Student Performance Indicator

Part 1: Life cycle of Machine learning Project

- Understanding the Problem Statement
- Data Collection
- Data Checks to perform
- Exploratory data analysis
- Data Pre-Processing
- Model Training
- Choose best model

1) Problem statement

 This project understands how the student's performance (test scores) is affected by other variables such as Gender, Ethnicity, Parental level of education, Lunch and Test preparation course.

2) Data Collection

- Dataset Source https://www.kaggle.com/datasets/spscientist/students-performancein-exams?datasetId=74977
- The data consists of 8 column and 1000 rows.

2.1 Import Data and Required Packages

Importing Pandas, Numpy, Matplotlib, Seaborn and Warings Library.

In [7]: pip install catboost

Requirement already satisfied: catboost in c:\users\ravi\anaconda3\lib\site-packag es (1.2.2)

Requirement already satisfied: graphviz in c:\users\ravi\anaconda3\lib\site-packag es (from catboost) (0.20.1)

Requirement already satisfied: matplotlib in c:\users\ravi\anaconda3\lib\site-pack ages (from catboost) (3.7.1)

Requirement already satisfied: numpy>=1.16.0 in c:\users\ravi\anaconda3\lib\site-p ackages (from catboost) (1.24.3)

Requirement already satisfied: pandas>=0.24 in c:\users\ravi\anaconda3\lib\site-pa ckages (from catboost) (1.5.3)

Requirement already satisfied: scipy in c:\users\ravi\anaconda3\lib\site-packages (from catboost) (1.10.1)

Requirement already satisfied: plotly in c:\users\ravi\anaconda3\lib\site-packages (from catboost) (5.9.0)

Requirement already satisfied: six in c:\users\ravi\anaconda3\lib\site-packages (f rom catboost) (1.16.0)

Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\ravi\anaconda3\l ib\site-packages (from pandas>=0.24->catboost) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\ravi\anaconda3\lib\site-pa ckages (from pandas>=0.24->catboost) (2022.7)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\ravi\anaconda3\lib\sit e-packages (from matplotlib->catboost) (1.0.5)

Requirement already satisfied: cycler>=0.10 in c:\users\ravi\anaconda3\lib\site-pa ckages (from matplotlib->catboost) (0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in c:\users\ravi\anaconda3\lib\si te-packages (from matplotlib->catboost) (4.25.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\ravi\anaconda3\lib\si te-packages (from matplotlib->catboost) (1.4.4)

Requirement already satisfied: packaging>=20.0 in c:\users\ravi\anaconda3\lib\site -packages (from matplotlib->catboost) (23.0)

Requirement already satisfied: pillow>=6.2.0 in c:\users\ravi\anaconda3\lib\site-p ackages (from matplotlib->catboost) (9.4.0)

Requirement already satisfied: pyparsing>=2.3.1 in c:\users\ravi\anaconda3\lib\sit e-packages (from matplotlib->catboost) (3.0.9)

Requirement already satisfied: tenacity>=6.2.0 in c:\users\ravi\anaconda3\lib\site -packages (from plotly->catboost) (8.2.2)

Note: you may need to restart the kernel to use updated packages.

In [58]: pip install xgboost

Requirement already satisfied: xgboost in c:\users\ravi\anaconda3\lib\site-package s (2.0.3)Note: you may need to restart the kernel to use updated packages.

Requirement already satisfied: numpy in c:\users\ravi\anaconda3\lib\site-packages (from xgboost) (1.24.3)

Requirement already satisfied: scipy in c:\users\ravi\anaconda3\lib\site-packages (from xgboost) (1.10.1)

```
In [59]: import numpy as np
         import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          %matplotlib inline
          import warnings
         warnings.filterwarnings('ignore')
         # for modelling
         from sklearn.metrics import mean squared error, r2 score
         from sklearn.neighbors import KNeighborsRegressor
         from sklearn.tree import DecisionTreeRegressor
         from sklearn.ensemble import RandomForestRegressor,AdaBoostRegressor
         from sklearn.svm import SVR
         from sklearn.linear_model import LinearRegression, Ridge,Lasso
         from sklearn.metrics import r2 score, mean absolute error, mean squared error
         from sklearn.model_selection import RandomizedSearchCV
```

```
from catboost import CatBoostRegressor
from xgboost import XGBRegressor
import warnings
```

Import the CSV Data as Pandas DataFrame

```
In [9]: df = pd.read_csv('stud.csv')
```

