MULTINOMIAL LOGISTIC REGRESSION

Contents

- 1. Basics of Multinomial Logistic Regression
- 2. Application areas
- 3. Statistical Model
- 4. Case Study
- 5. Model fitting in R
- 6. Predicted Probabilities and Classification Table

Multinomial Logistic Regression

DEPENDENT VARIABLE

Nominal

(With more than two mutually exclusive and exhaustive categories)

INDEPENDENT VARIABLE

Categorical or

Continuous

• If there are k categories for the dependent variable then (k-1) logit functions are defined with remaining 1 category as base level.

Application Areas

Statistical Model

- Let Y be the **dependent variable with 3 categories as A,B,C** and X1 ,X2,...Xk are k Independent variables.
- There will be 2 logit functions: one for Y=B versus Y=A and other Y=C versus Y=A Assuming A as the base category.

$$g_1(x) = logit function for Y=B versus Y=A$$

 $g_1(x) = log()$
 $= b_{01} + b_{11}x_1 + b_{21}x_2 + + b_{k1}x_k$

$$g_2(x) = logit function for Y=C versus Y=A$$

 $g_2(x) = log()$
 $= b_{02} + b_{12}x_1 + b_{22}x_2 + + b_{k2}x_k$

where.
$$P_C = P[Y=C \mid X]$$

• Parameters of the model are estimated by Maximum Likelihood Estimation(MLE) Method

Case Study – High School Program Choice

Background

• At the time of entering high school, students make program choices among general program, vocational program and academic program. Their choice can be modeled using their writing score and their socio-economic status.

Objective

• To model student's choice of programs.

Available Information

- Data source: https://stats.idre.ucla.edu/
- Sample size is 200
- Independent Variables: Socio-Economic Status (SES) and Writing Score.
- Dependent Variable: Program Chosen (General, Vocational or Academic)

Data Snapshot

High School Data

Model for the case study

- There are two categorical variables in the data: 'prog' and 'ses'.
 - For the Dependent variable 'prog', 'academic' is taken as base category.
 - For the Independent variable 'ses', high' is taken as base category.
- Model for the general vs academic is given as:

Model for the case study

• Model for the **vocational vs academic** is given as:

Maximum Likelihood Estimates of Parameters

Coefficien	Coefficients								
	Intercept	seslow	sesmiddle	write					
general	1.689478	1.1628411	0.6295638	-0.05793086					
vocation	4.235574	0.9827182	1.2740985	-0.11360389					
Standard	andard Errors								
	Intercept	seslow	sesmiddle	write					
general	1.226939	0.5142211	0.4650289	0.02141101					
vocation	1.204690	0.5955688	0.5111119	0.02222000					

log () = 1.689478 + 1.1628411(seslow) + 0.629568 (sesmiddle) + (-0.05793086) (write)

Similar to this, there will be another model equation for the category 'vocation' with 'academic' as base category.

Model Fitting in R

```
#Import the data
data<-read.csv("High School Data.csv", header=TRUE)
str(data)</pre>
```

data\$prog<-as.factor(data\$prog)</pre>

```
data$prog<-relevel(data$prog, ref="academic")

# Install and load package 'nnet'.
install.packages("nnet")
library(nnet)</pre>
```

relevel() tells R to re-order levels of a factor so that the level specified by ref is first and the others are moved down. First level is then taken as reference (base) category.

Model Fitting in R

#Run Multinomial Logistic Model

```
choicemodel<-multinom(prog~ses+write,data=data)
m<-summary(choicemodel)
m</pre>
```

- mulinom() fits a Multinomial Logistic Regression.
 Dependent variable is followed by '~' and independent variables are separated by plus signs.
- The output of **multinom()** function does not contain all the parameters required for further testing.
- In order to be able to extract specific components from the output and perform more actions on them, an object is created from **summary**().

Model Fitting in R

Output

```
> choicemodel<-multinom(prog~ses+write,data=data)
# weights: 15 (8 variable)
initial value 219.722458
iter 10 value 179.983731
final value 179.981726
converged
> m<-summary(choicemodel)
> m
Call:
multinom(formula = prog \sim ses + write, data = data)
Coefficients:
                        seslow sesmiddle
         (Intercept)
general
            1.689478 1.1628411 0.6295638 -0.05793086
vocation
            4.235574 0.9827182 1.2740985 -0.11360389
Std. Errors:
         (Intercept)
                        seslow sesmiddle
            1.226939 0.5142211 0.4650289 0.02141101
general
            1.204690 0.5955688 0.5111119 0.02222000
vocation
Residual Deviance: 359.9635
AIC: 375.9635
```

Output gives coefficients and standard errors of variables for each logit.

Individual Testing Using Wald's Test

• Individual testing is used for checking significance of each independent variable separately.

