Βάσεις Δεδομένων Σειρά Ασκήσεων

Ομάδα Μ

Νικήτας Τσίννας, el18187 Αναστάσιος Παπαζαφειρόπουλος, el18079 Νικόλαος Παγώνας, el18175

Exercise 1 Exercise 2 Q_1 : $\Pi_{\operatorname{pid}}(\sigma_{\operatorname{companyname}=\operatorname{"Google"}}(\operatorname{Person}\bowtie\operatorname{Company}))\cap$ $\Pi_{\mathrm{pid}} \Big(\sigma_{\mathrm{sharenum} > 500} \big(\sigma_{\mathrm{companyname} = \mathrm{"Facebook"}} (\mathrm{Shares} \bowtie \mathrm{Company}) \big) \Big)$ Q_2 : $\Pi_{\mathrm{Person.pid}} \big(\sigma_{\mathrm{Person.cid} = \mathrm{Shares.cid} \wedge \mathrm{Person.managerid} = \mathrm{Shares.pid} \wedge \mathrm{Sharesnum} >_0 \big(\mathrm{Person} \times \mathrm{Shares} \big) \big)$ Q_3 : $\Pi_{\mathrm{pid}}\big({}_{\mathrm{pid}}g_{_{(\mathrm{count}(\mathrm{cid})>2)}}(\sigma_{\mathrm{sharesnum}>0}(\mathrm{Shares}))\big)$ Q_4 : $\Pi_{\mathrm{pid,cid}}\big(\sigma_{\mathrm{sharesnum}>0}(Shares)\big) \, \Big/ \, \Pi_{\mathrm{cid}}(Company)$ Exercise 3 Exercise 4 Α. Find all attributes that have not appeared on the RHS of any FD: $S_1 = \{B, C\}$ Find all attributes that have not appeared on the LHS of any FD: $S_2 = \{A\}$ Compute the closure set of S_1 : $S_1^+ = \{A, B, C, D, E\}$. $S_1^+ = R$, so $\{B, C\}$ is the only candidate key. В. Computing a canonical cover for F: Initially, $F_c = F$. Iteration #1: Can't use union rule. Checking $B \to EA$:

Removing B:

 $\emptyset^+ = \emptyset$, doesn't contain B, so B is needed.

Removing E:

$$\begin{array}{l} F'_c = \{B \to A, EBC \to D, BED \to A\} \\ (B)^+ = (AB), \mbox{ doesn't contain E, so E is needed.} \end{array}$$

Removing A:

$$F'_c = \{B \to E, EBC \to D, BED \to A\}$$
 $(B)^+ = (BE),$ doesn't contain A, so A is needed.

Checking $EBC \to D$:

Removing E:

$$(BC)^+ = (ABCDE)$$
, contains E, so E is extraneous in $EBC \to D$.

Now
$$F_c = \{B \to EA, BC \to D, BED \to A\}$$

Iteration #2:

Can't use union rule.

Checking $B \to EA$:

Removing B:

$$\emptyset^+ = \emptyset$$
, doesn't contain B, so B is needed.

Removing E:

$$F'_c = \{B \to A, BC \to D, BED \to A\}$$

 $(B)^+ = (AB)$, doesn't contain E, so E is needed.

Removing A:

$$F'_c = \{B \to E, BC \to D, BED \to A\}$$
 $(B)^+ = (BE),$ doesn't contain A, so A is needed.

Checking $BC \to D$:

Removing B:

$$(C)^+ = (C)$$
, doesn't contain B, so B is needed.

Removing C:

$$(B)^+ = (ABE)$$
, doesn't contain C, so C is needed.

Removing D:

$$F_c' = \{B \to EA, BED \to A\}$$

 $(BC)^+ = (ABCE)$, doesn't contain D, so D is needed.

Checking $BED \to A$:

Removing B:

$$(ED)^+ = (ED)$$
, doesn't contain B, so B is needed.

Removing E:

$$(BD)^+ = (ABDE)$$
, contains E, so E is extraneous in $BED \to A$.

Now
$$F_c = \{B \to EA, BC \to D, BD \to A\}$$

Iteration #3:

Can't use union rule.

Checking $B \to EA$:

Removing B:

 $\emptyset^+ = \emptyset$, doesn't contain B, so B is needed.

Removing E:

$$F'_c = \{B \to A, BC \to D, BD \to A\}$$

 $(B)^+ = (AB)$, doesn't contain E, so E is needed.

Removing A:

$$F_c' = \{B \to E, BC \to D, BD \to A\}$$

 $(B)^+ = (BE)$, doesn't contain A, so A is needed.

Checking $BC \to D$:

Removing B:

$$(C)^+ = (C)$$
, doesn't contain B, so B is needed.

Removing C:

$$(B)^+ = (ABE)$$
, doesn't contain C, so C is needed.

Removing D:

$$F'_c = \{B \to EA, BD \to A\}$$

$$(BC)^+ = (ABCE), \text{ doesn't contain D, so D is needed.}$$

Checking $BD \to A$:

Removing B:

$$(D)^+ = (D)$$
, doesn't contain B, so B is needed.

Removing D:

$$(B)^+ = (ABE)$$
, doesn't contain D, so D is needed.

Removing A:

$$F_c' = \{B \to EA, BC \to D\}$$

$$(BD)^+ = (ABDE), \text{ contains A, so A is extraneous in } BD \to A.$$

Now
$$F_c = \{B \to EA, BC \to D\}$$

Iteration #4:

Can't use union rule.

Checking $B \to EA$:

Removing B:

$$\emptyset^+ = \emptyset$$
, doesn't contain B, so B is needed.