Show Top 5 Records

In [11]:	<pre>df.head()</pre>						
Out[11]:		gender	race_ethnicity	parental_level_of_education	lunch	test_preparation_course	math_s
	0	female	group B	bachelor's degree	standard	none	
	1	female	group C	some college	standard	completed	
	2	female	group B	master's degree	standard	none	
	3	male	group A	associate's degree	free/reduced	none	
	4	male	group C	some college	standard	none	
4							•

Shape of the dataset

```
In [12]: df.shape
Out[12]: (1000, 8)
```

2.2 Dataset information

- gender: sex of students -> (Male/female)
- race/ethnicity : ethnicity of students -> (Group A, B,C, D,E)
- parental level of education : parents' final education -> (bachelor's degree,some college,master's degree,associate's degree,high school)
- lunch: having lunch before test (standard or free/reduced)
- test preparation course : complete or not complete before test
- · math score
- reading score
- writing score

3. Data Checks to perform

- Check Missing values
- Check Duplicates
- Check data type
- Check the number of unique values of each column
- · Check statistics of data set
- Check various categories present in the different categorical column

3.1 Check Missing values

```
In [13]:
         df.isna().sum()
         gender
                                          0
Out[13]:
          race_ethnicity
                                          0
          parental_level_of_education
                                          0
                                          0
          test_preparation_course
                                          0
          math_score
                                          0
          reading_score
                                          0
          writing_score
                                          0
          dtype: int64
```

There are no missing values in the data set

3.2 Check Duplicates

```
In [14]: df.duplicated().sum()
Out[14]: 0
```

There are no duplicates values in the data set

3.3 Check data types

```
In [15]: # Check Null and Dtypes
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1000 entries, 0 to 999
         Data columns (total 8 columns):
             Column
                                           Non-Null Count Dtype
             -----
          0
            gender
                                          1000 non-null object
             race ethnicity
                                           1000 non-null object
             parental_level_of_education 1000 non-null object
                                          1000 non-null object
             test_preparation_course
                                          1000 non-null
                                                          object
          5
             math_score
                                          1000 non-null
                                                          int64
                                                          int64
             reading_score
                                          1000 non-null
          7
              writing score
                                          1000 non-null
                                                          int64
         dtypes: int64(3), object(5)
         memory usage: 62.6+ KB
```

3.4 Checking the number of unique values of each column

```
df.nunique()
In [16]:
         gender
                                           2
Out[16]:
                                           5
          race ethnicity
                                           6
          parental_level_of_education
                                           2
          lunch
          test_preparation_course
                                           2
          math score
                                          81
          reading_score
                                          72
          writing_score
                                          77
          dtype: int64
```

3.5 Check statistics of data set

In [17]:	<pre>df.describe()</pre>				
Out[17]:		math_score	reading_score	writing_score	
	count	1000.00000	1000.000000	1000.000000	
	mean	66.08900	69.169000	68.054000	
	std	15.16308	14.600192	15.195657	
	min	0.00000	17.000000	10.000000	
	25%	57.00000	59.000000	57.750000	
	50%	66.00000	70.000000	69.000000	
	75%	77.00000	79.000000	79.000000	
	max	100.00000	100.000000	100.000000	

Insight

- From above description of numerical data, all means are very close to each other between 66 and 68.05:
- All standard deviations are also close between 14.6 and 15.19;
- While there is a minimum score 0 for math, for writing minimum is much higher = 10 and for reading myet higher = 17

