2020-11-08

1 Question 1

1.1 Part 1

Let $\mathbf{v} \in V$ then we have from the second property of Linear Transformations that $\mathbf{T}(-\mathbf{v}) = \mathbf{T}(-\mathbf{1}.\mathbf{v}) = -\mathbf{1}.\mathbf{T}(\mathbf{v}) = -\mathbf{T}(\mathbf{v})$ which proves the second part of the question.

Now , we have from the additivity of Linear Transformations that $T(\mathbf{0_v}) = \mathbf{T}(\mathbf{v} + (-\mathbf{v})) = \mathbf{T}(\mathbf{v}) + \mathbf{T}(-\mathbf{v}) = \mathbf{T}(\mathbf{v}) - \mathbf{T}(\mathbf{v}) = \mathbf{0_w}$ which proves the first part.

1.2 Part 2

Given that T is a bijection this means that $\forall w \in W \exists ! v \in V \text{ such that } T(v) = w$

Now as T is a bijection , T^{-1} is a valid function from $W \mapsto V$.

Now , consider any $v_1, v_2 \in V$ such that $T(v_1) = w_1, T(v_2) = w_2$. By definition we have that, $T^{-1}(w_1) = v_1$ and $T^{-1}(w_2) = v_2$

 $w_1 + w_2 = T(v_1) + T(v_2) = T(v_1 + v_2)$ (from additivity of linear transformations).

Thus, $T^{-1}(w_1 + w_2) = v_1 + v_2 = T^{-1}(w_1) + T^{-1}(w_2)$, therefore T^{-1} satisfies additivity.

Next, for any $c \in \mathbb{F}$ we have, $cw_1 = cT(v_1) = T(cv_1)$ from scaling property of Linear Transformations but then,

 $T^1(cw_1)=cv_1=cT^{-1}(w_1)$ and thus T^{-1} satisfies scaling property as well , concurrently therefore T^{-1} is also a linear transformation \blacksquare

2 Question 2

Let S be the set of all \mathbb{F} vector spaces . Let $V, W, U \in S$ then we have that,

 $V\cong V\ \forall\ V\in S$ this is because we can choose our isomorphism to be the identity isomorphism from $V\mapsto V$ i.e $\phi(x)=x\ \forall x\in V$

Therefore \cong is reflexive.

Next , if $V \cong W$ under an isomorphism $\phi: V \mapsto W$ then $\phi^{-1}: W \mapsto V$ is also an isomorphism and therefore $W \cong V$ and the relation is symmetric.

Finally if $V \cong W$ under the isomorphism ϕ and $W \cong U$ under the isomorphism Γ then consider η such that $\eta: V \mapsto U$ and $\eta(x) = \Gamma(\phi(x)) \ \forall x \in V$. Clearly , this is an isomorphism and therefore $V \cong U$ and thus the relation is transitive.

Since the relation is reflexive, symmetric and transitive it is equivalent.

3 Question 3

To show that Lin(V, W) is a vector space we will do the following :

Define \bigoplus : $Lin(V, W) \times L(V, W) \mapsto Lin(V, W)$ in the following way: given $T_1, T_2 \in Lin(V, W)$ we have that $(T_1 \bigoplus T_2)(x) = T_1(x) + T_2(x) \ \forall \ x \in V$

Next define , $\bigotimes : \mathbb{F} \times Lin(V, W) \mapsto Lin(V, W)$ in the following way : given $T_1 \in Lin(V, W)$ and $c \in \mathbb{F}$ we have that $(c \bigotimes T_1)(x) = cT_1(x) \ \forall \ x \in V$

Clearly, both of our operations are valid from the properties of Linear Transformations. (i.e.) $(T_1 \bigoplus T_2)$ and $(c \bigotimes T_1)$ are both in Lin(V, W)

If we define 0_{Lin} as the **zero linear transformation** (i.e the transformations that maps every element in Vto 0_W) then using the fact that V, W are vector spaces it is trivial to verify that \bigoplus with 0_{Lin} as the identity satisfies all properties of vector addition with $(-1 \bigotimes T)$ being the additive inverse of T. Similarly, \bigotimes with $1_{\mathbb{F}}$ as the identity satisfies all properties of scalar multiplication. Distributivity follows trivially from the fact V, Ware vector spaces. ■

Ouestion 4 4

Suppose that A=B then we have $A-B=0_{m\times n}$ and thus for any $v\in\mathbb{F}^{n\times 1}$ we have , $(A-B)v=0_{n\times 1}$ which implies that $Av - Bv = 0_{n \times 1}$ and thus Av = Bv

To proceed in the backward direction, suppose that we are given that Av = Bv Since this is true $\forall v \in \mathbb{F}^{n \times 1}$ in particular, it is true for the basis vectors $e_1, ... e_n$. Clearly , multiplying any matrix say $M \in \mathbb{F}^{m \times n}$ with e_j gives the j^{th} column of M. Thus , we have that j^{th} column of A is the same as that of the j^{th} column of B $\forall j \in \{1,...n\}$ but these are all the columns of both matrices! Therefore all elements of the two matrices are common and consequently they are equal ■.

