Neural Networks and Learning Systems TBMI 26, 2017

Lecture 3 Supervised learning – Neural networks

Ola Friman

Recap - Supervised learning

- **Task:** Learn to predict/classify new data from labeled examples.
- Input: Training data examples {x_i, y_i} i=1...N, where x_i is a feature vector and y_i is a class label
- Output: A function f(x;w₁,...,w_k) that can predict the class label of x.

Find a function f and adjust the parameters $w_1,...,w_k$ so that new feature vectors are classified correctly. Generalization!!

2

History of neural networks

- 1960's: Large enthusiasm around the perceptron and "connectionism" (Frank Rosenblatt).
- 1969: Limitations of the perceptron made clear in a paper by Minsky & Papert, e.g., the XOR problem.
- "Winter period" little research
- 1980's: Revival of connectionism and neural networks:
 - Multi-layer networks can solve nonlinear problems (this was known before, but not how to train them!)
 - Backpropagation training algorithm
- 1990's: Reduced interest, other methods seemed more promising
- 2010's: Renewed interest "Deep learning"

Training samples with only one feature value!

Not separable with a linear function!

But with a nonlinear function! $f(x; w_0, ..., w_n) = \begin{cases} -1 & |x| > 1 \\ 1 & |x| < 1 \end{cases}$

Key: The hidden layer(s)

- The output layer requires linear separability. The purpose of the hidden layers is to make the problem linearly separable!
- Cover's theorem (1965): The probability that classes are linearly separable increases when the features are nonlinearly mapped to a higher-dimensional feature space.

The Perceptron revisited

Minimize the following cost function $\varepsilon(\mathbf{w}) = \sum_{i=1}^{N} \left(\sigma(\mathbf{w}^T \mathbf{x}_i) - y_i\right)^2$ $\sigma(\mathbf{w}^T \mathbf{x}) = \mathbf{w}^T \mathbf{x}$ $\sigma(\mathbf{w}^T \mathbf{x}) = \tanh(\mathbf{w}^T \mathbf{x})$

Nonlinear activation functions

- Step/sign function Not differentiable – cannot be optimized!
- Hyperbolic tangent $\sigma(s) = \tanh(s) \quad \sigma' = 1 - \tanh^2(s) = 1 - \sigma^2$
- The Fermi-function $\sigma(s) = \frac{1}{1 + e^{-s}} \quad \sigma' = \sigma(1 \sigma)$
- Gaussian function $\sigma(s;\gamma) = e^{-\frac{s^2}{\gamma^2}} \quad \sigma'(s;\gamma) = -\frac{2s}{\gamma} \sigma$

Example - Radial Basis Functions For example a Gaussian 2D

Updated minimization algorithm

$$\varepsilon(\mathbf{w}) = \sum_{i=1}^{N} (\sigma(\mathbf{w}^{T} \mathbf{x}_{i}) - y_{i})^{2}$$
$$\frac{\partial \varepsilon}{\partial \mathbf{w}} = 2 \sum_{i=1}^{N} (\sigma(\mathbf{w}^{T} \mathbf{x}_{i}) - y_{i}) \sigma'(\mathbf{w}^{T} \mathbf{x}_{i}) \mathbf{x}_{i}$$

Gradient descent:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \frac{\partial \varepsilon}{\partial \mathbf{w}} \quad \text{(Eq. 1)}$$

Algorithm:

- Start with a random w
- Iterate Eq. 1 until convergence

Training multi-layer neural networks

Cost function

training examples # output nodes all weights desired output actual output

Stochastic gradient descent

Update using one (K=1) training example

$$\varepsilon(\mathbf{w}) = \sum_{m=1}^{M} \left[y_m - z_m(\mathbf{w}) \right]^2$$

$$W_{ij}^{t+1} = W_{ij}^t - \eta \frac{\partial \varepsilon}{\partial W_{ij}}$$
From node i to node j
in a layer

The chain rule

$$f(g(x)) f(g(x), h(x))$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x} \frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x} + \frac{\partial f}{\partial h} \frac{\partial h}{\partial x}$$

Examples:

$$f(x) = \sin(x^2) \qquad \frac{\partial f}{\partial x} = \cos(x^2) 2x$$
$$f(x) = x^2 \sin(x) \qquad \frac{\partial f}{\partial x} = 2x \sin(x) + x^2 \cos(x)$$

