

Instytut Systemów Elektronicznych

Praca dyplomowa inżynierska

na kierunku Elektronika w specjalności Elektronika i inżynieria komputerowa

System bezpieczeństwa z dostępem sieciowym

Piotr Antosiuk

Numer albumu 268960

promotor dr inż. Gustaw Mazurek

WARSZAWA 2018

Spis treści

1.	Wstęp teoretyczny	3
	1.1. Współczesne systemy monitoringu i bezpieczeństwa	3
	1.2. Koncepcja "inteligentnego domu"	3
	1.3. Motywacje i cel pracy	3
2.	Architektura systemu	4
	2.1. Wymagania techniczne i funkcjonalne	4
	2.2. Przegląd dostępnych platform	5
	2.3. Czujniki warunków środowiskowych	6
	2.4. Czujniki stykowe	6
	2.5. Kamery cyfrowe	7
	2.6. Projekt części sprzętowej systemu	7
3.	Program procedury obsługi kamer i czujników	9
	3.1. Obsługa kamer USB	10
	3.2. Obsługa czujników podłączonych do magistrali I2C	11
	3.2.1. Komunikacja z multiplekserem TCA9548A	11
	3.2.2. Komunikacja z czujnikiem Si7021	12
	3.3. Obsługa czujników stykowych	14
	3.4. Wysyłanie powiadomień e-mail	15
4.	Baza danych	17
	4.1. Założenia wstępne	17
	4.2. Projekt bazy danych	17
	4.3. Praktyczna realizacja bazy danych	19
5.	Strona i serwer WWW	21
	5.1. Serwer WWW	21
	5.2. Żądania HTTP i ich obsługa – technika AJAX	21
	5.2.1. Strona główna i archiwum	21
	5.2.2. Eksport zdarzeń	21
	5.2.3. Ustawienia	21
	5.3. Interfejs użytkownika	21
6.	Testy systemu	22
7.	Wnioski i podsumowanie	23
8.	Bibliografia	24
	Załączniki	26
J.	<u> Luiquei inti</u>	20

1. Wstęp teoretyczny

- 1.1. Współczesne systemy monitoringu i bezpieczeństwa
- 1.2. Koncepcja "inteligentnego domu"
- 1.3. Motywacje i cel pracy

2. Architektura systemu

2.1. Wymagania techniczne i funkcjonalne

System bezpieczeństwa powinien łączyć funkcję monitoringu z możliwością kontroli otwarcia drzwi i okien oraz pomiaru warunków środowiskowych. Monitoring powinien być zrealizowany poprzez kamery USB ze względu na ich cenę i dostępność. System powinien być skalowalny i umożliwiać rozbudowę o dodatkowe kamery, co odpowiada np. rozszerzeniu monitoringu o dodatkowe pomieszczenia. Dane zebrane przez system należy udostępnić przez graficzny interfejs użytkownika w postaci strony WWW. Podłączenie systemu do sieci domowej LAN (ang. *Local Area Network*) i dokonanie odpowiednich ustawień w panelu administracyjnym rutera umożliwi dostęp do strony WWW z dowolnego miejsca przez Internet.

System powinien być zrealizowany w postaci komputera jednopłytkowego z systemem Linux, na którym działał będzie serwer WWW. Odpowiada on za dostęp do strony WWW i danych zebranych przez system. Kontrolę otwarcia drzwi i okien można zrealizować poprzez czujniki stykowe, które należy podłączyć do wyprowadzeń GPIO. Zintegrowane czujniki środowiskowe wymagają obsługi cyfrowych magistral (np. I2C czy OneWire). Komputer powinien być wyposażony w gniazda USB, do których będą podłączone kamery. Monitoring przy pomocy kamer nie musi być prowadzony w postaci ciągłego nagrania, które wymaga sporej pamięci. Wystarczające będzie okresowe wykonywanie zdjęć oraz dodatkowo wyzwalanie zdjęcia w przypadku otwarcia drzwi lub okna – otwarcia czujnika stykowego przypisanego do kamery.

Interfejs użytkownika musi prezentować aktualny stan systemu w postaci dostępu do ostatnich wykonanych zdjęć, odczytów czujników środowiskowych oraz stanu czujników stykowych (otwarty/zamknięty). Ponadto użytkownik powinien mieć dostęp do przeszłych zdjęć i pomiarów w postaci archiwum. Historia odczytów systemu powinna być również dostępna w formie eksportowanej listy np. w formacie *csv*. Użytkownik powinien mieć również możliwość dokonania zmian w systemie poprzez panel ustawień. Może on umożliwiać np. włączenie wysyłania powiadomień e-mail w przypadku otwarcia czujnika.

Dane zebrane przez system z kamer i czujników powinny być więc zapisane w systemie tak, by umożliwić do nich dostęp serwerowi WWW, na którym będzie działać strona WWW. Pomiary wykonywane przez system powinny być zapisywane wraz z datą i godziną ich wykonania. Dostęp do tych danych powinien być niezależny od programu zapisującego wyniki pomiarów i prowadzącego monitoring.

Podsumowując, wymagania techniczne stojące przed systemem to:

- wykorzystanie komputera jednopłytkowego,
- użycie systemu Linux,
- użycie serwera WWW,
- obsługa wielu kamer USB,
- obsługa wielu dwustanowych czujników stykowych poprzez wyprowadzenia GPIO,
- obsługa wielu czujników środowiskowych korzystających np. z I2C lub OneWire,
- możliwość połączenia z Internetem poprzez Ethernet lub Wi-Fi.

Wymagania funkcjonalne systemu to:

- dostęp do stanu systemu poprzez stronę WWW,
- dostęp do archiwalnych stanów systemu,
- możliwość eksportu listy pomiarów i zdarzeń do pliku (np. w formacie csv),
- dostęp do ustawień systemu poprzez interfejs użytkownika,
- wysyłanie powiadomień e-mail w przypadku otwarcia czujnika,
- wywoływanie zdjęcia po otwarciu czujnika.

2.2. Przegląd dostępnych platform

Jednymi z najbardziej popularnych komputerów jednopłytkowych jest Raspberry Pi rozwijany przez Raspberry Pi Foundation jako narzędzie edukacyjne do nauczania programowania i elektroniki. Wokół tego projektu powstała duża grupa amatorów i entuzjastów dzielących się swoimi projektami. Jednym z konkurentów Raspberry Pi jest BeagleBone rozwijany przez Texas Instruments również zgodnie z filozofią *openhardware* – sprzętu o otwartym źródle. Oba komputery oparte są o procesory ARM Cortex w formie *System On Chip* – układu scalonego zawierającego procesor wraz z układami pamięci, peryferiami i układami przetwornikami analogowo-cyfrowymi i cyfrowo-analogowymi. Oba komputery umożliwiają zainstalowanie na nich dystrybucji systemu Linux. Najnowszymi modelami w momencie rozpoczęcia projektu (w marcu 2017 ro-ku) były Raspberry Pi Model 3B oraz BeagleBone Black. Porównanie obu komputerów przedstawiono w tabeli 1.

