

Cognición Bayesiana

ECON 1122

Info. Profesor —

Santiago Alonso-Díaz

Atención: Martes & Jueves 2-3p

P Edificio 20, piso 7

github.com/santiagoalonso

alonsosantiago@javeriana.edu.co

Info. Curso ——

Prereg: Prob., Cálculo Dif. e Int.

Martes & Jueves

11a-12.30p

P Edificio 3, 434

Descripción & Objetivos de Formación

Las aproximaciones Bayesianas se han vuelto estándar en muchas ciencias. Economía, ciencia cognitiva, inteligencia artificial, y muchas otras usan soluciones inspiradas en Bayes. Una de sus fortalezas es que nos permite inferir distribuciones de variables latentes a partir de observables. Por ejemplo, no podemos observar la utilidad subjetiva de una actividad (estudiar ciencia cognitiva), pero sí inferirla del contexto, acciones, y otras variables medibles. Para inferir variables cognitivas latentes, tenemos que proponer un modelo generativo. En este curso se darán bases conceptuales y computacionales para hacerlo. Será un curso práctico e introductorio donde el estudiante obtendrá conocimientos para estructurar hipótesis y plasmarlas en modelos gráficos. Es interdisciplinar: estudiantes de diferentes áreas son bienvenidos. No se requiere conocimiento previo de programación ni de teoría Bayesiana, se darán las herramientas necesarias.

Material

Libros de texto

Davidson-Pilon, C. (2015). *Bayesian methods for hackers: probabilistic program-ming and Bayesian inference*. Addison-Wesley Professional.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). *Bayesian data analysis*. CRC press.

Kruschke, J. (2014). *Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.* Academic Press.

Lee, M. D., & Wagenmakers, E. J. (2014). *Bayesian cognitive modeling: A practical course*. Cambridge University Press.

Otras referencias

Artículos de revistas académicas y capítulos de libros (durante el curso se darán más detalles)

Calificaciones

33% Presentación de un paper

33% Talleres

34% Propuesta de modelo gráfico

Presentación de un paper

El profesor dará a los estudiantes papers con modelos cognitivos bayesianos para presentar. Debe ser una presentación fiel al paper. El objetivo de la actividad es entender el modelo de otra persona (s)

Talleres

El estudiante resolverá ejercicios de programación relacionados con el curso. No se requiere conocimiento previo de programación. Los talleres ayudarán en este aprendizaje.

Propuesta de modelo

Proponer un modelo cognitivo de algún tema de interés (propuesto por el profesor o el estudiante). El objetivo es poner en un modelo *gráfico* ideas e hipótesis causales, y justificarlas. No es necesario tener un modelo funcional con código (aunque sería un reto interesante para el estudiante que así lo desee).

Estrategias Pedagógicas

El profesor presenta la teoría en formato cátedra, apoyado en implementaciones en un lenguaje de programación (Python/R). No se requiere conocimiento previo en programación. Habrá tutoriales y talleres con ejercicios.

Los estudiante harán parte activa con una presentación en clase de un artículo académico con un modelo cognitivo. El artículo es asignado por el profesor.

Resultados de Aprendizaje Esperados (RAE)

- Manejar conceptos claves de la teoría bayesiana como posteriors, priors, likelihood, marginales, modelos generativos, entre otros.
- Diagramar modelos generativos, justificando cualquier conexión y nodo con argumentos
- Familiarizarse con herramientas computacionales para hacer inferencia bayesiana (PyMC, Stan, Edward)
- Entrenar habilidades blandas, en particular presentación en público de modelos formales

Fechas (siguiente página)

Fechas

MODULO	1: Introducción a análisis bayesianos	
Semana 1	Ciencia cognitiva bayesiana	Jacobs, R. A., & Kruschke, J. K. (2011). Bayesian learning theory applied to human cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2(1), 8-21.
		Tutorial: Intro. Python
Semana 2	Conociendo a Bayes	Gelman, et al, (2013): Capítulo 1 & 2
		Kruschke, J. (2014): Capítulo 4, 5 & 6
		Davidson-Pilon, C. (2015): Capítulo 1
		Tutorial: Intro. Python
Semana 3	Métodos computacionales 1: Intro.	Gelman, et al, (2013): Capítulo 11
		Kruschke, J. (2014): Capítulo 7
		Tutorial: Intro. Python
Semana 4	Métodos computacionales 2: Herramientas 1	Davidson-Pilon, C. (2015): Capítulo 1 & 2.
		Tutorial: Python Prob. Prog.
Semana 5	Métodos computacionales 2: Herramientas 2	Davidson-Pilon, C. (2015): Capítulo 1 & 2.
		Tutorial: Python Prob. Prog.
Semana 6	Comparación de modelos 1	Gelman, et al, (2013): Capítulo 5
		Kruschke, J. (2014): Capítulo 9
		Tutorial: Python Prob. Prog.
Semana 7	Comparación de modelos 2	Gelman, et al, (2013): Capítulo 6, 7 & 14
		Kruschke, J. (2014): Capítulo 10
		Tutorial: Python Prob. Prog.
MODULO	2: Cognición Bayesiana	
Semana 8	Decisiones de riesgo 1 (BART)	Lee, M. D., & Wagenmakers, E. J. (2014): Capítulo: 16; Lejuez 2002
		Python: Python Prob. Prog.
Semana 9	Decisiones de riesgo 2 (Multi-armed bandit)	Nilsson, et. al. (2011).
		Python: Python Prob. Prog.
Semana 10	Decisiones de riesgo 3 (Loterias)	Nilsson, et. al. (2011).
		Python: Python Prob. Prog.
Semana 11	Heurísticas	Lee, M. D., & Wagenmakers, E. J. (2014): Capítulo: 18

Parpart	(2018)
Parpart	(2010)

	Python: Python Prob. Prog.
Semana 12 Descuento intertemporal	Varios autores
	Python: Python Prob. Prog.
Semana 13 Sesgos & discriminabilidad	Wagenmakers, E. J. (2014): Capítulo: 11
	Python: Python Prob. Prog.

Sem. 14-16 Presentaciones estudiantes y conclusiones