# Tecnológico de Monterrey. Campus Querétaro.

## TC2038. Análisis y diseño de Algoritmos A

M.C. Ramona Fuentes Valdéz

rfuentes@tec.mx

26

# Técnicas de diseño de algoritmos

Programación dinámica (Dynamic programming)

#### Solución de problemas

- La intuición no es suficiente.
- Eficiencia y facilidad de implementación
- Depende de la situación:
  - Manejo de sensores en tiempo real
  - Extracción de conocimiento de bases de datos
  - Concurso de programación

#### Diseño de algoritmos

- Con el tiempo se han observado patrones comunes a la hora de solucionar problemas
- Estos patrones son las técnicas de diseño de algoritmos.

INTA Dr. Alberto Conzález



# Técnicas de diseño de algoritmos

Programación dinámica (Dynamic programming)

Un algoritmo de programación dinámica tiene las siguientes características:

- Almacena en una estructura de datos soluciones parciales.
- Parte de una solución elemental conocida.
- Debe ser posible obtener la solución a través de una secuencia de decisiones óptimas.

#### Clasificación

- 1. Problemas de optimización
- 2. Problemas combinatorios

### **Algoritmo**

- 1. Plantear la solución como una sucesión de decisiones.
- 2. Definición recursiva de la solución.
- Cálculo de la solución óptima mediante una tabla donde se almacenan soluciones parciales.
- 4. Construcción de la solución óptima.







```
Técnicas de diseño de algoritmos

Programación dinámica (Dynamic programming)

Ejercicio:
Sucesión de Fibonacci: f_n = \begin{cases} n & \text{si } n = 0 \text{ o } n = 1 \\ f_{n-1} + f_{n-2} & \text{en otro caso} \end{cases}

Aplicando la PD:

Recursion : Exponential

\begin{cases} \text{if } (n <= 1) \\ \text{return } fib(n-1) + fib(n-2); \\ \text{} \end{cases}

Dynamic Programming: Linear
```







```
Técnicas de diseño de algoritmos
Programación dinámica
Ejercicio:
Coeficiente binomial El número de formas posibles de elegir k
                       elementos de n posibles está dado por:
                                                                              para 0 \le k \le n
                                                              \binom{k}{} = \frac{1}{k!(n-k)!}
Con PD:
    Se utilizará una matriz para almacenar las soluciones parciales.
     Para almacenar los resultados en la matriz, se utilizará la siguiente forma "recursiva":
                                                               C[i-1][j-1] + C[i-1][j]
Análisis de complejidad
                                                    c[i][j] =
                                                                                        j=0 ó j=i
Veamos el número de veces que se ejecutan
las instrucciones dentro de los ciclos anidados:
                                                       Algoritmo:
                                                              int CoefBin2(int n, int k){
 W(n) = 1 + 2 + 3 + ... + k + (k+1) + (k+1) + ... + (k+1)
                                                                 int[][] C = new int[n+1][k+1];
                                                                 for (i=0 ; i<=n ; i++) {
                                 (n-k+1) veces
                                                                   for (j=0; j \le min(i,k); j++) {
 W(n) = \frac{k(k+1)}{2} + (n-k+1)(k+1)
                                                                     if (j==0 || j==i)
                                                                        C[i][j] = 1;
       =\frac{(2n-k+2)(k+1)}{(k+1)}
                                   Por lo tanto:
                                                                        C[i][j] = C[i-1][j-1]+C[i-1][j];
                                   O(W(n)) = O(nk)
                                                                 return C[n][k];
```







### Técnicas de diseño de algoritmos Programación dinámica Ejercicio: Problema de dar cambio Supón que vives en un país donde sólo están disponibles las monedas de 100, 25, 10, 5 y 1. Debes diseñar un algoritmo para pagar una cantidad utilizando el menor número posible de monedas. Ejemplo, para pagar 289 → mejor solución son 2 monedas de 100, 3 de 25, 1 de 10 y 4 de 1). En el lugar donde vives, sólo hay monedas de 1, 4 y 6 unidades. Tenemos que dar cambio de 8 unidades. Se pudiera utilizar: 1 moneda de 6 y 2 de 1 unidad. 2 monedas de 4 unidades. Con PD: Sean: - Cant: La cantidad a devolver - M: El número de denominaciones distintas v<sub>m</sub>: el valor de una moneda m Cálculo de la solución mediante una tabla donde se almacenan soluciones parciales: - Arreglo bidimensional cambio[1..M] [0..Cant] donde cambio[m][c] representa el número de monedas de tipo m o menos necesarias para devolver una cantidad c.

