

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019

Module 3:

Sample collection, extraction and library preparation for 16S NGS analyses

Learning Outcomes

Describing different aspects of planning for 16S experiments; for example study design, DNA extraction methods and laboratory workflows.

- Understand what is meant by the term "16S rRNA gene" and why we are interested in this gene.
- Understand the concepts behind Sanger sequencing and highthroughput sequencing
- Know why it is important to clearly plan an experiment and how different components to the study and experimental design may influence data generated and downstream analyses.
- Know that techniques other than 16S rRNA sequencing are also available to study microbial profiles.

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019

Module 3:

Sample collection, extraction and library prep for 16S NGS analyses

Part 3.1

16S rRNA high throughput sequencing: how it works

mid-1600s: First microbes described

1800s - Present: Culture, staining, and microscopy used to study microbes that can be cultured

circa 1600: Microscope invented

1800s: Connection made between microbes and disease

1990s:
DNA sequencing
becomes available,
allowing study of
microbes that cannot
be cultured

Advantages: Study viable organisms

Disadvantages: Thought that less than 1%

of all bacterial species are cultivatable

Culture-independent molecular methods:

Marker gene-dependent

Fingerprinting techniques

Sanger sequencing

High-throughput sequencing

16S rRNA gene

All organisms need ribosomes to make protein

Any gene that makes up ribosome may be a good marker gene

Ribosomal RNA (rRNA) never gets transcribed to protein

Gene focussed on: **16SrRNA gene** (~1500bp)

High-throughput sequencing (shotgun sequencing)

https://www.youtube.com/watch?v=8Aa_mnyXm70

16SrRNA Intermediate Bioinformatics Online Course:
Int_BT_2019
Shantelle Claassen-Weitz

Some parts of the gene are structurally very important for the ribosome to work = $\underline{\text{conserved regions}}$

Some parts of gene have *mutations* but the ribosome still works = <u>variable regions</u>

~1500 nucleotides

The entire gene is too long to sequence without errors for most DNA sequencers

Find a portions with enough variability to distinguish species

https://www.youtube.com/watch?v=8Aa_mnyXm70

16SrRNA Intermediate Bioinformatics Online Course:
Int_BT_2019
Shantelle Claassen-Weitz

DNA amplicons

Pan African Bioinformatics Network for H3Africa

H3ABioNet

Pan African Bioinformatics Network for H3Africa

16S rRNA high throughput sequencing: how it works

Shantelle Claassen-Weitz

DNA from a number of samples

Undergo amplification using a multiplex approach

In summary:

- 16S rRNA gene is by far the most common housekeeping gene targeted to study bacterial phylogeny and classification.
- High throughput sequencing targeting the 16S rRNA gene allows for large quantities of DNA to be sequenced much more quickly and cheaply compared to Sanger sequencing.
- High throughput sequencing of the 16S rRNA gene allows for identification as well as relative abundance quantification of all bacteria present in a sample.
- 16S rRNA high-throughput sequencing allows for processing multiple samples together via the use of barcoded (indexed) primers.

