Bivariate dependence

Probability I (BST 230)

Jeffrey W. Miller

Department of Biostatistics Harvard T.H. Chan School of Public Health

Outline

Correlation and covariance

Bivariate transformations

Bivariate normal distribution

Outline

Correlation and covariance

Bivariate transformations

Bivariate normal distribution

Correlation and covariance

- When random variables X and Y are not independent, they are dependent.
- However, the dependence may be weak, or it may be strong.
- Correlation is an important way of quantifying the dependence between random variables.
- Covariance is a related concept that also depends on the scales of X and Y.

Example: Age of disease onset versus a genetic marker

Correlation and covariance

To declutter the notation, let's denote:

$$\mu_X = EX$$
 $\sigma_X = \sqrt{\operatorname{Var} X}$
 $\mu_Y = EY$ $\sigma_Y = \sqrt{\operatorname{Var} Y}$.

• The *covariance* of X and Y is

$$\operatorname{Cov}(X,Y) = \operatorname{E}((X - \mu_X)(Y - \mu_Y)).$$

• The correlation of X and Y is

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}.$$

• The correlation is often denoted $\rho_{X,Y}$, and also called the "Pearson correlation" or the "correlation coefficient".

Examples of data with various correlations

Properties of correlation and covariance

- $-1 \le \rho_{X,Y} \le 1$.
- $\rho_{X,Y} > 0$ implies a positive association (direct relationship); $\rho_{X,Y} < 0$ implies a negative association (inverse relationship).
- If $\sigma_X = 0$ or $\sigma_Y = 0$, then $\rho_{X,Y}$ is undefined.
- $|\rho_{X,Y}| = 1$ if and only if there exist $a \neq 0$ and $b \in \mathbb{R}$ such that P(Y = aX + b) = 1. The sign of $\rho_{X,Y}$ equals the sign of a.
- Correlation captures the strength of association in terms of how close to linear it is, but not the magnitude of the slope.
- If X and Y are independent, then $\rho_{X,Y}=0$. However, if $\rho_{X,Y}=0$ then X and Y are not necessarily independent.

Properties of covariance

- 1. $Cov(X, Y) = \rho_{X,Y}\sigma_X\sigma_Y$.
- 2. Cov(X, Y) = EXY (EX)(EY).
- 3. Cov(X, X) = Var(X).
- 4. Cov(aX + b, cY + d) = a c Cov(X, Y).
- 5. $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$.

Group exercise (10 minutes): Show 2, 3, and 5.

Outline

Correlation and covariance

Bivariate transformations

Bivariate normal distribution

Bivariate transformations

- Suppose (X,Y) is a random vector, and (U,V)=g(X,Y) for some function g.
- That is, $U = g_1(X, Y)$ and $V = g_2(X, Y)$.
- How can we derive the joint pdf/pmf of (U, V) from the joint pdf/pmf of (X, Y)?
- We saw how to do this in the univariate case. Now we extend to the bivariate case.

Bivariate transformations: Discrete case

- Suppose (U, V) = g(X, Y) for some function g.
- If (X,Y) is discrete, then the joint pmf of (U,V) is

$$f_{U,V}(u,v) = \sum_{x,y} f_{X,Y}(x,y) \mathbb{1}(g(x,y) = (u,v)).$$

 This is really just the same as the univariate case, except that we are considering bivariate rather than univariate elements.

Bivariate transformations: Continuous case

- ullet It is much less obvious how to handle the case where (X,Y) is continuous. Fortunately, however, there is still a nice formula.
- Suppose (X,Y) is a continuous random vector, and (U,V)=g(X,Y) for some function g such that:
 - 1. g is one-to-one, with inverse h(u,v)=(x,y) on its range,
 - 2. the partial derivatives of g(x,y) exist and are continuous,
 - 3. the Jacobian matrix Dh is nonsingular, where

$$Dh = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \begin{bmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial v} \end{bmatrix}.$$

The joint pdf of (U, V) is

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v)) |\det(Dh)|$$

for (u, v) in the range of g(X, Y), and is zero elsewhere.

Bivariate transformations: Details

- g(x,y) being one-to-one means that if $(x,y) \neq (x',y')$ then $g(x,y) \neq g(x',y')$. A one-to-one function always has a inverse from its range back to its domain.
- The determinant factor is

$$\left| \det(Dh) \right| = \left| \frac{\partial h_1}{\partial u} \frac{\partial h_2}{\partial v} - \frac{\partial h_1}{\partial v} \frac{\partial h_2}{\partial u} \right|.$$

• Sometimes $\det(Dh)$ is referred to as the *Jacobian* of h, often denoted J_h or simply J. The notation is not totally standard though, and J_h sometimes denotes the matrix Dh.

