Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/000348

International filing date: 14 January 2005 (14.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 003 514.8

Filing date: 23 January 2004 (23.01.2004)

Date of receipt at the International Bureau: 04 April 2005 (04.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

BUNDESREPUBLIK DEUTSCHLAND

2 4 MAR 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 003 514.8

Anmeldetag:

23. Januar 2004

Anmelder/Inhaber:

SMS Demag AG, 40237 Düsseldorf/DE

Bezeichnung:

Verfahren zum Erhöhen der Prozessstabilität, insbesondere der absoluten Dickengenauigkeit und der Anlagensicherheit, beim Warmwalzen von Stahl-

oder NE-Werkstoffen

IPC:

B 21 B 37/16

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 14. Februar 2005 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Remus

:.

41181

SMS Demag Aktiengesellschaft Eduard-Schloemann-Str. 4, 40237 Düsseldorf

Verfahren zum Erhöhen der Prozessstabilität, insbesondere der absoluten Dikkengenauigkeit und der Anlagensicherheit, beim Warmwalzen von Stahl- oder NE-Werkstoffen

Die Erfindung betrifft ein Verfahren zum Erhöhen der Prozessstabilität, insbesondere der absoluten Dickengenauigkeit und der Anlagensicherheit, beim Warmwalzen von Stahl- oder NE-Werkstoffen mit kleinen Umformgraden oder kleinen Abnahmen unter Berücksichtigung der Warmstreckgrenze bei der Berechnung der Sollwalzkraft und der jeweiligen Anstellungsposition.

In einer Vorveröffentlichung "Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren" von A. Hensel und T. Spittel, Leipzig 1978, und in einer weiteren Vorveröffentlichung "Rationeller Energieeinsatz bei Umformprozessen" von T. Spittel und A. Hensel, Leipzig 1981, werden verschiedene Verfahren zur Ermittlung der Sollwalzkraft beim Warmwalzen als Produkt aus Umformwiderstand und gedrückter Fläche beschrieben. Der Umformwiderstand selbst wird als Produkt aus der Fließspannung und einem Faktor zur Berücksichtigung der Walzspaltgeometrie und / oder von Reibungsverhältnissen bestimmt. Die am häufigsten verwendete Methode zur Ermittlung der Fließspannung ist deren Bestimmung über einen Ansatz mit Einflussfaktoren zur Berücksichtigung von Umform-Temperatur, Umformgrad und Umformgeschwindigkeit, die multiplikativ miteinander verbunden werden, bspw. in folgender Form:

(1)
$$k_f = k_{f0} \cdot A_1 \cdot e^{m1 \cdot T} \cdot A_2 \cdot phi^{m2} \cdot A_3 \cdot phip^{m3}$$

worin bedeuten:

 k_f = Fließspannung

k_{f0} = Grundwert der Fließspannung

T = Umformtemperatur

 φ = Umformgrad

phip = Umform-Geschwindigkeit

 A_{i} , m_{i} = thermodynamische Koeffizienten.

Für unterschiedliche Materialgruppen wurden die thermodynamischen Koeffizienten rmittelt; die Unterscheidung der Materialien innerhalb einer Gruppe erfolgt über die weiligen $k_{\rm f0}$ -Grundwerte.

In dem weiteren Aufsatz "Modellierung des Einflusses der chemischen Zusammensetzung und der Umformbedingungen auf die Fließspannung von Stählen bei der Warmumformung" von M. Spittel und T. Spittel, Freiberg 1996, wird zusätzlich vorgeschlagen, den Grundwert der Fließspannung eines Materials in Abhängigkeit von dessen chemischer Analyse zu ermitteln und die übrigen Parameter zur Berücksichtigung der Temperatur, des Umformgrades und der Umformgeschwindigkeit entsprechend der Materialgruppe zu nutzen. Grundsätzlich jedoch bleibt der multiplikative Charakter des Ansatzes gemäß Gleichung (1) bestehen.

