Commutative Algebra

October 20, 2020

Contents

0	Introduction	2
1	Noetherian Rings: Definitions and Examples	
	1.1 Ideal Structure	7
	1.2 Minimal and Associated Primes	11
	1.3 Applibilators and Associated Primes	19

0 Introduction

Commutative Algebra is the study of commutative rings and the spaces on which those rings act, namely modules. It was developed from two key sources: algebraic geometry, and algebraic number theory.

In algebraic geometry we are focused on polynomial rings over a field k, whilst in number theory we are focused on \mathbb{Z} , the ring of rational integers. Much of this work was done by Grothedieck, but the subject goes back much further, at least to Hilbert who wrote a series of papers on polynomial invariant theory in the late nineteenth century.

As an example, take Σ_n , the symmetric group on the set $\{1, 2, ..., n\}$. Σ_n acts on $k[x_1, ..., x_n]$ by permuting the variables, so that $(\sigma f)(x_1, ..., x_n) = f(x_{\sigma^{-1}(1)}, ..., x_{\sigma^{-1}(n)})$. σ_n acts here via ring automorphisms, and it is then natural to consider the **ring of invariants**, given by $\{f \in k[\mathbf{x}] : \sigma f = f \ \forall \sigma \in \Sigma_n] := S$. S is a ring, **the ring of symmetric polynomials**. We can consider the elementary symmetric functions, which are:

$$e_1(x_1, \dots, x_n) = x_1 + \dots + x_n$$

$$e_2(x_1, \dots, x_n) = \sum_{i < j} x_i x_j$$

$$\vdots$$

$$e_n(x_1, \dots, x_n) = x_1 \dots x_n$$

In fact, S is generated as a ring by these e_i , and there are canonical maps $k[y_1, \ldots, y_n] \to S$ such that $Y_i \mapsto e_i$, which is a ring isomorphism.

Hilbert showed that S is finitely generated, and moreover for many other groups, not just symmetric groups.

Along the way, he proved four very deep theorems:

- Basis theorem
- Nullstellensatz
- The polynomial nature of the Hilbert function (leading to the beginnings of dimension theory)
- The syzygy theorem (leading to the beginnings of homological theory of polynomial rings)

In 1921 Emmy Noether extracted the key property that made the basis theorem, namely that a commutative ring is **noetherian** if every ideal is finitely generated (there are several equivalent definitions).

Theorem 0.1 (Hilbert's Basis Theorem). If R is a commutative noetherian ring, then R[x] is also noetherian.

Corollary 0.2. If k is a field, then $k[x_1, ..., x_n]$ is noetherian.

Noether developed a theory of ideals for noetherian rings, for example the existence of primary decomposition, which generalises factorisation into primes in noetherian rings.

Link between Commutative Algebra and Algebraic Geometry

The starting point for this link is the **fundamental theorem of algebra**, which says that $f \in \mathbb{C}[x]$ is determined up to scalar multiples by its zeros up to multiplicity. Given $f \in \mathbb{C}[x_1, \ldots, x_n]$, there is a polynomial function $\mathbb{C}^n \to \mathbb{C}$ given by $(a_1, \ldots, a_n) \mapsto f(a_1, \ldots, a_n)$.

Different polynomials will yield different functions, and so $\mathbb{C}[x_1,\ldots,x_n]$ can be viewed as a ring of polynomial functions on complex affine n-space.

More specifically, given $I \subseteq \mathbb{C}[x_1, \ldots, x_n]$, we can define the **set of common zeros**, $Z(I) = \{(a_1, \ldots, a_n) \in \mathbb{C}^n : f(a_1, \ldots, a_n) = 0 \ \forall f \in I\}$, called an **(affine) algebraic set**.

Remarks:

- One can replace *I* by the ideal generated by *I*, and you get the same algebraic set. Similarly, replacing an ideal by a generating set of the ideal leaves the algebraic set. The basis theorem asserts that any algebraic set is the set of common zeros of some *finite* set of polynomials.
- $\bigcap_j Z(I_j) = Z(\bigcup_j I_j), \bigcup_{j=1}^n Z(i_j) = Z(\prod_{j=1}^n I_j)$, for ideal I_j . If we define a topology on \mathbb{C}^n by calling these algebraic sets the closed sets, we get the **Zariski toplogy**, which is a rather coarser topology on \mathbb{C}^n than the usual topology.
- For $S \subseteq \mathbb{C}^n$, we can define $I(S) = \{ f \in \mathbb{C}[x_1, \dots, x^n] : f(a_1, \dots, a_n) = 0 \ \forall (a_1, \dots, a_n) \in S \}$. This is an **ideal** of $\mathbb{C}[x_1, \dots, x_n]$, and it is **radical**, i.e. $f^r \in I(S) \Longrightarrow f \in I(S)$. The Nullstellensatz is a family of results asserting that the correspondence

$$I \mapsto Z(I)$$

$$I(S) \leftrightarrow S$$

gives a bijection between the radical ideals in $\mathbb{C}[x_1,\ldots,x_n]$ and the algebraic subsets of \mathbb{C}^n . In particular, the maximal ideals of $\mathbb{C}[x_1,\ldots,x_n]$ correspond to points in \mathbb{C}^n

Dimension

A large portion of the course deals with the dimension of rings. We can define it in three main ways:

- The maximal length of a chain of prime ideals.
- In a geometric context in terms of growth rates.
- The transcendence degree of a field of fractions.

