GATE - Maths - 2008 - 1-17

ai24btech11030 - Shiven Bajpai

1) Consider the subspace $W = \{[a_{ij}] : a_{ij} = 0 \text{ if } i \text{ is even}\}\$ of all 10x10 real matrices.

2) Let S be the open unit disk and $f: S \to C$ be a real-valued analytic function with

c) 75

d) 100

Then the dimension of W is

b) 50

f(0) = 1. Then the set $\{z \in S : f(z) \neq 1\}$ is

a) 25

a) emptyb) nonempty finite		· · · · · · · · · · · · · · · · · · ·	c) countably infinite d) uncountable		
3) Let $E = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le x\}$. Then $\int_E \int (x + y) dx dy$ is equal to					
a) -1	b) 0	c) 112	d) 1		
4) For $(x, y) \in R^2$, let $f(x, y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{if } (x, y) = (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$ Then a) f_x and f_y exist at $(0,0)$, and f is continuous at $(0,0)$ b) f_x and f_y exist at $(0,0)$, and f is discontinuous at $(0,0)$ c) f_x and f_y do not exist at $(0,0)$, and f is continuous at $(0,0)$ d) f_x and f_y do not exist at $(0,0)$, and f is discontinuous at $(0,0)$ 5) Let f_x be a solution of f_y exist at f_y or f_y or f_y and f_y do not exist at f_y or f_y or f_y and f_y do not exist at f_y or					
 b) y changes sign in [0,1] d) y = 0 for x > 0 6) For the equation x(x - 1)y" + sin(x)y' + 2x(x - 1)y = 0, consider the following statements P: x = 0 is a regular singular point. 					
Q: $x = 1$ is a function of $x = 1$	regular singular point.				
a) both P andb) P is true be	•	c) P is false bd) both P and	•		
7) Let $G = R \setminus \{0\}$ and $H = \{-1, 1\}$ be groups under multiplication. Then the map $\phi: G \to H$ defined by $\phi(x) = \frac{x}{ x }$ is a) not a homomorphism					

	a) 1	b) 2	c) 3	d) ∞		
10)	Consider the initial value problem $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$. The aim is to compute the value of $y_1 = y(x_1)$, where $x_1 = x_0 + h(h > 0)$. At $x = x_1$, if the value of y_1 is equated to the corresponding value of the straight line passing through (x_0, y_0) and having the slope equal to the slope of the curve $y(x)$ at $x = x_0$, then the method is called					
	a) Euler's methodb) Improved Euler's	method	c) Backward Eud) Taylor series	ler's method method of order 2		
11) The solution of $xu_x + yu_y = 0$ is of the form						
	a) $f(y/x)$	b) $f(x+y)$	c) $f(x-y)$	d) $f(x)$		
12) If the partial differential equation $(x-1)^2u_{xx} - (y-2)^2u_{yy}$, $+2xu_x + 2yu_y + 2xyu = 0$ is parabolic in $S \subseteq \mathbb{R}^2$ but not in $\mathbb{R}^2 \setminus S$, then S is						
	a) $\{(x, y) \in \mathbb{R} : x = 1$ b) $\{(x, y) \in \mathbb{R} : x = 1\}$		c) $\{(x, y) \in \mathbb{R}^2 : x \in \mathbb{R}^2 : y \in R$			
13) Let E be a connected subset of $\mathbb R$ with at least two elements. Then the number of elements in E is						
	a) exactly twob) countably infinite		c) more than two d) uncountable	o but finite		
 14) Let X be a non-empty set. Let ε₁, and ε₂, be two topologies on X such that ε₁, is strictly contained in ε₂. If I: (X, ε₁) → (X, ε₂) is the identity map, then a) both I and I⁻¹ are continuous b) I is continuous but I⁻¹ is not continuous c) both I and I⁻¹ are not continuous d) I is not continuous but I⁻¹ is continuous 						

c) 2

9) For $1 \le p \le \infty$, let $\| \cdot \|_p$ denote the *p*-norm on \mathbb{R}^2 . If $\| \cdot \|_p$ satisfies the parallelogram

d) 3

b) a one-one homomorphism, which is not ontoc) an onto homomorphism, which is not one-one

b) 1

8) The number of maximal ideals in \mathbb{Z}_{27} is

d) an isomorphism

law, then p is equal to

a) 0

15) Let $X_1, X_2, \dots X_{10}$ be a random sample from $N(80, 3^2)$ distribution. Define

$$S = \sum_{i=1}^{10} U_i$$
 and $T = \sum_{i=1}^{10} \left(U_i - \frac{S}{10} \right)^2$

where $U_i = \frac{X_i - 80}{3}$, i = 1, 2, ..., 10. Then the value of E(ST) is equal to

- a) 0 b) 1 c) 10 d) $\frac{80}{3}$
- 16) Two (distinguishable) fair coins are tossed simultaneously. Given that ONE of them lands up head, the probability of the OTHER to land up tail is equal to
 - a) $\frac{1}{3}$ b) $\frac{1}{2}$ c) $\frac{2}{3}$
- 17) Let $c_{ij} \ge 2$ be the cost of the $(i, j)^{th}$ cell of an assignment problem. If a new cost matrix is generated by the elements $c_{ij}^* = \frac{1}{2}c_{ij} + 1$, then
 - a) optimal assignment plan remains unchanged and cost of assignment decreases
 - b) optimal assignment plan changes and cost of assignment decreases
 - c) optimal assignment plan remains unchanged and cost of assignment increases
 - d) optimal assignment plan changes and cost of assignment increases