智能手表

1. 系统概述

智能手表是做成手表形式的嵌入式软件,能够进行时间显示,还能够进行运动监测、卡路里消耗计算、运动上报。

智能手表组成结构图,如图1所示。

图 1 智能手表系统

从上图可以看出,整个系统由智能手表控制软件、上位机、加速度传感器几个部分构成:

- 1、智能手表控制软件: 嵌入式计算机硬件配合构成计算机系统,能够进行信号的处理和核心数据运算,完成系统主要功能。
 - 2、加速度传感器: 能够进行 X、Y、Z 三个方向上的加速度采集。
- 3、上位机软件:运行在云端的控制软件,能够对智能手表控制软件进行指令下发,并获取智能手表的上报数据,进行保存和显示。

智能手表控制软件是我们的被测对象。其主要使用流程如图 2 所示。

图 2 智能手表使用流程图

本文档对智能手表的工作方法进行了描述。选手需要对给出的被测软件进行测试,验证其工作是否同需求文档的描述一致。

2. 功能需求

功能需求包括信息设置功能、开始运动功能、加速度信号采集功能、运动监视功能、步数计算功能、运动等级分析功能、消耗卡路里计算功能、结束运动并进行上报功能这几部分。

2.1. 信息设置功能(F_Info)

上位机软件通过信息设置接口,发送信息设置内容给智能手表(使用"信息输入接口"协议)。智能手表接收后,对数据进行检验,并显示在显示屏上。 设置的信息内容有:

数据内容	取值范围	数据类型
当前时间	从 2000 年 1 月 1 日 0 时 0 分 0 秒到 2100 年 1 月 1 日 0 时 0 分 0 秒	无符号整形
性别	1: 女性; 2: 男性	无符号整形
身高	0-200 厘米	无符号整形
体重	0-150 公斤	无符号整形
年龄	0-100 岁	无符号整形

"身高"、"体重"、"年龄"、"当前时间",如果数据超过边界,需要进行截断,显示为边界值。"性别"如果超出范围,显示为"男性"。

开始运动之后,结束运动之前,不能接收信息设置,结束运动之后,可以接收信息设置。

2.2. 开始运动功能(F_Start)

界面有"开始运动"按钮,点击按钮后,开始进行运动信息监视、步数计算、运动等级分析和消耗卡路里计算。步数和卡路里计算都清零。

开始运行之前,不接收加速度信息。开始运动之后,"停止运动"按钮变为可用状态,"开始运动"按钮变为不可用状态。

2.3. 加速度信号采集功能(F_Acceleration)

智能手表通过串口1采集加速度信号。加速度从X、Y、Z三个维度来表示。每个维度的加速度取值范围为[-100,100],超过边界,需要截断为边界值。

被测件对加速度的取值,采用按 0. 1S(非实时操作系统,会导致时间在 0. 1S 左右。)的时间划片,取平均值的形式。即:在一个时间划片中,如果收到超过一帧加速度信息帧,则进行取平均值操作,获得该时间片的最终加速度信息。如果只收到一帧,则取当前帧数据为加速度信息;如果没收到,则当前时间片加速度信息为零。

2.4. 运动监视功能(F_Movement)

在开机运行状态,智能手表对采集到的加速度信息进行分析,获得运动状态信息。加速度计算方式为:对每两个连续的时间片的加速度值进行求差操作,公式为:

$$\triangle A = \sqrt{(a1-a2)^2 + (a1-a2)^2 + (a1-a2)^2}$$

其中 ax1、ay1、az1 是第一个时间片的加速度在 x、y、z 三个方向的值; ax2、ay2、az2 是第二个时间片的加速度在 x、y、z 三个方向的值。如果 ΔA 大于 H,则记录一次运动信息。H=5。每秒记录 10 次运动信息。

2.5. 步数计算功能(F_Pace)

步数计算是根据每秒的运动信息个数来计算的。如下表所示。

编号	每秒运动信息	每秒增加的步数
1	0-2 次	0
2	3-6 次	1
3	7-10 次	2

每次开始运动后,步数进行累计。

2.6. 运动等级分析功能(F_State)

运动状态主要根据每分钟增加的步数进行计算。

则做出如下定义:

编号	运动等级	每分钟增加的步数 M	说明
1	0 级	M<20	久坐不动
2	1级	20<=M<40	少量运动
3	2 级	40<=M<80	中等运动量
4	3 级	80<=M<100	高运动量
5	4 级	100<=M	超强度运动

2.7. 消耗卡路里计算功能(F_Calorie)

消耗卡路里数据根据基础能量消耗、身体活动水平、运动时间进行计算。

1、基础能量消耗分男性和女性,按照如下公式进行计算:

男性基础能量消耗= $66+13.7 \times$ 体重 $(kg)+5 \times$ 身高 $(cm)-6.8 \times$ 年龄 女性基础能量消耗= $65.5+9.6 \times$ 体重 $(kg)+1.8 \times$ 身高 $(cm)-4.7 \times$ 年龄

2、身体活动水平的计算与运动等级相关。具体如下表所示:

运动等级	男性	女性
0 级	1.55	1.42
1级	1.64	1.53
2级	1.78	1.64
3级	1.9	1.73
4 级	2. 1	1.82

- 3、每分钟的卡路里消耗=基础能量消耗×身体活动水平×运动时间(1分钟)。
 - 4、总卡路里消耗量为开始运动后,每分钟的卡路里消耗的累计。

2.8. 结束运动并进行上报功能(F_Report)

界面上有"停止运动"功能按钮。点击按钮后,软件停止进行运动状态监视和卡路里消耗计算。并且发送"信息上报"信息帧给上位机,包含消耗的卡路里总量。同时打开 log 信息保存的目录。

"停止运动"后,"开始运动"按钮变为可用状态,"停止运动"按钮变为不可用状态。

3. 接口需求

智能手表与加速度传感器、GPS 芯片、上位机之间使用串口进行通讯。所有串口都采用相同的通信参数:波特率:9600;奇偶校验:不发生奇偶校验;数据位长:8位;停止位:1位停止位。

3.1. 加速度输入接口(I_Acc)

加速度传感器向智能手表发送加速度数据, 其格式如表 1 所示。

·	长度			
字节号	(字节)	字段	编码方式	内容
0.1	0	<i>b</i> 1	无符号整形,大	田 台 (
0-1	2	包头	端字节序	固定值: 0xFF 0x55
2	1	数据长度	无符号整形	固定值: 0x0C
3-6	4	X方向加速度	单精度浮点数	
7-10	4	Y方向加速度	单精度浮点数	
11-14	4	Z方向加速度	单精度浮点数	
			无符号整形	校验值,xx(从第2
				号到 14 号字节按字
				节进行累加和,得到
				校验码,只保留低字
15	1	校验和		节。)
			无符号整形,大端	
16-17	2	包尾	字节序	固定值: 0xFF 0x55

表 1 加速度输入接口数据帧格式

输入接口处理时, 要考虑数据帧格式的容错处理, 容错处理的要求如下:

- (1) 包头、数据长度、校验和、包尾应该按照要求填写,否则进行丢包处理。
 - (2) 当包前有冗余字段时,应该可以剔除冗余字段。

3.2. 信息输入接口(I_Set)

上位机软件向智能手表发送设置信息数据, 其格式如表 2 所示。

表 2 信息输入接口数据帧格式

字节号	长度 (字节)	字段	编码方式	内容
0-1	2	包头	无符号整形,大 端字节序	固定值: 0xFF 0x55
2	1	数据长度	无符号整形	固定值: 0x0A
3-8	6	当前时间(从 2000年1月1 日0时0分0秒 到现在的秒数) 性别	无符号整形 无符号整形	从 2000 年 1 月 1 日 0 时 0 分 0 秒到 2100 年 1 月 1 日 0 时 0 分 0 秒 1: 女性 2: 男性其
9	1			他: 男性
10	1	身高	无符号整形	0-200 厘米
11	1	体重	无符号整形	0-150 公斤
12	1	年龄	无符号整形	0-100 岁

			无符号整形	
13	1	校验和		校验值,xx(从第2号到12号字节按字节进行累加和,得到校验码,只保留低字节。)
14-15	2	包尾	无符号整形, 大端字节序	固定值: 0xFF 0x55

输入接口处理时,要考虑数据帧格式的容错处理,容错处理的要求如下:

- (1) 包头、数据长度、校验和、包尾应该按照要求填写,否则进行丢包处理。
- (2) 当包前有冗余字段时,应该可以剔除冗余字段。

3.3. 信息上报输出接口(**I_Report**)

智能手表向上位机软件发送信息上报数据, 其格式如表 3 所示。

表 3 信息上报输出接口数据帧格式

字节号	长度 (字节)	字段	编码方式	内容
0-1	2	包头	无符号整形, 大端字节序	固定值: 0xFF 0x55
2	1	数据长度	无符号整形	固定值: 0x08
3-6	4	运动时长	无符号整形	单位为秒
			单精度浮点型	
7-10	4	消耗卡路里		

			无符号整形	校验值,xx(从第2
				号到 10 号字节按字
				节进行累加和,得到
				校验码,只保留低字
11	1	校验和		节。)
			无符号整形,大	
12-13	2	包尾	端字节序	固定值: 0xFF 0x55

3.4. 消耗卡路里输入接口(I_Calorie)

点击"停止运动"按钮前,上位机软件通过消耗卡路里输入接口,发送每分钟消耗的卡路里数据给智能手表(使用"消耗卡路里输入接口")协议。智能手表接收后,对数据进行检验,并显示在显示屏上。其格式如表 4 所示。

表 4 消耗卡路里接口数据帧格式

字节号	长度 (字节)	字段	编码方式	内容
0-1	2	包头	无符号整形, 大端字节序	固定值: 0xFF 0x55
2	1	数据长度	无符号整形	固定值: 0x08
3-6	4	运动级别	无符号整形	0~4 级
7-10	4	每分钟消耗卡路 里	单精度浮点型	
			无符号整形	校验值,xx(从第2 号到10号字节按字 节进行累加和,得到 校验码,只保留低字
11	1	校验和		节。)

		无符号整形,大	
12-13	2		固定值: 0xFF 0x55

4. 性能需求 _{无。}