目录

1	随机	L过程的基本概念	2
	1.1	随机过程的定义与有穷维分布族	2
	1.2	随机过程的分类	3
2	泊松过程		
	2.1	泊松过程的定义	4
	2.2	泊松过程的性质	4
	2.3	非齐次的泊松过程 4	4
	2.4	复合泊松过程	5
3	离散	(时间的马尔可夫链	6
	3.1	马尔可夫链的基本概念	6
	3.2	马氏链的状态分类 (6
	3.3	转移概率的极限状态与平稳分布	8
4	连续	时间的马尔可夫链	9
	4.1	连续时间马氏链的基本定义 9	9
	4.2	转移率	9
	4.3	Kolmogorov 方程 10	0
	4.4	生灭过程 10	0
5	布朗运动 1		
	5.1	布朗运动的定义及基本性质1	1
	5.2	布朗运动的首中时和最大值1	1
	5.3	布朗运动的推广	1

1 随机过程的基本概念

1.1 随机过程的定义与有穷维分布族

定义 1.1.1 (随机过程). 给定概率空间 (Ω, \mathscr{F}, P) 及指标集 $\mathbb{T} \neq \emptyset$,若 $\forall t, \forall c \in \mathbb{R}, \{\omega | X_t(\omega) \le c\} \in \mathscr{F}, 则称 <math>\{X_t(\omega), t \in \mathbb{T}\}$ 为随机过程 $(Stochastic\ Process)$ 。

定义 1.1.2 (样本轨道). 随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$ 是关于 $t \in \mathbb{T}$ 和 $\omega \in \Omega$ 的二元函数,当 ω 固定, $X(\cdot, \omega)$ 是 $t \in \mathbb{T}$ 的函数,称为样本轨道($Sample\ Path$)。

定义 1.1.3 (有穷维分布族). 给定实值随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$, 对于 $\forall n \geq 1, \forall \{t_i\}_{i=1}^n \subset \mathbb{T}$, 可得 $(X_{t_1}, \dots, X_{t_n})$ 的联合分布函数为:

$$F_{t_1,\dots,t_n}(x_{t_1},\dots,x_{t_n}) = P\{X_{t_1} \le x_{t_1},\dots,X_{t_n} \le x_{t_n}\}$$

有穷维分布函数族 $\mathcal{D} \triangleq \{F_{t_1,\dots,t_n}(x_{t_1},\dots,x_{t_n})|\forall n\geq 1, \forall \{t_i\}_{i=1}^n\subset \mathbb{T}\}$ 定义 (X_{t_1},\dots,X_{t_n}) 的联合矩母函数为:

$$\varphi_{t_1,\dots,t_n}(u_{t_1},\dots,u_{t_n}) = E\left[e^{\sum_{j=1}^n u_{t_j} \mathbf{X}_{t_j}}\right]$$

有穷维矩母函数族 $\mathscr{C} \triangleq \{\varphi_{t_1,\dots,t_n}(u_{t_1},\dots,u_{t_n})|\forall n\geq 1, \forall \{t_i\}_{i=1}^n\subset \mathbb{T}\}$

定义 1.1.4 (独立随机过程). 随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$ 满足:

$$F_{t_1,\dots,t_n}(x_{t_1},\dots,x_{t_n}) = \prod_{k=1}^n F_{t_k}(x_{t_k}) \quad (\forall n \ge 1, \forall \{t_i\}_{i=1}^n)$$

则称 $\{X_t, t \in \mathbb{T}\}$ 为独立随机过程。

定义 1.1.5 (均值函数). 给定随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$, 定义均值函数为:

$$m(t) = E(\boldsymbol{X}_t)$$

定义 1.1.6 (方差函数). 给定随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$, 定义方差函数为:

$$D(t) = Var(\mathbf{X}_t) = E(\mathbf{X}_t - m(t))^2$$

定义 1.1.7 (自相关函数). 给定随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$, 定义自相关函数为:

$$R(s,t) = E(\boldsymbol{X}_s \boldsymbol{X}_t)$$

定义 1.1.8 (协方差函数). 给定随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$, 定义协方差函数为:

