Perritos Malvados ICPC Team Notebook

Contents

Strings 1.1 Aho-Corasick 1.2 KMP	1 1 1
Graph algorithms	2
Flows	2
Data Structures	2
Math	2
Dynamic Programming	2
Geometry	2
Theory DP Optimization Theory Combinatorics Number Theory String Algorithms Graph Theory Games Bit tricks Math	3 3 4 5 6 6 7
	1.1 Äho-Corasick 1.2 KMP Graph algorithms Flows Data Structures Math Dynamic Programming Geometry Theory DP Optimization Theory Combinatorics Number Theory String Algorithms Graph Theory Games Bit tricks

1 Strings

1.1 Aho-Corasick

```
struct vertex {
  map<char,int> next,go;
  int p,link;
  char pch;
  vector<int> leaf; // se puede cambiar por int, en ese
        caso int leaf y leaf(0) en constructor
  vertex(int p=-1, char pch=-1):p(p),pch(pch),link(-1){};
  vector<vertex> t;
  void aho_init(){ //do not forget!!
    t.clear();t.pb(vertex());
}
  void add_string(string s, int id){
```

```
int v=0;
  for(char c:s){
    if(!t[v].next.count(c)){
      t[v].next[c]=t.size();
      t.pb(vertex(v,c));
    v=t[v].next[c];
  t[v].leaf.pb(id);
int go(int v, char c);
int get_link(int v){
 if(t[v].link<0)
    if(!v||!t[v].p)t[v].link=0;
    else t[v].link=go(get_link(t[v].p),t[v].pch);
  return t[v].link;
int go(int v, char c) {
 if(!t[v].go.count(c))
    if(t[v].next.count(c))t[v].go[c]=t[v].next[c];
    else t[v].go[c]=v==0?0:go(get_link(v),c);
  return t[v].go[c];
```

1.2 KMP

```
// pf[i] = longest proper prefix of s[0..i] which is also
    a suffix of it
// abaabca
// 0 0 1 1 2 0 1
vi prefix_function(string &s) {
    int n = s.size();
    vi pf(n);
    pf[0] = 0;
    for (int i = 1, j = 0; i < n; i++) {
        while (j \&\& s[i] != s[j]) j = pf[j-1];
        if (s[i] == s[j]) j++;
        pf[i] = j;
    return pf;
// numero de ocurrencias de p en s
int kmp(string &s, string &p) {
    int n = s.size(), m = p.size(), cnt = 0;
    vector<int> pf = prefix_function(p);
    for(int i = \bar{0}, j = 0; i < n; i++) {
        while(j \& \& s[i] != p[j]) j = pf[j-1];
        if(s[i] == p[i]) i++;
        if( ; == m) {
            cnt++;
            j = pf[j-1];
```

return cnt;
}

- 2 Graph algorithms
- 3 Flows
- 4 Data Structures
- 5 Math
- 6 Dynamic Programming
- 7 Geometry

8 Theory

DP Optimization Theory

Name	Original Recurrence	Sufficient Condition	From	То
CH 1	$dp[i] = min_{j < i} \{dp[j] + b[j] *$	$b[j] \ge b[j+1]$ Option-	$O(n^2)$	O(n)
	$a[i]\}$	ally $a[i] \le a[i+1]$		
CH 2	$dp[i][j] = min_{k < j} \{ dp[i -]$	$b[k] \ge b[k+1]$ Option-	$O(kn^2)$	O(kn)
	1][k] + b[k] * a[j]	ally $a[j] \le a[j+1]$		
D&Q	$dp[i][j] = min_{k < j} \{ dp[i -]$	$A[i][j] \le A[i][j+1]$	$O(kn^2)$	$O(kn\log n$
	$1][k] + C[k][j]\}$			
Knuth	dp[i][j] =	$A[i, j-1] \le A[i, j] \le$	$O(n^3)$	$O(n^2)$
	$min_{i < k < j} \{dp[i][k] +$	A[i+1,j]		
	$dp[k][j]\} + C[i][j]$			

Notes:

- A[i][j] the smallest k that gives the optimal answer, for example in dp[i][j] = dp[i-1][k] + C[k][j]
- C[i][j] some given cost function
- We can generalize a bit in the following way $dp[i] = \min_{j < i} \{F[j] + b[j] * a[i]\},$ where F[j] is computed from dp[j] in constant time

