MAT185 Linear Algebra Term Test 2

Full Name:	SOLUTIONS	
Student number:		
Email :		@mail.utoronto.ca
Signature:		

Instructions:

- 1. This test contains a total of 9 pages.
- 2. DO NOT DETACH ANY PAGES FROM THIS TEST.
- 3. There are no aids permitted for this test, including calculators.
- 4. Cellphones, smartwatches, or any other electronic devices are not permitted. They must be turned off and in your bag under your desk or chair. These devices may **not** be left in your pockets.
- 5. Write clearly and concisely in a linear fashion. Organize your work in a reasonably neat and coherent way.
- 6. Show your work and justify your steps on every question unless otherwise indicated. A correct answer without explanation will receive no credit unless otherwise noted; an incorrect answer supported by substantially correct calculations and explanations may receive partial credit.
- 7. For questions with a boxed area, ensure your answer is completely inside the box.
- 8. The back side of pages will not be scanned nor graded. Use the back side of pages for rough work only.
- 9. You must use the methods learned in this course to solve all of the problems.
- 10. DO NOT START the test until instructed to do so.

Multiple Choice: No justification is required. Only your final answer will be graded.

1. Consider the basis $\alpha = 1 + x, \frac{1}{2}x, -\frac{3}{2}x^2 + \frac{1}{2}$ for $P_2(\mathbb{R})$. Then the coordinate vector of x^2 with respect to $\alpha = \underline{\hspace{1cm}}$? [1 mark]

Indicate your final answer by filling in exactly one circle below (unfilled \bigcirc filled \bullet).

- $\bigcirc \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$
- $\bigcirc \begin{bmatrix} 0 \\ 0 \\ -\frac{2}{3} \end{bmatrix}.$
- $\bigcirc \begin{bmatrix} -\frac{1}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \end{bmatrix}.$
- $\begin{bmatrix}
 \frac{1}{3} \\
 -\frac{2}{3} \\
 -\frac{2}{3}
 \end{bmatrix}.$
- $\bigcirc \begin{bmatrix} -\frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{bmatrix}.$
- **2.** Let α and β be two bases for $P_2(\mathbb{R})$ where $\alpha = x^2, 1+x, x+x^2$. Given that $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix}$ is the change of basis matrix

from α to β and that $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ is the coordinate vector of p(x) with respect to β , then p(x) =____? [1 mark]

Indicate your final answer by filling in exactly one circle below (unfilled \odot filled \bullet).

- $\bigcirc -1 + x + x^2$.
- $\bigcirc 1 + 2x + 2x^2.$
- $-1 + x + 3x^2$.
- $\bigcirc 2 + 2x + x^2.$
- $\bigcirc 1 x 3x^2.$

Multiple Choice: No justification is required. Only your final answer will be graded.

3. Suppose that A is a 3×4 matrix such that each of the vectors

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{z} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

belong to the nullspace of A. Which of the following statements are true? [2 marks]

You can fill in more than one option for this question (unfilled \bigcirc filled \bullet).

- lacksquare The rows of A are linearly dependent.
- \bigcirc The equation $A\mathbf{x} = \mathbf{b}$ has a solution for every $\mathbf{b} \in {}^{3}\mathbb{R}$.
- \bigcirc The solution to $A^{T}\mathbf{x} = \mathbf{y}$, when it exists, is unique.
- The vector $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ belongs to the nullspace of A.
- $\bigcirc \ \operatorname{null} A = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} \right\}.$

4. dim span $\{e^x, \cos^2 x, \cos 2x, 1, \sin^2 x\} =$ _____? [1 mark]

Indicate your final answer by filling in exactly one circle below (unfilled \bigcirc filled \bullet).

- \bigcirc 1
- \bigcirc 2
- **3**
- \bigcirc 4
- \bigcirc 5

True or False: Unsupported answers will not receive full credit. Organize your work in a reasonably neat and coherent way.

