

WO0202606

Publication Title:

Immunisation against chlamydia pneumoniae

Abstract:

The published genomic of Chlamydia pneumoniae reveals over 1000 putative encoded proteins but does not itself indicate which of these might be useful antigens for immunisation and vaccination or for diagnosis. This difficulty is addressed by the invention, which provides a number of C. pneumoniae protein sequences suitable for vaccine production and development and/or for diagnostic purposes.

Data supplied from the esp@cenet database - <http://ep.espacenet.com>

BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization
International Bureau**

A standard linear barcode is located at the bottom of the page, spanning most of the width.

**(43) International Publication Date
10 January 2002 (10.01.2002)**

PCT

**(10) International Publication Number
WO 02/02606 A2**

- | | | |
|---|---|---|
| (51) International Patent Classification ⁷ : | C07K 14/295,
C12N 15/31, A61K 39/118 | (72) Inventors; and
(75) Inventors/Applicants (for US only): RATTI, Giulio
[IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena
(IT). GRANDI, Guido [IT/IT]; Chiron S.p.A., Via
Fiorentina, 1, I-53100 Siena (IT). |
| (21) International Application Number: | PCT/IB01/01445 | |
| (22) International Filing Date: | 3 July 2001 (03.07.2001) | |
| (25) Filing Language: | English | (74) Agents: HALLYBONE, Huw, George et al.; Carpmaels
& Ransford, 43 Bloomsbury Square, London WC1A 2RA
(GB). |
| (26) Publication Language: | English | |
| (30) Priority Data: | | (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
ZW. |
| 0016363.4 | 3 July 2000 (03.07.2000) | GB |
| 0017047.2 | 11 July 2000 (11.07.2000) | GB |
| 0017983.8 | 21 July 2000 (21.07.2000) | GB |
| 0019368.0 | 7 August 2000 (07.08.2000) | GB |
| 0020440.4 | 18 August 2000 (18.08.2000) | GB |
| 0022583.9 | 14 September 2000 (14.09.2000) | GB |
| 0027549.5 | 10 November 2000 (10.11.2000) | GB |
| 0031706.5 | 22 December 2000 (22.12.2000) | GB |

[Continued on next page]

(54) Title: IMMUNISATION AGAINST *CHLAMYDIA PNEUMONIAE*

卷之三

WO 02/02606 A2

(57) Abstract: The published genomic of *Chlamydia pneumoniae* reveals over 1000 putative encoded proteins but does not itself indicate which of these might be useful antigens for immunisation and vaccination or for diagnosis. This difficulty is addressed by the invention, which provides a number of *C. pneumoniae* protein sequences suitable for vaccine production and development and/or for diagnostic purposes.

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- *without international search report and to be republished upon receipt of that report*

IMMUNISATION AGAINST *CHLAMYDIA PNEUMONIAE*

All documents cited herein are incorporated by reference in their entirety.

TECHNICAL FIELD

This invention is in the field of immunisation against chlamydial infection, in particular against
5 infection by *Chlamydia pneumoniae*.

BACKGROUND ART

Chlamydiae are obligate intracellular parasites of eukaryotic cells which are responsible for endemic sexually transmitted infections and various other disease syndromes. They occupy an exclusive eubacterial phylogenetic branch, having no close relationship to any other known organisms – they are
10 classified in their own order (*Chlamydiales*) which contains a single family (*Chlamydiaceae*) which in turn contains a single genus (*Chlamydia*). A particular characteristic of the *Chlamydiae* is their unique life cycle, in which the bacterium alternates between two morphologically distinct forms: an extracellular infective form (elementary bodies, EB) and an intracellular non-infective form (reticulate bodies, RB). The life cycle is completed with the re-organization of RB into EB, which
15 subsequently leave the disrupted host cell ready to infect further cells.

Four chlamydial species are currently known – *C.trachomatis*, *C.pneumoniae*, *C.pecorum* and *C.psittaci* [e.g. Raulston (1995) *Mol Microbiol* 15:607-616; Everett (2000) *Vet Microbiol* 75:109-126]. *C.pneumoniae* is closely related to *C.trachomatis*, as the whole genome comparison of at least two isolates from each species has shown [Kalman *et al.* (1999) *Nature Genetics* 21:385-389; Read
20 *et al.* (2000) *Nucleic Acids Res* 28:1397-406; Stephens *et al.* (1998) *Science* 282:754-759]. Based on surface reaction with patient immune sera, the current view is that only one serotype of *C.pneumoniae* exists world-wide.

C.pneumoniae is a common cause of human respiratory disease. It was first isolated from the conjunctiva of a child in Taiwan in 1965, and was established as a major respiratory pathogen in
25 1983. In the USA, *C.pneumoniae* causes approximately 10% of community-acquired pneumonia and 5% of pharyngitis, bronchitis, and sinusitis.

More recently, the spectrum of *C.pneumoniae* infections has been extended to include atherosclerosis, coronary heart disease, carotid artery stenosis, myocardial infarction, cerebrovascular disease, aortic aneurysm, claudication, and stroke. The association of *C.pneumoniae* with
30 atherosclerosis is corroborated by the presence of the organism in atherosclerotic lesions throughout the arterial tree and the near absence of the organism in healthy arterial tissue. *C.pneumoniae* has also been isolated from coronary and carotid atheromatous plaques. The bacterium has also been associated with other acute and chronic respiratory diseases (e.g. otitis media, chronic obstructive pulmonary disease, pulmonary exacerbation of cystic fibrosis) as a result of sero-epidemiologic
35 observations, case reports, isolation or direct detection of the organism in specimens, and successful

-2-

response to anti-chlamydial antibiotics. To determine whether chronic infection plays a role in initiation or progression of disease, intervention studies in humans have been initiated, and animal models of *C.pneumoniae* infection have been developed.

Considerable knowledge of the epidemiology of *C.pneumoniae* infection has been derived from serologic studies using the *C.pneumoniae*-specific microimmunofluorescence test. Infection is ubiquitous, and it is estimated that virtually everyone is infected at some point in life, with common re-infection.

Antibodies against *C.pneumoniae* are rare in children under the age of 5, except in developing and tropical countries. Antibody prevalence increases rapidly at ages 5 to 14, reaching 50% at the age of 20, and continuing to increase slowly to ~80% by age 70.

A current hypothesis is that *C.pneumoniae* can persist in an asymptomatic low-grade infection in very large sections of the human population. When this condition occurs, it is believed that the presence of *C.pneumoniae*, and/or the effects of the host reaction to the bacterium, can cause or help progress of cardiovascular illness.

It is not yet clear whether *C.pneumoniae* is actually a causative agent of cardiovascular disease, or whether it is just artefactually associated with it. It has been shown, however, that *C.pneumoniae* infection can induce LDL oxidation by human monocytes [Kalayoglu *et al.* (1999) *J. Infect. Dis.* 180:780-90; Kalayoglu *et al.* (1999) *Am. Heart J.* 138:S488-490]. As LDL oxidation products are highly atherogenic, this observation provides a possible mechanism whereby *C.pneumoniae* may cause atherosomatous degeneration. If a causative effect is confirmed, vaccination (prophylactic and therapeutic) will be universally recommended.

Genomic sequence information has been published for *C.pneumoniae* [Kalman *et al.* (1999) *supra*; Read *et al.* (2000) *supra*; Shirai *et al.* (2000) *J. Infect. Dis.* 181(Suppl 3):S524-S527; WO99/27105; WO00/27994] and is available from GenBank. Sequencing efforts have not, however, focused on vaccination, and the availability of genomic sequence does not in itself indicate which of the >1000 genes might encode useful antigens for immunisation and vaccination. WO99/27105, for instance, implies that every one of the 1296 ORFs identified in the *C.pneumoniae* strain CM1 genome is a useful vaccine antigen.

It is thus an object of the present invention to identify antigens useful for vaccine production and development from amongst the many proteins present in *C.pneumoniae*. It is a further object to identify antigens useful for diagnosis (*e.g.* immunodiagnosis) of *C.pneumoniae*.

DISCLOSURE OF THE INVENTION

The invention provides proteins comprising the *C.pneumoniae* amino acid sequences disclosed in the examples.

It also provides proteins comprising sequences which share at least $x\%$ sequence identity with the *C.pneumoniae* amino acid sequences disclosed in the examples. Depending on the particular

sequence, x is preferably 50% or more (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more). These include mutants and allelic variants. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH 5 program (Oxford Molecular), using an affine gap search with parameters *gap open penalty=12* and *gap extension penalty=1*.

The invention further provides proteins comprising fragments of the *C.pneumoniae* amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (e.g. 8, 10, 12, 10 14, 16, 18, 20, 30, 40, 50, 75, 100 or more). Preferably the fragments comprise one or more epitope(s) from the sequence. Other preferred fragments omit a signal peptide.

The proteins of the invention can, of course, be prepared by various means (e.g. native expression, recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (e.g. native, fusions etc.). They are preferably prepared in substantially pure form (i.e. substantially 15 free from other *C.pneumoniae* or host cell proteins). Heterologous expression in *E.coli* is a preferred preparative route.

According to a further aspect, the invention provides nucleic acid comprising the *C.pneumoniae* nucleotide sequences disclosed in the examples. In addition, the invention provides nucleic acid comprising sequences which share at least $x\%$ sequence identity with the *C.pneumoniae* nucleotide 20 sequences disclosed in the examples. Depending on the particular sequence, x is preferably 50% or more (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more).

Furthermore, the invention provides nucleic acid which can hybridise to the *C.pneumoniae* nucleic acid disclosed in the examples, preferably under "high stringency" conditions (e.g. 65°C in a 0.1xSSC, 0.5% SDS solution).

25 Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the *C.pneumoniae* sequences and, depending on the particular sequence, n is 10 or more (e.g. 12, 14, 15, 18, 20, 25, 30, 35, 40, 50, 75, 100, 200, 300 or more).

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

30 It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (e.g. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (e.g. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (e.g. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (e.g. cloning or expression vectors) and host cells transformed therewith.

- 5 According to a further aspect, the invention provides immunogenic compositions comprising protein and/or nucleic acid according to the invention. These compositions are suitable for immunisation and vaccination purposes. Vaccines of the invention may be prophylactic or therapeutic, and will typically comprise an antigen which can induce antibodies capable of inhibiting (a) chlamydial adhesion, (b) chlamydial entry, and/or (c) successful replication within the host cell. The vaccines
10 preferably induce any cell-mediated T-cell responses which are necessary for chlamydial clearance from the host.

The invention also provides nucleic acid or protein according to the invention for use as medicaments (e.g. as vaccines). It also provides the use of nucleic acid or protein according to the invention in the manufacture of a medicament (e.g. a vaccine or an immunogenic composition) for
15 treating or preventing infection due to *C.pneumoniae*.

The invention also provides a method of treating (e.g. immunising) a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid or protein according to the invention.

According to further aspects, the invention provides various processes.

- 20 A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.

- 25 A process for detecting *C.pneumoniae* in a sample is provided, wherein the sample is contacted with an antibody which binds to a protein of the invention .

A summary of standard techniques and procedures which may be employed in order to perform the invention (e.g. to utilise the disclosed sequences for immunisation) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

General

- 30 The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature e.g. Sambrook *Molecular Cloning; A Laboratory Manual, Second Edition* (1989) and *Third Edition* (2001); *DNA Cloning, Volumes I and ii* (D.N Glover ed. 1985); *Oligonucleotide Synthesis* (M.J. Gait ed, 1984); *Nucleic Acid Hybridization* (B.D. Hames & S.J. Higgins eds. 1984); *Transcription and Translation* (B.D. Hames & S.J. Higgins eds. 1984); *Animal Cell Culture* (R.I.
35

Freshney ed. 1986); *Immobilized Cells and Enzymes* (IRL Press, 1986); B. Perbal, *A Practical Guide to Molecular Cloning* (1984); the *Methods in Enzymology* series (Academic Press, Inc.), especially volumes 154 & 155; *Gene Transfer Vectors for Mammalian Cells* (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), *Immunological Methods in Cell and Molecular Biology* (Academic Press, London); Scopes, (1987) *Protein Purification: Principles and Practice*, Second Edition (Springer-Verlag, N.Y.), and *Handbook of Experimental Immunology, Volumes I-IV* (D.M. Weir and C. C. Blackwell eds 1986).

5 Standard abbreviations for nucleotides and amino acids are used in this specification.

Definitions

10 A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

The term "comprising" means "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y.

15 The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Chlamydial sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been 20 assembled in a single protein in an arrangement not found in nature.

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be 25 reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence 30 identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above). As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, 35 has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions (e.g. see US patent 5,753,235).

Expression systems

The Chlamydial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.

i. Mammalian Systems

5 Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA
10 synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In *Molecular Cloning: A Laboratory Manual*, 2nd ed.].

15 Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallothionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive
20 cells.

25 The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) *Science* 236:1237; Alberts et al. (1989) *Molecular Biology of the Cell*, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer [Dijkema et al (1985) *EMBO J.* 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al.
30 (1982) *PNAS USA* 79:6777] and from human cytomegalovirus [Boshart et al. (1985) *Cell* 41:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) *Trends Genet.* 2:215; Maniatis et al. (1987) *Science* 236:1237].

35 A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader

fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus tripartite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

- 5 Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) *Cell* 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In *Transcription and splicing* (ed. B.D. Hames and D.M. Glover); Proudfoot 10 (1989) *Trends Biochem. Sci.* 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In *Molecular Cloning: A Laboratory Manual*].

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription 15 termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing 20 the replication systems of papovaviruses, such as SV40 [Gluzman (1981) *Cell* 23:175] or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian 25 cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) *Mol. Cell. Biol.* 9:946] and pHEBO [Shimizu et al. (1986) *Mol. Cell. Biol.* 6:1074].

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated 30 transfection, calcium phosphate precipitation, polybrene-mediated transfection, protoplast fusion, electroporation, encapsulation of polynucleotide(s) in liposomes, direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g. Hep G2), and a number of other cell lines.

35 ii. Baculovirus Systems

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site 40 for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence

homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987) 10 (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its 15 owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (*e.g.* plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31).

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) *Ann. Rev. Microbiol.*, 42:177) and a prokaryotic ampicillin-resistance (*amp*) gene and origin of replication for selection and propagation in *E. coli*.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (*e.g.* structural gene) into mRNA. A promoter will have a transcription initiation region 30 which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful 35 promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), *J. Gen. Virol.* 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, 40 such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals

for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human α -interferon, Maeda et al., (1985), *Nature* 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol.* 8:3129; human IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene* 58:273; and human glucocerebrosidase, Martin et al. (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus -- usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith *supra*; Ju et al. (1987); Smith et al., *Mol. Cell. Biol.* (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), *Bioessays* 4:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between ~1% and ~5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 μ m in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfected supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus)

-10-

or absence (indicative of recombinant virus) of occlusion bodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers & Smith, *supra*; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, *inter alia*: *Aedes aegypti*, *Autographa californica*, *Bombyx mori*, *Drosophila melanogaster*, *Spodoptera frugiperda*, and *Trichoplusia ni* (WO 89/046699; Carbonell et al., (1985) *J. Virol.* 56:153; Wright (1986) *Nature* 321:718; Smith et al., (1983) *Mol. Cell. Biol.* 3:2156; and see generally, Fraser, et al. (1989) *In Vitro Cell. Dev. Biol.* 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, e.g. Summers and Smith *supra*.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, e.g. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, e.g. proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

25 iii. Plant Systems

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: US 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, *Phytochemistry* 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., *Mol. Gen. Genet.* 209:33-40 (1987); Chandler et al., *Plant Molecular Biology* 3:407-418 (1984); Rogers, *J. Biol. Chem.* 260:3731-3738 (1985); Rothstein et al., *Gene* 55:353-356 (1987); Whittier et al., *Nucleic Acids Research* 15:2515-2535 (1987); Wirsel et al., *Molecular Microbiology* 3:3-14 (1989); Yu et al., *Gene* 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, *Gibberellins*: in: *Advanced Plant Physiology*, Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, *Plant Cell*, 2:1027-1038(1990); Maas et al., *EMBO J.* 9:3447-3452 (1990); Benkel and Hickey, *Proc. Natl. Acad. Sci.* 84:1337-1339 (1987)

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral

5 origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for *Agrobacterium* transformations, T DNA sequences for *Agrobacterium*-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable
10 marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Rept.*, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as
15 Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible.
20 The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

25 A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for
30 translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

35 Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

40 The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, *Mol. Gen. Genet.*, 202:179-185, 1985. The genetic material may also be

transferred into the plant cell by using polyethylene glycol, Krens, et al., *Nature*, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., *Nature*, 327, 70-73, 1987 and Knudsen and Muller, 1991, *Planta*, 185:330-336 teaching particle bombardment of barley 5 endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids 10 containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is 15 known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera *Fragaria*, *Lotus*, *Medicago*, *Onobrychis*, *Trifolium*, *Trigonella*, *Vigna*, *Citrus*, *Linum*, *Geranium*, *Manihot*, *Daucus*, *Arabidopsis*, *Brassica*, *Raphanus*, *Sinapis*, *Atropa*, *Capsicum*, *Datura*, *Hyoscyamus*, *Lycopersicon*, *Nicotiana*, *Solanum*, *Petunia*, *Digitalis*, *Majorana*, 20 *Cichorium*, *Helianthus*, *Lactuca*, *Bromus*, *Asparagus*, *Antirrhinum*, *Hererocallis*, *Nemesia*, *Pelargonium*, *Panicum*, *Pennisetum*, *Ranunculus*, *Senecio*, *Salpiglossis*, *Cucumis*, *Browalia*, *Glycine*, *Lolium*, *Zea*, *Triticum*, *Sorghum*, and *Datura*.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed 25 protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on 30 the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the 35 protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iv. Bacterial Systems

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in *Escherichia coli* (*E. coli*) [Raibaud *et al.* (1984) *Annu. Rev. Genet.* 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (*lac*) [Chang *et al.* (1977) *Nature* 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (*trp*) [Goeddel *et al.* (1980) *Nuc. Acids Res.* 8:4057; Yelverton *et al.* (1981) *Nucl. Acids Res.* 9:731; US patent 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-lactamase (*bla*) promoter system [Weissmann (1981) "The cloning of interferon and other mistakes." In *Interferon 3* (ed. I. Gresser)], bacteriophage lambda PL [Shimatake *et al.* (1981) *Nature* 292:128] and T5 [US patent 4,689,406] promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [US patent 4,551,433]. For example, the *tac* promoter is a hybrid *trp-lac* promoter comprised of both *trp* promoter and *lac* operon sequences that is regulated by the *lac* repressor [Amann *et al.* (1983) *Gene* 25:167; de Boer *et al.* (1983) *Proc. Natl. Acad. Sci.* 80:21]. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier *et al.* (1986) *J. Mol. Biol.* 189:113; Tabor *et al.* (1985) *Proc Natl. Acad. Sci.* 82:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an *E. coli* operator region (EPO-A-0 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In *E. coli*, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine *et al.* (1975) *Nature* 254:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' end of *E. coli* 16S rRNA [Steitz *et al.* (1979) "Genetic signals and nucleotide sequences in messenger RNA." In *Biological*

Regulation and Development: Gene Expression (ed. R.F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook *et al.* (1989) "Expression of cloned genes in Escherichia coli." In *Molecular Cloning: A Laboratory Manual*].

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* or *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai *et al.* (1984) *Nature* 309:810]. Fusion proteins can also be made with sequences from the *lacZ* [Jia *et al.* (1987) *Gene* 60:197], *trpE* [Allen *et al.* (1987) *J. Biotechnol.* 5:93; Makoff *et al.* (1989) *J. Gen. Microbiol.* 135:11], and *Chey* [EP-A-0 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller *et al.* (1989) *Bio/Technology* 7:698].

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) [Masui *et al.* (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb *et al.* (1984) *EMBO J.* 3:2437] and the *E. coli* alkaline phosphatase signal sequence (*phoA*) [Oka *et al.* (1985) *Proc. Natl. Acad. Sci.* 82:7212]. As an additional example, the signal sequence of the alpha-amylase gene from various *Bacillus* strains can be used to secrete heterologous proteins from *B. subtilis* [Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EP-A-0 244 042].

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be
5 maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign
10 protein on the host.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various
15 Bacillus strains integrate into the Bacillus chromosome (EP-A-0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol,
20 erythromycin, kanamycin (neomycin), and tetracycline [Davies *et al.* (1978) *Annu. Rev. Microbiol.* 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or
25 developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, *inter alia*, the following bacteria: *Bacillus subtilis* [Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], *Escherichia coli* [Shimatake *et al.* (1981) *Nature* 292:128; Amann
30 *et al.* (1985) *Gene* 40:183; Studier *et al.* (1986) *J. Mol. Biol.* 189:113; EP-A-0 036 776, EP-A-0 136 829 and EP-
A-0 136 907], *Streptococcus cremoris* [Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655]; *Streptococcus*
lividans [Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655], *Streptomyces lividans* [US patent 4,745,056].

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl_2 or other agents, such as divalent cations and DMSO.
35 DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. See e.g. [Masson *et al.* (1989) *FEMS Microbiol. Lett.* 60:273; Palva *et al.*
(1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, *Bacillus*],
[Miller *et al.* (1988) *Proc. Natl. Acad. Sci.* 85:856; Wang *et al.* (1990) *J. Bacteriol.* 172:949, *Campylobacter*],
[Cohen *et al.* (1973) *Proc. Natl. Acad. Sci.* 69:2110; Dower *et al.* (1988) *Nucleic Acids Res.* 16:6127; Kushner
40 (1978) "An improved method for transformation of *Escherichia coli* with *ColE1*-derived plasmids. In *Genetic*

Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) *J. Mol. Biol.* 53:159; Takeo (1988) *Biochim. Biophys. Acta* 949:318; Escherichia], [Chassy et al. (1987) *FEMS Microbiol. Lett.* 44:173 Lactobacillus]; [Fiedler et al. (1988) *Anal. Biochem* 170:38, Pseudomonas]; [Augustin et al. (1990) *FEMS Microbiol. Lett.* 66:203, Staphylococcus], 5 [Barany et al. (1980) *J. Bacteriol.* 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) *Infect. Immun.* 32:1295; Powell et al. (1988) *Appl. Environ. Microbiol.* 54:655; Somkuti et al. (1987) *Proc. 4th Evr. Cong. Biotechnology* 1:412, Streptococcus].

v. Yeast Expression

10 Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may 15 also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

20 Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara et al. (1983) *Proc. Natl. Acad. Sci. USA* 80:1].

25 In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the *ADH2*, 30 *GAL4*, *GAL10*, OR *PHO5* genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, *inter alia*, [Cohen et al. (1980) *Proc. Natl. Acad. Sci. USA* 77:1078; Henikoff et al. (1981) *Nature* 283:835; Hollenberg et al. (1981) *Curr. Topics Microbiol. Immunol.* 96:119; 35 Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast *Saccharomyces cerevisiae*," in: *Plasmids of Medical, Environmental and Commercial Importance* (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) *Gene* 11:163; Panthier et al. (1980) *Curr. Genet.* 2:109;].

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always

be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast 5 protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See e.g. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin 10 region that preferably retains a site for a processing enzyme (e.g. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (e.g. WO88/024066).

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric 15 DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the 20 genes for invertase (EP-A-0012873; JPO 62,096,086) and A-factor (US patent 4,588,684). Alternatively, leaders of non-yeast origin exist, such as an interferon leader, that also provide for secretion in yeast (EP-A-0060057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; 25 EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (e.g. see WO 89/02463.)

Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the 30 translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression 35 constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein *et al.* (1979) *Gene* 8:17-24], pCI1 [Brake *et al.* (1984) *Proc. Natl. Acad. Sci USA* 81:4642-4646], and YRp17 [Stinchcomb *et al.* (1982) 40 *J. Mol. Biol.* 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy

number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See e.g. Brake *et al.*, *supra*.

- 5 Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver *et al.* (1983) *Methods in Enzymol.* 101:228-245]. An integrating vector may be
10 directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver *et al.*, *supra*. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine *et al.* (1983) *Proc. Natl. Acad. Sci. USA* 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the
15 expression construct in the vector, which can result in the stable integration of only the expression construct.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as *ADE2*, *HIS4*, *LEU2*, *TRP1*, and *ALG7*, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable
20 marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of *CUP1* allows yeast to grow in the presence of copper ions [Butt *et al.* (1987) *Microbiol. Rev.* 51:351].

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or
25 developed into an integrating vector, as described above.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, *inter alia*, the following yeasts: *Candida albicans* [Kurtz, *et al.* (1986) *Mol. Cell. Biol.* 6:142], *Candida maltosa* [Kunze, *et al.* (1985) *J. Basic Microbiol.* 25:141], *Hansenula polymorpha* [Gleeson, *et al.* (1986) *J. Gen. Microbiol.* 132:3459; Roggenkamp *et al.* (1986) *Mol. Gen. Genet.* 202:302], *Kluyveromyces fragilis* [Das, *et al.* (1984) *J. Bacteriol.* 158:1165], *Kluyveromyces lactis* [De Louvencourt *et al.* (1983) *J. Bacteriol.* 154:737; Van
30 den Berg *et al.* (1990) *Bio/Technology* 8:135], *Pichia guillermondii* [Kunze *et al.* (1985) *J. Basic Microbiol.* 25:141], *Pichia pastoris* [Cregg, *et al.* (1985) *Mol. Cell. Biol.* 5:3376; US Patent Nos. 4,837,148 and 4,929,555],
35 *Saccharomyces cerevisiae* [Hinnen *et al.* (1978) *Proc. Natl. Acad. Sci. USA* 75:1929; Ito *et al.* (1983) *J. Bacteriol.* 153:163], *Schizosaccharomyces pombe* [Beach and Nurse (1981) *Nature* 300:706], and *Yarrowia lipolytica* [Davidow, *et al.* (1985) *Curr. Genet.* 10:380471 Gaillardin, *et al.* (1985) *Curr. Genet.* 10:49].

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See e.g. [Kurtz *et al.* (1986) *Mol. Cell. Biol.* 6:142; Kunze
40 *et al.* (1985) *J. Basic Microbiol.* 25:141; *Candida*]; [Gleeson *et al.* (1986) *J. Gen. Microbiol.* 132:3459;

Roggencamp *et al.* (1986) *Mol. Gen. Genet.* 202:302; Hansenula]; [Das *et al.* (1984) *J. Bacteriol.* 158:1165; De Louvencourt *et al.* (1983) *J. Bacteriol.* 154:1165; Van den Berg *et al.* (1990) *Bio/Technology* 8:135; Kluyveromyces]; [Cregg *et al.* (1985) *Mol. Cell. Biol.* 5:3376; Kunze *et al.* (1985) *J. Basic Microbiol.* 25:141; US Patents 4,837,148 & 4,929,555; Pichia]; [Hinnen *et al.* (1978) *Proc. Natl. Acad. Sci. USA* 75;1929; Ito *et al.* 5 (1983) *J. Bacteriol.* 153:163 Saccharomyces]; [Beach & Nurse (1981) *Nature* 300:706; Schizosaccharomyces]; [Davidow *et al.* (1985) *Curr. Genet.* 10:39; Gaillardin *et al.* (1985) *Curr. Genet.* 10:49; Yarrowia].

Pharmaceutical Compositions

Pharmaceutical compositions can comprise polypeptides and/or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, 10 or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject 15 will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 20 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and 25 which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, 30 hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering 35 substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (e.g. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

- 10 Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).

Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. pylori*, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59™ (WO 90/14837; Chapter 10 in 25 *Vaccine design: the subunit and adjuvant approach*, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to 30 generate a larger particle size emulsion, and (c) Ribi™ adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox™); (3) saponin adjuvants, such as Stimulon™ (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59™ are preferred.

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetyl-muramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The immunogenic compositions (e.g. the immunising antigen/immunogen/polypeptide/protein/nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (e.g. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

The immunogenic compositions are conventionally administered parenterally, e.g. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (e.g. WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed [e.g. Robinson & Torres (1997) *Seminars in Immunology* 9:271-283; Donnelly *et al.* (1997) *Annu Rev Immunol* 15:617-648; see later herein].

Gene Delivery Vehicles

Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence *in vivo* can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) *Cancer Gene Therapy* 1:51-64; Kimura (1994) *Human Gene Therapy* 5:845-852; Connelly (1995) *Human Gene Therapy* 6:185-193; and Kaplitt (1994) *Nature Genetics* 6:148-153.

-22-

Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) *J. Virol.* 53:160) polytropic retroviruses e.g. MCF and MCF-MLV (see Kelly (1983) *J. Virol.* 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, 5 Second Edition, Cold Spring Harbor Laboratory, 1985.

- Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.
- 10 These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.
- 15 Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (e.g. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.
- 20 Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) *J Virol* 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. 25 VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.
- Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, 30 WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) *Cancer Res* 53:3860-3864; Vile (1993) *Cancer Res* 53:962-967; Ram (1993) *Cancer Res* 53 (1993) 83-88; Takamiya (1992) *J Neurosci Res* 33:493-503; Baba (1993) *J Neurosurg* 79:729-735; Mann (1983) *Cell* 33:153; Cane (1984) *Proc Natl Acad Sci* 81:6349; and Miller (1990) 35 *Human Gene Therapy* 1.
- Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) *Biotechniques* 6:616 and Rosenfeld (1991) *Science* 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, 40 WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671,

WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) *Hum. Gene Ther.* 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (*ie.* there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) *Gene* 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) *J. Virol.* 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) *Human Gene Therapy* 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar), pHHSVlac described in Geller (1988) *Science* 241:1667-1669 and in WO90/09441 & WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) *Human Gene Therapy* 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in US Serial No. 08/405,627, filed March 15, 1995, WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

40 DNA vector systems such as eukaryotic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems.

Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, *Nature* 339 (1989) 385 and Sabin (1973) *J. Biol. Standardization*

- 5 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) *J Cell Biochem* L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) *Proc Natl Acad Sci* 86:317; Flexner (1989) *Ann NY Acad Sci* 569:86, Flexner (1990) *Vaccine* 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) *Nature* 277:108 and Madzak (1992) *J Gen Virol* 73:1533;
- 10 influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) *Proc Natl Acad Sci* 87:3802-3805; Enami & Palese (1991) *J Virol* 65:2711-2713 and Luytjes (1989) *Cell* 59:110, (see also McMichael (1983) *NEJM* 309:13, and Yap (1978) *Nature* 273:238 and *Nature* (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) *J. Virol.* 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) *Proc Soc Exp Biol Med* 121:190.

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) *Hum Gene Ther* 3:147-154 ligand linked DNA, for

- 30 example see Wu (1989) *J Biol Chem* 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No. 08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) *Mol Cell Biol* 14:2411-2418 and in Woffendin (1994) *Proc Natl Acad Sci* 91:1581-1585.

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described

- 40 in Wu & Wu (1987) *J. Biol. Chem.* 262:4429-4432, insulin as described in Hucked (1990) *Biochem Pharmacol* 40:253-263, galactose as described in Plank (1992) *Bioconjugate Chem* 3:533-539, lactose or transferrin.

- Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the 5 endosome and release of the DNA into the cytoplasm.
- Liposomes that can act as gene delivery vehicles are described in US 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as 10 polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin *et al* (1994) *Proc. Natl. Acad. Sci. USA* 91(24):11581-11585.
- 15 Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in US 5,149,655; use of ionizing radiation for activating transferred gene, as described in US 5,206,152 and WO92/11033
- 20 Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, *Biochemistry*, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) *Biochem Biophys Acta* 600:1; Bayer (1979) *Biochem Biophys Acta* 550:464; Rivnay (1987) *Meth Enzymol* 149:119; Wang (1987) *Proc Natl Acad Sci* 84:7851; Plant (1989) *Anal Biochem* 176:420.
- 25 A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.
- Delivery Methods
- Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the 30 subject; (2) delivered *ex vivo*, to cells derived from the subject; or (3) *in vitro* for recombinant protein expression. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.
- 35 Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (e.g. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.
- Methods for the *ex vivo* delivery and reimplantation of transformed cells into a subject are known in the art and described in e.g. WO93/14778. Examples of cells useful in *ex vivo* applications include, for example, stem cells, particularly hematopoietic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both *ex vivo* and *in vitro* applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

5 Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A. Polypeptides

One example are polypeptides which include, without limitation: asialoorosomucoid (ASOR); transferrin; 10 asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

15 B. Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C. Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred 20 embodiment, the polyalkylene glycol is polyethylene glycol. In addition, mono-, di-, or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

D. Lipids, and Liposomes

The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to 25 delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy]propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See,

also, Felgner *supra*). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boehringer). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. Szoka (1978) *Proc. Natl. Acad. Sci. USA* 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) 5 liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the 10 DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammellar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See e.g. Straubinger (1983) *Meth. Immunol.* 101:512-527; Szoka (1978) *Proc. Natl. Acad. Sci. USA* 75:4194-4198; Papahadjopoulos (1975) *Biochim. Biophys. Acta* 394:483; Wilson (1979) *Cell* 17:77; Deamer & 15 Bangham (1976) *Biochim. Biophys. Acta* 443:629; Ostro (1977) *Biochem. Biophys. Res. Commun.* 76:836; Fraley (1979) *Proc. Natl. Acad. Sci. USA* 76:3348; Enoch & Strittmatter (1979) *Proc. Natl. Acad. Sci. USA* 76:145; Fraley (1980) *J. Biol. Chem.* (1980) 255:10431; Szoka & Papahadjopoulos (1978) *Proc. Natl. Acad. Sci. USA* 75:145; and Schaefer-Ridder (1982) *Science* 215:166.

20 E. Lipoproteins

In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of 25 lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

30 A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, & E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, & E apoproteins, LDL comprises apoprotein B; HDL comprises apoproteins A, C, & E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) *Annu Rev. Biochem* 54:699; Law (1986) *Adv. Exp Med. Biol.* 151:162; Chen (1986) *J Biol Chem* 261:12918; Kane (1980) 35 *Proc Natl Acad Sci USA* 77:2465; and Utermann (1984) *Hum Genet* 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in

conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol. (supra)*; Pitas (1980) *J. Biochem.* 255:5454-5460 and Mahey (1979) *J Clin.*

- 5 *Invest* 64:743-750. Lipoproteins can also be produced by *in vitro* or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) *Annu Rev Biophys Chem* 15:403 and Radding (1958) *Biochim Biophys Acta* 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Technologies, Inc., Stoughton, Massachusetts, USA. Further description of lipoproteins can be found in Zuckermann *et al.* PCT/US97/14465.

10 **F. Polycationic Agents**

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

- 15 Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both *in vitro*, *ex vivo*, and *in vivo* applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

- 20 The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic acid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and putrescine.

- 25 The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. Lipofectin™, and lipofectAMINE™ are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.

Nucleic Acid Hybridisation

- 30 "Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] vol.2, chapt.9, pp.9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200°C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA 5 immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook *et al.* at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1 μ g for a plasmid or phage digest to 10⁻⁹ to 10 10⁻⁸ g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 μ g of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10⁸ cpm/ μ g. For a single-copy mammalian gene a conservative approach would start with 15 10 μ g of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10⁸ cpm/ μ g, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases 20 the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

$$T_m = 81 + 16.6(\log_{10}C_i) + 0.4[\%(G + C)] - 0.6(\%\text{formamide}) - 600/n - 1.5(\%\text{mismatch}).$$

where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) *Anal. Biochem.* 138: 267-284).

25 In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (*ie.* stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in 30 gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42°C for a probe with 35 is 95% to 100% homologous to the target fragment, 37°C for 90% to 95% homology, and 32°C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and

-reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

Nucleic Acid Probe Assays

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Chlamydial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Chlamydial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the Chlamydial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Chlamydial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Chlamydial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Chlamydial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably ≥ 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci *et al.* [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea *et al.* [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated e.g. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase *in vivo* half-life, alter RNA affinity, increase nuclease resistance etc. [e.g. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [e.g. see Corey (1997) TIBTECH 15:224-229; Buchardt *et al.* (1993) TIBTECH 11:384-386].

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis *et al.* [Meth. Enzymol. (1987) 155: 335-350]; US patents 4,683,195 & 4,683,202. Two 'primers' hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its

complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Chlamydial sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, 5 they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Chlamydial sequence (or its complement).

Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook *et al* [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The 10 solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1-189 show data pertaining to examples 1-189.

Figure 190 shows a representative 2D gel of proteins in elementary bodies.

15 Figure 191 shows an alignment of sequences in five (six) proteins of the invention.

EXAMPLES

The examples indicate *C.pneumoniae* proteins, together with evidence to support the view that the proteins are useful antigens for vaccine production and development or for diagnostic purposes. This evidence takes the form of:

- 20 • Computer prediction based on sequence information from CWL029 strain (*e.g.* using the PSORT algorithm available from www.psort.nibb.ac.jp).
 - Data on recombinant expression and purification of the proteins cloned from IOL207 strain.
 - Western blots to demonstrate immunoreactivity in serum (typically a blot of an EB extract of *C.pneumoniae* strain FB/96 stained with mouse antiserum against the recombinant protein).
 - 25 • FACS analysis of *C.pneumoniae* bacteria or purified EBs to confirm accessibility of the antigen to the immune system (see also table III).
 - An indication if the protein was identified by MALDI-TOF from a 2D gel electrophoresis map of proteins from purified elementary bodies from strain FB/96. This confirms that the protein is expressed *in vivo* (see also table V).
- 30 Various tests can be used to assess the *in vivo* immunogenicity of the proteins identified in the examples. For example, the proteins can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the protein and patient serum indicates that the patient has previously mounted an immune response to the protein in question *i.e.* the protein is an immunogen. This method can also be used to identify immunodominant proteins.

The recombinant protein can also be conveniently used to prepare antibodies *e.g.* in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (*e.g.* fluorescent labelling for FACS) can be incubated with intact bacteria and the presence of label on the bacterial surface confirms the location of the protein.

- 5 In particular, the following methods (A) to (O) were used to express, purify and biochemically characterise the proteins of the invention:

CLONING OF CPN ORFs FOR EXPRESSION IN *E.COLI*

ORFs of *Chlamydia pneumoniae* (Cpn) were cloned in such a way as to potentially obtain three different kind of proteins:

- 10 a) proteins having an hexa-histidine tag at the C-terminus (cpn-His)
 b) proteins having a GST fusion partner at the N-terminus (Gst-cpn)
 c) proteins having both hexa-histidine tag at the C-terminus and GST at the N-terminus (GST/His fusion; NH₂-GST-cpn-(His)₆-COOH)

15 The type a) proteins were obtained upon cloning in the pET21b+ (Novagen). The type b) and c) proteins were obtained upon cloning in modified pGEX-KG vectors [Guan & Dixon (1991) *Anal. Biochem.* 192:262]. For instance pGEX-KG was modified to obtain pGEX-NN, then by modifying pGEX-NN to obtain pGEX-NNH. The Gst-cpn and Gst-cpn-His proteins were obtained in pGEX-NN and pGEX-NNH respectively.

20 The modified versions of pGEX-KG vector were made with the aim of allowing the cloning of single amplification products in all three vectors after only one double restriction enzyme digestion and to minimise the presence of extraneous amino acids in the final recombinant proteins.

(A) Construction of pGEX-NN and pGEX-NNH expression vectors

Two couples of complementary oligodeoxyribonucleotides were synthesised using the DNA synthesiser ABI394 (Perkin Elmer) and the reagents from Cruachem (Glasgow, Scotland). Equimolar amounts of the oligo pairs (50 ng each oligo) were annealed in T4 DNA ligase buffer (New England Biolabs) for 10 min in a final volume of 50 µl and then were left to cool slowly at room temperature. With the described procedure the following DNA linkers were obtained:

gexNN linker:

30 NdeI NheI XmaI EcoRI NcoI SalI XhoI SacI NotI
 GATCCCATATGGCTAGCCCCGGGAATTCTCGCATGGAGTGAGTCGACTGACTCGAGTGATCGAGCTCCGTGACCGGGCCGCATGAA
 GGTATACCGATCGGGCCCTTAAGCAGGTACCTCACTCAGCTGACTGAGCTCACTAGCTCGAGGACTCGCCGGCGTACTTCGA

gexNNH linker:

35 HindIII NotI XhoI --Hexa-Histidine--
 TCGACAAGCTTGCAGCCGCACTCGAGCATCACCACCATCACTGAT
 GTTCGAACGCCGGCTGAGCACGTAGAGGTAGTGGTAGTGACTATCGA

The plasmid pGEX-KG was digested with BamHI and HindIII and 100 ng were ligated overnight at 16 °C to the linker gexNN with a molar ratio of 3:1 linker/plasmid using 200 units of T4 DNA ligase

(New england Biolabs). After transformation of the ligation product in *E. coli* DH5, a clone containing the pGEX-NN plasmid, having the correct linker, was selected by means of restriction enzyme analysis and DNA sequencing.

The new plasmid pGEX-NN was digested with SalI and HindIII and ligated to the linker gexNNH.

- 5 After transformation of the ligation product in *E. coli* DH5, a clone containing the pGEX-NNH plasmid, having the correct linker, was selected by means of restriction enzyme analysis and DNA sequencing.

(B) Chromosomal DNA preparation

The chromosomal DNA of elementary bodies (EB) of *C.pneumoniae* strain 10L-207 was prepared by

- 10 adding 1.5 ml of lysis buffer (10 mM Tris-HCl, 150 mM NaCl, 2 mM EDTA, 0,6 % SDS, 100 µg/ml Proteinase K, pH 8) to 450 µl EB suspension (400.000/µl) and incubating overnight at 37 °C. After sequential extraction with phenol, phenol-chloroform, and chloroform, the DNA was precipitated with 0,3 M sodium acetate, pH 5,2 and 2 volumes of absolute ethanol. The DNA pellet was washed with 70 % ethanol. After solubilization with distilled water and treatment with 20 µg/ml RNase A
15 for 1 hour at RT, the DNA was extracted again with phenol-chloroform, alcohol precipitated and suspended with 300 µl 1 mM Tris-HCl pH 8,5. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample.

(C) Oligonucleotide design

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF

- 20 using the sequence of *C.pneumoniae* strain CWL029. Any predicted signal peptide were omitted, by deducing the 5' end amplification primer sequence immediately downstream from the predicted leader sequence. For most ORFs, the 5' tail of the primers (table I) included only one restriction enzyme recognition site (NdeI, or NheI, or SpeI depending on the gene's own restriction pattern); the 3' primer tails (tableI) included a XhoI or a NotI or a HindIII restriction site.

5' tails		3' tails	
NdeI	5' GTGCGTCATATG 3'	XhoI	5' GCGTCTCGAG 3'
NheI	5' GTGCGTGCTAGC 3'	NotI	5' ACTCGCTAGCGGCCGC 3'
SpeI	5' GTGCGTACTAGT 3'	HindIII	5' GCGTAAGCTT 3'

25 **Table I.** Oligonucleotide tails of the primers used to amplify Cpn genes.

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridized to the sequence to be amplified. The number of hybridizing nucleotides depended on the melting temperature of the primers which was determined as described [(Breslauer *et al.* (1986) *PNAS USA* 83:3746-50]. The average melting temperature of the selected oligos was 50-55°C

- 30 for the hybridizing region alone and 65-75°C for the whole oligos. Table II shows the forward and reverse primers used for each amplification.

(D) Amplification

The standard PCR protocol was as follow: 50 ng genomic DNA were used as template in the presence of 0,2 μ M each primer, 200 μ M each dNTP, 1,5 mM MgCl₂, 1x PCR buffer minus Mg (Gibco-BRL), and 2 units of Taq DNA polymerase (Platinum Taq, Gibco-BRL) in a final volume of 5 100 μ l. Each sample underwent a double-step amplification: the first 5 cycles were performed using as the hybridizing temperature the one of the oligos excluding the restriction enzyme tail, followed by 25 cycles performed according to the hybridization temperature of the whole lenght primers. The standard cycles were as follow:

denaturation : 94 °C, 2 min

10

denaturation: 94 °C, 30 seconds
hybridization: 51 °C, 50 seconds }
elongation: 72 °C, 1 min or 2 min and 40 sec } 5 cycles

15

denaturation: 94 °C, 30 seconds
hybridization: 70 °C, 50 seconds }
elongation: 72 °C, 1 min or 2 min and 40 sec } 25 cycles

72 °C, 7 min

20

4 °C

The elongation time was 1 min for ORFs shorter than 2000 bp, and 2 min and 40 seconds for ORFs longer than 2000 bp. The amplifications were performed using a Gene Amp PCR system 9600 (Perkin Elmer).

25 To check the amplification results, 4 μ l of each PCR product was loaded onto 1-1.5 agarose gel and the size of amplified fragments compared with DNA molecular weight standards (DNA markers III or IX, Roche). The PCR products were loaded on agarose gel and after electrophoresis the right size bands were excised from the gel. The DNA was purified from the agarose using the Gel Extraction Kit (Qiagen) following the instruction of the manufacturer. The final elution volume of the DNA was 30 50 μ l TE (10 mM Tris-HCl, 1 mM EDTA, pH 8). One μ l of each purified DNA was loaded onto agarose gel to evaluate the yield.

(E) Digestion of PCR fragments

One-two μ g of purified PCR product were double digested overnight at 37 °C with the appropriate restriction enzymes (60 units of each enzyme) using the appropriate restriction buffer in 100 μ l final 35 volume. The restriction enzymes and the digestion buffers were from New England Biolabs. After

purification of the digested DNA (PCR purification Kit, Qiagen) and elution with 30 µl TE, 1 µl was subjected to agarose gel electrophoresis to evaluate the yield in comparison to titrated molecular weight standards (DNA markers III or IX, Roche).

(F) Digestion of the cloning vectors (pET21b+, pGEX-NN, and pGEX-NNH)

5 10 µg of plasmid was double digested with 100 units of each restriction enzyme in 400 µl reaction volume in the presence of appropriate buffer by overnight incubation at 37 °C. After electrophoresis on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen Qiaex II Gel Extraction Kit and the DNA was eluted with 50 µl TE. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample.

10 **(G) Cloning**

75ng of the appropriately digested and purified vectors and the digested and purified fragments corresponding to each ORF, were ligated in final volumes of 10-20 µl with a molar ratio of 1:1 fragment/vector, using 400 units T4 DNA ligase (New England Biolabs) in the presence of the buffer supplied by the manufacturer. The reactions were incubated overnight at 16 °C.

15 Transformation in *E coli* DH5 competent cells was performed as follow: the ligation reaction was mixed with 200 µl of competent DH5 cells and incubated on ice for 30 min and then at 42 °C for 90 seconds. After cooling on ice, 0.8 ml LB was added and the cells were incubated for 45 min at 37 °C under shaking. 100 and 900 µl of cell suspensions were plated on separate plates of agar LB 100 µg/ml Ampicillin and the plates were incubated overnight at 37 °C. The screening of the
20 transformants was done by growing randomly chosen clones in 6 ml LB 100 µg/ml Ampicillin, by extracting the DNA using the Qiagen Qiaprep Spin Miniprep Kit following the manufacturer instructions, and by digesting 2 µl of plasmid minipreparation with the restriction enzymes specific for the restriction cloning sites. After agarose gel electrophoresis of the digested plasmid mini-preparations, positive clones were chosen on the basis of the correct size of the restriction fragments,
25 as evaluated by comparison with appropriate molecular weight markers (DNA markers III or IX, Roche).

(H) Expression

1 µl of each right plasmid mini-preparation was transformed in 200 µl of competent *E. coli* strain suitable for expression of the recombinant protein. All pET21b+ recombinant plasmids were
30 transformed in BL21 DE3 (Novagen) *E. coli* cells, whilst all pGEX-NN and all pGEX-NNH recombinant plasmids were transformed in BL21 cells (Novagen). After plating transformation mixtures on LB/Amp agar plates and incubation overnight at 37 °C, single colonies were inoculated in 3 ml LB 100 µg/ml Ampicillin and grown at 37 °C overnight. 70 µl of the overnight culture was inoculated in 2 ml LB/Amp and grown at 37 °C until OD₆₀₀ of the pET clones reached the 0,4-0,8
35 value or until OD₆₀₀ of the pGEX clones reached the 0,8-1 value. Protein expression was then

induced by adding IPTG (Isopropyl β -D thio-galacto-piranoside) to the mini-cultures. pET clones were induced using 1 mM IPTG, whilst pGEX clones were induced using 0.2 mM IPTG. After 3 hours incubation at 37 °C the final OD₆₀₀ was checked and the cultures were cooled on ice. After centrifugation of 0.5 ml culture, the cell pellet was suspended in 50 μ l of protein Loading Sample Buffer (60 mM TRIS-HCl pH 6.8, 5% w/v SDS, 10% v/v glycerin, 0.1% w/v Bromophenol Blue, 100 mM DTT) and incubated at 100 °C for 5 min. A volume of boiled sample corresponding to 0.1 OD₆₀₀ culture was analysed by SDS-PAGE and Coomassie Blue staining to verify the presence of induced protein band.

PURIFICATION OF THE RECOMBINANT PROTEINS

Single colonies were inoculated in 25 ml LB 100 μ g/ml Ampicillin and grown at 37 °C overnight. The overnight culture was inoculated in 500 ml LB/Amp and grown under shaking at 25 °C until OD₆₀₀ 0,4-0,8 value for the pET clones, or until OD₆₀₀ 0,8-1 value for the pGEX clones. Protein expression was then induced by adding IPTG to the cultures. pET clones were induced using 1 mM IPTG, whilst pGEX clones were induced using 0.2 mM IPTG. After 4 hours incubation at 25 °C the final OD₆₀₀ was checked and the cultures were cooled on ice. After centrifugation at 6000 rpm (JA10 rotor, Beckman), the cell pellet was processed for purification or frozen at -20 °C.

(I) Procedure for the purification of soluble His-tagged proteins from *E.coli*

1. Transfer the pellets from -20°C to ice bath and reconstitute with 10 ml 50 mM NaHPO₄ buffer, 300 mM NaCl, pH 8,0, pass in 40-50 ml centrifugation tubes and break the cells as per the following outline:
2. Break the pellets in the French Press performing three passages with in-line washing.
3. Centrifuge at about 30-40000 x g per 15-20 min. If possible use rotor JA 25.50 (21000 rpm, 15 min.) or JA-20 (18000 rpm, 15 min.)
4. Equilibrate the Poly-Prep columns with 1 ml Fast Flow Chelating Sepharose resin with 50 mM phosphate buffer, 300 mM NaCl, pH 8,0.
5. Store the centrifugation pellet at -20°C, and load the supernatant in the columns.
6. Collect the flow through.
7. Wash the columns with 10 ml (2 ml + 2 ml + 4 ml) 50 mM phosphate buffer, 300 mM NaCl, pH 8,0.
8. Wash again with 10 ml 20 mM imidazole buffer, 50 mM phosphate, 300 mM NaCl, pH 8,0.
9. Elute the proteins bound to the columns with 4,5 ml (1,5 ml + 1,5 ml + 1,5 ml) 250 mM imidazole buffer, 50 mM phosphate, 300 mM NaCl, pH 8,0 and collect the 3 corresponding fractions of ~1,5 ml each. Add to each tube 15 μ l DTT 200 mM (final concentration 2 mM)

10. Measure the protein concentration of the first two fractions with the Bradford method, collect a 10 µg aliquot of proteins from each sample and analyse by SDS-PAGE. (N.B.: should the sample be too diluted, load 21 µl + 7 µl loading buffer).
11. Store the collected fractions at +4°C while waiting for the results of the SDS-PAGE analysis.
- 5 12. For immunisation prepare 4-5 aliquots of 100 µg each in 0,5 ml in 40% glycerol. The dilution buffer is the above elution buffer, plus 2 mM DTT. Store the aliquots at -20°C until immunisation.

(J) Purification of His-tagged proteins from Inclusion bodies

Purifications were carried out essentially according the following protocol:

10. 1. Bacteria are collected from 500 ml cultures by centrifugation. If required store bacterial pellets at -20°C. For extraction, resuspend each bacterial pellet in 10 ml 50 mM TRIS-HCl buffer, pH 8,5 on an ice bath.
2. Disrupt the resuspended bacteria with a French Press, performing two passages.
3. Centrifuge at 35000 x g for 15 min and collect the pellets. Use a Beckman rotor JA 25.50 (21000 rpm, 15 min.) or JA-20 (18000 rpm, 15 min.).
- 15 4. Dissolve the centrifugation pellets with 50 mM TRIS-HCl, 1 mM TCEP {Tris(2-carboxyethyl)-phosphine hydrochloride, Pierce} , 6M guanidium chloride, pH 8,5. Stir for ~ 10 min. with a magnetic bar.
5. Centrifuge as described above, and collect the supernatant..
- 20 6. Prepare an adequate number of Poly-Prep (Bio-Rad) columns containing 1 ml of Fast Flow Chelating Sepharose (Pharmacia) saturated with Nickel according to manufacturer recommendations.. Wash the columns twice with 5 ml of H₂O and equilibrate with 50 mM TRIS-HCl, 1 mM TCEP, 6M guanidinium chloride, pH 8,5.
7. Load the supernatants from step 5 onto the columns, and wash with 5 ml of 50 mM TRIS-HCl buffer, 1 mM TCEP, 6M urea, pH 8,5
- 25 8. Wash the columns with 10 ml of 20 mM imidazole, 50 mM TRIS-HCl , 6M urea, 1 mM TCEP, pH 8,5. Collect and set aside the first 5 ml for possible further controls.
9. Elute the proteins bound to the columns with 4,5 ml of a buffer containing 250 mM imidazole, 50 mM TRIS-HCl, 6M urea, 1 mM TCEP, pH 8,5. Add the elution buffer in three 1,5 ml aliquots, and collect the corresponding 3 fractions. Add to each fraction 15 µl DTT (final concentration 2 mM).
- 30 10. Measure eluted protein concentration with the Bradford method, and analyze aliquots of ca 10 µg of protein by SDS-PAGE.
11. Store proteins at -20°C in 40% (v/v) glycerol, 50 mM TRIS-HCl, 2M urea, 0.5 M arginine, 2 mM DTT, 0.3 mM TCEP, 83.3 mM imidazole, pH 8,5
- 35

(K) Procedure for the purification of GST-fusion proteins from *E.coli*

1. Transfer the bacterial pellets from -20°C to an ice bath and resuspend with 7,5 ml PBS, pH 7,4 to which a mixture of protease inhibitors (CØMPLETE™ - Boehringer Mannheim, 1 tablet every 25 ml of buffer) has been added. Transfer to 40-50 ml centrifugation tubes and sonicate according to the following procedure:

- 5 a) Position the probe at about 0,5 cm from the bottom of the tube
- b) Block the tube with the clamp
- c) Dip the tube in an ice bath
- d) Set the sonicator as follows: Timer → Hold, Duty Cycle → 55, Out. Control → 6.
- 10 e) perform 5 cycles of 10 impulses at a time lapse of 1 minute (i.e. one cycle = 10 impulses + ~45" hold; b. 10 impulses + ~45" hold; c. 10 impulses + ~45" hold; d. 10 impulses + ~45" hold; e. 10 impulses + ~45" hold)

2. Centrifuge at about 30-40000 x g for 15-20 min. E.g.: use rotor Beckman JA 25.50 at 21000 rpm, for 15 min.

15 3. Store the centrifugation pellets at -20°C, and load the supernatants on the chromatography columns, as follows

4. Equilibrate the Poly-Prep (Bio-Rad) columns with 0,5 ml (≈1 ml suspension) of Glutathione-Sepharose 4B resin, wash with 2 ml (1 + 1) H₂O, and then with 10 ml (2 + 4 + 4) PBS, pH 7,4.

5. Load the supernatants on the columns and discard the flow through.

20 6. Wash the columns with 10 ml (2 + 4 + 4) PBS, pH 7,4.

7. Elute the proteins bound to the columns with 4,5 ml of 50 mM TRIS buffer, 10 mM reduced glutathione, pH 8,0, adding 1,5 ml + 1,5 ml + 1,5 ml and collecting the respective 3 fractions of ~1,5 ml each.

25 8. Measure the protein concentration of the first two fractions with the Bradford method, analyse a 10 µg aliquot of proteins from each sample by SDS-PAGE. (N.B.: if the sample is too diluted load 21 µl (+ 7 µl loading buffer).

9. Store the collected fractions at +4°C while waiting for the results of the SDS-PAGE analysis.

10. For each protein destined to the immunisation prepare 4-5 aliquots of 100 µg each in 0,5 ml of 40% glycerol. The dilution buffer is 50 mM TRIS.HCl, 2 mM DTT, pH 8,0. Store the aliquots at 30 -20°C until immunisation..

SEROLOGY**(L) Protocol of immunization**

1. Groups of four CD1 female mice aged between 6 and 7 weeks were immunized with 20 µg of recombinant protein resuspended in 100 µl.

2. Four mice for each group received 3 doses with a 14 days interval schedule.
3. Immunization was performed through intra-peritoneal injection of the protein with an equal volume of Complete Freund's Adjuvant (CFA) for the first dose and Incomplete Freund's Adjuvant (IFA) for the following two doses.
- 5 4. Sera were collected before each immunization. Mice were sacrificed 14 days after the third immunization and the collected sera were pooled and stored at -20°C.

(M) Western blot analysis of Cpn elementary body proteins with mouse sera

Aliquots of elementary bodies containing approximately 4 µg of proteins, mixed with SDS loading buffer (1x: 60 mM TRIS-HCl pH 6.8, 5% w/v SDS, 10% v/v glycerin, 0.1% Bromophenol Blue, 100 mM DTT) and boiled 5 minutes at 95° C, were loaded on a 12% SDS-PAGE gel. The gel was run using a SDS-PAGE running buffer containing 250 mM TRIS, 2.5 mM Glycine and 0.1 %SDS. The gel was electroblotted onto nitrocellulose membrane at 200 mA for 30 minutes. The membrane was blocked for 30 minutes with PBS, 3% skimmed milk powder and incubated O/N at 4° C with the appropriate dilution (1/100) of the sera. After washing twice with PBS + 0.1% Tween (Sigma) the membrane was incubated for 2 hours with peroxidase-conjugated secondary anti-mouse antibody (Sigma) diluted 1:3000. The nitrocellulose was washed twice for 10 minutes with PBS + 0.1% Tween-20 and once with PBS and thereafter developed by Opti-4CN Substrate Kit (Biorad).

Lanes shown in Western blots are: (P) = pre-immune control serum; (I) = immune serum.

(N) FACS analysis of *Chlamydia pneumoniae* elementary bodies with mouse sera

- 20 1. 2×10^5 Elementary Bodies (EB)/well were washed with 200 µl of PBS-0.1%BSA in a 96 wells U bottom plate and centrifuged for 10 min. at 1200rpm, at 4°C.
2. The supernatant was discarded and the E.B. resuspended in 10 µl of PBS-0.1%BSA.
3. 10µl mouse sera diluted in PBS-0.1%BSA were added to the E.B. suspension to a final dilution of 1:400, and incubated on ice for 30 min.
- 25 4. EB were washed by adding 180µl PBS-0.1%BSA and centrifuged for 10min. at 1200rpm, 4°C.
5. The supernatant was discarded and the E.B. resuspended in 10 l of PBS-0.1%BSA.
6. 10µl of a goat anti-mouse IgG, F(ab')₂ fragment specific-R-Phycoerythrin-conjugated (Jackson Immunoresearch Laboratories Inc., cat.N°115-116-072) was added to the EB suspension to a final dilution of 1:100, and incubated on ice for 30 min. in the dark.
- 30 7. EB were washed by adding 180µl PBS-0.1%BSA and centrifuged for 10min. at 1200rpm, 4°C.
8. The supernatant was discarded and the E.B. resuspended in 150 µl of PBS-0.1%BSA.
9. E.B. suspension was passed through a cytometric chamber of a FACS Calibur (Becton Dikinson, Mountain View, CA USA) and 10.000 events were acquired.

-40-

10. Data were analysed using Cell Quest Software (Becton Dickinson, Mountain View, CA USA) by drawing a morphological dot plot (using forward and side scatter parameters) on E.B. signals. An histogram plot was then created on FL2 intensity of fluorescence log scale recalling the morphological region of EB.
- 5 NB: the results of FACS depend not only on the extent of accessibility of the native antigens but also on the quality of the antibodies elicited by the recombinant antigens, which may have structures with a variable degree of correct folding as compared with the native protein structures. Therefore, even if a FACS assay appears negative this does not necessarily mean that the protein is not abundant or accessible on the surface. PorB antigen, for instance, gave negative results in FACS but is a surface-exposed neutralising antigen [Kubo & Stephens (2000) *Mol. Microbiol.* 38:772-780].
- 10

(O) Mass Spectrometry analysis of two-dimensional electrophoretic protein maps

Gradient purified EBs from strain FB/96 were solubilized at a final concentration of 5.5mg/ml with immobiline rehydratation buffer (7M urea, 2M thiourea, 2% (w/v) CHAPS, 2% (w/v) ASB 14 [Chevallet *et al.* (1998) *Electrophor.* 19:1901-9], 2% (v/v) C.A 3-10NL (Amersham Pharmacia Biotech), 2 mM tributyl phosphine, 65 mM DTT). Samples (250µg protein) were adsorbed overnight on Immobiline DryStrips (7 cm, pH 3-10 non linear). Electrophocusing was performed in a IPGphor Isoelectric Focusing Unit (Amersham Pharmacia Biotech). Before PAGE separation, the focused strips were incubated in 4M urea, 2M thiourea, 30% (v/v) glycerol, 2% (w/v) SDS, 5mM tributyl phosphine 2.5%(w/v) acrylamide, 50mM Tris-HCl pH 8.8, as described [Herbert *et al.* (1998) *Electrophor.* 19:845-51]. SDS-PAGE was performed on linear 9-16% acrylamide gradients. Gels were stained with colloidal Coomassie (Novex, San Diego) [Doherty *et al.* (1998) *Electrophor.* 19:355-63]. Stained gels were scanned with a Personal Densitometer SI (Molecular Dynamics) at 8 bits and 50µm per pixel. Map images were annotated with the software Image Master 2D Elite, version 3.10 (Amersham Pharmacia Biotech). Protein spots were excised from the gel, using an Ettan 25 Spot picker (Amersham Pharmacia Biotech), and dried in a vacuum centrifuge. In-gel digestion of samples for mass spectrometry and extraction of peptides were performed as described by Wilm *et al.* [*Nature* (1996) 379:466-9]. Samples were desalted with a ZIP TIP (Millipore), eluted with a saturated solution of alpha-cyano-4-hydroxycinnamic acid in 50% acetonitrile, 0.1% TFA and directly loaded onto a SCOUT 381 multiprobe plate (Bruker). Spectra were acquired on a Bruker 30 Biflex II MALDI-TOF. Spectra were calibrated using a combination of known standard peptides, located in spots adjacent to the samples. Resulting values for monoisotopic peaks were used for database searches using the computer program Mascot (www.matrixscience.com). All searches were performed using an error of 200-500ppm as constraint. A representative gel is shown in Figure 190.

Example 1

- 35 The following *C.pneumoniae* protein (PID 4376552) was expressed <SEQ ID 1; cp6552>:

1 MKKRILSLLVG LIFVLSSSHK EDAQNKRIV ASPTPHAEELL ESLQEEAKDL

-41-

5 51 GIKLKILPVD DYRIPNRLLL DKQVDANYFQ HQAFLDDECE RYDCKGELVV
 101 IAKVHLEPQA IYSKKHSSLE RLKSQKKLTI AIPVDRNAQ RALHLLRECG
 151 LIVCKGFPANL NMTAKDVC GK ENRSINILEV SAPLLVGSLP DVDAAVIPGN
 201 FAIAANLSPK KDSLCL EDLS VSKYTNLVVI RSEDEVGSPKM IKLQKL FQSP
 251 SVQHFFDTKY HGNILTMTQD NG*

5

A predicted signal peptide is highlighted.

The cp6552 nucleotide sequence <SEQ ID 2> is:

10 1 ATGAAAAAAA AATTATCATT ACTTGTAGGT TTAATTTTG TTTTGAGTTC
 51 TTGCCATAAG GAAGATGCTC AGAATAAAAT ACGTATTGTA GCCAGTCCGA
 101 CACCTCATGC GGAATTATTG GAGAGTTAC AGGAAGAGGC TAAAGATCTT
 151 GGAATCAAGC TGAAAATACT TCCAGTAGAT GATTATCGTA TTCCTAATCG
 201 TTTGCTTTTG GATAAACAAAG TAGATGCAA TTACTTTCAA CATCAAGCTT
 251 TTCTTGATGAG CGAATGCGAG CGTATGATT GTAAAGGTGA ATTAGTTGTT
 301 ATCCGCTAACG TTCATTGGAA ACCTCAAGCA ATTATATTCTA AGAAAACATTG
 351 TTCTTTAGAG CGCTTAAAGAA GCCAGAAGAA ACTGACTATA GCGATTCCTG
 401 TGGATCGTAC GAATGCTCAG CGTGCTCTAC ACTTGTAGA AGAGTGCAGGA
 451 CTCATTGTTT GCAAAGGGCC TGCTAATTAA AATATGACAG CTAAAGATGT
 501 CTGTGGGAAA GAAAATAGAA GTATCAACAT ATTAGAGGTG TCAGCTCCTC
 551 TTCTTGTCGG ATCTCTTCCT GACGTTGATG CTGCTGTCAAT TCCCTGAAAT
 601 TTTGCTATAG CAGCAAACCT TTCTCCAAAG AAAGATAGTC TTTGTTTAAAG
 651 GGATCTTTCG GTATCTAAGT ATACAAACCT TGTTGTCAATT CGTTCTGAAG
 701 ACCTAGGTTT TCCTAAATAG ATAAAATTAC AGAAGCTGTT TCAATCTCCT
 751 TCTGTACAAC ATTTTTTGA TACAAAATAT CATGGGAATA TTTTGACAAT
 801 GACTCAAGAC AATGGTTAG

25 The PSORT algorithm predicts an inner membrane location (0.127).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 1A, and also as a GST-fusion. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 1B) and for FACS analysis (Figure 1C).

The cp6552 protein was also identified in the 2D-PAGE experiment (Cpn0278).

30 These experiments show that cp6552 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 2

The following *C.pneumoniae* protein (PID 4376736) was expressed <SEQ ID 3; cp6736>:

35 1 MRTSIRKFLLI STPLAFCFAS TAFTVEVIMP SENFDGSSGK IFPYTTLSDP
 51 RGTLCIFSGD LYIANLDNAI SRTSSSCFSN RAGALQILGK GGVFSFLNIR
 101 SSADGAAISS VITQNPELCP LSFSGFSQMI FDNCESLTSD TSASNVIPHA
 151 SAIYATTPLM FTNNDSILFQ YNRSAGFGAA IRGTSITIEN TKKSLLFNGN
 201 GSISNGGALT GSAAINLINN SAPVIFSTNA TGIIYGGAIYL TGGSMIITSGN
 251 LSGVLFVNNS SRSGGAIYAN GNVTFSNNSD LTFQNNTASP QNSLPAPTTP
 301 PTTPPAVTPLL GYGGAIIFCTP PATPPPPTGVS LTISGENSVT FLENIASEQG
 351 GALYGKKISI DSNKSTIIFLG NTAGKGGAAI IPESGELSLS ANQGDILFNPK
 401 NLSITSGTPT RNSIHFGKDA KFATLGATQG YTLYFYDPIT SDDLSAASAA
 451 ATVVVNPKAS ADGAYSGTIV FSGETLTATE AATPANATST LNQKLELEGG
 501 TLALRNGATL NVHNFTQDEK SVVIMDAGTT LATTTNGANNT DGAITLNKLV
 551 INLDSLDGTK AAVVNQVQSTN GALTISGTLG LVKNSQDCCD NHGMFMNKDLQ
 601 QVPILELKAT SNTVTTTDFS LGTNGYQQSP YGYQGTWEFFT IDTTTHTVTG
 651 NWKKTGYLPH PERLAPLIPN SLWANVIDLR AVSQASAADG EDVPGRKQLSI
 701 TGITMFHAN HTGDAWSYRH MGGGYLINTY TRITPDAAALS LGFCQLFTKS
 751 KDYLVGHGHS NNYFATVYSN ITKSLFGSSR FFSGGTSRVY YSRNSNEKVKT
 801 SYTKLPKGRC SWSNNCWLGE LEGNLPITLS SRLNLKQII PFVKAEVAYA
 851 THCGCIQENTP EGRIFGHGHL LNVAVPVGVR FGKNSHNRPD FYTIIIVAYAP
 901 DVYRHNPDCD TTLPLINGATW TSIGNNLTRS TLLVQASSHT SVNDVLEIFG
 951 HCGCDIRRTS RQYTLDIGSK LRF*

A predicted signal peptide is highlighted.

The cp6736 nucleotide sequence <SEQ ID 4> is:

	1	ATGAAAACGT	CTATTTCGAA	GTTCTTAATT	TCTACCACAC	TGGCGCCATG
	51	TTTTGCTTCA	ACAGCGTTA	CTGTAGAAGT	TATCATGCCT	TCCGAGAACT
5	101	TTGATGGATC	GAGTGGGAAG	ATTTTTCCTT	ACACAACACT	TTCTGATCCT
	151	AGAGGGACAC	TCTGTATTTT	TTCAAGGGGAT	CTCTACATG	CGAACATTGA
	201	TAATGCCATA	TCCAGAACCT	CTTCCAGTTG	CTTTAGCAAT	AGGGCGGGAG
	251	CACTACAAT	CTTAGGAAAA	GGTGGGTTT	TCTCCTCTT	AAATATCCGT
10	301	TCTTCAGCTG	ACGGAGCCGC	GATTAGTAGT	GTAATCACCC	AAAATCCTGA
	351	ACTATGTCCC	TTGAGTTTTT	CAGGATTTAG	TCAGATGATC	TTCGATAACT
	401	GTGAATCTT	GACTTCAGAT	ACCTCAGCGA	GTAATGTATC	ACCTCACGCA
	451	TGGCGATT	ACGCTAACAC	GCCCCATGCTC	TTTACAAACA	ATGACTCCAT
	501	ACTATTCCAA	TACAACCGTT	CTGCAGGATT	TGGAGCTGCC	ATTGAGGCA
15	551	CAAGCATCAC	AATAGAAAAT	ACGAAAAAGA	GCCTTCTCTT	TAATGGAAT
	601	GGATCCATCT	CTAATGGAGG	GGCCCTCACG	GGATCTGCAG	CGATCAACCT
	651	CATCAACAAT	AGCGCTCCCTG	TGATTTCTC	AACGAATGCT	ACAGGGATCT
	701	ATGGTGGGGC	TATTTTACCTT	ACCGGAGGAT	CTATGCTCAC	CTCTGGGAAC
	751	CTCTCAGGAG	TCTTGTTCGT	TAATAATAGC	TCGGCCTCAG	GAGGCGCTAT
	801	CTATGCTAAC	GGAAATGTCA	CATTTTCTAA	TAACAGCGAC	CTGACTTTCC
20	851	AAAACAATAC	AGCATCTCCA	CAAAACTCTT	TACCTGCACC	TACACCTCCA
	901	CCTACACCAC	CAGCAGTCAC	TCCTTGTAA	GGATATGGAG	GCGCCATCTT
	951	CTGTAATCCT	CCAGCTACCC	CCCCACCAAAC	AGGTGTTAGC	CTGACTATAT
	1001	CTGGAGAAAA	CAGCGTTACA	TTCTCTAGAAA	ACATTGCCCTC	CGAACAAAGGA
	1051	GGAGCCCTCT	ATGGCAAAAA	GATCTCTATA	GATTCTAATA	AATCTACAAT
25	1101	ATTTCTTGAA	AATACAGCTG	GAAAAGGAGG	CGCTATTGCT	ATTCCCGAAT
	1151	CTGGGGAGCT	CTCTCTATCC	GCAAATCAAG	GTGATATCCT	CTTTAACAAAG
	1201	AACCTCAGCA	TCACTAGTGG	GACACCTACT	CGCAATAGTA	TTCACTTCGG
	1251	AAAAGATGCC	AAGTTTGCCA	CTCTAGGAGC	TACGCAAGGC	TATACCCSTAT
	1301	ACTTCTATGA	TCCGATTACA	TCTGATGATT	TATCTGCTGC	ATCCGAGCC
30	1351	GCTACTGTGG	TCGTCAATCTC	CAAAGCAGT	GCAGATGGTG	CGTATTCAAG
	1401	GACTATTGTC	TTTCAGGAG	AAACCTCAC	TGCTACCGAA	GCAGCAACCC
	1451	CTGCAAATGC	TACATCTACA	TTAAACCAAA	AGCTAGAACT	TGAAGGCGGT
	1501	ACTCTCGCTT	TAAGAAACGG	TGCTACCTTA	AATGTTCAT	ACTTCACGCA
	1551	AGATGAAAAG	TCCGTGTC	TCATGGATGC	AGGGACCACA	TTAGCAACTA
35	1601	CAAATGGAGC	TAATAATACT	GACGGTGCTA	TCACCTTAAA	CAAGCTTGTA
	1651	ATCAATCTGG	ATCTTTGGA	TGGCACTAAA	GCGGCTGTCG	TTAATGTCGA
	1701	GAGTACCAAT	GGAGCTCTA	CTATATCCGG	AACTTTAGGA	CTTGTGAAAAA
	1751	ACTCTCAAGA	TTGCTGTGAC	AAACACGGGA	TGTTTAATAA	AGATTTACAG
	1801	CAAGTTCCGA	TTTTAGAACT	CAAAGCGACT	TCAAATACTG	TAACCAACTAC
40	1851	GGACTTCAGT	CTCGGCACAA	ACGGCTATCA	GCAATCTCCC	TATGGGTATC
	1901	AAGGAACCTTG	GGAGTTTACC	ATAGACACGA	CAACCCATAC	GGTCACAGGA
	1951	AATTGGAAAA	AAACCGTTA	TCTTCCTCAT	CCGGAGCGTC	TTGCTCCCCCT
	2001	CATTCTTAAT	AGCCTATGGG	CAAACGTAT	AGATTTACGA	GCTGTAAGTC
	2051	AAGCGTICAGC	AGCTGATGGC	GAAGATGTCC	CTGGGAAGCA	ACTGAGCATC
45	2101	ACAGGAATT	CAAATTCTT	CCATGCGAAT	CATAACGGTG	ATGCACCGAG
	2151	CTACCGCCAT	ATGGGTGGAG	GCTACCTCAT	CAATACCTAC	ACACGCATCA
	2201	CTCCAGATGC	TGCGTTAAGT	CTAGGTTTTG	GACAGCTGTT	TACAAAATCT
	2251	AAGGATTAC	TCGTAGGTCA	CGGTCAATTCT	AAACGTTTATT	TCGCTACAGT
	2301	ATACTCTAAC	ATCACCAAGT	CTCTGTTGG	ATCATCGAGA	TTCTTCTCAG
50	2351	GAGGCACTTC	TCGAGTTACC	TATAGCCGTA	GCAATGAGAA	AGTAAAGACT
	2401	TCATATACAA	AATTGCTAA	AGGGCGCTGC	TCTTGGAGTA	ACAATTGCTG
	2451	GTTAGGAGAA	CTCGAAGGGG	ACCTTCCCAT	CACTCTCTCT	TCTCGCATCT
	2501	TAACACCTCAA	GCAGATCATT	CCCTTGTAA	AAGCTGAAGT	TGCTTACGCG
	2551	ACTCATGGGG	GCATCCAAGA	AAATACCCCC	GAGGGGAGGA	TTTTTGGACA
55	2601	CGGTICATCTA	CTCAACGTTG	CAGTTCCCGT	AGGGCTCCGC	TTTGGTAAAAA
	2651	ATTCTCTATA	TCGACCAAGAT	TTTACACTA	TAATCGTAGC	CTATGCTCCT
	2701	GATGTCTATC	GTCACAATCC	TGATTGCGAT	ACGACATTAC	CTATTAATGG
	2751	AGCTACGTGG	ACCTCTATAG	GGATAATCT	AACCGAAAGT	ACTTTGCTAG
	2801	TACAAGCATIC	CAGCCATACT	TCAGTAAATG	ATGTTCTAGA	GATCTTCGGG
60	2851	CACTGTGGAT	GTGATATTG	CAGAACCTCC	CGTCAATATA	CTCTAGATAT
	2901	AGGAAGCAAA	TTACGATTTT	AA		

The PSORT algorithm predicts an outer membrane location (0.917).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 2A, and also as a GST-fusion. Both proteins were used to immunise mice, whose sera were used in a Western blot (Figure 2B) and for FACS analysis (Figure 2C).

The cp6736 protein was also identified in the 2D-PAGE experiment (Cpn0453) and showed good

5 cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6736 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 3

The following *C.pneumoniae* protein (PID 4376751) was expressed <SEQ ID 5; cp6751>:

```

10      1 MRRFFCFGMLL PFTFVLANEG LQLPLETYIT LSPEYQAAPQ VGFTHNQNQD
      51 LAIVGNHNDF ILDYKYYRSN GGALTCKNLL ISENIGNVFF EKNVCPNSGG
      101 AIYAAQNCNTI SKNQNYAFTT NLVSDNPTAT AGSLLGGALF AINCSITNNL
      151 GQGTFVDNL A LNKGGAALYTE TNLSIKDNKG PIIIKQNRAL NSDSLGGGIY
      201 SGNSLNIEGN SGAIQITSNS SGSGGGIFST QTLTISSNKK LIEISENSAF
      251 ANNYGSNFNP GGGGLTTTFC TILNNREGVL FNNNQSOSNG GAIHAKSIII
      301 KENGPVYFLN NTATRGALL NLSAGSGNGS FILSADNGDI IFNNNNTASKH
      351 ALNPPYRNAI HSTPNMNLQI GARPGYRVLF YDPIEHELP SFPILFNPFET
      401 GHTGTWLFSC EHVVHQNFTDE MNFSYSLRNT SELRQGVLA V EDGAGLACYK
      451 FFQRGGTLLL GQGAVIITAG TIPTPSSTPT TVGSTITLH IAIDLPSILS
      501 FQAQAKPIWI YPTKTGSTYT EDSNPTTIS GTLTLRNSNN EDPYDSLSDL
      551 HSLEKVPLLY IVDVAQAKIN SSQQLDLSTLN SGEHYGYQGI WSTYWVETTT
      601 ITNPTSLLG A NTKHKLLYAN WSPLGYRPHP ERRGEFITNA LWQSAYTALA
      651 GLHSLSSWDE EKGHAASLQG IGLLVHQKDK NGFKGFRSHM TGYSATTEAT
      701 SSQSPNFSILG FAQFFSKAKE HESQNSTSSH HYFSGMCIEN TLFKEWIRLS
      751 VSLAYMFTSE HTHTMYQGLL EGNSQGSFHN HTLAGALSCV FLPQPHGESL
      801 QIYPFITALA IRGNLAAFQE SGDHADEFSL HRPLTDVSLP VGIRASWKNH
      851 HRVPLVWLTE ISYRSTLYRQ DPELHSKLLI SQGTWITQTAT PVTYNALGIK
      901 VKNTMQVFPK VTLSLDYSA ISSSTLSHYL NVASRMRF *
```

A predicted signal peptide is highlighted.

30 The cp6751 nucleotide sequence <SEQ ID 6> is:

```

1      1 ATGCCTTTT TTTGCTTCGG AATGTTGCTT CCTTTTACTT TTGTATTGGC
      51 TAATGAGGT CTCCAACCTTC CTTGGAGAC CTATATTACA TTAAGTCCTG
      101 AAATATCAAGC AGCCCCCTCAA GTAGGGTTTA CTCATAACCA AAATCAACAT
      151 CTCGAATTG TCGGGAAATCA CAATGATTTC ATCTTGACT ATAAGTACTA
      201 TCGGTCAAT GGAGGTGCTC TTACCTGTAA GAATCTTCTG ATCTCTGAAA
      251 ATATAGGGAA TGTCTCTTT GAGAAGAATG TCTGTCCCAA TTCTGGCGGG
      301 GCAATTATG CTGCTCAAAA TTGACAGATC TCCAAGAACAT AGAAACTATGC
      351 ATTTACTACA AACTGGTCT CTGACAATCC TACAGCCACT GCAGGATCAC
      401 TATTTGGTGG AGCTCTTTT GCCATAAATT GCTCTATTAC TAATAACCTA
      451 GGACAGGGAA CTTTCGTTGA CAATCTCGCT TAAATAAGG GGGGTGCCCT
      501 CTATACTGAG ACGAACTTAT CTATTAAGA CAATAAAAGGC CCGATCATAA
      551 TCAAGCAGAA TCGGGCACTA AATTGGACA GTTTAGGAGG AGGGATTAT
      601 AGTGGAAACT CTCTAAATAT AGAGGGAAAT TCTGGAGCTA TACAGATCAC
      651 AAGCAACTCT TCAGGATCTG GGGGAGGCAT ATTTCCTACC CAAACACTCA
      701 CGATCTCCTC GAATAAAAAAA CTCATAGAAA TCAGTGAAA TTCCCGGTT
      751 GCAAAATACT ATGGATCGAA CTTCAATCCA GGAGGAGGAG GTCTTACTAC
      801 CACCTTTGCG ACGATATTGA ACAACCGAGA AGGGGTACTC TTTAACAAATA
      851 ACCAAAGCCA GAGCAACGGT GGAGCCATTC ATGCGAAATC TATCATTATC
      901 AAAAGAAAATG GTCCCTGTATA CTTTTAAAT AACACTGCAA CTCGGGGAGG
      951 GGCTCTCCTC AACTTATCAG CAGGTTCTGG AAACCGGAAGC TTTCATCTTAT
      1001 CTGGAGATAA TGGAGATATT ATCTTTAAC AATAATACGGC CTCCAAGCAT
      1051 GCCCCTCAATC CTCCATACAG AAACGCCATT CACTCGACTC CTAATATGAA
      1101 TCTGCAAATA GGAGCCCGTC CCGGCTATCG AGTGCTGTTTC TATGATCCCA
      1151 TAGAACATGA GCTCCCTTCC TCCCTCCCCA TACTCTTTAA TTTCGAAACC
      1201 GGTCAATACAG GTACAGTTT ATTTCAGGG GAACATGTAC ACCAGAACTT
```

	1251	TACCGATGAA	ATGAATTCT	TTTCCTATTT	AAGGAACACT	TCGGAAC	TAC
	1301	GTCAAGGAGT	CCTTGCTGTT	GAAGATGGTG	CGGGGCTGGC	CTGCTATAAG	
5	1351	TTCTTCCAAC	GAGGAGGCAC	TCTACTTCTA	GGTCAAGGTG	CGGTGATCAC	
	1401	GACAGCAGGA	ACGATTCCA	CACCATCCTC	AACACCAACG	ACAGTAGGAA	
	1451	GTACTATAAC	TTTAAATCAC	ATTGCCATTG	ACCTTCCTTC	TATTCTTCT	
	1501	TTTCAAGCTC	AGGCTCCAAA	AATTGGATT	TACCCCACAA	AAACAGGATC	
	1551	TACCTATACT	GAAGATTCCA	ACCCGACAAT	CACAATCTCA	GGAAC	CTCA
	1601	CCCTACGCAA	CAGCAACAAAC	GAAGATCCCT	ACGATAGTCT	GGATCTCTCG	
10	1651	CACTCTCTTG	AGAAAGTCC	CCTCTTTAT	ATTGTCGATG	TCGCTGCACA	
	1701	AAAAATTAAAC	TCTTCGCAAC	TGGATCTATC	CACATTAAT	TCTGGCGAAC	
	1751	ACTATGGGT	TCAAGGCATC	TGGTCGACCT	ATTGGGTAGA	AACTACAA	ACA
	1801	ATCACGAAAC	CTACATCTCT	ACTAGGCGCG	AATACAAAAC	ACAAGCTGCT	
	1851	CTATGCAAC	TGGTCTCCCTC	TAGGCTACCG	TCCTCATCCC	GAACGTCGAG	
15	1901	GAGAAATTCA	TACGAATGCC	TTGTGGCAAT	CGGCATATAAC	GGCTCTTGCA	
	1951	GGACTCCACT	CCCTCTCCTC	CTGGGATGAA	GAGAAGGGTC	ATGCAGCTTC	
	2001	CCTACAAGGC	ATTGGTCTTC	TGGTCATCA	AAAAGACAAA	AACGGTTTTA	
	2051	AGGGATTTCG	TAGTCATATG	ACAGGTTATA	GTGCTACAC	CGAAGCAACC	
	2101	TCTTCTCAA	GTCCGAATT	CTCTTTAGGA	TTTGCTCAGT	TCTTCTCAA	
20	2151	AGCTAAAGAA	CATGAATCTC	AAAATAGCAC	GTCCTCTCAC	CACTATTCT	
	2201	CTGGAATGTG	CATAGAAAAT	ACTCTCTTC	AAGAGTGGAT	ACGTCTATCT	
	2251	GTGTCCTTGT	CTTATATGTT	TACCTCGGAA	CATACCCATA	CAATGTATCA	
	2301	GGGTCTCTG	GAAGGGAACT	CTCAGGGATC	TTTCCACAAAC	CATACCTTAG	
	2351	CAGGGGCTCT	CTCCTGTGTT	TTCTTACCTC	AACCTCACGG	CGAGTCCCTG	
25	2401	GACATCTATC	CCTTTATTAC	TGCTCTAGCC	ATCCGAGGAA	ATCTTGCTGC	
	2451	GTTTCAAGAA	TCTGGAGACC	ATGCTCGGGA	ATTTTCCCTA	CACCGCCCCC	
	2501	TAACGGACGT	CTCCCTCCCT	GTAGGAATCC	GCGCTTCTG	GAAGAACAC	
	2551	CACCGAGTT	CCCTAGCTG	GCTCACAGAA	ATTTCTATC	GCTCTACTCT	
	2601	CTATAGGCAA	GATCTGAAAC	TCCACTCGAA	ATTACTGATT	AGCCAAGGTA	
	2651	CGTGGACGAC	GCAGGCCACT	CCTGTGACCT	AAATGCTTT	AGGGATCAAA	
30	2701	GTGAAAATA	CCATGCAAGGT	GTTCCTAAA	GTCACTCTCT	CCTTAGATT	
	2751	CTCTGCGGAT	ATTTCTCTCT	CCACGCTGAG	TCACTACTTA	AACGTGGCGA	
	2801	GTAGAAATGAG	ATTTTAA				

The PSORT algorithm predicts an outer membrane location (0.923).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 3A, 35 and also in his-tagged form. The GST-fusion recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 3B) and for FACS analysis (Figure 3C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6751 is a surface-exposed and immunoaccessible protein, and that it 40 is a useful immunogen. These properties are not evident from the sequence alone.

Example 4

The following *C.pneumoniae* protein (PID 4376752) was expressed <SEQ ID 7; cp6752>:

45	1	MFGMTPAVYS	LQTDLSLEKFA	LERDEEFRTS	FPLLDLSLSTL	TGFSPITTFV	
	51	GNRHNSSQDI	VLSNYKSIDN	ILLLWTSAGG	AVSCNNFLLS	NVEDHAFFSK	
	101	NLAIGTGGAI	ACQGACTITK	NRGPLIFFSN	RGLNNASTGG	ETRGGAIACN	
	151	GDFTISQNQG	TFYFVNNSVN	NWGGALSTNG	HCRIQSNRAP	LLFFNNTAPS	
	201	GGGALRSENT	TISDNTRPIY	FKNNCGNNGG	AIQTSVTVAI	KNNSGSVIFN	
	251	NNTALSGSIN	SGNGSGGAIY	TTNLSIDDNP	GTILFNNNYC	IRDGGAICTQ	
	301	FLTIKNSGHV	YFTNNQGNWG	GALMLLQDST	CLLFQEQGNI	AFQNNEVFLT	
	351	TFGRYNAIHC	TPNSNLQLGA	NKGYTTAFFD	PIEHQHPTN	PLIFNPANAH	
	401	QGTILFSSAY	IPEASDYENN	FISSSKNTSE	LRNGVLSIED	RAGWQFYKFT	
	451	QKGGILKLGH	AAASIATTANS	ETPSTSVCVGQ	VIINNLAINL	PSILAKGKAP	
	501	TLWIRPLQSS	APFTEDNNPT	ITLSGPLTLL	NEENRDPYDS	IDLSEPLQNI	
	551	HLLSLSDVTA	RHINTDNPHP	ESLNATEHYG	YQGIWSPYWV	ETITTNNAS	
55	601	IETANTLYRA	LYANWTPLGY	KVNPEYQGDL	ATTPLWQSFH	TMFSLRLRSYN	
	651	RTGDSDIERP	FLEIQGIADG	LFVHQNSIPG	APGFRIQSTG	YSLQASSETS	

5 701 LHQKISLGFA QFFTRTKEIG SSNNVSAHNT VSSLYVELPW FQEAFATSTV
 751 LAYGYGDHHL HSLHPSHQEQQ AEGTCYSHTL AAAIGCSFPW QOKSYLHLSP
 801 FVQAIAIRSH QTAFEEIGDN PRKFVSQKPF YNLTLPLGIQ GKWLQSKFHVP
 851 TEWTLELSYQ PVLYQQNPQI GVTLLASGGS WDILGHNYVR NALGYKVHNQ
 901 TALFRSLDLF LDYQGSVSSS TSTHHLQAGS TLKF*

The cp6752 nucleotide sequence <SEQ ID 8> is:

	1	ATGTTCCGGGA	TGACTCCTGC	AGTGTATAAGT	TTACAAACGG	ACTCCCTTGA
	51	AAAGTTTGCT	TTAGAGAGGG	ATGAAGAGTT	TCGTACGAGC	TTTCCTCTCT
10	101	TAGACTCTCT	CTCCACTCTT	ACAGGATTTC	CTCCAATAAC	TACGTTGTT
	151	GGAAATAGAC	ATAATTCCCTC	TCAAGACATT	GTACTTTCTA	ACTACAAGTC
	201	TATTGATAAC	ATCCTCTTC	TTGGGACATC	GGCTGGGGGA	GCTGTGTCCT
	251	GTAATAATTTC	CTTATTATCA	AATGTTGAAG	ACCATGCCTT	CTTCAGTAAA
	301	ATATCGCGA	TTGGGACTGG	AGGCCGCGATT	GCTTGCCAGG	GAGCCTGCAC
15	351	AATCACGAAG	AATAGAGGGAC	CCCTTATTTC	TTTCAGCAAT	CGAGGTCTTA
	401	ACAATGCGAG	TACAGGAGGA	GAACACTCGTG	GGGGTGCAT	TGCCTGTAAT
	451	GGAGACTTCA	CGATTCTCA	AAATCAAGGG	ACTTTCTACT	TTGTCAACAA
	501	TTCCGTCAC	AACTGGGGAG	GAGCCCTCTC	CACCAATGGA	CACTGCCGCA
	551	TCCAAAGCAA	CAGGGCACCT	CTACTCTTTT	TTAACAAATAC	AGCCCCTAGT
20	601	GGAGGGGGTG	CGCTTCGTAG	TGAAAATACA	ACGATCTCTG	ATAACACGCG
	651	TCCTATTAT	TTAAAGAACAA	ACTGTGGGA	CAATGCGGG	GCCATTCAA
	701	CAAGCGTTAC	TGTTGCGATA	AAAAATAACT	CCGGGTCGGT	GATTTCAAT
	751	AACAACACAG	CGTTATCTGG	TTCGATAAAAT	TCAGGAAATG	GTTCAGGAGG
	801	GGCGATTAT	ACAACAAACC	TATCCATAGA	CGATAACCCCT	GGAACATTTC
25	851	TTTTCAATAA	TAACTACTGC	ATTGCGATG	CGGGAGCTAT	CTGTACACAA
	901	TTTTTGACAA	TCAAAATAG	TGGCCACGTA	TATTTTACCA	ACAATCAAGG
	951	AAACTGGGGA	GGTGCTCTTA	TGCTCCTACA	GGACAGCACC	TGCCTACTCT
	1001	TCGCGGAACA	AGGAATATTC	GCATTTCAAA	ATAATGAGGT	TTTCCTCACC
	1051	ACATTGGTA	GATACAACGC	CATACATTGT	ACACCAAATA	GCAACTTACA
30	1101	ACTTGGAGCT	AATAAGGGT	ATACGACTGC	TTTTTTGAT	CCTATAGAAC
	1151	ACCAACATCC	AACTACAAAT	CCTCTAATCT	TTAACTCCAA	TGCGAACCAT
	1201	CAGGGAACGA	TCTTATTTTC	TTCAAGCTTAT	ATCCCAGAAAG	CTTCTGACTA
	1251	CGAAAATAAT	TTCATCGCA	GCTCGAAAAA	TACCTCTGAA	CTTCGCAATG
	1301	GTGTCTCTC	TATCGAGGAT	CGTGCAGGAT	GGCAATTCTA	TAAGTTCACT
35	1351	CAAAAAGGAG	GTATCCTAA	ATTAGGGCAT	GGGGCAGTA	TTGCAACAAAC
	1401	TGCCAACTCT	GAGACTCCAT	CAACTAGTGT	AGGCTCCAG	GTCATCATT
	1451	ATAACCTTG	GATTAACCTC	CCCTCGATCT	TAGCAAAAGG	AAAAGCTCCT
	1501	ACCTTGTGGA	TCCGCTCTC	AAATCTAGT	GCTCTTTCA	CAGAGGACAA
	1551	TAACCCCTACA	ATTACTTTAT	CAGGTCCTCT	GACACTCTTA	AATGAGGAAA
40	1601	ACCGCGATCC	CTACGACAGT	ATAGATCTCT	CTGAGCTTT	ACAAAACATT
	1651	CATCTTCTT	CTTATCGGA	TGTAACAGCA	CGTCATATCA	ATACCGATAA
	1701	CTTCATCCT	GAAAGCTTAA	ATGCGACTGA	GCATTACGGT	TATCAAGGCA
	1751	TCTGGTCTCC	TTATTGGGT	GAGACGATAA	CAAACACAAA	TAACGCTTCT
	1801	ATAGAGACGG	CAAACACCC	CTACAGAGCT	CTGTATGCCA	ATTGGACTCC
45	1851	CTTGGAGATAT	AAGGTCAATC	CTGAATACCA	AGGAGATCTT	GCTACGACTC
	1901	CCCTATGGCA	ATCCCTTCAT	ACTATGTTCT	CTCTATTAAAG	AAGTTATAAT
	1951	CGAACTGGTG	ATTCTGATAT	CGAGAGGCCT	TTCTTCTGAA	TTCAAGGGAT
	2001	TGCCGACGGC	CTCTTGTTC	ATCAAAATAG	CATCCCCGGG	GCTCCAGGAT
	2051	TCCGTATCCA	ATCTACAGGG	TATCCCTTAC	AAGCATCCTC	CGAAACCTCT
50	2101	TTACATCGA	AAATCTCTT	AGGTTTTGCA	CACTCTTCA	CCCGCACTAA
	2151	AGAAAATCGGA	TCAAGCAACA	ACGTCTCGGC	TCACAATACA	GTCTCTTCAC
	2201	TTTATGTTGA	GCTTCCGGG	TTCCAAGAGG	CCTTTGCAAC	ATCCACAGTG
	2251	TTAGCGTATG	GCTATGGGG	CCATCACCTC	CACAGCCTAC	ATCCCTCACA
	2301	TCAAGAACAG	GCAGAAGGGG	CGTGTATAG	CCATACATTA	GCAGCAGCTA
55	2351	TCGGCTGTT	TTTCCCTTGG	CAACAGAAAT	CCTATCTTC	CCTCAGCCG
	2401	TTCGTTCAAG	CAATTGCAAT	ACGTTCTC	CAAACAGCGT	TCGAAGAGAT
	2451	TGGTGACAAT	CCCCGAAAGT	TTGTCCTCTA	AAACCCCTTC	TATAATCTGA
	2501	CCTTACCTCT	AGGAATCCAA	GGAAAATGGC	AGTCAAAATT	CCACGTACCT
	2551	ACAGAATGGA	CTCTAGAACT	TTCTTACCA	CCGGTACTCT	ATCAACAAAA
60	2601	TCCCCAAATC	GGTGTCAACG	TACTTGCAG	CGGAGGTTCC	TGGGATATCC
	2651	TAGGCCATAA	CTATGTTCGC	AATGCTTTAG	GGTACAAAGT	CCACAATCAA
	2701	ACTGCGCTCT	TCCGTTCTCT	CGATCTATT	TTGGATTACC	AAGGATCGGT
	2751	CTCCCTCCTCG	ACATCTACGC	ACCATCTCCA	AGCAGGAAGT	ACCTTAAAT
	2801	TCTAA				

The PSORT algorithm predicts a cytoplasmic location (0.138).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 4A, and also as a GST-fusion. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (4B) and the his-tagged protein was used for FACS analysis (4C).

The cp6752 protein was also identified in the 2D-PAGE experiment (Cpn0467).

- 5 These experiments show that cp6752 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 5

The following *C.pneumoniae* protein (PID 4376850) was expressed <SEQ ID 9; cp6850>:

```
1  MKKAVLIAAM FCGVVSLSSC CRIVDCCFED PCAPSSCNPC EVIRKKERSC
10 51  GGNACGSYVP SCSNPCGSTE CNSQSPQVKG CTSPDGRCKQ *
```

A predicted signal peptide is highlighted.

The cp6850 nucleotide sequence <SEQ ID 10> is:

```
1  ATGAAGAAAG CTGTTTTAAT TGCTGCAATG TTTTGTGGAG TAGTTAGCTT
15 51  AACTAGCTGC TGCCGCAATTG TAGATTGTTG TTTCAGGAT CCTTGCGCAC
101 101 CCTCTTCTTG CAATCCTTGT GAAGTAATAA GAAAAAAAAGA AAGATCTTGC
151 151 GCGGTTAATG CTTGTTGGTC CTACGTTCCCT TCTTGTCTA ATCCATGTGG
201 201 TTCAACAGAG TGTAACCTCTC AAAGCCCACA AGTTAAAGGT TGTACATCAC
251 251 CTGATGGCAG ATGCAAACAG TAA
```

The PSORT algorithm predicts an inner membrane location (0.329).

- 20 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 5A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 5B) and for FACS analysis (Figure 5B). A his-tagged protein was also expressed.

These experiments show that cp6850 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 6

The following *C.pneumoniae* protein (PID 4376900) was expressed <SEQ ID 11; cp6900>:

```
1  MKIKFSWKVN FLICLLAVGL IFFGCSRVRKR EVLVGRDATW FPKQFGIYTS
5 51  DTNAFLNDLV SEINYKENLN INIVNQDWVH LFENLDDKKT QGAFTSVLPT
30 101 LEMLEHYQFS DPILLTGPVL VVAQDSPYQS IEDLKGRLLIG VYKFDSSVLV
151 151 AQNIPDAVIS LYQHVPIALE ALTSNCYDAL LAPVIEVTAL IETAYKRLK
201 201 IIISKPLNADG LRLAILKGTN GDLEGFNAG LVKTRRSGKY DAIKQRYRLP
```

The cp6900 nucleotide sequence <SEQ ID 12> is:

```
1  GTGAAGATAAA AATTTTCTTG GAAGGTAAAT TTTTTAATAT GTTTACTGGC
5 51  TGTGGGACTG ATCTTTTCG GGTGCTCTCG AGTAAAAAGA GAAGTTCTCG
35 101 TAGTCGTGA TGCCACCTGG TTTCCAAAAC AATTCCGGCAT TTATACATCC
151 151 GATACCAACG CATTTTAAA CGATCTTGTG TCTGAGATTA ACTATAAAGA
201 201 GAATCTAAAT ATTAATATTG TAAATCAAGA TTGGGTGCAT CTCTTTGAGA
251 251 ATTTAGATGA TAAAAGACC CAAGGAGCAT TTACATCTGT ATTGCCTACT
301 301 CTTGAGATGC TCGAACACTA TCAATTTCCT GATCCCAATT TACTCACAGG
40 351 TCCCTGTCCCT GTCGTCGCTC AAGACTCTCC TTACCAATCT ATAGAGGATC
401 401 TTAAAGGTTCG TCTTATTGGA GTGTATAAGT TTGACTCTTC AGTTCTTGTA
451 451 GCTCAAATAA TCCCTGACGC TGTGATTAGC CTCTACCAAC ATGTTCCAAT
501 501 ACCATTGGAA GCCCTAACAT CGAATTGTTA CGACGCTCTT CTAGCTCCTG
551 551 TAATTGAAGT GACCGCGCTA ATAGAAACAG CATATAAAGG AAGACTGAAA
45 601 601 ATTATTTCAA AACCTTAAAC CGCAGATGGT TTGCGGCTTG CAATACTGAA
```

-47-

```

651 AGGGACAAAC GGAGATTC TTGAAGGGTT TAACGCAGGA CTTGTGAAAA
701 CACGACGCTC AGGAAAATAC GATGCTATAA AACAGCGGTA TCGTCTTCCC
751 TAA

```

The PSORT algorithm predicts an inner membrane location (0.452).

- 5 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 6A. The recombinant protein was used to immunise mice, whose sera were used for FACS analysis (Figure 6B). A his-tagged protein was also expressed.

The cp6900 protein was also identified in the 2D-PAGE experiment (Cpn0604).

- 10 These experiments show that cp6900 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 7

The following *C.pneumoniae* protein (PID 4377033) was expressed <SEQ ID 13; cp7033>:

```

1 MVNPIGPGBI DETERTPPAD LSAQGLEASA ANKSAEAQR1 AGAEAKPKES
51 KTDSSVERWSI LRSAVNALMS LADKLGIASS NSSSSTSRSR1 DWDSTTATAP
101 TPPPPPTFDDY KTQAQTAYDT IFTSTSLADI QAAJVLSQLDA VTNIKDTAAT
151 DEETAIAAEW ETKKNADAVKV GAQITELAKY ASDNQAILDS LGKLTSFDLL
201 QAALLQSVAN NNKAELLKE MQDNPVVPKG TPAIAQSLVD QTDATATQIE
251 KDGNNAIRDAY FAGQNASGAV ENAKSNNSIS NIDSAAKAAIA TAKTQIAEAQ
301 KKFPDPSIILQ EAEQMVIIQAE KDLKNIKPAD GSDVNPNGTT VGGSKQQGSS
351 ICGSTRVSMIL DDAENETASI LMSGFRQMIH MFNTENPDSQ AAQOEELAAQ
401 RAAKAAGDDS AAAALADAQK ALEAALGKAG QQQGILNALG QIASAAVVSA
451 GVPPAAASSI GSSVKQLYKT SKSTGSDYKT QISAGYDAYK SINDAYGRAR
501 NDATRDVINN VSTPALTRSV PRARTEARGP EKTDQALARV ISGNSRTLGD
551 VYSQVSALQ5 VMQIIIQSNPQ ANNEEIRQKL TSAVTKPPQF GYPYVQLSND
601 STQKFIAKLE SLFAEGSRTA AEIKALSFET NSLFIQQQQLV NIGSLYSGYL
651 Q*

```

The cp7033 nucleotide sequence <SEQ ID 14> is:

```

1 ATGGTTAACCT CTATTGGTCC AGGTCCCTATA GACGAAACAG AACGCCACACC
51 TCCCGCAGAT CTTTCTGCTC AAGGATTGGA GGCAGTGCGCA GCAAATAAGA
101 GTGCCGAAGC TCAAAAGATA GCAGGTGCGG AAGCTAAGCC TAAAGAATCT
151 AAGACCGATT CTGTAGAGCG ATGGAGCATC TTGCGTTCTG CAGTGAATGC
201 TCTCATGAGT CTGGCAGATA AGCTGGGTAT TGCTTCTAGT AACAGCTCGT
251 CTTCTACTAG CAGATCTGCA GACGTGGACT CAACGACAGC GACCGCACCT
301 ACCGCTCCCTC CACCCACGTT TGATGATTAT AAGACTCAAG CGCAAACAGC
351 TTACGATACAT ATCTTTACCT CAACATCACT AGCTGACATA CAGGCTGCTT
401 TGGTGAGCCT CCAGGATGCT GTCACTAATA TAAAGGATAC AGCGGCTACT
451 GATGAGGAAA CCGCAATCGC TGCGGAGTGG GAAACTAAAGA ATGCCGATGC
501 AGTTAAAGTT GGCGCGAAA TTACAGAATT AGCGAAATAT GCTTCGGATA
551 ACCAAGCGAT TCTTGACTCT TTAGGTAAAC TGACTTCCTT CGACCTCTTA
601 CAGGCTGCTC TTCTCCAATC TGAGCAAAC AATAACAAAG CAGCTGAGCT
651 TCTTAAAGAG ATGCAAGATA ACCCAGTAGT CCCAGGGAAA ACGCCTGCAA
701 TTGCTCAATC TTAGTGTGAT CAGACAGATG CTACAGCGAC ACAGATAGAG
751 AAAGATGGAA ATGCGATTAG GGATGCAATAT TTTGCGAGGAC AGAACGCTAG
801 TGGAGCTGTA GAAAATGCTA AATCTAATAA CAGTATAACC AACATAGATT
851 CAGCTAAAGC AGCAATCGCT ACTGCTAAGA CACAAATAGC TGAAGCTCAG
901 AAAAAGTTCC CCGACTCTCC AATTCTTCAA GAAGCGGAAC AAATGGTAAT
951 ACAGGCTGAG AAAGATCTTA AAAATATCAA ACCTGCGAGAT GGTTCTGATG
1001 TTCCAAATCC AGGAACATACA GTTGGAGGCT CCAAGCAACA AGGAAGTAGT
1051 ATTGGTAGTA TTCGTGTTTC CATGCTGTTA GATGATGCTG AAAATGAGAC
50 1101 CGCTTCCCAT TTGATGTCTG GGTTTCGTC GATGATTCAATGTTCAATA
1151 CGGAAAATCC TGATTCTCAA GCTGCCAAC AGGAGCTCCG AGCACAAGCT
1201 AGAGCAGCGA AAGCCGCTGG AGATGACAGT GCTGCTGCAG CGCTGGCAGA
1251 TGCTCAGAAA GCTTTAGAAG CGGCTCTAGG TAAAGCTGGG CAACAAACAGG
1301 GCATACTCAA TGCTTCTAGGA CAGATCGCTT CTGCTGCTGT TGTGAGCCGA
1351 GGAGTTCCCTC CCGCTGCAGC AAGTTCTATA GGGTCATCTG TAAAACAGCT
1401 TTACAAGACC TCAAAATCTA CAGGTTCTGA TTATAAAACCA CAGATATCAG

```

1451 CAGGTTATGA TGCTTACAAA TCCATCAATG ATGCCTATGG TAGGGCACGA
 1501 AATGATCGCA CTCGTATGT GATAAACAT GTAAGTACCC CCGCTCTCAC
 1551 ACGATCCGT CCTAGACAC GAACAGAAGC TCGAGGACCA GAAAAAACAG
 1601 ATCAAGCCCT CGCTAGGGTG ATTCTCTGGCA ATAGCAGAAC TCTTGAGAT
 1651 GTCTATAGTC AAGTTCTGGC ACTACAATCT GTAATGCAGA TCATCCAGTC
 1701 GAATCCTCAA GCGAAATATG AGGAGATCG ACAAAAGCTT ACATCGGCAG
 1751 TGACAAAGCC TCCACAGTT GGCTATCCTT ATGTGCAACT TTCTAATGAC
 1801 TCTACACAGA AGTCATAGC TAAATTAGAA AGTTGTTTG CTGAAGGATC
 1851 TAGGACAGCA GCTGAAATAA AACCACTTTC CTTTGAAACG AACTCCTTGT
 1901 TTATTCAAGCA GGTGCTGGTC AATATCGGCT CTCTATATTC TGGTTATCTC
 1951 CAATAA

The PSORT algorithm predicts a cytoplasmic location (0.272).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 7A. A his-tagged protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used for FACS (Figure 7B) and Western blot (7C) analyses.

The cp7033 protein was also identified in the 2D-PAGE experiment (Cpn0728) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7033 a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

20 Example 8

The following *C.pneumoniae* protein (PID 6172321) was expressed <SEQ ID 15; cp0017>:

1 MGIKGTIIIV WVDDATAKTK NATLTWTKTG YKPNPERQGP LPVNSLWGSF
 5 VDVRSIQLM DRSTSSLSS TNLWVSGIAD FLHEDQKGNQ RSYRHSSAGY
 25 101 ALGGGFTAS ENFFNFAPFCQ LFGYDKDHV AKNHHTHVYAG AMSYRHLGES
 151 KTLAKILSGN SDSLPVFVN RFAYGHTDNN MTTKYTGSP VKGSGWNDAF
 201 GIECGGAIPV VASGRSWNA THPPFLNLEM IYAHQNDFKE NGTEGRSFQS
 251 EDLFNLAVPV GIKFEKFSK STYDLSIAYV PDVIRNDPGC TTLMVSGDS
 301 WSTCGTSLSR QALLVRAGNH HAFASNFEVF SQFEVELRGS SRSYAIIDLGG
 351 RFGF*

30 The cp0017 nucleotide sequence <SEQ ID 16> is:

1 ATGGGTATCA AGGGAACCTGG AATAATTGTT TGGGTCGACG ATGCAACTGC
 51 AAAAACAAA AATGCTACCT TAACCTGGAC TAAAACAGGA TACAAGCCGA
 101 ATCCAGAACG TCAGGGACCT TTGGTTCCCTA ATAGCCTGTG GGGTTCTTTT
 151 GTCGATGTCC GCTCCATTCA GAGCCTCATG GACCGGAGCA CAAGTTCGTT
 201 ATCTTCGTCA ACAAAATTGTG GGGTATCAGG AATCGCGGAC TTTTTCCATG
 251 AAGATCAGAA AGGAAACCAA CGTAGTTATC GTCATTCTAG CGCGGGTTAT
 301 GCATTAGGAG GAGGATTCTT CACGGCTTCT GAAAATTCT TTAATTTCGC
 351 TTTTTGTCA CGTTTTGGTAC AGCACAAGGA CCATCITGTG GCTAAAGAACCC
 401 ATACCCATGT ATATGCAGGG GCAATGAGTT ACCGACACCT CGGAGAGTCT
 451 AAGACCCCTCG CTAAGATTT GTCAGGAAT TCTGACTCCC TACCTTTGT
 501 CTTCAATGCC CGGTTTGCCTT ATGCCATAC CGACAATAAC ATGACCACAA
 551 AGTACACTGG CTATTCTCCT GTTAAGGGAA GCTGGGGAAA TGATGCCCTC
 601 GGTATAGAAT GTGGAGGAGC TATCCCCGTA GTTGCTTCAG GACGTCGGTC
 651 TTGGGTGGAT ACCCACACGC CATTCTAAA CCTAGAGATG ATCTATGCAC
 701 ATCAGAAATCA CTTTAAGGAA AACGGCACAG AAGGCCGTC TTTCCAAGT
 751 GAAAGACCTCT TCAATCTAGC GGTCCCTGTA GGGATAAAAT TTGAGAAATT
 801 CTCGGATAAG TCTACGTATG ATCTCTCCAT AGCTTACGTT CCCGATGTGA
 851 TTCTGTAATGCA TCCAGGCTGC ACGACAACTC TTATGGTTTC TGGGGATTCT
 901 TGGTCGACAT GTGGTACAAG CTTGTCTAGA CAAGCTCTTC TTGTACGTGC
 951 TGGAAATCAT CATGCCCTTG CTTCAAACCTT TGAAGTTTC AGTCAGTTG
 1001 AAGTCGAGTT GCGAGGTTCT TCTCGTAGCT ATGCTATCGA TCTTGGAGGA
 1051 AGATTCGGAT TTTAA

This sequence is frame-shifted with respect to cp0016.

The PSORT algorithm predicts a cytoplasmic location (0.075).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 8A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 8B) and for FACS analysis (Figure 8C). A his-tagged protein was also expressed.

- 5 This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp0017 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 9

- 10 The following *C.pneumoniae* protein (PID 6172315) was expressed <SEQ ID 17; cp0014>:

```

1  MKSSFPKFVF STFAIFPLSM IATETVLDS S ASFDGNKNGN FSVRESQEDA
51  GTTYLFKGTV TLENIPGTGT AITKSCFNNT KGDLTFTGNG NSLLFQTVDA
101 GTVAGAAVNS SVVDKSTTFI GFSSLFSIAS PGSSITTGKG AVSCSTGSLS
151 LTKMSVCSSA KTFQRIMAVL SPQKLFH*

```

- 15 The cp0014 nucleotide sequence <SEQ ID 18> is:

```

1  ATGAAGTCCTT CTTTCCCCAA GTTTGTATTT TCTACATTG CTATTTCCC
51  TTTGTCATAATG ATTGCTACCG AGACAGTTTT GGATTCAAGT GCGAGTTTCG
101 ATGGAAATAA AAATGGTAAT TTTTCAGTTTC GTGAGAGTC GGAAGATGCT
151 GGAACCTACCT ACCTATTTAA GGGAAATGTC ACTCTAGAAA ATATTCCTGG
201 AACAGGCACA GCAATCACAA AAAGCTGTTT TAACAACACT AAGGGCGATT
251 TGACTTTCAC AGGTAACCGGG AACTCTCTAT TGTTCCAAAC GGTGGATGCA
301 GGGACTGTAG CAGGGGCTGC TGTAAACAGC AGCGTGTTAG ATAAATCTAC
351 CACGTTTATA GGGTTTCTT CGCTATCTTT TATTGCGTCT CCTGGAAGTT
401 CGATAACTAC CGGCAAAGGA GCCGTTAGCT GCTCTACGGG TAGCTTGACT
451 TTGACAAAAA TGTCAGTTG CTCTTCAGCA AAAACTTTTC AACGGATAAT
501 GGCGGTGCTA TCACCGCAAA AACTTTCA TTAA

```

This protein is frame-shifted with respect to cp0015.

