

Estimating the difference between two proportions

point estimate ± margin of error

$$(\hat{p}_1 - \hat{p}_2) \pm z^* SE_{(\hat{p}_1 - \hat{p}_2)}$$

Standard error for difference between two proportions, for calculating a confidence interval:

$$SE = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir

< 5 of 20 >

Conditions for inference

Conditions for inference for comparing two independent proportions:

- 1. Independence:
 - within groups: sampled observations must be independent within each group
 - > random sample/assignment
 - \succ if sampling without replacement, n < 10% of population
 - **between groups:** the two groups must be independent of each other (non-paired)
- 2. *Sample size/skew:* Each sample should meet the success-failure condition:
 - $ho n_1 p_1 \ge 10$ and $n_1 (1 p_1) \ge 10$
 - $p_1 p_2 \ge 10 \text{ and } n_2(1-p_2) \ge 10$

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ii

6 of 20 >

Example

➤ Using a 95% confidence interval, estimate how international students and the American public at large compare with respect to their views on laws banning possession of handguns.

	succ.	n	ĝ
US	257	1028	0.25
International	59	83	0.71

1. Independence:

Sampled Americans independent of each other, sampled international students may not be.

2. Sample size / skew:

➤ We can assume that the sampling distribution of the difference between two proportions is nearly normal.

Statistical Inference

Behnam Bahrak bahrak@ut.ac.i < 7 of 20 >

Example

$$\hat{p}_{Intl} - \hat{p}_{US} \pm z^* SE$$

$$= (0.71 - 0.25) \pm 1.96 \sqrt{\frac{0.71 \times 0.29}{83} + \frac{0.25 \times 0.75}{1028}}$$

$$= 0.46 \pm 1.96 \times 0.0516$$

$$= 0.46 \pm 0.10$$

$$= (0.36, 0.56)$$

	succ.	n	ĝ
US	257	1028	0.25
International	59	83	0.71

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir

remember
$$(\hat{p}_1 - \hat{p}_2) \pm z^\star \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$
 always +

$$P_{Intl} - P_{US} =$$
 $P_{US} - P_{Intl} =$ $= (0.71 - 0.25) \pm 0.10$ $= (0.25 - 0.71) \pm 0.10$ $= -0.46 \pm 0.10$ $= (0.36, 0.56)$ $= (-0.56, -0.36)$

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir

9 of 20 🕥

Example

➤ Based on the confidence interval we calculated, should we expect to find a significant difference (at the equivalent significance level) between the population proportions of international students and the American public at large who believe there should be a law banning the possession of handguns?

$$(p_{Intl} - p_{US}) = (0.36, 0.56)$$

$$H_0: p_{Intl} - p_{US} = 0$$
0 0.36 0.56

Reject H_0

Statistical Inference

Behnam Bahrak

< 10 of 20 >

Dataset

A SurveyUSA poll asked respondents whether any of their children have ever been the victim of bullying. Also recorded on this survey was the gender of the respondent (the parent). Below is the distribution of responses by gender of the respondent.

	Male	Female
Yes	34	61
No	52	61
Not Sure	4	0
Total	90	122
ĝ	0.38	0.50

34/90 61/122

$$H_0$$
: $p_{male} - p_{female} = 0$

$$H_A$$
: $p_{male} - p_{female} \neq 0$

- √ check conditions
- √ calculate test statistic & p-value

Statistical Inference

Behnam Bahrak

11 of 20

Working with one proportion (\widehat{p} vs. p)

	observed	expected
	confidence interval	hypothesis test
success-failure condition	$n\hat{p} \ge 10$ $n(1 - \hat{p}) \ge 10$	$np \ge 10$ $n(1-p) \ge 10$
standard error	$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$SE = \sqrt{\frac{p(1-p)}{n}}$

Statistical Inference

bahrak@ut.ac.ir

< 12 of 20 >

	observed confidence interval	expected hypothesis test	
uccess-failure condition	$n_1 \hat{p}_1 \ge 10$ $n_2 \hat{p}_2 \ge 10$ $n_1 (1 - \hat{p}_1) \ge 10$ $n_2 (1 - \hat{p}_2) \ge 10$	$H_0: p_1 = p_2$	
standard error	$SE = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	$H_0: p_1 = p_2$	

parameter of interest:
$$\mu$$

$$H_0: \mu = null \ value$$

$$SE = \frac{s}{\sqrt{n}} \qquad \qquad \mu \ \text{doesn't appear} \ \text{in SE}$$

parameter of interest:
$$p$$

$$H_0: p = null \ value$$
 $SE = \sqrt{rac{p(1-p)}{n}}$ p appears in SE

Statistical Inference

Behnam Bahrak

Example

- Are conditions for inference met for conducting a hypothesis test to compare the two proportions?
 - 1. Independence:

√ within groups: random sample & n < 10%Sampled males independent of each

other, sampled females are as well.

	Male	Female
Total	90	122
ĝ	0.38	0.50
\hat{p}_{pool}	0.45	

√ between groups:

No reason to expect sampled males and females to be dependent.

2. Sample size / skew: $\sqrt{\text{Males: }90 \times 0.45} = 40.5 \text{ and } 90 \times 0.55 = 49.5$

 $\sqrt{\text{Females: } 122 \times 0.45 = 54.9 \text{ and } 122 \times 0.55 = 67.1}$

We can assume that the sampling distribution of the difference between two proportions is nearly normal.

Statistical Inference

bahrak@ut.ac.ir

< 18 of 20 >

Example

Conduct a hypothesis test, at 5% significance level, evaluating if males and females are equally likely to answer "Yes" to the question about whether any of their children have ever been the victim of bullying.

	Male	Female
Total	90	122
\widehat{p}	0.38	0.50
\widehat{p}_{pool}	0.45	

$$H_0$$
: $p_{male} - p_{female} = 0$ H_A : $p_{male} - p_{female} \neq 0$

$$\hat{p}_{male} - \hat{p}_{female} \sim N(mean = 0, SE = \sqrt{\frac{0.45 \times 0.55}{90} + \frac{0.45 \times 0.55}{122}} \approx 0.0691)$$

point estimate =
$$\hat{p}_{male} - \hat{p}_{female} = 0.38 - 0.50 = -0.12$$

Statistical Inference

Behnam Bahrak

19 of 20 >

Example

	Male	Female
Total	90	122
\widehat{p}	0.38	0.50
\widehat{p}_{pool}	0.45	

point estimate
$$= -0.12$$

$$null value = 0$$

$$SE = 0.0691$$

$$Z = \frac{-0.12 - 0}{0.0691} \approx -1.74$$

p-value =
$$P(|Z| > 1.74) \approx 0.08$$

Statistical Inference

bahrak@ut.ac.ir