5. Let V and W be 3-dimensional vector spaces, and let $T: V \to W$ be a linear transformation.

Indicate your final answers by **filling in exactly one circle** for each part below (unfilled \bigcirc filled \bigcirc). Each part is worth 3 marks: 1 mark for a correct final answer; 2 marks for a correct explanation.

- (a) If B is a subspace of W, then the set $U = \{ \mathbf{x} \mid T\mathbf{x} \in B \}$ is a subspace of V.
 - True.
 - O False.

Apply the Subspace Test:

- SI. B is a subspace of W; so $0 \in B$. Therefore, $0 \in U$ because T0 = 0 owing to T being a linear transformation.
- SII. Let $\mathbf{x}_1, \mathbf{x}_2 \in U$: $T(\mathbf{x}_1 + \mathbf{x}_2) = T\mathbf{x}_1 + T\mathbf{x}_2 \in B$ because $T\mathbf{x}_1, T\mathbf{x}_2 \in B$ and B is a subspace. Thus U is closed under vector addition.
- SIII. Let $\mathbf{x} \in U$ and $\alpha \in \mathbb{R}$: $T(\alpha \mathbf{x}) = \alpha T \mathbf{x} \in B$ because again $T \mathbf{x} \in B$ and B is a subspace. Thus U is closed under scalar multiplication.

Therefore U is a subspace of V.

- (b) If T is bijective, then there exist bases α for V and β for W such that the matrix of T with respect to α and β is the 3×3 identity matrix.
 - True.
 - O False.

If $\alpha = \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ is any basis for V, then, since T is bijective, $\beta = T\mathbf{x}_1, T\mathbf{x}_2, T\mathbf{x}_3$ is a basis for W (cf. Assignment 3, Q3(a)). The matrix of T with respect to this α and β is

$$\begin{bmatrix} [T\mathbf{x}_1]_{\beta} & [T\mathbf{x}_2]_{\beta} & [T\mathbf{x}_2]_{\beta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

or

Let α and β' be arbitrary bases for V and W, respectively, and let the matrix representation of T be $[T]_{\alpha\beta'}$ in these bases. In general, $[\mathbf{w}]_{\alpha} = [T]_{\alpha\beta'}[\mathbf{v}]_{\beta'}$, where $[\mathbf{w}]_{\alpha}$ and $[\mathbf{v}]_{\beta'}$ are coordinates.

Now imagine another basis β for V and denote the transition matrix from β to β' by $\mathbf{P}_{\beta'\beta}$. Thus $[\mathbf{w}]_{\alpha} = [T]_{\alpha\beta'}\mathbf{P}_{\beta'\beta}[\mathbf{v}]_{\beta'}$. We desire the new matrix representation to be the identity matrix, i.e., $[T]_{\alpha\beta'}\mathbf{P}_{\beta'\beta} = \mathbf{1}$. As T is bijective, $[T]_{\alpha\beta'}$ must be invertible and therefore we can select β such that $\mathbf{P}_{\beta'\beta} = [T]_{\alpha\beta'}^{-1}$, which shows we can always choose a set of bases such that the matrix representation of T is the identity matrix.

Short Answer: Unsupported answers will not receive full credit. Organize your work in a reasonably neat and coherent way.

6. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation defined by

$$T(p(x)) = x^2 p''(x) - p'(x) + p(x)$$

(a) Determine the matrix of T with respect to the standard basis of $P_2(\mathbb{R})$. [3 marks]

Let arbitrary $p \in P_2(\mathbb{R})$ be

$$p(x) = a_0 + a_1 x + a_2 x^2$$

Then

$$T(p(x)) = (a_0 - a_1) + (a_1 - 2a_2)x + 3a_2x^2$$

Using the standard basis,

$$\mathbf{T} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 3 \end{bmatrix}$$

is the matrix representation of T.