Combinatorics

Sums

$$\sum_{k=0}^{n} k = n(n+1)/2 \qquad {n \choose k} = \frac{n!}{(n-k)!k!}$$

$$\sum_{k=0}^{b} k = (a+b)(b-a+1)/2 \qquad {n \choose k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

$$\sum_{k=0}^{n} k^2 = n(n+1)(2n+1)/6 \qquad {n+1 \choose k} = \frac{n+1}{n-k+1} {n \choose k}$$

$$\sum_{k=0}^{n} k^3 = n^2(n+1)^2/4 \qquad {n \choose k+1} = \frac{n-k}{n-k} {n \choose k}$$

$$\sum_{k=0}^{n} k^4 = (6n^5 + 15n^4 + 10n^3 - n)/30 \qquad {n \choose k} = \frac{n-k}{n-k} {n \choose k}$$

$$\sum_{k=0}^{n} k^5 = (2n^6 + 6n^5 + 5n^4 - n^2)/12 \qquad {n \choose k} = \frac{n-k+1}{n-k+1} {n \choose k}$$

$$\sum_{k=0}^{n} k^5 = (x^{n+1} - 1)/(x-1) \qquad 12! \approx 2^{28.8}$$

$$\sum_{k=0}^{n} k^5 = (x^{n+1} - 1)/(x-1) \qquad 12! \approx 2^{28.8}$$

$$1 + x + x^2 + \dots = 1/(1-x)$$

- Hockey-stick identity $\sum_{i=r}^{n} {i \choose r} = {n+1 \choose r+1}$
- Number of ways to color n-objects with r-colors if all colors must be used at least once

$$\sum_{k=0}^{r} {r \choose k} (-1)^{r-k} k^n$$
 o $\sum_{k=0}^{r} {r \choose r-k} (-1)^k (r-k)^n$

Binomial coefficients

Number of ways to pick a multiset of size k from n elements: $\binom{n+k-1}{k}$ Number of n-tuples of non-negative integers with sum s: $\binom{s+n-1}{n-1}$, at most s: $\binom{s+n}{n}$ Number of n-tuples of positive integers with sum s: $\binom{s-1}{n-1}$

Number of lattice paths from (0,0) to (a,b), restricted to east and north steps: $\binom{a+b}{a}$

Multinomial theorem. $(a_1 + \cdots + a_k)^n = \sum_{n_1,\dots,n_k} \binom{n}{n_1,\dots,n_k} a_1^{n_1} \dots a_k^{n_k}$, where $n_i \ge 0$ and $\sum_{n_i} n_i = n$.

$$\binom{n}{n_1, \dots, n_k} = M(n_1, \dots, n_k) = \frac{n!}{n_1! \dots n_k!}$$
$$M(a, \dots, b, c, \dots) = M(a + \dots + b, c, \dots)M(a, \dots, b)$$

Catalan numbers.

- $C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$ con $n \ge 0$, $C_0 = 1$ y $C_{n+1} = \frac{2(2n+1)}{n+2} C_n$ $C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i}$
- 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670
- C_n is the number of: properly nested sequences of n pairs of parentheses; rooted ordered binary trees with n+1 leaves; triangulations of a convex (n+2)-gon.

Derangements. Number of permutations of $n = 0, 1, 2, \ldots$ elements without fixed points is $1, 0, 1, 2, 9, 44, 265, 1854, 14833, \ldots$ Recurrence: $D_n = (n-1)(D_{n-1} + D_{n-2}) = nD_{n-1} + (-1)^n$. Corollary: number of permutations with exactly k fixed points is $\binom{n}{k}D_{n-k}$.

Stirling numbers of 1^{st} kind. $s_{n,k}$ is $(-1)^{n-k}$ times the number of permutations of n elements with exactly k permutation cycles. $|s_{n,k}| = |s_{n-1,k-1}| + (n-1)|s_{n-1,k}|$. $\sum_{k=0}^{n} s_{n,k} x^k = x^{\underline{n}}$

Stirling numbers of 2^{nd} kind. $S_{n,k}$ is the number of ways to partition a set of n elements into exactly k non-empty subsets. $S_{n,k} = S_{n-1,k-1} + kS_{n-1,k}$. $S_{n,1} = S_{n,n} = 1$. $x^n = \sum_{k=0}^n S_{n,k} x^k$

Bell numbers. B_n is the number of partitions of n elements. $B_0, \ldots = 1, 1, 2, 5, 15, 52, 203, \ldots$

 $B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k = \sum_{k=1}^{n} S_{n,k}$. Bell triangle: $B_r = a_{r,1} = a_{r-1,r-1}$, $a_{r,c} = a_{r-1,c-1} + a_{r,c-1}$.

