

Name: Neha Tripathi 1. Importing Required Libraries

import pandas as pd import matplotlib.pyplot as plt

species

0.2 Iris-setosa

0.2 Iris-setosa

0.2 Iris-setosa

0.2 Iris-setosa

0.2 Iris-setosa

Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',

float64

float64 float64

float64

object

150.000000

1.198667

0.763161

0.100000

0.300000

1.300000

1.800000

2.500000

-1.0

- 0.8

- 0.6

0.4

0.2

0.0

0.82

-0.36

0.96

 $Text(334.7999999999995, 570.78, 'gini = 0.0 \nsamples = 34 \nvalue = [34, 0, 0] \nclass = Iris-setosa'),$

Text(223.2, 81.54000000000008, 'gini = 0.0\nsamples = 3\nvalue = [0, 0, 3]\nclass = Iris-virginica'), Text(446.4, 81.54000000000008, 'gini = 0.0\nsamples = 1\nvalue = [0, 1, 0]\nclass = Iris-versicolor'),

 $Text(892.8, 81.54000000000008, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1, 0] \nclass = Iris-versicolor'),$

Text(111.6, 244.62, 'gini = $0.0 \times = 29 \times = [0, 29, 0] \times = Iris-versicolor'),$

 $Text(1004.4, 244.62, 'gini = 0.0 \nsamples = 30 \nvalue = [0, 0, 30] \nclass = Iris-virginica')]$

gini = 0.0

samples = 34

 $Text(558.0, 570.78, 'petal length(cm) <= 4.95 \ngini = 0.498 \nsamples = 66 \nvalue = [0, 31, 35] \nclass = Iris-virginica'),$

petal width(cm) ≤ 0.75 gini = 0.666samples = 100value = [34, 31, 35]class = lris-virginica

 $Text(223.2, 407.700000000000005, 'petal width(cm) <= 1.65 \nsamples = 33 \nvalue = [0, 30, 3] \nclass = Iris-versicolor'),$

 $Text(892.8, 407.700000000000005, 'petal length(cm) <= 5.05 \ngini = 0.059 \nsamples = 33 \nvalue = [0, 1, 32] \nclass = Iris-virginica'),$

Non-Null Count Dtype

150.000000

3.758667

1.764420

1.000000

1.600000

4.350000

5.100000

6.900000

150 non-null

3.054000

0.433594

2.000000

2.800000

3.000000

3.300000

4.400000

0

0

0

0

import seaborn as sns

from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn import metrics

print(" All required packages included successfully!")

All required packages included successfully!

dtaset: https://bit.ly/2TK5Xn5

In [1]:

In [5]:

Out[5]:

In [6]:

Out[6]:

In [9]:

Out[9]:

2. Importing the Dataset

dataset = pd.read_csv('D:\Data_Set\Iris.csv') dataset.head()

sepal_length sepal_width petal_length petal_width Out[3]: 0 5.1 3.5 1.4

1 4.9 3.0 1.4

2 4.7 1.3 3.2

1.5 4.6 3.1 5.0 1.4 3.6

3. Data Exploration

Shape of Dataset

dataset.shape

(150, 5)# Dataset Columns

dataset.columns

'species'], dtype='object')

In [10]: # To display basic data dataset.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149

Data columns (total 5 columns): Column sepal_length 150 non-null sepal_width 150 non-null

petal_length 150 non-null petal_width 150 non-null species dtypes: float64(4), object(1)

memory usage: 6.0+ KB # to display stats about data dataset.describe()

sepal_length sepal_width petal_length petal_width 150.000000 150.000000 count mean 5.843333 0.828066 std 4.300000 min 5.100000

25% 5.800000 **50% 75**% 6.400000 max 7.900000

In [11]: **#Checking Null Values** dataset.isnull().sum() sepal_length sepal_width petal_length petal_width species dtype: int64 In [21]: #Checking columns count of "Species" dataset['species'].value_counts()