Der Nachteil des multiplikativen Ansatzes zur Ermittlung der Fließspannung besteht darin, dass die Funktion mit kleiner werdenden Umformgraden φ < 0,04 oder Abnahmen gegen eine Fließspannung von Null MPa strebt, d.h. die Funktion hat einen Nulldurchgang (in Fig. 1 zum Stand der Technik gezeigt). Diese Theorie widerspricht jedoch den tatsächlichen Gegebenheiten. Als Folge werden bei kleinen Abnahmen zu geringe Fließspannungswerte und somit zu geringe Sollwalzkräfte bestimmt. Die Setzung des Sollwalzspaltes durch die Dickenregelung ist walzkraftabhängig und somit fehlerbehaftet. Die warmgewalzten Produkte weisen eine größere Istdicke im Vergleich zur gewünschten Zieldicke auf.

Die fehlerbehaftete Sollwalzkraft-Berechnung bei kleinen Umformgraden bzw. Abnahmen stellt eine permanente Anlagengefährdung beim Walzen mit hohen Walzkräften und / oder Walzmomenten nahe den maximal zulässigen Anlagenparametern dar, wie sie bspw. beim Walzen mit abgesenkten Temperaturen oder aber auch bei hohen Temperaturen und Walzgutbreiten nahe der anlagentechnisch maximal möglichen Breite auftreten.

Die fehlerbehaftete Sollwalzkraft-Berechnung beeinträchtigt auch die Prozessstabilität insgesamt negativ, da nachgeschaltete Automations-Modelle und –regelungen e bspw. Profil- und Planheitsmodelle bzw. –regelungen ihre Sollwerte mit Hilfe der Sollwalzkraft ermitteln.

Aus der WO 93 / 11 886 A1 ist ein Walzplan-Berechnungsverfahren zur Einstellung von Sollwalzkraft und Sollwalzspalt eines Walzgerüstes bekannt, das gerüstspezifische und / oder materialspezifische Walzkraft-Anpassungsglieder nutzt. Nachteilig sind gerüstspezifische Anpassungen bei der Sollwalzkraft-Berechnung für die Übertragbarkeit auf andere Anlagen.

Aus der WO 99 / 02 282 A1 geht ein bekanntes Verfahren hervor zur Steuerung bzw. Voreinstellung des Walzgerüstes in Abhängigkeit zumindest einer der Größen Walzkraft, Walzmoment und Voreilung, bei dem die Modellierung der Einflüsse mittels einer auf neuronalen Netzen basierenden Informationsverarbeitung oder mittels eines invertierten Walzmodells über Rückrechnung der Materialhärte im Stich mit Hilfe eines Regressionsmodells erfolgt. Solche Fehler, wie sie bei der Sollwalzkraft-Berechnung nach dem multiplikativen Ansatz im Bereich kleiner Umformgrade oder Abnahmen entstehen, können vermieden werden. Nachteilig ist jedoch, dass zum Trainieren eines neuronalen Netzes bzw. für ein invertiertes Walzmodell erst Walzergebnisse vorliegen müssen. Eine Anwendung des vorgeschlagenen Ver-

fahrens auf noch nicht gewalzte Materialien oder auf Anlagen mit anderen Parametern ist somit nicht ohne weiteres gewährleistet.

Dem geschilderten Stand der Technik ist gemeinsam, dass die Wirkung kleiner Umformgrade oder kleiner Abnahmen auf die Fließspannung beim Warmwalzen von Stahl und NE-Werkstoffen im Rahmen der bekannten Verfahren zur Sollwalzkraft-Berech-nung und zur Dickenregelung nicht korrekt oder nur unzureichend berücksichtigt wird oder die Übertragbarkeit auf andere Anlagen eingeschränkt ist und somit Risiken für die Prozessstabilität, insbesondere der absoluten Dickengenauigkeit und er Anlagensicherheit bestehen.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Erhöhung der Prozessstabilität, insbesondere der absoluten Dickengenauigkeit und der Anlagensicherheit beim Warmwalzen von Stahl- und NE-Werkstoffen zu schaffen, bei dem die Genauigkeit der Fließspannung und der Sollwalzkraft bei kleinen Umformgraden oder kleinen Abnahmen gesteigert werden kann.

Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Warmstreckgrenze in Abhängigkeit von Umformtemperatur und / oder Umformgeschwindigkeit ermittelt und in die Funktion der Fließspannung für die Bestimmung der Sollwalzkraft über die Beziehung

(2)
$$R_e = a + e^{b1 + b2 \cdot T} \cdot phip^c$$

integriert wird, wobei bedeuten:

R_e = Warmstreckgrenze

T = Umform-Temperatur

phip = Umform-Geschwindigkeit

a; b; c = Koeffizienten

Der Vorteil bei der Nutzung eines neuen Ansatzes zur Berechnung der Fließspannung liegt darin, die Warmstreckgrenzen für die zu walzenden Materialien aus Messdaten von Walzungen mit Umformgraden kleiner als einem materialspezifischen Grenzumformgrad zu ermitteln, indem die Fließspannungen der betreffenden Stiche in Abhängigkeit von Umformtemperatur und Umformgeschwindigkeit aus gemessenen Walzkräften rückgerechnet und einer Warmstreckgrenze gleichgesetzt werden, wenn sie den aus Warmzugversuchen gemessenen Warmstreckgrenzen gleichen. Die gefundene Abhängigkeit der Warmstreckgrenze von Umformtemperatur und

Nach der weiteren Erfindung wird vorgeschlagen, dass ein multiplikativer Fließkurvenansatz um die Warmstreckgrenze in Abhängigkeit von Umformtemperatur und Umformgeschwindigkeit gemäß der Formel

(3)
$$k_{f,R} = a + e^{b1 \cdot b2 \cdot T} \cdot phip^{c} + k_{f0} \cdot A_{1} \cdot e^{m1 \cdot T} \cdot A_{2} \cdot \varphi^{m2} \cdot A_{3} \cdot phip^{m3}$$

bestimmt wird.

Aufgrund der erfindungsgemäßen Berücksichtigung der Warmstreckgrenze in Abhängigkeit von Umformtemperatur und Umformgeschwindigkeit erzielt das Verfahren selbst zu kleinsten Umformgraden hin korrekte Werte. Startwert ist die jeweilige Warmstreckgrenze des zu walzenden Materials in Abhängigkeit von Umformtemperatur und Umformgeschwindigkeit.

Nach der weiteren Erfindung wird vorgeschlagen, dass die Fließspannung in die herkömmliche Walzkraftgleichung zur Ermittlung der Sollwalzkraft für die Dickenregelung und auch für Rechen-Modelle und Regelungsverfahren gemäß folgender Gleichung

(4)
$$F_w = Q_p \cdot k_{f_2R} \cdot B \cdot (R_w \cdot (h_0 - h_1))^{1/2}$$

bestimmt wird, wobei bedeuten:

 $F_w = Sollwalzkraft$

 Q_p = Funktion zur Berücksichtigung von Walzspaltgeometrie und

Reibungsverhältnissen

 $k_{f,R}$ = Fließspannung, unter Berücksichtigung der Streckgrenze

B = Walzgutbreite

 $R_w = Walzenradius$

 h_0 = Dicke vor dem Stich

 h_1 = Dicke nach dem Stich

In Ausgestaltung der Erfindung ist ferner vorgesehen, dass aufgrund der Sollwalzkraft ein Materialmodul unter Berücksichtigung der Warmstreckgrenze in Abhängigkeit der Umformtemperatur und Umformgeschwindigkeit für Umformgrade kleiner einem materialspezifischen Grenzumformgrad berechnet wird, gemäß der Formel

(5)
$$C_M = (F_W - F_m) / dh_1$$

worin bedeuten:

 $C_M = Material modul$

 F_W = Sollwalzkraft

 F_m = gemessene Walzkraft

dh₁ = Änderung der Auslaufdicke

Die Erfindung ist sodann dahingehend ausgestaltet, dass die herkömmliche Gaugemeter-Gleichung in eine Form

$$ds_{AGC} = (1 + C_M / C_G) dh_1 = (1 + C_M / C_G) \cdot ((F_W - F_m) / C_G + s - s_{soll})$$

erweitert wird, wobei bedeuten:

ds AGC = Änderung der Walzspalteinstellung

 C_M = Material modul

 C_G = Walzgerüstmodul

 dh_1 = Änderung der Auslaufdicke

 F_W = Sollwalzkraft

 F_m = gemessene Walzkraft

s = Anstellung des Walzspaltes

 s_{soll} = Sollanstellung des Walzspaltes

Dadurch wird nun auch das Materialfließverhalten bei kleinen Umformgraden oder Abnahmen richtig abgebildet.

