

Advanced Topics in Machine Learning 3 Representation: Bayesian Networks Part 2

Prof. Dr. Steffen Staab Dr. Rafika Boutalbi Zihao Wang https://www.ipvs.uni-stuttgart.de/departments/ac/

Learning Objectives

Given: Formal Definition of Bayesian Network (last week)

- Abstract syntax and semantics
- How does information flow in a Bayesian Network
 - Put this formally
 - d-separation
 - I-Map
 - Equivalence of factorization using chain rule and representation of conditional independencies through the Bayesian Network Graph
- How to efficiently write down large networks
 - Template notation

Meaning of boxes

explains the slide content

important take away

side note: nice to know

Disclaimer

Figures and examples are taken from the book by Koller & Friedman

1 Intermezzo about random variables and factors

Remember: Random Variable

- Discrete Random Variable
 - $X = (D_X, P_X)$
 - D_X is the domain;
 a (possible infinite set)
 - $P_X: D_X \to [0,1]$, such that $\sum_{x \in D_X} P(X = x) = 1$
- There are all kind of shorthand/alternative notations that mean the same, e.g.:

$$\sum_{x \in X} P(x) = 1$$

 Though in a Java program this might be considered a type mismatch, when reading books and research papers you must juggle the different kind of notations

Factors

A *factor* is a function:

$$\phi: D_{\phi} \to \mathbb{R}_0^+$$

- ${}^{ullet} D_{\varphi}$ is a set
- $oldsymbol{\cdot} D_{\phi}$ is the domain of ϕ

scope of factor ϕ

You may think of a *factor* as a random variable whose probability distribution is not normalized – and therefore cannot be called a random variable!

• Examples:

- 1. P(I, D, G), with scope $val(I) \times val(D) \times val(G) = val(I \times D)$
- 2. $P(I, D, g^1)$, with scope $val(I) \times val(D)$, because g^1 is a constant
- 3. P(G|I,D), with scope $val(I \times D \times G)$
- 4. $\phi: \{A, B, C\} \rightarrow \mathbb{R}_0^+$, with

Factors will come handy all over the place

Operations on Factors: 1. Reduction

Reduction corresponds to Conditioning on a Value

Example

a ¹	b ¹	c ¹	0.25
a¹	b¹	c ²	0.35
a¹	b ²	c ¹	0.08
a¹	b²	c²	0.16
a ²	b ¹	c ¹	0.05
a ²	b¹	c²	0.07
a ²	b ²	C ¹	0
a²	b²	c²	0
a ³	b ¹	C ¹	0.15
a³	b¹	c ²	0.21
a ³	b ²	c ¹	0.09
a ³	b ²	c ²	0.18

Comparison with SQL:

Selection on $C = c^1$

Operations on Factors: 2. Marginalization

Example

Comparison with SQL:

Group by values from $A \times C$

Aggregate $\phi(., B, .)$

Operations on Factors: 3. Factor product

2 Bayesian Networks: The story so far

What do we know about Bayesian Networks?

- Definition using graphs and conditional probability tables
 - Model (conditional) probabilistic independencies
 - which exactly?
 - Use probabilistic chain rule to factorize joint probability distribution
 - how exactly?
 - How are the two connected?

Joint Probability Distribution: Running Example

RANDOM VARIABLES: I, D, G

Intelligence of student:

$$\operatorname{val}(I) = \{i^0, i^1\}$$
 {low, high}

· Difficulty of exam:

$$\operatorname{val}(D) = \{d^0, d^1\}$$
 {easy, hard}

Grade achieved:

$$val(G) = \{g^1, g^2, g^3\}$$
 {A,B,C}

I	D	G	Prob.
io	ďº	9 ¹	0.126
io	ď°	g²	0.168
io	d⁰	g ³	0.126
i ^o	d^1	g^1	0.009
io	d¹	g²	0.045
io	d¹	g ³	0.126
i ¹	ď°	g^1	0.252
i ¹	ď°	g ²	0.0224
i ¹	ď°	g ³	0.0056
i ¹	d¹	g ¹	0.06
i¹	d¹	g ²	0.036
· i ¹	d¹	g ³	0.024

Joint Probability Distribution: Running Example

RANDOM VARIABLES: I, D, G

When/how do random variables influence each other?

Under which conditions do we know that the graph and the joint probability distribution match?