3.7 Exploring Data

```
df.head()
In [18]:
Out[18]:
                     race_ethnicity parental_level_of_education
                                                                          test_preparation_course
             gender
                                                                    lunch
                                                                                                 math s
          0
              female
                           group B
                                             bachelor's degree
                                                                 standard
                                                                                           none
              female
                                                                 standard
                                                                                       completed
                           group C
                                                 some college
          2
              female
                           group B
                                               master's degree
                                                                 standard
                                                                                           none
                                                              free/reduced
          3
                                             associate's degree
                male
                           group A
                                                                                           none
           4
                           group C
                male
                                                 some college
                                                                 standard
                                                                                           none
           print("Categories in 'gender' variable:
                                                           ",end=" " )
In [19]:
           print(df['gender'].unique())
           print("Categories in 'race_ethnicity' variable: ",end=" ")
           print(df['race_ethnicity'].unique())
           print("Categories in'parental level of education' variable:",end=" " )
           print(df['parental_level_of_education'].unique())
                                                           ",end=" " )
           print("Categories in 'lunch' variable:
           print(df['lunch'].unique())
```

```
print("Categories in 'test preparation course' variable:
                                                                       ",end=" " )
          print(df['test_preparation_course'].unique())
          Categories in 'gender' variable:
                                                ['female' 'male']
          Categories in 'race_ethnicity' variable: ['group B' 'group C' 'group A' 'group
          D' 'group E']
          Categories in'parental level of education' variable: ["bachelor's degree" 'some co
          llege' "master's degree" "associate's degree"
           'high school' 'some high school']
                                                ['standard' 'free/reduced']
          Categories in 'lunch' variable:
                                                                   ['none' 'completed']
          Categories in 'test preparation course' variable:
         # define numerical & categorical columns
In [20]:
          numeric_features = [feature for feature in df.columns if df[feature].dtype != '0']
          categorical_features = [feature for feature in df.columns if df[feature].dtype ==
          # print columns
          print('We have {} numerical features : {}'.format(len(numeric_features), numeric_fe
          print('\nWe have {} categorical features : {}'.format(len(categorical_features), categorical_features)
          We have 3 numerical features : ['math_score', 'reading_score', 'writing_score']
          We have 5 categorical features : ['gender', 'race_ethnicity', 'parental_level_of_e
          ducation', 'lunch', 'test_preparation_course']
In [21]:
          df.head(2)
Out[21]:
            gender race ethnicity parental level of education
                                                            lunch test preparation course
             female
                         group B
                                          bachelor's degree standard
                                                                                  none
             female
                                              some college standard
                                                                             completed
                                                                                               6
                         group C
```

3.8 Adding columns for "Total Score" and "Average"

```
In [22]: df['total score'] = df['math_score'] + df['reading_score'] + df['writing_score']
    df['average'] = df['total score']/3
    df.head()
```

Out[22]: gender race_ethnicity parental_level_of_education lunch test_preparation_course math_s female 0 bachelor's degree standard group B none female group C some college standard completed 2 female group B master's degree standard none 3 associate's degree free/reduced male group A none 4 standard male group C some college none

```
In [23]: reading_full = df[df['reading_score'] == 100]['average'].count()
    writing_full = df[df['writing_score'] == 100]['average'].count()
    math_full = df[df['math_score'] == 100]['average'].count()

    print(f'Number of students with full marks in Maths: {math_full}')
    print(f'Number of students with full marks in Writing: {writing_full}')
    print(f'Number of students with full marks in Reading: {reading_full}')
```

```
Number of students with full marks in Maths: 7
Number of students with full marks in Writing: 14
Number of students with full marks in Reading: 17
```

```
In [24]: reading_less_20 = df[df['reading_score'] <= 20]['average'].count()
    writing_less_20 = df[df['writing_score'] <= 20]['average'].count()

math_less_20 = df[df['math_score'] <= 20]['average'].count()

print(f'Number of students with less than 20 marks in Maths: {math_less_20}')
    print(f'Number of students with less than 20 marks in Writing: {writing_less_20}')
    print(f'Number of students with less than 20 marks in Reading: {reading_less_20}')</pre>
```

```
Number of students with less than 20 marks in Maths: 4
Number of students with less than 20 marks in Writing: 3
Number of students with less than 20 marks in Reading: 1
```

- From above values we get students have performed the worst in Maths
- Best performance is in reading section

4. Exploring Data (Visualization)

4.1 Visualize average score distribution to make some conclusion.

- Histogram
- Kernel Distribution Function (KDE)

4.1.1 Histogram & KDE

```
In [25]: fig, axs = plt.subplots(1, 2, figsize=(15, 7))
    plt.subplot(121)
    sns.histplot(data=df,x='average',bins=30,kde=True,color='g')
    plt.subplot(122)
    sns.histplot(data=df,x='average',kde=True,hue='gender')
    plt.suptitle('Histograms and KDEs of Average Values', fontsize=16)
    plt.show()
```

Histograms and KDEs of Average Values


```
In [26]: fig, axs = plt.subplots(1, 2, figsize=(15, 7))
plt.subplot(121)
```

```
sns.histplot(data=df,x='total score',bins=30,kde=True,color='g')
plt.subplot(122)
sns.histplot(data=df,x='total score',kde=True,hue='gender')
plt.suptitle('Histograms and KDEs of Total scores', fontsize=16)
plt.show()
```

