

# 3250 Foundations of Data Science

**Module 8: Time Series and Forecasting with Pandas** 



### **Course Plan**

#### **Module Titles**

Module 1 – Introduction to Data Science

Module 2 – Introduction to Python

Module 3 – NumPy

Module 4 – Pandas

Module 5 – Data Collection and Cleaning

Module 6 – Descriptive Statistics and Visualization

Module 7 – Workshop

**Current Focus: Module 8 – Time Series** 

Module 9 – Introduction to Regression and Classification

Module 10 – Databases and SQL

Module 11 – Data Privacy and Security

Module 12 – Term Project Presentations (no content)





### **Learning Outcomes for this Module**

- Develop familiarity with basic forecasting techniques and methods
- Understand how Pandas supports working with time series data
- Gain experience working with time series data in Pandas
- Practice downloading stock information and calculating returns



### **Topics for this Module**

- 8.1 Time Series and Forecasting
- 8.2 Pandas for Time Series
- 8.3 Resources and Homework





### Module 8 – Section 1

## Time Series and Forecasting

### **Time Series**

- A time series is a set of observations taken at different points in time
- Time series can be:
  - Fixed frequency
  - Irregular
- Particularly important in Finance and Economics



### **Forecasting**

- Prediction where we have data sets that are in the form of a time series
- People who specialize in forecasting would call the kind of predictive models we've been talking about so far (not involving a time element) "cross-sectional forecasting"



### **Forecasting Time Series**





### What can be Forecast?

- Predictability depends on:
  - Our understanding of the predictive factors
  - The quantity of data available
  - The quality of data available
  - Whether taking measurements or making predictions that will influence the future outcomes



### What's Different with Time Series Prediction?

| Prices       |        |        |        |        |             |           |
|--------------|--------|--------|--------|--------|-------------|-----------|
| Date         | Open   | High   | Low    | Close  | Volume      | Adj Close |
| Oct 22, 2014 | 102.84 | 104.11 | 102.60 | 102.99 | 68,159,000  | 102.9     |
| Oct 21, 2014 | 103.02 | 103.02 | 101.27 | 102.47 | 94,492,300  | 102.4     |
| Oct 20, 2014 | 98.32  | 99.96  | 98.22  | 99.76  | 77,041,900  | 99.7      |
| Oct 17, 2014 | 97.50  | 99.00  | 96.81  | 97.67  | 68,032,200  | 97.6      |
| Oct 16, 2014 | 95.55  | 97.72  | 95.41  | 96.26  | 72,110,700  | 96.2      |
| Oct 15, 2014 | 97.97  | 99.15  | 95.18  | 97.54  | 100,875,400 | 97.5      |
| Oct 14, 2014 | 100.39 | 100.52 | 98.57  | 98.75  | 63,662,200  | 98.7      |
| Oct 13, 2014 | 101.33 | 101.78 | 99.81  | 99.81  | 53,485,500  | 99.8      |
| Oct 10, 2014 | 100.69 | 102.03 | 100.30 | 100.73 | 66,270,200  | 100.7     |
| Oct 9, 2014  | 101.54 | 102.38 | 100.61 | 101.02 | 77,312,200  | 101.0     |
| Oct 8, 2014  | 98.76  | 101.11 | 98.31  | 100.80 | 57,364,800  | 100.8     |
| Oct 7, 2014  | 99.43  | 100.12 | 98.73  | 98.75  | 42,068,200  | 98.7      |
| Oct 6, 2014  | 99.95  | 100.65 | 99.42  | 99.62  | 36,974,800  | 99.6      |
| Oct 3, 2014  | 99.44  | 100.21 | 99.04  | 99.62  | 43,445,800  | 99.6      |
| Oct 2, 2014  | 99.27  | 100.22 | 98.04  | 99.90  | 47,681,000  | 99.9      |
| Oct 1, 2014  | 100.59 | 100.69 | 98.70  | 99.18  | 51,404,400  | 99.1      |



