

Project Documentation DemoApplication

Contents

ı	X2C Model	2
1	Version Information 1.1 X2C 1.2 Operating System 1.3 Scilab	
2	Model Structure2.1 Xcos Model	3 3 4
3	Model Parameter 3.1 Sample Time	5 5
4	Mask Parameter	6
II	Frame Program Documentation	8
5	File Index 5.1 File List	8
6	File Documentation 6.1 Hardware.h File Reference 6.1.1 Detailed Description 6.1.2 Function Documentation 6.2 Main.h File Reference 6.2.1 Detailed Description 6.2.2 Function Documentation	8 8 9 9 9
Ш	Used X2C-Blocks	11
7	Project Specific Blocks	11
8	AutoSwitch Constant Delay I Negation Sin3Gen	11 15 18 21 25 28

Part I

X2C Model

1 Version Information

1.1 X2C

• X2Cfull: Version 1037

1.2 Operating System

• OS: Windows 7 6.1

1.3 Scilab

• Scilab: Version 5.5.1.1412169962

• Java: Version 1.6.0_41

2 Model Structure

2.1 Xcos Model

Figure 1: DemoApplication

2.2 Subsystems

Figure 2: DemoApplication_Oscillator

3 Model Parameter

3.1 Sample Time

Sample Time	
T_S	$200\mu s$

3.2 Scilab Parameter

```
// File with model parameters such as sample time, scaling factors, etc...
2
  // Copyright (c) 2016, Linz Center of Mechatronics GmbH (LCM) http://www.lcm.at/
3
   // All rights reserved.
4
   // $LastChangedRevision: 1013 $
// $LastChangedDate:: 2016-09-01 10:52:56 +0200#$
6
8
   // This file is part of X2C. http://www.mechatronic-simulation.org/
9
10
// Sampling time
12 X2C_sampleTime = 1/5000; // 5kHz sampling frequency
   // Scaling factors
14
15
   // Controller parameters
```

Listing 1: ModelParameter.sce

4 Mask Parameter

Constant: Amplitude	
Value	0.5
Used Implementation	FiP16

AutoSwitch: AutoSwitch	
Thresh_up	0.6
Thresh_down	0.4
Used Implementation	FiP16

AutoSwitch: AutoSwitch1	
Thresh_up	0.0
Thresh_down	0.0
Used Implementation	FiP16

Constant: Frequency	
Value	0.0080
Used Implementation	FiP16

Constant: LED off	
Value	0.0
Used Implementation	FiP16

Constant: LED on	
Value	1.0
Used Implementation	FiP16

AutoSwitch: Oscillator	AutoSwitch
Thresh_up	0.5
Thresh_down	-0.5
Used Implementation	FiP16

Constant: OscillatorC_1	
Value	1.0
Used Implementation	FiP16

Constant: OscillatorC_enable	
Value	1.0
Used Implementation	FiP8

Constant: OscillatorC_init	
Value	0.0
Used Implementation	FiP16

Delay: OscillatorDelay	
ts_fact	1.0
Used Implementation	FiP16

I: OscillatorI	
Ki	50.0
ts_fact	1.0
Used Implementation	FiP16

Negation: OscillatorI	N egation
Used Implementation	FiP16

Sin3Gen: Sin3Gen	
fmax	1000.0
Offset	0.0
ts_fact	1.0
Used Implementation	FiP16

SinGen: SinGen	
fmax	1000.0
Offset	0.0
Phase	0.0
ts_fact	1.0
Used Implementation	FiP16

Part II

Frame Program Documentation

5 File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

Haı		

8

Main.h

Main function 9

6 File Documentation

6.1 Hardware.h File Reference

```
Hardware configuration.
#include <stdbool.h>
#include <stdint.h>
#include "inc/tm4c123gh6pm.h"
#include "driverlib/pin_map.h"
#include "inc/hw_types.h"
#include "inc/hw_gpio.h"
#include "inc/hw_memmap.h"
#include "driverlib/rom.h"
#include "driverlib/uart.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"
#include "driverlib/sysctl.h"
#include "driverlib/watchdog.h"
#include "SerialGeneric.h"
Include dependency graph for Hardware.h:
```


Functions

- void initHardware (void)
 - Initialization of hardware.
- void initSerial (tSerial *serial)

Initialization of serial interface.

