Robustness of quantum initial conditions for inflation

Fruzsina Agocs

Astrophysics group, Cavendish Laboratory Kavli Institute for Cosmology, Cambridge

May 27, 2020

Focus I

- Investigated robustness of initial conditions set to (scalar) primordial perturbations¹
- Power spectrum of perturbations \mathcal{R}_k well into inflation is the PPS:

$$P_{\mathcal{R}}(k) = \frac{k^3}{2\pi^2} |\mathcal{R}_k|^2$$

- Some sets of initial conditions differ in their definitions of the ground state (not obvious on a curved, non-static spacetime!)
- Demand that i.c. are invariant under a set of transformations that are canonical, otherwise the vacuum prescription is unphysical

¹F. J. Agocs et al. "Investigating the gauge invariance of quantum initial conditions for inflation". In: *arXiv e-prints*, arXiv:2002.07042 (Feb. 2020), arXiv:2002.07042. arXiv: 2002.07042 [gr-qc].

Focus II

- ▶ The i.c. considered:
 - 1. Hamiltonian diagonalisation $(HD)^2$,
 - 2. Danielsson vacuum [3],
 - Minimising the local energy density in vacuo using the renormalised stress-energy tensor (RST) [4]
- ▶ The transformations considered:
 - A simultaneous redefinition of the field and time in the action s.t. the equation of motion and the commutator structure is conserved
 - Addition of surface terms to the associated action (≡ integration by parts)

²The robustness of HD was first questioned by S. Fulling in 1979 [2], he concluded "it should not be taken seriously"

- A practical point:
 - Initial conditions typically phrased in terms of $v_k=\frac{\mathcal{R}_k}{z}$ (Mukhanov variable), η (conformal time), where $z(t)=\frac{a\dot{\phi}}{H}$
 - But computationally a different choice of variables may be better, e.g. \mathcal{R}_k , $N = \ln a$
 - ▶ Imagine running code that calculates $P_{\mathcal{R}}(k)$, but works in terms of (\mathcal{R}_k, τ)
 - If initial conditions are given for (v_k, η) , then how to set i.c. for (\mathcal{R}_k, τ) ?

- ► A practical point:
 - Initial conditions typically phrased in terms of $v_k=\frac{\mathcal{R}_k}{z}$ (Mukhanov variable), η (conformal time), where $z(t)=\frac{a\dot{\phi}}{H}$
 - ▶ But computationally a different choice of variables may be better, e.g. \mathcal{R}_k , $N = \ln a$
 - Imagine running code that calculates $P_{\mathcal{R}}(k)$, but works in terms of (\mathcal{R}_k, τ)
 - If initial conditions are given for (v_k, η) , then how to set i.c. for (\mathcal{R}_k, τ) ?

- ► A practical point:
 - Initial conditions typically phrased in terms of $v_k=\frac{\mathcal{R}_k}{z}$ (Mukhanov variable), η (conformal time), where $z(t)=\frac{a\dot{\phi}}{H}$
 - ▶ But computationally a different choice of variables may be better, e.g. \mathcal{R}_k , $N = \ln a$
 - Imagine running code that calculates $P_{\mathcal{R}}(k)$, but works in terms of (\mathcal{R}_k, τ)
 - If initial conditions are given for (v_k, η) , then how to set i.c. for (\mathcal{R}_k, τ) ?

- ► A practical point:
 - Initial conditions typically phrased in terms of $v_k = \frac{\mathcal{R}_k}{z}$ (Mukhanov variable), η (conformal time), where $z(t) = \frac{a\dot{\phi}}{H}$
 - But computationally a different choice of variables may be better, e.g. \mathcal{R}_k , $N=\ln a$
 - ▶ Imagine running code that calculates $P_{\mathcal{R}}(k)$, but works in terms of (\mathcal{R}_k, τ)
 - If initial conditions are given for (v_k, η) , then how to set i.c. for (\mathcal{R}_k, τ) ?

