

38

(11) Publication number:

0 079 739
A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: B2305926.6

(51) Int. Cl.3: C 12 N 15/00

C 12 N 1/00, C 12 P 21/02

(22) Date of filing: 08.11.82

C 07 H 21/04, C 07 C 103/52

//C12R1/19, C12R1/865

(30) Priority: 12.11.81 US 320632

(71) Applicant: THE UPJOHN COMPANY
301 Henrietta Street
Kalamazoo, Michigan 49001(US)

(43) Date of publication of application:
25.05.83 Bulletin 83/21

(72) Inventor: Dugaliczyk, Achilles
c/o The Upjohn Company 301 Henrietta Street
Kalamazoo Michigan 49001(US)

(84) Designated Contracting States:
BE CH DE FR GB IT LI NL SE

(74) Representative: Perry, Robert Edward et al,
GILL JENNINGS & EVERY 53-64 Chancery Lane
London WC2A 1HN(GB)

(54) Albumin-based nucleotides, their replication and use, and plasmids for use therein.

(55) The DNA sequence coding for human serum albumin has been isolated and inserted as two fragments into two novel plasmids which can be replicated in *E. coli*. These novel fragments can be joined to provide a unitary DNA sequence which then can be cloned into a suitable host, e.g. *E. coli*, for the expression of human serum albumin (which is used extensively in medical practice in treating shock conditions).

EP 0 079 739 A2

ALBUMIN-BASED NUCLEOTIDES, THEIR REPLICATION
AND USE, AND PLASMIDS FOR USE THEREIN

This invention relates to nucleotides related to human serum albumin (HSA), their replication and use, and plasmids (and host substances) for use therein.

The gene for serum albumin is regulated in 5 development. On the other hand, serum albumin is synthesised in mammals by the adult liver, and its plateau in adulthood. The embryonic liver and yolk sac, on the other hand, produce predominantly α -fetoprotein, but the synthesis decreases drastically after birth. Recently, 10 Law et al determined the complete sequence of mouse α -fetoprotein mRNA, Nature 291 (1981) 201-205. The structure revealed extensive homology to mammalian serum albumin, indicating that the two proteins are encoded in the same gene family. Similar conclusions have been 15 reached from studies on the α -fetoprotein genes of the rat and the mouse; see Jagodzinski et al, Proc. Natl. Acad. Sci. USA, 78 (1981) 3521-3525, and Gorin et al, J. Biol. Chem. 256 (1981) 1954-1959.

The complete nucleotide sequence of human serum 20 mRNA has been determined from recombinant cDNA clones and from a primer-extended cDNA synthesis on the mRNA template. The sequence comprises 2,078 nucleotides, starting upstream of a potential ribosome binding site in the 5'-untranslated region. It contains all the 25 translated codons and extends into the poly(A) at the 3'-terminus. Part of the translated sequence codes for a hydrophobic prepeptide met-lys-trp-val-thr-phe-ile-ser-leu-leu-phe-leu-phe-ser-ser-ala-tyr-ser, followed by a basic propeptide arg-gly-val-phe-arg-arg. These signal 30 peptides are absent from mature serum albumin and, so far, have not been identified in their nascent state in humans. A remaining 1,755 nucleotides of the translated mRNA sequence code for 585 amino acids which are in agreement, with few exceptions, with the published amino 35 acid data for human serum albumin. The mRNA sequence verifies and refines the repeating homology in the triple-domain structure of the serum albumin molecule.

DETAILED DESCRIPTION OF THE INVENTION

Human serum albumin cDNA is cloned into the PstI site of plasmid pBR322 by the oligo(dG)-oligo(dC) tailing technique. Plasmid DNA was isolated from 97 positive colonies which hybridized to the enriched 5 albumin cDNA probe, and the recombinant plasmid pH A36 was found to contain the largest insert of an albumin cDNA sequence. Its restriction endonuclease map is shown in the drawing, together with a restriction map of the primer-extended plasmid clone pH A206. The latter was obtained in a second transformation experiment after initiating 10 the cDNA synthesis from an internal primer. This primer was a 91 base pairs long DNA fragment, MspI(152)-TaqI(182/3), isolated from pH A36. The two plasmids, pH A36 and pH A206, share 0.15 kb of homologous DNA. Together, they encode the entire sequence for human serum albumin, starting with the CTT codon for leu -10 of the prepeptide and extending 15 into the 3'-untranslated region of poly(A).