	Raspberry Pi 3B	BeagleBone Black
Rok wydania	2016	2013
CPU	ARM Cortex-A53	ARM Cortex-A8
Liczba rdzeni	4	1
Częstotliwość taktowania	1,2 GHz	1 GHz
RAM	1 GB LPDDR2	512 MB DDR3L
Liczb gniazd USB	4	1
WLAN	b/g/n	brak
Ethernet	10/100	10/100
I2C	Tak	Tak
Liczba wyprowadzeń GPIO	40	66
Maksymalny pobór mocy	3 W	2,3 W

Tabela 1: Porównanie specyfikacji technicznej Raspberry Pi 3B i BeagleBone Black [1] [2] [3]

Przewagą komputera Raspberry Pi 3B jest szybszy procesor o większej liczbie rdzeni, co pozwala na równoległe wykonywanie większej liczby procesów oraz większa pojemność pamięci RAM. Ponadto wyposażony on jest zarówno w gniazdo Ethernet jak i adapter WLAN w większości popularnych standardów, co pozwala prowadzić bezprzewodową komunikację. Może być to przewaga w przypadku, gdyby system miał być

zainstalowany z daleka od rutera. Komputer BeagleBone Black ma nieco niższą wartość poboru mocy oraz więcej wyprowadzeń GPIO. Na każdy czujnik stykowy będzie jednak potrzebne jedno wyprowadzenie GPIO oraz podłączenie do masy, zatem 40 wyprowadzeń Raspberry Pi 3B z pewnością będzie wystarczające. Na tej podstawie wybrałem Raspberry Pi 3B do projektowanego systemu.

Wśród dostępnych dystrybucji systemu Linux na Raspberry Pi są m.in. Raspbian (domyślna dystrybucja oparta o Debian) i Ubuntu Mate. W projekcie zostanie użyty system Raspbian, ponieważ jest on uniwersalny i spełnia wszystkie stawiane wymogi – obsługę wyprowadzeń GPIO, magistrali I2C oraz możliwość działania jako serwer WWW (np. przy użyciu Apache). System Raspbian posiada również interfejs graficzny, co może być przydatną cechą w przypadku, gdyby konieczna była bezpośrednia interwencja administratora systemu z pominięciem interfejsu użytkownika. Raspberry Pi 3B posiada wyjście HDMI, do którego można podłączyć monitor i wygodnie zarządzać komputerem.

2.3. Czujniki warunków środowiskowych

Wymogiem technicznym systemu jest również obsługa czujników środowiskowych. Najważniejszymi parametrami, które należy zmierzyć w warunkach domowych są temperatura i wilgotność względna powietrza. Wpływają one na jakość powietrza w pomieszczeniach oraz na poziom zachorowań wśród przebywających w nich. Badania wykazały związek między wilgotnością względną w domu i pracy oraz liczbą dni spędzonych na zwolnieniu lekarskim. Zbyt niska lub zbyt wysoka wilgotność powietrza w pomieszczeniach prowadzi do zwiększenia przypadków zachorowań na choroby układu oddechowego. [14]

Przykładowymi czujnikami temperatury i wilgotności dostępnymi na rynku są Adafruit SHT31, Adafruit Si7021 oraz Grove TH02. Są to czujniki umieszczone na płytkach *breakout-board*, które posiadają wyprowadzenia linii I2C, masy oraz zasilania. Porównanie specyfikacji czujników znajduje się w tabeli 2.

	Temperat	ura	Wilgotno	_	
	Zakres pomiarowy	Dokładność	Zakres pomiarowy	Dokładność	Cena
SHT31	–40 − 125 °C	\pm 0,3 $^{\circ}$ C	0 – 100% RH	\pm 2 %RH	79,80 zł
Si7021	–10 – 85 °C	\pm 0,4 $^{\circ}$ C	0 – 80% RH	\pm 3 %RH	39,70 zł
TH02	–40 – 85 °C	\pm 0,5 $^{\circ}$ C	0 – 80% RH	\pm 4,5 %RH	54,00 zł

Tabela 2: Porównanie specyfikacji czujników temperatury i wilgotności [5] [6] [7] (ceny za sztukę: www.botland.com.pl).

Na podstawie danych przedstawionych w tabeli 2 wybrałem czujnik Si7021 jako użyty w projekcie czujnik środowiskowy. Zapewnia on pomiar temperatury i wilgotności względnej w zakresie wartości panujących w warunkach pokojowych oraz ma najniższą cenę. Przewagą czujnika SHT31 była możliwość zmiany adresu I2C poprzez podłączenie wyprowadzenia do stanu wysokiego lub niskiego. Byłoby to jednak rozwiązanie możliwe do zastosowania przy tylko dwóch czujnikach w systemie.

2.4. Czujniki stykowe

Magnetyczne czujniki zbliżeniowe mogą być użyte do określenia pozycji drzwi lub okien i tym samym realizować nadzór nad ich stanem. Czujniki te mogą wykryć dwa stany – zamknięty i otwarty. W systemie zostały użyte czujniki zbliżeniowe MC-38 składające się z kontaktronu i magnesu. Obwód kontaktronu jest domyślnie rozwarty, a po zbliżeniu magnesu następuje jego zamknięcie i przepływ prądu. Wybrałem ten czujnik ze względu na łatwość ewentualnego montażu – czujnik posiada taśmę samoprzylepną i otwory na śruby montażowe.

