Unsupervised Neural Representation Learning

Agenda:

- Recap
- How does slot attention handle occlusion:
 - Dataset
 - Results
- Do symbolic rules "help" the vision system.
- Next Steps

Slot Attention - Occlusion Dataset

SymSlotAttnModel-4-e100-m0.95-w0.6-tL1Loss-occlusion sample 0

Fixed Symbolic Rules

- Pure DNN based approaches struggle to disassociate shapes with colors.
 - The (shape, color) pairs in training is different from (shape, color) pairs in testing.
 - Sample 1 on next slide shows an effect of this disassociation on a purely neural model (with no rules).
- Hypothesis: Given a fixed transition function, can a hybrid neurosymbolic model produce better reconstructions and converge faster than a purely symbolic model.
 - Three models:
 - lacksquare A vanilla resnet autoencoder reconstructiong $(s_i,a_i) o (s_{i+1})$
 - lacktriangledown A slot attention based autoencoder (with an MLP for the transition layer) reconstructiong $(s_i,a_i) o (s_{i+1})$
 - A slot attention based autoencoder (with a fixed symbolic program for the transition layer) reconstructiong $(s_i,a_i) o (s_{i+1})$

Dataset

Next steps

- Slot Attention w/ Occlusion on mice domain.
 - MABE Videos.
- Results for the symbolic rule hypothesis.

Slides from Last Week

Slot Attn Decoder

Changes

[Submitted on 15 Jun 2019 (v1), last revised 24 Apr 2020 (this version, v6)]

Deep Set Prediction Networks

Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Current approaches for predicting sets from feature vectors ignore the unordered nature of sets and suffer from discontinuity issues as a result. We propose a general model for predicting sets that properly respects the structure of sets and avoids this problem. With a single feature vector as input, we show that our model is able to auto-encode point sets, predict the set of bounding boxes of objects in an image, and predict the set of attributes of these objects.

Comments: Appendix C contains an erratum

Subjects: Machine Learning (cs.LG); Machine Learning (stat.ML)

Journal reference: Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

Cite as: arXiv:1906.06565 [cs.LG]

(or arXiv:1906.06565v6 [cs.LG] for this version)

Changes:

- Use smoothL1 loss instead of L1 loss.
- Use the same loss function for matching and backprop.

Slot Attn Decoder

Training Curve

Dealing with multiple objects

dPads

• Given a differentiable DSL, dPads aims to derive a program that maps an input stream to an output stream.

$$oldsymbol{eta} rg\min_{ heta, lpha} \mathbb{E}_{\mathbf{i}, \mathbf{o} \in D}[l(P(\mathbf{i}; lpha, heta), o)] + c(lpha)$$

alpha is a program derivation graph

DSL

Inputs:

```
pos :: [int, int]
color :: int
shape :: {circ, sq, tri}
slot :: [color, shape, pos]
```