

09/462816
430 Rec'd PCT/PTO 14 JAN 2000

SEQUENCE LISTING

<110> LI, Xiaomao

SAMBHARA, Suryaprakash
KLEIN, Michel H.

<120> NUCLEIC ACID VACCINES ENCODING G PROTEIN OF RESPIRATORY
SYNCYTIAL VIRUS

<130> 1038-1003 MIS:jb

<140>

<141>

<150> PCT/CA98/00697

<151> 1998-07-16

<150> 08/896,442

<151> 1997-07-18

<160> 8

<170> PatentIn Ver. 2.1

<210> 1

<211> 920

<212> DNA

<213> respiratory syncytial virus

<400> 1

tgc当地atg tccaaaaca aggaccaacg caccgctaag acactagaaa agacctggga 60
cactctcaat catttattat tcataatcatc gggcttatat aagttaaatc ttaaatctgt 120
agcacaaaatc acattatcca ttctggcaat gataatctca acttcactta taattacagc 180
catcatatcc atagcctcgg caaaccacaa agtcacacta acaactgcaa tcataacaaga 240
tgcaacaaggc cagatcaaga acacaacccc aacatacctc actcaggatc ctcagcttgg 300
aatcagcttc tccaatctgt ctgaaattac atcacaaacc accaccatac tagcttcaac 360
aacaccagga gtcaagtcaa acctgcaacc cacaacagtc aagactaaaa acacaacaac 420
aacccaaaca caacccagca agcccactac aaaacaacgc caaaacaaac caccaaaacaa 480
acccaataat gatttcact tcgaagtgtt taactttgtt ccctgcagca tatgcagcaa 540
caatccaacc tgctggccta tctgcaaaaag aataccaaac aaaaaaccag gaaagaaaaac 600
caccaccaag cctacaaaaa aaccaacctt caagacaacc aaaaaagatc tcaaaccctca 660
aaccactaaa ccaaaggaag tacccaccac caagccccaca gaagagccaa ccatcaacac 720
caccaaaaaca aacatcacaa ctacactgct caccaacaac accacagggaa atccaaaact 780
cacaagtcaa atggaaacct tccactcaac ctccctccgaa ggcaatctaa gcccttctca 840
agtctccaca acatccgagc acccatcaca accctcatct ccacccaaaca caacacgcca 900
gtagttatta aaaaaaaaaaa 920

<210> 2

<211> 298

<212> PRT

<213> respiratory syncytial virus

<400> 2

Met Ser Lys Asn Lys Asp Gln Arg Thr Ala Lys Thr Leu Glu Lys Thr
1 5 10 15

Trp Asp Thr Leu Asn His Leu Leu Phe Ile Ser Ser Gly Leu Tyr Lys
20 25 30

Leu Asn Leu Lys Ser Val Ala Gln Ile Thr Leu Ser Ile Leu Ala Met
 35 40 45
 Ile Ile Ser Thr Ser Leu Ile Ile Thr Ala Ile Ile Phe Ile Ala Ser
 50 55 60
 Ala Asn His Lys Val Thr Leu Thr Thr Ala Ile Ile Gln Asp Ala Thr
 65 70 75 80
 Ser Gln Ile Lys Asn Thr Thr Pro Thr Tyr Leu Thr Gln Asp Pro Gln
 85 90 95
 Leu Gly Ile Ser Phe Ser Asn Leu Ser Glu Ile Thr Ser Gln Thr Thr
 100 105 110
 Thr Ile Leu Ala Ser Thr Thr Pro Gly Val Lys Ser Asn Leu Gln Pro
 115 120 125
 Thr Thr Val Lys Thr Lys Asn Thr Thr Thr Gln Thr Gln Pro Ser
 130 135 140
 Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn Lys Pro Asn
 145 150 155 160
 Asn Asp Phe His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys
 165 170 175
 Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys Arg Ile Pro Asn Lys
 180 185 190
 Lys Pro Gly Lys Lys Thr Thr Thr Lys Pro Thr Lys Lys Pro Thr Phe
 195 200 205
 Lys Thr Thr Lys Lys Asp Leu Lys Pro Gln Thr Thr Lys Pro Lys Glu
 210 215 220
 Val Pro Thr Thr Lys Pro Thr Glu Glu Pro Thr Ile Asn Thr Thr Lys
 225 230 235 240
 Thr Asn Ile Thr Thr Thr Leu Leu Thr Asn Asn Thr Thr Gly Asn Pro
 245 250 255
 Lys Leu Thr Ser Gln Met Glu Thr Phe His Ser Thr Ser Ser Glu Gly
 260 265 270
 Asn Leu Ser Pro Ser Gln Val Ser Thr Thr Ser Glu His Pro Ser Gln
 275 280 285
 Pro Ser Ser Pro Pro Asn Thr Thr Arg Gln
 290 295

