Reasoning about bounded arithmetic within Lean 4

Paweł Balawender

University of Warsaw

October 24th, 2025

1/42

• Proof assistants use strong foundations (HOL, CIC, choice, quotients).

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.

2/42

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.
- Costs of strength:

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.
- Costs of strength:
 - Huge tactic space -> harder search.

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.
- Costs of strength:
 - Huge tactic space -> harder search.
 - Loss of computational content (e.g., noncomputable).

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.
- Costs of strength:
 - Huge tactic space -> harder search.
 - Loss of computational content (e.g., noncomputable).
- Reverse mathematics seeks to determine which axioms are actually needed

- Proof assistants use strong foundations (HOL, CIC, choice, quotients).
- Most theorems need far less.
- Costs of strength:
 - Huge tactic space -> harder search.
 - Loss of computational content (e.g., noncomputable).
- Reverse mathematics seeks to determine which axioms are actually needed
- Aim: formalize theorems in the weakest adequate system.

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0, V^0$.

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0, V^0$.

At the bottom:

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0, V^0$.

At the bottom:

• you are not able to prove the Pigeonhole Principle ($V^0 \not\vdash PHP$)

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0, V^0$.

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \not\vdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \not\vdash \forall x \exists ! y \exp(x,y))$

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0, V^0$.

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \not\vdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \not\vdash \forall x \exists ! y \exp(x,y))$

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0, V^0$.

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \not\vdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \not\vdash \forall x \exists ! y \exp(x,y))$

You need to explicitly add strength, then you can:

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0, V^0$.

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \not\vdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \not\vdash \forall x \exists ! y \exp(x,y))$

You need to explicitly add strength, then you can:

• prove properties of binary addition $(I\Delta_0 \vdash \forall x \forall y \ x+y=y+x)$

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0, V^0$.

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \not\vdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \not\vdash \forall x \exists ! y \exp(x,y))$

You need to explicitly add strength, then you can:

- prove properties of binary addition $(I\Delta_0 \vdash \forall x \forall y \ x+y=y+x)$
- define a sorting function

Bounded arithmetic studies some of the weakest arithmetical theories. Here, we will consider $I\Delta_0, V^0$.

At the bottom:

- you are not able to prove the Pigeonhole Principle ($V^0 \not\vdash PHP$)
- nor that the exponential function is total! $(I\Delta_0 \not\vdash \forall x \exists ! y \exp(x,y))$

You need to explicitly add strength, then you can:

- prove properties of binary addition ($I\Delta_0 \vdash \forall x \forall y \ x+y=y+x$)
- define a sorting function
- prove standard graph theorems.

The goals of this presentation

Why formalize arithmetic?

These theories correspond nicely to complexity classes.

We want to formalize theorems of the form $I\Delta_0 \vdash \phi(x,y)$ to explore computational content of the proofs.

② Demonstrate that formalizing it is possible.

First, this is our vocabulary (think of them just as some UTF8 symbols, no meaning at all):

• variable names (x, y, z, ...)

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)

First, this is our vocabulary (think of them just as some UTF8 symbols, no meaning at all):

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)

5/42

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:
 - zero-ary: 0, 1,

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:
 - zero-ary: 0, 1,
 - binary: addition (+), multiplication (⋅)

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:
 - zero-ary: 0, 1,
 - binary: addition (+), multiplication (⋅)
- relation symbols:

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:
 - zero-ary: 0, 1,
 - binary: addition (+), multiplication (⋅)
- relation symbols:
 - binary: =, <

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:
 - zero-ary: 0, 1,
 - binary: addition (+), multiplication (⋅)
- relation symbols:
 - binary: =, <

First, this is our vocabulary (think of them just as some UTF8 symbols, no meaning at all):

- variable names (x, y, z, ...)
- logical connectives (\neg, \land, \lor) and constants (\bot, \top)
- quantifiers (\forall, \exists)
- parentheses
- function symbols:
 - zero-ary: 0, 1,
 - binary: addition (+), multiplication (⋅)
- relation symbols:
 - binary: =, <

Technicality: require the = symbol be the actual equality on underlying objects. Will skip equality axioms later.

