Problem 7: Let $n \ge 2$ be an integer, and for any real number $0 \le \alpha \le 1$, let $C(\alpha)$ be the coefficient of x^n in the power series expansion of $(1+x)^{\alpha}$. Prove that

$$\int_0^1 \left(C(-t-1) \left(\sum_{k=1}^n \frac{1}{t+k} \right) \right) \, dt = (-1)^n n.$$

Proof. First we'll find the coefficient of x^n in the power series expansion of $(1+x)^{\alpha}$. We'll do this by giving the Taylor series for $(1+x)^{\alpha}$ at x=0. Let $f(x)=(1+x)^{\alpha}$. Then

$$(1+x)^{\alpha} = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^n(0)}{n!}x^n$$

Thus
$$C(\alpha) = \frac{f^n(0)}{n!}$$
.

Now let's compute the nth derivative of $f(x) = (1+x)^{\alpha}$.

$$f(x) = (1+x)^{\alpha}$$

$$f'(x) = \alpha(1+x)^{\alpha-1}$$

$$f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2}$$

$$f'''(x) = \alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3}$$

$$f^{n}(x) = \alpha(\alpha-1)(\alpha-2)\cdots(\alpha-(n-1))(1+x)^{\alpha-n}$$

So the coefficient of x^n is

$$C(\alpha) = \frac{f^n(0)}{n!} = \frac{\alpha(\alpha - 1)(\alpha - 2)\cdots(\alpha - (n - 1))}{n!}$$

Plugging in -t-1 for α , we get

$$C(-t-1) = \frac{(-t-1)(-t-2)\cdots(-t-n)}{n!} = \frac{(-1)^n(t+1)(t+2)\cdots(t+n)}{n!}$$

Now we can evaluate the integral.

$$\int_0^1 \left(C(-t-1) \sum_{k=1}^n \frac{1}{t+k} \right) dt = \int_0^1 \left(\frac{(-1)^n (t+1)(t+2) \cdots (t+n)}{n!} \sum_{k=1}^n \frac{1}{t+k} \right) dt$$
$$= \frac{(-1)^n}{n!} \int_0^1 \left((t+1)(t+2) \cdots (t+n) \sum_{k=1}^n \frac{1}{t+k} \right) dt$$

Let $g(t) = (t+1)(t+2)\cdots(t+n)$. Then $\frac{dg}{dt} = (t+1)(t+2)\cdots(t+n)\sum_{k=1}^{n} \frac{1}{t+k}$. (We can verify this with a repeated application of the Product Rule for derivatives.) Thus

$$\int_{0}^{1} \left(C(-t-1) \sum_{k=1}^{n} \frac{1}{t+k} \right) dt = \frac{(-1)^{n}}{n!} \int_{0}^{1} \left((t+1)(t+2) \cdots (t+n) \sum_{k=1}^{n} \frac{1}{t+k} \right) dt$$

$$= \frac{(-1)^{n}}{n!} \int_{0}^{1} \left(\frac{dg}{dt} \right) dt$$

$$= \frac{(-1)^{n}}{n!} g(t) \Big|_{0}^{1}$$

$$= \frac{(-1)^{n}}{n!} (g(1) - g(0))$$

$$= \frac{(-1)^{n}}{n!} ((n+1)! - n!)$$

$$= \frac{(-1)^{n}}{n!} (n!((n+1) - 1))$$

$$= \frac{(-1)^{n}}{n!} (n! \cdot n)$$

$$= (-1)^{n} \cdot n$$

We have proven what we set out to prove.