method and results

Sibei Liu sl4660

2020/5/8

Method

Form the prespecified imformation about suggested Baysian model:

$$Y_i(t+6) = \mu_i(t) + \rho Y_i(t) + \epsilon_i(t)$$

$$\mu_i(t) = \beta_0 + x_{i,1}(t)\beta_1 + x_{i,2}\beta_2 +]x_{i,3}\beta_3 + \sum_{k=1}^3 \beta_{3+k}\Delta_{i,k}(t-6)$$

$$\Delta_{i,k}(t-6) = Y_{i,k}(t) - Y_{i,k}(t-6), k = 1, 2, 3$$

For $\epsilon_i(t) \sim Normal(0, \sigma^2)$ $\pi(\beta) \sim MVN(\mathbf{0}, diag(1,7)), \pi(\rho)$ follows a trucated normal $N_{[0,1]}(0.5, 1/5)$ $\pi((\sigma^2)^{-1})$ follows a inverse-gamma (0.001, 0.001)

Among those information, we find: Yi is a linear combination of μ_i and $\rho Y_i(t)$ and $\epsilon_i(t)$. While μ_i and $\rho Y_i(t)$ is a constant. So $Y_i(t+6)$ follow normal distribution with $\mu_{new}(t)$ and variance σ^2 :

$$Y_i(t+6) \sim Normal(\mu_{new}(t), \sigma^2)$$

$$\mu_{new}(t) = \mu_i(t) + \rho Y_i(t)$$

To exclude the time series influence on Y_i we choose to use

$$\epsilon_i = Y_i(t+6) - \mu_{new} \sim Normal(0, \sigma^2)$$

The poesteria distribution

$$f(\epsilon_i|\boldsymbol{\beta}, \rho, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{(Y_i(t+6) - \mu_{new} - 0)^2}{2\sigma^2})$$

Poesterian distribution:

$$\pi(\boldsymbol{\beta}, \rho, \sigma^2 | \epsilon_i) \propto \prod_{i=1}^n \prod_{k=1}^m f(\epsilon_i | \boldsymbol{\beta}, \rho, \sigma^2) * \pi(\boldsymbol{\beta}) * \pi(\rho) * \pi(\sigma^2)^{-1})$$

The i denote the ith hurricane, n is the total number of hurricane. The k denote the kth speed among this hurricane, m is the total measured speeds among this hurricane.

Take the log form:

$$\pi'(\boldsymbol{\beta}, \rho, \sigma^2 | \epsilon_i) \propto \sum_{i=1}^n \sum_{k=1}^m log(f(\epsilon_i | \boldsymbol{\beta}, \rho, \sigma^2)) + log(\pi(\boldsymbol{\beta})) + log(\pi(\rho)) + log(\pi(\sigma^2)^{-1}))$$

We use the random walk in Metropolis-Hasting algorithm to find the poeteria distribution. λ is the proposed value of next step of parameters when using random walk, whose search window is a is pre-defined. $\theta = (\beta, \rho, \sigma^2)$

The probability of accepting is :

$$\alpha(\lambda|\boldsymbol{\theta}) = min(1, \frac{\pi(\boldsymbol{\lambda})q(\boldsymbol{\theta}|\boldsymbol{\lambda})}{\pi(\boldsymbol{\theta})q(\boldsymbol{\lambda}\boldsymbol{\theta})})$$

while the $q(\theta|\lambda) = q(\lambda|\theta)$ so

$$\alpha(\lambda|\boldsymbol{\theta}) = min(1, \frac{\pi(\boldsymbol{\lambda})}{\pi(\boldsymbol{\theta})}) = min(1, \pi'(\boldsymbol{\lambda}) - \pi'(\boldsymbol{\theta}))$$

Compare the $\alpha(\lambda|\boldsymbol{\theta})$ with the random drawed uniform(0,1) number, if $\alpha(\lambda|\boldsymbol{\theta})$ is larger, accept the proposed $\boldsymbol{\lambda}$ otherwise still accept $\boldsymbol{\theta}$

Results

The starting value is (-26,0,0.012,0.009,0,0.01,1,0.1,1) and search window a = c(0.1,0.0001,0.0001,0.001,0.001,0.001,0.001,0.001,0.001,0.0003), which corresponds to β_0 , β_1 β_2 β_3 β_4 β_5 β_6 σ ρ . After 20000 iteration, we get the following path plots:

Figure 1. Path of β_0 , β_1 , β_2

Figure 2. Path of β_3 , β_4 , β_5

Figure 3. Path of β_6 , σ , ρ

From above, we can tell that $\beta_3 - \beta_5$ and σ , ρ all almost enter into the stationary distribution after iteration reachs to 5000, while β_0 to β_2 don't enter the stable situation. When we use the 10000-20000 to calculate the poesterian mean to estimate the parameter and use 95% percentile to find the interval, the results is below. After using the mean as the parameters, the MSE of predicted spped and observed speed in test data is 22.74.

	mean	lower	upper
beta0	-25.3812000	-25.4044236	-25.3683768
beta1	-0.0000053	-0.0000541	0.0000473
beta2	0.0126588	0.0126501	0.0126717
beta3	0.0136956	0.0127268	0.0148076
beta4	-0.0033275	-0.0061918	-0.0003525
beta5	0.0068755	0.0054174	0.0083866
beta6	1.0000609	0.9997446	1.0003751
$_{ m sigma}$	0.0867737	0.0855817	0.0881760
$_{ m rho}$	0.9999641	0.9999037	0.9999993

Table 1. MSE of test data