Chapter2. Sentiment analysis with tidy data

Geonwoo Ban

March 17th, 2021

One way to analyze the sentiment of a text is to consider the text as a combination of its individual words and the sentiment content of the whole text as the sum of the sentiment content of the individual words.

The **sentiments** datasets

```
library(tidytext)
get_sentiments("afinn")
```

```
## # A tibble: 2,477 x 2
##
     word
                value
##
      <chr>
                 <db1>
                    -2
##
   1 abandon
                    -2
   2 abandoned
##
   3 abandons
##
   4 abducted
##
   5 abduction
   6 abductions
##
   7 abhor
                    -3
##
   8 abhorred
   9 abhorrent
                    -3
## 10 abhors
                    -3
## # ... with 2,467 more rows
```

• AFINN lexicon: A score between -5 and 5 is given to the word, a negative number represents a negative sentiment and a positive number represents a positive sentiment.

```
get_sentiments("bing")
```

```
## # A tibble: 6,786 x 2
##
      word
                  sentiment
##
      <chr>
                  <chr>
##
   1 2-faces
                  negative
   2 abnormal
##
                  negative
    3 abolish
##
                  negative
##
   4 abominable negative
##
   5 abominably negative
   6 abominate
##
                  negative
##
   7 abomination negative
##
   8 abort
                  negative
##
   9 aborted
                  negative
## 10 aborts
                  negative
## # ... with 6,776 more rows
```

• bing lexicon: Categorize words into positive and negative categories according to binary format.

```
get_sentiments("nrc")
```

```
## # A tibble: 13,901 x 2
##
                  sentiment
      word
##
      <chr>
                  <chr>
##
   1 abacus
                  trust
##
    2 abandon
                   fear
    3 abandon
##
                  negative
    4 abandon
                  sadness
##
##
    5 abandoned
                  anger
    6 abandoned
##
                  fear
##
    7 abandoned
                  negative
    8 abandoned
##
                  sadness
##
   9 abandonment anger
## 10 abandonment fear
## # ... with 13,891 more rows
```

• NRC lexicon: Categorize words in a binary fashion ("yes"/"no") into categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust.

Sentiment analysis with inner join

First, let's use the NRC lexicon and filter() for the joy words.

```
nrc_joy <- get_sentiments("nrc") %>%
  filter(sentiment == "joy")

tidy_books %>%
  filter(book == "Emma") %>%
  inner_join(nrc_joy) %>%
  count(word, sort = TRUE)
```

```
## # A tibble: 303 x 2
##
      word
                  n
##
      <chr>
              <int>
##
   1 good
                359
##
   2 young
                192
##
   3 friend
                166
   4 hope
                143
##
                125
##
   5 happy
##
   6 love
                 117
##
   7 deal
                 92
##
   8 found
                 92
## 9 present
                 89
## 10 kind
                 82
## # ... with 293 more rows
```

- Emma라는 책에서 "joy"를 가장 흔하게 나타내는 단어는 hope, love, friend 등으로 긍정적이고 행복감을 나타내는 단어가 많이 쓰였다.
- 이런 식으로 sentiment를 분석하는 방식 대신에 각 소설에서 sentiment가 전반적으로 어떻게 변하는지 확인 할 수도 있다.
- 먼저 Bing lexicon을 통해 각 단어에 대한 정서 점수를 찾을 수 있다.
- 다음으로 각 도서에서 정의한 section별로 긍정 단어와 부정 단어가 몇 개인지를 세어본다.
- 텍스트의 80줄을 1개의 section으로 정의하여 시행할 것이다.
- 각 section별 positive sentiment negative sentiment를 계산하여 section 별 sentiment score를 구하여 section이 지남에 따른 sentiment score에 대한 그래프를 그릴 수 있다.

```
library(tidyr)

jane_austen_sentiment <- tidy_books %>%
  inner_join(get_sentiments("bing")) %>%
  count(book, index = linenumber %/% 80, sentiment) %>%
  spread(sentiment, n, fill = 0) %>%
  mutate(sentiment = positive - negative)

library(ggplot2)

ggplot(jane_austen_sentiment, aes(index, sentiment, fill = book)) +
  geom_col(show.legend = FALSE) +
  facet_wrap(~book, ncol = 2, scales = "free_x")
```


- Jane auston 작가의 소설들은 초반부와 후반부에 긍정적인 단어를 많이 사용하는 것으로 알 수 있으며,
- 결말 직전에는 부정적인 단어를 더 많이 사용하여 대비적인 느낌을 사용하는 것으로 보인다.