Objective To test the null hypothesis that each variable is insignificant

Null Hypothesis (H_0): $b_{i1} = 0$ (for 1st logit)

Alternate Hypothesis (H_1): $b_{i1} \neq 0$ ((for 1st logit)

i=1,2...k

Null Hypothesis (H_0): $b_{i2} = 0$ (for 2^{nd} logit)

Alternate Hypothesis (H_1): $b_{i2} \neq 0$ (for 2^{nd} logit)

i=1,2...,k

Test Statistic	$\mathbf{Z}^2 = (\mathbf{b_{i1}} / \text{Std. Error of } \mathbf{b_{i1}})^2$ Under H0, $Z^2 \sim \chi^2_{(1)}$	
Decision Criteria	Reject the null hypothesis if p-value < 0.05	

Individual Testing- Case study

Table of p-values						
	Intercept	seslow	sesmiddl e	write		
general	0.1685163893	0.02373673	0.1757949	6.816914e-03		
vocational	0.0004382601	0.09893276	0.0126741	3.176088e-07		

• p-value for seslow (general), sesmiddle (vocational) and write (general and vocational) < 0.05

Interpretation of Results

Coefficients						
	Intercept	seslow	sesmiddle	write		
general	1.689478	1.1628411	0.6295638	-0.05793086		
vocational	4.235574	0.9827182	1.2740985	-0.11360389		
P-values						
general	0.168516389	0.02373673	0.1757949	6.816914e-03		
vocational	0.000438260	0.09893276	0.0126741	3.176088e-07		

- 'write' is a significant variable. Higher the writing score, less preference to 'general' or 'vocational'(as academic is base category and coefficient sign is negative).
- 'Low' SES category prefer 'general' over 'academic' more than 'high' SES category (as high SES is base category).
- 'middle' SES category prefer 'vocation' over 'academic' more than 'high' SES category.

Individual Testing in R

#Individual Testing

```
z<-m$coefficients/m$standard.errors
pvalue <-1-pchisq(z^2,df=1)
pvalue</pre>
```

- 'z' creates a dataframe of Z values as coefficients divided by standard errors
- pchisq() is used to calculate p-values using square of Z and degrees of freedom as arguments
- pvalue stores table of p-values.

Individual Testing in R

Output:

```
(Intercept) seslow sesmiddle write
general 0.1685163893 0.02373673 0.1757949 6.816914e-03
vocation 0.0004382601 0.09893276 0.0126741 3.176088e-07
```

Interpretation:

 seslow(general), write(general), sesmiddle (vocation), write(vocation) are significant, as p-value <0.05.

Classification Table

- Cross tabulation of observed values of Y and estimated values of Y is called as Classification Table.
- The predictive success of the logistic regression can be assessed by looking at the classification table

Classification						
	Predicted					
Observed	academic	general	vocation	Percent Correct		
academic	92	4	9	87.61%		
general	27	7	11	15.56%		
vocation	23	4	23	46.00%		
Overall Percentage	71.0%	7.5%	21.5%	61.0%		

• Table shows that, model is predicting 61%=(92+7+23)/ 200 correctly.

Predicted Probabilities and Classification Table in R

Predicted Probabilities

head(data)

head(data)

predicted probabilities
 for program choice.

Output:

	sn	id	ses	write	prog	predprob.academic	predprob.general	predprob.vocation		
1	1	45	low	35	vocation	0.15	0.34	0.51	•	Predicted
2	2	108	middle	33	general	0.12	0.18	0.70		rrearecea
3	3	15	high	39	vocation	0.42	0.24	0.34		category
4	4	67	low	37	vocation	0.17	0.35	0.48		category
5	5	153	middle	31	vocation	0.10	0.17	0.73		is
6	6	51	high	36	general	0.35	0.24	0.41		15
					_					Vocation

Interpretation:

- Predicted probabilities are given for each outcome (academic, general, vocation).
- Category of the maximum of these probabilities is taken as predicted category of that observation

Predicted Probabilities and Classification Table in R

Classification Table

```
expected<-predict(choicemodel,data, type="class")
ctable<-table(data$prog,expected)
ctable</pre>
```

- predict() returns predicted values.
- type="class" returns a factor of classifications based on the responses (frequency). type="probs" returns matrix of probabilities.
- table() function simply gives the true positive and negative rates of the model (in the form of counts), which are key to deciding power of the model.

•	_		
	academic	general	vocation
academic	92	4	9
general	27	7	11
vocation	23	4	23

Interpretation:

Output:

Classification table of predicted and expected

Quick Recap

In this session, we learned about **Multinomial Logistic Regression**:

Multinomial Logistic Regression

- Dependent variable is nominal with more than two categories and independent variables are categorical or continuous or mix of both.
- Parameters are estimated using MLE.
- If there are k categories for the dependent variable then (k-1) logit functions are defined with remaining 1 category as base level.

Multinomial Logistic regression in R

- relevel() used to define base category.
- nnet() library required for multinomial regression
- multinom() performs multinomial logistic regression
- Use **summary()** function to extract more details from **multinom()** function.

THANK YOU!!

