BUNDESREPUBLIK DEUTSCHLAND PCT/EP200 4 / 0 0 0 7 71

54305

REC'D **2 7 FEB 2004**WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 08 836.9

Anmeldetag:

27. Februar 2003

Anmelder/Inhaber:

BASF Plant Science GmbH, 67056 Ludwigshafen/DE

Bezeichnung:

Verfahren zur Herstellung mehrfach ungesättigter

Fettsäuren

IPC:

C 07 H, C 12 P, C 12 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 7. Januar 2004 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

得giB

A 9161 06/00 EDV-L

Patentansprüche

5

15

20

25

- 1. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Acyl-CoA:Lyso-phospholipid-Acyltransferaseaktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten Acyl-CoA:Lysophospholipid-Acyltransferasen spezifisch C₁₆-, C₁₈-, C₂₀- oder C₂₂-Fettsäuren mit mindestens einer Doppelbindung im Fettsäuremolekül umsetzen.
- 2. Isolierte Nukleinsäuresequenzen gemäß Anspruch 1 ausgewählt aus der Gruppe:
- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 enthaltenden codierenden Sequenz ableiten lassen
 - c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 aufweisen und eine Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität aufweisen.
 - 3. Isolierte Nukleinsäuresequenz nach Anspruch 1 oder 2, wobei die Sequenz aus einem Eukaryont stammt.
 - 4. Aminosäuresequenz, die von einer isolierten Nukleinsäuresequenz nach einem der Ansprüche 1 bis 3 codiert wird.
 - 5. Genkonstrukt, enthaltend eine isolierte Nukleinsäure nach einem der Ansprüche 1 bis 3, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.
- Genkonstrukt nach Anspruch 5, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n).

20

25

30

2

- Genkonstrukt nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe der Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-9-Elongase.
- 8. Vektor, enthaltend eine Nukleinsäure nach den Ansprüchen 1 bis 3 oder ein Genkonstrukt nach den Ansprüchen 5 bis 7.
- 9. Transgener nicht-humaner Organismus, enthaltend mindestens eine Nukleinsäure nach den Ansprüchen 1 bis 3, ein Genkonstrukt nach den Ansprüchen 5 bis 7 oder einen Vektor nach Anspruch 8.
 - 10. Transgener nicht-humaner Organismus nach Anspruch 9, wobei der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.
 - 11. Transgener nicht-humaner Organismus nach Anspruch 9 oder 10, wobei der Organismus eine Pflanze ist.
- 15 12. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in einem Organismus, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:
 - a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz, die für ein Polypeptid mit einer Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität codiert; oder
 - b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 enthaltenden codierenden Sequenz ableiten lässt, oder
 - c) Einbringen mindestens eines Derivates der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Nukleinsäuresequenz in den Organismus, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 aufweisen und eine äquivalente Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität aufweisen, und
 - d) kultivieren und ernten des Organismus.
- 13. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach Anspruch 12,
 35 dadurch gekennzeichnet, dass zusätzlich zu den unter (a) bis (c) genannten
 Nukleinsäuresequenzen weitere Nukleinsäuresequenzen in den Organismus
 eingebracht wurden, die für Polypeptide des Fettsäure– oder Lipidstoffwechsels

10

15

25

30

3

ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) codieren.

- 14. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass zusätzlich zu den unter (a) bis (c) genannten Nukleinsäuresequenzen weitere Nukleinsäuresequenzen in den Organismus eingebracht wurden, die für Polypeptide ausgewählt aus der Gruppe Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desatuase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-9-Elongaseaktivität codieren.
- 15. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 14, dadurch gekennzeichnet, dass als Substrat der Acyl-CoA:Lysophospholipid-Acyltransferasen C₁₆-, C₁₈-, C₂₀- oder C₂₂-Fettsäuren verwendet werden.
- 16. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 15, dadurch gekennzeichnet, dass die mehrfach ungesättigten Fettsäusuren aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isoliert werden.
 - 17. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 16, dadurch gekennzeichnet, dass die im Verfahren hergestellte mehrfach ungesättigten Fettsäure eine C₁₈-, C₂₀- oder C₂₂-Fettsäuren mit mindestens zwei Doppelbindungen im Molekül ist.
 - 18. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 17, dadurch gekennzeichnet, dass im Verfahren eine mehrfach ungesättigte Fettsäure ausgewählt aus der Gruppe Dihomo-γ-linolensäure, Arachidonsäure, Eisosapentaensäure, Docosapentaensäure und Docosahexaensäure hergestellten wird.
 - 19. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 18, dadurch gekennzeichnet, dass der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.
- 35 20. Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 19, dadurch gekennzeichnet, dass der Organismus eine transgene Pflanze ist.

4

- Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren nach den Ansprüchen 12 bis 20, dadurch gekennzeichnet, dass die transgene Pflanze eine Ölfruchtpflanze ist.
- 22. Öl, Lipide oder Fettsäuren oder eine Fraktion davon, hergestellt durch das Verfahren nach einem der Ansprüche 12 bis 21.
- 23. Öl-, Lipid- oder Fettsäurezusammensetzung, die mehrfach ungesättigter Fettsäuren hergestellt nach einem Verfahren nach einem der Ansprüche 12 bis 21 umfasst und von transgenen Pflanzen stammt.
- Verwendung von Öl, Lipide oder Fettsäuren hergestellt nach einem Verfahren
 nach einem der Ansprüche 12 bis 21 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 23 in Futter, Nahrungsmitteln, Kosmetika oder Pharmazeutika.

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren

Beschreibung

5

15

20

25

30

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem transgenen Organismus exprimiert werden.

Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte enthaltend die erfindungsgemäßen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren.

Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung.

Fettsäuren und Triglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem ob es sich um freie gesättigte oder ungesättigte Fettsäuren oder um Triglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet, so werden beispielsweise mehrfach ungesättigte Fettsäuren Babynahrung zur Erhöhung des Nährwertes zugesetzt.. Mehrfach ungesättigte ω -3-Fettsäuren und ω -6-Fettsäuren stellen dabei einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar. Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten ω -3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA, C22:6^{Δ4,7,10,13,16,19}) oder Eisosapentaensäure (= EPA, C20:5^{Δ5,8,11,14,17}) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der ungesättigten Fettsäure DHA wird dabei ein positiver Effekt auf die Entwicklung des Gehirns zugeschrieben.

Im folgenden werden mehrfach ungesättigte Fettsäuren als PUFA, PUFAs, LCPUFA oder LCPUFAs bezeichnet (poly unsaturated fatty acids, PUFA, long chain poly unsaturated fatty acids, LCPUFA).

Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder Schizochytrium oder aus Öl-produzierenden Pflanzen wie
Soja, Raps, Algen wie Crypthecodinium oder Phaeodactylum und weiteren gewonnen,
wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z.B. Fischen gewonnen werden. Die freien

10

15

20

25

35

40

2

Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Höhere mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ARA, C20:4^{Δ5,8,11,14}), Dihomo-γ-linolensäure (C20:3^{Δ8,11,14}) oder Docosapentaensäure (DPA, C22:5^{Δ7,10,13,16,19}) lassen sich nicht aus Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färberdistel oder anderen isolieren. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.

Je nach Anwendungszweck sind Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt, so sind z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten ω -3-Fettsäuren wir dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser ω -3-Fettsäuren zu Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch ω -3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung. ω -6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten.

 ω -3- und ω -6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosanoide (sog. PG₂-Serie), die aus ω -6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG₃-Serie) aus ω -3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.

Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ -9-Desaturase beschrieben. In WO 93/11245 wird eine Δ -15-Desaturase in WO 94/11516 wird eine Δ -12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144–20149, Wada et al., Nature 347, 1990: 200–203 oder Huang et al., Lipids 34, 1999: 649–659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141–12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777–792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der

15

25

35

40

3

anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse untersucht wird. Δ –6–Desaturasen werden in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO98/46763 WO98/46764.

WO9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO99/64616 oder WO98/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe Gehalte an ungesättigten Fettsäuren/Lipiden wie z.B. γ-Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω -3- und ω -6-Fettsäuren erhalten.

Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Thraustochytrien oder Schizochytrien-Stämme, Algen wie Phaeodactylum tricornutum oder Crypthecodinium-Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor. Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wenn immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ARA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und DHA anfallen.

Alternativ kann die Produktion von Feinchemikalien im großen Maßstab vorteilhaft über die Produktion in Pflanzen durchgeführt werden, die so entwickelt werden, dass sie die vorstehend genannten PUFAs herstellen. Besonders gut für diesen Zweck geeignete Pflanzen sind Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten wie Raps, Canola, Lein, Soja, Sonnenblumen, Borretsch und Nachtkerze. Aber auch andere Nutzpflanzen, die Öle oder Lipide und Fettsäuren enthalten, sind gut geeignet, wie in der eingehenden Beschreibung dieser Erfindung erwähnt. Mittels herkömmlicher Züchtung ist eine Reihe von Mutantenpflanzen entwickelt worden, die ein Spektrum an wünschenswerten Lipiden und Fettsäuren, Cofaktoren und Enzymen produzieren. Die Selektion neuer Pflanzensorten mit verbesserter Produktion eines bestimmten Moleküls ist jedoch ein zeitaufwändiges und schwieriges Verfahren oder sogar unmöglich, wenn die Verbindung in der entsprechenden Pflanze nicht natürlich vorkommt, wie im Fall von mehrfach ungesättigten C₁₈-, C₂₀-Fettsäuren und C₂₂-Fettsäuren und solchen mit längeren Kohlenstoffketten.

Aufgrund der positiven Eigenschaften ungesättigter Fettsäuren hat es in der Vergangenheit nicht an Ansätzen gefehlt, diese Gene, die an der Synthese von Fettsäuren

20

25

35

40

4

bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Pflanzen mit einem geändertem Gehalt an mehrfach ungesättigten Fettsäuren verfügbar zu machen. Bisher konnten jedoch längerkettige mehrfach ungesättigte C₂₀- und/oder C₂₂-Fettsäuren wie EPA oder ARA nicht in Pflanzen hergestellt werden.

Aber auch in anderen Organismen wie Mikroorganismen wie Algen oder Pilzen führten die gentechnischen Veränderungen des Fettsäurestoffwechselweges über das Einbringen und die Expression beispielsweise von Desaturasen nur zu relativ geringen Steigerungen der Produktivität in diesen Organismen. Ein Grund hierfür mag in dem sehr komplexen Fettsäurestoffwechsel liegen. So ist der Einbau von mehrfach ungesättigten Fettsäuren in Membranlipide und/oder in Triacylglyceride und deren Ab- und Umbau sehr komplex und bis heute biochemisch und speziell genetisch noch nicht vollständig aufgeklärt und verstanden.

Die Biosynthese von LCPUFAs und der Einbau von LCPUFAs in Membranen oder Triacylglyceride erfolgt über verschiedene Stoffwechselwege (Abbadi et al. (2001) European Journal of Lipid Science & Technology 103:106-113). In Bakterien wie Vibrio und Mikroalgen wie Schizochytrium wird Malonyl-CoA über eine LCPUFA-produzierende Polyketidsynthase zu LCPUFAs umgesetzt (Metz et al. (2001) Science 293: 290-293; WO 00/42195; WO 98/27203; WO 98/55625). In Mikroalgen wie Phaeodactylum und Moosen wie Physcomitrella werden ungesättigte Fettsäuren wie Linolsäure oder Linolensäure in Form ihrer Acyl-CoAs in mehreren Desaturierungs- und Elongationsschritten zu LCPUFAs umgesetzt (Zank et al. (2000) Biochemical Society Transactions 28: 654-658). Bei Säugetieren beinhaltet die Biosynthese von DHA zusätzlich zu Desaturierungs- und Elongationsschritten eine Kettenverkürzung über β-Oxidation.

LCPUFAs liegen in Mikroorganismen und niederen Pflanzen entweder ausschließlich in Form von Membranlipiden vor, wie bei Physcomitrella und Phaeodactylum oder sie sind in Membranlipiden und Triacylglyceriden vorhanden, wie bei Schizochytrium und Mortierella. Der Einbau von LCPUFAs in Lipide und Öle wird durch verschiedene -Acyltransferasen und Transacylasen katalysiert. Diese Enzyme sind bereits bekannt für den Einbau von gesättigten und ungesättigten Fettsäuren [Slabas (2001) J. Plant Physiology 158: 505-513; Frentzen (1998) Fett/Lipid 100: 161-166); Cases et al. (1998) Proc. Nat. Acad. Sci. USA 95: 13018-13023]. Bei den Acyltransferasen handelt sich um Enzyme des sogenannten Kennedy-Pathways, die an der cytoplasmatischen Seite des Membransystems des Endoplasmatischen Reticulums, nachfolgend als 'ER' bezeichnet, lokalisiert sind. Experimentell können Membranen des ER als sogenannte ,mikrosomale Fraktionen' aus verschiedenen Organismen isoliert werden (Knutzon et al. (1995) Plant Physiology 109: 999-1006; Mishra & Kamisaka (2001) Biochemistry 355: 315-322; US 5968791). Diese ER-gebundenen Acyltransferasen in der mikrosomalen Fraktion verwenden Acyl-CoA als aktivierte Form der Fettsäuren. Glycerin-3-phosphat Acyltransferase, im folgenden GPAT genannt, katalysiert den Einbau von Acylgruppen an der sn-1 Position von Glycerin-3-phosphat. 1-Acylglycerin-3-phosphat Acyltransferase (E.C. 2.3.1.51), auch Lysophosphatidsäure Acyltransferase, im folgenden LPAAT

35

40

5

genannt, katalysiert den Einbau von Acylgruppen an der sn-2 Position von Lysophosphatidsäure, nachfolgend als LPA abgekürzt. Nach Dephosphorylierung von Phosphatidsäure durch Phosphatidsäure Phosphatase katalysiert Diacylglycerin Acyltransferase, im folgenden DAGAT genannt, den Einbau von Acylgruppen an der sn-3 Position von Diacylglycerins. Neben diesen Kennedy Pathway Enzymen sind weitere Enzyme am Einbau von Fettsäuren in Triacylglyceride beteiligt, die Acylgruppen aus Membranlipiden in Triacylglyceride einbauen können. Phospholipid Diacylglycerin Acyltransferase, nachfolgend PDAT genannt, und Lysophosphatidylcholin Acyltransferase, nachfolgend LPCAT genannt.

Die enzymatische Aktivität einer LPCAT wurde erstmals in Ratten beschrieben [Land 10 (1960) Journal of Biological Chemistry 235: 2233-2237]. In Pflanzen existiert eine plastidäre Isoform der LPCAT [Akermoun et al. (2000) Biochemical Society Transactions 28: 713-715] sowie eine ER gebundene Isoform [Tumaney und Rajasekharan (1999) Biochimica et Biophysica Acta 1439: 47-56; Fraser und Stobart, Biochemical Society Transactions (2000) 28: 715-7718]. LPCAT ist in Tieren wie auch in Pflanzen 15 an der Biosynthese und der Transacylierung von mehrfach ungesättigten Fettsäuren beteiligt [Stymne und Stobart (1984) Biochem. J. 223: 305-314; Stymne und Stobart (1987) in 'The Biochemistry of Plants: a Comprehensive Treatise', Vol. 9 (Stumpf, P.K. ed.) pp. 175-214, Academic Press, New York]. Eine wichtige Funktion der LPCAT oder allgemeiner gesagt einer Acyl-CoA:Lysophospholipid Acyltransferase, nachfolgend 20 LPLAT genannt, bei der ATP-unabhängigen Synthese von Acyl-CoA aus Phospholipiden wurde von Yamashita et al. (2001; Journal of Biological Chemistry 276: 26745-26752) beschrieben.

Trotz vieler biochemischer Daten konnten bisher keine Gene kodierend für LPCAT
identifiziert werden. Gene anderer verschiedener pflanzlicher Acyltransferasen konnten isoliert werden und werden in WO 00/18889 (Novel Plant Acyltransferases) beschrieben.

Höhere Pflanzen enthalten mehrfach ungesättigte Fettsäuren wie Linolsäure (C18:2) und Linolensäure (C18:3). Arachidonsäure (ARA), Eicosapentaensäure (EPA) und Docosahexaensäure (DHA) kommen wie oben beschrieben im Samenöl höherer Pflanzen gar nicht oder nur in Spuren vor (E. Ucciani: Nouveau Dictionnaire des Huiles Végétales. Technique & Documentation – Lavoisier, 1995. ISBN: 2-7430-0009-0). Es ist vorteilhaft, in höheren Pflanzen, bevorzugt in Ölsaaten wie Raps, Lein, Sonnenblume und Soja, LCPUFAs herzustellen, da auf diese Weise große Mengen qualitativ hochwertiger LCPUFAs für die Lebensmittelindustrie, die Tierernährung und für pharmazeutische Zwecke kostengünstig gewonnen werden können. Hierzu werden vorteilhaft über gentechnische Methoden Gene kodierend für Enzyme der Biosynthese von LCPUFAs in Ölsaaten eingeführt und exprimiert werden. Dies sind beispielsweise Gene kodierend für Δ -6-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase und Δ -4-Desaturase. Diese Gene können vorteilhaft aus Mikroorganismen, Tieren und niederen Pflanzen isoliert werden, die LCPUFAs herstellen und in den Membranen oder Triacylglyceriden einbauen. So konnten bereits Δ -6-Desaturase-Gene aus dem Moos

20

25

30

6

Physcomitrella patens und Δ -6-Elongase-Gene aus P. patens und dem Nematoden C. elegans isoliert.

Erste transgene Pflanzen, die Gene kodierend für Enzyme der LCPUFA-Biosynthese enthalten und exprimieren und LCPUFAs produzieren wurden beispielsweise in DE 102 19 203 (Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen) erstmals beschrieben. Diese Pflanzen produzieren allerdings LCPUFAs in Mengen, die für eine Aufarbeitung der in den Pflanzen enthaltenen Öle noch weiter optimiert werden müssen.

Um eine Anreicherung der Nahrung und des Futters mit diesen mehrfach ungesättigten Fettsäuren zu ermöglichen, besteht daher ein großer Bedarf an einem einfachen, kostengünstigen Verfahren zur Herstellung dieser mehrfach ungesättigten Fettsäuren speziell in eukaryontischen Systemen.

Es bestand daher die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem eukaryontischen Organismus zu entwickeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in einem Organismus, dadurch gekennzeichnet, dass das Verfahren - folgende Schritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz, die für ein Polypeptid mit einer Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität codiert; oder
- b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 enthaltenden codierenden Sequenz ableiten lässt, oder
- c) Einbringen mindestens eines Derivates der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Nukleinsäuresequenz in den Organismus, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 aufweisen und eine äquivalente Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität aufweisen, und
- d) kultivieren und ernten des Organismus.

Vorteilhaft enthalten die im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigten Fettsäuren mindestens zwei vorteilhaft drei Doppelbindungen. Besonders vorteilhaft enthalten die Fettsäuren vier oder fünf Doppelbindungen. Im Verfahren hergestellte Fettsäuren haben vorteilhaft 16-, 18-, 20- oder 22 C-Atome in der Fettsäure-

10

20

25 '

30

35

7

kette. Diese hergestellten Fettsäuren können als einziges Produkt im Verfahren hergestellt werden oder in einem Fettsäuregemisch vorliegen.

Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen handelt es sich um isolierte Nukleinsäuresequenzen, die für Polypeptide mit Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität codieren.

Die im Verfahren hergestellten mehrfach ungesättigten Fettsäuren sind vorteilhaft in Membranlipiden und/oder Triacylglyceriden gebunden, können aber auch als frei Fettsäuren oder aber gebunden in Form anderer Fettsäureester in den Organismen vorkommen. Dabei können sie wie gesagt als "Reinprodukte" oder aber vorteilhaft in Form von Mischungen verschiedener Fettsäuren oder Mischungen unterschiedlicher Glyceride vorliegen. Dabei lassen sich die in den Triacylglyceriden gebundenen verschieden Fettsäuren von kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren besonders bevorzugt sind die langkettigen Fettsäuren LCPUFAs von C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren.

Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester mit mehrfach ungesättigten C_{16} –, C_{18} –, C_{20} – und/oder C_{22} –Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester hergestellt. Bevorzugt enthalten diese Fettsäuremoleküle drei, vier oder fünf Doppelbindungen und führen vorteilhaft zur Synthese von Hexadecadiensäure (C16:2^{Δ9,12}), γ-Linolensäure (= GLA, C18:3^{Δ6,9,12}), Stearidonsäure (= SDA, C18:4^{Δ6,9,12,15)}. Dihomo-γ-Linolensäure (= DGLA, 20:3^{Δ8,11,14}), Eicosatetraensäure (= ETA, C20:4^{Δ5,8,11,14}), Arachidonsäure (ARA), Eicosapentaensäure (EPA) oder deren Mischungen, bevorzugt EPA und/oder ARA.

Die Fettsäureester mit mehrfach ungesättigten C_{16} -, C_{18} -, C_{20} - und/oder C_{22} -Fettsäuremolekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycosphingolipid, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phosphatidylserin, Phosphatidylglycerol, Phosphatidylglycerol oder Diphosphatidylglycerol, Monoacylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei bevorzugt drei Doppelbindungen enthalten, isoliert werden. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Organismen vorteilhaft den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäureester und frei Fettsäuren) in den Organismen in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt.

Im erfindungsgemäßen Verfahren werden die hergestellten LCPUFAs mit einem Gehalt von mindestens 3 Gew.-%, vorteilhaft von mindestens 5 Gew.-%, bevorzugt von

15

25[.]

8

mindestens 8 Gew.-%, besonders bevorzugt von mindestens 10 Gew.-%, ganz besonders bevorzugt von mindestens 15 Gew.-% bezogen auf die gesamten Fettsäuren in der transgenen Organismen vorteilhaft in einer transgenen Pflanze hergestellt. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Hexadecadiensäure (C16:2), Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ARA) oder Eicosapentaensäure (EPA) nicht als absolute Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in dem Ausgangsorganismus bzw. in der Ausgangspflanze beispielsweise sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ARA und EPA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ARA oder nur EPA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren hergestellt. Werden beide Verbindungen (ARA + EPA) gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1:2 (EPA:ARA), vorteilhaft von mindestens 1:3, bevorzugt von 1:4, besonders bevorzugt von 1:5 hergestellt.

Durch die erfindungsgemäßen Nukleinsäuresequenzen kann eine Steigerung der Ausbeute an mehrfach ungesättigten Fettsäuren von mindestens 50 %, vorteilhaft von mindestens 80 %, besonders vorteilhaft von mindestens 100 %, ganz besonders vorteilhaft von mindestens 150 % gegenüber den nicht transgenen Ausgangsorganismus beim Vergleich in der GC-Analyse siehe Beispiele erreicht werden.

Auch chemisch reine mehrfach ungesättigte Fettsäuren oder Fettsäurezusammensetzungen sind nach den vorbeschriebenen Verfahren darstellbar. Dazu werden die Fettsäuren oder die Fettsäurezusammensetzungen aus dem Organismus wie den Mikroorganismen oder den Pflanzen oder dem Kulturmedium, in dem oder auf dem die Organismen angezogen wurden, oder aus dem Organismus und dem Kulturmedium in bekannter Weise beispielsweise über Extraktion, Destillation, Kristallisation, Chromatographie oder Kombinationen dieser Methoden isoliert. Diese chemisch reinen Fettsäuren oder Fettsäurezusammensetzungen sind für Anwendungen im Bereich der Lebensmittelindustrie, der Kosmetikindustrie und besonders der Pharmaindustrie vorteilhaft.

Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Organismen wie Pilze wie Mortierella oder Traustochytrium, Hefen wie Saccharomyces oder Schizosaccharomyces, Moose wie Physcomitrella oder Ceratodon, nicht-humane Tiere wie Caenorhabditis, Algen wie Crypthecodinium oder Phaeodactylum oder Pflanzen wie zweikeimblättrige oder einkeimblättrige Pflanzen in Frage. Vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Pilze wie Mortierella oder Traustochytrium, Algen wie Crypthecodinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Ölfrucht-

10

15

20 -

25

35

40

9

pflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf.

Für das erfindungsgemäße beschriebene Verfahren ist es vorteilhaft in den Organismus zusätzlich zu den unter Verfahrensschritt (a) bis (c) eingebrachten Nukleinsäuren zusätzlich weitere Nukleinsäuren einzubringen, die für Enzyme des Fettsäure- oder Lipidstoffwechsels codieren.

Im Prinzip können alle Gene des Fettsäure- oder Lipidstoffwechsels vorteilhaft in Kombination mit der erfinderischen Acyl-CoA:Lysophospholipid-Acyltransferase im Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren verwendet werden vorteilhaft werden Gene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) in Kombination mit der Acyl-CoA:Lysophospholipid-Acyltransferase verwendet. Besonders bevorzugt werden Gene ausgewählt aus der Gruppe der Δ -4-Desaturasen, Δ -5-Desaturasen, Δ -6-Desaturasen, Δ -8-Desaturasen in Kombination mit der Acyl-CoA:Lysophospholipid-Acyltransferase im erfindungsgemäßen Verfahren verwendet.

Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Acyl-CoA:Lysophospholipid-Acyltransferase-aktivität codieren, vorteilhaft in Kombination mit Nukleinsäuresequenzen, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels wie Δ -4-, Δ -5-, Δ -6-, Δ -8-Desaturase-oder Δ -5-, Δ -6-oder Δ -9-Elongaseaktivität codieren, können unterschiedlichste mehrfach ungesättigte Fettsäuren im erfindungsgemäßen Verfahren hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Organismen

10

15

20

25

30

10

wie den vorteilhaften Pflanze lassen sich Mischungen der verschiedenen mehrfach ungesättigten Fettsäure oder einzelne mehrfach ungesättigte Fettsäuren wie EPA oder ARA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) entstehen so Fettsäuren, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ARA oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18: $2^{\Delta 9,12}$) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α-Linolensäure (= ALA, C18:3^{Δ9,12,15}) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA und EPA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität der an der Synthese beteiligten Enzyme Acyl-CoA:Lysophospholipid-Acyltransferase vorteilhaft in Kombination mit der Δ -5-, Δ -6-Desaturase und Δ -6-Elongase, oder der Δ -5-, Δ -8-Desaturase und Δ –9–Elongase oder in Kombination mit nur den ersten beiden Gene Δ –6– Desaturase und Δ -6-Elongase oder Δ -8-Desaturase und Δ -9-Elongase der Synthesekette lassen sich gezielt in den vorgenannten Organismen vorteilhaft in den vorgenannten Pflanzen nur einzelne Produkte herstellten. Durch die Aktivität der Δ -6-Desaturase und Δ -6-Elongase entstehen beispielsweise GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Wird die Δ -5-Desaturase zusätzlich in die Organismen vorteilhaft in die Pflanze eingebracht, so entstehen zusätzlich ARA oder EPA. Dies gilt auch für Organismen in die vorher die Δ -8-Desaturase und Δ -9-Elongase eingebracht wurde. Vorteilhaft werden nur ARA oder EPA oder deren Mischungen synthetisiert, abhängig von der in im Organismus bzw. in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Organismen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf das Endprodukt DGLA, ETA oder deren Mischungen bzw. ARA, EPA oder deren Mischungen.

Zur Steigerung der Ausbeute im beschriebenen Verfahren zur Herstellung von Ölen und/oder Triglyceriden mit einem vorteilhaft erhöhten Gehalt an mehrfach ungesättigten Fettsäuren ist es vorteilhaft die Menge an Ausgangsprodukt für die Fettsäuresynthese zu steigern, dies kann beispielsweise durch das Einbringen einer Nukleinsäure in den Organismus, die für ein Polypeptid mit Δ-12-Desaturase codiert, erreicht werden. Dies ist besonders vorteilhaft in Öl-produzierenden Organismen wie Raps, die einen hohen Ölsäuregehalt aufweisen. Da diese Organismen nur einen geringen Gehalt an Linolsäure aufweisen (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678 - 681) ist die Verwendung der genannten Δ-12-Desaturasen zur Herstellung des Ausgangsprodukts Linolsäure vorteilhaft.

20

25

35

40

11

Im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren stammen vorteilhaft aus Pflanzen wie Algen wie Isochrysis oder Crypthecodinium, Algen/Diatomeen wie Phaeodactylum, Moose wie Physcomitrella oder Ceratodon oder höheren Pflanzen wie den Primulaceae wie Aleuritia, Calendula stellata, Osteospermum spinescens oder Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophtora, Entomophthora, Mucor oder Mortierella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten oder dem Mensch. Vorteilhaft stammen die Nukleinsäuren aus Pilzen, Tieren oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus Nematoden wie Caenorhabditis.

Vorteilhaft werden im erfindungsgemäßen Verfahren die vorgenannten Nukleinsäuresequenzen oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität der durch Nukleinsäuresequenzen codierten Proteine besitzen. Diese Sequenzen werden einzeln oder in Kombination mit der für die Acyl-CoA:Lysophospholipid-Acyltransferase codierenden Nukleinsäuresquenz in Expressionskonstrukte cloniert und zum Einbringen und zur Expression in Organismen verwendet. Diese Expressionskonstrukte ermöglichen durch ihre Konstruktion eine vorteilhafte optimale Synthese der im erfindungsgemäßen Verfahren produzierten mehrfach ungesättigten Fettsäuren.

Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle oder eines ganzen Organismus, der die im Verfahren verwendeten Nukleinsäuresequenzen enthält, wobei die Zelle und/oder der Organismus mit der erfindungsgemäßen Nukleinsäuresequenz, die für die Acyl-CoA:Lysophospholipid-Acyltransferase codiert, einem Genkonstrukt oder einem Vektor wie nachfolgend beschrieben, allein oder in Kombination mit weiteren Nukleinsäuresequenzen, die für Proteine des Fettsäure- oder Lipidsstoffwechsels codieren, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Feinchemikalie aus der Kultur. Bei der Kultur kann es sich beispielsweise um eine Fermentationskultur beispielsweise im Falle der Kultivierung von Mikroorganismen wie z.B. Mortierella, Saccharomyces oder Traustochytrium oder um eine Treibhaus oder Feldkultur einer Pflanze handeln. Die so hergestellte Zelle oder der so hergestellte Organismus ist vorteilhaft eine Zelle eines Öl-produzierenden Organismus wie einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Hanf, Erdnuss, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.

Unter Anzucht ist beispielsweise die Kultivierung im Falle von Pflanzenzellen, -gewebe oder -organe auf oder in einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur, Blumentopferde oder auf einem Ackerboden zu verstehen.

"Transgen" bzw. "Rekombinant" im Sinne der Erfindung bedeutet bezüglich zum Beispiel einer Nukleinsäuresequenz, einer Expressionskassette (= Genkonstrukt) oder einem Vektor enthaltend die erfindungsgemäße Nukleinsäuresequenz oder einem Organismus transformiert mit den erfindungsgemäßen Nukleinsäuresequenzen, Expres-

sionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommenen Konstruktionen, in denen sich entweder

- a) die erfindungsgemäße Nukleinsäuresequenz, oder
- b) eine mit der erfindungsgemäßen Nukleinsäuresequenz funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder
- .c) (a) und (b)

5

10

15

20

25

30

35

40

sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitution, Addition, Deletion, Inversion oder Insertion eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen genomischen bzw. chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des natürlichen Promotors der erfindungsgemäßen Nukleinsäuresequenz mit dem entsprechenden Acyl-CoA:Lysophospholipid-Acyltransferase -Gen - wird zu einer transgenen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beispielsweise beschrieben in US 5,565,350 oder WO 00/15815.

Unter transgenen Organismus bzw. transgener Pflanze im Sinne der Erfindung ist wie vorgenannt zu verstehen, dass die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Transgen bedeutet aber auch wie genannt, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Organismen sind Pilze wie Mortierella oder Pflanzen sind die Ölfruchtpflanzen.

Als Organismen bzw. Wirtsorganismen für die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die Expressionskassette oder den Vektor eignen sich prinzipiell vorteilhaft alle Organismen, die in der Lage sind Fettsäuren speziell ungesättigte Fettsäuren zu synthetisieren bzw. für die Expression rekombinanter Gene geeignet sind. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kul-

10

15

20

25

30

35

40

13

turpflanzen wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, Flachs, Raps, Kokosnuss, Ölpalme, Färbersafflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze beispielsweise die Gattung Mortierella, Saprolegnia oder Pythium, Bakterien wie die Gattung Escherichia, Hefen wie die Gattung Saccharomyces, Cyanobakterien, Ciliaten, Algen oder Protozoen wie Dinoflagellaten wie Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Pilze wie Mortierella alpina, Pythium insidiosum oder Pflanzen wie Soja, Raps, Kokosnuss, Ölpalme, Färbersafflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cerevisiae, besonders bevorzugt werden Soja, Flachs, Raps, Färbersafflor, Sonnenblume, Calendula, Mortierella oder Saccharomyces cerevisiae. Prinzipiell sind als Wirtsorganismen neben den vorgenannten transgenen Organismen auch transgene Tiere vorteilhaft nicht-humane Tiere geeignet beispielsweise C. elegans.

Nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).

Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.

Hierzu gehören Pflanzenzellen und bestimmte Gewebe, Organe und Teile von Pflanzen in all ihren Erscheinungsformen, wie Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe und Zellkulturen, das von der eigentlichen transgenen Pflanze abgeleitet ist und/oder dazu verwendet werden kann, die transgene Pflanze hervorzubringen.

Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten mehrfach ungesättigten Fettsäuren enthalten, können vorteilhaft direkt vermarktet werden ohne dass, die synthetisierten Öle, Lipide oder Fettsäuren isoliert werden müssen. Unter Pflanzen im erfindungsgemäßen Verfahren sind ganze Pflanzen sowie alle Pflanzenteile, Pflanzenorgane oder Pflanzenteile wie Blatt, Stiel, Samen, Wurzel, Knollen, Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe, Zellkulturen, die sich von der transgenen Pflanze abgeleiten und/oder dazu verwendet werden können, die transgene Pflanze hervorzubringen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Organismen vorteilhaft Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte mehrfach ungesättigten Fettsäuren lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflan-

10

15

20

35

40

14

zenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Im Falle von Mikroorganismen werden diese nach Ernte beispielsweise direkt ohne weitere Arbeitsschritte extrahiert oder aber nach Aufschluss über verschiedene dem Fachmann bekannte Methoden extrahiert. Auf diese Weise können mehr als 96 % der im Verfahren hergestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst beispielsweise die Pflanzenschleime und Trübstoffe entfernt. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.

Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs bzw. LCPUFAs C_{18} -, C_{20} - oder C_{22} -Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, fünf oder sechs Doppelbindungen. Diese C_{18} -, C_{20} - oder C_{22} -Fettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.

Eine Ausführungsform der Erfindung sind deshalb Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.

Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, der Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika.

Unter dem Begriff "Öl", "Lipid" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl, Lipid oder Fett einen hohen Anteil an mehrfach ungesättigten freien oder vorteilhaft veresterten Fettsäure(n), insbesondere Linolsäure, γ-Linolensäure, Dihomoγ-linolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 % oder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl, Lipid oder Fett kann verschiedene andere gesättigte oder ungesättigte

10

5

20

25

30

35

15

Fettsäuren, z.B. Calendulasäure, Palmitin-, Palmitolein-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangsorganismus der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.

Bei den im Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen enthalten, handelt es sich beispielsweise um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.

Aus den so im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen lassen sich die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkalibehandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z.B. H₂SO₄. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.

Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in einem Organismus vorteilhaft einer Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktionell transkribierten Gens gewährleistende Sequenz enthält, funktionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen Expression in die Organismen vorteilhaft zur multiparallelen samenspezifischen Expression von Genen in die Pflanzen gebracht.

Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ARA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipid- und PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.

Als Substrate der im erfindungsgemäßen Acyl-CoA:Lysophospholipid-Acyltransferasen werden vorteilhaft C₁₆-, C₁₆-, C₂₀- oder C₂₂-Fettsäuren verwendet.

10

35

40

16

Zur Herstellung der erfindungsgemäßen langkettiger PUFAs müssen die mehrfach ungesättigten C₁₆- oder C₁₈-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C₁₈- oder C₂₀-Fettsäuren, und nach zwei oder drei Elongationsrunden zu C22- oder C24-Feitsäuren. Die Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu C_{18} -, C_{20} - und/oder C_{22} -Fettsäuren vorteilhaft mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen, besonders bevorzugt zu C_{20} und/oder C22-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die Verlängerung stattgefunden hat, können weitere Desaturierungsschritte wie z.B. eine solche in Δ -5-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Dihomo-γ-linolensäure, Arachidonsäure, Eicosapentaensäure, Docosapetaensäure und/oder Docosahesaensäure. Die C₁₈-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.

Der bevorzugte Biosyntheseort von Fettsäuren, Ölen, Lipiden oder Fette in den vorteilhaft verwendeten Pflanzen ist beispielsweise im allgemeinen der Samen oder Zellschichten des Samens, so dass eine samenspezifische Expression der im Verfahren verwendeten Nukleinsäuren sinnvoll ist. Es ist jedoch naheliegend, dass die Biosynthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muss, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in Epidermiszellen oder in den Knollen - gewebespezifisch erfolgen kann.

Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismus wie Hefen wie Saccharomyces oder Schizosaccharomyces, Pilze wie Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor oder Traustochytrium Algen wie Isochrysis, Phaeodactylum oder Crypthecodinium verwendet, so werden diese Organismen vorteilhaft fermentativ angezogen.

Durch die Verwendung der erfindungsgemäßen Nukleinsäuren, die für Acyl-CoA:Lysophospholipid-Acyltransferasen codieren, können im Verfahren die hergestellten mehrfach ungesättigten Fettsäuren mindestens um 10 %, bevorzugt mindestens um 15 %, besonders bevorzugt mindestens um 20 %, ganz besonders bevorzugt um mindestens 50 % gegenüber dem Wildtyp der Organismen, die die Nukleinsäuren nicht rekombinant enthalten, erhöht werden.

Durch das erfindungsgemäße Verfahren können die hergestellten mehrfach ungesättigten Fettsäuren in den im Verfahren verwendeten Organismen prinzipiell auf zwei Arten erhöht werden. Es kann vorteilhaft der Pool an freien mehrfach ungesättigten Fettsäuren und/oder der Anteil der über das Verfahren hergestellten veresterten mehr-

10

· 25

30

35

17

fach ungesättigten Fettsäuren erhöht werden. Vorteilhaft wird durch das erfindungsgemäße Verfahren der Pool an veresterten mehrfach ungesättigten Fettsäuren in den transgenen Organismen erhöht.

Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismen verwendet, so werden sie je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0 °C und 100 °C, bevorzugt zwischen 10 °C bis 60 °C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nachgefüttert werden. Die hergestellten mehrfach ungesättigten Fettsäuren können nach dem Fachmann bekannten Verfahren wie oben beschrieben aus den Organismen isoliert werden. Beispielsweise über Extraktion, Destillation, Kristallisation, ggf. Salzfällung und/oder Chromatographie. Die Organismen können dazu vorher noch vorteilhaft aufgeschlossen werden.

Das erfindungsgemäße Verfahren wird, wenn es sich bei den Wirtsorganismen um Mikroorganismen handelt, vorteilhaft bei einer Temperatur zwischen 0 °C bis 95 °C, bevorzugt zwischen 10 °C bis 85 °C, besonders bevorzugt zwischen 15 °C bis 75 °C, ganz besonders bevorzugt zwischen 15 °C bis 45 °C durchgeführt

Der pH–Wert wird dabei vorteilhaft zwischen pH 4 und 12, bevorzugt zwischen pH 6 und 9, besonders bevorzugt zwischen pH 7 und 8 gehalten.

Das erfindungsgemäße Verfahren kann batchweise, semi-batchweise oder kontinuierlich betrieben werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) zu finden.

Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods für General Bacteriology" der American Society für Bacteriology (Washington D. C., USA, 1981) enthalten.

Diese erfindungsgemäß einsetzbaren Medien umfassen wie oben beschrieben gewöhnlich eine oder mehrere Kohlenstoffquellen, Stickstoffquellen, anorganische Salze, Vitamine und/oder Spurenelemente.

10

15

20

30

35

40

18

Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnussöl und/oder Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und/oder Linolsäure, Alkohole und/oder Polyalkohole wie z. B. Glycerin, Methanol und/oder Ethanol und/oder organische Säuren wie z. B. Essigsäure und/oder Milchsäure.

Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak in flüssiger- oder gasform oder Ammoniamsalze, wie Ammoniamsulfat, Ammoniamchlorid, Ammoniamphosphat, Ammoniamcarbonat oder Ammoniamnitrat, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen.

Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden.

25 Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden.

Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat, oder organische Säuren, wie Citronensäure.

Die erfindungsgemäß zur Kultivierung von Mikroorganismen eingesetzten Fermentationsmedien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spezifischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F.

15 -

20

30

35

19

Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3). Wachstumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.

Sämtliche Medienkomponenten werden, entweder durch Hitze (20 min bei 1,5 bar und 121°C) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.

Die Temperatur der Kultur liegt normalerweise zwischen 15°C und 45°C, vorzugsweise bei 25°C bis 40°C und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen. Der pH-Wert für die Anzucht lässt sich während der Anzucht durch Zugabe von basischen Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder sauren Verbindungen wie Phosphorsäure oder Schwefelsäure kontrollieren. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie z. B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen, wie z. B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die so erhaltenen, insbesondere mehrfach ungesättigte Fettsäuren enthaltenden, Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.

Die Fermentationsbrühe kann anschließend weiterverarbeitet werden. Je nach Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie z. B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden. Vorteilhaft wird die Biomasse nach Abtrennung aufgearbeitet.

Die Fermentationsbrühe kann aber auch ohne Zellabtrennung mit bekannten Methoden, wie z. B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration, eingedickt beziehungsweise aufkonzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann schließlich zur Gewinnung der darin enthaltenen Fettsäuren aufgearbeitet werden.

Die im Verfahren gewonnenen Fettsäuren eignen sich auch als Ausgangsmaterial für die chemische Synthese von weiteren Wertprodukten. Sie können beispielsweise in Kombination miteinander oder allein zur Herstellung von Pharmaka, Nahrungsmittel, Tierfutter oder Kosmetika verwendet werden.

25

20

Ein weiterer erfindungsgemäßer Gegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten Acyl-CoA:Lysophospholipid-Acyltransferasen spezifisch C₁₆-, C₁₈-, C₂₀- oder C₂₂-Fettsäuren mit mindestens einer Doppelbindungen im Fettsäuremolekül umsetzen.

Vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID
 NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz,
- 10 b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 enthaltenden codierenden Sequenz ableiten lassen
 - Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 aufweisen und eine Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität aufweisen.
- 20 Vorteilhaft stammen die oben genannten Nukleinsäuresequenzen aus einem eukaryontischen Organismus.
 - Die im Verfahren verwendeten Nukleinsäuresequenzen, die für Proteine mit Acyl-CoA:Lysophospholipid-Acyltransferase-Aktivität codieren oder für Proteine des Fettsäure- oder Lipidstoffwechsels, werden vorteilhaft in einer Expressionskassette (= Nukleinsäurekonstrukt), die die Expression der Nukleinsäuren in einem Organismus vorteilhaft einer Pflanze oder einem Mikroorganismus ermöglicht, eingebracht.
 - Zum Einbringen werden die im Verfahren verwendeten Nukleinsäuren vorteilhaft einer Amplifikation und Ligation in bekannter Weise unterworfen. Vorzugsweise geht man in Anlehnung an das Protokoll der Pfu-DNA-Polymerase oder eines Pfu/Taq-DNA-
- Polymerasegemisches vor. Die Primer werden in Anlehnung an die zu amplifizierende Sequenz gewählt. Zweckmäßigerweise sollten die Primer so gewählt werden, dass das Amplifikat die gesamte kodogene Sequenz vom Start- bis zum Stop-Kodon umfasst. Im Anschluss an die Amplifikation wird das Amplifikat zweckmäßigerweise analysiert. Beispielsweise kann die Analyse nach gelelektrophoretischer Auftrennung hinsichtlich
- Qualität und Quantität erfolgen. Im Anschluss kann das Amplifikat nach einem Standardprotokoll gereinigt werden (z.B. Qiagen). Ein Aliquot des gereinigten Amplifikats steht dann für die nachfolgende Klonierung zur Verfügung. Geeignete Klonierungsvektoren sind dem Fachmann allgemein bekannt. Hierzu gehören insbesondere Vektoren, die in mikrobiellen Systemen replizierbar sind, also vor allem Vektoren, die eine effi-

10

20

25

30

35

40

21

ziente Klonierung in Hefen oder Pilze gewährleisten, und die stabile Transformation von Pflanzen ermöglichen. Zu nennen sind insbesondere verschiedene für die T-DNAvermittelte Transformation geeignete, binäre und co-integrierte Vektorsysteme. Derartige Vektorsysteme sind in der Regel dadurch gekennzeichnet, dass sie zumindest die für die Agrobakterium-vermittelte Transformation benötigten vir-Gene sowie die T-DNA begrenzenden Sequenzen (T-DNA-Border) beinhalten. Vorzugsweise umfassen diese Vektorsysteme auch weitere cis-regulatorische Regionen wie Promotoren und Terminatoren und/oder Selektionsmarker, mit denen entsprechend transformierte Organismen identifiziert werden können. Während bei co-integrierten Vektorsystemen vir-Gene und T-DNA-Sequenzen auf demselben Vektor angeordnet sind, basieren binäre Systeme auf wenigstens zwei Vektoren, von denen einer vir-Gene, aber keine T-DNA und ein zweiter T-DNA, jedoch kein vir-Gen trägt. Dadurch sind letztere Vektoren relativ klein, leicht zu manipulieren und sowohl in E.-coli als auch in Agrobacterium zu replizieren. Zu diesen binären Vektoren gehören Vektoren der Serien pBIB-HYG, pPZP, . pBecks, pGreen. Erfindungsgemäß bevorzugt verwendet werden Bin19, pBI101, pBinAR, pGPTV und pCAMBIA. Eine Übersicht über binäre Vektoren und ihre Verwendung gibt Hellens et al, Trends in Plant Science (2000) 5, 446-451. Für die Vektorpräparation können die Vektoren zunächst mit Restriktionsendonuklease(n) linearisiert und dann in geeigneter Weise enzymatisch modifiziert werden. Im Anschluss wird der Vektor gereinigt und ein Aliquot für die Klonierung eingesetzt. Bei der Klonierung wird das enzymatisch geschnittenen und erforderlichenfalls gereinigten Amplifikat mit ähnlich präparierten Vektorfragmenten mit Einsatz von Ligase kloniert. Dabei kann ein bestimmtes Nukleinsäurekonstrukt bzw. Vektor- oder Plasmidkonstrukt einen oder auch mehrere kodogene Genabschnitte aufweisen. Vorzugsweise sind die kodogenen Genabschnitte in diesen Konstrukten mit regulatorischen Sequenzen funktional verknüpft. Zu den regulatorischen Sequenzen gehören insbesondere pflanzliche Sequenzen wie die oben beschriebenen Promotoren und Terminatoren. Die Konstrukte lassen sich vorteilhafterweise in Mikroorganismen, insbesondere Escherichia coli und Agrobacterium tumefaciens, unter selektiven Bedingungen stabil propagieren und ermöglichen einen Transfer von heterologer DNA in Pflanzen oder Mikroorganismen.

Unter der vorteilhaften Verwendung von Klonierungsvektoren können die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäurekonstrukte in Organismen wie Mikroorganismen oder vorteilhaft Pflanzen eingebracht werden und damit bei der Pflanzentransformation verwendet werden, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)). Die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäure-konstrukte und/oder Vektoren lassen sich damit zur gentechnologischen Veränderung

15

20

25

0

35

40

22

eines breiten Spektrums an Organismen vorteilhaft an Pflanzen verwenden, so dass diese bessere und/oder effizientere Produzenten von PUFAs werden.

Es gibt eine Reihe von Mechanismen, durch die Veränderung eines erfindungsgemäßen Acyl-CoA:Lysophospholipid-Acyltransferase-Proteins die Ausbeute, Produktion und/oder Effizienz der Produktion einer Feinchemikalie aus einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund eines veränderten Proteins direkt beeinflussen kann. Die Anzahl oder Aktivität des Acyl-CoA: Lysophospholipid-Acyltransferase-Proteins oder -Gens sowie von Genkombinationen von Acyl-CoA:Lysophospholipid-Acyltransferasen, Desaturasen und/oder Elongasen kann erhöht sein, so dass größere Mengen der produzierten Verbindungen de novo hergestellt werden, weil den Organismen diese Aktivität und Fähigkeit zur Biosynthese vor dem Einbringen des/der entsprechenden Gens/Gene fehlte. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Fettsäure- und Lipidstoffwechsel. Auch die Verwendung verschiedener divergenter, d.h. auf DNA-Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z.B. abhängig vom Reifegrad eines Samens oder Öl-speichernden Gewebes ermöglicht.

Durch das Einbringen eines Acyl-CoA:Lysophospholipid-Acyltransferase-, Desaturaseund/oder Elongase-Gens oder mehrerer Acyl-CoA:Lysophospholipid-Acyltransferasen-, Desaturase- und/oder Elongase-Gene in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöht, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöht oder de novo geschaffen werden. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Feinchemikalien (z.B. Fettsäuren, polaren und neutralen Lipiden) nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Fettsäuren und Lipide sind selbst als Feinchemikalien wünschenswert; durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Acyl-CoA:Lysophospholipid-Acyltransferase-, Desaturasen und/oder Elongasen, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Desaturasen, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Organismen und vorteilhaft aus Pflanzen zu steigem.

Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teile von diesen, wobei die Proteine oder das einzelne Protein oder Teile davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 ist, so dass das Protein oder der Teil davon eine Acyl-

10

15

20

35

23

CoA:Lysophospholipid-Acyltransferase-Aktivität beibehält. Vorzugsweise hat das Protein oder der Teil davon, das/der von dem Nukleinsäuremolekül kodiert wird, noch seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen oder Lipidkörperchen in Organismen vorteilhaft in Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen noch hat. Vorteilhaft ist das von den Nukleinsäuremolekülen kodierte Protein zu mindestens etwa 40 %, vorzugsweise mindestens etwa 60 % und stärker bevorzugt mindestens etwa 70 %, 80 % oder 90 % und am stärksten bevorzugt mindestens etwa 95 %, 96 %, 97 %, 98 %, 99 % oder mehr homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8. Vorteilhafte Ausführungsformen der erfindungsgemäßen Aminosäuresequenz der Sequenz SEQ ID NO: 2 sind Aminosäuresequenzen, die an Position 30 der SEQ ID NO: 2 anstelle des vorhandenen Methionin einen Valinrest haben oder in Position 100 anstelle des vorhandenen Serin einen Glycinrest haben oder in Position 170 anstelle des vorhandenen Phenylalanin einen Serinrest haben. Diese werden in SEQ ID NO: 4, SEQ ID NO: 6 bzw. SEQ ID NO: 8 wiedergegeben. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder identisch zu verstehen.

Unter wesentlicher enzymatischer Aktivität der verwendeten Acyl-CoA:Lysophospholipid-Acyltransferasen ist zu verstehen, dass sie gegenüber den durch die Sequenz mit SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 und deren Derivate codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % und ganz besonders 40 % aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren in einem Organismus vorteilhaft einer Pflanzenzelle notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei desaturierte C16-, C18- oder C20-24-Kohlenstoffketten mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier oder fünf Stellen gemeint ist.

Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Pilzen oder Pflanzen wie Algen oder Moosen wie den Gattungen Physcomitrella, Thraustochytrium, Phytophtora, Ceratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium oder aus Nematoden wie Caenorhabditis, speziell aus den Gattungen und Arten Physcomitrella patens, Phytophtora infestans, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum oder besonders vorteilhaft aus Caenorhabditis elegans.

Alternativ können die verwendeten isolierten Nukleotidsequenzen für Acyl-CoA:Lysophospholipid-Acyltransferasen codieren, die an eine Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 hybridisieren, z.B. unter stringenten Bedingungen hybridisieren.

10

15

20

25

30

35

24

Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Organismen wie Mikroorganismen oder Pflanzen ermöglicht, eingebracht.

Dabei werden die für die erfinderische Acyl-CoA:Lysophospholipid-Acyltransferasen, die verwendeten Desaturasen und/oder die Elongasen codierenden Nukleinsäuresequenzen mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die Acyl-CoA:Lysophospholipid-Acyltransferase-Gene sowie die vorteilhaft verwendeten Δ -4-Desaturase-, Δ 5-Desaturase-, Δ -6-Desaturase- und/oder Δ -8-Desaturase-Gene und/oder die Δ -5-Elongase-, Δ -6-Elongase- und/oder Δ -9-Elongase--Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie

10

5

20

25

BO

35

25

Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 oder dessen Derivate definiert sind und für Polypeptide gemäß SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 kodieren. Die genannten Acyl-CoA:Lysophospholipid-Acyltransferasen führen dabei zu einem Austausch der Fettsäuren zwischen dem Mono-, Di- und/oder Triglyceridpool der Zelle und dem CoA-Fettsäureester-Pool, wobei das Substrat vorteilhaft ein, zwei, drei, vier oder fünf Doppelbindungen aufweist und vorteilhaft 16, 18, 20, 22 oder 24 Kohlenstoffatome im Fettsäuremolekül aufweist. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.

Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in Promotoren vor, wie dem cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder λ-PL-Promotor und werden vorteilhafterweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regulationssequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SPO2, in den Hefe- oder Pilzpromotoren ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285–294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0 388 186 (Benzylsulfonamid-induzierbar), Plant J. 2, 1992:397–404 (Gatz et al., Tetracyclininduzierbar), EP-A-0 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanoloder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflan-

zenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosylpyrophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr. U87999) oder der in EP-A-0 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica) von Baeumlein et al. Plant L. 2, 2,4002,000, 200,000.

Promotor aus Brassica), von Baeumlein et al., Plant J., 2, 2, 1992:233–239 (LeB4-Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt–2– oder lpt–1–Promotor aus Gerste (WO 95/15389 und

10

20

25

35

40

26

WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.

Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. beschrieben in WO 99/16890.

Um einen besonders hohen Gehalt an PUFAs vor allem in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samenspezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samenspezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 und lpt1(Gerste) [WO 95/15389 u. WO95/23230], Samen-spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phosphoenol-Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder α-Amylase (Gerste) [EP 781 849].

Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Acyl-CoA:Lysophospholipid-Acyltransferase, die vorteilhafte Δ -4-Desaturase, die Δ -5-Desaturase, die Δ -6-Desaturase, die Δ -8-Desaturase und/oder die Δ -5-Elongase, die Δ -6-Elongase und/oder die Δ -9-Elongase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen führen können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu expremierenden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach be-

10

15

20

25

BO

35

40

27

vorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal. Die Nukleinsäuresequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Es ist aber auch möglich mehrere Nukleinsäuresequenzen hinter einem Promotor und ggf. vor einem Terminator zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.

Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z.B. der OCS1 Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.

Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) oder deren Kombinationen verwendet. Besonders vorteilhafte Nukleinsäuresequenzen sind Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe der Δ -4-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -9-Desaturase-, Δ -12-Desaturase-, Δ -5-Elongase-, Δ -6-Elongaseoder ∆-9-Elongase.

10

5

20 .

25

35

40

28

Dabei können die vorgenannten Desaturasen in Kombination mit anderen Elongasen und Desaturasen in erfindungsgemäßen Expressionskassetten kloniert werden und zur Transformation von Pflanzen mithilfe von Agrobakterium eingesetzt werden.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die Pflanze verwendet werden oder aber in einen Vektoren eingebracht werden.

Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäuren, die für Acyl-CoA:Lysophospholipid-Acyltransferasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäureoder Lipidstoffwechsels wie Δ -4-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -9-Desaturase-, Δ -12-Desaturase-, Δ -5-Elongase-, Δ -6-Elongaseund/oder Δ -9-Elongase. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z.B. Bakterienvektoren mit bakteriellem Replikationsursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.

Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die die unten beschriebenen Nukleinsäuren oder das oben beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz

10

15

20

25

30

35

40

29

funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z.B. in einem In-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (z.B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z.B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.

Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Acyl-CoA:Lysophospholipid-Acyltransferasen, Desaturasen und Elongasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können Acyl-CoA:Lysophospholipid-Acyltransferase-, Desaturase- und/oder Elongase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology.1, 3:239-251), Ciliaten der Typen: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S.71-119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant

35

40

30

Physiol. Plant Molec. Biol. 42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor-Regulationssequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.

Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, welche die Expression von Fusions- oder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u.a. pGEX (Pharmacia Biotech Inc; Smith, D.B., und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.

Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u.a. pTrc (Amann et al. (1988) Gene 69:301-315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression vom pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt.

Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBRReihe, wie pBR322, die pUC-Reihe, wie pUC18 oder pUC19, die M113mp-Reihe,
pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1,
\[\lambdagt11 \] or pBdCI, in Streptomyces pIJ101, pIJ364, pIJ702 oder pIJ361, in Bacillus
pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667.

Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYe-Desaturasec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego].

10

5

20

25

30

35

40

31

Weitere geeignete Hefevektoren sind beispielsweise pAG-1, YEp6, YEp13 oder pEMBLYe23.

Alternativ können die Acyl-CoA:Lysophospholipid-Acyltransferasen, Desaturasen und/oder Elongasen in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (z.B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).

Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P.H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E.F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

Bei einer weiteren Ausführungsform des Verfahrens können die Acyl-CoA:Lysophospholipid-Acyltransferasen, Desaturasen und/oder Elongasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3):239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z.B. Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38.

Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-T-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet.

Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Prote-

20

25

30

35

40

32

in/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).

Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zell- oder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.

Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Plastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.

Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol: Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Auch Promotoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alphaamylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinII-Promotor (EP-A-0 375 091).

Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Fettsäure-, Lipid- und Ölbiosynthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der Ipt2- oder lpt1-Gen-

10

20

35

40

33

Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin-Gen, dem Roggen-Secalin-Gen).

Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Acyl-CoA:Lysophospholipid-Acyltransferasen allein oder in Kombination mit Desaturasen und/oder Elongasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können mehrere Vektoren mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.

Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Plastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394.

Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformation" und "Transfektion", Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z.B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchenbeschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.

Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Mikroorganismen, wie Pilze oder Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Safflor, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee),

20

25

30

35

34

Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte: Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuß, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Safflor, Bäume (Ölpalme, Kokosnuß).

- Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte Nukleinsäuresequenzen, die für Polypeptide mit Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten Acyl-CoA:Lysophospholipid-Acyltransferasen spezifisch C₁₆-, C₁₈-, C₂₀- oder C₂₂-Fettsäuren mit mindestens einer Doppelbindungen im Fettsäuremolekül umsetzen.
- 10 Vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:
 - d) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID
 NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz,
 - e) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 enthaltenden codierenden Sequenz ableiten lassen
 - f) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 aufweisen und eine Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität aufweisen.
 - Die oben genannte erfindungsgemäßen Nukleinsäuren stammen von Organismen, wie Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.
 - Der Begriff "Nukleinsäure (molekül)", wie hier verwendet, umfasst in einer vorteilhaften Ausführungsform zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z.B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Acyl-CoA:Lysophospholipid-Acyltransferasemolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5

10

15

20

25

30

35

40

35

kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt flankieren.

Die im Verfahren verwendeten Nukleinsäuremoleküle, z.B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 oder eines Teils davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert werden. Diese können als Hybridisierungssonde sowie Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsäuresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z.B. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18:5294-5299) und cDNA mittels Reverser Transkriptase (z.B. Moloney-MLV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St.Petersburg, FL) herstellen. Synthetische Oligonukleotidprimer zur Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Sequenzen oder mithilfe der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 dargestellten Aminosäuresequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.

Homologe der verwendeten Acyl-CoA:Lysophospholipid-Acyltransferase-Nukleinsäure-sequenzen mit der Sequenz SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 bedeutet beispielsweise allelische Varianten mit mindestens etwa 40 bis 60 %, vorzugsweise mindestens etwa 60 bis 70 %, stärker bevorzugt mindestens etwa 70 bis 80 %, 80 bis 90 % oder 90 bis 95 % und noch stärker bevorzugt mindestens etwa 95 %, 96 %, 97 %, 98 %, 99 % oder mehr Homologie zu einer in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Nukleotidsequenzen oder ihren

15

35

40

36

Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z.B. unter stringenten Bedingungen hybridisiert. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, In-5 sertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die enzymatische Aktivität der Acyl-CoA: Lysophospholipid-Acyltransferase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10 %, vorzugsweise 20 %, besonders bevorzugt 30 %, ganz besonders bevorzugt 40 % der ursprünglichen Enzymaktivität, verglichen mit dem durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 kodierten Protein.

Homologen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz.

Homologen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 be-20 deutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Se-25 quenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.

Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von PUFAs in transgenen Organismen vorteilhaft in Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölpalme, Kokosnuss) und ausdauernden Gräsem und Futterfeldfrüchten, entweder direkt (z.B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwendet und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion der PU-

10

5

20

25

30

35

40

37

FAs oder einer Abnahme unerwünschter Verbindungen führt (z.B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion einer oder mehrerer Fettsäuren beeinflussen kann).

Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden.

Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F.C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D.C., S. 612-636 und darin enthaltene Literaturstellen; Lengeler et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiological Reviews 57:522-542 und die enthaltenen Literaturstellen). Die so hergestellten an Phospholipide gebundenen Fettsäuren müssen anschließend wieder für die weitere Elongationen aus den Phospholipiden in den FettsäureCoA-Ester-Pool überführt werden. Dies ermöglichen die erfindungsgemäßen Acyl-CoA:Lysophospholipid-Acyltransferasen. Weiterhin können diese Enzyme die elongierten Fettsäuren wieder von den CoA-Estern auf die Phospholipide übertragen. Diese Reaktionsabfolge kann gegebenenfalls mehrfach durchlaufen werden (siehe Figur 10).

Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese C_{18} -Kohlenstoff-Fettsäuren müssen auf C_{20} und C_{22} verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Acyl-CoA:Lysophospholipid-Acyltransferasen, vorteilhaft in Kombination mit Desaturasen wie der Δ -4-, Δ -5-, Δ -6- und Δ -8-Desaturasen und/oder der Δ -5-, Δ -6-, Δ -9-Elongase können Arachidonsäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure sowie verschiedene andere langkettige PU-FAs erhalten, extrahiert und für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können vorzugsweise C_{18} -, C_{20} -, und/oder C_{22} -Fettsäuren mit mindestens

20

25

38

zwei vorteilhaft mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül, vorzugsweise zu C_{20} -, und/oder C_{22} -Fettsäuren mit vorteilhaft drei, vier oder fünf Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C_{20} zu C_{22} -Fettsäuren,zu Fettsäuren wie γ-Linolensäure, Dihomo-γ-linolensäure, Arachidonsäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate Substrat der Acyl-CoA:Lysophospholipid-

Acyltransferasen im erfindungsgemäßen Verfahren sind C₁₆-, C₁₈-, C₂₀- oder C₂₂Fettsäuren wie zum Beispiel Palmitinsäure, Palmitoleinsäure, Linolsäure, γLinolensäure, α-Linolensäure, Dihomo-γ-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Substrate sind Linolsäure, γ-Linolensäure und/oder αLinolensäure, Dihomo-γ-linolensäure bzw. Arachidonsäure, Eicosatetraensäure oder
 Eicosapentaensäure. Die C₁₈-, C₂₀- oder C₂₂-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester beispielsweise in Form ihrer Glyceride an.

Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Gylceridgemisch kann weitere Zusätze, z.B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.

Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.

Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4-5):161-166).

Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer &

25

35

40

39

Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1):1-16.

Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.

Der Begriff "Acyl-CoA:Lysophospholipid-Acyltransferasen" im Sinne der Erfindung umfasst Proteine, die am Transfer der an Phospholipide gebundenen Fettsäuren in den CoA-Ester-Pool und vice versa teilnehmen, sowie ihre Homologen, Derivaten oder Analoga. Unter Phospholipiden im Sinne der Erfindung sind zu verstehen Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin, und/oder Phosphatidylinositol vorteilhafterweise Phosphatidylcholin. Die Begriffe Acyl-CoA:Lysophospholipid-Acyltransferase-Nukleinsäuresequenz(en) umfassen Nukleinsäuresequenzen, die eine Acyl-CoA:Lysophospholipid-Acyltransferase kodieren und bei denen ein Teil eine kodierende Region und ebenfalls entsprechende 5'- und 3'-untranslatierte Sequenzbereiche sein können. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z.B. kg Produkt pro Stunde pro Liter). Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z.B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Stoffwechsel einer bestimmten Verbindung (z.B. der Stoffwechsel einer Fettsäure) umfasst dann die Ge-

10

15

25

35

40

samtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen.

Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nukleinsäuremoleküls wieder gegeben in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 Proteine mit mindestens 40 %, vorteilhaft etwa 50 bis 60 %, vorzugsweise mindestens etwa 60 bis 70 % und stärker bevorzugt mindestens etwa 70 bis 80 %, 80 bis 90 %, 90 bis 95 % und am stärksten bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm BestFit über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 8, Length Weight: 2.

Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Acyl-CoA:Lysophospholipid-Acyltransferase kodieren wie diejenige, die von den in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Nukleotidsequenzen kodiert wird.

Zusätzlich zu den in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 gezeigten Acyl-CoA:Lysophospholipid-Acyltransferase-Nukleotidsequenzen erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Acyl-CoA:Lysophospholipid-Acyltransferasen führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Acyl-CoA:Lysophospholipid-Acyltransferase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des Acyl-CoA:Lysophospholipid-Acyltransferase-Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäurepolymorphismen in der Acyl-CoA:Lysophospholipid-Acyltransferase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität von Acyl-CoA:Lysophospholipid-Acyltransferasen nicht verändern, sollen im Umfang der Erfindung enthalten sein.

Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Acyl-

40 CoA:Lysophospholipid-Acyltransferase-Nukleinsäuren unter Verwendung der Sequenzen oder eines Teils davon als Hybridisierungssonde gemäß Standard-

10

15

20

25

30

35

40

41

Hybridisierungstechniken unter stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60 % homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65 %, stärker bevorzugt mindestens etwa 70 % und noch stärker bevorzugt mindestens etwa 75 % oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 x Natriumchlorid/Natriumcitrat (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1 % SDS bei 50 bis 65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard-Hybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 x SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50 % Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA-Hybride zum Beispiel 0,1 x SSC und 20°C bis 45°C, vorzugsweise zwischen 30°C und 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 x SSC und 30°C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford, bestimmt werden können.

Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z.B. einer der Sequenzen der SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8) oder von zwei Nukleinsäuren (z.B. SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z.B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem

10

15

20

25

30

35

40

42

anderen Protein oder der anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d.h. Aminosäure- oder Nukleinsäure-"Homologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure-"Identität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d.h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen x 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen. Die verwendeten Programme bzw. Algorithmen sind oben beschrieben.

Ein isoliertes Nukleinsäuremolekül, das eine Acyl-CoA:Lysophospholipid-Acyltransferase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 oder SEQ ID NO: 8 homolog ist, kann durch Einbringen einer oder mehrerer Nukleotidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen können in eine der Sequenzen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 durch Standardtechniken, wie stellenspezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein), unpolaren Seitenketten, (z.B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Acyl-CoA:Lysophospholipid-Acyltransferase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Acyl-CoA: Lysophospholipid-Acyltransferase-kodierenden Sequenz eingebracht werden, z.B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Acyl-CoA:Lysophospholipid-Acyltransferase-Aktivität durchmustert werden, um Mutanten zu identifizieren, die die Acyl-CoA:Lysophospholipid-Acyltransferase-Aktivität beibehalten haben. Nach der Mutagenese einer der Sequenzen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 oder SEQ ID NO: 7 kann das kodierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann z.B. unter Verwendung der hier beschriebenen Tests bestimmt werden.

Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefasst werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.

5 Beispiele

10

15

20

25

Beispiel 1: Allgemeine Verfahren

a) Allgemeine Klonierungsverfahren:

Klonierungsverfahren, wie beispielsweise Restriktionsspaltungen, Agarosegele-lektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitro-cellulose- und Nylonmembranen, Verbindung von DNA-Fragmenten, Transformation von Escherichia coli- und Hefe-Zellen, Anzucht von Bakterien und Sequenzanalyse rekombinanter DNA, wurden durchgeführt wie beschrieben in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) oder Kaiser, Michaelis und Mitchell (1994) "Methods in Yeast Genetics" (Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3).

b) Chemikalien

Die verwendeten Chemikalien wurden, wenn im Text nicht anders angegeben, in p. A.-Qualität von den Firmen Fluka (Neu-Ulm), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) und Sigma (Deisenhofen) bezogen. Lösungen wurden unter Verwendung von reinem pyrogenfreiem Wasser, im nachstehenden Text als H₂O bezeichnet, aus einer Milli-Q-Wassersystem-Wasserreinigungsanlage (Millipore, Eschborn) hergestellt. Restriktionsendonukleasen, DNA-modifizierende Enzyme und molekularbiologische Kits wurden bezogen von den Firmen AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Boehringer (Mannheim), Genomed (Bad Oeynhausen), New England Biolabs (Schwalbach/Taunus), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) und Stratagene (Amsterdam, Niederlande). Wenn nicht anders angegeben, wurden sie nach den Anweisungen des Herstellers verwendet.

c) Klonierung und Expression von Desaturasen und Elongasen

Der Escherichia coli-Stamm XL1 Blue MRF' kan (Stratagene) wurde zur Subklonierung der Δ-6-Desaturase aus Physcomitrella patens verwendet. Für die funktionelle Expression dieses Gens wurde der Saccharomyces cerevisiae-Stamm INVSc 1 (Invitrogen Co.) verwendet. E. coli wurde in Luria-Bertani-Brühe (LB, Duchefa, Haarlem, Niederlande) bei 37°C kultiviert. Wenn nötig, wurde Ampicillin (100 mg/Liter) zugegeben, und 1,5 % Agar (Gew./Vol.) wurde für feste LB-Medien hinzugefügt. S. cerevisiae wurde bei 30°C entweder in YPG-Medium oder in komplettem Minimalmedium ohne Uracil (CMdum; siehe in: Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., Albright, L.B., Coen, D.M., und Varki, A. (1995) Current

15

20

25

35

44

Protocols in Molecular Biology, John Wiley & Sons, New York) mit entweder 2 % (Gew./Vol.) Raffinose oder Glucose kultiviert. Für feste Medien wurden 2 % (Gew./Vol.) Bacto™-Agar (Difco) hinzugefügt. Die zur Klonierung und Expression verwendeten Plasmide sind pUC18 (Pharmacia) und pYES2 (Invitrogen Co.).

5 d) Klonierung und Expression PUFA-spezifischer Desaturasen und Elongaen

Für die Expression in Pflanzen wurden cDNA Klone aus SEQ ID NO: 9, 11 oder 13 so modifiziert, dass lediglich die Codierregion mittels Polymerase Kettenreaktion unter Zuhilfenahme zweier Oligonukleotide amplifiziert werden. Dabei wurde darauf geachtet, dass eine Konsensusequenz vor dem Startcodon zur effizienten Translation eingehalten wurde. Entweder wurde hierzu die Basenfolge ATA oder AAA gewählt und vor das ATG in die Sequenz eingefügt [Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283-2929]. Vor diesem Konsensustriplett wurde zusätzlich eine Restriktionsschnittstelle eingeführt, die kompatibel sein muss zur Schnittstelle des Zielvektors, in den das Fragment kloniert werden soll und mit dessen Hilfe die Genexpression in Mikroorganismen oder Pflanzen erfolgen soll.

Die PCR-Reaktion wurde mit Plasmid-DNA als Matrize in einem Thermocycler (Biometra) mit der Pfu-DNA-(Stratagene)Polymerase und dem folgenden Temperaturprogramm durchgeführt: 3 min bei 96°C, gefolgt von 30 Zyklen mit 30 s bei 96°C, 30 s bei 55°C und 2 min bei 72°C, 1 Zyklus mit 10 min bei 72°C und Stop bei 4°C. Die Anlagerungstemperatur wurde je nach gewählten Oligonukleotiden variiert. Pro Kilobasenpaare DNA ist von einer Synthesezeit von etwa einer Minute auszugehen. Weitere Parameter, die Einfluss auf die PCR haben wie z.B. Mg-Ionen, Salz, DNA Polymerase etc., sind dem Fachmann auf dem Gebiet geläufig und können nach Bedarf variiert werden.

Die korrekte Größe des amplifizierten DNA-Fragments wurde mittels Agarose-TBE-Gelelektrophorese bestätigt. Die amplifizierte DNA wurde aus dem Gel mit dem QIA-quick-Gelextraktionskit (QIAGEN) extrahiert und in die Smal-Restriktionsstelle des dephosphorylierten Vektors pUC18 unter Verwendung des Sure Clone Ligations Kit (Pharmacia) ligiert, wobei die pUC-Derivate erhalten wurden. Nach der Transformation von E. coli XL1 Blue MRF' kan wurde eine DNA-Minipräparation [Riggs, M.G., & McLachlan, A. (1986) A simplified screening procedure for large numbers of plasmid mini-preparation. BioTechniques 4, 310-313] an ampicillinresistenten Transformanden durchgeführt, und positive Klone mittels BamHI-Restriktionsanalyse identifiziert. Die Sequenz des klonierten PCR-Produktes wurde mittels Resequenzierung unter Verwendung des ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt) bestätigt.

e) Transformation von Agrobacterium

Die Agrobacterium-vermittelte Pflanzentransformation wurde, wenn nicht anders beschrieben, wie von Deblaere et al. (1984, Nucl. Acids Res. 13, 4777-4788) mit Hilfe eines Agrobacterium tumefaciens-Stamms durchgeführt.

5 f) Pflanzentransformation

10

15

25

30

35

Die Agrobacterium-vermittelte Pflanzentransformation wurde, wenn nicht anders beschrieben, unter Verwendung von Standard-Transformations- und Regenerationstechniken durchgeführt (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2. Aufl., Dordrecht: Kluwer Academic Publ., 1995, in Sect., Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993, 360 S., ISBN 0-8493-5164-2).

Nach diesen kann beispielsweise Raps mittels Kotyledonen- oder Hypokotyltransformation transformiert werden (Moloney et al., Plant Cell 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701). Die Verwendung von Antibiotika für die Agrobacterium- und Pflanzenselektion hängt von dem für die Transformation verwendeten binären Vektor und Agrobacterium-Stamm ab. Die Rapsselektion wird dabei gewöhnlich unter Verwendung von Kanamycin als selektierbarem Pflanzenmarker durchgeführt.

Die Transformation von Soja kann unter Verwendung von beispielsweise einer in EP-A-0 0424 047 (Pioneer Hi-Bred International) oder in EP-A-0 0397 687, US 5,376,543, US 5,169,770 (University Toledo) beschriebenen Technik durchgeführt werden.

Die Pflanzentransformation unter Verwendung von Teilchenbeschuss, Polyethylenglycol-vermittelter DNA-Aufnahme oder über die Siliziumcarbonatfaser-Technik ist beispielsweise beschrieben von Freeling und Walbot "The maize handbook" (1993) ISBN 3-540-97826-7, Springer Verlag New York).

Der Agrobacterium-vermittelte Gentransfer in Lein (Linum usitatissimum) wurde, wenn nicht anders beschrieben, wie bei Mlynarova et al. [(1994) Plant Cell Report 13:282-285] beschriebenen Technik durchführt.

g) Plasmide für die Pflanzentransformation

Zur Pflanzentransformation wurden binäre Vektoren auf Basis der Vektoren pBinAR (Höfgen und Willmitzer, Plant Science 66 (1990) 221-230) oder pGPTV (Becker et al 1992, Plant Mol. Biol. 20:1195-1197) verwendet. Die Konstruktion der binären Vektoren, die die zu exprimierenden Nukleinsäuren enthalten, erfolgt durch Ligation der cDNA in Sense-Orientierung in die T-DNA erfolgen. 5' der cDNA aktiviert ein Pflanzen-promotor die Transkription der cDNA. Eine Polyadenylierungssequenz befindet sich 3'

10

20

25

46

von der cDNA. Die binären Vektoren können unterschiedliche Markergene tragen wie beispielsweise das Acetolactat Synthasegens (AHAS oder ALS) [Ott et al., J. Mol. Biol. 1996, 263:359-360], das eine Resistenz gegen die Imidazolinone vermittelt oder das nptll-Markergen, das für eine Kanamycin-Resistenz vermittelt durch Neomycinphosphotransferase codiert.

Die gewebespezifische Expression der Nukleinsäuren lässt sich unter Verwendung eines gewebespezifischen Promotors erzielen. Wenn nicht anders beschrieben wurde der LeB4- oder der USP-Promotor oder der Phaseolin-Promotor 5' der cDNA einkloniert wird. Als Terminatoren wurde der NOS-Terminator und der OCS-Terminator verwendet (siehe Figur 8). Figur 8 zeigt eine Vektorkarte des zur Expression verwendeten Vektor pSUN3CeLPLAT.

Auch jedes andere samenspezifische Promotorelement wie z.B. der Napin- oder Arcelin Promotor Goossens et al. 1999, Plant Phys. 120(4):1095-1103 und Gerhardt et al. 2000, Biochimica et Biophysica Acta 1490(1-2):87-98) kann verwendet werden.

Zur konstitutiven Expression in der ganzen Pflanzen lässt sich der CaMV-35S-Promotor oder ein v-ATPase C1 Promotor verwenden.

Die im Verfahren verwendeten Nukleinsäuren, die für die Acyl-CoA:Lysophospholipid-Acyltransferasen; Desaturasen oder Elongasen codieren, wurden durch Konstruktion mehrerer Expressionskassetten hintereinander in einen binären Vektor kloniert, um den Stoffwechselweg in Pflanzen nachzubilden.

Innerhalb einer Expressionskassette kann das zu exprimierende Protein unter Verwendung eines Signalpeptids, beispielsweise für Plastiden, Mitochondrien oder das Endoplasmatische Retikulum, in ein zelluläres Kompartiment dirigiert werden (Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423). Das Signalpeptid wird 5' im Leseraster mit der cDNA einkloniert, um die subzelluläre Lokalisierung des Fusionsprotein zu erreichen.

Beispiele für Multiexpressionskassetten wurden in in 102 19 203 offenbart und sind im folgenden nochmals wiedergegeben.

i.) Promotor-Terminator-Kassetten

Expressionskassetten bestehen aus wenigstens zwei funktionellen Einheiten wie einem Promotor und einem Terminator. Zwischen Promotor und Terminator können weitere gewünschte Gensequenzen wie Targetting-Sequenzen, Codierregionen von Genen oder Teilen davon etc. eingefügt werden. Zum Aufbau der Expressionskassetten wurden Promotoren und Terminatoren (USP Promotor: Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67); OCS Terminator: Gielen et al. EMBO J. 3 (1984) 835ff.) mithilfe der Polymerasekettenreaktion isoliert und mit flankierenden Sequenzen nach Wahl auf Basis von synthetischen Oligonukleotiden maßgeschneidert.

Folgende Oligonukleotide können beispielsweise verwendet werden:

USP1 vome:

- CCGGAATTCGGCGCGCGAGCTCCTCGAGCAAATTTACACATTGCCA -

USP2 vorne:

5 - CCGGAATTCGGCGCCCGAGCTCCTCGAGCAAATTTACACATTGCCA -

USP3 vorne:

- CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA -

USP1 hinten:

- AAAACTGCAGGCGGCCGCCCACCGCGGTGGGCTGGCTATGAAGAAATT -

10 USP2 hinten:

- CGCGGATCCGCTGGCTATGAAGAAATT -

USP3 hinten:

- TCCCCGGGATCGATGCCGGCAGATCTGCTGGCTATGAAGAAATT -

OCS1 vorne:

15 - AAAACTGCAGTCTAGAAGGCCTCCTGCTTTAATGAGATAT -

OCS2 vorne:

- CGCGGATCCGATATCGGGCCCGCTAGCGTTAACCCTGCTTTAATGAGATAT -

OCS3 vorne:

- TCCCCGGGCCATGGCCTGCTTTAATGAGATAT -

20 OCS1 hinten:

- CCCAAGCTTGGCGCCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA -

OCS2 hinten:

- CCCAAGCTTGGCGCCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA -

OCS3 hinten:

CCCAAGCTTGGCGCCGAGCTCGTCGACGGACAATCAGTAAATTGA -

Die Methoden sind dem Fachmann auf dem Gebiet bekannt und sind allgemein literaturbekannt.

In einem ersten Schritt wurden ein Promotor und ein Terminator über PCR amplifiziert.
Dann wurde der Terminator in ein Empfängerplasmid kloniert und in einem zweiten
Schritt der Promotor vor den Terminator inseriert. Dadurch wurde eine Expressionskassette in das Basis-Plasmid cloniert. Auf Basis des Plamides pUC19 wurden so die
Plasmide pUT1, 2 und 3 erstellt.

Die entsprechenden Konstrukte bzw. Plasmide sind in SEQ ID NO: 15, 16 bis 17 definiert. Sie enthalten den USP-Promotor und den OCS Terminator. Auf Basis dieser Plasmide wurde das Konstrukt pUT12 erstellt, indem pUT1 mittels Sall/Scal geschnitten wurde und pUT2 mittels Xhol/Scal geschnitten wurde. Die die Expressionskassetten enthaltenden Fragmente wurden ligiert und in E. coli XL1 blue MRF transformiert. Es wurde nach Vereinzelung von ampicillinresistenten Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die zwei Expressionskassetten enthalten. Die Xhol/Sall Ligation kompatibler Enden hat dabei die beiden Schnittstellen Xhol und Sall zwischen den Expressionskassetten eleminiert. Das resultierende Plasmid pUT12 wird in SEQ ID NO: 18 wiedergegeben. Anschließend wurde pUT12 wiederum mittels Sal/Scal geschnitten und pUT3 mittels Xhol/Scal geschnitten. Die die Expressionskassetten enthaltenden Fragmente wurden ligiert und in E. coli XLI blue MRF transformiert. Es wurde wieder nach Vereinzelung aus ampicillinresistenten Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die drei Expressionskassetten enthalten. Auf diese Weise wurde ein Set von Multiexpressionskassetten geschaffen, dass für die Insertion gewünschter DNA genutzt werden kann und in Tabelle 1 beschrieben wird und zudem noch weitere Expressionskassetten aufnehmen kann.

Diese enthalten folgende Elemente:

20 Tabelle 1

5

10

15

PUC19-	Schnittstellen vor dem	Multiple	G-1 11
Derivat	USP Promotor	7	Schnittstellen hinter dem
PUT1		Klonierungs-Schnittstellen	OCS-Terminator
POII	EcoRI/AscI/ SacI/XhoI	BstXI/NotI/ PstI/XbaI/StuI	Sall/EcoRI/ SacI/AscI/
			HindIII
PUT2	EcoRI/AscI/ SacI/XhoI	BamHI/EcoRV/ ApaI/NheI/ HpaI	Sall/EcoRI/ Sacl/AscI/
		l lipax	
PUT3	EcoRI/AscI/ SacI/XhoI	D-IIIAI- Y/GI Y/G	HindIII
		BglII/NaeI/ ClaI/SmaI/NcoI	Sall/Sacl/ Ascl/HindIII
PUT12	EcoRI/AscI/ SacI/XhoI	BstXI/NotI/ PstI/XbaI/StuI	Sall/EcoRI/ Sacl/AscI/
Doppel-	1	Und	HindIII
expressions-		BamHI/EcoRV/ ApaI/NheI/ HpaI	Timuti
kasette		Danam Ecole V/ Apar Niler/ Apar	
PUT123	EcoDY/AcoY/Co. YCC. Y		
	EcoRI/AscI/ SacI/XhoI	1. BstXI/NotI/ PstI/XbaI/StuI	Sall/Sacl/Ascl/HindIII
Tripel-		und	·
expressions-		2. BamHI/EcoRV/ ApaI/NheI/ HpaI	1
kassette		und	
		3. BglII/NaeI/ ClaI/SmaI/NcoI	

49

Weiterhin lassen sich wie beschrieben und wie in Tabelle 2 näher spezifiziert weitere Multiexpressionskassetten mithilfe des

- i) USP-Promotors oder mithilfe des
- ii) 700 Basenpaare 3'-Fragmentes des LeB4-Promotors oder mithilfe des
- 5 iii) DC3-Promotors erzeugen und für samenspezifische Genexpression einsetzen.

Der DC3-Promotor ist beschrieben bei Thomas, Plant Cell 1996, 263:359-368 und besteht lediglich aus der Region -117 bis +26 weshalb er mithin einer der kleinsten bekannten samenspezifischen Promotoren darstellt. Die Expressionskassetten können mehrfach den selben Promotor enthalten oder aber über drei verschiedene Promotoren aufgebaut werden.

Vorteilhaft verwendete Polylinker-bzw. Polylinker-Terminator-Polylinker sind den Sequenzen SEQ ID NO: 23 bis 25 zu entnehmen.

Tabelle 2: Multiple Expressionskassetten

	T		
Plasmidname des	Schnittstellen vor dem	Multiple	Schnittstellen hinter
pUC19-Derivates	jeweiligen Promotor	Klonierungs-Schnittstellen	dem OCS-Terminator
pUT1	EcoRI/AscI/SacI/XhoI	(1) BstXI/NotI/PstI/ XbaI/StuI	Sall/EcoRI/Sacl/Ascl/
(pUC19 mit			HindIII
USP-OCS1)	·		
PDCT	EcoRI/AscI/SacI/XhoI	(2) BamHI/EcoRV/ ApaI/NheI/	Sall/EcoRI/SacI/AscI/
(pUC19 mit DC3-		Hpal	HindIII
OCS)			
PleBT	EcoRI/AscI/SacI/XhoI	(3) BglII/NaeI/ ClaI/SmaI/NcoI	Sall/Sacl/Ascl/HindIII
(pUC19-mit			
LeB4(700)-OCS)	!		
PUD12	EcoRI/AscI/SacI/XhoI	(1) BstXI/NotI/ PstI/XbaI/StuI	Sall/EcoRI/SacI/AscI/
(pUC 19 mit mit		und	HindIII
USP-OCS1 und		(2) BamHI/EcoRV/ ApaI/NheI/	
mit DC3-OCS)		Hpal	,
PUDL123	EcoRI/AscI/SacI/XhoI	(1) BstXI/NotI/PstI/XbaI/StuI und	Sall/Sacl/Ascl/HindIII
Triple expression		(2) BamHI/ (EcoRV*)/ApaI/NheI/	
cassette		HpaI und	
(pUC19 mit		(3) BglII/Nael/ ClaI/SmaI/NcoI	
USP/DC3 und			
LeB4-700)			

15 * EcoRV Schnittstelle schneidet im 700 Basenpaarfragment des LeB4 Promotors (LeB4-700)

Analog lassen sich weitere Promotoren für Multigenkonstrukte erzeugen insbesondere unter Verwendung des

- a) 2,7 kB Fragmentes des LeB4-Promotors oder mithilfe des
- b) Phaseolin-Promotors oder mithilfe des
- 5 c) konstitutiven v-ATPase c1-Promotors.

Es kann insbesondere wünschenswert sein, weitere besonders geeignete Promotoren zum Aufbau samenspezifischer Multiexpressionskassetten wie z.B. den Napin-Promotor oder den Arcelin-5 Promotor zu verwenden.

Weitere in Pflanzen nutzbare Vektoren mit einer bzw. zwei oder drei Promotor-10 Terminator-Expressionkassetten sind den Sequenzen SEQ ID NO: 26 bis SEQ ID NO: 31 zu entnehmen.

- ii.) Erstellung von Expressionskonstrukten, die Promotor, Terminator und gewünschte Gensequenz zur PUFA Genexpression in pflanzlichen Expressionskassetten enthalten.
- In pUT123 wird zunächst über BstXI und Xbal die Δ-6-Elongase Pp_PSE1 in die erste Kassette inseriert. Dann wird die Δ-6-Desaturase aus Moos (Pp_des6) über Bam-HI/Nael in die zweite Kassette inseriert und schließlich die Δ-5-Desaturase aus Phaeodactylum (Pt_des5) über BgIII/Ncol in die dritte Kassette inseriert (siehe SEQ ID NO: 19). Das Dreifachkonstrukt erhält den Namen pARA1. Unter Berücksichtigung sequenzspezifischer Restriktionsschnittstellen können weitere Expressionskassetten gemäß Tabelle 3 mit der Bezeichnung pARA2, pARA3 und pARA4 erstellt werden.

Tabelle 3: Kombinationen von Desaturasen und Elongasen

Gen Plasmid	Δ-6-Desaturase	Δ-5-Desaturase	Δ-6-Elongase
pARA1	Pp_des6	Pt des5	Pp PSE1
pARA2	Pt_des6	Pt des5	Pp PSE1
pARA3	Pt des6	Ce des5	Pp PSE1
PARA4	Ce_des6	Ce_des5	Ce_PSE1

des5 = PUFA spezifische Δ -5-Desaturase

des6 = PUFA spezifische Δ -6-Desaturase

5 PSE = PUFA spezifische Δ-6-Elongase

25

Pt_des5 = Δ -5-Desaturase aus Phaeodactylum tricornutum

Pp_des6 oder Pt_des6 = Δ -6-Desaturase aus Physcomitrella patens bzw. Phaeodacty-lum tricomutum

Pp = Physcomitrella patens, Pt = Phaeodactylum tricornutum

Pp_PSE1 = Δ -6-Elongase aus Physcomitrella patens

Pt_PSE1 = Δ -6-Elongase aus Phaeodactylum tricornutum

Ce_des5 = Δ -5-Desaturase aus Caenorhabditis elegans (Genbank Acc. Nr. AF078796)

Ce_des6 = Δ -6-Desaturase aus Caenorhabditis elegans (Genbank Acc. Nr. AF031477, Basen 11-1342)

15 Ce_PSE1 = Δ -6-Elongase aus Caenorhabditis elegans (Genbank Acc. Nr. AF244356, Basen 1-867)

Auch weitere Desaturasen oder Elongasegensequenzen können in Expressionskassetten beschriebener Art inseriert werden wie z.B. Genbank Acc. Nr. AF231981, NM_013402, AF206662, AF268031, AF226273, AF110510 oder AF110509.

20 iii.) Transfer von Expressionskassetten in Vektoren zur Transformation von Agrobakterium tumefaciens und zur Transformation von Pflanzen

Die so erstellten Konstrukte wurden mittels Ascl in den binären Vektor pGPTV inseriert. Die multiple Klonierungssequenz wurde zu diesem Zweck um eine Ascl Schnittstelle erweitert. Zu diesem Zweck wurde der Polylinker als zwei doppelsträngige Oligonukleotide neu synthetisiert, wobei eine zusätzliche Ascl DNA Sequenz eingefügt wird. Das Oligonukleotid wurde mittels EcoRI und HindIII in den Vektor pGPTV inseriert. Die notwendigen Kloniertechniken sind dem Fachmann bekannt und können einfach wie in Beispiel 1 beschrieben nachgelesen werden.

Für die im folgenden beschriebenen Versuche wurden als Nukleinsäuresequenzen für die Δ-5-Desaturase (SEQ ID NO: 13), die Δ-6-Desaturase (SEQ ID NO: 9) und die Δ-6-Elongase (SEQ ID NO: 11), die Sequenzen aus Physcomitrella patens und Phaedactylum tricornutum verwendet. Die entsprechenden Aminosäuresequenzen sind den Sequenzen SEQ ID NO: 10, SEQ ID NO: 12 und SEQ ID NO: 14. Ein Vektor der alle vorgenannten Gene enthält ist in SEQ ID NO: 19 wiedergegeben. Die korrespondierenden

Aminosäurensequenzen der Gene sind SEQ ID NO: 20, SEQ ID NO: 21 und SEQ ID NO: 22 zu entnehmen.

Beispiel 2: Klonierung und Charakterisierung der ceLPLATs

a) Datenbanken-Suche

Die Identifizierung der ceLPLATs (= Acyl-CoA:Lysophospholipid-Acyltransferase aus 5 Caenorhabditis elegans) erfolgte durch Sequenzvergleiche mit bekannten LPA-ATs. Die Suche wurde mit Hilfe des BLAST-Psi-Algorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403-410) auf das Nematodengenom (Caenorhabditis elegans) beschränkt, da dieser Organismus LCPUFAs synthetisiert. Für den Sequenzvergleich diente als Sonde eine LPAAT Proteinsequenz aus Mus musculus (MsLPAAT Accession Nr. 10 NP_061350). LPLAT katalysiert durch eine reversible Transferasereaktion die ATPunabhängige Synthese von Acyl-CoAs aus Phospholipiden mit Hilfe von CoA als Cofactor (Yamashita et al., J. Biol. Chem. 2001, 20: 26745-26752). Durch Sequenzvergleiche konnten zwei putative ceLPLAT-Sequenzen identifiziert werden (Accession Nr. 5 T06E8.1 bzw. F59F4.4). Die identifizierten Sequenzen weisen die größte Ähnlichkeit jeweils zueinander und zu MsLPAATs auf (Figur 1). Das Alignment wurde mit dem Programm Clustal erstellt.

b) Klonierung der CeLPLATs

Auf der Basis der ceLPLAT-Nukleinsäuresequenzen wurden Primerpaare synthetisiert (Tab. 1) und mittels PCR-Verfahren die zugehörigen cDNAs aus einer *C. elegans*-cDNA-Bank isoliert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der LPLAT-cDNAs wurde jeweils mit 2 µl cDNA-Bank-Lösung als Template, 200 µM dNTPs, 2,5 U "proof-reading" *pfu*-Polymerase und 50 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 58°C für eine Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten. Die Sequenz der LPLAT-cDNAs wurde durch DNA-Sequenzierung bestätigt.

20

25

Tabelle 4: Nukleotidsequenzen der PCR-Primer zur Klonierung von CeLPLATs

Nukleotidsequenz
5' ACATAATGGAGAACTTCTGGTCGATCGTC 3'
5' TTACTCAGATTTCTTCCCGTCTTT 3'
5' ACATAATGACCTTCCTAGCCATATTA 3'
5' TCAGATATTCAAATTGGCGGCTTC 3'

^{*} f: forward, r: reverse

10

15

20

25

Beispiel 3: Analyse der Auswirkung der rekombinanten Proteine auf die Produktion des gewünschten Produktes

5 a) Aufarbeitungsmöglichkeiten

Die Auswirkung der genetischen Modifikation in Pilzen, Algen, Ciliaten oder wie in den Beispielen weiter oben beschrieben in Hefen auf die Produktion der mehrfach ungesättigten Fettsäuren oder Pflanzen kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion der Lipide oder Fettsäuren untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).

Neben den oben erwähnten Verfahren zum Nachweis von Fettsäuren in Hefen werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-

15

20

25

30

35

54

145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäure-analyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.

So kann die Analyse von Fettsäuren oder Triacylglycerin (= TAG, Abkürzungen in Klammern angegeben) z.B. mittels Fettsäuremethylester (= FAME), Gas-Flüssigkeitschromatographie-Massenspektrometrie (= GC-MS) oder Dünnschichtchromatographie (TLC) erfolgen.

Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33:343-353).

Das zu analysierende Pflanzenmaterial kann dazu entweder durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material wird dann anschließend nach dem Aufbrechen zentrifugiert. Das Sediment wird danach in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester können anschließend in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen werden. Die Identität der erhaltenen Fettsäuremethylester lassen sich unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definieren.

Bei Fettsäuren, für die keine Standards verfügbar sind, kann die Identität über Derivatisierung und anschließende GC-MS-Analyse gezeigt werden. Beispielsweise wird die Lokalisierung von Fettsäuren mit Dreifachbindung über GC-MS nach Derivatisierung mit 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998, siehe oben) gezeigt.

b) Fettsäureanalyse in Pflanzen

Die Gesamt-Fettsäuren wurden aus Pflanzensamen extrahiert und mittels Gaschromatographie analysiert.

10

15

20

25

30

35

55

Die Samen wurden mit 1 % Natriummethanolat in Methoanol aufgenommen und 20 min bei RT (ca. 22 °C) inkubiert. Anschließend wurde mit NaCl Lösung gewaschen und die FAME in 0,3 ml Heptan aufgenommen.

Die Proben wurden auf einer ZEBRON-ZB-Wax-Kapillarsäule (30 m, 0,32 mm, 0,25 mikro m; Phenomenex) in einem Hewlett Packard-6850-Gaschromatograph mit einem Flammenionisationsdetektor aufgetrennt. Die Ofentemperatur wurde von 70°C (1 min halten) bis 200°C mit einer Rate von 20°C/min, dann auf 250°C (5 min halten) mit einer Rate von 5°C/min und schließlich auf 260°C mit einer Rate von 5°C/min programmiert. Stickstoff wurde als Trägergas verwendet (4,5 ml/min bei 70°C). Die Fettsäuren wurden durch Vergleich mit Retentionszeiten von FAME-Standards (SIGMA) identifiziert.

Beispiel 4: Funktionelle Charakterierung der CeLPLATs in Hefe

a) Heterologe Expression in Saccharomyces cerevisiae

Zur Charakterisierung der Funktion der CeLPLATs aus *C. elegans* wurden die offenen Leserahmen der jeweilgen cDNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYes2.1Topo unter Verwendung des pYes2.1TOPO TA Expression Kit (Invitrogen) kloniert, wobei pYes2-T06E8.1 und pYes2-F59F4.4 erhalten wurden.

Da die Expression der CeLPLATs zu einem effizienten Austausch der Acyl-Substrate führen sollte, wurde weiterhin das Doppelkonstrukt pESCLeu-PpD6-Pse1 hergestellt, das die offenen Leserahmen einer $\Delta 6$ -Desaturase (PpD6) und einer $\Delta 6$ -Elongase (PSE1) aus *Physcomitrella patens* (siehe DE 102 19 203) beinhaltet. Die Nukleinsäuresequenz der $\Delta 6$ -Desaturase (PpD6) und der $\Delta 6$ -Elongase (Pse1) werden jeweils in SEQ ID NO: 9 und SEQ ID NO: 11 wiedergegeben. Die korrespondierenden Aminosäuresequenzen sind SEQ ID NO: 10 und SEQ ID NO: 12 zu entnehmen.

Die Saccharomyces cerevisiae-Stämme C13ABYS86 (Protease-defizient) und INVSc1 wurde mittels eines modifizierten PEG/Lithiumacetat-Protokolls gleichzeitig mit den Vektoren pYes2-T06E8.1 und pESCLeu-PpD6-Pse1 bzw. pYes2-F59F4.4 und pESC-Leu-PpD6-Pse1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem Vektor pESCLeu-PpD6-Pse1 und dem leeren Vektor pYes2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil und Leucin. Nach der Selektion wurden 4 Transformanten, zwei pYes2-T06E8.1/pESCLeu-PpD6-Pse1 und zwei pYes2-F59F4.4/pESCLeu-PpD6-Pse1 und eine pESCLeu-PpD6-Pse1/ pYes2 zur weiteren funktionellen Expression ausgewählt. Die beschriebenen Experimente wurden auch im Hefestamm INVSc1 durchgeführt.

Für die Expresssion der CeLPAATs wurden zunächst Vorkulturen aus jeweils 2 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose, aber ohne Uracil und Leucin mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil und Leucin) mit 2% Raffinose, 1% (v/v) Tergitol

NP-40 und 250 μ M Linolsäure (18:2 $^{\Delta9,12}$) oder Linolensäure (18:3 $^{\Delta9,12,15}$) wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,08 angeimpft. Die Expression wurde bei einer OD₆₀₀ von 0,2-0,4 durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 48 h bei 20°C inkubiert.

5 Fettsäureanalyse

10

5

20

30

35

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 10 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate 5°C/min und schließlich 10 min bei 250°C (halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma).

Acyl-CoA Analyse

Die Acyl-CoA-Analyse erfolgte wie bei Larson and Graham (2001; Plant Journal 25: 115-125) beschrieben.