The PSORT algorithm predicts an inner membrane location (0.047).

- 20 The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 9A. A GST-fusion was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in an immunoassay (Figure 9B) and for FACS analysis (Figure 9C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

- 35 These experiments suggest that cp0014 is a useful immunogen. These properties are not evident from the sequence alone.

Example 10

- The following *C.pneumoniae* protein (PID 6172317) was expressed <SEQ ID 19; cp0015>:

```

1  MSALFSENTS SKKGGAIQTS DALTITGNQG EVSFSNDNTSS DSGAAIFTEA
51  SVTISNNNAKV SFIDNKVTGA SSSTTGDMMSG GAICAYKTST DTKVTLTGNQ
101 MLLFSMNNTST TAGGAIYVKK LELASGGLTL FSRNSVNNGT APKGGAAIAIE
151 DSGELSLSAD SGDIVFLGNT VTSTTPGTNR SSIDLGTSAK MTALRSAAGR

```

5 201 AIYFYDPITT GSSTTVTDVL KVNETPADSA LQYTGNIIIFT GEKLSETEAA
 251 DSKNLTSKLL QPVTLGGT SLKHGVTLQT QAFTQQADSR LEMDVGTTL
 301 PADTSTINNL VINISSIDGA KAKIETKAT SKNLTLSGTT TLLDPTGTFY
 351 ENHSLRNPQS YDILELKASG TVTSTAATPD PIMCEKFHYG YQGTWGPIVW
 401 GTGASTTATF NWTKTGYIPN PERIGSLVPN SLWNNAFIDIS SLHYLMETAN
 451 EGLQGDRAFW CAGLSNFFHK DSTKTRRGFR HLSGGYVIGG NLHTCSDKIL
 501 SAAFCQLFGR DRDYFVAKNO GTVYGGTLVV QHNETYISILP CKLRPCSLSY
 551 VPTEIPVLFN GNLSYTHTDN DLKTKYTTYP TVKGSGWGNDS FALEFGGRAP
 601 ICLDESALFE QYMPFMKLQF VYAHQEGFKE QGTEAREFGS SRLVNIALPI
 651 GIRFDKESDC QDATYNLTLG YTVDLVRSPN DCTTTLRISG DSWKTFGTNL
 701 ARQALVLRAG NHFCFNSNFE AFSQFSFELR GSSRNLYNVLD GAKYQF*

This sequence is frame-shifted with respect to cp0014.

The cp0015 nucleotide sequence <SEQ ID 20> is:

15 1 ATGTCAGCTC TGTTTCTGA AAATACCTCC TCAAAGAAG GCGGAGGCCAT
 51 TCAGACTTCC GATGCCCTTA CCATTACTGG AAACCAAGGG GAAGTCTCTT
 101 TTTCTGACAA TACTTCTTCG GATTCTGGAG CTGCAATTTC TACAGAACCC
 151 TCGGTGACTA TTTCTAATAA TGCTAAAGTT TCCTTTATTG ACAATAAGGT
 201 CACAGGAGCG AGCTCCTCAA CAACGGGGGA TATGTCAGGA GGTGCTATCT
 251 GTGCTTATAA AACTAGTACA GATACTAAGG TCACCCCTCAC TGGAAATCAG
 301 ATGTTACTCT TCAGCAACAA TACATCGACA ACAGCGGGAG GAGCTATCTA
 351 TGTGAAAAAG CTCGAACAACTG CTTCCGGAGG ACTTACCCCTA TTCACTAGAA
 401 ATAGTGTCAA TGGAGGTACA GCTCCTAAAG GTGGAGCCAT AGCTATCGAA
 451 GATAGTGGGG AATTGAGTTT ATCCGCCAT AGTGGTGACA TTGTCTTTT
 501 AGGGAATACA GTCACCTCTA CTACTCCTGG GACGAATAGA AGTAGTATCG
 551 ACTTAGGAAC GAGTGCAAAG ATGACAGCTT TGCGTTCTGC TGCTGGTAGA
 601 CCCATCTACT TCTATGATCC CATAACTACA GGATCATCCA CAACAGTTAC
 651 AGATGTCTTA AAAGTTAATG AGACTCCGGC AGATTCTGCA CTACAATATA
 701 CAGGGAAACAT CATCTTCACA GGAGAAAAGT TATCAGAGAC AGAGGCCCA
 751 GATTCTAAAA ATCTTACTTC GAAGCTACTA CAGCTGTAA CTCTTTCTCAGG
 801 AGGTACTCTA TCTTTAAAAC ATGGAGTGAC TCTGCAGACT CAGGCATTCA
 851 CTCAACAGGC AGATTCTCGT CTCGAAATGG ACGTAGGAAC TACTCTAGAA
 901 CCTGCTGATA CTAGCACCCT AAACAATTGG GTCTTAAACA TCAGTTCTAT
 951 AGACGGTGCA AAGAAGGCAA AAATAGAAAAC CAAAGCTACG TCAAAAATC
 1001 TGACTTTATC TGGAACCATC ACTTTATTGG ACCCGACGGG CACGTTTTAT
 1051 GAAAATCATC GTTAAAGAAA TCCCTCAGTCC TAGCACATCT TAGAGCTCAA
 1101 AGCTTCTGGA ACTGTAACAA GCACCGCAGT GACTCCAGAT CCTATAATGG
 1151 GTGAGAAATT CCATTACGGC TATCAGGGAA CTTGGGGCCC AATTGTTTGG
 1201 GGGACAGGGG CTTCTACGAC TGCAACCTTC AACTGGACTA AACTGGCTA
 1251 TATTCTTAAT CCCGAGCGTA TCGGCTCTTT AGTCCCTAAT AGCTTATGG
 1301 ATGCATTATAG AGATTTAGC TCTCTCCATT ATCTTATGGA GACTGCAAAC
 1351 GAAGGGTTGC AGGGAGACCG TGCTTTTTGG TGTGCTGGAT TATCTAACTT
 1401 CTTCCATAAG GATAGTACAA AACACGACG CGGGTTTCGC CATTGACTG
 1451 GCGGTTATGT CATAGGAGGA AACCTACATA CTTGTTCAGA TAAGATTCTT
 1501 AGTGTGCAAT TTTGTCAGCT CTTTGGAAAGA GATAGAGACT ACTTTGTAGC
 1551 TAAGAATCAA GGTACAGTC ACGGAGGAAC TCTCTATTAC CAGCACAAACG
 1601 AACACTTATAT CTCTCTCCCT TGCAAACACTAC GGCCCTGTTTC GTTGTCTTAT
 1651 GTTCTTACAG AGATTCTCGT TCTCTTTTCA GGAAACCTTA GCTACACCCA
 1701 TACCGATAAAC GATCTGAAAA CCAAGTATAC AACATATCCT ACTGTTAAAG
 1751 GAAGCTGGGG GAATGATAGT TTCGCTTTAG AATTCCGGTGG AAGAGCTCCG
 1801 ATTTGCTTAG ATGAAAGTGC TCTATTGAG CAGTACATGC CCTTCATGAA
 1851 ATTCGAGTT GTCTATGCAC ATCAGGAAGG TTTTAAAGAA CAGGGAACAG
 1901 AAGCTGTGA ATTGGAAGT AGCCGTCITG TGAATCTTGC CTTACCTATC
 1951 GGGATCCGAT TTGATAAGGA ATCAGACTGC CAAGATGCAA CGTACAATCT
 2001 AACTCTGGT TATACTGTTG ATCTTGTTCG TAGTAACCCC GACTGTACGA
 2051 CAACACTGCC AATTAGCGGT GATCTTGGA AAACCTTCGG TACGAATTG
 2101 GCAAGACAAAG CTTTAGTCCT TCGTGCAGGG AACCATTTT GCTTTAACTC
 2151 AAATTTGAA GCCTTAGCC AATTTCCTT TGAATTGCGT GGGTCATCTC
 2201 GCAATTACAA TGTAGACTTA GGAGCAAAAT ACCAATTCTA A

The PSORT algorithm predicts a cytoplasmic location (0.274).

- 60 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 10A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 10B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp0015 is a useful immunogen. These properties are not evident from the sequence alone.

Example 11

The following *C.pneumoniae* protein (PID 6172325) was expressed <SEQ ID 21; cp0019>:

```

5      1 LQDSQDYSFV KLSPGAGGTI ITQDASQKPL EVAPSRPHYG YQGHWNVQVI
      51 PGTGTQPSQA NLEWVRTGYL PNPERQGSLV PNSLWGSFVD QRAIQEIMVN
10     101 SSQILCQERG VWGAGIANFL HRDKINEHGY RHSGVGVLVG VGTHAFSDAT
      151 INAAFCQLFS RDKDYVVSKN HGTSYSGVVF LEDTLEFRSP QGFYTDSSSE
      201 ACCNQVVTID MQLSYSHRNN DMKTKYTTYP EAQGSWANDV FGLEFGATTY
      251 YYPNSTFLFD YYSPFLRLQC TYAHQEDFKE TGGEVRHFTS GDLFNLAVPI
      301 GVVKFERFSDC KRGSYELTLA YVPDVIRKDP KSTATLASGA TWSTHGNNLS
      351 RQGLQLRLGN HCLINPGIEV FSHGAIELRG SSRNYNINLG GKYRF*

```

This sequence is frame-shifted with respect to cp0018.

The cp0019 nucleotide sequence <SEQ ID 22> is:

```

15     1 TTGCAAGACT CTCAGACTA TAGCTTGTA AAGTTATCTC CAGGAGCGGG
      51 AGGGACTATA ATTACTCAAG ATGCTTCTCA GAAGCCTCTT GAAGTAGCTC
      101 CTTCTAGACC ACATTATGGC TATCAAGGAC ATTGGATGT GCAAGTCATC
      151 CCAGGAACGG GAACCTAACCC GAGCCAGGC AATTTAGAAT GGTTGCGGAC
      201 AGGATACCTT CGGAATCCCG AACGGCAAGG ATCTTTAGTT CCCAATAGCC
      251 TGTGGGGTTC TTTTGTGAT CAGCGTGCTA TCCAAGAAAT CATGCTAAAT
      301 AGTAGCCAAA TCTTATGTCA GGAACGGGGA GTCTGGGAG CTGGAATTGC
      351 TAATTTCTTA CATAGAGATA AAATTAATGA GCACGGCTAT CGCCATAGCG
      401 GTGTCGGTTA TCTTGTGGGA GTTGGCACTC ATGCTTTTTC TGATGCTACG
      451 ATAATGCCG CTTTTTGCCA GCTCTTCAGT AGAGATAAAAG ACTACGTTAGT
      501 ATCCAAATAAT CATGGAACCA GCTACTCAGG GGTCGTATTT CTTGAGGATA
      551 CCCTAGAGTT TAGAAGTCCA CAGGGATTCT ATACTGATAG CTCCTCAGAA
      601 GCTTGCTGTA ACCAAGTCGT CACTATAGAT ATGCAGTTGT CTTACAGCA
      651 TAGAAATAAT GATATGAAAA CCAAATACAC GACATATCCA GAAGCTCAGG
      701 GATCTTGGGC AAATGATGTT TTTGGTCTTG AGTTTGGAGC GACTACATAC
      751 TACTACCCTA ACAGTACTTT TTTATTTGAT TACTACTCTC CGTTTCTCAG
      801 GCTGCACTGAC ACCATATGCTC ACCAGGAAGA CTTCAAAAGAG ACAGGAGGTG
      851 AGGTTCTGTA CTTTACTAGC GGAGATCTTT TCAATTTAGC AGTTCTTATT
      901 GCCCTGAAAGT TTGAGAGATT TTCAGACTGT AAAAGGGGAT CTTATGAAC
      951 TACCCCTGCT TATGTTCTG ATGTGATTG CAAAGATCCC AAGAGCACGG
      1001 CAACATTGGC TAGTGGAGCT ACGTGGAGCA CCCACGGAAA CAATCTCTCC
      1051 AGACAAGGAT TACAACCTGCG TTTAGGGAAC CACTGTCCTCA TAAATCCCTGG
      1101 AATTGAGGTG TTCAGTCACG GAGCTATTGA ATTGCGGGGA TCCTCTCGTA
      1151 ATTATAACAT CAATCTCGGG GGTAATACC GATTITAA

```

The PSORT algorithm predicts a cytoplasmic location (0.189).

40 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 11A. This protein was used to immunise mice, whose sera were used in a Western blot (Figure 11B) and an immunoblot assay (Figure 11C). A his-tagged protein was also expressed.

These experiments show that cp0019 is a useful immunogen. These properties are not evident from the sequence alone.

Example 12

The following *C.pneumoniae* protein (PID 4376466) was expressed <SEQ ID 23; cp6466>:

```

50     1 MRKISVGICL TILLSLSVVL QGCKESSHSS TSRGELAINI RDEPRSLDPR
      51 QRVLLSETSL VKHIYEGLVQ ENNLSGNIEP ALAEDYSLSS DGLTYTFKLK
      101 SAFWSNGDPL TAEDPIESWK QVATQEVSIGI YAFALNPIKN VRKIQEGHLS
      151 IDHFGVHSPN ESTLUVVTLES PSHFLKLLA LPVFFPVHKS QRTLQSKEP
      201 IASGAFYPKN IKQKQWIKLS KNPHYYNQSQ VETKTITIHF IPDANTAAKL

```

251 FNQGKLNWQG PPWGERIPQE TLSNLQSKGH LHSFDVAGTS WLTFNINKFP
 301 LNNMKLREAL ASALDKEALV STIFLGRAKT ADHLLPTNIH SYPEHQKQEM
 351 AQRQAYAKKL FKEALEELQI TAKDLEHLNL IFFPVSSSASS LLVQLIREQW
 401 KESLGFAIPI VGKEFALLQA DLSSGNFSLA TGGWFADFAD PMAFLTIFAY
 451 PSGVPPYAIN HKDFLEILQN IEQEVDHQKR SELVSQASLY LETFHIEPI
 501 YHDAFQFAMN KKLSNLGVSP TGVVDFRYAK EN*

A predicted signal peptide is highlighted.

The cp6466 nucleotide sequence <SEQ ID 24> is:

1 ATGCGCAAGA TATCAGTGGG AATCTGTATC ACCATTCTCC TTAGCCCTCTC
 10 51 CGTAGTCCTC CAAGGCTGCA AGGAGTCCAG TCACACTCTCT ACATCTCGGG
 101 GAGAACTCGC TATTAATATA AGAGATGAAC CCCGTTCTT AGATCCAAGA
 151 CAAGTGCAC TCTTTTCAGA AATCAGCCTT GTCAAACATA TCTATGAGGG
 201 ATTAGTTCAA GAAAATAATC TTTCAGGAAA TATAGAGCCTT GCTCTTGAG
 251 AAGACTACTC TCTTTCTCG GACGGACTCA CTTATACATT TAAACTGAAA
 301 TCAGCTTTTG GGAGTAATGG CGACCCCTTA ACAGCTGAAG ACTTTATAGA
 351 ATCTTGGAAA CAAGTAGCTA CTCAAGAAGT CTCAGGAATC TATGCTTTG
 401 CCTTGAAATCC AATTAAAAAT GTACGAAAGA TCCAAGAGGG ACACCTCTCC
 451 ATAGACCATT TTGGAGTGCA CTCTCCTAAT GAATCTCACAC TTGTTGTTAC
 20 501 CCTGGAATCC CCAACCTCGC ATTCTCTAAA ACTTTAGCT CTTCCAGTCT
 551 TTTTCCCCGT TCATAAATCT CAAAGAACCC TGCAATCCAA ATCTCTACCT
 601 ATAGCAAGCG GAGCTTCTA TCCTAAAAAT ATCAACACAAA ACAATGGAT
 651 AAAACTCTCA AAAAACCTC ACTACTATAA TCAAAGTCAG GTGGAAACTA
 701 AAACGATTAC GATTCACTTC ATTCCCGATG CAAACACAGC AGCAAAACTA
 751 TTTAATCAGG GAAAATCAA TTGGCAAGGA CCTCCTTGGG GAGAACGCAT
 801 TCCTCAAGAA ACCCTATCCA ATTACAGTC TAAGGGGCAC TTACACTCTT
 851 TTGATGTCGC AGGAACCTCA TGGCTCACCT TCAATATCAA TAAATTCCCC
 901 CTCAACACA TGAAGCTTAG AGAAGCCTTA GCATCAGCCT TAGATAAGGA
 951 AGCTCTTGTCA TCAACTATAT TCTTAGGCCG TGCAAAACTC GCCGATCATC
 25 1001 TCCTACCTAC AAATATTCTAT AGCTATCCCG AACATCAAA ACAAGAGATG
 1051 GCACAACGCC AAGCTTACGC TAAAAAACTC TTTAAAGAAG CTTTAAAGAAGA
 1101 ACTCCAAATC ACTGCTAAAG ATCTCGAACAA TCTTAATCTT ATCTTTCCCC
 1151 TTTCTCTGTC AGCAAGTTCT TTACTAGTCC AACTTATACG AGAACACTGG
 1201 AAAGGAAAGT TAGGGTTCGC TATCCCATT GTCGGAAAAGG AATTTCGTCT
 1251 TCTCCAAGCA GACCTATCTT CAGGGAACTT CTCTTTAGCT ACAGGAGGAT
 1301 GGTTCGCGA CTTTGTGAT CCTATGGCAT TTCTAACGAT CTTTGCCTTAT
 1351 CCATCAGGAG TTCCTCCTTA TGCAATCAAC CATAAGGACT TCCTAGAAAT
 1401 TCTACAAAAC ATAGAACAAAG AGCAAGATCA CCAAAACCGC TCGGAATTAG
 1451 TGTCGAAGC TTCTTTTAC CTAGAGACCT TTCTATTTAT TGAGCCGATC
 1501 TACCAACGACG CATTTCATT TGCTATGAAT AAAAACTTT CTAATCTAGG
 40 1551 AGTCTCACCA ACAGGAGTTG TGGACTTCGG TTATGCTAAG GAAAATTAG

The PSORT algorithm predicts that the protein is an outer membrane lipoprotein (0.790).

The protein was expressed in *E.coli* and purified both as a GST-fusion product and a His-tag fusion product. Purification of the protein as a GST-fusion product is shown in Figure 12A. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 45 12B and 12C). FACS analysis was also performed.

These experiments show that cp6466 is a useful immunogen. These properties are not evident from the sequence alone.

Example 13

The following *C.pneumoniae* protein (PID 4376468) was expressed <SEQ ID 25; cp6468>:

50 1 MFSRWTITLFL LFISLTGCSS YSSKHKQSLI IPIHDDPVAF SPEQAKRAMD
 51 LSIAQLLFDG LTRETHRESN DLELAIASRY TVSEDFCSYT FFIKDSDLWS
 101 DGTPITSEDI RNAWEYAQEN SPHIQIFQGL NFSTPSSNAI TIHLDSPNPD
 151 FPKLLAAPPF AIFKPENPKL FSGPYTLVEY FPGHNIHLKK NPNYYDYHCV
 201 SINSIKLLII PDIYTAIHL NRGKVDWVGQ PWHQGIPWEL HKQSQYHYYT
 55 251 YPVVEGAFWL LNTKSPHLND LQNRHRLATC IDKRSIIIEEA LQGTQQPAET

301 LSRGAPQPNQ YKKQKPLTPQ EKLVLTYP PSD ILRCQRIAEI LKEQWKAAGI
 351 DLILEGLEYH LFVNKRKVQD YAIATQTGVA YYPGANLISE EDKLLQNFEI
 401 IPIIYLSYDY LTQDFIEGVI YNASGAVDLK YTYFP*

A predicted signal peptide is highlighted.

5 The cp6468 nucleotide sequence <SEQ ID 26> is:

	1	ATGTTTTCAC	GATGGATCAC	CCTCTTTTA	TTATTCAATTA	GCCTTACTGG
	51	ATGCTCCCTCC	TACTCTCAA	AAACATAAACAA	ATCTTTAATT	ATTCCCATAC
10	101	ATGACGACCC	TGTAGCTTTT	TCTCCTGAAC	AAGCAAAACG	GGCCATGGAC
	151	CTTTCTATTG	CCCAACTTCT	TTTGATGGT	CTGACTAGAG	AAACTCATCG
	201	CGAATCCAAT	GATTTGGAAT	TAGCGATTGC	CAGTCGCTAT	ACAGTCTCTG
	251	AAGACTTTG	CTCTTATACG	TTCTTTATCA	AAGACAGCGC	TTTATGGAGC
	301	GACGGAACAC	CAATCACCTC	CGAAGATATC	CGTAACGCTT	GGGAGTATGC
	351	ACAGGAGAAC	TCTCCCCACA	TACAGATCTT	CCAAGGACTT	AACTTCTCAA
15	401	CTCCTTCATC	AAATGCAATT	ACGATTCAATC	TCGACTCGCC	CAACCCCGAT
	451	TTTCCTAAGC	TTCTTGCCCT	TCCTGCATTT	GCTATCTTA	AACCAGAAAA
	501	CCCGAAGCTC	TTTAGGGTC	CGTATACTCT	TGTAGAGTAT	TTCCCAGGGC
	551	ATAAACATTC	TTTAAAGAAA	AACCCCTAACT	ATTACGACTA	CCACTGCGTC
	601	TCCATCAACT	CCATCAACT	GCTCATTATT	CCTGATATAT	ATACAGCCAT
20	651	CCACCTCTTA	AACAGAGCCA	AGGTGGACTG	GGTAGGACAA	CCCTGGCATE
	701	AAGGGATTC	TTGGGAGCTC	CATAAACAAAT	CGCAATATCA	CTACTACACC
	751	TATCCTGTAG	AAGGTGCCCT	CTGGCTTTGT	CTAAATACAA	AATCCCCACA
	801	CTTAAATGAT	CTTCAAAACA	GACATAGACT	CGCTACTTGT	ATTGATAAAC
	851	GTTCTATCAT	TGAAGGAAG	CTTCAAGGAA	CCCAACAAACC	AGCGGAAACA
25	901	CTGTCCCGAG	GAGCTCCACA	ACCAAATCAA	TATAAAAAAC	AAAAGCCCTCT
	951	AACTCCACAA	AAAAAACATCG	TGCTTACCTA	TCCCTCAGAT	ATTCTAAGAT
	1001	GCCAACGCAT	ACCGAAATC	TTAAAGGAAC	AATGGAAAGC	TGCTGGAATA
	1051	GATTTAATCC	TTGAAGGACT	CGAATACCAT	CTGTTTGT	ACAAACGAAA
	1101	AGTCCAAGAC	TACGCCATAG	CAACACAGAC	TGGAGTTGCT	TATTACCCAG
30	1151	GAGCAAATCT	AATTTCTGAA	GAAGACAAGC	TCCTGCAAAA	CTTTGAGATT
	1201	ATCCCGATCT	ACTATCTGAG	CTATGACTAT	CTCACTCAAG	ATTTTATAGA
	1251	GGGAGTAATC	TATAATGCTT	CTGGAGCTGT	AGATCTCAA	TATACCTATT
	1301	TCCCCCTAG				

The PSORT algorithm predicts that this protein is an outer membrane lipoprotein (0.790).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 13A.

35 The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 13B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp6468 is a useful immunogen. These properties are not evident from the sequence alone.

Example 14

40 The following *C.pneumoniae* protein (PID 4376469) was expressed <SEQ ID 27; cp6469>:

	1	MKMHRLKPTL	KSLIPNLLFL	LLTLSSCSKQ	KQEPLGKHIV	IAMSHDLADL
	51	DPRNAYLSRD	ASLAKALYEG	LTRETDQGIA	LALAESYTLS	KDHKVYTFKL
45	101	RPSVWSDGTP	LTAYDFEKSI	KQLYFEEFSP	SIHTLLGVIK	NSSAIHNAQK
	151	SLETLGIQAK	DDLTIVLITLE	QPFPYFLTLI	ARPVFSPVHH	TLRESYKKGT
	201	PPSTYIISNGP	FVLKKHEHQN	YLILEKNPHY	YDHESVKLDR	VTLKIIIPDAS
	251	TATKLFKSKS	IDWIGSPWSA	PISNEQDKV	SQEKLITYSV	SSTTLIYNL
	301	QKPLIQNKAL	RKAIAHAIDR	KSIILRLVPSG	QEAVTLVPPN	LSQLNLQKEI
	351	STEERQTKAR	AYFQEAKETL	SEKELAELSI	LYPIDSSNSS	IIAQEIQRQL
	401	KDTLGLKIKI	QGMEMYHCFLK	KRRQGDFFIA	TGGWIAEYVS	PVAFLSILGN
50	451	PRDLTQWRNS	DYEKTLEKLY	LPHAYKENLK	RAEMIIEEET	PIIPLYHGKY
	501	IYAIHPKIQN	TFGSLLGHTD	LKNIDILS*		

A predicted signal peptide is highlighted.

The cp6469 nucleotide sequence <SEQ ID 28> is:

1 ATGAAGATGC ATAGGCTTAA ACCTACCTTA AAAAGTCTGA TCCCTAATCT
 51 TCTTTCTTA TTGCTCACTC TTTCAGCTG CTCAAAGCAA AAACAAGAAC
 101 CCTTAGGAAA ACATCTCGTT ATTGCGATGA GCCATGATCT CGCCGACCTA
 151 GATCCTCGCA ATGCCATTAA AAGCAGAGAT GCTTCCCCTAG CAAAAGCCCT
 201 CTATGAAGGA CTGACAAGAG AACATGATCA AGGAATCGCA CTGGCTCTTG
 251 CAGAAAGTTA TACCCGTCA AAAGATCATA AGGTCTATAC CTTTAAACTC
 301 AGACCTCTG TGTGGAGCGA TGGCACTCCA CTCACTGCTT ATGACTTTGA
 351 AAAATCTATA AAACAACGT ACTTCGAAGA ATTTTCACCT TCCATACATA
 401 CTTTACTCGG CGTGTAAAAA AATCTTCGG CAATCCACAA TGCTCAAAAAA
 451 TCTCTGGAAA CTCTGGGAT ACAGGCAAAA GATGATCTTA CTTTGGTGAT
 501 TACCCCTAGAG CAACCTTCT CATACTTCT CACACTTATC GCTCGCCCCG
 551 TATTCTCCCC TGTTCATCAC ACCCTTAGGG AATCCTATAA GAAAGGAACA
 601 CCCCCCATCCA CATACTACCA CAATGGGCC TTTGTCTTAA AAAACATGA
 651 ACACCAAAAC TACTTAATT TAGAAAAAAA TCCTCACTAC TATGATCATG
 701 AATCAGTAAA GTTAGACCGA GTCACCTAA AAATTATCCC AGACGCCCTC
 751 ACAGGCCAGA AACCTTCAAA AAGTAAATCT ATAGATTGGA TTGGCTCACC
 801 TTGGAGCGCT CCGATATCTA ACAGAAGGCC AAAAGTTCTC TCCCAAGAAAA
 851 AGATTCTTAC CTATTCTGT TCAAGCACCA CCCTTCTTAT CTATAACCTG
 901 CAAAAACCTC TAATACAAAA TAAAGCCCTC AGGAAAGCCA TTGCTCATGC
 951 TATTGATAGA AAATCTATCT TAAGACTCGT GCCTTCAGGA CAAGAAGCTG
 1001 TAACTCTAGT TCCCCCAAAT CTTTCACAAAC TCAATCTCA AAAAGAGATC
 1051 TCAACAGAAC AACGACAAAC AAAAGCCAGA GCATATTTC AAGAAGCTAA
 1101 AGAAACACTT TCTGAAAAAG AACTCGCAGA ACTCAGCCTC CTCTATCCTA
 1151 TAGATTCCCTC GAATTCCCTC ATCATAGCTC AAGAAATCCA AAGACAACCTT
 1201 AAAGATACTT TAGGATTGAA AATCAAATC CAAGGCATGG AGTACCACTG
 1251 CTTTTTAAAG AAACGTCGTC AAGGAGATT CTTCATAGCG ACAGGAGGAT
 1301 GGATTGCGGA ATACGTAAGC CCCGTAGCCT TCCTATCTAT TCTAGGCAAC
 1351 CCCAGAGACC TCACACAATG GAGAAACAGT GATTACGAAA AGACTTTAGA
 1401 GAAACTCTAT CTCCTCATG CCTACAAAGA GAATTAAAAA CGCGCAGAAA
 1451 TGATAATAGA AGAAGAAAC CCGATTATCC CCCTGTATCA CGGCAAATAT
 1501 ATTTACGCTA TACATCTAA AATCCAGAAAT ACATCGGAT CTCTCTAGG
 1551 CCACACAGAT CTCAAAATA TCGATATCTT AAGTTAG

The PSORT algorithm predicts a periplasmic location (0.934).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 14A.

35 The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 14B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp6469 is a useful immunogen. These properties are not evident from the sequence alone.

Example 15

40 The following *C.pneumoniae* protein (PID 4376602) was expressed <SEQ ID 29; cp6602>:

1 MAASGGTGGL GGTQGVNLAA VEAAAAAKADA AEVVVASQEWS EMNNM1QQSQD
 51 LTNPAATAATR KKKEEKFQTL ESRKKGEAGK AEKKSESTEE KPDTDLADKY
 101 ASGNSEISGQ ELRLGLRDAIG DDASPEDILA LVQEIKKDPA LQSTALDYLV
 151 QTTPPSQQL KEALIQARNT HTEQFGRTAI GAKNILFASQ EYADQLNVSP
 201 SGLRSLSYLEV TGDTHTCDQL LSMLQDRYTY QDMAIVSSFL MKGMATELKR
 251 QGPVVPVSAQL QVLMTETRNL QAVLTSYDFY ESRVPILLDS LKAEGIQTSPS
 301 DLNFVKVAES YHKIINDKFP TASKVEREVN NLIGDDVDSDV TGVLNLFFSA
 351 LRQTSSRLFS SADKRQQLGA MIANALDAVN INNEDYPKAS DFPKPYPWS*

The cp6602 nucleotide sequence <SEQ ID 30> is:

50 1 ATGGCAGCAT CAGGAGGCAC AGGTGGTTTA GGAGGCACTC AGGGTGTCAA
 51 CCCTTGCAGCT GTAGAAAGCTG CAGCTGCAAAG AGCAGATGCA GCAGAAGTTG
 101 TAGCCAGCCA AGAAGGTTCT GAGATGAACA TGATTCAACA ATCTCAGGAC
 151 CTGACAAATC CCGCACCGC AACACGGCAGC AAAAAAAAGG AAGAGAAGTT
 201 TCAAACCTCTA GAATCTCGGA AAAAAGGAGA AGCTGAAAG GCTGAGAAAAA
 251 AATCTGAAATC TACAGAAGAG AAGCTGACA CAGATCTTGC TGATAAGTAT
 301 GCTTCTGGGA ATTCGAAAT CTCTGGTCAA GAACTTCGCG GCCTGCGTGA
 351 TGCAATAGGA GACGATGCTT CTCCAGAAGA CATTCTTGCT CTTGTACAAG

-55-

```

401 AGAAAATTAA AGACCCAGCT CTGCAATCCA CAGCTTGGA CTACCTGGTT
451 CAAACGACTC CACCCTCCC AGGTAAATTA AAAGAAGCGC TTATCCAAGC
501 AAGGAATACT CATAACGGAGC AATTCGGACG AACTGCTATT GGTGCGAAAA
551 ACATCTTATT TGCCCTCTCAA GAATATGCAG ACCAAGTCAA TGTTTCTCCT
601 TCAGGGCTTC GCTCTTGTGTA CTTAGAAGTG ACTGGAGACA CACATACCTG
651 TGATCAGCTA CTTTCTATGC TTCAAGACCG CTATAACCTAC CAAGATATGG
701 CTATTGTCAG CTCCTTCTCA ATGAAAGGAA TGGCAACAGA ATTAAAAGG
751 CAGGGTCCCT ACGTACCCAG TCGCACAATCA CAAGTTCTCA TGACAGAAC
801 TCGTAACCTG CAAGCAGTTC TTACCTCGTA CGATTACTTT GAAAGTCGCG
851 TTCTCTTATT ACTCGATAGC TTAAAAGCTG AGGGAATCCA AACTCCCTCT
901 GATCTAACT TTGTGAGGT AGCTGAGTCC TACCATAAA TCATTAACGA
951 TAAGTTCCA ACAGCATCTA AAGTAGAACG AGAACGTCGGC AATCTCATAG
1001 GAGACGATGT TGATTCTGTG ACCGGTGTCT TGAACTTATT CTTTTCTGCT
1051 TTACGTCAAA CGTCGTACAG CCTTTCTCT TCAGCAGACA AACGTCAGCA
1101 ATTAGGAGCT ATGATTGCTA ATGCTTTAGA TGCTGTAAT ATAAACAAATG
1151 AAGATTATCC CAAAGCATCA GACTTCCCTA AACCTATCC TTGGTCATGA

```

The PSORT algorithm predicts a cytoplasmic location (0.080).

The protein was expressed in *E.coli* and purified as both a His-tag and a GST-fusion product, as shown in Figure 15A. The recombinant proteins were used to immunise mice, whose sera were used 20 in a Western blot (Figure 15B) and for FACS analysis (Figure 15C).

The cp6602 protein was also identified in the 2D-PAGE experiment (Cpn0324).

These experiments show that cp6602 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 16

25 The following *C.pneumoniae* protein (PID 4376727) was expressed <SEQ ID 31; cp6727>:

```

1  MKYSLPWLLT SSALVFSLHP LMAANTDLSS SDNYENGSSG SAAFTAKETS
51 DASGTTYTTLT SDVSITNVSA ITPADKSCFT NTGGALSFVG ADHSLVLQTI
101 ALTHDGAAIN NTNTALSFSG FSSLLIDSAP ATGTSGGKGA ICVTNTEGGT
151 ATPTTDNASVT LQKNTSEKDQ AAVSAYSIDL AKTTTAALLD QNTSTKNGGA
201 LCSTANTTVQ GNSGTVTFSS NTATDKGGGI YSKEKDSTD ANTGVVTFKS
251 NTAKTGGAWS SDDNLALTGN TQVLFQENKT TGSAAQANNP EGCGBAICCY
301 LATATDKTGL AISQNQEMSF TSNTTTANGG AIYATKCTLD GNNTLTFDQN
351 TATAGCGGGAI YTETEDEFLSKL GSTGTVTFST NTAKTGGALY SKGNSSLTGN
401 TNLLFSGNKA TGPNSNSSANQ ECGGGAILAF IDSGSVSDKT GLSIANNQEV
451 SLTSNAATVVS GGAIYATKCT LTGNGSLTFD GNTAGTSGGA IYTETEDEFTL
501 TGSTGTVTFST TNTAKTGGAL YSKGNNSLSG NTNLLFSGNK ATGPSNSSAN
551 QEGCGGGAIALS FLESASVSTK KGLWIEDDEN VSLSGNTAIV SGGAIYATKC
601 ALHGNTTLLTF DGNTAETAGG AIYTETEDEFT LTGSTGTVTP STNTAKTAGA
651 LHKGNTISFT KNKALVFSGN SATATTTT DQEGCGGAIL CNISESDIAT
701 KSLTLTENES LSFINNTIAKR SGGGIYAPKC VISGSESINF DGNTAETSGG
751 AIYSKNLSIT ANGPVPSFTNN SGGKGGAIYI ADSGELSLEA IDGDITPSGN
801 RATEGTSTPN SIHLGAGAKI TKLAAAPGHT IYFYDPITME APASGGTIEE
851 LVINPVVKAI VPPPQPKNGP IASVPVVPVA PANPNTGTIV FSSGKLPSQD
901 ASIPANTTTI LNQKINLAGG NVVILKEGATL QVYSFTQQPD STVFMMDAGIT
951 LETTTTNTD GSIDLKNLVS NLDALDGKRM ITIAVNSTSG GLKISGDLKF
1001 HNNEGFSYDN PGLKANLNLP FLDLSSSTSQT VNLDDFNPIP SSMAAPDYGY
1051 QGSWTLVPKV GAGGKVTLVA EWQALGYTPK PELRATLVPN SLWNAYVNIH
1101 SIQQEIATAM SDAPSHPGIW IGGIGNAFHQ DKQKENAGFR LISRGYIVGG
1151 SMTTPQEYTF AVAFSQLFGK SKDYVVSDIK SQVYAGSLCA QSSYVIPLHS
1201 SLRRHVLSKV LPELPGETPL VLHGQVSYGR NHNNMTTKLA NNTQGKSDWD
1251 SHSFAVEVGG SLPVDLNYRY LTSYSPYVKL QVVSVNQKGF QEVAADPRIF
1301 DASHLVNVSI PMGLTFKHES AKPPSALLLT LGYAVDAYRD HPHCLTSLTN
1351 GTSWSTFATN LSRQAFFAEA SGHLKLLHGL DCFASGSCEL RSSSRSYNAN
1401 CGTRYSF*

```

55 A predicted signal peptide is highlighted.

The cp6727 nucleotide sequence <SEQ ID 32> is:

	1	ATGAAATATT	CTTTACCTTG	GCTACTTACC	TCTTCGGCTT	TAGTTTTCTC
	51	CCTACATCCA	CTAATGGCTG	CTAACACCGGA	TCTCTCATCA	TCCGATAACT
5	101	ATGAAAATGG	TAGTAGTGTT	AGCGCAGCAT	TCACTGCCAA	GGAAAACCTTCG
	151	GATGCTTCAG	GAACTACCTA	CACTCTCACT	AGCGATGTTT	CTATTACGAA
	201	TGTATCTGCA	ATTACTCTG	CAGATAAAAG	CTGTTTTACA	AACACAGGAG
	251	GAGCATTGAG	TTTTGTTGGA	GCTGATCACT	CATTGGTTCT	GCAAACCATA
	301	GCGCTTACGC	ATGATGGTGC	TGCAATTAAAC	AATACCAACA	CAGCTTTTC
	351	TTTCTCAGGA	TTCTCGTCAC	TCTTAATCGA	CTCAGCTCCA	GCAACAGGAA
10	401	CTTCGGGGCG	CAAGGGTGT	ATTCTGTCGA	CAAATACAGA	GGGAGGTACT
	451	GCGACATTTTA	CTGACAATG	CAGTGTCA	CTCCAAAAAA	ATACTTCAGA
	501	AAAAGATGGA	GCTGCAGTTT	CTGCTCTACAG	CATCGATCTT	GCTAAAGACTA
	551	CGACAGCAGC	TCTCTTAGAT	CAAAATACTA	GCACAAAAAA	TGGCGGGGCC
15	601	CTCTGTAGTA	CAGCAAACAC	TACAGTCCAA	GGAAACTCAG	GAACGGTGCAC
	651	CTTCTCCTCA	AATACTGCTA	CAGATAAAAGG	TGGGGGGATC	TACTCAAAG
	701	AAAAGGATAG	CACGCTAGAT	GCCAAATACAG	GAGTCGTTAC	CTTCAAATCT
	751	AATACTGCAA	AGACGGGGGG	TGCTTGGAGC	TCTGATGACA	ATCTTGCTCT
	801	TACCGGCAAC	ACTCAAGTAC	TTTTTCAGGA	AATAAAAAAC	ACCGGGCTCAG
20	851	CAGCACAGGC	AAATAAACCGG	GAAGGTTGTG	GTGGGGCAAT	CTGTTGTTAT
	901	CTTGCTACAG	AAACAGACAA	AACTGGATTA	GCCATTTCTC	AGAATCAAGA
	951	AATGAGCTTC	ACTAGTAATA	CAACAACTGC	GAATGGTGG	GCGATCTACG
	1001	CTACTAAATG	TACTCTGGAT	GGAAACACAA	CTCTTACCTT	CGATCAGAAAT
	1051	ACTGCGACAG	CAGGAATGTGG	CCGAGCTATC	TATACAGAAA	CTGAAGATTT
25	1101	TTCTCTTAAG	GGAAAGTACCG	GAACCGTGCAC	CTTCAGCACA	AATACAGCAA
	1151	AGACAGGGCG	CGCCTTATAT	TCTAAGGAA	ACAGCTCGCT	GACTGGAAT
	1201	ACCAACCTGC	TCTTTTCAGG	GAACAAAGCT	ACGGGGCCCGA	GTAATTCTTC
	1251	AGCAAATCAA	GAGGGTTGCG	GTGGGGCAAT	CCTAGCCTT	ATTGATTTCAG
	1301	GATCCGTAAG	CGATAAAAACA	GGACTATCGA	TTGCAAACAA	CCAAGAAGTC
	1351	AGCCTCACTA	GTAAATGCTGC	AACAGTAAGT	GGTGGGTGCGA	TCTATGCTAC
30	1401	CAAATGTACT	CTAACTGGAA	ACCGCTCCCT	GACCTTTGAC	GGCAATACTG
	1451	CTGGAACCTTC	AGGAGGGCG	ATCTATACAG	AAACTGAAGA	TTTACTCTT
	1501	ACAGGAAGTA	CAGGAACCGT	GACCTTCAGC	ACAAATACAG	CAAAGACAGG
	1551	CGGCGCCTTA	TATTCTAAAG	GCAACAACTC	TCTGTCTGGT	AATACCAACC
	1601	TGCTCTTTTC	AGGGAAACAA	GCTACGGGCC	CGAGTAATTC	TTCAGCAAAT
35	1651	CAAGAGGGTT	CGGGTGGGGC	ATTCCTATCG	TTTCTTGAGT	CAGCATCTGT
	1701	AAAGTACTAAA	AAAGGACTCT	GGATTGAAGA	TAACGAAAAC	GTGAGTCTCT
	1751	CTGGTAATAC	TGCAACAGTA	AGTGGCGGTG	CGATCTATGC	GACCAAGTGT
	1801	GCTCTGCA	AAAACACGAC	TCTTACCTT	GATGGCAATA	CTGCCGAAAC
	1851	TGCAGGAGGA	CGCGATCTATA	CAGAAACCGA	AGATTTTACT	CTTACGGGAA
40	1901	GTACGGGAAC	CGTGACCTTC	AGCACAAATA	CAGCAAAGAC	AGCAGGGCT
	1951	CTACATACTA	AAGGAAATAC	TTCCCTTACC	AAAAATAAGG	CTCTTGTATT
	2001	TTCTGGAAAT	TCAGCAACAG	CAACAGCAAC	AACAACTACA	GATCAAGAAG
	2051	GTTGTGGTGC	AGCGATCCTC	TGTAATATCT	CAGAGTCTGA	CATAGCTACA
45	2101	AAAAGCTTAA	CTCTTACTGA	AAATGAGAGT	TTAAGTTCA	TTAACAAATAC
	2151	GGCAAAAAGA	AGTGGTGGTG	CTATTTATGC	TCCTAAGTGT	GTAATCTCAG
	2201	GCAGTGAATC	CATAAACTTT	GATGCCAATA	CTGCTGAAAC	TCGGGGAGGA
	2251	GCGATTATT	CGAAAAACCT	TTCGATTACA	GCTAACGGTC	CTGTCTCCCT
	2301	TACCAATAAT	TCTGGAGGCA	AGGGAGGCGC	CATTTTATATA	GCCGATAGCG
50	2351	GAGAACCTTC	CTTAGAGGGCT	ATTGATGGGG	ATATACTTT	CTCAGGGAAC
	2401	CGAGCGACTG	AGGGAAATTTC	AACTCCAAAC	TCGATCCATT	TAGGTGCAGG
	2451	GGCTAAGATC	ACTAAAGCTTG	CAGCAGCTCC	TGGTCATACG	ATTTATTTT
	2501	ATGATCCTAT	TACGATGGAA	GCTCCTGCAT	CTGGAGGAAC	AATAGAGGAG
	2551	TTAGTCATCA	ATCCTGTTGT	CAAAGCTATT	GTTCCCTCC	CCCAACCAAA
55	2601	AAATGGTCCT	ATAGCTTCAG	TGCCCTGTAGT	CCCTGTAGCA	CCTGCAAACC
	2651	CAAACACGGG	AACTATAGTA	TTTTCTMCTG	GAAAACCTCC	CAGTCAGAT
	2701	GCCTCGATT	CTGCAAATAC	TACCAACCATA	CTGAAACCAGA	AGATCAAAC
	2751	AGCAGGAGGA	AAATGTCGTTT	TAAAAGAAGG	AGCCACCTTA	CAAGTATATT
	2801	CCITTCACACAA	CGAGCCTGAT	TCTACAGTAT	TCATGGATGC	AGGAACGACC
	2851	TTAGAGACCA	CGACAACATA	CAATACAGAT	GGCAGCATTG	ATCTAAAGAA
60	2901	TCTCTCTGTA	AATCTGGATG	CTTCTAGATGG	CAAGCGTATG	ATAACGATTG
	2951	CCGTAACACAG	CACAAAGTGGG	GGATTTAAAAAA	TCTCAGGGGA	TCTGAAATT
	3001	CATAACAAATG	AAGGAAGTTT	CTATGACAAT	CCTGGGTTGA	AAGCAAAC
	3051	AAATCTTCCT	TTCTTAGATC	TTTCTTCTAC	TTCAGGAAC	GTAAAATTAG
65	3101	ACGACTTC	TCCGATTCTC	TCTAGCATGG	CTGCTCCGGA	TTATGGGTAT
	3151	CAAGGGAGTT	GGACTCTGGT	TCTAAAGCTA	GGAGCTGGAG	GGAAAGGTGAC
	3201	TTGGTCGCG	GAATGGCAAG	CGTTAGGATA	CACTCCTAAA	CCAGAGCTTC
	3251	GTGCGACTTT	AGTTCCTAAT	AGCCTTTGGA	ATGCTTATGT	AAACATCCAT

5 3301 TCTATACAGC AGGAGATCGC CACTGCGATG TCGGACGCTC CCTCACATCC
 3351 AGGGATTGGA ATTGGAGGT A TTGGCAACGC CTTCCATCAA GACAAGCAAA
 3401 AGGAAAATGC AGGATTCGGT TTGATTCCA GAGGTTATAT TGTTGGTGGC
 3451 AGCATGACCA CCCCTCAAGA ATATACCTT GCTGTTGCA TCAGCCAAC
 3501 CTTGGCAAA TCTAAGGATT ACGTAGTCTC GGATATTAAA TCTCAAGTCT
 3551 ATGCAGGATC TCTCTGTGCT CAGAGCTCTT ATGTCAATTCC CCTGCATAGC
 3601 TCATTACGTC GCCACGTCCT CTCTAAGGTC CTTCCAGAGC TCCCAGGAGA
 3651 AACTCCCCCTT GTTCTCCATG GTCAAGTTTC CTATGGAAGA AACCACCATA
 3701 ATATGACGAC AAAGCTTGCG AACAAACACAC AAGGGAAATC AGACTGGGAC
 3751 AGCCATAGCT TCGCTGTTGA AGTCGGTGGT TCTCTCCCTG TAGATCTAAA
 3801 CTACAGATAC CTTACCAAGCT ACTCTCCCTA TGTGAAACTC CAAGTTGTGA
 3851 GTGTAAATCA AAAAGGATTG CAAGAGGTTG CTGCTGATCC ACGTATCTTT
 3901 GACGCTAGCC ATCTGGTCAA CGTGTCTATC CCTATGGGAC TCACCTTCAA
 3951 ACACGAATCA GCAAAGCCCC CCAGTGCCTT GCTTCTTAAC TTAGGTTACG
 4001 CTGTAGATGC TTACCGGGAT CACCCCTCACT GCCTGACCTC CTTAACAAAT
 4051 GGCACCTCGT GGTCTACGTT TGCTACAAAC TTATCACGAC AAGCTTTCTT
 4101 TGCTGAGGCT TCTGGACATC TGAAGTTACT TCATGGTCTT GACTGCTTCG
 4151 CTTCTGGAAG TTGTGAACCT CGCAGCTCCT CAAGAAGCTA TAATGCAAAC
 4201 TGTGGAACTC GTTATTCTTT CTAA

20 The PSORT algorithm predicts an outer membrane location (0.915).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 16A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 16B) and for FACS analysis (Figure 16C). A GST-fusion protein was also expressed.

The cp6727 protein was also identified in the 2D-PAGE experiment (Cpn0444).

25 These experiments show that cp6727 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 17

The following *C.pneumoniae* protein (PID 4376731) was expressed <SEQ ID 33; cp6731>:

30 1 MKSSLHWFLI SSSLAIPPLSL NFSAPAAVVE INLGPTNSFS GPGTYTPPAQ
 51 TTNAADGTIYN LTGDVSITNA GSPTALTASC FKETTGTLNF QGHGYQFLLQ
 101 NIDAGANCTF TNTAANKLLS FSGFSYLSLI QTNTNATTGTG AIKSTGACSI
 151 QSNYSYSCYFGQ NFSNDNGAL QGSSISLSLN PNLTFAKNKA TQKGALYST
 201 GGTININTLN SASFSENTAA NNGGAIYTEA SSFISSNKAI SFINNSVTAT
 251 SATGGAIYCS STSAPFKVLT LSDNGELNFI GNTAITSGGA IYTDNLVLSS
 301 GGPTLFKNNNS AIDTAAPLGG AIAIADSGSL SLSALGGDIT FEGNTVVVKGA
 351 SSSQTTTRNS INIGNMTNAKI VQLRASQGNT IYFYDPITTS ITAALSDALN
 401 LNGPDLAGNP AYQGTIVFSG EKLSEAAAE ADNLKSTIQQ PLTLAGGQLS
 451 LKSGVTLVAK SFSQSPGSTL LMDAGTTLET ADGITINNLV LNVDSDLKETK
 501 KATLKATQAS QTVTLSGSLS LVDPSGNVYE DVSWNNNPQVF SCLTLTADDP
 551 ANHIIHTDLAA DPLEKNPIHW GYQGNWALSW QEDTATKSAA ATLTWTKTGY
 601 NPNNPERRGTL VANTLWGSFV DVRSIQQLVA TKVRQSQETR GIWCCEGISNF
 651 PHKDSTKINK GFRHISAGYV VGATTTLASD NLITAFCQL FGKDRDHFIN
 701 KNRASAYAAAS LHLQHLATLS SPSILLRYLPG SESEQPVLFQ AQISYIYSKN
 751 TMKTYYTQAP KGESSWYNDG CALELASSLP HTALSHEGLF HAYFPFIKVE
 801 ASYIHQDSFK ERNTTTLVRSF DSGDLINHSV PIGITFERFS RNERASYEAT
 851 VIYVADVYRK NPDCCTTALLI NNTTSWKTGT NLSRQAGIGR AGIFYAFSPN
 901 LEVTSNLSMIE IRGSSRSYNA DLGGKFQF*

A predicted signal peptide is highlighted.

The cp6731 nucleotide sequence <SEQ ID 34> is:

50 1 ATGAAATCCT CTCTTCATTC GTTTTTAAC TCGTCATCTT TAGCACCTCC
 51 CTTGTCACTA AATTTCTCTG CGTTTGCTGC TGTTGTTGAA ATCAATCTAG
 101 GACCTACCAA TAGCTCTCT GGACCCAGGAA CCTACACTCC TCCAGCCAA
 151 ACAACAAATG CAGATGGAAC TATCTATAAT CTAACAGGGG ATGTCTCAAT
 201 CACCAATGCA GGATCTCCGA CAGCTCTAAC CGCTTCTGC TTTAAAGAAA

	251	CTACTGGGAA	TCTTTCTTTC	CAAGGCCACG	GCTACCAATT	TCTCCATCAA
	301	AATATCGATG	CGGGAGCAGA	CTGTACCTTT	ACCAATACAG	CTGCAAATAA
	351	GCTTCTCTCC	TTTCAGGAT	TCTCCTATT	GTCACTAATA	CAAACACGA
5	401	ATGCTACAC	AGGAACAGGA	GCCATCAAGT	CCACAGGAGC	TTGTTCTATT
	451	CAGTCGAACT	ATAGTTGCTA	CTTTGGCCAA	AACTTTCTA	ATGACAATGG
	501	AGGCGCCCTC	CAAGGCAGCT	CTATCAGTCT	ATCGCTAAC	CCCAACCTAA
	551	CGTTTGCCAA	AAACAAAGCA	ACGCAAAAG	GGGGTGCCCT	CTATCCACG
	601	GGAGGGATTA	CAATTAACAA	TACGTTAAC	TCAGCATCAT	TTCTGAAAAA
	651	TACCGCGGCG	AACAATGGCG	GAGCCATT	CACGGAAAGCT	AGCAGTTTA
10	701	TTAGCAGCAA	AAAGCAATT	AGCTTTATAA	ACAATAGTGT	GACCGCAACC
	751	TCAGCTACAG	GGGGAGCCAT	TTACTGTAGT	AGTACATCAG	CCCCCAAACC
	801	AGTCTTAACT	CTATCAGACA	ACGGGAACT	GAACCTTATA	GGAAATACAG
	851	CAATTACTAG	TGGTGGGGCG	ATTTTACTG	ACAATCTAGT	TCTTCTTCT
15	901	GGAGGACCTA	CGCTTTTAA	AAACAACTCT	GCTATAGATA	CTGCAGCTCC
	951	CTTAGGAGGA	GCAATTCGCG	TTGCTGACTC	TGGATCTTG	AGTCTTCGG
	1001	CTCTTGGTGG	AGACATCACT	TTTGAAGGAA	ACACAGTAGT	CAAAGGAGCT
	1051	TCTTCGAGTC	AGACACCACTAC	CAGAAAATCT	ATTAACATCG	GAAACACCAA
	1101	TGCTAAGATT	GTACAGCTGC	GAGCCTCTCA	AGGCAATACT	ATCTACTTCT
20	1151	ATGATCCTAT	AAACAATAGC	ATCACTGCAG	CTCTCTCAGA	TGCTCTAAC
	1201	TTAAATGGTC	CTGACCTTGC	AGGGAATCCT	GCATATCAAG	GAACCATCGT
	1251	ATTTTCTGGA	GAGAAGCTCT	CGGAAGCAGA	AGTGCAGAA	GCTGATAATC
	1301	TCAAATCTAC	AATTCAAGCA	CCTCTAACTC	TTGCGGGAGG	GCAACTCTCT
	1351	CTTAAATCTAG	GAGTCACCTCT	AGTTGCTAAG	TCTTTTCGGC	AATCTCCGGG
25	1401	CTCTACCCCTC	CTCATGGATG	CAGGGACCCAC	ATTAGAAACC	GCTGATGGGA
	1451	TCACTATCAA	TAATCTTGT	CTCAATGTAG	ATTCTTAA	AGAGACCAAG
	1501	AAGGCTACCG	AAAAAGCAAC	ACAAGCAAGT	CAGACAGTCA	CTTTATCTGG
	1551	ATCGCTCTCT	CTTGAGATC	CTTCTGGAAA	TGTCTACGAA	GATGTCCTT
	1601	GGAAATAACCC	TCAAGTCTTT	TCTTGTCTCA	CTCTTACTGTC	TGACGACCCC
30	1651	GCGAATATTC	ACATCACAGA	CTTAGCTGCT	GATCCCCCTAG	AAAAAAATCC
	1701	TATCCATTGG	GGATACCAAG	GGAAATTGGGC	ATTATCTTGG	CAAGAGGATA
	1751	CTGCGACTAA	ATCCAAAGCA	CGCACTCTTA	CCTGGACAAA	AACAGGATAC
	1801	AATCCGAATC	CTGAGCGTCG	TGGAACCTTA	GTTGCTAAC	CGCTATGGGG
	1851	ATCCCTTTGTT	GATGTGCGCT	CCATACAACA	GCTTGTAGCC	ACTAAAGTAC
35	1901	GCCAATCTCA	AGAAACTCGC	GGCATCTGGT	GTGAAGGGAT	CTCGAACTTC
	1951	TTCCATTAAG	ATAGCACGAA	GATAAAATAA	GGTTTTTCGCC	ACATAAGTGC
	2001	AGGTTATGTT	GTAGGAGCGA	CTACAAACATT	AGCTTCTGAT	AATCTTATCA
	2051	CTGCAGCCTT	CTGCAATT	TTCGGGAAAG	ATAGAGATCA	CTTTATAAAAT
	2101	AAAAAATAGAG	CTTCTGCCTA	TGCAGCTTCT	CTCCATCTCC	AGCATCTAGC
40	2151	GACCTTGTCT	TCTCCAAGCT	TGTTACGCTA	CCTTCTGG	TCTGAAAGTG
	2201	AGCAGCCCTG	CCTCTTTGAT	GCTCACTAC	GCTATATCTA	TAGTAAAAAT
	2251	ACTATGAAA	CCTATTACAC	CCAAGCACCA	AAGGGAGAGA	GCTCGTGGTA
	2301	TAATGACGGT	TGCGCTCTGG	AACTTGCGAG	CTCCCTACCA	CACACTGCTT
	2351	TAAGCCATGA	GGGTCCTCTTC	CACCGCTATT	TTCCTTCTAT	CAAAGTAGAA
45	2401	GCTTCGTACA	TACACCAAGA	TAGCTTCAA	GAACGTAATA	CTACCTTGGT
	2451	ACGATCTTC	GATAGCGGTG	ATTTAATTAA	CGTCTCTGTG	CCTATTGGAA
	2501	TTACCTTCGA	GAGATTCCTCG	AGAAACGAGC	GTGCGTCTTA	CGAAGCTACT
	2551	GTCATCTACG	TTGCCGATGT	CTATCGTAAG	AATCTCTGACT	GCACGACAGC
	2601	TCTCCTAACT	AAACATACCT	CGTGGAAACAC	TACAGGAACG	AATCTCTCAA
50	2651	GACAAGCTGG	TATCGAAGA	GCAGGGATCT	TTTATGCCTT	CTCTCCAAAT
	2701	CTTGAGGTCA	CAAGTAACCT	ATCTATCGAA	ATTCGTGGAT	CTTCACGCAG
	2751	CTACAAATGCA	GATCTTGGAG	GTAAGTTCCA	GTTCTAA	

The PSORT algorithm predicts an outer membrane location (0.926).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 17A. A GST-fusion protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 17B; his-tag) and for FACS analysis (Figure 17C; his-tag and GST-fusion).

The GST-fusion protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis. Less cross-reactivity was seen with the his-fusion.

These experiments show that cp6731 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 18

The following *C.pneumoniae* protein (PID 4376737) was expressed <SEQ ID 35; cp6737>:

5	1 MPLSFKSSSF CLLACLCSAS CAF AETRLGG NFVPPITNQG EEILLTSDFV
	51 CSNFLGASEFS SSFINSNSL SLLGKGSLST FTSCQAPTNS NYALLSAET
	101 LTFKNFSSIN FTGNQSTGLG GLIYGKDIFV QSIKDLIFTT NRVAYSPASV
	151 TTSATPAITT VTTGASALQP TDSLTVENIS QSIKFFGNLA NFGSAISSL
	201 TAVV/KFINNT ATMSFSHNFT SSGGGVIYGG SSLLFENNNSG CIIFTANCV
10	251 NSLGKVTPSS GTYALGSGGA ICIPTGTTEL KNNQGKCTFS YNGTPNDAGA
	301 IYAETCNIVG NQGALLLDSN TAARNGGAIC AKVLDNIQGRG PIEFSRNRAE
	351 KCGGAFIGPS VGDPAKQTST LTILASEGDI AFQGNMLNTK PGIRNAITVE
	401 AGGEIVSLSA QGGSRVLVFYD PITHSLPTTS PSNKDITINA NGASGSVVFT
15	451 SKGLSSTELL LPANTTILL GTVKIASGEL KITDNAVNVN LGFATQGSGQ
	501 LTLSGGTLLG LATPTGAPAA VDFTIGKLA FDPFSFLKRDF VSASVINAGTK
	551 NVTLTGALVL DEHDVTDLYD MVSLOTPVAI PIAVFKGATV TKTGFPDGEI
	601 ATPSHYGYQG KWSYTWRSPL LIPAPDGFP GGPSPSANTL YAVWNSDTLV
	651 RSTYILDPER YGEIVSNSLW ISFLGNQAFS DILQDVLLID HPGLSITAKA
20	701 LGAYVEHPTP OGHEGFSGRY GGYQAALSMN YTDDHTTLGLS FGQLYGKTNA
	751 NPYDSRCSEQ MYLLSFGQF PIVTOKSEAL ISWKAAYGYS KNHLNTTYLR
	801 FDKAPKSQQW WHNNSYYVLI SAEPFPLNW LLLTRPLAQAW DLSGFISAEC
	851 LGGWQSKFTB TGDLQRFSR GKGYNVSLPI GCSSQWFTP KKAPSTLTIK
	901 LAYKPDIFYRV NPHNIVTVVS NQEESTSISGA NLRRHGLFVQ IHDVVDLTD
	951 TQAFLNYTFD GKNGFTNHVR STGLKSTF*

25 A predicted signal peptide is highlighted.

The cp6737 nucleotide sequence <SEQ ID 36> is:

30	1 ATGCCCTTTT CTTTCAAATC TTCATTTTT TGTCTACTTG CCTGTTTATG
	51 TAGTGCAAGT TGCGCGTTTG CTGAGACTAG ACTCGGAGGG AACTTTGTTTC
	101 CTCCAATTAC GAATCAGGGT GAAGAGATCT TACTCACTTC AGATTTTGT
	151 TGTTCAAACT TCTTGGGGGC GAGTTTTCA AGTTCCCTTA TCAATAGTT
	201 CAGCAATCTC TCCTTATTAG GGAAGGGCCT TTCCCTAACG TTTACCTCTT
	251 GTCAAGCTCC TACAAATAGT AACTATGCGC TACTTTCTGC CGCAGAGACT
	301 CTGACCTTCAGAAGATTTTC TTCTATAAAC TTTACAGGGA ACCAATCGAC
	351 AGGACTTGGC GGCCTCATCT ACGGAAAAGA TATTGTTTTC CAATCTATCA
35	401 AAGATTTGAT CTTCACTACG AACCGTGTG CCTATTCTCC AGCATCTGTA
	451 ACTACGTCGG CAACTCCCGC AATCACTACA GTAACTACAG GAGCCTCTGC
	501 TCTCCAACCT ACAGACTCAC TCACGTGCG AAACATATCC CAATCGATCA
	551 AGTTTTTGGG GAACCTGCC AACTTCGGCT CTGCAATTAG CAGTTCTCCC
	601 ACGGCAGTCG TTAAATTCAT CAATAACACC GCTACCATGA GCTTCTCCC
40	651 TAACCTTACT TCGTCAGGAG GCGCGGTGAT TTATGGAGGA AGCTCTCTCC
	701 TTTTGAAAAA CAATTCTGGA TGCATCATCT TCACCGCCAA CTCCCTGTGT
	751 AACAGCTTAA AAGCGCTCAC CCCCTCATCA GGAACCTATG CTTTAGGAAG
	801 TGGCGGAGCC ATCTGCATCC CTACGGGAAC TTTCGAATTAA AAAAACAA
	851 AGGGGAAGTG CACCTCTCT TATAATGGTA CACCAAATGA TCGGGGTGCG
45	901 ATCTACGCCG AAACCTGCAA CATCGTAGGG AACCAGGGTG CCTTGCTCCT
	951 AGATAGCAAC ACTGCAGCGA GAAATGGCGG AGCCATCTGT GCTAAAGTGC
	1001 TCAATTATCA AGGACCGGGT CCTATTGAAAT TCTCTAGAAA CCGCCCGGAG
	1051 AAGGGTGGAG CTATTTCTAT AGGCCCTCT GTTGGAGACC CTGCGAAGCA
50	1101 AACATCGACA CTTACGATT TGGCTTCCGA AGGTGATATT GCGTTCCAAG
	1151 GAAACATGCT CAATACAAA CCTGGAATCC GCAATGCCAT CACTGTAGAA
	1201 GCAGGGGGAG AGATTGTGTC TCTATCTGC CAAGGAGGCT CACGTCTGT
	1251 ATTTTATGAT CCCATTACAC ATAGCCTCCC AACCACAAGT CCGTCTAATA
	1301 AAGACATTAC AATCAACGCT AATGGCGCTT CAGGATCTGT AGTCTTTACA
55	1351 AGTAAGGGAC TCTCCTCTAC AGAACCTCTG TTGGCCTGCCA ACACGACAAC
	1401 TATACTTCTA GGAACAGTCAGATCGCTAG TGGAGAACTG AAGATTACTG
	1451 ACAATGCGGT TGTCAATGTT CTTGGCTTCG CTACTCAGGG CTCAGGTCA
	1501 CTTACCCCTGG GCTCTGGAGG AACCTTAGGG CTGGCAACAC CCACGGGAGC
	1551 ACCTGCCGCT GTAGACTTTA CGATTGGAAA GTTAGCATTC GATCCTTTT
	1601 CCTTCCTAAA AAGAGATTTT GTTCAGCAT CAGTAAATGC AGGCACAAAA
60	1651 AACGTCACTT TAACAGGAGC TCTGGTTCTT GATGAACATG ACGTTACAGA

5 1701 TCTTTATGAT ATGGTGTCA TACAAACTCC AGTAGCAATT CCTATCGCTG
 1751 TTTTCAAAGG AGCAACCGTT ACTAAGACAG GATTTCTGA TGGGGAGATT
 1801 GCGACTCCAR GCCACTACGG CTACCAAGGA AAGTGGTCCT ACACATGGTC
 1851 CCGTCCCCCTG TTAATTCCAG CTCTGATGG AGGATTTCTT GGAGGTCCT
 1901 CTCCCTAGCCG AAATACTCTC TATGCTGTAT GGAATTCAAGA CACTCTCGTG
 1951 CGTTCTACCT ATATCTTAGA TCCCGAGCGT TACGGAGAAA TTGTCAAGAA
 2001 CAGCTTATGG ATTTCCTTCT TAGGAAATCA GGCATTCTCT GATATTCTCC
 2051 AAGATGTTCT TTTGATAGAT CATCCCGGGT TGTCATAAAC CGCGAAAGCT
 2101 TTAGGAGCCCT ATGTCGAACA CACACCAAGA CAAGGACATG AGGGCTTTTC
 2151 AGGTCGCTAT GGAGGCTTAC AAGCTGCGCT ATCTATGAAC TACACGGACC
 2201 ACACATACGTT AGGACTTTCT TTCGGGCAGC TTTATGGAAA AACTAACGCC
 2251 AACCCCTACCC ATTACACGTT CTACAGAACAA ATGTATTTCAC TCTCGTTCTT
 2301 TGGTCATAATC CCTATCGTGA CTCAAAAGAG CGAGGCCCTA ATTTCTGGAA
 2351 AAGCAGCTTA TGTTTATTCC AAAATCACC TAAATACCAAC CTACCTCAGA
 2401 CCTGACAAAG CTCCAAAATC TCAAGGGCAA TGGCATAACA ATAGTTACTA
 2451 TGTTCTTATT TCTGCAGAAC ATCTTTCTCT AAACCTGGTGT CTTCTTACAA
 2501 GACCTCTGGC TCAAGCTTGG GATCTTTCAG GTTTTATTTC CGCAGAAATTC
 2551 CTAGGTGGTT GGCAAAGTAA GTTCACAGAA ACTGGAGATC TGCAACGTAG
 2601 CTTTAGTAGA GGTAAAGGGT ACAATGTTTC CTTACCGATA GGATGTTCTT
 2651 CTCAATGGTTT CACACCAATT AAGAAGGCTC CTTCTACACT GACCACCAAA
 2701 CTTGCCTACA AGCCTGATAT CTATCGTGT AACCCCTCACAA ATATTGTGAC
 2751 TGTCGTCTCA ACCAAGAGA GCACCTCGAT CTCAGGAGCA AATCTACGCC
 2801 GCCACGGTTT GTTGTACAA ATCCATGATG TAGTAGATCT CACCGAGGAC
 2851 ACTCAGGGCT TTCTAAACTA TACCTTTGAC GGGAAAAATG GATTTACAAA
 2901 CCACCGAGTG TCTACAGGAC TAAATCCAC ATTTTAA

The PSORT algorithm predicts an outer membrane location (0.940).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 18A. The recombinant protein was used to immunise mice, whose sera were used in an immunoblot analysis blot (Figure 18B) and for FACS analysis (Figure 18C). A his-tagged protein was also 30 expressed.

The cp6737 protein was also identified in the 2D-PAGE experiment (Cpn0454) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6737 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example 19

The following *C.pneumoniae* protein (PID 4377090) was expressed <SEQ ID 37; cp7090>:

40 1 MNIHSLWKLC TLLALLALPA CSLSPNYGWE DSCNTCHHTR RKKPSSFGFV
 51 PLYTEEDFNP NFTFGEYDSK EEKQYKSSQV AAFRNITFAT DSYTIKGEEN
 101 LAILTNLVHY MKKNPKATLY IEIGHTDERGA ASYNLALGAR RANAIKEHLR
 151 KQGISADRLS TISYGKEHPL NSGHNELAWQ QRNRTEFKIH AR*

A predicted signal peptide is highlighted.

The cp7090 nucleotide sequence <SEQ ID 38> is:

45 1 ATGAATATAC ATTCCCTATG GAAACTTTGT ACTTTATTGG CTTTACTTGC
 51 ATTGCCAGCCA TGTAGCTTT CCCCTAATTG TGGCTGGGAG GATTCCTGTA
 101 ATACATGCCA TCATACAAGA CGAAAAAAAGC CTTCTCTT TGGCTTTGTT
 151 CCTCTCTATA CGGAAGAGGA CTTAACCCCT AATTTTACCT TCGGTGAGTA
 201 TGATTCCAAA GAAGAAAAAC AATACAAGTC AAGCCAAGTT GCAGCATTTC
 251 GTAATATCAC CTTTGCTACA GACAGCTATA CAATTAAGG TGAAGAGAAC
 301 CTTGCGATTG TCACGAACCTT GGTCACTAC ATGAAGAAA ACCCGAAAGC
 351 TACACTGTAC ATTGAAGGGC ATACTGACGA GCGTGGAGCT GCATCCTATA
 401 ACCTTGCCTT AGGAGCACGA CGAGCCAATG CGATTTAAAGA GCATCTCCGA
 451 AAGCAGGGAA TCTCTGCAGA TCGTCTATCT ACTATTCTCT ACGGAAAAGA

501 ACATCCTTTA AATTGGGAC ACAACGAAC T AGCATGGCAA CAAAATCGCC
 551 GTACAGAGTT TAAGATTCA GCACGCTAA

The PSORT algorithm predicts an outer membrane location (0.790).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 19A.

- 5 A his-tagged protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 19B) and for FACS analysis.

These experiments show that cp7090 is useful immunogen. These properties are not evident from the sequence alone.

Example 20

- 10 The following *C.pneumoniae* protein (PID 4377091) was expressed <SEQ ID 39; cp7091>:

1 MLRQLCFQVF FFCFASLWYA EEELEVVVRSE HITLPIEVSC QTDTKDPKIQ
 51 KYLSSLTEIF CKDIALGDCL QPTAASKESS SPLAISLR LH VPQLSVVLLQ
 101 SSKTPQTLC S FTISQNL SVD RQKI HHAADT VHYALTGIPG ISAGKIVFAL
 151 SSLGKDQKLK QGELWTTDYD GKNLAPLITE CSLSITPKWV GVGSNFPYLY
 201 VSYKYGVPKI FLGSLENTEG KKVPLPLKGNO LMPTFSPRKK LLAFVADTYG
 251 NPDLFIQPF S LTSGPMGRPR RLLNEFGTQ GNPSFNPEGS QLVFISNKDG
 301 RPRLYIMS D PEPQAPRLLT KKVRNSSCPA WSPDGKKIAF CSVIKGVRQI
 351 CIYDLSSGED YQLTTSPTNK ESPSWAIDSR HLVFSAGNAE ESELYLISLV
 401 TKTKTNKIAIG VGEKRFPSWG AFPQQPIKRT L*

- 20 A predicted signal peptide is highlighted.

The cp7091 nucleotide sequence <SEQ ID 40> is:

1 ATGTTACGGC AACTATGCTT CCAAGTTTT TTCTTTTGCT TCGCATCGCT
 51 AGTCTATGCT GAAGAATTAG AAGTTGTTGT CCGTTCCGAA CATATCACGC
 101 TCCCTATGTA GGTCTCTTG CAGACCGATA CGAAAGATCC AAAAATACAG
 151 AAATACCTCA GCTCGCTAAC GGAGATATT TGCAAGGACA TTGCCCTTAGG
 201 AGATTGTC TA CAACCCACAG CGGCTTCTAA AGAATCGTC TCTCCCTTAG
 251 CAATATCTT ACGGTTGCA TGTACCTCAGC TATCTGTAGT GCTTTACAG
 301 TCTTCAAAAA CTCCTCAAAC CTTATGTTCT TTTACTATTT CTCAAAATCT
 351 TTCTGTAGAT CGTCAAAAAA TCCATCACGC TGCTGATA CA GTTCATTACG
 401 CCCTCACAGG GATTCCTGGA ATCAGTGCTG GGAAATTTGT TTTTGTCTA
 451 AGTTCTTTAG GAAAAGATCA AAAGCTCAAG CAAGGAGAAT TATGGACTAC
 501 AGATTACGAT GGGAAAAAAC TCGCCCCCTTT AACCACAGAA TGTCGCTCT
 551 CTATAACTCC AAAATGGTG GGTGTGGGAT CAAATTTTCC CTATCTCTAT
 601 GTTTCGTATA AGTATGGTGT GCCTAAAATT TTTCTTGGTT CCCTAGAGAA
 651 CACTGAAGGT AAAAAGTCC TTCCGTTAAA AGGCAACCAA CTCATGCCCTA
 701 CGTTTCTCC AAGAAAAAAAG CTTTTAGCTT TCGTTGCTGA TACGTATGGA
 751 AATCCTGATT TATTATTC ACGTTCTCA CTAACCTCAG GACCTATGGG
 801 TCGCCCCACGT CGCCTCTTA ATGAGAATTG CCGGACTCAA GGGAAATCCCT
 851 CCTTCAACCC TGAAGGATCC CACCTTGTCT TTATATCGAA CAAAGACGGC
 901 CGTCCCGCTC TTTATATTAT GTCCCTCGAT CCTGAACCCC AAGCACCTCG
 951 CTTGCTGACA AAAAAATACA GAAATAGCAG TTGCCCTGCA TGGTCTCCAG
 1001 ATGGTAAAAA AATAGCCTTC TGCTCTGTAA TTAAAGGGT GCGACAAATT
 1051 TGTATTTACG ATCTCTCTC TGGAGAGGAT TACCAACTCA CTACGTCTCC
 1101 CACAAATAAA GAGAGCTTT CTTGGGCTAT AGACAGCCGT CATCTTGTCT
 1151 TTAGTGCGGG GAATGCTGA GAATCAGAGT TATATTAAAT CAGTCTAGTC
 1201 ACCAAAAAAA CTAACAAAAT TGCTATAGGA GTAGGAGAAA AACGGTTCCC
 1251 CTCCTGGGGT GCTTCCCTC AGCAACCGAT AAAGAGAAC A CTATGA

The PSORT algorithm predicts an inner membrane location (0.109).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 20A.

- 50 A his-tagged protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 20B) and for FACS analysis.

These experiments show that cp7091 is a useful immunogen. These properties are not evident from the sequence alone.

Example 21

The following *C.pneumoniae* protein (PID 4376260) was expressed <SEQ ID 41; cp6260>:

```

5      1  MRFSLCGFPV VFSFTLLSVF DTSLSATTIS LTPEDSFHGD SQNAERSYNV
      51  QAGDVYSLTG DVSIISNVDNS ALNKACFNVT SGSVTFAGNH HGLYFNNI
10     101 GTTKEGAVILC CQDPQATARF SGFSTLSFIQ SPGDIKEQGC LYSKNALM
15     151 NNYVVRFEQN QSKTKGGAI S GANVTIVGN Y DSVSFYQNA A TFGGAIHSSG
20     201 PLQIAVNQAE IRFAQNTAKN GSGGALYSDG DIDIDQNAYV LFRENEALTT
25     251 AIGKGGAVCC LPTSGSSTPV PIVTFSDNKQ LVFERNHSIM GGGAIYARKL
30     301 SISSGGPTLF INNISYANSQ NLGGAI AIDT GGEISLSAEK GTITFQGNRT
35     351 SLPPFLNGIHL LQNAKFLKLQ ARNGYSIEFY DPITSEADGS TQLNINGDPK
40     401 NKEYTGTILF SGEKSLANDP RDFKSTIPQN VNLSAGYLVI KEGAEVTVSK
45     451 FTQSPGSHL LLDLGTKLIAS KEDIAITGLA IDIDSLSSSS TAAVIKANTA
50     501 NKQISVTDSI ELISPTGNAY EDLRLMRNSQT FPILLSLEPGA GGSVTVTAGD
55     551 FLPVSPHYGF QGNWKLAWTG TGKVGFFW DKINYKPRPE KEGNLVPNIL
60     601 WGNADVDRSL MQVQETHASS LQTDRGLWID GIGNFFFHVSA SEDNIRYRH
65     651 SGGYVVLSVNN EITPKHYTSM AFSQLFSRDK DYAVSNNEYR MYLGSYLYQY
70     701 TTSLGNIFRY ASRNPVNNG ILSRRFLQNP LMIFHFLCAY GHATNDMKTD
75     751 YANFPMVKNS WRNNNCWAIEC GGSMPLLVFE NGRLFQGAIP FMKLQLVYAY
80     801 QGDFKETTAD GRFSNGSLT SISVPLGIRF EKLALSQDVL YDFSF SYIPD
85     851 IFRKDPSCEA ALVISGDSWL VPAAHVSRHA FVGSGTGRYH FNDYTELLCR
90     901 GSIECRPHAR NYNINC GSKF RF*

```

A predicted signal peptide is highlighted.

25 The cp6260 nucleotide sequence <SEQ ID 42> is:

```

1  ATGCGATTTT CGCTCTCGGG ATTTCCTCTA GTTTTTTCTT TTACATTGCT
51  CTCAGTCTTC GACACTCTT TGAGTGCTAC TACGATTCTT TTAACCCCAG
101 AAGATACTTT TCATGGAGAT AGTCAGAACATG CAGAACGTTTC TTATAATGTT
151 CAAGCTGGGG ATGTCTATAG CCTTACTGGT GATGTCTCAA TATCTAACGT
201 CGATAACTCT GCATTAATAA AAGCCTGCTT CAATGTGACC TCAGGAAGTG
251 TGACGTTCCG AGGAAATCAT CATGGGTTAT ATTAAATAAA TATTTCTCA
301 GGAACATACAA AGGAAGGGGC TGTA CTTTGTTG TGCCAAGATC CTCAAGCAAC
351 GGCACGTTTT TCTGGGTTCT CCACGCTCTC TTTTATTCAAG AGCCCCGGAG
401 ATATTTAAAGA ACAGGGATGT CTC TATTCAA AAAATGCACT TATGCTCTTA
451 AACAAATTATG TAGTGCGTT TGAAACAAAAC CAAAGTAAGA CTAAAGGCCG
501 AGCTTATTAGT GGGCGAATG TTACTATAGT AGGCAACTAC GATTCCGTCT
551 CTTCTATCA GAATGCAGCC ACTTTGGAG GTGCTATCCA TTCTTCAGGT
601 CCCCTACAGA TTGCAGTAAA TCAGGCAGAG ATAAGATTG CACAAAATAC
651 TGCCAAGAAAT GGTCTGGAG GGGCTTGTG CTCCGATGGT GATATTGATA
701 TTGATCAGAA TGCTTATGTT CTATTTCGAG AAAATGAGGC ATTGACTACT
751 GCTATAGGT ACGGAGGGGC TGCTGTGTT CTTCTCTGCA AAATAAACAG TTAGTCTTTG
801 TACTCCAGT CCTATTGTA CTTCTCTGCA CAATTTATGC TAGGAAACCTT
851 AAAGAAACCA TTCCATATG GGTGGCGGGAG CCATTTATGC TAGGAAACCTT
901 AGCATCTCTT CAGGAGGTCC TACTCTATTT ATCAATAATA TATCATATGC
951 AAATTGCAAA AATTTAGGTG GAGCTATTGC CATTGATACT GGAGGGAGA
1001 TCAGTTTATC AGCAGAGAAA GGAACAATTA CATTCCAAGG AAACGGGACG
1051 AGCTTACCGT TTTGGAATGG CATCCATCTT TTACAAAATG CTAATTCCT
1101 GAAATTACAGA GCGAGAAATG GATACTCTAT AGAATTTTAT GATCCTATTA
1151 CTTCTGAAGC AGATGGGTCT ACCCAATTGA ATATCAACGG AGATCCTAAA
1201 AATAAAGAGT ACACAGGGAC CATACTCTT TCTGGAGAAA AGAGTCTAGC
1251 AAACGATCCT AGGGATTTA AATCTACAAAT CCCTCAGAAC GTCAACCTGT
1301 CTGCAGGATA CTTAGTTATT AAAGAGGGGG CGGAAGTCAC AGTTTCAAAA
1351 TTCACGCCAGT CTCCAGGATC GCATTTAGTT TTAGAATTAG GAACCAAAC
1401 GATAGCCTCT AAGGAAGACA TTGCCATCAC AGGCCTCGCG ATAGATATAG
1451 ATAGCTTAAG CTCATCCTCA ACAGCAGCTG TTATTAAGC AAACACCGCA
1501 AATAAACAGA TATCCGTGAC GGACTCTATA GAACCTATCT CGCCTACTGG
1551 CAATGCCTAT GAAGATCTCA GAATGAGAAA TTCAACAGACG TTCCCTCTGC
1601 TCTCTTTAGA GCCTGGAGCC GGGGGTAGTG TGACTGTAA AC TGCTGGAGAT
1651 TTCCTACCGG TAAGTCCCCA TTATGGTTT CAAGGCAATT GGAAATTAGC
1701 TTGGCAGGAA ACTGGAAACA AAGTTGGAGA ATTCTCTGG GATAAAATAA

```

1751 ATTATAAGCC TAGACCTGAA AAAGAAGGAA ATTTAGTTCC TAATATCTTG
 1801 TGGGGGAATG CTGTAGATGT CAGATCCTTA ATGCAGGTTA AAGAGACCA
 1851 TGCATCGAGC TTACAGACAG ATCGAGGGCT GTGGATCGAT GGAATTGGGA
 1901 ATTTCTTCCA TGATCTCTGCC TCCGAAGACA ATATAAGGTA CCGTCATAAC
 1951 AGCGGTGGAT ATGTTCTATC TGAAATAAT GAGATCACAC CTAAGCACTA
 2001 TACTTCGATG GCATTTTCCC AACTCTTTAG TAGAGACAAG GACTATGCGG
 2051 TTTCCAACAA CGAACATACAGA ATGTATTTAG GATCGTATCT CTATCAATAT
 2101 ACAACCTCCC TAGGGAATAT TTTCGTTAT GCTTCGCGTA ACCCTAATGT
 2151 AAACGTCGGG ATTCTCTCAA GAAGGTTTCT TCAAAATCCT CTTATGATT
 2201 TTCATTTTTT GTGTGTTAT GGTATGCCA CCAATGATAT GAAAACAGAC
 2251 TACGCAAATT TCCCTATGGT GAAAACAGC TGGAGAAACA ATTGTGGGC
 2301 TATAGAGTGC GGAGGGAGCA TGCCCTCATTT GGTATTTGAG AACGGAAGAC
 2351 TTTCCAAGG TGCCATCCCA TTATGAAAC TACAATTAGT TTATGCTTAT
 2401 CAGGGAGATT TCAAAGAGAC GACTGCAAGAT GGCGGTAGAT TTAGTAATGG
 2451 GAGTTAACAA TCGATTTCTG TACCTCTAGG CATACGCTT GAGAAAGCTGG
 2501 CACTTTCTCA GGATGTACTC TATGACTTTA GTTCTCCTA TATTCTGAT
 2551 ATTTTCCGTA AGGATCCCTC ATGTGAAGCT GCTCTGGTGA TTAGCGGAGA
 2601 CTCCCTGGCTT GTTCCGGCAG CACACGTATC AAGACATGCT TTTGTAGGGA
 2651 GTGGAACGGG TCGGTATCAC TTAAACGACT ATACTGAGCT CTTATGTCGA
 2701 GGAAGTAGATAG AATGCCGCC CCATGCTAGG AATTATAATA TAAACTGTGG
 2751 AAGCAAATT CGTTTTAG

The PSORT algorithm predicts an outer membrane location (0.921).

The protein was expressed in *E.coli* and purified both as a his-tag and GST-fusion product. The GST-fusion is shown in Figure 21A. This recombinant protein was used to immunise mice, whose sera 25 were used in a Western blot (Figure 21B) and for FACS analysis (Figure 21C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6260 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

30 Example 22

The following *C.pneumoniae* protein (PID 4376456) was expressed <SEQ ID 43; cp6456>:

1 MSSPVNNTPS APNIPIPAPT TPPIPTTKPR SSFIEKVIV AKYILFAIAA
 51 TSGALGTIIG LSGALTGIG IALLVIFFVS MVLLGLILKD SISGGEERRL
 35 101 REEVSRFTSE NQRLLTVITTT LETEVKDLKA AKDQLTLEIE AFRNENGNLK
 151 TTAEDLEEQV SKLSEQLEAL ERINOLIQAN AGDAQEISSE LKKLISGWDS
 201 KVVEQINTSI QALKVLLQBE WVQEAQTHVK AMQEIQIQLQ AEILGMHNQS
 251 TALQKSVENL LVQDQALTRV VGELLESENK LSQACSLRQ EIEKLAQHET
 301 SLQQRIDAML AQEQNLAEQV TALEKMKQEA QKAESEFIAAC VRDRTFGRRE
 351 TPPPTTPVVE GDESQEEDEG GTPPPVSQPSS PVDRATGDQ *

40 The cp6456 nucleotide sequence <SEQ ID 44> is:

1 ATGTCATCTC CTGAAATAA CACACCTCA GCACCAAACA TTCCAATACC
 51 AGCGCCACG ACTCCAGGT TTCCCTACAC AAAACCTCGT TCTAGTTCA
 101 TTGAAAAGGT TATCATTGTA CCTAAGTACA TACTATTTGC AATTGAGGCC
 151 ACATCAGGAG CACTCGGAAC ATTCTAGGT CTATCTGGAG CGCTAACCCCC
 201 AGGAATAGGT ATTGCCCTTC TTGTTATCTT CTTTGTTCT ATGGTGCTTT
 251 TAGGTTTAAT CCTTAAAGAT TCTATAAGTG GAGGAGAAGA ACGCAGGCTC
 301 AGAGAAAGAGG TCTCTCGATT TACAAGTGAG AATCAACGGT TGACAGTCAT
 351 AACACACAA CTTGAGACTG AAGTAAAGGA TTAAAAGCA GCTAAAGATC
 401 AACTTACACT TGAATCGAA GCATTAGAA ATGAAAACGG TAATTAAAAA
 451 ACAACTGCTG AGGACTTACA AGAGCAGGTT TCTAAACTTA GCGAACAAATT
 501 AGAAGCACTA GAGCGAATTAA ATCAACTTAT CCAAGCAAAC GCTGGAGATG
 551 CTCAAAGAAAT TTGCGTCGTAA CTAAGAAAT TAATAAGCGG TTGGGATTCC
 601 AAAGTGTGTTG AACAGATAAA TACTTCTATT CAAGCATTGA AAGTGTATT
 651 GGGTCAAGAG TGGGTGCAAG AGGCTAACAC ACACGTTAAA GCAATGCAAG
 701 AGCAATTCA AGCATTGCAA GCTGAAATTG TAGGAATGCA CAATCAATCT

-64-

751 ACAGCATTCG AAAAGTCAGT TGAGAATCTA TTAGTACAAG ATCAAGCTCT
 801 AACAAAGAGTA GTAGGTGAGT TGTTAGAGTC TGAGAACAAAG CTAAGCCAAG
 851 CTTGTTCTGC GCTACCGTCAA GAAATAGAAA AGTTGGCCCA ACATGAAACA
 901 TCTTTGCAAC AACGTTATTGA TGCGATGCTA GCCCAAGAGC AAAATTGGC
 951 AGAGCAGGTC ACAGCCCTTG AAAAATGAA ACAAGAACGT CAGAAGGCTG
 1001 AGTCCGAGTT CATTGCTTGT GTACGTGATC GAACCTTCGG ACGTCGTGAA
 1051 ACACCTCAC CAACAAACACC TGAGTTGAA GGATGATGAAA GTCAAGAAGA
 1101 AGACGAAGGA GGTACTCCCC CAGTATCACA ACCATCTCA CCCGTAGATA
 1151 GAGCAACAGG AGATGGTCAG TAA

- 10 The PSORT algorithm predicts inner membrane (0.127).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 22A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 22B) and for FACS analysis (Figure 22C). A his-tag protein was also expressed.

- 15 These experiments show that cp6456 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 23

The following *C.pneumoniae* protein (PID 4376729) was expressed <SEQ ID 45; cp6729>:

1 MKIPLHKLII SSTLVTPIIL SIATYGDAS LSPTDSFDGA GGSTFTPKST
 51 ADANGTNVVL SGNVYINDAG KGTALTGCCF TETTGDLTFT GKGYSFNFNT
 101 VDAGSNAGAA ASTTADKALT FTGFSNLSFI AAPGTTVASG KSTLSSAGAL
 151 NLTDNGTILSQNVSNEANN NGGAITTAKTL SISGNTSSIT FTSNSAKKLG
 201 GAIYSSAAAS ISGNTGQLVF MNNKGETGGG ALGFEASSSI TQNSSLFFSG
 251 NTATDAAGKG GAIYCEKTGE TPTLTISGNK SLTFAENSSV TQGGAICAHG
 301 LDLSAAGPTL FSNNRCGNTA AGKGGAIAIA DSGSLSLSAN QGDITFLGNT
 351 LTSTSAPST RNAIYLGSSA KITNLRAAQG QSIYFYDPIA SNTTGASDVL
 401 TINQPDSNSP LDYSCTIVFS GEKLSADEAK AADNFTSILK QPLALASGTL
 451 ALKGNVELDV NGFTQTEGST LLMQPQGTKLK ADTEAISLTQ LVVDLSALEG
 501 NKSVSIETAG ANKTITLTSP LVFDQDSSGNF YESHTINQAF TQPLVVFTAA
 551 TAASDIYIIDA LLTSPVQTPE PHYGGYQGHWE ATWADTSTAK SGTMWVTTG
 601 YNPNPERRAS VVPDSLWASF TDIRTLQQIM TSQANSIYQQ RGLWASGTAN
 651 FFHKDKSGTN QAQRHKSYGY IVGGSaedfs ENIFSVAFQCQ LFGKDKDLF
 701 VENTSHNYLA SLYLQHRAFL GGLPPMPSFGS ITDMLKDIPQ ILNAQLSYSY
 751 TKNDMDTRYT SYPEAQGSWT NNSGALELGG SLALYLPKEA PFFQGYFPFL
 801 KFQAVYSRQQ NFKESEGAEAR AFDDGDLVNC SIPVGIRLEK ISEDEKNNFE
 851 ISLAXIGDVY RKNPRSRSTSL MVSGASWTSI CKNLARQAFQ ASAGSHLTL
 901 PHVELSGEAA YELRGSAAHY NVDCGLRYSF *

A predicted signal peptide is highlighted.

The cp6729 nucleotide sequence <SEQ ID 46> is:

1 ATGAAAATAC CCTTGACCAA ACTCCTGATC TCTTCGACTC TTGTCACTCC
 40 51 CATTCTATTG AGCATTGCAA CTTACGGAGC AGATGCTTCT TTATCCCCTA
 101 CAGATAGCTT TGATGGAGCG GGGGGCTCTA CATTACTCC AAAATCTACA
 151 CGAGATGCCA ATGGAACGAG CTATGTCTTA TCAGGAAAATG TCTATATAAAA
 201 CGATGCTGGG AAAGGCACAG CATTAACAGG CTGCTGCTTT ACAGAAACTA
 251 CGGGTGTACT GACATTACT GGAAAGGGAT ACTCAATTTC ATTCAACACG
 301 GTAGATGCGG GTTCGAATGC AGGAGCTGCG GCAAGCACAA CTGCTGATAA
 351 AGCCCTAACAA TTCACAGGAT TTTCTAACCT TTCCCTTCATT GCAGCTCCTG
 401 GAACTACAGT TGCTTCAGGA AAAAGTACTT TAAGTTCTGC AGGAGCCTTA
 451 AATCTTACCG ATAATGGAAC GATTCTCTTT AGCCAAAACG TCTCCAATGA
 501 AGCTAATAAC AATGGCCGG CGATCACCAAC AAAAATCTTT TCTATTCTG
 551 GGAATACCTC TTCTATAACC TTCACTAGTA ATAGCGAAA AAAATTAGGT
 601 GGAGCGATCT ATAGCTCTGC GGCTGCAAGT ATTTCAAGGAA ACACCGGCCA
 651 GTTAGTCTTT ATGAATAATA AAGGAGAAAC TGGGGGTGGG GCTCTGGCT
 701 TTGAAGCCAG CTCCTCGATT ACTCAAAATA GCTCCCTTTT CTTCTCTGGA
 751 AACACTGCAA CAGATGCTGC AGGAAGGGC GGGGCCATT TTTGTGAAAA
 801 AACAGGAGAG ACTCCTACTC TTACTATCTC TGGAAATAAA AGTCTGACCT
 851 TCGCCGAGAA CTCTTCAGTA ACTCAAGGCG GAGCAATCTG TGGCCATGGT

	901	CTAGATCTTT	CCGCTGCTGG	CCCTACCCCTA	TTTTCAAATA	ATAGATGCGG
	951	GAACACAGCT	GCAGGCAAGG	GCGGCCTAT	TGCAATTGCC	GACTCTGGAT
5	1001	CTTTAAGTCT	CTCTGCAAT	CAAGGAGACA	TCACGTTCT	TGGCAACACT
	1051	CTAACCTCAA	CCTCCCGGCC	AACATCGACA	CGGAATGCTA	TCTACCTGGG
	1101	ATCGTCAGCA	AAAATTACGA	ACTTAAGGGC	AGCCAAGGC	CAATCTATCT
	1151	ATTTCATATGA	TCCGATTGCA	TCTAACACCA	CAGGAGCTTC	AGACGTTCTG
	1201	ACCATCAACC	AACCGGATAG	CAACTCGCCT	TTAGATTATT	CAGGAACGAT
	1251	TGTATTTCT	GGGGAAAAGC	TCTCTGCAGA	TGAAGCGAAA	GCTGCTGATA
10	1301	ACTTCACATC	TATATTTAAAG	CAACCATTGG	CTCTAGCCTC	TGGAACCTTA
	1351	GCACCTCAAAG	GAAATGTCGA	GTAGATGTC	AATGGTTCA	CACAGACTGA
	1401	AGGCTCTACA	CTCCTCATGC	AACCAAGAAC	AAAGCTCAA	GCAGATACTG
	1451	AAGCTATCAG	TCTTACCAA	CTTGTGTTTG	ATCTTCTGC	CTTAGAGGGA
	1501	AATAAGAGTG	TGTCCATTGA	AAACAGCAGGA	GCCAAACAAA	CTATAACTCT
15	1551	AACCTCTCCT	CTTGTGTTCC	AAGATACTAG	CGGCAATT	TATGAAAGCC
	1601	ATACGATAAAA	CCAAGCCTTC	ACCGAGCCTT	TGGTGGTATT	CACTGCTGCT
	1651	ACTGCTGCTA	GCGATATTAA	TATCGATGCG	CTTCTCACCT	CTCCAGTACA
	1701	AACTCCGAA	CCTCATTCAG	GCTATCAGGG	ACATTGGGAA	GCCACATTGGG
	1751	CAGACACATC	AACTGCAAAA	TCAGGAACTA	TGACTTGGGT	AACTACGGGC
20	1801	TACAACCCCTA	ATCCTGAGCG	TAGAGCTTCC	GTAGTCCCCG	ATTCAATTATG
	1851	GGCATCCCTT	ACTGACATTTC	GCACCTCTACA	GCAGATCATG	ACATCTCAAG
	1901	CGAATAGTAT	CTATCAGCAA	CGAGGACTCT	GGGCATCAGG	AACTGCGAAT
	1951	TTCTTCCATA	AGGATAAAATC	AGGAACAAAC	CAAGCATTCC	GACATAAAAG
	2001	CTACGGCTAT	ATTGTTGGAG	GAAGTGTGTA	AGATTTTCT	GAAAATATCT
25	2051	TCAGTGTAGC	TTTCTGCCAG	CTCTTCGGTA	AAGATAAAAGA	CCTGTTTATA
	2101	GTTGAAAATAA	CCTCTCATAA	CTATTTAGCG	TCGCTATACC	TGCAACATCG
	2151	AGCATTCTCTA	GGAGGACTTC	CCATGCCCTC	ATTTGGAAGT	ATCACCGACA
	2201	TGCTGAAAGA	TATTCCTCTC	ATTPTGAATG	CCCAGCTAAG	CTACAGCTAC
	2251	ACTAAAAATG	ATATGGATAC	TCGCTATACT	TCCTATCCTG	AAGCTCAAGG
30	2301	CTCTTGAGACC	AATAACTCTG	GGGCTCTAGA	GCTCGGAGGA	TCTCTGGCTC
	2351	TATATCTCCC	AAAGAACGCA	CCGTTCTTCC	AGGGATATT	CCCCTCTTA
	2401	AAAGTCCAGG	CAGTCTACAG	CCGCAACAA	AACTTAAAG	AGAGTGGCGC
	2451	TGAAGCCCGT	GCTTTTGATG	ATGGAGACCT	AGTGAACCTG	TCTATCCCTG
	2501	TCGGCATTG	GTTAGAAAAAA	ATCTCCGAAG	ATGAAAAAAA	TAATTCGAG
35	2551	ATTTCTCTAG	CCTACATTGG	TGATGTGTAT	CGTAAAATC	CCCGTTCGCG
	2601	TACTTCTCTA	ATGGTCAGTG	GAGCCTCTTG	GACTCGCTA	TGTAAAACC
	2651	TCGCACGACA	AGCCTCTTA	GCAACTGCTG	GAAGCCATCT	GACTCTCTCC
	2701	CCTCATGTAG	AACTCTCTGG	GGAGCTGCT	TATGAGCTTC	GTGGCTCAGC
	2751	ACACATCTAC	AATGTAGATT	GTGGCTAAG	ATACTCATTC	TAG

The PSORT algorithm predicts outer membrane (0.927).

- 40 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 23A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 23B) and for FACS analysis (Figure 23C). A his-tag protein was also expressed.
- The cp6729 protein was also identified in the 2D-PAGE experiment (Cpn0446) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.
- 45 These experiments show that cp6729 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 24

The following *C.pneumoniae* protein (PID 4376849) was expressed <SEQ ID 47; cp6849>:

50	1	MSKLIRRVVT	VIALTSMASC	FASGGIEAAV	AESLITKIVA	SAETKPAPVP
	51	MTAKKVRLVR	RNKQPVEQKS	RGAFCDFEYF	PCEEGRCQPV	EAQQESCYGR
	101	LYSVKVNND	NVBICQSVPE	YATVGSPYPI	EILAIGKKDC	VDVVITQQLP
	151	CEAEFVSSDP	ETTPPTSDGKL	VWKIDRLGAG	DKCKITVWVK	PLKEGCCFTA
	201	ATVCACPELR	SYTKCCQPAI	CIKQEGPDCA	CLRCPVCYKI	EVVNTGSAIA
	251	RNVTVDNPVP	DGYSHASGQR	VLSFNLGDMR	PGDKKVFTVE	FCPQRGGQIT
55	301	NVATVITYCGG	HKCSANVTTV	VNEPCVQVN	SGADWSYVCK	FVEYSISVSN
	351	PGDLVLHDVV	IQDTLPNGVT	VLEAPGGEIC	CNKVVWRIKE	MCPGETLQFK

401 LVVKAQVPGF FTNQVAVTSE SNCGTCTSCA ETTTHWKGLA ATHMCVLDTN
 451 DPICVGENTV YRICVTNRGS AEDTNVSLIL KFSKELQPIA SSGPTKGTIS
 501 GNTVVFDALP KLGSKESVEF SVTLKGIAPG DARGEAILSS DTLTSPVSDT
 551 ENTHVY*

- 5 A predicted signal peptide is highlighted.

The cp6849 nucleotide sequence <SEQ ID 48> is:

10	1 ATGTCCAAAC TCATCAGACG AGTAGTTACG GTCCCTTGCGC TAACGAGTAT 51 GGCAGGTTGC TTTGCCAGCG CGGGTATAGA GGCGCTGTGTA GCAGAGTCCT 101 TGATTACTAA GATCGTCGCT AGTGCAGAAA CAAAGCCAGC ACCTGTTCCCT 151 ATGACAGCGA AGAAGGTTAG ACTTGTCCGT AGAAATAAAC ACCAGTTGA 201 AAAAAAAAGC CGTGGTGCTT TTTGTGATAA GAATTTTAT CCCTGTGAAG 251 AGGGACGATG TCAACCTGTA GAGGCTCAGC AAGAGTCTG CTACGGAAGA 301 TTGTATTCTG TAAAAGTAAA CGATGATTGC AACGTAGAAA TTTGCCAGTC 351 CGTTCCAGAA TACGCTACTG TAGGATCTCC TTACCCCTATT GAAATCCCTTG 401 CTATAGGCAA AAAAGATTGT GTTGATGTTG TGATTACACA ACAGCTACCT 451 TGCGAAGCTG AATTCTGTAAG CAGTGTGATCCA GAAACAACTC CTACAAGTGA 501 TGGGAAATTAA GTCTGGAAAA TCGATGCGCT GGGTGCAGGA GATAAATGCA 551 AAATTACTGT ATGGGTAAAA CCTCTTAAAG AAGGTTGCTG CTTCACAGCT 601 GCTACTGTAT GTGCTTGCCC AGAGCTCCGT TCTTATACTA AATGCCGTCA 651 ACCAGGCCATT TGTATTAAAGC AAGAAGGACC TGACTGTGCT TGCCTAAAGAT 701 GCCCTGTATG CTACAAACATC GAAGTAGTGA ACACAGGATC TGCTATTGCC 751 CGTAACGTAAG CTGTAGATAA TCCCTGTTCCG GATGGCTATT CTCATGCATC 801 TGGTCAAAGA GTTCTCTCTT TTAACCTTAGG AGACATGAGA CCTGGCGATA 851 AAAAGGTATT TACAGTTGAG TTCTGCCCTC AAAGAAGAGG TCAAATCACT 901 AACGTTGCTA CTGTAACCTA CTGCCGTGGA CACAAATGTT CTGCAAATGT 951 AACTACAGTT GTTAATGAGC CTTGTGTACA AGTAAATATC TCTGGTGCTG 1001 ATTGGTCTTA CGTATGTTAAA CCTGTGGAGT ACTCTATCTC AGTATCGAAT 1051 CCTGGAGACT TGGTCTCTCA TGATGTGCTG ATCCAAGATA CACTCCCTTC 1101 TGGTGTATCA GTACTCGAAG CCTCTGGTGG AGAGATCTGC TGTAATAAAG 1151 TTGTTTGGCG TATTAAGAAA ATGTGCGGAG GAGAACCCCT CCAGTTAAA 1201 CTTGTAGTGA AAGCTCAAGT TCCGTGAAAGA TTCACAAATC AAGTTGCAGT 1251 AACTAGTGAAG TCTAACTGCG GAACATGTAC ATCTTGCAGCA GAAACAAACAA 1301 CACATTGGAA AGGTCTTGCA GCTACCCATA TGTGCGTATT AGACACAAAT 1351 GATCCTATCT GTGTAGGAGA AAATACTGTC TATCGTATCT GTGTAACCTAA 1401 CCGTGGTTCTC GCTGAAGATA CTAACGTATC TTAATCTTG AAGTTCTCAA 1451 AAGAACCTCA GCCAATAGCT TCTTCAGGTC CAACTAAAGG AACGATTTC 1501 GGTAAATACCG TTGTGTTTCGA CCCTTTAACCT AAACCTCGGTT CTAAGGAATC 1551 TGTAGAGTTT TCTGTTACCT TGAAAGGTAT TGCTCCCGA GATGCTCGCG 1601 GCGAAGCTAT TCTTTCTTCT GATACACTGA CTTCACCAAGT ATCAGACACA 40 1651 GAAAATACCC ACGTGTATTA A
----	--

The PSORT algorithm predicts periplasmic space (0.93).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 24A, and also as a his-tag protein. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 24B) and for FACS analysis (Figure 24C).

- 45 The cp6849 protein was also identified in the 2D-PAGE experiment (Cpn0557).

These experiments show that cp6849 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 25

The following *C.pneumoniae* protein (PID 4376273) was expressed <SEQ ID 49; cp6273>:

50	1 MGLFHLLTLFG LLLCSLPISL VAKFPESVGH KILYISTQST QQALATYLEA 51 LDAYGDHDFV VLRKIGEDYL KQSIHSSDPQ TRKSTIIGAG LAGSSEALDV 101 LSQAMETADP LQQLLVLSAV SGHLGKTSDD LLFKALASPV PVRLEAAYR 151 LANLKNTKVI DHLHSFIKKL PEEBIQCLSAI IFLRLETEES DAYIRDLAA 201 KKSAIRSATA LQIGEYQQKR FLPTLRLNLLT SASPDQEAI LYALGKLKDQ
----	---

5 251 QSYNNIKKQL QKPDVDTLAA AQALIALGK EEDALPVKK QALEERPRAL
 301 YALRHLPEI GIPIALPIFL KTKNSEAKLN VALALLELGC DTPKLLEYIT
 351 ERLVQPHYNE TLALSESKGR TLQNWKRVNI IVPQDPQERE RLLSTTRGLE
 401 EQILTFLFRL PKEAYLPCYI KLLASQKTQL ATTAISFLSH TSHQEALDLL
 451 FQAAKLPGEPIIRAYADLAI YNLTKDPEKK RSLHDYAKKL IQETLLFVDT
 501 ENQRPHPSMP YLRVQVTPES RTKLMILDILE TLATSKSSED IRLLIQLMTE
 551 GDAKNFPVLA GLLIKIVE*

A predicted signal peptide is highlighted.

The cp6273 nucleotide sequence <SEQ ID 50> is:

10 1 ATGGGACTAT TCCATCTAAC TCTCTTGGG CTTTTATTGT GTAGTCTTCC
 51 CATTTCCTCTT GTTGCTAAAT TCCCTGAGTC TGTTAGGTCAAT AAGATCCTTT
 101 ATATAAGTAC GCAATCTACA CAGCAGGCC TAGCAACATA TCTGGAAGCT
 151 CTAGATGCCT ACGGTGATCA TGACTTCTTC GTTTTAAGAA AAATCGGAGA
 201 AGACTATCTC AAGCAAAGCA TCCACTCTC AGATCCGCAA ACTAGAAAAAA
 251 GCACCACAT CATGGAGCAGGC CTGGCGGGAT CTTCAGAACG CTTGGACGTG
 301 CTCTCCCAAG CTATGAAAC TGCAAGACCCC CTGCAAGCAGC TACTGTTTT
 351 ATCGGCAGTC TCAGGACATC TTGGGAAAAC TTCTGACGAC TTACTGTTTA
 401 AAGCTTTAGC ATCTCCCTAT CCTGTCATCC GCTTAGAACG CGCCTATAGA
 451 CTTGCTAATT TGAAGAACAC TAAAGTCATT GATCATCTAC ATTCTTTCTAC
 501 TCATAAGCTT CCCGAAGAAA TCCAATGCCT ATCTGCGGCA ATATTCCTAC
 551 GCTTGGAGAC TGAAGAATCT GATGCTTATA TTCTGGGATCT CTTAGCTGCC
 601 AAGAAAAGCG CGATTGGAG TGCCACAGCT TTGCAAGATCG GAGAATACCA
 651 ACAAAAACGC TTTCTTCCGA CACTTAGGAA TTGCTAACG AGTGGCTCTC
 701 CTCAAGATCA AGAAGCTATT CTTATGCTT TAGGGAAGCT TAAGGATGGT
 751 CAGAGCTACT ACAATATAAA AAAGCAATTG CAGAAGCCTG ATGTGGATGT
 801 CACTTTAGCA GCAGCTCAAG CTTAATTG TGTTGGGAAA GAAGAGGACG
 851 CTCTTCCCGT GATAAAAAGG CAAGCACTTG AGGAGCGGGCC TCGAGCCCTG
 901 TATGCCCTAC CGCATCTACC CTCTGAGATA GGATTCGGA TTGCCCTGCC
 951 GATATTCTTA AAAACTAAGA ACAGCGAACG CAAGTTGAAT GTAGCTTTAG
 1001 CTCTCTTCTAGA GTTAGGGTGT GACACCCCTA AACTACTGGA ATACATTACC
 1051 GAAAGGCTTG TCCAACCCCA TTATAATGAG ACTCTAGCT TGAGTTCTC
 1101 TAAGGGGGCGT ACTTTACAAA ATTGGAAGCG GGTGAACATC ATAGTCCCTC
 1151 AAGATCCCCA GGAGAGGGAA AGGTTGCTCT CCACAACCCG AGGTCTTGAA
 1201 GAGCAGATCC TTACGTTCT CTTCCGCCCTA CCTTAAAGAAG CTTACCTCCC
 1251 CTGTATTTAT AAGCTTTGG CGAGTCAGAA AACTCAGCTT GCCACTACTG
 1301 CGATTCTTT TTTAAGTCAC ACCTCACATC AGGAAGCCTT AGATCTACTT
 1351 TTCCAAGCTG CGAAGCTTCC TGGAGAACCT ATCATCCGCG CCTATGCAGA
 1401 TCTTGCTATT TATAATCTCA CCAAAGATCC TGAAAAAAAAA CGTTCTCTCC
 1451 ATGATTATGC AAAAAGCTA ATTCAAGGAAA CCTTGTTATT TGTGGACACG
 1501 GAAAACCAAA GACCCCATCC CAGCATGCC TATCTACGTT ATCAGGTAC
 1551 CCCAGAAAGC CGTACGAAGC TCATGTTGGA TATTCTAGAG ACACTAGCCA
 1601 CCTGAAAGTC TTCCGAAGAT ATCCGTTTAT TGATACAAC GATGACGGAA
 1651 GGAGATGCAA AAAATTCCC AGTCCTTGCA GGTTACTCA TAAAAATTGT
 1701 GGAGTAA

45 The PSORT algorithm predicts a periplasmic location (0.922).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 25A. The recombinant GST-fusion was used to immunise mice, whose sera were used in a Western blot (Figure 25B) and for FACS analysis (Figure 25C).

50 This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6273 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 26

The following *C.pneumoniae* protein (PID 4376735) was expressed <SEQ ID 51; cp6735>:

5 1 MTILRNFLTC SALFLALPAA AQVVLHESD GYNGAINNKS LEPKITCYPE
 51 GTSYIFLDDV RISNVKHDQE DAGVFINRSG NLFFMGNRCN FTFHNLMTEG
 101 FGAAISNRVG DTTLTLNSP^S YLAFTSAPLL PQGQGAIYSL GSVMIENSEE
 151 VTFCGNYSSW SGAAIYTPYL LGSKASRPSV NLSGNRYLVF RDNVSQGYGG
 201 AISTHNLTLT TRGPSCFENN HAYHDVNSNG GAIAIAPIGGS ISISVKSGDL
 251 IFKGNTASQD GNTIHNSIHL QSGAQFKNLR AVSESGVYFY DPISHSESHK
 301 ITDLVINAPE GKETYEGEFS GLCLDDHE VCAENLTSTI LQDVTLAGGT
 351 LSLSDGVTLQ LHSFKQEAASS TLTMSPGTTL LCSGDARVQN LHILIEDTDN
 401 FVPVRIRAEKD DALVSLEKL KVAFEAYWSV YDFPQFKEAF TIPLLELLGP
 10 451 SFDSLLLGET TLERTQVTTE NDAVRGFWSL SWEELYPPSLD KDRRIPTKK
 501 TVFLTNPEI TSTP*

A predicted signal peptide is highlighted.