Bernoulli numbers. $\sum_{k=0}^{m-1} k^n = \frac{1}{n+1} \sum_{k=0}^n {n+1 \choose k} B_k m^{n+1-k}$. $\sum_{j=0}^m {m+1 \choose j} B_j = 0$. $B_0 = 1$, $B_1 = -\frac{1}{2}$. $B_n = 0$, for all odd $n \neq 1$.

Eulerian numbers. E(n,k) is the number of permutations with exactly k descents $(i: \pi_i < \pi_{i+1})$ / ascents $(\pi_i > \pi_{i+1})$ / excedances $(\pi_i > i)$ / k+1 weak

excedances $(\pi_i \geq i)$.

Formula: E(n,k) = (k+1)E(n-1,k) + (n-k)E(n-1,k-1). $x^n = \sum_{k=0}^{n-1} E(n,k) {x+k \choose n}$.

Burnside's lemma. The number of orbits under group G's action on set X: $|X/G| = \frac{1}{|G|} \sum_{g \in G} |X_g|$, where $X_g = \{x \in X : g(x) = x\}$. ("Average number of fixed points.")

Let w(x) be weight of x's orbit. Sum of all orbits' weights: $\sum_{o \in X/G} w(o) = \frac{1}{|G|} \sum_{g \in G} \sum_{x \in X_g} w(x)$.

Number Theory

Linear diophantine equation. ax + by = c. Let $d = \gcd(a, b)$. A solution exists iff d|c. If (x_0, y_0) is any solution, then all solutions are given by $(x, y) = (x_0 + \frac{b}{d}t, y_0 - \frac{a}{d}t), t \in \mathbb{Z}$. To find some solution (x_0, y_0) , use extended GCD to solve $ax_0 + by_0 = d = \gcd(a, b)$, and multiply its solutions by $\frac{c}{d}$.

Linear diophantine equation in n variables: $a_1x_1 + \cdots + a_nx_n = c$ has solutions iff $gcd(a_1, \ldots, a_n)|c$. To find some solution, let $b = gcd(a_2, \ldots, a_n)$, solve $a_1x_1 + by = c$, and iterate with $a_2x_2 + \cdots = y$.

Extended GCD

```
// Finds g = gcd(a,b) and x, y such that ax+by=g.
// Bounds: |x| <= b+1, |y| <= a+1.
void gcdext(int &g, int &x, int &y, int a, int b)
{ if (b == 0) { g = a; x = 1; y = 0; }
else { gcdext(g, y, x, b, a % b); y = y - (a / b) * x; } }
```

Multiplicative inverse of a modulo m: x in ax + my = 1, or $a^{\phi(m)-1} \pmod{m}$.

Chinese Remainder Theorem. System $x \equiv a_i \pmod{m_i}$ for $i = 1, \ldots, n$, with pairwise relatively-prime m_i has a unique solution modulo $M = m_1 m_2 \ldots m_n$: $x = a_1 b_1 \frac{M}{m_1} + \cdots + a_n b_n \frac{M}{m_n} \pmod{M}$, where b_i is modular inverse of $\frac{M}{m_i}$ modulo m_i .

System $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$ has solutions iff $a \equiv b \pmod{g}$, where $g = \gcd(m,n)$. The solution is unique modulo $L = \frac{mn}{g}$, and equals: $x \equiv a + T(b-a)m/g \equiv b + S(a-b)n/g \pmod{L}$, where S and T are integer solutions of $mT + nS = \gcd(m,n)$.

Prime-counting function. $\pi(n) = |\{p \le n : p \text{ is prime}\}|$. $n/\ln(n) < \pi(n) < 1.3n/\ln(n)$. $\pi(1000) = 168$, $\pi(10^6) = 78498$, $\pi(10^9) = 50$ 847 534. n-th prime $\approx n \ln n$.

Miller-Rabin's primality test. Given $n = 2^r s + 1$ with odd s, and a random integer 1 < a < n.

