PAC3 - ALGEBRA LINEAL

NOM I COGNOMS: JOSEP ANDREU MIRALLES

1. Sigui $\mathbb{R}_n[x]$ l'espai vectorial del conjunt de polinomis de grau menor o igual a n, per a un n $\in \mathbb{N}$.

Definim l'aplicació lineal $T: \mathbb{R}_2[x] \to \mathbb{R}_4[x]$ de la següent manera

$$T(p(x)) = p(x^2).$$

a) Trobeu la representació matricial de T relativa a les bases $B = \{1, x, x^2\}$ de $\mathbb{R}_2[x]$ i (x^2) $\{1, x, x^2, x^3, x^4\}$ de $\mathbb{R}_4[x]$.

(1)
$$T(p(x)) = p(x^2) \rightarrow \text{amb } x = 1 \rightarrow$$
 Calculem la imatge T de la base B = $T(1) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2 + 0 \cdot x^3 + 0 \cdot x^4$ $\{1, x, x^2\}$ i obtenim la imatge de T en $T(p(x)) = p(x^2) \rightarrow \text{amb } x = x \rightarrow$ la base C. $T(x) = x^2 = 0 \cdot 1 + 0 \cdot x + 1 \cdot x^2 + 0 \cdot x^3 + 0 \cdot x^4$ $T(p(x)) = p(x^2) \rightarrow \text{amb } x = x^2 \rightarrow$ $T(x^2) = x^4 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2 + 0 \cdot x^3 + 1 \cdot x^4$

Calculem la imatge T de la base B = la base C.

Obtenim la imatge T següent: (1,0,0,0,0), (0,0,1,0,0) i (0,0,0,0,1). I d'aquí podem construir la matriu associada a T en les bases B i C:

$$F = M(T, B, C) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

A partir de les dades d'(1) obtenim

la matriu associada de T en les bases B i C.

i obtenim la representació matricial següent, siguent respectivament a₁, a₂ i a₃, i b₁, b₂, b₃, b₄ i b₅ els coeficients dels polinomis de grau 2 i grau 4.

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

b) Es injectiva? I exhaustiva?

(1) rang F = 3

Calculem el rang d'F (la matriu associada de T), com veiem és igual a 3 ja que hi ha 3 files linealment independents (1,0,0), (0,1,0) i (0,0,1).

(2) dim $\mathbb{R}_{2}[x] = 3$

La dimensió d' $\mathbb{R}_2[x]$ és 3.

- (3) dim(Im(T)) = rang F = 3 La dimensió de la imatge de T és 3, ja que aquesta és igual al rang de F.
- (4) dim $\mathbb{R}_4[x] = 5$ La dimensió d' $\mathbb{R}_4[x]$ és 5.
- 1. Proposició: Si $T: \mathbb{R}_2[x] \to \mathbb{R}_4[x]$ és un monomorfisme (aplicació lineal injectiva), llavors la dimensió del seu nucli ha de ser igual a 0:

 $\dim \mathbb{R}_2[x] = \dim(\operatorname{Im}(T)) + \dim(\ker(T))$

Segons el teorema de la dimensió

 $\dim(\ker(T)) = \dim \mathbb{R}_2[x] - \dim(\operatorname{Im}(T)) =$

= 3 - 3 = 0

segons (2) i (3), obtenim que la dimensió de ker(T) és 0.

Com que dim(ker(T)) és igual a 0 podem deduir que T és una aplicació injectiva (monomorfisme).

2. Proposició: Si $T: \mathbb{R}_2[x] \to \mathbb{R}_4[x]$ és un monomorfisme (aplicació lineal injectiva), llavors la dimensió de la seva matriu associada F té un rang igual a la dimensió d' $\mathbb{R}_2[x]$:

rang F = dim $\mathbb{R}_2[x]$ = 3

Segons (1) i (2) el rang de la matriu associada i d' $\mathbb{R}_2[x]$ és el mateix i igual a 3.

Com que el rang d'F (matriu associada de T) és igual a la dimensió d' $\mathbb{R}_2[x]$ podem deduir que T és una aplicació injectiva (monomorfisme).

