CNN (Convolutional Neural Network)

CNN (Convolutional Neural Network, 합성곱 신경망)

Yan Le Cunn - 1998

• LeNet: 5 개층

• ResNet: 152 개층

Multiple Levels of Abstraction

Pixel 정보 인식

Edge/Simple Shape 특성 학습

Complex Shape 특성 학습

얼굴인식에 필요한 특성 학습

FACIAL RECOGNITION

Deep-learning neural networks use layers of increasingly complex rules to categorize complicated shapes such as faces.

Layer 1: The computer identifies pixels of light and dark.

Layer 2: The computer learns to identify edges and simple shapes.

Layer 3: The computer learns to identify more complex shapes and objects.

Layer 4: The computer learns which shapes and objects can be used to define a human face.

이전 실습 모델에서의 input image 처리

60000 x **28 X 28** → reshape(60000, **784**)

Image Data 의 공간적, 지역적 특성 상실

If 1 mega pixel \rightarrow 1,000 x 1,000 x 3 = 3 million features !!!

- → 300 만 차원 x Layer 수 x 각 Layer 의 Neuron 수
- → 계산량 급증
- → Image Data 를 처리하기 위한 특별한 구조의 Neural Network 필요

2. Dimensions of Layers

Fully Connected

CNN 의 특별한 Layers

• Convolutional Layer (합성곱층)

- Image 정보의 공간적 지역 특성 보존
- Filter (Kernel) 을 이용한 이미지 특성 추출

• Pooling Layer (풀링층)

- Image data 의 정보 손실 없는 압축
 - → 계산량 및 메모리 사용량 축소, 파라미터의 수 감소 (과적합 방지)

Kernel(Filter) 의 특성 추출 예

- CNN 이전에는 edge detection filter 를 computer vision 전문 가들이 모두 manually 만들어 줌
 - ex) 수직 / 수평 / 45 도 / 명암 구분 filter 등
 - → Neural Network 은 훨씬 더 다양한 특성의 filter 들을 backpropagation 을 이용하여 자동으로 학습하고 스스로 만들어 냄

How Convolution works?

Kernel_size=(2, 2), stride=(1, 1), No padding

- Convolution 때 마다 image 의 edge 정보가 소실 → padding 적용하여 해결
- "Valid" convolution : No padding
- "Same" convolution : Input size = Output size (→ Input 의 주위에 0 pixel padding)

How Pooling works?

- Pooling 의 뉴런은 가중치가 없음
- 최대, 평균을 이용한 이미지 subsampling (부표본 작성)

Single depth slice

1	1	1	4		
2	6	5	8	6	8
3	2	1	0	3	5
1	1	3	5		

2x2 max pooling with stride 2

LeNet-5 (1998, Yan LeCunn)

1st layer

Input layer 32 x 32 Gray Scale Image Convolution
6 filters
(5 x 5,
stride 1)
28 x 28 x 6

Average pooling Filter (2 x2, stride 2)

14 x 14 x 6

2nd layer

Convolution
16 filters
(5 x 5,
stride 1)
10 x 10 x 16

Average pooling Filter

Dense

(2 x2, stride 2)

5 x 5 x 16

Famous CNN models

- Alex Net 2012 년 ILSVRC(ImageNet Large Scale Visual Recognition Competition)대회 우승
- GoogleLeNet(Inception Net) 2014 년 ILSVRC 대회 우승
- ResNet 2015 년 ILSVRC 대회 우승 (152 개 층)
- MobileNet mobile device 용 pre-trained model (ImageNet 20,000 개 classes)
- VGG-16: Keras built-in pre-trained model (2014 년, 16 layers)

실습: Le Net 을 이용한 손글씨 인식

1. Keras 를 이용한 Le Net 구축

2. 구축한 Le Net model 을 이용하여 Mnist 손글씨 분류

Google Colab

- Free GPU 제공
- Google Drive 와 연동
- Jupyter Notebook 환경
- Deep Learning beginner 를 위한 최적의 환경
- 각종 snippet 제공

