

Pagina 1 din 9

Pagina 1 din 9		
Problema 1) puncte)
Doram problems 1	Parţial	Punctaj
Barem problema 1 Efect fotoelectric		10 p
a) reprezentarea grafică:	2 p	
Valoarea $ U_s = 1,5$ V a modulului tensiunii de stopare, obținută pentru frecvența	0,3 p	
$v = 580 \cdot 10^{12} \text{Hz}$, este o eroare grosolană, deci nu va fi luată în considerare.	0,5 р	
Graficul va fi o dreaptă trasată printre punctele experimentale obținute.	1,7 p	
b)	1 p	
Teorema de variație a energiei cinetice aplicată procesului de frânare până la oprire a electronilor emiși conduce la relația: $E_c = e U_s $. Ecuația dreptei obținute, $ U_s = av + b$, poate fi rescrisă în forma $E_c = e U_s = Av + B$, ceea ce confirmă creșterea liniară a energiei cinetice a electronilor emiși cu frecvența radiației electromagnetice incidente pe suprafața metalului.	0,5 p	
Scăderea frecvenței radiației electromagnetice va duce la scăderea modulului tensiunii electrice de stopare și implicit a energiei cinetice a electronilor emiși. La o frecvență minimă v_0 se obține $ U_s =0$, deci se anulează energia cinetică a electronilor emiși. Efectul se produce numai dacă frecvența radiației electromagnetice incidente depășește valoarea minimă de prag v_0 .	0,5 p	
c) Din ecuația lui Einstein care exprimă bilanțul energetic în cazul interacțiunii foton-	1,5 p	
Din ecuația lui Einstein care exprimă bilanțul energetic în cazul interacțiunii foton- electron: $e U_s =E_c=hv+L_{ext},$ se obține ecuația dreptei: $ U_s =\frac{h}{e}v+\frac{L_{ext}}{e}$ a cărei pantă este: $tg\alpha=\frac{h}{e}$ Se determină panta dreptei trasată pe hârtia milimetrică: $tg\alpha=\frac{\Delta U_s }{\Delta v}$	0,5 p	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.

Pagina 2 din 9

Pagina 2 din 9				ŕ			
Se obține: $h =$	$\frac{e \Delta U_S }{\Delta v}$	_					
Pentru graficul	realiz	at $h = 5.94 \cdot 10^{-1}$	·34 Js				
_						0,5 p	
Citire din grafic	c a tăie	: (5,66,3) · 10 · eturii cu axa frecv	enței: $v_0 = 3$	06 · 10 ¹² Hz			
Valori acceptate: $v_0 = (280320) \cdot 10^{12} \text{Hz}$			0,5 p				
d) Prin metoda celor mai mici pătrate se utilizează doar $n = 6$ puncte experimentale:			1,5 p				
		h n	$\sum v_i U_s _i - \sum$	$ x_i \sum U_s _i$			
		$tg\alpha = \frac{h}{e} = \frac{n\Sigma}{2}$	$\frac{1}{n\sum v_i^2 - (\sum v_i^2)}$	$(v_i)^2$			
relație în care i	$= \overline{1.6}$		_ i _				
	1,0	·•		I I I a			
Filtrul	i	$v (10^{12} \text{Hz})$	Us (V)	v· Us (10¹²Hz·V)	$v^2(10^{24} \text{Hz})$		
Roșu	1	415	0.4	166	172225		
Galben	2	519	0.8	415.2	269361		
Verde1	3	549	0.9	494.1	301401	1,5 p	
Albastru1	4	630	1.3	819	396900		
Albastru2	5	688	1.4	963.2	473344		
Violet	6	741	1.6	1185.6	549081		
		25.42	<i>c</i> 4	40.42.1	21 (2212		
	$\frac{\Sigma}{\Sigma^2}$	3542 12545764·10 ²⁴	6.4	4043.1	2162312		
	Σ-		5,94 · 10 ⁻³⁴ Js	2			
		n - s),94°10 J:	5			
e)						1 p	
prin metoda cel	lor ma	i mici pătrate eroa	rea de lucru	este de 10,27%		0,5 p	
orecizia redusă	a aces	stei metode este in	fluențată de:				
		nui vid absolut înt		mnlicit existenta	unui curent ionic		
• ecranai	,		re electrozi, r	impirote oxistorița		0,5 p	
		ectric produs pe a	nod (efect for	toelectric invers)		5,5 P	
 diferen 	ța de p	ootențial de contac	et				
f)						2 p	
Intensitatea curentului fotoelectric de saturație: $I_S = \frac{(\Delta N_{eficienți})e}{\Delta t}$				0,6 p			
			0,0 р				
Fluxul/Puterea radiației incidente pe catod: $\phi = \frac{(\Delta N_{incidenți})hv}{\Delta t}$			0,6 p				
Prin îmnărtirea	relatii	flor se obtine: $\frac{I_s}{I_s}$ =	$\Delta N_{eficienți}$ e	$= n \frac{e}{}$			
Prin împărțirea relațiilor se obține: $\frac{I_s}{\phi} = \frac{\Delta N_{eficienți}}{\Delta N_{incidenți}} \frac{e}{hv} = \eta \frac{e}{hv}$			0,5 p				
Se obține randa	ımentu	al cuantic $\eta = \frac{I_s h v}{\phi e}$				0,5 p	
Valoare numer	ică η =	$=\frac{1}{100}$				0,3 p	
						1	1 n
Oficiu						1	1 p

