

MET Identification in TTbar events

Mert DİL

Standard Model

Physics is a theory of the elementary particles, which are either fermions or bosons

The standard model falls short of being a theory of everything:

- not include the full theory of gravitation as described by general relativity.
- not explain the accelerating expansion of the universe (as possibly described by dark energy).
- not contain any dark matter particle that has all the properties observed in observational cosmology.
- demonstrated huge and continued successes in experimental predictions, but it does leave some things unexplained.

Beyond Standard Model (BSM)

- Standard Model has many known limitations
- New particles proton-proton collisions at the Large Hadron Collider (LHC).
- If new physics exists, it is therefore either heavy or hidden
- Supersymmetric theory the equations for force and the equations for matter are identical.
- Supersymmetry, each particle from one class would have an associated particle in the other

Why New Physics Is Needed At The LHC

- Opportunity open for the search of direct evidence of physics
- Anomalies have been identified in the production of leptons at the ATLAS and CMS experiments of the LHC.
- Anomalies remain unexplained by MC tools.
- Concentrate on non-resonant searches in signatures
- Considered generative modelling to mimic relevant discrimination of observables
- Here, GANs are used to mimic the MC predictions.

These include a number of final states:

- opposite-sign,
- same sign di-leptons,
- three leptons in the presence
- absence of b-quarks.

Top Quark production (TTbar)

- TTbar events are among the most copious signatures
- One top quark decays leptonically and the other hadronically, the signature is characterized by one lepton, missing transverse energy and four jets,
- At the LHC, about 50% of events have extra hard jets coming from initial or final state radiation.
- Focusing on the mass of the hadronically-decaying topquark.
- Construction performed via Delphes using the detector configuration

The radiated gluons themselves are not directly observed

A Particle abundantly produced at the LHC: **Top Quark Pairs**

- The most common is (production of a top—antitop pair) via (strong interactions)).
- In a collision, a highly energetic (gluon) is created,
- Subsequently decays into a top and antitop. (Tevatron:Quark-Antiquark)

Kinematics of Elementary Particle Physics

1-Pseudorapidity

Detector Acceptance

• Choice of analysis region

$$\eta = \frac{1}{2} \ln \left(\tan \frac{\theta}{2} \right)$$

2-Phi (ø)

- Angular distributions
- Azimuthal asymmetry

3-Transverse Variables (Energy and

Momentum)

- unknown fraction of the beam energy
- each event escapes down the beam pipe.
- Net momentum can only be constrained
- the plane transverse to the beam z-axis!

The CMS coordinate system, including the LHC and a compass (the z axis points to the Jura):

Experimental Coordinate System

$$\sum p_T(i) = 0$$

$$|p| = p_T \cosh \eta$$

$$E_T = \frac{E}{\cosh \eta}$$

$$p_T = \sqrt{p_x^2 + p_y^2}$$

$$p_x = p_T \cos \phi$$
$$p_y = p_T \sin \phi$$
$$p_z = p_T \sinh \eta$$

Detecting Kinematic distributions—Monte Carlo Simulation

- 1. **Tracking Devices (momentum)-**reveal the paths of electrically charged particles
- 2. **Calorimeter (energy)**-stop, absorb and measure a particle's energy; measure the energy particle losses purpose
- 3. **Particle Identification Detectors (velocity)**-use a range of techniques to pin down a particle's identity. Combination with the momentum

✓ Mass [Unit: eV/c² or eV]

✓ Charge [Unit: e]

✓ Energy [Unit: eV]

✓ Momentum [Unit: eV/c or eV]

√ (+ spin, lifetime, ...)

Missing Transverse Energy in TTbar events

- Top quarks decay into a lepton and a neutrino.
- Jets and leptons can be identified and measured with high precision by the CMS detector
- While neutrinos escape undetected and reveal themselves as missing energy.
- MET is the negative of the vector sum of the transverse momenta
- Beyond-the-standard-model scenarios predict events with large MET.

