K-Means and Gaussian Mixture Models

David Rosenberg, Brett Bernstein

New York University

April 25, 2017

Intro Question

Intro Question

Consider the following probability model for generating data.

- **9** Roll a weighted k-sided die to choose a label $z \in \{1, ..., k\}$. Let π denote the PMF for the die.
- ② Draw $x \in \mathbb{R}^d$ randomly from the multivariate normal distribution $\mathcal{N}(\mu_z, \Sigma_z)$.

Solve the following questions.

- **1** What is the joint distribution of x, z given π and the μ_z, Σ_z values?
- **②** Suppose you were given the dataset $\mathcal{D} = \{(x_1, z_1), \dots, (x_n, z_n)\}$. How would you estimate the die weightings, and the μ_z , Σ_z values?
- **3** How would you determine the label for a new datapoint x?

Intro Solution

The joint PDF/PMF is given by

$$p(x,z) = \pi(z)f(x; \mu_z, \Sigma_z)$$

where

$$f(x; \mu_z, \Sigma_z) = \frac{1}{\sqrt{|2\pi\Sigma_z|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

We could use maximum likelihood estimation. Our estimates are

$$n_{z} = \sum_{i=1}^{n} \mathbf{1}(z_{i} = z)$$

$$\hat{\pi}(z) = \frac{n_{z}}{n}$$

$$\hat{\mu}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} x_{i}$$

$$\hat{\Sigma}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} (x_{i} - \hat{\mu}_{z})(x_{i} - \hat{\mu}_{z})^{T}.$$

K-Means Clustering

Example: Old Faithful Geyser

- Looks like two clusters.
- How to find these clusters algorithmically?

k-Means: By Example

- Standardize the data.
- Choose two cluster centers.

Assign each point to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).

• Compute new class centers.

• Assign points to closest center.

Compute cluster centers.

From Bishop's Pattern recognition and machine learning, Figure 9.1(e).

Iterate until convergence.

k-Means Algorithm: Standardizing the data

Without standardizing:

- Blue and black show results of k-means clustering
- Wait time dominates the distance metric

k-Means Algorithm: Standardizing the data

With standardizing:

• Note several points have been reassigned from black to blue cluster.

k-Means: Objective

- Let x_1, \ldots, x_n denote the data points and μ_1, \ldots, μ_k the cluster points.
- Define the objective φ by

$$\phi(x, \mu) = \sum_{i=1}^{n} \|x_i - \mu_{c(x_i)}\|_2^2,$$

where $\mu_{c(x_i)}$ is the cluster point associated to x_i .

• Then ϕ decreases at every round of k-means. Why?

k-Means: Objective

- Let x_1, \ldots, x_n denote the data points and μ_1, \ldots, μ_k the cluster points.
- Define the objective φ by

$$\phi(x, \mu) = \sum_{i=1}^{n} \|x_i - \mu_{c(x_i)}\|_2^2,$$

where $\mu_{c(x_i)}$ is the cluster point associated to x_i .

- Then ϕ decreases at every round of k-means. Why?
- Selecting mean of all associated data points improves objective.
- Selecting closest cluster point for each data points improves objective.

k-Means: Failure Cases

k-Means: Suboptimal Local Minimum

• The clustering for k = 3 below is a local minimum, but suboptimal:

Would be better to have one cluster here

and two clusters here

k-Means++

- Improvement on k-means by controlling the random initialization of the cluster centers.
- Randomly choose first center amongst the data points.
- For each of the remaining k-1 centers:
 - Compute the distance from each data point to the closest already chosen center.
 - Randomly choose a point as the new center with probability proportional to its computed distance squared.
- If we let ϕ denote the total sum of squares distances from each point to the closest cluster, then k-means++ has

$$E[\phi] \leq 8(\log k + 2)\phi_{\mathsf{OPT}}$$
,

where ϕ_{OPT} is from the optimal k-cluster assignment.

Gaussian Mixture Models

Probabilistic Model for Clustering

- Let's consider a generative model for the data.
- Suppose
 - \bigcirc There are k clusters.
 - 2 We have a probability density for each cluster.
- Generate a point as follows
 - **1** Choose a random cluster $z \in \{1, 2, ..., k\}$.
 - ② Choose a point from the distribution for cluster Z.

Gaussian Mixture Model (k = 3)

- **1** Choose $z \in \{1, 2, 3\}$ with $p(1) = p(2) = p(3) = \frac{1}{3}$.
- 2 Choose $x \mid z \sim \mathcal{N}(X \mid \mu_z, \Sigma_z)$.

