ZPHOTO ENGINE

--VERSION 3.0

DATE: 20160101
CopyRight: www.xiusdk.com

欢迎访问秀图: www.xiusdk.com

目录

前言	5
基础接口说明	7
1.ZPHOTO_SaturationAdjust	7
2.ZPHOTO_HueAndSaturationAdjust	7
3.ZPHOTO_LightnessAdjust	7
4.ZPHOTO_LinearBrightContrastAdjust	8
5.ZPHOTO_NLinearBrightContrastAdjust	8
6.ZPHOTO_AutoContrastAdjust	9
7.ZPHOTO_AutoColorGradationAdjust	9
8.ZPHOTO_CurveAdjust	9
9.ZPHOTO_Posterize	10
10.ZPHOTO_OverExposure	10
11.ZPHOTO_Invert	10
12.ZPHOTO_HistagramEqualize	11
13.ZPHOTO_Desaturate	11
14.ZPHOTO_Blackwhite	11
15.ZPHOTO_Threshold	12
16.ZPHOTO_FastGaussFilter	12
17.ZPHOTO_HighPass	12
18.ZPHOTO_USM	
19.ZPHOTO_FindEdges	13
20.ZPHOTO_ChannelMixProcess	14
21.ZPHOTO_ColorTemperatureAdjust	14
22.ZPHOTO_ShadowAdjust	
23.ZPHOTO_HighlightAdjust	15
24.ZPHOTO_ExposureAdjust	15
25.ZPHOTO_FastMeanFilter	16
26.ZPHOTO_SobelFilter	16
27.ZPHOTO_ImageTransformation	16
28.ZPHOTO_Fragment	17
29.ZPHOTO_MotionBlur	17
30.ZPHOTO_SurfaceBlur	18
31.ZPHOTO_RadialBlur	18
32.ZPHOTO_ZoomBlur	19
33.ZPHOTO_Relief	19
34.ZPHOTO_Mean	19
35.ZPHOTO_Mosaic	20
36.ZPHOTO_ColorBalance	20
37.ZPHOTO_Diffusion	20
38.ZPHOTO_LSNBlur	
39.ZPHOTO_ColorLevelAdjust	21
40.ZPHOTO_MedianFilter	
41.ZPHOTO MaxFilter	22

欢迎访问秀图: www.xiusdk.com

42.ZPHOTO_MinFilter	22
43.ZPHOTO_VirtualFilter	23
44.ZPHOTO_RGBA2BGRA	23
45.ZPHOTO_BGRA2RGBA	24
图层混合模式接口说明	25
1.ZPHOTO_ImageBlendEffect	25
2.ZPHOTO_ModeDarken	26
3.ZPHOTO_ModeMultiply	26
4.ZPHOTO_ModeColorBurn	26
5.ZPHOTO_ModeLinearBurn	26
6.ZPHOTO_ModeDarkness	27
7.ZPHOTO_ModeLighten	27
8.ZPHOTO_ModeScreen	27
9.ZPHOTO_ModeColorDodge	28
10.ZPHOTO_ModeColorLinearDodge	28
11.ZPHOTO_ModeLightColor	28
12.ZPHOTO_ModeOverlay	28
13.ZPHOTO_ModeSoftLight	29
14.ZPHOTO_ModeHardLight	29
15.ZPHOTO_ModeVividLight	
16.ZPHOTO_ModeLinearLight	29
17.ZPHOTO_ModePinLight	
18.ZPHOTO_ModeSolidColorMixing	
19.ZPHOTO_ModeDifference	30
20.ZPHOTO_ModeExclusion	31
21.ZPHOTO_ModeSubtraction	31
22.ZPHOTO_ModeDivide	31
23.ZPHOTO_ModeDesaturate	31
24.ZPHOTO_ModeColorInvert	32
颜色空间转换接口说明	33
1.ZPHOTO_RGBToYUV	33
2.ZPHOTO_YUVToRGB	33
3.ZPHOTO_RGBToYCbCr	33
4.ZPHOTO_YCbCrToRGB	34
5.ZPHOTO_RGBToXYZ	
6.ZPHOTO_XYZToRGB	
7.ZPHOTO_RGBToHSL	35
8.ZPHOTO_HSLToRGB	
9.ZPHOTO_RGBToHSV	36
10.ZPHOTO_HSVToRGB	36
11.ZPHOTO_RGBToCMYK	36
12.ZPHOTO_CMYKToRGB	37
13.ZPHOTO_RGBToYDbDr	37
14.ZPHOTO_YDbDrToRGB	37

欢迎访问秀图: www.xiusdk.com

15.ZPHOTO_RGBToYIQ	38
16.ZPHOTO_YIQToRGB	38
17.ZPHOTO_RGBToLAB	39
18.ZPHOTO LABToRGB	39
错误异常返问	40

www.xiusdk.com

前言

ZPhotoEngine 是一个包含众多常用图像处理算法的引擎库,该引擎使用 C 语言开发,针对 32 位 BGRA 格式图像,实现 PhotoShop 中常用的图像处理算法功能,具有较好的跨平台移植特性,主要适用于 PC/Android/IOS 平台图像应用的快速开发。同时,ZPhotoEngine还提供专业的滤镜特效,万能滤镜设计接口,方便不同开发者快速进行各种滤镜特效的开发。ZPhotoEngine 升级版还将包含人脸化妆算法接口,以满足美颜相机等类似化妆应用的开发使用。

ZPhotoEngine 说明文档分为四部分:基础接口部分,图层混合接口部分,颜色空间转换部分,滤镜引擎部分。

第一部分基础接口将详细介绍基础算法接口的使用,此部分包含了 PS 基础算法及部分滤镜特效接口以及目前 app 修图应用中主流图像调节算法(高光阴影、色温、曝光等)接口等。

