Fabrício Barth

Insper Instituto de Ensino e Pesquisa

Fevereiro de 2025

Política de Controle

- A política de controle desejada é aquela que maximiza os reforços (reward) acumulados ao longo do tempo pelo agente.
- Em tese, é a política que faz o agente percorrer o melhor caminho.

Reward acumulado (1/4)

• O valor de um estado final leva-se em consideração apenas o reforço: $V(s_n)=r_n$.

Reward acumulado (2/4)

- O $V(s_2)$ será a soma de r_2 com o $V(s_3)$.
- Considerando o fator de desconto γ , temos: $V(s_2) = r_2 + \gamma^3 V(s_3)$.
- O fator de desconto: $0 \le \gamma < 1$

Reward acumulado (3/4)

Reward acumulado (4/4)

Desta forma, temos:

$$V(s_0) = r_0 + \gamma V(s_1)$$

$$V(s_0) = r_0 + \gamma r_1 + \gamma^2 V(s_2)$$

$$V(s_0) = r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 V(s_3)$$

$$V(s_0) = r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3$$

Ou melhor:

$$V(s_0) = r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3 \cdots + \gamma^n r_n$$

Fator de desconto γ

- O fator de desconto (γ) é um hiperparâmetro que consiste em um número entre 0 e 1 que define a importância das recompensas futuras em relação a atual $(0 \le \gamma < 1)$.
- Valores mais próximos ao 0 dão mais importância a recompensas imediatas enquanto os mais próximos de 1 tentarão manter a importância de recompensas futuras.

- O algoritmo Q-Learning é um algoritmo do tipo *value-based* que estimam a expectativa de retorno de uma ação *a* sendo executada em um estado *s* de acordo com uma política π : $Q^{\pi}(s, a)$.
- Para que agente possa identificar uma política de controle ótima este agente precisa criar um mapeamento entre estados (S) e ações (A).
- Desta forma o agente consegue identificar qual é a ação a com maior retorno em um determinado estado s.

• Este mapeamento é representado por uma função Q(S,A) onde S são todos os estados possíveis (s_1,s_2,\cdots) e onde A são todas as ações possíveis (a_1,a_2,\cdots)

Q-table	a_1	a ₂	a 3	a 4
s_1				
<i>s</i> ₂				
• • •				
Sn				

Como é que o agente pode saber quais são as melhores ações em cada estado?

Como é que o agente pode saber quais são as melhores ações em cada estado?

- A ideia é fazer com que o agente aprenda a função de mapeamento Q(S,A). Ou seja, que seja capaz de identificar qual é a melhor ação para cada estado através das suas **experiências**.
- Testando infinitas vezes o ambiente. Ou seja, testando muitas vezes as combinações entre estados (S) e ações (A).

```
function Q-Learning(env, \gamma, \alpha, episódios)
inicializar os valores de Q(s, a) arbitrariamente
for todos os episódios do
  inicializar s a partir de env
  repeat
     escolher uma ação a para um estado s
     executar a ação a
     observar a recompensa r e o novo estado s'
     Q(s,a) \leftarrow atualizando a partir das experiências
     s \leftarrow s'
  until s ser um estado final
end for
return Q(s,a)
```

Poderíamos simplesmente: $Q(s, a) \leftarrow r$. Será que funciona?

```
function Q-Learning(env, \gamma, \alpha, episódios)
inicializar os valores de Q(s, a) arbitrariamente
for todos os episódios do
  inicializar s a partir de env
  repeat
     escolher uma ação a para um estado s
     executar a ação a
     observar a recompensa r e o novo estado s'
     Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{A'} Q(s', A') - Q(s, a)]
     s \leftarrow s'
  until s ser um estado final
end for
return Q(s, a)
```

O valor de Q(s,a) não é simplesmente o valor imediato do r. Ele deve levar em consideração toda a trajetória (**Equação de Bellman**).

Algoritmo Q-Learning: hiperparâmetro α

• α é a taxa de aprendizado (0 < $\alpha \leq$ 1), quanto maior, mais valor dá ao novo aprendizado.

