PRZEDMIOT: Systemy baz danych

KLASA: 3i gr. 2

Tydzień 1 Lekcja 1

Temat: Definicja Baz Danych. Powtórzenie terminów tabele, rekordy, pola. Relację między tabelami: 1:1, 1:N, N:M.

Definicja bazy danych i jej znaczenie:

Definicja bazy danych:

Baza danych to cyfrowy, uporządkowany zbiór informacji, zapisany i przechowywany w sposób ustrukturyzowany, który umożliwia łatwe i szybkie wyszukiwanie, pobieranie, dodawanie, modyfikowanie i usuwanie danych.

Znaczenie bazy danych:

- **Przechowywanie danych** umożliwia gromadzenie dużych ilości informacji w jednym miejscu.
- **Szybki dostęp i wyszukiwanie** dzięki językom zapytań (np. SQL) można błyskawicznie znaleźć potrzebne dane.
- Relacje i spójność pozwala łączyć dane ze sobą (np. klient ↔ zamówienia),
 zachowując integralność.
- **Wielu użytkowników** umożliwia jednoczesną pracę wielu osób/ aplikacji z tymi samymi danymi.
- **Bezpieczeństwo** − zapewnia mechanizmy kontroli dostępu i ochrony przed utratą danych.
- Aktualność zmiany wprowadzane w jednym miejscu są natychmiast widoczne dla wszystkich użytkowników.
- **Uniwersalność** używane w niemal każdej dziedzinie (bankowość, handel, medycyna, edukacja, serwisy internetowe).

Bazy danych można podzielić według sposobu organizacji i przechowywania danych:

•	1. Bazy relacyjne (RDB – Relational Database)□ Najpopularniejszy typ.
	☐ Dane są przechowywane w tabelach (wiersze = rekordy, kolumny = pola).
	\square Tabele są powiązane kluczami (np. użytkownik $ ightarrow$ zamówienia).
	□ Do zarządzania używa się języka SQL.
	☐ Przykłady: MySQL, PostgreSQL, Oracle, MS SQL Server.
•	2. Bazy nierelacyjne (NoSQL)
	☐ Dane przechowywane w innych formach niż tabele.
	□ Rodzaje/modele:
	 Dokumentowe dane przechowywane w formie dokumentów (np. JSON, BSON, XML).
	 Grafowe - dane są przechowywane w postaci grafu (Neo4j – dane jako grafy),
	 ✓ Klucz–wartość - dane przechowywane jako para: klucz →
	wartość.(Redis, DynamoDB),
	 Kolumnowe - dane zapisane w kolumnach zamiast wierszy
	(odwrotnie niż w SQL)(Cassandra, HBase).
•	3. Bazy obiektowe
	☐ Dane przechowywane jako obiekty (tak jak w programowaniu obiektowym).
	☐ Mogą przechowywać nie tylko liczby i tekst, ale także multimedia czy złożone
	struktury.
	☐ Przykład: db4o, ObjectDB.
•	4. Bazy obiektowo-relacyjne
	☐ Hybryda relacyjnych i obiektowych.
	☐ Dane przechowywane są w postaci obiektów
	☐ Obsługują tabele, ale także bardziej złożone typy danych.
	☐ Przykład: PostgreSQL, Oracle.
•	5. Bazy hierarchiczne
	☐ Dane są zorganizowane w strukturę drzewa (rodzic–dziecko).
	☐ Każdy rekord ma jeden nadrzędny i wiele podrzędnych.
	☐ Szybki dostęp, ale trudne do modyfikacji, mało elastyczne.
	☐ Przykład: IBM IMS (starsze systemy bankowe).

5. Bazy sieciowe

		Dane zorganizowane w strukturze przypominającej sieć lub graf – rekordy mogą mieć wielu rodziców i wielu potomków.
		Stanowią one rozwinięcie modelu hierarchicznego
		Pozwalają na reprezentację danych, gdzie jeden element może być powiązany z wieloma innymi elementami , a te z kolei mogą być
		powiązane z wieloma kolejnymi elementami , tworząc złożoną, grafową strukturę.
		Przykład: IDS (Integrated Data Store).
•	6.	Bazy rozproszone
		Dane nie są przechowywane w jednym miejscu (na jednym serwerze), tylko
		rozsiane po wielu komputerach/serwerach, często w różnych
		lokalizacjach geograficznych.
		Łatwo dodać nowe serwery, gdy rośnie liczba danych.
		Dane są podzielone na części i każda część jest przechowywana na innym
		serwerze pp. użytkownicy A–M są na serwerze 1, a N–Z na serwerze 2.

