

CLASSIFICADORES PARAMÉTRICOS

André Gustavo Adami Daniel Luis Notari

INTRODUÇÃO

O métodos paramétricos tem uma preferência devido ao fato que o número de parâmetros é fixo (independe da quantidade de amostras de treinamento)

Após a estimação do modelo a partir de um conjunto de dados de treinamento, estes dados não são mais necessários

Vamos conhecer dois modelos que são comumentemente utilizados

- Modelo de Misturas Gaussianas (Gaussian Mixture Model GMM)
- Perceptron Multicamadas (Multilayer Perceptron MLP)

PUBLICAÇÕES NOS ÚLTIMOS 5 ANOS (2016-2021)

CronJ

MODELO DE MISTURAS GAUSSIANAS

MODELO DE MISTURAS

As funções densidade de probabilidade multimodais (isto é, possuem diversos picos – máximos locais) apresentam um problema para as funções unimodais como Gaussiana, Bernoulli, Poisson, ...

MODELO DE MISTURAS

Para contornar este problema é possível modelar a distribuição utilizando uma combinação linear de funções densidade de probabilidade

A flexibilidade do método de modelagem permite aproximar teoricamente qualquer tipo de distribuição (desde que existe um número suficiente de gaussianas)

MODELO DE MISTURAS GAUSSIANAS

Um modelo de misturas Gaussianas (Gaussian Mixture Model – GMM) é uma função densidade de probabilidade paramétrica representada como uma soma ponderada de M densidades dos componentes Gaussianos

$$p(\mathbf{x}|\Theta) = \sum_{i=1}^{M} \alpha_i f(\mathbf{x}|\boldsymbol{\mu}_i, \Sigma_i)$$

onde x é um vetor d-dimensional de variáveis contínuas, α_i , i=1,...,M, são as proporções da mistura (normalização ou contribuição),

$$\sum_{i=1}^{M} \alpha_i = 1, \qquad \alpha_i > 0$$

e $f(x|\mu_i, \Sigma_i)$, i=1,...,M, são as densidades para cada componente

MODELO DE MISTURAS GAUSSIANAS

Como cada componente é uma função densidade Gaussiana, então a função pode ser reescrita como

$$p(\boldsymbol{x}|\Theta) = \sum_{i=1}^{M} \alpha_i \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$$

MODELO DE MISTURAS GAUSSIANAS

Portanto, o modelo de misturas Gaussianas é parametrizado pelos vetores média, matrizes de covariâncias e a proporção das misturas de todas as densidades

$$\Theta = \{\alpha_i, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\} \qquad i = 1, \dots, M$$

Assim, este modelo possui como parâmetros M proporções $M \times d$ médias e $M \times d \times (d+1)/2$ variâncias (matriz de covariância completa)

*Como as matrizes de covariância demandam muitos dados para serem estimadas, assume-se que as características são independentes e portando a matriz de covariância possui somente valores na diagonal principal: M proporções $M \times d$ médias e $M \times d$ variâncias

MODELO DE MISTURAS GAUSSIANAS: HIPERPARÂMETROS

Número de componentes gaussianos (M=?)

Tipo de Matriz de Covariância $oldsymbol{\Sigma}_k$

 $\mathbf{\Sigma}_k$ é diagonal ($\sigma_{ij}=0,\ i\neq j$) e as variâncias são todas iguais ($\sigma_{ii}=\lambda$) — **Esférica**

 $\mathbf{\Sigma}_{k}$ é diagonal ($\sigma_{ij}=0,\;i\neq j$) e as variâncias são diferentes — **Diagonal**

 ${ullet} {ullet} {$

Além disso, é possível ter a mesma matriz para todos os componentes (tied-mixture)

MODELO DE MISTURAS GAUSSIANAS NO R

O mclust é um pacote para agrupamento baseado em modelo, classificação e estimação de densidade baseado na modelagem de utilizando misturas gaussianas

Para permitir um maior controle das características da matriz de covariância, pode-se utilizar a seguinte decomposição da matriz de covariância

$$\mathbf{\Sigma}_k = \lambda_k D_k A_k D_k^T$$

onde

 λ_k é um escalar que controla o volume do elipsoide

 A_k é uma matriz diagonal, cujos elementos são proporcionais aos autovalores, que especifica a forma dos contornos da densidade com $\det(A_k)=1$

 ${\cal D}_k$ é uma matriz ortogonal de autovetores que determina a orientação do elipsoide

Esféricas

 Um único valor de variância é estimado para todas as variáveis para todos os componentes (EII) ou individualmente (VII)

