Part 1B Paper 8: Electrical Engineering Elective Examples paper covering Lectures 2-5

- 1.) What is the velocity of an electron having wavelength 72.8nm? What is the kinetic energy of the electron in eV? [Section 2]
- 2.) What is the energy of a photon having wavelength 700nm?

[Section 2]

3.) Write Schrodinger's equation for the wave-particle in each of Regions 1-4. [Section 3.1]

- 4.) X-rays of wavelength 50 pm undergo a first-order (i.e. n = 1) reflection at a glancing angle of 10° from a crystal. Find the spacing, d of the atomic planes in the crystal. [Section 4.2]
- 5.) The energy gap in a semiconductor is $45k_BT$ at any temperature T. If the intrinsic carrier concentration at 300K is 10^{10} /cm³, find the intrinsic carrier concentration in the semiconductor at 100K. [Section 5]
- 6.) Crystalline silicon has as an electron and hole mobility of $1000 \text{ cm}^2/\text{Vs}$ and $500 \text{ cm}^2/\text{Vs}$, respectively. The free carrier concentration in intrinsic silicon is $10^{10}/\text{cm}^3$. This intrinsic silicon is then doped with $N_A=10^{14}/\text{cm}^3$ acceptor dopants.
- (a) What is the resistivity of the intrinsic silicon?
- (b) What is the resistivity of the doped silicon?

[Section 6]

7.) A semiconductor is doped n-type with $10^{15}/\text{cm}^3$ donor dopants. The intrinsic carrier concentration is $10^{10}/\text{cm}^3$. The effective mass of the electron in the semiconductor is 0.4 times the electron mass in vacuum. The mean collision time is 0.2ps. Find the resistivity of the doped semiconductor.

Numerical answers:

- 1. 10^4 m/s: 2.8×10^{-4} eV
- 2. 1.77 eV

- 4. 0.143 nm
- 5. $5.19 \times 10^{10} / \text{cm}^3$
- 6. (a) 416,666 Ω cm; (b) 12.5 Ω cm
- 7. $7.1 \Omega \text{ cm}$

C. Durkan April 2024