Machine Learning Exercise Sheet 2

Yannick Zelle and Nina Fischer

October 25, 2021

Exercise 1

(a)

Given is the DAG G_1 with the following associated probabilities:

•
$$p(A) = 0.3$$

•
$$p(B \mid A) = 0.2$$

•
$$p(B \mid \neg A) = 0.4$$

•
$$p(C \mid B) = 0.7$$

•
$$p(C \mid \neg B) = 0.5$$

From there we can deduct the following probabilities:

•
$$p(\neg A) = 0.7$$

•
$$p(\neg B \mid A) = 0.8$$

•
$$p(\neg B \mid \neg A) = 0.6$$

•
$$p(\neg C \mid B) = 0.3$$

•
$$p(\neg C \mid \neg B) = 0.5$$

From G_1 we can deduct the joint probability distribution:

$$p(A, B, C) = p(A) \cdot p(B \mid A) \cdot p(C \mid B)$$

Using this Probability distribution we can calculate P(B):

$$\begin{split} p(B) &= \sum_{A,C} p(A,B=1,C) \\ &= p(A) \cdot p(B \mid A) \cdot p(C \mid B) \\ &+ p(\neg A) \cdot p(B \mid \neg A) \cdot p(C \mid B) \\ &+ p(\neg A) \cdot p(B \mid \neg A) \cdot p(\neg C \mid B) \\ &+ p(A) \cdot p(B \mid A) \cdot p(\neg C \mid B) \\ &= 0.3 \cdot 0.2 \cdot 0.7 \\ &+ 0.7 \cdot 0.4 \cdot 0.7 \\ &+ 0.7 \cdot 0.4 \cdot 0.3 \\ &+ 0.3 \cdot 0.2 \cdot 0.3 \\ &= 0.34 \end{split}$$

and P(C):

$$\begin{split} p(C) &= \sum_{A,B} p(A,B,C=1) \\ &= p(A) \cdot p(B \mid A) \cdot p(C \mid B) \\ &+ p(\neg A) \cdot p(B \mid \neg A) \cdot p(C \mid B) \\ &+ p(\neg A) \cdot p(\neg B \mid \neg A) \cdot p(C \mid \neg B) \\ &+ p(A) \cdot p(\neg B \mid A) \cdot p(C \mid \neg B) \\ &= 0.3 \cdot 0.2 \cdot 0.7 \\ &+ 0.7 \cdot 0.4 \cdot 0.7 \\ &+ 0.7 \cdot 0.6 \cdot 0.5 \\ &+ 0.3 \cdot 0.8 \cdot 0.5 \\ &= 0.568 \end{split}$$

(b)

Given is a DAG \mathcal{G}_2 and the associated probabilities:

- p(A) = 0.3
- $p(B \mid A) = 0.2$
- $p(B \mid \neg A) = 0.4$
- $p(c \mid A) = 0.7$
- $p(C \mid \neg A) = 0.6$
- $p(D \mid B, C) = 0.9$

- $p(D \mid B, \neg C) = 0.5$
- $p(D \mid \neg B, C) = 0.3$
- $p(D \mid \neg B, \neg C) = 0.3$

From there we can deduct the following probabilities:

- $p(\neg A) = 0.7$
- $p(\neg B \mid A) = 0.8$
- $p(\neg B \mid \neg A) = 0.6$
- $p(\neg c \mid A) = 0.3$
- $p(\neg C \mid \neg A) = 0.4$
- $p(\neg D \mid B, C) = 0.1$
- $p(\neg D \mid B, \neg C) = 0.5$
- $p(\neg D \mid \neg B, C) = 0.7$
- $p(\neg D \mid \neg B, \neg C) = 0.7$

From the G_2 we can deduct the following joint Probability distribution:

$$p(A, B, C, D) = p(A) \cdot p(C \mid A) \cdot p(B \mid A) \cdot p(D \mid B, C)$$

Using the joint Probability distribution and the probabilities from above, we can calculate p(B):

