ELE 539 / COS 512: Homework 1

due Mar. 3, 2021 (11:59 PM Blackboard)

1 Operations that Perserve Convexity

Prove that following operations perserve the convexity of the functions. For simplicity, you can always assume the domain of the function is \mathbb{R}^d .

- (a) [1 point] If f_1, \ldots, f_n are convex functions, $\alpha_1, \ldots, \alpha_n$ are nonnegative scalars, show that $f := \sum_{i=1}^n \alpha_i f_i$ is also a convex function.
- (b) [1 point] If f_{θ} is a convex function for all $\theta \in \Theta$, show that $f := \sup_{\theta \in \Theta} f_{\theta}$ is also a convex function.
- (c) [1 point] If g is a convex function, show that for arbitrary matrix $A \in \mathbb{R}^{d \times d}$, and vector $b \in \mathbb{R}^d$, function f(x) := g(Ax + b) is also convex.

2 Equivalent Characterizations of Smooth Functions

There are two characterizations of ℓ -smooth functions.

Condition 1: For any $x, y \in \mathbb{R}^d$, $\|\nabla f(x) - \nabla f(y)\| \le \ell \|x - y\|$.

Condition 2: For any $x, y \in \mathbb{R}^d$, $|f(y) - f(x) - \nabla f(x)^\top (y - x)| \le (\ell/2) ||y - x||^2$.

[3 points] In the lecture, we have shown that condition 1 implies condition 2. To show their equivalence, prove that condition 2 also implies condition 1. Note in this question, f is not necessarily convex or twice-differentiable. [Hint: Prove that for any $x,y,z,z'\in\mathbb{R}^d$, we have $[\nabla f(x)-\nabla f(y)]^{\top}(z-z')\leq (\ell/2)\cdot[\|x-z\|^2+\|x-z'\|^2+\|y-z\|^2+\|y-z'\|^2]$.]

3 Recover Strongly Convex Rate by Convex Results

Suppose we have an algorithm \mathcal{A} (which is not necessarily gradient descent). The algorithm takes an initial point x_1 , and a integer $t \in \mathbb{N}$ as input, and has the following guarantee: for any ℓ -smooth, convex function f, after quering the gradient oracle t times, the output x_t satisfies:

$$f(x_t) - f(x^*) \le \frac{\ell ||x_1 - x^*||^2}{t}$$

[3 points] Prove that, for any ℓ -smooth, α -strongly convex function f, to find a point \hat{x} such that $f(\hat{x}) - f(x^*) \le \epsilon$, it suffices to query the gradient oracle $\tilde{\mathcal{O}}(\ell/\alpha)$ times, by smart uses of the algorithm \mathcal{A} . [hint: compute how many gradients that algorithm \mathcal{A} requires to guarantee $||x_t - x^*||^2 \le ||x_1 - x^*||^2/2$.]

4 Last Iterate Guarantee of GD for Convex Lipschitz Functions

In this question, we prove the following Theorem.

Theorem 1. Suppose that convex set \mathcal{X} satisfies $\sup_{x,x'\in\mathcal{X}}\|x-x'\|\leq R$, and function f is convex and L-Lipschitz. Then, by running projected subgradient descent with learning rate $\eta_s=R/(L\sqrt{s})$ for all $s\in\mathbb{N}$, we have that for any $t\geq 1$:

$$f(x_t) - f(x^*) \le \mathcal{O}\left(\frac{RL\log t}{\sqrt{t}}\right)$$

(a) [2 point] Prove using the similar techniques taught in the lecture that for any $t, k \in \mathbb{N}$, $k \le t$:

$$\sum_{s=t-k}^{t} [f(x_s) - f(x_{t-k})] \le \mathcal{O}(RL(\sqrt{t} - \sqrt{t-k-1})). \tag{1}$$

(b) [1 point] For a fixed $t \in \mathbb{N}$, let $S_k = \frac{1}{k+1} \sum_{s=t-k}^t f(x_s)$, prove the following using (1).

$$S_{k-1} \le S_k + \mathcal{O}\left(\frac{RL}{k\sqrt{t}}\right)$$

(c) [1 point] Use above results to prove Theorem 1.