2.5. Kamery cyfrowe

Kamery USB zastosowane w systemie mogą pozwolić na realizację domowego monitoringu niedużym kosztem. Ich uniwersalność pozwala również wykorzystać je w innych domowych zastosowaniach np. jako kamerę do rozmów przez komunikatory internetowe takie jak Skype czy Google Hangouts. W projektowanym systemie zadaniem kamer będzie cykliczne wykonywanie zdjęć. Celem powinno być znalezienie złotego środka między jakością zdjęć wykonywanych przez kamery i ich ceną. Jakość powinna być na tyle dobra, by zdjęcie umożliwiło identyfikację ewentualnego intruza. Koszt jest kategorią bardziej subiektywną, ale kamera USB powinna być konkurencyjna cenowo wobec kamer IP, których koszt zaczyna się od ok. 150 zł.[15]

W systemie zastosowałem dwie kamery z różnego przedziału cenowego. Kamera Titanum Onyx posiada matrycę CMOS, która umożliwia wykonywanie zdjęć o rozdzielczości do 5 megapikseli przy zastosowaniu interpolacji. Co ważne kamera jest kompatybilna z UVC (*USB Video Class*) – sterownikiem wbudowanym w system Linux. Kamera posiada również przełącznik włączający 3 diody LED, które mogą być przydatne w przypadku zdjęć nocnych. Koszt kamery to ok. 50 zł. Drugą kamerą jest Creative VFO 790, która posiada matrycę wykonującą zdjęcia w rozdzielczości HD 720p (1280x720 pikseli). Jest ona również kompatybilna z UVC. Optyka kamery jest w przeciwieństwie do pierwszej stałoogniskowa. Koszt kamery to ok. 110 zł.

2.6. Projekt części sprzętowej systemu

Rysunek 1: Schemat architektury systemu

Rysunek 1 przedstawia projekt architektury systemu. System oparty jest o komputer jednopłytkowy (ang. single-board computer) Raspberry Pi 3B. Na komputerze działa dystrybucja Raspbian systemu operacyjnego Linux. Połączenia między czujnikami stykowymi oraz czujnikami I2C są wykonane na płytce prototypowej. Wyprowadzenia

GPIO Raspberry Pi są rozszerzone do płytki poprzez moduł ProtoPi Plus. Dzięki temu ułatwione było prototypowanie i testowanie systemu bez konieczności lutowania połączeń. Kamery USB są podłączone do gniazd USB komputera.

W systemie zostały zastosowane czujniki zbliżeniowe magnetyczne MC-38. Można je wykorzystać do określenia pozycji drzwi albo okien. Część z przewodami (kontaktron) należy umieścić na framudze, a magnes na drzwiach lub oknach. Obwód kontaktronu jest domyślnie rozwarty, a po zbliżeniu magnesu zostaje zamknięty. Czujnik został podłączony do napięcia 3,3V oraz wyprowadzenia GPIO, aby wykrywać zamknięcie i przerwanie obwodu. Wówczas zbliżone czujniki oznaczają zamknięty obwód i wysoki stan na wyprowadzeniu. W przypadku oddalenia czujników i otwarcia obwodu oczekiwany jest stan niski na wyprowadzeniu. W tym celu konieczny jest rezystor ściągający napięcie odczytywane na wyprowadzeniu do masy. Raspberry Pi umożliwia programistyczną aktywacją wbudowanego rezystora ściągającego. Dzięki temu można wykrywać otwarcie okien lub drzwi jako oddalenie czujników i przerwanie obwodu – zmianę stanu z wysokiego na niski.

Wymogiem systemu jest również obsługa wielu kamer i czujników, w tym czujników temperatury i wilgotności poprzez magistralę I2C. Adres I2C wybranych do projektu czujników Si 7021 to 0x70. Nie mają one możliwości programistycznej lub sprzętowej zmiany adresu. Oznacza to, że do jednej magistrali mógłby być podłączony bezpośrednio tylko jeden czujnik. Podłączenie większej liczby czujników o tym samym adresie doprowadziłoby do sytuacji, w której nie można jednoznacznie określić, z którego czujnika został odczytany wynik pomiaru. Raspberry Pi3 B posiada możliwości obsługi dwóch magistral I2C. W założeniach projektowych jest wymaganie obsługi do 4 czujników temperatury każdego przypisanego do jednej kamery. Nie jest więc możliwe rozwiązanie polegające na podłączeniu po jednym czujniku do każdej z magistral. Innym rozwiązaniem tego problemu jest zastosowanie multipleksera I2C. Multiplekser zadziała jak przełącznik, który pozwoli na komunikację z jednym czujnikiem naraz. Przykładem takiego urządzenia jest TCA 9548A firmy Adafruit. Pozwala on na podłączenie do 8 urządzeń korzystających z magistrali I2C.

W zaprojektowanym systemie bezpieczeństwa program obsługujący urządzenia działa niezależnie od programu udostępniającego poprzez serwer WWW dane użytkownikowi. Konieczny jest zatem sposób komunikacji i wymiany danych pomiędzy nimi. Relacyjna baza danych pozwala na przechowywanie danych w tabelach, do których dostęp zagwarantowany jest poprzez odpowiedni interfejs programistyczny.

3. Program procedury obsługi kamer i czujników

Do napisania programu obsługującego czujniki i kamery wybrałem język Python, ponieważ umożliwia on poprzez wiele dostępnych modułów wysokopoziomową obsługę wyprowadzeń GPIO, magistrali I2C oraz kamer USB. Ponadto istnieje wiele pakietów pozwalających na łatwą komunikację z bazą danych, która będzie miejscem przechowywania wyników pomiaru. Program w języku Python jest też odpowiedzialny za wysłanie powiadomień email poprzez serwer SMTP Google. Na potrzeby projektu zostało stworzone konto w usłudze Gmail, poprzez które będą wysyłanie powiadomienia.

Program nadzor.py obsługujący czujniki i kamery musi cyklicznie wykonywać pomiary, odczyty i zdjęcia, a wyniki zapisywać do bazy danych. Potrzebne jest narzędzie, które pozwoli okresowo wykonywać funkcje w ramach jednego programu. Istnieją mechanizmy wewnątrz języka Python(moduł sched), które umożliwiają wykonywanie zadań po minięciu pewnego czasu lub zaplanowanie ich do wykonania o konkretnej porze. Wykorzystanie tego modułu wymagałoby jednak ponownego zaplanowania zadania po każdym jego wykonaniu. Modułem, który umożliwia dokonanie tego w prostszy sposób, jest biblioteka schedule. Jest ona przeznaczona do planowania cyklicznego wykonywania zadań. Przykładowe wywołanie szeregowania przy użyciu schedule przedstawiono poniżej.

schedule.every(kamera.czestotliwosc_zdjecia).seconds.do(grupa.zrob_zdjecie)

Jako argument every () podawana jest częstotliwość wykonywania zadania, następnie podawane są jednostki oraz nazwa funkcji jako argument do ().

Rysunek 2: Diagram UML klasy Grupa

Rysunek 2 przedstawia diagram UML klasy Grupa. Skrótem *m* oznaczone są metody klasy, a *f* - atrybuty. Działanie poszczególnych metod jest opisane w poniższych podrozdziałach.

