Tuần 5

Chương 3: Không gian vevtor

Không gian vector, Không gain vector con

I Khái niệm

1 Định nghĩa

Cho $V \neq \emptyset$ với các phần tử $v \in V$ được gọi là vector. K là một trường

Giả sử trên
$$V$$
 có
$$\begin{cases} \text{Phép cộng vector: } u,v\in V\Rightarrow u+v\in V\\ \text{Phép nhân một só với vector: } k\in\mathbb{K},v\in V\Rightarrow kv\in V \end{cases}$$

V được gọi là một k<mark>hông gian vect</mark>or (KGVT) trên K nếu thỏa mãn 8 điều kiện sau

- (1) (Giao hoán) x + y = y + x
- (2) (Kết hợp) x + (y+z) = (x+y) + z
- (3) (Phần tử trung hòa) Có vector không θ : $\theta + v = v + \theta = x$
- (4) (Phần tử đối xứng) Có vector đối (-v): $v + (-v) = (-v) + v = \theta$
- (5) k(x+y) = kx + ky
- $(6) (k_1 + k_2)x = k_1 x + k_2 x$
- $(7) (k_1 k_2) x = k_1 (k_2 x)$
- (8) 1x = x

VD

- (1) V là tập hợp các vector hình học, với phép cộng vector v
fa phép nhân vector với một số thì V là không gian vector trên
 $\mathbb R$
- (2) Với tập số phức \mathbb{C} , xét

$$\mathbb{C}^{n} = \left\{ \left. (x_{1}, x_{2}, ..., x_{n}) \right| x_{i} \in \mathbb{C}, \forall i = \overline{1, n} \right\}$$

Trang bị phép toán "+" và "." như sau:

Với
$$x=(x_1,x_2,...,x_n)\in\mathbb{C}^n$$
 và $y=(y_1,y_2,...,y_n)\in\mathbb{C}^n$ thì
$$x+y=(x_1+y_1,x_2+y_2,...,x_n+y_n)\in\mathbb{C}^n$$

$$kx=(kx_1,kx_2,...,kx_n)$$

Dễ kiểm tra 8 tính chất của KGVT đều thỏa mãn, vậy \mathbb{C}^n là KGVT trên \mathbb{C}

2 Các tính chất đơn giản

Tính chất 1 V là \mathbb{K} -KGVT, khi đó vector θ là duy nhất

Tính chất 2 V là \mathbb{K} -KGVT, khi đó

(1)
$$\theta x = k\theta = \theta$$

(2)
$$(-1)x = -x$$

(3)
$$kx = \theta \Rightarrow \begin{bmatrix} k = 0 \\ x = \theta \end{bmatrix}$$

II Không gian vector con

1 Định nghĩa

► Không gian vector con

Cho V là \mathbb{K} -KGVT, $\emptyset \neq W \subset V$. Với các phép toán của V áp dụng cho W mà W trở thành KGVt thì W được gọi là KGVT con

▶ Đóng kín

Cho $W \subset V$

- (1) W được gọi là đóng kín với phép cộng nếu $x,y\in W$ thì $x+y\in W$
- (2) W được gọi là đóng kín với phép nhân với một số nếu $x \in W, k \in \mathbb{R}$ thì $kx \in W$

Định lý V là \mathbb{K} -KGVT, $\emptyset \neq W \subset V$. Điều kiện cần và đủ để W là KGVT con của V là

- (1) Đóng kín đối với phép cộng vector
- (2) Đóng kín đối với phép nhân một số với một vector

VD Trong
$$\mathbb{R}^3$$
, cho $W = \left\{ \left. (x_1, x_2, 0) \right| x_1, x_2 \in \mathbb{R} \right\}$

Hiển nhiên $W \neq \emptyset$

Đế thấy với
$$x=(x_1,x_2,0)$$
 và $y=(y_1,y_2,0)$ thì

$$x + y = (x_1 + y_1, x_2 + y_2, 0) \in W$$

Do đó W đóng kín với phép toán cộng

Ta cũng có W đóng kín với phép toán nhân với một số. Vậy W là một KGVT con

2 Không gian sinh bởi vector

► Tổ hợp tuyến tính

Với V là \mathbb{K} -KGVT, xét hệ vector $\{v_1,v_2,...,v_n\}$, $v_i\in V$. Ta gọi $v\in V$ là một tổ hợp tuyến tính của $\{v_1,v_2,...,v_n\}$ nếu tồn tại $k_1,k_2,...,k_n\in\mathbb{K}$ sao cho

$$v = k_1 v_1 + k_2 v_2 + \dots + k_n v_n = \sum_{i=1}^{n} k_i v_i$$

Định lý Trong KGVT V, gọi W là tập hợp các tổ hợp tuyến tính của hệ vector đã cho $\{v_1,v_2,...,v_n\}$. Khi đó W là KGVT con của V