Figure: Display of an LHC collision detected by the CMS detector that contains a reconstructed top quark-antiquark pair. The display shows an electron (green) and a muon (red) of opposite charge, two highly energetic jets (orange) and a large amount of missing energy (purple).

Experimental Challenges

- 1. **Energy Resolution**: Need excellent energy resolution in all calos. (Usually limited by non-linearities of calorimeter response)
- 2. **Multi-jet events:** Resolution is limited due to the statistical fluctuations in showering
- 3. Non-compensating HCAL (hadron calorimeter)
- 4. Electronic noise, Pile-ups and Underlying Events
- 5. MET tails: These are large and non-Gaussian
- 6. High Magnetic field
- 7. Energy loss due to punch throughs
- 8. Faulty calorimeter cells

Total visible transverse energy:

$$E_T = \sum_n \frac{E_n}{\cosh \eta_n}$$

Monte Carlo simulations: Problems & Solutions

- MC simulations is conventionally used to setup the event selection
- Monte Carlo (MC) events used to estimate the corresponding trials factor through a frequentist inference.
- MC events that are based (on full detector simulations) are resource intensive.
- The probability of false signals estimated on the basis of Monte Carlo (MC) studies.
- MC samples is CPU expensive.
- Machine learning explore a deeper phase-space available at the LHC

Delphes and Root-Response Of Detector Simulations with Monte Carlo

- Delphes.3.0 fast-simulation is presented.
- Reconstructed from the simulated detector response.
- Flexible enough to be adapted
- Typical work-flow chart of the Delphes fast simulation.
- Event files coming from external Monte-Carlo generators
- Provides leptons (electrons and muons),photons,missing transverse energy (calo-based or particle-flow

With ROOT you can:

- Save data
- Access data
- Mine data
- Publish results
- Run
- Use with uproot and pyroot

Delphes samples with kinematic variables —Missing ET

- Executed programs that mimics hard scattering, showing and hadronization process namely MadGraph and Pythia.
- The response of the detector simulated using Delphes
- process pp>LEPTONS,NEUTRINOS
- The jets are used in the kinematic selection
- The MET is selected with originated pp collisions
- mt=172.5 GeV
- nevents
- tt,tt+jet,tt+2jet

Kinematic variables of Charged Leptons—Electron

- The electron (e- or $\beta-$) is a subatomic particle with a negative one elementary electric charge.
- Electrons belong to the first generation of the lepton particle family
- They are generally thought to be elementary particles because they have no known components or substructure

Kinematic variables of Charged Lepton-Muon

- A muon is an elementary particle similar to the electron, with an electric charge of −1 e and a spin of ¹/₂, but with a much greater mass. It is classified as a lepton.
- As with other leptons, the muon is not thought to be composed of any simpler particles; that is, i
- t is a fundamental particle.

Kinematic variables of Jet

- A jet is a narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment.
- Particles carrying a color charge, such as quarks, cannot exist in free form because of quantum chromodynamics (QCD) confinement which only allows for colorless states.

HT (the scalar sum of all input particles' momenta)

- HT (the scalar sum of all input particles' momenta) are used as inputs to the final prediction.
- H⊥, the scalar sum of the transverse momenta of the charged lepton, and the jet.
- Variable in which one often does experimental cuts in searches for new phenomena
- Not expected to be very sensitive to the particulars in the merging schemes.

Machine Learning at the High Energy Physics

- No prior knowledge of the yield nor the model dependence of the BSM signal are required.
- Classify between SM backgrounds and new BSM physics,
- Essential that a good understanding of background modelling
- Explore a deeper BSM at the LHC
- Side-bands, or signal-depleted and signal-enriched samples are defined.
- The side-band brings insights from the SM background

MC Simulations and Deep Neural Networks

- Creating models spawned the development of artificial neural networks.
- Hidden layer stores information regarding the input's importance
- The importance of combinations of inputs.
- Unsupervised learning technique called
 Generative-Adversarial Networks (GANs)
- Synthesise fake looking samples
- Mostly used to generate photo-realistic images,medical imaging
- Reproduce the kinematic distributions.