Program jest napisany przy użyciu metodyki obiektowej. Takie podejście pozwala powiązać czujnik z kamerą, która będzie wykonywała zdjęcia w przypadku jego otwarcia. Klasa Grupa reprezentuje te dwa urządzenia oraz dodatkowo przypisany do nich czujnik temperatury. Zawiera ona metody, które wykonujące zdjęcie, pomiar temperatury i wilgotności oraz odczyt stanu wyprowadzenia GPIO, do którego jest podłączony czujnik stykowy. Zarządza ona również wysłaniem wiadomości email z powiadomieniem w przypadku otwarcia czujnika.

3.1. Obsługa kamer USB

Kamery USB są obsługiwane przez metodę wyslij_email. Do samego wykonywania zdjęć użyta jest aplikacja fswebcam. Jest to samodzielny program pozwalający na wywoływanie zdjęć z kamer USB podłączonych do komputera z systemem typu Unix. Program ten pozwala na wywołanie zdjęcia z określonej kamery, zdefiniowane rozdzielczości zdjęcia, umieszczenie na zdjęciu podpisu z datą i godziną wykonania zdjęcia.

Wywołanie fswebcam z poziomu programu w języku Python wymaga użycia modułu subprocessing. Daje on możliwość otwierania programów w osobnych procesach. W tym przypadku użyta została klasa Popen z tego modułu otwierająca nowy podproces. Klasa jest dostępna zarówno w wersji języka Python 2 jak i 3. Tworząc obiekt klasy, należy przekazać do niego listę składającą się z nazwy programu, który chcemy uruchomić i jego argumentów. Dodatkowo można określić, czy i gdzie kierować informacje ze standardowych strumieni wejścia/wyjścia procesu.

```
proces = Popen(["fswebcam", "-q", "-d/dev/video0", "-r 640x480", "/var/www/
html/img/2018-05-24 22:32:10.jpg"], stdout=PIPE, stderr=PIPE)
```

Użytymi argumentami programu fswebcam w powyższym przykładowym wywołaniu są:

- -r rozdzielczość,
- -d nazwa wirtualnego wezła kamery,
- -q − tryb cichy,
- ścieżka, gdzie zdjęcie ma być zapisane.

Standardowe strumienie wyjścia i błędów są przekierowane do obiektów pipe, dzięki czemu ich wartość będzie można następnie odczytać. Program fswebcam domyślnie przekierowuje wszystkie komunikaty do strumienia błędów. Użycie trybu cichego zapewnia, że w strumieniu błędów znajdzie się jedynie informacja o błędach.

Zdjęcie jest zapisywane w formacie JPG w rozdzielczości 640x480 pikseli. Jest to maksymalna przetestowana możliwa rozdzielczość kamery Titanum Onyx. Kolejną komendą jest nazwa wirtualnego węzła kamery (ang. *virtual device node*). Jest to plik, który system Linux tworzy podczas uruchomienia i który jest przypisany do konkretnego urządzenia. Plik ten jest przechowywany w folderze /dev. Dzięki użyciu wirtualnego węzła możliwe jest wskazanie konkretnej kamery do wykonania zdjęcia. Zdjęcie jest zapisywane w miejscu wskazanym przez atrybut klasy Grupa o nazwie sciezka. Do przekazywanej do programu ścieżki dołączana jest nazwa zdjęcia w postaci daty zaplanowania jego wykonania. Format daty to "rok-miesiąc-dzień godzina:minuta:sekunda" i stanowi unikalny identyfikator zdjęcia. Jest to możliwe, ponieważ w jednej chwili czasu działa wyłącznie jedno wywołanie funkcji wyslij_zdjecie().

Po wywołaniu procesu funkcja oczekuje na jego wykonanie i odbiera informacje ze strumienia wyjścia i błędów przy pomocy metody communicate(). Jeśli zawartość strumienia błędów nie jest pusta, podniesiony jest wyjątek IOError. Na tej podstawie podejmowana jest decyzja o nazwie zdjęcia, która będzie zapisana do bazy danych.

3.2. Obsługa czujników podłączonych do magistrali I2C

3.2.1. Komunikacja z multiplekserem TCA9548A

Multiplekser TCA9548A umożliwia podłączenie do 8 urządzeń korzystających z magistrali I2C. Użyte czujniki temperatury i wilgotności Si 7021 posiadają taki sam adres, więc multiplekser powinien być skonfigurowany do zestawienia komunikacji z każdym z nich osobno. Aktywacja pojedynczego kanału odbywa się poprzez przesłanie do multipleksera 8 bitowego kodu odpowiadającego jego numerowi. Kod tworzony jest przez

ustawienie bitu o pozycji równej numerowi kanału jako 1. Pozostałe pola powinny być ustawione jako 0. Definicja bajtu sterującego została pokazana w tabeli 3. Operację tą wykonuje pomocnicza funkcja kanal. Zwraca ona 8 bitową komendę odpowiadającą numerowi kanału. Po wysłaniu komendy i znaku STOP kanał jest aktywowany. Kolejne komendy można adresować, używając adresu czujnika temperatury.

Bity	Bity rejestru sterującego					Działanie			
B7	B6	B5	B4	B3	B2	B1	B0	Dziaiailie	
Х	Х	Χ	Χ	Χ	Χ	Χ	0	Kanał 0 nieaktywny	
^	^						1	Kanał 0 aktywny	
Х	Х	Χ	Χ	Χ	Χ	0	Х	Kanał 1 nieaktywny	
^	^	^				1	^	Kanał 1 aktywny	
X	Х	Х	Χ	Χ	0	X	Х	Kanał 2 nieaktywny	
^	^	^	^				^	Kanał 2 aktywny	
X	Х	X	X	0	Χ	Χ	Χ	Kanał 3 nieaktywny	
^				^	1		^	^	Kanał 3 aktywny
X	Χ	Х	0	Χ	Χ	Χ	Х	Kanał 4 nieaktywny	
^	^	^	1			^	^	Kanał 4 aktywny	
X	Υ	X 0	Х	Χ	Χ	Х	Х	Kanał 5 nieaktywny	
^	^		^		^	^	^	Kanał 5 aktywny	
Х	0	0 1 X	х х	Χ	Χ	Χ	Χ	Kanał 6 nieaktywny	
	1							Kanał 6 aktywny	
0	Χ	Χ	Χ	Х	Х	Χ	V	Χ	Kanał 7 nieaktywny
1	^	^	^	^	^	^	^	Kanał 7 aktywny	

Tabela 3: Definicja bajtu sterującego. Źródło: [4]

