Sistemas Distribuidos Conceptos de HW Desarrollo de aplicaciones en red

Febrero 2015

Introducción

- Los Sistemas Distribuidos constan de varios CPU's
 - Existen diversas formas de organizar el hardware
- Con el paso del tiempo se han propuesto diversas clasificaciones
- La taxonomía más citada es la de Flynn (1972)
 - Flynn seleccionó dos categorías fundamentales
 - Número de Instrucciones y número de flujo de datos

Multiprocesador

► Es cualquier computadora con varios procesadores

Lemieux cluster, Pittsburgh supercomputing center

- Un procesador Multi-core es un tipo especial de multiprocesador:
 - ► Todos los procesadores están en el mismo chip

- SISD (Single Instruction, Single Data)
 - Un flujo de instrucción, un flujo de datos
 - Todas las computadoras de un procesador (un CPU) caen dentro de esta categoría (computadoras personales anteriores o mainframes)
 - Se ejecuta una instrucción por cada ciclo reloj

- SIMD (Single Instruction, Multiple Data)
 - Un flujo de instrucción y varios flujos de datos
 - Busca paralelismo a nivel de datos
 - Una única unidad de control despacha instrucciones a diferente unidades de procesamiento
 - Instrucción que aplica una misma operación sobre un conjunto grande de datos
 - Las unidades reciben la misma instrucción, pero operan sobre diferentes conjuntos de datos. Ejecutándose de manera sincronizada por todas las unidades de procesamiento

Instruction Pool

Pool

- MISD (Multiple Instruction, Single Data) ¿?
 - ▶ Un flujo de varias instrucciones y un flujo de datos
 - Arquitectura paralela
 - Muchas unidades de procesamiento realizan diferentes operaciones en los mismos datos
 - No existen muchos ejemplos
 - ► Facilitan escalamiento y uso de recursos
 - Paralelismo redundante
 - Aplicación limitada en el mundo real
 - Cada unidad ejecuta una distinta instrucción
 - Cada unidad procesa el mismo dato

- MIMD (Multiple Instruction, Multiple Data)
 - Un súper conjunto de SISD
 - Pueden tener memoria compartida o distribuida
 - Cada unidad ejecuta una instrucción distinta
 - Cada unidad procesa un dato distinto
 - Casi todos los chip multi-core ejecutan diferentes hilos (MI), operando en diferentes partes de la memoria (MD)
 - Los multi-core tienen memoria compartida multiprocesador, todos los núcleos comparten la misma memoria
 - ► Empleado para lograr paralelismo
 - Los sistemas distribuidos entran en esta categoría
 - ► Ejemplos: Simulación, modelado, servidores web, aplicaciones científicas, multithreading

MIMD

- Divididos en dos grupos
 - Multiprocesadores
 - Existe espacio de direcciones virtuales compartido por todos los CPU's
 - Memoria Compartida
 - Sistemas paralelos (trabajar sobre un problema)
 - Fuertemente acoplados HW (el retraso al enviar información es corto)
 - Multicomputadoras
 - Cada computadora tiene su propia memoria
 - Colección de computadoras conectadas por la red
 - Paso de mensajes
 - Sistemas distribuidos (para trabajar varios problemas no necesariamente relacionados entre sí)
 - Débilmente acoplados HW, normalmente la información se envía a través de la red y puede tener un retraso considerable

Taxonomía de sistemas distribuídos y paralelos (Tanenbaum)

Multicore

Multi-core CPU chip

Chip Multi-core CPU

Arquitectura Nehalem (Intel Cor