6.1.1 Detailed Description

Hardware configuration.

6.1.2 Function Documentation

6.1.2.1 void initHardware (void)

Initialization of hardware.

- Configuration of system clock:
 - 16MHz external quartz
 - PLL
 - 2.5 frequency divider
 - -> 80 MHz system clock
- Configuration of serial interface:
 - UARTO
 - 115200 baud
 - 8 data bits
 - 1 stop bit
 - no parity
- Configuration of I/O-ports:
 - PF1, PF2 & PF3 as outputs for LEDs
 - PF0 & PF4 as inputs for switch buttons
- Configuration of 32-bit timer 0 for interrupt generation:
 - periodic mode
 - 5 kHz
- Enable processor interrupts
- · Enable timers

6.1.2.2 void initSerial (tSerial * serialP)

Initialization of serial interface.

Parameters

serialP | Serial object

6.2 Main.h File Reference

Main function.

Functions

void mainTask (void)

Main control task.

6.2.1 Detailed Description

Main function.

6.2.2 Function Documentation

6.2.2.1 void mainTask (void)

Main control task.

The main control task is called by the timer 0 interrupt service routine with a frequency of 5kHz.

- Assign inports
- Update X2C
- Update outports

Part III

Used X2C-Blocks

- 7 Project Specific Blocks
- 8 Internal Library Blocks

Block: AutoSwitch

Inports	
ln1	Input #1
Switch	Input #2: Threshold signal
ln3	Input #3

Outports	
Out	Either value of input #1 or input #3 dependent on value of input #2

Mask Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal

Description:

Switch between In1 and In3 dependent on Switch signal: Switch signal rising: Switch >= Threshold up -> Out = In1 Switch signal falling: Switch < Threshold down -> Out = In3

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Name FiP8 ID 128 Revision 0.1

C filename AutoSwitch_FiP8.c
H filename AutoSwitch_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

Data Structure:

```
typedef struct {
                    ID;
     uint16
                    *In1;
     int8
                    *Switch;
     int8
     int8
                    *In3;
     int8
                    Out;
                    Thresh_up;
     int8
                    Thresh_down;
     int8
     int8
                    Status;
} AUTOSWITCH_FIP8;
```

Implementation: FiP16

Name FiP16 ID 129 Revision 0.1

C filename AutoSwitch_FiP16.c
H filename AutoSwitch_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

```
int16    Out;
int16    Thresh_up;
int16    Thresh_down;
int8    Status;
} AUTOSWITCH_FIP16;
```

 Name
 FiP32

 ID
 130

 Revision
 0.1

C filename AutoSwitch_FiP32.c
H filename AutoSwitch_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int32
                    *In1;
     int32
                    *Switch;
     int32
                    *In3;
     int32
                    Out;
     int32
                    Thresh_up;
     int32
                    Thresh_down;
     int8
                    Status;
} AUTOSWITCH_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 131

 Revision
 0.1

C filename AutoSwitch_Float32.c H filename AutoSwitch_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

Data Structure:

```
typedef struct {
     uint16
                    ID;
     float32
                    *In1;
     float32
                    *Switch;
     float32
                    *In3;
     float32
                    Out;
     float32
                    Thresh_up;
     float32
                    Thresh_down;
                    Status;
     int8
} AUTOSWITCH_FLOAT32;
```

Implementation: Float64

Name Float64
ID 132
Revision 0.1

C filename AutoSwitch_Float64.c H filename AutoSwitch_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

```
typedef struct {
     uint16
                    ID;
     float64
                    *In1;
     float64
                    *Switch;
     float64
                    *In3;
     float64
                    Out;
     float64
                    Thresh_up;
     float64
                    Thresh_down;
                    Status;
     int8
} AUTOSWITCH_FLOAT64;
```

Block: Constant

Outports	
Out	Constant output

Mask Parameters	
Value	Constant factor

Description:

Constant value.