25 Expressionsanalyse

Figuren 2 A und B sowie 3 A und B zeigen die Fettsäureprofile von transgenen C13ABYS86 Hefen, die mit $18:2^{\Delta 9,12}$ bzw. $18:3^{\Delta 9,12,15}$ gefüttert wurden. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle vier transgenen Hefen zeigen eine Synthese von $18:3^{\Delta 6,9,12}$ und $20:3^{\Delta 8,11,14}$ bzw. $18:4^{\Delta 6,9,12,15}$ und $20:4^{\Delta 8,11,14,17}$, den Produkten der Δ -6- Desaturase und Δ -6-Elongase Reaktionen. Dies bedeutet, dass die Gene PpD6 und Pse1 funktional exprimiert werden konnten.

Figur 2 gibt wie oben beschrieben die Fettsäureprofile von transgenen C13ABYS86 *S. cerevisiae*-Zellen. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die entweder mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2-T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von 18:2^{Δ9,12} kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert.

10

15

20

35

40

57

In den Kontroll-Hefen, die mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 transformiert wurden, ist der Anteil von 20:3^{Δ8,11,14}, zu dem 18:3^{Δ6,9,12} durch Pse1 elongiert wird, wesentlich niedriger als in den Hefen, die zusätzlich die LPLAT T06E8.1 exprimieren. Tatsächlich konnte die Elongation von 18:3^{Δ6,9,12} und 18:4^{Δ6,9,12,15} durch die zusätzliche Expression von CeLPLAT (T06E8.1) um 100-150% verbessert werden (Figur 4). Diese signifikante Erhöhung des LCPUFA-Gehalts ist nur wie folgt zu erklären: die exogen gefütterten Fettsäuren (18:2^{Δ9,12} bzw. 18:3^{Δ9,12,15}) werden zunächst in Phospholipide eingebaut und dort von der Δ-6-Desaturase zu 18:3^{Δ6,9,12} und 18:4^{Δ6,9,12,15} desaturiert. Erst nach Reäquilibrierung mit dem Acyl-CoA-Pool können 18:3^{Δ6,9,12} und 18:4^{Δ6,9,12,15} durch die Elongase zu 20:3^{Δ8,11,14}- bzw. 20:4^{Δ8,11,14,17}-CoA elongiert und dann wieder in die Lipide eingebaut werden. Die LPLAT T06E8.1 ist in der Lage, die Δ6-desaturierten Acylgruppen sehr effizient in CoA-Thioester zurückzuverwandeln. Interessanterweise konnte auch die Elongation der gefütterten Fettsäuren 18:2^{Δ9,12} und 18:3^{Δ9,12,15} verbessert werden. (Figur 2 A und B bzw. 3 A und B).

Figur 3 gibt die Fettsäureprofile von transgenen C13ABYS86 *S. cerevisiae-*Zellen. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die entweder mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2-T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von 18:3^{Δ9,12,15} kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert.

Die Expression einer anderen CeLPLAT (F59F4.4) hat dagegen keinen Einfluss auf die Elongation (Figur 4). Offenbar kodiert F59F4.4 nicht für eine LPLAT. Nicht jede der putativen LPLAT Nukleinsäuresequenzen ist also enzymatisch aktiv in der erfindungsgemäß gefundenen Reaktion.

Figur 4 gibt die Elongation exogen applizierter 18:2^{Δ9,12} bzw. 18:3^{Δ9,12,15} im Anschluss an ihre endogene Δ-6-Desaturierung (Daten aus Fig. 2 und 3) wieder. Die exogen gefütterten Fettsäuren werden zunächst in Phospholipide eingebaut und dort zu 18:3^{Δ6,9,12} und 18:4^{Δ6,9,12,15} desaturiert. Erst nach Reäquilibrierung mit dem Acyl-CoA-Pool können 18:3^{Δ6,9,12} und 18:4^{Δ6,9,12,15} durch die Elongase zu 20:3^{Δ8,11,14}- bzw. 20:4^{Δ8,11,14,17}-CoA elongiert und dann wieder in die Lipide eingebaut werden. Die LPLAT T06E8.1 ist in der Lage, die Δ-6-desaturierten Acylgruppen effizient in CoA-Thioester zurückzuverwandeln.

Diese Ergebnisse zeigen, dass die CeLPLAT (T06E8.1) nach Co-expression mit der Δ -6-Desaturase und Δ -6-Elongase zu einer effizienten Produktion von C20-PUFAs führt. Diese Ergebnisse sind dadurch zu erklären, dass die CeLPLAT (T06E8.1) einen effizienten Austausch der neusynthetisierten Fettsäuren zwischen Lipiden und dem Acyl-CoA-Pool ermöglicht (siehe Figur 7).

Figur 7 gibt die Acyl-CoA-Zusammensetzung transgener INVSc1 Hefen, die mit den Vektoren pESCLeu PpD6Pse1/pYes2 (A) oder pESCLeu-PpD6-Pse1/pYes2-T06E8.1 (B) transformiert worden waren, wieder. Die Hefezellen wurden in Minimalmedium oh-

10

58

ne Uracil und Leucin in Gegenwart von 250 μ M 18:2 $^{\Delta9,12}$ kultiviert. Die Acyl-CoADerivate wurden über HPLC analysiert.

Bei Verwendung des Hefe-Stammes INVSc1 zur Co-Expression von CeLPLAT (T06E8.1) zusammen mit PpD6 und Pse1 ergibt sich folgendes Bild: Kontrollhefen, die PpD6 und Pse1 exprimieren, enthalten wie schon bei Verwendung des Stammes C13ABYS86 gezeigt nur geringe Mengen des Elongationsprodukts (20:3^{Δ8,11,14} bei Fütterung von 18:2 bzw. 20:4^{Δ8,11,14,17} bei Fütterung von 18:3; siehe Figur 5 A und 6 A). Bei zusätzlicher Expression von CeLPLAT (T06E8.1) erfolgt ein deutlicher Anstieg dieser Elongationsprodukte (siehe Figur 5 B und 6 B). Tabelle 6 zeigt, dass die zusätzliche Expression von CeLPLAT überraschenderweise eine 8-fache Erhöhung des Gehaltes an 20:3^{Δ8,11,14} (bei Fütterung von 18:2) bzw. 20:4^{Δ8,11,14,17} (bei Fütterung von 18:3) bewirkt. Daneben zeigt sich, dass auch C16:2^{Δ6,9} zu C18:2^{Δ6,9} effizienter elongiert wird.

Tabelle 5:

5

Fettsäure-Zusammensetzung (in mol %) transgener Hefen, die mit den Vektoren pESCLeu PpD6Pse1/pYes2 (PpD6 Pse1) oder pESCLeu-PpD6-Pse1/pYes2-T06E8.1 (PpD6 Pse1 + T06E8) transformiert worden waren. Die Hefezellen wurden in Minimalmedium ohne Uracil und Leucin in Gegenwart von 250 μ M 18:2 $^{\Delta 9,12}$ oder 18:3 $^{\Delta 9,12,15}$ kultiviert. Die Fettsäuremethylester wurden durch saure Methanolyse ganzer Zellen gewonnen und über GLC analysiert. Jeder Wert gibt den Mittelwert (n = 4) \pm Standardabweichung wieder.

	Fütterung	mit 250 μM	Fütterung mit 250 μM					
	18:	2 ^{49,12}	18:3 ^{Δ9,12,15}					
Fettsäuren	Pp∆6/Pse1	Pp∆6/Pse1+	Pp∆6/Pse1	Pp∆6/Pse1+				
		T06E8		T06E8				
16:0	15,31 ± 1,36	15,60 ± 1,36	12,20 ± 0,62	16,25 ± 1,85				
16:1 ^{Δ9}	23,22 ± 2,16	15,80 ± 3,92	17,61 ± 1,05	14,58 ± 1,93				
18:0	5,11 ± 0,63	$7,98 \pm 1,28$	5,94 ± 0,71	7,52 ± 0,89				
18:1 ⁴⁹	15,09 ± 0,59	16,01 ± 2,53	15,62 ± 0,34	15,14 ± 2,61				
18:1 ^{Δ11}	4,64 ± 1,09	11,80 ± 1,12	4,56 ± 0,18	13,07 ± 1,66				
18:2 ^{Δ9,12}	28,72 ± 3,25	14,44 ± 1,61	-	-				
18:3 ^{Δ6,9,12}	3,77 ± 0,41	4,72 ± 0,72	-	-				
18:3 ^{Δ9,12,15}	-	**	32,86 ± 1,20	14,14 ± 2,52				
18:4 ^{Δ6,9,12,15}	-	-	5,16 ± 1,04	3,31 ± 1,15				
20:2 ^{Δ11,14}	2,12 ± 0,86	4,95 ± 4,71	-	-				
20:3 ^{Δ8,11,14}	1,03 ± 0,14	8,23 ± 1,59	-	-				
20:3 ^{Δ11,14,17}	-	-	4,12 ± 1,54	6,95 ± 2,52				
20:4 ^{Δ8,11,14,17}	-	-	1,34 ± 0,28	8,70 ± 1,11				

Figur 5 ist das Fettsäure-Profile von transgenen INVSc1 S. cerevisiae-Zellen zu entnehmen. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die entweder mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2-T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wur-

10

20

25

30

35

40

60

den in Minimalmedium in Gegenwart von 18: $2^{\Delta 9,12}$ kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert.

Figur 6 gibt die Fettsäure-Profile von transgenen INVSc1 *S. cerevisiae*-Zellen wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die entweder mit den Vektoren pESCLeu-PpD6-Pse1/pYes2 (A) oder pYes2-T06E8.1/pESCLeu-PpD6-Pse1 (B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von 18:3^{Δ,12,15} kultiviert. Anschließend wurden die Fettsäuremethylester über GLC analysiert.

Ein Maß für die Effizienz der LCPUFA-Biosynthese in transgener Hefe stellt der Quotient aus Gehalt der erwünschten Δ -6-Elongationsprodukt nach Δ -6-Desaturierung (20:3 $^{\Delta8,11,14}$ bzw. 20:4 $^{\Delta8,11,14,17}$) zu Gehalt an zugefütterter Fettsäure (18:2 $^{\Delta9,12}$ bzw. 18:3 $^{\Delta9,12,15}$) dar. Dieser Quotient beträgt 0,04 in INVSc1 Kontrollhefen, die PpD6 und Pse1 exprimieren, und 0,60 in Hefen die zusätzlich zu PpD6 und Pse1 CeLPLAT exprimieren. In anderen Worten: der Gehalt an erwünschtem Δ -6-Elongationsprodukt nach Δ -6-Desaturierung bei Co-Expression von CeLPLAT beträgt 60% des Gehalts der jeweils zugefütterten Fettsäure. In Kontrollhefen beträgt dieser Gehalt nur ca. 4%. Dies bedeutet eine 15-fache Erhöhung der Effizienz der LCPUFA-Biosynthese in transgener Hefe durch Co-Expression von LPLAT.

Interessanterweise bewirkt die Co-Expression von CeLPLAT nicht nur eine Erhöhung der genannten Elongationsprodukte $20:3^{\Delta8,11,14}$ bzw. $20:4^{\Delta8,11,14,17}$, sondern auch eine Erhöhung des Verhältnisses $20:3^{\Delta8,11,14}$: $20:2^{\Delta11,14}$ bzw. $20:4^{\Delta8,11,14,17}$: $20:3^{\Delta11,14,17}$. Dies bedeutet, dass in Anwesenheit der LPLAT die Δ -6-Elongase bevorzugt mehrfach ungesättigte Fettsäuren ($18:3^{\Delta6,9,12}$ und $18:4^{\Delta6,9,12,15}$) als Substrat verwendet, während bei Abwesenheit der LPLAT keine ausgeprägte Substratspezifität zu erkennen ist (auch $18:2^{\Delta9,12}$ und $18:3^{\Delta9,12,15}$ werden elongiert). Grund hierfür können Protein-Protein-Wechselwirkungen zwischen Δ -6-Elongase, Δ -6-Desturase und LPLAT oder posttranslationale Modifikationen (z.B. partielle Proteolyse) sein. Dies würde auch erklären, warum der oben beschriebene Anstieg von Δ -6-Elongationsprodukten bei Co-Expression von Δ -6-Desaturase, Δ -6-Elongase und LPLAT bei Verwendung eines proteasedefizienten Hefestamms geringer ausfällt.

Acyl-CoA Analysen von transgenen INVSc1 Hefen, die mit $18:2^{\Delta 9,12}$ gefüttert wurden, ergaben folgendes Ergebnis: in Kontrollhefen, die PpD6 und Pse1 exprimieren, ist kein $18:3^{\Delta 6,9,12}$ -CoA und $20:3^{\Delta 8,11,14}$ -CoA nachweisbar. Dies weist darauf hin, dass weder das Substrat ($18:3^{\Delta 6,9,12}$ -CoA) noch das Produkt ($20:3^{\Delta 8,11,14}$ -CoA) der Δ -6-Elongase in Kontrollhefen in nachweisbaren Mengen vorhanden ist. Dies lässt darauf schließen, das der Transfer von $18:3^{\Delta 6,9,12}$ aus Membranlipiden in den Acyl-CoA Pool nicht oder nicht richtig stattfindet. Das bedeutet, dass kaum Substrat für die vorhandene Δ -6-Elongase zur Verfügung steht, was wiederum den geringen Gehalt an Elongationsprodukt in Kontrollhefen erklärt. INVSc1 Hefen, die zusätzlich zur PpD6 und Pse1 die CeLPLAT exprimieren und mit $18:2^{\Delta 9,12}$ gefüttert worden waren, weisen keine signifikanten Mengen an $18:3^{\Delta 6,9,12}$ -CoA auf, wohl aber $20:3^{\Delta 8,11,14}$ -CoA. Dies deutet darauf

hin, dass LPLAT sehr effizient $18:3^{\Delta6,9,12}$ aus den Membranlipiden in den Acyl-CoA-Pool überführt. $18:3^{\Delta6,9,12}$ -CoA wird dann von der Δ -6-Elongase elongiert, so dass kein $18:3^{\Delta6,9,12}$ -CoA, wohl aber $20:3^{\Delta8,11,14}$ -CoA nachweisbar ist.

- b) Funktionelle Charakterierung der CeLPLATs in transgenen Pflanzen
- 5 Expression funktionaler CeLPLAT in transgenen Pflanzen

In DE 102 19 203 wurden transgene Pflanzen beschrieben, deren Samenöl durch samenspezifische Expression funktioneller Gene kodierend für Δ -6-Desaturase, Δ -6-Elongase und Δ -5-Desaturase geringe Mengen an ARA und EPA enthält. Der zur Transformation dieser Pflanzen benutzte Vektor ist SEQ ID NO: 19 zu entnehmen. Um den Gehalt an diesen LCPUFAs zu erhöhen, wurde in den genannten transgenen Pflanzen zusätzlich das Gen CeLPLAT (T06E8.1) in Samen exprimiert.

Zu diesem Zweck wurde der kodierende Bereich von CeLPLAT über PCR amplifiziert.

In Tabelle 6 sind die Primer wiedergegeben, die zur Klonierung eines weiteren Clones der ceLPLAT in binäre Vektoren verwendet wurden.

15 Tabelle 6: Nukleotidsequenzen der PCR-Primer zur Klonierung von CeLPLAT (T06E8.1) in den binären Vektor pSUN3

Primer	Nukleotidsequenz
ARe503f*	5' TTAAGCGCGCCCCATGGAGAACTTCTGGTCG 3'
ARe504r*	5' ACCTCGGCGGCCGCCCTTTTACTCAGATTTC 3'

* f: forward, r: reverse

10

25

Das PCR-Produkt wurde in einen pENTRY Vektor zwischen USP Promotor und OCS-Terminator kloniert. Anschließend wurde die Expressionskassette in die binären Vektoren pSUN300 kloniert. Der entstandene Vektor wurde mit pSUN3CeLPLAT (Figur 8) bezeichnet. Darüber hinaus wurde der kodierende Bereiche von CeLPLAT amplifiziert und zwischen LegB4 Promotor und OCS-Terminator kloniert. Dieser Vektor wurde mit pGPTVCeLPLAT bezeichnet (Figur 9A).

Darüberhinaus wurde der kodierende Bereich von CeLPLAT über PCR amplifiziert und zwischen LegB4 Promotor und OCS-Terminator kloniert. Die hierfür verwendeten PCR Primer wurden so ausgewählt, dass in das PCR-Produkt eine effiziente Kosaksequenz eingeführt wurde. Außerdem wurde die DNA-Sequenz von CeLPLAT so verändert, dass sie der codon usage von höheren Pflanzen angepasst war.

10

15

20

25

62

Folgende Primer wurden für die PCR verwendet:

Forward primer: 5'-ACATAATGGAGAACTTCTGGTCTATTGTTGTTTTTTCTA-3'

Reverse primer: 5'- CTAGCTAGCTTACTCAGATTTCTTCCCGTCTTTTGTTTCTC-3'

Das PCR Produkt wurde in den Klonierungsvektor pCR Script kloniert und über die Restriktionsenzyme Xmal und Sacl in den Vektor pGPTV LegB4-700 kloniert. Das entstandene Plasmid wurde mit pGPTV LegB4-700 + T06E8.1 bezeichnet (Figur 9A).

Das gleiche PCR Produkt wurde darüber hinaus in einen Multigen-Expressionsvektor kloniert, der bereits die Gene für eine Delta-6-Desaturase aus Phaeodactylum tricornutum (SEQ ID NO: 32, Aminosäuresequenz SEQ ID NO: 33) und einer Delta-6-Elongase aus P. patens enthielt. Das entstandene Plasmid wurde mit pGPTV USP/OCS-1,2,3 PSE1(Pp)+D6-Des(Pt)+2AT (T06E8-1) bezeichnet (Figur 9B). Die Sequenzen des Vektors sowie der Gene sind SEQ ID NO:.34, SEQ ID NO: 35, SEQ ID NO: 36 und SEQ ID NO: 37 zu entnehmen. Die Δ -6-Desaturase aus Phaeodactylum tricornutum reicht von Nukleotid 4554 bis 5987 in der SEQ ID NO: 34. Die Δ -6-Elongase aus Physcomitrella patens reicht von Nukleotid 1026 bis 1898 und die der LPLAT aus Caenorhabditis elegans reicht von Nukleotid 2805 bis 3653 in der SEQ ID NO: 34.

Tabakpflanzen wurden co-transformiert mit dem Vektor pSUN3CeLPLAT und dem in DE 102 19 203 und SEQ ID NO: 19 beschriebenen Vektor enthaltend Gene kodierend für Δ -6-Desaturase, Δ -6-Elongase und Δ -5-Desaturase, wobei die Selektion transgener Pflanzen mit Kanamycin erfolgte.

Tabakpflanzen wurden außerdem transformiert mit dem Vektor pGPTV USP/OCS-1,2,3 PSE1(Pp)+D6-Des(Pt)+2AT (T06E8-1) [siehe SEQ ID NO:.34, SEQ ID NO: 35, SEQ ID NO: 36 und SEQ ID NO: 37].

- Lein wurde mit dem Vektor pSUN3CeLPLAT transformiert. Die entstandenen transgenen Pflanzen wurden mit solchen transgenen Leinpflanzen gekreuzt, die bereits geringe Mengen an ARA und EPA aufgrund der funktionellen Genexpression von Δ -6-Desaturase, Δ -6-Elongase und Δ -5-Desaturase enthielten.
- Weiterhin wurde Lein mit dem Vektor pGPTV LegB4-700 + T06E8.1 transformiert. Die entstandenen transgenen Pflanzen wurden mit solchen transgenen Leinpflanzen gekreuzt, die bereits geringe Mengen an ARA und EPA aufgrund der funktionellen Expression von Δ-6-Desaturase, Δ-6-Elongase und Δ-5-Desaturase enthielten.
 - Die Samen von transgenen Tabak- und Leinpflanzen wurden wie weiter vorne beschrieben [Beispiel 3 b)] auf erhöhte Gehalte an LCPUFAs in untersucht.
- Aus den hier vorliegenden Arbeiten lässt sich die Funktion der Acyl-CoA:Lysophopholipid-Acyltranserase (LPLAT) wie in Figur 10 dargestellt ableiten. Der Biosynthese-Weg der LCPUFAS stellt sich damit wie folgt dar.

Desaturasen katalysieren die Einführung von Doppelbindungen in lipidgekoppelte Fettsäuren (sn2-Acyl-Phosphatidylcholin), während die Elongasen exklusiv die Elongation Coenzym A-veresterter Fettsäuren (Acyl-CoAs) katalysieren. Nach diesem Mechanismus erfordert die alternierende Wirkung von Desaturasen und Elongasen einen ständigen Austausch von Acyl-Substraten zwischen Phospholipiden und Acyl-CoA-Pool und somit die Existenz einer zusätzlichen Aktivität, die die Acyl-Substrate in die jeweils notwendige Substratform, d.h. Lipide (für Desaturasen) oder CoA-Thioester (für Elongasen), überführt. Dieser Austausch zwischen Acyl-CoA Pool und Phospholipiden wird durch LCPUFA-spezifische LPLAT ermöglicht. Die Biosynthese von ARA (A) erfolgt analog zu EPA (B), mit dem Unterschied, dass bei EPA der Δ -6-Desaturierung eine Δ -15-Desaturierung vorgeschaltet ist, so dass α 18:3-PC als Substrat für die Δ -6-Desaturase fungiert. Die Biosynthese von DHA macht einen weiteren Austausch zwischen Phospholipiden und Acyl-CoA-Pool über LPLAT notwendig: 20:5^{Δ5,8,11,14,17} wird vom Phospholipid- zum CoA-Pool transferiert und nach erfolgter Δ -5-Elongation wird 22:5 17,10,13,16,19 vom CoA- zum Phospholipid-Pool transferiert und schließlich durch Δ -4-Desaturase zu DHA umgesetzt. Gleiches gilt für den Austausch im Biosyntheseweg unter Verwendung der Δ -8-Desaturase, der Δ -9-Elongase und der Δ -5-Desaturase.

Äquivalente

10

. 15

Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren

Zusammenfassung

5

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Acyl-CoA:Lysophospholipid-Acyltransferaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem transgenen Organismus exprimiert werden.

Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte enthaltend die erfindungsgemäßen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren.

Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung.

SEQUENCE LISTING

								-2	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JIJI.	TIAG	•						
•	<11	.0>	BASI	? Pla	ant s	Scie	ice (SmbH						. •				
5	<12	0>	Veri	Eahre	en zu	ır He	erste	ellur	ng me	≥hrfa	ach i	mges	ätti	igter	: Fet	tsäur	ren	
	<13	0>	2003	30015	5													
10	<16	0>	37						•						•		٠	
10	<17	0>	Pate	entIr	ı ver	sion	3.1	L										
15	<21 <21 <21 <21	1> 2>	1 849 DNA Caen	orha	ibdit	is e	elega	ıns										
20	<22	1> 2>	(1).		19) 1:Lys	opho	spho	lipi	.d-Ac	yltr	ansf	eras	e					
25	<40 atg Met 1	gag	1 aac Asn	ttc Phe	tgg Trp 5	tcg Ser	atc Ile	gtc Val	gtg Val	ttt Phe	ttt Phe	cta Leu	cto Leu	tca Ser	att Ile 15	ctc Leu	4	8
30	ttc Phe	att Ile	tta Leu	tat Tyr 20	aac Asn	ata Ile	tcg Ser	aca Thr	gta Val 25	tgc Cys	cac His	tac Tyr	tat Tyr	atg Met 30	cgg Arg	att Ile	9	6
35	tcg Ser	ttt Phe	tat Tyr 35	tac	ttc Phe	aca Thr	att Ile	tta Leu 40	ttg Leu	cat His	gga Gly	atg Met	gaa Glu 45	gtt Val	tgt Cys	gtt Val	14	4
40	aca Thr	atg Met 50	atc Ile	cct Pro	tct Ser	tgg Trp	cta Leu 55	aat Asn	Gly	aag Lys	ggt Gly	gct Ala 60	gat Asp	tac Tyr	gtg Val	ttt Phe	19	2
	cac His 65	tcg Ser	ttt Phe	ttc Phe	tat Tyr	tgg Trp 70	tgt Cys	aaa Lys	tgg Trp	act Thr	ggt Gly 75	gtt Val	cat His	aca Thr	aca Thr	gtc Val 80	24	0
15	tat Tyr	gga Gly	tat Tyr	gaa Glu	aaa Lys 85	aca Thr	caa Gln	gtt Val	gaa Glu	ggt Gly 90	ccg Pro	gct Ala	gta Val	gtt Val	att Ile 95	tgt Cys	28	8
50	aat Asn	cat His	cag Gln	agt Ser 100	tct Ser	ctc Leu	gac Asp	att Ile	cta Leu 105	tcg Ser	atg Met	gca Ala	tca Ser	atc Ile 110	tgg Trp	ccg Pro	336	5
55	aag Lys	aat Asn	tgt Cys 115	gtt Val	gta Val	atg Met	atg Met	aaa Lys 120	cga Arg	att Ile	ctt Leu	gcc Ala	tat Tyr 125	gtt Val	cca Pro	ttc Phe	384	1
60	Pne	aat Asn 130	ctc Leu	gga Gly	gcc Ala	tac Tyr	ttt Phe 135	tcc Ser	aac Asn	aca Thr	atc Ile	ttc Phe 140	atc Ile	gat Asp	cga Arg	tat Tyr	432	?
	aac Asn	cgt Arg	gaa Glu	cgt Arg	gcg Ala	atg Met	gct Ala	tca Ser	gtt Val	gat Asp	tat Tyr	tgt Cys	gca Ala	tct Ser	gaa Glu	atg Met	480)

ı		BASF Plant Science GmbH 20030015 PF 54305 DE	
		2	
		145 150 155 160	
	5	aag aac aga aat ctt aaa ctt tgg gta ttt ccg gaa gga aca aga aat Lys Asn Arg Asn Leu Lys Leu Trp Val Phe Pro Glu Gly Thr Arg Asn 165 170 175	528
•	10	ogt gaa gga ggg ttc att cca ttc aag aaa gga gca ttc aat att gca Arg Glu Gly Gly Phe Ile Pro Phe Lys Lys Gly Ala Phe Asn Ile Ala 180 185 190	576
		gtt cgt gcg cag att ccc att att cca gtt gta ttc tca gac tat cgg Val Arg Ala Gln Ile Pro Ile Ile Pro Val Val Phe Ser Asp Tyr Arg 195 200 205	624
	15	gat ttc tac tca aag cca ggc cga tat ttc aag aat gat gga gaa gtt Asp Phe Tyr Ser Lys Pro Gly Arg Tyr Phe Lys Asn Asp Gly Glu Val 210 215 220	672
	20	gtt att cga gtt ctg gat gcg att cca aca aaa ggg ctc act ctt gat Val Ile Arg Val Leu Asp Ala Ile Pro Thr Lys Gly Leu Thr Leu Asp 225 230 235 240	720
	25	gac gtc agc gag ttg tct gat atg tgt cgg gac gtt atg ttg gca gcc Asp Val Ser Glu Leu Ser Asp Met Cys Arg Asp Val Met Leu Ala Ala 245 250 255	768
	30	cat aag gaa gtt act cta gaa gct cag caa cga aat gcg aca cgg cgt Fyr Lys Glu Val Thr Leu Glu Ala Gln Gln Arg Asn Ala Thr Arg Arg 260 265 270	816
		gga gaa aca aaa gac ggg aag aaa tct gag taa Gly Glu Thr Lys Asp Gly Lys Lys Ser Glu 275 280	849
	35	<210> 2<211> 282	
	40	<pre>212> PRT </pre> <pre>213> Caenorhabditis elegans</pre> <pre>4400> 2</pre>	
	45	Met Glu Asn Phe Trp Ser Ile Val Val Phe Phe Leu Leu Ser Ile Leu 5 10 15	
		Phe Ile Leu Tyr Asn Ile Ser Thr Val Cys His Tyr Tyr Met Arg Ile 20 25 30	
	50	Ser Phe Tyr Tyr Phe Thr Ile Leu Leu His Gly Met Glu Val Cys Val 35 40 45	
	55	thr Met Ile Pro Ser Trp Leu Asn Gly Lys Gly Ala Asp Tyr Val Phe 50 55 60	
	60	tis Ser Phe Phe Tyr Trp Cys Lys Trp Thr Gly Val His Thr Thr Val 75 70 75 80	

Tyr Gly Tyr Glu Lys Thr Gln Val Glu Gly Pro Ala Val Val Ile Cys 85

- 5 Asn His Gln Ser Ser Leu Asp Ile Leu Ser Met Ala Ser Ile Trp Pro 105
- Lys Asn Cys Val Val Met Met Lys Arg Ile Leu Ala Tyr Val Pro Phe 10 120
- Phe Asn Leu Gly Ala Tyr Phe Ser Asn Thr Ile Phe Ile Asp Arg Tyr 135 15
 - Asn Arg Glu Arg Ala Met Ala Ser Val Asp Tyr Cys Ala Ser Glu Met
 - Lys Asn Arg Asn Leu Lys Leu Trp Val Phe Pro Glu Gly Thr Arg Asn 170
- Arg Glu Gly Gly Phe Ile Pro Phe Lys Lys Gly Ala Phe Asn Ile Ala 25 · 180 185
- Val Arg Ala Gln Ile Pro Ile Ile Pro Val Val Phe Ser Asp Tyr Arg 30 200
- Asp Phe Tyr Ser Lys Pro Gly Arg Tyr Phe Lys Asn Asp Gly Glu Val 35
 - Val Ile Arg Val Leu Asp Ala Ile Pro Thr Lys Gly Leu Thr Leu Asp
- 40 Asp Val Ser Glu Leu Ser Asp Met Cys Arg Asp Val Met Leu Ala Ala 245
- 45 Tyr Lys Glu Val Thr Leu Glu Ala Gln Gln Arg Asn Ala Thr Arg Arg 260 265
- Gly Glu Thr Lys Asp Gly Lys Lys Ser Glu 50 275
- <210> 3

20

- <211> 849
- 55 <212> DNA <213> Caenorhabditis elegans
 - <220>
- <221> CDS 60
 - <222> (1)..(849)
 - <223> Acyl-CoA:Lysophospholipid-Acyltransferase

5	at	00> g ga t Gl	gaa	c tt n Ph	c tg: e Tr; 5	g tc: p Se:	g ato r Ile	gto Val	gtg L Va:	y tt: l Phe 10	ttt Phe	cta e Leu	acto	c tca 1 Se:	a at r Il 15	t ctc e Leu	48
10	tt. Ph	c at e Il	t tt e Le	a ta u Ty: 20	t aad r Ası	c ata n Ile	a tcg e Ser	aca Thr	gta Val 25	a tgo L Cys	cac His	tac Tyr	tat Tyr	ato Met	g cgg	g att g Ile	96
	tc: Se:	g tt r Ph	t ta e Ty: 35	3-	tto Phe	c aca	att Ile	tta Leu 40	tto Lev	cat His	gga Gly	atg Met	gaa Glu 45	gtt Val	tg:	gtt Val	144
15	aca Thi	a ato Me 50	g ato	c cct e Pro	tct Ser	tgg Trp	cta Leu 55	aat Asn	ggg Gly	aag Lys	ggt Gly	gct Ala 60	gat Asp	tac Tyr	gtg Val	ttt Phe	192
20	cac His 65	tcg Sei	tti Phe	t tto e Phe	tat Tyr	tgg Trp 70	tgt Cys	aaa Lys	tgg Trp	act Thr	ggt Gly 75	gtt Val	cat His	aca Thr	aca Thr	gtc Val 80	240
25	tat Tyr	gga Gl	tat Tyr	gaa Glu	aaa Lys 85	aca Thr	caa Gln	gtt Val	gaa Glu	ggt Gly 90	ccg Pro	gct Ala	gta Val	gtt Val	att Ile 95	tgt Cys	288
30	aat Asn	cat His	cag Glr	agt Ser 100	Ser	ctc Leu	gac Asp	att Ile	cta Leu 105	tcg Ser	atg Met	gca Ala	tca Ser	atc Ile 110	tgg Trp	ccg Pro	336
	aag Lys	aat Asr	tgt Cys 115	val	gta Val	atg Met	atg Met	aaa Lys 120	cga Arg	att Ile	ctt Leu	gcc Ala	tat Tyr 125	gtt Val	cca Pro	ttc Phe	384
35	ttc Phe	aat Asn 130		gga Gly	gcc Ala	tac Tyr	ttt Phe 135	tcc Ser	aac Asn	aca Thr	atc Ile	ttc Phe 140	atc Ile	gat Asp	cga Arg	tat Tyr	432
40	aac Asn 145	9	gaa Glu	cgt Arg	gcg Ala	atg Met 150	gct Ala	tca Ser	gtt Val	gat Asp	tat Tyr 155	tgt Cys	gca Ala	tct Ser	gaa Glu	atg Met 160	480
45	aag Lys	aac Asn	aga Arg	TIGIT	neu	aaa Lys	ctt Leu	tgg Trp	vaı	Ser	ccg Pro	gaa Glu	gga Gly	aca Thr	aga Arg 175	aat Asn	528
50	cgt Arg	gaa Glu	gga Gly	Gly ggg	ttc Phe	att Ile	cca Pro	Pne	aag Lys 185	aaa Lys	gga Gly	gca Ala	ttc Phe	aat Asn 190	att Ile	gca Ala	576
	gtt Val	cgt Arg	gcg Ala 195	cag Gln	att Ile	ccc Pro	att Ile	att Ile 200	cca Pro	gtt Val	gta Val	Phe	tca Ser 205	gac Asp	tat Tyr	cgg Arg	62 4
55	gat Asp	ttc Phe 210	tac Tyr	tca Ser	aag Lys	PIO	ggc Gly 215	cga Arg	tat Tyr	ttc Phe	Lys .	aat Asn 220	gat Asp	gga Gly	gaa Glu	gtt Val ·	672
60	gtt Val 225	att Ile	cga Arg	gtt Val	weu.	gat (Asp . 230	gcg a Ala :	att (cca (Pro !	I'nr :	aaa g Lys (235	gly i	ctc : Leu :	act Thr	Leu	gat Asp 240	720

	В	ASF	Plai	nt Sc	ienc	e Gn	nbH			200)300	15			PF	54305	DE	
					÷		•			5			•			•		
	ga As	ic gt	c aq al Se	gc ga er Gl	ag ti lu Le 24		et ga er As	at at Sp Me	g to	rs Ar 25	g As	ic gt sp Va	t at al Me	g tt et Le	g go eu Al 25	a gcc a Ala 5	768	
5	ta Ty	t aa r Ly	ıg ga rs G]	u gt u Va 26		t ct r Le	a ga u Gl	a go u Al	t ca a G1 26	H GI	a cg n Ar	ra aa g As	nt go	g ac a Th 27	ır Ar	g cgt g Arg	816	
10	gg	a ga y Gl	a ac u Th 27	a aa r Ly 5	a ga s As	c gg p Gl	g aa y Ly	g aa s Ly 28	s Se	t ga r Gļ	g ta u						849	
15	<2: <2:	12>	282 PRT		abdi	tis ·	elega	ans				•						
20		00> = Gl1		n Phe	e Tri	o Se	r T]2	. Wa	1 170	l Dh	- m l-	_			•	e Leu		
	1				5			- va.	. va.	10	· Pne	s re	ı Lei	ı Se:	r Ile 15	e Leu		
25	Ph∈	e Ile	e Lei	ı Тут 20	Ası	ı Ile	e Ser	Thi	va] 25	L Cys	s His	Ty:	туз	Met	= Arg	J Ile		
30	Ser	Phe	35	тут	Phe	Thr	Ile	Leu 40	. Leu	His	Gly	Met	: .Glu 45	ı Val	. Cys	. Val		
35	Thr	Met 50	Ile	Pro	Ser	Trp	Leu 55	. Asn	. Gly	. FÀ2	Gly	Ala 60	. Asp	Тут	Val	Phe	•	
40	His 65	Ser	Phe	Phe	Tyr	Trp 70	Cys	Lys	Trp	Thr	Gly 75	Val	His	Thr	Thr	Val 80		
40	Tyr	Gly	Tyr	Glu	Lys 85	Thr	Gln	Val	Glu	Gly 90	Pro	Ala	Val	Val	Ile 95	Cys		
45	Asn	His	Gln	Ser 100	Ser	Leu	Asp	Ile	Leu 105	Ser	Met	Ala	Ser	Ile 110	Trp	Pro		
50	Lys	Asn	Cys 115	Val	Val	Met	Met	Lys 120	Arg	Ile	Leu	Ala	Tyr 125	Val	Pro	Phe		
55	Phe	Asn 130	Leu	Gly	Ala	Tyr	Phe 135	Ser	Asn	Thr	Ile	Phe 140	Ile	Asp	Arg	Tyr		

Asn Arg Glu Arg Ala Met Ala Ser Val Asp Tyr Cys Ala Ser Glu Met 145

Lys Asn Arg Asn Leu Lys Leu Trp Val Ser Pro Glu Gly Thr Arg Asn 165 170 175

60

5	Arg	Glu	Gly	Gly 180	Phe	Ile	Pro	Phe	Lys 185	Lys	Gly	Ala	Phe	Asn 190	Ile	Ala	
10	Val	Arg	Ala 195	Gln	Ile	Pro	Ile	Ile 200	Pro	Val	Val	Phe	Ser 205	Asp	Tyr	Arg	•
	Asp	Phe 210	Tyr	Ser	Lys	Pro	Gly 215	Arg	Tyr	Phe	ГĀŻ	Asn 220	Asp	Gly	Glu	Val	
15	Val 225	Ile	Arg	Val	Leu	Asp 230	Ala	Ile	Pro	Thr	Lys 235	Gly	Leu	Thr	Leu	Asp 240	
20	Asp	Val	Ser	Glu	Leu 245	Ser	Asp	Met	Cys	Arg 250	Asp	Val	Met	Leu	Ala 255	Ala	
25	Tyr	Lys	Glu	Val 260	Thr	Leu	Glu	Ala	Gln 265	Gln	Arg	Asn	Ala	Thr 270	Arg	Arg	
	Gly	Glu	Thr 275	Lys	Asp	Gly	Lys	Lys 280	Ser	Glu							
30	<210 <210 <210	I <5	5 849 ONA														
35	<213 <220 <221	D> L> (CDS			is el	Legar	ıs									
40	<222 <223			. (849 -CoA:	•	phos	spho]	lipid	l-Acy	yltra	msfe	erase	3			·	
-	<400																
5								gtc Val									48
50	ttc Phe	att Ile	tta Leu	tat Tyr 20	aac Asn	ata Ile	tcg Ser	aca Thr	gta Val 25	tgc Cys	cac His	tac Tyr	tat Tyr	gtg Val 30	cgg Arg	att Ile	96
	tcg Ser	ttt Phe	tat Tyr 35	tac Tyr	ttc Phe	aca Thr	att Ile	tta Leu 40	ttg Leu	cat His	gga Gly	atg Met	gaa Glu 45	gtt Val	tgt Cys	gtt Val	144
55	aca Thr	atg Met 50	atc Ile	cct Pro	tct Ser	tgg Trp	cta Leu 55	aat Asn	Gly aaa	aag Lys	ggt Gly	gct Ala 60	gat Asp	tac Tyr	gtg Val	ttt Phe	192
60	cac His 65	tcg Ser	ttt Phe	ttc Phe	tat Tyr	tgg Trp 70	tgt Cys	aaa Lys	tgg Trp	act Thr	ggt Gly 75	gtt Val	cat His	aca Thr	aca Thr	gtc Val 80	240

	tat Tyr	gga Gly	tat Tyr	gaa Glu	aaa Lys 85	aca Thr	caa Gln	gtt Val	gaa Glu	ggt Gly 90	ccg Pro	gct Ala	gta Val	gtt Val	att Ile 95	tgt Cys	288
5	aat Asn	cat His	cag Gln	agt Ser 100	tct Ser	ctc Leu	gac Asp	att Ile	cta Leu 105	tcg Ser	atg Met	gca Ala	tca Ser	atc Ile 110	tgg Trp	ccg Pro	336
10	aag Lys	aat Asn	tgt Cys 115	gtt Val	gta Val	atg Met	atg Met	aaa Lys 120	cga Arg	att Ile	ctt Leu	gcc Ala	tat Tyr 125	gtt Val	cca Pro	ttc Phe	384
15	ttc Phe	aat Asn 130	ctc Leu	gga Gly	gcc Ala	tac Tyr	ttt Phe 135	tcc Ser	aac Asn	aca Thr	atc Ile	ttc Phe 140	atc Ile	gat Asp	cga Arg	tat Tyr	432
20	aac Asn 145	cgt Arg	gaa Glu	cgt Arg	gcg Ala	atg Met 150	gct Ala	tca Ser	gtt Val	gat Asp	tat Tyr 155	tgt Cys	gca Ala	tct Ser	gaa Glu	atg Met 160	480
	aag Lys	aac Asn	aga Arg	aat Asn	ctt Leu 165	aaa Lys	ctt Leu	tgg Trp	gta Val	ttt Phe 170	ccg Pro	gaa Glu	gga Gly	aca Thr	aga Arg 175	aat Asn	_. 528
25	cgt Arg	gaa Glu	gga Gly	ggg Gly 180	ttc Phe	att Ile	cca Pro	ttc Phe	aag Lys 185	aaa Lys	gga Gly	gca Ala	ttc Phe	aat Asn 190	att Ile	gca Ala	576
30	gtt Val	cgt Arg	gcg Ala 195	cag Gln	att Ile	ccc Pro	att Ile	att Ile 200	cca Pro	gtt Val	gta Väl	ttc Phe	tca Ser 205	Asp	tat Tyr	cgg Arg	624
35	gat Asp	ttc Phe 210	tac Tyr	tca Ser	aag Lys	cca Pro	ggc Gly 215	cga Arg	tat Tyr	ttc Phe	aag Lys	aat Asn 220	gat Asp	Gly gga	gaa Glu	gtt Val	672
40	gtt Val 225	att Ile	cga Arg	gtt Val	ctg Leu	gat Asp 230	gcg Ala	att Ile	cca Pro	aca Thr	aaa Lys 235	GJÀ aaa	ctc Leu	act Thr	ctt Leu	gat Asp 240	720
	gac Asp	gtc Val	agc Ser	gag Glu	ttg Leu 245	tct Ser	gat Asp	atg Met	tgt Cys	cgg Arg 250	gac Asp	gtt Val	atg Met	ttg Leu	gca Ala 255	gcc Ala	768
5	tat Tyr	aag Lys	gaa Glu	gtt Val 260	act Thr	cta Leu	gaa Glu	gct Ala	cag Gln 265	caa Gln	cga Arg	aat Asn	gcg Ala	aca Thr 270	cgg Arg	cgt Arg	816
50					gac Asp						taa		•				849
55	<210 <210 <210 <210	L> 2 2> 1	6 282 PRT Caend	orhak	oditi	is el	legar	ıs									
60	<400 Met 1		Asn	Phe	Trp 5	Ser	Ile	Val	Val	Phe 10	Phe	Leu	Leu		Ile 15	Leu	

Phe Ile Leu Tyr Asn Ile Ser Thr Val Cys His Tyr Tyr Val Arg Ile

Ser Phe Tyr Tyr Phe Thr Ile Leu Leu His Gly Met Glu Val Cys Val

- Thr Met Ile Pro Ser Trp Leu Asn Gly Lys Gly Ala Asp Tyr Val Phe
- His Ser Phe Phe Tyr Trp Cys Lys Trp Thr Gly Val His Thr Thr Val
- Tyr Gly Tyr Glu Lys Thr Gln Val Glu Gly Pro Ala Val Val Ile Cys
 - Asn His Gln Ser Ser Leu Asp Ile Leu Ser Met Ala Ser Ile Trp Pro
 - Lys Asn Cys Val Val Met Met Lys Arg Ile Leu Ala Tyr Val Pro Phe
- Phe Asn Leu Gly Ala Tyr Phe Ser Asn Thr Ile Phe Ile Asp Arg Tyr
- Asn Arg Glu Arg Ala Met Ala Ser Val Asp Tyr Cys Ala Ser Glu Met
- Lys Asn Arg Asn Leu Lys Leu Trp Val Phe Pro Glu Gly Thr Arg Asn
 - Arg Glu Gly Gly Phe Ile Pro Phe Lys Lys Gly Ala Phe Asn Ile Ala
 - Val Arg Ala Gln Ile Pro Ile Ile Pro Val Val Phe Ser Asp Tyr Arg
- Asp Phe Tyr Ser Lys Pro Gly Arg Tyr Phe Lys Asn Asp Gly Glu Val
- Val Ile Arg Val Leu Asp Ala Ile Pro Thr Lys Gly Leu Thr Leu Asp
- Asp Val Ser Glu Leu Ser Asp Met Cys Arg Asp Val Met Leu Ala Ala

Tyr Lys Glu Val Thr Leu Glu Ala Gln Gln Arg Asn Ala Thr Arg Arg 260 265 270

5 Gly Glu Thr Lys Asp Gly Lys Lys Ser Glu 275 280

<210> 7 10 <211> 849

<212> DNA

<213> Caenorhabditis elegans

<220>

15 <221> CDS

<222> (1)..(849)

<223> Acyl-CoA:Lysophospholipid-Acyltransferase

20 <400> 7

40

60

atg gag aac ttc tgg tcg atc gtc gtg ttt ttt cta ctc tca att ctc Met Glu Asn Phe Trp Ser Ile Val Val Phe Phe Leu Leu Ser Ile Leu 1 5 10 15

25 ttc att tta tat aac ata tcg aca gta tgc cac tac tat atg cgg att 96
Phe Ile Leu Tyr Asn Ile Ser Thr Val Cys His Tyr Tyr Met Arg Ile
20 25 30

tcg ttt tat tac ttc aca att tta ttg cat gga atg gaa gtt tgt gtt 144
30 Ser Phe Tyr Tyr Phe Thr Ile Leu Leu His Gly Met Glu Val Cys Val
35 40 45

aca atg atc cct tct tgg cta aat ggg aag ggt gct gat tac gtg ttt 192.

Thr Met Ile Pro Ser Trp Leu Asn Gly Lys Gly Ala Asp Tyr Val Phe

55 60

cac tcg ttt ttc tat tgg tgt aaa tgg act ggt gtt cat aca aca gtc

His Ser Phe Phe Tyr Trp Cys Lys Trp Thr Gly Val His Thr Thr Val

65 70 75 80

tat gga tat gaa aaa aca caa gtt gaa ggt ccg gcc gta gtt att tgt
Tyr Gly Tyr Glu Lys Thr Gln Val Glu Gly Pro Ala Val Val Ile Cys
85 90 95

aat cat cag ggt tct ctc gac att cta tcg atg gca tca atc tgg ccg
Asn His Gln Gly Ser Leu Asp Ile Leu Ser Met Ala Ser Ile Trp Pro
100 105 110

aag aat tgt gtt gta atg atg aaa cga att ctt gcc tat gtt cca ttc 384

Lys Asn Cys Val Val Met Met Lys Arg Ile Leu Ala Tyr Val Pro Phe
115 120 125

ttc aat ctc gga gcc tac ttt tcc aac aca atc ttc atc gat cga tat

Phe Asn Leu Gly Ala Tyr Phe Ser Asn Thr Ile Phe Ile Asp Arg Tyr

130 135 140

aac cgt gaa cgt gcg atg gct tca gtt gat tat tgt gca tct gaa atg
Asn Arg Glu Arg Ala Met Ala Ser Val Asp Tyr Cys Ala Ser Glu Met
145 150 150 160

aag aac aga aat ctt aaa ctt tgg gta ttt ccg gaa gga aca aga aat 528 Lys Asn Arg Asn Leu Lys Leu Trp Val Phe Pro Glu Gly Thr Arg Asn

		В	AS	SF F	Plan	t Sc	ienc	e Gr	nbH	· · ·			200	300	15				PF	54305	DE	
													10)								
							16	55					17						17	E		
٠	. 5	C Q	gt :g	gaa Glu	gg Gl	a gg y G] 18		c at ne II	tt co le Pi	ca t	ue .	aag Lys 185	LY.	a gg s Gl	ja go .y Al	a t .a P	tc he	aat Asr 190	at	t gca e Ala	i i	576
	10				19	5			.0 11	20	00	PTO	va.	L Va	ıl Ph	e S	er 05	Asp	ту:	t cgg r Arg	Ī	624
		ga As	_	ttc Phe 210	-2-	tc Se	a aa r Ly	g co s Pr	a gg o Gl 21	· Y A	ga t rg 1	tat Iyr	tto Phe	aa Ly	g aa s As 22	n A	at sp	gga Gly	gaa Glu	a gtt ı Val		672 .
	. 15	22	5			,		23	0 D A1	a 11	le F	ro	unr	23	s Gl; 5	y Le	eu	Thr	Let	gat Asp 240		720
	20	ga As	p 7	gtc Val	agc Ser	ga: Gl:	g tt u Le 24	ع ی د	t ga r As	t at p Me	g t	gt Ys	cgg Arg 250	[As]	c gt p Va	t at l Me	g et :	ttg Leu	gca Ala 255	gcc Ala		768
*	25	ta Ty:	t a	iys aag	gaa Glu	gt: Va: 260	~	t ct r Le	a ga u Gl	a go u Al	a G	ag ln 65	caa Gln	cga Arg	a aat J Ası	t gc n Al	a ′	aca Thr 270	cgg Arg	cgt Arg		816
	30	G17	a ç	gaa Slu	aca Thr 275	Lys	a gad s Asp	ggg Gly	g aaq Y Ly:	g aa s Ly 28	s S	ct er	gag Glu	taa	ı							849
	35	<21 <21 <21 <21	.1> .2>	2 P	82 RT	orha	bdit	:is €	elega	ins												
		<40		_			•															
	40	Met 1	G	lu .	Asn	Phe	Trp 5	Ser	· Ile	· Val	l Va		Phe 10	Phe	Leu	. Le	ı S		Ile 15	Leu		
	4 5	Phe	ı	le :	Leu	Tyr 20	Asn	Ile	Ser	Thr	7 Va 25	al (Cys	His	Tyr	ТУЗ	- M 3		Arg	Ile		
		Ser	Pì	ne :	Tyr 35	Tyr	Phe	Thr	Ile	Leu 40	ı L∈	eu F	lis	Gly	Met	Glu 45	ı V	al (Cys	Val		
	50	Thr	Me 50	et])	[le	Pro	Ser	Trp	Leu 55	Asn	Gl	y L	ys	Gly	Ala 60	Asp	T)I 1	Val	Phe		
	55	His 65	Se	er P	Phe :	Phe	Tyr	Trp 70	Cys	Lys	Tr	Τq	hr (Gly 75	Val	His	TÌ	ur 1		Val 80		
	60	Tyr	Gl	уТ	Àr (Glu	Lys 85	Thr	Gln	Val	Gli	u G 9	ly 1 0	Pro	Ala	Val	Va		le 95	Cys		

Asn	His	Gln	Gly	Ser	Leu	Asp	Ile	Leu	Ser	Met	Ala	Ser	Ile	Time	Pro
			100			-		105					110		

- 5 Lys Asn Cys Val Val Met Met Lys Arg Ile Leu Ala Tyr Val Pro Phe 115 120 125
- Phe Asn Leu Gly Ala Tyr Phe Ser Asn Thr Ile Phe Ile Asp Arg Tyr.

