication in \mathbb{Q} is commutative, $p \leq ba$. Thus, $p \in \beta\alpha$. Clearly $\alpha\beta \subset \beta\alpha$ and $\beta\alpha \subset \alpha\beta$. We conclude that $\alpha\beta = \beta\alpha$ and multiplication in \mathbb{R} is commutative.

The proof that multiplication in \mathbb{R} is associative is similar relying on multiplication in \mathbb{Q} is associative.

Step 7: We must show that there is a multiplicative identity in \mathbb{R} (M4).

We will define it to be $1^* = p \in \mathbb{Q} \mid p < 1$. Let $\alpha \in \mathbb{R}$. We must demonstrate that $\alpha \cdot 1^* = \alpha$.

- 1. We must show $\alpha \cdot 1^* \subset \alpha$. Let $p \in \alpha \cdot 1^*$. Now $p \le a \cdot b$ for some $a \in \alpha, b \in 1^*$. Since $b < 1, p \le ab < a$ so $p \in \alpha$.
- 2. We also must show $\alpha \subset \alpha \cdot 1^*$. We can choose some $c \in \alpha$ s.t. c > a. This implies $\frac{a}{c} < 1$ so $\frac{a}{c} \in 1^*$. Thus $a = c \cdot \frac{a}{c} \in \alpha \cdot 1^*$.

We conclude that $\alpha \cdot 1^* = \alpha$.

Step 8: We must show that there is a multiplicative inverse in \mathbb{R} (M5).

We will define the multiplicative inverse for $\alpha \in \mathbb{R}_+$ as:

$$\beta = 0^* \cup \{0\} \cup \{p \in \mathbb{Q} \mid \text{ there is an } r \in \mathbb{Q} \text{ with } r > 1 \text{ and } \frac{1}{rp} \notin \alpha\}.$$
 Let $\alpha \in \mathbb{R}$.

- 1. We must show $\beta \in \mathbb{R}$.
 - i. Clearly $\beta \neq \emptyset$. Since $\alpha \neq \mathbb{Q}$ and $\alpha \in \mathbb{R}_+$, there exists some $a \in \alpha$ where a > 0. Then $1/a \notin \beta$ since there is no

The cases for multiplication with negative cuts are also similar using the identity: $\gamma = -(-\gamma)$.