Protecting Language Models via Invisible Watermarking

https://arxiv.org/pdf/2302.03162.pdf

- 这篇文章提供了一个描述watermark动机的全新视角:除了减少大模型滥用,也可以一定程度避免 模型蒸馏出低价替代品;因为这个水印是加在大模型的decode过程中的,一个well-trained的知识 蒸馏出来的也会带着水印,这样只要对声称是自研模型的低价替代品生成的文本做水印检测,如果 检测出是带有某个版权LLM的水印,就可知是从哪蒸馏出来的。
- GINSEW: Generative Invisible Sequence Watermarking
 - o Problem Setting: 需要一个可信的检测方,要有对suspect model的white-box access,以 及一个测试数据集,用一个key去对比这俩模型的输出,看它们的secret signal是否match

感觉这个检测成本比较大,还需要white-box access;

○ Watermarking Process: 全局红绿列表 + 伪随机数

Algorithm 1 Watermarking process

- 1: Inputs: Input text x, probability vector \mathbf{p} from the decoder of the victim model, vocab V, group 1 \mathcal{G}_1 , group 2 \mathcal{G}_2 , hash function $g(x, \mathbf{v}, \mathbf{M})$.
- 2: Output: Modified probability vector p
- 3: Calculate probability summation of tokens in group 1 and group 2: $Q_{\mathcal{G}_1} = \sum_{i \in \mathcal{G}_1} \mathbf{p}_i, \ Q_{\mathcal{G}_2} = \sum_{i \in \mathcal{G}_2} \mathbf{p}_i$
- 4: Calculate the periodic signal

$$z_1(\mathbf{x}) = \cos(f_w g(\mathbf{x}, \mathbf{v}, \mathbf{M})),$$

$$z_2(\mathbf{x}) = \cos(f_w g(\mathbf{x}, \mathbf{v}, \mathbf{M}) + \pi)$$

5: Set
$$\tilde{Q}_{\mathcal{G}_1} = \frac{Q_{\mathcal{G}_1} + \varepsilon(1 + z_1(\boldsymbol{x}))}{1 + 2\varepsilon}$$
, $\tilde{Q}_{\mathcal{G}_2} = \frac{Q_{\mathcal{G}_2} + \varepsilon(1 + z_2(\boldsymbol{x}))}{1 + 2\varepsilon}$
6: **for** $i = 1$ **to** $|\mathcal{V}|$ **do**

7: **if**
$$i \in \mathcal{G}_1$$
 then $\mathbf{p}_i \leftarrow \frac{\tilde{Q}_{\mathcal{G}_1}}{Q_{\mathcal{G}_1}} \cdot \mathbf{p}_i$

8: **else**
$$\mathbf{p}_i \leftarrow \frac{\tilde{Q}g_2}{Qg_2} \cdot \mathbf{p}_i$$

- 9: end for
- 10: return p
- 全局红绿列表: g1, g2
- 对新token的logits引入随机数signal
- Watermark Detection

Algorithm 2 Watermark detection

- 1: **Inputs:** Suspect model S, sample probing data D from the training data of S, vocab V, group 1 G_1 , group 2 G_2 , hash function $g(x, \mathbf{v}, \mathbf{M})$, filtering threshold value
- 2: Output: Signal strength
- 3: Initialize $\mathcal{H} = \emptyset$
- 4: **for each** input x in \mathcal{D} **do**
- 5: $t = g(\mathbf{v}, \mathbf{x}, \mathbf{M})$
- : for each decoding step of S(x) do
- 7: Get probability vector $\hat{\mathbf{p}}$ from the decoder of the suspect model.
- 8: $\hat{Q}_{\mathcal{G}_1} = \sum_{i \in \mathcal{G}_1} \hat{\mathbf{p}}_i$
- 9: $\mathcal{H} \leftarrow \mathcal{H} \cup (t, \hat{Q}_{G_1})$
- 10: **end for**
- 11: end for
- 12: Filter out elements in \mathcal{H} where $\hat{Q}_{\mathcal{G}_1} \leq q_{\min}$, remaining pairs form the set $\widetilde{\mathcal{H}}$.
- 13: Compute the Lomb-Scargle periodogram from the pairs $(t^{(k)},\hat{Q}^{(k)}_{\mathcal{G}_1})\in\widetilde{\mathcal{H}}$
- 14: Compute $P_{\rm snr}$ in Equation 5.
- 15: return $P_{\rm snr}$
- o shared key: hash function g, v, M
- o access:
 - watermarking process: white-box access to victim model
 - watermark detection process: white-box access to suspect model
- Evaluation
 - Task: Machine Translation & Story Generation
 - o Model collection: 对每个task,训了一个Transformer base model作为victim model,再根据这个训了20个suspect model作为positive examples,以及30个models作为negative examples
 - Text Quality Evaluation
 - Machine Translation: BLEU & BERTScore
 - Story Generation: ROUGE & BERTScore
 - o Detection mAP
 - Robustness Evaluation
 - Watermark removal attack: synonym randomization
- Watermark detection with text alone: 效果一般

Algorithm 3 Watermark detection with text alone

- 1: **Inputs:** Suspect model S, sample probing data D from the training data of S, vocab V, group 1 G_1 , group 2 G_2 , hash function g(x, v, M).
- 2: Output: Signal strength
- 3: Initialize $\mathcal{H} = \emptyset$
- 4: **for each** input x in \mathcal{D} **do**
- 5: $t = g(\mathbf{v}, \mathbf{x}, \mathbf{M})$
- 6: $oldsymbol{y} \leftarrow \mathcal{S}(oldsymbol{x})$
- 7: **for each** token of y **do**
- 8: $\mathcal{H} \leftarrow \mathcal{H} \cup (t, \mathbf{1}(\boldsymbol{y}_i \in \mathcal{G}_1))$
- 9: **end for**
- 10: **end for**
- 11: Compute the Lomb-Scargle periodogram from \mathcal{H} , and compute P_{snr} in Equation 5.
- 12: **return** P_{snr}