For commutative rings, all three give the same answer. There is in fact a fourth method, using homological algebra, which in the case of "nice" noetherian rings also gives the same answer.

Most of this theory dates back to 1920-1950. Rings of dimension 0 are called *artinian* rings, and in dimension 1 there are special properties which are important in number theory, particularly in the study of algebraic curves.

1 Noetherian Rings: Definitions and Examples

Throughout this section, R is a commutative ring with a 1.

Lemma 1.1. Let M be a (left) R-module. The following are equivalent:

- 1. All submodules of M (including M itself) are finitely generated.
- 2. The ascending chain condition (ACC) holds: there are no strictly increasing infinite chains of submodules.
- 3. The maximum condition of submodules holds: any nonempty set S of submodules of M has a maximal element L, i.e. $L \subseteq L', L' \in S \implies L = L'$.

Proof.

 $\underline{1. \Longrightarrow 2.}$ Suppose there is a strictly increasing chain $N_1 \subsetneq N_2 \subsetneq \ldots$, and let $N = \bigcup_{i=1}^{\infty} N_i$. By 1 N is finitely generated, say by m_1, \ldots, m_r . Each m_i lies in some N_{n_i} . Then let $n = \max_i n_i$, so that $m_i \in N_n$. Then $N_n = M$, contradicting strict ascent.

 $\underline{2. \implies 3.}$ Assume ACC. Pick $M_1 \in S$. If it is the maximal member then we're done. If not, there is $M_2 \supsetneq M_1$. If M_2 is maximal, then we're done, otherwise there is some $M_3 \supsetneq M_2$, and so on. By ACC this process terminates, and we get a maximal element.

 $\underline{3. \Longrightarrow 1.}$ Let $N \triangleleft M$, and let S be the collection of all finitely generated submodules of N. Then $S \neq \emptyset$ since it contains the 0 submodule. So S contains a maximal member, say L. We then claim N = L. If $x \in N$ then $L + Rx \in S$, and by maximality of L, $x \in L$.

Definition 1.2. An R-module satisfying 1, 2, 3 is **noetherian**.

Lemma 1.3. Let $N \triangleleft M$. Then M is noetherian if and only if N and M/N are noetherian.

Proof.

 \implies Let M be noetherian, so that all its submodules are finitely generated. This property is inherited by N. Also, the submodules of M/N are all of the form Q/N with $Q \triangleleft M$ containing N. If M is noetherian, then Q is finitely generated, say by x_1, \ldots, x_r . Then $x_1 + N, \ldots, x_r + N$ generates Q/N.

 \longleftarrow Let N, M/N be noetherian, and let $L_1 \subset L_2 \subset L_3 \subset ...$ be a strictly increasing chain of submodules of M. Set $Q_i/N = (L_i + N)/N$, and $N_i = L_i \cap N$. These give ascending chains of submodules of M/N and N respectively. By ACC there are r, s with $Q_i/N = Q_r/N$ for $i \geq r$, $N_i = N_s$ for $i \geq s$. Let $k = \max\{r, s\}$. Then we claim $L_i = L_k$ for $i \geq k$. Pick $\ell \in L_i$, $i \geq k$. Then $\ell + N \in Q_k/N$, and so there is some $\ell' \in L_k$ such that $\ell - \ell' \in N \cap L_i = N \cap L_k$. So $\ell \in L_k$, and the claim is proved. Hence our original ascending chain was not strictly increasing, ℓ .

Lemma 1.4. 1. If M, N are R-modules, then $M \oplus N$ is noetherian iff M and N are noetherian.

- 2. If M_1, \ldots, M_n are R-modules then $M_1 \oplus \ldots \oplus M_n$ is noetherian iff each M_i is noetherian.
- 3. If M is noetherian then every homomorphic image of M is noetherian.
- 4. Suppose M can be expressed as a sum of finitely many submodules (not necessarily as a direct sum) $M = M_1 + \ldots + M_n$. Then M is noetherian iff each M_i is.

Proof. 1. $M \cong N/N$, so this follows by **1.3**.

- 2. Apply 1 and induction on n.
- 3. If $\theta: M \to N$ then im $\theta \cong M/\ker \theta$, so apply 1.3.

4. The forwards direction follows as $M_i \triangleleft M$. For the reverse, there is a map from $M_1 \oplus \ldots \oplus M_n \to M$, $(m_1, \ldots, m_n) \mapsto m_1 + \ldots + m_n$, and then apply 2 and 3.

Definition 1.5. A ring R is **noetherian** if it is noetherian as a (left) R-module

Remark: Submodules of R as an R-module are the same as ideals of R as a ring, and so the ACC for modules gives us the ACC for ideals.

Lemma 1.6. Let R be a noetherian ring. Then any finitely generated R-module M is noetherian.

Proof. Suppose $M = Rm_1 + \ldots + Rm_n$. There exist R-module epimorphisms:

$$R \to Rm_i$$

 $r \mapsto rm_i$

R is noetherian, so Rm_i is as the homomorphic image of R. Then, by 1.4 (4), so is M.

Theorem 1.7 (Hilbert Basis Theorem). Let R be a noetherian ring. Then the polynomial ring R[x] is noetherian.