Omówienie podstawowych koncepcji: tabele, rekordy, pola

📌 1. Tabela

To główna struktura w relacyjnej bazie danych. Można ją porównać do arkusza w Excelu – ma wiersze i kolumny. Każda tabela przechowuje dane dotyczące jednego typu obiektów.

→ Przykład: Tabela Studenci przechowuje informacje o studentach.

2. Rekord (wiersz, ang. row/record)

Pojedynczy wiersz w tabeli. Odpowiada jednej jednostce danych (np. jednemu studentowi). Składa się z pól (kolumn).

← Przykład rekordu w tabeli Studenci:

ID Imię Nazwisko Wiek Kierunek1 Anna Kowalska 21 InformatykaTen jeden wiersz to rekord opisujący Annę Kowalską.

📌 3. Pole (kolumna, ang. field/column)

To kolumna w tabeli, przechowująca określony typ danych.

Każde pole ma nazwę i jest określonego typu danych (np. liczba, tekst, data).

Imię – tekst, Nazwisko – tekst, Wiek – liczba całkowita, Kierunek – tekst.

Klucze

🔑 Klucz główny (Primary Key, PK)

To unikalny identyfikator rekordu w tabeli.

Gwarantuje, że każdy wiersz można jednoznacznie odróżnić.

Kluczem głównym może być:

- ☐ liczba całkowita (np. ID = 1, 2, 3...),☐ unikalny kod (np. PESEL, NIP),

ID Imię Nazwisko Wiek 1 Anna Kowalska 21

Tutaj ID jest kluczem głównym.

Klucz obcy (Foreign Key, FK)

To pole w tabeli, które wskazuje na klucz główny w innej tabeli.

Dzięki temu możemy powiązać dane między tabelami.

Tabela Zapisy (które kursy student wybrał) może mieć klucze obce: StudentID → odwołanie do tabeli Studenci(ID), KursID → odwołanie do tabeli Kursy(ID).

		-	
V	Podsumowa	nie w	skrocie:

- ☐ **Relacyjna baza danych** dane w tabelach powiązane relacjami.
 - ☐ **PK** unikalny identyfikator w tabeli.
- ☐ **FK** łączy jedną tabelę z drugą.

📌 3. Relacje między tabelami

1 Jeden do jednego (1:1)

Każdy rekord w jednej tabeli odpowiada dokładnie jednemu rekordowi w drugiej.

Tabela: Osoby

id_osoba	imie	nazwisko
1	Adam	Kowalski
2	Anna	Nowak
3	Patryk	Balicki

Tabela: Pesele

id_pesel	pesel	id_osoby
1	80010112345	1
2	92051267890	2
3	75032145678	3

2 Jeden do wielu (1:N)

Jeden rekord w tabeli A może mieć wiele rekordów w tabeli B. Ale rekord w tabeli B należy tylko do jednego w tabeli A.

→ Przykład: Nauczyciele ↔ Przedmioty. Jeden nauczyciel prowadzi wiele przedmiotów, ale każdy przedmiot ma tylko jednego nauczyciela.

Opis relacji

- Jeden nauczyciel może uczyć wiele przedmiotów.
- Ale jeden przedmiot ma przypisanego tylko jednego nauczyciela.

Tabela: Nauczyciele

id_nauczyciela	imie	nazwisko
1	Adam	Kowalski
2	Anna	Nowak
3	Patryk	Balicki

Tabela: Przedmioty

id_przedmiotu	nazwa	id_nauczyciela
1	Systemy Baz Danych	1
2	Matematyka	2
3	Fizyka	3
4	Chemia	1

3 Wiele do wielu (M:N)

Rekordy w tabeli A mogą być powiązane z wieloma rekordami w tabeli B i odwrotnie.

Przykład:

Uczniowie ↔ Przedmioty. Uczeń może zapisać się na wiele przedmiotów, a przedmiot może mieć wielu uczniów.