50 Iris-setosa Out[21]: Iris-versicolor 50 Iris-virginica 50 Name: species, dtype: int64 In [23]: #Pie plot to show the overall types of Iris classifications dataset['species'].value_counts().plot(kind = 'pie', autopct = '%1.1f%%', shadow = True, explode = [0.08,0.08,0.08]) <AxesSubplot:ylabel='species'>

Iris-setosa lris-versic**ด**ีor 33.3% Iris-virginica In [24]: #Correlation Heatmap

plt.figure(figsize=(9,7)) sns.heatmap(dataset.corr(), cmap='CMRmap', annot=True, linewidths=2) plt.title("Correlation Graph", size=20) plt.show() Correlation Graph sepal_length -0.11 0.87 1 sepal_width -0.11 -0.42 1 petal_length 0.87 -0.42

y_dataset

gini = 0.0

Accuracy: 0.98

samples = 29samples = 4value = [0, 29, 0]value = [0, 1, 3]class = Iris-versicolor class = Iris-virginica gini = 0.0samples = 3value = [0, 0, 3]class = Iris-virginica

petal width(cm) ≤ 1.65

gini = 0.165

samples = 33

value = [0, 30, 3]

class = Iris-versicolor

'Iris-versicolor', 'Iris-setosa', 'Iris-virginica',
'Iris-versicolor', 'Iris-setosa', 'Iris-virginica',
'Iris-virginica', 'Iris-versicolor', 'Iris-setosa',
'Iris-virginica', 'Iris-versicolor', 'Iris-versicolor',

support

16

19

15

50

50

50

Predict the flower type for a flower with sepal length, sepal width, petal length, petal width as 9cm, 3.1cm, 5cm and 1.5cm respectively

Predict the flower type for a flower with sepal length, sepal width, petal length, petal width as 4.1cm, 3cm, 5.1cm and 1.8cm respectively

1.00

0.97

0.97

0.98

0.98

'Iris-virginica', 'Iris-setosa', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica'], dtype=object) 9. To check the accuracy of the model.. print("Accuracy:", metrics.accuracy_score(y_test, y_pred)) from sklearn.metrics import classification_report print(classification_report(y_test, y_pred)) recall f1-score precision

1.00

1.00

0.94

0.98

1.00

0.95

1.00

0.98

gini = 0.0samples = 1value = [0, 1, 0]class = Iris-versicolor y_dataset = dtree.predict(X_test)

value = [34, 0, 0]value = [0, 31, 35]class = Iris-setosa class = Iris-virginica sepal width(cm) ≤ 3.1 gini = 0.375

petal length(cm) ≤ 4.95

gini = 0.498

samples = 66

gini = 0.444samples = 3value = [0, 1, 2]class = Iris-virginica gini = 0.0samples = 2value = [0, 0, 2]class = Iris-virginica

class = Iris-versicolor

petal length(cm) ≤ 5.05

gini = 0.059

samples = 33

value = [0, 1, 32]

class = Iris-virginica

gini = 0.0

samples = 1

value = [0, 1, 0]

gini = 0.0

samples = 30

value = [0, 0, 30]

class = Iris-virginica

sepal width(cm) ≤ 2.75

confusion_matrix(y_test, y_pred) array([[16, 0, 0], 0, 18, 1], [0, 0, 15]], dtype=int64) 10. Prediction the output class for random values for petal and sepal length and width Predict the flower type for a flower with sepal length, sepal width, petal length, petal width as 5cm, 3.6cm, 1.4cm and 0.2cm respectively

dtree.predict([[9, 3.1, 5, 1.5]])

array(['Iris-versicolor'], dtype=object)

dtree.predict([[4.1, 3.0, 5.1, 1.8]])

array(['Iris-virginica'], dtype=object)

THANK YOU!

Out[44]:

In [43]:

weighted avg 0.98 0.98 In [44]: from sklearn.metrics import confusion_matrix

Iris-setosa

accuracy

macro avg

Iris-versicolor

Iris-virginica

dtree.predict([[5, 3.6, 1.4 , 0.2]]) array(['Iris-setosa'], dtype=object)

Out[45]:

In [46]:

In [47]:

Out[47]: