MA 544: Homework 10

Carlos Salinas

April 6, 2016

PROBLEM 10.1 (WHEEDEN & ZYGMUND §7, Ex. 1)

Let f be measurable in \mathbf{R}^n and different from zero in some set of positive measure. Show that there is a positive constant c such that $f^*(\mathbf{x}) \ge c \|\mathbf{x}\|^{-n}$ for $\|\mathbf{x}\| \ge 1$.

PROBLEM 10.2 (WHEEDEN & ZYGMUND §7, Ex. 2)

Let $\varphi(\mathbf{x}), \mathbf{x} \in \mathbf{R}^n$, be a bounded measurable function such that $\varphi(\mathbf{x}) = 0$ for $\|\mathbf{x}\| \ge 1$ and $\int \varphi = 1$. For $\varepsilon > 0$, let $\varphi_{\varepsilon}(\mathbf{x}) := \varepsilon^{-n} \varphi(\mathbf{x}/\varepsilon)$. (φ_{ε} is called an approximation to the identity.) If $f \in L^1(\mathbf{R}^n)$, show that

$$\lim_{\varepsilon \to 0} (f * \varphi_{\varepsilon})(x) = f(\mathbf{x})$$

in the Lebesgue set of f. (Note that $\int \varphi_{\varepsilon} = 1$, $\varepsilon > 0$, so that

$$(f * \varphi_{\varepsilon})(\mathbf{x}) - f(\mathbf{x}) = \int [f(\mathbf{x} - \mathbf{y}) - f(\mathbf{x})] \varphi_{\varepsilon}(\mathbf{y}) d\mathbf{y}.$$

Use Theorem 7.16.)

PROBLEM 10.3 (WHEEDEN & ZYGMUND §7, Ex. 6)

Show that if $\alpha > 0$, then x^{α} is absolutely continuous on every bounded subinterval of $[0, \infty)$.

PROBLEM 10.4 (WHEEDEN & ZYGMUND §7, Ex. 8)

Prove the following converse of Theorem 7.31: If f is of bounded variation on [a, b], and if the function V(x) = V[a, x] is absolutely continuous on [a, b], then f is absolutely continuous on [a, b].

PROBLEM 10.5 (WHEEDEN & ZYGMUND §7, Ex. 9)

If f is of bounded variation on [a, b], show that

$$\int_{a}^{b} |f'| \le V[a, b].$$

Show that if equality holds in this inequality, then f is absolutely continuous on [a, b]. (For the second part, use Theorems 2.2(ii) and 7.24 to show that V(x) is absolutely continuous and then use the result of Exercise 8).

PROBLEM 10.6 (WHEEDEN & ZYGMUND §7, Ex. 11)

Prove the following result concerning changes of variable. Let g(t) be monotone increasing and absolutely continuous on $[\alpha, \beta]$ and let f be integrable on [a, b], $a := g(\alpha)$, $b := g(\beta)$. Then f(g(t))g'(t) is measurable and integrable on $[\alpha, \beta]$, and

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t)dt.$$

(Consider the case when f is the characteristic function of an interval, an open set, etc.)