4 Stetige Funktionen

Ab jetzt wird (fast) immer in \mathbb{R} gerechnet, insbesondere B(x,r) = (x-r,x+r), $\overline{B}(x,r) = [x-r,x+r]$. Stets sei $D \neq \emptyset$.

4.1 Grenzwerte stetiger Funktionen

Definition 4.1. Sei $D \subseteq \mathbb{R}$. Dann heißt die Menge $\overline{D} := \{x \in \mathbb{R} : \exists x_n \in D \ (n \in \mathbb{N}) \text{ mit } x_n \to x, \ n \to \infty \}$ der Abschluss von D. D heißt abgeschlossen (abg.) falls $D = \overline{D}$.

Bemerkung. Es gilt $D \subseteq \overline{D}$ (Betrachte für $x \in D$ die Folge $(x_n)_{n \ge 1} = (x)_{n \ge 1}$)

Beispiel. Sei D = (0, 1], dann ist $\overline{D} = [0, 1]$

Beweis. Es gilt $0 \in \overline{D}$, da $\frac{1}{n} \in D$, $\frac{1}{n} \to 0$ $n \in \mathbb{N} \implies [0,1] \subseteq \overline{D}$. Umgekehrt: Sei $x_n \in (0,1] = D$ mit $x_n \to x$ für ein $x \in \mathbb{R}$. Satz 2.9: $0 \le x \le 1 \implies \overline{D} \subseteq [0,1] \implies \text{Beh}$.

Ebenso:

- a) $\overline{\mathbb{R} \setminus \{0\}} = \mathbb{R}$
- b) Abgeschlossene Intervalle im Sinne von Def. ?? sind abgeschlossen im Sinne von Def. 4.1, Bsp: $\overline{[0,1]} = [0,1]$.

Definition 4.2. Sei $D \subseteq \mathbb{R}$, $x_0 \in \overline{D}$, $y_0 \in \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ konvergiert gegen den Grenzwert y_0 , wenn für jede Folge $(x_n)_{n\geq 1} \subseteq D$ mit $x_n \to x_0$ $(n \to \infty)$ gilt: $f(x_n) \to y_0$ $(n \to \infty)$. Man schreibt dann $y_0 = \lim_{x\to x_0} f(x)$ oder $f(x) \to y_0$ für $x \to x_0$. Wenn man zusätzlich $x_n < x_0$, bzw. $x_n > x_0$ $(\forall n \in \mathbb{N})$ fordert, dann spricht man vom links-, bzw. rechtsseitigen Grenzwert und schreibt $y_0 = \lim_{x\to x_0^+} f(x)$, bzw. $y_0 = \lim_{x\to x_0^+} f(x)$.

Beispiel 4.3. a) Sei $D = \mathbb{R}$, $f(x) = x^2 + 3$, $x_0 \in \mathbb{R}$. Sei $x_n \in \mathbb{R}$, $x_n \to x_0$. Dann $f(x_n) = x_n^2 + 3 \to x_0^2 + 3$ $(n \to \infty)$ nach Satz 2.7 $\Longrightarrow \lim_{x \to x_0} f(x) = x_0^2 + 3$

b) Sei $M \subseteq \mathbb{R}$. Setze

$$\mathbf{1}_{M}(x) = \begin{cases} 1, & x \in M \\ 0, & x \in \mathbb{R} \setminus M \end{cases}$$
 (charakteristische Funktion)

Behauptung. Sei $D = \mathbb{R}$, $f = \mathbf{1}_{R_+}$. Dann: $\lim_{x\to 0} f(x)$ existiert nicht.

