الدورة العادية للعام 2009	امتحانات الشهادة الثانوية العامة الفرع: علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية
	10 100	دائرة الامتحاثات
لاسىم: رقم:	المدة تاكنت ساءات	

Cette épreuve est formée de quatre exercices répartis sur quatre pages numérotées de 1 à 4. L'usage d'une calculatrice non programmable est autorisé.

Premier exercice: (7,5 points)

Pendule de torsion

Le but de l'exercice est de déterminer le moment d'inertie I d'une tige homogène AB par rapport à un axe qui lui est perpendiculaire en son milieu et la constante de torsion C d'un fil OO' de masse négligeable.

La tige a une masse M et une longueur $AB = \ell = 60$ cm.

Un pendule de torsion [P] est obtenu en fixant le point milieu de AB à l'extrémité O du fil tandis que l'autre extrémité O' est fixée à un support. La tige est écartée de sa position d'équilibre d'un angle faible θ_m dans le plan horizontal ; elle est lâchée sans vitesse à l'instant $t_0=0$. Ainsi, la tige peut tourner dans un plan horizontal autour d'un axe (Δ) passant par OO'.

À un instant t au cours du mouvement, l'abscisse angulaire de la tige est θ et sa vitesse angulaire est $\dot{\theta} = \frac{d\theta}{dt}$.

Le plan horizontal contenant la tige est pris comme niveau de référence de l'énergie potentielle de pesanteur. On néglige toute force de frottement et on prend $\pi^2 = 10$.

A – Étude théorique

- 1) Donner, à l'instant t, l'expression de l'énergie mécanique E_m du système [[P], Terre] en fonction de I, C, θ et $\dot{\theta}$.
- 2) a) Écrire l'expression de E_m quand $\theta = \theta_m$.
 - b) Déterminer, en fonction de I, C et θ_m , l'expression de la vitesse angulaire de [P] lors du passage par la position d'équilibre.
- 3) Établir l'équation différentielle du second ordre en θ qui régit le mouvement de [P].
- 4) Déduire que le mouvement de [P] est sinusoïdal.
- 5) Déterminer l'expression de la période propre T₁ du pendule en fonction de I et C.

B – Étude expérimentale

- 1) À l'aide d'un chronomètre, on mesure la durée t_1 de 20 oscillations et on obtient t_1 = 20 s. Déterminer la relation entre I et C .
- 2) À chaque extrémité de la tige est fixée une particule de masse m=25~g. On obtient ainsi un nouveau pendule de torsion [P'] qui peut effectuer également un mouvement sinusoïdal de rotation de période propre T_2 .
 - a) Déterminer le moment d'inertie I' du système (tige + particules) par rapport à l'axe (Δ) en fonction de I, m et ℓ .
 - **b**) Écrire l'expression de T_2 en fonction de I, C, m et ℓ .
 - c) À l'aide d'un chronomètre, on mesure la durée t_2 de 20 oscillations et on obtient $t_2 = 40$ s. Trouver une nouvelle relation entre I et C.
- 3) Calculer les valeurs de I et C.

<u>Deuxième exercice</u>: (7,5 points)

et K2.

Phénomène d'auto-induction

Le montage représenté par la figure ci-dessous est constitué d'un générateur idéal de tension de f.é.m. E =12V, d'une bobine de résistance $r = 10 \Omega$ et d'inductance L = 40 mH, d'un conducteur ohmique de résistance $R = 40 \Omega$ et de deux interrupteurs K_1

 $\mathbf{A} - \hat{\mathbf{A}}$ l'instant $\mathbf{t}_0 = 0$, on ferme l'interrupteur \mathbf{K}_1 et on laisse \mathbf{K}_2 ouvert. À une date t, le circuit est parcouru, en régime transitoire, par un courant d'intensité i₁.

- 1) Établir l'équation différentielle qui décrit l'évolution de i₁ en fonction du temps.
- 2) I₀ est l'intensité du courant en régime permanent. Déterminer l'expression de I₀ en fonction de E,r et R et calculer sa valeur.
- 3) La solution de l'équation différentielle est de la forme : $i_1 = I_0$ (1-e $^{\tau}$).
 - a) Déterminer l'expression de τ en fonction de L, r et R et calculer sa valeur.
 - **b)** Donner la signification physique de τ .
- 4) a) Déterminer l'expression de la f.é.m. d'auto-induction e₁ en fonction du temps.
 - **b)** Calculer la mesure algébrique de e_1 à l'instant $t_0 = 0$.

 ${\bf B}$ – Après quelques secondes, le régime permanent étant établi, on ouvre K_1 et on ferme au même instant K_2 . On considère la date de la fermeture de K_2 comme une nouvelle origine des temps $t_0 = 0$. À une date t, le circuit (L,R,r) est alors parcouru par un courant induit d'intensité i₂.

- 1) Déterminer le sens de i₂.
- 2) Établir l'équation différentielle qui décrit l'évolution de i₂ en fonction du temps.
- 3) Vérifier que $i_2 = I_0 \, e^{\frac{-t}{\tau}}$ est la solution de cette équation. 4) Calculer la mesure algébrique de la f.é.m. d'auto-induction e_2 à la date $t_0 = 0$.

C – Comparer e₁ et e₂ et déduire le rôle de la bobine dans chacun des deux circuits précédents.