Histograms and KDEs of Total scores

Insights

• Female students tend to perform well then male students.

```
In [27]: plt.subplots(1,3,figsize=(25,6))
   plt.subplot(141)
   sns.histplot(data=df,x='average',kde=True,hue='lunch')
   plt.subplot(142)
   sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='lunch')
   plt.subplot(143)
   sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='lunch')
   plt.suptitle('Histograms and KDEs of male and female performance', fontsize=16)
   plt.show()
```


Insights

- Standard lunch helps perform well in exams.
- Standard lunch helps perform well in exams be it a male or a female.

```
plt.subplots(1,3,figsize=(25,6))
plt.subplot(141)
ax =sns.histplot(data=df,x='average',kde=True,hue='parental_level_of_education')
plt.subplot(142)
ax =sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='parental_leve
plt.subplot(143)
ax =sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='parental_leve
plt.suptitle('Histograms and KDEs of parental level of education male and female wi
plt.show()
```

Histograms and KDEs of parental level of education male and female wise

- In general parent's education don't help student perform well in exam.
- 2nd plot shows that parent's whose education is of associate's degree or master's degree their male child tend to perform well in exam
- 3rd plot we can see there is no effect of parent's education on female students.

```
In [29]:
        df.columns
        Out[29]:
               'writing_score', 'total score', 'average'],
             dtype='object')
In [26]:
        plt.subplots(1,3,figsize=(25,6))
        plt.subplot(141)
        ax =sns.histplot(data=df,x='average',kde=True,hue='race_ethnicity')
        plt.subplot(142)
        ax =sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='race ethnic
        plt.subplot(143)
        ax =sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='race_ethnicit
        plt.suptitle('Histograms and KDEs of race_ethnicity male and female wise', fontsiz€
        plt.show()
```

Histograms and KDEs of race_ethnicity male and female wise

Insights

- Students of group A and group B tends to perform poorly in exam.
- Students of group A and group B tends to perform poorly in exam irrespective of whether they are male or female

4.2 Maximumum score of students in all three subjects

```
df.columns
In [27]:
         Index(['gender', 'race_ethnicity', 'parental_level_of_education', 'lunch',
Out[27]:
                 'test_preparation_course', 'math_score', 'reading_score',
                 'writing_score', 'total score', 'average'],
               dtype='object')
         plt.figure(figsize=(18,8))
In [30]:
          plt.subplot(1, 4, 1)
         plt.title('math_score')
         sns.violinplot(y='math_score',data=df,color='red',linewidth=3)
          plt.subplot(1, 4, 2)
          plt.title('READING SCORES')
          sns.violinplot(y='reading score',data=df,color='green',linewidth=3)
          plt.subplot(1, 4, 3)
         plt.title('WRITING SCORES')
          sns.violinplot(y='writing_score',data=df,color='blue',linewidth=3)
          plt.suptitle('violin plot of math, reading and writing score', fontsize=16)
          plt.show()
```

violin plot of math, reading and writing score

Insights

• From the above three plots its clearly visible that most of the students score in between 60-80 in Maths whereas in reading and writing most of them score from 50-80

4.3 Multivariate analysis using pieplot

```
In [31]: plt.rcParams['figure.figsize'] = (30, 12)
          plt.subplot(1, 5, 1)
          size = df['gender'].value_counts()
          labels = 'Female', 'Male'
          color = ['red', 'green']
          plt.pie(size, colors = color, labels = labels,autopct = '.%2f%%')
         plt.title('Gender', fontsize = 20)
         plt.axis('off')
          plt.subplot(1, 5, 2)
          size = df['race_ethnicity'].value_counts()
          labels = 'Group C', 'Group D', 'Group B', 'Group E', 'Group A'
          color = ['red', 'green', 'blue', 'cyan', 'orange']
          plt.pie(size, colors = color, labels = labels, autopct = '.%2f%%')
         plt.title('Race_Ethnicity', fontsize = 20)
         plt.axis('off')
         plt.subplot(1, 5, 3)
          size = df['lunch'].value_counts()
          labels = 'Standard', 'Free'
          color = ['red','green']
```

```
plt.pie(size, colors = color, labels = labels, autopct = '.%2f%%')
plt.title('Lunch', fontsize = 20)
plt.axis('off')
plt.subplot(1, 5, 4)
size = df['test_preparation_course'].value_counts()
labels = 'None', 'Completed'
color = ['red', 'green']
plt.pie(size, colors = color, labels = labels, autopct = '.%2f%%')
plt.title('Test Course', fontsize = 20)
plt.axis('off')
plt.subplot(1, 5, 5)
size = df['parental_level_of_education'].value_counts()
labels = 'Some College', "Associate's Degree", 'High School', 'Some High School', "Bac
color = ['red', 'green', 'blue', 'cyan', 'orange', 'grey']
plt.pie(size, colors = color, labels = labels, autopct = '.%2f%%')
plt.title('Parental Education', fontsize = 20)
plt.axis('off')
plt.tight_layout()
plt.grid()
plt.show()
```