Beweis. Wähle $x_n = (-1)^n \frac{1}{n} \to 0, n \to \infty$. Dann

$$f(x_n) = \begin{cases} 1, & n \text{ gerade} \\ 0, & n \text{ ungerade} \end{cases}$$

Sei
$$x_n \to 0$$
 $(n \to \infty)$. Wenn $x_n > 0$, dann $f(x_n) = 1$. Wenn $x_n < 0$, dann $f(x_n) = 0$ $\Longrightarrow \exists \lim_{x \to 0^+} f(x) = 1$, $\exists \lim_{x \to 0^-} f(x) = 0$

c) Sei $D = \mathbb{R} \setminus \{0\}$, $f(x) = \frac{1}{x}$, $x \in D$. Dann: $\lim_{x\to 0} f(x)$ existiert nicht, da $\frac{1}{n} \to 0$, aber $f(\frac{1}{n}) = n$ divergiert $(n \to \infty)$.

Satz 4.4 (ε - δ -Charakterisierung). Sei $D \subseteq \mathbb{R}$, $x_0 \in \overline{D}$, $f: D \to \mathbb{R}$, $y_0 \in \mathbb{R}$. Dann sind äquivalent:

- a) $\exists \lim_{x \to x_0} f(x) = y_0$
- b) $\forall \varepsilon > 0 \,\exists \delta_{\varepsilon} > 0 \,\forall x \in D \cap \overline{B}(x_0, \delta_{\varepsilon}) \, gilt: |f(x) y_0| \leq \varepsilon$

Beweis. a) Es gelte 2). Sei $x_n \in D$ $(n \in \mathbb{N})$ mit $x_n \to x_0$ beliebig gegeben $(n \to \infty)$. Sei $\varepsilon > 0$. Wähle $\delta_{\varepsilon} > 0$ aus 2). Dann $\exists N_{\varepsilon} \in \mathbb{N}$ mit $|x_n - x_0| \le \delta_{\varepsilon}$ für alle $n \ge N_{\varepsilon}$. 2) liefert: $|f(x_n) - y_0| \le \varepsilon$ $(\forall n \ge N_{\varepsilon}) \implies f(x_n) \to y_0, n \to \infty \implies 1$

b) Es gelte 1). Annahme: 2) sei falsch. Daraus folgt mit $\delta = \frac{1}{n}$: $\exists \varepsilon_{\delta} > 0 \,\forall n \in \mathbb{N} \,\exists x_n \in D$ mit $|x_0 - x_n| \leq \frac{1}{n}$ und $|f(x) - y_0| > \varepsilon_0$, d. h. $x_n \to x_0$ (Satz 2.9) und $f(x_n) \not\to y_0$ $(n \to \infty) \not \downarrow 1) \implies 2$

Satz 4.5. Es seien $D \subseteq \mathbb{R}$, $x_0 \in \overline{D}$, $f, g : D \to \mathbb{R}$, $y_0, z_0 \in \mathbb{R}$, sodass $\exists \lim_{x \to x_0} f(x) = y_0$, $\exists \lim_{x \to x_0} g(x) = z_0$. Dann gelten:

- a) $\exists \lim_{x \to x_0} (f(x) + g(x)) = y_0 + z_0$
- b) $\exists \lim_{x \to x_0} f(x)g(x) = y_0 z_0$
- c) $\exists \lim_{x \to x_0} |f(x)| = |y_0|$

d) Sei zusätzlich $y_0 \neq 0$. Dann $\exists r > 0$, sodass $|f(x)| \geq \frac{|y_0|}{2} > 0$ für alle $x \in D$ mit $|x - x_0| \leq r$. Ferner $\exists \lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{y_0}$

e) Sei zusätzlich $f(x) \leq g(x)$ für alle $x \in D$. Dann gilt $x_0 \leq z_0$. (Entsprechendes gilt $\lim_{x \to x_0^{\pm}}$)

