

Departamento de Engenharia Informática

TP6: Cor & Iluminação

Computação Gráfica

Objectivo: cor & iluminação

- Definir Luzes e Materiais
- Luz
 - Tipo (pontual, foco, direccional) e cor
 - Permitir ligar cada uma das componentes de cor: R, G B

- Material
 - Polígono: normal é fundamental!
 - Definir "cores"=propriedades de reflexão dos materiais

Interacção luz+material ???

OPENGL – cor & iluminação

Assuntos a tratar neste trabalho

- Parte 1 Básico
 - Modelo interacção: luz & material

Parte 2 - Detalhes

- 1. Color Material
- 2. Luz dos dois lados
- 3. Combinar iluminação com textura
- 4. Nevoeiro (uma forma de atenuação da intensidade ...)
- 5. Malha de polígonos
- 6. Transparências

OPENGL – cor & iluminação

- Modelos interacção : luz/materiais
 - Fontes de Luz
 - Interacção luz / materiais
 - Cor
- Fontes de Luz
- Materiais
- Normais
- Ordem operações

Modelos interacção

Como calcular a cor / intensidade num vértice ?

- 1. Luz tipos de luzes
- 2. Interacção luz/material

 Modelo de Phong

OpenGL: 1. Definições

1. Fontes de iluminação:

- Pontuais
- Direcionais
- Foco

(ex. lâmpada)

(ex. *sol*)

(ex. holofote)

OpenGL: 1. Definições

2. Interacção luz/materiais

Intensidade

- Modelo de Phong: ambiente +difusa +especular
- Atenuação: constante, linear, quadrática

Percepção da cor

- Modelos tricromátco : RGB
- Modelo multiplicatico
 - corPercepcionada = corLuz x corReflexãoMaterial

Phong: intensidade ambiente

Constante

- Não depende da localização
- Não depende da orientação do objecto
- Não depende do observador

Intensidade em P = ?

$$I_P = K_A I_{amb}$$

Ambiente

P(x,y,z)

Phong: intensidade difusa

- Depende da posição da luz
- Normal ao objecto
- Características do material
- Independente da posição do observador

Intensidade em P = ?

$$I_P = K_B I_0 \cos \theta$$

Phong: Intensidade especular

- Depende da posição da luz
- Normal ao objecto
- Posição do observador
- Características do material

Intensidade em P = ?

$$I_P = K_S I_0 \cos^{ns} \gamma$$

2. Cor? – Modelo multiplicativo

- Luz caracterizada pelas componentes (R,G,B)
 - (0,0,0) Luz preta (não emite nada)
 - (1,1,1) Luz branca
 - (1,0,0) Luz vermelha
- Material caracterizado pelas componentes que reflecte (R,G,B)
 - (0,0,0) Não reflete nada (material é <u>preto</u>)
 - (1,1,1) Reflete tudo (material é <u>branco</u>)
 - (0,1,0) Reflete verde (material <u>verde</u>)
- Exemplo: cor percepcionada pelo observador ?
 - Luz: (1.0, 0.0, 0.5)
 - Material (0.5, 0.5, 0.5)

Modelo **multiplicativo** corLuz x corReflexãoMAterial

• Cor = (0.5, 0.0, 0.25)

OPENGL – cor & iluminação

- Modelos interacção : luz/materiais
- Fontes de Luz como definir em openGL ?
- Materiais
- Normais
- Ordem operações

Modelos de Luz

OpenGL: como definir

- Tipos de fontes de luz ?
- Atenuação ?

$$I(x,y,z) = \frac{I_0}{k_c + k_l d + k_q d^2}$$

OpenGL: 1. Fontes de Luz

Activação global

```
•glEnable (GL LIGHTING);
```

- 8 fontes de Luz individuais parametrizáveis
 - pontuais,
 - direcionais,
 - Foco
- Activação
 - glEnable (source);
 - source é uma constante cujo nome é GL_LIGHT,
 - Começando com GL LIGHTO

OpengL: 1. Fontes de Luz

Configuração:


```
glLightfv(source, property, value);
```

- Property, constante, permitindo definir:
 - Coeficientes de cor usados no modelo de iluminação:
 - GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR
 - *Tipo* (geometria) da fonte
 - o GL POSITION,
 - GL_SPOT_DIRECTION, GL_SPOT_CUTOFF, GL_SPOT_EXPONENT
 - Coeficientes de *atenuação*
 - GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,
 - O GL QUADRATIC ATTENUATION

