Wintersemester 2020/2021

Lösungshinweise zur 3. Übung

Logik für Informatiker

(G 1)Aussagenlogische Formeln

Welche der folgenden Ausdrücke A_i sind aussagenlogische Formeln?

- $A_1 : \neg p_0, A_2 : \neg \neg p_0$
- $A_3:p_0\to \vee p_1$
- $A_4:(p_0 \wedge (p_1 \vee p_2))$
- $A_5:((p_0 \wedge p_1) \vee (p_0 \wedge p_2))$
- $A_6:(p_0\vee)p_1\wedge$
- $A_7: p_0 \to p_1 \vee p_2$

Gib für jeden der obigen Ausdrücke A_i , der eine aussagenlogische Formel ist, die zugehörige Wertetabelle an.

LÖSUNG:

 A_1, A_2, A_4, A_5 sind aussagenlogische Formeln. A_3, A_6, A_7 sind offenbar nicht entsprechend der Regeln aufgebaut. Durch das Weglassen der Klammerung ist A_7 nicht eindeutig lesbar.

p_0	p_1	p_2	$\mathcal{A}(A_1)$	$\mathcal{A}(A_2)$	$\mathcal{A}(A_4)$	$\mathcal{A}(A_5)$
0	0	0	1	0	0	0
0	0	1	1	0	0	0
0	1	0	1	0	0	0
0	1	1	1	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	0	1	1	1
1	1	1	0	1	1	1

(G 2)Zweiwertige Interpretation aussagenlogischer Formeln

Sei $\Pi = \{A, B, C\}$ eine Menge von Aussagenvariablen und F die folgenden Formel über Π :

$$F = ((A \land B) \to C) \leftrightarrow ((\neg C \lor B) \to ((A \to A) \land C))$$

- a) Geben Sie für F eine Wahrheitstabelle an.
- b) Begründen Sie mithilfe der Wahrheitstabelle ob F erfüllbar, unerfüllbar, oder tautologisch ist.
- c) Gegeben die Formel $G = \neg A \lor B$ über Π . Untersuchen Sie mithilfe der Wahrheitstabelle ob $F \models G$ gilt. Begründen Sie Ihre Antwort mithilfe der Wahrheitstabelle.

- d) Gegeben die Formel $H = A \vee C$ über Π . Untersuchen Sie mithilfe der Wahrheitstabelle ob $F \models H$ gilt. Begründen Sie Ihre Antwort mithilfe der Wahrheitstabelle.
- e) Gegeben die Formel $K = (A \vee C) \wedge (B \vee C)$ über Π . Untersuchen Sie mithilfe der Wahrheitstabelle ob $F \equiv K$ gilt. Begründen Sie Ihre Antwort mithilfe der Wahrheitstabelle.

(G 3)Erfüllbarkeit & Co.

Beantworten Sie die folgenden Fragen. Begründen Sie jeweils Ihre Antwort.

- a) Gilt die folgende Aussage: Es gibt eine aussagenlogische Formel F , sodass F erfüllbar und $\neg F$ erfüllbar ist?
- b) Gilt die folgende Aussage für eine beliebige aussagenlogische Formel F: F ist erfüllbar genau dann, wenn $\neg F$ erfüllbar?
- c) Seien F, G beliebige aussagenlogische Formeln. Gilt die folgende Aussage: $F \models G$ gdw. $F \land \neg G$ unerfüllbar ist?
- d) Seien F, G beliebige aussagenlogische Formeln. Gilt die folgende Aussage: $F \models G$ gdw. $F \land G$ allgemeingültig ist?
- e) Sei M eine beliebige unerfüllbare Formelmenge, F eine beliebige Formel. Gilt die folgende Aussage: $M \models F$?
- f) Sei G eine erfullbare Formel, die nicht allgemeingultig ist, H eine beliebige Formel und $G \models H$. Welche der Eigenschaften (erfüllbar, unerfüllbar, tautologisch) gilt für $G \land H$?