Proof. We show that every ideal of R[x] is finitely generated. Let I be an ideal. We define $I(n) = \{f \in I : \deg f \le n\}$. Then $I(n) \ne \emptyset$ as $0 \in I(n)$, and $I(0) \subseteq I(1) \subseteq I(2) \subseteq \ldots$

Let $R(n) = \{ \text{Coefficient of } x^n \text{ in } f : f \in I(n) \} \subseteq R.$ We claim $R(n) \triangleleft R$, and $R(n) \subseteq R(n+1)$.

To see this, suppose $a, b \in R(n)$. Then there are polynomials $f(x) = ax^n + \dots, g(x) = bx^n + \dots$ in I, where \dots indicates lower order terms. Since $I \triangleleft R$, $f \pm g \in I$, $rf \in I$ for all $r \in R$, and $xf \in I$.

Hence $a \pm b \in R(n)$, $ra \in R(n)$, and $a \in R(n+1)$, and the claim is proved.

So then we have a chain $R(0) \subseteq R(1) \subseteq R(2) \subseteq \ldots$ terminates, so we may say $R(n) = R(N) \ \forall n \ge N$. Each of $R(0), \ldots, R(N)$ is a finitely generated ideal of R, say $R(j) = (a_{j,i}, \ldots, a_{j,k_j})$.

Then by definition of R(j), we may take polynomials $f_{j,1}, \ldots, f_{j,k_j}$ in I(j) which have the $a_{j,i}$ as their leading coefficients.

Clearly $I \supseteq (f_{j,k} : 0 \le j \le N, 1 \le k \le k_j) =: J$ - it remains to show that equality holds, then we will have found a finite generating set of I. So pick $f \in I$, then we claim $f \in J$, and prove this by induction on the degree of f.

If deg f = 0, then f(x) = a, say. But then $a \in R(0)$, and so $a = \sum_i r_i a_{0,i}$ for some $r_i \in R$. Since $f_{0,i}$ has $a_{0,i}$ as its leading coefficient and has degree zero, $f_{0,i}(x) = a_{0,i}$, and $f = \sum_i r_i f_{0,i} \in J$.

If instead deg f=n, with $0 < n \le N$, and the claim holds for all g with deg g < n, then write $f(x) = ax^n + \ldots$ $a \in R(n)$ then by definition, so $a = \sum_i r_{n,i} a_{n,i}$ for some $r_{n,i} \in R$. Then define $g(x) = f(x) - \sum_i r_{n,i} f_{n,i}(x)$. g(x) has degree $\le n$, and the coefficient of x^n is a - a = 0, hence deg g < n. Since $f_{n,i} \in I$, we have $g \in I$, and hence by induction $g \in J$. But $f_{n,i} \in J$ as well, so $f \in J$.

Finally if deg f = n, with n > N, and the claim holds for all g with deg g < n, again write $f(x) = ax^n + \ldots$. Then $a \in R(n) = R(N)$, so $a = \sum r_{N,j} a_{N,j}$ for $r_{N,j} \in R$. We may then define

 $g(x) = f(x) - \sum_{i} x^{n-N} r_{N,j} f_{N,j}(x)$, and use the same argument as in the previous paragraph to deduce that $f \in J$.

Hence $I \subseteq J$, and so I = J and I is finitely generated. But I was an arbitrary ideal of R[x], so R[x] is noetherian.

In practice, one uses $Gr\ddot{o}bner\ bases$ for ideals - these are generating sets with extra properties that make algorithms more efficient.

Examples:

- Fields are noetherian.
- Principle Ideal Domains (PIDs) are noetherian.
- $\{q \in Q : q = \frac{m}{n}, m, n \in \mathbb{Z}, p \nmid n \text{ for some fixed prime } p\}$, an example of a *localisation* of \mathbb{Z} . All localisations of noetherian rings are noetherian we will see this later.
- $k[x_1, x_2, \ldots]$ is not noetherian: $(x_1) \subsetneq (x_1, x_2) \subsetneq$ is an infinite strictly increasing chain.
- $k[x_1, x_2, \dots, x_n]$ is noetherian this follows by induction using the Hilbert basis theorem.
- $\mathbb{Z}[x_1, x_2, \dots, x_n]$ is noetherian, so any finitely generated commutative ring is noetherian: if R is generated by r_1, \dots, r_n , then there is an epimorphism $\mathbb{Z}[x_1, \dots, x_n] \to R$ given by $x_i \mapsto r_i$, and R is the homomorphic image of a noetherian ring.
- If A is a free abelian group, write $\mathbb{Z}A$ for its group algebra, which is the set of formal linear combinations of elements of A, i.e. terms of the form $\sum_{\alpha \in A} \lambda_{\alpha} \alpha$ where $\lambda_{\alpha} \in \mathbb{Z}$ and only finitely many of the λ_{α} are nonzero.
 - If A is generated as a group by g_1, \ldots, g_n , then its group algebra is generated as a ring by $g_1, g_1^{-1}, \ldots, g_n, g_n^{-1}$.
- k[[x]], the ring of formal power series with coefficients in k, is noetherian.

There are also some non-commutative examples that are both left and right noetherian:

- Enveloping algebras of a finite dimensional Lie algebra.
- Iwasawa algebras of compact p-adic groups.