I	D	G	Prob.
io	ďº	9 ¹	0.126
io	ď°	g²	0.168
io	ď°	g³	0.126
io	d¹	9 ¹	0.009
io	d¹	g²	0.045
io	d¹	g ³	0.126
i ¹	ď°	g ¹	0.252
i ¹	ďº	g ²	0.0224
i ¹	ď°	g ³	0.0056
i ¹	d¹	g ¹	0.06
i ¹	d¹	g²	0.036
· i¹	d¹	g ³	0.024

Running Example Extended

- Intelligence: $val(I) = \{i^0, i^1\}$
- Difficulty: $val(D) = \{d^0, d^1\}$
- Grade:

$$val(G) = \{g^1, g^2, g^3\}$$

Scholastic aptitude test (SAT):

$$val(S) = \{s^0, s^1\}$$

{below average, above average}

Recommendation Letter:

$$val(L) = \{l^0, l^1\}$$
 {weak, strong}

16

Bayesian Network Graph and Conditional Probability Tables: 38 student

3 Reasoning Patterns

Causal Reasoning

Intelligence **Difficulty** Grade SAT Letter

Without observation:

$$P(l^1) \approx 0.5$$

With observation:

$$P(l^1 | i^0) \approx 0.39$$

observed

Steffen Staab. Universität Stuttgart

Often, we model causality by descendant/ancestor relationship in Bayesian networks.

In general: not all descendant/ancestor relationships in Bayesian networks constitute causality!!!

Causal Reasoning

Without observation:

$$P(l^1) \approx 0.5$$

With observation:

$$P(l^1 | i^0) \approx 0.39$$

If a distinction is made by shading nodes, then shaded nodes are commonly the observed ones.

Evidential Reasoning

Without observation:

$$P(d^1) = 0.4$$

$$P(i^1) = 0.3$$

With observation: Student gets C

$$P(d^1 \mid g^3) \approx 0.63$$

$$P(i_{\text{ment}}^{1}|g^{3}) \approx 0.08$$

Intercausal Reasoning

Without observation:

With observations: Student gets C & class is hard

$$P(d^1) = 0.4$$

$$P(d^1 \mid g^3) \approx 0.63$$

$$P(i^1) = 0.3$$

Steffen Staab, Universität Stuttgart, @ststaab, https://www.ip

 $P(i^1,g^3) \approx 0.08$

Intercausal Reasoning II

Without observation:

With observations: Student gets B & class is hard

$$P(i^{1}) = 0.3$$
 $P(i^{1} | g^{2}) \approx 0.175$ $P(i^{1} | g^{2}, d^{1}) \approx 0.34$

Explaining Away: Student Aces the SAT

Without observation:

$$P(d^1) = 0.4$$

$$P(i^1) = 0.3$$

$$P(d^1 \mid g^3) \approx 0.63$$

$$P(d^1 \mid g^3, s^1) \approx 0.76$$

4 Flow of Probabilistic Inference & D-Separation

When can X influence Y?

$$\bullet X \to Y$$

•
$$X \leftarrow Y$$

$$\bullet X \to W \to Y$$

•
$$X \leftarrow W \leftarrow Y$$

$$\bullet X \leftarrow W \rightarrow Y$$

•
$$X \to W \leftarrow Y$$

v-structure

Active Trail

- A trail $X_1 \ldots X_k$ is active if
 - it has no v-structures $X_{i-1} \to X_i \leftarrow X_{i+1}$

When can X influence Y given evidence about Z?

•
$$X \leftarrow W \leftarrow Y$$

•
$$X \leftarrow W \rightarrow Y$$

•
$$X \to W \leftarrow Y$$

When can S influence D?

• S - I - G - D allows influence to flow when:

• I is not observed, G is observed

Active Trail and D-Separation

- Definition: A trail $X_1 \ldots X_k$ is active if
 - for any v-structure $X_{i-1} \to X_i \leftarrow X_{i+1}$, we have that X_i or one of its descendants is in Z
 - no other X_i is in Z
- Definition: X and Y are d-separated in G given Z if there is no active trail in G between X and Y given Z.
- Notation: d-sep (X,YZ)
 Steffen Staab, Universität Stuttgart, @ststaab, https://www.pys.uni-stuttgart.de/departments/ac

Any node is d-separated from its non-descendants given its parents

5 Two Views of BN Graphs

Probability Distribution $P(\mathcal{X})$ Factorizes Over G

Definition ("factorizes over")

- Let G be a graph over $\mathcal{X} = \{X_1, ..., X_n\}$.
- $P(\mathcal{X})$ factorizes over G if for all $x_i \in X_i$, i = 1...n:

$$P(x_1, ..., x_n) = \prod_{i=1...n} P(x_i | Parents_G(x_i))$$

Is $\mathscr{B}^{student}$ a Probability Distribution? (just considering our specific example)

Is
$$\sum_{\substack{d \in D, i \in I, g \in G, s \in S, l \in L}} P(d, i, g, s, l) = 1 ?$$

