AIEEE-2011 (Set -Q)

IMPORTANT INSTRUCTIONS

- 1. Immediately fill in the particulars on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of Pencil is strictly prohibited.
- 2. The Answer Sheet is kept inside the Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
- 3. The test is of **3 hours** duration.
- 4. The Test Booklet consists of **90** questions. The maximum marks are **360**.
- 5. There are **three** parts in the question paper A, B, C consisting of Physics, Mathematics, Chemistry having 30 questions in each part of equal weight age. Each question is allotted 4(four) marks for each correct response.
- 6. Candidates will be awarded marks as stated above in instruction No. 5 for correct response of each question ¼ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 7. There is only one correct response for each question. Filling up more than one response in each question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 6 above.
- 8. Use Blue/Black Ball Point Pen only for writing particulars/marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibited.
- 9. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc., except the Admit Card inside the examination hall/room.
- 10. Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is given at the bottom of each page and in 3 pages (Pages 21 23) at the end of the booklet.
- 11. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them.
- 12. The CODE for this Booklet is **Q**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 13. Do not fold or make any stray marks on the Answer Sheet.

This represents a

(3) standing wave of frequency $\frac{1}{\sqrt{b}}$

Circular scale reading: 52 divisions

Main scale reading: 0 mm

1.

2.

PART A: PHYSICS

(4) wave moving in + x direction with $\sqrt{\frac{a}{b}}$

The transverse displacement $y\left(x,t\right)$ of a wave on a string is given by $y\left(x,t\right)=e^{-\left(ax^2+bt^2+2\sqrt{ab}\,xt\right)}$.

(1) wave moving in – x direction with speed $\sqrt{\frac{b}{a}}$ (2) standing wave of frequency \sqrt{b}

A screw gauge gives the following reading when used to measure the diameter of a wire.

Given that 1 mm on main scale corresponds to 100 divisions of the circular scale.

	The diameter of wire from (1) 0.052 cm	om the above date is : (2) 0.026 cm	(3) 0.005 cm	(4) 0.52 cm
3.	has mass m and radiu		be a perfect uniform ci	a frictionless bearing. The pulley rcular disc, the acceleration of the
	(1) g	(2) $\frac{2}{3}$ g	$(3) \ \frac{g}{3}$	(4) $\frac{3}{2}$ g
4.	Work done in increasi tension of soap solution		oubble from a radius of	3 cm to 5 cm is nearly (Surface
	(1) 0.2π mJ	(2) 2π mJ	(3) 0.4 mJ	(4) $4\pi \text{ mJ}$
5.	rest at a point near the	e rim of the disc. The ir journey of the insect, the ases	sect now moves along	ases
6.	Two particles are executing simple harmonic motion of the same amplitude A and frequency ω along the x-axis. Their mean position is separated by distance $X_0(X_0>A)$. If the maximum separation between them is (X_0+A) , the phase difference between their motion is :			
	(1) $\frac{\pi}{3}$	(2) $\frac{\pi}{4}$	(3) $\frac{\pi}{6}$	(4) $\frac{\pi}{2}$
7.	line joining them where	m and 4 m are placed a the gravitational field is		ritational potential at a point on the
	$(1) - \frac{4Gm}{r}$	$(2) - \frac{6Gm}{r}$	$(3) - \frac{9Gm}{r}$	(4) zero
8.	Two identical charged spheres suspended from a common point by two massless strings of length I are initially a distance $d(d \ll 1)$ apart because of their mutual repulsion. The charge begins to leak from both the spheres at a constant rate. As a result the charges approach each other with a velocity v. Then as a function of distance x between them,			
	$(1) v \propto x^{-1}$	(2) $V \propto X^{1/2}$	(3) v ∝ x	(4) $V \propto X^{-1/2}$

(4) 1 mV

(4) 1s

	$(1) \ \frac{\pi}{4}\sqrt{LC}$	(2) 2π√LC	(3) √LC	(4) π√LC
12.				Medium 1 in $z \ge 0$ has a refractive ray of light in medium 1 given by
	the vector $\overrightarrow{A} = 6\sqrt{3} \widehat{i} +$ medium 2 is	$8\sqrt{3}\hat{j}-10\hat{k}$ is incident	on the plane of separa	tion. The angle of refraction in
	(1) 45 ⁰	$(2) 60^{\circ}$	(3) 75 ⁰	(4) 30 ⁰
13.	The magnitude of the n	infinitely long wire with c nagnetic induction along		of a semicircular ring of radius R.
	(1) $\frac{\mu_0 I}{2\pi^2 R}$	$(2) \frac{\mu_0 I}{2\pi R}$	$(3) \frac{\mu_0 I}{4\pi^2 R}$	$(4) \frac{\mu_0 I}{\pi^2 R}$
14.		ind is suddenly brought		and ratio of specific heats γ . It is eat is lost to the surroundings, its
	$(1) \ \frac{\left(\gamma - 1\right)}{2\gamma R} M \upsilon^2 K$	$(2) \frac{\gamma M v^2}{2R} K$	$(3) \frac{\left(\gamma - 1\right)}{2R} M \upsilon^2 K$	$(4) \frac{(\gamma-1)}{2(\gamma+1)R}M\upsilon^2 K$
15.				de A ₁ . When the mass M passes both of them move together with
	amplitude A ₂ . The ratio	o of $\left(\frac{A_1}{A_2}\right)$ is:		
	$(1) \frac{M+m}{M}$	$(2) \left(\frac{M}{M+m}\right)^{1/2}$	$(3) \left(\frac{M+m}{M}\right)^{1/2}$	$(4) \frac{M}{M+m}$
16.	•		•	$\times 10^{-3} \text{m}$. The water velocity as it stance $2 \times 10^{-1} \text{m}$ below the lap is
		(2) 9.6×10^{-3} m	(3) 3.6×10^{-3} m	(4) 5.0×10^{-3} m

A boat is moving due east in a region where the earth's magnetic field is $5.0 \times 10^{-5} \text{NA}^{-1} \text{m}^{-1}$ due north and

horizontal. The boat carries a vertical aerial 2m long. If the speed of the boat is 1.50 ms⁻¹, the

(3) 8 s

A fully charged capacitor C with initial charge q_0 is connected to a coil of self inductance L at t = 0. The

magnitude of the induced emf in the wire of aerial is:

(2) 4 s

(2) 0.50 mV

An object, moving with a speed of 6.25 m/s, is decelerated at a rate given by :

where v is the instantaneous speed. The time taken by the object, to come to rest, would be :

time at which the energy is stored equally between the electric and the magnetic field is :

9.

10.

11.

(1) 0.75 mV

 $\frac{dv}{dt} = -2.5\sqrt{v}$

(1) 2 s

17. This question has Statement – 1 and Statement – 2. Of the four choices given after the statements, choose the one that best describes the two statements.

Statement-1: Sky wave signals are used for long distance radio communication. These signals are in general, less stable than ground wave signals.