Sequence of the Albumin cDNA. The sequence was determined for the most part on both DNA strands to ensure accuracy. All of the restriction sites used to end-label DNA fragments were sequenced across by 20 labeling a neighboring restriction site. The entire nucleotide sequence of the serum albumin mRNA, as determined from the cloned DNA in pH A36, pH A206, and from the primer-extended cDNA at the 5'-terminus of the message, is shown in the following Table 1. The inferred amino acid sequence is also indicated. The mRNA length is 2,078 nucleotides, of which 38 represent the 5'-untranslated region, 54 identify a 25 prepeptide of 18 amino acids, 18 identify a propeptide of 6 amino acids, 1,755 code for the known 585 amino acids of serum albumin, 189 make up the 3'-untranslated region and 24 are the poly(A) sequence. Nucleotides 5 to 15 (-34 to -24) in the 5'-untranslated region (Table 30 1) are complementary to a 3'-terminal region of eukaryotic 18S RNA [Azad, A.A. and Deacon, N.J. (1980) Nucl. Acids Res. 8, 4365-4376] and thus could represent a ribosome binding site:

(5')...T T^C T C T T C T G T.....albumin mRNA
35 (3')...G A G G A A G G C G U C C m₂⁶A m₂⁶A.....18S RNA

The translated portion of the mRNA sequence codes for the signal peptide and the main body of the albumin polypeptide chain. The

signal peptide is composed of a hydrophobic prepeptide of 18 amino acids and a basic propeptide of 6 amino acids (Table 1). Since pre-peptides are removed from nascent secretory proteins (like albumin) in the endoplasmic reticulum, they are seen only in vitro in heterologous 5 translation systems. As yet, they have not been found within cells [Judah, J.D. and Quinn, P.S. (1977) FEBS 11th Mtg., Copenhagen 50, 21-29; and Strauss, A.W., Donohue, A.M., Bennett, C.D., Rodkey, J.A. and Alberts, A.W. (1977) Proc. Natl. Acad. Sci. USA 74, 1358-1362]. This is the first report of the presence and the sequence of a 10 pre-peptide for human serum albumin. As it is with other secretory proteins, the conversion of proalbumin to albumin takes place in the Golgi vesicles, and the enzyme responsible for this cleavage is probably cathepsin B [Judah, J.D. and Quinn, P.S. (1978) Nature 271, 384-385]. This is also a first report on the sequence of the pro- 15 peptide for normal human serum albumin.

At the 3'-end of the message, the putative polyadenylation signal sequence, AATAAA, is located 164 nucleotides downstream from the amino acid termination codon TAA and 16 nucleotides upstream from the beginning of the poly(A) sequence. Another characteristic sequence 20 located near the polyadenylation site has been identified by Benoist, et al. [Benoist, C., O'Hare, K., Breathnach, R. and Chambon, P. (1980) Nucl. Acids Res. 8, 127-142]; the consensus sequence from several mRNAs was concluded as TTTTCACTGC. A similar sequence, TTTTCTCTGT, is located 19 nucleotides upstream from the AATAAA hexanucleotide in the 25 human albumin mRNA (Table 1).

0079739
4083

Following are examples which illustrate procedures, including the best mode, for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

5 Example 1 Isolation of Messenger RNA

Human liver mRNA was obtained following the procedure of Chirgwin, et al [Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. and Rutter, W.J. (1979) Biochemistry 18, 5294-5299]. Immunoprecipitation of albumin containing polysomes was performed according to Taylor and 10 Tse [Taylor, J.M. and Tse, T.P.H. (1976) J. Biol. Chem. 251, 7461-7467]. In vitro translation of mRNA was carried out in a reticulocyte cell-free system, following the instruction of the manufacturer (New England Nuclear). The translation products were separated electrophoretically according to Laemmli [Laemmli, J.K. (1970) Nature 227, 15 680-685.

15 Example 2 Cloning Procedures

Double stranded cDNA was synthesized as described previously [Law, S., Tamaoki, T., Kreuzaler, F. and Dugaiczyk, A. (1980) Gene 10, 53-61]. It was annealed to PstI-linearized pBR322 DNA [Bolivar, F., 20 Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Crossa, J.H. and Falkow, S. (1977) Gene 2, 95-113] that had been tailed with 15 dG residues/3'-terminus [Dugaiczyk, A., Robberson, D.L. and Ullrich, A. (1980) Biochemistry 19, 5869-5873]. The annealed DNA was used to transform E. coli strain RR1, as detailed previously [Law, 25 S., et al., Ibid.]. The albumin clones were selected using the colony hybridization method of Grunstein and Hogness [Grunstein, M. and Hogness, D.S. (1975) Proc. Natl. Acad. Sci. USA 72, 3961-3965], with [³²P]-labeled cDNA synthesized with the immunoprecipitated polysomal mRNA as template.

30 As shown in Example 5, plasmids pH36 and pH206 were deposited in E. coli HB101 hosts. The plasmids were obtained from E. coli RR1 hosts, described in this example, and transformed into E. coli HR101 by standard procedures well known to those of ordinary skill in this art. The E. coli RR1 hosts were lysed and then centrifuged to 35 separate the chromosomal DNA, cell DNA and plasmid DNA. The plasmid DNA, remaining in the supernatant, is precipitated with ethanol and the precipitate is resuspended in buffer, e.g., TCM (10mM Tris-HCl, pH 8.0, 10 mM CaCl₂, 10 mM MgCl₂). The cells for transformation are

