CSCI446/946 Big Data Analytics

Week 4 Statistical Methods and Cluster Analysis

School of Computing and Information Technology
University of Wollongong Australia

Brief Recap

Last week:

- Introduction to R
- Exploratory Data Analysis
 - Visualization
- Descriptive statistics

Today's lecture

- Statistical Methods for Evaluation
 - Hypothesis Testing, ANOVA
- Clustering
 - Overview
 - K-means clustering
 - Overview of the Method
 - Determining the Number of Clusters
 - Diagnostics
 - Reasons to Choose and Cautions
 - DBScan clustering
 - Additional Algorithms

- Statistics is crucial because it may exist throughout the entire Data Analytics Lifecycle
 - Initial data exploration and data preparation
 - Model planning and model building
 - Best input variables, predictability
 - Evaluation of the final models
 - Accuracy, better than guess or another one?
 - Assessment of the new models when deployed
 - Sound prediction? Have desired effect?

- Hypothesis Testing
 - Form an assertion and test it with data
 - Common assumption (there is no statistically significant difference)
 - Null hypothesis (H_0) vs Alternative hypothesis (H_A)
- Example: identify the effect of drug A compared to drug B on patients
 - What are the H_0 and H_A ?
- A hypothesis is formed before validation
 - It can define expectations.

- Hypothesis Testing
 - Clearly state Null and Alternative hypotheses
 - Either reject the null hypothesis in favour of the alternative or not reject the null hypothesis

Application	Null Hypothesis	Alternative Hypothesis
Accuracy Forecast	Model X <i>does not predict</i> better than the existing model.	Model X <i>predicts</i> better than the existing model.
Recommendation Engine	Algorithm Y <i>does not produce</i> better recommendations than the current algorithm being used.	Algorithm Y <i>produces</i> better recommendations than the current algorithm being used.
Regression Modeling	This variable <i>does not affect</i> the outcome because its coefficient is <i>zero</i> .	This variable <i>affects</i> outcome because its coefficient is not <i>zero</i> .

- Difference of Means (A common hypothesis test)
 - Assume we have two populations, one with mean=-3 and the other with mean=3
 - By comparing the means can we say that the difference between the two populations is significant?
 - Answer depends on variance.

- Student's t-test
 - Assumes that distributions of the two populations have equal but unknown variance.

Noise

Assumes that each population is normally distributed.

$$T = \frac{\overline{X}_{1} - \overline{X}_{2}}{S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

T (the *t-statistic*) follows a <u>t-distribution</u> with (n₁+n₂-2) degree of freedom

• Student's t-test

 The further T is from zero the more significant the difference between the populations. If T is large then one would reject the null hypothesis

$$T = \frac{X_1 - X_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

- Student's t-test
 - Significance level of the test (α): the probability of rejecting the null hypothesis, when the null hypothesis is actually TRUE
 - It is common to use $\alpha = 0.05$
 - Find T* such that $P(|T| ≥ T^*) = α$
 - Reject H_0 if $|T| ≥ T^*$

$$T = \frac{\overline{X}_1 - \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

• Student's *t*-test (an example)

```
# generate random observations from the two populations
x <- rnorm(10, mean=100, sd=5) # normal distribution centered at 100
y <- rnorm(20, mean=105, sd=5) # normal distribution centered at 105
t.test(x, y, var.equal=TRUE) # run the Student's t-test
Two Sample t-test
data: x and y
t = -1.7828, df = 28, p-value = 0.08547
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  -6.1611557 0.4271893
sample estimates:
 mean of x mean of y
102.2136 105.0806
```

Welch's t-test

- Shall be used when the equal population variance assumption is NOT justified
- It uses the sample variance for each population instead of the pooled sample variance
- Still assumes two populations are normal.

$$T_{welch} = \frac{\overline{X}_{1} - \overline{X}_{2}}{\sqrt{\frac{S_{1}^{2} + \frac{S_{2}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$$

Welch's t-test

```
t.test(x, y, var.equal=FALSE) # run the Welch's t-test
Welch Two Sample t-test
data: x and y
t = -1.6596, df = 15.118, p-value = 0.1176
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  -6.546629 0.812663
sample estimates:
 mean of x mean of y
102.2136 105.0806
```

