Fairness in Matching under Uncertainty

Siddartha Devic (USC), David Kempe (USC), Vatsal Sharan (USC), Aleksandra Korolova (Princeton)

Motivation

@sid_devic, @korolova

Algorithmic decisions are often used in two-sided marketplaces.

• e.g., assigning students to schools, users to advertisers, applicants to job interviews, etc.

Decisions/assignments should respect the preferences of individuals and simultaneously be fair with respect to their *merits*.

Merit: how qualified is an individual for a position?

However, merit is often inherently *noisy* to estimate---merits conditioned on observable features are uncertain

 A single test score or interview is often not adequate to exactly determine preparedness/fit.

This is exacerbated by the *widespread use of ML algorithms* to infer merit from observable features.

The outputs of ML algorithms are often uncertain.

Key Contributions

- We axiomatize a notion of *individual fairness* in two-sided marketplaces which respects the uncertainty in the merits.
- We design a linear programming framework to find fair utility-maximizing distributions over allocations.
- · We prove that the linear program is robust to perturbations in the estimated parameters of the uncertain merit distributions, a key property in combining the approach with ML techniques.
- We verify our method empirically by designing and running an experiment in a two-sided market given data from a dating app.

Figure 1: A visual overview of our setup, using matching students and jobs as an example.

Each job has an ML algorithm or domain expert with access to observed features (a) for each **student**, and from those constructs a distribution Γ (b) which is an estimate of the merit or fit for the job/student pair.

Importantly, these estimates could be based on different factors for different jobs (see

This work 0-0.2 0.3 (c) "Fair" matching distribution

heterogeneity of merit for student x_2).

Student preferences (not pictured) and Γ are given to the algorithm as input.

The algorithm seeks to output a distribution over matchings which is fair (c) w.r.t. what each student is contextually entitled to, while simultaneously considering the preferences of all students and the overall utility of the solution.

Problem Setting

Bipartite matching market with *n* individuals and *n* resources.

Each individual has deterministic preferences over all resources

• e.g., a certain student has an (ordered) ranked list over jobs.

Each resource has a noisy estimate of the merit of each individual.

- This takes the form of a distribution Γ over merit (merit $\in \mathbb{R}^{\geq 0}$).
- Merit is broadly construed: may be more than academic performance.

For example, a certain job may believe that a candidate, if hired, has a 90% chance of performing well and a 10% chance of performing poorly.

Importantly, no assumptions on structure of Γ.

Our guiding notion is *contextual entitlement*: what resource that an individual receives should depend not only on their qualifications and preferences, but also the preferences of other individuals.

References. [1]: A. Singh, D. Kempe, and T. Joachims. Fairness in ranking under uncertainty. In Proc. 35th Advances in Neural Information Processing Systems, pages 11896–11908, 2021. [2]: Lukáš Brožovský and Václav Petříček. Recommender system for online dating service. In Proc. Znalosti, pages 29–40, 2007.

Proposed Fairness Axioms

Axiom 1 (Meritocracy): If individual *A* has greater merit than individual **B**, then **A** should receive an outcome they weakly prefer over the outcome assigned to **B**.

Axiom 2 (Fairness with Uncertain Merit [1]): If A has merit greater than **B** with probability ρ , then individual **A** should receive an outcome they prefer over the outcome assigned to B with probability at least ρ .

- Captures that similar individuals should be treated similarly according to their own preferences: e.g., If two candidates are qualified with equal probability, they should each receive the job with equal probability.
- However, not yet precise enough to be operationalizable in matching.

Axiom 3 (Fairness in Decision Making under Uncertainty): Suppose that A_{det} is an algorithm which we consider fair when merits are fully observable and certain (e.g. ranking by exact merit). Let $s_1, s_2, ..., s_k$: $Outcomes \to \mathbb{R}^{\geq 0}$ be desired fairness statistics (e.g. top-k outcomes for all individuals). Then, a randomized algorithm A_{rand} is ϕ -fair with respect to a merit distribution Γ if it satisfies

$$\mathbb{E}_{z \sim A_{rand}}[s_j(z)] \ge \phi \mathbb{E}_{V \sim \Gamma}[s_j(A_{det}(V))]$$

for all statistics s_i and fairness parameter $\phi \in [0, 1]$.

Intuition: Uncertainty about an individuals' merit should not hurt the outcome they receive (in expectation, and w.r.t. "how we measure hurt" s_i).

Our proposed Axiom 3 is a type of *individual fairness* generalizing Axiom 2 of [1] which simultaneously accounts for:

- 1. the heterogeneous preferences of **individuals**;
- inherent uncertainty in the estimation of merit; and
- potentially constrained resources.

Fair Bipartite Matching with Uncertainty

In matching, A_{det} is the celebrated Gale-Shapley stable marriage algorithm.

We choose n^2 fairness statistics $s_{i,k}$ corresponding to the probability that **individual** *i* receives a top k or better outcome (for all $i \in [n]$, $k \in [n]$).

• This captures everything since the marginals fully define the output here.

In matching, a ϕ -fair A_{rand} (satisfying **Axiom 3**) ensures that the probability that any **individual** *i* receives a top *k* outcome (for all $k \in [n]$) is at least ϕ times the probability that if we randomly drew the merits for all individuals and then ran Gale-Shapley with the now deterministic preferences of both sides, i would indeed receive a top k outcome.

Why ϕ -fair instead of always 1-fair? Not all fair solutions provide the same utility to the mechanism designer, so we allow a parameter which trades of utility and fairness.

Fair Utility Maximization, Empirical Results

Let $\mu_{i,j}$ be the utility that the mechanism designer receives for matching individual i and resources j, and $p_{i,j}$ be a variable representing the probability of this match. The following LP maximizes the utility subject to fairness (Axiom 3) and that the output is a distribution over matchings.

$$\max \sum_{i=1}^{n} \sum_{i=1}^{n} \mu_{i,j} \cdot \boldsymbol{p_{i,j}}$$

$$s.t. \sum_{k'=1}^{n} \boldsymbol{p_{i,r_{i}^{-1}(k')}} \ge \boldsymbol{\phi} \mathbb{E}_{V \sim \Gamma}[\boldsymbol{s_{i,k}}(\boldsymbol{A_{det}}(V))] \ \forall i \in [n], \forall k \in [n]$$

Probability of top-k or better outcome for individual i under A_{rand}

$$\sum_{i=1}^{n} p_{i,j} = 1$$

$$\sum_{j=1}^{n} p_{i,j} = 1$$

$$\forall j \in [n]$$

$$\forall i \in [n]$$

 $\mathbb{E}_{V \sim \Gamma}[s_{i,k}(A_{det}(V))]$ is difficult to compute exactly, so in practice we use an empirical estimate of it, motivating our main theoretical result.

Theorem (informal): $\mathbb{E}_{V \sim \Gamma}[s_{i,k}(A_{det}(V))]$ can be efficiently estimated within ϵ to find a $\left(\frac{\phi}{n\epsilon+1}\right)$ -fair, $\left(\frac{1}{\phi n\epsilon+1}\right)$ -optimal approximation to the solution of LP (\star) .

Figure 2: We also verify our results empirically by showing that on the Libimseti dating dataset [2], our method achieves higher utility than a simpler \(\phi \)-fair baseline. This demonstrates that LP (*) is tractable for fair utility maximization and can lead to non-trivial utility increases.

