图的基本概念

李修成

计算机科学与技术学院

Outline

冬

通路与回路

图的连通性

图的矩阵表示

习题

作业

冬

定义 1.1 (无向图). $G = \langle V, E \rangle$, 其中

- 1. V 为非空有穷集合,称为<mark>顶点集</mark>,其元素为<mark>顶点</mark> vertex;
- 2. E 为边集, 每条边 $e \in E$ 有一或两个顶点 $v \in V$ 与其关联, 被称其端点 endpoints.

例子 1.1. 无向图 $G = \langle V, E \rangle$, 其中^a

$$\begin{split} V &= \left\{ v_1, \, v_2, \, v_3, \, v_4, \, v_5 \right\}, \\ E &= \! \left\{ \left\{ \left. \left\{ v_1, \, v_1 \right\}, \left\{ v_1, \, v_2 \right\}, \left\{ v_1, \, v_5 \right\}, \left\{ v_2, \, v_5 \right\}, \right. \right. \\ &\left. \left\{ v_2, \, v_3 \right\}, \left\{ v_2, \, v_3 \right\}, \left\{ v_4, \, v_5 \right\} \right\} \right\} \end{split}$$

[&]quot;在数学上通常用 {{ 1, 1, 2}} 来表示多重集合 multiset.

有向图

定义 1.2 (有向图). $G = \langle V, E \rangle$, 其中

- 1. V 为非空有穷集合, 称为顶点集, 其元素为顶点;
- 2. E 为 $V \times V$ 的多重有穷子集,称为边集,其元素为有向边,简称边.

例子 1.2. 有向图 $G = \langle V, E \rangle$, 其中

$$\begin{split} V &= \left\{ \left. a, \, b, \, c, \, d \right\} \,, \\ E &= & \left\{ \left\{ \left. \left\langle \, a, \, a \right\rangle \,, \left\langle \, a, \, b \right\rangle \,, \left\langle \, a, \, b \right\rangle \,, \left\langle \, a, \, d \right\rangle \,, \right. \\ &\left. \left\langle \, c, \, b \right\rangle \,, \left\langle \, d, \, c \right\rangle \,, \left\langle \, c, \, d \right\rangle \, \right\} \right\} \end{split}$$

图的相关概念和约定

- 无向图和有向图通称图, 给定图 G, 其顶点记为 V(G), 边集记为 E(G).
- 若 V(G) = n, 则称 G 为 n 阶图.
- 若 $E(G) = \emptyset$, 则称 G 为零图 null graph; 若同时 V(G) = n, 则称 G 为 n 阶零图.
- n 阶零图记作 N_n ; N_1 被称为平凡图 trival graph.
- 顶点集为空集的图被称为空图 empty graph, 记为 Ø.
- 对于图的图形表示,如果给每个顶点和每条边指定一个符号(symbol),则称该表示为标定图 labeled graph,否则为非标定图 unlabeled graph.
- 将有向图各有向边改成无向边后所得的无向图称为原图的基图 base graph.

图的相关概念和约定

- \diamondsuit $G = \langle V, E \rangle$ 为无向图, $e = \{u, v\} \in E$,
 - 称 u, v 为 e 的端点 endpoints, u, v 是邻接的 adjacent, e 与 u, v 是关联的 incident.
 - 若 $u \neq v$, 则称 $e \vdash u(v)$ 的关联次数为 1.
 - 若 u = v, 则称 $e \ni u$ 的关联次数为 2, 并称 e 为环 loop.
 - 若 $v \in V$ 不与边 $e \in E$ 关联,则称 $e \in V$ 的关联次数为 0.
- 令 $G = \langle V, E \rangle$ 为有向图, $e = \langle u, v \rangle \in E$,
 - 称 u, v 为 e 的端点 endpoints, u, v 是<mark>邻接的</mark> adjacent, e 与 u, v 是关联的 incident.
 - *u*, *v* 分别为 *e* 的始点 initial vertex 和终点 terminal vertex.
 - 若 u = v,则称 e 为环 loop.
 - 若两个顶点之间有一条有向边,则称两个顶点相邻.
 - 若一条边的终点是另一条边的始点,则称两条边相邻.

图中没有边关联的顶点称为孤立点 isolated vertex.

图的相关概念和约定

令 $G = \langle V, E \rangle$ 为无向图, $\forall v \in V$,

- $N_G(v) = \{u \mid u \in V \land \{u, v\} \in E \land u \neq v\}$ 被称为 v 的邻域 neighbors.
- $\overline{N}_G(v) = N_G(v) \cup \{v\}$ 被称为 v 的闭邻域.
- $I_G(v) = \{e \mid e \in E \land e \text{ is incident to } e\}$ 被称为 v 的关联集 incident set.

今 $G = \langle V, E \rangle$ 为有向图, $\forall u, v \in V$,

- $P_G^+(u) = \{v \mid v \in V \land \langle u, v \rangle \in E \land u \neq v\}$ 被称为 u 的后继元集 successors.
- $P_G^-(v) = \{u \mid u \in V \land \langle u, v \rangle \in E \land u \neq v\}$ 被称为 v 的先驱元集 predecessors.
- $N_G(v) = P_G^+(v) \cup P_G^-(v)$ 被称为 v 的邻域.
- $\overline{N}_G(v) = N_G(v) \cup \{v\}$ 被称为 v 的闭邻域.