- Recommended viewing: An excellent video tutorial on the t-test can be found here:
 - https://www.youtube.com/watch?v=pTmLQvMM-1M

- Wilcoxon Rank-Sum Test
 - What if the two populations are not normal?
- Parametric test (i.e. student's t-test) vs
 Nonparametric test (i.e. Wilcoxon rank-sum test)
 - Parametric test
 - Makes assumptions about the population distributions from which the samples are drawn
 - Nonparametric test
 - Shall be used if the populations cannot be assumed (or transformed) to be normal

Wilcoxon Rank-Sum Test

```
wilcox.test(x, y, conf.int = TRUE)
Wilcoxon rank sum test
data: x and y
W = 55, p-value = 0.04903
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
  -6.2596774 -0.1240618
sample estimates:
  difference in location
-3.417658
```

p-value: the probability of the rank-sums of this magnitude being observed assuming that the population distributions are identical

- Type I and Type II Errors
 - Type I error: the rejection of the null hypothesis when the null hypothesis is TRUE
 - The probability of type I error is denoted by α
 - Type II error: the acceptance of the null hypothesis when the null hypothesis is FALSE
 - The probability of type II error is denoted by β
- Power (statistical power)
 - The probability of correctly rejecting the null hypothesis $(1-\beta)$

- ANOVA (Analysis of Variance)
 - What if there are more than two populations?
 - Multiple t-test may not perform well then.
- A generalization of the hypothesis testing
 - ANOVA tests if any of the population means differ from the other population means
 - Each population is assumed to be normal and have the same variance

ANOVA (Analysis of Variance)

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_n$$

 $\mathbf{H}_{\mathbf{A}}: \mu_i \neq \mu_j$ for at least one pair of i, j

- Compute F-test statistic
 - Between-groups mean sum of squares
 - Within-groups mean sum of squares

$$S_B^2 = \frac{1}{k-1} \sum_{i=1}^k n_i \cdot (\overline{x}_i - \overline{x}_0)^2 \qquad S_W^2 = \frac{1}{n-k} \sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2$$

ANOVA (Analysis of Variance)

$$F = \frac{S_B^2}{S_W^2}$$

$$S_B^2 = \frac{1}{k-1} \sum_{i=1}^k n_i \cdot (\overline{x}_i - \overline{x}_0)^2 \qquad S_W^2 = \frac{1}{n-k} \sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2$$

- ANOVA (Analysis of Variance)
 - Measures how different the means are relative to the variability within each group
 - The larger the F-test statistic, the greater the likelihood that the difference of means are due to something other than chance alone
 - The F-test statistic follows an F-distribution

$$F = \frac{S_B^2}{S_W^2}$$

ANOVA (Analysis of Variance)

Shall we accept or reject the null hypothesis?

- ANOVA (Analysis of Variance)
 - Additional tests for each pair of groups
 - Tukey's Honest Significant Difference (HSD)

Overview of Clustering

- Supervised vs. Unsupervised Techniques
 - Labelled data vs. Unlabelled data
- Unsupervised Techniques
 - Refers to the problem of finding hidden structure within unlabelled data
 - Clustering, density estimation, dimensionality reduction, etc.
- Clustering is an unsupervised technique

- Given a collection of m objects each with n measurable attributes
 - Mathematically, $\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_m\in\mathbb{R}^n$
 - Each object is a point in an n-dimensional space

 For a chosen value of k, identify k clusters of objects based on the objects' proximity to the centre of the k groups

- Use Cases
 - Often used as a lead-in to classification
 - Once clusters are identified, labels can be applied to each cluster to do classification
- Applications
 - Image Processing
 - Medical (Clustering patients)
 - Customer grouping (find similar customers)

- Application to image processing
 - i.e. cluster colour space

Original image

Overview of K-means Clustering

- Four steps
 - 1. Choose a value of k, create k centroids, then initialize them by guessing their value.
 - 2. Compute the distance from each data point to each centroid. Assign each point to the closest centroid.
 - 3. Update the centroid of each cluster to become the center of gravity of the cluster.

