NATIONAL POLYTECHNIC INSTITUTE SUPERIOR SCHOOL OF COMPUTER SCIENCES

Computer Networks.

Dijkstra's Algorithm.

Hernandez Martinez Carlos David. Grupo: 2cm8.

October 25, 2016

Contents

1	Dijkstra's algorithm:	2
	1.1 Routing Table:	2
2	Metrics:	3

1 Dijkstra's algorithm:

Using the Dijkstra's algorithm I'll find the Routing table for the Node 1 of the following graph:

M	D2	PATH	D3	PATH	D4	PATH	D5	PATH	D6	PATH
1	2	1-2	1	1-3	5	1-4	INF	1-5	INF	1-6
1-3	2	1-2			4	1-3-4	2	1-3-5	INF	1-6
1-3-5	2	1-2			3	1-3-5-4			4	1-3-5-6
1-3-5-2					3	1-3-5-4			4	1-3-5-6
1-3-5-2-4									4	1-3-5-6
1-3-5-2-4-6										

1.1 Routing Table:

Destination	Metric	Next Hop
1	0	-
2	2	2
3	1	3
4	3	3
5	2	3
6	4	3

2 Metrics:

$$For D_{3} = 1:$$

$$D_{2} = min [D_{2}, D_{3} + d_{2-3}] = min [2, 1 + 2] = 2$$

$$D_{4} = min [D_{4}, D_{3} + d_{4-3}] = min [5, 1 + 3] = 4$$

$$D_{5} = min [D_{5}, D_{3} + d_{5-3}] = min [INF, 1 + 1] = 2$$

$$D_{6} = min [D_{6}, D_{3} + d_{6-3}] = min [INF, 1 + INF] = INF$$

$$For D_{5} = 2:$$

$$D_{2} = min [D_{2}, D_{5} + d_{2-5}] = min [2, 2 + INF] = 2$$

$$D_{4} = min [D_{4}, D_{5} + d_{4-5}] = min [4, 2 + 1] = 3$$

$$D_{6} = min [D_{6}, D_{5} + d_{6-5}] = min [INF, 2 + 2] = 4$$

$$For D_{2} = 2:$$

$$D_{4} = min [D_{4}, D_{2} + d_{4-2}] = min [3, 2 + 3] = 3$$

$$D_{6} = min [D_{6}, D_{2} + d_{6-2}] = min [4, 2 + INF] = 4$$

$$For D_{4} = 3:$$

$$D_{6} = min [D_{6}, D_{4} + d_{6-2}] = min [4, 3 + 8] = 4$$