Attention

- Use a separate folder for each problem.
- Create a project (.mzp) for each problem, if there is any data file involved.
 - Add the model files (*.mzn) and the data files (*.dzn)
- Configure the solver to obtain the solution statistics, to search for one or all solutions, and to set a time limit when needed.
- Use commas when reporting big numbers. E.g.,
 - 976474 instead of 976,474
- Submit one single zip file.
- Indicate the group partner in the submission comments.

N-Queens

- Consider the n-Queens all different model.
- Post the alldifferent constraints either by using global constraints or by decomposing them.
- Search for one solution for N = 28, 29 and 30 using the input order of the variables and the values with Gecode.

```
solve :: int_search(q, input_order, indomain_min) satisfy;
```

N-Queens

 Report the number of the failures and the total time of the two models in a table.

n	Alldiffer	ent GC	Decomposition			
	Fails	Time	Fails	Time		
28						
29						
30						

Poster Placement

 Given a set of posters in rectangle shapes and their size, and a bounded paper roll size, find a placement of the posters on the paper so that they can be printed without changing their orientation.

Poster Placement

- Model the problem.
 - What are the variables and the domains?
 - What are the constraints?
- Start with naïve constraint expressions and then look for an appropriate global constraint.
- Search for one solution to the two provided instances using the default search of Gecode.

Poster Placement

• Report the number of the failures and the total time in a table.

Instance	Naïve Model		Global Model		
	Fails	Time	Fails	Time	
19x19					
20x20					

Comments

 Comment briefly on how the solver performance changes from one (decomposed or non-global) model to the global model, along with a justification.

The Sequence Puzzle

- Consider the model of the sequence puzzle.
 - Variables and Domains

•
$$X_0, ..., X_{n-1} \in \{0, ..., n-1\}$$

- Constraints
 - for all i, $X_i = \sum_j (X_j = i)$
- Implied constraints
 - $\bullet \sum_i X_i = n$
 - $\bullet \sum_{i} X_{i} * i = n$
- Globalize the main problem constraints.

The Sequence Puzzle

- Search for one solution for N = 500 and N=1000, using the default search of Gecode.
- Show the number of the failures and the total time of all the models in a table.

n	Base		Base + Implied		Global		Global + Implied	
	Fails	Time	Fails	Time	Fails	Time	Fails	Time
500								
1000								

Comments

- Answer briefly the following questions on the solver performance.
 - Going from Base → Global, and going from Base + Implied → Global + Implied: what is the main advantage of using a global constraint? Why?
 - Is there an implied constraint that now becomes redundant in the Global + Implied model? Why?