## Técnicas de diseño de algoritmos

### Programación dinámica (Dynamic prog

Ejercicio: Problema de dar cambio

- Supón que vives en un país donde sólo están disponibles las monedas de 100, 25, 10, 5 y 1.
- Debes diseñar un algoritmo para pagar una cantidad utilizando el menor número posible de monedas.
- Cant: Cantidad a devolver

  Ejemplo, para 289 → 2 monedas de 100, 3 de 25, 1 de 10 y 4 de 1). M: Número denominaciones distinta

  V<sub>m</sub>: Valor de una moneda m
- · Cálculo de la solución mediante una tabla donde se almacenan soluciones parciales:
  - Arreglo bidimensional cambio[1..M] [0..Cant] donde cambio[m][c] representa el número de monedas de tipo momenos necesarias para devolver una cantidad c.
- Definición recursiva de la solución y caso base:
  - Tomar en cada paso las monedas que se tienen + una moneda m (o quedarme sólo con las monedas que se tienen).
  - o 0 cuando la cantidad a devolver es cero
- · Construcción de la solución:
  - Elegimos en cada paso no utilizar monedas de valor v<sub>m</sub> y en este caso cambio[m][c] = cambio[m-1][c]
  - O incluir al menos una moneda de valor v<sub>m</sub>, en este caso cambio[m][c] = 1+cambio[m][c-v<sub>m</sub>]
  - Por lo tanto, cambio[m][c] = min (cambio[m-1][c], 1+cambio[m][c-v<sub>m</sub>])

IMTA Dr Alberto Gonzál

42

# Técnicas de diseño de algoritmos

### Programación dinámica (Dynamic programación dinámica)

Ejercicio: Problema de dar cambio

- Supón que vives en un país donde sólo están disponibles las monedas de 100, 25, 10, 5 y 1.
- Debes diseñar un algoritmo para pagar una cantidad utilizando el menor número posible de monedas.
- Ejemplo:

  Cant: Cantidad a devolver

  Ejemplo, para 289 → 2 monedas de 100, 3 de 25, 1 de 10 y 4 de 1).

  M: Número denominaciones distinta

  v<sub>m</sub>: Valor de una moneda m
- Monedas de 1, 4 y 6 unidades.

Tenemos que dar cambio de 8 unidades.

Conjunto de tres monedas (M=3)  $\rightarrow$  v<sub>1</sub>=1, v<sub>2</sub>=4 y v<sub>3</sub>=6

Cant=8 (cantidad a devolver).

Arreglo bidimensional cambio[1..M] [0..Cant]

La tabla cambio[1..3][0..8] será:

| Valor              | Cantidad a cambiar |   |   |   |   |   |   |   |   |
|--------------------|--------------------|---|---|---|---|---|---|---|---|
| moneda             | 0                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| v <sub>1</sub> = 1 | 0                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| v <sub>2</sub> = 4 | 0                  | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 2 |
| v <sub>3</sub> = 6 | 0                  | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 2 |

IMTA. Dr. Alberto González





## Técnicas de diseño de algoritmos

### Programación dinámica (Dynamic programming

Ejercicio: Problema de dar cambio

- Supón que vives en un país donde sólo están disponibles las monedas de 100, 25, 10, 5 y 1.
- Debes diseñar un algoritmo para pagar una cantidad utilizando el menor número posible de monedas.

  Cant: Cantidad a devolver.
- Ejemplo, para 289 → 2 monedas de 100, 3 de 25, 1 de 10 y 4 de 1). M: Número denominaciones distinta

#### Complejidad:

- Eficiencia temporal del algoritmo darCambio:
  - Operación básica: calcular cambio[m,c]
  - Tamaño de la entrada: número de denominaciones M.
    - · El ciclo externo se realiza M veces y el interno Cant veces
    - W(n) = n·Cant
    - Su orden de complejidad es O(n)
- Eficiencia temporal del algoritmo para reconstruir la solución:
  - Ir desde la fila M hasta la 1 cuesta M pasos
  - Ir desde la columna Cant hasta la 0 cuesta tantos pasos como monedas hay en la solución (cambio[M,Cant])
  - W(n) = n + n = 2n
  - Su orden de complejidad es O(n)

46

# Técnicas de diseño de algoritmos

### Programación dinámica (Dynamic programming)

Un algoritmo de programación dinámica tiene las siguientes características:

- Almacena en una estructura de datos soluciones parciales.
- Parte de una solución elemental conocida.
- Debe ser posible obtener la solución a través de una secuencia de decisiones óptimas.

#### **Algoritmo**

- 1. Plantear solución como una sucesión de decisiones.
- 2. Definición recursiva de la solución.
- 3. Cálculo de la solución óptima mediante una tabla donde se almacenan soluciones parciales.
- 4. Construcción de la solución óptima.

#### Conclusiones

- Programación dinámica normalmente se usa cuando no podemos emplear divide y vencerás.
- Siempre se usa una estructura de datos.
- Se parte de la instancia más pequeña conocida.

Algunas aplicaciones:

v<sub>m</sub>: Valor de una moneda m

- Unix diff, comparar dos archivos

  (https://en.wikipedia.org/wiki/Diff)
- Bellman-Ford, el camino
- más corto en redes (https://en.wikipedia.org/wiki/Bellman%E2% 80%93Ford\_algorithm)
- TeX, el antecessor de LaTeX (https://en.wikipedia.org/wiki/Bellman%E2% 80%93Ford\_algorithm)
- WASP, Winning and Score Predictor

(https://en.wikipedia.org/wiki/WASP\_%28cricket\_calculation\_tool%29)

Dr. Alberto González, albertogonzalez/@itesm.mv. Dvnamic Programmir