Que ação escolher?

```
function Q-Learning(env, \alpha, \gamma, episódios)
inicializar os valores de Q(s, a) arbitrariamente
for todos os episódios do
   inicializar s a partir de env
   repeat
      escolher uma ação a para um estado s
     executar a ação a
     observar a recompensa r e o novo estado s'
     Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{A'} Q(s', A') - Q(s, a)]
     s \leftarrow s'
   until s ser um estado final
end for
return Q(s, a)
```

• A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da *Q-table*.

- A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da Q-table.
- No entanto, para que o algoritmo Q-learning possa convergir para um determinado problema é necessário que o algoritmo visite pares de ação-estado muitas (infinitas) vezes.

- A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da Q-table.
- No entanto, para que o algoritmo Q-learning possa convergir para um determinado problema é necessário que o algoritmo visite pares de ação-estado muitas (infinitas) vezes.
- Por isso, que a escolha de determinada ação em um estado poderia ser feita de forma aleatória.

- A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da Q-table.
- No entanto, para que o algoritmo Q-learning possa convergir para um determinado problema é necessário que o algoritmo visite pares de ação-estado muitas (infinitas) vezes.
- Por isso, que a escolha de determinada ação em um estado poderia ser feita de forma aleatória.
- Porém, normalmente se utiliza uma política que inicialmente escolhe aleatoriamente as ações, e, à medida que vai aprendendo, passa a utilizar cada vez mais as decisões determinadas pela política derivada de Q.

- A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da Q-table.
- No entanto, para que o algoritmo Q-learning possa convergir para um determinado problema é necessário que o algoritmo visite pares de ação-estado muitas (infinitas) vezes.
- Por isso, que a escolha de determinada ação em um estado poderia ser feita de forma aleatória.
- Porém, normalmente se utiliza uma política que inicialmente escolhe aleatoriamente as ações, e, à medida que vai aprendendo, passa a utilizar cada vez mais as decisões determinadas pela política derivada de Q.
- Esta estratégia inicia explorando (tentar uma ação mesmo que ela não tenha o maior valor de Q) e termina escolhendo a ação que tem o maior valor de Q (exploitation).

Exemplo de função para escolha de ações

A escolha de uma ação para um estado é dada pela função:

```
function \operatorname{escolha}(s, \epsilon): a

\operatorname{rv} = \operatorname{random} (0 < rv \le 1)

if rv < \epsilon then

return uma ação \alpha aleatória em A

end if

return \max_a Q(s, a)
```

O fator de exploração ϵ ($0 \le \epsilon \le 1$) inicia com um valor alto (0.7, por exemplo) e, conforme a simulação avança, diminiu: $\epsilon \leftarrow \epsilon \times \epsilon_{dec}$, onde $\epsilon_{dec} = 0.99$

Epsilon


```
function Q-Learning(env, \alpha, \gamma, \epsilon, \epsilon_{min}, \epsilon_{dec}, episódios)
inicializar os valores de Q(s, a) arbitrariamente
for todos os episódios do
   inicializar s a partir de env
   repeat
      a \leftarrow escolha(s, \epsilon)
      s', r \leftarrow executar a ação a no env
      Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{A'} Q(s', A') - Q(s, a)]
      s \leftarrow s'
   until s ser um estado final
   if \epsilon > \epsilon_{min} then \epsilon \leftarrow \epsilon \times \epsilon_{dec}
end for
return Q
```

Atividade de implementação

Implementando o algoritmo Q-Learning

O objetivo desta atividade é implementar uma versão do algoritmo Q-Learning

Atividades

Siga o roteiro descrito em

https://insper.github.io/rl/classes/05_q_learning/ Link

Atividade de implementação

Hiperparâmetros e seleção das ações

O objetivo desta atividade é compreender o funcionamento e impacto dos hiperparâmetros de α , γ e dos conceitos de *exploration* e *exploitation*.

Atividades

Siga o roteiro descrito em

https://insper.github.io/rl/classes/05_x_hyperparameters/ • Link

Material de consulta

- Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. A Bradford Book, Cambridge, MA, USA. Capítulo 6.5
- Watkins, C.J.C.H., Dayan, P. Q-Learning. Machine Learning 8, 279–292 (1992).
- Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, 2019.