

TWR-K60N512 Tower Module

User's Manual

Rev. 1.0

Table of Contents

1	TWR-K60N512 and TWR-K60N512-KIT Overview	4
	1.1 Contents	4
	1.2 Features	
	1.3 Getting Started	
	1.4 Reference Documents	
2	Hardware Description	6
	2.1 K60N512 Microcontroller	
	2.2 Clocking	8
	2.3 System Power	
	2.3.1 RTC VBAT	
	2.4 Debug Interface	9
	2.4.1 OSJTAG	
	2.4.2 Cortex Debug+ETM Connector	
	2.5 Infrared Port	10
	2.6 Accelerometer	
	2.7 Potentiometer, Pushbuttons, LEDs	10
	2.8 General Purpose Tower Plug-in (TWRPI) Socket	10
	2.9 Touch Interface	11
	2.10 Ethernet	12
	2.11 USB	13
	2.12 Secure Digital Card Slot	13
	2.13 External Bus Interface – FlexBus	
3	Jumper Table	13
4	Input/Output Connectors and Pin Usage Table	14
5	Tower Elevator Connections	15

List of Figures

Figure 1. Freescale Tower System Overview	4
Figure 2. Callouts on front side of the TWR-K60N512	
Figure 3. Callouts on back side of the TWR-K60N512	
Figure 4. TWR-K60N512 Block Diagram	
Figure 5. Infrared Port Implementation	
List of Tables	
Table 1. Cortex Debug+ETM Connector Pinout	9
Table 2. General Purpose TWRPI socket pinout	11
Table 3. Touch TWRPI socket pinout	
Table 4. Ethernet operation jumper settings	
Table 5. TWR-K60N512 Jumper Table	
Table 6. I/O Connectors and Pin Usage Table	
Table 7. TWR-K60N512 Primary Connector Pinout	16

Revision History

Revision	Date	Changes
1.0	Nov 9, 2010	Initial Release for PWA 700-26548 Rev A

1 TWR-K60N512 and TWR-K60N512-KIT Overview

The TWR-K60N512 is a Tower Controller Module compatible with the Freescale Tower System. It can function as a stand-alone, low-cost platform for the evaluation of the Kinetis K10, K20 and K60 family of microcontroller (MCU) devices. The TWR-K60N512 features the Kinetis K60 low-power microcontroller based on the ARM® Cortex™-M4 architecture with USB 2.0 full-speed OTG controller and 10/100 Mbps Ethernet MAC.

The TWR-K60N512 is available as a stand-alone product or as a kit (TWR-K60N512-KIT) with the Tower Elevator Modules (TWR-ELEV) and the Tower Serial Module (TWR-SER). The TWR-K60N512 can also be combined with other Freescale Tower peripheral modules to create development platforms for a wide variety of applications. 0 provides an overview of the Freescale Tower System.

Controller Module Primary Elevator Tower MCU/MPU Common serial board and expansion bus signals · Works stand-alone or in Tower System Two 2x80 connectors on · Features integrated backside for easy debugging interface signal access and for easy programming side-mounting and run-control via board (LCD module) standard USB cable Power regulation circuitry Secondary Elevator Standardized signal Additional and assignments secondary serial and expansion bus signals Mounting holes Standardized signal assignments **Board Connectors** · Mounting holes and Four card-edge expansion connectors connectors for side-mounting peripheral boards Uses PCI Express[®] connectors (x16, 90 mm/ Size **Peripheral Module** 3.5" long, 164 pins)

Figure 1. Freescale Tower System Overview

Examples include serial interface module,

memory expansion module and Wi-Fi®

1.1 Contents

The TWR-K60N512 contents include:

Tower is approx. 3.5" H x 3.5" W

x 3.5" D when fully assembled

- TWR-K60N512 board assembly
- 3ft USB cable
- Interactive DVD with software installers and documentation
- Quick Start Guide

The TWR-K60N512-KIT contains:

- TWR-K60N512 MCU module
- TWR-ELEV Primary and Secondary Elevator Modules
- TWR-SER Serial module including USB host/device/OTG, Ethernet, CAN, RS232 and RS485

1.2 Features

Figure 2 and Figure 3 show the TWR-K60N512 with some of the key features called out. The following list summarizes the features of the TWR-K60N512 Tower MCU Module:

- Tower compatible microcontroller module
- MK60N512VMD100: K60N512 in a 144 MAPBGA with 100MHz operation
- Touch Tower Plug-in Socket
- General purpose Tower Plug-in (TWRPI) socket
- On-board JTAG debug circuit (OSJTAG) with virtual serial port
- Three axis accelerometer (MMA7660)
- Four (4) user-controllable LEDs
- Four (4) capacitive touch pads
- Two (2) user pushbutton switches
- Potentiometer
- Battery Holder for 20mm lithium battery (e.g. 2032, 2025)
- SD Card slot

Figure 2. Callouts on front side of the TWR-K60N512

Figure 3. Callouts on back side of the TWR-K60N512

1.3 Getting Started

Follow the Quick Start Guide found printed in the TWR-K60N512 box or the interactive DVD for the list of recommended steps for getting started. There are also lab walk-through guides available on the tool support page for the TWR-K60N512: http://www.freescale.com/TWR-K60N512.

1.4 Reference Documents

The documents listed below should be referenced for more information on the Kinetis family, Tower System, and MCU Modules. These can be found in the documentation section of freescale.com/kinetis.

- TWR-K60N512-QSG: Quick Start Guide
- TWR-K60N512-SCH: Schematics
- TWR-K60N512-PWA: Design Package
- TWRPI-SLCD-SCH: Schematics
- TWRPI-SLCD-PWA: Design Package
- K60 Family Product Brief
- K60 Family Reference Manual
- Kinetis Quick Reference User Guide (QRUG)
- Tower Configuration Tool

2 Hardware Description

The TWR-K60N512 is a Tower Controller Module featuring the MK60N512VMD100—an ARM Cortex-M4 based microcontroller with segment LCD and USB 2.0 full-speed OTG controllers in a 144 MAPBGA package with a maximum core operating frequency of 100MHz. It is intended for use in the Freescale Tower System but can operate stand-alone. An on-board debug circuit, OSJTAG, provides a JTAG

debug interface and a power supply input through a single USB mini-AB connector. Figure 4 shows a block diagram of the TWR-K60N512. The following sections describe the hardware in more detail.

Figure 4. TWR-K60N512 Block Diagram

2.1 K60N512 Microcontroller

The TWR-K60N512 module features the MK60N512VMD100. The K60 microcontroller family is part of the Kinetis portfolio of devices built around an ARM Cortex-M4 core. Refer to the *K60 Family Product Brief* and the *K60 Family Reference Manual* for comprehensive information on the MK60N512VMD100 device. The key features are listed here:

- 32-bit ARM Cortex-M4 core with DSP instructions
- 100MHz maximum core operating frequency
- 144 MAPBGA, 13mm x 13mm, 1.0mm pitch package
- 1.71V 3.6V operating voltage input range
- 256 Kbytes of program flash, 64 Kbytes of static RAM
- FlexMemory consisting of 256 Kbytes of FlexNVM (non-volatile flash memory that can be used as program flash, data flash, backup EEPROM of variable endurance and size) and 4 Kbytes of FlexRAM (RAM memory that can be used as traditional RAM, as high-endurance EEPROM storage, or flash programming acceleration RAM)
- External bus interface
- Power management controller with 10 different power modes
- Multi-purpose clock generator with PLL and FLL operation modes
- 16-bit SAR ADC, 12-bit DAC

- High-speed analog comparator with 6-bit DAC
- Programmable voltage reference
- USB full-speed/low-speed OTG/Host/Device controller with device charge detect
- 10/100 Mbps Ethernet MAC
- SPI, I²C (w/ SMBUS support), UART (w/ ISO7816 and IrDA), CAN, I²S
- SD Host Controller (SDHC)
- GPIO with pin interrupt support, DMA request capability, digital glitch filtering
- Capacitive touch sensing inputs (TSI)
- Debug interfaces: JTAG, cJTAG, SWD
- Trace: TPIO, FPB, DWT, ITM, ETM, ETB

2.2 Clocking

The Kinetis MCUs start up from an internal digitally controlled oscillator (DCO). Software can enable one or two external oscillators if desired. The external oscillator for the Multipurpose Clock Generator (MCG) module can range from 32.768 KHz up to a 32 MHz crystal or ceramic resonator. The external oscillator for the Real Time Clock (RTC) module accepts a 32.768 kHz crystal.