Auf der Grundlage der Gaugemetergleichung und berechneter Sollwalzkraft wird die Anstellposition der elektromechanischen und / oder der hydraulischen Anstellung zur Gewährleistung der Auslaufdicke des Walzgutes ermittelt.

In der Zeichnung sind Diagramme für die Fließspannung in Abhängigkeit des Umformgrades nach dem Stand der Technik und gemäß der Erfindung gezeigt und werden nachstehend näher erläutert.

Es zeigen:

Fig. 1

schematisch den Verlauf der Fließspannung $k_{\rm f}$, über dem Umformgrad φ beim herkömmlichen multiplikativen Ansatz (Stand der Technik) und schematisch den Verlauf der Fließspannung $k_{\rm f,R}$ über dem Umformgrad φ gemäß der Erfindung, wobei unterhalb des Grenzumfanggrades $\varphi_{\rm G}$ der multiplikative Ansatz um die Warmstreckgrenze additiv erweitert ist.

Der Nachteil des multiplikativen Ansatzes zur Ermittlung der Fließspannung (Fig. 1) besteht darin, dass die Funktion zu kleinen Umformgraden $\varphi < 0,04$ oder kleinen Abnahmen hin gegen eine Fließspannung k_f von Null MPa strebt, d.h. die Funktion hat einen Nulldurchgang, wie gezeichnet.

Die erfindungsgemäße Berücksichtigung (Fig. 2) der Warmstreckgrenze $R_{\rm e}$ in Abhängigkeit von Umformtemperatur T und Umformgeschwindigkeit phip erzielt das erfindungsgemäße Verfahren selbst zu kleinsten Umformgraden φ hin korrekte Werte. Startwert ist die jeweilige Warmstreckgrenze $R_{\rm e}$ des zu walzenden Materials in Abhängigkeit von Umformtemperatur T und Umformgeschwindigkeit phip.

41181

Bezugszeichenliste thermodynamische Koeffizienten A_i Koeffizienten a_i b_i, c Walzgutbreite В Gerüstmodul C_G Materialmodul C_M Änderung der Auslaufdicke Änderung der Walzspalteinstellung gemessene Walzkraft F_m Sollwalzkraft F_{W} Dicke vor dem Stich h₀ Dicke nach dem Stich h_1 Fließspannung k_f Grundwert der Fließspannung k_{f0} Fließspannung, unter Berücksichtigung der Streckgrenze $k_{f,R}$ thermodynamische Koeffizienten m_i Umformgrad φ Grenzumformgrad φ_G Umformgeschwindigkeit phip Funktion zur Berücksichtigung von Walzspaltgeometrie und Q_p Reibungsverhältnissen Warmstreckgrenze R_{e} Walzenradius R_w Anstellung des Walzspaltes S

Sollanstellung des Walzspaltes

Umformtemperatur

Ssoll

T

, :.

41181

SMS Demag Aktiengesellschaft Eduard-Schloemann-Str. 4, 40237 Düsseldorf

Patentansprüche

Verfahren zum Erhöhen der Prozessstabilität, insbesondere der absoluten Dickengenauigkeit und der Anlagensicherheit, beim Warmwalzen von Stahloder NE-Werkstoffen, mit kleinen Umformgraden (φ) oder kleinen Abnahmen unter Berücksichtigung der Warmstreckgrenze (R_e) bei der Berechnung der Sollwalzkraft (F_W) und der jeweiligen Anstellungsposition (s),

dadurch gekennzeichnet,

dass die Warmstreckgrenze (R_e) in Abhängigkeit von Umformtemperatur (T) und / oder Umformgeschwindigkeit (phip) ermittelt und in die Funktion der Fließspannung ($k_{f,R}$) für die Bestimmung der Sollwalzkraft (F_W) über die Beziehung

(2)
$$R_e = a + e^{b1 + b2 \cdot T} \cdot phip^c$$

integriert wird, wobei bedeuten:

