N	ame of student:			
В	atch No:	Enroll	ment No	
COURSE NAME: LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS				
	TUTORIAL			MESTER 2018-19
	E: EMAT102L			MAX. TIME: 20 min
COURSE CRED	OIT: 3-1-0			MAX. MARKS: 10
1. Let $\mathbb{V} = \mathbb{R}^3$	$^{3}(\mathbb{R})$ be a vector sp.	ace and \dot{S}	$f = \{(1, 1, 0), (0, 0)\}$	-1, 1), (1, 0, 1). Find the

1. Let $\mathbb{V} = \mathbb{R}^{2}(\mathbb{R})$ be a vector space and $S = \{(1, 1, 0), (0, -1, 1), (1, 0, 1)\}$. This one condition on a, b, c such that $(a, b, c) \in span(S)$. [2] Solution:

Let V be the set of real numbers. Is V a vector space over the set of complex numbers(C). Give explanation to justify your answer. [2]
 Solution:

3. Let $\mathbb{V} = \{(x_1,, x_{10}) \in \mathbb{R}^{10} | x_1 = x_2 = 2x_3, x_7 - x_8 - x_9 - x_{10} = 0\}$. Then find the dim \mathbb{V} . [3] Solution:

4. Suppose \mathbb{U} and \mathbb{W} are distinct four-dimensional subspaces of a vector space \mathbb{V} , where $\dim \mathbb{V} = 6$. Find the possible dimensions of $\mathbb{U} \cap \mathbb{W}$. [3] Solution:

Solutions - Tutorial Quiz Test 2 V= IR3CIR) $S = \{(1,1,0), (0,-1,1), (1,0,1)\}$ · · La,b,c) & L(S) =) $(a,b,c) = \propto (1,1,0) + \beta(0,-1,1) + \beta(1,0,1)$ $(a,b,c) = (\alpha+1, \alpha-\beta, \beta+1)$ $a = x_1 \rightarrow D$ 1010 S W b = x-B ---11 = N/ - 1 C-12 B+V - 3.1 - (N/11) A - 11 on adding equi @ 2131. 1) b+c = | x+1 | (1/11) mil . (from equit. b+c=a1 (Will) mil (h 0 = (W+1) 1 mil V as not a vector space over ¢. but $dx = 2x \notin \mathbb{R}$ (1/14) 1 Soldar $V = \{(x_1, x_2, x_3, --1, x_{10}) \in \mathbb{R}^{10}, x_1 = x_2 = 2x_3, x_1 - x_8 - x_4 - x_6 = 0\}$ = { (2x3, 2x3, x3, x4, x5, x6, x8+x9+x0, x0, x0, x9, x10) EIR; 763, 74, 75, 76, 780 xg, xlociR} = { 23(2,2,1, p,0,0,0,0,0,+ xy(0,0,0,1,0,0,0,0,0) + 25 (0,0,0,0,1,0,0,0,0,0) + 26 (0,0,0,0,0,0,1,0,0,0,0) + 28 (0,0,0,0,0,0,1,1,0,0)+xq(0,0,0,0,0,0,1,0,1,0)

Scanned by CamScanner

 $V = Span \{ a_1, a_2, a_3, a_4, a_5, a_6, a_7 \}$ and $a_2 + 1 \le 2 \le 7$ are L.T. vectors. =) dim V = 7.

Solmy Since U, W are <u>distinct</u> subspaces of V.

=> UCU+W

WCU+W

=) din (U+W) > 4 [: din U=din W = 4]

Since U+W is a subspace of V.

=) din (U+W) < 6

[: din V=6]

So we have two cases.

L') dim (U+W)=5

L'i) dim (U+W)=6

Now when dim(V+W) = 5 dim(VNW) = U+Y-5 = 3when dim(U+W) = 6 dim(UNW) = 4+4-6 = 2

Land Lk . P. . Marche 35 . P. L. J. My . P. C. Spec.

 $\mathbb{R}^{f_{1}} = \mathbb{R}^{g_{1}} = \mathbb{R}^{g_{1}} + \mathbb{R}^{g_{1}} + \mathbb{R}^{g_{2}} = \mathbb{R}^{g_{1}} + \mathbb{R}^{g_{2}} + \mathbb{R}$

the fact of the property of the following the property of the first of