We write:
$$\sum_{D,I,G,S,L} P(D,I,G,S,L) = \sum_{d \in D, i \in I, g \in G, s \in S, l \in L} P(d,i,g,s,l)$$

$$\sum_{D,I,G,S,L} P(D,I,G,S,L) = \sum_{D,I,G,S,L} P(D)P(I)P(G \mid I,D)P(S \mid I)P(L \mid G) =$$

$$= \sum_{D,I,G,S} P(D)P(I)P(G \mid I,D)P(S \mid I) \sum_{L} P(L \mid G) =$$

$$= \sum_{D,I,G} P(D)P(I)P(G \mid I,D) \sum_{S} P(S \mid I) =$$

Is $\mathscr{B}^{student}$ a Probability Distribution? (just considering our specific example)

$$\sum_{D,I,G,S,L} P(D,I,G,S,L) = \\ = \sum_{D,I,G} P(D)P(I)P(G | I,D) \sum_{S} P(S | I) = \\ = \sum_{D,I,G} P(D)P(I) \sum_{G} P(G | I,D) = \\ = \sum_{D,I} P(D)P(I) = 1$$

D.I

Typical method of proving statements

Bayesian Network Graph

A BAYESIAN NETWORK GRAPH IS

a data structure that provides the skeleton for representing a joint distribution compactly in a factorized way.

A BAYESIAN NETWORK GRAPH IS

a compact representation for a set of conditional independence assumptions about a distribution.

Factorization implies independences

Read conditional indpendences from G

Challenge of Soundness

PROBABILISTIC MODEL

BAYESIAN NETWORK GRAPH

From Factorization to Independence (I) Illustrated by example

Theorem: If $P(\mathcal{X})$ factorizes over G and d-sep $_G(X, Y | Z)$ then $P(\mathcal{X})$ satisfies $(X \perp Y \mid Z)$.

Chain rule of BN:

Is
$$d\text{-sep}_G(D, S)$$
?

From Factorization to Independence (I)

Illustrated by example

Is
$$d\text{-sep}_G(D, S)$$
?

$$P(D,S) = \sum_{G,L,I} P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G) =$$

Difficulty

$$= \sum_{I} P(D)P(I)P(S\,|\,I) \sum_{G} P(G\,|\,D,I) \sum_{L} P(L\,|\,G) =$$

$$= P(D) \sum_{I} P(I)P(S \mid I) = P(D)P(S)$$

Intelligence

Grade

SAT

Given: Any node is d-separated from its non-descendants given its parents

If $P(\mathcal{X})$ factorizes over G, then in $P(\mathcal{X})$ any random variable is independent of its non-descendants given its parents.

Independency Map: I-Map $\mathcal{I}(G)$

ullet d-separation in G implies that $P(\mathcal{X})$ satisfies corresponding independence statement

$$\mathcal{I}(G) = \{ (X \perp Y \mid Z) : d-\operatorname{sep}_G(X, Y \mid Z) \}$$

• Definition: If $P(\mathcal{X})$ satisfies $\mathcal{I}(G)$, we say that G is an Imap (independency map) of $P(\mathcal{X})$

What are the I-Maps of these two distributions P(X, Y)?

\boldsymbol{X}	Y	P(X,Y)
x^0	y^0	0.08
x^0	y^1	0.32
x^1	y^0	0.12
x^1	y^1	0.48

X	Y	P(X,Y)
x^0	y^0	0.4
x^0	y^1	0.3
x^1	y^0	0.2
x^1	y^1	0.1

From Factorization to Independence (II) and Vice Versa

Theorem:

If $P(\mathcal{X})$ factorizes over G, then G is an I-map for $P(\mathcal{X})$.

Theorem:

If G is an I-map for $P(\mathcal{X})$, then $P(\mathcal{X})$ factorizes over G.

$$P(D, I, G, S, L) = P(D)P(I | D)P(G | D, I)P(S | D, I, G)P(L | D, I, G, S)$$

Summary

Two equivalent views of graph structure:

- ullet Factorization: G allows $extbf{ extit{P}}(extbf{ extit{X}})$ to be represented
- I-Map: Independencies encoded by G hold in $P(\mathcal{X})$

6 Knowledge Engineering

Picking Random Variables

- Precision of definition
 - What does "fever" mean?
 - How reported? (which measurement)
 - When reported? (may fluctuate over day)

Can an objective third party determine the value of a random variable?

- Observed for how long? Single reading or over protracted time period?
- What does "sunny" mean?