Terms:

• every variable is a term

Terms:

- every variable is a term
- \bullet 0, 1 are terms

Terms:

- every variable is a term
- \bullet 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Terms:

- every variable is a term
- \bullet 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Terms:

- every variable is a term
- \bullet 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Formulas:

• \perp , \top are formulas

Terms:

- every variable is a term
- \bullet 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Formulas:

- \perp , \top are formulas
- if t_1, t_2 are terms, then $t_1 \leqslant t_2, t_1 = t_2$ are formulas

Terms:

- every variable is a term
- \bullet 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Formulas:

- \perp , \top are formulas
- if t_1, t_2 are terms, then $t_1 \leqslant t_2, t_1 = t_2$ are formulas
- if A, B are formulas, so are $A \wedge B, A \vee B, \neg A$.

6/42

The syntax of our theory: what it " $\phi(x,y)$ "? Terms and formulas

Terms:

- every variable is a term
- \bullet 0, 1 are terms
- if t_1, t_2 are terms, then $t_1 + t_2$ and $t_1 \cdot t_2$ are terms.

Formulas:

- \perp , \top are formulas
- if t_1, t_2 are terms, then $t_1 \leqslant t_2, t_1 = t_2$ are formulas
- if A, B are formulas, so are $A \wedge B, A \vee B, \neg A$.
- if A is a formula and x is a variable, then $\forall xA$, $\exists xA$ are formulas

We use any standard deduction system for classical, first-order logic.

• disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)
- double negation elimination: $\neg \neg A \vdash A$ (prove A from $\neg \neg A$)

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)
- double negation elimination: $\neg \neg A \vdash A$ (prove A from $\neg \neg A$)
- implication elimination (modus ponens): $A \rightarrow B, A \vdash B$

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)
- double negation elimination: $\neg \neg A \vdash A$ (prove A from $\neg \neg A$)
- implication elimination (modus ponens): $A \rightarrow B, A \vdash B$

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)
- double negation elimination: $\neg \neg A \vdash A$ (prove A from $\neg \neg A$)
- implication elimination (modus ponens): $A \rightarrow B, A \vdash B$

We use any standard deduction system for classical, first-order logic.

- disjunction introduction: $A \vdash A \lor B$ (from a proof of A you can derive a proof of $A \vee B$)
- \exists introduction: $\phi(a) \vdash \exists x, \phi(x)$ (technical restrictions on a needed)
- double negation elimination: $\neg \neg A \vdash A$ (prove A from $\neg \neg A$)
- implication elimination (modus ponens): $A \rightarrow B, A \vdash B$
- ...

Syntactic sugar: $A \rightarrow B := \neg A \lor B$.

The axioms: what is $I\Delta_0$? 1-BASIC axioms

Table 1: 1-BASIC axioms

Axiom	Statement
B1.	$x + 1 \neq 0$
B2.	$x+1=y+1 \implies x=y$
В3.	x + 0 = x
B4.	x + (y+1) = (x+y) + 1
B5.	$x \cdot 0 = 0$
В6.	$x \cdot (y+1) = (x \cdot y) + x$
В7.	$(x \le y \land y \le x) \implies x = y$
В8.	$x \le x + y$
C.	0 + 1 = 1

Not much!

Not much!

• Can we prove that addition is commutative?

Not much!

• Can we prove that addition is commutative? NO!

Not much!

- Can we prove that addition is commutative? NO!
- Can we prove that addition is associative?

Not much!

- Can we prove that addition is commutative? NO!
- Can we prove that addition is associative? NO!

Axiom schema of induction

Definition (Induction Scheme).

If Φ is a set of formulas, then Φ -IND axioms are the formulas

$$(\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1))) \to \forall z \varphi(z),$$

where $\varphi \in \Phi$. $\varphi(x)$ may have free variables other than x.

Axiom schema of induction

Definition (Induction Scheme).

If Φ is a set of formulas, then Φ -IND axioms are the formulas

$$\big(\varphi(0) \ \land \ \forall x \, (\varphi(x) \to \varphi(x+1))\big) \ \to \ \forall z \, \varphi(z),$$

where $\varphi \in \Phi$. $\varphi(x)$ may have free variables other than x.

The theory having axioms **B1-B8**, together with induction for arbitrary formulas from our vocabulary, is the **Peano** arithmetic (a very strong system).

Axiom schema of induction

Definition (Induction Scheme).