$$k(s,t) = cov(X_s X_t) = E((X_s - m(s))(X_t - m(t))) = R(s,t) - m(s)m(t)$$

1.2 随机过程的分类

定义 1.2.1 (独立增量过程). 若 $\{X_t(\omega), t \in \mathbb{T}\}$ 满足: 对于 $\forall 0 \leq t_1 < t_2 < \cdots < t_{n-1} < t_n$,有 $X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \cdots, X_{t_n} - X_{t_{n-1}}$ 相互独立,则称 $\{X_t(\omega), t \in \mathbb{T}\}$ 为独立增量过程。

定义 1.2.2 (平稳增量过程). 若 $\{X_t(\omega), t \in \mathbb{T}\}$ 满足: 对于 $\forall t, h \geq 0$ $(t, t+h \in \mathbb{T})$,有 $X_{t+h} - X_t$ 的分布与 t 无关,则称 $\{X_t(\omega), t \in \mathbb{T}\}$ 为平稳增量过程。

定义 1.2.3 (平稳独立增量过程). 若 $\{X_t(\omega), t \in \mathbb{T}\}$ 既是独立增量过程,又是平稳增量过程,则称 $\{X_t(\omega), t \in \mathbb{T}\}$ 是平稳独立增量过程。

定义 1.2.4 (计数过程). $\{N(t), t \ge 0\}$ 称为一个计数过程, 若:

- (1). N(0) = 0
- (2). $N(t) \in \mathbb{N}, \forall t \geq 0$
- (3). $N(s) \leq N(t), \forall s < t$
- (4). 当 s < t , N(t) N(s) 等于 (s,t] 中发生的事件的个数。

定义 1.2.5 (正态过程). 如果 $\{X_t(\omega), t \in \mathbb{T}\}\$ 对于 $\forall n \geq 1, \forall \{t_i\}_{i=1}^n \subset \mathbb{T}$ 有 $(X_{t_1}, \cdots, X_{t_n}) \sim N(\mu, \Sigma)$,则称 $\{X_t(\omega), t \in \mathbb{T}\}\$ 为正态过程。

定义 1.2.6 (弱平稳过程/宽平稳过程/协方差平稳过程). 如果 $\{X_t(\omega), t \in \mathbb{T}\}$ 满足:

- (1) $m(t) \equiv C \ (C \in \mathbb{R})$
- (2) k(s, s+t) = B(t)
- (3) $E\left(\mathbf{X}_{t}^{2}\right) < +\infty$

则称 $\{X_t(\omega), t \in \mathbb{T}\}$ 为弱平稳过程/宽平稳过程/协方差平稳过程。

定义 1.2.7 (强平稳过程/严平稳过程/狭义平稳过程). 如果 $\{X_t(\omega), t \in \mathbb{T}\}\$ 对 $\forall n \in \mathbb{N}^*, \forall t_1 < t_2 < \cdots < t_n, \forall h, 有:$

$$P\left(\boldsymbol{X}_{t_1} \leq \lambda_1, \cdots, \boldsymbol{X}_{t_n} \leq \lambda_n\right) = P\left(\boldsymbol{X}_{t_1+h} \leq \lambda_1, \cdots, \boldsymbol{X}_{t_n+h} \leq \lambda_n\right)$$

即 $(X_{t_1}, \dots, X_{t_n})$ 与 $(X_{t_1+h}, \dots, X_{t_n+h})$ 同分布,则称 $\{X_t(\omega), t \in \mathbb{T}\}$ 为强平稳过程/严平稳过程/狭义平稳过程。

2 泊松过程 4

2 泊松过程

2.1 泊松过程的定义

定义 2.1.1 (泊松过程). 计数过程 $\{N(t), t \ge 0\}$ 称为参数为 $\lambda(\lambda > 0)$ 的泊松过程, 若满足:

- (1). $\{N(t), t \ge 0\}$ 是独立增量过程
- (2). $\forall s, t > 0$, 有

$$P\{N(s+t) - N(s) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, n = 0, 1, 2, \dots$$