1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.

Pagina 3 din 9

Problema 2		<u>puncte)</u>
	Parţial	Puncta
Barem problema 2		10 p
Împrăstiere elastică	2 n	
a)	2 p	
- Conservarea impulsului: $p_1' \sin \theta = p_2' \sin \theta$ rezultă $p_1' = p_2' = p'$ și $p = 2p' \cos \theta$		
- Conservarea energiei: $E + m_0 c^2 = 2E$	1 p	
E^2 2 2 2 4 1× 2 $E + m_0 c^2$	1 p	
$E^2 = p^2 c^2 + m_0^2 c^4 \text{ rezultă } \cos^2 \theta = \frac{E + m_0 c^2}{E + 3m_0 c^2}$		
Pentru $E \rightarrow m_o c^2$ rezultă $\theta \rightarrow 45^\circ$ la fel ca în mecanica newtoniană	0,5 p	-
Pentru $E >> m_0 c^2$ unghiul tinde către 0°	0,5 p	=
		1
b) $v' = \frac{c}{\sqrt{1 + (\frac{m_0 c}{p'})^2}}; E'^2 = p'^2 c^2 + m_0^2 c^4 \text{ rezultă } v' = \frac{c\sqrt{E^2 + 2m_0 c^2 E - 3m_0^2 c^4}}{E + m_0 c^2}$	1 p	
c)	1,5 p	-
Alegem un sistem de referință care se deplasează pe direcția de deplasare a particulei aflate inițial în mișcare cu viteză egală cu proiecțiile vitezelor celor două particule pe această direcție $(v\cos\theta)$. În acest sistem de referință cele două particule au numai viteze transversale, egale în modul dar de sens opus. În acest sistem de referință vitezele celor două particule vor fi : $u_1 = \frac{v\sin\theta}{\sqrt{1-\frac{v^2\cos^2\theta}{c^2}}}, \text{ respectiv } u_2 = \frac{-v\sin\theta}{\sqrt{1-\frac{v^2\cos^2\theta}{c^2}}}$	1 p	
Într-un sistem de referință legat de una dintre particule cealaltă va avea viteza: $u = \frac{u_1 - u_2}{1 - \frac{u_1 u_2}{c^2}} = \frac{2v \sin \theta \sqrt{1 - \frac{v^2}{c^2} \cos^2 \theta}}{1 - \frac{v^2}{c^2} \cos 2\theta}$	0,5 p	
d)	2,5 p	<u> </u>
Fie S' un sistem de referință inertial legat de centrul de masă al sistemului, care se mișcă cu viteza \vec{u} și S sistemul de referință inertial al laboratorului. Înainte de ciocnire, particula ciocnită, aflată inițial în repaus în sistemul S , se mișcă în sistemul S' cu viteza $-\vec{u}$, iar particula proiectil se mișcă în sistemul S' cu viteza \vec{u} deoarece impulsul total trebuie să fie nul în sistemul centrului de masă. Fie θ' unghiul de împrăștiere în S' . După ciocnire, în sistemul S' al centrului de masa, impulsul trebuie să fie tot nul, ca urmare cele două particule se vor mișca cu viteze egale în modul, dar cu sensuri contare $\vec{v}_2' = -\vec{v}_1'$. Ca urmare a conservării impulsului,	1,5 p	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.