Statement-2: The state of ionosphere varies from hour to hour, day to day and season to season.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.
- (2) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (3) Statement-1 is false, Statement-2 is true.
- (4) Statement-1 is true, Statement-2 is false.
- 18. Three perfect gases at absolute temperatures T₁, T₂ and T₃ are mixed. The masses of molecules are m₁, m₂ and m₃ and the number of molecules are n₁, n₂ and n₃ respectively. Assuming no loss of energy, the final temperature of the mixture is:

(1)
$$\frac{n_1T_1 + n_2T_2 + n_3T_2}{n_1 + n_2 + n_3}$$

(2)
$$\frac{n_1T_1 + n_2T_2^2 + n_3T_3^2}{n_1T_1 + n_2T_2 + n_2T_2}$$

$$(1) \ \frac{n_1T_1+n_2T_2+n_3T_3}{n_1+n_2+n_3} \quad (2) \ \frac{n_1T_1+n_2T_2^2+n_3T_3^2}{n_1T_1+n_2T_2+n_3T_3} \quad (3) \ \frac{n_1^2T_1^2+n_2^2T_2^2+n_3^2T_3^2}{n_1T_1+n_2T_2+n_3T_3} \quad (4) \ \frac{\left(T_1+T_2+T_3\right)}{3}$$

(4)
$$\frac{\left(T_{1}+T_{2}+T_{3}\right)}{3}$$

- A pulley of radius 2 m is rotated about its axis by a force $F = (20t 5t^2)$ Newton (where t is measured in 19. seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation made by the pulley before its direction of motion if reversed, is:
 - (1) more than 3 but less than 6
- (2) more than 6 but less than 9

(3) more than 9

- (4) less than 3
- 20. A resistor 'R' and 2µF capacitor in series is connected through a switch to 200 V direct supply. Across the capacitor is a neon bulb that lights up at 120 V. Calculate the value of R to make the bulb light up 5 s after the switch has been closed. $(log_{10} 2.5 = 0.4)$
 - (1) $1.7 \times 10^5 \Omega$

- (2) $2.7 \times 10^6 \Omega$ (3) $3.3 \times 10^7 \Omega$ (4) $1.3 \times 10^4 \Omega$
- A Carnot engine operating between temperatures T_1 and T_2 has efficiency $\frac{1}{6}$. When T_2 is lowered by 62 21.

K, its efficiency increases to $\frac{1}{3}$. Then T₁ and T₂ are, respectively:

- (1) 372 K and 330 K (2) 330 K and 268 K (3) 310 K and 248 K (4) 372 K and 310 K
- 22. If a wire is stretched to make it 0.1% longer, its resistance will:
- (1) increase by 0.2% (2) decrease by 0.2% (3) decrease by 0.05% (4) increases by 0.05%
- 23. **Direction:**

The question has a paragraph followed by two statements, Statement - 1 and statement - 2. Of the given four alternatives after the statements, choose the one that describes the statements.

A thin air film is formed by putting the convex surface of a plane – convex lens over a plane glass plate. With monochromatic light, this film gives an interference pattern due to light reflected from the top (convex) surface and the bottom (glass plate) surface of the film.

Statement-1: When light reflects from the air-glass plate interface, the reflected wave suffers a phase change of π .

Statement-2: The centre of the interference pattern is dark.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.
- (2) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (3) Statement-1 is false, Statement-2 is true. (4) Statement-1 is true, Statement-2 is false.

24.	A car is fitted with a convex side-view mirror of focal length 20cm. A second car 2.8 m behind the first
	car is overtaking the first car at relative speed of 15 m/s. The speed of the image of the second car as
	seen in the mirror of the first one is:

(1)
$$\frac{1}{15}$$
m/s

(2) 10m/s

(3) 15m/s

(4) $\frac{1}{10}$ m/s

Energy required for the electron excitation in Li⁺⁺ from the first to the third Bohr orbit is: 25.

(1) 36.3 eV

(2) 108.8 eV

(3) 122.4 eV

(4) 12.1 eV

The electrostatic potential inside a charged spherical ball is given by $\phi = \alpha \rho^2 + b$ where r is the distance 26. from the centre; a, b are constants. Then the charge density inside ball is

(1)
$$-6a\varepsilon_0 r$$

(2) $-24\pi a \epsilon_0 r$

(3) $-6a\varepsilon_0$

(4) $-24\pi a \epsilon_0 r$

27. A water fountain on the ground sprinkles water all around it. If the speed of water coming out of the fountain is v, the total area around the fountain that gets wet is :

(1)
$$\pi \frac{v^4}{g^2}$$

(2) $\frac{\pi}{2} \frac{v^4}{g^2}$

(3) $\pi \frac{V^2}{g^2}$ (4) $\pi \frac{V^4}{g}$

100g of water is heated from 30°C to 50°C. Ignoring the slight expansion of the water, the change in its 28. internal energy is (specific heat of water is 4148 J/kg/K):

(1) 8.4 kJ

(2) 84 kJ

(4) 4.2 kJ

The half life of a radioactive substance is 20 minutes. The approximate time interval $(t_2 - t_1)$ between 29. the time t_2 when $\frac{2}{3}$ of it has decayed and time t_1 and $\frac{1}{3}$ of it had decayed is :

(1) 14 min

(2) 20 min

(3) 28 min

(4) 7 min

30.

This guestion has Statement – 1 and Statement – 2. Of the four choices given after the statements, choose the one that best describes the two statements.

Statement-1: A metallic surface is irradiated by a monochromatic light of frequency $v > v_0$ (the threshold frequency). The maximum kinetic energy and the stopping potential are K_{max} and V₀ respectively. If the frequency incident on the surface doubled, both the K_{max} and V_0 are also doubled.

Statement-2: The maximum kinetic energy and the stopping potential of photoelectrons emitted from a surface are linearly dependent on the frequency of incident light.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.
- (2) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (3) Statement-1 is false, Statement-2 is true.
- (4) Statement-1 is true, Statement-2 is false.

PART B: MATHEMATICS

31. The lines $L_1: y-x=0$ and $L_2: 2x+y=0$ intersect the line $L_3: y+2=0$ at P and Q respectively. The bisector of the acute angle between L_1 and L_2 intersect L_3 at R.

Statement – 1 : The ratio PR : RQ equals $2\sqrt{2}$: $\sqrt{5}$.

Statement – 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles.

- (1) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement - 1
- (2) Statement 1 is true, Statement 2 is false.
- (3) Statement 1 is false, Statement 2 is true.
- (4) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement 1
- If $A = \sin^2 x + \cos^4 x$, then for all real x 32.
- (1) $\frac{13}{16} \le A \le 1$ (2) $1 \le A \le 2$ (3) $\frac{3}{4} \le A \le \frac{13}{16}$ (4) $\frac{3}{4} \le A \le 1$
- The coefficient of x^7 in the expansion of $\left(1-x-x^2+x^3\right)^6$ is 33.
 - (1) 132
- (2) -144
- (3)132
- (4) 144

- $\lim_{x\to 2} \left(\frac{\sqrt{1-\cos\left\{2(x-2)\right\}}}{x-2} \right)$

- (1) equals $\sqrt{2}$ (2) equals $-\sqrt{2}$ (3) equals $\frac{1}{\sqrt{2}}$ (4) does not exist
- Statement 1 : The number of ways of distributing 10 identical balls in 4 distinct boxes such that no 35. box is empty is ⁹C₃

Statement – 2 : The number of ways of choosing any 3 places from 9 different places is 9C_3 .

- (1) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement - 1
- (2) Statement 1 is true, Statement 2 is false.
- (3) Statement 1 is false, Statement 2 is true.
- (4) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement 1
- $\frac{d^2x}{dv^2}$ equals 36.
 - $(1) \left(\frac{d^2y}{dx^2}\right)^{-1} \left(\frac{dy}{dx}\right)^{-3} \qquad (2) \left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-2} \qquad \qquad (3) \left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-3} \qquad \qquad (4) \left(\frac{d^2y}{dx^2}\right)^{-1}$

37.	If $\frac{dy}{dx} = y + 3 > 0$ and $y(0) = 2$, then $y(\ln 2)$ is equal to			
	(1) 5	(2) 13	(3) -2	(4) 7
38.	Statement – 2 : B : R	$= \{(x,y) \in R \times R : y - x \text{ is} $ $= \{(x,y) \in R \times R : x = \alpha y \text{ for } x \in A : x = \alpha y for $		lence relation on R . $ \alpha \Big\} \ \mbox{is an equivalence relation on} $ correct explanation for Statement
	1(2) Statement – 1 is tru(3) Statement – 1 is fals	e, Statement– 2 is false. se, Statement– 2 is true.		ct explanation for Statement – 1
39.	The value of $\int_{0}^{1} \frac{8 \log(1+x^2)}{1+x^2}$	$\frac{(x)}{(x)}$ dx is		
	(1) $\frac{\pi}{8}$ log2	$(2) \frac{\pi}{2} \log 2$	(3) log2	(4) πlog2
40.	Rez = 1, then it is necessity	essary that	per. If $z^2 + \alpha z + \beta = 0$ have $(3) \beta \in (1, \infty)$	as two distinct roots on the line (4) $\beta \in (0, 1)$
41.		ant Bernoulli's trials each an or equal to $\frac{31}{32}$, then		ess p. If the probability of at least
	_		$(3)\left(\frac{11}{12},1\right]$	$(4)\left(\frac{1}{2},\frac{3}{4}\right]$
42.		Rs. 40 more than the sa		n each of the subsequent months vious month. His total saving from (4) 18 months
43.	The domain of the fund	tion $f(x) = \frac{1}{\sqrt{ x - x}}$ is		
	(1) (0, ∞)	$(2) \left(-\infty,0\right)$	$(3) \left(-\infty, \infty\right) - \left\{0\right\}$	(4) $\left(-\infty, \infty\right)$
44.	If the angle between t	he line $x = \frac{y-1}{2} = \frac{z-3}{\lambda}$	and the plane $x + 2y + 2$	$+3z = 4$ is $\cos^{-1}\left(\sqrt{\frac{5}{14}}\right)$, then λ
	equals (1) $\frac{3}{2}$	(2) $\frac{2}{5}$	(3) $\frac{5}{3}$	(4) $\frac{2}{3}$

- 45. If $\vec{a} = \frac{1}{\sqrt{10}} \left(3\hat{i} + \hat{k} \right)$ and $\vec{b} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} 6\hat{k} \right)$, then the value of $\left(2\vec{a} \vec{b} \right) \cdot \left[\left(\vec{a} \times \vec{b} \right) \times \left(\vec{a} + 2\vec{b} \right) \right]$ is (1) -3 (2) 5 (3) 3 (4) -5
- 46. Equation of the ellipse whose axes are the axes of coordinates and which passes through the point $\left(-3,1\right)$ and has eccentricity $\sqrt{\frac{2}{5}}$ is
 - (1) $5x^2 + 3y^2 48 = 0$ (2) $3x^2 + 5y^2 15 = 0$ (3) $5x^2 + 3y^2 32 = 0$ (4) $3x^2 + 5y^2 32 = 0$
- 47. Let I be the purchase value of an equipment and V(t) be the value after it has been used for t years. The value V(t) depreciates at a rate given by differential equation $\frac{dV(t)}{dt} = -k(T-t)$, where k > 0 is a constant and T is the total life in years of the equipment. Then the scrap value V(T) of the equipment is
 - (1) $I \frac{kT^2}{2}$ (2) $I \frac{k(T-t)^2}{2}$ (3) e^{-kT}
- 48. The vector \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying: $\vec{b} \times \vec{c} = \vec{b} \times \vec{d}$ and $\vec{a} \cdot \vec{d} = 0$. Then the vector \vec{d} is equal to
 - $(1) \vec{c} + \left(\frac{\vec{a}.\vec{c}}{\vec{a}.\vec{b}}\right) \vec{b} \qquad (2) \vec{b} + \left(\frac{\vec{b}.\vec{c}}{\vec{a}.\vec{b}}\right) \vec{c} \qquad (3) \vec{c} \left(\frac{\vec{a}.\vec{c}}{\vec{a}.\vec{b}}\right) \vec{b} \qquad (4) \vec{b} \left(\frac{\vec{b}.\vec{c}}{\vec{a}.\vec{b}}\right) \vec{c}$
- 49. The two circles $x^2 + y^2 = ax$ and $x^2 + y^2 = c^2(c > 0)$ touch each other if (1) |a| = c (2) a = 2c (3) |a| = 2c (4) 2|a| = c
- 50. If C and D are two events such that $C \subset D$ and $P(D) \neq 0$, then the correct statement among the following is
 - (1) $P(C|D) \ge P(C)$ (2) P(C|D) < P(C) (3) $P(C|D) = \frac{P(D)}{P(C)}$ (4) P(C|D) = P(C)
- 51. The number of values of k for which the linear equations 4x + ky + 2z = 0; kx + 4y + z = 0; 2x + 2y + z = 0 possess a non-zero solution is (1) 2 (2) 1 (3) zero (4) 3
- 52. Consider the following statements

P : Suman is brilliant

Q : Suman is rich

R : Suman is honest

The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as

$$(1) \sim \left(\mathsf{Q} \leftrightarrow \left(\mathsf{P} \wedge \sim \mathsf{R} \right) \right) \quad (2) \sim \mathsf{Q} \leftrightarrow \sim \mathsf{P} \wedge \mathsf{R} \\ \qquad (3) \sim \left(\mathsf{P} \wedge \sim \mathsf{R} \right) \leftrightarrow \mathsf{Q} \\ \qquad (4) \sim \mathsf{P} \wedge \left(\mathsf{Q} \leftrightarrow \sim \mathsf{R} \right)$$

- 53. The shortest distance between line y x = 1 and curve $x = y^2$ is
 - (1) $\frac{3\sqrt{2}}{8}$ (2) $\frac{8}{3\sqrt{2}}$ (3) $\frac{4}{\sqrt{3}}$ (4) $\frac{\sqrt{3}}{4}$

- 54. If the mean deviation about the median of the numbers a, 2a, ..., 50a is 50, then |a| equals
 - (1)3

- Statement 1: The point A(1,0,7) is the mirror image of the point B(1,6,3) in the line 55. $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{2}$.
 - Statement -2: The line: $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ bisects the line segment joining A(1, 0, 7) and B(1, 6, 3).
 - (1) Statement 1 is true, Statement–2 is true; Statement–2 is not a correct explanation for Statement 1
 - (2) Statement 1 is true, Statement 2 is false.
 - (3) Statement 1 is false, Statement 2 is true.
 - (4) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement 1
- 56. Let A and B be two symmetric matrices of order 3.
 - A(BA) and (AB)A are symmetric matrices. Statement – 1 :
 - AB is symmetric matrix if matrix multiplication of A and B is commutative. Statement – 2 :
 - (1) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement _ 1
 - (2) Statement 1 is true, Statement 2 is false.
 - (3) Statement 1 is false, Statement 2 is true.
 - (4) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement 1
- If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^7 = A + B\omega$. Then (A, B) equals 57.
 - (1)(1,1)
- (2)(1.0)
- (3)(-1,1)
- (4)(0,1)
- $\text{The value of p and q for which the function } f\left(x\right) = \begin{cases} \frac{sin(p+1)x + sinx}{x} &, \quad x < 0 \\ q &, \quad x = 0 \\ \frac{\sqrt{x + x^2} \sqrt{x}}{v^{3/2}} &, \quad x > 0 \end{cases}$ 58.
 - is continuous for all x in R, is

- (1) $p = \frac{5}{2}$, $q = \frac{1}{2}$ (2) $p = -\frac{3}{2}$, $q = \frac{1}{2}$ (3) $p = \frac{1}{2}$, $q = \frac{3}{2}$ (4) $p = \frac{1}{2}$, $q = -\frac{3}{2}$
- The area of the region enclosed by the curves y = x, x = e, $y = \frac{1}{x}$ and the positive x-axis is 59.
 - (1) 1 square units

- (2) $\frac{3}{2}$ square units (3) $\frac{5}{2}$ square units (4) $\frac{1}{2}$ square units
- For $x \in \left(0, \frac{5\pi}{2}\right)$, define $f(x) = \int_{1}^{x} \sqrt{t} \sin t \ dt$. Then f has 60.
 - (1) local minimum at π and 2π
 - (2) local minimum at π and local maximum at 2π
 - (3) local maximum at π and local minimum at 2π
 - (4) local maximum at π and 2π