The cp6735 nucleotide sequence <SEQ ID 52> is:

15 1 ATGACCATAC TTCAAATTT TCTAACCTGC TC GGCTTTAT TCCTCGCTCT
 51 CCCTGCAGCA GCACAAGTTG TATATCTCA TGAAAGTGAT GGTTATAACG
 101 GTGCTATCAA TAATAAAAGC TTAGAACCTA AAATTACCTG TTATCCAGAA
 151 GGAACCTTCTT ACATCTTCT AGATGACGTG AGGATTTCCA ACGTTAAGCA
 201 TGATCAAGAA GATGCTGGGG TTTTATAAA TCGATCTGGG AATCTTTTT
 251 TCATGGGCAA CCGTTGCAAC TTCACTTTTC ACAACCTTAT GACCGAGGGT
 301 TTTGGCGCTG CCATTTGAA CGCGTTGGA GACACCAC TCACACTCTC
 351 TAATTTTCT TACTTAGCGT TCACCTCAGC ACCTCTACTA CCTCAAGGAC
 401 AAGGAGCGAT TTATAGTCTT GGTTCCGTGA TGATCGAAAA TAGTGAGGAA
 451 GTGACTTTCT GTGGAACTA CTCTTCGTGG AGTGGAGCTG CGATTATAC
 501 TCCCTACCTT TTAGGTCTA AGCGGAGTCG TCCTTCAGTA AATCTCAGCG
 551 GGAACCGCTA CCTGGTGTTC AGAGACAATG TGAGGCCAAGG TTATGGCGGC
 601 GCCATATCTA CCCACAACTC CACACTCACG ACTCGAGGAC CTTCGTGTGTT
 651 TGAAAATAT CATGCTTATC ATGACGTGAA TAGTAATGGA GGAGGCCATTG
 701 CCATTGCTCC TGGAGGATCG ATCTCTATAT CCGTGAAAAG CGGAGATCTC
 751 ATCTTCAAAG GAAATACAGC ATCACAAAGAC GGAAATACAA TACACAACTC
 801 CATCCATCTG CAATCTGGAG CACAGTTAA GAACCTACGT GCTGTTTCAG
 851 AATCCGGAGT TTATTTCTAT GATCCTATAA GCCATAGCGA GTCGCATAAA
 901 ATTACAGATC TTGTAATCAA TGCTCCTGAA GGAAAGGAAA CTTATGAAGG
 951 AACAAATTAGC TTCTCAGGAC TATGCCCTGGA TGATCATGAA GTTTGTGCGG
 30 1001 AAAATCTTAC TTCCACAAATC CTACAAGATG TCACATTAGC AGGAGGAAC
 1051 CTCTCTCTAT CGGATGGGGT TACCTTGCAA CTGCATTCTT TTAAGCAGGA
 1101 AGCAAGCTCT ACGCTTACTA TGCTCTCAGG AACCACTCTG CTCTGCTCAG
 1151 GAGATGCTCG GGTTCAAGAT CTGCACATCC TGATTGAAGA TACCGACAAC
 1201 TTTGTTCCTG TAAGGATTGCG CGCCGAGGAC AAGGATGCTC TTGTCTCATT
 1251 AGAAAAACTT AAAAGTGCCT TTGAGGCTTA TTGGTCCGTC TATGACTTTTC
 40 1301 CTCAAATTAA GGAAGCCTTT ACGATTCTC TTCTTGAAACT TCTAGGGCCT
 1351 TCTTTTGACA GTCTTCCTC AGGGGAGACC ACTTGGAGA GAACCCAAGT
 1401 CACAACAGAG ATGACGCCG TTGAGGTTT CTGGTCCCTA AGCTGGGAAG
 1451 AGTACCCCCC TTCTCTGGAT AAAGACAGAA GGATCACACC AACTAAGAAA
 1501 ACTGTTTCC TCACCTGGAA TCCTGAGATC ACTTCTACGC CATAA

45 The PSORT algorithm predicts an outer membrane location (0.922).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 26A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 26B).

These experiments show that cp6735 is a surface-exposed and immunoaccessible protein, and that it 50 is a useful immunogen. These properties are not evident from the sequence alone.

Example 27

The following *C.pneumoniae* protein (PID 4376784) was expressed <SEQ ID 53; cp6784>:

55 1 MNRRKARWWV ALFAMTALIS VGCCPWSQAK SRCSIDKYIP VVNRLLEVCG
 51 LPEAENVEDL IESSSAWLT PEERFSGELV SICQVKDEHA FYNDLSSLHM
 101 TQAVPSYSAT YDCAVVFGGP LPALRQRLLDF LVREWQRGVR FKKIVFLCGB
 151 RGRYQSIEEQ EHFFDSRYNP FPTEENWESG NRVTSPSSEE IAKFVWMQML

-69-

```

201 LPRAWRDSTS GVRVTFLLA K PEENRVVANR KDTLLLFRSY QEAFFGRVLF
251 VSSQPFIGLD ACRVGQFFKG ESYDLAGPGF AQGVLKHYWA PRICLHTLAE
301 WLKETNGCLN ISEGCFG*

```

A predicted signal peptide is highlighted.

- 5 The cp6784 nucleotide sequence <SEQ ID 54> is:

```

1 ATGAATAGAA GAAAAGCAAG ATGGGTAGTG GCATTGTTCG CAATGACGGC
51 GCTCATTTCT GTTGGGTGTT GTCCTTGGTC ACAAGCGAAA TCAAGATGTT
101 CTATGATAA GTATATTCCT GTAGTCAAATC GTTACTAGA AGTTTGTGGA
151 CTTCCCTGAAG CTGAGAATGT TGAGGATTIA ATCGAGTCCT CGTCTGCCTT
201 GGTACTGACT CCTGAAAGAC GTTTTCTGG AGAGTTAGTC TCTATCTGTC
251 AGGTTAAAGA TGAGCATGCT TTCTATAACG ATTGTCTTT ATTACATATG
301 ACTCAGGCTG TGCCCTCGTA TTCTGCAACG TATGATTGTG CTGTAGTTTT
351 TGGCGGGCCT TTGCCAGCGC TAGTCAGCG CTTAGATTTC TTGGTGCAG
401 AGTGGCGAGG TGGCGTGCAG TTAAGAAAA TCGTTTTCT ATGTGGAGAG
451 CGAGGGCGCT ATCAGTCTAT TGAAGAACAA GAGCATTTCT TTGATTCCTG
501 GTACAATCCCT TTCCCTACTG AAGAGAACTG GGAATCTGGT AACCGAGTTA
551 CTCCTCTTC TGAAGAAGAG ATTGCCAAAT TTGTTGGAT GCAAATGCTT
601 TTACCTAGAG CATGGCGAGA TAGTACTTCAG GGAGTCAGAG TGACATTCT
651 TCTAGCAAAG CCAGAGGAAA ATCGTGTGGT TGCGAATCGT AAGGACACCT
701 TACTTTTATT CCGTTCTTAT CAAGAAGCGT TTCCGGGACG CGTGTATT
751 GTAAGTAGTC AACCCCTTAT CGGTTAGAT GCTTGCAGGG TCAGGGAGTT
801 TTCAAAAGGG GAAAGCTATG ATCTTGCTGG ACCTGGATTT GCTCAAGGAG
851 TCTTGAAGTA TCATTGGCT CCAAGGATTG GTCTACATAC TTTAGCGGAA
901 TGGTTAAAGG AAACGAACGG CTGCTTAAAT ATTCAGAGG GTTGTGTTGG
951 ATGA

```

The PSORT algorithm predicts a periplasmic location (0.894).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 27A. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 27B). The GST-fusion product was used for FACS analysis (Figure 27C).

- 30 The cp6784 protein was also identified in the 2D-PAGE experiment (Cpn0498).

These experiments show that cp6784 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 28

The following *C.pneumoniae* protein (PID 4376960) was expressed <SEQ ID 55; cp6960>:

```

35 1 MNRRWNLVLA TVALALSVAS CDVRSKDSDK DQGSLVEYKD NKDTNDIELS
    51 DNQKLSRTFG HLLARQLRK EDMMFDIAEV AKGLQAELVC KSAPLTETEY
    101 EEKMAEVQKL VFEKKSKENL SIAEKFLKEN SKNAGVVEVQ PSKLOVYKIIK
    151 EGAGKAISGK PSALLHYKGS FINGQVFSSS EGNNEPILLP LGQTIPGFAL
    201 GMQGMKGEGET RVLYIHPDLA YGTAGQLPPN SLLIFEINLI QASADEVAAV
    251 PQEGNQGE*

```

A predicted signal peptide is highlighted.

The cp6960 nucleotide sequence <SEQ ID 56> is:

```

45 1 ATGAACAGAC GGTGGAATT AGTTTAGCA ACAGTAGCTC TGGCACTCTC
    51 CGTCGCTTCT TGTGACGTAC GGTCTAAGGA TAAAGACAAG GATCAGGGGT
    101 CGTTAGTGGT ATATAAAGAT AACAAAGATA CCAATGACAT AGAATTATCC
    151 GATAATCAAAGT TGTATCCAG AACATTTGGT CATTATTTAG CACGCCAATT
    201 ACGCAAGTCGA AAGATATGT TTTTGATAT TGCGAGAGTG GCTAAGGGGT
    251 TGCAAGGGGA ATTGGTTTGT AAAAGTGCTC CTTTAACAGA AACAGAGTAT
    301 GAAGAAAAAA TGGCTGAAGT ACAGAAGTTG GTTTTTGAAA AAAAATCAA
    351 AGAAAATCTT TCATTGGCAG AAAAATCTT AAAAGAAAAT ACCAAGAACG
    401 CTGGTGTGTT TGAAGTGCAA CCAAGTAAAT TGCAATACAA ATTATTA

```

-70-

451 GAAGGTGCAG GGAAAGCAAT TTCAAGGTTAA CCTTCAGCTC TATTGCACTA
 501 CAAGGGTTC CTTCATCAATG GCCAAGTATT TAGCAGTTCA GAAGGCAACA
 551 ATGAGCTAT CTTGCTTCCT CTAGGCCAAA CAATTCCCTGG TTTTGCTTTA
 601 GGTATGCAGG GCATGAAAGA AGGAGAAACT CGAGTTCTCT ACATCCATCC
 651 TGATCTTGCT TACGGAACCG CAGGACAAC TCCCTCAAAC TCTTTATTAA
 701 TTTTGAAAT TAACTTGATT CAGGCTTCAG CAGATGAAGT TGCTGCTGTA
 751 CCCCAAGAAG GAAATCAAGG TGAATGA

The PSORT algorithm predicts periplasmic space location (0.930).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as

10 shown in Figure 28A. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 28B) and for FACS analysis (Figure 28C).

The cp6960 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp6960 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

15 Example 29

The following *C.pneumoniae* protein (PID 4376968) was expressed <SEQ ID 57; cp6968>:

1 MKFLLYVPLL LVLVSTGCDA KPVSFEPFSG KLSTQRFPQ HSAEYFSQG
 51 QEFLKKGNFR KALLCFGIIT HHFPRDLRQN QAQYLIGVCY FTQDHPLAD
 101 KAFASYLQLP DAEYSEELFQ MKYAIQAQRFA QGKRKRICRL EGFPKLMNAD
 151 EDALRIYDEI LTAFPSKDLG AQALYSKAAL LIVKNDLTEA TKTLKKLTLQ
 201 FPLHILSSEA FVRLSEIYLQ QAKKEPHNLQ YLHFIAKLNEE AMKKQHPNHP
 251 LNEVVSANVG AMREHYARGL YATGRFYEKK KKAEEANIYY RATAITNPDT
 301 LLVAKCQKRL DRISKHTS*

A predicted signal peptide is highlighted.

25 The cp6968 nucleotide sequence <SEQ ID 58> is:

1 ATGAAATTTC TATTATACGT TCCACTTCTT CTTGTTCTCG TATCTACGGG
 51 GTGCGATGCA AAACCTGTTT CTTTGAGCC CTTTCAGGA AAGCTTCCA
 101 CCCAGCGTTT TGAGCTCTAG CACTCTGCTG AAGAATATT TTCTCAGGG
 151 CAGGAATTCT TAAAAAAAGG AAATTTCAGA AAAGCTTTAC TATGCTTTGG
 201 AATCATTACG CATCACATCC CTAGGGACAT CTTGCGTAAT CAAGCACAGT
 251 ATCTTATAGG AGTCTGTTAC TTACACGCAGG ATCACCCAGA TTTAGCAGAC
 301 AAGGCATTG CATCTACTT ACAACTTCTT GATGCGGAGT ACTCTGAAGA
 351 GTTGTCCAG ATGAAATATG CGATTGCTCA AAGATTTGCT CAAGGGAAGC
 401 GTAAACGGAT TTGTCGATTA GAGGGCTTCC CAAAACATAAT GAATGCTGAT
 451 GAAGATGCGC TACGCATTTA TGACGAGATT CTAACAGCGT TTCTTAGTAA
 501 AGACTTAGGA GCTCAGGGCCC TCTATAGTAA AGCTGCGTTA CTTATIGTAA
 551 AAAACGATCT TACAGAAAGCC ACCAACACCT TAAAAAAACT CACGTTACAA
 601 TTTCCCTCTAC ATATTTTATC TTCAAGAGGCC TTGTTACGTT TATCGGAAAT
 651 CTATTTACAG CAAGCTAAGA AAGAGCCTCA CAATCTCAA TATCTTCATT
 701 TTGCAAAGCT TAATGAAGAG GCAATGAAAA AGCAGCATCC TAACCATCCT
 751 CTGAATGAGG TTGTTCTGC TAATGTTGGA GCTATGCGGG AACATTATGC
 801 TCGAGGTTTG TATGCCCCAG GTCGTTCTA TGAGAAGAAG AAAAAAGCCG
 851 AGGCTGCGAA TATCTATTAC CGCACTGCGA TTACAAACTA CCCAGACACT
 901 TTATTAGTGG CTAATGTCA AAAGCGTCTA GATAGAATAT CTAAGCATAAC
 951 TTCCCTAA

The PSORT algorithm predicts an inner membrane location (0.790).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 29A. The recombinant GST-fusion was used to immunise mice, whose sera were used in a Western blot (Figure 29B) and for FACS analysis (Figure 29C).

-71-

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6968 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

5 Example 30

The following *C.pneumoniae* protein (PID 4376998) was expressed <SEQ ID 59; cp6998>:

```

1  MKKLLKSALL SAAFAGSVGS LQALPVGNPS DPSLLIDGTTI WEGAAGDPCD
51 PCATWCDAIS LRAGFYGDYV FDRILKVDAP KTFSMGAKPT GSAAANYTTA
101 VDRPNPAYNK HLHDAEWFTN AGFIALNIWD RFDVFCTLGA SNGYIRGNST
151 AFNLVGLFGV KGTTVNANEL PNVSLNSNGVV ELYTDTSFSW SVGARGALWE
201 CGCATLGAEF QYAQSKPKVE ELNVICNVSQ FSVNPKGYK GVAFLPLTDA
251 GVATATGTKS ATINYHEWQV GASLSYRLNS LVPYIGVQWS RATFDADNIR
301 IAQPKLPTAV LNLTAWNPSL LGNATALSTT DSFSDFMQIV SCQINKFKSR
351 KACGVTVGAT LVDADKWSLT AEARLINERA AHVSGQFRF*

```

15 A predicted signal peptide is highlighted.

The cp6998 nucleotide sequence <SEQ ID 60> is:

```

1  ATGAAAAAAC TCTTAAAGTC GGCCTTATTAA TCCGCCGCAT TTGCTGGTTC
51 TGTTGGCTCC TTACAAGCCT TGCCTGTAGG GAACCCCTCT GATCCAAGCT
101 TATTAATGTA TGGTACAATA TGGGAAGGTG CTGCAGGAGA TCCTTGCGAT
151 CCTTGCGCTA CTTGGTGCAGA CGCTATTAGC TTACGTGCTG GATTTACGG
201 AGACTATGTT TTCGACCGTA CTTAAAAGT AGATGCACCT AAAACATTTT
251 CTATGGGAGC CAAGCCTACT GGATCCGCTG CTGCAAACTA TACTACTGCC
301 GTAGATAGAC CTAACCCGGC CTACAATAAG CATTACACAG ATGCAGAGTG
351 GTTCACTAAT GCAGGCTTCA TTGCTTAAAC CATTGGGAT CGCTTGTATG
401 TTTTCTGTAC TTTAGGAGCT TCTAATGGTT ACATTAGAGG AAACCTCTACA
451 GCGTTCAATC TCGTTGGTTT ATTCCGGAGTT AAAGGTACTA CTGTAAATGC
501 AAATGAACTA CCAAACGTTT CTTAAAGTAA CGGAGTTGTT GAACTTTACA
--551 CAGACACCTC TTTCTCTTGG AGCTTAGGCG CTCGTGGAGC CTTATGGGAA
601 TGCGGTTGTG CAACTTGGG AGCTGAATTCA CAATATGCAC AGTCCAAACC
651 TAAAGTTGAA GAACTTAATG TGATCTGTAA CGTATCGCAA TTCTCTGTAA
701 ACAAAACCAA GGGCTATAAA GGCCTTGCTT TCCCCCTTGGC AACAGACGCT
751 GGCCTAGCAA CAGCTACTGG AACAAAGTCT GCGACCATCA ATTATCATGA
801 ATGGCAAGTA GGAGCCCTCTC TATCTTACAG ACTAAACTCT TTAGTGCCAT
851 ACATTGGAGT ACAATGGTCT CGAGCAACTT TTGATGCTGA TAACATCCGC
901 ATTGCTCAGC CAAACATCACC TACAGCTGTT TTAAACTTAA CTGCACTGGAA
951 CCCTTCTTTA CTAGGAAATG CCACAGCATT GTCTACTACT GATTGCTTCT
1001 CAGACTTCAT GCAAATTGTT TCCTGTCAGA TCAACAAGTT TAAATCTAGA
1051 AAAGCTTGTG GAGTTACTGT AGGAGCTACT TTAGTTGATG CTGATAAAATG
1101 GTCACTTACT GCAGAAGCTC GTTTAATTAA CGAGAGAGCT GCTCACGTAT
40 1151 CTGGTCAGTT CAGATTCTAA

```

The PSORT algorithm predicts an outer membrane location (0.707).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 30A) and as a his-tag product. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 30B) and for FACS analysis (Figure 30C).

45 The cp6998 protein was also identified in the 2D-PAGE experiment (Cpn0695) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6998 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

-72-

Example 31

The following *C.pneumoniae* protein (PID 4377102) was expressed <SEQ ID 61; cp7102>:

5	1 MKHTFTKRVL FFFFVPIPIP LLLNLMVVGF FSFSAAKANL VQVLHTRATN 51 LSIEFEKKLT IHKLFLDRLA NTLALKSYAS PSAEPYAQAY NEMMALSNTD
	101 FSLCLIDPFD GSVRTKNPGD PFIRYLKQHP EMKKKLSAAV GKAFLLTIPG 151 KPLLHYLILV EDVASWDSTT TSGLLVSFYP MSFLQKDLFQ SLHITKGNIC
	201 LVNKYGEVLF CAQDSESSFV FSIDLPNLPQ FQARSPSAIE IEKASGILGG 251 ENLITVSVK KRYLGLVLNK IPIQGTYTLS LVPVSDLIQS ALKVPLNICF
10	301 FYVLAFLLMW WIFSKINTKL NKPLQELTFC MEAAWRGNHN VRFEPQPYGY 351 EFNELGNIFN CTLLLLLNSI EKADIDYHSG EKLQKELGIL SSLQSALLSP
	401 DFPTFPKVTF SSQHLRRRQL SGHFNGWTVQ DGGDTLLGII GLAGDIGLPS 451 YLYALSARSL FLAYASSDV5 LQKISKDTAD SFSKTTEGNE AVVAMTFIKY
	501 VEKDRSLELL SLSEGAPTMF LORGESFVRL PLETHQALQP GDRLLC LTGG 551 EDILKYFSQL PIEELLKDPL NPLNTENLID SLTMMLNNET EHSADGTLTI
15	601 LSFS*

A predicted signal peptide is highlighted.

The cp7102 nucleotide sequence <SEQ ID 62> is:

20	1 ATGAAACATA CCTTTACCAA CGGTGTTCTA TTTTTTTCT TTTTAGTGAT 51 TCCCATTCCC CTACTCCTCA ATCTTATGGT CGTAGGTTTT TTCTCATTTT
	101 CTGCCGCTAA AGCAAATTAA GTACAGGTCC TCCATACCCG TGCTACGAAC 151 TTAACGTATAG AATTCCAAAA AAAACTGACG ATACACAAGC TTTTCCTCGA
	201 TAGACTTGC CACACATTAG CCTTAAAATC CTATGCATCT CCTTCCTGCAG 251 AGCCCTATGC ACAGGCATAC AATGAGATGA TGGCACTCTC CAATACAGAC
25	301 TTTTCCCTTAT GCCTTATAGA TCCCTTTGAT GGATCTGAA GGACGAAAAAA 351 TCCTGGAGAC CCTTTCATTC GCTATCTAAA ACAGCATCCT GAAATGAAGA
	401 AAAAGCTATC CGCAGCTGTA GGGAAAGCCT TTTTATTGAC CATTCCAGGT 451 AAACCACTTT TACATTATCT TATTCTAGTT GAAGATGTCG CATCTTGGGA
	501 TTCTACAAACG ACTTCAGGAC TGCTTCTGAA TTTCTATCCC ATGTCTTTTT 551 TACAGAAAAGA TTTATTCCTAA TCCTTACACAA TCACCAAAAGG AAATATCTGC
30	601 CTTGTAAAAA AGTATGGCGA GGTCTCTTC TGTGCTCAGG ACAGTGAATC 651 TTCTTTTGTAA TTTCTCTAG ATCTCCTCAA TTTACCGCAA TTCCAAGCAA
	701 GAAGCCCCCTC TGCCATAGAA ATTGAGAAAG CTTCTGGAAAT TCTTGGTGGG 751 GAGAACCTAA TCACAGTGGAT TATCAACAAAG AAACGCTACC TAGGATTGGT
35	801 ACTGATAAAA ATTCCATATCC AAGGGACCTA CACTCTATCT TTAGTTCCAG 851 TTCTCTGATCT CATCCAACTC GCCTTGAAGAAT TCCCTCTCAA TATTTGTTTT
	901 TTCTATGTAC TTGCTTCTCT CCTCATGTGG TGGATTTCT CTAAGATCAA 951 CACCAAACCTT AACAAAGCCTC TTCAAGAACT GACCTTCTGT ATGGAAGCTG
	1001 CCTGGCGAGG AAACCATAAC GTGAGGTTTG AACCCCGAGC TTACGTTTAT 1051 GAATTCAATG AACTAGGAAA TATTTTCAAT TGCACTCTCC TACTCTTATT
40	1101 GAATTCCATT GAGAAAGCAG ATATCGATTA CCATTCAAGGC GAAAATTAC 1151 AAAAAGAATT AGGGATTTTAA TCTTCACTAC AAAGTGCCTT ACTAAGTCCG
	1201 GATTTCCCTAA CGTTCCCTAA AGTTACCTTT AGTTCCCAAC ATCTCCGGAG 1251 AAGGCAACTT TCCGGTCAATT TTAATGGTTG GACAGTTCAA GATGGTGGCG
45	1301 ATACCCCTTT AGGGATCATA GGGCTCGCTG GCGATATTGG TCTTCCTTCC 1351 TATCTCTATG CTTTATCCGC ACGGAGTCTT TTTCTTGCT ATGCTCCCTC
	1401 GGACGTTTCG TTACAAAAAA TCAGCAAGGA TACTGCCGAC AGCTTCTCAA 1451 AAACAACAGA AGGCATGAG GCTGTAGTTG CTATGACTTT CATTAAATAT
	1501 GTAGAAAAAG ATCGATCTCT AGAGCTCCTC TCGTTAAGCG AGGGAGCTCC 1551 TACCATGTTT CTACAAACGAG GAGAATCTTT CGTACGTCCTC CCCTTAAAGAGA
50	1601 CTCACCAAGC TCTACAGCCT GGAGATCGGT TGATCTGCT CACTGGAGGA 1651 GAAGACATCC TCAAGTACTT TTCTCAGCTT CCTATTGAAG AGCTCTTAAA 1701 AGATCCTTTA AACCCCTCTAA ATACAGAGAA TCTTATTGAT TCTCTAACCA 1751 TGATGTTAAA CAACGAAACC GAACATTCTG CAGATGGAAC TCTGACCATC 1801 CTTTCATTTT CATAAA

55 The PSORT algorithm predicts an inner membrane location (0.338).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 31A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot and for FACS analysis (Figure 31B).

These experiments show that cp7102 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 32

The following *C.pneumoniae* protein (PID 4377106) was expressed <SEQ ID 63; cp7106>:

```

5      1 MKDLGTLGGT SSTAKTVSPD GKVIMGRSQI ADGSWHAFMC HTDFSSNNVL
      51 FDLDNTYKTL RENGROLNSI FNQNMMQLR ASDHEFTTEFG RSNIALGAGL
     101 YVNALQNLPS NLAAQYFGIA YKIRPKYRLG VFLDHNFSSH VPNNFNVSHN
     151 RLWMGAFIGW QDSDLGSSV KVSGFYGKQK ATITREQLEN TEAGSGESHF
    201 EGVAAQIEGR YGKSLGGHVR VQFFLGLQFV HITRKEYTEN AVQFPVHYDP
    251 IDYSTGVVYL GIGSHIALVD SLHVGTRMGM EQNFAAHTDR FSGSIASIGN
    301 FVFEKLDVTH TRAFAMRVN YELPYLQSLN LILRVNQQPL QGVMGFSSDL
    351 RYALGF*

```

The cp7106 nucleotide sequence <SEQ ID 64> is:

```

15      1 ATGAAAGATT TGGGGACTCT TGGGGGTACC TCTTCTACAG CAAAAAACAGT
      51 GTCCCCCAGAT GGTAAGTGA TCATGGGTAG ATCACAAAATT GCTGATGGCA
     101 GTTGGCAGCG ATTATATGTGT CATACTGGATT TCTCCTCTAA TAATGTACTC
     151 TTTGATCTCG ATAATACGTA TAAACTCTA AGAGAAAATG GCCGTCAGCT
     201 AAATTCCATA TTCAACCTAC AAAATATGAT GTTACAGAGA GCCTCAGATC
     251 ATGAGTTCAC AGAGTTGGA AGGAGTAACA TCGCTCTTGG TGCCGGGCTT
    301 TATGTAATG CCTTGAGAA TCTCCCTAGC AATTTAGCAG CACAATATTT
    351 TGGAAATCGCA TACAAAATAC GTCTCAAATAA TCGTTTGGGG GTGTTTTG
    401 ACCATAATTTC CAGCTCCCAC GTTCTAAATA ATTTTAACGT AAGCCACAAT
    451 AGACTCTGGA TGGGAGCCTT TATTGGATGG CAGGATTCTG ATGCTCTAGG
    501 ATCTAGTGTCA AAGGGTGTCTT TCGGATATGG AAAACAAAAA GCCACGATTA
    551 CAAGAGAGCA ATTAGAGAAAT ACAGAAGCCG GGAGTGGGGA GAGCCATTTC
    601 GAAGGGGTCG CTGCTCAGAT AGAAGGGCGG TATGGTAAGA GCCTCGGAGG
    651 ACATGTCAGG GTCCAGCCTT TCCTAGGACT GCAGTTTGTG CACATTACAA
    701 GGAAGAAATA TACCGAAAAT GCAGTGCAT TTCCGTACA CTATGATCCT
    751 ATAGACTATT CTACAGGTGT AGTGTATTAA GGAATTGGAT CTCATATTGC
    801 ACTTGTAGAT TCTTTACATG TAGGCACACG CATGGGAATG GAGCAAAACT
    851 TTGCAGCCA TACGGACAGG TTCTCAGGAT CTATAGCGTC TATTGAAAC
    901 TTTGTTGTTG AAAAGCTTGA TGTGACTCAC ACAAGGGCAT TTGCGGAAAT
    951 GCGTGTCAAC TATGAGCTTC CCTATCTACA GTCTCTGAAT CTTATCTAC
   1001 GAGTTAACATCA ACAGCCTCTA CAAGGGGTTA TGGGATTTC CAGTGATCTT
   1051 AGGTATGCCT TAGGATTCTA A

```

The PSORT algorithm predicts a cytoplasmic location (0.224).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 32A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 32B) and for FACS analysis (Figure 32C).

This protein also showed very good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7106 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 33

The following *C.pneumoniae* protein (PID 4377228) was expressed <SEQ ID 65; cp7228>:

```

1      1 MTAVLILTSF PSEESARSLS RHLITERLAS CVHVFPKGTS TYLWEGLCE
      51 SEEHHIQIKS IDIRFSEICL AIQEFSGYEV PEVLLFPIEN GDPRYLNWL
     101 ILSYPEKPPL SD*

```

-74-

The cp7228 nucleotide sequence <SEQ ID 66> is:

```

5      1 ATGACTGCTG TTCTTATTCT TACATTTTC CCTTCGGAGG AAAGTGCTCG
      51 CTCCTTAGCT AGACATCTGA TTACAGAGCG TCTTGCTTCC TGTGTGCATG
     101 TATTCCCTAA AGGCACATCG ACATATCTAT GGGAAAGGCAA GCTATGTGAG
     151 TCTGAAGAAC ATCATATACA AATCAAATCG ATAGACATAC GCTTCTCGGA
     201 AATTTCGTCT GCTATTCTCAGG AGTCTCTGG CTATGAGGTT CCTGAAGTCT
     251 TACTATTCTC TATTGAAAAT GGCGATCCGA GTTACTTGAATTTGTTAACG
     301 ATTCTCAGCT ATCCAGAGAA GCCTCCGCTT TCAGATTAG

```

The PSORT algorithm predicts an inner membrane location (0.040).

- 10 The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 33A (his-tag = left-hand arrow, GST = right-hand arrow). The proteins were used to immunise mice, whose sera were used in a Western blot (Figure 33B) and FACS analysis.

These experiments show that cp7228 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

15 **Example 34**

The following *C.pneumoniae* protein (PID 4377170) was expressed <SEQ ID 67; cp7170>:

```

20      1 MNSKMLKHLR LATLFSMFF GIVSSPAVYA LGAGNPAPV LPGVNPEQTG
      51 WCAFQLCN SY DLFAALAGSL KFGFYGDYVF SESAHITNVP VITSVTTSGT
     101 GTTPPTITSTT KNVDFLDNNS SISSSCVFAT IALQETSPAA IPLLDIAFTA
     151 RVGGLKQYYR LPLNFAYRDFT SNPLNAESEV TDGLIEVQSD YGIVWGLSLQ
     201 KVLWDKGVSF VGVSADYRHG SSPINYIIVY NKNANPEIYFD ATDGNLSYKE
     251 WSASIGISTY LNDYVLPYAS VSIGHTSRKA PSDSFTLEK QFTNFKFKIR
     301 KITNFDRVNF CFGTICCCISN NFYYSVEGRW GYQRAINITS GLQF*

```

A predicted signal peptide is highlighted.

- 25 The cp7170 nucleotide sequence <SEQ ID 68> is:

```

30      1 ATGAATAGCA AGATGCTAAA ACATTTACGT TTAGCAACCC TTTCCCTCTC
      51 TATGTTCTTC GGGATTGTAT CTTCTCCCGC AGTATATGCC CTAGGGGCTG
     101 GAAACCTGTC AGCTCCAGTA CTCCCAGGTG TGAATCCTGA GCAAACGGGA
     151 TGGTGTGCCT TCCAACATTG TAATAGTTAC GATCTTTTG CTGCTCTTGC
     201 AGGAAGCCTC AAATTTGGGT TCTATGGAGA TTATGTCTC TCAGAAAGTG
     251 CCCATATTAC CAATGTCCCT GTCATTAACCT CCGTTACGAC TTCAGGCACA
     301 GGAACAACGC CAACCATTAC CTCTACAAC TAAAACGTAG ACTTTGATCT
     351 TAACAACAGC TCCATCAGCT CGAGCTGTGT TTTTGCACCC ATAGCTCTAC
     401 AGGAACACATC CCCAGCTGCC ATTCCCCCTTT TAGATATAAGC CTTCACTGCA
     451 CGTGTGGAG GACTTAAGCA CTACTACCGC CTCCCTCTCA ATGCTTACAG
     501 AGACTTCACT TCAAATCCTT TAAATGCAGA ATCTGAAGTT ACAGATGGTC
     551 TCATTGAAAGT CCAGTCAGAC TATGGAATTG TCTGGGGTCT GAGTTTACAA
     601 AAAGTATTGT GGAAAGATGG AGTGTCTTTT GTAGGGGTTGA GCGCTGACTA
     651 CCGTCACGGT TCCAGTCCCA TCAACTATAT CATCGTTTAC ACAAGGCCA
     701 ACCCGGAGAT CTATTCGAT GCTACTGATG GAAACCTAAG CTATAAAGAA
     751 TGTTCTGCAA GCATCGGCAT CTCTACGTAT CTAAATGACT ATGTGCTTCC
     801 CTATGCATCC GTATCTATAG GAAATACTTC AAGAAAAAGCT CCTTCTGATA
     851 GCTTCACAGCA ACTCGAACAG CAATTACGA ATTTTAAATT TAAAATTCTGT
     901 AAAATCACAA ACTTCGACAG AGTAAACTTC TGCTTCGGAA CTACCTGCTG
     951 CATCTCAAAT AACCTTCACT ATAGTGTAGA AGGCCGTTGG GGATATCAGC
    1001 GTGCTATCAA CATTACGTCA GGTCTGCAGT TTTAG

```

The PSORT algorithm predicts a bacterial outer membrane location (0.936).

- The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 34A. The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (34B) and for FACS analysis (34C).

The cp7170 protein was also identified in the 2D-PAGE experiment (Cpn0854).

These experiments show that cp7170 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 35

- 5 The following *C.pneumoniae* protein (PID 4377072) was expressed <SEQ ID 69; cp7072>:

```

1 MDIKKLFCLF LCSSLIAMSP IYGKTGYEK LTLTGINIID RNGLSETICS
51 KEKLKKYTKV DFLAPQPYQK VMRMYKNKRG DNVSCLTAYH TNGQIKQYLE
101 CLNNRAYGRY REWHVNNGNIK IQAEVIGGIA DLHPSAESGW LFDQTTFAYN
151 DEGILEAAIV YEKGLLEGSS VYHTNGNIW KECPYHKGPV QGKFLTYTSS
201 GKLLKEQNYQ QGKRHGLSIR YSEDSEEDVL AWEETYHEGRRL LKAELYLDPQT
251 HEIYATIHEG NGIQAIYGYK AVIETRAFYR GEPYGVTRF DNSGTQIVQT
301 YNLLQGAKHG EEEFFYPETG KPKLLLWNHE GILNGIVKWTW YPGGTLESCK
351 ELVNNKKSGL LTIYYPEGQI MATEEYDNDL LIKGEYFRPG DRHPYSKIDR
401 GCGTAVFFSS AGTITKKIPY QDGKPLLN*

```

- 15 A predicted signal peptide is highlighted.

The cp7072 nucleotide sequence <SEQ ID 70> is:

```

1 ATGGATATAA AAAAACCTTT TTGCTTATTCTT CTATGTTCTT CTCTAATTGC
51 CATGAGTCCTT ATTATGGAA AAACAGGTGA CTATGAGAAA CTCACCCCTTA
101 CAGGGATCAA TATCATTGAT AGAAAACGGCC TGTCAGAAAC TATTTGCTCT
151 AAAGAGAACG TAAAGAAATA CACCAAGGTA GACTTTCTTG CTCCCCAGCC
201 CTATCAAAAG GTCATGAGGA TGATAAAAAA CAAACGCGGA GATAACGTTT
251 CTTGTTAAC AGCCTATCAC ACTAACGGGC AAATTAAGCA GTACCTGGAG
301 TGTCTCAATA ATCGTGCTTA TGGAAGATAT CGTGAATGGC ACgtCAACGG
351 GAATATCAAAT ATCCAAGCTG AGGTTATCGG AGGTATTGCG GATCTTCATC
401 CCTCAGCAGA GTCTGGCTGG CTATTTGATC AAACATCATT TGCTTATAAT
451 GATGAAGGTA TCTTAAAGC CGCTATCGTC TATGAAAAAG GGCTGCTCGA
501 AGGATCTTCG GTGTATTACC ATACTAAATGG GAATATTGGG AAAGAGTGTGTC
551 CCTATCATAA GGGAGTTCTT CAAGGTAAT TCCTGACATA CACATCTTCG
601 GGGAAACTGC TCAAAGAACAA GAATTACCAA CAAGGCAAAA GACACGGTCT
651 TTCGATTCGC TACAGCGAAG ATTCCGAAGA AGATGTTTA GCCTGGGAAG
701 AATATCATGA GGGACGACTC CTAAGAACCG AGTACTTAGA TCCTCAAACG
751 CACGAAATCT ATGCGACTAT ACACGAAGGG AACGGCATTC AAGCAATCTA
801 CGGCAAGTAT GCCGTTATAG AAACATGGGC ATTTTACCGA GGGGAACCTT
851 ATGGAAAAGT TACCAAGATTC GACAACCTCG GAAACACAGAT TGTCCAAACG
901 TATAACCTTT TGCAAGGCGC GAAGCACCGA GAAGAAATTTC TCTTTTATCC
951 TGAGACAGGG AAACCCAAGC TGCTTCTTAA TTGGCATGAA GGAATTAA
1001 ATGGGATAGT AAAACCTTGG TATCCCGGAG GAACCTTAGA AAGTTGTAAA
1051 GAAACTCGTAA ATAACAAAAAA ATCCGGGTTA CTGACCATTT ACTACCCCTGA
1101 AGGACAGATC ATGGCGACCG AAGAGTATGA TAATGATCTT CTAATTAAG
1151 GAGAGTACTT CCGCCCTGGA GACCGTCATC CCTACTCTAA AATAGATCGT
1201 GGTGTGGGA CTGCAGTATT TTCTCGTCG GCGGGAACTA TTACTAAAAA
1251 AATCCCCTAT CAGGACGGCA AACCTTGCT CAACTAG

```

The PSORT algorithm predicts a periplasmic location (0.688).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 35A) and as a GST-fusion product (Figure 35B). The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 35C) and for FACS analysis.

These experiments show that cp7072 is a useful immunogen. These properties are not evident from the sequence alone.

Example 36

- 50 The following *C.pneumoniae* protein (PID 4376879) was expressed <SEQ ID 71; cp6879>:

1 MATPAQKSPT FQDPSFVREL GSNHPVFSPPL TLEERGEMAI ARVQQCGWNH
 51 TIVKVLIL ALLTILGGGL LVGLLPAVPM FIGTGLIALG AVIFALALIL
 101 CLYDSQGLPE ELPPVPEPQQ IQIEDLRNET REVLEGTLL E VLLKDRDAKD
 151 PAVPVVVVDC EKRLGMLDRK LRREEEILYR STAHLKDEER YEFLLLELLEM
 201 RSLVADRLEF NRRSYERFVQ GIMTVRSEEG EKEISRLQDL ISLQQQTVD
 251 LRSRIDDEQK RCWTALQRIN QSQKDIQRAH DREASQRACE GTEMDCAERQ
 301 QLEKDLRRQL KSMQEWEIEMR GTIHQQEKAW RKQNAKLERL QEDLRLTGIA
 351 FDEQSLFYRE YKEKYLSQL DMQKILQEVN AEKSEKACLE SLVHDYEKQL
 401 EQKDANLKKA AAVWEEELGK QQQEDYEQTO EIRRLSTFIL EYQDSLREAE
 451 KVEKDFQELQ QRYSRILQEEK QVKEKILEES MNHFADLFK AQKENMAYKK
 501 KLADEGAAGA PTEIGEDEDDW VLTDSSASLSQ KKIRELVEEN QELLKALAFK
 551 SNELTQLVAD AVEAEKEISK LREHIEEQKE GLRALDKMHA QAIKDCEAAQ
 601 RKCCDLESILL SPVREDAGMR FELEVELQRL QEENAQLRAE VERLEQEQFQ
 651 G*

15 The cp6879 nucleotide sequence <SEQ ID 72> is:

1 ATGGCAACAC CCGCTAAAAA ATCCCCTACA TTTCAAGATC CTAGTTTGT
 51 AAGAGAGCTA GGCAGTAACC ACCCTGTCTT TTCCCGCTA ACGCTTGAGG
 101 AAAGAGGGGA GATGGCAATA GCTCGAGTC AGCAGTGTTG ATGGAATCAT
 151 ACAATTGTTA AGGTAAGTCT TATTATTCTT GCTCTTCTTA CTATTAGG
 201 GGGAGGATTA CTCGTAGGAT TGCCTGCCAGC AGTTCCCTATG TTTATGGAA
 251 CAGGTCTGAT TGCTTTGGGA CGCGTTATAT TTGCTTTGGC TTTGATTAA
 301 TGTCTTTATG ATTCTCAGGG CCTTCCTGAG GAACTCCCTC CGGTTCTGA
 351 ACCACAAACAA ATTCAAGATTG AAGATTTAAG AAACGAGACC AGAGAAGTTC
 401 TTGAAGGGAC TCTTTTAGAG GTTCTCTTAA AGGATAGAGA CGCTAAGGAC
 451 CCTGCGGTGCCCAGGTGTG TGTAGACTGT GAAAAGCGTC TTGGAATGTT
 501 GGATCGTAAG CTGCGACGGT AAGAGGGAGAT TCTGTATCGC TCGACGGCCC
 551 ATCTTAAAGA CGAGGAAAGG TATGAGTTCT TGCTGGAGCT CTTGGAAATG
 601 CGTAGTCCTGG TTGCGGATCG GCTAGAATTG AACCGTAGAA GTTATGAGCG
 651 ATTTGTTCAA GGAATTATGA CAGTTAGATC AGAGGAGGG GAAAAGAGA
 701 TTTCTCGTCT ACAAGATCTA ATCAGTTGC AGCAGCAGAC GGTGCAAGAT
 751 TTAAGGAGTC GGATCGATGA CGAGCAGAAAG AGATGCTGGA CGGCTTTACA
 801 ACGTATTAAAC CAATCTCAGA AGGATATACA ACGGGCTCAT GATCGCGAGG
 851 CTTCGCAGCG TGCCCTGTGAG GGACACAGAGA TGGATTGTGC AGAACGCCAG
 901 CAACTGGAGA AGGATTTAAG GAGCACAGCTG AAATCTATGC AGGAGTGGAT
 951 TGAGATGAGG GGCACAACTC ATCAACAAAGA GAAGGCTTGG CGTAAGCAGA
 1001 ATGCCAAATT AGAAAGATTA CAAGAGGATC TGAGACTTAC TGGGATITGCT
 1051 TTTGACGAAC AATCTCTGTT CTATCGCGAA TATAAAGAGA AATATCTGAG
 1101 TCAGAAACTA GATATGCAA AGATTTTACA GGAAGTCAAC GCAGAGAAAA
 1151 GTGAGAAGGC TTGCTTAGAG AGTCTGGTCC ATGACTATGA GAAGCAGCTC
 1201 GAACAAAAAG ATGCTAACTC GAAGAAAGCA CGAGCTGTTT GGGAAAGAAGA
 1251 ATTAGGGAAAG CAGCAACAGG AAAGACTACGA ACAAACCCAA GAAATTAGAC
 1301 GTCTGAGTAC ATTCAATTCTT GAGTACCAAGG ACAGTCTGCG TGAGGCAGAA
 1351 AAAGTTGAGA AAGATTTCCA AGAGCTACAA CAAAGGTATA GCCGTCTTCA
 1401 AGAGGAGAAA CAGGTTAAAG AAAAATCTT AGAAGAAAAGT ATGAATCATT
 1451 TTGCGGATCT CTTTGAGAAG GCTCAAAGG AAAACATGGC CTACAAGAAG
 1501 AAGTTAGCGG ATTATAGAGGG TGCCGCTGCT CCTACTGAGA TCGGTGAGGA
 1551 CGATGACTGG GTACTCACAG ATTCTGCTTC TCTCAGCCAG AAGAAGATCC
 1601 GCGAACCTCGT GGAAGAGAAAT CAAGAACTCC TGAAAGCACT TGCATTTAA
 1651 TCTAACGAAT TGACTCAACT GGTTGCCGAT GCTGTAGAAG CTGAAAAAGA
 1701 ATCAGCAAG CTTCGAGAAC ACATAGAAGA GCAGAAAGAA GGATTACGAG
 1751 CTCTTGATAA GATCCATGCA CAAGCGATCA AAGATGCGA AGCTGCTCAG
 1801 AGAAAATGCT GTGACCTTGA GAGCCTTCTC TCTCCTGTTC GAGAAGATGC
 1851 TGGAATGAGA TTTGAGCTAG AGGTCGAGCT TCAAAGATG CAAGAAAGAAA
 1901 ATGCACAGCT TAGAGCCGAG GTTGAAAGAC TAGAGCAAGA GCAATTCAA
 1951 GGATAA

The PSORT algorithm predicts an inner membrane location (0.646).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 36A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 36B) and for FACS analysis.

60 These experiments show that cp6879 is useful immunogen. These properties are not evident from the sequence alone.

Example 37

The following *C.pneumoniae* protein (PID 4376767) was expressed <SEQ ID 73; cp6767>:

```

5      1 MIKQIGRFFR AFIFIMPLSL TSCESKIDRN RIWIVGTNAT YPPFEYVDAQ
      51 GEVVGFIDL AKAISEKLGK QLEVREFAFD ALILNLKKHR IDAILAGMSI
     101 TPSRQEKEML LPYYGDEVQE LMVVSKRSL E TPVLPLTQYS SVAVQTGTFQ
     151 EHYLLSQPGI CVRSFDSTLE VIMEVRYGKS PVAVLEPSVG RVVLKDFPNL
     201 VATRLELPNE CWVLGCGLGV AKDRPEEIQT IQQAITDLKS EGVIQSLTKK
     251 WQLSEVAYE*

```

The cp6767 nucleotide sequence <SEQ ID 74> is:

```

10     1 ATGATAAAAAC AAATAGGCCG TTTTTTTAGA GCATTTATTT TTATAATGCC
      51 TTTATCTTTA ACAAGTTGTG AGTCTAAAT CGATCGAAAT CGCATCTGGA
     101 TTGTAGGTAC GAATGCTACA TATCCCTCCTT TTGAGTATGT GGATGTCAG
     151 GGGGAAGTGTG TAGGTTTCGA TATAGATTTC GCAAAGGCAA TTAGTGAAAAA
     201 ACTTGGCAAG CAATTGGAAG TTAGAGATTG CGCTTTCGAT GCTTTAATT
     251 TAAATTTAAA AAAACATCGT ATCGATGCAA TTTAGCAGG AATGTC CATT
     301 ACTCCTTCGC GTCAGAAGGA AATCGCCCTG CTTCCTTATT ATGGCGATGA
     351 GGTCAAGAG CTGATGGTGG TTTCTAACGCG GTCTTTAGAG ACCCCGTG
     401 TTCCCCTAAC ACAGTATTCT TCTGTTGCTG TTCAGACAGG AACGTTTCAG
     451 GAGCATTATC TTTTATCTCA GCCCGGAATT TGTGTCGCGT CTTTTGATAG
     501 CACCTGGAG GTGATTATGG AAGTTCGTTA TGGGAAACTC CCGGTTGCG
     551 TTCTAGAACCT CTCGGTAGGA CGTGTCTTC TTAAAGACTT CCCTAATCTT
     601 GTTGCAACAA GATTAGAGCT CCCCTCTGAA TGTGGGTGT TGGGCTGTGG
     651 TCTCGGCGTA GCTAAAGATC GTCCTGAAGA AATACAAACG ATTCAACAAG
     701 CGATTACAGA TTTAAAGAGC GAAGGGGTGA TTCATCTT AACCAAGAAA
     751 TGGCAACTTT CTGAAGTTGC TTACGAATAG

```

The PSORT algorithm predicts an inner membrane location (0.083).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified his-tag product is shown in Figure 37A. The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 37B) and for FACS analysis (Figure 30 37C). The GST-fusion was also used in a Western blot (Figure 37D).

The cp6767 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6767 is a useful immunogen. These properties are not evident from the sequence alone.

Example 38

The following *C.pneumoniae* protein (PID 4376717) was expressed <SEQ ID 75; cp6717>:

```

40     1 MMSRLRFRLA ALGIFFILLV PNSVSAKTIV ASDKEKVGVLY VYDN SVEAFQ
      51 QILD CIDHAN FYVELPCMT GGRTLKEMVD HLEARMDLVP ELCSYIIIQP
     101 TFTDAEDQKL LKALKERHPN RFPYVFTGCP PSTSILAPNV IEMHIKLSII
     151 DGKYCILGGT NFEEFMCTPG DEVPEKVDNP RLFGVSGVRP LAFRDQDIMAL
     201 RSTAFGLQLR EEVHKQFAMW DYAHMMWFIDNPEQFAGAC PPLTLEQAE
     251 TVFPGFDKHE DLVLVDSSKI RIVLGGPHDK QPNPVTQEYL KLIQGARSSV
     301 KLAHMYFIPK DELLNALVDV SHNHGVHL SL ITNGCHELSP AITGPYAWGN
     351 RINYFALLYG KRYPLWKWP CEKLKPYERV SIYEFIAIWET QLHKKCMIID
     401 DEIFVIGSYN FGKKSDAFDY ESIVVIESPE VAAKANKVFN KDIGLSIPVS
     451 HGDI FSWYFH SVHMTLGHLO LTYMPA*

```

A predicted signal peptide is highlighted.

The cp6717 nucleotide sequence <SEQ ID 76> is:

-78-

1 ATGATGAGTC GGTTGCGPTT TCGCTTGGCA GCTCTTGGAA TATTTTTTAT
 51 TTTGCTGGTT CCTAATTCTG TTTCAGCAAA GACAATCGTA GCTTCAGACA
 101 AGGAGAAAGGT TGGAGTTCTT GTTATGACA ATAGTGTAGA GGCCTTTCAA
 151 CAGATATTGG ATTGCACTAGA TCATGCAAAT TTTTATGTAG AACTGTGTCC
 201 CTGCACTGACA GGAGGCCGAA CGCTTAAAGA GATGGTAGAT CACCTCGAGG
 251 CTCGTATGGA TCTGGTCTCA GAGCTCTGTA GCTATATCAT TATCCAACCC
 301 ACCTTTACCG ATGCTGAAGA CCAAAATTA CTCAAAGCTC TCAAAGAACG
 351 TCATCCCAAC CGGTTTTCT ACGTTTTAC AGGGTGCCCA CCCTCAACAA
 401 GCATCCTCGC TCCTAATGTC ATTGAAATGC ATATCAAACCT TTCTATCATC
 451 GATGGGAAAT ATTGTATTT AGGTGGTACC AATTTTGAAG AGTTTATGTG
 501 CACTCCAGGG GATGAGCTTC CTGAGAAAGT GGATAACCCA CGTTTATTTG
 551 TCAGTGGAGT GCGTCGGCCCTA CTAGCATTTC GTGATCAGGA TATCATGTTG
 601 CGTTCTACAG CATTGGTTT GCAGCTCAGA AAAGAATATC ATAAGCAATT
 651 TGCTATGTGG GACTACTATG CACATCATAT GTGGTTCAT TATAATCCTG
 701 AACAGTTTGC AGGCGCCTGT CCTCCACTGA CTTAGAACAA AGCCGAGGAG
 751 ACAGTATTTC CTGGATTGAA CAAACATGAA GATCTTGTTC TTGTCGACTC
 801 TTCCAAGATC AGGATACTTT TAGGTGGTCC CCACGATAAG CAACCCAATC
 851 CTGTGACTCA AGAATATTG AAACCTTATCC AGGGAGCTAG ATCTTCTGTG
 901 AAGCTTGCTC ACATGTATTT CATCCCTAAAG GACGAGCTTT TAAATGCTCT
 951 TGTCGACGTT TCTCTATACT ACGGTGTTC TCTGAGTTA ATTACGAACG
 1001 GCTGTCACTGA ATTAAGTCTT GCAATTACAG GACCCATATGC TTGGGAAAC
 1051 CGTATTAACCT ATTTCGCCCTT GCTCTATGGG AAACGGTATC CTCTTGGAA
 1101 AAAATGGTTT TGCGAAAAGC TAAAACCTTA TGAGCGGGTT TCTATTATG
 1151 AGTTTGCTAT TTGGGAAACG CAGTTGCACA AGAAGTGTAT GATTATCGAT
 1201 GATGAAATTT TTGTGATCGG AAGTTATAAT TTGGGAAAGA AAAGTGTG
 1251 CTTTGATTCAC GAAAGTATTG TAGTTATCGA ATCTCCAGAA GTGCGCTGCAA
 1301 AAGCTAACAA AGTCTCAAT AAAGATATCG GATTGTGAT TCCTGTAAGT
 1351 CATGGCGACA TTTTCTCTTG GTATTTCCAT TCCGTACACC ACACTTGGG
 1401 ACATTGCACTG CTGACCTATA TGCCAGCCTA G

30 The PSORT algorithm predicts a periplasmic location (0.939).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 38A), as a his-tagged protein, and as a GST/his fusion product. The proteins were used to immunise mice, whose sera were used in a Western blot (Figure 38B) and for FACS analysis.

These experiments show that cp6717 is a useful immunogen. These properties are not evident from 35 the sequence alone.

Example 39

The following *C.pneumoniae* protein (PID 4376577) was expressed <SEQ ID 77; cp6577>:

1 MKKLLFSTFL LVLGSTSAAH ANLGYVNLKR CLEESDLGKK ETEELEAMKQ
 51 QFVKNAEKIE EELTSIYNKL QDEDYMESLS DSASEELRKK FEDLSGEYNA
 101 YQSQYYQSIN QSNVKRIQKL IQEVKIAAES VRSKEKLEAI LNEEAVALAIA
 151 PGTDKTTEII AILNESFKKQ N*

A predicted signal peptide is highlighted.

The cp6577 nucleotide sequence <SEQ ID 78> is:

45 1 ATGAAAAAAAT TATTATTTTC TACATTCTT CTTGTTTAG GATCAACAAG
 51 CGCAGCTCAT GCAAATTAG GCTATGTTAA TTTAAAGCGA TGTCTGAG
 101 AATCCGATCT AGGTAAAAAG GAAACTGAAG AATTGGAAGC TATGAAACAG
 151 CAGTTTGTAAG AAAATGCTGA GAAAATAGAA GAAGAACTCA CTTCTATTAA
 201 TAATAAGTTG CAAGATGAAG ATTACATGGA AAGCCTATCG GATTCTGCCT
 251 CTGAAGAGTT GCGAAAGAAA TTCGAAGATC TTTCAAGGAGA GTACAATGCG
 301 TACCAAGTCTC AGTACTATCA ATCTATCAAT CAAAGTAATG TAAAACGCAT
 351 TCAAAAACTC ATTCAAGAAG TAAAAATAGC TGCGAAATCA GTGCGGTCCA
 401 AAGAAAAACT AGAACGCTATC CTTAATGAAG AAGCTGTCTT AGCAATAGCA
 451 CCTGGGACTG ATAAAACAAC CGAAATTATT GCTATTCTTA ACGAATCTTT
 501 CAAAAAACAA AACTAG

55 The PSORT algorithm predicts a periplasmic space location (0.932).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 39A) and as a GST-fusion product (Figure 39B). The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 39C) and for FACS analysis.

The cp6577 protein was also identified in the 2D-PAGE experiment.

- 5 These experiments show that cp6577 is a useful immunogen. These properties are not evident from the sequence alone.

Example 40

The following *C.pneumoniae* protein (PID 4376446) was expressed <SEQ ID 79; cp6446>:

```

10      1  MKQPMSLIFPS SVCLGLGLGS LSSCNQKPSW NYHNTSTSEE FFVHGNKSVS
      51  QLPHYPSAFR TTQIFSEEHN DPYVVAKTDE ESRKIWREIH KNLKIKGSYI
     101  PISTYGSLMH PKSAALTAKT YRPHPIWING YERSFNIDTG KYLKNGSRRR
     151  TSHDGPKNRA VLNLIKSSGR RCNAIGLEMT EEDFVIARRR EGIVYSLYPVE
     201  VCSPCPGNPP VIAVIAWIADE SACSKEVLPV KGYYSLVWES VSSSDSLNAF
     251  GDSFAEDYLR STFLANGTSI LCVHESYKKV PPQP*

```

- 15 A predicted signal peptide is highlighted.

The cp6446 nucleotide sequence <SEQ ID 80> is:

```

20      1  ATGAAACAGC CCATGTCTCT TATCTTTCA AGTGTATGTT TAGGATTAGG
      51  TCTTTGGATCT CTTTCCCTC GTAATCAAA GCCCTCTGG AATTATCACA
     101  ACACATTCAAC GAGCGAAGAA TTCCTTGTC ATGGAAATAA GAGTCCTTCG
     151  CAACTGCCTC ATTATCCTTC TGCATTTCTCGT ACGACTCAA TCTTTCTGA
     201  AGAGCACAAAT GATCCTTAGT TCGTAGCTAA GACTGATGAA GAGTCCTCGTA
     251  AAATTTGGAG AGAAATCCAT AAAATCTCA AAATCAAAGG TTCTTACATT
     301  CCCATATCGA CTTATGGAAG TCTGATGCAC CCAAAATCAG CAGCTCTTAC
     351  ATTAAAAAACG TATCGTCCAC ATCCATTGTT GATAAATGGA TACGAGCGTT
     401  CTTTTTAATAT AGACACAGGA AAGTACTTAA AAAACGGAAG TCGCCCTAGA
     451  ACTTCTCACG ATGGTCCGAA AAATCGAGCT GTACTGAATC TCATTAATAC
     501  TTCCGGACGA CGCTGTAAATG CTATAGGCCT TGAGATGACA GAAGAAGACT
     551  TTGTAATAGC TAGAAGGCAGA GAAGGTGTTT ATAGCCTGTA TCCCCGGTAA
     601  GTGTGCTCGT ATCCTCAGGG GAATCCTTTT GTCATTGCTT ATGCCCTGGAT
     651  TGCAGATGAG AGTGCTTGCT CAAAAGAGGT CCTACCTGTA AAAGGGTACT
     701  ATTTCTTTAGT CTGGGAAAGC GTTCTTCCT CTGATTCTCT GAATGCTTTT
     751  GGAGATTCCT TTGCAAGAGGA CTACCTCAGA AGCACGTTT TAGCAAACGG
     801  AACTTCTATA CTCTGTGTTA ATGAAAGCTA TAAGAAAGTT CCTCCTCAGC
     851  CCTAA

```

- 35 The PSORT algorithm predicts an inner membrane location (0.177).

The protein was expressed in *E.coli* and purified as a his-tag product and a GST-fusion product. The GST-fusion product is shown in Figure 40A. The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 40B) and for FACS analysis.

- 40 These experiments show that cp6446 is a useful immunogen. These properties are not evident from the sequence alone.

Example 41

The following *C.pneumoniae* protein (PID 4377108) was expressed <SEQ ID 81; cp7108>:

```

45      1  MSKKIKVLGH LTLCTLFRGV LCAAALSNIG YASTSQESPY QKSIEDWKGY
      51  TFTDLELLSK EGWSEAHAVS GNGSRIVGAS GAGQGSVITAV IWESHLIKHL
     101  GTLGGEASSA EGISKDGEVV VGWSDTREGY THAFVFDGRD MKDLGTLGAT
     151  YSVARGVSGD GSIIIVGSAT ARGEDYGWQV GVVKWEKGKIK QLKLLPQGLW

```

201 SEANAISEDG TVIVGRGEIS RNHIVAVKWN KNAVYSLGTL GGSVASAEAI
 251 SANGKVIVGW STTNNGETHA FMHKDETMHD LGTLGGGF SV ATGVSA DGRA
 301 IVGFSAVKTG EIHAFFYYAEG EMEDLTTLGG EEARVFDI SS EGNDIIGSIK
 351 TDAGAERAYL FHIHK*

- 5 A predicted signal peptide is highlighted.

The cp7108 nucleotide sequence <SEQ ID 82> is:

1 ATGAGTAAGA AGATAAAAGGT TCTAGGTCAT TTGACGCTCT GCACACTCTGTT
 51 TAGAGGAGTG CTGTGTGCAG CGGCCCTTTC CAACATAGGA TATGCGAGTA
 101 CTTCTCAGGA ATCACCAT CAGAAAGTCTA TAGAAGACTG GAAAGGGTAT
 151 ACCTTTACAG ATCTTGAGTT ACTGAGTAAG GAAGGGTGGT CTGAAGCTCA
 201 TGCAGTTCT GGAAATGGCA GTAGAATTGT AGGAGCTTCG GGAGCTGGCC
 251 AAGGTAGTGT GACTGCTGTC ATATGGGAAA GTCACCTGAT AAAACATCTC
 301 GGCACTTTAG GTGGCGAGGC TTCATCTGCA GAGGGAAATT CAAAGGATGG
 351 AGAGGTGGTC GTTGGGTGCT CAGATACTAG AGAGGGATAT ACTCATGCCT
 401 TTGTCTTCGA CGGTAGAGAT ATGAAAGATC TCGGTACTCT AGGAGCTACC
 451 TATTCTGTAG CAAGGGGTGT TTCTGGAGAT GGTTAGTATCA TCGTAGGAGT
 501 CTCTGCAACT GCTCGTGGAG AGGATTACGG ATGGCAAGTT GGTGTCAGT
 551 GGGAAAAAGG GAAAATCAA CAATTGAAGT TGTTGCCTCA AGGTCTCTGG
 601 TCTGAGGCGA ATGCAATCTC TGAGGGATGGT ACGGTGATG TCAGGGAGAGG
 651 GGAATCTCT CGCAATCACCA TCGTTGCTGT AAAATGGAAT AAAATGCTG
 701 TGTATAGTTT GGGGACTCTC GGAGGTAGTG TCGCTTCAGC AGAGGGCTATA
 751 TCGGCAAATG GGAAAGTAAT TGAGGATGG TCCACGACTA ATAATGGTGA
 801 GACTCATGCC TTTATGCCACA AAGATGAGAC AATGCACTGAT CTCGGCACTC
 851 TAGGAGGAGG TTTTTCTGTC GCAACTGGAG TTTCTGCTGA TGGGAGAGCC
 901 ATCGTAGGAT TTTCAGCAGT GAAGACCGGA GAAATTCTATG CTTTTTACTA
 951 TGCAGAAGGA GAAATGGAGG ATTAAACAAAC TTTGGGAGGG GAAGAAGCTC
 1001 GAGTGTTCGA CATATCTAGC GAAGGAAACG ATATCATTGG CTCTATAAAA
 1051 ACTGACGCTG GAGCTGAACG CGCTATCTG TTCCATATAC ATAAATAAA

The PSORT algorithm predicts an outer membrane location (0.921).

- 30 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 41A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 41B) and for FACS analysis (Figure 41C). A his-tagged protein was also expressed.

The cp7108 protein was also identified in the 2D-PAGE experiment.

- These experiments show that cp7108 is a surface-exposed and immunoaccessible protein, and that it 35 is a useful immunogen. These properties are not evident from the sequence alone.

Example 42

The following *C.pneumoniae* protein (PID 4377287) was expressed <SEQ ID 83; cp7287>:

1 MVAKRTVR SY RSSF SHS VIV AILS AGIA FAE AHSL HSSE LD LGVF NKQFEE
 51 HSAHVEEAQT S VLKG SDPVN PSQKE SEKVL YTQVPLT QGS SGESLD LADA
 101 NFLEHPQHLF EETTVF GIDQ KLVW SDLDTR NFSQPT QEPD TSNAV SEKIS
 151 SDTK ENR KDL ETEDPSK KSG LKEVSS DLPK SPETAVA AAI S EDLE ISENIS
 201 ARDPLQGLAF FYKNTSSQ SI SEKDSSF QGI IFSGSGAN SG LGFENL KAPK
 251 SGA AVY SDRD IVFENLVK GL SFIS CESL D GSAAGVNIVV THCGDV TLTD
 301 CATGLD LEAL RLVK DFSR GG AVFTARNHEV QNN LAGG ILS VVG NKG AIVV
 351 EKNS AEKS NG GAFAC GS FVY SNN ETLW K ENQ ALSGG AI SSAS DIDI QG
 401 NCSA IEF SGN QSLI ALGE HI GLTDFV GGG A LAAQ GTL TL R NNA VVQ CVKN
 451 TSKTHG GAIL AGTVDL NETI SEV AFK QNTA ALTGG GALS AN DKVII ANN FG
 501 EIL FEQNE VR NHGG AI YCG C RSNP KLEQ KD SGEN INI IIGN SGA ITFL KNK
 551 ASV LEV MVT Q A EDYAGGG ALW GHNV LLD SNS GN IQFIGN IG GST FWIG EYV
 601 CGG AILS TDR VT ISNN SG DV VF KG NKQ CL AQ KYVA P QET AP VES DAS ST
 651 NK DEK SLN AC SHGDH YPP KT VEE EVPP SLL EEH PVV SSTD IRGG GAIL A Q
 701 HIFITDN TGN LRF SGNL LGGG EES STVG DL A IVGG GALL ST NEV NVCSN QN
 751 VVF SDN VTSN GCD SGG AILA KK VDI SAN HS VEF VSN GSK FGG AV CAL NB
 801 SVN ITDNG S A VS FSKN RTRL GG AGV A AP QG SVT IC GNQ GN IAP KEN FVFG

-81-

851 SENQRSGGGA IIANSSVNIQ DNAGDILFVS NSTGSYGGAI FVGSLVASEG
 901 SNPRTLTITG NSGDILFAKN STQTAASLSE KDSFGGGAIY TQNLKIVKNA
 951 GNVSFYGNRA PSGAGVQIAD GGTVCLEAFG GDILFEGNIN FDGSFNAIHL
 5 1001 CGNDSKIVEL SAVQDKNIIF QDAITYEENT IRGLPDKDVS PLSAPS LIFN
 1051 SKPQDDSAQH HECTIRFSRG VSKIPQIAAI QEGT LALSQN AELWLAGLKQ
 1101 ETGSSIVLSA GSILRIFDSQ VDSSAPLPTE NKEETLVSAG VQINMSSPTP
 1151 NKDKAVDTPV LADIISITVD LSSFP EQDGTPLPE III PKGTLHSNA
 1201 IDLKIIDPTN VGYENHALLS SHKDIPLISL KTAEGMTGTP TADASLSNIK
 1251 IDVSLPSITP ATYGHGTGVWS ESKMEDGR LV VGWQPTGYKL NPEKQGALVL
 10 1301 NNLWSHYTDL RALKQEFAH HTIAQR MELD FSTNVWGSGL GVVEDCQNI
 1351 EFDGFKHHLT GYALGLDTOL VEDFLIGGC SQFFGKTESQ SYKA KNDVKS
 1401 YMGAAYAGIL AGPW LIKGAF VYGNINNDLT TDYGT LGIST GSWIGKGFIA
 1451 GTSIDYRYIV NPRRFISAIV STVVPFVEAE YVRIDLPEIS EQGKEVRTFQ
 1501 KTRFENVAIP FGFALEHAYS RGSRAEVNSV QLAYVFDVYR KGPVSLITLK
 15 1551 DAAYSWKSYG VDIPCKAWKA RLSNNTEWNS YLSTYLA FNY EWREDLIAYD
 1601 FNGGIRIIF*

A predicted signal peptide is highlighted.

The cp7287 nucleotide sequence <SEQ ID 84> is:

20 1 ATGGTAGCGA AAAAAACAGT ACGATCTTAT AGGTCTTCAT TTTCTCATTC
 51 CGTAATAGTA GCAATATTGT CAGCAGGCAT TGCTTTGAA GCACATTCC
 101 TACACAGCTC AGAACATAGT TTAGGTGTAT TCAATAAACAA GTTTGAGGAA
 151 CATTCTGCTC ATGTTGAGA GGCTCAAACA TCTGTTTAA AGGGATCAGA
 201 TCCCTGTAAT CCCCTCTCAGA AAGAATCCGA GAAGGTTTG TACACTCAAG
 25 251 TGCCCTCTTAC CCAAGGAAGC TCTGGAGAGA GTTGGATCT CGCCGATGCT
 301 AATTTCTTAG AGCATTTCAGA GCATCTTTT GAAGAGACTA CAGTATTG
 351 TATCGATCAA AAGCTGGTT GGTCAGATTT AGATACTAGG AATTTTTCCC
 401 AACCCACTCA AGAACCTGT ACAAGTAATG CTGTAAGTGA GAAAATCTCC
 451 TCAGATACCA AAGAGAATAG AAAAGACCTA GAGACTGAAG ATCCTTCAA
 501 AAAAAAGTGGC CTTAAAGAAG TTTCATCAGA TCTCCCTAA AGTCCTGAAA
 551 CTGCAGTAGC AGCTATTCTC GAAGATCTTG AAATCTCAGA AAACATTCA
 601 GCAAGAGATC CTCTTCAGGG TTTAGCATTT TTTTATAAAA ATACATCTTC
 651 TCAGTCTATC TCTGAAAAG ATTCTTCATT TCAAGGAATT ATCTTTCTG
 701 GTTCAGGGAC TAATTCAAGG CTAGGTTTG AAAATCTTAA GGCGCCGAAA
 751 TCTGGGGCTG CAGTTTATTAC TGATCGAGAT ATTGTTTTG AAAATCTTGT
 801 TAAAGGATTG AGTTTTATAT CTTGTGAATC TTAGAAGAT GGCTCTGCCG
 851 CAGGTGTAA CATTGTGTG ACCATTGTG GTGATGTAAC TCTCACTGAT
 901 TGTGCCACTG GTT TAGACCT TGAAGCTTA CGTCTGGTAA AAGATTTTC
 951 TCGTGGAGGA GCTGTTTCA CTGCTCGCAA CCATGAAGTG CAAAATAACC
 40 1001 TTGCAGGTGG AATTCTATCC GTTGTAGGCA ATAAAGGAGC TATTGTTGTA
 1051 GAGAAAAATA GTGCTGAGAA GTCCAATGGA GGAGCTTTG CTTGCGGAAG
 1101 TTTTGTATAC AGTAACAAACG AAAACACCGC CTTGTGGAAA GAAAATCAAG
 1151 CAATTATCAGG AGGAGCCATA TCCCTCAGCAA GTGATATTGA TATTCAAGGG
 1201 AACTGTAGCG CTATTGAATT TTCAGGAAAC CAGTCTCTAA TTGCTCTTGG
 1251 AGAGCATATA GGGCTTACAG ATTTGTAGG TGGAGGAGCT TTAGCTGCTC
 45 1301 AAGGGACGCT TACCTTAAGA AATAATGCAG TAGTGCATG TGTTAAAAC
 1351 ACTTCTAAA CACATGGTGG AGCTATTCTA GCAGGTACTG TTGATCTCAA
 1401 CGAAACAAAT AGCGAAAGTT CCTTAAAGCA GAATACAGCA GCTCTAACTG
 1451 GAGGTGCTT AAGTGC AAAT GATAAGGTTA TAAATGCAA TAACTTTGGA
 1501 GAAATTCTT TTGAGCAAA CGAAGT GAGG AATCACGGAG GAGCATTAA
 50 1551 TTGTGGATGT CGATCTAATC CTAAGTTAGA ACAAAAGGAT TCTGGAGAGA
 1601 ACATCAATAT TATTGGAAAC TCCGGAGCTA TCACTTTTTT AAAAAATAAG
 1651 GCTTCTGTT TAGAAGTGAT GACACAAGCT GAAGATTATG CTGGTGGAGG
 1701 CGCTTTATGG GGGCATAATG TTCTTCTAGA TTCCAATAGT GGGATATT
 1751 AATTATAGG AAATATAGGT GGAAGTACCT TCTGGATAGG AGAATATGTC
 55 1801 GGTGGTGGT CGATTCTCTC TACTGTAGA TGACAAATT CTAATAACTC
 1851 TGGAGATGTT GTT TAAAG GAAACAAAGG CCAATGTCTT GCTAAAAT
 1901 ATGTAGCTCC TCAAGAAAACA GCTCCCGTGG AATCAGATGC TTCATCTACA
 1951 AATAAAGACG AGAAGAGCCT TAATGCTTGT AGTCATGGAG ATCATTATCC
 2001 TCCTAAAACG GTAGAAGAGG AAGTGC CACC TTCATTGTTA GAAGAACATC
 60 2051 CTGTTGTTTC TTCGACAGAT ATTCTGTGGTG GTGGGGCCAT TCTAGCTCAA
 2101 CATATCTTAA TTACAGATAA TACAGGAAAT CTGAGATTCT CTGGGAACCT
 2151 TGGTGGTGGT GAAGAGTCTT CTACTGTGCG TGATTTAGCT ATCGTAGGAG
 2201 GAGGTGCTT GCTTCTACT AATGAAGTTA ATGTTTGCA G TAACCAAAAT
 2251 GTTGTGTTTT CTGATAACGT GACTCAAAT GTTGTGATT CAGGGGGAGC
 65 2301 TATTGTTAGCT AAAAAAGTAG ATATCTCCGC GAACCACTCG GTTGAATTG

2351	TCTCTAAATGG	TTCAGGGAAA	TTCCGGTGGTG	CCGTTTGCAC	TTTAAACGAA
2401	TCAGTAAACA	TTACGGACAA	TGGCTCGGCA	GTATCATTCT	CTAAAAAATAG
2451	AACACGTCTT	GGCGGTGCTG	GAGTTGCAGC	TCCCTCAAGGC	TCTGTAACGA
2501	TTTGTGGAAA	TCAGGGAAAAC	ATAGCATTAA	AAGAGAAACTT	TGTTTTGCGC
2551	TCTGAAAATC	AAAGATCAGG	TGGAGGAGCT	ATCATTTGCTA	ACTCTCTGT
2601	AAATATTCAAG	GATAACCGAG	GAGATATCCT	ATTTGTAAGT	AACTCTACGG
2651	GATCTTATGG	AGGTGCTATT	TTTGTAGGAT	CTTTGGTTGC	TTCTGAAGGC
2701	AGCAACCCAC	GAACGCTTAC	AATTACAGGC	AACAGTGGGG	ATATCCTATT
2751	TGCTAAAAAT	AGCACGCAA	CAGCCGCTTC	TTTATCAGAA	AAAGATTCCT
2801	TTGGTGGAGG	GGGCCATCTAT	ACACAAAACC	TCAAAATTCT	AAAGAATGCA
2851	GGGAACGTTT	CTTCTCATGG	CAACAGAGCT	CCTAGTGGTG	CTGGTGTCCA
2901	AATTGCAGAC	GGAGGAACAC	TTTGTGTTAGA	GGCCTTTGCA	GGAGATATCT
2951	TATTGAAAGG	GAATATCAAT	TTTGATGGGA	GTTCAATGC	GATTCACCTA
3001	TGCGGGAAATG	ACTCAAAAAT	CGTAGAGCTT	TCTGCTGTT	AAGATAAAA
3051	TATTATTTTC	CAAGATGCAA	TTACTTATGA	AGAGAACACA	ATTCTGGCT
3101	TGCCAGATAA	AGATGTCAGT	CCTTAAAGTG	CCCCCTCAT	AATTTTAAC
3151	TCCAAGCCAC	AAAGATGACAG	CGCTCAACAT	CATGAAGGG	CGATACGGG
3201	TTCTCGAGGG	GTATCTAAA	TTCCCTCAGAT	TGCTGCTATA	CAAGAGGGAA
3251	CCTTAGCTTT	ATCACAAAAC	GCAGAGCTTT	GGTTGGCAGG	ACTTAAACAG
3301	AAAACAGGAA	GTTCTATCGT	ATTGTCTGCG	GGATCTATT	TCCGTATTTT
3351	TGATTCCCAG	GTTGATAGCA	GTGCGCCTCT	TCCTACAGAA	AATAAAGAGG
3401	AGACTCTTGT	TTCTGCCGGA	TTTCAAATT	ACATGAGCTC	TCCTACACCC
3451	AATAAAGATA	AAGCTGTAGA	TACTCCAGT	TTTGCAGATA	TCATAAGTAT
3501	TACTGTAGAT	TTGTCTCAT	TTGTTCCCTGA	GCAGAGACGGA	ACTCTTCCTC
3551	TTCCCTCTGA	AATTATCATT	CCTAAGGGAA	CAAATTACA	TTCTAATGCC
3601	ATAGATCTTA	AGATTATAGA	TCCTACCAAT	GTGGGATATG	AAAATCATGC
3651	TCTTCTAAGT	TCTCATAAAG	ATATTCCATT	AATTTCCTT	AAGACAGCGG
3701	AAGGAATGAC	AGGGACGCCT	ACAGCAGATG	TTTCTCTATC	TAATATAAAA
3751	ATAGATGTAT	CTTTACCTTC	GATCACACCA	GCAACGTATG	GTCACACAGG
3801	AGTTTGGTCT	GAAAGTAAA	TGGAAGATGG	AAGACTTGT	GTCGGTTGGC
3851	ACCTACCGG	ATATAAGTTA	AATCTGAGA	AGCAAGGGC	TCTAGTTTTG
3901	ATAATCTCT	GGAGTCATTA	TACAGATCTT	AGAGCTCTTA	AGCAGGAGAT
3951	CTTTCGTCAT	CATACGATAG	CTCAAAGAAT	GGAGTTAGAT	TTCTCGACAA
4001	ATGTCGGGG	ATCAGGATTA	GGTGTGTTG	AAGATTGTC	GAACATCGGA
4051	GAGTTTGATG	GGTCAAACA	TCATCTCACA	GGGTATGCC	TAGGCTTGGA
4101	TACACAACTA	GTTGAAGACT	TCTTAATTG	AGGATGTTTC	TCACAGTTCT
4151	TTGGTAAAAC	TGAAAGCCAA	TCCTACAAAG	CTAAAGAACG	TGTGAAGAGT
4201	TATATGGAG	CTGCTTATGC	GGGGATTAA	GCAGGTCCTT	GGTTAATAAA
4251	ACGGACCTTT	GTTTACGGTA	ATATAAACAA	CGATTGACT	ACAGATTACG
4301	GTACTTTAGG	TATTCAACA	GGTCATGGA	TAGGAAAAGG	GTTTATCGCA
4351	GGCACAAGCA	TTGATTACCG	CTATATTGTA	AATCTCGAC	GGTTTATATC
4401	GGCAATCGTA	TCCACAGTGG	TTCTTTTGT	AGAAGCCGAG	TATGTCCTGTA
4451	TAGATCTTCC	AGAAAATAGC	GAACAGGGTA	AAGAGGTTAG	AACGTTCCAA
4501	AAAAACTCGTT	TTGAGAATGT	CGCCATTCT	TTTGGATTG	TTTLAGAACAA
4551	TGCTTATTCTG	CGTGGCTCAC	GTGCTGAAGT	GAACAGTGT	CAGCTTGCTT
4601	ACGTCTTGT	TGTATATCGT	AAGGGACCTG	TCTCTTTGAT	TACACTCAAG
4651	GATGCTGCTT	ATTCTTGAA	GAGTTATGGG	GTAGATATT	CTTGAAAGC
4701	TTGGAAGGCT	CGCTTGAGCA	ATAATACGGA	ATGGAATTCA	TATTTAAGTA
4751	CGTATTATTAGC	GTTTAATTAT	GAATGGAGAG	AAGATCTGAT	AGCTTATGAC
4801	TTCAATGGTG	GTATCCCTAT	TATTTCTAG		

The PSORT algorithm predicts an inner membrane location (0.106).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 42A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 42B) and for FACS analysis (Figure 42C). A his-tagged protein was also expressed.

55 The cp7287 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7287 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

-83-

Example 43

The following *C.pneumoniae* protein (PID 4377105) was expressed <SEQ ID 85; cp7105>:

5	1 MSLYQKWWNS QLKKSILCYST VAALIFMIPS QESPADSLID LNLGLDPSVE 51 CLSGDGAFSV GYFTKAGSTP VEYQPFKYDV SKKTFTILSV ETANQSGYAY 101 GISYDGTTIV GTCISLGAGKY NGAKWSADGT LTPLTGITGG TSHTEARAIS 151 KDTQVIEGFS YDASGQPKAV QWASGATTVT QLADISGGSR SSYAYAISDD 201 GTIIVGSMES TITRKTTAVK WVNNVPTYLG TLGGDASTGL YISGDGTVIV 251 GAANTATVTN GNQESHAYMY KDNQMKD*
---	---

The cp7105 nucleotide sequence <SEQ ID 86> is:

10	1 GTGAGTCAT ATCAAAAATG GTGGAACAGT CAGTTAAAGA AGAGCCTCTG 51 CTATTGACT GTTGCTGCTC TAATATTTAT GATTCCCTCT CAAGAACATCCT 101 TTGCAGATAG TCTTATAGAT TAAATTTAG GTTGTAGATCC TTCGGTCGAA 151 TGTCTGTCAG GAGATGGTGC ATTTCCTGTT GGGTATTATA CTAAGGCGGG 201 ATCGACTCCC GTAGAATATC AGCCGTTAA ATACGACGTA TCTAAGAAGA 251 CATTACAAT CCTTTCCGTA GAAACGGCAA ATCAGAGCGG CTATGCTTAC 301 GGAATCTCCCT ACAGATGGCAC GATCACTGTA GGAACGTGTA GCCTAGGTGC 351 AGGAAAATAT AACGGCGCAA AATGGAGTGC GGATGGCACT TTAACACCCCT 401 TAACTGGAAT CACGGGGGGG ACgtcACATA CGGAAGCGCG TGCGATTCT 451 AAGGATACTC AGGTGATCGA GGGTTCTCA TATGATGCTT CAGGGCAACC 501 CAAGGCTGTG CAGTGGCAA GCGGAGCGAC TACAGTAACA CAATTAGCAG 551 ATATTTTCAGG AGGCTCTAGA AGCTCTTATG CGTATGCTAT ATCTGATGAT 601 GGCACGATTTA TTGTTGGTC TATGGAGAGC ACGATAACAA GGAAAACCTAC 651 AGCTGTAAAA TGGGTAAATA ATGTTCTTAC GTATCTGGGA ACCTTAGGAG 701 GAGATGCTTC TACAGGTCTT TATATTCTG GAGACGGCAC CGTGTGTTGTA 751 GGTGCGGCAA ATACAGCAAC TGTAACCAAT GGGAAATCAGG AATCCCACGC 801 CTATATGTAT AAAGATAACC AAATGAAAGA TTGA
----	---

The PSORT algorithm predicts an inner membrane location (0.100).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 43A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot

30 (Figure 43B) and for FACS analysis (Figure 43C). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7105 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example 44

The following *C.pneumoniae* protein (PID 4376802) was expressed <SEQ ID 87; cp6802>:

40	1 MSNQLQPCIS LGCVSYINSF PLSLQLIKRN DIRCVLAPPA DLLNLLIEGK 51 LDVALTSSLG AISHNLGYVP GFGIAANQRI LSVNLYAAPL FFNSPOPRIA 101 ATLESRSSIG LLKVLCRHLW RIPTPHILRF ITTKVLRQTP ENYDGLLLIG 151 DAALQHPVLP GFVTYDLASG WYDLTKLPFV FALLLHSTSW KEHPLPNLAM 201 EERALQQFESS PEEVLKEAHQ HTGLPPSLLQ EYYALCQYRL GEEHYESFEK 251 FREYYGTLYQ QARL*
----	--

A predicted signal peptide is highlighted.

The cp6802 nucleotide sequence <SEQ ID 88> is:

45	1 ATGTCTAACCC AACTCCAGCC ATGTATAAGC TTAGGCTGCG TAAGTTATAT 51 TAATTCTTTT CCGCTGTCCC TACAACTCAT AAAAGAAAC GATATTGCT 101 GTGTTCTTGC TCCCCCTGCA GACCTCCTCA ACTTGCTAAT CGAAGGGAAA 151 CTCGATGTTG CTTTGACCTC ATCCCTAGGA GCTATCTCTC ATAACCTGGG 201 GTATGTCCCC GGCTTGGAA TTGCAGCAAA CCAACGTATC CTCAGTGTAA
----	---

-84-

251 ACCTCTATGC AGCTCCCACT TTCTTTAAGT CACCGCAACC TCGGATTGCC
 301 GCAACTTTAG AAAGTCGCTC CTCTATAGGA CTCTTAAAG TGCTTTGTCG
 351 TCATCTCTGG CGCATCCCAA CTCCCTCATAT CCTAAGATTC ATAACATACAA
 401 AAGTACTCAG ACAAACCCCT GAAAATTATG ATGGCCTCCT CCTAATCGGA
 451 GATGCAGCGC TACAACATCC TGTACTTCCT GGATTTGTA CCTATGACCT
 501 TGCCCTCGGGG TGGTATGATC TTACAAAGCT ACCTTTTGTA TTTGCTCTTC
 551 TTCTACACAG CACCTCTGG AAAAACATC CCCTACCCAA CCTTGCATG
 601 GAAGAAGCCC TCCAACAGTT CGAATCTTC CCCGAAGAAG TCCTTAAAGA
 651 AGCTCATCAA CATAACAGTC TGCCCCCTTC TCTTCTTCAA GAATACTATG
 701 CCCTATGCCA GTACCGTCTA GGAGAAGAAC ACTACGAAAG CTTTGAAAAA
 751 TTCCGGGAAT ATTATGGAAC CCTCTACCAA CAAGCCGAC TGTA

The PSORT algorithm predicts an inner membrane location (0.060).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 44A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot
 15. (Figure 44B) and for FACS analysis (Figure 44C). A his-tagged protein was also expressed.

These experiments show that cp6802 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 45

The following *C.pneumoniae* protein (PID 4376390) was expressed <SEQ ID 89; cp6390>:

20 1 **MVFSYYCMGL FFFSGAISSC GLLVSLGVGL GLSVLGVLLL LLAGLLLLFKI**
 51 **QSMLREVPKA PDLLDLEDAS ERLRVKASRS LASLPKEISQ LESYIRSAAN**
 101 **DLNTIKTWPH KDQRILVETVS RKLERLAAAO NYMISELCEI SEILEEEHHH**
 151 **LILQAQESLEW IKGSLFSTFL DMESFLNLSH LSEVRPYLAV NDPRLLEITE**
 201 **ESWEVVSIFI NVTSAFKKAQ ILFKNNEHSR MKKKLESVQE LLETFIYKSL**
 251 **KRSYRELGCL SEKMRIIHND PLFPWVQDQQ KYAHAKNEFG EIARCLEEFE**
 301 **KTFFWLDEEC AISYMDCWDF LNESIQNKKS RVDRDYISTK KIALKDRART**
 351 **YAKVLLLEENP TTEGKIDLDQD AQRAFERQSQ EFYTLEHTET KVRLEALQQC**
 401 **FSDLREATNV RQVRFTNSEN ANDLKESFEK IDKERVRYQK EQRLYWETID**
 451 **RNEQELREEI GESLRQNRR KGYRAGYDAG RLKGLLRQWK KNLRDVVEAHL**
 501 **EDATMDFEHE VSKSELCSVR ARLEVLEEL MDMSPKVADI EELLSYEERC**
 551 **ILPIRENLER AYLQYNKCSE ILSKAKFFFFP EDEQLLVSEA NLREVGAQLK**
 601 **QVQGKCQERA QKFAIFEKHI QEQKSLIKEQ VRSFDLAGVG FLKSELLSIA**
 651 **CNLYIKAVVK ESIPDVPCM QLYYSYYEDN EAVVRNRLLN MTERYQNFKR**
 701 **SLNSIQFNGD VLLRDPVYQP EGHETRLKER ELQETTLSCCK KLKVAQDRLS**
 751 **ELESRLSRR**

A predicted signal peptide is highlighted.

The cp6390 nucleotide sequence <SEQ ID 90> is:

40 1 TTGGTATTCT CATACTATTG CATGGGATTA TTTTTTTTCT CTGGAGCTAT
 51 TTCTAGTTGT GGTCTTTAG TGTCCTCTAGG AGTTGGTTA GGACTTAGTG
 101 TTTTAGGAGT ACTTTTACTT CTCTTAGCAG GTCTTTGCT TTTTAAGATC
 151 CAAAGTATGC TTCGAGAGGT GCCTAAGGCT CCTGATCTAT TAGATTAGA
 201 AGATGCAAGT GAACGGCTTA GAGTAAAGGC TAGCCGTTCT TTAGCAAGCC
 251 TCCCAGAGGA AACTAGCTAG CTAGAGAGCT ACATTCGTTG TGCAAGCTAAT
 301 GATCTAAATA CAAATTAAGAC TTGGCCGCAT AAAGATCAA GACTCGTCGA
 351 GACCGTGTCA CGAAAATTAG AGCGTCTGGC AGCTGCTCAA AACTATATGA
 401 TTTCTGAACT CTGCGAGATT AGTGAGATTG TTGAGGAAGA GGAGCATCAT
 451 CTAATTTGG CTCAGGAATC TCTAGAAATGG ATAGGTAAGA GTCTATTTTC
 501 TACCTTTCTG GACATGGAAT CTTTTTTAAA TTTGAGCCAT CTATCTGAAG
 551 TGGTCCGTA CTTAGCTGTA AATGATCCTA GATTATAGA AATTACCGAA
 601 GAATCTTGGG AAGTAGTGAG TCATTTCTATA AATGTAACGT CTGCTTTAA
 651 GAAAGCTCAAG ATTCTTTTA AGAACAAACGA ACATTCCTCGG ATGAAGAAGA
 701 ACTTAGAAAG TGTTCAAGAG TTACTGGAAA CATTATTTA TAAGAGTTTA
 751 AAGAGAAAGTT ATCGAGAATT AGGATGCTTA AGTGAAAAGA TGAGAATCAT
 801 TCACGACAAT CCTCTCTTCC CTTGGGTGCA AGATCAGCAG AAGTATGCTC
 851 ATGCTAAGAA TGAATTGGG GAGATTGCGC GGTGTTTGA GGAGTTGAA
 901 AAGACGTTCT TCTGGTTGGA TGAGGAGTGT GCTATTTCTT ACATGGACTG

	951	TTGGGATTTT	CTAAATGAGT	CTATTCAAGAA	TAAGAAGTCC	AGAGTAGATC
	1001	GAGATTATAT	ATCCACGAAG	AAAATTGCAT	TAAAGGATAG	AGCCCGCACT
5	1051	TATGCTAAGG	TTCTTTAGA	AGAGAATCCG	ACTACAGAGG	GTAAAATAGA
	1101	TTTGCAAGAC	GCTCAAAAGAG	CCTTTGAGCG	TCAAAGTCAG	GAGTTTTATA
	1151	CACTAGAGCA	TACGGAAACA	AAGGTGAGAC	TAGAACGACT	TCAACAGTGC
	1201	TTCTCGGATC	TTAGGGAGGC	GACGAACGTA	AGGCAAGTTA	GGTTTACAAA
	1251	TTCTGAAAT	GCGAATGATT	TAAGGAGAG	TTTCGAGAAG	ATAGATAAAAG
	1301	AGCGTGTGCC	ATATCAAAAA	GACCAAAGGC	TCTATTGGGA	AACAATAGAT
10	1351	CGCAATGAGC	AAGAGCTTAG	GGAAAGAGATT	GGGGAGTCGC	TTCGTTTACA
	1401	AAATCGGAGA	AAAGGGTATA	GGGCTGGATA	TGATGCTGGG	CGTTTAAAG
	1451	GTGGTTGCG	TCAGTCCAAG	AAAATCTCC	GCGATGTGGA	AGCCCACCTT
	1501	GAAGATGCCA	CTATGGATTI	TGAGCATGAA	GTAAAGCAAGA	GCGAATTGTG
	1551	CAGTGTTCGG	GCGAGGCTCG	AGGGTCTAGA	AGAAAGAGCTG	ATGGATATGT
15	1601	CTCCTAAAGT	TGCGGATATA	GAAGAGTTGT	TGTCCTATGA	AGAGCGTTGT
	1651	ATTCTTCCTA	TTAGGGAAAA	TTTAGAAAGG	GCATACCTCC	AATATAATAA
	1701	GTGTTCTGAA	ATTTTATCCA	AGGCAAAGTT	CTTCTTTCCG	GAAGACGAGC
	1751	AAATTGCTAGT	TTCGGAAGCG	AATCTAAGAG	AGGTGGGTGC	CCAGITAAAAA
	1801	CAAGTACAGG	GAAAATGTCA	AGAGAGGGCC	CAAAGTTTCG	CAATATTTGA
20	1851	AAAGCATATT	CAGGACAGA	AAAGCCTTAT	TAAAGAGCAA	GTGCGGAGTT
	1901	TTGATCTAGC	GGGAGTTGGG	TTTTAAAGA	GTGAGCTCT	TAGTATTGCT
	1951	TGTAACCTTT	ATATAAAGGC	GGTTGTTAAG	GAGTCTATAC	CAGTTGATGT
	2001	GCCTTGTATG	CAGTTATATT	ATAGTTATTA	CGAAGATAAT	GAAGCTGTAG
	2051	TGCGAAACCG	CCTTTAAAT	ATGACGGAGA	GGTATCAAAA	TTTTAAAAGG
25	2101	AGTTTGAATT	CCATACACCT	TAATGGTGC	GTTCTTTAC	GGGATCCGGT
	2151	CTATCACACCT	GAAGGTCATG	AGACCAGGCT	AAAGGAACGG	GAGCTACAAG
	2201	AAACACATT	GTCCTGTAAG	AAATTAAAGG	TGGCTCAAGA	TCGTCTTCT
	2251	GAATTAGAGT	CAAGGCTGTC	TAGGAGATAG		

The PSORT algorithm predicts a periplasmic location (0.932).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 45A.

30 The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 45B) and for FACS analysis (Figure 45C). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6390 is a surface-exposed and immunoaccessible protein, and that it 35 is a useful immunogen. These properties are not evident from the sequence alone.

Example 46

The following *C.pneumoniae* protein (PID 4376272) was expressed <SEQ ID 91; cp6272>:

	1	MKRCFLPLAS	FVLMGSSADA	LTHQEAVKKK	NSYLSHFKSV	SGIVTIEDGV
	51	LNIHNNLRIQ	ANKVYVENTV	GQSLKLVAHG	NVMVNRYAKT	LVCDYLEYYE
40	101	DTDSCLLTNG	RFAMYPWFLG	GSMITLTPET	IVIRKGYIST	SEGPKKDLCL
	151	SCGDLEYSSD	SLLSIGKTTL	RVCRIPIFL	PPFSIMPMEI	PKPPINFRGG
	201	TGGFLGSYLG	MSYSPISRKH	FSSTFPLDSF	FKHGVMGMFN	LHCSQKQVPE
	251	NVFNMKSYYA	HRLAIDMAEA	HDRYRLHGDF	CFTHKHVNFS	GEYHLSDSWE
	301	TVADIFPKNP	MLKNTGPTRV	DCTWNDNYFE	GYLTSSVKVN	SFQNANQELP
	351	YLTLRQYPIS	IYNTGVYLEN	IVECGYLNFA	FSDHIVGENF	SSLRLAARPK
45	401	LHKTVPPLPIG	TLSSTLGSSL	IYYSDVPEIS	SRHSQLSAKL	QLDYRFLLHK
	451	SYIQRRHHIE	PPVTFITETR	PLAKNEDHYI	FSIQDAFHSL	NLLKAGIDTS
	501	VLSKTNPRFP	RIHAKLWTH	ILSNTESKPT	FPKTACELSL	PFGKKNIVSL
	551	DAEWIWKKHC	WDHMNIRWEW	IGNDNVAMTL	EGLHRSKYSL	IKCDRENFIL
50	601	DVSRPIDQLL	DSPLSDHRNL	ILGKLFVRPH	PCWNYRLSLR	YGWHRQDTPN
	651	YLEYQMILGT	KIFEHWQLYG	YERREADSR	FFFFFLKLDKP	KKPPF*

A predicted signal peptide is highlighted.

The cp6272 nucleotide sequence <SEQ ID 92> is:

```
1 ATGAAACGTT GCTTCTTATT TCTAGCTTCC TTTGTTCTTA TGGGTTCC
```

	51	AGCTGATGCT	TTGACTCATC	AAGAGGCTGT	AAAAAAGAAA	AACTCCTATC
	101	TTAGTCACCT	TAAGAGTGT	TCTGGGATTG	TGACCATCGA	AGATGGGTA
	151	TTGAATATCC	ATAACAAACCT	GCGGATAACAA	GCCAATAAG	TGTATGTAGA
5	201	AAATACTGTG	GGTCAAAGCC	TGAAGCTTGT	CGCACATGGC	AATGTTATGG
	251	TGAACATATA	GGCAAAAACC	CTAGTTGTG	ATTACCTAGA	GTATTACGAA
	301	GATACAGACT	CTTGCTTCT	TACTAATGGA	AGATTGCGGA	TGTATCCTTG
	351	GTTTCTAGGG	GGGTCTATGA	TCACTCTAAC	CCCGAAACC	ATAGTCATTC
10	401	GGAAGGGATA	TATCTCTACC	TCCGAGGGTC	CCAAAAAAAAGA	CCTGTGCCTC
	451	TCCGGAGATT	ACCTGGAATA	TTCTTCAGAT	AGTCTTCTTT	CTATAGGGAA
	501	GACAACATTA	AGGGTGTGTC	GCATTCCGAT	ACTTTCTTA	CCTCCATTCT
	551	CTATCATGCC	TATGGAGATC	CTTAAGCCTC	CGATAAAACTT	TCGAGGAGGA
	601	ACAGGAGGAT	TTCTGGGATC	CTATTGGGG	ATGAGCTACT	CGCCGATTTG
	651	TAGGAAGCAT	TTCTCCTCGA	CATTTTCTT	GGATAGCTTT	TTCAAGCATG
15	701	GCGTCGGCAT	GGGATTCAC	CTCCATTGTT	CTCAGAAGCA	GGTTCTGAG
	751	AATGTCTTCA	ATATGAAAAG	CTATTATGCC	CACCGCCTTG	CTATCGATAT
	801	GGCAGAAAGCT	CATGATCGCT	ATCGCCTACA	CGGAGATTTC	TGCTTCACGC
	851	ATAAGCATGT	AAATTTTTCT	GGAGAAATACC	ATCTCAGCGA	TAGTTGGGAA
	901	ACTGTTGCTG	ACATTTTCCC	CAACAACCTTC	ATGTTGAAAA	ATACAGGCC
20	951	CACACGTGTC	GATTGCACTT	GGAAATGACAA	CTATTTGAA	GGGTATCTCA
	1001	CCTCTTCTGT	TAAGGTAAAC	TCTTTCCAAA	ATGCCAACCA	AGAGCTCCCT
	1051	TATTTAACAT	TAAGGCAGTA	CCCCGATTTCT	ATTTATAATA	CGGGAGTGT
	1101	CCTTGAAAAC	ATCGTAGAAT	GTGGGTATT	AAACTTTGCT	TTTACCGATC
	1151	ATATCGTTGG	CGAGAATTTC	TCTTCACTAC	GTCTTGCTGC	GCGCCCTAAG
25	1201	CTCCATATAAA	CTGTCCTCT	ACCTATAGGA	ACGCTCTCT	CCACCCCTAGG
	1251	GAGTTCTCTG	ATTTACTATA	GGCATGTTCC	TGAGATCTCC	TCGCGCCATA
	1301	GTCAGCTTTC	CGCGAAGCTA	CAACTTGATT	ATCGCTTCT	ATTACATAAG
	1351	TCCTACATTTC	AAAGACGCCA	TATTATAGAG	CGGTTCTGTA	CCTTCATTAC
	1401	AGAGACTCGT	CCTCTAGCTA	AGAATGAAGA	TCATTATATC	TTTTCTATT
30	1451	AAGATGCCTT	TCACTCCTTA	AACCTCTGA	AGAGCGGGTAT	AGATACCTCG
	1501	GTACTGAGTA	AGACTAACCC	TCGATTTCCG	AGAATCCATG	CGAAGCTGTG
	1551	GACTACCCAC	ATCTTGAGCA	ATACAGAAAAG	CAAACCCACG	TTTCCCAAAA
	1601	CTGCACTGCC	GCTATCTCTA	CCTTTGGAA	AGAAAAAATAC	AGTCTCCCTA
	1651	GATGCTGAAT	GGATTGGAA	AAAGCACTGT	TGGGATCACA	TGAACATACG
35	1701	TTGGGAGTGG	ATCGGAAATG	ACAATGTGGC	TATGACTCTA	GAATCCCTGC
	1751	ATAGAAAGCAA	ATACAGCCTG	ATTAAGTGTG	ACAGGGAGAA	CTTCATTTA
	1801	GATGTCAGCC	GTCCCATTGA	CCAGCTTTTA	GACTCCCCCTC	TCTCTGATCA
	1851	TAGGAATCTC	ATTTTGTGGA	AATTATTGTG	ACGACCTCAT	CCCTGTGGGA
40	1901	ATTACCGCTT	ATCCTTACGC	TATGGCTGGC	ATCGCCAGGA	CACTCCGAAC
	1951	TACCTAGAAT	ACCAAGATGAT	TCTAGGGGACG	AGATCTTCG	AACATTGGCA
	2001	GCTCTATGGG	GTGTATGAAC	CCCCGAGAAGC	AGATAGTCGA	TTTTCTTCT
	2051	TCTTAAAGCT	CGACAAACCT	AAAAAACCTC	CCTCTAA	

The PSORT algorithm predicts an outer membrane location (0.48).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 46A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot and for FACS analysis (Figure 46B). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6272 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

50 Example 47

The following *C.pneumoniae* protein (PID 4377111) was expressed <SEQ ID 93; cp7111>:

	1	MFEAVIADIQ	AREILDSRGY	PTLHVKVTT	TGSVGEARVP	SGASTGKKEA
	51	LEFRDTDSPR	YQGKGVLQAV	KNVKEILFPL	VKGCSVYEQS	LIDSLMMDS
55	101	GSVPNKEETLGA	NAILGVSLAT	AHAAAATLRR	PLYRYLGCCF	ACSLPCPMNN
	151	LINGGMHADN	GLEFOEFMIR	PIGASSIKEA	VNMGADVFHT	LKKLLHERGL
	201	STGVGDEGGF	APNLASNEEA	LELLLLAIEK	AGFTPDKDIS	LALDCAASSF

251 YNVKTGTYDG RHYEEQIAIL SNLCDRYPID SIEDGLAEDD YDGWALLTEV
 301 LGEKVQIVGD DLFVTNPRLI LEGISNGLAN SVLIKPNQIG TLTEVVYAIK
 351 LAQMAGYTTI ISHRSGETTD TTIADLAVAF NAGQIKTGSL SRSERVAKYN
 401 RLMEIEEELG SEAIFTDSNV FSYEDSEE*

- 5 A predicted signal peptide is highlighted.

The cp7111 nucleotide sequence <SEQ ID 94> is:

1 ATGTTTGAAG CTGTCATTGC CGATATCCAG GCTAGGGAAA TCTTGGATTC
 51 TCGCGGGTAT CCCACTTAC ATGTTAAAGT AACCACTAGC ACAGGGTCTG
 101 TTGGAGAACG TCAGGTTCTC TCAGGAGCAT CCACAGGGAA AAAAGAAGCC
 151 TTAGAGTTTC GTGATACAGA TTCTCCTCGT TATCAAGGCC AAGGGGTTTT
 201 GCAAGCTGTA AAAAACGTTAA AGAAATTCT TTTTCCCCCTC GTCAAGGGAT
 251 GTAGTGTGTTA TGAGCAATCC TTAATTGATT CTCTGATGAT GGATTCTGAC
 301 GGCTCTCCGA ACAAAAGAAC TCTAGGGGCC AATGCTATTT TAGGAGTCTC
 351 TCTAGCTACA GCACATGCCAG CAGCAGCAAC ACTACGCCAG CCTCTGTATC
 401 GTTATTAGG AGGGTGTGTT GCCTGCAGTC TTCCCTGTCC TATGATGAAT
 451 CTGATCAATG GAGGCATGCA TGCCGATAAC GGCTTGGAGT TCCAAGAATT
 501 TATGATCCGT CCTATTGGAG CCTCTTCCAT CAAAGAAGCT GTCAACATGG
 551 GTGCTGACGT TTTTCAACT TTGAAAAAAAT TACTCCATGA AAGAGGCTTA
 601 TCTAGCTGGAG TGGGTGACGA AGGAGGCTTC GCCCCGAATC TTGCTTCTAA
 651 TGAAGAAGCT CTAGAGCTCC TATTGCTGGC TATTGAAAAAA GCAGGGCTTTA
 701 CTCCAGGAAA AGATATTCG CTAGCCTTAG ACTGCGCAGC ATCCTCATTC
 751 TATAACGTTAA AACACAGGCAC GTATGATGGG AGGCACTATG AAGAGCAAAT
 801 CGCAATCCTT TCTAATTAT GTGATCGCTA TCCTATAGAC TCCATAGAAG
 851 ATGGTCTTGC TGAAGAAGAC TATGACGGGT GGGCCTTGT AACTGAAGTT
 901 CTTGGAGAAA AACTACAGAT TGTGGGTGAT GACCTATTG TTACAAATCC
 951 GGAATTAATAA TTAGAGGGTA TTAGCAATGG ATTAGCGAAC TCTGTGTTGA
 1001 TAAACACAAA TCAGATAGGG ACGCTTACTG AAACAGTGTAA TGCTATCAAG
 1051 CTTGCCAAAC TGGCTGGCTA TACTACAATT ATTCTCATC GCTCAGGAGA
 1101 AACTACGGAC ACTACGATTG CAGATCTTGC TGTGCTCTC AACGCCGGTC
 1151 AAATCAAAAC AGGCTCTTAA TCACGTTCTG AGCGTGTGTC AAAATACAAT
 1201 AGACTCATGG AAATTGAAGA AGAGCTTGGG TCCGAAGCAA TTTTCACAGA
 1251 TTCTAATGTA TTTTCTTAC GAGGATTCT GAGGAATAG

The PSORT algorithm predicts an inner membrane location (0.100).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 47A.

- 35 The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 47B) and for FACS analysis (Figure 47C). A his-tagged protein was also expressed.

The cp7111 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

- These experiments show that cp7111 is a surface-exposed and immunoaccessible protein, and that it 40 is a useful immunogen. These properties are not evident from the sequence alone.

Example 48

The following *C.pneumoniae* protein (PID 4455886) was expressed <SEQ ID 95; cp0010>:

1 MKSQFSQLVL SSTLACFTSC STVFAATAEN IGPSDSFDGS TNTGTYTPKN
 51 TTTGIDYTLT GDITLQLNLD SAALTKGCF S DTESLSFAK KGYSLSFLNI
 101 KSSAEGAALS VTTDKNLSLT GFSSLTFLAA PSSVITTPSG KGAVKCGGDL
 151 TFFDNNTILF KQDYCEENG AISTKNLSLK NSTGSISFEG NKSSATGKKG
 201 GAICATGTVD ITNNNTAPTLF SNNIAEEAAGG AINSTGNCTI TGNTSLVFSE
 251 NSVTATAGNG GALSGDADVT ISGNQSVTFS GNQAVANGGA IYAKKLTLAS
 301 GGGGVSPFLT IIVQGTTAGN GGAISILAAG ECLSLAEAGD ITFNGNAIVA
 351 TTFPOTTKRNS IDIGSTAKIT NLRAISGHSI FFYDPITANT AADSTDTLNL
 401 NKADAGNSTD YSGSIVFSGE KLSEDEAKVA DNLTSTLKQP VTLTAGNLVL
 451 KRGVTLDTKG FTQTAGSSVI MDAGTTLKS TEEVTLTGLS IPVDSLGEK
 501 KVVIAASAAS KNVALSGPIL LLDNQGNAYE NHDLGKTQDF SFVQLSALGT

5 551 ATTTDVPAPV TVATPTHYGY QGTWGMTWVD DTASTPKTATLAWNTGY
 601 LPNPERQGPL VPNSLWGSFS DIQAIQGVIE RSALTLCSR GFWAAGVANF
 651 LDKDKKGEKR KYRHKSGGYA IGGAAQTCSE NLISFAFCQL FGSDKDFLVA
 701 KNHTDTYAGA FYIQHITECS GFICCLLDKL PGWSHCKPLV LEGQLAYSHV
 751 SNDLKTKYTA YPEVKGSWGN NAFNMMILGAS SHSYPEYLHC FDTYAPYIKL
 801 NLTYIRQDSF SEKGTEGRSF DDSNLFNLSL PIGVKFEKFS DCNDFS YDLT
 851 LSYVPDILRN DPKCTTALVI SGASWETYAN NLARQALQVR AGSHYAFSPM
 901 FEVLGQFVFE VRGSSRIYNV DLGGKFQF*

A predicted signal peptide is highlighted.

- 10 The cp0010 nucleotide sequence <SEQ ID 96> is:

1 1 ATGAAATCGC AATTTCCTG GTTAGTGCTC TCTTCGACAT TGGCATGTTT
 51 51 TACTAGTTGT TCCACTGTTT TTGCTGCAAC TGCTGAAAAT ATAGGCCCT
 101 101 CTGATAGCTT TGACGGAACT ACTAACACAG GCACCTATAAC TCCTAAAAAT
 151 151 ACGACTACTG GAATAGACTA TACTCTGACA GGAGATATAAC CTCTGCAAAA
 201 201 CCTTGGGGAT CGGGCAGCTT TAACGAAGGG TTGTTTTCTT GACACTACGG
 251 251 AATCTTAAG CTTTGCCTG AAGGGTACT CACTTTCTT TTTAAATATT
 301 301 AAGTCTAGTGT CTGAAGGCCG ACCACTTTCTT GTTACAACGT ATAAAAATCT
 351 351 GTCGCTAACAA GGATTTCGA GTCTTACTTT CTTAGCGGGCC CCATCATCGG
 401 401 TAATCACAAAC CCCCTCAGGA AAAGGTGCAG TTAAATGTGG AGGGGATCTT
 451 451 ACATTTGATA ACAATGGAAC TATTTTATTT AAACAAGATT ACTGTGAGGA
 501 501 AAATGGCGGA GCCATTCTA CCAAGAACATCT TTCTTGAAA AACAGCACGG
 551 551 GATCGATTTC TTTTGAAGGG AATAAAATCGA GCGCACAGG GAAAAAAGGT
 601 601 GGGGCTATTG GTGCTACTGG TACTGTAGAT ATTACAAATA ATACGGCTCC
 651 651 TACCCTCTTC TCGAACAAATA TTGCTGAAGC TGCAAGGTGGA GCTATAAATA
 701 701 GCACAGGAAA CTGTACAAATT ACAGGGAATA CGTCTCTTGT ATTTTCTGAA
 751 751 AATAGTGTGA CAGCGACCCG AGGAAATGGA GGAGCTCTTT CTGGAGATGC
 801 801 CGATGTTAAC ATATCTGGG ATCAGAGTGT AACTTCTCA GGAAACCAAG
 851 851 CTGTAGCTAA CGGGCGAGCC ATTATATGCTA AGAAGCTTAC ACTGGCTTCC
 901 901 GGGGGGGGGG CGGTATCTCC TTTCTAACAA ATAaTAGTCC AAGGTACAC
 951 951 TGCAGGTAAAT GGTGGAGCCA TTTCTATACT GGCAGCTGGA GAGTGTAGTC
 1001 1001 TTTTCAGCAGA AGCAGGGAC ATTACCTTCAT ATGGGAATGC CATTGTTGCA
 1051 1051 ACTACACCCAA AAACTACAAA AAGAAATTCTT ATTGACATAG GATCTACTGC
 1101 1101 AAAGATCACCC AATTTACGTG CAATATCTGG GCACTAGCATC TTTTCTACG
 1151 1151 ATCCGATTAC TGCCTAACAGC GCTGGGATT CTACAGATAC TTTAAATCTC
 1201 1201 AATAAGGCTG ATGCAGGTTAA TAGTACAGAT TATAGTGGGT CGATTGTTTT
 1251 1251 TTCTGGTGAAG CAGCTCTCTG AAGATGAAGC AAAAGTTGCA GACAACCTCA
 1301 1301 CTTCTACGCT GAAGCAGCCT GTAACCTCAA CTGCAGGAAA TTTAGTACTT
 1351 1351 AAACGTGGTG TCACTCTCGA TAGCAAAGGC TTACTCAGA CCGCGGGTTC
 1401 1401 CTCTGTTATT ATGGATGCGG GCACAAACGTT AAAAGCAAGT ACAGAGGAGG
 1451 1451 TCACTTTAAC AGGCTCTTC ATTCCCTGTAG ACTCTTTAGG CGAGGGTAAG
 1501 1501 AAAGTTGTAAT TTGCTGTTTC TGCAAGCAAGT AAAATGTAG CCCTTAGTGG
 1551 1551 TCCGATTCTT CTTTTGGATA ACCAAGGGAA TGCTTATGAA AATCACGACT
 1601 1601 TAGGAAAAAAC TCAAGACTTT TCATTTGTGC AGCTCTCTGC TCTGGGTACT
 1651 1651 GCAACAACCA CAGATGTTCC AGCGGTTCC ACAGTAGCAA CTCCTACGCA
 1701 1701 CTATCGGTAT CAAGGACTTCC GGGGAATGAC TTGGGTTGAT GATACCGCAA
 1751 1751 GCACTCCAAA GACTAAAGACA GCGACATTAG CTTGGACCAA TACAGGCTAC
 1801 1801 CTTCCGAAATC CTGAGCGTCAG AGGACCTTTA GTTCCCTAAATA GCCTTTGGGG
 1851 1851 ATCTTTTCTCA GACATCCAAG CGATTCAAGG TGTCATAGAG AGAAGTGT
 1901 1901 TGACTCTTTG TTCAGATCGA GGCTTCTGGG CTGGGGAGT CGCCAATTTC
 1951 1951 TTAGATAAAG ATAAGAAAGG GGAAAAAACGC AAATACCGTC ATAAATCTGG
 2001 2001 TGGATATGCT ATCGGAGGTG CAGCGAACAC TTGTTCTGAA AACITTAATT
 2051 2051 GCTTTCGCTT TTGCAACACTC TTGGTAGCG ATAAAGATTT CTAGTCGCT
 2101 2101 AAAATCACTA CTGATACCTA TGCAAGGAGC TTCTATATCC AACACATTAC
 2151 2151 AGAAATGTAGT GGGTTCTCATAG GTTGTCTCTT AGATAAAACTT CCTGGCTCTT
 2201 2201 GGAGTCATAAA ACCCCTCGTT TTAGAAGGGC AGCTCGCTA TAGCCACGTC
 2251 2251 AGTAATGATC TGAAGACAAA GTATACTGCG TATCCTGAGG TGAAAGGTT
 2301 2301 TTGGGGGAAT AATGCTTTA ACATGATGTT GGGAGCTCT TCTCATTCTT
 2351 2351 ATCCCTGAATA CCTGCATTTGT TTGATACCT ATGCTCCATA CATCAAACCTG
 2401 2401 AATCTGACCTA ATATACGTCA GGACAGCTTC TCAGGAGAAAG GTACAGAAGG
 2451 2451 AAGATCTTTT GATGACAGCA ACCTCTCAA TTATCTTGT CCTATAGGGG
 2501 2501 TGAAGTTGAAAGTCTCT GATTGTAATG ACTTTCTTA TGATCTGACT
 2551 2551 TTATCCTATG TTCCCTGATCT TATCCGCAAT GATCCCAAT GCACTACACG
 2601 2601 ACTTGTAAATC AGCGGAGCCT CTTGGGAAAC TTATGCCAAT AACCTAGCAC
 2651 2651 GACAGGCCTT GCAAGTGCAGTC ACTACGCCTT CTCTCCATG
 2701 2701 TTTGAAGTGC TCGGCCAGTT TGCTTTGAA GTTCGTGGAT CCTCACGGAT

-89-

2751 TTATAATGTA GATCTTGGGG GTAAGTTCCA ATTCTAG

The PSORT algorithm predicts an outer membrane location (0.922).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 48A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot

5 (Figure 48B) and for FACS analysis (Figure 48C). A his-tagged protein was also expressed.