▶ Không gian con sinh bởi hệ vector

Trong KGVT V cho hệ $\{v_1, v_2, ..., v_n\}$. Không gian con W gồm các tổ hợp tuyến tính của hệ vector đã cho được gọi là không gian con sinh bởi hệ vector $\{v_1, v_2, ..., v_n\}$

Kí hiệu: $W = \text{span}\{v_1, v_2, ..., v_n\}$

VD Trong
$$\mathbb{R}^3$$
 cho $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$. Chứng minh rằng
$$\mathbb{R}^3 = \operatorname{span}\{e_1, e_2, e_3\}$$

 $Gi \acute{a} i$

Để chứng minh $\mathbb{R}^3 = \operatorname{span}\{e_1, e_2, e_3\}$, ta sẽ chứng minh

$$\mathbb{R}^3 \subset \operatorname{span}\{e_1, e_2, e_3\}$$

và

$$\mathbb{R}^3 \supset \operatorname{span}\{e_1, e_2, e_3\}$$

$$\left(\mathbb{R}^3 \subset \operatorname{span}\{e_1, e_2, e_3\}\right)$$

Giả sử $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Khi đó ta có thể viết

$$x = (x_1, x_2, x_3) = x_1(1, 0, 0) + x_2(1, 0, 1) + x_3(0, 0, 1) = x_1e_1 + x_2e_2 + x_3e_3$$

Do đó $x \in \text{span}\{e_1, e_2, e_3\}$. Vậy $\mathbb{R}^3 \subset \text{span}\{e_1, e_2, e_3\}$

$$\left(\mathbb{R}^3 \supset \operatorname{span}\{e_1, e_2, e_3\}\right)$$

Giả sử $x \in \text{span}\{e_1, e_2, e_3\}$, hay

$$x = x_1e_1 + x_2e_2 + x_3e_3$$

Thay $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1),$ ta được

$$x = x_1(1,0,0) + x_2(1,0,1) + x_3(0,0,1) = (x_1, x_2, x_3) \in \mathbb{R}^3$$

 $V_{ay} \mathbb{R}^3 \supset \operatorname{span}\{e_1, e_2, e_3\}$

Chương 3: Không gian vector (tiếp)

1. Cơ sở và số chiều của KGVT

- a, Độc lập tuyến tính và phụ thuộc tuyến tính (ĐLTT và PTTT)
 - Hệ $\{v_1,v_2,...,v_n\}$ ĐLTT nếu $\sum_{i=1}^n \lambda_i v_i = \theta \Leftrightarrow \lambda_i = 0, \forall i = \overline{1,n}$
 - Hệ $\{v_1, v_2, ..., v_n\}$ PTTT nếu $\exists \lambda_i, i = \overline{1, n}$ không đồng thời bằng 0 mà $\sum_{i=1}^n \lambda_i v_i = \theta$ Chú ý:
 - +, Hệ PTTT $\Leftrightarrow \exists 1$ vector là tổ hợp tuyến tính của các vector còn lại.
 - +, Hệ quả: Hệ chứa vector θ luôn PTTT.

b, Cơ sở, số chiều của KGVT

- Hệ sinh: hệ $\{v_1, v_2, ..., v_n\}$ gọi là hệ sinh của KGVT V nếu \exists v \in V, v đều là tổ hợp tuyến tính của các vector trong hệ.
- Cơ sở: KGVT V trên trường K, hệ vector B được gọi là cơ sở của V nếu B là hệ sinh và B DLTT.
- Nếu KGVT V có cơ sở B gồm n vector thì số chiều của V bằng n. Kí hiệu dim V= n (Nếu V= $\{\theta\}$ thì dim V= 0)

Chú ý:

B= $\{(1, 0, ..., 0); (0,1,...,0); ...; (0,0,...,1)\}$ (n vector) là hệ cơ sở chính tắc của \mathbb{R}^n

Định lý: V là KGVT n chiều, khi đó:

- +, Hệ n+1 vector bất kì đều PTTT.
- +, Hệ n vector ĐLTT bất kì đều lập thành cơ sở của V.
- +, Hệ n vector bất kì là hệ sinh đều lập thành cơ sở của V.

2. Tọa độ của 1 vector đối với 1 cơ sở

Không gian vector n
 chiều có cơ sở $B = \{e_1, e_2, ..., e_n\}$ Khi đó \forall v \in V có biểu diễn duy nhất v
= $\sum_{i=1}^{n} x_i e_i$

Khi đó $x=(x_1,x_2,...x_n)^T$ là tọa độ của vector v
 đối với sơ sở B, kí hiệu $[v]_B=(x_1,x_2,...x_n)^T$.

