MATH 324 Advanced Multivariable Calculus Equations

Organized by Teng-Jui Lin

Warning

- WARNING: These equations are hand-typed and for personal reference use, so it is guaranteed to have some mistakes, both innocent and unforgivable. Therefore, use with caution!
- By using this equation sheet, you accept the risk associated with potential mistakes.
- If you find any mistakes, I welcome you to raise an issue.
- Updated: 16 March 2021

Table of Contents

- MATH 324 Advanced Multivariable Calculus Equations
 - Warning
 - Table of Contents
 - o Double Integrals
 - Double integrals in Cartesian coordinates
 - Double integrals in polar coordinates
 - Change of variables for double integrals
 - Applications of double integrals
 - Triple Integrals
 - Triple integrals in Cartesian coordinates
 - Triple integrals in cylindrical coordinates
 - Triple integrals in spherical coordinates
 - Change of variables for triple integrals
 - Applications of triple integrals
 - Partial Differentiation
 - Chain rule
 - Directional derivatives and gradient vector
 - Vector Calculus
 - Arc Length and Parameterization of Curves
 - Line Integrals
 - Fundamental Theorem of Line Integrals
 - Summary
 - Curl and Divergence
 - Green's Theorem
 - Surface Area and Parameterization of Surfaces
 - Surface Integral
 - Stoke's Theorem
 - Divergence Theorem (Gauss's Theorem)
 - Appendix
 - Types of functions

Double Integrals

Double integrals in Cartesian coordinates

Description	Equations
Double integrals	$egin{aligned} \iint\limits_R f(x,y) \ dA \ &= \lim_{m,n o\infty} \sum\limits_{i=1}^m \sum\limits_{j=1}^n f(x_{ij}^*,y_{ij}^*) \Delta A \end{aligned}$
Fubini's Theorem $R = [a,b] imes [c,d]$	$egin{aligned} \iint\limits_R f(x,y) \; dA \ &= \int_a^b \int_c^d f(x,y) \; dx \; dy \ &= \int_c^d \int_a^b f(x,y) \; dy \; dx \end{aligned}$
Separation of iterative integrals $R = [a,b] imes [c,d]$	$\iint\limits_R g(x)h(y)\ dA = \int_a^b g(x)\ dx \int_c^d h(y)\ dy$

Description	Equations
Type I region $D=x imes y=[a,b] imes [g_1(x),g_2(x)]$	$\iint\limits_{D}f(x,y)\;dA=\int_{a}^{b}\int_{g_{1}(x)}^{g_{2}(x)}f(x,y)\;dx\;dy$
Type II region $D = x imes y = [h_1(x), h_2(x)] imes [c,d]$	$\iint\limits_{D}f(x,y)\;dA=\int_{c}^{d}\int_{h_{1}(x)}^{h_{2}(x)}f(x,y)\;dy\;dx$
Addition of double integrals	$egin{aligned} &\iint\limits_D [f(x,y)+g(x,y)] \ dA \ &= \iint\limits_D f(x,y) \ dA + \iint\limits_D g(x,y) \ dA \end{aligned}$
Constant multiple of double integrals	$\iint\limits_{D}cf(x,y)\;dA=c\iint\limits_{D}f(x,y)\;dA$
Region separation of double integrals	$\int \int \int f(x,y) \; dA \ = \int \int \int \int f(x,y) \; dA + \int $
Area of a region ${\cal D}$	$A(D)=\iint\limits_{D}dA$
Average value of a function	$ar{f} = rac{1}{A(R)} \iint\limits_R f(x,y) \ dA$