- Number of Male and Female students is almost equal
- Number students are greatest in Group C
- Number of students who have standard lunch are greater
- Number of students who have not enrolled in any test preparation course is greater
- Number of students whose parental education is "Some College" is greater followed closely by "Associate's Degree"

4.4 Feature Wise Visualization

4.4.1 GENDER COLUMN

- How is distribution of Gender?
- Is gender has any impact on student's performance?

UNIVARIATE ANALYSIS (How is distribution of Gender?)

```
In [32]: f,ax=plt.subplots(1,2,figsize=(20,10))
    sns.countplot(x=df['gender'],data=df,palette ='bright',ax=ax[0],saturation=0.95)
    for container in ax[0].containers:
```

```
ax[0].bar_label(container,color='black',size=20)
plt.suptitle('How is distribution of Gender', fontsize=16)

plt.pie(x=df['gender'].value_counts(),labels=['Male','Female'],explode=[0,0.1],auto plt.show()
```

How is distribution of Gender

male

68.728216

65.473029

 Gender has balanced data with female students are 518 (48%) and male students are 482 (52%)

BIVARIATE ANALYSIS (Is gender has any impact on student's performance ?)

63.311203 197.512448 65.837483

```
In [33]: gender_group = df.groupby('gender').mean()
gender_group

Out[33]: math_score reading_score writing_score total score average

gender
female 63.633205 72.608108 72.467181 208.708494 69.569498
```

```
In [34]: plt.figure(figsize=(10, 8))

X = ['Total Average', 'Math Average']

female_scores = [gender_group['average'][0], gender_group['math_score'][0]]

male_scores = [gender_group['average'][1], gender_group['math_score'][1]]

X_axis = np.arange(len(X))

plt.bar(X_axis - 0.2, male_scores, 0.4, label = 'Male')
plt.bar(X_axis + 0.2, female_scores, 0.4, label = 'Female')

plt.xticks(X_axis, X)
plt.ylabel("Marks")
```

```
plt.title("Total average v/s Math average marks of both the genders", fontweight='t
plt.legend()
plt.show()
```


Math Average

Insights

- On an average females have a better overall score than men.
- whereas males have scored higher in Maths.

Total Average

4.4.2 RACE/EHNICITY COLUMN

- How is Group wise distribution?
- Is Race/Ehnicity has any impact on student's performance?

UNIVARIATE ANALYSIS (How is Group wise distribution?)

```
In [36]: f,ax=plt.subplots(1,2,figsize=(20,10))
    sns.countplot(x=df['race_ethnicity'],data=df,palette = 'bright',ax=ax[0],saturation
    for container in ax[0].containers:
        ax[0].bar_label(container,color='black',size=20)
    plt.suptitle('How is Group wise distribution', fontsize=16)
    plt.pie(x = df['race_ethnicity'].value_counts(),labels=df['race_ethnicity'].value_counts())
```

How is Group wise distribution

Insights

- Most of the student belonging from group C /group D.
- Lowest number of students belong to groupA.

BIVARIATE ANALYSIS (Is Race/Ehnicity has any impact on student's performance?)

```
Group_data2=df.groupby('race_ethnicity')
In [37]:
                                                       f,ax=plt.subplots(1,3,figsize=(20,8))
                                                        sns.barplot(x=Group_data2['math_score'].mean().index,y=Group_data2['math_score'].me
                                                       ax[0].set_title('Math score',color='#005ce6',size=20)
                                                       for container in ax[0].containers:
                                                                               ax[0].bar label(container,color='black',size=15)
                                                       sns.barplot(x=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_data2['reading_score'].mean().index,y=Group_gata2['reading_score'].mean().index,y=Group_gata2['reading_score'].mean().index,y=Group_gata2['reading_score'].mean().index,y=Gro
                                                       ax[1].set_title('Reading score',color='#005ce6',size=20)
                                                       for container in ax[1].containers:
                                                                              ax[1].bar label(container,color='black',size=15)
                                                       sns.barplot(x=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Group_data2['writing_score'].mean().index,y=Gro
                                                       ax[2].set title('Writing score',color='#005ce6',size=20)
                                                       plt.suptitle("Is Race/Ehnicity has any impact on student's performance", fontsize=1
                                                       for container in ax[2].containers:
                                                                              ax[2].bar_label(container,color='black',size=15)
```