The error backpropagation algorithm

- an exercise of the chain rule!

$$\frac{\partial \varepsilon}{\partial w_{ij}} = \frac{\partial \varepsilon}{\partial z_j} \frac{\partial z_j}{\partial w_{ij}} = \frac{\partial \varepsilon}{\partial z_j} \frac{\partial z_j}{\partial s_j} \frac{\partial s_j}{\partial w_{ij}}$$

$$\varepsilon(\mathbf{w}) = \sum_{m=1}^{M} \left[y_m - z_m(\mathbf{w}) \right]^2 \qquad h_{i-1}$$

$$k_i \qquad w_{ij} \qquad s_j = \sum_k w_{kj} h_k z_j = \sigma(s_j)$$

$$k_{i+1} \qquad h_{i+1}$$

Backpropagation, cont

$$\begin{split} \varepsilon(\mathbf{w}) &= \sum_{m=1}^{M} \left[y_m - z_m(\mathbf{w}) \right]^2 \qquad \frac{\partial \varepsilon}{\partial w_{ij}} = \frac{\partial \varepsilon}{\partial z_j} \frac{\partial z_j}{\partial s_j} \frac{\partial s_j}{\partial w_{ij}} \\ &\frac{\partial \varepsilon}{\partial z_j} = -2 \left(y_j - z_j \right) \\ &\frac{\partial z_j}{\partial s_j} = \sigma' \left(s_j \right) = 1 - \sigma \left(s_j \right)^2 = 1 - z_j^2 \qquad \text{If } \sigma(s) = \tanh(s) \text{ is used!} \\ &\frac{\partial s_j}{\partial w_{ij}} = h_i \end{split}$$

Updating the hidden layer

$$\frac{\partial \varepsilon}{\partial v_{ij}} = ? \qquad \underbrace{v}_{x_1 \text{ of } z_1} \quad \varepsilon(\mathbf{v}) = \sum_{m=1}^{M} [y_m - z_m(\mathbf{v})]^2$$

A weight in the hidden layer affects all output nodes!

$$\varepsilon(z_1(\mathbf{v}),...,z_M(\mathbf{v}))$$

$$\frac{\partial \mathcal{E}}{\partial v_{ij}} = \sum_{k=1}^{M} \frac{\partial \mathcal{E}}{\partial Z_k} \underbrace{\partial Z_k}_{QV_{ij}} + \dots \quad \text{Exercise!}$$
Chain rule! Continue expanding!

Backpropagation - Summary

- Two phases:
 - Forward propagation: Propagate a training example through the network
 - Backward propagation: Propagate the error relative the desired output backwards in the net and update parameter weights.
- Batch update: update after all examples have been presented.

 $\Delta w_{ij} = -\eta \sum_{k=1}^{K} \frac{\partial \varepsilon(k)}{\partial w_{ij}}$

Reminder - Magic is not possible! No neural network, however complex, can separate inseparable classes! Finding and extracting suitable features are the critical problems in machine learning!

Pros and cons of neural networks

- A multi-layer neural network can learn any class boundaries.
- The large number of parameters is a problem:
 - Local optima → suboptimal performance
 - Overfitting → poor generalization
 - Slow convergence → long training times

27

Overfitting

• The large number of parameters makes it possible to produce overly complicated boundaries.

 A too good fit to the training data can perform poorly for new cases, i.e. worse generalization properties!

7

Overfitting

- The error on training data *always* decreases with increased training
- The error on test data (the generalization error) decreases in the beginning, but can then start to increase if overfitting occurs!

Preventing overfitting in neural networks

· Early stopping:

Pause training regularly and calculate the performance on the test data.

<u>Caution:</u> Test data becomes training data! Will bias evaluation.

Faster convergence

- Normalize input features, e.g., to the range [-1,1].
- Separate and adaptive step length η for each weight:
 - If the derivative has the same sign in several consecutive steps, η should increase. If the derivative change sign, η should decrease.

How many layers?

- 1 hidden layer is enough to produce any classification boundary.
- Complex boundaries more compactly obtained with many non-linear layers - less nodes in total compared to 1-layer solution.
- With ordinary 'backprop' training, no performance advantage with many hidden layers.
 - Vanishing gradient problem:
 Error gradients become very small for <u>early layers</u> in the network → weights are not updated.

33