If $a^s \equiv 1 \pmod{n}$ or $a^{2^j s} \equiv -1 \pmod{n}$ for some $0 \leq j \leq r-1$, then n is a probable prime. With bases 2, 7 and 61, the test indentifies all composites below 2^{32} . Probability of failure for a random a is at most 1/4.

Pollard- ρ . Choose random x_1 , and let $x_{i+1} = x_i^2 - 1 \pmod{n}$. Test $\gcd(n, x_{2^k+i} - x_{2^k})$ as possible n's factors for $k = 0, 1, \ldots$ Expected time to find a factor: $O(\sqrt{m})$, where m is smallest prime power in n's factorization. That's $O(n^{1/4})$ if you check $n = p^k$ as a special case before factorization.

Fermat primes. A Fermat prime is a prime of form $2^{2^n} + 1$. The only known Fermat primes are 3, 5, 17, 257, 65537. A number of form $2^n + 1$ is prime only if it is a Fermat prime.

Fermat's Theorem. Let m be a prime and x and m coprimes, then:

- $x^{m-1} \equiv 1 \mod m$
- $x^k \mod m = x^{k \mod (m-1)} \mod m$
- $x^{\phi(m)} \equiv 1 \mod m$

Perfect numbers. n > 1 is called perfect if it equals sum of its proper divisors and 1. Even n is perfect iff $n = 2^{p-1}(2^p - 1)$ and $2^p - 1$ is prime (Mersenne's). No odd perfect numbers are yet found.

Carmichael numbers. A positive composite n is a Carmichael number $(a^{n-1} \equiv 1 \pmod{n})$ for all a: gcd(a, n) = 1), iff n is square-free, and for all prime divisors p of n, p-1 divides n-1.

Number/sum of divisors. $\tau(p_1^{a_1} \dots p_k^{a_k}) = \prod_{j=1}^k (a_j + 1).$ $\sigma(p_1^{a_1} \dots p_k^{a_k}) = \prod_{j=1}^k \frac{p_j^{a_j+1} - 1}{p_j - 1}.$

Product of divisors. $\mu(n) = n^{\frac{\tau(n)}{2}}$

- if p is a prime, then: $\mu(p^k) = p^{\frac{k(k+1)}{2}}$
- if a and b are coprimes, then: $\mu(ab) = \mu(a)^{\tau(b)} \mu(b)^{\tau(a)}$

Euler's phi function. $\phi(n) = |\{m \in \mathbb{N}, m \le n, \gcd(m, n) = 1\}|.$

- $\phi(mn) = \frac{\phi(m)\phi(n)\gcd(m,n)}{\phi(\gcd(m,n))}$.
- $\phi(p) = p 1$ si p es primo
- $\phi(p^a) = p^a(1 \frac{1}{p}) = p^{a-1}(p-1)$
- $\phi(n) = n(1 \frac{1}{p_1})(1 \frac{1}{p_2})...(1 \frac{1}{p_k})$ donde p_i es primo y divide a n

Euler's theorem. $a^{\phi(n)} \equiv 1 \pmod{n}$, if gcd(a, n) = 1.

Wilson's theorem. p is prime iff $(p-1)! \equiv -1 \pmod{p}$.

Mobius function. $\mu(1) = 1$. $\mu(n) = 0$, if n is not squarefree. $\mu(n) = (-1)^s$, if n is the product of s distinct primes. Let f, F be functions on positive integers. If for all $n \in N$, $F(n) = \sum_{d|n} f(d)$, then $f(n) = \sum_{d|n} \mu(d)F(\frac{n}{d})$, and vice versa. $\phi(n) = \sum_{d|n} \mu(d)\frac{n}{d}$. $\sum_{d|n} \mu(d) = 1$.

If f is multiplicative, then $\sum_{d|n} \mu(d)f(d) = \prod_{p|n} (1-f(p)), \sum_{d|n} \mu(d)^2 f(d) =$

$$\begin{array}{l} \prod_{p|n}(1+f(p)).\\ \sum_{d|n}\mu(d)=e(n)=[n==1].\\ S_f(n)=\prod_{p=1}(1+f(p_i)+f(p_i^2)+\ldots+f(p_i^{e_i})), \ \mathbf{p} \text{ - primes(n)}. \end{array}$$

Legendre symbol. If p is an odd prime, $a \in \mathbb{Z}$, then $\left(\frac{a}{p}\right)$ equals 0, if p|a; 1 if a is a quadratic residue modulo p; and -1 otherwise. Euler's criterion: $\left(\frac{a}{p}\right) = a^{\left(\frac{p-1}{2}\right)} \pmod{p}$.