PART C: CHEMISTRY

61.	Among the following th (1) SnCl ₂	e maximum covalent cha (2) AICI ₃	eracter is shown by the c (3) MgCl ₂	ompound: (4) FeCl ₂	
62.	The presence or absence of hydroxyl group on which carbon atom of sugar differentiates RNA and DNA?				
	(1) 2 nd	(2) 3 rd	(3) 4 th	(4) 1 st	
63.	Trichloroacetaldehyde was subjected to Cannizzaro's reaction by using NaOH. The mixture of th products contains sodium trichloroacetate and another compound. The other compound is: (1) Trichloromethanol (2) 2, 2, 2-Trichloropropanol (3) Chloroform (4) 2, 2, 2-Trichloroethanol				
64.	reaction is:	-		d that is produced in the above	
	(1) 2-Butanone	(2) Ethyl chloride	(3) Ethyl ethanoate	(4) Diethyl ether	
65.	·	of hydrogen half cell wil		[]	
			(2) $p(H_2) = 2$ atm and	L _	
	(3) $p(H_2) = 2$ atm and	$\left[H^{\scriptscriptstyle+}\right]$ = 2.0 M	(4) $p(H_2)=1$ atm and [_H ⁺	
66.	_	ongst the following comp			
	(1) HCOOH		(2) $CH_3CH_2CH(CI)CO$	₂ H	
	(3) CICH ₂ CH ₂ CH ₂ COC	PΗ	(4) CH₃COOH		
67.	The degree of dissoc expression:	ciation (α) of a weak e	electrolyte, A _x B _y is relat	ted to van't Hoff factor (i) by the	
		$(2) \alpha = \frac{x+y-1}{i-1}$	$(3) \alpha = \frac{x+y+1}{i-1}$	$(4) \alpha = \frac{i-1}{(x+y-1)}$	
68.	`a' and `b' are van der Waals' constants for gases. Chlorine is more easily liquefied than ethane because (1) a and b for $Cl_2 < a$ and b for $Cl_2 + b$ for $Cl_2 > b$ for $Cl_2 + b$ f				
69.		-	ure of 0.5 atm. Some of equilibrium is 0.8 atm, th (3) 0.18 atm	the CO_2 is converted into CO or se value of K is (4) 1.8 atm	
70.	Boron cannot form which	ch one of the following a	nions?		
	(1) BH ₄	(2) $B(OH)_4^-$	(3) BO ₂	(4) BF ₆ ³⁻	
71.	Which of the following	facts about the complex	$\left[\text{Cr} \left(\text{NH}_3 \right)_6 \right] \text{Cl}_3 \text{ s wrong } $?	
		white precipitate with sil	(2) The complex is an ver nitrate solution nd is octahedral in shape	·	

72.	added to 4 kg of water	d as an antifreeze in a to prevent it from freezing kg mol ⁻¹ , and molar ma (2) 400.00 g	g at -6°C will be :	ethylene glycol which should be 62g mol ⁻¹) (4) 804.32g	
73.	, ,	. ,	. ,	the increasing basic nature of the	
	(1) MgO < K2O < Al2O	₃ < Na ₂ O	(2) $Na_2O < K_2O < MgC$	$O < Al_2O_3$	
	(3) $K_2O < Na_2O < Al_2O$	$O_3 < MgO$	(4) Al2O3 < MgO < Na2	$_{2}O < K_{2}O$	
74.	by $50^{\circ}C$, the rate of th	e reaction increases by a	about :	ature. If the temperature is raised	
	(1) 24 times	(2) 32 times	(3) 64 times	(4) 10 times	
75.		(spin only) of $[NiCl_4]^{2-}$ is			
	(1) 5.46 BM	(2) 2.83 BM	(3) 1.41 BM	(4) 1.82 BM	
76.	The hybridization of orb	oitals of N atom in NO ₃ ,N	IO; and NH; are respe	ctively :	
		(2) sp, sp ³ , sp ²			
77.	 In context of the lanthanoids, which of the following statements is not correct? (1) All the members exhibit +3 oxidation state (2) Because of similar properties the separation of lanthanoids is not easy. (3) Availability of 4f electrons results in the formation of compounds in +4 state for all the members of the series. (4) There is a gradual decrease in the radii of the members with increasing atomic number in the series. 				
78.	A 5.2 molal aqueous so alcohol in the solution 1		CH ₃ OH, is supplied. V	What is the mole fraction of methyl	
	(1) 0.190	(2) 0.086	(3) 0.050	(4) 0.100	
79.	(3) N ₂ O ₄ has two reso	m d π - p π bond. sweaker than the single		he periodic table	
80.		figuration of Gd (Atomic N (2) 4f ⁴ 5d ⁴ 6s ²		(4) 4f ³ 4d ⁵ 6s ²	
81.	Which of the following statements regarding sulphur is incorrect? (1) The vapour at 200°C consists mostly of S ₈ rings (2) At 600°C the gas mainly consists of S ₂ molecules (3) The oxidation state of sulphur is never less than +4 in its compounds (4) S ₂ molecule is paramagnetic.				
82.	The structure of IF ₇ is : (1) trigonal bipyramid		(3) pentagonal bipyran	nid (4) square pyramid	

83.	Ozonolysis of an orga presence of:	nic compound gives for	maldehyde as one of the products. This confirms the		
	(1) a vinyl group		(2) an isopropyl group		
	(3) an acetylenic triple b	oond	(4) two ethylenic double		
84.	A gas absorbs a photon of 355 nm and emits at two wavelengths. If one of the emissions is at 680 nm, the other is at :				
	(1) 325 nm	(2) 743 nm	(3) 518 nm	(4) 1035 nm	
85.	Silver Mirror test is give	en by which one of the fol	llowing compounds?		
	(1) Acetone	(2) Formaldehyde	(3) Benzophenone	(4) Acetaldehyde	
86.	Which of the following reagents may be used to distinguish between phenol and benzoic acid?				
	(1) Tollen's reagent	(2) Molisch reagent	(3) Neutral Fe Cl ₃	(4) Aqueous NaOH	
87.	Phenol is heated with a reaction is	a solution of mixture of K	(Br and KBrO ₃ . The ma	jor product obtained in the above	
	(1) 3-Bromophenol	(2) 4-Bromophenol	(3) 2, 4, 6- Tribromoph	nenol (4) 2-Bromophenol	
88.				d atom B occupies the face centre ts, the formula of the compound is	
	(1) AB ₂	(2) A ₂ B ₃	(3) A ₂ B ₅	(4) A ₂ B	
89.		volved in the isothermal	•	f 2 moles of an ideal gas from a	
	(1) $35.8 \text{J mol}^{-1} \text{K}^{-1}$	(2) $32.3J \text{ mol}^{-1}K^{-1}$	$(3) 42.3 J mol^{-1} K^{-1}$	(4) $38.3 \text{J mol}^{-1} \text{K}^{-1}$	
90.	Identify the compound t	that exhibits tautomerism	1.		
	(1) Lactic acid		(3) Phenol	(4) 2- Butene	

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. The candidates should fill in the required particulars on the Test Booklet and Answer Sheet (Side-1) with Blue/Black Ball Point Pen.
- 2. For writing/marking particulars on **Side-2** of the Answer Sheet, use **Blue/Black Ball Point Pen only**.
- 3. The candidates should not write their Roll Numbers anywhere else (except in the specified space) on the Test Booklet/Answer Sheet.
- 4. Out of the four options given for each question, only one option is the correct answer.
- 5. For each incorrect response, one-fourth (1/4) of the total marks allotted to the question would be deducted from the total score. No deduction from the total score, however, will be made if no response is indicated for an item in the Answer Sheet.
- 6. Handle the Test Booklet and Answer Sheet with care, as under no circumstances (except for discrepancy in Test Booklet Code and Answer Sheet Code), will another set be provided.
- 7. The candidates are not allowed to do any rough work or writing work on the Answer Sheet. All calculations/writing work are to be done in the space provided for this purpose in the Test Booklet itself, marked 'Space for Rough Work'. This space is given at the bottom of each page and in 4 pages (Pages 20 23) at the end of the booklet.
- 8. On completion of the test, the candidates must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them.
- 9. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, should leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet again. Cases where a candidate has not signed the Attendance Sheet a second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case. The candidates are also required to put their left hand THUMB impression in the space provided in the Attendance Sheet.
- 12. Use of Electronic/Manual Calculator and any Electronic Item like mobile phone, pager etc. is prohibited.
- 13. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 15. Candidates are not allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, electronic device or any other material except the Admit Card inside the examination hall/room.