第二部分图层混合接口,介绍各种 PS 图层混合模式的使用。

第三部分颜色空间转换接口,主要提供了各种常用颜色空间和 RGB 颜色空间的相互转换接口,方便开发者在不同空间进行处理。该部分和第一、二部分构成 ZPhotoEngine 引擎,可单独使用。该引擎提供相应的开发 DEMO,供使用者查阅。

第三部分滤镜引擎 ZEffectEngine 库,该引擎将以 ZPhotoEngine 为基础,模拟实现 Instagram/美图秀秀/Camera360 等大多数经典滤镜,并包含其他常用滤镜(冲印,怀旧,阿宝色等)功能。另外滤镜引擎提供了万能滤镜接口,可以自定义设计模板和图层混合模式,方便开发者开发各种效果滤镜。

注意,引擎算法采用多线程优化,PC 端需要配置多线程运行环境,Android 版无需配

置.。

最后,我们将不断对该引擎提供算法更新,以满足不同开发者的需求。

我们的网址: www.xiusdk.com

www.xiusdk.com

基础接口说明

1.ZPHOTO_SaturationAdjust

名称:

int ZPHOTO_SaturationAdjust(unsigned char* srcData, int width, int height, int stride, int
saturation);

接口描述: 饱和度调节

参数:

srcData--原始图像 Buffer;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

saturation--饱和度值,范围为[0,255];

返回值:

0-0K, 其他失败;

2.ZPHOTO_HueAndSaturationAdjust

名称

int ZPHOTO_HueAndSaturationAdjust(unsigned char* srcData, int width, int height, int
stride, int hue, int saturation);

接口描述: 色相和饱和度调节

参数:

srcData--原始图像 Buffer;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

hue--色相值,范围为[-180, 180];

saturation--饱和度值,范围为[-100, 100]

返回值:

0-0K, 其他失败;

3.ZPHOTO_LightnessAdjust

名称:

int ZPHOTO_LightnessAdjust(unsigned char* srcData, int width, int height, int stride, int
lightness);

接口描述: 明度调节

参数:

srcData--原始图像 Buffer;

```
width--图像宽度;
height--图像高度;
stride--图像 Stride;
lightness--明度值,范围为[-100, 100];
返回值:
0-0K,其他失败;
```

4.ZPHOTO_LinearBrightContrastAdjust

名称:

```
int ZPHOTO_LinearBrightContrastAdjust(unsigned char* srcData, int width, int height, int stride, int brightness, int contrast, int threshold);
接口描述: 线性对亮度对比度调节
参数:

srcData--原始图像 Buffer;
width--图像宽度;
height--图像高度;
stride--图像 Stride;
brightness--亮度值,范围为[-255, 255];
contrast--对比度值,范围为[-255, 255];
```

返回值:

0-0K, 其他失败;

5.ZPHOTO_NLinearBrightContrastAdjust

threshold--调节阈值,范围为[0,255],默认值128;

名称:

```
int ZPHOTO_NLinearBrightContrastAdjust(unsigned char* srcData, int width, int height, int
stride, int bright, int contrast, int threshold);
```

LCOM

接口描述: 非线性亮度对比度调节

参数:

```
srcData--原始图像 Buffer;
width--图像宽度;
height--图像高度;
stride--图像 Stride;
brightness--亮度值,范围为[-255, 255];
```

threshold--调节阈值,范围为[0,255],默认值128;

contrast--对比度值,范围为[-255, 255];

返回值:

6.ZPHOTO_AutoContrastAdjust

```
名称:
int ZPHOTO AutoContrastAdjust(unsigned char *srcData, int width, int height, int stride);
接口描述: 自动对比度调节
参数:
   srcData--原始图像 Buffer;
   width--图像宽度;
   height--图像高度;
   stride--图像 Stride;
返回值:
   0-0K, 其他失败;
7.ZPHOTO AutoColorGradationAdjust
名称:
int ZPHOTO_AutoColorGradationAdjust(unsigned char *srcData, int width, int height, int
stride):
```

接口描述: 自动色阶调节

参数:

「描述: 目列巴列 炯 µ 【: srcData--原始图像 Buffer; width---图像宽度; had abt--- 図像高度. stride--图像 Stride;

返回值:

0-0K, 其他失败;

8.ZPHOTO CurveAdjust

名称:

int ZPHOTO_CurveAdjust(unsigned char * srcData , int width, int height ,int stride , int destChannel, unsigned char inputLeftLimit, unsigned char inputMiddle, unsigned char inputRightLimit, unsigned char outputLeftLimit, unsigned char outputRightLimit); 接口描述: (曲线)色阶调节 参数: srcData--原始图像 Buffer;

width--图像宽度; height--图像高度; stride--图像 Stride: destChannel--通道选择(Gray-B-G-R:0-1-2-3); inputLeftLimit--输入最小值,范围为[0,255]; inputMiddle--输入中间值,范围为[0,255],默认 128;

```
inputRightLimit—输入最大值,范围为[0,255];
outputLeftLimit—输出最小值,范围为[0,255];
outputRightLimit—输出最大值,范围为[0,255];
返回值:
```

0-0K, 其他失败;

9.ZPHOTO_Posterize

名称:

int ZPHOTO_Posterize(unsigned char *srcData, int width, int height, int stride, int
clusterNum);

接口描述: 色调分离

参数:

srcData--原始图像 Buffer;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

clusterNum--色调数目, 范围为[2,255];

返回值:

0-0K, 其他失败;

10.ZPHOTO_OverExposure

名称:

int ZPHOTO_OverExposure(unsigned char *srcData, int width, int height, int stride);

接口描述: 过度曝光

参数:

srcData--原始图像 Buffer;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

返回值:

0-0K, 其他失败;

11.ZPHOTO_Invert

名称:

int ZPHOTO_Invert(unsigned char *srcData, int width, int height, int stride);

接口描述: 反相

参数:

```
srcData--原始图像 Buffer;
```

width--图像宽度;

```
height---图像高度;
stride---图像 Stride;
返回值:
```

0-0K, 其他失败;