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8 ID 48 Revision 0.3

C filename Constant_FiP8.c
H filename Constant_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
K	Constant factor

Name FiP16 ID 49 Revision 0.3

C filename Constant_FiP16.c
H filename Constant_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
K	Constant factor

Data Structure:

Implementation: FiP32

 Name
 FiP32

 ID
 50

 Revision
 0.3

C filename Constant_FiP32.c H filename Constant_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
K	Constant factor

Data Structure:

```
typedef struct {
    uint16     ID;
    int32     Out;
    int32     K;
} CONSTANT_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 51

 Revision
 0.1

C filename Constant_Float32.c
H filename Constant_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
K	Constant factor

Data Structure:

```
typedef struct {
    uint16      ID;
    float32      Out;
    float32      K;
} CONSTANT_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 52

 Revision
 0.1

C filename Constant_Float64.c
H filename Constant_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
K	Constant factor

```
typedef struct {
    uint16     ID;
    float64     Out;
    float64     K;
} CONSTANT_FLOAT64;
```

Block: Delay

Inports	
In	Input In(k)

Outports	
Out	Output Out(k)=In(k-1)

Mask Parameters	
ts_fact	Multiplication factor of base sampling time (in integer format)

Description:

Output delay by one sample time interval.

This block can be used to enable feedback loops in the model.

Implementations:

FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP16

 Name
 FiP16

 ID
 3425

 Revision
 0.1

C filename Delay_FiP16.c H filename Delay_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
In_old	Input value from previous cycle

```
typedef struct {
    uint16 ID;
```

```
int16 * In;
int16 Out;
int16 In_old;
} DELAY_FIP16;
```

 Name
 FiP32

 ID
 3426

 Revision
 0.1

C filename Delay_FiP32.c H filename Delay_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
In_old	Input value from previous cycle

Data Structure:

```
typedef struct {
    uint16         ID;
    int32         *In;
    int32         Out;
    int32         In_old;
} DELAY_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 3427

 Revision
 0.1

C filename Delay_Float32.c H filename Delay_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
ln_old	Input value from previous cycle

Implementation: Float64

Name Float64 ID 3428 Revision 0.1

C filename Delay_Float64.c H filename Delay_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
In_old	Input value from previous cycle

Block: I

Inports	
In	Control error input
Init	Value which is loaded at initialization function call
Enable	Enable == 0: Deactivation of block; Out set to 0 Enable 0->1: Preload of integral part Enable == 1: Activation of block

Outports	
Out	Control value

Mask Parameters	
Ki	Integral Factor
ts_fact	Multiplication factor of base sampling time (in integer format)

Description:

I controller:

$$G(s) = Ki/s = 1/(Ti*s)$$

Each fixed point implementation uses the next higher integer datatype for the integrational value storage variable.

A rising flank at the *Enable* inport will preload the integrational part with the value present on the *Init* inport.

Transfer function (zero-order hold discretization method):

$$G(z) = K_I T_s \frac{1}{z - 1}$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
 FiP16 16 Bit Fixed Point Implementation
 FiP32 32 Bit Fixed Point Implementation
 Float32 32 Bit Floating Point Implementation
 Float64 64 Bit Floating Point Implementation

Name FiP8
ID 3200
Revision 1.0
C filename I_FiP8.c
H filename I_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
b0	Integral coefficient
sfr	Shift factor for I coefficient b0
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

Data Structure:

```
typedef struct {
     uint16
                     ID;
     int8
                     *In;
     int8
                     * Init;
     int8
                     *Enable;
     int8
                     Out;
     int8
                    b0;
     int8
                     sfr;
                     i_old;
     int16
                     enable_old;
     int8
} I_FIP8;
```

Implementation: FiP16

Name FiP16
ID 3201
Revision 1.0
C filename I_FiP16.c
H filename I_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
b0	Integral coefficient
sfr	Shift factor for I coefficient b0
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

```
typedef struct {
```

```
uint16
                    ID;
     int16
                    *In;
     int16
                    * Init;
     int8
                    *Enable;
     int16
                    Out;
     int16
                    b0;
     int8
                    sfr;
                    i_old;
     int32
     int8
                    enable_old;
} I_FIP16;
```

 Name
 FiP32

 ID
 3202

 Revision
 1.0

 C filename
 I_FiP32.c

 H filename
 I_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
b0	Integral coefficient
sfr	Shift factor for I coefficient b0
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int32
                    * In;
     int32
                    * Init;
     int8
                    *Enable;
     int32
                    Out;
     int32
                    b0;
     int8
                    sfr;
     int64
                    i_old;
     int8
                    enable_old;
} I_FIP32;
```

