Конспекты по математической логике

Анатолий Коченюк, Георгий Каданцев, Константин Бац $2022\ {\rm год,\ cemectp\ 4}$

1 Введение

Логика – довольно старая наука, но наш предмет довольно молодой В какой-то момент логики как дисциплиниы, которая учит просто правильно рассуждать, стало нехватать. Появилась теория множеств. Общего здравого смысла не хватает, нужен строгий математичесий язык. Это рубеж 19-20 веков.

У нас теория множеств не будет фокусом, как это могло бы быть на мат. факультете.

Теория множеств, когда она была впервые сформулирована, была противоречива (как матан, сформулированный Ньютоном). Чтобы уверенно и эффективно заниматься матаном, нужно суметь его формализовать.

<Парадокс Рассела / парадокс брадобрея> Мы приписываем элементу-человеку свойство, которое невыполнимо. Объекта, выходит, не существует. Мы смогли очень быстро определить противоречие в этом определении. Но, может быть, мы не смогли его определить в других наших определениях? (конструкциях вещественной прямой, и т.д и т.д)

Программа Гильберта.

- 1. Формализуем математику! Сформулируем теорию на языке (не на русском или английском), который не будет допускать парадоксов,
- 2. ... и на котором можно будует доказать непротиворечивость.

В 1930 году становится понятно, что сколько-нибудь сильная (= в ней можно построить формальную арифметику) теория не может быть доказана непротиворечивой.

Возможно, сама наша логика неправильная? Эта идея будет нам полезна, и к ней мы ещё вернемся. Возможно, что это просто свойство мира, и мы хотим невозможного.

Из этих рассуждений выросло большое множество хороших идей, которые оказались полезны в других местах. Матлогика служит широкому кругу нужд.

Мы можем доказывать, что программа работае корректно. Именно доказывать, а не проверять тестами!

Мы можем изучать свойства самих языков. Изоморфизм Карри-Говарда— доказательство это программа, утверждения это тип. Можно изучать языки программирования и можно развернуть изоморфизм: изучать математкиу как язык программирования.

 Φ ункциональные языки: окамль + хаскель. Ознакомление с этими языками преставляет собой способ ознакомиться с предметом немного с другой стороны.

2 Исчисление высказываний

Мы говоирм на двух языках: на предметном языке и метаязыке. Предметный язык – это то, что изучается, а метаязык – это язык, НА котором это изучается.

На уроках английского предметным является сам английский, а метаязыком может быть русский. Метаязык — это язык исследователя, а предметный язык — это язык исследоваемого. Что такое язык вообще? Хороший вопрос.

Высказывание — это одно из двух:

- 1. Большая латниская буква начала алфавита, возможно с индексами и штрихами это пропозициональные переменные.
- 2. Выражение вида $(\alpha \wedge \beta)$, $(\alpha \vee \beta)$, $(\alpha \to \beta)$, $(\neg \alpha)$.

В определении выше альфа и бета это метапеременные— места, куда можно подставить высказывание.

- 1. α, β, γ метапеременные для всех высказываний.
- 2. X, Y, Z метапеременные для пропозициональных переменных.

Метапеременные являются частью языка исследователя.

В формализации мы останавливаемся до места, в котором мы можем быть уверены, что сможем написать программу, которая всё проверяет.

Сокращение записи, приоритет операций: сначала ¬, потом &, потом ∨, потом →. Если скобки опущены, мы восстанавливаем их по приоритетам. Выражение без скобок является частью метаязыка, и становится частью предметного, когда мы восстанавливаем их. Скобки последовательных импликаций расставляются по правилу правой ассоциативности — справа налево.

2.1 Теория моделей

У нас есть истинные значения $\{T,F\}$ в классической логике. И есть оценка высказываний $[\![\alpha]\!]$. Например $[\![A\vee\neg A]\!]$ истинно. Всё, что касается истинности высказываний, касается теории моделей.

Определение 2.1.1. Оценка — это функция, сопоставляющая высказыванию его истинное (истинностное) значение.

2.2 Теория доказательств

Определение 2.2.1. Аксиомы — это список высказываний. Схема аксиомы — высказывание вместе с метопеременными; при любой подстановке высказываний вместо метапеременной получим аксиому.

Определение 2.2.2. Доказательство (вывод) — последовательность высказываний $\gamma_1, \gamma_2 \dots$ где γ_i — любая аксиома, либо существуют j, k < i такие что $\gamma_j \equiv (\gamma_k \to \gamma_i)$. (знак \equiv здесь сокращение для "имеет вид"). Это правило "перехода по следствию" или Modus ponens.

Определим следующие 10 схем аксиом для того исчисления высказываний, которое мы рассматриваем.

- 1. $\alpha \to \beta \to \alpha$ добавляет импликацию
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ удаляет импликацию
- 3. $\alpha \wedge \beta \rightarrow \alpha$ удаление конъюнкции
- 4. $\alpha \wedge \beta \rightarrow \beta$ удаление конъюнкции
- 5. $\alpha \to \beta \to \alpha \land \beta$ внесение конъюнкции
- 6. $\alpha \rightarrow \alpha \lor \beta$ внесение дизъюнкции
- 7. $\beta \rightarrow \alpha \vee \beta$ внесение дизъюнкции
- 8. $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to (\neg \alpha)$
- 10. $\neg \neg \alpha \to \alpha$ очень спорная штука.

Пример. Доказательство $\vdash A \rightarrow A$.

- 1. $A \to (A \to A) \to A \text{ (cxema 1)}$
- 2. $A \rightarrow A \rightarrow A$ (cxema 1)

3.
$$(\underbrace{A}_{\alpha} \to \underbrace{A \to A}_{\beta}) \to (\underbrace{A}_{\alpha} \to \underbrace{(A \to A)}_{\beta} \to \underbrace{A}_{\gamma}) \to (\underbrace{A}_{\alpha} \to \underbrace{A}_{\gamma})$$
 (cxema 2)

- 4. $(A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow A) \text{ (m.p 2, 3)}$
- 5. $A \to A \text{ (m.p 1, 4)}$

2.3 Теорема о дедукции

Определение 2.3.1. (Метаметаопределение). Будем большими греческими буквами $\Gamma, \Delta, \Sigma \dots$ списки формул, неупорядоченные.

Определение 2.3.2. Вывод из гипотез: $\Gamma \vdash \alpha$.

To есть существует $\delta_1, \ldots, \delta_n, \delta_n \equiv \alpha$, где $delta_i$ или схема аксиом, или m.p. из j и k и j, k < i.

Теорема 2.3.1. $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \gamma$.

Доказательства новыми высказываниями: $\delta_{n+1} \equiv \alpha$ (дано нам в гипотезе), $\gamma_{n+2} \equiv \beta$ (МР шагов n, n+1) — это и требовалось.

 \Rightarrow Пусть $\Gamma, \alpha \vdash \beta$. Напишем программу, которая построит $\Gamma \vdash \alpha \to \beta$. Инвариант, который мы будем поддерживать: всё до $\alpha \to \delta_i$ — док-во. Доказательство индукцией по n

- 1. База: n = 1 без комментариев.
- 2. Если $\delta_1, \dots, \gamma_n$ можно перестроить в доказательство $\alpha \to \gamma_n$, то $\gamma_1 \dots \gamma_{n+1}$ тоже можно перестроить. Разберём случаи:
 - (a) δ_i аксиома или гипотиза из Γ . $(i-0.6) \ \delta_i \ (i-0.3) \ \delta_i \to \alpha \to \delta_i$

(i) $\alpha \to \delta_i$ (m.р из i - 0.6 и i - 0.3)

(b) $\delta_i = \alpha$, то есть надо построить $\alpha \to \alpha$ (i - 0.8, i - 0.6, i - 0.4, i - 0.2) (доказательство $\alpha \to \alpha$)

(i) $\alpha \to \alpha$ (c) δ_i получено из δ_i и δ_k ($\delta_k \equiv \delta_i \to \delta_i$)

по индукционному предположению, уже есть строчки вида $\alpha \to \delta_j, \alpha \to \delta_k$

 $(j) \alpha \rightarrow \delta_j$

 $(k) \ \alpha \to (\delta_j \to \delta_i)$

(i-0.6) $(\alpha \to \delta_j) \to (\alpha \to \delta_j \to \delta_i) \to (\alpha \to \delta_i)$ (cxema 2)

(i - 0.3) $(\alpha \to \delta_j \to \delta_i) \to (\alpha \to \delta_i)$ (m.p.)

(i) $(\alpha \to \delta_i)$ (m.p.)

3 Теория моделей

Мы можем докаывать модели или оценивать их. "Мы можем доказать, что мост не развалится или можем выйти и попрыгать на нём."

Определение 3.0.1. \mathbb{V} — истинностное множество.

F — множество высказываний нашего исчисления высказываний.

P — множество пропозициональных переменных.

$$\llbracket \cdot \rrbracket : F \to \mathbb{V}$$
 — оценка

Определение 3.0.2. Для задания оценки необходимо задать оценку пропозициональных переменных.

$$\llbracket \cdot \rrbracket : P \to \mathbb{V} \quad f_P$$

Тогда:

$$[\![x]\!] = f_p(x)$$

Замечание. Обозначение: значения пропозициональных переменных будем определять в верхнем индексе: $[\![\alpha]\!]^{A=T,B=F...}$

Определение 3.0.3. α — общезначна (истинна), если $[\![\alpha]\!] = T$ при любой оценке P.

 α — невыполнима (ложна), если $[\![\alpha]\!] = F$ при любой оценке P.

 α — выполнима, если $\llbracket \alpha \rrbracket = T$ при некоторой f_P .

 α — опровержима, если $\llbracket \alpha \rrbracket = F$ при некоторой f_P .

Определение 3.0.4. Теория корректна, если доказуемость влечёт общезначимость. Теория полна, если общезначимость влечёт доказуемость.

Определение 3.0.5. $\Gamma \models \alpha$ означает, что α следует из $\Gamma = \{\gamma_1, \dots, \gamma_n\}$, если $[\![\alpha]\!] = T$ всегда при $[\![\gamma_i]\!] = T$ при всех i.

3.1 Корректность исчисления высказываний

Теорема 3.1.1. Исчисление высказываний корректно. $\vdash \alpha$ влечёт $\models \alpha$.

Доказательства. Индукция по длине доказательства $\delta_1, \dots, \delta_n$.

Разбор случаев:

- 1. δ_i аксиома \implies построить таблицу истинности, проверить, что все верно.
- 2. $\delta_i \text{м.п.}$ δ_i , $\delta_k \equiv \delta_i \rightarrow \delta_i \implies$ также рассмотрим таблицу истинности.

Мы даём доказательство на метаязыке, не пускаясь в отчаянный формализм. Такая строгость нас устраевает.

В матлогике бесмысленно формализовывать русский язык. Она нужна, чтобы дать ответы на сложные вопросы в математике, где здравого смысла недостаточно и нужна формализация.

3.2 Полнота исчисления высказываний

Теорема 3.2.1. Исчисление высказываний полно.

Определение 3.2.1. $[\beta]\alpha = \begin{cases} \alpha, & [\![\beta]\!] = T \\ \neg \alpha, & [\![\beta]\!] = F \end{cases}$

Лемма 3.2.1.1. $[\alpha]^{\alpha}$,

$$\begin{array}{l}
[\beta] \beta \vdash_{[\alpha \star \beta]} \alpha \star \beta, \\
[\alpha] \alpha \vdash_{[\neg \alpha]} \neg \alpha
\end{array}$$

Пример. $[\![\alpha]\!] = T, [\![\beta]\!] = F \implies \alpha \land \neg \beta \vdash \neg (\alpha \land \beta).$

Лемма 3.2.1.2. Если $\Gamma \vdash \alpha$, то $\Gamma, \Delta \vdash \alpha$.

Лемма 3.2.1.3. Пусть дана α, X_1, \dots, X_n — её переменные.

$$[X_1]X_1, \ldots, [X_n]X_n \vdash_{[\alpha]} \alpha$$

Доказатель ство. Пусть $\widetilde{X} =_{[X_1]} X_i \dots_{[X_n]} X_n$.

Индукция по длинне формулы α .

База: $\alpha = X_i$.

Переход: есть α, β . По предположению $\widetilde{X} \vdash_{\lceil \alpha \rceil} \alpha$ $\widetilde{X} \vdash_{\lceil \beta \rceil} \beta$.

По леме 1 тогда $\widetilde{X} \vdash_{[\alpha \star \beta]} \alpha \star \beta$.

Лемма 3.2.1.4. Если $\models \alpha$, то $\widetilde{X} \vdash \alpha$. То есть при любых подстановках значнией α будет истинна.

Лемма 3.2.1.5.

$$\Gamma, Y \vdash \alpha, \quad \Gamma, \neg Y \vdash, \text{ To } \Gamma \vdash \alpha$$

Доказательство было в дз.

Лемма 3.2.1.6. Если $\widetilde{X} \vdash \alpha$ при всех оценках X_1, \ldots, X_n , то $\vdash \alpha$.

Доказательство индукцией по п.

Теорема 3.2.2. Если $\models \alpha$, то $\vdash \alpha$.

Доказательство. По лемме 4 и лемме 6.

4 Интуиционистская логика

Мы не хотим дурацких коснтрукций вроде парадокса брадобрея. Мы не хотим странных, но логически верных утверждений вроде $A \to B \lor B \to A$. Интуиционисткая логика предлагает свою математику, в которой своя интерпретация логических связок. ВНК-интерпретация (Брауер-Гейтинг-Колмогоров).

- $\alpha, \beta, \gamma \dots$ это конструкции.
- $\alpha \wedge \beta$ если мы умеем строить и α , и β .
- $\alpha \vee \beta$, если мы умеем строить α, β и знаем, что именно.
- $\alpha \to \beta$, если мы умеем перестроить α в β .
- \bullet \perp не имеет построения
- $\neg \alpha \equiv \alpha \rightarrow \bot$

"Теория доказательств". Рассмотрим классическое исчисление высказываний и заменим схему аксиом 10 на следующую

$$\alpha \to \neg \alpha \to \beta$$

В этой формализации мы следуем не сути интуиционисткой логики, а традиции. В интуиционисткой логике формализм это не источник логики.

Примеры моделей.

- 1. Модели КИВ подходят: корректны, но не полны ($[\![A \lor \neg A]\!] = H$, но $\not\vdash_H A \lor \neg A$).
- 2. Пусть X топологическое пространство.

Пусть истоинностные значения — все открыте пространства в классической топологии.

- $\bullet \ \llbracket \alpha \& \beta \rrbracket = \llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket.$
- $\llbracket \alpha \vee \beta \rrbracket = \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket$.
- $\llbracket \alpha \to \beta \rrbracket = (X \setminus \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket)^o$.
- $\llbracket \neg \alpha \rrbracket = (X \setminus \llbracket \alpha \rrbracket)^o$.

Теорема 4.0.1. Топологические модели — корректные модели ИИВ.

Утверждение **4.0.1.** ot
odots ot

Доказатель ство. Пусть $A = (0, +\infty), \neg A = (-\infty, 0), A \vee \neg A = \mathbb{R} \setminus \{0\} \neq \mathbb{R}$.

4.1 Общая топология

Раньше были телевизоры с *бесконченым* количеством пикселей (это зависит от химических свойств вещества кинескоп).

Возьмем множество X. Определим на нем топологию как подмножество множества всех подмножеств $\Omega \subseteq \mathcal{P}(X)$. Ω — топология, если это множество открытых множеств и выполнены следующие условия:

- 1. $\emptyset, X \in \Omega$;
- 2. $\bigcup_{i} \in \Omega$, если все $A_i \in \Omega$;
- 3. $\bigcap_{i=1}^{n} A_i \in \Omega$, если $A_1, \dots, A_n \in \Omega$.

То есть топологическое пространство — пара $\langle X,\Omega \rangle$ и про Ω верны приведенные выше три утверждения.

Определение 4.1.1 (Замкнутое мноежство). Множество B такое, что $X \backslash B \in \Omega$ называется замкнутым.

Определение 4.1.2 (Связное топологическое пространство). $\langle X,\Omega\rangle$ связно, если нет $A,B\in\Omega:A\cup B=X$ и $A\cap B=\varnothing$

Определение 4.1.3 (Подпространство). $\langle X_1, \Omega_1 \rangle$ — подпространство $\langle X, \Omega \rangle$, если $X_1 \subseteq X$ и $\Omega_1 = \{a \cap X_1 \mid a \in \Omega \}$

Определение 4.1.4 (Связное множество). Множество, являющееся связным подпространством.

4.2 Примеры топологических пространств

Возьмем дерево (граф). Множество X — множество вержин. Ω — множество всех вершин, что $B \in \Omega$, $\underline{ecлu}\ a \in B,\ x \leqslant a$ влечет $x \in B$. То есть Ω — семейство множеств вершин, которые входят вместе с поддеревом.

Теорема 4.2.1. Граф без цикла свяен тогда и только тогда, когда оно своязно как топологическое пространство.

Доказательство будет в дз.

Определение 4.2.1 (Решетки). X — частично упорядоченное множество отношением \leq .

Множество верхних граней $a, b \ a \sqcap b$ — множество $\{x \in X \mid a \leqslant x, b \leqslant x\}$.

Множество нижних граней a, b: $a \sqcup b$ — множество $\{x \in X \mid a \geqslant x, b \geqslant x\}$.

- a наименьший элемент $A\iff a\in A$ и не существует $b\in A,\,b\leqslant a.$
- a наибольший элемент $A \iff a \in A$ и не существует $b \in A, b \geqslant a$.
- a + b = наименьший элемент множества верхних граний.
- $a \cdot b =$ наибольший элемент множества нижних граний.

Решетка — частично упорядоченное множество, где для каждых двух элементов существуют a+b и $a\cdot b$.

Пример. Дерево — не решетка (в общем случае), так как a+b есть, а a*b может не быть. А вот такой граф является решеткой.

Теорема 4.2.2. Пусть $\langle X, \Omega \rangle$ топологическое пространство, $A, B \in \Omega$. $A \leq B$, если $A \subseteq B$. Тогда $\langle \Omega, \leq \rangle$ — решетка. $A \cdot B = A \cap B$, $A + B = A \cup B$.

Определение 4.2.2. Дистрибутивная решетка — это такая решетка, что $a,b,c\in\Omega,\ a+(b\cdot c)=(a+b)\cdot(a+c).$

Лемма 4.2.2.1. Для дистрибутивной решетки так же верно, что $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$.

Определение 4.2.3. Псевдодополнение $a \to b = \text{наибольшеe}\{c \mid a \cdot c \leq b\}$.

Определение 4.2.4. Диамант — такая решетка, что там нет для кого-то псевдодопллнения.

Определение 4.2.5. Решетка с псевдодополнением для всех элементов называется импликативной

Определение 4.2.6. Определим 0 и 1 следующим образом:

- 0 элемент, что $0 \leqslant x$ при всех x;
- 1 элемент, что $x \le 1$ при всех x.

Теорема 4.2.3 (В импликативной решетке 1 есть всегда). $\langle X, \leqslant \rangle$ — импликативная решетка.

Доказатель ство. Рассмотрим $a \to a = \text{наиб}\{c \mid a \cdot c \leqslant a\} = \text{наиб}\{X\} = 1.$

Теорема 4.2.4. Рассмотрим $\langle X, \Omega \rangle$ — импликативная решетка с 0. Рассмотрим И.И.В. Определим оценки $\mathbb{V} = X$:

- $\bullet \ \llbracket \alpha \& \beta \rrbracket = \llbracket \alpha \rrbracket \cdot \llbracket \beta \rrbracket.$
- $\bullet \ \llbracket \alpha \vee \beta \rrbracket = \llbracket \alpha \rrbracket + \llbracket \beta \rrbracket.$
- $\bullet \ \llbracket \alpha \to \beta \rrbracket = \llbracket \alpha \rrbracket \to \llbracket \beta \rrbracket.$
- $\bullet \ \llbracket \neg \alpha \rrbracket = \llbracket \alpha \rrbracket \to 0.$

 α истинно, если $\llbracket \alpha \rrbracket = 1$.

 $\llbracket \bot \rrbracket = 0. \ \neg \alpha \equiv \alpha \to \bot.$

Полученная модель — корректная модель И.И.В.

У нас будет натуральный вывод, интуиция и все такое.

 $\overline{\Gamma, \varphi \vdash \varphi}$ (аксиома).

Вывод утверждения в доказательстве $\Gamma \vdash \varphi$.

Правила вывода (сверху — посылка, снизу — заключение):

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}, \quad \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi}, \quad \frac{\Gamma, \varphi}{\Gamma \vdash \varphi}, \quad \frac{\Gamma, \varphi}{\Gamma \vdash \varphi \& \psi}, \quad \frac{\Gamma, \vdash \varphi \& \psi}{\Gamma \vdash \varphi}, \quad \frac{\Gamma, \vdash \varphi \& \psi}{\Gamma \vdash \psi},$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi}, \quad \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}, \quad \frac{\Gamma, \varphi \vdash \rho}{\Gamma \vdash \varphi}, \quad \frac{\Gamma, \varphi \vdash \rho}{\Gamma \vdash \rho}, \quad \frac{\Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \varphi}.$$

Вот они, слева направо: введение \rightarrow , исключение \rightarrow , введение &, два исключения &, введения \vee в двух видах, исключение \vee и специальное правило для лжи.

Теорема 4.2.5. Если $\vdash_{\mathbf{H}} \alpha \vee \beta$, то $\vdash_{\mathbf{H}} \alpha$ или $\vdash_{\mathbf{H}} \beta$.

Определение 4.2.7. Алгебра Гейтинга — импликативная решетка с 0.

Определение 4.2.8. Введем операцию $\sim a \equiv a \to 0$ — дополнение до 0.

Определение 4.2.9. Булева алегбра — Алгебра Гейтинга, где $a+\sim a=1$.

Пример. Булева Алгебра

- соответствует &,
- + cootbetctbyet \vee ,
- \rightarrow cootbetctbyet \rightarrow ,
- \sim cootbetctbyet \neg .

Далее α, β — выссказывания в ИИВ.

Определение 4.2.10. $\alpha \leq \beta$, если $\alpha \vdash \beta$

Определение 4.2.11. $\alpha \approx \beta$, если $\alpha \leqslant \beta$ и $\beta \leqslant \alpha$

Определение 4.2.12. Пусть ξ — множество всех высказываний ИИВ. Тогда $[\xi]$ — называется алгеброй Линденбаума \mathcal{L} .

Теорема 4.2.6. \mathcal{L} — Алгебра Гейтинга.

Лемма 4.2.6.1. $1 = [A \rightarrow A]$

Доказательство. $\alpha \vdash A \to A$, верно (очевидно), то есть $[\alpha] \leqslant [A \to A]$, то есть $[A \to A] = 1$.

Теорема 4.2.7. \mathcal{L} — корректная модель ИИВ.

Теорема 4.2.8. \mathcal{L} — полная модель ИИВ.

Теорема 4.2.9. $\models \alpha$, то есть $[\alpha] = 1$. $1 = [A \to A]$, то есть $[\alpha] = 1$, то есть $\beta \leqslant [\alpha]$ при всех β . Возьмем $\beta = A \to A$, $A \to A \vdash \alpha$, то есть $A \to A$, $(A \to A) \to \alpha$.

Теорема 4.2.10. Алгебра Гейтинга — полная и корректная модель ИИВ.

Определение 4.2.13. Исчисление дизъюнктно, если для любых $\alpha, \beta \vdash \alpha \lor \beta$ влечёт $\vdash \alpha$ или $\vdash \beta$.

Теорема 4.2.11. ИИВ дизъюнктно.

Определение 4.2.14. Пусть существует $f: A \to B$, A, B – алгебры Гейтинга. f – гомоморфизм, если $f(0_A) = 0_B$ $f(1_A) = 1_B$ и $f(\alpha \star_A \beta) = f(\alpha) \star_B f(\beta)$

Определение 4.2.15 (Геделева Алгебра). Это такая алгебра, где a+b=1 влечет a=1 или b=1.

Определение 4.2.16 $(\Gamma(A))$. Пусть A — алгебра Гейтинга. Определим $\gamma:A \to \Gamma(A)$ так: $\gamma(x) = \begin{cases} \omega, & x=1_A \\ x, & x<1_A \end{cases}$ и добавим $1_{\Gamma(A)}$: $t\leqslant 1_{\Gamma}(A)$, если $t\in \Gamma(A)$.

Замечание. $\Gamma(A)$ неофициально называется Γ еделеризацией.

Теорема 4.2.12. $\Gamma(A)$ – Гёделева алгебра.

Доказательство. Пусть $a+b=1_{\Gamma(A)}$, посмотрим на картинку.

Утверждение 4.2.1. $\Gamma(\mathcal{L}) - \Gamma$ ёделева алгебра.

Доказатель ство. Определим каноническое отображение $g(x):\Gamma(\mathcal{L})\to\mathcal{L}$

$$g(x) = \begin{cases} 1 & , x = 1 \text{ или } \omega \\ x & , \text{ иначе} \end{cases}$$

Утверждение 4.2.2. g(x) – гомоморфизм

Теорема 4.2.13. Рассмотрим ИИВ и алгебры Гейтинга $\mathcal{L}, \Gamma(\mathcal{L})$

Утверждение 4.2.3. Если $g:A\to B$ и $[\![\alpha]\!]_A=1_A$, то $[\![\alpha]\!]_B=g(1_A)$.

Доказательство теоремы. Рассмотрим $\vdash \alpha \lor \beta$.

 $\Gamma(\mathcal{L})$ — Геделва алгеба, то есть алгебра Гейтинга.

 $[\![\alpha\vee\beta]\!]_{\Gamma(\mathcal{L})}=1_{\Gamma(\mathcal{L})}$, т.е. либо $[\![\alpha]\!]=1_{\gamma}\mathcal{L}$ либо $[\![\beta]\!]_{\Gamma(\mathcal{L})}=1_{\Gamma(\mathcal{L})}$

Рассмотрим $g: \Gamma(\mathcal{L}) \to \mathcal{L}$

 $[\![\alpha]\!]_{\Gamma(\mathcal{L})}=1_{\Gamma(\mathcal{L})},$ тогда $[\![\alpha]\!]_{\mathcal{L}}=g(1_{\Gamma(\mathcal{L})})=1_{\mathcal{L}}$

T.e. $\vdash \alpha$.

Определение 4.2.17. Модель ИИВ называется табличной, если

- $\mathbb{V} = \mathcal{S}$;
- $\llbracket \alpha \star \beta \rrbracket = f_{\star} (\llbracket \alpha \rrbracket, \llbracket \alpha, \beta \rrbracket),$
- Существует $H \in \mathcal{S}$ выделенная истина $\llbracket \alpha \rrbracket = H$ тогда и только тогда, когда $\models \alpha$

Определение 4.2.18 (Модель Крипки). Некоторые факты, появившиеся на оси времени в истинном или ложном виде и больше не меняется

Замечание. W – частично упорядоченное множество миров.

Определение 4.2.19. ⊩

- 1. Вынужденность переменной A определяется моделью. При этом, если $W_x \leqslant W_y, \ W_x \Vdash A,$ то $W_y \models A.$
- 2. Доопределим ⊩ на все выражения:
 - (a) $W \Vdash A \land B$, если $W \Vdash A$ и $W \Vdash B$
 - (b) $W \Vdash A \lor B$, если $W \Vdash A$ или $W \Vdash B$
 - (c) $W \Vdash \neg A$, если нет $W \leqslant W_x$, что $W_x \Vdash A$
 - (d) $W \Vdash A \to B$, если во всех $W \leqslant W_x$ из $W_x \Vdash A$ следует $W_x \Vdash B$

Определение 4.2.20. $\models \alpha$ если $W \vdash \alpha$.

Теорема 4.2.14. У ИИВ нет полной конечной табличной модели.

Доказатель ство. $\varphi(u) = \bigvee_{i=1, j=1, i \neq j}^{n,n} A_i \to A_j$.

Пусть T — модель, |V| = n.

Рассмотрим $\varphi(n+1)$. По принципу Дирихле. Есть A_i и A_i : $[\![A_i]\!] = [\![A_i]\!]$.

Несложно показать $[\![A_i \to A_j]\!] = \mathcal{U} \implies [\![\varphi(n+1)]\!] = \mathcal{U}.$

Рассмотрим модель, где $\varphi(n)$ не доказуемо ни при каком n.

Теорема 4.2.15. Модель Крипке — корректная модель ИИВ.

4.3 Изоморфизм Кари-Ховарда

Утверждение 4.3.1. τ, σ – типы.

```
\tau \rightarrow \sigma
f(x : \tau) : \sigma \{
return g(x);
t \& \sigma
f(x : \tau, y : \sigma)
\tau \lor \sigma
f(x : std: variant < \tau, \sigma >)
```

Определение 4.3.1 (Изоморфизм Кари–Ховарда). Программа соответствует доказательству. Тип соответствует утверждению. ...

(всё в интуиционисткой логике)

Замечание. $f : \neg \neg \alpha \to \alpha$ – потом подумаем как это интерпретировать.

5 Исчисление предикатов

Нам нужен новый язык. В текущем языке всё хорошо, но он имеет малую выразитеьную силу. Косвенным свидетельством этого является то, что в нём всё легко разрешается.

В чём была исходная цель Гильберта: формализовать всю математику и доказывать всё, не боясь того, что будет противоречие где-нибудь.

Идея: нам нужно построить некоторый язык и затем поверх него построить теорию моделей и теорию доказательств.

Пример. $\forall x.\sin x = 0 \lor (\sin^2 x) + 1 > 1$.

• Предметные (здесь: числовые) выражения

- Предметные переменные x.
- Одно- и двуместные функциональные символы «синусы», «возведение в квадрат» и «сложение»
- Нульместные функциональные символы «ноль» (0) и «один» (1).
- Логическе выражения
 - Предикатные символы «равно» и «больше».

5.1 Язык исчисления предикатов

- 1. Два типа: предметные и логические выражения
- 2. Предметные выражения: метапеременная θ
 - Предметные переменные: a, b, c, ..., метапеременные x, y.
 - Функциональные выражения: $f(\theta_1,\ldots,\theta_n)$, метапеременные f,g,\ldots
 - Примеры: r, q(p(x,s),r)
- 3. Логические выражения: метапеременные $\alpha, \beta, \gamma, \dots$
 - Предикатные выражения: $P(\theta_1, \dots, \theta_n)$, метапеременная P. Имена: A, B, C, \dots ,
 - Связки: $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$
 - Кванторы: $(\forall x.\varphi)$ и $(\exists x.\varphi)$.

Сокращенные записи, метаязык

- 1. Метепаременные:
 - ψ , ϕ , π , ... формулы
 - ullet $P,\,Q,\,\dots$ предикатные символы
 - *θ*, ... термы
 - \bullet $f, g, \dots функциональные символы$
 - x, y, ... предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a.\ A \lor B \lor C \to \exists b.\ \underbrace{D\&\neg E}_{\exists b....})\&F$$

- 3. Дополнительные обозначения при необходимости:
 - $(\theta_1 = \theta_2)$ вместо $E(\theta_1, \theta_2)$.
 - $(\theta_1 + \theta_2)$ вместо $p(\theta_1, \theta_2)$.
 - **0** вместо *z*.

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

Без синтаксического сахара:

$$\forall x. E(f(x), z) \vee G(p(q(s(x)), o), o)$$

5.2 Два вида значений

- 1. Истинностные (логические) значения:
 - (а) предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - (b) логические связки и кванторы.
- 2. Предметные значения:
 - (а) предметные переменные;
 - (b) функциональные символы (в том числе константы = нульместные функциональные символы)

5.3 Оценка исчисления предикатов

Определение 5.3.1. Оценка — упорядоченная четвёрка $\langle D, F, T, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов. Пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. T — оценка для предикатных символов. Пусть P_n — n-местный предикатный символ:

$$T_{P_n}: D^n \to V \qquad V = \{II, II\}$$

4. E — оценка для свободных предметных переменных.

$$E(x) \in D$$

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![E(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=H} = H$$

- 1. Правила для связок \vee , &, \neg , \rightarrow остаются прежние;
- 2. $[f_n(\theta_1, \theta_2, \dots, \theta_n)] = F_{f_n}([\theta_1], [\theta_2], \dots, [\theta_n])$
- 3. $[P_n(\theta_1, \theta_2, \dots, \theta_n)] = T_{P_n}([\theta_1], [\theta_2], \dots, [\theta_n])$
- 4. $\llbracket \forall x.\phi \rrbracket = \left\{ \begin{array}{ll} \textit{И}\,, & \text{если } \llbracket \phi \rrbracket^{x:=t} = \textit{И} \text{ при всех } t \in \textit{D} \\ \textit{Л}\,, & \text{если найдётся } t \in \textit{D}\,, \text{ что } \llbracket \phi \rrbracket^{x:=t} = \textit{Л} \end{array} \right.$
- 5. $\llbracket\exists x.\phi\rrbracket = \left\{ \begin{array}{ll} \emph{II}, & \text{если найдётся $t\in D$, что } \llbracket\phi\rrbracket^{x:=t} = \emph{II} \\ \emph{\mathcal{I}}, & \text{если } \llbracket\phi\rrbracket^{x:=t} = \emph{\mathcal{I}} \text{ при всех $t\in D$} \end{array} \right.$

Пример. $\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket$

Зададим оценку:

- $D := \mathbb{N}$;
- $F_1 := 1, F_{(+)}$ сложение в \mathbb{N} ;
- $P_{(=)}$ равенство в \mathbb{N} .

Фиксируем $x \in \mathbb{N}$. Тогда $[x+1=y]^{y:=x}=\mathcal{J}$ поэтому при любом $x \in \mathbb{N}$:

$$\llbracket \exists y. \neg x + 1 = y \rrbracket = H.$$

Итого: $[\![\forall x. \exists y. \neg x + 1 = y]\!] = H$

Пример. Странная интерпретация $[\![\forall x.\exists y.\neg(x+1=y)]\!]$.

Зададим интерпретацию:

- $D := \{ \Box \};$
- $F_{(1)} := \square$, $F_{(+)}(x,y) := \square$;
- $P_{(=)}(x,y) := M$.

Тогда: $[x+1=y]^{x\in D, y\in D}= U$.

Итого: $\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket = \mathcal{J}I.$

Поэтому формулам оценки предикатов верить нельзя. Никакой интуиции за ними может и не стоять.

Определение 5.3.2. Формула общезначима, если истинна при любой оценке.

Утверждение 5.3.1. $[\![\forall x. Q(f(x)) \lor \neg Q(f(x))]\!] = H.$

Доказательство. Фиксируем D, F, P, E. Пусть $x \in D$. Обозначим $P_Q(F_f(E_x))$ за t. Ясно, что $t \in V$. Разберём случаи.

- Если t = H, то $[P(f(x))]^{P(f(x)):=t} = H$, потому $[P(f(x)) \vee \neg P(f(x))]^{P(f(x)):=t} = H$.
- Если $t = \mathcal{I}$, то $\neg P(f(x)) \rrbracket^{P(f(x)) := t} = \mathcal{U}$ потому всё равно $\llbracket P(f(x)) \vee \neg P(f(x)) \rrbracket^{P(f(x)) := t} = \mathcal{U}$.

