Contents

1 Nebengruppenmetalle			
	1.1	Die sie	ebte Gruppe
		1.1.1	Vorkommen
		1.1.2	Herstellung
		1.1.3	Verbindungen
		1.1.4	Technische Verwendung
	1.2	Die ac	chte, neunte und zehnte Gruppe, Eisen Cobalt und Nickel
		1.2.1	Vorkommen
		1.2.2	Herstellung
		1.2.3	Verbindungen
		1.2.4	Die 8.,9. und 10. Gruppe
		1.2.5	Vorkommen
		1.2.6	Verbindungen
2	\mathbf{Die}	Selter	nerdelemente, Lanthanoide & Actinoide
	2.1	Eigens	schaften

Nebengruppenmetalle 1

1.1 Die siebte Gruppe

1.1.1 Vorkommen

Mangan: Oxide: MnO₂, Mn₂O₃, Mn₃O₄ Technetium: vom Kernbrennstab Rhenium: vergesellschaftet mit MoS_2

1.1.2 Herstellung

Mangan: Aluminothermisch aus Mn_3O_4

Technetium: $^{89}\text{Mo} + ^{1}_{0}\text{n} \longrightarrow ^{99}\text{Mo} - \beta^{-} \longrightarrow ^{99*}\text{Tc} - \gamma \longrightarrow ^{99}\text{Tc}$

Rhenium: Nebenprodukt in den Röstgasen der Molybdänherstellung aus $MoS_2 \rightarrow Re_2O_7 \rightarrow Reduktion$ mit H_2

1.1.3 Verbindungen

Halogene:

Mn - Halogenide nur in den niedrigen Oxidationsstufen des Mangans.

Tc- und Re- Halogenide auch für höhere Oxidationsstufen (TcF₆ oder TcCl₄); bei Re: Clusterbildung

Sauerstoffverbindung:

 $\begin{array}{ll} \operatorname{Mn}^{2+} \colon \operatorname{Mn}(\operatorname{OH})_2 - \operatorname{H}_2\operatorname{O} \longrightarrow \operatorname{MnO} \\ \operatorname{Mn}^{3+} \colon \operatorname{Mn}_2\operatorname{O}_3 \end{array}$

 $\mathrm{Mn^{4+}}$: $\mathrm{MnO_2}$ oder $\mathrm{MnO(OH)_2}$ $\mathrm{Mn^{5+}}$: $\mathrm{MnO_4}^{3-}$ nur im stark alkalischen, hellblau $\mathrm{Mn^{6+}}$: $\mathrm{MnO_4}^{2-}$ lakalisch, dunkelgrün

 $\mathrm{Mn^{7+}}\colon\mathrm{MnO_4}^-$ violett $\mathrm{MnO_4}^-+\mathrm{H^+}\longrightarrow\mathrm{HMnO_4}$

 $2\,HMnO_4-H_2O \longrightarrow Mn_2O_3$

Technetium und Rhenium:

hohe Ox-Stufen Tc₂O₇, Re₂O₇, ReO₃

Technische Verwendung 1.1.4

Léclanché-Element \rightarrow siehe Folie

Zinkbecher: $\operatorname{Zn}^+ 4 \operatorname{NH_4}^+ \longrightarrow [\operatorname{Zn}(\operatorname{NH_3})_4]^{2+} + 2 \operatorname{e}^- + 4 \operatorname{H}^+$ oder $\operatorname{Zn}^+ 4 \operatorname{OH}^- \longrightarrow [\operatorname{Zn}(\operatorname{OH})_4]^{2-} + 2 \operatorname{e}^- + 4 \operatorname{H}^+$

Braunsteinpulver: $MnO_2 + H_2O + e^- \longrightarrow MnO(OH) + OH^-$

Ergibt ca. 1.5 V

1.2 Die achte, neunte und zehnte Gruppe, Eisen Cobalt und Nickel

Vorkommen

Eisen: Fe₂O₃ (Hämatit); FeO(OH) (Goethit); Fe₃O₄ (Magnetit); FeS₂ (Pyrit/ Markasit)

Cobalt und Nickel: CoAsS, CoAs₃, NiAs, (Ni/Fe)₉S₈, NiS

1.2.2 Herstellung

Hochofenprozess von Eisen und Stahl von Fe_2O_3 zu Roheisen \rightarrow siehe Folie

Roheisen enthält bis zu 4 % C

Aufarbeiten mit "Schrott" \rightarrow Rost Fe₂O₃

Eisen veredler mit Cr, Mo, V, ...