prepared as follows: 120 ml of L-broth (1% tryptone, 0.5% yeast extract, 0.5% NaCl) are inoculated with an 18 hour culture of HB101 NRRL B-11371 and grown to an optical density of 0.6 at 600 nm. Cells are washed in cold 100 mM NaCl and resuspended for 15 minutes in 20 ml 5 chilled 50 mM CaCl₂. Bacteria are then concentrated to one-tenth of this volume in CaCl₂ and mixed 2:1 (v:v) with annealed plasmid DNA, prepared as described above. After chilling the cell-DNA mixture for 15 minutes, it is heat shocked at 42°C for 2 minutes, then allowed to equilibrate at room temperature for ten minutes before addition of 10 L-broth 10 times the volume of the cell-DNA suspension. Transformed cells are incubated in broth at 37°C for one hour before inoculating selective media (L-agar plus 10 µg/ml tetracycline) with 200 µl/plate. Plates are incubated at 37°C for 48 hours to allow the growth of transformants.

15 Example 3 Mapping of Restriction Endonuclease Sites

Restriction endonucleases were obtained from Bethesda Research Laboratories and New England Biolabs and were used according to the manufacturers' instructions. The digested DNA fragments were analyzed electrophoretically on agarose [Helling, R.B., Goodman, H.M. and Boyer, H.W. (1974) J. Virol. 14, 1235-1244] or acrylamide [Dingman, C., Fisher, M.P. and Kakefuda, T. (1972) Biochemistry 11, 1242-1250] gels.

Example 4 DNA Sequencing

DNA fragments were dephosphorylated with bacterial alkaline phosphatase (Worthington) and labeled at the 5'-ends with polynucleotide kinase (Boehringer-Mannheim) and γ[³²P]ATP. Following digestion with a second restriction endonuclease and electrophoretic separation of the fragments, DNA sequence determination was done according to the procedure of Maxam and Gilbert [Maxam, A. and Gilbert, W. (1980) Methods Enzym. 65, 499-560] and the degradation products were separated electrophoretically on 0.4 mm acrylamide gels as described by Sanger and Coulson [Sanger, F. and Coulson, R. (1978) FEBS Letters 87, 107-110].

Example 5 Recombinant Plasmids pHA36 and pHA206

35 As disclosed in Example 2, albumin clones were selected by hybridizing to the enriched albumin cDNA probe. Plasmid pHA36 contained the largest insert of an albumin cDNA sequence. Both plasmids pHA36 and pHA206 have been deposited in a viable E. coli host in the

permanent collection of the Northern Regional Research Laboratory (NRRL), U.S. Department of Agriculture, Peoria, Illinois, U.S.A. Their accession numbers in this repository are as follows:

HB101(pHA36) - NRRL B-12551

5 HB101(pHA206) - NRRL B-12550

E. coli HB101 is a known and widely available host microbe. Its NRRL accession number is NRRL B-11371.

NRRL B-12550 and NRRL B-12551 are available to the public. ~~upon the grant of a patent. It should be understood that the availability of these deposits does not constitute a license to practice the subject invention in derogation of patent rights granted with the subject instrument by governmental action.~~

15 E. coli RR1 and E. coli HB101 are known and widely available host microbes. Their NRRL accession numbers are NRRL B-12186 and NRRL B-11371, respectively.

pBR322 is a well known and widely available plasmid. It can be obtained from the following host deposit by standard procedures:

NRRL B-12014 - E. coli RR1 (pBR322).

20 YEpl6 is a well known and widely available yeast episomal plasmid. It can be obtained from the following host deposit by standard procedures:

E. coli HB101 (YEpl6) - NRRL B-12093.

Example 6 Assembly of the Serum Albumin Gene

Assembling the pieces together is a straightforward task of restriction enzymology. There is only one MspI site in the overlapping DNA sequence of the two cDNA clones. Two enzymatic steps of (i) MspI digestion of the two DNAs, followed by (ii) the use of ligase, an enzyme that seals DNA fragments, will give the desired product. Although two other undesired DNA species will also be obtained in the course of this recombination reaction, both of them will differ substantially in size. Thus, separation and isolation of the desired DNA species will be achieved.

The assembled DNA clone can be used to transform two types of cells:

35 (a) Escherichia coli

(b) Saccharomyces cerevisiae

(a) The vector of choice is plasmid pBR322, the same that has

been successfully used for cloning of the two fragmented pieces of the serum albumin cDNA.

(b) In order to transform yeast with the serum albumin structural gene sequence, the DNA must be inserted into one of the existing yeast plasmid vectors. This can be accomplished by taking advantage of the fact that several restriction endonuclease recognition sequences are absent from the cloned serum albumin DNA. Synthetic EcoR1 DNA linkers can be ligated to the DNA fragment containing the serum albumin sequence followed by insertion (ligation) into one of the yeast plasmid vectors, e.g., YEp6, at the EcoR1 cloning site. The fused chimeric plasmid can be used to transform yeast according to an established procedure [Hinnen, A., Hicks, J.B. and Fink, G.R. (1978) Proc. Natl. Acad. Sci. USA, 75, 1929]. YEp6 can be obtained from the NRRL repository, as disclosed *supra*.