The EXTAL pin of the main external oscillator can also be driven directly from an external clock source. The TWR-K60N512 features a 50 MHz on-board clock oscillator as seen in sheet 4 of the schematics. However, when the K60 Ethernet MAC is operating in RMII mode, synchronization of the MCU input clock and the 50 MHz RMII transfer clock is important. In this mode, the MCU input clock must be kept in phase with the 50 MHz clock supplied to the external PHY. Therefore, the TWR-K60N512 provides the option (see description for J6 in Table 5) to select the clock input to the MCU from 1) the on-board 50MHz source or 2) an external clock from the CLKINO pin on the Primary Connector. When the K60 is operating in Ethernet RMII mode, the Tower peripheral module implementing the RMII PHY device should drive a 50 MHz clock on the CLKINO signal that is kept in phase with the clock supplied to the RMII PHY. Refer to section 2.10 "Ethernet" for more information.

2.3 System Power

In stand-alone operation, the main power source for the TWR-K60N512 module is derived from the 5.0V input from either the USB mini-B connector, J13, or the debug header, J11, when a shunt is placed on jumper J12. A low-dropout regulator provides a 3.3V supply from the 5.0V input voltage. Refer to sheet 5 of the TWR-K60N512 schematics for more details.

When installed into a Tower System, the TWR-K60N512 can be powered from either an on-board source or from another source in the assembled Tower System. If both the on-board and off-board sources are available, the TWR-K60N512 will default to the off-board source.

The 3.3V power supplied to the MCU is routed through a jumper, J8. The jumper shunt can be removed to allow for either 1) alternate MCU supply voltages to be injected or 2) the measurement of power consumed by the MCU.

2.3.1 RTC VBAT

The Real Time Clock (RTC) module on the K60 has two modes of operation, system power-up and system power-down. During system power-down, the RTC is powered from the backup power supply,

VBAT. The TWR-K60N512 provides a battery holder for a coin cell battery that can be used as the VBAT supply. The holder can accept common 20mm diameter 3V lithium coin cell batteries (e.g. 2032, 2025). Refer to the description J9 in Table 5 "TWR-K60N512 Jumper Table" for more information.

2.4 Debug Interface

There are two debug interface options provided: the on-board OSJTAG circuit and an external Cortex Debug+ETM connector.

2.4.1 OSJTAG

An on-board MC9S08JM60 based Open Source JTAG (OSJTAG) circuit provides a JTAG debug interface to the K60N512. A standard USB A male to Mini-B male cable (provided) can be used for debugging via the USB connector, J16. The OSJTAG interface also provides a USB to serial bridge. Drivers for the OSJTAG interface are provided in the P&E Micro Kinetis Tower Toolkit (available on the included DVD).

Note: The port pins connected to the OSJTAG USB-to-serial bridge (PTD6 and PTD7) are also connected to the infrared interface. Refer to Table 6 "I/O Connectors and Pin Usage Table" and Table 5 "TWR-K60N512 Jumper Table" for more information.

2.4.2 Cortex Debug+ETM Connector

The Cortex Debug+ETM connector is a 20-pin (0.05") connector providing access to the SWD, SWV, JTAG, cJTAG, EzPort and ETM trace (4-bit) signals available on the K60 device. The pinout and K60 pin connections to the debug connector, J14, is shown in Table 1Table 1.

Table 1. Cortex Debug+ETM Connector Pinout

Pin	Function	TWR-K60N512 Connection	
1	VTref	3.3V MCU supply (P3V3_MCU)	
2	TMS / SWDIO	PTA3/SCI0_RTS_b/FTM0_CH0/JTAG_MS/SWD_DIO	
3	GND	GND	
4	TCK / SWCLK	PTA0/SCI0_CTS_b/FTM0_CH5/JTAG_CLK/SWD_CLK/EZP_CLK	
5	GND	GND	
6	TDO / SWO	PTA2/SCI0_TX/FTM0_CH7/JTAG_DO/TRACE_SWO/EZP_DO	
7	Key	_	
8	TDI	PTA1/SCI0_RX/FTM0_CH6/JTAG_DI/EZP_DI	
9	GNDDetect	PTA4/FTM0_CH1/MS/NMI_b/EZP_CS_b	
10	nRESET	RESET_b	
11	Target Power	5V supply (via J12)	
12	TRACECLK	PTA6/FTM0_CH3/TRACE_CLKOUT	
13	Target Power	5V supply (via J12)	
14	TRACEDATA[0]	PTA10/FTM2_CH0/FTM2_QD_PHA/TRACE_D0	
15	GND	GND	
16	TRACEDATA[1]	PTA9/FTM1_CH1/FTM1_QD_PHB/TRACE_D1	
17	GND	GND	
18	TRACEDATA[2]	PTA8/FTM1_CH0/FTM1_QD_PHA/TRACE_D2	
19	GND	GND	