3.2.2. Komunikacja z czujnikiem Si7021

Pierwszą komendą, którą należy wysłać do czujnika, jest komenda pomiaru wilgotności względnej. W dokumentacji czujnika Si7021 opisane są dwie metody pomiaru - Hold Master Mode oraz No Hold Master Mode. Ich porównanie zostało przedstawione na rysunku 3. Kolorem białym są oznaczone komendy wysyłane przez urządzenie nadrzędne (ang. master), a szarym przez urządzenie podrzędne (ang. slave). W pierwszej z nich urządzenie nadrzędne wysyła żądanie pomiaru (bajt Measure Cmd). Po potwierdzeniu odbioru wysyłane jest żądanie odczytu (znak R) Urządzenie podrzędne potwierdza otrzymanie żądania i dokonuje pomiaru. Wymaga to zastosowania rozciągania zegara (ang. clock stretching), które polega na utrzymywaniu przez urządzenie podrzędne linii zegarowej SCK w stanie niskim. Dzieje się to do momentu zakończenia pomiaru przez urządzenie i wystawieniu jego wyniku do rejestru. Wynik pomiaru składa się z dwóch bajtów, które należy odebrać w jednej transakcji. Następnie komunikacja kończy się poprzez wystawienie znaku STOP (znak P). Drugi tryb pomiaru (No Hold Master Mode) różni się tym, że po wysłaniu kodu pomiaru (0xF5) oraz żądania odczytu urządzenie nie potwierdza odbioru do momentu zakończenia konwersji pomiaru. Następnie należy odczytać dwubajtowy wynik pomiaru z rejestru czujnika.

Sequence to perform a measurement and read back result (Hold Master Mode)

Sequence to perform a measurement and read back result (No Hold Master Mode)

Rysunek 3: Porównanie sekwencji komend I2C do wykonania pomiaru czujnikiem Si7021. Źródło: [5]

Do programistycznej komunikacji poprzez I2C potrzebna była odpowiednia bibliotek. Pierwszym zastosowanym modułem był python-smbus. Korzysta on ze sterownika wbudowanego w jądro systemu Linux. Do przeprowadzenia pomiaru w trybie Hold Master Mode można użvć funkcji i2c_smbus_read_word_data() lubi2c_smbus_read_i2c_block_data(). Obie są zgodne z przedstawioną powyżej sekwencją pomiaru. Różnią się liczbą odebranych bajtów. Pierwsza funkcja odbiera dokładnie dwa bajty, a druga odbiera bajty z urządzenia do momentu zakończenia komunikacji przez urządzenie podrzędne[8]. Próba przeprowadzenia pomiaru przy ich użyciu zakończyła się błędem o kodzie io errno5. Wynikał on z tego, że pakiet smbus obsługuje magistrale I2C zgodnie ze standardem SMBus – rozszerzeniem I2C. Posiada on bardziej ścisłe reguły dotyczące czasu trwania transakcji na magistrali. Obie wymienione funkcje odczytu pakietu python-smbus są poprzedzone wysłaniem żądania do urządzenia. Oznacza to, że nie można przy ich pomocy odczytać samego wyniku pomiaru po wysłaniu kodu pomiaru w trybie No Hold Master Mode (0xE5). Inna dostępna funkcja i2c_smbus_read_byte() pozwala na odczyt wyłącznie jednego bajtu. Dwukrotne wysłanie żądania przy pomocy tej funkcji prowadzi do dwukrotnego odczytania pierwszego bajtu pomiaru.

Innym pakietem umożliwiającym komunikację poprzez magistralę I2C jest pigpio.

Umożliwia on obsługę wyprowadzeń GPIO na Raspberry Pi w tym tych, które są skonfigurowane jako magistrala I2C. Opiera on swoje działanie na bibliotece napisanej w języku C. Przed rozpoczęciem działania z pakietu konieczne jest uruchomienie programu pidpiod. Jest to demon – program działający w tle bez interakcji z użytkownikiem. Musi on działać, zanim wywołany zostanie program nadzor.py. Można to zapewnić, korzystając z narzędzia cron. Wpis do jego tabeli z wywołaniem programu pigpiod poprzedzony @reboot umieszczony przed podobnym wpisem programu nadzor.py zapewnia, że program zostanie uruchomiony za każdym razem, gdy włączany będzie system operacyjny.

Pierwszym krokiem jest stworzenie obiektu klasy pigpio.pi. Obiekt ten jest przechowywany jako atrybut *i2c* klasy Grupa. Następnie konieczne jest otwarcie komunikacji z urządzeniem i zwrócenie identyfikatora, który będzie używany do wysyłania żądań do urządzeń. Funkcje tego modułu umożliwiają przeprowadzenie pomiaru wilgotności względnej w trybie *No Hold Master Mode*. W pierwszej kolejności wysyłana jest przy pomocy funkcji i2c_write_byte() 8-bitowa komenda pomiaru. Realizuje ona sekwencję pomiaru do momentu potwierdzenia odbioru komendy przez urządzenie podrzędne. Następnie urządzenie oczekuje znaku powtórzonego startu (*Sr*). Dopuszczalne jest jednak przesłanie znaku STOP i zakończenie komunikacji.

Następnie program jest usypiany na 0.05s przy pomocy komendy time.sleep(). Jest to wartość większa niż najdłuższy czas konwersji pomiaru wilgotności względnej podany w karcie katalogowej czujnika Si 7021. W tym czasie zachodzi konwersja pomiaru i można przejść do tej części procedury, która składa się z wysłaniu bitu odczytu (R) i odebrania dwóch bajtów wyniku pomiaru. Można to zrealizować poprzez funkcję $i2c_read_device()$ [9]. Funkcja zwraca liczbę odczytanych bajtów i bajty w formie tablicy. Bajty te można następnie wykorzystać do obliczenia wilgotności względnej na podstawie wzoru 1 podanego w karcie katalogowej. Kod_{RH} oznacza tablicę bajtów, do której został zapisany wynik pomiaru.

$$\%RH = \frac{(Kod_{RH}[0] * 256 + Kod_{RH}[1]) * 125}{65536} - 6 \tag{1}$$

Czujnik Si 7021 wykonuje pomiar temperatury w ramach procedury wyznaczenia wilgotności względnej. Wynik tego pomiaru jest przechowywany w urządzeniu. Można go odczytać, wysyłając komendę o kodzie 0xE0. Całą transakcję można zrealizować przy użyciu funkcji i2c_read_i2c_block_data bez obawy o rozciąganie zegara, ponieważ nie ma potrzeby oczekiwania na konwersję pomiaru temperatury. Dwa bajty wyniku pomiaru są zapisane do tablicy i użyte do obliczenia wartości temperatury na podstawie wzoru 2.

$$Temperatura(^{\circ}C) = \frac{(Kod_{temp}[0] * 256 + Kod_{temp}[1]) * 175,72}{65536} - 46,85$$
 (2)

Obsługa wyjątków w połączeniu z multiplekserem jest przeprowadzona poprzez wypisanie do konsoli komunikatu o typie urządzenia, dla którego nastąpił błąd (multiplekser albo czujnik). W takim wypadku wartościom temperatury i wilgotności są przypisywane wartości None. Po zakończeniu pomiaru wynik zostaje zapisany w bazie danych.