### **Exploratory Analysis**

- Time Plot
- Seasonal Plot
- Lag Plot



### **Time Plot**





### **Seasonal Plot**

### Seasonal plot: antidiabetic drug sales





### **Lag Plot**





### **Typical Patterns in Time Series Data**

• Trends: Long-term increase or decrease

 Seasonality: Where there is an influence that varies with the time of year or other calendar period

 Cycles: Patterns of repeated increase and decrease of varying period



### **Trend and Seasonality**





### **Stationarity**

 Most time series methods make a simplifying assumption: that its statistical properties (mean, variance, growth rate) are not varying over time



### **Autocorrelation**

- Correlation of a time series with lagged values of itself
- How much lag? Up to us: it's a parameter



### **Autocorrelation Function**

#### Series beer2





### Some (Very) Simple Forecasting Methods

- Average method: Use average of data as forecast
- Naïve method: Use last data point as forecast
- Seasonal naïve method: Use data point from last corresponding season
- Drift method: Variation on naïve where we extrapolate the trend by drawing a line through the first and last observations



### **Forecast Methods Example**



### **Common Transformations and Adjustments**

- Use logarithms (or powers)
- Calendar adjustments
- Population adjustments
- Inflation adjustments



### **Model Evaluation**

- Measuring error
- Training and test sets
- Cross-validation
- Overfitting



### **Model Evaluation (cont'd)**

- A good forecasting model will have residuals that are:
  - Uncorrelated
  - Zero mean
- Better, but not necessary if they also:
  - Have constant variance
  - Are normally distributed



### Regression-based Techniques

- Linear regression
  - To find trend line
- Multiple regression
  - Use dummy variables for seasons
  - Incorporate other predictors



### **Time Series Decomposition**

- Time series can be decomposed into seasonal, trend-cycle and remainder components
- Additive, multiplicative and log-additive models are all common
- Moving averages
  - Smooth out variation to find non-linear trends
  - Can take moving averages of moving averages
  - Common to give recent observations higher weights



### **Time Series Decomposition (cont'd)**







### Module 8 – Section 2

### **Pandas for Time Series**

### **Pandas Core Object Types**

Series

DataFrame



### **The Time Dimension**

- The time dimension in Pandas objects can be marked with:
  - Timestamps e.g. December 13, 2017 at 11:22 EST
  - Fixed periods e.g. monthly
  - Intervals e.g. 2015-04-03 03:12 to 2015-04-14 11:11
  - Elapsed time e.g. 45 mins. 32:05 secs.



### **Dates and Times in Python**

- The main type in Python for dates and times is: datetime
- Stores time to the microsecond
- Can add or subtract times using a timedelta object
- Can convert back and forth between datetimes and strings



### **Series and Timeseries**

- Most basic Pandas time series object is Series
- If a series is created where the index is made from a list of datetime objects, the Series will become a Timeseries
- Arithmetic between differently-indexed time series automatically align on the dates
- Indexing, selection, subsetting work the way we've seen for DataFrames
- Duplicate index timestamps are allowed



### Fixed Frequency Data

- Generic time series in Pandas are assumed to be irregular
- Pandas has powerful capabilities for working with fixed frequency time series
- Use .resample(period) to convert an irregular time series to a fixed frequency one e.g. ts.resample('D')
- Newly created observations for times where there was no data will get values of NaN



### **Date and Time Ranges**

- Use pd.daterange()
- Specify start and either end or number of periods
- Time ranges don't exist as something independent of dates



### **Frequencies and Date Offsets**

- Frequencies are expressed as a base frequency and a multiplier
- Base frequency identifiers have a lot of built-in knowledge about business calendars



### **Base Time Series Frequencies**

| Alias                     | Offset Type            | Description                  |
|---------------------------|------------------------|------------------------------|
| D                         | Day                    | Calendar daily               |
| В                         | BusinessDay            | Business daily               |
| Н                         | Hour                   | Hourly                       |
| M                         | Minute                 | Minutely                     |
| S                         | Second                 | Secondly                     |
| W-MON,<br>W-TUE,<br>etc.  | Week                   | Weekly on given day of month |
| BQ-JAN<br>BQ-FEB,<br>etc. | BusinessQuarterEn<br>d |                              |



