263-2300-00: How To Write Fast Numerical Code

Assignment 1: 100 points

Submitted by Jinank Jain

Solution 1

Part a

Processor Manufacturer: Intel

Processor Name: i7

Processor Number: 3632QM

Part b

CPU Logical Cores: 8 CPU Physical Cores: 4

Part c

CPU Core frequency: 2.2 GHz

Part d

CPU Maximum Frequency: 3.2 GHz.

Yes it does support Intel Turbo Boost Technology (2.0)

Part e

Tick since my processor belongs to the family of Ivy Bridge Processor.

Part f-i

OpType	Latency	Throughput	Gap
Addition	3	1	1
Multiplication	5	2	0.5
rcp	7	0.5	2
FMA	NA	NA	NA

Table 1: Latency/Throughput/Gap for various operations

Part j

Peak performance: 32 flops/cycle and 102.4 Gflops/sec

Solution 2

Part a

Appropriate cost function would involve cost of multiplication, additions and divisions individually. One such example could be following:

$$C(n) = C_{add} * N_{add} + C_{mul} * N_{mul} + C_{div} * N_{div} + C_{typecast} * N_{typecast}$$

Part b

$$C(n) = C_{add}*(4(n-1)+1) + C_{mul}*(6(n-1)+2) + C_{div}*(2(n-1)+2) + C_{typecast}*(2(n-1)+2)$$
 $C(n) = C_{add}*(4n-3) + C_{mul}*(6n-4) + C_{div}*(2n) + C_{typecast}*(2n)$ $C(n) = flops(n) = 14$ n - 7

Solution 3

Figure 1: Flow Fairness v/s Per-user fairness

Figure 2: Flow Fairness v/s Per-user fairness

Solution 4

For example if we look at the paper from Facebook we could find a couple a example due to which traffic would not be rack local:

- Cache Leader servers won't have rack local traffic as they are achieve cache coherency and in order to do that they need to talk to servers within datacenter or outside datacenter.
- Cache Follower servers won't have rack local traffic as they are providing data from cache to other servers in the datacenter and that's what was evident from the paper.

Solution 5

Part a

• artcomp1: N flops

• artcomp2: N flops

• artcomp3: N flops

Part b

- artcomp1:
 - Flops = N
 - Memory Transfers (floats) $\geq 2N$
 - $\text{Read (bytes)} \ge 8N$
 - Operational Intensity $I(N) \leq \frac{1}{8}$
- artcomp2:
 - Flops = N
 - Memory Transfers (floats) $\geq 2N$
 - Read (bytes) $\ge 8N$
 - Operational Intensity $I(N) \leq \frac{1}{8}$
- artcomp3:
 - Flops = N
 - Memory Transfers (floats) $\geq 3N$
 - Read (bytes) $\ge 12N$
 - Operational Intensity $I(N) \le \frac{1}{12}$

Part c

i

- artcomp1: N/2
- artcomp2: N/2

ullet artcomp3: N/2

ii

 $\bullet \ \mathtt{artcomp1} \colon \, N/4, \, N/4, \, N/2 \\$

 $\bullet \ \mathtt{artcomp2} \colon \, N/4, \, N/4, \, N/2 \\$

 \bullet artcomp3: $N/4,\,5N/12,\,5N/6$