Peeling for L0-Regularized Least-Squares

Théo Guyard*, Gilles Monnoyer[†], Cédric Herzet* and Clément Elvira[‡] *SIMSMART, Inria, France

[†]ICTEAM, UCLouvain, Belgium

[‡]IETR, CentraleSupelec, France

GRETSI - Colloque Francophone de Traitement du Signal et des Images Grenoble, France 2023

L0-Regularized Least-Squares

Branch-and-Bound

Node problem

$$\mathsf{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{2}}^{\mathbf{2}} + \lambda \|\mathbf{x}\|_{\mathbf{0}}$$

Node problem

$$\mathrm{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{2}}^{2} + \lambda \|\mathbf{x}\|_{\mathbf{0}}$$

Node problem

$$\mathrm{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{\mathbf{1}}{\mathbf{2}} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{2}}^{\mathbf{2}} + \lambda \| \mathbf{x} \|_{\mathbf{0}}$$

Node problem

$$\mathsf{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{\mathbf{1}}{\mathbf{2}} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{2}}^{\mathbf{2}} + \lambda \| \mathbf{x} \|_{\mathbf{0}}$$

Relaxation

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda g(\mathbf{x})$$

Node problem

$$\mathrm{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{2}}^{2} + \lambda \|\mathbf{x}\|_{\mathbf{0}}$$

Relaxation

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda g(\mathbf{x})$$

Dilemma in the choice of [L, U]

- \bullet Wide interval $[\mathsf{L},\mathsf{U}]$ to recover the right solution
- Tight interval [L, U] to build strong relaxations

Node problem

$$\mathrm{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{\mathbf{1}}{\mathbf{2}} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{2}}^{\mathbf{2}} + \lambda \| \mathbf{x} \|_{\mathbf{0}}$$

Relaxation

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda g(\mathbf{x})$$

Dilemma in the choice of [L, U]

- \bullet Wide interval $[\mathsf{L},\mathsf{U}]$ to recover the right solution
- Tight interval [L, U] to build strong relaxations

Our solution: Peeling

Peeling

Propagation along branches

Standard BnB

Propagation along branches

Standard BnB

BnB with peeling

Propagation along branches

Standard BnB

BnB with peeling

- ✔ Branches pruned early-on
- ✓ Less nodes explored
- ✔ Reduce solve time

$$\text{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_0$$

Data A and y : Sparse regression

Bounds L and U : $-M \le x \le M$

Bounds spead : $M = \gamma \|\mathbf{x}^{\star}\|_{\infty}$

$$\mathsf{min}_{\mathsf{x} \in [\mathsf{L},\mathsf{U}]} \ \ \tfrac{1}{2} \| \mathsf{y} - \mathsf{A} \mathsf{x} \|_2^2 + \lambda \| \mathsf{x} \|_0$$

Parameter λ : Set statistically Bounds spead: $M = \gamma \|\mathbf{x}^*\|_{\infty}$

6/7

$\min_{x \in [L,U]} \frac{1}{2} ||y - Ax||_2^2 + \lambda ||x||_0$

Data A **and** y : Sparse regression **Bounds** L **and** U : $-M \le x \le M$

Parameter λ : Set statistically **Bounds spead** : $M = \gamma ||\mathbf{x}^*||_{\infty}$

6/7

Take-home message

Question time