The cp0010 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp0010 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

10 Example 49

The following *C.pneumoniae* protein (PID 4376296) was expressed <SEQ ID 97; cp6296>:

1	MEEVSEYLQQ VENQLESCSK RLTKMETFAL GVRLEAKEEI ESIILSDVNV
51	RFEVLICRDIE DMLSRVEEIE RMLRMAELPL LPIKEALTKA FVQHNSCKEK
101	LTKVEPYFKE SPAYLTSEER LQSLNQTLQR AYKESQKVSG LESEVRACRE
151	QLKDQVRQFE TQGVSLIKEE ILFVTSTFRK KFSYHSFRLH VPCMRLYEY
201	YDDIDLERTR ARWMAMSERY RDAFQAFQEM LKEGLVEEAQ ALRETEYWLY
251	REERKSKKKH*

The cp6296 nucleotide sequence <SEQ ID 98> is:

1	ATGGAGGAGG TGTCTGAGTA TCTTCAGCAA GTAGAAAATC AGTTGGAATC
51	CTGTTCCAAG CGATTAACCA AGATGGAAAC TTTTGCCCTTA GGTGTGAGGT
101	TGGAAGCTAA AGAAGAGATA GAGTCTATCA TACTTCTCTGA TGACTGAAC
151	CGTTTTGAGG TTTTATGTAG AGATATTGAA GATATGCTAT CTCGAGTCGA
201	GGAGATAGAG CGGATGTTAC TGATGGCGGA GCTTCCTCTA CTTCCTATAAA
251	AAGAACGCCT TACCAAGGCT TTTGTACAAC ATAACAGCTG TAAAGAGAAAG
301	TTAACCAAGG TAGAGCCTA CTTAAAGAG AGCCCCTGCAT ATCTAACTAG
351	TGAAGAGCGA TTGCAGAGTT TGAATCAGAC TTTACAACGGT GCGTACAAAG
401	AGTCCCAAAA GGTTTCAGGT TTAGAATCGG AAAGTGAGAGC CTGTCGAGAG
451	CAGCTTAAAG ATCAAGTAAG ACAGTTGAA ACTCAAGGGAG TGAGCTTGAT
501	AAAAGAAGAG ATTCTCTTTG TGACTAGTAC CTTTAGAACT AAATTTAGCT
551	ATCATTTCATT TCGATTACAT GTTCCCTTGCA TGAGGTTGTA TGAGGAGAT
601	TATGATGACA TTGATCTAGA GAGAACTCGA GCTCGATGGA TGGCGATGTC
651	TGAGAGGTAT AGAGATGCTT TTCAGGCATT CCAGGAGATG TTGAAGGAAG
701	GCCTAGTTGA AGAAGCTCAG GCTCTTAGAG AAACCGAGTA CTGGTTATAT
751	CGAGAGGAGA GAAAGAGTAA AAAGAAACAT TGA

35 The PSORT algorithm predicts a cytoplasmic location (0.523).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 49A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 49B) and for FACS analysis (Figure 49C). A his-tagged protein was also expressed.

These experiments show that cp6296 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

40 Example 50

The following *C.pneumoniae* protein (PID 4376664) was expressed <SEQ ID 99; cp6664>:

1	MVLFHQAQASG RNRVKADAIV LPFWHFKDAK NAASFEEAEFE PSYLPALENF
51	QGKTGEIELL YSSPKAKEKR IVLGLGLKNE ELTSDDVVQFT YATLTRVLRK
101	AKCSTVNIII PTISELRLSA EEFLVGLSSG ILSLNYYDYPY YNKVDRNLET

5 151 PLSKVTVIGI VPKMADAIFR KEAAIFEGVY LTRDLVNRNA DEITPKKLAE
 201 VALNLGKEFP SIDTKVLGKD AIAKEKMGLL LAVSKGSCVD PHFIVVRYQG
 251 RPKSKDHTVL IGKGVTFDSG GLDLKPGKSM LTMKEDMAGG ATVLGILSAL
 301 AVLELPINVY GIIPATENAI DGASYKMGDV YVGMSGSLSV ICSTDAEGR
 351 ILADAITYAL KYCKPTRIID FATTGTAMVV SLGEEEVAGFF SNNDVLAEDL
 401 LEASAETSEP LWRLPLVKKY DKTLMHSIDIAD MKNLGSNRAG AITAALFLQR
 451 FLEESSVAWA HLDIAGTAYH EKEEDRYPKY ASGFGVRSIL YYLENSLSK*

The cp6664 nucleotide sequence <SEQ ID 100> is:

10 1 GTGGTTTTAT TTCATGCTCA AGCCTCTGGG CGTAATCGTG TTAAGGCAGA
 51 TGCTATAGTC CTGCCCTTT GGCACTTTAA GGATGCAAAA AATGCAGCTT
 101 CTTTTGAAGC CGAGTTGAA CCCTCGTATC TCCCCGCTTT AGAAAACCTT
 151 CAAGGAAAAAA CCGGGGAGAT TGAACTCCCTT TATAGTAGTC CTAAAGCTAA
 201 GGAAAAAACGC ATTGTCCCTCT TAGGCTTAGG GAAAATGAA GAGCTCACCT
 251 CTGATGTTGT TTTCCAACC TATGCGACAC TAACTCGTGT CTTACCTAAA
 301 GCAAAGTGT CCACAGTCAA TATCATCTTA CCTACAATTCTT CTGAATTGCG
 351 GCTTTCTGCC GAAGAATTCT TAGTGGGGTT GTCCCTCAGGA ATTTTGTCTAT
 401 TAAACTATGTA CTACCCCACGT TATAATAAGG TAGATCGTAA TCTTGAAGACT
 451 CCTCTTCTCA AAGTCACCGT TATCGGTATC GTTCCCAAAGA TGGCGGATGCG
 501 TATCTTTAGG AAAGAACGAG CCATTTTCA CGATGTTAGG AGGCGTATAT CTCACCGAG
 551 ATCTTGTGAA CAGGAATGCT GATGAAATTCA CCCCTAAGAA ATTGGCAGAG
 601 GTTGCCTCTGAA ATCTGGGAAA AGAGTTCCCT AGTATTGATA CTAAGGTCTT
 651 GGGAAAAGAT GCCATCGCCA AAGAGAAAAT GGGACTCCTA TTGGCTGTTT
 701 CCAAGGGTTC TTGTGTGGAT CCACACTTTA TCGTTGTCCG TTATCAAGGA
 751 CGTCCTAAGT CTAAAGATCA CACCGTCTTG ATAGGGAAAG GGGTCACTTT
 801 TGACTCTGGA GGTTTAGACCC TCAAGCCTGG AAAATCCATG CTTACTATGAA
 851 AAGAAGACAT GGCAGGTTGG GCTACAGTCC TCAGGATTCT CTCGGCGTTA
 901 GCAGTTTTAG AGCTTCCTAT AAATGTCACG GGGATCATTC CTGCTACAGA
 951 GAATGCTATC GATGGGCCCT CCTATAAAAT GGGAGATGTC TATGTAGGAA
 1001 TGTCGGGGCT TTCTGTGAG ATTGTAGTA CCGATGCTGA GGGACGTCTT
 1051 ATCCCTCGCTG ATGCGATTAC ATATGCTTTA AAATATTGTA AACCGACACG
 1101 TATTATAGAT TTTGCAACTC TAACAGGAGC TATGGTAGTC TCTCTAGGAG
 1151 AAGAGGTTGC AGGTTTCTTT TCCAATAACG ATGTTTTAGC TGAAGATCTT
 1201 TTAGAGGCGT CAGCCGAAAC CTCCGAGGCCG TTATGGAGAC TTCTCTAGT
 1251 TAAGAAGTAT GATAAAACAT TGCAATTCTGA TATTGCTGAT ATGAAAAATC
 1301 TAGGCAGTAA CCGTGCAGGG GCTATTACAG CAGCATTATT CTTGCAGAGA
 1351 TTTTTGGAAG AATCTTCGGT AGCTTGGGCA CATCTTGATA TTGCAGGTAC
 1401 TGCAATATCAT GAAAAAGAAG AAGACCGTTA TCCAAAATAT GCTTCAGGTT
 1451 TTGGTGTTCG TTCTATCTT TATTAACCTAG AAAATAGTCT TTCTAAAGTAG

The PSORT algorithm predicts an inner membrane location (0.268).

40 The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 50A), as a his-tagged protein, and as a GST/His fusion. The proteins were used to immunise mice, whose sera were used in Western blot Western blot (50B) and FACS (50C) analyses.

The cp6664 protein was also identified in the 2D-PAGE experiment (Cpn0385) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

45 These experiments show that cp6664 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 51

The following *C.pneumoniae* protein (PID 4376696) was expressed <SEQ ID 101; cp6696>:

50 1 MTLIFVIIIV WCNAFLIKIC VIMGLQSRLQ HCIEVSQNSN PDSQVKQFIY
 51 ACQDKTTLRQS VLKIFRYHPL LKIHDIARAV YLLMALEEAE DLGLSFLNVQ
 101 QYPSGAVELF SCGGFPWKGL PYPAEHAEFG LLLLQIAEFY EESQAVVSKM
 151 SHFQQALFDH QGSVFPSSLWS QENSRLLKEK TTLSQSFLFQ LGMQIHPEYS
 201 LEDPALGFWM QRTRSSSAFV AASGCQSSLG AYSSGDVGVI AYGPCSGDIS
 251 DCYYFGCCGI AKEFVCQKSH QTTEISFLTS TGKPHPRNTG FSYLRDSVH
 301 LPIRKITIS DKQYRVHAAL AEATSAMTFS IFCKGKNCQV VDGPRLRSCS

-91-

```

351 LDSYKGPGND IMILGENDAI NIVSASPyme IFALQGKEKF WNADFLINIP
401 YKEEGVMLIF EKKVTSEKGR FFTKMN*

```

A predicted signal peptide is highlighted.

The cp6696 nucleotide sequence <SEQ ID 102> is:

```

5      1 TTGACTCTAA TTTTCTTAT TATTATCGTT TGGTGCAATG CTTTTCTGAT
      51 CAAATTGTCG GTGATAATGG GGCTGCAATC CAGGTTACAA CATTGTATAG
     101 AAGTGTCCCA GAATTGCAAC TT'TGATTAC CAAAGTAAAACA GTTTTATCTAT
     151 GCGTGCCAAG ATAACAGACATT AAGGCAGTCT GTACTCAAGA TTTTCCGCTA
     201 CCATCCTTTA CAAAAAAATTG ATGATATTGC TCGGGCCCCTC TATCTTTGTA
    10 251 TGGCCTTAGA AGAAGGCAG GATTAGGCT TAAGCTTTT AAATGTACAG
     301 CAGTACCCCT CAGGTGCTGT AGAACTGTT TCTTGTGGGG GATTTCCTTG
     351 GAAAGGATTA CCTTATCCTG CAGAACATGC GGAATTGGC CTACTCCTGT
     401 TACAGATCGC AGAGTTTAT GAAGAGAGTC AGGCATACTG CTCTAAAATG
     451 AGTCATTTC AACAGCCACT CTTTGATCAC CAAGGGAGCG TCTTTCCCTC
     501 TCTCTGGAGC CAGGAGAACT CTCGACTCCT AAAAGAAAAG ACAACTCTTA
     551 GCCAATCGTT TCTCTTCAA TTAGGAATGC AAATTCAACC AGAATACAGT
     601 CTTGAGGATC CTGCACTAGG GTTCTGGATG CAAAGAACGC GTTCTTCATC
     651 CGCTTTGTA GCGCCTTCAG GATGTCAAAG TAGCTTGGGA GCGTATTCCCT
     701 CAGGGGATGT CGGTGTTATC GCTTATGGAC CTTGCTCTGG AGACATTAGT
     751 GATTGTTATT ATTTTGGATG TTGTTGGAATC GCTAAAGAGT TCGTGTGCCA
     801 AAAATCTCAC CAAACTACAG AGATTTCTTT TCTCACCTCT ACAGGAAAGC
     851 CTCATCCCGA AAATACGGGA TTTTCCCTACC TTCGAGATTC CTATGTACAT
     901 CTGCGATCC GCTGTAAGAT CACTATTTC GACAAGCAAT ATCGCGTGCA
     951 CGCTGCGITG GCTGAGGCCA CCTCTGCCAT GACGTTTCTC ATTTTCTGTA
    25 1001 AGGGGAAGAA TTGTCAGGTT GTTGACGGCC CTCGCTTGCG CTCCCTGTTCC
     1051 CTAGATTCTT ATAAAGGTCC CGGAAACGAC ATTATGATTC TTGGGGAAAA
     1101 TGACGCAATC AACATTGTTT CTGCAAGTCC CTATATGGAA ATTTTTGCTT
     1151 TGCAAGGCCA AGAAAAAAATTG TGGAATGCAG ACTTTTTGAT TAATATTCCCT
     1201 TACAAAGAAGA AGGGCGTCAT GTTAATTGGG GAAAAAAAAG TGACCTCTGA
     1251 GAAAGGAAGA TTCTTTACGA AGATGAATTAA A

```

The PSORT algorithm predicts an inner membrane location (0.463).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 51A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 51B) and for FACS analysis (Figure 51C). A his-tagged protein was also expressed.

- 35 This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.
 These experiments show that cp6696 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 52

- 40 The following *C.pneumoniae* protein (PID 4376790) was expressed <SEQ ID 103; cp6790>:

```

1 MSEHKKSSKI IGIDLGTTNS CVSVMEGGQA KVITSSEGTR TPPSIVAPKG
51 NEKLVGIPAK RQAVTNPEKT LGSTKRFIGR KYSEVASEIQ TVPYTVTSGS
101 KGDAVFEVDG KQYTPEEIGA QILMKMKETA EAYLGETVTE AVITVPAYFN
151 DSQRRASTKDA GRIAGLDVKR IIPEPTAAAL AYGIDKVGDK KIAVFDLGGG
201 TFDISILEIG DGVFEVLSTN GDTLLGGDDF DEVIIKWMIE EFKKQEGIDL
251 SKDNMALQRL KDAAEKAKIE LSGVSSTEIN QPFITMDAQG PKHLALTTLR
301 AQFEKLAASL IERTKSPCIK ALSDAKLSAK DIDDVLLVGG MSRMPAVQET
351 VKELFGKEPN KGVNPDEVVA IGAAIQGGVL GGEVKDVLLL DVIPLSLGIE
401 TLGGVMTTLV ERNTTIPTQK KQIFSTAADN QPAVTIVVILQ GERPMAKDNK
451 EIGRFDLTDI PPAPRGHPQI EVSFDIDANG IFHVSAKDVA SGKEQKIRIE
501 ASSGLQEDEI QRMRVDAEIN KEEDKKRREA SDAKNEADSM IFRAEKAID
551 YKEQIPETLV KEIEERIENV RNALKDDAPI EKIKEVTEDL SKHMQKIGES
601 MQSQSASAAA SSAANAKGGP NINTEDLKKH SFSTKPPSNN GSSEDHIEEA

```

651 DVEIIDNDDK*

The cp6790 nucleotide sequence <SEQ ID 104> is:

	1	ATGAGTGAAC ACAAAAATC AAGCAAAATT ATAGGTATAG ACTTAGGCAC
5	51	AACAAACTCC TCGGTATCTG TTATGGAAGG AGGACAAGCT AAAGTAATTA
	101	CATCATCCGA AGGAACAAGA ACCACGCCAT CGATCGTTGC CTTCAAAGGT
	151	AATGAGAAAT TAGTGGGGAT TCCAGCAAAA CGTCAAGCAG TGACAAATCC
10	201	AGAAAAAAACT CTCGGCTCTA CAAAACGCTT TATTGGCCGT AAGTACTCTG
	251	AAGTAGCTC GGAAATCCA ACCGTTCTT ATACAGTCAC CTCCGGATCT
	301	AAAGGTGATG CCGTTTCGA AGTTGATGGC AAACAATACA CTCCAGAAGA
15	351	AATTGGCGCA CAAATCTTAA TGAAAATGAA AGAGACAGCA GAAGCTTATC
	401	TAGGCAGAAC TGTCACAGAA GCAGTGATCA CCGTCCCCGC ATACTTCAAT
	451	GATTCTCAAC GAGCATCCAC AAAAGATGCT GGACGCATTG CAGGCTCTAGA
	501	TGTAAAAGT ATCATTCG AACCTACCGC AGCAGCTCTT GCCTACGGAA
20	551	TCGATAAAGT CGGTGATAAA AAAATCGCTG TCTTCGACCT TGGTGGAGGA
	601	ACTTTTGTATA TCTCCATCTC AGAAAATCGCTG GATGGCGTCT TCGAAGTTCT
	651	ATCTACAAAT GGAGATACTC TCCTCCGTGG AGACGACTTT GATGAAGTCA
	701	TTATCAAATG GATGATGCAA GAATTCAAAA ACAAGAAAGG CATTGATCTT
	751	AGCAAAGATA ATATGCCCT ACAAAAGACTT AAAGATGCTG CTGAGAAAGC
25	801	AAAAAATAGAA CTTTCAGGAG TCTCTTCCAC AGAAAATCAAT CAGCCATTCA
	851	TCACAATGGA TGCACAAGGA CCTAAACACC TTGCAATTGAC ACTCACACGT
	901	GCGCAATTG AGAAACTCGC AGCCTCTA ATCGAAAGAA CAAAATCTCC
	951	ATGCATCAA GCACTCAGTG ACGCAAAACT TTCCGCTAAG GATATCGATG
	1001	ATGTTCTCTT AGTTGGAGGT ATGTCAGAAGA TGCCCGAGT GCAAGAAACT
30	1051	GTAAAAGAAC TCTTCGGCAA AGAGCCTAAT AAAGGAGTCA ACCCCGACGA
	1101	AGTTGTTGCT ATTGGAGCCG CAATTCAAGG TGTTGTTCTT GGCGGAGAAG
	1151	TTAAGGAGTGT TCTACTCTA GACGTTATCC CCCTATCTCT GGGTATCGAA
	1201	ACTCTAGGAG GCGTCATGAC GACTCTGGTA GAGAGAAATA CTACAATCCC
	1251	TACACAGAAA AAACAAATCT TCTCACACAGC TGCTGATAAC CAGCCCTGCGG
35	1301	TTACCACATCGT AGTTCTCCAA GGAGAGCGTC CCATGGCCAA AGATAACAAG
	1351	GAAATCGGAA GATTGGATCT TACAGATATC CCTCCGGCTC CTCGAGGCCA
	1401	TCCTCAAATC GAAGTCTCCT TCGATATCGA TGCAACGGA ATTTCATG
	1451	TCTCAGCTAA AGATGTTGCC AGCGGTAAAG AACAGAAAAT TCGTATCGAA
	1501	GCAAGCTCAG GACTTCAGAAG AGATGAAATC CAAAGAATGG TTCGAGATGC
40	1551	CGAAATTAAAT AAGGAAGAAG ATAAGAACG TCGTGAAGCT TCAGATGCTA
	1601	AAAATGAAGC CGATAGCATG ATCTTCAGAG CCGAAAAAGC TATTAAAGAT
	1651	TATAAGGAGC AAATTCCCTGA AACTTTAGTT AAAGAAATCG AAGAGCGAAT
	1701	CGAAAACGTG CGCAACGAC TCAAAGATGA CGCTCCTATT GAAAAAAATTA
	1751	AAGAGGTTAC TGAAGACCTA AGCAAGCATA TGCAAAAAAT TGGAGAGTCT
	1801	ATGCAATTCG AGTCTGCATC AGCAGCAGCA TCATGGCAG CCAATGCTAA
	1851	AGGTGGACCT AACATCAATA CAGAAGATTG GAAAAAAACAT AGTTTCAGTA
	1901	CGAAGCCTCC TTCAAAATAAC GTTCTTCAG AAGACCATAT CGAAGAAGCT
	1951	GATGTAGAAA TTATTGATAA CGACGATAAG TAA

The PSORT algorithm predicts an inner membrane location (0.151).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 52A) and a histag tagged product. The proteins were used to immunise mice, whose sera were used in Western blot (Figure 52B) and FACS (Figure 52C) analyses.

The cp6790 protein was also identified in the 2D-PAGE experiment (Cpn0503).

These experiments show that cp6790 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

50 Example 53

The following *C.pneumoniae* protein (PID 4376878) was expressed <SEQ ID 105; cp6878>:

	1	MNVPDSKNLH PPAYELLEIK ARITQSYKEA SAILTAIPDG ILLSETGHF
55	51	LICNSQAREI LGIDENLEIL NRSFTDVLPD TCLGFSIQEA LESLKVPKTL
	101	RLSLCKESKE KEVELFIRKN EISGYLFIQI RDRSDYKQLE NAIERYKNIA
	151	ELGKMTATLA HEIRNPLSGI VGFASILKKE ISSPRHQML SIIISGTRSL
	201	NNLVSSMLEY TKSQPLNLKI INLQDFSSL IPLLSVSFPN CKFVREGAQ

-93-

251 LFRSIDPDRM NSVWNLVKN AVETGNSPIT LTLHTSGDIS VTNPGTIPSE
 301 IMDKLFTPFF TTKREGNGLG LAEAQKIIRL HGGDIQLKTS DSAVSFFIII
 351 PELLAALPK RAAS*

The cp6878 nucleotide sequence <SEQ ID 106> is:

5 1 ATGAACGTCC CTGATTCCAA GAACCTCCAT CCTCCTGCAT ACGAACTCCT
 51 AGAGATCAAG GCTCGCATCA CACAATCTTA TAAAGAAGCG AGTGCTATAC
 101 TGACAGCGAT CCTCTGATGGT ATCCTATTAC TTTCTGAAAC AGGACACTTT
 151 CTTATCTGCA ATTACAAGC ACGTGAATTG ATGAAAATCT
 201 AGAAAATTCTT AATAGATCCT TTACCGATGT TCTCCCGAT ACGTGTCTTG
 251 GATTTCTAT TCAAGAGGCT CT'TGAATCTC TAAAAGTCCC TAAAAGTCTT
 301 AGACTCTCTC TCTGTAAAGA ATCTAAAGAA AAAGAAAGTGG AACTCTTCAT
 351 CCGTAAAAAC GAGATCAGTG GATACTGTT TATCCAATC CGCGATCGGT
 401 CCGACTATAA ACAACTAGAA AACGCTATAG AAAGATATAA AAATATCGCA
 451 GAACTGGGA AAATGACGCC TACCCTAGCT CACGAAATCC GCAATCCGCT
 501 AAGTGGAATC GTTGGATTTG CCTCTATCCT AAAAGAAGAG ATTCCTCTC
 551 CTCGCCACCA ACCAATGCTC TCCTCAATCA TCTCCGGCAC AAGGTCTCTA
 601 AATAACCTTG TCTCTTCTAT GTTAGAATAT ACAAAATCAC AACCGTTGAA
 651 CCTAAAGATT ATAATTTTAC AAGACTTCTT CTCTTCTCTT ATCCCTCTGC
 701 TCTCCGTCTC TTCCCGAAT TGCAAGTTTG TAAGAGAGGG CGCACAAACCT
 751 CTATCAGAT CTATAGATCC TGATCGGATG AACAGTGTG TGTTGGAAACCT
 801 AGTAAAAAT GCTGTAGAAA CAGGGAACTC TCCGATCACT CTGACCCCTGC
 851 ATACATCGGG AGACATCTCG GTAACCAAAC CCGGAACGAT TCCTTCCGAG
 901 ATCATGGACA AGCTCTTCAC TCCATTCTTC ACAACAAAGA GAGAGGGAAA
 951 TGGTTGGGA CTTGCTGAAG CTCAAAAAAT TATAAGACTC CATGGAGGAG
 1001 ATATCCAATT AAAAACAAAGC GACTCCCGG TTAGCTTCTT CATAATCATC
 1051 CCCGAACCTTC TAGCGGCCCT ACCCAAAGAA AGAGCCGCTA G

The PSORT algorithm predicts an inner membrane location (0.204).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 53A) and as a GST-fusion product. The recombinant GST-fusion protein was used to immunise mice, whose sera were 30 used in a Western blot (Figure 53B) and for FACS analysis.

These experiments show that cp6878 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 54

The following *C.pneumoniae* protein (PID 4377224) was expressed <SEQ ID 107; cp7224>:

35 1 MMKKIRKVAL AVGGGGHIV PALSVKEAFS REGIDVLLLG KGLKNHPSLQ
 51 QGISYREIPS GLPTVLNPIK IMSRTLSCS GYLKARKELK IFDPDLVIGF
 101 GSYHSLPVLL AGLSHKIPLF LHEONLVPKG VNQLFSRYAR GIGVNFSPT
 151 KHFRCPAEEV FLPKRFSFLG SPMMKRCTNH TPTICVVGGS QGAQILNTE
 201 PQALVKLVNK YPNMYVHHIV GPKSDVMKVQ HVYNRGEVLC CVKPFEQQL
 251 DVLLAADLVI SRAGATILEE ILWAKVPGIL IPYPGAYGHQ EVNAKFFVVD
 301 LEGGTMILEK ELTEKLLVEK VTFALDSHNR ERQRNSLAAY SQQRSTKTFH
 351 AFICECL*

The cp7224 nucleotide sequence <SEQ ID 108> is:

45 1 ATGATGAAGA AAATCGAAA AGTAGCCTTG GCTGTAGGAG GTTCAGGAG
 51 CCACATTGTC CCAGCTCTCT CGGTAAAGGA AGCTTTTCTT CGTGAAGGAA
 101 TAGACGTATT ACTACTAGGG AAAGGTCTCA AGAACCATCC TTCTTTGCAA
 151 CAGGGAAATCA GCTATCGGGA AATCCCTCA GGACTTCCTA CAGTCCTTAA
 201 TCCCCATAAAG ATCATGAGCA GGACCCCTTC TCTATGTTCA GGATAACCTGA
 251 AAGCAAGAAA GGAACCTAAA ATTGGTACCC CTGACCTGGT CATAGGATTT
 301 GGGAGCTACC ACTCTCTTCC CGTGTGCTC GCAGGACTGT CCCATAAAAT
 351 TCCCTTATTCT ACACAGAAC AAAATCTAGT TCCTGGAAA GTAAATCAAT
 401 TGTTTTCCCG CTATGCTCGA GGTATTGGAG TGAATTTCCTC CCCCCGTTACT
 451 AAACACTTCC GCTGCCCGC AGAAGAGGTC TTCCCTCCCTA AACGAAGCTT
 501 CTCCTTAGGA AGCCCTATGA TGAAGCGATG TACAAATCAT ACCCCTACAA
 551 TCTGTGTTGT TGGAGGTCTC CAGGGAGCAC AGATATTAAGA TACTGTGTT
 601 CCCCAAGCTC TTGTCAAGCT AGTCAATAAG TACCCAAATA TGTACCGTCCA

651 TCATATTGTA GGACCTAAAA GTGATGTTAT GAAGGTGCAA CATGTTTACA
 701 ATCGTGGAGA GGTCCCTCTGC TGTGTGAAGC CGTTCGAAGA GCAACTCCTA
 751 GATGTCCTGC TTGCGGCAGA TTTGGTCATC AGTAGGGCAG GAGCCACAAT
 801 TTTAGAAAGAA ATTCTTTGGG CAAAAGTTCC CGGAATTTTA ATTCCCTATC
 851 CAGGAGCTTA TGGACATCAG GAAGTTAATG CTAAATTCTT TGTAGACGTC
 901 TTAGAAGGGG GAACATATGAT CCTAGAAAAAA GAATTAACAG AGAACGTTATT
 951 AGTAGAAAAA GTAACGTTTG CTTTAGACTC CCATAACAGA GAAAACAAC
 1001 GCAATTCCCT AGCGGCGTAT AGTCAGCAAA GGTCAACAAA AACATTCCAT
 1051 GCATTCAATT GTGAATGCTT ATAG

- 10 The PSORT algorithm predicts an inner membrane location (0.164).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 54A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 54B) and for FACS analysis (Figure 54C). A his-tagged protein was also expressed.

- 15 This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7224 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 55

The following *C.pneumoniae* protein (PID 4377140) was expressed <SEQ ID 109; cp7140>:

20 1 MVRRSISFCL FFLMTLLCCT SCNSRSLIVH GLPGREANEI VVLLVSKGVA
 51 AQKLPQAAAA TAGAATEQMW DIAVPSAQIT EALAILNQAG LPRMKGTSLL
 101 DLFAKOGLVW SELQEKKIRYQ EGLSEQMAST IRKMDGVVDA SVQISFTTEN
 151 EDNLPLTASV YIKHRGVLDN PNSIMVSKIK RLIASAVPGL VPENVSVVSD
 201 RAAYSDTITIN GPWGLTEEIID YVSVWGIILA KSSLTKFRRLI FYVLILILFV
 251 ISCGLLWWVIW KTHHTLIMTMG GTKGFFNPTP YTAKNALEAKK AEGAAADKEK
 301 KEDADSQGES KNAETSDKDS SDKDAPEGSN EIEGA*

A predicted signal peptide is highlighted.

The cp7140 nucleotide sequence <SEQ ID 110> is:

30 1 ATGGTTCGTC GATCTATTC TTTTGCTTG TTCTTCTAA TGACATTGCT
 51 GTGCTGTACA AGCTGTAA CA GCAGGTCTCT AATTGTGCAAC GGTCTTCCTG
 101 GCAGAGAACG GAATGAGATT GTGGTCTTT TGGTAAGCAA AGGGGTGGCT
 151 GCACAAAAAT TGCCCTCAAGC TGCAAGGGCT ACAGCCGGAG CAGCTACTGA
 201 GCAAATGTGG GATATCGCGG TTCCGTCAGC ACAAAATCAC GAGGCCCTTG
 251 CCATTCTAAA TCAAGCCGGT CTTCCACGTA TGAAAGGGAC AAGCCTGTAA
 301 GATCTTTTTC CAAAACAGG TCTGTCTC TCCGAGCTTC AGGAAAAAAT
 351 CCGTTATCAA GAAGGCTTAT CAGAACAGAT GGCCCTCTACG ATTAGAAAAAAT
 401 TGGATGCGCT TGTGATGCC TCAGTACAGA TTTCCCTTCAC TACAGAAAAT
 451 GAAGATAATC TTCCTTTAAC AGCCTCTGTG TATATTAAGC ATCGAGGGGT
 501 TTTGGACAAAT CCGAACAGCA TTATGGTTTC CAAAATTAAG CGCCTTATTG
 551 CAAGTGTGT TCCAGGACTT GTGCCAGAGA ACGTCTCTGT AGTGAGCGAT
 601 CGCCAGCTT ATAGTGTAT TACAATTAAAT GGTCTCTGGG GATTAACAGA
 651 AGAAATCGAT TATGTTCTG TTTGGGGTAT TATTCTTGC G AAGTCTTCGC
 701 TCACCAAATT CCGCTCTCATT TTTTATGTCT TGATTCTCAT TTTATTTGTT
 751 ATTTCTTGTG GTCTCTTTC GGTCAATTGG AAAACTCATA CTCTCATTAT
 801 GACTATGGGA GGTACAAAAG GGTCCTTCAA CCCTACACCA TATACAAAGA
 851 ATGCCTTGGG AGCCAAGAAA GCCGAGGGAG CAGCTGCTGA CAAAGAGAAA
 901 AAAGAAAGATG CAGATTCAAC GGGGGAAAGC AAAATGCGG AAACCAAGTGA
 951 TAAAGACTCT AGTGATAAAAG ATGCTCCAGA AGGAAGCAAT GAAATTGAGG
 1001 GTGCTTAG

- 50 The PSORT algorithm predicts an inner membrane location (0.650).

-95-

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 55A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 55B) and for FACS analysis (Figure 55C). A his-tagged protein was also expressed.

These experiments show that cp7140 is a surface-exposed and immunoaccessible protein, and that it
5 is a useful immunogen. These properties are not evident from the sequence alone.

Example 56

The following *C.pneumoniae* protein (PID 4377306) was expressed <SEQ ID 111; cp7306>:

10	1 MITKQLRSWL AVLVGSSLLA LPLSGQAVGK KESRVSELPQ DVLLKEISGG 51 FSKVATKATP AVVYIESFPK SQAVTHPSPG RRGPYENPFD YFNDEFFNRF 101 FGLPSQREKP QSKEAVRGTG FLVSPDGYIV TNNHVVVEDTG KIHVTLDHGQ 151 KYPATVIGLD PTKTDLAVIK KSQNLPYLSF GNSDHHLKVGD WAIAIGNPFG 201 LQATIVTVGVI SAKGRNQLHI ADFEDFIQTD AAIPNGNSGG PLLNIDGQVI 251 GVNTAIVSGS GGYIGIGFAI PSIMANRIID QLIRDGQVTR GFLGVTLQPI 301 DAELAACYKL EKVY GALVTD VVKGS PADKA GLKQEDVIIA YNGKEVDSL 351 MFRNAVSLMN PDTRIVLKV REGK VIEIPV TVSQAPKEDG MSALQRVGIR 401 VQNLTPTETAK KLGIAPETKG ILLISVEPGS VAASSGIAPG QLILAVNRQK 451 VSSIEDLNRT LKDSNNENIL LMVSQGDVIR FIALKPEE*
----	---

A predicted signal peptide is highlighted.

The cp7306 nucleotide sequence <SEQ ID 112> is:

20	1 ATGATAACTA AGCAATTGCG TTCTGGCTA GCTGTACTTG TTGGTTCAAG 51 TCTGCTAGCT CTTCCCTTAT CAGGGCAAGC TGTCGGGAAA AAAGAAATCTC 101 GAGTTTCCGA GCTGCCCTCAA GACGTTCTTC TAAAGAGAT CTCGGGAGGG 151 TTTTCTAAGG TCGCTAACAA GGCGACTCTCC GCTGTTGTG ACATAGAAAG 201 TTTCCCAAAG AGCCAGGCTG TAACACATCC TTCTCTGGA CGCCGTGGGC 251 CTTATGAAAAA TCCTTTTGAT TATTTAATG ATGAGTTTT CAATCGTTTT 301 TTTGGTCTAC CTTCACAGAG GGAAAACCT CAAAGTAAAG AGGCGGTTCG 351 AGGAACAGGT TTCCTAGT CTCCAGATGG CTATATTGTG ACTAATAACC 401 ATGTTGTCGA AGATACAGGT AAGATTCAAG TAACTCTTCA TGATGGGCAA 451 AAGTACCCAG CAACTGTAAT CGGACTCGAT CCTAAAACAG ACCTTGCAGT 501 CATTAAAATT AAATCCAAA ACCTCCCGTA TCTTTCTTTT GGAAACTCCG 551 ACCACTTAAA AGTCGGAGAT TGGCAATTG CAATTGGAAA TCCCCTCGGT 601 CPTTCAAGCTA CGGTACCCGT AGGTGTCATC AGTGCTAAAG GAAGAAATCA 651 ACTCCACATT GCAGATTTTG AAGATTTTAT TCAGACAGAT GCTGGGATTA 701 ATCCAGGCAA CTCTGGAGGC CCTCTTCTAA ATATTGATGG ACAGGTCTAC 751 GGTGTAAATA CTGGCCATTGT CAGTGGTAGT GGTGGCTATA TTGGAATCGG 801 GTTTGGCATC CCTAGCCTTA TGGCAAATAG AATCATAGAT CAGCTGATT 851 GTGATGGTCA AGTTACCCGA GGATTCTTAG GAGTGAATT ACAACCTATA 901 GATGCGGAAC TCGCTGCTTG CTACAAACTC GAAAAGGTTT ATGGCGCTTT 951 AGTCACAGAT GTTGTAAAC GATCTCCAGC AGATAAAGCA GGGCTAAAAC 1001 AAGAAGATG GATCATTGCT TATAATGGGA AAGAAGTCTGA TTCACTGAGT 1051 ATGTTCCGTA ATGCTGTTTC TTTAATGAAT CCAGATACAC GTATTGTTCT 1101 AAAGGTAGTT CCGTAAGGAA AGGTATCGA AATACCCGTG ACAGTTTCTC 1151 AAGCTCCAAA AGAAGATGGA ATGTCGGCTT TACAGCGTGT GGGAAATCCGT 1201 GTGCAAAACC TAACTCCTGA AACTGCTAAG AAGCTGGAA TTGCTCCAGA 1251 GACTAAAGGC ATTGTTGATTA TAAAGTGTGAA ACCAGGGCTCT GTAGCAGCTT 1301 CTTCAGGAAT TGCTCCTGGT CAGCTGATCC TTGCTGTGAA TAGACAAAAAA 1351 GTATCTTCGA TTGAAGATCT GAATAGAACG TTAAAAGATT CTAACAATG 1401 GAATATTCTT CTTATGGTTT CTCAGGAGA TGTTATTGCGC TTCAATTGCC 1451 TGAAACCTGA AGAATAA
----	---

50 The PSORT algorithm predicts a periplasmic location (0.923).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 56A) and as a GST-fusion product (Figure 56B). The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 56C) and for FACS (Figure 56D) analyses.

The cp7306 protein was also identified in the 2D-PAGE experiment (Cpn0979) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7306 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

5 Example 57

The following *C.pneumoniae* protein (PID 4377132) was expressed <SEQ ID 113; cp7132>:

```

1 MCNSIAMKKQ KRGFVFLMELL MSFTLIALLL GTLGFWYRKI YTVQKQKERI
51 YNFYIEESRA YKQLRTLFSM SLSSSYEEPG SLFSLIFDRG VYRDPKLAGA
101 VRASLHHDTK DQRLELRICN IKDQSYPETQ RLLSHVTHVV LSFQRNPDP
151 KLPETIALTI TREPKAYPPR TLTYQFAVGK*

```

A predicted signal peptide is highlighted.

The cp7132 nucleotide sequence <SEQ ID 114> is:

```

1 ATGTGTAACCT CTATAGCTAT GAAAAAGCAA AAGCGTGGCT TTGTGCTTAT
51 GGAATTACTC ATGTCGTTCA CTCTAATTGC TTTGTTATTA GGGACTTTAG
101 GATTTGGTA TCGGAAAATT TATACTGTAC AAAAGCAAAA AGAACGTATT
151 TATAACTTT ATATCGAAGA AGGCCGAGCC TACAAGCAGC TCAGAACCCCT
201 GTTTAGCATG TCCTTGCTCT CATCTTACGA GGAGCCTGGA TCATTATTTT
251 CTTTAATCTT TGATCGGGGT GTTTATCGAG ATCCTAAGCT GGCAGGTGCG
301 GTACGAGCTT CTCTCCATCA TGACACCAAG GATCAGAGAT TGGAACTTCG
351 TATTGTAAT ATTAAGGATC AGTCTTACTT TGAAACACAG CGACTGCTCT
401 CCCACGTGAC CCATGGTGTA CTTTCCTTCC AGAGAAATCC TGATCCTGAA
451 AAACCTCCCTG AAACAATTGC TTAACTATA ACACGGGAAC CTAAAGCATA
501 TCCCTCCAAGG ACGTTAACAT ACCAAATTGC GGTTGGGAAA TAA

```

The PSORT algorithm predicts a periplasmic location (0.915).

25 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 57A) or as a GST-fusion. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 57B) and FACS (Figure 57C) analyses.

These experiments show that cp7132 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

30 Example 58

The following *C.pneumoniae* protein (PID 4376733) was expressed <SEQ ID 115; cp6733>:

```

1 MKTSIPWVLV SSVLAFLSCHL QSLANEELLS PDDSFNGNID SGTPTPKTSA
51 TTYSLTGDFV FYEPGKGTPL SDSCFKQTTD NLTFGLNGHS LTGFIDAGT
101 HAGAAASTTA NKNLTFSGFS LLSPDSSPST TVTTGQGTLIS SAGGVNLENI
151 RKLVVAGNFS TADGGAIKGA SFLLTGTSGD ALFSNNSSST KGGAIATTAG
201 ARIANNTGYV RFLSNIASTS GGAIDDEGTS ILSNNKFLYF EGNAAKTTGG
251 AICNTKASGS PELIISNNKT LIFASNVAET SGGAIHAKKL ALSSGGFTEF
301 LRNNVSSATP KGGAISIDAS GELSLSAETG NITFVRNLT TTGSTDTPKR
351 NAINIGSNKG FTTELRAAKNH TIFFYDPITS EGTSSDVLIK NNGSAGALNP
401 YQGTLILFSGE TLTDADELKVA DNLKSSFTQP VSLSGGKLILL QKGVTLESTS
451 FSQEAGSLLG MDSGTTLSTT AGSITITNLG INVDSLGLKQ PVSLTAKGAS
501 NKVIVVSGKLN LIDIEGNIYE SHMPSHDQLF SLLKITVDAD VDTNVDISSL
551 IPVPAEDPNS EYGFQGQWNV NWTTDTATNT KEATATWTKT GFVPSPERKS
601 ALVCNTLWGV FTDIIRSLQQL VEIGATGMEH KQGFVWSSMT NFLHKTGDEN
651 RKGFRHTSGG YVIGGSHTP KDDLFTFAFC HLFARDKDCF IAHNNNSRTYG
701 GTLFFKHSHT LQPQNYLRLG RAFKSESAIE KFPREIPLAL DVQVSFSHSD
751 NRMETHYHTSL PESEGYGSWSNE CIAGGIGLDL PFVLSNPHPPL FKTFIPOMKV
801 EMVYVQSNSF PESSSDGRGF SIGRLLNLSI PVGAKFVQGD IGDSYTYDLS

```

-97-

851 GFFVSDVYRN NPQSTATLVM SPDSWKIRGG NLSRQAFLLR GSNNYVYNSN
 901 CELFGHAYME LRGSSRNLYNV DVGTLKLF*

A predicted signal peptide is highlighted.

The cp6733 nucleotide sequence <SEQ ID 116> is:

5	1	ATGAAGACTT	CGATTCCTTG	GGTTTAGTT	TCCCTCGTGT	TAGCTTTCTC
	51	ATGTCACCTA	CAGTCACTAG	CTAACCGAGGA	ACTTTTATCA	CCTGTATGATA
	101	GCTTTAATGG	AAATATCGAT	TCAGGAACGT	TTACTCCAAA	AACTTCAGCC
	151	ACAACATATT	CTCTAACAGG	AGATGTCTTC	TTTACGAGC	CTGGAAAAGG
10	201	CACTCCCTTA	TCTGACAGTT	GTTTTAAGCA	AACCACGGAC	AATCTTACCT
	251	TCTTGGGAA	CGGTACATAG	TTAACGTTTG	GCTTTATAGA	TGCTGGCACT
	301	CATGCAGGTG	CTGCTGCATC	TACAAACAGCA	AATAAGAAC	TTACCTTCTC
	351	AGGGTTTCTC	TTACTGAGTT	TTGATTCTCT	TCCTAGCAC	ACGGTTACTA
	401	CAGGTCAAGG	AACGCTTCTC	TCAGCAGGAG	GCGTAAATT	AGAAAATATT
15	451	CGTAAACTTG	TAGTTGCTGG	GAATTTCCT	ACTGCAGATG	GTGGAGCTAT
	501	CAAAGGAGCG	TCTTTCTTT	TAACTGGCAC	TTCTGGAGAT	GCTCTTTTA
	551	GTAACAACTC	TTCATCAACA	AAAGGAGGAG	CAATTGCTAC	TACAGCAGGC
	601	GCTCGCATAG	CAAATAACAC	AGGTTATGTT	AGATTCTAT	CTAACATAGC
	651	GTCTACGTCA	GGAGGCCTA	TCGATGATGA	AGGCACGTCG	ATACTATCGA
20	701	ACAACAAATT	TCTATAATT	GAAGGGAATG	CAGCGAAAAC	TACTGGCGGT
	751	GCGATCTGCA	ACACCAAGGC	GAGTGGATCT	CCTGAAC	TAATCTCTAA
	801	CAATAAGACT	CTGATCTTG	CTTCAAACGT	AGCAGAAACA	AGCGGTGGCG
	851	CCATCCATGC	AAAAAGCTA	GCCCCCTCT	CTGGAGGCTT	TACAGAGTTT
	901	CTACGAAATA	ATGTCTCATC	AGCAACTCCT	AAGGGGGGTG	CTATCAGCAT
25	951	CGATGCCTCA	GGAGAGCTCA	GTCTTCTGC	AGAGACAGGA	AACATTACCT
	1001	TTGTAAGAAA	TACCCCTTACA	ACAACCGGAA	GTACCGATAC	TCCTAAACGT
	1051	AATGCGATCA	ACATAGGAAG	TAACGGGAAA	TTCACGGAAT	TACGGGCTGC
	1101	AAAAAATCAT	AAATTTTCT	TCTATGATCC	CATCACTTC	GAAGGAACCT
	1151	CATCAGACGT	ATTGAAGATA	AAATACGGCT	CTGCGGGAGC	TCTCAATCCA
30	1201	TATCAAGGAA	CGATTCTATT	TTCTGGAGAA	ACCCCTAACAG	CAGATGAAC
	1251	TAAAGTTGCT	GACAATTAA	AATCTTCATT	CACGCAGCCA	GTCTCCCTAT
	1301	CCGGAGGAAA	GTTATTGCTA	CAAAAGGGAG	TCACTTTAGA	GAGCACGAGC
	1351	TTCTCTCAAG	AGGCCGCTTC	TCTCCTCGGC	ATGGATTCA	GAACGACATT
	1401	ATCAACTACCA	GCTGGAGTA	TTACAATCAC	GAACCTAGGA	ATCAAATGTTG
35	1451	ACTCCTTAGG	TCTTAAGCAG	CCCGTCAGCC	TAACAGAAA	AGGTGCTTC
	1501	AATAAAAGTA	TCTGTATCTGG	GAAGCTCAAC	CTGATTGATA	TTGAAGGGAA
	1551	CATTTATGAA	AGTCATATGT	TCAGCCATGA	CCAGCTCTC	TCTCTATTAA
	1601	AAATCACGGT	TGATGCTGAT	GTTGATACTA	ACGTTGACAT	CAGCAGCCTT
	1651	ATCCCTGTC	CTGCTGAGGA	TCCTAATTCA	GAATACGGAT	TCCAAGGACA
40	1701	ATGGAATGTT	AATTGGACTA	CGGATACAGC	TACAAATACA	AAAGAGGCCA
	1751	CGGCAACTTG	GACCAAAACA	GGATTGTTTC	TCAGCCCCGA	AAGAAAATCT
	1801	GCGTTAGTAT	GCAATACCC	ATGGGGAGTC	TTTACTGACA	TTCGCTCTCT
	1851	GCAACAGCTT	GTAGAGATCG	GCGCAACTGG	TATGGAACAC	AAACAAGGTT
	1901	TCTGGGTTTC	CTCCATGACG	AACTCCTGC	ATAAGACTGG	AGATGAAAAT
45	1951	CGCAAAGGCT	TCCGTACATAC	CTCTGGAGGC	TACGTACATCG	GTGGAAGTGC
	2001	TCACACTCCT	AAAGCACCC	TATTTACCTT	TGCGTTCTGC	CATCTCTTTG
	2051	CTAGAGACAA	AGATTGTTT	ATCGCTCAC	ACAACCTAG	AACCTACGGT
	2101	GGAACTTTAT	TCTTCAGCA	CTCTCATACC	CTACAACCCC	AAAACATT
	2151	GAGATTAGGA	AGAGCAAAGT	TTTCTGAATC	AGCTATAGAA	AAATTCCCTA
50	2201	GGGAAATTCC	CCTAGCCTTG	GATGTCCAAG	TTTCGTTCA	CCATTCAAGAC
	2251	AACCGTATGG	AAACGCACTA	TACCTCATTG	CCAGAACCTG	AAGGTTCTTG
	2301	GAGCAACGAG	TGTATAGCTG	GTGGTATCGG	CCTAGACCTT	CCCTTTGTTTC
	2351	TTTCCAACCC	ACATCCCTT	TTCAAGACCT	TCAATTCCACA	GATGAAAGTC
	2401	GAAATGGTTT	ATGTATCAC	AAATAGCTTC	TTCGAAAGCT	CTAGTGATGG
55	2451	CCGTGGTTT	AGTATTGGAA	GGCTGCTTAA	CCTCTCGATT	CCTGTGGGTG
	2501	CGAAATTCTGT	GCAGGGGGAT	ATCGGAGATT	CCTACACCTA	TGATCTCTCA
	2551	GGATTCTTTG	TTTCCGATGT	CTATCGTAAC	AATCCCCAAT	CTACAGCGAC
	2601	TCTTGTGATG	AGCCCAGACT	CTTGAAAAT	TCGCGGTGGC	AATCTTCAA
	2651	GACAGGCATT	TTTACTGAGG	GGTAGCAACA	ACTACGTCTA	CAACTCCAAAT
	2701	TGTGAGCTCT	TCGGACATTA	CGCTATGGAA	CTCCGTGGAT	CTTCAAGGAA
60	2751	CTACAATGTA	GATGTTGGTA	CCAAACTCCG	ATTCTAG	

The PSORT algorithm predicts an outer membrane location (0.924).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 58A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 58B) and for FACS (Figure 58C) analyses. A GST-fusion protein was also expressed.

The cp6733 protein was also identified in the 2D-PAGE experiment (Cpn0451).

- 5 These experiments show that cp6733 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 59

The following *C.pneumoniae* protein (PID 4376814) was expressed <SEQ ID 117; cp6814>:

10	1 MHDALLSILA IQELDIKMR LMRVKKEHQK ELAKVQSLKS DIRRKVQEKE 51 LEMENLKTQI RDGENRIQEI SEQINKLENQ QAAVKKMDEF NALTQEMITTA 101 NKERRSLEHQ LSDLMDKQAG GEDLIVSLKE SLASTENSS VIEKEIFESI 151 KKINEEGKAL LEQRTELKHA TNPELLSSIYE RLLNNKKDRV VVPIENRVCS 201 GCHIVLTPQH ENLVRKKDRRL IFCEHCSRIL YWQESQVNAQ ENSTAKRRRR 251 RAAV*
----	---

- 15 The cp6814 nucleotide sequence <SEQ ID 118> is:

20	1 ATGCATGACG CACTTCTAACG CATTTGGCT ATTCAAGAGC TTGATATTAA 51 AATGATTCGC CTTATGCGCG TAAAGAAAGA ACATCAGAAA GAATTGGCTA 101 AAGTCCAATC TTTAAAAAGT GATATTGCTA GAAAAGTTCA GGAAAAAAGAA 151 CTCGAAATGG AGAATTGAA AACTCAAATT CGAGATGGAG AGAATCGCAT 201 CCAAGAGATT TCTGAACAAA TCTAAATAAG AAAAATCAG CAAGCTGCTG 251 TAAAAAAAAT CGATGAGTTT AACGCTCTTA CCCAAGAAAT GACTACAGCA 301 AACAAAGAAC GTCGCTCTT AGAGCACCAG CTTAGCGATC TCATGGATAA 351 GCAAGCTGGA GCGGAAGACC TTATTGTCTC TCTAAAAGAA AGCTTAGCTT 401 CTACAGAAAA TAGTACGAGT GTCATGGAA AAGAAATTTC TGAAAGCATC 451 AAAAGAGATTA ATGAAGAAGG CAAAGCTTTG CTTGAACAAC GGACAGAGTT 501 AAAGCATGCG ACGAATCCCG AACTACTCAG CATCTATGAG CGTCTATTAA 551 ACAATAAAAA AGATCGCGTT GTTGTTCCTA TTGAAAATCG TGTCCTGCAGT 601 GGTTGTCATA TTGTTCTAAC TCCTCAACAC GAAAATCTTG TAAGAAAGAA 651 AGACCGACTC ATTTTTGCG AACATTGCTC TCGAATTCTC TATTGGCAAG 701 AATCCCAAGT CAATGCTCAG GAAAATTCCA CAGCAAAACG TCGTCGTCGT 751 CGCGCAGCTG TATAA
----	---

The PSORT algorithm predicts an inner membrane location (0.070).

- The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 59A) or his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in Western blot (Figure 59B) and FACS (Figure 59C) analyses.

These experiments show that cp6814 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 60

The following *C.pneumoniae* protein (PID 4376830) was expressed <SEQ ID 119; cp6830>:

40	1 MKWLFPATAVF AAVLPALTAF GDPASVEIST SHTGSGDPTS DAALTGFTQS 51 STETDGTYYT IVGDIRTFSTF TNIPVPVVTP DANDSSSNSS KGGSSSSGAT 101 SLIRSSNLHS DFDFTKDSVL DLYHLFFPSA SNTLNPAALLS SSSSGGSSSS 151 SSSSSSGSAS AVVAADPKGG AAFYSNEANG TLTFTTDSGN PGSLTLQNLK 201 MTGDGAAIYIS KGPLVFTGLK NLTFGTNESQ KSGGAAYTEG ALTTQAIVEA 251 VTFTGNTSAG QGGAIYVKEA TLFNALDSLK FEKNTSGQAG GGIYTESTLT 301 ISNITKSIEF ISNKASVPAP APEPTSPAPS SLINSTTIIDT STLQTRASA 351 TPAVAPVAAV TPTPISTQET AGNGGAIYAK QGISISTFKD LTFKNSNASV
----	---

-99-

401 DATLTVDSST IGESGGAIFA ADSIQIQQCT GTTLFSGNTA NKSGGGIYAV
 451 GQVTLEDIAN LKMTMNTCKG EGGAIYTKKA LTINNGAILT TFSGNTSTDN
 501 GGAIFAVGGI TLSDLVEVRF SKNKTGNYS A PITKAASNTA PVVSSSTAA
 551 SPAVPAAAAA PVTNAAKGGA LYSTEGLTVS GITSLSFEN NECQNQGGGA
 601 YVTKTFQCSD SHRLQFTSNK AADEGGGLYC GDDVTLTNLT GKTLFQENSS
 651 EKHGGGLSLA SGKSLMTMSL ESFCLNANTA KENGGGANVP ENIVLTFTYT
 701 PTPNEPAPVQ PTPVGEALVT GNTATKSGGG IYTKNAAFSN LSSVTFDQNT
 751 SSENGGALLT QKAADKTDCS FTYITNVNIT NNTATGNGGG IAGGKAHFDR
 801 IDNLTQNSQ AKKGGGVYLE DALILEKVIT GSVSQNTATE SGGGIYAKDI
 851 QLQALPGSPT ITDNKVETSL TTSTNLYGGG IYSSGAVTLT NISGTFGITG
 901 NSVINTATTSQ DADIQGGGIY ATTSL SINQC NTPILFSNN S AATKKTSTTK
 951 QIAGGAIFSA AVTIENNSQP IIFLNNSAKS EATTAATAGN KDSCGGAIAA
 1001 NSVTLTNNPE ITFKGNYAET GGAIGCIDLT NGSPPRKVSI ADNGSVLFQD
 1051 NSALNRGGG I FENNKVTE TATTKASINN LGAIYGNNE TSDVTISLSA ENGSIFFKNN
 1101 LCTATNKYCS IAGNVKFTAI EASAGKAISF YDAVN VSTKE TNAQELKLNE
 1151 KATSTGTILF SGELHENKSY IPQKVTFAHG NLILGKNAEL SVSFTQSPG
 1201 TTITMGPGSV LSNHSKEAGG IAINNVIIDF SEIVPTKDNA TVAPPTLKLV
 1251 SRTNADSKD IDITGTVTLL DPNGNLYQNS YLGEDRDTL FNIDNSASGA
 1301 VTATNVTLQG NLGAKKGYLG TWNLDPNSSG SKIILKWTTFD KYLRWPYIPR
 1351 DNHFYINSI GQONSLTVK QGILGNMLNN ARFEDPAFNN FWASAIGSFL
 1401 RKEVSRNSDS FTYHGRGYTA AVDAKPRQEF ILGAAFSQVF GHAESSEYHLD
 1451 NYKHKGSGHS TQASLYAGNI FYFFPAIRSRP ILFGQGVATYY YMQHDTTTYY
 1501 PSIEEKNMAN WDSIAWLFDL RFSVDLKEPQ PHSTARLTFF TEAEYTRIRQ
 1551 EKFTELDYD RSFSACSYGN LAIPTGFSD GALAWREIIIL YNKVSAAYLP
 1601 VILRNNPKAT YEVLSTKEKG NVVNVLPTRN AARAEVSSQI YLGSYWTLYG
 1651 VILRNNPKAT LVQMANGGIR FVF*
 1701 TYTIDASMNT LVQMANGGIR FVF*

A predicted signal peptide is highlighted.

The cp6830 nucleotide sequence <SEQ ID 120> is:

30 1 ATGAAGTGGC TACCAGCTAC AGCTGTTTT GCTGCCGTAC TCCCCGCACT
 51 AACAGCCCTTC GGAGATCCCG CGCTCTGTTGA AATAAGTACC AGCCATACAG
 101 GATCCGGGGA TCCTACAAGC GACGCTGCCT TAACAGGATT TACACAAAGT
 151 TCCACAGAAA CTGACGGTAC TACCTATACC ATTGTGGTGTG ATATCACCTT
 201 CTCTACTTTT ACGAATATTCT CTGTTCCCCGT AGTAACCTCA GACGCCAACG
 251 ATAGTTCAGG CAACTAGCTCT AAAGGAGGAA TAGCAGTAG TGGAGCTACA
 301 TCTCTAACTCC GATCCTCTAAA CCTACTCTCC GATTTTGATT TTACAAAAGA
 351 TAGCGTGTTA GACCTCTATC ACCCTTTCTT TCCCTTCAGCT TCAAATACTC
 401 TCAATCCTGC ACTCCTTTCT TCCAGTAGCA GCGGTGGATC CTCGAGCAGC
 451 AGTAGCTCCT CATCATCTGG AAGTGCATCT GCTGTTGTG CTGCGGACCC
 501 AAAAGGAGGC GCTGCCCTTT ATAGTAACGA GGCTAACCGGA ACTTTAACCT
 551 TCACTACAGA CTCTGGAAAT CCCGGCTCCC TGACTCTTC GAATCTTAAA
 601 ATGACCGGAG ATGGAGCCGC CATCGTACTCG AAGGGTCTTC TAGTATTTCAC
 651 TCGTTTAAAAA AATCTAACCT TTACAGGAAA TGAATCTCAG AAATCTGGAG
 701 GTGCTGCCTA TACTGAAGGC GCACTCACAA CACAAGCAAT CGTTGAAGCC
 751 GTAACTTTTA CTGGCAACAC CTGGCAGGG CAAGGAGGCG CTATCTATGT
 801 TAAAGAAGCT ACCCTATTCA ATGCTCTAGA CAGCCTCAA TTTGAAAAAAA
 851 ACACTTCTGG GCAAGCTGGT GGTGGAATCT ATACAGAGTC TACGCTCAC
 901 ATCTCGAACCA TCAACAAATC TATTGAATT ATCTCTAA AAGCTCTGT
 951 CCCTGCCCTT GCTCTGAGC CCACCTCTCC GGCTCCAAGT AGCTTAAATAA
 1001 ATTCTACAAAC GATCGATACC TCGACTCTCC AAACCCGAGC AGCATCCGCA
 1051 ACTCCAGCAG TGGCTCTGT TGCTGCCGTA ACTCCAACAC CAATCTCTAC
 1101 TCAAGAGACC GCAGGAATG GAGGCGCTAT CTATGCTAA CAAGGTATT
 1151 CGATATCCAC GTTAAAGAT CTGACCTTCAGT AGTCTAACCT TGCATCCGTA
 1201 GATGCCACCC TTACTGTCGA TTCTAGCACT ATTGGAGAAT CTGGAGGTGC
 1251 TATCTTGCA GCAGACTCTA TACAAATCCA ACAGTGCACG GGAACCACCT
 1301 TATTTCAGTGG CAATACTGCC AATAAGTCTG GTGGGGTAT TTACCGCTGA
 1351 GGACAAGTC CA CCTAGAAGA TATAGCGAAT CTGAAGATGA CCAACAAACAC
 1401 CTGTAAAGGT GAAGGTGGAG CCATCTACAC TAAAAGGCT TTAACTATCA
 1451 ACAACGGTGC CATTCTCACT ACATTTCTG GAAATACATC GACAGATAAT
 1501 GGTGGGGCTA TTTTGCTGT AGGTGGCATC ACTCTCTCTG ATCTTGAGA
 1551 AGTCCGCTTT AGTAAAATA AGACCGGAAA TTATTCGGCT CCTATTACCA
 1601 AAGCGGCTAG CAACACAGCT CCTGTAGTTT CTAGCTCTAC AACTGCTGCA
 1651 TCTCCTGCGG TCCCTGCTGC CGCTGCAGCA CCTGTTACAA ACGCAGCAAA
 1701 AGGAGGGGCT TTATATAGTA CAGAAGGACT GACTGTATCT GGAATCACAT
 1751 CGATATTGTC GTTGGAAAAC AACGAATGCC AGAATCAAGG AGGTGGGCT

-100-

	1801	TACGTTACTA	AAACCTCCA	GTGTTCCGAT	TCTCATCGCC	TCCAGTTAC
	1851	TAGTAATAAA	GCAGCAGATG	AAGGCCGGGG	CCTGTATTGT	GGTGACGATG
	1901	TCACGCTAAC	GAACCTGACA	GGGAAAACAC	TATTTCAAGA	GAATAGCAGT
	1951	GAGAACATG	GAGGTGGGCT	CTCTCTCGCC	TCAGGAAAAT	CTCTGACTAT
5	2001	GACATCGTTA	GAGAGCTTCT	GCTAAATGCA	AAATACAGCA	AAGGAAAACG
	2051	GAGGCGGTGC	GAATGTTCT	GAAAATATTG	TACTCACCTT	CACCTATACT
	2101	CCCACCTCAA	ATGAACCTGC	GCCTGTGCAG	CAGCCCGTGT	ATGGAGAACG
	2151	TCTTGTACT	GGAAATACAG	CCACAAAAAG	TGGTGGGGC	ATTTACACGA
10	2201	AAAATGCGGC	CTTCTCAAAT	TTATCTTCTG	TAACCTTTGA	TCAAAATACC
	2251	TCTTCAGAAA	ATGGTGGTGC	CTTACTTACC	AAAAAAGCTG	CAGATAAAAC
	2301	GGACTGTTCT	TTCACCTATA	TTACAAATGT	CAATATCACC	AACAATACAG
	2351	CTACAGAAA	TGGTGGGGG	ATTGCTGGGG	GAAAAGCACA	TTTCGATCGC
	2401	ATTGATAATC	TTACAGTCCA	AAGCAACCAA	GCAAGAAAG	GTGGTGGGGT
15	2451	TTATCTTGA	GATGCCCTCA	TCCTGGAAA	GGTTATTACA	GGTTCTGTCT
	2501	CACAAAATAC	AGCTACAGAA	AGTGGTGGGG	GTATCTACGC	TAAGGATATT
	2551	CAACTACAAG	CTCTACCTGG	AAGCTTCACA	ATTACCGATA	ATAAAGTCGA
	2601	AACTAGTCTT	ACTACTAGCA	CTAATTATA	TGGTGGGGC	ATCTATTCCA
	2651	GTGGAGCTGT	CACGCTAAC	AATATATCTG	GAACCTTTGG	CATTACAGGA
20	2701	AACTCTGTTA	TCAATACAGC	GACATCCCG	GATGCAGATA	TACAAGGTGG
	2751	GGGCATTAT	GCAACACCGT	CTCTCTCAAT	AAATCAATGT	AATACACCCA
	2801	TTCTTATTAG	CAACAACTCT	GCTGCCACTA	AAAAAAACATC	AACAACAAAG
	2851	CAAATTGCTG	GTGGGGCTAT	CTTCTCCGCT	GCAGTAACTA	TCGAGAAATAA
	2901	CTCTCAGCCC	ATTATTCT	AAATAATTG	CGCAAAGTCG	GAAGCAACTA
25	2951	CAGCAGCAAC	TGCAGGAAAAT	AAAGATAGCT	GTGGAGGAGC	CATTGAGC
	3001	AACTCTGTTA	CTTTAACAAA	TAACCTGAA	ATAACCTTTA	AAGGAAATTA
	3051	TGCAAGAAC	GGAGGAGCGA	TTGGCTGTAT	TGATCTTACT	AATGGCTCAC
	3101	CTCCCCGTA	AGTCTCTATT	GCAGACAACG	GTTCTGTCT	TTTTCAAGAC
	3151	AACTCTGCGT	AAATCGCGG	AGGCGCTATC	TATGGAGAGA	CTATGGATAT
30	3201	CTCCAGGACA	GGTGCAGCTT	TCATCGGTAA	CTCTTCAAAA	CATGATGGAA
	3251	GTGCAATTG	CTGTTCAACAA	GCCCTAACTC	TTGCGCCAAA	CTCCCAACTT
	3301	ATCTTTGAAA	ACAATAAGGT	TACGGAAACC	ACAGCCACTA	AAAAAGCTTC
	3351	CATAAAATAAT	TTAGGAGCTG	CAATTATGG	AAATAATGAG	ACTAGTGACG
	3401	TCACTATCTC	TTTATCAGCT	GAGAATGGAA	GTATTTCTT	AAAAAACAAAT
35	3451	CTATGCACAG	CAACAAACAA	ATACTGCAGT	ATTGCTGGAA	ACGTAAAATT
	3501	TACAGCAATA	GAAGCTTCAG	CAGGGAAAGC	TATATCTTC	TATGATGCAG
	3551	TTAACGTTTC	CACCAAAGAA	ACAAATGCTC	AAGAGCTAAA	ATTAATATGAA
	3601	AAAGCGACAA	GTACAGGAAC	GATTCTATT	TCTGGGGAAC	TTCCACGAAAA
	3651	AAATACCTAT	ATTCCACAGA	AAGTCACTT	CGCACATGGG	AATCTCATTC
40	3701	TAGGTAAAAA	TGCAGAATT	AGCGTAGTT	CCTTTACCCA	ATCTCCAGGC
	3751	ACCACAAATCA	CTATGGGCC	AGGATCGGTT	CTTCCAACC	ATAGCAAAGA
	3801	AGCAGGAGGA	ATCGCTATAA	ACAATGTCAT	CATTGATT	AGTGAATCG
	3851	TTCCCTACTAA	AGATAATGCA	ACAGTAGCTC	CACCCACTCT	TAAATTAGTA
	3901	TCGAGAACTA	ATGCAGATAG	AAAGATAAG	ATTGATATTA	CAGGAACGTGT
45	3951	GACTCTTCTA	GATCTTAATG	GCAACTTATA	TCAAAATTCT	TATCTTGGTG
	4001	AAAGCCCGCA	TATCACTCTT	TCATCAATATA	ACAAATTCTG	AAAGTGGGCA
	4051	GTTACAGCCA	CGAATGTCAC	CCTCAAGGG	AATTAGGAG	CTAAAAAAGG
	4101	ATATTTAGGA	ACCTGGAAATT	TGGATCCAAA	TTCTCTGGGT	TCAAAATTA
	4151	TTCTAAAATG	GACCTTGAC	AAATACCTGC	GCTGGCCCTA	CATCCCTAGA
50	4201	GACAACCACT	TCTACATCAA	CTCTATTG	GGAGCACAAA	ACTCTTTAGT
	4251	GACTGTGAA	CAAGGGATCT	TAGGAAACAT	GTTGAAACAAT	GCAAGGTTTG
	4301	AAAGATCTG	TTTCAACAAAC	TTCTGGGCTT	CGGCTATAGG	ATCTTTCTT
	4351	AGGAAAGAAG	TATCTCGAAA	TTCTGACTCA	TTCACCTATC	ATGGCAGAGG
	4401	CTATACCGCT	GCTGTGGATG	CCAAACCTCG	CCAAGAAATT	ATTTTAGGAG
55	4451	CTGCCCTCAG	TCAGGTTTT	GGTCACGCCG	AGTCTGAATA	TCACCTTGAC
	4501	AACTATAAGC	ATAAAGGCTC	AGGTCACTCT	ACACAAGCAT	CTCTTATGC
	4551	TGCCAATATC	TTCTTATTTC	CTGCGATACG	GTCTCGGCC	ATTCATATTCC
	4601	AAGGTGTGGC	GACCTATGGT	TATATGCAAC	ATGACACCAAC	AACCTACTAT
	4651	CCTTCTATTG	AAGAAAAAAA	TATGGCAAAC	TGGGATAGCA	TTGCTTGGTT
60	4701	ATTTGATCTG	CGTTTCAGTG	TGGATCTTAA	AGAACCTCAA	CCTCACTCTA
	4751	CAGCAAGGCT	TACCTTCTAT	ACAGAAGCTG	AGTATACCAAG	AATTGCCAG
	4801	GAGAAATTCA	CAGAGCTAGA	CTATGATCCT	AGATCTTTCT	CTGCATGCTC
	4851	TTATCGAAAC	TTAGCAATTIC	CTACTGGATT	CTCTGTAGAC	GGAGCATTAG
	4901	CTTGGCGCTGA	GATTATCTA	TATAATAAG	TATCAGCTGC	GTACCTCCCT
65	4951	GTGATTCTCA	GGAAATAATCC	AAAAGCGACC	TATGAAGTTC	TCTCTACAAA
	5001	AGAAAAGGGC	AACGTAGTC	ACGTTCTCCC	TACAAGAAAC	GCAGCTCGTG
	5051	CAGAGGTGAG	CTCTCAAATT	TATCTGGAA	GTTACTGGAC	ACTCTACGGC
	5101	ACGTATACTA	TTGATGCTTC	AATGAATACT	TTAGTGCAAA	TGGCAACCG
	5151	AGGGATCCGG	TTTGTATTCT	AG		

The PSORT algorithm predicts an outer membrane location (0.926).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 60A) or his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in Western blot (Figure 60B) and FACS (Figure 60C) analyses.

- 5 The cp6830 protein was also identified in the 2D-PAGE experiment (Cpn0540) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6830 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 61

- 10 The following *C.pneumoniae* protein (PID 4376854) was expressed <SEQ ID 121; cp6854>:

```

1  MSIAIAIREQY AAIIDMHPKP SIAMFSSEQA RTSWEKRQAH PYLYRLLIEII
51  WGVVKFLLGL IFFIPLGLFW VLQKICQNFI LLGAGGWIFR PICRDSNLLR
101 QAYAARLFSA SFQDHVSSVR RVCLQYDEVF IDGLELRLPN AKPDRWMLIS
151 NGNSDCLEYR TVLQGEKDWI FRIAEEESQSN ILIFNYPGVM KSQGNITRNN
201 VVKSYQACVR YLRDEPAGPQ ARQIVAYGYS LGASVQAEAL SKEIADGSDS
251 VRWFVVKDRG ARSTGAVALQ FIGSLGVWLA NLTHWNINSE KRSKDLHCPE
301 LFTIYGKDSQG NLIGDGLFKK ETCFAAPFLD PKNLEECSGK KIPVAQTGLR
351 HDHILSDDVI KEVAGHIQRH FDN*

```

The cp6854 nucleotide sequence <SEQ ID 122> is:

```

20      1 ATGTCAATAG CTATTGCAAG GGAACAATAC GCAGCTATAT TGGATATGCA
      51 TCCCTAACCT TCAGATCGCCA TGTTTCTTC GGAGCAGGGC AGAACTTCCTT
      101 GGGAGAAACG ACAGGCTCAT CCTTACCTTT ATCGTCTCT TGAGATCATA
      151 TGGGGTGTG TGAAATTCT TCTCGGCTTA ATCTTCTTTA TTCCCTTGGG
      201 TCTTTTCTCG GTCCTTCAGA AGATATGTCA GAATTTTATT CTTCTTGGTG
      251 CAGGGGGTGTG GATTTTTAGA CCCATATGCA GGGACTCTAA TTTATTGCCA
      301 CAAGCTTACG CCGCGCGCT TTTCTCCGCT TCATTCCAAG ATCATGTCTC
      351 CTCTGTGCGA AGGGTTGCT TACAGTATGA CGAGGTCTTT ATTGACGGAT
      401 TGGAGTTACG TCTTCCAAT GCTAAGCCAG ATCGATGGAT GTTAATCTCC
      451 AATGGAAACT CCGATTGCTT AGAGTATAGG ACAGTGCTGC AAGGGAAAAA
      501 GGACTGGATA TTCCGTATTG CTGAAGAGTC TCAATCCAAC ATTTTAATCT
      551 TCAATTACCC AGGAGTCATG AAGAGCCAAG GGAATATAAC AAGAAACAAT
      601 GTAGTCAAAT CTTATCAAGC ATGCCGTACGC TATCTTAGAG ATGAACCCGC
      651 AGGACCTCAG CGCGCTCAAA TCGGTGTCTA TGCGCTATTCT TTAGGAGCTA
      701 GTGTTCAACGC CGAACGATTA AGTAAAGAGA TCGCAGACGG AAGTGATAGC
      751 GTCCGGTGGT TTGTCGTTAA AGATCGAGGA GCTCGCTCTA CAGGAGCCGT
      801 TGCTAAACAG TTTATTGGAA GTCTAGGAGT TTGGCTGGCG AATCTTACCC
      851 ATTGGAATAT TAATTCTGAA AAGAGAAGCA AGGACTTTGCA TTGCCCCAGAA
      901 CTCTTTTATTG ATGGCAAGGA TTCCCAAGGT AATCTTATCG GGGATGGATT
      951 GTTCAAAAAAA GAGACGTGCT TCGCAGCACC ATTTTTAGAT CCTAAAAAACT
      1001 TGGAAAGAGTG TTCAGGGAAAG AAAATCCCTG TAGCTCAGAC CGGTCTAAGA
      1051 CACGATCATA TCCCTTCCGA TGATGTGATT AAAGAAGTTG CACGTCATAT
      1101 TCAAAGACAT TTCGATAATT A

```

The PSORT algorithm predicts an inner membrane location (0.461).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 61A.

- 45 The recombinant protein was used to immunise mice, whose sera were used in Western blot (Figure 61B) and FACS (Figure 61C) analyses. A his-tagged protein was also expressed.

These experiments show that cp6854 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 62

The following *C.pneumoniae* protein (PID 4377101) was expressed <SEQ ID 123; cp7101>:

5	1	MYSCYSKGIS HNYLLHPMSR LDIFVFDSL I ANQDQNLL EEE IFCS ED TVLF
	51	KAYRTTALQS PLAAKNLNIA RKVANYILAD NGEIDTVKL V EAIIHHL SQCT
	101	YPLGPHRHNE AQDREHLLKM LKALKENPKL KESIKTLFVP SYSTIQNLIR
	151	HTLALNPQT L STI HV RQAA LTALFTYLQ DVGS CFATAP AILIHQEYPE
	201	RFLKDLNDLI SSGKLSRIVN QREIAVPI NL SG CIGELFKP LR ILDLYPD P
	251	LVKLSSSPGL KKAFSAANLI ET LGDSE A QI QQLL SHQYLM QKLQ NVHETL
	301	TANDIIKSTL LHYYQLQEST VRAIFFKEGL FSKEQVAFST QHPRELSEI Q
10	351	RVYHYLHAYE EAKSAFIHDT QNPLLKAWEY TLATLADASQ PT IS NHIRLA
	401	LGWKS EDPHS LVSLVTHFVE EEVENIRILV QQCEQTYHEA RSQLEYIEGR
	451	MRNPLNNQDS QILTMDHMRF RQELNKALYE WDSAQEKA KK FLHLP EFLLS
	501	FYTKQI PLYF RSSYDAFI QE FAHLYANAPA GFRILFTHGR THPNTWSPI Y
15	551	SINEFIRFLS EFFTSTES EL LGKH AVINLE KETS RL VHNI TAMLH DVFQ
	601	E A L L T R I L E A Y Q L P V P P S I L N H L D Q L S Q T P W V V S G G T V D T L L L D Y F E S S
	651	EPLTLTKEKHP ENPHELA AFY ADALKDLPTG IKSYLEEGSH S L L S S P T H V
	701	FSIIAGSPLF REAWDN DWYS YT WLRD VV WK QHQDFLQDTI LPQLSIYAFI
	751	ENFCN KYA I Q H V V H D F H D F C SDH S L T L P E L YDKGS RFL SS LFTK D K T V A L
20	801	IYIRRLLYI LM V R E V P V Y S E Q Q L P E V L D N V S S Y L G I S S R I T Y E K F R S L I E E
	851	TIPKMTL LSS ADL RHI YK GL LM QSYQKIYT BED TYL RL TT AMRHHN LAY P
	901	A PLL FADSN W PSIYFGFIL N PGT EIDLW K F NYA GLQ QP LD NI QEL F AT
	951	SRPWTLYANP IDYGM PPP PG YRS RLP KEFF *

The cp7101 nucleotide sequence <SEQ ID 124> is:

25	1	AT GT ATT CGT GTTACAGCAA AGGAATATCC CATAACTATC TTCTACATCC
	51	TATGTCACGT TTGGATATT TTGTTT CGA TTCTCTGATC GC AA ACCAGG
	101	AT CAA AAT CTCT TCTTGAGGAA ATT TTCTGTT CTGAAGACAC AGTTT TATT
	151	AAAG CCT ACC TCA TAC ACAGGC TCTACA ATCC CCTCTAGCTG CTAAGAACCT
	201	AAATATCGCC CGTAAAGTCG CAAATTATAT CTTAGCTGAC AATGGGAAA
	251	TCGATACAGT AAAGCTGTC GAAGCCATTC ACCATCTCTC ACAATGTACC
30	301	TATCCTT TAG GGCCTCATCG CCATAATGAA GCTCAAGATC GTGAACACCT
	351	CCTTAAAATG CTAAAGCTC TAAAGGAAAA TCCTAAATTAA AAAGAAAGCA
	401	TCAAAACTCT CTTTGTC CTCAT ACTCTA CAATCC AAA CCTAAATTCG
	451	CATACACTAG CATTGAATCC ACAGACAA TT CTCTCTACGA TTCATGTGCG
	501	TCAAGCAGCA CTCACAGCGC TCTTCACCTA CCTTCGGCAA GATGTAGGTT
35	551	CCTGTTTGC TACGGCTCCT GCCATTCTCA TTCACCAAGA ATATCCAGAA
	601	CGATTCCCTTA AAGATCTAA TGATCTCATT AGCAGTGGCA AACTCTCTAG
	651	AATCGTAAAC CAAAGGGAAA TTGCGGTTCC TATAAACCTT TCGGGATGCA
	701	TTGGAGAGCT ATTCAAGCCT TTAAGGATTC TAGATCTTA TCCTGATCCT
	751	CTGGTTAACG TCTCCATC TCCAGGACTC AAAAAGCCT TTTCTGCTGC
40	801	CAATCTT ATT GAAACTCTG GGGATTCTGA AGCACA AATC CAACAGTTGC
	851	TCTCGCATCA AT ATT TGATG CAAA AACTAC AAAATGTCCA TGAGACCTTA
	901	ACTGCTAACG ACATTA CCAA ATCGACACTT CTGCACTACT ATCAGCTCCA
	951	AGAAAGTACT GTACGAGCTA TTTCTTCAA AGAAGGGTTG TTCAGCAAAG
45	1001	AAACAAGTGGC ATTCTCGACG CAACACCCCA GAGAGCTCTC AGAAATACAA
	1051	CGGGTATACC ACTACTTACA TGCTTATGAA GAAGC AAAAT CTGCTTTTAT
	1101	CCATGACACT CCAAAATCCCT TACTGAAAGC CTGGGAGTAT ACTTTAGCGA
	1151	CTCCTGCGGA TGCTAGCCAA CCTCACCATCT CAAACCATAT CCGCCTTGCC
	1201	TTAGGATGGA AAAGTGAAGA CCCTCACAGT CTTGTATCTC TAGTTACACA
	1251	CTTTGTTGAA GAGGAAGTAG AAAACATCCG AATTTTACTGC CAACAATGTG
50	1301	AACAGACCTA TCACGAAGCA CGCTCCCAAC TAGAATATAT TGAAGGGCGG
	1351	ATGCGCAACC CACTAAATAA TCAAGACAGT CAGATTTGA CGATGGATICA
	1401	CATGCGCTC CGTCAAGAAC TCAATTAAGC TCTTTATGAG TGGGATAGTG
	1451	CTCAAGAAA GGCAAGAAA TTTCTACATC TTCTGAAATT CTTACTTTCT
	1501	TTCTATACAA AGCAAAATCC CTTTACTTT CGTAGTTCTT ACGATGCCTT
55	1551	CATTCAAGAA TTTGCTCATC TCTATGCTAA TGCTCCCGCT GGCTCCGTA
	1601	TTCTTTTCA C GATGGACGC ACCCATCCGA ACACATGGTC CCCCATCTAT
	1651	TCGATTAATG AATTTTATACG TTTCTTTCT GAATTCTCA CCTCCACAGA
	1701	GTCAGAACCT CTGGGAAAC ATGCCGTGAT CAATTTAGAG AAAGAAACAT
	1751	CTCGGCTCGT CCACAAACATC ACTGCCATGC TACACACGG A TGT T T C C A A
60	1801	GAAGCTCTCC TTACAAGAT TTTAGAAGCC TATCAGCTTC CTGTGCCCTCC
	1851	CTCCATCTA ACCAACCTAG ATCAGCTGTC ACAAACCTCC TGGGTTTATG
	1901	TTTCTGGAGG AACAGTGGAC ACTCTCTTT TGGATTATTT TGAAAGCTCA
	1951	GAACCTCTGA CACTTACAGA AAAGCATCCT GAAAATCCTC ATGAGCTTGC
	2001	AGCTTTCTAC GCAGACGCC TAAAGATCT CCCTACAGGA ATTAAAAGTT

5 2051 ATCTAGAAAGA AGGATCCCAC TCTCTACTTA GCTCATCACC CACCCACGTT
 2101 TTCTCTATAA TCGCAGGATC TCCTTATTT CGGGAAGCTT GGGATAATGA
 2151 TTGGTACAGC TATACCTGGC TTCTGTATGT CTGGGTGAAA CAACACCAAG
 2201 ATTTCCCTCA AGATACTATA TTACCTCAGC TAAGTATCTA TGCTTTCATA
 2251 GAGAATTTTT GTAACAAATA TGCTTGCAA CATGTAGTTC ATGACTTTCA
 2301 TGATTTCTGC TCCGACCACT CCTTGACTCT TCCGGAGCTC TATGACAAAG
 2351 GATCGCGTTT TCTAACGCTCC TTATTCCACCA AAGATAAGAC CGTAGCTCTT
 2401 ATCTATATAC GCGCTTCTCT CTACCTTATG GTCCGTGAAG TCCCTTATGT
 2451 TTCAGAACAA CAGCTTCCAG AAGTCTTAGA TAACGTCTCT TCATATCTCG
 10 2501 GGATTTCCCTC TCGTATTAC TATGAGAAAT TCCGCTCCCT GATAGAGGAA
 2551 ACCATCCCTA AAATGACCTT ACTCTCCTCA GCAGACCTGA GGCATATCTA
 2601 TAAAGGTCTC CTCATGCCAA GTTATCAAAA GATCTACACC GAAGAACAGATA
 2651 CGTACCTCCG CCTCACCCAGC GCAATGAGGC ATCATAAACT TGCCTATCCC
 15 2701 GCTCCTTTGC TCTTTCAGA CAGTAACCTGG CCTTCTATTT ATTTTGGATT
 2751 CATCCTAAAT CCAGGAACCA CAGAGATCGA TCTTGGAAA TTTAACTATG
 2801 CAGGGCTGCA AGGACAGCCT CTTGACAATA TCCAGGAGCT GTTCGCAACG
 2851 TCAAGACCCCT GGACCCCTCA TGCAAATCCT ATAGATTATG GCATGCCACC
 2901 GCCTCCAGGC TACCGCAGCC GCCTCCCTAA AGAATTTC TAG

The PSORT algorithm predicts a cytoplasmic location (0.206).

20 The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 62A) or his-tagged product. The proteins were used to immunise mice, whose sera were used in Western blot (Figure 62B) and FACS (Figure 62C) analyses.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

25 These experiments show that cp7101 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 63

The following *C.pneumoniae* protein (PID 4377107) was expressed <SEQ ID 125; cp7107>:

30 1 MSTVRNSALP LPCLSRSETF KKVRSHMKFM KVLTPWIYRK DLWVTAFLLT
 51 AIPGSFAHTL VDIAGEPRHA AQATGVSGDG KIVIGMKVPD DPFAITVGQ
 101 YIDGHLQPLE AVRQPQCSVYP NGITPDGTVI VGTNYAIGMG SVAVKWVNKG
 151 VSELPPLM PDT LDSVASAVSA DGRVIGGNRN INLGASAVAK WEDDVITQLP
 201 SLPDAMNACV NGISSDGSI VGTMDVDSWR NTAVQWIGDQ LSVIGTLGGT
 251 TSVASAISTD GTVIVGGSE ADSQTHAYAY KNGVMSDIGT LGGFYSLAHA
 301 VSSDGSVIVG VSTNSEHRYH AFQYADGQMV DLGLTGGPES YAQGVSGDGK
 351 VIVGRAQVPS GDWHAFLCPF QAEPSAPVHG GSTVVTTSQNP RGMDVINATY
 401 SSLKNSQQQL QRLLIQHSAK VESVSSGAPS FTSVKGAIISK QSPAVQNDVQ
 451 KGTFLSYRSQ VHGNVQNQQL LTGAFMDWKL ASAPKCGFKV ALHYGSQDAL
 501 VERAALPYTE QGLGSSVLSG FGGQVQGRYD FNLGETVVLQ PFMGIQVLHL
 551 SREGYSEKNV RFPVSYDSVA YSAATSFMGA HVFASLSPKM STAATLGVER
 601 DLNSHIDEFK GSVSAMGNFV LENSTVSVLR PFASLAMYD VRQQQLVTLS
 651 VVMNQQPLTG TLSLVSQSSY NLSF*

The cp7107 nucleotide sequence <SEQ ID 126> is:

45 1 ATGAGTATAG TCAGAAATTTC TGCATTGCCA CTTCCGTGTT TAAGCAGATC
 51 CGAAACCTTT AAAAAGTTA GGTGCGCATAT GAAATTATG AAAGTCCTTA
 101 CTCCCATGGAT TTATCGAAAA GATCTTGGG TAACAGCATT CTTACTGACA
 151 GCAATTCCAG GATCTTTGTC ACATACTCTT GTTGATATAG CAGGAGAAC
 201 TCGGCATGCT GCTCAAGCAA CAGGAGTTTC TGGAGATGGT AAAATIGTTA
 251 TAGGAATGAA AGTTCCGGAT GATCCTTTG CTATAACTGT AGGATTTCAA
 301 TATAATTGATG GGCATTGCA ACCCTTAGAG GCAGTACGTC CTCATGCTC
 351 TGTATACCCCT AATGGTATAA CCCCGGACGG AACGGTTATT GTGGGTACAA
 401 ACTATGCCAT CGGGATGGGT AGTGTGCTG TGAAATGGGT AAATGGCAAG
 451 GTTTCTGAAC TTCCCATGCT CCCTGACACC CTCGATTCTG TAGCATCGGC
 501 AGTTTCTGCA GATGCGAAGAG TGATTGGAGG GAATAGAAAT ATAAATCTTG
 551 GCGCTTCTGT TGCTGTGAAA TGGGAGGACG ACGTGATTAC ACAACTTCCT
 601 TCTCTTCCTG ATGCTATGAA TGCTGTGTT AACGGAATT CTTCAGATGG

```

651 TTCTATAATT GTAGGAACCA TGGTAGACGT GTCATGGAGA AATACCGCAG
701 TACAATGGAT CGGGGATCAT CTCCTGTTA TTGGGACTTT AGGAGGAAC
751 ACTTCTGTTG CTAGTGCAT CTCACACAGAT GGCACGTGTA TTGTAGGAGG
801 TTCTGAAAAT GCAGATTCTC AGACTCATGC CTATGCTTAT AAAAACGGTG
851 TTATGAGCGA TATAGGGACC CTCGGAGGTT TTATTCCTT AGCACATGCA
901 GTATCTTCAG ATGGTTCTGT GATTGTAGGA GTATCCACGA ACTCTGAGCA
951 TAGATATCAT GCATTCAAAT ATGCTGATGG ACAGATGGTA GATTAGGAA
1001 CTTTAGGAGG GCCTGAATCT TATGCTCAAG GTGTGCTCGG AGATGGAAAG
1051 GTAATTGTTG GTAGAGCACA AGTACCATCT GGAGATTGGC ATGCGTTCCCT
1101 ATGTCCTTC CAAGCTCCGA GCCCTGCTCC TGTCATGGG GGAAGGACTG
1151 TCGTAACCTAG CCAGAATCCA CGTGAATGG TAGATATCAA TGCTACGTAC
1201 TCCTCTTTGA AAAATAGCCA ACAACAACTA CAAAGATTGC TTATCCAGCA
1251 TAGTGCAGAA GTTGAAGTG TATCCTCAGG AGCACCACAT TTTACAAGTG
1301 TGAAAGGTGC GATCTAAAAA CAGAGCCCTG CAGTGCAGAA TGATGTACAG
1351 AAAGGGACGT TTTTAAGTTA CCGTTCCCAA GTTCATGGAA ACGTGCAGAA
1401 TCAGCAATTG CTCACAGGAG CTTTTATGGA CTGGAAACTC GCTTCAGCTC
1451 CTTAAATGCCG CTTTAAGTG GCTCTCCACT ATGGCTCTCA AGATGCTCTC
1501 GTAGAACGTG CAGCTCTTC TTACACAGAA CAAGGCTTAG GAAGCAGTGT
1551 CCTGTCAGGT TTTGGAGGAC AAGTCAAGG ACGCTATGAC TTTAATTAG
1601 GAGAAACTGT TGTCTGCAA CCCTTTATGG GCATTCAAGT TCTCCACCTA
1651 AGTAGAGAAG GGTATTCTGA GAAGAATGTT CGATTTCTG TAAGCTATGA
1701 TTCTGTAGCC TACTCAGCAG CTACTAGCTT TATGGGTGCG CATGTATTG
1751 CCTCTCTAAG CCCTAAATAG ACTACAGCAG CAACTTTAGG TGTGGAGAGA
1801 GATCTGAATT CACATATAGA TGAATTAAAG GGATCCGTCT CTGCTATGGG
1851 AAACCTTGTC TTGGAAATT CTACAGTGAG TGTGTTAAAGA CCTTTTGCTT
1901 CTCTTGCTAT GTACTATGAC GTAAAGACAAC AGCAACTCGT GACGTTGTCA
1951 GTAGTTATGA ATCAACAAACC CTTAACAGGC ACACTAAGCT TAGTAAGCCA
2001 AAGTAGCTAT AATCTTAGCT TCTAA

```

The PSORT algorithm predicts an inner membrane location (0.100).

- 30 The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 63A) or his-tagged product. The proteins were used to immunise mice, whose sera were used in Western blot (Figure 63B) and FACS (Figure 63C) analyses.

These experiments show that cp7107 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example 64

The following *C.pneumoniae* protein (PID 4376467) was expressed <SEQ ID 127; cp6467>:

```

1 MLRFFAVFTIS TLWLITSGCS PSQSSKGIFV VNMKEMPRSL DPGKTRLIAD
51 QTLMRHLHYEG LVEEHQSNGE IKPALAESYT ISEDGTRYTF KIKNILWSNG
101 DPLTAQDFVS SWKEILKEDA SSVVLYAFLP IKNARAIFDD TESPENLGV
151 ALDKRHLLEIQ LETPCAFLH FLTLPIFFFV HETLRNYSSTS FEEMPITCGA
201 FRPVSLEKGL RLHLEKNPYH HNKSRVKLHK IIVQFISNAN TAAILFKHKK
251 LDWQGPPWGE PIPPEISASL HQDDQLFSLP GASTTWLLFN IQKKPWNNAK
301 LRKALSLAID KDMLTKVYYQ GLAEPTDHIL HPRLYPGTYP ERKRQNERIL
351 EAQQLFEEAL DELQMTRDL EKETLTFSTF SFSYGRICQM LREQWKKVLK
401 FTIPIVQKF FTIQKNFLEG NYSLTVNQWT AAFIDPMSTYL MIFANPGGIS
451 PYHLQDSHFQ TLLIKITQEH KKHLRNQLII EALDYLEHCH ILEPLCHPNL
501 RIALNKNIKN FNLFVRRRTSD FRFIEKL*

```

A predicted signal peptide is highlighted.

The cp6467 nucleotide sequence <SEQ ID 128> is:

```

50 1 ATGCTCCGTT TCTTCGCTGT ATTATATCA ACTCTTTGGC TCATTACCTC
51 AGGATGTTCC CCATCCAAT CCTCTAAAGG AATTTTTGTG GTAAATATGA
101 AGGAATGCC ACGCTCTTG GATCCTGGAA AAACCTCGCTT CATTGCAGAC
151 CAAACTCTAA TGCCTCATCT ATATGAAGGA CTCGTCGAAG AACATCCCCA
201 AAATGGAGAG ATTAAACCAAG CCCTTGAGA AGACTACACC ATCTCCGAAG
251 ACGGGACTCG GTACACATTT AAAATCAAAA ACATCCTTTG GAGTAACGGA
301 GACCCCTCTGA CAGCTCAAGA CTTGTCTCC TCTTGGAAAGG AAATCCTAAA

```

351 GGAAGATGCG TCCTCCGTAT ATCTCTATGC GTTTTTACCT ATCAAAAATG
 401 CTCGGGCAAT CTTTGATGAT ACTGAGTCTC CAGAAAATCT AGGAGTCCGA
 451 GCTTITAGATA AGCGTCATCT CGAAATTCTAG TTAGAAAACTC CCTGCCGCGA
 501 TTTCCCTACAT TTCTTGACTC TTCTTATTTT TTGCCCCATTAC CATGAAACTC
 551 TGCGAAACTA TAGCACCTCT TTTGAAGAGA TGCCCATTAC CTGCGGTGCT
 601 TTCCGCCCTG TGTCTCTAGA AAAAGGCCTG AGACTCCATC TAGAGAAAAA
 651 CCCTATGTAC CATAATAAAA GCCGTGTGAA ACTACATAAA ATTATTGTAC
 701 AGTTTATCTC AAACGCTAAC ACTGCAGCCA TTCTATTCAA ACATAAGAAA
 751 TTAGATTGCG AAGGACCTCC TTGGGGAGAA CCTATCCCTC CAGAAATCTC
 801 AGCTTCTCTA CATCACAGATG ACCAGCTCTT TTCTCTTCG GGCGCCTCGA
 851 CTACATGGTT ACTCTTTAAT ATACAAAAAA AACCTTGGAA CAATGCTAAA
 901 TTACGCAAGG CATTGAGCCT TGCAATAGAC AAAGATATGT TAACCAAAGT
 951 GGTATACCAA CGTCTTGCAG AACTACAGA TCATATCTA CATCCAAGAC
 1001 TTTATCCAGG GACCTATCCC GAACGGAAAA GACAAAACGA AAGAATTCTT
 1051 GAGGCTCAAC AACTCTTGA AGAAGCTCTA GACGAACTTC AAATGACACG
 1101 CGAAGATCTA GAAAAGGAA CTTGACTTT CTCAACCTTT TCTTTTTCTT
 1151 ACGGAAGGAT TTGCCAATG CTAAGAGAAC AATGGAAGAA AGTCTTAAAAA
 1201 TTTACTATCC CTATAGTAGG CCAAGAGTTT TTACAATAC AAAAAAAACTT
 1251 CCTAGAGGGG AACTATCTCC TAACCCTGAA CCAATGGACC GCAGCATTTA
 1301 TTGATCCGAT GTCTTATCTC ATGATCTTG CCAATCCTGG AGGAATTTC
 1351 CCCTATCACC TCCAAGATTC ACACTTCAA ACTCTTCTCA TAAAGATCAC
 1401 TCAAGAACAT AAAAAACACC TACGAAATCA GCTTATTATT GAAGCCCTTG
 1451 ACTATTTAGA ACACTGTCAC ATTCTCGAAC CACTATGTCA TCCAATCTT
 1501 CGAATTGCTT TGAACAAAAA CATTAAAAAC TTTAATCTTT TTGTTGACG
 1551 AACTTCAGAC TTTCGTTTA TAGAAAAACT ATAG

The PSORT algorithm predicts an outer membrane lipoprotein (0.790).

The protein was expressed in *E.coli* and purified as a his-tag product and a GST-fusion protein, as shown in Figure 64A. The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 64B). The recombinant GST-fusion protein was also used to immunise mice, whose sera were used in a Western blot (Figure 64C) and for FACS analysis (Figure 64D).

These experiments show that cp6467 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 65

35 The following *C.pneumoniae* protein (PID 4376679) was expressed <SEQ ID 129; cp6679>:

1 MRRMLVLLAS LGLLSPTLSS CTHLGSSGSY HPKLYTSGSK TKGVIAMLPV
 51 FHRPGKSLEP LPWNLQGEFT EEIISKRFYAS EKVFLIKHNA SPQTVSQFYA
 101 PIANRLPETI IEQFLPAEFI VATELLEQKT GKEAGVDSVT ASVRVRVFDI
 151 RHHKIALIYQ EIIECSQPLT TLVNDYHRYG WNSKHFDSPT MGLMHSLRFLR
 201 EVVARVEGYV CANYS*

A predicted signal peptide is highlighted.

The cp6679 nucleotide sequence <SEQ ID 130> is:

1 ATGCAGAAAAA TGTGGGTATT ATTGGCATCT TTAGGACTTC TATCCCAAC
 51 CCTATCCAGC TGCACTCACT TAGGCTCTTC AGGAAGTTAT CATCCTAACG
 101 TATACACTTC AGGGAGCAAA ACTAAAGGTG TGATTGCGAT GCTTCCTGTA
 151 TTTCATCGCC CAGGAAAGAG TCTTGAACCT TTACCTTGA ACCTCCAAGG
 201 AGAATTACT GAAGAGATCA GCAAAAGGTT TTATGCTTCG GAAAAGGTCT
 251 TCCTGATCAA GCACAATGCT TCACCTCAGA CAGTCTCTCA GTTCTATGCT
 301 CCGATTGCGA ATCGTCTACC CGAAACAATT ATTGAGCAAT TTCTTCCTGC
 351 AGAATTTCATT GTTGCTACAG AACTGTTAGA ACAAAAGACA GGGAAAGAAG
 401 CAGGTGTCGA TTCTGTAACA GCGTCTGTAC GTGTTGCGGT TTTTGATATC
 451 CGTCATCATA AAATAGCTCT CATTATCAA GAGATTATCG AATGCAAGCCA
 501 GCCTTTAACT ACCCTAGTCA ATGATTATCA TCGCTATGGC TCGAACTCAA
 551 AACATTTGTA TTCAACGCCG ATGGGTTAA TGCAAGCCG TCTTTTCCGC

601 GAAGTTGTTG CCAGAGTTGA GGGCTATGTT TGTGCTAACT ACTCGTAG

The PSORT algorithm predicts an inner membrane location (0.149).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 65A) and as a GST-fusion product (Figure 65B). The recombinant protein was used to immunise mice, whose sera were
5 used in a Western blot (Figure 65C) and for FACS analysis.

These experiments show that cp6679 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 66

The following *C.pneumoniae* protein (PID 4376890) was expressed <SEQ ID 131; cp6890>:

10	1 MKQLLFCVCV FAMSCSAYAS PRRQDPSVMK ETFRNNYGI	I VSGQEWFVRKG
	51 SDGTITKVLIK NGATLHEVYS GGLLHGEITL TFPHTTALDV VQIYDQGR	LV
	101 SRKTFFFVNGL PSQEELFNED GTFVLTRWPD NNDSDTITKP YFIETTYQGH	
	151 VIEGSYTSFN GKYSSSIHING EGVRSVFSSN NILLSEETFN EGVMVKYTTF	
	201 YPNRDPESIT HYQNGQPHGL RLTYLQGGIP NTIEEWRYGF QDGTTIVFKN	
15	251 GCKTSEIAVV KGVKEGLELR YNEQEIVAAE VSWRNDFLHG ERKIYAGGIQ	
	301 KHEWYYRGRS VSKAKFERLN AAG*	

A predicted signal peptide is highlighted.

The cp6890 nucleotide sequence <SEQ ID 132> is:

20	1 ATGAAACAAAT TACTTTCTG TGTTTGC GTA TTTGCTATGT CATGTTCTGC	
	51 TTACGCATCC CCACGACGAC AAGATCCTTC TGTTATGAAG GAAACATTCC	
	101 GAAATAATTAA TGCGCATATT GTTCCGGTC AAGAATGGGT AAAGCGTGGT	
	151 TCTGACGGCA CCATCACCAA AGTACTCAA AATGGAGCTA CCCTGCATGA	
	201 AGTTTATTCTC GGAGGCCCTC TTTCATGGGG AATTACCTTA ACGTTTCCCC	
25	251 ATACCACACG ATTGGACGTT GTTCAAATCT ATGATCAAGG TAGACTCGTT	
	301 TCTCGCAAAA CCTTTTTTGT GAACGGTCTT CCATCTCAAG AAGAGCTGTT	
	351 CAATGAAGAT GGCACGTTTG TCCTCACACG ATGGCCGGAC ACAACGACA	
	401 GTGATAACCAT CACAAAGCCT TACCTCATAG AAACGACATA TCAAGGGCAT	
	451 GTCATAGAAC GAACTTATAC TTCTCTTAAT GGGAAATACT CCTCATCCAT	
30	501 CCACAAATGGG GAGGGAGTTC GTTCTGTGTT CTCCCTCCAAT AACATCCTTC	
	551 TTTCTGAAGA GACCTTCAT GAAAGGTGTCA TGGTGAAATA TACCACTTC	
	601 TATCCGAATC GCGATCCCAG ATCGATTACT CATTATCAAAT ATGGACAGCC	
	651 TCACGGCTTA CGGCTAACAT ATCTACAAGG TGGCATTCCCC AATACGGATAG	
	701 AGGAGTGGCG TTATGGCTT CAAGACGGAA CGACCACCGT ATTTAAAAAT	
35	751 CGTTCTAACAGA CATCTGAGAT CGCTTATGTT AAGGGAGTGA AAGAAGGTTT	
	801 AGAAACTGCGC TACAATGAAC AGGAAATTGT AGCTGAAGAA GTTTCTTGGC	
	851 GTAATGATT TCTGCATGGA GAACGTAAGA TCTATGCTGG AGGAATCCAA	
	901 AACCATGAAT GGTATTACCG CGGGAGATCT GTATCTAAAG CCAAATTCGA	
	951 GCGGCTAAAT GCTGCAGGAT AG	

The PSORT algorithm predicts an outer membrane location (0.940).

40 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 66A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 66B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp6890 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

45 Example 67

The following *C.pneumoniae* protein (PID 6172323) was expressed <SEQ ID 133; cp0018>:

5 1 MKTSVSMILLA LLCSGASSIV LHAATTPLNP EDGFIGEGNT NTFSPKSTTD
 51 AAGTTYSLTG EVLYIDPGKG GSITGTCFVE TAGDLTFLGN GNTLKFLSVD
 101 AGANIAVAH V QGSKNLSFTD FLSLVITESP KSAVTTGKGS LVSLGAVQLQ
 151 DINTLVLTSN ASVEDGGVIK GNSCLIQGIK NSAIFGQNTS SKKGAISTT
 201 QGLTIENNLL TLKFRENKAV TSGGALDLGA ASTFTANHEL IFSQNKTSGN
 251 AANGGAINCS GDLTFTDNTS LLLQENSTMQ DGGALCSTGT ISITGSDSIN
 301 VIGNTSGQKG GAISAASLKI LGQQGGALFS NNVVTHATPL GGAIFINTGG
 351 SLQLFTQGGD IVFEGNQVTT TAPNATTKRN VIHLESTAKW TGLAASQGNA
 401 IYFYDPITTN DTGASDNLRI NEVSANQKLS GSIVFSGERL STAEAIACL
 451 TSRINQPVTI VEGSLVLUKQG VTLITQGFSQ EPESTLLLDSL GTSL*

A predicted signal peptide is highlighted.

The cp0018 nucleotide sequence <SEQ ID 134> is:

15 1 ATGAAGACTT CAGTTTCTAT GTTGTGGCC CTGCTTTGCT CGGGGGCTAG
 51 CTCTATTGTA CTCCATGCCG CAACCACTCC ACTAAATCCT GAAGATGGGT
 101 TTATTGGGGA GGGCAATACA AATACTTTTT CTCCGAAATC TACAACGGAT
 151 CCTGCAGGAA CTACCTACTC TCTCACAGGA GAGGTTCTGT ATATAAGATCC
 201 GGGGAAAGGT GGTTCAATT A CAGGAACCTTG CTTGTAGAA ACTGCTGGCG
 251 ATCTTACATT TTTAGGTAAAT GGAAATACCC TAAAGTTCCCT GTCGGTAGAT
 301 GCAGGTGCTA ATATCGCGGT TGCTCATGTA CAAGGAAGTA AGAATTAAAG
 351 CTTCACAGAT TTCCTTCTC TGGTGATCAC AGAACCTCCA AAATCCGCTG
 401 TTACTACAGG AAAAGGTAGC CTAGTCAGTT TAGGTGCAGT CCAACTGCAA
 451 GATATAAACCA CTCTAGTTCT TACAAGCAAT GCTCTGTGCG AAGATGGTGG
 501 CGTGATTAAGA GGAAACTCCT GCTGATTCA GGGAAATCAA AATAGTGCAG
 551 TTTTGGACA AAATACATCT TCGAAAAAAAG GAGGGGCGAT CTCCACGACT
 601 CAAGGACTTA CCATAGAGAA TAACTTAGGG ACGCTAAAGT TCAATGAAAA
 651 CAAAGCAGTG ACCTCAGGAG GGCCTTAGA TTTAGGAGCC GCGTCTACAT
 701 TCACTGCGAA CCATGAGTTG ATATTTTCAC AAAATAAGAC TTCTGGGAAT
 751 GCTGCAAATG CGGGAGCCAT AAATTGCTCA GGGGACCTTA CATTACTGA
 801 TAACACTTCT TTGTTACTTC AAGAAAATAG CACAATCGAG GATGCTGGAG
 851 CTTTGTGTTAG CACAGGAACC ATAAGCATTA CCGGTAGTGA TTCTATCAAT
 901 GTGATAGGAA ATACTTCAGG A CAAAAAAGGA GGAGCGATT CTGCAGCTTC
 951 TCTCAAGAT TTGGGAGGGC AGGGAGGC GCGTCTACAT CTTCTTTCT AATAAACGTAG
 1001 TGACTCATGC CACCCCTCTA GGAGGTGCCA TTTTTATCAA CACAGGAGGA
 1051 TCCTTGCAAGC TCTTCACTCA AGGAGGGGAT ATCGTATTGAG GGGGAATATCA
 1101 GGTCACTACA ACAGCTCCAA ATGCTTACAC TAAGAGAAAT GTAATTCA
 1151 TCGAGAGCAC CGCGAAGTGG ACGGGACTTG CTGCAAGTCA AGGTAACGCT
 1201 ATCTATTCT ATGATCCCATT TACCAAC GATAACGGGAG CAAGCGATAA
 1251 CTTACGTATC AATGAGGTCA GTGCAAATCA AAAGCTCTCG GGATCTATAG
 1301 TATTTCTGG AGAGAGATTG TCGACAGCAG AAGCTATAGC TGAAAATCTT
 1351 ACTTCAGGAA TCAACCAGCC TGTCACTTTA GTAGAGGGGAG GCTTAGTACT
 1401 TAAACAGGGA GTGACCTTGA TCACACAAGG ATTCTCGCAG GAGCCAGAAT
 1451 CCACGTTCTC TTGGATCTG GGGACCTCAT TATAA

The PSORT algorithm predicts outer membrane (0.935).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 67A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 45 67B) and for FACS analysis.