$$\begin{split} p(B) &= \sum_{A,C,D} p(A,B=1,C,D) \\ &= p(A) \cdot p(C \mid A) \cdot p(B \mid A) \cdot p(D \mid B,C) \\ &+ p(A) \cdot p(C \mid A) \cdot p(B \mid A) \cdot p(\neg D \mid B,C) \\ &+ p(A) \cdot p(\neg C \mid A) \cdot p(B \mid A) \cdot p(D \mid B, \neg C) \\ &+ p(A) \cdot p(\neg C \mid A) \cdot p(B \mid A) \cdot p(\neg D \mid B, \neg C) \\ &+ p(A) \cdot p(C \mid \neg A) \cdot p(B \mid A) \cdot p(D \mid B, \neg C) \\ &+ p(\neg A) \cdot p(C \mid \neg A) \cdot p(B \mid \neg A) \cdot p(D \mid B,C) \\ &+ p(\neg A) \cdot p(\neg C \mid \neg A) \cdot p(B \mid \neg A) \cdot p(D \mid B, \neg C) \\ &+ p(\neg A) \cdot p(\neg C \mid \neg A) \cdot p(B \mid \neg A) \cdot p(\neg D \mid B, \neg C) \\ &+ p(\neg A) \cdot p(\neg C \mid \neg A) \cdot p(B \mid \neg A) \cdot p(\neg D \mid B, \neg C) \\ &= 0.7 \cdot 0.7 \cdot 0.2 \cdot 0.9 \\ &+ 0.7 \cdot 0.3 \cdot 0.8 \cdot 0.1 \\ &+ 0.7 \cdot 0.3 \cdot 0.2 \cdot 0.5 \\ &+ 0.7 \cdot 0.3 \cdot 0.2 \cdot 0.5 \\ &+ 0.3 \cdot 0.6 \cdot 0.4 \cdot 0.1 \\ &+ 0.3 \cdot 0.4 \cdot 0.4 \cdot 0.5 \\ &+ 0.3 \cdot 0.4 \cdot 0.4 \cdot 0.5 \\ &= 0.27 \end{split}$$

and p(D):

$$\begin{split} p(D) &= \sum_{A,C,B} p(A,B,C,D=1) \\ &= p(A) \cdot p(C \mid A) \cdot p(B \mid A) \cdot p(D \mid B,C) \\ &+ p(A) \cdot p(C \mid A) \cdot p(\neg B \mid A) \cdot p(D \mid \neg B,C) \\ &+ p(A) \cdot p(\neg C \mid A) \cdot p(B \mid A) \cdot p(D \mid B,\neg C) \\ &+ p(A) \cdot p(\neg C \mid A) \cdot p(\neg B \mid A) \cdot p(D \mid \neg B,\neg C) \\ &+ p(A) \cdot p(C \mid \neg A) \cdot p(B \mid \neg A) \cdot p(D \mid B,C) \\ &+ p(\neg A) \cdot p(C \mid \neg A) \cdot p(B \mid \neg A) \cdot p(D \mid B,C) \\ &+ p(\neg A) \cdot p(\neg C \mid \neg A) \cdot p(B \mid \neg A) \cdot p(D \mid B,\neg C) \\ &+ p(\neg A) \cdot p(\neg C \mid \neg A) \cdot p(B \mid \neg A) \cdot p(D \mid B,\neg C) \\ &+ p(\neg A) \cdot p(\neg C \mid \neg A) \cdot p(\neg B \mid \neg A) \cdot p(D \mid \neg B,\neg C) \\ &= 0.7 \cdot 0.7 \cdot 0.2 \cdot 0.9 \\ &+ 0.7 \cdot 0.3 \cdot 0.8 \cdot 0.3 \\ &+ 0.7 \cdot 0.3 \cdot 0.8 \cdot 0.3 \\ &+ 0.3 \cdot 0.6 \cdot 0.4 \cdot 0.9 \\ &+ 0.3 \cdot 0.4 \cdot 0.4 \cdot 0.5 \\ &+ 0.3 \cdot 0.4 \cdot 0.6 \cdot 0.3 \\ &= 0.36 \end{split}$$

Exercise 2

(a)

$$p(A, B, C, D, E, F) = p(A) \cdot p(B \mid A) \cdot p(C \mid B) \cdot p(D \mid B) \cdot p(E \mid C, D) \cdot p(F \mid E)$$

(b)
$$p(A, B, C, D, E) = p(A) \cdot p(B \mid A) \cdot p(C \mid B) \cdot p(D \mid B) \cdot p(E \mid C, D)$$

(c)

Task: Find a minimal set S that d-seperates A and F and prove that this is the case.

Proof. We propose $S = \{B\}$ to prove that the criteria of S holds we have actually to prove two statements:

- 1. S d-seperates A and F
- 2. there is no set with fewer elements that also d-seperates A and F

We will start with the first statement. Between A and F exist two paths:

$$p_1 = A \to B \to C \to E \to F$$

 $p_2 = A \to B \to D \to E \to F$

We have p_1 is blocked by S because with $i_k = B$ we have : $i_k \in S$ and $A \to B \to C \leftrightarrow i_{k-1} \to i_k \to i_{k+1}$ and p_2 is blocked by S because with $i_k = B$ we have : $i_k \in S$ and $A \to B \to D \leftrightarrow i_{k-1} \to i_k \to i_{k+1}$ It is left to show that there is no set with fewer elements that also d-seperates A and F. The only set that has fewer elements is the empty set but the empty set is neither blocking p_1 nor p_2 according to the definition.

