Results

Correlation Matrix

Correlation Matrix

		Adverts	Sales	Airplay	Image
Adverts	Pearson's r p-value	_ _			
Sales	Pearson's r p-value	0.578 < .001	_ _		
Airplay	Pearson's r p-value	0.102 0.151	0.599 < .001	_ _	
Image	Pearson's r p-value	0.081 0.256	0.326 < .001	0.182 0.010	_ _

Plot

Relationships, Prediction, and Group Comparisons

You have entered a numeric dependent variable and several numeric independent variables. Hence, <u>linear regression analysis</u> seems to be a good option for you! In order to run this analysis in jamovi, go to: Regression > Linear Regression

• Drop your dependent variable in the box below Dependent Variable

• Drop your independent variables in the box below Covariates

Click on the link to learn more about this method!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Linear Regression

Model Fit Measures

							O	verall N	odel T	est
Model	R	R²	Adjusted R ²	AIC	BIC	RMSE	F	df1	df2	р
1	0.578	0.335	0.331	2247	2257	65.7	99.6	1	198	< .001
2	0.815	0.665	0.660	2114	2131	46.6	129.5	3	196	< .001

Model Comparisons

Comparison								
	Model		Model	ΔR²	F	df1	df2	р
	1	-	2	0.330	96.4	2	196	< .001

Model Specific ResultsModel 1Model 2

Omnibus ANOVA Test

	Sum of Squares	df	Mean Square	F	р
Adverts	433688	1	433688	99.6	< .001
Residuals	862264	198	4355		

Note. Type 3 sum of squares

[3]

Model Coefficients - Sales

			95% Confidence Interval					95% Cor Inte	
Predictor	Estimate	SE	Lower	Upper	t	р	Stand. Estimate	Lower	Upper
Intercept Adverts	134.1399 0.0961	7.53657 0.00963	119.2777 0.0771	149.002 0.115	17.80 9.98	< .001 < .001	0.578	0.464	0.693

Data Summary

Cook's Distance

			Range			
Mean	an Median		Min	Max		
0.00442	0.00158	0.00741	3.15e-8	0.0572		

Assumption Checks

Normality Tests

	Statistic	р
Shapiro-Wilk	0.990	0.176
Kolmogorov-Smirnov	0.0634	0.397
Anderson-Darling	0.430	0.306

 $\it Note. \, Additional \, results \, provided \, by \, \it more tests$

Heteroskedasticity Tests

	Statistic	р
Breusch-Pagan	7.18	0.007
Goldfeld-Quandt	1.03	0.440
Harrison-McCabe	0.492	0.449

Note. Additional results provided by moretests

Durbin-Watson Test for Autocorrelation

Autocorrelation	DW Statistic	р		
-0.0439	2.03	0.826		

[3]

Collinearity Statistics

	VIF	Tolerance
Adverts	1.00	1.00

[3]

Q-Q Plot

Residuals Plots

Omnibus ANOVA Test

	Sum of Squares	df	Mean Square	F	р
Adverts	333332	1	333332	150.3	< .001
Airplay	325860	1	325860	147.0	< .001
Image	45853	1	45853	20.7	< .001
Residuals	434575	196	2217		

Note. Type 3 sum of squares

[3]

Model Coefficients - Sales

			95% Cor Inte					95% Cor Inte	
Predictor	Estimate	SE	Lower	Upper	t	р	Stand. Estimate	Lower	Upper
Intercept	-26.6130	17.35000	-60.8296	7.6037	-1.53	0.127			
Adverts	0.0849	0.00692	0.0712	0.0985	12.26	< .001	0.511	0.429	0.593
Airplay	3.3674	0.27777	2.8196	3.9152	12.12	< .001	0.512	0.429	0.595
Image	11.0863	2.43785	6.2786	15.8941	4.55	< .001	0.192	0.109	0.275

Data Summary

Cook's Distance

			Range	
Mean	Median	SD	Min	Max
0.00520	0.00166	0.00962	4.05e-7	0.0708

Assumption Checks

Normality Tests

	Statistic	р
Shapiro-Wilk	0.995	0.725
Kolmogorov-Smirnov	0.0350	0.967
Anderson-Darling	0.244	0.760

Note. Additional results provided by moretests

Heteroskedasticity Tests

	Statistic	р
Breusch-Pagan	6.19	0.103
Goldfeld-Quandt	0.838	0.806
Harrison-McCabe	0.544	0.800

Note. Additional results provided by moretests

Durbin-Watson Test for Autocorrelation

Autocorrelation	DW Statistic	р
0.00270	1.95	0.742

[3]

Collinearity Statistics

	VIF	Tolerance
Adverts	1.01	0.986
Airplay	1.04	0.959
Image	1.04	0.963

[3]

Q-Q Plot

References

[1] The jamovi project (2021). jamovi. (Version 2.2) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). *R: A Language and environment for statistical computing.* (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2021-04-01).

[3] Fox, J., & Weisberg, S. (2020). *car: Companion to Applied Regression*. [R package]. Retrieved from https://cran.r-project.org/package=car.