

ENV797 - TIME SERIES ANALYSIS FOR ENERGY AND ENVIRONMENT APPLICATIONS

M8 - Model Diagnostics, Selection and Performance

Prof. Luana Medeiros Marangon Lima, Ph.D.

Learning Goals

- Forecast fit vs forecast error
- Model Selection
 - Residual Analysis
 - AIC, AICc and BIC
- Performance measures
 - MAD, MSE, MAPE

Forecast fit vs forecast error

- □ Forecast fit
 - Backward-looking assessment
 - Residual Analysis: describes the difference between actual historical data and the fitted values generated by a statistical model
 - How well the model represents historical data
 - Help choose the model that will be further used to forecast unobserved values (Model Selection/Diagnostics)
- Forecast error
 - Forward-looking assessment
 - Difference between actual and forecasted values

Model Selection/Diagnostics

Model Selection

"Unsolved" problem in statistics: there are no magic procedures to get you the "best model" (Kadane and Lazar)

- With a limited number of predictors, it is possible to search all possible models
- But when we have many predictors, it can be difficult to find a good model (many possibilities)
- □ How do we select models?
 - We need a criteria or benchmark to compare two models
 - We need a search strategy

Model Selection Criteria

Some popular and well-known methods

Some criteria work well for some types of data,
 others for different data

Model Selection Criteria (cont'd)

 We will focus on the ones that R prints after fitting an ARIMA model

```
auto.arima(deseasonal_cnt, seasonal=FALSE)
     Series: deseasonal cnt
     ARIMA(1,1,1)
     Coefficients:
              ar1
                       ma1
           0.5510
                  -0.2496
     s.e. 0.0751
                    0.0849
10
     sigma^2 estimated as 26180:
                                  log likelihood=-4708.91
11
    AIC=9423.82 AICc=9423.85
                                  BIC=9437.57
```

And the residual analysis

Akaike Information Criterion (AIC)

- Estimator of the quality of statistical models
- Select the model with lowest AIC
- $\hfill\Box$ Let k be the number of estimated parameters and \widehat{L} be the maximum value of the likelihood function

$$AIC = 2k - 2\ln(\hat{L})$$

Penalty for increasing number of parameters

Reward based on the likelihood

- Trade-off between the goodness of fit and the simplicity of the model
- \square The AICc is used when sample size (n) is small

$$AICc = AIC + \frac{2k^2 + 2k}{n - k - 1}$$

Bayesian Information Criterion (BIC)

- Closely Related to AIC
- Also an estimator of quality of model
- Select the model with lowest BIC
- $\hfill\Box$ Let k be the number of estimated parameters, \widehat{L} be the maximum value of the likelihood function and n the number of observations (sample size)

$$BIC = k * \ln(n) - 2\ln(\hat{L})$$

 Sample size should be much larger than number of parameters

Recall Electricity Prices Example

```
Series: deseasonal_price
ARIMA(1,1,0)
Coefficients:
          ar1
      -0.0311
       0.0707
s.e.
siama^2 estimated as 0.007868: loa likelihood=203.22
AIC=-402.43 AICc=-402.37
                             BIC=-395.82
Series: deseasonal_price
ARIMA(2,1,0)
Coefficients:
          ar1
                 ar2
      -0.0288 0.0755
s.e. 0.0705 0.0710
siama^2 estimated as 0.007863: loa likelihood=203.78
AIC=-401.56 AICc=-401.44
                            BIC=-391.64
```

```
Series: deseasonal_price
ARIMA(2,1,2) with drift
```

Coefficients:

```
ar1 ar2 ma1 ma2 drift
0.5275 -0.7416 -0.5714 0.9283 0.0184
s.e. 0.1039 0.0782 0.0680 0.0479 0.0066
```

```
sigma^2 estimated as 0.007162: log likelihood=214.3
AIC=-416.59 AICc=-416.16 BIC=-396.74
```

Recall Electricity Prices Example

Residual Analysis

Monitoring the Forecast

- Tracking forecast errors and analyzing them can provide useful insight into whether forecasts are performing satisfactorily
- Sources of forecast errors
 - The model may be inadequate
 - Irregular variations may have occurred
 - The forecasting technique has been incorrectly applied
 - Random variation
- Residual analysis are useful for identifying the presence of non-random error in forecasts

Residuals Analysis

Errors are plotted on a chart in the order that they occur

- Forecasts are in control when:
 - All errors within control limits
 - No patterns are present (e.g. seasonality, cycles, non-centered data)

Examples of Nonrandomness

FIGURE 3.12 Examples of nonrandomness

Trend

Cycling

Bias (too many points on one side of the centerline)

Constructing a Control Chart

- Compute the mean square error (MSE)
- The square root of the MSE is used in practice as an estimate of the standard deviation of the distribution of errors $\longrightarrow s = \sqrt{\text{MSE}}$
- Errors are random, therefore, they will be distributed according to a normal distribution around a mean of zero
- For a normal distribution:
 - +/- 95.5 % of the values (errors in this case) can be expected to fall within limits of 0 \pm 2S (i.e., 0 \pm 2 standard deviations)
 - \Box +/- 99.7 % of the values can be expected to fall within $\pm 3s$ of zero
- □ Compute the limits as: UCL: $0 + z\sqrt{\text{MSE}}$ LCL: $0 z\sqrt{\text{MSE}}$

Number of standard deviations

Model Evaluation/Performance

Model Performance

- Keep in mind that these criteria are not measures of predictive power, they just represent how good the model fit the observed data
- It's possible to look at the predictions from the various models
- In this case we shift the question

Model Performance (cc'ed)

- Model Performance measures the forecast accuracy
- Forecasters want to minimize forecast errors
 - It is nearly impossible to correctly forecast real-world variable values on a regular basis
 - So, it is important to provide an indication of the extent to which the forecast might deviate from the value of the variable that actually occurs
- Forecast accuracy should be an important forecasting technique selection criterion
 - Error = Actual Forecast

Observed value

If errors fall beyond acceptable bounds, corrective action may be necessary

Common Performance Measures

- Mean Error (ME)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE) or Standard
 Error (SE)
- Coefficient of Determination or R-Squared (R2)
- Mean Absolute Deviation (MAD) or Mean Absolute Error (MAE)
- Mean Absolute Percentage Error (MAPE)

Forecast Accuracy Metrics

Mean-absolute Deviation

$$MAD = \frac{\sum |Actual_{t} - Forecast_{t}|}{n}$$

MAD weights all errors evenly

Mean-squared Error

$$MSE = \frac{\sum (Actual_t - Forecast_t)^2}{n}$$

MSE weights errors according to their squared values

Mean-absolute Percent Error

$$MAPE = \frac{\sum \frac{\left|Actual_{t} - Forecast_{t}\right|}{Actual_{t}} \times 100}{n}$$

MAPE weights errors according to relative error

Forecast Error Calculation

Period	Actual (A)	Forecast (F)	(A-F) Error	Error	Error ²	[Error /Actual]x100
1	107	110	-3	3	9	2.80%
2	125	121	4	4	16	3.20%
3	115	112	3	3	9	2.61%
4	118	120	-2	2	4	1.69%
5	108	109	1	1	1	0.93%
			Sum	13	39	11.23%
				n = 5	n = 5	n = 5
				MAD	MSE	MAPE
				= 2.6	= 7.8	= 2.25%

THANK YOU!

luana.marangon.lima@duke.edu