Repeat Steps 2 and 3 until convergence

Overview of K-means Clustering

6/10/2020

Overview of K-means Clustering

Compute the Euclidean distance

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2 = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Compute the center of gravity

$$\bar{\mathbf{x}} = \frac{\sum_{i=1}^{m} \mathbf{x}_i}{m}$$

Determine the Number of Clusters

- What value of k shall be selected?
 - A reasonable guess, some predefined requirement
 - k-1, k, or k+1?
- Within Sum of Squares (WSS)
 - A heuristic
 - Sum of the squares of the distances between each data point and the closest centroid

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} r_{ij} \|\mathbf{x}_i - \bar{\mathbf{x}}_j\|_2^2; \quad r_{ij} \in \{0, 1\}$$

Determine the Number of Clusters

Within Sum of Squares (WSS)

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} r_{ij} \|\mathbf{x}_i - \bar{\mathbf{x}}_j\|_2^2; \quad r_{ij} \in \{0, 1\}$$

Using R to Perform K-mean Clustering

Task is to

library(plyr)

 Group 620 high school seniors based on their grades in "English", "Math", and "Science"

```
library(ggplot2)
library(cluster)
library(lattice)
library(graphics)
library(grid)
library(gridExtra)

#import the student grades
grade_input = as.data.frame(read.csv("c:/data/grades_km_input.csv"))
```

Using R to Perform K-mean Clustering

Task is to

[10,]

 Group 620 high school seniors based on their grades in "English", "Math", and "Science"

```
kmdata orig = as.matrix(grade input[,c("Student", "English", "Math", "Science")])
kmdata <- kmdata orig[,2:4]
kmdata[1:10,]
      English Math Science
 [1,]
           99
                96
                        97
 [2,]
           99
               96
                        97
 [3,]
           98
               97
                        97
 [4,]
           95
               100
 [5,]
           95
               96
                        96
 [6,]
           96
               97
                        96
 [7,]
          100
               96
                        97
 [8,]
           95
                        98
 [9,]
```

Using R to Perform K-mean Clustering

Compute and plot WSS to choose k value

```
wss <- numeric(15)
for (k in 1:15) wss[k] <- sum(kmeans(kmdata, centers=k, nstart=25)$withinss)
plot(1:15, wss, type="b", xlab="Number of Clusters", ylab="Within Sum of Squares")</pre>
```


Using R to Perform K-means Clustering

Perform K-means Clustering

```
km = kmeans(kmdata, 3, nstart=25)
km
K-means clustering with 3 clusters of sizes 158, 218, 244
Cluster means:
  English Math Science
1 97.21519 93.37342 94.86076
2 73.22018 64.62844 65.84862
3 85.84426 79.68033 81.50820
Clustering vector:
                   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
                        1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
                 3 3 3 3 3 3 3 3
```

Using R to Perform K-means Clustering

Perform K-means Clustering

```
2 2 2 2 2 2 2 2 2 2
[601] 3 3 2 2 3 3 3 3 1 1 3 3 3 2 2 3 2 3 3 3
Within cluster sum of squares by cluster:
[1] 6692.589 34806.339 22984.131
                         c( wss[3] , sum(km$withinss) )
 (between SS / total SS = 76.5 %)
                            64483.06 64483.06
Available components:
                          "withinss" "tot.withinss"
  "cluster" "centers" "totss"
  "betweenss" "size" "iter"
                          "ifault"
```

Using R to Perform K-means Clustering

Visualize the identified clusters and centroids

Diagnostics

- The following questions shall be asked
 - Are the clusters well separated from each other?
 - Do any of the clusters have only a few points?
 - Do any of the centroids appear to be too close to each other?

Diagnostics

- A principle
 - If using more clusters does not better distinguish the groups, it is almost certainly better to go with fewer clusters

- Several decisions that must be made
 - What object attributions shall be included in clustering analysis?
 - What unit of measure shall be used for each attribute?
 - Do the attributes need to be rescaled?
 - One attribute could have a disproportionate effect

- Object attributes
 - Whether it will be known for a new object?
 - Best to reduce the number of attributes to the extent of possible
 - Avoid using too many variables (Why?)
 - Avoid using several similar variables (Why?)
- Identify any highly correlated attributes
- Feature selection: Information gain, PCA, etc.