OpenGL: 1. Fontes de Luz

- Adicionalmente: componente ambiente global
 - É possível usar luminosidade ambiente não relacionada com fontes luminosas individuais
 - Intensidade para toda a cena (valores RGB)

```
    glLightModelfv(GL_LIGHT_MODEL_AMBIENT, luzGlobalCor);
```

```
luZGlobalCor ={0.5, 0.8, 0.3}
```

Exemplo: definir luz pontual

- Posição: posição
- Emite apenas ambiente + difusa e é amarela "clara"
- Atenuação constante, linear e quadrática = {2.0, 0.2, 0.1}
- Definir propriedades


```
glLightfv (GL_LIGHTO, GL_POSITION, Posicao);
glLightfv (GL_LIGHTO, GL_AMBIENT, CorAmbiente);
glLightfv (GL_LIGHTO, GL_DIFFUSE, CorDifusa);
glLightf (GL_LIGHTO, GL_CONSTANT_ATTENUATION, atConst);
glLightf (GL_LIGHTO, GL_LINEAR_ATTENUATION, 0.2);
glLightf (GL_LIGHTO, GL_QUADRATIC_ATTENUATION, 0.1);
```

- Ligar/desligar luz
 - glEnable(GL_LIGHT0)
 - glDisable(GL LIGHT0);

```
float localizacao [] = {1,2,3, 1};
float corAmbiente [] = {0.8,0.8,0.0,1.0};
float corDifusa [] = 0.8,0.8,0.0,1.0};
float atConst = 2.0;
```

Luzes pontuais / direcionais: 1/0

- Definição de uma luz pontual na posição (x,y,z)
 - $Pos[4] = \{x, y, z, 1.0\};$
 - glLightfv(GL_LIGHT1, GL_POSITION, Pos);

- Definição de uma luz directional de direcção (x,y,z)
 - Dir[4] = $\{x, y, z, 0.0\}$;
 - glLightfv(GL_LIGHT1, GL_POSITION, Dir);

1. Definições: modelo interacção

- OpenGL
 - Modelos interacção : luz/materiais
 - Fontes de Luz
 - Materiais definir propriedades dos Materiais em OpenGL?
 - Normais
 - Ordem operações

Materiais

- Phong: considera ambiente + reflexão especular + reflexão difusa
- Material: como definir as suas propriedades ?
 - Características de reflexão da luz/componente ambiente
 - Características de reflexão da luz/componente difusa
 - Características de reflexão da luz/componente especular
- Além disso
 - Coeficientes de reflexão ambiente
 Ka
 - Coeficientes de reflexão difusa
 Kb
 - Coeficientes de reflexão especular

 Ks
 - Coeficiente de especularidade
 Shininess Ce

OpengL: 2. Materiais

Configuração:

```
glMaterialfv (face, property, value)
```

- Face: quais lados da superfície se quer configurar:
 - GL_FRONT, GL_BACK, GL_FRONT_AND_BACK
- Property: propriedade do material (características reflexão):
 - GL_AMBIENT, GL_EMISSION, GL_DIFFUSE, GL_SPECULAR, GL_SHININESS

$$value={RGB}={r, g, b} \in [0..1]$$

Exemplo: definir material verde

- Exemplo material "VERDE" (nas três componentes)
- Capacidade de reflectir VERDE
 - corAmb [] = { 0, 1, 0 };
 - corDif [] = { 0, 1, 0 };
 - corSpec [] = { 0, 1, 0 };
 - Coef = 2;

- Definir propriedades
 - glMaterialfv (GL_FRONT, GL_AMBIENT, corAmb);
 - glMaterialfv (GL_FRONT, GL_DIFFUSE, corDf);
 - glMaterialfv (GL_FRONT, GL_SPECULAR, corSpec);
 - glMaterialf (GL_FRONT, **GL_SHININESS**, **Coef**);

Materiais: propriedades

Name	Ambient			Diffuse			Specular			Shininess
Values	R	G	В	R	G	В	R	G	В	value
Ruby	0.1745	0.01175	0.01175	0.61424	0.04136	0.04136	0.727811	0.626959	0.626959	0.6
Bronze	0.2125	0.1275	0.054	0.714	0.4284	0.18144	0.393548	0.271906	0.166721	0.2
Gold	0.24725	0.1995	0.0745	0.75164	0.60648	0.22648	0.628281	0.555802	0.366065	0.4
Silver	0.19225	0.19225	0.19225	0.50754	0.50754	0.50754	0.508273	0.508273	0.508273	0.4
red plastic	0.0	0.0	0.0	0.5	0.0	0.0	0.7	0.6	0.6	0.25
black rubbe r	0.02	0.02	0.02	0.01	0.01	0.01	0.4	0.4	0.4	0.078125