Double integrals in polar coordinates

Description	Equations
Transformation to polar coordinates	$egin{aligned} x &= r\cos heta \ y &= r\sin heta \ x^2 + y^2 &= r^2 \ dA &= r\ dr\ d heta \end{aligned}$
Double integrals in polar coordinates $R = r imes heta = [a,b] imes [lpha,eta]$	$egin{aligned} &\iint\limits_R f(x,y) \; dA \ &= \int_{lpha}^{eta} \int_a^b f(r\cos heta,r\sin heta) \; r \; dr \; d heta \end{aligned}$
Double integrals in general polar region $R=r imes heta=[h_1(heta),h_2(heta)] imes [lpha,eta]$	$egin{aligned} \iint\limits_R f(x,y) \; dA \ &= \int_lpha^eta \int_{h_1(heta)}^{h_2(heta)} f(r\cos heta,r\sin heta) \; r \; dr \; d heta \end{aligned}$

Change of variables for double integrals

Description	Equations
Transformation of two variables	$T(u,v) = \left(x(u,v),y(u,v) ight)$
Jacobian of transformation of two variables	$rac{\partial(x,y)}{\partial(u,v)} = egin{array}{ccc} rac{\partial x}{\partial u} & rac{\partial x}{\partial v} \ rac{\partial y}{\partial u} & rac{\partial y}{\partial v} \ \end{pmatrix}$
Change of variables for differentials	$dA = dx dy = \left rac{\partial(x,y)}{\partial(u,v)} ight du \ dv$
Change of variables for double integrals	$egin{aligned} &\iint\limits_R f(x,y) dA \ &= \iint\limits_S f(x(u,v),y(u,v)) \left rac{\partial(x,y)}{\partial(u,v)} ight du dv \end{aligned}$

Applications of double integrals

Description	Equations
Density function	$ ho(x,y)=rac{dm}{dA}$
Mass	$m = \iint\limits_{D} ho(x,y) \; dA$
Moment about x-axis	$M_x = \iint\limits_D y ho(x,y) \; dA$
Moment about y-axis	$M_x = \iint\limits_{D} x ho(x,y) \; dA$

Description	Equations
Center of mass $(ar{x},ar{y})$	$ar{x} = rac{M_y}{m} = rac{\iint\limits_D x ho(x,y) \ dA}{\iint\limits_D ho(x,y) \ dA}$
	$ar{y} = rac{M_x}{m} = rac{\iint\limits_D y ho(x,y) \ dA}{\iint\limits_D ho(x,y) \ dA}$
Moment of inertia about x-axis (second moment)	$I_x = \iint\limits_D y^2 ho(x,y) \; dA$
Moment of inertia about y-axis (second moment)	$I_y = \iint\limits_D x^2 ho(x,y) \; dA$
Moment of inertia about the origin (polar moment of inertia)	$I_0=I_x+I_y=\iint\limits_D(x^2+y^2) ho(x,y)~dA$
Surface area	$A=\iint\limits_{D}\sqrt{1+\left(rac{\partial z}{\partial x} ight)^{2}+\left(rac{\partial z}{\partial y} ight)^{2}}dA$

Triple Integrals

Triple integrals in Cartesian coordinates

Description	Equations
Triple integrals	$egin{aligned} & \iiint\limits_B f(x,y,z) \ dV \ & = \lim\limits_{l,m,n o\infty} \sum\limits_{i=1}^l \sum\limits_{j=1}^m \sum\limits_{k=1}^n f(x_{ijk}^*,y_{ijk}^*,z_{ijk}^*) \Delta V \end{aligned}$
Fubini's Theorem $B=x imes y imes z=[a,b] imes [c,d] imes [r,s]$	$\iiint\limits_B f(x,y,z) \ dV \ = \int_r^s \int_c^d \int_a^b f(x,y,z) \ dx \ dy \ dz \ = \int_c^d \int_r^s \int_a^b f(x,y,z) \ dx \ dz \ dy \ =$
Type 1 region $D=x imes y$ $E=D imes z=$ $D imes [u_1(x,y),u_2(x,y)]$	$\mathop{\iiint}\limits_{E} f(x,y,z) \ dV = \ \mathop{\iint}\limits_{D} \left(\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) dz ight) dA$
Type 2 region $D=y imes z$ $E=D imes x=D imes [u_1(y,z),u_2(y,z)]$	$\iint\limits_E f(x,y,z) \ dV = \ \iint\limits_D \left(\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) dx ight) dA$
Type 3 region $D=x imes z$ $E=D imes y=D imes [u_1(x,z),u_2(x,z)]$	$\iiint\limits_E f(x,y,z) \ dV = \ \iint\limits_D \left(\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) dy ight) dA$
Example of a general region (6 general regions) $E = [a,b] imes [g_1(x),g_2(x)] imes [u_1(x,y),u_2(x,y)]$	$\iint\limits_E f(x,y,z) \ dV = \ \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \ dz \ dy \ dx$
Volume of a solid ${\cal E}$	$V(E)=\mathop{\iiint}\limits_{E}dV$