5 **Ouestion 5**

5.1 Part 1

Let $[T]_{B,B} = [c_1|c_2]$ for some $c_1, c_2 \in \mathbb{F}^2$.

Given that $\{e_1, e_2\}$ is the basis

Then we have that ,
$$[T(e_1)]_{B,B}=[T]_{B,B} imes \begin{bmatrix}1\\0\end{bmatrix}$$
 and therefore $c_1=T(e_1)=\begin{bmatrix}0\\-1\end{bmatrix}$

Similarly
$$c_2 = T(e_2) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
.

Therefore ,
$$[T]_{B,B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Part 2 5.2

We have that $T_{B'} = T_B \circ Id$ where Id is the Identity transformation which transforms vectors from basis B' to B which means we have that $[T]_{B,B'} = [T]_{B,B}[Id]_{B,B'}$

(Logically this can be thought of as first shifting the basis and then doing the standard transformation)

Again , let $[Id]_{B,B'}=[c_1|c_2]$ for some $c_1,c_2\in\mathbb{F}^2$. Let e_1',e_2' be the new coordinates of the basis vectors of B in B' (Firstly note that if the basis vectors of B' are f_1,f_2 then $e_1'=-f_2$ and $e_2=f_1+f_2$) then we have from the definition of the Identity transformation that $Id(e_1')=e_1$ and $Id(e_2')=e_2$ which means $[c_1|c_2]\times\begin{bmatrix}0\\-1\end{bmatrix}=-c_2=\begin{bmatrix}1\\0\end{bmatrix}$ and $[c_1|c_2]\times\begin{bmatrix}1\\1\end{bmatrix}=c_1+c_2=\begin{bmatrix}0\\1\end{bmatrix}$

$$[c_1|c_2] imes egin{bmatrix} 0 \ -1 \end{bmatrix} = -c_2 = egin{bmatrix} 1 \ 0 \end{bmatrix}$$
 and $[c_1|c_2] imes egin{bmatrix} 1 \ 1 \end{bmatrix} = c_1 + c_2 = egin{bmatrix} 0 \ 1 \end{bmatrix}$

Therefore , $c_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $c_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ which means that ,

$$Id = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}.$$

Finally
$$[T]_{B,B'} = [T]_{B,B}[Id]_{B,B'} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

5.3 Part 3

The matrix P is clearly the matrix Id which has been discussed above since $Id[v]_{B'} = [v]_B$ (this is true for the basis vectors in B and therefore true for all vectors by properties of matrix multiplication and vector spaces)

5.4 Part 4

We want to transform B to B' so we need the transformation A such that if $A=[c_1|c_2]$ for some $c_1,c_2\in\mathbb{F}^2$ then $A(e_1)=e_1'$ and $A(e_2)=e_2'$ which implies that :

$$[c_1|c_2] \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = c_1 = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \text{ and } [c_1|c_2] \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = c_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ which means that } A = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$$

Therefore if v is the requisite vector we have $v = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \times \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \end{bmatrix}$

A quick check reveals that $-1 \times \begin{bmatrix} 1 \\ 1 \end{bmatrix} + -3 \times \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ which means that we have the right coordinates.

6 Question 6

Switching to polar coordinates is a natural choice in this case. Given a vector v we may represent it as (r, β) where r refers to it's **norm** (usually Euclidean) which is a measure of its 'length' and β is the counterclockwise angle that it makes with the 'x' axis which is a measure of its 'direction'

Thus , the x coordinate of the vector in terms of its polar coordinates is $x = rcos(\beta)$ and similarly the y coordinate $y = rsin(\beta)$

Rotation by an angle θ changes the direction while preserving the length thus moving the vector to $(r, \theta + \beta)$.

To get the transformation matrix, let's understand how the basis vectors are transformed in this process.

The length or norm of each basis vector is unit with their angles being $\theta=0$ and $\theta=\frac{\pi}{2}$ therefore the new points are $(1,\theta)$ and $(1,(\theta+\frac{pi}{2}))$ respectively which correspond to the following two vectors in standard basis : $\begin{bmatrix} cos\theta\\ sin\theta \end{bmatrix}$ and $\begin{bmatrix} -sin\theta\\ cos\theta \end{bmatrix}$ respectively.

Thus if $T=[c_1|c_2]$ for some $c_1,c_2\in\mathbb{R}$ is the required matrix , we have that for the standard basis vectors e_1,e_2

$$T(e_1)=egin{bmatrix} cos \theta \\ sin \theta \end{bmatrix}$$
 and $T(e_2)=egin{bmatrix} -sin \theta \\ cos \theta \end{bmatrix}$ which gives :

$$\begin{bmatrix} c_1|c_2] \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = c_1 = \begin{bmatrix} cos\theta \\ sin\theta \end{bmatrix} \text{ and } [c_1|c_2] \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = c_2 = \begin{bmatrix} -sin\theta \\ cos\theta \end{bmatrix}$$

Thus we have that , $T=\begin{bmatrix}cos\theta & -sin\theta\\sin\theta & cos\theta\end{bmatrix}$