Jacobi symbol. If
$$n = p_1^{a_1} \cdots p_k^{a_k}$$
 is odd, then $\left(\frac{a}{n}\right) = \prod_{i=1}^k \left(\frac{a}{p_i}\right)^{k_i}$.

Primitive roots. If the order of g modulo m (min n > 0: $g^n \equiv 1 \pmod{m}$) is $\phi(m)$, then g is called a primitive root. If Z_m has a primitive root, then it has $\phi(\phi(m))$ distinct primitive roots. Z_m has a primitive root iff m is one of 2, 4, p^k , $2p^k$, where p is an odd prime. If Z_m has a primitive root g, then for all g coprime to g, there exists unique integer g independent g modulo g m

If p is prime and a is not divisible by p, then congruence $x^n \equiv a \pmod{p}$ has $\gcd(n, p-1)$ solutions if $a^{(p-1)/\gcd(n, p-1)} \equiv 1 \pmod{p}$, and no solutions otherwise. (Proof sketch: let g be a primitive root, and $g^i \equiv a \pmod{p}$, $g^u \equiv x \pmod{p}$. $x^n \equiv a \pmod{p}$ iff $g^{nu} \equiv g^i \pmod{p}$ iff $nu \equiv i \pmod{p}$.)

Discrete logarithm problem. Find x from $a^x \equiv b \pmod{m}$. Can be solved in $O(\sqrt{m})$ time and space with a meet-in-the-middle trick. Let $n = \lceil \sqrt{m} \rceil$, and x = ny - z. Equation becomes $a^{ny} \equiv ba^z \pmod{m}$. Precompute all values that the RHS can take for $z = 0, 1, \ldots, n-1$, and brute force y on the LHS, each time checking whether there's a corresponding value for RHS.

Pythagorean triples. Integer solutions of $x^2 + y^2 = z^2$ All relatively prime triples are given by: $x = 2mn, y = m^2 - n^2, z = m^2 + n^2$ where $m > n, \gcd(m, n) = 1$ and $m \not\equiv n \pmod 2$. All other triples are multiples of these. Equation $x^2 + y^2 = 2z^2$ is equivalent to $(\frac{x+y}{2})^2 + (\frac{x-y}{2})^2 = z^2$.

- Given an arbitrary pair of integers m and n with m > n > 0: $a = m^2 n^2$, b = 2mn, $c = m^2 + n^2$
- The triple generated by Euclid's formula is primitive if and only if m and n are coprime and not both odd.
- To generate all Pythagorean triples uniquely: $a = k(m^2 n^2)$, b = k(2mn), $c = k(m^2 + n^2)$
- If m and n are two odd integer such that m > n, then: a = mn, $b = \frac{m^2 n^2}{2}$, $c = \frac{m^2 + n^2}{2}$
- If n = 1 or 2 there are no solutions. Otherwise n is even: $((\frac{n^2}{4} 1)^2 + n^2 = (\frac{n^2}{4} + 1)^2)$ n is odd: $((\frac{n^2 1}{2})^2 + n^2 = (\frac{n^2 + 1}{2})^2)$

Postage stamps/McNuggets problem. Let a, b be relatively-prime integers. There are exactly $\frac{1}{2}(a-1)(b-1)$ numbers not of form ax + by $(x, y \ge 0)$, and the largest is (a-1)(b-1) - 1 = ab - a - b.

Fermat's two-squares theorem. Odd prime p can be represented as a sum of two squares iff $p \equiv 1 \pmod{4}$. A product of two sums of two squares is a sum of two squares. Thus, n is a sum of two squares iff every prime of form p = 4k + 3 occurs an even number of times in n's factorization.

RSA. Let p and q be random distinct large primes, n = pq. Choose a small odd integer e, relatively prime to $\phi(n) = (p-1)(q-1)$, and let $d = e^{-1} \pmod{\phi(n)}$. Pairs (e, n) and (d, n) are the public and secret keys, respectively. Encryption is done by raising a message $M \in \mathbb{Z}_n$ to the power e or d, modulo n.

