535514: Reinforcement Learning Lecture 23 — Distributional RL

Ping-Chun Hsieh

May 13, 2024

On-Policy vs Off-Policy Methods

	Policy Optimization	Value-Based	Model- Based	Imitation- Based
On- Policy	Exact PG REINFORCE (w/i baseline) A2C On-policy DAC TRPO Natural PG (NPG) PPO-KL & PPO-Clip RLHF by PPO-KL	Epsilon-Greedy MC Sarsa Expected Sarsa	Model- Predictive Control	IRL GAIL IQ-Learn
Off- Policy	Off-policy DPG & DDPG Twin Delayed DDPG (TD3)	Q-learning Double Q-learning DQN & DDQN Rainbow C51 / QR-DQN / IQN Soft Actor-Critic (SAC)	(MPC) PETS	

_

Distributional Q-Learning

(Learn value distribution Z(s, a) & use E[Z(s, a)] as Q(s, a) in Q-Learning)

Why Shall We Consider "Value Distributions"?

- Risky vs safe choices
 - E.g., Same expected return but different variance
- Good empirical performance (despite that the underlying root cause is not fully known)
 - C51 [Belleware et al., ICML 2017]
 - QR-DQN [Dabney et al., AAAI 2018]
 - IQN [Dabney et al., ICML 2018]
- New approaches for exploration
 - Information-directed exploration [Nikolov et al., ICLR 2019]
 - Distributional RL for efficient exploration [Mavrin et al., ICML 2019]
- Learn better critics
 - Truncated Quantile Critics (TQC) [Kuznetsov et al., ICML 2020]

Question: How to learn the complete value distribution (instead of merely the expectation)?

Sample Action-Value $Z^{\pi}(s,a)$

Sample action-value $Z^{\pi}(s,a)$: sample return if we start from state s and take action a, and then follow policy π

$$Q^{\pi}(s, a) = \mathbb{E}[Z^{\pi}(s, a)] = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})\right]$$

- $ightharpoonup Z^{\pi}(s,a)$ is essentially a random variable
- Example: 1-state MDP with 2 actions and $\pi(s) = a_1$

$$Q^{\pi}(s,a_1) = ? \text{ Distribution of } Z^{\pi}(s,a_1)?$$

$$= \frac{a_1}{a_2} r(s,a_2) \sim \mathcal{N}(1,10)$$

$$Q^{\pi}(s,a_2) = ? \text{ Distribution of } Z^{\pi}(s,a_2)?$$

$$Q^{\pi}(s,a_2) = ? \text{ Distribution of } Z^{\pi}(s,a_2)?$$

$$C^{2}r(s, a_{2}) \sim \mathcal{N}(1, 10)$$
• $Q^{\pi}(s, a_{2}) = ?$ Distribution of $Z^{\pi}(s, a_{2})$

Finding Z^{π} via Distributional Bellman Equation

- Mild assumption: $Z^{\pi}(s, a)$ has bounded moments
- Distributional Bellman equation for $Z^{\pi}(s,a)$: Given s,a, we have

$$Z^{\pi}(s, a) \stackrel{D}{=} r(s, a) + \gamma Z^{\pi}(s', a')$$

 $\stackrel{D}{(=: equal in distribution)}$

- Question: How to interpret this equation?
- Question: Are r(s, a) and $Z^{\pi}(s', a')$ independent?
- Question: Is this consistent with Bellman expectation equation?

Distributional Bellman Operator B^{π}

- $m \mathcal{Z}$: the space of all value distributions with bounded moments
- Transition operator $P^{\pi}: \mathcal{Z} \to \mathcal{Z}$

$$P^{\pi}Z(s,a) := Z(s',a')$$

$$s' \sim P(\cdot \mid s,a), \ a' \sim \pi(\cdot \mid s')$$

- Distributional Bellman operator $B^{\pi}: \mathcal{Z} \to \mathcal{Z}$

$$B^{\pi}Z(s,a) := r(s,a) + \gamma P^{\pi}Z(s,a)$$

An Example of Applying B^{π}

- Example: 2 states x_1, x_2 and 2 actions a_1, a_2
- $\pi(a_1 | x_2) = 0.3$, $\pi(a_2 | x_2) = 0.7$, and $\gamma = 0.9$