5.4 Подстановки, свобода и связность

Определение 5.4.1. Рассмотрим формулу $\forall x.\psi$ (или $\exists x.\psi$). Здесь переменная x связзана в ψ . Все вхождения переменой x в ψ – **связанные**.

Определение 5.4.2. Переменная x входит свободно в ψ , если не находится в области действия никакого квантора по x. Все её вхождения в ψ — **свободные**.

Пример. $\exists y.(\forall x.P(x)) \lor P(x) \lor Q(y)$.

Единственное свободное вхождение прееменной x помеченно синим цветом.

Определение 5.4.3. Подстановка — это . . .

$$\psi[x := \theta] := \begin{cases} \psi, & \psi \equiv y, y \not\equiv x \\ \psi, & \psi \equiv \forall x.\pi \text{ или } \psi \equiv \exists x.\pi \\ \pi[x := \theta] \star \rho[x := \theta], & \psi \equiv \pi \star \rho \\ \theta, & \psi \equiv x \\ \forall y.\pi[x := \theta], & \psi \equiv \forall y.\pi \text{ и } y \not\equiv x \\ \exists y.\pi[x := \theta], & \psi \equiv \exists y.\pi \text{ и } y \not\equiv x \end{cases}$$

Определение 5.4.4. Терм θ свободен для подстановки вместо x в ψ ($\psi[x:=\Theta]$), если ни одно свободное вхождение переменной в Θ не станет связным после подстановки.

Свобода есть: $(\forall x.P(y))[y := z]$ или $(\forall x.\forall y.P(x))[y := z]$. Свободы нет: $(\forall x.P(y))[y := x]$ и $(\forall y.\forall x.P(t))[t := y]$.

5.5Теория доказательств

Рассмотрим язык исчисления предикатов. АксиомыЁ— все схемы аксиом для классического исчисления высказываний в данном языке.

1.
$$\alpha \to \beta \to \alpha$$

6.
$$\alpha \rightarrow \alpha \vee \beta$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

7.
$$\beta \to \alpha \vee \beta$$

3.
$$\alpha \wedge \beta \rightarrow \alpha$$

8.
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$$

4.
$$\alpha \wedge \beta \rightarrow \beta$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to (\neg \alpha)$$

5.
$$\alpha \to \beta \to \alpha \land \beta$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

Добавим ещё две схемы аксиом (здесь везде θ свободен для подстановки вместо x в φ):

11.
$$(\forall x.\varphi) \to \varphi[x := \theta]$$

12.
$$\varphi[x := \theta] \to \exists x. \varphi$$

Добавим ещё два правила вывода (здесь везде x не входит свободно в φ):

1. Введение
$$\forall$$
: $\frac{\varphi \to \forall x.\psi}{\varphi \to \psi}$,

2. Введение
$$\exists$$
: $\frac{(\exists x.\psi) \to \varphi}{\psi \to \varphi}$.

Утверждение 5.5.1. Доказыуемость, выводимость, полнота, корректность — аналогично исчислению высказыаваний.

5.6Теорема о дедукции для исчисления предикатов

Теорема 5.6.1. Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\gamma \vdash \alpha \rightarrow \beta$

Доказательство.

⇒ также как в К.И.В

💳 та же схема. У нас появились два новых случая аксиом. Ничего страшного, с ним проблем не возникнет.

Однако таже слоедует обработать два новых правила вывода.

Перестроим: $\delta_1, \delta_2, \dots, \delta_n \equiv \beta$ в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем $\alpha \to \delta_n$, если предыдущие уже обоснованы (по индукции).

Два новых похожих случая: правила для ∀ и ∃. Рассмотрим ∀. Для квантора существования аналогично.

Доказываем переходи к (n). $\alpha \to \psi \to \forall x.\varphi$ (правило для \forall), значит, доказано на шаге k, что $\alpha \to \psi \to \varphi$.

$$(n-0.9)\dots(n-0.8)$$
 $(\alpha \to \psi \to \varphi) \to (\alpha\&\psi) \to \varphi$ Т. о полноте КИВ

$$(n-0.4)$$
 $(\alpha \to \psi) \to \forall x. \varphi$ Правило для $\forall, n-0.6$

$$\begin{array}{llll} (n-0.6) & (\alpha\rightarrow\psi)\rightarrow\varphi & \text{M.P. }k,n-0.8\\ (n-0.4) & (\alpha\rightarrow\psi)\rightarrow\forall x.\varphi & \text{Правило для }\forall,\,n-0.8\\ (n-0.3)\dots(n-0.2) & ((\alpha\rightarrow\psi)\rightarrow\forall x.\varphi)\rightarrow(\alpha\rightarrow\psi\rightarrow\forall x.\varphi) & \text{T. о полноте КИВ}\\ (n) & \alpha\rightarrow\psi\rightarrow\forall x.\varphi & \text{M.P. }n-0.4,\,n-0.2 \end{array}$$

5.7 Отношение следования

Определение 5.7.1 (Следование). $\gamma_1, \gamma_2, \dots, \gamma_n \models \alpha$, если выполнено два условия:

- 1. α выполнено всегда, когда выполнено $\gamma_1, \gamma_2, \ldots, \gamma_n$;
- 2. α не использует кванторов по переменным, входящим свободно в $\gamma_1, \gamma_2, \dots, \gamma_n$.

Теорема 5.7.1. Если $\Gamma \vdash \alpha$ и в доказательстве не используется кванторов по свободным переменным из Γ , то $\Gamma \models \alpha$.

Влажность второго условия.

Пример. Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ .

Легко показать, что $P(x) \vdash \forall x. P(x)$.

- (1) P(x) Гипотеза
- (2) $P(x) \rightarrow (A \rightarrow A \rightarrow A) \rightarrow P(x)$ Cx. akc. 1
- (3) $(A \rightarrow A \rightarrow A) \rightarrow P(x)$ M.P. 1, 2
- (4) $(A \to A \to A) \to \forall x. P(x)$ Правило для \forall , 3
- (5) $(A \to A \to A)$ Cx. akc. 1
- (6) $\forall x. P(x)$ M.P. 5, 4

Пусть $D = \mathbb{Z}$ и P(x) = x > 0. Тогда не будет выполнено $P(x) \models \forall x. P(x)$.

Зачем нам это потребовалось? Мы будем пользоваться, но не злоупотреблять.

Мы не хотим заранее сильно ограничивать язык. Поэтому мы выбираем такой вариант, чтобы он разрешал некоторые.

5.8 Теорема о полноте исчисления предикатов

- 1. Надо справиться со слишком большим количеством вариантов. Модель задаётся как $\langle D, F, P, X \rangle$.
- 2. Для оценки в модели важно только какие формулы истинны. Модели \mathcal{M}_1 и \mathcal{M}_2 «похожи», если $[\![\varphi]\!]_{\mathcal{M}_1} = [\![\varphi]\!]_{\mathcal{M}_2}$ при всех φ .
- 3. Поступим так:
 - (a) построим эталонное множество моделей \mathfrak{M} , каждая модель соответствует списку истинных формул, но им не является;
 - (b) докажем полноту \mathfrak{M} : если каждая $\mathcal{M} \in \mathfrak{M}$ предполагает $\mathcal{M} \models \varphi$, то $\vdash \varphi$;
 - (c) заметим, что если $\models \varphi$, то каждая $\mathcal{M} \in \mathfrak{M}$ предполагает $\mathcal{M} \models \varphi$.
- 4. В ходе доказательства нас ждёт множество технических препятствий.

5.8.1 Непротиворечивое множество формул

Определение 5.8.1. Γ — *непротиворечивое множество формул*, если $\Gamma \not\vdash \alpha \& \neg \alpha$ при некотором α .

Пример. Непротиворечиво:

- $\Gamma = \{A \to B \to A\}$
- $\Gamma = \{P(x,y) \rightarrow \neg P(x,y), \forall x. \forall y. \neg P(x,y)\};$

Противоречиво:

• $\Gamma = \{P \to \neg P, \neg P \to P\}$ так как $P \to \neg P, \neg P \to P \vdash \neg P \& \neg \neg P$.

Пусть $D = \mathbb{Z}$ и $P(x) \equiv (x > 0)$, аналогом для этой модели будет $\Gamma = \{P(1), P(2), P(3), \dots\}$.

На самом деле, нам этого не достаточно. Нам нужно некоторое **полное непротиворечивое мно**жество формул.

Определение 5.8.2. Γ — **полное** непротиворечивое множество замкнутых **бескванторных** формул, если:

- 1. Г содержит только замкнутые бескванторные формулы;
- 2. если α некоторая замкнутая бескванторная формула, то $\alpha \in \Gamma$ или $\neg \alpha \in \Gamma$.

Определение 5.8.3. Γ — **полное** непротиворечивое множество замкнутых формул, если:

- 1. Г содержит только замкнутые формулы;
- 2. если α некоторая замкнутая формула, то $\alpha \in \Gamma$, или $\neg \alpha \in \Gamma$.

Теорема 5.8.1 (Пополнение непротиворечивого множества формул). Пусть Γ — непротиворечивое множество замкнутых (бескванторных) формул. Тогда, какова бы ни была замкнутая (бескванторная) формула φ , хотя бы $\Gamma \cup \{\varphi\}$ или $\Gamma \cup \{\neg \varphi\}$ — непротиворечиво.

Доказатель ство. Пусть это не так и найдутся такие Γ , φ и α , что

$$\begin{array}{ccc} \Gamma, \varphi & \vdash \alpha \& \neg \alpha \\ \Gamma, \neg \varphi & \vdash \alpha \& \neg \alpha. \end{array}$$

Тогда по лемме об исключении гипотезы $\Gamma \vdash \alpha \& \neg \alpha$.

То есть Γ не является непротиворечивым. Противоречие.

Теорема 5.8.2 (Дополнение непротиворечивого множества формул до полного). Пусть Γ — непротиворечивое множество замкнутых (бескванторных) формул. Тогда найдётся полное непротиворечивое множество замкнутых (бескванторных) формул Δ , что $\Gamma \subseteq \Delta$.

Доказательство. 1. Занумеруем все формулы (их счётное количество): $\varphi_1, \varphi_2, \dots$

2. Построим семейство множеств $\{\Gamma_i\}$:

$$\Gamma_0 = \Gamma \qquad \qquad \Gamma_{i+1} = \left\{ \begin{array}{ll} \Gamma_i \cup \{\varphi_i\}, & \text{если } \Gamma_i \cup \{\varphi_i\} \text{ непротиворечиво} \\ \Gamma_i \cup \{\neg \varphi_i\}, & \text{иначе} \end{array} \right.$$

3. Итоговое множество

$$\Delta = \bigcup_{i} \Gamma_{i}$$

4. Непротиворечивость Δ не следует из индукции — индукция гарантирует непротиворечивость только Γ_i при натуральном (т.е. *конечном*) i, потому...

 Δ непротиворечиво:

- 1. Пусть Δ противоречиво, то есть $\Delta \vdash \alpha \& \neg \alpha$.
- 2. Доказательство конечной длины и использует конечное количество гипотез $\{\delta_1, \delta_2, \dots, \delta_n\} \subset \Delta$, то есть $\delta_1, \delta_2, \dots, \delta_n \vdash \alpha \& \neg \alpha$.
- 3. Пусть $\delta_i \in \Gamma_{d_i}$, тогда $\Gamma_{d_1} \cup \Gamma_{d_2} \cup \cdots \cup \Gamma_{d_n} \vdash \alpha \& \neg \alpha$.

4. Но $\Gamma_{d_1} \cup \Gamma_{d_2} \cup \cdots \cup \Gamma_{d_n} = \Gamma_{\max(d_1,d_2,\ldots,d_n)}$, которое непротиворечиво, и потому

$$\Gamma_{d_1} \cup \Gamma_{d_2} \cup \cdots \cup \Gamma_{d_n} \not\vdash \alpha \& \neg \alpha.$$

5.8.2 Модель для множества формул

Определение 5.8.4 (Модель для множества формул). Моделью для множества формул F назовём такую модель \mathcal{M} , что при всяком $\varphi \in F$ выполнено $[\![\varphi]\!]_{\mathcal{M}} = \mathcal{U}$.

