FSRM/MSDS 581 Homework 8 Due on Wednesday 11:59pm EST, 11/18

- 1. Let $X_1, X_2, ..., X_n$ be i.i.d following the F-distribution F_{d_1,d_2} , where d_1, d_2 are unknown parameters (real numbers). Use the first two moments to obtain the MOM estimator of $\theta = (d_1, d_2)$.
- 2. Let (x_i, Y_i) (i = 1, ..., n) be independent following the regression model (without intercept)

$$Y_i = \beta_1 X_i + \varepsilon_i$$

where ε_i i.i.d with mean 0 and variance 1. The unknown parameter is $\theta = \beta_1$.

Let

$$g_1^*(x_i, Y_i, \theta) = Y_i - \beta_1 x_i$$

$$g_2^*(x_i, Y_i, \theta) = x_i (Y_i - \beta_1 x_i)$$

$$g_3^*(x_i, Y_i, \theta) = x_i^2 (Y_i - \beta_1 x_i)$$

- (a) Show $E(g_j^*(x_i, Y_i, \theta)) = 0$ for j = 1, 2, 3.
- (b) Obtain the sample average $m_j^*(\theta)$ corresponding to $g_j^*(x_i, Y_i, \theta)$ for j = 1, 2, 3.
- (c) Let the weight matrix W be a diagonal matrix of 1's. write down the objective function for GMM

$$\phi(\theta) = -[\boldsymbol{m}^*(\theta)]^T W[\boldsymbol{m}^*(\theta)].$$

- (d) Find the GMM estimator for θ by maximizing $\phi(\theta)$. (Hint: $\phi(\theta)$ is a quadratic function of β_1 . You should be able to find the solution analytically).
- (e) Suggest another function that can be used in the GMM.

- 3. Let X_1, X_2, \ldots, X_n be i.i.d following Uniform (θ_1, θ_2) .
 - (a) Use factorization theorem to show that $T = (X_{(1)}, X_{(n)})$ is sufficient for $\theta = (\theta_1, \theta_2)$, where $X_{(1)} = \min\{X_1, \dots, X_n\}$ and $X_{(n)} = \max\{X_1, \dots, X_n\}$.
 - (b) Show $T = (X_{(1)}, X_{(n)})$ is minimal sufficient.
 - (c) Find MLE of θ_1 and θ_2 .
- 4. Let (x_i, Y_i) (i = 1, ..., n) be independent following the **Poisson regression** model (without intercept)

$$Y_i \sim Poission(\lambda x_i)$$

(This is often used to model number of events occurred given a covariate. For example, the number of traffic accidents in a month as Y_i at the *i*-th intersection vs the number of cars going through the same intersection in the same period, as x_i)

- (a) Since $E(Y_i) = \lambda x_i$, we can write $Y_i = \lambda x_i + e_i$ where $E(e_i) = 0$. Find the least square estimator for λ .
- (b) Write the likelihood function $L(\lambda)$ (treat x_1, \ldots, x_n as non-random)
- (c) Find MLE for λ .
- (d) Suppose we use $Gamma(\alpha, \beta)$ with pdf

$$\pi(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda} \text{ for } \lambda > 0$$

as the prior distribution. Find the posterior distribution given observations $(y_1, x_1), \ldots, (y_n, x_n)$. And find the corresponding Bayes estimator for λ . [Hint: The prior is a conjugate prior so the posterior distribution is also a Gamma distribution. The mean of the Gamma(a, b) distribution is a/b]