Quiz 10

- 1. For any language L, there is a TM that accepts it.
 - (a) True
 - (b) False

2. Which regular expression denotes the language accepted by the following Turing machine?

(a)
$$00^*1 + 11^*0$$

(b)
$$(0+1)(0^*+1^*)(0+1)$$

(c)
$$(0 + 1)^*(01 + 10)$$

(d)
$$(00^*1 + 11^*0)(0 + 1)^*$$

3. This TM halts on how many of the following 5 strings? $aaab,\ baba,\ ab,\ bbba,\ bb$

- (a) 1
- (b) 2
- (c) 3
- (d) 4

4. How many of the following languages can be accepted by a TM but NOT by a PDA?

$$\begin{split} L_1 &= \{a^n b^k c^k d^k : n, k \geq 0\} \\ L_2 &= \{a^k b^m c^m d^k : m, k \geq 0\} \\ L_3 &= \{a^n b^k c^n d^k : n, k \geq 335\} \end{split}$$

- (a) 0
- (b) 1
- (c) 2
- (d) 3

- 5. Let $M=(Q,\Sigma,\Gamma,\delta,q_0,\Box,F)$ be a Turing machine. We say M accepts $w\in\Sigma^*$, if starting from the initial configuration q_0w , we reach which configuration? That is, $q_0w\vdash^*\dots$?
 - (a) x_1qx_2 , for some $q \in F$, $x_1,x_2 \in \Gamma^*$
 - (b) qw, for some $q \in F$
 - (c) wq, for some $q \in F$
 - (d) All of the above