12.ZPHOTO_HistagramEqualize

```
名称:
int ZPHOTO_HistagramEqualize(unsigned char* srcData, int width, int height, int stride);
接口描述: 色调均化
参数:
    srcData--原始图像 Buffer;
    width--图像宽度;
    height--图像高度;
    stride--图像 Stride;

返回值:
    0-0K, 其他失败;
```

13.ZPHOTO_Desaturate

```
名称:
int ZPHOTO_Desaturate (unsigned char *srcData, int width, int height, int stride);
接口描述: 去色
参数:
srcData--原始图像 Buffer;
width--图像宽度;
height--图像高度;
stride--图像 Stride;
返回值:
```

14.ZPHOTO_Blackwhite

```
名称:
```

```
int ZPHOTO_Blackwhite(unsigned char *srcData, int width, int height, int stride, int kRed, int kGreen, int kBlue, int kYellow, int kCyan, int kMagenta);
接口描述: 黑白
参数:
srcData--原始图像 Buffer;
width--图像宽度;
height--图像高度;
stride--图像 Stride;
```

```
kRed-红色比例, 范围[-200, 300]
kGreen-绿色比例, 范围[-200, 300]
kBlue-蓝色比例, 范围[-200, 300]
kYellow-黄色比例, 范围[-200, 300]
kCyan-青色比例, 范围[-200, 300]
kMagenta-洋红比例, 范围[-200, 300]
```

0-0K, 其他失败;

15.ZPHOTO_Threshold

名称:

int ZPHOTO_Threshold(unsigned char *srcData, int width, int height, int stride, int threshold);

接口描述: 阈值

参数:

srcData--原始图像 Buffer:

width--图像宽度;

height--图像高度;

stride--图像 Stride;

返回值:

0-0K, 其他失败;

sdk.com 16.ZPHOTO_FastGaussFilter

名称:

int ZPHOTO_FastGaussFilter(unsigned char* srcData, int width, int height, int stride, unsigned char* dstData, float radius);

接口描述: 高斯模糊

参数:

srcData--原始图像 Buffer;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

dstData--目标图像 Buffer, 必须与 srcData 大小相同;

radius--高斯半径,范围为[0,1000];

返回值:

0-0K, 其他失败;

17.ZPHOTO_HighPass

名称:

```
int ZPHOTO_HighPass(unsigned char* srcData, int width, int height, int stride, unsigned char*
dstData, float mRadius);
接口描述: 高反差保留
参数:
   srcData--原始图像 Buffer;
   width--图像宽度;
   height--图像高度;
   stride--图像 Stride;
   dstData--目标图像 Buffer, 必须与 srcData 大小相同;
   mRadius--高斯半径,范围为[0,1000];
返回值:
   0-0K, 其他失败;
18.ZPHOTO USM
名称:
int ZPHOTO_USM(unsigned char* srcData, int width, int height, int stride, unsigned char*
dstData, float radius, int amount, int threshold);
接口描述: USM 锐化
参数:
                                      sdk.com
   srcData--原始图像 Buffer;
   width--图像宽度;
   height--图像高度;
   stride--图像 Stride:
   dstData--目标图像 Buffer, 必须与 srcData 大小相同;
   radius--高斯半径,范围为[0,1000];
   amount--锐化程度, 范围为[0,500];
   threshold--锐化阈值,范围为[0,255];
返回值:
   0-0K, 其他失败;
19.ZPHOTO_FindEdges
名称:
int ZPHOTO FindEdges (unsigned char *srcData, int width, int height, int stride, unsigned char
*dstData);
接口描述: 查找边缘
参数:
   srcData--原始图像 Buffer;
   width--图像宽度;
   height--图像高度;
   stride--图像 Stride;
```

dstData--目标图像 Buffer, 必须与 srcData 大小相同;

0-0K, 其他失败;

20.ZPHOTO_ChannelMixProcess

名称:

```
int ZPHOTO_ChannelMixProcess(unsigned char* srcData, int width, int height, int stride, int channel, int kr, int kg, int kb, int N, bool singleColor, bool constAdjust); 接口描述: 通道混合
```

参数:

```
srcData--原始图像 Buffer;
width--图像宽度;
height--图像高度;
stride--图像 Stride;
channel--Red-0, Green-1, Blue-2, Gray-3;
kr--Red 通道比例,范围[-200, 200];
kg--Green 通道比例,范围[-200, 200];
kb--Blue 通道比例,范围[-200, 200];
N--常数比例,范围[-200, 200];
singleColor--是否单色调整,单色-true,彩色-false;
constAdjust--是否执行常数调整,执行-true,不执行-false;
```

返回值:

0-0K, 其他失败;

21.ZPHOTO_ColorTemperatureAdjust

名称:

```
int ZPHOTO_ColorTemperatureAdjust(unsigned char* srcData, int width, int height, int stride,
int intensity);
```

(.com

接口描述: 色温调节

参数:

```
srcData--原始图像 Buffer;
width--图像宽度;
height--图像高度;
stride--图像 Stride;
intensity--色温强度,取值范围为[-50,50]:
intensity < 0 时,冷色;
intensity = 0 时,保持原图;
intensity > 0 时,暖色;
```

返回值:

22.ZPHOTO_ShadowAdjust

名称:

```
int ZPHOTO ShadowAdjust(unsigned char* srcData, int width, int height, int stride, int
intensity);
```

接口描述: 阴影调节

参数:

srcData--原始图像 Buffer;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

intensity--阴影强度值,取值范围为[0,100]:

返回值:

0-0K, 其他失败;

23.ZPHOTO_HighlightAdjust

名称:

int ZPHOTO_HighlightAdjust(unsigned char* srcData, int width, int height, int stride, int intensity);

接口描述: 高光调节

参数:

3描述: 高光调节 女: srcData--原始图像 Buffer;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

intensity--高光强度值,取值范围为[0,100]:

返回值:

0-0K, 其他失败;

24.ZPHOTO_ExposureAdjust

名称:

int ZPHOTO_ExposureAdjust(unsigned char* srcData, int width, int height, int stride, int intensity);

