CS/MATH 111, Discrete Structures - Winter 2019. Discussion 10 - Review

Andres, Sara, Elena

University of California, Riverside

March 11, 2019

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

▶ For pseudo-code below, tell what is the number of words printed if the input is n. Give a recurrence and then its solution(use Θ notation).

Pseudo-code	Recurrence and solution
Procedure Geez(n) if n>1 then print("geeze") print("geeze") Geez(2n/3)	

Master theorem

Theorem

Let $a \ge 0$, b > 0, c > 0 and $d \ge 0$. If T(n) satisfies the recurrence then

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$$

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & a > b^d \\ \Theta(n^d \log n) & a = b^d \\ \Theta(n^d) & a < b^d \end{cases}$$

- Solution: T(n) = T(2n/3) + 2 $a = 1, b = \frac{3}{2}, c = 2, d = 0$ Case 2: $n^0 \cdot log(n) = log(n)$
- Other examples: http://people.csail.mit.edu/thies/6.046-web/master.pdf

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Prove that for any integer x > 4, it is not possible that all three numbers x, x + 2 and x + 4 are prime.

- ▶ Prove by contradiction:
 - Suppose x, x + 2, and x + 4 are prime and x > 4. It is clear that x is not a multiple of 3 because if so, then x would not be prime.
 - As x cannot be divisible by 3, x is either one more than a multiple of three or two more than a multiple of three. Therefore, x is either in the form of 3q + 1 or 3q + 2.
 - If x = 3q + 1 then:

$$x + 2 = 3q + 1 + 2 = 3q + 3 = 3(q + 1) = 3q'$$

hence x + 2 is divisible by 3. Therefore, it is not a prime number.

▶ If x = 3q + 2 then:

$$x + 4 = 3q + 2 + 4 = 3q + 6 = 3(q + 2) = 3q'$$

hence x + 4 is divisible by 3. Therefore, it is not a prime number.

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

▶ Prove that $1+3+5+...+(2n-1)=n^2$ for any integer $n \ge 1$. (The expression on the left-hand-side is the sum of the first n odd natural numbers).

- Prove by induction:
 - ► Base case:

$$1 = 1^2$$

► Assumption:

$$1+3+5+\cdots+(2k-1)=k^2$$

▶ Induction:

$$1+3+5+\dots+(2(k+1)-1)=(k+1)^2$$

$$1+3+5+\dots+(2k-1)+(2k+1)=(k+1)^2$$

$$k^2+(2k+1)=(k+1)^2$$

$$k^2+2k+1=k^2+2k+1$$

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

► Explain how the RSA cryptosystem works

► Solution:

Initialization	Choose two different primes p and q, and let n=pq. Let Ø(n)= (p-1)(q-1). Choose an integer e relatively prme to Ø(n). Let d=e ⁻¹ (modØ(n)). Public key is P=(n,e) and Secret key is S=d.	
Encryption	If M is the messsage then its encryption is $E(M) = M^e rem n$	
Decryption	If C is the ciphertext then it is decrypted as $D(C) = C^d rem n$	

▶ Below you are given five choices of parameters p,q,e,d of RSA. For each choice tell whether these parameters are correct. If not, give a brief justification.

р	q	е	d	correct	Justify if not correct
23	51	18	89		
23	11	33	103		_
3	7	5	5		
17	17	3	171		
17	11	13	37		

► Solution:

р	q	е	d	correct	Justify if not correct
23	51	18	89	NO	51 is not prime
23	11	33	103	NO	33 is not relatively prime to $\emptyset(n)$
3	7	5	5	YES	
17	17	3	171	NO	p and q should be different
17	11	13	37	YES	

- Problem 1
- Problem 2
- Problem 3
- Problem 4
- Problem 5
- Problem 6

- ▶ Use Fermat's Little theorem to compute the following values:
 - $ightharpoonup 78^{112} \pmod{113}$
 - ▶ 3³⁹⁶³⁵ (mod 31)

▶ Use Fermat's Little theorem¹ to compute the following values:

```
ightharpoonup 78^{112} \pmod{113} \equiv 1 \pmod{113}
```

▶
$$3^{39635} \pmod{31} = 3^{30*1321+5} \pmod{31} = (3^{30})^{1321} \times 3^5 \pmod{31}$$

 $\equiv (1)^{1321} \times 3^5 \pmod{31}$
 $\equiv 243 \pmod{31}$
 $\equiv 26 \pmod{31}$

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

▶ Kevin is planning a 32-day trip to Scandinavia. He wants to spend at least 3 days in Finland, then between 7 and 14 days in Sweden, and later between 6 and 11 days in Norway. Compute the number of possible itineraries for his trip.

- ▶ Dealing with lower and upper bounds:
 - $ightharpoonup 7 \le S \le 14, S' = S 7$:

$$0 \leq S^{'} \leq 7$$

• $6 \le N \le 11, N' = N - 6$:

$$0 \leq N^{'} \leq 5$$

▶ $3 \le F \implies 3 \le F \le 32 - 7 - 6 \implies 3 \le F \le 19, F' = F - 3$:

$$0 \leq F^{'} \leq 16$$

- ▶ Stating new number of solutions from new bounds:
 - \triangleright $S + N + F = 32 \Longrightarrow$
 - $S' + 7 + N' + 6 + F' + 3 = 32 \implies$
 - S' + N' + F' = 16

- ▶ Finding $\mathbf{S}(S' \leq 7 \cap N' \leq 5 \cap F' \geq 17)$ using Inclusion-Exclusion principle:
 - ► $S = S_{total} S(S' \ge 8 \cup N' \ge 6 \cup F' \ge 17)$
 - ► $\mathbf{S} = S_{total} [S(S' \ge 8) + S(N' \ge 6) + S(F' \ge 17) S(S' \ge 8 \cap N' \ge 6) S(S' \ge 8 \cap F' \ge 17) S(N' \ge 6 \cap F' \ge 17) + S(S' \ge 8 \cap N' \ge 6 \cap F' \ge 17)]$
 - $\mathbf{S} = \begin{pmatrix} 16+3-1 \\ 3-1 \end{pmatrix} \begin{bmatrix} \overline{16-8+3-1} \\ 3-1 \end{pmatrix} + \begin{pmatrix} 16-6+3-1 \\ 3-1 \end{pmatrix} + \begin{pmatrix} 16-17+3-1 \\ 3-1 \end{pmatrix} \begin{pmatrix} 16-14+3-1 \\ 3-1 \end{pmatrix} \begin{pmatrix} 16-25+3-1 \\ 3-1 \end{pmatrix} \begin{pmatrix} 16-23+3-1 \\ 3-1 \end{pmatrix} + \begin{pmatrix} 16-31+3-1 \\ 3-1 \end{pmatrix} \end{bmatrix}$
 - $\mathbf{S} = \begin{pmatrix} 18 \\ 2 \end{pmatrix} \left[\begin{pmatrix} 10 \\ 2 \end{pmatrix} + \begin{pmatrix} 12 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} -7 \\ 2 \end{pmatrix} \begin{pmatrix} -5 \\ 2 \end{pmatrix} + \begin{pmatrix} -13 \\ 2 \end{pmatrix} \right]$
 - **S**= $\binom{18}{2}$ $[\binom{10}{2} + \binom{12}{2} + 0 \binom{4}{2} 0 0 + 0]$