R_e = Warmstreckgrenze

T = Umformtemperatur

phip = Umformgeschwindigkeit

 a_{i} ; b_{i} ; c = Koeffizienten

2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

dass ein multiplikativer Fließkurvenansatz um die Warmstreckgrenze (R_e) in Abhängigkeit von Umformtemperatur (T) und Umformgeschwindigkeit (phip) gemäß der Formel

(3)
$$k_{t,R} = a + e^{b1 \cdot b2 \cdot T} \cdot phip^c + k_{t0} \cdot A_1 \cdot e^{m1 \cdot T} \cdot A_2 \cdot \varphi^{m2} \cdot A_3 \cdot phip^{m3}$$

3. Verfahren nach den Ansprüchen 1 und 2,

dadurch gekennzeichnet,

dass die Fließspannung ($k_{f,R}$) in die herkömmliche Walzkraftgleichung zur Ermittlung der Sollwalzkraft (F_W) für die Dickenregelung und auch für Rechen-Modelle und Regelungsverfahren gemäß folgender Gleichung

(4)
$$F_W = Q_p \cdot k_{f_0R} \cdot B \cdot (R_W \cdot (h_0 - h_1))^{1/2}$$

bestimmt wird, wobei bedeuten:

 F_W = Sollwalzkraft

Q_p = Funktion zur Berücksichtigung von Walzspaltgeometrie und Reibungsverhältnissen

 $k_{f,R}$ = Fließspannung, unter Berücksichtigung der Streckgrenze

B = Walzgutbreite

 R_W = Walzenradius

 h_0 = Dicke vor dem Stich

 h_1 = Dicke nach dem Stich

4. Verfahren nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet,

dass aufgrund der Sollwalzkraft (F_W) ein Materialmodul (C_M) unter Berücksichtigung der Warmstreckgrenze (R_e) in Abhängigkeit der Umformtemperatur (T) und Umformgeschwindigkeit (phip) für Umformgrade kleiner einem materialspezifischen Grenzumformgrad (φG) berechnet wird, gemäß der Formel

worin bedeuten:

 C_M = Material modul

 F_W = Sollwalzkraft

 F_m = gemessene Walzkraft

dh₁ = Änderung der Auslaufdicke

5. Verfahren nach Anspruch 4,

dadurch gekennzeichnet,

dass die herkömmliche Gaugemeter-Gleichung in eine Form

(6)
$$ds_{AGC} = (1 + C_M / C_G) dh_1 = (1 + C_M / C_G) \cdot ((F_W - F_m) / C_G + s - s_{soll})$$

erweitert wird, wobei bedeuten:

ds_{AGC} = Änderung der Walzspalteinstellung

 C_M = Material modul

C_G = Walzgerüstmodul

 dh_1 = Änderung der Auslaufdicke

 F_W = Sollwalzkraft

 F_m = gemessene Walzkraft

s = Anstellung des Walzspaltes

 s_{soll} = Sollanstellung des Walzspaltes

Zusammenfassung

41181

Ein Verfahren zum Erhöhen der Prozessstabilität, insbesondere der absoluten Dikkengenauigkeit und der Anlagensicherheit, beim Warmwalzen von Stahl- oder NE-Werkstoffen, mit kleinen Umformgraden (φ) oder kleinen Abnahmen unter Berücksichtigung der Warmstreckgrenze (R_e) bei der Berechnung der Sollwalzkraft (F_W) und der jeweiligen Anstellungsposition (s) kann bezüglich der Genauigkeit der Fließspanng ($K_{f,R}$) und der Sollwalzkraft (F_W) bei kleinen Umformgraden (φ) oder kleinen Abnahmen dadurch gesteigert werden, dass die Warmstreckgrenze (R_e) in Abhängigkeit von Umformtemperatur (T) und T oder Umformgeschwindigkeit (T) ermittelt und in die Funktion der Fließspannung (T) für die Bestimmung der Sollwalzkraft (T) über die Beziehung

(2) $R_e = a + e^{b1 + b2 \cdot T} \cdot phip^c$ integriert wird, wobei bedeuten:

R_e = Warmstreckgrenze
T = Umform-Temperatur
phip = Umform-Geschwindigkeit

a; b; c = Koeffizienten

Hierzu: Fig. 2

 $k_f = R_e (T,phip)$

Umformgrad ϕ

0

 ϕ_{G}