OMNISCALE GRAVITY — 2-PAGE EXPLAINER (V4.6)

Christian (Cruz) deWilde and ChatGPT-5 (Thinking & Pro) 2025-08-15

CORE IDEA

Use a single weak-field potential $\Phi \equiv c^2 \chi$ for both motion and optics. We compute observables with the standard weak-field/1PN line element ($\beta = \gamma = 1$) as a bookkeeping device on a flat background—we are not claiming a full non-linear geometry in this release.

ASSUMPTIONS & GUARANTEES

- 1. Map. $\Phi \equiv c^2 \chi$.
- 2. **Newtonian limit & closure.** Test-particle motion obeys $\ddot{\mathbf{x}} = -\nabla\Phi$. The low-g regime is closed by either **A (QUMOND-style)** $\nabla^2\Phi = \nabla\cdot[\nu(g_b/a_0)\nabla\Phi_b]$, or **B (effective density)** $\nabla^2\Phi = 4\pi G(\rho_b + \rho_\chi)$ with $\rho_\chi = (4\pi G)^{-1}\nabla\cdot[(\nu-1)\nabla\Phi_b]$. Both guarantee a scalar, curl-free field so the same Φ is valid for disks and lenses.
- 3. **1PN optics & dynamics.** Isotropic-gauge metric with $\beta = \gamma = 1$ reproduces GR's weak-field tests.
- 4. **Same** Φ . Lensing/time-delays and mechanics use the same potential.
- 5. **GW sector (conservative).** $v_{\rm gw} = c$, +/× only; no scalar dipole.
- 6. Frame dragging (status). Assume GR, $g_{0i} = -4V_i/c^3$; to be derived from one action.
- 7. Operationally flat. Line element used as a bookkeeping device; flat background in this release.

STATUS OF SECTORS		
Sector	Now	Next
Scalar χ & Φ	Phenomenological; closure A/B	Derive scalar + metric together
Metric 1PN	$\beta=\gamma=1$ (GR-safe)	Derive with g_{0i}
Gravitomagnetism g_{0i}	Assume GR $(-4V_i/c^3)$	Predict Lense–Thirring
GWs	$v = c$, $+/\times$ only	Maintain pulsar/GW safety
α (for H_0)	Phenomenological	Fix via linear response of χ

FIGURES

Exponential-disk rotation curve.

Strong-lensing deflection (Hernquist); same Φ for light and motion.

Fermat contours (elliptical mass + external shear)

One-potential time delays (schematic).

 $|\mathrm{median}(\Delta H/H_0)|$ vs lpha (near-side kernel).

Shapiro delay with $\gamma=1$ (GR optics).