<u>Troisième exercice</u> (7,5 points)

Caractéristiques d'un circuit (R, L, C)

Dans le but de déterminer les caractéristiques d'un circuit (R, L, C), on réalise le montage schématisé par la figure 1. Ce circuit comprend : un générateur G délivrant à ses bornes une tension alternative sinusoïdale ug de la forme : $u_g = u_{AM} = U_m \cos(2\pi f)t$, un conducteur ohmique de résistance R= 650 Ω , une bobine d'inductance L et de résistance négligeable et un condensateur de capacité C.

A – La fréquence f de la tension u_g est réglée à la valeur f_1 .

On visualise, à l'aide d'un oscilloscope, les variations, en fonction du temps, de la tension u_{AM} aux bornes de G sur la voie (Y_1) et de la tension u_{DM} aux bornes du conducteur ohmique sur la voie (Y_2) .

L'oscillogramme obtenu est représenté par la figure 2.

Sensibilité verticale pour les deux voies : 2 V/div.

Sensibilité horizontale : 0,1 ms/div.

- **1**) Reproduire la figure (1) en indiquant les branchements de l'oscilloscope.
- 2) En se référant à l'oscillogramme, déterminer:
 - **a**) la valeur de la fréquence f_1 ;
 - **b**) la valeur absolue ϕ_1 du déphasage entre u_{AM} et u_{DM}
- 3) L'intensité i qui traverse le circuit s'écrit sous la forme: $i=\!I_m cos(2\pi f_1 t \phi_1).$

Fig.2

b) La relation : $u_{AM} = u_{AB} + u_{BD} + u_{DM}$ est vérifiée quel que soit t. Montrer, en donnant à t une valeur

particulière, que l'on a : tan
$$\phi_1 = \frac{L(2\pi f_1) - \frac{1}{C(2\pi f_1)}}{R}$$

 ${f B}-{\dot A}$ partir de la valeur f_1 , on diminue continuellement la fréquence f. On constate, que pour une valeur $f_0=500$ Hz de f, le circuit est le siège du phénomène de résonance d'intensité.

Déduire, de ce qui précède, la relation entre $L,\,C$ et $f_0.$

- ${f C}$ On continue à diminuer la fréquence f . Pour la valeur f_2 de f , on trouve que le déphasage entre u_{AM} et u_{DM} est ϕ_2 tel que $\phi_2 = -\phi_1$.
 - 1) Déterminer la relation entre f_1 , f_2 et f_0 .
 - 2) En déduire la valeur de f_2 .
- **D** Déduire de ce qui précède les valeurs de L et C.

Quatrième exercice (7,5 points)

Niveaux d'énergie de l'atome d'hydrogène

Les énergies des différents niveaux de l'atome d'hydrogène sont données par la relation :

$$E_n = -\frac{E_0}{n^2}$$
 où E_0 est une constante positive et n un entier positif.

Données:

Constante de Planck : $h = 6.62 \times 10^{-34}$ J.s

Célérité de la lumière dans le vide : $c = 3 \times 10^8$ m/s ; $1 \text{ eV} = 1,6 \times 10^{-19}$ J; $1 \text{ nm} = 10^{-9}$ m.

- 1) a) L'énergie de l'atome d'hydrogène est quantifiée. Qu'est-ce qu'on entend par « énergie quantifiée » ?
- b) Expliquer pourquoi le spectre d'absorption ou d'émission de l'atome d'hydrogène est constitué de raies.
- 2) Un atome d'hydrogène, préalablement excité, se désexcite en passant du niveau d'énergie E_2 au niveau d'énergie E_1 . Il émet alors la radiation de longueur d'onde dans le vide : $\lambda_{2\rightarrow 1}=1,216\times 10^{-7}$ m. Déterminer, en J, la valeur :
 - a) de la constante E_0 ;
 - b) de l'énergie d'ionisation de l'atome d'hydrogène pris dans son état fondamental.
- 3) Pour l'hydrogène, on définit plusieurs séries de raies spectrales auxquelles sont attribués les noms de chercheurs qui ont participé à leur étude. Parmi ces séries, on considère celle de Balmer, caractérisée par les transitions des niveaux d'énergie E_P > E₂ (p > 2) au niveau d'énergie E₂ (n = 2).

À chaque transition p \rightarrow 2 correspond une raie de longueur d'onde $\lambda_{p\rightarrow 2}$ dans le vide.

- a) Montrer que $\lambda_{p\to 2}$, exprimée en nm, est donnée par la relation : $\frac{1}{\lambda_{p\to 2}} = 1,096 \times 10^{-2} \left[\frac{1}{4} \frac{1}{p^2} \right]$.
- b) L'analyse du spectre d'émission de l'atome d'hydrogène révèle la présence des quatre raies visibles. On considère les trois raies H_{α} , H_{β} et H_{γ} de longueurs d'onde respectives dans le vide $\lambda_{\alpha}=656,28$ nm , $\lambda_{\beta}=486,13$ nm et $\lambda_{\gamma}=434,05$ nm.

À quelle transition correspond chacune de ces radiations?

- c) Montrer que les longueurs d'onde des radiations correspondant tendent, lorsque $p\to\infty$, vers une limite λ_0 que l'on calculera.
- 4) Balmer, en 1885, ne connaissait que les raies de l'atome d'hydrogène appartenant au spectre visible. Il a pu écrire la formule: $\lambda = K \frac{p^2}{p^2 4}$ où K est une constante positive et p un entier positif.

Déterminer la valeur de K en tenant compte des données numériques et comparer sa valeur à celle de λ_0 .

4