多重图与简单图

- 无向图中关联同一对顶点的 2 条和 2 条以上的边称为平行边 parallel edges.
- 有向图中 2 条和 2 条以上始点、终点相同的边称为平行边.
- 平行边的条数称为重数 multiplicity.
- 含平行边的图称为多重图,不含平行边和环的图称为简单图 simple graph.

顶点的度数

定义 1.3. 设 $G = \langle V, E \rangle$ 为无向图. $\forall v \in V$, 称以 v 作为边的端点的次数之和为 v 的<mark>度数</mark> degree,简称度,记作 d(v).

定义 1.4. 设 $G = \langle V, E \rangle$ 为有向图. $\forall v \in V$,

- 称以 v 作为边的始点的次数之和为 v 的出度 out-degree, 记作 $d^+(v)$;
- 称以 v 作为边的终点的次数之和为 v 的人度 in-degree, 记作 $d^-(v)$;
- 悬挂顶点: 度数为 1 的顶点.
- 悬挂边: 与悬挂顶点关联的边.
- 偶度(奇度)顶点: 度数为偶数(奇数)的顶点.

顶点的度数

设 $G = \langle V, E \rangle$ 为无向图, 则有:

- G 的最大度 $\Delta(G) = \max\{d(v) \mid v \in V\},$
- G 的最小度 $\delta(G) = \min\{d(v) \mid v \in V\}.$

设 $D = \langle V, E \rangle$ 为有向图, 则有:

- D 的最大出度 $\Delta^+(D) = \max \{ d^+(v) \mid v \in V \},$
- D 的最小出度 $\delta^+(D) = \min \{ d^+(v) \mid v \in V \},$
- D 的最大人度 $\Delta^-(D) = \max \{d^-(v) \mid v \in V\},$
- D 的最小人度 $\delta^-(D) = \min \{d^-(v) \mid v \in V\},$
- D 的最大度 $\Delta(D) = \max\{d(v) \mid v \in V\},$
- D 的最小度 $\delta(D) = \min\{d(v) \mid v \in V\}.$

实例

- $d(v_1) = d(v_2) = 4, d(v_3) = 2,$
- $d(v_4) = 1, d(v_5) = 3.$
- $\bullet \quad \Delta = 4, \quad \delta = 1.$
- v₄ 是悬挂点, e₇ 是悬挂边.

- $d^+(a) = 4, d^-(a) = 1, d(a) = 5,$
- $d^+(b) = 0, d^-(b) = 3, d(b) = 3,$
- $d^+(c) = 2, d^-(c) = 1, d(c) = 3,$
- $d^+(d) = 1, d^-(d) = 2, d(d) = 3.$
- $\Delta^+ = 4, \delta^+ = 0, \Delta^- = 3, \delta^- = 1, \Delta = 5, \delta = 3.$

握手定理

定理 1.1 (握手定理). 在任何无向图中, 所有顶点的度数之和等于边数的 2 倍. 证明. 设 G 中每条边(包括环)均有两个端点, 所以在计算 G 中各顶点度数之和时, 每条边均提供 2 度. m 条边共提供 2m 度.

定理 1.2 (握手定理). 在任何有向图中,

- 所有顶点的入度之和等于所有顶点的出度之和, 都等于边数;
- 所有顶点的度数之和等于边数的 2 倍.

推论 1.1. 任何图 (无向或有向) 中, 奇度顶点的个数是偶数.

证明. 由握手定理, 所有顶点的度数之和是偶数, 而偶度顶点的度数之和是偶数, 故奇度顶点的度数之和也是偶数. 因此, 奇度顶点的个数为偶数.

握手定理应用

例子 1.3. 无向图 G 有 16 条边, 3 个 4 度顶点, 4 个 3 度顶点, 其余均为 2 度顶点. 问 G 的 阶数 n 的值?

M. 设除 3 度与 4 度顶点外, 还有 x 个顶点, 由握手定理,

$$16 \times 2 = 32 = 3 \times 4 + 4 \times 3 + 2x$$

解得 x = 4, 阶数 n = 4 + 4 + 3 = 11.

定理 1.3. 设 G 为任意 n 阶无向简单图, 则 $\Delta(G) \leq n-1$.

完全图与竞赛图

定义 1.5 (完全图 complete graph).

- $n(n \ge 1)$ 阶无向完全图: 每个顶点与其余顶点均相邻的无向简单图, 记作 K_n . $m = \frac{n(n-1)}{2}$, $\Delta = \delta = n-1$.
- $n(n \ge 1)$ 阶有向完全图: 每对顶点之间均有两条方向相反有向边的有向简单图. $m = n(n-1), \Delta = \delta = 2(n-1) = 2\Delta^{+} = 2\delta^{-} = 2\delta^{-}$.
- $n(n \ge 1)$ 阶竞赛图 tournament: 基图为 K_n 的有向简单图. $m = \frac{n(n-1)}{2}, \Delta = \delta = n-1.$

完全图与竞赛图

补图与自补图

定义 1.6. 设 $G = \langle V, E \rangle$ 为 n 阶无向简单图, 令

$$\overline{E} = \{\{u, v\} \mid u, v \in V \land u \neq v \land \{u, v\} \notin E\},\$$

称 $\overline{G} = \langle V, \overline{E} \rangle$ 为 G 的 \overline{N} S complement graph. 若 $G \cong \overline{G}$, 则称 G 是自补图.