These experiments show that cp0018 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 68

50 The following *C.pneumoniae* protein (PID 4376262) was expressed <SEQ ID 135; cp6262>:

55 1 MRKLRLILAIV LIALSIIILIA GGVVLLTVAI PGLSSVISSP AGMGACALGC
 51 VMLALGIDVL LKKREVPIVL ASVTTTPGTG SPRSGISISG ADSTIRSLPT
 101 YLLDEGHGPQS MRKLRLILAIV LIVFSIILIA SGVVLLTVAI PGLSSVISSP
 151 AGMGACALGC VMLALGIDVL LKKREVPIVL ASVTTTPGTG SPRSGISISG
 201 ADSTIRSLPT YPLDEGHGPQS MRKLRLILAIV LIVFSIILIA SGVVLLTVAI
 251 PGLSSIISSP AEMGACALGC VMLALGIDVL LKKREVPIVV PAPIPEEVVI

301 DDIDEESIRL QQEAEEAALAR LPEEMSAFEG YIKVVESHLE NMKSLPYDGH
 351 GLEEKTKHQI RVVRSSLKAM VPEFLDIRRI FEEEEEFFLS ARKRLIDLAT
 401 TLVERKILTE QLERNLNRKA FSYLYQDSIF KKIIDNFEKL AWKFMILSKS
 451 ICRFTIIIFEN HEHGVAKSSL HKNAVLLEKV IYRSLQKSYR DIGMSAAKMK
 501 ILHGNPFFSL EDNKKTIMKE HAEMLESLSS YRKVFLALSD ENVVDTPSDP
 551 KKWDLSGIPC RDALSEISRD EQWQKKKAHLK HQESLYTQAR DRLTDQSSKE
 601 NQKELEKAEQ EYISSWERVK KFEIERVOER IRAIQKLYPN ILEREETTG
 651 QETVTPTVQG TTASSDLTDI LGRIEVSSRE DNQNQESCVK VLRSHEVEMS
 701 WEVKQEYGPK KKEFQDQMGS LERFFTEHIE ELEVILQKDYS KHLISYFKKVN
 751 NKKEVQYAKF RLKVLESDEL GILIAQTESAE SLLTQEELPI LATRGALEKA
 801 VFKGSLCCAL ASKAKPYFEE DPRFQDSDTO LRALTTLRQE AKASLEEEIK
 851 RFSNLENDIA EERRLLKESK QTFERAGLGV LREIAVESTY DLRSLTNTWE
 901 GTPESEKVFV SMYLNYYNEE KRRAKTRLVE MTQRYRDFKM ALEAMQFNEE
 951 ALLQEELSIQ APSE*

15 A predicted signal peptide is highlighted.

The cp6262 nucleotide sequence <SEQ ID 136> is:

1 ATGAGGAAAC TTCGTATTCT TCGCATCGTT CTCATAGCCT TGAGCATTAT
 51 TTTGATTGCA GGTGGTGTGG TATTGCTTAC TGTAGCGATC CCTGGATTAA
 101 GTTCAGTCAT TTCTTCCCCG GCAGGGATGG GTGCCCTGTC TTTGGGATGT
 151 GTGATGCTTG CTTPAGGGAT CGATGTTCTT CTGAAGAAC GAGAAGTCCC
 201 TATAGTTCTC GCATCTGTA CTACGACACC AGGAACTGGC AGCCCTAGAA
 251 GTGGTATTTC TATTTCAAGGA GCTGTAGACA CCATACGTC TCTTCCTACG
 301 TATCTCTTGG ACGAGGGACA TCCACAAATCC ATGAGGAAAC TTGATGTTCT
 351 TGCGATCGTT CTCATAGTTT TTAGCATTAT TTGATTGCA AGTGGTGTGG
 401 TATTGCTTAC TGTAGCGATC CCTGGATTAA GTTCAGTCAT TTCTTCCCCG
 451 GCAGGGATGG CTGCCTGTC TTGCGGATGT GTGATGCTTG CTTTAGGGAT
 501 CGATGTTCTT CTGAAGAAC GAGAAGTCCC TATAGTTCTC GCATCTGTA
 551 CTACGACACC AGGAAGTGGC AGCCCTAGAA GTGGTATTTC TATTCAGGA
 601 GCTGATAGCA CCATACGTC TCTTCCTACG TATCCCTGG AGCAGGGACA
 651 TCCACAAATCC ATGAGGAAAC TTGATGTTCT TGCATCGTT CTCATAGTT
 701 TTAGCATTAT TTGATTGCA AGTGGTGTGG TATTGCTTAC TGTAGCGATC
 751 CCTGGATTAA GCTCGATCAT TTCTTCCCCA GCGGAGATGG GTGCTTGTGC
 801 TTGCGGATGT GTGATGCTTG TTGCGGATGT CGACGTTCTT CTGAAGAAC
 851 GAGAAGTCCC TATAGTAGTT CCCGCACCTA TTCTGAAAGA AGTCGTCATA
 901 GATGATATAG ATGAAGAGAG TATACGGCTG CAGCAGGAAG CTGAAGCCGC
 951 TTTAGCAAGA CTTCCCTGAGG AGATGAGTGC ATTGAGGTT TACATAAAAG
 1001 TTGTCGAGAG TCATTTGGAG AACATGAAAAA GCCTGCCTTA TGATGGTCAT
 1051 GGGCTAGAAG AGAAAACGAA ACATCAGATA AGAGTCGTC GATCTCTTT
 1101 GAAGGGTATG GTTCCAGAAT TTGAGATAT CAGAAGAATT TTTGAAGAAG
 1151 AAGAGTTCTT TTTTCTCTCA GCTCGAACAC GACTTATAGA TTTAGCTACT
 1201 ACTTTAGTAG AGAGAAAAAT TTGAGACAGAG CAACTTGAGC GCAATAATT
 1251 AAGGAAAGCC TTGCTTATT TATATCAGGA CTCATTTTTT AAAAAAAATT
 1301 TTGATAACTT CGAGAAGTTA GCATGGAAAT TTATGATTTT GAGTAATCA
 1351 ATTTGTCGAT TTACAATTAT TTGAAAAT CATGAACATG GTGTAGCAA
 1401 GAGCCTGTTA CACAAGAATG CAGTGTACT GGAGAAGGTA ATCTATAGGA
 1451 GTTTGCAAAA AAGCTATAGA GATATAGGC TGTCATCTGC AAAGATGAAA
 1501 ATCTTCGACG GCAACCCCTT TTCTCTTTG AAAGATAATA AAAAGACGAT
 1551 AATGAAAGAAA CACGCAGAGA TGCTTGAAAG TCTCAGTAGC TATAGGAAGG
 1601 TATTTTTAGC TCTATCTGAT GAGAACGTTG TAGATACACC TAGCGATCCA
 1651 AAGAAATGGG ATTTGTCAGG AATCCCTGT AGGGACGCGT TGTCTGAGAT
 1701 TTCTCGTGTAT GAACAGTGGC AGAAGAAAGC ACATCTAAAG CATCAAGAGT
 1751 CCCCTCTATAC GCAAGCTAGG GATCGTTAA CAGACAGAG CTCTAAAGAA
 1801 AATCAGAAAG AGTTAGAGAA AGCTGAACAA GAGTACATAT CTTCTTGGGA
 1851 ACGGGTTAAA AATTTGAGA TTGAGGAGAGT ACAGGAGAGG ATACGGCAA
 1901 TTCAAAAGCT TTATCTTAAT ATCTCTGAGA GAGAAGAAGA ACCACAGGT
 1951 CAGGAGACTG TGACTCCAAC TGTCAGGG ACAGACGGCTT CATCCGATTT
 2001 AACAGATATT TTAGGAAGAA TAGAGGTCTC CAGTAGGGAG GATAATCAGA
 2051 ATCAAGAGTC TTGTTGTAAGA GTCTTAAGAA GTCTAGAGGT AGAAATGAGC
 2101 TGGGAAGTCA AACAAAGAGTA TGCCCTAAG AAAAGAGAT TTCAGGATCA
 2151 AATGGGTTCT TTAGAGAGGT TTGTTACAGA GCATATTGAA GAGTTAGAAG
 2201 TATTTACAGAA GGACTACTCT AACACATTGT CTTATTTAA AAAAGTAAC
 2251 ATAAGAAAG AGGTTCAATA TGCGAAGTTT AGGTTGAAGG TTTTAGAGTC
 2301 AGATTTAGAA GGGATTCTAG CTCAGACTGA GAGTGCTGAG AGTCTGTTAA
 2351 CTCAGAAAGA ACTTCGGATT CTTGCAACTC GGGGAGCCTT AGAGAAAGCT
 2401 GTTTTCAAGA GGAGTCTATG TTGCGCGCTA GCAAGCAAAG CAAAACCTA

2451 TTTTGAAGAG GATCCCAGAT TCCAAGGATTC TGATACGCAA TTGCGAGCTC
 2501 TGACTCTAAG GTTACAGGAG GCTAAGGCAA GCCTGGAAGA AGAGATAAAAG
 2551 AGATTTTCAAA ATCTTGAGAA CGATATTGCA GAGGAAAGAC GCCTTCTTAA
 2601 AGAGAGCAAG CAGACGTTCG AAAGAGCAGG TTAGGGGTT CTCCGAGAAA
 2651 TTGCACTCGA GTCTACTTAT GATTGCGTT CCTTAACAAA TACATGGGAA
 2701 GGGACCCCAAG AGAGTGAGAA GGCTTATTTT AGCATGTATC TTAATTATTA
 2751 CAACGAAGAG AACCGTAGGG CTAAAACAAG ATTGGTTGAA ATGACACAGA
 2801 GGTATAGAGA TTTTAAATG GCCTGGAAG CTATGCAGTT TAATGAAGAA
 2851 GCCCTTTGCA AAGAGGAAC CTCTATTCAA GCTCCCAGTG AATAA

- 10 The PSORT algorithm predicts inner membrane (0.660).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 68A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 68B) and for FACS analysis.

- 15 These experiments show that cp6262 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 69

The following *C.pneumoniae* protein (PID 4376269) was expressed <SEQ ID 137; cp6269>:

1 MYQENLRLLE RLLYN SVQKS YADRLFSYEK TKMVHDTPLI PWEEDKEKCA
 51 EAEKAFLEQQ KILLDYGKSI FWLNENDEIN LNDPWSWGLN TVRTRKFQOE
 101 VDDSERWNHK VLIQKLEDDY EKLEESSKE STEANKKLSS DLVDRLEDAK
 151 TKFPLKKQEE VETRVKDLRA RYGGTVDPKQ DTEAKKKVEL EASLETFLDS
 201 IESELVQCLE DQDIYWKEQD VKDLARTQEL EEQDIEAKRE EAAEIDLRSLN
 251 ERLIKKSKTML DRAKWHIENA EDSITWWTSQ IEMKDMKARL KILKEDITSV
 301 LPEIDEIETC LSLEELPLLT TRELLTKSYL KFKKICSETLL KMTSVFENNI
 351 VVQEVEVQLQ NLGFKLQGIS QRGKQDDF ANLEEQVALQ KKRLRELTON
 401 FEIQGFNFMK EDFKAAKDL YIRSTAEQKM NFDVPCMELF RRYHEEVNKP
 451 LLELMYNCAD SYRDAKKKL SLRLDEKELL QKEIKKEEFY QKKQQRHADR
 501 SRHTTYQKLR IAEELALELK KKI*

The cp6269 nucleotide sequence <SEQ ID 138> is:

30 1 ATGTACCAGG AGAACCTAAG ATTGTTGGAA AGGCTCTTT ATAATAGTGT
 51 TCAAAAGAGC TATGCGGATC GGCTGTTTC CTATGAAAG ACAAAAGATGG
 101 TGCACGATAC TCCGCTGATT CCTTGGGAAG AGGATAAGGA AAAATGTCCT
 151 GAAGCTGAGA AAGCTTCTT AGAGCAACAG AAGATTCTCC TAGATTATGG
 201 AAAATCTTAC TTTGGCTGA ATGAGAACCGA TGAGATCAAAT TTAAACGATC
 251 CTTGGAGTTG GGGTCTTAAT ACGGTGAGGA CTAGGAAAGT ATTCCAAGAG
 301 GTTGACGACA GTGAACGTTG GAATCATAAG GTACTCATTC AAAAACCTCGA
 351 GGACGATTAT GAGAAACTTC TAGAGGAAAG TTCAAAAGAG TCTACTGAAG
 401 CAAATAAGAA GCTTTTATCT GACTTAGTAG ATCGTCTTGA AGATGCTAAG
 451 ACAAAATTT TCCTGAGAA ACAGGAGGAG GTGGAGACTC GCGTTAAGGA
 501 TCTTAGAGCT CGATATGGG GCACAGTGA TCCTAACGAG GATACGGAAG
 551 CTAAGAAGAA AGTCGAATTG GAGGCTAGCT TAGAACCTT TTTAGATTCC
 601 ATCGAATCAAG AGCTAGTACA GTGTTTAGAA GATCAAGATA TATATTGGAA
 651 AGAACAGGAT GTCAAAGATC TAGCACGTAC GCAAGAGCTC GAGGAACAAAG
 701 ATATTGAAGC GAAGAGGGAA GAAGCTGCCG AAGACCTAAG AAGTCTTAAT
 751 GAGCGTTAA AGAAGTCAAA AACTATGTTA GATAGGGCTA AATGGCATAT
 801 TGAAAATGCT GAGGACAGTA TTACCTGGTG GACTACTCAG ATAGAAATGA
 851 AGGATATGAA AGCAAGACTG AAGATCTTAA AAGAAGATAT AACAAAGTGT
 901 CTACCTGAAA TAGATGAGAT TGAAACGTGT TTAAGCTTAG AGGAGCTTCC
 951 TTGCTTACG ACCAGGAAAC TCTTAACTAA GTCCCTACCTA AACTTTAAGA
 1001 TTGTTTCGGA AACACTATTA AAAATGACTT CTGTGTTGAA GAACAATATC
 1051 TATGTTCAAG AGTACGAGGT TCAGCTGCAA AATCTAGGGT TTAAGTTACA
 1101 AGGTATATCT CAGAGATTG GAAAGAAACA AGACGATTTC GCGAACCTAG
 1151 AGGAACAGGT TGCTTGCAG AAGAAACGAC TCAGAGAGCT CACTCAGAAT
 1201 TTGAAATAC AAGGATCTAA TTTCATGAAA GAAGATTTA AGGCAGCCGC
 1251 TAAAGATCTT TATATAAGAA GTACAGCTGA ACAAAGATG AACTTTGATG
 1301 TGCCTTGCAT GGAGCTCTTC CGTAGGTATC ATGAGGAGGT CAACAAGCCG
 1351 CTTCTTGAGT TGATGTACAA TTGTGCAAGAC AGTTATAGAG ATGCTAAGAA

-110-

```

1401 AAAGCTTTCGC TCTCTACGTC TTGATGAAAA AGAGTTATTA CAAAAAGAAA
1451 TCAAGAAAAGA GGAATTCTAT CAAAGAAC AACAAAGGCCA TGCGAGATAGA
1501 TCACGTCATA CTACGTATCA AAAGCTACGA ATTGCTGAAG AGCTTGCTCT
1551 TGAGCTGAAG AAGAAAATCT AA

```

- 5 The PSORT algorithm predicts cytoplasmic location (0.412).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 69A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 69B) and for FACS analysis.

These experiments show that cp6269 is a surface-exposed and immunoaccessible protein, and that it
10 is a useful immunogen. These properties are not evident from the sequence alone.

Example 70

The following *C.pneumoniae* protein (PID 4376270) was expressed <SEQ ID 139; cp6270>:

```

1 MKIPLRLFLLI SLVPTLSMSN LLGAATTEEL SASNSFDGTT STTSFSSKTS
51 SATDGTNYVF KDSVVIENVP KTGETQSTSC FKNDAAAGDL NFLGGGF SFT
101 FSNIDATTAS GAAIGSEAAN KVTVLSGFSA LSFLKSPAST VTNGLGAINV
151 KGNLSSLDDND KVLIQDNFST GDGGAINCAG SLKIANNKSL SFIGNSSSTR
201 GGAIHTKNLT LSSCGETLFQ GNTAPTAAGK GGAIAIAADSG TLSISGDSDG
251 IIFEGNTIGA TGTVSHSAID LGTSAKITAL RAAQGHTIYF YDPITVTGST
301 SVADALNIVS PDTGDNKEYT GTIVFSGEKL TEAEAKDEKN RTSKLLQNVA
351 FKNGTIVVLKQ DVVLSANGFS QDANSKLMID LGTSLVANTE SIELTNLEIN
401 IDSLRNKGKKI KLSAATAQKD IRIDRPVVLA ISDESFYQNG FLNEDHSYDG
451 ILELDAGKDI VISADSRSID AVQSPYGYQG KWTINWSTDD KKATVSWAKQ
501 SFNPTAEQEA PLVPNLLWGS FIDVRSFQNF IELGTEGAPY EKRFWVAGIS
551 NVLHRSGREN QRKFRHVSGG AVVGASTRMP GGDTLSLGFA QLFARDKDYF
601 MNTNFPAKTYA GSLRLQHDAS LYSVVSILLG EGGLREILLP YVSKTLPCSF
651 YGQLSYGHTD HRMKTESLPP PPPTLSTDHT SWGGYVWAGE LGTRVAVENT
701 SGRGFFQYEYI PFKVKQAVYA RQDSFVELGA ISRDFSDSHL YNLAIPLGIK
751 LEKRFAEQYY HVVAMYSPDV CRSNPKCTTT LLSNQGSWKT KGSNLARQAG
801 IVQASGFRSL GAAAELFGNF GFEWRGSSRS YNVDAGSKIK F*

```

- 30 A predicted signal peptide is highlighted.

The cp6270 nucleotide sequence <SEQ ID 140> is:

```

1 ATGAAGAGTTCA CACTCCGCTT TTTATTGATA TCATTTAGTAC CTACGCTTTC
51 TATGTCGAAT TTATTAGGAG CTGCTACTAC CGAAGAGTTA TCGGCTAGCA
101 ATAGCTTCGA TGGAACTACA TCAACAACAA GCTTTTCTAG TAAAACATCA
151 TCGGCTACAG ATGGCACCAA TTATGTTTT AAAGATTCTG TAGTTATAGA
201 AAATGTACCC AAAACAGGGG AAACCTCAGTC TACTAGTTGT TTTAAAAATG
251 ACGCTGCAGC TGGAGATCTA AATTCTTAG GAGGGGGATT TTCTTTACAA
301 TTTAGCAATA TCGATGCAAC CACGGCTCT GGAGCTGCTA TTGGAAGTGA
351 AGCAGCTAAAT AAGACAGTCA CGTTATCAGG ATTTTCGGCA CTTTCTTTTC
401 TAAATCCCCC AGCAAGTACA GTGACTAATG GATTGGGAGC TATCAATGTT
451 AAAGGGAAATT TAAGGCTATT GGATAATGAT AAGGTATTGA TTCAGGACAA
501 TTCTCAACA GGAGATGGCG GAGCAATTAA TTGTGCAAGGC TCCCTGAGA
551 TCGCAAAACAA TAAGTCCCT TCTTTTATTG GAAAATGTT TCACACACGT
601 GGGGGAGCGA TTCATACAA AAAACCTCACA CTATCTTCG TGGGGGAAAC
651 TCTATTTCAAG GGGAAATACAG CGCCTACGGC TGCTGGTAAA GGAGGTGCTA
701 TCGCGATTGTC AGACTCTGGC ACCCTATCCA TTTCTGGAGA CAGTGGCGAC
751 ATTATCTTTC AAGGCAATAC GATAGGAGCT ACAGGAACCG TCTCTCATAG
801 TGCTATTGAT TTAGGAACTA GCGCTAAGAT AACTGCGTTA CGTGCCTGGCG
851 AAGGACATAC GATATACATT TATGATCCGA TTACTGTAAC AGGATCGACA
901 TCTGTTGCTG ATGCTCTCAA TATTAATAGC CCTGATACTG GAGATAACAA
951 AGAGTATACG GGAACCATAG TCTTTCTGG AGAGAAGCTC ACGGAGGAG
1001 AAGCTAAAGA TGAGAAGAAC CGCACTTCTA AATTACTTCA AAATGTTGCT
1051 TTTAAAAATG GGACTGTAGT TTAAAAGGT GATGTCGTTT TAAGTGCAGA
1101 CGGTTTCTCT CAGGATGCAA ACTCTAAGTT GATTATGGAT TTAGGGACGT
1151 CGTTGGTTGC AAACACCGA AGTATCGAGT TAACGAATTG CGAAATTAAT
1201 ATAGACTCTC TCAGGAACGG GAAAAAGATA AAACTCAGTG CTGCCACAGC

```

1251 TCAGAAAAGAT ATTCGTATAG ATCGTCCTGT TGTACTGGCA ATTAGCGATG
 1301 AGAGTTTTTA TCAAAATGGC TTTTGAAATG AGGACCATTC CTATGATGGG
 1351 ATTCTTGAGT TAGATGCTGG GAAAGACATC GTGATTTCTG CAGATTCTCG
 1401 CAGTATAGAT GCTGTACAAT CTCGTTATGG CTATCAGGGA AAGTGGACGA
 1451 TCAATTGGTC TACTGATGAT AAGAAAGCTA CGGTTTCTG GGCGAAGCAG
 1501 AGTTTTAACCCACTGCA GCAGGAGGCT CCGTTAGTTC CTAATCTTCT
 1551 TTGGGGTCTT TTTATAGAT TTCGTTCCCT CCAGAATTTT ATAGAGCTAG
 1601 GTACTGAAGG TGCTCCTTAC GAAAAGAGAT TTTGGGTTGC AGGCATTTCC
 1651 AATGTTTGC ATAGGAGCGG TCGTGAATAA CAAAGGAAAT TCCGTCATGT
 1701 GAGTGGAGGT GCTGTAGTAG GTGCTAGCAC GAGGATGCCG GGTGGTGATA
 1751 CCTTGTCTCTT GGGTTTGCT CAGCTTTTG CGCGTGACAA AGACTACTTT
 1801 ATGAAATACCA ATTTGCAAA GACCTACGCA GGATCTTTAC GTTTGCAGCA
 1851 CGATGCTTCC CTATACCTG TGGTAGT CTTTTAGGA GAGGGAGGAC
 1901 TCCCGCAGAT CTCGTTGCCT TATGTTTCCA AGACTCTGCC GTGCTTTTC
 1951 TATGGGCAGC TTAGCTACGG CCATACGGAT CATGCATGA AGACCGAGTC
 2001 TCTACCCCCC CCCCCCCCCG CGCTCTCGAC GGATCATACT TCTTGGGGAG
 2051 GATATGTCTG GGCTGGAGAG CTGGGAACCTC GAGTTGCTGT TGAAAATACC
 2101 AGCCGCAGAG GATTTTCCA AGAGTACACT CCATTTGTAAG AAGTCCAAGC
 2151 TGTTTACGCT CGCGAACATA GCTTGTAGA ACTAGGAGCT ATCAGTCGTG
 2201 ATTTTATGTA TTCGATCTT TATAACCTT CGATTCCTCT TGGAAATCAAG
 2251 TTAGAGAAAC GGTGGCAGA GCAATATTAT CATGTTGTAG CGATGTATTC
 2301 TCCAGATGTT TGCGTAGTA ACCCCAAATG TACGACTACC CTACTTTCCA
 2351 ACCAAGGGAG TTGAAAGACC AAAGGTTCGA ACTTAGCAAG ACAGGCTGGT
 2401 ATTGTTCAAGG CCTCAGGTTT TCGATTTTG GGAGCTGCAG CAGAGCTTTT
 2451 CGGGAACTTT GGCTTGAAT GGCGGGGATC TTCTCGTAGC TATAATGTAG
 2501 ATGCGGGTAG CAAAATCAA TTTTAG

The PSORT algorithm predicts outer membrane (0.92).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 70A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot and for FACS analysis (Figure 70B).

The cp6270 protein was also identified in the 2D-PAGE experiment (Cpn0013).

These experiments show that cp6270 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 71

35 The following *C.pneumoniae* protein (PID 4376402) was expressed <SEQ ID 141; cp6402>:

1 MNVADLLSHL ETLLSSKIFQ DYGPNGLQVG DPQTPVKKIA VAVTADLETI
 51 KQAVAAEANV LIVHHGIFWK GMPYPITGMH HKRIQLLIEH NIQLIAYHLP
 101 LDAHPTLGNM WRVALDLNWH DLKPFGSLLP YLGVQGSFSP IDIDSFIDLL
 151 SQYYQAPLKG SALGGPSRVS SAALISGGAY RELSSAATSQ VDCFITGNFD
 201 EPAWSTALES NINFLAFGHT ATEKVGPKSL AEHLKSEFPI STTFIDTANP
 251 F*

The cp6402 nucleotide sequence <SEQ ID 142> is:

1 ATGAATGTTG CGGATTCCTT TTCTCATCTT GAGACTCTTC TCTCATCAAA
 51 AATATTTCAG GATTATGGAC CCAACGGACT TCAAGTTGGA GATCCCCAAA
 101 CTCCGGTAAA GAAAATCGCT GTTGCAGTTA CCGCAGATCT AGAAACCATA
 151 AAACAAGCTG TTGCGGCCGA AGCAAACGTT CTCATTGTAC ACCACGGAAT
 201 TTTTTGGAAA GGTATGCCCT ATCCATTAC CGGCATGATC CATAAGCGCA
 251 TCCAATTACT AATAGAACAC AATATCCAAC TCAATTGCCCA CCACCTTCCCT
 301 TTGGATGCTC ACCCTACCTT AGGAAATAAC TTCCCTCCCT TATTAGGAG
 351 AAATTGGCAT GACTTGAAGC CCTTGGTTTC TTCCCTCCCT TATTAGGAG
 401 TGCAAGGCTC TTCTCTCCCT ATCGATATAG ATTCTTTCAT TGACCTGTTA
 451 TCTCAATATT ACCAAGCTCC CCTAAAGGA TCTGCCTTGG GCGGCCCTC
 501 TAGAGTCTCC TCAGCAGCTC TGATCTCAGG AGGAGCTTAT AGAGAACTCT
 551 CTTCCGGCAGC CACGTCCCAA GTCGATTGCT TCATCACAGG AAATTTTGAT
 601 GAACCTGCAT GGTGACAGC TCTAGAAAGC AATATCAACT TCCTAGCATT
 651 TGGACATACA GCCACAGAAA AAGTAGGTCC AAAATCTCTT GCAGAGCATE

701 TAAAAAGCGA ATTTCCATT TCCACAAACCT TTATAGATAAC GGCCAACCCC
 751 TTCTAA

The PSORT algorithm predicts cytoplasmic (0.158).

5 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 71A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 71B) and for FACS analysis.

These experiments show that cp6402 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 72

10 The following *C.pneumoniae* protein (PID 4376520) was expressed <SEQ ID 143; cp6520>:

1 MKHYLSFSPS ADFFSKQGAI ETQVLFGERV LVKGSTCYAY SQLFHNELLW
 51 KPYPGHSFFS TLVPCTPEFH IHPNVSVVSV DAFLDPWGIP LPFGTLLHVN
 101 SQNTVIFPKD ILNHMNTIWG SGTPQCDPRH LRRLNYNFA ELLIKDADLL
 151 LNFPYVWGGR SVHESLEKPG VDCSGFINIL YQAQGYNVPR NAADQYADCH
 201 WISSFENLPS GGLIFLYPK EKRISHVMLK QDSSTLIHAS GGGKKVEYFI
 251 LEQDGKFLLDS TYLFFRNNQR GRAFFGIPRK RKAFL*

The cp6520 nucleotide sequence <SEQ ID 144> is:

20 1 ATGAAACACT ACCTATCATT TTCTCCTTCT GCTGATTTTT TCTCTAAACA
 51 GGGTGCTATT GAAACTCAAG TCCCTTTTGG AGAGCGCGTC TTAGTCAAAG
 101 GGAGCACCTG CTATGCATAT TCCCAATTAT TCCACAATGA GCTGTATGG
 151 AAGCCCTATC CAGGTCTAG CTTCTGTTCT ACCCTAGTCC CCTGCACTCC
 201 TGAATTTCAT ATCCATCCAA ATGTTTCTGT GGTTTCTGTG GATGCATT
 251 TAGATCCTTG GGGGATCCCT CTTCTTTTG GAACTTTACT CCATGTGAAT
 301 TCTCAAATA CCGTTATTTT CCCTAAGGAT ATTCTCAATC ATATGAACAC
 351 CATCTGGGGC TCCGGCACAC CTCAATGCAG TCCTAGACAT CTACGTCGTC
 401 TAAATTATAA CTTCTTGCT GAACTTTAA TTAAAGACCGC AGACCTTTTA
 451 CTGAACTTTC CCTATGTATG GGGAGGACGG TCTGTACACG AAAGTCTGGA
 501 AAAGCCGGGT GTTGATGTTT CGGGATTAT CAATATCCTT TACCAGGCAC
 551 AGGGATACAA CGTCCCTAGA AACGCTGCAG ATCAATATGC GGATTGTCAT
 601 TGGATCTCTA GCTTGAGAA CCTTCTTCT GGTGGGTTAA TATTTCTTTA
 651 CCCTAAAGAA GAAAAGCGTA TTTCTCATGT TATGTTGAAA CAGGATAGTT
 701 CCACCCCTCAT TCATGCTTCT GGTGGAGGGAA AAAAAGTGGAA GTATTTCATT
 751 TTAGAACAAAG ATGGGAAGTT TTTAGATTG ACTTATCTAT TTTTTAGAAA
 801 TAATCAGAGG GGACGGGCAT TTTTGGGAT CCCTAGAAA AGAAAAGCCT
 851 TTCTGTAA

The PSORT algorithm predicts cytoplasmic (0.265).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 72A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 72B) and for FACS analysis.

40 These experiments show that cp6520 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 73

The following *C.pneumoniae* protein (PID 4376567) was expressed <SEQ ID 145; cp6567>:

45 1 MTSPIPFQSS GDASFLAEQP QQLPSTSESQ LVTQLLTMMK HTQALSETVL
 51 QQQDRRLPTA SIILQVGGAP TGGAGAPFQP GPADDHHHPI PPPVVPQAIE
 101 TEITTIIRSEL QLMRSTLQQS TKGARTGVLV VTAILMTISL LAIIIIILAV
 151 LGFTGVLPQV ALLMQGETNL IWAMVSGSII CFIALIGTLG LILTNKNPL

201 PAS*

The cp6567 nucleotide sequence <SEQ ID 146> is:

```

5      1 ATGACCTCAC CGATCCCTT TCAGTCTAGT GGCGATGCCT CTTTCCTTGC
      51 CGAGCAGCCA CAGCAACTCC CGTCTACTTC TGAATCTCAG CTAGTAACTC
     101 AATTGCTAAC CATGATGAAG CATACTCAAG CATTATCCGA AACGGTTCTT
     151 CAACAACAA GCGATCGATT ACCAACCGCA TCTATTATCC TTCAAGTAGG
     201 AGGAGCTCTT ACAGGAGGAG CGGGTGCGCC TTTTCAACCA GGACGGGCAG
     251 ATGATCATCA TCATCCATA CGGCCGCCTG TTGTACCAGC TCAAATAGAA
     301 ACAGAAAATCA CCACTATAAG ATCCGAGTTA CAGCTCATGC GATCTACTCT
    10  351 ACAACAAAGC ACAAAAGGAG CTCGTACAGG AGTTCTAGTG GTTACTGCAA
     401 TCTTAAATGAC GATCTCCTTA TTGGCTATTAA TTATCATAAT ACTAGCTGTG
     451 CTTGGATTTA CGGGCGCTTT GCCTCAAGTA GCTTTATTGA TGCAAGGGTGA
     501 AACAAATCTG ATTGGGCTA TGGTGAGCGG TTCTATTATT TGCTTTATTG
    15  551 CGCTAATTGG AACTCTAGGA TTAATTAA CAAATAAGAA CACGCCTCTA
     601 CCGGCTTCTT AA

```

The PSORT algorithm predicts inner membrane (0.694).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 73A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 73B) and for FACS analysis.

- 20 These experiments show that cp6567 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 74

The following *C.pneumoniae* protein (PID 4376576) was expressed <SEQ ID 147; cp6576>:

```

25      1 MLIMRNKVL QISILALIQT PLTLFSTEKV KEGHVVVDSI TIITEGENAS
      51 NKHPLPKLKT RSGALFSQLD FDEDLRILAK EYDSVEPKVE FSEGKTNIAL
     101 HLIAKPSIRN IHISGNQVVP EHKLKTLQI YRNDLFEREK FLKGFLDDLRT
     151 YYLKRGYFAS SVDYSLEHNO EKGHIDVLIK INEGPCGKIK QLTFSGISRS
     201 EKSDIQEFTQ TKQHSTTSW FTGAGLYHPD IVEQDSLAIT NYLHNNGYAD
     251 ATVNSHYDLD DKGNILLYMD IDRGSRYTLG HVHIQGFELV PKRLIEKQSQ
     301 VGPNDLYCPD KIWGDGAHKIK QTYAKYGYIN TNVDVLFIPIH ATRPIYDVITY
     351 EVSEGPSPYKV GLIKITGNTH TKSDVILHET SLFPGDTFNR LKLEDTEQRLL
     401 RNTGYFQSVS VYTVRSQLDP MGNADQYRDI FVEVKETTTG NLGLFLGFSS
     451 LDNLFLGGIEL SESNFDFLFGA RNIFSKGFRK LRGGGEHLFL KANFGDKVTD
     501 YTLKWTKPHF LNTPWILGIE LDKSINRALS KDYAVQTYGG NVSTTYILNE
     551 HLKYGLFYRQ SQTSLHEKRK FLLGPNIIDSN KGFGVSAAGVN LNYDSVDSPR
     601 TPTTGIRGGV TFEVSGLGGT YHFTKLSLNS SIYRKLTTRKG ILKIKGEAQF
     651 IKFYSNTTAE GVPVUSERFFL GGETTVRGYK SFIIGPKYSA TEPQGGLSSL
     701 LISEEFQYPL IRQPNISAFV FLDSGFVGLQ EYKISLKDLR SSAGFGLRFD
     751 VMNNVFPVMLG FGWPFRPTET LNGEKIDVSQ RFFFALGGMF *

```

- 40 A predicted signal peptide is highlighted.

The cp6576 nucleotide sequence <SEQ ID 148> is:

```

45      1 ATGCTCATCA TGCGAAATAA AGTTATCTTG CAAATATCTA TTCTAGCGTT
      51 AATCCAAACCC CCTTTAACCTT TATTTCTAC TGAAAAAGTT AAAGAAGGCC
     101 ATGTGGTGGT AGACTCTATC ACAATCATAA CGGAAGGAGA AAATGCTTCA
     151 AATAAACATC CCTTACCAA ATTAAAGACC AGAAGTGGGG CTCCTTTTTTC
     201 TCAATTAGAT TTTGATGAAG ACTTGAGAAAT TCTAGCTAAA GAATACGACT
     251 CTGTTGAGCC TAAAGTAGAA TTTTCTGAAG GGAAAGCTAA CATAGCCCTT
     301 CACCTAATAG CTAAACCCCTC AATTGAAAT ATTCAATATCT CAGGAAATCA
     351 AGTCGTTCCCT GAACATAAAA TTCTTAAAC CCTACAAATT TACCGTAATG
     401 ATCTCTTGA ACGAGAAAAA TTCTTAAAGG GTCTTGATGA TCTAAGAACG
     451 TATTATCTCA AGCGAGGATA TTTCGCATCC AGTGTAGACT ACAGTCTGGA
     501 ACACAATCAA GAAAAGGTC ACATCGATGT TTTAATTAAA ATCAATGAAG
     551 GTCCCTGCAG GAAAATAAA CAGCTTACGT TCTCAGGAAT CTCTCGATCA
     601 GAAAATCAAG ATATCCAAGA ATTATTCAA ACCAACGAGC ACTCTACAAC

```

651 TACAAGTTGG TTTACTGGAG CTGGACTCTA TCACCCAGAT ATTGTTGAAC
 701 AAGATAGCTT GGCAATTACG AATTACCTAC ATAATAACGG GTACGCTGAT
 751 GCTATAGTCA ACTCTCACTA TGACCTTGAC GACAAAGGGA ATATTCCTCT
 801 TTACATGGAT ATTGATCGAG GGTGCGGATA TACCTTAGGA CACGTCCTA
 851 TCCAAGGGTT TGAGGTTTG CAAAAACGCC TTATAGAAA GCAATCCCAA
 901 GTCGGGCCCCA ATGATCTTAA TTGCCCGCGAT AAAATATGGG ATGGGGCTCA
 951 TAAGATCAA CAAACTTATG CAAAGTATGG CTACATCAAT ACCAATGTAG
 1001 ACGTTCTCTT CATCCCTCAC GCAACCCGCC CTATTTATGA TGTAACCTTAT
 1051 GAGGTAAAGTG AAGGGTCTCC TTATAAAGTT GGGTTAATTAA AAATTACTGG
 1101 GAATACCCAT ACAAAATCTG ACGTTTATTT ACACGAAACC AGTCTCTTCC
 1151 CAGGAGATAC ATTCAATCGC TTAAAGCTAG AAGATACTGA GCAACGTTA
 1201 AGAAAATACAG GCTACTTCA AAGCGTTAGT GTCTATACAG TTCTGTTCTCA
 1251 ACTTTGATCTT ATGGGCAATG CGGATCAATA CGGAGATATT TTTGTAGAAG
 1301 TCAAAAGAAC AACAAACAGGA AACTTAGGCT TATTCTTAGG ATTTAGTTCT
 1351 CTTGACAATC TTTTGAGG AATTGAACTA TCTGAAAGTA ATTTTGATCT
 1401 ATTTGGAGCT AGAAAATATAT TTCTAAAGG TTTCTGTTGT CTAAGAGGGCG
 1451 GTGGAGAAC TCTATCTTA AAAGCCAATC TCGGGGACAA AGTCACAGAC
 1501 TATACTTTGA ATGGGACAA ACCTCATTTT CTAAACACTC CTTGGATTTT
 1551 AGGAATTGAA TTAGATAAAT CAATTAACAG AGCATTATCT AAAGATTATG
 1601 CTGTCCAAAC CTATGGCGGG AACGTCAGCA CAACGTATAT CTTGAACGAA
 1651 CACCTGAAAT ACGGTCTATT TTATCGAGGA AGTCAAACGA GTTACATGA
 1701 AAAACGTAAG TTCCCTCTAG GGCCAAATAT AGACAGCAAT AAAGGATTG
 1751 TCTCTGCTGC AGGTGTCAACT TTGAAATTACG ATTCTGTAGA TAGTCCTAGA
 1801 ACTCCAACTA CAGGGATTCTG CGGGGGGGTG ACTTTTGAGG TTTCTGTTT
 1851 GGGAGGAAC TATCATTAA CAAAACCTC TTTAACACGC TCTATCTATA
 1901 GAAAACCTAC GCGTAAAGGT ATTTGAAAAA TCAAAGGGGA AGCTCAATT
 1951 ATTAAACCCCT ATAGCAATAC TACAGCTGAA GGAGTTCTG TCAGTGAGCG
 2001 CTTCTTCCTA GGTGGAGAGA CTACAGTTCG GGGATATAAA TCCTTTATTA
 2051 TCGGTCCAAA ATACTCTGCT ACAGAACCTC AGGGAGGACT CTCTTCGCTC
 2101 CTTATTTTCAG AAGAGTTCA ATACCTCTC ATCAGACAAAC CTAATATTAG
 2151 TGCCCTTTGTA TTCTTAGAGT CAGGTTTTGT CGGTTTACAA GAGTATAAGA
 2201 TTTCTGTTAAA AGATCTACGT AGTAGTGCTG GATTTGGTCT GCGCTTCGAT
 2251 GTAATGAATA ATGTTCTGT TATGTTAGGA TTTGGTTGGC CCTTCCGTCC
 2301 AACCGAGACT TTGAATGGAG AAAAAATTGA TGTATCTCAG CGATTCTTCT
 2351 TTGCTTTAGG GGGCATGTTC TAA

The PSORT algorithm predicts outer membrane (0.7658).

The protein was expressed in *E.coli* and purified as GST-fusion (Figure 74A), his-tag and his-tag/GST-fusion products. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 74B) and for FACS analysis (Figure 74C).

40 The cp6576 protein was also identified in the 2D-PAGE experiment (Cpn0300).

These experiments show that cp6576 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 75

The following *C.pneumoniae* protein (PID 4376607) was expressed <SEQ ID 149; cp6607>:

45 1 MNKRQKDKLK ICVIISTLIL VGIFARAPRG DTFKTFLKSE EAIYYSNQCN
 51 51 EDMRKILCDIA IEHADEEIFL RIYNLSEPKI QQLSLTRQAQAA KNKVTIYYQK
 101 101 FKIPQILKQAA SNVTLVEQPP AGRKLMHQKA LSIDKKDAWL GSANYTNLSL
 151 151 RLDNNNLILGM HSSELCDLII TNTSGDFSIK DQTGKYFVLP QDRKIAIQAV
 201 201 LEKIQTAQKTI IQVAMPALTH SEIIQALHQAA KQRIHVDII IDRSHSKLTF
 251 251 KQLRQLNINK DFVSINTAPC TLHHKPAVID NKTLLAGSIN WSKGRFSLND
 301 301 ESLIILENLTKQQNQKLRLMI WKDLAKHSEH PTVDEEKEI IEKSLPVEEQ
 351 351 EAA*

A predicted signal peptide is highlighted.

The cp6607 nucleotide sequence <SEQ ID 150> is:

5

```

1 ATGAATAAAA GACAAAAAGA TAAATTAAAA ATCTGTGTTA TTATTAGCAC
51 GTTGATTTTA GTAGGAATTG TTGCAAGAGC TCCTCGTGGT GACACTTTTA
101 AGACCTTTTT AAAGTCGAA GAAGCTATCA TCTACTCAA TCAATGCAAT
151 GAGGACATGC GTAAAATTCT ATGCGATGCT ATAGAACACG CTGATGAAGA
201 GATCTTCCTA CGTATTATA ACCTCTCAGA ACCCAAGATC CAACAGAGTT
251 TAACTCGACA AGCTCAAGCA AAAACAAAG TTACGATCTA CTATCAAAAAA
301 TTTAAATTG CCCAAATCTT AAAGCAAGCC AGCAATGTA CTTTAGTCGA
351 GCAACCTCCA GCAGGGCGTA AACTGATGCA TCAAAAAGCT CTTTCATAG
401 ATAAGAAAAGA TGCTTGGCTA GGATCTGCGA ACTACACCAA TCTTTCTCTA
451 CGTTTAGATA ATAATCTCAT TCTAGGAATG CATAGCTCGG AGCTCTGTGA
501 TCTCATTTCATA ACAAAACCTC CTGGAGACTT TTCTATAAAG GATCAAACAG
551 GAAAGTATTG TGTCTTCCT CAAGATCGTA AAAATGCAAT ACAAGCTGTA
601 CTCGAAAAAA TCCAGACAGC TCAGAAAACC ATCCAAGITG CTATGTTGC
651 TCTGACCCAC TCGGAGATT TAAGCAGCCTT ACATCAAGCA AAACAACGAG
701 GAATCCATGT AGATATTATC ATTGATAGAA GTCATAGCAA ACTTACTTTT
751 AAGCAATTAC GACAATTAAA TATCAATAAA GACTTTGTTT CTATAAATAC
801 CGCACCCTGT ACTCTTCACC ATAAGTTTGC AGTTATAGAT AATAAAACTC
851 TACTTGCAGG ATCTATAAAT TGGTCTAAAG GAAGATTCTC CTTAAATGAT
901 GAAAGCTTGA TCATACTGGA AAACCTGACC AAACAACAA ATCAGAAACT
951 TCGAATGATT TGAAAGATC TAGCTAAGCA TTCAGAACAT CCTACAGTAG
1001 ACGATGAAGA AAAAGAAATT ATAGAAAAAA GTCTTCCAGT AGAAGAGCAA
1051 GAAGCAGCGT GA

```

The PSORT algorithm predicts periplasmic (0.934).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 75A) and also as a
25 GST-fusion. The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 75B) and for FACS analysis.

These experiments show that cp6607 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 76

30 The following *C.pneumoniae* protein (PID 4376624) was expressed <SEQ ID 151; cp6624>:

35

```

1 MDAKMGYIFK VMRWIFCFVA CGITFGCTNS GFQNANSRPC ILSMNRMIHD
51 CVERVVGNRL ATAVLIKGSV DPHAYEMVKD DKDKIAGSAV IFCNGLGLEH
101 TLSLRKHLEN NPNSVVLGER LIARGAFVPL EEDGICDPHI WMDLSIWKEA
151 VIEITEVLLIE KFPEWSAEFK ANSEELVCEM SILDWSWAKQC LSTIPENLRY
201 LVSGHNAFSV FTRRYLATPE EVASGAWRSR CISPEGLSPE AQISVRDIMA
251 VVDYINEHDV SVVFPEDTLN QDALKKIVSS LKKSHLVRLA QKPLYSNDNV
301 DNYFSTFKHN VCLITEELGG VALEQQR*

```

The cp6624 nucleotide sequence <SEQ ID 152> is:

40

```

1 ATGGATGCCA AAATGGGATA TATATTTAAA GTGATGCGTT GGATTTCTG
51 TTTCTGGCA TGTGGTATAA CTTTTGGATG TACCAATTCT GGGTTTCAGA
101 ATGCAAATTG ACGTCCTTGT ATACTATCCA TGAATCGCAT GATTCTATGAT
151 TGTGTTGAAA GAGTCGTGGG GAATAGGCTT GCTACCGCTG TTTTGATCAA
201 AGGATCCTTA GACCCTCATG CGTATGAGAT GGTTAAAGGG GATAAGGACA
251 AGATTCGCTGG AAGTGGCGTA ATTTTTGTA ACGGCCTGGG TCTTGAGCAT
301 ACATTAAGTT TCGGGAAGCA TTAGAAAAT AATCCCAATA GTGTCAAGTT
351 AGGGGAGCCG TTGATAGCGC GTGGGGCCCT TGTCTCTCTA GAAGAAAGACG
401 GTATTTGCTTC TCCTCATATC TGGATGGATC TTTCTATTG GAAGGAAGCT
451 GTCATAGAAA TTACAGAAAGT TCTCATTGAA AAGTTCCCCTG AATGGTCTGC
501 TGAATTTAAA GCAAATAGTG AGGAACCTGT TTGTGAAATG TCTATTTAG
551 ATTCCTGGGC GAAACAAATGC TTGAGCACAA TTCCCTGAAAA TTTACGGTAT
601 CTTGTCTCAG GTCATAATGC GTTCAGTTAC TTTACACGTC GCTATTTAGC
651 TACTCCTGAA GAAAGTGGCTT CGGGAGCATG GAGGTCTCGT TGATTTCTC
701 CTGAGGGCTC ATCTCCAGAA GCTCAAATCA GTGTTCGTGA TATTATGGCG
751 GTTGTAGATT ATATTAATGCA GCATGATGTC AGTGTGGTTT TCCCTGAGGA
801 TACTCTGAAC CAAGATGGCT GTAAAAAAAT TGTCTCTCT CTTGAAGAAAA
851 GTCATTTAGT CGCTCTAGCT CAAAACCAT TGTATAGTGA TAATGTGGAC
901 GACAATTATT TTAGCACCTT TAAACATAAT GTCTGCCTTA TCACAGAAGA

```

-116-

951 ATTAGGAGGG GTGGCTCTTG AATGTCAAAG ATGA

The PSORT algorithm predicts inner membrane (0.168).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 76A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 76B) and for
5 FACS analysis.

The cp6624 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp6624 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 77

- 10 The following *C.pneumoniae* protein (PID 4376728) was expressed <SEQ ID 153; cp6728>:

```

1 MKSSVSWLFF SSIPLFSSL SIVAAEVTLDS SNNSYDGSMG TTFTVFSTTD
51 AAAGTTYSLL SDVSFQNAGA LGIPLASGCF LEAGGDLTQF GNQHALKFQF
101 INAGSSAGTV ASTSAADKNL LFNDFSRLSI ISCPSSLSP TGQCALKSVE
151 NLSLTGNSQI IFTQNFSSD GGVINTRKNFL LSGTSQFASF SRNQAFITGKQ
201 GGVVYATLTI TIENSPGIVS FSQNLAKGSG GALYSTDNCS ITDNFQVIFD
251 GNSAWEAAQA QGGAICCTT DKTVTLTGNK NLSFTNNNTAL TYGGAISGLK
301 VSISAGGPTL FQSNISGSSA QGQGGGAINI ASAGELALSA TSGDITFFNNN
351 QVTNGSTSTR NAINIIDTAK VTSIRAATGQ SIYFYDPITN PGTAASTDTL
401 NLNLADANSE IEYGGAIIVS GEKLSPTEKA IAANVTSTIR QPAVLARGDL
451 VL RDGVTVTF KDLTQSPGSR ILMDGGTTLS AKEANLSSLNG LAVNLSSLDG
501 TNKAALKTEA ADKNISLSSG IALIDTEGSF YEHNLKSAS TYPPLLELTTPA
551 GANGTITLGA LSTLTLQEPE THYGYQGNWQ LSWANATSSK IGSINWTRTG
601 YIPSPERKSN LPLNSLWGNF IDIRSINQLI ETKSSGEPEF RELWLSGIAN
651 FFYRDMSMPTR HGFRHISGGY ALGITATTPA EDQLTFAFCQ LFARDRNHIT
701 GKNHGDTYGA SLYFHHTTEGL FDIANFLWGK ATRAPWVLSE ISQIIPLSFD
751 AKFSYLHTDN HMKTYYTDNS IIKGSWRND A FCADLGASLP FVLSVPYLLK
801 EVEPFVKVQY IYAHQDFY RHAEGRAFKN SELINVEIPI GVTFERDSKS
851 EKGTYDLTLM YILDAYRRNP KCQTSLIASD ANWMIAGTNL ARQGFSVRAA
901 NHFQVNPHME IFGQFAFEVR SSSRNYNTNL GSKFCF*

```

- 30 The cp6728 nucleotide sequence <SEQ ID 154> is:

```

1 ATGAAGTCCT CTGTCCTCTTG GTTGTCTTT TCTTCATCC CGCTCTTTTC
51 ATCGCTCTCT ATAGTCGCGG CAGAGGTGAC CTTAGATAGC AGCAATAATA
101 GCTATGATGG ATCTAACCGA ACTACCTTC CCGTCTTTT CACTACGGAC
151 GCTGCTGCAG GAACTACCA TTCCTTACTT TCCGACGTAT CCTTTCAAAA
201 TGCAAGGGCT TTAGGAATT CCTTAGCCTC AGGATGCTTC CTAGAACCGG
251 GCGGCGATCT TACTTTCAA GGAATCACAC ATGCACTGAA GTTGCATTT
301 ATCAATGCGG GCTCTAGCGC TGGAACTGTA GCCAGTACCT CAGCAGCAGA
351 TAAGAATCTT CTCTTAAATG ATTTTCTAG ACTCTCTATT ATCTCTGTC
401 CCTCTCTTCT TCTCTCCCT ACTGGACAAT GTGCTTTAAA ATCTGTGGGG
451 AATCTATCTC TAACTGGCAA TTCCCAAATT ATATTTACTC AGAACTTCTC
501 GTCAGATAAC GGCAGGTGTTA TCAATACGAA AAACCTCTTA TTATCAGGGA
551 CATCTCAGTT TCGGAGCTTT TCGAGAACCA AGGCCCTTCAC AGGGAAGCAA
601 GGCAGGTGTTA TTTACGCTAC AGGAACATATA ACTATCGAGA ACAGCCCTGG
651 GATAGTTTC TTCTCTCAA ACCTAGCGAA AGGATCTGGC GGTGCTCTGT
701 ACAGCACTGA CAACTGTTCG ATTACAGATA ACTTTCAAGT GATCTTGAC
751 GGCAATAGTG CTTGGGAAGC CGCTCAAGCT CAGGGCGGGG CTATTGTTG
801 CACTACGACA GATAAAACAG TGACTCTTAC TGGAACAAA AACCTCTCTT
851 TCACAAATAA TACAGCATTG ACATATGGCG GAGCCATCTC TGGACTCAAG
901 GTCACTGTTT CCGCTGGAGG TCCTACTCTA TTTCAAAGTA ATATCTCAGG
951 AAGTAGCGCC GGTCAAGGGAG GAGGAGGAGC GATCAATATA GCATCTGCTG
1001 GGGAACTCGC TCTCTCTGCT ACTTCTGGAG ATATTTACCTT CAATAACAAAC
1051 CAAGTCACCA ACGGAAGCAC AAGTACAAGA AACGCAATAA ATATCATTGA
1101 TACCGCTAAA GTCACATCGA TACCGAGCTGC TACGGGGCAA TCTATCTATT
1151 TCTATGATCC CATCACAAAT CCAGGAACCG CAGCTCTAC CGACACATTG
1201 AACTTAAACT TAGCAGATGC GAACAGTGGAG ATCGAGTATG GGGGTGCGAT
1251 TGTCCTTTCT GGAGAAAAGC TTTCCTAC AGAAAAAGCA ATCGCTGCAA

```

1301 ACGTCACCTC TACTATCCGA CAACCTGCGAG TATTAGCGCG GGGAGATCTT
 1351 GTACTTCGTG ATGGAGTCAC CGTAACCTTC AAGGATCTGA CTCAAAGTCC
 1401 AGGATCCCAC ATCTTAATGG ATGGGGGGAC TACACTTAGT GCTAAAGAGG
 1451 CAAATCTTC GCTTAATGGC TTAGCAGTAA ATCTCTCCTC TTTAGATGGA
 5 1501 ACCAACAAAGG CAGCTTTAAA AACAGAAGCT GCAGATAAAA ATATCAGCCT
 1551 ATCGGGAACCG ATTGCCTTA TTGACACGGA AGGGTCATT TATGAGAAATC
 1601 ATAACCTAAA AAGTGCTAGT ACCTATCCTC TTCTTGAAC TACCACCGCA
 1651 GGAGCCAACG GAACGATTAC TCTGGGAGCT CTTTCTACCC TGACTCTTCA
 1701 AGAACCTGAA ACCCACTACG GGTATCAAGG AAACTGGCAG TTGTCCTGGG
 10 1751 CAAATGCAAC ATCCTCAAAA ATAGGAAGGC TCAACTGGAC CCGTACAGGA
 1801 TACATTCTCA GTCCTGAGAG AAAAGTAAT CTCCCTCTAA ATAGCTTATG
 1851 GGGAAACTTT ATAGATATAC GCTCGATCAA TCAGCTTATAA GAAACCAAGT
 1901 CCAGTGGGGA GCCTTTGAG CGTGAGCTAT GGCTTTCAGG AATTGCGAAT
 1951 TTCTTCTATA GAGATTCTAT GCCCACCCGC CATGGTTTCC GCCATATCAG
 15 2001 CGGGGGTTAT GCACCTAGGA TCACAGCAAC AACTCCGCC GAGGATCAGC
 2051 TTACTTTTGC CTTCTGCCAG CTCTTTGCTA GAGATCGCAA TCATATTACA
 2101 GTAAAGAACAC ACGGAGATAC TTACGGTGCC TCTTTGTATT TCCACCCATAC
 2151 AGAAAGGGCCTC TTCGACATCG CCAATTTCCT CTGGGGAAAA GCAACCCGAG
 2201 CTCCTGGGT GCTCTCTGAG ATCTCCCAGA TCATTCTTTC ATCGTTCGAT
 2251 GCTAAATTCA GTTATCTCCA TACAGACAAC CACATGAAGA CATATTATAC
 2301 CGATAACTCT ATCATCAAGG GTTCTTGGAG AAACGATGCC TTCTGTGCAG
 2351 ATCTTGGAGC TAGCCTGCCT TTTGTTATTTC CCGTTCGGTA TCTTCTGAAA
 2401 GAACTCGAAC CCTTTGTCAA AGTACAGTAT ATCTATGCGC ATCAGCAAGA
 2451 CTTCTACGAG CGTCATGCTG AAGGACGCGC TTTCAATAAA AGCGAGCTTA
 25 2501 TCAACGTAGA GATTCCATA GGCGTCACCT TCGAAAGAGA CTCAAAATCA
 2551 GAAAAGGGAA CTTACGGATCT TACTCTTATG TATATACTCG ATGCTTACCG
 2601 ACGCAATCCT AAATGTCAAA CTCCCTAAAT AGCTAGCGAT GCTAACTGGA
 2651 TGCCCATATGG TACCAACCTC GCACGACAAG GTTTTTCTGT TCGTGCTGCG
 30 2701 AACCCATTCTCC AAGTGAACCC CCACATGGAA ATCTTCGGTC AATTGCGCTTT
 2751 TGAAGTACGA AGTTCTTCAC GAAATTATAA TACAAACCTA GGCTCTAAC
 2801 TTTGTTCTCA G

The PSORT algorithm predicts inner membrane (0.187).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 77A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 35 77B) and for FACS analysis.

The cp6728 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp6728 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 78

40 The following *C.pneumoniae* protein (PID 4376847) was expressed <SEQ ID 155; cp6847>:

1 MFVKKLVRL CVVLLSLLPN VLFSSDLRLRE EGIKKMMDKL IEYHVDAQEV
 51 STDILSRSLSI SYIQSFDPHK SYLSNQEVAFL QLSPETKRR LLKNYKAGNF
 101 AIYRNINQLI HESILRARQW RNEWVKNPKE LVLEASSYQI SKQPMQWSKS
 151 LDEVKQRQRA LLLSYLSLHL AGASSSSRYEG KEEQLAALCL RQIENHENVY
 201 LGINDHGVAM DRDEEAQFPH IRVVKALAHNS LDAHTAYFSK DEALAMRIQL
 251 EKGMCIGIVVV LKEDIDGVVV REIIPGGPAA KSGDLQLGDI IYRVDGKDIE
 301 HLSFRGVLDL RRGHHGSTVV LDIHRGESDH TIALRREKIL LEDRRVDVSY
 351 EPYGDGVIGK VTLHSFYEGER NQVSSEQDLR RAIQGLKEKN LLGLVLIDIRE
 401 NTGGFLSQAI KVSGLFMTNG VVVVSRYADG TMKCYRTVSP KKFYDGPLAI
 451 LVSKSSASAA EIVAQLQDY GVALVVGDEQ TYKGKTIQHQ TITGDASQDD
 501 CFKVUTVGKYY SPSGKSTQLQ GVKSIDLIPS LYAEADRGER FLEHPLPADC
 551 CDNVLHDPLT DLDTQTRPWF QKYYLPNLQK QETLWREMLP QLTKNSEQRL
 601 SENSNFQAFL SQIKSSEKTD LSYGSNDLQL EESINILKDM ILLQQCRK*

A predicted signal peptide is highlighted.

55 The cp6847 nucleotide sequence <SEQ ID 156> is:

```

1 ATGTTCGTAA TGAAAAAACT TGTCCGTCTA TGCGTAGTTC TTCTTTCTTT
51 ACTTCCGAAT GTATTATTTT CTTCGGATCT TTTACGAGAA GAGGGCATCA
101 AAAAGATGAT GGACAAGCTG ATCGAGTATC ATGTCGATGC TCAAGAGGTT
151 TCTACGGATA TAATCTCGC TTCTTATCT AGTTACATTC AATCTTTGAA
201 CCCTCATAAA TCTTATCTTT CAACCCAAGA GGTTGCAGTT TTTCTACAGT
251 CTCCGGAAAC AAAGAAACGT CTCTTAAAGA ATTATAAGGC AGGCAACTTT
301 GCTATTTATC GCAACATCAA TCAATTAAATT CATGAGAGTA TTCTTCGTGC
351 CAGGCAGTGG AGAAACGAAT GGGTTAACAA TCCAAAAGAG CTTGTATTGG
401 AGGCATCCCTC ATATCAGATA TCGAAGCAAC CTATGCAATG GAGCAAATCT
451 TTAGACGAAG TGAAGCAGAG ACAACGCGCT CTACTCCTTT CCTATCTTTG
501 TTACATCTT GCTGGAGCTT CTTCCCTCG TTATGAGGGT AAAGAAGAGC
551 AGCITGCTGC TCCTGTCTA CGTCAAATCG AGAACCATGA GAATGTATAT
601 TTAGGTATCA ACAGATCATGG TGTGCTATG GATCGGGATG AAGAACGCTA
651 CCAATTCCAT ATCCGTGTT TAAAGCTTT AGCTCATAGC TTAGATGCAC
701 ATACGGCGTA TTTCAGTAAG GACGAAGCGT TGGCGATGCG AATCCAACTA
751 GAAAAAGGCA TGTTGCGAAT TGGTGTGTT CTGAAGGAAG ATATTGATGG
801 AGTTGTTGTT AGAGAAATCA TTCTGGGGG ACCTCGGCGT AAACTGGGG
851 ATCTTCAGCT TGGAGATCCT ATCTATCGGG TGGATGGCAA GGATATCGAG
901 CATCTTTCTT TCCCGGGTGT TTTAGATTGT TTACGTGGAG GTCATGGCTC
20 TACTGTAGTC TTAGATATCC ATCGTGGGG AAGCGATCAT ACGATGCCCT
1001 TGAGAAGGGG GAAAATCCTT TTAGAAGACC GTCGTGTGGA TGTTCCTAT
1051 GAGCCTTATG GAGATGGTGT GATGGAAA GTTACGTTAC ATTCTTTTTA
1101 TGAAGGAGAA AATCAGGTTT CTAGTGAACA AGATCTACGT CGAGCGATTC
1151 AGGGATTAAA GGAGAAGAAC CTTCTGGAT TAGTTTAGA TATCCGAGAA
25 1201 AATACGGGTG GATTTTATC TCAAGCGATC AAAGTTCTG GTTATTAT
1251 GACCAATGGC GTTGTGGTT TATCTCGCTA TGCTGATGGT ACCATGAAGT
1301 GCTACCGCAC AGTATCTCCT AAAAAATTCT ATGATGGTCC TTTGGCTATT
1351 TTAGTATCTA AAAGTTCGGC ATCAGCAGCG GAGATTGTTAG CACAAACTCT
1401 CCAAGATTAT GGAGTTGCTT TAGTTGTTGG AGATGAGCAAG ACCTATGGGA
30 1451 AGGAAGCAGT TCAGCATCAA ACAATTACTG GAGATGCCCT TCAGGACGAT
1501 TGTGATAATG TACTTCACGA TCCCTCTCACG GACTTGGATA CTCAAACACG
1551 TCCCTGGTTT CAAAAATACT ATCTTCCTAA TCTACAAAAG CAAGAGACTC
1601 AAGATCGTCT AGGAGAGCGT TTCTAGAGC ATCCCTTACC TGCAGATTGC
35 1651 TGTGATAATG TACTTCACGA TCCCTCTCACG GACTTGGATA CTCAAACACG
1701 TTTGGAGAGA GATGCTACCT CAGCTTACGA AAAACAGTGA GCAAAGGCTT
1751 TCTGAGAATT CGAATTTCAGG GCAGATTTTG TCGCAGATAA AATCATCTGA
1801 AAAACCGGAC CTATCTATG GTTCAATGA TTTCACAATTG GAAGAGTCGA
1851 TAAACATTT GAAGGACATG ATTTCATTAC AACAGTGTAG AAAATAA
1901

```

40 The PSORT algorithm predicts periplasmic (0.932).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 78A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 78B) and for FACS analysis.

These experiments show that cp6847 is a surface-exposed and immunoaccessible protein, and that it
45 is a useful immunogen. These properties are not evident from the sequence alone.

Example 79

The following *C.pneumoniae* protein (PID 4376969) was expressed <SEQ ID 157; cp6969>:

```

1 MRLFSLGTIY LFFSLALSSC CGYSILNSPY HLSSLGKSLL QERIFIAPIK
51 EDPHGQLCSA LTYELSKRSF AISGRSSCAG YTLKVELLNG IDKNIGFTYA
101 PNKLGDKTHR HFIVSNEGRL SLSAKVQLIN NDTQEVLIIDQ CVARESVDFD
151 FEPDLGTANA HEFALGQFEM HSEAIKSARR ILSIRLAETI AQQVYYDLF*

```

A predicted signal peptide is highlighted.

The cp6969 nucleotide sequence <SEQ ID 158> is:

```

55 1 ATGAGATTGT TTTCTTTAGG CACGATTTAT CTTTTTTTTT CTCTAGCACT
51 51 TTCGTCATGC TGTGGTTACT CTATTTAAA CAGCCCGTAT CACTTATCGT
101 101 CTTTAGGTAA GTCTTTATTA CAGGAAGAA TTTTCATTGC TCCCATAAAA

```

151 GAAGATCCTC ATGGTCAGCT CTGCTCAGCT CTAACTTATG AGCTTAGTAA
 201 GCGTTCTTT GCTATCTCTG GAAGGAGTTC TTGCGCAGGC TATACTCTTA
 251 AAGTAGAGCT TCTGAATGGT ATTGACAAGA ATATAGGTTT TACCTATGCC
 301 CCAAATAAAC TC GGAGATAA GACTCACAGG CATTITATAG TCTCTAATGA
 351 AGGCAGACTA TCACTATCTG CAAAAGTACA GCTTATCAAT AATGACACTC
 401 AAGAAGTCCT TATAGACCAA TGTTGCTC GAGAGTCTGT AGACTTTGAC
 451 TTGAGCCCTG ACTTAGGAAC AGCAAACGCT CATGAATTG CTTTAGGCCA
 501 ATTTGAAATG CATAGTGAAG CCATAAAAAG TGCTCGCCGT ATACTATCTA
 551 TACGCCCTAGC CGAGACGATT GCTCAACAGG TATACTATGA CCTTTTTGTA

10 The PSORT algorithm predicts inner membrane (0.126).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 79A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 79B) and for FACS analysis.

These experiments show that cp6969 is a surface-exposed and immunoaccessible protein, and that it 15 is a useful immunogen. These properties are not evident from the sequence alone.

Example 80

The following *C.pneumoniae* protein (PID 4377109) was expressed <SEQ ID 159; cp7109>:

1 MKKTCCQNYR SIGVVFSVVL FVLTTQTLFA GHFIDIGTSG LYSWARGVSG
 51 DGRVVVGYEC GNAFKYVDGE KFLLEGVLPR SEALVFKASY DGSVIIGISD
 101 QDPSCRAVKW VNGALVDLGI FSEGMQSFAE GVSSDGKTIV GCLYSDDTET
 151 NPAVKWDETG MVVLPNLPED RHSCAWDASE DGSVIVGDAM GSEEIAKAVY
 201 WKDGEQHLLS NIPGAKRSSA HAVSKDGFSI VGEFISEENE VHAFVYHNGV
 251 IKDIGTLGGD YSVATGVSRD GKIVVGHSTR TDGEYRAFKY VDGRMIDLGT
 301 LGGSASFAFG VSDDGKTIVG KFETELGECH AFIYLDD*

25 A predicted signal peptide is highlighted.

The cp7109 nucleotide sequence <SEQ ID 160> is:

1 ATGAAAAAGA CATGTTGCCA AAATTACAGA TCGATAGGGCG TTGTGTTCTC
 51 TGTGGTACTT TTCGITCTTA CAACACAGAC GCTGTTTGC A GGACATTITA
 101 TTGATATTGG AACTCTGGA TTATATTCTT GGGCTCGAGG TGTATCTGGA
 151 GATGGCCGGG TTGTCGTAGG TTATGAAGGT GGCAATGCAT TAAATATGT
 201 TGATGGTGAG AAATTCTGT TAGAAGGTTT GGTCCCGAGA TCCGAGGCCCT
 251 TGGTATTTAA AGCTCTTAT GATGGCTCTG TAATTATAGG AATCTCGGAT
 301 CAAGATCCGT CTTGCCGC TGTGAAGTGG GTAAACGGTG CACTTGTGA
 351 TCTT'GGAATA TTTTGCGAGG GAATGCAATC TTTTGCGAGG GGTGTTCCA
 401 GTGATGGAA GACGATGTGA GGGTGCCTAT ATAGTGTGAA TACAGAGACA
 451 AACTTTGCTG TGAAGTGGGA TGAAACAGGA ATGGTTGTT TCCCCTAACTT
 501 ACCAGAGAGAT CGACATCTT GCGCTTGGGA TGCCCTCTGAA GATGGCTCTG
 551 TGATTGTAGG GGACGCCATG GGTAGCGAGG AAATTGCCAA GGCAGTGTAC
 601 TGGAAAGGACG GTGAACAAACA TCTGCTTTCT AATATCCCGAG GAGCTAAAG
 651 ATCGTCAGCA CATGCAGTTT CAAAGATGG ATCTTTTATC GTAGGGAGT
 701 TCATCAGTGA AGAAAATGAA GTTCATGCCT TTGTTTATCA CAACGGTGT
 751 ATCAAAGATA TCGGGACTTT AGGAGGAGAT TACTCTGTAG CAACTGGAGT
 801 TTCTAGGGAT GGTAAGGTCA TCGTGGGTCA TTCTACAAGA ACAGATGGTG
 851 ATAACCGTGC ATTAAATAT GTGGATGGAA GAATGATAGA TTTGGGGACT
 901 TTAGGAGGTT CAGCATCTT TGCTTTGGT GTTTCTGACG ATGGCAAAAC
 951 AATCGTAGGA AAATTGAAA CAGAGCTAGG AGAATGTCA GCCTTTATCT
 1001 ACCTTGATGA TTAG

The PSORT algorithm predicts outer membrane (0.887).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 80A). The 50 recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 80B) and for FACS analysis.

-120-

These experiments show that cp7109 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 81

The following *C.pneumoniae* protein (PID 4377110) was expressed <SEQ ID 161; cp7110>:

```

5      1 MAAIKQILRS MLSQSSLWVMV LFSLYSLSGY CYVITDKPED DFHSSAVKW
      51 DHWGKTTLSR LSNKKASAKA VSGTGATTVG FIKDTWSRTV AVRWNWGTK
     101 ELPTSSWVKK SKATGIISSDG SIIAGIVENE LSQSFAVTWK NNEMYLLPST
     151 WAVQSKAYGI SSDGSVIVGS AKDAWSRTFA KVWTGHEAQV LPVGWAVKSV
    201 ANSVSANGSI IVGSVQDASG ILYAVKWEVN TITHLGTLLGG YSAIAKAVSN
    251 NGKVIVGRSE TYGYEVHAF C HKNGVMSDLG TLGGSYSAAK GVSATGKIV
    301 GMSTTANGKL HAFKYVGGRM IDLGEYSWKE ACANAVSIDG EIIVGVQSE*

```

A predicted signal peptide is highlighted.

The cp7110 nucleotide sequence <SEQ ID 162> is:

```

15     1 ATGGCAGCTA TAAAACAAAT TTTACGTTCT ATGCTATCTC AGAGTAGCTT
      51 ATGGATGGTC CTATTTCTAT TATATTCTCT ATCTGGTTAT TGCTATGTAA
     101 TTACAGACAA ACCAGAACAT GACTTCCATT CTTCATCCGC AGTAAAATGG
     151 GATCATTGGG GAAAGACAAAC TCTCTCAAGA TTATCAAATA AAAAAGCCTC
     201 TGCAAAAGCT GTTTCAGGAA CTGGTGCCTAC AACTGTCGGC TTTTATAAAG
     251 ACACATTGGTC TCGAACATAC GCAGTAAGAT GGAATTATTTG GGGGACCAAA
    301 GAACTCCCTA CCAGCTCATG GGTAAAAAAA TCAAAAGCAA CAGGAATCTC
    351 CTCCTGATGGG TCTATAATCG CGGGGATTGT CGAGAAATGAG CTTTCTCAAA
    401 GTTTCCAGGT CACATGGAAA AACAAATGAAA TGTATTTGCT CCCTTCCACA
    451 TGCCCAGTGC AATCTAAAGC GTATGGAATT TCTTCTGATG GCTCTGTAT
    501 TGTAGGGAGT GCTAAGGTG CTTGGTCGCG AACTTTCGCT GTGAAGTGG
    551 CGGGCACACGA GGCTCAGGTG TTACCAAGTAG GCTGGGCTGT CAAATCTGTA
    601 GCGAATTCTG TATCTGCCAA TGGATCTATA ATTGTAGGGT CTGTACAAGA
    651 CGCCTCTGGA ATTCTTATG CTGTAAAGTG GGAAGGGAAC ACTATTACAC
    701 ATCTAGGAAC TTTAGGAGGC TATTCTGCCA TTGCAAAAGC TGTATCCAAT
    751 AATGGCAAGG TCATTGTAGG GAGATCCGAA ACATATTATG GAGAGGTCCA
    801 TGCTTTCTGT CATAAGAATG GCGTCATGTC AGACCTCGGC ACCCTCGGAG
    851 GATCTTATTC TGCAGCTAAG GGAGTCTCTG CAACTGGAAA AGTTATTTGTC
    901 GGTATGTCCA CAACAGCAAA TGGGAAATTG CATGCCTTTA AATATGTCGG
    951 TGGAAGAATG ATCGACTTAG GAGAGTATAG CTGGAAAGAA GCCTGTCAA
   1001 ACGCTGTTTC TATTGATGGA GAAATTATTG TTGGAGTCCA ATCAGAATAA

```

35 The PSORT algorithm predicts outer membrane (0.827).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 81A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 81B) and for FACS analysis.

40 These experiments show that cp7110 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Figure 191 shows a schematic representation of the structural relationships between cp7105, cp7106, cp7107, cp7108, cp7109 and cp7110, each of which is identified herein. These six proteins may be grouped in a new family of related outer membrane-associated proteins. These proteins have a repeat structure in common (cf. the pmp family).

45 Example 82

The following *C.pneumoniae* protein (PID 4377127) was expressed <SEQ ID 163; cp7127>:

```

1 MVFFRNSLLH LVALSGMLCC SSGVALTIAE KMASLEHSGR GADDYEGMAS

```

51 FNANMREYSL QLSKLYEEAR KLRASGTEDE ALWKDLIRRI GEVRGYLREI
 101 EELWAAEIRE KGGNLEDYAL WNHPETTIYN LVTDYGTEDS IYLIPIQEIGA
 151 IKIATLSKFV VPKESFEDCL TQILSRLGIG VRQVNSWIKE LYMMRKEGCS
 201 VAGVFSSRKD LEALPETAYI GFVLNSNVDA HTNQHVLKLF INPETHVDV
 251 IAGRIVWIFGS AGEVGELLKI YNFVQSESIR QEYRVIPLTK IDPGEMTSIL
 301 NAAFREDLTK DVSEESLGLR VVPLQYQGRS LFLSGTAALV QQALTLIREL
 351 EEEGIENPTDK TVFWNVKHS DPQELAALLS QVHDVFSGEN KASVGAADGC
 401 GSQNLNASIQI DTTVSSSAKD GSVKYGNFIA DSKTGTLLMV VEKEVLPRIQ
 451 MLLKKLDVDPK KMVRIEVLLF ERKLAHEQKS GLNLLRLGEE VCKKGCPSPV
 501 SWAGGTGILE FLFKGSTGSS IVPGYDLAYQ FLMAQEDVRI NASPSVVTMN
 551 QTPARIAVVD EMSIAVSSDK DKAQYNRAQY GIMIKMLPVI NVGEEDGKSY
 601 ITLETDITFD TTGKNHDDR P DVTRRNITNK VRIADGETVI IGGLRCKQMS
 651 DSHDGIPFLG DIPGIGKLFG MSSTSDSLTE MFVFITPKIL ENPVEQQERK
 701 EEEALLSSRPG EREYYQALA ASEAAARAHH KKLEMFPASG VSLSQVERQE
 751 YDGC*

A predicted signal peptide is highlighted.

The cp7127 nucleotide sequence <SEQ ID 164> is:

1 ATGGTTTTTT TCCGTAATT CTTACTGCAT TTAGTTGCC TATCCGGAAT
 51 GCTCTGTTGT TCTTCTGGAG TGGCTTTAAC GATAGCCGAG AAGATGGCTT
 101 CTTTAGACCA CTCGGGGAGA GGAGCAGACG ATTATGAGGG GATGGCTTCG
 151 TTTAATGCCA ATATGGAGGA GTATAGCCTT CAGCTGAGCA AGTTGTTATGA
 201 GGAAGCACGA AAGCTACCGC CTTCTGGAAC TGAGGATGAA GCTCTGTGGA
 251 AGGACTTAAAT TCAGACGGATT GGTGAGGTGC GAGGCTATCT TCGAGAGATC
 301 GAGGAGCTTT GGGCTGCAGA AATTCGTGAG AAAGGGGCA ATCTCGAGGA
 351 CTACGCCCTC TCCAATCACC CAGAGACTAC GATTTACAAT CTTGTTACCG
 401 ATTAACGGAA CGAAGACTCT ATTATTTGTA TTCCCTCAAGA AATCGGAGCG
 451 ATTTAAATTCG CAACCTATACG GAAATTGTA GTTCCCTAAAG AGTCTTCGCA
 501 AGACTGTCTC ACTCAGATCC TATCTCGCTT AGGTATTGGC GTGCGTCAGG
 551 TCAATTCTTG GATTAAGGAA CTTTATATGA TGCGTAAGGA GGGCTGCAGT
 601 GTTGTGGAG TTTTTCTC CAGAAAAGAT TTAGAGGCC TCCCAGAAC
 651 AGCCTATATT GGTTTGTAT TGAATTGAA CGTAGATGCG CATAACAAATC
 701 AACATGTCTT AAAAAGTTT ATTAAACCTG AAACAACGCA TGTAGATGTG
 751 ATTGCAAGGAC GTGTGTGGAT TTTTGGTTCT GCAGGGAAAG TCGGCGAGCT
 801 TCTCGAAGATT TATAATTG TGCACTCGGA GAGCATACCGT CAAGAGTATC
 851 GGGTGATTCC CTTAACTAAG ATCGCATCCAG GGGAGATGAT TTCCATTCTC
 901 AACGCAGCAT TTCGTGAGGA TCTGACTAAA GATGTTACTG AAGAATCTT
 951 AGGCCTTCGTT GTAGTCCCTT TACAGTATCA AGGGCGTTG TTGTTTTAA
 1001 GTGGAACCGC GGCCTTAGTG CAGCAAGCGC TGACTCTCAT TCGAGAGCTT
 1051 GAAGAAGGGA TTGAGAACCC TACCGATAAA ACAGTATTTC GGTATAACGT
 1101 CAAGCACTCC GATCCCCAAG AGTGGCGGGC ATTGCTTTC CAAGTCCATG
 1151 ATGCTCTTC TGGCGAGAAT AAGGGAGTGC TGCGAGCTGC AGATGGATGT
 1201 GGGTCGCAAT TAAATGCCCTC GATCCAAATT GATACTACAG TAAGTCTTC
 1251 TGCGAAAGAT GGCTCAGTGA AGTACGGAAA CTTCATCGC GATTCTAAGA
 1301 CAGGAACCTC GATTATGGT GTTGAGAAAG AAGTTCTTC ACgtATTTCAG
 1351 ATGCTACTTA AGAAACTAGA TGTCCCTAA AAGATGGTCC GTATCGAGGT
 1401 1451 GGTGTTATTG GAAAGAAAAT TGGCACATGA CGAGAAATCT GGGTTAAATC
 1451 TTCTACGTCT TGTTGAGGAA GTTTGTAAAA AGGGTGCAG TCCTCTGTG
 1501 TCTTGGGCCG GGGGTACTGG CATACTAGAA TTTTTATTTA AAGGAAGTAC
 1551 GGGATCTTCG ATAGTCCCTG GTTATGATCT CGCCTATCAA TTTTTAATGG
 1601 CTCAAGAGGA CGTTCGGATT AATGCGAGTC CTTCTGTAGT TACTATGAAC
 1651 CAAACCCCCAG CACGGATTGC TGTGTTGAT GAAATGTCAA TAGCGGTGTC
 1701 TTCAGATAAA GATAAACGCG AATACAATCG TGCCCACTAC GGTATCATGA
 1751 TAAAAATGCT CCCCGTAATT AATGTTGGAG AGGAAGACGG AAAAAGTTAC
 1801 ATTACTTTAG AGACAGACAT CACCTTTGAT ACTACGGGAA AAAATCATGA
 1851 TGATCGTCTC GATGTTACAA GGCGTAATAT TACTAATAAG GTGCGCATTTG
 1901 CTGACGGAGA GACTGTGATT ATTGGAGGTT TGCGTTGCAA ACAGATGTCA
 1951 GATTCTCATG ATGGCATTCC TTTCCCTGGA GACATTCTG GTATAGGGAA
 2001 GTTATTGGA ATGAGTTCCA CATCAGACAG TCTCACGGAG ATGTTGTAT
 2051 TTATCACTCC GAAGATCCCTA GAAAATCCTG TAGAGCAACA AGAACGTAAA
 2101 GAAGAAGCTT TACTCTCTTC GCGCCCTGGA GAGAGAGAAG AATACTATCA
 2151 GGCTTAGCA GCTAGTGAGG CTGAGCAGC AGCACCTCAT AAAAATTAG
 2201 AGATGTTCCC GGCATCAGGA GTATTTTAT CTCAGGTAGA GAGGCAAGAA
 2251 TACGATGGCT GCTAG

The PSORT algorithm predicts periplasmic (0.920).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 82A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 82B) and for FACS analysis.

These experiments show that cp7127 is a surface-exposed and immunoaccessible protein, and that it
5 is a useful immunogen. These properties are not evident from the sequence alone.

Example 83

The following *C.pneumoniae* protein (PID 4377133) was expressed <SEQ ID 165; cp7133>:

```

1  MQPFIFTLLC LTSLVSLVAF DAANARKRCA CAQTIERGEN FFSIKRSACA
51 EIEYQEKSRH ASAIEIRISKD KGKVTPKQIA KVATKKQRY RLLQVPPFSRP
101 PNNSRVYNLYA LLSEPPACYS DTASWYAIFI RLLRRAYVDT GNVPPGSEVA
151 IANALISNKQ EILERGAQLG PDVIETLTP EEQAEIFYKM LKGSSNSQSL
201 LNPLHYEEKS LGHCKLNLIF MDPLLAEAVL DHPDAYRETS LLRDGIWEAV
251 KRQEHAIQEH GQAAALELFK TRTDFRLELR DKMQLLLSRY DLLPLLNKKM
301 FDYTLGSAGD YLFLVDPDTK AISRCRCPSK SIKL

```

15 A predicted signal peptide is highlighted.

The cp7133 nucleotide sequence <SEQ ID 166> is:

```

1  ATGCAACCTT TTATCTTTAC TTTACTGTGC TTGACATCTT TGGTTCTTT
51 AGTCGCCCTT GATGCTCGGA ATGCTCGTAA ACAGTTGTGCC TGTCCTCAA
101 CTATAGAACG TGGAGAGAAC TTCTTTCCA TAAAACGCTC TGCTTGCGCT
151 GAAATCGAAT ATCAAGAAAA ATCTCGCCAC GCCTCAGCAA TTGAAAGAAT
201 CTCAAAGAT AAAGGCAAAG TCACCTCCAA GCAGATTGCG AAAGTAGCTA
251 CTAAGAAAAAA GCAAAGATAC CGTTTATTGC AGGTTCCCTT TTCAAGGCCT
301 CCGAATAACT CAAGGTATAA CCTCTATGCT TTGCTTAGTG AACCTCCCGA
351 ATGCTATAGC GATACAGCAT CATGGTATGC TATTTTTATT CGGTTACTTC
401 GACGTGCTTA TGTAGACACG GGAATGTAC CTCCCTGGATC TGAGTATGCC
451 ATCGCTTAATG CTTTGATAAG TAACAAACAA GAGATTTAG AGAGGGGAGC
501 GCAGCTTGGC CCCGATGTTA TTGAAACTCT AACATTGCTC GAGGAACAAG
551 CCGAGATTTT TTATAAAATG CTCAAAGGGT CGTCAACT TCAGTCGCTA
601 CTGAATTTTC TGCATTATGA AGAGAAAAGC TTAGGCCACT GTAAGCTAAA
651 TCTGATCTTC ATGGATCCCC TACTGTTAGA AGCTGTTCTA GATCATCCG
701 ATGCTTATAG GGAAACGTCG CTCCTGCGCG ATGGCATTTG GGAAGCGGTG
751 AAGCGTCAAG AACATGCCAT CCAAGAACAT GGCCAGGCAG CTGCTTGGA
801 GCTTTTTAAA ACACGCACCG ACTTCCGCCT GGAGCTGCGA GATAAGATGC
851 AGTTACTTCT AAGTCGATAC GATTGCTCC CCTTATTAAA TAAAAAAATG
901 TTGCGACTACA CCTTAGGAAG TGCCGGAGAT TACTTATTT TGTTAGACCC
951 AGATACTAAG GCAATTCTC GATGTCGCTG CCCTTCAAAG AGTATTAAAT
1001 TATAA

```

The PSORT algorithm predicts outer membrane (0.92).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 83A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 83B) and for FACS analysis.

These experiments show that cp7133 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 84

45 The following *C.pneumoniae* protein (PID 4377222) was expressed <SEQ ID 167; cp7222>:

```

1  MNRRDMVITA VVVNAILLLVA LFVTSKRIGV KDVDEGFRNF ASSKVTOAVV
51 SEEKVIEKPV VAEVPSRPIA KETLAAQFIE SKPVIVTPP VPVVSETPEV

```

-123-

```

101 PTVAVPPQPV RETVKEEQAP YATVVVKKGD FLERIARANH TTVAKLMQIN
151 DLTTTQLKIG QVIKVPTSQD VSNEKTPQTQ TANPENYYIV QEGDSPWTIA
201 LRNHIRLDDL LKMNDLDEYK ARRLKPGDQL RIR*

```

A predicted signal peptide is highlighted.

- 5 The cp7222 nucleotide sequence <SEQ ID 168> is:

```

1 ATGAATCGTA GAGACATGGT AATAAACAGCT GTCTGTAGTGA ATGCTATATT
51 GCTTGTGGCT CTTTTCTGTC CATCAAAGCG TATTGGCGTC AAGGACTATG
101 ACGAGGGATT CGCTAAATTT CTGCTTAGCA AGGTTACACA AGCAGTAGTT
151 TCAGAAGAAA AAGTCATAGA AAAGCCTGTA GTCGCAGAAG TGCGTAGCCG
10 TCCTATCGCT AAAGAGACTC TAGCTGCACA GTTATTGAA AGTAAGCCGG
201 TTATTGTAAC CACACCACCC GTGCCCTGTT TTAGCGAAAC CCCAGAAGTG
251 CCTACTGTGG CAGTTCCGCC TCAGCCTGTT CGTGAGACAG TAAAAGAGGA
301 ACAAGCTCT TATGCTACTG TTGCTAGTG AAAAGGAGAT TTCTCGAAC
351 GCATTGCGAG AGCAAAATCAT ACTACCGTTG CAAATTGAT GCAGATCAAT
401 GATCTTACCA CCACCCAACT TAAATTGGT CAGGTCAATCA AAGTCCTAC
451 GTCTCAAGAT GTCAGCAACG AAAAAACTCC TCAAACACAG ACCGCAAACC
501 CTGAAAATTA TTATATCGTC CAAGAAGGGG ATAGCCCGTG GACAATAGCA
551 TTGCGTAACC ATATTGATT GGATGATTG CTAAAATGA ATGATCTCGA
601 TGAATATAAA GCCCGCGCC TTAAGCCTGG AGATCAGTTG CGCATACTGTT
20 651 701 GA

```

The PSORT algorithm predicts periplasmic (0.935).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 84A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 84B) and for FACS analysis.

- 25 These experiments show that cp7222 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 85

The following *C.pneumoniae* protein (PID 4377225) was expressed <SEQ ID 169; cp7225>:

```

30 1 MKGTPQYHFI GIGGIGMSAL AHILLDRGYE VSGSDLYESY TIESLKAKGA
51 RCFSGHDSSH VPHDAVVVYS SSIAPDNVEY LTAIQRSSRL LHRAELLSQL
101 MEGYESILVS GSHGKTGTSS LIRAIQFQEAQ KDPSYAIGGL AANCLMNGYSG
151 SSKIFVAEAD ESDGSLKHYT PRAVVITNID NEHLNNYAGN LDNLVQVIQD
201 FSRKVTDLNK VFYNGDCPIL KGNVQGISYG YSPECQLHIV SYNQKAWQSH
251 FSFTFLCQEY QDIELNLPGQ HNAANAAAAC GVALTFGIDI NIIRKALKKF
301 SGVHRRLERK NISESFLFLE DYAHHPVEVA HTLRSVRDAV GLRRVIAIFQ
351 PHRFPSRLEEC LQTFPKAFQE ADEVILTDVY SAGESPRESI ILSDLAEQIR
401 KSSYVHCCVV PHGDIVDYL R NYIRIHDCVCV SLGAGNITYI GEALKDFNPK
451 KLSIGLVCGG KSCEHDISLL SAQHVKSYIS PEFYDVSYFI INRQGLWRTG
501 KDFPHLIEET QGDSPLSSEI ASALAKVDCL FPVLHGPFGE DGTIQGFFE
551 LGKPYAGPSL SLAATAMDKL LTKRIASAVG VPVVVPYQPLN LCFWKRNPEL
601 CIQNLIETT FPMIVKTAHL GSSIGIFLVR DKEELQEKIS EAFLYDTDVF
651 VEEESRLGSRE IEVSCIGHSS SWYCMAGPNE RCGASGFIDY QEKYGFDGID
701 CAKISFDLQL SQESLDCVRE LAERVYRAMQ GKGSARIDFF LDEEGNYWLS
751 EVNPIPGMTA ASPFLQAFVH AGWTQEIQIVD HFIIDALHKF DKQQTIEQAF
801 TKEQDLVKR*

```

The cp7225 nucleotide sequence <SEQ ID 170> is:

```

50 1 ATGAAGGGAA CTCCTCAGTA TCATTTTATC GGTATCGGTG GTATAGGAAT
51 GAGGCCCTTA GCTCATATTG TGCTTGATCG TGGCTATGAG GTCTCTGGAA
101 GCGACTTATA TGAAAGCTAT ACGATCGAAA GCCTGAAAGC TAAAGGTGCG
151 AGGTGTTCTC CAGGCCATGA TTCTCTCCATG GTTCCTCATG ATGCCCTCGT
201 TGTTTATAGC TCAAGTATAG CCCCTGATAA TGTTAGAGTAT CTTACCGCTA
251 TTCAAAGATC ATCACGTCTT CTTCTAGAG CAGAGCTCTT GAGTCAGCTT
301 ATGGAGGGTT ATGAAAGCAT TCTGGTTCA GGAAGCCATG GGAAGACAGG
351 GACCTCATCT CTAATTCGAG CGATTTCCA GGAAGCTCAG AAAGATCCCT

```

-124-

401 CCTATGCTAT TGGAGGACTC GCTGAAACT GCCTGAATGG GTATTCTGGA
 451 TCATCGAAAA TCTTCGTTGC CGAAGCCGAT GAAAGTGTG GGTCTTTAAA
 501 GCACTACACT CCCCGTGCAG TAGTCATTAC AAATATAGAT AATGAACATT
 551 TGAATAATTAA CGCTGGAAAT CTGATAACC TGTTCTATA ACGGGGATTG
 601 TTCTCTAGAA AAGTAACAGA TCTCAATAAG GTATTCTATA ACGGGGATTG
 651 TCCTATTGAA AAAGGAAATG TCCAAGGGAT TTCTTATGGA TATTCAACAG
 701 AATGTCAATT GCATATCGTT CCCTATAATC AAAAGGCATG GCAATCTCAC
 751 TTTTCCTTTA CTTTTTAGG CCAGGAGTAT CAAGACATG AGCTCAATCT
 801 CCCTGGACAA CATAACGCTG CAAATGCAGC AGCAGCCTGT GGAGTTGCTC
 851 TTACCTTTGG CATAGACATA AACATCATTC GAAAAGCTCT CAAAAAAATTC
 901 TCGGGAGTTC ATCGACGTCT AGAAAGAAAA AATATATTCG AAAGCTTTCT
 951 TTCTCTAGAA GATTATGCTC ATCATCTGT AGAGGTTGCA CATAACCTGC
 1001 GCTCTGTGCG TGATGCTGTG GGTGCGAA GAGTCATCGC AATTTTCAA
 1051 CCACATCGAT TCTCTCGTT AGAACAGTGC TTACAAACCT TCCCCAAAGC
 1101 TTTCCAAGAA GCTGATGAAG TCATACTTAC AGATGTCTAT AGTGCCGGAG
 1151 AAAGTCCTAG AGAGTCATAC ATTCTTCCG ACCTTGCAGA ACAGATTCTG
 1201 AAAGTCCTCTT ATGTCATTG TTGTTATGTT CCCCATGGAG ACATCGTACA
 1251 TTATCTACCA AACTACATTC GCATTCTGTA TGTCGTGTT TCTCTAGGAG
 1301 CTGGAAATAT CTATACTATT GGAGAGGCTT TAAAAGACTT TAACCCCTAAA
 1351 AAATTATCCA TAGGACTCGT CTGTGGAGGG AAATCTGCG AACACGATAT
 1401 TTCTCTACTT TCTGCTCAAC ATGTCCTAA ATATATTCT CCTGAATTCT
 1451 ATGATGTGAG TTACTTCATC ATAAATCGTC AGGGCTTATG GAGAACAGGA
 1501 AAGGATTTTC CTCATCTTAT TGAAGAGACT CAAGGGGATT CGCCACTTTC
 1551 TTCTGAAATC GCTTCAGCCT TAGCAAAAGT CGACTGTTTG TTTCCCGTGC
 1601 TCCATGGCCC ATTGGAGAG GATGGTACGA TCCAGGGATT TTTGAAATC
 1651 TTAGGAAAC CTTATGCCG ACCCTCACTA TCTTTAGCAG CAACTGCAAT
 1701 GGATAAGCTG TAAACAAAAC GAATTGCATC AGCAGTGGGT GTTCCGTAG
 1751 TCCCTTACCA ACCTTTAAAT CTCTGTTCTT GGAAACGCAA TCCAGAACTA
 1801 TGTATTTCAGA ATCTTATAGA GACATTTCT TTCCCTATGA TTGTAAAAAC
 1851 TGCACATTG GGATCTAGTA TTGGGATATT TTAGTCCGT GATAAAGAGG
 1901 AATTACAAAGA AAAGATCTCA GAAGCATTTG TATATGACAC GGATGTGTTT
 1951 GTGGAGGAA GTCGCTTAGG GTCTCGTGAATCAGAAGTGT CCTGTATCGG
 2001 CCATTCTCT AGCTGGTATT GTATGGCAGG GCCTAATGAA CGCTGTGGTG
 2051 CTAGTGGTT TATTGATTAT CAAGAGAAAT ATGGATTGA TGGCATAGAT
 2101 TGCGCAAAGA TCTCTTTGA TTACAGCTC TCACAAGAAT CTTTAGATTG
 2151 TGTTAGAGA CTTGCAGAGC GTGCTACCG AGCAATGCAA GGAAAAGGTT
 2201 CAGCTCGAAT AGATTTTTC TTGGATGAAAG AGGGGAATTAA TTGGTTGTCA
 2251 GAGGTCAATC CTATTCAGG AATGACAGCA GCTAGCCCAT TTTTACAAGC
 2301 TTTTGTTCAC GCAGGATGGA CGCAAGAACAA AATTGTAGAT CACTTTATTA
 2351 TAGATGCTCT ACATAAGTTT GATAAGCAGC AGACTATCGA ACAGGCATTC
 2401 ACTAAAGAAC AAGATTAGT TAAAGATAA

The PSORT algorithm predicts inner membrane (0.16).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 85A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 85B) and for 45 FACS analysis.

These experiments show that cp7225 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 86

The following *C.pneumoniae* protein (PID 4377248) was expressed <SEQ ID 171; cp7248>:

50 1 MKFWLQGCAF VGCLLLTLPC CAARRRASGE NLQQTRPIAA ANLQWESYAE
 51 51 ALEHSKQDHK PICLFFTGSWD WCMWCIMQD QILQSSEFKH FAGVHLHMVE
 101 101 VDFFPQKNHQF EEQRQKNQEL KAQYKVTGFP ELVFIDAEGK QLARMGPEPG
 151 151 GGAAYVSKVK SALKLR*

A predicted signal peptide is highlighted.

55 The cp7248 nucleotide sequence <SEQ ID 172> is:

1 ATGAAATTTT GGTTGCAAGG ATGTGCTTT GTCGGGTTGTC TGCTATTGAC

-125-

```

5   51 TTTACCTTGT TGTGCTGCAC GAAGACGTGC TTCTGGAGAA AATTTGCAAC
10  101 AAACTCGTCC TATAGCAGCT GCAAATCTAC AATGGGAGAG CTATGCAGAA
15  151 GCTCTTGAAC ATTCTAAACA AGATCACAAA CCTATTGTC TTTTCTTAC
20  201 AGGATCAGAC TGGTGTATGT GGTGCATAAA AATGCAAGAC CAGATTTG
25  251 AAAGCTCTGA GTTTAACAT TTTGCGGGTG TGCATCTGCA TATGGTTGAA
30  301 GTTGATTTCC CCCAAAAAGAA TCATCAACCT GAAGAGCAGC GCCAAAAAAA
35  351 TCAAGAACTG AAAGCTCAAT ATAAGTTAC AGGATTCCCC GAACTGGTCT
40  401 TCATAGATGC AGAAGGAAAA CAGCTTGCTC GCATGGGATT TGAGCCTGGT
45  451 GGTGGAGCTG CTTACGTAAG CAAGGTGAAG TCTGCTCTTA AACTACGTTA
50  501 A

```

The PSORT algorithm predicts periplasmic (0.932).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 86A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 86B) and for FACS analysis.

15 The cp7248 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp7248 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 87

The following *C.pneumoniae* protein (PID 4377249) was expressed <SEQ ID 173; cp7249>:

```

20   1 MIPSPPTPINR RDDTILETDP KPSLIMFSSK KTEIASERRK AHPTLFKVLG
      51 TIWNIVKFII SIILFLPLAL LWVLKKTCQF FILPSSIISQ SMSKTAVAIR
100  101 RMTFLSHIKQ LLSLKEISAA DRVVIQYDDL VVDSLAIKIP HALPHRWILY
150  151 SQGNNSGLMEN LFDRGDSSLH QLAKATGSNL LVFNYPGIMS SKGEAKRENL
200  201 VKSYQACVRY LRDEETGPKA NQIAFGYSL GTSVQAAALD REVTDGSDGT
250  251 SWIVVKDRGP RSLADVANQI CKPIASAIIK LVGWNIDSVK PSERLRCPEI
300  301 FIYNSNHDQE LISDGLFERE NCVATPFLEL PEVKTSGTKI PIPERDLLHL
350  351 NPLSPNVVDR LAAVISNYLD SENRKSQQPD *

```

The cp7249 nucleotide sequence <SEQ ID 174> is:

```

30   1 ATGATCCCAC CCCCTACCCC AATAAACTTT CGTGATGATA CGATTCTAGA
      51 GACGGATCCA AAGCCGCTT TAATCATGTT CTCTTCAAAAA AAAACAGAGA
100  101 TAGCTTCTGA AAGACGGAAG GCCCCATCCCA CCTTATTAA AGTTCTAGGA
150  151 ACGATTGGA ATATTGTGAA GTTATTATC TCAATCATTC TGTTCTTCC
200  201 CTTAGCGTTA TTGTGGGTAC TCAAGAAAAC CTGTCAGTTT TTCATTCTCC
250  251 CATCTTCTAT CATATCTCAG AGCATGTCAA AAACAGCTGT GGCAATTGG
300  301 CGAATGACCT TTCTGTCACA TATTAACAACT CCCTTAAGCC TTAAGGAAAT
350  351 CTCAGCTGCC GATCGTGTGG TTATACAATA TGACGATTIG GTGGTTGATA
400  401 GCTTAGCTAT AAAGATACCT CATGCTCTTC CCCACAGGTG GATTCTTTAT
450  451 TCTCAAGGAA ACTCTGGATT GATGGAAAAC CTGTTCGATC GGGGCGATT
500  501 CTCTCTACAC CAGCTAGCCA AAGCAACCGG CTCGAATCTT CTTGTGTTCA
550  551 ACTATCCTGG AATTATGTCC AGCAAAGGAG AAGCGAAACG AGAAAATCTG
600  601 GTTAAATCGT ATCAGGCATG CGTACGCTAC CTACGAGATG AAGAGACAGG
650  651 TCCCTAAAGCC AATCAAATCA TAGCTTTCGG ATACTCTTIG GGAACTAGTG
700  701 TCCAAAGCTGC TGCTCTAGAT CGTGAGGTCA CTGATGGCAG TGATGGAAC
750  751 TCATGGATTG TTGTAAAAGA TCGGGGCCCT CGCTCTCTAG CAGATGTCGC
800  801 GAATCAAATT TGTAAGCCCA TAGCTTCCGC GATTATAAAA CTCGTTGGTT
850  851 GGAACATAGA CTCTGTGAAA CCTAGCGAAA GATTGCGTTG TCCCGAAATT
900  901 TTCATTTACA ACTCTAATCA TGATCAAGAA CTCATTAGCG ACGGCCTCTT
950  951 CGAAAGAGAA AATTGCGTAG CAACACCTTT TCTAGAGCTT CCTGAAGTAA
1000 1001 AAACCTCGGG GACTAAAATT CCTATACCCG AAAGGGATCT TCTCCATCTA
1050 1051 AATCCTCTCA GTCCAAATGT AGTACAGAGA TTAGCAGCAG TGATCTCTAA
1100 1101 TTATTTAGAT TCTGAAAACA GAAAGTCTCA GCAACCTGTAT TAA

```

The PSORT algorithm predicts inner membrane (0.571).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 87A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 87B) and for FACS analysis.

These experiments show that cp7249 is a surface-exposed and immunoaccessible protein, and that it
5 is a useful immunogen. These properties are not evident from the sequence alone.

Example 88

The following *C.pneumoniae* protein (PID 4377261) was expressed <SEQ ID 175; cp7261>:

```

1  MLPISILLFY VILGCLSYAI ADKKKRNIVG WFFAGAFFGF IGLVVLLLP
51 SRRNALEKPQ NDPFDNSDLF DDLKKSLAGN DEIPSSGDLQ EIVIDTEKWF
101 YLNKDKRENVG PISFEELVVL LKGKTYPEEI WVVKKGMKDW QRVKDVPQLQ
151 QALKEASK*
```

The cp7261 nucleotide sequence <SEQ ID 176> is:

```

1  ATGCTCCCTA TTTCGATTTT ATTATTTAT GTGATTCTAG GTTGTCTATC
51 TGCCTACATA GCAGATAAGA AAAAACGAAA TGTTATTGGC TGGTTTTTG
101 CAGGAGCATT TTTTGAGATT ATTGGTCTAG TTGTCCTCTC TCTTCCTCCT
151 TCTCGTCGAA ACGCTTTAGA AAAGCCACAA AACGATCCCT TTGATAACTC
201 CGATCTTTT GATGATTGAA AAAAAAGTTT AGCAGGTAAT GACGAGATAC
251 CCTCATCGGG AGATCTCAA GAAATCGTTA TCGATACAGA GAAGTGGTTT
301 TATTTAAATA AAGATAGAGA AAACGTAGGT CCGATATCTT TTGAGGAGTT
351 GGTCTGACTT TTAAAGGGAA AAACGTATCC AGAAGAAATT TGGGTATGGA
401 AAAAGGAAAT GAAAGATTTG CAACGAGTGA AGGATGTTCC ATCACTACAA
451 CAGGCTTTGA AAGAACATC AAAATAA
```

The PSORT algorithm predicts inner membrane (0.848).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 88A). The
25 recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure
88B) and for FACS analysis.

These experiments show that cp7261 is a surface-exposed and immunoaccessible protein, and that it
is a useful immunogen. These properties are not evident from the sequence alone.

Example 89

30 The following *C.pneumoniae* protein (PID 4377305) was expressed <SEQ ID 177; cp7305>:

```

1  MEVYSFHPPAV RTSFQHRVMA ALDAWFLGG HRLKVVSLDS CNSGWAYQEL
51 VSISTTEKVL KLLSYLLVPI VIIALLIRCL LHSNFRIDVE KERWLKIREL
101 GIDIESCKLP SSYVNQVSSF IWFEKDKSKR PRIDVDYHTL HSKDWVVFPI
151 VFQKIPKTSR FSYWFSQKET RKRDYVRNML DHVIGYLTS EGEWLQYISK
201 TSYQSATSLSL PERVLQYCLT DNQELQGEVQ RLLNEESATK SSGDKEVLLS
251 HVSDIICQCW WPKFLEVQPS PAFIEELVEE VSGKLNLDFL CLEKANTLDQ
301 ELRNSLRLRAV VHVGSEGVDI KKVGAGLIY TEAIQLQIPF SRS*
```

The cp7305 nucleotide sequence <SEQ ID 178> is:

```

1  ATGGAAGTTT ATAGTTTCA CCCTGCGGTA AGGACTTCGT TTCAGCACCG
51 TGTAATGGCA GCACTAGATG CTTGGTTTT TCTAGGAGGG CACCGTTAA
101 AAGTAGTTTC TCTAGATAGT TGTAACCTAG GTTGGCCGT ACAAAGAACTT
151 GTGTCCTATT CAACGACAGA AAAAGCTTG AAACACTCT CTTACCTACT
201 CGTACCGATT GTCATAATAG CTCTGTTAAT TCGTTGCTT TTACATAGCA
251 ATTTTAGGAT AGACGTAGAG AAGGAACGTT GGTTAAAAAT AAGGGAGTTA
301 GGAATTGATA TAGAAAGCTG CAAACTCCCC AGTTCTTATG TAAACCCAGGT
351 TTCCCTCGTTT ATTTGGTTTG AAAAGATAA ATCCAAACGG CCACGTATTG
401 ATGTAGATTA TCATACGCTA CATAGCAAAG ACTGGTAGT TTTCCCTATC
```

5 451 GTTTTTCAGA AAATTCCAAA GACCTCGCGT TTCAGTTATT GGTTCTCACA
 501 AAAAGAAACA AGGAAGAGGG ATTATGTGAG AAATATGCTG GACCACGTCA
 551 TTGGTTATCT AACGTCAGAA GGTGGGGAGT GGTTGCAGTA TATATCGAAA
 601 ACCCTCTTATC AAAGCGCTAC TTCTTGAT CCTCTCCAGGG AGAAGTGCAA CGTTTGCTTA
 651 TTGCTTAACT GATAACCAGG AGCTCCAGGG AGAAGTGCAA CGTTTGCTTA
 701 ATGAGGAGAG TGCGACCAAA AGCTCTGGGG ATAAGGAAGT TTGTTAAGT
 751 CATGTATCTG ACATTATTG CCAGTGTGTTGG TGGCCAAAGT TTCTTGAAGT
 801 TATAACAATCT CCGGCCCTTA TTGAAGAATT AGTAGAAGAA GTGAGTGGTA
 851 AACTTAATT AGATTTTTA TGCCCTAGAAA AGGCTAATAC ATTAGATCAG
 901 GAGTTGAGAAA ACAGTCTTCT AAGAGCAGTC GTACACCACG GTTCTGAAGG
 951 ACTTGATATT AAGAAAGTTG GTGCCGGCCT CAATTATTAT ACGGAAGCTA
 10 1001 TTCAATTACA GATTCCCTTC TCAAGGAGTT AA

The PSORT algorithm predicts inner membrane (0.508).

15 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 89A) and also as a double GST/his fusion. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 89B) and for FACS analysis.

These experiments show that cp7305 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 90

20 The following *C.pneumoniae* protein (PID 4377347) was expressed <SEQ ID 179; cp7347>:

25 1 MKKGKLGAIV FGLLFTSSVA GFSKDLTKDN AYQDLNVIEH LISLKYAPLP
 51 WKELLFGWDL SQQTQQARLQ LVLEEKPTTN YCQKVLSNVY RSLNDYHAGI
 101 TFYRTESEAYI PYVLKLSEDG HVFVVDVQTS QGDIYLGDEI LEVDGMGIRE
 151 AIESLRFGRG SATDYSAAVR SLTSRSAAFG DAVPSGIAML KLRRPSGLIR
 201 STPVRWRVTP EHIGDFSLVA PLIPEHKPQL PTQSCVLFRS GVNSQSSSSS
 251 LFSSYMPYF WEELRVQNKO RFDSNHHIGS RNGFLPTFCGP ILWEQDKGPY
 301 RSYIFPKAKD QGNPHRIGLF RISSYVWTDL EGLEEDHKDS PWELFGEIID
 351 HLEKETDALI IDQTHNPFGGS VFYLYSLLSM LTDHPLDTPK HRMIFTQDEV
 401 SSALHWQDILL EDVFTDEQAV AVLGETMEGY CMDMDHAVASL QNFSQSVLSS
 451 WWSGDINLSK PMPLLGFQAV RPHPKHQYTK PLFMLIDEDE FSCGDLAPAI
 501 LKDNGRATLI GKPTAGAGGF VFQVTFPNRS GIKGLSLTGS LAVRKDGEFI
 551 ENLGVAPHID LGFTSRDLQT SRFTDYVEAV KTIVLTSLSE NAKKSEEQTS
 601 PQETPEVIRV SYPTTTSAS*

A predicted signal peptide is highlighted.

35 The cp7347 nucleotide sequence <SEQ ID 180> is:

40 1 ATGAAAAAAAG GGAAATTAGG AGCCATAGTT TTTGGCCTTC TATTTACAAG
 51 TAGTGTGCT GGTTTTCTA AGGATTGAC TAAAGACAAC GCTTATCAAG
 101 ATTTAAATGCT CATAGAGCAT TTAATATCGT TAAAATATGC TCCCTTACCA
 151 TGGAAGGAAC TATTATTGG TTGGGATTAA TCTCAGCAA CACAGCAAGC
 201 TCGCTTGCCTA CTGGTCTTAG AAGAAAACC AACAAACCAAC TACTGCCAGA
 251 AGGTACTCTC TAACTACGTG AGATCATTAA ACGATTATCA TGCAAGGATT
 301 ACGGTTTATC GTACTGAAAG TCCGTATATC CCTTACGTAT TGAAGTTAAG
 351 TGAAGATGGT CATGTCCTTG TAGTCGACGT ACAGACTAGC CAAGGGGATA
 401 TTTACTTAGG GGATGAAATC CTTGAAGTAG ATGGAATGGG GATTCCGTGAG
 451 GCTATCGAAA GCCTTCGCTT TGGACGAGGG AGTGCCACAG ACTATTCTGC
 501 TGCAGTTCGT TCCTTGACAT CGCGTTCCGC CGCTTTGGA GATGCCGTT
 551 CTTTCAGGAAT TGCCATGTTG AAACCTTCGCC GACCCAGTGG TTTGATCCGT
 601 TCGACACCGG TCCGTTGGCG TTACTACTCCA GAGCATATCG GAGATTTTC
 651 TTTAGTTGCT CCTTTGATTCT CGAACATCAA ACCTCAATTAA CCTACACAAA
 701 GTTGTGTGCT ATTCCGTTCC GGGGTAAATT CACAGTCCTC TAGTAGCTCT
 751 TTATTTCAGTT CCTACATGGT GCCTTATITTC TGGGAAGAAT TGCGGGTTCA
 801 AAATAAGCAG CGTTTTGACA GTAATCACCA TATAGGGAGC CGTAATGGAT
 851 TTTTACCTAC GTTGGTCCT ATTCTTTGGG AACAAAGACAA GGGGCCCTAT
 901 CGTTCCCTATA TCTTTAAAGC AAAAGATTCT CAGGGCAATC CCCATCGCAT
 951 AGGATTTTTA AGAATTCTT CTTATGTTTG GACTGATTAA GAAGGACTTG
 55 1001 AAGAGGATCA TAAGGATAGT CCTTGGGAGC TCTTGGAGA GATCATCGAT

5 1051 CATTGGAAA AAGAGACTGA TGCTTGATT ATTGATCAGA CCCATAATCC
 1101 TGGAGGCACT GTTTCTATC TCTATTGTT ACTATCTATG TTAACAGATC
 1151 ATCCTTTAGA TACTCCAAA CATAGAACATGA TTTTCACCTCA GGATGAAGTC
 1201 AGCTCGGCTT TGCACGGCA AGATCTACTA GAAGATGTCT TCACAGATGA
 1251 GCAGGCACTT GCGGTGCTAG GGGAAACTAT GGAAGGATAT TGCATGGATA
 1301 TGCACTGTTG AGCCTCTCTT CAAAACCTCT CTCAGAGTGT CCTTTCTTCC
 1351 TGGGTTTCAG GTGATATTAA CCTTCAAAA CCTATGCCCT TGCTAGGATT
 1401 TGACAGGGT CGACCTCATC CTAAACATCA ATATACTAAA CCTTTGTTTA
 1451 TGTTGATAGA CGAGGATGAC TTCTCTTGTG GAGATTTAGC GCCTGCAATT
 1501 TTGAGGAGA ATGGCCGCGC TACTCTCATT GGAAAGCCAA CAGCAGGAGC
 1551 TGGAGGTTT GTATTCCAAG TCACCTTCCC TAACCGTTCT GGAATTAAAG
 1601 GTCTTTCTT AACAGGATCT TTAGCTGTTA GGAAAGATGG TGAGTTTATT
 1651 GAAAACCTAG GAGTGGCTCC TCATATTGAT TTAGGATTAA CCTCCAGGGA
 1701 TTTGCAAAC TCCAGGTTTA CTGATTACGT TGAGGCAGTG AAAACTATAG
 1751 TTTTAACCTC TTTGTCGAG AACGCTAAGA AGAGTGAAGA GCAGACTTCT
 1801 CCGCAAGAGA CGCCTGAAGT TATTCGAGTC TCTTATCCCA CAACGACTTC
 1851 TGCTTCGTA

The PSORT algorithm predicts periplasmic space (0.2497).

20 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 90A) and also in a his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 90B) and for FACS analysis.

