LAB 3 Bioinformatics

Hugo Morvan William Wiik

 $\begin{array}{c} {\rm STIMA} \\ {\rm Department~of~Computer~and~Information~Science} \\ {\rm Link\"{o}pings~universitet} \\ 2024-11-29 \end{array}$

Contents

1	Question 1		
	1.1	Question 1.1	1
	1.2	Question 1.2 *	4
2	Question 2	estion 2	7
	2.1	Question 2.1	7
	2.2	Question 2.2*	۶

1 Question 1

Using the script http://ape-package.ird.fr/APER/APER2/SylviaWarblers.R obtain the Sylvia warblers phylogeny (the script saves in in the file sylvia_nj_k80.tre). The geographical range data can be found in http://ape-package.ird.fr/APER/APER2/sylvia_data.txt and in the script is referenced as DF\$geo.range. Notice that one tip is removed due to missing data

1.1 Question 1.1

Explain all the steps in the script required to obtain the phylogeny and trait data.

Answer:

Load the libraries:

```
library(ape)
library(phyloch)
```

Read the nucleotid sequence:

```
x <- paste("AJ5345", 26:49, sep = "")
x <- c("Z73494", x)
sylvia.seq <- read.GenBank(x)</pre>
```

Allign the sequences

```
sylvia.clus <- clustal(sylvia.seq)
library(phyloch)
```

Loading required package: colorspace

Loading required package: XML

```
sylvia.maff <- mafft(sylvia.seq, path = "/usr/bin/mafft")
identical(sylvia.clus[x, ], sylvia.maff[x, ]) #check that the result are equivalent</pre>
```

[1] TRUE

Obtain species names and get rid of the rest:

```
taxa.sylvia <- attr(sylvia.seq, "species")
names(taxa.sylvia) <- names(sylvia.seq)
rm(sylvia.seq)
taxa.sylvia[1] <- "Sylvia_atricapilla"
taxa.sylvia[24] <- "Sylvia_abyssinica"</pre>
```

Read data from text file, then save the data:

```
sylvia.eco <- read.table("sylvia_data.txt")</pre>
str(sylvia.eco)
## 'data.frame':
                    26 obs. of 3 variables:
## $ mig.dist : int 0 5000 7500 5900 5500 3400 2600 0 0 0 ...
## $ mig.behav: chr
                      "resid" "short" "long" "long" ...
## $ geo.range: chr "trop" "temptrop" "temptrop" "temptrop" ...
rownames(sylvia.eco)
   [1] "Sylvia abyssinica"
                                "Sylvia_atricapilla"
                                                       "Sylvia borin"
##
  [4] "Sylvia_nisoria"
                               "Sylvia_curruca"
                                                       "Sylvia_hortensis"
## [7] "Sylvia_crassirostris" "Sylvia_leucomelaena"
                                                       "Sylvia_buryi"
                                                       "Sylvia_subcaeruleum"
## [10] "Sylvia_lugens"
                               "Sylvia_layardi"
## [13] "Sylvia_boehmi"
                               "Sylvia_nana"
                                                       "Sylvia_deserti"
## [16] "Sylvia_communis"
                                                      "Sylvia_deserticola"
                                "Sylvia_conspicillata"
## [19] "Sylvia_undata"
                                "Sylvia_sarda"
                                                       "Sylvia_balearica"
## [22] "Sylvia_cantillans"
                               "Sylvia_mystacea"
                                                       "Sylvia_melanocephala"
## [25] "Sylvia_rueppelli"
                                "Sylvia_melanothorax"
save(sylvia.clus, taxa.sylvia, sylvia.eco,
     file = "sylvia.RData")
```

Load the DNA sequences, and calculate pairwise distance matrices from the DNA sequences using various DNA evolutionary models (K80, F84, TN93, GG95):

```
sylvia.seq.ali<-sylvia.maff #or sylvia.clus or sylvia.eco
syl.K80 <- dist.dna(sylvia.seq.ali, pairwise.deletion = TRUE)
syl.F84 <- dist.dna(sylvia.seq.ali, model = "F84", p = TRUE)
syl.TN93 <- dist.dna(sylvia.seq.ali, model = "TN93", p = TRUE)
syl.GG95 <- dist.dna(sylvia.seq.ali, model = "GG95", p = TRUE)</pre>
```

Print correlation between the different model estimations:

```
round(cor(cbind(syl.K80, syl.F84, syl.TN93, syl.GG95)), 3)
##
           syl.K80 syl.F84 syl.TN93 syl.GG95
## syl.K80
             1.000
                    1.000
                              1.000
                                       0.928
## syl.F84
             1.000
                     1.000
                              1.000
                                       0.927
## syl.TN93
             1.000
                     1.000
                              1.000
                                       0.925
## syl.GG95
             0.928
                     0.927
                              0.925
                                       1.000
```

Bootstrap to Estimate significance of tree generating by Neighbor-Joining method.


```
#Save the tree
write.tree(nj.est, "sylvia_nj_k80.tre")
```