Triple integrals in cylindrical coordinates

$x=r\cos heta \ y=r\sin heta$ Transformation to cylindrical coordinates $z=z$	Description	Equations
$egin{aligned} x^2+y^2&=r^2\ dV&=r\;dz\;dr\;d heta \end{aligned}$	Transformation to cylindrical coordinates	$egin{aligned} y &= r \sin heta \ z &= z \ x^2 + y^2 &= r^2 \end{aligned}$

Description	Equations
Range of cylindrical coordinates	$egin{aligned} &r\in[0,\infty)\ & heta\in[0,2\pi]\ &z\in[0,\infty) \end{aligned}$
Triple integrals in general cylindrical region $E=r imes heta imes z= [lpha,eta] imes [h_1(heta),h_2(heta)] imes [u_1(x,y),u_2(x,y)]$	$igsim_E f(x,y,z) \; dV = \ \int_{lpha}^{eta} \int_{h_1(heta)}^{h_2(heta)} \int_{u_1(r\cos heta,r\sin heta)}^{u_2(r\cos heta,r\sin heta)} \cdots \ f(r\cos heta,r\sin heta,z) \; r \; dz \; dr \; d heta$

Triple integrals in spherical coordinates

Description	Equations
Transformation to spherical coordinates	$(r = ho \sin \phi)$ $x = ho \sin \phi \cos \theta$ $y = ho \sin \phi \sin \theta$ $z = ho \cos \phi$ $ ho^2 = x^2 + y^2 + z^2$ $dV = ho^2 \sin \phi d\rho d\theta d\phi$
Range of spherical coordinates	$egin{aligned} ho &\in [0,\infty) \ heta &\in [0,2\pi] \ \phi &\in [0,\pi] \end{aligned}$
	$egin{aligned} \iint\limits_E f(x,y,z) dV = \ \int_c^d \int_{lpha}^{eta} \int_{g_1(heta,\phi)}^{g_2(heta,\phi)} \ f(ho\sin\phi\cos heta, ho\sin\phi\sin heta, ho\cos\phi) \ ho^2 \sin\phi\ d ho\ d heta\ d\phi \end{aligned}$

Change of variables for triple integrals

Description	Equations
Transformation of three variables	$T(u,v,w) = \left(x(u,v,w),y(u,v,w),z(u,v,w)\right)$
Jacobian of transformation of three variables	$rac{\partial (x,y,z)}{\partial (u,v,w)} = egin{array}{ccc} rac{\partial x}{\partial u} & rac{\partial x}{\partial w} & rac{\partial x}{\partial w} \ & & rac{\partial y}{\partial u} & rac{\partial y}{\partial w} \ & & rac{\partial z}{\partial u} & rac{\partial z}{\partial w} \end{array}$
Change of variables for differentials	$dV = dx \ dy \ dz = \left rac{\partial(x,y,z)}{\partial(u,v,w)} ight du \ dv \ dw$
Change of variables for triple integrals	$egin{aligned} & \iiint\limits_R f(x,y,z) dV \ & = \iiint\limits_S f(x(u,v,w),y(u,v,w),z(u,v,w)) \ & igg rac{\partial(x,y,z)}{\partial(u,v,w)} igg \ du \ dv \ dw \end{aligned}$

