

MA0301 Elementær Diskret matematikk

Øving 2

Våren 2025

Øvingen skal leveres inn digitalt på OVSYS, som én enkelt individuelt .pdf-fil. Du må gjøre et ærlig forsøk på alle oppgavene som ikke har en stjerne etter seg.

$$\mathcal{R}_0 = \{(x, y) \in A \times A \mid x + y \text{ kan deles på 3}\}$$

$$\mathcal{R}_1 = \{(x, y) \in A \times A \mid x - y \text{ kan deles på 3}\}$$

 $\mathcal{R}_2 = \{(x, y) \in A \times A \mid x + y = 6\}$

Velg de riktige påstandene under. Flere av dem kan være sanne samtidig. Du trenger ikke å forklare svarene dine.

a) \mathcal{R}_0 :	□ er refleksiv.• er symmetrisk.□ er transitiv.□ er en funksjon.	(1,2},{1,5}, <i>{2,13</i> {2,43,{3,3},{4,2} {5,1}	Availible : 1,1 2,1,3,1 4,1 5,1 1,2 2,2 3,2 4,2 5,2
b) \mathcal{R}_1 :	 □ er antisymmetrisk • inneholder (4,1). • er symmetrisk. □ er en funksjon. 	. { 1,1 ³ , {1,4 ³ , {2,2 ³ (2,5 ³ , {3,3 ³ , {4,1 ³ (4,4 ³ , {5,2 ³ , {5,5 ³	1,1 2,1,3,1 4,1 5,1 1,2 2,2 3,2 4,2 5,2 1,3 2,3 3,5 4,3 5,3 1,4 2,4 3,4 4,4 5,4 1,5 2,5 3,5 4,5 5,5
c) \mathcal{R}_2 :	□ er refleksiv.♠ er en delmengde a□ er en delmengde a□ er en funksjon.		, {3,3}, {4,2}, {s,
d) Betr × Resele × symm × trons Reselet	\mathcal{R}_2 er en ekvivaler	ekvivalensrelasjoner. nsrelasjon. ne nevnt i denne oppgaven	er delvise ordninger.

Teori:

- Husk at det er tre krav for at en relasjon skal være en delvis ordning: Den må være refleksiv, transitiv og antisymmetrisk. For å vise at en relasjon er en delvis ordning, er det derfor tilstrekkelig å vise at den har hver av disse tre egenskapene.
- Husk at en ekvivalensrelasjon er en refleksiv, transitiv og symmetrisk relasjon.
- 2 Betrakt følgende resonnement:

"La \mathcal{R} være en symmetrisk og transitiv relasjon på en mengde E.

- 1. $(x,y) \in \mathcal{R} \Rightarrow (y,x) \in \mathcal{R}$ fordi \mathcal{R} er symmetrisk
- 2. $(x,y) \in \mathcal{R}$ og $(y,x) \in \mathcal{R} \Rightarrow (x,x) \in \mathcal{R}$ fordi \mathcal{R} er transitiv
- 3. Altså er \mathcal{R} refleksiv."

Vi ønsker å sjekke om denne resonneringen fungerer på et eksempel: La \mathcal{R} være relasjonen $\{(1,1)\}$ på mengden $A := \{1,2\}$.

- a) Er \mathcal{R} en symmetrisk og transitiv relasjon? Forklar.
- b) Er \mathcal{R} en refleksiv relasjon? Forklar.
- c) Bestem om resonnementet over er gyldig eller ugyldig.
- $\boxed{\mathbf{3}}$ La $A = \{1, 2, 3, \dots, 10\}$. Betrakt følgende relasjon \mathcal{R} på A:

$$\mathcal{R} = \{(a, b) \in A \times A \mid b \text{ kan deles på } a \text{ (uten rest)}\}$$

- a) Tegn \mathcal{R}
- b) Vis at relasjonen er en delvis ordning.
- c) Forklar hvorfor relasjonen er ikke en ekvivalensrelasjon.
- a) La $A = \{1, 2, 3, 4\}$ og $B = \{4, 5\}$. Forklar eller demonstrer ved opplisting at det er like mange elementer i $A \times B$ som i $B \times A$.
 - b) La A, B være to vilkårlige mengder. Vis at

$$A \times B \cap B \times A = (A \cap B) \times (B \cap A)$$

c) \bigstar La A,B være to vilkårlige mengder. Vis at $A\times B$ og $B\times A$ har samme kardinalitet ved å finne en bijektiv funksjon f som sender par $(x_A,x_B)\in A\times B$ til par $(y_B,y_A)\in B\times A$. (Hint: Gitt x_A og x_B , hva bør y_B og y_A være? Husk å forklare hvorfor funksjonen du foreslår er surjektiv og injektiv.)

Under har vi noen funksjoner $\mathbb{N} \to \mathbb{N}$, altså funksjoner som tar inn et naturlig tall og gir ut et naturlig tall. For hver av dem, ta stilling til om funksjonen er surjektiv og/eller injektiv. Husk å begrunne svaret ditt.