Pin	Function	TWR-K60N512 Connection
20	TRACEDATA[3]	PTA7/FTM0_CH4/TRACE_D3

Note: Many of the trace signals connected to the debug connector are also connected elsewhere on the TWR-K60N512. Refer to Table 6 "I/O Connectors and Pin Usage Table" and Table 7 "TWR-K60N512 Primary Connector Pinout" for more information.

2.5 Infrared Port

An infrared transmit and receive interface is implemented as shown in Figure 5 below. The CMT_IRO pin directly drives an infrared diode. The receiver uses an infrared phototransistor connected to an on-chip analog comparator through a low-pass filter. Internal to the K60 device, the output of the analog comparator can be routed to a UART module for easier processing of the incoming data stream.

Figure 5. Infrared Port Implementation

2.6 Accelerometer

An MMA7660 digital accelerometer is connected to the K60 MCU through an I2C interface and a GPIO/IRQ signal. Refer to Table 6 "I/O Connectors and Pin Usage Table" for connection details.

2.7 Potentiometer, Pushbuttons, LEDs

The TWR-K60N512 features two pushbutton switches connected to GPIO/interrupt signals, one pushbutton connected to the master reset signal, four capacitive touch pad electrodes, four user-controllable LEDs, and a potentiometer connected to an ADC input signal. Refer to Table 6 "I/O Connectors and Pin Usage Table" for information about which port pins are connected to these features.

2.8 General Purpose Tower Plug-in (TWRPI) Socket

The TWR-K60N512 features a socket that can accept a variety of different Tower Plug-in modules featuring sensors, RF transceivers, and more. The General Purpose TWRPI socket provides access to

I2C, SPI, IRQs, GPIOs, timers, analog conversion signals, TWRPI ID signals, reset, and voltage supplies. The pinout for the TWRPI Socket is defined in Table 2.

Refer to Table 6 "I/O Connectors and Pin Usage Table" for the specific K60 pin connections to the General Purpose TWRPI socket.

Table 2. General Purpose TWRPI socket pinout

Left-side 2x10 Connector

Pin Description 1 5V VCC 3.3 V VCC 2 3 **GND** 3.3V VDDA 4 5 VSS (Analog GND) VSS (Analog GND) 6 7 VSS (Analog GND) 8 ADC: Analog 0 9 ADC: Analog 1 10 VSS (Analog GND) 11 VSS (Analog GND) 12 ADC: Analog 2 13 VSS (Analog GND) 14 VSS (Analog GND) 15 **GND** 16 **GND** 17 ADC: TWRPI ID 0 ADC: TWRPI ID 1 18 19 **GND** 20 Reset

Pin Description

Right-side 2x10 Connector

1	GND
2	GND
3	I2C: SCL
4	I2C: SDA
5	GND
6	GND
7	GND
8	GND
9	SPI: MISO
10	SPI: MOSI
11	SPI: SS
12	SPI: CLK
13	GND
14	GND
15	GPIO: GPIO0/IRQ
16	GPIO: GPIO1/IRQ
17	GPIO: GPIO2
18	GPIO: GPIO3
19	GPIO: GPIO4/Timer
20	GPIO: GPIO5/Timer

2.9 Touch Interface

The touch sensing input (TSI) module of the Kinetis MCUs provides capacitive touch sensing detection with high sensitivity and enhanced robustness. Each TSI pin implements the capacitive measurement of an electrode.

The TWR-K60N512 provides two methods for evaluating the TSI module. There are four individual electrodes on-board the TWR-K60N512 that simulate pushbuttons. Additionally, twelve TSI signals are connected to a Touch Tower Plug-in (TWRPI) socket that can accept Touch TWRPI daughter cards that may feature keypads, rotary dials, sliders, etc.

