

Inside the Digital Gate

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 5

The Digital Abstraction

- Discretize value 0, 1
- Static discipline meet voltage thresholds

Specifies how gates must be designed

Combinational gate abstraction

- outputs function of input alone
- → satisfies static discipline

\underline{A}	B	C
0	0	1
0	1	1
1	0	1
1	1	0

For example: a digital circuit

- A Pentium III class microprocessor is a circuit with over 4 million gates!!
- The RAW chip (http://www.cag.lcs.mit.edu/raw) being built at the Lab for Computer Science at MIT has about 3 million gates.

How to build a digital gate

Use this insight to build an AND gate.

How to build a digital gate

Electrical Analogy

Bulb C is ON if A AND B are ON, else C is off

Key: "switch" device

Electrical Analogy

equivalent ckt

Key: "switch" device

if C = 0

short circuit between in and out else open circuit between in and out

For mechanical switch, control \longrightarrow mechanical pressure

Consider

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

Lecture 5

What about?

What about?

can also build compound gates

The MOSFET Device

Metal-Oxide Semiconductor Field-Effect Transistor

3 terminal lumped element behaves like a switch

G: control terminal

D,S: behave in a symmetric manner (for our needs)

The MOSFET Device

as a two-port element—

check out

the textbook

the textbook

for its internal Understand its operation by viewing it

structure.

"Switch" model (S model) of the MOSFET

Check the MOS device on a scope.

A MOSFET Inverter

Note the power of abstraction.

The abstract inverter gate representation hides the internal details such as power supply connections, R_{L} , GND, etc.

(When we build digital circuits, the ↑ and ⊥ are common across all gates!)

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 5

Example

The T1000 model laptop desires gates that satisfy the static discipline with voltage thresholds. Does out inverter qualify?

$$V_{OL} = 0.5 \text{V}$$
 $V_{IL} = 0.9 \text{V}$ $V_{OH} = 4.5 \text{V}$ $V_{IH} = 4.1 \text{V}$ 1: $\begin{bmatrix} 5 \\ 4.5 \end{bmatrix} V_{OH} & 5 \\ 0.5 \end{bmatrix} V_{OL} & 0.9 \end{bmatrix} V_{IL} & 0$

Our inverter satisfies this.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

E.g.:

Does our inverter satisfy the static discipline for these thresholds:

$$V_{OL}=0.2\mathrm{V}$$
 $V_{IL}=0.5\mathrm{V}$ $V_{OH}=4.8\mathrm{V}$ $V_{IH}=4.5\mathrm{V}$ $V_{IL}=1.5\mathrm{V}$ $V_{OL}=0.5\mathrm{V}$ $V_{OL}=0.5\mathrm{V}$ $V_{IL}=1.5\mathrm{V}$ no $V_{OH}=4.5\mathrm{V}$ $V_{IH}=3.5\mathrm{V}$

Switch resistor (SR) model of MOSFET

...more accurate MOS model

e.g. $R_{ON} = 5K\Omega$

SR Model of MOSFET

Using the SR model

Choose R_L , R_{ON} , V_S such that:

$$v_{OUT} = \frac{V_S R_{ON}}{R_{ON} + R_L} \le V_{OL}$$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

Lecture 5