Is Race/Ehnicity has any impact on student's performance

Insights

- Group E students have scored the highest marks.
- Group A students have scored the lowest marks.
- Students from a lower Socioeconomic status have a lower avg in all course subjects

4.4.3 PARENTAL LEVEL OF EDUCATION COLUMN

- What is educational background of student's parent?
- Is parental education has any impact on student's performance?

UNIVARIATE ANALYSIS (What is educational background of student's parent?)

Insights

• Largest number of parents are from some college.

BIVARIATE ANALYSIS (Is parental education has any impact on student's performance?)

```
In [39]: df.groupby('parental_level_of_education').agg('mean').plot(kind='barh',figsize=(10, plt.suptitle("Is parental education has any impact on student's performance", fonts plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show()
```

Is parental education has any impact on student's performance

Insights

• The score of student whose parents possess master and bachelor level education are higher than others.

4.4.4 LUNCH COLUMN

- Which type of lunch is most common amoung students?
- What is the effect of lunch type on test results?

UNIVARIATE ANALYSIS (Which type of lunch is most common amoung students?)

Insights

• Students being served Standard lunch was more than free lunch

BIVARIATE ANALYSIS (Is lunch type intake has any impact on student's performance?)

```
In [37]: f,ax=plt.subplots(1,2,figsize=(20,8))
    sns.countplot(x=df['parental_level_of_education'],data=df,palette = 'bright',hue='t
    ax[0].set_title('Students vs test preparation course ',color='black',size=25)
    for container in ax[0].containers:
        ax[0].bar_label(container,color='black',size=20)

sns.countplot(x=df['parental_level_of_education'],data=df,palette = 'bright',hue='l
for container in ax[1].containers:
```

```
ax[1].bar_label(container,color='black',size=20)
plt.suptitle("Is lunch type intake has any impact on student's performance", fontsi
```

Out[37]: Text(0.5, 0.98, "Is lunch type intake has any impact on student's performance")

Insights

 Students who get Standard Lunch tend to perform better than students who got free/reduced lunch

4.4.5 TEST PREPARATION COURSE COLUMN

- Which type of lunch is most common amoung students?
- Is Test prepration course has any impact on student's performance?

BIVARIATE ANALYSIS (Is Test prepration course has any impact on student's performance?)

```
In [40]:
         plt.figure(figsize=(18, 6)) # Adjust the figure size as needed
         # Subplot 1
         plt.subplot(1, 3, 1)
         sns.barplot(x=df['lunch'], y=df['math_score'], hue=df['test_preparation_course'])
         plt.title('Math Score')
          # Subplot 2
          plt.subplot(1, 3, 2)
          sns.barplot(x=df['lunch'], y=df['reading_score'], hue=df['test_preparation_course']
         plt.title('Reading Score')
         # Subplot 3
          plt.subplot(1, 3, 3)
         sns.barplot(x=df['lunch'], y=df['writing_score'], hue=df['test_preparation_course']
         plt.title('Writing Score')
          plt.suptitle("Is Test Preparation Course Impacting Student's Performance", fontsiz€
          plt.show()
```

Is Test Preparation Course Impacting Student's Performance

Insights

• Students who have completed the Test Prepration Course have scores higher in all three categories than those who haven't taken the course

4.4.6 CHECKING OUTLIERS

```
In [41]: plt.subplots(1,4,figsize=(16,5))
   plt.subplot(141)
   sns.boxplot(df['math_score'],color='skyblue')
   plt.subplot(142)
   sns.boxplot(df['reading_score'],color='hotpink')
   plt.subplot(143)
   sns.boxplot(df['writing_score'],color='yellow')
   plt.subplot(144)
   sns.boxplot(df['average'],color='lightgreen')

plt.suptitle("Checking Outlier", fontsize=16)
   plt.show()
```


4.4.7 MUTIVARIATE ANALYSIS USING PAIRPLOT

```
In [40]: sns.pairplot(df,hue = 'gender')
  plt.show()
```


• From the above plot it is clear that all the scores increase linearly with each other.