例子 1.4 (补图).

(a) 是自补图, (b) 与 (c) 互为补图.

正则图

定义 1.7 (k-正则图). $\Delta = \delta = k$ 的无向简单图为 k-正则图(k-regular graph),其边数 m = kn/2,当 k 是奇数时 n 必为偶数.

例子 1.5 (正则图).

- *n* 阶零图是 0-正则图.
- n 阶无向完全图是 (n-1)-正则图.
- 彼得松图 (Petersen graph) 是一个 3-正则图.

Petersen graph

点与边的删除

定义 1.8. 设 $G = \langle V, E \rangle$ 为无向图:

- 若 $e \in E$, 用 G e 表示从 G 中去掉边 e, 称为删除边e;
- 又若 $E' \subset E$, 用 G E' 表示从 G 中删除 E' 中的所有边,称为删除 E'.
- 若 $v \in V$, 用 G v 表示从 G 中去掉 v 及所关联的所有边,称为删除顶点 v;
- 又若 $V' \subset V$,用 G V' 表示从 G 中删除 V' 中所有的顶点,称为删除 V'.

收缩与加新边

定义 1.9. 设 $G = \langle V, E \rangle$ 为无向图:

- 设 $e = \{u, v\} \in E$, 用 $G \setminus e$ 表示从 G 中删除 e 后, 将 e 的两个端点 u, v 用一个新的顶点 w 代替,并使 w 关联除 e 以外 u, v 关联的所有边,称作边 e 的收缩 edge contraction.
- 设 $u, v \in V$, 用 $G \cup \{u, v\}$ 表示在 u, v 之间加一条边 $\{u, v\}$, 称为<mark>加新边</mark>.

在边收缩和加新边过程中可能产生环和平行边.

定义 1.10. 设两个图 $G = \langle V, E \rangle$, $G' = \langle V', E' \rangle$, 同为无向图或同为有向图,

- 若 $V' \subseteq V$ 且 $E' \subseteq E$, 则称 G' 是 G 的子图 subgraph, G 为 G' 的母图, 记作 $G' \subseteq G$.
- 又若 $V' \subset V$ 或 $E' \subset E$,则称 G' 为 G 的真子图 proper subgraph.
- 若 $E' \subseteq E$ 且 V' = V,则称 G' 为 G 的生成子图 spanning subgraph.

定义 1.11. 给定图 $G = \langle V, E \rangle$,

- 若 $V_1 \subset V$ 且 $V_1 \neq \emptyset$, 则以 V_1 为顶点集,以 G 中两个端点都在 V_1 中的边组成边集的 图被称为 G 中 V_1 的导出子图 induced subgraph,记作 $G[V_1]$.
- 若 $E_1 \subset E$ 且 $E_1 \neq \emptyset$, 称以 E_1 为边集,以 E_1 中边关联的顶点为顶点集的图被称为 G 中 E_1 的<mark>导出子图</mark>,记作 $G[E_1]$.

例子 1.6 (导出子图).

定义 2.1. 设图 $G = \langle V, E \rangle$, G 中顶点与边的交替序列 $P = v_0 e_1 v_1 e_2 \dots v_{\ell-1} e_\ell v_\ell$, 被称为从 v_0 到 v_ℓ 的通路 walk, 其中 v_{i-1}, v_i 是 e_i 的端点, $1 \le i \le \ell$. P 中的边数 ℓ 称作它的长度.

- 若 $v_0 = v_\ell$,则称 P 为回路 circuit.
- 一个通路或回路,若所有的边各异,则称为简单通路 trail 或简单回路 closed trail.
- 一个简单通路,若其所有顶点(除 v_0, v_ℓ 外)也各异则称其为 $\overline{0}$ 初级通路或路径 path.
- 若简单通路有 $v_0 = v_\ell, \ell \geq 3$ 则称其为初级回路或圈 cycle.
- 长度为奇数的圈称为奇圈,长度为偶数的圈称为偶圈.
- 若通路或回路中有边重复出现,则称其为复杂通路或复杂回路.
- 简单图中可以只用顶点序列表示通路(回路), v₀v₁...v_ℓ.

定理 2.1. 在 n 阶图 G 中,若从顶点 u 到 v ($u \neq v$) 存在通路,则从 u 到 v 存在长度小于 等于 n-1 的通路.

证明. 令 $P = v_0 e_1 v_1 e_2 \dots v_{\ell-1} e_{\ell} v_{\ell}$ $(u = v_0, v = v_{\ell})$ 为从 u 到 v 的通路. 若 $\ell \leq n-1$,则定理成立. 否则, $\ell \geq n$,即通路 P 上的顶点数 n+1 大于 G 中顶点数,故通路上必存在 $0 \leq s < t \leq \ell$ 使的 $v_s = v_t$. 因此,P 上存在从 v_s 到 v_s 长度至少为 1 的回路.

