CS 65500 Advanced Cryptography

Lecture 16: Zero-Knowledge Proofs - II

Instructor: Aarushi Goel

Spring 2025

Agenda

- → Zero-Knowledge Proof for Graph Isomorphism
 → Proofs of Knowledge

Defining Interactive Proofs (without Zero-Knowledge)

<u>Definition</u>: A protocol T between a prover P and a verifin V is an interactive proof system for a language L if V is a PPT machine and the following properties hold:

· Completenus: +xEL

Pr [Out, [P(x) \ V(x)]=1]=1

Soundness: There exists a negligible function V(.), S.t., $\forall x \notin L$, $\forall x \in \mathbb{N}$ and all adversarial proves P^* ,

Pr[Out, [P(x) ← V(x)]=1] ≤ V(x)

We can also modify the above definition to consider PPT proves. Proofs that are only secure against PPT proves are called arguments.

Formalizing the Notion of Zero-Knowledge.

- → If an interactive proof convinued the verifier that x ∈ l, then this interactive proof should not leak any information about the witness we that the prover used to participate in in the interactive proof.
- In other words, whatever the verifier saw during the interactive proof, it could have $\frac{*simulated}{}$ on its own using x, L and the fact that $x \in L$.

Defining Zero-Knowledge

2. { S(1), x,z, L)}

Definition: An interactive proof Π between $P \ V$ for a language L with witness relation R is said to be zero-knowledge if for every (expected) n.u. PPT adversary V^* , there exists a PPT simulator S, such that $\forall x \in L$, $\forall w \in R(x)$, $\forall z \in \{0,1]^*$ and $\forall x \in N$, the following two distributions are computationally indistinguishable:

1. $\{View_{V^*} [P(x,w) \longleftrightarrow V^*(x,z)]\}$

We can also consider the notions of Statistal/perfect Zero-Knowledge against unbounded adversaries, if the above distributions are statistically close (oridentical respectively)

Graph Isomorphism

- \rightarrow Let G = (V, E) be a graph, when V is the set of vertices & E is the set of edges
- \neg $G_0 = (V_0, E_0)$ and $G_1 = (V_1, E_1)$ are said to be isomorphic if there exists a permutation π , s.t.
 - * V, = { T(v) / ve Vo }
 - * $E_1 = \{(\pi(v_1), \pi(v_2)) \mid (v_1, v_2) \in E_0 \}$ in other words, $G_1 = \pi(G_0)$

Graph isomorphism is in NP.

Zero-Knowledge Proof for Graph Isomorphism Prover wants to convince the verifier that graphs Go and G, are isomorphic without revealing π , where $\pi(G_0) = G_1$.

(Go, Gr, T)

Verifier (Go, Gi,)

Sample a random permutation
$$\sigma$$

H = $\sigma(G_b)$

Sample a random bit $b \in \{0,1\}$
 b'

Sample a random bit $b' \in \{0,1\}$

$$T = \begin{cases} \sigma & \text{if } b' = b \\ \sigma \cdot \pi^{-1} & \text{if } b = 0, b' = 1 \end{cases}$$

$$\sigma \cdot \pi & \text{if } b = 1, b' = 0$$

Completenus: If $G_1 = \pi(G_{10})$ then it will always be the case that $T(G_{10}) = \sigma(G_{10})$

Soundness: If the verifier is honest, it chooses b' randomly. In this case, if $\overline{A} \pi$ s.t. $G_1 = \pi(G_0)$, then $\tau(G_{b'}) = \sigma(G_b)$ iff b = b'. This only happens with probability $\frac{1}{2}$.

(We can repeat this protocol multiple times and let the verifier accept only if the protocol outputs 1 on each repitition. If we repeat λ times, the probability that the output will be 1 on each repitition is $\frac{1}{2^{\lambda}}$

Zero-Knowledge: $V_{\text{lew}_{V^*}}^* \left[P(G_{10}, G_{11}, \pi) \longleftrightarrow V_{\text{lew}_{V^*}}^* \left(G_{10}, G_{11} \right) \right] = (b', H, \sigma)$ $S^{V^*} \left(I^{\lambda}, G_{0}, G_{1} \right) :$

- → Randomly choose a permutation o & b + \$ 90,19.
- → Set H = 5 (Gb) > b'= V* (Go, G1, H)
- \rightarrow If b'=b output (b', H, σ) , otherwise restart with a new σ, b .

In order to show that s is a valid simulator, it suffices to prove that if Go and G, are isomorphic, then

- 1. S runs ûn expected polynomial time
- 2. Distribution of its output is indistinguishable from Viewyx

- 1. S runs ûn expected polynomial time: Since T is random, b'
 cannot depend on b. Therefore b & b' are chosen independently $\Rightarrow b=b' \text{ with probability } 1/2$
 - ⇒ Smust run twice in expectation before haulting.
- 2. Distribution of its output is indistinguishable from Viewyx!

 Since we have argued that Pr[b=b']=1/2, this implies that whether or not S halts on a choice of (b,σ) is independent of (b,σ) and therefore of H.
 - => (6, H, o) are distributed identically to View vx

Zero Knowledge Proofs for NP

- → This was an example of a ZKP with perfect zero-Knowledge.
- → In general we know of ZKPs with computational zero-knowledge for NP-compute languages such as circuit SAT. Graph-hamiltonicity etc.
 - ⇒ There exist computational ZKPs for* all languages in NP.

Proofs of Knowledge

- → Soundness in a zero-knowledge proof ensures that if x \$ L, then a malicious prover will not be able to compute an accepting proof with high probability.
- → In some applications, however, we require a stronger guarantee.
- In particular, we want that even if $x \in L$, but if the prove does not know the corresponding witness w, st, $R_L(x,w)=1$, then he cannot compute an accepting proof with high probability
- In other words, if a prove can compute an accepting proof to prove that xEL, then with a high probability, he must know a corresponding witness, s.t., $R_L(x,w)=1$

- → This property is called knowledge soundness and proofs that satisfy this property are called proofs of Knowledge.
- → This property is formalized by snowing existence of an *extractor* algorithm which given oracle access to the adversarial prove can extract a valid witness corresponding to the statement

Defining Zuo-Proofs of Knowledge

Definition: A zero-Knowledge proof Π between P & V for a language L, with witness relation R_L is said to be a proof of Knowledge with Knowledge error E, if \exists an algorithm E^{P*} , called an extractor, that runs in expected polynomial time, such that the following holds for every X and every P^*

$$Pr[Out_{V}[P(x) \leftrightarrow V(x)]=1] - Pr[R_{L}(x,w)=1 \quad w \leftarrow E^{p^{*}}(x)] \leq \epsilon$$

ZKPs that only satisfy knowledge soundness against PPT provers are called arguments of Knowledge

Knowledge Soundness in ZKP for Graph Isomorphism.

- Consider an extractor EXT that proceeds as follows:

 1. EXT queries the malicious prover P* to get the first round message

 H
- 2. EXT then queries P^* on input b'=0 to get a third round message T_0
- 3. EXT again queries P* on input b'=1 to get another third wound message Z1
 4. Given To and Z1, EXT can now learn T, such that TT(G10)=G1
 - How?