Camparing the three sentiment dictionaries

Pride & Prejudice 책을 가지고 세 lexicon을 비교해보자.

```
pride_prejudice <- tidy_books %>%
  filter(book == "Pride & Prejudice")
pride_prejudice
```

```
## # A tibble: 122,204 x 4
##
      book
                        linenumber chapter word
##
      <fct>
                             <int>
                                     <int> <chr>
   1 Pride & Prejudice
                                         0 pride
##
                                 1
##
   2 Pride & Prejudice
                                 1
                                          0 and
   3 Pride & Prejudice
##
                                  1
                                          0 prejudice
##
   4 Pride & Prejudice
                                 3
                                          0 by
## 5 Pride & Prejudice
                                 3
                                          0 jane
                                 3
## 6 Pride & Prejudice
                                         0 austen
## 7 Pride & Prejudice
                                 7
                                          1 chapter
## 8 Pride & Prejudice
                                 7
                                          1 1
## 9 Pride & Prejudice
                                 10
                                          1 it
## 10 Pride & Prejudice
                                 10
                                          1 is
## # ... with 122,194 more rows
```

```
afinn <- pride_prejudice %>%
  inner_join(get_sentiments("afinn")) %>%
  group_by(index = linenumber %/% 80) %>%
  summarise(sentiment = sum(value)) %>%
  mutate(method = "AFINN")
bing_and_nrc <- bind_rows(</pre>
  pride_prejudice %>%
    inner_join(get_sentiments("bing")) %>%
    mutate(method = "Bing et al."),
  pride_prejudice %>%
    inner_join(get_sentiments("nrc") %>%
                 filter(sentiment %in% c("positive",
                                          "negative"))
    ) %>%
    mutate(method = "NRC")) %>%
  count(method, index = linenumber %/% 80, sentiment) %>%
  spread(sentiment, n, fill = 0) %>%
  mutate(sentiment = positive - negative)
```

- AFINN 의 경우엔 단어의 부정과 긍정에 대해 -5에서 5사이의 연속적인 정수값을 주어 계산하였다.
- Bing 과 NRC 의 lexicon은 단어를 부정과 긍정, 이항으로 표현하였다.

- 세 lexicon으로 소설을 분석해본 결과, 전반적으로 특정 부분에서 값이 크거나 값이 작아지며 그래프의 변화 또한 유사함을 볼 수있다.
- Afinn lexicon을 사용하였을 때, 점수의 절댓값이 가장 크고, positive 값이 큰 것을 확인 할 수 있다.
- Bing lexicon을 사용하였을 때는 부정과 긍정의 교차되는 부분에서 값의 변동이 큰 것을 볼 수 있다.
- 마지막으로 NRC lexicon을 사용하였을 때는 앞서 두 lexicon들 보다 상대적으로 음의 값들이 적어서 텍스트가 대부분 긍정이라고 처리하는 것처럼 보이지만 변동부분에 있어서는 두 방법과 비슷하다고 볼 수 있다.
- 이를 이해하기 위해 NRC lexicon에 몇 개의 positive 단어와 negative 단어가 있는지 확인해보자.

```
bind_rows(
get_sentiments("afinn") %>% filter(value!=0) %>%
    mutate(sentiment=ifelse(value>=0, "positive", "negative")) %>%
    count(sentiment) %>% mutate(method="Afinn"),

get_sentiments("bing") %>% count(sentiment) %>% mutate(method="Bing"),

get_sentiments("nrc") %>% filter(sentiment %in% c("positive", "negative")) %>%
    count(sentiment) %>% mutate(method="NRC")) %>%

group_by(method) %>%
    mutate(rate = round(n/sum(n),2)) %>%

ggplot(aes(x=method, y=n, fill=sentiment)) + geom_bar(stat="identity")+
    geom_text(aes(label=rate), position = position_stack())+
    ggtitle("용어사전별 긍정 부정 비율")+ theme(plot.title = element_text(hjust=0.5))
```

용어사전별 긍정 부정 비율

- Bing lexicon의 전체 중 부정 단어 비율을 보면 다른 lexicon보다 더 높은 것을 알 수 있다.
- NRC 의 경우엔 긍정 단어 비율이 가장 높음을 알 수있다.
- 이러한 lexicon 별 긍정 부정 비율이 위의 sentiment 분석에 있어 영향을 미쳤을 것으로 파악된다.
- 전체적인 소설의 흐름과 각 lexicon을 사용해 sentiment 분석을 하여 그려본 그래프와는 연관성이 있을것이라 고 예상되나.
- 정확한 긍정적인 section과 부정적인 section을 구분하기 위해서는 lexicon 선택을 신중하게 하여야한다고 볼 수 있다.

Most common positive and negative words

```
bing_word_counts <- tidy_books %>%
  inner_join(get_sentiments("bing")) %>%
  count(word, sentiment, sort = TRUE) %>%
  ungroup()

bing_word_counts
```

```
## # A tibble: 2,585 x 3
##
      word
               sentiment
##
      <chr>
               <chr>
                         <int>
##
   1 miss
               negative
                           1855
##
   2 well
               positive
                           1523
##
   3 good
               positive
                           1380
##
   4 great
               positive
                           981
##
                           725
   5 like
               positive
##
   6 better
                           639
               positive
##
   7 enough
               positive
                           613
                           534
   8 happy
               positive
##
   9 love
               positive
                           495
## 10 pleasure positive
                           462
## # ... with 2,575 more rows
```