The pinout for the Touch TWRPI socket is defined in Table 3. Refer to Table 6 "I/O Connectors and Pin Usage Table" for the specific K60 pin connections to the Touch TWRPI socket.

Table 3. Touch TWRPI socket pinout

Pin	Description		
1	5V VCC		
2	3.3 V VCC		
3	Electrode 0		
4	3.3V VDDA		
5	Electrode 1		
6	VSS (Analog GND)		
7	Electrode 2		
8	Electrode 3		
9	Electrode 4		
10	Electrode 5		
11	Electrode 6		
12	Electrode 7		
13	Electrode 8		
14	Electrode 9		
15	Electrode 10		
16	Electrode 11		
17	ADC: TWRPI ID 0		
18	ADC: TWRPI ID 1		
19	GND		
20	Reset		

2.10 Ethernet

The K60N512 features a 10/100 Mbps Ethernet MAC with MII and RMII interfaces. The TWR-K60N512 routes the RMII interface signals from the K60 MCU to the Primary Connector, allowing the connection to an external Ethernet PHY device on a Tower peripheral module.

When the K60 Ethernet MAC is operating in RMII mode, synchronization of the MCU clock and the 50 MHz RMII transfer clock is important. The MCU input clock must be kept in phase with the 50 MHz clock supplied to the external PHY. Therefore, the TWR-K60N512 provides the option (see description for J6 in Table 5) to clock the MCU from an external clock from the CLKINO pin on the Primary Connector. The Tower peripheral module implementing the RMII PHY device should drive a 50 MHz clock on the CLKINO pin that is kept in phase with the clock supplied to the RMII PHY.

The TWR-SER module that comes as part of the TWR-K60N512-KIT provides a 10/100 Ethernet PHY that can operate in either MII or RMII mode. By default the PHY is boot strapped to operate in MII mode; therefore jumper configuration changes may be required. Table 4 shows the settings for proper interoperability between the Ethernet interface on the TWR-SER and the TWR-K60N512.

Table 4. Ethernet operation jumper settings

Tower Module	Jumper	Setting
TWR-K60N512	J6	2-3
TWR-SER	J2	3-4
TWR-SER	J3	2-3
TWR-SER	J12	9-10

2.11 USB

The K60N512 features a USB full-speed/low-speed OTG/Host/Device controller with built-in transceiver. The TWR-K60N512 routes the USB D+ and D- signals from the K60 MCU to the Primary Connector, allowing the connection to external USB connectors or additional circuitry on a Tower peripheral module.

The TWR-SER module included as part of the TWR-K60N512-KIT provides a USB OTG/Host/Device interface with a mini-AB USB connector. There are many configuration options that can be selected to evaluate different USB modes of operation. By default, the TWR-SER is configured for USB Device operation. Please refer to the documentation included with the TWR-SER for more information on the configuration options.

2.12 Secure Digital Card Slot

A Secure Digital (SD) card slot is available on the TWR-K60N512 connected to the SD Host Controller (SDHC) signals of the K60 MCU. This slot will accept SD memory cards as well as Secure Digital Input Output (SDIO) cards. Refer to Table 6 "I/O Connectors and Pin Usage Table" for the SDHC signal connection details.

2.13 External Bus Interface - FlexBus

The K60 device features a multi-function external bus interface called the FlexBus interface controller capable of interfacing to slave-only devices. The FlexBus interface is not used directly on the TWR-K60N512. Instead, a subset of the FlexBus is connected to the Primary Connector so that the external bus can access devices on Tower peripheral modules. Refer to Table 7 "TWR-K60N512 Primary Connector Pinout" and sheet 8 of the TWR-K60N512 schematics for more details.

3 Jumper Table

There are several jumpers on the TWR-K60N512 that provide configuration selection and signal isolation. Refer to the following table for details. The default installed jumper settings are shown in bold with asterisks.