 10 130 . 135 140
- Asn Arg Glu Arg Ala Met Ala Ser Val Asp Tyr Cys Ala Ser Glu Met 145 150 155 160
 - Lys Asn Arg Asn Leu Lys Leu Trp Val Phe Pro Glu Gly Thr Arg Asn 165 170 175
- Arg Glu Gly Gly Phe Ile Pro Phe Lys Lys Gly Ala Phe Asn Ile Ala 180 185 190
- 25 Val Arg Ala Gln Ile Pro Ile Ile Pro Val Val Phe Ser Asp Tyr Arg
 195 200 205
- Asp Phe Tyr Ser Lys Pro Gly Arg Tyr Phe Lys Asn Asp Gly Glu Val 210 215 220
- Val Ile Arg Val Leu Asp Ala Ile Pro Thr Lys Gly Leu Thr Leu Asp 225 230 235 240
 - Asp Val Ser Glu Leu Ser Asp Met Cys Arg Asp Val Met Leu Ala Ala 245 250 255
- Tyr Lys Glu Val Thr Leu Glu Ala Gln Gln Arg Asn Ala Thr Arg Arg 260 265 270
- Gly Glu Thr Lys Asp Gly Lys Lys Ser Glu 275 280
- <210> 9 50 <211> 1578

- <212> DNA <213> Physcomitrella patens
- 60 <400> 9
 atg gta ttc gcg ggc ggt gga ctt cag cag ggc tct ctc gaa gaa aac
 Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn

											12								
		1				5				•	10					15			
	5	atc Ile	gac Asp	gtc Val	gag Glu 20	cac His	att Ile	gcc Ala	agt Ser	atg Met 25	tct Ser	ctc Leu	ttc Phe	agc Ser	gac Asp 30	ttc Phe	ttc Phe		96
	10	agt Ser	tat Tyr	gtg Val 35	tct Ser	tca Ser	act Thr	gtt Val	ggt Gly 40	tcg Ser	tgg Trp	agc Ser	gta Val	cac His 45	agt Ser	ata Ile	caa Gln		144
•		cct Pro	ttg Leu 50	aag Lys	cgc Arg	ctg Leu	acg Thr	agt Ser 55	aag Lys	aag Lys	cgt Arg	gtt Val	tcg Ser 60	gaa Glu	agc Ser	gct Ala	gcc Ala		192
	15	gtg Val 65	caa Gln	tgt Cys	ata Ile	tca Ser	gct Ala 70	gaa Glu	gtt Val	cag Gln	aga Arg	aat Asn 75	tcg Ser	agt Ser	acc Thr	cag Gln	gga Gly 80		240
	20	act Thr	gcg Ala	gag Glu	gca Ala	ctc Leu 85	gca Ala	gaa Glu	tca Ser	gtc Val	gtg Val 90	aag Lys	ccc Pro	acg Thr	aga Arg	cga Arg 95	agg Arg	•	288
	25 ~	tca Ser	tct Ser	cag Gln	tgg Trp 100	aag Lys	aag Lys	tcg Ser	aca Thr	cac His 105	ccc Pro	cta Leu	tca Ser	gaa Glu	gta Val 110	gca Ala	gta Val		336
	30	His	Asn	Lys 115	cca Pro	Ser	Asp	Cys	Trp 120	Ile	Val	Val	Lys	Asn 125	Lys	Val	Tyr		384
		gat Asp	gtt Val 130	tcc Ser	aat Asn	ttt Phe	gcg Ala	gac Asp 135	gag Glu	cat His	ccc Pro	gga Gly	gga Gly 140	tca Ser	gtt Val	att Ile	agt Ser		432
	35	act Thr 145	tat Tyr	ttt Phe	gga Gly	cga Arg	gạc Asp 150	ggc Gly	aca Thr	gat Asp	gtt Val	ttc Phe 155	tct Ser	agt Ser	ttt Phe	cat His	gca Ala 160		480
	40	gct Ala	tct Ser	aca Thr	tgg Trp	aaa Lys 165	att Ile	ctt Leu	caa Gln	gac Asp	ttt Phe 170	\mathtt{Tyr}	att Ile	ggt Gly	gac Asp	gtg Val 175	gag Glu		528
	1 5	agg Arg	gtg Val	gag Glu	ccg Pro 180	act Thr	cca Pro	gag Glu	ctg Leu	ctg Leu 185	aaa Lys	gat Asp	ttc Phe	cga Arg	gaa Glu 190	atg Met	aga Arg		576
	50	gct Ala	ctt Leu	ttc Phe 195	ctg Leu	agg Arg	gag Glu	caa Gln	ctt Leu 200	ttc Phe	aaa Lys	agt Ser	tcg Ser	aaa Lys 205	ttg Leu	tac Tyr	tat Tyr		624
		gtt Val	atg Met 210	aag Lys	ctg Leu	ctc Leu	acg Thr	aat Asn 215	gtt Val	gct Ala	att Ile	ttt Phe	gct Ala 220	gcg Ala	agc Ser	att Ile	gca Ala		672
	55	ata Ile 225	ata Ile	tgt Cys	tgg Trp	agc Ser	aag Lys 230	act Thr	att Ile	tca Ser	gcg Ala	gtt Val 235	ttg Leu	gct Ala	tca Ser	gct Ala	tgt Cys 240		720
	60	atg Met	atg Met	gct Ala	ctg Leu	tgt Cys 245	ttc Phe	caa Gln	cag Gln	tgc Cys	gga Gly 250	tgg Trp	cta Leu	tcc Ser	cat His	gat Asp 255	ttt Phe		768

PF 54305 DE

BASF Plant Science GmbH

										13							
	ctc Leu	cac His	aat Asn	cag Gln 260	gtg Val	ttt Phe	gag Glu	aca Thr	cgc Arg 265	tgg Trp	ctt Leu	aat Asn	gaa Glu	gtt Val 270	gtc Val	Gly aaa	816
5	tat Tyr	gtg Val	atc Ile 275	ggc	aac Asn	gcc Ala	gtt Val	ctg Leu 280	Gly	ttt Phe	agt Ser	aca Thr	ggg Gly 285	tgg Trp	tgg Trp	aag Lys	864
.10	gag Glu	aag Lys 290	cat His	aac Asn	ctt Leu	cat His	cat His 295	gct Ala	gct Ala	cca Pro	aat Asn	gaa Glu 300	tgc Cys	gat Asp	cag Gln	act Thr	912
15	tac Tyr 305	caa Gln	cca Pro	att Ile	gat Asp	gaa Glu 310	gat Asp	att Ile	gat Asp	act Thr	ctc Leu 315	ccc Pro	ctc Leu	att Ile	gcc Ala	tgg Trp 320	960
20	agc Ser	aag Lys	gac Asp	ata Ile	ctg Leu 325	gcc Ala	aca Thr	gtt Val	gag Glu	aat Asn 330	aag Lys	aca Thr	ttc Phe	ttg Leu	cga Arg 335	atc Ile	1008
	ctc Leu	caa Gln	tac Tyr	cag Gln 340	cat His	ctg Leu	ttc Phe	ttc Phe	atg Met 345	ggt Gly	ctg Leu	tta Leu	ttt Phe	ttc Phe 350	gcc Ala	cgt Arg	1056
25	ggt Gly	agt Ser	tgg Trp 355	ctc Leu	ttt Phe	tgg Trp	agc Ser	tgg Tip 360	aga Arg	tat Tyr	acc Thr	tct Ser	aca Thr 365	gca Ala	gtg Val	ctc Leu	1104
30	tca Ser	cct Pro 370	gtc Val	gac Asp	agg Arg	ttg Leu	ttg Leu 375	gag Glu	aag Lys	gga Gly	act Thr	gtt Val 380	ctg Leu	ttt Phe	cac His	tac Tyr	1152
35	ttt Phe 385	tgg Trp	ttc Phe	gtc Val	GJÀ aaa	aca Thr 390	gcg Ala	tgc Cys	tat Tyr	ctt Leu	ctc Leu 395	cct Pro	ggt Gly	tgg Trp	aag Lys	cca Pro 400	1200
40	tta Leu	gta Val	tgg Trp	atg Met	gcg Ala 405	gtg Val	act Thr	gag Glu	ctc Leu	atg Met 410	tcc Ser	ggc ggc	atg Met	ctg Leu	ctg Leu 415	Gly	1248
	ttt Phe	gta Val	ttt Phe	gta Val 420	ctt Leu	agc Ser	cac His	aat Asn	ggg Gly 425	atg Met	gag Glu	gtt Val	tat Tyr	aat Asn 430	tcg Ser	tct Ser	1296
15	aaa Lys	gaa Glu	ttc Phe 435	gtg Val	agt Ser	gca Ala	cag Gln	atc Ile 440	Val	tcc Ser	aca Thr	cgg Arg	gat Asp 445	atc Ile	aaa Lys	gga Gly	1344
50	aac Asn	ata Ile 450	ttc Phe	aac Asn	gac Asp	tgg Trp	ttc Phe 455	act Thr	ggt Gly	ggc ggc	ctt Leu	aac Asn 460	agg Arg	caa Gln	ata Ile	gag Glu	1392
55	cat His 465	cat His	ctt Leu	ttc Phe	cca Pro	aca Thr 470	atg Met	ccc Pro	agg Arg	cat His	aat Asn 475	tta Leu	aac Asn	aaa Lys	ata Ile	gca Ala 480	1440
60	cct Pro	aga Arg	gtg Val	gag Glu	gtg Val 485	ttc Phe	tgt Cys	aag Lys	aaa Lys	cac His 490	ggt Gly	ctg Leu	gtg Val	tac Tyr	gaa Glu 495	gac Asp	1488
	gta Val	tct Ser	att Ile	gct Ala	acc Thr	ggc Gly	act Thr	tgc Cys	aag Lys	gtt Val	ttg Leu	aaa Lys	gca Ala	ttg Leu	aag Lys	gaa Glu	1536

	500	505	•	51
			•	

gtc gcg gag gct gcg gca gag cag cat gct acc acc agt taa Val Ala Glu Ala Ala Glu Gln His Ala Thr Thr Ser 5 520

1578

. <210> 10 <211> 525 <212> PRT <213> Physcomitrella patens 10 <400> 10

25

Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn 10

Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe 20 25

Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln

Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala

30 Val Gln Cys Ile Ser Ala Glu Val Gln Arg Asn Ser Ser Thr Gln Gly

35 Thr Ala Glu Ala Leu Ala Glu Ser Val Val Lys Pro Thr Arg Arg Arg 90

Ser Ser Gln Trp Lys Lys Ser Thr His Pro Leu Ser Glu Val Ala Val 40 100 105 110

His Asn Lys Pro Ser Asp Cys Trp Ile Val Val Lys Asn Lys Val Tyr

Asp Val Ser Asn Phe Ala Asp Glu His Pro Gly Gly Ser Val Ile Ser 135

50 Thr Tyr Phe Gly Arg Asp Gly Thr Asp Val Phe Ser Ser Phe His Ala 145 150 155

Ala Ser Thr Trp Lys Ile Leu Gln Asp Phe Tyr Ile Gly Asp Val Glu 55 165 170

Arg Val Glu Pro Thr Pro Glu Leu Leu Lys Asp Phe Arg Glu Met Arg 60

										15						
,	Ala	Leu	Phe 195	Leu	Arg	Glu	Gln	Leu 200	Phe	Lys	Ser	Ser	Lys 205	Leu	Tyr	Tyr
5	Val	Met 210	Lys	Leu	Leu	Thr	Asn 215	Val	Ala	Ile	Phe	Ala 220	Ala	Ser	Ile	Ala
- 10	Ile 225	Ile	Суз	Trp	Ser	Lys 230	Thr	Ile	Ser	Ala	Val 235	Leu	Ala	Ser	Ala	Cys 240
15	Met	Met	Ala	Leu	Cys 245	Phe	Gln	Gln	Cys	Gly 250	Trp	Leu	Ser	His	Asp 255	Phe
20	Leu	His	Asn	Gln 260	Val	Phe	Glu	Thr	Arg 265	Trp	Leu	Asn	Glu	Val 270	Val	Gly
20	Tyr	Val	Ile 275	Gly	Asn	Ala	Val	Leu 280	Gly	Phe	Ser	Thr	Gly 285	Trp	Trp	Lys
25	Glu	Lys 290	His	Asn	Leu	His	His 295	Ala	Ala	Pro	Asn	Glu 300	Cys	Asp	Gln	Thr
30	Tyr 305	Gln	Pro	Ile	Asp	Glu 310	Asp	Ile	Asp	Thr	Leu 315	Pro	Leu	Ile	Ala	Trp 320
35	Ser	Lys	Asp	Ile	Leu 325	Ala	Thr	Val	Glu	Asn 330	Lys	Thr	Phe	Leu	Arg 335	Ile
40	Leu	Gln	Tyr	Ġln 340	His	Leu	Phe	Phe	Met 345	Gly	Leu	Leu	Phe	Phe 350	Ala	Arg
40	Gly	Ser	Trp 355	Leu	Phe	Trp	Ser	Trp 360	Arg	Tyr	Thr	Ser	Thr 365	Ala	Val	Leu
5	Ser	Pro 370	Val	Asp	Arg	Leu	Leu 375	Glu	Lys	Gly	Thr	Val 380	Leu	Phe	His	Tyr
50	Phe 385	Trp	Phe	Val	Gly	Thr 390	Ala	Cys	Tyr	Leu	Leu 395	Pro	Gly	Trp	Lys	Pro 400
55	Leu	Val	Trp	Met	Ala 405	Val	Thr	Glu	Leu	Met 410	Ser	Gly	Met	Leu	Leu 415	Gly
	Phe	Val	Phe	Val 420	Leu	Ser	His	Asn	Gly 425	Met	Glu	Val	Tyr	Asn 430	Ser	Ser

Lys Glu Phe Val Ser Ala Gln Ile Val Ser Thr Arg Asp Ile Lys Gly 435 440 · 445

5	Asr	1. I16 45	e Phe	e Ası	ı Ası	Tr	Phe 455	Thr	Gly	/ Glz	y Leu	. Asn 460		 Glr	ı Ile	e Glu	
	His 465	Hi:	s Lev	ı Phe	Pro	470	Met	Pro	Arg	His	475	Leu	. Asn	Lys	: Ile	Ala 480	
10	Pro	Arg	y Val	. Glu	val 485	. Phe	: Cys	Lys	Lys	His 490	Gly	· Leu	Val	Туг	Glu 495	Asp	
15	Val	. Sei	Ile	Ala 500	Thr	Gly	Thr	Cys	Lys 505	Val	. Leu	Lys	Ala	Leu 510		Glu	
20	Val	Ala	Glu 515	. Ala	Ala	Ala	Glu	Gln 520		: Ala	Thr	Thr	Ser 525				
25	<21 <21 <21 <21	1> 2>	11 _. 1192 DNA Phys		trel	la p	aten	s									
30	<22 <22 <22 <22	1> 2>	CDS (58) Delta			gase											
35	<40 ctg	-	11 gtc	tcat	cttg	gg g	gtgt	gatt	c gg	gagt	gggt	tgag	yttgg	gtg (gagc	gca	57
40	atg Met 1	gag Glu	gtc Val	gtg Val	gag Glu 5	aga Arg	ttc Phe	tac Tyr	ggt Gly	gag Glu 10	ttg Leu	gat Asp	ggg ggg	aag Lys	gtc Val 15	tcg Ser	105
	cag Gln	ggc Gly	gtg	aat	gca	ttg	ctg	ggt	agt								
1 5			vai	Asn 20	Ala	ьеи	Leu	Gly	Ser 25	Phe	Gly aga	gtg Val	gag Glu	ttg Leu 30	acg Thr	gat Asp	153
	acg Thr	ccc	act	20 acc	aaa	ggc	Leu	GLY	Ser 25	Phe	Gly	Val agt Ser	Glu	Leu 30	Thr	Asp	201
50	gtc	ccc Pro	act Thr 35	acc Thr	aaa Lys tct	ggc Gly gta	ttg Leu tac	CCC Pro 40	ser 25 ctc Leu	Phe gtt Val	gac Asp	Val agt Ser	ccc Pro 45	Leu 30 aca Thr	Thr ccc Pro	atc Ile	•
50 55	gtc Val	ccc Pro ctc Leu 50	act Thr 35 ggt Gly	acc Thr gtt Val	aaa Lys tct Ser	ggc Gly gta Val	ttg Leu tac Tyr 55	CCC Pro 40 ttg Leu	Ser 25 ctc Leu act Thr	Phe gtt Val att Ile	gac Asp gtc Val	agt Ser att Ile	CCC Pro 45 gga Gly	Leu 30 aca Thr ggg Gly	Thr ccc Pro ctt Leu	atc Ile ttg Leu	201
	gtc Val tgg Trp 65	ccc Pro ctc Leu 50 ata Ile	act Thr 35 ggt Gly aag Lys	acc Thr gtt Val gcc Ala	aaa Lys tct Ser agg Arg	ggc Gly gta Val gat Asp 70	ttg Leu tac Tyr 55 ctg Leu	CCC Pro 40 ttg Leu aaa Lys	ser 25 . ctc Leu act Thr ccg Pro	gtt Val att Ile cgc Arg	gac Asp gtc Val gcc Ala 75	agt Ser att Ile 60 tcg Ser	ccc Pro 45 gga Gly gag Glu	Leu 30 aca Thr ggg Gly cca Pro	Thr ccc Pro ctt Leu ttt Phe	atc Ile ttg Leu ttg	201

	BA	SF P	lant	Scie	nce	Gmb	H		:	2003	0015	5		. F	PF 54	1305 DE	
									•	17							
				100					105					110	٠		
5	tct Ser	ctc Leu	tgg Trp 115	Gly	aat Asn	gca Ala	tac Tyr	aat Asn 120	cct Pro	aaa Lys	cat His	aaa Lys	gag Glu 125	atg Met	gcg Ala	att Ile	441
10	ctg Leu	gta Val 130	tac Tyr	ttg Leu	ttc Phe	tac Tyr	atg Met 135	tct Ser	aag Lys	tac Tyr	gtg Val	gaa Glu 140	ttc Phe	atg Met	gat Asp	acc Thr	489
	gtt Val 145	atc Ile	atg Met	ata Ile	ctg Leu	aag Lys 150	cgc Arg	agc Ser	acc Thr	agg Arg	caa Gln 155	ata Ile	agc Ser	ttc Phe	ctc Leu	cac His 160	537
15	gtt Val	tat Tyr	cat His	cat His	tct Ser 165	tca Ser	att Ile	tcc Ser	ctc Leu	att Ile 170	tgg Trp	tgg Trp	gct Ala	att Ile	gct Ala 175	cat His	585
20	cac His	gct Ala	cct Pro	ggc Gly 180	ggt Gly	gaa Glu	gca Ala	tat Tyr	tgg Trp 185	tct Ser	gcg Ala	gct Ala	ctg Leu	aac Asn 190	tca Ser	gga Gly	633
25	gtg Val	cat His	gtt Val 195	ctc Leu	atg Met	tat Tyr	gcg Ala	tat Tyr 200	tac Tyr	ttc Phe	ttg Leu	gct Ala	gcc Ala 205	tgc Cys	ctt Leu	cga Arg	681
30	agt Ser	agc Ser 210	cca Pro	aag Lys	tta Leu	aaa Lys	aat Asn 215	aag Lys	tac Tyr	ctt Leu	ttt Phe	tgg Trp 220	ggc	agg Arg	tac Tyr	ttg Leu	729
	aca Thr 225	caa Gln	ttc Phe	caa Gln	atg Met	ttc Phe 230	cag Gln	ttt Phe	atg Met	ctg Leu	aac Asn 235	tta Leu	gtg Val	cag Gln	gct Ala	tac Tyr . 240	777
35	tac Tyr	gac Asp	atg Met	aaa Lys	acg Thr 245	aat Asn	gcg Ala	cca Pro	tat Tyr	cca Pro 250	caa Gln	tgg Trp	ctg Leu	atc Ile	aag Lys 255	att Ile	825
40	ttg Leu	ttc Phe	tac Tyr	tac Tyr 260	atg Met	atc Ile	tcg Ser	ttg Leu	ctg Leu 265	ttt Phe	ctt Leu	ttc Phe	ggc Gly	aat Asn 270	ttt Phe	tac Tyr	873
5	gta Val	caa Gln	aaa Lys 275	tac Tyr	atc Ile	aaa Lys	ccc Pro	tct Ser 280	gac Asp	gga Gly	aag Lys	caa Gln	aag Lys 285	gga Gly	gct Ala	aaa Lys	921
	act Thr	gag Glu	tga	gctc	rtato	aa g	rccat	agaa	a ct	ctat	tatg	, tta	gaac	ctg			970

aagttggtgc tttcttatct ccacttatct tttaagcagc atcagttttg aaatgatgtg

tgggcgtggt ctgcaagtag tcatcaatat aatcggcctg agcacttcag atggattgtt

agaacatgag taaaagcggt tattacggtg tttattttgt accaaatcac cgcacgggtg

aattgaaata tttcagattt gatcaatttc atctgaaaaa aa

<210> 12 <211> 290 <212> PRT

18 .

<213>	Physcomitrella	patens
-------	----------------	--------

<400> 12

- 5 Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser 1 5 10 15
- Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp
 20 25 30
- Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile
 35 40 45
 - Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu 50 55 60
 - Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu 65 70 75 80
- 25 Leu Gln Ala Leu Val Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser 85 90 95
- Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg Tyr
 100 105 110
- Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile
 115 120 125
 - Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 135 140
- Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His
 145 150 155 160
 - Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 170 175
- His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 180 185 190
- Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg
 195 200 205
 - Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 225 220
- Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 225 230 235 240

5	Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile I 245 250 2	ys Ile 255
10	Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn p 260 265 270	Phe Tyr
10	Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly A 275 280 285	la Lys
15	Thr Glu 290	
20	<210> 13 <211> 1410 <212> DNA <213> Phaeodactylum tricornutum	
25	<220> <221> CDS <222> (1)(1410) <223> Delta-5-Desaturase	•
30	<pre><400> 13 atg gct ccg gat gcg gat aag ctt cga caa cgc cag acg act gc Met Ala Pro Asp Ala Asp Lys Leu Arg Gln Arg Gln Thr Thr Al 1 5 10 15</pre>	la Val
35	gcg aag cac aat gct gct acc ata tcg acg cag gaa cgc ctt tc Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cy 20 25 30	7C 3Ct 0C
40	ctg tct tcg ctc aaa ggc gaa gaa gtc tgc atc gac gga atc at Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Il 35 40 45	tc tat 144 le Tyr
15	gac ctc caa tca ttc gat cat ccc ggg ggt gaa acg atc aaa at Asp Leu Gln Ser Phe Asp His Pro Gly Gly Glu Thr Ile Lys Me 50 55 60	eg ttt 192 et Phe
50	ggt ggc aac gat gtc act gta cag tac aag atg att cac ccg ta Gly Gly Asn Asp Val Thr Val Gln Tyr Lys Met Ile His Pro Ty 65 70 75	ac cat 240 PT His 80
	acc gag aag cat ttg gaa aag atg aag cgt gtc ggc aag gtg ac Thr Glu Lys His Leu Glu Lys Met Lys Arg Val Gly Lys Val Th 85 90 95	r Asp
55	ttc gtc tgc gag tac aag ttc gat acc gaa ttt gaa cgc gaa at Phe Val Cys Glu Tyr Lys Phe Asp Thr Glu Phe Glu Arg Glu Il 100 105 110	c aaa 336 e Lys
60	cga gaa gtc ttc aag att gtg cga cga ggc aag gat ttc ggt ac Arg Glu Val Phe Lys Ile Val Arg Arg Gly Lys Asp Phe Gly Th 115 120 125	t ttg 384 r Leu

		BA	BASF Plant Science GmbH						•		20030015 PF 54305 DE					DE .		
				•							20							
		Gl ⁷ gga	tgg Tri	, E116	tto Phe	cgt Arg	geg Ala	Phe 135	: CAS	tac Tyr	att Ile	gco Ala	att a Ile 140	e Phe	tto Phe	c tac	c ctg c Leu	432
	5	cag · Gln 145	. <u>-y</u> -	cat His	tgg Tr	gto Val	acc Thr	1111	gga	acc Thr	tct Ser	tgg Trp 155) Let	g ctg 1 Leu	gco Ala	gtg Val	gcc Ala 160	480
	10	tac Tyr	gga Gly	ato Ile	tcc Ser	caa Gln 165	. мта	atg Met	att	Gly	atg Met 170	Asn	gto Val	cag Gln	cac His	gat Asp 175	gcc Ala	528
	15	aac Asn	cac His	ggg Gly	gcc Ala 180		tcc Ser	aag Lys	cgt Arg	ccc Pro 185	Trp	gto Val	aac Asn	gac Asp	ato Met	Lev	ggc Gly	576
2	20	ctc Leu	ggt Gly	gcg Ala 195	ASD	ttt Phe	att Ile	ggt Gly	ggt Gly 200	tcc Ser	aag Lys	tgg Trp	ctc Leu	tgg Trp 205	Gln	gaa Glu	caa Gln	624
		cac His	tgg Trp 210	1,111	cac His	cac His	gct Ala	tac Tyr 215	acc Thr	aat Asn	cac His	gcc Ala	gag Glu 220	atg Met	gat Asp	ccc	gat Asp	672
	25	agc Ser 225	File	ggt Gly	gcc Ala	gaa Glu	cca Pro 230	atg Met	ctc Leu	cta Leu	ttc Phe	aac Asn 235	gac Asp	tat Tyr	ccc Pro	ttg Leu	gat Asp 240	720
3	30	cat His	ccc Pro	gct Ala	cgt Arg	acc Thr 245	tgg Trp	cta Leu	cat His	cgc Arg	ttt Phe 250	caa Gln	gca Ala	ttc Phe	ttt Phe	tac Tyr 255	atg Met	768
3	35	ccc Pro	gtc Val	ttg Leu	gct Ala 260	gga Gly	tac Tyr	tgg Trp	ttg Leu	tcc Ser 265	gct Ala	gtc Val	ttc Phe	aat Asn	cca Pro 270	caa Gln	att Ile	816
4	10	ctt Leu	gac Asp	ctc Leu 275	cag Gln	caa Gln	cgc Arg	ggc Gly	gca Ala 280	ctt Leu	tcc Ser	gtc Val	ggt Gly	atc Ile 285	cgt Arg	ctc Leu	gac Asp	864
		aac Asn	gct Ala 290	ttc Phe	att Ile	cac His	tcg Ser	cga Arg 295	cgc Arg	aag Lys	tat Tyr	gcg Ala	gtt Val 300	ttc Phe	tgg Trp	cgg Arg	gct Ala	912
	5	gtg Val 305	tac Tyr	att	gcg Ala	gtg Val	aac Asn 310	gtg Val	att Ile	gct Ala	ccg Pro	ttt Phe 315	tac Tyr	aca Thr	aac Asn	tcc Ser	ggc Gly 320	960
5	0	ctc Lėu	gaa Glu	tgg Trp	tcc Ser	tgg Trp 325	cgt Arg	gtc Val	ttt Phe	gga Gly	aac Asn 330	atc Ile	atg Met	ctc Leu	atg Met	ggt Gly 335	gtg Val	1008
5:		gcg Ala	gaa Glu	tcg Ser	ctc Leu 340	gcg Ala	ctg Leu	gcg Ala	Val	ctg Leu 345	ttt Phe	tcg Ser	ttg Leu	Ser	cac His 350	aat Asn	ttc Phe	1056
60		gaa Glu	tcc Ser	gcg Ala 355	gat Asp	cgc Arg	gat Asp	Pro	acc Thr 360	gcc Ala	cca Pro	ctg Leu	Lys	aag Lys 365	acg Thr	gga Gly	gaa Glu	1104

cca gtc gac tgg ttc aag aca cag gtc gaa act tcc tgc act tac ggt Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly

	37	0				37	=			•		_				
											38					
5	gga tt Gly Ph 385	c ctt e Lei	tcc Ser	: ggt	: tgd Cy: 390	s Pne	c ac	g gg r Gl	a gg y Gl	t ct y Le 39	u Ası	c tt n Ph	t ca e Gl	g gt n Va	t gaa 1 Glu 400	
10	cac ca His Hi	c ttg s Lev	ttc Phe	cca Pro 405	Arc	y met	g ago Sei	c ag r Se	c gc r Ala 41	a Trj	g tai	t cc r Pr	c ta o Ty:	c at r Il 41	e Ala	1248
	ccc aa Pro Ly	g gtd s Val	cgc Arg 420	GIU	att Ile	tgo Cys	gco Ala	a Ly:	S Hls	c ggd s Gly	gto Y Val	c cad	c tac s Ty:	r Al	c tac a Tyr	1296
15	tac cc Tyr Pr	g tgg o Trp 435	TTE	cac His	caa Glr	aac Asr	ttt Phe 440	Eet	c tco 1 Sei	c acc	gto Val	c cgc L Arg 445	Ty	c ate	g cac t His	1344
20	gcg gc Ala Ala 45	a GTA	acc Thr	ggt Gly	gcc Ala	aac Asn 455	Tr	g cgo	c cag g Glr	g ato 1 Met	gcc : Ala 460	ı Arç	a gaa g Glu	a aai	ccc Pro	1392
25	ttg ace Leu Th: 465	c gga c Gly	cgg Arg	gcg Ala	taa											1410
30		14 469 PRT Phaec	odact	ylur	n tr	icor	nutu	m								
35	<400> Met Ala	14 Pro	Asp	Ala 5	Asp	Lys	Leu	Arg	Gln 10	Arg	Gln	Thr	Thr	Ala 15	. Val	
40	Ala Lys	His	Asn 20	Ala	Ala	Thr	Ile	Ser 25	Thr	Gln	Glu	Arg	Leu 30		Ser	
15	Leu Ser	Ser 35	Leu	Lys ·	Gly	Glu	Glu 40	Val	Cys	Ile	Asp	Gly 45	Ile	Ile	Tyr	
50	Asp Leu 50	Gln	Ser	Phe	Asp	His 55	Pro	Gly	Gly	Glu	Thr 60	Ile	Lys	Met	Phe	
	Gly Gly 65	Asn	Asp '	Val '	Thr 70	Val	Gln	Tyr	Lys	Met 75	Ile	His	Pro	Tyr	His 80	
55	Thr Glu	Lys	His 1	Leu (85	Glu	Lys	Met	Lys	Arg 90	Val	Gly	Lys	Val	Thr 95	Asp	
60	Phe Val	Cys (Glu 1	Cyr 1	Lys	Phe	Asp	Thr 105	Glu	Phe	Gl u	Arg	Glu 110	Ile	Lys	

										22						
	Arg	j Glu	ı Val 115	Phe	. Lys	Ile	Val	. Arg	Arg	r Gly	Lys	asp	Phe 125		Thr	Leu
5	Gly	130	Phe	Phe	Arg	Ala	Phe 135	Cys	Tyr	Ile	: Ala	11e		Phe	Tyr	Leu
10	Gln 145	. Туг	His	Trp	Val	Thr 150	Thr	Gly	Thr	Ser	Trp 155		Leu	Ala	. Val	Ala 160
15	Tyr	Gly	7 Ile	Ser	Gln 165	Ala	Met	Ile	Gly	Met 170		. Val	Gln	His	Asp 175	Ala
,	Asn	His	Gly	Ala 180	Thr	Ser	Lys	Arg	Pro 185	Trp	Val	Asn	. Asp	Met 190		Gly
20	,Leu	Gly	Ala 195	Asp	Phe	Ile	Gly	Gly 200	Ser	Lys	Trp	Leu	Trp 205	Gln	Glu	Gln
25	His	Trp 210	Thr	His	His	Ala	Tyr 215	Thr	Asn	His	Ala	Glu 220	Met	Asp	Pro	Asp
30	Ser 225	Phe	Gly	Ala	Glu	Pro 230	Met	Leu	Leu	Phe	Asn 235	Asp	Tyr	Pro	Leu	Asp 240
35	His	Pro	Ala	Arg	Thr 245	Trp	Leu	His	Arg	Phe 250	Gln	Ala	Phe	Phe	Tyr 255	Met
	Pro	Val	Leu	Ala 260	Gly	Tyr	Trp	Leu	Ser 265	Ala	Val	Phe	Asn	Pro 270	Gln	Ile
40	Leu	Asp	Leu 275	Gln	Gln	Arg	Gly	Ala 280	Leu	Ser	Val	Gly	Ile 285	Arg	Leu	Asp
45	Asn	Ala 290	Phe	Ile	His	Ser	Arg 295	Arg	Lys	Tyr	Ala	Val 300	Phe	Trp	Arg	Ala
50	Val 305	Tyr	Ile	Ala	Val	Asn 310	Val	Ile	Ala	Pro	Phe 315	Tyr	Thr	Asn	Ser	Gly 320
55	Leu	Glu	Trp	Ser	Trp 325	Arg	Val	Phe	Gly	Asn 330	Ile	Met	Leu	Met	Gly 335	Val
	Ala	Glu	Ser	Leu 340	Ala	Leu	Ala	Val	Leu 345	Phe	Ser	Leu	Ser	His 350	Asn	Phe
60	Glu	Ser	Ala 355	Asp	Arg	Asp	Pro	Thr 360	Ala	Pro	Leu	Lys	Lys 365	Thr	Gly	Glu

23 . .

5	Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 370 375 380	
10	Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 385 390 395 400	
	His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala 405 410 415	
15	Pro Lys Val Arg Glu Ile Cys Ala Lys His Gly Val His Tyr Ala Tyr 420 425 430	
20	Tyr Pro Trp Ile His Gln Asn Phe Leu Ser Thr Val Arg Tyr Met His 435 440 445	
25	Ala Ala Gly Thr Gly Ala Asn Trp Arg Gln Met Ala Arg Glu Asn Pro 450 455 460	
	Leu Thr Gly Arg Ala 465	
30	<210> 15	
35	<211> 3598 <212> DNA <213> artificial sequence	
,	<pre><220> <221> misc_feature <223> Sequenz stellt eine pflanzliche Promotor-Terminator-Expressions ssette in Vektor pUC19 dar</pre>	
40	ssette in Vektor pUC19 dar	ka
	<400> 15 tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca	60
45	cagettgtet gtaageggat geegggagea gacaagegga taasa	60 20
	ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta at a	80
50	accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataggag	40
	attegecatt caggetgege aactgttggg aagggegate ggtggggg tatt	00
~-	tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 36	50
55	tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cggcgcgccg agctcctcga 42	20
	gcaaatttac acattgccac taaacgtcta aacccttgta atttgttttt gttttactat 48	0
60	gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 54	0
	tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 60	0

			24			
tttttgtctt	ctaaatacat	atactaatca	actggaaatg	taaatatttg	ctaatatttc	660
tactatagga	gaattaaagt	gagtgaatat	ggtaccacaa	ggtttggaga	tttaattgtt	720
gcaatgctgc	atggatggca	tatacaccaa	acattcaata	attcttgagg	ataataatgg	780
taccacacaa	gatttgaggt	gcatgaacgt	cacgtggaca	aaaggtttag	taatttttca	840
agacaacaat	gttaccacac	acaagttttg	aggtgcatgc	atggatgccc	tgtggaaagt	900
ttaaaaatat	tttggaaatg	atttgcatgg	aagccatgtg	taaaaccatg	acatccactt	960
ggaggatgca	ataatgaaga	aaactacaaa	tttacatgca	actagttatg	catgtagtct	1020
atataatgag	gattttgcaa	tactttcatt	catacacact	cactaagttt	tacacgatta	1080
taatttcttc	atagccagcc	caccgcggtg	ggcggccgcc	tgcagtctag	aaggcctcct	1140
gctttaatga	gatatgcgag	acgcctatga	tcgcatgata	tttgctttca	attctgttgt	1200
['] gcacgttgta	aaaaacctga	gcatgtgtag	ctcagatcct	taccgccggt	ttcggttcat	1260
tctaatgaat	atatcacccg	ttactatcgt	atttttatga	ataatattct	ccgttcaatt	1320
tactgattgt	ccgtcgacga	attcgagctc	ggcgcgccaa	gcttggcgta	atcatggtca	1380
tagctgtttc	ctgtgtgaaa	ttgttatccg	ctcacaattc	cacacaacat	acgagccgga	1440
agcataaagt	gtaaagcctg	gggtgcctaa	tgagtgagct	aactcacatt	aattgcgttg	1500
cgctcactgc	ccgctttcca	gtcgggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	1560
caacgcgcgg	ggagaggcgg	tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	1620
tcgctgcgct	cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	1680
cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	1740
aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	ccgcccccct	1800
gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	1860
agataccagg	cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	1920
cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcatagctca	1980
cgctgtaggt	atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	2040
cccccgttc	agcccgaccg	ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	2100
gtaagacacg	acttatcgcc	actggcagca	gccactggta	acaggattag	cagagcgagg	2160
tatgtaggcg	gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaagg	2220
acagtatttg	gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	2280
tcttgatccg	gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	2340
attacgcgca	gaaaaaaagg	atctcaagaa	gatcctttga	tcttttctac	ggggtctgac	2400
gctcagtgga	acgaaaactc	acgttaaggg	attttggtca	tgagattatc	aaaaaggatc	2460

	ttcacctaga tccttttaaa ttaaaaatga agttttaaat caatctaaag tatatatgag	252
_	taaacttggt ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt	2580
5	s and standard egeotyacte ecegtogtgt agataactac gatacgggag	2640
	ggettaccat etggeeceag tgetgeaatg atacegegag acceaegete aceggeteca	2700
10	gatttatcag caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact	2760
	ttatccgcct ccatccagtc tattaattgt tgccgggaag ctagagtaag tagttcgcca	2820
	gttaatagtt tgcgcaacgt tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg	2880
15	tttggtatgg cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatccccc	2940
	. atgttgtgca aaaaagcggt tagctccttc ggtcctccga tcgttgtcag aagtaagttg	3000
20	gccgcagtgt tatcactcat ggttatggca gcactgcata attctcttac tgtcatgcca	3060
	tccgtaagat gcttttctgt gactggtgag tactcaacca agtcattctg agaatagtgt	3120
	atgeggegae egagttgete ttgeeeggeg teaataeggg ataataeege geeacatage	3180
25	agaactttaa aagtgotcat cattggaaaa cgttottogg ggogaaaact otcaaggato	3240
	ttaccgctgt tgagatccag ttcgatgtaa cccactcgtg cacccaactg atcttcagca	3300
3Ò	tettttaett teaccagegt ttetgggtga geaaaaacag gaaggeaaaa tgeegeaaaa	3360
	aagggaataa gggcgacacg gaaatgttga atactcatac tcttcctttt tcaatattat	3420
	tgaagcattt atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa	3480
35	aataaacaaa taggggttee gegeacattt eecegaaaag tgeeacetga egtetaagaa	3540
	accattatta tcatgacatt aacctataaa aataggcgta tcacgaggcc ctttcgtc	3598
40	<210> 16 <211> 3590 <212> DNA <213> artificial sequence	
45	<pre><220> <221> misc_feature <223> Sequenz stellt eine pflanzliche Promotor-Terminator-Expression ssette in Vektor pUC19 dar</pre>	onska
50	· <400> 16	
	tegegegetet eggegatgae ggegaaaace tetgacacat geageteeeg gagaeggtea	60
55	cagettgtet gtaageggat geegggagea gacaageeeg teagggegeg teagegggtg	120
	ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc	180
	accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc	
60	attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat	240
	tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt	300
	22-2 unaccasa un acadecadade	360

	tttcccagtc	acgacgttgt	aaaacgacgg	ccagtgaatt	cggcgcgccg	agctcctcga	420
5	gcaaatttac	acattgccac	taaacgtcta	aacccttgta	atttgttttt	gttttactat.	480
9	gtgtgttatg	tatttgattt	gcgataaatt	tttatatttg	gtactaaatt	tataacacct	·540
	tttatgctaa	cgtttgccaa	cacttagcaa	tttgcaagtt	gattaattga	ttctaaatta	600
10	tttttgtctt	ctaaatacat	atactaatca	actggaaatg	taaatatttg	ctaatatttc	660
	tactatagga	gaattaaagt	gagtgaatat	ggtaccacaa	ggtttggaga	tttaattgtt	720
15	gcaatgctgc	atggatggca	tatacaccaa	acattcaata	attcttgagg	ataataatgg	. 780
15	taccacacaa	gatttgaggt	gcatgaacgt	cacgtggaca	aaaggtttag	taattttca	840
	agacaacaat	gttaccacac	acaagttttg	aggtgcatgc	atggatgccc	tgtggaaagt	900
20	ttaaaaatat	tttggaaatg	atttgcatgg	aagccatgtg	taaaaccatg	acatccactt	960
	ggaggatgca	ataatgaaga	aaactacaaa	tttacatgca	actagttatg	catgtagtct	1020
25	atataatgag	gattttgcaa	tactttcatt	catacacact	cactaagttt	tacacgatta	1080
25	taatttcttc	atagccagcg	gatccgatat	cgggcccgct	agcgttaacc	ctgctttaat	1140
	gagatatgcg	agacgcctat	gatcgcatga	tatttgcttt	caattctgtt	gtgcacgttg	1200
30	taaaaaacct	gagcatgtgt	agctcagatc	cttaccgccg	gtttcggttc	attctaatga	1260
	atatatcacc	cgttactatc	gtattttat	gaataatatt	ctccgttcaa	tttactgatt	1320
35	gtccgtcgac	gaattcgagc	tcggcgcgcc	aagcttggcg	taatcatggt	catagctgtt	1380
00	tcctgtgtga	aattgttatc	cgctcacaat	tccacacaac	atacgageeg	gaagcataaa	1440
	gtgtaaagcc	tggggtgcct	aatgagtgag	ctaactcaca	ttaattgcgt	tgcgctcact	1500
40	gcccgctttc	cagtcgggaa	acctgtcgtg	ccagctgcat	taatgaatcg	gccaacgcgc	1560
	ggggagaggc	ggtttgcgta	ttgggcgctc	ttccgcttcc	tcgctcactg	actcgctgcg	1620
45	ctcggtcgtt	cggctgcggc	gagcggtatc	agctcactca	aaggcggtaa	tacggttatc	1680
.0	cacagaatca	ggggataacg	caggaaagaa	catgtgagca	aaaggccagc	aaaaggccag	1740
	gaaccgtaaa	aaggccgcgt	tgctggcgtt	tttccatagg	ctccgccccc	ctgacgagca	1800
50	tcacaaaaat	cgacgctcaa	gtcagaggtg	gcgaaacccg	acaggactat	aaagatacca	1860
	ggcgtttccc	cctggaagct	ccctcgtgcg	ctctcctgtt	ccgaccctgc	cgcttaccgg	1920
55	atacctgtcc	gcctttctcc	cttcgggaag	cgtggcgctt	tctcatagct	cacgctgtag	1980
00	gtatctcagt	tcggtgtagg	tcgttcgctc	caagctgggc	tgtgtgcacg	aaccccccgt	2040
	tcagcccgac	cgctgcgcct	tatccggtaa	ctatcgtctt	gagtccaacc	cggtaagaca	2100
60	cgacttatcg	ccactggcag	cagccactgg	taacaggatt	agcagagcga	ggtatgtagg	2160
	cggtgctaca	gagttcttga	agtggtggcc	taactacggc	tacactagaa	ggacagtatt	2220

	tggtatctgc gctctgctga agccagttac cttcggaaaa agagttggta gctcttgatc	
	Gaggana and a second se	2280
5	cggcaaacaa accaccgctg gtagcggtgg tttttttgtt tgcaagcagc agattacgcg	2340
	cagaaaaaaa ggatctcaag aagatccttt gatcttttct acggggtctg acgctcagtg	2400
	gaacgaaaac tcacgttaag ggattttggt catgagatta tcaaaaagga tcttcaccta	2460
10	gateetttta aattaaaaat gaagttttaa atcaatetaa agtatatatg agtaaaettg	2520
	gtctgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct gtctatttcg	2580
15	ttcatccata gttgcctgac tccccgtcgt gtagataact acgatacggg agggcttacc	2640
	atctggcccc agtgctgcaa tgataccgcg agacccacgc tcaccggctc cagatttatc	2700
	agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc	2760
20	ctccatccag tctattaatt gttgccggga agctagagta agtagttcgc cagttaatag	2820
	tttgcgcaac gttgttgcca ttgctacagg catcgtggtg tcacgctcgt cgtttggtat	2880
25	ggetteatte ageteeggtt cecaacgate aaggegagtt acatgateee ecatgttgtg	2940
25	caaaaaagcg gttagctcct tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt	
	gtratcactc atggttatgg cagcactgca taattctctt actgtcatgc catccgtaag	3000
30	atgettttet gtgactggtg agtacteaac caagteatte tgagaatagt gtatgeggeg	3060
	accgagttgc tcttgcccgg cgtcaatacg ggataatacc gcgccacata gcagaacttt	3120
0.5	aaaagtgctc atcattggaa aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct	3180
35	gttgagatcc agttcgatgt aacccactcg tgcacccaac tgatcttcag catcttttac	3240
		3300
40	tttcaccagc gtttctgggt gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat	3360
	aagggcgaca cggaaatgtt gaatactcat actcttcctt tttcaatatt attgaagcat	3420
	ttatcagggt tattgtctca tgagcggata catatttgaa tgtatttaga aaaataaaca	3480
45	aataggggtt ccgcgcacat ttccccgaaa agtgccacct gacgtctaag aaaccattat	3540
	tatcatgaca ttaacctata aaaataggcg tatcacgagg ccctttcgtc	3590
50	<210> 17 <211> 3584 <212> DNA <213> artificial sequence	
55	<220> <221> misc_feature <223> Sequenz stellt eine pflanzliche Promotor-Terminator-Expression ssette in Vektor pUC19 dar	nska
60	<400> 17 tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeg gagacggtee	50

· 28

			•	28			
	cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120
	ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgta	ctgagagtgc	180
5	accatatgcg	gtgtgaaata	ccgcacagat	gcgtaaggag	aaaataccgc	atcaggcgcc	240
	attcgccatt	caggctgcgc	aactgttggg	aagggcgatc	ggtgcgggcc	tcttcgctat	300
10	tacgccagct	ggcgaaaggg	ggatgtgctg	caaggcgatt	aagttgggta	acgccagggt	360
	tttcccagtc	acgacgttgt	aaaacgacgg	ccagtgaatt	cggcgcgccg	agctcctcga	420
	gcaaatttac	acattgccac	taaacgtcta	aacccttgta	atttgtttt	gttttactat	480
15	gtgtgttatg	tatttgattt	gcgataaatt	tttatatttg	gtactaaatt	tataacacct	540
	tttatgctaa	cgtttgccaa	cacttagcaa	tttgcaagtt	gattaattga	ttctaaatta	600
20	tttttgtctt	ctaaatacat	atactaatca	actggaaatg	taaatatttg	ctaatatttc	660
	tactatagga	gaattaaagt	gagtgaatat	ggtaccacaa	ggtttggaga	tttaattgtt	720
	gcaatgctgc	atggatggca	tatacaccaa	acattcaata	attcttgagg	ataataatgg	780
25	taccacacaa	gatttgaggt	gcatgaacgt	cacgtggaca	aaaggtttag	taatttttca	840
	agacaacaat	gttaccacac	acaagttttg	aggtgcatgc	atggatgccc	tgtggaaagt	900
30	ttaaaaatat	tttggaaatg	atttgcatgg	aagccatgtg	taaaaccatg	acatccactt	960
	ggaggatgca	ataatgaaga	aaactacaaa	tttacatgca	actagttatg	catgtagtct	1020
	atataatgag	gattttgcaa	tactttcatt	catacacact	cactaagttt	tacacgatta	1080
35	taatttcttc	atagccagca	gatctgccgg	catcgatccc	gggccatggc	ctgctttaat	1140
	gagatatgcg	agacgcctat	gatcgcatga	tatttgcttt	caattctgtt	gtgcacgttg	1200
40	taaaaaacct	gagcatgtgt	agctcagatc	cttaccgccg	gtttcggttc	attctaatga	1260
	atatatcacc	cgttactatc	gtatttttat	gaataatatt	ctccgttcaa	tttactgatt	1320
	gtccgtcgac	gagctcggcg	cgccaagctt	ggcgtaatca	tggtcatagc	tgtttcctgt	1380
45	gtgaaattgt	tatccgctca	caattccaca	caacatacga	gccggaagca	taaagtgtaa	1440
	agcctggggt	gcctaatgag	tgagctaact	cacattaatt	gcgttgcgct	cactgcccgc	1500
50	tttccagtcg	ggaaacctgt	cgtgccagct	gcattaatga	atcggccaac	gcgcggggag	1560
	aggcggtttg	cgtattgggc	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	1620
	cgttcggctg	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	1680
55	atcaggggat	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	1740
	taaaaaggcc	gcgttgctgg	cgtttttcca	taggctccgc	ccccctgacg	agcatcacaa	1800
60	aaatcgacgc	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	1860
	tcccctgga	agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	1920

	gtccgccttt	ctcccttcgg	gaagcgtggc	gctttctcat	agctcacgct	gtaggtatct	1980
	cagttcggtg	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	2040
5	cgaccgctgc	gccttatccg	gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	2100
	atcgccactg	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	2160
10	tacagagttc	ttgaagtggt	ggcctaacta	cggctacact	agaaggacag	tatttggtat	2220
	ctgcgctctg	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	2280
	acaaaccacc	gctggtagcg	gtggttttt	tgtttgcaag	cagcagatta	cgcgcagaaa .	2340
15	aaaaggatct	caagaagatc	ctttgatctt	ttctacgggg	tctgacgctc	agtggaacga	2400
	aaactcacgt	taagggattt	tggtcatgag	attatcaaaa	aggatcttca	cctagatcct	2460
20	tttaaattaa	aaatgaagtt	ttaaatcaat	ctaaagtata	tatgagtaaa	cttggtctga	2520
	cagttaccaa	tgcttaatca	gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	2580
	catagttgcc	tgactccccg	tcgtgtagat	aactacgata	cgggagggct	taccatctgg	2640
25	ccccagtgct	gcaatgatac.	cgcgagaccc	acgctcaccg	gctccagatt	tatcagcaat	2700
	aaaccagcca	gccggaaggg	ccgagcgcag	aagtggtcct	gcaactttat	ccgcctccat	2760
30	ccagtctatt	aattgttgcc	gggaagctag	agtaagtagt	tcgccagtta	atagtttgcg	2820
	caacgttgtt	gccattgcta	caggcatcgt.	ggtgtcacgc	tcgtcgtttg	gtatggcttc	2880
	attcagctcc	ggttcccaac	gatcaaggcg	agttacatga	tccccatgt	tgtgcaaaaa	2940
35	agcggttagc	tccttcggtc	ctccgatcgt	tgtcagaagt	aagttggccg	cagtgttatc	3000
	actcatggtt	atggcagcac	tgcataattc	tcttactgtc	atgccatccg	taagatgctt .	3060
40	ttctgtgact	ggtgagtact	caaccaagtc	attctgagaa	tagtgtatgc	ggcgaccgag	3120
	ttgctcttgc	ccggcgtcaa	tacgggataa	taccgcgcca	catagcagaa	ctttaaaagt	3180
	gctcatcatt	ggaaaacgtt	cttcggggcg	aaaactctca	aggatcttac	cgctgttgag	3240
1 5	atccagttcg	atgtaaccca	ctcgtgcacc	caactgatct	tcagcatctt	ttactttcac	3300
	cagcgtttct	gggtgagcaa	aaacaggaag	gcaaaatgcc	gcaaaaaagg	gaataagggc	3360
50	gacacggaaa	tgttgaatac	tcatactctt	cctttttcaa	tattattgaa	gcatttatca	3420
	gggttattgt	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	3480
	ggttccgcgc	acatttcccc	gaaaagtgcc	acctgacgtc	taagaaacca	ttattatcat	3540
55	gacattaacc	tataaaaata	ggcgtatcac	gaggcccttt	cgtc		3584
	<i>-</i> 210≤ 10						