(b) Use your answer from part (a) to find all solutions $p(x) \in P_2(\mathbb{R})$ to the differential equation

$$x^{2}p''(x) - p'(x) + p(x) = 1 + 2x + 3x^{2}.$$

[3 marks]

We seek all the solutions to $T(p(x)) = 1 + 2x + 3x^2$ but let us convert to coordinates using the standard basis. The coordinates corresponding to the right-hand side are

$$\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in {}^{3}\mathbb{R}$$

and let $\mathbf{s} \in {}^{3}\mathbb{R}$ be the coordinates of p(x), a solution to the differential equation. We then seek all solutions \mathbf{s} satisfying

$$Ts = b$$

This gives

$$\mathbf{s} = \begin{bmatrix} 5 \\ 4 \\ 1 \end{bmatrix}$$

We observe that rank $\mathbf{T} = 3$ so dim null $\mathbf{T} = 0$ (and dim ker T = 0), which means that this \mathbf{s} is the only solution. That is, the only solution in $P_2(\mathbb{R})$ to the differential equation is

$$p(x) = 5 + 4x + x^2$$

Short Answer: Unsupported answers will not receive full credit. Organize your work in a reasonably neat and coherent way.

7.

(a) Define the rank of a matrix. Be sure to give a precise statement. No partial credit will be given for statements that are "close" to the definition. [2 marks]

The rank of a matrix $\mathbf{A} \in {}^{m}\mathbb{R}^{n}$ is the dimension of the column space of A (or, equivalently, the dimension of the row space of \mathbf{A}).

(b) Let $A \in {}^{3}\mathbb{R}^{n}$ where $n \neq 3$. If $\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\} \subset {}^{3}\mathbb{R}$ is linearly independent and $A\mathbf{x} = \mathbf{b}_{j}$ has at least one solution for each \mathbf{b}_{j} , show that $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions for any $\mathbf{b} \in {}^{3}\mathbb{R}$. [4 marks]

We note that as $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is linearly independent and dim ${}^3\mathbb{R} = 3$, $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ constitutes a basis for ${}^3\mathbb{R}$. If $A\mathbf{x} = \mathbf{b}_j$ has a solution for each \mathbf{b}_j then

$${}^{3}\mathbb{R} = \operatorname{span} \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\} \subseteq \operatorname{col} A \subseteq {}^{3}\mathbb{R}$$

So $\operatorname{col} A = {}^{3}\mathbb{R}$ and $\operatorname{rank} A = \dim \operatorname{col} A = 3$. As such $A\mathbf{x} = \mathbf{b}$ has a solution for any $\mathbf{b} \in {}^{3}\mathbb{R}$. It also follows that $n \geq 3$. But if $n \neq 3$, we must have n > 3. Accordingly dim null $A = n - \operatorname{rank} A > 0$. This means that $A\mathbf{x} = \mathbf{0}$ has an infinite number of solutions and, as a consequence, so does $A\mathbf{x} = \mathbf{b}$.

Short Answer: Unsupported answers will not receive full credit. Organize your work in a reasonably neat and coherent way. Put your final answer in the box provided.

8.

(a) State the Dimension Theorem (Formula). Be sure to give a precise statement. No partial credit will be given for statements that are "close" to the statement. [2 marks]

For any $\mathbf{A} \in {}^{m}\mathbb{R}^{n}$,

$$\dim \operatorname{null} \mathbf{A} = n - \operatorname{rank} \mathbf{A}$$

or

Let V and W be vector spaces. If V is finite dimensional, then for any linear transformation $T: V \to W$,

 $\dim \, \ker T + \dim \, \operatorname{im} T = \dim V$

(b) Let V and W be finite dimensional vector spaces, and let $T: V \to W$ and $S: W \to V$ be injective linear transformations. Prove that dim $V = \dim W$. [4 marks]

If $T: V \to W$ is injective then $\ker T = \{0\}$ and dim $\ker T = 0$. By the Dimension Theorem,

$$\dim \operatorname{im} T = \dim V$$

But im $T \subseteq W$ and hence dim im $T \leq \dim W$, Thus

 $\dim V \leq \dim W$

Interchanging the roles of T with S and V with W, we also have

 $\dim W \leq \dim V$

We therefore conclude that $\dim V = \dim W$ as required.