湖南省队集训Day2

laofu

2018年6月20日

题目名称	walk	game	string
英文名称	walk	game	string
输入文件名	walk.in	game.in	string.in
输出文件名	walk.out	game.out	string.out
数据组数	10	10	20
时间限制	1s	1s	2s
空间限制	512MB	512MB	128MB
题目类型	传统	传统	传统
比较方式	全文比较	全文比较	全文比较
	(忽略行末空格及回车)	(忽略行末空格及回车)	(忽略行末空格及回车)

注意事项:

- 1. 题目简单,请认真对待。
- 2. 源代码长度限制为100KB。
- 3. 评测开启O2优化与无限栈。
- 4. 如机器配置有较大差异,时限可调整为标程的1.5倍。

湖南省队集训Day2 长郡中学卷

1 走路

1.1 description

白兔有一颗n个点以1为根的树。树上每个结点有一个权值val。 如果两个点a,b满足a是b的祖先且 $val[b]|val[a]^1$,则白兔可以直接从a跳到b。 现在白云想知道,对于每一个点k,白兔从1号点跳若干步到达k号点的方案数是多少? 两个方案不同为它们经过的点数不同或者某一步到达了不同的点。

1.2 input

第一行一个正整数n。 接下来n-1行,每行两个数a,b表示一条树边。 接下来一行n个整数,表示每个点的权值。

1.3 output

输出n行,一次表示每个点的答案,对 $10^9 + 7$ 取模。

1.4 样例文件

下发共1个样例。

1.5 数据范围

对于30%的数据满足n < 5000。

对于另10%的数据满足,每个点权值的不同质因子不超过一个。

对于另20%的数据满足, $val[1] \le 10^9$ 。

对于另20%的数据满足,树是一条链。

对于100%的数据满足, $n \le 10^5$, $val[1] \le 10^{18}$.

保证每个点的权值都是val[1]的约数。

^{1|}为整除符号

湖南省队集训Day2 长郡中学卷

2 游戏

2.1 description

白兔在玩游戏。

在一个n*n的棋盘中放入n个车,使得任意两个车不能互相可达(即不在同一行或同一列)。

白云要从(1,1)出发,每一步可以往上下左右走一格,最终到达(n,n)。同时,它不能超出棋盘的边界,且不能走到有车的格子。

问白兔有多少种放车的方法使得白云能够达成目标。

2.2 input

第一行一个整数T,表示数据组数。接下来T行每行一个整数n表示询问。

2.3 output

输出n行,每行一个整数表示答案。对 $10^9 + 7$ 取模。

2.4 样例文件

共下放1个样例。

2.5 数据范围

对于10%的数据, $n \leq 5$ 。

对于40%的数据, $n \leq 15$ 。

对于80%的数据, $n \leq 10^7$ 。

对于100%的数据, $T \le 500, n \le 10^9$ 。

湖南省队集训Day2 长郡中学卷

3 有趣的字符串题

3.1 description

白兔有一个长度为*n*的字符串。 白云有*m*个询问,每个询问会询问一段区间的本质不同回文子串个数。

3.2 input

第一行两个整数n, m。接下来一行一个长度为n的字符串。接下来m行,每行两个整数l, r。

3.3 output

为了避免输出占用太多运行时间,你只需要输出 $\sum_{i=1}^m ans_i * i \mod 10^9 + 7$ 即可。

3.4 样例文件

共下放2个样例。

3.5 数据范围

对于10%的数据, $n \leq 100$ 。

对于25%的数据, $n, m \le 30000, m \le 60000$ 。

对于40%的数据, $n \le 100000, m \le 200000$ 。

对于100%的数据, $n \le 300000, m \le 10^6$ 。