MÉMOIRE DE RECHERCHE

Approximation numérique d'ordre élevé de l'équation de Saint Venant

Auteurs :
Brice GONEL
Romain PINGUET

Professeur encadrant : Thomas REY

Table des matières

1	Intro	duction et description des équations	4		
2	Découverte du modèle et premières propriétés qualitatives				
3	3 Implémentation du schéma de Rusanov				
	3.1	Présentation du schéma et résultats de convergence	5		
	3.2	Validation de l'implémentation avec des tests	7		
4	Utilisation des limiteurs de pente pour une montée en ordre				
5	Passa	ige au cas 2D	7		
A	Anne	xes	8		
	A .1	Le Code	8		

1 Introduction et description des équations

Ici, il s'agit de décrire les différentes quantités en jeu (h, u, q et Z), d'énoncer les équations et si possible d'expliquer comment on peut arriver à ces équations. Il y a deux méthodes a priori : une heuristique qui correspond à la démarche historique de Saint-Venant; et une plus actuelle qui utilise les équations de Navier-Stokes.

2 Découverte du modèle et premières propriétés qualitatives

Proposition 1. La vitesse u vérifie la loi de conservation hyperbolique scalaire suivante :

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} + g(h+Z) \right) = 0 \tag{1}$$

Démonstration. Puisque q = h.u, la dérivée spatiale de q s'écrit :

$$\frac{\partial q}{\partial x} = u \frac{\partial h}{\partial x} + h \frac{\partial u}{\partial x} \tag{2}$$

et la dérivée temporelle :

$$\frac{\partial q}{\partial t} = u \frac{\partial h}{\partial t} + h \frac{\partial u}{\partial t} \tag{3}$$

Alors en utilisant l'équation (mettre ici ref) du système, la dérivée temporelle donne aussi la relation

$$\frac{\partial q}{\partial t} = -u \frac{\partial q}{\partial x} + h \frac{\partial u}{\partial t} \tag{4}$$

La loi de conservation que l'on cherche à montrer est alors une réécriture de l'équation (mettre ici ref) du système. On a en effet :

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial r} (\frac{q^2}{h} + g\frac{h^2}{2}) = -gh\frac{\partial Z}{\partial r}$$

En développant la dérivée par rapport à x et en utilisant (4) :

$$-u\frac{\partial q}{\partial x} + h\frac{\partial u}{\partial t} + u^2\frac{\partial h}{\partial x} + 2hu\frac{\partial u}{\partial x} + gh\frac{\partial h}{\partial x} = -gh\frac{\partial Z}{\partial x}$$

$$\Leftrightarrow -u\frac{\partial q}{\partial x} + h\frac{\partial u}{\partial t} + u^2\frac{\partial h}{\partial x} + 2hu\frac{\partial u}{\partial x} + gh\frac{\partial h}{\partial x} + gh\frac{\partial Z}{\partial x} = 0$$

$$\Leftrightarrow u\left[-\frac{\partial q}{\partial x} + \frac{h}{u}\frac{\partial u}{\partial t} + u\frac{\partial h}{\partial x}\right] + h\left[u\frac{\partial u}{\partial x} + \frac{\partial}{\partial x}(\frac{u^2}{2} + g(h+Z))\right] = 0$$

$$\Leftrightarrow u\left[-\frac{\partial q}{\partial x} + \frac{h}{u}\frac{\partial u}{\partial t} + u\frac{\partial h}{\partial x} + h\frac{\partial u}{\partial x}\right] + h\left[\frac{\partial}{\partial x}(\frac{u^2}{2} + g(h+Z))\right] = 0$$

D'après (2), une simplification s'opère dans les crochets de gauche et on obtient :

$$u\left[\frac{h}{u}\frac{\partial u}{\partial t}\right] + h\left[\frac{\partial}{\partial x}(\frac{u^2}{2} + g(h+Z))\right] = 0$$

Il suffit alors de diviser par h > 0 pour obtenir le résultat (1).

3 Implémentation du schéma de Rusanov

3.1 Présentation du schéma et résultats de convergence

Dans cette partie, il s'agit de résoudre numériquement le système de Saint-Venant. Posons

$$\mathbf{U} = \begin{pmatrix} h \\ q \end{pmatrix} \in \mathbb{R}^2, \ \mathbf{F}(\mathbf{U}) = \begin{pmatrix} q \\ \frac{q^2}{h} + g \frac{h^2}{2} \end{pmatrix} \in \mathbb{R}^2 \text{ et } \mathbf{B}(\mathbf{U}) = \begin{pmatrix} 0 \\ -gh\frac{\partial Z}{\partial x} \end{pmatrix} \in \mathbb{R}^2.$$

U désigne le vecteur inconnu, F(U) la fonction flux et B(U) le terme source. Avec ces notations, le système de départ se réécrit

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial}{\partial x}(\mathbf{F}(\mathbf{U})) = \mathbf{B}(\mathbf{U})$$

Proposition 2. Posons le vecteur $\mathbf{W} = (h, u)^T$ (variable dite non conservative). W vérifie le système quasi-linéaire suivant :

$$\frac{\partial \mathbf{W}}{\partial t} + \mathbb{A}(\mathbf{W}) \frac{\mathbf{W}}{\partial x} = 0$$

avec $\mathbb{A}(\mathbf{W})$ définie par :

$$\mathbb{A}(\mathbf{W}) = \begin{pmatrix} u & h \\ g & u \end{pmatrix}$$

Démonstration.

