الجداء المتجهي

I⁻ توجيه الفضاء

1- معلم موجه في الفضاء

 $(O;\vec{i};\vec{j};\vec{k})$ ننسب الفضاء E إلى معلم

 $\overrightarrow{OK} = \overrightarrow{k}$ $\overrightarrow{OJ} = \overrightarrow{j}$ $\overrightarrow{OI} = \overrightarrow{i}$ دیث نقط حیث کا و I لتکن

« رجل أمبير » للمعلم $\left(O; \vec{i}\;; \vec{j}\;; \vec{k}\;\right)$ هو رجل خيالي رأسه في النقطة K مبير »

إلى I

, النقطة J إما توجد على يمين« رجل أمبير » أو على يساره .

تعریف :

 $\overrightarrow{OK}=\vec{k}$ $\overrightarrow{OJ}=\vec{j}$ $\overrightarrow{OI}=\vec{i}$ الفضاء منسوب إلى معلم $\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\right)$. لتكن I وI الفضاء منسوب إلى معلم $\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\right)$ معلم مباشـر إذا وجدت \vec{J} على يسـار « رجل أمبير »

« معلم غیر مباشر إذا وجدت التا علی یمین $(O; \vec{i}; \vec{j}; \vec{k})$ *

مثلة * نعتبر $(O;\vec{i};\vec{j};\vec{k})$ معلم مباشر *

معلم غیر مباشر $\left(O\,;\vec{i}\;;\vec{j}\;;-\vec{k}\;\right)$ معلم غیر مباشر معلم غیر مباشر

معلم مباشر $\left(O;\vec{j};\vec{k};\vec{i}\right)$

معلمان مباشران ; $\left(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE}\right)$; $\left(B; \overrightarrow{BC}; \overrightarrow{BA}; \overrightarrow{BF}\right)$

معلمان غیر مباشرین $\left(A; \overrightarrow{AD}; \overrightarrow{AB}; \overrightarrow{AE}\right)$, $\left(E; \overrightarrow{EA}; \overrightarrow{EF}; \overrightarrow{EH}\right)$

يمكنناً توجيه الفضّاء و ، اذا وجهنا جميع أساساته

<u>تعریف</u>

نقول إن الأساس المتعامد الممنظم $\left(ec{i}\,;ec{j}\,;ec{k}
ight)$ مباشر ادا كان $\left(o;ec{i}\,;ec{j}\,;ec{k}
ight)$ مرم.م.مباشر مهما كانت النقطة O من الفضاء

<u>3- توجيه المستوي</u>

(P) مستوى في الفضاء و \vec{k} متجهة واحدية و منظمية على (P) , و O نقطة من المستوى (P) ليكن (P) م.م.م للمستوى (P) م.م.م للمستوى (P)

 E لدينا $\left(O; \vec{i}; \vec{j}; \vec{k} \right)$ معلم متعامد ممنظم للفضاء

يكون المعلم المتعامد الممنظم $\left(O;ec{i}\;;ec{j}
ight)$ في المستوى (P) معلما مباشرا اذا كان المعلم المتعامد

الممنظم
$$\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\;\right)$$
 مباشرا

یتم توجیه مستو ی (P) بتوجیه متجهة منظمیة علیه.

* كُلُ المستويات الموازية لـ(P) له نفس توجيه المستوى (P)

II – الحداء المتحهي

<u>1- تعرىف</u>

 $\vec{u}=\overrightarrow{OA}$ $\vec{v}=\overrightarrow{OB}$ بحيث E بحيث B و B و V3 و V3 و $\vec{v}=0$ متجهتين من الفضاء $\vec{v}=0$ و $\vec{v}=0$ بحيث المعرفة كما يلي الجداء المتجهي للمتجهتين $\vec{u}\wedge\vec{v}$ و $\vec{v}=0$ بحيث المعرفة كما يلي

. $\vec{u} \wedge \vec{v} = \vec{o}$ فان \vec{v} و \vec{v} مستقیمیتین *

: قير مستقيميتين فان يامتجهة التي تحقق $ec{v}$ عير مستقيميتين فان $ec{v}$ عير مستقيميتين فان *

 \vec{v} و \vec{u} عمودي على كل من $\vec{u} \wedge \vec{v}$ -

. أساس مباشر $(ec{u};ec{v};ec{u}\wedgeec{v})$ -

 $\boxed{\widehat{AOB}}$ حيث heta قياس الزاوية $\lVert \vec{u} \wedge \vec{v} \rVert = \lVert \vec{u} \rVert \lVert \vec{v} \rVert \sin heta$ -

