ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Прикладная математика и информатика»

Отчет о программном проекте

на тему разработка системы предсказания успишного завершения учебной зисилины (промежуточный, этап 1)

Выполнил: студент группы БПМИ18 <u>6</u>	Уушмаров Денис Андревич И.О. Фамилия 7.02.2020 Дата
Принял: руководитель проекта Ундрей Андрей Мия, С	виг <i>Гаринов</i> Отчество, Фамилия ик

Место работы

Оценка (по 10-тибалльной шкале)

MHYA UCCA

Дата <u>07.02-</u>2020

Содержание

Задача первого этапа проекта	3
Агломеративная кластеризация	3
Спектральная кластеризация	4
Ссылки на литературу	7

Задача первого этапа проекта

Изучение и сравнение алгоритмов кластеризации

Агломеративная кластеризация

Идея

Объединять объекты в кластер, используя некоторую меру сходства или расстояние между объектами.

Шаги алгоритма

- 1) Присваиваем каждому объекту свой кластер
- 2) Сортируем попарные расстояния между кластерами
- 3) Берём пару ближайших кластеров, склеиваем их в один
- 4) Повторяем 2 и 3 пункт пока все объекты не попадут в один кластер

Методы объединения точек

- 1) *Метод одиночной связи* в основе этого метода лежит минимальное расстояние
- 2) Метод полной связи в основе этого метода лежит максимальное расстояние между объектами
- 3) Метод средней связи в основе этого метода лежит среднее расстояние между каждой парой объектов из разных кластеров
- 4) Центроидный метод в основе этого метода лежит минимальное расстояние между центрами разных кластеров

Сложность алгоритма

Для одиночной и полной связи: $O(n^2c + n^3)$

Для средней связи: $O(n^2c + n^3d), \ d$ — время вычисления расстояния в одной паре

Результат работы такого алгоритма

Дерево склеивания кластеров - граф показывающий работу алгоритма, как следствие показывает, на каком этапе нужно остановить алгоритм

Спектральная кластеризация

Определение

Спектральной кластеризацией называются все методы, которые разбивают множество на кластеры с помощью собственных векторов матрицы S или других матриц, полученных из нее

Алгоритмы

Матрица сходства А – элементы A_{ij} представляют меру схожести между точками данных с индексами і и ј.

D – диагональная матрица
$$D_{ii} = \sum_{j} A_{ij}$$

1) Алгоритм нормализованных сечений:

Алгоритм разбивает точки на два множества, основываясь на собственном векторе, соответствующем второму по величине собственному значению симметрично нормализованной матрицы Кирхгофа, задаваемой формулой:

$$L^{norm} := I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

2) Другой способ:

L := D - A, в этом случае разбиение можно делать несколькими способами, в нашем случае это:

- 1) Вычисление медианы компонент второго наименьшего собственного вектора v
- 2) Затем точки, чьи компоненты в v больше медианы, кладем в 1 кластер, остальные в другой
- 3) Повторяем 1 и 2 пункт

Изменение представления, созданного собственными векторами, позволяет более очевидным образом задать свойства исходного набора кластеров.

Иллюстрация работы алгоритма

Пусть нам на вход подаются следующие точки:

Цвета сделаны для удобства

Построим матрицу сходства для этих точек:

Найдем собственный вектор:

Видно, что собственный вектор разбил точки на нужные кластеры

Ссылки на литературу

Агломеративная кластеризация:

- 1) YouTube: https://www.youtube.com/watch?v=XJ3194AmH40
- 2) Habr: https://habr.com/ru/company/ods/blog/325654/
- 3) Wikipedia: https://clck.ru/JuWgi
- 4) https://lektsii.org/2-87430.html

Спектральная кластеризация:

- 1) Wikipedia: https://clck.ru/MAby3
- 2) Habr: https://habr.com/ru/company/ods/blog/325654/
- 3) YouTube: https://youtu.be/zkgm0i77jQ8
- 4) https://nsu.ru/xmlui/bitstream/handle/nsu/463/

Text_MachulskisSV.pdf

Содержание

Задача первого этапа проекта	3
Агломеративная кластеризация	3
Спектральная кластеризация	4
Задача которого этапа проекта:	7
Клиент серверная-архитектура АРІ	7
REST и RESTful	7
Flask	8
Ссылки на литературу	9

Задача первого этапа проекта

Изучение и сравнение алгоритмов кластеризации

Агломеративная кластеризация

Идея

Объединять объекты в кластер, используя некоторую меру сходства или расстояние между объектами.