String Algorithms

Burrows-Wheeler inverse transform. Let B[1..n] be the input (last column of sorted matrix of string's rotations.) Get the first column, A[1..n], by sorting B. For each k-th occurence of a character c at index i in A, let next[i] be the index of corresponding k-th occurence of c in B. The r-th fow of the matrix is A[r], A[next[r]], A[next[next[r]]], ...

Huffman's algorithm. Start with a forest, consisting of isolated vertices. Repeatedly merge two trees with the lowest weights.

Graph Theory

Euler's theorem. For any planar graph, V - E + F = 1 + C, where V is the number of graph's vertices, E is the number of edges, F is the number of faces in graph's planar drawing, and C is the number of connected components. Corollary: V - E + F = 2 for a 3D polyhedron.

Vertex covers and independent sets. Let M, C, I be a max matching, a min vertex cover, and a max independent set. Then $|M| \leq |C| = N - |I|$, with equality for bipartite graphs. Complement of an MVC is always a MIS, and vice versa. Given a bipartite graph with partitions (A, B), build a network: connect source to A, and B to sink with edges of capacities, equal to the corresponding nodes' weights, or 1 in the unweighted case. Set capacities of the original graph's edges to the infinity. Let (S, T) be a minimum s-t cut. Then a maximum(-weighted) independent set is $I = (A \cap S) \cup (B \cap T)$, and a minimum(-weighted) vertex cover is $C = (A \cap T) \cup (B \cap S)$.

Matrix-tree theorem. Let matrix $T = [t_{ij}]$, where t_{ij} is the number of multiedges between i and j, for $i \neq j$, and $t_{ii} = -\deg_i$. Number of spanning trees of a graph is equal to the determinant of a matrix obtained by deleting any k-th row and k-th column from T.

Euler tours. Euler tour in an undirected graph exists iff the graph is connected and each vertex has an even degree. Euler tour in a directed graph exists

iff in-degree of each vertex equals its out-degree, and underlying undirected graph is connected. Construction:

```
for each edge e = (u, v) in E, do: erase e, doit(v) prepend u to the list of vertices in the tour
```

Stable marriages problem. While there is a free man m: let w be the most-preferred woman to whom he has not yet proposed, and propose m to w. If w is free, or is engaged to someone whom she prefers less than m, match m with w, else deny proposal.

Stoer-Wagner's min-cut algorithm. Start from a set A containing an arbitrary vertex. While $A \neq V$, add to A the most tightly connected vertex ($z \notin A$ such that $\sum_{x \in A} w(x, z)$ is maximized.) Store cut-of-the-phase (the cut between the last added vertex and rest of the graph), and merge the two vertices added last. Repeat until the graph is contracted to a single vertex. Minimum cut is one of the cuts-of-the-phase.

Tarjan's offline LCA algorithm. (Based on DFS and union-find structure.)

```
DFS(x):
   ancestor[Find(x)] = x
   for all children y of x:
       DFS(y); Union(x, y); ancestor[Find(x)] = x
   seen[x] = true
   for all queries {x, y}:
       if seen[y] then output "LCA(x, y) is ancestor[Find(y)]"
```

Strongly-connected components. Kosaraju's algorithm.

- 1. Let G^T be a transpose G (graph with reversed edges.)
- 1. Call DFS(G^T) to compute finishing times f[u] for each vertex u.
- 3. For each vertex u, in the order of decreasing f[u], perform DFS(G, u).
- 4. Each tree in the 3rd step's DFS forest is a separate SCC.

2-SAT. Build an implication graph with 2 vertices for each variable – for the variable and its inverse; for each clause $x \vee y$ add edges (\overline{x}, y) and (\overline{y}, x) . The formula is satisfiable iff x and \overline{x} are in distinct SCCs, for all x. To find a satisfiable assignment, consider the graph's SCCs in topological order from sinks to sources (i.e. Kosaraju's last step), assigning 'true' to all variables of the current SCC (if it hasn't been previously assigned 'false'), and 'false' to all inverses.