5. Conclusions

- Student's Performance is related with lunch, race, parental level education
- Females lead in pass percentage and also are top-scorers
- Student's Performance is not much related with test preparation course
- Finishing preparation course is benefitial.

Part 2: Model Training

```
In [42]: df = pd.read_csv('stud.csv')
In [43]: X = df.drop(columns=['math_score'], axis=1)
In [44]: X
```

lunch test_preparation_course read

gender race_ethnicity parental_level_of_education

Out[44]:

```
print(categorical_features)
         print(numerical_features)
         Index(['gender', 'race_ethnicity', 'parental_level_of_education', 'lunch',
                 'test_preparation_course'],
               dtype='object')
         Index(['math_score', 'reading_score', 'writing_score'], dtype='object')
         num_featuers = X.select_dtypes(exclude='object').columns
In [49]:
          cat_features = X.select_dtypes(include='object').columns
          from sklearn.preprocessing import OneHotEncoder, StandardScaler
          from sklearn.compose import ColumnTransformer
          num_transformer = StandardScaler()
          oh_transformer = OneHotEncoder()
          preprocessor = ColumnTransformer(
                  ("OneHotEncoder", oh_transformer, cat_features),
                  ("StandardScaler", num_transformer, num_featuers)
         X = preprocessor.fit_transform(X)
In [50]:
         X. shape
         (1000, 19)
Out[50]:
         Х
In [51]:
         array([[ 1.
                               0.
Out[51]:
                  0.19399858, 0.39149181],
                       , 0.
                                                               0.
                  1.42747598, 1.31326868],
                [ 1.
                  1.77010859, 1.64247471],
                              0.
                [ 1.
                  0.12547206, -0.20107904],
                          , 0.
                  0.60515772,
                               0.58901542],
                [ 1.
                               0.
                  1.15336989, 1.18158627]])
         X.max(), X.min()
In [52]:
         (2.112741202570347, -3.82234534162361)
Out[52]:
In [53]:
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2, random_state
         X train.shape, X test.shape
         ((800, 19), (200, 19))
Out[53]:
```

Evaluation function

```
In [54]: def evaluate_model(true, predicted):
    mae = mean_absolute_error(true, predicted)
    mse = mean_squared_error(true, predicted)
    rmse = np.sqrt(mean_squared_error(true, predicted))
```

```
r2_square = r2_score(true, predicted)
return mae, rmse, r2_square
```

```
In [60]: models = {
             "Linear Regression": LinearRegression(),
             "Lasso": Lasso(),
             "Ridge": Ridge(),
             "K-Neighbors Regressor": KNeighborsRegressor(),
             "Decision Tree": DecisionTreeRegressor(),
             "Random Forest Regressor": RandomForestRegressor(),
             "XGBRegressor": XGBRegressor(),
             "CatBoosting Regressor": CatBoostRegressor(verbose=False),
             "AdaBoost Regressor": AdaBoostRegressor()
         model_list = []
         r2_list = []
         for i in range(len(list(models))):
           model = list(models.values())[i]
           model.fit(X_train,y_train)
           #make prediction
           y_train_pred = model.predict(X_train)
           y_test_pred = model.predict(X_test)
           # Evaluate train and test dataset
           model train mae, model train rmse, model train r2 = evaluate model(y train, y tra
           model test_mae, model_test_rmse, model_test_r2 = evaluate_model(y_test, y_test_pr
           print(list(models.keys())[i])
           model_list.append(list(models.keys())[i])
           r2_list.append(round(model_test_r2,3))
           print("Model performance for Train set")
           print("- Root mean squared error : {:.4f}".format(model_train_rmse))
           print("- Mean absolute error : {:.4f}".format(model train mae))
           print("- R2 score : {:.4f}".format(model_train_r2))
           print("-"*35)
           print("Model performance for Test set")
           print("- Root Mean squared error: {:.4f}".format(model_test_rmse))
           print("- Mean absolute error: {:.4f}".format(model_test_mae))
           print("- R2 score : {:.4f}".format(model test r2))
           print('='*35)
           print("\n")
```