将此回路从 P 中删除后,得到的依然为从 u 到 v 的通路通路,且长度至少减 1. 由于 ℓ 为给定整数,重复此过程至多 $\ell-n+1$,可得从 u 到 v 长度小于等于 n-1 的通路.

推论 2.1. 在 n 阶图 G 中,若从顶点 u 到 v ($u \neq v$) 存在通路,则从 u 到 v 存在长度小于 等于 n-1 的初级通路.

推论 2.2. 在 n 阶图 G 中,若存在 v 到自身的回路,则一定存在 v 到自身长度小于等于 n 的回路.

证明. 直接应用定理 2.1, 考虑 $P = v_0 e_1 v_1 e_2 \dots v_{\ell-2} e_{\ell-1} v_{\ell-1}$.

推论 2.3. 在 n 阶图 G 中,若存在 v 到自身的简单回路,则一定存在 v 到自身的长度小于 等于 n 的初级回路.

图的同构

定义 2.2. 设 $G_1 = \langle V_1, E_1 \rangle, G_2 = \langle V_2, E_2 \rangle$ 为无向图, 若存在双射函数 $f \colon V_1 \mapsto V_2$ 满足

- $\forall \{v_i, v_j\} \in E_1$ 当且仅当 $\{f(v_i), f(v_j)\} \in E_2$
- 且 $\{v_i, v_j\}$ 与 $\{f(v_i), f(v_j)\}$ 的重数相同,

则称 G_1 与 G_2 是同构 isomorphism 的,记作 $G_1 \cong G_2$.

注:上述定义对有向图亦成立,只需将 $\{v_i,v_j\}$, $\{f(v_i),f(v_j)\}$ 换为 $\langle v_i,v_j\rangle$, $\langle f(v_i),f(v_j)\rangle$.

图的同构

例子 2.1.

以上三个图均同构.

图同构的实例

例子 2.2.

(1) 与(2),(3)与(4),(5)与(6)均不同构.

图同构的实例

所有 4 阶 3 条边非同构的简单无向图.

所有 3 阶 2 条边非同构的简单有向图.

图同构

- 图的同构关系为等价关系.
- 对一般的图,判断两个图同构是个难题,尚不清楚是否存在多项式时间复杂度算法.

图同构的必要条件:

- 节点数目相等.
- 边数相等.
- 度数相同的节点数目相等.

同构和定义意义下的圈

- 长度相同的圈都是同构的,因此在同构意义下给定长度的圈只有一个.
- 在标定图中,只要两个圈的标记序列不同,称这两个圈在定义意义下不同.

例子 2.3. 无向完全图 K_n ($n \ge 3$) 中有几种非同构的圈?

解. 长度相同的圈都是同构的. 易知 $K_n (n \ge 3)$ 中含长度 3, 4, ..., n 的圈, 共有 n-2 种非同构的圈.

例子 2.4. 无向完全图 K_3 的顶点依次标定为 a,b,c 在定义意义下 K_3 中有多少个不同的长度为 3 的圈?

解. 在定义意义下,不同起点 (终点) 的圈是不同的,顶点间排列顺序不同的圈也是不同的,因而 K_3 中有 3!=6 个不同的长为 3 的圈: abca, acba, bacb, bcab, cabc, cbac.

图的连通性

图的连通性

定义 3.1. 设无向图 $G = \langle V, E \rangle$,若 $u, v \in V$ 之间存在通路,则称 u, v 是连通的,记作 $u \sim v$.

- 规定 $\forall v \in V$ 有 $v \sim v$.
- ~ 是 *V* 上的等价关系, 具有自反性, 对称性和传递性.
- 若 G 是平凡图或 G 中任意两个顶点均连通,则称 G 为<mark>连通图</mark>,否则称 G 为<mark>非连通图</mark>.

定义 3.2. 设无向图 $G = \langle V, E \rangle$, 若 $V \subseteq V$ 为顶点连通关系的一个等价类, 则称导出子图 G[V] 为 G 的一个连通分支 connected component. G 的连通分支数记为 p(G).

点割集与边割集

定义 3.3. 设无向图 $G = \langle V, E \rangle$,若 $V' \subset V$ 使得 p(G - V') > p(G) 且对任意 $V'' \subset V'$,均有 p(G - V'') = p(G),则称 V' 是 G 的点割集 vertex cut. 若 $V' = \{v\}$,则称 v 为割点 cut vertex.

定义 3.4. 设无向图 $G = \langle V, E \rangle$,若 $E' \subseteq E$ 使得 p(G - E') > p(G),且对于任意的 $E'' \subset E'$ 均有 p(G - E'') = p(G),则称 E' 是 G 的边割集 edge cut, 简称为割集. 若 $E' = \{e\}$,则称 e 为割边 cut edge 或桥 bridge.

注意

- 上述定义对由若干孤立点构成的图没有定义,其应用场景通常是连通(子)图.
- 在有些图论教材中,若 $V' \subset V$ 使的 G V' 不连通,则 V' 为<mark>点割集</mark>.
- 而我们上述的定义被称为最小点割集 minimal vertex cut.
- 边割集类似,这种定义可以扩大可定义图的范围.

点割集与边割集

例子 3.1 (点割集与边割集). 计算下图的点割集、边割集、割点、桥.

