

LEVELY (2

AFWAL-TR-80-4100

SUMMARY REPORT ON METAL PROCESSING RESEARCH

F. J. GURNEY
I. A. MARTORELL
WESTINGHOUSE ELECTRIC CORPORATION
ADVANCED ENERGY SYSTEMS DIVISION
PITTSBURGH, PENNSYLVANIA 15236

AUGUST 1980

TECHNICAL REPORT AFWAL-TR-80-4100

Approved for public release; distribution unlimited.

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

Adop TILL COPY

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

ATTWELL M. ADAIR

Project Engineer Metals Processing Group

FOR THE COMMANDER

HENRY C. GRAHAM

Chief, Processing and

High Temperature Materials Branch

(Stalan-

Metals and Ceramics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/MLLM, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractural obligations, or notice on a specific document.

AIR FORCE/56780/13 November 1980 - 300

(6) 7351 (7) 08

ESSION NO.	READ INSTRUCTIONS BEFORE COMPLETING FORM
ESSION NO.	
330	3. RECIPIENT'S CATALOG NUMBER
الادد	TYPE OF HE ONT & PERIOD COVERE
• /	Final Kepart, for Period 16 Feb 78 — 30 Apr 80 6. PERFORMING ORG. REPORT NUMBER
$\overline{}$. CONTRACT OR GRANT NUMBER(s)
(15	F33615-78-C-5003
	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	Task No. 735108 Project No. 7351
	2 REPORT DATE
	August 1989
	13. NUMBER OF PAGES 62
ng Office)	15. SECURITY CLASS. (of this report)
71	Unclassified
14	15a. DECLASSIFICATION/DOWNGRADING
dillerent fro	m Report)
ock number)	
ck number)	
arch co	nducted on metal processing the study of the occurrenc
	alimited different from

DD 1 JAN 73 1473 EDITION OF, I NOV 65 IS OBSOUTE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) 410110

FOREWORD

This report was prepared by the Westinghouse Electric Corporation, Advanced Energy Systems Division, Pittsburgh, Pennsylvania, under USAF Contract No. F33615-78-C-5003. The project was initiated under Project No. 7351, "Metallic Materials", Task No. 735108, "Processing of Metals", and was administered under the direction of the Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio with Mr. A. M. Adair (AFWAL/MLLM) as Project Engineer.

The work described in this report was carried out between 16 February 1978 and 30 April 1980. Forging, Extrusion, Heat Treatments and other technical support was provided by the following Westinghouse personnel:

- T. M. Brown
- J. O. Brown
- T. E. Jones
- M. M. Myers
- S. E. Nash
- R. A. Sweeney

Typing and editing support was provided by J. F. Hickman.

Accession For	
NTIS GRA&I	
DTIC TAB	
Unannounced	
Justification	
Distribution/ Availability C	odes
Arail und;	
Dist Special	l
A	

TABLE OF CONTENTS

SECTION		PAGE
ı	INTRODUCTION	1
II	INVESTIGATION OF METAL PROCESSING OPERATIONS	1
	A. Pilot Plant Forging of Hydrogenated Ti-6A1-4V(20)	1
	B. Experimental Forging of Other Titanium Alloys Containing Hydrogen(23)	2
	C. Phenomenological Mechanism for the Occurrence of the Extrusion Central Burst Defect (24)	2
	D. High Sensitivity-Low Capacity Load Cell With Overload Protection	3
III	APPLIED METAL PROCESSING	4
	REFERENCES	12

LIST OF ILLUSTRATIONS

LIGURE		PAG
1.	Hydrovac forging advantages.	5
2.	Illustration of the rigid ram stop used for the partial extrusions.	6
3.	Macrographs of a sequence of longitudinally sectioned partially extruded billets showing the development, propagation and repetition of the central burst defect. The above sequence shows a) the development of the tangential velocity discontinuity surface, b) the initiation of the burst at the axial center of the billet at the tip of the discontinuity surface and c) the rapid opening of the defect.	7
4.	The above sequence shows a) the fully developed defect exiting the die with metal flow concentrated at the outer shell of the product followed by b) the re-establishment of the metal flow within the die cone and the initiation of a new tangential discontinuity surface beginning at the outer portion of the billet where the initial entry to the die cone occurs and c) the continued development of the discontinuity with concentrated flow in preparation for the next burst.	8
5.	Phenomenological mechanism of the development, propagation and repetition of the central burst defect. a) Development of tangential velocity surfaces (1) occurs with bands of localized flow. Tangential flow along the discontinuity (2) is translated to axial flow toward the die exit and results in a region of enhanced tensile stress (3) at the billet axis. b) Initiation of the central burst defect (4) results from tensile overload. Wavy flow lines (5) develop while the deformation zone volume shrinks by movement of the entrance boundary (6) toward the die exit. c) Discontinuous flow lines develop (7) as the defect propagates along the discontinuity surface but propagation becomes less energetically favorable as the geometric position of the flow surface proceeds through the deformation zone (8). The defect opens rapidly (9) as flow concentrates (10) at the outer flow lines. d) As the defect passes through the die the deformation zone (11) becomes re-established and new tangential velocity discontinuity surfaces (12) begin at the outer surfaces of the billet near the entrance to the die cone.	9

LIST OF ILLUSTRATIONS (Cont'd)

FIGURE		PAGI
6.	Photograph of the high sensitivity load cell showing a) the strain gaged sleeve and the solid core overload section (note the solid core overload section is shown upside down) and also showing b) the assembled sections in the operational arrangement.	10
7.	Flow stress-strain curves for Ti-10V-2Fe-3Al forged isothermally at 3.00 ipm (nominal). Grain Size = 255µm. The forging loads needed for the flow stress calculated using the ring compression test(2-5) were measured using the load cell previously described.	11

LIST OF TABLES

TABLE		PAGE
1	Extrusion Parameters for Maximum Yield Applications	14

SECTION I

INTRODUCTION

The experimental effort described in this investigation is a continuation of work (1-19) carried out at the Materials Laboratory, Wright-Patterson Air Force Base, Ohio to advance the science and technology of metal deformation processing for aerospace applications. The principal objective of this effort was to determine quantitative metalworking process design procedures for the selection and control of processing parameters for production of metallic shapes with desired external geometry and internal microstructure. The program consisted of three tasks which were conducted concurrently at the Experimental Metals Processing Laboratory at the Wright-Patterson Air Force Base. The first task entailed process design studies for metalworking operations, for the exploitation of processing advantages of alpha or near alpha titanium alloys containing hydrogen. The work performed under this task concentrated primarily on the effects of hydrogen on the flow stress of Ti-6A1-4V. Some additional work was also performed on Ti-5A1-2.5Sn and commercially pure Ti-3OA.

The second task entailed the effects of metalworking variables on the generation of defects during processing. The work conducted under this task was performed on extrusion of 7075 Al.

The third task entailed the utilization of optimum processing parameters and techniques, both those developed in the first two tasks and those gained from previous experience, to process experimental materials from alloy development programs of the Air Force and other government agencies. The aim of this task was to obtain the maximum yield of sound material for metallurgical evaluation. The work performed under the third task included extrusion, forging, rolling, swaging, melting, and heat treatment of experimental alloys. A total of 469 billets and bars were processed for this effort. Tabulated data on the extrusions carried out under this task are included in this report.

The major portion of the research findings have already been presented in detail in the form of Materials Laboratory Technical Reports. Only summaries of these studies are presented in this report, together with brief discussions of work which has not yet been published.

SECTION II

INVESTIGATION OF METAL PROCESSING OPERATIONS

A. Pilot Plant Forging of Hydrogenated Ti-6Al-4V(20)

A pilot plant forging program for hydogenated Ti-6Al-4V is described in this program and was performed on ingot stock which was machined into ring-shaped workpieces. The rings were hydrogenated to obtain hydrogen

content between 0.1 weight percent and 1.2 weight percent. A micro-balance technique was used to determine the hydrogen content. A description of the equipment and procedures for hydrogenation of the material and verification of hydrogen analysis is given (20).

The ring forgings were performed on a hydraulic forge press using isothermal techniques. A temperature range between 922°K (1200°F) and 1144°K (1600°F) and deformation rates of $1.26 \times 10^{-1} \mathrm{ms}^{-1}$ (0.3 ipm) and $1.26 \times 10^{-1} \mathrm{ms}^{-1}$ (30.0 ipm) were used in the forging evaluation. Two different heats of material were used. Three to six rings were forged at different reductions at each condition of temperature, rate and hydrogen content. Non-hydrogenated rings were also forged at each condition to form a baseline for comparison. Standard techniques were used to analyze the ring forging data.

Results from the program show that a 30 percent reduction in forging loads resulted when material with 0.4 weight percent hydrogen is utilized. At larger hydrogen contents, the deformation loads increase and approximately equaled those of non-hydrogenated material when the hydrogen content is 0.8 weight percent. Deformation loads for the material with 0.4 weight percent hydrogen which are equivalent to those for non-hydrogenated product occur at processing temperatures between 56°K (100°F) and 83°K (150°F) lower. These two effects are illustrated in Fig. 1. The application of these results to hydrided titanium powder and to isothermal forging technology is discussed (20). Information in this report is also applicable to zirconium and hafnium processing technology. Details of this study are included in AFWAL-TR-80-4026.

B. Experimental Forging of Other Titanium Alloys Containing Hydrogen (23)

The effort described above for titanium alloy Ti-6Al-4V was expanded to include, in somewhat abbreviated form, other titanium alloys (such as commercially pure titanium, Ti-30A and alpha titanium Ti-5Al-2.5Sn). Results from these studies show similar trends with hydrogen content. Load reductions for these alloys are somewhat higher, approximately 50 percent. These results support the previously published Russian Data(21-22). Details of the work on CP-Ti and Ti-5Al-2.5Sn and other alloys will be published in an Materials Laboratory Technical Report(23).

C. Phenomenological Mechanism for the Occurrence of the Extrusion Central Burst Defect(24)

An investigation of defect occurrence during metalworking was conducted for low ratio extrusion billets of 7075 Al partially extruded in a horizontal extrusion press using a three-inch diameter container. Extrusion conditions were selected such that the central burst defect would occur. A rigid ram stop mechanism was employed to halt the extrusion process abruptly after selected increments of deformation were achieved in each billet. This rigid ram stop mechanism is shown in Fig. 2. Metallographic sections of the partially extruded billets using the rigid ram stop mechanism illustrating the development of the defect are shown in Figs. 3 and 4. Metallographic and Scanning Electron Microscope analyses were used to identify the development of the defect.

The occurrence of the defect was found to be preceded by the development of a tangential velocity discontinuity surface in the deformation zone. Enhanced metal flow in the radial direction on the die exit side of this discontinuity surface caused tensile stresses to develop along the axis of the billet initiating the defect by a tensile overload mechanism. The defect was found to propagate along the discontinuity surface but was halted when continued ram motion caused continued plastic flow along this discontinuity surface to become diffused. The defect development process is illustrated schematically in Fig. 5. Details of the effort are presented in AFML-TR-79-4031⁽²⁴⁾.

D. <u>High Sensitivity-Low Capacity Load Cell With Overload Protection</u>

A high sensitivity-low capacity load cell was designed and built to satisfy the need for measurement of loads, representing a small fraction of the load capacity of the equipment, that is often encountered in metalworking operations. This situation can result from small workpieces because of limited amounts of experimental materials, prior deformation processing of the ingots or constraints on experimental variables. Measurement of small loads can pose linearity and sensitivity difficulties when using load cells designed to accommodate full press capacity. The load cell design, shown in Fig. 6, has a load measuring capacity of 200,000 lbs and is capable of accommodating full press load (1.1x105 lbs) safely.

The load cell was instrumented with strain gages and calibrated up to 200,000 lbs on a certified testing machine. Flow stress-strain curves were determined from the forging loads measured with the cell using the Ring Compression Test $^{(8)}$. The stress-strain curves are shown in Fig. 7. Details are found in an Materials Laboratory Technical Report in print $^{(25)}$.

A modification to the load cell was accomplished that resulted in an increase in the linearity range of the cell. The modification consisted of a change in the free deformation clearance between the measuring cell and the safety block. This change became necessary due to a misalignment of a 0.004 inch thick ring previously used to adjust the deformation characteristics of the previously used cell. This modification resulted in a drop of the output of the cell to a maximum of about 20% at the lower load range. This means that a maximum uncertainty of \pm 10% is possible on the lower load range used to obtain the flow stress data of Fig. 7.

Changes in the forging method and in the method of data analysis for the Ring Compression Test are currently underway under Contract No. F33615-79-C-5096 and could have a significant impact on the stress-strain data computed from the Ring Compression Test. Corrections to the data in Sections IIA, IIB and IIC will be made as necessary when said data analysis is completed.

SECTION III

APPLIED METAL PROCESSING

The experience gained during the performance of the experimental programs outlined in Section II, combined with prior expertise and knowledge of metal forming, has been applied to the processing of more than 469 billets and bars of experimental materials related to government alloy development programs. The processing included extrusion, conventional and isothermal forging, rolling, waging and melting. All types of materials were processed during these studies, ranging from aluminum alloys to tungsten alloys. A variety of starting material forms, cast, powder and wrought conditions were included in the processing operations. A number of heat treatment operations were also performed in these application studies.

A listing of the billets processed by extrusion for these application studies are included in Table 1, together with the deformation pressure for the particular processing conditions and a description of the product quality.

HYDROVAC FORGING

30% REDUCTION IN FORGING LOAD

150°F REDUCTION IN HOT FORMING TEMPERATURES

Fig. 1. Hydrovac forging advantages.

PRESS ARRANGEMENT PRIOR TO EXTRUSION

Fig. 2. Illustration of the rigid ram stop used for the partial extrusions.

Fig. 3. Macrographs of a sequence of longitudinally sectioned partially extruded billets showing the development, propagation and repetition of the central burst defect. The above sequence shows a) the development of the tangential velocity discontinuity surface, b) the initiation of the burst at the axial center of the billet at the tip of the discontinuity surface and c) the rapid opening of the defect.

Fig. 4.

The above sequence shows a) the fully developed defect exiting the die with metal flow concentrated at the outer shell of the product followed by b) the re-establishment of the metal flow within the die cone and the initiation of a new tangential discontinuity surface beginning at the outer portion of the billet where the initial entry to the die cone occurs and c) the continued development of the discontinuity with concentrated flow in preparation for the next burst.

Region I - Nondeformed Material Region II - Deformation Zone Region III - Product Material

Phenomenological mechanism of the development, propagation and repetition of the central burst defect. a) Development of tangential velocity surfaces (1) occurs with bands of localized flow. Tangential flow along the discontinuity (2) is translated to axial flow toward the die exit and results in a region of enhanced tensile stress (3) at the billet axis. b) Initiation of the central burst defect (4) results from tensile overload. Wavy flow lines (5) develop while the deformation zone volume shrinks by movement of the entrance boundary (6) toward the die exit. c) Discontinuous flow lines develop (7) as the defect propagates along the discontinuity surface but propagation becomes less energetically favorable as the geometric position of the flow surface proceeds through the deformation zone (8). The defect opens rapidly (9) as flow concentrates (10) at the outer flow lines. d) As the defect passes through the die the deformation zone (11) becomes re-established and new tangential velocity discontinuity surfaces (12) begin at the outer surfaces of the billet near the entrance to the die cone.

Photograph of the high sensitivity load cell showing a) the strain gaged sleeve and the solid core overload section is shown upside down) and also showing b) the assembled sections in the operational arrangement. Fig. 6

Fig. 7. Flow stress-strain curves for Ti-10V-2Fe-3Al forged isothermally at 3.00 ipm (nominal). Grain Size = $255\mu m$. The forging loads needed for the flow stress calculation using the ring compression test (2-5) were measured using the load cell previously described.

REFERENCES

- 1. I. Perlmutter and Vincent DePierre, "Extruding Refractory Metals", Metal Progress, November 1963.
- D. R. Carnahan and V. DePierre, "Process Variables in Metal Extrusion", Part I: Linear Friction During Extrusion", AFML-TR-67-242, July 1967.
- D. R. Carnahan and V. DePierre, "Process Variables in Metal Extrusion", Part II: Extrusion Die Forces", AFML-TR-67-242, June 1968.
- 4. V. DePierre, T. D. Cooper and D. R. Carnahan, "Process Variables in Metal Extrusion", Part III: The Effect of Extrusion Temperatures on Deformation Loads and Mechanical Properties of Ti-6Al-4V Titanium Alloy", AFML-TR-67-242, September 1968.
- 5. Alan T. Male, "Process Variables in Metal Extrusion", Part IV: Summary AFML-TR-67-242, January 1969.
- F. J. Gurney, A. T. Male and V. DePierre, "Evaluation of DuPont Oxalate Treatment for High Temperature Metalworking Lubrication", TM-MAN-69-15, September 1969.
- 7. Vincent DePierre and Alan T. Male, "Mathematical Calibration of the Ring Test for Friction Studies in Flat Forging Operations, Part I: Experimental Evaluation, Part II: Computer Solutions", AFML-TR-69-28, October 1969.
- 8. George Saul, Alan T. Male and Vincent DePierre, "A New Method for the Determination of Material Flow Stress Values Under Metalworking Conditions", AFML-TR-70-19, January 1970.
- 9. Alan T. Male and Vincent DePierre, "The Use of the Ring Compression Test for Defining Realistic Metal Processing Parameters", AFML-TR-70-129, June 1970.
- 10. Vincent DePierre, Alan T. Male and George Saul, "The Relative Validity of Coefficient of Friction and Interface Friction Shear Factor for use in Metal Deformation Studies", AFML-TR-70-243, October 1970.
- 11. A. T. Male, F. J. Gurney and T. E. Jones, "The Evaluation of Glasses as Forging Lubricants", AFML-TR-71-83, April 1971.
- 12. F. J. Gurney and A. T. Male, "The Relationship of Microstructure and Mechanical Properties of Extruded Titanium Alloy Bars to the Prior Deformation Processing History", AFML-TR-71-28, March 1971.
- 13. F. J. Gurney, A. T. Male and T. E. Jones, "Evaluation of Selected Commercial and Experimental Intermediate Temperature Forging Lubricants", AFML-TR-71-139, June 1971.

REFERENCES (Cont'd)

- 14. Alan T. Male and Fred J. Gurney, "Synthesis of Shape, Structure and Properties by Control of Metallurgical Processing Variables", AFML-TR-71-103, September 1971.
- 15. F. J. Gurney, D. J. Abson and V. DePierre, "The Influence of Extrusion-Consolidation Variables on the Integrity and Strength of the Product From Pre-Alloyed 7075 Aluminum Powder", AFML-TR-73-252, October 1973.
- 16. D. J. Abson and F. J. Gurney, "Investigation of Parameters Involved in Metal Processing Operations", AFML-TR-73-281, December 1973.
- 17. D. J. Abson, "Metal Processing Operations", Volume I: Grain Boundary and Sub-Boundary Strengthening in Aluminum at Room Temperature", AFML-TR-74-142, July 1974.
- 18. Gurney, F. J., "Summary Report on Investigation of Metal Processing Operations", AFML-TR-77-75, April 1977.
- 19. Gurney, F. J. and A. M. Adair, "Evaluation of Friction Properties of Sheet Forming Lubricants By Tensile Drawing and By Ring Compression", AFML-TR-78-66, May 1978.
- 20. Gurney, F. J., I. A. Martorell and W. R. Kerr, "Pilot Plant Forging of Hydrogenated Ti-6Al-4V", AFWAL-TR-80-4026.
- 21. Kolachev., B. A., et al., "Effect of Hydrogen on Industrial Plasticity of Ti-9Al", Izvestiya Vysshikh Ucheknykh Zavedeniy Tsvetnaya Metallurgiya, Nr. 4, 1972, pp. 137-142, USAF Foreign Technology Division Translation, FTD-ID(RS)I-1076-76, August 1976.
- 22. Kolachev, B. A., et al., "Evaluation of the Beneficial Effect of Hydrogen on the Deformability of the Titanium Alloy ST4", Kuzechno-Shtampovochnoye Proizvodstvo, Nr. 1, January 1975, pp. 29-32, USAF Foreign Technology Division Translation, FTD-ID(RS)I-2347-75, November 1975.
- 23. Gurney, F. J., W. R. Kerr and I. A. Martorell, "Effects of Hydrogen Content on Selected Properties of Ti-30A and Ti-5Al-2.5Sn", AFML-TR-, to be published.
- 24. Gurney, F. J., "A Phenomenological Mechanism for the Occurrence of the Extrusion Central Burst Defect", AFML-TR-79-4031, April 1979.
- 25. Martorell, I. A. and F. J. Gurney, "High Sensitivity-Low Capacity Load Cell with Overload Protection", AFML-TR-79-4154, in print.

TABLE 1 NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	<u>A110y</u>	Temp.	Red. Ratio	Billet	Die Angle	P _t (ks1)	Vex (fps)	Surface
7091	Pratt & Whitney	Ni-17Mo-6A1- 6Ta	2300	44.6:1	7052	1200	146	1.2	Good
7092	Pratt & Whitney	Ni-14Mo-7A1- 6Ta	2300	44.6:1	7052	120°	162	1.0	Good
7093	Pratt & Whitney	Ni-14Mo-6A1- 9Ta	2300	44.6:1	7052	120°	162	6.	Good
7094	Pratt & Whitney	Ni-14Mo-5Al- 9Ta	2300	44.6:1	7052	120°	157	1.0	Good
7095	Pratt & Whitney	Ni-14Mo-6Al- 6Ta	2300	44.6:1	7052	120°	140	ť	Good
9602	Pratt & Whitney	Ni-14Mo-6A1- 6Ta	2300	12:1	7052	120°	113	1.4	Good
7097	Pratt & Whitney	Ni-14Mo-5A1- 9Ta	2300	44.6:1	7052	120°	140	1.2	Poog
7098	Pratt & Whitney	N1-11Mo-7A1- 6Ta	2300	44.6:1	7052	120°	159	1.0	Good
7099	Pratt & Whitney	Ni-11Mo-6A1- 9Ta	2300	44.6:1	7052	120 ⁰	146	1.2	poog

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	Alloy	Temp.	Red.	Billet Lube	Die Angle	Pt (ksi)	Vex (ips)	Surface
7100	Pratt & Whitney	N1-14Mo-6Al- óTa	1600	Blank	Poly	Blank	192	٠.	Good
7102	Pratt & Whitney	MARM-200 Mod.	2250	20:1	0010	°09	100	1.2	Good
7103	Pratt & Whitney	MARM-200 Mod.	2250	20:1	0010	°09	6		Good
7104	Pratt & Whitney	Ni-14Mo-6Al- 6Ta	2250	12:1	0010	120°	109	1.1	poog
7105	Pratt & Whitney	N1-14Mo-6A1- 6Ta	2250	5.95:1	0100	006	104	1.3	goog
7112	AFWAL/MLLM	713C	2050	7.8:1	0010	006	181	φ.	Fair
7113	AFWAL/MLLM	713C	2050	7.8:1	0010	006	199	.7	Bad
7128	AFWAL/MLLM	713C	2050	6.45:1	7052	006	151	1.1	Excellent
7129	AFWAL/MLLM	713C	2050	6.45:1	7052	006	162	œ	Excellent
7136	Pratt & Whitney	Ni-14Mo-6Al- 6Ta	2300	8:1	7052	009	122	1.0	Poog
7137	Pratt & Whitney	N1-18Mo-8A1- .04C	2300	44.6:1	7052	120°	148	œ.	Good
7138	Pratt & Whitney	Ni-11Mo-7A1- 6Ta	2300	44.6:1	7052	120°	170	6.	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion			Temp.	Red.	Billet	Die	Pt	Vex	
Number	Agency	<u>A110y</u>	OF.	Ratio	Lube	Angle	(ks1)	(1ps)	Surface
7139	Pratt & Whitney	Ni-11Mo-6Al- 9Ta	2300	44.6:1	7052	120°	136	6.	Good
7140	Pratt & Whitney	Ni-11Mo-5Al- 11.5Ta	2300	44.6:1	7052	120°	150	6.	Good
7141	Pratt & Whitney	Ni-12Mo-6Al- 6Ta-7Cr	2300	44.6:1	7052	120°	132	1.0	Good
7162	Pratt & Whitney	N1-15Mo-7Al- 1.6Cb	2300	44.6:1	7052	1200	124	6.	Good
7143	Pratt & Whitney	Ni-15Mo-6Al- 3.2Cb	2300	44.6:1	7052	120°	138	6.	Good
7144	Pratt & Whitney	Ni-15Mo-7Al- 0.8Ti	2300	44.6:1	7052	120°	159	∞.	Poog
7145	Pratt & Whitney	Ni-15Mo-6Al- 1.6Ti	2300	44.6:1	7052	120°	140	6.	Good
7146	Pratt & Whitney	Ni-14Mo-6Al- 6Ta04C	2300	44.6:1	7052	120°	151	6.	рооб
7147	Pratt & Whitney	Ni-11Mo-6Al- 6Ta	2300	44.6:1	7052	120 ^o	146	6.	Good
7148	Pratt & Whitney	Ni-14Mo-7Al- 6.1W04C	2300	44.6:1	7052	120°	146	6.	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion			Temp.	Red.	Billet	Die	P ₊	Vex	
Number	Agency	Alloy	oF.	Ratio	Lube	Angle	(ksi)	(ips)	Surface
7149	Pratt & Whitney	MIT Steel	1550	20:1	0010	09	200	1.1	Good
7164	Pratt & Whitney	Ni-53.4Co-20. 12-14.16Cr(+)	1850	Blank	Poly	₀ 06	200	5.	Good
7165	Pratt & Whitney	Ni-52.87Co-20. 02Cr-14.09(+)	1850	Blank	Poly	06	200	٠.	Poog
7166	Pratt & Whitney	Ni-52.58Co-19. 91Cr-14.01(+)	1850	Blank	Poly	006	200	5.	Good
7167	Pratt & Whitney	Ni-52.29Co-19. 80Cr-13.93(+)	1850	Blank	Poly	006	200	₹.	Good
7168	Pratt & Whitney	Ni-55.7Co-18. 51Cr-12.29(+)	1850	Blank	Poly	06	201	5.	600d
7169	Pratt & Whitney	Ni-55.24Co-18. 35Cr-12.38(+)	1850	Blank	Poly	06	200	5.	Good
7170	Pratt & Whitney	Ni-54.90Co-18. 23Cr-12.30(+)	1850	Blank	Poly	06	200	٠.	goog
7171	Pratt & Whitney	Ni-54.55Co-18. 12Cr-12.22(+)	1850	Blank	Poly	006	201	5.	Poog
7172	Pratt & Whitney	Ni-54.34Co-19. 26Cr-13.41(+)	1850	Blank	Poly	06	201	3.	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion	Ασουςν	A110w	Temp.	Red.	Billet Lube	Die	Pt (ksi)	Vex	Surface
Number	ABEIICY	ATTO	I I	NACTO	חחם	argin	(KST)	(S/T)	anting
7173	Pratt & Whitney	Ni-54.34Co-19. 26Cr-13.41(+)	1850	Blank	Poly	066	200	5.	Good
7174	Pratt & Whitney	Ni-53.81Co-19. 01Cr-13.08(+)	1850	Blank	Poly	006	194	5.	Good
7175	Pratt & Whitney	Ni-53.38Co-18. 92Cr-13.17(+)	1850	Blank	Poly	006	197	۶.	Good
7176	Pratt & Whitney	Ni-54.30Co-19. 25Cr-13.41(+)	1850	Blank	Poly	006	201	٠.	Good
7717	Pratt & Whitney	Ni-53.95Co-19. 12Cr-13.31(+)	1850	Blank	Poly	°06	194	3,	Good
7178	Pratt & Whitney	Ni-53.60Co-19. 01Cr-13.23(+)	1850	Blank	Poly	06	200	5.	poog
7179	Pratt & Whitney	Ni-54.36Co-19. 25Cr-13.40(+)	1850	Blank	Poly	006	197	5.	Good
7180	Pratt & Whitney	Ni-53.48Co-18. 95Cr-13.19(+)	1850	Blank	Poly	006	200	5.	Good
7181	Pratt & Whitney	Ni-53.35Co-18. 90Cr-13.16(+)	1850	Blank	Poly	006	201	٠.	Good
7182	Pratt & Whitney	Ni-54.08Cr-19. 16Cr-13.35(+)	1850	Blank	Poly	06	200	٠.	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Surface	Good	Good	Good	Poog	Poog	Good	Good	Good	Poog	Good
Su	ၓၟ	တိ	હ	ၒၟ	ၓၟ	ၓၟ	ၓၟ		ၒၟ	ၓ
$v_{\mathbf{e}_{\mathbf{x}}}$	٠.	5.	5.	5.	5.	5.	.5	5.	5.	5.
Pt (ksi)	194	197	196	200	194	3 00	197	200	193	198
Die Angle	₀ 06	06	₀ 06	₀ 06	006	006	06	₀ 06	₀ 06	°06
Billet Lube	Poly									
Red. Ratio	Blank]	Blank]	Blank	Blank]						
Temp.	1850	1850	1850	1850	1850	1850	1850	1850	1850	1850
Alloy	Ni-53.26Co-19. 05Cr-13.27(+)	Ni-53.50Co-18. 96Cr-13.20(+)	Ni-53.73Co-19. 04Cr-13.26(+)	Ni-53.42Co-18. 93Cr-13.18(+)	Ni-53.10Co-18. 81Cr-13.10(+)	N1-57.59Co-19. 26Cr-10.55(+)	Ni-56.39Co-18. 85Cr-10.32(+)	N1-55.92Co-18. 88Cr-10.27(+)	N1-55.28Co-18. 85Cr-10.32(+)	N1-54.96Co-18. 73Cr-10.26(+)
Agency	Pratt & Whitney									
Extrusion	7183	7184	7185	7186	7187	7188	7189	7190	7191	7192

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion	Agency	Alloy	Temp.	Red. Ratio	Billet Lube	Die Angle	Pt (ksi)	$v_{\rm ex} \over { m (ips)}$	Surface
7193	Pratt & Whitney	Ni-54.56Co-18. 62Cr-10.20(+)	1850	Blank	Poly	006	194	5.	Poog
7194	Pratt & Whitney	Ni-61.62Co-12. 50Cr-10.30(+)	1850	Blank	Poly	006	197	'n.	Poog
7195	Pratt & Whitney	Ni-61.31Co-10. 25Cr-12.41(+)	1850	Blank	Poly	006	197	2.	роод
7196	Pratt & Whitney	Ni-57.02Cr-17. 5Cr-11.55(+)	1850	Blank	Poly	06	194		рооб
7197	Pratt & Whitney	Ni-56.64Co-17. 33Cr-11.47(+)	1850	Blank	Poly	06	194	3.	Good
7198	Pratt & Whitney	Ni-56.26Co-17. 22Cr-4.39(+)	1850	Blank	Poly	°06	194	ī,	роод
7199	Pratt & Whitney	Ni-55.32Co-17. 32Cr-11.46(+)	1850	Blank	Poly	°06	197	٠,	Good
7201	Pratt & Whitney	N1-Bal-Cr-12. 20Co-18.38(+)	1850	Blank	Poly	06	194	٠.	Poog
7202	Pratt & Whitney	Ni-Bal-Cr-12. 20Co-18.38(+)	1850	Blank	Poly	006	197	٠.	Poog
7203	Pratt & Whitney	N1-Bal-Cr-12. 20Co-18.38(+)	1850	Blank	Poly	°06	197	3.	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

	İ		E	7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>.</u>	:	
Number	Agency	Alloy	Temp.	Red.	Lube	Die Angle	Pt (ks1)	vex (ips)	Surface
7204	Pratt & Whitney	N1-Bal-Cr-12. 20Co-18.38(+)	1850	Blank	Poly	006	196	•5	Good
7205	Pratt & Whitney	Ni-53.14Co-20. 12Cr-14.16(+)	2000	6:1	7052	09	92	1.3	Good
7206	Pratt & Whitney	Ni-52.87Co-20. 02Cr-14.09(+)	2000	6:1	7052	009	88	1.5	Good
7207	Pratt & Whitney	Ni-52.58Co-19. 91Cr-14.01(+)	2000	6:1	7052	09	92	1.3	роод
7208	Pratt & Whitney	N1-52.29Co-19. 80Cr-13.93(+)	2000	6:1	7052	09	26	1.2	poog
7209	Pratt & Whitney	Ni-55.7Co-18. 51Cr-12.29(+)	2000	6:1	7052	و09	100	1.2	роод
7210	Pratt & Whitney	N1-55.24Co-18. 35Cr-12.38(+)	2000	6:1	7052	₀ 09	92	1.3	poog
7211	Pratt & Whitney	N1-54.90Co-18. 23Cr-12.30(+)	2000	6:1	7052	09	92	1.2	Good
7212	Pratt & Whitney	Ni-54.55Co-18. 12Cr-12.22(+)	2000	6:1	7052	e0 ₀	122	1.3	Good
7213	Pratt & Whitney	Ni-54.34Co-19. 26Cr-13.41(+)	2000	6:1	7052	°06	92	1.3	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion		;	Temp.	Red.	Billet	Die	د ل	Vex	i
Number	Agency	<u>A110y</u>	OF.	Ratio	Lube	Angle	(ksi)	(ips)	Surface
7215	Pratt & Whitney	Ni-54.34Co-19. 26Cr-13.41(+)	2000	6.5:1	7052	09	95	1.8	Good
7216	Pratt & Whitney	N1-53.81Co-19. 01Cr-13.08(+)	2000	6.5:1	7052	06	113	1.7	Good
7217	Pratt & Whitney	N1-53.38Co-18. 92Cr-13.17(+)	2000	6.5:1	7052	009	97	1.7	Good
7218	Pratt & Whitney	Ni-54.30Co-19. 25Cr-13.41(+)	2000	6.5:1	7052	09	97	1.7	Poog
7219	Pratt & Whitney	N1-53.95Co-19. 12Cr-13.31(+)	2000	6.5:1	7052	09	68	1.9	Good
7220	Pratt & Whitney	Ni-53.60Co-19. OCr-13.23(+)	2000	6.5:1	7052	09	92	1.8	роод
7221	Pratt & Whitney	Ni-54.36Co-19. 25Cr-13.40(+)	2000	6.5:1	7052	°09	92	1.8	рооб
7222	Pratt & Whitney	Ni-53.48Co-18. 95Cr-13.19(+)	2000	6.4:1	7052	09	92	1.8	Good
7223	Pratt & Whitney	N1-53.35Co-18. 90Cr-13.166(+)	2000	6.4:1	7052	09	88	1.8	poog
7224	Pratt & Whitney	Ni-54.08Co-19. 16Cr-13.35(+)	2000	6.1	7052	09	95	1.9	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

			ı	,	,		!	;	
Extrusion	Agency	Alloy	Temp	Red. Ratio	Billet	Die Angle	$\frac{P_{t}}{(kst)}$	(ips)	Surface
7225	Pratt & Whitney	N1-53.76Co-19. 05Cr-13.27(+)	2000	6.4:1	7052	09	95	1.8	Good
7226	Pratt & Whitney	Ni-53.50Co-18. 96Cr-13.20(+)	2000	6.4:1	7052	09	101	1.7	poog
7227	Pratt & Whitney	Ni-53.73Co-19. 04Cr-13.26(+)	2000	6.4:1	7052	009	100	1.8	Poog
7228	Pratt & Whitney	Ni-53.42Co-18. 93Cr-13.18(+)	2000	6.4:1	7052	09	6	1.7	Good
7229	Pratt & Whitney	N1-53.10Co-18. 81Cr-13.10(+)	2000	6:1	7052	09	98	1.9	Good
7230	Pratt & Whitney	Ni-51.59Co-19. 26Cr-10.55(+)	2000	6:1	7052	09	95	1.8	Good
7231	Pratt & Whitney	N1-56.39Co-18. 85Cr-10.32(+)	2000	6:1	7052	09	108	1.8	Poog
7232	Pratt & Whitney	N1-55.92Co-18. 88Cr-10.27(+)	2000	6:1	7052	009	103	1.7	Good
7233	Pratt & Whitney	N1-55.28Co-18. 85Cr-10.32(+)	2000	1:9	7052	09	98	1.8	Poog
7234	Pratt & Whitney	Ni-54.96Co-18. 73Cr-10.26(+)	2000	6:1	7052	009	96	1.8	Poog

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

OF Ratio Lube Angle (ks1) (1ps)	.65Co-18. 2000 6.4:1 7052 60° 93 1.8 Good 10.20(+)	.62Co-12. 2000 6.4:1 7052 60° 108 1.7 Good 0.30(+)	.31Co-10. 2000 6.4:1 7052 60° 107 1.7 Good 12.41(+)	.02Co-17. 2000 6.4:1 7052 60° 100 1.7 Good 1.55(+)	.64Co-17. 2000 6.4:1 7052 60° 100 1.7 Good 11.47(+)	.30Co-17. 2000 6.4:1 7052 60° 101 1.7 Good 4.39(+)	.32Co-17. 2000 6.4:1 7052 60° 95 1.8 Good 11.46(+)	•	1-Cr-12. 2000 6.4:1 7052 60 ⁰ 101 1.7 Good 18.38(+)
									009
Lub	7052	7052	7052	7052	7052	7052	7052	7052	7052
Ratio	6.4:1	6.4:1	6.4:1	6.4:1	6.4:1	6.4:1	6.4:1	6.4:1	6.4:1
OF		. 2000		. 2000				2000	2000
Alloy	Ni-54.65Co-18. 62Cr-10.20(+)	Ni-61.62Co-12. 5Cr-10.30(+)	Ni-61.31Co-10. 25Cr-12.41(+)	Ni-57.02Co-17. 5Cr-11.55(+)	Ni-56.64Co-17. 33Cr-11.47(+)	Ni-56.30Co-17. 22Cr-4.39(+)	Ni-55.32Co-17. 32Cr-11.46(+)	Ni-Bal-Cr-12. 20Co-18.38(+)	Ni-Bal-Cr-12. 20Co-18.38(+)
Agency	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency Pratt & Whitney	A110y Ni-Bal-Cr-12.	Temp.	Red. Ratio	Billet Lube	Die Angle 60	Pt (ksi)	Vex (ips)	Surface
		N1-14Mo-7A1-	2300	12:1	7740	09	95	1.7	poog
	Pratt & Whitney	Ni-14Mo-7Al- 6W04C	2300	30:1	7740	09	126	1.4	Poog
	Pratt & Whitney	Ni-14Mo-6Al- 6Ta	2300	12:1	7740	09	103	1.6	Good
	Pratt & Whitney	Ni-14Mo-6Al- 6Ta	2300	30:1	7740	09	124	1.4	Poog
	Pratt & Whitney	N1-14Mo-6Al- 6Ta015Y	2300	30:1	7740	09	113	1.5	роод
	Pratt & Whitney	Ni-14Mo-6Al- 6Ta015Y	2300	12:1	7740	09	92	1.7	Good
	Wright State U.	713C	2050	5:1	0010	₀ 06	146	1.5	Good
	Wright State U.	713C	2050	5:1	0010	06	154	1.1	Fair
	Wright State U.	713C	2050	5:1	0010	₀ 06	151	1.4	Good
	Pratt & Whitney	Low C Astro- loy	1925	6.3:1	0010	09	108	1.5	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Pratt & Whitney Ni-14Mo-6Al- 2300 Pratt & Whitney Ni-14Mo-6Al- 2300 Pratt & Whitney Ni-14Mo-6Al- 2300 Fratt & Whitney Ni-14Mo-6Al- 2300 Fratt & Whitney Low C Astro- 1950 Pratt & Whitney Ni-14Mo-6.5Ta- 2300 O2C-5.7Re .02C-5.7Re
Pratt & Whitney

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	Alloy	Temp.	Red. Ratio	Billet Lube	Die Angle	Pt (ksi)	Vex (ips)	Surface
7291	Pratt & Whitney	Ni-14Mo-6.0Ta- 6A105C	2300	34:1	7052	120°	135	1.4	Good
7292	Pratt & Whitney	Ni-14Mo-6W- 7A104C015Y	2300	34:1	7052	120 ⁰	122	1.5	Good
7293	Pratt & Whitney	Ni-14Mo-6W- 7A104C015Y	2300	20:1	7052	09	111	1.6	Good
7294	Pratt & Whitney	Ni-14Mo-6W 7A104C015Y	2300	43:1	7052	120°	130	1.4	Good
7305	Pratt & Whit ney	N1-14Mo-6A1- 6Ta	2300	30:1	7052	₀ 09	130	1.5	Good
7306	Pratt & Whitney	Ni-14Mo-6Al- 6Ta	2300	30:1	7052	09	132	1.2	Good
7307	Pratt & Whitney	Ni-14Mo-6Al~ 6W04C	2300	30:1	7052	009	119	1.3	Рооб
7308	Pratt & Whitney	Ni-14Mo-6A1- 6Ta015Y	2300	30:1	7052	09	130	1.3	Poog
7309	Pratt & Whitney	Ni-14Mo-6Al- 6Ta015Y	2300	30:1	7052	₀ 09	135	1.3	poog
7310	Pratt & Whitney	Ni-14Mo-6.8Al- 2300 6.1W04B04Zr	. 2300 :r	43:1	7052	120°	143	1.1	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion	Agency	<u>A110y</u>	Temp.	Red. Ratio	Billet	Die Angle	Pt (ksi)	Vex (ips)	Surface
7311	Pratt & Whitney	N1-14Mo-7.3Al- 6W04C015Y	2300	43:1	7052	1200	140	1.0	Excellent
7312	Pratt & Whitney	N1-12.5Mo-6.7 2 A1-9W04C015Y	2300 5Y	43:1	7052	120°	142	1.1	Excellent
7313	Pratt & Whitney	Ni-14.4Mo-6.3 Al-3.0W-3.0Ta- .04C015Y	2300	43:1	7052	120°	144	1.0	Excellent
7314	Pratt & Whitney	Ni-Carpenter Tech. S. S.	1650	10:1	0010	₀ 09	165	∞.	Good
7348	Pratt & Whitney	MARM-200	2300	20:1	7052	009	103	1,3	Good
7349	Pratt & Whitney	MARM-200	2050	20:1	7052	099	147	6.	Pood
7350	Pratt & Whitney	MARM-200	2050	6:1	7052	009	96	1.2	Good
7353	Pratt & Whitney	VM-595	700	15.6:1	c-300	و00	20	1.1	Excellent
7354	Pratt & Whitney	VM-615	700	15.6:1	C-300	09	92	1.1	Excellent
7355	Pratt & Whitney	VM-617	700	15.6:1	c-300	09	72	1.1	Excellent
7356	Pratt & Whitney	VM-595	800	15.6:1	C-300	009	59	1.2	Excellent
7358	Pratt & Whitney	VM-581	750	15.6:1	c-300	09	65	1.1	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	Alloy	Temp.	Red. Ratio	Billet	Die Angle	Pt (ks1)	Vex (1ps)	Surface
7359	Pratt & Whitney	VM-582	750	15.6:1	c-300	009	65	1.2	Good
7360	Pratt & Whitney	VM-583	750	15.6:1	c-300	099	63	1.2	Good
7361	Pratt & Whitney	VM-595	750	15.6:1	C-300	009	65	1.1	Good
7362	Pratt & Whitney	VM-615	750	15.6:1	C-300	09	72	1.2	Poog
7363	Pratt & Whitney	VM-617	750	15.6:1	c-300	009	99	1.2	poog
1371	Pratt & Whitney	Ni-6.8A1-14Mo -6.0W015Y	2300	8:1	7740	009	81	1.2	Good
7372	Pratt & Whitney	N1-5.8A1-14Mo -6.0Ta04Zr	2300	30:1	7740	e0 ₀	131	1.0	Good
7373	Pratt & Whitney	Ni-6.7Al-12. 7Mo-6.0W04C 015Y	2300	30:1	7740	°09	131	1.0	Good
7374	Pratt & Whitney	Ni-6.8A1-14. 4Mo-6.1W04C 04Zr	2300	30:1	7740	09	119	1.1	Good
7375	Pratt & Whitney	N1-6.8A1-14. 4Mo-6.1W04B 04Zr	2300	30:1	7740	009	124	1.0	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Surface	poog	Poog	Poog	роод	poog	Good	Po o9	po
·	ŏ	ğ	9	<u>ક</u>	9	69	Š	Good
$V_{\mathbf{e_x}}$	1.0	φ.	1.0	1.0	1.0	1.1	1.0	1.0
Pt (ksi)	119	136	127	127	122	116	131	124
Die Angle	009	09	09	009	09	09	و00	006
Billet Lube	7740	7740	7740	7740	7740	7740	7740	Poly
Red. Ratio	30:1	30:1	30:1	30:1	30:1	30:1	12:1 7	10:1 F
Temp.	2300	2300	2300	2300	2300	2300	2200	1832
Alloy	N1-6.8A1-14Mo- 6.1W04C- .04Y	N1-6.8A1-14. 4Mo-6.1W04 C04HF	N1-7.0A1-13. 7Mo-6.2W04 C015Y	Ni-7.3Al-14. 5Mo-6.2W04 C015Y	Ni-7.0Al-15. 2Mo-6.2W04 C015Y	Ni-6.8A1-13. 6Mo-6.2W04 C015Y	Ni-6.8Al-14. 4Mo-6.0W- .015Y	Ni-16Cr-5Al- .05Y203
Agency	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Sherritt Gordon
Extrusion Number	7376	7377	7378	7379	7380	7381	7382	7383

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

	VI.	EAIROSION FARATEIERS FOR MAAIROR LIELD AFFLICALIONS	ENS FOR	riera Littori	TELL AL	חוואסיים	2		
Extrusion Number	Agency	Alloy	Temp.	Red.	Billet Lube	Die Angle	$\frac{P_{t}}{(ksi)}$	$v_{\rm ex} = v_{\rm tps}$	Surface
7384	Sherritt Gordon	Ni-16Cr-5%Al 0.5Y203	1832	16:1	Poly	0 06	151	∞.	Good
7385	Sherritt Gordon	Ni-18.5Cr- 1.7Y ₂ 03	1832	20:1	Poly	006	150	œ.	Good
7386	Sherritt Gordon	Ni-18.5cr- 1Y203	1832	16:1	Poly	006	124	1.0	Good
7387	Sherritt Gordon	Ni-16Cr-5Al- 0.5Y203	1922	10:1	Poly	006	111	1.0	Good
7388	Sherritt Gordon	Ni-16Cr-5Al- 0.5Y203	1922	16:1	Poly	o06	130	1.0	Good
7389	Sherritt Gordon	N1-18.5Cr- 1Y203	1922	20:1	Poly	o ⁰⁶	138	6.	Good
7390	Sherritt Gordon	Ni-18.5cr- 1Y203	1922	16:1	Poly	006	119	1.0	Good
7391	Sherritt Gordon	Ni-16Cr-5Al- 0.5Y ₂ 03	2012	10:1	Poly	006	66	1.1	Good
7392	Sherritt Gordon	$Ni-16Cr-5Al-0.5Y_20_3$	2012	16:1	Poly	006	122	1.0	Good
7393	Sherritt Gordon	N1-18.5Cr- 1Y203	2012	20:1	Poly	₀ 06	117	1.0	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion	Agency	Alloy	Temp.	Red. Ratio	Billet Lube	Die Angle	P _t (ksi)	$v_{\rm ex}$	Surface
7394	Sherritt Gordon	Ni-18.5Cr- 1Y203	2012	16:1	Poly	006	105	1.0	Good
7397	Pratt & Whitney	Republic Steel 1550	1550	10:1	00100	009	178	6.	Poog
7398	Pratt & Whitney	Republic Steel	1550	10:1	00100	009	184	1.0	Good
7399	Pratt & Whitney	Republic Steel	1550	10:1	0010	.,09	197	0.	Stuck
7400	Pratt & Whitney	Ni-14.4Mo-6. 8A1-6W04C	2300	8:1	7052	009	81	1.2	Good
7401	Pratt & Whitney	Ni-14.4Mo-6. 8A1-6W04C	2300	30:1	7052	009	134	1.0	poog
7402	Pratt & Whitney	Ni-12.9Mo-6. 8A1-6.2W- .04C015Y	2300	30:1	7052	09	127	1.0	Good
7403	Pratt & Whitney	Ni-12.8Mo-5.9 A1-6.0Ta04C 015Y	2300	30:1	7052	09	127	1.0	Good
7404	Pratt & Whitney	Ni-12.9Mo-6. 3A1-3.0Ta-3. 1W04C015Y	2300	30:1	7052	09	124	1.1	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Surface	Good	Poog	Poog	Stuck	Good	Good	poog	Good
$V_{\rm ex}$	6.	6.	1.0	1.4	1.0	1.0	6.	∞ .
P _t (ksi)	126	135	127	178	151	151	151	157
Die Angle	009	009	009	009	09	009	09	09
Billet Lube	7052	7052	7052	7052	7052	7052	7052	7052
Red. Ratio	30:1	30:1	30:1	25.37:1 7052	25.37:1 7052	25.37:1 7052	25.37:1 7052	25.37:1 7052
Temp.	2250	2250	2250	2250	2250	2250	2250	2200
A110 <u>y</u>	Ni-12.8Mo-6. 3A1-3.0Ta-3. IW04C015Y	Ni-14.4Mo-6. 3A1-6.1W04 C015Y	N1-13.5Mo-6. 5A1-7.6W04 C015Y	Ni-5.8Al-14. 3Mo-6Ta04 Zr	Ni-6.8A1-14. 4Mo-6W04C	Ni-6.5Al-15. 2Mo-6W04C 015Y	Ni-6.1A1-13. 6Mo-6Ta04 C015Y	Ni-6.6A1-13. 6Mo-6W~.04C
Agency	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney
Extrusion Number	7405	7406	7407	7408	7409	7410	7411	7412

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

	Surface	рo	þc	þ	þ	p	- g	ש
		Good	роод	Good	роо9	роод	boob	Good
	$_{ m (ips)}^{ m Ve_{x}}$	6.	1.0	ထ့	6.	1.2	1.2	1.2
<u> </u>	Pt (ksi)	157	155	166	165	123	130	119
	Die Angle	009	09	009	009	09	09	09
	Billet Lube	7652	7052	7052	7052	7052	7052	7052
	Ratio	25.37:1	25.37:1 7052	25.37:1 7052	25.37:1 7052	25.37:1 7052	25.37:1 7052	20:1
Ę	Temp.	2200	2200	2200	2200	2300	2300	2300
	Alloy	Ni-6.2Al-15. 9Mo-6W04C- .015Y	Ni-5.5Al-13. 3Mo-6Ta04C	Ni-5.4Al-12. 7Mo-6Ta04C 015Y	Ni-5.3A1-14. 2Mo-6Ta04C .015Y	Ni-7.3Al-14. 5Mo-6W04C- .015Y	N1-6.8A1-14. 4Mo-6W10Y .015Y	Ni-7A1-14. 4Mo-6W04C .015Y
	Agency	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney
Extrusion	Number	7413	7414	7415	7416	7417	7418	7419

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion	Agency	Alloy	Temp.	Red. Ratio	Billet Lube	Die Angle	Pt (ks1)	Vex (ips)	Surface
7420	Pratt & Whitney	Ni-7Al-14. 4Mo-6W04C- .015Y	2300	20:1	7052	°09	113	1.1	goog
7421	Pratt & Whitney	Republic Steel Plate Stock	1550	10:1	0010	009	148	1.0	Good
7422	Pratt & Whitney	Ni-14.5Mo-6W 7A104C	2300	19.83:1 7740	7740	09	109	1.0	Good
7423	Pratt & Whitney	Ni-14.5Mo-6W 7Al04C	2050	19.83:1 7740	7740	009	111	1.0	goog
7424	Pratt & Whitney	N1-14.5Mo-6W- 7A104C	2300	19.83:1 7740	7740	009	113	1.0	Poog
7425	Pratt & Whitney	Ni-14.5Mo-6W- 7A104C	2300	19.83:1 7740	7740	009	108	1.0	poog
7426	Pratt & Whitney	Ni-14.5Mo-6W- 7Al04C	2300	19.83:1 7740	7740	009	124	1.0	Good
7427	Pratt & Whitney	Ni-14.5Mo-6W- 7Al04C	2300	19.83:1	7740	09	113	1.0	poog
7428	Pratt & Whitney	Ni-14.5Mo-6W- 7Al04C	2300	19.83:1 7740	7740	09	113	1.0	poog

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMU. YIELD APPLICATIONS

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

	İ						ı		
Extrusion Number	Agency	Alloy	Temp.	Red. Ratio	Billet	Die Angle	Pt (ks1)	Vex (ips)	Surface
7476	Pratt & Whitney	N1-14.5Mo-6W- 7A1-0.04C	2250	10.9:1	7052	s ₀ 06	119	1.1	роод
7477	Pratt & Whitney	N1-14.5Mo-6W- 7A1-0.04C	2250	10.9:1	7052	s ₀ 06	116	1.1	Good
7478	Pratt & Whitney	Ni-14.5Mo-6W- 7AI-0.04C	2300	10.9:1	7052	s ₀ 06	105	1.2	Good
6272	Pratt & Whitney	N1-14.5Mo-6W- 7A1-0.04C	2300	10.9:1	7052	s ₀ 06	105	1.2	Good
7480	Pratt & Whitney	N1-14.5Mo-6W- 7A1-0.04C	2300	10.9:1	7052	s ₀ 06	105	1.2	Good
7484	AFWAL/MLLS	713C	2050	10:1	Poly	₀ 09	148	۶.	Poog
7493	Pratt & Whitney	Ni-14.4Mo- 7A1-6W04C	2300	16:1	7052	009	103	1.6	Good
7494	Pratt & Whitney	N1-14.4Mo- 7A1-6W04C	2300	16:1	7052	009	113	1.6	роод
7495	Pratt & Whitney	N1-14.4Mo- 7A1-6W04C	2300	16:1	7052	09	103	1.7	Good
7496	Pratt & Whitney	N1-14.4Mo- 7A1-6W04C	2300	16:1	7052	09	108	1.7	Poog

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion	Agency	Alloy	Temp.	Red. Ratio	Billet Lube	Die Angle	Pt (ksi)	Vex (ips)	Surface
7501	Pratt & Whitney	Ni-14.4Mo-6. 8A1-6.0W04C	2200	10.2:1	0010	°09	112	1.5	Good
7502	Pratt & Whitney	N1-14.4Mo-6. 8A1-6.0W04C	2150	10.2:1	0010	09	127	1.3	Good
7503	Pratt & Whitney	Ni-14.4Mo-6. 8A1-6.0W04C	2100	10.2:1	0010	09	135	1.1	Good
7504	Pratt & Whitney	N1-14.4Mo-6. 8A1-6.0W04C	2050	10.2:1	0010	°09	144	1.0	Good
7505	Pratt & Whitney	Ni-14.4Mo-6. 8A1-6.0W04C	1950	10:1	0010	09	151	1.0	Good
7506	Pratt & Whitney	Ni-14.4Mo-6. 8A1-6.0W04C	1950	10:1	0010	09	155	6.	Good
7507	Pratt & Whitney	N1-14.4Mo-6. 8A1-6.0W04C	1900	10:1	0010	09	170	1.0	Good
7514	Pratt & Whitney	RSR-185-A	2250	2.5:1	0010	90°R	67	1.9	Poop
7515	Pratt & Whitney	RSR-185-B	2150	2.5:1	0010	90°R	78	2.0	Good
7516	Pratt & Whitney	AF2-1DA	1900	8:1	0010	09	135	1.4	poog
7517	Pratt & Whitney	AF2-1DA	1850	8:1	0010	09	151	1.3	poog

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	Allov	Temp.	Red. Ratio	Billet Lube	Die Angle	Pt (ksi)	$v_{\mathbf{e_x}}$	Surface
7518	Pratt & Whitney	AF2-1DA	1800	8:1	0010	09	174	1.3	poog
7525	Pratt & Whitney	Mo-7A1- 4C	2250	20:1	7052	09	122	1.4	Good
7526	Pratt & Whitney	Ni-14.4Mo-7A1- 6.0W04C	2250	20:1	7052	°09	140	1.2	Good
7527	Pratt & Whitney	Ni-14.4Mo-7Al- 2250 6.0W04C	2250	20:1	7052	09	130	1.4	Good
7528	Pratt & Whitney	Ni-14.4Mo-7Al- 6.0W04C	2250	20:1	7052	09	120	1.4	Good
7529	Pratt & Whitney	N1-14.4Mo-7A1- 2250 6.0W04C	2250	20:1	7052	09	123	1.4	booð
7530	Pratt & Whitney	N1-14.4Mo-7A1- 2250 6.0W04C	2250	20:1	7052	°09	130	1.3	Good
7531	Pratt & Whitney	Ni-14.4Mo-7A1- 2250 6.0W04C	2250	20:1	7052	09	130	1.3	Poog
7532	Pratt & Whitney	N1-14.4Mo-7A1- 2250 6.0W04C	2250	16:1	7052	09	124	1.4	Good
7533	Pratt & Whitney	N1-14.4Mo-7Al- 2250 6.0W04C	2250	16:1	7052	009	119	1.4	Poog

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

	Surface	рc	рc	pc	Рc	рc	Þ	рç	p	PC	þ
		Good	рооб	Good	Good	Сооб	рооб	Good	рооб	Good	Good
	Vex (ips)	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.5	1.4
!	Pt (ksi)	127	127	124	127	119	126	124	122	113	122
	Die Angle	09	09	09	09	09	09	009	09	009	09
	Billet	7052	7052	7052	7052	7052	7052	7052	7052	7052	0010
	Red. Ratio	16:1	16:1	16:1	16:1	16:1	16:1	16:1	16:1	16:1	12:1
	Temp.	2250	2250	2250	2250	2250	2250	2250	2250	2250	2150
	Alloy	Ni-14.4Mo-7A1- 6.0W04C	Ni-14.4Mo-7Al- 6.0W04C	Ni-14.4Mo-7Al- 6.0W04C	N1-14.4Mo-7A1- 6.0W04C	N1-14.4Mo-7Al- 6.0W04C	N1-14.4Mo-7A1- 6.0W04C	Ni-14.4Mo-7Al- 6.0W04C	N1-14.4Mo-7Al- 6.0W04C	N1-14.4Mo-7Al- 6.0W04C	N1-9.2Cr-8.3 A1-9.5W04C
	Agency	Pratt & Whitney									
	Extrusion Number	7534	7535	7536	7537	7538	7539	7540	7541	7542	7563

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

							!		
Extrusion	Agency	Alloy	Temp.	Red. Ratio	Billet Lube	Die Angle	$\frac{P_t}{(ksi)}$	Vex (ips)	Surface
7564	Pratt & Whitney	Ni-9.2Cr-8.3 Al-9.5W03C	2150	12:1	0010	₀ 09	127	1.3	Poog
7565	Pratt & Whitney	Ni-9.6Cr-7.7 Al-2Ti-1.7Cb- .21C	2200	12:1	0010	09	115	1.4	Good
7566	Pratt & Whitney	Ni-9.6Cr-7.7 Al-2Ti-1.7Cb- .21C	2200	12:1	0010	°09	104	1.5	Good
7567	Pratt & Whitney	Ni-9.7Cr-7.7 Al-9Ti-3.1Cb- .19C	2200	12:1	0010	,09	108	1.5	poog
7568	Pratt & Whitney	Ni-9.7Cr-7.7 Al9Ti-3.1Cb-	2200	12:1	0010	°09	103	1.5	Poog
7593	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	16:1	7052	°09	113	1.0	Poog
7594	Pratt & Whitney	N1-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	108	1.1	Poog
7595	Pratt & Whitney	N1-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	103	1.1	Poog
7596	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	· 04	1.1	роод

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion			Temp.	Red.	Billet	Die	<u>ф</u>	Ve	
Number	Agency	Alloy	OF.	Ratio	Lube	Angle	(ksi)	(ips)	Surface
7597	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	10:1	7052	09	6	1.1	Good
7598	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	10:1	7052	09	100	1.1	Good
7599	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	100	1.1	Good
7600	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	103	1.1	Good
7601	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	°09	92	1.1	рооб
7602	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	105	1.1	Poog
7603	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	100	1.1	Good
7609	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	95	1.2	рооб
7610	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	099	95	1.1	Poog
7611	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	65	1.1	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

	i		201			77777	3		
Extrusion	Agency	Alloy	Temp.	Red.	Billet Lube	Die Angle	Pt (ksi)	Vex (ips)	Surface
7612	Pratt & Whitney	N1-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	108	1.0	роод
7613	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	10:1	7052	009	26	1.2	Good
7614	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	16:1	7052	09	119	1.0	poog
7615	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	16:1	7052	009	108	1.0	500d
7616	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	16:1	7052	09	108	1.0	Good
7617	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	16:1	7052	09	108	1.0	bo o o
7618	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	16:1	7052	09	103	1.0	Good
7619	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	16:1	7052	009	103	1.0	Poog
7620	Pratt & Whitney	Ni-6.8AI-14.4 Mo-6.1W04C	2300	16:1	7052	009	113	1.0	poog
7621	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	16:1	7052	009	100	1.1	Poog

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	<u>A110Y</u>	Temp.	Red.	Billet Lube	Die Angle	Pt (ksi)	$v_{\rm ex}$	Surface
7622	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	15.7:1	7052	009	108	1.1	poog
7623	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	15.7:1	7052	09	111	1.0	Good
7624	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	15.7:1	7052	°09	103	1.1	Good
7625	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	15.7:1	7052	09	100	1.1	Good
7626	Pratt & Whitney	Ni-6.8Al-14.4 Mo-6.1W04C	2300	15.7:1	7052	009	100	1.1	Good
7627	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	15.7:1	7052	09	108	1.0	Good
7628	AFWAL/MLTM	Ni-8.3Cr-4.9Mo 9.1W-10Ta-6A1 1.9Ti004C (50-PPM Oxygen)	2150	19.27:1	7052	°09	116	1.0	Good
7629	AFWAL/MLTM	Ni-13.7W-4.2Ta 9.2A1005C	2150	19.27:1	7052	09	140	6.	Good
7630	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2250	7.4:1	7052	09	105	1.1	Good

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	Alloy	Temp.	Red. Ratio	Billet Lube	Die Angle	$\frac{P_{t}}{(ksi)}$	$v_{\rm ex}^{\rm Ve_{\rm x}}$	Surface
7631	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	7.4:1	7052	009	78	1.2	poog
7632	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	105	1.1	poog
7633	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	97	1.1	poog
7634	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	103	1.0	Good
7635	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	92	1.2	Good
7636	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	009	92	1.2	Poog
7637	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	92	1.2	Good
7638	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	92	1.2	Good
7639	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	95	1.2	Good
7640	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	113	1.0	booð

Table 1 (Continued)

NICKEL BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	Alloy	Temp.	Red.	Billet Lube	Die Angle	P _t (ksi)	$v_{\rm ex}$	Surface
7641	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	103	1.0	poog
7642	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	009	103	1.0	Good
7643	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	009	6	1.2	goog
7644	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	97	1.1	Good
7645	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	105	1.0	goog
7646	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	009	100	1.1	Good
7647	Pratt & Whitney	Ni-6.8A1-14.4 Mo-6.1W04C	2300	10:1	7052	09	108	1.0	Good
5797	Pratt & Whitney	Co-Mod.	1875	Blank	Poly	006	184	1.0	poog
7650	Pratt & Whitney	IN-100 Co-Mod. IN-100	1875	Blank	Poly	₀ 06	187	1.0	Good
7651	Pratt & Whitney	Co-Mod. IN-100	1875	Blank	Poly	06	186	1.0	Good

Table 1 (Continued)

Extrusion Number

7657

7658

7659

NICKEL BASE

1.0 1.0 ∞. 140 148 124 EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS 006 ₀06 006 Billet Lube 7052 7052 7052 Red. Ratio 6:1 6:1 6:1 Temp. 1950 1950 1950 Co-Mod. IN-100 Co-Mod. IN-100 Co-Mod. IN-100 Alloy Pratt & Whitney Pratt & Whitney Pratt & Whitney Agency

Surface

Good

Good

Cood

Table 1 (Continued)

TITANIUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Die Pt Ve _x Angle (ksi) (ips) Surface	120 ^o 49 1.5 Good	120 ^o 51 1.4 Good	120° 50 1.5 Good	120 ^o 49 1.5 Good	120 ^o 46 1.5 Good	120° 55 1.5 Good	60° 86 1.1 Good	60° 113 1.0 Good	60° 70 1.1 Good	60° 57 1.1 Good	120° 70 1.1 Good	120 ^o 54 1.2 Coiled	60° 81 1.2	(
Red. Billet Ratio Lube	25.37:1 0010	25.37:1 0010	25.37:1 0010	25.37:1 0010	25.37:1 0010	25.37:1 0010	25.3:1 7740	25.3:1 7740	12:1 7740	6:1 7740	25.3:1 7740	25.3:1 7740	25.3:1 7740	
Temp.	2200	2200	2200	2200	2200	2200	2575	2575	2575	2575	2375	2575	2575	
<u>A110y</u>	Ti-25%A1	Ti-25%A1	Ti-25%A1	Ti-25%Al	Ti-25%A1-5%Nb	Ti-25%A1-5%Nb 1%W	Ti-48%Al-2%W	Ti-48%A1-2%W	Ti-48%A1-2%W	Ti-48%Al-2%W	Ti-34%A1	Ti-37%A1	T1-48%A1-1%Nb 1.6%W	
Agency	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	
Extrusion Number	7114	7115	7116	7117	7118	7119	7120	7121	7122	7123	7124	7125	7126	1

Table 1 (Continued)

TITANIUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion	Agency	<u>A110y</u>	Temp.	Red.	Billet Lube	D≇e Angle	Pt (ksi)	$v_{\mathbf{e_x}}^{\mathbf{v_{e_x}}}$	Surface
7200	AFWAL/MLLS	Ti-6A1-4V	1850	30:1	0010	006	65	1.0	Good
7246	Pratt & Whitney	T1-32.5A1- 4.6Nb5W	2550	6:1	7740	009	43	1.9	Good
7247	Pratt & Whitney	T1-32.5A1- 4.6Nb5W	2550	6:1	7740	09	84	1.9	Good
7248	Pratt & Whitney	Ti-32.5A1- 4.6Nb5W	2550	6.4:1	7740	09	87	1.9	Good
7249	Pratt & Whitney	T1-32.5A1 4.6Nb5W	2550	6.4:1	7740	09	50	1.9	Good
7250	Pratt & Whitney	Ti-32.5A1 4.6Nb5W	2550	6.4:1	7740	009	78	1.9	Bad
7252	AFWAL/MLLM	Ti-34%Al	2575	26:1	7740	009	59	1.9	Good
7253	AFWAL/MLLM	Ti-48%Al- 2%Nb-1%W	2575	26:1	7740	009	92	1.8	Good
7254	AFWAL/MLLM	T1-48%Al- 2%Nb-1%W	2575	25.3:1	7740	120°	116	1.8	Good
7255	AFWAL/MLLM	Ti-48%Al- 2%W	2575	25.3:1	7740	120°	98	1.8	Good
7256	AFWAL/MLIM	Ti-48%Al 2%W	2575	25.3:1	7740	120°	98	1.8	Good

Table 1 (Continued)

TITANIUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Vex (ips) Surface	1.6 Excellent	1.8 Good	1.2 Excellent	2.5 Good	2.4 Good	2.4 Good	2.4 Good	2.4 Good
Die Pt Angle (ks1)	90° 124	120 ⁰ 86	90° 123	90 ₀ 46	90° 54	90 ₀ 54	90 ₀ 58	900 43
Billet Di Lube Ar	7740 9(7052 13	7740 90	00100	00100	00100	00100	00100
Red. Ratio	40:1	25.3:1	40:1	6:1	6:1	6:1	6:1	6:1
Temp.	2450	2200	2400	1900	1900	1900	1900	1900
Alloy	Ti-48%Al- 2%W	Ti-25%Al- 5%Nb	Ti-48%Al- 2%W	Ti-6A1-2Sn- 4Zr-2Mo- .01Si	Ti-6Al-2Sn- 42r-2Mo- 0.1Si	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	T1-6A1-2Sn- 4Zr-2Mo- 0.1Si	T1-6A1-2Sn-
Agency	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLM	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS
Extrusion Number	7257	7258	7304	7321	7322	7323	7324	7325

Table 1 (Continued)

TITANIUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

as 1								
Surface	Good	Good	Good	Good	Рооб	Good	Good	Good
$V_{\rm ex}^{ m Vex}$	2.4	2.4	2.4	2.4	2.4	2.4	2.5	2.5
$\frac{P_{t}}{(ksi)}$	54	67	54	57	55	65	29	59
Die	₀ 06	006	006	°06	06	06	06	°06
Billet Lube	0010	0010	0010	00100	00100	0010	0010	0010
Red. Ratio	6:1	6:1	6:1	6.4:1	6.5:1	6.5:1	6.4:1	6.5:1
Temp.	1900	1900	1900	1900	1900	1900	1900	1900
<u>A110y</u>	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	T1-6Al-2Sn- 4Zr-2Mo- 0.1Si	T1-6A1-2Sn- 4Zr-2Mo- 0.1Si	T1-6A1-2Sn- 4Zr-2Mo- 0.1Si	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	T1-6A1-2Sn- 4Zr-2Mo- 0.1S1	Ti-6Al-2Sn- 4Zr-2Mo-0.1Si
Agency	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	A b wal/mils	AFWAL/MLLS	AFWAL/MLLS
Extrusion	7326	1327	7328	7329	7330	7331	7332	7333

Table 1 (Continued)

TITANIUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Vex (ips) Surface	2.5 Good	2.1 Good	2. 0 Good	2.0 Good	2.0 Good	2.0 Good	2.2 Good	2.1 Good
$\frac{P_{t}}{(ks1)}$	49	137 2	124 2	146 2	126 2	126	119	138
Billet Die Lube Angle	0010 90 ₀	0010 90 ₀	0010 90°	0010 90°	0010 90°	0010 90 _°	0010 90 ₀	0000
Red. Bi	6.4:1 00	6.5:1 00	6.5:1 00	6.5:1 00	6.5:1 00	6.5:1 00	6.5:1 0	0 5.1
Temp.	1900	. 1675	- 1675	- 1675	- 1675	- 1675	- 1675	3671
A110y	T1-6A1-2Sn- 4Zr-2Mo- 0.1Si	T1-6A1-2Sn- 4Zr-2Mo- 0.1Si	Ti-6A1-2Sn- 4Zr-2Mo- 0.1Si	T1-6Al-2Sn- 4Zr-2Mo- 0.1Si	T1-6A1-2Sn- 4Zr-2Mo- 0.1S1	Ti-6Al-2Sn- 4Zr-2Mo 0.1Si	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	
Agency	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	
Extrusion	7334	7335	7336	7337	7338	7339	7340	

Table 1 (Continued)

TITANIUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	A110y	Temp.	Red. Ratio	Billet Lube	Die <u>Angle</u> 90 ⁰	Pt (ks1)	$\frac{v_{ex}}{(ips)}$	Surface
	CTTT: /TVM.TV	4Zr-2Mo- 0.1Si		· · · · · · · · · · · · · · · · · · ·		2	101	2	
	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	1675	6.5:1	0010	06	130	2.1	poog
	AFWAL/MLLS	T1-6A1-2Sn- 4Zr-2Mo- 0.1Si	1675	6.5:1	0010	°06	138	2.1	Cood
	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	1675	6.5:1	0010	006	140	2.1	Good
	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	1675	6.5:1	0010	006	127	2.2	Good
	AFWAL/MLLS	T1-6A1-2Sn- 4Zr-2Mo- 0.1Si	1675	6.5:1	0010	06	135	2.1	Pood
	AFWAL/MLLM	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	1775	6.5:1	0010	°06	77	1.9	Excellent
7395	AFWAL/MLLM	Ti-48%Al- 2.2%W	2300	40.97:1 7740	7740	₀ 06	173	۲.	Good

Table 1 (Continued)

TITANIUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	Alloy	Temp.	Red. Ratio	Billet Lube	Die An <u>gle</u>	P _t (ksi)	Vex (ips)	Surface
7396	AFWAL/MLLM	Ti-48%Al- 2.2%W	2300	25.37:1	7740	₀ 06	165	∞.	cood
7430	AFWAL/MLLM	Ti- Sw/o-Al	2250	14:1	7740	130°R	120	1.2	Poog
7431	AFWAL/MLLM	Ti-28.5w/o-A1	2250	14:1	1740	130°R	99	1.1	Cood
7432	AFWAL/MLLM	Ti-32.5w/o-A1	2250	14:1	7740	130°R	7.5	1.1	Poog
7433	AFWAL/MLLM	Ti-36w/o-Al	2550	14:1	7740	130°R	69	1.1	Poog
7434	AFWAL/MLLM	Ti-25w/o-Al- 13w/o-Nb	2550	14:1	7740	130 ⁰ R	Didn't	fit container	ainer
7435	AFWAL/MLLM	T1-78.5w/o- TiC	2700	10:1	7740	066	183	!	Stuck
7436	AFWAL/MLLM	T1-32w/o-A1- 9w/o-W	2450	36.29:1	7740	06	124	∞•	Poog
7437	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	1900	6:1	0010	°06	59	2.4	Good
7438	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	1900	6:1	0010	°06	65	2.4	Good
7439	AFWAL/MLLS	Ti-6Al-2Sn-4Zr 1900 -2Mo-0.1Si	1900	6:1	0010	06	59	2.4	Good

Table 1 (Continued)

TITANIUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion	Agency	Alloy	Temp.	Red. Ratio	Billet Lube	Die Angle	Pt (ksi)	Vex (ips)	Surface
7440	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	1900	6:1	0010	006	29	2.3	Good
1460	Wright State U.	Ti-6A1-6V-2Sn	1500	10.9:1	8871	006	146	1.7	Good
7461	AFWAL/MLLM	TiC-77.6w/o- Ti-22.4w/o	2700	10:1	7740	006	146	-	poog
7492	AFWAL/MLLM	T1-6-2-4-6 T1-6-2-4-2	1675	7.8:1	0010	06	-	 	Poog
7571	Polytechnic	Ti-Cu-3A12Sn 1700	1700	7.6	0010	Strip C	hart Rec	Strip Chart Recorder Failed	iled
7572	Polytechnic	Ti-Cu-3A12Sn 1700	1700	7.5	0010	009	70	2.8	Good
7580	U. of S. CA	T1-38V-12Mo- 5A1-0.7Si	2200	Blank	7052	006	184	ļ	Good
7581	U. of S. CA	Ti-38V-12Mo- 5A1-0.7Si	2200	Blank	7052	₀ 06	197	r.	Good
7582	U. of S. CA	T1-38V-12Mo- 5A1-0.7S1	2200	20:1	7052	006	161	1.1	Excellent
7583	U. of S. CA	Ti-38V-12Mo- 5A1-0.7Si	2200	20:1	7052	06	162	1.0	Good
7585	AFWAL/MLLS	T1-6A1-2Sn- 4Zr-2Mo	1900	6.8:1	0010	06	65	2.5	Excellent

Table 1 (Continued)

TITANIUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	A110v	Temp.	Red. Ratio	Billet Lube	Die	Pt (ksi)	Vex (inc)	0.00
William I	ugenc)	orto)	4	TIME TO	רחום	PIR	(KST)	(edt)	antiace
7586	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo	1900	6.8:1	0010	006	65	2.5	Excellent
7587	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo	1900	6.6:1	0010	06	89	2.4	Excellent
7588	AFWAL/MLLS	Ti-6A1-2Sn- 4Zr-2Mo	1900	6.6:1	0010	006	62	2.4	Excellent
7589	AFWAL/MLLS	Ti-6A1-2Sn- 4Zr-2Mo	1900	6.6:1	0010	06	54	2.5	Excellent
7590	AFWAL/MLLS	T1-6A1-2Sn- 4Zr-2Mo	1900	6.1:1	0010	₀ 06	58	2.4	Excellent
7648 7741	SRL AFWAL/MLLS	T1-5A1-2.5Sn- 5Zr	1600	6:1 Pc SAME AS 7742	Poly 42	009	97	1.5	Good
7742	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	1900	6:1	0010	°06	59	2.3	Good
7743	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	1675	6:1	0010	006	135	1.8	Good
7744	AFWAL/MLLS	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	1675	6:1	0010	006	137	2.0	Good

Table 1 (Continued)

TITANIUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Temp. Red. Billet Die Pt (ksi) (ips) 1-2Sn- 1675 6:1 0010 90° 132 2.0 1-2Sn- 1675 6:1 0010 90° 140 2.0 1-2Sn- 1675 6:1 0010 90° 143 1.8 1-2Sn- 1675 6:1 0010 90° 143 1.8 1-2Sn- 1675 6:1 0010 90° 149 1.9 1-2Sn- 1675 6:1 0010 90° 149 1.9		Surface	booð	Good	Good	Good	Good
AFWAL/MLS							
Alloy Red. Billet Die			2.0	2.0		1.9	1.9
AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS	Š	Pt (ksi)	132	140	143	140	154
AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS	LICATION	Die	₀ 06	₀ 06	006	o06	06
AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS	Y LELD APP	Billet	0010	0010	0010	0010	0010
AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS	MAXIMUM	Red. Ratio	6:1	6:1	6:1	6:1	6:1
AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS AFWAL/MLLS	EKS FOR	Temp.	1675	1675	1675	1675	1675
usion	EAIKUSIUN PAKAME	<u>A110y</u>	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	Ti-6Al-2Sn- 4Zr-2Mo- 0.1Si	T1-6A1-2Sn- 4Zr-2Mo-
Extrusion Number 7745 7746 7748 7748		Agency	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLI.S
		Extrusion	7745	7746	1741	7748	7749

Table 1 (Continued)

IRON BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number	Agency	A110y	Temp.	Red. Ratio	Billet Lube	Die Angle	Pt (ksi)	$V_{\rm ex}$	Surface
7106	Pratt & Whitney	Fe+()-2.6B+A1 2.2Ti-0.6C	1600	7.8:1	0010	₀ 06	162	6.	poog
7107	Pratt & Whitney	Fe+()-2.6B+A1 2.2Ti-0.6C	1600	7.8:1	0010	06	159	1.5	Poog
7108	Pratt & Whitney	Fe+()-2.6B+Al 2.2Ti-0.6C	1600	7.8:1	0010	06	156	1.4	Good
7109	Pratt & Whitney	Fe+()2.6B+Al 2.2Ti-0.6C	1600	7.8:1	0010	₀ 06	173	1.0	Good
7110	Pratt & Whitney	Fe+()2.6B+A1- 2.2Ti-0.6C	1600	7.8:1	0010	06	167	1.4	Poog
7111	Pratt & Whitney	Fe+()2.6B+A1 2.2Ti-0.6C	1600	7.8:1	0010	006	170	1.4	Good
7214	Pratt & Whitney	Fe-1Mn-2Mo-	1550	10:1	7052	₀ 09	178	1.0	Good
7364	AFWAL/MLLM	Fe-80%-A1-20%	1500	5.1:1	8871	₀ 09	108	1.5	Good
7365	AFWAL/MLLM	Fe-75%*A1-25%	1500	5.1:1	8871	009	76	1.5	Good
7366	AFWAL/MLLM	Fe-72%-A1-28%	1500	5.1:1	8871	09	104	1.5	Good
7367	AFWAL/MLLM	Fe-68%-A1-32%	1500	5.1:1	8871	009	26	1.5	Good

Table 1 (Continued)

IRON BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion			Temp.	Red.	Billet	Die	$_{t}^{P}$	Vex	
Number	Agency	Alloy	O _F	Ratio	Lube	Angle	$\frac{(ksi)}{}$	(ips)	Surface
7368	AFWAL/MLLM	Fe-64%-A1-36%	1500	5.1:1	8871	009	100	1.5	Poog
7369	AFWAL/MLLM	Fe-58%-A1-42%	1500	5.1:1	8871	009	26	1.5	Good
7370	AFWAL/MLLM	Fe-50%-A1-50%	1500	5.1:1	8871	₀ 09	81	1.2	Good
7463	Pratt & Whitney	Fe-0.95C-9.0 Cr-2.0Mo-1.0V 0.15Si-0.20Mn	1650	15.5:1	0010	°09	186	۲.	Good
7464	Pratt & Whitney	Fe-0.80C-4.0 Cr-2.0Mo-1.0V 0.15Si-0.20Mn	1650	15.5:1	0010	09	181	∞.	Good
7465	Pratt & Whitney	Fe-0.80C-4.10 Cr-2.25Mo-1.0V 0.15S1-0.20Mn	1650	15.5:1	0010	°09	181	∞.	Good
7469	Pratt & Whitney	Fe-0.81C-4.0 Cr-4.25Mo-1.0V 0.15Si-0.25Mn	1750	15.5:1	0010	°09	181	∞.	Good
7470	Pratt & Whitney	Fe-1.15C-14.75 Cr-4.0Mo-1.2V- 0.30Si-0.45Mn	1750	15.5:1	0010	°09	176	۲.	Good
7471	Pratt & Whitney	Fe-0.80C-4.0 Cr-2.0Mo-1.0V 0.15Si-0.20Mn	1750	15.5:1	0010	₀ 09	167	φ.	Good

Table 1 (Continued)

IRON BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion Number 7472	Agency Pratt & Whitney	Alloy Fe-0.95C-9.0 Cr-2.0Mo-1.0V 0.15Si-0.20Mn	Temp. oF	Red. Ratio	Billet Lube 0010	Die Angle 60°	P _t (ksi)	Vex (ips)	Surface
A	$AFWAL/MLL^M$	Fe-32A1	1800	10:1	Poly	06	65	1.8	Good
[A	AFWAL/MLLM	Fe-15.82A1	1800	10:1	Poly	006	105	1.3	Poog
AF	AFWAL/MLLM	Fe-3A1	1740	16:1	Poly	009	116	1.7	Good
Ψ	AFWAL/MLM	Fe3A1	1740	16:1	Poly	₀ 06	126	1.1	Good

Table 1 (Continued)

ALUMINUM BASE

EXTRUSION PARAMETERS FOR MAXIMUM YIELD APPLICATIONS

Extrusion	Agency	Alloy	Temp.	Red. Ratio	Billet Lube	Die Angle	Pt (ksi)	Vex (1ps)	Surface
7352	Pratt & Whitney	7075A1	700	15.6:1	C-300	e0 ₀	73	1.1	Excellent
7352	Pratt & Whitney	7075A1	750	15.6:1	C-300	09	58	1.2	Good
7466		A1-8.4Zn-2.5 Mg-1.0Cu-3.2Co	700	15.5:1	C-300	60°	92	7.	Excellent
1467	Pratt & Whitney	A1-9.8Zn-2.5 Mg-1.0Cu08Co	700	15.5:1	C-300	09	70	1.0	Excellent
7468	Pratt & Whitney	A1-9.8Zn-2.5 Mg-1.0Cu-2.4Co	700	15.5:1	C-300	و0	62	4.	Excellent
7550	Pratt & Whitney	A1-9.8Zn-2.5 Mg-1Cu8C	650	12:1	C-300	09	84	1.0	Good
7551	Pratt & Whitney	Al-5.6Zn-2.5 Mg-1Cu-1.6Co	650	12:1	C-300	09	70	1.2	Good
7552	Pratt & Whitne'y	Al-7.0Zn-2.5 Mg-1Cu-3.2Co	650	12:1	C-300	09	78	1.1	Good
7553	Pratt & Whitney	A1-5.6Zn-2.5 Mg-1Cu8C	700	12:1	008-0	009	70	1.1	Good
7554	Pratt & Whitney	A1-5.6Zn-2.5 Mg-1Cu-1.6Co	700	12:1	c-300	009	97	1.2	Good
7555	Pratt & Whitney	A1-5.62n- 2.5Mg-1Cu-3.2Co	700	12:1	C-300	09	103	1.2	Good

able I continued?

ALUMINUM BASE

EXTRUSION PARAMETERS FOR MANIMUM YIELD APPLICATIONS

Suriace	Good	Good	Good	Good	Good	poog	Good	роод	bood	Pood	Good	Excellent	Excellent
'e: (ips)		1.2	1.2	7.	7.	1.0	1.0				!	1.0	1.0
(ks1)	76	89	88	54	24	78	98		1	1		107	109
Die Angle	و0ي	°09	009		ŧ	06	06	Flat	Flat	Flat	Flat	006	06
Biller	C-306	C-300	C-300	c-300	C-300	C-300	C-30 0	c-300	c-300	c-300	c-300	c-300	C-300
Rec.	· · · · · · · · · · · · · · · · · · ·	12:1	12:1	Blank	Blank	20:1	20:1	Blank	Blank	Blank	Blank	20:1	20:1
Temp.	700	700	700	970	970	750	750	970	970	970	970	750	750
Allov	A1-7.0Zn-2.5 Mg-1Cu-3.2Co	Al-2.0Zn-2.5 Mg-1Cu8C	Al-8.4Zn-3.6 Mg-1Cu8Co	MA-87A1	MA-87A1	MA-87A1	MA-87A1	MA-87-A1	MA-87-A1	MA-87-A1	MA-87A1	A1-4Mg-(4-7)	A1-4Mg-(4-7)
Agency	Pratt & Whitney	Pratt & Whitney	Pratt & Whitney	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLS	AFWAL/MLLN	AFWAL/MLLN	AFWAL/MLLN	AFWAL/MLLN	AFWAL/MLLS	AFWAL/MLLS
Extrusion Number	7556	7557	7558	7577	7578	7591	7592	7604	7605	9092	7607	7652	7653

