

EP3260: Machine Learning Over Networks Lecture 2: Centralized Convex ML (part 1)

Hossein S. Ghadikolaei

Division of Network and Systems Engineering School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Stockholm, Sweden https://sites.google.com/view/mlons2023/home

January 2023

Learning outcomes

- Basic definitions of convexity and convex optimization
- Important properties of smooth and convex functions
- Main (deterministic) iterative algorithms for convex problems
- Connections among them
- Pros and cons of them
- Convergence analysis

Outline

- 1. Student groups
- 2. Basic definitions and properties
- 3. Iterative solution approaches
- 4. Supplements

Outline

- 1. Student groups
- 2. Basic definitions and properties
- 3. Iterative solution approaches

4. Supplements

Student groups

Any question?

Centralized Convex ML (part 1) 2-4

Outline

- 1. Student groups
- 2. Basic definitions and properties

3. Iterative solution approaches

4. Supplements

Basic definitions

Convex combination of points $\mathcal{X} = \{x_i\}_{i \in [n]}$ is $\sum_{i \in [n]} \theta_i x_i$ where $\theta = [\theta_1, \dots, \theta_n]$ form a probability simplex; $\theta \geq 0, \theta^T \mathbf{1} = 1$

Conic combination of x_1 and x_2 is $\theta_1 x_1 + \theta_2 x_2$ where $\theta_i \geq 0$

Convex hull of \mathcal{X} : set of all convex combinations of points in \mathcal{X}

Convex cone of \mathcal{X} : set of all conic combinations of points in \mathcal{X}

Convexity: basic definitions

Convex set \mathcal{X} : $\forall \boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathcal{X}$ and $\theta \in [0, 1]$, $\theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2 \in \mathcal{X}$.

Euclidean/norm ball with radius r centered at x_c :

$$\{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

Norm cone: $\{(\boldsymbol{x},r) \mid \|\boldsymbol{x}\| \leq r\}$

Convexity: basic definitions

Convex function $f: \mathcal{X} \to \mathbb{R}$: if \mathcal{X} is convex and $\forall x_1, x_2 \in \mathcal{X}$ and $\theta \in [0, 1]$:

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2) \tag{1}$$

Assuming differentiability of f, (1) is equivalent to

$$f(x_2) \ge f(x_1) + \nabla f(x_1)^T (x_2 - x_1)$$
 (2)

Local information (gradient) determines a global lower bound

For twice differentiable f, (1) $\leftrightarrow \nabla^2 f(x) \ge 0, \forall x \in \mathcal{X}$: PSD Hessian, non-negative curvature everywhere.

Convexity: some examples

- Operations that preserve convexity: nonnegative weighted sum, composition with affine function, pointwise maximum and supremum, composition, minimization, and perspective
- Examples of convex functions and operations:
 - $\|\boldsymbol{x}\|_p$ for any $p \geq 1$
 - ullet Quadratic function $f(oldsymbol{x}) = oldsymbol{x}^T oldsymbol{A} oldsymbol{x} + oldsymbol{b}^T oldsymbol{x} + oldsymbol{c}$ for symmetric matrix $oldsymbol{A}$

$$\nabla^2 f(\boldsymbol{x}) = 2\boldsymbol{A} \quad \text{convex iff} \ \ \boldsymbol{A} \geq 0$$

- $oldsymbol{oldsymbol{\phi}} f(oldsymbol{x}) = \|oldsymbol{A}oldsymbol{x} oldsymbol{b}\|_2^2$ is convex for any $oldsymbol{A}$ (observe $abla^2 f(oldsymbol{x}) = 2oldsymbol{A}^Toldsymbol{A}$)
- ullet $\operatorname{proj}(oldsymbol{x}, \mathcal{C}) := \inf_{oldsymbol{y} \in \mathcal{C}} \|oldsymbol{y} oldsymbol{x}\|$ for convex \mathcal{C}
- Check Chapter 3 on Boyd and Vandenberghe (2003) for more examples