3.3. Obsługa czujników stykowych

Korzystanie z wyprowadzeń GPIO w języku Python jest możliwe na komputerze Raspberry Pi przy użyciu pakietu RPi.GPIO. Umożliwia on odczyt stanu wyprowadzeń.

Konfiguracja obsługi GPIO rozpoczyna się od określenia sposobu numeracji wyprowadzeń. Dostępne są dwie możliwości: GPIO.BOARD oraz GPIO.BCM. Pierwszy odnosi się do fizycznej lokalizacji wyprowadzeń na płytce drukowanej. Drugi sposób oznacza numeracją kanałów system-on-chip (SOC) firmy Broadcom, który jest użyty w komputerze Raspberry Pi 3B. Ze względu na korzystanie z płytki prototypowej oraz modułu Proto Pi Plus, który korzysta z oznaczeń odpowiadających kanałom SOC w projekcie użyto tego sposobu numeracji.

Inicjalizacja obsługi GPIO wywoływana jest w funkcji:

```
def init_gpio():
    GPIO.setmode(GPIO.BCM)
```

Wykonywana jest ona na początku działania programu nadzor.py w funkcji main(). Obsługa poszczególnych czujników odbywa się w ramach obiektów klasy Grupa. Użycie rezystora ściągającego jest wywoływane w programie nadzor.py w konstruktorze obiektu klasy Grupa w następujący sposób.

```
GPIO.setup(self.czujnik.gpio, GPIO.IN, pull up down=GPIO.PUD DOWN)
```

Pierwszym argumentem tej funkcji jest numer wyprowadzenia GPIO, drugi określa, czy wyprowadzenie ma być skonfigurowane jako wejście (GPIO.IN) czy wyjście (GPIO.OUT). Trzeci argument to znacznik określający, czy ma zostać użyty rezystor ściągający czy podciągający.

Funkcja realizująca obsługę czujników stykowych zaczyna od sprawdzenia wyprowadzenia o numerze przechowywanym jako atrybut klasy. Zwrócenie stanu wysokiego (oznaczanego jako 1/GPIO.HIGH/True) oznacza przypisanie do zmiennej stan_czujnika wartości 1. Jeśli stan jest niski, zmiennej przypisywane jest 0. Następnie sprawdzany jest poprzedni stan wyprowadzenia przechowywany jako atrybut obiektu klasy Grupa. Jeśli poprzednio stan był wysoki (czujniki były zbliżone), to znaczy, że nastąpiło otwarcie czujników. Zgodnie z wymogami systemu następuję wywołanie zdjęcia - funkcji obsługującej kamery. Dodatkowo program przechodzi do wysłania powiadomienia email.

3.4. Wysyłanie powiadomień e-mail

Funkcjonalnością systemu jest również wysyłanie powiadomienia mailowego po otwarciu czujnika. Jest ono realizowane poprzez serwer SMTP Google. Ta decyzja projektowa wynika z tego, że konfiguracja serwera SMTP działającego na Raspberry Pi wymagałoby posiadania stałego adresu IP dostarczanego przez dostawcę usług internetowych oraz domeny, która będzie przypisana do tego adresu. Prostszym rozwiązaniem jest utworzenie konta email w zewnętrznej usłudze (np. Gmail) i korzystanie z jej serwera SMTP.

Połączenie z serwerem SMTP Google jest nawiązywane przy użyciu modułu smtplib na początku działania programu nadzor.py.

```
def init_smtp(sender, password):
    smtp_server = smtplib.SMTP_SSL("smtp.gmail.com", 465)
    smtp_server.login(sender, password)
    return smtp_server
```

Wymogiem Gmaila jest stosowanie szyfrowanego połączenia SSL, które jest nawiązywane przez funkcję SMTP_SSL. Komunikacja odbywa się na standardowym dla tego połączenia porcie 465. Następnie dokonuje się uwierzytelnienie użytkownika na serwerze poprzez przesłanie adresu email konta, z którego mają być wysyłane wiadomości oraz hasła do niego. Funkcja zwraca referencję obiektu reprezentującego połączenie z serwerem SMTP.

W przypadku gdy zostanie otwarty czujnik stykowy oprócz wykonania zdjęcia, sprawdzany jest stan znacznika powiadomień e-mail. Jeśli jest on równy "'on", a adres e-mail odbiorcy powiadomień nie jest pusty, rozpoczyna się procedura wysłania powiadomienia. Przygotowany jest tekst wiadomości zawierający informację o otwarciu czujniku i przypisanej mu nazwie. Na temat wiadomości składa się informacja o otwarciu czujnika i dacie i godzinie otwarcia. Następnie zostaje otworzony nowy wątek, w którym jest wywoływana funkcja wyslij_email(). Argumentami tej funkcji są adres e-mail odbiorcy, temat wiadomości, jej tekst oraz nazwa zdjęcia, która będzie dołączona jako załącznik. Do otwarcia wątku użyta jest pomocnicza funkcja run_threaded. Użycie wątku zapewnia, że funkcja wysyłająca powiadomienie jest wykonywana współbieżnie z pozostałymi funkcjami sprawdzającymi stany czujników.

Do stworzenia wiadomości e-mail jest wykorzystany obiekt klasy MIMEMultipart. Reprezentuje ona wieloczęściową wiadomość e-mail zgodną ze standardem MIME (ang. *Multipurpose Internet Mail Extensions*[10][11]. W polach Subject, To i From zostają wpisane odpowiednio temat, odbiorca i nadawca wiadomości e-mail. Następnie funkcja otwiera plik ze zdjęciem, które zostało wywołane przez otwarcie czujnika i tworzony jest obiekt MIMEImage, który reprezentuje część wiadomości będącej obrazem. Nie jest tu podawany format zdjęcia, ponieważ obiekt sam dokona sprawdzenia typu zdjęcia przy pomocy modułu imghdr[13]. Dzięki temu zmiana formatu zdjęcia np. z JPEG na PNG nie wymaga zmiany tej części kodu. Przed dołączeniem do wiadomości pliku ze zdjęciem konieczne jest również ustawienie nagłówka Content-Disposition z informacją o tym, że jest to załącznik (*attachment*) oraz o jego nazwie. Dzięki temu obraz zostanie wyświetlony jako załącznik do pobrania w kliencie poczty elektronicznej.[12]. Po dołączeniu załączników następuje wysłanie wiadomości e-mail.