Jumper Option Setting **Description** Connect USBO VBUS from Primary Elevator (A57) to *ON* **USB VREGIN Power VREGIN** J1 Connection Disconnect VREGIN from Primary Elevator OFF ON Connect PTD7/CMT IRO/UARTO TX to IR Transmitter (D1) **Infrared Transmitter** J2 Disconnect PTD7/CMT IRO/UARTO TX from IR Transmitter Connection *OFF* (D1) *1-2* **Clock Input Source** Connect main EXTAL to on-board 50 MHz clock J6 Selection 2-3 Connect EXTAL to CLKINO signal on Primary Elevator (B24) *ON* Connect on-board 3.3V supply to MCU J8 **MCU Power Connection** Isolate MCU from power supply (allows for external supply OFF or power measurements)

Table 5. TWR-K60N512 Jumper Table

	VBAT Power Selection	*1-2*	Connect VBAT to on-board 3.3V supply
J9		2-3	Connect VBAT to the higher voltage between on-board 3.3V supply or coin-cell supply
J10 OSJTAG Mode Selection		ON	OSJTAG bootloader mode (OSJTAG firmware reprogramming)
		OFF	Debugger mode
J12	JTAG Power Connection	ON	Connect on-board 5V supply to JTAG port (supports powering board from external JTAG probe)
		OFF	Disconnect on-board 5V supply from JTAG port

4 Input/Output Connectors and Pin Usage Table

The following table provides details on which K60N512 pins are using to communicate with the LEDs, switches, and other I/O interfaces onboard the TWR-K60N512.

Note: Some port pins are used in multiple interfaces on-board and many are potentially connected to off-board resources via the Primary and Secondary Connectors. Take care to avoid attempted simultaneous usage of mutually exclusive features.

Table 6. I/O Connectors and Pin Usage Table

Feature	Connection	Port Pin	Pin Function
OSJTAG USB-to-serial	OSJTAG Bridge RX Data	PTE9	UART5_RX
Bridge	OSJTAG Bridge TX Data	PTE8	UART5_TX
	SD Clock	PTE2	SDHC0_DCLK
	SD Command	PTE3	SDHC0_CMD
	SD Data0	PTE1	SDHC0_D0
SD Card Slot	SD Data1	PTE0	SDHC0_D1
3D Card Slot	SD Data2	PTE5	SDHC0_D2
	SD Data3	PTE4	SDHC0_D3
	SD Card Detect	PTE28	PTE28
	SD Write Protect	PTE27	PTE27
Infrared Port	IR Transmit	PTD7	CMT_IRO
illifated Port	IR Receive	PTC6	CMP0_IN0
	SW1 (IRQ0)	PTA19	PTA19
Pushbuttons	SW2 (IRQ1)	PTE26	PTE26
	SW3 (RESET)	RESET_b	RESET_b
	E1 / Touch	PTA4	TSI0_CH5
Touch Pads	E2 / Touch	РТВ3	TSIO_CH8
Touch Paus	E3 / Touch	PTB2	TSIO_CH7
	E4 / Touch	PTB16	TSIO_CH9
	E1 / Orange LED	PTA11	PTA11
LEDs	E2 / Yellow LED	PTA28	PTA28
	E3 / Green LED	PTA29	PTA29

