Reachability Analysis of Quantum Markov Decision Processes

Not Using It to Verify Quantum Robots is Foolish

Zhiyang Ong

Department of Electrical and Computer Engineering
Dwight Look College of Engineering,
Texas A&M University
College Station, TX

September 11, 2015

- 1 Preamble
- 2 Classical Reachability Analysis
- 3 Analysis on Decidability of Quantum Reachability Analysis In the Finite-Horizon
- 4 Analysis on Complexity of Quantum Reachability Analysis In the Finite-Horizon
- 5 Discussion and Suggested Future Work

- Preamble
- 2 Classical Reachability Analysis
- 3 Analysis on Decidability of Quantum Reachability Analysis
 In the Finite-Horizon
- Analysis on Complexity of Quantum Reachability Analysis In the Finite-Horizon
- 5 Discussion and Suggested Future Work

Acknowledgments

Dott. Francesco Stefanni, University of Verona

Dr. Prateek Tandon, who initiated the formation of this reading group on quantum robotics.

Reference: Shenggang Ying and Mingsheng Ying, "Reachability Analysis of Quantum Markov Decision Processes," in *arXiv*, Cornell University, Ithaca, NY, July 9, 2014. Available online from *arXiv* as Version 2 at: http://arxiv.org/abs/1406.6146 and http://arxiv.org/abs/1406.6146v2; May 30, 2015 was the last accessed date.

Warning!!!

- Research publications on formal verification or formal methods have lots of definitions.
- Exact/Approximate algorithms and heuristics for formal verification or formal methods are based on these definitions.
- Hence, exact definitions of terms in formal verification or formal methods are required for proving these algorithms and heuristics and theorems.

- 1 Preamble
- 2 Classical Reachability Analysis
- 3 Analysis on Decidability of Quantum Reachability Analysis
 In the Finite-Horizon
- Analysis on Complexity of Quantum Reachability Analysis In the Finite-Horizon
- 5 Discussion and Suggested Future Work

Classical Reachability Analysis

- Reachability Analysis is :
 - Definition of reachable state in a Petri Net or FSM.
 - Define reachability analysis, based on the definition of the reachability of a state in a Petri Net or FSM.
 - E.g., A small bounded Petri Net can have many states, which
 are represented in the state/reachability graph. Use symmetry
 or stubborn set reductions, followed by creating and checking
 CTL formulae and predicates. Determine if a target
 state/marking is reachable from the initial state/marking, not
 necessarily via the minimal path. Check CTL
 properties/predicates for testing liveness properties.
 - Give more examples of reachability analysis
- Explain the importance of reachability analysis
- •
- References
 - [1] Yuan, J., Pixley, C., and Aziz, A. Constrained-Based

Problem Statement

- Models of concurrent and nondeterministic quantum systems need to be verified.
- Quantum Markov decision processes (qMDPs) can model such quantum systems.
- Question: How can we carry out reachability analysis on concurrent and nondeterministic quantum systems, modeled as qMDPs?
- Input: qMDP M
- Input: state space \mathcal{H} , which is a Hilbert space
- Input: state space $B \in \mathcal{H}$
- Output: Scheduler &
- Output: Non-negative integer, n.

Shortcomings of Classical Reachability Analysis

- Classic Markov chains cannot capture concurrency.
- A Markov chain only allows one "choice" of action per state, which implies that all "rewards" of the Markov chain are the same.
- Cannot formalize behavior/functionality of quantum systems
 - Discrete state spaces of classical systems are finite or countably finite
 - Continuous state spaces of quantum systems cannot be addressed by discrete state spaces
 - State spaces of quantum systems are continuous, even for finite-dimensional quantum systems
 - Need to examine a finite number of representative elements (in an orthonormal basis) of the state space of a quantum system
 - Or, at most, examine countably infinitely many representative elements of this state space
 - Always preserve the linear algebraic structure of the representative elements [& linear-time properties]

Prior and Related Work

- Almost all previous work use model checking to verify quantum communication protocols
- Use quantum process algebra to verify quantum communication systems, including quantum error correction codes
- Use simulation tools for quantum systems to verify their behavior/functionality, especially their correctness and safety properties
- $\underline{\varrho}_{\kappa}$
- $\overline{\varrho}_{\kappa}$
- 6

Design Decisions

- Quantum model checking framework for the formal verification of generic quantum engineering systems
 - Not just quantum communication systems
- Use a formal method based on modeling quantum systems with quantum automaton
 - Exploit similar work in quantum Markov chains, quantum dot automata, & quantum cellular automata
- Only consider linear-time properties of generic quantum systems
 - Describe these linear-time properties as infinite sequences of sets of atomic propositions, just like LTL model checking
- Extend this to verify safety properties for reversible automata
- ullet Extend this to verify $\omega ext{-properties}$ for reversible Büchi automata
- Meet requirements for correctness, safety, & reliability

Key Contributions of (Ying 2014)

- 1 Preamble
- 2 Classical Reachability Analysis
- 3 Analysis on Decidability of Quantum Reachability Analysis
 In the Finite-Horizon
- 4 Analysis on Complexity of Quantum Reachability Analysis
 In the Finite-Horizon
- **6** Discussion and Suggested Future Work

- 1 Preamble
- 2 Classical Reachability Analysis
- 3 Analysis on Decidability of Quantum Reachability Analysis In the Finite-Horizon
- Analysis on Complexity of Quantum Reachability Analysis In the Finite-Horizon
- **5** Discussion and Suggested Future Work

Analysis on Decidability of Quantum Reachability Analysis In the Finite-Horizon

Analysis on Decidability of Quantum Reachability Analysis In the Infinite-Horizon

- 1 Preamble
- 2 Classical Reachability Analysis
- 3 Analysis on Decidability of Quantum Reachability Analysis
 In the Finite-Horizon
- 4 Analysis on Complexity of Quantum Reachability Analysis In the Finite-Horizon
- **5** Discussion and Suggested Future Work

- 1 Preamble
- 2 Classical Reachability Analysis
- 3 Analysis on Decidability of Quantum Reachability Analysis In the Finite-Horizon
- 4 Analysis on Complexity of Quantum Reachability Analysis In the Finite-Horizon
- 5 Discussion and Suggested Future Work

Analysis on Complexity of Quantum Reachability Analysis In the Finite-Horizon

Analysis on Complexity of Quantum Reachability Analysis In the Infinite-Horizon

- 1 Preamble
- 2 Classical Reachability Analysis
- 3 Analysis on Decidability of Quantum Reachability Analysis
 In the Finite-Horizon
- 4 Analysis on Complexity of Quantum Reachability Analysis
 In the Finite-Horizon
- 5 Discussion and Suggested Future Work

Discussion and Suggested Future Work

Extensions of

