# This Page Is Inserted by IFW Operations and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

#### **PCT**

### RLD INTELLECTUAL PROPERTY ORGANIZAT International Bureau



# 1

#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 495/04, 498/04, 231/54, 335/10,
A01N 43/90 43/52 43/18 // (C07D)

A01N 43/90, 43/52, 43/18 // (C07D 495/04, 335:00, 231:00) (C07D 498/04, 335:00, 261:00) (C07D 495/04, 335:00, 239:00) (C07D 495/04, 335:00, 221:00) (C07D 495/04, 337:00, 231:00) (C07D 495/04, 335:00, 333:00)

(11) International Publication Number:

WO 97/19087

(43) International Publication Date:

29 May 1997 (29.05.97)

(21) International Application Number:

PCT/US96/18381

 $\mathbf{A1}$ 

(22) International Filing Date:

13 November 1996 (13.11.96)

(30) Priority Data:

60/006,876

17 November 1995 (17.11.95) US

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): TSENG, Chi-Ping [US/US]: 1103 Artwin Road, Wilmington, DE 19803 (US).
- (74) Agent: KATZ, Elliott, A.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

#### Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TRICYCLIC HERBICIDAL HETEROCYCLES

#### (57) Abstract

Compounds of Formula (1), and their N-oxides and agriculturally-suitable salts, are disclosed which are useful for controlling undesired vegetation, wherein J is Formula (II) and Q, X, Y, Z, R<sup>1</sup>-R<sup>19</sup>, m, n, p, q and r are as defined in the disclosure. Also disclosed are compositions containing the compound of Formula (1) and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an effective amount of a compound of Formula (1).

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          | GB       | United Kingdom               | MW  | Malawi                   |
|----|--------------------------|----------|------------------------------|-----|--------------------------|
| AM | Armenia                  | GE       | Georgia                      | MX  | Mexico                   |
| AT | Austria                  | GN       | Guinea                       | NE  | Niger                    |
| ΑU | Australia                | GR.      | Greece                       | NL  | Netherlands              |
| BB | Barbados                 | HU       | Hungary                      | NO  | Norway                   |
| BE | Belgium                  | IE.      | Ireland                      | NZ  | New Zcaland              |
| BF | Burkina Faso             | IE<br>IT |                              | Pl. | Poland                   |
| BG | Bulgaria                 | -        | Italy                        | PT  | Portugal                 |
| BJ | Benin                    | JP       | Japan                        | RO  | Romania                  |
| BR | Brazil                   | KE       | Kenya                        | RU  | Russian Federation       |
| BY | Relarus                  | KG       | Kyrgystan                    | SD  | Sudan                    |
| CA | Canada                   | KP       | Democratic People's Republic | SE  | Sweden                   |
| CF | Central African Republic |          | of Korea                     | SG  | Singapore                |
| CG | Congo                    | KR       | Republic of Korea            | SI  | Slovenia                 |
| CH | Switzerland              | KZ       | Kazakhstan                   |     | Slovenia                 |
| CI | Côte d'Ivoire            | Li       | Liechtenstein                | SK  |                          |
| CM | Cameroon                 | ı.K      | Sri Lanka                    | SN  | Senegal                  |
| CN | China                    | LR       | Liberia                      | SZ  | Swaziland                |
| CS | Czechoslovakia           | LT       | Lithuania                    | TD  | Chad                     |
| CZ | Czech Republic           | LU       | Luxembourg                   | TG  | Togo                     |
| DE | Germany                  | LV       | Larvia                       | TJ  | Tajikistan               |
| DK | Denmark                  | MC       | Monaco                       | TT  | Trinidad and Tobago      |
| EE | Estonia                  | MD       | Republic of Moldova          | UA  | Ukraine                  |
| ES | Spain                    | MG       | Madagascar                   | UG  | Uganda                   |
| FI | Finland                  | ML       | Mali                         | US  | United States of America |
| FR | France                   | MN       | Mongolia                     | UZ  | Uzbekistan               |
| GA | Gabon                    | MR       | Mauritania                   | VN  | Viet Nam                 |
| GA | Gatoni                   |          |                              |     |                          |

WO 97/19087 PCT/US96/18381

#### TITLE

I

## TRICYCLIC HERBICIDAL HETEROCYCLES BACKGROUND OF THE INVENTION

This invention relates to certain tricyclic heterocycles, their *N*-oxides,

agriculturally-suitable salts and compositions, and methods of their use for controlling undesirable vegetation.

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumers. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly and environmentally safe.

#### **SUMMARY OF THE INVENTION**

This invention is directed to compounds of Formula I including all geometric and stereoisomers, N-oxides, and agriculturally suitable salts thereof, agricultural compositions containing them and their use for controlling undesirable vegetation:

20

10

15

I

wherein

Q is

Q-1

O-2

25

$$R^{10}$$
 $R^{10}$ 
 $R^{10}$ 
 $R^{11}$ 
 $R^{12}$ 
 $Q-3$ 
 $Q-4$ 

J is

$$\mathbb{R}^1$$
  $\mathbb{R}^3$   $\mathbb{R}^3$   $\mathbb{R}^3$ 

5

10

X is O,  $S(O)_r$ ,  $N(C_1-C_2)$  alkyl) or CH<sub>2</sub> optionally substituted with 1-2  $C_1-C_2$  alkyl; Y together with the carbons to which it is attached form a phenyl ring or a fused five or six-membered heterocyclic ring, which may be fully aromatic or partially or fully saturated, containing 1 to 3 heteroatoms independently selected from the group nitrogen, oxygen, and sulfur, provided that the heterocyclic ring contains no more than 2 oxygens and no more than 2 sulfurs, and the ring is optionally substituted with one to three groups independently selected from the group C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>1</sub>-C<sub>6</sub> haloalkylthio, C<sub>1</sub>-C<sub>6</sub> alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfinyl, C<sub>1</sub>-C<sub>6</sub> alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfonyl, aminosulfonyl, C1-C2 alkylaminosulfonyl, C2-C4 dialkylaminosulfonyl, NR<sup>15</sup>R<sup>16</sup>, C<sub>2</sub>-C<sub>6</sub> alkoxyalkyl, C<sub>2</sub>-C<sub>6</sub> alkoxycarbonyl, C2-C6 alkylcarbonyl, halogen, cyano, nitro, phenyl optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro, and pyridyl optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro, provided that when a nitrogen atom of the fused heterocyclic ring is substituted, then the nitrogen substituent is other than halogen;

20

15

Z is selected from the group -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -OCH<sub>2</sub>CH<sub>2</sub>-, -O-CH=CH-, -NR<sup>13</sup>CH<sub>2</sub>CH<sub>2</sub>-, -NR<sup>13</sup>CH=CH-, -N=CHCH<sub>2</sub>-, -OCH<sub>2</sub>O-, -NR<sup>13</sup>CH<sub>2</sub>NR<sup>13</sup>-, -N=CHNR<sup>13</sup>-, -CH<sub>2</sub>OCH<sub>2</sub>-, -CH<sub>2</sub>NR<sup>13</sup>CH<sub>2</sub>-, -CH<sub>2</sub>C(O)<sub>T</sub>CH<sub>2</sub>-, -CH<sub>2</sub>C(O)CH<sub>2</sub>-, -CH=NCH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -OCH<sub>2</sub>-, -SCH<sub>2</sub>-, and -NR<sup>13</sup>CH<sub>2</sub>-, each group optionally substituted with one to four R<sup>5</sup>, and the directionality of the Z linkage is defined such that the moiety

25

10

15

20

25

30

depicted on the left side of the linkage is bonded to the carbonyl carbon of Q-1;

R<sup>1</sup> and R<sup>2</sup> are independently H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>1</sub>-C<sub>6</sub> haloalkylthio, C<sub>1</sub>-C<sub>6</sub> alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfinyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfonyl, aminosulfonyl, C<sub>1</sub>-C<sub>2</sub> alkylaminosulfonyl, C<sub>2</sub>-C<sub>4</sub> dialkylaminosulfonyl, halogen, cyano or nitro;

each  $R^3$  is  $C_1$ - $C_2$  alkyl;

R<sup>4</sup> is OR<sup>14</sup>, SH, C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>1</sub>-C<sub>6</sub> haloalkylthio, C<sub>1</sub>-C<sub>6</sub> alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfinyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfonyl, halogen or NR<sup>15</sup>R<sup>16</sup>; or R<sup>4</sup> is phenylthio, phenylsulfonyl or -SCH<sub>2</sub>C(O)Ph, each optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;

each R<sup>5</sup> is independently H, C<sub>1</sub>-C<sub>3</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, formyl, C<sub>2</sub>-C<sub>6</sub> alkoxycarbonyl, -CH(C<sub>1</sub>-C<sub>3</sub> alkoxy)<sub>2</sub>, C<sub>1</sub>-C<sub>3</sub> alkylthio, C<sub>2</sub>-C<sub>4</sub> alkylthioalkyl, cyano or halogen; or when two R<sup>5</sup> are attached to the same carbon atom, then said R<sup>5</sup> pair can be taken together to form -OCH<sub>2</sub>CH<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O-, -SCH<sub>2</sub>CH<sub>2</sub>S- or -SCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S-, each group optionally substituted with 1-4 CH<sub>3</sub>;

 $R^6$  is  $OR^{14}$ , SH,  $C_1$ - $C_6$  alkylthio,  $C_1$ - $C_6$  haloalkylthio,  $C_1$ - $C_6$  alkylsulfinyl,  $C_1$ - $C_6$  haloalkylsulfinyl,  $C_1$ - $C_6$  haloalkylsulfonyl, halogen or  $NR^{15}R^{16}$ ; or  $R^4$  is phenylthio, phenylsulfonyl or -SCH<sub>2</sub>C(O)Ph, each optionally substituted with  $C_1$ - $C_3$  alkyl, halogen, cyano or nitro;

R<sup>7</sup> is H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl or -CH<sub>2</sub>CH<sub>2</sub>OR<sup>13</sup>; or R<sup>7</sup> is phenyl or benzyl, each optionally substituted on the phenyl ring with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;

 $R^8$  is H,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  haloalkoxy, halogen, cyano or nitro;

 $R^9$  is H,  $C_1\text{-}C_6$  alkyl,  $C_1\text{-}C_6$  haloalkyl,  $C_3\text{-}C_6$  cycloalkyl or  $C_3\text{-}C_6$  halocycloalkyl;  $R^{10}$  is H,  $C_2\text{-}C_6$  alkoxycarbonyl,  $C_2\text{-}C_6$  haloalkoxycarbonyl,  $CO_2\text{H}$  or cyano;

R<sup>11</sup> is  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  haloalkyl,  $C_3$ - $C_6$  cycloalkyl optionally substituted with 1-4  $C_1$ - $C_3$  alkyl or  $C_3$ - $C_6$  halocycloalkyl;

 $R^{12}$  is cyano,  $C_2$ - $C_6$  alkoxycarbonyl,  $C_2$ - $C_6$  alkylcarbonyl,  $S(O)_rR^{16}$  or  $C(O)NR^{15}R^{16}$ ;

 $R^{13}$  is H or  $C_1$ - $C_6$  alkyl;

35 R<sup>14</sup> is H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>2</sub>-C<sub>6</sub> alkoxyalkyl, formyl, C<sub>2</sub>-C<sub>6</sub> alkylcarbonyl, C<sub>2</sub>-C<sub>6</sub> alkoxycarbonyl, C(O)NR<sup>15</sup>R<sup>16</sup>, C<sub>1</sub>-C<sub>6</sub> alkylsulfonyl or C<sub>1</sub>-C<sub>6</sub> haloalkylsulfonyl; or R<sup>14</sup> is phenyl, benzyl, benzyl, -CH<sub>2</sub>C(O)phenyl or phenylsulfonyl, each optionally substituted on the phenyl ring with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;

```
R<sup>15</sup> is H or C<sub>1</sub>-C<sub>6</sub> alkyl;

R<sup>16</sup> is C<sub>1</sub>-C<sub>6</sub> alkyl or C<sub>1</sub>-C<sub>6</sub> alkoxy; or

R<sup>15</sup> and R<sup>16</sup> can be taken together as -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-,

-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>- or -CH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>-;

m is 0, 1 or 2;

n is 1 or 2;

p is 0, 1, or 2; and

r is 0, 1 or 2.
```

The dotted line in the ring containing Y in J of Formula I indicates that the ring may be unsaturated, or may be partially or fully saturated as further defined in the above recitation of Y.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. The term "1-2 alkyl" indicates that one or two of the available positions for that substituent 15 may be alkyl. "Alkenyl" includes straight-chain or branched alkenes such as 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include 20 moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy. pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH<sub>3</sub>OCH<sub>2</sub>, CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>, CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>, CH3CH2CH2CH2OCH2 and CH3CH2OCH2CH2. "Alkylthio" includes branched or 25 straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH<sub>3</sub>S(O), CH<sub>3</sub>CH<sub>2</sub>S(O), CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>S(O), (CH<sub>3</sub>)<sub>2</sub>CHS(O) and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers. Examples of "alkylsulfonyl" include 30 CH<sub>3</sub>S(O)<sub>2</sub>, CH<sub>3</sub>CH<sub>2</sub>S(O)<sub>2</sub>, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>S(O)<sub>2</sub>, (CH<sub>3</sub>)<sub>2</sub>CHS(O)<sub>2</sub> and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. "Alkylamino", "dialkylamino", and the like, are defined analogously to the above examples. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and 35 cyclohexyl.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F<sub>3</sub>C, ClCH<sub>2</sub>,

CF<sub>3</sub>CH<sub>2</sub> and CF<sub>3</sub>CCl<sub>2</sub>. Examples of "haloalkoxy" include CF<sub>3</sub>O, CCl<sub>3</sub>CH<sub>2</sub>O. HCF<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O and CF<sub>3</sub>CH<sub>2</sub>O. Examples of "haloalkylthio" include CCl<sub>3</sub>S, CF<sub>3</sub>S, CCl<sub>3</sub>CH<sub>2</sub>S and ClCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S. Examples of "haloalkylsulfonyl" include CF<sub>3</sub>S(O)<sub>2</sub>, CCl<sub>3</sub>S(O)<sub>2</sub>, CF<sub>3</sub>CH<sub>2</sub>S(O)<sub>2</sub> and CF<sub>3</sub>CF<sub>2</sub>S(O)<sub>2</sub>.

The total number of carbon atoms in a substituent group is indicated by the "C<sub>1</sub>-C<sub>j</sub>" prefix where i and j are numbers from 1 to 6. For example, C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C<sub>2</sub> alkoxyalkyl designates CH<sub>3</sub>OCH<sub>2</sub>: C<sub>3</sub> alkoxyalkyl designates, for example, CH<sub>3</sub>CH(OCH<sub>3</sub>), CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub> or CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>; and C<sub>4</sub> alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub> and CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>. Examples of "alkylcarbonyl" include C(O)CH<sub>3</sub>, C(O)CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> and C(O)CH(CH<sub>3</sub>)<sub>2</sub>. Examples of "alkoxycarbonyl" include CH<sub>3</sub>OC(=O), CH<sub>3</sub>CH<sub>2</sub>OC(=O), CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OC(=O), (CH<sub>3</sub>)<sub>2</sub>CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. In the above recitations, when a compound of Formula I includes a six-membered aromatic ring which contains a nitrogen atom, then all substituents on the heterocyclic ring are attached through the carbon atom(s) of that ring.

When a group contains a substituent which can be hydrogen, for example R<sup>1</sup> or R<sup>14</sup>, then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I, *N*-oxides and agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

Some compounds of this invention can exist as one or more tautomers. One skilled in the art will recognize, for example, that compounds of Formula Ia (Formula I where Q is Q-1, R<sup>4</sup> is OR<sup>14</sup>, and R<sup>14</sup> is H) can also exist as the tautomers of Formulae Ib and Ic as shown below. One skilled in the art will recognize that said tautomers often exist in equilibrium with each other. As these tautomers interconvert under environmental and physiological conditions, they provide the same useful biological effects. The present invention includes mixtures of such tautomers as well as the individual tautomers of compounds of Formula I.

5

10

15

20

25

30

35

10

15

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfurie, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The salts of the compounds of the invention also include those formed with organic bases (e.g., pyridine, ammonia, or triethylamine) or inorganic bases (e.g., hydrides, hydroxides, or carbonates of sodium, potassium, lithium, calcium, magnesium or barium) when the compound contains an acidic group such as a carboxylic acid or enol. Preferred salts include the lithium, sodium, potassium, triethylammonium, and quaternary ammonium salts of the compounds of the invention.

Preferred compounds for reasons of better activity and/or ease of synthesis are: Preferred 1. Compounds of Formula I, and N-oxides and agriculturally-suitable salts thereof, wherein J is selected from the group

$$\begin{array}{c}
R^{1} & N - N \\
R^{1} & N - N \\
R^{18} \\
(R^{2})_{n} & N - N \\
X & N - N \\
R^{18} &$$

$$\begin{array}{c}
R^{18} \\
R^{17} \\
N \\
(R^{2})_{n}
\end{array}$$

$$\begin{array}{c}
R^{18} \\
N \\
(R^{3})_{p}
\end{array}$$

$$\mathbb{R}^1$$
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 

$$\mathbb{R}^{1} \xrightarrow{O \longrightarrow N} \mathbb{R}^{18}$$

$$\mathbb{R}^{2} \xrightarrow{(R^{2})_{n}} \mathbb{R}^{18}$$

J-5

$$\begin{array}{c}
\mathbb{R}^{18} \\
\mathbb{R}^{18}$$

J-7

$$(\mathbb{R}^2)_n$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

J-9

J-11

$$\mathbb{R}^{1}$$
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 

J-4

$$\mathbb{R}^{1}$$
  $\mathbb{R}^{18}$   $\mathbb{R}^{18}$   $\mathbb{R}^{18}$   $\mathbb{R}^{18}$ 

J-6

J-8

$$\begin{array}{c} R^{18} \\ R^{1} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{3} \\ R^{3}$$

J-10

$$\begin{array}{c}
R^{18} \\
R^{2} \\
R^{2} \\
R^{3} \\
R^{18}
\end{array}$$

$$R^{18}$$
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 

J-15

$$R^{18}$$
 $R^{18}$ 
 $R^{19}$ 
 $R$ 

J-17

$$R^{18}$$
 $R^{18}$ 
 $R$ 

J-19

$$R^{18}$$
 $R^{17}$ 
 $R^{18}$ 
 $R^{17}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 

J-14

$$\begin{array}{c}
\mathbb{R}^{18} \\
\mathbb{R}^{18} \\
\mathbb{R}^{18} \\
\mathbb{R}^{18} \\
\mathbb{R}^{18} \\
\mathbb{R}^{18}
\end{array}$$

J-16

J-18

$$\mathbb{R}^{17}$$
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{19}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{19}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{19}$ 
 $\mathbb{R}^{19}$ 

$$\begin{array}{c|c}
R^{1} & N \\
\hline
 & S \\
 & (R^{3})_{p}
\end{array}$$

J-23

$$\begin{array}{c|c} R^{1} & S & R^{18} \\ \hline & N & \\ & (R^2)_n & (R^3)_p \end{array}$$

J-25

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{17}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

J-27

$$(\mathbb{R}^2)_n$$

$$\mathbb{R}^1$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

J-22

J-24

$$(R^2)_n$$
 $R^{17}$ 
 $(R^{19})_q$ 
 $(R^{19})_q$ 

J-26

$$R^{18}$$
 $N$ 
 $N$ 
 $R^{17}$ 
 $(R^2)_n$ 
 $(R^3)_p$ 

J-28

$$\mathbb{R}^{1} \xrightarrow{O - N} \mathbb{R}^{18}$$

$$\mathbb{R}^{2}_{\text{in}}$$

$$\mathbb{R}^{2}_{\text{in}}$$

$$(R^{18})_q$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-31

$$(\mathbb{R}^{2})_{n}^{\mathbb{R}^{1}} \times (\mathbb{R}^{18})_{q}^{\mathbb{R}^{18}}$$

J-33

$$(R^{18})_q$$

$$(R^{3})_p$$

$$(R^{2})_n$$

J-35

$$(\mathbb{R}^2)_n \xrightarrow{\mathbb{R}^1 \longrightarrow \mathbb{N}^{-Q} \times \mathbb{R}^{19})_q} (\mathbb{R}^{19})_q$$

J-30

$$(\mathbb{R}^{2})_{n}$$

J-32

$$(\mathbb{R}^{2})_{n}$$

J-34

$$(R^2)_n$$
 $(R^{18})_q$ 
 $(R^3)_p$ 

$$(R^{2})_{n}$$

$$(R^{18})_{q}$$

$$(R^{3})_{p}$$

$$(R^{18})_q$$

$$(R^{18})_p$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-38

$$(R^{18})_q$$
 $(R^{18})_p$ 
 $(R^3)_p$ 

J-39

$$(R^{18})_q$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-4()

$$(\mathbb{R}^2)_n \xrightarrow{\mathbb{N}} \mathbb{N} \xrightarrow{\mathbb{N}} \mathbb{N} \mathbb{N}$$
 and 
$$(\mathbb{R}^2)_n = \mathbb{N}$$

J-41

J-42

R<sup>17</sup> is H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, C<sub>1</sub>-C<sub>6</sub> alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfonyl, aminosulfonyl, C<sub>1</sub>-C<sub>2</sub> alkylaminosulfonyl, C<sub>2</sub>-C<sub>4</sub> dialkylaminosulfonyl, C<sub>2</sub>-C<sub>6</sub> alkoxyalkyl, C<sub>2</sub>-C<sub>6</sub> alkoxycarbonyl or C<sub>2</sub>-C<sub>6</sub> alkylcarbonyl; or R<sup>17</sup> is phenyl or pyridyl, each optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;

10

5

each R<sup>18</sup> is independently H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>1</sub>-C<sub>6</sub> haloalkylthio, C<sub>1</sub>-C<sub>6</sub> alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfinyl, C<sub>1</sub>-C<sub>6</sub> alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfonyl, aminosulfonyl, C<sub>1</sub>-C<sub>2</sub> alkylaminosulfonyl, C<sub>2</sub>-C<sub>4</sub> dialkylaminosulfonyl, NR<sup>15</sup>R<sup>16</sup>, C<sub>2</sub>-C<sub>6</sub>

```
alkoxyalkyl, C_2-C_6 alkoxycarbonyl, C_2-C_6 alkylcarbonyl, halogen,
                               cyano or nitro;
                        each R<sup>19</sup> is independently H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>2</sub>-C<sub>6</sub>
                               alkoxyalkyl, C2-C6 alkoxycarbonyl or C2-C6 alkylcarbonyl; and
 5
                        q is 0, 1 or 2.
            Preferred 2. Compounds of Preferred 1 wherein:
                        Q is Q-1.
            Preferred 3. Compounds of Preferred 2 wherein:
                        Z is CH2CH2CH2 optionally substituted with one to four R5;
                         R<sup>1</sup> and R<sup>2</sup> are independently H, C<sub>1</sub>-C<sub>3</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, halogen or
10
                               nitro:
                         R4 is OR14; and
                        R^{14} is H or C_1-C_4 alkylsulfonyl; or R^{14} is benzoyl or phenylsulfonyl.
                               each optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or
15
                                nitro.
            Preferred 4. Compounds of Preferred 3 wherein:
                         X is S(O)_r;
                         m is 1 or 2; and
                         r is 2.
            Preferred 5. Compounds of Preferred 1 wherein:
20
                         O is O-2;
            Preferred 6. Compounds of Preferred 5 wherein:
                         R1 and R2 are independently H, C1-C3 alkyl, C1-C3 alkoxy, halogen or
                         R^6 is H or C_1-C_4 alkylsulfonyl; or R^6 is benzoyl or phenylsulfonyl, each
25
                                optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano, or nitro:
                         R^7 is H, C_1-C_6 alkyl, or C_3-C_6 alkenyl; and
                         R<sup>8</sup> is H:
             Preferred 7. Compounds of Preferred 6 wherein:
30
                         X is S(O)_r;
                         m is 1 or 2; and
                         r is 2.
             Preferred 8. Compounds of Preferred 1 wherein:
                         Q is Q-3.
             Preferred 9. Compounds of Preferred 8 wherein:
 35
                         R1 and R2 are independently H, C1-C3 alkyl, C1-C3 alkoxy, halogen or
                          R<sup>9</sup> is H, C<sub>1</sub>-C<sub>3</sub> alkyl, or cyclopropyl; and
                          R<sup>10</sup> is H or C<sub>2</sub>-C<sub>3</sub> alkoxycarbonyl.
```

```
Preferred 10. Compounds of Preferred 9 wherein:
                       X is S(O)_r;
                      m is 1 or 2; and
                      r is 2.
  5
           Preferred 11. Compounds of Preferred 1 wherein:
                      Q is Q-4.
           Preferred 12. Compounds of Preferred 11 wherein:
                      R^1 and R^2 are independently H, C_1-C_3 alkyl, C_1-C_3 alkoxy, halogen or
                      R<sup>11</sup> is C<sub>3</sub>-C<sub>6</sub> cycloalkyl or C<sub>3</sub>-C<sub>6</sub> halocycloalkyl, each optionally
10
                             substituted with 1-4 C<sub>1</sub>-C<sub>3</sub> alkyl; and
                      R^{12} is cyano or C_2-C_6 alkoxycarbonyl.
           Preferred 13. Compounds of Preferred 12 wherein:
                      X \text{ is } S(O)_{-}:
15
                      m is 1 or 2; and
                      r is 2.
                Most preferred are compounds of Formula Ia above, and sodium, potassium.
                and quaternary ammonium salts thereof, selected from the group:
                a) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
20
                yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide;
                b) 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
                yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide;
                c) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-
                yl)carbonyl]-5-methyl-1,3-cyclohexanedione S.S-dioxide;
25
                d) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-
                ethyl-5-hydroxy-1H-pyrazol-4-yl)methanone S,S-dioxide;
                e) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-
               c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide; and
                f) 2-[(4.5-\text{dihydro}-2.7.10-\text{trimethyl}-2H[1]\text{benzothiepino}[5.4-c]\text{pyrazol}-9-
30
               yl)carbonyl]-5-methyl-1,3-cyclohexanedione S.S-dioxide.
            This invention also relates to herbicidal compositions comprising herbicidally
      diluent or a liquid diluent. The preferred compositions of the present invention are
```

effective amounts of the compounds of Formula I and at least one of a surfactant, a solid those which comprise the above preferred compounds.

35 This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of Formula I (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

10

#### **DETAILS OF THE INVENTION**

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-24. The definitions of Q, X, Y, Z, R<sup>1</sup>-R<sup>19</sup>, m, n, p and r in the compounds of Formulae 1-27 below are as defined above in the Summary of the Invention. Compounds of Formulae Ia-Ig are various subsets of the compounds of Formula I, and all substituents for Formulae Ia-Ig are as defined above for Formula I.

Compounds of General Formula Id can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 1-16 of this section as well as by following the specific procedures given in Examples 1, 2 and 4.

$$(R^{2})_{n}$$

Id

Scheme 1 illustrates the preparation of compounds of Formula Id ( $R^4 = OR^{14a}$  and  $R^{14a}$  is the same as  $R^{14}$  as described in the Summary of the Invention excluding H) whereby a compound of Formula Id ( $R^4 = OH$ ) is reacted with a reagent of Formula 1 in the presence of a base wherein  $X^1$  is chlorine, bromine, fluorine, trifluorosulfonyloxy (OTf), or acetyloxy (OAc) and  $R^{14a}$  is as previously defined. The coupling is carried out by methods known in the art (or by slight modification of these methods): for example, see K. Nakamura, et al., WO 95/04054.

20

15

#### Scheme 1

Id 
$$(R^4 = OH) + R^{14a}X^1 \xrightarrow{\text{base}}$$
 Id  $(R^4 = OR^{14a})$ 

Compounds of Formula Id ( $R^4 = Nu$ ;  $Nu = SR^{14b}$  or  $OR^{14c}$ ;  $R^{14b}$  is H,  $C_1$ - $C_6$  alkyl or  $C_1$ - $C_6$  haloalkyl;  $R^{14c}$  is  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  haloalkyl or  $C_2$ - $C_6$  alkoxyalkyl) can be prepared by one skilled in the art from a compound of Formula Id ( $R^4 = \text{halogen}$ ) by treatment with a nucleophile of Formula 2 ( $Nu = SR^{14b}$  or  $OR^{14c}$ ; M = Na, K, or Li) as shown in Scheme 2 using methods well documented in the literature (or slight modification of these methods): for example, see S. Miyano, et al., *J. Chem. Soc.*, *Perkin Trans. 1* (1976), 1146.

30

25

#### Scheme 2

Id 
$$(R^4 = halogen) + MSR^{14b}$$
 or  $MOR^{14c} \longrightarrow Id (R^4 = SR^{14b})$  or  $OR^{14c}$ 

Compounds of Formula Id ( $R^4$  = halogen) can be prepared by reacting a compound of Formula Id ( $R^4$  = OH) with a halogenating reagent such as oxalyl bromide or oxalyl chloride (Scheme 3). This conversion is carried out by methods known in the art (or by slight modification of these methods): for example see S. Muller, et al., WO 94/13619; S. Muller, et al., DE 4,241,999.

#### Scheme 3

10

15

5

Scheme 4 illustrates the preparation of compounds of Formula Id ( $R^4 = OH$ ), whereby an enol ester of Formula 3 is reacted with a base such as triethylamine in the presence of a catalytic amount of cyanide source (e.g., acetone cyanohydrin or potassium cyanide). This rearrangement is carried out by methods known in the art (or by slight modification of these methods): for example see W. J. Michaely; EP 369.803.

#### Scheme 4

base (e.g., tricthylamine)

cyanide source in catalytic amount (e.g., acetone cyanohydrin or potassium cyanide)

$$R^{1}$$
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{4}$ 

Enol esters of Formula 3 can be prepared by reacting a dione of Formula 4 with an acid chloride of Formula 5 in the presence of a slight mole excess of a base such as triethylamine in an inert organic solvent such as acetonitrile, methylene chloride or toluene at temperatures between 0 °C and 110 °C (Scheme 5). This type of coupling is known in the art: for example, see W. J. Michaely, EP 369,803.

#### Scheme 5

$$(R^2)_n$$

base (e.g., triethylamine)

 $(R^2)_n$ 
 $(R^2)_n$ 
 $(R^3)_p$ 
 $(R^3)_p$ 

The acid chlorides of Formula 5 can be prepared by one skilled in the art by reacting an acid of Formula 6 with chlorinating agents such as oxalyl chloride or thionyl chloride and a catalytic amount of dimethylformamide (Scheme 6). This chlorination is well known in the art: for example, see W. J. Michaely, EP 369.803.

#### Scheme 6

HO
$$(R^{2})_{n}$$

$$(R^{2})_{n}$$

$$(R^{3})_{p}$$

15

20

25

Scheme 7 illustrates the preparation of acids of Formula 6 ( $X = S(O)_r$ ; r = 1 or 2) whereby an acid of Formula 6 (X = S) is reacted with an oxidizing reagent such as peroxyacetic acid, m-chloroperoxybenzoic acid, Oxone<sup>®</sup>, or hydrogen peroxide (the reaction may be buffered with a base such as sodium acetate or sodium carbonate). The oxidation is carried out by methods known in the art (or by slight modification of these methods): for example, see B. M. Trost, et al., J. Org. Chem. (1988), 53, 532; B. M. Trost, et al., Tetrahedron Lett. (1981), 21, 1287; S. Patai, et al., The Chemistry of Sulphones and Sulphoxides, John Wiley & Sons. For some acids of Formula 6 (X = S) with a functional group not compatible with the reaction conditions, the functional group may be protected before the oxidation and then be

BNSDOCID: <WO\_\_\_9719087A1\_I\_>

10

15

deprotected after the oxidation. The protecting and deprotecting procedures are well known in the literature: for example see T. W. Greene, et al., *Protective Groups in Organic Synthesis* (Second Edition), John Wiley & Sons, Inc.

#### Scheme 7

HO
$$(R^{2})_{n}$$

$$(R^{2})_{n}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

HO
$$(R^2)_n$$

$$(R^3)_p$$

6  $(X = S(O)_r; r = 1 \text{ or } 2)$ 

Scheme 8 illustrates the preparation of acids of Formula 6 (r = 0 if  $X = S(O)_r$ ) whereby a phenyl bromide of Formula 7 (r = 0 if  $X = S(O)_r$ ) is treated with n-butyllithium (or magnesium) and the lithium salt (or the Grignard reagent) generated in situ is then reacted with carbon dioxide followed by acidification with an acid such as hydrochloric acid. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see M. A. Ogliaruso, et al... Synthesis of Carboxylic Acids, Esters and Their Derivatives, pp 27-28, John Wiley & Sons; A. J. Bridges, et al., J. Org. Chem. (1990), 55, 773; C. Franke, et al... Angew. Chem. Int. Ed. (1969), 8, 68. Protecting and deprotecting functional groups not compatible with the reaction conditions may be necessary for compounds with such a functional group.

#### Scheme 8

Br 
$$(R^3)_p$$
 1) n-BuLi (or Mg)  
 $(R^2)_n$  HO  $(R^3)_p$   $(R^3)_p$   $(R^3)_p$   $(R^3)_p$   $(R^2)_n$   $(R^2)_n$   $(R^3)_p$   $(R^3)_p$ 

Scheme 8a illustrates the preferred method for the preparation of acids of Formula 6 (r = 2 if X = S(O)<sub>r</sub>) whereby a phenyl bromide of Formula 7 (r = 2 if X = S(O)<sub>r</sub>) is treated with copper cyanide followed by hydrolysis of the intermediate nitrile to the carboxylic acid. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see L. Friedman and H. Shechter J. Org. Chem. (1961), 26, 2522. Protecting and deprotecting functional groups not compatible with the reaction conditions may be necessary for compounds with such a functional group.

#### Scheme 8a

Br 
$$(R^3)_p$$
 1) CuCN, DMF  
 $(R^2)_n$  2)  $H_2SO_4$ ,  $NaNO_2$   $(R^2)_n$   $(R^2)_n$   $(R^2)_p$   $(R^3)_p$   $(R^3$ 

Phenyl bromides of Formula 7 (r = 0 if  $X = S(O)_r$ ) can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 9-14 (or by slight modification of these methods). Scheme 9 illustrates the preparation of phenyl bromides of Formula 7a (r = 0 if  $X = S(O)_r$ ) and Formula 7b (r = 0 if  $X = S(O)_r$ ) whereby a ketone of Formula 8 is reacted with a hydrazine of Formula 9. Some of the immediate products from the reactions of Scheme 9 may be further modified (e.g., conversion of OH on the pyrazole ring to Cl by treatment with POCl<sub>3</sub> or N-alkylation of the 1-H-pyrazole with an alkylating reagent such as ethyl bromide or ethyl sulfate) to give the desired phenyl bromides of Formula 7a (r = 0 if  $X = S(O)_r$ ) and Formula 7b (r = 0 if  $X = S(O)_r$ ). The above-mentioned reactions are carried out by methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et al., Comprehensive Heterocyclic Chemistry, Volume 5, p 121 and

15

20

25

pp 277-280, (1984) Pergamon Press; M. Hauser, et al., J. Org. Chem. (1961), 26, 451; E. F. M. Stephenson, Org. Synth. (1949), 29, 54.

Scheme 9

$$R^{1} \longrightarrow 0 \longrightarrow 0 \longrightarrow R^{18a}$$

$$R^{1} \longrightarrow 0 \longrightarrow R^{1}$$

$$R^{1} \longrightarrow 0 \longrightarrow R^$$

 $R^{17a} = H \text{ or } C_1 - C_4 \text{ alkyl}$  $R^{18a} = R^{18} \text{ excluding halogen, cyano, and nitro}$ 

5

10

15

20

Alternatively, many phenyl bromides of Formula 7a (r = 0 if  $X = S(O)_r$ ) and Formula 7b (r = 0 if  $X = S(O)_r$ ) can also be prepared by reacting a ketone of Formula 10 with a hydrazine of Formula 9 (Scheme 10) in an inert organic solvent such as acctonitrile, ethanol or toluene at temperatures between 0 °C and 110 °C for a period of time ranging from 1 hour to 3 days. The reaction mixture is then concentrated and the resulting residue is flash column chromatographed over silica gel with eluents such as mixtures of ethyl acetate and hexanes to give the phenyl bromides of Formula 7a (r = 0 if  $X = S(O)_r$ ) and Formula 7b (r = 0 if r = 0 if r

Phenyl bromides of Formula 7a ( $X = S(O)_r$  and r = 0) and Formula 7b ( $X = S(O)_r$  and r = 0) can also be oxidized to compounds of Formula 7a ( $X = S(O)_r$  and r = 1 or 2) and Formula 7b ( $X = S(O)_r$  and Y = 1 or 2) by employing similar methods as described for Scheme 7.

Scheme 10

$$R^{1} O N(CH_{3})_{2} H_{2}NNHR^{17a} H_{2}NNHR^{17a} H_{3} H_{2}NNHR^{17a} H_{3} H_{3} H_{3} H_{4} H_{5} H$$

Similarly, phenyl bromides of Formula 7c  $(r = 0 \text{ if } X = S(O)_r)$  and Formula 7d  $(r = 0 \text{ if } X = S(O)_r)$  can also be prepared by reacting a ketone of Formula 8 or Formula 10 with hydroxylamine or hydroxylamine hydrochloride (Scheme 11). Some of 5 the immediate products from the reactions of Scheme 11 may be further modified (e.g., conversion of OH on the isoxazole ring to Cl by treatment with POCl3) to give the desired phenyl bromides of Formula 7a  $(r = 0 \text{ if } X = S(O)_r)$  and Formula 7b  $(r = 0 \text{ if } X = S(O)_r)$  $X = S(O)_r$ ). The above-mentioned conversions are carried out by methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et al., 10 Comprehensive Heterocyclic Chemistry, Volume 6, pp 61-64 and p 118, (1984) Pergamon Press; H. Boshagen, Chem. Ber., (1967), 100, 3326.

8 (or 10)

$$\frac{\text{H2NOH (or H2NOH:HCl)}}{\text{with further modification on the isoxazole ring if appropriate}}$$

$$\frac{R^{18}}{(R^{3})_{p}}$$

$$\frac{R^{18}}{(R^{2})_{n}}$$

7d

10

Scheme 12 illustrates the preparation of phenyl bromides of Formula 7e (r = 0 if  $X = S(O)_r$ ) whereby a ketone of Formula 8 or Formula 10 is reacted with an amidine of Formula 11. Some of the immediate products from the reactions of Scheme 12 may be further modified (e.g., conversion of OH on the pyrimidine ring to Cl by treatment with POCl<sub>3</sub> or conversion of NH<sub>2</sub> on the pyrimidine ring to Cl by treatment with NaNO<sub>2</sub>/HCl/H<sub>2</sub>O). The above-mentioned reactions are carried out by methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et al., *Comprehensive Heterocyclic Chemistry*, Volume 3, p. 112-114, (1984) Pergamon Press; D. J. Brown, et al., *J. Chem. Soc. C.* (1967), 1922; I. Kogon, et al., *Org. Synth.* (1963), IV, 182.

Scheme 12

HN

$$R^{18}$$

With further modification on the pyrimidine ring if appropriate

 $R^{18}$ 
 $R^{18}$ 

 $R^{18c} = H, C_1-C_4$  alkyl, OH or  $NH_2$ 

Scheme 13 illustrates the preparation of phenyl bromides of Formula 7f (r = 0 if  $X = S(O)_r$ ) whereby a ketone of Formula 12 is reacted with a hydrazine of Formula 9. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et al., *Comprehensive Heterocyclic Chemistry*, Volume 5, pp 278-279, (1984) Pergamon Press.

20

15

Br 
$$R^{19}$$
  $R^{19}$   $R^{19}$ 

Other phenyl bromides of Formula 7 can be prepared in an analogous manner using methods known in the art (or by slight modification of these methods): for

example, see A. R. Katritzky, et al., *Comprehensive Heterocyclic Chemistry*, Volumes 2-6, (1984) Pergamon Press; E. Campaigne, et al., *J. Heterocycl. Chem.*, (1969), 553; A. N. Fujiwara, *J. Heterocycl. Chem.*, (1968), 853.