15 Example 7 Expression of the Serum Albumin Gene

The main body of the structural gene will be transcribed by the E. coli or yeast enzymes. If little or no albumin is produced with the selected host, then an Escherichia coli promoter DNA sequence carrying an initiation codon, i.e., ATG, can be ligated at the beginning of the serum albumin structural gene. Such elements are known and available, e.g., lac promoter used for the expression of human interferon gene in E. coli [Proc. Natl. Acad. Sci. 77, 5230 (1980)]; source of promoter DNA [Proc. Natl. Acad. Sci. 76, 760 (1979)]. Also, see Nature, Vol. 281, October 18, 1979. It has already been documented that such Escherichia coli promoter sequences function well in the expression of foreign genes in Escherichia coli [Mercereau-Puijalon, O., Royal, A., Cami, B., Garapin, A., Krust, A., Gannon, I. and Kourilsky, P. (1978) Nature 275, 505; and Goeddel, D.V., Kleid, D.G., Bolivar, F., Heyneker, H.L., Yansura, D.G., Grea, R., Hirose, T., Kraszewski, A., Itakura, K., and Riggs, A. (1979) Natl. Acad. Sci. USA 76, 106]. For expression in yeast, see Rose, M., Casadaban, M.J. and Botstein, D. (1981) Proc. Natl. Acad. Sci. USA 78, 2460 and 4466.

Example 8 Screening of Clones Producing Albumin

Immunological methods can be used to detect small amounts of albumin made in a bacterium. Flat disks of flexible polyvinyl are coated with the IgG fraction from an immune serum and the disks are pressed onto an agar plate so that antigen released from an in situ lysed microbial colony can bind to the fixed antibody. The plastic

-11-

disk is then incubated with the same total IgG fraction labeled with radioactive iodine so that other determinants on the bound antigen can in turn bind the iodinated antibody. Radioactive areas on the disk expose X-ray film during autoradiography and thus identify colonies 5 producing the protein which is being screened for. Detailed protocols of this procedure have been published [Broome, S. and Gilbert, W. (1978) Proc. Natl. Acad. Sci. USA, 75, 2746]. The purification of human serum albumin can be accomplished by using procedures well known in the art. For example, procedures disclosed in a chapter by T. 10 Peters: Purification and Properties of Serum Albumin, in: The Plasma Proteins, Putnam, Ed. Academic Press, New York, 1975, can be used.

The work described herein was all done in conformity with physical and biological containment requirements specified in the NIH Guidelines.

15

20

25

30

35

CLAIMS

1. Plasmid pHA36, having a restriction endonuclease pattern as shown in the drawing.

5

2. Plasmid pHA206, having a restriction endonuclease pattern as shown in the drawing.

3. E. coli HB101 (pHA36) having the deposit accession number
10 NRRL B-12551.

4. E. coli HB101 (pHA206) having the deposit accession number
NRRL B-12550.

15 5. A microorganism modified to contain a nucleotide sequence coding for the amino acid sequence of human serum albumin; said nucleotide sequence is as follows:

20

25

30

35

0079739

4083

-13-

1 -1 -6 p r o -1
ser ala tyr ser arg gly val phe arg arg asp ala his lys ser glu val ala his arg phe lys asp leu ala glu asn ala lys
TCG CCT TAT TCC AGC CGT GTC TTT CGT CCA CAT GCA CAC AAG ACT GAC GTT GCT CAT CGG TTT AAA GAT TCC CAA AAA GAT TTC AAA (170)

21 ala leu val ile ala phe ala gln tyr leu gln gln cys pro phe glu asp his val lys leu val asn glu val thr ala phe ala
GCC TTG CTG ATT GCT CCT CAG TAT CCT CAG CAG TCA GAT GAC TCA GCT GAA AAT TGT GAC AAA TCA CTT CAT ACC CTT GCA TTA GAC AAA TTA GTC AAA ACT CAA TTT GCA (1260)

51 53 60 62
lys thr asp val ala asp glu ser ala glu asn cys asp lys ser leu his thr leu phe ala asp lys leu cys thr val ala thr leu
AAA ACA TGT GTC ATT CCT GAT GAC TCA GCT GCA AAA CAA GAA CCT GGC ACA AAT GAA TCA CTT CAT ACC CTT GTC AAA GAT GAC AAC CCA (450)

81 90 91
arg glu thr tyr gln glu met ala asp cys cys ala lys gln glu pro gly arg asn glu cys phe leu aln his lys asp asn pro
CGT GAA ACC TAT CCT GAA ATG GCT GAC TGC TGT GCA AAA CAA GAA CCT GGC ACA AAT GAA TCA TGT AAA TAC TTA TAT (350)

111 120 124
asn leu pro arg leu val arg pro glu val met cys thr ala phe his asp val met cys thr ala phe his asp lys tyr leu try
AAC CTC CCC CGA TTG CTG AGA CCA CCT CCT GAT GTC ATT GTC ACT GCT TTT CAT GAC AAT GAA GAG ACA TTT TGC AAA TAC TTA TAT (350)