Google Colab 사용하기

- Google drive
 - → Colaboratory 연결

• 런타임 → 런타임 유형변경 → GPU 선택

실습: Deeper CNN 을 이용한 CIFAR-10 분류

- 1. CIFAR-10 dataset 은 32x32 color image 를 가진 10개의 class (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck)
- 2. 각 class 별 6,000 개씩 total 60,000 개 image
- 3. Image 가 blur 하여 난이도 높음 (최근 성적 : https://en.wikipedia.org/wiki/CIFAR-10)
- 4. Google Colab GPU 환경 이용

CIFAR-10 image dataset

Neural Network Architecture

horse

16 filters
(3, 3)
Padding=same
Activation: relu

Conv2D

MaxPooling2D (2, 2) Padding=same

Dropout: 0.2

Conv2D 32 filters (3, 3) Padding=same Activation: relu MaxPooling2D (2, 2) Padding=same

Dropout: 0.2

Conv2D 64 filters (3, 3) Padding=same Activation : relu MaxPooling2D (2, 2) Padding=same

Dropout: 0.2

Dense 256 Activation : relu

Dropout: 0.5

Output

Dense 10

Activation : softmax

실습 : 구축한 model 의 weight 와 architecture 저장 및 loading

1. JSON / YAML file 로 model architecture 저장

2. JSON / YAML file 로 부터 model 복원

3. HDF5 file 로 model 의 parameter 저장 및 복원

What is JSON / YAML?

JSON (JavaScript Object Notation)

YAML (YAML Ain't Markup Language)

```
invoice: 34843
date: 2001-01-23
bill-to: &id001
given: Chris
family: Dumars
address: lines: | 458 Walkman Dr. Suite #292
city: Royal Oak
state: MI
postal: 48046
```

Transfer Learning

of data

1. Train a Deep Neural Network from Scratch

2. Fine-tune a pre-trained model (transfer learning)

Transfer Learning 고려사항

• 목적에 맞는 dataset 선택

ex) Cat & Dog 구분 → ImageNet 에 포함 Cancer cell 구분 → ImageNet 에 없음

• 보유 Data 의 Volume 고려

- 1. 모든 weight 새로이 training (Large Data 보유)
- 2. Weight 의 일부만 training
- 3. 마지막 layer 만 Fine-tuning (Small Data 보유)

실습 : Pre-trained model 을 이용한 image 분류

- 1. Keras 에 내장된 VGG-16 pre-trained model 을 이용
- 2. 임의의 image 를 VGG-16 의 입력 spec 에 맞도록 resize
- 3. decode_predictions 를 이용한 결과값 비교

VGG16 Structure

Conv Layer: 3x3 filters, stride=1, "same"

Max-pool : 2x2 filters, stride=2

Deep Learning

Sequence Model

What is sequence data?

- Speech recognition : 파동의 연속 → 단어의 연속으로 변환
- Music generation : 연속된 음표 출력
- Sentiment classification : Text → 평점, 부정/긍정 판단
- DNA 분석 : 염기서열 → 질병유무, 단백질 종류 등
- 자동 번역 : 한국어 → 영어
- Video activity recognition : 연속된 장면 → 행동 판단
- Financial Data : 시계열자료 > 주가, 환율 예측 등

Problem of Standard Neural Network

- 입력의 길이와 출력의 길이가 고정되어 있음
 - → 따라서 standard NN 에서는 maximum input length 정하고 초과하면 truncate, 모자라면 padding 을 해 주어야 한다.
- 입력 데이터의 순서를 무시 (모든 observation 은 독립적임)

RNN (Recurrent Neural Network)

RNN (Recurrent Neural Network)