- ► A practical point:
 - Initial conditions typically phrased in terms of $v_k = \frac{\mathcal{R}_k}{z}$ (Mukhanov variable), η (conformal time), where $z(t) = \frac{a\dot{\phi}}{H}$
 - But computationally a different choice of variables may be better, e.g. \mathcal{R}_k , $N = \ln a$
 - ▶ Imagine running code that calculates $P_{\mathcal{R}}(k)$, but works in terms of (\mathcal{R}_k, τ)
 - If initial conditions are given for (v_k, η) , then how to set i.c. for (\mathcal{R}_k, τ) ?

- ► A practical point:
 - Initial conditions typically phrased in terms of $v_k = \frac{\mathcal{R}_k}{z}$ (Mukhanov variable), η (conformal time), where $z(t) = \frac{a\dot{\phi}}{H}$
 - But computationally a different choice of variables may be better, e.g. \mathcal{R}_k , $N = \ln a$
 - ▶ Imagine running code that calculates $P_{\mathcal{R}}(k)$, but works in terms of (\mathcal{R}_k, τ)
 - If initial conditions are given for (v_k, η) , then how to set i.c. for (\mathcal{R}_k, τ) ?

Motivation II

- ► A practical point:
 - The two paths should give identical results
 - otherwise theoretically they are equally correct, but may give rise to different observations³
- A theoretical point:
 - If the two actions $\mathcal{S}(v,\eta)$ and $\mathcal{S}(\mathcal{R},\tau)$ give identical equations of motion and commutation relations, they are physically equivalent and should give identical vacua

³Under a non-standard inflationary model, e.g. 'just enough inflation'

Motivation III: A non-standard inflation model

- Single scalar field
- ▶ If a period of kinetic dominance [5, 6, 7, 8] precedes slow-roll inflation, Hubble horizon grows then shrinks
- We use the 'just enough inflation' model, total e-folds of inflation $\approx 60,~N_* \approx N_{\rm tot} \approx 60$
- Perturbation modes initialised simultaneously, some will not start from 'deep within the horizon' → will see features in the PPS
- Perturbation initial conditions affect the PPS, and in turn the angular spectra of CMB

Motivation III: A non-standard inflation model

Motivation III: A non-standard inflation model

Example PPS with features

And their CMB counterparts

Methods summary

- For each of the vacuum considerations,
 - 1. We subject the relevant action to the transformation in question,
 - 2. Ensure the equation of motion and commutation relations are conserved,
 - 3. Derive the i.c. (typically involves minimising a quantity) for (v_k,η) ,
 - 4. This may either be invariant under the parametrisation of the transformation or will yield a set of i.c.,
 - 5. In the latter case, show the range of observations the different i.c. would result in

Methods example: HD + field-redefinition

- ▶ Hamiltonian diagonalisation considers the ground state as the minimum vacuum expectation value of the Hamiltonian density, i.e. minimising $\langle 0|\mathcal{H}|0\rangle$,
- ▶ Relevant action is written in terms of Mukhanov variable v and conformal time η :

$$S = \frac{1}{2} \int d\eta d^3x \left[(v')^2 - (\partial_i v)^2 + \frac{z''}{z} \right]$$

Action has canonically normalised form \to can quantise v as quantum harmonic oscillator (hence the choice of (v,η))

Methods example: HD + field-redefinition

- Why not quantise a different, canonically normalised field?
- ► Field redefinition + change of time:

$$t \to \tau(t)$$
 (1)

$$v \to \chi = \frac{\mathcal{R}}{h(t)} = \frac{v}{zh(t)},$$
 (2)

where h(t) is a time-dependent homogeneous field,

Gives:

$$S = \int d^3x d\tau \frac{C}{2} \left[(\partial_\tau \chi)^2 + \chi^2(\ldots) - (\nabla_i \chi)^2(\ldots) \right]$$

- if $C=h^2\dot{\tau}az^2=1$, this action is canonically normalised \to can quantise χ
- ▶ Get extra constraint from preserving the commutator structure