接口描述:曝光调节

参数:

srcData--原始图像 Buffer;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

intensity--曝光强度值,取值范围为[0,100]:

0-0K, 其他失败;

25.ZPHOTO_FastMeanFilter

名称:

int ZPHOTO_FastMeanFilter(unsigned char* srcData, int width, int height ,int stride,
unsigned char* dstData, int radius);

接口描述: 高光调节

参数:

srcData--原始图像 Buffer;

width--图像宽度:

height--图像高度;

stride--图像 Stride;

dstData-目标图像 Buffer, 必须与 srcData 大小相同;

radius--均值滤波半径,取值范围为[0,width / 2];

返回值:

0-0K, 其他失败;

26.ZPHOTO_SobelFilter

名称:

int ZPHOTO_SobelFilter(unsigned char *srcData, int width, int height, int stride, unsigned
char *dstData);

接口描述: Sobel 边缘滤波

参数:

srcData--原始图像 Buffer;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

dstData--目标图像 Buffer, 必须与 srcData 大小相同;

返回值:

0-0K, 其他失败;

27.ZPHOTO_ImageTransformation

名称:

①int ZPHOTO_ImageTransformation(unsigned char *srcData, int srcImgSize[2], unsigned char *dstData, int dstImgSize[2], float H[], int Interpolation_method, int Transform_method); ②int ZPHOTO_CalcWH(int inputImgSize[2], float angle, float scale, int transform_method, int outputImgSize[2], float H[]);

接口描述:图像仿射变换,包括图像旋转,缩放,平移,镜像操作;要求先调用接口②,得到目标图

像大小和 H 矩阵,然后调用接口①实现相应功能。

参数:

srcData--原始图像 Buffer;

srcImgSize--原始图像宽高信息数组;

dstData--目标图像 Buffer, 大小由接口②获得;

dstImgSize--目标图像宽高信息数组;

H--变换矩阵数组,长度为6;

Interpolation_method—插值方法选择: interpolation_bilinear, interpolation_nearest;

Transform method--变换方法:

transform_scale 缩放变换, 取值为0;

transform rotation 旋转变换, 取值为1;

transform_rotation_scale 缩放旋转变换, 取值为 2;

usdk.com

transform_affine 仿射变换, 取值为 3;

transform_mirror_h水平镜像变换,取值为4;

transform_mirror_v 垂直镜像变换, 取值为5;

transform offset 平移变换, 取值为6;

inputImgSize--输入图像宽高信息;

angle--旋转角度值,取值范围为[-360-360];

scale--缩放变换值,取值大于0;

outputImgSize--输出图像宽高信息;

返回值:

0-0K, 其他失败;

28.ZPHOTO_Fragment

名称:

int ZPHOTO_Fragment(unsigned char *srcData, int width, int height, int stride);

接口描述:碎片功能

参数:

srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;

width--图像宽度;

height--图像高度;

stride--图像 Stride:

返回值:

0-0K, 其他失败;

29.ZPHOTO_MotionBlur

夕称.

int ZPHOTO_MotionBlur(unsigned char* srcData, int width, int height, int stride, int angle,
int distance);

接口描述: 运动模糊

参数:

```
srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式; width--图像宽度; height--图像高度; stride--图像 Stride; angle--运动模糊角度值,取值范围为[0,360]; distance--运动模糊距离值,取值范围为[0,200];
```

0-0K, 其他失败;

30.ZPHOTO_SurfaceBlur

名称:

```
int ZPHOTO_SurfaceBlur(unsigned char *srcData, int width, int height, int stride,int
threshold, int radius);
```

接口描述:表面模糊

参数:

srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

threshold—运动模糊角度值,取值范围为[0,255];

radius--运动模糊距离值,取值范围为[0,10];

返回值:

0-0K, 其他失败;

31.ZPHOTO RadialBlur

名称:

int ZPHOTO_RadialBlur(unsigned char* srcData, int width, int height, int stride, int cenX,
int cenY, int amount);

dk.com

接口描述: 旋转模糊

参数:

srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

cenX--旋转模糊中心 X 坐标;

cenY--旋转模糊中心Y坐标;

amount--旋转模糊程度,范围为[1-100];

返回值:

32.ZPHOTO_ZoomBlur

名称:

```
int ZPHOTO_ZoomBlur(unsigned char* srcData, int width, int height, int stride, int cenX, int cenY, int sampleRadius, int amount); 接口描述:缩放模糊 参数:

srcData--原始 BGRA 格式图像 Buffer,执行后转为 RGBA 格式;
width--图像宽度;
height--图像高度;
stride--图像 Stride;
cenX--旋转模糊中心 X 坐标;
cenY--旋转模糊中心 Y 坐标;
sampleRadius--缩放模糊半径,范围为[0-255];
amount--缩放模糊程度,范围为[1-100];
```

33.ZPHOTO Relief

0-0K, 其他失败;

名称:

返回值:

int ZPHOTO_Relief(unsigned char *srcData, int width, int height, int stride, int angle, int
amount);

接口描述: 浮雕

参数:

```
srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式; width--图像宽度; height--图像高度; stride--图像 Stride; angle--浮雕角度,范围为[0-360]; amount--缩放模糊程度,范围为[1-500];
```

返回值:

0-0K, 其他失败;

34.ZPHOTO Mean

名称:

```
int ZPHOTO_Mean(unsigned char *srcData, int width, int height, int stride); 接口描述: 平均
参数:
srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;
width---图像宽度:
```

```
height--图像高度;
stride--图像Stride;
```

0-0K, 其他失败;

35.ZPHOTO_Mosaic

名称:

int ZPHOTO Mosaic (unsigned char* srcData, int width, int height, int stride, int size);

接口描述: 马赛克

参数:

srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

size--马赛克半径,范围为[0-200];

返回值:

0-0K, 其他失败;