- 시퀀스 데이터에 특화
- '기억' 능력을 갖고 있음
 * 네트워크의 기억 지금까지의 입력 데이터를 요약한 정보
 (새로운 입력이 들어올때 마다 네트워크는 자신의 기억을 조금씩 수정)
- 입력을 모두 처리하고 난 후 네트워크에게 남겨진 기억은 시퀀스 전체를 요약하는 정보
 (사람의 시퀀스 정보 처리 방식과 비슷, 기억을 바탕으로 새로운 단어 이해)
- 이 과정은 새로운 단어마다 계속해서 반복 → Recurrent (순환적)

Different Types of RNN

RNN (Unfold 표시)

$$h_t = \tanh(W_h h_{t-1} + W_x x_t)$$
$$O_t = softmax(W_o h_t)$$

- RNN 을 순서대로 펼쳐 놓으면 weight 를 공유하는 매우 deep 한 neural network 이 된다.
- BPTT (Backpropagation Through Time) 으로 parameter 학습

How RNN is trained?

- "h", "e", "l", "o" 4 개 문자만 있다고 가정
- 각 문자를 One-hot encoding
- "h" 를 시작 문자로 주면 "hello" 가 출력 되도록 훈련
- 각 time step 의 target character 는 "hello" 내의 next character
- Gradient descent 와 backpropagation
 을 통해 output layer 의 target score 가 증가되도록 함 (green color)
- "I" 다음의 character 는 현재의 "I" 만으로 판단할 수 없음 (history 필요)

실습: 이상한 나라의 엘리스 연속 단어 생성기

- SimpleRNN 이용, Many-to-One type
- 161793 글자로 이루어진 text 를 10 글자 단위로 잘라 input data 를 만들고 뒤 따라오는 글자를 label data 로 만들어 supervised learning

```
ex) "alice lear" - "n"

"lice learn" - "e"

"ice learne" - "d"
```

• Validation 은 seed 가 되는 10 글자 data 를 주고 이어서 만드는 100 글자 문장이 의미 있는지 여부 육안으로 검토

ex) seed: "alice look"

output: "alice looked at the mouse was a trite than she .."

• 개개의 character 를 단어로 확장하면 문장 쓰기 가능

Vanishing & Exploding Gradient

• 매우 deep 한 network 을 훈련시킬 경우 앞부분 Layer weight 의 미분값 크기가 매우 작아지거나 커지는 현상

• 문제점 – Exploding – 훈련 자체가 안됨
Vanishing – 경사하강법이 매우 느리게 진행

Solutions of Vanishing Gradient

- Relu 사용
- Weight 의 신중한 초기화
 - Ex) Xavier (Glorot) Initializer with Tanh, He Initializer with Relu
- LSTM (Long Short Term Memory) / GRU (Gated Recurrent Unit) 사용
 - → Vanishing Gradient + memory

SimpleRNN

LSTM (Long Short-Term Memory)

LSTM 내부 구조

- Input 이전 step 의 output + new data $\tilde{\mathcal{C}}^{<t>} = \tanh(W_c[a^{<t-1>}, x^{<t>}] + b_c) \quad \Longrightarrow \quad \text{새로운 cell status 후보}$
- Update gate 새로운 input 을 어느정도 받아들일지 결정 (0-무시, 1-전체) $\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$
- Forget gate 내부 state 를 어느정도 기억할지 결정 (0-forget, 1-전체 기억) $\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$
- Output gate cell state 의 어느 부분을 output 으로 보낼지 결정 $\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$
- $C^{< t>} = \Gamma_u * \tilde{C}^{< t>} + \Gamma_f * C^{< t-1>}$
- $a^{< t>} = \Gamma_o$ * tanh $C^{< t>}$

실습 : 이상한 나라의 엘리스 연속 단어 생성기 - LSTM

- 이전 연습문제의 SimpleRNN 을 LSTM 으로 변경
- 이전 결과물과의 성능 비교
- GPU 환경 필요 (장시간 소요)

NLP (Natural Language Processing) with LSTM

NLP(자연어처리)의 기본 용어

- Corpus (말뭉치)
 - 자연언어 연구를 위해 특정한 목적을 가지고 언어의 표본을 추출한 집합

Tokenize

- 문자열을 여러 개의 조각, 즉 여러 개의 Token(토큰, 단어)들로 쪼개는 것을 말한다.