定义 2.1.2 (泊松过程). 计数过程 $\{N(t), t \ge 0\}$ 称为参数为 $\lambda(\lambda > 0)$ 的泊松过程, 若满足:

- (1). $\{N(t), t \ge 0\}$ 是独立增量过程
- (2). $\{N(t), t \ge 0\}$ 是平稳增量过程
- (3). 对于 $\forall t > 0$ 和足够小的 h > 0, 有:

$$P\left\{ \mathbf{N}(t+h) - \mathbf{N}(t) = 1 \right\} = \lambda h + o(h)$$
$$P\left\{ \mathbf{N}(t+h) - \mathbf{N}(t) \ge 2 \right\} = o(h)$$

2.2 泊松过程的性质

定义 2.2.1 (分类泊松过程). 假定在 s 时刻发生的事件以概率 P(s) 被归为 1型,以概率 1-P(s) 被归为 2型,且各个事件的归类相互独立。记 $\{N_i(t),t\geq 0\}, i=1,2$ 为 t 时 i 型事件发生的个数。

2.3 非齐次的泊松过程

定义 2.3.1 (非齐次泊松过程). 计数过程 $\{N(t), t \geq 0\}$ 若满足:

- (1). $\{N(t), t \ge 0\}$ 是独立增量过程
- (2). $P\{N(t+h) N(t) = 1\} = \lambda(t)h + o(h)$
- (3). $P\{N(t+h) N(t) \ge 2\} = o(h)$

则称 $\{N(t), t \ge 0\}$ 是强度函数为 $\lambda(t)$ $(\lambda(t) > 0, t \ge 0)$ 的非齐次泊松过程。

2 泊松过程 5

2.4 复合泊松过程

定义 2.4.1 (复合泊松过程). $\{Y_k, k \in \mathbb{N}^*\}$ 独立同分布, $\{N(t), t \geq 0\}$ 是强度为 λ 的泊松过程,且 $\{N(t), t \geq 0\}$ 与 $\{Y_k, k \in \mathbb{N}^*\}$ 独立,记:

$$\boldsymbol{X}(t) = \sum_{k=1}^{N(t)} \boldsymbol{Y}_k \ (t \ge 0)$$

则称 $\{X(t), t \geq 0\}$ 为复合泊松过程。

3 离散时间的马尔可夫链

3.1 马尔可夫链的基本概念

定义 3.1.1 (马尔可夫链). 若 $\{X_n, n \ge 0\}$ 的状态空间和参数空间都是离散的,且具有马氏性:

$$P\{X_{n+1} = j | X_0 = i_0, X_1 = i_1, \cdots, X_{n-1} = i_{n-1}, X_n = i\}$$

= $P\{X_{n+1} = j | X_n = i\}$

则称 $\{X_n, n \geq 0\}$ 为马氏链。

定义 3.1.2 (一步转移概率). $\{X_n, n \geq 0\}$ 为马氏链,若 $P\{X_{n+1} = j | X_n = i\}$ 与 n 无关,则:

$$p_{ij} \triangleq P\{\boldsymbol{X}_{n+1} = j | \boldsymbol{X}_n = i\}$$

称 $\{X_n, n \ge 0\}$ 为 (时间) 齐次的, 称 p_{ij} 为 $\{X_n, n \ge 0\}$ 的一步转移概率, 称 $P = [p_{ij}]$ 为 $\{X_n, n \ge 0\}$ 的一步转移概率矩阵。

定义 3.1.3 (多步转移概率). 称条件概率

$$p_{ij}^{(m)} \triangleq P\{\boldsymbol{X}_{n+m} = j | \boldsymbol{X}_n = i\}$$

为 $\{\pmb{X}_n,n\geq 0\}$ 的 m 步转移概率,记 $P^{(m)}=\left[p_{ij}^{(m)}\right]$ 为 $\{\pmb{X}_n,n\geq 0\}$ 的 m 步转移概率矩阵。

