Época de recurso - (VA) - 25 de janeiro de 2016 - 8:30

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores, mas se entregar os dois testes devem ser divididas por 2.

1º TESTE (90 min)

1. (4,0 val.) Calcule os seguintes limites

(a)
$$\lim_{x \to 0} \frac{\operatorname{senh}(x^2)}{1 - \sec(2x)}$$
 (b) $\lim_{t \to 0} \frac{\arctan(t^2)}{\log(1 + 3t^2)}$ (c) $\lim_{x \to +\infty} (2 - e^{1/x})^x$

2. (4,0 val.) A função f está definida em \mathbb{R} por

$$f(x) = e^x(x^2 + x - 1)$$

- (a) Determine os intervalos de monotonia e concavidade de f,
- (b) Determine, caso existam, os extremos, inflexões e assímptotas de f.
- (c) Esboce o gráfico de f e determine o conjunto $f(\mathbb{R}^+)$.
- 3. (4,0 val.) Calcule a derivada das funções definidas pelas seguintes expressões:

(a)
$$\log \left(1 + \sqrt{3 + \cos x + \sin x}\right)$$
 (b) $\arcsin \left(\sqrt{1 - e^x}\right)$ (c) $(x^2 + 1)^{2^x}$.

- **4.** (4,0 val.) Considere a função dada por $f(x) = (x^2 + x + 1)e^x$ e seja $f^{(k)}$ a sua derivada de ordem k.
 - a) Mostre por indução que $f^{(k)}(x) = e^x(x^2 + (2k+1)x + k^2 + 1)$ para $k \in \mathbb{N}$.
 - c) Determine o polinómio de Taylor de ordem 3 da função f em a=0.
 - d) Sendo p_n o polinómio de Taylor de ordem n da função f em a=0 e supondo que 0 < x < 1, mostre que a diferença $f(x) p_n(x) \to 0$ quando $n \to \infty$.
- **5.** (4,0 val.) Suponha que $f: \mathbb{R} \to \mathbb{R}$ é uma função diferenciável em \mathbb{R} . Para cada uma das seguintes observações, diga se é verdadeira ou falsa e justifique a sua resposta com uma demonstração ou um exemplo.
 - (a) Se f tem algum extremo então f não é injectiva.
 - (b) Se f > 0 tem o eixo dos xx como assímptota horizontal quando $x \to +\infty$ e quando $x \to -\infty$ então f tem máximo.
 - (c) Se $f'(x) \to \alpha$ quando $x \to a$ então $f'(a) = \alpha$.
 - (d) Se a recta tangente ao gráfico de f no ponto (a, f(a)) está sob o gráfico de f para qualquer ponto a no intervalo I então f' é crescente em I.

Época de recurso - (VA) - 25 de janeiro de 2016 - 8:30

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores, mas se entregar os dois testes devem ser divididas por 2.

2° TESTE (90 min)

7. (5 val.) Determine uma primitiva de cada uma das funções seguintes:

(a)
$$e^{5x}\cos(2x)$$
 (b) $\frac{2x^3 + 3x^2 - 2x + 1}{(x^2 - 1)(x^2 + 1)}$ (c) $x^7e^{x^4}$.

8. (4 val.) Calcule a área da região limitada por

$$y = \frac{1}{4 - x^2}$$
 e $y = x^2 + 4$.

9. (3 val.) Determine a recta tangente ao gráfico da função F no ponto x=0, onde

$$F(x) = \int_{x}^{x^2} \cosh t^2 dt.$$

A recta tangente em causa está acima ou abaixo do gráfico da função F?

10. (4 val) Determine a natureza das seguintes séries

(a)
$$\sum_{n=0}^{\infty} \frac{\cos(n\pi)}{2n+1}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{3}{2+\sqrt{n^3+n+1}}$ (c) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt[n]{n}}{n^2}$.

11. (4 val) A função f é dada na região de convergência da série indicada por

$$f(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n}}{n}$$

- (a) Determine a região de convergência da série indicada.
- (b) Mostre que f tem um extremo em x = 0 e classifique-o.
- (c) Determine a função f. SUGESTÃO: Comece por calcular a série de Taylor de f'.

