

Robotics for Future Industrial Applications

Summary Week 2 – Intelligent Motion Planning

Philipp Ennen, M.Sc.

Organizational

Time	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	13 th August	14 th August	15 th August	16 th August	17 th August	18 th August	19 th August
9:00-9:30		Introduction to Industrial Robots & Challenges	Fundamentals of Robot Learning and Control Theory		Robot Learning with iterative Linear-Quadratic Regulator	Practical Unit: Robot Learning of	
9:30-10:00							
10:00-10:30							
10:30-11:00		Motion Planning	Demonstration		Practical Unit:	al Unit: an Assembly Task Learning of an	
11:00-11:30				-	Robot Learning of an		
11:30-12:00					Assembly Task		
12:00-12:30							
12:30-13:00		Lunch Break at "Bistro Kerres"		City Excursion to Cologne	Lunch Break at "Bistro Kerres"		
13:00-13:30							
13:30-14:00							Free Time for Excursions, Sight-Seeing and Self-Study
14:00-14:30	Free Time for Excursions, Sight-Seeing and Self-Study	Practical Unit: Introduction to Linux and Robot Operating System	Programming using Python Practical Unit: Programming using Python		Practical Unit:	Show: Let the robot learn!	
14:30-15:00							
15:00-15:30					Robot Learning of		
15:30-16:00					an Assembly Task		
16:00-16:30							
16:30-17:00							
17:00-17:30							
17:30-18:00			OPTIONAL International Tuesday with the INCAS Student Organisation				
18:00-18:30 18:30-19:00							
19:00-19:30							
19:30-20:00						"Karaoke Night" with	
20:00-20:30						the Summer School	
20:30-21:00						Team and your	
21:00-21:30						Buddies	
21:30-22:00							

The central questions of robotics

Three main question:

Where am I?

- Easy in Industrial Robotics
- Hard in Mobile Robotics

Where should I go?

- Often hand-engineered
- Or a Result of Task Planning

- Comparable Easy in Mobile Robotics
- Hard in Industrial Robotics

How do I (the robot) go there?

Motion Planning: Configuration Space

Motion Planning Pipeline within C_{space}

How do I (the robot) go there?

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \dot{\phi} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{-(I+ml^2)b}{I(M+m)+Mml^2} & \frac{m^2gl^2}{I(M+m)+Mml^2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{-mlb}{I(M+m)+Mml^2} & \frac{mgl(M+m)}{I(M+m)+Mml^2} & 0 \\ \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \phi \\ \dot{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ I+ml^2 \\ I(M+m)+Mml^2 \\ 0 \\ \frac{ml}{I(M+m)+Mml^2} \end{bmatrix} u$$

Sensing

What if the model of the robot and environment is hard to describe (or unknown)?

Think about flexible objects!

Requires Goalstate:

- i.e. hand-engineered
- i.e. via a cost function

A (16.3)

What if the model of the robot and environment is hard to describe (or unknown)?

Use an Reinforcement Learning Agent!

What if the model of the robot and environment is hard to describe (or unknown)?

This weeks topic!

Model-based RL:

- Learn to predict next state: P(s'|s,a)
- Learn to predict immediate reward P(r'|s,a)

Model-free RL:

Learn to predict value:
 V(s) or Q(s, a)

s: state

a: action

r: reward

Shooting Methode: LQR

Linear Quadratic Regulator

- Special case: Systems with
 - Linear dynamics
 - Quadratic costs
- LQR provides an exact solution

Linear Quadratic Regulator

Pseudocode Algorithm

Backward recursion (Get linear equations for **u**)

for
$$t = T$$
 to 1:

$$\mathbf{Q}_t = \mathbf{C}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{F}_t$$

$$\mathbf{q}_t = \mathbf{c}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{f}_t + \mathbf{F}_t^T \mathbf{v}_{t+1}$$

$$Q(\mathbf{x}_t, \mathbf{u}_t) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{Q}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{q}_t$$

$$\mathbf{u}_t \leftarrow \arg\min_{\mathbf{u}_t} Q(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$$

$$\mathbf{K}_t = -\mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1} \mathbf{Q}_{\mathbf{u}_t, \mathbf{x}_t}$$

$$\mathbf{k}_t = -\mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1} \mathbf{Q}_{\mathbf{u}_t}$$

$$\mathbf{v}_t = \mathbf{Q}_{\mathbf{x}_t, \mathbf{x}_t} + \mathbf{Q}_{\mathbf{x}_t, \mathbf{u}_t} \mathbf{K}_t + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t, \mathbf{x}_t} \mathbf{x}_t + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t} \mathbf{K}_t$$

$$\mathbf{v}_t = \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t} \mathbf{k}_t + \mathbf{Q}_{\mathbf{x}_t, \mathbf{u}_t} \mathbf{k}_t + \mathbf{q}_{\mathbf{x}_t} + \mathbf{K}_t^T \mathbf{q}_{\mathbf{u}_t}$$

$$V(\mathbf{x}_t) = \text{const} + \frac{1}{2} \mathbf{x}_t^T \mathbf{V}_t \mathbf{x}_t + \mathbf{x}_t^T \mathbf{v}_t$$

Forward recursion (Use known initial state to get values for **u**)

for
$$t = 1$$
 to T :

$$\mathbf{u}_t = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$$

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$$

Why do we want to learn the dynamics?