Pagina 4 din 9

a conservării energiei și ținând cont de relația energie-impuls, vitezele particulelor după ciocnire vor avea aceeași mărime ca și înainte de ciocnire $v_2' = v_1' = u$. După ciocnire putem scrie :

Rezultă:
$$v_{1x} = \frac{v'_{1x} + u}{1 + \frac{v'_{1x} \cdot u}{c^2}} = u \frac{1 + \cos \theta'}{1 + \beta_u^2 \cos \theta'}$$

$$v_{1x} = \frac{v'_{1x} + u}{1 + \frac{v'_{1x} \cdot u}{c^2}} = u \frac{1 + \cos \theta'}{1 + \beta_u^2 \cos \theta'}; \ \beta_u = \frac{u}{c}$$

$$v_{1y} = \frac{v'_{1y}}{\gamma_u (1 + \frac{v'_{1x} \cdot u}{c^2})} = u \frac{\sin \theta'}{\gamma_u (1 + \beta_u^2 \cos \theta')}; \ \gamma_u = \frac{1}{\sqrt{1 - \beta_u^2}}$$

Analog rezultă
$$v_{2x} = u \frac{1 - \cos \theta'}{1 - \beta_u^2 \cos \theta'}$$
; $v_{2y} = -u \frac{\sin \theta'}{\gamma_u (1 - \beta_u^2 \cos \theta')}$

Cum
$$v_{1x} > 0$$
 și $v_{2x} > 0$ rezultă $\theta_1 < \frac{\pi}{2}$, $\theta_2 < \frac{\pi}{2}$ și

$$tg\theta_1 = \left| \frac{v_{1y}}{v_{1x}} \right| = \frac{\sin \theta'}{\gamma_u (1 + \cos \theta')}; \ tg\theta_2 = \left| \frac{v_{2y}}{v_{2x}} \right| = \frac{\sin \theta'}{\gamma_u (1 - \cos \theta')} \text{ rezultă}$$

$$tg\theta_1 \cdot tg\theta_2 = \frac{1}{\gamma_u^2} \implies tg\theta_1 = \frac{1}{\gamma_u^2} ctg\theta_2 = \frac{1}{\gamma_u^2} tg(\frac{\pi}{2} - \theta_2) < tg(\frac{\pi}{2} - \theta_2)$$
rezultă

ezultă

1 p

$$\theta_1 + \theta_2 < \frac{\pi}{2}$$

Sau o altă metodă de rezolvare, în sistemul de referință al laboratorului:

Din triunghiul impulsurilor:

