Tölvutækni og forritun Lokapróf

brj46

Nóvember 2024

Hvað þarf ég að kunna fyrir prófið?

Bitavinnsla með heiltölur (signed og unsigned)
Einfaldar fleytitölur
Skrifa C kóða út frá smalamálskóða (reikniaðgerðir, styriskipanir, föll, bestun,)
Minnisyfirflæði (buffer overflow)
Skyndiminni (Skipulag og notkun)
Frabrigði, ferlar (fork, wait)
Skipulag á sýndarminni
Minnicithlutun

Tekið frá Tuma

assembly

Uppbrot Gistis

algengar skipanir

skipun	argument	lýsing
mov	x, y	færir úr x yfir í y, sjá conditional move fyrir neðan
push	х	ýtir x á hlaða og eftir að hækka %ESP um sizeof(x) bæti og sett
		þar inn
pop	x	skilar síðasta gildi sem var sett á hlaðann inn í x
lea	(x), y	lea, betur þekkt sem leaq er notað til að framkvæma reikning
		(x) og setja útkomu inn í y
(x,y)		skilar útkomu úr reikningi x + y
0,(,x,y)		skilar útkomu úr reikningi x * y
(x,y,z)		skilar útkomu úr reikningi x + y * z
2(x, y, z)		skilar útkomu úr reikningi (2 + (x + y * z))
sar	x, y	hliðrar y um x bita til hægri, basically heiltöludeiling með x
sal	x, y	næstum eins og sar nema til vinstri, núna með margföldun með
		2^x
sub	x,y	dregur y frá x
inc/dec	x	hækkar/lækkar gildi x um 1

ath. SHL og SAL gera það sama en SHR virkar ekki með signed int eins og SAR

Algeng mynstur

mynstur	skýring
testl %edi, %edi	logical andað edi við edi þannig ef $edi \le 0$ er hægt að cmove
	eða jc í samræmi við það
cmove \$5, %eax	færðu 5 inn í eax ef z-flaggið er sett sem 1 þ.e. ef edi er tómt
leal 0(%rdi, %rdi, 4)	margfaldar %rdi með 5, $(x + 4 * x)$

conditional codes

þessir kóðar fara a endann á cmov skipunum þ.e. cmov- í línu eftir að eitthvað er testað eins og í dæmi

testb \$7, %dl cmove \$1, %rax

Petta er pínu fucked dæmi því e flaggið í cmove stendur fyrir equal nema hvað við erum actually að athuga hvort útkomugildið sé 0, þ.e. að enginn af neðstu 3 bitunum sé 1, þá er gott að muna að e er jafngilt z

þessi koði færir 1 inn í %rax ef neðstu þrír bitar %dl eru ekki 111

cc	condition
О	overflow
no	no overflow
b, nae	below, not above or equal
nb, ae	not below, above or equal
e, z	equal(zero)
ne, nz	not equal, (not zero)
na, be	not above, below or equal
a, nbe	above, not below or equal
S	sign
ns	no sign
p	parity
np	no parity
l, nge	less, not greater than or equal
nl	not less, greater than or equal
ng, le	not greater, less than or equal
g, nle	greater, not less than or equal

minnissvæði

ath. global breytur sem eru skilgreindar sem 0 eða NULL eru líka í .bss

Sýndarminni

• sýndarvistföng: a bitar

• raunvistföng: b bitar

• síðustærð: c bæti

• TLB: d vítt, e sæti

• fjöldi mengha: f

fjöldi mengja er reiknað $\frac{e}{d} = f$

við erum með sýndarvistfang sem er 16 bitar sem skiptast í 4 mengi þá er ${\bf VPN}_{4}^{3}\times 16$ bitar og ${\bf VPO}$ 4 bitar

TBLT og **TLBI** eru skipting á **VPN** og **TBLT** restin raunvistföngin eru jafn löng og **TLBT** og skipt niður í tvo hluta **PPN** og **PPO**, sem er jafn stór og **VPO**(í þessu tilfelli 4 bitar)

annap dæmi, við erum með sýndarminni sem er 4kb að stærð, 4-vítt, E, og með 16 mengi, S, svo útfrá þessum tölum finnum við línustærð, B, með reikningnum $\frac{4096}{16\times4}=64$ skiptum þessu nu upp fyrir 32-bita vistfang:

klukkutifsformúla

 $a + s \times r = m$

- aðgangstími = a(tif)
- smellahlutfall = s(hlutfall)
- smellarefsing = r (tif)
- meðalaðgangstími = m (tif)

dæmi:

- 97% smellahlutfall, $1 + 0.03 \times 100 = 4$
- 99% smellahlutfall, $1 + 0.01 \times 100 = 2$

Próf 2022 og mínar lausnir við því

1

Í þessu dæmi ætlum við að nota unsigned long breytur til að tákna (allt að) 64 staka mengi (sets). Ef a er unsigned long breyta þá er stak i í menginu a ef biti i $(i=0,\dots 63)$ er 1, annars er stak i ekki í menginu. Til dæmis væri mengið $\{0,3\}$, táknað með 64-bita bitastrengnum 00...01001. Athugið að bitarnir eru númeraðir frá hægri til vinstri, svo stak 0 er í menginu, en stak 1 er ekki í menginu, stak 2 er ekki í menginu, o.s.frv.

a.