SOLUTIONS

PART A **PHYSICS**

$$\textbf{Sol.} \qquad \textbf{y}_{(x,t)} = e^{-} \left(\sqrt{a} \ \textbf{x} + \sqrt{b} \ \textbf{t} \right)^{2} \ \textbf{V} = \sqrt{\frac{b}{a}}$$

Wave moving in - ve x -direction.

Sol. Diameter of wire
$$=\frac{1}{100} \times 52 = 0.52$$
mm $= 0.052$ cm

$$T \times R = I\alpha = \frac{1}{2}MR^2\alpha$$

$$T \times R = I\alpha = \frac{1}{2}MR^{2}\alpha$$

$$T = \frac{1}{2}Ma \quad (a = \alpha R) \qquad(2)$$

From (1) and (2)
$$a = \frac{2g}{3}$$

$$\mbox{Sol.} \qquad \mbox{W} = \mbox{T} \times \Delta A = \mbox{T} \times 8\pi \left(\mbox{r}_2^{\ 2} - \mbox{r}_1^{\ 2}\right) = 0.4\pi \, mJ \label{eq:Sol.}$$

Sol.
$$\tau = 0$$

Angular momentum is conserve

$$I_1 \omega_1 = I_2 \omega_2 \Rightarrow \omega_2 = \frac{I_1 \omega_1}{I_2}$$

I₂ first decreases and then increases

 $\therefore \omega$ first increases and then decreases.

Sol.
$$\phi_1 = 0$$

$$\phi_2 = \frac{\pi}{2}$$

Sol. Position of the null point from mass m,
$$x = \frac{r}{1 + \sqrt{\frac{4m}{m}}} = \frac{r}{3}$$

$$V = -Gm\left(\frac{3}{r} + \frac{12}{2r}\right) = -9\frac{Gm}{r}$$

8.

At any instant of separation between charges is x. Sol.

equilibrium condition =
$$K \frac{Q^2}{x^2} = \omega \frac{x}{2\ell}$$

$$\Rightarrow Q^2 = Cx^3$$

$$\Rightarrow 2Q \frac{dQ}{dt} = C3x^2 \frac{dx}{dt}$$

$$\Rightarrow \frac{dx}{dt} \propto \frac{x^{3/2}}{x^2} \propto x^{-1/2}$$

9.

9. 3 Sol.
$$E = B_H \ell V = 0.15 mV$$

10.

Sol.
$$\frac{dv}{dt} = -2.5\sqrt{v}$$

Integrating the above equation.

$$\Rightarrow 2\sqrt{v} = -2.5t + C$$

$$\Rightarrow 2\sqrt{v} = -2.5t + C$$
 at $t = 0, v = 6.25 \Rightarrow C = 5$

at
$$v = 0 \Rightarrow t = \frac{5}{2.5} = 2s$$

11.

Charge oscillates simple harmonic motion q = $q_0 \sin \omega t$, $U = \frac{1}{2} \frac{q^2}{C}$ Sol.

$$q = \frac{q_0}{\sqrt{2}} \Rightarrow \omega t = \frac{\pi}{4}$$

$$\Rightarrow t = \frac{T}{8} = \frac{2\pi}{8} \sqrt{LC} = \frac{\pi}{4} \sqrt{LC}$$

12.

Sol. Normal to the plane is z -axis

$$\cos \theta_1 = \frac{A_z}{\Delta} = \frac{10}{20} = \frac{1}{2}, \theta_1 = 60$$

$$\mu_1 \sin \theta_1 = \mu_2 \sin \theta_2 \Rightarrow \sqrt{2} \times \frac{\sqrt{3}}{2} = \sqrt{3} \sin \theta_2 \Rightarrow \theta_2 = 45^0$$

13.

$$\textbf{Sol.} \qquad \mbox{d} \vec{B} = \frac{\mu_0 \mbox{d} i}{2\pi R} \bigg[-\cos\theta \ \hat{i} - \sin\theta \ \hat{j} \, \bigg] \label{eq:Sol}$$

$$di = \frac{T}{\pi R}Rd\theta$$

$$=\frac{1}{\pi}d\theta$$

$$\vec{dB} = \frac{\mu_0 I}{2\pi^2 R} \left(-\cos\theta \hat{i} - \sin\theta \hat{j} \right)$$

$$\vec{B} = -\frac{\mu_0 I}{\pi^2 R} \hat{j}$$

14. 3 Sol.
$$W = \Delta U$$

$$\frac{1}{2}mv^2 = nC_v dT$$

$$=\frac{m}{M}\frac{R}{\gamma-1}dT$$

$$dT = \frac{M(\gamma - 1)v^2}{2R}K$$

Energy of simple harmonic oscillator is constant. Sol.

$$\Rightarrow \frac{1}{2}M\omega^2A_1^2 = \frac{1}{2}\big(m+M\big)\omega^2A_2^2$$

$$\frac{A_1^2}{A_2^2} = \frac{M+m}{M}$$

$$\therefore \frac{A_1}{A_2} = \sqrt{\frac{M+m}{M}}$$

Equation of continuity Sol.

$$\Rightarrow$$
 (a×v)top = (a×v)bottom

$$v_b^2 - (0.4)^2 = 2 \times 9.8 \times 0.2 [v^2 - u^2 = 2gh \text{ is used}]$$

$$v_b = 2m/s$$
 (nearly)

$$\pi \lceil 8 \times 10^{-3} \rceil \times 0.4 = \pi d^2 \times 4$$

$$d\approx 3.6\times 10^{-3}\,m$$

17.

Since ionospheric properties change with time, these signals are in general less stable than ground wave Sol. signals.

Sol. Data
$$\Rightarrow$$
 n,k,t₁ + n₂kT₂ + n₃kT₃ = $(n_1 + n_2 + n_3)kT$

$$\therefore T = \frac{n_{_{1}}T_{_{1}} + n_{_{2}}T_{_{2}} + n_{_{3}}T_{_{3}}}{n_{_{1}} + n_{_{2}} + n_{_{3}}}$$

Sol.
$$r \times F = I \times \alpha$$

$$2 \Big(20t - 5t^2 \Big) = 10\alpha \Rightarrow \alpha = 4t - t^2$$

$$\frac{d\omega}{dt} = 4t - t^2$$

$$d\omega = \left(4t^2 - t^2\right)dt$$

$$\omega = 2t^2 - \frac{t^3}{3}$$
 (on integration)

$$\omega = 0 \Rightarrow t = 6s$$

$$\omega = \frac{d\theta}{dt} = 2t^2 - \frac{t^3}{3}$$

$$d\theta = \left(2t^2 - \frac{t^3}{3}\right)dt$$

$$\Rightarrow \theta = \frac{2t^3}{3} - \frac{t^4}{12} \text{ (on integration)}$$

$$\theta(\text{in 6s}) = 36\text{ rad}$$

$$\Rightarrow 2\pi n = 36$$

$$n = \frac{36}{2\pi} = < 6$$

21. 4

Sol.
$$\eta_{1} = \frac{T_{1} - T_{2}}{T_{1}} = \frac{1}{6}$$

$$\eta_{2} = \frac{T_{1} - (T_{2} - 62)}{T_{1}} = \frac{1}{3}$$

$$\Rightarrow \frac{T_{1} - T_{2}}{T_{1}} + \frac{62}{T_{1}} = \frac{1}{3}$$

$$\frac{1}{6} + \frac{62}{T_{1}} = \frac{1}{3}$$

$$\frac{62}{T_{1}} = \frac{1}{6}$$

$$\therefore T_{1} = 62 \times 6 = 372K$$

$$\frac{T_{1} - T_{2}}{T_{1}} = \frac{1}{6}$$

$$1 - \frac{T_{2}}{T_{1}} = \frac{1}{6}$$

$$\frac{T_{2}}{372} = \frac{5}{6}$$

22. 1 Sol.
$$R \propto \ell^2$$
 (for a given volume)
$$\Rightarrow \frac{\Delta R}{R} \% = \frac{2\Delta \ell}{\ell} \%$$