定义 3.1.4 (概率分布行向量). 对于 $\{X_n, n \ge 0\}$, 记 n 时刻的分布行向量为:

$$s(n) = \{s_i(n), i \in \mathbb{E}\}$$

其中:

$$s_i(n) = P(\boldsymbol{X}_n = i)$$

3.2 马氏链的状态分类

定义 3.2.1 (可达). $\{X_n, n \ge 0\}$ 是一马氏链, 给定任意的 $i, j \in \mathbb{E}$, 若:

$$\{n|p_{ij}^{(n)}>0\}\neq\emptyset$$

则称 i 可达 j, 记作 $i \rightarrow j$ 。

定义 3.2.2 (互通). $\{X_n, n \ge 0\}$ 是一马氏链, 给定任意的 $i, j \in \mathbb{E}$, 若:

$$i \rightarrow j \perp j \rightarrow i$$

则称 i,j 互通,记作 $i \leftrightarrow j$

定义 3.2.3 (状态分类). $\forall i, j \in \mathbb{E}, \ \vec{a} \ i \leftrightarrow j, \ 则称 i, j 属于同一类状态。$

定义 3.2.4 (可约与不可约). 若 $\{X_n, n \geq 0\}$ 只存在一个类,则称其是不可约的,否则称为可约的。

定义 3.2.5 (可回态与不可回态). $\{X_n, n \ge 0\}$ 是一马氏链, 给定任意的 $i \in \mathbb{E}$, 若:

$$P\{\boldsymbol{X}_n = i | \boldsymbol{X}_0 = i\} \equiv 0 \ (\forall n \in \mathbb{N}^*)$$

则称i是不可回态,否则称为可回态。

定义 3.2.6 (周期与非周期). $\{X_n, n \ge 0\}$ 是一马氏链, 给定任意的 $i \in \mathbb{E}$, 记:

$$d_i \triangleq \gcd\left(\{n|n \in \mathbb{N}^*, p_{ii}^{(n)} > 0\}\right)$$

当 $d_i > 1$, 称状态 i 为周期的; 当 $d_i = 1$, 称状态 i 为非周期的。

定义 3.2.7 (首达时间). $\{X_n, n \geq 0\}$ 是一马氏链, 给定任意的 $i, j \in \mathbb{E}$, 首达时间定义为:

$$T_{ij} = \inf\{n \ge 1 | \boldsymbol{X}_n = j, \boldsymbol{X}_0 = i\}$$

若 $\{n \geq 1 | X_n = j, X_0 = i\} = \emptyset$, 则令 $T_{ij} = \infty$ 。首达时间是一个随机变量。

定义 3.2.8 (首达概率). $\{X_n, n \geq 0\}$ 是一马氏链, 给定任意的 $i, j \in \mathbb{E}$, 首达概率定义为:

$$f_{ij}^{(n)} = P\{T_{ij} = n | X_0 = i\}$$

= $P\{X_n = j, X_k \neq j, 1 \leq k \leq n - 1 | X_0 = i\}$

定义:

$$f_{ij}^{(0)} = 0 \ (i \neq j, i, j \in \mathbb{E})$$

 $f_{ii}^{(0)} = 1 \ (i \in \mathbb{E})$

定义 3.2.9 (可达概率). $\{X_n, n \geq 0\}$ 是一马氏链, 给定任意的 $i, j \in \mathbb{E}$, 可达概率定义为:

$$f_{ij} = P\{T_{ij} < +\infty | \mathbf{X}_0 = i\}$$

$$= P\{\exists n, s.t. \ \mathbf{X}_n = j, \mathbf{X}_k \neq j, 1 \le k \le n - 1 | \mathbf{X}_0 = i\}$$

$$= \sum_{i=1}^{\infty} f_{ij}^{(n)}$$

定义 3.2.10 (平均可达时间). $\{X_n, n \geq 0\}$ 是一马氏链, 给定任意的 $i, j \in \mathbb{E}$, 平均可达时间定义为:

$$\mu_{ij} = \begin{cases} E[T_{ij}] = \sum_{n=1}^{\infty} n f_{ij}^{(n)} & (f_{ij} = 1) \\ \infty & (f_{ij} < 1) \end{cases}$$

