

Kinetic Effects in RF Discharges

Philipp Hacker

Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik

Ernst-Moritz-Arndt-Universität Greifswald

3. Dezember 2017

Betreuer: Prof. Dr. R. Schneider Gutachter: Prof. Dr. J. Meichsner

- 1. Motivation
- 2. Experiment
- 3. Particle-in-Cell Methode
- 4. 1D Simulation
- 5. Simulationen in 2D
- 6. Ausblick
- 7. Referenzen

Kapazitive gekopplte RF-Plasmen

- Anwendung in Halbleiterund Computerchip-Industrie
- in elektronegativen CCRF-Entladungen treffer schnelle lonen auf die Elektroden
- Oberflächenprozesse an der Elektrode mit negativen lonen

(Negative Ionen Energieverteilung in Sauerstoffentladungen) [2]

Kapazitive gekopplte RF-Plasmen

- Anwendung in Halbleiterund Computerchip-Industrie
- in elektronegativen CCRF-Entladungen treffen schnelle lonen auf die Elektroden
- Oberflachenprozesse an der Elektrode mit negativen lonen

(Negative Ionen Energieverteilung in Sauerstoffentladungen) [2]

Kapazitive gekopplte RF-Plasmen

- Anwendung in Halbleiterund Computerchip-Industrie
- in elektronegativen CCRF-Entladungen treffen schnelle lonen auf die Elektroden
- Oberflächenprozesse an der Elektrode mit negativen Ionen

(Negative Ionen Energieverteilung in Sauerstoffentladungen) [2]

- negative Aufladung der Wände durch schnellere Elektronen
 →Self-Bias

$$v_{\mathsf{i},\mathsf{B}} = \sqrt{\frac{k_{\mathsf{B}}T_{\mathsf{e}}}{m_{\mathsf{i}}}}$$

 Asymmetrie der getriebenen/geerden Elektroden

- negative Aufladung der Wände durch schnellere Elektronen →Self-Bias
- Ionen werden auf Bohm-Geschwindigkeit beschleunigt

$$v_{\mathsf{i,B}} = \sqrt{\frac{k_{\mathsf{B}}T_{\mathsf{e}}}{m_{\mathsf{i}}}}$$

- negative Aufladung der Wände durch schnellere Elektronen
 →Self-Bias
- Ionen werden auf Bohm-Geschwindigkeit beschleunigt

$$v_{\mathsf{i},\mathsf{B}} = \sqrt{\frac{k_\mathsf{B} T_\mathsf{e}}{m_\mathsf{i}}}$$

 Asymmetrie der getriebenen/geerden Elektroden

(Dichte und Potential vor einer Wand) [1]

 Kapazitive Kopplung führt zur Verschiebung des Plasma-Potentials

Oberflächen- und Stoßprozesse

(ausgewählte Stoßquerschnitte in Sauerstoff)

Oberflächen- und Stoßprozesse

Nr.	Reaction	Type
	Elastic scattering	Energy loss
(1)	$e^{-} + O_2 \rightarrow O_2 + e^{-}$	
(2)	$O^{-} + O_{2} \rightarrow O_{2} + O^{-}$	
(3)	$O_2^- + O_2 \rightarrow O_2 + O_2^-$	
	Electron energy loss scattering	Energy loss
(4)	$e^{-} + O_{2} \rightarrow O_{2}^{\nu} + e^{-}$	Vibrational excitation ($\nu = 1,, 4$)
(5)	$e^- + O_2 \rightarrow O_2(Ryd) + e^-$	Rydberg excitation
(6)	$e^- + O_2 \rightarrow O(1D) + O(3P) + e^-$	Dissociative excitation at 8.6 eV
(7)	$e^- + O_2 \rightarrow O_2(a^1\Delta_g, b^1\Sigma_g)$	Meta-stable excitation
	Electron and ion reactions	Creation and loss
(8)	$e^- + O_2^+ \rightarrow 2 O$	Dissociative recombination
(9)	$O^- + O_2^+ \rightarrow O_2 + O$	Neutralization
(10)	$e^- + O_2 \rightarrow O + O^-$	Dissociative attachment
(11)	$O^- + O_2 \rightarrow O + O_2 + e$	Direct detachment
(12)	$e^- + O_2 \rightarrow 2e^- + O_2^+$	Impact ionisation
(13)	$e^- + O^- \rightarrow O + 2e^-$	Impact detachment