Gaussian Mixture Model Parameters (k Components)

Cluster probabilities: $\pi = (\pi_1, \dots, \pi_k)$

Cluster means: $\mu = (\mu_1, ..., \mu_k)$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

For now, suppose all these parameters are known.

We'll discuss how to learn or estimate them later.

Gaussian Mixture Model: Joint Distribution

Factorize the joint distribution:

$$p(x,z) = p(z)p(x \mid z)$$

= $\pi_z \mathcal{N}(x \mid \mu_z, \Sigma_z)$

- π_z is probability of choosing cluster z.
- $x \mid z$ has distribution $\mathcal{N}(\mu_z, \Sigma_z)$.
- z corresponding to x is the true cluster assignment.
- Suppose we know the model parameters π_z , μ_z , Σ_z .
- Then we can easily compute the joint p(x, z).

Latent Variable Model

- We observe x.
- In the intro problem we had labeled data. Here we don't observe z, the cluster assignment.
- Cluster assignment z is called a hidden variable or latent variable.

Definition

A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.

The GMM "Inference" Problem

- We observe x. We want to know z.
- The conditional distribution of the cluster z given x is

$$p(z \mid x) = p(x, z)/p(x)$$

- The conditional distribution is a soft assignment to clusters.
- A hard assignment is

$$z^* = \underset{z \in \{1, \dots, k\}}{\operatorname{arg\,max}} p(z \mid x).$$

• So if we have the model, clustering is trivial.

Mixture Models

Gaussian Mixture Model: Marginal Distribution

• The marginal distribution for a single observation x is

$$p(x) = \sum_{z=1}^{k} p(x, z)$$
$$= \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x \mid \mu_{z}, \Sigma_{z})$$

- Note that p(x) is a convex combination of probability densities.
- This is a common form for a probability model...

Mixture Distributions (or Mixture Models)

Definition

A probability density p(x) represents a mixture distribution or mixture model, if we can write it as a convex combination of probability densities. That is,

$$p(x) = \sum_{i=1}^{k} w_i p_i(x),$$

where $w_i \ge 0$, $\sum_{i=1}^k w_i = 1$, and each p_i is a probability density.

- In our Gaussian mixture model, x has a mixture distribution.
- \bullet More constructively, let S be a set of probability distributions:
 - lacktriangle Choose a distribution randomly from S.
 - Sample x from the chosen distribution.
- Then x has a mixture distribution.

Learning in Gaussian Mixture Models

The GMM "Learning" Problem

- Given data x_1, \ldots, x_n drawn from a GMM,
- Estimate the parameters:

Cluster probabilities:
$$\pi = (\pi_1, ..., \pi_k)$$

Cluster means:
$$\mu = (\mu_1, ..., \mu_k)$$

Cluster covariance matrices:
$$\Sigma = (\Sigma_1, \dots \Sigma_k)$$

- Once we have the parameters, we're done.
- Just do "inference" to get cluster assignments.

Estimating/Learning the Gaussian Mixture Model

- One approach to learning is maximum likelihood
 - find parameter values that give **observed data** the **highest likelihood**.
- The model likelihood for $\mathcal{D} = \{x_1, \dots, x_n\}$ is

$$L(\pi, \mu, \Sigma) = \prod_{i=1}^{n} p(x_i)$$
$$= \prod_{i=1}^{n} \sum_{z=1}^{k} \pi_z \mathcal{N}(x_i | \mu_z, \Sigma_z).$$

As usual, we'll take our objective function to be the log of this:

$$J(\pi, \mu, \Sigma) = \sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}$$

Properties of the GMM Log-Likelihood

GMM log-likelihood:

$$J(\pi, \mu, \Sigma) = \sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}$$

Let's compare to the log-likelihood for a single Gaussian:

$$\sum_{i=1}^{n} \log \mathcal{N}(x_i \mid \mu, \Sigma)$$

$$= -\frac{nd}{2} \log (2\pi) - \frac{n}{2} \log |\Sigma| - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)' \Sigma^{-1}(x_i - \mu)$$

- For a single Gaussian, the log cancels the exp in the Gaussian density.
 - \implies Things simplify a lot.
- For the GMM, the sum inside the log prevents this cancellation.
 - Expression more complicated. No closed form expression for MLE.