Convexity: some ML examples

Linear ridge regression:

$$\begin{split} f(\boldsymbol{x}; \boldsymbol{w}) &= \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \left(y_i - \boldsymbol{w}^T \boldsymbol{x}_i \right)^2 &+ & \lambda \| \boldsymbol{w} \|_2^2 \\ & \text{data fitting} &+ & \text{Ridge Regularizer} \end{split}$$

• Linear LASSO regression:

$$f(\boldsymbol{x}; \boldsymbol{w}) = \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \left(y_i - \boldsymbol{w}^T \boldsymbol{x}_i \right)^2 \quad + \quad \lambda \| \boldsymbol{w} \|_1$$
 data fitting $\quad + \quad \mathsf{LASSO}$ regularizer

• Support vector machine (binary classification):

$$f(\boldsymbol{x}; \boldsymbol{w}) = \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \max \left(0, 1 - y_i \left(\boldsymbol{w}^T \boldsymbol{x}_i - b\right)\right) + \lambda \|\boldsymbol{w}\|_2^2$$

Convexity: more definitions

ullet $f:\mathcal{X}
ightarrow \mathbb{R}$ is quasi-convex if \mathcal{X} is convex and sub-level sets

$$\{ \boldsymbol{x} \in \mathcal{X} \mid f(\boldsymbol{x}) \leq \alpha \}$$

are convex for all α .

Equivalently, if for all $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathcal{X}$ and $\theta \in [0, 1]$,

$$f(\theta x_1 + (1 - \theta)x_2) \le \max\{f(x_1), f(x_2)\}\$$

ullet A positive function is log-concave if $orall oldsymbol{x}_1, oldsymbol{x}_2 \in \mathcal{X}$ and $heta \in [0,1]$

$$\log f(\theta x_1 + (1 - \theta)x_2) \ge \theta \log f(x_1) + (1 - \theta) \log f(x_2)$$

Most of probability densities are log-concave

For convex $\mathcal S$ and random variable $\boldsymbol y$ with log-concave PDF, $f(\boldsymbol x) = \Pr(\boldsymbol x + \boldsymbol y \in \mathcal S)$ is log-concave and $\{\boldsymbol x \mid f(\boldsymbol x) \geq t\}$ is convex

Standard forms

minimize
$$f_0(\boldsymbol{x})$$
 s.t. $f_i(\boldsymbol{x}) \leq 0, i \in [m]$ $h_i(\boldsymbol{x}) = 0, i \in [p]$

Convex programming: convex objective over convex inequality and affine equality constraints

Linear programming: affine objective over a (open/closed) polyhedron **Quadratic programming:** convex quadratic objective over a polyhedron

minimize
$$\|m{A}m{x}-m{b}\|_2^2$$
 s.t. $m{C}_im{x}+m{d}_i \leq m{0}, i \in [m], \quad m{F}m{x}=m{g}$

Duality

Consider (3) with objective f_0 , inequality and equality constraints f_i and h_i , and optimal solution $(x^*, f^*) = f_0(x^*)$

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda,\nu) = \inf_{x \in \mathcal{X}} L(x,\lambda,\nu) := f_0(\boldsymbol{x}) + \sum_{i \in [m]} \lambda_i f_i(\boldsymbol{x}) + \sum_{i \in [p]} \nu_i h_i(\boldsymbol{x})$$

if $\lambda \geq 0$, then $g(\lambda, \nu) \leq f^{\star}$.

