Zhihan Xu

2930 Chestnut St., Apt. 1506, Philadelphia, PA 19104 zhihanxu@seas.upenn.edu (+1)6109384632

09/2016-06/2020

EDUCATION

M.Sc. in Electrical Engineering 09/2021-05/2023

University of Pennsylvania PA, United States

Overall GPA: 3.85/4.0, Track: Circuits and Computer Engineering

B.Eng. with Honors of the First Class in Electronics and Electrical Engineering 09/2016-06/2020

University of Glasgow (UoG) Glasgow, United Kingdom

B.Eng. in Electronic Information Engineering

University of Electronic Science and Technology of China (UESTC)

Chengdu, China

Overall GPA: 3.7/4.0, Outstanding Graduate in UESTC (Distinction)

Summer Program in Electrical and Computer Engineering, 07/2018-08/2018

University of British Columbia Vancouver, Canada

RESEARCH INTERESTS

FPGA Accelerator, Heterogenous Computing, High-level Synthesis (HLS), HW-SW Co-design for AI/ML, NN Compression

PUBLICATIONS

N³H-Core: <u>Neuron-designed Neural Network Accelerator via FPGA-based Heterogeneous Computing Cores (1st Author)</u> 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA)

IoT Enabled Smart Security Framework for 3D Printed Smart Home (1st Author)

2020 IEEE International Conference on Smart Internet of Things (SmartIoT)

High- and Low-Level Feature Enhancement for Medical Image Segmentation

2019 International Workshop on Machine Learning in Medical Imaging (MLMI)

EMPLOYMENT

GPU Design Verification Intern, NVIDIA Corporation (US)

05-08/2022

- Summer Intern at Streaming Multiprocessor (SM) Design Verification Team focusing on testlist optimization.
- Designed and deployed Baysiain Optimization flow on testlists to improve test coverage. The algorithm explores the knob space and tunes knob values with a test result feedback loop to improve the hitrate on specific targets.
- Implemented a NN trained with random tests, which accelerates the BayOpt flow to generate optimized testlists.

Research Assistant, advised by Prof. Li Jiang, Shanghai Jiao Tong Univ. & Shanghai Qi Zhi Institute 09/2020-07/2021

- Researched the neural network (NN) compression and design space exploration on the FPGA-based NN accelerator.
- Full-time worked in the Advanced Computer Architecture (ACA) lab at Shanghai Jiao Tong University (SJTU).

Teaching Assistant, UESTC 09/2019-12/2019

Assisted instructor in designing labs, holding office hours, and grading homework for course Electronic Devices.

EXPERIENCES

Design of Configurational Logic Block (CLB) in FPGA (in progress), UPenn

11-12/2022

• Design the circuit-level implementation of a CLB with a 16:1 Look-up Table (LUT) using pass transistor logic for multiplexers optimized for the delay, with control logic to load the 6-T SRAM cells holding a custom truth table.

Processor Design with Superscalar Pipelined Datapath, UPenn

02-05/2022

- Designed a superscalar with two in-order pipelines for LC4 ISA, with multi-ported and bypassed register file.
- Designed the stalling logic, squash logic, and bypassing logic for pipeline switch. Tested the processor on Zedboard.

Accelerating VGG16 DCNN with a cloud FPGA, advised by Prof. Jing (Jane) Li, UPenn

11-12/2021

- Designed a VGG16 accelerator under heterogeneous computing framework OpenCL with AWS EC2 F1 Instance.
- Applied General Matrix Multiplication (GEMM) algorithm in C++ OpenCL host code binded with Pytorch and systolic array kernel for matrix multiplications on FPGA. Optimized the kernel with HLS pragmas like array partition.

Data Compressor Design and Acceleration on the Heterogeneous Platform Ultra96, UPenn

10-12/2021

- Designed a compressor receiving data in real-time and reducing data size by identifying and reducing redundancy.
- Implemented the flow with content-defined chunking, SHA-384 deduplication, and LZW compression steps.
- Achieved C solution on the Single ARM Processor first. Identified performance bottlenecks and mapped the bottleneck functions on the FPGA logic. Optimized the throughput with data streaming, loop unrolling, pipeline, etc.

N³H-Core (FPGA '22), advised by Prof. Li Jiang, Advanced Computer Architecture (ACA) Lab at SJTU 09/2020-07/202

- Designed a heterogeneous DNN accelerator architecture called N3H-Core that consists of DSP- and LUT-centric computing units (aka. DSP-core and LUT-core) to fully exploit the on-chip resource of the target FPGA.
- Constructed scalable and adaptable cost model across different DNNs and FPGA to precisely estimate the resource utilization, inference latency, and other metrics-of-interests for further design space exploration.
- Applied the Reinforcement Learning (RL) technique to build the end-to-end optimization framework that automatically generates the architecture configurations (resource), dataflow (both cores), and DNN respectively.

IoT Smart Home Design for Security (SmartIoT '20), advised by Dr. Qammer H. Abbasi, UoG

12/2019-04/2020

- Designed an MCU-based smart home with a visual-intelligent surveillance system supported by the Raspberry Pi.
- Correlated the surveillance system with the door lock system innovatively to further enhance smart security.

Medical Image Segmentation (MLMI '19), advised by Prof. Guotai Wang, UESTC

09-12/2019

- Implemented different fully convolutional networks (FCNs) as baseline models and compared their model size and accuracy on two challenging medical image segmentation datasets skin lesions and spleen.
- Proposed HLE-Net that utilizes the attention mechanism to selectively aggregate the optimal feature information and uses global semantic information to enhance the semantic consistency of high- and low-level features.

HONORS & AWARDS

Outstanding Graduate in UESTC (Distinction)

12/2019

Outstanding Student Leadership Scholarship

11/2019

Outstanding Student Scholarship in UESTC (Top 10%)

10/2017 10/2018 10/2019

Honorable Mention of 2019 Mathematical Contest in Modeling (MCM)

04/2019

SKILLS

Knowledge: FPGA accelerator design from chip architecture, physical layout to applications, Heterogeneous and parallel computing for FPGA with High-Level Synthesis (HLS), Digital IC and VLSI Design, System-on-Chip Architecture Design and Verification, Machine Learning and Optimization

Programming: C++, Python, Verilog/System Verilog, HLS, Linux Shell, Matlab

Frameworks: Pytorch, Quartus, Vivado, ModelSim, Vitis, Vitis HLS, Vitis Analyzer, OpenCL, Cadence, LTspice

Hardware Platform: Low Power: Xilinx PYNQ, Ultra96, Zedboard, Intel DE1-SoC board; High Perf: Amazon EC2 F1 Instances

Operating System: Linux-Ubuntu, Mac OS, Windows