Época de recurso - (VB) - 25 de janeiro de 2016 - 8:30

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores, mas se entregar os dois testes devem ser divididas por 2.

1° TESTE (90 min)

1. (4,0 val.) Calcule, se existirem, os seguintes limites (finitos ou infinitos):

(a)
$$\lim_{x \to +\infty} x^{1/x}$$
 (b) $\lim_{x \to 0} \frac{\arctan(1/x)}{\arcsin(\sqrt{1+x})}$ (c) $\lim_{x \to +\infty} \frac{e^{2x} + e^{-x}}{xe^x - e^{-2x}}$

2. (4,0 val.) A função f está definida em \mathbb{R} por

$$f(x) = e^{-x}(x^2 - x + 1)$$

- (a) Determine os intervalos de monotonia e concavidade de f,
- (b) Determine, caso existam, os extremos, inflexões e assímptotas de f.
- (c) Esboce o gráfico de f e determine o conjunto $f(\mathbb{R}^+)$.
- **3.** (4,0 val.) Calcule a derivada das funções definidas pelas seguintes expressões:

(a)
$$\frac{1}{1 + e^{\cos x + \sin x}}$$
 (b) $\arctan\left(\sqrt{1 + \log(|x|)}\right)$ (c) $(2^x + 1)^{x^2}$.

- **4.** (4,0 val.)Considere a função dada por $f(x) = (x^2 x + 2)e^x$ e seja $f^{(k)}$ a sua derivada de ordem k.
 - a) Mostre por indução que $f^{(k)}(x) = e^x(x^2 + (2k-1)x + (k-1)^2 + 1)$ para $k \in \mathbb{N}$.
 - c) Determine o polinómio de Taylor de ordem 3 da função f em a=0.
 - d) Sendo p_n o polinómio de Taylor de ordem n da função f em a=0 e supondo que 0 < x < 1, mostre que a diferença $f(x) p_n(x) \to 0$ quando $n \to \infty$.
- **5.** (4,0 val.) Suponha que $f: \mathbb{R} \to \mathbb{R}$ é uma função diferenciável em \mathbb{R} . Para cada uma das seguintes observações, diga se é verdadeira ou falsa e justifique a sua resposta com uma demonstração ou um exemplo.
 - (a) Se f é limitada então f tem máximo e mínimo.
 - (b) Se f é limitada então a equação f(x) = x tem solução em \mathbb{R} .
 - (c) f' é contínua em \mathbb{R} .
 - (d) Se f' é crescente no intervalo I e $a \in I$ então a recta tangente ao gráfico de f no ponto (a, f(a)) está sob o gráfico de f.

Época de recurso - (VB) - 25 de janeiro de 2016 - 8:30

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores, mas se entregar os dois testes devem ser divididas por 2.

2º TESTE (90 min)

7. (5 val.) Determine uma primitiva de cada uma das funções seguintes:

(a)
$$e^{2x} \operatorname{sen}(3x)$$
 (b) $\frac{x^3 - 2x^2 - 4x - 7}{(x+1)(x-2)(x^2+1)}$ (c) $x^7 \cosh(x^4)$.

8. (4 val.) Calcule a área da região limitada por

$$y = \frac{1}{x^2 + 1}$$
 e $y = x^2 - 1$.

9. (3 val.) Determine a recta tangente ao gráfico da função F no ponto x=0, onde

$$F(x) = \int_{x^2}^x \cos(t^2) dt.$$

A recta tangente em causa está acima ou abaixo do gráfico da função F?

10. (4 val) Determine a natureza das seguintes séries

(a)
$$\sum_{n=0}^{\infty} \frac{\cos(n\pi)}{\sqrt{3n-1}}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{3}{1+\sqrt[4]{n^3+n+1}}$ (c) $\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^n}$.

11. (4 val.) A função f é dada na região de convergência da série indicada por

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{4n+2} x^{4n+2}$$

- (a) Determine a região de convergência da série indicada.
- (b) Mostre que f tem um extremo em x = 0 e classifique-o.
- (c) Determine a função f. SUGESTÃO: Comece por calcular a série de Taylor de f'.