Results

- Hamiltonian diagonalisation and Danielsson vacuum: not invariant
 - lacktriangle Functional degree of freedom h(t) propagates into the initial conditions
 - ► HD under field-redefinition:

$$|v_k|^2 = \frac{1}{2\sqrt{k^2 + \frac{h''}{h} + 2\left(\frac{h'z'}{hz}\right)}},$$

$$v'_k = \left(-i\sqrt{k^2 + \frac{h''}{h} + 2\frac{h'z'}{hz}} + \frac{h'}{h} + \frac{z'}{z}\right)v_k,$$

- ► $f' = \frac{df}{d\eta}$, and if perturbations are set simultaneously at η_0 , then replace $h|_{\eta=\eta_0}=h_0$, $h'|_{\eta=\eta_0}=h_1$, $h''|_{\eta=\eta_0}=h_2$
- Minimising the local energy density with RST: invariant

Examples of primordial power spectra obtainable by HD

And their CMB counterparts

Posterior probability of the parameters $h_1/h_0, h_2/h_0$ from Planck 2018 data

Summary and future work

- Investigated how initial conditions for primordial perturbations, derived from different definitions of the ground state, behave under two types of transformations,
 - Vacuum prescriptions: Hamiltonian diagonalisation, Danielsson vacuum, minimising the 00-component of the renormalised stress—energy tensor
 - Transformations: field-redefinitions and addition of surface terms (both canonical)
- ► Found that HD and the Danielsson vacuum suffer from an ambiguity and give a range of initial conditions that would be distinguishable by observations *under certain inflationary models*, e.g. 'just enough inflation'
- RST initial conditions are invariant under the transformations

Summary and future work

- Future work
 - Are RST initial conditions unique in their invariance?
 - Generalising to all canonical transformations
 - ► How do other initial conditions behave?

Bibliography I

- F. J. Agocs et al. "Investigating the gauge invariance of quantum initial conditions for inflation". In: arXiv e-prints, arXiv:2002.07042 (Feb. 2020), arXiv:2002.07042. arXiv: 2002.07042 [gr-qc].
- Fulling, S. A. "Remarks on positive frequency and Hamiltonians in expanding universes". In: General Relativity and Gravitation 10.10 (Jul 1979), 807–824. ISSN: 1572-9532. DOI: {10.1007/BF00756661}. URL: %7Bhttps://doi.org/10.1007/BF00756661%7D.
- Ulf H. Danielsson. "Note on inflation and trans-Planckian physics". In: *Phys. Rev. D* 66 (2 July 2002), p. 023511. DOI: 10.1103/PhysRevD.66.023511. URL: https://link.aps.org/doi/10.1103/PhysRevD.66.023511.

Bibliography II

- W. J. Handley, A. N. Lasenby, and M. P. Hobson. "Novel quantum initial conditions for inflation". In: *Physical Review D* 94.2, 024041 (July 2016), p. 024041. DOI: 10.1103/PhysRevD.94.024041. arXiv: 1607.04148 [gr-qc].
- W. J. Handley et al. "Kinetic initial conditions for inflation". In: *Physical Review D* 89.6, 063505 (Mar. 2014), p. 063505. DOI: 10.1103/PhysRevD.89.063505. arXiv: 1401.2253.
- G.L Alberghi, R Casadio, and A Tronconi. "Trans-Planckian footprints in inflationary cosmology". In: *Physics Letters B* 579.1 (2004), pp. 1–5. ISSN: 0370-2693. DOI: https://doi.org/10.1016/j.physletb.2003.11.004. URL: http://www.sciencedirect.com/science/article/pii/S0370269303016976.

Bibliography III

L. T. Hergt et al. "Constraining the kinetically dominated universe". In: *Phys. Rev. D* 100 (2 July 2019), p. 023501. DOI: 10.1103/PhysRevD.100.023501. URL: https: //link.aps.org/doi/10.1103/PhysRevD.100.023501.

L. T. Hergt et al. "Case for kinetically dominated initial conditions for inflation". In: Phys. Rev. D 100 (2 July 2019), p. 023502. DOI: 10.1103/PhysRevD.100.023502. URL: https: //link.aps.org/doi/10.1103/PhysRevD.100.023502.