1.2 Question 1.2 *

Analyze the discrete (type=discrete) geographical range variable (DF\$geo.range) using ape::ace. Consider different models (parameter model). Report on the results and interpret the estimated rates and their standard errors.

```
x <- factor(DF$geo.range)
rooted <- multi2di(tr)
plot(rooted)</pre>
```



```
#Equal Rate (default)
ans <- ace(x, rooted, type = "discrete")
print(ans)</pre>
```

```
##
## Ancestral Character Estimation
##
## Call: ace(x = x, phy = rooted, type = "discrete")
##
```

```
##
      Log-likelihood: -20.89321
##
## Rate index matrix:
##
           temp temptrop trop
## temp
                       1
## temptrop
              1
## trop
              1
                       1
## Parameter estimates:
## rate index estimate std-err
##
            1 5.1813 1.7578
##
## Scaled likelihoods at the root (type '...$lik.anc' to get them for all nodes):
        temp temptrop
                             trop
## 0.01474506 0.94014800 0.04510693
#Symmetrical Model
ans <- ace(x, rooted, type = "discrete", model = "SYM")
## Warning in sqrt(diag(solve(h))): NaNs produced
print(ans)
##
##
      Ancestral Character Estimation
##
## Call: ace(x = x, phy = rooted, type = "discrete", model = "SYM")
##
      Log-likelihood: -19.52549
##
##
## Rate index matrix:
        temp temptrop trop
## temp
                            2
                       1
## temptrop
              1
## trop
              2
                       3
##
## Parameter estimates:
## rate index estimate std-err
##
          1 3.4054 1.8762
##
            2 0.0000
                           NaN
##
            3 9.3672 4.1510
##
## Scaled likelihoods at the root (type '...$lik.anc' to get them for all nodes):
         temp
                 temptrop
                                trop
## 0.001748764 0.839713129 0.158538107
```

```
#All rates Different Model
ans <- ace(x, rooted, type = "discrete", model = "ARD")</pre>
## Warning in sqrt(diag(solve(h))): NaNs produced
print(ans)
##
##
       Ancestral Character Estimation
##
## Call: ace(x = x, phy = rooted, type = "discrete", model = "ARD")
##
##
      Log-likelihood: -20.07269
##
## Rate index matrix:
##
           temp temptrop trop
## temp
              .
                       3 5
## temptrop
              1
                            6
## trop
              2
##
## Parameter estimates:
## rate index estimate std-err
##
           1 2.7162 2.0550
##
            2 0.0000 15.5967
##
            3 0.0000 31.8116
##
            4 0.0000
##
            5 0.0000 26.6413
##
            6 6.5245 3.9666
## Scaled likelihoods at the root (type '...$lik.anc' to get them for all nodes):
##
      temp temptrop
                        trop
         0
```

##

1

2 Question 2

Install the ade4 package. Included with it you will find the carnivores dataset, data(carni70)

2.1 Question 2.1

Explore the data set and report what can be found in it. Provide some plots.

```
library(ade4)
library(ggplot2)
library(cowplot)
data(carni70)
tab_df <- as.data.frame(carni70$tab)</pre>
summary(tab_df)
##
         size
                          range
## Min. : 0.040 Min.
                           : 0.120
## 1st Qu.: 1.282
                     1st Qu.: 2.062
## Median : 3.200
                     Median : 6.125
## Mean : 14.288
                      Mean :10.721
## 3rd Qu.: 7.293
                      3rd Qu.:17.750
## Max.
         :266.500
                            :36.000
                      Max.
p1 <- ggplot(tab_df, aes(x = size)) +
  geom_histogram(binwidth = 5, fill = "skyblue", color = "black", alpha = 0.7) +
  labs(title = "Histogram of Size", x = "Size", y = "Frequency") + theme_bw()
p2 <- ggplot(tab_df, aes(x = range)) +</pre>
  geom_histogram(binwidth = 1, fill = "salmon", color = "black", alpha = 0.7) +
  labs(title = "Histogram of Range", x = "Range", y = "Frequency") + theme_bw()
p3 <- ggplot(tab_df, aes(x = size, y = range)) +
  geom_point(color = "blue") +
  labs(title = "Scatter Plot of Size vs Range", x = "Size", y = "Range") + theme_bw()
cowplot::plot_grid(p1, p2, p3, ncol = 2)
```


- ## [1] "Total number of carnivores: 70"
- ## [1] "The carnivore with biggest size: Ursus_arctos"
- ## [1] "The carnivore with smallest size: Mustela_nivalis"
- ## [1] "The carnivore with biggest range: Puma_concolor"
- ## [1] "The carnivore with smallest range: Bassariscus_pauli"

There are 70 carnivores, with a median size of 3.2 and a median range of 6.1. Two clear outliers in size are Ursus arctos (Brown bear) and Tremarctos ornatus (Spectacled bear).

2.2 Question 2.2*