PC [/U390/10301

The ketones of Formula 8 can be prepared by one skilled in the art by reacting a ketone of Formula 13 with an anhydride of Formula 14 (or an acyl chloride of Formula 15) and a catalytic amount of a Lewis acid such as boron trifluoride (Scheme 14). This conversion is well known in the art: for example, see A. Philipp, et al., Can. J. Chem., (1979), 57, 3292; B. M. Perfetti, et al., J. Am. Chem. Soc., (1953), 75, 626.

10

5

#### Scheme 14

Br 
$$CH_2$$
  $(R^3)_p$   $R^{18a}C$   $CR^{18a}$  or  $R^{18a}$   $CC$   $R^{18a}$   $CC$   $R^{18a}$   $R^{18a}$ 

The ketones of Formula 10 can be prepared by one skilled in the art by reacting a ketone of Formula 13 with an amide dimethyl acetal of Formula 16 (Scheme 15). This conversion is well known in the art: for example, see G. Litkei, et al., *Org. Prep. Proced. Int.*, (1990), 22, 47-56; N. Dereu, et al., *J. Organomet. Chem.*, (1981), 208, 11;

#### Scheme 15

20

25

15

B. Gammill., Synthesis, (1979), 901.

The ketones of Formula 12 can be prepared by one skilled in the art by reacting a ketone of Formula 13 with an aldehyde or a ketone of Formula 17 (or its equivalent) in the presence of an acid or a base as shown in Scheme 16. This conversion is well known in the art: for example, see J. L. Gras., *Tetrahedron Lett.*, (1978), 2111; L. Engman, et al., *Tetrahedron Lett.*, (1981), 5251; A. Roedig, et al., *Chem. Ber.*, (1960), 2294; T. Girija, et al., *J. Chem. Soc.*, *Perk. Trans. 1*, (1991), 1467; A. J. Laurent, et al., *Tetrahedron Lett.*, (1992) 8091.

#### Scheme 16

The ketones of Formula 13 can be prepared by methods known in the art (or by slight modification of these methods): for example, see W. Flemming, et al., *Chem. Ber.*, (1925), 58, 1612; I. W. J. Still, et al., *Can. J. Chem.*, (1976), 54, 453-470; V. J. Traynelis, et al., *J. Org. Chem.*, (1961), 26, 2728; I. Nasuno, et al., WO 94/08988.

Compounds of General Formula Ie can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 17-19 of this section as well as by following the specific procedures given in Examples 3, 5, and 6.

$$\mathbb{R}^{8}$$
 $\mathbb{R}^{6}$ 
 $\mathbb{R}^{1}$ 
 $\mathbb{R}^{6}$ 
 $\mathbb{R}^{2}$ 
 $\mathbb{R}^{6}$ 
 $\mathbb{R}^{2}$ 
 $\mathbb{R}^{6}$ 
 $\mathbb{R}^{2}$ 

Scheme 17 illustrates the preparation of compounds of Formula le ( $R^{6a}$  is  $OR^{14}$  as described in the Summary of the Invention excluding OH) whereby a compound of Formula le ( $R^6 = OH$ ) is reacted with a reagent of Formula 18 in the presence of a base wherein  $X^2$  is chlorine, bromine, fluorine, OTf, or OAc and  $R^{6a}$  is as previously defined. This coupling is carried out by methods known in the art (or by slight modification of these methods): for example, see K. Nakamura, et al., WO 95/04054.

#### Scheme 17

Ie 
$$(R^6 = OH) + R^{14}X^2$$
 Ie  $(R^6 = R^{6a})$ 

Scheme 18 illustrates the preparation of compounds of Formula Ie ( $R^6 = OH$ ), whereby an ester of Formula 19 or its isomer 19a is reacted with a base such as triethylamine in the presence of a catalytic amount of cyanide source (e.g., acctone

BNSDOCID: <WO\_\_\_9719087A1\_I\_>

5

10

15

20

25

cyanohydrin or potassium cyanide). This rearrangement is carried out by methods known in the art (or by slight modification of these methods): for example, see W. J. Michaely, EP 369,803.

#### Scheme 18

passe
$$(e.g... triethylamine)$$
or
 $(e.g... triethylamine)$ 
 $(e.g... acetone cyanohydrin$ 
or potassium cyanide)

 $(e.g... triethylamine)$ 
 $(e.g... acetone cyanohydrin)$ 
or potassium cyanide)

Esters of Formula 19 or amides of Formula 19a can be prepared by reacting a hydroxypyrazole of Formula 20 with an acid chloride of Formula 5 in the presence of a slight mole excess of a base such as triethylamine in an inert organic solvent such as acetonitrile, methylene chloride or toluene at temperatures between 0 °C and 110 °C (Scheme 19). This type of coupling is carried out by methods known in the art (or by slight modification of these methods): for example, see W. J. Michaely, EP 369,803.

#### Scheme 19

15

5

10

Compounds of General Formula If can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 20-23 of this section.

$$R^{10}$$
 $R^{9}$ 
 $(R^{2})_{n}$ 
 $(R^{3})_{p}$ 

If

Scheme 20 illustrates the preparation of compounds of Formula If whereby a compound of Formula 21 is reacted with a salt of hydroxylamine such as hydroxylamine hydrochloride in the presence of a base or acid acceptor such as triethylamine or sodium acetate. The substituents of the immediate products may be further modified if appropriate. This cyclization is carried out by methods known in the art (or by slight modification of these methods): for example, see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

10

5

#### Scheme 20

L
$$R^{10a}$$
 $R^{10}$ 
 $R^{10}$ 

wherein

L is a leaving group such as  $C_1$ - $C_4$ alkoxy (e.g.  $OC_2H_5$ ) or NN-dialkylamino (e.g. dimethyl amino)

R<sup>10a</sup> is H, C<sub>2</sub>-C<sub>6</sub> alkoxycarbonyl, C<sub>2</sub>-C<sub>6</sub> haloalkoxycarbonyl or CONH<sub>2</sub>

Scheme 21 illustrates the preparation of compounds of Formula 21 whereby a compound of Formula 22 is reacted with a reagent of Formula 23 or Formula 24. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

#### Scheme 21

$$R^{20} = C_1 - C_4 \text{alkyl}$$

$$R^{10a} - C(OR^{20})_3$$

$$CR^{3}_{p} = R^{10a} - C(OR^{20})_3$$

$$CR^{20}_{p} = C_1 - C_4 \text{alkyl}$$

$$R^{10a} - C(OR^{20})_3$$

$$CR^{20}_{p} = C_1 - C_4 \text{alkyl}$$

Scheme 22 illustrates the preparation of compounds of Formula 22 whereby a ester of Formula 25 is decarboxylated in the presence of a catalyst, such as *p*-toluenesulfonic acid, in an inert solvent such as toluene. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

10

5

Esters of Formula 25 can be prepared by reacting the metal salt of a compound of Formula 26 with an acid chloride of Formula 5 (Scheme 23). This type of coupling is known in the art: for example see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

15

20

#### Scheme 23

Scheme 24 illustrates the preparation of compounds of Formula Ig whereby a compound of Formula 5 is reacted with a compound of Formula 27 in the presence of a base such as triethylamine, potassium carbonate, sodium hydride or Mg(OEt)<sub>2</sub> in an

inert organic solvent such as diethyl ether, tetrahydrofuran, N.N-dimethylformamide, dichloromethane or acetonitrile.

$$\mathbb{R}^{11} \xrightarrow{\mathbb{R}^{12}} \mathbb{R}^{12} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{10} \mathbb{R}^{10}$$

5

This conversion is carried out by methods known in the art (or slight modification of these methods); for example, see J. W. Ashmore, EP 213,892 and P. A. Caln, EP 496,631 A1.

#### Scheme 24

$$5 + R^{11}$$
 base  $g$ 

10

15

20

25

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The

10

15

20

25

30

35

following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated.

<sup>1</sup>H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

#### Example 1

### Step A: Preparation of 3-[(2,5-dimethylphenyl)thio]propanoic acid

43.4 g (1.086 mol) of sodium hydroxide was added to 230 mL of water. 75.0 g (0.543 mol) of 2.5-dimethylthiophenol (purchased from Aldrich Chemical Company) was then added and the mixture was cooled to about 10 °C. 91.30 g (0.597 mol) of 3-bromopropionic acid (purchased from Aldrich Chemical Company) was added in portions keeping the temperature below 25 °C. The mixture was warmed to room temperature, stirred for 2 hr under nitrogen, and was then washed with diethyl ether (3 x 500 mL). The aqueous layer was acidified with 1N HCl and filtered to yield 112.79 g of the title compound of Step A as a solid melting at 97-98 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 2.3 (s,3H), 2.34 (s,3H), 2.68 (t,2H), 3.1 (t,2H), 6.9 (d,1H), 7.06-7.14 (m,2H).

## Step B: Preparation of 2,3-dihydro-5,8-dimethyl-4H-1-benzothiopyran-4-one

530 mL of concentrated sulfuric acid was added to 24.91 g (0.119 mol) of the title compound of Step A while being cooled with an acetone/ice bath. The ice bath was removed, the mixture stirred for 1 hr and was then poured over crushed ice. The aqueous layer was extracted with a 1:9 mixture of diethyl ether: hexane (6 x 500 mL), dried (MgSO4), filtered, and evaporated to dryness to yield 11.75 g of the title compound of Step B as an oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  2.3 (s.3H), 2.6 (s.3H), 2.97 (m,2H), 3.2 (m,2H), 6.9-7.1 (m.2H).

# Step C: Preparation of 6-bromo-2,3-dihydro-5,8-dimethyl-4*H*-1-benzothiopyran-4-one

A solution of 4.07 g (0.021 mol) of the title compound of Step B in 25 mL of methylene chloride was added dropwise to a mixture of 7.07 g (0.053 mol) of aluminum chloride (purchased from Aldrich Chemical Company) and 25 mL of methylene chloride. The suspension was stirred for approximately 15 minutes, 1.14 mL (0.022 mol) of bromine (purchased from Janssen) was added dropwise and the mixture was refluxed for 10 minutes. The hot mixture was poured into 10 mL of concentrated hydrochloric acid containing 75 g of ice, stirred for 10 minutes, diluted with 50 mL of water, and extracted with diethyl ether (2 x 200 mL). The organic layer was washed with water (2 x 200 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and evaporated to dryness. The crude product was chromatographed over silica gel eluting with ethyl acetate: hexane (5%)

10

30

35

95%) to yield 2.62 g of the title compound of Step C as a solid melting at 87-88 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 2.3 (s,3H), 2.6 (s,3H), 3.0 (m,2H), 3.2 (m,2H), 7.45 (s,1H).

Step D: Preparation of 6-bromo-3-[(dimethylamino)methylene]-2,3-dihydro-5,8-dimethyl-4*H*-1-benzothiopyran-4-one

20.0 g (0.074 mole) of the title compound of Step C and 100 mL of *N.N*-dimethylformamide dimethyl acetal (purchased from Aldrich Chemical Company) were stirred under nitrogen at reflux overnight. The mixture was concentrated, the residue was stirred in water, and filtered. The solid was dissolved in methylene chloride, dried (MgSO<sub>4</sub>), filtered, and evaporated to dryness to yield 21.54 g of the title compound of Step D as an oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 2.49 (s.3H), 2.56 (s.3H), 3.16 (s.6H), 3.86 (s.2H), 7.34 (s.1H), 7.57 (s.1H).

Step E: Preparation of 8-bromo-2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole

4.53 mL (0.085 mol) of methyl hydrazine (purchased from Aldrich Chemical Company) was added dropwise to a mixture of 21.54 g (0.066 mol) of the title compound of Step D in 115 mL of ethanol. The mixture was stirred at reflux under nitrogen for 5 hr and was then evaporated to dryness. The crude product was chromatographed over silica gel eluting with a mixture of (1:9) ethyl acetate: hexane to yield two components. Concentration of the major fraction yielded 14.72 g of the title compound of Step E as an oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 2.3 (s,3H), 2.82 (s,3H), 3.76 (s,2H), 3.9 (s,3H), 7.2 (s, 1H), 7.3 (s,1H). Concentration of the minor fraction yielded 3.87 g of the isomer 8-bromo-1,4-dihydro-1,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole as an oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 2.3 (s,3H), 2.46 (s,3H), 3.75 (s,3H), 3.59 and 3.81 (2d,2H), 7.4 (s,1H), 7.45 (s,1H).

25 <u>Step F: Preparation of 2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylic acid</u>

3.73 mL (0.050 mol) of bromoethane (purchased from Aldrich Chemical Company) was added dropwise to a mixture of 2.11 g (0.088 mol) of magnesium in 70 mL of tetrahydrofuran. After stirring for 10 minutes, a solution of 7.77 g (0.025 mol) of the title compound of Step E in 100 mL of tetrahydrofuran was added dropwise and the mixture stirred at reflux under nitrogen overnight. After cooling to room temperature, carbon dioxide was bubbled into the mixture for 1 hr keeping the temperature below 20 °C. 55 mL of 10% hydrochloric acid was added dropwise and the resulting mixture was allowed to stir for 5 hr at room temperature. The mixture was evaporated to dryness, extracted with ethyl acetate (3 x 250 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and evaporated to dryness. The residue was triturated in hexane, the hexane was decanted, and the residue was dissolved in 1M sodium carbonate. The aqueous solution was extracted with diethyl ether (3 x 200 mL), acidified with concentrated hydrochloric acid, and extracted with diethyl ether (3 x 300 mL). The combined organic

10

15

20

25

30

35

layers were dried (MgSO<sub>4</sub>), filtered, and evaporated to dryness to yield 2.55 g of the title compound of Step F as a solid melting at 195 °C (decomposed).  $^{1}$ H NMR (Me<sub>2</sub>SO- $d_6$ ):  $\delta$  2.3 (s, 3H), 2.77 (s,3H), 3.89 (m,5H), 7.4 (s,1H), 7.6 (s,1H).

Step G: Preparation of 2,4-dihydro-2,6,9-trimethyl[1]benzothiopyran[4,3-c]pyrazole-8-carboxylic acid 5,5-dioxide

6.70 mL (0.066 mol) of hydrogen peroxide (35%) was added to 50 mL of trifluoroacetic acid, and allowed to stir under nitrogen for 30 minutes. The solution was cooled to about 0 °C, and 4.46 g (0.016 mol) of the title compound of Step F was added in portions while keeping the temperature below 15 °C. The mixture stirred at room temperature overnight and then 2 mL of methyl sulfide was added to the mixture. The resulting mixture was allowed to stir for 15 minutes and was then evaporated to dryness. The residue was triturated in a mixture of diethyl ether: hexane (8:2), allowed to stand overnight, and the organic mixture was decanted. The residue was triturated in water, and an orange solid was removed. The orange solid was dissolved in 250 mL of chloroform, dried (MgSO<sub>4</sub>), filtered, and evaporated to dryness to yield a portion of the title compound of Step G. The diethyl ether: hexane (8:2) decant was concentrated, the residue was triturated in water, and the water was decanted. The residue was dissolved in chloroform, dried (MgSO<sub>4</sub>), filtered, and evaporated to dryness to yield the title compound of Step G. The two products were combined to yield 3.62 g of the title compound of Step G as a semi-solid. <sup>1</sup>H NMR (Me<sub>2</sub>SO- $d_6$ ):  $\delta$  2.63 (s.3H), 2.7 (s.3H), 3.9 (s,3H), 4.7 (s,2H), 7.5 (s,1H), 7.8 (s,1H).

Step H: Preparation of 3-oxo-1-cylcohexen-1-yl 2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylate 5,5-dioxide

3.62 g (0.0118 mol) of the title compound of Step G, 3.09 mL (0.035 mol) of oxalyl chloride (purchase from Janssen), and 2 drops of *N*,*N*-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2 hr, and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and was then evaporated to dryness. Another 50 mL of methylene chloride was added to the residue, and the solution was cooled to about 0 °C. 1.46 g (0.013 mol) of 1,3-cyclohexanedione (purchased from Aldrich Chemical Company) was added followed by 5.1 mL (0.0366 mol) of tricthylamine, and the mixture was stirred overnight while warming to room temperature. The mixture was evaporated to dryness, and the crude product was chromatographed over silica gel cluting with a mixture of methylene chloride: diethyl ether (9:1) to yield 1.53 g of the title compound of Step H as a solid melting at 158-160 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 2.2 (m.2H), 2.5 (m.2H). 2.7 (m.2H), 2.78 (s.3H), 2.9 (s.3H), 3.99 (s.3H), 4.39 (s.2H), 6.1 (s.1H), 7.5 (s.1H), 7.6 (s.1H).

10

15

20

25

35

..

## Step I: Preparation of 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyranol4,3-c]pyrazol-8-yl)carbonyl[-1,3-cyclohexanedione S,S-dioxide

1.44 g (0.0036 mol) of the title compound of Step H, 2 drops of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 0.88 mL (0.0063 mol) of triethylamine were added to 100 mL of acetonitrile and the mixture was allowed to stir overnight at room temperature under nitrogen. About 0.10 g of potassium cyanide was added to the mixture, and the mixture was stirred for 1 hr. The mixture was evaporated to dryness and water was added to the residue. The mixture was acidified to pH 1 with concentrated hydrochloric acid and then filtered to provide the crude product. The crude product was dissolved in methylene chloride and the solution was dried (MgSO<sub>4</sub>), filtered, and evaporated to dryness to yield 0.79 g of the title compound of Step I. a compound of the invention, as a solid melting at 228 °C (dec.). <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 1.96 (m,2H), 2.4 (m,2H), 2.48 (s,3H), 2.6 (s,3H), 2.7 (m,2H), 3.8 (s,3H), 4.27 (s,2H), 6.8 (s,1H), 7.3 (s,1H).

#### Example 2

## Step A: Preparation of 1,4-dihydro-1,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylic acid

6.74 g (0.021 mol) of 8-bromo-1.4-dihydro-1,6.9-trimethyl[1]benzo-thiopyrano[4,3-c]pyrazole (from Example 1, Step E) was added to 150 mL of tetrahydrofuran and cooled to -70 °C. 10.4 mL (0.026 mol) of 2.5 M n-butyllithium in hexanes (purchased from Aldrich Chemical Company) was added dropwise keeping the temperature below -60 °C. After stirring for 10 minutes, carbon dioxide was bubbled into the mixture for 1 hr. The mixture warmed to room temperature, 200 mL of hexane was added, and then the mixture was filtered. The solid was added to 300 mL of water, acidified to about pH 1 with concentrated hydrochloric acid and then filtered. The filtered residue was dissolved in chloroform and the solution was dried (MgSO<sub>4</sub>), filtered and evaporated to dryness to yield 4.02 g of the title compound of Step A as a solid melting at >230 °C. ¹H NMR (CDCl<sub>3</sub>): δ 2.4 (s,3H), 2.7 (s,3H), 3.77 (s,3H), 3.67 and 3.88 (2d,2H), 7.48 (s,1H), 7.88 (s,1H).

## 30 <u>Step B:</u> <u>Preparation of 1,4-dihydro-1,6,9-trimethyll I | Ibenzothiopyrano[4,3-c]pyrazole-8-carboxylic acid 5,5-dioxide</u>

5.8 mL (0.0598 mol) of 35% hydrogen peroxide was added to 50 mL of trifluoroacetic acid and the mixture was allowed to stir under nitrogen for 30 minutes.

The solution was cooled to about 0 °C, 4.0 g (0.0145 mol) of the title compound of Step A was added in portions while keeping the temperature below 15 °C, the mixture was then stirred at room temperature for 2 days. 2 mL of methyl sulfide was added to the mixture. The mixture was allowed to stir for 15 minutes and was then evaporated to dryness. The residue was stirred in a diethyl other: hexane (8:2) mixture for 30 minutes and filtered to yield approximately 6.0 g of the title compound of Step B as a

10

15

20

25

30

solid melting at >210°C. <sup>1</sup>H NMR (Me<sub>2</sub>SO- $d_6$ ):  $\delta$  2.5(s,3H), 2.63 (s, 3H), 3.7 (s, 3H), 4.7 (m, 2H), 7.68 (s,1H), 7.8 (s,1H).

Step C: Preparation of 3-oxo-1-cyclohexen-1-yl 1,4-dihydro-1,6,9trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylate 5,5-dioxide

2.0 g (0.0065 mol) of the title compound of Step B, 1.71 mL (0.0196 mol) of oxalyl chloride (purchase from Janssen), and 2 drops of *N*,*N*-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2 h and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and it was then evaporated to dryness. Another 50 mL of methylene chloride was added to the residue and the solution was cooled to about 0 °C. 0.80 g (0.0071 mol) of 1.3-cyclohexanedione (purchased from Aldrich Chemical Company) was added followed by 2.8 mL (0.020 mol) of triethylamine, and the mixture was stirred for 3 days while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel eluting with a mixture of ethyl acetate: hexane (6:4) to yield 0.86 g of the title compound of Step C as a solid melting at 196 °C (decomposed). <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 2.2(m,2H), 2.5 (m,2H), 2.64 (s,3H), 2.7 (m,2H), 2.8 (s,3H), 3.8 (s,3H), 4.3 and 4.4 (2d, 2H), 6.06 (s,1H), 7.65 (s,1H), 7.94 (s,1H).

Step D: Preparation of 2-[(1,4-dihydro-1,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide

0.80 g (0.0020 mol) of the title compound of Step C, 2 drops of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 0.49 mL (0.0035 mol) of triethylamine were added to 100 mL of acetonitrile and the mixture was allowed to stir overnight at room temperature under nitrogen. The mixture was evaporated to dryness and water was added to the residue. The resulting mixture was acidified to pH 1 with concentrated hydrochloric acid and filtered to provide the crude product. The crude product was dissolved in methylene chloride and the solution was dried (MgSO<sub>4</sub>), filtered and evaporated to dryness to yield 0.47 g of the title compound of Step D, a compound of the invention, as a solid melting at >220 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  2.1 (m,2H), 2.3 (s,3H), 2.6-2.76 (m,7H), 3.8 (s,3H), 4.2-4.4 (m,2H), 6.98-7.6 (2H).

#### Example 3

Step A: Preparation of 1-ethyl-1*H*-pvrazol-5-yl 1,4-dihydro-1,6,9trimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylate 5,5-dioxide

2.0 g (0.0065 mol) of the title compound of Step B in Example 2, 1.71 mL (0.0196 mol) of oxalyl chloride (purchase from Janssen), and 2 drops of *N*,*N*-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2 h and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and it was evaporated to dryness. Another 50 mL of methylene chloride was added to the residue and the solution was cooled to

WO 97/19087 PCT/US96/18381

about 0 °C. 0.80 g (0.0071 mol) of 1-ethyl-1*H*-pyrazol-5-ol was added followed by 2.8 mL (0.020 mol) of triethylamine, and the mixture was stirred for 3 days while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel eluting with a mixture of ethyl acetate: hexane (6:4) to yield 0.40 g of the title compound of Step A as a solid melting at 173-175°C. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  1.5 (t,3H), 2.7 (s,3H), 2.8 (s,3H), 3.8 (s,3H), 4.1 (q,2H), 4.3 and 4.4 (2d,2H), 6.2-8.0 (4H).

Step B: Preparation of (1,4-dihydro-1,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl) (1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S,S*-dioxide

0.38 g (0.95 mmol) of the title compound of Step A, 1 drop of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 0.23 mL (1.66 mmol) of triethylamine were added to 50 mL of acetonitrile and the mixture was allowed to stir at room temperature under nitrogen overnight. The mixture was evaporated to dryness and water was added to the residue. The resulting mixture was acidified to pH 1 with concentrated hydrochloric acid and filtered to yield 0.12 g of the title compound of Step B<sub>5</sub> a compound of the invention, as a solid melting at 96 °C (decomposed). <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 1.5 (t,3H), 2.60 (s,3H), 2.76 (s,3H), 3.83 (s,3H), 4.0-4.4 (m,4H), 7.4-7.8 (m,3H).

## Example 4

Step A: Preparation of 3-[(4-bromo-2,5-dimethylphenyl)thio]propanoic acid
25.23 g (0.12 mol) of the title compound of Example 1, Step A was dissolved in
250 mL of dichloromethane and cooled to 5 °C. A solution of 19.12 g (0.12 mol) of
bromine in 25 mL of dichloromethane was added dropwise over 45 minutes, keeping
the reaction temperature at 5 °C. The reaction was then allowed to warm to room
temperature, diluted with 200 mL of dichloromethane and washed twice with 400 mL of
water. The organice layer was separated, dried over magnesium sulfate, filtered, and
concentrated under reduced pressure to yield 34.35 g of the title compound of step A as
a white solid melting at 105-107 °C. ¹II NMR (CDCl<sub>3</sub>): δ 2.33 (s,3H), 2.34 (s, 3H),
2.67 (t, 2H), 3.10 (t, 2H), 7.18 (s, 1H), 7.36 (s, 1H).

30 Step B: Preparation of 6-bromo-2,3-dihydro-5,8-dimethyl-4*H*-1-benzothiopyran-4-one

19.50 g (67.4 mmol) of the title compound of Step A was dissolved in 156 mL of dichloromethan and cooled to 5 °C. 78 mL of concentrated sulfuric acid was added dropwise over 45 minutes with vigorous stirring and the reaction was then allowed to stir at 5 °C for 1.5 hours. The reaction was poured into 500 mL of ice water, the layers were separated and the aqueous phase extracted twice with 300 mL of dichloromethane. The combined organic layers were washed twice with 1.0 N NaOH, once with water, dried over magnesium sulfate and concentrated under reduced pressure to yield 16.04 g

10

15

10

15

20

25

30

of the title compound of Step B as a yellow solid melting at 86-87 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  2.26 (s, 3H), 2.59 (s, 3H), 3.00 (t, 2H), 3.19 (t, 2H), 7.45 (s. 1H).

## Step C: Preparation of 8-bromo-2.4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole

2.80 g (10 mmol) of the title compound of Step B and 1.79 g(15 mmol) of *N*,*N*-dimethylformamide dimethyl acetal were dissolved in 16 mL of ethyl acetate and heated to reflux. The methanol/ethyl acetate mixture was removed via a Dean Stark trap and was replaced with fresh ethyl acetate. After heating to reflux for 4 hours, the reaction was cooled to room temperature and allowed to stand overnight. It was then reluxed further for 2 hours, cooled to 60 °C, and 0.75 g (15 mmol) of hydrazine monohydrate was added. The reaction was reheated to reflux for 1 hour, cooled to room temperature, and diluted to 100 mL with ethyl acetate. The organic phase was washed twice with 100 mL of water, dried over magnesium sulfate, and concentrated under reduced pressure to yield 3.10 g of an oily yellow solid. This solide was triturated with hexanes, collected by filtration, washed further with hexanes, and dried to yield 2.79 g of the title compound of Step C as a pale yellow solid melting at 162-164 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>): 8 2.34 (s, 3H), 2.79 (s, 3H), 3.84 (s, 2H), 7.35 (s, 1H), 7.46 (s, 1H), 10.4 (br s).

## Step D: Preparation of 8-bromo-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole

A mixture of 6.09 g (20 mmol) of the title compound of Step C. 1.52 g (23 mmol) of potassium hydroxide, 0.31 g (5% by weight of the title compound of Step C) of tetrabutylammonium hydrogen sulfate, 25 mL of toluene, and 25 mL of water was stirred fo 15 minutes at room temperature. 3.85 g (25 mmol) of diethyl sulfate was added and the reaction stirred vigorously for 6.5 hours. The reaction was then diluted with 250 mL of ethyl acetate, washed twice with 100 mL of 1.0 N HCl, once with brine, dried over magnesium sulfate and concentrated under reduced pressure. The crude oil was dissolved in 300 mL of methanol, 3 mL of a 25% sodium methoxide/methanol solution was added and the resulting solution was concentrated at 60 °C under reduced pressure. The mixture was then redissolved in diethyl ether and 1.0 N HCl, the layers were separated, and the organic phase was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure to yield 6.50 g of a reddish oil. GC analysis showed a ratio of approximately 10:1 of the title compound of Step D to the 1-ethyl isomer. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  1.52 (t, 3H), 2.32 (s, 3H), 2.83 (s, 3H), 3.77 (s, 2H), 4.18 (q, 2H), 7.23 (s, 1H), 7.30 (s, 1H).

# 35 <u>Step E</u>: <u>Preparation of 8-bromo-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole 5,5-dioxide</u>

6.42 g (approximately 17 mmol) of the crude title compound of Step D, 32 mL of glacial acetic acid, and 12 drops of concentrated sulfuric acid were heated to 70 °C. The heat source was removed and 7.76 g (80 mmol) of 35% aqueous hydrogen peroxide

15

20

25

30

35

was added dropwise over 15 minutes, keeping the reaction temperature at about 70 °C. After 1 hour at 73-74 °C, the reaction was cooled to room temperature, poured into 400 mL of ethyl acetate, washed with 400 mL of water, 400 mL of aqueous sodium metabisulfite, aqueous sodium bicarbonate, and brine. A check for peroxides with starchiodide paper was negative. The organic phase was dried over magnesium sulfate and concentrated under reduced pressure to yield 6.90 g of a yellow solid. This solid was dissolved in 100 mL of dichloromethane and rinsed through a one inch bed of silica gel which was further rinsed with one liter of dichloromethane. The combined rinses were concentrated under reduced pressure to yield 5.70 g of the title compound of Step E as an off-white solid melting at 138-141 °C. ¹H NMR (CDCl<sub>3</sub>): δ 1.54 (1. 3H), 2.70 (s. 3H), 2.85 (s, 3H), 4.22 (q, 2H), 4.35 (s, 2H), 7.44 (s. 1H), 7.50 (s, 1H).

Step F: Preparation of 2-ethyl-2.4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-clpyrazole-8-carbonitrile 5,5-dioxide

3.00 g (8 mmol) of the title compound of Step E, 1.07 g (12 mmol) of copper (I) cyanide, and 50 mL of *N.N*-dimethylformamide were heated to reflux fo 5.5 hours and then let stir at room temperature overnight. The reaction was then diluted with 300 mL of ethyl acetate, washed twice with 200 mL of a solution of 50% saturated ammonium chloride in water with 20 mL of 35% ammonium hydroxide added, washed twice with 300 mL of water, dried over magnesium sulfate and concentrated under reduced pressure to yield 2.50 g of a tan solid. This solid was dissolved in 50 mL of dichloromethane and rinsed through a one inch bed of silica gel, which was further rinsed with 500 mL of dichloromethane and then 200 mL of 10% ethyl acetate:dichloromethane. The rinses were separately concentrated under reduced pressure. The dichloromethane rinse yielded 2.31 g of the title compound of Step F as an off-white solid melting at 185-187 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>): 8 1.53 (t, 3H), 2.35 (s, 3H), 2.92 (s, 3H), 3.86 (s, 2H), 4.20 (q, 2H), 7.26 (s, 1H), 7.27 (s, 1H).

Step G: Preparation of 2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylic acid 5,5-dioxide

1.00 g (3.2 mmol) of the title compound of Step F, 2 mL of water, and 6 mL of sulfuric acid were heated to 140 °C for one hour. The reaction was allowed to cool to 60 °C and 0.25 g of sodium nitrite in 1 mL of water was added dropwise over 30 minutes and stirring was continued for another 30 minutes. The reaction was allowed to cool to room temperature, poured into 25 mL of ice water and the resulting solid was isolated by filtration and washed with 5 mL of cold water. Drying overnight yielded 1.02 g of a tan solid. The aqueous filtrate was extracted three times with 50 mL of dichloromethane and the organic phases were combined, dried over magnesium sulfate and concentrated under reduced pressure to yield 0.36 g of a brown oil. This oil and the isolated solid were dissolved in 50 mL of 1.0 N sodium hydroxide, washed with 25 mL of diethyl ether, acidified with concentrated HCl, and extracted four times with 50 ml.

of ethyl acetate. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to yield 0.98 g of the title compound of Step G as a tan solid melting at 204-206 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 1.53 (t, 3H), 2.38 (s, 3H), 2.99 (s, 3H), 3.83 (s, 2H), 4.21 (q, 2H), 7.26 (s, 1H), 7.68 (s, 1H).

5 <u>Step H: Preparation of 3-oxo-1-cyclohexen-1-yl 2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylate 5,5-dioxide</u>

6.0 g (0.019 mol) of the title compound of Step G, 4.9 mL (0.056 mol) of oxalyl chloride (purchase from Janssen), and 2 drops of *N.N*-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2 hr and was evaporated to dryness. 50 mL of methylene chloride was added to the residue and it was evaporated to dryness. Another 50 mL of methylene chloride was added to the residue and the solution was cooled to about 0 °C. 2.31 g (0.021 mol) of 1,3-cyclohexanedione (purchased from Aldrich Chemical Company) was added followed by 8.1 mL (0.058 mol) of triethylamine and the mixture was stirred overnight while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel cluting with a mixture of ethyl acetate: hexane (6:4) to yield 1.78 g of the title compound of Step H as a solid melting at 160-162 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>): 8 1.6 (t,3H), 2.2 (m,2H), 2.5 (m,2H), 2.7 (m,2H), 2.8 (s,3H), 2.9 (s,3H), 4.2 (q,2H), 4.4 (m,2H), 6.07 (s,1H), 7.46-7.6 (m,2H).

20 Step I: Preparation of 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl[-1,3-cyclohexanedione S,S-dioxide

1.70 g (0.0041 mol) of the title compound of Step H, 2 drops of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 1.0 mL (0.0072 mol) of tricthylamine were added to 100 mL of acetonitrile and the mixture was allowed to stir at room temperature under nitrogen overnight. About 0.05 g of potassium cyanide was then added to the mixture and it was stirred for 4 h. The mixture was evaporated to dryness and water was added to the residue. The resulting mixture was acidified to pH 1 with concentrated hydrochloric acid and filtered to yield 1.51 g of the title compound of Step I, a compound of the invention, as a solid melting at 205 °C (decomposed). <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 1.5 (t,3H), 2.06 (m,2H), 2.5 (m,2H), 2.6 (m,2H), 2.7 (s,3H), 2.8 (m,2H), 4.2 (q,2H), 4.4 (m,2H), 6.9-7.4 (m,2H).

### Example 5

Step A: Preparation of 1-ethyl-1*H*-pyrazol-5-yl 2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazole-8-carboxylate 5.5-dioxide

5.9 g (0.018 mol) of the title compound of Step G in Example 4, 4.8 mL (0.055 mol) of oxalyl chloride (purchase from Janssen), and 2 drops of N,N-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2 h and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and it was evaporated to dryness.

10

15

25

30

10

15

20

25

30

35

-:

Another 50 mL of methylene chloride was added to the residue and the solution was cooled to about 0°C. 2.48 g (0.022 mol) of 1-ethyl-1*H*-pyrazol-5-ol was added followed by 7.97 mL (0.057 mol) of triethylamine, and the mixture was stirred overnight while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel eluting with a mixture of ethyl acetate: hexane (6:4) to yield 0.18 g of the title compound of Step A as a solid melting at 137°C (decomposed). <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 1.45 (t,3H), 1.56 (t,3H), 2.8 (s,3H), 2.9 (s,3H), 4.1 (m,2H), 4.3 (m,2H), 4.4 (m,2H), 6.3-7.7 (m,4H).

Step B: Preparation of (2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S*,*S*-dioxide

0.18 g (0.43 mmol) of the title compound of Step A, 0.50 drops of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 0.11 mL (0.76 mmol) of triethylamine were added to 25 mL of acetonitrile and the mixture was allowed to stir at room temperature under nitrogen overnight. About 0.05 g of potassium cyanide was added to the mixture and it was stirred for 4 h. About 0.03 g of potassium cyanide was then added and the mixture was allowed to stir for 1h. The mixture was evaporated to dryness and water was added to the residue. The resulting mixture was then acidified to pH 1 with concentrated hydrochloric acid, and filtered to yield 0.11 g of the title compound of Step B, a compound of the invention, as a solid melting at 97 °C (decomposed). HNMR (CDCl<sub>3</sub>): δ 1.47 (t, 3H), 1.54 (t, 3H), 2.7 (s, 3H), 2.8 (s, 3H), 4.1 (q, 2H), 4.2 (q, 2H), 4.4 (m, 2H), 7.2-7.45 (m,3H).

#### Example 6

Step A: Preparation of 1-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-2-ethyl-1,2-dihydro-3*H*-pyrazol-3-one *S*,*S*-dioxide

4.0 g (0.013 mol) of the title compound of Step G in Example 1, 3.42 mL (0.039 mol) of oxalyl chloride (purchased from Janssen) and 2 drops of N, N-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed for 2 h and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and it was evaporated to dryness. Another 50 mL of methylene chloride was added to the residue and the solution was cooled to about 0 °C. 1.60 g (0.014 mol) of 1-ethyl-1H-pyrazol-5-ol was added followed by 5.62 mL (0.040 mol) of triethylamine, and the mixture was stirred under nitrogen overnight while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel cluting first with a mixture of ethyl acetate: hexane (7:3) and then with ethyl acetate to yield 1.35 g of the title compound of Step A as a solid melting at >210 °C.  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$  7.45 (s, 1H), 7.2-7.35 (m, 2H), 5.74 (d, 1H), 4.4 (m, 4H), 3.98 (s, 3H), 2.78 (s, 3H), 2.7 (s, 3H), 1.3 (t, 3H).