특수 token : <START>, <EOS>, <UNK>, <PAD>, etc

NLP (Natural Language Processing)

• 단어의 표시 방법

Word Embedding (Feature 화 표시)

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
1 Gerder		Ţ	-0.95	0.97	0.00	0.01
300 Royal	0.01	0.62	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97
size cost walive nerb				I like a glas I like a glas	_	<i>*</i>

Man (5931) 의 300 dimension vector 표시

Embedding matrix (example)

학습된 featrues

	0	1	2	3	4	5	6	7	8	9	***	290	291	292	
fox	-0.348680	-0.077720	0.177750	-0.094953	-0.452890	0.237790	0.209440	0.037886	0.035064	0.899010	***	-0.283050	0.270240	-0.654800	0.105
ham	-0.773320	-0.282540	0.580760	0.841480	0.258540	0.585210	-0.021890	-0.463680	0.139070	0.658720	***	0.464470	0.481400	-0.829200	0.354
brown	-0.374120	-0.076264	0.109260	0.186620	0.029943	0.182700	-0.631980	0.133060	-0.128980	0.603430	***	-0.015404	0.392890	-0.034826	-0.720
beautiful	0.171200	0.534390	-0.348540	-0.097234	0.101800	-0.170860	0.295650	-0.041816	-0.516550	2.117200		-0.285540	0.104670	0.126310	0.120
jumps	-0.334840	0.215990	-0.350440	-0.260020	0.411070	0.154010	-0.386110	0.206380	0.386700	1,460500	100	-0.107030	-0.279480	-0.186200	-0.54:
eggs	-0.417810	-0.035192	-0.126150	-0.215930	-0.669740	0.513250	-0.797090	-0.068611	0.634660	1.256300	***	-0.232860	-0.139740	-0.681080	-0.37(
beans	-0.423290	-0.264500	0.200870	0.082187	0.066944	1.027600	-0.989140	-0.259950	0.145960	0.766450	***	0.048760	0.351680	-0.786260	-0.368
sky	0.312550	-0.303080	0.019587	-0.354940	0.100180	-0.141530	-0.514270	0.886110	-0.530540	1.556600	444	-0.667050	0.279110	0.500970	-0.277
bacon	-0.430730	-0.016025	0.484620	0.101390	-0.299200	0.761820	-0.353130	-0.325290	0.156730	0.873210		0.304240	0.413440	-0.540730	-0.03
breakfast	0.073378	0.227670	0.208420	-0.456790	-0.078219	0.601960	-0.024494	-0.467980	0.054627	2.283700	***	0.647710	0.373820	0.019931	-0.033
toast	0.130740	-0.193730	0.253270	0.090102	-0.272580	-0.030571	0.096945	-0.115060	0.484000	0.848380	-	0.142080	0.481910	0.045167	0.05
today	-0.156570	0.594890	-0.031445	-0.077586	0.278630	-0.509210	-0.066350	-0.081890	-0.047986	2.803600		-0.326580	-0.413380	0.367910	-0.262
blue	0.129450	0.036518	0.032298	-0.060034	0.399840	-0.103020	-0.507880	0.076630	-0.422920	0.815730		-0.501280	0.169010	0.548250	-0.319
green	-0.072368	0.233200	0.137260	-0.156630	0.248440	0.349870	-0.241700	-0.091426	-0.530150	1.341300	***	-0.405170	0.243570	0.437300	-0.461
kings	0.259230	-0.854690	0.360010	-0.642000	0.568530	-0.321420	0.173250	0.133030	-0.089720	1.528600		-0.470090	0.063743	-0.545210	-0.192
dog	-0.057120	0.052685	0.003026	-0.048517	0.007043	0.041856	-0.024704	-0.039783	0.009614	0.308416	***	0.003257	-0.036864	-0.043878	0.000
sausages	-0.174290	-0.064869	-0.046976	0.287420	-0.128150	0.647630	0.056315	-0.240440	-0.025094	0.502220	***	0.302240	0.195470	-0.653980	-0.291
lazy	-0.353320	-0.299710	-0.176230	-0.321940	-0.385640	0.586110	0.411160	-0.418680	0.073093	1.486500	***	0.402310	-0.038554	-0.288670	-0.24
love	0.139490	0.534530	-0.252470	-0.125650	0.048748	0.152440	0.199060	-0.065970	0.128830	2.055900	***	-0.124380	0.178440	-0.099469	0.008
quick	-0.445630	0.191510	-0.249210	0.465900	0.161950	0.212780	-0.046480	0.021170	0.417660	1.686900	444	-0.329460	0.421860	-0.039543	0.150