If Φ is a set of formulas, then Φ -IND axioms are the formulas

$$\big(\varphi(0) \ \land \ \forall x \, (\varphi(x) \to \varphi(x+1))\big) \ \to \ \forall z \, \varphi(z),$$

where $\varphi \in \Phi$. $\varphi(x)$ may have free variables other than x.

The theory having axioms **B1-B8**, together with induction for arbitrary formulas from our vocabulary, is the **Peano** arithmetic (a very strong system).

By carefully controlling Φ , we obtain **interesting** theories.

Complexity of formulas

Definition (Bounded Quantifiers).

$$\exists x \le t \, A \ := \ \exists x \, (x \le t \land A)$$

$$\forall x \le t \, A \ := \ \forall x \, (x \le t \to A)$$

(the variable x must not occur in the term t) Quantifier that occur in this form are **bounded**.

Complexity of formulas

Definition (Bounded Quantifiers).

$$\exists x \le t \, A := \exists x \, (x \le t \land A)$$
$$\forall x \le t \, A := \forall x \, (x \le t \to A)$$

(the variable x must not occur in the term t) Quantifier that occur in this form are **bounded**.

A formula is Δ_0 (**bounded**) if every quantifier in it is bounded.

A formula is Σ_1 if it is of the form $\exists x_1, \dots, \exists x_k \phi$ and ϕ is bounded.

1-BASIC axioms together with induction for bounded formulas only give us a well-studied system called $I\Delta_0$.

The following formulas (and their universal closures) are theorems of $I\Delta_0$ [@Cook_Nguyen_2010]:

• x + y = y + x (commutativity of +)

1-BASIC axioms together with induction for bounded formulas only give us a well-studied system called $I\Delta_0$.

- x + y = y + x (commutativity of +)
- (x + y) + z = x + (y + z) (associativity of +)

1-BASIC axioms together with induction for bounded formulas only give us a well-studied system called $I\Delta_0$.

- x + y = y + x (commutativity of +)
- (x+y)+z=x+(y+z) (associativity of +)
- \bullet x < x

1-BASIC axioms together with induction for bounded formulas only give us a well-studied system called $I\Delta_0$.

- x + y = y + x (commutativity of +)
- (x+y)+z=x+(y+z) (associativity of +)
- \bullet x < x
- 0 < x

1-BASIC axioms together with induction for bounded formulas only give us a well-studied system called $I\Delta_0$.

- x + y = y + x (commutativity of +)
- (x + y) + z = x + (y + z) (associativity of +)
- \bullet x < x
- 0 < x
- $\forall x \, \forall y \, (0 < x \rightarrow \exists q \, \exists r \, (r < x \land y = x \cdot q + r))$ (division theorem)

Defining new functions in $I\Delta_0$

We say that a function $f(\vec{x})$ is provably total in $I\Delta_0$ if there is a formula $\phi(\vec{x},y)$ in Σ_1 (i.e. of the form $\exists ... \exists \psi$ for ψ bounded) such that:

$$I\Delta_0 \vdash \forall x \exists ! y \phi(\vec{x},y)$$

and that

$$y = f(\vec{x}) \iff \phi(\vec{x}, y)$$

Examples:

• the function $LimitedSub(x, y) := \max\{0, x - y\}$

14 / 42

- the function $LimitedSub(x, y) := \max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \ \leftrightarrow \ \big((y \cdot z \le x \wedge x < y(z+1)) \vee (y = 0 \wedge z = 0) \big).$$

Examples:

- the function $LimitedSub(x, y) := \max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \ \leftrightarrow \ \big((y \cdot z \leq x \wedge x < y(z+1)) \vee (y = 0 \wedge z = 0) \big).$$

 $\bullet x \bmod y$

- the function $LimitedSub(x, y) := \max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \ \leftrightarrow \ \big((y \cdot z \le x \wedge x < y(z+1)) \vee (y = 0 \wedge z = 0) \big).$$

- $\bullet x \bmod y$
- $\bullet |\sqrt{x}|$

- the function $LimitedSub(x, y) := \max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \ \leftrightarrow \ \big((y \cdot z \le x \land x < y(z+1)) \lor (y = 0 \land z = 0) \big).$$

- $\bullet x \bmod y$
- $\bullet |\sqrt{x}|$

- the function $LimitedSub(x, y) := \max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \ \leftrightarrow \ \big((y \cdot z \le x \land x < y(z+1)) \lor (y = 0 \land z = 0) \big).$$

- $\bullet x \bmod y$
- $\bullet |\sqrt{x}|$

Examples:

- the function $LimitedSub(x, y) := \max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \ \leftrightarrow \ \big((y \cdot z \leq x \wedge x < y(z+1)) \vee (y = 0 \wedge z = 0) \big).$$

- $\bullet x \bmod y$
- $\bullet |\sqrt{x}|$

For all of these, you need to prove existence and uniqueness of the result.