Beweis. c) Sei $x_n \in D$ $(n \in \mathbb{N})$ mit $x_n \to x_0$ $(n \to \infty)$ beliebig gewählt. $\stackrel{\text{n.V}}{\Longrightarrow}$ $f(x_n) \to y_0 \stackrel{2.11}{\Longrightarrow} |f(x_n)| \to |y_0| (n \to \infty) \implies \text{Behauptung}$

d) Wähle $\varepsilon = \frac{|y_0|}{2} > 0$. Nach Teil 3 und Satz 4.4 $\exists r = \delta_{\varepsilon} > 0$, sodass für alle $x \in D \cap \overline{B}(x_0, r)$ gilt $\frac{|y_0|}{2} \ge ||f(x)| - |y_0|| \ge |y_0| - |f(x)| \iff |f(x)| \ge \frac{|y_0|}{2}$. Sei nun $x_n \to x_0$ $(n \to \infty)$ mit $x_n \in D \cap \overline{B}(x_0, r) \stackrel{\text{n.V.}}{\Longrightarrow} f(x_n) \to y_0 \stackrel{\text{2.7}}{\Longrightarrow} \frac{1}{f(x_n)} \to \frac{1}{y_0}$ $(n \to \infty)$ \Longrightarrow Behauptung

Uneigentliche Grenzwerte

Definition. Erweiterte Zahlengerade $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ (man schreibt oft ∞ statt $+\infty$). Ordnung: $-\infty < x < +\infty$ ($\forall x \in \mathbb{R}$), $|\pm\infty| := +\infty$

Definition 4.6. Man schreibt $\lim_{n\to\infty} x_n = +\infty \ (-\infty)$ für $x_n \in \mathbb{R}, n \in \mathbb{N}$, falls:

$$\forall K \in \mathbb{N} \,\exists N_K \in \mathbb{N} \,\forall n \geq N_K \colon x_n \geq K \, (x_n \leq -K)$$

Damit $n^2 \to \infty$, $-n^3 \to -\infty$ $(n \to \infty)$. Beachte: $((-1)^n)$ divergiert nach wie vor.

Bemerkung 4.7. a) Wenn $x_n \to \infty$ oder $x_n \to -\infty$, dann $\frac{1}{x_n} \to 0$ $(n \to \infty)$. (Beachte, nach Def. 4.6 gilt: $x_n \neq 0$, $n \geq N_1$)

- b) Wenn $x_n \to 0$ und ein $n_0 \in \mathbb{N}$ existiert mit $x_n > 0$ für alle $n \geq n_0$, dann geht $\frac{1}{x_n} \to +\infty$
- c) Wenn $x_n \to 0$, $x_n < 0$ $(\forall n \ge n_0)$, dann $\frac{1}{x_n} \to -\infty$

Beweis. a) Sei $x_n \to +\infty$ oder $x_n \to -\infty$ $(n \to \infty)$. Nach Def. 4.6 gilt

$$\forall K \in \mathbb{N} \,\exists N_K \in \mathbb{N} \,\forall n \ge N_K \colon |x_n| \ge K \iff 0 < \frac{1}{|x_n|} \le \frac{1}{K} =: \varepsilon,$$

d. h.
$$\frac{1}{x_n} \to 0$$
, $n \to \infty$.
b), c) zeigt man ähnlich.

In Anbetracht von 4.7.1) schreibt man

$$\frac{x}{+\infty} = 0, \ x \in \mathbb{R} \tag{4.1}$$

(damit gilt $\lim_{n\to\infty}\frac{1}{x_n}=\frac{1}{\lim_{n\to\infty}x_n}$ auch in Bem. 4.71) Wenn (x_n) nach oben (nach unten) unbeschränkt ist (wobei $x_n\in\mathbb{R}$) dann setzt man $\overline{\lim}_{n\to\infty}x_n:=\infty$ $\underline{\lim}_{n\to\infty}x_n:=-\infty$. Mit identischem Beweis gelten dann Wurzel- und Quotientenkriterium ohne die jeweilige Beschränktheitsvorraussetzung. Ferner liefert (4.1) und Bem. 4.7 in Thm. 3.28

$$\varrho = \frac{1}{\overline{\lim_{k \to \infty}}} \sqrt[k]{|a_k|}$$

Gilt auch wenn $\sqrt[k]{|a_k|}$ unbeschränkt $(\varrho = \frac{1}{\infty} = 0)$ oder wenn $\sqrt[k]{|a_k|} \to 0^+$ $(k \to \infty)$ $(,, \varrho = \frac{1}{0^+} = +\infty)$. Weiter schreibt man sup $D = +\infty$ wenn $D \subseteq \mathbb{R}$ nach oben unbeschränkt ist, sowie inf $D = -\infty$, wenn D nach unten unbeschränkt ist.