معلم متعامد ممنظم مباشر $(O;\vec{i};\vec{j};\vec{k})$ معلم متعامد ممنظم

$$\vec{i} \wedge \vec{i} = \vec{j} \wedge \vec{j} = \vec{k} \wedge \vec{k} = \vec{0}$$

$$\vec{i} \wedge \vec{j} = \vec{k} \qquad \vec{j} \wedge \vec{k} = \vec{i} \qquad \vec{k} \wedge \vec{i} = \vec{j}$$

$$\vec{j} \wedge \vec{i} = -\vec{k} \qquad \vec{k} \wedge \vec{j} = -\vec{i} \qquad \vec{i} \wedge \vec{k} = -\vec{j}$$

. أساس مباشر ($ec{u}; ec{v}; ec{u} \wedge ec{v}$) أساس مباشر *

 $\|\vec{u}\| = 5$ $\|\vec{v}\| = 2$ $\vec{u} \cdot \vec{v} = -5$ $(\overline{\vec{u}}; \vec{v}) = \theta$ $\theta \in]0;\pi[$ علما أن $\|\vec{u} \wedge \vec{v}\|$ علما أن

<u>2- خاصيات</u>

على (AB)

أ- خاصىة

(ABC) منظمية على المستوى (ABC). إذا كانت $\overrightarrow{AB} \wedge \overrightarrow{AC}$ منظمية على المستوى

C لتكن AوB وC ثلاث نقط غير مستقيمية من الفضاء $hat{ heta}$ قياس الزاوية $hat{ heta}$ المسقط العمودي لـ C

$$\|\overrightarrow{AB} \wedge \overrightarrow{AC}\| = AB \cdot AC \cdot \sin \theta$$
 $HC = AC \cdot \sin \theta$
 $\|\overrightarrow{AB} \wedge \overrightarrow{AC}\| = AB \times HC$

خاصية

 $\|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$ هو نصف ABC مساحة المثلث

<u>نتبح</u>ة

 $\|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$ هي الأضلاع ABDC مساحة متوازي الأضلاع

<u>د- خاصىة</u>

لتكن $ec{v}$ و $ec{v}$ متجهتين من الفضاء

یکون $ec{v} \wedge ec{v}$ منعدما اداو فقط کان $ec{u}$ و $ec{v}$ مستقیمیتین

$$\vec{u} \wedge \vec{v} = \vec{0} \Leftrightarrow \|\vec{u} \wedge \vec{v}\|$$

$$\Rightarrow \|\vec{u}\| \|\vec{v}\| \sin \theta = 0$$

$$\Leftrightarrow \|\vec{u}\| = 0 \quad \lor \quad \|\vec{v}\| = 0 \quad \lor \quad \sin \theta = 0$$

$$\Leftrightarrow \vec{u} = \vec{0} \quad \lor \quad \vec{v} = \vec{0} \quad \lor \quad \vec{u}et\vec{v} \quad sont \ li\acute{e}s$$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \vec{0} \quad \Leftrightarrow \quad \vec{a}$$
Be A

<u>ج- الحداء المتحهى والعمليات(نقبل)</u>

$$\forall (\vec{u}; \vec{v}; \vec{w}) \in V_3^3 \qquad \forall \alpha \in \mathbb{R} \qquad (\vec{u} + \vec{v}) \land \vec{w} = \vec{u} \land \vec{w} + \vec{v} \land \vec{w}$$
$$(\alpha \vec{u}) \land \vec{v} = \alpha (\vec{u} \land \vec{v})$$
$$\vec{u} \land \vec{v} = -(\vec{v} \land \vec{u})$$
$$\vec{u} \land \vec{u} = \vec{0} \land \vec{u} = \vec{u} \land \vec{0} = \vec{0}$$

تمرين

. معلم متعامد ممنظم مباشر $(o; \vec{i}; \vec{j}; \vec{k})$

$$(2\vec{i}-\vec{j})\wedge(3\vec{i}+4\vec{j})$$
 $(\vec{i}+\vec{j}-2\vec{k})\wedge\vec{k}$ $(\vec{i}+2\vec{k})\wedge\vec{j}$ $\vec{i}\wedge3\vec{j}$

 $\vec{a} \wedge \vec{c} = \vec{b} \wedge \vec{d}$; $\vec{a} \wedge \vec{b} = \vec{c} \wedge \vec{d}$