Examples:

- the function $LimitedSub(x, y) := \max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \ \leftrightarrow \ \big((y \cdot z \le x \wedge x < y(z+1)) \vee (y = 0 \wedge z = 0) \big).$$

- $\bullet x \bmod y$
- $\bullet |\sqrt{x}|$

For all of these, you need to prove existence and uniqueness of the result.

BUT: $I\Delta_0$ can't "prove total" the exponential function $(x \mapsto 2^x)!$

14 / 42

Examples:

- the function $LimitedSub(x, y) := \max\{0, x y\}$
- the function x div y := |x/y| is defined by

$$z = \lfloor x/y \rfloor \ \leftrightarrow \ \big((y \cdot z \leq x \wedge x < y(z+1)) \vee (y = 0 \wedge z = 0) \big).$$

- $\bullet x \bmod y$
- $\bullet |\sqrt{x}|$

For all of these, you need to prove existence and uniqueness of the result.

BUT: $I\Delta_0$ can't "prove total" the exponential function $(x \mapsto 2^x)!$

NOTE: the computational content of $I\Delta_0$ is well-studied.

NOTE: $I\Delta_0$ doesn't align well with practical computer science.

Theories corresponding to complexity classes

The idea is similar.

The idea is similar.

• We still operate in first-order, classical logic.

Theory	Characterizes	Examples
V ⁰ VTC ⁰ VL V ¹	FAC ⁰ FTC ⁰ FLOGSPACE FPTIME	 ⊬ Pigeonhole; ⊢ properties of binary + ⊢ Pigeonhole; defines sorting

The idea is similar.

- We still operate in first-order, classical logic.
- Instead of one sort, we have two:

Theory	Characterizes	Examples
V ⁰ VTC ⁰	FAC ⁰ FTC ⁰	$ \not\vdash $ Pigeonhole; \vdash properties of binary $+$ \vdash Pigeonhole; defines sorting
VL V^1	FLOGSPACE FPTIME	

The idea is similar.

- We still operate in first-order, classical logic.
- Instead of one sort, we have two:
 - num (representing unary numbers)

Theory	Characterizes	Examples
V ⁰ VTC ⁰ VL V ¹	FAC ⁰ FTC ⁰ FLOGSPACE FPTIME	 ⊬ Pigeonhole; ⊢ properties of binary + ⊢ Pigeonhole; defines sorting

The idea is similar.

- We still operate in first-order, classical logic.
- Instead of one sort, we have two:
 - num (representing unary numbers)
 - str (representing binary strings)

Theory Characteri	zes Examples
$ \begin{array}{ccc} V^0 & FAC^0 \\ VTC^0 & FTC^0 \\ VL & FLOGSPA \\ V^1 & FPTIME \end{array} $	

The idea is similar.

- We still operate in first-order, classical logic.
- Instead of one sort, we have two:
 - num (representing unary numbers)
 - str (representing binary strings)
- Instead of induction we have finite set comprehension (finite sets = binary strings)

Theory Characterizes	Examples
$ \begin{array}{ccc} V^0 & FAC^0 \\ VTC^0 & FTC^0 \\ VL & FLOGSPACE \\ V^1 & FPTIME \end{array} $	

How would you even formalize this field?

Recall: Axiom schema of induction

Definition (Induction Scheme).

If Φ is a set of formulas, then Φ -IND axioms are the formulas

$$(\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1))) \to \forall z \varphi(z),$$

where $\varphi \in \Phi$. $\varphi(x)$ may have free variables other than x.

Recall: Axiom schema of induction

Definition (Induction Scheme).

If Φ is a set of formulas, then Φ -IND axioms are the formulas

$$\big(\varphi(0) \ \land \ \forall x \, (\varphi(x) \to \varphi(x+1))\big) \ \to \ \forall z \, \varphi(z),$$

where $\varphi \in \Phi$. $\varphi(x)$ may have free variables other than x.