Proof: given non-negative λ_i , $h_i(x) = 0$, and $\lambda_i f_i(x) \le 0$ for any feasible point x. Therefore,

$$f^* = f_0(\boldsymbol{x}^*) \ge L(\boldsymbol{x}^*, \lambda, \nu) \ge \inf_{\boldsymbol{x} \in \mathcal{X}} L(\boldsymbol{x}, \lambda, \nu) = g(\lambda, \nu)$$

Lagrange dual problem: with solution $d^{\star} (\leq f^{\star}, = \text{with strong duality})$

maximize
$$g(\lambda, \nu)$$
 s.t. $\lambda \ge 0$

Duality

Primal: minimize
$$c^Tx$$
 Dual: maximize $-b^T\nu$ s.t. $x \ge 0$ s.t. $A^T\nu + c = 0$

In a network with one unit of communication per constraint, dual is more communication-efficient for tall \boldsymbol{A}

• Check Boyd and Vandenberghe (2003) for more details

Weak and strong duality

Constraint qualifications

Slater's constraint qualification

Complementary slackness

Karush-Kuhn-Tucker (KKT) conditions

Strong convexity

Differentiable function f is μ -strongly convex iff $\forall x_1, x_2 \in \mathcal{X}, \mu > 0$

$$f(x_2) \ge f(x_1) + \nabla f(x_1)^T (x_2 - x_1) + \frac{\mu}{2} ||x_2 - x_1||_2^2$$

Gradient can be replaced by sub-gradient for non-smooth functions

Main intuition: linear lower bound with convexity, quadratic lower bound with strong convexity

Global definitions not local $(\forall x \in \mathcal{X})$

Strong convexity

$$f(x_2) \ge f(x_1) + \nabla f(x_1)^T (x_2 - x_1) + \frac{\mu}{2} ||x_2 - x_1||_2^2$$
 (4)

- (4) is equivalent to a minimum positive curvature $abla^2 f(m{x}) \geq \mu m{I}_d, orall m{x} \in \mathcal{X}$
- (4) is equivalent to $\left(\nabla f(\boldsymbol{x}_2) \nabla f(\boldsymbol{x}_1)\right)^T (\boldsymbol{x}_2 \boldsymbol{x}_1) \geq \mu \|\boldsymbol{x}_2 \boldsymbol{x}_1\|_2^2$
- (4) implies
 - (a) Polyak-Łojasiewicz (PL) Inequality: $f(x) f^\star \leq \frac{1}{2\mu} \|\nabla f(x)\|_2^2, \forall x$

$$\mathsf{(b)} \ \| \bm{x}_2 - \bm{x}_1 \|_2 \leq \frac{1}{\mu} \| \nabla f(\bm{x}_2) - \nabla f(\bm{x}_1) \|_2, \forall \bm{x}_1, \bm{x}_2$$

$$\mathsf{(c)} \; \left(\nabla f(\boldsymbol{x}_2) - \nabla f(\boldsymbol{x}_1)\right)^T (\boldsymbol{x}_2 - \boldsymbol{x}_1) \leq \frac{1}{\mu} \|\nabla f(\boldsymbol{x}_2) - \nabla f(\boldsymbol{x}_1)\|_2^2, \forall \boldsymbol{x}_1, \boldsymbol{x}_2$$

(d) f(x) + r(x) is strongly convex for any convex f and strongly convex r

HW1.1: prove all the statements of this slide

Smoothness

A function $f: \mathbb{R}^d \to \mathbb{R}$ is L-smooth iff it is differentiable and its gradient is L-Lipschitz-continuous (usually w.r.t. norm-2):

$$\forall x_1, x_2 \in \mathbb{R}^d, \|\nabla f(x_2) - \nabla f(x_1)\|_2 \le L\|x_2 - x_1\|_2$$
 (5)

Recall strong convexity result: $\|\nabla f(x_2) - \nabla f(x_1)\|_2 \ge \mu \|x_2 - x_1\|_2$

For twice differentiable f, (5) $\leftrightarrow \nabla^2 f(x) \leq L I_d$

Smoothness: $f({m x}_2) - f({m x}_1)$ can be over-estimated by a quadratic function

- (5) implies for all x_1, x_2 (HW1.2: prove them. Assume convexity if needed)