Applications of triple integrals

Description	Equations
Mass	$m=\iiint\limits_{E} ho(x,y,z)\;dV$
Moments about coordinate planes	$egin{aligned} M_{yz} &= \iiint\limits_E x ho(x,y,z) \; dV \ M_{xz} &= \iiint\limits_E y ho(x,y,z) \; dV \ M_{xy} &= \iiint\limits_E z ho(x,y,z) \; dV \end{aligned}$

Description	Equations
Center of mass $(ar x,ar y,ar z)$	$ar{x} = rac{ M_{yz}}{m} = rac{ \iint\limits_E x ho(x,y,z) \ dV}{ \iint\limits_E ho(x,y,z) \ dV}$
	$ar{y} = rac{\iint_E y ho(x,y,z) \; dV}{\iint_E ho(x,y,z) \; dV}$
	$ar{z} = rac{ \int\!\!\!\int_E z ho(x,y,z) \ dV}{\int\!\!\!\int_E ho(x,y,z) \ dV}$
Moments of inertia about coordinate axes	$egin{align} I_x &= \iiint\limits_E (y^2+z^2) ho(x,y,z) \; dV \ I_y &= \iiint\limits_E (x^2+z^2) ho(x,y,z) \; dV \ I_z &= \iiint\limits_E (x^2+y^2) ho(x,y,z) \; dV \ \end{gathered}$

Partial Differentiation

Chain rule

Description	Equations
Chain rule $z=f(x(t),y(t))$	$rac{dz}{dt} = rac{\partial z}{\partial x}rac{dx}{dt} + rac{\partial z}{\partial y}rac{dy}{dt}$
Chain rule $z = f(x(s,t),y(s,t))$	$rac{\partial z}{\partial s} = rac{\partial z}{\partial x}rac{\partial x}{\partial s} + rac{\partial z}{\partial y}rac{\partial y}{\partial s}$
	$rac{\partial z}{\partial t} = rac{\partial z}{\partial x} rac{\partial x}{\partial t} + rac{\partial z}{\partial y} rac{\partial y}{\partial t}$
Chain rule (general) $z=f(x_1,,x_n)$, where $x_i=x_i(t_1,,t_m)$	$rac{\partial z}{\partial t_i} = rac{\partial z}{\partial x_1} rac{\partial x_i}{\partial t_i} + + rac{\partial z}{\partial x_n} rac{\partial x_n}{\partial t_i}$

Directional derivatives and gradient vector

Description	Equations
Assumptions	Unit vector $\mathbf{u}=\langle u_1,,u_i angle$ Independent variables $\mathbf{x}=\langle x_1,,x_i angle$
General directional derivatives	$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{h o 0} rac{f(\mathbf{x} + h\mathbf{u}) - f(\mathbf{x})}{h}$
General gradient vectors	$ abla f(\mathbf{x}) = \left\langle rac{\partial f}{\partial x_1},, rac{\partial f}{\partial x_i} ight angle$
General directional derivatives and gradient vectors	$D_{\mathbf{u}}f(\mathbf{x}) = abla f(\mathbf{x}) \cdot \mathbf{u}$
Directional derivative in 2D	$D_{\mathbf{u}}f(x,y)=f_x\cos heta+f_y\sin heta$
Gradient vector and maximum values	$\max(D_{\mathbf{u}}f(\mathbf{x})) = abla f(\mathbf{x}) $ where $\mathbf{u} = rac{ abla f(\mathbf{x})}{ abla f(\mathbf{x}) }$
Gradient vector ot tangent vector for level surface $F(x,y,z)=k$	$ abla F(x(t),y(t),z(t))\cdot \mathbf{r}'(t)=0 onumber \ abla F(x_0,y_0,z_0)\cdot \mathbf{r}'(t_0)=0$
Tangent plane in terms of gradient vector (normal vector)	$ abla F(x,y,z)\cdot \langle x-x_0,y-y_0,z-z_0 angle =0$
Symmetric equation of normal line	$egin{array}{l} rac{x-x_0}{F_x(x_0,y_0,z_0)} = \ rac{y-y_0}{F_y(x_0,y_0,z_0)} = \ rac{z-z_0}{F_z(x_0,y_0,z_0)} \end{array}$

