Tarea 1 IAM

Daniela Pico Arredondo, Juan Sebastián Falcón

13/3/2021

```
IAM1<- read.csv("C:/Users/Usuario/Desktop/IAM1.txt",header=TRUE)
IAM2<- read.csv("C:/Users/Usuario/Desktop/IAM2.txt",header=TRUE)
IAM<- read.csv("C:/Users/Usuario/Desktop/IAM.txt",header=TRUE)</pre>
```

```
vector_medias1 <-apply(IAM1[,2:3],2,mean);
kable(round(vector_medias1,3))</pre>
```

	X
X	1.413
Y	1.749

Con esto se obtiene que el vector de medias para las variables Longitud de antenas y Longitud de alas para la categoria AF es: \overline{X} =(1,413 , 1,749)

```
vector_medias2 <-apply(IAM2[,2:3],2,mean);
kable(round(vector_medias2,3))</pre>
```

	X
X	1.212
Y	1.920

Con esto se obtiene que el vector de medias para las variables Longitud de antenas y Longitud de alas para la categoria APF es: \overline{Y} =(1,212 , 1,920)

```
var_cov1 <- cov(IAM1[,2:3]);
kable(round(var_cov1,3))</pre>
```

	X	Y
X	0.010	0.009
Y	0.009	0.058

```
var_cov2 <- cov(IAM2[,2:3]);
kable(round(var_cov2,3))</pre>
```

	X	Y
X	0.003	0.005
Y	0.005	0.009

```
corr1 <- cor(IAM1[,2:3]);
kable(round(corr1,3))</pre>
```

Table 1: Distancia Mahalanobis

0.238	5.827	3.4	0.322	0.321	0.456	1.676	0.777	2.983

	X	Y
X	1.000	0.375
Y	0.375	1.000

```
corr2 <- cor(IAM2[,2:3]);
kable(round(corr2,3))</pre>
```

	X	Y
X	1.000	0.841
Y	0.841	1.000

```
vtotal<-sum(diag(var_cov1))
kable(round(vtotal,5))</pre>
```

x 0.06751

vtotal<-sum(diag(var_cov2))
kable(round(vtotal,5))</pre>

0.01272

vtotal<-sum(diag(var_cov1))
kable(round(vtotal,3))</pre>

x 0.068

vgen1<-det(var_cov1)
kable(round(vgen1,5))</pre>

0.00049

vgen<-det(var_cov2)
kable(round(vgen,5))</pre>

x 1e-05

distancias1<-mahalanobis(cbind(IAM1\$X, IAM1\$Y),vector_medias1,var_cov1)
kable(t(round(distancias1,3)),caption="Distancia Mahalanobis")</pre>

distancias2<-mahalanobis(cbind(IAM2\$X, IAM2\$Y),vector_medias2,var_cov2)
kable(t(round(distancias2,3)),caption="Distancia Mahalanobis")</pre>

Table 2: Distancia Mahalanobis

2.089	0.717	2.958	0.747	1.489

Table 3: Distancia Euclideana

1	2	3	4	5	6	7	8	9
0.000	0.440	0.161	0.102	0.180	0.206	0.241	0.260	0.475
0.440	0.000	0.544	0.541	0.620	0.625	0.636	0.700	0.894
0.161	0.544	0.000	0.122	0.172	0.260	0.316	0.228	0.482
0.102	0.541	0.122	0.000	0.082	0.144	0.197	0.161	0.394
0.180	0.620	0.172	0.082	0.000	0.100	0.160	0.080	0.316
0.206	0.625	0.260	0.144	0.100	0.000	0.060	0.128	0.272
0.241	0.636	0.316	0.197	0.160	0.060	0.000	0.179	0.261
0.260	0.700	0.228	0.161	0.080	0.128	0.179	0.000	0.255
0.475	0.894	0.482	0.394	0.316	0.272	0.261	0.255	0.000

```
dist_eucli1<-dist(cbind(IAM1$X, IAM1$Y),method="euclidean",diag=FALSE,upper=FALSE)
dist_eucli1<-as.matrix(dist_eucli1)
kable(round(dist_eucli1,3),caption="Distancia Euclideana")</pre>
```

```
dist_eucli2<-dist(cbind(IAM2$X, IAM2$Y),method="euclidean",diag=FALSE,upper=FALSE)
dist_eucli2<-as.matrix(dist_eucli2)
kable(round(dist_eucli2,3),caption="Distancia Euclideana")</pre>
```

Table 4: Distancia Euclideana

1	2	3	4	5
0.000	0.100	0.184	0.251	0.261
0.100	0.000	0.102	0.152	0.161
0.184	0.102	0.000	0.089	0.108
0.251	0.152	0.089	0.000	0.020
0.261	0.161	0.108	0.020	0.000