Skrifið einnar línu fall (þ.e. bara ein **return** skipun) sem skilar sammengi (union) tveggja slíkra mengja. Haus fallsins: **unsigned long sammengi(unsigned long a, unsigned long b)**

Svar:

```
unsigned long sammengi(unsigned long a, unsigned long b){
return a | b;
}
```

b.

Skrifið einnar línu fall sem skilar mengjamun (set difference) mengjanna a og b, þ.e. öll stök sem eru í a, en ekki í b. Haus fallsins: **unsigned long munur(unsigned long a, unsigned long b)**

Svar:

```
unsigned long munur(unsigned long a, unsigned long b){
return a & ~b;
}
```

c.

Athugið að í C er fastinn **1ul** (tölustafurinn **1** og bókstafirnir u og l) 64-bita heiltalan 1 án formerkis. Hvaða mengi táknar segðin (1ul << i)?

Svar: Segðin (1ul << i) táknar mengið sem inniheldur stakið i og engin önnur stök.

d.

Skrifið einnar línu fall sem skilar því hvort stak i sé í menginu a. Skilagildið á að vera 1 (*satt*) ef i er í a, en 0 (*ósatt*) annars. Þið megið gera ráð fyrir því að gildið á i sé á bilinu 0 til 63. Haus fallsins: **int stakl(unsigned long a, int i)**

Svar:

```
int stakI(unsigned long a, int i){
    return (a >> i) & 1;
}
```

Við höfum 10-bita fleytitölur sem fylgja IEEE staðlinum. Við vitum ekki skiptingu þeirra í veldishluta (exp) og brothluta (frac), en það er einn formerkisbiti fremst í þeim.

a.

Hver er lágmarks bitafjöldi í brothluta fleytitölunnar til að hægt sé að tákna töluna $3\frac{9}{16}$ (= 3.5625) nákvæmlega á þessu formi? Rökstyðjið svar ykkar með útreikningi.

Svar: alright við vitum að í IEEE staðlinum erum við með fyrstu töluna sem segir til um + eða mínus næst kemur veldishlutinn og svo brothlutinn.

breytum 3.5625 í binary

$$3.5625 = 11.1001$$

setjum nú töluna í normað form $(1.f \times 2^n)$ færum kommuna um einn stað til vinstri 1.11001×2^1 Veldisvísirinn er þá 1 og brothlutinn er 11001

svo Lágmarksbitafjöldi í brothlutanum er því 5 bitar

b.

Hvert er bitagildið fyrir töluna $3\frac{9}{16} (= 3.5625)$ miðað við bitafjöldann fyrir brothlutann sem þið funduð í a-lið (ef þið náðuð ekki að leysa a-liðinn megið þið gefa ykkur raunhæft gildi bitafjöldanum fyrir brothlutann)? Sýnið útreikning á bitagildinu.

Svar:

þar sem við erum að vinna með 10 bita fleytitölur og við höfum að brothlutinn er 5 bitar þá er veldishlutinn 4 bitar og formerkisbitinn er 1 biti

1. Reiknum bias (skekkjustuðulinn)

$$Bias = 2^{4-1} - 1 = 7$$

2. Geymdur veldisvísir er þá

$$GeymtE = E + Bias = 1 + 7 = 8$$

8 í tvíundarkerfi er 1000

3. setjum saman bitana:

• Formeki: 0 (jákvæð tala)

• Veldishlutinn: 1000

• Brothlutinn: 11001

heildarbitaröðin og bitagildið er þá: 0 1000 11001

Segjum að í þessum 10-bita fleytitölum hefur verið ákveðið að nota einn bita fyrir formerki, einn bita fyrir brothluta og restina af bitunum fyrir veldishlutann. Er hægt að tákna staðlaðar tölur á þessu formi, og ef svo er, hver er þá <u>stærsta staðlaða talan</u> sem hægt er að tákna? Rökstyðjið svar ykkar.

Svar: Já við getum táknað staðlaðar tölur á þessu formi

• Formerki: 1 biti

• Veldishlutinn: 8 bitar

• Brothlutinn: 1 biti

Reiknum Bias

$$2^{k-1} - 1 = 2^{8-1} = 2^7 - 1 = 127$$

Hámarks veldistalan er þá $2^{8-1} - 1 = 127$

brothlutinn er 1 og við höfum gefinn 1 bita svo marktalan er 1.1 í binary sem í decimal er 1.5

stærsta staðlaða talan er því

$$1.5 \times 2^{127}$$

d.

Nú hefur verið ákveðið að nota einn bita fyrir formerki, einn bita fyrir veldishluta og restina af bitunum fyrir brothlutann. Er hægt að tákna staðlaðar tölur á þessu formi, og ef svo er, hver er nú <u>stærsta staðlaða talan</u> sem hægt er að tákna? Rökstyðjið svar ykkar.