These experiments show that cp7347 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 91

25 The following *C.pneumoniae* protein (PID 4377353) was expressed <SEQ ID 181; cp7353>:

30 1 MNMPVPSAVP SANITLKEDS STVSTASGIL KTATGEVLVS CTALEGSST
 51 DALISLALGQ IILATQQELL LQSTNVHQLL FLPPEVVELE IQVVDLLVQL
 101 EHAETITSEQ QETQTQSRSE QTLPPQQSSK QSALSPRSILK PEISDSKQQQ
 151 ALQTPKDSA RKHSEAPSPE TQARASLSQA SSSSQRSLPP QESAPERTLL
 201 EQQKASSFSP LSQFSAEKQK EALTTSKSHE LYKERDQDRQ QREQHDKHD
 251 QEEDAESKKK KKKRGLGVVA VAEEPGENLD IAALIFSDQM RPPAETSJK
 301 ETTFKKKLPS PMSVFSRFIP SKNPLSVGSS IHGPIQTPKV ENVFLRFMKL
 351 MARILGQAEA EANEYLMRVK QRTDDVDTLT VLISKINNEK KDIDWSENEE
 401 MKALLNRAKE IGVTDIEKY TWTEEEKRLL KENVQMRKEN MEKITQMERT
 451 DMQRHLQEIS QCHQARSNVL KLLKELMDTF IYNLRP*

The cp7353 nucleotide sequence <SEQ ID 182> is:

40 1 ATGAATATGCT CTGTTCCCTC TGCAAGTCCCC TCTGCAAATA TAACTCTAAA
 51 AGAAGACAGC TCAACAGTTT CCACAGCCTC TGGAATATTA AAGACTGCAA
 101 CAGGTGAAGT CTTAGTCTCT TGACAGCGC TAGAAGGAAG CTCTTCTACA
 151 GATGCTTTAA TTAGCTTAGC TTTAGGACAA ATCACATCTTG CGACCCAACA
 201 AGAACTGCTC TTCAAAAGCA CAAATGTTCA TCAACTCCTC TTCCCTCCCTC
 251 CTGAAGTTGT AGAATTAGAA ATCCAAGTTG TTGACTTGTG AGTCAATTG
 301 GAACATGCAG AGACAATCAC AAGTGAACCA CAAGAAACAC AAACCCAAAG
 351 TAGGAGTGAAG CAGACCCTCC CTCAACAAAG CAGCAGTAAA CAATCTGCTC
 401 TCTCCCCACG CTCCTTAAAA CCTGAAATTT CTGATTCTAA ACAACAGCAA
 451 GCTCTTCAAA CACCAAAAGA CTCTGCTGTA AGAAAAACACA GCGAACCCACC
 501 GTCACCTGAG ACACAAGCTC GCGCTTCCCTT ATCTCAGGCA AGCTCAAGTT
 551 CTCAGAGATC CTTACCTCCG CAAGAAAGTG CGCCAGAAAG AACACTATTAA
 601 GAACAAACAAA AAGCAAGCTC CTTCTCTCTCT CTATCCCAGT TCTCTGCAGA
 651 GAAACAAAAA GAGGCCCTGA CGACCTCAAA ATCTCATGAA CTCTATAAAAG
 701 AACGGATCA AGATCGCCAA CAAAGAGAGC AGCACGACAG AAAGCACGAT
 751 CAGGAAGAAG ACGCTGAATC TAAAAAGAAA AAGAAGAAAC GTGGTCTCGG
 801 TGTAGAGGCA GTCGCTGAGG AACCCGGAGA AAATCTAGAT ATTCGCGCTT
 851 TAATCTTCTC AGATCAAATG CGACCTCCCTG CTGAAGAAAC TTCTAAAAAA
 901 GAAACGACAT TCAAAAGAA GCTACCTTCT CCTATGTCTG TGTTTAGCAG
 951 ATTCACTCCCT AGTAAGAATC CGTTATCTGT AGGCTCTCA ATACACGGGC
 1001 CTATACAAAC TCCAAAAGTA GAAAATGTGT TCTTAAGGTT CATGAAGCTC

5
1051 ATGGCAAGAA TCTTAGGCCA AGCCGAAGCC GAAGCTAATG AACTCTACAT
1101 GCGAGTCAAA CAACGTACCG ATGATGTAGA CACACTCACA GTCCTTATCT
1151 CTAAGATCAA TAATGAAAAG AAAGACATTG ATTGGAGTGA AAATGAAAGAG
1201 ATGAAAAGCTC TTTTAATCG AGCTAAAGAG ATTGGAGTCA CTATAGACAA
1251 AGAAAAAATAT ACTTGGACAG AAGAGGAAAA AAGACTTCTA AAAGAGAATG
1301 TCCAAATGCC CAAAGAGAAT ATGGAGAAAAA TCACTCAAT GGAAAGGACG
1351 GACATGCAAA GGCACCTCCA AGAGATTTCT CAATGTCATC AAGCCGCGTC
1401 TAATGTATTG AAGTTATTGA AAGAACCTAT GGACACCTTC ATTTACAACC
1451 TACGCCCTA A

- 10 The PSORT algorithm predicts cytoplasm (0.1308).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 91A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 91B) and for FACS analysis.

- 15 These experiments show that cp7353 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 92

The following *C.pneumoniae* protein (PID 4377408) was expressed <SEQ ID 183; cp7408>:

20
1 MLKIQKKRMC VSVVITVGAI VGFFNSADAA PKKKKIPIQI LYSFTKVSSY
51 LKNEDASTIF CVDVDRGLLQ HRYLGSPGWQ ETRRRQLFKS LENQSYPNER
101 LGEETLAIDI FRNKECLESE IPEQMEEAILA NSSALVLGJS SFGITGIPAT
151 LHSLLRQNLS FQKRSIASES FLLKIDSAPS DASVFYKGVL FRGETAIVDA
201 LSQLFQAQLDL SPKKIIFLGE DPEVVQAVGS ACIGWGMNFL GLVYYPAQES
251 LFSYVHPYST ATELQEAQGL QVISDEVAQL TLNALPKMN*

The cp7408 nucleotide sequence <SEQ ID 184> is:

25
1 ATGTTGAAAAA TCCAGAAAAA AAGAATGTGT GTCAGCGTAG TCATCACGGT
51 AGGCGCCATA GTGGGGTTTT TCAATTCTGC AGACGCGACCA CCAAAGAAAA
101 AGAAGATCCC TATACAGATT CTCTACTCCT TTACTAAAGT CTCTTCCTAT
151 TTAAAAAAACG AAGACGCAAG TACTATATT TGCGTCGATG TGGATCGTGG
201 ACTTCTCCAG CATCGGTATT TAGGTAGTCC AGGATGCCAG GAAACCAAGAC
251 GTCGGCAGTT ATTTAAATCC TTAGAAAATC AATCATACGG CAACGAACGT
301 TTAGGAGAAAG AAACTCTTGC TATTGATATT TTCAGGAACA AAGAGTGCTT
351 GGAGAGCGAG ATCCCAGAGC AGATGGAAGC TATCCTTGCA AATTCCCTCGG
401 CCTTGGTCTT AGGCATCTCT TCTTTGGGA TCACAGGAAT TCCTGCGACT
451 TTGCATAGTT TGCTTCGACA GAATCTATCT TTCCAAAAAC GCTCTATAGC
501 ATCGGGAGAGC TTCCCTTTAA AGATCGATAG TGCCCCCTCA GATGCCCTCG
551 TTTTTTATAA AGGCGTGCTT TTCCCGGGAG AGACTGCGAT CGTGGATGCG
601 TTAAGCCAAT TATTGCCCCA GCTCGATCTT TCTCTAAAAA AAATTATCTT
651 TCTAGGAGAA GACCTGAGG TCGTTCAAGC TGTTGGGTCT GCTTGTATAG
701 GTTGGGGCAT GAACTTTTA GGCTGGTAT ACTATCCTGC TCAAGAAAGC
751 CTTTTTCTT ATGTTCATCC TTACTCTACA GCAACGGAGC TCCAAGAAAGC
801 ACAGGGTTTA CAAGTAATTG CAGATGAAGT CGCACAGCTT ACTTTAAACG
851 CTCTTCCGAA AATGAATTAA

The PSORT algorithm predicts inner membrane (0.123).

- 45 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 92A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 92B) and for FACS analysis.

These experiments show that cp7408 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 93

The following *C.pneumoniae* protein (PID 4376424) was expressed <SEQ ID 185; cp6424>:

5 1 MMHNIVVLSE EPGRSAFLGR TAFFPNKYPI AQGGVGIPST IGNLFTIWYC
 51 FYFYRAATPQ SDHPDCGFI LLERLKELGA GFFYCDLRES NTTGFTLFFE
 101 101 GSNKGVLKNH LFIRDE*

The cp6424 nucleotide sequence <SEQ ID 186> is:

10 1 ATGATGCACA ATATTGTTGT TCTTAGTGAG GAACCTGGAC GAAGCGCTTT
 51 TCTTGGTAGG ACGGCATTTC TCCCTAATAA GTATCCAATA GCTCAGGGTG
 101 GTGTTGGAAAT ACCATCTACA ATAGGCAATC TCTTTACTAT ATGGTACTGT
 151 TTCTATTTTT ATAGAGCTGC AACTCCACAA TCTGATCATC CTGACGGATG
 201 TGGCTTTATT CTACTAGAAA GGCTTAAGGA GCTCGGTGCA GGGTTCTTTT
 251 ATTGTGATCT TCGTGAGTCC AATACCACTG GCTTTACTCT TTTTTTTGAA
 301 GGCTCCAATA AAGGTGTGTT AAAGAACAC TTGTTTATTA GAGATGAGTA
 351 A

15 The PSORT algorithm predicts cytoplasm (0.2502).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 93A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figure 93B) and for FACS analyses (Figure 93C; GST-fusion).

20 These experiments show that cp6424 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 94

The following *C.pneumoniae* protein (PID 4376449) was expressed <SEQ ID 187; cp6449>:

25 1 VASETYPSQI LHAQREVRDA YFNQADCHPA RANQILEAKK ICLLDVYHTN
 51 HYSVFTFCVD NYPNLRLFTFV SSKNNEMNGL SNPLDNVLVE AMVRRTHARN
 101 LLAACKIRNI EVPRVVGLDL RSGILISKLE LKQPQFQSILT EDFVNHSTNQ
 151 EEARVHQKHV LLISLILLCK QAVLESFQEKRSS*

The cp6449 nucleotide sequence <SEQ ID 188> is:

30 1 GTGGCGTCTG AACGTATCC TTCTCAGATA TTGCAAGCTC AGAGGGAAGT
 51 ACGTGATGCC TATTTAACAT AAGCGGATTG CCATCCTGCT CGGGCTAATC
 101 AGATTCTCGA GGCTAAAGAAA ATCTGTTTAT TAGATGTTTA TCATACTAAT
 151 CATTATTCCG TATTTACTTT TTGTTGAGAT AATTATCCGA ATCTCCGCTT
 201 TACATTGTG TCTTCAAAAA ACAATGAGAT GAATGCTTA TCTAATCCTC
 251 TAGATAATGT TCTTGAGAG GCTATGGTAC GTAGAACACA TGCAAGAAC
 301 CTACTTGCAG CGTGTAAAAT TCGAAATATT GAGGTTCCAA GGGTTGTTGG
 351 GCTTGACCTA AGATCTGGGA TACTCATTTC GAAACTAGAA TTGAAGCAAC
 401 CTCAGTTCCA AAGTTAACAA GAAGACTTCG TAAATCATTC CACAAATCAG
 451 GAAGAAGCTC GCGTCCATCA AAAGCATGTG TTGCTAATTCTT CTTTAATTCTT
 501 ACTTTGCAAG CAGGCCGTTC TGGAAATCATT CCAGGAAAAAA AAGCGATCCT
 551 CTTAA

40 The PSORT algorithm predicts inner membrane (0.2084).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 94A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figure 94B) and for FACS analyses (Figure 94C; GST-fusion).

45 These experiments show that cp6449 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 95

The following *C.pneumoniae* protein (PID 4376495) was expressed <SEQ ID 189; cp6495>:

MRELNAFELTQPEEYRNWVLMPCLKRCRCLQHAKVWSYRCVHEASLYEKNCFLTLTYDDKHL PQYGSVLKLHLQLFLKR
LRKMISPHKIRYFECGAYGTKLQRPHYHLLLS

- 5 The cp6495 nucleotide sequence <SEQ ID 190> is:

TTGCGAGAATTAAATGCTTTGAATTAACTCAACCTGAAGAGTATCGAAACCGTTGGGTTTGATGCCCTGTCTTAAGTGT
CGTTTTGTAGAACGCAACATGCAAAAGCTGCTTATCGTTGTCATGAAGCTTCTTGATGAGAAAAATTGTTT
CTTACTTTGACTTATGATGATAAGCATTTACCTCAGTATGGTCGTTGGTAAAGCTGCATTACAGCTGTTCTTAAGAGA
10 TTAAGAAAAGATGATTCTCTCCATATAAAATTCTGTTATTTGAATGTGGTGCATGGAAACCAAATTACAAAGACCTCATTAT
CATCTACTTTATCATGA

The PSORT algorithm predicts cytoplasmic (0.280).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 95A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 95B) and for FACS analysis (Figure 95C).

- 15 These experiments show that cp6495 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 96

The following *C.pneumoniae* protein (PID 4376506) was expressed <SEQ ID 191; cp6506>:

1 MRRFLFLILS SLPLVAFSAD NFTILEEKQS PLSRVSIIFA LPGVTPVSFD
20 51 GNCPIPWFSH SKKTLEGQRI YYSGDSFGKY FVVSALWPNK VSSAVVACNM
101 ILKHRVLDLIL IIGSCYSRSQ DSRFGSVLVS KGYINYDADV RPFFERFEIP
151 DIKKSVFATS EVHREATLRG GEEFISTHKQ EIEELLKTHG YLKSTTKTEH
201 TLMGLVATG ESFAMSRNYF LSLQKLYPEI HGFDSVSGAV SQVCYEYSIP
251 CLGVNILLPH PLESRSNEDW KHLQSEASKI YMDTLLKSVL KELCSSH*

- 25 The cp6506 nucleotide sequence <SEQ ID 192> is:

1 ATGCGTCGTT TTCTGTTCT TATTCTTAGC TCTCTTCCCT TGCGCATT
51 CTCTGCTGAT AATTTCACTA TTCTAGAAGA AAAACAGAGT CCTTTAACGC
101 GTGTAAGTAT TATTTTGCT TTACCTGGGG TTACTCCCGT TTCTTTGAT
151 GGTAAATTGTC CTATTCCCTG GTTTCTCAT AGTAAAAAGA CTCTAGAGGG
201 ACAGAGAATT TATTACTCTG GCGACTCCCT TGAAAATAC TTGTAAGTTT
251 CTGCTCTTGT GCCTAAATAA GTTCTCTCAG CTGTTGTGGC TTGTAATATG
300 ATTCTTAAAC ATCGAGTGG TCTTATTCTA ATTATAGGCT CGTGTACTC
350 TAGGTCTCAA GATAGCCGTT TTGGCAGCGT CTTAGTTCT AAAGGCTACA
400 TTAATTATGTA TGCAAGATGTG AGGCCTTCT TTGAAAGATT TGAGATTCCA
450 GACATTAAAA AGAGTGTGTT TGCAACCAGT GAGGTTCATC GGGAGGCAAT
500 TCTTCGTGGA GCGGAAGAGT TTATTTCTAC CCATAAACAA GAAATCGAAG
550 AGCTTTTGAA GACTCATGGG TATTGAAAT CAACAACCAA AACGGAGCAC
600 ACCTTAATGG AAGGTTGGT TGCTACAGGC GAGTCCTTCG CGATGTCGCG
650 AAACATTTTT CTTTCCTTAC AAAATTGTA TCCAGAGATT CATGGTTTG
700 ATAGTGTCAAG CGGGCGTGT TCTCAGGTAT GCTATGAATA TAGCATFCCT
750 TGTGTTAGGTG TGAATATCCT TCTCCCTCAT CCTTTAGAAT CACGGAGTAA
800 CGAGGATTGG AAGCATTCTC AAAGTGAGGC AAGTAAAATT TATATGGATA
850 CCTTGCTCAA GAGTGTATTA AAAGAACTCT GTTCTTCTCA TTAA

The PSORT algorithm predicts periplasmic space (0.571).

- 45 The protein was expressed in *E.coli* and purified as his-tag (Figure 96A) and GST-fusion (Figure 96B) products. The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 96C) and for FACS analysis (Figure 96D).

These experiments show that cp6506 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 97

The following *C.pneumoniae* protein (PID 4376882) was expressed <SEQ ID 193; cp6882>:

```

5      1  MSLLNLPPSQ DSASEDSTSQ SQIFDPIRNR ELVSTPEEKV RQRLLSFLMH
      51 KLNYPKKLII IEKELKTLFP LLMRKGTLLIP KRRPDILIT PPTYTDAQGN
     101 THNLDGDPKTLI LLIECKALAV NQNALKQLLS YNYSIGATCI AMAGKHSQVS
     151 ALFNPKTQTL DFYPGLPEYS QLLNYFISLN L*

```

The cp6882 nucleotide sequence <SEQ ID 194> is:

```

10     1  ATGTCCTTAT TGAACCTTCC CTCAAGCCAG GATTCTGCAT CTGAGGACTC
      51 CACATCGCAA TCTCAAATCT TCGATCCCCT TAGAAATCGG GAGTTAGTTT
     101 CTACTCCCGA AGAAAAAGTC CGCCAAAGGT TGCTCTCCTT CCTAATGCAT
     151 AAGCTGAAC T ACCCTAAAGAA ACTCATCATC ATAGAAAAAG AACTCAAAC
     201 TCTTTTTCCT CTGCTTATGC GTAAAGGAAC CCTAATCCCA AAACGCCGCC
     251 CAGATATTCT CATCATCACT CCCCCCACAT ACACAGACGC ACAGGGAAAC
     301 ACTCACAACC TAGGGGACCC AAAACCCCTG CTACTTATCG AATGTAAGGC
     351 CTTAGCCGTA AACCAAAATG CACTCAAACA ACTCCTTAGC TATAACTACT
     401 CTATCGGAGC CACCTGCATT GCTATGGCAG GGAAACACTC TCAAGTGTCA
     451 GCTCTCTTCA ATCCAAAAC ACAAAACTCTT GATTTTTATC CTGGCTCCCC
     501 AGACTATTCC CAACTCCTAA ACTACTTTAT TTCTTTAAAC TTATAG

```

The PSORT algorithm predicts cytoplasm (0.362).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 97A). The protein was used to immunise mice, whose sera were used in a Western blot (Figure 97B) and for FACS analysis (Figure 97C).

25 These experiments show that cp6882 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 98

The following *C.pneumoniae* protein (PID 4376979) was expressed <SEQ ID 195; cp6979>:

```

30     1  MSVNPSPNSK NDLWITGAHD QHPDVKESGV TSANLGSHRV TASGGRQQLL
      51 ARIKEAVTFGF FSRMSFFRSRQ APRGSQQPSA PSADTVRSPL PGGDARATEG
     101 AGRNLIIKKGY QPGMKVTTIPQ VPAGGAQRSS GSTTLKPTRP APPPPKPTGGT
     151 NAKRPATHGK GPAPQPPKTG GTNAKRAATH GKGPAPQPPK GILKQPGQSG
     201 TSGKKRVSWS DED*

```

The cp6979 nucleotide sequence <SEQ ID 196> is:

```

35     1  ATGTCCTGTTA ATCCATCAGG AAATTCCAAG AACGATCTCT GGATTACGGG
      51 AGCTCATGAT CAGCATCCCG ATGTTAAAGA ATCCGGGGTT ACAACTGCTA
     101 ACCTAGGAAG TCATAGAGTG ACTGCCCTCAG GAGGACCCCA AGGGTTATTA
     151 GCACGAATCA AAGAACAGT AACCGGGTTT TTTAGTCGGA TGAGCTTCTT
     201 CAGATCGGGG GCTCCAAGAG GTAGCCAACA ACCCTCTGCT CCATCTCCAG
     251 ATACTGTACG TAGCCCGTTG CCGGGAGGGG ATGCTCGCCG TACCGAGGGG
     301 GCTGGTAGGA ACTTAATTAA AAAAGGGTAC CAACCAGGGG TGAAAGTCAC
     351 TATCCCACAG GTTCCTGGAG GAGGGGCCCA ACGTTCATCA GGTAGCACGA
     401 CACTAAAGCC TACGCGTCCG GCACCCCCAC CTCCTAAAC GGGTGGAACT
     451 AATGCAAAAC GTCCGGCAAC GCACGGGAAG GGTCCAGCAC CCCAGCCTCC
     501 TAAAACAGGT GGGACCAATG CTAAGCGCAG AGCAACGCAT GGGAAAGGTC
     551 CAGCACCTCA ACCTCTTAAG GGCATTTGA AACAGCTGG GCAGTCTGGG
     601 ACTTCAGGAA AGAAGCGTGT CAGCTGGTCT GACGAAGATT AA

```

The PSORT algorithm predicts cytoplasm (0.360).

-133-

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 98A). The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 98B) and for FACS analysis (Figure 98C).

These experiments show that cp6979 is a surface-exposed and immunoaccessible protein, and that it
5 is a useful immunogen. These properties are not evident from the sequence alone.

Example 99

The following *C.pneumoniae* protein (PID 4377028) was expressed <SEQ ID 197; cp7028>:

10	1 MLLGFLCDCP CASWQCAA VA NCYDSV FMSR PEHKPN IPYI TKATR RGLRM 51 KTLAYLASILK DARQLAYDFL KDPGSLARLA KALIAPKEAL QEGNLFFYGC 101 SNIEDILEEM RRPHRILLLG FSYCQKPKAC PEGRFN DACR YDPSHPTCAS 151 CSIGTMMRLN ARYYTTVIIP TFIDI AKAHLH TLKKRYPGYQ ILFAVTACEL 201 SLKMFGDYAS VMNLKGVGIR LTGRICNTFK AFKLAERGVK PGVTILEEDG 251 FEVLARILTE YSSAPP PRDF CEIH*
----	---

The cp7028 nucleotide sequence <SEQ ID 198> is:

15	1 ATGCTTCTAG CGTTTTGTG TGACTGCC C TGTGCTTCGT GGCAGTGTGC 51 GGCCGTTGCT AATTGTTATG ATTCCGTATT TATGTC TAGA CCAGAGCACA 101 AACCTAAATAT TCCTTATATT ACTAAAGCTA CAAGACGGGG TCTGCGTATG 151 AAGACCGCTTG CTTATCTGGC CTCTTTAAAA GATGCTAGAC AGCTTGCTA 201 TGATTTCTCTG AAAGATCCTG GTCTTTAGC TCGGTTAGCT AAGGCTTTGA 251 TAGCTCCTAA GGAGGCTTA CAGGAGGGCA ACCTATTTTT TTATGGCTGT 301 AGTAATAATTG AGGATATTAG AGAGGAGATG CGTCGTCCTC ATAGAACTCT 351 TTTGTTAGGA TTTTCTTATT GTCAAAAGCC TAAGGCATGT CCTGAAGGGC 401 GTTTCAATGA TGCTTGTGG TATGATCCTT CACATCCTAC ATGTGCCCTCA 451 TGTTCTATAG GGACCATGAT GCGGCTGAAT GCTCGTAGAT ACACTACTGT 501 GATCATCCCT ACATTTATAG ATATCGCAAA ACATTTACAC ACTTTAAAAA 551 AGCGCTACCC TGGATATCAA ATTCTCTTTG CAGTTACTGC TTGTCGAACCT 601 TCCTTAAAAA TGGTTGGAGA TTATGCCTCC GTAATGAACT TAAAGGGTGT 651 GGGCATCAGA CTCACAGGAC GTATTTGCAA TACATTTAAG GCATTTAAAT 701 TAGCTGAGCG AGGAGTCAAA CCAGGAGTC TATCCTAGA AGAAGATGGC 751 TTTGAGGTAT TAGCAAGGAT TCTTACAGAA TACAGTAGCG CTCCTTTCCC 801 TAGAGACTTT TGTGAGATCC ATTAG
----	--

The PSORT algorithm predicts cytoplasm (0.1453).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 99A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 35 99B) and for FACS analysis (Figure 99C).

These experiments show that cp7028 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 100

The following *C.pneumoniae* protein (PID 4377355) was expressed <SEQ ID 199; cp7355>:

40	1 MKKVVTLSII FFATYCASEL SAVTVVAVPL SEAPGKIQVR PVVGLQFQEE 51 QGSVPYSFYY PYDYGYYYPE TYGYTKNTGQ ESRECYTRFE DGTIFYECD*
----	---

The cp7355 nucleotide sequence <SEQ ID 200> is:

45	1 ATGAAGAAAG TCGTAACACT ATCCATTATA TTTTCGCAA CGTATTGTGC 51 ATCAGAGCTT AGTGCTGTAA CTGTAGTGGC TGTGCTTTA TCAGAGGCTC 101 CAGGGAAAGAT TCAAGTTCGT CCCGTCGTTG GTCTGCAATT TCAAGAAAGAA 151 CAGGGTTCTG TGCCTATAG TTTTTATTAT CCTTATGACT ATGGGTATTA 201 CTATCCAGAG ACTTATGGCT ATACTAAAAA TACAGGTCAA GAAAGTCGCG
----	--

-134-

251 AATGTTATAAC CCGATTGAA GATGGCACAA TTTTTATGA ATGCGATTAG

The PSORT algorithm predicts inner membrane (0.143).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 100A) and a his-tag product. The proteins were used to immunise mice, whose sera were used in a Western blot (Figure 100B) and for FACS analysis (Figure 100C).

These experiments show that cp7355 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 101

The following *C.pneumoniae* protein (PID 4377380) was expressed <SEQ ID 201; cp7380>:

10	1 VHYCERTLDP KYILKIALKL RQSLSLFFQN SQSLQRAYST PYSYRIILQ
	51 KENKEKQALA RHKCISILEF FKNNLFVHLL SLSKNQREGC STDMAVVSTP
	101 FFPNRNLWYRL LSSRFSLWKS YCPRFFLDYL EAEGFLSDFL DHQAVIKFFE
	151 LETHFSYYPV SGFVAPHQYL SLLQDRYFPPI ASVMRTLDKD NFSLTPDLIH
15	201 DLLGHVPWLL HPSFSEFFIN MGRLFTKVIE KVQALPSKKQ RIQTLQSNLI
	251 AIVRCFWFTV ESGLIENHEG RKAYGAVLIS SPQELGHAFI DNVRVLPLEL
	301 DQIIRLPFNT STPQETLFSI RHFDELVELT SKLEWMLDQG LLESIPLYNQ
	351 EKYLSGFEVL CQ*

The cp7380 nucleotide sequence <SEQ ID 202> is:

20	1 GTGCACTACT GCGAGAGAAC CCTGGACCCA AAGTATATTTC TGAAGATTGC
	51 TCTAAAAGCTG AGACAATCAC TTTCCCTGTT CTTCCAGAAC AGCCAATCAC
	101 TCCAACGTGCA ATACTCGACC CCATATTCCCT ACTACCGAAT CATTCTACAA
	151 AAGGAAAATA AAGAGAACCA AGCTTTAGCT CGACACAAAT GCATTTCTAT
25	201 TTTAGAATTTC TTCAAAAGT TACTCTTTGT TCATCTTCG TCATTATCAA
	251 AGAACATCAAAG GGAAGGTTGC TCCACTGATA TGGCTGTTGT AACCACTCCC
	301 TTTTTTAATC GGAATTATAG GTATCGACTC CTTCCTTCAC GGTTTCTCT
	351 ATCGAAAAGC TATTGTCCAA GATTTTTTCT TGATTACTTA GAAGCTTCG
30	401 GTCTCCTTCTA TGATTTCTTA GACCATCAAG CAGTCATTAA ATTCTTCGAA
	451 TTAGAAACAC ATTTTTCTTA TTATCCCGTT TCAGGATTTG TAGCTCCCCA
	501 TCAATTAATTC TCTCTGTTGC AGGACCGTTA CTTCCTCCATT GCCTCTGTAA
	551 TCGGAACCTCT CGATAAAAGAT AATTCTCCT TAACTCCCTGA TCTTCATCCAT
	601 GACCTTTTAG GGCACGTGCC TTGGCTTCTA CATCCCTCAT TTTCTGAATT
	651 TTTCATAAAC ATGGGAAGAC TCTTCACTAA AGTCATAGAA AAAGTACAAG
35	701 CTCTTCCCTAG TAAAAAAACAA CGCATACAAA CCCTACAAAG CAATCTGATC
	751 GCTATTGTAC GCTGCTTTG GTTACTGTT GAAAGCGGAC TTATTGAAAAA
	801 CCATGAAGGA AGAAAAGCAT ATGGAGCCGT TCTTATCAGT TCTCCTCAGG
	851 AACTTGGACA CGCTTTCATT GATAACGTAC GTGTTCTCCC TTTAGAATTG
40	901 GATCAGATTA TTCGTCCTCC CTTCAATACA TCAACTCCAC AAGAGACTTT
	951 ATTTTCATAA AGACATTTC ATGAACCTGGT AGAAACTCACT TCAAAATTAG
	1001 ATGGGATGCT CGACCAAGGT CTGTTAGAAT CAATTCCCT TTACAATCAA
	1051 GAGAAATATC TTTCTGGTT TGAGGTACTT TGCCAATGA

The PSORT algorithm predicts inner membrane (0.1362).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 101A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 101B) and for FACS analysis (Figure 101C).

45 These experiments show that cp7380 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 102

The following *C.pneumoniae* protein (PID 4376904) was expressed <SEQ ID 203; cp6904>:

5 1 MMNYEDAKLR GQAVAILYQI GAIKFGKHIL ASGEETPLVV DMRLVISSPE
 51 VLQTVATLIW RLRLPSFNSSL LCGVPYALT LATSISLKYD IPMVLRRKEL
 101 QNVDPDSAIIK VEGLFTPQQT CLVINDMVSS GKSIIETAVA LEENGLVVRE
 151 ALVFLDRRK E ACQPLGPQGI KVSSVFTVPT LIKALIAYGK LSSGDLTLAN
 201 KISEILEIES *

The cp6904 nucleotide sequence <SEQ ID 204> is:

10 1 ATGATGAAC T ACGAAGATGC AAAATTACGC GGTCAAGCTG TAGCAATTCT
 51 ATACCAAATC GGAGCTATAA AGTCGGAAA ACATATTCTC GCTAGCGGAG
 101 AAGAAACTCC TCTGTATGTA GATATGCGTC TTGATGATCTC CTCTCCAGAA
 151 GTTCTCCAGA CAGTGGCAAC TCTTATTG TGCTCTAACCT CTAGCAACCT
 201 TAGTAGCTTA CTCTGCGGAG TCCCTTATAC TGCTCTAACCT CTAGCAACCT
 251 CGATCTCTTT AAAATATAAC ATCCCTATGG TATTGCGAAG GAAGGAATTA
 301 CAGAATGTAG ACCCCTCGGA CGCTATTAAA GTAGAAGGGT TATTTACTCC
 351 AGGACAAACT TGTTTAGTCA TCAATGATAT GGTTCCTCA GGAAAAACTA
 401 TAATAGAGAC AGCAGTCGCA CTGGAAGAAA ATGGTCTGGT AGTTCTGAA
 451 GCATTGGTAT TCTTAGATCG TAGAAAAGAA GCGGTGTCAC CACTTGGTCC
 501 ACAGGGAATA AAAGTCAGTT CGGTATTTCAC TGTAACCACT CTGATAAAAG
 551 CTTTGATCGC TTATGGGAAG CTAAGCAGTG GTGATCTAAC CCTGGCAAAC
 601 AAAATTCCG AAATTCTAGA AATTGAATCT TAA

20 The PSORT algorithm predicts cytoplasm (0.0358).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 102A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 102B) and for FACS analysis.

The cp6904 protein was also identified in the 2D-PAGE experiment.

25 These experiments show that cp6904 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 103

The following *C.pneumoniae* protein (PID 4376964) was expressed <SEQ ID 205; cp6964>:

30 1 MKKLIALIGI FLVPIKGNTN KEHDHAHATVL KAARAKYNLF FVQDVFPVHE
 51 VIEPISPDCV VHYEGWV*

The cp6964 nucleotide sequence <SEQ ID 206> is:

35 1 ATGAAAAAAAT TGATTGCTTT GATAGGGATA TTTCTTGTTT CAATAAAAGG
 51 AAATACCAAT AAGGAACACG ACGCTCACGC GACTGTTTTA AAAGCGGCCA
 101 GAGCAAAGTA TAATTGTTTC TTTGTTTCAGG ATGTTTTCCC TGTACACGAA
 151 GTTATCGAGC CTATTCCTCC CGATTGCCTG GTACATTATG AAGGGTGGGT
 201 TTGA

The PSORT algorithm predicts inner membrane (0.091).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 103A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a 40 Western blot (Figure 103B) and for FACS analysis (Figure 103C).

These experiments show that cp6964 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 104

The following *C.pneumoniae* protein (PID 4377387) was expressed <SEQ ID 207; cp7387>:

```

1 LNFAKIDHNH LYLTCGLG VACPILSTDC LPNYSEKASH EVLVYSKFR
51 ISGEPSRLAT SGNDTYYSIV SLPIGLRYEV TSPSGRHD FN IDMHVAPKIG
101 AVLSHGTREA KEIPGSSKDY AFFSLTARES LMISEKLAMT FQVSEVIQNC
151 YSQCTKVTKT NLKEQYRHLS HNTGFELSVK SAF*

```

- 5 The cp7387 nucleotide sequence <SEQ ID 208> is:

```

1 TTGAATTTCG CAAAGATTGA TCACAATCAT CTCTACCTTA CATGTTGGG
51 AGATCTTGGT GTAGCTGTC CTATACTTTC TACAGATTGT CTACCTAATT
101 ATAGCGAGAAA AGCATCTCAT GAGGTTCTTG TTTATAGTAA ATTTAGATGC
151 ATTTCTGGAG AGCCATCTCG ACTTGCAACT TCAGGAAATG ACACATATTA
201 TTCTATAGTA AGTTTACCTA TAGGACTCCG TTACGAAGTG ACTTCACCAT
251 CAGGACGTC A TGATTTCAAT ATTGATATGC ATGAGCTCC AAAGATAGGT
301 GCAGTACTCT CTCATGGAAC ACGAGAGGCT AAAGAGATCC CAGGATCTTC
351 AAAAGACTAT GCATTTTTA GCTTGACTGC TAGAGAAAATG TTAATGATT
401 CTGAAAAGCT TGCGATGACT TTCCAAGTTA GCGAAGTTAT TCAGAATTGT
451 TATTTCACAAT GTACTAAAGT AACGAAAATC AATTTAAAG AACAGTATAG
501 GCACCTTATCC CACAATACAG GGTTTGAGTT AAGCGTCAAG TCTGCATTCT
551 AA

```

The PSORT algorithm predicts inner membrane (0.043).

The protein was expressed in *E.coli* and purified as a his-tagged-fusion product (Figure 104A) and 20 also as a GST-fusion (Figure 104B). The recombinant proteins were used to immunise mice, whose sera were used in a Western blot and for FACS analysis (Figure 104C; his-tagged).

These experiments show that cp7387 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 105

- 25 The following *C.pneumoniae* protein (PID 4376281) was expressed <SEQ ID 209; cp6281>:

```

1 MFLQFFHPIV FSDQSLSFLP YLGKSSGIIE KCSNIVEHYL HLGGDTSVII
51 TGVSGATFLS VDHALPIKS EKIJKILSYI LILPLILALF IKIVLRLIILF
101 FKYRGLLIDV KKEDLKKTLD PDQEENLSPPL PSPTTLKKIH ALHILVRSGK
151 TYNELIQEGF SFTKIDDLQ APSPKQDIFG SYNSLLPNFY FHSLVSPNII
201 SGEERALNYH KEQQEEMAVK LKTMQACSFV FRSLHLPSMQ TKDKKAGFGL
251 LTFFF PWKIYP L*

```

The cp6281 nucleotide sequence <SEQ ID 210> is:

```

1 ATGTTTCTTC AGTTTTTCA TCCTATAGTC TTCTCGGATC AGTCCTTATC
51 TTTTCTTCCTC TACCTAGGAA AAAGCTCTGG CATTATTGAA AAATGTTCCA
101 ATATCGTTGA ACACTATTA CATTTGGGAG GAGGACACTTC TGTTATCATC
151 ACAGGAGTTT CTGGAGCTAC CTTCTATCT GTTGATCATG CCCTCCCAAT
201 CTCGAAATCTC GAAAAAAATAA TAAAATTCTC CTCTATATT TTAATTCTTC
251 CTCTGATTCTC AGCTCTCTT ATTAAAGATCG TTTTACGCAT TATCTTATTC
301 TTCAAGTATC GTGGTCTAAT CCTAGATGTT AAGAAGGAGG ATTTGAAAAA
351 AACACTTACA CCTGACCAAG AAAACCTCG TCTTCCTTTA CCATCTCTA
401 CAACATTAAA GAAAATCAT GCGCTACACA TTTTAGTGCG TTCTGGAAAAA
451 ACCTATAACG AGCTTATACA AGAAGGGTTT TCTTTCACTA AAATCACAGA
501 TCTTGGTCAA GCTCCTTCAC CAAAGCAAGA TATTGGCTTC TCTTATAATT
551 CCCTTCTCCC TAATCTCTAT TTTCATTCTC TGGTATCTGT TCCAAATATT
601 TCAGGGCGAGG AACGGGCTCT TAATTATCAT AAAGAACAC AAGAGGAAAT
651 GGCTGTTAAA TAAAAAACAA TGCAAGCGTG TTCTTTGTC TTCCGATCCC
701 TGCAATTACCA TTCAATGCAA ACGAAGGACA AAAAGGCTGG ATTTGGACTA
751 CTGACGTTTT TCCCTTGAA AATCTACCCCC CTATAA

```

The PSORT algorithm predicts inner membrane (0.5373).

- 50 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 105A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 105B) and for FACS analysis.

These experiments show that cp6281 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

**Example 106 and
Example 107**

- 5 The following *C.pneumoniae* protein (PID 4376306) was expressed <SEQ ID 211; cp6306>:

```
1 MGNHETYIHP GVLPSHQAQD VSRSTVYPSR SFIMRRMLMG WNFNRVPSKS
51 SEQLMDGHRI PLIFFGKHHP TISILNVNRF SWLSIFYNGE RGF*
```

The cp6306 nucleotide sequence <SEQ ID 212> is:

```
10 1 ATGGGAAACC ATGAGACCTA TATACATCCA GGAGTGCTCC CGAGTAGTCA
    51 TGCTCAGGAT GTTAGCAGAT CTACAGTTA CCCCAGTCGA AGTTTTATCA
    101 TGAGACGTAT GCTCATGGGC TCGAATTTCAT ATCGTGTTCC CTCGAAGAGC
    151 TCCGACCACT TAATGGATGG TCATCGCATA CCTCTTATAT TTTTTGGGAA
    201 GCATCATCCT ACTATATCTA TTTTAAATGT CAATAGATTT TCTTGGCTCT
    251 CCATTTTTTA CAATGGAGAA AGGGGGTTTT GA
```

- 15 The PSORT algorithm predicts cytoplasm (0.167).

The following *C.pneumoniae* protein (PID 4376434) was also expressed <SEQ ID 213; cp6434>:

```
1 MSESIINRSIH LEASTPFFIK LTNLCESRLV KITSLVISLL ALVGAGVTLV
51 VLFVAGILEPL LPVLILEIIL ITVLVLLFCL VLEPYLIEKP SKIKELPKVD
101 ELSVVETDST L*
```

- 20 The cp6434 nucleotide sequence <SEQ ID 214> is:

```
25 1 ATGTCTGAAA GTATTAACAG AAGCATTCTAT TTAGAACGCT CTACACCATT
    51 TTTTTATAAAAA TTAACGAATC TCTGTGAAAG TAGATTAGTT AAGATCACTT
    101 CTCTTGTAT TCTCTCTATTA GCTTTAGTGG GTGCGGGAGT CACTCTGTG
    151 GTTTTATTTG TAGCTGGGAT CCTCCCTTTA CTTCCGTAC TCATCTTAGA
    201 AATTATTTTA ATAACCGTCC TTGTCCTGCT TTTTTGTTTG GTATTGGAAC
    251 CTTATTTAAAT AGAAAAAACCT AGTAAAATAA AGGAACCTACC TAAAGTAGAC
    301 GAGCTATCTG TAGTAGAAAC GGACAGTACT CTTTAA
```

The PSORT algorithm predicts inner membrane (0.6859).

- 30 The proteins were expressed in *E.coli* and purified as his-tag products (Figure 106A; 6306 = lanes 2-4; 6434 = lanes 8-10). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 106B & 107) and for FACS analysis.

These experiments show that cp6306 & cp6434 are surface-exposed and immunoaccessible proteins, and that they are useful immunogens. These properties are not evident from the sequences alone.

Example 108

- 35 The following *C.pneumoniae* protein (PID 4377400) was expressed <SEQ ID 215; cp7400>:

```
1 MRVMRFFCLF FLGFLGSFHC VAEDKGVDLF GVWDDNQITE CDDSYMTEGR
51 EEEVEKVVDA
```

The cp7400 nucleotide sequence <SEQ ID 216> is:

```
40 1 GTGAGAGTTA TGAGATTTTT TTGTCTATTT TTTCTTGGGT TCCTAGGATC
    51 TTTTCATTGT GTTGCTGAAG ACAAGGGCGT GGATTTATTT GGAGTCTGGG
    101 ACGATAACCA AATTACAGAG TGTGACGATA GTTACATGAC AGAGGGTCGT
    151 GAAGAGGTTG AAAAGGTAGT GGACGCTTAG
```

The PSORT algorithm predicts periplasmic space (0.924).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 108A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 108B) and for FACS analysis.

These experiments show that cp7400 is a surface-exposed and immunoaccessible protein, and that it
5 is a useful immunogen. These properties are not evident from the sequence alone.

Example 109

The following *C.pneumoniae* protein (PID 4376395) was expressed <SEQ ID 217; cp6395>:

```

10      1 MENAMSSSFV YNGPSWILKT SVAQEVFKKH GKGIQVLLST SVMLFIGLGV
      51 CAFIFPQYLI VFVLTLIAALLM LAISLVLFL LIRSVRSSMVD RLWCSEKGYA
      101 LHQHENGPEL DVKRVQOILL RSPYIKVRAL WPSGDIPEDP SQAAVLLSP
      151 WTFFFSSVDVE ALLPSEQEKE GKYIDPVLPK LSRIERVSLL VFLSAFTLDD
      201 LNEQGVNPLM NNEEFLFFIN KKAREHGIQD LKHEIMSSLE KTGVPLDPSM
      251 SFQVSQLAMFS VYRYLRLQRDL TTSELRCFHL LSCFKGDVVH CLASFENPKD
      301 LADSDFLEAC KNVEWGEFIS ACEKALLKNP QGISIKDLKQ FLVR*

```

15 The cp6395 nucleotide sequence <SEQ ID 218> is:

```

20      1 ATGGGAGAATG CTATGTCATC ATCGTTTGTG TATAATGGGC CTTCGTGGAT
      51 TTTAAAAAACG TCAGTAGCTC AGGAGGTATT TAAAAAGCAC GGTAAGGGGA
      101 TTCAGGTTCT CTTAAGTACT TCAGTGATGC TTTTTATAGG TCTTGAGTC
      151 TGTGCCCTTA TATTTCTCA ATATCTGATT GTTTTGTTTG TGACTATAGC
      201 TTTGCTTATG CTCGCTATAA GCTGGTATT GTTTCTCTTA ATACGTTCTG
      251 TACGCTCTTC AATGGTAGAT CGTTTGTGGT GTTCTGAAA AGGATATGCT
      301 CTTCATCAAC ATGAGAACCG GCCTTTTTG GATGTGAAGC GTGTACAGCA
      351 AATTCTTCTA AGATCACCC ATATTAAGT TCAGGCTTTA TGGCCGTCTG
      401 GAGATATCCC TGAGGATCCT TCACAAGCTG CGGTTCTATT ACTTTCTCCT
      451 TGGACTTTCT TTTCATCCGT GGATGTAGAG GCTTTTATTAC CGAGTCTCTCA
      501 AGAAAAGGAG GGTAAAGTATA TAGATCCTGT GCTGCCTAAG TTGTCCTAGGA
      551 TAGAGAGAGT CTCACTTTA GTGTTTTGAG GTGCATTTCAC TTTGGATGAC
      601 TTAAACGAAC AGGGAGTCAA TCCCTTGATG AATAATGAGG AATTTTTATT
      651 TTTTATAAAAT AAGAAAGCGC GTGAGCATGG GATTTCAGGAT TTAAAACACG
      701 AGATTATGTC TTCGTTAGAG AAAACAGGAG TGCCATTAGA CCCCTCAATG
      751 AGTTTTCAAG TTTCACAAAG GATGTTTTCT GTATATCCT ACTTGAGACCA
      801 AAGGGATTAA ACAGACTTCAG AATTAAGATG TTTTCACCTC TTAAGTTGTT
      851 TTAAAGGGGA TGTGGTTCAT TGTTTAGCTT CATTTGAAA CCCTAAAGAT
      901 TTAGCAGATT CTGACTTTTT AGAAGCTTGT AAGAACGTGG AATGGGTGA
      951 GTTTATTTCG GCATGTGAGA AGGCTTTTAAAGAACCG CAAGGAATTT
      1001 CCATTAAGGA TCTAAAACAA TTTTGTGA GGTAA

```

The PSORT algorithm predicts inner membrane (0.6307).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 109A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 40 109B) and for FACS analysis.

These experiments show that cp6395 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 110

The following *C.pneumoniae* protein (PID 4376396) was expressed <SEQ ID 219; cp6396>:

```

45      1 MIEFAFVPHT SVTADRIEDR MACRMNKLST LAITSLCVLI SSVCIMIGIL
      51 CISGTVGTYA FVVGIIIFSVL ALVACVFFLY FFYFSSEEFK CASSQEFRPL
      101 PIPAVVSAALR SYEYISQDAI NDVIKDTMQL STLSSLLDPE AFFLEFPYFN
      151 SLIVNHSMKE ADRLSREAPL ILLGEITWKD CETKILPWLK DPNIITPDDFW
      201 KLLKDHFDLK DFKKRIATWI RKAYPBEIRLP KKCLDKSIV KGCKKFLLLS

```

251 ENDVQYQRLL HKVCYFSGEF PAMVLGLGSE VPMVLGLPKV PKDLTWEMFM
 301 ENMPVLLQSK REGHWKISLE DVASL*

The cp6396 nucleotide sequence <SEQ ID 220> is:

```

  1 ATGATCGAGT TTGCTTTGT TCCTCATACC TCCGTGACAG CGGATCGGAT
  51 TGAGGATCGC ATGGCTGTC GCATGAACAA GTTGCTACT TTAGCAATT
  101 CAAGTCTTGT TGATGTCAG AGTCAGTTT GTATTATGAT TGGGATTTTA
  151 TGCATTTCTG GAACGGTTGG GACCTATGCA TTTGTTGTTAG GAATTATTT
  201 TTCTGTGCTT GCTTTGGTAG CATGTGTTTT CTTCTTTAT TTCTTTTATT
  251 TTTCTTCTGA GGAATTAAAG TGTGCTTCTT CGCAGGAGTT TCGTTTTTG
  301 CCTATACCAAG CTGTGGTTTC TGCAATTGCGT TCCTATGAAT ACATTCTCA
  351 GGACGCTATC AATGACGTTA TAAAAGATAAC GATGCAAGTTG TCTACCCCTT
  401 CTTCTCTTT AGATCCGAA GCTTTTTCT TAGAATTTCCT TTATTTAAC
  451 TCTTTGATAG TGAATCATTC GATGAAGGAA CGCGATCGTT TGTCTCGAGA
  501 GGCTTTTTGTT ATTATTTAG TGAGGATAC TTGAAAGGAT TGTGAAACAA
  551 AAATTTGCC ATGGTTGAAA GATCCTAATA TCACTCTGA TGATTCTGG
  601 AAGCTATTAAG AAGACCATTT CGATTTAAAG GACTTTAAAGA AGAGGATCGC
  651 CACTTGGATA CGGAAGGCCT ATCCAGAAAT TAGATTACCG AAGAACGATT
  701 GTTTAGATAA GTCTATCTAT AAGGGGTGTT GTAAGTTTT ATTACTTCT
  751 GAGAATGATG TGCAATATCA GAGCTTATTAA CATAAGGCTT GTTATTCTC
  801 TGGGGAGTTT CCTGCCATGG TTTTAGGTTT GGGAAAGTGAA GTGCCATGG
  851 TGTTAGGACT CCCTAAGGTT CCCAAGGATC TTACCTGGGA GATGTTATG
  901 GAAAATATGC CTGTTCTTCT GCAAAGCAAA AGAGAGGGGC ATTGGAAAAT
  951 CTCCTGGAA GACGTAGCCT CTCTTAA

```

The PSORT algorithm predicts inner membrane (0.6095).

- 25 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 110A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 110B) and for FACS analysis.

These experiments show that cp6396 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

30 Example 111

The following *C.pneumoniae* protein (PID 4376408) was expressed <SEQ ID 221; cp6408>:

```

  1 MNTSLKRPLK SHFDVVGSFL RPEHLKKTRE SLKEGSISLD QLMQIEDIAI
  51 QDLIKKQKAA GLSFITDGEF RRATWHYDFM WGFHGVGHHR ATEGVFFDGE
  101 RAMIDDTIYL DKISVSHHPF VDHFKFVKAL EDEFTTAKQT LPAPAQFLKQ
  151 MIFPNNIEVT RKFYPTNQEL IEDIVAGYRK VIRDLYDAGC RYLOLDDCTR
  201 GGLVDPRVCs WYGIDEKGLQ DLIQQQYLIN NLVIADRPPDD LVVNLHVCRG
  251 NYHSKFFASG SYDFIAKPLF EQTNVDGYYL EFDHERSGDF SPLTFISGEK
  301 TVCLGLVTSK TPTLENKDEV IARIHQAADY LPLERLSLSP QCQFASCEIG
  351 NKLTEEEQWA KVALVKEISE EVWK*

```

- 40 The cp6408 nucleotide sequence <SEQ ID 222> is:

```

  1 ATGAATACTT CACTAAAAAG ACCTCTGAAA TCTCATTGATGTTGTCGG
  51 TAGTTTTTG CGTCCTGAGC ATTAAAAAA AACTAGAGAA AGCCTTAAAG
  101 AAGGCTCTAT TTCTCTAGAT CAACTCATGC AAATTGAGGA TATCGCTATC
  151 CAAGATTTGA TCAAAAAAAC AAAAGCAGCA GGTCTTCTT TTATTACTGA
  201 TGGAGAATTG CGCAGAGCTA CGTGGCATTA CGACTTCATG TGGGTTTTC
  251 ATGGCGTAGG TCACCACAGA GCTACACAGAG GAGTTTCTT TGATGGAGAA
  301 CGCGCTATGA TCGATGATAC CTATCTGACA GACAAGATCT CTGTATCTCA
  351 CCACCCATTG GTGGATCACT TAAATTGTT AAAAGCTCTA GAAGATGAAT
  401 TTACGACTGC AAAGCAAATCTT CTTCTGCAC CGGCACAGTT TTTAAAGCAG
  451 ATGATCTTCC CTAATAATAT AGAGGTACACA CGTAAATTCTT ATCCTACAAA
  501 TCAGGAGCTA ATTGAAGATA TTGTTGCAAGG TTATCGTAAA GTCATTCCGG
  551 ATCTTTATGA TGCTGGCTGC CGCTATCTCC AATTAGATGA CTGTACTCGG
  601 GGAGGTTTAG TAGACCCCTCG AGTCTGTTCG TGGTATGGTA TCGATGAAAA
  651 AGGTCTTCAA GATCTGATTCA AACAAATATCT TCTGATTAAT AATCTTGTA
  701 TTGCAAGATCG TCCCGATGAT CTAGTCGTTA ATTTACATGT ATGCCGTGGG

```

5 751 AACTACCAC CAAAATTCTT TGCTAGTGGT AGTTATGACT TTATTCGAAA
 801 GCCCCTATTG GAACAAACAA ATGTAGACGG CTACTATTAA GAGTTTGATC
 851 ATGAGCGTTC TGGAGACTTC CCTCCCTCTCA CCTTCATTTC TGGAGAAAAA
 901 ACTGTCTGCT TAGCTCTTGT TACCCAGCAA ACCCCTACAC TTGAAAATAA
 951 GGATGAGGTC ATTGCTCGCA TACATCAAGC AGCAGACTAC CTGCCCTTGG
 1001 AAAGACTCTC TCTAACGTCAGTGTGGTT TTGCTTCATG TGAAATAGGA
 1051 AATAAAATTAA CAGAAGAAGA GCAATGGGCT AAAGTTGCTC TAGTAAAAGA
 1101 AATTTCCGAA GAAGTTGGAA AATAA

The PSORT algorithm predicts cytoplasm (0.2171).

- 10 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 111A) and also as a his-tagged product. The his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 111B) and for FACS analysis.

These experiments show that cp6408 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

15 Example 112

The following *C.pneumoniae* protein (PID 4376430) was expressed <SEQ ID 223; cp6430>:

20 1 MKLYSISSDV DTPWIFQLMS KVDSYLFLGG NRIKVVSVIV QEPNLIIGKV
 51 ENVRISTIVK ILKILSFLIF PLILIALALH YFLHAKYANH LLVSKILER
 101 PQYVPIPGRS GDTASHYKLT TLVPVSQKNL QAMGSNPLEV EAALRTTKPS
 151 FFCVPAKYFQ IIISSHGIRF SLDLEQLADD INLDSVSWPT EYLNSTMDFC
 201 SKADKRVIQ VNQNLRTGTYI NSVGKRSLLK FMLQHLFIDG ITQENPEALP
 251 NNTSGRLTLF PSVRYIYSHF TPQNPTIWPO VFFRQGPLDE DRGGGFIEILE
 301 QLQELGVRF ICPSQGPDNP NFQGFQGIRI YWEDSYQPDK EV*

The cp6430 nucleotide sequence <SEQ ID 224> is:

25 1 ATGAAACTTT ATAGCATCTC TTCAGATGTA GATACACCTT GGATATTTC
 51 GCTTATGTCA AAGGTAGATT CTTATCTTT CTTAGGCAGGG AATAGAATCA
 101 AGGTTGTCTC TATAGTATG CAAGAACCTA ACTTAATTAT TGGAAAAGTA
 151 GAAAACGTTG GGATCTCCAC AATAGTGAAA ATATTTAAAGA TTTTATCCTT
 201 CTTAATCTTC CCTCTGATT TAATCGCTTT AGCCCTACAC TATTTTCTAC
 251 ATGCTAAATA TGCTAATCAC TTACTTGTAT CTAAGATTTC AGAAAGAGCT
 301 CCTCAGTATG TGCCATTTC TGGTCGTTCA GGAGACACGG CGTCTCATTA
 351 TAAATTAAACA ACATTGGTTT CAGTATCCCA AAAAATCTA CAAGCTATGG
 401 GATCAAATCC TCTAGAAGTT GAAGCGGCTC TTGAACTAC AAAACCCCTCT
 451 TTTTCTGTG TACCTGCAA ATACCGTCAG ATTATAATT CAACTCACCG
 501 CATTGCGTTT TCTTTAGATC TTGAACAACT TGCTGATGAC ATTAATTTC
 551 ATTCCGGTTTC CTGGCCATCG GAGTATCTTA ACTCTACTAT GGATTTTG
 601 AGCAAGGGCAG ATAAACGTGT TATACAGAAAT GTACAAAATC TGCGGACAGG
 651 AACTTACATA AATTCTGTAG GAAAGCGTAG CCTTTTAAAA TTCATGTTAC
 701 AGCACCTATT TATTGATGGG ATCACACAAAG AAAACCCCTGA AGCCCTTC
 751 ACAACATACAT CTGGAAAGACT GACTCTATT CCTAGTGTTG TTATATCTA
 801 TTCTCATTTT ACTCCACAAA ATCCTACAAAT ATGGCCGCAA GTCTTTTCA
 851 GACAAGGTCC TCTAGATGAA GATCGAGGAG GAGGATTGAA GATCTTAGAG
 901 CAATTACAAAG AGTTAGGAGT TAGGTTTCCA ATTGCCCCCT CTCAGGGACC
 951 AGACAATCCT AATTTCAGG GTTTCAAGG GATTGATTC TATTGGAAAG
 1001 ATTCCATCA ACCAATAAG GAGGTTAA

The PSORT algorithm predicts inner membrane (0.5140).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 112A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 112B) and for FACS analysis.

- 50 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 112A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 112B) and for FACS analysis.

-141-

Example 113

The following *C.pneumoniae* protein (PID 4376439) was expressed <SEQ ID 225; cp6439>:

```

5   1 MSYDTLFKNL EKEDSVHKIC NEIFALVPRL NTIACTEAIID KNLPKADIHV
    51 HLPGTITPQL AWILGVNGF LKWNSWNTN HRLLSPKNPH KQYSNIFRNF
   101 QDICHEKDPP LSVLQYNILN YDFNSFDRVM ATVQGHRFFP GGIQNEDLL
   151 LIFMNLYLQQC LDDTIVYTEV QQNIRLAHVL YPSLPEKHAR MKFYQILYRA
   201 SQTFSKHGIT LRFLNCFNKT FAPQINTQEP AQEAVQWLQE VDSTFPGLFV
   251 GIQSAGSESA PGACPKRLAS GYRNAYDSGF GCEAHAGEGI ETRTIFSSAK
   301 VNPEGHLIEIT RVTFSSLKRK QPSLPIRVT CQLG*

```

10 The cp6439 nucleotide sequence <SEQ ID 226> is:

```

15   1 ATGCTTTATG ATACGTATT CAAGAATCTT GAAAAGGAAG ATTCTGTACA
    51 TAAGATATGC AATGAGATCT TTGCATTAGT ACCACGACTC AATACAATCG
   101 CTTGCACCGA AGCTATCATC AAAAACCTCC CCAAAGCAGA TATCCATGTA
   151 CACCTTCCTG GGACCATAAC ACCTCAATT A CTGGGATTT TAGGTCTGAA
   201 AAATGGGTTT CTTAAAATGGT CTTATAATT TTGGACCAAT CATCGATTAC
   251 TTTCTCTAA GAATCCTCAT AAAAACATACT CCAAATATTTC CCGAAACTTT
   301 CAAGATATCT GTCACGAAAA GGATCCGGAT TTAAGTGAT TACAAATATAA
   351 TATCTTAAAT TACGATTTA ATAGCTTTGA TAGAGTGATG GCTACAGTAC
   401 AAGGACATCG CTTTCCCTT GGAGGAATCC AAAATGAAGA AGACCTCTT
   451 CTCATTTCATC ATAACATATCT CCAGCAATGT CTGGACGATA CTATCGTGT
   501 TACTGAAGT CAACAAATAA TCCGCCTTGCC CATCGTTTG TATCCTTCAT
   551 TACCTGAAAAA GCACGCCGT ATGAAGTTT ATCAAATCTT GTATCGTGT
   601 TCGCAACAGT TTTCAAAACA CGGGATTACT TTACGATTTC TAAACTGCTT
   651 CAATAAAACA TTTGCTCCAC AAATAAACAC ACAAGAACCT GCCCAAGAAG
   701 CTGTTCAATG GCTCCAAGAG GTGATTCTA CATTTCCTGG TCTATTGTA
   751 GGGATACAAT CCGCAGGATC AGAATCTGCG CCCGGAGCCT GTCTTAAGCG
   801 ATTAGCTCT GGATATAGAA ATGCTTATGA CTCAAGGTTT GGTTGTGAAG
   851 CTCATGCTGG AGAAGGCATA GAGACCCGGA CTATTTTTTC GTCAGCTAAG
   901 GTAAATCCAG AGGGATTGAT CGAGATAACC CGAGTGACTT TCTCGTCTCT
   951 TAAACGAAAA CAGCCATCTA GTTACCCAT AAGAGTTACT TGCCAGTTAG
  1001 GATAA

```

The PSORT algorithm predicts cytoplasm (0.1628).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 113A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 35 113B) and for FACS analysis.

These experiments show that cp6439 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 114

The following *C.pneumoniae* protein (PID 4376440) was expressed <SEQ ID 227; cp6440>:

```

40   1 LQSARRHLNT IFILDGFSGQY TYVLAQVVRK LFVYCEVLPW NISVQCLKER
    51 APLGIILSGG PHSVYENKAP HLDPEIYKLG IPIILAICYGM QLMARDFGGT
   101 VSPGVGEFGY TPIHLYPCEL FKHIVDCESL DTEIRMSHRD HVTTIPEGFN
   151 VIASTSQCSI SGIENTKQRL YGLQFHPEVS DSTPIGNKIL ETFVQEICSA
   201 PTLWNPLYIQ QDLVSKIQDT VIEVFDEVAQ SLDVQWLAQG TIYSDVIESS
   251 RSGHASEVIK SHHNVGGGLPK NLKLKLVEPL RYLFKDEVRI LGEALGLSSY
   301 LLDRHPFPGP GLTIRVIGEI LPEYLAILRR ADLIFIEELR KAKLYDKISQ
   351 AFALFLPIKS VSVKGDCRSY GYTIALRAVE STDFMTGRWA YLPCDVLSQC
   401 SSRIINEIPE VSRVYDSD KPPATIEWE*

```

The cp6440 nucleotide sequence <SEQ ID 228> is:

```

50   1 TTGCAGAGTG CAAGGAGACA TTTGAACACC ATATTTATTG TAGATTGTTGG
    51 ATCTCAATAT ACTTATGTAT TAGCAAAGCA AGTGGCGAAG TTATTTGTAT
   101 ATTGCGAAGT CTCTCCCTGG AATATCTCTG TGCAATGTTT AAAAGAAAGA
   151 GCGCCTTGG GGATCATTCT CTCAGGAGGT CCTCACTCTG TCTATGAAAA

```

201 CAAGGCTCCA CATTAGATC CTGAAATCTA TAAACTTGGC ATTCCAATTC
 251 TAGCTATTTG CTATGGCATG CAGCTTATGG CTAGAGATT TGAGGGACT
 301 GTAAGCCCTG GTGTAGGAGA ATTGGATAT ACGCCCATCC ATCTGTATCC
 351 TTGTGAGCTC TTCACACACA TCGTCGACTG CGAACCTCTA GACACAGAGA
 401 TTGGATGAG CCATCGGGAT CATGTTACGA CAATTCCCTGA AGGATTAAAT
 451 GTAATCGCAT CCACCTCACA ATGCTCGATC TCAGGAATAG AAAATAACCA
 501 ACAACGGTTC TACGGGCTGC AATTCATCC CGAGGTTCT GACTCCACTC
 551 CAACGGAAA TAAGATTCTA GAAACTTTTG TTCAAGAGAT CTGTTCTGCT
 601 CCCACACTAT GGAATCCCTT GTATATTTCAG CAAGACCTTG TAAGTAAAT
 651 TCAAGATACC GTTATTGAAG TATTGATGA AGTCGCTCAG TCATTAGACG
 701 TACAATGGTT AGCTCAAGGA ACCATCTACT CAGATTTAT TGAGTCCCTCA
 751 CGCTCTGGAC ATGCCCTCGA AGTAATAAAA TCACATCATA ATGTAAGGGG
 801 GCTTCCAAAA AATCTTAAGC TGAAGTTAGT CGAGCCCTTA CGTTATTAT
 851 TTAAAGATGA AGTTCGAATT TTAGGAGAAG CCCTAGGACT TTCTAGCTAT
 901 CTCTTGGACA GGCATCCTT TCCTGGACCT GGCTTGACAA TTCGTGTGAT
 951 TGGAGAGATC CTTCTGAAAT ATCTAGCCAT TTTACGACGG GCGGACCTCA
 1001 TCTTTATAGA AGAGCTTAGG AAAGCAAAAC TCTACGATAA AATAAGCCAA
 1051 GCCTTGTCTC TATTCTTCCC TATAAAATCA GTATCTGTA AAGGAGATTG
 1101 TAGAAGCTAT GGTTATACCA TAGCATTACG TGCTGTAGAA TCTACAGATT
 1151 TCATGACAGG ACGATGGGCC TACCTTCCAT GCGATGTTCT CAGTTCTTGC
 1201 TCATCGCAA TTATTAAATGA AATACCCGAG GTAAGCCGAG TGGTCTATGA
 1251 TATTCTGAC AAGCCACCAAG CAACTATAGA ATGGGAATAG

The PSORT algorithm predicts cytoplasm (0.0481).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 114A) and also as 25 a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 114B) and for FACS analysis.

These experiments show that cp6440 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 115

30 The following *C.pneumoniae* protein (PID 4376475) was expressed <SEQ ID 229; cp6475>:

1 MNTYTFSPYL QKSFSLFLLE KLDSYFFFGG TRTQILVITP TNIRLAAKR
 51 GCKVSTIEKI IKILSFILLP LVIAIFILRY FLHKKFDKQF LCIPKVISNE
 101 DEALLGSRPQ AVEKAVREIS PAFFSIPRKY QLIRIDTPKD DAPSILFPIG
 151 LEIILKDLCI DTLKQSNLFL KREMDFLGHP EEKALFDSC SIEKDQEWSMS
 201 LESKKLLITH FLKYLGVSGI EQLNPGFNPE NGRGYFSEJIS TAKIHFHQHG
 251 RYGPIRSSGP IMKEI*

The cp6475 nucleotide sequence <SEQ ID 230> is:

1 ATGAATACCT ATACCTTCTC TCCTACACTT CAGAAAAGCT TCAGCCTATT
 51 TCTTTTAGAA AAATTAGACT CTTACTTTTT CTTTGGAGGG ACTCGTACAC
 101 AAATCTTAGT CATCACACCA ACCAATATTG GATTAGCAGC TAAAAAAAGA
 151 GGGTGTAAAGG TTTCTACTAT AGAAAAAGATA ATCAAGATCC TCTCTTTAT
 201 CCTGCTGCCCT CTAGTTATCA TTGCCCTTTAT ACTTCGCTAT TTCTTACATA
 251 AGAAAATTGCG TAAACAGTTC TTGTGTATCC CAAAAGTCAT TTCTAACGAA
 301 GACGAAGCTC TTCTGGATC TAGACCACAA GCAGTTGAAA AAGCAGTTCG
 351 AGAAAATATCT CCAGCCTTCT TCTCTATACC AAGAAAATAC CAACTTATTA
 401 GAATCGACAC TCCTAAAGAT GACGCTCCCT CAATCCTTTT CCCTATAGGC
 451 ATAGAGATCA TTCTCAAAGA TTTATGTATT GATACACTCA AGCAATCTAA
 501 TCTTTCTCTT AAAAGAGAAA TGGATTCTT AGGTCTATCCA GAAGAAAAAG
 551 CATTATTGCG CTCGATATGT TCTATAGAAA AAGATCAAGA ATGGATGAGC
 601 TTGGAAAGTA AAAAACTTTT AATCACGCAC TTCTAAAGT ATCTCTTGT
 651 CTCTGGAATC GAACAACTAA ATCCAGGCTT TAACCCAGAG AATGGGGGTG
 701 GCTATTCTTC AGAAATAAGT ACAGCAAAGA TCCATTCTCA TCAGCACGGT
 751 CGATATGGGC CAATCCGTTT TTGGGACCC ATCATGAAGG AAATATAAA

The PSORT algorithm predicts inner membrane (0.5373).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 115A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 115B) and for FACS analysis.

These experiments show that cp6475 is a surface-exposed and immunoaccessible protein, and that it
5 is a useful immunogen. These properties are not evident from the sequence alone.

Example 116

The following *C.pneumoniae* protein (PID 4376482) was expressed <SEQ ID 231; cp6482>:

```

1  MLVELEALKR EFAHLKDQKP TSDOEITSLY QCLDHLEFVL LGLGQDKFLK
51  ATEDEDVLFE SQKAIDAWNA LLTKARDVLG LGDIGAIYQT IEFLGAYLSK
101 VNRRRAFCIAS EIHFLKTAIR DLNAYYLLDF RWPLCKIEEF VDWGNDCVEI
151 AKRKLCFLTEK ETKELNESLL REEHAMEKCS IQDLQRKLSD IIIELHDVSL
201 FCFSKTPSQE EYQKDCLYQS RLRYLILLYE YTLLCKTSTD FQEQRARKEE
251 FIREKPSLLE LEKGIKQTKE LEFAIAKSKL ERGCLVMRKY EAAAKHSLDS
301 MFEEETVKSP RKDTE*

```

15 The cp6482 nucleotide sequence <SEQ ID 232> is:

```

1  ATGCTAGTAG AGTTAGAGGC TCTTAAAAGA GAGTTTGCAC ATTTAAAAGA
51  CCAGAACGCC ACAAGTGACC AAGAGATCAC TTCACTTTAT CAATGTTGG
101 ATCATCTTGA ATTCTGTTTA CTCGGGCTGG GCCAGGACAA ATTTTTAAAG
151 GCTACGGAAG ATGAAGATGT GCTTTTGAG TCTCAAAAAG CAATCCGATGC
201 GTGGAATGCT TTATTGACAA AAGCCAGAGA TGTTTTAGGT CTTGGGGACA
251 TAGGTGCTAT CTATCAGACT ATAGAATTCT TGGGTGCTA TTTATCAAAA
301 GTGAATCGGA CGGCTTTTG TATTGCTTCG GAGATACATT TTCTAAAAAC
351 AGCAATCGGA GATTTGAATG CATATTACCT GTTAGATTTT AGATGGCCTC
401 TTTGCAAGAT AGAAGAGTTT GTGGATTGGG GGAATGATTG TGTTGAAATA
451 GCAAACAGGA AGCTATGCACT TTTGAAAAAA GAAACCAAGG AGCTCAATGA
501 GAGCCCTCTT AGAGAGGAGC ATGCCATGGGA GAAATGCTCC ATTCAAGATC
551 TGCAAGGAA ACTTAGGCAC ATTATTATTG AATTGCAATGA TGTTTCTCTT
601 TTTTGTGTTT CTAAGACTCC CAGTCAAGAG GAGTATCAA AGGATTGTTT
651 GTATCAATCA CGATTGAGGT ACTTATTGTT GCTGTATGAG TATACATTGT
701 TATGTAAGAC ATCCACAGAT TTCAAGAGC AGGCTAGGGC TAAAGAGGAG
751 TTCAATTAGGG AGAAATTCAG CCTCTAGAG CTCGAAAAGG GAATAAAACA
801 AACTAAAGAG CTTGAGTTTG CAATTGCTAA AAGTAAGTTA GAACGGGGCT
851 GTTTAGTTT GAGGAAGTAT GAAGCTGCCG CTAAACATAG TTTAGATTCT
901 ATGTTCGAAG AAGAAACTGT GAAGTCGCCG CGGAAAGACA CAGAATAA

```

35 The PSORT algorithm predicts cytoplasm (0.4607).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 116A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 116B) and for FACS analysis.

These experiments show that cp6482 is a surface-exposed and immunoaccessible protein, and that it
40 is a useful immunogen. These properties are not evident from the sequence alone.

Example 117

The following *C.pneumoniae* protein (PID 4376486) was expressed <SEQ ID 233; cp6486>:

```

1  VVVVALFILG IFFLSSGLAF LVHTSCGVLL GAALPILCIG LVLLAVALIV
51  FLCHKKTRQ DLDYYDQDLD SLVIHKKEIP NDISELRVTF EKLQLNLFOFH
101 TKDFSDLSQE LQGKFINCME KWLTLEDEVT KPLIVRDRFL ETRRNFTTFC
151 EQVKGIQSNI FDLHEEKSSL YLELYRLRKD LQVLLNNFLL PPGILKVDYD
201 EIEAIKGLFI RLTSRLDKD VKAQERKKFI NEAMSREFKEV EKAFDIVDRA
251 TKKLMDRAKK ESPARLFMGR TESLLEMKKN EEALKNQGLD PENLSHPELF
301 SPYQQQLLILN YLNSEIVLHH YEFLISGTVT SGLTLEECEN RMRAASTGLN

```

-144-

351 ALLVRKLQFR GAIKSAYFEK LTEIEKELRS LQDVKSLEL ELIHKIKDIV
 401 TEET*

The cp6486 nucleotide sequence <SEQ ID 234> is:

```

 5      1 GTGGTGGTTG TCGCTTTATT TATCCTGGG ATPTTCCTTT TATCTGGTTC
      51 TCTTGCATTC CTTGTTCAT ACGCTTGCGG AGTTCTTTA GGAGCGGC
 10     101 TTCCCATACT TTGCATAGGT CTTGTTTTAT TGCGCTGAGC TCTTATTTGTT
      151 TTCTTATGTC ACAAAACAA GACTCGTCA GATTTAGATT ATTATGATCA
      201 AGATTTAGAT TCTTGGTGA TTCATAAGAA AGAGATCCC AATGACATCT
      251 CTGAGTTGCGG GGTAAACATT GAAAAGTTGC AAAATCTGTT TCAGTTCCAT
 10     301 ACGAAAGATT TCTCTGATCT AAGCCAAGAG CTTCAAGGTA AATTTATCAA
      351 TTGCATGGAG AAATGGCTAA CTTAGAAGA CGAACGTGACT AAATTTCTTA
      401 TTGTTGAGA TAGATTTTA GAAACCAGAA GAAATTTTAC CACTTTGGA
      451 GAACAGGTTA AAGGGATCCA AAGCAATATT TTTGATTGTC ATGAGGAAAA
 15     501 GTCTTCATTA TATTTAGAAT TGATAGGCT TAGGAAAGAC CTCCAAGTTC
      551 TATTAATTT TTTCTGCTC CCCCCAGGTA TACTCAAGGT AGATTATGAT
      601 GAAATTGAGG CTATCAAAGG TCTGTTTATA AGATTAACCT CTAGATTAGA
      651 TAAGCTTGAT GTGAAAGCTC AGGAACGTAA GAAGTTTCATT AATGAAATGA
      701 GTAGGGAAT TAAAGAAGT GAGAAAGCTT TTGATATTGT CGATAGGGCA
      751 ACAAAAAAAG TTATGGATAG AGCCAAGAAA GAAAGTCCGG CACGTCCTTT
 20     801 CATGGGTAGA ACTGAGTCTC TCTTAGAAAT GAAAAAAAT GAAGAAGCCC
      851 TTAAAAATCA GGGGCTAGAT CCTGAAAATC TTTCCCATCC TGAACCTTTT
      901 AGTCCGTATC AACAGCTTT AATTTGAAT TATTTAAATA GCGAAATAGT
      951 TCTGCATCAT TATGAGTTCC TTATTTCTGG AACAGTAACT TCTGGCCTAA
 25     1001 CTCTTGAAGA ATGTGAAAAT CGAATGAGGG CGGCTTCTAC TGGGTTGAAC
      1051 GCCCCCTCTGG TGCGTAGCT CCAGTTCAGA GGTGCTATAA AATCTGCGTA
      1101 TTTTGAAAAA CTCACAGAGA TTGAAAAAGA GTTACGATCA CTTCAAGACG
      1151 TAATAAAACTC ATTGGAACTA GAACTGATCC ATAAGATAAA AGATATAGTG
      1201 ACAGAAGAAA CTTAG
  
```

The PSORT algorithm predicts inner membrane (0.7474).

30 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 117A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 117B) and for FACS analysis.

These experiments show that cp6486 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example 118

The following *C.pneumoniae* protein (PID 4376526) was expressed <SEQ ID 235; cp6526>:

```

 40     1 MSPFKKIVNR LLCYISFQKE SRTLPIIIRE PRMTTKSLGS FNSVISKNKI
      51 HFISLGCSR N LVDSEVMGLI LLKAGYESTN EIEDADYLIL NTCAPFLKSAR
      101 DEAKDYLDDHL IDVKENAKI IVTGCMTSNH KDELPKPMSH IHYLLGSGDV
      151 ENILSAIESR ESGEKISAKS YIEMGEVPRQ LSTPKHYAYL KVAEGCRKRC
      201 AFCIIPSIIKG KLRSKPLDQI LKEFRILVNK SVKEIILIAQ DLGDYGKDLS
      251 TDRSSQLES LHELLKEPGD YWLRLMLYLYP DEVSDGIIDL MQSNPKLLPY
      301 VDIPLOQHIND RILKQMRRRT SREQILGFLE KLRAKVPQVY IRSSVIVGFP
      351 GETQEEFQEL ADFIGEKGWID NLGIFLYSQE ANTPAAELPD QIPEKVKESR
 45     401 LKILSQIQKR NVDKHQNQLI GEKIEAVIDN YHPETNLILT ARFYQQAPEV
      451 DPCIIIVNEAK LVSHFGERCF IEITGTAGYD LVGRVVKKSQ NQALLKTSKA
      501 *
  
```

The cp6526 nucleotide sequence <SEQ ID 236> is:

```

 50     1 ATGAGTCCTT TTAAGAAAAT AGTAAATCGC TTACTATGCT ATATTTCTTT
      51 TCAAAAAGAA TCAAGAACTC TCCAATCAT TATTAGAGAA CCTAGGATGA
      101 CAACAAAAG TTTAGGATCT TTCAATTCA G TATTTCCAA AAATAAAATT
      151 CATTTTATTA GTTTGGGATG CTCTCGGAAC CTTGTTAGATA GCGAAGTCAT
      201 GCTAGGCATT CTTCTTAAGG CAGGTTACGA GTCTACTAAT GAAATGAG
      251 ATGCTGACTA TTAAATTATA AATACCTGTC CGTTTTAAA AAGTGTAGA
      301 GATGAAGCTA AAGATTATCT AGACCATCTA ATTGTATGTA AAAAAAGAGAA
  
```

```

351 CGCTAAAATT ATTGTAAC TG GATGCATGAC TTCCAACCAC AAAGATGAGC
401 TAAACCCCTG GATGTCACAC ATCCATTAC TACTAGGTTC TGGGGATGTT
451 GAGAATATTG TTTCCTGCTAT TGAGTCTCGT GAATCTGGAG AAAAATCTC
501 TGCAAAGAGT TACATTGAGA TGGGAGAAGT TCCAAGACAG CTTTCCACAC
551 CAAAACACTA TGCCTATTAA AAAGTTGCTG AGGGCTGTAG AAAACGTTGT
601 GCTTTTTGTA TTATTCCCTTC CATAAAGGA AAGCTCCGCA GCAACCTCT
651 GGATCAAATT CTTAAAGAAAT TCCGCATCCT TGTAACAAAG AGTGTGAAAG
701 AGATTATATT GATAGCTAA GACCTAGGAG ATTATGGAAA GGATCTCTCT
751 ACAGACCGCA GTTCGAGCT AGAACACTA TTACATGAGT TACTGAAAGA
801 GCCTGGTGTAT TATTCGCTGC GGATGTTGTA TTTATATCCT GATGAAGTGA
851 GTGATGGCAT TATAGATCCT ATGCAATCTA ATCCCCAAACT TCTTCCCTAT
901 GTAGATATTCT CCTTACAGCA CATTAACGAC CGTATTTAA AGCAAAATGCG
951 AAGAACGACT TCTAGGGAGC AAATCCTAGG ATTCCCTAGAA AAATTACGTG
1001 CCAAGGTTCC TCAGGTCTAT ATCCGTTCTT CTGTTATTGT GGGTTCCCC
1051 GGTGAAACTC AGGAAGAATT CCAGGAGTTA GCTGATTATA TTGGTGAGGG
1101 TTGGATTGAT AATCTCGAA TTTTCTTGTA CTCTCAAGAA GCGAATACCC
1151 CGGCAGCAGA ACTCCCTGAC CAGATACCAAG AAAAGTTAA AGAACATCGAGG
1201 TTGAAATTCT TATCTCAAAT TCAGAAACGC AATGTGGATA AACATAATCA
1251 GAAGCTCATT GGGGAAAAAA TAGAAGCAGT TATTGATAAC TATCATCCTG
20 1301 AAACGAATCT TTTACTCACT GCAAGGTTCT ATGGACAAGC TCCTGAAGTG
1351 GACCTTGTA TTATTGTAAGA TGAGGCGAAG CTTGTTTCTC ATTTGGAGA
1401 AAGATGTTT ATAGAAATCA CAGGGACTGC TGGTTACGAC CTTGTAGGGC
1451 GTGTTGTAAGA AAAATCTAG AACCAAGCTT TGCTAAAAC TAGCAAAGCT
1501 TAG

```

25 The PSORT algorithm predicts cytoplasm (0.1296).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 118A) and also as a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 118B) and for FACS analysis.

These experiments show that cp6526 is a surface-exposed and immunoaccessible protein, and that it 30 is a useful immunogen. These properties are not evident from the sequence alone.

Example 119

The following *C.pneumoniae* protein (PID 4376528) was expressed <SEQ ID 237; cp6528>:

```

1 MKNNINNNNEC YFKLDSTVDG DLLAANLKTF DTQAQGISST ETFSVQGNAT
51 FKDVQSATGL TSGTTYNLNA QNFSSQISI DFKNNRLSNC ALPKEDCDPV
101 PANYVRSPEY FFCSKPLIGD FDFNNGESYL PLTGSEYTLQ QSRNVNSIFR
151 FIGWKQSTRE LTVGGNNTAIQ FLAAGTYIVS FTVGKRWGNW NGWGGAIYIN
201 NGLGQVQCES TIYSGGGYAT IGTGTSIYR ASVDVAPNPNA DPNASDRYRA
251 GIFYLSNGGS SAGIGNYSFS LLYPDDRG*

```

The cp6528 nucleotide sequence <SEQ ID 238> is:

```

40 1 ATGAAAAACA ATATTAATAA TAATGAGTGC TATTTTAAT TAGACTCAAC
51 TGTAGATGGT GATTTGTTAG CAGCCAATCT CAAGACCTTT GATACACAGG
101 CCCAAGGAAT CTCATCGACT GAAACATTTC CTGTTCAGGG GAATGCAACA
151 TTTAAAGATC AAGTTTCAGC AACTGGATTA ACTTCAGGAA CTACTTATAA
201 TTTAAATGCA CAAAACTTA CTTCCCTCCC AATCTCTATA GATTTAAAAA
251 ATAATCGCT GAGTAATTGT GCATTGCCAA AAGAAGACTG CGATCCGGTG
301 CCAGCGAATT ATGTTCTGTT CCCCCAATAT TTTTTCTGTT CCAAGCCTCT
351 GATCGGAGAT TTTGATTTA ACTCAGGGGA ATCTTATTG CCTCTGACTG
401 GTTCCGAATA TACTCTATAT CAGTCACGTA ATGTAATAG TATATTCGTT
451 TTTATAGGAT GGAAGCAAAG TACACGAGAA TTAACGTAG GGGGAAATAC
501 TGCAGATACAA TTTCTTGCAG CAGGAACCTA TATCGTTCA TTTACTGTTG
551 GTAAACCGGT GGGATGGAAT AATGGTTGGG GAGGAGCCAT TTATATCAAT
601 AATGGTTTAG GACAAGTCCA ATGTGAAAGC ACGAATTATA GTGGTGGAGG
651 GTATGCAACA ATAGGTACAC TGGGGACCTC AATATATAGA GCCTCTGTAG
701 ATGTAGCTCC TAATCCCTAAT GATCCGAATG CTTCCGGATCG CTATAGAGCG
751 GGTATTTCT ATCTCAGTAA CGGTGGTTCT AGTGCAGGTA TAGGGAATTAA
801 CTCCCTTTCT CTTCTCTATT ATCCGGACGA TAGAGGGTAG

```

The PSORT algorithm predicts cytoplasm (0.1668).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 119A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 119B) and for FACS analysis.

- 5 These experiments show that cp6528 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 120

The following *C.pneumoniae* protein (PID 4376627) was expressed <SEQ ID 239; cp6627>:

```

10      1 MKCSPLTLVP HIFLKNDCEC HRSCSLKIRT IARLILGLVL ALVSALSFVF
      51 LAAPISYAIIG GTLALAAIVI LITLVVALL AKSKVLPPIPN ELQKIIYNRY
     101 PKEVVFYFVKT HSLTVNELKI FINCWKSQTDLPPNLHKKAE AFGIDILKSI
     151 DLTLFPEFEE ILLQNCPLYW LSHFIDKTES VAGEIGLNKT QKVYGLLGPL
     201 AFHKGYTTIF HSYTRPLLTL ISESQYKFLY SKASKNQWDS PSVKKTCEBI
     251 FKELPHNMIF RKDVGQGISQF LFLFFSHGIT WEQAQMQLI NPDNWKMCLCQ
     301 FDKAGGHCMSM ATFGGFLNTE TNMFDPVSSN YEPVTNFMTW KELKVILLEKV
     351 KESPMHPASA LVQKICVNNT HHQNLLKRWQ FVRNTSSQWT SSLPQYAFHA
     401 QTYKLEKKIE SSLPIRSSL*

```

The cp6627 nucleotide sequence <SEQ ID 240> is:

```

20      1 ATGAAGTGTA GTCCTTTAAC ACTAGTTCCC CATATATTAA TAAAAAAATGA
      51 CTGCGAATGT CATAGATCTT GTTCTTTAAA AATTAGGACA ATTGCCGAC
     101 TCATTTCTTGG GCTTGTCTA GCTCTTGTAA GCGCACTTTC TTTTGTTTTC
     151 CTTGCTGCCG CGATTAGCTA TGCTATTGGA GGAACTTTAG CTTTAGCCGC
     201 TATCGTAATC TTGATTATAA CGCTAGTCGT AGCACTGCTA GCTAAATCAA
     251 AGGTTCTGCCG CATCCCCAAC GAACCTCAGA AGATTTATTA CAATCCGCTAT
     301 CCTAAAGAACG TCTTTTATTG CGTGAAGAAC CACTCCCTGA CTGTTAACGA
     351 ATTAAAAATTT TTATTAATT GCTGGAAAAG CGGTACAGAC CTGCCTCCGA
     401 ATTAAACATAA AAAAGCAGAG GCTTTCGGGA TCGATATTCT AAAATCTATA
     451 GATTTAACCC TGTTTCCAGA GTTCAAGAGAG ATTCTTCTTC AAAACTGCC
     501 GTTATACTGG CTCTCCCATTT ATAGACAA AACTGAATCT GTTGCTGGGG
     551 AAATCGGATT AAATAAAACA CAAAAAGTTT ATGGTTTACT TGGGCCCTTA
     601 GCGTTTCATA AAGGATATAC AACTATTTC CACTCTTATA CACGCCCTCT
     651 ACTAACATTA ATCTCGAAAT CACAGTATAA GTTCCCTATAT AGTAAAGCGT
     701 CTAAGAACATCA ATGGGATTCT CCTTCTGTGA AAAAACCTG CGAAGAAATA
     751 TTCAAGGAAC TCCCCCACAA TATGATTTTC CGGAAGGATG TTCAAGGAAT
     801 CTCACAATTC TTATTTCTTT TCTTTCTCA TGGTATCACT TGGGAACAGG
     851 CTCAGATGAT TCAACTTATA AATCCTGATA ATGGAAAAT GTTGTGTCAG
     901 TTTGATAAAG CAGGAGGCCA CTGTTCCATG GCAACATTG GAGGCTTTTT
     951 GAATACTGAA ACAAAATATGT TCGATCCAGT ATCCTCTAAC TATGAACCTA
     1001 CAGTGAACCT CATGACCTGG AAAAGATTGA AGGTTTACT AGAGAAAGTA
     1051 AAAGAAAGTC CTATGCACCC AGCGAGTGCT CTTGTTCAAGA AGATATGCGT
     1101 AAATACAACG CACCATCAAA ATCTGTTAAA ACGATGGCAA TTTGTTCGTA
     1151 ATACGAGTTTC ACAATGGACA TCAAGCTTAC CTCAGTATGC TTTCCACGCC
     1201 CAAACCTACA AACTAGAGAA AAAATAGAA AGCAGTCTCC CTATACGATC
     1251 TTCCCTATAA

```

- 45 The PSORT algorithm predicts inner membrane (0.7198).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 120A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 120B) and for FACS analysis.

- These experiments show that cp6627 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

-147-

Example 121

The following *C.pneumoniae* protein (PID 4376629) was expressed <SEQ ID 241; cp6629>:

```

5      1  MSNITSPVIQ NNRSCNYYFE LKNSTTIHV ISAILLCGAL IAFLCVAAPV
      51  SYILSGALLG LGLLIALIGV ILGIKKITPM ISSKEQVFPQ ELVNRIAHY
10     101 PKFVSDFVSE AKPNLKDLS FIDLLNQLHS EVGSSTNYNV SEELQQKIDT
      151 FEGIARLKNE VRTASLKRLE SAASSRPLFP SLPKILQKVF PFFWLGEFIS
      201 AGSKVVELHHR VKKIGGSLEE DLSDYIKPEM LPTYWLIPLD FRPTNSSILN
      251 LHTLVLARVL TRDVFQHLKY AALNGEWNLN HSDLNTMKQQ LFAKYHAAYQ
      301 SYKHLSQPSL QEDEFYNLLL CIFKHRYSWK QMSLIKTVPA DLWENLCLLT
      351 LDHTGRPQDM EFASLIGTLY TQGLIHKSE AFLSSLTLLS LDQFKTIRQ
      401 STNIAMFLEN LATHNSTFRS LPPITVHPLK RSVFSQPEED ESSLIG*

```

The cp6629 nucleotide sequence <SEQ ID 242> is:

```

15     1  ATGAGTAATA TAACCTCGCC AGTTATTCAA AATAATCGCT CTTGTAATTA
      51  TTATTTTGAA TAAAGAATT CAACCACTAT TCATATTGTT ATCACTGCCA
      101 TCTTACTCTG CGGAGCTTG ATAGCTTCT TGTGTGTAGC AGCTCCTGTT
      151 TCCTATATTTC TAAGTGGCGC ATTGTTAGGA TTAGGATTAT TAATAGCCTT
      201 GATTGGTGTG ATTTTAGGAA TAAAAAAAAT CACGCCTATG ATTTCATCAA
      251 AAGAACAAAGT ATTCCCCAA GAACTCGTAA ATAGAACATAG GGCGCACTAT
      301 CCTAAATTTG TCTCTGATTT TGTTTCAGAA GCTAAACCAA ATCTTAAAGA
      351 TCTCTATAAGT TTTATTGATC TTCTAAATCA ATTGCACTCT GAAGTTGGAT
      401 CATCTACAAA TTACAACGTA TCTGAAGAAC TACAACAGAA AATAGATACG
      451 TTCGAGGCTA AGCGCTGCTT CTTCCCGTCC CCTCTTCCC TCTTTACCAA
      501 AAGACTTGAAGA GACCTTAGTG ATTATATAAA ACCAGAGATG CTTCCCTACCT
      551 AAATCTTACA AAAGGTATTT CCATTTTTCT GGTTAGGAGA GTTTATTCT
      601 GCAGGCAGCA AGGTTGTAGA GCTCCATCGA GTTAAGAAAA TTGGAGGCAG
      651 CCTCGAAGAA GACCTTAGTG ATTATATAAA ACCAGAGATG CTTCCCTACCT
      701 ATTGGTTGAT TCCTTTAGAT TTAGACCAA CAAATTCCCT TATTCTAAAT
      751 CTACACACAT TAGTTTAGC TAGACTCTTA ACTCGTGATG TTTTCAACAA
      801 TCTTAAGTGCAGCATTAA ATGGCGAGTG GAACCTGAAT CATACTGATC
      851 TAAATACTAT GAAACAGCAG CTCTTGCTA AATATCATGC GGCGTATCAA
      901 TCCTATAAAAC ATCTATCTCA ACCCTCTCTT CAAGAGGATG AATTCTATAA
      951 CCTGCTCTTG TGTATTTTA AGCATAGGTA CTCGTGGAAG CAGATGTCCT
      1001 TAATAAAAC AGTCCCGCT GATTATGGG AAAACCTCTG TTGCTTGACT
      1051 TTAGACCATA CAGGACGACC CCAAGACATG GAATTTCGCT CTCTAATTGG
      1101 TACTCTCTAC ACACAAGGCC TAATTCTATAA AGAAAGCGAA GCATTTCTT
      1151 CTTTCATTGAC ACTCCTTAGT TTAGATCAGT TAAACAGAT CCGTCCTCAG
      1201 TCAACCAATA TAGCGATGTT CCTTGAGAAT TTAGCAACTC ATAATTCCAC
      1251 CTTTGAAGC TTACCACTA TAACAGTCCA TCCACTCAAG AGAAGCGTCT
      1301 TCTCCCAACC TGAAGAAGAC GAGTCCTCCC TGCTGATAGG TTAG

```

40 The PSORT algorithm predicts inner membrane (0.5776).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 121A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 121B) and for FACS analysis.

45 These experiments show that cp6629 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 122

The following *C.pneumoniae* protein (PID 4376732) was expressed <SEQ ID 243; cp6732>:

```

50     1  MEMMSPFQQP EQCHFDVVGS FLRPESLTRA RSDFEEGRIV YEQMRVVEDA
      51  AIRNLIKKQT EAGLIFTTDG EFRYSWDFD FMWGFHGVDR RRDSNDPEIG
      101 VYLKDKitVS KHPFIEHFEF VKTFEKGNAK AKQTIPSPSQ FFHEMIFAPN
      151 LKNTRKFYPT NQELIDDIVF YYRQVIQDLY AAGCRNLQID DCAWCRLLDI
      201 RAPSWYGVDS HDRLQEILEQ FLWIHNLVMK DRPEDLFVSL HVCRGDYQAE
      251 FFSRRRAYDSI EEPLFAKTDV DSYHYYWALD DKYSGGAEPL AYVSGEKHVC
      301 LGLISSNNHSC IEDRDAVVSRI IYEAAASIPL ERLSLSPQCQG FASCEGDHRM

```

351 TEEEQWKKIA FVKEIAKEIW G*

The cp6732 nucleotide sequence <SEQ ID 244> is:

```

5   1 ATGGAAATGA TGAGCCCATT CCAACAAACCT GAGCAATGTC ATTTTGATGT
    51 TGTGGGAAGT TTCTTACGTC CTGAAAGTCT TACACGAGCA CGCTCTGATT
    101 TTGAAAGAAGG AAGAATTGTC TATGAGCAGA TGCGAGTTGT CGAAGATGCT
    151 GCTATTCTGA ATCTCATAAA AAAGCAAACCA GAAGCAGGTC TTATCTTTTT
    201 TACTGATGGG GAATTCCGTA GGATATAGTTG GGATTTCGAC TTATATGTGGG
    251 GATTCCATGG CCGGGATCGT CGCAGGGACT CTAATGACCC TGAAATTGGA
    301 GTGTATCTTA AAGATAAAAAT CTCCGTATCA AAACATCCGT TTATAGAACAA
    351 TTTTCGAGTTT GTCAAAACTT TTGAGAAGGG AAATGCACAA GCAAAACAAA
    401 CGATTCCCTTC TCCATCACAA TTTTCCATG AGATGATTTC TGCTCTTAAT
    451 CTGAAAAAACT CTCGGAAGTT TTATCCTACG AATCAAGAGC TAATTGATGA
    501 TATTGTCCTT TATTATGCC AAGTCATCCA AGATCTTTAT GCTGCAGGTT
    551 GTCGTAATTG GCAGTGGAC GATGTTGCTT GGTGTCGCCT CTTGGATATA
    601 CGAGCGCCTT CTTGGTATGG TGTGATTCT CATGACAGGT TGCAGGAAAT
    651 TTTAGAACAG TTTTTATGGA TCCATAATTG AGTGATGAAG GATAGACCCG
    701 AGGGATCTTTT TGTAAAGCTG CATGTCGTC GTGGTGATTA TCAGGGCGAG
    751 TTTTTCTCGT GACGAGCTTA TGATTCTATA GAGGAGCCTT TATTTGCTAA
    801 GACCGATGTC GATAGTTATC ACTATTATTG GGCTCTTGAT GATAAGTATT
    851 CAGGGAGTGC TGAGCCTTTA GCTTACGTCT CTGGAGAGAA ACACGCTG
    901 TTGGGATTGGA TCTCCAGCAA CCATTCTTGT ATTGAAGATC GAGATGCTGT
    951 GGTTTCTCGT ATTATGAAAG CTGGAGCTA CATTCCCTTA GAGAGACTTT
    1001 CTTTGAGCCC GCAATGTGGG TTGCTTCTT GTGAGGGAGA CCATAGAATG
    1051 ACTGAAGAAC AACAGTGGAA AAAGATGCC TTTGTGAAAG AGATTGCTAA
    1101 AGAGATCTGG GGATAA

```

The PSORT algorithm predicts cytoplasm (0.2196).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 122A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 122B) and for FACS analysis.

These experiments show that cp6732 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 123

The following *C.pneumoniae* protein (PID 4376738) was expressed <SEQ ID 245; cp6738>:

```

35  1 VWLRFLLLVS YDEKEKDVVV VCNHSEPNIL GLPPEAVSQL IEELSDEGYS
    51 YLNVVRCDSL GETTVQQRLL LNADEGRSMT VVISELPEGH PDIRNLQLAS
    101 ERIFVSREKE AADAYASGCK VVAFDDEHLW WVSSHIAYAH EIREKQEQTW
    151 QGSLTEEEQLG ALLCNTVSTE KNLAFALDAV IKQSVWRFRN PDLFAYEREWA
    201 LEASVTDALV SYVSNLDMIP YTSSQGIVIE DSSIVRTSQE HTLIVNCAAF
    251 DKLASQIEFL CPSDVLPISG KDPLISDDDE EELNPKVSSA ADSKDKT*

```

40 The cp6738 nucleotide sequence <SEQ ID 246> is:

```

1 GTGTGGCTGC GCTTTTTACT TTTAGTGTCC TATGATGAGA AGGAGAAAAGA
51 CGTAGTTGTC GTTTGTAAATC ATTCTGAACC TAATATCCTC GGCCTGCCCTC
101 CTGAAGCAGT CTCTCAGCTT ATTGAAGAGC TTAGCGATGA AGGCTATAGC
151 TATCTGAATG TAGTGCGTTG TGATCTCTCC GGGGAGACTA CGGTTCAACA
201 ACGTCTGCTA TTGAATGCCG ATGAAGGGAG ATCTATGACG GTGGTGATCT
251 CAGAGCTTCC TGAAGGGCAC CCCGATATTC GGAATTGCA GTTGGCATTCC
301 GAAAGAATTTC TTGTTTCTCG TGAAAAGAA GCTGCTGATG CCTATGCTTC
351 AGGATGTAAGA GTGGTCGCTT TCGATGATGA GCATCTCCCT TGGGTCTCCA
401 GTCATATTGC CTACGCGGAG GAGATCAGAG AGAAAACAAGA ACAAAACAATG
451 CAAGGGTCTT TAACTGAAGA GCAGTTAGGA GCACCTCTCT GCAACACAGT
501 CTCCACAGAG AAAAATCTAG CCTTTGCTCT AGACGCCGTG ATAAAACAGT
551 CTGTGTGGAG ATTCCGCAAT CCGGATCTTT TTGCTTATGAGA GAGAGAAAGCT
601 CTAGAGGCTT CAGTAACAGA TGCTTTAGTA TCTTACGTTT CAAATTAGA
651 CATGATACCG TACACAAGTT CTCAGGGCAT AGTCATAGAA GATAGTAGTA
701 TCGTCCGTAC CTCTCAAGAG CATAACACTCA TTGTGAACCTG TGCAGCATTG

```

-149-

```

751 GATAAGTTAG CGAGCCAAAT AGAGTTCTTA TGCCCCAGTG ACGTGGTGC
801 CATTTCCTGGT AAAGACCCCT TGATTTCTGA TGATGAGGAT GAGGAACCTGA
851 ATCCTAAAGT TTCATCTGCT GCAGACTCTA AAGATAAAAC CTAG

```

The PSORT algorithm predicts cytoplasm (0.1587).

- 5 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 123A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 123B) and for FACS analysis.

These experiments show that cp6738 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

10 Example 124

The following *C.pneumoniae* protein (PID 4376739) was expressed <SEQ ID 247; cp6739>:

```

1 MTHCLHGWF S VVRHHFVQAF NFSRPLYSRI THFALGVika IPIVGHLVMG
51 VDWLISHCFE RGVSHPGFPS DIAPILKVEK IAGRDHISRI ENQLKSLRKRT
101 IEVEDLDKVH GQYQENPYAD MASSEVLKLD KGVHVSELGK AFSRVRNRIT
151 RSYSYAPTPQ LDSIAIVGID LVSPEEQENL VRLANEVIQL YPKSKTTLYL
201 LIIDFNKEWVG DISSDKEKQQL RSLGLHSEVQ CLSVLEPQGA EGEDTKHFDL
251 MVGCYGKDSY LREGKILQQA LGTSLGTVPW VNVMHTLPSR YRSRLSLPIN
301 TEKDKTTELYK EISRTHHQQLH TLGMGLGAQD SGLLLDRQRL HAPLSQGSHC
351 HSYLAIDLTHE ELKILLFSAF VDAKNISKKE LREVSLNFAN DTSVECGCAF
401 YF*

```

The cp6739 nucleotide sequence <SEQ ID 248> is:

```

1 ATGACTCAT T GCTTACATGG TTGGTTTCT GTAGTTCGTC ATCACTTTGT
51 GCAGGCGTTT AATTTCAC GTCCTTATA TTCTCGAATT ACCCACTTCG
101 CTTTAGGGGT GATTAAGGCC ATCCCCATTG TAGGGCATCT TGTATGGGA
151 GTCGATTGGT TGATCTCTCA TTGCTTCGAG AGGGGAGTCT CACACCCCTGG
201 GTTCCCTTC GATATTGCTC CTATACTGAA AGTAGAAAAG ATCGCGGGCC
251 GAGATCATAT TTCTAGAACAT GAAAATCAGC TAAAGAGGCT TAGGAAAAC
301 ATCGAGGTTG AAGATCTAGA TAAAGTCCAC GGGCAATATC AAGAGAATCC
351 TTATGCAAGAT ATGGCCCTCA GTGAGGTTCT TAAACTCGAT AAGGGAGTTTC
401 ATGTTTACCGA GCTTGGCAAA GCCTTTCTA GAGTTCGCAA TCGCATCAC
451 AGATCCTATA GTTATGCCCT TACTCCTCAG TTGGACTCTA TAGCTATTGT
501 TGGTATAGAT CTCGTCAGTC CTGAAGAACAA AGAGAATTAA GTACGCTTGG
551 CGAATGAGGT CATTCAACTC TATCCCCAAAT CAAAGACAAC TCTATATCTT
601 CTTATCGATT TTAATAAGGA GTGGGTAGGG GATATCTCTT CTGATAAAGGA
651 AAAACAGCTC CGTTCTCTAG GTCTACATTC TGAAGTTCAAG TGTCTTCCG
701 TCTTGGAAACCT TCAGGGTGCC GAGGGCGAAG ATACGAAACAA CTTTGACCTT
751 ATGGTCGGCT GTTATGGGAA GGATTCTTAC TTAAGGGAGG GTAAAATTTT
801 ACAGCAGGCC CTAGGGACTT CGTTAGGTAC TGTTCCCTGG GTGAATGTTA
851 TGCACACATT GCCATCTAGG TATAGATCTC GGCTTTCTT ACCTATAAT
901 ACCGAAAAGG ATAAGACAGA GCTTATATAA GAGATTTCTC GTACACACCA
951 TCAGTTGCAT ACTTTGGGAA TGGGACTTGG AGCCCCAGGAT TCAGGATTGC
1001 TCTTAGACGGC GCAACGACTC CATGCTCCCT TATCTCAAGG GTCTCACTGC
1051 CATTCCCTATC TTGCAAGATCT CACCCATGAA GAGCTGAAA TTTTGTATT
1101 TTCAGCATTG GTGGATGCTA AGAACATAAG TAAGAAAGAG CTTCGTGAGG
1151 TATCTCTAAA TTTTGCTAAC GATACTCCG TAGAGTGTGG CTGCGCTTTT
1201 TACTTTTAG

```

The PSORT algorithm predicts inner membrane (0.2190).

- 50 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 124A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 124B) and for FACS analysis.

These experiments show that cp6739 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 125

The following *C.pneumoniae* protein (PID 4376741) was expressed <SEQ ID 249; cp6741>:

```

5      1 MASCLSAWFS IVREHFYRAF DFSLPFCAPI TEFVLGVVIKG IPVVGHIIVG
      51 IEWLVSRYLVE SFVTKPTFV S DVVSLLKTEK VAGRDHIA RV VETLKRQRVA
     101 VAPEDEDKVKH GKIPVHPFGG IQPFEVLTLY PEVQDATLGL AFSKIRNRVR
     151 QAYLQAPRPK LQKIYIIGND MNPFEVDDFL HLARLCNETQ RLYPDATISL
     201 YLTASGRRNA MDKKRNKLLS DCELNPKIAC LDFNQGDVVK QATCDCWMVY
     251 HGENDQGTILN QIQEELLEKSG EETPPWIHVVGQ KPLSQSLWD F SPFSSL EMKG
     301 DKEKALEYSE LEKEQLYSRL VYVGERSSVL SLGFGDLSRSG ILMDPKRVHA
     351 PLSEGHHYCHS YLADLENPGL QKTILAAFLN PKELSSTILQ PISLNLLNS
     401 KTYLRQHFGF FERMRSRDRN VVVVVCDSWW GTDWKEEPSF QHFIMELECR
     451 GYSHENIFAF RSNSMCVEER RILNESSQEK AFTMIFC EDS VSQGDIRCLH
     501 LASEGMLCGK ECYAVDVYTS GCANFMMEEV LTLERESNLW NRKHGLWKRE
     551 VRKQKQEAAL DQDESEIYVC NQLTAQQNFA CS*

```

The cp6741 nucleotide sequence <SEQ ID 250> is:

```

20      1 ATGGCTTCTT GTTTATCTGC CTGGTTTTCT ATAGTCGTG AGCACTTTA
      51 TCGAGCCTTT GATTTTCTT TGCCGTTTG TGCTCGTATT ACAGAATTG
     101 TATTAGGGGT CATCAAGGGG ATCCCTGTTG TGGGTCACAT TATTGTTGGG
     151 ATAGACTGCC TCGTTTCTAG GTATTTAGAG AGTTTCGTGA CCAAGCCGAC
     201 ATTTGTCCT GATGTTGTGA GTCTTCTGAA AACAGAGAAA GTTGCTGGTC
     251 GCGATCACAT TGCTCGTGA GTGGAGACTT TGAGAAGGCA GAGAGTCGCT
     301 GTGCCCTCTG AAGATGAGGA TAAGGTCCAT GGGAAAGATTG CTGTGCATCC
     351 TTTGGGGGAA ATCCAACCTG TAGAAGTTCT CACTCTCTAT CCCGAAGTTC
     401 AAGATGCAAC GTTAGGGCTT GCCTTCTCTA AAATTCTGAA TCGTGTAAAGA
     451 CAGGGCTATT TGCAAGCTCC ACGGCCAAAAA CTGCAGAAGA TTTACATCAT
     501 AGGAAACGAT ATGAATCTT TTGAAGTGTGA CGACTCTTG CATCTAGCCC
     551 GTCTCTGTAA TGAAACCTAA AGACTCTATC TCGACGCTAC GATTTCTCTA
     601 TATCTAACAG CTTCTGGTGG TCGCAATGCT ATGGACAAAA AGAACCGGAA
     651 GTTACTTAGT GATTGCGAAC TAAACCCAA GATTGCTTGT TTGGACTTTA
     701 ATCAGGGTGA TGTAGTCAA CAAGCAACTT GTGACTGTTG GATGGTGTAT
     751 CATGGGGAGA ATGATCAAGG TACGTTGAAT CAGATTCAAGG AAGAGTTAGA
     801 AAAGTCAGGG GAGGAACCCC CTGGATTCA TGTGGGCAAA AGCCTCTT
     851 CACAATCCTT GTGGGATTTC TCTCCATT TT CATCTTGGAA GATGAAGGGAA
     901 GATAAAAGAGA AAGCTCTAGA GTACTCTGAA TTAGAAAAG AACAGCTATA
     951 TTCTCGATTG CTATACCTGAG GAGAGCGCTC TTGGTCTT AGTTGGGGT
    1001 TTGGAGATAG TCGGTCAAGG ATCTTGATGG ACCAAAACG GGTGCATGCT
    1051 CCCTTATCTG AAGGGCATT A TTGTCAATTCC TACCTTGCGAG ACTTAGAAAA
    1101 TCCCCGGTTA CAAAAAAACAA TTTTAGCGGC ATTTCGTAAT CCTAAGGAGT
    1151 TGAGCAGTAC CATACTGCA CCTATATCTC TAAATCTTAT CTAAATAGC
    1201 AAAACTTACT TAAGGCAGCA CTTGGCTTT TTTGAGAGGA TGAGCAGAAG
    1251 TGATCGCAAT GTGGTTGTG TTGTATGTGA TTCTTGGTGG GGTACCGACT
    1301 GGAAGGAGGA GCCAAGCTTC CAAACATTAA TTATGGAGCT AGAGTGTGCA
    1351 GGGTATTGCGC ACTTCAATAT TTTTGCCCTT AGATCTAATA GCATGTGTGT
    1401 AGAAGAACGT AGGATCTTAA ATGAAAGTTC TCAAGAGAAA GCCCTTACCA
    1451 TGATTTCTG TGAGGATTCA GTATCTCAAG GAGATATCCG CTGTTTGCAT
    1501 TTGGCGTCTG AAGGAAGTCT TTGTGGTAAA GAGTCCTATC CTGTCGATGT
    1551 CTATACGTCA GGATGCCGA ACTTCTATGAT GGAAGAAGTC TTAACCTTGG
    1601 AGCGAGAACATC TAATCTGTGG AATAGAAAGC ATGGTCTTGT GAAAAGAGAA
    1651 GTTAGAAAAC AGAAACAAAGA AGCTGTTTG GATCAAGACG AGAGCGAGAT
    1701 TTACGTTTGT AATCAGCTGA CGCGCAACA GAACTTCGCT TGTCTTGA

```

The PSORT algorithm predicts inner membrane (0.2869).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 125A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 55 125B) and for FACS analysis.

These experiments show that cp6741 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 126

The following *C.pneumoniae* protein (PID 4376742) was expressed <SEQ ID 251; cp6742>:

5	1	LFVSNFIFVV	VMPIPYISSLW	ISTVRQHVFVK	AFDFSRPFCS	RVTNFALGVI
	51	KAIPIVGHIV	MGMWEVLVSSC	VAGGIITRSSF	TSDVVQIVKT	EKALGRDHIS
	101	RVAEILQQRER	GTITPENQDK	VHGKFPVCPP	GRLKSEETLK	LKPGEREGL
	151	DTVFSPIRTR	VTRAYLQAPR	PEIRTISIVG	SKLKTPQDFLS	QFVSLANETQ
10	201	RLHPEALVCL	YLTLGLNRESQ	MCDTTTAEEKK	QYLHNSGLDS	RIQCKDSDKED
	251	DAGSPENPEL	WIGYYSSREQQ	HNIDGQYIQQ	CLGKSADPIP	WIHVTEDETDK
	301	FYYPPNFTSY	SHTRQSTDPT	SPPRLPESEG	DKDSDLYGQLS	RSYHHEYMLG
	351	LGLKPEDAGL	LMDPDRYAP	LSQGHYCHSY	LADIENEDLR	TLVLSPPFLDP
	401	GNLSSEDLRP	VAFNIARLPL	ELDSLFFRLV	AGQQEGRNIV	TLAHTGPRPE
15	451	DLDPDMSMN1	TRRLQMSGYS	YLNIFSYKSR	KMIVKERQFF	GDRSEGKSF
	501	LILFEDPMISA	ADFRCQLAA	EGMVAKDLP	VADICASGCS	CIQFSEMQSP
	551	QAEYRQWEA	RVEDEAGEEEA	REPVIYSQDQ	LSSMLTTQQN	FVFSLDAVVK
	601	QAIWRFRSKG	LILTMERKALG	EEFLTAIFSY	LGSQERNENM	GKRTTEEHEV
	651	VISFEELDRM	VQVLPAAEVPA	DSGNDPTRPV	PNPDSNPDSS	QNEGS*

The cp6742 nucleotide sequence <SEQ ID 252> is:

20	1	TTGTTTGTGTT	CTAATTATAT	TTTTTTTGTT	GTTATGCCAA	TTCCCTATAT
	51	TTCTCTCTTGG	ATTTCTACCG	TTCGACAGCA	TTTTGTTAACG	GCGTTTGTATT
	101	TCTCTCGTCC	CTTTTGTCT	AGGGTACAGA	ATTTTGCTTT	AGGGGTACATC
	151	AAGGCCATCC	CTATTGTAGG	ACATATTGTC	ATGGGGATGG	AGTGGTTAGT
25	201	TTCTTCTCTG	GTTGCCGGGA	TTATTACTAG	GTCCTCCTT	ACCTCAGATG
	251	TCGTTTCAGAT	TGTAAAGACT	GAGAAGGCCT	TAGGTCGAGA	TCATATATCT
	301	CGAGTGGCGG	AGATATTGCA	AAGAGAAAGG	GGGACCATAA	CTCCTGAGAA
	351	TCAAGATAAG	GTGCATGGGA	AGTTTCCCTGT	CTGTCCTTTT	GGTCGTTTAA
	401	AATCCGAGGA	AACTTTAAAAA	CTTAAGCCGG	GAGAAAGAGA	GGGAACCTTTA
30	451	GATACTGTAT	TTTCTCCGAT	TCGCACGCGC	GTGACTCGTG	CGTACTTACA
	501	GGCCCCCCCAG	CCCGAAATAC	GTACGATTT	TATTGTGGGT	TGAAACCTTA
	551	AAACTCCTCA	AGATTTCCTCG	CAATTGTGA	GTCTCGCGAA	TGAAACGCG
	601	AGACTGCATC	CTGAAGCGTT	AGTTTGTCCTG	TATTTGACAG	GCTTGAATCG
	651	CGAACCTCTCA	ATGTGCGATA	CAACTACTGC	AGAGAAGAAG	CAGTACCTAC
35	701	ATAACTCAGG	TCTCGACTCT	AGAATCCAGT	GCAAAGACAG	TAAAGAAGAC
	751	GACGCTGGCT	CTCCTGAAAAA	TCCCGAACCTT	TGGATTGGCT	ATTATTACCG
	801	AGAGCAACAG	CATAATATAG	ACGGGCAGTA	TATTTCAGCAG	TGTCTAGGGA
	851	AGAGTGCAGA	TCCAATTCTC	TGGATTTCATG	TTACTGAAGA	CACAAAGGAT
	901	TTTTTATTAC	CACCAAACCTT	TACTTCATAC	TCACACATAAA	GACAATCTAC
40	951	AGACCCAACA	TCGCCACCAA	GACTCCCTGA	AAAGTGAGGGG	GATAAGGATT
	1001	CCTTGTACGG	ACAACCTGAGT	CGATCGTATC	ACCATGAGTA	TATGCTTGGT
	1051	TTGGGATTAA	AACAGAGGA	TGCAGGACTC	CTGATGGACC	CGGATAGAAT
	1101	CTATGCTCCT	CTATCCCAAG	GGCATTATTG	TCATTCCTAC	CTTGCAGATA
	1151	TAGAAAATGA	GGATCTACGA	ACTTTAGTCC	TTTCGCCTT	CCTAGATCCT
45	1201	GGCAATCTTA	GTAGCGAGGA	TCTTCGTCCT	GTAGCATTCA	ATATCGCTAG
	1251	ATTGCCATTA	GAATTGGACT	CGTTATTTTT	CCGCCCTTGT	GCGGGTCAGC
	1301	AAGAAGGGAG	AAACATAGTT	ACCCCTGCCC	ACGGAACTCC	TCGTCAGAA
	1351	GATCTTGATC	CTGACTCAAT	GAACATTCTG	ACCAGAAGAT	TACAAATGTC
	1401	TGGATATAGC	TATTGAAACA	TTTCTCCTA	TTAAATCACGG	AAAATGATTG
50	1451	TTAAAGAACG	TCAGTTCTTT	GGAGATCGTT	CTGAAGGAA	GTCTTTCACA
	1501	TTGATCTTAT	TTGAGGATCC	CATTAGTGCA	GCAGATTTC	GTTGTTTGCA
	1551	GCTAGCTGCA	GAAGGTATGG	TTGCTAAGGA	TCTCCCCAGC	GTAGCAGATA
	1601	TTTGTGCCTC	TGGATGTTCC	TGCATTCTG	TTTCTGAGAT	GCAGAGTCCT
	1651	CAGGCTATTG	AATATAGACA	ATGGGAGGCA	CGTGTGCAAG	ATGAAGCAGG
	1701	AGAAGAACGC	AGAGAACCCAG	TAATTTATTG	TCAGGATCAA	TTGAGCAGCA
55	1751	TGCTCACTAC	ACAACAGAAAT	TTTGTATTTT	CTCTAGATGC	TGTGGTAAAA
	1801	CAGGGCAGTCT	GGAGATCCG	TTCGAAAGGT	CTTCTTACTA	TGAAAGAAAA
	1851	GGCACTAGGC	GAGGAGTTCT	TAACTGCGAT	ATTTTCCTAT	TTAGGGAGTC
	1901	AGGAGCGTAA	TGAGAATATG	GGGAAAAGAA	CTACCGAAGA	ACATGAGGTC
	1951	GTTATCAGCT	TCGAAGAGCT	AGATCGCATG	GTGCAAGTCC	TCCCAGCCGA
60	2001	AGTCCCTGCA	GATTCAAGGC	ATGATCCTAC	CGCTCCCCGT	CCTAATCCAG
	2051	ATAGTAACCC	TGATTCTCG	CAAAATGAAG	CGAGTTAG	

The PSORT algorithm predicts inner membrane (0.2338).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 126A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 126B) and for FACS analysis.