Feature	Connection	Port Pin	Pin Function
	E4 / Blue LED		PTA10
Potentiometer	Potentiometer (R71)	_	ADC1_DM1
	I2C SDA	PTD9	I2C0_SDA
Accelerometer	I2C SCL	PTD8	I2C0_SCL
	IRQ	PTD10	PTD10
	TWRPI ANO (J4 Pin 8)	_	ADC0_DP0/ADC1_DP3
	TWRPI AN1 (J4 Pin 9)	_	ADC0_DM0/ADC1_DM3
	TWRPI AN2 (J4 Pin 12)	_	ADC1_DP0/ADC0_DP3
	TWRPI ID0 (J4 Pin 17)	_	ADC0_DP1
	TWRPI ID1 (J4 Pin 18)	_	ADC0_DM1
	TWRPI I2C SCL (J5 Pin 3)	PTD8	I2CO_SCL
	TWRPI I2C SDA (J5 Pin 4)	PTD9	I2C0_SDA
General Purpose	TWRPI SPI MISO (J5 Pin 9)	PTD14	SPI2_SIN
TWRPI Socket	TWRPI SPI MOSI (J5 Pin 10)	PTD13	SPI2_SOUT
	TWRPI SPI SS (J5 Pin 11)	PTD15	SPI2_PCS0
	TWRPI SPI CLK (J5 Pin 12)	PTD12	SPI2_SCK
	TWRPI GPIO0 (J5 Pin 15)	PTD10	PTD10
	TWRPI GPIO1 (J5 Pin 16)	PTB8	PTB8
	TWRPI GPIO2 (J5 Pin 17)	PTB9	РТВ9
	TWRPI GPIO3 (J5 Pin 18)	PTA19	PTA19
	TWRPI GPIO4 (J5 Pin 19)	PTE26	PTE26
	Electrode 0 (J3 Pin 3)	PTB0	TSIO_CHO
	Electrode 1 (J3 Pin 5)	PTB1	TSI0_CH6
	Electrode 2 (J3 Pin 7)	PTB2	TSI0_CH7
	Electrode 3 (J3 Pin 8)	PTB3	TSIO_CH8
	Electrode 4 (J3 Pin 9)	PTC0	TSIO_CH13
	Electrode 5 (J3 Pin 10)	PTC1	TSIO_CH14
Touch Pad / Segment	Electrode 6 (J3 Pin 11)	PTC2	TSIO_CH15
LCD TWRPI Socket	Electrode 7 (J3 Pin 12)	PTA4	TSIO_CH5
	Electrode 8 (J3 Pin 13)	PTB16	TSIO_CH9
	Electrode 9 (J3 Pin 14)	PTB17	TSI0_CH10
	Electrode 10 (J3 Pin 15)	PTB18	TSIO_CH11
	Electrode 11 (J3 Pin 16)	PTB19	TSI0_CH12
	TWRPI IDO (J3 Pin 17)	_	ADC1_DP1
	TWRPI ID1 (J3 Pin 18)	_	ADC1_SE16

5 Tower Elevator Connections

The TWR-K60N512 features two expansion card-edge connectors that interface to the Primary and Secondary Elevator boards in a Tower system. The Primary Connector (comprised of sides A and B) is utilized by the TWR-K60N512 while the Secondary Connector (comprised of sides C and D) only makes connections to the GND pins. Table 7 provides the pinout for the Primary Connector.

Table 7. TWR-K60N512 Primary Connector Pinout

				ary connector rinout		
Pin #	Side B		Pin #	Side A		
	Name	Usage		Name	Usage	
B1	5V	5.0V Power	A1	5V	5.0V Power	
B2	GND	Ground	A2	GND	Ground	
B3	3.3V	3.3V Power	A3	3.3V	3.3V Power	
B4	ELE_PS_SENSE	Elevator Power Sense	A4	3.3V	3.3V Power	
B5	GND	Ground	A5	GND	Ground	
B6	GND	Ground	A6	GND	Ground	
B7	SDHC_CLK / SPI1_CLK	PTE2	A7	SCL0	PTD8	
B8	SDHC_D3 / SPI1_CS1_b		A8	SDA0	PTD9	
B9	SDHC_D3 / SPI1_CS0_b	PTE4	A9	GPIO9 / CTS1	PTC19	
B10	SDHC_CMD / SPI1_MOSI	PTE1	A10	GPIO8 / SDHC_D2	PTE5	
B11	SDHC_D0 / SPI1_MISO	PTE3	A11	GPIO7 / SD_WP_DET	PTE27	
		Ī	ı			
B12	ETH_COL		A12	ETH_CRS		
B13	ETH_RXER	PTA5	A13	ETH_MDC	PTB1	
B14	ETH_TXCLK		A14	ETH_MDIO	PTB0	
B15	ETH_TXEN	PTA15	A15	ETH_RXCLK		
B16	ETH_TXER		A16	ETH_RXDV	PTA14	
B17	ETH_TXD3		A17	ETH_RXD3		
B18	ETH_TXD2		A18	ETH_RXD2		
B19	ETH_TXD1	PTA17	A19	ETH_RXD1	PTA12	
B20	ETH_TXD0	PTA16	A20	ETH_RXD0	PTA13	
B21	GPIO1 / RTS1	PTC18	A21	SSI_MCLK	PTE6	
B22	GPIO2 / SDHC_D1	PTE0	A22	SSI_BCLK	PTE12	
B23	GPIO3	PTE28	A23	SSI_FS	PTE11	
B24	CLKIN0	PTA18	A24	SSI_RXD	PTE7	
B25	CLKOUT1	PTE26	A25	SSI_TXD	PTE10	
B26	GND	Ground	A26	GND	Ground	
B27	AN7	PTB7	A27	AN3	PGA0_DP/ADC0_DP0/ADC1_DP3	
B28	AN6	PTB6	A28	AN2	PGA0_DM/ADC0_DM0/ADC1_DM3	
B29	AN5	PTB5	A29	AN1	PGA1_DP/ADC1_DP0/ADC0_DP3	
B30	AN4	PTB4	A30	AN0	PGA1_DM/ADC1_DM0/ADC0_DM3	
B31	GND	Ground	A31	GND	Ground	
B32	DAC1	DAC1_OUT	A32	DAC0	DAC0_OUT	
B33	TMR3		A33	TMR1	PTA9	
B34	TMR2	PTD6	A34	TMR0	PTA8	
B35	GPIO4	PTB8	A35	GPIO6	PTB9	
B36	3.3V	3.3V Power	A36	3.3V	3.3V Power	
B37	PWM7	PTA2	A37	PWM3	PTA6	
B38	PWM6	PTA1	A38	PWM2	PTC3	
B39	PWM5	PTD5	A39	PWM1	PTC2	
B40	PWM4	PTA7	A40	PWM0	PTC1	
B41	CANRX0	PTE25	A41	RXD0	PTE25	
B42	CANTX0	PTE24	A42	TXD0	PTE24	
B43	1WIRE		A43	RXD1	PTC16	
B44	SPI0_MISO	PTD14	A44	TXD1	PTC17	
B45	SPI0_MOSI	PTD13	A45	VSS	VSSA	
B46	SPI0_CS0_b	PTD11	A46	VDDA	VDDA	

