0.1 H28 数学選択

 $oxed{A}$ $(1) \varphi(t^2-ut+v)=x^2-(x+y)x+xy=0$ である.よって $\ker \varphi \supset (t^2-ut+v)$ である. $f \in \ker \varphi$ とすると, $f(u,v,t)=(t^2-ut+v)g(u,v,t)+h_1(u,v)t+h_2(u,v)$ である.よって $h_1(x+y,xy)x+h_2(x+y,xy)=0$ である. $h_1(x+y,xy)x$ は対称式の項をもたず, $h_2(x+y,xy)$ は対称式の項のみからなるので, $h_1=0,h_2=0$ である.

 $(2)\varphi(I_{(a,b)})$ が素イデアル、 $\Leftrightarrow \mathbb{R}[x,y]/\varphi(I_{(a,b)})$ が整域、ここで $\mathbb{R}[x,y]\cong \mathbb{R}[u,v,t]/\ker \varphi$ であるから、 $\mathbb{R}[x,y]/\varphi(I_{(a,b)})\cong (\mathbb{R}[u,v,t]/\ker \varphi)/((\ker \varphi,I_{(a,b)})/\ker \varphi)\cong \mathbb{R}[u,v,t]/(\ker \varphi,I_{(a,b)})$ である.

 $(\ker \varphi, I_{(a,b)}) = (t^2 - ut + v, u - a, v - b) = (t^2 - at + b, u - a, v - b)$ であるから、 $\mathbb{R}[u, v, t]/(\ker \varphi, I_{(a,b)}) \cong \mathbb{R}[t]/(t^2 - at + b)$ である.これが整域となるのは $t^2 - at + b$ が既約であるときである.すなわち $a^2 - 4b < 0$ のときである.

以上より、 $\varphi(I_{(a,b)})$ が素イデアルであるのは、 $a^2-4b<0$ のときである.

 $\boxed{\mathrm{B}}$ $(1)F=\mathbb{Q}(lpha)(eta)$ とかける、 β の $\mathbb{Q}(lpha)$ 上の最小多項式は P(X)/(X-lpha) の因数であるから 3 次以下である、よって $[F:\mathbb{Q}(lpha)]\leq 3$ である、

 $(2)[\mathbb{Q}(\alpha):\mathbb{Q}]=4\ \text{\sharp \flat } [F:\mathbb{Q}]=[F:\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}]=4[F:\mathbb{Q}(\alpha)]\ \text{ϖabb}\ (1)\ \text{\sharp \flat } [F:\mathbb{Q}]=4,8,12\ \text{\varnothing } \text{ϖabb}\ (2)\ \text{ϖabb}\ (3)\ \text{ϖabb}\ (4)\ \text{$\varpi$$

 $(3)F/\mathbb{Q}$ が Galois 拡大であるから Galois 群は $(\mathbb{Z}/2\mathbb{Z})^2$ か $\mathbb{Z}/4\mathbb{Z}$ の何れかである. どちらも真部分群を含むから, F/\mathbb{Q} は非自明な中間体をもつ.

 $(4)P(X)=X^4-4X^2+1$ とする. $P(X+1)=X^4+4X^3+2X^2-4X-2$ は既約であるから P(X) は既約多項式である. P(X) の根は $\pm\sqrt{2\pm\sqrt{3}}$ である. $\sqrt{2+\sqrt{3}}\sqrt{2-\sqrt{3}}=1$ より $F=\mathbb{Q}(\sqrt{2+\sqrt{3}})$ とすれば F/\mathbb{Q} は Galois 拡大で $[F:\mathbb{Q}]=4$ である.

 $\sigma(\sqrt{2+\sqrt{3}})=\sqrt{2-\sqrt{3}}$ とすると, $\sigma^2(\sqrt{2+\sqrt{3}})=\sigma(\sqrt{2-\sqrt{3}})=\sigma(1/\sqrt{2+\sqrt{3}})=\sqrt{2+\sqrt{3}}$ であるから, $\sigma^2=\mathrm{id}$ である.

また $\tau(\sqrt{2+\sqrt{3}}) = -\sqrt{2+\sqrt{3}}$ についても $\tau^2 = \operatorname{id}$ であるから, $\operatorname{Gal}(F/\mathbb{Q})$ は位数 2 の元を 2 つ以上もつ. よって $\operatorname{Gal}(F/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ より巡回群でない.

 $(5)\beta$ の $\mathbb{Q}(\alpha)$ 上の最小多項式の次数は 2 である. したがって γ, δ のいずれか一方のみが $\mathbb{Q}(\alpha)$ に属す. $\gamma \in \mathbb{Q}(\alpha)$ として一般性を失わない. よって $\sigma(\alpha) = \gamma$ とすれば σ は $\mathbb{Q}(\alpha)$ の恒等写像でない同型射である.

 $\mathbb{Q}(\alpha)$ の恒等写像でない同型射について, $\sigma(\alpha)$ は α の \mathbb{Q} 上共役であるから存在すれば $\sigma(\alpha)=\gamma$ のみである.よって一意性も示された.