141 150
glu ile ala arg his pro tyr phe tyr ala pro glu leu leu phe ala lys arg tyr lys ala ala phe thr glu cys cys aln
GAA ATT CCT AGA AGA CAT CCT TAC TTT TAT GCC CCC GAA CTC CCT TGC ATT CCT AAA AGC TAT AAA CCT CCT TTT ACA GAA TGT TGC CAA (620)

171 177 180
ala ala asp lys ala ala cys leu leu pro lys leu asp glu leu arg asp glu ala lys ala ser ser ala lys ala arg leu lys cys
CCT CCT AAA CCT CCC TCC CTC CTC AAC CTC GAT GAA CCT CGG GAT GAA GGG AAG GCT TCC TCT CCC AAA CAC AAC CTC MAG TGT (710)

201 210 220
ala ser leu gln lys phe gly glu arg ala phe pro lys ala alu phe ala glu
GCC AGT CTC CAA AAA TTT GCA GAA AGA GCT TTC AAA CCA TGC GCA GCT CCC CTC AGC CAC AGA TTT GAG TTT GCA GAA (300)

0079739

4083

-14-

231 240 245 246 250 253
 val ser lys leu val thr asp leu thr lys val his thr glu cys his gly asp leu glu cys als asp arg als asp leu
 GTC TCC AAG TTA GTG ACA GAT CTT ACC AAA GTC CAC ACG GAA TGC TGC CAT CGA GAT CTC CTT GAA TGT CCT GAT GAC AGC GCG GAC CTT (890)
 261 265 270 278 279 280 289 290
 ala lys tyr lle cys glu een gln asp ser lle ser ser lys leu lys glu cys qly lys pro leu leu glu lys ser his cys lle
 CCC AAC TAT ATC TGT GAA AAT CAA GAT TCG ATC TCC ACT AAA CTC CTC AAC GAA TCC TGT CAA AAA CCT CTC TTG GAA AAA TCT GAC AAC TAT GCT (980)
 291 300 310 316 320
 ala glu val glu een asp glu met pro ala asp leu pro ser leu ala asp phe val glu ser lys asp val val oys lys asn tyr ala
 CCC GAA CTC GAA AAT GAT GAC ATG CCT CCT GAC TTG CCT TCA TTA GCT GAT TTT GAA AGT AAC GAT GTC TGT GAA CCT CTC AGA CTT CCC (1070)
 321 330 340 350
 glu ala lys asp val phe leu gly met phe leu tyr ala arg arg his pro asp tyr ser val val leu leu asp leu ala
 GCA GCA AAG GAT GTC TTC TGC CCC ATG TTT TGT TAT GAA TAT GCA AGC CAT CCT GAT TAC TCT GTC GTC CTG CTG AGA CTT CCC (1160)
 351 360 361 369 370 380
 lys thr tyr glu thr thr leu glu lys ala ala asp pro his glu cys tyr ala lys val phe glu phe lys dro leu
 AAG ACA TAT GAA ACC ACT CTA GAG AAG TGC TGT GCT GCC CCT GAT CCT CAT GAA TGC TAT GCC AAA GTC TTC GAT GAA CCT CCT (1250)
 391 390 392 400
 val glu glu pro gln een leu lle lys gln een cys glu leu phe glu qly lys val gln asn ala leu leu val arg
 GTC GAA GAG CCT CAG AAC ATT AAA ATC AAA AAT TGT GAC CTT TTT GAG CAG CCT GCA GAG TAC AAA TTC CAG AAC CTA GCA AAA GTC GGC AGC AAA TGT TGT AAA CAT (1340)
 411 420 430 437 438 440
 tyr thr lys lys val pro gln val ser arg asn leu qly lys val gln ser lys cys cys lys his
 TAC ACC AAG AAA GCA CCC CAA GTC TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTC AAC CAG TTA TGT TGT AAA CAT (1430)
 441 448 450 460 461 470
 pro glu als lys arg met pro oys als glu asp tyr leu ser val val leu asn gln leu oys val gln lys thr pro val ser
 CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC TAT CTA TCC GTC GTC AAC CAG TCA GTC CAT GAG AAA AGC CCA GTC AGT (1520)
 471 476 477 480 490
 asp arg val thr lys cys thr glu ser leu val asp pro cys phe ser als leu glu val asp glu thr tyr val pro lys
 GAC AGA GTC ACC AAA TGC TCC ACA GAA TCC TGC CTC AAC ACC CGA CCA TGC TTT TCA GCT GAA GTC GAT GAA ACA TAC GTT CCC AAA (1610)
 501 510 514 520 530
 glu phe asn als glu thr phe thr phe his als asp lle cys thr leu ser glu lys glu arg aln lle lys als leu val
 GAC TTT AAT CCT GAA ACA TTC ACC TTC CAT GCA GTC GAC AGC AGA CAA ACT GCA CTT TCT GTC (1700)