(a)
$$f(x_2) \leq f(x_1) + \nabla f(x_1)^T (x_2 - x_1) + \frac{L}{2} \|x_2 - x_1\|_2^2$$

$$\text{(b) } f(\boldsymbol{x}_2) \geq f(\boldsymbol{x}_1) + \nabla f(\boldsymbol{x}_1)^T(\boldsymbol{x}_2 - \boldsymbol{x}_1) + \frac{1}{2L} \|\nabla f(\boldsymbol{x}_2) - \nabla f(\boldsymbol{x}_1)\|_2^2$$

(c) Co-coercivity of the gradient:

$$\left(
abla f(oldsymbol{x}_2) -
abla f(oldsymbol{x}_1)
ight)^T (oldsymbol{x}_2 - oldsymbol{x}_1) \geq rac{1}{L} \|
abla f(oldsymbol{x}_2) -
abla f(oldsymbol{x}_1) \|_2^2$$

Outline

- 1. Student groups
- 2. Basic definitions and properties
- 3. Iterative solution approaches

4. Supplements

Gradient descent

 \bullet Problem: minimize $f(\boldsymbol{x})$ for some differentiable $f:\mathbb{R}^d\to\mathbb{R}\cup\{\pm\infty\}$

Gradient descent (GD), also called batch GD, full GD, ...

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k) \tag{6}$$

for some sequence of non-negative step sizes $(\alpha_k)_{k \in \mathbb{N}}$.

Theorem 1: Convergence of GD with constant step size

Convex and
$$L$$
-smooth f with $\alpha \leq 1/L$ satisfies $f(x_k) - f^\star \leq \frac{\|x_0 - x^\star\|_2^2}{2k\alpha}$.

$$\begin{array}{l} \mu\text{-strongly convex and L-smooth f with $\alpha \leq 2/(\mu+L)$ satisfies} \\ f(\boldsymbol{x}_k) - f^\star \leq e^{-ck}L\|\boldsymbol{x}_0 - \boldsymbol{x}^\star\|_2^2/2 \text{ for } c = 2\alpha\mu L/(\mu+L). \text{ With} \\ \alpha = 2/(\mu+L), \text{ we have } \|\boldsymbol{x}_k - \boldsymbol{x}^\star\|_2^2 \leq \left(1 - \frac{2}{1+L/\mu}\right)^{2k}\|\boldsymbol{x}_0 - \boldsymbol{x}^\star\|_2^2. \end{array}$$

Smooth convex: $\mathcal{O}(1/\epsilon)$ iterations for ϵ -optimality

Smooth strongly-convex: $\mathcal{O}(\log(1/\epsilon))$ iterations for ϵ -optimality

GD for smooth and strongly convex functions

Linear convergence rate $1 - \frac{2}{1 + L/\mu}$ (HW1.3: define convergence rates)

GD may need many iterations to converge

Preconditioning to change the space geometry, to make sub-levels similar in all coordinates

Centralized Convex ML (part 1)

Descent methods

Descent methods:
$$x_{k+1} = x_k + \alpha_k d(x_k)$$
 s.t. $f(x_{k+1}) < f(x_k)$ (7)

for some sequence of non-negative step sizes $(lpha_k)_{k\in\mathbb{N}}$ and decent direction d

 $f(x_{k+1}) < f(x_k)$ implies $-\nabla f(x_k)^T d(x_k) > 0$, same half-space as the negative gradient

Steepest descent: $d(x) = \operatorname{argmin} \{ \nabla f(x)^T \nu \mid ||\nu|| = 1 \}$ in some norm $||\cdot||$

* Note that we need to unnormalize the descent direction using the dual-norm

Maximizes the first order prediction of decrease (for small ν): $f(x + \nu) - f(x) \approx \nabla f(x)^T \nu$

Define $\|\boldsymbol{x}\|_{\boldsymbol{P}}=(\boldsymbol{x}^T\boldsymbol{P}\boldsymbol{x})^{1/2}$ for positive definite \boldsymbol{P} (this is called Mahalanobis distance): $\boldsymbol{d}(\boldsymbol{x})=-\boldsymbol{P}^{-1}\nabla f(\boldsymbol{x})$

