Thoughts about Generative Models in Control Systems

Prof. Raghvendra V. Cowlagi

Aerospace Engineering Department,
Worcester Polytechnic Institute, Worcester, MA.
rvcowlagi@wpi.edu wpi.edu/~rvcowlagi

HL 247

July 3, 2024

► Control and estimation methods usually start with a dynamical system model of the form

$$x(k+1) = f(x(k), u(k), w(k)),$$

where

- \triangleright x is what we call the *state*
- \triangleright *u* is what we call the *control*
- \blacktriangleright w is what we call the process noise
- ► Usual assumptions include:
 - \blacktriangleright $x(k) \in \mathbb{R}^n$, $u(k) \in \mathbb{R}^m$, where n, m are "small" ~ 10
 - ightharpoonup f is known, e.g., from physics
 - w is a white noise process, i.e., $w(k) \sim N(0, Q)$ and $w(k), w(\ell)$ are uncorrelated

Prof. R. V. Cowlagi

 Control and estimation methods usually start with a dynamical system model of the form

$$x(k+1) = f(x(k), u(k), w(k)),$$

where

- \triangleright x is what we call the state
- \triangleright *u* is what we call the control
- ► *w* is what we call the process noise
- ► Let us call this the *believed model* (to distinguish from other "models" that come up)

Prof. R. V. Cowlagi 2 / 4

- ► The real system evolves *close to*, but not *exactly* according to the believed model. Examples:
- ightharpoonup f is slightly different, e.g., has some extra terms due to simplified physics
- \triangleright w is not white noise
- ► There are extra (hidden) states, e.g., actuator dynamics

Prof. R. V. Cowlagi

▶ We are usually interested in the conditional distribution p(x(k + 1) | x(k), u(k)) for designing estimators or controllers (esp. RL-based controllers)

Prof. R. V. Cowlagi 4/