Альтернативное обозначение: $\mathcal{M} \models \varphi$.

Теорема 5.8.3 (О доказательстве непротиворечивости множества формул). Если у множества формул M есть модель \mathcal{M} , оно непротиворечиво.

Доказательстве использованы гипотезы $\delta_1, \delta_2, \dots, \delta_n$.

Тогда $\vdash \delta_1 \to \delta_2 \to \cdots \to \delta_n \to A\& \neg A$, то есть $\llbracket \delta_1 \to \delta_2 \to \cdots \to \delta_n \to A\& \neg A \rrbracket = \mathcal{U}$ (корректность). Поскольку все $\llbracket \delta_i \rrbracket_{\mathcal{M}} = \mathcal{U}$, то и $\llbracket A\& \neg A \rrbracket_{\mathcal{M}} = \mathcal{U}$ (анализ таблицы истинности импликации). Однако, $\llbracket A\& \neg A \rrbracket = \mathcal{J}$. Противоречие.

Теорема 5.8.4. Любое непротиворечивое множество замкнутых бескванторных формул имеет модель.

Как строить такую модель?

Определение 5.8.5. Пусть M — полное непротиворечивое множество замкнутых бескванторных формул. Тогда модель $\mathcal M$ задаётся так:

- 1. D множество всевозможных предметных выражений без предметных переменных и дополнительная строка "ошибка!"
- 2. $[f(\theta_1, \dots, \theta_n)] = \text{``f'}(\text{''} + [\theta_1] + \text{''}, \text{''} + \dots + \text{''}, \text{''} + [\theta_n] + \text{''})$ ''
- 3. $\llbracket P(\theta_1, \dots, \theta_n) \rrbracket = \begin{cases} \text{ II,} & \text{если "P(" + \llbracket \theta_1 \rrbracket + "," + \dots + "," + \llbracket \theta_n \rrbracket + ")" \in M} \\ \Pi, & \text{иначе} \end{cases}$
- 4. $[\![x]\!]$ = "ошибка!", так как формулы замкнуты.

Лемма 5.8.4.1. Пусть φ — бескванторная формула, тогда $\mathcal{M} \models \varphi$ тогда и только тогда, когда $\varphi \in M$. Доказательство. Индукция по длине формулы φ .

- 1. База. φ предикат. Требуемое очевидно по определению \mathcal{M} .
- 2. Переход. Пусть $\varphi = \alpha \star \beta$ (или $\varphi = \neg \alpha$), причём $\mathcal{M} \models \alpha$ ($\mathcal{M} \models \beta$) тогда и только тогда, когда $\alpha \in M$ ($\beta \in M$).

Тогда покажем требуемое для каждой связки в отдельности. А именно, для каждой связки покажем два утверждения:

- (a) если $\mathcal{M} \models \alpha \star \beta$, то $\alpha \star \beta \in M$.
- (b) если $\mathcal{M} \models \alpha \star \beta$, то $\alpha \star \beta \notin M$.

Доказательство теоремы о существовании модели. Пусть M — непротиворечивое множество замкнутых бескванторных формул.

По теореме о пополнении существует M' — полное непротиворечивое множество замкнутых бескванторных формул, что $M \subseteq M'$.

По лемме M' имеет модель, эта модель подойдёт для M.

Теорема 5.8.5 (Гёделя о полноте исчисления предикатов). Если M — непротиворечивое множество замкнутых формул, то оно имеет модель.

Схема доказательства. Мы умеем стооить только модель без кванторов. Возьмем исходное множество формул, избавимся от кванторов, построим модель (это делать мы уже умеем), а потом покажем, что построенная модель нам подходит.

Определение 5.8.6. Формула φ имеет поверхностные кванторы (находится в предварённой форме), если соответствует грамматике

$$\varphi := \forall x. \varphi \mid \exists x. \varphi \mid \tau,$$

где τ — формула без кванторов

Теорема 5.8.6. Для любой замкнутой формулы ψ найдётся такая формула φ с поверхностными кванторами, что $\vdash \psi \to \varphi$ и $\vdash \varphi \to \psi$.

Доказательство. Индукция по структуре, применение теорем о перемещении кванторов (из 5 ДЗ).

5.8.3 Построение М*

- Пусть M полное непротиворечивое множество замкнутых формул с поверхностными кванторами (очевидно, счётное). Построим семейство непротиворечивых множеств замкнутых формул M_k .
- Пусть d_i^k семейство *свежих* констант, в M не встречающихся.
- Индуктивно построим M_k :
 - База: $M_0 = M$
 - Переход: положим $M_{k+1} = M_k \cup S$, где множество S получается перебором всех формул $\varphi_i \in M_k$.
 - 1. φ_i формула без кванторов, пропустим
 - 2. $\varphi_i = \forall x. \psi$ добавим к S все формулы вида $\psi[x := \theta]$, где θ всевозможные замкнутые термы, использующие символы из M_k ;
 - 3. $\varphi_i = \exists x. \psi$ добавим к S формулу $\psi[x := d_i^{k+1}]$, где d_i^{k+1} некоторая свежая ранее не использовавшаяся в M_k константа.

Лемма 5.8.6.1. Если M непротиворечиво, то каждое множество из M_k — непротиворечиво

Доказательство по индукции, база очевидна $(M_0 = M)$. Переход:

- пусть M_k непротиворечиво, но M_{k+1} противоречиво: $M_k, M_{k+1} \backslash M_k \vdash A \& \neg A$
- Тогда (т.к. доказательство конечной длины): $M_k, \gamma_1, \gamma_2, \dots, \gamma_n \vdash A \& \neg A$ где $\gamma_i \in M_{k+1} \backslash M_k$.
- По теореме о дедукции: $M_k \vdash \gamma_1 \to \gamma_2 \to \cdots \to \gamma_n \to A \& \neg A$
- Научимся выкидывать первую посылку: $M_k \vdash \gamma_2 \to \cdots \to \gamma_n \to A \& \neg A$
- И по индукции придём к противоречию: $M_k \vdash A \& \neg A$.

Лемма 5.8.6.2. Если $M_k \vdash \gamma \to W$, и $\gamma \in M_{k+1} \backslash M_k$, то $M_k \vdash W$.

Доказательство до $M_k \vdash W$, в зависимости от происхождения γ :

• Случай $\forall x. \varphi : \gamma = \varphi[x := \theta]$

Допишем в конец доказательства:

$$\forall x. \varphi$$
 (гипотеза) ($\forall x. \varphi$) \rightarrow ($\varphi[x := \theta]$) (сх. акс. 11) γ (M. P.) W

Отдельно случай квантора существования.

- $\gamma = \varphi[x := d_i^{k+1}]$
- Перестроим доказательство $M_k \vdash \gamma \to W$: заменим во всём доказательстве d_i^{k+1} на y. Коллизий нет: под квантором d_i^{k+1} не стоит, переменной не является.
- Получим доказательство $M_k \vdash \gamma [d_i^{k+1} := y] \to W$ и дополним его:

$$\begin{array}{lll} \varphi[x:=y] \to W & \varphi[x:=d_i^{k+1}][d_i^{k+1}:=y] \\ (\exists y.\varphi[x:=y]) \to W & y \text{ не входит в } W \\ (\exists x.\varphi) \to (\exists y.\varphi[x:=y]) & \text{доказуемо (упражнение)} \\ \dots & \\ (\exists x.\varphi) \to W & \text{доказуемо как } (\alpha \to \beta) \to (\beta \to \gamma) \vdash \alpha \to \gamma \\ \exists x.\varphi & \text{гипотеза} \end{array}$$

5.8.4 Построение MБ

Определение 5.8.7.
$$M^* = \bigcup_k M_k$$

Теорема 5.8.7. M^* непротиворечиво.

Доказательство. От противного: доказательство противоречия конечной длины, гипотезы лежат в максимальном M_k , тогда M_k противоречив.

Определение 5.8.8. $M^{\rm E}$ — множество всех бескванторных формул из M^* .

По непротиворечивому множеству M можем построить $M^{\rm B}$ и для него построить модель \mathcal{M} . Покажем, что эта модель годится для M^* (и для M, так как $M \subset M^*$).

Определение 5.8.9. \mathcal{M} есть модель для M^* .

Доказатель ство. Покажем, что при $\varphi \in M^*$ выполнено $\mathcal{M} \models \varphi$. Докажем индукцией по количеству кванторов в φ .

- База: φ без кванторов. Тогда $\varphi \in M^{\mathcal{B}}$, отсюда $\mathcal{M} \models \varphi$ по построению \mathcal{M}
- Переход: пусть утверждение выполнено для всех формул с n кванторами. Покажем, что это выполнено и для n+1 кванторов.
 - Рассмотрим $\varphi = \exists x. \psi$, случай квантор всеобщности аналогично.
 - Раз $\exists x.\psi \in M^*$, то существует k, что $\exists x.\psi \in M_k$.
 - Значит, $\psi[x := d_i^{k+1}] \in M_{k+1}$.
 - По индукционному предположению, $\mathcal{M} \models \psi[x := d_i^{k+1}]$ в формуле n кванторов.
 - Но тогда $\llbracket \psi
 rbracket^{x:=\llbracket d_i^{k+1}
 rbracket} = \mathit{H}$
 - Отсюда $\mathcal{M} \models \exists x.\psi$.

Теорема 5.8.8 (Гёделя о полноте исчисления предикатов). Если M — замкнутое непротиворечивое множество формул, то оно имеет модель.

Доказательство. \bullet Построим по M множество формул с поверхностными кванторами M'.

- По M' построим непротиворечивое множество замкнутых бескванторных формул $M^{\rm B}$ ($M^{\rm B} \subseteq M^*$, теорема о непротиворечивости M^*).
- Дополним его до полного, построим для него модель \mathcal{M} (теорема о существовании модели).
- \mathcal{M} будет моделью и для M' ($M' \subseteq M^*$, лемма о модели для M^*), и, очевидно, для M.

Следствие 5.8.8.1 (из теоремы Гёделя о полноте). Исчисление предикатов полно.

Доказательство. • Пусть это не так, и существует формула φ , что $\models \varphi$, но $\not\vdash \varphi$.

- Тогда рассмотрим $M = \{ \neg \varphi \}$.
- M непротиворечиво: если $\neg \varphi \vdash A \& \neg A$, то $\vdash \varphi$ (упражнение).
- Значит, у M есть модель \mathcal{M} , и $\mathcal{M} \models \neg \varphi$.
- Значит, $\llbracket \neg \varphi \rrbracket = H$, поэтому $\llbracket \varphi \rrbracket = \Pi$, поэтому $\not\models \varphi$. Противоречие.

Теорема 5.8.9. Если у множества формул M есть модель \mathcal{M} , оно непротиворечиво.

Доказательстве. Пусть противоречиво: $M \vdash A\& \neg A$, в доказательстве использованы гипотезы $\delta_1, \delta_2, \dots, \delta_n$. Тогда $\vdash \delta_1 \to \delta_2 \to \dots \to \delta_n \to A\& \neg A$, то есть $[\![\delta_1 \to \delta_2 \to \dots \to \delta_n \to A\& \neg A]\!] = M$ (корректность). Поскольку все $[\![\delta_i]\!]_{\mathcal{M}} = M$, то и $[\![A\& \neg A]\!]_{\mathcal{M}} = M$ (анализ таблицы истинности импликации). Однако, $[\![A\& \neg A]\!] = \mathcal{J}$. Противоречие.