Example: A transformation of standard normals

- Suppose $X,Y \sim \mathcal{N}(0,1)$ independently, and $\rho \in (-1,1)$.
- Define U=X and $V=\rho X+\sqrt{1-\rho^2}Y$. That is, $u=q_1(x,y)=x$

$$u = g_1(x, y) = x$$

 $v = g_2(x, y) = \rho x + \sqrt{1 - \rho^2} y.$

• The inverse is defined by

$$x = h_1(u, v) = u$$

 $y = h_2(u, v) = \frac{v - \rho u}{\sqrt{1 - \rho^2}}.$

• Thus, the Jacobian matrix is

$$Dh = \begin{bmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial v} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{\rho}{\sqrt{1-\rho^2}} & \frac{1}{\sqrt{1-\rho^2}} \end{bmatrix}.$$

Example: A transformation of standard normals

• Therefore, the joint pdf of (U, V) is

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v)) \left| \det(Dh) \right|$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}u^2) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{v - \rho u}{\sqrt{1 - \rho^2}}\right)^2\right) \left| \frac{1}{\sqrt{1 - \rho^2}} \right|$$

$$= \frac{1}{2\pi\sqrt{1 - \rho^2}} \exp\left(-\frac{1}{2}u^2 - \frac{1}{2} \left(\frac{v^2 - 2v\rho u + \rho^2 u^2}{1 - \rho^2}\right)\right)$$

$$= \frac{1}{2\pi\sqrt{1 - \rho^2}} \exp\left(-\frac{1}{2(1 - \rho^2)} \left(u^2 - 2\rho uv + v^2\right)\right).$$

- This is the pdf of a bivariate normal distribution with correlation ρ, mean zero, and unit variances.
- More generally, a bivariate normal distribution can have any mean and variances.

Example: A transformation of uniforms

- Let $X, Y \sim \text{Uniform}(-1, 1)$ independently.
- Suppose U = (X + Y)/2 and V = X Y.

Group exercise (10 mins): What is the joint pdf of (U, V)? Also, draw a picture of the joint pdf.

Transforming two variables into one variable

- Often, we want to know the distribution of a single random variable $U = g_1(X,Y)$ that is a function of (X,Y).
- However, this is hardly ever an invertible transformation.
- Fortunately, it turns out that we can still use the bivariate transformation technique, as follows.
- Introduce a new "auxiliary" variable $V=g_2(X,Y)$, chosen to make calculations as easy as possible.
- Compute $f_{U,V}(u,v)$ from $f_{X,Y}(x,y)$ using the bivariate transformation formula.
- Then, integrate to get the marginal density of U:

$$f_U(u) = \int f_{U,V}(u,v) dv.$$

Example: Ratio of standard normals

- To illustrate this technique, suppose $X,Y \sim \mathcal{N}(0,1)$ independently. What is the distribution of X/Y?
- Define U = X/Y and V = Y. That is,

$$u = g_1(x, y) = x/y$$
$$v = g_2(x, y) = y.$$

- Introducing V=Y makes g invertible, so we can use the bivariate transformation formula.
- The inverse is $x = h_1(u, v) = uv$ and $y = h_2(u, v) = v$.
- Thus, the Jacobian matrix is

$$Dh = \begin{bmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial v} & \frac{\partial h_2}{\partial v} \end{bmatrix} = \begin{bmatrix} v & u \\ 0 & 1 \end{bmatrix}.$$

Example: Ratio of standard normals

• Therefore, the joint pdf of (U, V) is

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v)) |\det(Dh)|$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(uv)^2\right) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}v^2\right) |v|$$

$$= \frac{1}{2\pi} |v| \exp\left(-\frac{1}{2}v^2(1+u^2)\right).$$

- ullet To find the marginal of U, we need to integrate out V.
- Making the change of variable $t = v^2$, dt = 2vdv,

$$\int_0^\infty v \exp\left(-\frac{1}{2}v^2(1+u^2)\right) dv = \frac{1}{2} \int_0^\infty \exp\left(-\frac{1}{2}t(1+u^2)\right) dt$$
$$= \frac{1}{1+u^2}.$$

• Therefore, since $f_{U,V}(u,-v) = f_{U,V}(u,v)$,

$$f_U(u) = \int_{-\infty}^{\infty} f_{U,V}(u,v) dv = 2 \int_{0}^{\infty} f_{U,V}(u,v) dv = \frac{1}{\pi} \frac{1}{1+u^2}.$$

• Do you recognize this distribution?