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 5 din 9

Pagina 5 din 9		
$\cos(\theta_1 + \theta_2) = \frac{p^2 - p_1^2 - p_2^2}{2p_1 p_2} = \frac{E^2 - m_0^2 c^4 - E_1^2 + m_0^2 c^4 - E_2^2 + m_0^2 c^4}{2p_1 p_2 c^2}$ $= \frac{E^2 - E_1^2 - E_2^2 + m_0^2 c^4}{2p_1 p_2 c^2}$ (1p)		
* 1* 2		
Utilizând conservarea energiei		
$E + m_0 c^2 = E_1 + E_2 (0.5p)$		
Rezultă $\cos(\theta_1 + \theta_2) = \frac{2E_1E_2 - 2Em_0c^2}{2p_1p_2c^2} = \frac{E_1E_2 - Em_0c^2}{p_1p_2c^2} = E_1$		
$= \frac{E_1(E + m_0c^2 - E_1) - Em_0c^2}{p_1p_2c^2} = \frac{E_1(E - E_1) - (E - E_1)m_0c^2}{p_1p_2c^2} = (0,5p)$		
$= \frac{(E - E_1)(E_1 - m_0 c^2)}{p_1 p_2 c^2}$		
Deoarece $E_1 < E$ și $E_1 > m_0 c^2$ atunci $\cos(\theta_1 + \theta_2) > 0$, adică $\theta_1 + \theta_2 < \frac{\pi}{2}$ (0,5p)		
e)	2 p	
Fie E_1 respectiv E_2 energiile celor doi fotoni, iar p și M impulsul respectiv masa		
sistemului. Ținând cont de relația energie-impuls rezultă:		
$(E_1 + E_2)^2 - p^2 c^2 = M^2 c^4$		
Cum fotonii au sensuri opuse:		
$p = p_1 - p_2$		
rezultă:	1 p	
$\left[(hv_1 + hv_2)^2 - \left(\frac{hv_1}{c} - \frac{hv_2}{c}\right)^2 c^2 = M^2 c^4 \text{ adică } h^2 \left[(v_1 + v_2)^2 - (v_1 - v_2)^2 \right] = M^2 c^4$		
sau $M = \frac{2h\sqrt{v_1v_2}}{c^2}$		
$v = \frac{pc^2}{E}$, unde v este viteza centrului de masă		
$p = p_1 - p_2 = \frac{h}{c}(v_1 - v_2)$; $E = E_1 + E_2 = h(v_1 + v_2)$ rezultă:	1 p	
$v = \frac{v_1 - v_2}{v_1 + v_2} c$		
Oficiu		1 p

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.

Pagina 6 din 9

Problema 3 (10 puncte)

	Parțial	Punctaj
Barem problema 3		10 p
Lumină prin lame transparente cu fețe plane și paralele		
a)	3 p	
În lumina reflectată de peliculă, diferența de drum optic dintre razele 1 și 2,		
reprezentate în desenul din figura 1, este:		
$\Delta = n \cdot AB + n \cdot BC - \left(n_0 \cdot AD + \frac{\lambda}{2}\right); n_0 = 1; AB = BC = \frac{d}{\cos \beta};$		
$\Delta = 2n \cdot AB - AD - \frac{\lambda}{2}$; $AC = \frac{d}{\cos \beta}$; $AD = AC \cdot \sin \alpha$;		
$\tan \beta = \frac{AC}{2d}$; $AC = 2d \cdot \tan \beta$; $AD = 2d \cdot \tan \beta \cdot \sin \alpha$; $AB = \frac{d}{\cos \beta}$;		
$\Delta = 2n \cdot AB - AD - \frac{\lambda}{2}; \ \Delta = \frac{2nd}{\cos \beta} - 2d \cdot \tan \beta \cdot \sin \alpha - \frac{\lambda}{2};$		
$\sin \alpha = n \cdot \sin \beta; \ \Delta = 2nd \cos \beta - \frac{\lambda}{2};$		
	1,5 p	
L E		
P		
S		
$n_{\text{aer}} = 1$ α β		
$ \begin{array}{c cccc} & A & & & & & \\ & d & & \beta & & & \\ & & & & & & \\ & & & & & & \\ & & & &$		
В		
Fig. 1		

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.

Pagina 7 din 9

Pagina 7 din 9	
$\Delta = 2nd\cos\beta - \frac{\lambda}{2} = 2k\frac{\lambda}{2}; k = 0, 1, 2, \dots,$	
$2nd\cos\beta = \frac{\lambda}{2} + 2k\frac{\lambda}{2} = (2k+1)\cdot\frac{\lambda}{2};$	
k = 0;	
$\Delta = 2nd_0 \cos \beta - \frac{\lambda}{2} = 0; 2nd_0 \cos \beta = \frac{\lambda}{2};$	1,5 p
$d_0 = d_{\min} = \frac{\lambda}{4n} \cdot \frac{1}{\cos \beta} = \frac{\lambda}{4n} \cdot \frac{1}{\sqrt{1 - \sin^2 \beta}} = \frac{\lambda}{4n} \cdot \frac{1}{\sqrt{1 - \frac{\sin^2 \alpha}{n^2}}};$	
$d_{\min} = \frac{\lambda}{4} \cdot \frac{1}{\sqrt{n^2 - \sin^2 \alpha}}.$	
b)	3 p
În lumina transmisă de peliculă, diferența de drum optic dintre razele 3 și 4,	