Reduces to GD on Euclidian norm $(P = I, d(x) = -\nabla f(x_k)^T)$

Good norm: should be consistent with the geometry of sublevel sets

Same theoretical convergence as of GD, much better in practice

Centralized Convex ML (part 1) 2-21

Newton methods

Around optimal point:

$$f(oldsymbol{x}) pprox f(oldsymbol{x}^\star) + rac{\nabla f(oldsymbol{x}^\star)^T (oldsymbol{x} - oldsymbol{x}^\star)}{2} + rac{1}{2} (oldsymbol{x} - oldsymbol{x}^\star)^T
abla^2 f(oldsymbol{x}^\star) (oldsymbol{x} - oldsymbol{x}^\star)$$

Sublevel sets are like ellipsoids (determined by Hessian) near the minimum

Recall
$$\| \boldsymbol{x} \|_{\boldsymbol{P}} = (\boldsymbol{x}^T \boldsymbol{P} \boldsymbol{x})^{1/2}$$
 and its descent direction $\boldsymbol{d} = \boldsymbol{P}^{-1} \nabla f(\boldsymbol{x})$

How about steepest descent on the norm induced by Hessian $\nabla^2 f({\boldsymbol x}^\star)$?

Oops! we do not know x^\star

Newton method:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla^2 f(\boldsymbol{x}_k)^{-1} \nabla f(\boldsymbol{x}_k). \tag{8}$$

Newton methods

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla^2 f(\boldsymbol{x}_k)^{-1} \nabla f(\boldsymbol{x}_k)$$

Theorem 2: Quadratic convergence of Newton's method

Assume f is a twice continuously differentiable and set $\alpha_k = 1$. If $\|x_k - x^*\|$ is small enough, there exist a positive constant c such that $\|x_{k+1} - x^*\| \le c(\|x_k - x^*\|_2)^2$.

constant $+ \mathcal{O}(\log\log(1/\epsilon))$ iterations for ϵ -optimality

Expensive iterations due to $abla^2 f(oldsymbol{x}_k)$

Useful property: Affine invariance of newton's method (check Supplements)

Proximal methods

Smoothness implies $f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)(\boldsymbol{x} - \boldsymbol{x}_k) + \frac{L}{2}\|\boldsymbol{x} - \boldsymbol{x}_k\|_2^2, \forall \boldsymbol{x}$

GD iterations to minimize differentiable f is like *successive quadratic* upper-bound minimization:

$$f(\boldsymbol{x}_{k+1}) = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^d} f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T (\boldsymbol{x} - \boldsymbol{x}_k) + \frac{L}{2} \|\boldsymbol{x} - \boldsymbol{x}_k\|_2^2$$

New objective: minimize f(x)=g(x)+h(x) for convex differentiable g and convex (possibly) non-differentiable h

Define proximal mapping as

$$\operatorname{prox}_{\alpha h}(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{u}} h(\boldsymbol{u}) + \frac{1}{2\alpha} \|\boldsymbol{u} - \boldsymbol{x}\|_{2}^{2}$$

Proximal method:

$$\boldsymbol{x}_k = \operatorname{prox}_{\alpha_k h} \left(\boldsymbol{x}_{k-1} - \alpha_k \nabla g(\boldsymbol{x}_k) \right)$$

Proximal methods

Observe from the definition of the proximal method

$$\mathbf{x}_k = \operatorname{argmin}_{\mathbf{x}} h(\mathbf{x}) + \frac{1}{2\alpha_k} \|\mathbf{x} - \mathbf{x}_{k-1} + \alpha_k \nabla g(\mathbf{x}_k)\|_2^2$$
$$= \operatorname{argmin}_{\mathbf{x}} h(\mathbf{x}) + g(\mathbf{x}_k) + \nabla g(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2\alpha_k} \|\mathbf{x} - \mathbf{x}_k\|_2^2$$