Theorem 1.8. If R is noetherian, then R[[x]] is noetherian.

Proof 1. As in **1.7**, consider R(n) = the set of trailing coefficients a_n , for elements $a_n x^n +$ higher order terms, and mimic the proof. This is on example sheet 1.

We will give a second proof, which uses

Theorem 1.9 (Cohen's Theorem). If every prime ideal in a ring R is finitely generated, then R is noetherian.

Proof. If R is not noetherian, then there is a family of non-finitely generated ideals. Call it \mathscr{S} . By assumption, $\mathscr{S} \neq \emptyset$. Partially order \mathscr{S} by inclusion.

Suppose $I_1 \subseteq I_2 \subseteq ...$ is a chain of non-finitely generated ideals. Then we claim $\bigcup_i I_i$ is also non-finitely generated.

If it were, say by (a_1, \ldots, a_k) , then $a_i \in I_{n(i)}$ for some finite integer n(i), and so, if $N = \max\{n(i): 1 \le i \le k\}$, N is also finite and $a_i \in I_N$ for all i. But then $I_N = I_n$ for all $n \ge N$, and in particular I_N is finitely generated $\frac{1}{2}$.

So $\mathscr S$ has upper bounds to its chains, and so we may apply Zorn's lemma to get a maximal element of $\mathscr S$, say I, so that I is not finitely generated but any ideal containing I is finitely generated.

We now claim I must be prime. Suppose aI, bI, but $ab \in I$. Then $I + (a) \supseteq I$, so I + (a) is finitely generated, say by $i_1 + r_1 a, \ldots, i_n + r_n a$. Define $J = \{s \in R : sa \in I\} \supseteq I + (b) \supseteq I$. Again, J is finitely generated.

Take $t \in I \subset I + (a)$, so $t = u_1(i_1 + r_1a) + \ldots + u_n(i_n + r_na)$ for some $u_i \in R$. So $t = u_1i_1 + \ldots + u_ni_n + (u_1r_1 + \ldots + u_nr_n)a \in (i_1) + (i_2) + \ldots + (i_n) + Ja$.

Hence $I \subseteq (i_1) + \ldots + (i_n) + Ja$, so $I = (i_1) + \ldots + (i_n) + Ja$, so I is finitely generated $\oint dx$.

So I must be prime, but then by our hypothesis I is still finitely generated \oint . So R must be noetherian.

We will also use the following lemma:

Lemma 1.10. Let P be a prime ideal of R[[x]] and $\theta : R[[x]] \to R$, $x \mapsto 0$. Then P is finitely generated if and only if $\theta(P)$ is a finitely generated ideal of R.

Proof. Clearly if P is finitely generated then $\theta(P)$ is.

Conversely, suppose $\theta(P) = Ra_1 + \ldots + Ra_n$.

If $x \in P$, then $P = (a_1, \dots, a_n, x)$.

This is immediate - if $g \in P$, g = a + higher order terms. Now $a \in (a_1, \ldots, a_n)$, so $g = \sum_i r_i a_i + xg'$ as required.

If xP, then let f_1, \ldots, f_n be power series with constant terms a_1, \ldots, a_n respectively. Then $P = (f_1, \ldots, f_n)$.

Take $g \in p$, say g = b + higher terms, with b the constant term. Then $b = \sum b_i a_i$, so $g - \sum b_i f_i = g_1 x$ for some g_1 . Note that $g_1 x \in P$, P is prime, and xP, so $g_1 \in P$. Similarly, $g_1 = \sum c_i f_i + g_2 x$, and $g_2 \in P$. Continuing, we get $h_1, \ldots, h_n \in R[[x]]$, where $h_i = b_i + c_i x + \ldots$ with $g = h_1 f_1 + \ldots + h_n f_n$.

We are now ready to give the second proof the R noetherian implies R[[x]] noetherian:

Proof 2. Suppose P is a prime ideal of R[[x]]. Then P is finitely generated iff $\theta(P)$ is. But R is noetherian, so $\theta(P)$ is finitely generated, so P was finitely generated. Then we apply Cohen's theorem to get R[[x]] noetherian.

1.1 Ideal Structure

Here, we assume R is a commutative ring with a 1, not necessarily noetherian.

Lemma 1.11. The set N(R) of all nilpotent¹ elements of R is an ideal, and R/N(R) has no nonzero nilpotent elements.

¹An element x of a ring is called nilpotent if there is some integer m such that $x^m = 0$.

Proof. If $x \in N(R)$, then $x^m = 0$ for some m. Hence $(rx)^m = 0$ for all $r \in R$, and so $rx \in N(R)$.

If $x, y \in N(R)$, then $x^n = 0, y^m = 0$ for some n, m. Then $(x + y)^{n+m-1}$ expands to give terms $\lambda x^s y^t$ where s + t = m + n - 1. So either $s \ge n$ or $y \ge m$, so all the terms are zero, and $x + y \in N(R)$.

So $N(R) \triangleleft R$.

Finally, if $s \in R/N(R)$ then s = x + N(R). Note that $s^n = x^n + N(R)$ for all n. If x + N(R) is nilpotent then $(x + N(R))^m = N(R)$ for some m, and hence $x^m \in N(R)$. So x^m is nilpotent, and $(x^m)^n = x^{mn} = 0$ for some n. But then x is nilpotent, so x + N(R) = 0 + N(R).