60

<210> 18 <211> 4507 <212> DNA <213> artificial sequence

<220>

30

<221> misc_feature Sequenz stellt eine pflanzliche Promotor-Terminator-Expressionska <223> ssette in Vektor pUC19 dar 5 <400> 18 tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea 60 10 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 15 240 attegecatt caggetgege aactgttggg aagggegate ggtgegggee tettegetat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360 20 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cggcgcgccg agctcctcga 420 gcaaatttac acattgccac taaacgtcta aacccttgta atttgtttt gttttactat 480 gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 25 tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 600 tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc 660 30 tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt 720 gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg 780 taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca 35 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 40 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080 taatttette atagecagee caeegeggtg ggeggeegee tgeagtetag aaggeeteet 1140 getttaatga gatatgegag acgeetatga tegeatgata tttgetttea attetgttgt 1200 gcacgttgta aaaaacctga gcatgtgtag ctcagatcct taccgccggt ttcggttcat 1260 50 tctaatgaat atatcacccg ttactatcgt atttttatga ataatattct ccgttcaatt 1320 tactgattgt ccgtcgagca aatttacaca ttgccactaa acgtctaaac ccttgtaatt 1380 tgtttttgtt ttactatgtg tgttatgtat ttgatttgcg ataaattttt atatttggta 55 1440 ctaaatttat aacacctttt atgctaacgt ttgccaacac ttagcaattt gcaagttgat 1500 taattgattc taaattattt ttgtcttcta aatacatata ctaatcaact ggaaatgtaa 1560 60 atatttgcta atatttctac tataggagaa ttaaagtgag tgaatatggt accacaaggt 1620 ttggagattt aattgttgca atgctgcatg gatggcatat acaccaaaca ttcaataatt 1680

	·	
	cttgaggata ataatggtac cacacaagat ttgaggtgca tgaacgtcac gtggacaaaa	1740
5	ggtttagtaa tttttcaaga caacaatgtt accacacaca agttttgagg tgcatgcatg	1800
	gatgccctgt ggaaagttta aaaatatttt ggaaatgatt tgcatggaag ccatgtgtaa	1860
•	aaccatgaca tccacttgga ggatgcaata atgaagaaaa ctacaaattt acatgcaact	1920
10	agttatgcat gtagtctata taatgaggat tttgcaatac tttcattcat acacactcac	1980
	taagttttac acgattataa tttcttcata gccagcggat ccgatatcgg gcccgctagc	2040
15	gttaaccctg ctttaatgag atatgcgaga cgcctatgat cgcatgatat ttgctttcaa	2100
	ttctgttgtg cacgttgtaa aaaacctgag catgtgtagc tcagatcctt accgccggtt	2160
	toggttoatt otaatgaata tatoacoogt tactatogta tttttatgaa taatattoto	2220
20	cgttcaattt actgattgtc cgtcgacgaa ttcgagctcg gcgcgccaag cttggcgtaa	2280
	tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata	2340
25	cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta	2400
	attgegttge geteactgee egettteeag tegggaaace tgtegtgeea getgeattaa	2460
	tgaateggee aaegegeggg gagaggeggt ttgegtattg ggegetette egetteeteg	2520
30	ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag	2580
	gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa	2640
35	ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc	2700
	cgccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca	2760
	ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg	2820
40	accetgeege ttaceggata cetgteegee ttteteeett egggaagegt ggegetttet	2880
	catageteae getgtaggta teteagtteg gtgtaggteg ttegeteeaa getgggetgt	2940
45	gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag	3000
	tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc	3060
	agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac	3120
50	actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga	3180
	gttggtaget ettgateegg caaacaaace acegetggta geggtggttt ttttgtttge	3240
55	aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg	3300
	gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca	3360
25	aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt	3420
60	atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca	3480
	gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg	3540

	atacongago matta	
	atacgggagg gettaccate tggccccagt getgcaatga tacegegaga cecaegetea	3600
5	ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt	3660
	cctgcaactt tatccgcctc catccagtct attaattgtt gccgggaagc tagagtaagt	3720
	agttcgccag ttaatagttt gcgcaacgtt gttgccattg ctacaggcat cgtggtgtca	3780
10	cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca	3840
	tgatececca tgttgtgcaa aaaageggtt ageteetteg gteeteegat egttgteaga	3900
15	agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact	3960
	gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga	4020
	gaatagtgta tgcggcgacc gagttgctct tgcccggcgt caatacggga taataccgcg	4080
20	ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc	4140
	tcaaggatet tacegetgtt gagatecagt tegatgtaae ceaetegtge acceaactga	4200
25	tetteageat ettttaettt eaceagegtt tetgggtgag caaaaacagg aaggeaaaat	4260
25	geogeaaaaa agggaataag ggegacaegg aaatgttgaa taeteataet etteetttt	
	caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt	4320
30	atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaagt gccacctgac	4380
	gtctaagaaa ccattattat catgacatta acctataaaa ataggcgtat cacgaggccc	4440
	tttcgtc	4500
35		4507
	<210> 19 <211> 17752	
40	<212> DNA	
40	<213> Phaeodactylum tricornutum, Physcomitrella patens	
	<220> <221> CDS	
45	<222> (11543)(12415)	
	<223> Delta-6-Elongase	
	<220>	
50	<221> CDS <222> (13313)(14890)	
	<223> Delta-6-Desaturase	
	<220>	
55	<221> CDS	
	<222> (15791)(17200) <223> Delta-5-Desaturase	
60	1400.	
00	<400> 19 gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc	
	2 333-0 geologically alcogacage	60

					33			
							g cagaatgcca	120
							g cagcaccggc	180
	5						gatcaggggt	240
							g aacgcgcgga	300
	10	ttctttatca	ctgataagtt	ggtggacata	a ttatgtttat	cagtgataaa	gtgtcaagca	360
		tgacaaagtt	gcagccgaat	acagtgatco	gtgccgccct	ggacctgttg	aacgaggtcg	420
			•				cageeggege	480
	15						gccatgctgg	540
							tttctgatcg	600
	· 20	ggaatgcccg	cagcttcagg	caggcgctgc	tegeetaceg	cgatggcgcg	cgcatccatg	660
							cgcttcctct	720
*							agctacttca	780
	25						cgcggcggca	840
							ttcgacgaag	900
	30						ttggcgaaaa	960
						tgacgattga		1020
	0.5					acaacatccc		1080
	35					ttcatgccct		1140
						tggcgctctt		1200
	40					gcggtatcag		1260
		ggcggtaata						1320
	_	aggccagcaa .						1380
	5	ccgccccct						1440
		aggactataa a						1500
	50	gaccctgccg (1560
		ccgctgcata a						1620
	EE	tcgcacgata t						1680
	55	ggcgtcagcc g						1740
		ctgtccctta t						1800
	60	ctaccgccgg c						1860
		agggcagccc a	cctatcaag (gtgtactgcc	ttccagacga	acgaagagcg	attgaggaaa	1920

				•			
	aggcggcggc	ggccggcatg	agcctgtcgg	cctacctgct	ggccgtcggc	cagggctaca	1980
	aaatcacggg	cgtcgtggac	tatgagcacg	tccgcgagct	ggcccgcatc	aatggcgacc	2040
5	tgggccgcct	gggcggcctg	ctgaaactct	ggctcaccga	cgacccgcgc	acggcgcggt	2100
	tcggtgatgc	cacgatcctc	gccctgctgg	cgaagatcga	agagaagcag	gacgagcttg	2160
10	gcaaggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgacttttt	tagccgctaa	2220
	aacggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	caagaagagc	2280
•	gacttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	gcgcctttgc	2340
15	gacgctcacc	gggctggttg	ccctcgccgc	tgggctggcg	gccgtctatg	gccctgcaaa	2400
	cgcgccagaa	acgccgtcga	agccgtgtgc	gagacaccgc	ggccgccggc	gttgtggata	2460
20	cctcgcggaa	aacttggccc	tcactgacag	atgaggggcg	gacgttgaca	cttgaggggc	2520
	cgactcaccc	ggcgcggcgt	tgacagatga	ggggcaggct	cgatttcggc	cggcgacgtg	2580
	gagctggcca	gcctcgcaaa	tcggcgaaaa	cgcctgattt	tacgcgagtt	tcccacagat	2640
25	gatgtggaca	agcctgggga	taagtgccct	gcggtattga	cacttgaggg	gcgcgactac	2700
	tgacagatga	ggggcgcgat	ccttgacact	tgaggggcag	agtgctgaca	gatgaggggc	2760
30	gcacctattg	acatttgagg	ggctgtccac	aggcagaaaa	tccagcattt	gcaagggttt	2820
	ccgcccgttt	ttcggccacc	gctaacctgt	cttttaacct	gcttttaaac	caatatttat	2880
	aaaccttgtt	tttaaccagg	gctgcgccct	gtgcgcgtga	ccgcgcacgc	cgaaggggg	2940
35	tgcccccct	tctcgaaccc	tcccggcccg	ctaacgcggg	cctcccatcc	ccccaggggc	3000
	tgcgcccctc	ggccgcgaac	ggcctcaccc	caaaaatggc	agcgctggca	gtccttgcca	3060
40	ttgccgggat	cggggcagta	acgggatggg	cgatcagccc	gagcgcgacg	cccggaagca	3120
	ttgacgtgcc	gcaggtgctg	gcatcgacat	tcagcgacca	ggtgccgggc	agtgagggcg	3180
	gcggcctggg	tggcggcctg	cccttcactt	cggccgtcgg	ggcattcacg	gacttcatgg	3240
1 5	cggggccggc	aatttttacc	ttgggcattc	ttggcatagt	ggtcgcgggt	gccgtgctcg	3300
	tgttcggggg	tgcgataaac	ccagcgaacc	atttgaggtg	ataggtaaga	ttataccgag	3360
50	gtatgaaaac	gagaattgga	cctttacaga	attactctat	gaagcgccat	atttaaaaag	3420
	ctaccaagac	gaagaggatg	aagaggatga	ggaggcagat	tgccttgaat	atattgacaa	3480
	tactgataag	ataatatatc	ttttatatag	aagatatcgc	cgtatgtaag	gatttcaggg	3540
55	ggcaaggcat	aggcagcgcg	cttatcaata	tatctataga	atgggcaaag	cataaaaact	3600
	tgcatggact	aatgcttgaa	acccaggaca	ataaccttat	agcttgtaaa	ttctatcata	3660
60	attgggtaat	gactccaact	tattgatagt	gttttatgtt	cagataatgc	ccgatgactt	3720
	tgtcatgcag	ctccaccgat	tttgagaacg	acagcgactt	ccgtcccagc	cgtgccaggt	3780

	35	
	gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt	3840
:	gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca	3900
5	cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga	3960
	atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc	4020
10	gcgatttagc cccgacatag ccccactgtt cgtccatttc cgcgcagacg atgacgtcac	4080
	tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat	4140
	cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc	4200
15	catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg	4260
	ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt	4320
20	acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg	4380
	agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg	4440
	tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga	4500
25	aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt	4560
	cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa	4620
30	taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc	4680
	gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa	4740
	aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg	4800
35	gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt	4860
	gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg	4920
40	gaagagtatg aagatgaaca aagccctgaa aagattatcg agctgtatgc ggagtgcatc	4980
	aggetettte actecatega catateggat tgtecetata egaatagett agacageege	5040
	ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg	5100
5	gaagaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag	5160
	cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa	5220
50	gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat	5280
	gacattgcct tctgcgtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag	5340
		5400
55		5460
	caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt	5520
60		5580
	cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa	5640

			•			
ggcaccaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	tcggggcaat	5700
cccgcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggc	aagaactgat	5760
cgacgcgggg	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	tcatgcgtgc	5820
gccccgcgaa	accttccagt	ccgtcggctc	gatggtccag	caagctacgg	ccaagatcga	5880
gcgcgacagc	gtgcaactgg	ctcccctgc	cctgcccgcg	ccatcggccg	ccgtggagcg	5940
ttcgcgtcgt	ctcgaacagg	aggcggcagg	tttggcgaag	tcgatgacca	tcgacacgcg	6000
aggaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	aacaggtcag	6060
cgaggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	aaatgcagct	6120
ttccttgttc	gatattgcgc	cgtggccgga	cacgatgcga	gcgatgccaa	acgacacggc	6180
ccgctctgcc	ctgttcacca	cgcgcaacaa	gaaaatcccg	cgcgaggcgc	tgcaaaacaa	6240
ggtcattttc	cacgtcaaca	aggacgtgaa	gatcacctac	accggcgtcg	agctgcgggc	6300
cgacgatgac	gaactggtgt	ggcagcaggt	gttggagtac	gcgaagcgca	cccctatcgg	6360
cgagccgatc	accttcacgt	tctacgagct	ttgccaggad	ctgggctggt	cgatcaatgg	6420
ccggtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	cgatgggctt	6480
cacgtccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	tccgcgtcct	6540
ggaccgtggc	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	tcgtcgtgct	6600
gtttgctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	tgtcgccgac	6660
ggcccgacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	tcaagctgga	6720
aaccttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	gcgagcaggt	6780
cggcgaagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	gggtcaatga	6840
tgacctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	ggggttcagc	6900
agccagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	cttgcttcgc	6960
tcagtatcgc	tcgggacgca	cggcgcgctc	tacgaactgc	cgataaacag	aggattaaaa	7020
ttgacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080
cgcgagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140
cacgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	cgtggcattc	7200
ggcgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	ggacggcccc	7260
aaggacgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	gcgaggccga	7320
ggggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380
cgacagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440
tcgctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500

				<i>31</i>			
	acggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560
	ccgatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620
5	gtgttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680 ·
	gtttccatgg	cgttcggaac	cgtgctgacc	, cgcaagtggc	aacctcccgt	gcctctgctc	7740
10	acctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800
	tttgatccgc	caatcccgat	gcctacagga	accaatgttc	tcggcctggc	gtggctcggc	7860
	ctgatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	actcgaacct	7920
15	acagttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980
	catcaggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040
20	aggggagttg	atatcgtcaa	cgttcacttc	taaagaaata	gcgccactca	gcttcctcag	8100
	cggctttatc	cagcgatttc	ctattatgtc	ggcatagttc	tcaagatcga	cagcctgtca	8160
	cggttaagcg	agaaatgaat	aagaaggctg	ataattcgga	tctctgcgag	ggagatgata	8220
25	tttgatcaca	ggcagcaacg	ctctgtcatc	gttacaatca	acatgctacc	ctccgcgaga	8280
	tcatccgtgt	ttcaaacccg	gcagcttagt	tgccgttctt	ccgaatagca	tcggtaacat	8340
30	gagcaaagtc	tgccgcctta	caacggctct	cccgctgacg	ccgtcccgga	ctgatgggct	8400
	gcctgtatcg	agtggtgatt	ttgtgccgag	ctgccggtcg	gggagctgtt	ggctggctgg	8460
	tggcaggata	tattgtggtg	taaacaaatt	gacgcttaga	caacttaata	acacattgcg	8520 _.
35	gacgttttta	atgtactggg	gtggtttttc	ttttcaccag	tgagacgggc	aacagctgat	8580
	tgcccttcac	cgcctggccc	tgagagagtt	gcagcaagcg	gtccacgctg	gtttgcccca	8640
40	gcaggcgaaa	atcctgtttg	atggtggttc	cgaaatcggc	aaaatccctt	ataaatcaaa	8700
	agaatagccc	gagatagggt	tgagtgttgt	tccagtttgg	aacaagagtc	cactattaaa	8760
		tccaacgtca					8820
.5	tgaaccatca	cccaaatcaa	gttttttggg	gtcgaggtgc	cgtaaagcac	taaatcggaa	8880
	ccctaaaggg	agcccccgat	ttagagcttg	acggggaaag	ccggcgaacg	tggcgagaaa	8940
50	ggaagggaag	aaagcgaaag	gagcgggcgc	cattcaggct	gcgcaactgt	tgggaagggc	9000
•	gatcggtgcg	ggcctcttcg	ctattacgcc	agctggcgaa	agggggatgt	gctgcaaggc	9060
	gattaagttg	ggtaacgcca	gggttttccc	agtcacgacg	ttgtaaaacg	acggccagtg	9120
55	aattaattcc	catcttgaaa	gaaatatagt	ttaaatattt	attgataaaa	taacaagtca	9180
		tccaagcaaa					9240
60		attatatcag					9300
	tgtgtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360

				38			:
	agcttgggtc	ccgctcagaa	.gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	9420
	tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480
5	tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540
	ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600
10	tcgccatggg	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	9660
	agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720
	gcttccatcc	gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780
15	gtagccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	9840
	gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900
20	tcccttcccg	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960
	agccacgata	gçcgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020
	ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080
25	ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	10140
	cctgcgtgca	atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200
30	tctggattga	gagtgaatat	gagactctaa	ttggataccg	aggggaattt	atggaacgtc	10260
	agtggagcat	ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320
•	acgcgcaata	atggtttctg	acgtatgtgc	ttagctcatt	aaactccaga	aacccgcggc	10380
35	tgagtggctc	cttcaacgtt	gcggttctgt	cagttccaaa	cgtaaaacgg	cttgtcccgc	10440
	gtcatcggcg	ggggtcataa	cgtgactccc	ttaattctcc	gctcatgatc	ttgatcccct	10500
40	gcgccatcag	atccttggcg	gcaagaaagc	catccagttt	actttgcagg	gcttcccaac	10560
	cttaccagag	ggcgccccag	ctggcaattc	cggttcgctt	gctgtccata	aaaccgccca	10620
	gtctagctat	cgccatgtaa	gcccactgca	agctacctgc	tttctctttg	cgcttgcgtt	10680
45	ttcccttgtc	cagatagccc	agtagctgac	attcatccgg	ggtcagcacc	gtttctgcgg	10740
	actggctttc	tacgtgttcc	gcttccttta	gcagcccttg	cgccctgagt	gcttgcggca	10800
50	gcgtgaagct	tgcatgcctg	caggtcgacg	gcgcgccgag	ctcctcgagc	aaatttacac	10860
	attgccacta	aacgtctaaa	cccttgtaat	ttgtttttgt	tttactatgt	gtgttatgta	10920
	tttgatttgc	gataaatttt	tatatttggt	actaaattta	taacaccttt	tatgctaacg	10980
55	tttgccaaca	cttagcaatt	tgcaagttga	ttaattgatt	ctaaattatt	tttgtcttct	11040
	aaatacatat	actaatcaac	tggaaatgta	aatatttgct	aatatttcta	ctataggaga	11100
60	attaaagtga	gtgaatatgg	taccacaagg	tttggagatt	taattgttgc	aatgctgcat	11160
	ggatggcata	tacaccaaac	attcaataat	tcttgaggat	aataatggta	ccacacaaga	11220

		39																
	tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt taccacacac aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt																	
		ta	ccad	acac	aag	tttt	gag	gtgo	atgo	at o	gato	rccct	tg tg	gaaa	gttt	aaa	aatatt	t 11340
•	5																atgcaa	
	aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga										a 11460							
	10	tt	ttgc	aata	ctt	tcat	tca	taca	cact	ca c	taag	tttt	a ca	ıcgat	tata	att	tetteat	= 11520
	agccagccca ccgcggtgga aa atg gag gtc gtg gag aga ttc tac ggt gag Met Glu Val Val Glu Arg Phe Tyr Gly Glu 1 5 10											11572						
	15			. ,	<i>2</i> – <i>3</i>	15	- De	- G11	T GT	y va	1 As 20	n Al	a Le	u Le	u Gl	y Se 25	t ttt r Phe	11620
	20				30	u 111.	- AS	o m	. Pr	35	r Th	r Ly	s Gl	y Le	u Pro) Le	c gtt ı Val	11668
	25			45			, 116	= val	50	ı GIŞ	y Va.	L Se:	r Vai	1 Ty: 55	. Let	I Thi	att : Ile	11716
	30		60		· <u>-</u>		. 1000	65	, 116	: гъ	s Ala	a Arg	7 Asr) Let	ı Lys	Pro	g cgc Arg	11764
	25	75					80	. neu	GII	. ATS	ı bet	85	L Let	ı Val	. His	Asn	ctg Leu 90	11812
	35					95	. Der	Deu	TÄT	wec	100	Val	. Gly	' Ile	Ala	Тут 105		11860
	40	gct Ala	att Ile	acc Thr	tgg Trp 110	9	tac Tyr	tct Ser	ctc Leu	tgg Trp 115	GTA	aat Asn	gca Ala	tac Tyr	aat Asn 120	cct Pro	aaa Lys	11908
	‡ 5	cat His	aaa Lys	gag Glu 125	atg Met	gcg Ala	att Ile	ctg Leu	gta Val 130	tac Tyr	ttg Leu	ttc Phe	tac Tyr	atg Met 135	tct Ser	aag Lys	tac Tyr	11956
	50		140			طِوسد	1111	gtt Val 145	тте	Mec	TTE	Leu	Lys 150	Arg	Ser	Thr	Arg	12004
		caa Gln 155	ata Ile	agc Ser	ttc Phe	ctc Leu	cac His 160	gtt Val	tat Tyr	cat His	cat His	tct Ser 165	tca Ser	att Ile	tcc Ser	ctc Leu	att Ile 170	12052
	55	tgg Trp	tgg Trp	gct Ala	att Ile	gct Ala 175	cat His	cac His	gct Ala	cct Pro	ggc Gly 180	ggt Gly	gaa Glu	gca Ala	tat Tyr	tgg Trp 185	tct Ser	12100
	60	gcg Ala	gct Ala		aac Asn 190	tca Ser	gga Gly	gtg Val	nis	gtt Val 195	ctc Leu	atg Met	tat Tyr	Ala	tat Tyr 200	tac Tyr	ttc Phe	12148

	ttg gct gcc tgc ctt cga agt agc cca aag tta aaa aat aag tac ctt Leu Ala Ala Cys Leu Arg Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu 205 210 215	12196
5	ttt tgg ggc agg tac ttg aca caa ttc caa atg ttc cag ttt atg ctg Phe Trp Gly Arg Tyr Leu Thr Gln Phe Gln Met Phe Gln Phe Met Leu 220 225 230	12244
10	aac tta gtg cag gct tac tac gac atg aaa acg aat gcg cca tat cca Asn Leu Val Gln Ala Tyr Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro 235 240 245 250	12292
15	caa tgg ctg atc aag att ttg ttc tac tac atg atc tcg ttg ctg ttt Gln Trp Leu Ile Lys Ile Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe 255 260 265	12340
. 20	ctt ttc ggc aat ttt tac gta caa aaa tac atc aaa ccc tct gac gga Leu Phe Gly Asn Phe Tyr Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly 270 275 280	12388
20	aag caa aag gga gct aaa act gag tga tctagaaggc ctcctgcttt Lys Gln Lys Gly Ala Lys Thr Glu 285 290	12435
25	aatgagatat gcgagacgcc tatgatcgca tgatatttgc tttcaattct gttgtgcacg	12495
	ttgtaaaaaa cctgagcatg tgtagctcag atccttaccg ccggtttcgg ttcattctaa	12555
30	tgaatatatc accegttact ategtatttt tatgaataat atteteegtt caatttactg	12615
00	attgtccgtc gagcaaattt acacattgcc actaaacgtc taaacccttg taatttgttt	12675
	ttgttttact atgtgtgtta tgtatttgat ttgcgataaa tttttatatt tggtactaaa	12735
35	tttataacac cttttatgct aacgtttgcc aacacttagc aatttgcaag ttgattaatt	12795
	gattctaaat tatttttgtc ttctaaatac atatactaat caactggaaa tgtaaatatt	12855
40	tgctaatatt tctactatag gagaattaaa gtgagtgaat atggtaccac aaggtttgga	12915
	gatttaattg ttgcaatgct gcatggatgg catatacacc aaacattcaa taattcttga	12975
	ggataataat ggtaccacac aagatttgag gtgcatgaac gtcacgtgga caaaaggttt	13035
45	agtaattttt caagacaaca atgttaccac acacaagttt tgaggtgcat gcatggatgc	13095
	cctgtggaaa gtttaaaaat attttggaaa tgatttgcat ggaagccatg tgtaaaacca	13155
50	tgacatccac ttggaggatg caataatgaa gaaaactaca aatttacatg caactagtta	13215
	tgcatgtagt ctatataatg aggattttgc aatactttca ttcatacaca ctcactaagt	13275
55	tttacacgat tataatttct tcatagccag cggatcc atg gta ttc gcg ggc ggt Met Val Phe Ala Gly Gly 295	13330
60	gga ctt cag cag ggc tct ctc gaa gaa aac atc gac gtc gag cac att Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn Ile Asp Val Glu His Ile 300 305 310	13378
	gcc agt atg tct ctc ttc agc gac ttc ttc agt tat gtg tct tca act Ala Ser Met Ser Leu Phe Ser Asp Phe Phe Ser Tyr Val Ser Ser Thr	13426

				_														
			315	5			,	320)				325	5				
5	gtt Val	. gg1 . Gl ₃ 33(Sei	tgg Trp	g ago Ser	gta Val	cac His	Ser	ata Ile	caa Glr	a cct a Pro	Let 340	ı Lys	g cgo	c cto J Lev	acg Thr	13474	
10	agt Ser 345	_ ⊓Ā ⊱	g aag ELys	g cgt s Arg	gtt Val	tcg Ser 350	GT.	ago Ser	gct Ala	gcc Ala	gtg Val 355	. Glr	tgt Cys	ata Ile	tca Ser	gct Ala 360	13522	
	gaa Glu	gtt Val	cag Gln	aga Arg	aat Asn 365	ser	agt Ser	acc Thr	cag Gln	gga Gly 370	Thr	gcg Ala	gag Glu	gca Ala	cto Leu 375	gca Ala	13570	
15	gaa Glu	tca Ser	gtc Val	gtg Val 380	гĀ2	ccc Pro	acg Thr	aga Arg	cga Arg 385	Arg	tca Ser	tct Ser	cag Glr	tgg Trp 390	Lys	aag Lys	13618	
20	tcg Ser	aca Thr	cac His 395	PEO	cta Leu	tca Ser	gaa Glu	gta Val 400	Ala	gta Val	cac His	aac Asn	aag Lys 405	Pro	agc Ser	gat Asp	13666	
25	tgc Cys	tgg Trp 410	TIE	gtt Val	gta Val	aaa Lys	aac Asn 415	aag Lys	gtg Val	tat Tyr	gat Asp	gtt Val 420	tcc Ser	aat Asn	ttt Phe	gcg Ala	13714	
30	gac Asp 425	gag Glu	cat His	ccc Pro	gga Gly	gga Gly 430	tca Ser	gtt Val	att Ile	agt Ser	act Thr 435	tat Tyr	ttt Phe	gga Gly	cga Arg	gac Asp 440	13762	
	Gly	aca Thr	gat Asp	gtt Val	ttc Phe 445	tct Ser	agt Ser	ttt Phe	cat His	gca Ala 450	gct Ala	tct Ser	aca Thr	tgg Trp	aaa Lys 455	att Ile	13810	
35	ctt Leu	caa Gln	gac Asp	ttt Phe 460	tac Tyr	att Ile	ggt Gly	gac Asp	gtg Val 465	gag Glu	agg Arg	gtg Val	gag Glu	ccg Pro 470	act Thr	cca Pro	13858	
40	gag Glu	ctg Leu	ctg Leu 475	aaa Lys	gat Asp	ttc Phe	cga Arg	gaa Glu 480	atg Met	aga Arg	gct Ala	ctt Leu	ttc Phe 485	ctg Leu	agg Arg	gag Glu	13906	
45	caa Gln	ctt Leu 490	ttc Phe	aaa Lys	agt Ser	tcg Ser	aaa Lys 495	ttg Leu	tac Tyr	tat Tyr	gtt Val	atg Met 500	aag Lys	ctg Leu	ctc Leu	acg Thr	13954	
50	aat Asn 505	gtt Val	gct Ala	att Ile	ttt Phe	gct Ala 510	gcg Ala	agc Ser	att Ile	gca Ala	ata Ile 515	ata Ile	tgt Cys	tgg Trp	agc Ser	aag Lys 520	14002	
	act Thr	att Ile	tca Ser	gcg Ala	gtt Val 525	ttg Leu	gct Ala	tca Ser	gct Ala	tgt Cys 530	atg Met	atg Met	gct Ala	ctg Leu	tgt Cys 535	ttc Phe	14050	
55	caa Gln	cag Gln	tgc Cys	gga Gly 540	tgg Trp	cta Leu	tcc Ser	His	gat Asp 545	ttt Phe	ctc Leu	cac His	aat Asn	cag Gln 550	gtg Val	ttt Phe	14098	
60	gag Glu	aca Thr	cgc Arg 555	tgg Trp	ctt Leu	aat Asn	gaa Glu	gtt Val 560	gtc Val	ggg ggg	tat Tyr	Val	atc Ile 565	ggc Gly	aac Asn	gcc Ala	14146	

										72							
	gtt Val	ctg Leu 570	ejà aaa	ttt Phe	agt Ser	aca Thr	ggg Gly 575	tgg Trp	tgg Trp	aag Lys	gag Glu	aag Lys 580	cat His	aac Asn	ctt Leu	cat His	14194
5	cat His 585	gct Ala	gct Ala	cca Pro	aat Asn	gaa Glu 590	tgc Cys	gat Asp	cag Gln	act Thr	tac Tyr 595	caa Gln	cca Pro	att Ile	gat Asp	gaa Glu 600	14242
10	gat Asp	att Ile	gat Asp	act Thr	ctc Leu 605	ccc Pro	ctc Leu	att Ile	gcc Ala	tgg Trp 610	agc Ser	aag Lys	gac Asp	ata Ile	ctg Leu 615	gcc Ala	14290
15	aca Thr	gtt Val	gag Glu	aat Asn 620	aag Lys	aca Thr	ttc Phe	ttg Leu	cga Arg 625	atc Ile	ctc Leu	caa Gln	tac Tyr	cag Gln 630	cat His	ctg Leu	14338
20	ttc Phe	ttc Phe	atg Met 635	ggt Gly	ctg Leu	tta Leu	ttt Phe	ttc Phe 640	gcc Ala	cgt Arg	ggt Gly	agt Ser	tgg Trp 645	ctc Leu	ttt Phe	tgg Trp	14386
							aca Thr 655										14434
25							ctg Leu										14482
30							ggt Gly										14530
35	act Thr	gag Glu	ctc Leu	atg Met 700	tcc Ser	ggc	atg Met	ctg Leu	ctg Leu 705	ggc	ttt Phe	gta Val	ttt Phe	gta Val 710	ctt Leu	agc Ser	14578
40							tat Tyr										14626
.							gat Asp 735										14674
1 5	ttc Phe 745	act Thr	ggt Gly	ggc Gly	ctt Leu	aac Asn 750	agg Arg	caa Gln	ata Ile	gag Glu	cat His 755	cat His	ctt Leu	ttc Phe	cca Pro	aca Thr 760	14722
50							aac Asn										14770
55							gtg Val										14818
60							gca Ala										14866
00			cat His					taa	gcta	agcg	tta a	accci	tgati	tt aa	atgag	gatat	14920

					70		
		810		815			
		gcgagacgc	c tatgatcgca	tgatatttg	c tttcaattct	gttgtgcacg ttg	taaaaaa 14980
	5	cctgagcat	g tgtagctcag	atccttacc	g ccggtttcgg	ttcattctaa tga	atatatc 15040
		acccgttact	atcgtatttt	tatgaataa	t attctccgtt	caatttactg att	gtccgtc 15100
•	10	gagcaaatt	acacattgcc	actaaacgt	c taaacccttg	taatttgttt ttg	ttttact 15160
	•	atgtgtgtt	a tgtatttgat	ttgcgataa	a tttttatatt	tggtactaaa ttta	ataacac 15220
		cttttatgct	aacgtttgcc	aacacttag	c aatttgcaag	ttgattaatt gatt	cctaaat 15280
	15	tatttttgto	ttctaaatac	atatactaa	t caactggaaa	tgtaaatatt tgct	aatatt 15340.
		tctactatag	gagaattaaa	gtgagtgaai	t atggtaccac	aaggtttgga gatt	taattg 15400
	20	ttgcaatgct	gcatggatgg	catatacac	aaacattcaa	taattcttga ggat	caataat 15460
		ggtaccacac	: aagatttgag	gtgcatgaad	gtcacgtgga	caaaaggttt agta	aattttt 15520
		caagacaaca	atgttaccac	acacaagttt	tgaggtgcat	gcatggatgc cctg	rtggaaa 15580
	25	gtttaaaaat	attttggaaa	tgatttgcat	ggaagccatg	tgtaaaacca tgac	atccac 15640
		ttggaggatg	caataatgaa	gaaaactaca	aatttacatg	caactagtta tgca	tgtagt 15700
	30	ctatataatg	aggattttgc	aatactttca	ttcatacaca	ctcactaagt ttta	cacgat 15760
		tataatttct	tcatagccag	cagatctaaa	atg gct ccg	gat gcg gat aa	g ctt 15814
		•			Met Ala Pro	Asp Ala Asp Ly 820	s Leu
	35	cga caa cg	c cag acg ac	et gcg gta	gcg aag cac	aat gct gct acc Asn Ala Ala Thr	ata 15862
		825	3	830		ASH AIA AIA Thr 835	Ile
	40	tcg acg ca Ser Thr Gl	g gaa cgc ct	t tgc agt	ctg tct tcg	ctc aaa ggc gaa Leu Lys Gly Glu	gaa 15910
		840	84	5	850	ren ras Gia Gia	855
		gtc tgc at Val Cys Il	c gac gga at e Asp Glv Tl	c atc tat	gac ctc caa	tca ttc gat cat Ser Phe Asp His	ccc 15958
	45	• •	860	o iic iyi	865	ser Phe Asp His 870	Pro
		ggg ggt gas Gly Gly Gli	a acg atc aa 1 Thr Ile Iv	a atg ttt	ggt ggc aac	gat gtc act gta Asp Val Thr Val	cag 16006
	50		875	o nee the	880	885	Gin
		tac aag ato	g att cac co	g tac cat	acc gag aag o	cat ttg gaa aag His Leu Glu Lys	atg 16054
		890)	895	ım Gin Dăs i	900	Met
	55	aag cgt gto Lys Arg Val	ggc aag gt	g acg gat	tte gte tge g	gag tac aag ttc Glu Tyr Lys Phe	gat 16102
		905	1 -1 0 va	910		Fig Tyr Lys Phe 115	Asp
	60	acc gaa ttt Thr Glu Phe	gaa cgc ga	a atc aaa o	ga gaa gtc t	ttc aag att gtg Phe Lys Ile Val	cga 16150
		920	92.	5	930 930	the DAS ITE ASI	Arg 935

RASE	Diant	Science	
	· idill	ocience	GmbH

PF 54305 DE

	cga	a ggo	aag	gat	tto	aut	act	++~	~~=	+~~	.				tt tgc	
	_				940	GIY	THE	ren	GТĀ	945	Phe I	?he ?	arg A	la I	Phe Cys 950	16198
5	tac Tyr	att Ile	gcc Ala	att Ile 955		ttc Phe	tac Tyr	ctg Leu	cag Gln 960	tac Tyr	cat t His T	irp V	al T	cc a hr 1 65	icg gga hr Gly	16246
10	acc Thr	tct Ser	tgg Trp 970		ctg Leu	gcc Aļa	gtg Val	gcc Ala 975	tac Tyr	gga Gly	atc t Ile S	er G	aa g ln A 80	cg a la M	tg att et Ile	16294
15	ggc	atg Met 985		gtc Val	cag Gln	ur?	gat Asp 990	gcc Ala	aac Asn	cac His	Gly A	cc a la T 95	cc t hr s	cc a er L	ag cgt Ys Arg	16342
20	ccc Pro 100		g gto p Val	c aad l Asr	c gad n Asp	atg Met 100	ь	a gg u Gl	c ct y Le	c gg u Gl	t gcg y Ala 101	As	t tt	t at e Il	t ggt e Gly	16387
	ggt Gly 101		c aaq r Lys	g tgg s Trp	g cto Lev	tgg Trp 102	GL	g gaan	a ca u Gli	a cad	tgg Trp 102	Th:	cac His	c cae	c gct s Ala	16432
25	tac Tyr 103	~	c aat c Asr	cac His	gcc Ala	gag Glu 103	MG.	g gat t Ası	t cc	c gat	agc Ser 1040	Phe	ggt Gl	gco Ala	c gaa a Glu	16477
30	cca Pro 1045	***	g cto : Leu	cta Leu	ttc Phe	aac Asn 1050	ASI	tat Tyr	c cc	ttg Lev	gat Asp 1055	His	ccc Pro	gct Ala	cgt Arg	16522
35	acc Thr 1060		cta Leu	cat His	cgc Arg	ttt Phe 1065	GTI	a gca n Ala	tto Phe	ttt Phe	tac Tyr 1070	Met	ccc Pro	gto Val	ttg Leu	16567 _.
40	gct Ala 1075		tac Tyr	tgg Trp	ttg Leu	tcc Ser 1080	ATS	gtc Val	tto Phe	aat Asn	cca Pro 1085	Gln	att Ile	ctt Leu	gac	16612
	ctc Leu 1090	011	caa Gln	cgc Arg	ggc	gca Ala 1095	rea	tcc Ser	gtc Val	ggt Gly	atc Ile 1100	Arg	ctc Leu	gac Asp	aac Asn	16657
45	gct Ala 1105		att Ile	cac His	tcg Ser	cga Arg 1110	WLÖ	aag Lys	tat Tyr	gcg Ala	gtt Val 1115	Phe	tgg Trp	cgg Arg	gct Ala	16702
50	gtg Val 1120	T 3 T	att Ile	gcg Ala	gtg Val	aac Asn 1125	val	att Ile	gct Ala	ccg Pro	ttt Phe 1130	Tyr	aca Thr	aac Asn	tcc Ser	16747
55	ggc Gly 1135	ctc Leu	gaa Glu	tgg Trp	tcc Ser	tgg Trp 1140	Arg	gtc Val	ttt Phe	gga Gly	aac Asn 1145	atc Ile	atg Met	ctc Leu	atg Met	16792
60	ggt Gly 1150	gtg Val	gcg Ala	gaa Glu	tcg Ser	ctc Leu 1155	gcg Ala	ctg Leu	gcg Ala	gtc Val	ctg Leu 1160	ttt Phe	tcg Ser	ttg Leu	tcg Ser	16837
	cac His	aat Asn	ttc Phe	gaa Glu	tcc Ser	gcg Ala	gat Asp	cgc Arg	gat Asp	ccg Pro	acc Thr	gcc Ala	cca Pro	ctg Leu	aaa Lys	16882

BASF Plant Science GmbH	20030015	PF 54305 DE
•		

		1165					1170					1175		-			
5	_	aag Lys 1180	Thr	gga Gly	gaa Glu	cca Pro	gtc Val 1185					aca Thr 1190					16927
10		tcc Ser 1195	tgc Cys	act Thr	tac Tyr	ggt Gly	gga Gly 1200	ttc Phe	ctt Leu	tcc Ser	ggt Gly	tgc Cys 1205			gga Gly		16972
		ctc Leu 1210	aac Asn	ttt Phe	cag Gln	gtt Val	gaa Glu 1215	cac His	cac His	ttg Leu	ttc Phe	cca Pro 1220	cgc Arg				17017
15		gct Ala 1225	tgg Trp	tat Tyr	ccc Pro	tac Tyr	att Ile 1230	gcc Ala	ccc Pro	aag Lys	gtc Val	cgc Arg 1235	gaa Glu	att Ile	tgc Cys	gcc Ala	17062
20)	aaa Lys 1240	cac His	ggc Gly	gtc Val	cac His	tac Tyr 1245	gcc Ala	tac Tyr	tac Tyr	ccg Pro	tgg Trp 1250			caa Gln		17107
25		ttt Phe 1255	ctc Leu	tcc Ser	acc Thr	gtc Val	cgc Arg 1260	tac Tyr	atg Met	cac His	gcg Ala		GJĀ āāā				17152
30		aac Asn 1270	tgg Trp	cgc Arg	cag Gln	atg Met	gcc Ala 1275	aga Arg	gaa Glu	aat Asn	ccc Pro	ttg Leu 1280	acc Thr				17197
50		taa a	gato	tgcc	g go	atco	ratcc	cggg	gccat	gg c	ctgo	tttaa	ı tga	ıgata	tgc		17250
	!	gagad	gcct	a to	gatco	gcato	atat	ttgc	ett t	caat	tctg	rt tgt	gcac	gtt	gtaa	aaaacc	17310
35	j	tgago	atgt	g ta	agcto	agat	cctt	acco	acc 6	gttt	cggt	t cat	tcta	atg	aata	itatcac	17370
		ccgtt	acta	t co	gtatt	ttta	tgaa	taat	at t	ctcc	gttc	a att	tact	gat	tgtc	cgtcga	17430
40)	cgago	etegg	c go	gcct	ctag	agga	tcga	atg a	atto	agat	c ggc	tgag	rtgg	ctcc	ttcaac	1.7490
_																gggtca	17550
																agttta	17610
15				•												rtttatt	17670
								rcgtg	gaa a	aggt	ttat	c ctt	cgtc	cat	ttgt	atgtgc	17730
50	'	atgcc	aacc	a ca	ıgggı	tccc	ca										17752
55		<210> <211> <212> <213>	29 PR	0 ET Laeod	lacty	lum	trico	rnut	um,	Phys	comi	trell	a pa	tens.	ı		
		<400>															
60	1	Met G 1	lu V	al V	al 6		rg Ph	е Ту	r Gl	y Gl 10		u Asp	Gly	. Lys	Val 15	Ser	

Gln Gly Val	Asn A	la Leu	Leu	Gly	Ser 25	Phe	Gly	Val	Glu	Leu 30	Thr	Asp

- 5 Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile 35
- Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu
 50 55 60
- Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu 65 70 75 80
 - Leu Gln Ala Leu Val Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser 85 90 95
- 20
 Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg Tyr
 100
 105
 110
- 25 Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile 115 120 125
- Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 130 135 140
- Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His 145 150 155 160
 - Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala İle Ala His 165 170 175
- His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 180 185 190
- 45 Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 195 200 205
- Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 50 210 215 220
- Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 225 230 235 240
 - Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 250 255
- Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 265 270

Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys

Thr Glu

<210> 21 <211> 525 <212> PRT

<213> Phaeodactylum tricornutum, Physcomitrella patens

<400> 21

Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn

Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe

Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln

Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala

Val Gln Cys Ile Ser Ala Glu Val Gln Arg Asn Ser Ser Thr Gln Gly

Thr Ala Glu Ala Leu Ala Glu Ser Val Val Lys Pro Thr Arg Arg Arg

Ser Ser Gln Trp Lys Lys Ser Thr His Pro Leu Ser Glu Val Ala Val

His Asn Lys Pro Ser Asp Cys Trp Ile Val Val Lys Asn Lys Val Tyr

Asp Val Ser Asn Phe Ala Asp Glu His Pro Gly Gly Ser Val Ile Ser

Thr Tyr Phe Gly Arg Asp Gly Thr Asp Val Phe Ser Ser Phe His Ala

Ala Ser Thr Trp Lys Ile Leu Gln Asp Phe Tyr Ile Gly Asp Val Glu

Arg Val Glu Pro Thr Pro Glu Leu Leu Lys Asp Phe Arg Glu Met Arg

					18	0				18	-	_				_	
								٠					٠		19		
5	Al	a I	eu	Ph:	e Le 5	u Ar	g Gl	u Gl	n Le 20	eu Ph O	e Ly	s Se	er Se	r Ly 20		и Ту	r Tyr
10	Va.	1 M 2	et 10	Ly	s Le	u Le	u Th	r As 21	n Va .5	1 Al	a Il	e Ph	e Al 22	a Al O	a Se	r Il	e Ala
15	11e 225	e I	le	Суs	s Tr	p Se:	r Ly 23	s Th 0	r Il	e Se	r Al	a Va 23	1 Le 5	u Al	a Se:	r Al	a Cys 240
13	Met	. M	et	Ala	ı Leı	u Cys 24:	s Ph	e G1:	n Gl	n Cy	s G1 25	y Tr O	p Le	u Se:	r His	s As; 25	p Phe 5
20	Lev	ı H	is	Asn	Glr 260	n Val	l Phe	e Gl	u Thi	r Ar 26	g Tr	p Le	u Ası	ı Glı	ı Val 270		l Gly
25	Tyr	· Vá	al	Ile 275	Gl3	/ Asr	n Ala	a Vai	l Let 280	ı Gly	/ Ph	e Sei	r Thi	Gl ₃ 285		Tr) Lys
30	Glu	29	/s 90	His	Asn	Leu	His	His 295	s Ala	a Ala	a Pro) Ası	1 Glu 300	ı Cys	asp	Glr	ı Thr
25	Tyr 305	G1	.n	Pro	Ile	: Asp	Glu 310	Asr) Ile	e Asp	Thi	Leu 315	ı Pro	Leu	Ile	: Ala	320
35	Ser	Ly	s i	Asp	Ile	Leu 325	Ala	Thr	Val	. Glu	Asr 330	Lys	Thr	Phe	Leu	Arg	Ile
40	Leu	Gl	n :	Гут	Gln 340	His	Leu	Phe	Phe	Met 345	Gly	Leu	Leu	Phe	Phe 350	Ala	Arg
45	Gly	.Se	r 9	rrp 355	Leu	Phe	Trp	Ser	Trp 360	Arg	Tyr	Thr	Ser	Thr 365	Ala	Val	Leu
50	Ser	Pr:	7 о 0	/al	Asp	Arg	Leu	Leu 375	Glu	Lys	Gly	Thr	Val 380	Leu	Phe	His	Tyr
	Phe 385	Tr	, F	he	Val	Gly	Thr 390	Ala	Cys	Tyr	Leu	Leu 395	Pro	Gly	Trp	Lys	Pro 400
55	Leu	Va]	l T	,rp	Met	Ala 405	Val	Thr	Glu	Leu	Met 410	Ser	Gly	Met	Leu	Leu 415	Gly
60	Phe	Val	. P	he i	Val 420	Leu	Ser	His	Asn	Gly	Met	Glu	Val	Tyr	Asn	Ser	Ser

49 [^]

Lys	Glu	Phe	Val	Ser	Ala	Gln	Ile	Val	Ser	Thr	Arg	αzA	Ile	Lys	GIV
		435					440				_	445		2	0-1

- 5
 Asn Ile Phe Asn Asp Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu
 450
 455
 460
- His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Lys Ile Ala 465 470 475 480
- Pro Arg Val Glu Val Phe Cys Lys Lys His Gly Leu Val Tyr Glu Asp
 485
 490
 495
- Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu 500 505 510
 - Val Ala Glu Ala Ala Glu Gln His Ala Thr Thr Ser 515 520 525
 - <210> 22
 - <211> 469
 - <212> PRT
 - <213> Phaeodactylum tricornutum, Physcomitrella patens
- 30 <400> 22