 \Rightarrow T₂ = 310K

Thus when wire is stretched by 0.1% resistance increases by 0.2%

- 23.
- **Sol.** As light enters from air to glass it suffers a phase change on π and therefore at centre there will be destructive interference.
- 24. 1
- **Sol.** $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ $-\frac{1}{v^2} \frac{dv}{dt} \frac{1}{u^2} \frac{du}{dt} = 0$
 - $\frac{dv}{dt} = -\frac{v^2}{u^2} \left(\frac{du}{dt} \right)$
 - f = 20 cm
 - $\frac{1}{u} + \frac{1}{-280} = \frac{1}{20}$
 - \Rightarrow v = $\frac{280}{15}$ cm
 - $v_1 = -\left(\frac{280}{15 \times 280}\right)^2 \times 15$
 - $=\frac{1}{15}\text{m/s}$
- 25. 2
- **Sol.** $E_n = -13.6 \frac{Z^2}{n^2}$
 - $E_{Li}^{++} = -13.6 \times \frac{9}{1} = -122.4eV$
 - $E_{Li}^{+++} = -13.6 \times \frac{9}{9} = -13.6eV$
 - $\Delta E = -13.6 (-122.4)$
 - = 108.8 eV
- 26. 3
- **Sol.** Potential inside $(\phi) = ar^2 + b$
 - $\therefore E_r = -\frac{\delta v}{\delta r} = -2ar$

Electric field inside uniformly charged solid volume varies with 'r'. So charge density is constant

$$\phi_{\text{net}} = \left(-2ar\right)4\pi r^2 = -8\pi ar^3$$

$$-8\pi a r^3 = \frac{\sigma \times \frac{4}{3}\pi r^3}{\epsilon_0}$$

- $\sigma = -6a\epsilon_0$
- 27.
- **Sol.** Max. range = $\frac{u^2}{q}$ i.e., $\frac{v^2}{q}$ (radius of circle)
 - Area occupied = $\pi \left(\frac{v^2}{g}\right)^2 = \frac{\pi v^4}{g^2}$

Sol.
$$\Delta Q = \Delta U + \Delta W$$
 (ignoring expansion)
 $\Delta U = ms\Delta T = 0.1 \times 4.184 \times 20 = 8.368 kJ$

Sol.
$$t_{\frac{1}{2}} = 20$$
 minutes

$$N = N_{_0} e^{-\lambda t_{_2}} \quad \lambda t_{_1} = ln\, 3$$

$$\frac{2}{3}N_{_{0}}=N_{_{0}}e^{-\lambda t_{_{2}}}\;t_{_{1}}=\frac{1}{\lambda}In3$$

$$\frac{2}{3}N_0=N_0e^{-\lambda t_2}$$

$$t_2 = \frac{1}{\lambda} \ln \frac{3}{2}$$

$$t_2 - t_1 = \frac{1}{\lambda} \left[\ln \frac{3}{2} - \ln 3 \right]$$

$$=\frac{1}{\lambda} ln \left[\frac{1}{2}\right] = \frac{0.693}{\lambda}$$

Sol.
$$KE_{max} = h\upsilon - h\upsilon_0$$

$$h\upsilon - h\upsilon_0 = \mathbf{e} \times \Delta \mathbf{v}$$

$$V_0 = \frac{h\upsilon}{e} - \frac{h\upsilon_0}{e}$$

'υ' is doubled

$$\text{KE}_{\text{max}} = 2h\upsilon - h\upsilon_0$$

$$V_0' = (\Delta V)' = \frac{2hv}{e} - \frac{hv_0}{e}$$

 $\frac{\mathrm{KE}_{\mathrm{max}}}{\mathrm{KE}_{\mathrm{max}}}$ may not be equal to 2

$$\Rightarrow \frac{V_0'}{V_0}$$
 may not equal to 2

KE max =
$$hv - hv_0$$

$$V=\frac{h\upsilon}{e}-\frac{h\upsilon_0}{e}$$

PART B: MATHEMATICS

31. **2**

Sol:

$$P(-2, -2); Q = (1, -2)$$

Equation of angular bisector \overline{OR} is $\left(\sqrt{5} + 2\sqrt{2}\right)x = \left(\sqrt{5} - \sqrt{2}\right)y$

$$\therefore$$
 PR : RQ = $2\sqrt{2}$: $\sqrt{5}$

Sol:
$$A = \sin^2 x + \cos^4 x = \frac{7 + \cos 4x}{8} \Rightarrow \frac{3}{4} \le A \le 1$$

Sol:
$$\lim_{x\to 2} \frac{\sqrt{2\sin^2(x-2)}}{x-2}$$
$$\lim_{x\to 2} \frac{\sqrt{2}\left|\sin(x-2)\right|}{x-2}$$
$$R.H.L. = \sqrt{2}, L.H.L. = -\sqrt{2}$$
$$Limit does not exist.$$

Sol:
$${}^{(n-1)}C_{(r-1)} = {}^{(10-1)}C_{(4-1)} = {}^{9}C_{3}$$

Statement 1 is correct

Statement 2 is also correct

From 9 we can select 3 in ${}^{9}C_{3}$ ways. It is correct explanation.

Sol:
$$\frac{d}{dy} \left(\frac{dx}{dy} \right) = \frac{d}{dy} \left(\frac{1}{\left(\frac{dy}{dx} \right)} \right) = -\frac{1}{\left(\frac{dy}{dx} \right)^2} \frac{d}{dy} \left(\frac{dy}{dx} \right)$$
$$= -\left(\frac{dy}{dx} \right)^{-2} \frac{1}{\left(\frac{dy}{dx} \right)} \frac{d}{dx} \left(\frac{dy}{dx} \right) = -\left(\frac{d^2y}{dx^2} \right) \left(\frac{dy}{dx} \right)^{-3}$$

Sol:
$$\frac{dy}{dx} = y + 3 \Rightarrow \frac{dy}{y + 3} = dx$$

$$ln(y + 3) = x + c$$

$$x = 0 \Rightarrow y = 2$$

$$\Rightarrow ln5 = 0 + c$$

$$c = ln5$$

$$ln(y + 3) = x + ln5$$

$$y + 3 = e^{x + ln5} \Rightarrow y + 3 = e^{ln2 + ln5}$$

 $y + 3 = 10 \Rightarrow y = 7$

Sol:
$$x - y$$
 is an integer

$$x - x = 0$$
 is an integer \Rightarrow A is Reflexive

$$x - y$$
 is an integer $\Rightarrow y - x$ is an integer $\Rightarrow A$ is symmetric

$$x - y$$
, $y - z$ are integers

As sum of two integers is an integer.

$$\Rightarrow$$
 $(x-y)+(y-z)=x-z$ is an integer

$$\Rightarrow$$
 A is transitive. Hence statement – 1 is true.