Proposition 3. La matrice $\mathbb{A}(W)$ est diagonalisable et on a :

$$\mathbb{P}(\mathbf{W})^{-1}\mathbb{A}(\mathbf{W})\mathbb{P}(\mathbf{W}) = \mathbb{D}(\mathbf{W})$$

оù

$$\mathbb{D}(\mathbf{W}) = \begin{pmatrix} u + \sqrt{gh} & 0 \\ 0 & u - \sqrt{gh} \end{pmatrix} \text{ et } \mathbb{P}(\mathbf{W}) = \begin{pmatrix} \frac{\sqrt{h}}{\sqrt{g}} & -\frac{\sqrt{h}}{\sqrt{g}} \\ 1 & 1 \end{pmatrix}.$$

Démonstration. Le résultat est direct en faisant le produit matriciel si on connait les expressions de $\mathbb{D}(\mathbf{W})$ et $\mathbb{P}(\mathbf{W})$. Dans le cas contraire, on procède comme suit :

On détermine les valeurs propres de la matrice $\mathbb{A}(\mathbf{W})$, ce qui conduit à chercher les racines du polynôme (d'indéterminée λ) suivant :

$$\det(\mathbb{A}(\mathbf{W}) - \lambda I) = \begin{vmatrix} u - \lambda & h \\ g & u - \lambda \end{vmatrix} = (u - \lambda)^2 - gh.$$

Or puisque g et h sont > 0,

$$(u-\lambda)^2 - gh = 0 \Leftrightarrow \lambda u + \sqrt{gh}$$
 ou $\lambda u - \sqrt{gh}$

et comme la matrice admet deux valeurs propres distinctes, elle est diagonalisable. La matrice diagonale est alors

$$\mathbb{D}(\mathbf{W}) = \begin{pmatrix} u + \sqrt{gh} & 0\\ 0 & u - \sqrt{gh} \end{pmatrix}.$$

Il reste à déterminer la matrice de passage $\mathbb{P}(\mathbf{W})$. Il s'agit de trouver $\begin{pmatrix} a \\ b \end{pmatrix}$ un vecteur propre associé à $u + \sqrt{gh}$ et $\begin{pmatrix} c \\ d \end{pmatrix}$ un vecteur propre associé à $u - \sqrt{gh}$.

Pour le vecteur propre associé à $u + \sqrt{gh}$:

$$\mathbf{A}(\mathbf{W}) \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} u & h \\ g & u \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = (u + \sqrt{gh}) \begin{pmatrix} a \\ b \end{pmatrix}$$

Il s'agit d'un système lié donc il est équivalent de raisonner sur la première équation :

$$au + bh = au + a\sqrt{gh}$$

$$\Leftrightarrow bh = a\sqrt{gh}$$

et on voit que $\binom{a}{b} = \binom{\sqrt{h}/\sqrt{g}}{1}$ convient.

De même, pour le vecteur propre associé à $u-\sqrt{gh}$:

Cette fois on arrive à

$$cu + dh = cu - c\sqrt{gh}$$

$$\Leftrightarrow dh = -c\sqrt{gh}$$

et on voit que $\binom{c}{d} = \binom{-\sqrt{h}/\sqrt{g}}{1}$ convient.

D'où finalement :

$$\mathbb{P}(\mathbf{W}) = \begin{pmatrix} \frac{\sqrt{h}}{\sqrt{g}} & -\frac{\sqrt{h}}{\sqrt{g}} \\ 1 & 1 \end{pmatrix}.$$

Proposition 4. La matrice jacobienne de F admet deux valeurs propres distinctes $\lambda_1(U)$ et $\lambda_2(U)$ qui sont égales aux valeurs propres de $\mathbb{A}(W)$.

Démonstration. La matrice jacobienne de F est la suivante :

$$J_{\mathbf{F}}(h,q) = \begin{pmatrix} 0 & 1\\ -\frac{q^2}{h^2} + gh & \frac{2q}{h} \end{pmatrix}$$

Pour déterminer les valeurs propres de cette matrice, il faut calculer les racines du polynôme donné par

$$\det(J_{\mathbf{F}}(h,q)) = \begin{vmatrix} 0-\lambda & 1\\ -\frac{q^2}{h^2} + gh & \frac{2q}{h} - \lambda \end{vmatrix}$$
 et
$$-\lambda(\frac{2q}{h} - \lambda) + \frac{q^2}{h^2} - gh = 0$$

$$\Leftrightarrow \lambda^2 - 2u\lambda + u^2 - gh = 0.$$

Puisque $\Delta = 4u^2 - 4(u^2 - gh) = 4gh > 0$, il y a deux racines distinctes

$$\lambda_1(\mathbf{U}) = \frac{2u + 2\sqrt{gh}}{2}$$
 et $\lambda_2(\mathbf{U}) = \frac{2u - 2\sqrt{gh}}{2}$.

En simplifiant par 2 au numérateur et dénominateur, on voit qu'il s'agit des valeurs propres de $\mathbb{A}(\mathbf{W})$.

Dans la mesure ou la matrice jacobienne du flux a deux valeurs propres différentes, on peut appliquer le schéma de Rusanov. Cf l'énoncé du TP. Mais il faudrait pouvoir expliquer pourquoi.

3.2 Validation de l'implémentation avec des tests

Voyons quelques exemples de solutions calculées à l'aide du schéma afin de valider l'implémentation.

4 Utilisation des limiteurs de pente pour une montée en ordre

5 Passage au cas 2D

A Annexes

A.1 Le Code

Bibliographie

[1] R. Leveque, *Finite Volume Methods for Hyperbolic Problems*, Cambridge University Press, 2004