În lumina transmisă de peliculă, diferența de drum optic dintre razele 3 și 4, reprezentate în desenul din figura 2, este:

$$\Delta = n \cdot BC + n \cdot CE - n_0 \cdot BF; \ n_0 = 1; \ \Delta = n \cdot BC + n \cdot CE - BF;$$

$$\Delta = 2n \cdot \frac{d}{\cos \beta} - 2d \cdot \tan \beta \cdot \sin \alpha; \ \Delta = 2n \cdot \frac{d}{\cos \beta} - 2d \cdot \frac{\sin \beta}{\cos \beta} \cdot \sin \alpha;$$

 $\sin \alpha = n \cdot \sin \beta$; $\Delta = 2nd \cos \beta$; $\Delta = 2d \cdot \sqrt{n^2 - \sin^2 \alpha}$;

1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.

Pagina 8 din 9

c)

$$\Delta = 2nd\cos\beta = 2k\frac{\lambda}{2}; k = 0, 1, 2, \dots,$$

$$k = 1$$
; $\Delta = 2nd_1 \cos \beta = \lambda$; $2d_1 \sqrt{n^2 - \sin^2 \alpha} = \lambda$;

1 p

$$d_1 = d_{\min} = \frac{\lambda}{2} \cdot \frac{1}{\sqrt{n^2 - \sin^2 \alpha}}.$$

1) $n > n_0$

Pentru două raze paralele, 1 și 2, reprezentate în desenul din figura 3, din interferența lor în punctul C, în varianta producerii unor maxime de interferență, dacă $n_{\rm aer} < n_0 < n$, rezultă:

$$\delta = (AB) + \frac{\lambda}{2} + (BC) - (DC) - \frac{\lambda}{2},$$

$$\delta = 2n_0 \cdot AB - DC; \ \delta = \frac{2n_0 h}{\cos \beta} - 2h \tan \beta \sin \alpha; \ \sin \alpha = n_0 \sin \beta;$$

$$\delta = 2h\sqrt{n_0^2 - \sin^2\alpha}; \ \delta = 2k\frac{\lambda}{2} = k\lambda; \ 2h\sqrt{n_0^2 - \sin^2\alpha} = k\lambda,$$

unde k este un număr întreg, reprezentând ordinul maximului de interferență.

Dacă ordinul maximului de interferență a variat cu o unitate, $\Delta k = 1$, însemnează că grosimea stratului de apă a scăzut cu cantitatea Δh , astfel încât:

$$2\Delta h \cdot \sqrt{n_0^2 - \sin^2 \alpha} = \Delta k \cdot \lambda = \lambda; \ \Delta h = v \tau; \ v = \frac{\lambda}{2\tau \sqrt{n_0^2 - \sin^2 \alpha}}.$$

Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 9 din 9

2) $n < n_0$		
$\delta = (AB) + (BC) - (DC) - \frac{\lambda}{2}; \ \delta = 2h\sqrt{n_0^2 - \sin^2\alpha} - \frac{\lambda}{2};$		
$\delta = k\lambda; \ 2h\sqrt{n_0^2 - \sin^2\alpha} - \frac{\lambda}{2} = k\lambda;$	1 p	
$2\Delta h \sqrt{n_0^2 - \sin^2 \alpha} = \Delta k \lambda = \lambda; \ \Delta h = v \tau; \ v = \frac{\lambda}{2\tau \sqrt{n_0^2 - \sin^2 \alpha}}.$		
Dacă stratul de apă este foarte subțire, atunci diferența de fază a razelor de lumină care interferă nu depinde de timp, astfel încât aceste raze sunt coerente.	1 p	
Oficiu		1

Barem propus de: Butuşină Florin - Colegiul Național "Simion Bărnuțiu" Șimleu Silvaniei Gavrilă Constantin - Colegiul Național "Sfântul Sava" București Sandu Mihail- Liceul Tehnologic de Turism Călimănești Solschi Viorel - Colegiul Național "Mihai Eminescu" Satu Mare Stoica Victor – Inspectoratul Școlar al Municipiului București.

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.