Last time Sec(x)dx = Sec(x) (Sec(x) + tan(x)) $= \ln\left(\left|Se_{z}(x) + \tan(x)\right|\right) + c$ $\sum_{x} \int CSC(x) dx = \int CSC(x) \left(\frac{CSC(x) + Cot(x)}{CSC(x) + Cet(x)} \right) dx$ U = CSC(x) + Cot(x) $du = (-cSc(x)cot(x) - cSc^{2}(x))dy$ $du = -(cSc(x)cot(x) + cSc^{2}(x))dy$ $\int_{u}^{\infty} \int_{u}^{\infty} du = -\ln(|u|) + C$ $\int_{u}^{\infty} \left| \frac{1}{2} - \ln(|\cos(x)| + \cot(x)) \right| + C$

 $\sum_{X} \int X \int X + 1 \, dx = \int (u - 1) \int u \, du$ du = X + 1 du = dx $\chi \int |X + 1| \, dx$ $= \int (u^{3/2} - u^{1/2}) du = \frac{2}{5}u^{5/2} = \frac{2}{3}u^{3/2} + C$ $= \frac{2}{5}(x+1)^{5/2} - \frac{2}{3}(x+1)^{3/2} + C$ $\begin{array}{ll}
Ex & 3x & 4x - 2 & dx = 3 \\
 & 4x - 2 & dx = 3 \\
 & 4x - 2 & dx = 3
\end{array}$ $\begin{array}{ll}
 & 4x - 2 & dx = 3 \\
 & 4x - 2 & dx = 3
\end{array}$ $\begin{array}{ll}
 & 4x - 2 & dx = 3 \\
 & 4x - 2 & dx = 3
\end{array}$ $\begin{array}{ll}
 & 4x - 2 & dx = 3 \\
 & 4x - 2 & dx = 3
\end{array}$ $\begin{array}{ll}
 & 4x - 2 & dx = 3 \\
 & 4x - 2 & dx = 3
\end{array}$ $\begin{array}{ll}
 & 4x - 2 & dx = 3 \\
 & 4x - 2 & dx = 3
\end{array}$ $=3\left(u^{1/4} + 2\left(\frac{4}{5}\right)u^{5/4}\right)$ $= 3((x-2)^{9/4} + \frac{4}{7} + \frac{8}{5}(x-2)^{5/4}) + C$

Lefinite Integrals) $\int_{3}^{3} 2x(x^{2}+5)^{100} dx = \int_{100}^{100} u du = u^{101}$ u(i)=6.du = |n(|u|) |2 $= \ln(2) - \ln(1)$ u= ln(x) du= x

Ex
$$y = y/2$$
 = $\int_{0}^{9} e^{y/2} dy$
 $y = y/2$ = $\int_{0}^{9} e^{y/2} dy$
 $y = y/2$ = $\int_{0}^{9} e^{y/2} dy$
 $\int_{0}^{2} e^{y/2} dy$ = $\int_{0}^{2} e^{y/2} dy$
 $\int_{0}^{2} e^{y/2} dy$ = \int_{0}^{2}

J 9/2

Ex find area btwn $y=2x^2+10$ and y=4x+16 b=3 $\int (4x+16-2x^2-10)dx=64$ a=4

 $2x^{2} + 10 = 4x + 16$ $2x^{2} - 4x - 6 = 0$ $2(x^{2} - 2x - 3) = 0$ $2(x^{3})(x+1) = 0$ x = 31 - 1 3 = 0