Implementation: Float32

Name Float32 ID 3203 Revision 0.1

C filename I_Float32.c H filename I_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
b0	Integral coefficient
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     float32
                    *In;
     float32
                    * Init;
     int8
                    *Enable;
     float32
                    Out;
     float32
                    b0;
     float32
                    i_old;
                    enable_old;
     int8
} I_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 3204

 Revision
 0.1

C filename I_Float64.c H filename I_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
b0	Integral coefficient
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

```
typedef struct {
     uint16
                    ID;
     float64
                    *In;
     float64
                    * Init;
     int8
                    *Enable;
     float64
                    Out;
     float64
                    b0;
     float64
                    i_old;
     int8
                    enable_old;
} I_FLOAT64;
```

Block: Negation

Inports	
In	Input

Outports	
Out	Negated input value

Description:

Negation of input signal.

Calculation:

$$Out = -In$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

 Name
 FiP8

 ID
 5040

 Revision
 0.1

C filename Negation_FiP8.c
H filename Negation_FiP8.h

8 Bit Fixed Point Implementation

 Name
 FiP16

 ID
 5041

 Revision
 0.1

C filename Negation_FiP16.c
H filename Negation_FiP16.h

16 Bit Fixed Point Implementation

Data Structure:

Implementation: FiP32

 Name
 FiP32

 ID
 5042

 Revision
 0.1

C filename Negation_FiP32.c H filename Negation_FiP32.h

32 Bit Fixed Point Implementation

Data Structure:

```
typedef struct {
    uint16     ID;
    int32     *In;
    int32     Out;
} NEGATION_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 5043

 Revision
 0.1

C filename Negation_Float32.c
H filename Negation_Float32.h

32 Bit Floating Point Implementation

```
} NEGATION_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 5044

 Revision
 0.1

C filename Negation_Float64.c
H filename Negation_Float64.h

64 Bit Floating Point Implementation

```
typedef struct {
    uint16     ID;
    float64    *In;
    float64     Out;
} NEGATION_FLOAT64;
```

Block: Sin3Gen

Inports	
A	Amplitude
f	Frequency

Outports	
u	Sine wave output phase u
V	Sine wave output phase v
W	Sine wave output phase w

Mask Parameters	
fmax	Maximum Frequency in Hz
Offset	Offset
ts_fact	Multiplication factor of base sampling time (in integer format)

Description:

Generation of a 3 sine waves with amplitude (A) and frequency (f).

Calculation fixed point implementation:

$$\begin{array}{rcl} u_k & = & A_k \cdot \sin{(2f_k \cdot f_{max} \cdot kT_S)} + A_{Offset} \\ \\ v_k & = & A_k \cdot \sin{(2f_k \cdot f_{max} \cdot kT_S - \frac{2\pi}{3})} + A_{Offset} \\ \\ w_k & = & A_k \cdot \sin{(2f_k \cdot f_{max} \cdot kT_S + \frac{2\pi}{3})} + A_{Offset} \end{array}$$

For sine calculation a lookup table with 256 entries is used. This results in a short computation time but with the downside of reduced accuracy for the FiP32 implementation.

Calculation floating point implementation (parameter f_max is ignored):

$$\begin{array}{rcl} u_k & = & A_k \cdot \sin{(2\pi f_k \cdot kT_S)} + A_{Offset} \\ \\ v_k & = & A_k \cdot \sin{(2\pi f_k \cdot kT_S - \frac{2\pi}{3})} + A_{Offset} \\ \\ w_k & = & A_k \cdot \sin{(2\pi f_k \cdot kT_S + \frac{2\pi}{3})} + A_{Offset} \end{array}$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8 ID 432 Revision 1.0

C filename Sin3Gen_FiP8.c H filename Sin3Gen_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
                     ID;
     uint16
     int8
                     *A;
     int8
                     * f;
     int8
                     u;
     int8
                     ν;
     int8
                     w;
     int8
                     delta_phi;
     int8
                     offset;
     int8
                     phi;
} SIN3GEN_FIP8;
```

Implementation: FiP16

Name FiP16 ID 433 Revision 1.0

C filename Sin3Gen_FiP16.c H filename Sin3Gen_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
                    ID;
     uint16
     int16
                    *A;
     int16
                    * f;
     int16
                    u;
     int16
                    ٧;
     int16
                    w;
     int16
                    delta_phi;
     int16
                    offset;
     int16
                    phi;
} SIN3GEN_FIP16;
```