Sei $f: D \to \mathbb{R}$, $x_0 \in \overline{D}$, $y_0 \in \overline{R}$. Dann definiert man $\lim_{n \to x_0} f(x) = y_0$ wie in Def. 4.2, d. h. für alle $x_n \to x_0$ muss $f(x_n) \to y_0$ in $\overline{\mathbb{R}}$ gelten. Dabei ist $+\infty \in \overline{D}$ wenn sup $D = \infty$ und $-\infty \in \overline{D}$, wenn inf $D = -\infty$.

Beispiel. Mit Bem. 4.7 folgt $\lim_{x\to 0} \frac{1}{x^2} = +\infty$, $\lim_{x\to 0^+} \frac{1}{x} = \infty$, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$ und $\angle \lim_{x\to 0} \frac{1}{x}$.

4.2 Eigenschaften stetiger Funktionen

Definition 4.8. Seien $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D$. Dann heißt f stetig in x_0 , falls $\exists \lim_{x \to x_0} f(x) = f(x_0)$, d. h. für jede Folge $(x_n) \subseteq D$ mit $x_n \to x_0$ $(n \to \infty)$ gilt: $f(x_n) \to f(x_0)$ $(n \to \infty)$. f heißt stetig (auf D), wenn f für alle $x_0 \in D$ stetig ist. Man schreibt: $C(D) = \{f: D \to \mathbb{R}, f \text{ stetig}\}$.

Beispiel 4.9 (vgl. 4.3). a) Sei $D = \mathbb{R}$ und $c \in \mathbb{R}$ (fest gegeben). Dann sind die Funktionen f(x) = c, g(x) = x ($x \in \mathbb{R}$) stetig auf \mathbb{R} .

- b) Sei $D = \mathbb{R}_+, x_0, x_n \in D$. Übung: Wenn $x_n \to x_0$, dann $\sqrt{x_n} \to \sqrt{x_0}$ $(n \to \infty)$. Also ist $f(x) = \sqrt{x}$ stetig auf \mathbb{R}_+
- c) Sei $D = \mathbb{R}$ und $f = \mathbf{1}_{\mathbb{R}_+}$. $\Longrightarrow f$ ist stetig für $x_0 \in \mathbb{R} \setminus \{0\}$ aber unstetig für $x_0 = 0$, $\not\supseteq \lim_{x \to 0} f(x)$
- d) Sei $D = \mathbb{R} \setminus \{0\}$. Dann ist $f(x) = \frac{1}{x}$, $x \in D$ stetig auf D
- e) Sei $D = \mathbb{R}$, $f(x) = ... \Longrightarrow f$ unstetig in $x_0 = 0$, da $\not\exists \lim_{x \to 0^+} f(x)$

Definition. Seien $f, g: D \to \mathbb{R}$, $\alpha \in \mathbb{R}$. Dann definiere man die Funktion $f+g: D \to \mathbb{R}$ punktweise durch (f+g)(x):=f(x)+g(x) $(x \in D)$. Analog definiere man die Funktionen αf , $f \cdot g$, |f| und $\frac{1}{f}$ (soweit $f(x) \neq 0$). Ferner sei $f(D)=\{y \in \mathbb{R}: \exists x \in D: f(x)=y\}$ und $h: f(D) \to \mathbb{R}$. Dann definiert man die Komposition $h \circ f: D \to \mathbb{R}$ durch $(h \circ f)(x)=h(f(x)), x \in D$.

