Log geometry (Amand P.)
Essentially, generalization of scheme theory. sheet of monoids
Essentially, generalization of scheme theory. Sheaf of monoids Basic objects: X scheme underlying + a: Mx - Ox as PRELOG STRUCTURE D. Abr.: "special dust over X")
def- log-structures are pre-log structures s.t. $\alpha^{-1}(0_x^*) \rightarrow 0_x^*$
(idea: things that have more than I preimage have to vanish; sort of the branches of the logarithm)
the branches of the logarithm) act pre-log str. gives en associated log-str. \[\times_{\times}^{-1}\mathcal{Q}_{\times}^{\times} \times_{\times}^{\times} \times_{\times
$M_X(U) = \{g \in \Theta_X(U) \mid g _{U \setminus D} \in \Theta^*\} \subset \Theta_X(U)$ (the case D mormal charsing)
his is very related to logarithmic differentials, that in fact is the notivation for the theory.
Example (building blocks) P monoid, R a ring => R[P] ring, then X=spec (R[P]), $\alpha: P \rightarrow R[P]$ g. $P=N$, $R=Z$, $X=spec Z[t]=AZ$ $\alpha: P \rightarrow R[P]$ (is as before DC: where $D=Sol$ $X=AIZ$
longhisms f: X -> Y morph. of Schemes-, xy:My -> Oy log str. on Y. we can pull it back to f'(My) -> f'(Oy) -> Ox ~> call it & f*My -> Ox
map between (X, M_x) and (Y, M_y) is $f: X \to Y$ and $f: f^*M_x \to M_x$

Building blocks of morphisms two monoids D:Q >P, Rring, We get R[Q]→R[P] ~ we get morph of log schemes (spec R[P],P) -> (spec R[Q] There is a lot of town striff going on. The log structures-morphisms that are made (etals cocally) by these building blocks, are locally toric varieties/morphisms. $\frac{\text{Ex.}}{(x_1, x_2, \dots, x_n)} \times \frac{\text{K}[x_1, \dots, x_n]}{(x_1, x_2, \dots, x_n)} \times \frac{\text{K}[x_1, \dots, x_n]}{(x_1, x_2, \dots, x_n)}$ MARKEN SETAM p=speck) change & f* (Mx) = k & N^2 -> Op = k this is called a log p=spear) p \((a, v) \rightarrow \alpha if v=0 \) the f rk r.

this k conver from \(0 \) if v \(\phi 0 \) standard when r:

let's restrict \(\alpha \cdot M_X \rightarrow \alpha \cdot \text{because of the pre log (N^2 \(\phi \cdot \))} \) standard when r:

Let's restrict \(\alpha \cdot M_X \rightarrow \alpha \cdot \text{because of the pre log (N^2 \(\phi \cdot \))} \) many patalogies. standard when 1=1 Restrictions coming from geometry [(a,b) \in P2)/(a,b) \cc,d) \in 3s | statd = stb+c · P monoid is integral if P->P3P is injective · P is fine if it is fin. gen. Ex. P=IN([1], Spec(P-X[P])= · P saturated if m-pep (peper) => pep. = Spec k[x2,x3] here lepge z cusp. so this is not soturated. Chart (X, M_x) o log Scheme, Prunoid. A chart for M_x is $M_x \to M_x \to M_x \to M_x \to M_x$ is isom. to M_x Similarly $f:X \to Y$ a map. A chart is $Q, P, Q \to P$ where $\partial f = \int_{Q_X}^{P} M_Y$ Differentials (Log smooth curves) Grothendieck point of view on derivations)

Transport To X we want to define 12x14

thickening I (x, y log shemes)

of to with years

of to with years (anhancement of $\mathcal{N}'_{X/Y}$, still an)

(b) is like asking that locally the map is a projection from (4) a toric variety to another.
e.g. N\si3>P, speck[P] is log smooth!
def. log curves f:X > S gen fibers are reduced 1-dim't connected X, S are fine, saturated, and f is log smooth.
cato log curves are semistable (log smooth curs is stable
Mg is collection of stold log smooth curries.
The example Stock log smooth curves
P X → P, K ⊕IN does not admit a log structure of A diagonal type, then X connot be smoothed in a smooth total space. Classically known as d-semislability)
hen I cannot be smoothed in a smooth total space.
Classically known as d-semislability)
ther example admissible covers problem: this map is not flat!
but there are natural log structures which make the
Modriauki's there is about this; using log geometry admissible covers ere just log-etale magns.
ere just log-clob moeps.
What about surfaces? For K3, Olyson. Classically one tries to do semistable reduc
What about surfaces? For K3, Open. Classically one tries to do semistable reduction families & and try to make fibers as less singular es possible. There is mad shall of log smooth K3 surfaces