Pin #	Side B		Di., #	Side A	
	Name	Usage	Pin #	Name	Usage
B47	SPI0_CS1_b	PTD15	A47	VREFA1	VREFH
B48	SPI0_CLK	PTD12	A48	VREFA2	VREFL
B49	GND	Ground	A49	GND	Ground
B50	SCL1	PTD8	A50	GPIO14	
B51	SDA1	PTD9	A51	GPIO15	
B52	GPIO5 / SD_CARD_DET	PTE28	A52	GPIO16	
B53	USB0_DP_PDOWN		A53	GPIO17	
B54	USB0_DM_PDOWN		A54	USB0_DM	USB0_DM
B55	IRQ_H	PTA24	A55	USB0_DP	USB0_DP
B56	IRQ_G	PTA24	A56	USB0_ID	
B57	IRQ_F	PTA25	A57	USB0_VBUS	VREGIN
B58	IRQ_E	PTA25	A58	TMR7	
B59	IRQ_D	PTA26	A59	TMR6	
B60	IRQ_C	PTA26	A60	TMR5	
B61	IRQ_B	PTA27	A61	TMR4	
B62	IRQ_A	PTA27	A62	RSTIN_b	RESET_b
B63	EBI_ALE / EBI_CS1_b	PTD0	A63	RSTOUT_b	RESET_b
B64	EBI_CS0_b	PTD1	A64	CLKOUT0	PTC3
B65	GND	Ground	A65	GND	Ground
B66	EBI_AD15	PTB18	A66	EBI_AD14	PTC0
B67	EBI_AD16	PTB17	A67	EBI_AD13	PTC1
B68	EBI_AD17	PTB16	A68	EBI_AD12	PTC2
B69	EBI_AD18	PTB11	A69	EBI_AD11	PTC4
B70	EBI_AD19	PTB10	A70	EBI_AD10	PTC5
B71	EBI_R/W_b	PTC11	A71	EBI_AD9	PTC6
B72	EBI_OE_b	PTB19	A72	EBI_AD8	PTC7
B73	EBI_D7	PTB20	A73	EBI_AD7	PTC8
B74	EBI_D6	PTB21	A74	EBI_AD6	PTC9
B75	EBI_D5	PTB22	A75	EBI_AD5	PTC10
B76	EBI_D4	PTB23	A76	EBI_AD4	PTD2
B77	EBI_D3	PTC12	A77	EBI_AD3	PTD3
B78	EBI_D2	PTC13	A78	EBI_AD2	PTD4
B79	EBI_D1	PTC14	A79	EBI_AD1	PTD5
B80	EBI_D0	PTC15	A80	EBI_AD0	PTD6
B81	GND	Ground	A81	GND	Ground
B82	3.3V	3.3V Power	A82	3.3V	3.3V Power