

ITI

Introduction to Computer Networks & Cyber Security Prepared By: Mohamed AboSehly

References

- o Essential Computer Science "Paul D. Crutcher, Neeraj Kumar Singh, Peter Tiegs"
- Cisco Student Guide ICND1
- CompTIA Network
- Data and Computer Communications "William Stallings 10th Edition"
- TCP/IP Protocol Suite "Behrouz A. Forouzan 4th Edition"
- Understanding IPv6 "Joseph Davies 2nd Edition"
- o Distributed Systems "van Steen, Maarten, Tanenbaum, Andrew S."

Course Duration and Assessment

Duration

Lectures: 7

Labs: 2

Assessment

• Final Exam : 70%

• Assignments: 10 %

• Labs : 20 %

Agenda

- Part 1
 Network Essentials
- Part 2Cyber Security Essentials
- Part 3
 Distributed Systems

Part 1 (Network Essentials)

- Course Outlines
 Computer Networks
 - Definition and Basic Terminologies
 - OSI Model
 - TCP/IP Protocol Suite
 - Network Access Layer (Physical Layer / Datalink Layer)
 - Internet layer
 - Transport layer
 - Application Layer
 - Network Devices
 - Network Media

Part 1 (Computer Networks Definition)

Computer Network :

 a collection of computers, and other devices, or peripherals connected together through connecting media to perform certain task such as:

Share Resources

Resources can be:

- File Sharing
- Devices Sharing
- Software Sharing with multi-user licenses.
- Voice and Video calls
- Shared Internet Access

Part1 (Network Elements)

Network Elements

✓ Hardware

- Devices
 - Computers Printers Phone Routers Switches
- Medium
 - Wired -Wireless –Satellites

√ Software

- Messages
 - Information that travels over the medium such as Mails-WhatsApp....etc
- Protocols
 - Governs how messages flow across network such as http –https-FTP-RDP

Session 1 (Network Basic Terminologies)

- NIC (Network Interface Card)/network adapter or LAN adapter.
 - a hardware that enable the device to directly access the network
 - Internal NIC (plugs into the motherboard directly)
 - External NIC (Wireless and USB based)

Mac address:

Physical Address, Unique address over the world burned on the NIC card

• IP address:

• logical address, identify each device on an IP network layer.

Protocols

Communication rules that all entity must agree on http –https-FTP-RDP

Topology

•how devices are connected (shape) and how message flow from one device to another device

Session 1 (Network Basic Terminologies)

Hub

 Allow different nodes to communicate with each other at the same network(Slow the network)

Switch

 Allow different nodes to communicate with each other at the same network and time without slowing each other

Router

Allow different networks to communicate with each other

Access point (AP)

 allows other Wi-Fi devices to connect to a wired network. An AP is a physical location where Wi-Fi access is available.

Repeater

 Regenerate the signal over the same network before the signal becomes too weak or corrupted

How to apply networks?

- > According to Covered Area
 - How large is the network?
- According to network topology
 - How the computer are connected?
- > According to network model
 - What type of model?

Networks Classifications

According to Covered Area

PAN - MAN- WAN-INTERNET

- Personal Area Networks (PAN)
 - a computer network for interconnecting devices centered on an individual person's workspace.
 - A PAN provides data transmission among devices such as computers, smartphones, tablets and personal digital assistants

- Local Area Networks (LAN)
 - a group of computers connected in small geographical area
 - a limited area such as a residence, school,
 laboratory, <u>university campus</u> or <u>office</u>
 <u>building</u> (100 -1000 M)
 - Allow users to share files and services
 - High speed of communications
 - Under your administrative Control

- Metropolitan Area Networks (MAN)
 - A MAN connects an area larger than a LAN
 but smaller than a WAN (Up to 100 km)
 - such as a city.
 - dedicated or high-performance hardware

- Wide Area Networks (WAN)
 - A WAN is a group of computers connected in
 Large geographical area such as country
 - A WAN often connects two LANs (WAN Link)
 - WAN can <u>contain multiple smaller networks</u>, such as LANs or MANs.
 - Very low Speed
 - Under your ISP Administrative control example of WAN is Internet

What is Internet?

Internet (WWW)

- The internet is defined as a global mesh of interconnected networks
- the most used service on the Internet is the World Wide
 Web
- No one actually owns the Internet
- Many Orgs, ISPs, Companies, Govs own pieces of Internet Infrastructure.
 - ISOC: Internet Society
 - IETF: Internet Engineering Task Forum
 - ICANN: Internet Corporation for Assigned Names and Numbers

Internet Gateway in Egypt_ Submarine Cable

Networks Classifications

According to Network Topology

Bus - Star- Ring- Mesh-Hybrid

BY :MOHAMED ABOSEHLY

Topology

- Refers to the shape of a network, or the network's layout.
- Types
 - Physical Topology: how computers connected to each other physically (wired)
 - Logical Topology: how to send message from device to other, (the way in which to the generated signal actual path across the network).
- Dependent on :
 - > Type and number of equipment being used
 - > Cost

Each topology has its own advantages and disadvantages.

