Practical significance of some full-text indices for read mapping

nature methods

Brief Communication | Published: 04 March 2012

Fast gapped-read alignment with Bowtie 2

Ben Langmead [™] & Steven L Salzberg

Nature Methods **9**, 357–359 (2012) | Download Citation **±**

☆ ∑∑ Cited by 15867 Related articles All 14 versions Web of Science: 10788 as of 09/18/2019

Based on FM-index for seed finding
Novel strategy / heuristic for seed scoring and exploration
Makes use of SIMD-accelerated alignment DP
Capable of global (end-to-end) or local alignment
No spliced alignment (i.e. for DNA-seq or RNA-seq -> txome)

Figure 1 | Alignment comparison using HiSeq 2000, 454 and Ion Torrent reads. (**a**–**d**) Bowtie 2, BWA, SOAP2 and Bowtie were used to align two million 100 nt × 100 nt paired-end HiSeq 2000 reads from a resequencing study¹¹. Shown are results for unpaired alignment of end 1 (**a**), paired-end alignment (**b**), Bowtie 2 and BWA-SW alignment of 1 million 454 reads from the 1000 Genomes Project Pilot¹² (**c**), and Bowtie 2 and BWA-SW to align one million Ion Torrent reads from the G. Moore resequencing project¹³ (**d**). Plotted is the percentage of reads for which at least one alignment was found. Each numbered point is data obtained using command-line parameters shown in **Supplementary Table 1**.

Figure 1 | Alignment comparison using HiSeq 2000, 454 and Ion Torrent reads. (**a**–**d**) Bowtie 2, BWA, SOAP2 and Bowtie were used to align two million 100 nt × 100 nt paired-end HiSeq 2000 reads from a resequencing study¹¹. Shown are results for unpaired alignment of end 1 (**a**), paired-end alignment (**b**), Bowtie 2 and BWA-SW alignment of 1 million 454 reads from the 1000 Genomes Project Pilot¹² (**c**), and Bowtie 2 and BWA-SW to align one million Ion Torrent reads from the G. Moore resequencing project¹³ (**d**). Plotted is the percentage of reads for which at least one alignment was found. Each numbered point is data obtained using command-line parameters shown in **Supplementary Table 1**.

Results on simulated data

Results on simulated data

Dataset	Bowtie 2 versus	Reads or ends aligned by neither	Reads or ends aligned by only Bowtie 2	Reads or ends aligned by only other tool	Reads or ends aligned by both
Unpaired HiSeq 2K	BWA	79,842 (3.99%)	84,136 (4.21%)	449 (0.09%)	1,834,243 (91.71%)
Paired HiSeq 2K	BWA	154,799 (3.87%)	99,852 (2.50%)	9,137 (0.23%)	3,736,212 (93.41%)
454	BWA-SW	7,458 (0.75%)	11,344 (1.13%)	266 (0.03%)	988,390 (98.84%)
Ion Torrent	BWA-SW	450,602 (45.06%)	71,423 (7.14%)	2,270 (0.23%)	475,705 (47.57%)

Dataset	Bowtie 2 versus	Reads or ends aligned by neither	Reads or ends aligned by only Bowtie 2	Reads or ends aligned by only other tool	Reads or ends aligned by both
Unpaired HiSeq 2K	BWA	79,842 (3.99%)	84,136 (4.21%)	449 (0.09%)	1,834,243 (91.71%)
Paired HiSeq 2K	BWA	154,799 (3.87%)	99,852 (2.50%)	9,137 (0.23%)	3,736,212 (93.41%)
454	BWA-SW	7,458 (0.75%)	11,344 (1.13%)	266 (0.03%)	988,390 (98.84%)
Ion Torrent	BWA-SW	450,602 (45.06%)	71,423 (7.14%)	2,270 (0.23%)	475,705 (47.57%)

BWA-MEM

Quantitative Biology > Genomics

Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM

Heng Li

(Submitted on 16 Mar 2013 (v1), last revised 26 May 2013 (this version, v2))

□□ Cited by 2411 Related articles ⇒ as of 09/18/2019

Based on FMD-index for seed finding

Novel "chaining" strategy to find potential alignment loci

No spliced alignment (i.e. for DNA-seq or RNA-seq -> txome)

Note: The BWA-MEM "paper" is this arXiv pre-print. The manuscript itself was never "published" in a traditional journal. This is a great example of software with huge impact that was nonetheless never published.

