USTHB, FEI, Département d'Informatique

LMD Master 2 "Systèmes Informatiques Intelligents" 2018/2019

Module "Programmation Par Contraintes"

Programmation par Contraintes: projet

Recherche récursive de solutions d'un CSP binaire discret :

<u>Implémentation de Look-Ahead avec PC2 comme procédure de filtrage durant la recherche</u>

Le but du projet est l'implémentation pour les CSP binaires discrets d'un des quatre algorithmes de recherche de solutions vus en cours, l'algorithme Look-Ahead, avec la politique suivante :

- Ordre d'instanciation des variables
 - Version 1 : tirage aléatoire de la prochaine variable à instancier
 - Version 2 : ordre dynamique donné par l'heuristique « instancier la variable dont le cardinal du domaine est le plus petit »
- Ordre statique de choix des valeurs du domaine : ordre croissant
- Filtrage durant la recherche avec la procédure de consistance de chemin PC2.

Le travail demandé est comme suit :

- Implémentation de l'algorithme de consistance de chemin PC2
- Implémentation de l'algorithme Look-Ahead de recherche récursive de solutions d'un CSP binaire discret, avec la politique décrite ci-dessus
- Explication des structures de données utilisées
- Comparaison des deux versions sur des CSP générés aléatoirement
- Laisser la possibilité à l'utilisateur d'entrer ses propres CSP

Autres détails : génération aléatoire des entrées sous forme de représentations matricielles, avec l'une des deux méthodes suivantes :

■ Méthode 1:

- Générer aléatoirement le nombre n de variables dans un intervalle [a,b] (exemple [a,b]=[20,40])
- Générer aléatoirement le cardinal p du domaine commun des variables dans un intervalle [c,d] (exemple [c,d]=[10,20])

- Sans contraintes, la représentation matricielle M_P à générer, qui est une matrice nxn, serait comme suit : matrice identité pxp sur la diagonale, matrice universelle pxp en dehors de la diagonale
- Générer aléatoirement chaque entrée [i,j] de M_P, avec i<j (pour k=1 à p faire pour l=1 à p faire générer aléatoirement M_P[i,j][k,l] dans {0,1} fait fait)
- Les entrées [i,j] de M_P, avec i>j (triangle inférieur, sans la diagonale), sont les transposées des entrées [j,i]
- O Générer aléatoirement chaque entrée (i,i] de M_P (pour j=1 à p faire générer aléatoirement M_P [i,i][j,j] dans {0,1} fait)

■ Méthode 2 :

- Générer aléatoirement le nombre n de variables dans un intervalle [a,b]
 (exemple [a,b]=[20,40])
- Générer aléatoirement le cardinal p du domaine commun des variables dans un intervalle [c,d] (exemple [c,d]=[10,20])
- Sans contraintes, la représentation matricielle M_P à générer, qui est une matrice nxn, serait comme suit : matrice identité pxp sur la diagonale, matrice universelle pxp en dehors de la diagonale
- Générer aléatoirement le nombre m de contraintes dans un intervalle [e,f] (exemple [e,f]=[20,30]) :
- Pour k=1 à m :
 - Générer aléatoirement la paire (X_i, X_j) de variables sur laquelle doit porter la contrainte c_k , avec $i \le j$
 - Générer aléatoirement la contrainte c_k :

<u>Si i<j:</u> pour k=1 à p faire pour l=1 à p faire générer aléatoirement $M_P[i,j][k,l]$ dans $\{0,1\}$ fait fait

<u>Si i=j:</u> pour j=1 à p faire générer aléatoirement $M_P[i,i][j,j]$ dans $\{0,1\}$ fait (les entrées de $M_P[i,i]$ en dehors de la diagonale sont à 0)

Remarque : Pour la méthode 1 de génération aléatoire des entrées, le nombre de paires de variables sur lesquelles il y a des contraintes est décidé par la génération aléatoire des entrées de M_P :

- pour chaque paire (X_i, X_j) de variables, avec $i \neq j$, si l'entrée [i,j] n'est pas la matrice universelle, il y a des contraintes sur X_i et X_j , qui sont représentées par $M_P[i,j]$
- **p**our chaque variable X_i , si l'entrée [i,i] n'est pas la matrice identité, il y a des contraintes unaires sur X_i , qui sont représentées par $M_P[i,i]$

Toujours pour la méthode 1, la probabilité que la matrice booléenne générée pour une entrée [i,j] de M_P avec i<j (respectivement, avec i=j) soit la matrice universelle (respectivement, la

matrice identité) est faible. Il faut donc s'attendre à ce que les CSP générés par cette méthode aient un nombre important de variables sur lesquelles il y a des contraintes.

Travail à remettre :

- le solveur sur CD
- un rapport incluant
 - la description du solveur avec explication de la procédure principale LookAhead, de la procédure de filtrage PC2, et des structures de données utilisées
 - le résultat de la comparaison des deux versions sur des CSP générés aléatoirement avec une des deux méthodes ci-dessus