$$B^{\pi}Z(s,a) \stackrel{D}{:=} r(s,a) + \gamma P^{\pi}Z(s,a)$$

- Suppose $Z(x_1,a_1)=0$, $Z(x_2,a_1)=0$ with probability 1 and $Z(x_2,a_2)\sim\mathcal{N}(0,1)$
- Question: $B^{\pi}Z(x_2, a_2) = ? B^{\pi}Z(x_1, a_1) = ?$

Visualization of Distributional Bellman Operator

Distributional "Optimality" Operator

Recall— Distributional Bellman operator $B^{\pi}: \mathcal{Z} \to \mathcal{Z}$

$$B^{\pi}Z(s,a) := r(s,a) + \gamma P^{\pi}Z(s,a)$$

• Distributional optimality operator B^* : The B^π resulting from a greedy policy π , i.e., $B^* \equiv B^{\pi_{greedy}}$

What does "greedy" mean here?

An Example of B^*

$$r = 0 \qquad r = \epsilon \pm 1 \ (\epsilon > 0)$$

Suppose we have the following:

- $\pi(a_1 | x_2) = 0.3$, $\pi(a_2 | x_2) = 0.7$, and $\gamma = 1$
- $Z(x_1, a_1) = 0$, $Z(x_2, a_1) = 0$ with probability 1
- $Z(x_2, a_2) \sim \mathcal{N}(1, 2)$

Question: What's the PDF of $B*Z(x_1, a_1) = ?$

$$B*Z(s,a):\stackrel{D}{=} r(s,a) + \gamma P^{\pi_{greedy}}Z(s,a)$$

Let's Design (Tabular) "Distributional" Q-Learning

Recall: Standard Q-Learning

```
Step 1: Initialize Q(s,a) for all (s,a), and initial state s_0

Step 2: For each step t=0,1,2,\cdots

Select a_t using \varepsilon-greedy w.r.t Q(s_t,\cdot) \mathbb{E}[Z(s,a)]

Observe (r_{t+1},s_{t+1})

Q(s_t,a_t) \leftarrow Q(s_t,a_t) + \alpha_t(s_t,a_t) (r_{t+1} + \gamma \max_{a'} Q(s_{t+1},a') - Q(s_t,a_t))

Z(s_t,a_t) \leftarrow (1-\alpha_t(s_t,a_t))Z(s_t,a_t) + \alpha_t(s_t,a_t)B^*Z(s_t,a_t)
```

To get "distributional Q-learning", we need two modifications:

- 1. Action selection in ε -"greedy"
- 2. "Distributional" TD update

Next Question: "Function approximation" for distributional Q-learning?

A Popular Distributional DQN Method: C51

• Question #1: How to express Z(s, a)?

(C1) <u>Categorical</u> distributions for parametrizing $Z_{\theta}(s,a)$

- Question #2: How to update Z(s, a) during training?
- (C2) Mimicking B^* for learning with sample transitions (s, a, r, s')
- (C3) Cramer Projection Φ for support mismatch caused by $B^*Z_{\theta}(s,a)$
- (C4) Minimize $L_{C51}(s, a, r, s'; \theta) := D_{KL}(\Phi B * Z_{\bar{\theta}}(s, a) || Z_{\theta}(s, a))$

Visualization of C51: Distributional Optimality Operator + Projection

(Let π be a greedy policy)

(C2) Mimic B^*

(C1) categorical distributions

(C1) Categorical Distributions for $Z_{\theta}(s, a)$

Example: Categorical distributions with 3 "atoms"

	0	1	2
$Z_{\theta}(s_1, a_1)$	0.35	0.17	0.48
$Z_{\theta}(s_1, a_2)$	0.06	0.62	0.32

Possible values (each value is called an "atom")

Categorical distribution

- With more atoms, $Z_{\theta}(s, a)$ can be approximated more accurately
- Question: Any inherent assumption about using categorical distributions?
 Upper & lower limits of possible values are known

(C1) Categorical Distributions for $Z_{\theta}(s, a)$ (Cont.)

- Idea: Choose $V_{\rm max}, V_{\rm min}$ from preliminary experiments and select the number of atoms (denoted by N) $\Delta = \frac{V_{\rm max} V_{\rm min}}{N-1}$
- Example: 10 atoms with $V_{\min} = 0, V_{\max} = 4.5$

- Remark: C51 suggests using 51 atoms (why?)
- To achieve categorical distributions, one simple approach is to use

Softmax parameterization:
$$P(Z_{\theta}(s, a) = z_i) = \frac{e^{f_{\theta_i}(s, a)}}{\sum_j e^{f_{\theta_j}(s, a)}}$$

(C2) Mimicking B^* for Learning With Sample Transitions

- Here we presume a greedy policy w.r.t Q function for B^*
- Question: Given only transitions (s, a, r, s'), how to enforce B^* to update Z(s, a) on categorical distributions?

$$a^* = \arg \max_{a} Q(s', a)$$

$$Z(s', a^*)$$

$$p_0$$

$$z_0 z_1$$

$$z_0$$

Question: Any issue?

(C3) Cramer Projection Φ for Support Mismatch Caused by $B^*Z_{\theta}(s,a)$

- Issue: $\left[r + \gamma z_i\right]_{V_{\min}}^{V_{\max}}$ almost always leads to support mismatch
- Idea: Projection onto the set of atoms
- Example:

$$a^* = \arg \max_{a} Q(s', a)$$
$$Z(s', a^*)$$

(distribute probability mass to neighboring atoms \equiv projection Φ)

$$Z(s,a) = [\Phi B * Z](s,a)$$

(C4) Update θ by Minimizing

$$L(s, a, r, s'; \theta) := D_{KL}(\Phi \hat{B}^* Z_{\bar{\theta}}(s, a) || Z_{\theta}(s, a))$$

$$a^* = \arg \max_{a} Q(s', a)$$
$$Z(s', a^*)$$

$$[\Phi B^*Z](s,a)$$

Goal: Update θ such that $Z_{\theta}(s, a)$ gets closer to $[\Phi B^* Z](s, a)$

Observation: Equivalent to multi-class classification

Multi-class classification (with NN)

$$L(s, a, r, s'; \theta) := D_{KL}(\Phi B * Z_{\bar{\theta}}(s, a) || Z_{\theta}(s, a))$$

 Z_8Z_9

C51 Algorithm (Formally)

Step 1: Initialize θ for $Z_{\theta}(s, a)$ and initial state s_0

Step 2: For each step $t = 0, 1, 2, \cdots$

Select a_t using ε -greedy w.r.t $Q(s_t, a) \equiv \mathbb{E}[Z_{\theta}(s_t, a)]$

Observe (r_{t+1}, s_{t+1}) and store $(s_t, a_t, r_{t+1}, s_{t+1})$ in the buffer

Draw a mini-batch of samples B from the replay buffer

Update θ by minimizing loss as follows:

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \sum_{(s,a,r,s') \in B} L_{C51}(s,a,r,s';\theta)$$

Evaluation of Distributional DQN (C51) in Rainbow

C51 is a strong enhancement to vanilla DQN

Figure 2: Each plot shows, for several agents, the number of games where they have achieved at least a given fraction of human performance, as a function of time. From left to right we consider the 20%, 50%, 100%, 200% and 500% thresholds. On the first row we compare Rainbow to the baselines. On the second row we compare Rainbow to its ablations.

Hessel et al., Rainbow: Combining Improvements in Deep Reinforcement Learning, AAAI 2018

Issues With C51

- In C51, $Z_{\theta}(s, a)$ is approximated by a categorical distribution
- Question: Any issues with C51?

Issue 1: Need to pre-specify bounds on the support (while the range of total return may vary greatly across states)

Issue 2: Require the projection Φ due to support mismatch

• Question: Any other way to express Z(s, a)?