3. Proposició: Si $T: \mathbb{R}_2[x] \to \mathbb{R}_4[x]$ és un epimorfisme (aplicació lineal exhaustiva o suprajectiva), llavors la dimensió de la seva imatge ha de ser igual a la dimensió d' $\mathbb{R}_4[x]$:

 $\dim(\operatorname{Im}(\mathsf{T})) = 3 \neq \dim \mathbb{R}_{4}[x] = 5$

Segons (3) i (4) la dimensió de la imatge de l'aplicació lineal T és diferent a la dimensió d' $\mathbb{R}_4[x]$.

Com que la dimensió de la imatge de T és diferent a la dimensió d' $\mathbb{R}_4[x]$ podem deduir que T no és una aplicació exhaustiva (epimorfisme).

Així doncs, segons el deduït en els punts 1, 2 i 3 l'aplicació $T(p(x)) = p(x^2)$ és una aplicació injectiva.

- 2. Recordeu que una matriu quadrada es diu que és idempotent si $A^2 = A$.
 - a) Suposeu que u i v són vectors unitaris d' \mathbb{R}^n tals que u i v són ortogonals. Sigui $\mathbb{Q} = uu^T + vv^T$. Proveu que \mathbb{Q} és una matriu idempotent.
 - (1) $uu^{T}=1 i vv^{T}=1$

Donat que u i v són vectors unitaris el producte d'un vector pel seu vector trasposat és 1.

(2)
$$v^{T}u=0 i u^{T}v=0$$

Donat que u i v són ortogonals el seu producte és 0.

Finalment,

$$\begin{aligned} &Q^2 = (uu^T + vv^T)^2 = & \text{Fem el quadrat de Q} \\ &= (uu^T + vv^T) \cdot (uu^T + vv^T) = \\ &= uu^T \cdot uu^T + vv^T \cdot uu^T + uu^T \cdot vv^T + vv^T \cdot vv^T = \\ &= u \cdot (1) \cdot u^T + v \cdot (0) \cdot u^T + u \cdot (0) \cdot v^T + v \cdot (1) \cdot v^T = \\ &= uu^T + 0 + 0 + vv^T = uu^T + vv^T = \end{aligned} \quad \text{i obtenim que Q}^2 \text{ és igual a Q}.$$

Així doncs Q és una matriu idempotent ja que Q²=Q.

b) Proveu que cada vector (no nul) de la forma au + bv per $a,b \in \mathbb{R}$ és un vector propi de valor propi 1 de la matriu Q.

(1) u = 1 i v = 1	Donat que u i v són vectors unitaris la seva norma és 1.
(2) $v^{T}u=0 i u^{T}v=0$	Donat que u i v són ortogonals el seu producte és 0.
(3) $Q \cdot u = (uu^T + vv^T) \cdot u = uu^T u + vv^T u =$	Fem el producte de la matriu Q pel vect. u
$= uu^{T}u + 0 = u u ^{2} = u$, per les identitats (1) i (2) obtenim que $Q\!\cdot\! u$ és igual a u.
(4) $Q \cdot v = (uu^T + vv^T) \cdot v = uu^T v + vv^T v =$	Fem el producte de la matriu Q pel vect. v
$= 0 + vv^{T}v = v \cdot v ^{2} = v$, per les identitats (1) i (2) obtenim que $Q\!\cdot\!v$ és igual a v.
(5) $\lambda \cdot (au + bv) =$	Suposem que (au + bv) és un VEP
$= 1 \cdot (au + bv) = au + bv$, si el seu VAP és igual a 0, obtenim que Q·(au + bv) es igual al vector (au + bv).
Finalment,	
Q·(au + bv) = Qau + Qbv =	Fem el producte de la matriu pel vector
$= a \cdot Qu + b \cdot Qv = au + bv$, i obtenim el vector au + bv.

Així doncs, el vector (au + bv) és un vector propi de Q amb λ =1 per qualsevol a i b $\in \mathbb{R}$, ja que Q·(au+bv) és i gual a λ ·(au+bv) per un VAP = 1.