

STATGO 17- Stationalic Methods in Finance

2: Time Value of Money: Money now is worth more than money later Future $\rightarrow FV_n = PV(1+r)^n$ discrete compounding $FV_n = PV e^{rn}$ Continuous compounding risk gree interest rate

3: Introduction to Derivotives

· Forward: agree to buy (long) or sell (short) an asset at a set fine in the future for a Set price

Future: Similar to garward, but traded on an exchange

No well specified, with value calculated daily

Option: option to buy (call) or sell (put) on asset

at a set time. European can be exercised at any time, European only at expiry.

·Payogs Charts?

Scanned by CamScanner

	8: Brownian Motion (aka Wiener Access)
- 1	· continuous time, Markov stochastic process
,	en le Despera de l'en is è
	· Z, Z, is independent of non-overlapping incurus of
	The state of the
	2, CR 2, O
	· Generalized Sommon Motion · as -Mat + az
	Standard Brownian Brownian
	$5_{t}^{-5} - 5_{s} \sim N((k-5)\mu, (k-5)\sigma^{2}), O \leq 5 \leq t$
	· En est : Bourse Moders: ds = · Solt+65dz
	· Geometric Brownian Motion: d5= u Soft + 55dz Mean rate of weathty
	$S_t = S_0 \exp\left(\mu - \frac{S_1^2}{2}\right) t + \sigma z$
	5=50e Mt when 0=0
	° Can we approximation $\frac{\Delta S}{S} = \frac{M}{0.45}\Delta t + 0.5\Delta t$
	ie $S_t \sim N(S_0 + \mu t, (S_0 \sigma \sqrt{t})^2)$
	In 5, - In 5, ~ N((min 2)+, o2+)

 $dx_t = \alpha(x_t, t)dt + b(x_t, t)dz_t \leftarrow \text{ not smooth, unbounded is non-dissertable. Need to use stochastic calculus condition <math display="block">x_t = x_0 + \int_0^t \alpha(x_s, s)ds + \int_0^t b(x_s, s)dz_s$

• Ito's lumma: given $dx = a(x,t)dt + b(x,t)dz \leftarrow \frac{1}{z}$ is wind process, and G = G(x,t),

strong Taylor $\frac{\partial G}{\partial x} = \left[\frac{\partial G}{\partial x} (x, t), \frac{\partial G}{\partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} b^2(x, t)\right] dt$ expansion, dropping $\frac{\partial G}{\partial x} = \frac{\partial G}{\partial x} b(x, t) dz$

forms of circle

greater than oft

(note (dx) sorry)

ie, G sollows Ito process with w/ a(x, s), & b(x, s)

as about

10% Black-Scholes Model

· Continuous time, continuous variable version of binomial tree o Assume à

1: Stack price process, St, sollows geometric Brownian motion 2: Can long or short stock (any amount)

3: No transaction costs

4° No dividends

5: No orbitioge

6: Trading continuous in time 7: Risk gree interest rule constant & Same gor all maturities

·By (1), dS=MSd++ \sigma SdZ

riskless of compan band

By (7), dB= rBd+ \sigma Bo=01

· Good: areale replicating, self simurating partialice
· P, of stock, 4, of riskless asset

TT,=P,S,+4,B, TT,=5(ST,T)=payogg(ST)

dV= P+ dS(+) + V+ dB(+) - as self firming; change in particle value driver by drugs to stack & bond prices

 \Rightarrow $\coprod_{t=0}^{t} \phi^{t} dS^{2} + \int_{0}^{t} \phi^{2} dB^{2}$

=) $d\pi_{t} = \phi_{t} dS + \psi_{t} dB$ = $(\phi_{t} \mu S + \psi_{t} r B_{t}) dt + \phi_{t} \sigma S d Z$ 0

by Itos lemma, dT = $\frac{\partial T}{\partial S} \mu S + \frac{\partial T}{\partial t} + \frac{1}{2} \frac{\partial^2 T}{\partial S^2} G^2 S^2 dt + \frac{\partial T}{\partial S} G dz$

combine $\Rightarrow \phi_1 \sigma S = \frac{\partial \pi}{\partial S} \sigma S \Rightarrow \phi_1 = \frac{\partial \Pi}{\partial S}$