Step B: Preparation of (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S,S*-dioxide

1.3 g (3.25 mmol) of the title compound of Step A, I drop of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 0.79 mL (5.69 mmol) of tricthylamine were added to 25 mL of acetonitrile and the mixture was allowed to stir at 5 room temperature under nitrogen for 15 min. 0.06 g of potassium cyanide was then added and the mixture was allowed to stir at room temperature under nitrogen overnight. Another 0.03 g of potassium cyanide was added and the reaction mixture was allowed to stir at room temperature under nitrogen for another 3 days. The mixture was evaporated to dryness and water was added to the residue. The resulting mixture 10 was acidified to pH 1 with concentrated hydrochloric acid and filtered. The solid collected was dissolved in methylene chloride and the resulting solution was dried over MgSO<sub>4</sub> and then concentrated to yield 0.48 g of the title compound of Step B, a compound of the invention, as a solid melting at 133 °C (decomposed). <sup>1</sup>H NMR  $(Me_2SO-d_6)$ :  $\delta$  7.86 (s, 1H), 7.32 (s, 1H), 7.25 (s, 1H), 4.72 (s, 2H), 3.9-4.0 (m, 5H). 15 2.64 (s, 3H), 2.57 (s, 3H), 1.28 (t, 3H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 18 can be prepared. The following abbreviation is used in the Tables which follow: Ph = phenyl.

| <u>R</u> å      | <u>R</u> b      | <u>Rc</u>                             | <u>R17</u> | <u>R18</u> |
|-----------------|-----------------|---------------------------------------|------------|------------|
| Н               | H               | PhC(=O)                               | Н          | Н          |
| Н               | CH <sub>3</sub> | PhC(=O)                               | Н          | Н          |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)                               | Н          | Н          |
| H               | Н               | PhC(=O)CH <sub>2</sub>                | H          | Н          |
| Н               | CH <sub>3</sub> | PhC(=O)CH <sub>2</sub>                | Н          | I-I        |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)CH <sub>2</sub>                | Н          | Н          |
| Н               | Н               | $4-CH_3PhC(=O)$                       | Н          | H          |
| Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhC(=0)             | Н          | Н          |
| $CH_3$          | CH <sub>3</sub> | 4-CH <sub>3</sub> PhC(=0)             | 11         | Н          |
| Н               | Н               | $CH_3S(O)_2$                          | 11         | H          |
| H               | CH <sub>3</sub> | $CH_3S(O)_2$                          | Н          | H          |
| $CH_3$          | CH <sub>3</sub> | $CH_3S(O)_2$                          | Н          | Н          |
| H               | Н               | $CH_3CH_2S(O)_2$                      | Н          | Н          |
| H               | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                      | Н          | Н          |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                      | Н          | H          |
| Н               | Н               | $CH_3CH_2CH_2S(O)_2$                  | Н          | H          |
| Н               | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                  | H          | Н          |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                  | Н          | Н          |
| Н               | Н               | PhS(O) <sub>2</sub>                   | Н          | H          |
| Н               | CH <sub>3</sub> | PhS(O) <sub>2</sub>                   | Н          | H          |
| $CH_3$          | CH <sub>3</sub> | PhS(O) <sub>2</sub>                   | Н          | Н          |
| Н               | Н               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | Н          | H          |
| Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | Н .        | Н          |
| $CH_3$          | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | H          | Н          |

| Н               | Н               | PhC(=O)                               | CH <sub>3</sub>                 | Н |
|-----------------|-----------------|---------------------------------------|---------------------------------|---|
| Н               | CH <sub>3</sub> | PhC(=O)                               | CH <sub>3</sub>                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)                               | CH <sub>3</sub>                 | Н |
| Н               | Н               | PhC(=O)CH <sub>2</sub>                | CH <sub>3</sub>                 | Н |
| Н               | CH <sub>3</sub> | PhC(=O)CH <sub>2</sub>                | CH <sub>3</sub>                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | $PhC(=O)CH_2$                         | CH <sub>3</sub>                 | Н |
| Н               | Н               | 4-CH <sub>3</sub> PhC(=O)             | CH <sub>3</sub>                 | Н |
| Н               | СН3             | 4-CH <sub>3</sub> PhC(=O)             | CH <sub>3</sub>                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> PhC(=O)             | CH <sub>3</sub>                 | Н |
| Н               | Н               | $CH_3S(O)_2$                          | CH <sub>3</sub>                 | Н |
| Н               | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>     | CH <sub>3</sub>                 | H |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3S(O)_2$                          | CH <sub>3</sub>                 | Н |
| Н               | H               | $CH_3CH_2S(O)_2$                      | CH <sub>3</sub>                 | Н |
| Н               | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                      | СН3                             | H |
| $CH_3$          | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                      | CH <sub>3</sub>                 | Н |
| Н               | Н               | $CH_3CH_2CH_2S(O)_2$                  | СН3                             | Н |
| Н               | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                  | CH <sub>3</sub>                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                  | CH <sub>3</sub>                 | Н |
| H               | Н               | PhS(O) <sub>2</sub>                   | CH <sub>3</sub>                 | Н |
| Н               | CH <sub>3</sub> | PhS(O) <sub>2</sub>                   | CH <sub>3</sub>                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | PhS(O) <sub>2</sub>                   | CH <sub>3</sub>                 | Н |
| H               | Н               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | CH <sub>3</sub>                 | Н |
| Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | CH <sub>3</sub>                 | H |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | CH <sub>3</sub>                 | Н |
| Н               | н               | PhC(=O)                               | CH <sub>3</sub> CH <sub>2</sub> | Н |
| Н               | CH <sub>3</sub> | PhC(=O)                               | CH <sub>3</sub> CH <sub>2</sub> | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)                               | CH <sub>3</sub> CH <sub>2</sub> | H |
| H               | Н               | PhC(=O)CH <sub>2</sub>                | CH <sub>3</sub> CH <sub>2</sub> | Н |
| Н               | CH <sub>3</sub> | PhC(=0)CH <sub>2</sub>                | CH <sub>3</sub> CH <sub>2</sub> | H |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)CH <sub>2</sub>                | CH <sub>3</sub> CH <sub>2</sub> | Н |
| Н               | H               | 4-CH <sub>3</sub> PhC(=O)             | $CH_3CH_2$                      | Н |
| Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhC(=O)             | CH <sub>3</sub> CH <sub>2</sub> | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> PhC(=O)             | CH <sub>3</sub> CH <sub>2</sub> | H |
| Н               | Н               | CH <sub>3</sub> S(O) <sub>2</sub>     | CH <sub>3</sub> CH <sub>2</sub> | Н |
| Н               | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>     | CH <sub>3</sub> CH <sub>2</sub> | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>     | CH <sub>3</sub> CH <sub>2</sub> | Н |
| Н               | Н               | $CH_3CH_2S(O)_2$                      | CH <sub>3</sub> CH <sub>2</sub> | Н |
| Н               | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                      | CH <sub>3</sub> CH <sub>2</sub> | H |

| $CH_3$          | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> S(O) <sub>2</sub>                 | CH <sub>3</sub> CH <sub>2</sub>                 | Н      |
|-----------------|-----------------|-------------------------------------------------------------------|-------------------------------------------------|--------|
| Н               | Н               | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub>                 | Н      |
| Н               | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | CH₃CH₂                                          | Н      |
| $CH_3$          | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub>                 | 1-1    |
| Н               | Н               | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub> CH <sub>2</sub> -               | Н      |
| Н               | CH <sub>3</sub> | $PhS(O)_2$                                                        | CH <sub>3</sub> CH <sub>2</sub>                 | Н      |
| CH <sub>3</sub> | CH <sub>3</sub> | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub> CH <sub>2</sub>                 | Н      |
| Н               | Н               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub>                 | Н      |
| Н               | $CH_3$          | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub>                 | Н      |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub>                 | Н      |
| Н               | Н               | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Η.     |
| Н               | CH <sub>3</sub> | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| $CH_3$          | CH <sub>3</sub> | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| H               | Н               | PhC(=O)CH <sub>2</sub>                                            | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | 11     |
| Н               | CH <sub>3</sub> | $PhC(=O)CH_2$                                                     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H      |
| $CH_3$          | CH <sub>3</sub> | PhC(=O)CH <sub>2</sub>                                            | $\mathrm{CH_3CH_2CH_2}$                         | H      |
| Н               | Н               | 4-CH <sub>3</sub> PhC(=O)                                         | СН <sub>3</sub> СН <sub>2</sub> СН <sub>2</sub> | Н      |
| Н               | CH <sub>3</sub> | $4-CH_3PhC(=O)$                                                   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| $CH_3$          | CH <sub>3</sub> | $4-CH_3PhC(=O)$                                                   | $\mathrm{CH_3CH_2CH_2}$                         | Н      |
| Н               | Н               | $CH_3S(O)_2$                                                      | CH₃CH₂CH₂                                       | Н      |
| H               | CH <sub>3</sub> | $CH_3S(O)_2$                                                      | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H      |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                                 | $CH_3CH_2CH_2$                                  | Н      |
| H               | Н               | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| Н               | $CH_3$          | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| $CH_3$          | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| Н               | Н               | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| Н               | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| CH <sub>3</sub> | $CH_3$          | $CH_{3}CH_{2}CH_{2}S(O)_{2}$                                      | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| Н               | Н               | $PhS(O)_2$                                                        | $CH_3CH_2CH_2$                                  | Н      |
| Н               | CH <sub>3</sub> | $PhS(O)_2$                                                        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| CH <sub>3</sub> | CH <sub>3</sub> | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| H               | Н               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| Н               | CH <sub>3</sub> | $4-CH_3PhS(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н      |
| $CH_3$          | CH <sub>3</sub> | $4-CH_3PhS(O)_2$                                                  | $CH_3CH_2CH_2$                                  | Н      |
| Н               | Н               | PhC(=O)                                                           | Н                                               | $CH_3$ |
| Н               | $CH_3$          | PhC(=O)                                                           | Н                                               | СН3    |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)                                                           | Н                                               | $CH_3$ |
| Н               | Н               | $PhC(=O)CH_2$                                                     | H                                               | $CH_3$ |

| Н               | СН3             | PhC(=O)CH <sub>2</sub>                            | H               | $CH_3$          |
|-----------------|-----------------|---------------------------------------------------|-----------------|-----------------|
| CH <sub>3</sub> | CH <sub>3</sub> | $PhC(=O)CH_2$                                     | Н               | $CH_3$          |
| H               | Н               | 4-CH <sub>3</sub> PhC(=O)                         | Н               | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhC(=O)                         | Н               | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> PhC(=O)                         | Н               | $CH_3$          |
| Н               | Н               | CH <sub>3</sub> S(O) <sub>2</sub>                 | Н               | $CH_3$          |
| Н               | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                 | Н               | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3S(O)_2$                                      | Н               | $CH_3$          |
| Н               | Н               | CH <sub>3</sub> CH <sub>2</sub> S(O) <sub>2</sub> | Н               | $CH_3$          |
| Н               | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                  | Н               | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                  | Н               | CH <sub>3</sub> |
| Н               | Н               | $CH_3CH_2CH_2S(O)_2$                              | Н               | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                              | Н               | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                              | H               | CH <sub>3</sub> |
| Н               | Н               | $PhS(O)_{\underline{0}}$                          | Н               | $CH_3$          |
| Н               | $CH_3$          | PhS(O) <sub>2</sub>                               | Н               | CH <sub>3</sub> |
| CH <sub>3</sub> | $CH_3$          | $PhS(O)_2$                                        | H               | CH <sub>3</sub> |
| Н               | Н               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>             | Н               | CH <sub>3</sub> |
| Н               | СН3             | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>             | Н               | $CH_3$          |
| $CH_3$          | $CH_3$          | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>             | H               | CH <sub>3</sub> |
| Н               | Н               | PhC(=O)                                           | CH <sub>3</sub> | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> | PhC(=O)                                           | CH <sub>3</sub> | CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub> | PhC(=O)                                           | $CH_3$          | $CH_3$          |
| H               | Н               | PhC(=O)CH <sub>2</sub>                            | CH <sub>3</sub> | CH <sub>3</sub> |
| H               | CH <sub>3</sub> | PhC(=O)CH <sub>2</sub>                            | CH <sub>3</sub> | CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub> | $PhC(=O)CH_2$                                     | CH <sub>3</sub> | $CH_3$          |
| Н               | Н               | $4-CH_3PhC(=O)$                                   | CH <sub>3</sub> | $CH_3$          |
| H               | CH <sub>3</sub> | $4-CH_3PhC(=O)$                                   | CH <sub>3</sub> | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | $4 \cdot CH_3PhC(=O)$                             | CH <sub>3</sub> | $CH_3$          |
| Н               | Н               | $CH_3S(O)_2$                                      | CH <sub>3</sub> | CH <sub>3</sub> |
| H               | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                 | CH <sub>3</sub> | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                 | CH <sub>3</sub> | $CH_3$          |
| Н               | Н               | $CH_3CH_2S(O)_2$                                  | CH <sub>3</sub> | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                  | CH <sub>3</sub> | $CH_3$          |
| $CH_3$          | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                  | CH <sub>3</sub> | CH <sub>3</sub> |
| Н               | Н               | $CH_3CH_2CH_2S(O)_2$                              | CH <sub>3</sub> | $CH_3$          |
| H               | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                              | CH <sub>3</sub> | $CH_3$          |
| $CH_3$          | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                              | CH <sub>3</sub> | $CH_3$          |
|                 | •               |                                                   |                 |                 |

| Н               | Н               | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub>                                 | CH <sub>3</sub> |
|-----------------|-----------------|-------------------------------------------------------------------|-------------------------------------------------|-----------------|
| Н               | CH <sub>3</sub> | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub> | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub>                                 | $CH_3$          |
| Н               | Н               | $4-CH_3PhS(O)_2$                                                  | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> | $4-CH_3PhS(O)_2$                                                  | CH <sub>3</sub>                                 | $CH_3$          |
| $CH_3$          | CH <sub>3</sub> | $4-CH_3PhS(O)_2$                                                  | $CH_3$                                          | $CH_3$          |
| Н               | Н               | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| H               | CH <sub>3</sub> | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub> | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| H               | Н               | PhC(=O)CH <sub>2</sub>                                            | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| H               | CH <sub>3</sub> | $PhC(=O)CH_2$                                                     | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub> | $PhC(=O)CH_2$                                                     | CH₃CH₂                                          | СН3             |
| H               | Н               | $4\text{-CH}_3\text{PhC}(=\text{O})$                              | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhC(=O)                                         | $CH_3CH_2$                                      | $CH_3$          |
| $CH_3$          | $CH_3$          | $4-CH_3PhC(=O)$                                                   | CH₃CH₂                                          | $CH_3$          |
| Н               | Н               | $CH_3S(O)_2$                                                      | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| H               | CH <sub>3</sub> | $CH_3S(O)_2$                                                      | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub> | $CH_3S(O)_2$                                                      | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Н               | Н               | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                                  | CH₃CH₂                                          | $\mathrm{CH}_3$ |
| $CH_3$          | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> S(O) <sub>2</sub>                 | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | $CH_3CH_2$                                      | $CH_3$          |
| Н               | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | Н               | $PhS(O)_2$                                                        | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | CH <sub>3</sub> | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | $PhS(O)_2$                                                        | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Н               | H               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | $CH_3CH_2$                                      | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | H               | PhC(=O)                                                           | $CH_3CH_2CH_2$                                  | $CH_3$          |
| Н               | CH <sub>3</sub> | PhC(=O)                                                           | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | H               | $PhC(=O)CH_2$                                                     | $CH_3CH_2CH_2$                                  | $CH_3$          |
| H .             | CH <sub>3</sub> | $PhC(=O)CH_2$                                                     | $CH_3CH_2CH_2$                                  | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | $PhC(=O)CH_2$                                                     | $CH_3CH_2CH_2$                                  | СН3             |
| H               | Н               | 4-CH <sub>3</sub> PhC(=O)                                         | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | CH <sub>3</sub> | $4-CH_3PhC(=O)$                                                   | $CH_3CH_2CH_2$                                  | $CH_3$          |
|                 |                 |                                                                   |                                                 |                 |

| CH <sub>3</sub> | CH <sub>3</sub> | $4\text{-CH}_3\text{PhC}(=0)$                                     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
|-----------------|-----------------|-------------------------------------------------------------------|-------------------------------------------------|-----------------|
| Н               | Н               | $CH_3S(O)_2$                                                      | $CH_3CH_2CH_2$                                  | $CH_3$          |
| Н               | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | $CH_3$          | CH <sub>3</sub> S(O) <sub>2</sub>                                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | Н               | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | $CH_3$          | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| $CH_3$          | $CH_3$          | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| Н               | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | Н               | $PhS(O)_2$                                                        | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> | PhS(O) <sub>2</sub>                                               | $\mathrm{CH_3CH_2CH_2}$                         | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | PhS(O) <sub>2</sub>                                               | $CH_3CH_2CH_2$                                  | $CH_3$          |
| H               | Н               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | $CH_3CH_2CH_2$                                  | $CH_3$          |
| Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | $CH_3CH_2CH_2$                                  | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | СН <sub>3</sub> СН <sub>2</sub> СН <sub>2</sub> | $CH_3$          |
| Н               | H               | PhC(=O)                                                           | н                                               | C1              |
| H               | CH <sub>3</sub> | PhC(=O)                                                           | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)                                                           | Н                                               | Cl              |
| Н               | Н               | $PhC(=O)CH_2$                                                     | Н                                               | Cl              |
| Н               | CH <sub>3</sub> | PhC(=O)CH <sub>2</sub>                                            | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | $PhC(=O)CH_2$                                                     | Н                                               | Cl              |
| Н               | Н               | $4 \cdot CH_3PhC(=O)$                                             | Н                                               | CI              |
| Н               | СН3             | $4-CH_3PhC(=O)$                                                   | Н                                               | Cl              |
| CH <sub>3</sub> | $CH_3$          | $+ CH_3PhC(=O)$                                                   | Н                                               | Cl              |
| Н               | Н               | CH <sub>3</sub> S(O) <sub>2</sub>                                 | Н                                               | CI              |
| Н               | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                                 | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                                 | Н                                               | Cl              |
| Н               | Н               | $CH_3CH_2S(O)_2$                                                  | Н                                               | Cl              |
| H               | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> S(O) <sub>2</sub>                 | Н                                               | Cł              |
| $CH_3$          | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                                  | Н                                               | Cl              |
| Н               | Н               | $CH_3CH_2CH_2S(O)_2$                                              | Н                                               | Cl              |
| Н               | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | Н                                               | Cl              |
| Н               | Н               | PhS(O) <sub>2</sub>                                               | Н                                               | Cl              |
| Н               | СН3             | PhS(O) <sub>2</sub>                                               | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | PhS(O) <sub>2</sub>                                               | Н                                               | C1              |
| Н               | Н               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | Н                                               | Cl              |
|                 |                 |                                                                   |                                                 |                 |

وأبران الأراب

| Н               | СН3             | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | H                               | Cl |
|-----------------|-----------------|-------------------------------------------------------------------|---------------------------------|----|
| CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | Н                               | CI |
| Н               | Н               | PhC(=O)                                                           | CH <sub>3</sub>                 | CI |
| Н               | CH <sub>3</sub> | PhC(=O)                                                           | CH <sub>3</sub>                 | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)                                                           | $CH_3$                          | Cl |
| Н               | Н               | PhC(=O)CH <sub>2</sub>                                            | CH <sub>3</sub>                 | CI |
| Н               | CH <sub>3</sub> | $PhC(=O)CH_2$                                                     | $CH_3$                          | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | $PhC(=O)CH_2$                                                     | CH <sub>3</sub>                 | C1 |
| Н               | H               | 4-CH <sub>3</sub> PhC(=O)                                         | CH <sub>3</sub>                 | Cl |
| H               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhC(=O)                                         | CH <sub>3</sub>                 | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> PhC(=O)                                         | CH <sub>3</sub>                 | Cl |
| H               | H               | CH <sub>3</sub> S(O) <sub>2</sub>                                 | CH <sub>3</sub>                 | Cl |
| Н               | $CH_3$          | $CH_3S(O)_2$                                                      | CH <sub>3</sub>                 | Cl |
| $CH_3$          | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                                 | CH <sub>3</sub>                 | C1 |
| H               | Н               | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub>                 | CI |
| Н               | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub>                 | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub>                 | Cl |
| Н               | H               | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub>                 | CI |
| Н               | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | CH <sub>3</sub>                 | CI |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | CH <sub>3</sub>                 | CI |
| Н               | H               | $PhS(O)_2$                                                        | CH <sub>3</sub>                 | Cl |
| H               | CH <sub>3</sub> | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub>                 | CI |
| СН3             | CH <sub>3</sub> | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub>                 | CI |
| H               | H               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub>                 | Cl |
| H               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub>                 | Cl |
| $CH_3$          | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub>                 | Cl |
| Н               | Н               | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub> | Cl |
| Н               | CH <sub>3</sub> | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub> | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub> | Cl |
| Н               | Н               | $PhC(=O)CH_2$                                                     | $CH_3CH_2$                      | Cl |
| Н               | CH <sub>3</sub> | $PhC(=O)CH_2$                                                     | CH₃CH₂                          | Cl |
| CH <sub>3</sub> | СН3             | PhC(=O)CH <sub>2</sub>                                            | CH <sub>3</sub> CH <sub>2</sub> | CI |
| Ή               | Н               | $4-CH_3PhC(=O)$                                                   | $CH_3CH_2$                      | Cl |
| Н               | CH <sub>3</sub> | $4-CH_3PhC(=O)$                                                   | $CH_3CH_2$                      | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | $4-CH_3PhC(=O)$                                                   | CH <sub>3</sub> CH <sub>2</sub> | CI |
| Н               | Н               | $CH_3S(O)_2$                                                      | CH <sub>3</sub> CH <sub>2</sub> | Čl |
| Н               | CH <sub>3</sub> | $CH_3S(O)_2$                                                      | CH <sub>3</sub> CH <sub>2</sub> | CI |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                                 | CH <sub>3</sub> CH <sub>2</sub> | CI |
|                 |                 |                                                                   |                                 |    |

| Н               | Н               | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub>                 | C!  |
|-----------------|-----------------|-------------------------------------------------------------------|-------------------------------------------------|-----|
| Н               | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> S(O) <sub>2</sub>                 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl  |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub>                 | Cl  |
| Н               | Н               | CH3CH2CH2S(O)2                                                    | CH <sub>3</sub> CH <sub>2</sub>                 | Cl  |
| Н               | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | $CH_3CH_2$                                      | Cl  |
| CH <sub>3</sub> | $CH_3$          | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | Cl  |
| Н               | Н               | $PhS(O)_2$                                                        | CH <sub>3</sub> CH <sub>2</sub>                 | Cl  |
| Н               | CH <sub>3</sub> | $PhS(O)_2$                                                        | CH <sub>3</sub> CH <sub>2</sub>                 | Cl  |
| CH <sub>3</sub> | $CH_3$          | $PhS(O)_2$                                                        | CH <sub>3</sub> CH <sub>2</sub>                 | Cl  |
| Н               | Н               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub>                 | Cl  |
| Н               | $CH_3$          | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub>                 | Cl  |
| CH <sub>3</sub> | CH <sub>3</sub> | $4-CH_3PhS(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub>                 | Cl  |
| Н               | Н               | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| Н               | CH <sub>3</sub> | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI  |
| CH <sub>3</sub> | CH <sub>3</sub> | PhC(=O)                                                           | $CH_3CH_2CH_2$                                  | C1  |
| Н               | Н               | $PhC(=O)CH_2$                                                     | $CH_3CH_2CH_2$                                  | Cl  |
| Н               | CH <sub>3</sub> | $PhC(=O)CH_2$                                                     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| $CH_3$          | CH <sub>3</sub> | PhC(=O)CH <sub>2</sub>                                            | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl. |
| Н               | Н               | $4-CH_3PhC(=O)$                                                   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI  |
| Н               | CH <sub>3</sub> | $4-CH_3PhC(=O)$                                                   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI  |
| CH <sub>3</sub> | $CH_3$          | $4-CH_3PhC(=O)$                                                   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| H               | H               | $CH_3S(O)_2$                                                      | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| Н               | CH <sub>3</sub> | $CH_3S(O)_2$                                                      | $CH_3CH_2CH_2$                                  | CI  |
| $CH_3$          | CH <sub>3</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| H               | Н               | CH <sub>3</sub> CH <sub>2</sub> S(O) <sub>2</sub>                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| Н               | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| Н               | Н               | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI  |
| Н               | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                                              | $CH_3CH_2CH_2$                                  | Cl  |
| $CH_3$          | CH <sub>3</sub> | $CH_3CH_2CH_2S(O)_2$                                              | $CH_3CH_2CH_2$                                  | Cl  |
| Н               | Н               | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| Н               | СН3             | $PhS(O)_2$                                                        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| CH <sub>3</sub> | CH <sub>3</sub> | $PhS(O)_2$                                                        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl  |
| Н               | Н               | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI  |
| Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI  |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI  |

| Ra              | <u>R</u> b                      | Rc                                    | R17                             | <u>R18</u>           |
|-----------------|---------------------------------|---------------------------------------|---------------------------------|----------------------|
| Н               | $CH_3CH_2$                      | PhC(=O)                               | Н                               | Н                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)                               | Н                               | Н                    |
| Н               | $CH_3CH_2$                      | 4-CH <sub>3</sub> PhC(=O)             | Н                               | Н                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $4-CH_3PhC(=O)$                       | Н                               | Н                    |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> S(O) <sub>2</sub>     | Н                               | Н                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3S(O)_2$                          | H                               | Н                    |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2S(O)_2$                      | H                               | H                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2S(O)_2$                      | Н                               | Н                    |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2CH_2S(O)_2$                  | Н                               | H                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2CH_2S(O)_2$                  | Н                               | Н                    |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | PhS(O) <sub>2</sub>                   | Н                               | Н                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhS(O) <sub>2</sub>                   | Н                               | Н                    |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | Н                               | Н                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | Н                               | H                    |
| Н               | $CH_3CH_2$                      | PhC(=O)                               | CH <sub>3</sub>                 | H                    |
| $CH_3$          | CH <sub>3</sub>                 | PhC(=O)                               | CH <sub>3</sub>                 | H                    |
| H               | $CH_3CH_2$                      | 4-CH <sub>3</sub> PhC(=O)             | CH <sub>3</sub>                 | Н                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $4-CH_3PhC(=O)$                       | CH <sub>3</sub>                 | H                    |
| Н               | $CH_3CH_2$                      | $CH_3S(O)_2$                          | CH <sub>3</sub>                 | Н                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> S(O) <sub>2</sub>     | CH <sub>3</sub>                 | Н                    |
| Н               | $CH_3CH_2$                      | $CH_3CH_2S(O)_2$                      | CH <sub>3</sub>                 | H                    |
| CH <sub>3</sub> | СН3                             | $CH_3CH_2S(O)_2$                      | CH <sub>3</sub>                 | Н                    |
| Н               | $CH_3CH_2$                      | $CH_3CH_2CH_2S(O)_2$                  | CH <sub>3</sub>                 | $\mathbf{H}_{\perp}$ |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2CH_2S(O)_2$                  | CH <sub>3</sub>                 | Н                    |
| H               | $CH_3CH_2$                      | $PhS(O)_2$                            | СН3.                            | Н                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $PhS(O)_2$                            | CH <sub>3</sub>                 | H                    |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | CH <sub>3</sub>                 | Н                    |
| CH <sub>3</sub> | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | CH <sub>3</sub>                 | Н                    |
| H               | CH <sub>3</sub> CH <sub>2</sub> | PhC(=O)                               | CH <sub>3</sub> CH <sub>2</sub> | H                    |

| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)                                                 | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
|-----------------|---------------------------------|---------------------------------------------------------|-------------------------------------------------|-----------------|
| Н               | CH <sub>3</sub> CH <sub>2</sub> | 4-CH3PhC(=O)                                            | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhC(=O)                               | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3S(O)_2$                                            | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3S(O)_2$                                            | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2S(O)_2$                                        | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| $CH_3$          | CH <sub>3</sub>                 | $CH_3CH_2S(O)_2$                                        | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2CH_2S(O)_2$                                    | CH <sub>3</sub> CH <sub>2</sub>                 | H               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2CH_2S(O)_2$                                    | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| Н               | $\mathrm{CH_3CH_2}$             | $PhS(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhS(O) <sub>2</sub>                                     | CH <sub>3</sub> CH <sub>2</sub>                 | H               |
| Н               | $\mathrm{CH_3CH_2}$             | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                   | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| $CH_3$          | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                   | $CH_3CH_2$                                      | Н               |
| Н               | $CH_3CH_2$                      | PhC(=O)                                                 | $CH_3CH_2CH_2$                                  | H               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)                                                 | $CH_3CH_2CH_2$                                  | Н               |
| H               | $CH_3CH_2$                      | $4-CH_3PhC(=O)$                                         | $CH_3CH_2CH_2$                                  | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $4-CH_3PhC(=O)$                                         | $CH_3CH_2CH_2$                                  | Н               |
| Н               | $CH_3CH_2$                      | $CH_3S(O)_2$                                            | $CH_3CH_2CH_2$                                  | Н               |
| $CH_3$          | CH <sub>3</sub>                 | CH <sub>3</sub> S(O) <sub>2</sub>                       | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| H               | $CH_3CH_2$                      | $CH_3CH_2S(O)_2$                                        | $CH_3CH_2CH_2$                                  | H               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2S(O)_2$                                        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| Н               | $CH_3CH_2$                      | $CH_3CH_2CH_2S(O)_2$                                    | $CH_3CH_2CH_2$                                  | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2CH_2S(O)_2$                                    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| H               | CH <sub>3</sub> CH <sub>2</sub> | PhS(O) <sub>2</sub>                                     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $PhS(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $4-CH_3PhS(O)_2$                                        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $4-CH_3PhS(O)_2$                                        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | PhC(=O)                                                 | Н                                               | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)                                                 | H                                               | $CH_3$          |
| Н               | $CH_3CH_2$                      | $4-CH_3PhC(=O)$                                         | H                                               | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhC(=O)                               | Н                                               | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> S(O) <sub>2</sub>                       | Н                                               | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3S(O)_2$                                            | Н                                               | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2S(O)_2$                                        | Н                                               | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2S(O)_2$                                        | Н                                               | CH <sub>3</sub> |
| Н               | $CH_3CH_2$                      | $CH_3CH_2CH_2S(O)_2$                                    | Н                                               | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $\text{CH}_3\text{CH}_2\text{CH}_2\text{S}(\text{O})_2$ | Н                                               | CH <sub>3</sub> |
| Н               | $CH_3CH_2$                      | $PhS(O)_2$                                              | Н                                               | CH <sub>3</sub> |
|                 |                                 |                                                         |                                                 |                 |

| CH <sub>3</sub> | CH <sub>3</sub>                 | $PhS(O)_{2}$                                                      | Н                                               | CH <sub>3</sub> |
|-----------------|---------------------------------|-------------------------------------------------------------------|-------------------------------------------------|-----------------|
| Н               | CH <sub>3</sub> CH <sub>2</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | Н                                               | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | Н                                               | CH <sub>3</sub> |
| H               | CH <sub>3</sub> CH <sub>2</sub> | PhC(=O)                                                           | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)                                                           | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | 4-CH <sub>3</sub> PhC(=O)                                         | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| CH <sub>3</sub> | СН3                             | 4-CH <sub>3</sub> PhC(=O)                                         | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Н               | CH₃CH₂                          | CH <sub>3</sub> S(O) <sub>2</sub>                                 | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3S(O)_2$                                                      | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub>                 | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| H               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| H               | CH <sub>3</sub> CH <sub>2</sub> | $PhS(O)_2$                                                        | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $PhS(O)_2$                                                        | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $4-CH_3PhS(O)_2$                                                  | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Н               | $CH_3CH_2$                      | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub>                 | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Н               | $CH_3CH_2$                      | $4-CH_3PhC(=O)$                                                   | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhC(=O)                                         | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3S(O)_2$                                                      | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3S(O)_2$                                                      | $CH_3CH_2$                                      | CH <sub>3</sub> |
| H               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Н               | $CH_3CH_2$                      | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $4-CH_3PhS(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $4-CH_3PhS(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)                                                           | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $4-CH_3PhC(=O)$                                                   | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $4-CH_3PhC(=O)$                                                   | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| Н               | CH₃CH₂                          | CH <sub>3</sub> S(O) <sub>2</sub>                                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3S(O)_2$                                                      | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| Н .             | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
|                 |                                 |                                                                   |                                                 |                 |

| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> CH <sub>2</sub> S(O) <sub>2</sub>                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
|-----------------|---------------------------------|-------------------------------------------------------------------|-------------------------------------------------|-----------------|
| Н               | CH₃CH₂                          | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S(O) <sub>2</sub> | $CH_3CH_2CH_2$                                  | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2CH_2S(O)_2$                                              | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $PhS(O)_2$                                                        | $CH_3CH_2CH_2$                                  | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $PhS(O)_2$                                                        | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| Н               | $CH_3CH_2$                      | $4-CH_3PhS(O)_2$                                                  | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $4-CH_3PhS(O)_2$                                                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| H               | CH <sub>3</sub> CH <sub>2</sub> | PhC(≈O)                                                           | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)                                                           | Н                                               | CI              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | 4-CH <sub>3</sub> PhC(=O)                                         | Н                                               | CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $4-CH_3PhC(=O)$                                                   | Н                                               | Cl              |
| Н               | $CH_3CH_2$                      | CH <sub>3</sub> S(O) <sub>2</sub>                                 | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> S(O) <sub>2</sub>                                 | Н                                               | Cl              |
| Н               | $CH_3CH_2$                      | $CH_3CH_2S(O)_2$                                                  | Н                                               | CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2S(O)_2$                                                  | Н                                               | Cl              |
| Н               | $CH_3CH_2$                      | $CH_3CH_2CH_2S(O)_2$                                              | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2CH_2S(O)_2$                                              | Н                                               | Cl              |
| Н               | $CH_3CH_2$                      | PhS(O) <sub>2</sub>                                               | Н                                               | Cl              |
| СН3             | CH <sub>3</sub>                 | $PhS(O)_2$                                                        | Н                                               | Cl              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhS(O) <sub>2</sub>                             | Н                                               | Cl              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | PhC(=O)                                                           | CH <sub>3</sub>                                 | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)                                                           | CH <sub>3</sub>                                 | CI              |
| Н               | $CH_3CH_2$                      | 4-CH <sub>3</sub> PhC(=O)                                         | CH <sub>3</sub>                                 | CI              |
| СИз             | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhC(=0)                                         | CH <sub>3</sub>                                 | C               |
| Н               | $CH_3CH_2$                      | CH <sub>3</sub> S(O) <sub>2</sub>                                 | CH <sub>3</sub>                                 | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3S(O)_2$                                                      | CH <sub>3</sub>                                 | CI              |
| Н               | $CH_3CH_2$                      | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub>                                 | CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2S(O)_2$                                                  | CH <sub>3</sub>                                 | Cl              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub>                                 | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2CH_2S(O)_2$                                              | CH <sub>3</sub>                                 | Cl              |
| Н               | $CH_3CH_2$                      | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub>                                 | C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhS(O) <sub>2</sub>                                               | CH <sub>3</sub>                                 | CI              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $4-CH_3PhS(O)_2$                                                  | CH <sub>3</sub>                                 | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $4-CH_3PhS(O)_2$                                                  | CH <sub>3</sub>                                 | Cl              |
| Н               | $CH_3CH_2$                      | PhC(=O)                                                           | $CH_3CH_2$                                      | CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)                                                           | CH <sub>3</sub> CH <sub>2</sub>                 | CI              |
| Н               | $CH_3CH_2$                      | $4-CH_3PhC(=O)$                                                   | CH <sub>3</sub> CH <sub>2</sub>                 | Cl              |
|                 |                                 |                                                                   |                                                 |                 |

· Culture College

| $CH_3$          | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhC(=O)             | CH <sub>3</sub> CH <sub>2</sub>                 | CI              |
|-----------------|---------------------------------|---------------------------------------|-------------------------------------------------|-----------------|
| Н               | $CH_3CH_2$                      | $CH_3S(O)_2$                          | $CH_3CH_2$                                      | Cl              |
| CH <sub>3</sub> | $CH_3$                          | CH <sub>3</sub> S(O) <sub>2</sub>     | CH₃CH₂                                          | Ci              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2S(O)_2$                      | CH <sub>3</sub> CH <sub>2</sub>                 | CI              |
| $CH_3$          | CH <sub>3</sub>                 | $CH_3CH_2S(O)_2$                      | CH <sub>3</sub> CH <sub>2</sub>                 | CI              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2CH_2S(O)_2$                  | CH₃CH₂                                          | · Cl            |
| $CH_3$          | CH <sub>3</sub>                 | $CH_3CH_2CH_2S(O)_2$                  | CH <sub>3</sub> CH <sub>2</sub>                 | Cl              |
| Н               | $CH_3CH_2$                      | $PhS(O)_2$                            | CH₃CH₂                                          | CI              |
| $CH_3$          | CH <sub>3</sub>                 | PhS(O) <sub>2</sub>                   | CH <sub>3</sub> CH <sub>2</sub>                 | CI              |
| H               | $CH_3CH_2$                      | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | Cl              |
| $CH_3$          | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhS(O) <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | Cl              |
| Н               | $CH_3CH_2$                      | PhC(=O)                               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl              |
| $CH_3$          | $CH_3$                          | PhC(=O)                               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | 4-CH <sub>3</sub> PhC(=O)             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl              |
| $CH_3$          | CH <sub>3</sub>                 | 4-CH <sub>3</sub> PhC(=O)             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI              |
| Н               | $CH_3CH_2$                      | $CH_3S(O)_2$                          | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> S(O) <sub>2</sub>     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI              |
| Н               | $CH_3CH_2$                      | $CH_3CH_2S(O)_2$                      | $CH_3CH_2CH_2$                                  | CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2S(O)_2$                      | $CH_3CH_2CH_2$                                  | CI              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3CH_2CH_2S(O)_2$                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3CH_2CH_2S(O)_2$                  | $CH_3CH_2CH_2$                                  | Cl              |
| H               | $\mathrm{CH_{3}CH_{2}}$         | $PhS(O)_2$                            | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl              |
| $CH_3$          | CH <sub>3</sub>                 | $PhS(O)_2$                            | $CH_3CH_2CH_2$                                  | Cl              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | $4\text{-CH}_3\text{PhS}(O)_2$        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl              |
| $CH_3$          | CH <sub>3</sub>                 | $4\text{-CH}_3\text{PhS}(O)_2$        | $CH_3CH_2CH_2$                                  | CI              |
| H               | $\mathrm{CH_{3}CH_{2}}$         | PhC(=O)CH <sub>2</sub>                | н                                               | Н               |
| $CH_3$          | CH <sub>3</sub>                 | PhC(=O)CH <sub>2</sub>                | Н                                               | Н               |
| Н               | $CH_3CH_2$                      | $PhC(=O)CH_2$                         | CH <sub>3</sub>                                 | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $PhC(=O)CH_2$                         | CH <sub>3</sub>                                 | Н               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $PhC(=O)CH_2$                         | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| $CH_3$          | CH <sub>3</sub>                 | PhC(=O)CH <sub>2</sub>                | $CH_3CH_2$                                      | Н               |
| H               | CH <sub>3</sub> CH <sub>2</sub> | $PhC(=O)CH_2$                         | $CH_3CH_2CH_2$                                  | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $PhC(=O)CH_2$                         | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| H               | $CH_3CH_2$                      | $PhC(=O)CH_2$                         | H                                               | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)CH <sub>2</sub>                | Н                                               | $CH_3$          |
| Н               | $CH_3CH_2$                      | PhC(=O)CH <sub>2</sub>                | CH <sub>3</sub>                                 | $CH_3$          |
| CH <sub>3</sub> | СН <sub>3</sub>                 | PhC(=O)CH <sub>2</sub>                | CH <sub>3</sub>                                 | $CH_3$          |
| Н               | $CH_3CH_2$                      | PhC(=O)CH <sub>2</sub>                | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |

| $CH_3$          | CH <sub>3</sub>                 | $PhC(=O)CH_2$          | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
|-----------------|---------------------------------|------------------------|-------------------------------------------------|-----------------|
| Н               | CH <sub>3</sub> CH <sub>2</sub> | PhC(=O)CH <sub>2</sub> | СН <sub>3</sub> СН <sub>2</sub> СН <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)CH <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | PhC(=0)CH <sub>2</sub> | Н                                               | CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)CH <sub>2</sub> | H                                               | CI              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $PhC(=O)CH_2$          | $CH_3$                                          | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)CH <sub>2</sub> | CH <sub>3</sub>                                 | - C1            |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | PhC(=O)CH <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)CH <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | CI              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | PhC(=O)CH <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | PhC(=O)CH <sub>2</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl              |

