Introduction

In statistics, exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main characteristics, often with visual methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modeling or hypothesis testing task. Exploratory data analysis was promoted by John Tukey to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments. EDA is different from initial data analysis (IDA), which focuses more narrowly on checking assumptions required for model fitting and hypothesis testing, and handling missing values and making transformations of variables as needed. EDA encompasses IDA.

Content

There is a list of over 10,000 fast food restaurants provided by Datafiniti's Business Database. The dataset includes the restaurant's address, city, latitude and longitude coordinates, name, and more.

What You Can Do with This Data

You can use this data to rank cities with the most and least fast food restaurants across the U.S., E.g.:

- Cities with the most and least McDonald's per capita
- Fast food restaurants per capita for all states
- Fast food restaurants with the most locations nationally
- Major cities with the most and least fast food restaurants per capita
- Small cities with the most fast food restaurants per capita
- States with the most and least fast food restaurants per capita
- The number of fast food restaurants per capita

Columns used from the file

- City
- Country
- Keys
- Latitude
- Longitude
- Name
- Postal Code

- Province
- Websites

Data From FastfoodRestaurant.CSV File

Run Info

Succeeded	True	Run Time	9.8 seconds
Exit Code	0	Queue Time	0 seconds
Docker Image Name	/python(Dockerfile)	Output Size	0
Timeout Exceeded	False	Used All Space	False

Importing Libraries & Reading CSV File

```
import numpy as np
import pandas as pd
import string
from plotly.offline import init_notebook_mode, iplot
from plotly.graph_objs import *
init_notebook_mode(connected=True)
print(os.listdir("../input"))
df = pd.read_csv('../input/FastFoodRestaurants.csv')
```

```
df.head()
```

	address	city	country	keys	latitude	longitude	name	postalCode
0	324 Main St	Massena	US	us/ny/massena/324mainst/-1161002137	44.92130	-74.89021	McDonald's	13662
1	530 Clinton Ave	Washington Court House	US	us/oh/washingtoncourthouse/530clintonave/-7914	39.53255	-83.44526	Wendy's	43160
2	408 Market Square Dr	Maysville	US	us/ky/maysville/408marketsquaredr/1051460804	38.62736	-83.79141	Frisch's Big Boy	41056
3	6098 State Highway 37	Massena	US	us/ny/massena/6098statehighway37/-1161002137	44.95008	-74.84553	McDonald's	13662
4	139 Columbus Rd	Athens	US	us/oh/athens/139columbusrd/990890980	39.35155	-82.09728	OMG! Rotisserie	45701

Data Exploration

```
print('Total no of columns:',df.shape[1])
print('Total no of rows:',df.shape[0])

Total no of columns: 10
Total no of rows: 10000
```

```
print('countries are:',df.country.unique())
print('city are:',df.city.unique())

countries are: ['US']
city are: ['Massena' 'Washington Court House' 'Maysville' ... 'Chatham' 'Miles City'
    'East Chicago']
```

```
df.name.value_counts()[:10]
```

McDonald's	1886
MCDOHATU S	1000
Burger King	1154
Taco Bell	873
Wendy's	731
Arby's	518
KFC	421
Domino's Pizza	345
Subway	322
SONIC Drive In	226
Hardee's	192
Name: name, dtype:	int64

```
df.name=df.name.apply(lambda x: x.lower())
df.name=df.name.apply(lambda x:''.join([i for i in x
                           if i not in string.punctuation]))
df.name.value_counts()[:10]
mcdonalds
                   2105
burger king
                   1154
taco bell
                    873
                    734
wendys
                    520
arbys
kfc
                    441
                    404
subway
dominos pizza
                    359
sonic drive in
                    248
jack in the box
                    201
Name: name, dtype: int64
```

Data Visualization

Histograms

1.Top 10 Restaurants using EDA

```
nameplt=df.name.value_counts()[:10].plot.bar(title="Top 10 Restaurants")
nameplt.set_xlabel('Restaurant', size=15)
nameplt.set_ylabel('count', size=15)
```

Text(0,0.5,'count')

2.Top 10 Restaurants using EDA

```
provplt=df.province.value_counts()[:10].plot.bar(title='Top 10 province')
provplt.set_xlabel('province', size=15)
provplt.set_ylabel('count', size=15)
Text(0,0.5,'count')
```


3.Histogram of Top 10 Cities using EDA

```
cityplt=df.city.value_counts()[:10].plot.bar(title='Top 10 cities')
cityplt.set_xlabel('city', size=15)
cityplt.set_ylabel('count', size=15)
```

Text(0,0.5,'count')

Plotting Restaurant Locations on U.S Map

1.McDonalds Restaurants on Map

```
mcd=df[df.name =='mcdonalds']
mcd_lat = mcd.latitude
mcd_lon = mcd.longitude
mcd_city = mcd.city
data = [
    go.Scattermapbox(
        lat=mcd_lat,
        lon=mcd_lon,
        mode='markers',
        marker=dict(
            size=5,
            color='rgb(255, 0, 0)',
            opacity=0.3
        ))]
layout = go.Layout(
    title='Mcdonalds Restaurants',
    autosize=True,
    hovermode='closest',
    showlegend=False,
    mapbox=dict(
        accesstoken=mapbox_access_token,
        bearing=0,
        center=dict(
            lat=38,
            lon=-94
        ),
        pitch=0,
        zoom=3,
        style='light'
    ),
```

fig = dict(data=data, layout=layout)

iplot(fig, filename='Mcdonalds restaurants')

2.Burger King Restaurants on Map

```
bg=df[df.name =='burger king']
bg_lat = bg.latitude
bg_lon = bg.longitude
bg_city = bg.city
data = [
    go.Scattermapbox(
        lat=bg_lat,
        lon=bg_lon,
        mode='markers',
        marker=dict(
            size=5,
            color='rgb(0,255, 0)',
            opacity=0.8
        ))]
layout = go.Layout(
    title='Burgerking Restaurants',
```

```
autosize=True,
    hovermode='closest',
    showlegend=False,
    mapbox=dict(
        accesstoken=mapbox_access_token,
        bearing=0,
        center=dict(
            lat=38,
            lon=-94
        ),
        pitch=0,
        zoom=3,
        style='light'
    ),
fig = dict(data=data, layout=layout)
iplot(fig, filename='burgerking restaurants')
```


3.Tacobell Restaurants on Map

```
tb=df[df.name =='taco bell']
tb_lat = tb.latitude
tb_lon = tb.longitude
tb_city = tb.city
data = [
    go.Scattermapbox(
        lat=tb_lat,
        lon=tb_lon,
        mode='markers',
        marker=dict(
            size=5,
            color='rgb(0,0,255)',
            opacity=0.8
        ))]
layout = go.Layout(
    title='Tacobell Restaurants',
    autosize=True,
   hovermode='closest',
    showlegend=False,
    mapbox=dict(
        accesstoken=mapbox_access_token,
        bearing=0,
        center=dict(
            lat=38,
            lon=-94
        pitch=0,
        zoom=3,
        style='light'
    ),
fig = dict(data=data, layout=layout)
iplot(fig, filename='Tacobell restaurants')
```


Conclusion

After doing this project we conclude that by using this project on Exploratory Data Analysis of Restaurants , we are now able to understand the locations of various restaurants present in U.S. Also we can do an analysis on the data from FastfoodRestaurant.csv file to see the number of cities or number of provinces having how many restaurants of fastfood.