# **Shifting**

 Both Series and DataFrame have a .shift() method to shift data without changing the index e.g.:

```
ts / ts.shift(1) - 1
```

Shift is specified in multiples of the frequency



## **Shifting (Cont'd)**



In this example, shift(900) shifts the data by 900 days, pushing some of it off the end of the graph (and leaving NA values at the other end)



#### **Time Zone Handling**

- Timestamps are usually in the form of UTC time plus an offset for the time zone
- This is a nightmare to work with directly
- Fortunately Pandas has access to a detailed database of world time zone information



#### **Periods and Period Arithmetic**

- Periods represent time spans
- Pandas has classes and methods for this:

```
Period(start, freq)
PeriodIndex(values, freq)
.period_range(start, end, freq)
.asfreq()
```



#### Resampling and Frequency Conversions

- Resampling is converting from one frequency to another
- Aggregating data from a high frequency to a lower one is called downsampling
- Converting from a lower frequency to a higher one is called upsampling



# **Time Series Plotting**

Pandas improves on Matplotlib's date formatting



#### **Moving Window Functions for Series**

- Number of non-NA observations in a window: rolling\_count
- Moving window sum: rolling\_sum
- Moving window average: Series.rolling(window=250, center=False).mean()
- Moving window correlation:

```
Series.rolling(min_periods=100,
window=125).corr(other=<Series>)
```

Apply function to a window:

```
Series.rolling(center=False,window=250).apply(args
=<tuple>,func=<function>,kwargs=<dict>)
```

etc.





#### Module 8 – Section 3

#### **Resources and Homework**

#### Resources

- Hyndman & Athanasopoulos. <u>Forecasting Principles and Practices</u>. OTexts. 2013.
- Complete Time Series Modeling Tutorial
- Shumway & Stoffer. <u>Time Series and Its Applications</u>. Free Texts in Statistics.



### Resources (cont'd)

- <u>Bayesian causal impact analysis in time series</u>
   (CausalImpact package in R and paper):
- Online course in quantitative economics:



#### Resources (cont'd)

- Blog on algorithmic trading using free and open source software:
- Autocorrelation Plot
- Hilpisch, Yves. Python for Finance. O'Reilly. 2014.



#### **Time Series Assignment**

- 1. In a command window: conda install pandas-datareader
- 2. Download the adjusted close price for AAPL, BBRY, LULU and AMZN using the following code:

```
import pandas_datareader.data as web
import datetime
start = datetime.datetime(2012, 7, 31)
end = datetime.datetime(2017, 6, 30)
aapl = web.DataReader('WIKI/AAPL', 'quandl', start, end)
```

- 3. Get the data for the last 60 months, select the adjusted monthend close for each.
- 4. Use pandas autocorrelation\_plot to plot the autocorrelation of the adjusted monthend close of each of the stocks. Are they autocorrelated? Why or why not?



#### **Time Series Assignment (cont'd)**

- 5. Calculate the monthly return over the period for each stock using the "shift trick" on the lecture slide titled *Shifting* (Note: you should end up with a time series 59 months long)
- 6. Use pandas autocorrelation\_plot to plot the autocorrelation of the monthly returns. Are they autocorrelated? Why or why not?
- 7. OPTIONAL: Visualize the correlation between the returns of all pairs of stocks using a scatterplot matrix (1 bonus mark)
- 8. OPTIONAL: Following the instructions in the Glowing Python blog visualize the correlation of the returns of all pairs of stocks (2 bonus marks)



# **Optional Homework Exercises**

Homework, ch11.ipynb



#### **Optional Homework Exercises (cont'd)**

#### Exercise with Matching Homework Video:

- Exercise
- Note:
  - !head will only work on Linux
  - GOOG is now GOOGL



# **Next Class**

Introduction to Regression and Classification



#### Follow us on social

Join the conversation with us online:

- f facebook.com/uoftscs
- uoftscs @uoftscs
- in linkedin.com/company/university-of-toronto-school-of-continuing-studies
- @uoftscs





# Any questions?



#### **Thank You**

Thank you for choosing the University of Toronto School of Continuing Studies