 $\mathsf{GD} \leftrightarrow \mathsf{proximal}$ method with $h(\boldsymbol{x}) = 0$ and $\alpha = 1/L$

Projected GD
$$\leftrightarrow$$
 proximal method with $h(x) = \begin{cases} 0, & \text{if } x \in \mathcal{X} \\ \infty, & \text{otherwise.} \end{cases}$

Soft thresholding for ℓ_1 regularization \leftrightarrow proximal method with $h(x) = \lambda ||x||_1$.

$$[\operatorname{prox}_h(\boldsymbol{x})]_i = \begin{cases} x_i - \lambda, & \text{if } x_i \ge \lambda \\ 0, & \text{if } -\lambda \le x_i \le \lambda \\ x_i + \lambda, & \text{if } x_i \le -\lambda. \end{cases}$$

Foods for thought

1. Define the conjugate function as

$$f^*(\mathbf{y}) = \sup_{\mathbf{y} \in \mathbb{R}^d} \mathbf{y}^T \mathbf{x} - f(\mathbf{x}).$$

Observe that f^* is convex even when f is not (why?). When f is μ -strongly convex and L-smooth, f^* is $\frac{1}{L}$ -strongly convex and $\frac{1}{\mu}$ -smooth (why?).

2. Define projection operator for convex set ${\mathcal X}$ as

$$\operatorname{proj}(\boldsymbol{x},\mathcal{X}) := \operatorname{argmin}_{\boldsymbol{y} \in \mathcal{X}} \|\boldsymbol{y} - \boldsymbol{x}\|.$$

Observe $\|\operatorname{proj}(y,\mathcal{X}) - x\|^2 \le \|y - x\|^2$ for any $x \in \mathcal{X}$ and any y. Modify (6) to solve $\min_{x \in \mathcal{X}} f(x)$. What is the convergence of this "projected GD" algorithm?

3. Define the set of subgradients of $f:\mathcal{X} \to \mathbb{R}$ at $x \in \mathcal{X}$ as

$$\partial f(x) := \{ s \mid f(x) - f(y) \le s^T(x - y) \ \forall y \in \mathcal{X} \}.$$

Modify (6) to solve $\min_{x\in\mathcal{X}} f(x)$ for non-smooth (non-differentiable) functions that are Lipschitz ($|f(x)-f(y)|\leq \beta\|x-y\|_2$). What is the convergence of this "projected sub-GD" for Lipschitz functions? What is the optimal step size?

4. Check https://ee227c.github.io/code/lecture4.html

Resource allocation

HW1.4: Consider

$$\begin{aligned} & \text{minimize} & & \frac{1}{N} \sum_{i \in [N]} f_i(x_i) \\ & \text{s.t.} & & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}. \end{aligned}$$

for
$$\boldsymbol{A} \in \mathbb{R}^{p \times N}$$
 and $\boldsymbol{x} = [x_1, \dots, x_N]^T$.

- (a) Assume strong-convexity and smoothness on f. How would you solve this problem when N=1000?
- (b) What if $N = 10^9$?
- (c) Can we use Newton's method for $N=10^9$? Try efficient method for computing $\nabla^2 f(\boldsymbol{x}_k)$ for p=1 and b=1 (probability simplex constraint). Extend it to $1 \leq p \ll N$.
- (d) Now, add twice differentiable r(x) to the objective and solve (a)-(c).

Some references

- S. Bubeck, "Convex optimization: Algorithms and complexity," Foundations and Trends in Machine Learning, 2015.
- Y. Nesterov, "Introductory lectures on convex optimization: A basic course," Springer Science & Business Media, 2004.
- S. Boyd, L. Vandenberghe, "Convex Optimization", Cambridge University Press, 2004.
- F. Bach, "Large-scale machine learning and convex optimization," Machine Learning Summer School, 2018.
- L. Bottou, F. Curtis, and J. Norcedal, "Optimization methods for large-scale machine learning," SIAM Rev., 2018.
- N. Parikh and S. Boyd, "Proximal algorithms", gradient methods," Foundations and Trends in Optimization, 2013.
- A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, 2009.

