PROJECT 6: Multi-Objective Bayesian Optimization for Transparent Electromagnetic Interference Shielding with Thin-Film Structures

Jungtaek Kim (Team Leader), Mingxuan Li, Oliver Hinder, and Paul W. Leu

Electromagnetic Interference Shielding

- Protect a device from radiofrequency interference.
- Transparency is required for specific applications such as spacecraft windows.

Problem Formulation

- Simple thin-film structures are used for electromagnetic interference shielding.
- Transmittance and shielding effectiveness are considered as objectives being optimized.
- Material and thickness for each layer is selected by Bayesian optimization.

Multi-Objective Bayesian Optimization

$$\mathbf{x}^* = rg \max(f_{ ext{trans}}(\mathbf{x}), f_{ ext{effec}}(\mathbf{x}))$$

- Since two objectives are black-box, multiobjective Bayesian optimization is employed.
- Random scalarization for both acquisition functions are used for multi-objective Bayesian optimization.

Search Space

- Material choices
- Ag, Al, Al₂O₃, Cr, Ni, Pd, Si₃N₄, SiO₂, Ti, TiN, TiO₂, W
- Thickness range
- [5, 20] nm

Bayesian Optimization

- Gaussian processes with the Matérn 5/2 kernel
- Expected improvement

$$a_{
m trans} + rac{w_{
m effec}}{w_{
m trans}} a_{
m effec}$$

Six-layer system.

Eight-layer system