25

40

- Met Ala Pro Asp Ala Asp Lys Leu Arg Gln Arg Gln Thr Thr Ala Val 1 5 10 15
- Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cys Ser
- Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr 35 40 45
- 45 Asp Leu Gln Ser Phe Asp His Pro Gly Gly Glu Thr Ile Lys Met Phe 50 55 60
- Gly Gly Asn Asp Val Thr Val Gln Tyr Lys Met Ile His Pro Tyr His 65 70 75 80
- Thr Glu Lys His Leu Glu Lys Met Lys Arg Val Gly Lys Val Thr Asp
 85 90 95
 - Phe Val Cys Glu Tyr Lys Phe Asp Thr Glu Phe Glu Arg Glu Ile Lys
 100 105 110
- Arg Glu Val Phe Lys Ile Val Arg Arg Gly Lys Asp Phe Gly Thr Leu 115 120 125

. 5	GlŽ	7 Trp	Phe	Ph∈	e Arg	Ala	Ph∈ 135	Cys	: Туг	: Ile	Ala	11e		Phe	Tyr	Leu
	Glr 145	. Туг і	His	Trp	Val	Thr 150	Thr	Gly	Thr	Ser	Trp 155		Leu	Ala	. Val	Ala 160
10	Tyr	· Gly	'Ile	Ser	Gln 165	Ala	. Met	Ile	Gly	Met 170		. Val	Gln	. His	Asp 175	Ala
15	Asn	His	Gly	Ala 180	Thr	Ser	Lys	Arg	Pro 185	Trp	Val	Asn	Asp	Met 190		Gly
20.	Leu	Gly	Ala 195	Asp	Phe	Ile	Gly	Gly 200	Ser	Lys	Trp	Leu	Trp 205	Gln	Glu	Gln
25	His	Trp 210	Thr	His	His	Ala	Tyr 215	Thr	Asn	His	Ala	Glu 220	Met	Asp	Pro	Asp
	Ser 225	Phe	Gly	Ala	Glu	Pro 230	Met	Leu	Leu	Phe	Asn 235	Asp	Tyr	Pro	Leu	Asp 240
30	His	Pro	'Ala	Arg	Thr 245	Trp	Leu	His	Arg	Phe 250	Gln	Ala	Phe	Phe	Tyr 255	Met
35	Pro	Val	Leu	Ala 260	Gly	Tyr	Trp	Leu	Ser 265	Ala	Val	Phe	Asn	Pro 270	Gln	Ile
40	Leu	Asp	Leu 275	Gln	Gln	Arg	Gly	Ala 280	Leu	Ser	Val	Gly	Ile 285	Arg	Leu	Asp
45	Asn	Ala 290	Phe	Ile	His	Ser	Arg 295	Arg	Lys	Tyr	Ala	Val 300	Phe	Trp	Arg	Ala
-	Val 305	Tyr	Ile	Ala	Val	Asn 310	Val	Ile	Ala	Pro	Phe 315	Tyr	Thr	Asn	Ser	Gly 320
	Leu	Glu	Trp	Ser	Trp 325	Arg	Val	Phe	Gly	Asn 330	Ile	Met	Leu	Met	Gly 335	Val
55	Ala	Glu	Ser	Leu 340	Ala	Leu	Ala	Val	Leu 345	Phe	Ser	Leu	Ser	His 350	Asn	Phe
60	Glu	Ser	Ala 355	Asp	Arg	Asp	Pro	Thr 360	Ala	Pro	Leu	Lys	Lys 365	Thr	Gly	Glu

	51	
	Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 370 375 - 380	
5	Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 385 390 395 400	
10	His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala 405 410 415	
15	Pro Lys Val Arg Glu Ile Cys Ala Lys His Gly Val His Tyr Ala Tyr 420 425 430	
	Tyr Pro Trp Ile His Gln Asn Phe Leu Ser Thr Val Arg Tyr Met His 435 440 445	
20	Ala Ala Gly Thr Gly Ala Asn Trp Arg Gln Met Ala Arg Glu Asn Pro 450 455 460	
25	Leu Thr Gly Arg Ala 465	
30	<210> 23 <211> 26 <212> DNA <213> artificial sequence	
35	<400> 23 gaattcggcg cgccgagctc ctcgag	26
40	<210> 24 <211> 265 <212> DNA <213> artificial sequence	
45	<400> 24 ccaccgcggt gggcggccgc ctgcagtcta gaaggcctcc tgctttaatg agatatgcga	60
	gacgcctatg atcgcatgat atttgctttc aattctgttg tgcacgttgt aaaaaacctg	120
50	agcatgtgta gctcagatcc ttaccgccgg tttcggttca ttctaatgaa tatatcaccc	180
00	gttactatcg tatttttatg aataatattc tccgttcaat ttactgattg tccgtcgacg	240
	aattcgagct cggcgcgcca agctt	265
55	<210> 25 <211> 257 <212> DNA <213> artificial sequence	
60	<400> 25 ggatccgata tcgggccgc tagcgttaac cctgctttaa tgaggtatgg ggaggata	50

	32	
	tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc tgagcatgtg	120
	tageteagat cettacegee ggttteggtt cattetaatg aatatateae cegttaetat	180
5	cgtattttta tgaataatat tctccgttca atttactgat tgtccgtcga cgaattcgag	240
	ctcggcgcgc caagctt	257
10	<210> 26 <211> 5410 <212> DNA <213> artificial sequence	
15	<400> 26	_
	ttttggaaat gatttgcatg gaagccatgt gtaaaaccat gacatccact tggaggatgc	60
00	aataatgaag aaaactacaa atttacatgc aactagttat gcatgtagtc tatataatga	120
20	ggattttgca atactttcat tcatacacac tcactaagtt ttacacgatt ataatttctt	180
	catagocago ggatoogata togggooogo tagogttaao ootgotttaa tgagatatgo	240
25	gagacgccta tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc	300
	tgagcatgtg tagctcagat ccttaccgcc ggtttcggtt cattctaatg aatatatcac	360
	ccgttactat cgtattttta tgaataatat tctccgttca atttactgat tgtccgtcga	420
30	gcaaatttac acattgccac taaacgtcta aacccttgta atttgttttt gttttactat	480
	gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct	540
35	tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta	600
	tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc	660
	tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt	720
40	gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg	780
	taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca	840
45	agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt	900
45	ttaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt	960
	ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct	
50	atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta	1020
	taatttette atagecagea gatetgeegg categatece gggccatgge etgetttaat	1080
	gagatatgcg agacgcctat gatcgcatga tatttgcttt caattctgtt gtgcacgttg	1140
55	taaaaaacct gagcatgtgt agctcagatc cttaccgccg gtttcggttc attctaatga	1200
		1260
60	atatatcacc cgttactatc gtatttttat gaataatatt ctccgttcaa tttactgatt	1320
	gtccgtcgac gagctcggcg cgccaagctt ggcgtaatca tggtcatagc tgtttcctgt	1380
	gtgaaattgt tatccgctca caattccaca caacatacga gccggaagga taaagtgtaa	1440

		•
	agectggggt geetaatgag tgagetaaet cacattaatt gegttgeget cactgeeege	1500
5	tttccagtcg ggaaacctgt cgtgcgagt galte	1560
	aggeggtttg egtattggge getetteege tteetegete aetgaetege tgegeteggt	1620
	cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga	1680
10	atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg	1740
	taaaaaggcc gcgttgctgg cgtttttcca taggctccgc ccccctgacg agcatcacaa	1800 ·
15	aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt	1860
	tececetgga ageteceteg tgegetetee tgtteegace etgeegetta eeggataeet	1920
	gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct gtaggtatct	1980
20	cagttcggtg taggtcgttc gctccaagct gggctgtgtg cacgaacccc ccgttcagcc	2040
	cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt	2100
25	atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc	2160
	tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat	2220
	ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa	2280
30	acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa	2340
	aaaaggatet caagaagate etttgatett ttetaegggg tetgaegete agtggaaega	2400
35	aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct	2460
	tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga	2520
40		2580
40		2640
		2700
45		2760
		2820
50		2880
50		2940
		3000
55		3060
	= · -	3120
00		3180
60		3240
	atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac 3	300

	cagcgtttct	gggtgagcaa	a aaacaggaag	gcaaaatgcc	gcaaaaagg	gaataagggc	3360
5	gacacggaaa	tgttgaatac	tcatactctt	cctttttcaa	. tattattgaa	gcatttatca	3420
	gggttattgt	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	3480
	ggttccgcgc	acatttcccc	: gaaaagtgcc	acctgacgtc	taagaaacca	ttattatcat	3540
10	gacattaacc	tataaaaata	ggcgtatcac	gaggcccțtt	cgtctcgcgc	gtttcggtga	3600
	tgacggtgaa	aacctctgac	acatgcagct	cccggagacg	gtcacagctt	gtctgtaagc	3660
15	ggatgccggg	agcagacaag	cccgtcaggg	cgcgtcagcg	ggtgttggcg	ggtgtcgggg	3720
	ctggcttaac	tatgcggcat	cagagcagat	tgtactgaga	gtgcaccata	tgcggtgtga	3780
	aataccgcac	agatgcgtaa	ggagaaaata	ccgcatcagg	cgccattcgc	cattcaggct	3840
20	gcgcaactgt	tgggaagggc	gatcggtgcg	ggcctcttcg	ctattacgcc	agctggcgaa	3900
	agggggatgt	gctgcaaggc	gattaagttg	ggtaacgcca	gggttttccc	agtcacgacg	3960
25	ttgtaaaacg	acggccagtg	aattcggcgc	gccgagctcc	tcgagcaaat	ttacacattg	4020
	ccactaaacg	tctaaaccct	tgtaatttgt	ttttgtttta	ctatgtgtgt	tatgtatttg	4080
	atttgcgata	aatttttata	tttggtacta	aatttataac	accttttatg	ctaacgtttg	4140
30	ccaacactta	gcaatttgca	agttgattaa	ttgattctaa	attatttttg	tcttctaaat	4200
	acatatacta	at c aactgga	aatgtaaata	tttgctaata	tttctactat	aggagaatta.	4260
35	aagtgagtga	atatggtacc	acaaggtttg	gagatttaat	tgttgcaatg	ctgcatggat	4320
	ggcatataca	ccaaacattc	aataattctt	gaggataata	atggtaccac	acaagatttg	4380
	aggtgcatga	acgtcacgtg	gacaaaaggt	ttagtaattt	ttcaagacaa	caatgttacc	4440
40	acacacaagt	tttgaggtgc	atgcatggat	gccctgtgga	aagtttaaaa	atattttgga	4500
				catgacatcc			4560
45	aagaaaacta	caaatttaca	tgcaactagt	tatgcatgta	gtctatataa	tgaggatttt	4620
				gttttacacg			4680
				ctagaaggcc		•	4740
50				ttcaattctg			4800
				cggtttcggt			4860
55				ttctccgttc			4920
				aaacccttgt			4980
00				ttttatattt			5040
60	ttttatgcta a						5100
	atttttgtct	tctaạataca	tatactaatc	aactggaaat	gtaaatattt	gctaatattt	5160

. 55

	GT2GT2T2GG 2GG2T4	
	ctactatagg agaattaaag tgagtgaata tggtaccaca aggtttggag atttaattgt	
5	-	
	gtaccacaca agatttgagg tgcatgaacg tcacgtggac aaaaggttta gtaatttttc	5340
	aagacaacaa tgttaccaca cacaagtttt gaggtgcatg catggatgcc ctgtggaaag	5400
10	tttaaaaata	5410
15	<210> 27 <211> 12093 <212> DNA <213> artificial sequence	
20	<400> 27 gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc	60
	gegeceagea caggtgegea ggeaaattge accaaegeat acagegeeag cagaatgeea	120
	tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc	180
25	ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt	240
	atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga	300
30	ttctttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca	360
	tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg	420
	gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc	480
35	tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg	540
	cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg	600
40	ggaatgcccg cagettcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg	660
40	ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct	720
	gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca	
45	ctgttgggge cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggca	780
	ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag	840
50	ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa	900
30	ggaggetegt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggacege	960
	tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctccccttt	1020
55	ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt	1080
	ccaagectea eggeegest eggeetetet ggeggeette teggegetett eegetteete	1140
	geteactgae tegetgeget eggtegtteg getgeggega geggtateag etcacteaaa	1200
60		1260
	ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa	1320

				-			
						t tccataggct	1380
_						c gaaacccgac	1440
5						t ctcctgttcc	1500
						g tggcgctttt	1560
10	ccgctgcata	accctgcttc	ggggtcatta	tagcgatttt	ttcggtata	t ccatcctttt	1620
	tcgcacgata	tacaggattt	tgccaaaggg	ttcgtgtaga	ctttccttg	tgtatccaac	1680
	ggcgtcagcc	gggcaggata	ggtgaagtag	geceaceege	gagcgggtgt	tccttcttca	1740
15	ctgtccctta	ttcgcacctg	gcggtgctca	acgggaatco	: tgctctgcga	ggctggccgg	1800
	ctaccgccgg	cgtaacagat	gagggcaagc	ggatggctga	tgaaaccaac	g ccaaccagga	1860
20	agggcagccc	acctatcaag	gtgtactgcc	ttccagacga	. acgaagagco	g attgaggaaa	1920
	aggcggcggc	ggccggcatg	agcctgtcgg	cctacctgct	ggccgtcggc	cagggctaca	1980
	aaatcacggg	cgtcgtggac	tatgagcacg	tccgcgagct	ggcccgcatc	: aatggcgacc	2040
25	tgggccgcct	gggcggcctg	ctgaaactct	ggctcaccga	cgacccgcgc	acggcgcggt	2100
	tcggtgatgc	cacgatcctc	gccctgctgg	cgaagatcga	agagaagcag	gacgagettg	2160
30	gcaaggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgactttt	tagccgctaa	2220
	aacggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	caagaagagc	2280
	gacttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	gcgcctttgc	2340
35	gacgctcacc	gggctggttg	ccctcgccgc	tgggctggcg	gccgtctatg	gccctgcaaa	2400
	cgcgccagaa	acgccgtcga	agccgtgtgc	gagacaccgc	ggccgccggc	gttgtggata	2460
40	cctcgcggaa	aacttggccc	tcactgacag	atgaggggcg	gacgttgaca	cttgaggggc	2520
	cgactcaccc	ggcgcggcgt	tgacagatga	ggggcaggct	cgatttcggc	cggcgacgtg	2580
	gagctggcca	gcctcgcaaa	tcggcgaaaa	cgcctgattt	tacgcgagtt	tcccacagat	2640
45	gatgtggaca	agcctgggga	taagtgccct	gcggtattga	cacttgaggg	gcgcgactac	2700
	tgacagatga	ggggcgcgat	ccttgacact	tgaggggcag	agtgctgạca	gatgaggggc	2760
50	gcacctattg	acatttgagg	ggctgtccac	aggcagaaaa	tccagcattt	gcaagggttt	2820
	ccgcccgttt	ttcggccacc	gctaacctgt	cttttaacct	gcttttaaac	caatatttat	2880
	aaaccttgtt	tttaaccagg (gctgcgccct	gtgcgcgtga	ccgcgcacgc	cgaagggggg	2940
55		tctcgaaccc					3000
		ggccgcgaac q					3060
60		cggggcagta a					3120
- -	ttgacgtgcc						3180
						-	

				31			
	gcggcctggg	j tggcggcctg	cccttcactt	cggccgtcgg	ggcattcacg	g gacttcatgg	3240
	cggggccgg	aattttacc	ttgggcatto	ttggcatagt	ggtcgcgggt	gccgtgctcg	3300
5	tgttcggggg	f tgcgataaac	ccagcgaacc	: atttgaggtg	ataggtaaga	ttataccgag	3360
	gtatgaaaac	: gagaattgga	cctttacaga	attactctat	gaagcgccat	atttaaaaag	3420
10	ctaccaagac	: gaagaggatg	aagaggatga	ggaggcagat	tgccttgaat	: atattgacaa	3480
	tactgataag	ataatatatc	ttttatatag	aagatatcgc	cgtatgtaag	gatttcaggg	3540
	ggcaaggcat	aggcagcgcg	cttatcaata	tatctataga	atgggcaaag	cataaaaact	3600
15	tgcatggact	aatgcttgaa	acccaggaca	ataaccttat	agcttgtaaa	ttctatcata	3660
	attgggtaat	gactccaact	tattgatagt	gttttatgtt	cagataatgo	ccgatgactt	3720
20	tgtcatgcag	ctccaccgat	tttgagaacg	acagcgactt	ccgtcccago	cgtgccaggt	3780
	gctgcctcag	attcaggtta	tgccgctcaa	ttcgctgcgt	atatcgcttg	ctgattacgt	3840
	gcagctttcc	cttcaggcgg	gattcataca	gcggccagcc	atccgtcatc	catatcacca	3900
25	cgtcaaaggg	tgacagcagg	ctcataagac	gccccagcgt	cgccatagtg	cgttcaccga	3960
	atacgtgcgc	aacaaccgtc	ttccggagac	tgtcatacgc	gtaaaacagc	cagcgctggc	4020
30	gcgatttagc	cccgacatag	ccccactgtt	cgtccatttc	cgcgcagacg	atgacgtcac	4080
	tgcccggctg	tatgcgcgag	gttaccgact	gcggcctgag	tttttaagt	gacgtaaaat	4140
	cgtgttgagg	ccaacgccca	taatgcgggc	tgttgcccgg	catccaacgc	cattcatggc	4200
35	catatcaatg	attttctggt	gcgtaccggg	ttgagaagcg	gtgtaagtga	actgcagttg	4260
	ccatgtttta	cggcagtgag	agcagagata	gcgctgatgt	ccggcggtgc	ttttgccgtt	4320
40	acgcaccacc	ccgtcagtag	ctgaacagga	gggacagctg	atagacacag	aagccactgg	4380
	agcacctcaa	aaacaccatc	atacactaaa	tcagtaagtt	ggcagcatca	cccataattg	4440
	tggtttcaaa	atcggctccg	tcgatactat	gttatacgcc	aactt.tgaaa	acaactttga	4500
45	aaaagctgtt	ttctggtatt	taaggtttta	gaatgcaagg	aacagtgaat	tggagttcgt	4560
	cttgttataa	ttagcttctt	ggggtatctt	taaatactgt	agaaaagagg	aaggaaataa	4620
50	taaatggcta	aaatgagaat	atcaccggaa	ttgaaaaaac	tgatcgaaaa	ataccgctgc	4680
	gtaaaagata	cggaaggaat	gtctcctgct	aaggtatata	agctggtggg	agaaaatgaa	4740
	aacctatatt	taaaaatgac	ggacagccgg	tataaaggga	ccacctatga	tgtggaacgg	4800
55	gaaaaggaca	tgatgctatg	gctggaagga	aagctgcctg	ttccaaaggt	cctgcacttt	4860
	gaacggcatg	atggctggag	caatctgctc	atgagtgagg	ccgatggcgt	cctttgctcg	4920
60	gaagagtatg	aagatgaaca	aagccctgaa	aagattatcg	agctgtatgc	ggagtgcatc	4980
	aggctctttc	actccatcga	catatcggat	tgtccctata	cgaatagctt	agacagccgc	5040

				58			
	ttagccgaat	tggattactt	actgaataa	c gatctggccg	g atgtggatt	g cgaaaactgg	5100
	gaagaagaca	ctccatttaa	agatccgcg	c gagctgtatg	, atttttaa	a gacggaaaag	5160
5	cccgaagagg	aacttgtctt	ttcccacgg	c gacctgggag	· g acagcaaca	t ctttgtgaaa	5220
						a caagtggtat	5280
10						a gtatgtcgag	5340
	ctatttttg	acttactggg	gatcaagcct	gattgggaga	aaataaaat	a ttatattta	5400
						a agcaggagcg	5460
15						g gcaagtattt	5520
						acgagaagga	5580
20	cggccagacg	gtctacggga	ccgacttcat	: tgccgataag	gtggattato	tggacaccaa	5640
				gcacattgcc			5700
	cccgcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggo	: aagaactgat	5760
25	cgacgcgggg	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	tcatgcgtgc	5820
	gccccgcgaa	accttccagt	ccgtcggctc	gatggtccag	caagctacgg	r ccaagatcga	5880
30	gcgcgacagc	gtgcaactgg	ctcccctgc	cctgcccgcg	ccatcggccg	ccgtggagcg	5940
	ttcgcgtcgt	ctcgaacagg	aggcggcagg	tttggcgaag	tcgatgacca	tcgacacgcg	6000
	aggaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	aacaggtcag	606 <u>0</u>
35	cgaggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	aaatgcagct	6120
	tteettgtte	gatattgcgc	cgtggccgga	cacgatgcga	gcgatgccaa	acgacacggc	6180
40	cegetetgee	ctgttcacca	cgcgcaacaa	gaaaatcccg	cgcgaggcgc	tgcaaaacaa	6240
	ggtcattttc	cacgtcaaca	aggacgtgaa	gatcacctac	accggcgtcg	agctgcgggc	6300
	cgacgatgac	gaactggtgt	ggcagcaggt	gttggagtac	gcgaagcgca	cccctatcgg	6360
45	cgagccgatc	accttcacgt	tctacgagct	ttgccaggac	ctgggctggt	cgatcaatgg	6420
	ccggtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	cgatgggctt	6480
50	cacgtccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	tccgcgtcct	6540
	ggaccgtggc a	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	tcgtcgtgct	6600
	gtttgctggc (gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	tgtcgccgac	6660
55	ggcccgacgg a	atgttcgact a	atttcagctc	gcaccgggag	ccgtacccgc	tcaagctgga	6720
	aaccttccgc (ctcatgtgcg (gatcggattc	cacccgcgtg	aagaagtggc	gcgagcaggt	6780
60	cggcgaagcc t	gcgaagagt (tgcgaggcag	cggcctggtg	gaacacgcct	gggtcaatga	6840
	tgacctggtg c	cattgcaaac ç	gctagggcct	tgtggggţca (gttccggctg	ggggttcagc	6900

				59			
	•	t ttactggcat					6960
	tcagtatcg	c tcgggacgca	cggcgcgct	c tacgaactg	c cgataaaca	g aggattaaaa	7020
5	ttgacaatt	g tgattaaggo	tcagattcg:	a cggcttggag	g cggccgacgt	gcaggatttc	7080
	cgcgagatc	c gattgtcggc	: cctgaagaa	a gctccagaga	a tgttcgggtd	cgtttacgag	7140
10	cacgaggag	a aaaagcccat	ggaggcgttd	c gctgaacggt	tgcgagatgc	cgtggcattc	7200
	ggcgcctac	a tcgacggcga	gatcattggg	g ctgtcggtct	tcaaacagga	ggacggcccc	7260
	aaggacgct	c acaaggcgca	tetgteegge	gttttcgtgg	agcccgaaca	gcgaggccga	7320
15	ggggtcgcc	g gtatgctgct	gcgggcgttg	g ccggcgggtt	tattgctcgt	gatgatcgtc	7380
	cgacagatt	c caacgggaat	ctggtggatg	g cgcatcttca	tecteggege	acttaatatt	7440
20	togotatto	t ggagcttgtt	gtttatttcg	gtctaccgcc	: tgccgggcgg	ggtcgcggcg	7500
	acggtaggc	g ctgtgcagcc	gctgatggto	gtgttcatct	ctgccgctct	gçtaggtagc	7560
	ccgatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620
25	gtgttgacad	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680
	gtttccatgg	g cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	gcctctgctc	7740
30	acctttaccg	s cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800
	tttgatccgc	: caatcccgat	gcctacagga	accaatgttc	teggeetgge	gtggctcggc	7860
	ctgatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	actcgaacct	7920
35	acagttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980
	catcaggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040
40	aggggagttg	atatcgtcaa	cgttcacttc	taaagaaata	gcgccactca	gcttcctcag	8100
	cggctttatc	cagcgatttc	ctattatgtc	ggcatagttc	tcaagatcga	cagcctgtca	8160
	cggttaagcg	agaaatgaat	aagaaggctg	ataattcgga	tctctgcgag	ggagatgata	8220
45	tttgatcaca	ggcagcaacg	ctctgtcatc	gttacaatca	acatgctacc	ctccgcgaga	8280
	tcatccgtgt	ttcaaacccg	gcagcttagt	tgccgttctt	ccgaatagca	tcggtaacat	8340
50	gagcaaagtc	tgccgcctta	caacggctct	cccgctgacg	ccgtcccgga	ctgatgggct	8400
	gcctgtatcg	agtggtgatt	ttgtgccgag	ctgccggtcg	gggagctgtt	ggctggctgg	8460
	tggcaggata	tattgtggtg	taaacaaatt	gacgcttaga	caacttaata	acacattgcg	8520
55	gacgttttta	atgtactggg (gtggttttc	ttttcaccag	tgagacgggc	aacagctgat	8580
		cgcctggccc 1					8640
60		atcctgtttg a					8700
		gagatagggt t					8760

				60	•		
	gaacgtggac	tccaacgtca	aagggcgaaa	aaccgtctat	cagggcgatg	gcccactacg	8820
	tgaaccatca	cccaaatcaa	gttttttggg	gtcgaggtgc	cgtaaagcac	taaatcggaa	8880
5	ccctaaaggg	agcccccgat	ttagagcttg	acggggaaag	ccggcgaacg	tggcgagaaa	8940
	ggaagggaag	aaagcgaaag	gagcgggcgc	cattcaggct	gcgcaactgt	tgggaagggc	9000
10	gatcggtgcg	ggcctcttcg	ctattacgcc	agctggcgaa	agggggatgt	gctgcaaggc	9060.
	gattaagttg	ggtaacgcca	gggttttccc	agtcacgacg	ttgtaaaacg	acggccagtg	9120
	aattaattcc	catcttgaaa	gaaatatagt	ttaaatattt	attgataaaa	taacaagtca	9180
15	ggtattatag	tccaagcaaa	aacataaatt	tattgatgca	agtttaaatt	cagaaatatt	9240
	tcaataactg	attatatcag	ctggtacatt	gccgtagatg	aaagactgag	tgcgatatta	9300
20	tgtgtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360
	agcttgggtc	ccgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	9420
	tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480
25	tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540
	ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600
30	tcgccatggg	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	9660
	agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720
	gcttccatcc	gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780
35	gtagccggat	caagcgtatg	cageegeege	attgcatcag	ccatgatgga	tactttctcg	9840
	gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900
40	tecetteceg	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960
	agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020
	ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080
45	ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	10140
	cctgcgtgca	atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200
50	tctggattga	gagtgaatat	gagactctaa	ttggataccg	aggggaattt	atggaacgtc	10260
	agtggagcat	ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320
	acgcgcaata	atggtttctg	acgtatgtgc	ttagctcatt	aaactccaga	aacccgcggc	10380
55	tgagtggctc	cttcaacgtt	gcggttctgt	cagttccaaa	cgtaaaacgg	cttgtcccgc	10440
	gtcatcggcg	ggggtcataa	cgtgactccc	ttaattctcc	gctcatgatc	ttgatcccct	10500
60	gcgccatcag	atccttggcg	gcaagaaagc	catccagttt	actttgcagg	gcttcccaac	10560
	cttaccagag	ggcgccccag	ctggcaattc	cggttcgctt	gctgtccata	aaaccgccca	10620

	·	
	gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt	
_	tteeettgte eagatageee agtagetgae atteateegg ggteageace gtttetgegg	
5	actggettte tacgtgttee getteettta geagecettg egeeetgagt gettgeggea	
	gcgtgaagct tgcatgcctg caggtcgacg gcgcgccgag ctcctcgagc aaatttacac	
10	attgecacta aacgtetaaa eeettgtaat ttgtttttgt tttactatgt gtgttatgta	
	tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg	10980
	tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct	11040
15	aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga	11100
	attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat	11160
20	ggatggcata tacaccaaac attcaataat tettgaggat aataatggta ecacacaaga	11220
	tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt	11280
	taccacacac aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt	11340
25	tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat	11400
	aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga	11460
30	ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat	11520
	agccagccca ccgcggtggg cggccgcctg cagtctagaa ggcctcctgc tttaatgaga	11580
	tatgcgagac gcctatgatc gcatgatatt tgctttcaat tctgttgtgc acgttgtaaa	11640
35	aaacctgagc atgtgtagct cagatcctta ccgccggttt cggttcattc taatgaatat	11700
	atcacccgtt actatcgtat ttttatgaat aatattctcc gttcaattta ctgattgtcc	11760
40	gtcgacgaat tcgagctcgg cgcgcctcta gaggatcgat gaattcagat cggctgagtg	11820
	geteetteaa egttgeggtt etgteagtte caaacgtaaa aeggettgte eegegteate	11880
	ggcgggggtc ataacgtgac tcccttaatt ctccgctcat gatcagattg tcgtttcccg	11940
45	ccttcagttt aaactatcag tgtttgacag gatatattgg cgggtaaacc taagagaaaa	12000
	gagcgtttat tagaataatc ggatatttaa aagggcgtga aaaggtttat ccttcgtcca	12060
50	tttgtatgtg catgccaacc acagggttcc cca	12093
55	<210> 28 <211> 12085 <212> DNA <213> artificial sequence	
60	<220> <221> misc_feature <223> pflanzlicher Expressionsvektor mit einer Promotor-Terminator essionskassette	-Expr

				62			
	<400> 28 gatetggege	cggccagcga	gacgagcaa,	g attggccgcc	: gcccgaaac	g atccgacagc	60
5						g cagaatgcca	120
	tagtgggcgg	; tgacgtcgtt	cgagtgaac	agatcgcgca	ggaggcccgg	g cagcaccggc	180
	ataatcaggo	cgatgccgac	agcgtcgag	gcgacagtgc	tcagaattac	gatcaggggt	240
10	atgttgggtt	: tcacgtctgg	cctccggac	agcctccgct	ggtccgattg	g aacgcgcgga	300
	ttctttatca	ctgataagtt	ggtggacata	a ttatgtttat	cagtgataaa	gtgtcaagca	360
15	tgacaaagtt	gcagccgaat	acagtgatco	gtgccgccct	ggacctgttg	aacgaggtcg	420
	gcgtagacgg	tctgacgaca	cgcaaactgg	r cggaacggtt	gggggttcag	cageeggege	480
	tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	gccatgctgg	540
20			•			tttctgatcg	600
	ggaatgcccg	cagcttcagg	caggcgctgc	: tcgcctaccg	cgatggcgcg	cgcatccatg	660
25	ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	cgcttcctct	720
						agctacttca	780
.						cgcggcggca	840
30						ttcgacgaag	900
				tcgcggtgat			960
35				cgagaaaggg			1020
				agccatgtag			1080
40				tacgggcttt			1140
40				ggcggccttc			1200
				gctgcggcga			1260
45				ggataacgca			1320
				ggccgcgttg			1380
5 0				acgctcaagt			1440
50				tggaagctcc			1500
				ctttctccct			1560
55				tagcgatttt			1620
				ttcgtgtaga			1680
60				gcccacccgc			1740
60				acgggaatcc			1800
	ctaccgccgg	cgtaacagat (gagggcaagc	ggatggctga	tgaaaccaag	ccaaccagga	1860

	. 33	
	agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa	1920
5	aggeggegge ggeeggeatg ageetgtegg cetacetget ggeegtegge cagggetaca	
	aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc	2040
	tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt	2100
10	teggtgatge caegateete geeetgetgg egaagatega agagaageag gaegagettg	2160
	gcaaggteat gatgggegtg gteegeeega gggeagagee atgaettttt tageegetaa	2220
15	aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc	2280
	gacttegegg agetggtgaa gtacateace gaegageaag geaagaeega gegeetttge	2340
	gacgeteace gggetggttg ecetegeege tgggetggeg geegtetatg geeetgeaaa	2400
20	cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata	2460
	cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc	2520
25	cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg	2580
	gagetggeca geetegeaaa teggegaaaa egeetgattt taegegagtt teecacagat	2640
	gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac	2700
30	tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc	2760
	gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt	2820
35	ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat	2880
	aaaccttgtt tttaaccagg getgegeect gtgegegtga cegegeaege egaagggggg	2940
	tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc	3000
40	tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca	3060
	ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca	3120
45	ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg	3180
	gcggcctggg tggcggcctg cccttcactt cggccgtcgg ggcattcacg gacttcatgg	3240
	cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg	3300
50	tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag	3360
	gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag	3420
55	ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa	3480
	tactgataag ataatatac ttttatatag aagatatcgc cgtatgtaag gatttcaggg	3540
00	ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact	3600
60	tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata	3660
	attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt	3720

	•						
	tgtcatgcag	g ctccaccgai	t tttgagaac	g acagegaet	t ccgtcccag	c cgtgccaggt	3780
5						g ctgattacgt	3840
	gcagctttcc	cttcaggcgg	gattcatac	a gcggccagco	atccgtcat	c catatcacca	3900
						g cgttcaccga	3960
10	atacgtgcgc	: aacaaccgtc	ttccggaga	c tgtcatacgo	gtaaaacag	c cagcgctggc	4020
	gcgatttagc	cccgacatag	cccactgt	cgtccatttc	cgcgcagac	g atgacgtcac	4080
15	tgcccggctg	tatgcgcgag	gttaccgact	gcggcctgag	g ttttttaag	t gacgtaaaat	4140
	cgtgttgagg	ccaacgccca	taatgcggg	tgttgcccgg	catccaacg	c cattcatggc	4200
	catatcaatg	attttctggt	gcgtaccggg	r ttgagaagcg	gtgtaagtg	a actgcagttg	4260
20	ccatgtttta	cggcagtgag	agcagagata	gcgctgatgt	ccggcggtg	ttttgccgtt	4320
						g aagccactgg	4380
25						a cccataattg	4440
						a acaactttga	4500
						tggagttcgt	4560
30						n aaggaaataa	4620
						ataccgctgc	4680
35						agaaaatgaa	4740
						tgtggaacgg	4800
40		tgatgctatg					4860
40		atggctggag					4920
		aagatgaaca					4980
45		actccatcga					5040
,		tggattactt					5100
50		ctccatttaa					5160
50		aacttgtctt					5220
		taagtggctt					5280
55		tctgcgtccg					5340
		acttactggg					5400
6 0	ctggatgaat						5460
60	caccgacttc						5520
•	gggcaagggg	tegetggtat H	tcgtgcaggg	caagattcgg	aataccaagt	acgagaagga	5580

	cggccagacg	gtctacggga	ccgacttcat	tgccgataag	gtggattatc	tggacaccaa	5640
5	ggcaccaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	tcggggcaat	5700
	cccgcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggc	aagaactgat	5760
	cgacgcgggg	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	tcatgcgtgc	5820
10	. gccccgcgaa	accttccagt	ccgtcggctc	gatggtccag	caagctacgg	ccaagatcga	5880
	gcgcgacagc	gtgcaactgg	ctcccctgc	cctgcccgcg	ccatcggccg	ccgtggagcg	5940
15	ttcgcgtcgt	ctcgaacagg	aggcggcagg	tttggcgaag	tcgatgacca	tcgacacgcg	6000
	aggaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	aacaggtcag	6060
	cgaggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	aaatgcagct	6120
20	ttccttgttc	gatattgcgc	cgtggccgga	cacgatgcga	gcgatgccaa	acgacacggc	6180
	ccgctctgcc	ctgttcacca	cgcgcaacaa	gaaaatcccg	cgcgaggcgc	tgcaaaacaa	6240
25	ggtcattttc	cacgtcaaca	aggacgtgaa	gatcacctac	accggcgtcg	agctgcgggc	6300
	cgacgatgac	gaactggtgt	ggcagcaggt	gttggagtac	gcgaagcgca	cccctatcgg	6360
	cgagccgatc	accttcacgt	tctacgagct	ttgccaggac	ctgggctggt	cgatcaatgg	6420
30	ccggtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	cgatgggctt	6480
	cacgtccgac	cgcgttgggc [.]	acctggaatc	ggtgtcgctg	ctgcaccgct	teegegteet	6540·
35	ggaccgtggc	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	tcgtcgtgct	6600 [°]
	gtttgctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	tgtcgccgac	6660
	ggcccgacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	tcaagctgga	6720
40 .	aaccttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	gcgagcaggt	6780
	cggcgaagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	gggtcaatga	6840
45	tgacctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	ggggttcagc	6900
	agccagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	cttgcttcgc	6960
	tcagtatcgc	tcgggacgca	cggcgcgctc	tacgaactgc	cgataaacag	aggattaaaa	7020
50	ttgacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080
	cgcgagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140
55	cacgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	cgtggcattc	7200
	ggcgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	ggacggcccc	7260
	aaggacgctc	acaaggcgca	tetgteegge	gttttcgtgg	agcccgaaca	gcgaggccga	7320
60	ggggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380
	cgacagattc (caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440

	tegetattet ggagettgtt gtttattteg gtetacegee tgeegggegg ggtegeggeg	
	acggtaggcg ctgtgcaggc, gctgtgtgata about the control of the contro	7500
5	acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc	7560
	ccgatacgat tgatggcggt cctgggggct atttgcggaa ctgcgggcgt ggcgctgttg	7620
40	gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcgggcct ggcgggggcg	7680
10	gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc	77 4 0
	acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg	7800
15	tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc	7860
	ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct	7920
	acagttgttt cettactggg ettteteage eccagatetg gggtegatea geeggggatg	7980
20	catcaggccg acagtcggaa cttcgggtcc ccgacctgta ccattcggtg agcaatggat	8040
	aggggagttg atatcgtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag	8100
25	cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca	8160
	cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata	8220
	tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga	8280
30	tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat	8340
	gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct	8400
35	gectgtateg agtggtgatt ttgtgeegag etgeeggteg gggagetgtt ggetggetgg	8460
	tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg	8520
	gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat	8580
40	tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca	8640
	gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa	8700
45	agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa	8760
	gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg	8820
	tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa	
50	ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa	8880
	ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc	8940
	gateggtgeg ggeetetteg etattacgee agetggegaa agggggatgt getgeaagge	9000
55	gattaagttg ggtaacgcga gggttttggg letterses allegen agggggggggggggggggggggggggggggggggg	9060
	gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg	9120
60	aattaattcc catcttgaaa gaaatatagt ttaaatattt attgataaaa taacaagtca	9180
_	ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt	9240
	tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta	9300

	07
•	tgtgtaatac ataaattgat gatatagcta gettagetea tegggggate egtegaaget 9360
5	agettgggte cegeteagaa gaactegtea agaaggegat agaaggegat
	togggagogg ogatacogta aagcacgagg aagcggtcag cocattogga
	tcagcaatat cacgggtagc caacgctatg tcctgatagc ggtccgggag
10	ccacagtega tgaatecaga aaageggeea ttttccacca tgatattega
	tegecatggg teacgaegag atectegeeg tegggeatge geggettes
15	agtteggetg gegegageee etgatgetet tegtegagat gateat
.0	gcttccatcc gagtacgtgc tcgctcgatg cgatgtttcg cttggt
	gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga to the
20	gcaggagcaa ggtgagatga caggagatcc tgccccgga attangana
	tecetteceg etteagtgae aaegtegage acagetgege aaggaaggaagga
25	agecaegata geegegetge etegteetge agtteattea gggaagggg
20	ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 10080
	ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140
30	cctgcgtgca atccatcttg ttcaatccaa gctcccatgg gccctcgact agagtcgaga 10200
	tctggattga gagtgaatat gagactctaa ttggataccg aggggaattt atggaacgtc 10260
35	agtggagcat ttttgacaag aaatatttgc taggtgatag tag
35	acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380
	tgagtggctc cttcaacgtt gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc 10440
40	gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500
	gegecateag atecttggeg geaagaaage catecagttt aetttgeagg getteeaae 10560
4.5	cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620
45	gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680
	ttecettgte cagatagee agtagetge attect tttetetttg cgettgegtt 10680
50	tteeettgte cagatageee agtagetgae atteateegg ggteageace gtttetgegg 10740 actggettte taggtgttee ggttggttte agg
	actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 gcgtgaagct tgcatgcctg caggtgaagct
	gcgtgaaget tgcatgectg caggtcgacg gcgcgcgag ctcctcgage aaatttacac 10860
55	attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920
	tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980
60	tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040
	aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100
	attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160

	ggatggcata tacaccaaac attcaataat tettgaggat aataatggta ecacacaaga	
5	tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt	11220
	taccacaca aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt	11280
	tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat	11340
10	aatgaagaaa actacaaatt tacatgcaag tactacatgac atccacttgg aggatgcaat	11400
	aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga ttttgcaata ctttcattca tagagga	11460
	ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat	11520
15	-5 5	11580
	acgeetatga tegeatgata tttgetttea attetgttgt geacgttgta aaaaacetga	11640
20	gcatgtgtag ctcagatcct taccgccggt ttcggttcat tctaatgaat atatcacccg	11700
	ataatattet eegtteaatt taetgattgt eegtegaega	11760
	attegagete ggegegeete tagaggateg atgaatteag ateggetgag tggeteette	11820
25	aacgttgcgg ttctgtcagt tccaaacgta aaacggettg teeegegtea teggegggg	11880
	tcataacgtg actecettaa tteteegete atgateagat tgtegtttee egeetteagt	11940
	ttaaactatc agtgtttgac aggatatatt ggcgggtaaa cctaagagaa aagagcgttt	12000
30	attagaataa toggatattt aaaagggogt gaaaaggttt atcottogto catttgtatg	
	tgcatgccaa ccacagggtt cccca	12060
35	<210> 29 <211> 12079 <212> DNA <213> artificial someone	12085
40		
.0	<400> 29 gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc	
	gcgcccagca caggtgcgca ggcaaattgc accaacgcat acagcgccag cagaatgcca	60
45	tagtgggcgg tgacgtcgtt cgagtgaagg agaterna	120
	tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc	180
_	ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt	240
50	atgrigget tracgrigged cotroggac agreecest ggtocgattg aargriggega	300
	ttctttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca	360
55	tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg	420
00	gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc	480
	tttactggca cttcaggaac aagegggege tgetegaege aetggeegaa geeatgetgg	540
60	eggagaatea taegeatteg gtgeegagag eegaegaega etggegetea titetgateg	600
	ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg	

	69	
	ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctc	t 720
_	gegaggeggg titticggee ggggaegeeg teaatgeget gatgaeaate agetaette	a 700
;	 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggc 	9 940
	cogergade ggeteegete tegeegetgt tgegggeege gatagaegee ttegaegaa	7 900
10	O Coggloogga ogcagogtto gagoagggao togoggtgat tgtogatgga ttggogaaaa	960
	ggaggetegt tgteaggaac gttgaaggae egagaaaggg tgaegattga teaggaecge	1020
45	rgeeggageg caacecacte actacageag agecatgtag acaacatece etecceetth	1080
15	 ccaccgegte agacgecegt ageageeege taegggettt tteatgeeet geeetagegt 	1140
	ccaageetea eggeeget eggeetetet ggeggeette tggegetett eegetteete	1200
20	gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa	1260
	ggeggtaata eggttateea eagaateagg ggataaegea ggaaagaaea tgtgageaaa	1320
9 25	aggecageaa aaggecagga acegtaaaaa ggeegegttg etggegtttt teeatagget	1380
25	ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac	1440
	aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc	1500
30	gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt	1560
	ecgetgeata accetgette ggggteatta tagegatttt tteggtatat ceateettt	1620
05	tegeaegata tacaggattt tgeeaaaggg ttegtgtaga ettteettgg tgtateeaae	1680
35	ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca	1740
	ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggcgg	1800
40	ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga	1860
	agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa	1920
4.5	aggeggegge ggeeggeatg ageetgtegg cetacetget ggeegtegge cagggetaca	1980
45	adateaeggg egtegtggae tatgageaeg teegegaget ggeeegeate aatggegaee	2040
	rgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt	2100
50	reggreatec caegatecte gecetgetgg egaagatega agagaageag gaegagetto	2160
	gcaaggicat gatgggegtg gteegeeega gggeagagee atgaettttt tageegetaa	2220
	aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc	2280
55	gacttegegg agetggtgaa gtacateace gaegageaag geaagaeega gegeetttge	2340
	gacgeteace gggetggttg ecetegeege tgggetggeg geegtetatg geeetgeaaa	2400
60	cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata	
	cetegeggaa aacttggeee teactgaeag atgaggggg gaegttgaea at	2460
		2520

	70	
•	.cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg	2580
	gagetggeea geetegeaaa teggegaaaa egeetgattt taegegagtt teecacagat	2640
5	 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 	2700
	tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc	2760
10	gcacctatto acatttoaco	2820
	ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat	2880
	aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg	2940
15	tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc	3000
	tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca	
20	ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca	3060
	ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg	3120 3180
	gcggcctggg tggcggcctg cccttcactt cggccgtcgg ggcattcacg gacttcatgg	
25	cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg	3240
	tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag	3300
30	gtatgaaaac gagaattgga cetttacaga attactetat gaagegeeat atttaaaaag	3360
	ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa	3420
	tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg	3480
35	ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact	3540
	tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata	3600
40	attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt	3660
.0	tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt	3720
	gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt	3780
45	gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca	3840
	cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga	3900
50	atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc	3960
00	gcgatttagc cccgacatag ccccactgtt cgtccatttc cgcgcagacg atgacgtcac	4020
	tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat	4080
55	cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc	4140
	catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg	4200
60	ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt	4260
00	acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg	4320
	sandayory atagacacag aagccactgg	4380

	71	
	agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg	4440
	tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga	4500
5	aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt	4560
	cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa	4620
10	taaatggcta aaatgagaat atgagaaga ki	4680
	gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa	4740
	aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg	4800
15	gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt	4860
	gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg	4920
20	gaagagtatg aagatgaaca aagccctgaa aagattatcg agctgtatgc ggagtgcatc	4980
	aggetettte actecatega catateggat tgtecetata egaatagett agacageege	5040
	ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg	5100
25	gaagaagaca ctccatttaa agatccgcgc gagctgtatg atttttaaa gacggaaaag	5160
	cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa	5220
30	gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat	5280
	gacattgcct tctgcgtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag	5340
	ctattttttg acttactggg gatcaagcct gattgggaga aaataaaata	
35	ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg	5400
	caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt	5460
40	gggcaagggg tcgctggtat tcgtgcaggg caagattcgg aataccaagt acgagaagga	5520
.0	cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa	5580
	ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat	5640
45	cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat	5700
	cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc	5760
50	geecegegaa acetteeagt eegteggete gatggteeag caagetaegg ccaagatega	5820
00	gegegacage gtgcaactgg etececetge cetgeeegeg ceateggeeg cegtggageg	5880
	ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg	5940
55	aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag	6000
	cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct	6060
60	ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc	6120
UU	ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa	6180
	5 5 manual guadateeety egegaggege tgeaaaacaa	6240

			•	12			
•	ggtcattttc	cacgtcaaca	aggacgtgaa	gatcacctac	accggcgtcg	agctgcgggc	6300
	cgacgatgac	gaactggtgt	ggcagcaggt	gttggagtac	gcgaagcgca	cccctatcgg	6360
5	cgagccgatc	accttcacgt	tctacgagct	ttgccaggac	ctgggctggt	cgatcaatgg	6420
	ccggtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	cgatgggctt	6480
10	cacgtccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	tccgcgtcct	6540
	ggaccgtggc	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	tegtegtget	6600
	gtttgctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	tgtcgccgac	6660
15	ggcccgacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	tcaagctgga	6720
	aaccttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	gcgagcaggt	6780
20	cggcgaagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	gggtcaatga	6840
•	tgacctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	ggggttcagc	6900
	agccagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	cttgcttcgc	6960
25	tcagtatcgc	tegggaegea	cggcgcgctc	tacgaactgc	cgataaacag	aggattaaaa	7020
	ttgacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080
30	cgcgagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140
	cacgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	cgtggcattc	7200
	ggcgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	ggacggcccc	7260
35	aaggacgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	gcgaggccga	7320
	ggggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380
40	cgacagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440 .
	tcgctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500
	acggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560
45	ccgatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620
	gtgttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680
50	gtttccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	gcctctgctc	7740
	acctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800
	tttgatccgc	caatcccgat	gcctacagga	accaatgttc	teggeetgge	gtggctcggc	7860
55	ctgatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	actcgaacct	7920
	acagttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980
60	catcaggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040
	aggggagttg	atatcgtcaa	cgttcacttc	taaagaaata	gcgccactca	gcttcctcag	8100

				. •			
						a cagcctgtca	8160
_						g ggagatgata	8220
. 5						c ctccgcgaga	8280
						a tcggtaacat	8340
10	gagcaaagtc	tgccgcctta	a caacggctc	t cccgctgacg	ccgtcccgg	a ctgatgggct	8400
	gcctgtatcg	agtggtgatt	ttgtgccgaq	g ctgccggtcg	gggagctgt	t ggctggctgg	8460
	tggcaggata	tattgtggtg	, taaacaaatt	gacgcttaga	caacttaata	a acacattgcg	8520
15	gacgttttta	atgtactggg	gtggttttt	ttttcaccag	tgagacggg	aacagctgat	8580
	tgcccttcac	cgcctggccc	: tgagagagtt	gcagcaagcg	gtccacgcto	gtttgcccca	8640
20	gcaggcgaaa	atcctgtttg	atggtggttd	cgaaatcggc	aaaatccctt	ataaatcaaa	8700
	agaatagccc	gagatagggt	tgagtgttgt	tccagtttgg	aacaagagto	cactattaaa '	8760
	gaacgtggac	tccaacgtca	aagggcgaaa	aaccgtctat	cagggcgatg	gcccactacg	8820
25	tgaaccatca	cccaaatcaa	gttttttggg	gtcgaggtgc	cgtaaagcac	: taaatcggaa	8880
	ccctaaaggg	agcccccgat	ttagagcttg	acggggaaag	ccggcgaacg	tggcgagaaa	8940
30	ggaagggaag	aaagcgaaag	gagcgggcgc	cattcaggct	gcgcaactgt	tgggaagggc	9000
	gatcggtgcg	ggcctcttcg	ctattacgcc	agctggcgaa	agggggatgt	gctgcaaggc	9060
	gattaagttg	ggtaacgcca	gggttttccc	agtcacgacg	ttgtaaaacg	acggccagtg	9120
35	aattaattcc	catcttgaaa	gaaatatagt	ttaaatattt	attgataaaa	taacaagtca	9180
	ggtattatag	tccaagcaaa	aacataaatt	tattgatgca	agtttaaatt	cagaaatatt	9240
40	tcaataactg	attatatcag	ctggtacatt	gccgtagatg	aaagactgag	tgcgatatta	9300
	tgtgtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360
	agcttgggtc	ccgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	9420
45	tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagetet	9480
	tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540
50	ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600
	tcgccatggg	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	9660
	agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720
55	gcttccatcc q	gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780
	gtagccggat (caagcgtatg	cageegeege	attgcatcag	ccatgatgga	tactttctcg	9840
60	gcaggagcaa (ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900
	tecetteeeg						9960
	•						