定义 3.2.11 (常返). $\{X_n, n \geq 0\}$ 是一马氏链,给定任意的 $i \in \mathbb{E}$,若 $f_{ii} = 1$,则称状态 i 是常返的。

定义 3.2.12 (正常返). $\{X_n, n \geq 0\}$ 是一马氏链,给定任意的 $i \in \mathbb{E}$,若 $f_{ii} = 1$,且 $\mu_{ii} < \infty$,则称状态 i 是正常返的。

定义 3.2.13 (遍历). $\{X_n, n \geq 0\}$ 是一马氏链,给定任意的 $i \in \mathbb{E}$,若 $f_{ii} = 1$,且 $\mu_{ii} < \infty$,且 $d_i = 1$,则称状态 i 是遍历的。

定义 3.2.14 (零常返). $\{X_n, n \geq 0\}$ 是一马氏链, 给定任意的 $i \in \mathbb{E}$, 若 $f_{ii} = 1$, 且 $\mu_{ii} = \infty$, 则称状态 i 是零常反的。

定义 3.2.15 (非常返). $\{X_n, n \geq 0\}$ 是一马氏链, 给定任意的 $i \in \mathbb{E}$, 若 $f_{ii} < 1$, 则称状态 i 是非常返的。

3.3 转移概率的极限状态与平稳分布

定义 3.3.1 (极限分布). $\{X_n, n \ge 0\}$ 是一马氏链,记:

$$\pi_j^* \triangleq \lim_{n \to \infty} s_j(n) = \lim_{n \to \infty} P(\boldsymbol{X}_n = j)$$

若 $\forall j \in \mathbb{E}, \pi_j^*$ 存在,且 $\sum_{j \in \mathbb{E}} \pi_j^* = 1$,则称 $\pi = (\pi_1^*, \pi_2^*, \ldots)$ 为 $\{ \boldsymbol{X}_n, n \geq 0 \}$ 的极限分布。

定义 3.3.2 (平稳分布). $\{X_n, n \geq 0\}$ 是一马氏链, 若:

$$\begin{cases} \boldsymbol{\pi} \cdot \mathbf{1} = 1 \\ \boldsymbol{\pi} \cdot P = \boldsymbol{\pi} \end{cases}$$

则称 $\pi \triangleq \{\pi_j, j \in \mathbb{E}\}$ 为 $\{X_n, n \geq 0\}$ 的平稳分布。其中 1 为全 1 列向量,P 为概率转移矩阵。

4 连续时间的马尔可夫链

4.1 连续时间马氏链的基本定义

定义 4.1.1 (连续时间的马尔可夫链). 设随机过程 $\{X(t), t \geq 0\}$ 的状态空间 $\mathbb{E} = \{0, 1, 2, ...\}$ 是离散的且参数集合 \mathbb{T} 是连续的。若:

$$P\{X(t_{n+1}) = i_{n+1} | X(t_0) = i_0, \dots, X(t_{n-1}) = i_{n-1}, X(t_n) = i_n\}$$

= $P\{X(t_{n+1}) = i_{n+1} | X(t_n) = i_n\}$

对 $\forall 0 \leq t_1 < t_2 < \dots < t_n < t_{n+1}, \forall i_k \in \mathbb{E} \ (0 \leq k \leq n+1)$ 成立,则称 $\{X(t), t \geq 0\}$ 为连续时间的马尔可夫链。

定义 4.1.2 (转移概率). $\{X(t), t \geq 0\}$ 为连续时间的马尔可夫链, $\forall s, t \geq 0, i, j \in \mathbb{E}$, 称:

$$P\{X(t+s) = j | X(s) = i\} = P_{ij}(t;s)$$

为 $\{X(t), t \geq 0\}$ 的转移概率。

定义 4.1.3 (齐次连续时间马氏链). $\{X(t), t \ge 0\}$ 为连续时间的马尔可夫链, 若 $\forall s, t \ge 0, i, j \in \mathbb{E}, 有:$

$$P\{X(t+s) = j | X(s) = i\} = P\{X(t) = j | X(0) = i\} \triangleq P_{ij}(t)$$

则称 $\{X(t), t \geq 0\}$ 为齐次的连续时间马尔可夫链。

定义 4.1.4 (转移概率矩阵). $\forall t \geq 0$, 称 $P(t) = (P_{ij}(t)), i, j \in \mathbb{E}$ 为转移概率矩阵。