Vector Calculus

Arc Length and Parameterization of Curves

Description	Equations
Vector field	$\mathbf{F}(\mathbf{x}) = \langle P(\mathbf{x}), Q(\mathbf{x}), R(\mathbf{x}) angle$
Conservative vector field and potential function	$\mathbf{F} = abla f$
Parameterization of line segments	$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t~\mathbf{r}_1$, for $0 \leq t \leq 1$
Parameterization of circles	$\mathbf{r}(t) = \langle r \cos(t), r \sin(t) angle$
Parameterization of functions	$\mathbf{r}(t) = \langle t, f(t) angle$
Arc length	$L = \int_a^b {f r}'(t) \; dt$
Arc length parameter	$egin{aligned} s(t) &= \int_a^t \mathbf{r}'(u) \ du \ s'(t) &= \mathbf{r}'(t) \ ds &= \mathbf{r}'(t) \ dt \end{aligned}$

Line Integrals

Description	Equations
Line integral	$\int_C f(x,y) \; ds = \lim_{n o \infty} \sum_{i=1}^n f(x_i^*,y_i^*) \Delta s_i$
Line integral with respect to arc length	$egin{aligned} &\int_C f(x,y) \; ds \ &= \int_a^b f(x(t),y(t)) \sqrt{\left(rac{dx}{dt} ight)^2 + \left(rac{dy}{dt} ight)^2} dt \ &= \int_a^b f(\mathbf{r}(t)) \; \mathbf{r}'(t) \; dt \end{aligned}$
Line integral with respect to \boldsymbol{x} and \boldsymbol{y}	$\int_{C} f(x,y) \; dx = \int_{a}^{b} f(x(t),y(t)) \; x'(t) \; dt \ \int_{C} f(x,y) \; dy = \int_{a}^{b} f(x(t),y(t)) \; y'(t) \; dt$
Line integrals of vector fields	$egin{aligned} &\int_C \mathbf{F} \cdot \mathbf{T} \; ds \ &= \int_C \mathbf{F} \cdot d\mathbf{r} \ &= \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \; dt \end{aligned}$
Line integrals of vector fields and scalar fields	$egin{aligned} \mathbf{F} &= \langle P,Q,R angle \ \int_C \mathbf{F} \cdot d\mathbf{r} \ &= \int_C P \ dx + Q \ dy + R \ dz \ &= \int_C P \ x'(t) + Q \ y'(t) + R \ z'(t) \ dt \end{aligned}$
Orientation properties of line integrals with respect to arc length, $x_{\!\scriptscriptstyle c}$ and y	$egin{aligned} & \int_{-C} f(x,y) \; ds = \int_{C} f(x,y) \; ds \ & \int_{-C} f(x,y) \; dx = -\int_{C} f(x,y) \; dx \ & \int_{-C} f(x,y) \; dy = -\int_{C} f(x,y) \; dy \end{aligned}$
Orientation properties of line integrals of vector fields	$\int_{-C} {f F} \cdot d{f r} = - \int_C {f F} \cdot d{f r}$
Line integral of a piecewise-smooth curve	$egin{aligned} \int_C f \ ds &= \sum\limits_{i=1}^N \int_{C_i} f \ ds \ C &= C_1 \cup C_2 \cup \cup C_N \end{aligned}$