20 rows x 300 columns

Word2Vec

- One-Hot-Encoding 의 문제점 단어간의 유사도가 표시되지 않음
- 단어를 vector 화 (Word Embedding) 하여 단어의 의미 표현
- 매우 큰 Corpus (ex, 10억, 100 억 단어) 에서 word embedding 자동 학습

```
ex) <u>love</u> king <u>of Korea</u>. (skip-gram : window size = 2) input : king \rightarrow [0,0,0,0,....1,...0] target : I love \rightarrow [0,0,0,0,....1,...0] [ 0,0,0,0,0,0,...1,....0] of Korea \rightarrow [0,0,0,0,....1,...0] [ 0,0,0,0,0,0,...1,....0]
```

CBOW (Continuous Bag of Words) vs. Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Word2Vec training network

Word2Vec Vectorized (Word Embedding)

https://ronxin.github.io/wevi/

유사도 측정 (Cosine Similarity)

Cosine Similarity

실습: word2vec 작성

• Sample corpus 를 이용하여 small word2vec model 작성

• word vectorization 의 개념 이해

• Vector 화된 단어 간의 cosine 유사도 시각화

감성분석 (Sentiment Analysis)

RNN 이전 : 단순히 단어의 출현 빈도를 count 하여 positive / negative 분류
→ 단어의 순서 무시 (Bag of Words)

실습: 영화 관람평 분류 (sentiment 분석)

- Keras IMDB (Internet Movie Database) 이용
 - 25,000 개 영화관람평
- Movie reviews sentiment classification
 - Label : positive, negative
- Preprocessing 되어 있고 모든 review 는 word indexes (integers) 로 표시 (인덱스 순서는 빈번히 나타나는 단어 순서. ex. 3 : 3 번째로 빈번히 나타나는 단어)
- LSTM 을 이용한 Many-to-One type 의 RNN 으로 구현

Keras Processing Tips

Early Stopping

• Epoch 이 반복되어도 더 이상 성능 향상이 이루어지지 않을 경 우 조기에 training 종료

Callback

• Training 중에 keras 의 behavior 를 변경할 수 있는 customization 기능

실습: 자동차 연비 예측 Regression

- UCI Machine Learning Data 이용
- 의도적으로 과적합을 만들고, early stopping 기능 test
- Early stopping 전, 후의 loss plot 하여 비교
- Checkpoint 추가 및 model save / reload

과적합 방지 방법

- More Data Best solution but 항상 가능하지 않음
- Network 의 size 축소
- Weight Regularization (주로 L2 사용) $J(w,b) = \frac{1}{m} \sum L(prediction true) + \frac{\lambda}{2m} \sum ||w||^2$
- Dropout
 - Neural Network 에서 가장 일반적으로 많이 사용

실습 : Regularization 을 이용한 IMDB 영화평 성능 개선

- IMDB 이용
- Weight Regularization 과 Dropout 이용
- Small, medium 및 Big model 에 대하여 서로 비교