0079739

4083

-15-

531 glu leu val lys his lys pro lys ala thr lys glu glu gln leu lys ala val met asp asp phe val glu lys cys cys lys
 GAG CTC GTC AAA CAC ACA AAG CCC ACG GCA GAA CTC AAA GAG CAA CTC AAA GCA ACG GCA GAC TGC TGT GCT GCT TTT GCA GAC AAG TGC TGC (1790)
 535
 540 glu leu val lys his lys pro lys ala thr lys glu glu gln leu lys ala ala phe val glu lys cys cys lys
 GAG CTC GTC AAA CAC ACA AAG CCC ACG GCA GAA CTC AAA GAG CAA CTC AAA GCA ACG GCA GAC TGC TGT GCT GCT TTT GCA GAC AAG TGC TGC (1790)
 545
 550
 555
 560
 561 ala asp asp lys glu thr cys phe ala glu glu gln ala ala ser gln ala ala ter
 GCT GAC GAT AAC GAG ACC TGC TTT GCC GAC GCG GCA ACT CAA GCT GCA ACT CAA GCT GCA GAC TGC TGT GCT GCT TTT GCA GAC AAG TGC TGC (1883)
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415
 6420
 6425
 6430
 6435
 6440
 6445
 6450
 6455
 6460
 6465
 6470
 6475
 6480
 6485
 6490
 6495
 6500
 6505
 6510
 6515
 6520
 6525
 6530
 6535
 6540
 6545
 6550
 6555
 6560
 6565
 6570
 6575
 6580
 6585
 6590
 6595
 6600
 6605
 6610
 6615
 6620
 6625
 6630
 6635
 6640
 6645
 6650
 6655
 6660
 6665
 6670
 6675
 6680
 6685
 6690
 6695
 6700
 6705
 6710
 6715
 6720
 6725
 6730
 6735
 6740
 6745
 6750
 6755
 6760
 6765
 6770
 6775
 6780
 6785
 6790
 6795
 6800
 6805
 6810
 6815
 6820
 6825
 6830
 6835
 6840
 6845
 6850
 6855
 6860
 6865
 6870
 6875
 6880
 6885
 6890
 6895
 6900
 6905
 6910
 6915
 6920
 6925
 6930
 6935
 6940
 6945
 6950
 6955
 6960
 6965
 6970
 6975
 6980
 6985
 6990
 6995
 7000
 7005
 7010
 7015
 7020
 7025
 7030
 7035
 7040
 7045
 7050
 7055
 7060
 7065
 7070
 7075
 7080
 7085
 7090
 7095
 7100
 7105
 7110
 7115
 7120
 7125
 7130
 7135
 7140
 7145
 7150
 7155
 7160
 7165
 7170
 7175
 7180
 7185
 7190
 7195
 7200
 7205
 7210
 7215
 7220
 7225
 7230
 7235
 7240
 7245
 7250
 7255
 7260
 7265
 7270
 7275
 7280
 7285
 7290
 7295
 7300
 7305
 7310
 7315
 7320
 7325
 7330
 7335
 7340
 7345
 7350
 7355
 7360
 7365
 7370
 7375
 7380
 7385
 7390
 7395
 7400
 7405
 7410
 7415
 7420
 7425
 7430
 7435
 7440
 7445
 7450
 7455
 7460
 7465
 7470
 7475
 7480
 7485
 7490
 7495
 7500
 7505
 7510
 7515
 7520
 7525
 7530
 7535
 7540
 7545
 7550
 7555
 7560
 7565
 7570
 7575
 7580
 7585
 7590
 7595
 7600
 7605
 7610
 7615
 7620
 7625
 7630
 7635
 7640
 7645
 7650
 7655
 7660
 7665
 7670
 7675
 7680
 7685
 7690
 7695
 7700
 7705
 7710
 7715
 7720
 7725
 7730
 7735
 7740
 7745
 7750
 7755
 7760
 7765
 7770
 7775
 7780
 7785
 7790
 7795
 7800
 7805
 7810
 7815
 7820
 7825
 7830
 7835
 7840
 7845
 7850
 7855
 7860
 7865
 7870
 7875
 7880
 7885
 7890
 7895
 7900
 7905
 7910
 7915
 7920
 7925
 7930
 7935
 7940
 7945
 7950
 7955
 7960
 7965
 7970
 7975
 7980
 7985
 7990
 7995
 8000
 8005
 8010
 8015
 8020
 8025
 8030
 8035
 8040
 8045
 8050
 8055
 8060
 8065
 8070
 8075
 8080
 8085
 8090
 8095
 8100
 8105
 8110
 811

6. Nucleotide sequence of the cDNA of human serum albumin, said nucleotide sequence is as follows:

-17-

0079739
4083

0079739

4083

-18-

5

10

15

20

25

30

35

0079739

4083

7. Nucleotide sequence coding for the prepeptide of human serum albumin, said nucleotide sequence is as follows:

5

10

15

20

25

30

35

8. Nucleotide sequence coding for pro human serum albumin, said nucleotide sequence is as follows:

0079739
4083

-21-

35 38 25 20 15 10 5
231 ser lys leu val thr asp leu thr lys val his thr glu cys his gly asp leu leu glu cys ala asp arg ala asp leu
 GTT TCC AAG TTA GTG ACA GAT CTT ACC AAA GTC CAC ACG GAA TGC TGC CAT GCA TGT GCT GAA TGT GAT GAC AGC GCG GAC CTT (890)