Fundamental Theorem of Line Integrals

- path a smooth curve with initial and terminal point
- simple curve a curve that does not intersect itself anywhere between its endpoints
- closed curve a curve where its terminal point coincides with its initial point
- simple region a region that is bounded by two line segments in one direction (type-1, type-2 regions)
- open region a region that does not contain boundary points
- closed region a region that contains all boundary points
- connected region two points in the region can be joined by a path that lies in the region
- simply-connected region a region that every simple closed curve in D encloses only points that are in D
 - o has no hole
 - o doesn't consist of separate pieces

Description	Equations
Fundamental theorem of line integrals	$\int_{C} abla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$
Line integrals of non-conservative fields are not path independent (same end points)	$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} eq \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$
Line integrals of conservative fields are path independent (same end points)	$\int_{C_1} abla f \cdot d{f r} = \int_{C_2} abla f \cdot d{f r}$
Line integrals of closed path	$\int_{C_{ m closed}} {f F} \cdot d{f r} = 0 \Leftrightarrow \ \int_C {f F} \cdot d{f r}$ is path independent
Path independence and conservative vector field (open, connected region)	$\int_{C} \mathbf{F} \cdot d\mathbf{r}$ is path independent \Rightarrow $\mathbf{F} = abla f$ (conservative field)
Property of conservative vector field	$\mathbf{F} = abla f \Rightarrow rac{\partial P}{\partial y} = rac{\partial Q}{\partial x}$
Determine conservative vector field in 2D (open simply-connected region)	$rac{\partial P}{\partial y} = rac{\partial Q}{\partial x} \Rightarrow \mathbf{F} = abla f$

Summary

- Fundamental theorem of line integral (FTL) is always true (with assumptions).
- ullet Other statements are not true for general ${f F}=\langle P,Q
 angle$
 - \circ They have to be verified for each given ${\bf F}$ or derived from theorems.

$$\begin{array}{ll} \operatorname{curl} \mathbf{F} = \mathbf{0} & \text{(checking 3D conservative field)} \\ \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} & \text{(checking 2D conservative field)} \\ & \downarrow \downarrow \operatorname{open, simply-connected} D \\ & \mathbf{F} = \nabla f & \text{(def. of conservative field)} \\ & \int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) & \text{(FTL)} \\ & \operatorname{open, connected} D \downarrow \downarrow & \text{(path independence)} \\ & \downarrow \downarrow & \\ & \int_{C} \mathbf{F} \cdot d\mathbf{r} = \mathbf{0} \operatorname{on a closed path)} & \text{(closed path)} \end{array}$$

Curl and Divergence

Equations
$egin{aligned} \operatorname{grad} f &= abla f \ &= \langle rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} angle \end{aligned}$
$\begin{array}{l} \operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} \\ = \langle \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \rangle \end{array}$
$\mathrm{div}\mathbf{F} = abla \cdot \mathbf{F} \ = rac{\partial P}{\partial x} + rac{\partial Q}{\partial y} + rac{\partial R}{\partial z}$
$egin{aligned} abla^2 f &= abla \cdot abla f = \operatorname{div}(abla f) \ &= rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2} \end{aligned}$
$ abla^2 \mathbf{F} = \langle abla^2 P, abla^2 Q, abla^2 R angle$
$\operatorname{curl} abla f=0$
$\operatorname{curl} \mathbf{F} = 0 \Rightarrow \mathbf{F} = abla f$
$\operatorname{div}\operatorname{curl}\mathbf{F} = \nabla\cdot(\nabla\times\mathbf{F}) = 0$
$\mathrm{div}\:\mathbf{F} eq0\Rightarrow\mathbf{F}$ is not curl of any field

Green's Theorem

Description	Equations
Green's Theorem (positively oriented, piecewise-smooth,	$\oint_C {f F} \cdot d{f r} = \iint\limits_D \left(rac{\partial Q}{\partial x} - rac{\partial P}{\partial y} ight) dA$