Definition 1.12. N(R) is called the **nilradical** of R.

Theorem 1.13 (Krull). N(R) is the intersection of all prime ideals of R.

Proof. Let $I = \bigcap_{P \text{ prime}} P$. If $x \in R$ is nilpotent then $x^n = 0 \in P \ \forall P$. So $x \in P \ \forall P \implies x \in I$, so $N(R) \subseteq I$.

Suppose x is not nilpotent. Let \mathscr{S} be the family of ideals J such that for n > 0, $x^n \notin J$. Then $(0) \in \mathscr{S}$, so $\mathscr{S} \neq \emptyset$, and a union of a chain of ideals in \mathscr{S} is also in \mathscr{S} . We apply Zorn's lemma to get a maximal element J_1 .

We claim J_1 is prime - suppose $yz \in J_1$, but $y, z \notin J_1$. So the ideals $J_1 + Ry, J_1 + Rz$ strictly contain J_1 , and so $x^m \in J_1 + Ry$ and $x^n \in J_1 + Rz$. But then $x^{m+n} \in J_1 + Ryz = J_1 \not\downarrow 1$.

So J_1 is prime, so contains I, and hence $x \notin I$, so $I \supseteq N(R)$. Thus I = N(R).

Definition 1.14. The radical \sqrt{I} of an ideal I is defined by $\{r \in R : \exists k \in \mathbb{N} \text{ s.t. } r^k \in I\}$.

Note that $\sqrt{I}/I = N(R/I)$, and $\sqrt{I} = \bigcap_{\text{prime } P \supset I} P$. We say an ideal I is radical if $I = \sqrt{I}$

Definition 1.15. The **Jacobson radical** J(R) of R is the intersection of all the maximal ideals of R (so $N(R) \subseteq J(R)$).

Theorem 1.16 (Nakayama's Lemma). If M is a finitely generated R-module with MJ = M, where J = J(R), then M = 0.

Proof. ² If $M \neq 0$ and is a finitely generated R-module, then by Zorn's lemma there are maximal proper submodules.

Take M_1 maximal in M. Then M/M_1 is irreducible (or simple), hence generated by $m+M_1$ say.

Then, considering the map $R \to M/M_1$; $r \mapsto rm + M_1$, which is an R-module homomorphism with kernel a maximal ideal, we see that $M/M_1 \cong R/I$, where I is a maximal ideal of R, so $MI \leq M_1$

Finally, $J \leq I$, then $MJ \leq MI \leq M_1 \lneq M$, so if $M \neq 0, MJ \lneq M$.

For a commutative ring R, $N(R) \leq J(R)$. These need not be equal - for example, take $R = \{\frac{m}{n} \in \mathbb{Q} : p \nmid n\} = \mathbb{Z}_{(p)}$. This has unique maximal ideal $P = \{\frac{m}{n} \in \mathbb{Q} : p \mid m, p \nmid n\}$. It is an integral domain, so has no nonzero nilpotent elements, so N(R) = (0), and J(R) = P.

²Note - this is not the usual Atiyah-Macdonald proof, but this one can be adapted to the case of non-commutative rings.

For rings $R = k[x_1, \ldots, x_n]/I$ with k algebraically closed and I any ideal, we do have N(R) =J(R) - this is the Nullstellensatz - see later on.

Example: A commutative ring is artinian if it doesn't contain an infinite strictly descending chain of ideals (or equivalently if every nonempty set of ideals has a minimal member). An R-module is *artinian* if it satisfies the analogous properties for submodules. As an exercise (on the first example sheet), prove that artinian rings are noetherian.

For example, $\mathbb{Z}/p\mathbb{Z}$, k[x]/(f). k[x] is not artinian $((x) > (x^2) > \dots)$.

Recall that I is prime if and only if one following three equivalent properties holds:

$$ab \in I \implies a \in I \text{ or } b \in I$$

 R/I is an integral domain
 $I_1I_2 \subseteq I \implies I_1 \subseteq I \text{ or } I_2 \subseteq I$

Claim: J(R) = N(R) for artinian rings R

This follows if we can show that R artinian \implies every prime ideal is maximal.

Proof. Let P be prime, $x \notin P$. By the descending chain condition, $(x) \supseteq (x^2) \subseteq \ldots$ is not strict, so $(x^n) = (x^{n+1}) = \dots$ for some n. Hence $x^n = yx^{n+1}$ for some y. Then $x^n(1-xy) = 0 \in P$. But $x^n \notin P$, and P is prime, so $1 - xy \in P$. Thus y + P is the inverse of x + P in R/P, and so R/P is a field, and P is maximal.

Lemma 1.17 (Artin-Tate). Suppose we have commutative rings $R \leq S \leq T$. Suppose R is noetherian and T is generated as a ring by R and finitely many elements t_1, \ldots, t_n . Suppose that T is a finitely generated S-module. Then S is generated by R and finitely many elements as an R-algebra.

Proof. T is generated by $x_1 \ldots, x_m \in T$ as an S-module, so $T = Sx_1 + \ldots + Sx_m$. Then:

$$t_i = \sum_{j} s_{ij} x_j, \quad s_{ij} \in S \tag{1}$$

$$t_{i} = \sum_{j} s_{ij} x_{j}, \quad s_{ij} \in S$$

$$x_{i} x_{j} = \sum_{k} s_{ijk} x_{k}, \quad s_{ijk} \in S$$

$$(1)$$

Let S_0 be the ring generated by R, the s_{ij} and the s_{ijk} , so that $R \leq s_0 \leq S$.