Шаги алгоритма

- 1) Присваиваем каждому объекту свой кластер
- 2) Сортируем попарные расстояния между кластерами
- 3) Берём пару ближайших кластеров, склеиваем их в один
- 4) Повторяем 2 и 3 пункт пока все объекты не попадут в один кластер

Методы объединения точек

- 1) *Метод одиночной связи* в основе этого метода лежит минимальное расстояние
- 2) *Метод полной связи* в основе этого метода лежит максимальное расстояние между объектами
- 3) Метод средней связи в основе этого метода лежит среднее расстояние между каждой парой объектов из разных кластеров
- 4) *Центроидный метод* в основе этого метода лежит минимальное расстояние между центрами разных кластеров

Сложность алгоритма

Для одиночной и полной связи: $O(n^2c + n^3)$

Для средней связи: $O(n^2c + n^3d), \ d$ — время вычисления расстояния в одной паре

Результат работы такого алгоритма

Дерево склеивания кластеров - граф показывающий работу алгоритма, как следствие показывает, на каком этапе нужно остановить алгоритм

Спектральная кластеризация

Определение

Спектральной кластеризацией называются все методы, которые разбивают множество на кластеры с помощью собственных векторов матрицы S или других матриц, полученных из нее

Алгоритмы

Матрица сходства А – элементы A_{ij} представляют меру схожести между точками данных с индексами і и j.

D – диагональная матрица
$$D_{ii} = \sum_{j} A_{ij}$$

1) Алгоритм нормализованных сечений:

Алгоритм разбивает точки на два множества, основываясь на собственном векторе, соответствующем второму по величине собственному значению симметрично нормализованной матрицы Кирхгофа, задаваемой формулой:

$$L^{norm} := I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

2) Другой способ:

L := D - A, в этом случае разбиение можно делать несколькими способами, в нашем случае это:

- 1) Вычисление медианы компонент второго наименьшего собственного вектора v
- 2) Затем точки, чьи компоненты в v больше медианы, кладем в 1 кластер, остальные в другой
- 3) Повторяем 1 и 2 пункт

Изменение представления, созданного собственными векторами, позволяет более очевидным образом задать свойства исходного набора кластеров.

Иллюстрация работы алгоритма

Пусть нам на вход подаются следующие точки:

Цвета сделаны для удобства

Построим матрицу сходства для этих точек:

Видно, что собственный вектор разбил точки на нужные кластеры

Задача которого этапа проекта:

Реализация клиент-серверной архитектуры

Клиент серверная-архитектура АРІ

API (от англ. *application programming interface*) — описание способов которыми одна компьютерная программа может взаимодействовать с другой программой. Обычно входит в описание какого-либо интернет-протокола программного каркаса (фреймворка). Используется программистами при написании всевозможных приложений.

REST и RESTful

REST – аббревиатура от Representational State Transfer («передача состояния представления»). Это согласованный набор архитектурных принципов для создания более масштабируемой и гибкой сети.

Архитектурные принципы:

1) Клиент-сервер

Первое ограничение указывает, что сеть должна состоять из клиентов и серверов. Сервер — это компьютер, который имеет требуемые ресурсы, а клиент — это компьютер, которому нужно взаимодействовать с ресурсами, хранящимися на сервере.

2) Отсутствие состояния

Клиент и сервер не отслеживают состояние друг друга. Когда клиент не взаимодействует с сервером, сервер не имеет представления о его существовании.

3) Единообразие интерфейса

Ограничение гарантирует, что между серверами и клиентами существует общий язык, который позволяет каждой части быть заменяемой или изменяемой, без нарушения целостности системы. Это достигается через 4 дополнительных ограничения: идентификация ресурсов, манипуляция ресурсами через представления, «самодостаточные» сообщения и гипермедиа.

4) Кэширование

Ответы сервера должны помечаться как кэшируемые или некэшируемые. Кэшируемый ответы сохраняются у пользователя.

Flask

Для реализации моего сервера я выбрал фреймворк Flask. Flask – это фреймворк, служащий для создания вебсайтов на языке Python.

Я написал два класса: Experiment и ExperimentsList. http://127.0.0.1/experiments/get<int:exp_id> показывает результат эксперимента<int:exp_id>

http:// 127.0.0.1/experiments/post<> создает новый эксперимен т

Ссылки на литературу

Агломеративная кластеризация:

- 1) YouTube: https://www.youtube.com/watch?v=XJ3194AmH40
- 2) Habr: https://habr.com/ru/company/ods/blog/325654/
- 3) Wikipedia: https://clck.ru/JuWgi
- 4) https://lektsii.org/2-87430.html

Спектральная кластеризация:

- 1) Wikipedia: https://clck.ru/MAby3
- 2) Habr: https://habr.com/ru/company/ods/blog/325654/
- 3) YouTube: https://youtu.be/zkgm0i77jQ8
- 4) https://nsu.ru/xmlui/bitstream/handle/nsu/463/
 Text MachulskisSV.pdf

API

1) https://ru.wikipedia.org/wiki/API

REST и RESTful

- 1) https://habr.com/ru/company/hexlet/blog/274675/
- 2) https://habr.com/ru/company/dataart/blog/277419/

Flask

- 1) https://www.freecodecamp.org/news/build-a-simple-json-api-in-python/
- 2) https://flask-restful.readthedocs.io/en/latest/