Следствие 5.8.9.1. Исчисление предикатов непротиворечиво

5.9 Машина Тьюринга

Определение 5.9.1. Машина Тьюринга — упорядоченная тройка:

- 1. Внешний алфавит q_1, \ldots, q_n
- 2. Внутренний алфавит (состояний) $s_1, \ldots, s_k; s_s$ начальное, s_f конечное.
- 3. Таблица переходов $\langle k, s \rangle \Rightarrow \langle k', s', \leftrightarrow \rangle$

Определение 5.9.2. Состояние машины Тьюринга — упорядоченная тройка:

- 1. Бесконечная лента с символом-заполнителем q_{ε} , текст конечной длины.
- 2. Головка над определённым символом
- 3. Символ состояния (состояние в узком смысле) символ внутреннего алфавита.

Пример (Машина, меняющая все 0 на 1, а все 1 — на 0). 1. Внешний алфавит ε , 0, 1

- 2. Внутренний алфавит s_s, s_f (начальное и завершающее состояния соответственно).
- 3. Переходы:

Пусть головка — на первом символе 011, состояние s_s .

$$\underline{011} \Rightarrow 1\underline{11} \Rightarrow 10\underline{1} \Rightarrow 100\underline{\varepsilon}$$

Состояние s_f , завершающее.

5.9.1 Разрешимость языка Машины Тьюринга

Определение 5.9.3. Язык — множество строк.

Определение 5.9.4. Язык L разрешим, если существует машина Тьюринга, которая для любого слова w возвращает ответ «да», если $w \in L$, и «нет», если $w \notin L$.

5.9.2 Неразрешимость задачи останова

Определение 5.9.5. Рассмотрим все возможные описания машин Тьюринга. Составим упорядоченные пары: описание машины Тьюринга и входная строка. Из них выделим язык останавливающихся на данном входе машин Тьюринга.

Теорема 5.9.1. Язык всех останавливающихся машин Тьюринга неразрешим

Доказательство. От противного. Пусть S(x,y) — машина Тьюринга, определяющая, остановится ли машина x, примененная к строке y.

$$W(x) = if(S(x,x))$$
 { while (true); return 0; } else { return 1; }

Что вернёт S(code(W), code(W))?

Как закодировать состояние машины?

- 1. внешний алфавит: n 0-местных функциональных символов $q_1,\dots,q_n;$ q_{ε} символ-заполнитель.
- 2. список: ε и c(l,s); «abc» представим как $c(q_a,c(q_b,c(q_c,\varepsilon)))$;
- 3. положение головки: «ab.pq» как $(c(q_b, c(q_a, \varepsilon)), c(q_p, c(q_q, \varepsilon)))$.
- 4. внутренний алфавит: k 0-местных функциональных символов s_1, \ldots, s_k . Из них выделенные s_s начальное и s_f завершающее состояние.

Достижимые состояния Предикатный символ $F_{x,y}(w_l, w_r, s)$: если у машины x с начальной строкой y состояние s достижимо на строке $rev(w_l)@w_r$.

Будем накладывать условия: семейство формул C_m . Очевидно, начальное состояние достижимо:

$$C_0 = F_{x,y}(\varepsilon, x, s_s).$$

Кодируем переходы

- 1. Занумеруем переходы.
- 2. Закодируем переход $m: \langle k, s \rangle \Rightarrow \langle k', s', \rightarrow \rangle$.

$$C_m = \forall w_l. \forall w_r. F_{x,y}(w_l, c(q_k, w_r), s_s) \to F_{x,y}(c(q_{k'}, w_l), w_r, s_{s'}).$$

3. Переход посложнее: $\langle k, s \rangle \Rightarrow \langle k', s', \leftarrow \rangle$.

$$C_m = \forall w_l. \forall w_r. \forall t. F_{x,y}(c(t, w_l), c(q_k, w_r), s_s) \rightarrow F_{x,y}(w_l, c(t, c(q_{k'}, w_r)), s_{s'}) \& \forall w_l. \forall w_r. F_{x,y}(\varepsilon, c(q_k, w_r), s_s) \rightarrow F_{x,y}(\varepsilon, c(q_{\varepsilon}, c(q_{k'}, w_r)), s_{s'}).$$

4. и т.п.

Итоговая формула: $C = C_0 \& C_1 \& \dots \& C_n$ «правильное начальное состояние и правильные переходы между состояниями».

Теорема 5.9.2. состояние s со строкой $rev(w_l)@w_r$ достижимо тогда и только тогда, когда $C \vdash F_{x,y}(w_l, w_r, s)$

Доказательство. (←) Рассмотрим модель: предикат $F_{x,y}(w_l, w_r, s)$ положим истинным, если состояние достижимо. Это — модель для C (по построению C_m). Значит, доказуемость влечёт истинность (по корректности).

(⇒) Индукция по длине лога исполнения.

5.9.3 Неразрешимость исчисления предикатов: доказательство

Теорема 5.9.3. Язык всех доказуемых формул исчисления предикатов неразрешим Т.е. нет машины Тьюринга, которая бы по любой формуле *s* определяла, доказуема ли она.

 \mathcal{A} оказательство. s_f — завершающее состояние.

Умение определять истинность формулы $\exists w_l.\exists w_r.F_{x,y}(w_l,w_r,s_f)$ разрешает задачу останова.

6 Формальная арифметика и Аксиоматика Пеано

Какие мы знаем числа?

1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ — дедекиндово сечение, если:

- (a) $A \cup B = \mathbb{Q}$
- (b) Если $a \in A$, $x \in \mathbb{Q}$ и $x \leqslant a$, то $x \in A$
- (c) Если $b \in B$, $x \in \mathbb{Q}$ и $b \leqslant x$, то $x \in B$
- (d) A не содержит наибольшего.

 \mathbb{R} — множество всех возможных дедекиндовых сечений.

2. Рациональные (\mathbb{Q}). $Q = \mathbb{Z} \times \mathbb{N}$ — множество всех простых дробей.

$$\langle p,q \rangle$$
 — то же, что $\frac{p}{q}$

$$\langle p_1, q_1 \rangle \equiv \langle p_2, q_2 \rangle$$
, если $p_1 q_2 = p_2 q_1$.

$$\mathbb{Q} = Q/_{\equiv}$$

А что такое целые числа?

«Бог создал целые числа, всё остальное — дело рук человека.» — Леопольд Кронеккер

$$\mathbb{Z}: \cdots -3, -2, -1, 0, 1, 2, 3, \ldots$$

Определим целые числа так:

- $Z = \{\langle x, y \rangle \mid x, y \in \mathbb{N}_0\}$
- Интуиция: $\langle x, y \rangle = x y$

•

$$\begin{array}{rcl} \langle a,b\rangle + \langle c,d\rangle & = & \langle a+c,b+d\rangle \\ \langle a,b\rangle - \langle c,d\rangle & = & \langle a+d,b+c\rangle \end{array}$$

- Пусть $\langle a,b\rangle \equiv \langle c,d\rangle$, если a+d=b+c. Тогда $\mathbb{Z}=Z/_{\equiv}$
- $0 = [\langle 0, 0 \rangle], 1 = [\langle 1, 0 \rangle], -7 = [\langle 0, 7 \rangle]$

А что такое натуральные числа?

$$\mathbb{N}: 1, 2, \dots$$
 или $\mathbb{N}_0: 0, 1, 2, \dots$

6.1 Акиоматика Пеано

Определим натуральные числа так:

Определение 6.1.1. N (или, более точно, $\langle N, 0, (') \rangle$) *соответствует* аксиоматике Пеано, если следующее определено/выполнено:

1. Операция «штрих» (') : $N \to N$, причём нет $a,b \in N$, что $a \neq b$, но a' = b'.

Если x = y', то x назовём следующим за y, а y — предшествующим x.

- 2. Константа $0 \in N$: нет $x \in N$, что x' = 0.
- 3. Индукция. Каково бы ни было свойство («предикат») $P: N \to V$, если:
 - (a) P(0)
 - (b) При любом $x \in N$ из P(x) следует P(x')

то при любом $x \in N$ выполнено P(x).

Как построить? Например, в стиле алгебры Линденбаума:

- 1. N язык, порождённый грамматикой $\nu := 0 \mid \nu \checkmark$
- 2. 0 90 < 0, x' 90 x + < 0

Пример. Что не соответствует аксиомам Пеано?

- 1. \mathbb{Z} , где $x' = x^2$. Функция «штрих» не инъективна: $-3^2 = 3^2 = 9$.
- 2. Кольцо вычетов $\mathbb{Z}/7\mathbb{Z}$, где x'=x+1. 6'=0, что нарушает свойства 0.
- 3. $\mathbb{R}^+ \cup \{0\}$, где x' = x + 1. Пусть P(x) означает « $x \in \mathbb{Z}$ »:
 - (a) P(0) выполнено: $0 \in \mathbb{Z}$.
 - (b) Если P(x), то есть $x \in \mathbb{Z}$, то и $x+1 \in \mathbb{Z}$ так что и P(x') выполнено.

Однако, P(0.5) ложно.

Докажем, например, что 0 единственный.

Теорема 6.1.1. 0 единственен: если t таков, что при любом y выполнено $y' \neq t$, то t = 0.

Доказатель ство. • Определим P(x) как «либо x = 0, либо x = y' для некоторого $y \in N$ ».

- 1. P(0) выполнено, так как 0 = 0.
- 2. Если P(x) выполнено, то возьмём x в качестве y: тогда для P(x') будет выполнено x' = y'.

Значит, P(x) для любого $x \in N$.

• Рассмотрим P(t): «либо t=0, либо t=y' для некоторого $y\in N$ ». Но так как такого y нет, то неизбежно t=0.

Определение 6.1.2. 1 = 0', 2 = 0'', 3 = 0''', 4 = 0'''', 5 = 0''''', 6 = 0'''''', 7 = 0''''''', 8 = 0'''''''', 9 = 0''''''''

Определение 6.1.3.

$$a+b=\left\{ egin{array}{ll} a, & \mbox{если } b=0 \ (a+c)', & \mbox{если } b=c' \end{array}
ight.$$

Например,

$$2 + 2 = 0'' + 0'' = (0'' + 0')' = ((0'' + 0)')' = ((0'')')' = 0'''' = 4$$

Определение 6.1.4.

$$a \cdot b = \left\{ egin{array}{ll} 0, & ext{если } b = 0 \\ a \cdot c + a, & ext{если } b = c' \end{array}
ight.$$

Пример: коммутативность сложения (лемма 1)

Лемма 6.1.1.1 (1). a + 0 = 0 + a

Доказательство. Пусть P(x) — это x + 0 = 0 + x.

- 1. Покажем P(0). 0+0=0+0
- 2. Покажем, что если P(x), то P(x'). Покажем P(x'), то есть $x' + 0 = \dots$

Значит, P(a) выполнено для любого $a \in N$.

Лемма 6.1.1.2 (2). a + b' = a' + b

Доказатель ство. P(x) — это a + x' = a' + x

- 1. a + 0' = (a + 0)' = (a)' = a' = a' + 0
- 2. Покажем, что P(x') следует из P(x): a + x'' = (a + x')' = (a' + x)' = a' + x'

Теорема 6.1.2. a + b = b + a

Доказательство индукцией по $b: P(x) - \mathfrak{I}$ это a + x = x + a. 1. a + 0 = 0 + a (демма 1)

2.
$$a + x' = (a + x)' = (x + a)' = x + a' = x' + a$$

6.1.1 Уточнение исчисления предикатов

- Пусть требуется доказывать утверждения про равенство. Введём E(p,q) предикат «равенство».
- Однако, $\not\vdash E(p,q) \to E(q,p)$: если $D = \{0,1\}$ и E(p,q) ::= (p > q), то $\models E(p,q) \to E(q,p)$.
- Конечно, можем указывать $\forall p. \forall q. E(p,q) \rightarrow E(q,p) \vdash \varphi$.
- Но лучше добавим аксиому $\forall p. \forall q. E(p,q) \rightarrow E(q,p)$.
- Добавив необходимые аксиомы, получим теорию первого порядка.