# Table 3 $R^{17}$ $R^{18}$ $R^{2}$ $R^{2}$ $R^{2}$

|                  |                 |                 |   | . ~                             | 11         |
|------------------|-----------------|-----------------|---|---------------------------------|------------|
| <u>R</u> 1       | $R^2$           |                 |   | <u>R 1.7</u>                    | <u>R18</u> |
| H                | Н               |                 |   | H                               | Ħ,         |
| CH <sub>3</sub>  | : H             |                 |   | H                               | H          |
| CH <sub>3</sub>  | CH <sub>3</sub> |                 |   | H                               | H          |
| CI               | Н               | 1.4             |   | H                               | - 11       |
| Cl               | CH <sub>3</sub> |                 |   | н                               | H          |
| Cl               | Cl              |                 |   | H                               | H          |
| Н                | H               |                 |   | CH <sub>3</sub>                 | H          |
| CH <sub>3</sub>  | Н               | ٠.              |   | CH <sub>3</sub>                 | H          |
| yCH <sub>3</sub> | CH <sub>3</sub> |                 |   | CH <sub>3</sub>                 | H          |
| Cl               | H               |                 |   | CH <sub>3</sub>                 | Н          |
| Cl               | CH <sub>3</sub> |                 |   | CH <sub>3</sub>                 | <b>H</b> . |
| Cl               | Cl              |                 | • | CH <sub>3</sub>                 | H          |
| H *              | Н               |                 |   | CH <sub>3</sub> CH <sub>2</sub> | Н          |
| CH <sub>3</sub>  | H               |                 |   | CH <sub>3</sub> CH <sub>2</sub> | H          |
| CH <sub>3</sub>  | CH <sub>3</sub> |                 |   | CH <sub>3</sub> CH <sub>2</sub> | H          |
| e C              | Н.              | See Sugar and a |   | CH <sub>3</sub> CH <sub>2</sub> | Н          |
| ČÍ,              | CH <sub>3</sub> |                 |   | CH <sub>3</sub> CH <sub>2</sub> | Н          |
|                  |                 |                 |   |                                 |            |

| Cl              | Cl              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
|-----------------|-----------------|-------------------------------------------------|-----------------|
| Н               | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | 11              |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| Cl              | H               | $CH_3CH_2CH_2$                                  | Н               |
| CI              | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| CI              | Cl              | $CH_3CH_2CH_2$                                  | Н               |
| Н .             | H               | Н                                               | $CH_3$          |
| CH <sub>3</sub> | H               | Н                                               | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Н                                               | CH <sub>3</sub> |
| CI              | H               | Н                                               | СН3             |
| CI              | CH <sub>3</sub> | Н                                               | CH <sub>3</sub> |
| CI              | Cl              | Н                                               | $CH_3$          |
| Н               | Н               | CH <sub>3</sub>                                 | $CH_3$          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub>                                 | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Cl              | H               | CH <sub>3</sub>                                 | $CH_3$          |
| Cl              | CH <sub>3</sub> | $CH_3$                                          | CH <sub>3</sub> |
| Cl              | Cl              | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| H               | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Cl              | H               | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Cl              | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Cl              | Cl              | $\mathrm{CH_3CH_2CH_2}$                         | CH <sub>3</sub> |
| H               | H               | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Cl              | H               | $CH_3CH_2CH_2$                                  | $CH_3$          |
| CI              | CH <sub>3</sub> | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| Cl              | CI              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | Н               | Н                                               | Cl              |
| CH <sub>3</sub> | Н               | Н                                               | CI              |
| CH <sub>3</sub> | CH <sub>3</sub> | Н                                               | C1              |
| Cl              | H               | Н                                               | Cl              |
| Cl              | CH <sub>3</sub> | Н                                               | Cl              |
| Cl              | Cl              | Н                                               | CI              |
| H               | Н               | CH <sub>3</sub>                                 | CI              |
| •               |                 |                                                 |                 |

| CH <sub>3</sub> | H               | CH <sub>3</sub>                                 | CI   |
|-----------------|-----------------|-------------------------------------------------|------|
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                                 | Cl . |
| Cl              | Н               | CH <sub>3</sub>                                 | CI   |
| Cl              | CH <sub>3</sub> | CH <sub>3</sub>                                 | Cl   |
| Cl              | Cl              | CH <sub>3</sub>                                 | Cl   |
| Н               | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | Cl   |
| СН3             | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | Cl   |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | CI   |
| Cl              | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | Cl   |
| Cl              | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | CI   |
| Cl              | Cl              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl   |
| Н               | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | C1   |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl   |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl   |
| Cl              | H               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl   |
| Cl              | CH <sub>3</sub> | $CH_3CH_2CH_2$                                  | Cl   |
| Cl              | Cl              | $CH_3CH_2CH_2$                                  | Cl   |

| RI              | $\mathbb{R}^2$  | <u>R17</u>      | <u>R18</u> |
|-----------------|-----------------|-----------------|------------|
| Н               | H               | Н               | Н          |
| CH <sub>3</sub> | Н               | Н               | H          |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Н          |
| Cl              | Н               | Н               | Н          |
| Cl              | CH <sub>3</sub> | Н               | Н          |
| Cl              | Cl              | H               | Н          |
| Н               | . H             | $CH_3$          | Н          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | H          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | H          |
| Cl              | Н               | CH <sub>3</sub> | Н          |

| CI              | CH <sub>3</sub> | CH <sub>3</sub>                                 | Н               |
|-----------------|-----------------|-------------------------------------------------|-----------------|
| Cl              | Cl              | CH <sub>3</sub>                                 | · H             |
| Н               | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| CI              | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
| CI              | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | H               |
| Cl              | Cl              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| Н               | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | }-{             |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| Cl              | H -             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| Cl              | CH <sub>3</sub> | $CH_3CH_2CH_2$                                  | H               |
| Cl              | CI              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| H               | Н               | H                                               | $CH_3$          |
| CH <sub>3</sub> | Н               | H                                               | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | H                                               | $CH_3$          |
| Cl              | Н               | Н                                               | $CH_3$          |
| Cl              | CH <sub>3</sub> | Н                                               | $\mathrm{CH}_3$ |
| Cl              | Cl              | Н                                               | $CH_{2}$        |
| Н               | Н               | CH <sub>3</sub>                                 | $CH_3$          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub>                                 | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                                 | $CH_3$          |
| Cl              | Н               | CH3                                             | $CH_3$          |
| Cl              | CH <sub>3</sub> | CH3                                             | $CH_3$          |
| Cl              | Cl              | CH <sub>3</sub>                                 | $CH_3$          |
| H               | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| CH <sub>3</sub> | Н               | CH₃CH₂                                          | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Cl              | H               | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Cl              | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Cl              | Cl              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| H               | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Cl              | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Cil             | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CI              | Cl              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |

| Н               | Н               | Н                                               | C1 |
|-----------------|-----------------|-------------------------------------------------|----|
| CH <sub>3</sub> | Н               | Н                                               | C1 |
| CH <sub>3</sub> | CH <sub>3</sub> | Н                                               | Cl |
| Cl              | Н               | Н                                               | Cl |
| CI              | CH <sub>3</sub> | H                                               | Cl |
| Cl              | Cl              | Н                                               | Cl |
| Н               | Н               | CH <sub>3</sub>                                 | Cl |
| CH <sub>3</sub> | Н               | СН3                                             | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                                 | Cl |
| Cl              | H               | CH <sub>3</sub>                                 | CI |
| Cl              | CH <sub>3</sub> | CH <sub>3</sub>                                 | Cl |
| Cl              | Cl              | CH <sub>3</sub>                                 | Cl |
| H               | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | C1 |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| Cl              | Н               | CH <sub>3</sub> CH <sub>2</sub>                 | CI |
| Cl              | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| Cl              | Cl              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI |
| Н               | H               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| Cl              | Н               | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| Cl              | CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| C1              | Cl              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |

Table 5

$$R^{17}$$
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 

| Rii             | $R^{b}$ | <u>R l</u>      | <u>R<sup>2</sup></u> | ūĵ | <u>R17</u> | <u>R18</u> |
|-----------------|---------|-----------------|----------------------|----|------------|------------|
| Н               | Н       | Н               | Н                    | 1  | Н          | Н          |
| СН3             | Н       | Н               | Н                    | 1  | Н          | H          |
| CH <sub>3</sub> | $CH_3$  | Н               | H                    | 1  | Н          | Н          |
| Н               | Н       | CH <sub>3</sub> | Н                    | 1  | H          | Н          |

| $CH_3$          | Н               | СН3             | Н               | ì  | Н               | Н  |
|-----------------|-----------------|-----------------|-----------------|----|-----------------|----|
| $CH_3$          | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 1  | Н               | Н  |
| Н               | Н               | CI              | Н               | 1  | Н               | Н  |
| $CH_3$          | H               | CI              | Н               | 1  | Н               | Н  |
| $CH_3$          | CH <sub>3</sub> | Cl              | Н               | ì  | Н               | H  |
| Н               | Н               | H               | $CH_3$          | 1  | Н               | Н  |
| CH <sub>3</sub> | H               | Н               | $CH_3$          | 1  | Н               | H  |
| $CH_3$          | $CH_3$          | Н               | $CH_3$          | 1  | Н               | Н  |
| Н               | Н               | $CH_3$          | $CH_3$          | 1  | Н               | H  |
| $CH_3$          | Н               | $CH_3$          | $CH_3$          | 1  | Н               | Н  |
| $CH_3$          | $CH_3$          | $CH_3$          | $CH_3$          | 1  | Н               | Н  |
| H               | Н               | Cl              | CH <sub>3</sub> | 1  | Н               | Н  |
| $CH_3$          | H               | Cl              | $CH_3$          | 1  | Н               | Н  |
| $CH_3$          | $CH_3$          | CI              | $CH_3$          | ŀ  | Н               | 11 |
| H               | Н               | Н               | CI              | ì  | Н               | Н  |
| $CH_3$          | Н               | H               | Cl              | !  | Н               | Н  |
| $CH_3$          | $CH_3$          | Н               | Cl              | 1  | Н               | Н  |
| Н               | Н               | $CH_3$          | Cl              | J  | Н               | Н  |
| $CH_3$          | Н               | $CH_3$          | Cl              | 1  | Н               | Н  |
| $CH_3$          | $CH_3$          | $CH_3$          | Cl              | 1  | Н               | Н  |
| Н               | Н               | Cl              | CI              | 1  | Н               | H  |
| CH <sub>3</sub> | Н               | CI              | Cl              | 1  | Н               | Н  |
| CH <sub>3</sub> | $CH_3$          | Cl              | Cl              | 1  | Н               | Н  |
| Н               | Н               | Н               | H               | I  | $CH_3$          | Н  |
| $CH_3$          | H               | H               | Н               | 1  | CH <sub>3</sub> | Н  |
| CH <sub>3</sub> | $CH_3$          | H               | H               | 1  | $CH_3$          | Н  |
| Н               | H               | $CH_3$          | Н               | ]  | $CH_3$          | Н  |
| CH <sub>3</sub> | Н               | $CH_3$          | H               | 1  | $CH_3$          | H  |
| CH <sub>3</sub> | $CH_3$          | $CH_3$          | Н               | į. | $CH_3$          | Н  |
| Н               | Н               | CI              | Н               | 1  | $CH_3$          | Н  |
| CH <sub>3</sub> | Н               | Cl              | Н               | 1  | $CH_3$          | Н  |
| CH <sub>3</sub> | CH <sub>3</sub> | CI              | Н               | i  | CH <sub>3</sub> | Н  |
| Н               | Н               | Н               | $CH_3$          | 1  | $CH_3$          | Н  |
| CH <sub>3</sub> | Н               | Н               | $CH_3$          | ì  | CH <sub>3</sub> | Н  |
| CH <sub>3</sub> | $CH_3$          | Н               | $CH_3$          | 1  | $CH_3$          | Н  |
| Н               | Н               | CH <sub>3</sub> | $CH_3$          | 1  | $CH_3$          | Н  |
| СН3             | H               | CH <sub>3</sub> | $CH_3$          | :  | $CH_3$          | Н  |
| CH <sub>3</sub> | $CH_3$          | $CH_3$          | CH <sub>3</sub> | 1  | $CH_3$          | Н  |
|                 |                 |                 |                 |    |                 |    |

| Н               | Н               | Cl              | CH <sub>3</sub> | 1 | CH <sub>3</sub>                 | Н   |
|-----------------|-----------------|-----------------|-----------------|---|---------------------------------|-----|
| CH <sub>3</sub> | Н               | Cl              | CH <sub>3</sub> | ł | CH <sub>3</sub>                 | Н   |
| $CH_3$          | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | ì | CH <sub>3</sub>                 | Н   |
| Н               | Н               | Н               | Cl              | 1 | CH <sub>3</sub>                 | H   |
| $CH_3$          | Н               | Н               | Cl              | 1 | CH <sub>3</sub>                 | Н   |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Cl              | ł | CH <sub>3</sub>                 | Н   |
| Н               | Н               | $CH_3$          | Cl              | 1 | CH <sub>3</sub>                 | Н   |
| $CH_3$          | Н               | $CH_3$          | CI              | ı | CH <sub>3</sub>                 | Н   |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3$          | Cl              | i | $CH_3$                          | Н   |
| Н               | Н               | Cl              | Cl              | l | CH <sub>3</sub>                 | Н   |
| $CH_3$          | Н               | C1              | Cl              | l | CH <sub>3</sub>                 | Н   |
| $CH_3$          | CH <sub>3</sub> | Cl              | Cl              | ì | $CH_3$                          | Н   |
| Н               | H               | Н               | H               | 1 | CH <sub>3</sub> CH <sub>2</sub> | I-J |
| CH <sub>3</sub> | Н               | Н               | H               | 1 | CH <sub>3</sub> CH <sub>2</sub> | Н   |
| $CH_3$          | $CH_3$          | H               | H               | I | CH <sub>3</sub> CH <sub>2</sub> | Н   |
| Н               | Н               | CH <sub>3</sub> | Н               | 1 | $CH_3CH_2$                      | Н   |
| CH <sub>3</sub> | Н               | $CH_3$          | Η.              | 1 | CH <sub>3</sub> CH <sub>2</sub> | Н   |
| CH <sub>3</sub> | $CH_3$          | $CH_3$          | Н               | 1 | $CH_3CH_2$                      | Н   |
| Н               | Н               | Cl              | H               | 1 | $\mathrm{CH_3CH_2}$             | Н   |
| CH <sub>3</sub> | Н               | Cl              | Н               | 1 | $CH_3CH_2$                      | Н   |
| $CH_3$          | CH <sub>3</sub> | Cl              | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> | Н   |
| Н               | Н               | Н               | $CH_3$          | l | $CH_3CH_2$                      | Н   |
| CH <sub>3</sub> | Н               | H               | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub> | Н   |
| $CH_3$          | $CH_3$          | Н               | $CH_3$          | 1 | $CH_3CH_2$                      | I-I |
| H               | Н               | $CH_3$          | $CH_3$          | I | $CH_3CH_2$                      | Н   |
| CH <sub>3</sub> | Н               | $CH_3$          | CH <sub>3</sub> | ł | CH <sub>3</sub> CH <sub>2</sub> | Н   |
| CH <sub>3</sub> | $CH_3$          | $CH_3$          | $CH_3$          | 1 | $CH_3CH_2$                      | H   |
| Н               | Н               | Cl              | $CH_3$          | Į | $CH_3CH_2$                      | Н   |
| $CH_3$          | Н               | Cl              | $CH_3$          | 1 | $CH_3CH_2$                      | Н   |
| $CH_3$          | $CH_3$          | Cl              | $CH_3$          | 1 | $CH_3CH_2$                      | Н   |
| H               | Н               | Н               | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub> | Н   |
| CH <sub>3</sub> | Н               | Н               | Cl              | 1 | $CH_3CH_2$                      | Н   |
| $CH_3$          | CH <sub>3</sub> | Н               | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub> | H   |
| Н               | Н               | CH <sub>3</sub> | Cl              | ı | CH <sub>3</sub> CH <sub>2</sub> | Н   |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | Cl              | l | $CH_3CH_2$                      | FН  |
| CH <sub>3</sub> | CH <sub>3</sub> | СН3             | CI              | 1 | $CH_3CH_2$                      | Н   |
| Н               | Н               | Cl              | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub> | H   |
| CH <sub>3</sub> | H               | Cl              | Cl              | l | CH <sub>3</sub> CH <sub>2</sub> | FI  |

| $CH_3$          | $CH_3$          | Cl              | Cl              | !  | CH <sub>3</sub> CH <sub>2</sub>                 | Н               |
|-----------------|-----------------|-----------------|-----------------|----|-------------------------------------------------|-----------------|
| Н               | Н               | Н               | H               | ı  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| $CH_3$          | Н               | Н               | Н               | 1  | $CH_3CH_2CH_2$                                  | Н               |
| СН3             | $CH_3$          | Н               | Н               | 1  | $CH_3CH_2CH_2$                                  | Н               |
| Н               | Н               | CH <sub>3</sub> | Н               | 1  | $CH_3CH_2CH_2$                                  | Н               |
| СН3             | Н               | $CH_3$          | Н               | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| Н               | Н               | Cl              | Н               | }  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| CH <sub>3</sub> | Н               | Cl              | Н               | 1  | СН <sub>3</sub> СН <sub>2</sub> СН <sub>2</sub> | Н               |
| CH <sub>3</sub> | $CH_3$          | Cl              | H               | 1  | СН <sub>3</sub> СН <sub>2</sub> СН <sub>2</sub> | Н               |
| Н               | Н               | Н               | $CH_3$          | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| CH <sub>3</sub> | Н               | Н               | $CH_3$          | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| $CH_3$          | $CH_3$          | Н               | $CH_3$          | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| Н               | Н               | $CH_3$          | $CH_3$          | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| $CH_3$          | Н               | $CH_3$          | $CH_3$          | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| $CH_3$          | $CH_3$          | $CH_3$          | $CH_3$          | l  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | 11              |
| H               | H               | Cl              | $CH_3$          | 1  | $CH_3CH_2CH_2$                                  | Ħ               |
| СН3             | Н               | Cl              | $CH_3$          | 1  | $CH_3CH_2CH_2$                                  | Н               |
| СН3             | $CH_3$          | Cl              | $CH_3$          | 1  | $CH_3CH_2CH_2$                                  | Н               |
| H               | H               | Н               | Cl              | }  | $CH_3CH_2CH_2$                                  | Н               |
| CH <sub>3</sub> | Н               | Н               | CI              | 1  | $CH_3CH_2CH_2$                                  | Н               |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | CI              | i  | $CH_3CH_2CH_2$                                  | Н               |
| Н               | Н               | СН3             | CI              | 1  | $CH_3CH_2CH_2$                                  | Н               |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | Cl              | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| CH <sub>3</sub> | $CH_3$          | CH <sub>3</sub> | CI              | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| Н               | Н               | Cl              | CI              | 1  | $CH_3CH_2CH_2$                                  | H               |
| CH <sub>3</sub> | Н               | Cl              | Cl              | i  | $CH_3CH_2CH_2$                                  | Н               |
| CH <sub>3</sub> | $CH_3$          | CI              | CI              | l  | $CH_3CH_2CH_2$                                  | Н               |
| Ħ               | Н               | H               | Н               | l  | Н                                               | $CH_3$          |
| CH <sub>3</sub> | Н               | Н               | Н               | 1  | H                                               | $CH_3$          |
| $CH_3$          | CH <sub>3</sub> | H.              | Н               | 1. | Н                                               | $CH_3$          |
| H               | Н               | CH <sub>3</sub> | Н               | I  | Н                                               | $CH_3$          |
| CH <sub>3</sub> | H               | $CH_3$          | Н               | i  | Н                                               | $CH_3$          |
| $CH_3$          | $CH_3$          | $CH_3$          | Н               | I  | Н                                               | $CH_3$          |
| Н               | Н               | CI              | Н               | l  | H                                               | $CH_3$          |
| CH <sub>3</sub> | Н               | Cl              | Н               | l  | Н                                               | СНЗ             |
| CH <sub>3</sub> | $CH_3$          | Cl              | Н               | l  | Н                                               | CH <sub>3</sub> |
| Н               | H               | Н               | CH <sub>3</sub> | l  | Н                                               | $CH_3$          |

| CH <sub>3</sub> | Н               | H      | $CH_3$          | i | Н               | СН <sub>З</sub> |
|-----------------|-----------------|--------|-----------------|---|-----------------|-----------------|
| $CH_3$          | $CH_3$          | Н      | $CH_3$          | 1 | Н               | CH <sub>3</sub> |
| H               | Н               | $CH_3$ | $CH_3$          | 1 | Н               | CH <sub>3</sub> |
| $CH_3$          | Н               | $CH_3$ | $CH_3$          | 1 | Н               | $CH_3$          |
| $CH_3$          | CH <sub>3</sub> | $CH_3$ | $CH_3$          | 1 | Н               | $CH_3$          |
| Н               | Н               | Cl     | $CH_3$          | l | Н               | CH <sub>3</sub> |
| $CH_3$          | Н               | Cl     | $CH_3$          | ł | Н               | CH <sub>3</sub> |
| $CH_3$          | $CH_3$          | Cl     | CH <sub>3</sub> | ı | Н               | $CH_3$          |
| Н               | H               | H      | C1              | l | Н               | $CH_3$          |
| $CH_3$          | Н               | Н      | Cl              | 1 | Н               | $CH_3$          |
| $CH_3$          | $CH_3$          | Н      | Cl              | 1 | Н               | CH <sub>3</sub> |
| Н               | Н               | $CH_3$ | Cl              | ı | H               | $\mathrm{CH}_3$ |
| $CH_3$          | H               | $CH_3$ | Cl              | 1 | Н               | $CH_3$          |
| CH <sub>3</sub> | $CH_3$          | $CH_3$ | Cl              | 1 | Н               | $CH_3$          |
| H               | H               | Cl     | CI              | 1 | Н               | $CH_3$          |
| $CH_3$          | Н               | Cl     | Cl              | 1 | Н               | $CH_3$          |
| $CH_3$          | $CH_3$          | Cl     | Cl              | 1 | Н               | $CH_3$          |
| Н               | Н               | Н      | Н               | 1 | CH <sub>3</sub> | $CH_3$          |
| $CH_3$          | H               | Н      | H-              | ì | $CH_3$          | CH <sub>3</sub> |
| $CH_3$          | $CH_3$          | Н      | H               | 1 | $CH_3$          | CH <sub>3</sub> |
| Н               | Н               | $CH_3$ | Н               | 1 | $CH_3$          | CH <sub>3</sub> |
| $CH_3$          | H               | $CH_3$ | Н               | 1 | $CH_3$          | CH <sub>3</sub> |
| $CH_3$          | $CH_3$          | $CH_3$ | Н               | 1 | $CH_3$          | $CH_3$          |
| Н               | Н               | Cl     | Н               | 1 | $CH_3$          | CH <sub>3</sub> |
| $CH_3$          | Н               | Cl     | H               | 1 | $CH_3$          | CH <sub>3</sub> |
| $CH_3$          | $CH_3$          | Cl     | Н               | l | $CH_3$          | $CH_3$          |
| H               | Н               | Н      | $CH_3$          | 1 | $CH_3$          | CH <sub>3</sub> |
| $CH_3$          | Н               | Н      | $CH_3$          | l | $CH_3$          | CH <sub>3</sub> |
| $CH_3$          | $CH_3$          | Н      | CH <sub>3</sub> | l | $CH_3$          | CH <sub>3</sub> |
| Н               | Н               | $CH_3$ | $CH_3$          | l | $CH_3$          | CH <sub>3</sub> |
| $CH_3$          | Н               | $CH_3$ | $CH_3$          | l | $CH_3$          | CH <sub>3</sub> |
| $CH_3$          | $CH_3$          | $CH_3$ | $CH_3$          | 1 | $CH_3$          | CH <sub>3</sub> |
| Н               | Н               | Cl     | $CH_3$          | 1 | $CH_{3}$        | CH <sub>3</sub> |
| СН3             | H               | Cl     | $CH_3$          | J | $CH_3$          | CH <sub>3</sub> |
| $CH_3$          | $CH_3$          | CI     | $CH_3$          | l | $CH_3$          | CH <sub>3</sub> |
| H               | Н               | Н      | CI              | 1 | $CH_3$          | CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | н .    | Cl              | ī | $CH_3$          | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Н      | Cl              | 1 | $CH_3$          | CH <sub>3</sub> |
|                 |                 |        |                 |   |                 |                 |

| Н               | Н               | $CH_3$          | CI              | ì   | CH <sub>3</sub>                                 | $CH_3$          |
|-----------------|-----------------|-----------------|-----------------|-----|-------------------------------------------------|-----------------|
| $CH_3$          | Н               | CH <sub>3</sub> | Cl              | 1   | CH <sub>3</sub>                                 | $CH_3$          |
| CH <sub>3</sub> | $CH_3$          | $CH_3$          | Cl              | 1   | CH <sub>3</sub>                                 | $CH_3$          |
| Н               | Н               | Cl              | Cl              | 1   | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| $CH_3$          | Н               | CI              | Cl              | 1   | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| $CH_3$          | $CH_3$          | Cl              | Cl              | ì   | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| H               | Н               | Н               | Н               | i   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| CH <sub>3</sub> | H               | H               | Н               | }   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| $CH_3$          | CH <sub>3</sub> | Н               | Н               | ļ   | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Н               | Н               | CH <sub>3</sub> | Н               | l   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| $CH_3$          | Н               | CH <sub>3</sub> | Н               | 1   | CH <sub>3</sub> CH <sub>2</sub>                 | СН3             |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н               | l   | $CH_3CH_2$                                      | СН3             |
| Н               | Н               | Cl              | H               | }   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| $CH_3$          | Н               | Cl              | Ħ               | i   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| $CH_3$          | CH <sub>3</sub> | Cl              | Н               | ł   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | Н               | Н               | $CH_3$          | ì   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| CH <sub>3</sub> | Н               | Н               | $CH_3$          | ì   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | $CH_3$          | ţ   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | Н               | CH <sub>3</sub> | $CH_3$          | l   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | CH <sub>3</sub> | }   | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub> | CH <sub>3</sub> | $CH_3$          | ì   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | Н               | Cl              | CH <sub>3</sub> | I   | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Cl              | CH <sub>3</sub> | l   | CH <sub>3</sub> CH <sub>2</sub>                 | СН3             |
| CH <sub>3</sub> | $CH_3$          | Cl              | CH <sub>3</sub> | l   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | Н               | Н               | Cl .            | l   | СИ <sub>3</sub> СН <sub>2</sub>                 | $CH_3$          |
| CH <sub>3</sub> | Н               | H               | Cl              | l   | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| $CH_3$          | $CH_3$          | Н               | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н               | Н               | CH <sub>3</sub> | CI              | l   | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | H               | CH <sub>3</sub> | Cl              | l   | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub> |
| Н               | Н               | CI              | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| ČH <sub>3</sub> | Н               | CI              | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| CH <sub>3</sub> | $CH_3$          | CI              | CI              | l   | CH <sub>3</sub> CH <sub>2</sub>                 | СН3             |
| Н               | Н               | Н               | Н               | 1 . | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | Н               | Н               | Н               | l   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| СН3             | $CH_3$          | Н               | Н               | l   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | СН3             |
| Н               | Н               | СН3             | Н               | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | СН3             |
| $CH_3$          | Н               | CH <sub>3</sub> | Н               | l   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |

| $CH_3$          | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
|-----------------|-----------------|-----------------|-----------------|-----|-------------------------------------------------|-----------------|
| H               | Н               | Cl              | Н               | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | Н               | Cl              | Н               | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | 1-1             | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| H               | Н               | Н               | СН3             | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | Н               | Н               | CH <sub>3</sub> | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| СН3             | $CH_3$          | H               | CH <sub>3</sub> | 1   | $CH_3C\dot{H}_2CH_2$                            | CH <sub>3</sub> |
| Н               | Н               | CH <sub>3</sub> | CH <sub>3</sub> | ì   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | СН3             | СН3             | 1-  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| Н               | Н               | Cl              | СН3             | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Cl              | CH <sub>3</sub> | i   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | СН3             | -1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | Н               | H               | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | H               | CI              | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | , Cl            | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| Н               | Н               | CH <sub>3</sub> | ·Cl             | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | Η .             | $CH_3$          | C1              | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| Н               | Н               | Cl              | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | СН3             |
| CH <sub>3</sub> | H               | Cl              | Cl              | L   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | СНз             | Cl              | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| Н               | H               | H               | Н               | 1   | Н                                               | Cl              |
| CH <sub>3</sub> | Н               | Н               | Н               | ].  | Н                                               | Cļ              |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | H               | 9   | H                                               | Cl              |
| Н               | Н               | CH <sub>3</sub> | H               | 1   | $H_{\downarrow}$                                | CI              |
| CH3             | Н               | CH <sub>3</sub> | Н               | 1   | Н                                               | C1 -            |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | H               | 1   | H                                               | Cl              |
| Ĥ               | Н               | Cl              | Н               | 1   | Н                                               | Cl              |
| CH <sub>3</sub> | H               | . CI            | Н               | · 1 | Н                                               | Cl ·            |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | H               | 1 _ | H                                               | Cl              |
| Н               | Н               | Н               | CH <sub>3</sub> | l   | Н                                               | CI              |
| CH <sub>3</sub> | Η .             | Н               | CH <sub>3</sub> | 1   | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | $CH_3$          | 1   | Н                                               | Cl              |
| Н               |                 |                 | CH <sub>3</sub> |     | H                                               | Cl              |
| CH <sub>3</sub> |                 |                 | CH <sub>3</sub> |     | Н                                               | Cl              |
|                 |                 | -               | CH <sub>3</sub> |     | H <sub>j</sub> -                                | CI              |
|                 |                 |                 |                 |     | a self a communication of                       | ™ Cl            |
|                 |                 |                 | ×               |     |                                                 |                 |

| CH <sub>3</sub> | Н               | CI              | CH <sub>3</sub> | 1 | Н                | CI   |
|-----------------|-----------------|-----------------|-----------------|---|------------------|------|
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | $CH_3$          | i | Н                | CI   |
| Н               | Н               | Н               | CI              | 1 | Н                | Cl   |
| СН3             | Н               | Н               | CI              | 1 | Н                | Cl   |
| СН3             | $CH_3$          | Н               | Cl              | 1 | Н                | CI   |
| H               | Н               | $CH_3$          | CI              | 1 | Н                | Cl   |
| СН3             | H               | $CH_3$          | Cl              | 1 | Н                | Cl   |
| CH <sub>3</sub> | $CH_3$          | CH <sub>3</sub> | Cl              | 1 | Н                | Cl   |
| H               | Н               | Cl              | CI              | 1 | Н                | Cl   |
| CH <sub>3</sub> | Н               | Cl              | Cl              | ì | Н                | Cl   |
| СН3             | CH <sub>3</sub> | CI              | CI              | 1 | Н                | Cl   |
| Н               | H               | Н               | Н               | 1 | $CH_3$           | Cl   |
| CH <sub>3</sub> | Н               | Н               | Ħ               | 1 | CH <sub>3</sub>  | CI   |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Н               | 1 | $CH_3$           | CI   |
| Н               | Н               | CH <sub>3</sub> | Н               | 1 | $CH_3$           | CI   |
| СН3             | Н               | CH <sub>3</sub> | Н               | 1 | CH <sub>3</sub>  | CI   |
| CH <sub>3</sub> | $CH_3$          | $CH_3$          | Н               | 1 | $CH_3$           | Cl   |
| Н               | Н               | Cl              | H               | l | $CH_3$           | CI   |
| CH <sub>3</sub> | Н               | Cl              | Н               | 1 | $CH_3$           | CI   |
| CH <sub>3</sub> | $CH_3$          | Cl              | Н               | l | CH <sub>3</sub>  | Cl   |
| Н               | Н               | Н               | CH <sub>3</sub> | 1 | $CH_3$           | Ci   |
| CH <sub>3</sub> | Н               | H               | $CH_3$          | 1 | $CH_3$           | Cl   |
| CH <sub>3</sub> | $CH_3$          | Н               | CH <sub>3</sub> | 1 | $CH_3$           | CI   |
| Н               | Н               | СНЗ             | $CH_3$          | j | $CH_3$           | Cl   |
| CH <sub>3</sub> | Н               | $CH_3$          | CH <sub>3</sub> | 1 | CH <sub>3</sub>  | Cl   |
| CH <sub>3</sub> | $CH_3$          | $CH_3$          | $CH_3$          | 1 | $CH_3$           | Cl   |
| Н               | Н               | Cl              | $CH_3$          | 1 | CH <sub>3</sub>  | Cl   |
| CH <sub>3</sub> | Н               | Cl              | CH <sub>3</sub> | I | CH <sub>3</sub>  | CI   |
| CH <sub>3</sub> | $CH_3$          | Cl              | $CH_3$          | l | CH <sub>3</sub>  | Cl   |
| Н               | Н               | Н               | CI              | į | .CH <sub>3</sub> | Ct   |
| СН3             | Н               | Н               | CI              | ŧ | CH <sub>3</sub>  | CI   |
| СН3             | CH <sub>3</sub> | Н               | Cl              | l | $CH_3$           | CI   |
| Н               | Н               | CH <sub>3</sub> | Cl              | 1 | CH <sub>3</sub>  | Cl   |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | Cl              | ı | CH <sub>3</sub>  | Cl   |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | 1 | CH <sub>3</sub>  | Cl   |
| H               | Н               | CI              | CI              | l | CH <sub>3</sub>  | · Cl |
| СН3             | Н               | Cl              | Cl              | ŀ | $CH_3$           | Cl   |
| CH <sub>3</sub> | CH <sub>3</sub> | CI              | Cl              | 1 | CH <sub>3</sub>  | Cl   |
|                 |                 |                 |                 |   |                  |      |

| Н               | Н               | Н               | H               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
|-----------------|-----------------|-----------------|-----------------|---|-------------------------------------------------|----|
| CH <sub>3</sub> | Н               | H               | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | H               | Н               | ŀ | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| H               | Н               | $CH_3$          | Н               | I | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| $CH_3$          | H               | $CH_3$          | Н               | I | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | $CH_3$          | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| Н               | Н               | Cl              | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| CH <sub>3</sub> | Н               | Cl              | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | CI |
| H               | Н               | Н               | $CH_3$          | l | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| $CH_3$          | Н               | Н               | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| $CH_3$          | CH <sub>3</sub> | Н               | CH <sub>3</sub> | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | CI |
| H               | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | CI |
| $CH_3$          | Н               | $CH_3$          | $CH_3$          | l | CH <sub>3</sub> CH <sub>2</sub>                 | CI |
| $CH_3$          | $CH_3$          | $CH_3$          | CH <sub>3</sub> | ŧ | $CH_3CH_2$                                      | Cl |
| Н               | Н               | Cl              | CH <sub>3</sub> | 1 | $CH_3CH_2$                                      | CI |
| CH <sub>3</sub> | Н               | Cl              | $CH_3$          | 1 | $CH_3CH_2$                                      | Cl |
| CH <sub>3</sub> | $CH_3$          | Cl              | $CH_3$          | i | $CH_3CH_2$                                      | Cl |
| Н               | H               | Н               | Cl              | 1 | $CH_3CH_2$                                      | Cl |
| $CH_3$          | H               | Н               | CI              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| $CH_3$          | $CH_3$          | Н               | CI              | 1 | $CH_3CH_2$                                      | CI |
| H               | Н               | $CH_3$          | Cl              | 1 | $CH_3CH_2$                                      | Cl |
| $CH_3$          | Н               | $\mathrm{CH}_3$ | CI              | I | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| $CH_3$          | $CH_3$          | $CH_3$          | Cl              | l | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| Н               | Н               | C1              | Cl              | ì | CH <sub>3</sub> CH <sub>2</sub>                 | CI |
| $CH_3$          | H               | Cl              | Cl              | 1 | CH₃CH₂                                          | Cl |
| $CH_3$          | $CH_3$          | Cl              | C1              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | CI |
| Н               | Н               | Н               | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI |
| $CH_3$          | Н               | Н               | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| $CH_3$          | $CH_3$          | Н               | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI |
| Н               | Н               | $CH_3$          | Н               | l | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| $CH_3$          | Н               | $CH_3$          | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| $CH_3$          | $CH_3$          | $CH_3$          | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI |
| Н               | Н               | CI              | Н               | I | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI |
| $CH_3$          | Н               | CI              | Н               | i | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI |
| $CH_3$          | $CH_3$          | CI              | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| H               | Н               | Н               | $CH_3$          | l | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| $CH_3$          | Н               | Н               | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
|                 |                 |                 |                 |   |                                                 |    |

| $CH_3$          | $CH_3$ | H               | $CH_3$          | 1  | $CH_3CH_2CH_2$                                  | CI |
|-----------------|--------|-----------------|-----------------|----|-------------------------------------------------|----|
| Н               | H      | $CH_3$          | CH <sub>3</sub> | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| $CH_3$          | Н      | $CH_3$          | $CH_3$          | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| $CH_3$          | $CH_3$ | $CH_3$          | CH <sub>3</sub> | l  | $CH_3CH_2CH_2$                                  | Cl |
| Н               | Н      | Cl              | $CH_3$          | I  | $CH_3CH_2CH_2$                                  | Cl |
| CH <sub>3</sub> | H      | Cl              | $CH_3$          | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| $CH_3$          | $CH_3$ | Cl              | $CH_3$          | ì  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | C1 |
| H               | Н      | Н               | CI              | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| CH <sub>3</sub> | Н      | Н               | Cl              | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| СН3             | $CH_3$ | Н               | C1              | 1  | СН <sub>3</sub> СН <sub>2</sub> СН <sub>2</sub> | CI |
| Н               | Н      | $CH_3$          | C1              | -1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI |
| CH <sub>3</sub> | H      | $CH_3$          | CI              | 1  | $CH_3CH_2CH_2$                                  | C1 |
| СН3             | $CH_3$ | $CH_3$          | CI              | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI |
| Н               | H      | Cl              | Cl              | 1  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| CH <sub>3</sub> | Н      | Cl              | CI              | i  | $\mathrm{CH_3CH_2CH_2}$                         | Cl |
| CH <sub>3</sub> | $CH_3$ | Cl              | CI              | l  | $CH_3CH_2CH_2$                                  | Cl |
| Н               | Н      | H               | Н               | 2  | Н                                               | Н  |
| H               | Н      | $CH_3$          | H               | 2  | Н                                               | Н  |
| Н               | H      | CI              | Н               | 2  | Н                                               | Н  |
| Н               | Н      | $CH_3$          | $CH_3$          | 2  | Н                                               | Н  |
| Н               | Н      | Cl              | $CH_3$          | 2  | Н                                               | H  |
| H               | Н      | CI              | Cl              | 2  | Н                                               | H  |
| Н               | Н      | Н               | Н               | 2  | CH <sub>3</sub>                                 | Н  |
| H               | H      | $CH_3$          | H               | 2  | CH <sub>3</sub>                                 | Н  |
| Н               | Н      | Cl              | Н               | 2  | CH <sub>3</sub>                                 | H  |
| Н               | H      | $CH_3$          | $CH_3$          | 2  | $CH_3$                                          | Н  |
| Н               | Н      | Cl              | $CH_3$          | 2  | CH <sub>3</sub>                                 | H  |
| Н               | Н      | Cl              | CI              | 2  | CH <sub>3</sub>                                 | H  |
| Н               | Н      | Н               | Н               | 2  | $CH_2CH_3$                                      | Н  |
| Н               | Н      | $CH_3$          | Н               | 2  | CH <sub>2</sub> CH <sub>3</sub>                 | Н  |
| Н               | H      | Cl              | Н               | 2  | $CH_2CH_3$                                      | Н  |
| Н               | Н      | $CH_3$          | $CH_3$          | 2  | $CH_2CH_3$                                      | H  |
| Н               | H      | Cl              | $CH_3$          | 2  | CH <sub>2</sub> CH <sub>3</sub>                 | Н  |
| Н               | Н      | Cl              | CI              | 2  | $CH_2CH_3$                                      | H  |
| Н               | Н      | Н               | H               | 2  | $CH_2CH_2CH_3$                                  | Н  |
| Н               | Н      | CH <sub>3</sub> | Н               | 2  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н  |
| Н               | Н      | CI              | Н               | 2  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н  |
| Н               | H .    | $CH_3$          | CH <sub>3</sub> | 2  | $CH_2CH_2CH_3$                                  | Н  |

| Н | Н | Cl               | $CH_3$            | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
|---|---|------------------|-------------------|---|-------------------------------------------------|-----------------|
| H | Н | Cl               | Cl                | 2 | $CH_2CH_2CH_3$                                  | H               |
| Н | Н | Н                | $\mathbf{H}^{-1}$ | 2 | phenyl                                          | Н               |
| H | Н | .CH <sub>3</sub> | Н                 | 2 | phenyl                                          | H               |
| Н | Н | Cl               | Н                 | 2 | phenyl                                          | Н               |
| Н | Н | $CH_3$           | $CH_3$            | 2 | phenyl                                          | Н               |
| Н | Н | Cl               | $CH_3$            | 2 | phenyl                                          | Н               |
| H | Н | Cl               | Cl                | 2 | phenyl                                          | Н               |
| Н | Н | Н                | Н                 | 2 | H                                               | $CH_3$          |
| H | Н | $CH_3$           | Н                 | 2 | Н                                               | $CH_3$          |
| Н | Н | CI               | H                 | 2 | Н                                               | $CH_3$          |
| Н | Н | $CH_3$           | CH <sub>3</sub>   | 2 | Н                                               | $CH_3$          |
| Н | H | C1               | $CH_3$            | 2 | Н                                               | $CH_3$          |
| H | Н | Cl               | Cl                | 2 | H                                               | CH <sub>3</sub> |
| Н | Ħ | Н                | Н                 | 2 | СН3                                             | CH <sub>3</sub> |
| Н | Н | $CH_3$           | Ħ                 | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| H | H | Cl               | H                 | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| Н | H | $CH_3$           | $CH_3$            | 2 | CH <sub>3</sub>                                 | CH3             |
| H | Н | Cl               | $CH_3$            | 2 | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Н | H | Cl               | Cl                | 2 | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Н | Н | Н                | Н                 | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| Н | H | $CH_3$           | Н                 | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| Н | Н | Cl               | H                 | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| Н | Н | $CH_3$           | CH <sub>3</sub>   | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| Н | Н | Cl               | $CH_3$            | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| Н | H | Cl               | Cl                | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| Н | Н | H                | Н                 | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| Н | H | $CH_3$           | Н                 | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| Н | H | Cl               | Н                 | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| Н | Н | $CH_3$           | $CH_3$            | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| Н | Н | Cl               | $CH_3$            | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| Н | Н | CI               | Cl                | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| Н | H | Н                | Н                 | 2 | phenyl                                          | CH <sub>3</sub> |
| Н | H | $CH_3$           | Н                 | 2 | phenyl                                          | CH <sub>3</sub> |
| Н | Н | Cl               | Н                 | 2 | phenyl                                          | CH <sub>3</sub> |
| Н | Н | CH <sub>3</sub>  | $CH_3$            | 2 | phenyl                                          | CH <sub>3</sub> |
| Н | Н | CI               | $CH_3$            | 2 | phenyl                                          | CH <sub>3</sub> |
| Н | Н | Cl               | Cl                | 2 | phenyl                                          | CH <sub>3</sub> |
|   |   |                  |                   |   |                                                 |                 |