Any element of T is polynomial in the t_i with coefficients in R. In (1), (2), each element is a linear combination of the x_i with coefficients in S_0 . Thus T is a finitely generated S_0 -module. But S_0 is noetherian, being generated as a ring by R and finitely many elements. T is noetherian as an S_0 -module, and S is an S_0 -submodule of T, hence is finitely generated as an S_0 -module.

But S_0 is generated by R and finitely many elements, so S is generated by R and finitely many elements.

Lemma 1.18 (Zariski). Let k be a field, and R a finitely generated k-algebra. If R itself is a field, then it is a finite algebraic extension of k, i.e. a finitely generated k-space.

Proof. Suppose R is generated by k and x_1, \ldots, x_n , and is a field. If R is not a finite algebraic extension over k, then we can reorder the x_1, \ldots, x_n so that x_1, \ldots, x_m are algebraically independent, i.e. the ring generated by k and x_1, \ldots, x_m is a polynomial algebra $k[x_1, \ldots, x_m]$, and x_{m+1}, \ldots, x_n are algebraic over the field of fractions $F = k(x_1, \ldots, x_m)$. Because R is not finite algebraic over $k, m \ge 1$.

Hence R is a finite algebraic extension over F, and R is a finitely generated F-module, (i.e. vector space). Apply Artin-Tate (1.17) for $k \leq F \leq R$, it follows that F is a finitely generated k-algebra by k and $q_1 \ldots q_t$ say, with each $q_i = f_i/g_i$, where $f_i, g_i \in k[x_1, \ldots, x_m], g_i \neq 0$.

Now there is a polynomial h which is prime to each of the g_i s, e.g. $g_1 \dots g_m + 1$, and the element 1/h cannot be in the ring generated by k and q_1, \dots, q_t . This a contradiction, and hence m = 0, and R was indeed algebraic over k.

Theorem 1.19 (Weak Nullstellensatz). Let k be a field, T a finitely generated k-algebra. Let P be a maximal ideal of T. Then T/P is a finite algebraic extension of k. In particular, if k is algebraically closed and T is the polynomial algebra, then the maximal ideals are of the form $(x_1 - a_1, \ldots, x_n - a_n)$.

Proof. See later. \Box

Theorem 1.20 (Strong Nullstellensatz). Let k be an algebraically closed field, and R a finitely generated k-algebra. Then N(R) = J(R). Thus, if I is a radical ideal of $k[x_1, \ldots, x_n]$ and $R = k[x_1, \ldots, x_n]/I$, then the intersection of the maximal ideals of R is 0.

Furthermore, any radical ideal is the intersection of the maximal ideals containing it.

Proof. Deferred until chapter 2.

Proof of 1.19. Let P be the maximal ideal of the finitely generated k-algebra T. Put R = T/P. By Zariski's lemma, T/P over k is a finite algebraic extension. If k is closed, then k = T/P. Set $\pi: T \to k$ with kernel P.

We then claim that $\ker \pi = (x_1 - \pi(x_1), \dots, x_n - \pi(x_n)).$

Now π fixes elements of k, so the RHS is in the kernel. Conversely, $T/(x_1-\pi(x_1),\ldots,x_n-\pi(x_n))$ is a 1-dimensional k-space, so the kernel is contained in the RHS, and so they are equal.

Recall the bijection proposed earlier between radical ideals in $\mathbb{C}[\mathbf{x}]$ and affine algebraic sets in \mathbb{C}^n .

Rephrase this by defining $Q_{(a_1,\ldots,a_n)}=(x_1-a_1,\ldots,x_n-a_n)$. We claim there is a bijection:

{radical ideals}
$$\leftrightarrow$$
 {algebraic subsets}
$$I \mapsto \{(a_1, \dots, a_n) : I \subseteq Q_{(a_1, \dots, a_n)}\}$$

$$\bigcap_{(a_1, \dots, a_n) \in S} Q_{(a_1, \dots, a_n)} \leftrightarrow S$$

1.2 Minimal and Associated Primes

Lemma 1.21. If R is noetherian, then any ideal I contains a power of its radical \sqrt{I} . In particular, N(R) is nilpotent, i.e. $N(R)^m = (0)$ for some m, as $N(R) = \sqrt{(0)}$.

Proof. Suppose $x_1, \ldots, x_m \in \sqrt{I}$ generate \sqrt{I} as an ideal. Then $x_i^{n_i} \in I$ for some n_i . Then, if n is sufficiently sufficiently large (e.g. $n \geq \sum (n_i - 1) + 1$). Then \sqrt{I}^n is generated by $x_1^{r_1}, \ldots, x_m^{r_m}$ with $\sum r_i = n$. We must thus have some $r_i \geq n_i$, and so $\sqrt{I}^n \subseteq I$.

Lemma 1.22. If R is noetherian, then a radical ideal is the intersection of finitely many prime ideals.

Proof. Suppose not for contradiction, and take a maximal element I from the set of radical ideals not of this form (using Zorn's lemma). We then claim that I is prime, yielding a contradiction.

