

纵向规划决策求解: 动态规划

状态转移

cost[t,s]=min_{s'',s'}(
 cost[t-2,s'']+cost_of((t-2,s''),(t-1,s'),(t,s)))

离散化 † 和 s, 以损失精度降低运行时间

决策的挑战

- · NP-hard 问题,不易直接求解
 - 多种多样的近似算法
- 很难用规则去拟合人的经验
 - 针对各种情况建立数学模
 - Machine learning
- 场景多变而复杂
 - 非保护左/右转
 - 是否要绕行
 - 是否要主动变道

我们已经打算绕行,但前车突然起步了, 该怎么办?

我们要左转,但前边车停了很久都不动,我 们要变道吗?

- 如果是绿灯呢?
- 如果还离路口很远呢?
- 如果我们后边的车变道了呢?

横向规划

定义

- 对方向的规划(方向盘),决定轨迹的形状
- 输出:s->(x,y)

有车道

- 离线生成参考线
- 转化为求解 s -> I (横向偏移, lateral offset)

无车道

Open space 路径生成

参考线

根据车道线求解,同样是一个优化问题

- 约束
 - 在车道线内
 - 控制上可实现
- 优化目标
 - 接近车道中心
 - 曲率不大
 - 曲率变化率不大

S->L空间

求解优化问题

- 约束
 - 不跨越边界
 - 避免碰撞
- 优化目标
 - 离参考线近
 - 离障碍物远
 - 曲率不大
 - 曲率变化率不大

S->L求解: QP

决策已确定,可以将横向规划转化为 QP 问题

- 已知:x[-2], x[-1], x[0]
- 求解:x[1], x[2], ...
- 约束:x[i]不能超过左右边界(马路牙,实线等)
- 优化目标

$$\alpha \sum_{i} \left(x[i] - \frac{l[i] + r[i]}{2} \right)^{2}$$

$$+ \beta \sum_{i} (x[i] - x[i-1])^{2}$$

$$+ \gamma \sum_{i} (x[i] - 2 \cdot x[i-1] + x[i-2])^{2}$$

横向规划的挑战

- 没有车道线
- 没人按车道线开

横向规划的挑战

- 周围环境瞬息万变,预测困难
 - 障碍物行为变化
 - 决策发生改变
 - 变道取消
 - 绕行取消
- 保证路径光滑且在控制上可实现

• 行人横穿马路

• 行人斜穿马路

- 黄灯
 - 如果决策要冲,需要尽快通过路口

- 跟车,假如前车在减速
- 跟车,假如能准确预测前车的运动状态

纵向规划的挑战

- 博弈
- 激进与保守之间的平衡点
 - 不同参数、不同模式

我们绿灯左转,左侧电动车横穿马路,人类司机会怎么处理?

纵向规划的挑战

- 感知和预测的困难
 - 概率化
- 决策的困难

盲区 (鬼探头)

前方有摩托车,右边的车会选择cut-in吗?

旁边这辆车究竟想开到哪条道去?

纵向规划的挑战

- 与横向规划之间的协调
 - 横向规划需要考虑纵向规划的能力
 - 统一为一个优化问题
- · 远小于安全车距的 cut-in
 - 保证不撞,并尽快拉开车距