| Н | Н   | Н               | Н               | 2  | Н                               | CI |
|---|-----|-----------------|-----------------|----|---------------------------------|----|
| H | Н   | CH <sub>3</sub> | Н               | 2  | н                               | Cl |
| Н | H   | Cl              | Н               | 2  | H                               | Cl |
| Н | Н   | $CH_3$          | $CH_3$          | 2  | Н                               | Cl |
| Н | H   | Cl              | CH <sub>3</sub> | 2  | H                               | CI |
| Н | Н   | Cl              | Cl              | 2  | Н                               | Ċl |
| Н | Н   | Н               | Н               | 2  | CH <sub>3</sub>                 | CI |
| Н | . Н | $CH_3$          | Н               | 2  | CH <sub>3</sub>                 | Cl |
| H | Н   | Cl              | Н               | 2  | CH <sub>3</sub>                 | CI |
| Н | Н   | $CH_3$          | $CH_3$          | 2  | CH <sub>3</sub>                 | CI |
| Н | Н   | Cl              | $CH_3$          | 2  | CH <sub>3</sub>                 | C! |
| Н | Н   | Cl              | Cl              | 2  | CH <sub>3</sub>                 | Cl |
| Н | Н   | Н               | Н               | 2  | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| H | Н   | $CH_3$          | H               | 2  | CH <sub>2</sub> CH <sub>3</sub> | CI |
| H | Н   | Cl              | Н               | 2  | CH <sub>2</sub> CH <sub>3</sub> | CI |
| Н | Н   | $CH_3$          | $CH_3$          | 2  | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| Н | Н   | Cl              | $CH_3$          | 2  | CH <sub>2</sub> CH <sub>3</sub> | C1 |
| Н | H   | Cl              | Cl              | 2  | $CH_2CH_3$                      | Cl |
| H | Н   | H               | Н               | 2  | $\mathrm{CH_{2}CH_{2}CH_{3}}$   | Cl |
| H | Н   | $CH_3$          | Н               | 2  | $CH_2CH_2CH_3$                  | CI |
| Н | Н   | Cl              | Н               | 2, | $CH_2CH_2CH_3$                  | Cl |
| Н | Н   | $CH_3$          | $CH_3$          | 2  | $CH_2CH_2CH_3$                  | CI |
| Н | Н   | Cl              | $CH_3$          | 2  | $CH_2CH_2CH_3$                  | CI |
| H | Н   | CI              | Cl              | 2  | $\mathrm{CH_2CH_2CH_3}$         | Cl |
| Н | Н   | H               | Н               | 2  | phenyl                          | CI |
| H | H   | $CH_3$          | Н               | 2  | phenyl                          | Cl |
| Н | Н   | CI              | Н               | 2  | phenyl                          | Cl |
| Н | Н   | CH <sub>3</sub> | CH <sub>3</sub> | 2  | phenyl                          | Cl |
| Н | Н   | CI              | CH <sub>3</sub> | 2  | phenyl                          | Cl |
| Н | H   | CI              | CI              | 2  | phenyl                          | CI |



|              | <u>Tabl</u> | <u>e 6</u>   |             |                  |     |
|--------------|-------------|--------------|-------------|------------------|-----|
|              |             |              |             | $\mathbb{R}^{1}$ | 7   |
|              | 0           | n l          | × 1         | _ \              |     |
| II           | )<br>       | R'           | $l_{l}^{2}$ |                  |     |
|              | Щ.          |              |             | //               | R18 |
|              | Y.          |              |             | Ť                |     |
| <b>人</b> 人   | ِ لِ        | $\mathbb{L}$ |             | ر اور کی         |     |
| $\checkmark$ | R-I         | Y            | S           |                  |     |
|              |             | $R^2$        | -ő′-`c      | ) ,              |     |
|              |             | • • •        |             |                  |     |

|     | <u>R</u> 4 | $\underline{R^{1}}$ | <u>R</u> 2             | <u>in</u>           | <u>R17</u>      |                     | R18 |
|-----|------------|---------------------|------------------------|---------------------|-----------------|---------------------|-----|
|     | SH         | Η.,                 | Н                      | 1                   | H               |                     | Н   |
|     | Cl         | Н                   | Н                      | 1 .                 | Н               |                     | Н   |
|     | SH         | CH <sub>3</sub>     | Н                      | 1*                  | H               |                     | H   |
|     | Cl         | СН3                 | Н                      | ł                   | H               |                     | H   |
|     | SH         | Cl                  | Н                      | 1 *                 | H o             |                     | Н   |
|     | Cl , ×     | Cl                  | $\mathbf{H}^{+}$       | 1                   | H               |                     | Н   |
|     | SH         | CH <sub>3</sub>     | CH <sub>3</sub>        | Ţ                   | Ĥ               |                     | Н   |
|     | Cl         | $CH_3$              | CH <sub>3</sub>        | 1                   | Н               |                     | Н   |
|     | SH         | Cl                  | Cl                     | 1                   | Н               |                     | H   |
|     | Cl         | Cl                  | Cl                     | ì                   | H               |                     | Н " |
|     | SH         | Н                   | Н                      | 2                   | H .             |                     | Н   |
|     | Cl         | H                   | Н                      | 2                   | H               |                     | Ĥ   |
| k:  | SH         | CH <sub>3</sub>     | Н                      | 2                   | H               |                     | H   |
| ¢   | Cl         | CH <sub>3</sub>     | Н                      | 2                   | H               |                     | Н   |
|     | SH         | Cl                  | Н                      | 2                   | Н               |                     | Н   |
|     | Cl         | Cl                  | П                      | 2                   | H               |                     | Н   |
|     | SH         | CH <sub>3</sub>     | :CH <sub>3</sub>       | 2 .                 | H               |                     | H   |
|     | Cl         | CH <sub>3</sub>     | CH <sub>3</sub>        | 2                   | Н               |                     | Н   |
|     | SH         | CI ·                | Cl                     | 2 .                 | Н               |                     | H   |
| , i | Cl         | Cl                  | Cl                     | 2.                  | Н               |                     | Н   |
|     | SH         | Н.                  | H                      | 1                   | CH <sub>3</sub> |                     | H   |
|     | CI         | H                   | H                      | 1                   | CHa             |                     | Н   |
|     | SH         | CH <sub>3</sub>     | Н                      | 1                   | CH <sub>3</sub> |                     | 11  |
|     | Cl         | $CH_3$              | H                      | 1                   | CH <sub>3</sub> | e'y                 | Н   |
|     | SH         | Cl                  | Н                      | 1                   | $CH_3$          |                     | Н   |
|     | Cl         | Cl                  | Ĥ                      | l                   | $CH_3$          |                     | }-{ |
|     | SH         | CH <sub>3</sub>     | СН3                    | ٠.,١                | CH3             |                     | Н   |
| 4.  | CI.        | cH <sub>3</sub>     | CH <sub>3</sub>        | 1                   | CH <sub>3</sub> | والا الأران         | Н   |
| - 2 | SH         | CI                  | onger fort (get)<br>C1 | set i satiries<br>I | СHз             | entropy of the fig. | H   |

| Cl | CI              | CI              | 1 | CH <sub>3</sub>                                 | Н   |
|----|-----------------|-----------------|---|-------------------------------------------------|-----|
| SH | Н               | Н               | 2 | CH <sub>3</sub>                                 | Н   |
| CI | Н               | Н               | 2 | CH <sub>3</sub>                                 | Н   |
| SH | CH <sub>3</sub> | Н               | 2 | CH <sub>3</sub>                                 | Н   |
| Cl | CH <sub>3</sub> | Н               | 2 | CH <sub>3</sub>                                 | Н   |
| SH | CI              | Н               | 2 | CH <sub>3</sub>                                 | Н   |
| Cl | Cl              | Н               | 2 | СН3                                             | H   |
| SH | $CH_3$          | CH <sub>3</sub> | 2 | $CH_3$                                          | Н   |
| CI | $CH_3$          | CH <sub>3</sub> | 2 | CH <sub>3</sub>                                 | Н   |
| SH | CI              | CI              | 2 | CH <sub>3</sub>                                 | Н   |
| Ci | Cl              | Cl              | 2 | CH <sub>3</sub>                                 | Н   |
| SH | Н               | H               | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | H   |
| Cl | Н               | H               | l | $CH_2CH_3$                                      | H   |
| SH | $CH_3$          | H               | l | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| CI | $CH_3$          | H               | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | H   |
| SH | Cl              | Н               | ł | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| Cl | Cl              | Н               | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| SH | $CH_3$          | $CH_3$          | t | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| Cl | $CH_3$          | $CH_3$          | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| SH | Cl              | Cl              | 1 | $CH_2CH_3$                                      | Н   |
| Cl | Cl              | CI              | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| SH | Н               | Н               | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| Cl | Н               | Н               | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| SH | $CH_3$          | Н               | 2 | $CH_2CH_3$                                      | Н   |
| Cl | $CH_3$          | Н               | 2 | CH₂CH₃                                          | Н   |
| SH | CI              | Н               | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | H   |
| CI | Cl              | Н               | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| SH | CH <sub>3</sub> | CH <sub>3</sub> | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| Cl | CH <sub>3</sub> | $CH_3$          | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| SH | Cl              | CI              | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| C1 | Cl              | Cl              | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| SH | Н               | Н               | ì | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| CI | Н               | Н               | 1 | $CH_2CH_2CH_3$                                  | Н   |
| SH | $CH_3$          | Н               | i | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | J-{ |
| Cl | $CH_3$          | Н               | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H   |
| SH | Cl              | Н               | 1 | $CH_2CH_2CH_3$                                  | Н   |
| CI | Cl              | Н               | l | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH | $CH_3$          | $CH_3$          | l | $CH_2CH_2CH_3$                                  | Н   |
|    |                 |                 |   |                                                 |     |

| 1 | Į | J |
|---|---|---|
|   |   |   |

| C1 | CH <sub>3</sub> | CH <sub>3</sub> | ì  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H               |
|----|-----------------|-----------------|----|-------------------------------------------------|-----------------|
| SH | Cl              | Cl              | 1  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Ħ               |
| Cl | Cł              | Cl              | 1. | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| SH | Н               | H               | 2  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H               |
| C1 | H               | Н               | 2  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| SH | CH <sub>3</sub> | Н               | 2  | $CH_2CH_2CH_3$                                  | Н               |
| CI | CH <sub>3</sub> | Н               | 2  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| SH | Cl              | Н               | 2  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| Cl | Cl              | Н               | 2  | $CH_2CH_2CH_3$                                  | Н               |
| SH | CH <sub>3</sub> | $CH_3$          | 2  | $CH_2CH_2CH_3$                                  | H               |
| Cl | СН3             | $CH_3$          | 2  | $CH_2CH_2CH_3$                                  | Н               |
| SH | Cl              | Cl              | 2  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| CI | Cl              | Cl              | 2  | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| SH | Н               | Н               | ì  | Н                                               | CH <sub>3</sub> |
| Cl | H               | Н               | 1  | H                                               | $CH_3$          |
| SH | $CH_3$          | Н               | ì  | Н                                               | CH <sub>3</sub> |
| Cl | $CH_3$          | Н               | 1  | H                                               | CH <sub>3</sub> |
| SH | Cl              | Н               | l  | H                                               | CH <sub>3</sub> |
| Cl | Cl              | Н               | ł  | H                                               | $CH_3$          |
| SH | $CH_3$          | $CH_3$          | 1  | Н                                               | CH <sub>3</sub> |
| Cl | $CH_3$          | $CH_3$          | 1  | Н                                               | $CH_3$          |
| SH | Cl              | Cl              | 1  | H                                               | $CH_3$          |
| C1 | CI              | Cl              | l  | Н                                               | CH <sub>3</sub> |
| SH | I-I             | H               | 2  | Н                                               | $CH_3$          |
| Cl | Н               | Н               | 2  | H                                               | $CH_3$          |
| SH | $CH_3$          | H               | 2  | Н                                               | CH <sub>3</sub> |
| Cl | $CH_3$          | Н               | 2  | H                                               | $CH_3$          |
| SH | Cl              | Н               | 2  | Н                                               | CH <sub>3</sub> |
| Cl | Cl              | Н               | 2  | Н                                               | CH <sub>3</sub> |
| SH | $CH_3$          | $CH_3$          | 2  | Н                                               | CH <sub>3</sub> |
| Cl | CH <sub>3</sub> | $CH_3$          | 2  | Н                                               | CH <sub>3</sub> |
| SH | Cl              | Cl              | 2  | Н                                               | CH <sub>3</sub> |
| Cl | Cl              | Cl              | 2  | Н                                               | CH <sub>3</sub> |
| SH | Н               | Н               | 1  | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Cl | Н               | Н               | i  | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| SH | $CH_3$          | Н               | ì  | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Cl | $CH_3$          | Н               | 1  | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| SH | Cl              | Н               | l  | CH <sub>3</sub>                                 | CH <sub>3</sub> |
|    |                 |                 |    |                                                 |                 |

| Ci | CI              | Н      | 1 | CH <sub>3</sub>                                 | $CH_3$          |
|----|-----------------|--------|---|-------------------------------------------------|-----------------|
| SH | CH <sub>3</sub> | $CH_3$ | i | CH <sub>3</sub>                                 | $CH_3$          |
| Cl | СН3             | $CH_3$ | ì | CH <sub>3</sub>                                 | $CH_3$          |
| SH | Cl              | Cl     | 1 | CH <sub>3</sub>                                 | $CH_3$          |
| Cl | CI              | Cl     | 1 | CH <sub>3</sub>                                 | $CH_3$          |
| SH | Н               | Н      | 2 | CH <sub>3</sub>                                 | СН3             |
| Cl | H               | Н      | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| SH | $CH_3$          | H      | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| Cl | $CH_3$          | Н      | 2 | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| SH | Cl              | Н      | 2 | $CH_3$                                          | CH <sub>3</sub> |
| CI | Cl              | Н      | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| SH | CH <sub>3</sub> | $CH_3$ | 2 | $CH_3$                                          | $CH_3$          |
| Cl | $CH_3$          | $CH_3$ | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| SH | Cl              | Cl     | 2 | $CH_3$                                          | $CH_3$          |
| Cl | Cl              | CI     | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| SH | H               | Н      | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| Cl | Н               | Н      | I | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| SH | $CH_3$          | Н      | ı | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| Cl | $CH_3$          | Н      | ı | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| SH | Cl              | Н      | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| Cl | Cl              | Н      | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| SH | $CH_3$          | $CH_3$ | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| Cl | $CH_3$          | $CH_3$ | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| SH | CI              | CI     | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| Cl | CI              | CI     | 1 | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH | Н               | Н      | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| Cl | Н               | H      | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| SH | $CH_3$          | H      | 2 | $CH_2CH_3$                                      | $CH_3$          |
| Cl | $CH_3$          | Н      | 2 | $CH_2CH_3$                                      | $CH_3$          |
| SH | CI              | Н      | 2 | $CH_2CH_3$                                      | $CH_3$          |
| Cl | Cl              | Н      | 2 | $CH_2CH_3$                                      | $CH_3$          |
| SH | $CH_3$          | $CH_3$ | 2 | $CH_2CH_3$                                      | $CH_3$          |
| CI | $CH_3$          | $CH_3$ | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| SH | CI              | Cl     | 2 | $CH_2CH_3$                                      | $CH_3$          |
| Cl | Cl              | Cl     | 2 | $CH_2CH_3$                                      | $CH_3$          |
| SH | Н               | Н      | ŀ | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| CI | Н               | H      | l | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | CH <sub>3</sub> | Н      | l | $CH_2CH_2CH_3$                                  | $CH_3$          |
|    |                 |        |   |                                                 |                 |

| Cl  | CH <sub>3</sub> | Н               | 1 | CH2CH2CH3                                       | $CH_3$          |
|-----|-----------------|-----------------|---|-------------------------------------------------|-----------------|
| SH  | Cl              | Н               | 1 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| CI  | Cl              | Н               | ì | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH  | $CH_3$          | $CH_3$          | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| Cl  | CH <sub>3</sub> | $CH_3$          | 1 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| SH  | Cl              | Cl              | 1 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| Cl  | Cl              | Cl              | l | $CH_2CH_2CH_3$                                  | $CH_3$          |
| SH  | Н               | Н               | 2 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| CI  | Н               | Н               | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH  | $CH_3$          | Н               | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| C1  | CH <sub>3</sub> | Н               | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH  | C1              | H               | 2 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| Cl  | CI              | Н               | 2 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| SH  | $CH_3$          | $CH_3$          | 2 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| Cl  | $CH_3$          | CH <sub>3</sub> | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH  | CI              | Cl              | 2 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| Cl  | Cl              | Cl              | 2 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| SH  | Н               | H               | i | Н                                               | Cl              |
| Cl  | Н               | Н               | I | Н                                               | Cl              |
| SH  | $CH_3$          | Н               | ١ | Н                                               | Cl              |
| Cl  | $CH_3$          | H               | ł | Н                                               | C1              |
| SH  | Cl              | Н               | 1 | Н                                               | Cl              |
| Cl  | CI              | Н               | i | H                                               | Cl              |
| SH  | $CH_3$          | $CH_3$          | 1 | H                                               | Cl              |
| Cl  | $CH_3$          | $CH_3$          | 1 | Н                                               | Cl              |
| SH  | Cl              | Cl              | 1 | Н                                               | Cl              |
| Cl  | Cl              | Cl              | 1 | Н                                               | Cl              |
| SH  | Н               | Н               | 2 | Н                                               | CI              |
| Cl  | Н               | Н               | 2 | Н                                               | CI              |
| SH  | $CH_3$          | H               | 2 | Н                                               | Cl              |
| CI  | $CH_3$          | Н               | 2 | Н                                               | Cl              |
| SH  | Cl              | Н               | 2 | Н                                               | CI              |
| Cl  | Cl              | Н               | 2 | H                                               | CI              |
| SH  | $CH_3$          | $CH_3$          | 2 | H                                               | Cl              |
| Cl  | CH <sub>3</sub> | CH <sub>3</sub> | 2 | Н                                               | Cl              |
| SH  | Cl              | Cl              | 2 | Н                                               | CI              |
| ·Cl | Cl              | Cl              | 2 | Н                                               | C1              |
| SH  | Н               | Н               | 1 | CH <sub>3</sub>                                 | CI              |
|     |                 |                 |   |                                                 |                 |

| CI | Н               | Н      | 1   | CH <sub>3</sub>                 | CI |
|----|-----------------|--------|-----|---------------------------------|----|
| SH | $CH_3$          | Н      | 1 . | $CH_3$                          | Cl |
| Cl | $CH_3$          | Н      | 1   | CH <sub>3</sub>                 | C1 |
| SH | C1              | Н      | 1   | CH <sub>3</sub>                 | Cl |
| Cl | CI              | Н      | 1   | $CH_3$                          | Cl |
| SH | $CH_3$          | $CH_3$ | 1   | CH <sub>3</sub>                 | CI |
| Cl | $CH_3$          | $CH_3$ | 1   | CH <sub>3</sub>                 | Cl |
| SH | Cl              | CI     | 1   | $CH_3$                          | CI |
| C1 | Cl              | CI     | 1   | CH <sub>3</sub>                 | Cl |
| SH | Н               | Н      | 2   | CH <sub>3</sub>                 | Cl |
| Cl | Н               | H      | 2   | CH <sub>3</sub>                 | Čl |
| SH | $CH_3$          | H      | 2   | $CH_3$                          | CI |
| Cl | $CH_3$          | H      | 2   | CH <sub>3</sub>                 | Cl |
| SH | CI              | Н      | 2   | CH <sub>3</sub>                 | CI |
| Cl | Cl              | Н      | 2   | CH <sub>3</sub>                 | CI |
| SH | $CH_3$          | $CH_3$ | 2   | CH <sub>3</sub>                 | CI |
| Cl | $CH_3$          | $CH_3$ | 2   | CH <sub>3</sub>                 | CI |
| SH | Cl              | Cl     | 2   | CH <sub>3</sub>                 | CI |
| Cl | CI ·            | Cl     | 2   | CH <sub>3</sub>                 | CI |
| SH | Н               | H      | 1   | $CH_2CH_3$                      | CI |
| Cl | Н               | H      | i   | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | $CH_3$          | Н      | 1   | CH <sub>2</sub> CH <sub>3</sub> | CI |
| Cl | $CH_3$          | Н      | 1   | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | Cl              | Н      | 1   | $CH_2CH_3$                      | CI |
| Cl | Cl              | H      | 1   | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | $CH_3$          | $CH_3$ | l   | CH <sub>2</sub> CH <sub>3</sub> | C1 |
| Cl | $CH_3$          | $CH_3$ | l   | $CH_2CH_3$                      | Cl |
| SH | Cl              | CI     | i   | $CH_2CH_3$                      | Cl |
| Cl | Cl              | Cl     | 1   | $CH_2CH_3$                      | C1 |
| SH | Н               | Н      | 2   | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| Cl | Н               | Н      | 2   | CH₂CH₃                          | CI |
| SH | $CH_3$          | Н      | 2   | CH <sub>2</sub> CH <sub>3</sub> | CI |
| CI | $CH_3$          | Н      | 2   | CH <sub>2</sub> CH <sub>3</sub> | CI |
| SH | Cl              | Н      | 2   | CH₂CH₃                          | CI |
| CI | Cl              | Н      | 2   | CH <sub>2</sub> CH <sub>3</sub> | CI |
| SH | CH <sub>3</sub> | СН3    | 2   | CH₂CH₃                          | CI |
| CI | $CH_3$          | СН3    | 2   | CH <sub>2</sub> CH <sub>3</sub> | CI |
| SH | CI              | C1     | 2   | CH <sub>2</sub> CH <sub>3</sub> | CI |

| Ci | Cl              | CI     | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | Cl |
|----|-----------------|--------|---|-------------------------------------------------|----|
| SH | H               | Н      | 1 | $CH_2CH_2CH_3$                                  | Cl |
| C: | H               | Н      | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | $CH_3$          | Н      | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
| Cl | $CH_3$          | H      | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | Cl              | Н      | 1 | CH2CH2CH3                                       | Cl |
| Cl | Cl              | Н      | I | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | $CH_3$          | $CH_3$ | 1 | $CH_2CH_2CH_3$                                  | Cl |
| Cl | $CH_3$          | $CH_3$ | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | Cl              | Cl     | 1 | $\mathrm{CH_2CH_2CH_3}$                         | CI |
| Cl | Cl              | C1     | ł | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
| SH | Н               | Н      | 2 | $\mathrm{CH_2CH_2CH_3}$                         | CI |
| Cl | Н               | H      | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | $CH_3$          | Ĥ      | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
| Cl | $CH_3$          | H      | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | Cl              | H      | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
| Cl | CI              | Н      | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | $CH_3$          | $CH_3$ | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| CI | CH <sub>3</sub> | $CH_3$ | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
| SH | Cl              | Cl     | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| Cl | Cl              | Cl     | 2 | CH5CH5CH3                                       | Cl |

$$\begin{array}{c|c} & \text{Table 7} \\ & \text{O} & \text{O} & \text{R}^1 & \text{N-N} \\ & & \text{OH} & \text{R}^{18} \\ & & \text{OH} & \text{R}^2 & \text{O} & \text{O} \end{array}$$

| <u>R1</u>         | <u>R<sup>2</sup></u> | <u>R17</u>                        | <u>R18</u> |
|-------------------|----------------------|-----------------------------------|------------|
| Н                 | Н                    | CH(CH <sub>3</sub> ) <sub>2</sub> | Н          |
| CH <sub>3</sub>   | Н                    | $CH(CH_3)_2$                      | Н          |
| Cl                | Н                    | CH(CH <sub>3</sub> ) <sub>2</sub> | H          |
| CH <sub>3</sub>   | CH <sub>3</sub>      | CH(CH <sub>3</sub> ) <sub>2</sub> | Н          |
| Cl                | CI                   | CH(CH <sub>3</sub> ) <sub>2</sub> | Н          |
| Н                 | Н                    | phenyl                            | Н          |
| CH <sub>2</sub> . | Н                    | phenyl                            | Н          |

| Cl              | Н               | phenyl                          | Н |
|-----------------|-----------------|---------------------------------|---|
| $CH_3$          | CH <sub>3</sub> | phenyl                          | Н |
| Cl              | CI              | phenyl                          | H |
| Н .             | Н               | (4-CH <sub>3</sub> )Ph          | Н |
| CH <sub>3</sub> | Н               | (4-CH <sub>3</sub> )Ph          | Н |
| Cl              | Н               | (4-CH <sub>3</sub> )Ph          | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CH <sub>3</sub> )Ph          | Н |
| Cl              | CI              | (4-CH <sub>3</sub> )Ph          | Н |
| Н               | Н               | (4-Cl)Ph                        | Н |
| CH <sub>3</sub> | Н               | (4-Cl)Ph                        | Н |
| Cl              | Н               | (4-Cl)Ph                        | Н |
| СН3             | CH <sub>3</sub> | (4-Cl)Ph                        | Н |
| Cl              | Cl              | (4-Cl)Ph                        | Н |
| Н               | Н               | (4-NO <sub>2</sub> )Ph          | Н |
| $CH_3$          | H               | (4-NO <sub>2</sub> )Ph          | Н |
| Cl              | Н               | (4-NO <sub>2</sub> )Ph          | Н |
| СН3             | $CH_3$          | (4-NO <sub>2</sub> )Ph          | Н |
| Cl              | Cl              | (4-NO <sub>2</sub> )Ph          | Н |
| Н               | Н               | (4-CN)Ph                        | Н |
| CH <sub>3</sub> | H               | (4-CN)Ph                        | Н |
| Cl              | H               | (4-CN)Ph                        | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CN)Ph                        | Н |
| . CI            | CI              | (4-CN)Ph                        | Н |
| Н               | Н               | 2-pyridyl                       | Н |
| CH <sub>3</sub> | Н               | 2-pyridyl                       | Н |
| Cl              | Н .             | 2-pyridyl                       | Н |
| CH <sub>3</sub> | CH <sub>3</sub> | 2-pyridyl                       | H |
| Cl              | Cl              | 2-pyridyl                       | Н |
| Н               | Н               | 4-pyridyl                       | H |
| CH <sub>3</sub> | Н               | 4-pyridyl                       | Н |
| Cl              | Н               | 4-pyridyl                       | H |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-pyridyl                       | Н |
| Cl              | Cl              | 4-pyridyl                       | Н |
| Н               | Н               | CH <sub>2</sub> CF <sub>3</sub> | Н |
| CH <sub>3</sub> | Н               | CH <sub>2</sub> CF <sub>3</sub> | Н |
| Cl              | Н               | CH <sub>2</sub> CF <sub>3</sub> | H |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CF <sub>3</sub> | Н |
| CI              | Cl              | $CH_2CF_3$                      | Н |

| Н               | н .             | CH(CH <sub>3</sub> ) <sub>2</sub> | Cl |
|-----------------|-----------------|-----------------------------------|----|
| CH <sub>3</sub> | Н               | CH(CH <sub>3</sub> ) <sub>2</sub> | Cl |
| CI              | Н               | CH(CH <sub>3</sub> ) <sub>2</sub> | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | CH(CH <sub>3</sub> ) <sub>2</sub> | Cl |
| Cl              | Cl              | CH(CH <sub>3</sub> ) <sub>2</sub> | CI |
| Н               | Н               | phenyl                            | C1 |
| CH <sub>3</sub> | Н               | phenyl                            | Cl |
| CI              | Н               | phenyl                            | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | phenyl                            | Cl |
| Cl              | Cl              | phenyl                            | Cl |
| Н               | Н               | (4-CH <sub>3</sub> )Ph            | Cl |
| CH <sub>3</sub> | Н               | (4-CH <sub>3</sub> )Ph            | Cl |
| Cl              | Н               | (4-CH <sub>3</sub> )Ph            | CI |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CH <sub>3</sub> )Ph            | Cl |
| Cl              | CI              | (4-CH <sub>3</sub> )Ph            | Cl |
| Н               | Н               | (4-CI)Ph                          | Cl |
| CH <sub>3</sub> | Н               | (4-C1)Ph                          | CI |
| Cl              | Н               | (4-Cl)Ph                          | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-Cl)Ph                          | Cl |
| Cl              | Cl              | (4-Cl)Ph                          | Cl |
| Н               | Н               | (4-NO <sub>2</sub> )Ph            | Cl |
| CH <sub>3</sub> | Н               | (4-NO <sub>2</sub> )Ph            | Cl |
| Cl              | H               | (4-NO <sub>2</sub> )Ph            | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-NO <sub>2</sub> )Ph            | C1 |
| Cl              | Cl              | (4-NO <sub>2</sub> )Ph            | CL |
| Н               | Н               | (4-CN)Ph                          | C1 |
| CH <sub>3</sub> | Н               | (4-CN)Ph                          | Cl |
| CI              | H               | (4-CN)Ph                          | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CN)Ph                          | Cl |
| Cl              | Cl              | (4-CN)Ph                          | Cl |
| Н               | Н               | 2-pyridyl                         | Cl |
| CH <sub>3</sub> | Н               | 2-pyridyl                         | CI |
| CI              | Н               | 2-pyridyl                         | CI |
| CH <sub>3</sub> | CH <sub>3</sub> | 2-pyridyl                         | C1 |
| Cl              | Cl              | 2-pyridyl                         | C1 |
| Н               | Н               | 4-pyridyl                         | Cl |
| CH <sub>3</sub> | Н               | 4-pyridyl                         | Cl |
| Cl              | Н               | 4-pyridyl                         | CI |

| CH <sub>3</sub> | CH <sub>3</sub> | 4-pyridyl                         | Cl              |
|-----------------|-----------------|-----------------------------------|-----------------|
| Cl              | CI              | 4-pyridyl                         | Cl              |
| Н               | Н               | CH <sub>2</sub> CF <sub>3</sub>   | Cl              |
| CH <sub>3</sub> | H               | CH <sub>2</sub> CF <sub>3</sub>   | CI              |
| CI              | Н               | CH <sub>2</sub> CF <sub>3</sub>   | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CF <sub>3</sub>   | Cl              |
| Cl              | CI              | CH <sub>2</sub> CF <sub>3</sub>   | Cl              |
| Н               | Н               | CH(CH <sub>3</sub> ) <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | Н               | CH(CH <sub>3</sub> ) <sub>2</sub> | $CH_3$          |
| CI              | H               | CH(CH <sub>3</sub> ) <sub>2</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH(CH <sub>3</sub> ) <sub>2</sub> | CH <sub>3</sub> |
| Cl              | CI              | CH(CH <sub>3</sub> ) <sub>2</sub> | $CH_3$          |
| Н               | Н               | phenyl                            | $CH_3$          |
| CH <sub>3</sub> | Н               | phenyl                            | CH <sub>3</sub> |
| Cl              | H               | phenyl                            | СН3             |
| CH <sub>3</sub> | CH <sub>3</sub> | phenyl                            | CH <sub>3</sub> |
| Cl              | Cl              | phenyl                            | CH <sub>3</sub> |
| Н               | Н               | (4-CH <sub>3</sub> )Ph            | СН3             |
| CH <sub>3</sub> | H               | (4-CH <sub>3</sub> )Ph            | CH <sub>3</sub> |
| Cl              | Н               | (4-CH <sub>3</sub> )Ph            | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CH <sub>3</sub> )Ph            | CH <sub>3</sub> |
| Cl              | Cl              | (4-CH <sub>3</sub> )Ph            | CH <sub>3</sub> |
| Н               | Н               | (4-Cl)Ph                          | СН3             |
| CH <sub>3</sub> | H               | (4-C1)Ph                          | $CH_3$          |
| Cl              | Н               | (4-Cl)Ph                          | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-Cl)Ph                          | СН3             |
| Cl              | Cl              | (4-Cl)Ph                          | CH <sub>3</sub> |
| H               | Н               | (4-NO <sub>2</sub> )Ph            | СН3             |
| CH <sub>3</sub> | Н               | (4-NO <sub>2</sub> )Ph            | CH <sub>3</sub> |
| C1              | Н               | (4-NO <sub>2</sub> )Ph            | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-NO <sub>2</sub> )Ph            | $CH_3$          |
| CI              | CI              | (4-NO <sub>2</sub> )Ph            | $CH_3$          |
| Н               | Н               | (4-CN)Ph                          | CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | (4-CN)Ph                          | CH <sub>3</sub> |
| Cl              | Н               | (4-CN)Ph                          | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CN)Ph                          | CH <sub>3</sub> |
| Cl              | C)              | (4-CN)Ph                          | CH <sub>3</sub> |
| Н               | Н               | 2-pyridyl                         | $CH_3$          |
|                 |                 |                                   |                 |

| CH <sub>3</sub> | Н               | 2-pyridyl                       | $CH_3$          |
|-----------------|-----------------|---------------------------------|-----------------|
| Cl              | Н               | 2-pyridyl                       | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | 2-pyridyl                       | $CH_3$          |
| Cl              | Cl              | 2-pyridyl                       | $CH_3$          |
| Н               | H               | 4-pyridyl                       | $CH_3$          |
| CH <sub>3</sub> | Н               | 4-pyridyl                       | $CH_3$          |
| Cl              | Н               | 4-pyridyl                       | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-pyridyl                       | $CH_3$          |
| Cl              | Cl              | 4-pyridyl                       | CH <sub>3</sub> |
| Н               | Н               | CH <sub>2</sub> CF <sub>3</sub> | CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | CH <sub>2</sub> CF <sub>3</sub> | $CH_3$          |
| Cl              | Н               | CH <sub>2</sub> CF <sub>3</sub> | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CF <sub>3</sub> | $CH_3$          |
| CI.             | Cl              | CH <sub>2</sub> CF <sub>3</sub> | CH <sub>3</sub> |
|                 |                 |                                 |                 |

## Table 8 O O R<sup>1</sup> N-N-R<sup>17</sup> R<sup>18</sup>

| <u>R</u> <sup>4</sup> | <u>R I </u>                     | R <u>.2</u>     | R17 | <u>R18</u> |
|-----------------------|---------------------------------|-----------------|-----|------------|
| ОН                    | CH <sub>2</sub> CH <sub>3</sub> | Н               | H   | H          |
| SH                    | CH <sub>2</sub> CH <sub>3</sub> | Н               | H . | Н          |
| CI                    | CH <sub>2</sub> CH <sub>3</sub> | Н               | Н   | Н          |
| ОН                    | $NO_2$                          | Н               | H   | Н          |
| SH                    | $NO_2$                          | H               | H   | Н          |
| Cl                    | $NO_2$                          | Н               | H   | Н          |
| ОН -                  | OCH <sub>3</sub>                | Н               | Н   | H          |
| SH                    | OCH <sub>3</sub>                | Н               | Н   | Н          |
| CI                    | OCH <sub>3</sub>                | Н               | H   | Н          |
| ОН                    | $CH_2CH_3$                      | CH <sub>3</sub> | Н   | Н          |
| SH                    | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | Н   | Н          |
| Cl                    | $CH_2CH_3$                      | €H <sub>3</sub> | Н   | H          |
| ОН                    | $NO_2$                          | CH <sub>3</sub> | Н   | Н          |
| SH ·                  | $NO_2$                          | CH <sub>3</sub> | Н   | Н          |

