OCE 496: Senior Design II -Outline-

University of Rhode Island Kingston, Rhode Island May 1, 2014

Contents

1	Intr	roduction	4				
	1.1	Objectives	4				
		1.1.1 Phase One	4				
		1.1.2 Phase Two	4				
	1.2	Layout	4				
2	Fini	ite Element Model (FEM)	5				
	2.1	Introduction	5				
		2.1.1 Background of Claiborne Pell Bridge	5				
		2.1.2 Introduction of FEM	5				
	2.2	Abaqus FEM Verification	5				
		2.2.1 L Beam Analysis	5				
	2.3	· · · · · · · · · · · · · · · · · · ·	5				
		2.3.1 Modeling Large Suspension Bridges	5				
			5				
		2.3.3 Limitations of Abaqus FEM	5				
3	Instrumentation Package 6						
	3.1	<u> </u>	6				
	3.2	Microprocessor	6				
		3.2.1 Necessary Specifications	6				
		3.2.2 Platform Options	6				
		·	6				
	3.3						
			7				
			7				
		3.3.3 GPS Receiver	7				
			7				
			7				
	3.4		7				
			7				
		v	7				
	3.5		7				
	3.6	8	7				
		0	7				
		0	7				

		3.6.3	Battery Selection	7			
4	Data Collection 8						
	4.1	Phase	One Data Collection	8			
		4.1.1	6g Tri-Axial Accelerometer Data	8			
	4.2	Phase	Two Data Collection	8			
		4.2.1	6g Tri-Axial Accelerometer Data	8			
		4.2.2	1.5g Tri-Axial Accelerometer Data	8			
		4.2.3	Cell Phone Accelerometer	8			
		4.2.4	Battery Discharge Curve	8			
		4.2.5	Experimental Observed Efficiency	8			
5	Data Analysis						
	5.1		One Data Analysis	9			
		5.1.1	Comparison of Preliminary Abaqus Model and Preliminary Data	9			
	5.2	Phase	Two Data Analysis	9			
		5.2.1	Comparison of Developed Abaqus Model with Literature	9			
		5.2.2	Comparison of Developed Abaqus Model with Developed Abaqus Model .	9			
6	Future Development 10						
	6.1	Instru	mentation	10			
		6.1.1	Integration of Strain Gauge	10			
		6.1.2	Wireless Transmission	10			
		6.1.3	GPS Time Synchronization	10			
		6.1.4		10			
	6.2	FEM		10			
		6.2.1		10			
		6.2.2	•	10			
7	Conclusion 1						

Introduction

- 1.1 Objectives
- 1.1.1 Phase One
- 1.1.2 Phase Two
- 1.2 Layout

Finite Element Model (FEM)

- 2.1 Introduction
- 2.1.1 Background of Claiborne Pell Bridge
- 2.1.2 Introduction of FEM
- 2.2 Abaqus FEM Verification
- 2.2.1 L Beam Analysis
- 2.3 Claiborne Pell Bridge Model
- 2.3.1 Modeling Large Suspension Bridges
- 2.3.2 Model Process
- 2.3.3 Limitations of Abaqus FEM

Instrumentation Package

- 3.1 Introduction
- 3.2 Microprocessor
- 3.2.1 Necessary Specifications
- 3.2.2 Platform Options
- 3.2.3 Final Platform

3.3 Sensors

3.3.1 Accelerometer

Necessary Specifications

Sensor Options

Sensor Selection

3.3.2 Strain Gauge

Necessary Specifications

Sensor Options

Sensor Selection

3.3.3 GPS Receiver

Necessary Specifications

Sensor Options

Sensor Selection

3.3.4 CORS

3.3.5 Analog to Digital Converter

Necessary Specifications

Platform Options

3.4 Electronics Design

- 3.4.1 Circuitry
- 3.4.2 Printed Circuit Board
- 3.5 Software Design
- 3.6 Package Power
- 3.6.1 Power Budget
- 3.6.2 Energy Scavenging Potential

Wind Potential

Solar Potential

3.6.3 Battery Selection

Data Collection

- 4.1 Phase One Data Collection
- 4.1.1 6g Tri-Axial Accelerometer Data
- 4.2 Phase Two Data Collection
- 4.2.1 6g Tri-Axial Accelerometer Data
- 4.2.2 1.5g Tri-Axial Accelerometer Data
- 4.2.3 Cell Phone Accelerometer
- 4.2.4 Battery Discharge Curve
- 4.2.5 Experimental Observed Efficiency

Data Analysis

- 5.1 Phase One Data Analysis
- 5.1.1 Comparison of Preliminary Abaqus Model and Preliminary Data
- 5.2 Phase Two Data Analysis
- 5.2.1 Comparison of Developed Abaqus Model with Literature
- 5.2.2 Comparison of Developed Abaqus Model with Developed Abaqus Model

Future Development

- 6.1 Instrumentation
- 6.1.1 Integration of Strain Gauge
- 6.1.2 Wireless Transmission
- 6.1.3 GPS Time Synchronization
- 6.1.4 Package Assembly

Fabrication of Circuit Board

Battery Integration

Package Enclosure

Power Management

Package Location

- 6.2 FEM
- 6.2.1 Model Improvements
- 6.2.2 Dynamic Loading

Conclusion