Bus Topology

- All devices are connected to a central cable, called the bus or backbone
- Both ends of the network must be terminated with a <u>terminator</u>.
- A barrel connector can be used to extend the network.

Frame Transmission - Bus LAN

- The backbone functions as a shared communication medium
- Device wanting to communicate with another device on the network sends a message onto the backbone
- The message is heard by all stations, but only the intended recipient actually accepts and processes the message.
- Terminator absorbs frames at end of medium

Station C want to transmit a frame of data to station A.

A copies frame as it goes by

RY -MOHAMED AROSEHLY

21

Bus Advantages and Disadvantages

Advantages

- Simple, easy to use and construct
- Requires least amount of cable (less expensive)
- Reliable

Disadvantages

- A faulty cable take the entire LAN down
- Difficult to troubleshoot
- No security
- Slow during peak traffic period

Star Topology

- All the devices are connected to a **centralized unit** such as a <u>Hub or</u> Switch.
- Nodes communicate across the network by <u>passing data through the central device.</u>

Star Topology types

- ☐ Hubbed Star (<u>Broadcasted</u> Star Topology)
 - Central node can broadcast (Hub)
 - Physical star, <u>logically bus</u>
 - Only one station can transmit at a time
- ☐ Switched Star
 - Central node can act as frame switch
 - Retransmits only to destination

Star Advantages and Disadvantages

- Advantages:
 - Network not affected if one PC fails
 - Network expansion and reconfiguration is simple
 - Network management and monitoring can be centralized
 - Troubleshooting is easy
- Disadvantages
 - If the central device fails, all the network fails

Ring Topology

- A cable connects one node to another to form a ring (shape of a closed loop)
- each device is connected directly to two other devices, one on either side of it.
- All messages travel through a ring in the same direction
- > token is used to transmit data and pass over each station
- > Medium access control determines when station can insert frame

Frame Transmission - Ring LAN

Data transmitted in frames (token)

- Circulate past all stations
- Destination recognizes address and copies frame
- Data is passed one way from device to device.
- Frame circulates back to source where it is removed
- Medium access control determines when station can insert frame

Dual Ring Topology

- Signals travel in opposite directions.
- More resilient than single ring.

Ring Advantages and Disadvantages

- □ Advantages:
 - Fair (Equal access for all users)
 - Perform **well** under <u>heavy</u> <u>traffic</u>
- □ Disadvantages
 - Network <u>expansion or reconfiguration</u> will affect the network operation
 - If one node fails, the entire network fails
 - Difficult to troubleshoot
 - very bad if we have about **60** pc, <u>Slow</u> Network

Mesh Topology

- Each device/PC is connected to every other device/PC in the network by its own cable
- Amount of cables needed can be calculated by

$$CN = (D * (D-1)) / 2$$

(where CN is Cables Needed, and **D** is the amoun of devices on the network)

- Mesh Types:
 - Full Mesh
 - Partial Mesh

Mesh Advantages and Disadvantages

- □ Advantages:
 - Mesh topology boasts the highest fault tolerance
 all of the network topologies
 - Redundancy exist
 - Secure
- Disadvantages
 - Because each connection needs its own cable a
 Mesh topology can get very expensive

Hybrid Topology

- Hybrid means that there is more than one topology exist
- Combine bus ,star and ring topologies
- Allow network expansion
- Flexible

Hybrid Advantages and Disadvantages

- □ Advantages:
 - Network expansion is simple
- Disadvantages
 - If hub fails connections between failed hub and other hubs will fail

Networks Classifications

According to Network Model

- Peer to Peer Networks
- Client/Server Networks

Network Model

Peer-to-Peer Networks

- No dedicated resources to present specific service
- > Easy to work with
- All nodes are the same (equal to use the resources)

Example: Windows Workgroup

Network Model

Client/Server Networks

- Some nodes (SERVER) are dedicated to present services to other nodes (CLIENTS)
- Server is more powerful

Examples:

- Mail Server
- Web Server
- > File Server
- > Print Server

Network Model

Client/Server Networks

- computers providing the service are called Servers
- computers that request and use the service are called Client computers.
- number of servers is very small compared with the number of clients

Peer to peer vs client/server model

	Peer to peer	Client/server
Centralization	Local machine no central server	All client machines connect to central server to get service
Storage	Each machine share its files equally with the others	All files and folders are on dedicated storage on the server and client access their files based on database on the server
Cost	inexpensive	Expensive because of server OS license
scalable	In home or small office	Medium/large enterprise
Operating system	Client operating system	Server operating system to handle multiple requests

Thank You