- $\{v_1, v_4\}, \{v_5\}, \{v_6\}$ 是点割集.
- v₅, v₆ 是割点.
- $\{e_1, e_2\}, \{e_1, e_3, e_5, e_6\}, \{e_7\}, \{e_8\}$ 等是边割集.
- *e*₇, *e*₈ 是割边.

定义 3.5.G 为连通非完全图, 称

$$\kappa(G) = \min\{|V'| \mid V'$$
 为点割集}

为 G 的点连通度 vertex connectivity,简称连通度. 对于完全图规定 $\kappa(K_n) = n - 1$.

- $\kappa(G)$ 可以理解为从 G 中去除的最小顶点数使的 G 要么连通分支数增加,要么只包含一个顶点.
- $\kappa(G) = 0$ 当且仅当 $G = K_1$.
- 若 $\kappa(G) \geq k$,则称 G 为 k-连通图, $k \in \{0\} \cup \mathbb{Z}^+$.
- 根据定义, 若 G 是 k-连通图, 则 G 亦是 j-连通图, $0 \le j \le k$.

定义 3.6. 设 G 为连通图, 称

$$\lambda(G) = \min\{|E'| \mid E'$$
 为边割集}

为 G 的边连通度 edge connectivity. 若 $\lambda(G) \geq r$,则称 G 是 r 边-连通图, $r \in \{0\} \cup \mathbb{Z}^+$.

例子 3.2.

- κ = 2, G 是 2-连通图, 也是 0-连通, 1-连通.
- $\lambda = 2$, $G \ge 2$ 边-连通图, 也是 0 边-连通, 1 边-连通.

- $\kappa(K_n) = \lambda(K_n) = n 1$.
- 若 G 中有割点,则 $\kappa(G)=1$;若有桥,则 $\lambda(G)=1$.
- 若 $\kappa(G) = 1$,是否意味 G 中一定包含割点?

定理 3.1. 对于简单无向图 G 有 $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

证明. 若 G 为完全图 K_n , 则 $\kappa(G) = \lambda(G) = \delta(G) = n-1$ 下面考虑非完全图.

令 $\lambda(G) = k \geq 1$,则 G 存在边割集 $E' = \{\{u_1, v_1\}, \{u_2, v_2\}, \dots, \{u_k, v_k\}\}$. 令 V' 为 E' 中边的任意一端点构成的集合,比如 $V' = \{u_1, u_2, \dots, u_k\}$. 若去除 V' 使的 G 连通分支数增加,则 V' 为 G 的点割集且 $|V'| \leq k$,故 $\kappa(G) \leq |V'| \leq k = \lambda(G)$; 否则, u_1 最多有 k 个邻居. 因为可以将 E' 中的边分成两类,与 u_1 关联的边集 E'_1 ,以及 $E'_2 \triangleq E' - E'_1$, u_1 的邻居除了 E'_1 中的 v_i 之外,只能是 E'_2 中的 u_i ,而 $|E'_1| + |E'_2| = k$,故 u_1 至多有 k 个邻居. u_1 的所有邻居 $N(u_1)$ 构成了图的一个点割集且 $|N(u_1)| \leq k$,故 $\kappa(G) \leq k = \lambda(G)$.

由 $\delta(G)$ 定义可知,G 中存在一顶点 v 其度数为 $\delta(G)$,即 v 所关联的所有边个数为 $\delta(G)$,而这些边构成了 G 的一个边割集. 故 $\lambda(G) \leq \delta(G)$.

综上,有 $\kappa(G) \le \lambda(G) \le \delta(G)$.

有向图的连通性及分类

定义 3.7. 设 $G = \langle V, E \rangle$ 为一个有向图,对于任意 $v_i, v_j \in V$,若从 v_i 到 v_j 存在通路,则称 v_i 可达 v_j ,记作 $v_i \rightarrow v_j$. 规定 $v_i \rightarrow v_i$. 若 $v_i \rightarrow v_j$ 且 $v_j \rightarrow v_i$,则称 v_i 与 v_j 是相互可达的,记作 $v_i \leftrightarrow v_j$. 规定 $v_i \leftrightarrow v_i$.

- → 具有自反性、传递性.
- ↔ 具有自反性、对称性、传递性.

定义 3.8. 若有向图 $G = \langle V, E \rangle$ 的基图是连通图,则称 G 是<mark>弱连通图</mark> weakly connected graph,简称为<mark>连通图</mark>.

- 若对于任意 $v_i, v_j \in V$, $v_i \to v_j$ 与 $v_j \to v_i$ 至少有一个成立,则称 G 是单向连通图 semi-connected graph.
- 若对于任意 $v_i, v_j \in V$ 均有 $v_i \leftrightarrow v_j$,则称 G 是强连通图 strongly connected graph.

有向图的连通性

例子 3.3 (图的连通性).

有向图的连通性

定理 3.2. 有向图 $G = \langle V, E \rangle$ 是强连通图当且仅当 G 中存在经过每个顶点至少一次的回路.

证明. 只需证明(⇒). 令 $V = \{v_1, v_2, \ldots, v_n\}$, P_i 为 v_i 到 v_{i+1} 的通路 $(i = 1, 2, \ldots, n-1)$, P_n 为 v_n 到 v_1 的通路. 依次连接 $P_1, P_2, \ldots, P_{n-1}, P_n$ 所得到的回路经过 G 中每个顶点至少一次.

