

Vehicle: STAG X
Drawn By: Tim Brewis
Checked By: Max O'Brien
CAD Part:
SUFST

Sheet: CAN-C Bus Transceiver
File: can-transceiver.kicad_sch

Title: VCU

Size: A3 Date: 2023-03-03
KiCad E.D.A. kicad 7.0.9-1.fc38
Id: 2/11

Vehicle: STAG X
Drawn By: Tim Brewis
Checked By: Max O'Brien
CAD Part:
SUFST

Sheet: CAN-S Bus Transceiver
File: can-transceiver.kicad_sch

Title: VCU

Size: A3 Date: 2023-03-03
KiCad E.D.A. kicad 7.0.9-1.fc38
Id: 3/11

Analogue (12V -> 3,3V) These resistor values assume the input signal will occupy the full 12V range, which is not true in practice $f_c = 1.5kHz$ Calibrate resistors appropriately during testing! U4B TLV274 R24 75k Large R16 resistor 100k pulls low if NC Diode protects MCU from overvoltage at analogue inputs = 100n ► DBPS_OUT D2 BZX84-C3V3 — C53 1n The worst noise in the system is from the inverter at 12kHz R27 1.8k These signals change quite slowly in comparison, so the cut-off frequency can be low Filters can be bypassed with a OR resistor and no capacitor SAGL_IND-C7 100n TLV274 GND —DSAGL_OUT D3 BZX84-C3V3 — C55 1n R30 5.6k R31 1.8k GND GND APPS_2_IND U4D TLV274 C8 100n R32 75k R18 100k R33 5.6k -DAPPS_2_OUT R34 5.6k D4 BZX84-C3V3 — C56 R35 1.8k GND U4C TLV274 C9 100n R19 100k R37 5.6k DAPPS_1_OUT R38 5.6k R39 1.8k

GND

Vehicle: STAG X		6
Drawn By: Richard Karlson		
Checked By:		
CAD Part:		
SUFST		SUFST
Sheet: STM32	-F746ZG	
File: mcu.kica	id_sch	
Title: VCU		
Size: A3	Date: 2023-11-28	Rev: 1.3.0
KiCad E.D.A.	kicad 7.0.9-1.fc38	ld: 6/11
	7	- 0

Vehicle: STAG X
Drawn By: Tim Brewis
Checked By: Max O'Brien
CAD Part:
SUFST
Sheet: Output Level Shifting
File: output-shift.kicad_sch

Title: VCU
Size: A3 Date: 2023-03-03
KiCad E.D.A. kicad 7.0.9-1.fc38
Id: 6/11

Digital (12V -> 3.3V) Based on VIL = 3V at VCC = VDD = 10V (worst case) and +12V U12 $I_L = 18uA \text{ then}$ ILQ615-4X009T MCU should provide internal pulldown R < 167k C35 100n 🛨 No need to be near limit, pull down 10k is low enough current and should be safe DOUT_1 GND 1 k DIN_1D-Aout ***** = K DIN_2D-Bout DDOUT_2 7 Cin Cout 6 DIN_3D-Dout 10 DIN_4D-11 Ein R60 R61 R62 R63 14 Fin Fout 15 X DDOUT_3 GND GND GND U11 → HCF4010 DDOUT_4 GND GND

WARNING: +3.3V is called +3.3VT locally to seperate the VCU and Telemetry 3.3V supplies. Any normal +3.3V power symbol is global and WILL connect to the VCU's 3.3V. Be careful.

WARNING: +3.3V is called +3.3VT locally to seperate the VCU and Telemetry 3.3V supplies. Any normal +3.3V power symbol is global and WILL connect to the VCU 3.3V. Be careful. GND C39 100nF R72 C40 33 47pF WSB_DM NSB_DP NO NSB_DP 20 TXD/SPI_MISO RXD/SPI_MOSI GPS_TX< FB2 GPS_RXD-LNA_EN 14 1 (O) J11 18 SDA/SPI_CS RF_IN Conn_Coaxial × 19 SCL/SPI_CLK 4 EXTINT TIMEPULSE 3 1 SAFEBOOT 8 RESET D_SELD 2 D_SEL DNP R71 U15 Pads in case NEO-M9N we need to bodge GND in some reset GND GND Vehicle: STAG X Drawn By: Esteban Norena, Tim Brewis Checked By: Tim Brewis CAD Part: SUFST - Southampton University Formula Student Team **SUFST** Sheet: GPS File: GPS.kicad_sch Title: On-Car Telemetry Size: A4 Date: 2023-04-04 Rev: 1.4.0 KiCad E.D.A. kicad 7.0.9-1.fc38 ld: 12/11