Also
$$\frac{x}{x} = 1$$
 is a rational number $\Rightarrow B$ is reflexive

$$\frac{x}{v} = \alpha$$
 is rational $\Rightarrow \frac{y}{x}$ need not be rational

i.e.,
$$\frac{0}{1}$$
 is rational $\Rightarrow \frac{1}{0}$ is not rational

Hence B is not symmetric

 \Rightarrow B is not an equivalence relation.

$$\begin{aligned} & \text{Sol:} \qquad I = 8 \int_{0}^{1} \frac{\log(1+x)}{1+x^{2}} \, dx \\ & = 8 \int_{0}^{\frac{\pi}{4}} \frac{\log(1+\tan\theta)}{1+\tan^{2}\theta} \sec^{2}\theta \, d\theta \, \left(\text{let } x = \tan\theta \right) \\ & = 8 \int_{0}^{\frac{\pi}{4}} \log\left(1+\tan\left(\frac{\pi}{4}-\theta\right)\right) \, d\theta \, = 8 \int_{0}^{\frac{\pi}{4}} \log\left(1+\frac{1-\tan\theta}{1+\tan\theta}\right) \, d\theta \, = 8 \int_{0}^{\frac{\pi}{4}} \log 2 \, d\theta - 8 \int_{0}^{\frac{\pi}{4}} \log(1+\tan\theta) \, d\theta \\ & = 8 \log 2 \frac{\pi}{4} - I \\ & 2I = 2\pi \log 2 \\ & I = \pi \log 2 \end{aligned}$$

Sol: Suppose roots are
$$1+pi$$
, $1+qi$
Sum of roots $1+pi+1+qi=-\alpha$ which is real
 \Rightarrow roots of $1+pi$, $1-pi$
Product of roots $=\beta=1+p^2\in \left(1,\infty\right)$
 $p\neq 0$ since roots are distinct.

41. 2
Sol:
$$n = 5$$
Success = p
Failure = q
P (at least one failure) $\geq \frac{31}{32}$

$$1 - P \text{ (no failure)} \geq \frac{31}{32}$$

$$1 - P(x = 5) \geq \frac{31}{32}$$

$$1 - {}^{5}C_{5}p^{5} \ge \frac{31}{32}$$
$$-p^{5} \ge -\frac{1}{32}$$

$$p^5 \le \frac{1}{32}$$

$$p \leq \frac{1}{2}$$

$$p \in \left[0, \frac{1}{2}\right]$$

42. **3**

Sol:

Sum = 11040

$$\frac{n}{2}$$
 $\left[2a + (n-1)d\right] + 80 + 40 = 11040$

$$\frac{n}{2}$$
 $\left[240+(n-1)40\right]=10920$

$$n\lceil 6+n-1\rceil=546$$

$$n(n+5) = 546$$

$$n = 21$$

43. **2**

Sol:
$$\frac{1}{\sqrt{|x|-x}} \Rightarrow |x|-x>0 \Rightarrow |x|>x \Rightarrow x \text{ is negative}$$

$$x \in (-\infty, 0)$$

44.

Sol:
$$\cos \theta = \sqrt{\frac{5}{14}}$$
$$\sin \theta = \frac{3}{\sqrt{14}}$$
$$\sin \theta = \frac{1+4+3\lambda}{\sqrt{1+4+\lambda^2}\sqrt{1+4+9}}$$
$$\frac{3}{\sqrt{14}} = \frac{5+3\lambda}{\sqrt{5+\lambda^2}\sqrt{14}} \Rightarrow \lambda = \frac{2}{3}$$

$$\begin{aligned} \text{Sol:} \qquad & \left(2\overline{a}-\overline{b}\right).\left\{\left(\overline{a}\times\overline{b}\right)\times\left(\overline{a}+2\overline{b}\right)\right\} = \left(2\overline{a}-\overline{b}\right).\left\{\left[\overline{a}.\left(\overline{a}+2\overline{b}\right)\right]\overline{b}-\left[\overline{b}.\left(\overline{a}+2\overline{b}\right)\overline{a}\right]\right\} \\ & = -5\left(\overline{a}\right)^2\left(\overline{b}\right)^2+5\left(\overline{a}.\overline{b}\right)^2 = -5 \end{aligned}$$

46.

Sol:
$$b^{2} = a^{2} \left(1 - e^{2} \right) = a^{2} \left(1 - \frac{2}{5} \right) = a^{2} \frac{3}{5} = \frac{3a^{2}}{5}$$
$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \Rightarrow \frac{9}{a^{2}} + \frac{5}{3a^{2}} = 1$$
$$a^{2} = \frac{32}{5}$$
$$b^{2} = \frac{32}{5}$$

 \therefore Required equation of ellipse $3x^2 + 5y^2 - 32 = 0$

47. 1

Sol:
$$\frac{dV}{dt} = -k(T-t) \Rightarrow dV = -k(T-t)dt$$
Integrate
$$V = \frac{-k(T-t)^2}{(-2)} + c \Rightarrow V = \frac{k(T-t)^2}{2} + c$$
at $t = 0 \Rightarrow V = I$

$$I = \frac{kT^2}{2} + c \Rightarrow c = I - \frac{kT^2}{2} \Rightarrow c = V(T) = I - \frac{kT^2}{2}$$

48. 3
Sol:
$$\overline{b} \times \overline{c} = \overline{b} \times \overline{d}$$

$$\Rightarrow \overline{a} \times (\overline{b} \times \overline{c}) = \overline{a} \times (\overline{b} \times \overline{d})$$

$$\Rightarrow (\overline{a}.\overline{c})\overline{b} - (\overline{a}.\overline{b})\overline{c} = (\overline{a}.\overline{d})\overline{b} - (\overline{a}.\overline{b})\overline{d}$$

$$\Rightarrow (\overline{a}.\overline{c})\overline{b} - (\overline{a}.\overline{b})\overline{c} = -(\overline{a}.\overline{b})\overline{d}$$

$$\therefore \overline{d} = \overline{c} - (\overline{\overline{a}.\overline{c}})\overline{b}$$

49. **1 Sol:**
$$c_1 = \left(\frac{a}{2}, 0\right); c_2 = \left(0, 0\right)$$

$$r_1 = \frac{a}{2}; r_2 = c$$

$$c_1 c_2 = r_1 - r_2 \Rightarrow \frac{a}{2} = c - \frac{a}{2} \Rightarrow c = a$$

50. 1

Sol:
$$C \cap D = C \Rightarrow P(C \cap D) = P(C) \Rightarrow P\left(\frac{C}{D}\right) = \frac{P(C \cap D)}{P(D)} \ge P(C)$$

51. 1

Sol:
$$\begin{vmatrix} 4 & k & 2 \\ k & 4 & 1 \\ 2 & 2 & 1 \end{vmatrix} = 0 \Rightarrow k^2 - 6k + 8 = 0 \Rightarrow k = 4, 2$$

52. **1** Sol:
$$\sim \{(P \land \sim R) \leftrightarrow Q\} = \sim \{Q \leftrightarrow (P \land \sim R)\}$$

Sol:
$$P = (y^2, y)$$

Perpendicular distance from P to x - y + 1 = 0 is $\frac{\left|y^2 - y + 1\right|}{\sqrt{2}}$

$$y^2 - y + 1 > 0 \ \forall y \in R$$

$$\therefore$$
 Coefficient $y^2 > 0$

$$\therefore \text{ Min value } = \frac{1}{\sqrt{2}} \left(\frac{4ac - b^2}{4a} \right) = \frac{3}{4\sqrt{2}}$$

Sol:
$$\frac{1}{n}\sum |x_i - A|$$

A = Median =
$$\frac{25a + 26a}{2}$$
 = 25.5a

Mean deviation
$$=\frac{1}{50}\{|a-25.5a|+|2a-25.5a|\}=\frac{2}{50}\{(24.5a+23.5a)+...(0.5a)\}$$

$$=\frac{2}{50}$$
{312.5a} = 50 (Given)

$$\Rightarrow$$
 625a = 2500 \Rightarrow a = 4

55. **1**

Sol:

Statement -1: AB is perpendicular to given line and mid point of AB lies on line Statement -2 is true but it is not correct explanation as it is bisector only. If it is perpendicular bisector then only statement -2 is correct explanation.

Sol:
$$A^T = A, B^T = B$$

$$(A(BA))^T = (BA)^T A^T = (A^TB^T)A = (AB)A = A(BA)$$

$$((AB)A)^T = A^T(AB)^T = A(B^TA^T) = A(BA) = (AB)A$$

:. Statement - 1 is correct

Statement - 2

$$(AB)^{T} = B^{T}A^{T} = BA = AB$$
 (: AB is commutative)

Statement - 2 is also correct but it is not correct explanation of Statement - 1

57.

