Decimel Number System
$$(0,1,2,3,7,5,6,7,8,9)$$

Box $\rightarrow 10$
 $(345)_{10} \rightarrow 345$
 $(345)_{10} \rightarrow 3\times 100 + 4\times 10 + 5\times 10^{0}$
 $(345)_{10} \rightarrow 3\times 100 + 4\times 10^{1} + 5\times 10^{0}$

$$\frac{(15276)_{10}}{(15276)_{10}} \rightarrow (1\times10^{4} + 5\times10^{4} + 2\times10^{2} + 7\times10^{4} + 6\times10^{4})$$

259 -> LXION +5 x10 + 3 x1

Henadeiral, Box > 16

{0,1- 9, A, B, C, D, E, F}

$$(9523)_{16} = 9 \times 16^{3} + 5 \times 16^{2} + 2 \times 16^{4} + 3 \times 16^{6}$$

•

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{2} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{2} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(B \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{2} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{2} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{2} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{2} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{7} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{7} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{7} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{7} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + F \times 16^{7} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + 5 \times 16^{7} + 5 \times 16^{7} + 6 \times 16^{9}$$

$$(A \circ F \circ 6)_{16} \longrightarrow A \times 16^{7} + 0 \times 16^{7} + 5 \times 16^{7} + 5 \times 16^{7} + 6 \times 16^{7} + 5 \times 16^{7} + 6 \times 16^{7} + 5 \times 16^{7} + 6 \times$$

$$(25)_{10} \longrightarrow (-)_2$$

		3un	_
2	25		
2	12	0	
2	6	0	
2	3		
2	١		
_	10	T	

$$\frac{8u}{1}$$

$$\frac{0}{0}$$

$$\frac{2^{7}+2^{5}+2^{0}}{16+8+1=25}$$

2	45	1
2	22	0
Z		1
2	5	
2	2	0
$\frac{1}{2}$		
_	0	1

ADDITION

2 1 2

3 6 8

$$S = 14$$
 $S = 14$
 $S = 14$

$$S = \frac{19}{456}$$

$$S = \frac{19}{1000}$$

$$C = \frac{19}{1000}$$

$$S = \frac{12}{1000}$$

$$C = \frac{12}{1000}$$

$$S = \frac{8}{1000}$$

$$S = 8$$
 $d = 87.10 \rightarrow 8$
 $C = 8/10 \rightarrow 0$

, ,						
A	B	A& D	AB	AND	NA	SAME
0	0	0	0	0	(
0		0		1	1	
-	O	0	1	1	0	
١	1		1	0	0	_]

$$(||||||)_{2} \rightarrow 2^{\circ}+2^{+}+2^{+}+2^{+}+2^{+}+2^{-}+2$$

$$\frac{1}{2^{\circ}+2^{1}+2^{2}+-+2^{k-1}} = 2^{k} - 1$$

$$\frac{1}{2^{\circ}+2^{1}+--+2^{k-1}} < 2^{k}$$

Properties
$$(101010)_{2} = even$$

$$= even_{+}$$

$$even_{+} = even_{+}$$

enception 2° - 1:000

EVEN+ ODD - ODD

$$\frac{2^{5} + 2^{M} + 2^{2} + 2^{0}}{2^{5} + 2^{M} + 2^{2} + 2^{0}}$$
EVEN + 00D \rightarrow 0DD

$$M = 5$$
: 10 | $n = 15$: 11 | $n = 7$: 11 | $n = 7$: 11 | $n = 10$ | $n = 10$

$$n: 16$$
 $n: 6$
 $n: 7$
 $n: 12$
 $n: 17$
 $n: 17$
 $n: 17$

$$A: S \times \boxed{001}$$

$$6 \times \boxed{001}$$

$$A: 6 \times \boxed{001}$$

$$6 \times \boxed{000}$$

$$6 \times \boxed{000}$$

NOTE: PRESCEDENCE of bitain gentes is LESS!

$$i \neq (A \times (1 = 20)) \times$$

$$i \neq (A \times 1) = 20)$$

$$A \times A \longrightarrow A$$

Commutative property:

$$a \times b = b \times a$$
 $a \times b \times b = b \times a$
 $a \times b = a \times c \times b$
 $a \times b = b \times a$
 $a \times b = b \times a$
 $a \times b = b \times a$
 $a \times b \times a \times b = a \times c \times b$
 $a \times b = b \times a$
 $a \times b = b \times a$
 $a \times b \times a \times b = a \times c \times b$
 $a \times b = b \times a$
 $a \times b \times a \times b = a \times c \times b$
 $a \times b = b \times a$
 $a \times b \times a \times b = a \times c \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = b \times a$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times c \times a \times b$
 $a \times b = a \times b \times a \times b$
 $a \times b = a \times b \times a \times b$
 $a \times b = a \times b \times b \times b$
 $a \times b = a \times b \times b \times b \times b$
 $a \times b = a$

(Associative proper 5. (axb) xc = ax (bxc) (alb) 10 = al (b19) (a N D) N C = 9 N (b N C) anbnandnb = (a n a) n (b n b) n d(o _ ^ o) ^ d (o \ d) of Given an orray. severy depent represts trice ement one element which appears EXACTLY ONCE! - find that no! A: [253453

2 1 5 1 3 1 2 1 5 1 3 1 6 1 7 1 6

$$(2 \wedge 2) \wedge (5 \wedge 5) \wedge (3 \wedge 3) \wedge (6 \wedge 6) \wedge 7$$

$$(2 \wedge 2) \wedge (5 \wedge 5) \wedge (3 \wedge 3) \wedge (6 \wedge 6) \wedge 7$$

$$(2 \wedge 2) \wedge (3 \wedge 3) \wedge (6 \wedge 6) \wedge 7$$

$$(3 \wedge 3) \wedge (6 \wedge 6) \wedge 7$$

$$(3 \wedge 3) \wedge (6 \wedge 6) \wedge 7$$

$$(4 \wedge 3) \wedge (3 \wedge 3) \wedge (6 \wedge 6) \wedge 7$$

$$(5 \wedge 3) \wedge (3 \wedge 3) \wedge (6 \wedge 6) \wedge 7$$

$$(7 \wedge 3) \wedge (3 \wedge 3) \wedge (6 \wedge 6) \wedge 7$$

ANS = 0;

> ret ANS;

TC: O(N)

by
$$x = 6$$
;

 $x = 6$;

 x

1: 00000001

1264: 000 10000

27 = 16

200 - (12(20)

int n = 5: n = n < 1; ASSIGN! $print(n) \rightarrow$

$$10: \frac{2^{3}+2^{1}}{2^{2}+2^{\circ}} = \frac{2^{3}+2^{1}}{2^{3}+2^{1}}$$

$$n > 71 = \frac{n}{2}$$
 $n > 772 = \frac{n}{2}$
 $n > 773 = \frac{n}{2}$

$$\chi_{77}K = \left[\frac{\gamma_{2}K}{2}\right]$$