Introduction to biological membranes

Benoît Kornmann Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland

Main textbook:

Molecular Biology of the Cell 5th edition Alberts et al. Garlands eds.

Table of Contents

Main textbook:		1
	Biological membranes	2
email: benoit.kornmann@bc.biol.ethz.ch	Challenges in membrane biology	3
	Lipids in the membranes	3
	Glycerolipids:	
	Sphingolipids	4
	Sterols	5
	Other lipids	6
	Membrane proteins	7
	Transmembrane proteins	7
	Lipidated proteins	
	Modification on the cytosolic face	8
	Modification on the extracellular side: GPI-anchor	
	Peripheral Proteins	10

Biological membranes

- Allow COMPARTIMENTALIZATION
 - Plasma membrane defines the boundary of the cell
 - Intracellular membranes subdivide the cell into different compartments (organelles) that differ in composition (proteins, ions, pH, redox potential, electrochemical potential)
 - o These compartments carry out different cellular functions
- Favor biochemical reactions
 - 2D instead of 3D diffusion favors encounter of metabolites
- Membranes are thin (5-7 nm), strong, non-elastic, self-sealing, flexible, deformable, hydrophobic barriers between aqueous compartments
- Composed of amphiphilic lipids (phospholipids) arranged as a bilayer.
 - See https://www.youtube.com/watch?v=lm-dAvbl330

Figure 1: membrane bilayer

- The bilayers also contain non-membrane-forming lipids (see below), and proteins many of which carry carbohydrate moieties or covalently bound lipids.
- The bilayer is usually fluid, mostly liquid.

Membrane fluidity illustrated here

https://www.youtube.com/watch?v=jM_xePC70Yo

Challenges in membrane biology

- Membranes derive from membranes
 - o membranes inherited from sperm and oocyte
 - o how to make new membranes?
 - Growth: one molecule at a time (lipid/protein)
 - Fusion/fission
 - How to make the right amount of membrane?
 - Coordination between lipid and protein?
- How can the cell differentiate between two membranes?
 - E.g. what differs between an early and late endosome, how is that difference generated and maintained?
 - How can a protein be targeted to the right membrane?
- Limited permeability
 - How to selectively transport metabolites and nutrients when needed?
 - How to communicate across membranes?

Lipids in the membranes

Glycerolipids:

 A glycerol molecule **esterified** to two fatty acids and one phosphate

Sphingolipids

Figure 3: sphingolipids

• sphingosine is generated from serine and fatty-acid-CoA:

Figure 4: sphingosine biosynthesis

resulting in a long-chain base (LCB).

• Ceramide is generated through **amide bond** with free amino group:

Sterols

Figure 5: sterols

HO HH H

cholesterolFigure 6: cholesterol vs. steroid hormones

Cholesterol (in membrane) and steroid hormones (circulating) share a common structure, but the addition of the hydrocarbon tail to cholesterol makes it more hydrophobic and thus, makes it bind to membranes.

Other lipids

Figure 7: isoprenoids

- Isoprenoids(based on isoprenes)
- geranyl-geranyl
- farnesyl
- ubiquinone
- retinol (vit. A)
- carotene
- o dolichol

all relatively rare

Sterols are made from isoprenes:

Figure 8: sterol biosynthesis

Membrane proteins

Transmembrane proteins

- Alpha-helical segments made of hydrophobic aminoacids
 - Membrane thickness is ~6nm, but the hydrophobic core is only ~3 nm. Each aminoacid in an alpha-helix is translated by 0.15 nm in the axis of the helix. Thus a transmembrane helix is around ~3/0.15= ~20 aminoacids.
 - Stretches of ~20 hydrophobic aminoacids can be detected using a hydropathy plot.
 - Hydropathy is calculated at each aminoacid position by averaging the hydropathy of all aminoacids between positions + and – 10 (sliding window averaging).
- Can be monotopic (one single TM domain) or polytopic (several TM domains).

Figure 9: Hydropathy plots

Exceptions are beta-barrel integral proteins

- made of beta-sheets
- found in bacterial outer-membranes
- found in mitochondrial and chloroplasts outer membranes
 - endosymbiotic origin of organelles (bacterial origin).
 - Usually form pores

Figure 10: VDAC, a mitochondrial outer membrane protein

Lipidated proteins

Figure 11: lipid protein modifications

Myristylation	C14 fatty acid via amide bond to amino group of N- terminal glycin	Added to cotranslationally to cytosolic non membrane proteins, a permanent modification.	Sufficient for membrane binding only when combined with:1) Positive charge cluster,2) FA alkyl group, or 3) protein-protein interactions	Arf1 and c-src Exposed or hidden after reversible conformational change.
Fatty acylation	i.e. palmitic acid	Reversible modification in cis-Golgi, on soluble proteins and endodomains of trans- membrane proteins	Double FA-acyl group direct many proteins to lipid rafts	Caveolin, influenza hemagglutinin.
Prenylation	or geranylgeranyl	CaaX box usually at the	Often combined with nearby FA acyl groups	Two Ras isoforms: H ras farnesyl plus two FA acyl chains. K-ras Farnesyl plus cluster of positive charges

Importance of lipid Modifications

- They allow proteins to come on and off membranes and thus support dynamic processes during signal transduction, molecular sorting, membrane bending, vesicle formation, membrane recognition, etc.
- Functions and dynamics can be strictly regulated in time and place.
- Allow interaction of proteins with specific membranes only and with specific lipid microdomains such as lipid rafts.

Modification on the extracellular side: GPI-anchor

Glyco	Chemical composition:	Topology:	Distribution:	Examples :
phosphatidyl	PI	In the extracellular	Enriched in apical	Thy-1 antigen
inositol (GPI)	Several sugar residues	leaflet.	membranes of	Alkaline
anchor addition	(N-acetyl glucose amine	The GPI anchor	epithelial cells,	phosphatase
	and mannose plus	provides the only	Enriched in lipid	Acetyl-choline
	others)	connection with the	rafts.	esterase
	Phosphoethanolamine	membrane.	Tail can be removed	
	connected by amide		by phospholipase C,	
	bond to C-terminus of		releasing the	
	protein.		proteins.	

Peripheral Proteins

Figure 12: Cytosolic face of the plasma membrane

- Non-covalently attached to lipid head-groups or proteins in the membrane
- Complex mixture of proteins on both sides of a membrane
- Interactions are often transient and regulated
- Cytosolic side of PM is particularly rich in peripheral proteins: an extensive, dynamic 'cortex' of actin, adaptor proteins, and other proteins (needed for membrane stability; local membrane specializations; connections with cytoskeleton; transmission of signals; trafficking of vesicles; cell shape and polarity determination; membrane curvature; endocytosis....)

Figure 13: Focal adhesions: a peripheral protein network.