1 Preliminary

1.1 Basic on sets

1.2 Countable sets

- Bernstein's theorem: if $\operatorname{card}(X) \leq \operatorname{card}(Y)$ and $\operatorname{card}(Y) \leq \operatorname{card}(X)$ then $\operatorname{card}(X) = \operatorname{card}(Y)$
- $\operatorname{card}(P(N)) = \operatorname{card}(R)$

1.3 Properties of the real line \mathbb{R}

Definition 1.1. The set of extended real $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$. For $x \in \mathbb{R}$, $x \pm \infty = \pm \infty$ and

$$x \cdot \infty = \begin{cases} \infty, & \text{if } x > 0 \\ -\infty, & \text{if } x < 0 \text{ But} \\ 0, & \text{if } x = 0 \end{cases}$$

 $\infty - \infty$ is undefined.

Theorem 1.1 (Representation of open sets in \mathbb{R}) Every nonempty open set \mathcal{O} in \mathbb{R} can be written as at most countable union of pairwise disjoin open intervals. That is $\mathcal{O} = \bigsqcup_{j=1}^{\infty} (a_j, b_j)$ such that $(a_i, b_i) \cap (a_j, b_j) = \emptyset$ for all $i \neq j$ (some of the intervals may be empty. If such are ignored, the representation is unique).

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be an increasing function. Let D denote the set of all points $x \in \mathbb{R}$ such that f is not continuous at x, that is $D = \{x \in \mathbb{R} : f(x-) \neq f(x+) \}$. Then D is countable.