Surface Area and Parameterization of Surfaces

Description	Equations
General arametric surface	$\mathbf{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$
Parametric equation of a plane	$\mathbf{r}(u,v) = \mathbf{r}_0 + u\mathbf{a} + v\mathbf{b}$
Parametric equation of a sphere	$\mathbf{r}(\phi, heta) = \langle a \sin \phi \cos heta, a \sin \phi \sin heta, a \cos \phi angle$
Parametric equation of an explicit function	$\mathbf{r}(u,v) = \langle u,v,f(u,v) \rangle$
Parametric equation of a surface of revolution	$\mathbf{r}(u, heta) = \langle u, f(u)\cos heta, f(u)\sin heta angle$
Normal vector of a tangent plane	$\mathbf{r}_u imes \mathbf{r}_v$
Surface area of a parametric surface	$\iint\limits_{D} \mathbf{r}_{u} imes \mathbf{r}_{v} \; dA$
Surface area of the graph of an explicit $\label{eq:function} \operatorname{function} z = f(x,y)$	$\iint\limits_{D}\sqrt{1+(rac{\partial z}{\partial x})^2+(rac{\partial z}{\partial y})^2}\;dA$
Surface area of the graph of an implicit function $C=f(x,y,z)$	$\iint\limits_{D}rac{ abla f }{ abla f\cdot\mathbf{k} }\;dA$

Surface Integral

•	
Description	Equations
Surface integral of a function over a parametric surface	$egin{aligned} \iint\limits_{S} f(x,y,z) \ dS \ &= \iint\limits_{D} f(\mathbf{r}(u,v)) \mathbf{r}_{u} imes \mathbf{r}_{v} \ dA \end{aligned}$
Surface integral of an explicit function $z=f(x,y)$	$egin{aligned} &\iint\limits_S f(x,y,z) \; dS \ &= \iint\limits_D f(x,y,g(x,y)) \sqrt{1 + (rac{\partial z}{\partial x})^2 + (rac{\partial z}{\partial y})^2} \; dA \end{aligned}$
Surface integral of piecewise smooth surface	$egin{aligned} \iint\limits_S f \; dS &= \sum\limits_{i=1}^N \iint\limits_{S_i} f \; dS \ S &= S_1 \cup S_2 \cup \cup S_N \end{aligned}$
Unit normal vector	$\mathbf{n} = rac{\mathbf{r}_u imes \mathbf{r}_v}{ \mathbf{r}_u imes \mathbf{r}_v }$
Surface integral of a vector field over a parametric surface	$egin{aligned} \iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} &= \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \; dS \ &= \iint\limits_{D} \mathbf{F} \cdot (\mathbf{r}_{u} imes \mathbf{r}_{v}) \; dA \ &= \iint\limits_{D} \left(-P rac{\partial g}{\partial x} - Q rac{\partial g}{\partial y} + R ight) dA \end{aligned}$

Stoke's Theorem

Description	Equations
Stoke's Theorem (S: oriented, piecewise-smooth surface C: simple, closed, piecewise-smooth curve	$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (abla imes \mathbf{F}) \cdot d\mathbf{S}$

Divergence Theorem (Gauss's Theorem)

Description	Equations
Divergence Theorem	
(E: simple, solid region	
(E: simple, solid region S: positively oriented surface	$\iint \mathbf{F} \cdot d\mathbf{S} = \iiint abla \cdot \mathbf{F} \; dV$
F: continuous partial derivatives in open	S E
region)	

Appendix

Types of functions

Function Type	$Domain \to Range$	Equation	Example
Function of several variables	$\mathbb{R}^n o \mathbb{R}$	$f(\mathbf{x})$	$f(x,y,z)=\ 2x^2+e^y-5z^3-7$
Vector-valued function	$\mathbb{R} o \mathbb{R}^n$	$\mathbf{v}(t)$	$egin{aligned} \mathbf{v}(t) = \ \langle t^2, -2t, e^t angle \end{aligned}$
Vector field	$\mathbb{R}^n o \mathbb{R}^n$	$\mathbf{F}(\mathbf{x})$	$\mathbf{F}(x,y,z) = \ \langle 3x-y,z,z^2-x angle$