Das Experiment

- große Asymmetrie zwischen geerdeter Kammer und CCRF-Elektrode
 - niedrige Gasflüsse und -drücke (<5 scom, 15 Pa)
- Flektrodenabstand ~5 cm

(Draufsicht des Experimentes) [2]

Das Experiment

- große Asymmetrie zwischen geerdeter Kammer und CCRF-Elektrode
- niedrige Gasflüsse und -drücke (<5 sccm, 15 Pa)
- Flektrodenabstand ~5 cm

(Draufsicht des Experimentes) [2]

Das Experiment

- große Asymmetrie zwischen geerdeter Kammer und CCRF-Elektrode
- niedrige Gasflüsse und -drücke (<5 sccm, 15 Pa)
- Elektrodenabstand ~5 cm

(Draufsicht des Experimentes) [2]

Struktur in EVF der negativen Ionen in Sauerstoff, Scheuer et. al [2] Hochenergetische Spitze in Abhängigkeit der Leistung

Struktur in EVF der negativen Ionen in Sauerstoff, Scheuer et. al [2] Hochenergetische Spitze in Abhängigkeit der Leistung

Struktur in EVF der negativen Ionen in Sauerstoff, Scheuer et. al [2] Hochenergetische Spitze in Abhängigkeit der Leistung

⇒ Anionen von der Elektrode?

Saha-Langmuir Gleichung:

Ionisation hängt ab von Austrittsarbeit, Ionisationsenergie, Oberflächentemperatur, Spannung und quantenmechanischen Koeffizienten des Materials

Saha-Langmuir Gleichung: Ionisation hängt ab von Austrittsarbeit, Ionisationsenergie, Oberflächentemperatur, Spannung und quantenmechanischen Koeffizienten des Materials

Saha-Langmuir Gleichung: Ionisation hängt ab von Austrittsarbeit, Ionisationsenergie, Oberflächentemperatur, Spannung und quantenmechanischen

$$[2]: \vec{E}_k = -\vec{\nabla}\Phi_k$$

$$[3]: \frac{\operatorname{d}\vec{v}_{k,n}}{\operatorname{d}t} = \frac{q_n}{m_n} \vec{E}_k \left(r_n, t_k \right)$$

$$[4]: \frac{d\vec{x}_{k,n}}{dt} = \vec{v}_{k,n}$$

[1]:
$$\Delta \Phi_k (r_{i,j}, t_k) = -\frac{\rho_k(r_{i,j}, t_k)}{\varepsilon_0}$$

$$[2]: \vec{E}_k = -\vec{\nabla}\Phi_k$$

$$[3]: \frac{\operatorname{d}\vec{v}_{k,n}}{\operatorname{d}t} = \frac{q_n}{m_n} \vec{E}_k \left(r_n, t_k \right)$$

$$[4]: \frac{d\vec{x}_{k,n}}{dt} = \vec{v}_{k,r}$$

$$[1]: \Delta\Phi_k(r_{i,j}, t_{\mathbf{k}}) = -\frac{\rho_k(r_{i,j}, t_k)}{\varepsilon_0}$$

$$[2]: \vec{E}_k = -\vec{\nabla}\Phi_k$$

$$[3]: \ \frac{\mathrm{d}\vec{v}_{k,n}}{\mathrm{d}t} = \frac{q_n}{m_n} \vec{E}_k \left(r_n, t_k \right)$$

$$[4]: \frac{d\vec{x}_{k,n}}{dt} = \vec{v}_{k,n}$$

[1]:
$$\Delta \Phi_k (r_{i,j}, t_k) = -\frac{\rho_k(r_{i,j}, t_k)}{\varepsilon_0}$$

$$[2]: \vec{E}_k = -\vec{\nabla}\Phi_k$$

$$[3]:\ \frac{\mathrm{d}\vec{v}_{k,n}}{\mathrm{d}t} = \frac{q_n}{m_n}\vec{E}_k\left(r_n,t_k\right)$$

$$[4]: \frac{\operatorname{d}\vec{x}_{k,n}}{\operatorname{d}t} = \vec{v}_{k,n}$$

1D Simulation

Energieverteilungen

Dynamik negativer lonen

Simulationen in 2D

Vergleich mit 1D

Negative Ionen EVF

Asymmetrische Ranbedingungen

Einfluss des Self Bias

Ausblick

Referenzen