- Jane austen의 작품에서의 Bing lexicon을 가지고 sentiment 분석을 해보았을 때, 가장 많이 사용된 부정적인 단어와 긍정적인 단어를 나타낸 그림이다.
- 가장 많이 사용된 부정적인 단어 그래프를 보면, 'miss'라는 단어가 가장 많이 사용됨을 알 수 있다.
- 하지만 miss라는 것은 Bing lexicon에서는 부정적인 단어라고 분류가 되어있지만, 작품에서는 젊은 미혼 여성을 부르는 호칭으로 사용되어 잘못 분류된 것으로 볼 수 있다.

```
## # A tibble: 1,150 x 2
##
      word
                  lexicon
##
      <chr>
                  <chr>
##
   1 miss
                  custom
##
   2 a
                  SMART
##
   3 a's
                  SMART
##
   4 able
                  SMART
##
   5 about
                  SMART
   6 above
                  SMART
##
   7 according
##
                  SMART
   8 accordingly SMART
##
## 9 across
                  SMART
## 10 actually
                  SMART
## # ... with 1,140 more rows
```

• 이렇게 제거되어야할 단어들을 stop words로 custom할 수 있다.

Wordclouds

```
library(wordcloud)

tidy_books %>%
  anti_join(stop_words) %>%
  count(word) %>%
  with(wordcloud(word, n, max.words = 100))
```


negative

Looking at units beyond just words

단어 단위로 토큰화하여 분석을 할 수 있는 반면에, 때로는 단위를 달리하여 텍스트를 보는 것이 분석에 유용하기도 하고 필요하기도 하다. 예를 들어 "l'am not having a good day"라는 말이 "joy"가 아닌 "sad"를 나타내는 문장을 이해 하고자 하는 것이다.

- 이를 시행하기위해 먼저 단어 단위가 아닌 Chapter 단위로 토큰화 시키기 위해 정규표현식 패턴을 사용하여 분할해보자.
- 이후 책 별로 분할 한 Chapter의 갯수를 파악해보자.

```
## # A tibble: 6 x 2
   book
                          chapters
## * <fct>
                             <int>
## 1 Sense & Sensibility
                                51
## 2 Pride & Prejudice
                                62
## 3 Mansfield Park
                                49
## 4 Emma
                                56
## 5 Northanger Abbey
                                32
## 6 Persuasion
                                25
```

- 각 책별로 총 Chapter 수를 알 수 있다.
- Chapter별로 나누어진 데이터셋을 가지고 소설에서 가장 부정적인 Chapter가 어떤 것인지와 같은 질문에 답을 할 수 있다.

```
bingnegative <- get_sentiments("bing") %>%
  filter(sentiment == "negative")

wordcounts <- tidy_books %>%
  group_by(book, chapter) %>%
  summarize(words = n())

tidy_books %>%
  semi_join(bingnegative) %>%
  group_by(book, chapter) %>%
  summarize(negativewords = n()) %>%
  summarize(negativewords = n()) %>%
  left_join(wordcounts, by = c("book", "chapter")) %>%
  mutate(ratio = negativewords/words) %>%
  filter(chapter != 0) %>%
  top_n(1) %>%
  ungroup()
```

```
## # A tibble: 6 x 5
##
    book
                         chapter negativewords words ratio
##
    <fct>
                                         <int> <int> <dbl>
                           <int>
## 1 Sense & Sensibility
                              43
                                           161 3405 0.0473
## 2 Pride & Prejudice
                              34
                                           111 2104 0.0528
## 3 Mansfield Park
                              46
                                           173 3685 0.0469
## 4 Emma
                              15
                                           151 3340 0.0452
## 5 Northanger Abbey
                              21
                                           149 2982 0.0500
## 6 Persuasion
                                            62 1807 0.0343
                               4
```

- Sense & Sensibility 라는 책에서의 43장에서는 소설속 등장인물 중 한명이 부상때문에 위급한 상황을 묘사하며.
- Pride & Prejudice 책 중 34장에서는 등장인물이 청혼을 매우 서툴게하여 좋은 상황을 만들지 못했으며,
- 나머지 책들의 chapter 모두 전반적으로 부정적인 내용임을 확인 할 수 있었다.

Summary

- sentiment analysis를 통해 텍스트를 감정으로 표현할 수 있고, 이를 표현함으로써 텍스트에 대한 전반적인 이 해를 도와주었다.
- lexicon에 있어서 분석 결과가 달라지는 것이 조금 신경써야하지만, lexicon을 선택만 잘 한다면 텍스트에 대해 분석을 더 자세하게 할 수 있을 것으로 보인다.
- wordcloud를 통해 사용빈도가 많았던 단어들을 시각화 할 수 있었으며, 이를 긍정과 부정으로 그룹을 나누어 표현도 해보았다.
- 이러한 wordcloud를 통해 주요 단어들을 파악하였지만 책이라는 어떤 텍스트 전체를 이해하는데에는 어려움 이 있어 이를 문장 또는 chapter 단위로 쪼개어 sentiment analysis를 해보았을 때, 책 전체에 대한 특징을 파악하는데에 도움이 되었다.