Oitava Lista de Exercícios de Análise Real: Derivadas e Fórmula de Taylor

- 1. Sejam $f, g, h : X \to \mathbb{R}$ tais que, para todo $x \in X$, se tenha $f(x) \le g(x) \le h(x)$. Demonstre que se num ponto $a \in X \cap X'$ tem-se f(a) = h(a) e existem f'(a) = h'(a), então existe g'(a) e g'(a) = f'(a).
- 2. Seja $p: \mathbb{R} \to \mathbb{R}$ um polinômio de grau ímpar. Mostre que existe $c \in \mathbb{R}$ tal que p''(c) = 0.
- 3. Demonstre a seguinte sentença: a fim de que $f: \mathbb{R} \to \mathbb{R}$ seja derivável no ponto $a \in X \cap X'$, é necessário e suficiente que exista uma função $\eta: X \to \mathbb{R}$, contínua em a, tal que $f(x) = f(a) + \eta(x)(x-a)$ para todo $x \in X$.
- 4. Seja $f: X \to \mathbb{R}$ contínua. Dado $a \in X \cap X'$, defina $\xi: X \to \mathbb{R}$ pondo $\xi(x) = (f(x) f(a))/(x a)$ se $x \neq a$, $\xi(a) = L$. Demonstre que ξ é contínua se, e somente se, existe f'(a) e f'(a) = L.
- 5. Seja $f: X \to \mathbb{R}$ derivável no ponto $a \in X \cap X'_- \cap X'_+$. Se $x_n < a < y_n$ para todo $n \in \lim x_n = \lim y_n = a$, demonstre que $\lim (f(y_n) f(x_n))/(y_n x_n) = f'(a)$.
- 6. Seja $f: I \to \mathbb{R}$ derivável no intervalo aberto I. Um ponto crítico de f é um ponto $c \in I$ tal que f'(c) = 0. O ponto crítico c é dito não-degenerado quando f''(c) existe e é diferente de zero. Demonstre que:
 - (a) Se $f \in C^1$, para cada intervalo compacto $[a, b] \subset I$, o conjunto de pontos críticos de f pertencentes a [a, b] é fechado.
 - (b) Os pontos de máximos e mínimos locais de f são críticos. Um ponto crítico não-degenerado deve ser de máximo local ou de mínimo local.
 - (c) Se $c \in I$ é um ponto crítico não-degenerado para f, então existe $\delta > 0$ tal que não há outros pontos críticos de f no intervalo $(c \delta, c + \delta)$.

- (d) Se os pontos críticos de $f \in C^1$ contidos em $[a,b] \in I$ são todos não-degenerados, então há apenas um número finito deles. Conclua que f possui no máximo uma infinidade enumerável de pontos críticos não-degenerados em I.
- 7. Seja $f: I \to \mathbb{R}$ definida num intervalo I. Se existe $\alpha > 1$ tal que $|f(x) f(y)| \le |x y|^{\alpha}$ para quaisquer $x, y \in I$, então f é contínua e possui derivada nula em todos os pontos de I. Consequentemente, f é constante.
- 8. Seja I um intervalo aberto e seja $f:I\to\mathbb{R}$ uma função de classe C^2 . Prove que:
 - (a) se $f(I) \subset J$ e $g: J \to \mathbb{R}$ também é de classe C^2 , então $g \circ f: I \to \mathbb{R}$ é de classe C^2 ;
 - (b) se $f(I) \subset J$ e $f(x) \neq 0$ para todo $x \in I$, então $f^{-1}: I \to \mathbb{R}$ é de classe C^2 .
- 9. Seja $f:(c,+\infty)\to\mathbb{R}$ derivável. Mostre que se existem $\lim_{x\to+\infty}f(x)=a$ e $\lim_{x\to+\infty}f'(x)=b$, então b=0. Sugestão: $f(n+1)-f(n)=f'(x_n)$, em que $x_n\to\infty$.
- 10. Seja $f:[a,b]\to\mathbb{R}$ contínua, derivável em (a,b). Suponha f(a)=f(b)=0. Demonstre que, dado arbitrariamente $k\in\mathbb{R}$, existe $c\in(a,b)$ tal que $f'(c)=k\cdot f(c)$. Sugestão: Tome $p(x)=f(x)\cdot e^{-kx}$ e aplique o Teorema de Rolle.
- 11. Seja $f:(a,b)\to\mathbb{R}$ limitada e derivável. Se não existir $\lim_{x\to a+} f(x)$ ou $\lim_{x\to b-} f(x)$, prove que, para todo $c\in\mathbb{R}$, existe $x\in(a,b)$ tal que f'(x)=c.
- 12. Seja $f:[a,b]\to\mathbb{R}$ contínua, derivável em (a,b), com $f'(x)\geq 0$ para todo $x\in(a,b)$. Prove que se f'(x)=0 apenas num conjunto finito, então f é crescente.
- 13. Seja $f:[a,b]\to\mathbb{R}$ uma função com derivada limitada em (a,b) e com a propriedade do Teorema do Valor Intermediário. Prove que f é contínua.

- 14. Seja $f: I \to \mathbb{R} \in C^{\infty}$. Suponha que exista K > 0 tal que $|f^{(n)}(x)| \le K$ para todo $x \in I$ e todo $n \in \mathbb{N}$. Prove que, para $x_0, x \in I$ quaisquer vale $f(x) = \sum_{n \ge 0} \frac{f^{(n)}(x_0)}{n!} (x x_0)^n$.
- 15. Sejam $f, g: I \to \mathbb{R}$ duas vezes deriváveis no ponto $a \in \operatorname{int} I$. Se f(a) = g(a), f'(a) = g'(a) e $f(x) \ge g(x)$ para todo $x \in I$, prove que $f''(a) \ge g''(a)$.
- 16. Seja $f: I \to \mathbb{R}$ definida em um intervalo. Demonstre que f é convexa se, e somente se, para quaisquer $a, b \in I$ e $0 \le t \le 1$ vale $f((1-t)a + tb) \le (1-t)f(a) + tf(b)$.
- 17. Se $f: I \to \mathbb{R}$ possui um ponto crítico não-degenerado $c \in \operatorname{int} I$ no qual f'' é contínua, prove que existe $\delta > 0$ tal que f é convexa ou côncava no intervalo $(c \delta, c + \delta)$.
- 18. Dadas f, g analíticas no intervalo aberto I, seja $X \subset I$ um conjunto que possui um ponto de acumulação $a \in I$. Se f(x) = g(x) para todo $x \in X$, então f(x) = g(x) para todo $x \in I$. Em particular, se f(x) = 0 para todo $x \in X$, então $f \equiv 0$.