Adapting 2D ViTs for 3D Point Cloud Understanding

Bastian Berle - Christian Traxler

Agenda

- 1. Introduction, Motivation, Outline (1:30 min)
- 2. Pix4Point (3 min)
- 3. Adapt Point Former (2 min)
- 4. Diff Renderer (2:30 min)
- 5. Final Comparison / Outlook (1 min)

Introduction & Motivation

We train models built for **Point Cloud Understanding** using **Pretrained 2D ViTs**.

Why ViTs?

- Transformer Scalability & Inductive Bias Flexibility
- 2. Utilize 2D Pre-Trained Knowledge
- 3. Although, Transformers are Data Hungry

In the lecture, we have classified models into:

- Projection-based Models → Our Differential Renderer
- 2. Voxel-based
- 3. <u>Point-based</u> → Pix4Point & AdaptPointFormer

ScanObjectNN

- 15,000 Objects across 15 Categories
- Each Object contains ~2,048 Points
 - only geometry, i.e. x,y,z, and no RGB

- Real World Data: Noisy, Incomplete, and Misaligned
- Available in different Cuts:
 - Clean Segmented, Incomplete Noisy, etc...

We focus on 3D Object Classification

Pix4Point

- Progressive Point Patch Embedding (P3Embed)
- Pretrained ViT-S using MAE on ImageNet

- Point Vision Transformer (PViT)
- (Full) Finetune of PViT (not Frozen)

Pix4Pix Results

Pix4Pix Results

Adapt PointFormer

Results

Custom Concept

- Go back to more intuitive approach... projections

Results

Results - Differential Renderer

Number of Views		1	2	3	4
Renderer	Fix	0.7453	0.7659	0.7935	0.8055
	Diff	0.6248	0.7108	0.7091	0.7263

MVTN: Multi-View Transformation Network for 3D Shape Recognition (2021)

Discussion

Base Models: No Access to Same Base Models

Hyperparameters:

- Unreported Values
- Trustworthiness (Different Values in Paper vs Repository)
- Led to Bad Results (Instability in Training)

Dataset: Trained only on Classification vs Multiple Tasks