Efficient-UCBV: An Almost Optimal Algorithm using Variance Estimates

Subhojyoti Mukherjee (IIT Madras)

Dr. K.P. Naveen (IIT Tirupati)

Dr. Nandan Sudarsanam (IIT Madras, RBC-DSAI)

Dr. Balaraman Ravindran (IIT Madras, RBC-DSAI)

AAAI 2018, New Orleans, Louisiana, USA

Feb 6, 2018

Overview

- Stochastic Multi-Armed Bandit Problem
- Problem Definition of SMAB
- Contributions in SMAB
- EUCBV Algorithm for SMAB
- Theoretical Analysis of EUCBV
- Experiments in SMAB
- Conclusions

• A finite set of actions or arms belonging to set \mathbb{A} such that $|\mathbb{A}| = K$.

- A finite set of actions or arms belonging to set \mathbb{A} such that $|\mathbb{A}| = K$.
- The rewards for each of the arms, $X_{i,t} \sim^{i.i.d} D_i$.

- A finite set of actions or arms belonging to set \mathbb{A} such that $|\mathbb{A}| = K$.
- The rewards for each of the arms, $X_{i,t} \sim^{i.i.d} D_i$.
- The learner does not know the mean r_i or the variance σ_i^2 of the distribution D_i , $\forall i \in \mathbb{A}$.

- A finite set of actions or arms belonging to set \mathbb{A} such that $|\mathbb{A}| = K$.
- The rewards for each of the arms, $X_{i,t} \sim^{i.i.d} D_i$.
- The learner does not know the mean r_i or the variance σ_i^2 of the distribution $D_i, \forall i \in \mathbb{A}$.
- Vital Assumption: $D_i, \forall i \in \mathbb{A}$ are fixed throughout the time horizon denoted by T.

• **Primary aim:** Minimize the expected regret by quickly identifying the arm whose expected mean is r^* such that $r^* > r_i, \forall i \in \mathbb{A}$.

- **Primary aim:** Minimize the expected regret by quickly identifying the arm whose expected mean is r^* such that $r^* > r_i, \forall i \in \mathbb{A}$.
- **Condition:** This has to be achieved within a finite *T* timesteps.

- **Primary aim:** Minimize the expected regret by quickly identifying the arm whose expected mean is r^* such that $r^* > r_i, \forall i \in \mathbb{A}$.
- **Condition:** This has to be achieved within a finite *T* timesteps.
- The expected regret of an algorithm after T timesteps is give by,

$$\mathbb{E}[R_T] = \sum_{i=1}^K \mathbb{E}[z_i(T)] \Delta_i,$$

where $\Delta_i = r^* - r_i$ is the gap.

- **Primary aim:** Minimize the expected regret by quickly identifying the arm whose expected mean is r^* such that $r^* > r_i, \forall i \in \mathbb{A}$.
- **Condition:** This has to be achieved within a finite *T* timesteps.
- The expected regret of an algorithm after T timesteps is give by,

$$\mathbb{E}[R_T] = \sum_{i=1}^K \mathbb{E}[z_i(T)] \Delta_i,$$

where $\Delta_i = r^* - r_i$ is the gap.

• $LB(R_T) \ge \Omega\left(\sqrt{KT}\right)$ and good learner should have atmost $UB(R_T) \le O\left(\sqrt{KT\log T}\right)$.

Why Study this Problem?

 General: The simple SMAB forms the building block to the larger multi-state RL problems.

Why Study this Problem?

- General: The simple SMAB forms the building block to the larger multi-state RL problems.
- Algorithmic: No round-based arm-elimination variance-aware algorithm exists which performs well empirically.

Why Study this Problem?

- General: The simple SMAB forms the building block to the larger multi-state RL problems.
- Algorithmic: No round-based arm-elimination variance-aware algorithm exists which performs well empirically.
- **Theoretical:** No round-based arm-elimination variance-aware algorithm exists which reaches order-optimal regret bound of $O\left(\sqrt{KT}\right)$.

 We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.

- We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.
- EUCBV takes into account the empirical variances of the arms along with mean estimates to quickly find the optimal arm.

- We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.
- EUCBV takes into account the empirical variances of the arms along with mean estimates to quickly find the optimal arm.
- It is the first variance-based arm elimination algorithm for the considered SMAB setting.

- We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.
- EUCBV takes into account the empirical variances of the arms along with mean estimates to quickly find the optimal arm.
- It is the first variance-based arm elimination algorithm for the considered SMAB setting.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.

- We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.
- EUCBV takes into account the empirical variances of the arms along with mean estimates to quickly find the optimal arm.
- It is the first variance-based arm elimination algorithm for the considered SMAB setting.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.
- Theoretically it achieves an order-optimal regret bound, the first for an arm elimination algorithm in SMAB setting.

- We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.
- EUCBV takes into account the empirical variances of the arms along with mean estimates to quickly find the optimal arm.
- It is the first variance-based arm elimination algorithm for the considered SMAB setting.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.
- Theoretically it achieves an order-optimal regret bound, the first for an arm elimination algorithm in SMAB setting.
- Empirically, it outperforms all the state-of-the-art algorithms for the considered environments.

EUCBV Algorithm for SMAB

EUCBV Arm Elimination

Expected Regret of EUCBV

Corollary (Gap-Independent Bound)

The regret of EUCBV is upper bounded by the following gap-independent expression:

$$\mathbb{E}[R_T] \leq \frac{C_3 K^5}{T^{\frac{1}{4}}} + 80\sqrt{KT}.$$

Algorithm	GD Bound		GI Bound	Var
EUCBV	0	$\left(rac{K\sigma_{max}^2\log(rac{T\Delta^2}{K})}{\Delta} ight)$	$O\left(\sqrt{KT}\right)$	Yes
UCBV	0 ($\left(\frac{K\sigma_{max}^2\log T}{\Delta}\right)$	$O\left(\sqrt{KT\log T}\right)$	Yes
MOSS	0 ($\left(\frac{K^2\log(T\Delta^2/K)}{\Delta}\right)$	$O\left(\sqrt{KT}\right)$	No
OCUCB	0 ($\left(\frac{K\log(T/H_i)}{\Delta}\right)$	$O\left(\sqrt{KT}\right)$	No

Experiments in SMAB

 We proposed the EUCBV algorithm for the SMAB setting which uses variance and mean estimation along with arm elimination to find the optimal arm.

- We proposed the EUCBV algorithm for the SMAB setting which uses variance and mean estimation along with arm elimination to find the optimal arm.
- Theoretically, EUCBV achieves an order-optimal regret guarantees, but further studies are required to reduce the constants.

- We proposed the EUCBV algorithm for the SMAB setting which uses variance and mean estimation along with arm elimination to find the optimal arm.
- Theoretically, EUCBV achieves an order-optimal regret guarantees, but further studies are required to reduce the constants.
- A more detailed analysis of the non-uniform arm selection and parameter selection is also required for EUCBV.

- We proposed the EUCBV algorithm for the SMAB setting which uses variance and mean estimation along with arm elimination to find the optimal arm.
- Theoretically, EUCBV achieves an order-optimal regret guarantees, but further studies are required to reduce the constants.
- A more detailed analysis of the non-uniform arm selection and parameter selection is also required for EUCBV.
- Acknowledgement: We thank Google India for granting us with a generous travel grant to present our work in AAAI 2018.

Thank You