Modelo	$\mathbf{\Sigma}_k$	Volume	Forma	Orientação
EII	λΙ	lgual	lgual	_
VII	$\lambda_k I$	Variável	lgual	_

- Para ambos os modelos, são necessários M-1 proporções $+M\times d$ médias
- Para o modelo Ell, é necessário estimar somente 1 variância (independentemente da dimensionalidade)
- Para o modelo VII, é necessário estimar M variâncias (1 para cada componente)
- O total de parâmetros deve ser ainda multiplicado pelo número de classes, pois é um modelo para cada classe

Diagonais

- Os autovetores são os próprios eixos do espaço de características
- Combinação dos autovalores e coeficientes de volume dos elipsoides
- A variância para cada variável é estimada para todos os componentes ou individualmente
- "VVI" é o que a literatura trata como matriz de covariância diagonal

Modelo	$\mathbf{\Sigma}_k$	Volume	Forma	Orientação
EEI	λA	lgual	lgual	Eixos das coordenadas
VEI	$\lambda_k A$	Variável	lgual	Eixos das coordenadas
EVI	λA_k	lgual	Variável	Eixos das coordenadas
VVI	$\lambda_k A_k$	Variável	Variável	Eixos das coordenadas

Completa

- Combinação dos autovalores, autovetores e coeficientes de volume dos elipsoides
- Compartilhamento dos termos da decomposição
- "'VVV" é o que a literatura trata como matriz de covariância completa

Modelo	$\mathbf{\Sigma}_k$	Volume	Forma	Orientação
EEE	λDAD^T	lgual	lgual	lgual
EVE	$\lambda D A_k D^T$	lgual	Variável	lgual
VEE	$\lambda_k DAD^T$	Variável	lgual	lgual
VVE	$\lambda_k D A_k D^T$	Variável	Variável	lgual
EEV	$\lambda D_k A D_k^T$	lgual	lgual	Variável
VEV	$\lambda_k D_k A D_k^T$	Variável	lgual	Variável
EVV	$\lambda D_k A_k D_k^T$	lgual	Variável	Variável
VVV	$\lambda_k D_k A_k D_k^T$	Variável	Variável	Variável

Número de parâmetros (proporções, médias e variâncias) de cada modelo (6 variáveis e 4 componentes)

```
> mapply(nMclustParams, mclust.options("emModelNames"), d = 6, G = 4)
EII VII EEI VEI EVI VVI EEE VEE EVE VVE EEV VEV EVV VVV
   28   31   33   36   48   51   48   51   63   66   93   96   108   111
> mapply(nMclustParams, "VVV", d = 6, G = 4)
VVV
111
```

Número de parâmetros de variância (6 variáveis e 4 componentes)

```
> mapply(nVarParams, mclust.options("emModelNames"), d = 6, G = 4)
EII VII EEI VEI EVI VVI EEE VEE EVE VVE EEV VEV EVV VVV
    1    4    6    9    21    24    21    24    36    39    66    69    81    84
> mapply(nVarParams, "VVV", d = 6, G = 4)
VVV
84
```


"Cérebro é um computador altamente complexo, não-linear e paralelo" (Haykin, 2001)

Uma rede neural é um processador paralelo distribuído constituído de unidades de processamento simples, que têm a propensão natural para armazenar conhecimento experimental e torná-lo disponível ao uso

Semelhante ao cérebro humano pois o conhecimento é adquirido via aprendizagem e a as forças das conexões entre os neurônios (pesos sinápticos) são utilizadas no armazenamento do conhecimento adquirido

Um neurônio é uma unidade de processamento de informação fundamental à operação de uma rede neural

O neurônio perceptron implementa uma combinação linear dos pesos sinápticos \boldsymbol{w} (w_1, w_2, \ldots, w_n) com os dados de entrada \boldsymbol{x} (x_1, x_2, \ldots, x_n)

$$\boldsymbol{w}^T \boldsymbol{x} + w_0$$

O resultado da combinação linear passa por um estágio não linear, que implementa a função de ativação f, que restringe a amplitude da saída do neurônio

• A escolha mais comum é a função limiar: f(x) = 1, se x > 0 e f(x) = -1, se x < 0

Assim, a classificação baseia-se na seguinte regra

$$\mathbf{w}^T \mathbf{x} + \mathbf{w}_0 > 0, \qquad \mathbf{x} \in \omega_1$$

 $\mathbf{w}^T \mathbf{x} + \mathbf{w}_0 < 0, \qquad \mathbf{x} \in \omega_2$

O algoritmo perceptron pode ser aplicado em problemas do tipo das funções booleanas AND e OR, que são linearmente separáveis