Outline

Correlation and covariance

Bivariate transformations

Bivariate normal distribution

Bivariate normal distribution

• The bivariate normal distribution with means $\mu_X, \mu_Y \in \mathbb{R}$, variances $\sigma_X^2, \sigma_Y^2 > 0$, and correlation $\rho \in (-1,1)$ has pdf

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left(\tilde{x}^2 - 2\rho\tilde{x}\tilde{y} + \tilde{y}^2\right)\right)$$

where

$$\tilde{x} = \frac{x - \mu_X}{\sigma_X}$$
 and $\tilde{y} = \frac{y - \mu_Y}{\sigma_Y}$.

• Examples with varying means, variances, and correlations:

Bivariate normal distribution: Properties

- If (X,Y) follow a bivariate normal distribution, then:
 - 1. $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$.
 - 2. $Corr(X, Y) = \rho$.
 - 3. aX+bY is normally distributed for any $a,b\in\mathbb{R}$. For the a=b=0 case, we need to expand our definition of the family of normal distributions to allow $\sigma^2=0$ by considering $\mathcal{N}(\mu,0)$ to be the point mass at μ .
 - 4. $Y \mid X = x$ is normally distributed with

$$E(Y \mid X = x) = \mu_Y + \rho \sigma_Y \frac{x - \mu_X}{\sigma_X}$$
$$Var(Y \mid X = x) = (1 - \rho^2)\sigma_Y^2.$$

In other words, the conditional pdf of Y given X = x is

$$p(y|x) = \mathcal{N}\left(y \mid \mu_Y + \rho \sigma_Y \frac{x - \mu_X}{\sigma_Y}, (1 - \rho^2)\sigma_Y^2\right).$$

Bivariate normal distribution: Properties

- If X and Y are each normally distributed, then (X,Y) is NOT necessarily bivariate normal.
 - ► **Group exercise (3 minutes)**: Can you come up with an example to illustrate this?
- We defined the bivariate normal distribution in terms of its pdf, but there is a more general definition that we will use.
- Definition: We say that (X,Y) is bivariate normal if aX+bY is normally distributed for all $a,b\in\mathbb{R}$.
- How is this definition more general? That is, when does this definition apply but the pdf definition doesn't apply?

Mean and covariance of a random vector

ullet The *covariance matrix* of a random vector $(X,Y)^{\mathrm{T}}= egin{bmatrix} X \\ Y \end{bmatrix}$ is

$$\begin{aligned} \operatorname{Cov} \left(\begin{bmatrix} X \\ Y \end{bmatrix} \right) &= \begin{bmatrix} \operatorname{Cov}(X,X) & \operatorname{Cov}(X,Y) \\ \operatorname{Cov}(Y,X) & \operatorname{Cov}(Y,Y) \end{bmatrix} \\ &= \begin{bmatrix} \sigma_X^2 & \rho_{X,Y}\sigma_X\sigma_Y \\ \rho_{X,Y}\sigma_X\sigma_Y & \sigma_Y^2 \end{bmatrix}. \end{aligned}$$

• The mean of a random vector $(X,Y)^{\mathrm{T}}$ is defined to be the vector of the means of its entries:

$$\mathrm{E}\left(\begin{bmatrix} X \\ Y \end{bmatrix}\right) = \begin{bmatrix} \mathrm{E}X \\ \mathrm{E}Y \end{bmatrix}.$$

ullet For any random vector $X = egin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ and any 2×2 matrix A,

$$Cov(AX) = A Cov(X)A^{T}$$
.

(This holds more generally in the d-dimensional case.)