The theory having axioms **B1-B8**, together with induction for arbitrary formulas from our vocabulary, is the **Peano** arithmetic (a very strong system).

Recall: Axiom schema of induction

Definition (Induction Scheme).

If Φ is a set of formulas, then Φ -IND axioms are the formulas

$$\big(\varphi(0) \ \land \ \forall x \, (\varphi(x) \to \varphi(x+1))\big) \ \to \ \forall z \, \varphi(z),$$

where $\varphi \in \Phi$. $\varphi(x)$ may have free variables other than x.

The theory having axioms **B1-B8**, together with induction for arbitrary formulas from our vocabulary, is the **Peano** arithmetic (a very strong system).

By carefully controlling Φ , we obtain **interesting** theories.

Approaches: obvious and wrong

Not surprisingly, there is no existing proof assistant with power limited to $I\Delta_0$.

Approaches: obvious and wrong

Not surprisingly, there is no existing proof assistant with power limited to $I\Delta_0$.

All mainstream proof assistants (Rocq, Lean 4, Isabelle/HOL, Agda, Mizar) have very strong theories. If we just accept any proof in Lean 4, the user can cheat by e.g. using the axiom of choice.

Approaches: obvious and wrong

Not surprisingly, there is no existing proof assistant with power limited to $I\Delta_0$.

All mainstream proof assistants (Rocq, Lean 4, Isabelle/HOL, Agda, Mizar) have very strong theories. If we just accept any proof in Lean 4, the user can cheat by e.g. using the axiom of choice.

Sometimes we can "switch-off" some axioms of proof assistants, but this doesn't go far enough. E.g. we can (and shouldn't) "switch-on" "-impredicative-set" in Rocq.

Introducing new axioms to meta-mathematical tools

- Introducing new axioms to Rocq and Lean is not considered a good practice
- We have tools designed specifically to define new theories from scratch
- Metamath, Isabelle (not Isabelle/HOL)
- In Isabelle/Pure, we can easily define our BASIC axioms (without induction). Example:
- Metamath seems to be a strictly less useful tool than Isabelle for our problem

Isabelle/Pure

```
(* ==== Axioms of 2-BASIC ==== *)
axiomatization where
  (* Basic arithmetic axioms (B1-B8) *)
  (* B1. x + 1 != 0 *)
  B1: "\sim((x + 1) = 0)" and
  (* B2. x + 1 = y + 1 implies x = y *)
  B2: "((x + 1) = (y + 1)) \longrightarrow (x = y)" and
```

Isabelle/Pure: working proof

```
(* Exercise 5.1.a: not x < 0 *)
lemma exercise 5 1 a: "\sim (x < 0)"
proof
  assume "x < 0"
  then have "x <= 0" and "x \sim= 0" by simp all
  from B9 have "0 \le x".
  then have "((x \le 0) \setminus and > (0 \le x)) \longrightarrow (x = 0)"
    using B7 by blast
  then have "x = 0" using x <= 0 0 <= x by blast
  with x \sim 0 show False by contradiction
ged
```

How to express Δ_0 formulas?

- When trying to define our Δ_0 -induction axiom scheme, we hit a wall: every expression of the form $\forall x, \exists z, \phi(x, z)$ is just a (Isabelle-equivalent of) Prop.
- The same is true for Rocg and Lean. If we "shallowly" define a formula in these systems, we get an object of type Prop and can do strictly nothing with it.
- We need to define from scratch what it means to be a Formula.
- We have no advantage of using Isabelle for this as compared to Rocq and Lean.

Defining Formulas: Hilbert

```
inductive Formula where
I var : Name -> Formula
| imp : Formula -> Formula -> Formula
deriving Repr, DecidableEq
notation:60 a " ==> " b => Formula.imp a b
def A1 (phi psi : Formula)
  := phi ==> psi ==> phi
def A2 (phi psi ksi : Formula)
  := (phi ==> psi ==> ksi) ==> (phi ==> psi) ==> phi ==> ksi
```

Need for macros / metaprogramming

Defining formulas as

Formula.imp (Formula.leq a b) (Formula.binOp add c d) is not going to work.

