2 A curve is defined by the parametric equations

$$x = 3 - 4t \qquad y = 1 + \frac{2}{t}$$

- (a) Find $\frac{dy}{dx}$ in terms of t. (4 marks)
- (b) Find the equation of the tangent to the curve at the point where t = 2, giving your answer in the form ax + by + c = 0, where a, b and c are integers. (4 marks)
- (c) Verify that the cartesian equation of the curve can be written as

$$(x-3)(y-1) + 8 = 0$$
 (3 marks)

- 3 It is given that $3\cos\theta 2\sin\theta = R\cos(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
 - (a) Find the value of R. (1 mark)
 - (b) Show that $\alpha \approx 33.7^{\circ}$. (2 marks)
 - (c) Hence write down the maximum value of $3\cos\theta 2\sin\theta$ and find a **positive** value of θ at which this maximum value occurs. (3 marks)

(b) Hence show that $\int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{\pi}{a}$, where *a* is an integer. (5 marks)

(ii) Hence, or otherwise, show that

$$\frac{1}{3-2x} \approx \frac{1}{3} + \frac{2}{9}x + \frac{4}{27}x^2$$

for small values of x.

(3 marks)

- (b) Obtain the binomial expansion of $\frac{1}{(1-x)^2}$ up to and including the term in x^2 .
- (c) Given that $\frac{2x^2 3}{(3 2x)(1 x)^2}$ can be written in the form $\frac{A}{(3 2x)} + \frac{B}{(1 x)} + \frac{C}{(1 x)^2}$, find the values of A, B and C.
- (d) Hence find the binomial expansion of $\frac{2x^2 3}{(3 2x)(1 x)^2}$ up to and including the term in x^2 .

4 (a) (i) Express $\sin 2x$ in terms of $\sin x$ and $\cos x$. (1 mark)

(ii) Express $\cos 2x$ in terms of $\cos x$. (1 mark)

(b) Show that

$$\sin 2x - \tan x = \tan x \cos 2x$$

for all values of x. (3 marks)

(c) Solve the equation $\sin 2x - \tan x = 0$, giving all solutions in degrees in the interval $0^{\circ} < x < 360^{\circ}$. (4 marks)

(b) Using integration by parts, find $\int x^{-2} \ln x \, dx$.

(4 marks)

(c) The sketch shows the graph of $y = x^{-2} \ln x$.

- (i) Using the answer to part (a), find, in terms of e, the x-coordinate of the stationary point A. (2 marks)
- (ii) The region R is bounded by the curve, the x-axis and the line x = 5. Using your answer to part (b), show that the area of R is

$$\frac{1}{5}(4 - \ln 5) \tag{3 marks}$$

6 The *n*th term of a sequence is u_n .

The sequence is defined by

$$u_{n+1} = pu_n + q$$

where p and q are constants.

The first three terms of the sequence are given by

$$u_1 = -8$$
 $u_2 = 8$ $u_3 = 4$

- (a) Show that q = 6 and find the value of p. (5 marks)
- (b) Find the value of u_4 . (1 mark)
- (c) The limit of u_n as n tends to infinity is L.
 - (i) Write down an equation for L. (1 mark)
 - (ii) Hence find the value of L. (2 marks)