Cobalt/Nickel: Rösten

Reinigung von Nickel \rightarrow Mond-Verfahren

 $Ni + 4CO \xrightarrow{353.15 \text{ K}} [Ni(CO)_4] \xrightarrow{433.15 \text{ K}} Ni + 4CO$

1.2.3 Verbindungen

Halogenide:

• Eisen: für Fe²⁺ und Fe³⁺ gibt es alle Halogenide.

• Cobalt: für $\mathrm{Co^{2+}}$ alle Halogenide bekannt für $\mathrm{Co^{3+}}$ nur das Fluorid bekannt.

• Nickel: für Ni^{2+} alle Halogenide bekannt.

Oxide:

• Eisen: Fe₂O₃ (Hämatit); FeO_{1-x}; Fe₃O₄ (Magnetit)

• Cobalt: CoO; Co₃O₄; Co₂O₃ (Alle Schwarz wegen Metal-to-Metal-Charge-Transfer)

• Nickel: NiO; Ni₂O₃/Ni₃O₄ (beide nicht rein erhältlisch); NiO₂·xH₂O

Komplexchemie:

Eisen:

 $Fe^{2+} (d^6)$ vs $Fe^{3+} (d^5)$

alle Orbitale einfach besetzt ein Orbital zweifach (ls)

alle Orbitale einfach besetzt

Aqua-Komplexe: leicht grün gelb (sollte eigentlich farblos sein) aber $[Fe(H_2O)_5OH]$ Kationensäure Zusammen in einer Verbindung: Berliner/Turnbulls/Preußisch Blau

Maximal 4 SCN $^-$ Liganden um ein ${\rm Fe}^{3+}$

 $\rm Fe^{3+}$ ist mit $\rm F^-$ maskierbar $\rightarrow \rm [FeF_6]^{3-}$ stabil aufgrund hoher Bindungsenergie

Cobalt: Co^{2+} $(d^7) \to \text{rosa/rot}$ alle Orbitale einfach besetzt 2 Oben 3 Unten, zwei Orbitale unten doppelt. blaue Komplexe gleich aber 2 Unten 3 Oben

 Co^{2+} lowspin $\rightarrow 2$ Oben 3 unten, alle unteren Orbitae doppelt besetzt, der obere einfach.

Es entsteht hierbei ein Radikal, das durch Dimerisierung zu einer Bildung zweier Komplexe führt, welche um 45 Grad zueinander verschoben sind.

Mit dem Zusatz eines Oxidationsmittel: [Co(Cn)₆]³⁻

Nickel: Ni $^{2+}$ (d^8) 2 Orbitale oben, 3 unten, alle unteren doppelt befüllt, obere einfach.

Mit sehr starken Liganden kommt es zu einem quadratisch-planaren Feld.

1.2.4 Die 8.,9. und 10. Gruppe

Ru, Rh, Pd, Os, Ir, Pt

1.2.5 Vorkommen

"Platinmetalle"

- gediegene Elemente
 - \hookrightarrow Überführung in Oxide und Destillation.
 - ⇒ Überführung in Hexachloridometallat
 - \hookrightarrow Ionenaustausch/Komplextitration
 - \hookrightarrow "Urban Mining"

1.2.6 Verbindungen

Oxide: Oxidationsstufen der Metalle von +4 und höher: RuO₂; RhO₂

Maixmal: RuO₄ / OsO₄

Auch ternäre (dreikomponentige) Oxide

 $BaRuO_3;\ Na_3RuO_4$

Komplexchemie: alles lowspin

bei d^8 (Pd²⁺; Pt²⁺) \rightarrow quadratisch-planaren

2 Die Seltenerdelemente, Lanthanoide & Actinoide

2.1 Eigenschaften

- gute Reduktionsmittel ($E^0 = 2, 3 2, 5 \text{ V}$)
- Lanthanoide \rightarrow alle Oxidationsstufe + 3 Ce, Tb, (Pr) +4; Eu, Yb, Sm, Tm +2
- Elektronenkonfiguration (siehe Folie)