Satz 4.10. Seien $D \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$, $\alpha \in \mathbb{R}$, sowie $f, g : D \to \mathbb{R}$ stetig in x_0 und $h : f(D) \to \mathbb{R}$ stetig in $f(x_0)$. Dann sind die Funktionen f + g, fg (speziell αg), |f|, $h \circ f$ stetig bei x_0 . Wenn $f(x_0) \neq 0$, dann existiert nach Satz 4.5 ein x > 0 mit $f(x) \neq 0$ für $x \in \overline{B}(x_0, r) \cap D := \tilde{D}$. Ferner ist $\frac{1}{f} : \tilde{D} \to \mathbb{R}$ stetig in x_0 . (Also: C(D) ist ein Vektorraum).

Beweis (beispielhaft).. Sei $x_n \in D$ mit $x_n \to x_0$ $(n \to \infty)$. Dann $f(x_n) \in f(D)$, $f(x_n) \to f(x_0)$ $(n \to \infty)$ (da f stetig in x_0). Also: $h(f(x_n)) \to h(f(x_0))$, da h stetig in $f(x_0)$ $(n \to \infty)$. Somit ist $h \circ f$ stetig in x_0 . Der Rest folgt analog mit Satz 4.5.

Beispiel 4.11 (Satz 4.10 liefert:). a) Polynome sind auf \mathbb{R} stetig, da sie aus $p_0(x) = 1$, $p_1(x) = x$ zusammengesetzt sind.

- b) Rationale Funktionen $f = \frac{p}{q}$ sind auf $D = \{x \in \mathbb{R} : q(x) \neq 0\}$ stetig, als Quotient der Polynome p, q.
- c) $f(x) = \sqrt{1+3|x|}$ ist stetig auf $D = \mathbb{R}$, da $f = w \cdot g$ mit $w(y) = \sqrt{y}$ und $g(x) = 1+3|x|, g = 1+3|p_1|$.

Theorem 4.12. Sei $f(x) = \sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius $\varrho > 0$. Dann ist $f: B(0, \varrho) = (-\varrho, \varrho) \to \mathbb{R}$ stetig, d. h.

$$\lim_{x \to x_0} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x_0^n \quad (x_0 \in B(0, \varrho))$$

Beispiel. Stetig auf \mathbb{R} sind sin, cos, exp sowie $f(x) = \exp(1+2x^2)$ $(x \in \mathbb{R})$, da $f = \exp p$, $p(x) = 1 + 2x^2$ (Hier sei vorrübergehend $B(0, \infty) = \mathbb{R}$).

Beweis des Theorems.. Sei $x_0, x_n \in (-\varrho, \varrho)$ mit $x_n \to x_0$ $(n \to \infty)$. Setze $d := \varrho - |x_0| > 0$ $\Longrightarrow \exists x_0 \in \mathbb{N} : |x_n - x_0| \le \frac{d}{2} \ (\forall n \ge n_0)$

$$\implies |x_n| \le |x_n - x_0| + |x_0| \le \dots + |x_0| = \varrho - \frac{d}{2} < \varrho \quad (n \ge n_0)$$
 (*)

Setze $r=p-\dots$ Dann (nach Thm. 3.28) $\exists \dots$ Sei $\varepsilon>0$ beliebig, fest gegeben. Dann $\exists J_{\varepsilon}\in\mathbb{N}$, sodass

$$\sum_{j=J_{\varepsilon}+1}^{\infty} |a_j| \, r^j \le \varepsilon \tag{**}$$

Setze $p_{\varepsilon}(x) = \dots$

Satz 4.13. Seien $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D$. Dann sind äquivalent:

- a) f ist stetiq in x_0
- b) $\forall \varepsilon > 0 \,\exists \delta_{\varepsilon} > 0 \,\forall x \in D \cap \overline{B}(x_0, \delta_{\varepsilon}) : |f(x) f(x_0)| \le \varepsilon$
- c) $\forall \varepsilon > 0 \,\exists \delta_{\varepsilon} > 0 : f(D \cap \overline{B}(x_0, \delta_{\varepsilon})) : \dots$

Beweis. ...