定理 3.3. 有向图 G 是单向连通图当且仅当 G 中存在经过每个顶点至少一次的通路.

扩大路径法

定义 3.9. 设 $G = \langle V, E \rangle$ 为无向图,P 为 G 中一条路径. 若此路径的两个端点都不与通路外的顶点相邻,则称 P 是极大路径.

- 任取一条边,如果它有一个端点与其他的顶点相邻,就将这条边延伸到这个顶点;
- 继续这一过程,直至得到一条极大路径为止,称此种方法为扩大路径法.
- 用扩大路径法总可以得到一条极大路径. 在有向图中可类似讨论.

扩大路径法

例子 3.4 (极大路径).

- 由一条路径扩大出的极大路径不惟一.
- 极大路径不一定是最长的路径.

扩大路径法的应用

例子 3.5. 令 G 为 $n(n \ge 3)$ 阶无向简单图有 $\delta(G) \ge 2$. 证明 G 中存在长度大于等于 $\delta(G) + 1$ 的圈.

证明. 设 $P = v_0 v_1 \dots v_\ell$ 是一条极大路径,由于 $\delta(G) \leq d(v_l) \leq \ell$ 故 $\ell \geq \delta(G)$.

由于 v_0 不与 P 外顶点相邻且 $d(v_0) \ge \delta(G)$,故在 P 上除 v_1 外,至少还存在 $\delta(G) - 1$ 个顶点与 v_0 相邻. 令 v_x 为离 v_0 最远的顶点,则 $v_0v_1 \dots v_xv_0$ 为 G 中长度大于等于 $\delta + 1$ 的圈.

 $\delta(G) = 3$ 的例子.

定义 3.10. 令 $G = \langle V, E \rangle$ 为一个无向图,若能将 V 分成 V_1 和 V_2 有 $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$,使的 G 中的每条边的两个端点都是一个属于 V_1 ,另一个属于 V_2 ,则称 G 为二分图 bipartite graph,并称 V_1 和 V_2 为互补顶点子集. 二分图也记为 $\langle V_1, V_2, E \rangle$.

定义 3.11. 若二分图 G 为简单图, V_1 中每个顶点均与 V_2 中所有顶点均相邻,则称 G 为完全二分图,记为 $K_{r,s}$,其中 $r=|V_1|,s=|V_2|$.

按照定义, $n \ge 2$ 阶零图为二分图.

二分图举例.

定理 3.4. 一个 $n \ge 2$ 的 n 阶无向图 $G = \langle V, E \rangle$ 是二分图当且仅当 G 中无奇圈.

证明.(⇒) 令 G 为二分图,若 G 中无圈则证毕. 不然,令 $C = v_{i_1} v_{i_2} \dots v_{i_\ell} v_{i_1}$ 为 G 中任意一个圈. 不妨设 $v_{i_1} \in V_1$,则根据二分图的定义 $v_{i_2} \in V_2$,进而 $v_{i_3} \in V_1$,…, $v_{i_\ell} \in V_2$. 故 ℓ 为偶数,C 为偶圈.

(⇐) 现假设 G 无奇圈,并且 G 为连通图,不然,可以讨论每个连通分量. 任选 $v_0 \in V$ 并构造顶点划分,

$$V_1 = \{ v \mid v \in V(G) \land d(v_0, v) \equiv 0 \pmod{2} \},$$

$$V_2 = \{ v \mid v \in V(G) \land d(v_0, v) \equiv 1 \pmod{2} \}.$$

根据假设条件, V_1, V_2 非空, $V_1 \cap V_2 = \emptyset$, $V_1 \cup V_2 = V$. 因此,只需证明 V_1 中任意两顶点不相邻, V_2 中任意两顶点不相邻.

假设 $v_i, v_j \in V_1$ 相邻,即存在 $e = \{v_i, v_j\} \in E$. 令 v_0 到 v_i, v_j 的最短路径分别为 P_i, P_j ,从 而 $d(v_0, v_i)$, $d(v_0, v_j)$ 均为偶数. 因此, P_i , P_j , e 构成了一条长度为奇数的回路. 该回路中一定包含长度为奇数的圈,因为可以将回路中的边分为 P_i, P_j 共有的边和独有的边以及 e,其中共有的边在回路中一定成对出现(出现偶数次),故 P_i, P_j 独有的边和 e 中一定会出现奇数长度的圈. 与已知条件矛盾,故 V_1 中任意两顶点不相邻. 同理可证, V_2 中任意两顶点不相邻. 即 G 为二分图.

图的矩阵表示

无向图的关联矩阵

定义 4.1 (无向图的关联矩阵). 无向图 $G = \langle V, E \rangle$, 其中 |V| = n, |E| = m. 令 b_{ij} 为 v_i 与 e_j 的关联次数, 称 $[b_{ij}]_{n \times m}$ 为 G 的关联矩阵, 记为 $\mathbf{B}(G)$.