Rozwiązanie: Tabela Zapisy z polami: id_ucznia (FK do tabeli Uczniowie) id_przedmiotu (FK do tabeli Przedmioty). Trzeba pamiętać, że jednego ucznia nie można przypisać wiele razy do tego samego przedmiotu

Tabela: Uczniowie

id_ucznia	imie	nazwisko
1	Adam	Kowalski
2	Anna	Nowak
3	Patryk	Balicki

Tabela: Przedmioty

id_przedmiotu	nazwa
1	Systemy Baz Danych
2	Matematyka
3	Fizyka
4	Chemia

Tabela Zapisy (tabela pośrednia)

id_przedmiotu	id_ucznia
1	1
2	1
3	1
2	1
2	2
2	3
3	3
4	1

Tydzień 2 Lekcja 2

Temat: Polecenie Order By. Nadawanie, odbieranie uprawnień (GRANT, REVOKE). Pojęcie CRUD

Podstawowe polecenia do sortowania

★ ORDER BY

```
SELECT nazwisko, imie
FROM pracownicy
ORDER BY nazwisko ASC; -- rosnąco
SELECT nazwisko, imie
FROM pracownicy
ORDER BY nazwisko DESC; -- malejąco
```

Sortowanie po wielu kolumnach

```
SELECT nazwisko, imie, pensja
FROM pracownicy
ORDER BY nazwisko ASC, pensja DESC;
```

→ Najpierw sortuje po nazwisku rosnąco, a w ramach tego – po pensji malejąco.

Zarządzanie bezpieczeństwem bazy danych.

- Definicje
 - **GRANT służy do nadawania uprawnień** użytkownikom bazy danych (np. prawa do odczytu, zapisu, aktualizacji, usuwania, tworzenia tabel).
 - REVOKE służy do odbierania wcześniej nadanych uprawnień.

Składnia

Nadawanie uprawnień (GRANT)

```
GRANT <uprawnienia>
ON <nazwa_bazy_danych>.<nazwa_tabeli>
TO <nazwa uzytkownika>@<host>;
```

Odbieranie uprawnień (REVOKE)

```
REVOKE <uprawnienia>
ON <nazwa_bazy_danych>.<nazwa_tabeli>
FROM <nazwa_uzytkownika>@<host>;
```

★ CRUD

CRUD to skrót od angielskich słów:

- **C Create** → tworzenie nowych rekordów (np. INSERT)
- **R Read** → odczytywanie danych (np. SELECT)
- **U Update** → aktualizowanie istniejących rekordów (np. UPDATE)
- **D Delete** → usuwanie rekordów (np. DELETE)

★ Odpowiedniki w SQL

- **Create** → INSERT INTO uczniowie (...) VALUES (...)
- **Read** → SELECT * FROM uczniowie
- **Update** → UPDATE uczniowie SET klasa='3B' WHERE id=1
- **Delete** → DELETE FROM uczniowie WHERE id=1

Tydzień 3 Lekcja 3

Temat: Struktura Bazy Danych MySQL

Schemat bazy danych to struktura i organizacja bazy danych, która definiuje jej tabele, pola, relacje, ograniczenia i typy danych. Organizacja baz danych może się różnić od siebie.

MySQL ma silnik InnoDB.

InnoDB zarządza danymi na własny sposób, korzystając z **tablespace** (**przestrzeni tabel**), które są fizycznymi plikami na dysku. W ich wnętrzu dane są przechowywane w postaci stron (ang. *pages*) i segmentów.

+
TABLESPACE (npibd / ibdata1)
SEGMENT DANYCH (indeks klastrowany = PRIMARY KEY)
Extent #1 (1 MB) — Page (16 KB) → rekordy
Page (16 KB) → rekordy
— Extent #2 (1 MB) — Page (16 KB) → rekordy
SEGMENT INDEKSU POMOCNICZEGO (np. idx_nazwisko)
├─ Extent #1 (1 MB) ── Page (16 KB) → węzły B-Tree (klucze→PK)
L Extent #2 (1 MB) — Page (16 KB) → węzty B-Tree
L
SEGMENT UNDO (dla cofania transakcji)
Extent #1 (1 MB) — Page (16 KB) → wpisy UNDO
L
[inne segmenty/metadane; wolne extenty do przydziału]

```
Tablespace (np. .ibd)
         Extent 1 (1 MB)
| Page (16 KB) | Page (16 KB) | ...
| Rekordy tabeli | Indeksy
| (wiersze) | (np. PRIMARY KEY)|
           Extent 2 (1 MB)
| Page (16 KB) | Page (16 KB) |
| Rekordy tabeli | Undo log / Meta |
            Extent 3 (1 MB)
```

Gdzie fizycznie są dane tabeli w InnoDB?