Em problemas que não são linearmente separáveis (por exemplo o do XOR), o algoritmo perceptron falhará

x_1	x_2	XOR	Classe
0	0	0	В
0	1	1	Α
1	0	1	Α
1	1	0	В

Para resolver isso, pode-se pensar em utilizar múltiplos hiperplanos

Assim, o uso de duas retas definidas por $g_1(x) = g_2(x) = 0$ permite separar as 2 classes

$$g_i(x) < 0$$

A implementação de tal solução é através de uma rede neural de 2 camadas

- *A primeira camada realiza um mapeamento do vetor de entrada ${\pmb x}$ a um novo ${\pmb y}=[y_1,y_2]$
- A decisão na segunda camada é baseada nos dados transformados

O mapeamento da primeira camada transforma um problema não-linearmente separável em um linearmente separável

MULTILAYER PERCEPTRON

A rede Multilayer Perceptron (MLP) é uma rede de múltiplas camadas que produz uma transformação de um padrão $x \in \mathbb{R}^d$ em uma espaço com n' dimensões

$$g_{j}(\mathbf{x}) = \sum_{i=1}^{m} w_{ji} \phi_{i} (\alpha_{i}^{T} \mathbf{x} + \alpha_{i0}) + w_{j0}, j = 1, ..., n'$$

onde ϕ_i são funções contínuas diferenciáveis (não-lineares) da família sigmoidal

$$\phi_i(y) = \phi(y) = \frac{1}{1 + exp(-y)}$$

A MLP

- ullet Projeta os dados em cada uma das m direções descritas pelo vetor $oldsymbol{lpha}_i=(oldsymbol{lpha}_{i1}$, ... , $oldsymbol{lpha}_{id})$
- ullet Transforma os dados projetados (deslocados por um bias $lpha_{i0}$) pela função não linear $\phi_i(y)$
- ullet Realiza uma combinação linear utilizando os pesos w_{ji} (deslocados por um bias w_{j0})

MULTILAYER PERCEPTRON

Tipos de camada

- Entrada (1 camada): os nodos de entrada recebem o vetor ou padrão de entrada. O número de nodos é igual ao número de dimensões do vetor de características
- Escondida ou Oculta (1+ camada): existem pesos associados com a ligação dos nodos de entrada com os nodos escondidos, os quais realizam a combinação linear $y = \alpha_i^T x + \alpha_{i0}$ e a transformação não-linear $\phi(y)$. As ligações entre as camadas escondidas possuem o mesmo tipo de peso, mas das saídas da camada anterior. O número de camadas e o número de nodos são alguns dos parâmetros da rede MLP

 Saída (1 camada): os nodos de saída realizam uma combinação linear das saídas dos nodos escondidos e entregam estes como saídas da rede. O número de saídas geralmente é igual ao número de classes a serem reconhecidas

MULTILAYER PERCEPTRON: FUNÇÕES DE ATIVAÇÃO

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	

MULTILAYER PERCEPTRON: TREINAMENTO

O treinamento de uma rede neural MLP é realizado de maneira supervisionada com o algoritmo *Backpropagation* (ou retropropagação do erro)

Nesse algoritmo, a determinação do erro é um processo recursivo que se inicia nos neurônios da camada de saída e vai até os neurônios da primeira camada intermediária

MULTILAYER PERCEPTRON: VANTAGENS X DESVANTAGENS

Vantagens

- Simples de implementar
- Boa capacidade de generalização

Desvantagens

- Dificuldade de justificar as respostas
- Custo computacional significativo
- Baixa velocidade de aprendizado

MULTILAYER PERCEPTRON: HIPERPARÂMETROS

Camada Escondida

- Número de camadas (1 a 2 camadas)
- Número de neurônios (entre o tamanho da camada de entrada e da saída, 2/3 da camada de entrada + tamanho da camada de saída, menor que o dobro do que a camada da entrada, 2 vezes o número de classes,...)
- Função de ativação

Camada de Saída

- Número de neurônios (geralmente utilizam 1 neurônio para cada classe)
- Função de ativação

REDES NEURAIS NO CARET

Para saber mais que modelos são disponibilizados pelo pacote caret, consulte

https://topepo.github.io/caret/train-models-by-tag.html#Neural Network

Outros pacotes incluem (mas também são utilizados pelo caret)

- 1 (somente 1 camada escondida)
- keras
- neuralnet
- mxnet
- mlp