Identify any highly correlated attributes

What is your observation?

Units of measure could affect clustering result

- Rescaling attributes affect clustering result
 - Divide each attribute by its standard deviation

Additional Considerations

- K-means clustering is sensitive to the starting positions of the initial centroids
 - Usually, we run the k-means clustering several times for a particular k value to choose the clustering result with the lowest WSS value
 - Implemented by the nstart option in kmeans()
- Other distances
 - Manhattan distance & the median of cluster

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_1 = \sum_{i=1}^{n} |x_i - y_i|$$

Additional Algorithms

- K-means clustering is easily applied to numeric data where the concept of distance can naturally be applied
- K-modes handles categorical data
 - Use the number of differences in the respective components of the attributes
 - What is the distance between (a,b,e,d) and (d,d,d,d)?
 - Implemented by the kmode() function
 - Caution: Sometimes it is better to convert categorial (or symbolic) data to numerical i.e. {hot, warm, cold} to {1,0,-1}.
 - Understand why!
 - Understand how to encode categorial values.

Additional Considerations

- Despite its popularity, K-means has problems:
 - When data contains noise and/or outliers
 - When clusters have non-globular shapes
 - When clusters vary in densities
 - When clusters differ significantly in size
 - Can reveal "empty" clusters
- Know your data (i.e via visualization) to verify whether K-means is suitable

Density Based Clustering

- Density-based clustering locates regions of high density that are separated from one another by regions of low density.
- In other words, clusters are dense regions in the data space, separated by regions of lower object density
- Major features of density-based clustering:
 - Discover clusters of arbitrary shape
 - Handle noise
 - Need density parameters as termination condition
- Example: **DBSCAN**

DBScan

• Density is estimated for a particular point in the data set by counting the number of points within a specified radius, *Eps*, of that point. This includes the point itself.

- Example: the number of points within a radius of *Eps* of point A is 7, including A itself.
 - ➤ The density of A is 7.

- Given a density threshold (MinPts) and a radius (Eps), the points in a dataset are classified into three types: core point, border point, and noise point.
 - Core points: Point whose density >= MinPts
 - Core points are in the interior of a density-based cluster.

Example: If MinPts = 6 then A is a core point because its density = 7 (7>6)

- ☐ Three types: core point, border point, and noise point.
 - A border point is not a core point but falls within the neighborhood of a core point.

Example:

- The density of B is 4 and less than MinPts=6, so B is not a core point.
- But B falls within the neighbor of A (a core point).
- So, B is a border point.

- ☐ Three types: core point, border point, and noise point.
 - A noise point is any point that is neither a core point nor a border point.

Example:

- The density of C is 3 which is less than MinPts=6, so C is not a core point.
- C doesn't fall within the neighborhood of any core point, so it is not a border point.
- So, C is a noise point.

Steps of DBSCAN clustering

- Step 1: Label each point as either core, border, or noise point.
- Step 2: Mark each group of Eps connected core points as a separate cluster
- Step 3: Assign each border point to one of the clusters of its associate core points.

DBSCAN example

DBScan properties

• DBSCAN:

- Resistant to noise and outliers
- Can handle clusters of different shapes and sizes
- Computational complexity is similar to K-means

When DBSCAN does not work well

- Varying densities
 - · Can be overcome by using sampling
- Sparse and high-dimensional data
 - Can be overcome by using topology preserving dimension reduction techniques.

Using DBScan in R

- res <- dbscan(data, eps, MinPts = 5)
- http://www.sthda.com/english/wiki/wiki.php?id_contents=7940

Additional Algorithms

- Hierarchical Clustering (hclust())
 - Hierarchical agglomerative clustering
 - Hierarchical divisive clustering

- 1. Each object is initially treated as a cluster
- 2. The clusters are then combined with the most similar cluster in each step
- This process is repeated until one cluster (containing all objects) exists

Computationally very expensive O(n²) to O(n³) and thus rarely used in Big Data analytics.

