Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

ЛАБОРАТОРНА РОБОТА № 1

з дисципліни «МНД» на тему «ЗАГАЛЬНІ ПРИНЦИПИ ОРГАНІЗАЦІЇ ЕКСПЕРИМЕНТІВ З ДОВІЛЬНИМИ ЗНАЧЕННЯМИ ФАКТОРІВ»

ВИКОНАВ: студент II курсу ФІОТ групи IB-91 Василенко Б.Ю. Залікова - 9105

> ПЕРЕВІРИВ: ac. Регіда П. Г.

Мета: Вивчити основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчити побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпити отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.

Завдання:

- 1) Використовуючи програму генерації випадкових чисел, провести трьохфакторний експеримент в восьми точках (три стовбці і вісім рядків в матриці планування заповнити її випадковими числами). Рекомендовано взяти обмеження до 20 при генерації випадкових чисел, але врахувати можливість зміни обмеження на вимогу викладача. Програма створюється на основі будь-якої мови високого рівня.
- 2) Визначити значення функції відгукув для кожної точки плану за формулою лінійної регресії:

Y = a0 + a1 X1 + a2 X2 + a3 X3,

де а0, а1, а2, а3 довільно вибрані (для кожного студента різні) коефіцієнти, постійні протягом усього часу проведення експерименту.

- 3) Виконати нормування факторів. Визначити значення нульових рівнів факторів. Знайти значення відгуку для нульових рівнів факторів і прийняти його за еталонне У_{эт}.
- 4) Знайти точку плану, що задовольняє критерію вибору оптимальності (див. табл.1). Варіанти обираються по номеру в списку в журналі викладача.

Варіанти завлання:

105	$\max((Y-Y_{\Im T})^2)$

Лістинг програми:

```
from prettytable import PrettyTable
from random import random
def func(x, y, z): return round(a0+a1*x+a2*y+a3*z, 3)
def gen X(max, round n, size): return [round(random()*max, round n) for i in
range(size)]
def get_X0(x, round_n): return round((max(x) + min(x))/2, round_n)
def get_dx(x, x0, round_n): return round(max(x) - x0, round_n)
def get xN(x, x0, dx, round n): return map(lambda x: round((x-x0)/dx, round n), x)
a\theta = 1
a1 = 2
a2 = 3
a3 = 4
x1 = gen_X(20, 3, 8)
x2 = gen_X(20, 3, 8)
x3 = gen_X(20, 3, 8)
y = list(map(func, x1, x2, x3))
x01 = get_X0(x1, 3)
x02 = get_X0(x2, 3)
x03 = get_X0(x3, 3)
dx1 = get dx(x1, x01, 3)
dx2 = get dx(x2, x02, 3)
dx3 = get_dx(x3, x03, 3)
xN1 = get_xN(x1, x01, dx1, 3)
xN2 = get_xN(x2, x02, dx2, 3)
xN3 = get_xN(x3, x03, dx3, 3)
y_{et} = func(x01, x02, x03)
crit = list(map(lambda y: round((y-y_et)**2, 3), y))
mainTable = prettytable.PrettyTable()
mainTable.field_names = ["№", "X1", "X2", "X3", "Y", "XN1", "XN2", "XN3", "Критерій"]
mainTable.add rows(
    zip(range(1, 9), x1, x2, x3, y, xN1, xN2, xN3, crit)
mainTable.add_row(["X0", x01, x02, x03, y_et, "-", "-", "-"])
mainTable.add_row(["dx", dx1, dx2, dx3, "-", "-", "-", "-", "-"])
print(mainTable)
print("Y_et =", y_et)
ind solve = crit.index(max(crit))
print("Функція відгуку та точка, які задовольняють критерію вибору max((Y-
Y_et)^2:\nX1 = {}, X2 = {}, X3 = {}\nY = {}".format(x1[ind_solve], x2[ind_solve],
x3[ind_solve], y[ind_solve]))
```

Результат роботи програми:

+	івтат ро	been in	t		+	4	+	++	
l Nº	X1	X2	X3	Y	XN1	XN2	XN3	Критерій	
+	+	+	+		+	+	+	++	
1	10.235	3.939	11.045	77.467	0.163	-0.645	-0.898	629.91	
2	16.676	1.467	18.478	112.665	0.991	-1.0	0.991	102.01	
3	12.623	15.246	10.643	114.556	0.47	0.977	-1.0	143.784	
4	1.198	13.45	18.512	117.794	-1.0	0.719	1.0	231.922	
5	15.765	2.629	15.912	104.065	0.874	-0.833	0.339	2.25	
6	1.542	15.406	17.548	120.494	-0.956	1.0	0.755	321.449	
7	1.828	13.505	15.358	106.603	-0.919	0.727	0.198	16.305	
8	16.744	13.047	11.249	118.625	1.0	0.662	-0.846	257.924	
X0	8.971	8.437	14.578	102.565		-		l - I	
dx	7.773	6.969	3.934		I -	1 -] -	1 - 1	
+	+	+	+		+	+	+	++	
Y_ет :	= 102.565								
Функція відгуку та точка, які задовольняють критерію вибору max((Y-Y_et)^2):									
X1 = 10.235, X2 = 3.939, X3 = 11.045									
Y = 77.467									

Контрольні питання:

1. З чого складається план експерименту?

Сукупність усіх точок плану - векторів Xi (для $i=1,2,\ldots,$ N) утворює план експерименту. Таким чином, план експерименту описується матрицею, яка містить N рядків і K стовбців. Кожен рядок матриці означає точку плану експерименту, а стовпчик — фактор експерименту.

2. Що називається спектром плану?

Сукупність усіх точок плану, що відрізняються рівнем хоча б одного фактора (різних строк матриці планування), називається спектром плану.

3. Чим відрізняються активні та пасивні експерименти?

В пасивному експерименті існують контрольовані, але некеровані вхідні параметри — ми не маємо можливості втручатись в хід проведення експерименту, і виступаємо в ролі пасивного користувача. В активному — існують керовані і контрольовані вхідні параметри — ми самі являємось адміністраторами нашої системи.

4. <u>Чим характеризується об'єкт досліджень?</u> Дайте визначення факторному простору.

Об'єкт досліджень розглядається як «чорний ящик». Аналізуються деякі властивості та якості, які можуть описуватися числовими значеннями. Вектор $X_1...X_\kappa$ представляє собою групу контрольованих та керованих величин, котрі можуть змінюватись необхідним чином при проведенні експерименту, Цю групу характеристик $X_1...X_\kappa$ також називають факторами або керованими впливами.

Факторний простір — це множина зовнішніх і внутрішніх параметрів моделі, значення яких дослідник може контролювати в ході підготовки і проведення модельного експерименту.