定义 4.1.5 (标准转移概率). 若 $P_{ij}(t)$ 在 t=0 连续, 即 $\forall i,j \in \mathbb{E}$, 有:

$$\lim_{t \to 0} P_{ij}(t) = P_{ij}(0) = \delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

4.2 转移率

定义 4.2.1 (通过率). 状态 i 的通过率 q_i 定义为:

$$q_i = \lim_{h \to 0} \frac{1 - P_{ii}(h)}{h}$$

定义 4.2.2 (转移率). 状态 i 到状态 j 的转移率 q_{ij} 定义为:

$$q_{ij} = \lim_{h \to 0} \frac{P_{ij}(h)}{h}$$

定义 4.2.3 (转移率矩阵). 定义 $q_{ii} = -q_j$, 则矩阵 $Q = (q_{ij})$ 为:

$$Q = \begin{bmatrix} -q_0 & q_{01} & q_{02} & \cdots \\ q_{10} & -q_1 & q_{12} & \cdots \\ q_{20} & q_{21} & -q_2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

4.3 Kolmogorov 方程

(空)

4.4 生灭过程

定义 4.4.1 (生灭过程). 若连续时间齐次马氏链 $\{X(t), t \geq 0\}$ 的状态空间为 $E = \{0,1,2,\ldots\}$,且转移概率函数 $P(t) = (P_{ij}(t))$ 满足:

$$\begin{cases} P_{i,i+1}(h) = \lambda_i h + o(h), i \ge 0 \\ P_{i,i-1}(h) = \mu_i h + o(h), i \ge 1 \\ P_{i,i}(h) = 1 - (\lambda_i + \mu_i) + o(h), i \ge 0 \\ \sum_{|i-j| \ge 2, i \ge 0, j \ge 0} P_{ij}(h) = o(h) \\ \lambda_i \ge 0, i \ge 0 \\ \mu_0 = 0, \mu_i \ge 0, i \ge 1 \end{cases}$$

5 布朗运动 11

5 布朗运动

5.1 布朗运动的定义及基本性质

定义 5.1.1 (布朗运动). 如果随机过程 $\{X(t), t \geq 0\}$ 满足:

- (1). X(0) = 0
- (2). $\{X(t), t \geq 0\}$ 有平稳独立增量
- (3). $\forall t > 0, X(t) \sim N(0, \sigma^2 t)$

则称 $\{X(t), t \geq 0\}$ 为布朗运动。

5.2 布朗运动的首中时和最大值

定义 5.2.1 (首中时). 记布朗运动 $\{X(t), t \ge 0\}$ 首次击中 x 的时刻为:

$$T_x = \inf\{t \ge 0, \boldsymbol{X}(t) = x\}$$

定义 5.2.2 (最大值). 记布朗运动 $\{X(t), t \ge 0\}$ 在 [0,t] 中达到的最大值为:

$$\pmb{M}(t) = \max_{0 \le s \le t} \pmb{X}(s)$$

5.3 布朗运动的推广

定义 5.3.1 (带有线性漂移的布朗运动). 若随机过程 $\{X(t), t \geq 0\}$ 满足:

- (1) X(0) = 0
- (2) { $X(t), t \ge 0$ } 有平稳独立增量
- (3) $\forall t \geq 0, \mathbf{X}(t) \sim N(\mu t, \sigma^2 t)$

定义 5.3.2 (几何布朗运动). 设 { $W(t), t \ge 0$ } 是均值为 μt , 方差参数为 σ^2 的 布朗运动, 若:

$$X(t) = e^{W(t)}$$

则称 $\{X(t), t \geq 0\}$ 为几何布朗运动。