1. W pliku tablespace:

- jeśli masz innodb_file_per_table=ON (domyślnie) → każda tabela ma własny plik .ibd,
- jeśli innodb_file_per_table=OFF → wszystkie tabele są w system tablespace (ibdata1).

Rodzaje przestrzeni tabel:

- **System tablespace** główna przestrzeń tabel (zwykle ibdata1) zawierająca metadane, UNDO logi, i ewentualnie dane tabel, jeśli nie korzystasz z trybu "file-per-table".
- **File-per-table tablespace** osobny plik .ibd dla każdej tabeli (jeśli włączone innodb_file_per_table=ON).
- **Temporary tablespaces** dla tabel tymczasowych.
- **Undo tablespaces** do przechowywania danych potrzebnych przy cofnięciu transakcji.

Extent

- **Extent** = blok ciągłych stron (*pages*).
- Rozmiar: **1 MB = 64 strony po 16 KB**.
- Extent to czysto fizyczne pojęcie sposób zarządzania przestrzenią w tablespace.
- Extenty są jednostką, którą InnoDB rezerwuje i przydziela tabelom lub indeksom.
- 👉 Możesz to porównać do "klocka" miejsca na dysku.

Segment

- **Segment** = logiczna struktura w InnoDB, zbudowana z extentów.
- Segmenty są używane do przechowywania różnych rzeczy, np.:
 - segment danych (rekordy tabeli),
 - segment indeksów,
 - segment undo logu.
- Każda tabela w InnoDB ma co najmniej **2 segmenty**:
 - segment danych,
 - o segment indeksu klastrowanego (PRIMARY KEY).
- ← Segment to bardziej "pojemnik logiczny", a extenty to jego fizyczne części.

- Segment składa się z extentów.
- Extenty zawierają strony (pages).
- Strony zawierają rekordy, indeksy, itp.

Przykład różnej organizacji systemów baz danych:

W Oracle Blok (block) to Strona (page)

- Oracle
 - **Blok (Block)** = podstawowa jednostka przechowywania danych.
 - Rozmiar bloku w Oracle jest konfigurowalny (np. 2 KB, 4 KB, 8 KB, 16 KB, 32 KB).
 - W bloku są wiersze tabel, wpisy indeksów, nagłówki itd.
- InnoDB (MySQL)
 - **Strona** (Page) = podstawowa jednostka przechowywania danych.
 - Rozmiar strony jest prawie zawsze 16 KB (od MySQL 5.7 można zmienić, ale zwykle 16 KB).
 - W stronie są rekordy, sloty, metadane bardzo podobnie jak w bloku Oracle.

1. Tworzymy prostą tabelę

```
CREATE TABLE uczniowie (
   id INT PRIMARY KEY AUTO_INCREMENT,
   imie VARCHAR(50),
   nazwisko VARCHAR(50)
) ENGINE=InnoDB;
```

- ← Co powstaje w .ibd?
 - segment danych (dla clustered index = PK id),
 - segment indeksu klastra.

Czyli minimum 2 segmenty.

2. Dodajemy nowy indeks

ALTER TABLE uczniowie ADD INDEX idx_nazwisko (nazwisko);

Powstaje nowy segment na ten indeks.

Teraz w pliku .ibd są 3 segmenty:

- dane (clustered index),
- indeks klastra,
- dodatkowy indeks idx_nazwisko.

3. Dodajemy kolumnę typu LOB

ALTER TABLE uczniowie ADD COLUMN opis TEXT;

- → Dla kolumny TEXT tworzony jest osobny segment LOB (Large Object).

 Teraz mamy 4 segmenty:
 - dane,
 - indeks klastra,
 - dodatkowy indeks,
 - segment LOB dla opis.

4. Tabela zaczyna rosnąć (np. milion rekordów)

```
INSERT INTO uczniowie (imie, nazwisko, opis)
SELECT 'Jan', 'Kowalski', REPEAT('x', 1000)
FROM generate_series(1, 1000000);
```