BWA-MEM

BWA-MEM

BIOINFORMATICS ORIGINAL PAPER

Vol. 29 no. 1 2013, pages 15-21 doi:10.1093/bioinformatics/bts635

Sequence analysis

Associate Editor: Inanc Birol

Advance Access publication October 25, 2012

STAR: ultrafast universal RNA-seq aligner

Alexander Dobin^{1,*}, Carrie A. Davis¹, Felix Schlesinger¹, Jorg Drenkow¹, Chris Zaleski¹, Sonali Jha¹, Philippe Batut¹, Mark Chaisson² and Thomas R. Gingeras¹ ¹Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA and ²Pacific Biosciences, Menlo Park, CA, USA

☆ ワワ Cited by 7979 Related articles Web of Science: 5224 ≫ as of 09/18/2019

Based on suffix array + prefix-table for seed finding

Custom "chaining" & between match alignment strategy

Capable of both contiguous and spliced alignment, behavior is *highly* configurable via parameters (DNA-seq or RNA-seq alignment directly to the genome)

STAR

Fig. 2. True-positive rate versus false-positive rate (ROC-curve) for simulated RNA-seq data for STAR, TopHat2, GSNAP, RUM and MapSplice

STAR

STAR

Table 1. Mapping speed and RAM benchmarks on the experimental RNA-seq dataset

Aligner		speed: million pairs/hour	Peak physical RAM, GB		
	6 threads	12 threads	6 threads	12 threads	
STAR	309.2	549.9	27.0	28.4	
STAR sparse	227.6	423.1	15.6	16.0	
TopHat2	8.0	10.1	4.1	11.3	
RUM	5.1	7.6	26.9	53.8	
MapSplice	3.0	3.1	3.3	3.3	
GSNAP	1.8	2.8	25.9	27.0	

HISAT2

Article Published: 02 August 2019

Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype

Daehwan Kim K, Joseph M. Paggi, Chanhee Park, Christopher Bennett & Steven L. Salzberg

Based on hierarchical graph FM-index for alignment

Custom strategy to deal with highly-repetitive regions

Capable of both contiguous and spliced alignment, behavior is *highly* configurable via parameters (built for both DNA-seq and RNA-seq alignment directly to the genome)

Built-in algorithm to do HLA-typing over aligned reads

HISAT2

Program

Program

Graph alignment improves sensitivity

	10 million read pairs with SNPs and 0.2% per base sequencing error				10 million read pairs with SNPs and no sequencing error					
	С	UC	SC	SUC	PPS	С	UC	SC	SUC	PPS
HISAT2.Linear (default)	96.52%	92.71%	93.98%	93.49%	36,735	97.05%	93.15%	94.65%	94.15%	37,934
HISAT2.Linear (sensitive)	97.54%	93.72%	95.79%	95.27%	24,941	97.83%	93.92%	96.07%	95.55%	27,331
HISAT2.Graph (default)	99.08%	95.34%	98.63%	98.40%	28,729	99.36%	95.54%	98.84%	98.62%	32,096
HISAT2.Graph (sensitive)	99.19%	95.45%	98.77%	98.53%	21,207	99.36%	95.54%	98.84%	98.61%	25,639
Bowtie2 (default)	95.99%	95.99%	97.44%	97.44%	10,872	96.05%	96.05%	97.50%	97.50%	10,575
Bowtie2 (sensitive)	97.68%	94.68%	97.61%	97.04%	5,663	97.85%	94.77%	97.63%	97.07%	5,597
BWA-mem (default)	94.02%	92.47%	94.85%	94.49%	10,917	94.03%	92.49%	94.83%	94.47%	12,110
BWA-mem (sensitive)	97.42%	93.11%	96.42%	95.29%	9,094	97.57%	93.15%	96.40%	95.28%	10,106
VG.Linear (default)	95.56%	95.56%	96.91%	96.91%	1,315	95.34%	95.34%	96.65%	96.65%	1,367
VG.Linear (sensitive)	97.31%	89.74%	97.27%	92.27%	1,012	97.18%	90.31%	97.14%	92.71%	1,028
VG.Graph (default)	96.57%	96.57%	98.97%	98.97%	1,346	96.64%	96.64%	99.02%	99.02%	1,413
VG.Graph (sensitive)	98.18%	91.71%	99.10%	95.64%	1,027	98.37%	91.51%	99.16%	95.40%	1,083