36.ZPHOTO_ColorBalance

名称:

int ZPHOTO_ColorBalance(unsigned char* srcData, int width, int height, int stride, int cyan, int magenta, int yellow, int channel, bool preserveLuminosity);

接口描述: 色彩平衡

参数:

srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

cyan--青色调整,范围为[-100-100];

magenta--洋红调整,范围为[-100-100];

yellow--黄色调整,范围为[-100-100];

channel--通道选择, RGB 通道 0, R 通道 1, G 通道 2, B 通道 3;

preserveLuminosity--是否保留明度(true-保留, false-不保留);

返回值:

0-0K, 其他失败;

37.ZPHOTO_Diffusion

名称:

```
int ZPHOTO_Diffusion(unsigned char* srcData, int width, int height, int stride, int
intensity);
接口描述: 扩散
参数:
   srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;
   width--图像宽度;
   height--图像高度;
   stride--图像 Stride;
   intensity--扩散程度,范围为[0-100];
返回值:
   0-0K, 其他失败;
38.ZPHOTO_LSNBlur
名称:
int ZPHOTO LSNBlur(unsigned char* srcData, int width, int height, int stride, int radius,
int delta);
接口描述: LSNBlur 模糊
参数:
   srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;
   width--图像宽度;
                               usak.com
   height--图像高度;
   stride--图像Stride;
   radius-模糊半径,范围为[0-200];
   delta--模糊方差,范围为[0-500];
返回值:
   0-0K, 其他失败;
39.ZPHOTO_ColorLevelAdjust
名称:
int ZPHOTO_ColorLevelAdjust(unsigned char * srcData , int width, int height ,int stride ,
int destChannel, unsigned char inputLeftLimit, float inputMiddle, unsigned char
inputRightLimit, unsigned char outputLeftLimit, unsigned char outputRightLimit);
接口描述: 色阶调节
参数:
   srcData--原始图像 Buffer;
   width--图像宽度;
   height--图像高度;
   stride--图像 Stride;
   destChannel--通道选择(Gray-B-G-R:0-1-2-3);
   inputLeftLimit--输入最小值,范围为[0,255];
```

inputMiddle--输入中间值, 范围为[0,9.99];

```
inputRightLimit—输入最大值,范围为[0,255];
outputLeftLimit—输出最小值,范围为[0,255];
outputRightLimit—输出最大值,范围为[0,255];
```

0-0K, 其他失败;

40.ZPHOTO MedianFilter

名称:

int ZPHOTO_MedianFilter(unsigned char *srcData, int width, int height, int stride, unsigned
char* dstData, int radius);

接口描述:中值滤波(中间色)

参数:

srcData--原始 BGRA 格式图像 Buffer,执行后转为 RGBA 格式;

width--图像宽度;

height--图像高度;

stride--图像 Stride:

radius--模糊半径,范围为[0,100];

返回值:

0-0K, 其他失败;

41.ZPHOTO_MaxFilter

名称:

int ZPHOTO_MaxFilter(unsigned char *srcData, int width, int height, int stride, unsigned
char* dstData, int radius);

接口描述:最大值滤波(最大值)

参数:

srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

radius--模糊半径,范围为[0,100];

返回值:

0-0K, 其他失败;

42.ZPHOTO_MinFilter

名称:

int ZPHOTO_MinFilter(unsigned char *srcData, int width, int height, int stride, unsigned
char* dstData, int radius);

```
接口描述: 最小值滤波(最小值)
```

参数:

srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

radius--模糊半径,范围为[0,100];

返回值:

0-0K, 其他失败;

43.ZPHOTO_VirtualFilter

名称:

int ZPHOTO_VirtualFilter(unsigned char* srcData, int width, int height, int stride, int x, int y, int blurIntensity, int radius);

接口描述: 虚化滤镜

参数:

srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;

width--图像宽度;

height--图像高度;

stride---图像 Stride;
x---虚化中心 x 坐标
y---虚化中心 y 坐标
blurIntensity----模糊程度, 范围[1,100];

radius--虚化半径,范围为[0,+];

返回值:

0-0K, 其他失败;

44.ZPHOTO RGBA2BGRA

名称:

int ZPHOTO_RGBA2BGRA(unsigned char* srcData, int width, int height, int stride);

接口描述: RGBA 转 BGRA 格式

参数:

srcData--原始 RGBA 格式图像 Buffer, 执行后转为 BGRA 格式;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

返回值:

45.ZPHOTO_BGRA2RGBA

名称:

int ZPHOTO_BGRA2RGBA(unsigned char* srcData, int width, int height, int stride);

接口描述: BGRA 转 RGBA 格式

参数:

srcData--原始 BGRA 格式图像 Buffer, 执行后转为 RGBA 格式;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

返回值:

图层混合模式接口说明

1.ZPHOTO_ImageBlendEffect

名称:

int ZPHOTO_ImageBlendEffect(unsigned char* baseData, int width, int height, int stride,
unsigned char* mixData, int blendMode);

接口描述: 图像图层混合

参数:

baseData--目标图像 Buffer, 作为结果图像输出;

width--图像宽度;

height--图像高度;

stride--图像 Stride;

mixData--混合图像 Buffer, 必须与 baseData 大小相同;

blendMode--图层混合方法:

BLEND_MODE_DARKEN变暗模式BLEND_MODE_MULTIPLY正片叠底模式BLEND_MODE_COLORBURN颜色加深模式BLEND_MODE_LINEARBURN线性渐变模式

BLEND_MODE_DARKNESS

BLEND_MODE_LIGHTEN

BLEND_MODE_SCREEN

BLEND_MODE_COLORDODGE 颜色减淡模式 BLEND_MODE_COLORLINEARDODGE 颜色 线性减淡模式

深色模式

变亮模式

滤色模式

BLEND_MODE_PINLIGHT 点光模式 BLEND_MODE_SOLIDCOLORMIXING 实色混合模式

BLEND_MODE_DIFFERENCE 差值模式
BLEND_MODE_EXCLUSION 排除模式
BLEND_MODE_SUBTRACTION 减去模式
BLEND_MODE_DIVIDE 划分模式

返回值:

2.ZPHOTO_ModeDarken

```
名称:
int ZPHOTO ModeDarken(int basePixel, int mixPixel);
接口描述: 变暗图层混合模式
参数:
   basePixel--底层像素值;
   mixPixel--混合像素值;
返回值:
   混合结果值,范围为[0,255];
```

3.ZPHOTO_ModeMultiply

```
名称:
int ZPHOTO_ModeMultiply(int basePixel,int mixPixel);
接口描述: 正片叠底图层混合模式
参数:
  basePixel--底层像素值:
  mixPixel--混合像素值;
                      iusdk.com
返回值:
```

混合结果值,范围为[0,255];

4.ZPHOTO_ModeColorBurn

```
名称:
int ZPHOTO_ModeColorBurn(int basePixel, int mixPixel);
接口描述: 颜色加深图层混合模式
参数:
   basePixel--底层像素值;
   mixPixel--混合像素值:
返回值:
   混合结果值,范围为[0,255];
```

5.ZPHOTO_ModeLinearBurn

```
名称:
int ZPHOTO ModeLinearBurn(int basePixel, int mixPixel);
接口描述: 线性渐变图层混合模式
参数:
   basePixel--底层像素值;
   mixPixel--混合像素值:
```

混合结果值,范围为[0,255];

6.ZPHOTO_ModeDarkness

名称:

int ZPHOTO_ModeDarkness(int *baseRed, int *baseGreen, int *baseBlue, int mixRed, int mixGreen, int mixBlue);

接口描述: 深色图层混合模式

参数:

baseRed--底层像素 R 分量值索引, 执行后修改为混合结果值; baseGreen--底层像素 G 分量值索引,执行后修改为混合结果值;

baseBlue--底层像素 B 分量值索引,执行后修改为混合结果值;

mixRed--混合像素 R 分量值;

mixGreen--混合像素 G 分量值;

mixBlue--混合像素 B 分量值;

返回值:

0-0K, 其他失败;

7.ZPHOTO ModeLighten

名称:

dk.com int ZPHOTO ModeLighten(int basePixel, int mixPixel);

接口描述: 变亮图层混合模式

参数:

basePixel--底层像素值; mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

8.ZPHOTO ModeScreen

名称:

int ZPHOTO ModeScreen(int basePixel, int mixPixel);

接口描述: 滤色图层混合模式

参数:

basePixel--底层像素值; mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

9.ZPHOTO_ModeColorDodge

名称:

int ZPHOTO ModeColorDodge(int basePixel, int mixPixel);

接口描述: 颜色减淡图层混合模式

参数:

basePixel--底层像素值; mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

10.ZPHOTO_ModeColorLinearDodge

名称:

int ZPHOTO_ModeColorLinearDodge(int basePixel, int mixPixel);

接口描述: 颜色线性减淡图层混合模式

参数:

basePixel--底层像素值: mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

sdk.com 11.ZPHOTO_ModeLightColor

名称:

int ZPHOTO_ModeLightColor(int basePixel, int mixPixel);

接口描述: 浅色图层混合模式

参数:

baseRed--底层像素 R 分量值索引,执行后修改为混合结果值;

baseGreen--底层像素 G 分量值索引,执行后修改为混合结果值;

baseBlue-底层像素 B 分量值索引,执行后修改为混合结果值;

mixRed--混合像素 R 分量值;

mixGreen--混合像素 G 分量值;

mixBlue--混合像素 B 分量值;

返回值:

混合结果值,范围为[0,255];

12.ZPHOTO_ModeOverlay

名称:

int ZPHOTO_ModeOverlay(int basePixel, int mixPixel);

接口描述: 叠加图层混合模式

参数:

basePixel--底层像素值; mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

13.ZPHOTO_ModeSoftLight

名称:

int ZPHOTO_ModeSoftLight(int basePixel, int mixPixel);

接口描述: 柔光图层混合模式

参数:

basePixel--底层像素值; mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

14.ZPHOTO_ModeHardLight

名称:

int ZPHOTO_ModeHardLight(int basePixel, int mixPixel);

k.com

接口描述:强光图层混合模式

参数:

basePixel--底层像素值; mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

15.ZPHOTO_ModeVividLight

名称:

int ZPHOTO_ModeVividLight(int basePixel, int mixPixel);

接口描述: 亮光图层混合模式

参数:

basePixel--底层像素值; mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

16.ZPHOTO_ModeLinearLight

名称:

```
int ZPHOTO_ModeLinearLight(int basePixel, int mixPixel);
```

接口描述:线性光图层混合模式

参数:

basePixel--底层像素值; mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

17.ZPHOTO_ModePinLight

名称:

int ZPHOTO_ModePinLight(int basePixel, int mixPixel);

接口描述: 点光图层混合模式

参数:

basePixel--底层像素值; mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

18.ZPHOTO_ModeSolidColorMixing

名称:

int ZPHOTO_ModeSolidColorMixing(int *baseRed, int *baseGreen, int *baseBlue, int mixRed, int
mixGreen, int mixBlue);

接口描述: 实色图层混合模式

参数:

baseRed--底层像素 R 分量值索引, 执行后修改为混合结果值;

baseGreen--底层像素 G 分量值索引,执行后修改为混合结果值;

baseBlue-底层像素 B 分量值索引, 执行后修改为混合结果值;

mixRed--混合像素 R 分量值;

mixGreen--混合像素 G 分量值;

mixBlue--混合像素 B 分量值;

返回值:

0-0K, 其他失败;

19.ZPHOTO_ModeDifference

名称:

int ZPHOTO_ModeDifference(int basePixel, int mixPixel);

接口描述: 差值图层混合模式

参数:

basePixel--底层像素值;

mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

20.ZPHOTO_ModeExclusion

名称:

int ZPHOTO_ModeExclusion(int basePixel, int mixPixel);