BNSDOCID: <WO\_\_9719087A1\_I\_>

79

PCT/US96/18381

| CI   | $NO_2$                          | CH <sub>3</sub> | Н               | H  |
|------|---------------------------------|-----------------|-----------------|----|
| ОН   | OCH <sub>3</sub>                | CH <sub>3</sub> | Н               | Н  |
| SH   | осн <sub>3</sub>                | CH <sub>3</sub> | Н               | Н  |
| Cl   | OCH <sub>3</sub>                | CH <sub>3</sub> | Н               | Н  |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | CI              | Н               | Н  |
| SH   | $CH_2CH_3$                      | CI              | Н               | Н  |
| CI   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | Н               | Н  |
| ОН   | NO <sub>2</sub>                 | Cl              | Н               | Н  |
| SH   | NO <sub>2</sub>                 | Cl              | Н               | H  |
| CI   | $NO_2$                          | Cl              | Н               | Н  |
| ОН   | OCH <sub>3</sub>                | CI              | Н               | 14 |
| SH   | $OCH_3$                         | Cl              | Н               | Н  |
| Cl   | OCH <sub>3</sub>                | Cl              | Н               | Н  |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub> | Н  |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub> | Н  |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub> | Н  |
| ОН   | $NO_2$                          | Н               | CH <sub>3</sub> | Н  |
| SH   | $NO_2$                          | Н               | CH <sub>3</sub> | Н  |
| CI   | NO <sub>2</sub>                 | Н               | CH <sub>3</sub> | Н  |
| ОН   | OCH <sub>3</sub>                | H               | CH <sub>3</sub> | H  |
| SH , | OCH <sub>3</sub>                | Н               | CH <sub>3</sub> | Н  |
| CI   | OCH <sub>3</sub>                | Н               | CH <sub>3</sub> | Н  |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н  |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н  |
| CI   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | H  |
| ОН   | NO <sub>2</sub>                 | CH <sub>3</sub> | СН3             | Н  |
| SH   | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | Н  |
| Cl   | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | H  |
| ОН   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub> | Н  |
| SH   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub> | Н  |
| Cl   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub> | Н  |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>3</sub> | Н  |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | CI              | CH <sub>3</sub> | Н  |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | CI              | CH <sub>3</sub> | Н  |
| ОН   | NO <sub>2</sub>                 | Cl              | CH <sub>3</sub> | Н  |
| SH   | $NO_2$                          | Cl              | CH <sub>3</sub> | Н  |
| Cl   | NO <sub>2</sub>                 | CI              | CH <sub>3</sub> | Н  |
| ОН   | OCH <sub>3</sub>                | CI              | CH <sub>3</sub> | H  |

| SH    | $OCH_3$                         | CI              | CH <sub>3</sub>                                 | 1-1  |
|-------|---------------------------------|-----------------|-------------------------------------------------|------|
| Cl    | och <sub>3</sub>                | Cl              | CH <sub>3</sub>                                 | Н    |
| ОН    | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| SH    | CH <sub>2</sub> CH <sub>3</sub> | H               | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| Cl    | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | H    |
| ОН    | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | H    |
| SH    | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| Cl    | $NO_2$                          | Н               | СH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| ОН    | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| SH    | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| Cl    | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | H    |
| ОН    | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | H    |
| SH    | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | H    |
| Cl    | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| OH (  | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| SH    | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| CI ,  | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | H    |
| ОН    | $OCH_3$                         | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| SH    | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | H    |
| ci -  | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| ОН    | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH₂CH₃                                          | Н    |
| SH    | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | H    |
| Cl    | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | , H  |
| OH "  | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| SH    | NO <sub>2</sub>                 | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| Cl    | $NO_2$                          | ČI              | CH₂CH₃                                          | Н    |
| ОН    | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | H    |
| SH    | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| E Cl  | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Н    |
| ОН    | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н    |
| SH    | CH <sub>2</sub> CH <sub>3</sub> | • Н             | ĊĤ <sub>2</sub> ĊĤ <sub>2</sub> ĊĤ <sub>3</sub> | Н    |
| Class | CH <sub>2</sub> CH <sub>3</sub> | Н "             | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н    |
| OH    | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н    |
| SH    | NO <sub>2</sub>                 | H               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н    |
| Cl    | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H    |
| ОН    | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н    |
| SH    | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н    |
| CI *  | OCH <sub>3</sub>                | Н               | CHECHECH 3                                      | · FI |
| 1     |                                 |                 |                                                 |      |

| ОН | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н          |
|----|---------------------------------|-----------------|-------------------------------------------------|------------|
| SH | $CH_2CH_3$                      | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H          |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH2CH2CH3                                       | Н          |
| ОН | NO <sub>2</sub>                 | $CH_3$          | $CH_2CH_2CH_3$                                  | Н          |
| SH | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н          |
| Cl | NO <sub>2</sub>                 | CH <sub>3</sub> | $CH_2CH_2CH_3$                                  | Н          |
| ОН | OCH <sub>3</sub>                | CH <sub>3</sub> | $CH_2CH_2CH_3$                                  | Н          |
| SH | $OCH_3$                         | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H          |
| CI | OCH <sub>3</sub>                | CH <sub>3</sub> | $CH_2CH_2CH_3$                                  | Н          |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н          |
| SH | $CH_2CH_3$                      | Cl              | $CH_2CH_2CH_3$                                  | H          |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | C)              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н          |
| ОН | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н          |
| SH | NO <sub>2</sub>                 | Cl              | $CH_2CH_2CH_3$                                  | <b>F</b> 3 |
| CI | NO <sub>2</sub>                 | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н          |
| OH | $OCH_3$                         | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H          |
| SH | OCH <sub>3</sub>                | Cl              | $CH_2CH_2CH_3$                                  | Н          |
| Cl | OCH <sub>3</sub>                | CI              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н          |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | Н               | H                                               | $CH_3$     |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Н               | H                                               | $CH_3$     |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | Н               | H                                               | $CH_3$     |
| ОН | $NO_2$                          | Н               | Н                                               | $CH_3$     |
| SH | $NO_2$                          | Н               | Ħ                                               | $CH_3$     |
| Cl | $NO_2$                          | Н               | H                                               | $CH_3$     |
| ОН | OCH <sub>3</sub>                | Н               | Н                                               | $CH_3$     |
| SH | OCH <sub>3</sub>                | Н               | Н                                               | $CH_3$     |
| Cl | OCH <sub>3</sub>                | Н               | H                                               | $CH_3$     |
| OH | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | Н                                               | $CH_3$     |
| SH | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | Н                                               | $CH_3$     |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | H                                               | $CH_3$     |
| ОН | $NO_2$                          | CH <sub>3</sub> | H                                               | $CH_3$     |
| SH | $NO_2$                          | CH <sub>3</sub> | H                                               | $CH_3$     |
| Cl | $NO_2$                          | CH <sub>3</sub> | Н                                               | $CH_3$     |
| ОН | OCH <sub>3</sub>                | CH <sub>3</sub> | Н                                               | $CH_3$     |
| SH | OCH <sub>3</sub>                | CH <sub>3</sub> | Н                                               | $CH_3$     |
| Cl | OCH <sub>3</sub>                | CH <sub>3</sub> | H                                               | $CH_3$     |
| ОН | $CH_2CH_3$                      | Cl              | Н                                               | $CH_3$     |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Cl              | Н                                               | $CH_3$     |

| Cl   | -CH <sub>2</sub> CH <sub>3</sub> | CI               | H                               | $CH_3$          |
|------|----------------------------------|------------------|---------------------------------|-----------------|
| ОН   | $NO_2$                           | Cl               | H                               | $CH_3$          |
| SH   | $NO_2$                           | Cl               | H                               | $CH_3$          |
| Cl   | $NO_2$                           | Cl               | Н                               | $CH_3$          |
| ОН   | OCH <sub>3</sub>                 | Cl               | Н                               | CH <sub>3</sub> |
| SH   | OCH <sub>3</sub>                 | Cl               | H                               | $CH_3$          |
| CI   | OCH <sub>3</sub>                 | Cl               | Н                               | СН3             |
| ОН   | CH <sub>2</sub> CH <sub>3</sub>  | H                | CH <sub>3</sub>                 | $CH_3$          |
| SH   | CH <sub>2</sub> CH <sub>3</sub>  | Н                | CH <sub>3</sub>                 | CH <sub>3</sub> |
| Cl   | CH <sub>2</sub> CH <sub>3</sub>  | Н                | CH <sub>3</sub>                 | $CH_3$          |
| ОĤ   | $NO_2$                           | Н                | CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH   | $NO_2$                           | H                | CH <sub>3</sub>                 | CH <sub>3</sub> |
| Cl   | NO <sub>2</sub>                  | H                | CH <sub>3</sub>                 | CH <sub>3</sub> |
| ОН   | OCH <sub>3</sub>                 | $\mathbf{H}_{i}$ | CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH   | OCH <sub>3</sub>                 | Н                | CH <sub>3</sub>                 | $CH_3$          |
| Ci   | OCH <sub>3</sub>                 | Н                | CH <sub>3</sub>                 | $CH_3$          |
| ОН   | CH <sub>2</sub> CH <sub>3</sub>  | CH <sub>3</sub>  | CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH   | CH <sub>2</sub> CH <sub>3</sub>  | CH <sub>3</sub>  | CH <sub>3</sub>                 | $CH_3$          |
| ČL   | CH <sub>2</sub> CH <sub>3</sub>  | CH <sub>3</sub>  | CH3                             | CH <sub>3</sub> |
| О́Н  | $NO_2$                           | CH <sub>3</sub>  | CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH   | NO <sub>2</sub>                  | CH <sub>3</sub>  | CH <sub>3</sub>                 | CH <sub>3</sub> |
| CI   | NO <sub>2</sub>                  | CH <sub>3</sub>  | CH <sub>3</sub>                 | CH <sub>3</sub> |
| ОН   | OCH <sub>3</sub>                 | CH <sub>3</sub>  | CH <sub>3</sub>                 | $CH_3$          |
| SH   | OCH <sub>3</sub>                 | CH <sub>3</sub>  | CH <sub>3</sub>                 | CH <sub>3</sub> |
| i c  | OCH <sub>3</sub>                 | CH <sub>3</sub>  | CH <sub>3</sub>                 | CH <sub>3</sub> |
| ОН   | CH <sub>2</sub> CH <sub>3</sub>  | Cl               | CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH   | CH <sub>2</sub> CH <sub>3</sub>  | CI               | CH <sub>3</sub>                 | CH <sub>3</sub> |
| C1   | CH <sub>2</sub> CH <sub>3</sub>  | Cl               | CH <sub>3</sub>                 | CH <sub>3</sub> |
| ОН   | $NO_2$                           | Cl               | СH <sub>3</sub>                 | CH <sub>3</sub> |
| SH   | $NO_2$                           | Cl               | CH <sub>3</sub>                 | СНз             |
| CI   | $NO_2$                           | Cl               | CH <sub>3</sub>                 | CH <sub>3</sub> |
| ОН   | OCH <sub>3</sub>                 | Cl               | CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH   | OCH <sub>3</sub>                 | Cl               | CH <sub>3</sub>                 | CH <sub>3</sub> |
| . Cl | осн <sub>3</sub>                 | Cl ,             | CH <sub>3</sub>                 | CH <sub>3</sub> |
| ОН   | CH <sub>2</sub> CH <sub>3</sub>  | Н                | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| SH   | CH <sub>2</sub> CH <sub>3</sub>  | Н                | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| Cl   | CH <sub>2</sub> CH <sub>3</sub>  | H                | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| OH:  | NO <sub>2</sub>                  | H                | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |

| SH | NO <sub>2</sub>                 | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
|----|---------------------------------|-----------------|-------------------------------------------------|-----------------|
| Cl | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| ОН | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| SH | $OCH_3$                         | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| CI | $OCH_3$                         | Н               | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| ОН | $CH_2CH_3$                      | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| Cl | $CH_2CH_3$                      | $CH_3$          | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| ОН | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| SH | $NO_2$                          | $CH_3$          | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| Cl | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| ОН | $OCH_3$                         | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| SH | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | СН3             |
| Cl | $OCH_3$                         | CH <sub>3</sub> | CH₂CH₃                                          | $CH_3$          |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | CI              | CH <sub>2</sub> CH <sub>3</sub>                 | СН3             |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | CI              | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| OH | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| SH | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | ${ m CH_3}$     |
| Cl | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| ОН | $OCH_3$                         | CI              | CH₂CH₃                                          | $CH_3$          |
| SH | $OCH_3$                         | CI              | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| Cl | OCH <sub>3</sub>                | CI              | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | Н               | $CH_2CH_2CH_3$                                  | CH <sub>3</sub> |
| SH | $CH_2CH_3$                      | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| CI | $CH_2CH_3$                      | Н               | $CH_2CH_2CH_3$                                  | $CH_3$          |
| ОН | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | $NO_2$                          | H               | $CH_2CH_2CH_3$                                  | $CH_3$          |
| ОН | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | OCH <sub>3</sub>                | H               | $CH_2CH_2CH_3$                                  | $CH_3$          |
| Cl | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| OH | $CH_2CH_3$                      | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | $CH_2CH_2CH_3$                                  | $CH_3$          |
| ОН | $NO_2$                          | CH <sub>3</sub> | $CH_2CH_2CH_3$                                  | $CH_3$          |
| SH | NO <sub>2</sub>                 | CH <sub>3</sub> | $CH_2CH_2CH_3$                                  | $CH_3$          |
| Cl | $NO_2$                          | CH <sub>3</sub> | $CH_2CH_2CH_3$                                  | CH <sub>3</sub> |
|    |                                 |                 |                                                 |                 |

| 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | ik.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | The state of the s |
|   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| ОН               | OCH <sub>3</sub>                | CH <sub>3</sub> | CH2CH2CH3                                       | CH <sub>3</sub>   |
|------------------|---------------------------------|-----------------|-------------------------------------------------|-------------------|
| SH               | OCH <sub>3</sub>                | CH <sub>3</sub> | $CH_2CH_2CH_3$                                  | $CH_3$            |
| · CI             | OCH <sub>3</sub>                | $CH_3$          | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>   |
| ОН               | CH <sub>2</sub> CH <sub>3</sub> | , Cl            | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>   |
| SH               | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>   |
| Cl               | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> . |
| ОН               | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>   |
| SH               | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>   |
| ··Cl             | $NO_2$                          | Cl Cl           | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>   |
| ОН               | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>   |
| SH               | осн3                            | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>   |
| CI               | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>   |
| oH               | CH <sub>2</sub> CH <sub>3</sub> | Ĥ               | $\mathbf{H}_{\mathbf{y}}$                       | Cl                |
| SH               | CH <sub>2</sub> CH <sub>3</sub> | Н               | * Н                                             | CI                |
| CI               | CH <sub>2</sub> CH <sub>3</sub> | H               | Н                                               | Cl                |
| OH               | NO <sub>2</sub>                 | H               | Н                                               | , CI              |
| SH -             | $NO_2$                          | - <b>H</b>      | Н                                               | CI                |
| Cl               | NO <sub>2</sub>                 | H.              | Н                                               | Cl                |
| ОН               | OCH <sub>3</sub>                | H               | H.                                              | Cl                |
| SH               | OCH <sub>3</sub>                | н               | H                                               | Cl                |
| Cl               | OCH <sub>3</sub>                | Ĥ               | Н :                                             | , CI              |
| OH               | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | H H                                             | Cl                |
| SH               | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | H                                               | Cl                |
| <sup>3e</sup> Cl | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | H .                                             | Cl                |
| ОН               | NO <sub>2</sub>                 | CH <sub>3</sub> | H.                                              | CI                |
| SH               | $NO_2$                          | CH <sub>3</sub> | Ĥ                                               | Cl                |
| Cl               | NO <sub>2</sub>                 | CH <sub>3</sub> | <b>H</b>                                        | CI                |
| ОН               | OCH <sub>3</sub>                | CH <sub>3</sub> | H                                               | Cl                |
| SH               | OCH <sub>3</sub>                | CH <sub>3</sub> | H .                                             | Cl                |
| Cl               | OCH <sub>3</sub>                | CH <sub>3</sub> | Ĥ                                               | Cl                |
| ОН               | CH <sub>2</sub> CH <sub>3</sub> | Cl              | Н                                               | Čl                |
| SH               | CH <sub>2</sub> CH <sub>3</sub> | Cl              | н                                               | Cl                |
| Cl               | CH <sub>2</sub> CH <sub>3</sub> | Cl              | * Н                                             | Cl                |
| OH T             | $NO_2$                          | Cl              | * H                                             | CI a              |
| SH               | NO <sub>2</sub>                 | Cl              | * H                                             | Cl .              |
| CI               | $NO_2$                          | Cl              | H                                               | CI                |
| OH               | OCH <sub>3</sub>                | Cl              | Н                                               | C:                |
| SH **            | OCH3                            | Cl 1            | to the party of the same                        | Te Él             |
|                  |                                 |                 |                                                 |                   |

| CI   | OCH <sub>3</sub>                | Cl              | Н                               | CI         |
|------|---------------------------------|-----------------|---------------------------------|------------|
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub>                 | Cl         |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub>                 | Cl         |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub>                 | CI         |
| ОН   | $NO_2$                          | Н               | CH <sub>3</sub>                 | CI         |
| SH   | $NO_2$                          | . Н             | CH <sub>3</sub>                 | CI         |
| CI   | $NO_2$                          | Н               | CH <sub>3</sub>                 | CI         |
| ОН   | OCH <sub>3</sub>                | H               | CH <sub>3</sub>                 | CI         |
| SH   | OCH <sub>3</sub>                | Н               | CH <sub>3</sub>                 | C1         |
| Cl   | OCH <sub>3</sub>                | Н               | CH <sub>3</sub>                 | CI         |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                 | CI         |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                 | CI         |
| CI   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                 | CI         |
| ОН   | NO <u>2</u>                     | $CH_3$          | CH <sub>3</sub>                 | Cl         |
| SH   | $NO_2$                          | CH <sub>3</sub> | CH <sub>3</sub>                 | CI         |
| CI   | $NO_2$                          | $CH_3$          | CH <sub>3</sub>                 | CI         |
| ОН   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub>                 | Cl         |
| SH   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub>                 | CI         |
| Cl   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub>                 | CI         |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | $CH_3$                          | CI         |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>3</sub>                 | CI         |
| CI   | CH <sub>2</sub> CH <sub>3</sub> | . C1            | CH <sub>3</sub>                 | CI         |
| ОН   | NO <sub>2</sub>                 | Cl              | CH <sub>3</sub>                 | Cl.,       |
| SH   | NO <sub>2</sub>                 | Cl              | $CH_{\mathfrak{Z}}$             | <i>C</i> 1 |
| Cl   | $NO_2$                          | Cl              | CH <sub>3</sub>                 | Cl         |
| ОН   | OCH <sub>3</sub>                | CI              | CH <sub>3</sub>                 | Cl         |
| SH   | OCH <sub>3</sub>                | Cl              | CH <sub>3</sub>                 | Cl         |
| CI   | OCH <sub>3</sub>                | Cl              | CH <sub>3</sub>                 | CI         |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>3</sub> | CI         |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>3</sub> | CI         |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>3</sub> | Cl         |
| ŎН   | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | CI         |
| SH   | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | Cl         |
| Cl   | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | CI         |
| ОН   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub> | Cl         |
| SH   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub> | CI         |
| Cl   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub> | CI         |
| OH . | CH₂CH₃                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Cì         |

| SH   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
|------|---------------------------------|-----------------|-------------------------------------------------|-----------|
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| OH , | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | CI        |
| SH   | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| Cl   | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| ОН   | OCH <sub>3</sub>                | СН3             | CH₂CH₃                                          | Cl        |
| SH   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| CI   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | CI        |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | CI              | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | CI        |
| ОН   | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| SH   | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| Cl   | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| ОН   | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| SH   | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| Cl   | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Cl        |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | H               | CH2CH2CH3                                       | Cl        |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | H               | CH2CH2CH3                                       | Cl        |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | C1.       |
| ОН   | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl        |
| SH   | NO <sub>2</sub>                 | H               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl        |
| Cl   | $NO_2$                          | ъ н             | СH <sub>2</sub> СH <sub>2</sub> СH <sub>3</sub> | Cl        |
| ОН   | OCH <sub>3</sub>                | e H             | CH2CH2CH3                                       | Cl        |
| SH   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl        |
| Cľ   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl        |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH2CH2CH3                                       | Cl        |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cĺ        |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl        |
| ОН   | NO <sub>2</sub>                 | CH <sub>3</sub> | CH₂CH₂CH₃                                       | Cl        |
| SH   | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl        |
| Cl   | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl        |
| ОН   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI        |
| SH   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl        |
| Cl   | OCH <sub>3</sub>                | $CH_3$          | CH2CH2CH3                                       | Cl        |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | , Cl      |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH2CH2CH3                                       | Cl        |
| ī cī | ĊĤźĈĤ3                          | . CI            | CHECHOCHO                                       | · ····Cl· |
|      |                                 |                 | 1                                               |           |

| ОН | $NO_2$           | Cl | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
|----|------------------|----|-------------------------------------------------|----|
| SH | $NO_2$           | CI | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
| Cl | $NO_2$           | Cl | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| ОН | OCH <sub>3</sub> | Cl | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
| SH | OCH <sub>3</sub> | Cl | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
| CI | OCH <sub>3</sub> | Cl | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | C! |

Table 9

| <u>R</u> a      | <u>R</u> b      | <u>R 1</u>      | <u>R</u> 2      | $R^{18}$ |
|-----------------|-----------------|-----------------|-----------------|----------|
| H               | H               | H               | Н               | H        |
| CH <sub>3</sub> | H               | Н               | Н               | Н        |
| CH <sub>3</sub> | CH <sub>3</sub> | H               | Н               | Н        |
| Н               | Н               | CH <sub>3</sub> | Н               | Н        |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | Н               | н        |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н               | Н        |
| Н               | Н               | CI              | Н               | Н        |
| CH <sub>3</sub> | H               | CI              | Н               | H        |
| СН3             | CH <sub>3</sub> | Cl              | Н               | Н        |
| H               | H               | Н               | CH <sub>3</sub> | Н        |
| CH <sub>3</sub> | Н               | Н               | CH <sub>3</sub> | Н        |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | CH <sub>3</sub> | Н        |
| Н               | Н               | CH <sub>3</sub> | CH <sub>3</sub> | Н        |
| СН3             | Н               | CH <sub>3</sub> | CH <sub>3</sub> | H        |
| $CH_3$          | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н        |
| Н               | H               | Cl              | CH <sub>3</sub> | Н        |
| CH <sub>3</sub> | Н               | Cl              | CH <sub>3</sub> | Н        |
| CH <sub>3</sub> | $CH_3$          | Cl              | CH <sub>3</sub> | Н        |
| Н               | Н               | Н               | Cl              | H        |
| CH <sub>3</sub> | Н               | Н               | CI              | Н        |
| CH <sub>3</sub> | CH <sub>3</sub> | H               | Cl              | Н        |
|                 |                 |                 |                 |          |

| Н               | Н                 | CH <sub>3</sub> | Cl                                       | Н                 |
|-----------------|-------------------|-----------------|------------------------------------------|-------------------|
| CH <sub>3</sub> | Н                 | CH <sub>3</sub> | Cl                                       | Н                 |
| CH <sub>3</sub> | CH <sub>3</sub>   | CH <sub>3</sub> | CI                                       | Н                 |
| , H             | Н                 | Cl              | Cl                                       | Н                 |
| CH <sub>3</sub> | Н -               | Cl              | Cl                                       | Н                 |
| CH <sub>3</sub> | CH <sub>3</sub>   | Cl              | *CI                                      | Н                 |
| Н               | н                 | "Н              | Н                                        | CH <sub>3</sub>   |
| CH <sub>3</sub> | H                 | Н               | Н                                        | CH <sub>3</sub>   |
| CH <sub>3</sub> | CH <sub>3</sub>   | H               | H                                        | CH <sub>3</sub>   |
| Н               | Н                 | CH <sub>3</sub> | Н                                        | CH <sub>3</sub>   |
| сн3             | H                 | CH <sub>3</sub> | Н                                        | $CH_3$            |
| CH <sub>3</sub> | CH <sub>3</sub>   | CH <sub>3</sub> | Н                                        | $CH_3$            |
| H               | H -               | C1              | H H                                      | CH <sub>3</sub>   |
| CH <sub>3</sub> | н                 | Cl              | " н                                      | CH <sub>3</sub>   |
| CH <sub>3</sub> | , CH <sub>3</sub> | Cl              | H                                        | CH <sub>3</sub>   |
| Н               | Н                 | H               | CH <sub>3</sub>                          | CH <sub>3</sub>   |
| CH <sub>3</sub> | H                 | Н "             | CH <sub>3</sub>                          | °CH <sub>3</sub>  |
| CH <sub>3</sub> | CH <sub>3</sub>   | » H             | CH <sub>3</sub>                          | $CH_3$            |
| H               | H                 | CH <sub>3</sub> | CH <sub>3</sub>                          | CH <sub>3</sub>   |
| CH <sub>3</sub> | •Н                | CH <sub>3</sub> | CH <sub>3</sub>                          | CH <sub>3</sub>   |
| CH <sub>3</sub> | CH <sub>3</sub>   | CH <sub>3</sub> | CH <sub>3</sub>                          | CH <sub>3</sub>   |
| Н               | Н                 | Čl              | CH <sub>3</sub>                          | ° CH <sub>3</sub> |
| CH <sub>3</sub> | Н                 | Cl              | CH <sub>3</sub>                          | CH <sub>3</sub>   |
| CH <sub>3</sub> | CH <sub>3</sub>   | Cl              | CH <sub>3</sub>                          | CH <sub>3</sub>   |
| Н               | H <sub>2</sub>    | H               | ČI                                       | CH <sub>3</sub>   |
| CH <sub>3</sub> | Н                 | Н               | Cl                                       | CH <sub>3</sub>   |
| CH <sub>3</sub> | CH <sub>3</sub>   | . Н             | Cl                                       | CH <sub>3</sub>   |
| - <b>H</b>      | Н                 | CH <sub>3</sub> | Cl                                       | CH <sub>3</sub>   |
| CH <sub>3</sub> | H                 | CH <sub>3</sub> | Cl                                       | CH <sub>3</sub>   |
| CH <sub>3</sub> | CH <sub>3</sub>   | CH <sub>3</sub> | Cl                                       | CH <sub>3</sub>   |
| Н               | Ĥ                 | Cl              | CI                                       | CH <sub>3</sub>   |
| CH <sub>3</sub> | . Н               | Cl              | ČI -                                     | CH <sub>3</sub>   |
| CH <sub>3</sub> | CH <sub>3</sub>   | Cl Cl           | Cl. ,                                    | CH <sub>3</sub> . |
| Н               | . Н               | H               | Н «                                      | Cl                |
| CH <sub>3</sub> | H                 | . н             | H                                        | Cl                |
| CH <sub>3</sub> | CH <sub>3</sub>   | Н ,             | Н                                        | Cl                |
| Н               | Н                 | CH <sub>3</sub> | Н                                        | CI ,              |
| ČH <sub>3</sub> | H                 | CH3             | a la | . «. «Cl.         |
|                 |                   |                 |                                          |                   |

| CH <sub>3</sub> | $CH_3$          | CH <sub>3</sub> | Н               | Cl   |
|-----------------|-----------------|-----------------|-----------------|------|
| Н               | Н               | CI              | H               | Cl   |
| CH <sub>3</sub> | Н               | Cl              | Н               | Cl   |
| СН3             | CH <sub>3</sub> | CI              | Н               | CI   |
| Н               | Н               | Н               | $CH_3$          | CI   |
| CH <sub>3</sub> | H               | Н               | CH <sub>3</sub> | Cl   |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | CH <sub>3</sub> | Cl   |
| Н               | Н               | $CH_3$          | CH <sub>3</sub> | Cl   |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | CH <sub>3</sub> | CI   |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | $CH_3$          | Cl   |
| H               | Н               | Cl              | CH <sub>3</sub> | CI   |
| $CH_3$          | H               | Ci              | $CH_3$          | Cl   |
| CH <sub>3</sub> | CH <sub>3</sub> | CI              | $CH_3$          | Cl   |
| Н               | Н               | Н               | CI              | Cl   |
| CH <sub>3</sub> | H               | H               | Cl              | CI   |
| CH <sub>3</sub> | $CH_3$          | H               | CI              | Cl   |
| Н               | Н               | CH <sub>3</sub> | Cl              | C1   |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | CI              | Cl   |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | CI · |
| H               | Н               | Cl              | Cl              | Cl   |
| CH <sub>3</sub> | Н               | Cl              | Cl              | Cl   |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | CI              | Cl   |

| <u>R</u> a      | <u>R</u> b        | <u>R 1</u>      | <u>R<sup>2</sup></u> | <u>R18</u> |
|-----------------|-------------------|-----------------|----------------------|------------|
| Н               | Н                 | Н               | Н                    | H          |
| CH <sub>3</sub> | Н                 | Н               | Н                    | H          |
| CH <sub>3</sub> | CH <sub>3</sub>   | Н               | Н                    | Н          |
| Н               | Н                 | CH <sub>3</sub> | Н                    | Н          |
| CH <sub>3</sub> | Н                 | CH <sub>3</sub> | Н                    | Н          |
| CH <sub>3</sub> | · CH <sub>3</sub> | CH <sub>3</sub> | Н                    | Н          |

| H                 | Н               | CI              | Н               | H                 |
|-------------------|-----------------|-----------------|-----------------|-------------------|
| CH <sub>3</sub>   | Н               | CI              | Н               | Н                 |
| CH <sub>3</sub>   | CH <sub>3</sub> | CI              | H               | H                 |
| Н                 | Н               | н               | CH <sub>3</sub> | Н                 |
| $CH_3$            | Н               | Н               | CH <sub>3</sub> | Н                 |
| CH <sub>3</sub>   | CH <sub>3</sub> | Н               | CH <sub>3</sub> | Н                 |
| Н                 | Н               | CH <sub>3</sub> | CH <sub>3</sub> | Н                 |
| CH <sub>3</sub>   | Н               | CH <sub>3</sub> | CH <sub>3</sub> | Н                 |
| CH <sub>3</sub>   | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н                 |
| Н                 | Н               | CI              | CH <sub>3</sub> | Н                 |
| CH <sub>3</sub>   | Н               | Cl              | CH <sub>3</sub> | Н                 |
| CH <sub>3</sub>   | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | Н                 |
| Н                 | Н               | Н               | CI              | H                 |
| CH <sub>3</sub>   | Н               | H               | Cl              | Н                 |
| $CH_3$            | CH <sub>3</sub> | Н               | Cl              | Н                 |
| Н                 | Н               | CH <sub>3</sub> | Cl              | H                 |
| CH <sub>3</sub>   | Н               | CH <sub>3</sub> | Cl              | Н                 |
| СН3               | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | Н                 |
| Н                 | Н               | Cl              | Cl              | Н                 |
| CH <sub>3</sub>   | Н               | CI              | Cl              | Н                 |
| CH <sub>3</sub>   | CH <sub>3</sub> | Cl              | Cl              | Н                 |
| Н                 | Н               | H               | Н               | 6-CH <sub>3</sub> |
| $CH_3$            | Н               | Н               | Н               | 6-CH <sub>3</sub> |
| CH <sub>3</sub>   | CH <sub>3</sub> | Н               | H               | 6-CH <sub>3</sub> |
| H                 | Н               | $CH_3$          | H               | 6-CH <sub>3</sub> |
| CH <sub>3</sub>   | н               | CH <sub>3</sub> | H               | 6-CH <sub>3</sub> |
| CH <sub>3</sub>   | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 6-CH <sub>3</sub> |
| Н                 | Н               | Cl              | Н               | 6-CH <sub>3</sub> |
| CH <sub>3</sub>   | Н               | CI              | Н               | 6-CH <sub>3</sub> |
| CH <sub>3</sub>   | CH <sub>3</sub> | Cl              | Н               | 6-CH <sub>3</sub> |
| Н                 | Н               | Н               | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub>   | Н               | Н               | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub>   | CH <sub>3</sub> | Н               | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| Н                 | H               | CH <sub>3</sub> | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub>   | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub> . | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| Н                 | Н               | Cl              | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub>   | Н               | Cl              | CH <sub>3</sub> | 6-CH <sub>3</sub> |
|                   |                 |                 |                 |                   |

| CH <sub>3</sub> | CH <sub>3</sub> | Cl                | CH <sub>3</sub> | 6-CH <sub>3</sub> |
|-----------------|-----------------|-------------------|-----------------|-------------------|
| Н               | Н               | Н                 | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Н                 | CI              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Н                 | Cl              | 6-CH <sub>3</sub> |
| Н               | Н               | $CH_3$            | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | н               | CH <sub>3</sub>   | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>   | Cl              | 6-CH <sub>3</sub> |
| Н               | H               | Cl                | CI              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | H               | Cl                | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CI                | CI              | 6-CH <sub>3</sub> |
| Н               | H               | Н                 | Н               | 5-CH <sub>3</sub> |
| $CH_3$          | Н               | Н                 | Н               | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Н                 | Н               | 5-CH <sub>3</sub> |
| H               | Н               | CH <sub>3</sub>   | Н               | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | CH <sub>3</sub>   | Н               | 5-CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub> | CH <sub>3</sub>   | Н               | 5-CH <sub>3</sub> |
| Н               | Н               | CI                | H               | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Cl                | Н               | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl                | H               | 5 CH <sub>3</sub> |
| Н               | Н               | Н                 | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Н                 | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Н                 | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| Н               | Н               | CH <sub>3</sub>   | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | H               | CH <sub>3</sub>   | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>   | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| Н               | Н               | CI                | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | . Н             | CI                | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CI .              | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| Н               | Н               | Н                 | CI              | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | Η .             | н                 | Cl              | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Н                 | Cl              | 5-CH <sub>3</sub> |
| Н               | Н               | CH <sub>3</sub>   | Cl              | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | - CH <sub>3</sub> | CI              | 5 CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>   | Cl              | 5-CH <sub>3</sub> |
| H               | Н               | Cl                | Cl              | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Cl                | Cl              | 5-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl                | Cl              | 5-CH <sub>3</sub> |
| Н               | H               | H                 | Н               | 4-CH <sub>3</sub> |

| CH <sub>3</sub> | Н               | Н               | Н               | 4-CH <sub>3</sub> |
|-----------------|-----------------|-----------------|-----------------|-------------------|
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | H               | 4-CH <sub>3</sub> |
| Н               | Н               | CH <sub>3</sub> | Н               | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | H               | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 4-CH <sub>3</sub> |
| Н               | Н               | Cl              | Н               | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Cl              | H               | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CI              | Н               | 4-CH <sub>3</sub> |
| Н               | Н               | Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| Н               | H               | CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | $CH_3$          | CH <sub>3</sub> | $CH_3$          | 4-CH <sub>3</sub> |
| Н               | Н               | Cl              | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Cl              | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | C1              | $CH_3$          | 4-CH <sub>3</sub> |
| Н               | Н               | H               | Cl              | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Н               | Cl              | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Cl              | 4-CH <sub>3</sub> |
| Н               | Н               | CH <sub>3</sub> | Cl              | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | Cl              | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | 4-CH <sub>3</sub> |
| Н               | Н               | Cl              | C1              | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | H               | Cl              | Cl              | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | Cl              | 4-CH <sub>3</sub> |
| Н               | Н               | Н               | Н               | 6-C1              |
| CH <sub>3</sub> | Н               | Н               | H.              | 6-Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | H               | 6-C1              |
| Н               | Н               | CH <sub>3</sub> | Н               | 6-C1              |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | Н               | 6-CI              |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 6-CI              |
| Н               | Н               | Cl              | H               | 6-C1              |
| CH <sub>3</sub> | Н               | Cl              | Н               | 6-CI              |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | H               | 6-CI              |
| Н               | H               | Н               | CH <sub>3</sub> | 6-Cl              |
| CH <sub>3</sub> | Н               | Н               | CH <sub>3</sub> | 6-Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | н .             | СH <sub>3</sub> | 6-C1              |

| Н               | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 6-C1 |
|-----------------|-----------------|-----------------|-----------------|------|
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 6-Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 6-Cl |
| 11              | H               | CI CI           | CH <sub>3</sub> | 6-CI |
| CH <sub>3</sub> | н               | Cl              | CH <sub>3</sub> | 6-Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | CI              | CH <sub>3</sub> | 6-Cl |
| Н               | Н               | Н               | Cl              | 6-Cl |
| CH <sub>3</sub> | Н               | Н               | Cl              | 6-Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Cl              | 6-Cl |
| •               | Н               | CH <sub>3</sub> | Cl              | 6-C1 |
| H               | Н               | CH <sub>3</sub> | Cl              | 6-CI |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | 6-Cl |
| CH <sub>3</sub> | Н               | Cl              | Cl              | 6-CI |
| H               | Н               |                 | Cl .            | 6-CI |
| CH <sub>3</sub> |                 | Cl              | Cl              |      |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              |                 | 6-Cl |
| Н               | H               | Н               | Н               | 4-Cl |
| CH <sub>3</sub> | Н               | H               | Н               | 4-C1 |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Н               | 4-Cl |
| Н               | H               | CH <sub>3</sub> | Н               | 4-CI |
| CH <sub>3</sub> | H               | CH <sub>3</sub> | H<br>           | 4-Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | H               | 4-Cl |
| H               | H               | Cl              | H<br>           | 4-Cl |
| CH <sub>3</sub> | H               | Cl              | H               | 4-Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | Н               | 4-Cl |
| Н               | Н               | Н               | CH <sub>3</sub> | 4-Cl |
| CH <sub>3</sub> | H               | Н               | CH <sub>3</sub> | 4-Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | CH <sub>3</sub> | 4-Cl |
| Н               | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 4-Cl |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 4-Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 4-Cl |
| H               | Н               | Cl              | CH <sub>3</sub> | 4-Cl |
| CH <sub>3</sub> | H               | Cl              | CH <sub>3</sub> | 4-Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | CI              | CH <sub>3</sub> | 4-Cl |
| Н               | Н               | Н               | Cl              | 4-C1 |
| CH <sub>3</sub> | H               | Н               | Cl              | 4-Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Cl              | 4-CI |
| Н               | H               | CH <sub>3</sub> | Cl              | 4-Cl |
| CH <sub>3</sub> | H               | CH <sub>3</sub> | Cl              | 4-C1 |
|                 |                 |                 |                 |      |

| CH <sub>3</sub> | $^{\circ}$ CH <sub>3</sub> | $^{\circ}$ CH <sub>3</sub> | Cl   | 4-CI  |
|-----------------|----------------------------|----------------------------|------|-------|
| Н               | Н                          | Cl                         | . Cl | 4-C1  |
| CH <sub>3</sub> | Н                          | Cl                         | CI   | 4-C1  |
| CH <sub>2</sub> | CHa                        | Cl                         | CI   | 4 (2) |

$$R^{a}$$
 $R^{b}$ 
 $OH$ 
 $R^{2}$ 
 $R^{2}$ 
 $OH$ 
 $R^{2}$ 
 $R^{2}$ 
 $OH$ 
 $R^{2}$ 

| <u>R</u> a      | <u>R</u> b      | <u>R</u> 1                            | <u>R</u> 2      | <u>R18</u> |
|-----------------|-----------------|---------------------------------------|-----------------|------------|
| Н               | H               | Н                                     | Н               | Н          |
| CH <sub>3</sub> | н -             | H                                     | H.              | Н          |
| CH <sub>3</sub> | CH <sub>3</sub> | Н                                     | H *             | Н          |
| Н               | H               | CH <sub>3</sub>                       | Н               | Н          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub>                       | Н               | H          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                       | • H . · · ·     | Н          |
| H               | Н               | Cl                                    | H               | Н          |
| CH <sub>3</sub> | Н               | Cl                                    | H               | н Н        |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl                                    | H               | H          |
| Н               | H               | '- н                                  |                 | H          |
| CH <sub>3</sub> | • • H           | - H                                   | СН3             | H          |
| CH <sub>3</sub> | CH <sub>3</sub> | · H                                   | СН3             | Н          |
| Н               | Н               | CH <sub>3</sub>                       | CH <sub>3</sub> | Н          |
| CH <sub>3</sub> | Н .             | CH <sub>3</sub>                       | CH <sub>3</sub> | Н          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                       | CH <sub>3</sub> | г Н        |
| Н               | Н               | · · · · · · · · · · · · · · · · · · · | CH <sub>3</sub> | Н.         |
| CH <sub>3</sub> | Н               | - CI                                  | CH <sub>3</sub> | Н          |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl                                    | CH <sub>3</sub> | Н          |
| Н               | H "             | * <b>H</b>                            | Cl -            | H          |
| CH <sub>3</sub> | H -             | , * <b>H</b>                          | Cl              | H          |
| CH <sub>3</sub> | CH <sub>3</sub> | H                                     | Cl              | , Н        |
| H               | Н               | CH <sub>3</sub>                       | Cl .            | Н          |
| CH <sub>2</sub> | Da H . Jan w    | CH3E362                               | G G             | H.         |

