1.Data	 - 輸入: x∈[-1,1] - 訓練集: 200 點 - 驗證集: 100 點 - 測試集: 500 點 - 輸出: Runge 函數 f(x)=¹/_{1+25x²} 及其導數 f (x)=^{-50x}/_{(1+25x²)²}
2.Hypothesis	Feedforward Neural Network, MLP, 近似 f(x), 導數由自動微分 (autograd) 計算
3.Hidden Layers	2 層
4.Activation Function	Tanh
5.Neurons in Each Hidden Layer	第一層:64 個 第二層:64 個
6.Loss Function	 函數損失 (Function Loss): L_f=MSE(f̂(x),f(x)) 導數損失 (Derivative Loss): L_f=MSE(d/dx f̂(x),f (x)) 總損失: L=L_f+L_f
7.Stopping Criteria	固定訓練 2000 個 epoch

Epoch 0, Train Total Loss: 2.003874, Func Loss: 0.082507, Deriv Loss: 1.921367,

Val Loss: 2.633613

Epoch 200, Train Total Loss: 0.000009, Func Loss: 0.000000, Deriv Loss:

0.000009, Val Loss: 0.000009

Epoch 400, Train Total Loss: 0.000007, Func Loss: 0.000000, Deriv Loss:

0.000007, Val Loss: 0.000007

Epoch 600, Train Total Loss: 0.000009, Func Loss: 0.000000, Deriv Loss:

0.000009, Val Loss: 0.000009

Epoch 800, Train Total Loss: 0.000006, Func Loss: 0.000000, Deriv Loss:

0.000006, Val Loss: 0.000006

Epoch 1000, Train Total Loss: 0.000003, Func Loss: 0.000000, Deriv Loss:

0.000003, Val Loss: 0.000003

Epoch 1200, Train Total Loss: 0.000005, Func Loss: 0.000000, Deriv Loss:

0.000005, Val Loss: 0.000005

Epoch 1400, Train Total Loss: 0.000004, Func Loss: 0.000000, Deriv Loss:

0.000003, Val Loss: 0.000002

Epoch 1600, Train Total Loss: 0.000000, Func Loss: 0.000000, Deriv Loss:

0.000000, Val Loss: 0.000000

Epoch 1800, Train Total Loss: 0.000068, Func Loss: 0.000006, Deriv Loss:

0.000062, Val Loss: 0.000126

Function Approximation -> MSE: 5.926243e-10, Max Error: 4.903061e-05

Derivative Approximation -> MSE: 4.962465e-07, Max Error: 1.934788e-03