بین اِن $ec{d}-ec{d}$ و $ec{d}-ec{d}$ مسنقیمیتان

3- الصبغة التحليلية للحداء المتجهى في م.م.م مياش

معلم متعامد ممنظم مباشر $\left(o;\vec{i};\vec{j};\vec{k}\right)$

<u>ملاحظة</u> يمكن استعمال الوضعية التالية

$$\vec{u}(x; y; z) \qquad \vec{v}(x'; y'; z')$$

$$\vec{u} \wedge \vec{v} = (x\vec{i} + y\vec{j} + z\vec{k}) \wedge (x'\vec{i} + y'\vec{j} + z'\vec{k})$$

$$= (yz' - zy')\vec{i} + (zx' - xz')\vec{j} + (xy' - yx')\vec{k}$$

الفضاء E منسوب إلى معلم متعامد ممنظم مباشر $\vec{v}\left(x(;y';z')\right)$ و $\vec{u}\left(x;y;z\right)$ و متجهتان

من۷3

حيث (X;Y;Z) هو $\left(\vec{i}\,;\vec{j}\,;\vec{k}\,
ight)$ حداثيات الجداء المتجهي بالنسبة للأساس

$$X = yz' - zy'$$
 $Y = zx' - xz'$ $Z = xy' - yx'$

Z = xy' - yx $=zx^*-xz$ X = yx' - zy

C(1;2;1)

B(0;-3;2) A(1;2;1) $\vec{u}(1;2;0)$ $\vec{v}(-2;-1;1)$ نعتبر <u>مثال</u> أحسب مساحة المثلث (ABC) $\vec{u} \wedge \vec{v}$ حدد

<u> III – تطبيقات الحداء المتحو</u>

1- معادلة مستوى معرف بثلاث نقط غير مستقيمية

<u> -اصىة</u>

لتكن AوB وC ثلاث نقط غير مستقيمية من فضاء منسوب الى معلم متعامد ممنظم مباشر $M \in \left(\overrightarrow{ABC} \right) \Leftrightarrow \left(\overrightarrow{AB} \wedge \overrightarrow{AC} \right) \cdot \overrightarrow{AM}$

عثاك نعتبر (1;2;3) و (1;1-1;1) و (C(2;1;2) حدد معادلة المستوى (ABC)

<u>2- تقاطع مستوسن</u>

نعتبر في فضاء منسوب الى معلم متعامد ممنظم مباشر

(P) : ax+by+cz+d=0

$$(P'): a'x+b'y+c'z+d'=0$$

$$(P')$$
 منظممية لـ $\vec{n}'(a';b';c')$ منظممية لـ $\vec{n}(a;b;c)$ لدينا

- $\vec{n} \wedge \vec{n}'$ اذا كان (P') و(P') متقاطعين فان المستقيم (D) تقاطع (P') موجه بـ *
 - $\vec{n} \wedge \vec{n}$ ' فان (P') متقاطعان وفق مستقیم موجه ب $\vec{n} \wedge \vec{n}$ فان (P') اذا کان

تمرين

3- مسافة نقطة عن مستقيم

(D) مستقيم مار من Aو موجه بـ M , \vec{u} نقطة من الفضاء وH مسقطها العمودي على (D) في الفضاء $\overrightarrow{AM} \wedge \vec{u} = \left(\overrightarrow{AH} + \overrightarrow{HM}\right) \wedge \vec{u} = \overrightarrow{HM} \wedge \vec{u}$ liés

$$\|\overrightarrow{AM} \wedge \overrightarrow{u}\| = \|\overrightarrow{HM} \wedge \overrightarrow{u}\| = HM. \|\overrightarrow{u}\| \sin \frac{\pi}{2} = HM. \|\overrightarrow{u}\|$$

$$HM = \frac{\|\overrightarrow{AM} \wedge \overrightarrow{u}\|}{\|\overrightarrow{u}\|}$$

خاصية

في الفضاء (D) مستقيم مار من Aو موجه بـ M , $ec{u}$ نقطة من الفضاء.

$$d\left(M;\left(D
ight)
ight)=rac{\left\|\overrightarrow{AM}\wedge\overrightarrow{u}
ight\|}{\left\|\overrightarrow{u}
ight\|}$$
 هي (D) مسافة النقطة M عن المستقيم

<u>تمرين</u>

$$d(A;(D)) = ? (D): \begin{cases} x = 2 - t \\ y = 2t \\ z = 1 + t \end{cases} A(3;2;-1)$$

<u>تمرين</u>

في فضاء منسوب إلى معلم متعامد ممنظم مباشر نعتبر (1;2;1) و (D) المستقيم الذي

$$\begin{cases} x - 2y + z - 3 = 0 \\ 2x + 3y - z - 1 = 0 \end{cases}$$

معادلته

- (OAB) בدد $\overrightarrow{OA} \wedge \overrightarrow{OB}$ (OAB) מה כבר הعادلة ديكارتية للمستوى
 - d(A;(D)) حدد -2
- عدد ۱٫۲۵٫٫۰۰٫۰. 3- أعط معادلة ديكارتية للفلكة (S)التي مركزها A و مماسة للمستقيم (D)