Sol:
$$1+\omega=-\omega^2$$

$$\left(1+\omega\right)^{7} = \left(-\omega^{2}\right)^{7} = -\omega^{14} = -\omega^{2} = 1 + \omega = A + B\omega \Longrightarrow \left(A, B\right) = \left(1, 1\right)$$

58.

$$\lim_{x\to 0}\frac{sin\big(p+1\big)+sin\,x}{x}=q=\lim_{x\to 0}\frac{\sqrt{x+x^2}-\sqrt{x}}{x^{3/2}}$$

$$\lim_{x\to 0} \big(p+1\big) cos \big(p+1\big) x + cos \, x = q = \frac{1}{2}$$

$$\Rightarrow$$
 p + 1 + 1 = $\frac{1}{2}$ \Rightarrow p = $-\frac{3}{2}$; q = $\frac{1}{2}$

59. **2**

Sol:

Area =
$$\int_{0}^{1} x dx + \int_{1}^{e} \frac{1}{x} dx = \frac{1}{2} + 1 = \frac{3}{2}$$

60.

Sol:
$$f'(x) = \sqrt{x} \sin x$$

Given
$$x \in \left(0, \frac{5\pi}{2}\right)$$

- f'(x) changes sign from +ve to –ve at π
- $f^{\, \prime}(x)\,$ changes sign from -ve to +ve at $\, 2\pi$
- f has local max at π , local min at 2π

PART C: CHEMISTRY

61.

Sol: Greater charge and small size of cation cause more polarization and more covalent is that compound

62.

Sol: In RNA, the sugar is β – D – Ribose, where as in DNA the Sugar is β -D-2-deoxy Ribose

63. (4)

 $2CCl_3CHO \xrightarrow{OH^{(-)}} CCl_3COONa + CCl_3CH_2OH$ Sol:

Cannizaro reaction is a disproportionation reaction

One aldehyde molecule is oxidized to salt of the carboxylic Acid, other one is reduced to

Alcohol. So the compound is CCI₃CH₂OH

IUPAC Name is 2, 2, 2, - Trichloro ethanol

64.

Sol:
$$C_2H_5$$
 O N a + CH_3 - C - CI \rightarrow CH_3 - C - C - C_2H_5 Ethyl ethanoate C_2H_5 C_2H_5

65.

Sol:
$$2H^+ + 2e^- \rightarrow H_2(g)$$

$$E = E^{\circ} - 0.059 \text{ log} \left(\frac{P_{H_2}}{\left\lceil H^{+} \right\rceil^2} \right) \text{ (here E is -ve when } P_{H_2} > \left[H^{+} \right]^2 \text{)}$$

$$= \frac{-0.0591}{2} \log_{10} \left(\frac{2}{1}\right) = \frac{-.0591}{2} \times .3010 = \text{negative value}$$

66.

Sol: Electron releasing groups (Alkyl groups) de stabilizes conjugate base.

The +I effect of C₃H₇ is less than -I effect of CI

$$K_a$$
 of HCOOH is 17.9×10^{-5} K_a of CH_3CH_2 $CH-COOH$ is 139×10^{-5} CI

67.

Sol:
$$i = 1 - \alpha + n\alpha = 1 + \alpha (n-1)$$

$$\frac{i-1}{n-1} = \alpha$$

$$A_x B_y \to x A^{\scriptscriptstyle +y} + y B^{\scriptscriptstyle -x}$$

$$n = x+y$$

So
$$\alpha = \frac{i-1}{x+y-1}$$

AIEEE-2011-28

68. (3)

Sol: ease of liquefaction $\propto \frac{a}{b}$

for ethane a = 5.49, b=0.0638 for Cl₂ a = 6.49, b = 0.0562

69. (4)

Initial moles p O Fauilibrium moles p-y 2y

Equilibriumm moles p-x 2x Total pressure at equilibrium = 0.8 atm; Total no.of moles = p + x.

Therefore $p \propto n$; $\frac{0.5}{0.8} = \frac{p}{p+x} \Rightarrow x = 0.3$

$$K_p = \frac{P_{CO}^2}{P_{CO}} = \frac{0.6 \times 0.6}{0.2} = 1.8 \text{ atm}$$

70. (4)

Sol : As Boron has only four orbitals in the valence shell (i.e. 2s, $2p_x$, $2p_y$ & $2p_z$) it can show a maximum valency of four only.

Therefore $\left[\mathsf{BF}_{6}\right]^{3-}$ is not possible

71. (2)

 $\textbf{Sol}: \quad \left[\overset{\cdot}{\text{Cr}} \left(\text{NH}_3 \right)_6 \right] \text{Cl}_3 \quad \text{involves} \ \ \text{d}^2 \text{sp}^3 \ \ \text{hybridization and it is an inner orbital complex}.$

72. (4)

Sol: $\Delta T_f = K_f \times m = K_f \times \frac{W_2 \times 1000}{W_1 \times W_2}$

 $W_1 \& W_2$ = wt of solvent & solute respecting

 $m_2 = mw$ of solute

$$\Delta T_f = 0^o - \left(-6^o\right) = 6 = 1.86 \times \frac{w_2 \times 1000}{4000 \times 62}$$

Therefore $w_2 = 800g$

73. (4)

Sol: Across a period metallic strength decreases & down the group it increases

74. (2)

Sol: Temperature coefficient μ =2;

$$\mu^{\frac{\Delta T}{10}} = \frac{k_2}{k_1};$$

$$2^{\frac{50}{10}} = 2^5 = 32 = \frac{k_2}{k_1}$$

Therefore $32 k_1 = k_2$

75.

Sol: In
$$[NiCl_4]^{2^-}$$
, n = 2
 $\mu = \sqrt{n(n+2)}$ BM
= $\sqrt{2(2+2)} = 2.82$ BM

76. (1)

Sol:

77.

The general o.s of lanthanides is +3, only few elements exhibit +4 o.s. Sol:

78.

Sol: Molefraction of solute
$$(X_2)$$
 in aqueous solution = $\frac{m}{m + \frac{1000}{18}}$ = $\frac{5.2}{5.2 + \frac{1000}{18}}$ = 0.09

79.

Sol: Stability of hydrides decreases down the group from NH₃ to BiH₃ as M-H bond energy decreases.

80. (3)

81.

`S' can exhibit a minimum oxidation state of -2 Sol: (Ex. H₂S)

82.

In IF₇, I undergoes sp³d³ hybridisation Sol:

83.

(1) Vinyl group Sol: $\left(\mathsf{CH}_{2} + \mathsf{CH} - \right)$

on ozonolosys give formaldehyde

84. (2)

Sol:
$$\frac{1}{\lambda_{absorbed}} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$$

$$\Rightarrow \frac{1}{355} = \frac{1}{680} + \frac{1}{\lambda_2}$$

$$\Rightarrow \lambda_2 = 742.8 \cong 743 \text{ nm}$$

85.

Formaldehyde and Acetaldehyde can be oxidized by tollen's reagent to give silver mirror. Sol:

AIEEE-2011-30

86. (3)

Sol: Phenol gives violet coloured comlex compound with neutral FeCl₃, benzoic acid gives pale dull yellow ppt. with neutral FeCl₃

87. (3)

Sol: In acidic medium, $KBr + KBrO_3$ in turn produces Br_2 . Phenol reacts with Br_2 (aq) to give 2, 4, 6-trinitrophenol

88. (3)

Sol: Effective no.of A atoms = $\frac{1}{8} \times 8 = 1$ Effective no.of B atoms = $\frac{1}{2} \times 5$ (One is missing) = $\frac{5}{2}$ Therefore formula is $A_1B_{\frac{5}{2}} = A_2B_5$

89. (4)

Sol: For an ideal gas, for isothermal reversible process,

$$\Delta S = 2.303 \text{ nR log} \left(\frac{V_2}{V_1}\right)$$

= 2.303×2×8.314×log $\left(\frac{100}{10}\right)$
= 38.3 J mol⁻¹.k⁻¹

90. 2, (2, 3)

Sol: both 2-pentanone, phenol can exhibit tautomerism