EP3260: Machine Learning Over Networks Lecture 2: Centralized Convex ML (part 1)

Hossein S. Ghadikolaei

Division of Network and Systems Engineering School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Stockholm, Sweden https://sites.google.com/view/mlons2023/home

January 2023

Outline

- 1. Student groups
- 2. Basic definitions and properties
- 3. Iterative solution approaches
- 4. Supplements

Proof sketch for convex and L-smooth f

By convexity of
$$f$$
, $f(x_i) \leq f(x^*) + \langle \nabla f(x_i), x_i - x^* \rangle$ (*)

Use smoothness property $f(\boldsymbol{x}_{i+1}) \leq f(\boldsymbol{x}_i) + \nabla f(\boldsymbol{x}_i)^T (\boldsymbol{x}_{i+1} - \boldsymbol{x}_i) + \frac{L}{2} \|\boldsymbol{x}_{i+1} - \boldsymbol{x}_i\|_2^2$ and $\alpha \leq 1/L$ to conclude $f(\boldsymbol{x}_{i+1}) \leq f(\boldsymbol{x}_i) - \frac{\alpha}{2} \|\nabla f(\boldsymbol{x}_i)\|_2^2$ (**)

Substitute (*) into (**) and note that from (6): $abla f(x_i) = \frac{x_i - x_{i+1}}{lpha}$

Observe
$$f(x_{i+1}) \leq f^{\star} + \frac{1}{2\alpha} \left(\|x_i - x^{\star}\|_2^2 - \|x_{i+1} - x^{\star}\|_2^2 \right)$$

Summing over iterations: $\frac{1}{k} \sum_{i \in [k]} (f(x_i) \leq f^\star) \leq \frac{1}{2\alpha k} \|x_0 - x^\star\|_2^2$

Conclude from the non-increasing property of GD iterates:

$$f(x_k) - f^* \le \frac{1}{k} \sum_{i \in [k]} f(x_i) - f^* \le \frac{1}{2\alpha k} ||x_0 - x^*||_2^2.$$

▶ Return

Proof sketch for strongly-convex and L-smooth f

From smoothness and vanishing gradient of the optimal point, conclude $f(x_i) - f(x^\star) \leq \frac{L}{2} ||x_k - x^\star||_2^2$ (*)

Use the coercivity of the gradient (HW1.5: prove it)

$$(\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}))^T(\boldsymbol{x} - \boldsymbol{y}) \geq \frac{\mu L}{\mu + L} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \frac{1}{\mu + L} \|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\|_2^2$$

Use
$$\alpha < 2/(L+\mu)$$
 to obtain $x_i - x^\star \|^2 \le \left(1 - 2t\alpha \frac{\mu L}{\mu + L}\right) \|x_i - x^\star\|_2^2$

Iterate over i and use (*) to obtain

$$f(\boldsymbol{x}_k) - f(\boldsymbol{x}^{\star}) \leq \frac{L}{2} \prod_{i \in [k]} \left(1 - 2t\alpha \frac{\mu L}{\mu + L} \right) \|\boldsymbol{x}_0 - \boldsymbol{x}^{\star}\|_2^2$$

Use $e^{-x} \geq 1-x$ to conclude $f(x_k) - f(x^\star) \leq \frac{L}{2} e^{-ck} \|x_0 - x^\star\|_2^2$ for $c = \frac{2\alpha\mu L}{\mu + L}$

▶ Return

Centralized Convex ML (part 1)

Affine invariance of Newton's method

- Affine invariance: apply coordinate change for non-singular matrix A. Newton's method have same iterations for $\min_x f(x)$ and $\min_y f(Ay)$ (namely $x_k = Ay_k$), whereas GD has $\nabla f(x) = A^T \nabla (Ay)$.

If we change coordinate/metric, GD iterates change

Finding a good coordinate for GD is usually very hard in high-dimension!