If not, there is $J_1, J_1 \nsubseteq I$ with $J_1J_2 \subseteq I$. If necessary, replace J_i by $J_i + I$, we can assume $I \subsetneq J_1, J_2$.

Then by the maximality of I, $\sqrt{J_1} = Q_1 \cap \dots Q_m$; $\sqrt{J_2} = Q_1' \cap \dots \cap Q_n'$ as prime intersections.

Set $J = \sqrt{J_1} \cap \sqrt{J_2} = Q_1 \cap \ldots \cap Q_m \cap Q_1' \cap \ldots \cap Q_n'$. So $J^{n_1} \leq J_1, J^{n_2} \leq J_2$ for some n_1, n_2 . Hence $J^{n_1+n_2} \leq J_1J_2 \leq I$. But I is radical, so $J \leq I$. Now all Q_i, Q_j' contain I, so $J \geq I$. Thus $J = I \nmid I$.

Now suppose by the previous lemma that any radical ideal $\sqrt{I} = P_1 \cap \ldots \cap P_m$ is an intersection of finitely many primes. We can remove P_i from the list if it contains any of the others, so WLOG we may assume that $P_i \nleq P_j$ for any $i \neq j$. If P is prime with $\sqrt{I} \leq P$, then $P_1 \ldots P_m \leq \bigcap_i P_i = \sqrt{I} \leq P$, and so some $P_i \leq P$.

Definition 1.23. The minimal primes P over an ideal I of a noetherian ring are those such that, if P' is prime with $I \leq P' \leq P$, then P' = P.

Clearly the P_i mentioned above are minimal primes over I. In fact:

Lemma 1.24. Let I be an ideal in a noetherian ring. Then \sqrt{I} is the intersection of the minimal primes over I, and I contains a finite product of the minimal primes over I.

Proof. Each minimal prime over I contains \sqrt{I} . So the primes minimal over I are precisely the minimal ones over \sqrt{I} . We know \sqrt{I} is the intersection of these, and thus their product lies in \sqrt{I} , and 1.21 gives the last part.

Example: The Nullstellensatz bijection between radical ideals of $\mathbb{C}[x_1,\ldots,x_n]$ and algebraic subsets of \mathbb{C}^n

Suppose (a_1, \ldots, a_n) is a common zero of all $f \in I$, a radical ideal. Then $I \leq (x_1 - a_1, \ldots, x_n - a_n)$. This latter ideal is maximal as it is the kernel of $\mathbb{C}[x_1, \ldots, x_n] \to \mathbb{C}; x_i \mapsto a_i$.

Now consider

$$\bigcap_{\substack{(a_1,\ldots,a_n)\\\text{common zeros}\\\text{of all } f \in I}} (x_1 - a_1,\ldots,x_n - a_n)$$

This ideal is radical, and the bijection in the Nullstellensatz implies that this radical ideal is the same as I. Thus I is an intersection of maximal ideals, and moreover all maximal ideals are of the form (x_1-a_1,\ldots,x_n-a_n) . Also, for any ideal J_1 of $\mathbb{C}[x_1,\ldots,x_n]$, we have $N(\mathbb{C}[x_1,\ldots,x_n]/J_1) = J(\mathbb{C}[x_1,\ldots,x_n]/J_1)$.

1.3 Annihilators and Associated Primes

Definition 1.25. Let M be a finitely generated R-module, where R is noetherian. The **annihilator** of m, $ann(m) = \{r \in R : rm = 0\}$. A prime ideal P is an **associated prime** of M if it is the annihilator of an element of M

We call the set of associated primes Ass(M).

For example, $Ass(R/P) = \{P\}$ for P prime.

Definition 1.26. A submodule N of M is **p-primary** (or just **primary**) if $Ass(M/N) = \{p\}$ for a prime ideal p. An ideal is **p-primary** if I is p-primary as a submodule of R.

Lemma 1.27. If ann(M) = P for a prime ideal P, then $P \in Ass(M)$.

Proof. Suppose that M is generated by m_1, \ldots, m_k . Let $I_j = \operatorname{ann}(m_j)$. Then the product $\prod I_j$ annihilates each m_j , so $\prod I_j \leq \operatorname{ann}(M) = P$. So $I_j = P$ for some j as P prime, and so $P \in \operatorname{Ass}(M)$.

Lemma 1.28. Let Q be maximal amongst all annihilators of nonzero elements. Then Q is a prime ideal and so $Q \in Ass(M)$.

Proof. Let $Q = \operatorname{ann}(m)$ and $r_1 r_2 \in \mathbb{Q}, r_2 \notin \mathbb{Q}$. We show that $r_1 \in Q$.

Now $r_1r_2 \in Q \implies r_1r_2m = 0$, so $r_1 \in \operatorname{ann}(r_2m)$.

And $r_2 \notin Q \implies r_2m \neq 0$. But $Q \leq \operatorname{ann}(r_2m)$, and hence Q and r_2 lie in $\operatorname{ann}(r_2m)$. By maximality, $Q = \operatorname{ann}(r_2m)$, and so $r_1 \in Q$.

Lemma 1.29. For finitely generated nonzero R-module M, where R is noetherian, there is a chain

$$0 \leqslant M_1 \leqslant M_2 \leqslant \ldots \leqslant M_t = M$$

of submodules with $M_i/M_{i-1} \cong R/P_i$ for some prime ideal P_i .