Generative Adversarial Networks (GAN) and Wasserstein GAN (WGAN)

- A class of unsupervised generative models
- Deployed in an adversarial settings of two network blocks
- After training, a GAN model provides sample from the learned distribution
- Competitive two- player minimax game with players being D and G with the optimal solution being a D(x) = D(G(z)) = 0.5
- The training objective of a vanilla GAN:

- Minimizes the Earth-Mover distance (also known as the Wasserstein distance)
- Minimum amount of energy to transform one probability mass

$$W(\mathbb{P}_d, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_d, \mathbb{P}_g)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \Big[\|x - y\| \Big],$$

$$V_{\text{GAN}} = \min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_d(\mathbf{x})} \left[\log D_{\phi}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim \mathbb{P}_z} \left[\log (1 - D_{\phi}(G_{\theta}(\mathbf{z}))) \right].$$

$$V_{\text{WGAN}} = \min_{\theta} \max_{\phi \in \Omega} \Big[\mathbb{E}_{\mathbf{x} \sim \mathbb{P}_d(\mathbf{x})} [D_{\phi}(\mathbf{x})] - \mathbb{E}_{\mathbf{z} \sim \mathbb{P}_{\mathbf{z}}} [D_{\phi}(G_{\theta}(\mathbf{z}))] \Big],$$

WGAN-Gradient Penalty (GP)

- D no longer plays a role of a classifier but rather a regressor, hence referred to as a critic.
- Tasked to learn a function that approximates W(Pg,Pd).
- WGAN has a critic that does not suffer from vanishing gradients.
- Supports cases where the distributions do not overlap.
- Constraints by adding a gradient penalty (GP) term to the critic's objective
- Penalises the objective whenever the norm of the critic's gradients exceeds 1.
- This further improves the value function by adding a penalty term, making the function to be:

$$V_{\text{WGAN-GP}} = V_{\text{WGAN}} + \lambda \mathbb{E}_{\mathbf{\hat{x}} \sim \mathbb{P}_{\mathbf{d}}(\mathbf{\hat{x}})} \Big[(\|\nabla_{\mathbf{\hat{x}}} D_{\phi}(\mathbf{\hat{x}})\|_{2} - 1)^{2} \Big],$$

WGAN-GP processing in MC simulation

- Number of applications ranging from images to non-image data applications.
- One of the earliest non-image data GAN within HEP was around the years of 2018 by for an unfolding task.
- Active area of research is mainly focused on parton showers and event generation
- Attractive solution and of potential to searches studies Beyond the Standard Model
- Given that we can synthesize fake MC samples with high accuracy and speed.
- Allows us to address the multi-lepton problem by simulating the dedicated MC samples
- Events to test the look-elsewhere effect in the semi-supervision study in HEP.

Figure 1: The architecture of conditional pGAN: generator Gcond (left) and discriminator Dcond (right). Arrows signify concatenation

<u> https://arxiv.org/abs/1912.02748</u>

Results: Missing Transverse Energy (Delphes&WGAN-GP)

Epoch: 30 | disc_loss: -0.0053850337862968445 | gen_loss: 0.040450792759656906

- Looking for is a similarity in the long tail parts
- Breaks are estimated similarly to the mean
- Better match should be future work

Results: Charged Leptons - Electron (Delphes & WGan-GP)

Results: Charged Lepton- Muon (Delphes &WGAN-GP)

Conclusion

- GAN is not easy to generalize each setup to other tasks
- Each architecture tends to solve only a specific problem.
- Studies have been done between events generated by MC and WGAN-GP,
- Showed a density difference on the two graphs due to the difficult integration
- Training time is a major constraint we face with the current setup of Keras with Tensorflow backend
- PyTorch increase our research productivity while scaling on GPUs
- Can reduce training iteration time in generative modeling from weeks to days.
- Further strengthen the convergence by studying conditional WGAN-GP.