例子 4.1.

$$\mathbf{B}(G) = \begin{bmatrix} 2 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

无向图关联矩阵的性质

关联矩阵 $\mathbf{B}(G)$ 具有如下性质:

- $\sum_{i=1}^{n} b_{ij} = 2, \quad j = 1, 2, \dots, m.$
- $\sum_{j=1}^{m} b_{ij} = d(v_i), \quad i = 1, 2, \dots, n.$
- $\sum_{j=1}^{m} b_{ij} = 0 \iff v_i$ 是孤立点.
- 平行边的列在关联矩阵中是相同的.

有向图无环的关联矩阵

定义 4.2 (有向无环图的关联矩阵). 设有向无环图 $G = \langle V, E \rangle$, 令

则称 $[b_{ij}]_{n\times m}$ 为 G 的关联矩阵, 记为 $\mathbf{B}(G)$.

例子 4.2.

$$\mathbf{B}(G) = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 & -1 \end{bmatrix}$$

有向无环图关联矩阵的性质

有向无环图关联矩阵满足如下性质:

- 每列恰好有一个 +1 和一个 -1.
- -1 的个数等于 +1 的个数, 都等于边数 *m*.
- 对于第 i 行, +1 的个数等于 $d^+(v_i)$, -1 的个数等于 $d^-(v_i)$.
- 平行边对应的列相同.

邻接矩阵

定义 4.3. 设图 $G = \langle V, E \rangle$, 其中 $V = \{v_1, v_2, \dots, v_n\}$. 令 a_{ij} 为连接顶点 v_i 与顶点 v_j 边的个数,称 $[a_{ij}]_{n \times n}$ 为 G 的邻接矩阵,记作 $\mathbf{A}(G)$,或简记为 \mathbf{A} .

例子 4.3 (有向图邻接矩阵).

$$\mathbf{A} = \begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

邻接矩阵

例子 4.4 (无向图邻接矩阵).

$$\mathbf{A} = \left[\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

有向图邻接矩阵的性质

有向/无向图邻接矩阵的性质:

- $\sum_{j=1}^{n} a_{ij} = d^+(v_i)$ or $d(v_i), \quad i = 1, 2, \dots, n$.
- $\sum_{i=1}^{n} a_{ij} = d^{-}(v_j)$ or $d(v_j)$, $j = 1, 2, \dots, n$.
- $\sum_{i,j} a_{ij} = m$, 即图中长度为 1 的通路数.
- $\sum_{i=1}^{n} a_{ii}$, 即图中长度为 1 的回路数.

邻接矩阵的应用

定理 4.1. 设 **A** 为图 *G* 的邻接矩阵,顶点集 $V = \{v_1, v_2, ..., v_n\}$,则 **A** 的 ℓ 次幂 \mathbf{A}^{ℓ} ($\ell \geq 1$) 中元素:

- $a_{ij}^{(\ell)}$ 为 v_i 到 v_j 长度为 ℓ 的通路数.
- $a_{ii}^{(\ell)}$ 为 v_i 到自身长度为 ℓ 的回路数.
- $\sum_{i=1}^{n} a_{ii}^{(\ell)}$ 为长度为 ℓ 的回路总数.
- $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(\ell)}$ 为长度为 ℓ 的通路总数.

推论 4.1. \diamondsuit M = A + A² + ... + A^{ℓ} ($\ell \ge 1$), 则

- $\sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij}$ 为长度小于或等于 ℓ 的通路数.
- $\sum_{i=1}^{n} m_{ii}$ 为长度小于或等于 ℓ 的回路数.

实例

例子 4.5. 有向图 G 如图所示,求 A, A^2 , A^3 , A^4 , 并回答以下问题:

- (1) G中长度为 1,2,3,4 的通路各有多少条? 其中回路分别为多少条?
- (2) G中长度小于或等于 4的通路为多少条? 其中有多少条回路?

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

实例求解

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \ \mathbf{A}^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}, \ \mathbf{A}^3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \\ 3 & 0 & 1 & 0 \end{bmatrix}, \ \mathbf{A}^4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 5 & 0 & 0 & 1 \\ 4 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{bmatrix}.$$

- (1) D中长度为1的通路为8条,其中有1条是回路.
 - G 中长度为 2 的通路有 11 条, 其中有 3 条是回路.
 - G 中长度为 3 的通路有 14 条, 其中有 1 条是回路.
 - G中长度为 4 的通路有 17 条, 其中有 3 条是回路.
- (2) G中长度小于等于4的通路总共有50条,其中有8条是回路.

可达矩阵

定义 4.4. 设 $G = \langle V, E \rangle$ 为图, $V = \{v_1, v_2, \dots, v_n\}$, 令

$$p_{ij} = \begin{cases} 0, & \text{如果 } v_i \text{ 可达 } v_j \\ 1, & \text{否则.} \end{cases}$$

称 $[p_{ij}]_{n\times n}$ 为 G 的可达矩阵,记作 $\mathbf{P}(G)$,简记为 \mathbf{P} . $\mathbf{P}(G)$ 的主对角线上的元素全为 1. G 强连通当且仅当 $\mathbf{P}(G)$ 为全 1 矩阵.

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

可达矩阵

- 给定图,如何计算可达矩阵?
- 有向图的可达矩阵和二元关系的传递闭包有何关联?