CH<sub>3</sub>

Cl

Н

CH<sub>3</sub>

 $CH_3$ 

| Н               | H               | Cl              | Cl              | Н                          |
|-----------------|-----------------|-----------------|-----------------|----------------------------|
| CH <sub>3</sub> | Н               | Cl              | Cl              | Н                          |
| CH <sub>3</sub> | CH <sub>3</sub> | CI              | CI              | Н                          |
| Н               | Н               | Н               | Н               | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | Н               | Н               | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Н               | 2-CH <sub>3</sub>          |
| Н               | Н               | $CH_3$          | H               | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | Н               | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 2-CH <sub>3</sub>          |
| Н               | Н               | Cl              | Н               | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | Cl              | H               | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | H               | 2-CH <sub>3</sub>          |
| Н               | Н               | Н               | CH <sub>3</sub> | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | H               | H               | CH <sub>3</sub> | 2 CH <sub>3</sub>          |
| CH <sub>3</sub> | CH <sub>3</sub> | H               | CH <sub>3</sub> | 2-CH <sub>3</sub>          |
| Н               | н               | CH <sub>3</sub> | CH <sub>3</sub> | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 2-CH <sub>3</sub>          |
| H               | Н               | CI              | CH <sub>3</sub> | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | Cl              | CH <sub>3</sub> | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | 2-CH <sub>3</sub>          |
| Н               | Н               | H               | CI              | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | Н               | Cl              | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | CI '            | 2 CH <sub>3</sub>          |
| Н               | Н               | CH <sub>3</sub> | Cl              | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | CI              | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | CI              | 2-CH <sub>3</sub>          |
| Н               | Н               | Cl              | Cl              | 2-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | Cl              | Cl              | 2- <b>C</b> H <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | Cl              | 2-CH <sub>3</sub>          |
| Н               | Н               | Н               | Н               | 6-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | Н               | Н               | 6-CH <sub>3</sub>          |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Н               | 6-CH <sub>3</sub>          |
| Н               | Н               | CH <sub>3</sub> | Н               | 6-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | H               | 6-CH <sub>3</sub>          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 6-CH <sub>3</sub>          |
| Н               | Н               | CI              | Н               | 6-CH <sub>3</sub>          |
| CH <sub>3</sub> | Н               | Cl              | Н               | 6-CH <sub>3</sub>          |

| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | Н               | 6-CH <sub>3</sub> |
|-----------------|-----------------|-----------------|-----------------|-------------------|
| Н               | Н               | H               | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | H               | Н               | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | СН3             | Н               | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| Н               | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| Н               | Н               | Cl              | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Cl              | СН3             | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| Н               | Н               | Н               | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Н               | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Cl              | 6-CH <sub>3</sub> |
| Н               | Н               | CH <sub>3</sub> | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | 6-CH <sub>3</sub> |
| Н               | Н               | Cl              | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | Cl              | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | CI              | 6-CH <sub>3</sub> |
| Н               | Н               | Н               | 11              | 2-CI              |
| CH <sub>3</sub> | Н               | Н               | Н               | 2-C1              |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Н               | 2-CI              |
| Н               | Н               | CH <sub>3</sub> | Н               | 2-CI              |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | Н               | 2-CI              |
| $CH_3$          | CH <sub>3</sub> | CH <sub>3</sub> | H               | 2-C1              |
| Н               | Н               | Cl              | Н               | 2-CI              |
| CH <sub>3</sub> | Н               | Cl              | Н               | 2-CI              |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | H               | 2-C1              |
| Н               | Н               | Н               | CH <sub>3</sub> | 2-C1              |
| CH <sub>3</sub> | Н               | Н               | CH <sub>3</sub> | 2-C1              |
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | CH <sub>3</sub> | 2-C1              |
| H               | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 2-C1              |
| ĆH <sub>3</sub> | Н               | CH <sub>3</sub> | CH <sub>3</sub> | 2-C1              |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 2-CI              |
| Н               | H               | CI              | CH <sub>3</sub> | 2-Cl              |
| CH <sub>3</sub> | Н               | Cl              | CH <sub>3</sub> | 2-C1              |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | 2-Ci              |
| Н               | Н               | H               | Cl              | 2-C1              |

| CH <sub>3</sub> | H               | Н               | Cl | 2-C1 |
|-----------------|-----------------|-----------------|----|------|
| CH <sub>3</sub> | CH <sub>3</sub> | Н               | Cl | 2-C1 |
| Н               | Н               | CH <sub>3</sub> | Cl | 2-C1 |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> | Cl | 2-CI |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Cl | 2-Cl |
| Н               | Н               | Cl              | Cl | 2-C1 |
| CH <sub>3</sub> | Н               | Cl              | Cl | 2-CI |
| CH <sub>3</sub> | CH <sub>3</sub> | Cl              | Cl | 2-C1 |

| $R^a$           | <u>R</u> b                      | <u>R I</u>      | <u>R<sup>2</sup></u> | $\overline{\mathbf{m}}$ | <u>R17</u>      | <u>R18</u> |
|-----------------|---------------------------------|-----------------|----------------------|-------------------------|-----------------|------------|
| $CH_3$          | CH <sub>3</sub>                 | Н               | Н                    | 1                       | Н               | Н          |
| Н               | $CH_3CH_2$                      | Н               | H                    | 1                       | H               | Н          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | Н                    | 1                       | Н               | Н          |
| Н               | $\mathrm{CH_{3}CH_{2}}$         | $CH_3$          | Н                    | 1                       | Н               | Н          |
| $CH_3$          | CH <sub>3</sub>                 | Cl              | H                    | 1                       | H               | Н          |
| Н               | $CH_3CH_2$                      | Cl              | H                    | i                       | H               | Н          |
| $CH_3$          | CH <sub>3</sub>                 | Н               | $CH_3$               | 1                       | Н               | 1:1        |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | $CH_3$               | 1                       | Н               | H          |
| $CH_3$          | CH <sub>3</sub>                 | $CH_3$          | $CH_3$               | 1                       | Н               | Н          |
| H               | $CH_3CH_2$                      | CH <sub>3</sub> | $CH_3$               | i                       | I-I             | H          |
| $CH_3$          | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub>      | ł                       | Н               | Н          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | $CH_3$               | l                       | Н               | H          |
| $CH_3$          | CH <sub>3</sub>                 | Н               | Cl                   | 1                       | Н               | H          |
| Н               | $CH_3CH_2$                      | Н               | Cl                   | 1                       | Н               | Н          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | Cl                   | 1                       | Н               | Н          |
| Н               | $CH_3CH_2$                      | $CH_3$          | Cl                   | i                       | H               | Н          |
| $CH_3$          | $CH_3$                          | Cl              | Cl                   | 1                       | Н               | Н          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | CI                   | ŧ                       | Н               | Н          |
| $CH_3$          | CH <sub>3</sub>                 | Н               | Н                    | l                       | CH <sub>3</sub> | Н          |
| Н               | $CH_3CH_2$                      | Н               | Н                    | l                       | CH <sub>3</sub> | Н          |
|                 |                                 |                 |                      |                         |                 |            |

| $CH_3$          | CH <sub>3</sub>                 | $CH_3$          | Н               | ì | CH <sub>3</sub>                                 | Н |
|-----------------|---------------------------------|-----------------|-----------------|---|-------------------------------------------------|---|
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | Н               | 1 | CH <sub>3</sub>                                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Н               | I | CH <sub>3</sub>                                 | Н |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CI              | H               | l | CH <sub>3</sub>                                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | СН3             | 1 | CH <sub>3</sub>                                 | Н |
| Н               | $CH_3CH_2$                      | Н               | CH <sub>3</sub> | I | CH <sub>3</sub>                                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | 1 | CH <sub>3</sub>                                 | H |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | $CH_3$          | ı | CH <sub>3</sub>                                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Ci              | CH <sub>3</sub> | l | CH <sub>3</sub>                                 | Н |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | CH <sub>3</sub> | 1 | CH <sub>3</sub>                                 | Н |
| $CH_3$          | CH <sub>3</sub>                 | Н               | Cl              | 1 | CH <sub>3</sub>                                 | Н |
| H               | $CH_3CH_2$                      | Н               | Cl              | 1 | CH <sub>3</sub>                                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | CI              | 1 | CH <sub>3</sub>                                 | Н |
| Н               | $CH_3CH_2$                      | $CH_3$          | CI              | 1 | $CH_3$                                          | H |
| $CH_3$          | CH <sub>3</sub>                 | Cl              | Cl              | 1 | CH <sub>3</sub>                                 | Н |
| Н               | $CH_3CH_2$                      | Ci              | CI              | 1 | CH <sub>3</sub>                                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | H |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | H               | ì | CH <sub>3</sub> CH <sub>2</sub>                 | H |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | H               | i | CH <sub>3</sub> CH <sub>2</sub>                 | H |
| Н               | $CH_3CH_2$                      | $CH_3$          | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | H |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Н               | 1 | $CH_3CH_2$                                      | H |
| Н               | $CH_3CH_2$                      | Cl              | Н               | 1 | $CH_3CH_2$                                      | H |
| $CH_3$          | CH <sub>3</sub>                 | Н               | CH <sub>3</sub> | Ī | CH <sub>3</sub> CH <sub>2</sub>                 | Н |
| Н               | $CH_3CH_2$                      | Н               | CH <sub>3</sub> | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | H |
| $CH_3$          | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | ! | CH <sub>3</sub> CH <sub>2</sub>                 | Н |
| Н               | $CH_3CH_2$                      | $CH_3$          | CH <sub>3</sub> | l | $CH_3CH_2$                                      | H |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub> | 1 | $CH_3CH_2$                                      | Н |
| Н               | $CH_3CH_2$                      | CI              | CH <sub>3</sub> | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Н |
| $CH_3$          | CH <sub>3</sub>                 | Н               | C1              | ì | CH <sub>3</sub> CH <sub>2</sub>                 | H |
| Н               | $CH_3CH_2$                      | Н               | CI              | 1 | $CH_3CH_2$                                      | H |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | CI              | ı | CH <sub>3</sub> CH <sub>2</sub>                 | Н |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | H |
| H               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | ĊI              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Н |
| CH <sub>3</sub> | CH <sub>3</sub>                 | H               | Н               | ì | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н |
| Н               | $CH_3CH_2$                      | Н               | Н               | I | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | H               |   | $CH_3CH_2CH_2$                                  | Н |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Н               | 1 | $CH_3CH_2CH_2$                                  | Н |

| СН3             | CH <sub>3</sub>                 | CI              | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
|-----------------|---------------------------------|-----------------|-----------------|---|-------------------------------------------------|-----------------|
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Н               | l | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | $CH_3$          | ı | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| H               | $CH_3CH_2$                      | Н               | CH <sub>3</sub> | ì | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | CH <sub>3</sub> | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | $CH_3$          | l | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CI              | $CH_3$          | 1 | $CH_3CH_2CH_2$                                  | H               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CI              | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | CI              | l | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | H               | Cl              | l | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H               |
| СН3             | CH <sub>3</sub>                 | $CH_3$          | Cl              | ı | $CH_3CH_2CH_2$                                  | H               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| СН3             | CH <sub>3</sub>                 | Cl              | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | }-{             |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Н               | l | Н                                               | $CH_3$          |
| H               | CH <sub>3</sub> CH <sub>2</sub> | H               | Н               | 1 | 1-1                                             | $CH_3$          |
| CH <sub>3</sub> | $CH_3$                          | CH <sub>3</sub> | Н               | l | Н                                               | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | Н               | ŀ | Н                                               | CH <sub>3</sub> |
| СН3             | CH <sub>3</sub>                 | CI              | Н               | l | Н                                               | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Н               | 1 | Н                                               | $CH_3$          |
| СН3             | CH <sub>3</sub>                 | H               | $CH_3$          | 1 | Н                                               | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | $CH_3$          | 1 | H                                               | $CH_3$          |
| СН3             | CH <sub>3</sub>                 | $CH_3$          | $CH_3$          | 1 | H                                               | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | $CH_3$          | 1 | Н                                               | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | $CH_3$          | 1 | H                                               | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | $CH_3$          | l | Н                                               | $CH_3$          |
| СН3             | CH <sub>3</sub>                 | Н               | Cl              | l | Н                                               | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> |                 | Cl              | t | 1-1                                             | $CH_3$          |
| CH <sub>3</sub> | $CH_3$                          | $CH_3$          | Cl              | l | Н                                               | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | Cl.,            | ļ | Н                                               | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | CI              | l | Н                                               | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Cl              | 1 | H                                               | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | 1-1             | Н               | 1 | CH <sub>3</sub>                                 | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | Н               | l | CH <sub>3</sub>                                 | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Н               | 1 | CH <sub>3</sub>                                 | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Н               | i | CH <sub>3</sub>                                 | $CH_3$          |
| СН3             | CH <sub>3</sub>                 | CI              | Н               | 1 | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl.             | Н               | 1 | CH <sub>3</sub>                                 | CH <sub>3</sub> |

| $CH_3$          | CH <sub>3</sub>                 | Н               | $CH_3$          | 1 | CH <sub>3</sub>                 | $CH_{\mathfrak{F}}$ |
|-----------------|---------------------------------|-----------------|-----------------|---|---------------------------------|---------------------|
| Н               | $CH_3CH_2$                      | Н               | $CH_3$          | 1 | CH <sub>3</sub>                 | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | $CH_3$          | I | CH <sub>3</sub>                 | $CH_3$              |
| Н               | $CH_3CH_2$                      | $CH_3$          | CH <sub>3</sub> | 1 | CH <sub>3</sub>                 | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub> | 1 | CH <sub>3</sub>                 | $CH_3$              |
| Н               | CH₃CH₂                          | Cl              | $CH_3$          | I | CH <sub>3</sub>                 | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Cl              | ! | CH <sub>3</sub>                 | CH <sub>3</sub>     |
| Н               | $CH_3CH_2$                      | Н               | Cl              | 1 | CH <sub>3</sub>                 | CH <sub>3</sub>     |
| CH <sub>3</sub> | $CH_3$                          | $CH_3$          | Cl              | į | CH <sub>3</sub>                 | CH <sub>3</sub>     |
| Н               | $CH_3CH_2$                      | $CH_3$          | Cl              | l | CH <sub>3</sub>                 | CH <sub>3</sub>     |
| СН3             | CH <sub>3</sub>                 | Cl              | Cl              | ! | CH <sub>3</sub>                 | CH <sub>3</sub>     |
| Н               | $CH_3CH_2$                      | C1              | Cl              | 1 | CH <sub>3</sub>                 | CH <sub>3</sub>     |
| CH <sub>3</sub> | CH <sub>3</sub>                 | H -             | Н               | 1 | CH₃CH₂                          | CH <sub>3</sub>     |
| Н               | $CH_3CH_2$                      | Н               | Н               | ı | CH₃CH₂                          | CH <sub>2</sub>     |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | Н               | 1 | CH₃CH₂                          | CH <sub>3</sub>     |
| Н               | $CH_3CH_2$                      | $CH_3$          | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CI              | Н               | 1 | $CH_3CH_2$                      | $CH_3$              |
| H               | $CH_3CH_2$                      | Cl              | Н               | I | $\mathrm{CH_{3}CH_{2}}$         | CH <sub>3</sub>     |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | $CH_3$          | I | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$              |
| Н               | $CH_3CH_2$                      | Н               | $CH_3$          | l | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub>     |
| CH <sub>3</sub> | $CH_3$                          | $CH_3$          | $CH_3$          | l | $CH_3CH_2$                      | $CH_3$              |
| Н               | $CH_3CH_2$                      | CH <sub>3</sub> | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub> | 1 | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | CH <sub>3</sub> | } | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | CI              | 1 | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | Cl              | 1 | $CH_3CH_2$                      | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Cl              | ì | $CH_3CH_2$                      | $CH_3$              |
| Н               | $CH_3CH_2$                      | CH <sub>3</sub> | Cl              | 1 | $CH_3CH_2$                      | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub>     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | H               | 1 | $CH_3CH_2CH_2$                  | $CH_3$              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | Н               | 1 | $\mathrm{CH_3CH_2CH_2}$         | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Н               | 1 | $\mathrm{CH_3CH_2CH_2}$         | CH <sub>3</sub>     |
| H               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | Н               | 1 | $CH_3CH_2CH_2$                  | CH <sub>3</sub>     |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Н               | 1 | $CH_3CH_2CH_2$                  | CH <sub>3</sub>     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | H               | i | $CH_3CH_2CH_2$                  | $CH_3$              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | CH <sub>3</sub> | l | J ~ 2                           | -                   |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | CH <sub>3</sub> | 1 | $CH_3CH_2CH_2$                  | CH <sub>3</sub>     |
|                 |                                 |                 |                 |   |                                 |                     |

| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | $CH_3$          | i   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
|-----------------|---------------------------------|-----------------|-----------------|-----|-------------------------------------------------|-----------------|
| H               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | $CH_3$          | ţ   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| $CH_3$          | $CH_3$                          | Cl              | $CH_3$          | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | CH₃CH₂                          | ČL              | $CH_3$          | . 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| $CH_3$          | $CH_3$                          | Н               | CI              | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н               | $CH_3CH_2$                      | Н               | Cl              | i   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | $CH_3$                          | $CH_3$          | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| Н               | $CH_3CH_2$                      | $CH_3$          | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | $CH_3$                          | Cl              | Cl              | l   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Cl              | 1   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | СН3             |
| СН3             | СН3                             | H               | Н               | 1   | Н                                               | CI              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | Н               | l   | Н                                               | C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Н               | ŧ   | Н                                               | Cì              |
| Н               | $CH_3CH_2$                      | $CH_3$          | Н               | ı   | Н                                               | C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CI              | H               | }   | H                                               | Cl              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CI              | H               | ١   | Н                                               | CI              |
| CH <sub>3</sub> | $CH_3$                          | H               | $CH_3$          | t   | Н                                               | Cl              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | Н               | $CH_3$          | ì   | Н                                               | CL              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | $CH_3$          | ı   | H                                               | Cl              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | $CH_3$          | 1   | Н                                               | CI              |
| СН3             | CH <sub>3</sub>                 | C1              | $CH_{3}$        | l   | Н                                               | Cl              |
| H               | $CH_3CH_2$                      | Cl              | $CH_3$          | l   | Н                                               | CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | H               | Cl              | l   | Н                                               | CI              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | CI              | 1   | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH3             | Cl              | 1   | Н                                               | CI              |
| Н               | $CH_3CH_2$                      | $CH_3$          | Cl              | 1   | H                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CI              | CI .            | 1   | Н                                               | Cl              |
| Н               | $CH_3CH_2$                      | Cl              | Cl              | 1   | Н                                               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Н               | 1   | CH <sub>3</sub>                                 | Cl              |
| Н               | $CH_3CH_2$                      | Н               | Н               | ŀ   | CH <sub>3</sub>                                 | C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | Н               | l   | CH <sub>3</sub>                                 | Cl              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | H               | I   | CH <sub>3</sub>                                 | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Н               | 1   | CH <sub>3</sub>                                 | Cl              |
| Н               | $\mathrm{CH_3CH_2}$             | Cl              | Н               | 1   | CH <sub>3</sub>                                 | ·CI             |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | $CH_3$          | ì   | CH <sub>3</sub>                                 | Cl              |
| Н               | сн <sub>3</sub> сн <sub>2</sub> | Н               | CH <sub>3</sub> | 1   | CH <sub>3</sub>                                 | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | $CH_3$          | 1   | CH <sub>3</sub>                                 | CI              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 1   | СН3                                             | Cl              |

| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub> | ļ | CH <sub>3</sub>                                 | Cl                     |
|-----------------|---------------------------------|-----------------|-----------------|---|-------------------------------------------------|------------------------|
| Н               | CH₃CH₂                          | Cl              | CH <sub>3</sub> | 1 | CH <sub>3</sub>                                 | CT                     |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Cl              | } | CH <sub>3</sub>                                 | CI                     |
| H               | $CH_3CH_2$                      | Н               | Cl              | i | CH <sub>3</sub>                                 | Cl                     |
| CH <sub>3</sub> | $CH_3$                          | $CH_3$          | CI              | į | $CH_3$                                          | Cl                     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Cl              | 1 | CH <sub>3</sub>                                 | Çl                     |
| $CH_3$          | СН3                             | CI              | CI              | 1 | CH <sub>3</sub>                                 | Cl                     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Cl              | 1 | $CH_3$                                          | Cl                     |
| $CH_3$          | CH <sub>3</sub>                 | Н               | Ħ               | 1 | CH₃CH₂                                          | Cl                     |
| Н               | $CH_3CH_2$                      | H               | Н               | 1 | $CH_3CH_2$                                      | Cl                     |
| $CH_3$          | CH <sub>3</sub>                 | $CH_3$          | Н               | 1 | $CH_3CH_2$                                      | Cl                     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | H               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl                     |
| $CH_3$          | CH <sub>3</sub>                 | Cl              | H               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl                     |
| Н               | $CH_3CH_2$                      | Cl              | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | CI                     |
| $CH_3$          | CH <sub>3</sub>                 | Н               | $CH_3$          | 1 | $CH_3CH_2$                                      | C1                     |
| Н               | $CH_3CH_2$                      | Н               | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | $\mathbf{C}\mathbf{I}$ |
| $CH_3$          | СН3                             | $CH_3$          | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl                     |
| Н               | $\mathrm{CH_{3}CH_{2}}$         | $CH_3$          | $CH_3$          | l | CH <sub>3</sub> CH <sub>2</sub>                 | CI                     |
| $CH_3$          | CH <sub>3</sub>                 | Cl              | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | CI                     |
| H               | $\mathrm{CH_{3}CH_{2}}$         | Cl              | CH <sub>3</sub> | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | CI                     |
| $CH_3$          | CH <sub>3</sub>                 | H               | Cl              | l | CH <sub>3</sub> CH <sub>2</sub>                 | Cl                     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | Cl              | l | $CH_3CH_2$                                      | Cl                     |
| $CH_3$          | CH <sub>3</sub>                 | $CH_3$          | Cl              | l | $CH_3CH_2$                                      | Cl                     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | CI              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl                     |
| $CH_3$          | $CH_3$                          | Cl              | CI              | } | $CH_3CH_2$                                      | Cl                     |
| Н               | $CH_3CH_2$                      | Cl              | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl                     |
| $CH_3$          | CH <sub>3</sub>                 | Н               | Н               | l | $CH_3CH_2CH_2$                                  | Cl                     |
| Н               | $CH_3CH_2$                      | Н               | Н               | 1 | $CH_3CH_2CH_2$                                  | Cl                     |
| $CH_3$          | CH <sub>3</sub>                 | $CH_3$          | Н               | 1 | $\mathrm{CH_3CH_2CH_2}$                         | Cl                     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | Н               | l | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl                     |
| $CH_3$          | CH <sub>3</sub>                 | Cl              | H               | 1 | $CH_3CH_2CH_2$                                  | CI                     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | $H^{\dagger}$   | 1 | $\mathrm{CH_3CH_2CH_2}$                         | Cl                     |
| $CH_3$          | СН3                             | Н               | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl                     |
| Н               | $CH_3CH_2$                      | Н               | $CH_3$          | } | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI                     |
| $CH_3$          | CH <sub>3</sub>                 | $CH_3$          | $CH_3$          | i | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl                     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI                     |
| $CH_3$          | $CH_3$                          | CI              | $CH_3$          | ì | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI                     |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI                     |

| CH <sub>3</sub> | CH <sub>3</sub>                   | H      | CI              | 1 | $\mathrm{CH_3CH_2CH_2}$                         | CI |
|-----------------|-----------------------------------|--------|-----------------|---|-------------------------------------------------|----|
| Н               | CH <sub>3</sub> CH <sub>2</sub> · | Н      | C1              | l | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| СН3             | CH <sub>3</sub>                   | $CH_3$ | CI              | 1 | $CH_3CH_2CH_2$                                  | Cl |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | $CH_3$ | Cl              | 1 | $CH_3CH_2CH_2$                                  | Cl |
| СН3             | $CH_3$                            | Cl     | Cl              | 1 | $CH_3CH_2CH_2$                                  | CI |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | CI     | CI              | 1 | $\mathrm{CH_3CH_2CH_2}$                         | CI |
| H               | CH <sub>3</sub>                   | Н      | Н               | 1 | Н                                               | Н  |
| Н               | CH <sub>3</sub>                   | $CH_3$ | Н               | 1 | Н                                               | Н  |
| Н               | CH <sub>3</sub>                   | Cl     | Н               | 1 | Н                                               | Н  |
| Н               | $CH_3$                            | Н      | $CH_3$          | l | Н                                               | Н  |
| Н               | CH <sub>3</sub>                   | $CH_3$ | CH <sub>3</sub> | 1 | H                                               | Н  |
| H               | CH <sub>3</sub>                   | Cl     | $CH_3$          | 1 | Н                                               | Н  |
| H               | CH <sub>3</sub>                   | Н      | Cl              | i | Н                                               | Н  |
| H               | CH <sub>3</sub>                   | $CH_3$ | Cl              | Ī | H                                               | Н  |
| Н               | CH <sub>3</sub>                   | Cl     | C1              | i | Н                                               | Н  |
| Н               | CH <sub>3</sub>                   | Н      | Н               | 1 | $CH_3$                                          | Н  |
| H               | CH <sub>3</sub>                   | $CH_3$ | Н               | 1 | CH <sub>3</sub>                                 | H  |
| Н               | $CH_3$                            | Cl     | Н               | I | CH <sub>3</sub>                                 | H  |
| H               | CH <sub>3</sub>                   | Н      | $CH_3$          | 1 | $CH_3$                                          | H  |
| H               | CH <sub>3</sub>                   | $CH_3$ | $CH_3$          | 1 | CH <sub>3</sub>                                 | H  |
| H               | CH <sub>3</sub>                   | Cl     | $CH_3$          | 1 | CH <sub>3</sub>                                 | Н  |
| Н               | $CH_3$                            | H      | Cl              | I | $CH_3$                                          | Н  |
| Н               | CH <sub>3</sub>                   | $CH_3$ | CI              | ı | $CH_3$                                          | H  |
| H               | $CH_3$                            | CI     | Cl              | I | CH <sub>3</sub>                                 | Н  |
| Н               | $CH_3$                            | H      | Н               | ; | CH <sub>3</sub> CH <sub>2</sub>                 | Н  |
| H               | $CH_3$                            | $CH_3$ | Н               | I | CH <sub>3</sub> CH <sub>2</sub>                 | Н  |
| Н               | CH <sub>3</sub>                   | CI     | Н               | l | CH <sub>3</sub> CH <sub>2</sub>                 | Н  |
| Н               | CH <sub>3</sub>                   | Н      | CH <sub>3</sub> | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Н  |
| H               | CH <sub>3</sub>                   | $CH_3$ | $CH_3$          | ì | CH <sub>3</sub> CH <sub>2</sub>                 | Н  |
| Н               | CH <sub>3</sub>                   | Cl     | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Н  |
| Н               | CH <sub>3</sub>                   | Н      | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Н  |
| H               | $CH_3$                            | $CH_3$ | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Н  |
| Н               | CH <sub>3</sub>                   | Cl     | Cl              | 1 | $CH_3CH_2$                                      | Н  |
| Н               | CH <sub>3</sub>                   | Н      | Н               | 1 | $CH_3CH_2CH_2$                                  | Н  |
| Η .             | CH <sub>3</sub>                   | $CH_3$ | Н               | 1 | $CH_3CH_2CH_2$                                  | Н  |
| Н               | CH <sub>3</sub>                   | Cl     | H               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н  |
| Н               | CH <sub>3</sub>                   | Н      | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н  |
| -I              | CH <sub>3</sub>                   | $CH_3$ | $CH_3$          | l | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | H  |
|                 |                                   |        |                 |   |                                                 |    |

| Н  | CH <sub>3</sub> | CI              | CH <sub>3</sub> | ì | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н                   |
|----|-----------------|-----------------|-----------------|---|-------------------------------------------------|---------------------|
| Н  | CH <sub>3</sub> | Н               | CI .            | l | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н                   |
| Н  | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н                   |
| Н  | CH <sub>3</sub> | CI              | CI              | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н                   |
| Н  | CH <sub>3</sub> | Н               | Н               | I | Н                                               | CH:                 |
| Н  | CH <sub>3</sub> | CH <sub>3</sub> | Н               | l | Н                                               | CH <sub>3</sub>     |
| Н  | CH <sub>3</sub> | CI              | Н               | 1 | Н                                               | CH <sub>3</sub>     |
| Н  | CH <sub>3</sub> | H               | CH <sub>3</sub> | 1 | Н                                               | CH <sub>3</sub>     |
| Н  | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | ! | Н                                               | CH <sub>3</sub>     |
| Н  | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | 1 | Н                                               | CH <sub>3</sub>     |
| Н  | СН3             | Н               | CI              | 1 | Н                                               | CH <sub>3</sub>     |
| Н  | CH <sub>3</sub> | $CH_3$          | Cl              | 1 | Н                                               | $\bar{\text{CH}}_3$ |
| Н  | CH <sub>3</sub> | Cl              | Cl              | 1 | Н                                               | CH <sub>3</sub>     |
| Н  | CH <sub>3</sub> | H               | Н               | 1 | CH <sub>3</sub>                                 | CH:                 |
| Н  | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 1 | CH <sub>3</sub>                                 | $CH_3$              |
| Н  | CH <sub>3</sub> | Cl              | Н               | i | CH <sub>3</sub>                                 | $CH_3$              |
| Н  | CH <sub>3</sub> | Н               | CH <sub>3</sub> | i | CH <sub>3</sub>                                 | $CH_3$              |
| Н  | CH <sub>3</sub> | $CH_3$          | CH <sub>3</sub> | I | CH <sub>3</sub>                                 | $CH_3$              |
| Н  | CH <sub>3</sub> | Cl              | СН3             | I | CH <sub>3</sub>                                 | $CH_3$              |
| Н  | CH <sub>3</sub> | H               | Cl              | 1 | CH <sub>3</sub>                                 | $CH_3$              |
| Н  | CH <sub>3</sub> | $CH_3$          | Cl              | 1 | CH <sub>3</sub>                                 | $CH_3$              |
| Н  | CH <sub>3</sub> | CI              | CI              | 1 | CH <sub>3</sub>                                 | $CH_3$              |
| H  | CH <sub>3</sub> | H               | Н               | 1 | $CH_3CH_2$                                      | $\mathrm{CH}_3$     |
| Н  | CH <sub>3</sub> | $CH_3$          | Н               | i | $CH_3CH_2$                                      | $\mathrm{CH}_3$     |
| Н  | CH <sub>3</sub> | Cl              | Н               | İ | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$              |
| Н  | CH <sub>3</sub> | Н               | $CH_3$          | l | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$              |
| Н  | CH <sub>3</sub> | $CH_3$          | CH <sub>3</sub> | l | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$              |
| Н  | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$              |
| Н  | СН3             | H               | Cl              | 1 | $CH_3CH_2$                                      | $\mathrm{CH}_3$     |
| Н  | СН3             | $CH_3$          | Cl              | ŀ | CH <sub>3</sub> CH <sub>2</sub>                 | CH3                 |
| Н  | CH <sub>3</sub> | CI              | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | CH <sub>3</sub>     |
| Н  | CH <sub>3</sub> | Н               | H               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$              |
| H  | CH <sub>3</sub> | $CH_3$          | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub>     |
| Н  | CH <sub>3</sub> | Cl              | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$              |
| Н. | CH <sub>3</sub> | H               | СН3             | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub>     |
| Н  | CH <sub>3</sub> | $CH_3$          | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$              |
| Н  | CH <sub>3</sub> | C)              | $CH_3$          | : | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$              |
| Н  | CH <sub>3</sub> | Н               | Cl              | ! | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$              |

| Н | CH <sub>3</sub>  | $CH_3$          | Cl              | 1 | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
|---|------------------|-----------------|-----------------|---|-------------------------------------------------|-----------------|
| Н | CH <sub>3</sub>  | CI              | Cl              | I | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| Н | CH <sub>3</sub>  | Н               | Н               | 1 | Н                                               | Cl              |
| Н | CH <sub>3</sub>  | $CH_3$          | Н               | 1 | Н                                               | CI              |
| Н | CH <sub>3</sub>  | CI              | Н               | 1 | Н                                               | CI              |
| Н | $CH_3$           | Н               | CH <sub>3</sub> | 1 | Н                                               | Cl              |
| Н | CH <sub>3</sub>  | CH <sub>3</sub> | CH <sub>3</sub> | ł | Н                                               | CI              |
| H | CH <sub>3</sub>  | Cl              | $CH_3$          | l | H                                               | Cl              |
| Н | CH <sub>3</sub>  | H.              | CI              | ţ | H                                               | CI              |
| Н | $CH_3$           | $CH_3$          | Cl              | ı | Н                                               | CI              |
| Н | $CH_3$           | CI              | Cl              | l | Н                                               | Cl              |
| Н | CH <sub>3</sub>  | Н               | Н               | ] | CH <sub>3</sub>                                 | Cl              |
| Н | CH <sub>3</sub>  | $CH_3$          | Н               | 1 | CH <sub>3</sub>                                 | Cl              |
| Н | $CH_3$           | C1              | H               | i | CH <sub>3</sub>                                 | CI              |
| Н | $CH_3$           | H               | $CH_3$          | ١ | CH <sub>3</sub>                                 | Cl              |
| Н | CH <sub>3</sub>  | CH <sub>3</sub> | $CH_3$          | 1 | CH <sub>3</sub>                                 | CI              |
| Н | CH <sub>3</sub>  | Cl              | $CH_3$          | 1 | CH <sub>3</sub>                                 | Ci              |
| Н | ·CH <sub>3</sub> | H               | Cl              | 1 | CH <sub>3</sub>                                 | CI              |
| Н | CH <sub>3</sub>  | CH <sub>3</sub> | Cl              | 1 | CH <sub>3</sub>                                 | CI              |
| Н | CH <sub>3</sub>  | Cl              | CI              | 1 | CH <sub>3</sub>                                 | CI              |
| Н | $CH_3$           | Н               | Н               | j | CH <sub>3</sub> CH <sub>2</sub>                 | Cl              |
| Н | CH <sub>3</sub>  | $CH_3$          | Н               | 1 | CH₃CH₂                                          | C1              |
| Н | $CH_3$           | CI              | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | CI              |
| Н | CH <sub>3</sub>  | Н               | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl              |
| H | $CH_3$           | $CH_3$          | $CH_3$          | i | CH <sub>3</sub> CH <sub>2</sub>                 | CI              |
| Н | CH <sub>3</sub>  | CI              | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | CI              |
| Н | $CH_3$           | Н               | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl              |
| Н | $CH_3$           | $CH_3$          | Cl              | l | CH <sub>3</sub> CH <sub>2</sub>                 | Cl              |
| Н | CH <sub>3</sub>  | CI              | Cl              | 1 | $CH_3CH_2$                                      | CI              |
| Н | $CH_3$           | Н               | Н               | 1 | $CH_3CH_2CH_2$                                  | Cl              |
| H | $CH_3$           | $CH_3$          | Н               | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl              |
| Н | $CH_3$           | C1              | Н               | ı | $CH_3CH_2CH_2$                                  | CI              |
| H | CH <sub>3</sub>  | Н               | $CH_3$          | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl              |
| Н | $CH_3$           | CH <sub>3</sub> | CH <sub>3</sub> | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl              |
| Н | CH <sub>3</sub>  | Cl              | $CH_3$          | 1 | $\mathrm{CH_3CH_2CH_2}$                         | CI              |
| Н | $CH_3$           | Н               | CI              | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI              |
| Н | $CH_3$           | $CH_3$          | CI              | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI              |
| Н | $CH_3$           | Cl              | Cl              | 1 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CI              |

| CH <sub>3</sub> CH <sub>2</sub> | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH <sub>3</sub> CH <sub>2</sub> | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | СН3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $CH_3CH_2CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>3</sub> CH <sub>2</sub> | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | СН3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | СН <sub>3</sub> СН <sub>2</sub> СН <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | СН <sub>3</sub> СН <sub>2</sub> СН <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $CH_3CH_2$                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $CH_3CH_2$                      | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Η .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | CH <sub>3</sub> CH <sub>2</sub> | CH3CH2 CH3 CH3CH2 CI CH3CH2 H CH3CH2 CI CH3CH2 CI CH3CH2 H CH3CH2 CI CH3CH2 H CH3CH2 CI CH3CH2 H CH3CH2 CI CH3CH2 H CH3CH2 CI CH3CH2 CI CH3CH2 H CH3CH2 CI C | CH3CH2 CH3 H CH3CH2 CI H CH3CH2 CH3 CH3 CH3CH2 CH3 CH3 CH3CH2 CI CH3 CH3CH2 H CI CH3CH2 H CI CH3CH2 CH3 CI CH3CH2 CH3 CI CH3CH2 CH3 CI CH3CH2 H H CH3CH2 CH3 H CH3CH2 CI CH3 CH3CH2 CH3 CH3 CH3CH2 CH3 CH3 CH3CH2 CH3 CH3 CH3CH2 CH3 CI CH3CH2 CH3 CH3 CH3CH2 CI CI CH3CH2 CH3 CH3 CH3CH2 CI CH3 CH3CH2 CH  CH3CH2 CH3 CH3 CH3CH2 CH3CH2 CH3 CH3CH2 CH3C | CH3CH2 CH3 H 2 CH3CH2 H CH3 2 CH3CH2 CH CH3 2 CH3CH2 CH3 CH3 2 CH3CH2 CH CH3 2 CH3CH2 H CI 2 CH3CH2 H CI 2 CH3CH2 H CI 2 CH3CH2 CH CI 2 CH3CH2 H CI 2 CH3CH2 H CI 2 CH3CH2 H CI 2 CH3CH2 H CI 2 CH3CH2 CH H 2 CH3CH2 CH H 2 CH3CH2 CH H 2 CH3CH2 CH H 2 CH3CH2 CH CH3 2 CH3CH2 CH CI 2 CH3CH2 CH CH3 CH2 2 CH3CH2 CH CH3 CH2 2 CH3CH2 CH3 CH2 2 CH3CH2 CH CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 C | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> H 2 H CH <sub>3</sub> CH <sub>2</sub> CI H 2 H CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> 2 H CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> 2 H CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> 2 H CH <sub>3</sub> CH <sub>2</sub> CI CH <sub>3</sub> 2 H CH <sub>3</sub> CH <sub>2</sub> CI CH <sub>3</sub> 2 H CH <sub>3</sub> CH <sub>2</sub> CH CI CH <sub>3</sub> 2 H CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CI 2 H CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CI 2 H CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CI 2 H CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CI 2 H CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CI 2 H CH <sub>3</sub> CH <sub>2</sub> CH H 2 CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH H 2 CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH H 2 CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH H 2 CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH <sub>3</sub> 2 CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH <sub>3</sub> 2 CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH CH <sub>3</sub> C CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH <sub>3</sub> CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH <sub>3</sub> CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH CH CH CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub></sub> |

| Н | $CH_3CH_2$                      | Cl     | Н               | 2 | H                                               | CH <sub>3</sub> |
|---|---------------------------------|--------|-----------------|---|-------------------------------------------------|-----------------|
| Н | $CH_3CH_2$                      | Н      | $CH_3$          | 2 | Н                                               | CH <sub>3</sub> |
| H | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$ | $CH_3$          | 2 | Ħ                                               | CH <sub>3</sub> |
| Н | $CH_3CH_2$                      | Cl     | $CH_3$          | 2 | Н                                               | $CH_3$          |
| Н | $CH_3CH_2$                      | Н      | Cl              | 2 | Н                                               | $CH_3$          |
| Н | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$ | Cl              | 2 | Н                                               | CH <sub>3</sub> |
| Н | $CH_3CH_2$                      | Cl     | CI              | 2 | Н                                               | CH <sub>3</sub> |
| Н | $CH_3CH_2$                      | Н      | Н               | 2 | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| H | $CH_3CH_2$                      | $CH_3$ | Н               | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| Н | CH <sub>3</sub> CH <sub>2</sub> | Cl     | Н               | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| Н | CH <sub>3</sub> CH <sub>2</sub> | Н      | $CH_3$          | 2 | CH <sub>3</sub>                                 | CH <sub>3</sub> |
| Н | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$ | $CH_3$          | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| Н | $\mathrm{CH_{3}CH_{2}}$         | Cl     | $CH_3$          | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| Н | CH <sub>3</sub> CH <sub>2</sub> | Н      | Cl              | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| Н | $CH_3CH_2$                      | $CH_3$ | Cl              | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| Н | $CH_3CH_2$                      | Cl     | Cl              | 2 | CH <sub>3</sub>                                 | $CH_3$          |
| Н | $CH_3CH_2$                      | Н      | Н               | 2 | $CH_3CH_2$                                      | $CH_3$          |
| Н | $CH_3CH_2$                      | $CH_3$ | Н               | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| H | $CH_3CH_2$                      | Cl     | Н               | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| H | CH <sub>3</sub> CH <sub>2</sub> | Н      | CH <sub>3</sub> | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н | $CH_3CH_2$                      | $CH_3$ | CH <sub>3</sub> | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н | $CH_3CH_2$                      | Cl     | $CH_3$          | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н | $CH_3CH_2$                      | Н      | CI              | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$ | Cl              | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н | $CH_3CH_2$                      | Cl     | Cl              | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | $CH_3$          |
| Н | $CH_3CH_2$                      | H      | H               | 2 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н | $CH_3CH_2$                      | $CH_3$ | Н               | 2 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н | $CH_3CH_2$                      | Cl     | Н               | 2 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н | $CH_3CH_2$                      | Н      | $CH_3$          | 2 | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| H | $CH_3CH_2$                      | $CH_3$ | CH <sub>3</sub> | 2 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| Н | $CH_3CH_2$                      | Cl     | $CH_3$          | 2 | $CH_3CH_2CH_2$                                  | CH <sub>3</sub> |
| Н | $CH_3CH_2$                      | Н      | CI              | 2 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> |
| Н | $CH_3CH_2$                      | $CH_3$ | CI              | 2 | $\mathrm{CH_3CH_2CH_2}$                         | $CH_3$          |
| Н | $CH_3CH_2$                      | Cl     | Cl              | 2 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | $CH_3$          |
| H | $CH_3CH_2$                      | Н      | Н               | 2 | Н                                               | Cl              |
| H | $CH_3CH_2$                      | $CH_3$ | Н               | 2 | Н                                               | Cl              |
| Н | $CH_3CH_2$                      | Cl .   | Н               | 2 | H                                               | Cl              |
| Н | $\mathrm{CH_{3}CH_{2}}$         | Н      | $CH_3$          | 2 | Н                                               | Cl              |
|   |                                 |        |                 |   |                                                 |                 |

| H  | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | $CH_3$          | 2 | Н                                               | CI |
|----|---------------------------------|-----------------|-----------------|---|-------------------------------------------------|----|
| Н  | CH <sub>3</sub> CH <sub>2</sub> | CI              | CH <sub>3</sub> | 2 | Н                                               | CI |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | Н               | Cl              | 2 | Н                                               | Cl |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | Cl              | 2 | Н                                               | CI |
| Н  | $CH_3CH_2$                      | CI              | Cl              | 2 | H                                               | Cl |
| H  | $CH_3CH_2$                      | Н               | Н               | 2 | CH <sub>3</sub>                                 | CI |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | Н               | 2 | CH <sub>3</sub>                                 | CI |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | C1              | Н               | 2 | CH <sub>3</sub>                                 | CI |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | Н               | СН3             | 2 | CH <sub>3</sub>                                 | CI |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | СН3             | 2 | ÇH <sub>3</sub>                                 | CI |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | CI              | $CH_3$          | 2 | CH <sub>3</sub>                                 | CI |
| Н  | $CH_3CH_2$                      | Н               | Cl              | 2 | CH <sub>3</sub>                                 | CI |
| Н  | $CH_3CH_2$                      | $CH_3$          | CI              | 2 | CH <sub>3</sub>                                 | C1 |
| H, | $CH_3CH_2$                      | Cl              | Cl              | 2 | CH <sub>3</sub>                                 | Ċl |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | Н               | Н               | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| Н  | $CH_3CH_2$                      | $CH_3$          | Н               | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| Н  | $CH_3CH_2$                      | Cl              | Н               | 2 | $CH_3CH_2$                                      | Cl |
| H  | CH <sub>3</sub> CH <sub>2</sub> | H               | $CH_3$          | 2 | $CH_3CH_2$                                      | Cl |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | $CH_3$          | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| Н  | $CH_3CH_2$                      | CI              | $CH_3$          | 2 | СН <sub>3</sub> СН <sub>2</sub>                 | Cl |
| Н  | $CH_3CH_2$                      | H               | Cl              | 2 | $\mathrm{CH_{3}CH_{2}}$                         | Cl |
| Н  | $CH_3CH_2$                      | CH <sub>3</sub> | Cl              | 2 | $CH_3CH_2$                                      | Cl |
| Н  | $CH_3CH_2$                      | Cl              | Cl              | 2 | CH <sub>3</sub> CH <sub>2</sub>                 | Cl |
| Н  | $CH_3CH_2$                      | Н               | Н               | 2 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| H  | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | H               | 2 | $\mathrm{CH_3CH_2CH_2}$                         | Cì |
| H  | $CH_3CH_2$                      | Cl              | Н               | 2 | $\mathrm{CH_3CH_2CH_2}$                         | CI |
| Н  | $CH_3CH_2$                      | H               | $CH_3$          | 2 | $\mathrm{CH_3CH_2CH_2}$                         | CL |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | $CH_3$          | 2 | $\mathrm{CH_3CH_2CH_2}$                         | CI |
| H  | CH <sub>3</sub> CH <sub>2</sub> | CI              | $CH_3$          | 2 | $\mathrm{CH_3CH_2CH_2}$                         | Cl |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | Н               | Cl              | 2 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| H  | СН <sub>3</sub> СН <sub>2</sub> | $CH_3$          | CI              | 2 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Cl |
| Н  | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Cl              | 2 | $\mathrm{CH_3CH_2CH_2}$                         | Cl |
|    |                                 |                 |                 |   |                                                 |    |