Express Z(s, a) using CDF (instead PMF or PDF)

QR-DQN

Quantile-Based Parametrization of Z(s, a)

▶ Idea: Express Z(s, a) using CDF (instead PDF)

Quantile function: $F_Z^{-1}(\tau) := \inf\{z : P(Z \le z) \ge \tau\}$

A Comparison of NN Architecture

QR-DQN: Another Popular Distributional DQN

• Q1: How to express Z(s, a)?

(D1) Quantile distributions for $Z_{\theta}(s, a)$

• Q2: How to update Z(s, a) during training?

(D2) Mimicking B^* for learning with sample transitions (s, a, r, s')

(D3) Minimize
$$L_{QR}(s, a, r, s'; \theta) := D(B*Z_{\bar{\theta}}(s, a)||Z_{\theta}(s, a))$$

Quantile Regression DQN (Formally)

Step 1: Initialize $Z_{\theta}(s, a)$ and initial state s_0

Step 2: For each step $t = 0, 1, 2, \cdots$

Select a_t using ε -greedy w.r.t $Q(s_t, a) \equiv \mathbb{E}[Z_{\theta}(s_t, a)]$

Observe (r_{t+1}, s_{t+1}) and store $(s_t, a_t, r_{t+1}, s_{t+1})$ in the buffer

Draw a mini-batch of samples B from the replay buffer

Update θ by minimizing QR loss as follows:

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \sum_{(s,a,r,s') \in B} L_{QRDQN}(s,a,r,s';\theta)$$

Under quantile distributions,
$$\mathbb{E}[Z_{\theta}(s, a)] = \sum_{i=1}^{N} \frac{1}{N} Z_{\theta}^{(i)}(s, a)$$

(D2) Mimicking B^* for Learning With Sample Transitions

- lacktriangle Here we presume a greedy policy w.r.t Q function for B^*
- Question: Given only transitions (s, a, r, s'), how to enforce B^* to update Z(s, a) on *quantile* distributions?

$$a^* = \arg\max_{a} Q(s', a) \equiv \arg\max_{a} \mathbb{E}[Z_{\bar{\theta}}(s', a)]$$

$$Z_{\bar{\theta}}^{(1)}(s', a^*) \quad Z_{\bar{\theta}}^{(2)}(s', a^*) \quad Z_{\bar{\theta}}^{(3)}(s', a^*) \quad Z_{\bar{\theta}}^{(4)}(s', a^*) \quad Z_{\bar{\theta}}^{(5)}(s', a^*)$$

$$B^*Z_{\bar{\theta}}(s, a) = r + \gamma Z_{\bar{\theta}}(s', a^*) \quad (B^*Z_{\bar{\theta}}(s, a))^{(2)} \quad (B^*Z_{\bar{\theta}}(s, a))^{(4)}$$

$$(B^*Z_{\bar{\theta}}(s, a))^{(1)} \quad (B^*Z_{\bar{\theta}}(s, a))^{(3)} \quad (B^*Z_{\bar{\theta}}(s, a))^{(5)}$$

(D3) Loss Function

• We still need to choose a distance function $D(\cdot||\cdot|)$ in $L_{ORDON}(s,a,r,s';\theta):=D(B*Z_{\bar{\theta}}(s,a)||Z_{\theta}(s,a))$

There are many possibilities, e.g., total variation or KL divergence

- QR-DQN uses the quantile regression loss
 - Motivation: Both $B^*Z_{\bar{\theta}}(s,a)$ and $Z_{\theta}(s,a)$ are quantile distributions

Quantile Regression Loss

Idea: Finding a quantile $F_Z^{-1}(\tau)$ by minimizing loss $L(x;Z,\tau)$

$$F_Z^{-1}(\tau) = \arg\min_{x \in \mathbb{R}} L(x; Z, \tau)$$

• $L(x; Z, \tau)$ is *easy-to-optimize* when it is strictly convex

The Quantile Regression Loss

• Given that the derivative of $L(x; Z, \tau)$ is $F_Z(x) - \tau$, we can recover the QR loss by integration