Picking Random Variables

- Parsimony when picking random variables
 - Usually not necessary to model every meal of a patient
 - Usually not necessary to model "fever" up to precision 0.1 degree

Picking Random Variables

- Latent random variables
 - Most random variables should be observable
 - BUT: adding unobservable latent variables can
 - simplify the model
 - make the model more expressive
 - model properties you cannot/must not/do not want to observe

 X_1 X_2 X_3 X_1 X_2 X_3 X_4 X_5 X_5 X_7 X_8 X_8 X_8 X_9 X_9

p. 714

59 parameters

Picking Structures

- Pick structure that reflects causal order
 - causes are parents of the effect
 - causality is in the world not in the inference process
 - example:
 - insurance company: hadPreviousAccident → badDriver
 - realWorld: badDriver → hadPreviousAccident
- Trade-offs
 - dense connections: computationally difficult, many parameters
 - sparse connections: approximate real world

Picking Structures

Aim at modeling causality (if known)

Turning around some conditional probabilities (without violating independence assumptions!)

Additional (possibly unnecessary) dependencies

Interesting challenges

- When can two graphs G,G' represent the same $P(\mathcal{X})$?
- When are two graphs G, G' equivalent?
- When is a graph G that represents $P(\mathcal{X})$ minimal?

See Section 3.4 in Book Koller & Friedman

Picking Probabilities

Asking people

- Try to ask common vocabulary: "common", "rare"
- Relatively small differences do not change result much
 - 0.7 vs 0.75
- Orders of magnitude play a major role:
 - 10^{-4} vs. 10^{-5}

Zero probabilities:

- unlikely events need to be smoothened otherwise irrecoverable errors are produced
 - cf. Laplace smoothing in ML lecture

7 Template Variables

Case Study: Genetics in Blood

• Genotype: unordered pair of alleles of $\{A, B, 0\} \times \{A, B, 0\}$

Everyone gets one allele from mother and one from father

Phenotype is easy to observe $A0 \rightarrow A$ Genotype is not

Interesting questions:
Given phenotype of C,J,H
what phenotype has B?
Can Lisa be Homer's daughter?

Bayesian Network

Tedious!!!

Sharing within and between models!

Recurring Structures for Courses and Students

Temporal Models

One time slice

Three out of (arbitrarily many) time slices

Template Variables

- ullet Template variable $Xig(U_1, ..., U_kig)$ is instantiated multiple times
 - Genotype(person), Phenotype(person)
 - Difficulty(course), Intelligence(student), Grade(course, student)
 - Obs(time), Failure(time), Location(time),...

Template Models

Languages that specify how *ground variables* inherit dependency model from template

- Temporal Models: Dynamic Bayesian Networks
- Object-relational models
 - Directed: Plate models
 - Undirected

8 Plate Notation

Modeling Repetition

The same (conditional) probability table is instantiated for all Coin_t

Modeling Repetition

Parameter (representing CPD) is outside the box denoting explicitly that it is constant

Further Example

Nested Plates

Nested Plates: Parameter Sharing

Using Parameter Sharing for Collective Inference

Plate Dependency Model (I)

Template variable

$$A(U_1, ..., U_k)$$

Template parents

$$B_1(U_1), \ldots B_m(U_m)$$

- ullet CPD $Pig(A \, \Big| \, B_1, ..., B_mig)$
- Example:
 - G(c,s), I(c,s)
 - Template parents: D(c)
 - CPD: $P(G(c,s) \mid D(c), I(c,s))$

Plate Dependency Model (II)

Template variable

$$A(U_1, ..., U_k)$$

Template parents

$$B_1(U_1), \ldots B_m(U_m)$$

- ullet CPD $Pig(A \, \Big| \, B_1, ..., B_mig)$
- Example:
 - G(c,s)
 - Template parents: D(c), I(s)
 - CPD: $P(G(c,s) \mid D(c), I(s))$

Plate Dependency Model (III)

Template variable

$$A(U_1, ..., U_k)$$

• Template parents

$$B_1(U_1), \ldots B_m(U_m)$$

• CPD
$$P(A \mid B_1, ..., B_m)$$

No indices in parent that are not in child

Large variety of language extensions exists

Summary on Plate Notation

- Templates allow for denoting an infinite set of Bayesian
 Networks, each induced by a different set of domain objects
- Parameters and structure are reused within a BN and across different BNs
- Models encode correlations across multiple objects allowing collective inference

Thank you!

Steffen Staab

E-Mail Steffen.staab@ipvs.uni-stuttgart.de
Telefon +49 (0) 711 685e be defined
www.ipvs.uni-stuttgart.de/departments/ac/

Universität Stuttgart Analytic Computing, IPVS Universitätsstraße 32, 50569 Stuttgart