4. Baza danych

4.1. Założenia wstępne

Relacyjna baza danych składa się relacji (tabel), które są połączone związkami. W takim modelu organizacji bazy danych łatwo przedstawić rzeczywiste obiekty, których dane ma przedstawiać. Tabela składa się z nagłówka i zawartości. Nagłówek to zbiór atrybutów opisujących zawartość składającą się ze zbioru wierszy. Każda tabela posiada klucz główny, który pozwala jednoznacznie zidentyfikować każdy wiersz. Związki między relacjami są realizowane poprzez obecność w jednej z tabel uczestniczących w związku klucza obcego, który pozwala jednoznacznie zidentyfikować wiersz z drugiej tabeli.

Programistyczny dostęp do baz danych jest możliwy poprzez interfejs do opartego na transakcjach silnik bazy danych. Transakcje to zestaw operacji, które powinny być wykonane w całości lub wcale. Dzięki nim możliwe jest zachowanie integralności danych w sytuacji, gdy kilka klientów (programów) zapisuje dane do bazy danych. W projekcie użyty został wolnodostępny system zarządzania bazą danych MySQL.

4.2. Projekt bazy danych

Projekt bazy danych należy rozpocząć od zdefiniowania, jakie obiekty mają być przechowywane w bazie. W projektowanym systemie niezbędne są informacje o czujnikach i kamerach podłączonych do Raspberry Pi oraz pomiarach wykonanych przez nie. Wszystkie urządzenia mają nazwę identyfikującą ich położenie lub przeznaczenie np. "'Kamera w kuchni"' lub "'Czujnik - drzwi wejściowe"'. Każdy typ urządzenia różni się jednak specyficznymi dla niego informacjami. Czujnik temperatury dodatkowo potrzebuje informacji o numerze kanału multipleksera, do którego jest podłączona, a czujnik stykowy o numerze wyprowadzenia GPIO, do którego jest podłączony. Ponadto każdy typ urządzenia wykonuje inny typ pomiaru i odczytu i z tego powodu informacje o urządzeniach będą przechowywane w różnych tabelach - osobno kamery, czujniki stykowe i czujniki temperatury.

Baza danych powinna przechowywać informację o stanie czujnika zbliżeniowego, wartości zmierzonej temperatury i wilgotności oraz wykonanym zdjęciu. W bazie danych nie muszą być przechowywane pliki ze zdjęciami, może być to unikalny identyfikator zdjęcia, który pozwoli zlokalizować je w pamięci urządzenia. Zdjęcia, pomiary temperatury i odczyty czujnika stykowego będą wykonywane z różną częstotliwością. Użytkownik potrzebuje natomiast powiązania, jaki w danej chwili jest stan czujnika, odczyt temperatury i wilgotności oraz zdjęcie nadzorowanego miejsca. Konieczna jest więc tabela, która będzie zbierała dla każdej grupy składającej się z czujnika, czujnika stykowego i kamery informacje o ostatnich wykonanych pomiarach. Wpisy do tej tabeli muszą być wykonywane tak często, jak wpisy do najczęściej wykonywany pomiar. Pozostałe wielkości będą ostatnio zmierzonymi. Pozwala to na jasne dopasowanie zdjęcia oraz zmierzonej temperatury i wilgotności do odczytu stanu.

Rysunek 4 przedstawia schemat bazy danych na poziomie logicznym. Poziom logiczny to zbiór relacji i związków między nimi, które mogą zostać stworzone w systemie zarządzania bazą danych.

Baza zawiera tabele czujniki, kamery i czujniki_temperatury z informacjami o poszczególnych typach urządzeń: nazwie, częstotliwości wywoływania pomiaru lub zdję-

Rysunek 4: Schemat bazy danych na poziomie logicznym

cia i sprzętowej lokalizacji urządzenia (numer wyprowadzenia, kanał multipleksera). Tabele stany, zdjęcia i odczyty zawierają informacje o realizacjach pomiarów wykonane przez te urządzenia. Tabela pomiary przedstawia status systemu w czasie, zawierając klucze aktualnych na ten moment zdjęć, odczytów i stanów.

Poza wspomnianymi wyżej relacjami istnieje również relacja ustawienia, która nie jest w związku z żadną inną. Jest to relacja, która pozwala przechowywać różne ustawienia systemu, które nie dotyczą bezpośrednio urządzeń. Posiada ona dwie kolumny klucz i wartość. Klucz jest opisem ustawienia, a wartość przechowuje informację o nim np. adres e-mail, na który mają być wysyłane powiadomienia. Wartość ta może być zmieniona poprzez interfejs na stronie WWW, ale jest wykorzystywana przez program obsługujący kamery i czujniki. Przechowywanie tych danych w bazie zapewnia ich niezależność od wykonywania poszczególnego programu.

Ponadto kamera, czujnik temperatury i czujnik stykowy, który ma wywoływać zdjęcie kamery zostały zgrupowane w ten sposób, że kamera przechowuje klucze przypisanych do niej czujników. Odpowiada to związkom jeden do wielu między kamerą a czujnikiem (temperatury).

4.3. Praktyczna realizacja bazy danych

Baza danych została zaimplementowana przy użyciu systemu zarządzania bazą danych MySQL. Do stworzenia tabel został napisany skrypt w języku Python. Wykorzystuje on moduł SQLAlchemy, który umożliwia działanie na relacjach bazy danych jak na obiektach programistycznych. Takie odwzorowanie nazywa się mapowanie obiektoworelacyjnym (ang. Object-Relational Mapping ORM). Ułatwia ono wprowadzanie kolejnych zmian do struktury bazy danych, relacji i związków między nimi.