Ma trận tọa độ của hệ vector S theo cơ sở B:

-
$$S = \{v_1, v_2, ... v_n\}$$

- $A = [S]_B = ([v_1]_B, [v_2]_B, ...[v_n]_B)$ là m
 trận tọa độ cột của hệ vector S đối với cơ sở B .
- A^T là ma trận tọa độ hàng của hệ S đó với B.

3. Công thức đổi cơ sở

KGVT V có 2 cơ sở $B=\{e_1,e_2,...e_n\},\,B'=\{e'_1,e'_2,...e'_n\}.$ Khi đó $P=[B']_B$ là ma trân tọa độ cột của B' đối với B cũng gọi là ma trân chuyển cơ sở từ B sang B'.

Định lý: P khả nghịch và P^{-1} là ma trận chuyển cơ sở từ B' sang B. Với $v \in V$:

$$+ [v]_B = P.[v]'_B$$

$$+ [v]_B' = P^{-1}.[v]_B$$

4. Hạng của hệ vector

- Là số vector của một bộ phận độc lập tuyến tính tối đa là tập con của hệ B. Kí hiệu rankB, r(B).
- Định lý: KGVT v có cơ sở $B = \{e_1, e_2, ... e_n\}$, hệ vector S có ma trận P là ma trận tọa đô đối với cơ sở B. Khi đó r(B) = r(P).

Chú ý: Để tìm hạng của P ta chỉ thực hiện biến đổi sơ cấp trên hàng để đưa về ma trận bậc thang.

Hệ quả: Hệ vector S gồm n vector có ma trận tọa độ hàng đôi với B là p. Khi đó n vector của S độc lập tuyến tính $\Leftrightarrow r(S) = n \Leftrightarrow r(P) = n \Leftrightarrow detP \neq 0$.

* Môt số ví du

1. xét xem hê vector sau là đôc lập tuyến tính hay phu thuộc tuyến tính:

a,
$$A = \{(1;0;1), (1;-1;2), (-2;3;5)\}$$

b,
$$B = \{(2; 4; -1)\}$$

Giải

gial a, ta có,
$$P = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 2 \\ -2 & 3 & 5 \end{bmatrix}$$
 là ma trận tọa độ hàng của hệ A đối với cơ sở chính tắc của R^3 . Mà $\det P = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 2 \\ -2 & 3 & 5 \end{bmatrix} = -10 \neq 0$ nên hệ A là độc lập tuyến tính. $-2 = 3 = 5$

của
$$R^3$$
. Mà detP =
$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & -1 & 2 \\ -2 & 3 & 5 \end{vmatrix} = -10 \neq 0$$
 nên hệ A là độc lập tuyến tính.

b, ta có
$$P = \begin{bmatrix} 2 & 4 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$
 là ma trận tọa độ hàng của hệ B đối với cơ sở chính tắc của R^3 .
$$P = \begin{bmatrix} 2 & 4 & -1 \\ -1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 4 & -1 \\ 0 & 2 & -3 \end{bmatrix} \Rightarrow r(P) = 2 \Rightarrow$$
 hệ B là độc lập tuyến tính.

- 2, Cho hệ vector $B = \{(1;1;1), (1;1;2), (1;2;3)\}$
 - a, Chứng minh B là cơ sở của R^3 .
 - b, Tìm toa đô của D = (6, 9, 14) đối với cở B.

Giải

a, Xét
$$P=\begin{bmatrix}1&1&1\\1&1&2\\1&2&3\end{bmatrix}$$
 là ma trận tọa độ hàng của B đối với cơ sở chính tắc của
$$R^3. \text{ Mà } \det P=\begin{bmatrix}1&1&1\\1&1&2\\1&2&3\end{bmatrix}=-1\neq 0 \text{ nên hệ B độc lập tuyến tính.}$$

$$R^3$$
. Mà $det P=\begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 2\\ 1 & 2 & 3 \end{bmatrix}=-1\neq 0$ nên hệ B
 độc lập tuyến tính.

Hê B gồm 3 vector nên là cơ sở của R^3

b,
$$-C_1 \quad v_1 = x_1(1;1;1) + x_2(1,1,2) + x_3(1,2,3) \Leftrightarrow$$

$$\begin{cases} x_1 + x_2 + x_3 = 6 \\ x_1 + x_2 + 2x_3 = 9 \Leftrightarrow (x_1, x_2, x_3) = (1;2;3) \\ x_1 + 2x_2 + 3x_3 = 14 \end{cases}$$

$$-C_2$$
 Gọi E là cơ sở chính tắc của R^3

$$[v]_B=S^{-1}[v]_E, \text{ trong \mathring{d}\'o }S=\begin{bmatrix}1&1&1\\1&1&2\\1&2&3\end{bmatrix}$$
là ma trận chuyển cơ sở từ E sang

$$B \Rightarrow [v]_B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 9 \\ 14 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$