<210> 3
 <211> 715
 <212> DNA
 <213> respiratory syncytial virus

<400> 3

cacaaaagtca cactaacaac tgcaatcata caagatgcaa caagccagat caagaacaca 60
 accccaacat acctcactca ggatcctcag ctggaatca gcttctccaa tctgtctgaa 120
 attacatcac aaaccaccac catactagct tcaacaacac caggagtcaa gtcaaaccctg 180
 caacccacaa cagtcaagac taaaaacaca acaacaaccc aaacacaacc cagcaagccc 240
 actacaaaac aacgcacaaa caaaccacca aacaaacccca ataatgattt tcacttcgaa 300
 gtgttaact ttgtaccctg cagcatatgc agcaacaatc caacctgctg ggctatctgc 360
 aaaagaatac caaacaaaaa accagggaaag aaaaccacca ccaaggctac aaaaaaaacca 420
 accttcaaga caaccaaaaa agatctcaa cctcaaacca ctaaaccaaa ggaagtaccc 480
 accaccaagc ccacagaaga gccaaccatc aacaccacca aaacaaacat cacaactaca 540
 ctgctcacca acaacaccc accggaaatcca aaactcacaa gtcaaattgga aaccttccac 600
 tcaacctct ccgaaggcaa tctaaggccct tctcaagtct ccacaacatc cgagcaccca 660
 tcacaaccct catctccacc caacacaaca cgccagtagt tattaaaaaa aaaaaa 715

<210> 4
<211> 232
<212> PRT
<213> respiratory syncytial virus

<400> 4

His	Lys	Val	Thr	Leu	Thr	Thr	Ala	Ile	Ile	Gln	Asp	Ala	Thr	Ser	Gln
1				5					10				15		

Ile Lys Asn Thr Thr Pro Thr Tyr Leu Thr Gln Asp Pro Gln Leu Gly

	20				25					30					
--	----	--	--	--	----	--	--	--	--	----	--	--	--	--	--

Ile Ser Phe Ser Asn Leu Ser Glu Ile Thr Ser Gln Thr Thr Thr Ile

	35				40				45						
--	----	--	--	--	----	--	--	--	----	--	--	--	--	--	--

Leu Ala Ser Thr Thr Pro Gly Val Lys Ser Asn Leu Gln Pro Thr Thr

	50				55				60						
--	----	--	--	--	----	--	--	--	----	--	--	--	--	--	--

Val Lys Thr Lys Asn Thr Thr Gln Thr Gln Pro Ser Lys Pro

	65				70				75				80		
--	----	--	--	--	----	--	--	--	----	--	--	--	----	--	--

Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn Lys Pro Asn Asn Asp

	85					90				95					
--	----	--	--	--	--	----	--	--	--	----	--	--	--	--	--

Phe His Phe Glu Val Phe Asn Phe Val Pro Cys Ser Ile Cys Ser Asn

	100				105				110						
--	-----	--	--	--	-----	--	--	--	-----	--	--	--	--	--	--

Asn Pro Thr Cys Trp Ala Ile Cys Lys Arg Ile Pro Asn Lys Lys Pro

	115				120				125						
--	-----	--	--	--	-----	--	--	--	-----	--	--	--	--	--	--

Gly Lys Lys Thr Thr Lys Pro Thr Lys Lys Pro Thr Phe Lys Thr

	130				135				140						
--	-----	--	--	--	-----	--	--	--	-----	--	--	--	--	--	--

Thr Lys Lys Asp Leu Lys Pro Gln Thr Thr Lys Pro Lys Glu Val Pro

	145				150				155				160		
--	-----	--	--	--	-----	--	--	--	-----	--	--	--	-----	--	--