Issues with MLE for GMM

Identifiability Issues for GMM

Suppose we have found parameters

Cluster probabilities: $\pi = (\pi_1, \dots, \pi_k)$

Cluster means: $\mu = (\mu_1, \dots, \mu_k)$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

that are at a local minimum.

- What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
- We'll get the same likelihood. How many such equivalent settings are there?
- Assuming all clusters are distinct, there are k! equivalent solutions.
- Not a problem per se, but something to be aware of.

Singularities for GMM

Consider the following GMM for 7 data points:

- Let σ^2 be the variance of the skinny component.
- What happens to the likelihood as $\sigma^2 \rightarrow 0$?
- In practice, we end up in local minima that do not have this problem.
 - Or keep restarting optimization until we do.
- Bayesian approach or regularization will also solve the problem.

From Bishop's Pattern recognition and machine learning, Figure 9.7.

Gradient Descent / SGD for GMM

What about running gradient descent or SGD on

$$J(\pi, \mu, \Sigma) = -\sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}?$$

- Can be done but need to be clever about it.
- Each matrix $\Sigma_1, \ldots, \Sigma_k$ has to be positive semidefinite.
- How to maintain that constraint?
 - Rewrite $\Sigma_i = M_i M_i^T$, where M_i is an unconstrained matrix.
 - Then Σ_i is positive semidefinite.

The EM Algorithm for GMM

MLE for GMM

 From the intro questions, we know that we can solve the MLE problem if the cluster assignments z_i are known

$$n_{z} = \sum_{i=1}^{n} \mathbf{1}(z_{i} = z)$$

$$\hat{\pi}(z) = \frac{n_{z}}{n}$$

$$\hat{\mu}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} x_{i}$$

$$\hat{\Sigma}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} (x_{i} - \hat{\mu}_{z})(x_{i} - \hat{\mu}_{z})^{T}.$$

 In the EM algorithm we will modify the equations to handle our evolving soft assignments, which we will call responsibilities.

Cluster Responsibilities: Some New Notation

• Denote the probability that observed value x_i comes from cluster j by

$$\gamma_i^j = \mathbb{P}(Z = j \mid X = x_i).$$

- The **responsibility** that cluster j takes for observation x_i .
- Computationally,

$$\gamma_i^j = \mathbb{P}(Z = j \mid X = x_i).
= p(Z = j, X = x_i)/p(x)
= \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(x_i \mid \mu_c, \Sigma_c)}$$

- The vector $(\gamma_i^1, \dots, \gamma_i^k)$ is exactly the **soft assignment** for x_i .
- Let $n_c = \sum_{i=1}^n \gamma_i^c$ be the number of points "soft assigned" to cluster c.

EM Algorithm for GMM: Overview

- If we know π and μ_j , Σ_j for all j then we can easily find $\gamma_i^j = \mathbb{P}(Z = j \mid X = x_i)$.
- If we know the (soft) assignments, we can easily find estimates for π , μ_i , Σ_i for all j.
- Repeatedly alternate the previous 2 steps.

EM Algorithm for GMM: Overview

- **1** Initialize parameters μ , Σ , π .
- (2) "E step". Evaluate the responsibilities using current parameters:

$$\gamma_i^j = \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(x_i \mid \mu_c, \Sigma_c)}, \quad \text{for } i = 1, \dots, n \text{ and } j = 1, \dots, k.$$

"M step". Re-estimate the parameters using responsibilities. [Compare with intro question.]

$$\mu_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c x_i$$

$$\Sigma_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c (x_i - \mu_{\text{MLE}}) (x_i - \mu_{\text{MLE}})^T$$

$$\pi_c^{\text{new}} = \frac{n_c}{n},$$

Repeat from Step 2, until log-likelihood converges.

Initialization

• First soft assignment:

• First soft assignment:

From Bishop's Pattern recognition and machine learning, Figure 9.8.

After 5 rounds of EM:

From Bishop's Pattern recognition and machine learning, Figure 9.8.

• After 20 rounds of EM:

From Bishop's Pattern recognition and machine learning, Figure 9.8.

Relation to K-Means

- EM for GMM seems a little like k-means.
- In fact, there is a precise correspondence.
- First, fix each cluster covariance matrix to be $\sigma^2 I$.
- ullet As we take $\sigma^2
 ightarrow 0$, the update equations converge to doing k-means.
- If you do a quick experiment yourself, you'll find
 - Soft assignments converge to hard assignments.
 - Has to do with the tail behavior (exponential decay) of Gaussian.
- Can use k-means++ to initialize parameters of EM algorithm.