Определение 6.1.5. Теорией первого порядка назовём исчисление предикатов с дополнительными («нелогическими» или «математическими»):

- предикатными и функциональными символами;
- аксиомами.

Сущности, взятые из исходного исчисления предикатов, назовём логическими

Порядов	к Кванторы	Формализует суждения о	Пример
нулевой	запрещены	об отдельных значениях	И.В.
первый	по предметным переменным	о множествах	И.П.
		$S = \{t \mid \psi[x := t]\}$	
второй	по предикатным переменным	о множествах множеств	
		$S = \{\{t \mid P(t)\} \mid \varphi[p := P]\}$	

...

6.1.2Формальная арифметика

Определение 6.1.6. Формальная арифметика — теория первого порядка, со следующими добавленными нелогическими ...

- двуместными функциональными символами (+), (·); одноместным функциональным символом ('), нульместным фукнциональным символом 0;
- двуместным предикатным символом (=);

(A1)
$$a = b \to a = c \to b = c$$
 (A5) $a + 0 = a$

(A2) $a = b \rightarrow a' = b'$ (A6) a + b' = (a + b)'(A3) $a' = b' \rightarrow a = b$ (A7) $a \cdot 0 = 0$ • восемью нелогическими аксиомами:

(A4)
$$\neg a' = 0$$
 (A8) $a \cdot b' = a \cdot b + a$

• нелогической схемой аксиом индукции $\psi[x:=0]\&(\forall x.\psi\to\psi[x:=x'])\to\psi$, с метапеременными x и ψ .

Утверждение 6.1.1. a = a в формальной арифметике.

Доказатель ство. Пусть $\top ::= 0 = 0 \to 0 = 0 \to 0 = 0$, тогда:

- $a = b \rightarrow a = c \rightarrow b = c$ (Akc. A1) (1)
- $(a = b \to a = c \to b = c) \to \top \to (a = b \to a = c \to b = c)$ (2)(Cx. akc. 1)
- $\top \rightarrow (a = b \rightarrow a = c \rightarrow b = c)$ (M.P. 1, 2)(3)
- (4) $\top \rightarrow (\forall c. a = b \rightarrow a = c \rightarrow b = c)$ (Введ. ∀)
- (5) $\top \rightarrow (\forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c)$ (Введ. ∀)
- $\top \rightarrow (\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c)$ (Введ. ∀)
- (7)(Cx. akc 1)
- (8) $(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c)$ (M.P. 7, 6)
- $(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c) \rightarrow$ $\rightarrow (\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$ (Cx. akc. 11)
- (10) $\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c$ (M.P. 8, 9)
- (12) $\forall c. a + 0 = a \rightarrow a + 0 = c \rightarrow a = c$ (M.P. 10, 11)
- (14) $a + 0 = a \rightarrow a + 0 = a \rightarrow a = a$ (M.P. 12, 13)
- (Akc. A5) (15)a + 0 = a
- (16) $a + 0 = a \rightarrow a = a$ (M.P. 15, 14) (17)(M.P. 15, 16) a = a

6.2Арифметизация логики

Общие замечания

- Рассматриваем функции $\mathbb{N}_0^n \to \mathbb{N}_0$.
- Обозначим вектор $\langle x_1, x_2, \dots, x_n \rangle$ как \overrightarrow{x} .

6.2.1Примитивно-рекурсивные функции

Определение 6.2.1 (Примитивы Z, N, U, S). Примитив «Ноль» (Z)

$$Z: \mathbb{N}_0 \to \mathbb{N}_0, \qquad Z(x_1) = 0.$$

Определение 6.2.2. Примитив «Инкремент» (N)

$$N: \mathbb{N}_0 \to \mathbb{N}_0, \qquad N(x_1) = x_1 + 1.$$

Определение 6.2.3. Примитив «Проекция» (U) — семейство функций; пусть $k, n \in \mathbb{N}_0, k \leq n$ $U_n^k : \mathbb{N}_0^n \to \mathbb{N}_0, \quad U_n^k(\overrightarrow{x}) = x_k.$

Определение 6.2.4. Примитив «Подстановка» (S) — семейство функций; пусть $g: \mathbb{N}_0^k \to \mathbb{N}_0, \ f_1, \dots, f_k: \mathbb{N}_0^n \to \mathbb{N}_0$

$$S\langle g, f_1, f_2, \dots, f_k \rangle(\overrightarrow{x}) = g(f_1(\overrightarrow{x}), \dots, f_k(\overrightarrow{x})).$$

Определение 6.2.5 (примитив «примитивная рекурсия», R). Пусть $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$. Тогда $R\langle f, g \rangle : \mathbb{N}_0^{n+1} \to \mathbb{N}_0$, причём

$$R\langle f,g\rangle(\overrightarrow{x},y) = \left\{ \begin{array}{ll} f(\overrightarrow{x}), & y=0 \\ g(\overrightarrow{x},y-1,R\langle f,g\rangle(\overrightarrow{x},y-1)), & y>0 \end{array} \right..$$

Пример.

$$\begin{array}{ll} R\langle f,g\rangle(\overrightarrow{x},3) &= g(\overrightarrow{x},2,R\langle f,g\rangle(\overrightarrow{x},2)) \\ &= g(\overrightarrow{x},2,g(\overrightarrow{x},1,R\langle f,g\rangle(\overrightarrow{x},1))) \\ &= g(\overrightarrow{x},2,g(\overrightarrow{x},1,g(\overrightarrow{x},0,R\langle f,g\rangle(\overrightarrow{x},1)))) \\ &= g(\overrightarrow{x},2,g(\overrightarrow{x},1,g(\overrightarrow{x},0,f(\overrightarrow{x})))) \end{array}$$

6.2.2 Примитивно-рекурсивные функции

Определение 6.2.6. Функция f — примитивно-рекурсивна, если может быть выражена как композиция примитивов Z, N, U, S и R.

Теорема 6.2.1. f(x) = x + 2 примитивно-рекурсивна

Доказатель ство. $f = S\langle N, N \rangle$ N(x) = x + 1 $S\langle g, f \rangle(x) = g(f(x))$

$$f, g = N \ S\langle N, N \rangle(x) = N(N(x)) = (x+1) + 1$$

Пемма 6.2.1.1. f(a,b) = a + b примитивно-рекурсивна

Доказатель ство. $f = R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle$: $R\langle f, g \rangle (x,y) = \left\{ \begin{array}{ll} f(x), & y = 0 \\ g(x,y-1, R\langle f, g \rangle (x,y-1)), & y > 0 \end{array} \right.$

• База. $R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle (x, 0) = U_1^1(x) = x$

... = N(x + y) = x + y + 1

• Переход. $R\langle U_1^1,S\langle N,U_3^3\rangle\rangle(x,y+1)=$... = $S\langle N,U_3^3\rangle(x,y,R\langle U_1^1(x),S\langle N,U_3^3\rangle\rangle(x,y))=$... = $S\langle N,U_3^3\rangle(x,y,x+y)=$

Какие функции примитивно-рекурсивные?

- 1. Сложение, вычитание
- 2. Умножение, деление
- 3. Вычисление простых чисел
- 4. Неформально: все функции, вычисляемые конечным числом вложенных циклов for:

6.2.3 Общерекурсивные функции

Определение 6.2.7. Функция — общерекурсивная, если может быть построена при помощи примитивов Z, N, U, S, R и примитива минимизации:

$$M\langle f \rangle(x_1, x_2, \dots, x_n) = \min\{y : f(x_1, x_2, \dots, x_n, y) = 0\}$$

Если $f(x_1, x_2, \dots, x_n, y) > 0$ при любом y, результат неопределён.

```
Пример. Пусть f(x,y)=x-y^2, тогда \lceil \sqrt{x} \rceil = M \langle f \rangle(x) int sqrt(int x) { int y = 0; while (x-y*y > 0) y++; return y; }
```

Вообще, все почти все функции, о которых мы можем подумать являются примитивно-рекурсивными. Даже, квадратный корень на самом деле можно представить, как примитивно-рекурсивную функцию.

Определение 6.2.8. Функция Аккермана:

$$A(m,n) = \left\{ \begin{array}{ll} n+1, & m=0 \\ A(m-1,1), & m>0, n=0 \\ A(m-1,A(m,n-1)), & m>0, n>0 \end{array} \right. .$$

Теорема 6.2.2. Функция Аккермана — общерекурсивная, но не примитивно-рекурсивная. Она вычисляется настолько медленно, что мы не можем заранее сказать сколько итераций потребуется для вычисления.

Определение 6.2.9. Тезис Чёрча для общерекурсивных функций: любая эффективно-вычилимая функция $\mathbb{N}_0^k \to \mathbb{N}_0$ является общерекурсивной.

Определение 6.2.10. Запись вида $\psi(\theta_1, \dots, \theta_n)$ означает $\psi[x_1 := \theta_1, \dots, x_n := \theta_n]$

Определение 6.2.11 (Литерал числа).

$$\overline{a} = \left\{ \begin{array}{ll} 0, & \text{если } a = 0 \\ (\overline{b})', & \text{если } a = b+1 \end{array} \right. .$$

Пример: пусть $\psi:=x_1=0$. Тогда $\psi(\overline{3})$ соответствует формуле 0'''=0

Определение 6.2.12 (Выразимость отношений в Φ .А.). Будем говорить, что отношение $R \subseteq \mathbb{N}_0^n$ выразимо в Φ A, если существует формула ρ , что:

- 1. если $\langle a_1, \ldots, a_n \rangle \in R$, то $\vdash \rho(\overline{a_1}, \ldots, \overline{a_n})$
- 2. если $\langle a_1, \ldots, a_n \rangle \notin R$, то $\vdash \neg \rho(\overline{a_1}, \ldots, \overline{a_n})$

Теорема 6.2.3. отношение «равно» выразимо в Φ . А.: $R = \{\langle x, x \rangle \mid x \in \mathbb{N}_0\}$

Доказатель ство. Пусть $\rho := x_1 = x_2$. Тогда:

- $\vdash p = p$ при $p := \overline{k}$ при всех $k \in \mathbb{N}_0$: $\vdash 0 = 0, \vdash 0' = 0', \vdash 0'' = 0'', \dots$
- $\vdash \neg p = q$ при $p := \overline{k}, \ q := \overline{s}$ при всех $k, s \in \mathbb{N}_0$ и $k \neq s$. $\vdash \neg 0 = 0', \vdash \neg 0 = 0'', \vdash \neg 0''' = 0', \dots$

Определение 6.2.13 (Представимость функций в Ф.А.). Будем говорить, что функция $f: \mathbb{N}_0^n \to \mathbb{N}_0$ представима в ФА, если существует формула φ , что:

- 1. если $f(a_1,\ldots,a_n)=u$, то $\vdash \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 2. если $f(a_1,\ldots,a_n) \neq u$, то $\vdash \neg \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 3. для всех $a_i \in \mathbb{N}_0$ выполнено $\vdash (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, x)) \& (\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \rightarrow p = q)$

6.2.4 Соответствие рекурсивных и представимых функций

Теорема 6.2.4. Любая рекурсивная функция представима в Ф.А.

Теорема 6.2.5. Любая представимая в Ф.А. функция рекурсивна.

Теорема 6.2.6. Примитивы Z, N и U_n^k представимы в Φ .А.

Доказательство. • $\zeta(x_1, x_2) := x_2 = 0$, формальнее: $\zeta(x_1, x_2) := x_1 = x_1 \& x_2 = 0$

- $\nu(x_1, x_2) := x_2 = x_1'$
- $v(x_1,\ldots,x_n,x_{n+1}) := x_k = x_{n+1}$

формальнее:
$$v(x_1,\ldots,x_n,x_{n+1}) := (\underset{i \neq k,n+1}{\&} x_i = x_i) \& x_k = x_{n+1}$$

Примитив S представим в Ф.А.

$$S\langle f, g_1, \dots, g_k \rangle (x_1, \dots, x_n) = f(g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n)).$$

Теорема 6.2.7. Пусть функции f, g_1, \ldots, g_k представимы в Φ .А. Тогда $S\langle f, g_1, \ldots, g_k \rangle$ представима в Φ .А.