261 265 270 278 279 280 289 290
ala lys tyr ile oys glu asn gln asp ser lle ser aer lys leu lys glu oys cys glu lys pro leu leu glu lys ser his cys lle
 GCC AAG TAT ATC TGT GAA AAT CAA GAT TCG ATC TCC AGT AAA CTG AAG GAA TCC TGT GAA AAA CCT CTG TTG GAA AAC TCC TGC ATT (980)

291 310 316 320
ala glu val glu asn asp glu met pro ala asp leu pro ser leu ala ala asp phe val glu ser lys asp val cys lys asn tyr ala
 GCC GAA GTC GAA AAT GAT GAC ATG CCT GCT GAT CCT GTC TGA TAT GCA TTA GCT GAT TTT GTC GAA AGT AAC GAT GTC TGT AAA AAC TAT GCT (1070)

321 330 340 350
glu ala lys asp val phe leu gly met phe leu tyr ala asp arg arg his pro asp tyr ser val val phe lys pro leu leu ala
 GAC GCA AAG GAT GTC TTC TGC TGT GGC ATG TTT TGC TAT GAA TAT GCA ACT CCT GAT CCT GCA GAT CTC TAC TAC GAT TAC TCT GCA CTC AGA CTT GCC (1160)

351 360 361 369 370 380
lys thr tyr glu thr thr leu glu lys cys cys ala ala asp pro his glu cys tyr ala lys val phe asp glu phe lys pro leu
 AAC ACA TAT GAA ACC ACT CTA GAG TGC TGT GGC GCT GCA GAT CCT GCA TAA TGC TAT GCA TGT GAA TTT AAA CCT CCT CTC CGT (1250)

381 390 392 400 410
val glu glu pro gln asn leu lle lys gln asn cys glu leu phe glu qln leu qly glu tyr lys phe gln asn ala leu leu val arg
 GTC GAA GAG CCT CAG AAC TTA ATC AAA CAA AAT TGT GAG CTC CTT GAC CAG CTC TCA AGA AAC CTA GCA AAA GTC CCC AGC AAA TGT TGT AAA CAT (1340)

411 420 430 440 450
tyr thr lys val pro gln val ser thr pro thr leu val glu ser arg asn leu gly lys val ala lys cys cys lys his
 TAC ACC AAC AAA GTA CCC CAA GTC TCA ACT CCA ACT CTT GTA GAG GTC GTC TCA AGA AAC CTC TTA TGT GTC TGT GAA AAC CCA GTC AGT (1430)

461 468 450 460 461 470
pro glu ala lys arg met pro cys ala glu asp tyr leu ser val val gln leu cys val leu his glu lys thr dro val ser
 CCT GAA CCA AAA AGA ATG CCC TGT GCA GAA GAC TAT CTA TCC GTC GTC AAC CAG TCA TAC GAC AAA ACC CCA GTC AGT (1520)

471 476 477 480 490 500
asp arg val thr lys cys cys thr glu ser leu val asn arg arg pro cys phe ser ala leu glu val asp glu thr tyr val pro lys
 GAC AGA GTC ACC AAA TGC TGC ACA GAA TCC TGC GTC AAC AGC CGA CCA TGC TTT TCA GCT CTC GAA GTC GAT GAA ACA TAC GTC CCC AAA (1610)

501 510 514 520 530
glu phe asn ala glu thr phe thr phe his ala asp lle cys thr leu ser glu lys glu arg aln lle lys gln thr ala leu val
 GAG TTT AAT GCT GAA ACA TTC ACC GTC CAT GCA GAT ATA TGC ACA CTT TGT GAG AAG GAC AGA CAA ATC AAG AAA ACT GCA CTT GTT (1700)