 $\frac{\partial n}{\partial t} \frac{\partial n}{\partial t} = \frac{\partial T}{\partial t} \frac{\partial T}{\partial t} + \frac{1}{2} \frac{\partial^2 T}{\partial s^2} \sigma^2 S^2 + \frac{\partial T}{\partial t} + \frac{1}{2} \frac{\partial^2 T}{\partial s^2} \sigma^2 S^2$ Eliminati Ψ_t , substitute Φ_t , $\Gamma T_t = \Gamma \frac{\partial T}{\partial S} S_t + \frac{\partial T}{\partial t} + \frac{1}{2} \frac{\partial^2 T}{\partial s^2} \sigma^2 S^2$

·To Solve this PD	E, need bou	nobry	Conditions	7
· FT = MXX	(S_TX, O)	SOP	European	call
ST = Max	$(X-S_{\tau},0)$	011	V	put

$$C = S_0 N(d_1) - Xe^{-rT} N(d_2)$$

$$d_{1} = \frac{\log \frac{1}{x} + (r + \frac{0^{2}}{2})T}{\sigma \sqrt{T}}$$

$$d_{2} = d_{1} - \sigma \sqrt{T} = \frac{\log \frac{1}{x} + (r + \frac{0^{2}}{2})T}{\sigma \sqrt{T}}$$

Scanned by CamScanner

	· Theta	= 35		
	· Vega) = <u>D</u> S		1
1-1-1	· Rho	P= <u>05</u>		
		0r) (1) (1) (1)	
	- ; }			
		, 1 f		
· · (,	x
				• 1
: * 1	1 1 1	,		
	3			
		1		
/3				
	•			
10.04			SA 1) - 11	The state of the s

12: Volatility			
main challenge in correct volatility			
Method 18 Estima is 5 solk $5^2 = \frac{1}{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} U_j = ($	te o gram h ows Geometric ownian motion log 5; -log 5	historic dator Brownian motion $(-1) = \log \frac{S_i}{S_{i-1}} \sim$	$\int_{1}^{\infty} \log S$ $\int_{1}^{\infty} \log S$
So can sind then $3 = 100$	Sample Vo	riana of U.	$= 5^{2},$ $y = time$ in dyears between 5 , 6.5 ,
· Method 2: Implied · Work bod? · cannot and · Volatility s	words from I ytically solve; miles:	Market prices numerically solu alt line is Blo	e cony enough
" likely	ormal distribu	ght line is Blo asset price of utran, but how	ant sollow
seen for call I lowe options large	s Strike puts roveneuts oc DBlack-Schole	higher Strike being Mare cur More Oct 1 givy lower	valuable, cy en implied val

13: Risk Neutral Pricing

- · our continuous-time version of risk-neutral probabilities in binomial model
- * Risk neutral process: in teal world, $dS = \mu Sdt + \sigma Sdz$, $E(S_r) = S_0 e^{-rt}$ in risk gree world, $dS = r Sdt + \sigma Sdz$ $\hat{E}(S_r) = S_0 e^{-rt}$ • Risk neutral pricing:

je value is expeded value at maturty discarted back $50=e^{-t}\hat{E}(5+50)$

$$= 3 \log 5_1 = \log 5_0 + (r - \frac{\sigma^2}{2}) + \sigma \int U$$
, $U \sim N(0,1)$

$$\Rightarrow \hat{E}(S_T) = \int_{-d_1}^{\infty} \frac{1}{S_T} \times \Phi(u) du$$
, $\Phi(u)$ is pdg og normal

$$\hat{E}(\xi_{T}) = \int_{-d_{2}}^{\omega} (\xi_{0})^{2} e^{(r-\frac{\Omega^{2}}{2})T} e^{\sigma \sqrt{T} \cdot u} - X) \times \Phi(u) du$$

$$= \int_{C} e^{rT} \int_{-d_{2}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u-\sigma/T)^{2}} du - XN(d_{2})$$

$$= \int_{C} e^{rT} \int_{-d_{2}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u-\sigma/T)^{2}} du - XN(d_{2})$$

$$= \int_{C} e^{rT} \int_{-d_{2}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u-\sigma/T)^{2}} du - XN(d_{2})$$

$$= \int_{C} e^{rT} \int_{-d_{2}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u-\sigma/T)^{2}} du - XN(d_{2})$$

$$= \int_{C} e^{rT} \int_{-d_{2}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u-\sigma/T)^{2}} du - XN(d_{2})$$

$$= \int_{C} e^{rT} \int_{-d_{2}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u-\sigma/T)^{2}} du - XN(d_{2})$$

Scanned by CamScanner