Thr Thr Lys Pro Thr Glu Glu Pro Thr Ile Asn Thr Thr Lys Thr Asn

	165					170				175					
--	-----	--	--	--	--	-----	--	--	--	-----	--	--	--	--	--

Ile Thr Thr Thr Leu Leu Thr Asn Asn Thr Thr Gly Asn Pro Lys Leu

	180				185				190						
--	-----	--	--	--	-----	--	--	--	-----	--	--	--	--	--	--

Thr Ser Gln Met Glu Thr Phe His Ser Thr Ser Ser Glu Gly Asn Leu

	195				200				205						
--	-----	--	--	--	-----	--	--	--	-----	--	--	--	--	--	--

Ser Pro Ser Gln Val Ser Thr Thr Ser Glu His Pro Ser Gln Pro Ser
 210 215 220

Ser Pro Pro Asn Thr Thr Arg Gln
 225 230

<210> 5
 <211> 4912
 <212> DNA
 <213> respiratory syncytial virus

<400> 5

tcgcgcgtt cggtgatgac ggtaaaaacc tctgacacat gcagctcccg gagacggtca 60
 cagcttgtct gtaaaggat gcccggagca gacaagcccg tcagggcgcg tcaggggtg 120
 ttggcgggtg tcggggctgg cttactatg cgccatcaga gcagattgta ctgagagtgc 180
 accatatgcg gtgtgaaata ccgcacagat gcgttaaggag aaaataccgc atcagattgg 240
 ctattggcca ttgcatacgt tttatccata tcataatatg tacattata ttggctcatg 300
 tccaacatta ccgcacatgtt gacattgatt attgactagt tattaatagt aatcaattac 360
 ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg 420
 cccgcctggc tgaccgcccc acgacccccc cccattgacg tcaataatga cgtatgttcc 480
 catagtaacg ccaataggga ctttccattt acgtcaatgg gtggagttt tacggtaaac 540
 tgcccacttg gcagtagatc aagtgtatca tatgccaatg acgcccccta ttgacgtcaa 600
 tgacggtaaa tggccgcct ggcattatgc ccagtacatg accttatggg actttcctac 660
 ttggcagttac atctacgtat tagtcatcgc tattaccatg gtatgcgtt ttggcagta 720
 catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga 780
 cgtcaatggg agttgtttt ggacacaaaaa tcaacggac tttccaaaat gtcgtaacaa 840
 ctccgcggca ttgacgcggaa tggggcggtag gcgtgtacgg tggggaggtct atataagcag 900
 agctcggtta gtgaaccggtc agatcgctg gagacgccc acacgcgtt ttgacctcca 960
 tagaagacac cgggaccgat ccagcctccg cggccggaa cggtgattt gaacgcggat 1020
 tccccgtgcc aagagtgacg taagtaccgc ctatagactc tataggcaca cccctttggc 1080
 tcttatgcgt gctatactgt ttttggcttg gggcctatac acccccgctt ctttatgcgt 1140
 taggtgatgg tatacgcttag cctatacggtg tgggttattt accattattt accactcccc 1200
 tattgggtgac gatactttcc attactaattt cataacatgg ctctttggca caactatctc 1260
 tattggctat atgccaatac tctgtccctt agagactgac acggactctg tatttttaca 1320
 ggatggggtc ccatttatta ttacaaaatt cacatataca acaacgcgt ccccggtgcc 1380
 cgcagttttt attaaacata gctggggatc tccacgcgaa tctcggtac gtgttccgg 1440
 catgggctct tctccggtag cggcggagct tccacatccg agccctggc ccatgcctcc 1500
 agcggctcat ggtcgctcg cagctccctt ctccctaaacag tggaggccag acttaggcac 1560
 agcacaatgc ccaccaccac cagtgtgcgg cacaaggccg tggcggtagg gtatgtgtc 1620
 gaaaatgagc gtggagattt ggctcgacg gctgacgcag atggaaagact taaggcagcg 1680
 gcagaagaag atgcaggcag ctgagttttt gtattctgtat aagagtcaga ggtactccc 1740
 gttgcgggtc tgttaacggc ggagggcagt gtatgtctgag cagtaactctg tgctgccg 1800
 cgcgccacca gacataatag ctgacagact aacagactgt tcctttccat gggcttttc 1860
 tgcagtccacc gtcgtcgaca cgtgtatca gatatcgccg ccgctctaga ccaggcgcct 1920
 ggatccagat ctgctgtgcc ttcttagttc cagccatctg ttgtttggcc ctccccctgt 1980
 ctttccttga cccttggagg tgccactccc actgtccctt cctaataaaa tgagggaaatt 2040
 gcatcgccatt gtctggatgt gtgtcattt attctggggg gtgggggtgg gcaggacagc 2100
 aagggggaggg attggaaaga caatagcagg catgtgggg atgcgggtgg ctctatgggt 2160
 accccagggtgc tgaagaattt accccgggtcc tcctggggcca gaaagaagca ggcacatccc 2220
 cttctctgtt acacaccctg tccacgcggc tgggttcttag ttccagcccc actcatagga 2280
 cactcatagc tcaggagggc tccgccttca atcccaaaaaa ctaaagtact tggagcggtc 2340
 tctccctccc tcattcggcc accaaaccaa accttagcctc caagagtggg aagaaaattaa 2400
 agcaagatag gctattaatg gcagaggagg agaaaatgcc tccaacatgt gaggaagtaa 2460
 tgagagaaat catagaattt ctccgcgtt ctcgctact gactcgctgc gtcggcgt 2520
 tcggctgcgg cgagcggtat cagctactt aaaggcggtt atacgggtat ccacagaatc 2580
 aggggataac gcagggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 2640
 aaaggcccg tttccatag gctccggcccc cctgacggac atcacaaaaaa 2700
 tcgacgctca agtcagaggt ggcgaaaccc gacaggacta taaagatacc aggcgtttcc 2760