接口描述:排除图层混合模式

参数:

basePixel--底层像素值; mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

21.ZPHOTO_ModeSubtraction

名称:

int ZPHOTO_ModeSubtraction(int basePixel, int mixPixel);

xiusdk.com

接口描述:减去图层混合模式

参数:

basePixel--底层像素值;

mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

22.ZPHOTO_ModeDivide

名称:

int ZPHOTO_ModeDivide(int basePixel, int mixPixel);

接口描述:划分图层混合模式

参数:

basePixel--底层像素值;

mixPixel--混合像素值;

返回值:

混合结果值,范围为[0,255];

23.ZPHOTO_ModeDesaturate

名称:

int ZPHOTO_ModeDesaturate(int red, int green, int blue);

接口描述: 去色模式

参数:

red--像素 R 分量值,范围为[0,255]; green--像素 G 分量值,范围为[0,255]; blue--像素 B 分量值,范围为[0,255];

返回值:

去色结果值,范围为[0,255];

24.ZPHOTO_ModeColorInvert

名称:

int ZPHOTO_ModeColorInvert(int *red, int *green, int *blue);

接口描述: 反相模式

参数:

red--像素 R 分量值索引,执行后为反相结果像素 R 分量值; green--像素 G 分量值索引,执行后为反相结果像素 G 分量值; blue--像素 B 分量值索引,执行后为反相结果像素 B 分量值;

返回值:

0-0K, 其他失败;

www.xiusdk.com

颜色空间转换接口说明

1.ZPHOTO_RGBToYUV

名称:

void ZPHOTO_RGBToYUV(int Red, int Green, int Blue, int* Y, int* U, int* V);

接口描述: RGB 转 YUV 颜色空间

参数:

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值,范围为[0-255];

Y--像素 Y 分量值;

U--像素 U 分量值;

V--像素 V 分量值;

注:本接口中YUV为偏移之后的值,已非浮点数。

返回值:

0-0K, 其他失败;

2.ZPHOTO_YUVToRGB

名称:

void ZPHOTO_YUVToRGB(int Y, int U, int V, int* Red, int* Green, int* Blue);

接口描述: YUV 转 RGB 颜色空间

参数:

Y--像素 Y 分量值;

U--像素 U 分量值;

V--像素 V 分量值;

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值, 范围为[0-255];

注:本接口中YUV为偏移之后的值,已非浮点数。

返回值:

0-0K, 其他失败;

3.ZPHOTO RGBToYCbCr

名称:

void ZPHOTO_RGBToYCbCr(int R, int G, int B, int*Y, int*Cb, int* Cr);

接口描述: RGB 转 YCbCr 颜色空间

参数:

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值, 范围为[0-255];

Y--像素 Y 分量值;

Cb--像素 Cb 分量值;

Cr--像素 Cr 分量值;

注:本接口中YCbCr为偏移之后的值,已非浮点数。

返回值:

0-0K, 其他失败;

4.ZPHOTO_YCbCrToRGB

名称:

void ZPHOTO_YCbCrToRGB(int Y, int Cb, int Cr, int*Red, int*Green, int* Blue);

接口描述: YCbCr 转 RGB 颜色空间

参数:

Y--像素 Y 分量值;

Cb--像素 Cb 分量值;

Cr--像素 Cr 分量值;

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Green--- 像素 G 分量值, 泡围刀 L U- Z 20 J;
Blue--- 像素 B 分量值, 范围为 [0-255];
注: 本接口中 YCbCr 为偏移之后的值,已非浮点数。 **这回值:**

返回值:

5.ZPHOTO RGBToXYZ

名称:

void ZPHOTO_RGBToXYZ(int Red, int Green, int Blue, int* X, int* Y, int* Z);

接口描述: RGB 转 XYZ 颜色空间

参数:

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值,范围为[0-255];

X--像素 X 分量值;

Y--像素 Y 分量值;

Z--像素 Z 分量值;

注:本接口中 XYZ 为偏移之后的值,已非浮点数。

返回值:

6.ZPHOTO_XYZToRGB

名称:

void ZPHOTO_XYZToRGB(int X, int Y, int Z, int* Red, int* Green, int* Blue); 接口描述: XYZ 转 RGB 颜色空间

参数:

- X--像素 X 分量值;
- Y--像素 Y 分量值;
- Z--像素 Z 分量值;
- Red--像素 R 分量值, 范围为[0-255];
- Green--像素 G 分量值,范围为[0-255];
- Blue--像素 B 分量值, 范围为[0-255];
- 注:本接口中 XYZ 为偏移之后的值,已非浮点数。

返回值:

0-0K, 其他失败;

7.ZPHOTO RGBToHSL

名称:

void ZPHOTO_RGBToHSL (int Red, int Green, int Blue, int* h, int* s, int* l);

接口描述: RGB 转 HSL 颜色空间

参数:

Red--像素 R 分量值,范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值,范围为[0-255];

h--像素 h 分量值, 范围为[0-360];

s--像素 s 分量值, 范围为[0-1.0];

1--像素1分量值,范围为[0-1.0];

返回值:

0-0K, 其他失败;

8.ZPHOTO_HSLToRGB

名称:

void ZPHOTO_HSLToRGB (int h, int s, int 1, int* Red, int* Green, int* Blue);

接口描述: HSL 转 RGB 颜色空间

参数:

- h--像素 h 分量值, 范围为[0-360];
- s--像素 s 分量值, 范围为[0-1.0];
- 1--像素1分量值,范围为[0-1.0];
- Red--像素 R 分量值, 范围为[0-255];
- Green--像素 G 分量值,范围为[0-255];

```
Blue--像素 B 分量值,范围为[0-255];
```

0-0K, 其他失败;

9.ZPHOTO_RGBToHSV

名称:

void ZPHOTO_RGBToHSV (int Red, int Green, int Blue, double* h, double* s, double* v); 接口描述: RGB 转 HSV 颜色空间

参数:

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值, 范围为[0-255];

h--像素 h 分量值, 范围为[0-360];

s--像素 s 分量值, 范围为[0-1.0];

v--像素 v 分量值, 范围为[0-1.0];

返回值:

0-0K, 其他失败;

10.ZPHOTO_HSVToRGB

名称:

void ZPHOTO_HSVToRGB (double h, double s, double v, int* Red, int* Green, int* Blue);

接口描述: HSV 转 RGB 颜色空间

参数:

h--像素 h 分量值, 范围为[0-360];

s--像素 s 分量值, 范围为[0-1.0];

v--像素 v 分量值, 范围为[0-1.0];

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值, 范围为[0-255];

返回值:

0-0K, 其他失败;

11.ZPHOTO_RGBToCMYK

名称:

void ZPHOTO_RGBToCMYK (int Red, int Green, int Blue, int* C, int* M, int* Y, int * K); 接口描述: RGB 转 CMYK 颜色空间

参数:

```
Red--像素 R 分量值,范围为[0-255];
Green--像素 G 分量值,范围为[0-255];
```

```
Blue--像素 B 分量值, 范围为[0-255];
C--像素 C 分量值, 范围为[0-512];
M--像素 M 分量值, 范围为[0-512];
Y--像素 Y 分量值, 范围为[0-512];
K--像素 K 分量值, 范围为[0-512];
```

0-0K, 其他失败;

12.ZPHOTO_CMYKToRGB

名称:

```
void ZPHOTO_CMYKToRGB (int C, int M, int Y, int K, int* Red, int* Green, int* Blue);
接口描述: CMYK 转 RGB 颜色空间
参数:
```

C--像素 C 分量值, 范围为[0-512];

M--像素 M 分量值, 范围为[0-512];

Y--像素 Y 分量值, 范围为[0-512];

K--像素 K 分量值, 范围为[0-512];

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255]; usdk.com

Blue--像素 B 分量值, 范围为[0-255];

返回值:

0-0K, 其他失败;

13.ZPHOTO RGBToYDbDr

名称:

```
void ZPHOTO_RGBToYDbDr (int Red, int Green, int Blue, int* Y, int* Db, int* Dr);
接口描述: RGB 转 YDbDr 颜色空间
参数:
```

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值,范围为[0-255];

Y--像素 Y 分量值, 范围为[0-255];

Db--像素 Db 分量值,范围为[0-255];

Dr--像素 Dr 分量值, 范围为[0-255];

返回值:

0-0K, 其他失败;

14.ZPHOTO YDbDrToRGB

名称:

```
void ZPHOTO_YDbDrToRGB (int Y, int Db, int Dr, int* Red, int* Green, int* Blue); 接口描述: YDbDr 转 RGB 颜色空间 参数:

Y--像素 Y 分量值, 范围为[0-255];
Db--像素 Db 分量值, 范围为[0-255];
Dr--像素 Dr 分量值, 范围为[0-255];
Red--像素 R 分量值, 范围为[0-255];
Green--像素 G 分量值, 范围为[0-255];
Blue--像素 B 分量值, 范围为[0-255];
```

0-0K, 其他失败;

15.ZPHOTO_RGBToYIQ

名称:

void ZPHOTO_RGBToYIQ (int Red, int Green, int Blue, double* Y, double* I, double* Q); 接口描述: RGB 转 YIQ 颜色空间

sdk.com

参数:

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值, 范围为[0-255];

Y--像素 Y 分量值, 范围为[0-255];

I--像素 I 分量值, 范围为[-0.5957-0.5957];

Q--像素 Q 分量值, 范围为[-0.5226-0.5226];

返回值:

0-0K, 其他失败;

16.ZPHOTO_YIQToRGB

名称:

void ZPHOTO_YIQToRGB (double Y, double I, double Q, int* Red, int* Green, int* Blue); 接口描述: YIQ 转 RGB 颜色空间

参数:

Y--像素 Y 分量值, 范围为[0-255];

I--像素 I 分量值, 范围为[-0.5957-0.5957];

Q--像素Q分量值,范围为[-0.5226-0.5226];

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值, 范围为[0-255];

返回值:

17.ZPHOTO_RGBToLAB

名称:

void ZPHOTO RGBToLab(int Red, int Green, int Blue, int* L, int *A, int *B);

接口描述: RGB 转 LAB 颜色空间

参数:

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值, 范围为[0-255];

L--像素 L 分量值, 范围为[0-255];

A--像素 A 分量值, 范围为[0-255];

B--像素 B 分量值, 范围为 0-255];

返回值:

0-0K, 其他失败;

注:调用此接口前,先调用接口 void ZPHOTO_LABRGBInitial(),进行初始化,该接口只需调用一次即可,使用完毕后调用接口 void ZPHOTO_LABRGBUnitial()进行销毁。

18.ZPHOTO_LABToRGB

名称:

void ZPHOTO LabToRGB(int L, int A, int B, int* Red, int* Green, int* Blue);

接口描述: LAB 转 RGB 颜色空间

参数:

L--像素 L 分量值, 范围为[0-255];

A--像素 A 分量值, 范围为[0-255];

B--像素 B 分量值, 范围为 0-255];

Red--像素 R 分量值, 范围为[0-255];

Green--像素 G 分量值,范围为[0-255];

Blue--像素 B 分量值, 范围为[0-255];

返回值:

0-0K, 其他失败;

注:调用此接口前,先调用接口 void ZPHOTO_LABRGBInitial(),进行初始化,该接口只需调用一次即可,使用完毕后调用接口 void ZPHOTO_LABRGBUnitial()进行销毁。

错误异常返回

RET_OK	=0	函数调用成功
RET_ERROR_MEMMORY	= - 100	内存申请错误
RET_ERROR_FILE	=-200	文件操作错误
RET_ERROR_PARAMETER	=-300	参数设置错误
RET_ERROR_THREAD	=-400	线程错误
RET ERROR UNKNOWN		未知错误类型

www.xiusdk.com