				14			
	agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020
	ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080
5	ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	10140
	cctgcgtgca	atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200
10	tctggattga	gagtgaatat	gagactctaa	ttggataccg	aggggaattt	atggaacgtc	10260
	agtggagcat	ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320
	acgcgcaata	atggtttctg	acgtatgtgc	ttagctcatt	aaactccaga	aacccgcggc	10380
15	tgagtggctc	cttcaacgtt	gcggttctgt	cagttccaaa	cgtaaaacgg	cttgtcccgc	10440
	gtcatcggcg	ggggtcataa	cgtgactccc	ttaattctcc	gctcatgatc	ttgatcccct	10500
20	gcgccatcag	atccttggcg	gcaagaaagc	catccagtit	actttgcagg	gcttcccaac	10560
<u> </u>	cttaccagag	ggcgccccag	ctggcaattc	cggttcgctt	gctgtccata	aaaccgccca	10620
	gtctagctat	cgccatgtaa	gcccactgca	agctacctgc	tttctctttg	cgcttgcgtt	10680
25	ttcccttgtc	cagatagccc	agtagctgac	attcatccgg	ggtcagcacc	gtttctgcgg	10740
	actggctttc	tacgtgttcc	gcttccttta	gcagcccttg	cgccctgagt	gcttgcggca	10800
30	gcgtgaagct	tgcatgcctg	caggtcgacg	gcgcgccgag	ctcctcgagc	aaatttacac	10860
00	attgccacta	aacgtctaaa	cccttgtaat	ttgtttttgt	tttactatgt	gtgttatgta	10920
	tttgatttgc	gataaatttt	tatatttggt	actaaattta	taacaccttt	tatgctaacg	10980
35	tttgccaaca	cttagcaatt	tgcaagttga	ttaattgatt	ctaaattatt	tttgtcttct	11040
	aaatacatat	actaatcaac	tggaaatgta	aatatttgct	aatatttcta	ctataggaga	11100
40	attaaagtga	gtgaatatgg	taccacaagg	tttggagatt	taattgttgc	aatgctgcat	11160
70	ggatggcata	tacaccaaac	attcaataat	tcttgaggat	aataatggta	ccacacaaga	11220
	tttgaggtgc	atgaacgtca	cgtggacaaa	aggtttagta	atttttcaag	acaacaatgt	11280
45	taccacacac	aagttttgag	gtgcatgcat	ggatgccctg	tggaaagttt	aaaaatattt	11340
	tggaaatgat	ttgcatggaa	gccatgtgta	aaaccatgac	atccacttgg	aggatgcaat	11400
50	aatgaagaaa	actacaaatt	tacatgcaac	tagttatgca	tgtagtctat	ataatgagga	11460
00	ttttgcaata	ctttcattca	tacacactca	ctaagtttta	cacgattata	atttcttcat	11520
	agccagcaga	tctgccggca	tcgatcccgg	gccatggcct	gctttaatga	gatatgcgag	11580
55	acgcctatga	tcgcatgata	tttgctttca	attctgttgt	gcacgttgta	aaaaacctga	11640
	gcatgtgtag	ctcagatcct	taccgccggt	ttcggttcat	tctaatgaat	atatcacccg	11700
60	ttactatcgt	atttttatga	ataatattct	ccgttcaatt	tactgattgt	ccgtcgacga	11760
00	gctcggcgcg	cctctagagg	atcgatgaat	tcagatcggc	tgagtggctc	cttcaacgtt	11820

	75	
	gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc gtcatcggcg ggggtcataa	11880
5	cgtgactccc ttaattctcc gctcatgatc agattgtcgt ttcccgcctt cagtttaaac	11940
	tatcagtgtt tgacaggata tattggcggg taaacctaag agaaaagagc gtttattaga	12000
	ataatcggat atttaaaagg gcgtgaaaag gtttatcctt cgtccatttg tatgtgcatg	12060
10	ccaaccacag ggttcccca	12079
15	<210> 30 <211> 13002 <212> DNA <213> artificial sequence	
20	<pre><220> <223> pflanzlicher Expressionsvektor mit zwei Promotor-Terminator- ssionskassetten</pre>	-Expre
	<400> 30	
	gatetggege eggeeagega gaegageaag attggeegee geeegaaaeg ateegaeage	60
25	gegeceagea eaggtgegea ggeaaattge accaaegeat acagegeeag cagaatgeea	120
	tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc	180
30	ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt	240
	atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga	300
35	ttctttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca	360
	tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg	420
	gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc	480
	tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg	540
40	cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg	600
45	ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg	660
	ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct	720
	gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca	780
50	ctgttggggc cgtgcttgag gagcaggcg gcgacagcga tgccggcgag cgcggcggca	840
	ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag	900
	ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa	960
55	ggaggctcgt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc	1020
	tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctcccccttt	1080
60	ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt	1140
	ccaagcetea eggeeget eggeetetet ggeggeette tggegetett eegetteete	1200
	gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa	1260

	ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa	1320
5	aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct	1380
	ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac	1440
	aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc	1500
10	gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt	1560
	ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat ccatcctttt	1620
15	tegeacgata tacaggattt tgecaaaggg ttegtgtaga ettteettgg tgtatecaac	1680
	ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca	1740
	ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg	1800
20	ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga	1860
	agggcagece acetateaag gtgtaetgee ttecagaega aegaagageg attgaggaaa	1920
25	aggeggegge ggeeggeatg ageetgtegg cetacetget ggeegtegge cagggetaca	1980
	aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc	2040
	tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt	2100
30	teggtgatge cacgateete geeetgetgg egaagatega agagaageag gaegagettg	2160
	gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa	2220
35	aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc	2280
	gacttcgcgg agctggtgaa gtacatcacc gacgagcaag gcaagaccga gcgcctttgc	2340
,	gacgeteace gggetggttg eeetegeege tgggetggeg geegtetatg geeetgeaaa	2400
40	cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata	2460
	cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc	2520
45	cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg	2580
	gagctggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt tcccacagat	2640
	gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac	2700
50	tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc	2760
	gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt	2820
55	ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat	2880
	aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg	2940
-	tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc	3000
60	tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca	3060
	ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca	3120

77 .

		ttgacgtgcç	gcaggtgctg	gcatcgacat	tcagcgacca	ggtgccggg	agtgagggcg	3180
	5	gcggcctggg	tggcggcctg	cccttcactt	cggccgtcgg	ggcattcacg	gacttcatgg	3240
		cggggccggc	aatttttacc	ttgggcattc	ttggcatagt	ggtcgcgggt	geegtgeteg	3300
		tgttcggggg	tgcgataaac	ccagcgaacc	: atttgaggtg	ataggtaaga	ttataccgag	3360
	10	gtatgaaaac	gagaattgga	. cctttacaga	attactctat	gaagcgccat	atttaaaaag	3420
		ctaccaagac	gaagaggatg	aagaggatga	ggaggcagat	tgccttgaat	atattgacaa	3480
	15	tactgataag	ataatatatc	ttttatatag	aagatatcgc	cgtatgtaag	gatttcaggg	3540
		ggcaaggcat	aggcagcgcg	cttatcaata	tatctataga	atgggcaaag	cataaaaact	3600
		tgcatggact	aatgcttgaa	acccaggaca	ataaccttat	agcttgtaaa	ttctatcata	3660
	20	attgggtaat	gactccaact	tattgatagt	gttttatgtt	cagataatgc	ccgatgactt	3720
		tgtcatgcag	ctccaccgat	tttgagaacg	acagcgactt	ccgtcccagc	cgtgccaggt	3780
	25	gctgcctcag	attcaggtta	tgccgctcaa	ttcgctgcgt	atatcgcttg	ctgattacgt	3840
		gcagctttcc	cttcaggcgg	gattcataca	gcggccagcc	atccgtcatc	catatcacca	3900
		cgtcaaaggg -	tgacagcagg	ctcataagac	gccccagcgt	cgccatagtg	cgttcaccga	3960
	30	atacgtgcgc	aacaaccgtc	ttccggagac	tgtcatacgc	gtaaaacagc	cagcgctggc	4020
		gcgatttagc	cccgacatag	ccccactgtt	cgtccatttc	cgcgcagacg	atgacgtcac	4080
	35	tgcccggctg	tatgcgcgag	gttaccgact	gcggcctgag	ttttttaagt	gacgtaaaat	4140
		cgtgttgagg	ccaacgccca	taatgcgggc	tgttgcccgg	catccaacgc	cattcatggc	4200
		catatcaatg	attttctggt	gcgtaccggg	ttgagaagcg	gtgtaagtga	actgcagttg	4260
	40	ccatgtttta	cggcagtgag	agcagagata	gcgctgatgt	ccggcggtgc	ttttgccgtt	4320
		acgcaccacc	ccgtcagtag	ctgaacagga	gggacagctg	atagacacag	aagccactgg	4380
	5	agcacctcaa	aaacaccatc	atacactaaa	tcagtaagtt	ggcagcatca	cccataattg	4440
		tggtttcaaa	atcggctccg	tcgatactat	gttatacgcc	aactttgaaa	acaactttga	4500
		aaaagctgtt	ttctggtatt	taaggtttta	gaatgcaagg	aacagtgaat	tggagttcgt	4560
	50	cttgttataa	ttagcttctt	ggggtatctt	taaatactgt	agaaaagagg	aaggaaataa	4620
		taaatggcta	aaatgagaat	atcaccggaa	ttgaaaaaac	tgatcgaaaa	ataccgctgc	4680
	55	gtaaaagata	cggaaggaat	gtctcctgct	aaggtatata	agctggtggg	agaaaatgaa	4740
		aacctatatt	taaaaatgac	ggacagccgg	tataaaggga	ccacctatga	tgtggaacgg	4800
		gaaaaggaca	tgatgctatg	gctggaagga	aagctgcctg	ttccaaaggt	cctgcacttt	4860
	60	gaacggcatg	atggctggag	caatctgctc	atgagtgagg	ccgatggcgt	cctttgctcg	4920
		gaagagtatg	aagatgaaca	aagccctgaa	aagattatcg	agctgtatgc	ggagtgcatc	4980

	aggetettte actecatega catateggat tgteeetata egaatagett agacageege	5040
5	ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg	5100
	gaagaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag	5160
	cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa	5220
10	gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat	5280
•	gacattgcct tctgcgtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag	5340
15	ctattttttg acttactggg gatcaagcct gattgggaga aaataaaata	5400
	ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg	5460
	caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt	5520
20	gggcaagggg tcgctggtat tcgtgcaggg caagattcgg aataccaagt acgagaagga	5580
	cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa	5640
25	ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat	5700
	cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat	5760
	cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc	5820
30	gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga	5880
	gegegacage gtgeaactgg etececetge cetgeeegeg ceateggeeg eegtggageg	5940
35	ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg	6000
	aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag	6060
	cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct	6120
40	tteettgtte gatattgege egtggeegga eaegatgega gegatgeeaa aegaeaegge	6180
	cegetetgee etgtteacea egegeaacaa gaaaateeeg egegaggege tgeaaaacaa	6240
45	ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc	6300
	cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg	6360
-	cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg	6420
50 ·	ccggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg cgatgggctt	6480
	cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct	6540
55	ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct	6600
	gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac	6660
00	ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga	6720
60		6780
	cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg.gaacacgcct gggtcaatga	6840

	tgacctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	ggggttcagc	6900
5	agccagcgct	ttactggcat	ttcaggaaca	aġcgggcact	gctcgacgca	cttgcttcgc	6960
	tcagtatcgc	tcgggacgca	cggcgcgctc	: tacgaactgo	: cgataaacag	aggattaaaa	7020
	ttgacaattg	tgattaaggo	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080
10	cgcgągatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140
	cacgaggaga	aaaagcccat	ggaggcgtto	gctgaacggt	tgcgagatgc	cgtggcattc	7200
15	ggcgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	ggacggcccc	7260
	aaggacgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	gcgaggccga	7320
	ggggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380
20	cgacagattc	caacgggaat	ctggtggatg	cgcatcttca	teeteggege	acttaatatt	7440
	tcgctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500
25	acggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560
	ccgatacgat	tgatggcggt	cctgggggct	atttgcggaa	. ctgcgggcgt	ggcgctgttg	7620
	gtgttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680
30	gtttccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	gcctctgctc	7740
	acctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800
35	tttgatccgc	caatcccgat	gcctacagga	accaatgttc	teggeetgge	gtggctcggc	7860
	ctgatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	actcgaacct	7920
	acagttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980
40	catcaggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040
	aggggagttg	atatcgtcaa	cgttcacttc	taaagaaata	gcgccactca	gcttcctcag	8100
45	cggctttatc	cagcgatttc	ctattatgtc	ggcatagttc	tcaagatcga	cagcctgtca	8160
	cggttaagcg	agaaatgaat	aagaaggctg	ataattcgga	tctctgcgag	ggagatgata	8220
	tttgatcaca	ggcagcaacg	ctctgtcatc	gttacaatca	acatgctacc	ctccgcgaga	8280
50	tcatccgtgt	ttcaaacccg	gcagcttagt	tgccgttctt	ccgaatagca	tcggtaacat	8340
	gagcaaagtc	tgccgcctta	caacggctct	cccgctgacg	ccgtcccgga	ctgatgggct	8400
55	gcctgtatcg a	agtggtgatt	ttgtgccgag	ctgccggtcg	gggagctgtt	ggctggctgg	8460
	tggcaggata						8520
•-	gacgtttta a	atgtactggg	gtggttttc	ttttcaccag	tgagacgggc	aacagctgat	8580
60	tgcccttcac (egeetggeee	tgagagagtt	gcagcaagcg	gtccacgctg	gtttgcccca	8640
	gcaggcgaaa a	atcctgtttg	atggtggttc	cgaaatcggc	aaaatccctt	ataaatcaaa	8700

		agaatagcco	gagatagggt	tgagtgttg	t tccagtttgg	g aacaagagt	c cactattaaa	8760
	5	gaacgtggac	tccaacgtca	a aagggcgaa	a aaccgtctat	cagggcgat	g gcccactacg	8820
		tgaaccatca	cccaaatcaa	gttttttgg	g gtcgaggtgd	cgtaaagca	c taaatcggaa	8880
		ccctaaaggg	agcccccgat	ttagagcttg	g acggggaaag	ccggcgaac	y tggcgagaaa	8940
	10	ggaagggaag	aaagcgaaag	gagcgggcgc	cattcagget	gcgcaactgt	tgggaagggc	9000
		gatcggtgcg	ggcctcttcg	ctattacgco	agctggcgaa	aggggatgt	gctgcaaggc	9060
	[.] 15	gattaagttg	ggtaacgcca	gggttttccc	agtcacgacg	r ttgtaaaacg	acggccagtg	9120
							taacaagtca	_
		ggtattatag	tccaagcaaa	aacataaatt	: tattgatgca	. agtttaaatt	cagaaatatt	9240
	20	tcaataactg	attatatcag	ctggtacatt	gccgtagatg	aaagactgag	tgcgatatta	9300
		tgtgtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360
	25	agcttgggtc	ccgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	9420
		tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480
		tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540
	30	ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600
		tcgccatggg	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	9660
	35	agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720
		gcttccatcc	gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780
		gtagccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	9840
	40	gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900
		tecetteceg	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960
	45	agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020
		ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080
		ccgattgtct						10140
	50	cctgcgtgca	atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200
		tctggattga						10260
	55	agtggagcat	ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320
		acgcgcaata						10380
	00	tgagtggctc						10440
	60	gtcatcggcg						10500
		gcgccatcag a	atccttggcg	gcaagaaagc	catccagttt	actttgcagg	gcttcccaac	10560

		cttaccaga	g ggcgcccca	g ctggcaatt	c eggtteget	gctgtccat	a aaaccgccca	10620
	5						g cgcttgcgtt	
		ttcccttgt	c cagatagec	c agtagctgad	attcatccg	ggtcagcac	c gtttctgcgg	10740
							t gcttgcggca	
	10	gcgtgaagc	t tgcatgccto	g caggicgacg	g gcgcgccgac	g ctcctcgag	c aaatttacac	10860
		attgccacta	a aacgtctaaa	cccttgtaat	ttgtttttgt	tttactatg	t gtgttatgta	10920
	15	tttgatttg	c gataaattt	: tatatttggt	actaaattta	taacacctt	t tatgctaacg	10980
	•						t tttgtcttct	
							a ctataggaga	
•	20	attaaagtga	a gtgaatatgg	taccacaagg	tttggagatt	taattgttg	c aatgctgcat	11160
		ggatggcata	tacaccaaac	attcaataat	tcttgaggat	aataatggta	a ccacacaaga	11220
	25	tttgaggtgo	atgaacgtca	cgtggacaaa	aggtttagta	atttttcaag	g acaacaatgt	11280
		taccacacac	aagttttgag	gtgcatgcat	ggatgccctg	tggaaagtt	aaaaatattt	11340
		tggaaatgat	: ttgcatggaa	gccatgtgta	aaaccatgac	atccacttgg	g aggatgcaat	11400
	30				•		: ataatgagga	11460
		ttttgcaata	ctttcattca	tacacactca	ctaagtttta	cacgattata	atttcttcat	11520
	35		ccgcggtggg					11580
			gcctatgatc					11640
		aaacctgagc	atgtgtagct	cagatcctta	ccgccggttt	cggttcattc	taatgaatat	11700
	40		actatcgtat					11760
		gtcgagcaaa	tttacacatt	gccactaaac	gtctaaaccc	ttgtaatttg	tttttgtttt	11820
	45	actatgtgtg	ttatgtattt	gatttgcgat	aaatttttat	atttggtact	aaatttataa	11880
			gctaacgttt					11940
			gtcttctaaa					12000
	50	atttctacta	taggagaatt	aaagtgagtg	aatatggtac	cacaaggttt	ggagatttaa	12060
		ttgttgcaat	gctgcatgga	tggcatatac	accaaacatt	caataattct	tgaggataat	12120
	55		cacaagattt					12180
			acaatgttac					12240
			aatattttgg					12300
	60		atgcaataat					12360
		agtctatata	atgaggattt	tgcaatactt	tcattcatac	acactcacta	agttttacac	12420

		•
	gattataatt tetteatage cageggatee gatateggge eegetagegt taaceetget	12480
5	ttaatgagat atgcgagacg cctatgatcg catgatattt gctttcaatt ctgttgtgca	12540
	cgttgtaaaa aacctgagca tgtgtagctc agatccttac cgccggtttc ggttcattct	12600
	aatgaatata tcacccgtta ctatcgtatt tttatgaata atattctccg ttcaatttac	12660
10	tgattgtccg tcgacgaatt cgagctcggc gcgcctctag aggatcgatg aattcagatc	12720
	ggctgagtgg ctccttcaac gttgcggttc tgtcagttcc aaacgtaaaa cggcttgtcc	12780
15	cgcgtcatcg gcgggggtca taacgtgact cccttaattc tccgctcatg atcagattgt	12840
	cgtttcccgc cttcagttta aactatcagt gtttgacagg atatattggc gggtaaacct	12900
	aagagaaaag agcgtttatt agaataatcg gatatttaaa agggcgtgaa aaggtttatc	12960
20	cttcgtccat ttgtatgtgc atgccaacca cagggttccc ca	13002
25	<210> 31 <211> 13905 <212> DNA <213> artificial sequence	
30	<pre><220> <223> pflanzlicher Expressionsvektor mit drei Promotor-Terminator- ssionskassetten</pre>	-Expre
	<400> 31 gatetggege eggeeagega gaegageaag attggeegee geeegaaacg atcegaeage	
35	gegeecagea caggtgegea ggeaaattge accaaegeat acagegeeag cagaatgeea	60
	tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc	120
	ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt	180
40	atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga	240
	ttctttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca	300
45	tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg	360
7	gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc	420
	tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg	480
50	cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg	540
	ggaatgccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg	600
55		660
	ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct	720
	gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca	780
60	ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcgaca	840
	cegttgaaca ggeteegete tegeegetgt tgegggeege gatagaegee ttegaegaag	900

		83	
		ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa	960
		ggaggetegt tgteaggaae gttgaaggae egagaaaggg tgaegattga teaggaeege	1020
	5	tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctcccccttt	1080
		ccacegegte agaegeeegt ageageeege taegggettt tteatgeeet geeetagegt	1140
	10	ccaagectea eggeeget eggeetetet ggeggeette tggegetett eegetteete	1200
	٠	gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa	1260
		ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa	1320
	15	aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct	1380
		cegececet gaegageate acaaaaateg aegeteaagt cagaggtgge gaaaceegae	1440
	20	aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc	1500
		gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt	1560
		cegetgeata accetgette ggggteatta tagegatttt tteggtatat ceatcetttt	1620
	25	tcgcacgata tacaggattt tgccaaaggg ttcgtgtaga ctttccttgg tgtatccaac	1680
		ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca	1740
	30	ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg	1800
		ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga	1860
		agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa	1920
	35	aggeggegge ggeeggeatg ageetgtegg cetacetget ggeegtegge cagggetaca	1980
		aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc	2040
•	40	tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt	2100
		teggtgatge caegateete geeetgetgg egaagatega agagaageag gaegagettg	2160
		gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa	2220
	45	aacggccggg gggtgcgcgt gattgccaag cacgtagaaa ta	2280
		gacttcgcgg agctggtgaa gtacatcacc gacgaggaag gaaaga	2340
	50	gacgeteace gggetggttg ceetegeege teggetgge	2400
		cgcgccagaa acgccgtcga agccgtgtgc gagacacgg gggaga	2460
		cctcgcggaa aacttggccc tcactgacag atgacag	2520
	55	cgactcaccc ggcgcggcgt tgacagatga ggggcaggt	2580
		gagetggeca geetegeaaa teggegaaaa cocctgattt taasaaa	2640
	60	gatgtggaca agcctgggga taagtgccct gcggtattga caatta	2700
		tgacagatga ggggcgcgat ccttgacact tgagggggg ast ast	2760
			•

	04	_
	gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt	2820
_	ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat	. 2880
5	aaacettgtt tttaaccagg getgegeeet gtgegegtga eegegeaege egaagggggg	2940
	tgececeet tetegaacee teeeggeeeg etaaegeggg cèteceatee eeceagggge	3000
10	tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca	3060
	ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca	3120
	ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg	3180
15	gcggcctggg tggcggcctg cccttcactt cggccgtcgg ggcattcacg gacttcatgg	3240
	cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg	3300
20	tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag	3360
	gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag	3420
	ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa	3480
25	tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg	3540
	ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact	3600
30	tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata	3660
	attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt	3720
	tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt	3780
35	gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt	3840
	gcagetttee etteaggegg gatteataea geggeeagee ateegteate eatateacea	3900
40	cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga	3960
	atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc	4020
	gegatttage ceegacatag ceecactgtt egtecattte egegeagaeg atgaegteae	4080
45	tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat	4140
	cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc	4200
50	catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg	4260
	ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt	4320
	acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg	4380
55	agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg	4440
	tggtttcaaa atcggctccg tcgatactat gttatagge	4500
60	aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt	4560
	cttgttataa ttagcttctt ggggtatctt taaatagtgt	4620
	•	

				65		_	
	taaatggcta	aaatgagaat	atcaccggaa	a ttgaaaaaa	tgatcgaaa	a ataccgctgc	4680
	gtaaaagata	cggaaggaat	gtctcctgct	aaggtatata	agctggtggg	g agaaaatgaa	4740
5	aacctatatt	taaaaatgac	ggacagccgg	g tataaaggga	ccacctatga	tgtggaacgg	4800
	gaaaaggaca	tgatgctatg	gctggaagga	aagctgcctg	r ttccaaaggt	cctgcacttt	4860
10	gaacggcatg	atggctggag	caatctgctc	atgagtgagg	r ccgatggcgt	cctttgctcg	4920
	gaagagtatg	aagatgaaca	aagccctgaa	aagattatcg	agctgtatgo	ggagtgcatc	4980
	aggctctttc	actccatcga	catatcggat	tgtccctata	cgaatagctt	agacagccgc	5040
15	ttagcegaat	tggattactt	actgaataac	gatetggeeg	atgtggattg	r cgaaaactgg	5100
	gaagaagaca	ctccatttaa	agateegege	gagctgtatg	atttttaaa	gacggaaaag	5160
20	cccgaagagg	aacttgtctt	ttcccacggc	gacctgggag	acagcaacat	ctttgtgaaa	5220
	gatggcaaag	taagtggctt	tattgatctt	gggagaagcg	gcagggcgga	caagtggtat	5280
	gacattgcct	tctgcgtccg	gtcgatcagg	gaggatatcg	gggaagaaca	gtatgtcgag	5340
25	ctattttttg	acttactggg	gatcaagcct	gattgggaga	aaataaaata	ttatatttta	5400
	ctggatgaat	tgttttagta	cctagatgtg	gcgcaacgat	gccggcgaca	agcaggagcg	5460
30	caccgacttc	ttccgcatca	agtgttttgg	ctctcaggcc	gaggcccacg	gcaagtattt	5520
	gggcaagggg	tcgctggtat	tcgtgcaggg	caagattcgg	aataccaagt	acgagaagga	5580
	cggccagacg	gtctacggga	ccgacttcat	tgccgataag	gtggattatc	tggacaccaa	5640
35	ggcaccaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	tcggggcaat	5700
	cccgcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggc	aagaactgat	5760
40	cgacgcgggg	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	tcatgcgtgc	5820
		accttccagt					5880
	gcgcgacagc	gtgcaactgg	ctcccctgc	cctgcccgcg	ccatcggccg	ccgtggagcg	5940
45	ttcgcgtcgt						6000
	aggaactatg						6060
50	cgaggccaag						6120
	ttccttgttc	gatattgcgc	cgtggccgga	cacgatgcga	gcgatgccaa	acgacacggc	6180
	ccgctctgcc	ctgttcacca	cgcgcaacaa	gaaaatcccg	cgcgaggcgc	tgcaaaacaa	6240
55	ggtcattttc						6300
	cgacgatgac						6360
60	cgagccgatc						6420
	ccggtattac a	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	cgatgggctt	6480

· 86

				. 86			
	cacgtccgac	cgcgttgggc	acctggaat	ggtgtcgctg	g ctgcaccgct	teegegteet	6540
	ggaccgtggc	aagaaaacgt	cccgttgcca	a ggtcctgatc	gacgaggaaa	tegtegtget	6600
5	gtttgctggc	gaccactaca	cgaaattcat	atgggagaag	r taccgcaago	tgtcgccgac	6660
	ggcccgacgg	atgttcgact	atttcagcto	gcaccgggag	ccgtacccgc	tcaagctgga	6720
10	aaccttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	gcgagcaggt	6780
	cggcgaagcc	-tgcgaagagt	tgcgaggcag	ggcctggtg	gaacacgcct	gggtcaatga	6840
	tgacctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	ggggttcagc	6900
15	agccagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	cttgcttcgc	6960
	tcagtatcgc	tcgggacgca	cggcgcgctc	: tacgaactgc	cgataaacag	aggattaaaa	7020
20	ttgacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080
	cgcgagatcc	gattgtcggc	cctgaagaaa	. gctccagaga	tgttcgggtc	cgtttacgag	7140
	cacgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	cgtggcattc	7200
25	ggcgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	ggacggcccc	7260 .
	aaggacgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	gcgaggccga	7320
30	ggggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380
	cgacagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440
	tcgctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	750 0
35	acggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560
	ccgatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620
4Ò	gtgttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680
	gtttccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	gcctctgctc	7740
	acctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800
45	tttgatccgc	caatcccgat	gcctacagga	accaatgttc	tcggcctggc	gtggctcggc	7860
	ctgatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	actcgaacct	7920
50	acagttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980
	catcaggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040
	aggggagttg	atatcgtcaa	cgttcacttc	taaagaaata	gcgccactca	gcttcctcag	8100
55	cggctttatc	cagcgatttc	ctattatgtc	ggcatagttc	tcaagatcga	cagcctgtca	8160
	cggttaagcg	agaaatgaat	aagaaggctg	ataattcgga	tctctgcgag	ggagatgata	8220
60	tttgatcaca (ggcagcaacg	ctctgtcatc	gttacaatca	acatgctacc	ctccgcgaga	8280
	tcatccgtgt	ttcaaacccg	gcagcttagt	tgccgttctt	ccgaatagca	tcggtaacat	8340

					87				
		gagcaaagt	c tgccgcctt.	a caacggcto	ct cccgctgad	cg ccgtcccg	ga cțgatgggo	t 8400	i
		gcctgtatc	g agtggtgat	t ttgtgccga	g ctgccggtd	g gggagctg	tt ggctggctg	g 8460	
	5	tggcaggata	a tattgtggtg	y taaacaaat	t gacgcttag	ya caacttaa	ta acacattgc	g 8520	
		gacgttttt	a atgtactggg	g gtggtttt	c ttttcacca	ıg tgagacgg	gc aacagctga	t 8580	
	10	tgcccttcad	cgcctggcc	tgagagagt	t gcagcaago	g gtccacgc	g gtttgccc	a 8640	
		gcaggcgaaa	atcctgtttg	, atggtggtt	c cgaaatcgg	c aaaatccc	t ataaatcaa	a 8700	
	٠	agaatagcco	gagatagggt	: tgagtgttg	t tccagtttg	g aacaagagt	c cactattaa	a 8760	
	15						g gcccactac		
		tgaaccatca	cccaaatcaa	gtttttgg	g gtcgaggtg	c cgtaaagca	c taaatcggaa	8880	
	20	ccctaaaggg	agcccccgat	ttagagctt	g acggggaaa	g ccggcgaac	g tggcgagaaa	8940	
		ggaagggaag	aaagcgaaag	gagcgggcg	cattcaggc:	t gcgcaacto	t tgggaaggg	9000	
							t gctgcaaggc		
	25	gattaagttg	ggtaacgcca	gggttttccc	agtcacgac	ttotaaaac	g acggccagtg	9060	
		aattaattcc	catcttgaaa	gaaatatagt	: ttaaatatt	attoataaa	a taacaagtca	9120	
	30						t cagaaatatt		
	30	tcaataactg	attatatcag	ctggtacatt	gccgtagato	aaagactga	g tgcgatatta	9240	
		tgtgtaatac	ataaattgat	gatatagcta	gcttagctca	tcaaaaaat	cgtcgatatta	9300	
	35	agcttgggtc	ccgctcagaa	gaactcgtca	agaaggcgat	anaannna	gcgctgcgaa	9360	
		tcgggagcgg	cgataccgta	aagcacgagg	aaggggtcag	CCCattone	gcgctgcgaa		
	40	tcagcaatat	cacgggtagc	caacqctatq	tectostage	cccattege	: gccaagctct	9480	
	40	ccacagtcga	tgaatccaga	aaaqcqqcca	ttttccacca	tartett	caagcaggca	.9540	
		tcgccatggg	tcacgacgag	atcetegee	togggatas	cgatattcgg	caagcaggca	9600	
	45	agttcggctg	gcgcgagccc	ctgatgctct	tootooner	gegeettgag	gacaagaccg	9660	
		gcttccatcc	gagtacgtgc	tcactcasta	contests	catcctgatc	gacaagaccg	9720	
		gtagccggat (Caagcgtata /	Carrena	cgatgtttcg	cttggtggtc	gaatgggcag	9780	
	50	gtagccggat (Igtgagatga /		altgcatcag	ccatgatgga	tactttctcg	9840	
		gcaggagcaa g	ittcagtgac :	aggagatee	rgeceeggea	cttcgcccaa	tagcagccag	9900	
;	55	agccacgata o	iccacaataa	acgregage	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960	
		agccacgata o	raaccccccc (greetge	agttcattca	gggcaccgga	caggtcggtc	10020	
		ttgacaaaaa g	ttoto	ccctgcgct i	gacagccgga	acacggcggc	atcagagcag	10080	
	60	ccgattgtct g	tooth	rcatageeg a	aatagcctct	ccacccaagc	ggccggagaa	10140	
		cctgcgtgca a	ccatcttg t	tcaatccaa q	gctcccatgg	gccctcgact	agagtcgaga	10200	

				88			
	tctggattc	ga gagtgaata	t gagactcta	a ttggatacco	g aggggaatt	t atggaacgto	= 10260
	agtggagca	t ttttgacaa	g aaatatttg	c tagctgatag	g tgaccttag	g cgacttttg	a 10320
5	acgcgcaat	a atggtttct	g acgtatgtgd	ttagctcatt	aaactccag	a aacccgcgg	10380
			t gcggttctgt				
10	gtcatcggc	g ggggtcata	a cgtgactccc	ttaattctcc	gctcatgat	c ttgatccct	10500
	gcgccatca	g atccttggc	g gcaagaaagc	: catccagttt	actttgcag	g gcttcccaac	: 10560
			g ctggcaattc				
15			a gcccactgca				
			c agtagctgac				
20			gcttccttta				
			g caggtcgacg				
			cccttgtaat				
25			: tatatttggt				
			: tgcaagttga				11040
30			tggaaatgta				11100
30			taccacaagg				11160
			attcaataat				11220
35			cgtggacaaa				11280
			gtgcatgcat				11340
40			gccatgtgta				
40			tacatgcaac				11400
			tacacactca				11460
45			cggccgcctg				11520
•			gcatgatatt				11580
			cagatcctta				11640
50			ttttatgaat				11700
			gccactaaac				11760
55							11820
			gatttgcgat a				11880
			gccaacactt a				11940
			tacatatact a				12000
	acciciacia	Layyayaatt	aaagtgagtg a	aatatggtac d	cacaaggttt	ggagatttaa	12060

	89
	ttgttgcaat gctgcatgga tggcatatac accaaacatt caataattct tgaggataat 12120
	aatggtacca cacaagattt gaggtgcatg aacgtcacgt ggacaaaagg tttagtaatt 12180
5	12240
	aaagtttaaa aatattttgg aaatgatttg catggaagcc atgtgtaaaa ccatgacatc 12300
10	cacttggagg atgcaataat gaagaaaact acaaatttac atgcaactag ttatgcatgt 12360
	agtotatata atgaggattt tgcaataott toattoatao acaotoaota agttttacao 12420
	gattataatt tetteatage cageggatee gatateggge eegetagegt taaceetget 12480
15	ttaatgagat atgcgagacg cctatgatcg catgatattt gctttcaatt ctgttgtgca 12540
	cgttgtaaaa aacctgagca tgtgtagctc agatccttac cgccggtttc ggttcattct 12600
20	aatgaatata tcacccgtta ctatcgtatt tttatgaata atattctccg ttcaatttac 12660
	tgattgtccg tcgagcaaat ttacacattg ccactaaacg tctaaaccct tgtaatttgt 12720
	ttttgtttta ctatgtgtgt tatgtatttg atttgcgata aatttttata tttggtacta 12780
25	aatttataac accttttatg ctaacgtttg ccaacactta gcaatttgca agttgattaa 12840
	ttgattctaa attatttttg tcttctaaat acatatacta atcaactgga aatgtaaata 12900
30	tttgctaata tttctactat aggagaatta aagtgagtga atatggtacc acaaggtttg 12960
	gagatttaat tgttgcaatg ctgcatggat ggcatataca ccaaacattc aataattctt 13020
	gaggataata atggtaccac acaagatttg aggtgcatga acgtcacgtg gacaaaaggt 13080
35	ttagtaattt ttcaagacaa caatgttacc acacacaagt tttgaggtgc atgcatggat 13140
	gccctgtgga aagtttaaaa atattttgga aatgatttgc atggaagcca tgtgtaaaac 13200
40	catgacatcc acttggagga tgcaataatg aagaaaacta caaatttaca tgcaactagt 13260
	tatgcatgta gtctatataa tgaggatttt gcaatacttt cattcataca cactcactaa 13320
	gttttacacg attataattt cttcatagcc agcagatctg ccggcatcga tcccgggcca 13380
45	tggcctgctt taatgagata tgcgagacgc ctatgatcgc atgatatttg ctttcaattc 13440
	tgttgtgcac gttgtaaaaa acctgagcat gtgtagctca gatccttacc gccggtttcg 13500
50	gttcattcta atgaatatat cacccgttac tatcgtattt ttatgaataa tattctccgt 13560
	tcaatttact gattgtccgt cgacgagete ggcgcgcctc tagaggateg atgaattcag 13620
	atcggctgag tggctccttc aacgttgcgg ttctgtcagt tccaaacgta aaacggcttg 13680
55	tecegegtea teggeggggg teataacgtg acteeettaa tteteegete atgateagat 13740
	tgtcgtttcc cgccttcagt ttaaactatc agtgtttgac aggatatatt ggcgggtaaa 13800
60	cctaagagaa aagagcgttt attagaataa tcggatattt aaaagggcgt gaaaaggttt 13860
	atcettegte catttgtatg tgcatgecaa ccacagggtt cccca 13905

	5	<2 <2 <2	210> 211> 212> 213> 220>	144 DN2		ctyl	um t	rico	rnut	um									
	10	<2	21> 22> 23>		(1	442)													
	15		00> tcta	32 .aa a M 1		gc a: ly L	aa g Ys G	ga gg ly G: 5	gg ga	ac go sp Al	et c la A	gg g rg A	la S	cg a Ser L	ys G ag g	gc t ly s	ca acç er Thi	đ c	50
	20	15			s - 1.		20	- TTF) GII	ı Gıt	ı va.	25	s Th	r Hi	s Ala	a Se:	t ccg r Pro 30		98
	25					35	- 110	= nls	s ser	ASI	40	s Va	т ту	r Ası	o Vai	l Sei 45	c aac c Asn		146
		tgg Tr <u>r</u>	y cae p Hi:	c gaa s Gli	a cat 1 His 50	ccc Pro	gga Gly	ggc Gly	gcc Ala	gto Val 55	att Ile	tte Phe	c ac e Th	g cad r His	gco Ala 60	ggt Gly	gac Asp		194
•	30	gac Asp	ato Met	g acg Thi 65	g gad Asp	att Ile	tto Phe	gct Ala	gcc Ala 70	ttt Phe	cac	gca Ala	a cco	c gga c Gly 75	tcg Ser	cag Glr	tcg Ser		242
3	35	ctc Leu	atg Met 80	g aag : Lys	g aag E Lys	ttc Phe	tac Tyr	att Ile 85	Gly	gaa Glu	ttg Leu	Leu	c ccg Pro	g gaa o Glu	acc Thr	acc Thr	ggc		290
4	Ю	aag Lys 95	gag Glu	ccg Pro	cag Gln	caa Gln	atc Ile 100	gcc Ala	ttt Phe	gaa Glu	aag Lys	ggc Gly 105	TY	cgc Arg	gat Asp	ctg Leu	cgc Arg 110		338
4	5	tcc Ser	aaa Lys	ctc Leu	atc Ile	atg Met 115	atg Met	ggc Gly	atg Met	ttc Phe	aag Lys 120	tcc Ser	aac Asn	aag Lys	tgg Trp	ttc Phe 125	tac Tyr		386
		gtc Val	tac Tyr	aag Lys	tgc Cys 130	ctc Leu	agc Ser	aac Asn	atg Met	gcc Ala 135	att Ile	tgg Trp	gcc Ala	gcc Ala	gcc Ala 140	tgt Cys	gct Ala		434
5	0	ctc Leu	gtc Val	ttt Phe 145	tac Tyr	tcg Ser	gac Asp	cgc Arg	ttc Phe 150	tgg Trp	gta Val	cac His	ctg Leu	gcc Ala 155	agc Ser	gcc Ala	gtc Val		482
5	5	atg Met	ctg Leu 160	gġa Gly	aca Thr	ttc Phe	ttt Phe	cag Gln 165	cag Gln	tcg Ser	gga Gly	tgg Trp	ttg Leu 170	gca Ala	cac His	gac Asp	ttt Phe		530
60	_	ctg Leu 175	cac His	cac His	cag Gln		ttc Phe 180	acc Thr	aag Lys	cgc Arg	aag Lys	cac His 185	ejā aaa	gat Asp	ctc Leu	gga Gly	gga Gly 190		578
		ctc	ttt	tgg	ggg	aac	ctc	atg	cag	ggt	tac	tcc	gta	cag	tgg	tgg	aaa		626

										-		7									
						y As 19	J				2	00					20)5			
5			•		21		A UT	S Al	S AI	a va 21	LS LS	ro .	Asn	Let	ı Hi:	s Cy 22	s Se	er S	er	674	
10				225		a gat n Asp	, G1	y As	23	0 As	sp 1.	re .	Asp	Thr	235	t Pr	o Le	u L	eu	722	
15		2	40			c cag l Glr	1 91.	24	5 GI	n se	.r 17	e i	Arg	Glu 250	Leu	1 Gl:	n Al	a A	gp	770	
	25	5	•		201	ggt Gly	26	o va.	т гъ	s Pn	e Me	et .] 2	11e 265	Arg	Asn	ı Glı	n Se	r Ty 27	7 x 70	818	
20		-	•			ato Ile 275	. Dec	ı bei	ı ne	ı AI	a Ar 28	g I	Seu	Ser	Trp	Let	1 Ası 28	n G1 5	Lu	866	
25	tc: Se:	e ti	tc ne	aag Lys	tgc Cys 290	gcc Ala	ttt Phe	Gly	g ctt g Leu	gg: G1; 29:	λ YT	t g a A	gcg Ala	tcg Ser	gag Glu	aac Asr 300	ı Ala	t go a Al	t .a	914	
30	cto Lev	ga G]		ctc Leu 305	aag Lys	gcc Ala	aag Lys	ggt Gly	ctt Leu 310	l G11	g ta n Ty	c c	cc	ctt Leu	ttg Leu 315	gaa Glu	aag Lys	g gc	t a	962	
35	GJĀ	: at : Il : 32		ctg Leu	ctg Leu	cac His	tac Tyr	gct Ala 325	urp	ato Met	g ct : Le	ta uT	hr	gtt Val 330	tcg Ser	tcc Ser	. Gl ^y	tt Ph	t e	1010	
	gga Gly 335		g 1	ttc Phe	tcg Ser	ttc Phe	gcg Ala 340	tac Tyr	acc Thr	gca Ala	tti Phe	e T	ac yr 1 45	ttt Phe	cta Leu	acc Thr	gcg Ala	ace Th:	r	1058	
40	gcg Ala	tc Se	c t	gt Cys	gga Gly	ttc Phe 355	ttg Leu	ctc Leu	gcc Ala	att	gto Val	L PI	tt q he (ggc	ctc Leu	ggc Gly	cac His 365	aad Asi	e n	1106	
45	Gly	at Me	g ç t A		acc Thr 370	tac Tyr	aat Asn	gcc Ala	gac Asp	gcc Ala 375	Arg	Pr Pr	cg g	ysb Jac	ttc Phe	tgg Trp 380	aag Lys	cto	2	1154	
50	caa Gln	gte Va:		hr 85	acg Thr	act Thr	cgc Arg	aac Asn	gtc Val 390	acg Thr	Gly	. Gl	ga c Ly E	lis (ggt Gly 395	ttc Phe	ccc Pro	caa Gln	i 1	1202	
55	gcc Ala	Phe 400		tc g	gac Asp	tgg Trp	ttc Phe	tgt Cys 405	ggt Gly	ggc Gly	ctc Leu	ca Gl	n T	ac d yr (caa Gln	gtc Val	gac Asp	cac His	:	1250	
	cac His 415	tta Leu	ı t	tc o	ecc :	agc Ser	ctg Leu 420	ccc Pro	cga Arg	cac His	aat Asn	ct Le 42	u A	cc a la I	aag Lys	aca Thr	cac His	gca Ala 430		1298	
60	ctg Leu	gtc Val	g; G	aa t lu s		ttc Phe (tgc Cys	aag Lys	gag Glu	tgg Trp	ggt Gly 440	gt. Va	с с 1 G	ag t ln 1	ac (His	gaa Glu 445			1346	
							•														

!	gac ctt gtg gac ggg acc atg gaa gtc ttg cac cat ttg ggc agc gtg Asp Leu Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val 450 455 460	139
	gcc ggc gaa ttc gtc gtg gat ttt gta cgc gat gga ccc gcc atg taa a Ala Gly Glu Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met 465 470 475	1443
10		
15	<210> 33 <211> 477 <212> PRT <213> Phaeodactylum tricornutum	
	<400> 33	
20	Met Gly Lys Gly Gly Asp Ala Arg Ala Ser Lys Gly Ser Thr Ala Ala 1 5 10 15	
25	Arg Lys Ile Ser Trp Gln Glu Val Lys Thr His Ala Ser Pro Glu Asp 20 25 30	
	Ala Trp Ile Ile His Ser Asn Lys Val Tyr Asp Val Ser Asn Trp His 35 40 45	
30	Glu His Pro Gly Gly Ala Val Ile Phe Thr His Ala Gly Asp Asp Met 50 55 60	
35	Thr Asp Ile Phe Ala Ala Phe His Ala Pro Gly Ser Gln Ser Leu Met 65 70 75 80	
40	Lys Lys Phe Tyr Ile Gly Glu Leu Leu Pro Glu Thr Thr Gly Lys Glu 85 90 95	
45	Pro Gln Gln Ile Ala Phe Glu Lys Gly Tyr Arg Asp Leu Arg Ser Lys 100 105 110	
	Leu Ile Met Met Gly Met Phe Lys Ser Asn Lys Trp Phe Tyr Val Tyr 115 120 125	
50	Lys Cys Leu Ser Asn Met Ala Ile Trp Ala Ala Ala Cys Ala Leu Val 130 135 140	
55	Phe Tyr Ser Asp Arg Phe Trp Val His Leu Ala Ser Ala Val Met Leu 145 150 155 160	
60	Gly Thr Phe Phe Gln Gln Ser Gly Trp Leu Ala His Asp Phe Leu His 165 170 175	
	His Gln Val Phe Thr Lys Arg Lys His Gly Asp Leu Gly Gly Leu Phe	

PF 54305 DE

93

180

45

185

- Trp Gly Asn Leu Met Gln Gly Tyr Ser Val Gln Trp Trp Lys Asn Lys
 5 200 205
- His Asn Gly His His Ala Val Pro Asn Leu His Cys Ser Ser Ala Val 210 215 220
 - Ala Gln Asp Gly Asp Pro Asp Ile Asp Thr Met Pro Leu Leu Ala Trp 225 230 235 240
- 15
 Ser Val Gln Gln Ala Gln Ser Tyr Arg Glu Leu Gln Ala Asp Gly Lys
 245
 250
 255
- 20 Asp Ser Gly Leu Val Lys Phe Met Ile Arg Asn Gln Ser Tyr Phe Tyr 260 265 270
 - Phe Pro Ile Leu Leu Leu Ala Arg Leu Ser Trp Leu Asn Glu Ser Phe 275 280 285
- Lys Cys Ala Phe Gly Leu Gly Ala Ala Ser Glu Asn Ala Ala Leu Glu 290 295 300
 - Leu Lys Ala Lys Gly Leu Gln Tyr Pro Leu Leu Glu Lys Ala Gly Ile 305 310 315 320
- Leu Leu His Tyr Ala Trp Met Leu Thr Val Ser Ser Gly Phe Gly Arg
 325 330 335
- 40 Phe Ser Phe Ala Tyr Thr Ala Phe Tyr Phe Leu Thr Ala Thr Ala Ser 340 345 350
 - Cys Gly Phe Leu Leu Ala Ile Val Phe Gly Leu Gly His Asn Gly Met 355 360 365
- Ala Thr Tyr Asn Ala Asp Ala Arg Pro Asp Phe Trp Lys Leu Gln Val 370 375 380
 - Thr Thr Thr Arg Asn Val Thr Gly Gly His Gly Phe Pro Gln Ala Phe 385 390 395 400
- Val Asp Trp Phe Cys Gly Gly Leu Gln Tyr Gln Val Asp His His Leu
 405 410 415
- 60 Phe Pro Ser Leu Pro Arg His Asn Leu Ala Lys Thr His Ala Leu Val 420 425 430

```
Glu Ser Phe Cys Lys Glu Trp Gly Val Gln Tyr His Glu Ala Asp Leu
                                    440
   5
       Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val Ala Gly
                               455
                                                    460
       Glu Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met
  10
                           470
       <210>
              34
  15
       <211>
              17061
       <212>
              DNA
       <213> Phaeodactylum tricornutum, Physcomitrella patens, Caenorhabditis
  20
       <220>
       <221> CDS
       <222>
             (4554)..(5987)
       <223>
 25
      <220>
      <221> CDS
      <222>
             (2805)..(3653)
      <223>
 30
      <220>
      <221>
             CDS
      <222>
             (1026)..(1898)
 35
      <223>
      <400> 34
      tggggaaccc tgtggttggc atgcacatac aaatggacga aggataaacc ttttcacgcc
 40
                                                                             60
      cttttaaata tccgattatt ctaataaacg ctcttttctc ttaggtttac ccgccaatat
                                                                            120
     atcctgtcaa acactgatag tttaaactga aggcgggaaa cgacaatctg atcatgagcg
                                                                            180
45
     gagaattaag ggagtcacgt tatgaccccc gccgatgacg cgggacaagc cgttttacgt
                                                                           240
     ttggaactga cagaaccgca acgttgaagg agccactcag ccgatctgaa ttcatcgatc
                                                                           300
     ctctagaggc gcgccgagct cctcgagcaa atttacacat tgccactaaa cgtctaaacc
50
                                                                           360
     cttgtaattt gtttttgttt tactatgtgt gttatgtatt tgatttgcga taaattttta
                                                                           420
     tatttggtac taaatttata acacctttta tgctaacgtt tgccaacact tagcaatttg
                                                                           480
55
     caagttgatt aattgattct aaattatttt tgtcttctaa atacatatac taatcaactg
                                                                           540
     gaaatgtaaa tatttgctaa tatttctact ataggagaat taaagtgagt gaatatggta
                                                                           600
     ccacaaggtt tggagattta attgttgcaa tgctgcatgg atggcatata caccaaacat
60
                                                                           660
    tcaataattc ttgaggataa taatggtacc acacaagatt tgaggtgcat gaacgtcacg
                                                                          720
```

