Jingjia Chen, Michael Psenka and Tarang Srivastava

Natural Induction on Inequality

Prove that if $n \in \mathbb{N}$ and x > 0, then $(1+x)^n \ge 1 + nx$.

Solution:

- Base Case: When n = 0, the claim holds since $(1+x)^0 \ge 1 + 0x$.
- *Inductive Hypothesis:* Assume that $(1+x)^k \ge 1 + kx$ for some value of n = k where $k \in \mathbb{N}$.
- *Inductive Step*: For n = k + 1, we can show the following:

$$(1+x)^{k+1} = (1+x)^k (1+x) \ge (1+kx)(1+x)$$

$$\ge 1+kx+x+kx^2$$

$$\ge 1+(k+1)x+kx^2 \ge 1+(k+1)x$$

By induction, we have shown that $\forall n \in \mathbb{N}, (1+x)^n \ge 1 + nx$.

Strengthen Induction

Show by induction that $\sum_{i=1}^{n} \frac{1}{i^3} \leq 2$.

Solution:

We will prove the stronger theorem that $\sum_{i=1}^{n} \frac{1}{i^3} \le 2 - \frac{1}{n^2}$ by induction.

Base case: For n = 1, $1 \le 2 - \frac{1}{(1)^2} = 1$.

Induction hypothesis: $\sum_{i=1}^{k} \frac{1}{i^3} \le 2 - \frac{1}{k^2}$. $\sum_{i=1}^{k+1} \frac{1}{i^3} \le (2 - \frac{1}{k^2}) + \frac{1}{(k+1)^3} = 2 - (\frac{1}{k^2} - \frac{1}{(k+1)^3})$ Now to complete the proof, we need to prove

$$\frac{1}{(k+1)^2} \le \frac{1}{k^2} - \frac{1}{(k+1)^3}$$

$$\frac{1}{(k+1)^2} \le \frac{1}{k^2} - \frac{1}{(k+1)^3}$$

$$\frac{k+2}{(k+1)^3} \le \frac{1}{k^2}$$

$$\frac{k^3 + 2k^2}{(k^2)(k+1)^3} \le \frac{(k+1)^3}{(k^2)(k+1)^3}$$

$$0 \le \frac{k^2 + 3k + 1}{(k^2)(k+1)^3}$$
(1)

Thus the inequality holds, and the statement follows.

3 Binary Numbers

Prove that every positive integer n can be written in binary. In other words, prove that we can write

$$n = c_k \cdot 2^k + c_{k-1} \cdot 2^{k-1} + \dots + c_1 \cdot 2^1 + c_0 \cdot 2^0$$

where $k \in \mathbb{N}$ and $c_i \in \{0, 1\}$ for all $i \le k$.

Solution:

Prove by strong induction on n.

The key insight here is that if n is divisible by 2, then it is easy to get a bit string representation of (n+1) from that of n. However, if n is not divisible by 2, then (n+1) will be, and its binary representation will be more easily derived from that of (n+1)/2. More formally:

- Base Case: n = 1 can be written as 1×2^0 .
- Inductive Step: Assume that the statement is true for all $1 \le m \le n$, where n is arbitrary. Now, we need to consider n + 1. If n + 1 is divisible by 2, then we can apply our inductive hypothesis to (n+1)/2 and use its representation to express n+1 in the desired form.

$$(n+1)/2 = c_k \cdot 2^k + c_{k-1} \cdot 2^{k-1} + \dots + c_1 \cdot 2^1 + c_0 \cdot 2^0$$

$$n+1 = 2 \cdot (n+1)/2 = c_k \cdot 2^{k+1} + c_{k-1} \cdot 2^k + \dots + c_1 \cdot 2^2 + c_0 \cdot 2^1 + 0 \cdot 2^0.$$

Otherwise, n must be divisible by 2 and thus have $c_0 = 0$. We can obtain the representation of n + 1 from n as follows:

$$n = c_k \cdot 2^k + c_{k-1} \cdot 2^{k-1} + \dots + c_1 \cdot 2^1 + 0 \cdot 2^0$$

$$n+1 = c_k \cdot 2^k + c_{k-1} \cdot 2^{k-1} + \dots + c_1 \cdot 2^1 + 1 \cdot 2^0$$

Therefore, the statement is true.

Here is another alternate solution emulating the algorithm of converting a decimal number to a binary number.

- Base Case: n = 1 can be written as 1×2^0 .
- Inductive Step: Assume that the statement is true for all $1 \le m \le n$, for arbitrary n. We show that the statement holds for n+1. Let 2^m be the largest power of 2 such that $n+1 \ge 2^m$. Thus, $n+1 < 2^{m+1}$. We examine the number $(n+1) 2^m$. Since $(n+1) 2^m < n+1$, the inductive hypothesis holds, so we have a binary representation for $(n+1) 2^m$. Also, since $n+1 < 2^{m+1}$, $(n+1) 2^m < 2^m$, so the largest power of 2 in the representation of $(n+1) 2^m$ is 2^{m-1} . Thus, by the inductive hypothesis,

$$(n+1)-2^m = c_{m-1}\cdot 2^{m-1}+c_{m-2}\cdot 2^{m-2}+\cdots+c_1\cdot 2^1+c_0\cdot 2^0,$$

and adding 2^m to both sides gives

$$n+1=2^m+c_{m-1}\cdot 2^{m-1}+c_{m-2}\cdot 2^{m-2}+\cdots+c_1\cdot 2^1+c_0\cdot 2^0,$$

which is a binary representation for n + 1. Thus, the induction is complete.

Another intuition is that if x has a binary representation, 2x and 2x + 1 do as well: shift the bits and possibly place 1 in the last bit. The above induction could then have proceeded from n and used the binary representation of $\lfloor n/2 \rfloor$, shifting and possibly setting the first bit depending on whether n is odd or even.

Note: In proofs using simple induction, we only use P(n) in order to prove P(n+1). Simple induction gets stuck here because in order to prove P(n+1) in the inductive step, we need to assume more than just P(n). This is because it is not immediately clear how to get a representation for P(n+1) using just P(n), particularly in the case that n+1 is divisible by 2. As a result, we assume the statement to be true for all of $1, 2, \ldots, n$ in order to prove it for P(n+1).