NAME:

MATH 623 FINAL EXAM

<u>Due</u>: Friday, December 15th, 2017 no later than 11AM

Instructions

- 1. This exam consists of four (4) problems all counted equally for a total of 100%.
- 2. You may consult Stein-Shakarchi's Vol. III and class material (class notes, homeworks done, handouts) **only**. No other books or notes are permitted.
- 3. You should work on the problems alone; do not discuss the problems with other people or classmates. You may ask me any questions you have.
- 4. **Type** each problem and its solution in an ordered fashion (new page for each problem) and staple them all together with this cover. Insert additional pages if needed.
- 5. State explicitly all results that you use in your proofs and verify that these results apply.
- 6. Show all your work and <u>justify</u> the steps in your proofs.

Conventions

1. If a measure is not specified, use Lebesgue measure. This measure is denoted by dm or dx.

- 1. a) Let $F: [-1,4] \to \mathbb{R}$ be the function defined by F(x) = 2|x| |x-2|. Prove that F is of bounded variation and compute the total variation $T_F(-1,4)$ of F over [-1,4].
 - b) Let $F \in BV([a,b])$ and let c be such that a < c < b. Show that

$$T_F(a,b) = T_F(a,c) + T_F(c,b)$$

c) Show that if L is Lipschitz continuous and F is of bounded variation then the composition $L \circ F$ is of bounded variation. Recall L Lipschitz continuous means that there exists M>0 such that $|L(x)-L(y)|\leq M|x-y|$ for all x,y.

- 2. For each fixed $N \ge 1$ natural number, let $\mathcal{R}_N := [0, N] \times [0, \infty)$, be a region in $[0, \infty) \times [0, \infty)$ endowed with the Lebesgue measure.
 - (a) Consider the continuous function $f(x,t) := (\sin x)e^{-xt}$ defined on $[0,\infty) \times [0,\infty)$. Prove that for each fixed N, f is integrable over \mathcal{R}_N ; i.e.,

$$\iint_{\mathcal{R}_N} |f(x,t)| \, dx dt < \infty.$$

(Hint. Use Tonelli's Theorem)

(b) Use part (a) and the fact that for any $x \in \mathbb{R}$, $x \neq 0$

$$\frac{1}{x} = \int_0^\infty e^{-xt} \, dt$$

to rigorously prove that

$$\lim_{N \to \infty} \int_0^N \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

(Hints. Use Fubini's Theorem in conjunction with the Dominated Convergence Theorem.)

3. Let $f \in L^1(\mathbb{R})$ and let \widehat{f} be its Fourier transform defined by

$$\widehat{f}(\xi) := \int_{\mathbb{R}} f(x) e^{-i\xi x} dx$$

for all $\xi \in \mathbb{R}$.

- a) Prove that \widehat{f} is uniformly continuous on \mathbb{R} . Hint. Prove and use the fact that for real numbers a,b and $z, \quad |e^{iaz}-e^{ibz}| \leq |z||a-b|$.
- b) Prove that \widehat{f} is also bounded on \mathbb{R} . What is the $\sup_{\xi \in \mathbb{R}} |\widehat{f}(\xi)|$ less than or equal to?
- c) Assume $f \in L^1(\mathbb{R})$ satisfies

$$\int_{|x| \le N} |x| |f(x)| dx \le N^{1/2}$$

$$\int_{|x|>N} |f(x)| \, dx \le \frac{1}{N^{1/2}}$$

for all $0 < N < \infty$. Show then that there exists a constant C > 0 and $0 < \beta < 1$ such that for all ξ and $\eta \in \mathbb{R}$,

 $|\widehat{f}(\xi) - \widehat{f}(\eta)| \le C |\xi - \eta|^{\beta}$

(in other words, \hat{f} is Hölder continuous of order β).

<u>Hint</u>. Obtain an estimate for $\int_{|x| \leq N} (e^{-ix\xi} - e^{-ix\eta}) f(x) dx$ and another estimate for $\int_{|x| > N} (e^{-ix\xi} - e^{-ix\eta}) f(x) dx$. Then optimize your choice of N (in terms of $|\xi - \eta|$) to obtain the desired estimate.

d) Now assume that in addition to having $f \in L^1(\mathbb{R})$, the function xf(x) is also integrable; that is, $\int_{\mathbb{R}} |xf(x)| dx < \infty$.

Show then that: \hat{f} is differentiable and moreover that,

$$\frac{d}{d\xi}\widehat{f}(\xi) = \widehat{(-ixf)}(\xi).$$

<u>Hint</u>. Use the Dominated Convergence Theorem.

4. Let $f \in L^1(\mathbb{R})$ and r > 0. Set

$$A_r(f)(x) := \frac{1}{2r} \int_{x-r}^{x+r} f(y) \, dy.$$

- (a) Show that the average $A_r(f)(x)$ is a continuous function in **both** x and r.
- (b) Show that if in addition f is continuous, then

$$\lim_{r \to 0} A_r(f)(x) = f(x).$$

(c) Show that A_r is a contraction in $L^1(\mathbb{R})$ in the sense that

$$||A_r(f)||_{L^1(\mathbb{R})} \le ||f||_{L^1(\mathbb{R})}.$$

Hint. Use Tonelli)

(d) Use (b) and (c) to show that if $f \in L^1(\mathbb{R})$ then

$$\lim_{r \to 0} ||A_r(f) - f||_{L^1(\mathbb{R})} = 0.$$

<u>Hint</u>. You may use without proof the fact that $L^1(\mathbb{R})$ functions can be approximated in $L^1(\mathbb{R})$ by continuous functions.