	95	
	tggacaaaag gtttagtaat ttttcaagac aacaatgtta ccacacacaa gttttgaggt	780
_	gcatgcatgg atgccctgtg gaaagtttaa aaatattttg gaaatgattt gcatggaagc	840
5	description accordance coactiggag gatgcaataa tgaagaaaac tacaaattta	900
	catgcaacta gttatgcatg tagtctatat aatgaggatt ttgcaatact ttcattcata	960
10	cacactcact aagttttaca cgattataat ttcttcatag ccacacaa	.020
	googo atg gag gto gtg gag aga the tar and	070
	1 5 10 10 Leu Asp Gly Lys Val	
15	Ser Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr 20 25 30	118
20	35 40 Leu Val Asp Ser Pro Thr Pro	166
25	50 55 60 50	214
30	65 70 Arg Ala Ser Glu Pro Phe	62
25	80 85 90 Phe Cys Phe Ala Leu 95	10
35	agt ctg tat atg tgc gtg ggc atc gct tat cag gct att acc tgg cgg 13. Ser Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg 100 105 110	58
40	tac tct ctc tgg ggc aat gca tac aat cct aaa cat aaa gag atg gcg 140 Tyr Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala 115 120 125	06
45	att ctg gta tac ttg ttc tac atg tct aag tac gtg gaa ttc atg gat 145 Ile Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp 130 135 140	54
50	acc gtt atc atg ata ctg aag cgc agc acc agg caa ata agc ttc ctc 150 Thr Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu 150 155	2
	cac gtt tat cat cat tct tca att tcc ctc att tgg tgg gct att gct His Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala 165 170 175	0
	cat cac gct cct ggc ggt gaa gca tat tgg tct gcg gct ctg aac tca 159. His His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser 180 185 190	8
60	gga gtg cat gtt ctc atg tat gcg tat tac ttc ttg gct gcc tgc ctt 1646 Gly Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu 195 200 205	5

	96	
	cga agt agc cca aag tta aaa aat aag tac ctt ttt tgg ggc agg tac Arg Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr 210 215 220	1694
5	ttg aca caa ttc caa atg ttc cag ttt atg ctg aac tta gtg cag gct Leu Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala 225 230 235	1742
10	tac tac gac atg aaa acg aat gcg cca tat cca caa tgg ctg atc aag Tyr Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys 240 245 250 255	1790
15	att ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc aat ttt Ile Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe 260 265 270	1838
20	tac gta caa aaa tac atc aaa ccc tct gac gga aag caa aag gga gct Tyr Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala 275 280 285	1886
	aaa act gag tga tctagaaggc ctcctgcttt aatgagatat gcgagacgcc Lys Thr Glu 290	1938
25	tatgatcgca tgatatttgc tttcaattct gttgtgcacg ttgtaaaaaa cctgagcatg	1998
	tgtageteag atcettaceg eeggtttegg tteattetaa tgaatatate accegttact	2058
30	atcgtatttt tatgaataat attctccgtt caatttactg attgtccgtc gagcaaattt	2118
	acacattgcc actaaacgtc taaacccttg taatttgttt ttgttttact atgtgtgtta	2178
	tgtatttgat ttgcgataaa tttttatatt tggtactaaa tttataacac cttttatgct	2238
35	aacgtttgcc aacacttagc aatttgcaag ttgattaatt gattctaaat tatttttgtc	2298
	ttctaaatac atatactaat caactggaaa tgtaaatatt tgctaatatt tctactatag	2358
40	gagaattaaa gtgagtgaat atggtaccac aaggtttgga gatttaattg ttgcaatgct	2418
	gcatggatgg catatacacc aaacattcaa taattcttga ggataataat ggtaccacac	2478
	aagatttgag gtgcatgaac gtcacgtgga caaaaggttt agtaattttt caagacaaca	2538
45	atgttaccac acacaagttt tgaggtgcat gcatggatgc cctgtggaaa gtttaaaaat	2598
	attttggaaa tgatttgcat ggaagccatg tgtaaaacca tgacatccac ttggaggatg	2658
50	caataatgaa gaaaactaca aatttacatg caactagtta tgcatgtagt ctatataatg	2718
	aggattttgc aatactttca ttcatacaca ctcactaagt tttacacgat tataatttct	2778
55	tcatagccag cggatccgcc cacata atg gag aac ttc tgg tct att gtt gtg Met Glu Asn Phe Trp Ser Ile Val Val 295	2831
60	Phe Phe Leu Leu Ser Ile Leu Phe Ile Leu Tyr Asn Ile Ser Thr Val	2879
	tgc cac tac tat atg cgg att tcg ttt tat tac ttc aca att tta ttg Cys His Tyr Tyr Met Arg Ile Ser Phe Tyr Tyr Phe Thr Ile Leu Leu	2927

	BASF	Plant So	cience Gn	nbH	2003	0015	PF 54305 DE				
					97						
			320	•	325		330 .				
5		3:	35	s val Ti	340	Pro Ser Trp	cta aat ggg 2975 Leu Asn Gly 345				
10		350	-2 -22 VA	35	55 Ser Phe	Pne Tyr Trp 360	tgt aaa tgg 3023 Cys Lys Trp				
	act gg Thr Gly 36	t gtt ca y Val Hi 5	t aca ac	a gtc ta r Val Ty 370	it gga tat r Gly Tyr	gaa aaa aca Glu Lys Thr 375	caa gtt gaa 3071 . Gln Val Glu				
15	ggt ccg Gly Pro 380	g gct gt o Ala Va	a gtt at 1 Val I1 38	e cys As	n His Gin	agt tct ctc Ser Ser Leu 390	gac att cta 3119 Asp Ile Leu 395				
20	tcg ato Ser Met	gca to : Ala Se	a atc tgg r Ile Trj 400	g ccg aa p Pro Ly	g aat tgt s Asn Cys 405	gtt gta atg Val Val Met	atg aaa cga 3167 Met Lys Arg 410				
25	att ctt Ile Leu	gcc ta Ala Ty 41	- var Fr	ttc tto	c aat ctc o e Asn Leu (420	Gly Ala Tyr	ttt tcc aac 3215 Phe Ser Asn 425				
30	aca atc Thr Ile	ttc at Phe Il 430	c gat cga e Asp Arc	tat aad Tyr Asr 435	I Arg GIU A	egt geg atg Arg Ala Met 440	gct tca gtt 3263 Ala Ser Val				
<u> </u>	gat tat Asp Tyr 445	-2	a tot gaa A Ser Glu	atg aag Met Lys 450	g aac aga a B Asn Arg A	aat ctt aaa Asn Leu Lys : 455	ctt tgg gta 3311 Leu Trp Val				
35 t F 4	tt ccg Phe Pro 160	gaa gga Glu Gl	a aca aga Thr Arg 465	ASII AIG	GIR GIA G	gg ttc att o ly Phe Ile 1 70	cca ttc aag 3359 Pro Phe Lys 475				
40 L	aaa gga ys Gly	gca tto Ala Phe	aat att Asn Ile 480	gca gtt Ala Val	cgt gcg c Arg Ala G 485	ag att ccc a ln Ile Pro I	att att cca 3407 Ile Ile Pro 490				
45 g	tt gta al Val	ttc tca Phe Ser 495	TAT GET	cgg gat Arg Asp	ttc tac to Phe Tyr So 500	ca aag cca g er Lys Pro G	ggc cga tat 3455 Sly Arg Tyr 605				
t: Pl 50	tc aag he Lys	aat gat Asn Asp 510	gga gaa Gly Glu	gtt gtt Val Val 515	att cga g	tt ctg gat g al Leu Asp A 520	rcg att cca 3503 la Ile Pro				
ao Tì	ca aaa hr Lys 525	Gly Leu Ggg ctc	act ctt Thr Leu	gat gac Asp Asp 530	gtc agc ga Val Ser G	ag ttg tct g lu Leu Ser A 535	at atg tgt 3551 sp Met Cys				
55 cg Ar 54	gg gac rg Asp 10	gtt atg Val Met	ttg gca Leu Ala 545	gcc tat Ala Tyr	aag gaa gt Lys Glu Va 55	t act cta g al Thr Leu G	aa gct cag 3599 lu Ala Gln 555				
60 G1	aa cga a Ln Arg i	aat gcg Asn Ala	aca cgg Thr Arg 560	cgt gga Arg Gly	gaa aca aa Glu Thr Ly 565	a gac ggg a	ag aaa tct 3647 ys Lys Ser 570				

		gag taa getagegtta accetgettt aatgagatat gegagaegee tatgategea Glu	3703
	5	3 de la constant de l	3763
		atcettaceg ceggtttegg tteattetaa tgaatatate accegttact ategtatttt 3	8823
	10	-	8883
		actaaacgtc taaacccttg taatttgttt ttgttttact atgtgtgtta tgtatttgat 3	943
		ttgcgataaa tttttatatt tggtactaaa tttataacac cttttatgct aacgtttgcc 4	1003
	15		.063
		atatactaat caactggaaa tgtaaatatt tgctaatatt tctactatag gagaattaaa 4	123
	20	gtgagtgaat atggtaccac aaggtttgga gatttaattg ttgcaatgct gcatggatgg 4	183
		catatacacc aaacattcaa taattcttga ggataataat ggtaccacac aagatttgag 4 .	243
: ₁		gtgcatgaac gtcacgtgga caaaaggttt agtaattttt caagacaaca atgttaccac 4	303
	25	acacaagttt tgaggtgcat gcatggatgc cctgtggaaa gtttaaaaat attttggaaa 4:	363
		tgatttgcat ggaagccatg tgtaaaacca tgacatccac ttggaggatg caataatgaa 4	423
	30	gaaaactaca aatttacatg caactagtta tgcatgtagt ctatataatg aggattttgc 44	483
		aatactttca ttcatacaca ctcactaagt tttacacgat tataatttct tcatagccag 45	543
	35	cagatetaaa atg ggc aaa gga ggc gac gct cgg ggg tar	592
	40	590 595 110 Ser Trp Gln Glu Val Lys Thr His Ala Ser	540
		605 610 615	88
	45	aac tgg cac gaa cat ccc gga ggc gcc gtc att ttc acg cac gcc ggt 47 Asn Trp His Glu His Pro Gly Gly Ala Val Ile Phe Thr His Ala Gly 620 625 630	736
	50	gac gac atg acg gac att ttc gct gcc ttt cac gca ccc gga tcg cag 47 Asp Asp Met Thr Asp Ile Phe Ala Ala Phe His Ala Pro Gly Ser Gln 635 640 645	84
	55	tcg ctc atg aag aag ttc tac att ggc gaa ttg ctc ccg gaa acc acc Ser Leu Met Lys Lys Phe Tyr Ile Gly Glu Leu Leu Pro Glu Thr Thr 650 665 665	32
ı	60	ggc aag gag ccg cag caa atc gcc ttt gaa aag ggc tac cgc gat ctg 48: Gly Lys Glu Pro Gln Gln Ile Ala Phe Glu Lys Gly Tyr Arg Asp Leu 670 675 680	80
		cgc tcc aaa ctc atc atg atg ggc atg ttc aag tcc aac aag tgg ttc 492 Arg Ser Lys Leu Ile Met Met Gly Met Phe Lys Ser Asn Lys Trp Phe	28

•												;	99								
	•					68						90						5.			
	5				700)			.u. De	r As)5	et A	та	IT€	∍ Trj	p Al. 71	a Al O	a A	la	Cys	4976
	10	•	7	15					72	_	g Fi	re r	тр	vaı	725	s Lei	ı Al	a Se	er j	Ala	5024
		. 73	0					73.	5	t ca e Gl	ıı Gı	.n s	er	740	Tr) Let	ı Al	a Hi	s Z	Asp 745	5072
	. 15						750)		c ac e Th	т гу	S A 7	rg 55	ьўs	His	: Gly	7 As	р Le 76	u (Gly	5120
	20	-	-			765		1101	ı De	c ate	77	n G. 0	тĀ	Tyr	Ser	Val	Gl:	ı Tr	r q	rp	5168
	25	_		7	80			. С.	1112	cae His 785	S AI	a va	≇T .	Pro	Asn	Leu 790	His	Cy:	s S	er	5216
	30		79	5			U.1.	. mor	800		PI	O AS	g .	IIe	Asp 805	Thr	Met	Pro) L	eu	5264
	25	810			-1-		Val	815	GII	gco Ala	GII	1 56	er 1	1 <u>yr</u> 320	Arg	Glu	Leu	Glr	1 A	1a 25	5312
	35	~				-102	830	GIY	neu	gtc Val	гÃз	83	e M 5	1et	Ile	Arg	Asn	Glr 840	Se	er	5360
	40	tac Tyr	Ph	t ta e Ty	•	ttt Phe 845	ccc Pro	atc Ile	ttg Leu	ttg Leu	Leu 850	AL	c c	gc rg	ctg Leu	tcg Ser	tgg Trp 855	ttg Leu	aa As	ac sn	5408
	45	gag Glu	tc: Se:	e tt r Ph 86		aag Lys	tgc Cys	gcc Ala	ttt Phe	ggg Gly 865	ctt Leu	gg Gl	ag yA	ct la	Ala	tcg Ser 870	gag Glu	aac Asn	gc Al	et .a	5456
	50	gct Ala	Cto Let 875	ga u Gl	a c .u I	etc Leu	aag Lys	gcc Ala	aag Lys 880	ggt Gly	ctt Leu	caç Glı	y t	yr :	ccc Pro:	ctt Leu	ttg Leu	gaa Glu	aa Ly	g 's	5504
		gct Ala 890	ggc	at Il	c c e I	tg eu :		cac His 895	tac Tyr	gct Ala	tgg Trp	ato Met	: Le	tt a eu 1	aca (gtt Val	tcg Ser	tcc Ser	gg G1; 90;	У	5552
	55	ttt Phe	gga Gly	. cg . Ar	c t g P		tcg Ser 910	ttc Phe	gcg Ala	tac Tyr	acc Thr	gca Ala 915	Pr	tt t ne T	ac i	ttt (Phe 1	Leu	acc Thr 920	gc: Ala	g a	5600
	60	acc Thr	gcg Ala	tc: Se:		gt g ys 0 25	gga Gly	ttc Phe :	ttg Leu	ьeu	gcc Ala 930	att Ile	gt Va	c t	tt c	ly I	ctc Leu 935	ggc	cac His	c s	5648

	aac ggc atg gcc acc tac aat gcc gac gcc cgt ccg gac ttc tgg aag Asn Gly Met Ala Thr Tyr Asn Ala Asp Ala Arg Pro Asp Phe Trp Lys 940 945 950	5696
5	ctc caa gtc acc acg act cgc aac gtc acg ggc gga cac ggt ttc ccc Leu Gln Val Thr Thr Thr Arg Asn Val Thr Gly Gly His Gly Phe Pro 955 960 965	5744
10	caa gcc ttt gtc gac tgg ttc tgt ggt ggc ctc cag tac caa gtc gac Gln Ala Phe Val Asp Trp Phe Cys Gly Gly Leu Gln Tyr Gln Val Asp 970 975 980 985	5792
15	cac cac tta ttc ccc agc ctg ccc cga cac aat ctg gcc aag aca cac His His Leu Phe Pro Ser Leu Pro Arg His Asn Leu Ala Lys Thr His 990 995 1000	5840
20	gca ctg gtc gaa tcg ttc tgc aag gag tgg ggt gtc cag tac cac Ala Leu Val Glu Ser Phe Cys Lys Glu Trp Gly Val Gln Tyr His 1005 1010 1015	5885
	gaa gcc gac ctt gtg gac ggg acc atg gaa gtc ttg cac cat ttg Glu Ala Asp Leu Val Asp Gly Thr Met Glu Val Leu His His Leu 1020 1025 1030	5930
25	ggc agc gtg gcc ggc gaa ttc gtc gtg gat ttt gta cgc gat gga Gly Ser Val Ala Gly Glu Phe Val Val Asp Phe Val Arg Asp Gly 1035 1040 1045	5975
30	ccc gcc atg taa agatctgccg gcatcgatcc cgggccatgg cctgctttaa Pro Ala Met	6027
35	tgagatatgc gagacgccta tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc tgagcatgtg tagctcagat ccttaccgcc ggtttcggtt cattctaatg	6087 6147
	aatatatcac ccgttactat cgtattttta tgaataatat tctccgttca atttactgat	6207
40	tgtccgtcga cgagctcggc gcgccgtcga cctgcaggca tgcaagcttc acgctgccgc	6267
	aagcactcag ggcgcaaggg ctgctaaagg aagcggaaca cgtagaaagc cagtccgcag	6327
45	aaacggtgct gaccccggat gaatgtcagc tactgggcta tctggacaag ggaaaacgca	6387
45	agcgcaaaga gaaagcaggt àgcttgcagt gggcttacat ggcgatagct agactgggcg	6447
	gttttatgga cagcaagcga accggaattg ccagctgggg cgccctctgg taaggttggg	6507
50	aagccctgca aagtaaactg gatggctttc ttgccgccaa ggatctgatg gcgcagggga	6567
•	tcaagatcat gagcggagaa ttaagggagt cacgttatga cccccgccga tgacgcggga	6627
55	caagccgttt tacgtttgga actgacagaa ccgcaacgtt gaaggagcca ctcagccgcg	6687 ·
	ggtttctgga gtttaatgag ctaagcacat acgtcagaaa ccattattgc gcgttcaaaa	6747
	gtcgcctaag gtcactatca gctagcaaat atttcttgtc aaaaatgctc cactgacgtt	6807
60	ccataaattc ccctcggtat ccaattagag tctcatattc actctcaatc cagatctcga	6867
	ctctagtcga gggcccatgg gagcttggat tgaacaagat ggattgcacg caggttctcc	6927

	ggccgcttgg gtggagaggc tattcggcta tgactgggca caacagacaa tcggctgctc	6981
	tgatgccgcc gtgttccggc tgtcagcgca ggggcgcccg gttctttttg tcaagaccga	
5	cctgtccggt gccctgaatg aactgcagga cgaggcagcg cggctatcgt ggctggccac	
	gacgggcgtt ccttgcgcag ctgtgctcga cgttgtcact gaagcgggaa gggactggct	7167
10	gctattgggc gaagtgccgg ggcaggatct cctgtcatct caccttgctc ctgccgagaa	
	agtatccatc atggctgatg caatgcggcg gctgcatacg cttgatccgg ctacctgccc	
	attegaceae caagegaaae ategeatega gegageaegt aeteggatgg aageeggtet	7347
15	tgtcgatcag gatgatctgg acgaagagca tcaggggctc gcgccagccg aactgttcgc	7407
	caggeteaag gegegeatge eegaeggega ggatetegte gtgacecatg gegatgeetg	
20	cttgccgaat atcatggtgg aaaatggccg cttttctgga ttcatcgact gtggccggct	7527
	gggtgtgggg gaccgctatc aggacatagc gttggctacc cgtgatattg ctgaagagct	7587
	tggcggcgaa tgggctgacc gcttcctcgt gctttacggt atcgccgctc ccgattcgca	7647
25	gcgcatcgcc ttctatcgcc ttcttgacga gttcttctga gcgggaccca agctagcttc	7707
	gacggatccc ccgatgagct aagctagcta tatcatcaat ttatgtatta cacataatat	7767
30	cgcactcagt ctttcatcta cggcaatgta ccagctgata taatcagtta ttgaaatatt	7827
00	totgaattta aacttgcato aataaattta tgtttttgct tggactataa tacctgactt	7887
	gttattttat caataaatat ttaaactata tttctttc	7947
35	ccgtcgtttt acaacgtcgt gactgggaaa accctggcgt tacccaactt aatcgccttg	8007
	cagcacatcc ccctttcgcc agctggcgta atagcgaaga ggcccgcacc gatcgccctt	8067
40	cccaacagtt gcgcagcctg aatggcgccc gctcctttcg ctttcttccc ttcctttctc	
40	gccacgttcg ccggctttcc ccgtcaagct ctaaatcggg ggctcccttt agggttccga	.8127
	tttagtgctt tacggcacct cgaccccaaa aaacttgatt tgggtgatgg ttcacgtagt	8187
45	gggccatcgc cctgatagac ggtttttcgc cctttgacgt tggagtccac gttctttaat	8247
	agtggactet tgttecaaac tggaacaaca etcaaceeta tetegggeta ttettttgat	8307
50	ttataaggga ttttgccgat ttcggaacca ccatcaaaca ggattttcgc ctgctggggc	8367
50	aaaccagcgt ggaccgcttg ctgcaactct ctcagggcca ggcggtgaag ggcaatcagc	8427
	tgttgcccgt ctcactggtg aaaagaaaaa ccacccagt acattaaaaa cgtccgcaat	8487
55	gtgttattaa gttgtctaag cgtcaatttg tttacaccac aatatatcct gccaccagcc	8547
	agecaacage teccegaceg geagetegge acaaaateac caetegatac aggeagecea	8607
	tcagtccggg acggcgtcag cgggagagcc gttgtaaggc ggcagacttt gctcatgtta	8667
60		8727
	ccgatgctat tcggaagaac ggcaactaag ctgccgggtt tgaaacacgg atgatctcgc	8787

						caaatatcat	
_						accgtgacag	
5	gctgtcgatc	: ttgagaacta	tgccgacata	a ataggaaato	gctggataaa	gccgctgagg	8967
	aagctgagtg	gcgctatttc	: tttagaagtg	g aacgttgacg	g atatcaacto	ccctatccat	9027
10	tgctcaccga	atggtacagg	teggggaeee	gaagttccga	a ctgtcggcct	gatgcatccc	9087
	cggctgatcg	accccagatc	tggggctgag	aaagcccagt	aaggaaacaa	. ctgtaggttc	9147
	gagtcgcgag	atcccccgga	accaaaggaa	gtaggttaaa	cccgctccga	tcaggccgag	9207
15	ccacgccagg	ccgagaacat	tggttcctgt	aggcatcggg	attggcggat	caaacactaa	9267
	agctactgga	acgagcagaa	gtcctccggc	cgccagttgc	: caggcggtaa	aggtgagcag	9327
20	aggcacggga	ggttgccact	tgcgggtcag	cacggttccg	aacgccatgg	aaaccgcccc	9387
	cgccaggccc	gctgcgacgc	cgacaggatc	tagcgctgcg	tttggtgtca	acaccaacag	9447
	cgccacgccc	gcagttccgc	aaatagcccc	caggaccgcc	atcaatcgta	tcgggctacc	9507
25	tagcagagcg	gcagagatga	acacgaccat	cageggetge	acagcgccta	ccgtcgccgc	9567
	gaccccgccc	ggcaggcggt	agaccgaaat	aaacaacaag	ctccagaata	gcgaaatatt	9627
30	aagtgcgccg	aggatgaaga	tgcgcatcca	ccagattccc	gttggaatct	gtcggacgat	9687
	catcacgage	aataaacccg	ccggcaacgc	ccgcagcagc	ataccggcga	cccctcggcc	9747
	tcgctgttcg	ggctccacga	aaacgccgga	cagatgcgcc	ttgtgagcgt	ccttggggcc	9807
35	gtcctcctgt	ttgaagaccg	acagcccaat	gatetegeeg	tcgatgtagg	cgccgaatgc	9867
	cacggcatct	cgcaaccgtt	cagcgaacgc	ctccatgggc	tttttctcct	cgtgctcgta	9927
40	aacggacccg	aacatctctg	gagctttctt	cagggccgac	aatcggatct	cgcggaaatc	9987
	ctgcacgtcg	gccgctccaa	gccgtcgaat	ctgagcctta	atcacaattg	tcaattttaa	10047
	teetetgttt	atcggcagtt	cgtagagcgc	gccgtgcgtc	ccgagcgata	ctgagcgaag	10107
45	caagtgcgtc	gagcagtgcc	cgcttgttcc	tgaaatgcca	gtaaagcgct	ggctgctgaa	10167
	ccccagccg	gaactgaccc	cacaaggccc	tagcgtttgc	aatgcaccag	gtcatcattg	10227
50	acccaggcgt	gttccaccag	gccgctgcct	cgcaactctt	cgcaggcttc	gccgacctgc	10287
	tegegeeact	tcttcacgcg	ggtggaatcc	gatccgcaca	tgaggcggaa	ggtttccagc	10347
	ttgagcgggt	acggctcccg	gtgcgagctg	aaatagtcga	acatccgtcg	ggccgtcggc	10407
55	gacagettge	ggtacttctc	ccatatgaat	ttcgtgtagt	ggtcgccagc	aaacagcacg	10467
	acgatttcct	cgtcgatcag	gacctggcaa	cgggacgttt	tcttgccacg	gtccaggacg	10527
60	cggaagcggt	gcagcagcga	caccgattcc	aggtgcccaa	cgcggtcgga	cgtgaagccc	10587
	atcgccgtcg	cctgtaggcg	cgacaggcat	tcctcggcct	tcgtgtaata	ccggccattg	10647

						g ctcgccgata	
_				•		gteggeeege	10767
5	agċtcgacgo	cggtgtaggt	gatcttcacg	tccttgttga	cgtggaaaat	gaccttgttt	10827
	tgcagcgcct	cgcgcgggat	tttcttgttg	cgcgtggtga	acagggcaga	gegggeegtg	10887
10	tcgtttggca	tcgctcgcat	cgtgtccggc	cacggcgcaa	tatcgaacaa	ggaaagctgc	10947
	atttccttga	tctgctgctt	cgtgtgtttc	agcaacgcgg	cctgcttggc	ctcgctgacc	11007
	tgttttgcca	ggtcctcgcc	ggcggttttt	cgcttcttgg	tegteatagt	teetegegtg	11067
15	tcgatggtca	tcgacttcgc	caaacctgcc	gcctcctgtt	cgagacgacg	cgaacgctcc	11127
	acggcggccg	atggcgcggg	cagggcaggg	ggagccagtt	gcacgctgtc	gcgctcgatc	11187
20	ttggccgtag	cttgctggac	catcgagccg	acggactgga	aggtttcgcg	gggcgcacgc	11247
	atgacggtgc	ggcttgcgat	ggtttcggca	tcctcggcgg	aaaaccccgc	gtcgatcagt	11307
	tcttgcctgt	atgccttccg	gtcaaacgtc	cgattcattc	accctccttg	cgggattgcc	11367
25	ccgactcacg	ccggggcaat	gtgcccttat	tcctgatttg	acccgcctgg	tgccttggtg	11427
	tccagataat	ccaccttatc	ggcaatgaag	teggtecegt	agaccgtctg	gccgtccttc	11487
30	tcgtacttgg	tattccgaat	cttgccctgc	acgaatacca	gcgacccctt	gcccaaatac	11547
	ttgccgtggg	cctcggcctg	agagccaaaa	cacttgatgc	ggaagaagtc	ggtgcgctcc	11607
	tgcttgtcgc	cggcatcgtt	gcgccacatc	taggtactaa	aacaattcat	ccagtaaaat	11667
35	ataatatttt	attttctccc	aatcaggctt	gatccccagt	aagtcaaaaa	atagctcgac	11727
	atactgttct	tccccgatat	cctccctgat	cgaccggacg	cagaaggcaa	tgtcatacca	11787
40	cttgtccgcc	ctgccgcttc	tcccaagatc	aataaagcca	cttactttgc	catctttcac	11847
	aaagatgttg	ctgtctccca	ggtcgccgtg	ggaaaagaca	agttcctctt	cgggcttttc	11907
	cgtctttaaa	aaatcataca	gctcgcgcgg	atctttaaat	ggagtgtctt	cttcccagtt	11967
45	ttcgcaatcc	acatcggcca	gatcgttatt	cagtaagtaa	tccaattcgg	ctaagcggct	12027
	gtctaagcta	ttcgtatagg	gacaatccga	tatgtcgatg	gagtgaaaga	gcctgatgca	12087
50	ctccgcatac	agctcgataa	tcttttcagg	gctttgttca	tcttcatact	cttccgagca	12147
	aaggacgcca	tcggcctcac	tcatgagcag	attgctccag	ccatcatgcc	gttcaaagtg	12207
	caggaccttt	ggaacaggca	gctttccttc	cagccatagc	atcatgtcct	tttcccgttc	12267
55	cacatcatag	gtggtccctt	tataccggct	gtccgtcatt	tttaaatata	ggttttcatt	12327
	ttctcccacc	agcttatata	ccttagcagg	agacattcct	tccgtatctt	ttacgcagcg	12387
60	gtatttttcg	atcagttttt	tcaattccgg	tgatattctc	attttagcca	tttattattt	12447
	ccttcctctt	ttctacagta	tttaaagata	ccccaagaag	ctaattataa	caagacgaac	12507

			•	104		•	
	tccaattca	tgttccttgc	attctaaaac	cttaaatacc	agaaaacag	c tttttcaaag	12567
	ttgttttcaa	a agttggcgta	taacatagta	tegaeggage	cgattttga	a accacaatta	12627
5	tgggtgatg	tgccaactta	ctgatttagt	gtatgatggt	gtttttgagg	g tgctccagtg	12687
	gcttctgtgt	ctatcagctg	tccctcctgt	tcagctactg	acggggtggt	gcgtaacggc	12747
10	aaaagcacco	g ccggacatca	gcgctatctc	tgctctcact	gccgtaaaa	atggcaactg	12807
	cagttcactt	acaccgcttc	tcaacccggt	acgcaccaga	aaatcattga	tatggccatg	12867
	aatggcgttg	gatgccgggc	aacagcccgc	attatgggcg	ttggcctcaa	a cacgatttta	12927
15	cgtcacttaa	aaaactcagg	ccgcagtcgg	taacctcgcg	catacagccg	ggcagtgacg	12987
	tcatcgtctg	r cgcggaaatg	gacgaacagt	ggggctatgt	cggggctaaa	tcgcgccagc	13047
20	gctggctgtt	ttacgcgtat	gacagtctcc	ggaagacggt	tgttgcgcac	gtattcggtg	13107
	aacgcactat	ggcgacgctg	gggcgtctta	tgagcctgct	gtcacccttt	gacgtggtga	13167
	tatggatgac	ggatggctgg	ccgctgtatg	aatcccgcct	gaagggaaag	ctgcacgtaa	13227
25	tcagcaagcg	atatacgcag	cgaattgagc	ggcataacct	gaatctgagg	cagcacctgg	13287
	cacggctggg	acggaagtcg	ctgtcgttct	caaaatcggt	ggagctgcat	gacaaagtca	13347
30	tcgggcatta	tctgaacata	aaacactatc	aataagttgg	agtcattacc	caattatgat	13407
	agaatttaca	agctataagg	ttattgtcct	gggtttcaag	cattagtcca	tgcaagtttt	13467
	tatgctttgc	ccattctata	gatatattga	taagcgcgct	gcctatgcct	tgccccctga	13527
35	aatccttaca	tacggcgata	tcttctatat	aaaagatata	ttatcttatc	agtattgtca	13587
	atatattcaa	ggcaatctgc	ctcctcatcc	tcttcatcct	cttcgtcttg	gtagcttttt	13647
40	aaatatggcg	cttcatagag	taattctgta	aaggtccaat	tctcgttttc	atacctcggt	13707
	ataatcttac	ctatcacctc	aaatggttcg	ctgggtttat	cgcacccccg	aacacgagca	13767
	cggcacccgc	gaccactatg	ccaagaatgc	ccaaggtaaa	aattgccggc	cccgccatga	13827
45	agtccgtgaa	tgccccgacg	gccgaagtga	agggcaggcc	gccacccagg	ccgccgccct	13887
_	cactgcccgg	cacctggtcg	ctgaatgtcg	atgccagcac	ctgcggcacg	tcaatgcttc	13947
50	cgggcgtcgc	gctcgggctg	atcgcccatc	ccgttactgc	cccgatcccg	gcaatggcaa	14007
	ggactgccag	cgctgccatt	tttggggtga	ggccgttcgc	ggccgagggg	cgcagcccct	14067
	ggggggatgg	gaggcccgcg	ttagcgggcc	gggagggttc	gagaaggggg	ggcacccccc	14127
55	ttcggcgtgc	gcggtcacgc	gcacagggcg	cagccctggt	taaaaacaag	gtttataaat	14187
	attggtttaa	aagcaggtta	aaagacaggt	tagcggtggc	cgaaaaacgg	gcggaaaccc	14247
60	ttgcaaatgc	tggattttct	gcctgtggac	agcccctcaa	atgtcaatag	gtgcgcccct	14307
	catctgtcag	cactetgeee	ctcaagtgtc	aaggatcgcg	cccctcatct	gtcagtagtc	14367

					.00			
					a cttatcccca			
	_				g ccgatttgcg			
	5	gccggccgaa	atcgagcctg	cccctcatc	gtcaacgccg	cgccgggtga	gtcggcccct	14547
		caagtgtcaa	cgtccgcccc	: tcatctgtca	gtgagggcca	. agttttccgc	gaggtatcca	14607
	10	caacgccggc	ggccgcggtg	tctcgcacac	ggcttcgacg	gcgtttctgg	cgcgtttgca	14667
		gggccataga	cggccgccag	cccagcggcg	g agggcaacca	gcccggtgag	cgtcgcaaag	14727
		gcgctcggtc	: ttgccttgct	cgtcggtgat	gtacttcacc	agctccgcga	agtcgctctt	14787
	15	cttgatggag	cgcatgggga	cgtgcttggc	aatcacgcgc	accccccggc	cgttttagcg	14847
		gctaaaaaag	tcatggctct	gccctcgggc	ggaccacgcc	catcatgacc	ttgccaagct	14907
	20	cgtcctgctt	ctcttcgatc	ttcgccagca	gggcgaggat	cgtggcatca	ccgaaccgcg	14967
		ccgtgcgcgg	gtcgtcggtg	agccagagtt	tcagcaggec	gcccaggcgg	cccaggtcgc	15027
		cattgatgcg	ggccagctcg	cggacgtgct	catagtccac	gacgcccgtg	attttgtagc	15087
	25	cctggccgac	ggccagcagg	taggccgaca	ggctcatgcc	ggccgccgcc	gccttttcct	15147
		caatcgctct	tcgttcgtct	ggaaggcagt	acaccttgat	aggtgggctg	ccetteetgg	15207
	30	ttggcttggt	ttcatcagcc	atccgcttgc	cctcatctgt	tacgccggcg	gtagccggcc	15267
		agcctcgcag	agcaggattc	ccgttgagca	ccgccaggtg	cgaataaggg	acagtgaaga	15327
		aggaacaccc	getegegggt	gggcctactt	cacctatcct	gcccggctga	cgccgttgga	15387°
	35	tacaccaagg	aaagtctaca	cgaacccttt	ggcaaaatcc	tgtatatcgt	gcgaaaaagg	15447
					ccccgaagca			15507
	40	gccacgcttc	ccgaagggag	aaaggcggac	aggtatccgg	taagcggcag	ggtcggaaca	15567
		ggagagcgca	cgagggagct	tccaggggga	aacgcctggt	atctttatag	tcctgtcggg	15627
		tttcgccacc	tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	gcggagccta	15687
	45	tggaaaaacg	ccagcaacgc	ggccttttta	cggttcctgg	ccttttgctg	gccttttgct	15747
					tctgtggata			15807
	50				accgagcgca			15867
					gccgagcgcg			15927
					tgctacgggc			15987
	55				tagtgagtgg			16047
					caacgttcct			16107
	60				gctcgaacgc			16167
60				gcgagagcgg ;			16227	
				•				·

							a acagtgaagt	
	agctgatt	gt catca	gcgca ttq	gacggcgt	ccccggcc	ga aaaacccgc	c tcgcagagga	16347
5	agcgaago	tg cgcgt	cggcc gtt	tccatct	gcggtgcg	c cggtcgcgt	g ccggcatgga	16407
•							a ttcccgatca	16467
10							c teegecagea	16527
							g taaagcgccg	16587
							acgccgacct	16647
15							gtcatgcttg	16707
							agaatccgcg	16767
20							acatacccct	16827
	gatcgtaat	tt ctgago	actg tcg	cgctcga	cgctgtcgg	c atcggcctga	ttatgccggt	16887
						gtcaccgccc		16947
25						a cctgtgctgg		17007
						geeggegeea		17061
30 35	<210> 35 <211> 29 <212> PR <213> Ph elegans	0 RT	lum tricc	rnutum,	Physcomit	rella paten:	s, Caenorhabo	litis
	<400> 35							
40	Met Glu V	al Val G 5	lu Arg Ph	e Tyr Gl	y Glu Leu 10	Asp Gly Lys	Val Ser 15	
45	Gln Gly Va	al Asn Al 20	.a Leu Le	u Gly Se 25	r Phe Gly	Val Glu Leu 30	Thr Asp	
745	Thr Pro Th	or Thr Ly	s Gly Le	Pro Le	u Val Asp	Ser Pro Thr	Pro Ile	
50	Val Leu Gl 50	ly Val Se	r Val Tyr 55	Leu Th	r Ile Val	Ile Gly Gly	Leu Leu	
55	Trp Ile Ly 65	rs Ala Arg	g Asp Leu 70	Lys Pro	Arg Ala 75	Ser Glu Pro	Phe Leu 80	
60	Leu Gln Al	a Leu Val 85	l Leu Val	His Asn	Leu Phe 90	Cys Phe Ala	Leu Ser 95	
						Ile Thr Trp		

BASF	Plant	Science	GmbH
------	--------------	----------------	------

PF 54305 DE

107

100 105 110

Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile 5 115 120 125

Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 135 140

Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His 145 150 155 160

Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 170 175

20 His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 180 185 190

Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 195 200 205

Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 30

Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 225 230 235 240

Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile
245 250 255

40 Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 265 270

Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 280 285

Thr Glu 290

15

35

50

<210> 36 <211> 282

<212> PRT

55 <213> Phaeodactylum tricornutum, Physcomitrella patens, Caenorhabditis elegans

<400> 36

60 Met Glu Asn Phe Trp Ser Ile Val Val Phe Phe Leu Leu Ser Ile Leu 1 10 15

5	Ph	e Il	e Le	u Ty 20	r As	n Il	e Se	r Th	r Va 25	l Cy	s Hi	s Ту:	r Ty:	r Me	t Ar	g Ile
5	Se	r Ph	е Ту 35	r Ty	r Ph	e Th	r Il	e Lei 40	u Le	u Hi	s Gl	y Mei	t Gl: 45	ı Va	l Cys	s Val
10	Th	r Me 50	t Il	e Pr	o Se:	r Trį	p Le 55	u Ası	n Gly	y Ly:	s Gly	y Ala 60	a As <u>r</u>	у Туз	r Va]	l Phe
15	Ні: 65	s Se	r Phe	e Pho	е Тул	r Try 70	o Cy	s Lys	s Tr	o Thi	r Gl ₃ 75	y Val	His	Thi	Thr	Val 80
. 20	Ty	c Gly	Y Tyi	c Glı	ı Lys 85	s Thr	Glı	n Val	Glu	2 Gl ₃ 90	/ Pro	Ala	. Val	. Val	. Il∈ 95	: Cys
25	Ası	ı His	s Glr	1 Sei 10(r Ser	Lev	ı As <u>ı</u>	o Il∈	Leu 105	ı Ser	Met	: Ala	. Ser	lle 110		Pro
20	Lys	s Asr	115	val	Val	. Met	. Met	Lys 120	Arg	r Ile	e Leu	. Ala	Tyr 125	Val	Pro	Phe
30	Phe	Asn 130	Leu	Gly	r Ala	Tyr	Phe 135	e Ser	Asn	Thr	· Ile	Phe 140	Ile	Asp	Arg	Tyr
35	Asn 145	Arg	Glu	Arg	Ala	Met 150	Ala	Ser	Val	Asp	Tyr 155	Cys	Ala	Ser	Glu	Met 160
40	Lys	Asn	Arg	Asn	Leu 165	Lys	Leu	Trp	Val	Phe 170	Pro	Glu	Gly	Thr	Arg 175	Asn
45	Arg	Glu	Gly	Gly 180	Phe	Ile	Pro	Phe	Lys 185	Lys	Gly	Ala	Phe	Asn 190	Ile	Ala
	Val	Arg	Ala 195	Gln	Ile	Pro	Ile	Ile 200	Pro	Val	Val	Phe	Ser 205	Asp	Тут	Arg
50	Asp	Phe 210	Tyr	Ser	Lys	Pro	Gly 215	Arg	Tyr	Phe	Lys	Asn 220	Asp	Gly	Glu	Val
55	Val 225	Ile	Arg	Val	Leu	Asp 230	Ala	Ile	Pro	Thr	Lys 235	Gly	Leu	Thr	Leu	Asp 240
60	Asp	Val	Ser	Glu	Leu 245	Ser	Asp	Met	Cys	Arg 250	Asp	Val	Met		Ala 255	Ala
	Tyr	Lys	Glu	Val	Thr	Leu	Glu	Ala	Gln	Gln	Ara	Acn	בומ	ար⊶	7 ~~	A

Gly Glu Thr Lys Asp Gly Lys Lys Ser Glu

<210> 37 <211> 477

<212> PRT
<213> Phaeodactylum tricornutum, Physcomitrella patens, Caenorhabditis

<400> 37

Met Gly Lys Gly Gly Asp Ala Arg Ala Ser Lys Gly Ser Thr Ala Ala

Arg Lys Ile Ser Trp Gln Glu Val Lys Thr His Ala Ser Pro Glu Asp

Ala Trp Ile Ile His Ser Asn Lys Val Tyr Asp Val Ser Asn Trp His

Glu His Pro Gly Gly Ala Val Ile Phe Thr His Ala Gly Asp Asp Met

Thr Asp Ile Phe Ala Ala Phe His Ala Pro Gly Ser Gln Ser Leu Met

Lys Lys Phe Tyr Ile Gly Glu Leu Leu Pro Glu Thr Thr Gly Lys Glu

Pro Gln Gln Ile Ala Phe Glu Lys Gly Tyr Arg Asp Leu Arg Ser Lys

Leu Ile Met Met Gly Met Phe Lys Ser Asn Lys Trp Phe Tyr Val Tyr

Lys Cys Leu Ser Asn Met Ala Ile Trp Ala Ala Ala Cys Ala Leu Val

Phe Tyr Ser Asp Arg Phe Trp Val His Leu Ala Ser Ala Val Met Leu

Gly Thr Phe Phe Gln Gln Ser Gly Trp Leu Ala His Asp Phe Leu His

His Gln Val Phe Thr Lys Arg Lys His Gly Asp Leu Gly Gly Leu Phe

5	Tr	p G	ly As 19	sn Le 95	eu Me	t Gl	n Gl	у Ту 20	r Se O	r Va	l Gl	n Tr	р Tr 20	р Ly 5	's As	n Lys	
	5	Hi	s As 21	in Gl .0	ly Hi	s Hi	s Al	a Val 21!	l Pr	O As	n Lei	ı His	220	s Se O	r Se	r Al	a Val
	10	Al 22	a G1 5	n As	p Gl	y As	p Pro 23	o As <u>r</u> O	o Il	e As _l	p Thi	235	Pro	o Le	u Le	u Al	a Trp 240
	15	Se	r Va	1 G1	n Gl	n Ala 24!	a Gl1 5	n Ser	Ty:	r Arg	g Glu 250	ı Lev	ı Glr	ı Ala	a Asj	p Gl ₃ 25!	y Lys 5
	20	Ası	Se	r Gl	у Le 26	u Vai 0	l Lys	s Phe	e Mei	11e 265	e Arg	, Asn	Glr	ı Sei	ту: 270		∋ Tyr
		Phe	e Pr	0 Il 27	e Le	u Lev	ı Lev	ı Ala	. Arg 280	J Leu	ser	Trp	Leu	Asr 285	ı Glu	ı Ser	. Phe
	25	Lys	29	s Ala	a Pho	e Gly	Leu	Gly 295	Ala	ı Ala	Ser	Glu	Asn 300	. Ala	. Ala	. Leu	Glu
	30	Leu 305	Ly:	s Ala	a Lys	s Gly	Leu 310	Gln	Tyr	Pro	Leu	Leu 315	Glu	Lys	Ala	Gly	11e 320
	35	Leu	. Lev	l His	з Туз	7 Ala 325	Trp	Met	Leu	Thr	Val 330	Ser	Ser	Gly	Phe	Gly 335	
	40	Phe	Ser	Phe	340	Tyr	Thr	Ala	Phe	Tyr 345	Phe	Leu	Thr	Ala	Thr 350	Ala	Ser
		Cys	Gly	Phe 355	Leu	Leu	Ala	Ile	Val 360	Phe	Gly	Leu	Gly	His 365	Asn	Gly	Met
	45	Ala	Thr 370	Tyr	Asn	Ala	Asp	Ala 375	Arg	Pro	Asp	Phe	Trp 380	Lys	Leu	Gln	Val
	50	Thr 385	Thr	Thr	Arg	Asn	Val 390	Thr	Gly	Gly	His	Gly 395	Phe	Pro	Gln	Ala	Phe 400
	55	Val	Asp	Trp	Phe	Cys 405	Gly	Gly	Leu	Gln	Tyr 410	Gln '	Val	Asp	His	His 415	Leu
	60	Phe	Pro	Ser	Leu 420	Pro	Arg	His .	Asn	Leu 425	Ala :	Lys '	Thr :	His	Ala 430	Leu	Val
J		Glu	Ser	Phe	Cys	Lys	Glu	Trp (Gly	Val (Gln :	Tyr I	His (Glu .	Ala .	Asp	Leu

BASF Plant Science GmbH 20030015 PF 54305 DE

111
435
440
440
445

Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val Ala Gly

5 450 455 460

Glu Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met 465 470 475

Figur 1: Aminosäure-Sequenzvergleich von *C. elegans* LPLATs (Ce-T06E8.1 und Ce-F59F4.4) mit der *M. musculus* LPAAT (Mm-NP061350).

Mm-NP061350 Ce-T06E8.1 Ce-F59F4.4	1 MELWPGAWIA MENFWSI MEF	LLLLLELLES VVFFLESIEF LAILFEIAGL	TLWFCSSSAK ILYNISTVCH LLLAQLPVIG		50 WIIFLAILAI TIILHGMEVC CLIIGGFLGG
Mm-NP061350 Ce-T06E8.1 Ce-F59F4.4	51 PVCAVRGRNV VTMIPSWLNG LASIPFGKSP	ENMKIERLLL KGADYWFHSF NNHFRMFKIF	LHAKYLYG FYWCKWTGYH QAMTWPMGYR	VEWRGAHHFP TTWYGYEKTQ FELIRNSEILH	100 PTOPYWWSN VEGPAWVICN DKKPYELIAN
Mm-NP061350 Ce-T06E8.1 Ce-F59F4.4	101 HOSSLDELGM HOSSLDELSM HOSALDYLGM	MEVLPDRCVP ASIWPKNCVV SFAWPVDCVV	iakreilwag MMKRIIAKVP MLKSSIKYLP	SAGLACMLAG FFNLGAMFSN GFNLCAMLCD	150 LIFEERKRTG FIFIERYNRE SVYINRFSKE
Mm-NP061350 Ce-T06E8.1 Ce-F59F4.4	151 DAESVMSEVA RAMASVDYCA KAEKTVDTTL	QTOLTQDVRV SEMKNRNLKI HELVTKKREV	WYTPEGTRNH WYTPEGTRNR WIYPEGTRNA	ngsmäpfkäg eggfäpfkäg epeilipfkäg	200 AFHEAVQAQV AFNIAVRAQI AFIIIAKQAKI
Mm-NP061350 Ce-T06E8.1 Ce-F59F4.4	201 PITPIVMSSY PITPVVFSDY PIXPCVFSSH	QDFYSKKEÄR RDFYSKPGÄY KFFYSHAEÄR	FTSPGRCOVR FKNDGEVVER LTS.GNCIED	VLPPVSTEGL VLDATPTKGL TLPEVDSS	250 TPDDVPALAD TLDDVSELSD KFDSIDDLSA
Mm-NP061350 Ce-T06E8.1 Ce-F59F4.4	251 SVRHSMLTIF MCRDVMLAAY HCRKIMQAHR	RETSTDGLGG KEVTLEAQQR EKUDAEAANL		285 GEARL GKKSE	

Figur 2: Fettsäureprofile von transgenen C13ABYS86 S. cerevisiae-Zellen

Retentionszeit

Figur 3: Fettsäureprofile von transgenen C13ABYS86 S. cerevisiae-Zellen

Figur 4: Elongation exogen applizierter $18:2^{\Delta 9,12}$ bzw. $18:3^{\Delta 9,12,15}$ im Anschluss an ihre endogene Δ -6-Desaturierung (Daten aus Fig. 2 und 3).

Figur 5: Fettsäure-Profile von transgenen INVSc1 S. cerevisiae-Zellen

Figur 6: Fettsäure-Profile von transgenen INVSc1 S. cerevisiae-Zellen.

Figur 7: Acyl-CoA-Zusammensetzung transgener INVSc1 Hefen, die mit den Vektoren pESCLeu PpD6Pse1/pYes2 (A) oder pESCLeu-PpD6-Pse1/pYes2-T06E8.1 (B) transformiert worden waren.

Figur 8: Vektorkarte von pSUN3CeLPLAT

Figur 9A: Vektorkarte von pGPTV LeB4-700 + T06E8.1

Figur 9B: Vektorkarte von pGPTV USP/OCS-1,2,3 PSE1(Pp)+D6-Des(Pt)+2AT (T06E8-1)

pGPTV/USP/OCS-1,2,3 PSE1(Pp) D6-Des(Pt)-2 AT(T06E8-1)

Figur 10A: Biosynthese-Weg von LCPUFAs

Figur 10B: Biosynthese-Weg von LCPUFAs