ccctggaaac tccctcggtc gctctccgtt tccgaccctg ccgcattaccg gataacctgc 2820
cgcccttc cttcgaaa gcgtggcgct ttctcatagc tcacgctgtt ggtatctcg 2880
ttcggtgttag gtcgttcgtt ccaagctggg ctgtgtgcac gaacccccccg ttcagccg 2940
ccgctgcgcc ttatccggta actatcgct tgagtccaaac ccggtaagac acgacttata 3000
gccactggca gcagccactg gtaacaggat tagcagagcg aggtatgtt gcggtgtac 3060
agagttcttg aagtgggtgc ctaactacgg ctacactaga agaacagttt ttggtatctg 3120
cgctctgtt aagccagttt ccttcggaaa aagagttgt agctcttgc ccggcaaaca 3180
aaccaccgtt ggtagcgggtt gttttttgtt ttgcaagcag cagattacgc gcagaaaaaa 3240
aggatctcaa gaagatcctt tgatctttt tacggggctt gacgctcagt ggaacgaaaa 3300
ctgacgtttaa gggattttgg tcatgagatt atcaaaaaagg atcttcaccc agatcctttt 3360
aaattaaaaa tgaagttttt aatcaatcta aagtatatat gagtaaaactt ggtctgacag 3420
ttaccaatgc ttaatcgatg aggacacccat ctcagcgatc tgtcttattt gttcatccat 3480
agttgcctga ctgggggggg gggggcgctt aggtctgcct cgtgaagaag gtgttgctga 3540
ctcataccag gcctgaatcg ccccatcattt cagccagaaa gtgaggggagc cacggttgat 3600
gagagctttt ttgttaggtgg accagttgtt gattttgaac ttttgccttg ccacggaaacg 3660
gtctgcgttg tcgggaagat gcgtgatctt atccttcaac tcagaaaaag ttgcatttat 3720
tcaacaaagc cggcgcccccc tcaagtcagc gtaatgcctt gccagtgtt caaccaatta 3780
accaatttgtt attagaaaaaa ctcatcgagc atcaaatgaa actgcattt attcatatca 3840
ggattatcaa taccatattt ttgaaaaagc cgtttctgtt atgaaggaga aaactcaccc 3900
aggcagttcc ataggatggc aatatcctgg tatcggtctt cgatccgac tcgtccaaca 3960
tcaatacacaac ctattaaattt cccctcgta aaaataagtt tatcaagtga gaaatcacca 4020
tgagtgcacg ctgaatccgg tgagaatggc aaaagcttat gcatttctt ccagacttgt 4080
tcaacaggcc agccattacg ctcgtcatca aaatcactcg catcaaccaa accgttattt 4140
attcgtgatt gcgcctgagc gagacgaaat acgcgatcgc tgaaaaagg acaattacaa 4200
acaggaatcg aatgcaaccg gcgcaggaac actgcgcagcg catcaacaat attttcaccc 4260
gaatcaggat attttctaa tacctggat gctgtttcc cggggatcgc agtggtgagt 4320
aaccatgcattt catcaggagt acggataaaa tgcttgatgg cataaattcc 4380
gtcagccagt ttagtctgac catctcatct gtaacatcat tggcaacgct acctttgcca 4440
tgtttcagaa acaactctgg cgcattgggc ttcccataca atcgatagat tgtcgcaccc 4500
gattgccccg cattatcgcc agcccatata taccatata aatcagcatc catgttgaa 4560
ttaatcgcc gcctcgagca agacgttcc cgttgaatat ggctcataac gttccttgta 4620
ttactgtttt tgtaaggcaga cagtttattt gttcatgatg atatattttt atcttgatc 4680
atgtAACATC agagattttt agacacaacg tggctttccc ccccccccca ttattgaagc 4740
atttatcagg gttattgtct catgagcgaa tacatattt aatgtattttt gaaaaataaa 4800
caaataagggg ttcccgccac atttccccggaa aagtgccac ctgacgtcta agaaaccatt 4860
attatcatgaa cattaaaccta taaaaataqq cgtatcacqa qccctttcq tc 4912

```
<210> 6
<211> 188
<212> DNA
<213> respiratory syncytial virus
```

```
<400> 6
ctgcagtcac cgtcgac cagagctgag atcctacagg agtccaggc tggagagaaa 60
acctctgcga gaaaggaa ggagcaagcc gtgaatttaa gggacgctgt gaagcaatca 120
tggatcaat gaagagaggg ctctgctgtg tgctgctgct gtgtggagca gtttcggtt 180
cgcccagc 188
```

```
<210> 7  
<211> 11  
<212> DNA  
<213> respiratory syncytial virus
```

<400> 7
gatccactca q

<210> 8
<211> 11
<212> DNA
<213> respiratory syncytial virus

<400> 8
gtgagtccta g

11