Randomized algorithm for non-bipartite matching. Let G be a simple undirected graph with even |V(G)|. Build a matrix A, which for each edge $(u,v) \in E(G)$ has $A_{i,j} = x_{i,j}$, $A_{j,i} = -x_{i,j}$, and is zero elsewhere. Tutte's theorem: G has a perfect matching iff $\det G$ (a multivariate polynomial) is identically zero. Testing the latter can be done by computing the determinant for a few random values of $x_{i,j}$'s over some field. (e.g. Z_p for a sufficiently large prime p)

Prufer code of a tree. Label vertices with integers 1 to n. Repeatedly remove the leaf with the smallest label, and output its only neighbor's label, until

only one edge remains. The sequence has length n-2. Two isomorphic trees have the same sequence, and every sequence of integers from 1 and n corresponds to a tree. Corollary: the number of labelled trees with n vertices is n^{n-2} .

Erdos-Gallai theorem. A sequence of integers $\{d_1, d_2, \ldots, d_n\}$, with $n-1 \ge d_1 \ge d_2 \ge \cdots \ge d_n \ge 0$ is a degree sequence of some undirected simple graph iff $\sum d_i$ is even and $d_1 + \cdots + d_k \le k(k-1) + \sum_{i=k+1}^n \min(k, d_i)$ for all $k = 1, 2, \ldots, n-1$.

Games

Grundy numbers. For a two-player, normal-play (last to move wins) game on a graph (V, E): $G(x) = \max(\{G(y) : (x, y) \in E\})$, where $\max(S) = \min\{n \ge 0 : n \notin S\}$. x is losing iff G(x) = 0.

Sums of games.

- Player chooses a game and makes a move in it. Grundy number of a position is xor of grundy numbers of positions in summed games.
- Player chooses a non-empty subset of games (possibly, all) and makes moves in all of them. A position is losing iff each game is in a losing position.
- Player chooses a proper subset of games (not empty and not all), and makes moves in all chosen ones. A position is losing iff grundy numbers of all games are equal.
- Player must move in all games, and loses if can't move in some game. A position is losing if any of the games is in a losing position.

Misère Nim. A position with pile sizes $a_1, a_2, \ldots, a_n \geq 1$, not all equal to 1, is losing iff $a_1 \oplus a_2 \oplus \cdots \oplus a_n = 0$ (like in normal nim.) A position with n piles of size 1 is losing iff n is odd.

Bit tricks

```
Clearing the lowest 1 bit: x & (x - 1), all trailing 1's: x & (x + 1)

Setting the lowest 0 bit: x | (x + 1)

Enumerating subsets of a bitmask m:

x=0; do { ...; x=(x+1+~m)&m; } while (x!=0);

__builtin_ctz/__builtin_clz returns the number of trailing/leading zero bits.

__builtin_popcount (unsigned x) counts 1-bits (slower than table lookups).

For 64-bit unsigned integer type, use the suffix '11', i.e. __builtin_popcount11.
```

Here we use the property that F(L,R)=F(1,R) XOR F(1,L-1)

XOR Let's say F(L,R) is XOR of subarray from L to R.

Math

Stirling's approximation $z! = \Gamma(z+1) = \sqrt{2\pi} z^{z+1/2} e^{-z} (1 + \frac{1}{12z} + \frac{1}{288z^2} - \frac{1}{288z^2})$

Taylor series. $f(x) = f(a) + \frac{x-a}{1!} f'(a) + \frac{(x-a)^2}{2!} f^{(2)}(a) + \dots + \frac{(x-a)^n}{n!} f^{(n)}(a) + \dots$ $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ $\ln x = 2(a + \frac{a^3}{3} + \frac{a^5}{5} + \dots), \text{ where } a = \frac{x-1}{x+1}. \ln x^2 = 2\ln x.$

 $\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$, $\arctan x = \arctan c + \arctan \frac{x-c}{1+xc}$ (e.g c=.2) $\pi = 4 \arctan 1, \ \pi = 6 \arcsin \frac{1}{2}$

Fibonacci Period Si p es primo , $\pi(p^k) = p^{k-1}\pi(p)$

$$\pi(2) = 3 \ \pi(5) = 20$$

Si n y m son coprimos $\pi(n*m) = lcm(\pi(n), \pi(m))$

List of Primes

2-SAT Rules

$$\begin{split} p &\to q \equiv \neg p \vee q \\ p &\to q \equiv \neg q \to \neg p \\ p &\vee q \equiv \neg p \to q \\ p &\wedge q \equiv \neg (p \to \neg q) \end{split}$$

$$\neg(p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \land (q \to r) \equiv (p \land q) \to r$$

$$(p \to r) \lor (q \to r) \equiv (p \lor q) \to r$$

$$(p \land q) \lor (r \land s) \equiv (p \lor r) \land (p \lor s) \land (q \lor r) \land (q \lor s)$$