Proof. By **1.28**, there is $0 \neq m_1 \in M$ with $\operatorname{ann}(m_1)$ prime, say P_1 . Set $M_1 = Rm_1$. Hence $M_1 \cong R/P_1$. Repeat for M/M_1 to find $M_2/M_1 \cong R/P_2$ for some prime P_2 . Continue - the noetherian property forces the process to terminate.

Lemma 1.30. $N \subseteq M \implies \operatorname{Ass}(M) \subseteq \operatorname{Ass}(N) \cup \operatorname{Ass}(M/N)$.

Proof. Take $P \in Ass(M)$, so that P = ann(m) for some $m \in M$, and P is prime.

Let $M_1 = Rm = R/P$. For any $0 \neq m_1 \in M_1$, we have $\operatorname{ann}(m_1) = P$, since P is prime. If $M_1 \cap N \neq 0$, then there is $x \in M_1 \cap N$ with $\operatorname{ann}(x) = P$, and so $P \in \operatorname{Ass}(N)$. Otherwise, $M_1 \cap N = 0$, and the image of M_1 in M/N is isomorphic to R/P, and hence $P \in \operatorname{Ass}(M/N)$. \square

Lemma 1.31. Ass(M) is finite for any finitely generated R-module, where R is noetherian.

Proof. Apply **1.30** inductively to the chain in **1.29** recalling that $Ass(R/P_i) = \{P_i\}$. We thus conclude $Ass(M) \subset \{P_1, \ldots, P_t\}$ is finite.

Proposition 1.32. Each minimal prime over an ideal I is an associated prime, i.e.:

$$\{minimal\ primes\ over\ I\}\subseteq \mathrm{Ass}(R/I)$$

Proof. By **1.24**, there is a product of minimal primes over I, possibly with repetitions, contained in I, say $p_1^{s_1} \dots p_n^{s_n} \leq I$ with $p_i \neq p_j$ for $i \neq j$.

Let $J = \operatorname{ann}(\underbrace{(p_2^{s_2} \dots p_n^{s_n} + I)/I}_M)$. Now $J \ge p_1^{s_1}$, and also $Jp_2^{s_2} \dots Jp_n^{s_n} \le I \le p_1$. Since p_1 prime, we have $J \le p_1$, and so $J \ne R \implies M \ne 0$.

By **1.29**, there is a chain of submodules in M, say $0 \leq M_1 \leq \ldots \leq M_t = M$ such that each factor is isomorphic to R/q_j for some primes q_j .

But $p_1^{s_1}$ annihilates M, and hence each M_j/M_{j-1} , and the primeness of q_j ensures that $p_1 \leq q_j$ for each j. Not all of the $q_j \geq p_1$ since $\prod q_j \leq J \leq p_1$, and hence some $q_j \leq p_1$, so $q_j = p_1$.

Now pick j minimal such that $q_j = p_1$. Then $\prod_{k < j} q_k \nleq p_1$. We show that $p_1 \in \mathrm{Ass}(M)$.

Take $x \in M_j \setminus M_{j-1}$. If j=1, then $\operatorname{ann}(x)=p_1$, and so $p_1 \in \operatorname{Ass}(R/I)$. If j>1, take $r \in (\prod_{k < j} q_k) \setminus p_1$. Note that r(sx)=0 for any $s \in p_1=q_j$. So s(rx)=0, so $p_1 \leq \operatorname{ann}(rx)$. However, $rx \notin M_{j-1}$ since $M_j/M_{j-1}=R/q_j=R/p_1$.

So ann $(rx) \subseteq p_1$, and hence is equal to, and we've shown that $p_1 \in \mathrm{Ass}(M) \subseteq \mathrm{Ass}(R/I)$.

Example 1.33. The converse is false. An example where $p \in Ass(R/I)$ with p is not minimal over I is as follows:

Take
$$R = k[x, y], p = (x, y) > q = (x)$$
, and $I = pq = (x^2, xy)$, so that $\sqrt{I} = (x) = q$.

Then $\operatorname{Ass}(R/I) = \{p,q\}$. The only minimal prime over I is q, since $\sqrt{I} = q$. Now I is not primary as there are two primes in $\operatorname{Ass}(R/I)$. However, we can write $I = (x^2, xy, y^2) \cap (x)$, with $(x^2, xy, y^2) = (x, y)^2$, is p-primary, and (x) is q-primary. This is an example of **primary decomposition**:

Definition 1.34. Let M be a finitely generated R-module with R noetherian, and $N \subset M$ a submodule. Then there are submodules N_1, \ldots, N_s of M containing N such that N_i is p_i -primary with p_i distinct, and $N = \bigcap_{i=1}^s N_i$, so that $M/N \hookrightarrow \bigoplus_i M/N_i$.

The primary decomposition is not necessarily unique, although in §4 of Atiyah-MacDonald proves two uniqueness theorems for finitely generated modules over noetherian rings:

- The p_i occurring in the primary decomposition are unique, and are precisely Ass(M/N).
- If the p_j are minimal among all occurring p_i s, then the corresponding N_j are unique. If p_j are not minimal (which we call **embedded**), then the N_j can vary.

In **1.33**, q is minimal and p is embedded. Hence the ideal (x) is unique and $Ass(R/I) = \{p, q\}$.