- 5 These experiments show that cp6742 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 127

The following *C.pneumoniae* protein (PID 4376744) was expressed <SEQ ID 253; cp6744>:

```

10      1  VIQHLLNFAL EETPSISVQY QEQEKLSPCD HSPEIGKKR WNKLESFSTY
      51  CSLFMSVKDH YKLNLGQNS LSGWLLDPYR VCAPLSSPYS CPSYLLDLQN
     101  KELRRSLLST FLDPKNLTSE TFRSVSINFG NSSFGQRWSE FLSRVLHDEK
     151  EKHVAVVCND AKLLE EGLSP EALSLLEEDL RESGYSYLN1 LSVSPEGVSK
     201  VQERQILRRD LQGRSFTVMI TDLPLGSEDI RSLQLASDRI LVSSSLDAAD
     251  ACASGCKVLV YENPNASWAQ ELENFYKQVE RRR*

```

- 15 The cp6744 nucleotide sequence <SEQ ID 254> is:

```

20      1  GTGATACAAAC ATCTTCTAAA CTTTGCTCTA GAAGAGACCC CTTCCATTTC
      51  CGTGCAATAC CAAGAACAAAG AGAACGCTCTC TCCGTGCGAT CATTCCCCAG
     101  AAATAGGTAAG AAAGAAAAAGA TGGAAATAAGC TGGAATCCTT CTCCACGTAT
     151  TGTTCCTCTGT TTATGTCGT TAAGGATCAT TATAAGCTGA ATCTAGGAAT
     201  TCAGAAATTCC CTGTCAGGGT GGCTTCTGGA TCCCTATAGG GTTTGCGCGC
     251  CTTTATCTTC ACCGTACTCG TGTCCTTCCT ATCTTTTAGA TTTGCAAAAC
     301  AAAGAGCTAC GTCGTTCCCT TCTGTCAACG TTTCTAGACC CTAAAAATCT
     351  CACTAGCGAA ACATTCGGTT CTGTCTCTAT AAACCTTGCG AACTCTCGT
     401  TTGGACAGAG ATGGTCAGAG TTTCTATCTC GTGTTCTGCA CGACGAGAAA
     451  GAAAAGCAACG TAGCTGTTGT TTGTAATGAT GCAAAACTTC TGGAAGAAGG
     501  ATTGTCCCCA GAGGCATTGT CTCATTAGA AGAAGACTTA AGAGAACATCG
     551  GGTATTCTGTA TCTAAACATT CTCTCGGTGA GCCCCGAAAG AGTCTCCAAG
     601  GTTCAGGAAC GTCAGATTCT AAGGGCAGAGAT CTCCAAGGAC GGTCTTTAC
     651  TGTATGATT ACAGATCTTC CTTAGGTAG CGAAGATATC CGTAGTTAC
     701  AATTAGCCTC GGATAGGATT TTAGTCTCCA GTTCTCTTGA TGCCGCGGAT
     751  GCATGTGCTT CGGGATGTAA AGTCTTAGTC TACGAAAATC CAAATGCATC
     801  CTGGGCTCAG GAATTGGAGA ACTTCTACAA ACAAGTTGAG AGAAGAACGT
     851  AG

```

The PSORT algorithm predicts cytoplasm (0.3833).

- 35 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 127A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 127B) and for FACS analysis.

These experiments show that cp6744 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 128

The following *C.pneumoniae* protein (PID 4376745) was expressed <SEQ ID 255; cp6745>:

```

45      1  VACPSISSLWF TVVRQHFVNA FDFTHPVCSR ITNFALGIK AIPVVLGHIVM
      51  GIEWLISWIP RHTVRHGMFT SDVSSAIKVE QTRGHNCLAP LEAYLSSLRV
     101  PISQEDLGKV HGRTPEDPFV DITPTEIVQL LPDEELSTVD EALQGVRSRL
     151  TYAYRSVEKP MIQDLALVGP GLRDSADLIN FVRLANGVQN HYPHTKVKLY
     201  LAKNLADWD CEISEEEKGQ LRALGLDPKI ESISLTSAGL PSVPEVATVD
     251  FMITCYGKDQ EVQDP*

```

The cp6745 nucleotide sequence <SEQ ID 256> is:

```

1   GTGGCTTGTC CAACTATTC TTCTTGGTT ACTGTGTTTC GACAGCATTT
51  TGTAAACGCC TTTGATTTC CCCCACCCGT TTGTTCTCGG ATTACAAATT
101 TTGCTTTGGG GATCATAAG GCAATTCCCG TATTAGGACA CATTGTCATG
151 GGAATCGAGT GGTTGATTTCT CGGGATTCCCG AGACACACCG TTGTCATGG
201 AATGTTTACT TCTGATGTTCT CTAGTGCTAT TAAAGTAGAA CAAACACGGG
251 GTCATAATTG TTTAGCTCCC CTAGAAGGCCT ATTTAAGTAG CTTGAGAGTC
301 CCCATTTCCTC AAGAAGATCT AGGAAAGTA CACGGGAGAA CCCCAGAAGA
351 TCCCCCTCGTA GATATCACAC CCACAGAAAT TGTCCAACCTT CTCCCTGATG
401 AAGAACCTCTC TACTGTAGAT GAGGCACTGC AAGGGGTTTC TAGTAGGTTA
451 ACCTATGCTC ATAGGTCCTG AGAGAAACCT ATGATTCAAG ATCTTGCTCT
501 TTGTTGGTTTT GGTCTCGAG ATTCTGCGGA CCTCTATAAT TTGTCGCGTC
551 TTGCTATAATGG CGTGCAGAAT CACTATCCCG ATACTAAAGT GAAGCTCTAT
601 TTAGCGAAGA ACTTGGCAGA TGTCGGGAC TGTGAAATT CTGAAGAGGA
651 AAAAGGGCAA CCTCGAGCTC TAGGTTTACA CCCTAAAATA GAGAGTATAT
701 CCCCTTACGAG TCCAGGTCTT CCTTCAGTGC CAGAAGTCGC TACTGTCGAT
751 TTTATGATTA CCTGTTACGG GAAAGATCG GAAAGTCCAAG ATCCCTAG

```

The PSORT algorithm predicts inner membrane (0.2253).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 128A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 128B) and for FACS analysis.

These experiments show that cp6745 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 129

25 The following *C.pneumoniae* protein (PID 4376747) was expressed <SEQ ID 257; cp6747>:

```

1   MMKQGVGQDA KELYTFLSRG NEHYQPCLWF SLEEEGLFLF DEKMLCAPLS
51  EDHYCHSYLV DLVDQHLKDL ILSMFLDPQN ISAGELLKVS INVGDSFSPL
101 QOKDFLMSMVL RDETKNNSVV VFKGVLSLPV TQVCKLVEEL NSKDYSYLN
151 FSCHGDSSPQ LLFRKELEGV SGRYFTVICA LYLGDTDMRS LQLASERIMV
201 SREFDLVDAY AARCKLLKID HTNWRPGTFS RHADFADAVD VSAGFNSREF
251 KLITQANQGI LESGELPLPS KTFWEGFLAF CDRVTVTRHF IPMLDAIKQ
301 AVWTHKHPSL IDKECEALDL KTQCLPSIVS YLEYVNTNSHE KTSKGFIQK
351 EIIADCSPLK EALFPGSDED VPSTSEDPSD DHPSDLED*

```

The cp6747 nucleotide sequence <SEQ ID 258> is:

```

35      1 ATGATGAAAC AAGGAGTCGG GCAGGGATGCT AAAGAGCTAT ACACATTCT
      51 ATCTCGTGGG AATGAGCATT ACCAACCGTG TCTATGTTTC AGTCTCGAAG
     101 AGGAACCTCGG ATTCCCTTTC GATGAAAAAA TGCTCTGCGC CCCTCTATCT
     151 GAGGATCACT ATTGCCACTC GTATCTGTA GATCTAGTGG ATCAACATT
     201 AAAGGATTTA ATATTATCGA TGTTTTTAAAG TCCTCAGAAAT ATCTCAGCAG
     251 GAGAACCTCT CAAGGCTCT ATAAACGTTG GAGATTCTTT TTCTCCCTCA
     301 CAACAGAAAG ATTCCCTCTC GATGGTCTTA CGTGATGAAA CGGGAAAAAA
     351 CGTCGTCGTG GTTTTAAAG GAGTTCTCTC CTTACCCGCA ACCCAAGTCT
     401 GCAAATTAGT AGAGGAATTG AACTCTAAGG ACTACTCCTA CCTCAATATA
     451 TTTCTTGTG ACAGGAGATAG TAGTCCTCAG CTTTTATTCC GTAAGGAATT
     501 AGAGGGAACT TCAGGGCGTT ATTTCACAGT GATTTGCGCT TTATATCTAG
     551 GGGATACAGA CATGCGTAGT TTACAACCTTG CTTCTGAAAG GATCATGGTC
     601 TCTAGAGAGT TTGATCTTGT AGATGCTTAT GCTGCAAGAT GCAAGCTCTT
     651 GAAAATCGAT CATAACAAATT GGAGACCTGG AACCTTCAGT CGCCACGCC
     701 ATTCGCGAGA TGCTGTAGAC GTATCACAG GATTTAACTC AAGAGAATT
     751 AAACGTGATTA CGCAGGGCAA TCAAGGGATC CTAGAGTCTG GAGAACCTCC
     801 GCTCCCTTCA AAAACCTTCT GGGAAAGGATT CTTAGCATTC TGTGATCGAG
     851 TGACTGTCAC GAGACATCTT ATTCCAAATGT TAGACGCCGC TATAAAGCAA
     901 GCGGTATGGA CTCATAAACCA TCCCAAGCTTG ATAGATAAAAG AGTGTGAAGC
     951 CCTAGACTTG AAAACACAGT GCTTGCCTAC TATCGTATCG TACCTTGAAT
    1001 ATGTCACAAA CTCTCACGAA AAAACATCGA AAGGGCCGTT CATACAAAAA
    1051 GAGATTATCG CAGACTGTTTC TCCTCTTAAA GAGGCGCTCT TCCCAGGTTC

```

1101 TGATGAAGAT GTTCCCTCTA CCTCTGAGGA TCCTTCAGAT GATCATCCTT
 1151 CGGATCTTGA AGACTCTTAA

The PSORT algorithm predicts inner membrane (0.1447).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 129A) and also as

5 a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 129B) and for FACS analysis.

These experiments show that cp6747 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 130

- 10 The following *C.pneumoniae* protein (PID 4376756) was expressed <SEQ ID 259; cp6756>:

1 MASGIGGSSG LGKIPPKDNG DRSRSPSPKG ELGSHEISLP PQEHGEEGAS
 51 GSSHIIHSSSS FLPEDQESQS SSSAASSPGF FSRVRSGVDR ALKSFGNFFS
 101 AESTSQARET RQAFVRLSKT ITADERRVDV SSSAAATEAR VAEDASVSGE
 151 NPSQGVVPETS SGPEPQRFLS LPSVKKKQSGL GRLVQTVRDR IVLPGAPPT
 201 DSEPLSLYEL NLRLSSLRQE LSDIQSNQDL TPEEKAETV TIQQLIQITE
 251 FQCGYMEATQ SSVSLAEARF KGVTESDEIN SLCSELTDPE LQELMSDGDS
 301 IQLNLLDETAD DLEAALSHTR LSFSLDDNPT PIDNNPTLIS QEEPIYEEIG
 351 GAADPQRTRE NWSTRLNQI REALVSLLGMI LSILGSILH RLRIARHAAA
 401 EAVGRCCCTR GEECTSSEED SMSVGSPSEI DETERTGSPH DVPRRNNSPR
 451 EDSPLMNALV GWAHKGAKT KESSESSTPE ISISAPIVRG WSQDSSVSFI
 501 VMEDDDHIFYD VPRRKDGDIYD VPSSPRWSPA RELEEDVFGD YEVPIITSAEP
 551 SKDKNIYMTP RLATPAIYDL PSRPGSSGSS RSPSSDRVRS SSPNRRGVPL
 601 PPVVPSPAMSE EGSIYEDMSG ASGAGESDYE DMSRSRSPSPRG DLDEPIYANT
 651 PEDNPFTQRN IDRILQERSG GASASPVEPI YDEIPWIHGR PPATLPRPEN
 701 TLTNVSLRVS PGFGPEVRAA LLSESVSAVM VEAESIVPPT EPGDGESEYL
 751 EPLGLGVATT KILLQKGWPR GESNA*

The cp6756 nucleotide sequence <SEQ ID 260> is:

1 ATGGCATCAAG GAATCGGAGG ATCTAGTGGAA TTAGGAAAGA TTCCACCTAA
 51 AGATAATGGG GATAGAACGTC GATCGCCCTC TCCTAAGGGAA GAACTTGGCA
 101 GCCACGAGAT TTCCCTGCCT CCTCAAGAAC ATGGAGAGGA AGGAGCTTCA
 151 GGATCTTCGC ATATACATAG CAGTTCTCTT TTTCTACCAAG AAGATCAGGA
 201 GTCTCAGAGC TCTTCTCGG CAGCTTCTAG CCCGGGATTT TTTTCTCGCG
 251 TAGCTTCTGG GGTAGACAGG GCCTTAAAAT CATTGGCAA CTTTTTTTCC
 301 CGAGAGCTCA CGAGTCAAAGC GCGTGAACAGC CGACAAGCTT TGTAGATT
 351 ATCAAAAAAAC ATCACCGCGG ATGAGAGACG GGATGTCGAT TCATCAAGTG
 401 CTGCTGCTAC AGAACGCCGA GTGGCAGAGG ACAGCAGTGT TTCAGGCCAA
 451 AATCCTTCTC AGGGGGTTCC AGAAACCTCT TCTGGACCAAG AACCTCAGCG
 501 TTTATTTCTC CTTCTTCAG TAAAAAAACA GAGCGTTTG GGTGGTTGG
 551 TACAGACAGT TCGCGATCGC ATAGTACTTC CTAGTGGGGC TCCACCTACA
 601 GACAGCGAGC CTTTAAGTCT CTACGAGCTA AACCTCCGTT TGAGTAGTTT
 651 ACGTCAGGAG CTCCTGACA TACAAAGTAA TGATCAGTTG ACTCCAGAGG
 701 AAAAGCAGA AGCCACAGTT ACCATACAAAC AGCTGATCCA AATTACAGAA
 751 TTCCAATGCG GCTATATGGA GGCAACACAA TCTTCGGTAT CTCTAGCAGA
 801 AGCTCGTTT AAGGGGGTAG AAACTAGTGA TGAGATCAAT TCCCCTCTGTT
 851 CAGAACTGAC AGATCCTGAG CTTCAAGAAC TCATGAGTGA TGGAGACTCT
 901 CTTCAAAACAC TATTAGATGA GACTGCCGAC GATTTAGAAAG CTGCTTGTGTC
 951 CCATACTCGA TTGAGTTTTT CTTTAGACGA TAATCCAACCT CCGATAGACAA
 1001 ATAATCCAAC TCTGATTTCT CAAGAACAGGC CTATTTATGAA GGAAATCGGA
 1051 GGAGCTGCAAG ATCCTCAAAG AACTCGGGAA AACTGGTCTA CAAGATTATG
 1101 GAATCAGATT CGCGAGGCTC TGGTTCTCT TTTAGGAATG ATTMTAAGCA
 1151 TTCTAGGGTC CATCTGCAC AGGGTGCCTA TTGCTCGTCA TGCAGCTGCT
 1201 GAAGCAGTGG GTCGTTGTTG CACCGTGCCTA GGAGAACAGT GTACTTCTTC
 1251 TGAAGAGGAC TCGATGTCGG TGGGGTCTCC TTCAAGAAATT GATGAAACTG
 1301 AAAGAACGGG CTCTCCGCAT GACGTTCCAC GCAGAAATGG AAGTCCACGT
 1351 GAAGATTCTC CATTGATGAA TGCCCTTAGTA GGATGGGCAC ATAAGCACGG
 1401 TGCTAAAAC AAGGAGAGTT CAGAACCAAG TACCCCGGAA ATTTCGATT
 1451 CTGCTCCCAT AGTGGAGAGGT TGGAGTCAAG ACAGTTCCTG CAGTTTATT

5 1501 GTTATGGAAG ATGATCATAT TTTCTATGAT GTTCCTCGTA GAAAAGATGG
 1551 AATCTATGAC GTTCCTAGTT CCCCTAGATG GAGTCCTGCG CGAGAGTTGG
 1601 AAGAGGATGT TTTGGAGAT TATGAAGTTC CTATAACCTC TGCTGAACCA
 1651 TCTAAAGACA AGAACATCTA CATGACACCT AGAATTAGCAA CTCCTGCTAT
 1701 CTATGATCTT CCTTCACGTC CAGGATCGTC TGGAGCTCA CGTTCTCCGT
 1751 CCTCAGATCG CGTACGAAGC AGCTCACCAA ATAGACGGGG TGTGCCTCTT
 1801 CCTCCAGTTC CTTCACCTGC TATGAGTGAG GAGGGGAGCA TTTATGAGGA
 1851 TATGAGCGGT GCTTCAGGTG CAGGTAAAG TGATTATGAA GATATGAGCC
 1901 GTTCCCCCTC TCCTAGAGGC GACTTGGATG AACCCATATA TGCTAACTACT
 1951 CCTGAAGATA ATCCATTAC TCAGAGAAAT ATAGATAGAA TTTTACAGGA
 2001 GAGGTAGGGC GGTGCTCCG CTTCTCCTGT AGAGCCTATT TATGATGAGA
 2051 TCCCCTGGAT TCATGGCAGG CCCCCCTGCTA CACTTCCAAG ACCCGAGAAT
 2101 ACATTGACTA ATGTTTCGCT TAGAGTGAGC CCAGGGTTG GACCAAGAGT
 2151 AAGAGCCGCT TTGCTTAGCG AGAGCGTGAG TGCTGTTATG GTCGAAGCAG
 2201 AGAGTATTGT TCCTCCAAAC GAGCCGGGGG ACGGAGAAC AGAATATCTA
 2251 GAGCCCTTAG GGGGACTTGT AGCTACAACG AAAATCTAC TACAAAAAGG
 2301 ATGGCCTCGT GGAGAGTCGA ATGCTTAG

The PSORT algorithm predicts inner membrane (0.3994).

20 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 130A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 130B) and for FACS analysis.

These experiments show that cp6756 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 131

25 The following *C.pneumoniae* protein (PID 4376761) was expressed <SEQ ID 261; cp6761>:

1 MTVAEVKGTF KLVCLGCRVN QYEVQAYRDQ LTLIGYQEVL DSEIPADLCI
 51 INTCAVTASA ESSGRHAVRQ LCRQNPTAHI VVTGCLGESD KEFFASLDRQ
 101 CTLVSNKEKS RLIEKIFSYD TTFFPEFKIHS FEKGSKRAFIK VQDG CNSFCS
 151 YCIIPYLRR SVSRPAEKIL AEIAGVVDQG YREVVVIAGIN VGDYCIDGERS
 201 LASLIEQVDR IPGIERIRIS SIDPDDITED LHRAITSSRH TCPSSHVLVQ
 251 SGNSN SILKRM NRKYSRGDFL DCVEKFRASD PRYAFTTDVI VGFPGESDQD
 301 FEDTLRIIED VGFIKVHSFP FSARRRTKAY TFDNQIPNQV IYERKKYLAE
 351 VAKRVGQKEM MKRLGETTEV LVEKVTGQVA TGHSPYFEKV SFPVVGTVAI
 401 NTLVSVRLDR VEEEGLIGEI V*

35 The cp6761 nucleotide sequence <SEQ ID 262> is:

1 ATGACGGTTG CGGAAGTCATAG AGGAACATTT AAGCTGGTCT GTTCTAGGCTG
 51 TCGGGTGAAT CAGTATGAGG TCCAACCATA TCGCGACCAAG TTGACTATCT
 101 TAGGTTACCA AGAGGTCCTG GATTCTGAAA TCCCTGCAGA TTTATGCATA
 151 ATCAAATACGT GTGCTGTCAC AGCTTCTGCT GAGAGTTTCGG GTCGTATGC
 201 TTGTCGTCAG TTATGTCGTC AGAACCCCTAC ACCACATATT GTTGTACAG
 251 GTTGTGTTGGG GGAATCTGAC AAAGAGTTTT TTGCTTCTTT GGATCGGCCAA
 301 TGACACACTTG TTTCCAATAA AGAAAATTC CGACTTATAG AAAAAATTTT
 351 TTCCATATGAT ACGACCTTCC CTGAGTTCAA GATCCATAGT TTTGAGGGAA
 401 AGTCTCGAGC TTTTATTAAA GTTCAAGATG GCTGTAATTTC TTTTGCTCG
 451 TACTGCAATTA TTCCCTTATTTC GCGGGGGCGT TCGGTTTCTC GTCCTGCTGA
 501 GAAGATTTTA GCTGAAATCG CAGGGGGTGT AGACCAAGGA TATCGCGAAG
 551 TTGTAATTGCA AGGAATTAAAT GTTGGAGATT ATTGCGATGG AGAGCGTTCA
 601 TTAGCCCTCTT TGATGAAACA GGTGGACCGG ATTCCCTGGAA TTGAGAGGAT
 651 TCGAATTTC CTCATAGATC CTGATGATAT CACTGAAGAT CTGCACCGTG
 701 CCATCACCTC ATCGCGTCAC ACTTCTCTT CGTCACACCT TGTTCTCAA
 751 TCGGGGTCGA ATTCAATTTC AAAGAGAAATG AACCGGAAGT ATTCTCGCGG
 801 AGATTTTTTA GATTGTCGAG AGAAGTTCCG TGCTTCTGAT CCTCGCTATG
 851 CCTTTACTAC AGATGTCGATT GTCGGATTTC CTGGAGAGAG TGATCAAGAT
 901 TTTGAAGATA CTTTGAGAAT TATTGAAGAT GTAGGCTTTA TTAAAGTGCA
 951 TAGTTTCCCT TTCACTGTCGTC GTGGTCGTC TAAAGGCATAT ACCTTTGATA
 1001 ATCAGAATTCC CAATCAGGTG ATCTATGAGA GGAAGAAGTA TCTTGCTGAG
 1051 GTTGCTAAGA GGGTAGGCCA GAAAGAGATG ATGAAGCGGT TAGGAGAGAC

```

1101 TACAGAGGTG CTTGTTGAGA AAGTAACGGG GCAGGTTGCT ACGGGTCACT
1151 CTCCTTATT TGAAAAGTT TCTTCCCTG TTGTAGGAAC GGTAGCTATC
1201 AACACTCTAG TTTCTGTGCG TCTTGATAGG GTAGAGGAAG AAGGGCTGAT
1251 TGCGGAGATT CTATGA

```

5 The PSORT algorithm predicts inner membrane (0.1574).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 131A) and also as a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 131B) and for FACS analysis.

These experiments show that cp6761 is a surface-exposed and immunoaccessible protein, and that it
10 is a useful immunogen. These properties are not evident from the sequence alone.

Example 132

The following *C.pneumoniae* protein (PID 4376766) was expressed <SEQ ID 263; cp6766>:

```

1 MATSVPVTSS TSVGEANSSN ERFTERTSRM YYAALVLGAL SCLIFIAMIV
51 IFPVQVGLWAV VLGFALGCLL LSLAIVFAVS GLVLGKTLER SREATPPPEIV
101 AQKEWTTQQD VLGNHEYWRSE LISLFLRGDL HESLIVDSKD RSLDIDQSQLQ
151 NILKLEPLST TLSLLKKDCV HINILHLVR QWNLLGVDSL PEVTAHAEEL
201 LLFLTIEEQYY SPDILKLIRY GDALQATSPS MDWADSGSFS VDADGVFSCR
251 REECSPEDAL AQFDLLLALE NPDRRLKDS FLTYIWSSSF FEKFLHRHLE
301 SLQRKLPETA IDVARYEAQI QTFLSRYFQK LDLINAMSID WGYNCAEGER
351 CYESANQRQL NLFIAFSSSV PAMKRLFDKY GSVVRVDRRQ IREQILSNT
401 ILENESGFLC SLYEYPLSYL IDWAVLLDCV RGTEISLEDQ ADYTVCLQGL
451 DSMLSQFASR LQSGQKVLPN RDVLSEQAAV MLVHGLAAQG VSFQGLKALM
501 YLTAVPQRMW LGALPLFESF PVFNRMKEFL GESLD*

```

The cp6766 nucleotide sequence <SEQ ID 264> is:

```

25 1 ATGGCACACCT CTGTTCCCTGT AACTTCATCT ACTTCTGTAG GAGAGGCTAA
51 CTCCTCCAAC GAAAGATTTA CTGAACGAAC ATCGCGAACAT TATTACGCAG
101 CTTTAGTCCT AGGGGCTTTG AGCTGTTAA TTTTTATTGTC TATGATTGTC
151 ATTTTCCCAC AGGTGCGATT GTGGGCTGTG GTCTCTGGGT TTGCTCTTGG
201 ATGTTTACTT TTAAGCTTAG CTATCGTTTT TGCTGCTCTCC GGTCTCGTTT
251 TAGGCAAGAC TTTAGAACCT AGTCGAGAAC CGACTCCCTCC AGAAATTGTT
301 GCGCAAAGG AGTGGACTAC ACAACAAGAT GTCTTAGGGA ATGAGTATTG
351 GCGTCCGAG TTGATTTCCT TGTTCTTACG AGGGGATCTC CACGAATCTC
401 TGATTGTTGA TTCTAAGGAT CGATCTTTAG ATATTGATCA GAGTTTACAA
451 ATATATATTGA AACTTGAGCC CCTATCTACG ACACITTCGC TGTTAAAGAA
501 AGATTGTGTC CACATCAATA TCATTTTACA TTTAGTGAGA CAGTGGAACT
551 TACTGGGAGT GGATCTTAGT CTCGAAGTCA CTGCGCACCG CGAGGAACCT
601 CTACTCTTT TGATAGAAGA GCAGTATTAC TCTCCGTATA TTTTGAATT
651 GATTGCTAC GGAGATGCTT TACAAGCAAC GTCTCTTTG ATGGATTGGG
701 CAGATTCAAGG TTCTTTAGT GTAGACGCAG ACGGGGTATT TAGCTGTCGC
751 AGAGAAGAAAT GTTCTCTGAA GGATGCTTTG GCGCAATTTCG ATCTTCTTTT
801 GGCCTGGAA AATCCCGACAA GACGCTCTT AAAGGATTCT TTTCTTACCT
851 ACATTGGTC GTCTTCATTT TTGAGAAAGT TTTTACATCG CCATCTAGAG
901 AGCTTGCAAA GAAAGCTCCC AGAGACAGCG ATCGATGTCG CCCGCTATGA
951 AGCACAAATA CAAACATTTTC TCTCTCGCTA TTTTCAGAAG CTCGATTGAA
1001 TAAACGCAAT GTCCTTAGAT TGGGGATATA ACTGTGCTGA GGGAGAAAAA
1051 TGTTATGAGA GCGCAAATCA AAGATTAGAC AACCTATTTA TTGCTTTTTC
1101 TTCTCTGTGTT CCTGCTATGA AGCGGCTCTT TGACAAATAT GGTTCTGTG
1151 TACGGGTAGA TCGTAGGCAG ATTCTGTGAGC AGATTCTTTC GAACACTGAA
1201 ATCTTAGAAA ATGAGTCAGG GTTCCCTCTGC AGTTTGATG AATATCCTTT
1251 ATCCTATTG ATAGATGGG CTGTTTGCT AGACTGTGTT CGCGGTACCG
1301 AAATCTCTCT AGAAGATCAG GCGGATTACA CCGTTGTTT GCAAGGCTTG
1351 GATTCTATGT TATCTCAATT TCGGAGTCGT TTACAGTCTG GACAAAAAGT
1401 ATTGAATCCCT AGAGATGTTT TAAGTGAACA GGCTGCGGTT ATGCTTGTTC
1451 ATGGCTTGGC AGCACAGGGC GTGTCGTTTC AAGGATGAA AGCTTTGATG
1501 TATTGACAG CCGTCCCCA AAGAATGTGG TTAGGAGCAT TGCCTTTATT
1551 TGAATCTTTT CCTGTCCTTA ATCGGATGAA AGAATTCTT GGGGAATCTC
1601 TGGGAGACTA G

```

The PSORT algorithm predicts inner membrane (0.6158).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 132A) and also as a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 132B) and for FACS analysis.

- 5 These experiments show that cp6766 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 133

The following *C.pneumoniae* protein (PID 4376804) was expressed <SEQ ID 265; cp6804>:

```

10      1  MSNQLQPCIS LGCVSYINSF PLSQLIKRN DIRCVLAPPA DLLNLLIEGK
      51 LDVALTSSLG AISHNLGYVP GFGIAANQRI LSVNLYAAPT FFNSPQPRIA
     101 ATLESRSSLIG LLKVLCRHLW RIPTPHILRF ITTKVLRQTP ENYDGLLLIG
     151 DAALQHPVLP GFVTYDLASG WYDLTKLPFV FALLLHSTSW KEHPLPNLAM
     201 EEAQQFESS PEEVLKEAHQ HTGLPPSLLQ EYYALCQYRL GEEHYESFEK
     251 FREYYGTLYQ QARL

```

- 15 The cp6804 nucleotide sequence <SEQ ID 266> is:

```

20      1  ATGTCTAACCC AACCTCCAGCC ATGTATAAGC TTAGGCTGCCG TAAGTTATAT
      51 TAATTCCCTTT CCGCTGTCCC TACAACTCAT AAAAGAAAAC GATATTGCT
     101 GTGTTCTTGC TCCCCCTGCA GACCTCCTCA ACTTGCTAAT CGAAGGGAAA
     151 CTCGATGTTG CTTTGACCTC ATCCCTAGGA GCTATCTCTC ATAACCTGGG
     201 GTATGTCCCC GGCTTGGAA TTGCAGCAA CCAACGTAATC CTCAGTGTAA
     251 ACCTCTATGC AGCTCCCCACT TTCTTTAACCT CACCGCAACC TCGGATTGCC
     301 GCAACTTTAG AAAGTCGCTC CTCTATAGGA CTCTTTAAAG TGCTTTGTCG
     351 TCATCTCTGG CGCATCCCAA CTCCTCATAT CCTAAGATTC ATAACCTACAA
     401 AAGTACTCTAG ACAAAACCCCT GAAAATTATG ATGGCCTCCT CCTAATCGGA
     451 GATGCAGCGC TACAACATCC TGTACTTCCT GGATTTGTAA CCTATGACCT
     501 TGCATCGGGGG TGGTATGATC TTACAAAGCT ACCTTTTGTA TTTGCTCTTC
     551 TTCTACACAG CACCTCTGG AAAGAACATC CCCTACCCAA CCTTGCGATG
     601 GAAGAAGGCC TCCAACAGTT CGAATCTTCA CCCGAAGAAG TCCCTAAAGA
     651 AGCTCATCAA CATAACAGGT TGCCCCCTTC TCTTCTTCAA GAATACTATG
     701 CCCTATGCCA GTACCGTCTA GGAGAAGAAC ACTACGAAAG CTTTGAAAAAA
     751 TTCCGGGAAT ATTATGAAAC CCTCTACCAA CAAGCCGAC TGTAA

```

The PSORT algorithm predicts inner membrane (0.060).

- The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 133A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 35 133B) and for FACS analysis.

These experiments show that cp6804 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 134

The following *C.pneumoniae* protein (PID 4376805) was expressed <SEQ ID 267; cp6805>:

```

40      1  MSSLLSCGRI EPTRVTCSLK TYLEDTSQNZ LSTRLVRAHSV IFLCALLIIL
      51 VCVALSSLIP SIMALATSFT VMGLLILFVMS LLGDVVAISY LTYSVTTSYR
     101 QNKRAFEIHK PARSVYYEGV RHWDLGRSSL GTGEIPIVRT LFSPFQNHLG
     151 NHALAAKIFL FMEHFSPPEPP NEPLVDWACL IRDFRPHVSS LCFVIEKQGS
     201 SLRTKEGNTI CEAFRSDYDA HFAMVDCYRL IHSKLIIEKM GLKNIDIIIPS
     251 VMVRDYPSPR PGEGYREGLL RMYGGKGAL*

```

- The cp6805 nucleotide sequence <SEQ ID 268> is:

5

```

1 ATGTCATCAC TACTGAGCTG CGGAAGAATA GAGCCGACTC GGGTTACCTG
51 TAGCTTAAAG ACGTATCTTG AGGATACGAG TCAGAACAG TTGAGCACAC
101 GTCTAGTTCG GGCAAGTGTG ATCTTTTAT GCGCATTGTT GATCATTTTG
151 GTTTGTGTGG CCCTCTCTAG TTGATTCCA AGCATTATGG CCTTGGCGAC
201 CTCTTTACG GTAATGGGGT TAATTCTTAT TGTGATGTCA CTTCTGGTG
251 ACGTTGCAAT TATAAGTTAT CTTACTTATA GCACGTGTTAC GAGTTACCGG
301 CAAAATAAGA GAGCTTTGA GATTACAAAG CCCGCTCGCT CCGTTTACTA
351 CGAGGGGTC CGCCATTGGG ATTTAGGACG ATCATCTTA GGCACAGGCG
401 AGATTCTAT AGTAAGGACG TTATTCTCTC CATTTCAGAA CCATGGTCTT
451 AACCATGCCT TAGCTGCTAA AATTTCCTA TTTATGGAGC ATTTCAAGCCC
501 TGAGCACCG AACGACCTT TGTTGGATTG GGCGCTGTTG ATTCCGGGATT
551 TTAGGCCTCA CGTCAGTTCT TTGTCCTTGT TTATTGAAAA ACAAGGGTCA
601 TCGCTGAGGA CTAAGGAAGG CAATACGATT TGTGAGGCTT TCCGCTCTGA
651 TTACGACGCC CATTTGCTA TGGTAGATTG CTACCGGTG ATCCACTCTA
701 AGTTGATTAT AGAGAAAATG GGATTGAAGA ATATCGATAT CATTCCGAGT
751 GTCATGGTTC GTGAAGATTA TCCTAGCCGT CCTGGGGAGG GCTATCGCGA
801 AGGCCTATTAA CGTATCTATG GTGGCAAGGG GGCTCTGTGA

```

The PSORT algorithm predicts inner membrane (0.711).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 134A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 134B) and for FACS analysis.

These experiments show that cp6805 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 135

25 The following *C.pneumoniae* protein (PID 4376813) was expressed <SEQ ID 269; cp6813>:

30

```

1 MSGPSRTESS QVSLSYVPR DKEIAPKKQF TIAKISTLAI LASLALGALV
51 AGISLTIVLG NPVFLALLIT TALFSVVTFL VYHQMTSKVS SNWQKVLEQN
101 FKPLGKAWQE KNVDYCSNEM QFYNNHLPK FYKVAIQTDAS QPFQPTFLTG
151 LRVIEKNQST GILFPNVGPT NLIDNTATNL STILYSTLKD KSVWDTCKQR
201 EGGPAKGEDP FSPTEVRVVK LPNEALDQTF NLNLSSAEKK SILPTFLGHV
251 CGPKSEELPN QQEYYRQALL AYENCLKAAI ESHAAIVALP LFTSVYEVPP
301 EEILPKEGTF YWDNQTQAFK KRALLDAIQN TALRYPQRSL LVILQDPFNT
351 IESQSRSEE*

```

The cp6813 nucleotide sequence <SEQ ID 270> is:

35

```

1 ATGTCAGGAC CCTCACCGTAC TGAGAGCTCT CAAGTTCTG TACTATCCTA
51 TGTGCCCTCGG GATAAAGAAA TTGCTCTAA AAAACAGTT ACCATAGCAA
101 AAATATCCAC TCTTGCAATC CTAGCTTCTT TAGCTTTAGG AGCTTGTG
151 GCTGGAACTCT CTTTAACGAT AGTATTAGGG AACCTGTAT TTTTGGCTCT
201 TCTCATTACCC ACGGCCCTCT TCTCAGTTGT AACCTCTTA GTCTACCACC
251 AAATGACCTC AAAGGTATCT TCTAACTGGC AGAAAAGTTCT AGACCAAAAC
301 TTCAAGCCTT TGGGAAAAGC GTGGCAAGAA AAAAACGTAG ACTGCTACTC
351 AAACGAGATG CAATTTCACA ATAATCACCT GAACCCCTAAG TTCAAGGTAG
401 CGATACAAAC AGATGCGTCT CAACCATTTC AGCCTACTTT CTAACTCGGA
451 CTTAGAGTGA TCGAAAAAAA TCAATCCACA GGGATCATCT TTAATCCCGT
501 AGGCCCAACG AATCTGATCG ACAACACTGC AACGAACCTC TCTACTATCC
551 TTACTCCAC CCTAAAAGAT AAAAGCGTGT GGGATACATG CAAGCCAACGC
601 GAAGGGGGTCC CGCGAAAAGG AGAAGACCCC TTTTCCCCCTA CCGAAGTGAG
651 AGTAGAAAAA CTTCCAAACG AAGCTCTAGA TCAAACGTTT AATCTAAATT
701 TAAGCTCTGC AGAAAAGAAA AGTATTCTTC CGACCTTTT AGGCCACGTA
751 TGCAGCCCTA AATCTGAGA GTTACCAAAT CACCAAGAAAT ATTATCCCA
801 AGCTTTACTA GCGTACGAGA ACTGCCTTAA AGCAGCTATA GAAAGTCATG
851 CAGCAATCGT TGCTCTCCT CTCTTACTT CGGTCTATGA AGTGCCTCCA
901 GAAGAGATTG TTCCTAAAGA AGGCACCTTC TATTGGACCA ACCAAACTCA
951 AGCGTTTGC AAACGCGCTT TATTGGACGC TATTCAAAT ACGGCCCTAC
1001 GCTATCCTCA AAGATCTTA CTTGTTTAC TCCAAGATCC TTTTAATACT
1051 ATAGAATCAC AAAGTCGTTG TGAGGAGTAA

```

The PSORT algorithm predicts inner membrane (0.4291).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 135A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 135B) and for FACS analysis.

- 5 These experiments show that cp6813 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 136

The following *C.pneumoniae* protein (PID 4376844) was expressed <SEQ ID 271; cp6844>:

```

10      1 MWRVVLRFLI IFILGRAVFP LRASESFSW E TSTCLTVLGI PFIDIILTTN
      51 EDFVAQCGLQ IGTISSTNN A KIKEIFLIYK EKFPEASISF KRKEPLNL SQ
     101 SHLSLDLGILC MRNGETYAEG MANKENGPA L KQPKDRLRLV RCPNQPDTL L
     151 YSEKEAEKG I ETNTFCICNQG YTLLDGQLIL YGDSIEKFLK ETKRKNNH TL
     201 VDLLCDSQVVT TFLGRFWSL NYVQVLFLSE DSAKILAGIP DLAQATQLLS
     251 HTVPLLFIY N DSDIIHIEQG KESSFTYNQD LTEPILGFLF GYINRGSMEY
     301 CFNCAQSSLG ET*

```

The cp6844 nucleotide sequence <SEQ ID 272> is:

```

20      1 ATGTGGCGCG TTGTCCCTAG ATTCCCTTATA ATTTTTATCT TGGGAAGAGC
      51 CGTCCTCCCT CTAAGAGCTT CAGAAAGCTT CCTCCTGGAA ACATCGACCT
     101 GTTTAACAGT CCTAGGGATT CCTTTCATAG ATATTATCTT CACAACGAAT
     151 GAGGACTTTC TTGCCCCAGTG CGGCCCTGCAA ATAGGAACCA TTCTCTCGAC
     201 TAATAACGCA AAAATAAAAG AAATTTTTT GATATATAAG GAAAATTTTC
     251 CAGAAGCCTC TATCAGTTTC AAACGAAAAG AACCTCTAAA CCTTTCCCAA
     301 TCCCATCTCT CCGATTAGG TATTTTATGT ATGCGTAACG GAGAAACTTA
     351 CGCTGAGGG A ATGGCAAATA AAGAAAACGG ACCCGCTCTA AAACAACCCA
     401 AGGATCTAAG ATTAGTTTA CGTGTCTTA ACCAACCGA TACCCTGCTC
     451 TACTCGAAA AAGAACGCAGA AAAGGGCATA GAAACAAATA CTTGCCTATG
     501 CAATCAGGG A TACACACTCC TGGATGGCA ATTGATTCTC TACGGGGATA
     551 GTATAGAAA GTTCTGAAA GAGACCAAAA GAAAAGATAA CCACACGCTT
     601 GTTGATCTTT GTGACTCACA AGTCGTGACC AC GCTTCCTCG GTCGCTTTG
     651 GTCTCTTCTA AACTACGTT AAGTTCTTT CCTATCTGAA GACTCCGCTA
     701 AAATTCTTGC GGGCATCCC GACCTAGCTC AAGCTACGCA ATTGCTTCC
     751 CACACCGTAC CTTTGCTTT TATTTATACC AACGATTCTA TTCACATCAT
     801 AGAACAAAGG A AAAGAAAGTA GTTTTACCTA TAACCAAGAT TTAACAGAGC
     851 CCATTCTT AAGG ATTTCTTT GGTACATCA ATCGCGGCTC TATGGAATAC
     901 TGCTTTAATT GTGCACAGTC TTCATTAGGA GAAACCTAA

```

The PSORT algorithm predicts inner membrane (0.1786).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 136A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 136B) and for FACS analysis.

- 40 These experiments show that cp6844 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 137

The following *C.pneumoniae* protein (PID 4377201) was expressed <SEQ ID 273; cp7201>:

```

45      1 VLVGICPSLY PEHPRSFYYR VSGDIGSRFD DRGFVNNSGV E TLPYSSGSPG
      51 IFWISFTDPT FNFAIVNTFM RTAGINEVSR PMTQDTETSL IEMRDLSSEQQ
     101 EANNTDSLEQ EESLMGIVGH TVGGVSMTVT SSPNIFYRIQ TLLGLPETLA
     151 EAEEENPTFPN STIDSLAEIM MNLVRISDAV SIFWIFFPIVD TTYNGVLLAV

```

201 CIGFFGINGI CSTFLMLTNP RSRRDRWRNL RIMVLCYRSL GSGMNLFDLS
 251 NNVVRMAARRH VTSCIVALYA MVTLFGWTVA IQDALQYGFV SVRDAFYRYC
 301 LRHRYCLTQR NEDSLQTGT RFQVTRTHLE DQQMVASILN LSVFGLFFGF
 351 VGLMTTFGGL EISPSCRWDA ANNRTVGIF*

- 5 The cp7201 nucleotide sequence <SEQ ID 274> is:

1 GTGCTCGTTG GTATCTGTC TTCTCTATAT CCAGAACATC CTCGCTCCTT
 51 TTATTATCGT GTTTCTGGAG ATATAGGCTC CCGATTGAC GATAGAGGAT
 101 TTGTAACACTC TGGAGTCGAA ACCCTGCCAT ACTCTTCAGG CAGCTTTGGG
 151 ATTTTTTGGG TCTCGTTAC GGATCCCACA TTTAATTGTTG CTATCGTAAA
 201 TACCTTTATG CGAACCTGCAG GGATCAATGA AGTCTCTAGA CCCATGACAC
 251 AAGATAACAGA AACTTCATG ATAGAAATGA GAGACCTAAG TGAAACAACAA
 301 GAAGCGAATC ACACAGATTG TTTAGAGCAA GAAGAGAGCT TAATGGGTAT
 351 TGTTAGACAT ACTGTTGGGAG GAGTTCCCAT GACCGTGACC TCCAGTCCAA
 401 ATATCTTTTA TCCTGATACAA ACACTTCTGG GACTGCCAGA GACTCTTGCA
 451 GAAGCTGAAG AAAATCCTAC CTTCCCAAAT TCTACTATAG ATAGCCTTGC
 501 AGAAAATAATG ATGAACCTCG TAAGGATCTC TGATGCTGTC TCTATTTCT
 551 GGATTTTTCG TATCGTAGAT ACTACATATA ATGGAGTTTT ATTAGCCGTC
 601 TGTATCGGCTC TCTTCGGAAT CAATGGGATT TGTTCCACGT TCCCTATGCT
 651 TACGAATCCA CGCTCTCGT GAGATAGATG GAGGAATTAA CGCACATCATGG
 701 TTCTTTGCTA TCCTGTTTG GGAAGCGGAA TGAAATCTTT TGATCTTAGC
 751 AATAATGTCG GCATGGCAGC ACGTAGGCAT GTGACATCAT GTACAGTAGC
 801 TCTCTATGCT ATGGTCACTC TATTGGATG GACAGTAGCA ATACAAGATG
 851 CTTTGCATAA TGGTTTCCCT AGCGTTCGGG ATGCCCTCTA TAGATATTGC
 901 TTACGCCACCA GATATTGCTT AACTCAAAGA AACGAAGACT CTCTGCCAAC
 951 TACAGGAACCG CGCTTCTCAGG TTACCCGTAC ACATCTAGAA GATCAACAGA
 1001 TGGTGGCTTC TATTGGAT TTGAGTGTGTT TTGGGCTCTT TTTTGGATTTC
 1051 GTAGGGCTAA TGACCAACGTT TGGAGGAGTTA GAAATCTCAC CATCTGTGCG
 1101 GTGGGATGCA GCAAATAACC GAACGGTAGG TATTTTTTAG

The PSORT algorithm predicts inner membrane (0.3102).

- 30 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 137A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 137B) and for FACS analysis.

These experiments show that cp7201 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example 138

The following *C.pneumoniae* protein (PID 4377251) was expressed <SEQ ID 275; cp7251>:

1 MAPIHGSNAF VEDILHSHPS PQATYFSSTR AQKLHEFKDR HPVLTRIASV
 51 IIKIFKVLLG LIILPLGIW LCQTLCTNSI LPSKNLLKIF KKQPNTKTLK
 101 TNYLHALQDY SSKNRVASMR RVPILQDNVL IDTLEICLISQ APTNRWM LIS
 151 LGSDCSLEEI ACKEIDFSWQ RFAKLIGANI LVYNYPGVMS STGSSSLKDL
 201 ASAHNICTRY LKDKEQGPAGA KEITYGYSL GGLIQAEALR DQKIVANDDT
 251 TWIAVKDRCP LFISPEGFHS CRRIGKLVAR LFGWGTKAVE RSQDLPCEI
 301 FLYPTDSLRR STVRQNLLA PELTLAHAIK NSPYVQNKEF IEVRLSSDID
 351 PIDSKTRVAL ATPILKKLS*

- 45 The cp7251 nucleotide sequence <SEQ ID 276> is:

1 ATGGCTCCAA TTCACGGAAG TAATGCGTTT GTTGAGGATA TTTTACATTC
 51 CCACCCCTTCT CCACAAGCGA CTTATTTTC TTCAACACGC GCCCAAAAC
 101 TTCATGAGTT TAAAGACAGG CATCCCGTGTC TTACACGGAT TGCTTCTGTA
 151 ATTATTTAAA TTTTTAAAGT TCTGATAGGG CTGATCATCC TTCCCTTAGG
 201 AATCTACTGG CTATGTCAAA CGCTTTGTAC AAACCTCGATT CTCCCTTCCA
 251 AGAATTTATT AAAAATTTC AAGAAGCAAC CCAACACTAA AACCTTAAAA
 301 ACTAATTATT TGCATGCTT GCAAGATTAT TCCTCGAAA ACCGCCTTGC
 351 TTCCATGAGA CGAGTTCCCTA TCCTCCAGGA TAATGTTCTC ATCGACACTT
 401 TGGAAATATG CCTTCACAA GCACCTACGA ATCGTGTGAGT GCTCATTTCT
 451 TTAGGAAGTG ACTGTAGCTT GGAAGAAATC GCTTGTAAAGG AGATCTTGA

501 TTCTTGGCAA AGATTTGCCA AGTTGATAGG GGCCAATATA CTCGTTATA
 551 ACTACCCCCGG AGTCATGTCC AGCACAGGG GAAGCAGCCT AAAGGACCTA
 601 GCATCAGCTC ATAATATTTC TACAAGATAC CTTAAAGATA AAGAACAGGG
 651 CCCTGGAGCA AAAGAAATCA TTACCTATGG GTACTCCCTA GGAGGTTTGA
 701 TACAAGCAGA AGCATTGCGA GACCAGAAGA TTGTTGCAA CGATGATACT
 751 ACTTGGATAG CAGTCAGAAGA TAGGTGTCCT CTCTTATAT CTCCAGAAGG
 801 TTTCCACAGT TGCAAGCAGA TAGGAAAGCT AGTAGCTCGT CTTTTGGCT
 851 GGGGGACCAA AGCCGTAGAG AGAAGCCAAG ACCTTCCCTG CCTAGAAATT
 901 TTTCTCTATC CTACGGATTG CTTACAGAAGA TCAACAGTCA GACAGAACAA
 951 GCTCTTAGCA CCTGAACCTA CTCTCGCTCA TGCAGATAAAA AATAGTCCCT
 1001 ATGTCAAAAA TAAAGAATTG ATAGAAAGTAC GATTATCGTC TGATATCGAT
 1051 CCCATCGACA GCAAAACAAG AGTGGCTCTT GCCACACCAA TTTTGAAAAAA
 1101 GCTCTCTTAG

The PSORT algorithm predicts inner membrane (0.4545).

- 15 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 138A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 138B) and for FACS analysis.

These experiments show that cp7251 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

20 Example 139

The following *C.pneumoniae* protein (PID 4377288) was expressed <SEQ ID 277; cp7288>:

1 MHMSNPISLF SPAELIAKYN LIPKTSPIYP RRTELILLEE NACQTRLTNV
 51 AQVLHPSSLF SMSKKILNPC GCSGGPLCWV ILNLAFIIT SVLFIIILPV
 101 NLIVAGLRLF MPLPPKKIVE DLSEPTTEET NEVIQPFIFA LQALLFEDNK
 151 LRSFKIVEQS VGKAPLPNPF LNRLVAISPO ESQEAMRKIP DLCSQLKKVL
 201 KSLGVLTPEW KHMLKYFEGL KNEHDSNPKD KTFPILIKLL IEALTGKSSL
 251 PKTPSTKEKM QAAFLIASSC KTCKPTWGEV ITRSLNRLYS IANEGDNQLL
 301 IWVQEFEKERE LMSIQDGDDA EEEYRFAAQOH GERYTEAIEQ VLRNESAAKL
 351 QWHVINTMKF FHGKNLGLVT EHLQDTLGAL TLRQTTVDTH QGREDAADLSA
 401 ALFLNKYLNS GNQLVNSVFK SMQKADPETK ALIREFALDI LYASLRLPQT
 451 SAHTEVFSTL LMDPETYEPN KACIAYLLYV LKIIEL*

The cp7288 nucleotide sequence <SEQ ID 278> is:

1 ATGCATATGTT CTAACCCCAT CTCTTTGTTT TCCCTTGCGAG AGTTAATAGC
 51 AAAGTACAAT TTAATTCCAA AAACCTCGCC GATTATACCT CGGAGGACGG
 101 AACTTATTAT CTTGGAAGAA ATGCGTGTC AAACACGCCT AACCAACGTG
 151 GCTCAGGTCC TACATCCCTTC TAGCCCTATTG AGTATGTCAA AAAAATACT
 201 GAATCCCTGC GGGTGCTCTG GTGGTCCCTT ATGTTGGGTG ATTCTCAACA
 251 TCCTAGCATT TATTATTACT TCAGTACTGT TTATCATTCT TTTACGGGTG
 301 ATATCTCATCG TAGCAGGTCTC TCGCTCTTC ATGCCTCTTC CCCCTAAAAA
 351 ATCGTAGAG GATTTAAGTC AACCTACTAC TGAAGAAACG AATGAGGTCA
 401 TTCAACCCCTT CATTTCGCT TTGCAAGCGT TGCTTTTGA GGATAACAAA
 451 CTTCGCTCTT TTAAAATTGT TGAACAAAGT GTAGGCAAAG CACCCCTTACC
 501 TAATCCCTTT TTAAATAGAC TAGTAGCAAT TTGCGCGCAA GAAAGCCAAG
 551 AAGCCATGCG GAAGATTCCG GATCTATGCT CACAACGTAA AAAAGTATTA
 601 AAGTCTCTAG GCGTGTCAAC TCCAGAATGG AAGCACATGC TGAAGTACTT
 651 TGAGGGACTG AAAAACGAAC ATGATAGTAA TCCTGATAAAA AAGACGTTCC
 701 CAATATTGAT CAAGCTCCCTC ATAGAAGCTC TTACTGGAAA GTCCCTTTA
 751 CCCAAAATCTC CTAGTACAAA GGAAAAATGT CAAGCGGCCT TATTATTTGC
 801 AAGTTCTTGC AAGACTTGTG AGCCGACTTG GGGAGAAGTC ATAACCAAGAT
 851 CTCTTAACAG ACTCTATAGT ATAGCTAATG AAGGAGACAA TCAGCTCTG
 901 ATTTGGGTTC AAGAGTTAA AGAACGAGAG CTGATGTCCA TCCAAGATGG
 951 TGATGATGCT GAAGAGTATC GGTTTGCAGGC TCAGCAACAC GGTGAGCGTT
 1001 ACACAGAGGC AATAGAACAA GTTCTACGAA ACGAGTCAGC AGCCAAACTA
 1051 CAATGGCATG TGATCAACAC TATGAAATTG TTCCCATGGGA AAAATCTCGG
 1101 TCTAGTTACA GAACACCTAC AAGATACTCT CGGCGCCCTA ACTTTACGTC
 1151 AAACCTACAGT GGACACACAT CAAGGCAGAG AAGACGCTGA TTTGTCAAGCT
 1201 GCTCTTTCC TAAATAAGTA TTTAAATTCT GGAAATCAAC TTGTTAATAG

5
1251 CGTCTTTAAA TCCATGCAAA AAGCAGATCC AGAAACCAAA GCTTTAATCC
1301 GTGAGTTTCGC TCTAGATATA TTATATGCAT CCTTACGGCT TCCTCAAAC
1351 TCCGCTCATATA CCGAGGTCTT TCTTACACTC TTAATGGACC CAGAGACCTA
1401 TGAACCTAAT AAAGCTTGTA TCGCCTACTT GCTCTATGTA TTAAAGATCA
1451 TCGAACTATA A

The PSORT algorithm predicts inner membrane (0.5989).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 139A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 139B) and for FACS analysis.

- 10 These experiments show that cp7288 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 140

The following *C.pneumoniae* protein (PID 4377359) was expressed <SEQ ID 279; cp7359>:

15
1 MPGSVSSPPPL SPVIVRERVP SSSGSDLIQP HAVLKISILII FALVTILGIV
51 LVVLSSALGA LPSLVLTVSG CIAIAVGLIG LGILVTRLIL STIRKVDAMG
101 YDAAVKEEQY LSRIRELESE NREIRDRNRA VEDQCAHLSE ENKDLRDPEY
151 LHGMTERLIA SLEIENQALV AENILLKDWN ASLSRDFRAY KQKFPLGALE
201 PWKEDIACIM EQNLFLKPEC IAMVKSLPLE TQRFLFLYPKG FQSLVNRFAP
251 RSRFFQTPKY EYNSRNENED GKVAAVCARL KKEFFSAVLG ACSYEELGGI
301 CERAVALKET LPLPEAVYDT LVQEFPNLLT AESLWKEWCF YSYPYLRLPYL
351 SVDYCKRLFV QLFEELCLKL FTGSPEDQA LVRLFSYVRN HIPAVLASFG
401 LPPPETGGSV FVLLPKQENL LWSQIEVLAT RYLKDTFVRN SEWTGSFEMM
451 FSYNEMCKEI SEGRIRFAED YETRHSEEFP PSPLSEESEGEG EEFLPPCSEE
501 EVSLERPDL DVDSMWWHWP PVPKG*

- 25 The cp7359 nucleotide sequence <SEQ ID 280> is:

1 ATGCCAGGTT CTGTGTCATC ACCTCCTTTG TCTCCTGTAA TTGTCCTGTA
51 AAGGGTCCCA TCCCTTCAG GATCCGACCT CATACAGCCT CATGCTGTTT
101 TAAAGATCTC CATCCTAATT TTTGCGCTTG TGACAATTTC AGGAATTGTT
151 CTTGTAGTGT TGTCTAGTGC TTTAGGAGCT CTTCCCTAGTT TAGTTTTGAC
201 GGTTTCTGGT TGTATTGCAA TAGCTGTAGG CCTGATTGGT TTAGGGATTC
251 TTGTGACACG GCTGATTCTC TCTACGATCA GAAAAGTAGA TGCCATGGGT
301 TATGATGCTG CGGTCAAAGA AGAGCAGTAT TTGTCACGTA TCAGAGAATT
351 AGAGTCTGAA AATAGAGAGA TTAGAGATAG AAATCCTGCT GTGGAAGATC
401 AGTGTGCCCCA TTATTCGAA GAGAACAAAGG ACCTTACGGG TCCCGAATAT
451 CTACATGGAA TGACTGAAAG GCTCATTGCG AGCTTAAAGA TAGAGAAATCA
501 AGCTCTCGTA GCTGAGAACAA TTCTTCTCAA AGACTGGAAT GCAAGCCTAT
551 CTAGAGATTTC CCGCGCATAT AACGAAAAAT TTCCTCTTGG GGCATTAGAA
601 CCCTGGAAAG AAGATATTGC ATGTATCATG GAACAAAATC TCTTTTTAAA
651 ACCGGAATGT ATCGCGATGG TTAAGTCTCT TCCATTAGAG ACCGAAACGGC
701 TGTTTTATA TCCAAAAGGA TTTCAGTCTT TAGTTAATCTG ATTGCTCCG
751 CGGTCTCGCT TTTTCCAGAC TCCAAAGTAT GAATATAACA GTAGGAATGAA
801 AAATGAGGAC GGAAAGGTAG CCGCAGTGTG CGCCCGTTG AAAAGAAT
851 TCTTCAGTGC TGTGTTAGGA GCCTGTAGTT ACGAAGAACT AGGGGGCATT
901 TGTGAAAGAG CAGTAGCACT TAAAGAGACG TTGCCATTGC CTGAAGCTGT
951 CTATGATACC CTAGTTCTCAG AGTCCCAAAT TCTTCTTAACT GCTGAGAGTT
1001 TATGGAAAGA ATGGTGCCTC TATTCCTATC CCTACCTTCG TCCCTATCTT
1051 TCTGTGGATT ACTGTAAGAG GTTATTTGTA CAACCTTTTG AGGAACCTGT
1101 CCTAAAGCTT TTTACAACGG GATCTCCAGA AGACCAAGCT TTGCTTCGCC
1151 TTTTCTCTTA CTATAGGAAT CATATTCCCG CAGTCCTTGGC CTCATTTGCT
1201 TTGCCCCCGC CTGAGACAGG GGGGTCTGTA TTGTTATTGC TACCAAAACAA
1251 AGAAAACCTT CTTTGGAGTC AAATTGAGGT GCTGGCTACA AGGTATCTCA
1301 AAGATACCTT CGTGAGAAC TCAGAATGGA CGGGCTCTTT CGAGATGATG
1351 TTTTCTTATA ACGAGATGTG TAAGGAGATC TCCGAAGGAA GGATTCGTTT
1401 TGCTGAAGAC TATGAAACGA GGCATTCCGA AGAAATTCCCT CTTTCCCCTC
1451 TCTCTGAAGA AGGAGAGGGC GAAGAATTCC TTCCCTCTTG CTCTGAAGAA
1501 GAGGTTTCGG TTCTTGAGCG CCCAGATCTA GATGTAGACT CTATGTGGT
1551 CTGGCATCCG CCGGTCCCTA AGGGACCTCT TTAA

The PSORT algorithm predicts inner membrane (0.7453).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 140A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 140B) and for FACS analysis.

- 5 These experiments show that cp7359 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 141

The following *C.pneumoniae* protein (PID 4377374) was expressed <SEQ ID 281; cp7374>:

10	MDKQSSGNSG CIWHPFTQSA LDSTPIKIVR GEGAYLYAES GTRYLDAISS 51 WWCNLHGHH PYITKKLCEQ AQKLEHVIFA NFTHEPALEL VSKLAPLLPE 101 GLERFFFSDN GSTSIEIAMK IAVQYYNNQN KAKSHFVGGLS NAYHGDTFGA 151 MSTIAGTSPTT VPFHDILFLPS STIAAPYYGK EELATAQAKT VFSESNIAAF 201 IYEPLLQGAG GMLMYNPEGL KEILKLAKHY GVLCIADEIL TGFGRTGPLF 251 ASEFTDIPPD IIICLSKGLTG GYLPLALTVT TKEIHDAFVS QDRMKALLHG 301 HTFTGNPLGC SAALASLDLT LSPECCLQQRQ MIERCHQEFO EAHGSLWQRC 351 EVLGTVLALD YPAEATGYFS QYRDHLNRFF LERGVLLRPL GNTLYVLPPY 401 CIQEEDLRRI YSHLQDALCL QPQ*
----	---

The cp7374 nucleotide sequence <SEQ ID 282> is:

20	1 ATGGACAAGC AATCATCAGG GAATTTCAGGG TGTATCTGGC ACCCCCTTCAC 51 TCAATCTGCA TTAGATCTCA CACCCATAAA GATTTGTAAGG GGAGAAAGGTG 101 CTTAACCTCTA TGCGGAATCA GGAACAAAGAT ATCTTGATGC GATATCTTCA 151 TGCGTGGTGCAC ACCTCCACGG TCATGGGCAT CCCTACATTA CAAAAAAATT 201 ATGTGAGCAA GCACAGAAAGT TAGAACATGT GATCTTCGCA AATTTCACCC 251 ATGAACCGGGC TCTAGAGCTC GTATCGAAAC TCGCTCCCCT CCTTCCTGAA 301 GGTCTAGAAC AGTTCTTTT CTC TGACAAAC GGATCAACGT CTATCGAAAT 351 AGCAATGAAA ATTGCTGTGC AATATTACTA CAATCAAAAC AAGGCTAAGA 401 GCCATTGGTGT TGGACTCAGC AATGCCATAC ACGGAGATAAC ATTGGAGCT 451 ATGTCGATAG CTGGCACGAG CCC TACTACA GTTCCCTTTTC ATGATCTTTT 501 TCTTCCTTCC AGTACAATTG CTGCTCCCTA TTATGGCAAG GAAGAGCTTG 551 CCATTGCCCA AGCAAAACAA GTCTTTCTG AAAGCAATAT CGCAGCGTTT 601 ATCTATGAGC CGCTATTGCA AGGTGCTGGA GGGATGTTAA TGTATAATCC 651 CGAAGGCCTCA AAGGAGATTG TCAAGCTTGC CAAGCATTAC GGGGTTCTCT 701 GTATTGCTGA TGAAAATTCTT ACTGGCTTTG GCGGTACGGG TCCACTGTTT 751 GCTTCTGAAT TTACAGACAT TCTCCTTGAC ATTATCTGTC TTTCTAAAGG 801 TCTTACAGGA GGCTATCTCC CTC TAGCCCT GACAGTAACC ACTAAAGAAA 851 TTCATGATGC CTTTGTCTCC CAAGATCGGA TGAAGGCACT GCTTCATGGC 901 CATAACCTTCA CAGGAAATCC TTTAGGCTGT AGT GCTGCC TCGCTTCTTT 951 GGATCTCACC CTATCTCCAG AATGCCCTACA ACAAAGGCAA ATGATAGAAC 1001 GGTGTCATCA AGAGTTCAA GAAGCTCATG GTTCCCTATG GCAACGGTGT 1051 GAGGTTCTGG GCACGGTACT CGCTCTAGAT TACCCCTGCAG AAGCTACAGG 1101 ATATTTTCTCA CAATATAGAG ACCATCTCAA TCGCTTTTTC TTAGAACGTG 1151 GAGTCCTTCTC TCGTCCCTTA GGGAAACACAC TGTATGTC GCCCCCCTAC 1201 TGTATCCAAG AAGAAGATCT CGGGATTATT TATTCTCAC TACAGGATGC 1251 CCTATGTCTA CAACCACAGT AA
----	---

- 45 The PSORT algorithm predicts cytoplasm (0.2930).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 141A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 141B) and for FACS analysis.

- These experiments show that cp7374 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 142

The following *C.pneumoniae* protein (PID 4377377) was expressed <SEQ ID 283; cp7377>:

5	1 MREETVWSL EDIREIYHTP VFELIHKANA ILRSNFLHSE LQTCYLISIK 51 TGGCVEDCAY CAQSSRYHHT VTPPEPMKIV DVVERAKRAV ELGATRVCLG
	101 AAWRNAKDDDR YFDRVLAMVK SITDLGAEV CALGMLSEEQ AKLYDAGLY 151 AYNHNLDSSP EFYETIITTR SYEDRNLNTLD VVNKGISTC CGGIVGMGES
	201 EEDRIKLLHV LATRDHIPES VPVNLLWPID GTPLQDQPPSI SFWEVLRTIA 251 TARVVFPNSM VRILAAGRAFL TVEQQTLCFL AGANSIFYGD KLLTVENNDI
	301 DEDAEMIKLL GLIPRPSFGI ERGNPCYANN S*

10 The cp7377 nucleotide sequence <SEQ ID 284> is:

15	1 ATGCGTGAAG AAACGTGTATC CTGGTCATTA GAAGACATCC GCGAAATTAA 51 TCACACTCCC GTATTGAGC TGATTACCAA AGCCAATGCC ATATTGCGTA 101 GTAATTCTC CCATTCAAGA CTGCAGACATT GCTATCTGAT TTGATTAAAA 151 ACTGGTGGAT GCGTTGAGA TTGCGCCTAC TGTGCCCCAT CTTCCCGCTA 201 TCATAACCCAC GTCACACCAAG AACCTATGAT GAAAATTGTA GACGTTGTGG 251 AAAGGGCAAA ACGTGTGTA GAGCTAGGCG CCACTCGTGT GTGTCCTGGG 301 GCTGCCTGGC GCAATGCTAA GGACGATCGA TACTTTGATA GAGTCCTCGC 351 TATGGTGAAA AGTATCACAG ATCTCGGAGC CGAGGTTTGT TGTGCTTTAG 401 GCATGCTCTC CGAACAGACAA GCTAAAAAAC TGTATGATGC AGGACTTTAT 451 GCCTTACAACAT ATAATTAGA CTCTTCTCCG GAATTCTATG AAACTATAAT 501 CACAACACGT TCTTATGAG ATCGCCTCAA CACTCTTGAT GTAGTAAATA 551 AATCTGGCAT TAGTACATGC TCGGGTGGTA TTGTAGGTAT GGGAGAATCT 601 GAAGAAGACC GTATAAAGCT TCTTCATGTT CTTGCAACAA GAGATCATAT 651 CCCAGAATCC GTACCTGTAA ATTACTTTG GCCGATTGAC GGCACGCCCT 701 TGCAAGACCA GCCTCCGATT TCTTCTGGG AAGTCTTGCG AACCATAGCA 751 ACGGCACGGG TTGTTTCCCC CAGATCCATG GTACGACTTG CTGCAGGACG 801 CGCTTTCTC ACAGTAGAAC AACAAACCTT ATGTTTCTA GCCGGTGCCA 851 ACTCCATATT CTATGGAGAT AAACTGTTGA CTGTAGAAAA CAATGATATA 901 GATGAAGATG CTGAAATGAT CAAACTTTA GGCTTAATCC CTCGCCCTTC 951 ATTGGAATA GAAAGAGGTA ACCCATGTTA TGCCAACAAT TCCTAA
----	--

The PSORT algorithm predicts cytoplasm (0.2926).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 142A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 142B) and for FACS analysis.

35 These experiments show that cp7377 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 143

The following *C.pneumoniae* protein (PID 4377407) was expressed <SEQ ID 285; cp7407>:

40	1 MVCPPNSWFR MCNPNCEWV EVTTTEETTR QSASDISEEA GSSGGAAPIT 51 TQPTKITKVE KRVQFNNTAQG DESTIHMIE AGELEVDSILS HRRTQGCTEY
	101 CYDSYATCGC QRCCSGFRLI CGTYKACCLD REDNQVAGLV HECEQTHGPPI 151 AVALAAKTMG LNLMELVEKN TILSEEQKNE FRQHCSEAKT QLYGTMQSLN
	201 QNFFLEGVNIS IRERGLDDSL VQAVLSFIAT RSWEKTISE EASGTSSASN 251 STRIPACYIL NTSPPLTSRL SCGSRDARRP SSSVGAEPQVV AKKYNDNGMA
	301 RQLGKIQVTN LKTGDFPSALG PFGLLLIVKML NSFLLASQSQ TSSILKHTGG 351 EICYTCPNFR DIVVLLMLAI GYCPANTDET SVVDIHMIDD PIMTIFYRLQ
	401 YSYRTGKTSA SFLKKKPSLV RQESLDCPTP AESVPLMSSL EEEEDENEDDD 451 EDGNLAYQQR ILECSGHLQT LFLGIKINKE *

The cp7407 nucleotide sequence <SEQ ID 286> is:

50	1 ATGGTTTGCC CAAATAATTG TTGGTTCAAGA ATGTGTGGAA ATTTCAACTG 51 CGAATGGGT GAAGTAACAA CAACAGAAGA AACAAACGCGG CAATCGGCTT
	101 CAGATATAAG CGAAGAAGCT GGTCGAGTG GAGGAGCTGC TCCTATAACT 151 ACGCAACCTA CTAAAATTAC AAAAGTAGAG AACAGTGTCC AATTTAATAC

201 TGCTCAAGGT GATGAAAGTA CAATACACAT GATCCAAGAA GCAGGGAGAAT
 251 TGGTAGACTC CATTCTATCA CATAGACGAA CGCAAGGATG TACAGAGTAT
 301 TGTTATGACA GTTACGCAAC TGGATGTGGT CAGCGTTGCG GATCTTTG
 351 AAGACTCATT TGTGGAACGT ATAAAGCGTG TTGCTTGTAGAC AGAGAGGATA
 401 ATCAGGTTGC TGGACTGTGTC CATGAATGCG AACAGACCCA TGGCTCTATT
 451 GCCGTTGCTT TAGCTGCTAA AACTATGGGC CTCAACTTAA TGGAACTTGT
 501 AGAAAAAAAC ACTATTTGTG CTGAAGAACAA GAAAATGAA TTTAGACAGC
 551 ATTGCTCGGA AGCTAAAACC CAACTCTATG GAACGATGCA GAGCCTTCT
 601 CAAAACTTTT TCCTTGAAAG AGTCAACAGC ATTAGAGAAC CGGGTCTAGA
 651 CGATTCACTA GTCCAAGGCC TGTCAAGCTT TATTGCTACAA AGGTCTTGGG
 701 AGAAAAAACTAT AGAATCAGAG GAAGCCTCAG GAACATCTTC TGCTTCTAAT
 751 TCTACACGCA TTCTCGCTG CTATATCTTA AATACGAGCC CCTTAACGAC
 801 GTCACGCCA TTCTGTGGAT CAAGAGATGC GCGACGCCA TCTTCAGTCG
 851 GTGCAGAGCC CCAGTACGTA GCAAAAAANT ACAATGACAA TGGCATGGCC
 901 AGACAATTAG GAAAATCCA AGTCACCAAT CTAAAAACAG GAGATTTC
 951 AGCTTTAGGT CCTTTGGTC TCCGTATTGT GAAAATGCTG AATAGCTTTC
 1001 TCTTATCTGC ATCACAAAGC ACATCTTCTA TTCTAAAGCA CACAGGTGGA
 1051 GAAATATGTT ATACGTGCC AAATTTCTGT GATATCGTCG TTTTATGAT
 1101 GTTAGCGATT GGCTATTGTC CTGCAAATAC CGATGAGACA TCTGTCTAG
 1151 ATATACACAT GATAGATGAT CCGATTATGA CCATCTTCTA TCGACTACAA
 1201 TACAGCTATA GAACAGGGAA AACTTCAGCA TCGTTTTAA AAAAGAAACC
 1251 CTCATTAGTA AGACAGGAAA GTCTTGATTG TCCTACCCCT GCAGAATCTG
 1301 TCCCTCTCAT GTCAAGTCTC GAAGAAGAAG ATGAAAATGAA AGATGATGAT
 1351 GAGGATGGGA ATTGGCGTA TCAACAGCGT ATCCTTGAAT GCTCGGGTCA
 1401 TTTACAAACT CTATTTTAG GGATAAAAAT AAACAAAGAA TAA

The PSORT algorithm predicts inner membrane (0.1319).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 143A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 143B) and for FACS analysis.

- 30 These experiments show that cp7407 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone:

Example 144

The following *C.pneumoniae* protein (PID 4376432) was expressed <SEQ ID 287; cp6432>:

1 MTRSTIESSD SLCSRSFSQK LSVQTLKNLC ESRLMKITSV VIAFLTLIVG
 51 GALIALAGGG VLSFPLGLIL GSVLVLFSSI YLVSCCKFT LKEMTMTCSV
 101 KSKINIWFER QRNKDIEKAL ENPDLFGENK RNVGNRSARN QLEMILHETD
 151 GIILKRYMKG AKMYFYL*

The cp6432 nucleotide sequence <SEQ ID 288> is:

1 ATGACTAGAA GTACTATTGA AAGCACTGAT TCGCTATGCT CAAGGTCTTT
 51 TTCTCAAAAA TTAAGTGTCC AGACATTTAA AAATCTCTGT GAAAGTAGAT
 101 TAATGAAGAT CACTTCTCTT GTGATTGCTT TCCTAACTCT AATTGTTGGG
 151 GGTGCTCTTA TAGCTTTAGC AGGAGGGGGG GTTCTTTCTT TCCCTCTGG
 201 GCTAATCTTA GGAAGCGTAC TCGTTTTGTT TCCTTCTATC TATTTAGTCT
 251 CTTGTTGTAA ATTTTTTACT TTAAAGAGA TGACAATGAC CTGTAGTGTC
 301 AAATCTAAAA TCAATATATG GTTGTAAAAG CAACGAAACA AAGACATCGA
 351 AAAGGCATTA GAGAATCCAG ATCTCTTGG AGAAAATAAG AGAAATGTTG
 401 GAAATCGTTC GGCAAGAAAT CAACTAGAAAA TGATCTTACA CGAGACTGAC
 451 GGAATTATTG TGAAAAGATA TATGAAAGGA GCTAAAATGTT ACTTTTATTT
 501 ATGA

- 50 The PSORT algorithm predicts inner membrane (0.5394).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 144A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 144B) and for FACS analysis.

These experiments show that cp6432 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 145

The following *C.pneumoniae* protein (PID 4376433) was expressed <SEQ ID 289; cp6433>:

```

5      1 MNWVPKTIDH VDPESEIDIR KVVSCYKLIK ECQPEFRSLI SELLGVIRCG
      51 LRLLRKRSKYQ EQARTVSDED APLFCLTRSY YQDGYLTPLR AGPRDLINHY
     101 IHLRRRRENPK HFFSPKHPCY YARLAFNESV CVYRELF DIE RLTKMYVEGD
     151 YSKEQEKNLQ AILSFVKTLD EGKDFLIEHK DTDLIGRGFT DVFC*
```

The cp6433 nucleotide sequence <SEQ ID 290> is:

```

10     1 ATGAATTGGG TTCCAAAAAC AATAGACCAG GTAGATCCAG AATCAGAGAT
      51 AGATAATACCTT AAAGTCGTCT CCTGCTATAA GTTGATAAAA GAATGTCAAC
     101 CTGAATTTCG ATCTCTTATA AGTGAATTAC TAGGAGTGAT TCGGTGTGGC
     151 TTAAGACTAT TAAAACGTT TCAGTATCAA GAACAGGCTA GAACTGTATC
     201 TGATGAAGAT GCACCTCTT TCTGCCCTGAC TCGTTCTTAT TATCAAGATG
     251 GTTATCTCAC GCCATTAAAGA GCAGGACCTC GTGATCTTAT AAATCACTAT
     301 ATACACTTGC GTCGCCGAGA GAATCCTAAG CATTTTTTCAG TGCCTAACAGA
     351 TCCATGTTAT TATGCTCGAT TGGCTTTAA TGAGTCAGTG TGTTGTCTATA
     401 GAGAACTCTT TGATATAGAG CGACTTACAA AAATGTATGT CGAGGGTGAT
     451 TATTCTAAAG AACAAAGAGAA AACCTACAG GCTATTCTTA GTTTGTGAA
    20     501 AACTCTAGAT GAAGGAAAGG ACTTTCTTAT TGAACATAAA GATACCGATC
     551 TCATTGGGAG AGGTTTACT GATGTGTTCT GCACTTAA
```

The PSORT algorithm predicts cytoplasm (0.4068).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 145A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 25 145B) and for FACS analysis.

These experiments show that cp6433 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 146

The following *C.pneumoniae* protein (PID 4376643) was expressed <SEQ ID 291; cp6643>:

```

30     1 MGYLPVSAATD VLFESPAAPL INSANTQNQK LIELKGKQQA ESSPRTITSV
      51 ILEVLLVIGC CLIVLSSLAI RPALQFTLET GHPAIAVLA VSGTILLVAV
     101 IILFCFLAATV PFAAKKTYKY VKTVDDYASW HSHQQTPTLG TIFSGIVYAE
     151 SQAQL*
```

The cp6643 nucleotide sequence <SEQ ID 292> is:

```

35     1 ATGGGATATC TTCCAGTATC TGCTACGGAC GTTCTTTTG AAAGTCCAGC
      51 CGCTCCCTTA ATCAATAGCG CAAACACACA AAATCAGAAA CTCATAGAAC
     101 TCAAGGGAA GCAGCAAGCT GAGTCCTCTC CACGGACAAT CACTTC'GTC
     151 ATATTGGAAG TTCTCCTAGT GATCGGATGC TGCTCTCATAG TTCTTAGTTT
     201 ATTGGCAATC CGCCCTGCTC TGCAATTACAC TCTAGAAAAT GGACATCCAG
     251 CTGCCATTGC AGTCCTTGCT GTCTCAGGAA CAATTCTATT GGTGGCTGTT
     301 ATCATCTTGT TTTGCTTCT AGCAGCTGTG CCATTGCGCTG CTAAGAAAAC
     351 TTATAAAATAT GTTAAGACGG TTGATGACTA TGCTTCTTGG CATTCTCATC
     401 AGCAAACACC GACCCTAGGC ACTATCTTTT CAGGTATCGT CTATGCAGAA
     451 TCCCAGGCAGC AATTATAG
```

45 The PSORT algorithm predicts inner membrane (0.6859).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 146A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 146B) and for FACS analysis.

These experiments show that cp6643 is a surface-exposed and immunoaccessible protein, and that it

5 is a useful immunogen. These properties are not evident from the sequence alone.

Example 147

The following *C.pneumoniae* protein (PID 4376722) was expressed <SEQ ID 293; cp6722>:

```

1  VSSTLNGVFP SSLPEESADL FITNKEIVAL GEKGNVFLTH SIPMHIAAIT
10  51  ILVIVALAGI AIICLGCVSQ SILLIAVGIV LTILTLCLQ ALVGFIKFIR
    101 QLPQLQHHTTV QFIREKIRPE SSLQLVTNAQ RKTTQDTLKL YEELCDLSQK
    151 EFKLQSTLYQ KRFELSHKNE KTNQN*

```

The cp6722 nucleotide sequence <SEQ ID 294> is:

```

15  1  GTGTCAGTA CTTAAACGG GGTATTTCCC TCATCCCTTC CGGAAGAGTC
    51  TGCTGATTTA TTCATTACGA ATAAGGAGAT CGTAGCTTG GGGGAGAAAGG
    101 GCAATGTTT TCTCACCCAC TCCATTCCCTA TGATATTGC TGCGATTACG
    151 ATCTTAGTGA TTGTAGCTCT TGCTGGAATC GCTATTATCT GTTGGGTTG
    201 CTATAGCCAA AGCATTCTGT TGATTGCCGT TGGCATTTGTT CTTACTATTT
    251 TGACTCTTCTCT CGCCTACAA GCCTTGGTAG GATTTATTAA ATTCACTCCGG
    301 CAGCTCCCTCA AGCAGCTCCA TACGACAGTA CAATTTATCA GGGAGAAAGAT
    351 TCGACCTGAA TCCCTCTAC AGCTTGTAAC CAATGACAG AGAAAAAACCA
    401 CTCAAGATAC GCTAAAGTTA TAGGAAGAAC TCTGGACCT CTCACAAAAAA
    451 GAGTTCAAC TGCAATCAAC TCTTTATCAA AAACGTTTG AGCTTCTCA
    501 CAAGAATGAA AAGACAAATC AAAACTAG

```

The PSORT algorithm predicts inner membrane (0.6668).

25 The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 147A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 147B) and for FACS analysis.

These experiments show that cp6722 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

30 Example 148

The following *C.pneumoniae* protein (PID 4377253) was expressed <SEQ ID 295; cp7253>:

```

35  1  MSELAPCSTG LQMVPHTQVH HALDTRRVIL TIAACLSLIA GIVLVGLGAA
    51  AILPSLFGVII GGMILILFSS IALIYLYKKK REVDQIALEP LPEMISKDQS
    101 IIDFVKTRDY ASLEKKATFA YTHTHYYDGS MFVYREIPRF MLGSYLAIRK
    151 DMDRQALF*

```

The cp7253 nucleotide sequence <SEQ ID 296> is:

```

40  1  ATGAGCGAGC TCGCCCCCTG CTCGACAGGA TTGCAGATGG TCCCCCATAC
    51  GCAGGGTCCAT CATGCCCTTG ATACCGGGAG AGTCATTCTA ACGATAGCCG
    101 CCTGTCTGTC TTTAATTGCA GGAATCGTGT TGGTTGGCTT AGGTGCTGCA
    151 GCAATCCTGC CCTCGCTTTT TGGAGTCATT GGAGGAATGA TTCTTATTCT
    201 GTTTTCCTTCG ATCGCCCTCA TTTTATTATA CAAGAAGACA AGGGAGGTGG
    251 ATCAGATTGCG TCTGGACCT CTTCTGAGA TGATTTCTAA AGATCAAAGC
    301 ATTATAGATT TTGTAAGAC ACCGAGACTAT GCATCTTTAG AAAAGAAAGC
    351 GACCTTTGCT TATACTCATA CTCATTATTA CGATGGAAGC ATGGTCTTCT
    401 ATAGGGAGAT CCCTAGATT ATGTTAGGCT CTTATCTCGC GCTTCGCAA
    451 GACATGGACC GCCAAGCTCT TTTTTGA

```

The PSORT algorithm predicts inner membrane (0.5394).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 148A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 148B) and for FACS analysis.

These experiments show that cp7253 is a surface-exposed and immunoaccessible protein, and that it
5 is a useful immunogen. These properties are not evident from the sequence alone.

Example 149

The following *C.pneumoniae* protein (PID 4376264) was expressed <SEQ ID 297; cp6264>:

```

1  VISGLLFLLV RREVPTVRS EIPRGVSVTP SEEPALEKAO KEPETKKILD
 51 RLPKELDQQL TYIQEVFACL ERLKDPKYED RGLLTEAKEK LRVFDVVEKD
10  MMSEFLD1QR VLNEEAYYVE HCQDPLENIA YEIFSSQELR DYYCAGVCY
151 LPSCGDARADR LKRSVKEVMD RFMRVTWKSW EASVMLDHSY GVARELFKKA
201 VGVLEESVYK ILFKSYRDAF YECEKAKIQR DGRFKWL*

```

The cp6264 nucleotide sequence <SEQ ID 298> is:

```

15  1 GTGATTTCGG GACTTCTATT CCTTCTAGTA AGACGAGAGG TTCCGACAGT
    51 ACGTTTCAGAG GAAATTCCCA GAGGGGTTTC TGTGACCCCT TCTGAAGAGC
    101 CTGCTCTAGA GAAGGCTCAA AAAGAACCGG AGACAAAGAA ATTTTTAGAT
    151 CGGTTGCCGA AGGAATGGG TCAGTTAGAT ACGTATATTG AGGAAGTGTT
    201 TGCATGTTTCA GAGAGGCTGA AGGATCCTAA GTACGAAGAT CGAGGTCTTT
    251 TAACAGAGGC GAAGGGAAAA CTTCGAGTTT TTGACGTTGT TGAGAAAAGAT
    301 ATGATGTCAG AGTTTTTAGA CATACAACGA GTGTTGAATG AGGAAGCATA
    351 TTATGTCAGAA CATTGTCAAAG ATCCCCTAGA GAATATAGCC TACGAGATTT
    401 TCTCTTCCCCA AGAGCTTCGT GATTACTACT GTGCAGGGGT GTGTGGGTAT
    451 TTGCTTCTG GGGATGCTCG AGCGGATCGA TTAAAGAGAT CAGTTAAGGA
    501 CGTAATGGAT CGCTTTATGA GGGTGACCTG GAAATCTTGG GAGGCATCAG
    551 TCATGTTGG A TCATAGCTAT GGGGTAGCGC GAGAGTTATT CAAGAAGGCA
    601 GTAGGAGTAC TAGAGGAGAG TGCTCTATAAA ATTCTGTTA AGAGCTATAG
    651 AGATGCGTT TATGAATGTG AGAAGGCAAA GATCCAGAGG GATGGCGTT
    701 TCAAATGGTT ATAG

```

The PSORT algorithm predicts cytoplasm (0.2817).

30 The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 149A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 149B) and for FACS analysis.

These experiments show that cp6264 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example 150

The following *C.pneumoniae* protein (PID 4376266) was expressed <SEQ ID 299; cp6266>:

```

40  1 MLLISGALF LTLGIPGLSA AISFGLGIGL SALGGVLMIS GLLCLLVKRE
    51 IPTVRPEEIP EGVSLAPSEE PALQAAQKTL AQLPKELDQL DTDIQEVFAC
    101 LRKLKDSKYE SRSFLNDAKK ELRVFDVVE DTLSEIFELR QIVAQEGWDL
    151 NFLINGGRSL MMTAESESLD LFHVSKRLGY LPSGDVRGEG LKKSAKEIVA
    201 RLMSLHCEIH KVAVAFDRNS YAMAEKAFAK ALGALEESVY RSLTQSRYDK
    251 FLESERAKIP WNGHITWLRD DAKSGCAEKK LGMPRNVRGN LGKQSFG*

```

The cp6266 nucleotide sequence <SEQ ID 300> is:

```

45  1 ATGCTCTTAC TGATTTCAAG AGCTCTCTTT CTGACGTTAG GGATTCCAGG
    51 ATTGAGTGCA GCAATTCTT TTGGATTAGG CATCGGTCTC TCCGCATTAG
    101 GAGGAGTGCT GATGATTTCG GGACTACTAT GTCTTTTAGT AAAACGAGAG
    151 ATTCCGACAG TACGACCAGA AGAAATTCCCT GAAGGGTTT CGCTGGCTCC

```

5 201 TTCTGAGGAG CCAGCTCTAC AGGCAGCTCA GAAGACTTTA GCTCAGCTGC
 251 CTAAGGAATT GGATCAGTTA GATACAGATA TTCAGGAAGT GTTCGCATGT
 301 TAAAGAAAGC TGAAAGATTG TAAGTATGAA AGTCGAAGTT TTTTAAACGA
 351 TGCTAAGAAC GAGCTTCGAG TTTTGACTT TGTGGTTGAG GATACCCCTCT
 401 CGGAGATTTT CGAGTTGCGG CAGATTGTGG CTCAAGAGGG ATGGGATTAA
 451 AACTTTTGA TCAATGGGG ACAGAACCTC ATGATGACTG CAGAATCTGA
 501 ATCGCTTGAT TTGTTTCATG TATCGAAGCG GCTAGGGTAT TTACCTCTG
 551 GGGATGTTG AGGGGAGGG TTAAAGAAAT CTGCGAAGGA GATAGTCGCT
 601 CGTTTGATGA GCTTGATTT CGAGATTTCAC AAGGTGGCGG TAGCGTTGAG
 651 TAGGAATTCC TATGCCATGG CAGAAAAGGC GTTTGCGAAA GCGTTGGGAG
 701 CTTTAGAAGA GAGTGTGTAT CGGAGTCTGA CGCAGAGTTA TAGAGATAAA
 751 TTTTGGAGA CGGAGAGGGC GAAGATCCCCA TGGAAATGGGC ATATAACCTG
 801 GTTAAGAGAT GATGCCAGA GTGGGTGTGC TGAAAAGAAG CTCGGGATGCG
 851 CGAGGAACGT TGGAAAGAAAT TTAGGAAAGC AGTCTTTGG GTAG

15 The PSORT algorithm predicts inner membrane (0.3590).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 150A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 150) and for FACS analysis.

These experiments show that cp6266 is a surface-exposed and immunoaccessible protein and that
 20 they it is a useful immunogen. These properties are not evident from the sequence alone.

Example 151

The following *C.pneumoniae* protein (PID 4376895) was expressed <SEQ ID 301; cp6895>:

25 1 MKIKKSFQYS LCQAKRFQNM LPNHFDPCLQ PVNLQLKQDR LAYGELIILL
 51 SKYQQKTFSS LLKEETCSLN RAKQHLLYKI LRDFNTMQHL RSLGLNGWGE
 101 IPMSPCL*

The cp6895 nucleotide sequence <SEQ ID 302> is:

30 1 ATGAAGATTA AAAAATCTTT TCAATACAGT TTATGCCAAG CAAAGAGATT
 51 TCAGAACATG CTGCCAAACC ACTTTGATCC ATGTTTGCAG CCAGTGAATT
 101 TACAACCTCAA ACAAGACAGA TTGGCATACTG GGGAGCTCAT CATATTGCTA
 151 TCTAAATATC AACAAAAGAC CTTTCCCTCT TTGTTGAAGG AACAAACATG
 201 TTCTCTTAAT CGTGCAGAAC AGCACTTATT GTATAAGATT TTGAGAGATT
 251 TTAATACTAT GCAGCACCTA AGGTCCCTCG GATTAAATGG TTGGGGAGAG
 301 ATCCCTATGA GTCCTTGCCT CTAA

The PSORT algorithm predicts cytoplasm (0.3264).

35 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 151A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 151B) and for FACS analysis.

These experiments show that cp6895 is a surface-exposed and immunoaccessible protein and that it is a useful immunogen. These properties are not evident from the sequence alone.

40 **Example 152 and**
Example 153

The following *C.pneumoniae* protein (PID 4376282) was expressed <SEQ ID 303; cp6282>:

45 1 MSLLNLPSQQ DSASEDSTSQ SQIFDPIRNR ELVSTPEEKV QRQLLSFLMH
 51 KLNYPKKLII IEKELKTLFP LLMRKGTLP KRRPDILIIT PPTYTDAQGN
 101 THNLGDPKPL LLIIECKALAV NQNALKQLLS YNYSIGATCI AMAGKHSQVS
 151 ALFPNPKTQTL DFYPGLPEYS QLLNYFISLN L*

-170-

The cp6282 nucleotide sequence <SEQ ID 304> is:

```

5      1 ATGTCCTTAT TGAAACCTTCC CTCAGGCCAG GATTCTGCAT CTGAGGACTC
      51 CACATCGCAA TCTCAAATCT TCGATCCCCT TAGAAATCGG GAGTTAGTTT
     101 CTACTCCCCGA AGAAAAAGTC CGCCAAAGGT TGCTCTCCCT CCTAATGCAT
     151 AAGCTGAACT ACCCTAAGAA ACTCATCATC ATAGAAAAG AACTCAAAAC
    201 TCTTTTTCTCT CGCTTATGCA GTAAAGGAAC CCTAATCCCA AAACGCCGCC
    251 CAGATATTCT CATCATCACT CCCCCCACAT ACACAGACGC ACAGGGAAAC
    301 ACTCACAACC TAGGCGACCC AAAACCCCTG CTACTTATCG AATGTAAGGC
    351 CTTAGCCGTA ACCAAAATG CACTCAAACA ACTCCCTTAGC TATAACTACT
   10  401 CTATCGGAGC CACCTGCATT GCTATGGCAG GGAAACACTC TCAAGTGTCA
   451 GCTCTCTTCA ATCCAAAAC ACAAACTCTT GATTTTTATC CTGGCCCTCCC
   501 AGAGTATTCC CAACTCCTAA ACTACTTTAT TTCTTTAAC TTATAG

```

The PSORT algorithm predicts cytoplasm (0.362).

The following *C.pneumoniae* protein (PID 4377373) was also expressed <SEQ ID 305; cp7373>:

```

15     1 MSTTTVKHFI HTASRWEVPL KEIVASNYWH AQWINTLSFL ENSGAKKISA
      51 SEHPTEVKEE VLKHAEEFR HGHYLKTQIS RISETSLPDY TSKNLLGGLL
     101 TKYLYLHLLDL RTCRVLENAY SLSGQTLKTA AYILVTYIAIE LRASELYPLY
     151 HDILKEAQSK ITVKSILEE QGHLQEMERE LKDPHGEEL LGYACQFEGE
    201 LCLQFVERLE QMIFDPSSTF TKF*

```

20 The cp7373 nucleotide sequence <SEQ ID 306> is:

```

1      1 ATGTCTACAA CCACAGTAAA ACACTTTATC CACACAGCCT CTCGTTGGGA
      51 GCCCGTTCTC AAAGAGATCG TAGCTTCCAA CTATTGGCAT GCACAAATGGA
     101 TAAATACCCCT GTCTTTTA GAAAATAGTG GAGCAAAAAA AATCTCCCA
     151 AGTGAACATC CTACGGAGGT AAAGGAAGAA GTTTTAAAAC ATGCTGCTGA
    25  201 AGAATTTCGCT CATGGTCACT ATCTAAAAAC TCAGATTCT AGAATCTCAG
    251 AGACTTCTCC CCCTGACTAT ACATCTAAAAA ATCTTCTGGG AGGCTTACTTT
    301 ACAAATATTACCTT ACCTCCATCT TCTAGATTTA AGGACGTGCCC GAGTACTGGA
    351 AAATGAATAC TCCCTATCGG GACAAACGTT AAAAAACTGCA GCGTATATT
    401 TAGTTACCTA CGCAATCGAA CTTCGTGCTT CTGAACCTTA CCCTCTGTAT
   30  451 CACGATATTTC TGAAAGAAGC TCAAAGTAAA ATAACGGTAA AATCCATTAT
   501 CTTAGAAGAG CAAGGCCATC TGCAAGAGAT GGAACGTGAA CTTAAAGATC
   551 TCCCCCACCGG GGAGGAACCTC TTAGGCTATG CTTGCCAATT CGAAGGGAG
   601 CTTTGCTTGC AGTTTGAGA GAGATTAGAA CAAATGATCT TCGATCCTTC
   651 CTCGACTTTT ACAAAAGTTCT AG

```

35 The PSORT algorithm predicts cytoplasm (0.1069).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 152A; 6282 = lanes 8 & 9; 7373 = lanes 2-4). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 152B & 153) and for FACS analysis.

These experiments show that cp6282 & cp7373 are surface-exposed and immunoaccessible proteins
40 and that they are useful immunogens. These properties are not evident from the sequence alone.

Example 154,

Example 155,

Example 156,

Example 157 and

45 **Example 158**

The following *C.pneumoniae* protein (PID 4376412) was expressed <SEQ ID 307; cp6412>:

```

1      1 MSSSEVVVFQQT VHGLGFGLS SKSVVPFKKS LSDAPRVVCS ILVLTGLGA
      51 LVCGIAITCW CVPGVILMGG ICAIVLGAIS LALSLFWLWG LFSNCGSKR
     101 VLPGEGLLRD KLLDGGFSRA APSGMGLPGD GSPrASTPSC LEELQAEIQA
     151 VTQAIIDQMSD D*

```

50 The cp6412 nucleotide sequence <SEQ ID 308> is:

-171-

1 ATGAGCAGTT CGGAAGTTGT TTTCCAGACA GTTCATGGCC TTGGCTTG
 51 TGGATTGCTC TCAAAAAGTG TTGTCCTTT TAAGAAAAGT CTTTCGGATG
 101 CGCCCCGCTGT TGTCGCTCG ATTGAGTT TGACTCTGGG GTTGGGAGCG
 151 CTTGTTTGTG GTATTGCCAT TACCTGTTGG TGACTTCCC GAGTTATTT
 201 AATGGGGGGA ATTTGCCCTA TAGTTTCTAG TGCAATTCT TTAGCTTAA
 251 GTCTATTCTG GTTGTGGGT TTATTTCTA ATTGTTGTGG TTCTAAGAGA
 301 GTTTTACCGG GTGAGGGATT GCTACGGGAT AAGCTTTAG ATGGTGGATT
 351 TTCAAGAGCG GCACCTTCAG GAATGGGACT TCCGGGTGAT GGATCTCAA
 401 GAGCGTCAAC GCCATCTTGC CTAGAGGAAC TTCAAGCAGA GATAACAGGA
 451 GTTACTCAAG CTATCGATCA GATGTCAGAT GATTGA

The PSORT algorithm predicts inner membrane (0.4864).

The following *C.pneumoniae* protein (PID 4376431) was also expressed <SEQ ID 309; cp6431>:

1 LRAGGSLVTT YPKEGQRLRS PEQLRVLDDL VQSYPNHLHA IEEDCGAIPO
 51 DLIGATYIIT FADFSTYLIS LRSYQANSPS DDTWGIWFGS IDDPVQAVIS
 101 FLKDHGFALP STLAQDPLLC TNK*

The cp6431 nucleotide sequence <SEQ ID 310> is:

1 TTGCGAGCACAG GAGGTAGTCT TGTACAAACA TACCCTAACAG AAGGTCAGAG
 51 ATTGCGCTCC CCAGAACAGT TAAGAGTTCT GGATGATTAA GTGCAAAGCT
 101 ATCCAAATCTC CCTACATGCG ATTGAACCTTG ATTGTGGTGC AATCCCTCAA
 151 GATTTGATCG GAGCCACCTA TATCATCACG TTGCGCGATT TTTCCACCTA
 201 TATTCTCTCT TTAAGAACGCT ACCAACGCAA TTCTCCCTCC GATGATACAT
 251 GGGGGATTGGT GTTGGATCT ATTGACGATC CTGTTCAAGC AGTCATATCA
 301 TTTTTAAAG ATCATGGATT TGCTCTTCCC TCGACCTTAG CTCAAGATCC
 351 TTTGCTTTGT ACTAACAAAGT AA

25 The PSORT algorithm predicts cytoplasm (0.2115).

The following *C.pneumoniae* protein (PID 4376443) was also expressed <SEQ ID 311; cp6443>:

1 MIMTTISNSP SPALNPELSD IPPPTLVSSG TQTSLAYTIP AQGRRSTLRI
 51 ILDIFIIILG LATIISTFIV IFFLNGLNL STPSIISSSC LIIVGLLFLLI
 101 MGLYFMISL DQGLVGLLQK ELSQAEEERE EYIQEIEALR GAPRAESPTE
 151 SPSTWL*

The cp6443 nucleotide sequence <SEQ ID 312> is:

1 ATGATTATGAA CTACTATATC TAACTCACCC TCCCTGCAT TGAATCCGA
 51 ACTTTCCCTT ATTCTCCAC CAACACTTGT ATCTTCAGGT ACGCAAACAT
 101 CTCTAGCTTA TACGATCCCC GCACAAGGAC GAAGATCCAC CCTACGTATT
 151 ATATTAGATA TATTCTTTT CATTCTTGGT TTAGCTACGA TCATTCTAC
 201 CTTTATTGTT ATTCTCTTTT TAAATGGCT GAACCTTGCTC TCGACCCAT
 251 TATTATCTC TTCTGTCATGT TTATCATGGT TTGGATTGCT TTTTTGATT
 301 ATGGGGTTAT ATTTCATGAT CTGGAGTTTG GATCAGGGC TTGTAGGCCT
 351 TCTGAAAG GAACTCTCTC AAGCCGAAGA AAGAGAAGAA GAGTATATCC
 401 AGGAAATCGA AGCTTAAAGA GGAGCTCCTA GAGCAGAATC TCCCACAGAG
 451 TCTCCTAGTA CCTGGTTATG A

The PSORT algorithm predicts inner membrane (0.5585).

The following *C.pneumoniae* protein (PID 4376496) was also expressed <SEQ ID 313; cp6496>:

1 MLIGRYSSDD QFTEATKNTP TIIKLGTVRD NLEGLTNPIS EIVSETSSSI
 51 KDSVLRSLPI LGSILGCARL YSTLSTNDPL DETQEKIWHT IFGALETLGL
 101 GILILLFKII FVILHCIFHL VIGFCK*

The cp6496 nucleotide sequence <SEQ ID 314> is:

1 ATGCTAATAG GCAGATACAG TAGTGATGAC CAATTCACTG AAGCAACAAA
 51 AAACACCCCA ACCATAATTG AGCTAGTTTG TGTTAGAGAT AATCTCGAGG
 101 GATTAACGAA CCCTATCTCT GAAATCGTCT CGGAAACCTC CTCTTCATT
 151 AAAGATTCCG TTCTTCGCTC TCTTCTATT TTAGGGTCCA TTTTAGGATG
 201 CGCCCGACTT TACAGCACAC TCTCTACAAA TGATCCTCTT GACGAAACTC
 251 AAGAAAAGAT TTGGCACACT ATATTTGGAG CCTTAGAAAC CTTAGGCTTA
 301 GGGATTCTCA TCCTCTTATT TAAAATTATT TTGTTATAT TACACTGCAT
 351 ATTCATCTA GTTATTGGGT TCTGCAAATA A

The PSORT algorithm predicts inner membrane (0.5989).

The following *C.pneumoniae* protein (PID 4376654) was also expressed <SEQ ID 315; cp6654>:

```

5   1 MTKKMNSRKK AGQWAIFNSP TPGVSSTLVL AWTPWGYYDK DVQDILERKD
  51 PMSSSLSEKD SKEFLKNLFV DLLENGFTSV HIHAEEAFTP LDHTGKPHFK
101 101 RDNVYLPGKL LGALNEAAVQ ANVSADTQFT LFLTQDECNP FHDKKRG*

```

The cp6654 nucleotide sequence <SEQ ID 316> is:

```

10  1 ATGAAAACATA AAATGAACTC TAGAAAAAAA GCAGGGTCAAT GGGCAATT
  51 CAATTCTCCA ACTCCTGGTG TCAGTTCAAC TTTAGTTTA GCATGGACTC
101 101 CTTGGGGTTA TTACGACAAG GATGTACAAG ATATCTTAGA AAGAAAAAGAT
  151 CCGATGAGCT CTTCGCTTTC TGAAAAAGAC TCAAAGGAGT TCTTGAAAAAA
  201 TCTGTTTGTG GATCTCTTAG AAAATGGCTT CACATCAGTA CATATTACG
  251 CAGAAGAACG TTTCACTCCCT CTTGATCATA CGGGAAACC TCACCTTAAA
  301 AGAGACAATG TGTACTTACCG CGGAAAGITG TTAGGCGCCT TGAATGAGGC
  351 TGCCTGTACAA GCCAATGTA GTGCGGATAC TCAATTACAA TTGTTCCCTA
  401 CTCAAGATGA GTGCAATCCT TTTCATGATA AGAAAAGAGG TTAA

```

The PSORT algorithm predicts cytoplasm (0.0730).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 154A; 6412 = lanes 2-3; 6431 = lanes 11-12; 6443 = lanes 5-6; 6496 = lanes 8-9; 6654 = lane 10; markers in lanes 1, 4, 7). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 154B, 155, 156, 157 & 158) and for FACS analysis.

These experiments show that cp6412, cp6431, cp6443, cp6496 & cp6654 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from their sequences alone.

Example 159 and Example 160

The following *C.pneumoniae* protein (PID 4376477) was expressed <SEQ ID 317; cp6477>:

```

1 1 LLKFFFLVCEE LCILTVATHR ALLETPLALS FFKELKTKYV YRAKDLQLH
  51 NYKGFTILNT SPLCS*

```

The cp6477 nucleotide sequence <SEQ ID 318> is:

```

30  1 TTGCTAAAGT TCTTTCTAGT ATGTGAAGAG TTATGTATAC TTACTGTTGC
  51 TACACATAGA GCTCTCTTAG AAACTCCTTT AGCTCTATCA TTTTTAAAG
101 101 AACTTAAGAC AAAATATGTC TACAGGGCGA AAGCATACT ACAACTACAT
  151 AACTATAAAAG GATTTACTAT CCTTAATACA TCACCGTTAT GTTCTTAA

```

The PSORT algorithm predicts inner membrane (0.128).

35 The following *C.pneumoniae* protein (PID 4376435) was also expressed <SEQ ID 319; cp6435>:

```

1 1 LWSHFPRGFF MLPFCPTILL AKPFLNSENY GLERLAATVD SYFDLGQSII
  51 VFLSKQDQGI TVEELSAKDR KFKPGSMNCT LYTEDPILPA HNSFSNCSDI
  101 QMRTPISPIH *

```

The cp6435 nucleotide sequence <SEQ ID 320> is:

```

40  1 TTGTGGTCGC ATTTCCAAG AGGATTTTT ATGCTCCCTT TTTGCCCTAC
  51 CATCCTTCTT GCTAACCTT TTTAAATAG CGAGAATTAC GGCTTAGAAC
101 101 GTTTAGCTGC AACCGTAGAT TCTTATTTTG ATCTGGGACA GTCTCAAATA
  151 GTCTTCCTAA GCAAACAGGA TCAAGGAATC ACTGTGGAAG AATTGAGTGC
  201 TAAAGATAGG AAATTCAAGC CAGGCTCTAT GAACTGTACA CTGTACACTG
  251 251 AAGATCCTAT CTTACCTGCT CATAATTCCCT TTAGTAATTG CTCTGATATT
  301 CAAATGCGTA CTCCGATTAG CCCTATACAT TAA

```

The PSORT algorithm predicts periplasmic space (0.4044).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 159A; 6435 = lanes 2-4; 6477 = lanes 5-7). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 159B & 160) and for FACS analysis.

- 5 These experiments show that cp6477 & cp6435 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequences alone.

**Example 161 and
Example 162 and
Example 163**

- 10 The following *C.pneumoniae* protein (PID 4376441) was expressed <SEQ ID 321; cp6441>:

```

1  VEAGANVLVI DTAHAHSKGV FQTGLEIKSQ FPQISLVVGN LVTAEEAVSL
51 AEIGVDAVKV GIGPGSICTT RIVSGVGYPQ ITAITNVAKA LKNSAVTIVIA
101 DGRIRYSGDV VKALAAGADC VMLGSLLAGT DEAPGDIVSI DEKLFKRYRG
151 MGSLGAMKQG SADRYFQTQG QKKLVPGGVE GLVAYKGSH DVLYQILGGI
201 RSGMGYVGAE TLKDLKTAKS FVRITESGRA ESHIHNIYKV QPTLN

```

The cp6441 nucleotide sequence <SEQ ID 322> is:

```

1  GTGGAAGCTG GAGCAAATGT TCTAGTCATT GACACAGCTC ATGCACACTC
51 TAAAGGAGTA TTCCAAACAG TTTTAGAAAT AAAATCCCG AGTTTCCTTA
101 TTTCTTTAGT TGTAGGGAAT CTTGTTACAG CTGAAGCCGC AGTTTCCTTA
151 GCTGAGATTG GAGTTGACGC TGTAAGGTA GGTATTGGCC CAGGATCTAT
201 CTGTACAACAT AGAACATCGTT CAGGGGTCGG TTATCCACAA ATTACTGCCA
251 TACACAAACGT AGCAAAAGCT CTTAAAACACT CTGCCGTGAC TGTAATTGCT
301 GATGGGAGAA TCCGCTATTG TGAGATGTG GTAAAAGCAT TAGCAGCAGG
351 AGCAGACTGT GTCATGCTAG GAAGTTTGCT TCCAGGGACT GATGAAGCTC
401 CTGGGGATAT CGTTTCTATC GATGAGAACG TTTTTAAAAG GTACCGCGGC
451 ATGGGATCTT TAGGCCTAT GAAACAAGGA AGTGTGACC GGTATTTC
501 AACACAGGGA CAGAAAAGC TGTTCCCTGG GGGAGTTGAA GGACTAGTCG
551 CCTATAAAGG CTCTGTCCAC GATGTCCTCT ATCCAAATTG AGGAGGAATA
601 CGCTCAGGTA TGGGGTATGT TGAGCTGAA ACTCTAAAG ATTTAAAAAC
651 TAAGGCTTC TTTGTTGAA TTACTGAATC TGGAAGAGCT GAAAGTCATA
701 TTCATAATAT TTACAAAGTT CAACCAACCT TAAATTATTA A

```

The PSORT algorithm predicts bacterial inner membrane (0.132).

The following *C.pneumoniae* protein (PID 4376748) was also expressed <SEQ ID 323; cp6748>:

```

1  LFSEGTTALNL FRIFAPLRNR VTTEYSRARQ PDLHRIAIVY IGVLDSESSK
51 ILERLISYMS CIYSSEQMYL RFFMGKNNVQ SAVLSQLHVB NLHIRCGFFS
101 EDAVPESEPF DLSIYVHTDR SCPLPTKKRS SSWELQTVEL PESIYPQSEF
151 LLMRPRMLS*

```

The cp6748 nucleotide sequence <SEQ ID 324> is:

```

1  TTGTTCTCTG AGGGGACAGC TCTAAATTAA TTTCGTATAT TTGCTCCACT
51 ACGCAACCGT GTGACTACAG AATACAGTCG TGCTAGGCAA CCCGACCTAC
101 ATAGAATTGC CATCGTCTAT ATAGGAGTTC TCGATTCAAG AAGTTCCAAG
151 ATCCTAGAGC GGCTAATCTC TTATATGAGT TGTATCTATT CTGAATCGCA
201 AATGTATTAA AGATTCTTTA TGGCCAAGAA TGTAAATCAA AGTGTGTAC
251 TCTCAAAATM ACATGTAGAA AATCTGCACA TCCGTTGTGG GTTTTCAGC
301 GAGGATGCTG TTCCAGAGAG TGAGCCCTTC GATCTCTCCA TCTACGTGCA
351 CACAGATCGT AGCTGTCTC TCCCTACGAA AAAACGGAGC AGCTCCCTGG
401 AACTCCAAAC TGTAGAACTC CCAGAGTCAA TATATCCACA GTCGGAATT
451 CTATTGATGA GACCTCGAAT GCTTTCGTAG

```

The PSORT algorithm predicts cytoplasm (0.170).