(husk at 0 teller som partall)

a)
$$f(x) = x + 2$$

b)
$$f(x) = \begin{cases} x+1, & \text{hvis } x \text{ er partall} \\ x-1, & \text{hvis } x \text{ er oddetall} \end{cases}$$

c)
$$f(x) = \begin{cases} x/2, & \text{hvis } x \text{ er partall} \\ (x-1)/2, & \text{hvis } x \text{ er oddetall} \end{cases}$$

- I denne oppgaven vil vi bevise at noen mengder er tellbare. I forelesningen ble det vist at \mathbb{Z} er tellbar fordi fant en injeksjon fra \mathbb{Z} til \mathbb{N} . Bruk en slik teknikk for å vise at følgende mengder er tellbare:
 - a) $\mathbb{N} \setminus \{0, 1\}$
 - b) $\mathbb{N} \times \{0, 1\}$
 - c) $\mathbb{N} \times \mathbb{N}$

2 Betrakt følgende resonnement:

"La $\mathcal R$ være en symmetrisk og transitiv relasjon på en mengde E.

- 1. $(x,y) \in \mathcal{R} \Rightarrow (y,x) \in \mathcal{R}$ fordi \mathcal{R} er symmetrisk
- 2. $(x,y) \in \mathcal{R}$ og $(y,x) \in \mathcal{R} \Rightarrow (x,x) \in \mathcal{R}$ fordi \mathcal{R} er transitiv
- 3. Altså er \mathcal{R} refleksiv."

Vi ønsker å sjekke om denne resonneringen fungerer på et eksempel: La \mathcal{R} være relasjonen $\{(1,1)\}$ på mengden $A:=\{1,2\}$.

- a) Er \mathcal{R} en symmetrisk og transitiv relasjon? Forklar.
- b) Er \mathcal{R} en refleksiv relasjon? Forklar.
- c) Bestem om resonnementet over er gyldig eller ugyldig.

a) Sym:
$$\forall x,y \in A, (x,y) \in R \Rightarrow (y,x) \Rightarrow$$

transitiv:
$$\forall x, y, z \in A, (x, y) \in R \cap (y, z) \in R =) (x, z) =)$$

Repleksiv relasjon knever at R har alle elementer fra A i R hvetfall en grag

$$\fbox{3}$$
 La $A=\{1,2,3,\ldots,10\}$. Betrakt følgende relasjon $\mathcal R$ på A :

$$\mathcal{R} = \{(a, b) \in A \times A \mid b \text{ kan deles på } a \text{ (uten rest)}\}$$

- a) Tegn \mathcal{R}
- b) Vis at relasjonen er en delvis ordning.
- c) Forklar hvorfor relasjonen er ikke en ekvivalensrelasjon.

$$R = \{(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(2,2),(4,2),(4,2),(6,2),(8,2),(8,2),(10,2),(3,3),(4,4),(5,5),(6,6),(7,7),(9,8),(9,9),(10,10),(6,3),(8,4),(10,5)\}$$

$$\therefore x = 10^2 \cdot Z \Rightarrow \text{ therefore } \underline{x} = 10^2$$

- 4
- a) La $A = \{1, 2, 3, 4\}$ og $B = \{4, 5\}$. Forklar eller demonstrer ved opplisting at det er like mange elementer i $A \times B$ som i $B \times A$.
- b) La A, B være to vilkårlige mengder. Vis at

$$A\times B\cap B\times A=(A\cap B)\times (B\cap A)$$

- a) skriver ikke dette opp,

 de må ha like mange elementer ferdi (Ax, By) gir
 len(A)·len(B) kombinasjoner som len(B)·len(A)
- b) $A \times B \cap B \times A = (A \cap B) \times (B \cap A)$

theregore

AXBOBXAG(AnB)X (BnA)

5 a E A n B, b E B n A

therefore be and = AnB and is in BNA

AXB 1 BXAS (AnB) X (BnA)

SOD AXBABXA = (AXB) (BXA)

5 Under har vi noen funksjoner $\mathbb{N} \to \mathbb{N}$, altså funksjoner som tar inn et naturlig tall og gir ut et naturlig tall. For hver av dem, ta stilling til om funksjonen er surjektiv og/eller injektiv. Husk å begrunne svaret ditt.

(husk at 0 teller som partall)

a)
$$f(x) = x + 2$$

b)
$$f(x) = \begin{cases} x+1, & \text{hvis } x \text{ er partall} \\ x-1, & \text{hvis } x \text{ er oddetall} \end{cases}$$

c)
$$f(x) = \begin{cases} x/2, & \text{hvis } x \text{ er partall} \\ (x-1)/2, & \text{hvis } x \text{ er oddetall} \end{cases}$$

a) sur: Nei Sideh vi har Nsom en input kan f(x) aldri være 0 du en

en funksjon of fre Atil B er surjektiv om den "treffer" alt i B, Altse om det for enhver y eB finnen en xEA slik at f(x)=y

inj: Ja. Alle y if(x) = y er unik og f(!x) vil aldrigi y.

Deg:

En runksjøn p pra A til B er injultiv om
elementene i B aldri tregges av to ulike
elementer i A:

 $f(x_i) = f(x_2) \Rightarrow x_1 < x_2$

Inj: Ja, χ trapper opp $1 \rightarrow 0 \rightarrow 3 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow ...$ og portsett så $f(x_1) = f(x_2)$, $\chi_1 = \chi_2$ er sant

C) Sur: Ja. x+1-1 = x begynner 0 = 0, 1-1 = 0 + 11 = x = x-1 = x + 10 ten hopp

Inj: Nei. $X_1 = 0$, $X_2 = 1 \Rightarrow X_1 = 0$, $X_2 = 1 = 0$. $f(X_1) = f(X_2)$ men $X_1 \neq X_2$