A realistic formula we will want to embed:

$$x \neq 0 -> (\exists i \ y, \ (y \le x \land (y + 1) = x))$$

Syntactical overlay over Rocq or Lean

- A good idea is to try enabling user to enter a special "proof mode", in which we as programmers have full control over what is allowed and what is not.
- We will define what it means to be a Formula and (perhaps) what it means to be Derivable.
- As working with objects defined this way will be a nightmare, we need to apply metaprogramming.
- Rocq syntactical metaprogramming is spread across multiple tools: Notation command, MetaRocq, OCaml plugins (full power).
- For tactics, we have Ltac, Ltac2, Mtac2, and also OCaml plugins.
- Lean 4 metaprogramming is done in Lean 4.

Lean 4 metaprogramming world

- Parser reads source text and produces objects of type Syntax.
- We can define custom macros Syntax -> Syntax.
- Elaborator reads Syntax and produces a single typed Expr object.
- We can define custom elaborator rules Syntax -> Expr.
- The internal state of all these components is exposed through monads
- A function f: a -> MetaM b can introduce a new variable.
- A function f: a -> TacticM b can change the goal of a theorem being proved.

Defining Derivability: Hilbert

```
inductive Derivable : (List Formula) -> Formula -> Prop where
  assumption \{\Gamma\} \{\phi\}:
  (\omega \in \Gamma)
  -> Derivable Γ ω
 axK \{\Gamma\} \{phi psi\} :
  Derivable Γ $ K phi psi
 axS {Γ} {phi psi ksi} :
  Derivable Γ $ S phi psi ksi
  mult mp \{\Gamma 1 \ \Gamma 2\} \{phi \ psi\}:
  Derivable Γ2 (phi ==> psi)
  -> Derivable Γ1 phi
  -> Derivable (Γ1 ++ Γ2) psi
```

Lean 4: Macros for Hilbert-style proof mode

```
-- Syntax category for Hilbert proof steps
declare syntax cat hilbert tactic
syntax "have" ident ":" logic expr "by" "assumption"
  : hilbert tactic
syntax "have" ident ":=" "axK" logic_expr "," logic_expr
  : hilbert tactic
syntax "have" ident ":=" "axS" ...
syntax "have" ident ":=" "mult_mp" ident ident : hilbert_tactic
syntax "exact " ident : hilbert tactic
syntax "begin hilbert " (hilbert tactic)* : tactic
```

Lean 4: Demo of Hilbert-style proof mode

After we define our custom syntax [Logic] ...], transforming syntax of logical formula into our previously defined Formula object, we can already get a Hilbert-style proof mode. If the proof begins with "by begin_hilbert", there is no way to cheat.

```
example : Derivable [] [Logic| \varphi \rightarrow \varphi] := by
  begin hilbert
     have a := axS \varphi, \varphi -> \varphi, \varphi
     have b := axK \phi, \phi \rightarrow \phi
     have c := mult mp a b
     have d := axK \varphi, \varphi
     have e := mult mp c d
     exact e
```

How far will we go this way?

• To make our Hilbert-proof mode usable, we would need to implement a few tactics, etc.

30 / 42

How far will we go this way?

- To make our Hilbert-proof mode usable, we would need to implement a few tactics, etc.
- But: in reality we don't prove Hilbert-style.

30 / 42

How far will we go this way?

- To make our Hilbert-proof mode usable, we would need to implement a few tactics, etc.
- But: in reality we don't prove Hilbert-style.
- To scale this approach to a proper Gentzen-style deduction system is orders of magnitude more work

Cog Library for First-Order Logic

Luckily, someone has already done it. Lemma add assoc : BEq axioms' $\vdash \iff \forall' x y z$, $(((x \oplus y) \oplus z) == (x \oplus (y \oplus z))).$ Proof. unfold BEq_axioms'. unfold Beg axioms. (* fstart. *) fintros 1 2 3. fapply 0. + fintros x y. (* fapply ax trans doesn't work! *) feapply ax trans.

$More\ control = more\ responsibility$

This really is a deduction system written from scratch. You have all the control over the axioms, but also there will be no more features than you implement on your own.