图的邻接矩阵表示与图同构(选学)

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

- 给定图 G 与其邻接矩阵表示 A(G).
- 现将图 *G* 中 *v*₁ 与 *v*₃ 交换 (标号交换), *v*₂ 与 *v*₄ 交换得到图 *G'*, 试写出 **A**(*G'*).
- A(G') = A(G) 有何关联? 试用矩阵运算建立二者间的关联.
- G' 与 G 是否依然是同一个图,即二者是否同构?
- 从图邻接矩阵表示的角度看,一个图有多少种同构图?

图的运算

- 并图.
- 差图.
- 交图.
- 环和.

习题

习题课

- 无向图和有向图及其有关的概念; 握手定理及其推论; 图的同构
- 通路与回路
- 无向图的连通性与连通度
- 有向图的连通性及其分类
- 图的矩阵表示

基本要求

- 深刻理解图及其有关的概念
- 深刻理解和灵活地应用握手定理及推论
- 记住通路与回路的定义、分类及表示法
- 深刻理解与无向图连通性、连通度有关的诸多概念
- 会判别有向图连通性的类型
- 熟练掌握用邻接矩阵及其幂求有向图中通路与回路数的方法,会求可达矩阵

例子 5.1. 在 9 阶无向图 G 中,每个顶点的度数不是 5 就是 6. 证明 G 中至少有 5 个 6 度顶点或至少有 6 个 5 度顶点.

证明. 关键是利用握手定理的推论.

方法一: 穷举法

设 G 中有 x 个 5 度顶点, (9-x) 个 6 度顶点. 由于奇度顶点的个数是偶数, (x,9-x) 只有 5 种可能: (0,9), (2,7), (4,5), (6,3), (8,1), 它们都满足要求.

方法二: 反证法

否则,至多有 $4 \uparrow 6$ 度顶点且至多有 $5 \uparrow 6$ 度顶点. 根据握手定理推论,奇度顶点至多 $4 \uparrow 6$ 人,因此节点总度数至多为 $4 \times 6 + 4 \times 5 = 44$,这与已知条件矛盾(总度数至少为 46).

例子 5.2. 存在以 2,2,2,2,3,3 为顶点度数的简单图吗? 若存在, 画出尽可能多的这种非同构的图来.

例子 5.3. 设 $G = \langle V, E \rangle$ 为有向简单图, 已知 $\delta(G) \geq 2$, $\delta^+(G) > 0$, $\delta^-(G) > 0$. 证明 G 中存在长度 $\geq \max\{\delta^+, \delta^-\} + 1$ 的圈.

证明. 用扩大路径法证明.

设 $\delta^- \ge \delta^+$, 证明 G 中存在长度 $\ge \delta^- + 1$ 的圈.

设 $P = v_0 v_1 \dots v_\ell$ 为极大路径, 则 $\ell \ge \delta^-$. 在 P 上存在 $d^-(v_0) \ge \delta^-$ 个顶点邻接到 v_0 , 设 v_k 是其中离 v_0 最远的顶点, $k \ge \delta^-$. 于是, $v_0 v_1 \dots v_k v_0$ 为 G 中长度 $\ge \delta^- + 1$ 的圈.

当 $\delta^+ \geq \delta^-$ 时,类似可证.

例子 5.4. 有向图 G 如图所示, 回答下列诸问:

- (1) G 中有几种不同构的圈?
- (2) G 中有几种不同构的非圈简单回路?
- (3) G 是哪类连通图?
- (4) G 中, 从 v_1 到 v_4 的长度为 1, 2, 3, 4 的通路各有多少条?
- (5) G 中, 从 v_1 到 v_1 的长度为 1, 2, 3, 4 的回路各有多少条?
- (6) G中长度为 4的通路 (不含回路) 有多少条?
- (7) G中长度为 4的回路有多少条?
- (8) *G* 中长度不超过 4 的通路有多少条? 其中有几条是回路?
- (9) 写出 G 的可达矩阵.

解答

- (1) 有 3 种非同构的圈, 长度分别为 1,2,3.
- (2) 有 3 种非同构的非圈简单回路, 它们的长度分别为 4,5,6.
- (3) G 是强连通的.

为解(4)至(8),先求G的邻接矩阵的前4次幂.

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad A^2 = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
$$A^3 = \begin{bmatrix} 3 & 2 & 2 & 2 \\ 1 & 2 & 1 & 0 \\ 2 & 2 & 2 & 1 \\ 1 & 2 & 1 & 0 \end{bmatrix} \qquad A^4 = \begin{bmatrix} 5 & 6 & 4 & 2 \\ 2 & 2 & 2 & 1 \\ 4 & 4 & 3 & 2 \\ 2 & 2 & 2 & 1 \end{bmatrix}$$

解答

- (4) v_1 到 v_4 长度为 1,2,3,4 的通路数分别为 0,0,2,2(定义意义下).
- (5) v_1 到 v_1 长度为 1,2,3,4 的回路数分别为 1,1,3,5.
- (6) 长度为 4 的通路 (不含回路) 为 33 条.
- (7) 长度为 4 的回路为 11 条.
- (8) 长度 ≤ 4 的通路 88 条. 其中 22 条为回路.
- (9) 4×4的全1矩阵.

作业

作业

- 4-4, 14-6, 14-11, 14-14, 14-18.
- 4-23, 14-28, 14-34, 14-39, 14-41, 14-47, 14-48.