Weighted Projection Quantiles Algorithm

October 7, 2014

Algorithm to calculate weighted projection quantile along the vector $\mathbf{u} \in \mathcal{B}_p$, given a set of observations $\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_n$:

- 1. Compute $Q_{proj}(\mathbf{u})$, the projection quantile along \mathbf{u}
 - Project each \mathbf{X}_i along \mathbf{u} to obtain $X_{\mathbf{u}i} = \frac{\langle \mathbf{X}_i, \mathbf{u} \rangle}{\|\mathbf{u}\|}$, for i = 1, 2, ..., n.
 - Find $\alpha = \frac{1+\|\mathbf{u}\|}{2}$ -th quantile of $X_{\mathbf{u}1}, ..., X_{\mathbf{u}n}$, say $q_{\mathbf{u}}$...
 - $Q_{proj}(\mathbf{u}) = q_{\mathbf{u}}\mathbf{e}_{\mathbf{u}}, \ \mathbf{e}_{\mathbf{u}} = \mathbf{u}/\|\mathbf{u}\|$ being the unit vector along \mathbf{u} .
- 2. Compute Weights corresponding to this projection quantile $Q_{proj}(\mathbf{u})$
 - Compute global weights for the direction vector u by k-mean distance;
 - Compute k-mean distance corresponding to $Q_{proj}(\mathbf{u})$ using $\bar{d}_k = \frac{1}{n} \sum_{i=1}^n d_i \mathbb{I}_{\{d_i < d_{(k)}\}}$, where d_i is the euclidean distance of \mathbf{X}_i from $Q_{proj}(\mathbf{u})$ given by $\|\mathbf{X}_i Q_{proj}(\mathbf{u})\|$. k is a tuning parameter.
 - Compute the weights corresponding to **u**:

$$w_{11} = \exp(-a.d_k)$$

where a is a tuning parameter.

- Compute weights for each sample point X_i ; i = 1, 2, ..., n:
 - Compute the orthogonal Norms by $\|\mathbf{X}_{\mathbf{u}\perp i}\| = \|\mathbf{X}_i X_{\mathbf{u}i}\mathbf{e}_{\mathbf{u}}\|$.
 - Compute weight of i^{th} sample:

$$w_{2i} = \begin{cases} \exp\left[-b\frac{\|\mathbf{X}_{\mathbf{u}\perp i}\|}{\|\mathbf{X}_i\|}\right] & \text{if}\|\mathbf{X}_i\| \le \epsilon \\ 0 & \text{otherwise} \end{cases}$$

 b, ϵ being tuning parameters.

- 3. Compute the weighted projection quantile
 - Define $\tilde{X}_{\mathbf{u}i} = w_{\mathbf{u}}w_{2i}X_{\mathbf{u}i}$ for i = 1, ..., n.
 - Find $\alpha = \frac{1+\|\mathbf{u}\|}{2}$ -th quantile of $\tilde{X}_{\mathbf{u}1},...,\tilde{X}_{\mathbf{u}n}$. Let it be $\tilde{q}_{\mathbf{u}}$.
 - Find the weighted projection quantile as $\tilde{Q}_{proj}(\mathbf{u}) = \tilde{q}_{\mathbf{u}}\mathbf{e}_{\mathbf{u}}$.

Definition Given a random vector $\mathbf{X} \in \mathbb{R}^p$ that follows a multivariate distribution F, and a point $\mathbf{p} \in \mathbb{R}^p$, find $\alpha_{\mathbf{p}}$ such that $\|\mathbf{p}\|$ is the $\alpha_{\mathbf{p}}$ -th quantile for the projection of \mathbf{X} on \mathbf{p} , say $X_{\mathbf{p}}$. Then the **Projection Quantile Depth** (PQD) at \mathbf{p} with respect to F is defined as

$$D(\mathbf{p}, F) = \exp(-\alpha_{\mathbf{p}})$$

Given data $\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_n$, the PQD at a given \mathbf{p} can be estimated by finding the two nearest points on either side of $\|\mathbf{p}\|$ along \mathbf{p} , say $\mathbf{p}_1, \mathbf{p}_2$, obtain their corresponding quantiles, say α_1, α_2 respectively, then estimate $\alpha_{\mathbf{p}}$ by a linear approximation:

$$\hat{\alpha}_{\mathbf{p}} = \frac{(\alpha_1 - \alpha_2)(\|\mathbf{p}\| - \|\mathbf{p}_1\|)}{\|\mathbf{p}_1\| - \|\mathbf{p}_2\|} + \alpha_1$$

and plugging it in the above definition.

Algorithm 1 Algorithm for PQD-based classification

- 1: **procedure** PQDCLASSIFIER(training data $\mathbf{X}_i \in \mathbb{R}^{n_i \times p}$ with class labels i; i = 1, 2, ..., k, new data $\mathbf{x}_{new} \in \mathbb{R}^p$)
- 2: Set i = 1.
- 3: top:
- 4: Estimate from the sample the PQD of **p** with respect to the i^{th} population, say $D(\mathbf{x}_{new}, \mathbf{X}_i)$.
- 5: if i = k then Stop
- 6: **else**
- 7: Set $i \leftarrow i + 1$, **goto** top
- 8:
- 9: Find c that maximizes the PQD of \mathbf{x}_{new} w.r.t. all possible classes:

$$D(\mathbf{x}_{new}, \mathbf{X}_c) = \max\{D(\mathbf{x}_{new}, \mathbf{X}_i) : i = 1, 2, ..., k\}$$

10: Assign class c to new data \mathbf{x}_{new} .

Note One can define a weighted version of PQD by replacing $X_{\mathbf{p}}$ by their weighted version $\tilde{X}_{\mathbf{p}}$. A weighted classification scheme follows similarly.