Algoritmi in podatkovne strukture – 2

Vrste s prednostjo

osnove, izvedba s kopico

Slovar

Imamo slovar S nekakšnih elementov. S tem slovarjem želimo početi vsaj naslednje operacije:

dodajanje: Insert (S, x) - v slovar S dodamo nov element x.

iskanje: $Find(S, x) \longrightarrow y - v$ slovarju S poiščemo element x. Rezultat y je lahko Boolova vrednost true ali false, ali pa neki podatki povezani z elementom x.

izločanje: $Delete(S, x) \longrightarrow y - iz$ slovarja S izločimo element x. Rezultat y je lahko Boolova vrednost true ali false, ki sporoči ali je bil element uspešno izločen ali ne, ali pa operacija ničesar ne vrne.

Posplošeni slovar

Poleg omenjenih operacij imamo še opearcije:

levi sosed: Left(S, x) --> y-v slovarju S poiščemo element y, ki je največji element, kateri je še manjši od x. Če takšnega elementa ni, vrne null.

desni sosed: Right (S, x) --> y - v slovarju S poiščemo element y, ki je najmanjši element, kateri je še večji od x. Če takšnega elementa ni, vrne null.

sosed: Neighbour (S, x) --> y - v slovarju S poiščemo element y, ki je najbližji element x. Če takšnega elementa ni, vrne null.

Pri posplošenem slovarju imamo opravka z urejeno množico elementov.

Posebej zanimivi sta operaciji:

najmanjši: $Min(S) \equiv Right(S, -\infty) \longrightarrow y$

največji: $\operatorname{Max}(S) \equiv \operatorname{Left}(S, +\infty) \longrightarrow \operatorname{y}$

Vrsta s prednostjo

Imamo urejeno množico elementov S.

```
public class OrdElt extends Elt {
  public boolean Bigger(OrdElt other) { ... }
}
```

Mi se bomo omejili na ključe iz množice celih števil.

Nad njimi želimo početi naslednje operacije:

```
dodajanje: Insert (S, x) - v S dodamo nov element x.
```

najmanjši: $Min(S) \longrightarrow y - v S$ poiščemo najmanjši element y.

odreži: DelMin(S) - iz S izločimo najmanjši element.

Posplošena vrsta s prednostjo

Poleg omenjenih, so možne še operacije:

izločanje: Delete(S, x) --> y - iz S izločimo element x. Rezultat y je lahko Boolova vrednost true ali false, ki sporoči ali je bil element uspešno izločen ali ne, ali pa operacija ničesar ne vrne.

spreminjanje: Decrease(S, x, d) – v S elementu x zmanjšamo (povečamo) vrednost za d.

zlij: Merge (S_1 , S_2) --> S - zlije vrsti s prednostjo v novo vrsto s prednostjo.

levi sosed: Left(S, x) --> y-v S poiščemo element y, ki je največji element, kateri je še manjši od x. Če takšnega elementa ni, vrne null.

desni sosed: Right (S, x) --> y - v S poiščemo element y, ki je najmanjši element, kateri je še večji od x. Če takšnega elementa ni, vrne null.

Danes se bomo ukvarjali samo z osnovno obliko vrst s prednostjo.

Izvedba s seznamom

Najpreprostejša oblika izvedbe vrste s prednostjo je *urejen* seznam:

$$(2, 8, 10, 11, 13, 19, 20, 22, 23, 29)$$

Najmanjši element najdemo vO(1) času in prav tako ga odrežemo vO(1) času.

Čas dodajanja je sorazmeren dolžini seznama, oziroma, v najslabšem primeru moramo narediti n primerjav.

Kaj je dobrega v tej izvedbi?

Kaj je slabega?

Katere tri lastnosti opazujemo?

Izvedba z drevesom

- čas iskanja najmanjšega elementa: $O(\log n)$
- ullet čas izločanja najmanjšega elementa: $O(\log n)$
- čas dodajanja elementa: $O(\log n)$

Zakaj vedno v najslabšem primeru logaritemski čas?

Opažanja

- najmanjši element je skoraj vedno v listu in kar dve operaciji imata opravka z njim
- elementi v strukturi so urejeno vmesni obhod tvori urejen seznam elementov

Druga lastnost je preveč zahtevna, glede prve bi bilo pa dobro, če bi bil najmanjši element v korenu.

Kopica

Kopico (rekurzivno) definiramo z naslednjimi lastnostimi:

- kopica sestoji iz korena in dveh podkopic, ki pa sta lahko prazni;
- najmanjši element je v korenu;
- v vsaki od podkopic je (približno) enako število elementov.

Ali je pomemembno kateri elementi so v kateri od podkopic?

In operacije sedaj? Predvsem vstavljanje in rezanje najmanjšega elementa.