Definition 4.14. Sei $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$. f heißt gleichmäßig stetig (glm stetig), wenn

$$\forall \varepsilon > 0 \,\exists \delta_{\varepsilon} > 0 \,\forall x, y \in D \,\, \text{mit} \,\, |x - y| \le \delta_{\varepsilon} \,\, \text{gilt} \, |f(x) - f(y)| \le \varepsilon$$
 (4.2)

(Im Gegensatz zu 4.132 hängt δ_{ε} nicht von x_0 ab).

Beispiel 4.15. a) Sei $D=(0,1], f(x)=\frac{1}{x}$. Sei $\varepsilon_0=1$, sei $\delta>0$ beliebig. Wähle $x\in(0,1]$ mit $x\leq 2\delta, y=\frac{x}{2} \Longrightarrow |x-y|=\frac{x}{2}\leq\delta...$

b) Sei $D = \mathbb{R}$, $f(x) = x^2$. Sei $\varepsilon_0 = 1$, sei $\delta > 0$ beliebig. Wähle $x = \delta + \frac{1}{\delta}$, $y = \frac{1}{\delta}$ $\Longrightarrow |x - y| = \delta$, aber $|f(x) - f(y)| \dots > 1 = \varepsilon_0 \implies f$ nicht glm stetig, obwohl f stetig.

4.3 Hauptsätze über stetige Funktionen

Theorem 4.16. Sei $D \subseteq \mathbb{R}$ abgeschlossen und beschränkt, $f: D \to \mathbb{R}$ sei stetig. Dann: f ist glm. stetig. (Beispiel: D = [a, b])

Beweis. Annahme: f sei nicht glm. stetig. (4.2) (mit $\delta = \frac{1}{n}$) liefert:

$$\exists \varepsilon_0 > 0 \,\forall n \in \mathbb{N} \,\exists x_n, \, y_n \in D : |x_n - y_n| \le \frac{1}{n}, \, |f(x_n) - f(y_n)| > \varepsilon_0 \tag{*}$$

D beschränkt, Thm. 2.21 (=BW) $\Longrightarrow \exists$ TF $x_{n_k} \to x$ $(k \to \infty)$, $y_{n_{k_l}} \to y$ $(l \to \infty)$ $\Longrightarrow x, y \in \overline{D} \stackrel{\text{n.V.}}{=} D$. Ferner:

$$|x - y| \le \left| x - y_{n_{k_l}} \right| + \underbrace{\left| x_{n_{k_l}} - y_{n_{k_l}} \right|}_{\stackrel{(*)}{\le \frac{1}{n_{k_l}}}} + \left| y_{n_{k_l}} - y \right| \to 0 \quad (l \to \infty)$$

Definition 4.17. Sei $D \subseteq \mathbb{R}$ nicht abgeschlossen. $x_0, y_0 \in \mathbb{R}, x_0 \in \overline{D} \setminus D$. Die Funktion $\tilde{f}(x) = \begin{cases} f(x), & x \in D \\ y_0, & x = x_0 \end{cases}$ (definiert auf $\tilde{D} = D \cup \{x_0\}$) heißt stetige Fortsetzung von f in x_0 , wenn $\lim_{x \to x_0} f(x) = y_0$.

Beispiel 4.18. a) Sei
$$D = \mathbb{R} \setminus \{1\}$$
, $f(x) = \frac{x^2 - 1}{x - 1}$, $x \in D$, $x_0 = 1$, $y_0 = 2$ $\Longrightarrow \tilde{f}(x) = \begin{cases} \frac{x^2 - 1}{x - 1} = x + 1, & x \neq 1 \\ 2, & x = 1 \end{cases}$, also $\tilde{f}(x) = x + 1$, $x \in \tilde{D} = \mathbb{R}$.

Da \tilde{f} stetig auf \mathbb{R} , ist f in 1 stetig fortsetzbar. (Wenn man $y_0 = 3$ setzen würde, wäre \tilde{f} keine stetige Fortsetzung).

b) Sei $D = \mathbb{R} \setminus \{0\}$. Nicht stetig fortsetzbar sind $f(x) = \frac{1}{x}$, $f(x) = \mathbf{1}_{\mathbb{R}_+}(x)$, da jeweils $\lim_{x\to 0} f(x)$ nicht existiert. (siehe Bsp. 4.3)

Satz 4.19. Sei $f: D \to \mathbb{R}$ stetig, $x_0 \in \overline{D} \setminus D$, $x_0 \in \mathbb{R}$. Dann:

- a) Wenn f auf D gleichmäßig stetig ist, dann hat f in x_0 eine stetige Fortsetzung.
- b) Wenn $\tilde{D} = D \cup \{x_0\}$ abgeschlossen und beschränkt ist und f in x_0 stetig fortsetzbar ist, dann ist f mit D gleichmäßig stetig.

Beweis. b) Thm. 4.16: \tilde{f} ist gleichmäßig stetig auf \tilde{D} . $\Longrightarrow f$ gleichmäßig stetig auf D.

a) Sei f gleichmäßig stetig.

- a) Sei $x_n \in D$ mit $x_n \to x_0$. Sei $\varepsilon > 0$ gegeben. Sei δ_{ε} aus (4.2). Dann: $\exists N_{\varepsilon} : |x_n x_0| \leq \frac{\delta_{\varepsilon}}{2} \quad (\forall n \geq N_{\varepsilon}) \implies |x_n x_m| \leq |x_n x_0| + |x_0 x_m| \leq \delta_{\varepsilon} \quad (\forall n, m \geq N_{\varepsilon}) \stackrel{\text{(4.2)}}{\Longrightarrow} |f(n) f(x_m)| \leq \varepsilon \quad (\forall n, m \geq N_{\varepsilon})$. Thm. 2.26 $\Longrightarrow \exists \lim_{n \to \infty} f(x_n) =: y_0$
- b) Sei $\tilde{x_n}$ in D eine weitere Folge mit $\tilde{x_n} \to x_0$. Dann $\exists \tilde{N_\varepsilon} \ge N_\varepsilon$ mit $|\tilde{x_n} x_0| \le \frac{\delta_\varepsilon}{2} \ (\forall n \ge \tilde{N_\varepsilon}) \implies |x_n \tilde{x_n}| \le |x_n x_0| + |x_0 \tilde{x_n}| \le \delta_\varepsilon \ (\forall n \ge \tilde{N_\varepsilon})$ $\stackrel{(4.2)}{\Longrightarrow} |f(x_n) f(\tilde{x_n})| \le \varepsilon \ (\forall n \ge \tilde{N_\varepsilon}) \implies |f(\tilde{x_n}) y_0| \le |f(\tilde{x_n}) f(x_n)| + |f(x_n) y_0| \le \varepsilon + \lim_{m \to \infty} |f(x_n) f(x_m)| \le 2\varepsilon \ (\forall n \ge \tilde{N_\varepsilon}) \implies f(\tilde{x_n}) \to y_0 \implies \exists \lim_{x \to x_0} f(x) = y_0.$

Theorem 4.20 (Satz vom Maximum). Sei $D \subseteq \mathbb{R}$ abgeschlossen und beschränkt und $f: D \to \mathbb{R}$ stetig. Dann $\exists x_{\pm} \in D$ mit $f(x_{+}) = \max_{x \in D} f(x)$, $f(x_{-}) = \min_{x \in D} f(x)$. Insbesondere ist f beschränkt, $d.h. |f(x)| \leq M$ (:= $\max\{f(x_{+}), f(x_{-})\}$), $\forall x \in D$.

Beweis. a) ...

b) ...

Korollar 4.21. Sei $D \subseteq \mathbb{R}$ abgeschlossen und beschränkt, $f: D \to \mathbb{R}$ stetig, $f(x) > 0 \forall x \in D$. Dann: $f(x) \geq f(x_{-}) > 0$ ($\forall x \in D$), (wobei $x_{-} \in D$ aus Thm. 4.20).

Beispiel. Wenn D nicht abgeschlossen oder unbeschränkt, dann sind Thm. und Kor. im Allgemeinen falsch.

- a) $D = (0,1], f(x) = \frac{1}{x}$. $D = \mathbb{R}_+, g(x) = x$. $\Longrightarrow f, g$ stetig und unbeschränkt.
- b) $D = [1, \infty), f(x) = \frac{1}{x} > 0 \ \forall x \ge 1. \text{ Aber } \inf_{x \in D} f(x) = 0.$

Frage. Wie sieht Bild von f aus? f(D) kann Lücken haben, wenn:

Theorem 4.22 (Zwischenwertsatz/ZWS). Sei $f : [a, b] \to \mathbb{R}$ stetig. Dann: $f([a, b]) = [\min_{[a,b]} f, \max_{[a,b]} f]$. Also: $\forall y_0 \in [\min f, \max f] \exists x_0 \in [a,b]$ mit $f(x_0) = y_0$.

Beweis. ...
$$\Box$$

Korollar 4.23 (Nullstellensatz). Sei $f : [a,b] \to \mathbb{R}$ stetig und $f(a) \cdot f(b) \leq 0$. Dann $\exists x_* \in [a,b] : f(x_*) = 0$.

Beweis. Nach Vorraussetzung $f(x) \le 0 \le f(b)$, $f(b) \le 0 \le f(a) \implies 0 \in f([a, b])$. ZWS \implies Beh.

Korollar 4.24. Sei I ein Intervall und $f: I \to \mathbb{R}$ stetig. Dann ist f(I) ein Intervall (Intervallsatz).

Beweis. Annahme: f(I) sei kein Intervall $\Longrightarrow \exists a,b \in I \text{ mit } y := f(a) < f(b) =: z \text{ und } u \in (y,z) \text{ mit } u \notin f(I)$. Sei etwa a < b. ZWS $\Longrightarrow f([a,b])$ Intervall, $y,z \in f([a,b])$ $\Longrightarrow u \in f([a,b]) \Longrightarrow \sharp$

Beispiel 4.25. a) $D = \mathbb{R}_+$, $f(x) = x^k$ $(k \in \mathbb{N} \text{ fest})$. Dann f stetig, f(0) = 0, $f(x) \ge 0$ $(\forall x \ge 0)$, $f(n) \to \infty$ $(n \to \infty)$. Kor. 4.24: $f(\mathbb{R}_+) = \text{Intervall} \implies f(\mathbb{R}_+) = \mathbb{R}_+$

b) Such $x_0 \ge 0$: $\exp(-x_0) = x_0 \iff f(x_0) = \exp(-x_0) - x_0 = 0$. Hier f stetig: f(0) = 1, $f(1) = \frac{1}{e} - 1 < 0$. 4.23 $\implies \exists x_0 : f(x_0) = 0$.

Definition 4.26.

Beispiel. a) ...

b) ...

Bemerkung 4.27.

Beweis. \Box

Theorem 4.28.

Beweis. \Box

Beispiel 4.29.

4.4 Exponentialfunktion und ihre Verwandtschaft

...

Definition 4.30.

Definition 4.31.

Bemerkung 4.32. ...

- a) ...
- b) ...
- c) ...
- d) ...
- e) ...
- f) ...

Trigonometrische Funktionen

...

Satz 4.33.

Definition.

...

Definition 4.34.

Definition 4.35.

Beispiel 4.36.