- If $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ is known, we can do trajectory optimization
 - In the stochastic case $p(\mathbf{x}_{t+1}|\mathbf{x}_{t},\mathbf{u}_{t})$

Learn $f(\mathbf{x}_{t,}\mathbf{u}_t)$ with subsequent backpropagation (i.e. iLQR)

Modelbased Reinforcement Learning Version 0.5

- 1. Execute initial policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (i.e. a random policy) and collect data $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. Learn dynamics $f(\mathbf{x}_i \mathbf{u})$ that minimizes $\sum_i \|f(\mathbf{x}_{i,i} \mathbf{u}_i) \mathbf{x}_i'\|^2$
- 3. Backpropagate $f(\mathbf{x}, \mathbf{u})$ and calculate sequence of actions (i.e. iLQR)

Learning Dynamic Models

Does Version 0.5 work?

(in general) NO!

- 1. Execute initial policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (i.e. a random policy) and collect data $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. Learn dynamics $f(\mathbf{x}_i \mathbf{u})$ that minimizes $\sum_i \|f(\mathbf{x}_i \mathbf{u}_i) \mathbf{x}_i'\|^2$
- 3. Backpropagate $f(\mathbf{x}_{,}\mathbf{u})$ and calculate sequence of actions (i.e. iLQR) $ightarrow \pi_f(\mathbf{u}_t|\mathbf{x}_t)$

$$p_{\pi_0}(\mathbf{x}_t) \neq p_{\pi_f}(\mathbf{x}_t)$$

(Distribution Mismatch Problem)

Distribution Mistmatch Problem increases if expressive classes of models are used (i.e. neural networks)

Learning Dynamic Models

Can we do better?

Can we make $p_{\pi_0}(\mathbf{x}_t) = p_{\pi_f}(\mathbf{x}_t)$?

Need to collect data from $p_{\pi_f}(\mathbf{x}_t)!$

Modellbasiertes Reinforcement Learning Version 1.0

- 1. Execute initial policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (i.e. a random policy) and collect data $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. Learn dynamics $f(\mathbf{x}_{,}\mathbf{u})$ that minimizesLearn dynamics $f(\mathbf{x}_{,}\mathbf{u})$ that minimizes $\sum_{i} \|f(\mathbf{x}_{i,}\mathbf{u}_{i}) \mathbf{x}_{i}'\|^{2}$
- 3. Backpropagate $f(\mathbf{x}, \mathbf{u})$ and calculate sequence of actions (i.e. iLQR)
- 4. Execute those actions and add the resulting data $\{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$ to \mathcal{D}

Learning a Policy

Local models

Linearized local dynamics

Goal: get the system dynamics $p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$ for each timestep t

Data: samples generated by the previous controller $\widehat{p_i}(\mathbf{u}_t|\mathbf{x}_t) \rightarrow \{(\mathbf{x}_t,\mathbf{u}_t,\mathbf{x}_{t+1})_i\}$

Linear Gaussian Dynamics are defined as

$$p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t) = \mathcal{N}(f_{xt}\mathbf{x}_t + f_{ut}\mathbf{u}_t + f_{ct}), \mathbf{F}_t)$$

How can we determine linear Gaussian dynamics from few samples?

What kind of models can we use?

Gaussian process

GP with input (x, \mathbf{u}) and output \mathbf{x}'

Pro: very data-efficient

Con: not great with non-smooth dynamics

Con: very slow when dataset is big

Neural Network

image: Punjani & Abbeel '14

Input is (x, u), output ist x'

Pro: very expressive, can use lots of data

Con: not so great I low data regimes

This weeks focus!

Gaussian Mixture Model

GMM over (x, u, x') tuples

Train on $(\mathbf{x}, \mathbf{u}, \mathbf{x}')$, condition to get $p(\mathbf{x}'|\mathbf{x}, \mathbf{u})$

For i'th mixture element, $p_i(\mathbf{x}, \mathbf{u})$ gives region where the mode $p_i(\mathbf{x}'|\mathbf{x}, \mathbf{u})$ holds

Pro: very expressive, if the dynamics can be assumed as piecewise linear

Combining global and local models

Learning Local and Global Models

Train GMM: Global Dynamic Model

- Uses data from nearby timesteps
- Uses data from prior iterations

Linearize: Local Dynamic Model

- Uses prior from local dynamic model
- Uses data from last iteration at timestep t
- Condition on given $(\mathbf{x}_t, \mathbf{u}_t)$

Thank you for your attention!