Summations

•
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{i=1}^{n} i^3 = (\frac{n(n+1)}{2})^2$$

•
$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

•
$$\sum_{i=1}^{n} i^5 = \frac{(n(n+1))^2 (2n^2 + 2n - 1)}{12}$$

•
$$\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1}$$
 para $x \neq 1$

Compound Interest

• N is the initial population, it grows at a rate of R. So, after X years the popularion will be $N \times (1+R)^X$

Great circle distance or geographical distance

- $d = \text{great distance}, \phi = \text{latitude}, \lambda = \text{longitude}, \Delta = \text{difference}$ (all the values in radians)
- $\sigma = \text{central angle}$, angle form for the two vector
- $d = r * \sigma$, $\sigma = 2 * \arcsin(\sqrt{\sin^2(\frac{\Delta\phi}{2})} + \cos(\phi_1)\cos(\phi_2)\sin^2(\frac{\Delta\lambda}{2}))$

Theorems

- There is always a prime between numbers n^2 and $(n+1)^2$, where n is any positive integer
- There is an infinite number of pairs of the from $\{p, p+2\}$ where both p and p+2 are primes.
- Every even integer greater than 2 can be expressed as the sum of two primes.
- Every integer greater than 2 can be written as the sum of three primes.
- $a^d = a^{d \mod \phi(n)} \mod n$ if $a \in \mathbb{Z}^{n_*}$ or $a \notin \mathbb{Z}^{n_*}$ and $d \mod \phi(n) \neq 0$
- $a^d \equiv a^{\phi(n)} \mod n$ if $a \notin \mathbb{Z}^{n_*}$ and $d \mod \phi(n) = 0$
- thus, for all a, n and d (with $d \ge \log_2(n)$) $a^d \equiv a^{\phi(n)+d \mod \phi(n)} \mod n$

Law of sines and cosines

- a, b, c: lengths, A, B, C: opposite angles, d: circumcircle
- \bullet $\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} = d$
- $c^2 = a^2 + b^2 2ab\cos(C)$

Heron's Formula

- $s = \frac{a+b+c}{2}$
- $Area = \sqrt{s(s-a)(s-b)(s-c)}$
- a, b, c there are the lengths of the sides

Legendre's Formula Largest power of k, x, such that n! is divisible by k^x

• If k is prime, $x = \frac{n}{k} + \frac{n}{k^2} + \frac{n}{k^3} + \dots$

- If k is composite $k = k_1^{p_1} * k_2^{p_2} \dots k_m^{p_m}$ $x = min_{1 \le j \le m} \{\frac{a_j}{p_j}\}$ where a_j is Legendre's formula for k_j
- Divisor Formulas of n! Find all prime numbers $\leq n \{p_1, \ldots, p_m\}$ Let's define e_j as Legendre's formula for p_j
- Number of divisors of n! The answer is $\prod_{j=1}^{m} (e_j + 1)$
- \bullet Sum of divisors of n! The answer is $\prod_{j=1}^m \frac{p_j^{e_j+1}-1}{e_j-1}$

Max Flow with Demands Max Flow with Lower bounds of flow for each edge

• feasible flow in a network with both upper and lower capacity constraints, no source or sink: capacities are changed to upper bound — lower bound. Add a new source and a sink. let M[v] = (sum of lower bounds of ingoing edges

to v) — (sum of lower bounds of outgoing edges from v). For all v, if M[v]
otin 0 then add edge (S,v) with capacity M, otherwise add (v,T) with capacity -M. If all outgoing edges from S are full, then a feasible flow exists, it is the flow plus the original lower bounds. maximum flow in a network with both upper and lower capacity constraints, with source s and sink t: add edge (t,s) with capacity infinity. Binary search for the lower bound, check whether a feasible exists for a network WITHOUT source or sink (B).

Pick's Theorem

- $A = i + \frac{b}{2} 1$
- A: area of the polygon.
- \bullet *i*: number of interior integer points.
- b: number of integer points on the boundary.