Plik zawierający program tworzący tabele w bazie danych nosi nazwę baza.py. W pierwszej kolejność należy stworzyć klasę Base, która zapewnia mapowanie do tabel w bazie danych. Proces tworzenia tabel w bazie polega na stworzeniu klasy odpowiadającej każdej tabeli w bazie, która dziedziczy po klasie Base.

```
class Pomiary(Base):
    __tablename__ = 'pomiary'
    id_pomiaru = Column(Integer, primary_key=True)
    id_stanu = Column(Integer, ForeignKey('stany.id_stanu', ondelete='
CASCADE'), nullable=False)
    id_odczytu = Column(Integer, ForeignKey('odczyty.id_odczytu', ondelete='CASCADE'), nullable=False)
    id_zdjecia = Column(Integer, ForeignKey('zdjecia.id_zdjecia', ondelete='CASCADE'), nullable=False)
    data = Column(DATETIME)
    stany = relationship(Stany)
    odczyt = relationship(Odczyty)
    zdjecia = relationship(Zdjecia)
```

Klasa Pomiary posłuży jako przykład tworzenia tabeli w bazie danych. Należy zdefiniować atrybut __tablename__, który jest unikalną nazwą tabeli. Następnie tworzone są kolumny poprzez wywołanie konstruktora klasy Column. Przyjmuje on argumenty dotyczące typu przechowywanego w kolumnie. Dla kolumny będącej kluczem głównym należy ustawić znacznik primary_key jako True. Do zdefiniowania związku z inną relacją należy podać jako argument obiekt klasy ForeignKey, który przechowuje informację, która kolumna w której tabeli służy jako klucz obcy. Następnie należy zdefiniować związek, wywołując funkcję relationship(). Przyjmuje ona jako argument nazwę klasy. Oznacza to, że klasa ta musi być stworzona wcześniej w kodzie.

Dla wszystkich użytych czujników i kamer należy również stworzyć rekordy w bazie danych, odpowiadające im. Odpowiada za to program insert.py. Proces tworzenia nowego wpisu w tabeli polega na stworzeniu słownika zawierającego nazwy kolumn i wartości, które mają być im przypisane. Następnie wywoływana jest funkcja get_or_create, która najpierw sprawdza, czy istnieje rekord w bazie danych o takich wartościach. Jeśli istnieje już, to zwraca go. Jeśli nie istnieje, to tworzy nowy rekord. Dzięki temu do programu można dodawać tworzenie kolejnych rekordów bez obaw o powstanie duplikatów już stworzonych.

Wynik odczytu stanu zostaje zapisany do słownika przy kluczu "'stan" odpowiadającemu kolumnie w tabeli danych. Pozostałym polem w słowniku jest identyfikator czujnika stykowego, dla którego został wykonany odczyt. Następnie wynik zostaje zapisany do bazy danych poprzez funkcję create(). Stan czujnika odczytany w tym wywołaniu funkcji zostaje zapisany w polu stan_poprzedni obiektu klasy Grupa.

Odczyt czujników stykowych jest najczęściej wykonywanym pomiarem, więc po stworzeniu nowego wpisu w tabeli stany powinien zostać stworzony wpis do tabeli pomiary. Zostaje do niej wpisany rekord zawierający identyfikator właśnie wykonanego odczytu stanu oraz odczytane z atrybutów obiektu identyfikatory ostatnich wykonanych zdjęć oraz pomiarów temperatury. Wraz z nimi zostaje zapisana data wpisu odczytana przy pomocy funkcji datetime.now() zapisana w formacie dzień-miesiąc-rok godzinaminuta-sekunda.

5. Strona i serwer WWW

5.1. Serwer WWW

Wymogiem systemu jest umożliwienie użytkownikowi dostępu do zebranych danych poprzez stronę WWW. Konieczny jest zatem serwer HTTP, na którym będzie umieszczona strona. Jednym z najbardziej środowisk do prowadzenia serwerów WWW jest Apache. Jest on dostępny w wersji dla systemu Raspbian, który działa na Raspberry Pi. Umieszczona na serwerze strona będzie komunikowała się z serwerem poprzez żądania HTTP. Szkielet strony w postaci pliku HTML będzie wypełniony danymi zebranymi przez kamery i czujniku po zrealizowaniu żądań wysyłanych asynchronicznie (technika AJAX) do serwera. Za obsługę żądań po stronie serwerowej będą odpowiedzialne mikroserwisy w postaci skryptów w języku PHP. Skrypty łączą się z bazą danych, w której są przechowywane dane zebrane z kamer i czujników. Następnie zwracają dane w odpowiedzi na żądania klienta. Język PHP jest dobrze zintegrowany z serwerem Apache i jest jedną z najbardziej popularnych technologii na serwerach WWW.

5.2. Żądania HTTP i ich obsługa – technika AJAX

- 5.2.1. Strona główna i archiwum
- 5.2.2. Eksport zdarzeń
- 5.2.3. Ustawienia
- 5.3. Interfejs użytkownika

6. Testy systemu

7. Wnioski i podsumowanie

8. Bibliografia

Literatura

- [1] Specyfikacja Raspberry Pi Model 3B https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
- [2] Specyfikacja BeagleBone Black https://elinux.org/Beagleboard: BeagleBoneBlack
- [3] Porównanie komputerów jednopłytkowych (ang.) https://en.wikipedia.org/wiki/Comparison_of_single-board_computers
- [4] Karta katalogowa multipleksera TCA9548A: http://www.ti.com/lit/ds/symlink/tca9548a.pdf
- [5] Karta katalogowa czujnika temperatury i wilgotności Si7021: https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf
- [6] Karta katalogowa czujnika temperatury i wilgotności SHT31D: http://www.mouser.com/ds/2/682/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital-971521.pdf
- [7] Karta katalogowa czujnika temperatury i wilgotności SHT31D: https://raw.githubusercontent.com/SeeedDocument/Grove-TemptureAndHumidity_Sensor-High-Accuracy_AndMini-v1.0/master/res/TH02_SENSOR.pdf
- [8] Opis protokołu SMBus https://git.kernel.org/pub/scm/linux/ kernel/git/torvalds/linux.git/plain/Documentation/i2c/ smbus-protocol
- [9] Dokumentacja funkcji i2c_read_device() http://abyz.me.uk/rpi/ pigpio/python.html#i2c_read_device
- [10] Freed N., Borenstein N., Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies, RFC 2045, IETF, listopad 1996, DOI: 10.17487/RFC2045. https://tools.ietf.org/html/rfc2045
- [11] Freed N., Borenstein N., Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, RFC 2046, IETF, listopad 1996, DOI: 10.17487/RFC2046. https://tools.ietf.org/html/rfc2046
- [12] Reschke J. Use of the Content-Disposition Header Field in the Hypertext Transfer Protocol (HTTP) https://tools.ietf.org/html/rfc6266
- [13] Dokumentacja modułu Python email.mime https://docs.python.org/3/library/email.mime.html
- [14] Arundel A. V., Sterling E. M., Biggin J. H. i Sterling T. D., Indirect health effects of relative humidity in indoor environments, *Environmental Health Perspectives* 1986;65:351-361 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474709/

[15] Dziedzic K., Kamera IP w sieci. Stwórz prywatny monitoring http: //www.komputerswiat.pl/poradniki/sprzet/kamery-internetowe/ 2015/07/kamera-ip-w-sieci.aspx

9. Załączniki