Kaj pa zahtevnosti?

Andrej Brodnik: Algoritmi in podatkovne strukture – 2 / Vrste s prednostjo – osnove, izvedba s kopico (11)

Posplošitve strukture

- kopica sestoji iz korena in dveh podkopic, ki pa sta lahko prazni;
- najmanjši element je v korenu;
- v vsaki od podkopic je (približno) enako število elementov.

Kaj lahko posplošimo?

Kako izgleda vozlišče v pomnilniku?

Implicitne in eksplicitne podatkovne strukture

Obe vrsti struktur se shranjujeta v pomnilniku, le da pri *eksplicitnih podatkovnih strukturah* uporabljamo za sprehajanje po strukturi reference, ki se tudi *hranijo* v strukturi (pomnilniku).

Reference tudi zasedajo prostor v pomnilniku.

Ali lahko naredimo polje kot eksplicitno podatkovno strukturo? Kako? Kako je sploh definirano polje? Zakaj bi jo želeli narediti kot eksplicitno podatkovno strukturo?

Implicitna dvojiška drevesa

- če je v drevesu en element preprosto ga shranimo;
- če je v drevesu n elementov, od katerih je n_l v levem in n_r v desnem, potem to naredimo tako, da (rekurzivno) pripravimo polje velikosti n:
 - damo koren na indeks 0 in z njim shranimo vrednost n_l ;
 - levo poddrevo na indekse $1...n_l 1$;
 - desno poddrevo na indekse $n_l...n-1$.

Opisan postopek velja za kakršnokoli dvojiško drevo.

Posplošitve? Kaj pa prostor? Je res to povsem implicitna podatkovna struktura?

Kopica

Kopica ni poljubno dvojiško drevo. Poglejmo jo malce drugače – od spodaj navzgor. Opazimo:

- spodnji nivo je (lahko) levo poravnan
- vsi drugi nivoji so (lahko) polni

Se kaj spremeni delovanje kopice, če se držimo te ureditve?

Implicitna kopica

- imejmo polje velikosti n, ki ga indeksiramo od 1 (v javi malce \gg telovadbe \ll , ker so tam indeksi od 0);
- koren shranimo na indeks 1;
- naslednjo plast na indekse 2 ter 3 in tako naprej

Pomembno je samo, ali se preprosto sprehajamo po kopici navzgor in navzdol:

- koren leve podkopice elementa i je na 2i (zakaj?);
- koren desne podkopice elementa i je na 2i + 1 (zakaj?);
- starš elementa i je na |i/2|.

Vstavljanje

- novi element damo na konec kopice;
- primerjamo ga z njegovim staršem in ju zamenjamo, če je potrebno; postopek ponavljamo dokler je potrebno oziroma do korena

Koliko primerjav je potrebnih?

Izločanje najmanjšega elementa – metoda 1

- 1. izločimo koren in na njegovo mesto postavimo zadnji element kopice;
- 2. primerjamo koren ter ga zamenjamo z manjšim od korenov podkopic (zakaj?) in rekurzivno nadaljujemo dokler je potrebno ali do lista

Se struktura ohranja? Zakaj?

Koliko primerjav?

Izločanje najmanjšega elementa – metoda 2

- 1. izločimo koren
- 2. manjšega od korenov podkopic postavimo v koren (zakaj?) in rekurzivno nadaljujemo do lista
- 3. ko smo prišli do dna, na mesto, kjer smo izločili zadnji element, prestavimo zadnji element kopice (zakaj?)
- 4. prestavljeni element primerjamo s staršem in, če je manjši, ju zamenjamo; rekurzivno ponavljamo *dokler je potrebno ali do korena*

Se struktura ohranja? Zakaj?

Koliko primerjav?

Primerjava metod

Višina kopice je $\lg n$ in recimo, da nadomestni element konča svojo pot k nivojev nad listi. Potem imamo:

- pri metodi 1: $2(\lg n k) = 2 \lg n 2k$ primerjav in
- pri metodi 2: $\lg n + k$ primerjav.

Če velja:

$$k = \frac{\lg n}{3}$$

je vseeno, katero metodo uporabimo.

Koliko elementov je v plasti i (0 so listi)? Ali lahko iz tega sklepamo kaj na verjetnost k?

Lahko kaj povemo o času vstavljanja?

Se dâ metodo 2 izboljšati?

Zahtevnost

	Min	DelMin	Insert
urejen seznam	O(1)	O(1)	O(n)
uravnoteženo drevo	$O(\log n)$	$O(\log n)$	$O(\log n)$
dvojiška kopica	O(1)	$O(\lg n)$	$O(\lg n)$

• Pri kopicah (Floyd 64, Williams 64) je različen vodilni koeficient in drugi člen.