Übungsblatt 9 zu Modellkategorien

Aufgabe 1. Assoziativität in der Homotopiekategorie Kommt noch.

Aufgabe 2. Simpliziale Mengen durch Erzeuger und Relationen

Zeichne für die folgenden Beschreibungen simplizialer Mengen durch Erzeuger und Relationen das relevante Kolimesdiagramm und gib das Erzeugnis explizit an.

- a) keinerlei Erzeuger
- b) genau ein Erzeuger und keine Relationen
- c) ein Erzeuger v in Dimension 1 mit der Relation $d^0(v) = d^1(v)$

$\coprod_{x \in X_{(n)}} \mathbb{S}^{n-1} \longrightarrow \operatorname{sk}_{n-1} X$ $\downarrow \qquad \qquad \downarrow$ $\coprod_{x \in X_{(n)}} \Delta[n] \longrightarrow \operatorname{sk}_n X$

Aufgabe 3. Skelette von simplizialen Mengen

Sei X eine simpliziale Menge.

- a) Sei $x \in X_n$ ein Simplex. Mache dir klar, dass dieses Datum eine simpliziale Abbildung $\bar{x} : \Delta[n] \to \operatorname{sk}_n X$, $f \mapsto X(f)x$ definiert. Was macht \bar{x} anschaulich?
- b) Zeige, dass das Bild von \mathbb{S}^{n-1} unter der Abbildung aus a) schon in $\operatorname{sk}_{n-1}X$ liegt.
- c) Gib die kanonischen Abbildungen des obigen Quadrats an. Zeige, dass dieses Quadrat ein Pushout-Diagramm ist.
- d) Zeige, dass X ein \mathcal{I} -Zellkomplex ist, wobei $\mathcal{I} = \{\mathbb{S}^{n-1} \hookrightarrow \Delta[n] \mid n \geq 0\}.$

Aufgabe 4. Beispiele für Kan-Komplexe

Sei \mathcal{C} eine kleine Kategorie. Ihr *Nerv* ist die simpliziale Menge $N\mathcal{C}$ wobei $(N\mathcal{C})_m$ die Menge der Diagramme der Form $X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{m-1}} X_m$ in \mathcal{C} ist.

- a) Zeige, dass $N\mathcal{C}$ ein innerer Kan-Komplex ist.
- b) Zeige, dass NC genau dann ein Kan-Komplex ist, wenn C ein Gruppoid ist.
- c) Sei Y ein topologischer Raum. Zeige, dass Sing Y ein Kan-Komplex ist.