(d)

Proof. We will proof that $C \perp\!\!\!\perp_G D \mid B$ i.e B d-seperates C and D holds. This is the case if every path is blocked by $S = \{B\}$. There are two paths from C to D:

$$p_1 = C \leftarrow B \rightarrow D$$
$$p_2 = C \rightarrow E \leftarrow D$$

 p_1 is blocked by S because with $i_k = B$ we have $i_k \in S$ and $C \leftarrow B \rightarrow D \leftrightarrow i_{k-1} \leftrightarrow \leftarrow i_k \rightarrow i_{k+1}$. Also p_2 is blocked by S because with $i_k = E$ we have : $i_k \notin S$ and $C \rightarrow E \leftarrow D \leftrightarrow i_{k-1} \rightarrow i_k \leftarrow i_{k+1}$ So every path between C and D is blocked by S and therefore $C \perp_{G} D \mid B$ holds.

Exercise 3

(a)

We will proof that

$$A \to B \to C \implies A \perp\!\!\!\perp C \mid B$$

Proof.

(b)

We will proof that

$$A \leftarrow B \leftarrow C \implies A \perp \!\!\! \perp \!\!\! \perp C \mid B$$

and we know from a that $p(C) \cdot p(B \mid C) \Leftrightarrow p(B) \cdot p(C \mid B)$.

Proof.

$$\begin{split} p(A,B,C) &= p(A\mid B) \cdot p(B\mid C) \cdot p(C) \\ \Leftrightarrow p(A,B,C) &= p(A\mid B) \cdot p(C\mid B) \cdot p(B) \\ \Leftrightarrow \frac{p(A,B,C)}{p(B)} &= p(A\mid B) \cdot p(C\mid B) \\ \Leftrightarrow p(A,C\mid B) &= p(A\mid B) \cdot p(C\mid B) \\ \Longrightarrow A \bot C \mid B \end{split}$$

(c)

We will proof that

$$A \leftarrow B \rightarrow C \implies A \perp \!\!\! \perp \!\!\! \perp C \mid B$$

Proof.

$$\begin{split} p(A,B,C) &= p(A\mid B) \cdot p(B) \cdot p(C\mid B) \\ \Leftrightarrow \frac{p(A,B,C)}{p(B)} &= p(A\mid B) \cdot p(C\mid B) \\ \Leftrightarrow p(A,C\mid B) &= p(A\mid B) \cdot p(C\mid B) \\ \Longrightarrow A \! \perp \! \perp \! C \mid B \end{split}$$

(d)

We will proof that

$$A \to B \leftarrow C \implies A \perp\!\!\!\perp C$$

Proof.

$$\begin{split} p(A,B,C) &= p(A) \cdot p(B \mid A,C) \cdot p(C) \\ \Leftrightarrow \frac{p(A,B,C)}{p(B \mid A,C)} &= p(A) \cdot P(C) \\ \Leftrightarrow \frac{p(A,B,C)}{\frac{p(A,B,C))}{p(A,C)}} &= p(A) \cdot p(C) \\ \Leftrightarrow p(A,C) &= p(A) \cdot p(C) \\ \Leftrightarrow A \bot C \end{split}$$

Exercise 4

(a)

We will proof that $E(a \cdot X + Y) = a \cdot E(X) + E(Y)$ with the sum rule and the factor rule.

Proof.

$$E(a \cdot X + Y) = \int a \cdot X + Y dx$$
$$= \int a \cdot X dx + \int Y dx$$
$$= a \cdot \int X dx + \int Y dx$$
$$= a \cdot E(X) + E(Y)$$

(b)

We will proof that $Var(a \cdot X) = a^2 \cdot Var(X)$ with the result of a.

Proof.

$$Var(a \cdot X) = E(a \cdot X - \mu)^{2}$$

$$= E(a^{2} \cdot (X - \mu)^{2})$$

$$= a^{2} \cdot E(X - \mu)^{2}$$

$$= a^{2} \cdot Var(X)$$

Exercise

In this Exercise we attempt to show that the mean μ is also the mode of the Gaussian normal distribution:

$$N(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-u)^2}{2\sigma^2}}$$

Proof. The mode of N is the point where N obtains it's maximum value. We will therefore search for the point where N is maximal. This is the case only if $\frac{dN}{dx}=0$

$$\frac{dN}{dx} = \frac{-2(x-u)}{2\sigma^2 \sqrt{2\pi\sigma^2}} e^{\frac{-(x-u)^2}{2\sigma^2}}$$

Since $e^x>0$ for all x this function becomes only 0 if x=u. We can also deduct that for $x\in (-\infty\mu]: \frac{-2(x-u)}{2\sigma^2\sqrt{2\pi\sigma^2}}\geq 0$ and for $x\in [\mu,\infty): \frac{-2(x-u)}{2\sigma^2\sqrt{2\pi\sigma^2}}\leq 0$, since $e^x>0$ this determines the behaviour of the drivative and there for $(\mu,N(\mu\mid\mu,\sigma))$ is the maximum.