Linear Regression

Model performance for Train set

- Root mean squared error : 5.3240

- Mean absolute error : 4.2691

- R2 score : 0.8743

Model performance for Test set - Root Mean squared error: 5.3773

- Mean absolute error: 4.2053

- R2 score : 0.8812

Lasso

Model performance for Train set

- Root mean squared error: 6.5938

- Mean absolute error : 5.2063

- R2 score : 0.8071

Model performance for Test set

- Root Mean squared error: 6.5197

- Mean absolute error: 5.1579

- R2 score : 0.8253

Ridge

Model performance for Train set

- Root mean squared error : 5.3233

- Mean absolute error : 4.2650

- R2 score : 0.8743

Model performance for Test set

- Root Mean squared error: 5.3904

- Mean absolute error: 4.2111

- R2 score : 0.8806

K-Neighbors Regressor

Model performance for Train set

- Root mean squared error : 5.7133

- Mean absolute error : 4.5213

- R2 score : 0.8552

Model performance for Test set

- Root Mean squared error: 7.2488

- Mean absolute error: 5.6310

- R2 score : 0.7841

Decision Tree

Model performance for Train set

- Root mean squared error : 0.2795

- Mean absolute error : 0.0187

- R2 score : 0.9997

Model performance for Test set

- Root Mean squared error: 7.5776
- Mean absolute error: 5.9700
- R2 score : 0.7640

```
Random Forest Regressor
        Model performance for Train set
        - Root mean squared error : 2.3223
        - Mean absolute error : 1.8461
        - R2 score : 0.9761
        Model performance for Test set
        - Root Mean squared error: 5.9204
        - Mean absolute error: 4.5573
        - R2 score : 0.8560
        _____
        XGBRegressor
        Model performance for Train set
        - Root mean squared error : 1.0073
        - Mean absolute error : 0.6875
        - R2 score : 0.9955
        -----
        Model performance for Test set
        - Root Mean squared error: 6.4733
        - Mean absolute error: 5.0577
        - R2 score : 0.8278
        _____
        CatBoosting Regressor
        Model performance for Train set
        - Root mean squared error : 3.0427
        - Mean absolute error : 2.4054
        - R2 score : 0.9589
        -----
        Model performance for Test set
        - Root Mean squared error: 6.0086
        - Mean absolute error: 4.6125
        - R2 score : 0.8516
        AdaBoost Regressor
        Model performance for Train set
        - Root mean squared error : 5.9072
        - Mean absolute error : 4.8231
        - R2 score : 0.8452
        Model performance for Test set
        - Root Mean squared error: 6.0436
        - Mean absolute error: 4.7032
        - R2 score : 0.8499
        print(model_list, r2_list)
In [62]:
        ['Linear Regression', 'Lasso', 'Ridge', 'K-Neighbors Regressor', 'Decision Tree',
        'Random Forest Regressor', 'XGBRegressor', 'CatBoosting Regressor', 'AdaBoost Regr
        essor'] [0.88, 0.825, 0.881, 0.783, 0.72, 0.85, 0.828, 0.852, 0.856]
        results = pd.DataFrame(list(zip(model list, r2 list)), columns=["Model Name", 'R2 S
In [63]:
In [64]:
        results
```

Out[64]

•		Model Name	R2_Score
	2	Ridge	0.881
	0	Linear Regression	0.880
	8	AdaBoost Regressor	0.856
	7	CatBoosting Regressor	0.852
	5	Random Forest Regressor	0.850
	6	XGBRegressor	0.828
	1	Lasso	0.825
	3	K-Neighbors Regressor	0.783
	4	Decision Tree	0.720

Part 3: Final Model (Linear Regression)

```
In [62]: lin_model = LinearRegression(fit_intercept=True)
lin_model = lin_model.fit(X_train, y_train)
y_pred = lin_model.predict(X_test)
score = r2_score(y_test, y_pred)*100
print(" Accuracy of the model is %.2f" %score)
```

Accuracy of the model is 88.12

Plot predicted and actual value

```
In [63]: plt.scatter(y_test,y_pred);
   plt.xlabel('Actual');
   plt.ylabel('Predicted');

In [64]: sns.regplot(x=y_test,y=y_pred,ci=None,color = 'red');
```


Difference Between Actual and Predicted value

In [65]: pred_df=pd.DataFrame({'Actual Value':y_test,'Predicted Value':y_pred,'Difference':y
 pred_df

Out[65]:		Actual Value	Predicted Value	Difference
	521	91	76.507812	14.492188
	737	53	58.796875	-5.796875
	740	80	76.976562	3.023438
	660	74	76.984375	-2.984375
	411	84	87.664062	-3.664062
	•••			
	408	52	43.367188	8.632812
	332	62	62.156250	-0.156250
	208	74	67.812500	6.187500
	613	65	67.125000	-2.125000
	78	61	62.343750	-1.343750

200 rows × 3 columns

In []: