More Probability with Discrete Random Variables

Ben Goodrich January 29, 2019

Obligatory Disclosure

- Ben is an employee of Columbia University, which has received several research grants to develop Stan
- Ben is also a manager of GG Statistics LLC, which uses Stan for business purposes
- · According to Columbia University policy, any such employee who has any equity stake in, a title (such as officer or director) with, or is expected to earn at least \$5,000.00 per year from a private company is required to disclose these facts in presentations

source("https://tinyurl.com/y93srfmp")

	0	1	2	3	4	5	6	7	8	9	10
0	0.000019	0.000019	0.000037	0.000056	0.000093	0.000149	0.000242	0.00039	0.000632	0.001022	10 0.001654
1	0.00003	0.00003	0.00006	0.00009	0.000151	0.000241	0.000392	0.000633	0.001025	0.001658	0
2	0.000098	0.000098	0.000196	0.000294	0.00049	0.000784	0.001274	0.002057	0.003331	0	0
3	0.000239	0.000239	0.000479	0.000718	0.001197	0.001916	0.003113	0.005029	0	0	0
4	0.000653	0.000653	0.001306	0.001959	0.003265	0.005225	0.00849	0	0	0	0
5	0.001724	0.001724	0.003448	0.005172	0.008621	0.013793	0	0	0	0	0
6	0.00467	0.00467	0.009339	0.014009	0.023348	0	0	0	0	0	0
7	0.012931	0.012931	0.025862	0.038793	0	0	0	0	0	0	0
8	0.036638	0.036638	0.073276	0	0	0	0	0	0	0	0
9	0.118534	0.118534	0	0	0	0	0	0	0	0	0
10	0.383621	0	0	0	0	0	0	0	0	0	0

Expectation of a Discrete Random Variable

round(Pr(Omega), digits = 3) # What is the mode, median, and expectation of X1?

- The MODE is the element of Ω with the highest probability (10 here)
- The MEDIAN is the smallest element of Ω such that AT LEAST half of the cumulative probability is less than or equal to that element (9 here)
- EXPECTATION of a discrete random variable X is defined as

$$\mathbb{E}X = \sum_{x \in \Omega} \left[x imes \mathrm{Pr}\left(x
ight)
ight] \equiv \mu$$

• Expectation is just a probability-weighted sum (8.431 here)

The Average Is an Estimator of an Expectation

• Since $\mu = \sum_{y \in \Omega} y \Pr(y)$, if we ESTIMATE $\Pr(y)$ with $\frac{1}{N} \sum_{n=1}^{N} \mathbb{I}\{y_n = y\}$,

$$\widehat{\mu} = rac{1}{N} \sum_{y \in \Omega} y \sum_{n=1}^N \mathbb{I}\{y_n = y\} = rac{1}{N} \sum_{y \in \Omega} \sum_{n=1}^N y \mathbb{I}\{y_n = y\} = rac{1}{N} \sum_{n=1}^N y_n$$

· If we draw \tilde{y} from its probability distribution S times, as $S \uparrow \infty$,

$$rac{1}{S}\sum_{s=1}^{S} ilde{y}_{s}
ightarrow \mu_{Y}$$

```
c(exact = sum(Omega * Pr(Omega)),
  approx = mean(sample(Omega, size = 10 ^ 8, replace = TRUE, prob = Pr(Omega))))
##  exact approx
## 8.431034 8.431016
```

Practice Problems

- How would we calculate the expectation of the second roll given that $x_1=7$ pins were knocked down on the first roll?
- Answer: sum(Omega * Pr(Omega, n = 10 7)), which is 2 because the non-zero conditional probabilities are $\frac{1}{7}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}$
- How would we calculate the expectation of the second roll in a frame of bowling?

Marginal Expectation of Second Roll in Bowling

• To obtain $\mathbb{E}X_2$, we do

$$egin{aligned} \mathbb{E} X_2 &= \sum_{x_j \in \Omega_{X_2}} x_j \Pr\left(X_2 = x_j | \, n = 10
ight) \ &= \sum_{x_j \in \Omega_{X_2}} x_j \sum_{x_i \in \Omega_{X_1}} \Pr\left(x_i igcap x_j
ight) \ &= \sum_{x_j \in \Omega_{X_2}} x_j \sum_{x_i \in \Omega_{X_1}} \Pr\left(x_j | \, X_1 = x_i, n = 10
ight) \Pr\left(x_i | \, n = 10
ight) \end{aligned}$$

Pr_X2 <- colSums(joint_Pr) # marginal probabilies from last week
EX2 <- sum(Omega * Pr_X2) # definition of marginal expectation
EX2</pre>

[1] 1.064386

The Expectation Is a Linear Operator

- What is the expectation of cX where c is any constant?
- · Answer: $c\mu$ because $\mathbb{E}\left[cX
 ight]=\sum_{x\in\Omega}cx\Pr\left(x
 ight)=c\sum_{x\in\Omega}x\Pr\left(x
 ight)=c\mathbb{E}X=c\mu$
- What is the expectation of the sum of two rolls in a frame of bowling?
- · Answer: In general, $\mathbb{E}\left[aX+bY+c\right]=a\mu_X+b\mu_Y+c$, but in this case

$$\mathbb{E}\left[X+Y\right] = \sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} (x+y) \Pr\left(x \bigcap y\right) = \sum_{x \in \Omega_X} x \sum_{y \in \Omega_Y} \Pr\left(x \bigcap y\right) + \sum_{y \in \Omega_Y} y \sum_{x \in \Omega_X} \Pr\left(x \bigcap y\right) = \sum_{x \in \Omega_X} x \Pr\left(x\right) + \sum_{y \in \Omega_Y} y \Pr\left(y\right) = \mu_X + \mu_Y$$

Sum of Two Rolls in a Frame

```
S <- row(joint_Pr) - 1 + col(joint_Pr) - 1; sum(joint_Pr * S)
## [1] 9.495421</pre>
```

	0	1	2	3	4	5	6	7	8	9	10
0	0	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10	11
2	2	3	4	5	6	7	8	9	10	11	12
3	3	4	5	6	7	8	9	10	11	12	13
4	4	5	6	7	8	9	10	11	12	13	14
5	5	6	7	8	9	10	11	12	13	14	15
6	6	7	8	9	10	11	12	13	14	15	16
7	7	8	9	10	11	12	13	14	15	16	17
8	8	9	10	11	12	13	14	15	16	17	18
9	9	10	11	12	13	14	15	16	17	18	19
10	10	11	12	13	14	15	16	17	18	19	20

Expectations of Functions of Discrete RVs

Let g(X) be a function of a discrete random variable whose expectation is

$$\mathbb{E}g\left(X
ight) = \sum_{x \in \Omega} \left[g\left(x
ight) imes \mathrm{Pr}\left(x
ight)
ight]
eq g\left(\mathbb{E}X
ight)$$

- If $g(X)=(X-\mu)^2$, the VARIANCE of X is defined as $\mathbb{E}\left[(X-\mu)^2\right]=\sigma^2$. Show that $\sigma^2=\mathbb{E}\left[X^2\right]-\mu^2$ by expanding $(X-\mu)^2=X^2-2X\mu+\mu^2$.
- $\sigma = \sqrt[+]{\sigma^2}$ is the standard deviation but not an expectation of X
- · If $g(X) = -\log(\Pr(X))$, the ENTROPY of X is $\mathbb{E}\left[-\log(\Pr(X))\right]$, which reaches its upper bound of $\log(\operatorname{length}(\operatorname{Omega}))$ when $\Pr(x)$ is constant

```
sum(-log(joint_Pr) * joint_Pr, na.rm = TRUE) # entropy
## [1] 2.361677
```

Expected Utility

- It is often sensible to make a decision that maximizes EXPECTED utility:
 - 1. Enumerate D possible decisions $\{d_1, d_2, \dots, d_D\}$ that are under consideration
 - 2. Define a utility function g(d,...) that also depends on unknown (and maybe additional known) quantities
 - 3. Obtain / update your conditional probability distribution for all the unknowns given all the knowns
 - 4. Evaluate $\mathbb{E}g\left(d,\ldots\right)$ for each of the D decisions
 - 5. Choose the decision that has the highest value in (4)
- This is a very intuitive & useful procedure but you have to use Bayes Rule in (3)
- Also, whoever is deciding has to specify (1) and (2)

Iterated Expectations

· The expectation of a conditional expectation is a marginal expectation, i.e.

$$\begin{split} \mathbb{E}_{X}\left[\mathbb{E}\left[Y|X=x\right]\right] &= \mathbb{E}_{X}\left[\sum_{y\in\Omega_{Y}}y\operatorname{Pr}\left(y|X=x\right)\right] \\ &= \sum_{x\in\Omega_{X}}\operatorname{Pr}\left(X=x\right)\sum_{y\in\Omega_{Y}}y\operatorname{Pr}\left(y|X=x\right) \\ &= \sum_{x\in\Omega_{Y}}\sum_{y\in\Omega_{X}}y\operatorname{Pr}\left(y|X=x\right)\operatorname{Pr}\left(X=x\right) \\ &= \sum_{x\in\Omega_{Y}}\sum_{y\in\Omega_{X}}y\operatorname{Pr}\left(x\bigcap y\right) = \sum_{y\in\Omega_{Y}}y\sum_{x\in\Omega_{X}}\operatorname{Pr}\left(x\bigcap y\right) \\ &= \sum_{y\in\Omega_{Y}}y\operatorname{Pr}\left(y\right) = \mathbb{E}Y = \mu_{Y} \end{split}$$

Covariance and Correlation

· If $g\left(X,Y\right)=\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)$, their COVARIANCE is defined as

$$\mathbb{E}g\left(X,Y
ight) = \sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} \left(x - \mu_X
ight) \left(y - \mu_Y
ight) \Pr\left(x igcap y
ight)$$

' If $g\left(X,Y
ight)=rac{X-\mu_X}{\sigma_X} imesrac{Y-\mu_Y}{\sigma_Y}$, their CORRELATION is defined as

$$\mathbb{E}g\left(X,Y
ight) = \sum_{x \in \Omega_{Y}} \sum_{y \in \Omega_{Y}} rac{x - \mu_{X}}{\sigma_{X}} rac{y - \mu_{Y}}{\sigma_{Y}} \Pr\left(x igcap y
ight) =$$

$$rac{1}{\sigma_{X}\sigma_{Y}}\sum_{x\in\Omega_{X}}\sum_{y\in\Omega_{Y}}\left(x-\mu_{X}
ight)\left(y-\mu_{Y}
ight)\Pr\left(xigcap y
ight)=rac{\operatorname{Cov}\left(X,Y
ight)}{\sigma_{X}\sigma_{Y}}=
ho$$

- · Covariance and correlation measure LINEAR dependence
- Is $\rho \ge 0$ for 2 rolls in the same frame of bowling?

Correlation Calculation in R

```
Pr_X1 <- Pr(0mega)
EX1 <- sum(0mega * Pr_X1)
covariance <- 0
for (x1 in 0mega) {
    for (x2 in 0:(10 - x1))
        covariance <- covariance + (x1 - EX1) * (x2 - EX2) * joint_Pr[x1 + 1, x2 + 1]
}
Var_X1 <- sum( (0mega - EX1) ^ 2 * Pr_X1 )
Var_X2 <- sum( (0mega - EX2) ^ 2 * Pr_X2 )
correlation <- covariance / sqrt(Var_X1 * Var_X2)
correlation</pre>
## [1] -0.8844158
```

Variance of a Sum

· What is the variance of the sum of two rolls in the same frame of bowling?

```
EX12 <- sum(joint_Pr * S)
Var_X12 <- sum( joint_Pr * (S - EX12) ^ 2 )
Var_X12
## [1] 0.8015148</pre>
```

Var_X12 is also equal to

```
Var_X1 + Var_X2 + 2 * covariance
## [1] 0.8015148
```

from the previous slide. How would you go about showing that is true in general?

Bernoulli Distribution

- $\Pr\left(X=1|\,n=1\right)=rac{\mathcal{F}_1}{-1+\mathcal{F}_{1+2}}=rac{1}{-1+1-2}=rac{1}{2}$ is one way to assign the probability of knocking down a single pin but is not the most general way
- The Bernoulli distribution over $\Omega=\{0,1\}$ is $\Pr\left(X=1|\pi\right)=\pi\in[0,1]$ and thus $\Pr\left(X=0|\pi\right)=1-\pi$. Alternatively, $\Pr\left(x|\pi\right)=\pi^x(1-\pi)^{1-x}$.
- · What expression is the expectation of a Bernoulli random variable?
- What expression is the variance of a Bernoulli random variable?
- · Why isn't the Bernoulli distribution appropriate for the pins in bowling?
- · If $X_i = \mathbb{I}\{\text{pin i is knocked down}\}$ and π_i is the probability in the i-th Bernoulli distribution, what is

$$\Pr\left(x_1ert \pi_1
ight)\prod_{i=2}^{10}\Pr\left(x_iert \pi_i, X_1=x_1, X_2=x_2, \ldots, X_{i-1}=x_{i-1}
ight)?$$