Removing E:

$$F'_c = \{B \to A, BC \to D\}$$
 $(B)^+ = (AB),$ doesn't contain E, so E is needed.

Removing A:

$$F_c' = \{B \to E, BC \to D\}$$

 $(B)^+ = (BE)$, doesn't contain A, so A is needed.

Checking $BC \to D$:

Removing B:

 $(C)^+ = (C)$, doesn't contain B, so B is needed.

Removing C:

 $(B)^+ = (ABE)$, doesn't contain C, so C is needed.

Removing D:

$$F_c' = \{B \to EA\}$$
 $(BC)^+ = (ABCE)$, doesn't contain D, so D is needed.

 F_c didn't change, so the canonical cover is $\{B \to EA, BC \to D\}$ Thus, the minimal cover is $\{B \to A, B \to E, BC \to D\}$

$\mathbf{C}.$

R is in 1NF, assuming all attributes in R are atomic.

But R is not in 2NF, since it has a non-prime attribute (A) that is dependent on a proper subset (B) of a candidate key (BC). This follows from $B \to EA$.

Thus, it is also not in 3NF, BCNF, etc. and the best/strictest normal form is 2NF.

D.

$$F_c = \{B \to EA, BC \to D\}$$

For each functional dependency, add LHS and RHS attributes in a new schema:

$$R_1 = (A, B, E)$$

$$R_2 = (B, C, D)$$

Since R_2 contains a candidate key for R ($\{B,C\}$), there is no need to create a new schema.

Finally, since no schema is contained in another schema, we are done.

Thus, the 3NF decomposition produced by the algorithm is:

$$R_1(A, B, E)$$
, with $FD_1 = \{B \rightarrow AE\}$
 $R_2(B, C, D)$, with $FD_2 = \{BC \rightarrow D\}$

Exercise 5

Α.

Find all attributes that have not appeared on the RHS of any FD: $S_1 = B$ Find all attributes that have not appeared on the LHS of any FD: $S_2 = D$

Compute the closure set of S_1 : $S_1^+ = \{B, D\}$

 $S_1^+ \neq R$, so for each attribute x in R-B, test whether $A \cup \{x\}$ is a candidate key:

$$(S_1 \cup \{A\})^+ = \{A,B\}^+ = \{A,B,C,D\} = R$$
, so $\{A,B\}$ is a candidate key. $(S_1 \cup \{B\})^+ = \{B\}^+ = \{B,D\}$ $(S_1 \cup \{C\})^+ = \{B,C\}^+ = \{A,B,C,D\} = R$, so $\{B,C\}$ is a candidate key.

Thus, the candidate keys are $\{A, B\}$ and $\{B, C\}$.

В.

$$result = \{R\} = \{ABCD\}$$

Check if $R_i = ABCD$ is in BCNF:

for each subset a of R_i , check if a^+ contains all attributes of R_i , or no attributes of $R_i - a$:

$$a=A$$
 :
$$a^+=A \label{eq:a-a-bcd} R_i-a=BCD \label{eq:a-bcdd} a^+ \text{ contains no attributes of } R_i-a. \text{ OK}$$

$$a = B$$
:
 $a^+ = BD$
 $R_i - a = ACD$

 a^+ doesn't contain all attributes of R_i , and it contains attribute D of $R_i - a$. NOT OK

Thus, $a \to (a^+ - a) \cup R_i \equiv B \to D$ breaks BCNF rules.

$$result = (result - R_i) \cup (R_i - D) \cup (B, D) = \{ABC, BD\}$$

BD is in BCNF by construction.

Check if $R_i = ABC$ is in BCNF:

for each subset a of R_i , check if a^+ contains all attributes of R_i , or no attributes of $R_i - a$:

$$a=A$$
 :
$$a^+=A \label{eq:a-bc}$$

$$R_i-a=BC \label{eq:a-bc}$$
 a^+ contains no attributes of R'i - a. OK

$$a = B$$
:
 $a^+ = BD$
 $R_i - a = AC$
 a^+ contains no attributes of $R_i - a$. OK

$$a = C$$
:
 $a^+ = AC$
 $R_i - a = AB$

 a^+ doesn't contain all attributes of R_i , and it contains attribute A of $R_i - a$. NOT OK

Thus, $a \to (a^+ - a) \cup R_i \equiv C \to A$ breaks BCNF rules.

$$result = (result - R_i) \cup (R_i - A) \cup (C, A) = \{BD, BC, CA\}$$

CA is in BCNF by construction.

Check if $R_i = BC$ is in BCNF:

for each subset a of R_i , check if a^+ contains all attributes of R_i , or no attributes of $R_i - a$:

$$a=B$$
:
 $a^+=BD$
 $R_i-a=C$
 a^+ contains no attributes of R_i-a . OK

$$a = C$$
:

$$a^{+} = CA$$
 $R_{i} - a = B$
 a^{+} contains no attributes of $R_{i} - a$. OK
$$a = BC:$$
 $a^{+} = ABCD$
 a^{+} contains all attributes of R_{i} . OK

Thus, BC is in BCNF.

Note: Normally we need not check if relation schemas with 2 attributes are in BCNF (they always are). Nonetheless, we run the algorithm for completeness' sake.

We are done.

The BCNF decomposition produced by the algorithm is:

$$R_1(BD)$$
, with $FD_1 = \{B \to D\}$
 $R_2(BC)$, with $FD_2 = \varnothing$
 $R_3(AC)$, with $FD_3 = \{C \to A\}$

We see that the functional dependency $AB \to C$ is not preserved. This is normal, since it is not always possible to get a BCNF decomposition that is dependency preserving.