# Credit Risk Analysis

## **Background – Credit Risk Analysis**

CredX gives credit cards to thousands of people every year, of which **approx.** 4% **default**. The defaulters form the largest fraction of the portfolio's loss (credit loss).

The objectives of the analysis are to:

- Identify the most important variables affecting likelihood of default
- Build an application scorecard to identify the likely defaulters at the application stage using predictive models
- Estimate the potential financial benefits of using the models for auto-approval of credit cards



# **Credit Risk Analysis - Flow of Topics**

#### The analysis is divided into 5 parts:

- Data Understanding Demographic and Credit bureau information
- Identifying important variables using Exploratory Data Analysis
- Predictive modelling
  - Modelling on demographic data only
  - Modelling on combined data of demographic and credit bureau variables
- Application scorecard
  - Identifying the optimal score for rejecting the applicant
- Financial Benefits
  - Assessing the potential benefits of using predictive models for auto-approval



## Data Understanding

- Identifying important variables
- Predictive modelling
- Application scorecard
- Financial Benefits



## **Data Understanding – Demographic and Credit Bureau Data**

#### **Demographic Data**

Provided by applicants at the time of credit card application.

### **Application Information\***

Age

Income

Gender

**Marital Status** 

Education

#### **Credit Bureau Data**

Provided by credit bureau agency of every individual. The data contains Information related to applicants' previous loans, credit cards etc.

#### **Credit Bureau Information\*\***

Outstanding balance

Past due 30,60,90 DPD

**Total trades** 

Number of inquiries

Presence of home loan



<sup>\*</sup> Demographic Data contains 12 attributes. Only few are shown in the table

<sup>\*\*</sup> Credit Bureau Data contains 19 attributes. Only few are shown in the table

- Data Understanding
- Identifying important variables
- Predictive modelling
- Application scorecard
- Financial Benefits



# Identifying Important Variables: Average credit utilisation, Trades opened, Inquiries and Outstanding Balance

#### The most crucial variables seem to be:

- Average credit utilisation in last 12 months
- Number of trades opened in last 12 months
- Number of PL(personal loan) trades opened in last 12 months
- Number of Inquiries in last 12 months (excluding home auto loans)
- Outstanding balance





- Data Understanding
- Identifying important variables
- Predictive modelling
- Application scorecard
- Financial Benefits



# Predictive Modelling – Best Model: Random Forest\*: Accuracy: 72%, Sensitivity: 75% and Specificity: 72%

Model identifies 75% of defaulters correctly

• Captures 80% defaulters in top 4 deciles

| bucket | total | Total Bad | Cum- Bad | Gain  | Lift |
|--------|-------|-----------|----------|-------|------|
| 1      | 6951  | 1739      | 1739     | 59.2  | 5.9  |
| 2      | 6950  | 272       | 2011     | 68.4  | 3.4  |
| 3      | 6950  | 195       | 2206     | 75.1  | 2.5  |
| 4      | 6950  | 169       | 2375     | 80.8  | 2.0  |
| 5      | 6950  | 155       | 2530     | 86.1  | 1.7  |
| 6      | 6950  | 122       | 2652     | 90.3  | 1.5  |
| 7      | 6950  | 95        | 2747     | 93.5  | 1.3  |
| 8      | 6950  | 85        | 2832     | 96.4  | 1.2  |
| 9      | 6950  | 58        | 2890     | 98.4  | 1.1  |
| 10     | 6950  | 48        | 2938     | 100.0 | 1.0  |



<sup>\*</sup>Random Forest model trained on balanced data

- Data Understanding
- Identifying important variables
- Predictive modelling
- Application scorecard
- Financial Benefits



# Application Scorecard (master population): Score varies between 200 to 530; Cut-off score - 338

 Cut-off: 338 is the baseline for providing credit card to the customers





### **Application Scorecard (rejected population): 70% of defaulters correctly identified**

- Average score of rejected population is less than the average score of approved\* population
- Total rejected applications by bank: 1423
- Identified correctly at cut-off score by model: 1006



<sup>\*</sup>Approved population (master data ) is a population for which the application is accepted by bank



- Data Understanding
- Identifying important variables
- Predictive modelling
- Application scorecard
- Financial Benefits



## **Credit Loss\*: Reduced credit loss from 4% customers to 1% customers**

Credit loss no model = 4%

• Credit loss with model = 1%

**Credit Loss Saved: 3%** 



| Confusion Matrix   |                   | Actual Defaults   |                  |  |
|--------------------|-------------------|-------------------|------------------|--|
|                    |                   | Good Customers(0) | Bad Customers(1) |  |
| Predicted Defaults | Good Customers(0) | 47938             | 732              |  |
|                    | Bad Customers (1) | 18625             | 2206             |  |



<sup>\*</sup> The loss occurred from the bad customers

# **Revenue Loss\*: Reducing 30% revenue (Auto-approval)**

- Revenue no model = 100%
- Revenue with model = 70%

**Revenue Loss: 30%** 



| Confusion Matrix   |                   | Actual Defaults   |                  |  |
|--------------------|-------------------|-------------------|------------------|--|
|                    |                   | Good Customers(0) | Bad Customers(1) |  |
| Predicted Defaults | Good Customers(0) | 47938             | 732              |  |
|                    | Bad Customers (1) | 18625             | 2206             |  |

<sup>\*</sup> The revenue loss is occurred by wrongly identified "bad" to the good customers

