	DBSCAN
*	Density Based Bhatial Clustering of Application With Noise
	Why? K-Mean specify no of clusters does this
	BSCAN lan handle audite
	> DBSCAN can hondle jurgular shapls.

* Developed by Martin and Peter in 1996.

Limitation of K-Means
Limitation of K-Means General Same as K-Means (Different in Mathematical approach) Mathematical

Point	XI	X2	70
A	•		(D) E
B	2	2	
C	2	0	
\mathcal{D}	8	8·5	
E	8.5	8	
F	7.5	80	,
9 11	24	81	
1 (1	

DEpsilon (E)

We set &=2

$$A \longleftrightarrow B = 1.8 \rightarrow \text{Neighbour}$$
 $A \hookleftarrow C = 1.5 \rightarrow 1$
 $A \longleftrightarrow D = 4 \rightarrow \text{Not}$

weighbour

Clawitying () Core point > Point that satisfy Minfts
condition

2) Border point =) Not a core point but is within Edutone of core point

3 Nous boint -> Neither come points Nov border points Working MinPts =3 E=2 (1) Stort with A. Calculate all points distance with A AGH ANA, ANB, ANC, AMD, --Using enclidean distance formula Check which distance is less than $\underline{\mathcal{E}}$ Neighbour points \Rightarrow A, B \Rightarrow $\underline{2}$ (Not satisfied) It is not a corre point

Neighbour points = A, B, C = 3 (satisfied) 2) Now point B. B is a corre boint Cluster 1 = { A, B, C} Booden point

Neighbours = D, E, F = 3 (Satisfied condition) Point D Dis a core boint Cluster $2 = \{D, E, F\}$ border (Ore point

(4) Remaing points = & 9, H3 = T Never ever salisfon salisfy condition Noise) L'inal Clusters Noise Cluster 2 Cluster 1 3 G, H 9 JD, E, F ¿ A, B, C 3 Modelined

Produktion New point = (7.9,7.9) Calculate all déstances again Neighbours = $\{D, E, F\}$ $(x \in 2)$ Check majority of point belong to which cluster. Output = Clarifer 2

When to Use 1 Turegular cluster shape * Data has nouse outleer * No of cluster is unknown * Cluster are of varying sizes. When Not to Use

* Dataset is very large

* I high-dimensional

Computational Cost 1