Exemplo: definir material dourado

- Exemplo material "OURO"
 - goldAmb []= { 0.2472, 0.1995, 0.0745 };
 - goldDif []= { 0.7516, 0.6064, 0.2264 };
 - goldSpec []= { 0.6282, 0.5558, 0.3660 };
 - goldCoef = 0.4 *128;

Gold 0.24725 0.1995 0.0745 0.75164 0.60648 0.22648 0.628281 0.555802 0.366065 0.4

- Definir propriedades
 - glMaterialfv (GL_FRONT, GL_AMBIENT, goldAmb);
 - glMaterialfv (GL_FRONT, GL_DIFFUSE, goldDif);
 - glMaterialfv (GL_FRONT, GL_SPECULAR, goldSpec);
 - glMaterialf (GL_FRONT, GL_SHININESS, goldCoef);

OPENGL – cor & iluminação

- Modelos interacção : luz/materiais
- Fontes de Luz
- Materiais
- Normais já falámos sobre a importância das normais!
- Ordem operações

Normais

- Além das propriedades da luz e materiais, a geometria do objecto é também importante:
 - A posição dos vértices em relação ao observador e à fonte de iluminação
 - O vector normal é fundamental
 - NÃO É calculado automaticamente
 - Necessita de ser especificada com glNormal (.)
 - Por omissão "aponta" para fora (regra da mão direita)

Normais

Definição <u>vértice a vértice</u>:

```
glNormal3fv(n0);
glBegin (GL_POLYGON);
glVertex3fv(v0);
glVertex3fv(v1);
glVertex3fv(v2);
glVertex3fv(v3);
glEnd();
```


Normais

Normalização:

- Por omissão normais não são normalizadas
- Para o fazer
 - glEnable(GL_NORMALIZE)

- Implica cálculos adicionais, ...
- Problema caso não esteja normalizado !!!

OPENGL – cor & iluminação

- Modelos interacção : luz/materiais
- Fontes de Luz
- Materiais
- Normais
- Ordem operações qual a ordem da iluminação ?

Ordem das operações

Ordem das operações

Ordem correcta de operações

5. Window

4. Projecção

- 3. Observador
- 2. Iluminação
- 1. Vértices/objectos

Ordem sem iluminação

```
//----- Janela
glViewport (0, 0, w, h);
                                              //... 5. window
//----- Projecção
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
glOrtho (-1.0, 1.0, -1.0, 1.0, -10.0, 10.0);
                                              //... 4. Projecção+volume
//----- Observador+objectos
glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
gluLookAt( Ox, Oy, Oz, Dx, Dy, Dz, UPx, UPy, UPz );
                                             //... 3. observador
glutSolidTeapot( );
                                              //... 1. objectos
```

Ordem com lluminação

```
//----- Janela
glViewport (0, 0, w, h);
                                                  //... 5. window
//----- Projecção
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
                                                  //... 4. projecção+volume
glOrtho (-1.0, 1.0, -1.0, 1.0, -10.0, 10.0);
//----- Observador+Luz+objectos
glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
gluLookAt(Ox, Oy, Oz, Dx, Dy, Dz, UPx, UPy, UPz);
                                                  //... 3. observador
                                                 //... 2. iluminação
Light position
glutSolidTeapot( );
                                                 //... 1.objectos
```

IMP: Uma fonte de Luz é tratado como um Vértice/objecto É afectada pela matriz MODELVIEW

Regras: IMPORTANTE!!

Ou seja, glColor não funciona com a iluminação !!!

2. Cor

Cor Luz x ReflexãoMaterial

Ex.

Luz Amarela =110 Material = Roxo = 011

Cor final = verde = 010

Trabalho

Primeira parte 1: Aprender a definir Luzes e materiais Modelo de cor (multiplicativo)

//----- Luz no tecto (pontual)

Ligar/desligar: : 'L' {0,1}

Red: : 'R' {0,1}

Green: : 'G' {0,1}

Blue : 'B' {0,1}

Variação intensidade : 'l' [0..1]

//---- Material do chão

Cor=Propriedades: 'M'
// W, B, R, G, B,
// Y, C, M

Sugestão

Definir uma luz direccional Pode comutar o sentido

- cima para baixo
- baixo para cima

OPENGL – cor & iluminação

Assuntos a tratar neste trabalho

- Parte 1 Básico
 - Cor: interacção luz + material
- Parte 2 Detalhes
 - 1. Color Materi
 - 2. Luz d
 - 2

Continuo

com textura

rorma de atenuação da intensidade ...)

e polígonos

*n*ansparências