Compte Rendu de TP : Mesure de Résistances

Belittou Mustapha Groupe (B3)

But de manipulation

L'objectif de cette manipulation est d'étudier différentes méthodes de mesure des résistances électriques (méthode de pont de Wheatstone , code des couleurs et Ohmmètre)

-I- Pont de Wheatstone

1) Mesure de X_1 avec différentes valeurs de k = b/a

k = b/a	$R_+(\Omega)$	$R_{-}(\Omega)$	$R_{eq}(\Omega)$	$X_{1m}(x)$	$\left(\frac{\Delta X_1}{X_1}\right)_{classe}$	$\left(\frac{\Delta X_1}{X_1}\right)_{lecture}$	$\left(\frac{\Delta X_1}{X_1}\right)_{totale}$	$\Delta X_{1m}(\Omega)$
1	47	46	46.5	46.5	0.03	0.01075	0.04075	1.895
10	5	4	4.5	45	0.03	0.1111	0.1411	6.350
1/10	463	462	462.5	46.25	0.03	0.00108	0.03108	1.43

2) Pour les trois valeurs de K, on écrit X_1 sous la forme :

$$X_1 = (X_{1m} \pm \Delta X_{1m})\Omega$$

 $\rightarrow pourK = 1$:

$$X_1 = (46.500 \pm 1.895)\Omega$$

 $\rightarrow pourK = 10$:

$$X_1 = (45.00 \pm 6.35)\Omega$$

 $\rightarrow pourK = 1/10$:

$$X_1 = (46.25 \pm 1.43)\Omega$$

3)

1/10 c'est la valeur de k qui donne la meilleur résultat car il réduit l'erreur ($\Delta X_{1m}=1.43\Omega)$

4) Mesure de X_2 avec k = 1/10

$R_+(\Omega)$	$R_{-}(\Omega)$	$R_{eq}(\Omega)$	$X_{2m}(\Omega)$	$\left(\frac{\Delta X_2}{X_2}\right)_{classe}$	$\left(\frac{\Delta X_2}{X_2}\right)_{lecture}$	$\left(\frac{\Delta X_2}{X_2}\right)_{totale}$	$\Delta X_{2m}(\Omega)$
7935	7934	7934.5	793.45	0,03	$\frac{0.5}{7934.5} = 0.000063$	0.030063	23.85

5)

$$X_2 = (793.45 \pm 23.85)\Omega$$

6) Montage en série

R_{+}	R_{-}	R_{eq}	X_{sm}	$\left(\frac{\Delta X_s}{X_s}\right)_{classe}$	$\left(\frac{\Delta X_s}{X_s}\right)_{lecture}$	$\left(\frac{\Delta X_s}{X_s}\right)_{totale}$	ΔX_{sm}
8597Ω	8596Ω	$8596,5 \Omega$	$859,65 \Omega$	0.03	0.000058	0.030058	25.83Ω

7)

$$X_s = (859.65 \pm 25.83)\Omega$$

8) Montage en parallèle

R_{+}	R_{-}	R_{eq}	X_{pm}	$\left(\frac{\Delta X_p}{X_p}\right)_{classe}$	$\left(\frac{\Delta X_p}{X_p}\right)_{lecture}$	$\left(\frac{\Delta X_p}{X_p}\right)_{totale}$	ΔX_{pm}
447Ω	446Ω	$446,5 \Omega$	44.65Ω	0.03	0.0011	0.0311	1.38 Ω

9)

$$X_p = (44.65 \pm 138)\Omega$$

-II- Code des couleurs

X	1ère couleur	2ème couleur	3ème couleur	4ème couleur	Valeur de $X_{ci}(i=1,2)$	Précision $\Delta X(X)_{ci}$	$\Delta X_{ic}(i=1,2)$
X_{1c}	Jaune	Violet	Noir	Or	45 Ω	5% = 0.05	2.25Ω
X_{2c}	Gris	Rouge	Marron	Or	820 Ω	5% = 0.05	41 Ω

1)

$$X_1 = (45.00 \pm 2.25)\Omega$$

 $X_2 = (820 \pm 41)\Omega$

2) Comparaison entre X_{1m} et X_{1c} ainsi qu'entre X_{2m} et X_{2c} :

- $46.25\,\Omega \in [42.75; 47.25]\,\Omega$ donc **cohérent** (écart de $+1.25\,\Omega$ acceptable)
- $-793.45\,\Omega \in [779;861]\,\Omega$ donc **cohérent** (écart de $-26.55\,\Omega$ acceptable)

-III- Mesure directe avec l'ohmmètre

1-2)

Valeurs mesurées directement avec l'ohmmètre :

- -- $X_1 = 47.43$ Ω
- $-X_2 = 7996.38 Ω$

Conclusion

La méthode la plus fiable est la mesure à l'ohmmètre, car on a :

Mesure directe et instantanée

Précision supérieure (erreur typique 1-2% contre 5% pour le code couleur)

Résultat indépendant des calculs théoriques ou montages complexes