Svar: Alright reynum þetta þá erum við með

• Formerki: 1 biti

• Veldishlutinn: 1 biti

• Brothlutinn: 8 bitar

reiknum bias

$$2^{k-1} - 1 = 2^{1-1} - 1 = 0$$

Mögulegir veldisvísar eru þá: 0, 1

$$E = 1 - 0 = 1$$

Stærsta talan sem hægt er að tákna er þá:

$$1.11111111_2 \times 2^1 = 1.(2^{1/2^1} + 1/2^2 + 1/2^3 + 1/2^{\cdots} + 2^8) = 1.9960375 \times 2^1$$

Stærsta staðlaða talan:

$$1.9960375 \times 2^{1} = 3.9921875$$

Hér fyrir neðan er smalamálskóði fallsins fun:

```
fun:
             (%rdi), %rax
    movq
             .L2
    jmp
.L3:
             (%rax, %rax, 2), %rax
    leaq
             %rax, %rax
    addq
    addq
             $1, %rsi
.L2:
             %rdx, %rsi
    cmpq
    jl
             .L3
    ret
```

a.

Hver er fjöldi vistfanga fallsins **fun** og hvert er tag hvers þeirra? Þið eigið að geta séð það út frá notkun gista í kóðanum hér að ofan. Rökstyðjið svarið með vísun í kóðann.

Svar:

Við höfum þrjár inntaksbreytur og eina staðværa breytu

- %rdi við sjáum að hér er movq (rdi), rax sem bendir til að þetta sé pointer á unsigned long gildi og fyrsta inntaksbreytan
- %rsi Notað í samanburði cmpq rdx, rsi og síðan uppfærð með addq \$1, rsi þetta er önnur inntaksbreytan, líklega heiltala.
- %rdx Notað í samanburði cmpq rdx, rsi þetta er þriðja inntaksbreytan og sennilega líka heiltala
- %rax Notað til að geyma gildi sem er lesið úr mminni og síðan uppfært í lykkju.

því erum við með 4 vistföng

- 1. **Bendir**: unsigned long * (í %rdi)
- 2. Heiltala s: unsigned long (í %rsi)
- 3. Heiltala x: unsigned long (í %rdx)
- 4. **Staðvær heiltala rax**: unsigned long (í %rax)

b.

Skrifið jafngildan C kóða fyrir fallið **fun**. Þið megið velja breytunöfnin, eða nefna þau eftir gistunum.

Svar:

```
unsigned long fun(unsigned long *ptr, unsigned long s, unsigned long x){
unsigned long rax = *ptr;
while(s < x){
    rax = 6 * rax;
    s = s + 1;
}
return rax;
}</pre>
```

Smalamálskóðinn að ofan er úttak úr þýðandanum **gcc** með bestunarrofann **-Og**. Ef notaður er bestunarrofinn **-O3** (sem er mesta mögulega bestun) fæst kóðinn sem hér er fyrir neðan. Berið hann sama við fyrri kóðann og segið í hvaða tilvikum **O3**-kóðinn gæti verið hraðvirkari.

```
fun:
              (%rdi), %rax
    movq
              %rdx, %rsi
    cmpq
    jge
              .L1
.L3:
              (%rax,%rax,2), %rax
    leaq
             %rax, %rax
    {\tt addq}
              $1, %rsi
    addq
              %rsi, %rdx
    \mathtt{cmpq}
    jne
              .L3
.L1:
    ret
```

Kynning, Linux, C

Heimadæmi spurningar

1 og 2

kennslu aðferðir

3

Skoðið sýnidæmin á glæru 16 í fyrirlestri 1 (þ.e. 50000 * 50000 fyrir int og 1e20 + (-1e20 + 3.14) fyrir float).

- a . Skrifið stutt forrit í Java sem prentar út niðurstöðuna úr þessum útreikningunum (athugið að í Java eru kommutölufastar sjálfkrafa af taginu double. Til að fá float-fasta þarf að setja f á eftir fastanum, t.d. 3.14f).
- b . Reyndar er gildið 1e20 (þ.e. 1020) óþarflega stórt. Það eru til mun minni gildi sem valda sömu vandræðum. Finnið lægsta gildi a á 10a sem gefur sömu niðurstöðu og 1e20 í seinni formúlunni á glæru 16. Sýnið útprentun á því í Java forriti.

4

Á glærum 20 og 21 í fyrirlestri 1 er sýnd minnisvilla sem getur komið upp í C forriti. Útskýrið hvers vegna svona villa myndi ekki koma upp í sambærilegu Java forriti. Hvaða kostir og gallar eru við það að leyfa möguleika á svona villum í C forritum?

5

Setjið upp linux

C, Bendar, minni, notkun

Vika 3

Upplýsingar sem bitar, heiltölur

Bætaröð, fleytitölur

Vika 5 Skipulag örgjava, smalamálsforritun

Stýriskipanir og stef í smalamáli

Vika 7

Gögn og yfirflæði minnis

Bestun smalamálskóða

Vika 9 Minnisstigveldi, skyndiminni

Tenging, keyrsluskrár, forritasöfn

Frábrigði, ferlastýring

Sýndarminni

Minnisúthlutun, ruslasöfnun, minnisvillur

Samantekt