Implementation: FiP32

Name FiP32 ID 434 Revision 1.0

C filename Sin3Gen_FiP32.c
H filename Sin3Gen_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

```
typedef struct {
     uint16
                    ID;
     int32
                    *A;
     int32
                    * f ;
     int32
                    u;
     int32
                    ۷;
     int32
                    w;
     int32
                    delta_phi;
     int32
                    offset;
     int32
                    phi;
} SIN3GEN_FIP32;
```

Implementation: Float32

Name Float32 ID 435 Revision 0.1

C filename Sin3Gen_Float32.c H filename Sin3Gen_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
                   ID;
     uint16
     float32
                   *A;
     float32
                   * f;
     float32
                   u;
     float32
                   ν;
     float32
                   w;
     float32
                   delta_phi;
     float32
                   offset;
     float32
                   phi;
} SIN3GEN_FLOAT32;
```

Implementation: Float64

Name Float64 ID 436 Revision 0.1

C filename Sin3Gen_Float64.c
H filename Sin3Gen_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

```
float64 u;
float64 v;
float64 w;
float64 delta_phi;
float64 offset;
float64 phi;
} SIN3GEN_FLOAT64;
```

Block: SinGen

Inports	
Α	Amplitude
f	Frequency

Outports	
u	Sine wave output

Mask Parameters	
fmax	Maximum Frequency in Hz
Offset	Offset
Phase	Phase [-PiPi]
ts_fact	Multiplication factor of base sampling time (in integer format)

Description:

Generation of a sine wave with amplitude (A) and frequency (f).

Calculation fixed point implementation:

$$u_k = A_k \cdot \sin(2f_k \cdot f_{max} \cdot kT_S + \phi_{Phase}) + A_{Offset}$$

For sine calculation a lookup table with 256 entries is used. This results in a short computation time but with the downside of reduced accuracy for the FiP32 implementation.

Calculation floating point implementation (parameter f_max is ignored):

$$u_k = A_k \cdot \sin(2\pi f_k \cdot kT_S + \phi_{Phase}) + A_{Offset}$$

Implementations:

FiP8	8 Bit Fixed Point Implementation
FiP16	16 Bit Fixed Point Implementation
FiP32	32 Bit Fixed Point Implementation
Float32	32 Bit Floating Point Implementation
Float64	64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8 ID 416 Revision 1.0

C filename SinGen_FiP8.c H filename SinGen_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
phase	Angle offset
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
                     ID;
     uint16
     int8
                     *A;
                     * f ;
     int8
     int8
                     u;
     int8
                     delta_phi;
     int8
                     phase;
     int8
                     offset;
     int8
                     phi;
} SINGEN_FIP8;
```

Implementation: FiP16

 Name
 FiP16

 ID
 417

 Revision
 1.0

C filename SinGen_FiP16.c
H filename SinGen_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
phase	Angle offset
offset	Amplitude offset
phi	Current angle

```
int16 u;
int16 delta_phi;
int16 phase;
int16 offset;
int16 phi;
} SINGEN_FIP16;
```

 Name
 FiP32

 ID
 418

 Revision
 1.0

C filename SinGen_FiP32.c
H filename SinGen_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
phase	Angle offset
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int32
                    *A;
     int32
                    * f ;
     int32
                    u;
     int32
                    delta_phi;
     int32
                    phase;
     int32
                    offset;
     int32
                    phi;
} SINGEN_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 419

 Revision
 0.1

C filename SinGen_Float32.c
H filename SinGen_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
delta_phi	Angle increment
phase	Angle offset
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     float32
                     *A;
     float32
                     * f ;
     float32
                    u;
     float32
                     delta_phi;
     float32
                    phase;
     float32
                     offset;
     float32
                     phi;
} SINGEN_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 420

 Revision
 0.1

C filename SinGen_Float64.c
H filename SinGen_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
delta_phi	Angle increment
phase	Angle offset
offset	Amplitude offset
phi	Current angle

```
typedef struct {
     uint16
                     ID;
     float64
                     *A;
     float64
                     * f ;
     float64
                     u;
     float64
                     delta_phi;
     float64
                     phase;
     float64
                     offset;
     float64
                     phi;
} SINGEN_FLOAT64;
```