Circle back

If we can do proofs so easily without axiom schemes, we really would like to not lose this functionality.

```
class NatModel (num : Type)
  extends Zero num, One num, Add num, LE num where
  B3: \forall x : num, x + 0 = x
  B8: \forall x y: num, x \le x + y
theorem le refl (M : Type) (h : NatModel M)
  : ∀ a : M, a <= a :=
by
  intro x
  conv \Rightarrow right; rw [<- h.B3 x]
  apply h.B8
```

Mathlib ModelTheory

ModelTheory library is a byproduct of formalization of the independence of the continuum hypothesis (the Flypitch project). Contains:

- definition of a first-order language (e.g. Peano: $0, 1, +, \cdot, \leq$)
- definition of logical terms, formulas in a language; substitution, variable relabeling
- definition of a formula being realized in a model

For our purposes:

```
Model.Realizes("forall x, x + 1 != 0") : Prop
Model.Realizes("forall x, x + 1 != 0") <-> forall x:Model, x + 1 != 0
```

Adding induction scheme!

Here:

- phi.IsOpen traverses Formula recursively and ensures there are no quantifiers
- peano. Formula the formula has to be in the language of Peano
- IsEnum just gives an enumeration of type a
- mkInductionSentence phi turns phi into phi(0) -> .. -> all x, phi(x)

```
class IOPENModel (num : Type*) extends BASICModel num where
  open induction {a : Type} [IsEnum a]
    (phi : peano.Formula (Vars1 ⊕ a)) :
    phi.IsOpen -> (mkInductionSentence phi).Realize num
```

Interoperability with Mathlib

```
We can easily enable ourselves to use standard Lean symbols such as 0, =,
<= in our formulas. Typeclasses are used for this purpose:
```

```
inductive PeanoFunc : Nat -> Type*
  | zero : PeanoFunc 0
```

```
instance : Zero (peano.Term a) where
  zero := Constant PeanoFunc.zero
```

How does it look like?

```
theorem add assoc
  : \forall x y z : M, (x + y) + z = x + (y + z) :=
by
  let phi : peano.Formula (Vars3 .z .x .y) :=
    ((x + y) + z) = (x + (y + z))
  have ind := iopen.open induction $ display3 .z phi
  unfold phi at ind
  simp_complexity at ind; simp_induction at ind
  rw [forall_swap_231]
  apply ind ?base ?step; clear ind
  · intro x y
    rw [B3 (x + y)]; rw [B3 y]
  · intro z hInd x y
    rw [B4]; rw [B4]; rw [B4]
    rw [<-(B2 (x + y + z) (x + (y + z)))]
    rw [hInd]
```

What can be proved?

Example III.1.9. The following formulas (and their universal closures) are theorems of $I\Delta_0$:

- **D1.** $x \neq 0 \rightarrow \exists y < x (x = y + 1)$ (Predecessor).
- **D2.** $\exists z (x + z = y \lor y + z = x).$
- **D3.** $x < y \leftrightarrow \exists z (x + z = y)$.
- **D4.** $(x < y \land y < z) \rightarrow x < z$ (Transitivity).
- **D5.** $x < y \lor y < x$ (Total order).
- **D6.** $x \le y \leftrightarrow x + z \le y + z$.
- D7. $x < y \rightarrow x \cdot z < y \cdot z$.
- **D8.** $x < y + 1 \leftrightarrow (x \le y \lor x = y + 1)$ (Discreteness 1).
- **D9.** $x < y \leftrightarrow x + 1 < y$ (Discreteness 2).
- **D10.** $x \cdot z = y \cdot z \wedge z \neq 0 \rightarrow x = y$ (Cancellation law for ·).

Interoperability with Mathlib

Our design (using class) was not an accident, it fosters applying Mathlib theorems to our natural numbers. So, we can automate proving inside of $I\Delta_0$ by using standard Lean proof-search tactics such as apply?.

```
variable {M : Type u} [iopen : IOPENModel M]
instance : IsRightCancelAdd M where ...
instance : PartialOrder M where ...
instance: IsOrderedRing M where ...
instance : CommSemiring M where ...
```

Proving these instances requires first proving D1-D10 manually.

Crucial: having these instances means that we will *not* have to prove every theorem about natural numbers from scratch!

Extending to Cook and Nguyen's two-sorted logics

This is possible to extend this approach to Cook and Nguven's V^i arithmetics, which have a very well studied computational content and characterize complexity classes.

This is the main interest of my master's thesis.

Thanks!

https://github.com/ruplet/formalization-of-bounded-arithmetic

This project has been supported by the ZSM IDUB program at the University of Warsaw

Bibliography

• Jiatu Li's introduction from 1st July 2025: https://eccc.weizmann.ac.il/report/2025/086/