Доказатель ство. Пусть $f, g_1, ..., g_k$ представляются формулами $\varphi, \gamma_1, ..., \gamma_k$. Тогда $\langle f, g_1, ..., g_k \rangle$ будет представлена формулой

$$\exists g_1, \ldots, \exists g_k, \varphi(g_1, \ldots, g_k, x_{n+1}) \& \gamma_1(x_1, \ldots, x_n, g_1) \& \ldots \& \gamma_k(x_1, \ldots, x_n, g_k).$$

 β -функция Γ ёделя Мы хотим закодировать последовательность натуральных чисел произвольной длины.

Определение 6.2.14. β -функция Гёделя: $\beta(b,c,i) := b\%(1+(i+1)\cdot c)$ Здесь (%) — остаток от деления.

Теорема 6.2.8. β -функция Гёделя представима в Ф.А. формулой

$$\hat{\beta}(b, c, i, d) := \exists q. (b = q \cdot (1 + c \cdot (i+1)) + d) & (d < 1 + c \cdot (i+1))$$

Деление b на x с остатком: найдутся частное (q) и остаток (d), что $b = q \cdot x + d$ и $0 \le d < x$.

Теорема 6.2.9. Если $a_0, \ldots, a_n \in \mathbb{N}_0$, то найдутся такие $b, c \in \mathbb{N}_0$, что $a_i = \beta(b, c, i)$.

Доказательство. Китайская теорема об остатках (вариант формулировки): если u_0, \ldots, u_n — попарно взаимно-просты, и $0 \le a_i < u_i$, то существует такой b, что $a_i = b\%u_i$.

Положим $c = \max(a_0, \dots, a_n, n)!$ и $u_i = 1 + c \cdot (i+1)$.

- НОД $(u_i, u_j) = 1$, если $i \neq j$. Пусть p простое, $u_i : p$ и $u_j : p$ (i < j). Заметим, что $u_j u_i = c \cdot (j i)$. Значит, c : p или (j i) : p. Так как $j i \leq n$, то c : (j i), потому если и (j i) : p, всё равно c : p. Но и $(1 + c \cdot (i + 1)) : p$, отсюда 1 : p что невозможно.
- $0 \leqslant a_i < u_i$.

Условия китайской теоремы об остатках выполнены и найдётся b, что $a_i = b\%(1+c\cdot(i+1)) = \beta(b,c,i)$.

Теорема 6.2.10. Пусть $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$ представлены формулами φ и γ . Примитив $R\langle f, g \rangle$ представим в Φ .А. формулой $\rho(x_1, \dots, x_n, y, a)$:

$$\begin{split} \exists b. \exists c. (\exists a_0. \hat{\beta}(b,c,0,a_0) \& \varphi(x_1,...x_n,a_0)) \\ \& \quad \forall k. k < y \to \exists d. \exists e. \hat{\beta}(b,c,k,d) \& \hat{\beta}(b,c,k',e) \& \gamma(x_1,...x_n,k,d,e) \\ \& \quad \hat{\beta}(b,c,y,a) \end{split}.$$

Доказательство. Зафиксируем $x_1, \ldots, x_n, y \in \mathbb{N}_0$.

Шаг вычисления Об. Утверждение в Ф.А.
$$R\langle f,g\rangle(x_1,\dots,x_n,0)=f(x_1,\dots,x_n) \qquad a_0 \qquad \vdash \varphi(\overline{x_1},\dots,\overline{x_n},\overline{a_0})\\ R\langle f,g\rangle(x_1,\dots,x_n,1)=g(x_1,\dots,x_n,0,a_0) \qquad a_1 \qquad \vdash \gamma(\overline{x_1},\dots,\overline{x_n},0,\overline{a_1})\\ \dots\\ R\langle f,g\rangle(x_1,\dots,x_n,y)=g(x_1,\dots,x_n,y-1,a_{y-1}) \qquad a_y \qquad \vdash \gamma(\overline{x_1},\dots,\overline{x_n},\overline{y-1},\overline{a_y})\\ \Pi \text{о свойству }\beta\text{-функции, найдутся }b\text{ и }c,\text{ что }\beta(b,c,i)=a_i\text{ для }0\leqslant i\leqslant y.$$

Теорема 6.2.11. Пусть функция $f: \mathbb{N}_0^{n+1} \to \mathbb{N}_0$ представима в Ф.А. формулой $\varphi(x_1, \dots, x_n, y, r)$. Тогда примитив $M\langle f \rangle$ представим в Ф.А. формулой

$$\mu(x_1, \dots, x_n, y) := \varphi(x_1, \dots, x_n, y, 0) \& \neg \forall u.u < y \rightarrow \varphi(x_1, \dots, x_n, u, 0).$$

Теорема 6.2.12. Если f — рекурсивная функция, то она представима в Φ .А.

Доказательство. Индукция по структуре f.

6.2.5 Рекурсивность представимых в Ф.А. функций

Фиксируем f и x_1, x_2, \ldots, x_n . Обозначим $y = f(x_1, x_2, \ldots, x_n)$. По представимости нам известна φ , что $\vdash \varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$. Давайте просто переберём все результаты и доказательства!

- 1. Закодируем доказательства натуральными числами.
- 2. Напишем рекурсивную функцию, проверяющую доказательства на корректность.
- 3. Параллельный перебор значений и доказательств: $s=2^y\cdot 3^p$. Переберём все s, по s получим y и p. Проверим, что p код доказательства $\vdash \varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$.

Гёделева нумерация

1. Отдельный символ.

Номер	Символ	Номер	Символ	Имя	k, n	Гёделев номер
3	(17	&	0		27 + 6
5)	19	A	(')	0, 1	$27 + 6 \cdot 3$
7	,	21	3	(+)		$27 + 6 \cdot 9$
9		23	\vdash	(.)	1, 2	$27 + 6 \cdot 2 \cdot 9$
11	\neg	$25+6\cdot k$	x_k	(=)	0, 2	$29 + 6 \cdot 9$
13	\rightarrow	$27 + 6 \cdot 2^k \cdot 3^n$	f_k^n			
15	V	$29 + 6 \cdot 2^k \cdot 3^n$	P_k^n			

- 2. Формула. $\phi \equiv s_0 s_1 \dots s_{n-1}$. Гёделев номер: $\lceil \phi \rceil = 2^{\lceil s_0 \rceil} \cdot 3^{\lceil s_1 \rceil} \cdot \dots \cdot p_{n-1}^{\lceil s_{n-1} \rceil}$.
- 3. Доказательство. $\Pi = \delta_0 \delta_1 \dots \delta_{k-1}$, его гёделев номер: $\Pi' = 2^{\lceil \delta_0 \rceil} \cdot 3^{\lceil \delta_1 \rceil} \cdot \dots \cdot p_{k-1}^{\lceil \delta_{k-1} \rceil}$

Теорема 6.2.13. Следующая функция рекурсивна:

$$\operatorname{proof}(f, x_1, x_2, \dots, x_n, y, p) = \begin{cases} 1, & \operatorname{если} \vdash \phi(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}, \overline{y}), \\ p - \operatorname{гёделев} \text{ номер вывода}, f = {}^{\mathsf{г}}\phi^{\mathsf{T}} \\ 0, & \operatorname{иначе} \end{cases}$$

Идея доказательства. 1. Проверка доказательства вычислима.

2. Согласно тезису Чёрча, любая вычислимая функция вычислима с помощью рекурсивных функций.

Лемма 6.2.13.1. Следующие функции рекурсивны:

- 1. Функции $plog_k(n) = max\{p : n : k^p\}, fst(x) = plog_2(x)$ и $snd(x) = plog_3(x)$.
- 2. Числовые литералы: $\overline{k}: \mathbb{N}_0 \to \mathbb{N}_0$, $\overline{k}(x) = k$.

Теорема 6.2.14. Если $f: \mathbb{N}_0^n \to \mathbb{N}_0$, и f представима в Φ .А. формулой φ , то f — рекурсивна.

Доказательство. Пусть заданы x_1, x_2, \ldots, x_n . Ищем $\langle y, p \rangle$, что $\operatorname{proof}({}^{\mathsf{r}}\varphi^{\mathsf{T}}, x_1, x_2, \ldots, x_n, y, p) = 1$, напомним: $y = f(x_1, x_2, \ldots, x_n), \ p = {}^{\mathsf{r}}\Pi^{\mathsf{T}}, \ \Pi -$ доказательство $\varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$.

$$f = S\langle \mathrm{fst}, M \langle S \langle \mathrm{proof}, \overline{^{\mathsf{r}}_{\mathsf{q}^{\mathsf{1}}}}, U_{n+1}^{1}, U_{n+1}^{2}, \dots, U_{n+1}^{n}, S \langle \mathrm{fst}, U_{n+1}^{n+1} \rangle, S \langle \mathrm{snd}, U_{n+1}^{n+1} \rangle \rangle \rangle$$

6.3 Первая теорема Гёделя о неполноте арифметики

Парадокс лжеца

Предложение, указанное в центре данного слайда — ложное.

Проблема останова

Теорема 6.3.1. Невозможно разработать программу (функцию):

```
bool p (string source, string arg),
```

возвращающую true, если программа с исходным кодом source имеет один аргумент типа string и оканчивает работу, если ей передать на вход значение arg.

Доказательство. Определим программу

```
bool s (std::string arg) {
    if (p(arg)) {
       while (true);
    }
    return true;\\
}
```

- Пусть её полный исходный код в переменной source.
- Что вернёт р (source, source)?

Определение 6.3.1. Определим функцию W_1 : $W_1(x,p)=1$, если $x={}^r\xi^r$, где ξ — формула с единственной свободной переменной x_1 , а p — доказательство самоприменения ξ :

$$\vdash \xi(\overline{\xi})$$

 $W_1(x,p) = 0$, если это не так.

Замечание. $\overline{\xi}$ здесь означает получение гёделева номера ξ и запись его в виде литерала в Φ .А.

Теорема 6.3.2. Существует формула ω_1 со свободными переменными x_1 и x_2 , такая, что:

- 1. $\vdash \omega_1(\overline{\varphi}, \overline{p})$, если $p \overline{\varphi}$ делев номер доказательства самоприменения φ ;
- 2. $\vdash \neg \omega_1(\overline{\varphi}, \overline{p})$ иначе.

Доказатель ство. Опираясь на рекурсивность функции proof, легко показать рекусривность W_1 . Значит, эта функция представима в формальной арифметике некоторой формулой τ_1 . Возьмём $\omega_1(x_1, x_2) := \tau_1(x_1, x_2, \bar{1})$.

Определение 6.3.2. Определим формулу $\sigma(x) := \forall p. \neg \omega(x, p)$

Определение 6.3.3. Если для любой формулы $\phi(x)$ из $\vdash \phi(0)$, $\vdash \phi(\overline{1})$, $\vdash \phi(\overline{2})$, ... выполнено $\not\vdash \exists x. \neg \phi(x)$, то теория *омега-непротиворечива*.

Теорема 6.3.3. Омега-непротиворечивость влечёт непротиворечивость

Доказательство. Пусть $\phi(x) \equiv (x = x) \to (x = x) \to (x = x)$. Тогда $\vdash \phi(x)$ при всех x. Тогда $\not\vdash \exists x. \neg \phi(x)$ — то есть существует недоказуемая формула, т.е. теория непротиворечива.

Теорема 6.3.4. Первая теорема Гёделя о неполноте арифметики Если формальная арифметика непротиворечива, то $\not\vdash \sigma(\overline{\ '\sigma'})$.

• Если формальная арифметика ω -непротиворечива, то $\not\vdash \neg \sigma(\overline{})$.