Quantile regression (QR) loss:

$$L_{QR}(x;Z,\tau) = (\tau-1) \int_{-\infty}^{x} (z-x) dF_Z(z) + \tau \int_{x}^{\infty} (z-x) dF_Z(z)$$

(It is easy to verify that
$$\frac{d}{dx}L(x;Z,\tau)=F_Z(x)-\tau$$
 by the Leibniz integral rule)

An alternative expression of QR loss:

$$\rho_{\tau}(y) := y(\tau - \mathbb{I}\{y < 0\})$$

$$L_{OR}(x; Z, \tau) = E_Z[\rho_{\tau}(Z - x)]$$

Summary: Loss Function of QR-DQN

$$\begin{split} L_{QRDQN}(s, a, r, s'; \theta) &:= \sum_{i=1}^{N} L_{QR}(B^* Z_{\bar{\theta}}(s, a); Z_{\theta}(s, a), \tau_i) \\ &= \sum_{i=1}^{N} \mathbb{E}_{z \sim B^* Z_{\bar{\theta}}(s, a)} [\rho_{\tau_i}(z - Z_{\theta}(s, a))] \end{split}$$

 \blacktriangleright Question: Is $L_{ORDON}(s,a,r,s';\theta)$ easy to compute during training?

IQN: A Generative Approach to Distributional RL

An illustrative comparison of distributional Q-learning methods

Distributional RL via explicitly expressing the distribution Z(s,a)

Distributional RL via a generative model for distribution Z(s, a)

Need sufficiently many atoms or quantiles for an accurate representation of Z(s,a)

Calculate QR Loss by Sampling

QR loss:

$$\rho_{\tau}(y) := y(\tau - \mathbb{I}\{y < 0\})$$

$$L(x; Z, \tau) = E_{z \sim Z}[\rho_{\tau}(z - x)]$$

- Recall QR-DQN:
 - The QR loss is calculated explicitly
 - $Z\Rightarrow$ target distribution induced by $\{\bar{\theta}_1,\cdots,\bar{\theta}_N\}$

lacksquare IQN **implicitly** parameterizes Z by constructing a generator for Z

QR Loss and Inverse Transform Sampling

QR loss:

QR loss:
$$\rho_{\tau}(y) := y(\tau - \mathbb{I}\{y < 0\})$$

$$L(x; Z, \tau) = E_{z \sim Z}[\rho_{\tau}(z - x)] \approx \frac{1}{K} \sum_{k=1}^{K} \rho_{\tau}(z_k - x)$$

$$(z_1, \dots, z_K \sim Z)$$

Inverse Transform Sampling (ITS): Generate any random variable with CDF F from a uniform random variable

- 1. Generate a random variable $U \sim \text{Unif}(0,1)$
- 2. Let $X = F^{-1}(U)$, where $F^{-1}(u) := \inf\{z : F(z) \ge u\}$
- ITS is essentially a generative approach!

Calculating QR Loss in IQN

QR loss:

QR loss:
$$\rho_{\tau}(y) := y(\tau - \mathbb{I}\{y < 0\})$$

$$L(x; Z, \tau) = E_{z \sim Z}[\rho_{\tau}(z - x)] \approx \frac{1}{K} \sum_{k=1}^{K} \rho_{\tau}(z_k - x)$$

$$(z_1, \cdots, z_K \sim Z)$$

(Recall that Z corresponds to the target distribution in QR-DQN)

At each update, given (s, a, r, s'), for a given $\tau \in [0,1]$:

- 1. Draw $\tau_1', \dots, \tau_K' \sim \text{Unif}(0,1) \leftarrow \text{a generative step!}$
- 2. Get z_1, \dots, z_K by $z_i = r + \gamma \cdot \overline{\mathsf{IQN}}(s', a'; \tau_i')$

3. QR loss in IQN =
$$\frac{1}{K} \sum_{i=1}^{K} \rho_{\tau}(z_i - \text{IQN}(s, a; \tau))$$
₄₀ (can be readily extended to multiple τ)