	 -	-	-		_	U		
Reg. No.								

B.Tech. / M.Tech. (Integrated) DEGREE EXAMINATION, JULY 2023

First / Second Semester

21MAB101T - CALCULUS AND LINEAR ALGEBRA

(For the candidates admitted from the academic year 2021-2022 & 2022-2023)

Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.
- Part B and Part C should be answered in answer booklet. (ii)

Time: 3 Hours

Max. Marks: 75

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

Marks BL CO PO

2 5 1 If $A = \begin{bmatrix} 0 & 4 & 6 \end{bmatrix}$, then the eigen values of A^{-1} are

(A) $\frac{1}{2}, \frac{1}{4}, 1$

(B) 1,3,4

(C) 2,4,1

2. The signature of the quadratic form whose canonical form is $2y_1^2 - y_2^2 - y_3^2$

(A) 1

(B) -1

(C) 0

(D) 6

3. The eigen values of an orthogonal matrix are

(A) 0

(C) ± 2

(D) $\pm \frac{1}{2}$

4. Cayley Hamilton Theorem states that "Every ____ matrix satisfies its 1 1 1 1 own characteristic equation".

(A) Row

(B) Column

(C) Square

(D) Zero

5. If fx, y = 0 and y is an implicit function of x, then $\frac{dy}{dx}$ is

(B) $\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial x}$ (D) $\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial y}$

6.	If x	$= r \cos \theta, y = r \sin \theta$, then $\frac{\partial (x, y)}{\partial (r, \theta)}$		1	2	2	1
	(A)	$\frac{1}{2}$	(B) r^2				
	(C)	$r \\ 2r$	(D) r				
7.	_	u and v are functionally de	ependent then their Jacobian value	1	1	2	1
	is_ (A)	0	(B) 1				
	` '	Non-zero	(D) Greater than zero				
8.	If r	$t-s^2 < 0$ at (a,b) where $r = \frac{\partial^2 f}{\partial x^2}$, $s = \frac{\partial^2 f}{\partial x^2}$	$= \frac{\partial^2 f}{\partial x \partial y}, t = \frac{\partial^2 f}{\partial y^2}, \text{ then the point (a,b) is}$	1	1	2	2
	(A) (C)	Maximum point Saddle point	(B) Minimum point(D) Unique point				
9.	The	complementary function of D^2	2D 11. Ois	1	2	3	2
,							
			(B) $C_1 + C_2 x e^x$				
	(C)	$C_1 e^{2x} + C_2 e^{-2x}$	(D) $C_1 + C_2 x e^{-x}$				
10.	The	particular integral of $D^2 + 9y = e$		1	2	3	2
	(A)	$ \frac{e^{-2x}}{15} $ $ \frac{e^{-2x}}{13} $	(B) $\frac{e^{2x}}{15}$ (D) $\frac{e^{2x}}{13}$				
	(C)	15 -2r	15 (D) 3::				
	(C)	<u>e</u> 23	(D) $e^{2\lambda}$				
		13	. 13				
11.			$Q(y)$ is called, where a_0 , a_1 , a_2	1	1	3	1
		constants. Taylor's equation	(B) Cauchy's Euler equation				
		Legendre's equation	(D) Clairaut's equation				
	` '						
12.	If y_1	1	1	3	1		
	(A)		(B) 0				
	(C)	1	(D) a				
13.	The	radius of curvature of the curve	$y = e^x$ at (0.0) is	1	2	4	2
	(A)		(B) 2				
	(C)	$2\sqrt{2}$	(D) $\sqrt{2}$				
14.	A c	urve which touches each mem	aber of a family of curves is called	1	1	4	1
	(A)	Evolute	(B) Envelope				
	(C)	Circle of curvature	(D) Radius of curvature				

15.	The value of $\Gamma^{\frac{1}{2}}$ is	1	1	4	2
	(A) π (B) $\pi/2$ (C) $\sqrt{\pi}$ (D) $\sqrt{\frac{\pi}{2}}$				
16.	The curvature of straight line is(A) 1 (B) 2 (C) -1 (D) 0	1	1	4	1
17.	The series $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$ diverges if	1	1	5	1
	(A) $p>0$ (B) $p<1$ (C) $p>1$ (D) $p\le 1$				
18.	If $\sum u_n$ is a series of positive terms and $\lim_{n\to\infty} u_n^{\frac{1}{n}} = l$, then $\sum u_n$ converges if	1	1	5	2
	(A) $l < 1$ (B) $l > 1$ (C) $l = 1$ (D) $-1 < l < 1$				
19.	A series $\sum u_n$ is said to be absolutely convergent if the series is (A) $\sum u_n$ is convergent (B) $\sum u_n$ is divergent (C) $\sum u_n$ is oscillating (D) $\sum u_n$ is monotonic	1	1	5 `	1
20.	The series $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$ is	1	2	5	2
	 (A) Divergent (B) Convergent (C) Absolutely convergent (D) Conditionally convergent PART - B (5 × 8 = 40 Marks) Answer ALL Questions 	Marks	BL	со	PO
21. a.	Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.	8	3	1	1
b.	(OR)	8	3	1	1
	Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ and hence find A^{-1} .				
22. a.	Expand $e^x \cos y$ as Taylor's series in powers of x and y as far as the terms of the second degree.	8	4	2	2
b.	(OR) A rectangular box open at the top is to have a volume of 32cc. Find the dimensions of the box that requires the least material for its construction.	8	4.	2	2
Page 3 of 4		14JA1/2-	-21M	A101T	

23. a. Solve
$$D^2 - 3D + 2y = e^{2x} \sin x$$
.

8 3 3 1

(OR)

- b. Solve $\frac{d^2y}{dx^2} + y = \tan x$ by the method of variation of parameters.
- and the latest and the
- 24. a. Find the equation of the circle of curvature of the curve $y^2 = 12x$ at (3,6).
 - ,6). 8 3 4 2

(OR)

- b. Find the envelope of $\frac{x}{a} + \frac{y}{b} = 1$ where the parameters a and b are connected by a+b=c.
- 8 3 4 2

25. a. test the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$

8 4 5

b. Test the convergence of the series $\frac{3}{4} + \frac{3.4}{4.6} + \frac{3.4.5}{4.6.8} + \dots$

8 4 5 2

 $PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Questions

- Marks BL CO PO
- 26. Reduce quadratic form $x_1^2 + 2x_2^2 + x_3^2 2x_1x_2 + 2x_2x_3$ to canonical form through an orthogonal transformation. Also find the rank, index, signature and nature of the quadratic form.
- 27. Find the Evolute of the parabola $y^2 = 4ax$.

15 3 4 2

* * * * *