

# Forecasting Intro

School of Information Studies
Syracuse University

Patterns in Temporal Data

- Obtain
- Scrub
- Explore
- Model
- iNterpret







# Our Challenge This Week?





# Will Sales Rise or Fall?





## How Might We Know?





## Date Review

School of Information Studies
Syracuse University

## **Temporal Data**

| 1964-01 | 2815 | 1965-09 | 3595 |
|---------|------|---------|------|
| 1964-02 | 2672 | 1965-10 | 4474 |
| 1964-03 | 2755 | 1965-11 | 6838 |
| 1964-04 | 2721 | 1965-12 | 8357 |
| 1964-05 | 2946 | 1966-01 | 3113 |
| 1964-06 | 3036 | 1966-02 | 3006 |
| 1964-07 | 2282 | 1966-03 | 4047 |
| 1964-08 | 2212 | 1966-04 | 3523 |
| 1964-09 | 2922 | 1966-05 | 3937 |
| 1964-10 | 4301 | 1966-06 | 3986 |
| 1964-11 | 5764 | 1966-07 | 3260 |
| 1964-12 | 7312 | 1966-08 | 1573 |
| 1965-01 | 2541 | 1966-09 | 3528 |
| 1965-02 | 2475 | 1966-10 | 5211 |
| 1965-03 | 3031 | 1966-11 | 7614 |
| 1965-04 | 3266 | 1966-12 | 9254 |
| 1965-05 | 3776 | 1967-01 | 5375 |
| 1965-06 | 3230 | 1967-02 | 3088 |
| 1965-07 | 3028 | 1967-03 | 3718 |
| 1965-08 | 1759 | 1967-04 | 4514 |



#### Seasonal Data





## In Sample - Out of Sample





# In Sample – Out of Sample (cont.)





# Correlation







# Recommendation

School of Information Studies
Syracuse University

# Our Challenge This Week?





## Will Sales Rise or Fall?



# How Might We Know?



## Stationary

**ADF Statistic:** 

-8.892005

p-value: 0.000000

**Critical Values:** 

1%: -3.506

5%: -2.895

10%: -2.584



## Modeling Input





#### Recommendation

- Increasing sales in next quarter
- Opportunity to close forecast gap
- Consider data transformations
- Consider methods to account for holiday





# Forecasting

School of Information Studies
Syracuse University

## Patterns in Temporal Data

| _        |                   |             |       |      |
|----------|-------------------|-------------|-------|------|
| 7        | 10 Feb 2012 12:21 | Missed Call | 0779  | Hele |
| હ        | 10 Feb 2012 12:29 | 2 Seconds   | 0779  | Hele |
| 7        | 10 Feb 2012 13:47 | 1 Minute    | 0779  | Hele |
| צ        | 10 Feb 2012 15:05 | 2 Minutes   | 0191  |      |
| 7        | 10 Feb 2012 16:48 | 1 Minute    | 0779  | Hele |
| હ        | 10 Feb 2012 16:53 | 7 Seconds   | 0779  | Hele |
| હ        | 10 Feb 2012 16:54 | 39 Seconds  | 0779  | Hele |
| હ        | 10 Feb 2012 17:13 | 3 Seconds   | 0779  | Hele |
| હ        | 10 Feb 2012 17:13 | 2 Seconds   | 0779  | Hele |
| હ        | 10 Feb 2012 17:14 | 2 Seconds   | 0779  | Hele |
| હ        | 10 Feb 2012 17:16 | 2 Seconds   | 0779  | Hele |
| હ        | 10 Feb 2012 17:20 | 2 Seconds   | 0779  | Hele |
| ્હ       | 10 Feb 2012 17:23 | 2 Seconds   | 0779  | Hele |
| y        | 10 Feb 2012 17:25 | 10 Seconds  | 0779  | Hele |
| હ        | 10 Feb 2012 20:07 | 11 Seconds  | 0779  | Hele |
| y        | 11 Feb 2012 09:41 | 1 Minute    | 0779  | Hele |
| 7        | 12 Feb 2012 10:54 | 1 Minute    | 0779  | Hele |
| y        | 13 Feb 2012 12:50 | 2 Minutes   | 0779  | Hele |
| 7        | 13 Feb 2012 14:52 | 38 Seconds  | 0775  | Hele |
| <b>y</b> | 14 Feb 2012 09:30 | 2 Minutes   | 0779  | Hele |
| હ        | 14 Feb 2012 18:19 | 49 Seconds  | 0142  | Orie |
| y        | 15 Feb 2012 17:14 | 1 Minute    | 07790 | Hele |
| 15       | 15 Feb 2012 17:18 | Cancelled   | 07790 | Hele |
| હ        | 15 Feb 2012 17:18 | 1 Minute    | 0779  | Hele |
| 7        | 15 Feb 2012 17:26 | Missed Call | 07790 | Hele |
| · e      | 15 Feb 2012 17:27 | 5 Seconds   | 07790 | Hele |
|          |                   |             |       |      |





## Forecasting

- White noise
- Covariance
- Seasonality
- Stationary



#### White Noise

- A random process
- Independent
- Identically distributed
- Mean = zero
- Variance =  $\sigma^2$
- Correlation = zero



# Covariance



120

140

100

## Stationary

- Process does not vary
- Mean stable over time
- Variance stable over time
- White noise?
  - Yes
- Seasonality?
  - No



# Seasonality







ARIMA

School of Information Studies
Syracuse University

# Dynamics of a Time Series

Moving Average

Autoregressive

ARMA







## Moving Average Process

$$Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$$

- Weighted sum of most recent
- ACF contains spikes with rest zero
- Covariance stationary
  - Mean and autocovariance are not functions of time



## **Autoregressive Process**

$$Y_t = c + \varphi Y_{t-1} + \varepsilon_t$$

- Dependent on previous values
- ACF decay to zero
- PACF identify order at decay
- Stationary?



#### Arma/Arima

$$Y_t = c + \varphi Y_{t-1} + \varepsilon_t + \theta \varepsilon_{t-1}$$

- Mixture of AR and MA processes
- ACF decay after lags
- PACF identify order at decay





# Forecasting

School of Information Studies
Syracuse University

# Our Challenge This Week?





## Forecasting

- Moving average smoothing
- Exponential smoothing
- Box Jenkins models







#### Box Jenkins or ARIMA Models

$$Y_t = c + \varphi Y_{t-1} + \varepsilon_t + \theta \varepsilon_{t-1}$$

- Assumes stationary
- Transformation can help
- Model identification
- Model estimation
- Model validation







#### **Model Validation**

- Residual plot
- ACF should decay to zero
- Root mean square error
  - mse = mean\_squared\_error(y, predictions)
  - rmse = sqrt(mse)







## Data Structure

School of Information Studies
Syracuse University

## Temporal Data Structure

- Exploratory data analysis
- Temporal aggregation
- New features
- Transformation





# **Temporal Aggregation**



#### **New Features**

- Function of the data
- Cumulative sums
- Frequencies
- Counts

 NOTE: Always perform causal modeling – never use future information to predict now



#### **Transformations**

- Normalize
  - Subtracting mean
  - Dividing maximum value
- Take the log
- Make categorical bucketize
- Define threshold and make binary
  - >= threshold?
  - < threshold?</pre>