Shoham Ben-David

The IC3/PDR Algorithm

- Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011
- Incremental Construction of Inductive Clauses for Indubitable Correctness: IC3
 - Known also as Property Directed Reachability

 As of today: the state-of-art symbolic model checking algorithm.

Symbolic Model Checking

- The main problem in model checking: the size problem
 - ullet For |V|=100 we have 2^{100} states to explore

Symbolic Model Checking

- The main problem in model checking: the size problem
 - For |V| = 100 we have 2^{100} states to explore
- Symbolic model checking deals with it by never referring to single states
 - Rather: always refer to sets of states

Symbolic Model Checking

- The main problem in model checking: the size problem
 - For |V| = 100 we have 2^{100} states to explore
- Symbolic model checking deals with it by never referring to single states
 - Rather: always refer to sets of states
- A Boolean formula F over the variables V represents a set of states in M:
 - All the states that satisfy F.

Some Definition

- A cube is a conjunction of literals
 - For a clause c, $\neg c$ is a cube

Some Definition

- A cube is a conjunction of literals
 - For a clause c, $\neg c$ is a cube
- S, I, T, P, V, V' as before

Some Definition

- A cube is a conjunction of literals
 - For a clause c, $\neg c$ is a cube
- S, I, T, P, V, V' as before
- ullet Primed formulas (e.g. s') are defined on V'

PDR: Frames

The PDR algorithm is based on maintaining a sequence of "frames"

$$R_0, R_1, ..., R_N$$
.

- Each frame is a CNF formula over the variables V, representing a set of states in the model $(R_i \subseteq S)$.
- ② Each frame R_j is an over-approximations of the states reachable from the initial states I in j steps or less.

Properties of Frames

The frames R_i fulfill the following conditions:

- **1** $Q_0 = I$
- **2** $R_j \subseteq R_{j+1}$. • $CL(R_{i+1}) \subseteq CL(R_i)$, for i > 0.
- $T(R_i) \subseteq R_{i+1}.$

Note that R_N is different from the other frames, as it does not necessarily satisfy P.

Termination of Algorithm

The PDR algorithm proceeds by refining the frames, adding more clauses when possible, while maintaining the conditions discussed above.

The algorithm terminates in one of two cases:

- For some j, $R_j = R_{j+1}$. In this case a fix point of reachable states have been found, and thus $M \models P$.
- ② An error state $s_I \in I$ is found, from which a path to $\neg P$ exists. In this case $M \not\models P$.

Set a query to the SAT solver:

$$SAT?[R_N \wedge \neg P] \tag{1}$$

Set a query to the SAT solver:

$$SAT?[R_N \wedge \neg P] \tag{1}$$

• If *not*, then $R_N \subseteq P$.

Set a query to the SAT solver:

$$SAT?[R_N \land \neg P] \tag{1}$$

- If *not*, then $R_N \subseteq P$.
 - Open a new empty frame R_{N+1}

Set a query to the SAT solver:

$$SAT?[R_N \land \neg P] \tag{1}$$

- If *not*, then $R_N \subseteq P$.
 - Open a new empty frame R_{N+1}
 - For every 0 < j, try to "push" clauses from R_j to R_{j+1} .

Set a query to the SAT solver:

$$SAT?[R_N \land \neg P] \tag{1}$$

- If *not*, then $R_N \subseteq P$.
 - Open a new empty frame R_{N+1}
 - For every 0 < j, try to "push" clauses from R_j to R_{j+1} .
 - A clause $c \in R_j$ can be pushed forward if

$$SAT?[R_j \wedge T \wedge \neg c']$$
 (2)

is not satisfiable.

Set a query to the SAT solver:

$$SAT?[R_N \land \neg P] \tag{1}$$

- If *not*, then $R_N \subseteq P$.
 - Open a new empty frame R_{N+1}
 - For every 0 < j, try to "push" clauses from R_j to R_{j+1} .
 - A clause $c \in R_j$ can be pushed forward if

$$SAT?[R_j \wedge T \wedge \neg c'] \tag{2}$$

is not satisfiable.

If two frames are found to be equal, terminate.

Set a query to the SAT solver:

$$SAT?[R_N \land \neg P] \tag{1}$$

- If *not*, then $R_N \subseteq P$.
 - Open a new empty frame R_{N+1}
 - For every 0 < j, try to "push" clauses from R_j to R_{j+1} .
 - A clause $c \in R_j$ can be pushed forward if

$$SAT?[R_j \wedge T \wedge \neg c'] \tag{2}$$

is not satisfiable.

- If two frames are found to be equal, terminate.
- Otherwise continue with Query 1 on R_{N+1} .

Now suppose that SAT?[$R_N \land \neg P$] is satisfiable.

ullet The SAT solver provides a satisfying assignment to the variables V

- ullet The SAT solver provides a satisfying assignment to the variables V
 - A cube s, such that $s \subseteq R_N$, but $s \subseteq S \setminus P$.

- ullet The SAT solver provides a satisfying assignment to the variables V
 - A cube s, such that $s \subseteq R_N$, but $s \subseteq S \setminus P$.
 - If P holds in M, then the states in s are not reachable in M
 - ullet exist in R_N only because R_N is an over-approximation

- ullet The SAT solver provides a satisfying assignment to the variables V
 - A cube s, such that $s \subseteq R_N$, but $s \subseteq S \setminus P$.
 - If P holds in M, then the states in s are not reachable in M
 - exist in R_N only because R_N is an over-approximation
 - We want to *block* s in frame R_N

- ullet The SAT solver provides a satisfying assignment to the variables V
 - A cube s, such that $s \subseteq R_N$, but $s \subseteq S \setminus P$.
 - If P holds in M, then the states in s are not reachable in M
 - exist in R_N only because R_N is an over-approximation
 - We want to *block* s in frame R_N
 - Check

$$SAT?[R_{N-1} \wedge T \wedge s']$$
 (3)

- The SAT solver provides a satisfying assignment to the variables V
 - A cube s, such that $s \subseteq R_N$, but $s \subseteq S \setminus P$.
 - If P holds in M, then the states in s are not reachable in M
 - exist in R_N only because R_N is an over-approximation
 - We want to block s in frame R_N
 - Check

$$SAT?[R_{N-1} \wedge T \wedge s'] \tag{3}$$

- If (3) is not satisfiable, s is blocked
- Add \neg s to R_N ; Continue with Query 1.

Check
$$SAT$$
?[$R_{N-1} \wedge T \wedge s'$]

- If (3) is satisfiable
 - We get a cube s₁
 - Needs to be blocked in frame R_{N-1}

Check
$$SAT$$
?[$R_{N-1} \wedge T \wedge s'$]

- If (3) is satisfiable
 - We get a cube s₁
 - Needs to be blocked in frame R_{N-1}
 - \bullet Check Query 3 with frame R_{N-2} and s_1^\prime

Check SAT?[$R_{N-1} \wedge T \wedge s'$]

- If (3) is satisfiable
 - We get a cube s₁
 - Needs to be blocked in frame R_{N-1}
 - Check Query 3 with frame R_{N-2} and s_1'
 - ...
- If none of the cubes can be blocked during this process, then a query finally returns a cube $s_I \subseteq I$
 - Cannot be blocked
 - P does not hold in the model!