Sztuczna inteligencja dla środowiska robocode

Prezentacja rozwiązania

Łukasz Niemiec Michał Zakrzewski

Cele projektu

- implementacja modelu sterującego czołgiem wykorzystując Q-learning
- implementacja modelu sterującego czołgiem wykorzystując sieć neuronową

Technologie

- Java
- Robocode
- java-reinforcement-learning
- deeplearning4j (rl4j)

RL4J

Rozwiązanie wykorzystujące bibliotekę Deeplearning4j

Status: niedokończone

Powód:

cyt. za README pakietu

Rozwiązanie - reprezentacja stanu

- energia robota (0, 10), [10, 50), [50, +∞)
- energia przeciwnika (0, 8], (8, 40], (40, +∞)
- odległość do przeciwnika (0, 20], (20, 100], (100, +∞)
- kąt do przeciwnika (-45, 45], (45, 135], (135, 225], (225, 315]
- ruch przeciwnika 0, 1
- położenie robota

0	1	2
3	4	5
6	7	8

- dodatkowy stan: nieznane położenie przeciwnika
- razem 3 * 3 * 3 * 4 * 2 * 9 + 1 = 1945 stanów

Rozwiązanie - akcje robota

- ruch w lewo/prawo/górę/dół
- strzał w przeciwnika
- strzał przewidujący ruch przeciwnika

radar obracany przed każdą akcją

Rozwiązanie - sterowanie robotem

Paradygmat sense-think-act

- sense
 - o zebranie wydarzeń od poprzedniej akcji
 - obrót radaru
- think
 - aktualizacja wiedzy
 - wybór następnej akcji
- act
 - wykonanie wybranej akcji

Rozwiązanie - uczenie

- Q-learning
- wiedza aktualizowana przed każdą akcją na podstawie wszystkich wydarzeń od poprzedniej akcji
- nagrody
 - o trafienie przeciwnika pociskiem: 10
 - o uderzenie przeciwnika: 1
 - o zniszczenie przeciwnika: 75
 - o uderzenie w ścianę: -5
 - o otrzymanie obrażeń: -10
 - o niecelny strzał: -10
 - o śmierć: -100
- parametry uczenia

$$\circ \quad lpha = \epsilon = 1.0 - \log\Bigl(rac{ ext{round}}{C}\Bigr)$$

$$\circ$$
 $\gamma=0.9$

Wyniki

- zależne od rodzaju przeciwnika
- konieczny dobór szczegółów akcji robota do typu przeciwnika
 - o znacznie więcej akcji
 - np. ruch o 50 jednostek, ruch o 100 jednostek, ruch o 200 jednostek
 - o dużo dłuższe uczenie

SpinBot

Target

TrackFire

Walls

Dziękujemy