Bivariate normal: Mean and covariance parametrization

 It is common to parametrize bivariate (and more generally, multivariate) normal distributions in terms of the mean vector and covariance matrix. We write

$$\begin{bmatrix} X \\ Y \end{bmatrix} \sim \mathcal{N}(\mu, \Sigma)$$

to denote that $(X,Y)^T$ is bivariate normal such that

$$\mu = \mathrm{E}\Big(\begin{bmatrix} X \\ Y \end{bmatrix}\Big) \quad \text{ and } \quad \Sigma = \mathrm{Cov}\Big(\begin{bmatrix} X \\ Y \end{bmatrix}\Big).$$

- However, not just any 2×2 matrix Σ can be used. Σ must be a *symmetric positive semi-definite* matrix, that is,
 - 1. $\Sigma = \Sigma^{T}$ (symmetric), and
 - 2. $t^T \Sigma t \ge 0$ for all $t \in \mathbb{R}^2$ (positive semi-definite).

Bivariate normal: Scale/rotation construction

- This leads to a useful way of constructing bivariate normals.
- Let $s_1 \geq s_2 \geq 0$ and $\theta \in [0, 2\pi)$.
- Let $Z_1, Z_2 \sim \mathcal{N}(0,1)$ independently, and define

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \underbrace{\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}}_{\text{rotation}} \underbrace{\begin{bmatrix} s_1 & 0 \\ 0 & s_2 \end{bmatrix}}_{\text{scaling}} \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix}.$$

• Then $(X_1, X_2)^{\mathrm{T}}$ is bivariate normal such that the line along which X_1 and X_2 are correlated is at angle θ , the scale along this line is s_1 , and the scale orthogonal to the line is s_2 .

Bivariate normal: Scale/rotation decomposition

- ullet Conversely, given Σ , we can recover the scaling and rotation.
- Compute the "eigendecomposition" $\Sigma = U \Lambda U^{\mathrm{T}}$ where U is an orthogonal matrix and $\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ with $\lambda_1 \geq \lambda_2 \geq 0$.
 - A matrix is orthogonal if $U^{\mathsf{T}}U = I$ and $UU^{\mathsf{T}} = I$.
- Then $\lambda_1 = s_1^2$, $\lambda_2 = s_2^2$, and U is the rotation matrix.
- ullet Then, we can represent $egin{bmatrix} X_1 \ X_2 \end{bmatrix} \sim \mathcal{N}(0,\Sigma)$ as

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \underbrace{\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}}_{U \text{ (rotation)}} \underbrace{\begin{bmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{bmatrix}}_{\Lambda^{1/2} \text{ (scaling)}} \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix}$$

where $Z_1, Z_2 \sim \mathcal{N}(0, 1)$ independently.

• Or, more succinctly, $X = U\Lambda^{1/2}Z$.

Bivariate normal: Scale/rotation decomposition

• But starting from $\Sigma = U\Lambda U^{\rm T}$ and $Z = (Z_1,Z_2)^{\rm T}$ in this way, how can we be sure that $X = U\Lambda^{1/2}Z$ is bivariate normal?

Group exercise (5 minutes): See if you can figure out why! (Hint: Use the general definition, not the pdf definition.)

Connection to principal components analysis (PCA)

- Principal components analysis (PCA) can be done by applying this decomposition to the sample covariance matrix $\hat{\Sigma}$ estimated from data $x_1, \ldots, x_n \in \mathbb{R}^2$.
- The columns of U are the PC directions, s_1, s_2 are the PC scales, $U^{\mathsf{T}}x_i$ are the PC scores.

Bivariate normal: Moment generating function

• The mgf of a bivariate random vector $X=(X_1,X_2)^{\rm T}=\begin{bmatrix} X_1\\ X_2 \end{bmatrix}$ is defined to be

$$M_X(t) = \mathrm{E}\exp(t_1X_1+t_2X_2) = \mathrm{E}\exp(t^{\mathrm{T}}X)$$
 for $t=\begin{bmatrix}t_1\\t_2\end{bmatrix}\in\mathbb{R}^2$.

If X is bivariate normal then

$$M_X(t) = \exp\left(t_1\mu_{X_1} + t_2\mu_{X_2} + \frac{1}{2}\left(t_1^2\sigma_{X_1}^2 + 2t_1t_2\rho\sigma_{X_1}\sigma_{X_2} + t_2^2\sigma_{X_2}^2\right)\right).$$

• In matrix/vector notation, if $\begin{vmatrix} X_1 \\ X_2 \end{vmatrix} \sim \mathcal{N}(\mu, \Sigma)$ then

$$M_X(t) = \exp\left(t^{\mathsf{T}}\mu + \frac{1}{2}t^{\mathsf{T}}\Sigma t\right).$$

Group exercise (5 minutes): Can you show this? (Hint: Use the mgf of a univarite normal.)