- 50 The following *C.pneumoniae* protein (PID 4376881) was also expressed <SEQ ID 325; cp6881>:

-174-

5 1 MRPHRKHVSS KSLALKQSAS THVEITTKAF RLSMPLKQLI LEKSDHLPPM
 51 ETIRVVLTSR KDKLGTEVHV VASHGKEILQ TKVHNANPYT AVINAFKKIR
 101 TMANKHNSNKR KDRTKHDGLA AAKERIAIQ EEEQEDRLSNE WLPVEGLDAW
 151 DSLKTLGYVP ASAEEKKISKK KMSIRMLSQD EAIRQLESAA ENFLIFLNEQ
 201 EHKIQCIVYKK HDGNYVLLIEP SLKPGFCI*

The cp6881 nucleotide sequence <SEQ ID 326> is:

10 1 ATGAGACCTC ATCGTAAACA CGTATCATCT AAAAGCTTAG CTTTAAAGCA
 51 ATCTGCATCA ACTCATGTAG AGATCACAAC AAAAGCCTTT CGTCTCTCTA
 101 TGCCCTCTAAA ACAGCTGATC CTAGAGAAAA GCGACCACCT CCCCCCTATG
 151 GAAAACATCC GTGTGGTGC AACTCTCTAT AAAGATAAGC TAGGCACCGA
 201 GGTGCATGTT GTAGCTCTC ATGGCAAAGA AATCTTCAA ACTAAAGGTT
 251 ATAACGCAA CCCATACACT GCAGTGATCA ATGCTTTAA GAAAATCCGC
 301 ACCATGGCAA ATAAGCACTC CAATAAACGT AAAGACAGGA CAAAACATGA
 351 TCTTAGGTCTT GCAGCAAAAG AAGAACGTAT CGCAATACAG GAAGAACAAAG
 401 AAGATGCCGAG TGGCTTCCTG TCGAACGGCT CGATGCCCTGG
 451 GATTCTCTAA AAACCTCTGG GTATGTTCCC GCATCAGCGA AAAAGAAGAT
 501 CTCCAAGAAA AAGATGAGCA TTCTGATGCT ATCTCAAGAC GAGGCTATCC
 551 GCCAGCTAGA GTCTGCCGCA GAAAACCTCC TGATCTTCTT GAACGAGCAA
 601 GAGCATAAAA TCCAATGCAT TTATAAAAAA CATGACGGCA ACTATGTCCT
 651 TATTGAACCT TCCCTCAAGC CAGGATTCTG CATCTGA

The PSORT algorithm predicts cytoplasm (0.249).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 161A; 6441= lanes 7-9; 6748 = lanes 2-3; 6881 = lanes 4-6). The recombinant protein was used to immunise mice, whose sera were used in Western blots (Figures 161B, 162 & 163) and for FACS analysis.

25 These experiments show that cp6441, cp6748 & cp6881 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

Example 164 and

Example 165

30 Example 166

The following *C.pneumoniae* protein (PID 4376444) was expressed <SEQ ID 327; cp6444>:

1 1 MEQPNCVIQD TTTVLYALNS FDPLRSDDTH RLGKQSPLEA ENALGEFIEG
 51 LDTNNSFPLEE VAIPILPGYH PKFYLSFIDR DDQGVHYEVN DGVFLKTVA
 101 CIIENSFLTD SMSPELSEV KEALKR*

35 The cp6444 nucleotide sequence <SEQ ID 328> is:

40 1 ATGGAGCAAC CCAATTGTGT GATTCAGGAT ACTACAAC TG TTTGTATGC
 51 CTTAAATAGC TTTGATCCTA GACTTAGTGA TGACACTCAC AGACTTGGGA
 101 AGCAATCACC TCTTGAGAG GAAAATGCTC TTGGAGAATT TATTGAAGGT
 151 TTGGATACAA ATAGCTTCC TTTAGAGGAA GTGGCCATTG CCATCCCTGCC
 201 AGGTTATCAC CCTAAGTTT ATTATCTTT CATAGATAGG GACGATCAAG
 251 GTGTCCACTA TGAAGTTTA GATGGCGTAT TTTAAAGAC AGTCGCTGCT
 301 TGTATTATAG AGAACTCCTT CTAACTGAT TCTATGAGCC CGGAGCTTCT
 351 CAGCGAAGTT AAGGAAGCTC TGAAACGATG A

The PSORT algorithm predicts cytoplasm (0.2031).

45 The following *C.pneumoniae* protein (PID 4376413) was also expressed <SEQ ID 329; cp6413>:

1 1 MAVQSIKEAV TSAATSVGCV NCSREAIPAF NTEERATSIA RSVIAAIIAV
 51 VAISLLGLGL VVLAGCCPLG MAAGAITMLL GVALLAWAIL ITLRLNIPK
 101 AEIPSPGNNG EPNERNSATP PLEGGVAGEA GRGGGSPLTQ LDLNSGAGS*

The cp6413 nucleotide sequence <SEQ ID 330> is:

50 1 ATGGCTGTTA AATCTATAAA AGAAGCCGTA ACATCAGCCG CAACATCAGT

-175-

5 51 AGGATGTGTA AACTGTTCTA GAGAGGCTAT ACCAGCATTT AATACAGAGG
 101 AGAGAGCAAC GAGTATTGCT AGATCTGTTA TAGCAGCTAT CATTGCTGTT
 151 GTAGCTATCT CCTTACTCGG ACTAGGCTTT GTAGTTCTG CTGGTTGCTG
 201 TCCTTTAGGA ATGGCTGCGG GTGCTATAAC AATGCTGCTG GGTGTAGCAT
 251 TATTAGCTTG GGCAATACTG ATTACTTGA GACTGCTTAA TATACCTAAC
 301 GCTGAAATAC CGAGTCCAGG GAACAACGGT GAGCCTAATG AAAGAAATT
 351 AGCAACTCCT CCTCTAGAGG GTGGTGTGTC AGGAGAAGGC GGTGCGGGCG
 401 GGGGTCACC TTTAACCCAA CTTGATCTCA ATTCAAGGGC GGGAAAGTTAG

The PSORT algorithm predicts inner membrane (0.6180).

10 The following *C.pneumoniae* protein (PID 4377391) was also expressed <SEQ ID 331; cp7391>:

15 1 MMLRVIELPL LPIKQALEKA FVQYNSYKAK LTKVEPCFRE SPAYITSEER
 51 LQLSDQTLER AYKEYQKRQFQ EPSRLESEVS GCREHLREQV KQFETQGLDL
 101 IKEELIFVSD VLFRKVMVSL VSTVHVPFME FYYEYFELHR LRLRAQWMAN
 151 AEIYSKVRKA FPEMLKETLE KAKAPREEEY WLLCEERKS EKRLILNKIE
 201 AAQQQRVKDLE PPPIKETGKQ KRKKEYSFFI RLKS*

The cp7391 nucleotide sequence <SEQ ID 332> is:

20 1 ATGATGCTTC GTGTCATAGA GCTTCCACTA CTTCCCTATAA AGCAAGCGTT
 51 GGAGAAGGCT TTTGTACAAT ATAATAGCTA CAAAGCGAAG TTAACCAAGG
 101 TAGAACCTTG CTTTAGAGAG AGCCCTGCC ATATAACTAG CGAAGAGCGA
 151 CTCAGAGATT TGGATCACAG TTTAGAACGT GCGTACAAG AGTACCAAGA
 201 GAGATTCAG GAGCCTTCAC GTTCCAATC GGAAGTAAGT GGATGTAGAG
 251 AGCATCTTAG AGAGCAGGT AAACAATTG AAACTCAAGG ACTAGACTTG
 301 ATCAAAGAAG AGCTTATTG TGTTAGTGT GTGTTATTCC GAAAAATGGT
 351 CAGTTGTCTA GTGTCGACAG TGCATGTTCC CTTTATGGAG TTTTATTATG
 401 AGTATTTGCA GTTGCATAGA TTGAGGTTGC GGGCCCAATG GATGGCGAAT
 451 GCCGAGATTG ATAGCAAGT TAGAAAAGCA TTCCCAGAGA TGTTGAAGGA
 501 GACCTTAGAA AAAGCTAAGG CTCCCAGAGA AGAAGAGTAT TGTTTACTTT
 551 GCGAGGAGAG AAAGAGTAAG GAGAAGCGTT TGATTCTCAA CAAGATAGAG
 601 GCAGCTCAGC AGCGGGTAAAG AGATTTAGAA CCTCCTCCTA TTAAAGAGAC
 651 AGGGAAACAG AACCGGAAGA AAAAATATTC GTTTTCATT CGATTAAT
 701 CGTGA

The PSORT algorithm predicts inner membrane (0.1489).

The proteins were expressed in *E.coli* and purified as his-tag and GST-fusion products (Figure 164A; 6444=lanes 11-12; 7391=lanes 2-3; 6413=lanes 4-6). The recombinant protein was used to immunise 35 mice, whose sera were used in Western blots (Figures 164B, 165 & 166) and for FACS analysis.

These experiments show that cp6444, cp6413 & cp7391 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

40 **Example 167** ,
 Example 168 ,
 Example 169 and
 Example 170

The following *C.pneumoniae* protein (PID 4376463) was expressed <SEQ ID 333; cp6463>:

45 1 MKKKVTIDEA LKEILRLEGA ATQEELCAKL LAQGFATTQS SVSRWLRKIQ
 51 AVKVAGERGA RYSLPSSTEK TTRHLVLSSI RHNASLIVIR TVPGSASWIA
 101 ALLDQGLKDE ILGTLAGDDT IFVTPIDEGR LPLLMVSIAN LLQVFLD*

The cp6463 nucleotide sequence <SEQ ID 334> is:

50 1 ATGAAAAAAA AAGTAACATAG AGATGAGGCT TTTAACGAA TTTTACGTCT
 51 TGAAGGAGCG GCAACTCAGG AGGAATTATG TGCAAAACTC TTAGCTCAAG
 101 GTTTTGCTAC AACCCAGTCG TCTGTATCTC GTGGCTACG AAAGATTCAG
 151 GCTGTAAAGG TTGCTGGAGA GCGTGGTGC CGTTATTCTT TACCCCTCTTC

-176-

201 AACAGAGAAG ACCACGACCC GTCATTTGGT GCTCTCTATT CGCCATAACG
 251 CCTCTCTTAT TGTAATTCTGT ACGGTTCCCTG GTTCAGCTTC TTGGATCGCT
 301 GCTTTGTTAG ATCAAGGGCT CAAAGATGAA ATTCTTGAA CTITGGCAGG
 351 AGATGACACG ATTTTTGTCA CTCTATAGA TGAAGGGAGG CTCCCATTGT
 401 TGATGGTTTC GATTGCAAAT TTACTGCAAG TTTCTTGGA TTAA

5 The PSORT algorithm predicts inner membrane (0.1510).

The following *C.pneumoniae* protein (PID 4376540) was also expressed <SEQ ID 335; cp6540>:

1 MSQCQSSSTS TWEMWMSFVP NWKNPTPPPLS PIPSEDEFIL AYEPFVLPKT
 51 DPENAQNAPP GTSTPNVENG IDDLNPLLQQ PNEQNNNNP GTSGSNPTSL
 101 PAPERLPETE ENSQEEEQGS QNNEDLIG*

The cp6540 nucleotide sequence <SEQ ID 336> is:

1 ATGTCTCAAT GTCAGAGTAG CAGTACATCT ACCTGGGAAT GGATGAAATC
 51 TTTTGTGCCA AACTCGAAAG ATCCAACCTCC CCCCTTATCT CCTATAACCTT
 101 CTGAGGACAGA ATTTTATTATA GCATACGAGC CATTCTGTCT ACCGAAAACA
 151 GATCCAGAAA ACGCACAAAGC TAATCCTCCA GGACACATCTA CACCGAATGT
 201 AGAAAACGGG ATCGATGATC TCAACCCCTCT TCTGGGGCAA CCCAACGAAC
 251 AAAACAAATGC CAACAATCCA GGAACCTCTG GATCTAATCC TACATCTCTA
 301 CCCGGCCCCCG AACGACTCCCC TGAAACTGAA GAGAACAGCC AAGAAGAAGA
 351 ACAAGGATCT CAAAATAATG AGGATCTTAT AGGATAA

20 The PSORT algorithm predicts cytoplasm (0.3086).

The following *C.pneumoniae* protein (PID 4376743) was also expressed <SEQ ID 337; cp6743>:

1 LREEGSVSFR EYFRAYMCDK IVAQKNFLFT LDIVIKQAGW RSQEKLNLFY
 51 VESQALGREI KVSLEYYIQS MVGILGSQRT KKSFKFSVDF TPLeQALQER
 101 CSSDDDEDAT ATSTATGATA SPTDMHEDE*

25 The cp6743 nucleotide sequence <SEQ ID 338> is:

1 TTGAGAGAAG AACGTTAGTGT TTCTTTCAAGA GAATATTTCA GAGCCTATAT
 51 GTGTGATAAAA ATCGTGGCAC AGAAGAACTT CTTATTTACT TTAGACGCTG
 101 TAATTAAACA GGCGGGTTGG AGATCACAAG AGAAACTCAA TTTATTTAT
 151 GTTGAAAGTC AGGCTTTAGG AAGAGAAATC AAAGTCAGCT TAGAGGAATA
 201 TATTTCAGAGT ATGGTCGGGA TTTTGGGATC TCAGAGAAC AAGAAAAGCT
 251 TTAAGTTTC TGTGCACTT ACCCTTTAG AGCAGGCTCT ACAAGAAAAGA
 301 TGCTCTTCCTG ATGATGACGA AGATGCAACA GCAACTTCGA CCGCTACAGG
 351 GGCAACAGCA TCTCCGACTG ACATGCACGA AGATGAGTAA

The PSORT algorithm predicts cytoplasm (0.2769).

35 The following *C.pneumoniae* protein (PID 4377041) was also expressed <SEQ ID 339; cp7041>:

1 MLMMLMMIIG ITGGSGAGKT TLTONIKEIF GEDVSVICQD NYKDRSHYT
 51 PEERANLIWD HPDAFDNDLL ISDIKRLKNN EIVQAPVFDF VLGNRSKTEI
 101 ETIYPSKVL VEGILVFENQ ELRDLMDIRI FVDTDADERI LRRMVRDVQE
 151 QGDSVDCIMS RYLSMVKPMH EKFIEPTRKY ADIIVHGNYR QNVVTNILSQ
 201 KIKNHLENAL ESDETYMMVN SK*

40 The cp7041 nucleotide sequence <SEQ ID 340> is:

1 ATGTTGATGA TGCTTATGAT GATTATTGGA ATTACAGGAG GTTCTGGAGC
 51 TGGGAAAACC ACCCTAACCC AAAACATTAA AGAAATTTTC GGTGAGGATG
 101 TGAGTGTAT CTGCCAAGAT ATTATTACA AAGATAGATC TCATTATACT
 151 CCTGAAGAAC GTGCCAATT AATTGGGAT CATCGGACG CCTTTGATAA
 201 TGACTTATTA ATTTCAGACA TAAACGTC TAAAAATAAT GAGATTGTCC
 251 AAGCCCCAGT TTTTGATTT GTTTAGGTA ATCGATCTAA AACGGAGATA
 301 GAAACGATCT ATCCATCTAA AGTTATTCTT GTTGAAGGTA TTCTGGCTTT
 351 TGAAAATCAA GAACTTAGAG ATCTTATGGA TATTAGGATC TTGTTAGACA
 401 CCGATGCTGA TGAAAGGATA CTACGCCGTG TGTTTCGAGA TGTTCAAGAA
 451 CAAGGAGATA GCGTGGACTG CATCATGTCT CGTTATCTTT CTATGGTAAA
 501 GCCTATGCAT GAGAAATTAA TAGAGCCGAC TCGGAAATAT GCTGATATCA
 551 TTGTACATGG AAATTACCGA CAAACGTC TAGACAAATAT TTGTCACAG
 601 AAAATTAAAA ATCATTAGA GAATGCCCTG GAAAGCGATG AGACGTATTA
 651 TATGGTCAAC TCTAAGTAA

The PSORT algorithm predicts inner membrane (0.1022).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 167A; 6463 = lanes 2-4; 6540 = lanes 5-7; 6743 = lanes 8-9; 7041 = lanes 10-11). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 167B, 168, 169 & 170) and for FACS analysis.

These experiments show that cp6463, cp6540, cp6743 & cp7041 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

Example 171 and

Example 172 and

Example 173

The following *C.pneumoniae* protein (PID 4376632) was expressed <SEQ ID 341; cp6632>:

```

1 VQLFQYMNES GWDWLCDFDS QGEGFQLSRL VGLLHSSWAL YEAKEQFYLP
51 EVSLLTWEEL IEMQLLSKPT KHVAKDLCN VFEKHFQRFR QYLGSLDLNQ
101 RFENTFFLNYP KYHLDRE*

```

The cp6632 nucleotide sequence <SEQ ID 342> is:

```

1 GTGCAATTAT TTCATAATAT GAATGAGTCC GGATGGGATT GGCTTTGTGA
51 TTTTGATTCT CAAGGGGAGG GATTCAGTT ATCACGTCTG GTTGGGCTGT
101 TACATTCGTC CTGGGCATTA TACGAAGCAA AAGAGCAAATT TTACCTTCCT
151 GAGGTTTCTC TATTGACCTG GGAAGAACTG ATGAAATGC AGTTATTAAG
201 CAAACCAACA AAACACGGGG TTGCAAAAGA TCTTTGTAAT GTATTTGAAA
251 AACACTTTCA AAGGTTTAGA CAGTACCTAG GTTCCCTTAAAGA TCTAAATCAA
301 AGGTTCGAAA ATACCTCTT GAATTATCCT AAATACCATT TAGATAGGGA
351 GTGA

```

25 The PSORT algorithm predicts cytoplasm (0.3627).

The following *C.pneumoniae* protein (PID 4376648) was also expressed <SEQ ID 343; cp6648>:

```

1 MPVSSAPLPT SHRPSGNLG LMEPN SKALK AKHQDKTTKT IKLLVKILVA
51 ILVIEVLGII AAFFIPGTTP ICLII LGGLI LTTVLCVLLL VIKLALVNKT
101 EGTTAEQQIK RKLSSKSIS*

```

30 The cp6648 nucleotide sequence <SEQ ID 344> is:

```

1 ATGCCCGTGT CCTCAGCCCC CCTACCCACA AGCCACCGCC CTTCCCTCTGG
51 AAATCTAGGC CTCATGGAAC CAAATTCCAA AGCTCTAAA GCAAAGCATC
101 AAGATAAAAC GACGAAGACG ATTAACCTTT TAGTTAAAAT CCTTGTGCG
151 ATTCTAGTAA TAGAAGTTTT AGGAATAATT GCAGCTTTCT TTATTCCCTGG
201 GACTCCCTCCC ATCTGCTTGA TTATCCTAGG AGGCCCTTATT CTTACAAACAG
251 TACTCTGTGT GCTTCTCTT GTTATAAACCC TTGCCCTTGT AAACAAACCC
301 GAAGGAACACA CTGCTGAACA GCAGATAAAA CGTAAACTCT CTTCTAAAAG
351 TATTCTTAG

```

The PSORT algorithm predicts inner membrane (0.6074).

40 The following *C.pneumoniae* protein (PID 4376497) was also expressed <SEQ ID 345; cp6497>:

```

1 MKPNSIIFLE NTKHYPDIFR EGFVRDRHGL MEASDWLLST EITIIRSILG
51 AIPILGNILG AGRLYSVWYT SDEDWKQVV *

```

The cp6497 nucleotide sequence <SEQ ID 346> is:

```

1 ATGAAGCCAA ATAGTATTTAT TTTTTAGAA AATACTAACG ATTATCCCGA
51 CATCTTTCGA GAAGGATTG TTCTGATCG TCATGGACTA ATGGAAGCCT
101 CGGATTGGTT ACTTTCTACG GAAATTACGA TCATTCGCTC CATTCTGGGA
151 GCTATCCCTA TTTTAGGAAA TATTCTGGA GCCGGACGAC TCTATAGCGT

```

201 TTGGTATACA AGTGACGAAG ATTGGAAAAA ACAAGTGGTT TGA

The PSORT algorithm predicts inner membrane (0.145).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 171A; 6632 = lanes 5-7; 6648 = lanes 8-10; 6497 = lanes 2-4). The recombinant proteins were used to immunise mice, 5 whose sera were used in Western blots (Figures 171B, 172, 173) and for FACS analysis.

These experiments show that cp6632, cp6648 and cp6497 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

Example 174,

10 **Example 175**,

Example 176,

Example 177 and

Example 178

The following *C.pneumoniae* protein (PID 4377200) was expressed <SEQ ID 347; cp7200>:

15 1 MPVPIDNSSR NLQEVFPESLE DLEQHAEESP THQSAESSSL QLSLASSAIS
 51 SRVEQLSSLV LGMENSDFSS LRDVPIFSAI YESSTHTPVP TPLVGVGYIN
 101 GSQSGYYDTQ RESLHLSQQL GSRRVEVVYN QGNFMEASLL NLCPRRPRRD
 151 PSPISLALLE LWEAFFLEHP PGSTFNPIFF W*

The cp7200 nucleotide sequence <SEQ ID 348> is:

20 1 ATGCCCGTTC CTATAGATAA TTCCCTCTCGC AACCTACAAG AAGTTCCAGA
 51 AAGCCTAGAA GACCTCGAAC AACACGCAGA AGAATCTCCT ACTCATCAAA
 101 GTGCGAAAG CAGTTCTTTG CAACTGTCTC TAGCCTCCCTC AGCAATTCT
 151 AGTAGAGTAG AACAACTATC TTCCCTCGTC TTAGGAATGG AAAATTCTAGA
 201 TTTCTCTCTCT TTAAGAGACG TTCCCTATCTT CTCAGCTATC TACGAATCTT
 25 251 CAACACACAC ACCTGTCCCC ACTCCTCTAG TTGGCGTGGG ATATATCAAC
 301 GGAAGTCAAAT CAGGATACTA CGATACACAA AGAGAATCTC TTCACCTCAG
 351 CCAATTGTTA GGAAGCCGAA GAGTTGAAGT TGTCTATAAC CAAGGAAACT
 401 TCATGGAGGC CTCTTGTCTA AATCTGTGCC CCAGAAGACC TCGAAGAGAT
 451 CCCTCTCCAA TTTCTTTAGC TCTTATTAGAG CTCTGGGAAG CATTTTTTTT
 501 AGAACACCCCC CCAGGTAGCA CTTTTAATCC AATATTTTTT TGGTAA

The PSORT algorithm predicts cytoplasm (0.3672).

The following *C.pneumoniae* protein (PID 4377235) was also expressed <SEQ ID 349; cp7235>:

35 1 LNFVSTLTGS DFYAPVLEKL EEAFADETTGQ VILFSSSPDF IVHPIAQQLG
 51 ISSWYASCYR DOSAEQTIYK KCLGDKKQI ILSYIKKINQ ARSHTPSDHI
 101 LDLPPFLMLGE EKTVVVRPQGR LKKMAKKYYW NIV*

The cp7235 nucleotide sequence <SEQ ID 350> is:

40 1 TTGAATTTTG TATCGACTCT GACCGGCTCC GATTTTTATG CTCCCTGTTT
 51 AGAAAAAACTA GAAGAAGCTT TTGCAAGATAC CACAGGACAG GTGATCCTTT
 101 TTTCTCTCTC TCCAGACTTC ATTGTCCACC CCATAGCGCA GCAACTCGGG
 151 ATTAGTTCTT GGTATGCGTC GTGTTATCGC GATCAGTCTG CAGAACACAGAC
 201 GATCTATAAA AAATGTCCTA CAGGGGATAAA AAAAGCGCAA ATTTTGAGTT
 251 ATATTAACAAA AATTAATCAA GCAAGAAGCC ATACCTTCCTC CGACCATATT
 301 TTAGATCTTC CTTTCTTAT GCTGGGAGAA GAGAAAACCG TCGTTCGCCC
 351 TCAGGGACGA CTCAAGAAAA TGGCAAAAAA ATATTAATCTGG AATATCGTTT
 401 AA

The PSORT algorithm predicts cytoplasm (0.3214).

The following *C.pneumoniae* protein (PID 4377268) was also expressed <SEQ ID 351; cp7268>:

1 MMHRYFIPLL ALLIFSPSLV RAELQPSENR KGGWPTQLSC AEGSQLFCKF

51 EAAYNNAIEE GKPGILVFFS ERPTPEFADL TNGSFSLSTP IAKGFNVVVL
 101 CPGLISPLDF FHKMDPVILY MGSFLEMFP VEAVSGPRLC YILIDEQGGA
 151 QCQAVLPLET KN*

The cp7268 nucleotide sequence <SEQ ID 352> is:

5 1 ATGATGCACC GTTATTCTTA GCACCTCTCA TTTTCTCTCC
 51 TTCTTTAGTC AGGGCAGAGC TACAACCAAG TGAAAACAGA AAAGGGGGT
 101 GGCCTACACA ACTTTCTGT GCAGAAGGTT CGCAACTCTT CTGTAAATTC
 151 GAAGCTGCCT ATAATAATGC AATTGAGGAA GGGAAACCTG GGATTTAGT
 201 CTTTTCTCT GAGCGACCCA CACCAGAATT TGCGACTTA ACGAATGGTT
 251 CATTCTACGCCA ATGCCAAGG GCTTTAATGT CGTTGTGTTA
 301 TGCCCCGGC TTATCAGTCC CTTAGACTTT TTCCACAAAAA TGGATCCTGT
 351 GATTCTCTAT ATGGGAAGTT TTCTAGAGAT GTTCCCTGAA GTGGAGGCAG
 401 TTAGTGGCCC CGCTTATGT TATATCTTAA TAGATGAAACA GGGTGGGCT
 451 CAATGTCAGG CTGCTTGCC TTTAGAAACA AAGAATTAG

15 The PSORT algorithm predicts inner membrane (0.1235).

The following *C.pneumoniae* protein (PID 4377375) was also expressed <SEQ ID 353; cp7375>:

20 1 MQRIIIVGID TGVGKTIIVSA ILARALNAEY WKPIQAGNLE NSDSNIVHEL
 51 SGAYCHPEAY RLHKPLSPHK AAQIDNVSIE ESHICAPKTT SNLIIETSGG
 101 FLSPCITSKRL QGDVFSWSC SWILVSQAYL GSINHTCLTV EAMRSRNLNI
 151 LGMVVNGYPE DEEHWLQEI KLPITGTLAK EKEITKTIIS CYAEQWKEVW
 201 TSNHQGIQGV SGTPSLNLH*

The cp7375 nucleotide sequence <SEQ ID 354> is:

25 1 ATGCAACGTA TCATCATTGT AGGAATCGAC ACTGGCGTAG GAAAAAACCAT
 51 TGTCACTGCT ATCCTTGCTA GAGCACTTAA CGCAGAATAC TGAAACCTA
 101 TACAAGCAGG GAATCTAGAA AATTCAAGATA GCAATATTGT TCATGAGCTA
 151 TCGGGAGCCT ACTGTCATCC CGAAGCTTAT CGATTGCATA AGCCCTGTC
 201 TCCACACAAAG GCAGCGAAA TCGATAATGT AAGTATCGAA GAGAGTCATA
 251 TTTGTGCGCC AAAAACAACT TCGAATCTGA TTATTCAGAC TTCAGGAGGA
 301 TTTTTATCCC CCTGCACATC AAAAAGACTT CAGGGAGATG TGTTTCTTC
 351 TTGGTCATGT TCTTGGATT TAGTGAGCCA AGCATATCTC GGAAGTATCA
 401 ATCACACCTG TTTAACGGTA GAAGCAATGC GCTCACGAAA CCTCAATATC
 451 TTAGGTATGG TGGTAAATGG GTATCCAGAG GACGAAGAGC ACTGGCTAAC
 501 TCAAGAAATC AAGCTTCTTA TAATCGGGAC TCTTGCCAAG GAAAAAGAAA
 551 TCACAAAGAC AATCATAAAGC TGTATGCGC AACAAATGGAA GGAAGTATGG
 601 CAAGCAATC ATCAGGAAAT TCAGGGTGTAA TCTGGCACCC CTTCACTCAA
 651 TCTGCATTAG

The PSORT algorithm predicts cytoplasm (0.0049).

The following *C.pneumoniae* protein (PID 4377388) was also expressed <SEQ ID 355; cp7388>:

40 1 MQVLLSPQLP PPPQHVGSI SSPSKLRVLA ITFLVFGMILL LISGALFLTL
 51 GIPGLSAIS FGLGIGLSAL GGVLIMISGLL CLLVKREIPT VRPEEIPEGV
 101 SLAPSEEPAL QAAQKTLAQL PKELDQLD TD IQEVFACLRK LKDSKYESRS
 151 FLNDAKKELR VFDFVVEDTL SEIFELRQIV AQEGWDLNFL INGGRSLMMT
 201 AESESDDLNFH VSKRLGYLPS GDVRGEGLKK SAKETVARLM SLHCEIHKVA
 251 VAFDNRNSYAM AEEAKAFAKALG ALEESVYRSL TQSYYRKFILE SERAKIPWNG
 301 HITWLRDDAK SGCAEKKLKD AEERWKKFRK AVFWVEEDGG FDINNLGDW
 351 GTVLDPYRQE RMDEITFHEL YEKTTFLKRL HRKCALAKTT FEKKRSKKNL
 401 QAVEEANARR LKYVRDWYDQ EFQKAGERLE KLHALYPEVS VSIRENKIQE
 451 TRSNLEKAYE AIEENYRCCV REQEDYWKEE EKREAEFRER GNKILSPEEL
 501 ESSLEQFDHG LKNFSEKLMF LEGHILKLQR EATAEVENKI LSDAESRLEI
 551 VFEDVKEMPC RIEEIEKTLR MAELPLLPTK KAFEKACSQY NSCAEMLEKV
 601 KPYCKESLAY VTSKERLVL DEDLRRRAYTE CQKRFQGDSC LESEVRACRE
 651 QLRERIQQEFE TQGLDLVEKE LLCVSSRLRN TECDCVSGVK KEAPPGKKFY
 701 AQYYDEIYRV RVQSRWMTMS ERLREGVQAC NKMLKAGLSE EDKVLKEEY
 751 WLYREERKNK EKRLVGTKIV ATQQRVAAFE SIEVPEIPEA PEEKPSLLDK
 801 ARSLFTREDH T

The cp7388 nucleotide sequence <SEQ ID 356> is:

1 ATGCAAGTAC TTCTATCTCC GCAGCTACCC CCCCCCCCCC AACACTCTGT
 51 AGGGTCGATT TCTTCTCCAT CTAAACTTCG CGTTTTAGCG ATTACTTTT

101	TAGTTTTGG	TATGCTCTTA	CTGATTCAG	GAGCTCTCTT	TCTGACGTTA
151	GGGATTCCAG	GATTGAGTGC	AGCAATTCTC	TTTGGATTAG	GCATCGGTCT
201	CTCCGCATTA	GGAGGAGTGC	TGATGATTTC	GGGACTACTA	TGTCTTTAG
251	AAAACGAGA	GATTCCGACA	GTACGACCAG	AAGAAATTCC	TGAAGGGTT
301	TCGCTGGCTC	CTTCTGAGGA	GCCAGCTCTA	CAGGCAGCTC	AGAAGACTTT
351	AGCTCAGCTG	CCTAAGGAAT	TGGATCAGTT	AGATAACAGAT	ATTCAAGGAAG
401	TGTTCGCATG	TTTAAGAAAG	CTGAAAGATT	CTAAGTATGA	AAGTCGAAGT
451	TTTTTAAACG	ATGCTAAGAA	GGAGCTTCGA	TTTTTGACT	TTGTGGTTGA
501	GGATACCCCTC	TCGGAGATT	TCGAGTTGCG	GCAGATTGTG	GCTCAAGAGG
551	GATGGATTT	AAACTTTTG	ATCAATGGGG	GACGAAGCCT	CATGATGACT
601	GCAGAACATCTG	AATCGCTG	TTTGTTCAT	GTATCGAACG	GGCTAGGGTA
651	TTTACCTCTC	GGGGATGTT	GAGGGGAGGG	GTTAAAGAAA	TCTCGCAAGG
701	AGATAGTCGC	TCGTTTGATG	AGCTTGCATT	GCGAGATTCA	CAACGTTGCC
751	GTAGCGTTG	ATAGGAATT	CTATGCGATG	GCAGAAAAGG	CGTTTGCGBAA
801	AGCGTTGGA	GCTTTAGAAG	AGAGTGTGTA	TCGGAGTCTG	ACGCAGAGTT
851	ATAGAGATAA	ATTTTTGGAG	AGCGAGAGGG	CGAAGATCCC	ATGGAATGGG
901	CATATAACCT	GGTTAAAGAGA	TGATGCCAAG	AGTGGGTGTC	CTGAAAAGAA
951	GCTTCGGGAT	GGCGAGGAAC	GTTGGAAGAA	ATTAGGAAA	GCAGTCCTTT
1001	GGGTTAGAAGA	AGACGGGGC	TTTGACATCA	AAATCTCCT	TGGAGACTGG
1051	GGGACAGTGC	TTGATCCTTA	TAGACAAGAG	AGAAATGGACG	AGATAACGTT
1101	CCATGAGTTG	TATGAAAAAA	CTACGTTTT	GAAAAGACTG	CACAGAAAAGT
1151	GTGCGTTAGC	GAAAACACC	TTTGAAGAGA	AGAGATCTAA	AAAGAAATTG
1201	CAGGCAGTCG	AGGAGGCGAA	TGACGCTAGG	TTGAAATATG	TAAGGGATTTG
1251	GTATGATCAG	GAGTTTCAGA	AAGCAGGGGA	GAGATTAGAG	AAACTGCATG
1301	CTTTGTATCC	TGAGGTTCA	GTCTCTATAA	GAGAGAACAA	AATACAAGAG
1351	ACCGCCTCTA	ATTTAGAGAA	AGCTTATGAG	GCTATCGAAG	AGAACTATCG
1401	TTGCTGTGTC	CGAGAGCAAG	AGGACTACTG	GAAAGAAGAA	GAGAAAAGGG
1451	AAGCGGAGTT	TAGGGAGAGG	GGAAACAAGA	TTCTTTCTCC	TGAGGAGCTG
1501	GAAAGTTCTT	TGGAGCAATT	CGACCATGGT	TTGAAAATT	TTTCTGAGAA
1551	ATTAATGGAA	TTGGAAGGGC	ATATCTAAA	ACTTCAGAAA	GAAGGCCACAG
1601	CAGAGGTGGA	GAATAAAATA	CTTCAGATG	CAGAGGCCG	CCTTGAGATT
1651	GTATTGAAAG	ATGTCAAGGA	GATGCCCTGT	CGAATTGAGG	AGATAGAGAA
1701	GACGCTGCGT	ATGGCGGAGC	TGCCCTACT	TCCTACGAAG	AAGGCCCTTG
1751	AGAAGGCCTG	CTCACATAT	AATAGCTGCG	CAGAGATGTT	GGAGAAGGTG
1801	AAGCCTTACT	GCAAGGAGAG	CCTCGCCTAT	GTGACTAGCA	AAGAGCCTTT
1851	AGTGAGCTTG	GATGAAGATT	TACGACGAGC	CTACACAGAG	TGTCAGAAGA
1901	GATTCCAGGG	GGATTCCGGT	TTGGAGTCGG	AAGTAAGAGC	CTGTCAGAG
1951	CAACTGCGAG	AGCGGATCCA	AGAGTTGAA	ACTCAAGGGC	TGGAATTGGT
2001	GGAAAAAGAG	TTGCTTGTG	TGAGTAGTAG	ATTAAGAAAT	ACAGAGTGC
2051	ATTGTGTATC	TGGTGTAAAG	AAAGAAGCAC	CTCCTGGTAA	GAAGTTTAT
2101	CCCCAGTATT	ATGATGAGAT	TTATCGAGTT	AGAGTTCAAT	CCCGATGGAT
2151	GACGATGTCT	GAGAGATTGA	GAGAGGGAG	TCAAGCATGC	AAACAGATGT
2201	TGAAGGCAGG	CCTAACGCAA	GAAGATAAGG	TTCTTAAAGA	AGAAGAGTAT
2251	TGGTTGTATC	GAGAGGAGAG	AAAGAATAAA	GAGAACGTT	TGGTTGGTAC
2301	TAAGATAGTA	GCAACGCAGC	AGCGAGTTGC	AGCATTGAA	TCCATAGAAG
2351	TCCCTGAGAT	TCCTGAGGCC	CCAGAGGAGA	AACCGAGTTT	GCTGGATAAA
2401	CGCGGTTCTT	TATTTACTCG	CGAGGACCAT	ACCTAG	

The PSORT algorithm predicts inner membrane (0.461).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 174: 7200=lanes 2-3; 50 7236=lanes 4-5; 7268=lanes 6-8; 7375=lanes 9-10; 7388=lanes 11-12). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 174, 175, 176, 177 & 178) and for FACS analysis.

These experiments show that cp7200, cp7235, cp7268, cp7375 & cp7388 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident 55 from the sequence alone.

Example 179

The following *C.pneumoniae* protein (PID 4376723) was expressed <SEQ ID 357; cp6723>:

1 MATSVAPSPV PESSPLSHAT EVLNLPNAYI TQPHPIPAAP WETFRSKLST
 51 KHTLCFALTL LLTLGGTISA GYAGYTGNWI ICGIGLGIIV LTLLALLLA
 101 IPLKQNQQTGT KLIDEISQDI SSIGSGFVQR YGLMFSTIKS VHLPELTIQN
 151 QEKRTRILNEI EAKKESIQNL ELKITECQNK LAQKQPKRKS SQKSFMRSIK
 201 HLSKNPVLF DC*

5 The cp6723 nucleotide sequence <SEQ ID 358> is:

1 ATGGCAACTT CCGTAGCCCC ATCACCCAGTC CCCGAGAGCA GCCCTCTCTC
 51 TCATGCTACA GAAGTTCTCA ATCTTCCTAA TGCTTATATT ACAGCAGCTC
 101 ATCCGATTCC AGCGGCTCCT TGGGAGACCT TTGCTCTCAA ACTTTCCACA
 151 AAGCATACGC TCTGTTTGCA CTTAACACTA CTGTTAACCT TAGGGGGAAC
 201 GATCTCAGCA GGTTACGCAG GATATACTGG AAACCTGGATC ATCTGTGGCA
 251 TCGGCTTGGG AATTATCGTA CTCACACTGA TTCTTGCTCT TCTTCTAGCA
 301 ATCCCTCTTA AAAATAAGCA GACAGGAACA AAACCTGATTG ATGAGATATC
 351 TCAAGACATT TCCTCTATAG GATCAGGATT TGTTCAAGAGA TACGGGGTGA
 401 TGTTCTCTAC AATTAAAAGC GTGCATCTTC CAGAGCTGAC AACACAAAAT
 451 CAAGAAAAAA CAAGAATTAA AAATGAAATT GAAGCGAAAA AGGAATCGAT
 501 CCAAAATCTT GAGCTTAAAA TTACTGAGTG CCAAAACAAAG TTAGCACAGA
 551 AACAGCCGAA ACAGGAATCA TCTCAGAAAT CATTATGCG TAGTATTAAG
 601 CACCTCTCCA AGAACCTGT AATTGTTTC GATTGCTGA

20 The PSORT algorithm predicts inner membrane (0.6095).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 179A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 179B) and for FACS analysis.

25 These experiments show that cp6723 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 180

The following *C.pneumoniae* protein (PID 4376749) was expressed <SEQ ID 359; cp6749>:

1 MSYYFSLWYL KVQQHFQAAF DFTRSLCSRI SNFALGVIAL LPIIGQLYVG
 51 LDWLLSRIKK PEFPNSVDQI VRVEHVVGH D HRSRVEDILK QRQLSLEPRD
 30 101 EGKVHGDLP APFF*

The cp6749 nucleotide sequence <SEQ ID 360> is:

1 ATGAGTTATT ACTTTTCTCT TTGGTATCTG AAGGTGCAAC AGCACTTTCA
 51 AGCAGCATTG GATTTTACTC GCTCCCTGTG TTCACGAATT TCTAATTGTTG
 101 CTTGGGGAGT GATTGCAATTG CTTCTCTTAA TTGGGGCAGTT GTATGTAGGG
 151 CTGGACTGGC TCCCTCTCTAG GATAAAAAAG CCAGAATTTC CTTCCGATGTT
 201 GGATCAGATC GTGCGAGTAG AACACGTCGT GGGTCACGAC CATAGAAGAC
 251 GAGTTGAAGA TATTCTAAAG AGACAAAGGC TCTCATTAGA GCCTAGAGAC
 301 GAGGGGAAGG TTCACGGAGA TCTGCCTTCA GCTCCTTTTT TTTGA

The PSORT algorithm predicts inner membrane (0.2996).

40 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 180A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 180B) and for FACS analysis.

These experiments show that cp6749 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 181 ,
Example 182 ,
Example 183 ,
Example 184 and
5 Example 185

The following *C.pneumoniae* protein (PID 4376301) was expressed <SEQ ID 361; cp6301>:

```

1  LNQDLQNVYQ ECQKATGLES EVSAYRDHLR EQITEFETQG LDVIKEELLF
51  VSSTLKSILS YDPLIADIPC MKFYEEYYDG IDKARVOSRW LEKSERYRKA
101 KKGFQEMLKE GLPKEDQALK KAEYRLREK RMNKEKLIC NKIEAAQQRV
151 QEFGPSDS*

```

The cp6301 nucleotide sequence <SEQ ID 362> is:

```

1  TTGAATCAGG ATTTACAAAAA TGTATAACCA GAGTGCCAGA AGGCTACAGG
51  TTTAGAACCGA GAAGTGAGTC CATAATAGAGA TCATCITAGA GAGCAGATCA
101 CAGAGTTTGA AACTCAAGGG CTGGACGTGA TAAAAGAAGA ACTTCTTTTT
151 GTGAGTAGTA CTCCTCAAAG TAAATTGAGC TATGATCCAT TAATAGCAGA
201 CATTCCCTGT ATGAAAGTTT ATGAGGAGTA TTATGATGCC ATTGATAAAG
251 CGAGAGTTCA ATCCAGATGG CTGGAGAGT CTGAGAGGTA TAGAAAGGCG
301 AAGAACGGAT TCCAAGAGAT GCTGAAGGAA GGCTTATTCA AAGAACGATCA
351 GCCTTTGAAA AAAGCACAGT ATAGATTACT TCGAGAGAAG AGAACGATA
401 AGGAGAACGCT TTTGATTGCA AATAAGATAG AAGCAGCTCA GCAGCGAGTC
451 CAAGAATTG GACCCTCGGA TTCATAA

```

The PSORT algorithm predicts cytoplasm (0.4621).

The following *C.pneumoniae* protein (PID 4376558) was also expressed <SEQ ID 363; cp6558>:

```

1  MNIPAPQVFV IDEPVVNNTS SYGLSLKSSL RPITYLILAI LAIAATLMSVL
51  YFCGIISVGTL FVLGMLIPLS VCSVLCVAYL FYQQSSIIEKT KVFSITSPSV
101 FFSDEDLNLL LGREEDSVSA IDELLKNFPA DDFRRPKMLP YSNFLDEQGR
151 PNESEEDSH TSKIL*

```

The cp6558 nucleotide sequence <SEQ ID 364> is:

```

1  ATGAAACATAC CCGCTCCCCA AGTACCAAGTC ATAGATGAGC CTGTAGTGAA
51  CAAACACAAGT AGCTATGGTC TTTCATTGAA AAGTAGTTA AGACCGATTA
101 CTTATTGAT TTTAGCTATC TTAGCTATAG CCACACTGAT GTCTGTTCTC
151 TACTTTTGTC GCATCATAG TGTGGGACG TTTGTTTGG GCATGCTGAT
201 CCCTCTATCG GTCTGCTCTG TTCTTGCCT TGCCCTATTCA TTCTATCAGC
251 ATCTTCTAT AGAAAAGACT AAGGTCTTTT CTATAACCAAG TCCCTTCAGTA
301 TTTTTCTCTG ATGAGGATCT AATTTACTC TTAGGTCGAG AAGAACGATTG
351 AGTGTCTGCA ATTGATGAAC TTCTTAAGAA CTTCAGC GATGATTTC
401 GTAGGCCGAA GATGCTCCT TATTCAAATT TTCTAGATGA GCAGGGAAAGG
451 CCTAATGAGA GTAGGAAGA AGACTCTCAT ACTTCCAAGA TCTTATAA

```

The PSORT algorithm predicts inner membrane (0.4630).

40 The following *C.pneumoniae* protein (PID 4376630) was also expressed <SEQ ID 365; cp6630>:

```

1  MSMTIVPHAL FKNHCECHST FPLSSRTIVR IAIASLFCIG ALAALGCLAP
51  PVSYIVGSVL AFIAFVILSL VILALIFGEK KLPPTPRIIP DRFTHVIDEA
101 YGLSISAFVRL EQQVTIAEFR QFSTALLCNI SPEEKIKQLP SELRSKVESF
151 GISRLLAGDLE KNNWPIFEDL LSQTCPLYWL QKFISAGDPQ VCRDLGVPRE
201 CYGYYWLGPL GYSTAKATIF CKETHHILQQ LTKEDVLLLK NKALQEKWDT
251 DEVKAIVERI YTYYTARGTL KTEAGGLTKE TISKELLLLS LHGYSFDQLQ
301 LITOLPRDAW DWLCFVDNST AYNLQLCALV GALSSQNLLD ESSIDFDVNL
351 GLYVIQDLKE AVQAFSASDE PKKELGKFLL RHLSSVSKRL ESVLRQGLHR
401 IAlehgnara RVYDVNFVTG ARIHRKTSIF FKD*

```

50 The cp6630 nucleotide sequence <SEQ ID 366> is:

```

1  ATGAGCATGA CGATCGTTCC ACATGCTTTA TTTAAAAATC ATTGCGAGTG
51  TCATTCTTAC TTTCTTGA GTTCAAGGAC TATTGTAAGA ATAGCCATTG
101 CCAGCCTCTT TTGTATAGGT GCATTAGCAG CTTCAGGCTG TTTGGCTCCT
151 CCCGTTTCTT ATATTGTTGG GAGTGTCTTA GCTTTTATTG CCTTTGTCAT
201 TCTTTCTTTA GTAATTAG CTTTGATTT TGGAGAGAAG AAGCTTCCAC

```

251 CAACACCAAG AATCATTCCCT GATAGATTAA CTCACGTGAT AGATGAAGCT
 301 TATGGCCTTT CAATCTCTGC ATTGTGTAAGA GAACAGCAGG TAACATTAGC
 351 CGAGTTTACA CAATTTCTA CTGCCCTGTT GTGTAACATA TCTCCCTGAAG
 401 AGAAAATCAA ACAATTGCCT TCTGAATTGC GAAGTAAAGT AGAGAGTTT
 451 GGTATTAGCA GGCTCGCAGG TGATTTAGAA AAGAATAATT GGCCAATATT
 501 TGAAGATCTT TTAAGCCAAA CCTGCCCGTT ATATTGGCTT CAGAAATTAA
 551 TATCAGCAGG AGATCCACAA GTTGTAGAG ACCTAGGTGT CCCTAGAGAA
 601 TGTTATGGGT ACTATTGGCT AGGGCCTTG GGATACAGTA CAGCTAAGGC
 651 TACAATTTTT TGTAAGAGA CGCATCATAT TCTTCACAA TTAACGAAAG
 701 AGGACGTTCT TTTTATTAAGA AACAAAGGCTC TTCAAGAGAA ATGGGATACT
 751 GATGAAGTCA AAGCAATTGT AGAGCGTATC TACACTACCT ATACGGCACG
 801 AGGAACCTCA AAGACCAAG CAGGGGGACT TACAAAAGAG ACAATCAGTA
 851 AGGAATTGCT ATTGTTGAGC TTGCATGGCT ATTCTTTGTA TCAGCTACAG
 901 CTGATCACTC AACTTCCTAG AGATGCTGG GATTGGCTGT GTTTTGTAGA
 951 TAACAGTACC GCATACAAACC TTCAGCTTG TGCTCTTGTA GGAGCTTTGT
 1001 CATCCCAAAA TCTTCTTGAC GAATCTTCTA TCGATTTTGTA TGTAACACCA
 1051 GGCCCTGTAT TGATTCTAGG TCTAAAAGAA GCTGTTCAAG CATTITCTGC
 1101 TTCTGATGAG CCAAAAGAAG AACTAGGTAA ATTCTTGTAA AGGCATTGTA
 1151 GTTCAGTTTC TAAGGGATTAGA GAGAGTGTAT TAAGACAGGG TCTTCACAGA
 1201 ATAGCTCTAG AGCATGGAAA TGCCAGAGCT AGGGTTTATG ACGTCAATT
 1251 TGTAACAGGA GCTAGAATTG ATAGGAAGAC GAGTATCTC TTTAAAGACT
 1301 AA

The PSORT algorithm predicts inner membrane (0.7092).

The following *C.pneumoniae* protein (PID 4376633) was also expressed <SEQ ID 367; cp6633>:

25 1 MVNIQPVYRN TQVNYSQATQ FSVCQPALSL IIVSVVAAVL AIVALVCSQS
 51 51 LLSIELGTAL VLVSLILFAS AMFMIYKMRQ EPKELLIPKK IMELIQEHYP
 101 101 SIVVDFIRDQ EVSIYEIHHL ISILNKTNVF DKAPVYLQEK LLQFGIEKFK
 151 151 DVHPSKLPNF EEILLQHCPL HWLGLRVYPM VSDVTPTGYG YYWCGPLGLY
 201 201 ENAPSLFERR SLLLKKISF GEFALLEDEL KKNTWSSSEL VQIRQNLFTR
 251 251 YYADKEEVDE AELNADYEQF DSLLHLIFSH KLS*

The cp6633 nucleotide sequence <SEQ ID 368> is:

1 1 ATGGTTAATA TACAGCCTGT GTATAGGAAT ACCCAAGTCA ACTATAGTCA
 51 51 GGCTACCCAA TTTTCGGTGT GCCAGCCAGC GCTTAGCCTG ATTATCGTTT
 101 101 CTGTTGTTGCG TGCTGTACTC GCTATTGTTAG TTTTGGTAG CAGTCATCT
 151 151 CTTTTATCCA TAGAGTTAGG AACTGCTCTT GTTCTAGTTT CTCTTATTCT
 201 201 TTTTGCTTCT GCTATGTTTA TGATTTATAA GATGAGACAA GAACCTAACG
 251 251 AGTTGCTGAT CCCTAAGAAA ATCATGGAAC TCATCCAAGA ACATTATCCA
 301 301 AGTATTGTTG TTGATTTTAT TAGAGATCAG GAGGTTTCCA TTTATGAGAT
 351 351 ACATCACTTG ATCTCTATTTC TTAATAAGAC GAATGTTTTC GACAAACAC
 401 401 CAGTATATTTC ACAAGAAAAAA CTCTTACAGT TTGGCATTGAA GAAGTTCAAA
 451 451 GATGTACATC CAAAGTAAGCT CCCTAATTTC GAAGAAATTTC TTCTACAGCA
 501 501 TTGCCCATTT CATTGGTTGG GACGTCTGGT ATATCCCATTG CTATCGGATG
 551 551 TCACTCCAGG AACCTATGGA TACTATTGGT GTGGTCCTTT AGGACTGTAC
 601 601 GAGAACGCTC CCTCTCTTT TGAACGTCGA TCTCTCTAT TGTAAAGAA
 651 651 ATTAGCTTT GGAGAGTTTG CTCTTTTAAAGA AGATGGTCTC AAGAAAAACA
 701 701 CGTGGAGTT TTCGGAACTC GTTCAAATCA GACAAAACCT TTTTACAAGA
 751 751 TATTATGCTG ATAAAGAAGA GGTAGATGAA GCAGAGTTAA ACGCTGATTA
 801 801 CGAACAGTTT GATTCCCTCC TTCACCTTAT TTTTCTCAC AAGCTCTCTT
 851 851 GA

50 The PSORT algorithm predicts inner membrane (0.7283).

The following *C.pneumoniae* protein (PID 4376642) was also expressed <SEQ ID 369; cp6642>:

1 1 MATISPISLT VDHPLVDTKK KSCSNFDKIQ SRILLITAIF AVLVTIGTLL
 51 51 IGLLLNIPVI YFLTGISFIA VVLSNPFILYK RATTLLKPRP CGKHKEIKPK
 101 101 RVSTNLQYSS ISIAINRSKE NWEHQPKDLQ NLPAFPSSLLT DNPYEIWKAK
 151 151 HSLFSLVSSL PGGNPEHLLI SASENLGKTL LIEETSQNAP ISSYVDITPS
 201 201 PKSLLNEAIQ ETRVEINTEL PAGDSGERLY WQPDPRGRVF LPQIPTTPEA
 251 251 IYQYYXALYV TYIQTAINN TQIIQIPLYS LREHLYSREL PPQSRMQQSL
 301 301 AMITAVKYMA ELHPEYPLTI ACVERSLAQL PQESIEDLS*

The cp6642 nucleotide sequence <SEQ ID 370> is:

60 1 ATGGCTACAA TCTCACCCAT ATCTTTAACT GTAGATCATC CCCTAGTAGA

5 51 CACTAAAAAA AAATCCTGCA GCAACTTGA TAAGATTCA G TCTCGAATT
 101 TATTGATTAC TGCAATCTTT GCTGTCTTAG TTACTATAGG GACCCTACTT
 151 ATTGGTTTCG TTITAAATAT TCCTGTTATC TATTTCCCTCA CAGGAATTTC
 201 ATTTATTGCT GTTGTTCTTA GCAACTTTAT CCTTTATAAA CGAGCAACCA
 251 CCCTCTTAAA ACCGCGTGCT TGTGGCAAAC ACAAAAGAAAT AAAACCAAAA
 301 AGGGTCTCCA CCAACCTACA GTATTCTTCT ATCTCTATCG CAATCAATCG
 351 TTCTAAAGAA AACTGGGAAC ACCAACCCAA GGACCTACAG AATCTCCCCG
 401 CACCCCTCTGC ATTACTCACA GATAACCCCTT ACGAGATATG GAAAGCTAAA
 451 CATTCACTGT TTTCCCTAGT ATCCCTCCTA CGGGGAGGCA ATCCAGAACAA
 501 TCTCTTAATT TCAGCTTCCG AAAATTAGG AAAGACTCTG TTAATTGAAG
 551 AAACCTCGCA AAATGCGCT ATATCCCT ACGTAGATAC CACTCCCTCC
 601 CCAAAATCCT TGCTCAATGA GGCATTCTAG GAAACAGGG TAGAAATAAA
 651 TACAGAACTC CCTCGGGGAG ATTCAAGGAGA ACGTTTATAC TGGCAACCCG
 701 ATTTCCGAGG CGCGCTCTTC CTCCCACAAA TACCAACAAAC TCCTGAAGCC
 751 ATCTACCAAT ACTACTATGC ACTCTATGTC ACTTATATCC AGACTGCGAT
 801 CAATACGAAC ACCCAAATTA TCCAAATCCC TTATACAGC TTGAGGGAGC
 851 ATCTCTATTC TAGAGAATTG CCCCGCAAT CAAGAATGCA ACAATCTTG
 901 GCTATGATTA CAGCAGTAAA ATACATGGCC GAGCTGCACC CAGAATATCC
 951 GCTAACTATT GCTTGTTG AAAGATCCTT AGCCCAACTA CCTCAAGAAA
 20 1001 GTATTGAGGA TCTCTTTAG

The PSORT algorithm predicts inner membrane (0.5288).

The proteins were expressed in *E.coli* and purified as GST-fusion products. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 181-185) and for FACS analysis.

25 These experiments show that cp6301, cp6558, cp6630, cp6633 and cp6642 are surface-exposed and immunoaccessible proteins, and that they are useful immunogens. These properties are not evident from their sequences alone.

Example 186

The following *C.pneumoniae* protein (PID 4376389) was expressed <SEQ ID 371; cp6389>:

30 1 MSEVKPLFLK NDSFDLATOR FQNLINMLQE QAEIYNEYEE KNARVQNEIK
 51 EQKDFVKRCI EDFEARGLGV LKEELASLTR DFHDKAKAET SMLIECPICIG
 101 FYYSIHQEEQ RQRQERLQKM AERYRDCKQV LEAVQVEQKD MISSRVVVDD
 151 SYFEEEKEEQ KVDRNRKKEQD *

The cp6389 nucleotide sequence <SEQ ID 372> is:

35 1 ATGTCAGAACAG TGAAGCCTTT GTTTTAAAG AATGACTCTT TTGATTGGC
 51 AACTCAGAGA TTCCAGAACAT TAATTAACAT GCTACAAGAG CAAGCCGAGA
 101 TATATAACCA CTATGAAGAA AAGAATGCTA GGGTTCAAGAA TGAGATTAAG
 151 GAGCCAAAAGG ACTTTGTGAA AAGATGCATA GAGGACTTTG AAGCCAGAGG
 201 ACTGGGGGTG CTAAGAACAG AGCTTGACATC TTGACGCGT GATTTCCATG
 251 ATAAAGCAAA ACCAGAGACT TCTATGCTCA TTGAATGTC TTGTATTGGT
 301 TTTTATTATA GTATTCATCA GGAGGAACAA AGGCAAAGGC AAGAAAGGCT
 351 TCAAAAGATG GCTGAGCGCT ATAGGGACTG TAAACAAGTC TTGGAGGCTG
 401 TCCAGGTGGA GCAAAAGAT ATGATATCTT CTAGAGTCGT TGTCGATGAC
 451 AGCTACTTTG AAGAAGAAAA AGAAGAACAA AAGGTGGATA ACAGAAAGAA
 501 AGAACAGGAC TAG

The PSORT algorithm predicts cytoplasm (0.3193).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 186A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 186B) and for FACS analysis.

These experiments show that cp6389 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 187

The following *C.pneumoniae* protein (PID 4376792) was expressed <SEQ ID 373; cp6792>:

```

5      1  VLQEHFFLSE DVITLAQQLL GHKLITTHEG LITSGYIVET EAYRGPDCKA
      51 CHAYNRYRKTQ RNRAAMYLKGG SAYLYRCYGM HHLLNVVTGP EDIPHAVLIR
     101 AILPDQGKEL MIQRRQWRDK PPHLLTNGPG KVCQALGISL ENNRQRLNTP
     151 ALYISKEKIS GTLTATARIG IDYAQEYRDV PWRFLLSPED SGKVLS*

```

The cp6792 nucleotide sequence <SEQ ID 374> is:

```

10     1  GTGCTACAAG AACATTTTT TCTATCGGAA GATGTAATT A CACTAGCGCA
      51 ACAGCTTTTA GGACATAAAC TCATCACAAC ACATGAGGGT CTGATAACCTT
     101 CAGGTTACAT TGTAGAAACC GAAGCGTATC GTGGCCCTGA TGACAAAGCA
     151 TGCCACGCCT ACAACTACAG AAAAACTCAG AGGAACAGAG CGATGTACCT
     201 GAAAGGAGGC TCTGCTTAC TCTACCGTTG CTATGGCATG CATCACCTAT
     251 TGAATGTTGT CACTGGACCT GAGGACATTCCC CCAATGCCGT CCTGATCCGG
     301 GCCATCCTTC CTGATCAAGG CAAAGAACTT ATGATCCAAC GCCGCCAATG
     351 GAGAGATAAA CCCCCACACC TTCTCACCAA TGGACCCGGA AAAGTGTGCC
     401 AAGCTCTAGG AATCTCTTG GAAAACAATA GGCAACGCCT AAATACCCCA
     451 GCTCTCTATA TCAGCAAAGA AAAAATCTCT GGGACTCTAA CAGCAACTGC
     501 CCGGATCGGC ATCGATTATG CTCAGAGAGA TCGTGATGTC CCATGGAGAT
     551 TTCTCCTATC CCCAGAAAGAT TCGGGAAAAG TTTTATCTTA A

```

The PSORT algorithm predicts cytoplasm (0.180).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 187A; lanes 2-4). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 187B) and for FACS analysis.

These experiments show that cp6792 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 188

The following *C.pneumoniae* protein (PID 4376868) was expressed <SEQ ID 375; cp6868>:

```

30      1  MVETVLHNFO RYLSKYLYRV FRFFCRKKTF LSSHRLVLRP SFPVDYCPGK
      51 IYDLQEIYEE LNAQLFQGAL RLQIGWFGRK ATRKGKSVVL GLFHENEQLI
     101 RIHRSLDROE IPRFFMEYLV YHEMVHSVVP REYSLSGRSI FHGKKFKEYE
     151 QRFLPLYDRAV AWEKANAYLL RGYKKRVGCG YGRA*

```

The cp6868 nucleotide sequence <SEQ ID 376> is:

```

35     1  ATGGTTGAAA CAGTAATTCA TAATTTCCAA CGTTATCTGA GCAAGTATCT
      51 CTATAGGGTA TTTCGCTTCC CATGTCGAA AAAGACGTTT CTATCTTCGC
     101 ACAGGGTTCT TGCTCTGCCT TCATTCCTCAG TAGACTACTG TCCGGGAAAG
     151 ATCTATGATT TGCAGGAGAT CTATGAGGAA TTGAATGCGC AGTTATTTCA
     201 AGGTGCACTG CGTTTACAGA TTGGTTGGTT CGGAAGGAAA GCTACCAGAA
     251 AAGGCAAGAG TGTTGCTTTC GGATTCCTTC ATGAAATGAA ACAGTTAATT
     301 CGAATTTCATC GTTCTTTAGA TCGGCAGGAA ATCCCAAGAT TTTTTATGGA
     351 ATATCTTGTC TATCATGAAA TGTTTCATAG TGTAGTCCCT AGAGAGTATT
     401 CTCTATCGGG GCGTTCCATT TTTCATGGTA AAAAGTTAA AGAATAACGAA
     451 CAACGTTTCC CCTTGTATGA TCGTGCTGTT GCTTGGGAAA AGGCAAACGC
     501 TTATTTATTG CGAGGGTATA AAAAAAGAGT AGGTGGAGGA TATGGCAGGG
     551 CATAG

```

The PSORT algorithm predicts bacterial cytoplasm (0.325).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 188A; lanes 2-3). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 188B) and for FACS analysis.

These experiments show that cp6868 is a surface-exposed and immunoaccessible protein, and that it
5 is a useful immunogen. These properties are not evident from the sequence alone.

Example 189

The following *C.pneumoniae* protein (PID 4376894) was expressed <SEQ ID 377; cp6894>:

```

1 MYKRCVLDKI LKGIVAGSLI LLYWSSDLLE RDIKSIGNV RDIQEDIREI
 51 SRVVKQQQTS QAIAPAAGVGM LAPKLRDEA FALLFGDPSY PNLLSLDPYK
101 QQTLPPELLGT NFPHGILRT AHVGKPNELS PFNGFDYVVG FYDLCIPS LA
151 SPHVGYEEF SPDLAVKIEE HLVEDGSGDK EFHIYLPRNV FWRPIDPKAL
201 PKHVLQLDEVF QRPHPVTAHD IKFYDVMN PYVATMRAVA LRSCYEDVV S
251 VSVENDLKL VVRWAHTVIN EEEKEERKVL YSAFSNTL S QPLPREFVYQ Y
301 FANGEKIIED ENIDTYRTNS IWAQNFTMHW ANNYIVSCGA YYFAGMDDEK
351 IVFSRNPDFY DPLAALIDKR FVYFKESTDS LFQDFKTGKI DISYLPNQR
401 DNFYSFMKSS AYNKQVAKGG AVRETVSADR AYTIGWNCF SLFFQSQRQR
451 CAMNMAIDRE RIIEQCLDGQ GYTISGPFA SSSPSYNKQIE GHYSPEEAA
501 RLLEEEGWID TDGDGIREKV IDGVIVPFRF RLCCYVKSVT AHTIADYVAT
551 ACKEIGIECS LLGLDMADLS QAFDEKNFDA LLMGWCLGIP PEDRALWHS
601 EGAMEKGSAN VVGFHNEEAD KIIDRLSYEY DLKERNRLYH RFHEIIIHEEA
651 PYAFLFSRHC SLLYKDYVKN IFVPTHRTDL IPEAQDET VN VTMVWLEKKE
701 DPCLSTS*

```

The cp6894 nucleotide sequence <SEQ ID 378> is:

```

1 ATGTATAAAA GATGTGGC AGATAAAATT TTAAAGGG A TTGTGCCCGG
 51 TTCTTTAATT TTGTTATACT GGTCCTCAGA CCTACTTGAA AGAGACATTA
101 AGTCGATAAA AGGTAACGTA AGAGATATT C AAGAACAT TCGTCAAATC
151 TCACCGTAG TGAAACAACA GCAGACATCA CAAGCTATCC CTGGCGCAC C
201 TGGGGTGATG CTCGCTCTA AGCTCGTCAG AGACGAAGCT TTTGCTCTAC
251 TCTTTGGAGA TCCTAGTTAT CCTAATTTCAC TTTCCCTAGA CCCCTATAAA
301 CAGCAGACTC TTCTGAACT TCTAGGAACA AATTTCACCC CTCATGGTAT
351 CCTACCGACT GCCCATGTCG GAAAACCCGA AAATCTGAGC CCTTTTAATG
401 GCTTTGATTA TGTCGTGGC TTTTACGATC TCTGTATTCC TAGTTTAGCT
451 TCTCCCCACG TAGGGAAATA CGAAGAATT TCTCCAGATC TCGCTGTGAA
501 AATAGAAGAA CATCTGTTG AAGATGGTC TGGGGATAAA GAGTTTCACA
551 TCTATCTGAG GCCGAATGTT TTTTGGCGTC CTATAGATCC TAAGGCCCTT
601 CCAAAACACG TTCAGTTAGA CGAAGTATT CAACTGCCTC ATCCTGTGAC
651 AGCTCATGAT ATTAAGTTT TCTACGACGC TGTTATGAAAC CCTTATGTAG
701 AACCCATGCG AGCAGTGGCT CTGGCCTCTT GTTATGAAGA TGTGGTTCT
751 GTCTCAGTAG AAAACGATT TAAATTAGTA GTCAAGATGGA AAGCACACAC
801 GGTAAATCAAT GAAGAAGGAA AGGAAGAGCG CAAAGTGCTC TACTCTGCAT
851 TTTCTAAATAC CTTAAGCTTG CAGCCCCCTCC CTAGATTTGT ATATCAGTAT
901 TTTGCTTAACG GGGAAAAAAAT CATTGAAGAT GAGAATATCG ATACCTACCG
951 ACCAACATTCC ATTTGGGC C AAAACTTCAC TATGCATTGG GCAAACCAACT
1001 ATATTGTAAG TTGTGGAGCC TACTACTTTG CAGGGATGGA TGATGAGAAA
1051 ATCGTGTGTTT CTAGAAATCC TGACTTCTAT GATCTCTTG CGGCTCTTAT
1101 TGACAAGCGT TTGCTCTATT TTAAGGAAAG CACAGACTCC CTATTCCAAG
1151 ATTTTAAGAC AGGGAAAATA GACATCTCTT ACCTTCCACC CAACCAAAGA
1201 GATAATTCT ATAGTTTAT GAAAAGCTCC GCTTATAACA AACAGGTAGC
1251 TAAGGGAGGA GCCGTCCTG AAACAGTCTC AGCAGATCGA GCATATACGT
1301 ACATAGGATG GAATTGCTT TCATTATT TCCAAAGCCG ACAGGTGCGC
1351 TGTGCTATGA ACATGGCAAT CGATAGAGAG AGGATTATCG AACAGTGCTT
1401 GGATGGCCAA GGCTATAAGA TTAGTGGGCC TTTGCTTTC AGTTCTCCCTT
1451 CTTATAATAA ACAGATCGAA GGGTGGCATT ATTCTCCAGA AGAAGCAGCT
1501 CGTCTCCTGG AAGAAGAGGG ATGGATAGAT ACCGATGGCG ATGGAATCCG
1551 AGAAAAAGTT ATCGATGGTG TGATGTCCTC GTTCCGTTTC CGTTTATGCT
1601 ATTAATGTAAGA GAGTGTCAAC GCTCATACCA TTGCAAGATTA CGTAGCTACT
1651 GCTTGTAAAGG AAATCGGAAT CGAGTGTAGC CTTCTAGGAC TAGATATGGC
1701 CGATCTTCTG CAAGCTTTG ATGAAAAGAA TTTCGATGCT CTTTTAATGG
1751 GATGGTGTTT AGGAATTCTT CCTGAGGATC CTAGGGCTTT ATGGCATTCT

```

5
 1801 GAAGGGGCTA TGGAAAAGGG TTCAGCGAAT GTTGTAGGTT TCCATAATGA
 1851 AGAACGCTGAT AAAATCATAG ACAGACTCGAG CTACGAATAAC GATCTGAAAG
 1901 AACGTAATCC CCTGTACAC CGTTTCATG AAATTATTCGA TGAGGAAGCT
 1951 CCTTATGCTT TCTTGTCTC ACGACATTGT TCCTTACTTT ATAAGGATTA
 2001 TGAAAAAAAT ATTTTCGTAC CTACACATAG AACAGATTAA ATTCCGTGAAG
 2051 CTCAGGATGA GACTGTCAAC GTAACATGG TATGGCTTGA GAAGAAGGAG
 2101 GATCCGTGCT TAAGTACATC CTAA

The PSORT algorithm predicts inner membrane (0.162).

10 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 189A) and also in GST/his form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 189B) and for FACS analysis.

These experiments show that cp6894 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 190

15 The following *C.pneumoniae* protein (PID 4377193) was identified in the 2D-PAGE experiment <SEQ ID 379; cp7193>:

20
 1 MKRVIYKTI CGLTLLSLS SCSLDPKGYN LETKNSRDLN QESVILKENR
 51 ETPSLVKRLS RRSRRLFARR DQTQKDTLQV QANFKTYAEK ISEQDERDLS
 101 FVVSAAEKS SISLALSQGE IKDALYRIRE VHPLALIEAL AENPALIEGM
 151 KKMQRDWIW NLFLTQLSEV FSQAWSQGVI SEEDIAAFAS TLGLDSGTVA
 201 SIVQGERWPE LVDIVIT*

A predicted leader peptide is underlined.

The cp7193 nucleotide sequence <SEQ ID 380> is:

25
 1 ATGAAAAGAG TCATTTATAA AACCATAATT TGCGGGTTAA CTTTACTTAC
 51 AAGTTTGAGT AGTTGTTCCC TGGATCCTAA AGGATATAAC CTAGAGACAA
 101 AAAACTCGAG GGACTTAAAT CAAGAGTCTG TTATACTGAA GGAAAACCGT
 151 GAAACACCTT CTCTTGTAA GAGACTCTCT CGTCGTTCTC GAAGACTCTT
 201 CGCTCGACGT GATCAAACCTC AGAAGGATAC GCTGCAAGTG CAAGCTAACT
 251 TTAAGACCTA CGCAGAAAAG ATTCAGAGC AGGACGAAAG AGACCTTTCT
 301 TTCGTTGTCT CGTCTGCTGC AGAAAAGTCT TCAATTTCGT TAGCTTGTC
 351 TCAGGGGTGAA ATTAAGGATG CTTTGTACCG TATCCGAGAA GTCCACCCCTC
 401 TAGCTTTAAAT AGAACCTCTT GCTGAAAACC CTGCCCTGAT AGAAGGGATG
 451 AAAAGATGC AAGGCCGTGA TTGGATTGAG AATCTTTCT TAACACAATT
 501 AAGTGAAGTA TTTTCTCAAG CTTGGTCTCA AGGGCTTATC TCTGAAGAAG
 551 ATATGCCCGC ATTTGCCTCC ACCTTAGGTT TGGACTCCGG GACCGTTGCG
 601 TCCATTGTCC AAGGGGAAAG GTGGCCCGAG CTTGTGGATA TAGTGATAAC
 651 TTAA

The PSORT algorithm predicts periplasmic (0.925).

This shows that cp7193 is an immunoaccessible protein in the EB and that it is a useful immunogen.

40 These properties are not evident from the protein's sequence alone.

It will be appreciated that the invention has been described by way of example only and that modifications may be made whilst remaining within the spirit and scope of the invention.

TABLE II – sequences of the primers used to amplify Cpn genes.

Orf ID	N-terminus final primer	C-terminus final primer
CP0014P	GCGTC CCG GGT CATATG AAGTCTCTTCCCCA	GCGT CTC GAG ATGAAAGAGTTTTGCCG
CP0015P	GCGTCCGGTCATATG TCAGCTCTGTTTCTGA	GCGT CTC GAG GAATTGGTATTTGCTC
CP0016P	GCGTCCGGTCATATG GCCGATCTCACATTAG	GCGT CTC GAG GTCCAAGTTAACGGTAGCA
CP0017P	GCGT CCG GGT CATATG GGATCAAGGAACTG	GCGT CTC GAG AAATCCGAATCTTCC
CP0019P	GCGTCCGGTCATATG GGATCAAGGAACTG	GCGT CTC GAG AAATCGGTATTTACCC
CP6260P	GCGTC CCG GGT GCTAGCACTACGATTCTTAAACCC	GCGT CTC GAG AAAACGAAATTGCTTC
CP6397P	GCGTC CCG GGT CATATG GTTAAACTGCTAAAAATCTATT	GCGT CTC GAG ATGAAAGAAGACTCCCTCG
CP6456P	GCGTC CCG GGT CATATG TCATCTCTGTTAAACA	GCGT CTC GAG CTGACCCTCTCTGTT
CP6466P	GCGTC CCG GGT CAT ATG TGCAAGGAGTCCAGT	GCGT CTC GAG ATTTTCTTAGCATACG
CP6467P	GCGTC CCG GGT CAT ATG TGTTCCCATCCCCA	GCGT CTC GAG TAGTTTTCTATAAACGAAAGTCT
CP6468P	GCGTC CCG GGT CAT ATG TGCTCTCTACTCTTC	GCGT CTC GAG GGGAAAATAGGTATATTGTA
CP6469P	GCGTC CCG GGT CAT ATG AGCTGTCACAAACCAA	GCGT CTC GAG ACTTTAGATATCGATATTGTA
CP6552P	GCGTC CCG GGT CAT ATG TGCCATAAGGAAGATG	GCGT CTC GAG ACCATTGCTTGAGTCAT
CP6567P	GCGTC CCG GGT CAT ATG ACCTCACCGATCCC	GCGT CTC GAG AGAAGCCGGTAGAGGC
CP6576P	GCGTC CCG GGT CAT ATG ACTGAAAAGTTAAAAGAAGG	GCGT CTC GAG GAA CATGCCCCCTAA
CP6727P	GCGTC CCG GGT CATATGCTACATCACTAATGCC	GCGT CTC GAG GAAAGAATAACGAGTCC
CP6729P	GCGTC CCG GGT CAT ATGCGAGATGCTTCTTATC	GCGT CTC GAG GAATGAGTATCTTAGCC
CP6731P	GCGTC CCG GGT CATATGGCTGTTGTTGAAATCAAT	GCGTC CAT GGC GGC GAACTGGAACCTACCTCC
CP6736P	GCGTC CCG GGT GCT AGCGTAGAAGTTATCATGCCTT	GCGTC CAT GGC GGC AAATCGTAATTGCTTC
CP6737P	GCGT GGA TCC CAT ATG GAGACTAGACTCGGAGG	GCGT CTC GAG AAATGTGGATTTAGTCC
CP6751P	GCGTC CCG GGT GCT AGC AATGAAGGCTCTCAACT	GCGT CTC GAG AAATCTCATTCTACTCGC
CP6752P	GCGTCA ATT CAT ATGTTCCGGATCACTCCT	GCGT CTC GAG GAATTTTAAGGTACTCTCTG
CP6753P	GCGTC CCG GGT GCT AGCACTCCACTCTCATAGAG	GCGT CTC GAG AAACCTTAAAGGTCGTTTC
CP6767P	GCGTC CCG GGT CAT ATG ATAAAACAAATAGGCCGT	GCGT CTC GAG TTCTGAAGCAACTTCAGA
CP6829P	GCGTC CCG GGT CAT ATG AAGCAGATCGGTCTT	GCGTC CAT GGC GGC GAAACTRAAGGGAGAGGC
CP6830P	GCGTC CCG GGT CAT ATG GATCCCGCTCTGTT	GCGTC CAT GGC GGC GAATACAAACGGATCC
CP6832P	GCGTC CCG GGT CAT ATG CATAAAAGTAATAGTTCTATT	GCGT CTC GAG TAAACTAGAAAAAGTCGTC
CP6846P	GCGTC CCG GGT CAT ATG TCATCAAATCTACATCCC	GCGT CTC GAG AACCGAGCTATTTAC
CP6849P	GCGTC CCG GGT GCT AGC AGCGGGGTATAGAG	GCGT CTC GAG ATACACGTGGTATTTTC
CP6850P	GCGTC CCG GGT CAT ATG TGCCGATTGAGAT	GCGT CTC GAG CTGTTGCATCTGCC
CP6854P	GCGTC CCG GGT GCT AGC TCAATAGCTATTGCAAG	GCGT CTC GAG TTATCGAAATGCTTTG
CP6879P	GCGTC CCG GGT CAT ATG GCAACACCGCCTAA	GCGTC CAT GGC GGC TCCCTGAATGCTCTG
CP6894P	GCGTC CCG GGT CAT ATG TATAAAAGATGTCGCTAGA	GCGT CTC GAG GGATGACTTAARGCACG
CP6900P	GCGTC CCG GGT CAT ATG AAGATAAAATTCTTGGAAAG	GCGT AAG CTT GGGAGACGATACCG
CP6952P	GCGTC CCG GGT CAT ATG CTCTGGATCAATATAGG	GCGT CTC GAG TCGAATTCTTTTTPAGC
CP7034P	GCGTC CCG GGT CAT ATG AAAAACAGGTATATCAATG	GCGT AAG CTT AAACGCTGAAATTATACC
CP7090P	GCGTC CCG GGT CAT ATG TGTAGCCTTCTCCCT	GCGT CTC GAG GCGTGCATGAATCTTA
CP7091P	GCGTC CCG GGT CAT ATG GAAGAATTAGAAGTTGTGT	GCGT CTC GAG TAGTGTCTCTTTATCGGT
CP7170P	GCGTC CCG GGT CAT ATG CTAGGGCTGGAAACC	GCGT AAG CTT AAACTCGAGACCTGACG
CP7228P	GCGTC CCG GGT CAT ATG ACTGCTGTTCTATTCTTACA	GCGT CTC GAG ATCTGAAAGCGGAGG
CP7249P	GCGTC CCG GGT CAT ATG ATCCCACCTCCCTACC	GCGT CTC GAG ATCAGGTTGAGACCTT
CP7250P	GCGTC CCG GGT CAT ATG AATCTTCAAAACAGGTCT	GCGT CTC GAG ATTTTTCTAGAGAGACTCTC
CP0018P	GTGCGT CATATG GCAACCACTCCACTAA	ACTCGCTA GCGGGCGC TAATGAGGCCCCAG
CP6270P	GTGCGT CATATG AATTATAGGAGCTGCT	ACTCGCTA GCGGGCGC AAATTGATTTGCTACC
CP6735P	GTGCGT CATATG GCACACAAAGTTGTTATAT	ACTCGCTA GCGGGCGC TGGCGTAGAAGTGTAC
CP6998P	GTGCGT CATATG TTGCCCTGAGGGAAC	ACTCGCTA GCGGGCGC GAATCTGAACTGACCAGA
CP7033P	GTGCGT CATATG GTTAATCCTATTGGTCCA	ACTCGCTA GCGGGCGC TTGGAGATAACCAAGATA
CP7287P	GTGCGT CATATG TTACACAGCTCAGAACCTAGA	ACTCGCTA GCGGGCGC GAAAATAACCGATAACCA
CP0010P	GTGCGT CATATG GCAACTGCTGAAAATATA	GCGT CTCGAG GAATTGGAACCTTACCC
CP0468P	GTGCGT CCTAGC ATTTTTATGACAAACTCTAT	GCGT CTCGAG AAATGTCGAAATGACTCT
CP6272P	GTGCGT CATATG TTGACTCATCAAGAGGCT	GCGT CTCGAG GAAGGGAGGTTTTAGGT
CP6273P	GTGCGT CATATG ACATATCTGGAACTC	ACTCGCTA GCGGGCGC CTCCACAAATTGATG
CP6362P	GTGCGT CATATG CCCTTGATATTACTTATATACA	GCGT CTCGAG TCGTTCCAAATCCA
CP6372P	GTGCGT CATATG AAAAACACTATTCTCTAAATA	GCGT CTCGAG TTCTCTGTTGTTCT
CP6390P	GTGCGT CATATG CGAGAGGTGCTTAAG	ACTCGCTA GCGGGCGC TCTCCCTAGACAGCCTT
CP6402P	GTGCGT CATATG AATGTTGGGATCTCCCTT	GCGT CTCGAG GAAGGGTTGGCCGT
CP6446P	GTGCGT CATATG TGTAAATCAAAGGCCCTCTT	GCGT CTCGAG GGGCTGAGGAGGAAC
CP6520P	GTGCGT GCTAGC AAAACACTACCTATCATTTCT	GCGT CTCGAG CAGAAAGGCTTTCTT
CP6577P	GTGCGT CATATG AATTAGGCTATGTTAATTAA	GCGT CTCGAG GTTTGTTTTGAAAGA
CP6602P	GTGCGT CATATG GCAGCATCAGGAGGCA	GCGT CTCGAG TGACCAAGGATAGGGTTAG

CP6607P	GTGCGT	CATATG	CCTCGTGGTGACACTTT	GCGT	CTCGAG	CGCTGCCTCTGCTC
CP6615P	GTGCGT	CATATG	TGCTCTCAAAAAACGACAA	GCGT	CTCGAG	TGAAGAGGCCCATC
CP6624P	GTGCGT	CATATG	GATGCGAAAATGGGA	GCGT	CTCGAG	TCTTTGACATTCAAGAGC
CP6672P	GTGCGT	CATATG	ATTCCCTACCATGTTAATG	GCGT	CTCGAG	GTCATACAATTCCCTTATATA
CP6679P	GTGCGT	CATATG	TGCACTCACTTAGGCT	GCGT	CTCGAG	CGAGTAGTTAGCACAAAC
CP6717P	GTGCGT	GCTAGC	AAGACAATCGTAGCTCA	ACTCGCTA	GGGGCCGC	GGCTGGCATATAGGT
CP6784P	GTGCGT	GCTAGC	AAATCAAGATGTTCTATTGATA	GCGT	CTCGAG	TCCA AAAACAAACCCCT
CP6802P	GTGCGT	CATATG	TGCGTAAGTTATTAAATTCCCT	GCGT	CTCGAG	CAGTCGGGCTTGTG
CP6847P	GTGCGT	CATATG	TCCGATCTTTAACGAG	GCGT	CTCGAG	TTTTCTACACTGTTGAATAAA
CP6884P	GTGCGT	CATATG	AATCAGCTGCTTCT	GCGT	CTCGAG	AGAGAAAGTAATTGTACC
CP6886P	GTGCGT	CATATG	TGTCTACTTATTATCTATCTAC	GCGT	CTCGAG	TTCA GAAAAAAGGT
CP6890P	GTGCGT	CATATG	TCCCCACGACGACAA	GCGT	CTCGAG	TCC TGCAGCATTTAGC
CP6960P	GTGCGT	CATATG	TGTGACGTACGGCTCA	ACTCGCTA	GGGGCCGC	TTCACCTTGATTCCT
CP6968P	GTGCGT	CATATG	TGCCGATGCCAAC	ACTCGCTA	GGGGCCGC	GGAAAGTATGCTTAGATATT
CP6969P	GTGCGT	CATATG	TGCTGTGGTACTCTATT	ACTCGCTA	GGGGCCGC	AAAAGGTCTAGTATACCT
CP7005P	GTGCGT	CATATG	AAAACGTGATATGAAACA	GCGT	CTCGAG	CTGAGCTTCTATTCTATTAT
CP7072P	GTGCGT	CATATG	CCCATTATGGGAAA	GCGT	CTCGAG	GTGAGCAAAGGTTG
CP7101P	GTGCGT	CATATG	TATTCTGTATACGCAA	GCGT	CTCGAG	GAAAATCTTAGGGAG
CP7102P	GTGCGT	CATATG	GGCGCTAAACCAAAT	GCGT	CTCGAG	TGAAAATGAAAGGTGGT
CP7105P	GTGCGT	GCTAGC	AGTCTATATAAAATGGTG	GCGT	CTCGAG	ATCTTTCTTGGTTATCT
CP7106P	GTGCGT	CATATG	AAAGATTTGGGACTCT	GCGT	CTCGAG	GAATCCTAAGGCATACCTA
CP7107P	GTGCGT	GCTAGC	AGTATAGTCAGAAATTCTGCA	GCGT	CTCGAG	GAAGCTAAGATTATAGCTACTTT
CP7108P	GTGCGT	GCTAGC	GGGGCCCTTCCCA	ACTCGCTA	GGGGCCGC	TTTATCTATATGGAACAGATAGG
CP7109P	GTGCGT	CATATG	GGACATTATGATATTG	ACTCGCTA	GGGGCCGC	ATCATCAAGGTAGATAAG
CP7110P	GTGCGT	CATATG	GGTTAATGCTATGTAATTACA	GCGT	CTCGAG	TTCTGATTGGACTCCA
CP7127P	GTGCGT	CATATG	GTGGCTTTAACGATAGC	ACTCGCTA	GGGGCCGC	GCAGCCATCGTATTTC
CP7130P	GTGCGT	CATATG	TTCAATATGCGAGG	GCGT	CTCGAG	CTTCTTATTTGAACCTTTG
CP7140P	GTGCGT	CATATG	ACAGCCGGAGCAGCT	GCGT	CTCGAG	AGCACCCCTCAATTTCATTG
CP7182P	GTGCGT	CATATG	GGATATGTTCTATGTGATC	GCGT	CTCGAG	GCTACTAAATCGAATCGA
CP6262P	GTGCGT	CATATG	ATCCCTGGATTAAGTTCA	ACTCGCTA	GGGGCCGC	TTCACTGGGACCTG
CP6269P	GTGCGT	CATATG	TACCAAGGAACTCAAGAT	ACTCGCTA	GGGGCCGC	GATTTCTCTCTCAGCTC
CP6295P	GTGCGT	CATATG	GAGGAGGTGCTGAGTAT	ACTCGCTA	GGGGCCGC	ATGTTCTTTTACTCTTCT
CP6419P	GTGCGT	CATATG	GCTCCAGTCCGT	GCGT	CTCGAG	AGTGTTCTGGAAAGT
CP6601P	GTGCGT	CATATG	AATAACCTACTCAATTCT	GCGT	CTCGAG	GAAAATCTGAATTCTCT
CP6639P	GTGCGT	CATATG	TTAAATTCAAGCAATTCA	GCGT	CTCGAG	AGGAACCTAACCTCATCT
CP6664P	GTGCGT	GCTAGC	GTTTATTTCTGCTCAA	ACTCGCTA	GGGGCCGC	CTTAGAAAGACTATTCTAAGTA
CP6696P	GTGCGT	CATATG	TGCGTATAATGGG	GCGT	CTCGAG	ATTCTATCTCGTAAAGAAT
CP6757P	GTGCGT	CATATG	GCAGTTGGCGGCT	ACTCGCTA	GGGGCCGC	CTGTCCTCTGGAGC
CP6790P	GTGCGT	GCTAGC	AGTGAACACAAAAATCA	ACTCGCTA	GGGGCCGC	CTTATCGCTTATCAATA
CP6814P	GTGCGT	CATATG	CATGACGCACTCTAAG	GCGT	CTCGAG	TACAGCTGGCGCA
CP6834P	GTGCGT	CATATG	GTTATGGAACTTATATCG	GCGT	CTCGAG	TACATTGTATTGATTTAG
CP6878P	GTGCGT	CATATG	AACGTCCCTGATTC	GCGT	CTCGAG	GCTAGCGGCCTTTC
CP6892P	GTGCGT	CATATG	CAGAACCATCTTCT	ACTCGCTA	GGGGCCGC	TCCTCTTCTAGGAAATGG
CP6909P	GTGCGT	CATATG	TCTCTTTAGGAAATGG	GCGT	CTCGAG	CAGTGCCTAGTAGGGA
CP7015P	GTGCGT	CATATG	GCAGTACGATTAATGTTG	GCGT	CTCGAG	TCTATTGAGTCTATTCTTATTT
CP7035P	GTGCGT	GCTAGC	AGCAGAAAACACAATGA	GCGT	CTCGAG	ATTGGAGTGTCTTGCA
CP7073P	GTGCGT	CATATG	ATTACATATAATCACGTG	GCGT	CTCGAG	TATCCATCGACTTTATAGC
CP7085P	GTGCGT	CCTAGC	TGTATTCTCTTAGTA	ACTCGCTA	GGGGCCGC	GGATTCTGCATACTCTG
CP7092P	GTGCGT	CATATG	TCTCTCTCTCTAAAAAA	GCGT	CTCGAG	GGATTCTACTTGACCA
CP7093P	GTGCGT	CATATG	AAATACCGCTTCACG	GCGT	CTCGAG	ATTCTGTAGGGCTACGT
CP7094P	GTGCGT	CATATG	GTACACTTCTCTCATAACCC	GCGT	CTCGAG	TAAGTTGATTGCGGTAT
CP7132P	GTGCGT	CATATG	TTGTTATTAGGGACTTTAGGA	GCGT	CTCGAG	TTTCCCAACCGCA
CP7133P	GTGCGT	CATATG	GCTGCGAATGCTC	GCGT	CTCGAG	TAATTCTAATACTCTTGAAGG
CP7177P	GTGCGT	CATATG	CCTACTCAAGTTAAACAGA	GCGT	CTCGAG	AAGTTTATATTCTCAGCACTT
CP7184P	GTGCGT	GCTAGC	CATATAGGATTTGCCA	GCGT	CTCGAG	GTACTTAGCAAGCGAT
CP7206P	GTGCGT	GCTAGC	AAGAACCTATACCCCTA	GCGT	CTCGAG	CACACCGGAGAAC
CP7222P	GTGCGT	CATATG	CTAGTTCAAGAAAAAGTC	GCGT	CTCGAG	ACGTATGCGCAACTG
CP7223P	GTGCGT	CATATG	GAAGTATTAGACCCCTC	GCGT	CTCGAG	CGAGAAAAAGCTTCC
CP7224P	GTGCGT	CATATG	ATGAAGAAAATCGAAA	ACTCGCTA	GGGGCCGC	TAAGCATTCACAAATGA
CP7225P	GTGCGT	CATATG	CATATTTGCTGTGATCGT	GCGT	CTCGAG	TCTTTAACTAAATCTGTTCTT
CP7303P	GTGCGT	CATATG	CTTGCTTATGTTGATCC	GCGT	CTCGAG	AAAATATACGGAACCTCG
CP7304P	GTGCGT	GCTAGC	GAAGTTATAGTTTCC	GCGT	CTCGAG	TTTTGATTCTCTTAAAGAG
CP7305P	GTGCGT	CATATG	GAAGTTATAGTTTACCCCT	GCGT	CTCGAG	ACTCTTGGAGAAGGGAA
CP7307P	GTGCGT	CATATG	CTTAATCATGCTAAAAAGC	ACTCGCTA	GGGGCCGC	CTCTTTTATTTAGGAAGCT

CP7342P	GTGCGT CATATG AAAAAAAAATTTATTTCTACT	ACTCGCTA GCGGCCGC CACACTCTGTTCTTC
CP7347P	GTGCGT CATATG TTTTCTAAGGATTGACTAA	GCGT CTCGAG CGAACAGAAGTCGT
CP7353P	GTGCGT CATATG AATATGCCCTGGATCCT	GCGT CTCGAG GGGCGTAGGTCTGA
CP7193P	GTGCGT CATATG TGTCCCTGGATCCT	ACTCGCTA GCGGCCGC AGTTATCACTATATCCACAAG
CP7248P	GTGCGT CCTAGC CTGAACATTCTAAACAAGAT	GCGT CTCGAG ACGTAGTTAACAGCAGACT
CP7261P	GTGCGT CATATG TGTCTATCTGCCATAG	GCGT CTCGAG TTTTGATGCTTC
CP7280P	GTGCGT CATATG GACAGAAAATTGAAAA	GCGT CTCGAG AGAGGCTTCAGTGTG
CP7302P	GTGCGT CATATG AATTTCCTATTGAGTAGT	GCGT CTCGAG AACAGTTGCTAGTTG
CP7306P	GTGCGT CATATG CTTCCTTATCAGGCCA	ACTCGCTA GCGGCCGC TTCTCAGGTTTCAGG
CP7367P	GTGCGT CCTAGC CGTTATGCCGAGGTC	GCGT CTCGAG TTGGTGCATTG
CP7408P	GTGCGT CATATG TTGAAAATCCGAAAAAA	GCGT CTCGAG ATTCAATTTCGAAAGAG
CP7409P	GTGCGT CATATG AGACGTTATCTTTCATGGT	GCGT CTCGAG CCCTTGCTCTTACATAG
CP6733P	GTGCGT ACTAGT TGTACACCTACAGTCACTAG	GCGT CTCGAG GAATGGACTTGGTA
CP6728P	GTGCGT ACTAGT AAGTCCCTGTCTCTTGG	GCGT CTCGAG GAAACAAAATTAGAGCCC

TABLE III – Proteins with best results in FACS analysis

cp number	Molecular Weight (kDa)		Fusion type
	Theoretical	Western Blot	
6260	97.5	94; 70	GST
6270	87.5	-	GST
6272	78.0	90	GST
6273	58.6	74; 64; 50	GST
6296	31.1	-	GST
6390	88.9	102	GST
6456	42.5	89; 67,45	GST
6466	57.5	59; 56	His
6467	59.0	67	GST
6552	28.4	50; 27	GST
6576	86.0	79; 70; 62; 45	GST
6577	17.3	12	GST
6602	43.4	53; 42; 34	GST
6664	54.5	104; 45	GST
6696	47.9	95; 53	GST
6727	130.0-142.9	123; 61; 39	His
6729	94.8	multiple bands	GST
6731	95.5	97	GST
6733	97.1	104	His
6736	100.1	98; 93; 66; 60	GST
6737	101.2	multiple bands	GST
6751	100.2	95; 71	GST
6752	102.1	97; 48	His
6767	29.1	28	GST
6784	32.9	35	GST
6790	71.3	multiple bands	His
6802	29.7	-	GST
6814	29.6	28	GST

6830	177.4	174; 91; 13	GST
6849	57.3	multiple bands	GST
6850	7.4-9.4	61; 14; 8	GST
6854	42.2	-	GST
6878	40.4	-	GST
6900	28.0	-	GST
6960	25.6	75; 35	GST
6968	34.6	83; 53; 35	GST
6998	39.3	multiple bands	GST
7033	68.2	multiple bands	GST
7101	113	105	GST
7102	63.4	-	GST
7105	29.2	30	GST
7106	39.5	72;46	GST
7107	71.4	67; 31	His
7108	35.9	35	GST
7111	46.1	51	GST
7132	17.9	57; 47; 17	His
7140	36.2-29.8	50; 38; 34	GST
7170	34.4	77; 33	GST
7224	39.4	40	GST
7287	167.3	180	GST
7306	50.1	50	GST

TABLE IV – FACS-positive proteins not found in *C.trachomatis*

cp7105	cp6390
cp7106	cp6784
cp7107	cp6296
cp7108	

TABLE V – Proteins identified by MALDI-TOF following 2D electrophoresis

cp6270	cp6733	cp6900
cp6552	cp6736	cp6960
cp6576	cp6737	cp6998
cp6577	cp6752	cp7033
cp6602	cp6767	cp7108
cp6664	cp6784	cp7111
cp6727	cp6790	cp7170
cp6728	cp6830	cp7287
cp6729	cp6849	cp7306

CLAIMS

1. A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 97, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 99, 101, 103, 105,
5 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295,
10 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, & 377.
2. A protein having 50% or greater sequence identity to a protein according to claim 1.
3. A protein comprising a fragment of an amino acid sequence selected from the group consisting of SEQ IDs 97, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, & 377.
- 25 4. A nucleic acid molecule which encodes a protein according to any one of claims 1 to 3.
5. A nucleic acid molecule according to claim 4, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 98, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 30 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318,

320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, & 378.

6. A nucleic acid molecule comprising a fragment of a nucleotide sequence selected from the group consisting of SEQ IDs 98, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,

5 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 10 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, & 378.

7. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid 15 molecule according to any one of claims 4 to 6.

8. A nucleic acid molecule comprising a nucleotide sequences having 50% or greater sequence identity to a nucleic acid molecule according to any one of claims 4 to 7.

9. A nucleic acid molecule which can hybridise to a nucleic acid molecule according to any one of claims 4 to 8 under high stringency conditions.

20 10. A composition comprising a protein or a nucleic acid molecule according to any preceding claim.

11. A composition according to claim 10 being a vaccine composition.

12. A composition according to claim 10 or claim 11 for use as a pharmaceutical.

13. The use of a composition according to claim 10 in the manufacture of a medicament for the treatment or prevention of infection due to *Chlamydia* bacteria, particularly *Chlamydia pneumoniae*.

1/169

FIGURE 1**FIG. 1A****FIG. 1B****FIG. 1C**

2/169

FIGURE 2**FIG. 2A****FIG. 2B****FIG. 2C**

3/169

FIGURE 3**FIG. 3A****FIG. 3B****FIG. 3C**

4/169

FIGURE 4**FIG. 4A****FIG. 4B****FIG. 4C**

5/169

FIGURE 5**FIG. 5A****FIG. 5B****FIG. 5C**

6/169

FIGURE 6**FIG. 6A****FIG. 6B****FIG. 6C**

7/169

FIGURE 7**FIG. 7A****FIG. 7B****FIG. 7C**

8/169

FIGURE 8**FIG. 8A****FIG. 8B****FIG. 8C**

9/169

FIGURE 9**FIG. 9A****FIG. 9B****FIG. 9C**

10/169

FIGURE 10

FIG. 10A

FIG. 10B

11/169

FIGURE 11**FIG. 11A****FIG. 11B****FIG. 11C**

12/169

FIGURE 12**FIG. 12A****FIG. 12B****FIG. 12C**

13/169

FIGURE 13**FIG. 13A****FIG. 13B**

14/169

FIGURE 14**FIG. 14A****FIG. 14B**

15/169

FIGURE 15**FIG. 15A****FIG. 15B****FIG. 15C**

16/169

FIGURE 16**FIG. 16A****FIG. 16B****FIG. 16C**

17/169

FIGURE 17**FIG. 17A****FIG. 17B****FIG. 17C**

18/169

FIGURE 18**FIG. 18A****FIG. 18B****FIG. 18C**

19/169

FIGURE 19**FIG. 19A****FIG. 19B**

20/169

FIGURE 20**FIG. 20A****FIG. 20B**

21/169

FIGURE 21**FIG.
21A****FIG.
21B****FIG.
21C**

22/169

FIGURE 22**FIG.
22A****FIG.
22B****FIG.
22C**

23/169

FIGURE 23**FIG.
23A****FIG.
23B****FIG.
23C**

24/169

FIGURE 24**FIG.
24A****FIG.
24B****FIG.
24C**

25/169

FIGURE 25**FIG. 25A****FIG. 25B****FIG. 25C**

26/169

FIGURE 26

FIG. 26A

FIG. 26B

27/169

FIGURE 27**FIG. 27A**

α-actin

α-tub

β-actin

P-α

KDa

84

62

51

38

26

20

15

6784-His

6784-GST

P-β

KDa

84

62

51

38

26

20

15

6784-GST

6784-GST

FIG. 27B**FIG. 27C**

28/169

FIGURE 28**FIG. 28A****FIG. 28B****FIG. 28C**

29/169

FIGURE 29**FIG. 29A****FIG. 29C****FIG. 29B**

30/169

FIGURE 30**FIG. 30A****FIG. 30B****FIG. 30C**

31/169

FIGURE 31**FIG. 31A****FIG. 31B**

32/169

FIGURE 32**FIG. 32A****FIG. 32B****FIG. 32C**

33/169

FIGURE 33**FIG. 33A****FIG. 33B**

34/169

FIGURE 34**FIG. 34A****FIG. 34B****FIG. 34C**

35/169

FIGURE 35**FIG. 35A****FIG. 35B****FIG. 35C**

36/169

FIGURE 36**FIG. 36A****FIG. 36B**

37/169

FIGURE 37**FIG. 37A****FIG. 37C****FIG. 37B****FIG. 37D**

38/169

FIGURE 38**FIG. 38A****FIG. 38B**

39/169

FIGURE 39**FIG. 39A****FIG. 39B****FIG.
39C****FIG.
39D**

40/169

FIGURE 40**FIG. 40A****FIG. 40B**

41/169

FIGURE 41**FIG. 41A****FIG. 41B****FIG. 41C**

42/169

FIGURE 42***FIG. 42A******FIG. 42B******FIG. 42C***

43/169

FIGURE 43**FIG. 43A****FIG. 43B****FIG. 43C**

44/169

FIGURE 44**FIG. 44A****FIG. 44B****FIG. 44C**

45/169

FIGURE 45**FIG. 45A****FIG. 45B****FIG. 45C**

46/169

FIGURE 46**FIG. 46A****FIG. 46B**

47/169

FIGURE 47**FIG. 47A****FIG. 47B****FIG. 47C**

48/169

FIGURE 48**FIG. 48A****FIG. 48B****FIG. 48C**

49/169

FIGURE 49**FIG. 49A****FIG. 49C****FIG. 49B**

50/169

FIGURE 50**FIG. 50A****FIG. 50B****FIG. 50C**

51/169

FIGURE 51**FIG. 51A****FIG. 51B****FIG. 51C**

52/169

FIGURE 52**FIG. 52A****FIG. 52B****FIG. 52C**

53/169

FIGURE 53**FIG. 53A****FIG. 53B**

54/169

FIGURE 54**FIG. 54A****FIG. 54B****FIG. 54C**

55/169

FIGURE 55**FIG. 55A****FIG. 55B****FIG. 55C**

56/169

FIGURE 56**FIG. 56A****FIG. 56B****FIG.
56C****FIG.
56D**

57/169

FIGURE 57**FIG. 57A****FIG. 57B****FIG. 57C**

58/169

FIGURE 58**FIG. 58B**

59/169

FIGURE 59**FIG. 59A****FIG. 59B****FIG. 59C**

60/169

FIGURE 60**FIG. 60A****FIG. 60B****FIG. 60C**

61/169

FIGURE 61

FIG. 61A

FIG. 61B

FIG. 61C

62/169

FIGURE 62**FIG. 62A****FIG. 62C****FIG. 62B**

63/169

FIGURE 63**FIG. 63A****FIG. 63B****FIG. 63C**

64/169

FIGURE 64**FIG. 64A****FIG. 64B****FIG. 64C****FIG. 64D**

65/169

FIGURE 65**FIG. 65A****FIG. 65B****FIG. 65C**

66/169

FIGURE 66**FIG. 66A****FIG. 66B**

67/169

FIGURE 67**FIG. 67A****FIG. 67B**

68/169

FIGURE 68**FIG. 68A****FIG. 68B**

69/169

FIGURE 69**FIG. 69A****FIG. 69B**

70/169

FIGURE 70**FIG. 70A****FIG. 70B**

71/169

FIGURE 71**FIG. 71A****FIG. 71B**

72/169

FIGURE 72**FIG. 72A****FIG. 72B**

73/169

FIGURE 73**FIG. 73A****FIG. 73B**

74/169

FIGURE 74**FIG. 74A****FIG. 74B****FIG. 74C**

75/169

FIGURE 75**FIG. 75A****FIG. 75B**

76/169

FIGURE 76

FIG. 76A

FIG. 76B

77/169

FIGURE 77

FIG. 77A

FIG. 77B

78/169

FIGURE 78**FIG. 78A****FIG. 78B**

79/169

FIGURE 79**FIG. 79A****FIG. 79B**

80/169

FIGURE 80**FIG. 80A****FIG. 80B**

81/169

FIGURE 81**FIG. 81A****FIG. 81B**

82/169

FIGURE 82

FIG. 82A

FIG. 82B

83/169

FIGURE 83**FIG. 83A****FIG. 83B**

84/169

FIGURE 84**FIG. 84A****FIG. 84B**

85/169

FIGURE 85**FIG. 85A****FIG. 85B**

86/169

FIGURE 86**FIG. 86A****FIG. 86B**

87/169

FIGURE 87

FIG. 87A

FIG. 87B

88/169

FIGURE 88**FIG. 88A**

89/169

FIGURE 89**FIG. 89A****FIG. 89B**

90/169

FIGURE 90**FIG. 90A****FIG. 90B**

91/169

FIGURE 91**FIG. 91A****FIG. 91B**

92/169

FIGURE 92**FIG. 92A****FIG. 92B**

93/169

FIGURE 93**FIG. 93A****FIG. 93B****FIG. 93C**

94/169

FIGURE 94**FIG. 94A****FIG. 94B****FIG. 94C**

95/169

FIGURE 95**FIG. 95A****FIG. 95B****FIG. 95C**

96/169

FIGURE 96**FIG.
96A****FIG.
96B****FIG.
96C****FIG. 96D**

97/169

FIGURE 97**FIG. 97A****FIG. 97B****FIG. 97C**

98/169

FIGURE 98**FIG. 98A****FIG. 98B****FIG. 98C**

99/169

FIGURE 99**FIG. 99A****FIG. 99B****FIG. 99C**

100/169

FIGURE 100**FIG. 100A****FIG. 100B****FIG. 100C**

101/169

FIGURE 101**FIG. 101A****FIG. 101B****FIG. 101C**

102/169

FIGURE 102**FIG. 102A****FIG. 102B**

103/169

FIGURE 103**FIG.
103C****FIG. 103B**

104/169

FIGURE 104**FIG. 104A****FIG. 104B****FIG. 104C**

105/169

FIGURE 105**FIG. 105A****FIG. 105B**

106/169

FIGURE 106**FIG. 106A****FIG. 106B**

KDa P.I.

FIGURE 107

KDa P.I.

107/169

FIGURE 108**FIG. 108A****FIG. 108B**

108/169

FIGURE 109**FIG. 109A****FIG. 109B**

109/169

FIGURE 110**FIG. 110A**

KDa. P I.

115
84
62
51
38
26
20

G5
G5
6396
6396

FIG. 110B

110/169

FIGURE 111**FIG. 111A**

KDa

115
84
62
51
38
26
20

FIG. 111B

H³
H³
108
108

111/169

FIGURE 112**FIG. 112A****FIG. 112B**

112/169

FIGURE 113**FIG. 113A****FIG. 113B**

113/169

FIGURE 114**FIG. 114A**

KDa P I KDa P I

115-		115-	
84-		84-	
62-		62-	
51-		51-	
38-		38-	
26-		26-	
20-		20-	

6440-GST 6440-His

FIG. 114B

114/169

FIGURE 115**FIG. 115A****FIG. 115B**

115/169

FIGURE 116**FIG. 116A****FIG. 116B**

116/169

FIGURE 117

FIG. 117A

FIG. 117B

6186-GST
6186-GST

117/169

FIGURE 118**FIG. 118A****FIG. 118B**

118/169

FIGURE 119**FIG. 119A****FIG. 119B**

119/169

FIGURE 120

FIG. 120A

FIG. 120B

120/169

FIGURE 121

FIG. 121A

KDa P I

FIG. 121B

121/169

FIGURE 122**FIG. 122A**

KDa P I

FIG. 122B632-GST
632-GST

122/169

FIGURE 123**FIG. 123A**

KDa P I

115-
84-
62-
51-
38-

26-
20-

6738 GST
6738 GST

FIG. 123B

123/169

FIGURE 124**FIG. 124A****FIG. 124B**

124/169

FIGURE 125**FIG. 125A****FIG. 125B**

6741-GST
6741-GST

125/169

FIGURE 126**FIG. 126A****FIG. 126B**

126/169

FIGURE 127**FIG. 127A****FIG. 127B**

127/169

FIGURE 128**FIG. 128A****FIG. 128B**

128/169

FIGURE 129**FIG. 129A****FIG. 129B**

129/169

FIGURE 130**FIG. 130A****FIG. 130B**

130/169

FIGURE 131**FIG. 131A****FIG. 131B**

131/169

FIGURE 132**FIG. 132A****FIG. 132B**

132/169

FIGURE 133**FIG. 133A****FIG. 133B**

133/169

FIGURE 134**FIG. 134A****FIG. 134B**

134/169

FIGURE 135**FIG. 135A****FIG. 135B**

135/169

FIGURE 136**FIG. 136A****FIG. 136B**

136/169

FIGURE 137**FIG. 137A****FIG. 137B**

137/169

FIGURE 138**FIG. 138A****FIG. 138B**

138/169

FIGURE 139**FIG. 139A**

KDa P I

115
84
62
51
38
26
20GST
GST7288
7288**FIG. 139B**

139/169

FIGURE 140

FIG. 140A

FIG. 140B

140/169

FIGURE 141**FIG. 141A****FIG. 141B**

141/169

FIGURE 142**FIG. 142A****FIG. 142B**

142/169

FIGURE 143**FIG. 143A****FIG. 143B**

143/169

FIGURE 144**FIG. 144A****FIG. 144B**

144/169

FIGURE 145

FIG. 145A

kDa P)

FIG. 145B

145/169

FIGURE 146**FIG. 146A****FIG. 146B**

146/169

FIGURE 147**FIG. 147A****FIG. 147B**

147/169

FIGURE 148**FIG. 148A**

KDa P I

115
84
62
51
38
26
20

FIG. 148B

7253-Hs
7253-Hs

148/169

FIGURE 149**FIG. 149A****FIG. 149B**

149/169

FIGURE 150**FIG. 150A****FIG. 150B**

KDa P.I.

150/169

FIGURE 151**FIG. 151A****FIG. 151B**

KDa P I

151/169

FIGURE 152**FIG. 152A****FIG. 152B**

kDa P J

FIGURE 153

kDa P I

152/169

FIGURE 154

FIG. 154A

FIG. 154B

FIGURE 155

153/169

FIGURE 156

P I

FIGURE 157

KDa. P I

FIGURE 158

KDa. P I

154/169

FIGURE 159**FIG. 159A****FIG. 159B**

KDa P I

FIGURE 160

KDa P I

155/169

FIGURE 161**FIG. 161A****FIG. 161B**

KDa P I

FIGURE 162

KDa P I

FIGURE 163

KDa P I

156/169

FIGURE 164**FIG. 164A****FIG. 164B****FIGURE 165****FIGURE 166**

157/169

FIGURE 167**FIG. 167A****FIG. 167B**

kDa P I

115
84
62
51
38
26
20
15

6463-GST
6463-GST

FIGURE 168

kDa P I

115
84
62
51
38
26
20
15

6540-HS
6540-HS

158/169

FIGURE 169

KDa P I

67k3-GST
63k3-GST**FIGURE 170**

KDa P I

70k1-GST
67k1-GST

159/169

FIGURE 171**FIG. 171A****FIG. 171B**

KDa P I

FIGURE 172

KDa P I

FIGURE 173

KDa P I

160/169

FIGURE 174**FIG. 174A****FIG. 174B**

P.I.

FIGURE 175

P.I.

FIGURE 176

P.I.

FIGURE 177

P.I.

FIGURE 178

P.I.

161/169

FIGURE 179**FIG. 179A****FIG. 179B**

162/169

FIGURE 180**FIG. 180A**

kDa P I

FIG. 180B

163/169

FIGURE 181

KDa P I

FIGURE 182

KDa P I

FIGURE 183

KDa P I

FIGURE 184

KDa P I

164/169

FIGURE 185KD_a P I

115-
84-
62-
51-
38-
26-
20-

6642 GST
6642 GST

165/169

FIGURE 186**FIG. 186A****FIG. 186B**

166/169

FIGURE 187**FIG. 187A****FIG. 187B**

167/169

FIGURE 188**FIG. 188A**

KDa P-I

FIG. 188B

KDa P-I

115
84
62
51
38
26
20

HS HS
68 68
68 68

168/169

FIGURE 189**FIG. 189A**

kDa P E

115

84

62

51

38

26

20

His
GST
GST**FIG. 189B**

169/169

FIGURE 190**FIGURE 191**

SVIIVG	VSTNSEHRYHAF	QYADGQMVDLGTIGGPESYAQGVSGDGK
KVIVVG	HSTRTDGEYRAFKYVDGRMIDLGTIGGSASFAGVSDDGK	
KVIVVG	RSETYYGEVHAFCHKNGVMSDLGTIGGSYSAAKGVSATGK	
KVIVVG	WSTTNNGETHAFMHKDETMDLGTIGGGGFSVATGVVSADGR	
TIIVVG	SMESTITRKTTAVKWVNNVP TYLGTIGGDASTGLYISGDGT	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.