

ITMO UNIVERSITY

Data Analysis Task: Jaipur Weather Forecasting

Shivam Mehta, M41331

Why This Dataset?

- ✓ Jaipur is one of the most Dry Regions in India, and Rain Prediction can be helpful for farmer of that area
- ✓ I aimed to develop a model which helped the farmer for saving from huge loss during cultivation time by knowing about the amount of rainfall
- Thus the farmer can plant his crops accordingly

EDA – Exploratory Data Analysis

Correlation of Features

EDA – Feature Engineering

- **♥** Feature Engineering : Based on EDA
 - Merging Column
 - Cleaning Data
 - Normalizing
 - Remove values that are constant

EDA – Feature Correlation

EDA – Feature Distribution (1)

- ▼ Features with Maximum Correlations had no outlier and their distributions were:
- 1. Mean Humidity

EDA – Feature Distribution (2)

- ▼ Features with Maximum Correlations had no outlier and their distributions were:
- 2. Mean Dew Point

EDA – Feature Scatter Plots

Scatter and Density Plot

Improvement to Dataset

- Padding Past 2 day's information
- ▼ Total Features changed from Initial 10 to merged 5 to padded 14.

Applying Machine Learning Models

Accuracy Measure: RMSE (Root Mean Square Error)

Applying ML Models (1)

- Applied Random Forest Regressor : [0.09167]
- ▼ XGBoost Regressor: [0.07383]
- Linear Regression : [0.04875]
- Polynomial Regression of Degree [2,4,5] : [0.13799, 0.52208, 0.37326]

Applying ML Models (2)

In-between Analysis:
Linear Regression Fit the
Data with the lowest RMSE

Applying ML Models (3)

- ▼ Recursive Feature Selection N=10 : [0.04871]
- ▼ Ridge Regression with Feature Selection:
 [0.04507]

Applying ML Models (4)

Applying Deep Learning Models

Accuracy Measure: RMSE (Root Mean Square Error)

Applying DL Models (1)

- ✓ Neural Network { Layers : (6, Dense), Activation : Relu } : [0.10314]
- ▼ Regularized Neural Network { Layer : (6, Dense with Dropouts) , Activation : Relu, Regularizer : (L2 Ridge) : [0.03917]
- ▼ Recursive Neural Network { Layer: (1, Embedding with Dropout), (2, LSTM with Dropouts), (3 Dense with Dropouts), Activation: Relu, Regularizer: (L2 Ridge): [0.04564]

Applying DL Models (2)

Final Result

For this dataset and This hyperparameters Models can be ranked liked :

Rank	Model	RMSE
1	DNN Regularized	0.03901
2	Ridge Regularization	0.04507
3	RNN Regularized	0.04564
4	Feature Selected Regression	0.04871
5	Linear Regression	0.04875
6	XG Boost Regressor	0.07383
7	Random Forest Regressor	0.09167
8	Deep Neural Network	0.11268
9	Polynomial Degree 2, 5, 4	0.13799, 0.37326, 0.52208

Conclusion

- For the Given Hyperparameters:
- Deep Neural Network With Regularization predicted the best results
- 2. Some Other usable methods were Linear Regression with Ridge Regularization and Feature Selection and Recursive Neural Network, XGBoost Regressor.
- Random Forest, Neural Network and Polynomial Regression ranked low with this Dataset and Hyperparameters.

Thank you!