5

10

15

20

25

30

35

0079739

4083

-23-

9. Nucleotide sequence coding for the pre pro human serum albumin, said nucleotide sequence is as follows:

		5		
		10		-10
		15		p r c
		20		Met lys trp val thi phe Ile ser leu leu phe leu ser
		25		ATG AAG TGG GTA ACC TTT ATT TCC CTT CTC TTT AGC (30)
		30		ala tyr ser arg gly val phe arg asp ala his lys ser glu val ala his arg phe lys asp leu ala glu asn phe lys
		35		TCG GCT TAT TCC AGG CGT GTC TTT CGT CGA GAT GAC AGT GAC TGT GCT CAT CGC AAA CAC ACT GCA (170)
		40		ala leu val lle ala phe ala gln tyr leu gln gln cys pro phe glu asp His val lys leu val asn glu val thr glu phe ala
		45		CCC TTC GTC ATT GCC TTT GCT CAG TAT CTT CAG CAG TGT CCA TTT GAA GAT CAT GTA AAA TTA GTG AAT GAA CAA ACT CTT GCA (260)
		50		
		55		lys thr cys val ala asp glu ser ala glu asn cys asp lys ser leu His thr leu phe gly asp lys leu val asn glu val thr leu
		60		AAA ACA TGT GTC CCT GAT GAG TCA GCT GAA ATT TGT GAC AAA TCA CTT CAT ACC CTT TTT CGA GAC ACA ATT TCC ACA (350)
		65		
		70		arg glu thr tyr gly glu met ala asp cys cys ala lys gln glu pro gly arg asn glu cys ala lys asp asn pro
		75		CGT GAA ACC TAT GCT GAA ATG GCT GAC TCC TGT CGA AAA CAA CCT GCA (440)
		80		
		85		ala lys thr cys val met cys thr ala phe his asp asn glu glu thr phe leu cys thr val ala thr leu
		90		100 101
		95		arg glu thr tyr gly glu met ala asp cys cys ala lys gln glu pro gly arg asn glu cys ala lys asp asn pro
		100		CGT GAA ACC TAT GCT GAA ATG GCT GAC TCC TGT CGA AAA CAA CCT GCA (460)
		105		
		110		ala lys leu val pro glu val asp val met cys thr ala phe his asp asn glu glu thr phe leu lys lys asp asn pro
		115		CGT GAA ACC TAT GCT GAA ATG GCT GAC TCC TGT CGA AAA CAA CCT GCA (480)
		120		
		125		ala lys leu val pro glu val asp val met cys thr ala phe his asp asn glu glu thr phe leu lys lys asp asn pro
		130		CGT GAA ACC TAT GCT GAA ATG GCT GAC TCC TGT CGA AAA CAA CCT GCA (500)
		135		
		140		ala lys leu val pro tyro tyr ala pro glu leu phe ala lys ala lys arg tyr lys ala ala phe thr glu cys cys ala
		145		160 169 170
		150		ala lys ala arg his pro tyro tyr ala pro glu leu phe ala lys ala lys arg tyr lys ala ala phe thr glu cys cys ala
		155		CGT GAA ACC TCA GCA ATT GCA GCA (520)
		160		
		165		ala lys ala arg his pro tyro tyr ala pro glu leu phe ala lys ala lys arg tyr lys ala ala phe thr glu cys cys ala
		170		CGT GAA ACC TCA GCA ATT GCA GCA (540)
		175		
		180		ala lys ala ala cys leu leu pro lys leu asp glu alu gly lys ala ser ser als lys ala lys ala lys ala lys cys
		185		CCT GCT GAT AAA GCT GCG TGC CTC CCT GAT GAA CTT CGG GAT GAA GCG AAC GCT TCG TCT GCC AAA CAC ACA CTC AAG TGT (710)
		190		
		195		
		200		
		205		ala ser leu gln lys ala phe gly glu arg ala phe lys als val als arg leu ser gln arg phe pro lys als glu phe als glu
		210		CCC ACT CTC CAA AAA TTT GCA GAA AGA GCT TCC AAA CCT CCC CTC ACC CAC GCA TTT GCA GAA (330)
		215		
		220		
		225		
		230		

0079739

4083

-24-

0079739

4083

-25-

5

10

15

20

25

30

35

531 540 550 558 559 560
glu leu val lys pro lys ala thr lys glu gln leu lys ala val met asp asp phe ala phe val glu lys cys cys lys
CAG CTC GTC AAA CAC AAC CCC AAG GCA ACA AAA GAG CAA CTC AAA GCT GTT ATG CAT GAT TTC GCT GCT TTT GTA GAG AAG TGC TCC AAG (1790)

561 567 570 580
ala asp asp lys glu thr cys phe ala glu glu gln lys leu val ala ser gln ala ala leu gln leu ter ter
GCT GAC GAT AAC GAG ACC TCC TTT GCC GAG GGT AAA AAA CTT GTC AGT GCA AGT CAA GCT GCC TTA GGC TTA TAA CATCACATTAAAG (1883)

ter ter ter ter

CATCTACGCTTACCATGACAATAAGACAATCAAACCTTATTCATCTGTTTCTTTCTGTTGCTTAAGCCMACACCCCTGCTCTAAAAAACATAAAAAATCTTTAA (2002)

TCACTTTGGCTCTTTCTCTGCTCTCAATTAAATAAAATGAAATCTAA..... 20AA (2078)

10. A nucleotide sequence according to any of claims 6 to 9, in essentially pure form.
11. A DNA transfer vector comprising a nucleotide sequence as defined in claim 5.
- 5 12. A DNA transfer vector according to claim 11, transferred to and replicated in a micro-organism.
13. A DNA transfer vector according to claim 12, which is a plasmid.
14. A DNA transfer vector according to claim 13, 10 wherein the plasmid is pBR322 or YEp6.
15. A process for preparing human serum albumin, which comprises culturing a micro-organism according to claim 5.
16. A DNA transfer vector according to any of 15 claims 12 to 14, or a process according to claim 15, wherein the micro-organism is a bacterium or yeast.
17. A vector or process according to claim 16, wherein the bacterium or yeast is E. coli or Saccharomyces cerevisiae.

0079739

Restriction Endonuclease Map of Human Serum Albumin cDNA Clones