Table 13

| <u>R</u> a      | <u>R</u> b                      | <u>R l</u>      | <u>R<sup>2</sup></u> | <u>R18</u>      |
|-----------------|---------------------------------|-----------------|----------------------|-----------------|
| CH <sub>3</sub> | CH <sub>3</sub>                 | H               | Н                    | Н               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | Н                    | H               |
| CH <sub>3</sub> | $CH_3$                          | CH <sub>3</sub> | H                    | Н               |
| H               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Н                    | H               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | H                    | Н               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Н                    | Н               |
| CH <sub>3</sub> | $CH_3$                          | Н               | CH <sub>3</sub>      | Н               |
| Н               | $CH_3CH_2$                      | Н               | CH <sub>3</sub>      | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub>      | Н               |
| H               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | CH <sub>3</sub>      | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CI              | CH <sub>3</sub>      | H               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | CH <sub>3</sub>      | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | H               | CI                   | Н               |
| Н               | $CH_3CH_2$                      | Н               | CI                   | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Cl                   | Н               |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Cl                   | Н               |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CI              | Cl                   | Н               |
| Н               | $CH_3CH_2$                      | Cl              | CI                   | Н               |
| CH <sub>3</sub> | $CH_3$                          | Н               | H                    | CH <sub>3</sub> |
| Н               | $CH_3CH_2$                      | Н               | Н                    | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Н                    | CH <sub>3</sub> |
| Н               | $CH_3CH_2$                      | CH <sub>3</sub> | Н                    | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Н                    | $CH_3$          |
| Н               | CH₃CH₂                          | Cl              | Н                    | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | CH <sub>3</sub>      | CH <sub>3</sub> |
| Н               | $CH_3CH_2$                      | Н               | CH <sub>3</sub>      | CH <sub>3</sub> |
| CH <sub>3</sub> | $CH_3$                          | CH <sub>3</sub> | CH <sub>3</sub>      | CH <sub>3</sub> |
| Н .             | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | CH <sub>3</sub>      | $CH_3$          |

| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub> | $CH_3$          |
|-----------------|---------------------------------|-----------------|-----------------|-----------------|
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | CH <sub>3</sub> | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Cl              | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | Cl              | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | СН3             | Cl              | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Cl              | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Cl              | $CH_3$          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Cl              | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Н               | Cl              |
| Н               | CH₃CH₂                          | Н               | Н               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Н               | Cl              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Н               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Н               | Cl              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CI              | Н               | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | CH <sub>3</sub> | Cl              |
| Н               | $CH_3CH_2$                      | Н               | CH <sub>3</sub> | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | C1              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | CH <sub>3</sub> | Cl              |
| CH <sub>3</sub> | СН3                             | Cl              | CH <sub>3</sub> | Cl              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | CH <sub>3</sub> | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Cl              | Cl              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | Cl              | C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Cl              | Cl              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Cl              | CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Cl              | C1              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | CI              | Cl              |
| Н               | CH <sub>3</sub>                 | Н               | Н               | Н               |
| H               | CH <sub>3</sub>                 | СН3             | Н               | Н               |
| Н               | CH <sub>3</sub>                 | Cl              | Н               | Н               |
| Н               | CH <sub>3</sub>                 | Н               | CH <sub>3</sub> | H               |
| Н               | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | Н               |
| Н               | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub> | H               |
| Н               | CH <sub>3</sub>                 | Н               | CI              | H               |
| H               | CH <sub>3</sub>                 | CH <sub>3</sub> | Cl              | Н               |
| Н               | CH <sub>3</sub>                 | Cl              | Cl              | Н               |
| Н               | CH <sub>3</sub>                 | Н               | Н               | $CH_3$          |
| Н               | CH <sub>3</sub>                 | CH <sub>3</sub> | Н               | CH <sub>3</sub> |
| H               | CH <sub>3</sub>                 | C1              | Н               | $CH_3$          |

| H | $CH_3$          | Н               | CH <sub>3</sub>              | CH <sub>3</sub> |
|---|-----------------|-----------------|------------------------------|-----------------|
| Н | СН <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>              | $\mathrm{CH}_3$ |
| Н | CH <sub>3</sub> | Cl              | CH <sub>3</sub>              | CH <sub>3</sub> |
| H | CH <sub>3</sub> | H               | Cl                           | CH <sub>3</sub> |
| H | CH <sub>3</sub> | CH <sub>3</sub> | Cl                           | CH <sub>3</sub> |
| Н | CH <sub>3</sub> | Cl              | Cl                           | CH <sub>3</sub> |
| H | CH <sub>3</sub> | H               | Н                            | Cl              |
| Н | CH <sub>3</sub> | CH <sub>3</sub> | Н                            | Cl              |
| Н | CH <sub>3</sub> | Cl              | Н                            | Cl              |
| Н | CH <sub>3</sub> | Н               | <sub>v</sub> CH <sub>3</sub> | C1              |
| H | CH <sub>3</sub> | $CH_3$          | $CH_3$                       | Cl              |
| Н | CH <sub>3</sub> | Cl              | CH <sub>3</sub>              | Cl              |
| Н | $CH_3$          | Н               | Cl                           | CI              |
| H | $CH_3$          | $CH_3$          | Cl                           | CL.             |
| H | $CH_3$          | CI              | Cl                           | CI              |
|   |                 |                 |                              |                 |

| <u>R</u> a      | Rb                              | <u>R <sup>1</sup></u> | <u>R<sup>2</sup></u> | <u>R18</u> |
|-----------------|---------------------------------|-----------------------|----------------------|------------|
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н                     | Н                    | Н          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н                     | Н                    | Н          |
| СН3             | CH <sub>3</sub>                 | CH <sub>3</sub>       | Н                    | Н          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub>       | Н                    | Н          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl                    | Н                    | Н          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl                    | Н                    | Н          |
| СН3             | CH <sub>3</sub>                 | Н                     | CH <sub>3</sub>      | Н          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н                     | CH <sub>3</sub>      | Н          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub>       | CH <sub>3</sub>      | Н          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub>       | CH <sub>3</sub>      | Н          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl                    | CH <sub>3</sub>      | H          |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl                    | CH <sub>3</sub>      | Н          |
| CH <sub>3</sub> | CH <sub>3</sub>                 | H                     | Cl                   | Н          |

|    | H                 | CH <sub>3</sub> CH <sub>2</sub>   | Н                     | Ci                | Н                   |
|----|-------------------|-----------------------------------|-----------------------|-------------------|---------------------|
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | CH <sub>3</sub>       | CI                | H                   |
|    | H                 | CH <sub>3</sub> CH <sub>2</sub> ⊗ | CH <sub>3</sub>       | Cl                | Н                   |
|    | CH <sub>3</sub>   | СН3.                              | Cl                    | Cl                | Н                   |
|    | H                 | CH <sub>3</sub> CH <sub>2</sub>   | Cl                    | Cl                | H                   |
|    | СН3               | CH <sub>3</sub>                   | Н                     | Н                 | 6-CH <sub>3</sub>   |
|    | H                 | CH <sub>3</sub> CH <sub>2</sub>   | H                     | H                 | 6-CH <sub>3</sub>   |
|    | CH <sub>3</sub>   | .CH <sub>3</sub>                  | CH <sub>3</sub>       | H ** , **         | 6-CH <sub>3</sub>   |
|    | H                 | CH <sub>3</sub> CH <sub>2</sub>   | CH <sub>3</sub>       | H                 | 6-CH <sub>3</sub>   |
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | Cl                    | Ĥ                 | 6-CH <sub>3</sub>   |
|    | H                 | °CH <sub>3</sub> CH <sub>2</sub>  | CI                    | Н                 | 6-CH <sub>3</sub>   |
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | Н                     | CH <sub>3</sub>   | 6-CH <sub>3</sub>   |
|    | Н                 | CH <sub>3</sub> CH <sub>2</sub>   | Н                     | CH <sub>3</sub>   | 6-CH <sub>3</sub>   |
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | CH <sub>3</sub>       | CH <sub>3</sub>   | 6-CH <sub>3</sub>   |
|    | Н                 | CH <sub>3</sub> CH <sub>2</sub>   | CH <sub>3</sub>       | CH <sub>3</sub>   | 6-CH <sub>3</sub>   |
|    | CH <sub>3</sub> . | CH <sub>3</sub>                   | Cl                    | CH <sub>3</sub>   | 6-CH <sub>3</sub>   |
|    | H                 | CH <sub>3</sub> CH <sub>2</sub>   | Cl                    | CH <sub>3</sub>   | 6-CH <sub>3</sub>   |
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | H                     | Cl                | 6-CH <sub>3</sub>   |
|    | Н                 | CH <sub>3</sub> CH <sub>2</sub>   | Н                     | Cl                | 6-CH <sub>3.</sub>  |
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | CH <sub>3</sub>       | Cl                | 6-CH <sub>3</sub> : |
|    | Н                 | CH <sub>3</sub> CH <sub>2</sub>   | CH <sub>3</sub>       | Cl                | 6-CH <sub>3</sub>   |
|    | СН3               | CH <sub>3</sub>                   | Cl                    | CÍ                | 6-CH <sub>3</sub>   |
|    | H                 | CH <sub>3</sub> CH <sub>2</sub>   | Cl                    | Cl                | 6-CH <sub>3</sub>   |
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | H                     | Н                 | 5-CH <sub>3</sub>   |
|    | Н                 | СН3СН2                            | H                     | Н                 | 5-CH <sub>3</sub>   |
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | CH <sub>3</sub>       | H                 | 5-CH <sub>3</sub>   |
|    | Ĥ                 | CH <sub>3</sub> CH <sub>2</sub>   | CH <sub>3</sub>       | Н                 | 5-CH <sub>3</sub>   |
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | Cl                    | H                 | 5-CH <sub>3</sub>   |
|    | H                 | CH <sub>3</sub> CH <sub>2</sub>   | CI .                  | Н                 | 5-CH <sub>3</sub>   |
| 20 | CH <sub>3</sub>   | CH <sub>3</sub>                   | H                     | CH <sub>3</sub>   | 5-CH <sub>3</sub>   |
|    | H                 | CH <sub>3</sub> CH <sub>2</sub>   | Н                     | CH <sub>3</sub>   | 5-CH <sub>3</sub>   |
| 1. | CH <sub>3</sub>   | CH <sub>3</sub>                   | CH <sub>3</sub>       | CH <sub>3</sub>   | 5-CH <sub>3</sub>   |
|    | Н                 | CH <sub>3</sub> CH <sub>2</sub>   | CH <sub>3</sub>       | CH <sub>3</sub>   | 5-CH <sub>3</sub>   |
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | Cl                    | CH <sub>3</sub> · | 5-CH <sub>3</sub>   |
|    | Н                 | CH <sub>3</sub> CH <sub>2</sub>   | Cl                    | CH <sub>3</sub>   | 5-CH <sub>3</sub>   |
|    | CH <sub>3</sub>   | CH <sub>3</sub>                   | Н                     | Cl                | 5-CH <sub>3</sub>   |
|    | H                 | CH <sub>3</sub> CH <sub>2</sub>   | H .                   | Cl                | 5-CH <sub>3</sub>   |
| J. | BCHG              | CH3                               | CH <sub>3</sub> ····· | CI                | 5-CH <sub>3</sub>   |
|    |                   |                                   |                       |                   |                     |

かいいし はなからますることになっているというないとなっているとはないのできない

THE REPORT OF THE PARTY OF THE

| Н               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | Cl              | 5-CH <sub>3</sub> |
|-----------------|---------------------------------|-----------------|-----------------|-------------------|
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Cl              | 5-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Cl              | 5-CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub>                 | Н               | Н               | 4-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | Н               | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Н               | ÷-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Н               | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Н               | 4-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Н               | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| $CH_3$          | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | $CH_3$          | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Cl              | 4-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Н               | Cl              | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Cl              | 4-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Cl              | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Cl              | 4-CH <sub>3</sub> |
| Н               | $\mathrm{CH_3CH_2}$             | Cl              | Cl              | 4-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | H               | 6-C1              |
| Н               | $CH_3CH_2$                      | н               | Н               | 6-Č1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          | Н               | 6-C1              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | $CH_3$          | Н               | 6-Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Н               | 6-CI              |
| Н               | $CH_3CH_2$                      | Cl              | Н               | 6-Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | CH <sub>3</sub> | 6-CI              |
| Н               | $CH_3CH_2$                      | Н               | CH <sub>3</sub> | 6-Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | 6-C1              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 6-CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CI              | CH <sub>3</sub> | 6-Cl              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CI              | CH <sub>3</sub> | 6-CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | CI              | 6-CI              |
| Н               | $\mathrm{CH_{3}CH_{2}}$         | Н               | Cl              | 6-C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Cl              | 6-Cl              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Cl              | 6-C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Cl              | 6-C1              |

| H               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | CI                        | 6-Cl              |
|-----------------|---------------------------------|-----------------|---------------------------|-------------------|
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Н                         | 4-Cl              |
| Η               | CH <sub>3</sub> CH <sub>2</sub> | H               | H                         | 4-Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | Н                         | 4-C1              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | $\mathbf{H}^{\mathrm{s}}$ | 4-C!              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | H                         | 4-Cl              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | Cl              | H                         | 4-Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | CH <sub>3</sub>           | 4-Cl              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | Ή 🧓             | CH <sub>3</sub>           | 4-Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub>           | 4-C1              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | CH <sub>3</sub>           | 4-C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub>           | 4-Cl              |
| H.              | CH <sub>3</sub> CH <sub>2</sub> | Cl              | CH <sub>3</sub>           | 4-Cl              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | H               | Cl                        | 4-C1              |
| H               | CH <sub>3</sub> CH <sub>2</sub> | H               | Cl                        | 4-C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | CH <sub>3</sub> | CI -                      | 4-Cl              |
| н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Cl                        | 4-C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | Cl                        | 4-Cl              |
| <u>.</u> t.1    | CH <sub>3</sub> CH <sub>2</sub> | CI              | Cl                        | 4-CI              |
| / <b>H</b>      | CH <sub>3</sub>                 | <b>H</b>        | H                         | Н                 |
| 2 <b>FI</b>     | CH <sub>3</sub>                 | CH <sub>3</sub> | Н                         | Н                 |
| H               | CH <sub>3</sub>                 | Cl              | Н                         | Н                 |
| Н               | CH <sub>3</sub>                 | H               | CH <sub>3</sub>           | H-                |
| Н               | CH <sub>3</sub>                 | СН3             | CH <sub>3</sub>           | Н                 |
| Ħ               | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub>           | H .               |
| H               | CH <sub>3</sub>                 | Н               | Cl                        | H                 |
| Н               | CH <sub>3</sub>                 | CH <sub>3</sub> | Cl                        | Н                 |
| . Н             | CH <sub>3</sub>                 | Cl              | Cl                        | Н                 |
| H               | CH <sub>3</sub>                 | Н               | H                         | 6-CH <sub>3</sub> |
| H-              | CH <sub>3</sub>                 | CH <sub>3</sub> | H                         | 6-CH <sub>3</sub> |
| H               | CH <sub>3</sub>                 | Cl              | Ħ                         | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | Н               | CH <sub>3</sub>           | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub>           | 6-CH <sub>3</sub> |
| H               | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub>           | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | Н               | Cl                        | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | СН3             | Cl                        | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | Cl              | Cl                        | 6-CH <sub>3</sub> |
| OHA WAR I I TO  | - CH3                           | March           | H. A. S. S.               | 5.CH <sub>3</sub> |
|                 |                                 |                 |                           |                   |

BNSDOCID: <WO\_\_\_9719087A1\_I\_>

| Н   | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 5-CH <sub>3</sub> |
|-----|-----------------|-----------------|-----------------|-------------------|
| Н   | CH <sub>3</sub> | Cl              | Н               | 5-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | Н               | $CH_3$          | 5-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | 5-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | Н               | Cl              | 5-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | CH <sub>3</sub> | . C1            | 5-CH <sub>3</sub> |
| H   | CH <sub>3</sub> | Cl              | Cl              | 5-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | Н               | Н               | 4-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 4-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | Cl              | Н               | CH <sub>3</sub>   |
| H   | CH <sub>3</sub> | Н               | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| H   | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | 4-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | Н               | Cl              | 4-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | 4-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | CI              | Cl              | 4-CH <sub>3</sub> |
| Н   | CH <sub>3</sub> | Н               | Н               | 6-CI              |
| • Н | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 6-CI              |
| H   | СН3             | CI              | H               | 6-Cl              |
| Н   | CH <sub>3</sub> | H               | CH <sub>3</sub> | 6-C1              |
| Н   | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 6-C1              |
| Н   | CH <sub>3</sub> | Cl              | $CH_{3}$        | 6-C1              |
| Н   | CH <sub>3</sub> | H               | Cl              | 6-CI              |
| Н   | CH <sub>3</sub> | $CH_3$          | Cl              | 6-C1              |
| Н   | CH <sub>3</sub> | Cl              | CI              | 6-CI              |
| Н   | CH <sub>3</sub> | Н               | Н               | 4-CI              |
| Н   | CH <sub>3</sub> | CH <sub>3</sub> | Н               | 4-CI              |
| Н   | CH <sub>3</sub> | Cl              | Н               | 4-Cl              |
| Н   | CH <sub>3</sub> | Н               | CH <sub>3</sub> | 4-C1              |
| Н   | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | 4-Cl              |
| Н   | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | 4-C1              |
| Ή   | CH <sub>3</sub> | Н               | Cl              | 4-C1              |
| Н   | CH <sub>3</sub> | CH <sub>3</sub> | Cl              | 4-C1              |
| Н   | CH <sub>3</sub> | Cl              | Cl              | 4-Cl              |
|     |                 | •               |                 |                   |



Table 15

| <u>R</u> 2 |                           | <u>R</u> b                      | <u>R1</u>       | <u>R</u> 2        | R18                |
|------------|---------------------------|---------------------------------|-----------------|-------------------|--------------------|
| CF         | $\mathbf{I}_3$            | CH <sub>3</sub>                 | <u>R</u> !<br>H | Н                 | H,                 |
| Н          |                           | CH <sub>3</sub> CH <sub>2</sub> | Н               | Н                 | Н                  |
| CI         | 13                        | CH <sub>3</sub>                 | CH <sub>3</sub> | H                 | $\mathbf{H}^{-1}$  |
| H.         | · 0                       | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Ĥ                 | Н .                |
| CF         | 13                        | CH <sub>3</sub>                 | Cl              | H                 | Н                  |
| Н          |                           | CH <sub>3</sub> CH <sub>2</sub> | Cl              | Η                 | H                  |
| CI         | 43                        | CH <sub>3</sub>                 | Н               | CH <sub>3</sub>   | H .                |
| H          |                           | CH <sub>3</sub> CH <sub>2</sub> | H               | CH <sub>3</sub>   | $H_{+} \gg$        |
| CI         | 43                        | -CH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub>   | Н                  |
| Н          |                           | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | CH <sub>3</sub>   | H                  |
| CI         | 13                        | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub>   | Н                  |
| Н          |                           | CH <sub>3</sub> CH <sub>2</sub> | Cl              | CH <sub>3</sub>   | Н                  |
| CF         | 13                        | CH <sub>3</sub>                 | И               | CI                | H                  |
| , Н        |                           | CH <sub>3</sub> CH <sub>2</sub> | Н               | CI                | H                  |
| CF         | 13-                       | CH <sub>3</sub>                 | CH <sub>3</sub> | Cl                | H                  |
| H          |                           | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Cl                | H                  |
| CF         | $\mathbf{I}_3$            | СН3                             | Cl              | Cl <sub>1</sub> - | Н                  |
| Н          |                           | CH <sub>3</sub> CH <sub>2</sub> | CI              | Cl                | Н                  |
| CF         | 13                        | CH <sub>3</sub>                 | Н               | Н                 | 2-CH <sub>3</sub>  |
| Н          |                           | CH <sub>3</sub> CH <sub>2</sub> | Н               | H                 | 2-CH <sub>3</sub>  |
| CF         | 13                        | CH <sub>3</sub>                 | CH <sub>3</sub> | H                 | 2-CH <sub>3</sub>  |
| H          |                           | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | H                 | 2-CH <sub>3</sub>  |
| CF         | 13                        | СН3                             | Cl              | Н                 | 2-CH <sub>3</sub>  |
| Н          |                           | CH <sub>3</sub> CH <sub>2</sub> | CI              | H                 | -2-CH <sub>3</sub> |
| CF         | 13                        | CH <sub>3</sub>                 | Н               | CH <sub>3</sub>   | 2-CH <sub>3</sub>  |
| Н          |                           | CH <sub>3</sub> CH <sub>2</sub> | H               | CH <sub>3</sub>   | 2-CH <sub>3</sub>  |
| CF         | - 155 at 1,5 m            | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub>   | 2-CH <sub>3</sub>  |
| Ĥ          | and the art of the second | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | CH <sub>3</sub>   | 2 CH <sub>3</sub>  |

| CH <sub>3</sub> | CH <sub>3</sub>                   | Cl              | CH <sub>3</sub> | 2-CH <sub>3</sub> |
|-----------------|-----------------------------------|-----------------|-----------------|-------------------|
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | Cl              | CH <sub>3</sub> | 2-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | Н               | CI              | 2-CH <sub>3</sub> |
| H               | CH₃CH₂                            | Н               | CI              | 2-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | CH <sub>3</sub> | Cl              | 2-CH <sub>3</sub> |
| Н               | $CH_3CH_2$                        | CH <sub>3</sub> | CI              | 2-CH <sub>3</sub> |
| СН3             | CH <sub>3</sub>                   | Cl              | Cl              | 2-CH <sub>3</sub> |
| Н               | CH₃CH₂                            | Cl              | Cl              | 2-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | Н               | Н               | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | Н               | Н               | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | CH <sub>3</sub> | Н               | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub> . | CH <sub>3</sub> | Н               | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | Cl              | Н               | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | CI              | Н               | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | Н               | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | H               | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | CH <sub>3</sub> | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | CH <sub>3</sub> | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | Cl              | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | Cl .            | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | H               | Cl              | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | H               | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | CH <sub>3</sub> | Cl              | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | CH <sub>3</sub> | Cl              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | Cl              | Cl ·            | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | CI              | CI              | 6-CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub>                   | Н               | Н               | 2-C1              |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | Н               | H               | 2-C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                   | CH <sub>3</sub> | Н               | 2-CI              |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | CH <sub>3</sub> | Н               | 2-C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                   | CI              | Н               | 2-C1              |
| Н               | CH₃CH₂                            | Cl              | Н               | 2-CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                   | Н               | CH <sub>3</sub> | 2-CI              |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | Н               | CH <sub>3</sub> | 2-CI              |
| CH <sub>3</sub> | CH <sub>3</sub>                   | CH <sub>3</sub> | CH <sub>3</sub> | 2-C1              |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | CH <sub>3</sub> | СН3             | 2-C1              |
| CH <sub>3</sub> | CH <sub>3</sub>                   | Cl              | CH <sub>3</sub> | 2-C1              |
| Н               | CH <sub>3</sub> CH <sub>2</sub>   | Cl              | CH <sub>3</sub> | 2-C1              |

| CH <sub>3</sub> | CH <sub>3</sub>                 | Н               | Cl              | 2-C1              |
|-----------------|---------------------------------|-----------------|-----------------|-------------------|
| Н               | CH <sub>3</sub> CH <sub>2</sub> | H               | CL              | 2-C1              |
| CH <sub>3</sub> | СН3                             | CH <sub>3</sub> | CI              | 2-C1              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CH <sub>3</sub> | Cl              | 2-C1-             |
| CH <sub>3</sub> | CH <sub>3</sub>                 | Cl              | CI              | 2-C1              |
| Н               | CH <sub>3</sub> CH <sub>2</sub> | CI              | Cl              | 2-C1              |
| Н               | CH <sub>3</sub>                 | H               | H .*            | Н                 |
| Н               | CH <sub>3</sub>                 | CH <sub>3</sub> | н               | H                 |
| Н               | CH <sub>3</sub>                 | CI              | Н               | Н                 |
| H               | CH <sub>3</sub>                 | н               | CH <sub>3</sub> | Н                 |
| H               | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | Н                 |
| * H             | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub> | Н                 |
| Н               | CH <sub>3</sub>                 | Н               | Cl              | Н                 |
| Н               | CH <sub>3</sub>                 | CH <sub>3</sub> | Cl              | Н                 |
| H               | СН3                             | Cl              | CI              | Η .               |
| Ĥ               | CH <sub>3</sub>                 | Н               | Н               | 2-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | CH <sub>3</sub> | H               | 2-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | Cl              | Н               | 2-CH <sub>3</sub> |
| н               | CH <sub>3</sub>                 | H               | CH <sub>3</sub> | 2-CH <sub>3</sub> |
| H No.           | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | 2-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub> | 2-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | Н               | Cl              | 2-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | CH <sub>3</sub> | Cly             | 2-CH <sub>3</sub> |
| H :==           | CH <sub>3</sub>                 | CI              | Cl              | 2-CH <sub>3</sub> |
| H               | СН3                             | H               | H               | 6-CH <sub>3</sub> |
| H               | CH <sub>3</sub>                 | CH <sub>3</sub> | H               | o-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | Cl              | H               | 6-CH <sub>3</sub> |
| H               | CH <sub>3</sub>                 | H               | СН3             | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | CH <sub>3</sub> | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | Cl              | CH <sub>3</sub> | 6-CH <sub>3</sub> |
| H               | CH <sub>3</sub>                 | Н               | Cı              | 6-CH3             |
| H 💮             | CH <sub>3</sub>                 | CH <sub>3</sub> | ČI.             | 6-CH <sub>3</sub> |
| Н               | CH <sub>3</sub>                 | Cl              | CI L            | 6-CH3             |
| Н               | CH <sub>3</sub>                 | Н               | H               | 2-C1              |
| Н               | CH <sub>3</sub>                 | CH <sub>3</sub> | Ĥ               | 2-C1              |
| Н               | CH <sub>3</sub>                 | Cl              | H               | 2-Cl              |
| Н               | CH <sub>3</sub>                 | Н               | CH <sub>3</sub> | 2-CI              |
| Well-w          | CH <sub>3</sub>                 | ČH3             | CH3             | 2-Cl              |

PCT/US96/18381

| Н   | CH <sub>3</sub> | Cl              | CH <sub>3</sub> | 2-C1 |
|-----|-----------------|-----------------|-----------------|------|
| Η . | CH <sub>3</sub> | Н               | CI              | 2-CI |
| Н   | CH <sub>3</sub> | CH <sub>3</sub> | CI              | 2-CI |
| H   | CH <sub>3</sub> | CI .            | Cl              | 2-Cl |

| <u>R6</u> | $R^{1}$         | <u>R</u> 2 | <u>m</u> | <u>R17</u>      | <u>R18</u> |
|-----------|-----------------|------------|----------|-----------------|------------|
| SH        | Н               | Н          | 1        | Н               | Н          |
| Cl        | Н               | Н          | 1        | Н               | Н          |
| SH        | СН3             | H          | 1        | Н               | H          |
| Cl        | $CH_3$          | Н          | 1        | Н               | Н          |
| SH        | CI              | Н          | 1        | Н               | Н          |
| CI        | CI              | H          | Į        | Н               | Н          |
| SH        | $CH_3$          | $CH_3$     | l        | Н               | Н          |
| Cl        | $CH_3$          | $CH_3$     | l        | H               | Н          |
| SH        | CI              | CI         | 1        | H               | Н          |
| Cl        | C1              | CI         | 1        | H               | Н          |
| SH        | Н               | Н          | 2        | Н               | Н          |
| Cl        | H               | H          | 2        | Н               | Н          |
| SH        | $CH_3$          | Н          | 2        | Н               | H          |
| Cl        | $CH_3$          | Н          | 2        | Н               | Н          |
| SH        | CI              | Н          | 2        | Н               | Н          |
| Cl        | Cl              | Н          | 2        | H               | Н          |
| SH        | CH <sub>3</sub> | $CH_3$     | 2        | Н               | Н          |
| Cl        | $CH_3$          | $CH_3$     | 2        | Н               | Н          |
| SH        | Cl              | Cl         | 2        | Н               | Н          |
| Cl        | CI              | CI         | 2        | н               | Н          |
| SH        | Н               | Н          | 1        | CH <sub>3</sub> | Н          |
| CI        | Н               | Н          | 1        | CH <sub>3</sub> | Н          |
| SH        | $CH_3$          | Н          | 1        | CH <sub>3</sub> | H          |

| Cl | CH <sub>3</sub> | Н      | 1 | CH <sub>3</sub>                 | Н   |
|----|-----------------|--------|---|---------------------------------|-----|
| SH | Cl              | Н      | 1 | CH <sub>3</sub>                 | Н   |
| Cl | Cl              | Н      | 1 | $CH_3$                          | H   |
| SH | $CH_3$          | $CH_3$ | 1 | CH <sub>3</sub>                 | Н   |
| Cl | $CH_3$          | $CH_3$ | 1 | CH <sub>3</sub>                 | Н   |
| SH | Cl              | Cl     | 1 | $CH_3$                          | H   |
| Cl | Cl              | Cl     | 1 | CH <sub>3</sub>                 | Н   |
| SH | Н               | Н      | 2 | $CH_3$                          | Н   |
| Cl | H               | Н      | 2 | CH <sub>3</sub>                 | Н   |
| SH | $CH_3$          | Н      | 2 | CH <sub>3</sub>                 | Н   |
| Cl | CH <sub>3</sub> | Н      | 2 | CH <sub>3</sub>                 | Н   |
| SH | Cl              | Н      | 2 | CH <sub>3</sub>                 | Н   |
| Cl | C:              | Н      | 2 | CH <sub>3</sub>                 | Н   |
| SH | $CH_3$          | СНЗ    | 2 | $CH_3$                          | I-I |
| Cl | $CH_3$          | $CH_3$ | 2 | $CH_3$                          | Н   |
| SH | Cl              | Cl     | 2 | CH <sub>3</sub>                 | Н   |
| Cl | Cl              | CI     | 2 | CH <sub>3</sub>                 | Н   |
| SH | Н               | Н      | 1 | $CH_2CH_3$                      | [-] |
| Cl | Н               | Н      | 1 | $CH_2CH_3$                      | H   |
| SH | CH <sub>3</sub> | H      | 1 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| C1 | $CH_3$          | H      | 1 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH | CI .            | Н      | l | $CH_2CH_3$                      | Н   |
| Cl | CI              | Н      | 1 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH | $CH_3$          | $CH_3$ | 1 | CH <sub>2</sub> CH <sub>3</sub> | H   |
| Cl | $CH_3$          | $CH_3$ | 1 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH | Cl              | CI     | 1 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| Cl | C1              | Cl     | 1 | CH <sub>2</sub> CH <sub>3</sub> | H   |
| SH | Н               | H      | 2 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| Cl | H               | Н      | 2 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH | $CH_3$          | Н      | 2 | CH <sub>2</sub> CH <sub>3</sub> | H   |
| Cl | $CH_3$          | Н      | 2 | CH <sub>2</sub> CH <sub>3</sub> | H   |
| SH | Cl              | Н      | 2 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| Cl | CI              | Н      | 2 | CH <sub>2</sub> CH <sub>3</sub> | H   |
| SH | $CH_3$          | $CH_3$ | 2 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| Cl | $CH_3$          | $CH_3$ | 2 | CH <sub>2</sub> CH <sub>3</sub> | H   |
| SH | Cl              | CI     | 2 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| CI | Cl              | · C1   | 2 | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH | Н               | Н      | l | $CH_2CH_2CH_3$                  | Н   |

| CI | Н               | H               | ì | $CH_2CH_2CH_3$                                  | Н               |
|----|-----------------|-----------------|---|-------------------------------------------------|-----------------|
| SH | CH <sub>3</sub> | Н               | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H               |
| Cl | CH <sub>3</sub> | Н               | 1 | CH2CH2CH3                                       | Н               |
| SH | Cl              | Н               | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H               |
| CI | Cl              | Н               | i | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| SH | CH <sub>3</sub> | CH <sub>3</sub> | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| CI | $CH_3$          | $CH_3$          | 1 | $CH_2CH_2CH_3$                                  | H               |
| SH | C1              | Cl              | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| CI | Cl              | Cl              | l | $CH_2CH_2CH_3$                                  | H               |
| SH | Н               | Н               | 2 | $CH_2CH_2CH_3$                                  | Н               |
| CI | Н               | н.              | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H               |
| SH | CH <sub>3</sub> | Н               | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H               |
| Cl | $CH_3$          | Н               | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| SH | Cl              | Н               | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| Cl | Cl              | Н               | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 11              |
| SH | $CH_3$          | $CH_3$          | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H               |
| Cl | $CH_3$          | $CH_3$          | 2 | $CH_2CH_2CH_3$                                  | H               |
| SH | Cl              | C.1             | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H               |
| CI | CI              | Cl              | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н               |
| SH | Н               | Н               | l | Н                                               | $CH_3$          |
| Cl | H               | H               | 1 | H                                               | $CH_3$          |
| SH | $CH_3$          | Н               | 1 | Н                                               | $CH_3$          |
| Cl | $CH_3$          | H               | I | Н                                               | CH <sub>3</sub> |
| SH | Cl              | H               | 1 | H                                               | $CH_3$          |
| CI | Cl              | Н               | 1 | Н                                               | CH <sub>3</sub> |
| SH | $CH_3$          | $CH_3$          | 1 | Н                                               | CH <sub>3</sub> |
| Cl | $CH_3$          | $CH_3$          | 1 | Н                                               | $CH_3$          |
| SH | Cl              | Cl              | 1 | Н                                               | CH <sub>3</sub> |
| Cl | Cl              | Cl              | ì | Н                                               | CH <sub>3</sub> |
| SH | Н               | Н               | 2 | Н                                               | CH <sub>3</sub> |
| Cl | Н               | Н               | 2 | Н                                               | CH <sub>3</sub> |
| SH | $CH_3$          | Н               | 2 | Н                                               | CH <sub>3</sub> |
| CI | $CH_3$          | Н               | 2 | Н                                               | $CH_3$          |
| SH | Cl              | Н               | 2 | Н                                               | $CH_3$          |
| Cl | Çl              | Н               | 2 | Н                                               | $CH_3$          |
| SH | $CH_3$          | CH <sub>3</sub> | 2 | Н                                               | $CH_3$          |
| Cl | CH <sub>3</sub> | $CH_3$          | 2 | Н                                               | $CH_3$          |
| SH | Cl              | Cl              | 2 | H                                               | CH <sub>3</sub> |

| Cl | Cl              | Cl              | 2  | Н                               | CH <sub>3</sub> |
|----|-----------------|-----------------|----|---------------------------------|-----------------|
| SH | Н               | Н               | 1  | CH <sub>3</sub>                 | $CH_3$          |
| CI | H               | Н               | 1  | CH <sub>3</sub>                 | $CH_3$          |
| SH | CH <sub>3</sub> | Н               | 1  | CH <sub>3</sub>                 | $CH_3$          |
| Cl | CH <sub>3</sub> | Н               | 1  | CH <sub>3</sub>                 | CH <sub>3</sub> |
| HZ | CI              | Н               | 1  | CH <sub>3</sub>                 | CH <sub>3</sub> |
| CI | Cl              | H               | 1  | CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH | CH <sub>3</sub> | CH <sub>3</sub> | 1  | CH <sub>3</sub>                 | $CH_3$          |
| CI | CH <sub>3</sub> | $CH_3$          | 1  | CH <sub>3</sub>                 | $CH_3$          |
| SH | Cl              | Cl              | 1  | CH <sub>3</sub>                 | СН3             |
| Cl | Cl              | Cl              | 1  | CH <sub>3</sub>                 | $CH_3$          |
| SH | H               | Н               | 2  | CH <sub>3</sub>                 | СН3             |
| Cl | Н               | Н               | 2  | CH <sub>3</sub>                 | $CH_3$          |
| SH | $CH_3$          | H               | 2  | CH <sub>3</sub>                 | $CH_3$          |
| Cl | $CH_3$          | H               | 2  | CH <sub>3</sub>                 | $CH_3$          |
| SH | Cl              | H               | 2  | CH <sub>3</sub>                 | $CH_3$          |
| CI | Cl              | Н               | 2  | CH <sub>3</sub>                 | $CH_3$          |
| SH | $CH_3$          | CH <sub>3</sub> | 2  | CH <sub>3</sub>                 | $CH_3$          |
| Cl | CH <sub>3</sub> | CH <sub>3</sub> | 2  | CH <sub>3</sub>                 | $CH_3$          |
| SH | Cl              | CI              | 2  | CH <sub>3</sub>                 | $CH_3$          |
| CI | Cl              | CI              | 2  | CH <sub>3</sub>                 | $CH_3$          |
| SH | Н               | Н               | l  | CH <sub>2</sub> CH <sub>3</sub> | $CH_{\beta}$    |
| Cl | Н               | Н               | 1  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | CH <sub>3</sub> | H               | 1  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | CH <sub>3</sub> | Н               | 1  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | Cl              | Н               | 1  | $CH_2CH_3$                      | $CH_3$          |
| Cl | Cl              | Н               | 1  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | $CH_3$          | $CH_3$          | 1  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Ċł | $CH_3$          | CH <sub>3</sub> | 1  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | Cl              | Cl              | 1  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | Cl              | Cl              | l  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | H               | Н               | 2  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | Н               | Н               | 2  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | CH <sub>3</sub> | Н               | 2  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| CI | $CH_3$          | H               | 2  | $CH_2CH_3$                      | $CH_3$          |
| SH | CI              | H               | 2  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | CI              | Н               | 2  | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | CH <sub>3</sub> | CH <sub>3</sub> | 2. | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |

| Cl | CH <sub>3</sub> | CH <sub>3</sub>     | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
|----|-----------------|---------------------|---|-------------------------------------------------|-----------------|
| SH | CI              | Cl                  | 2 | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| Cl | Cl              | Cl                  | 2 | $CH_2CH_3$                                      | $CH_3$          |
| SH | Н               | Н                   | 1 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| CI | H               | Н                   | 1 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| SH | CH <sub>3</sub> | Н                   | 1 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| Cl | CH <sub>3</sub> | Н                   | 1 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| SH | Cl              | H                   | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | Cl              | Н                   | 1 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| SH | $CH_3$          | CH <sub>3</sub>     | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| CI | $CH_3$          | $CH_3$              | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | Cl              | Cl                  | 1 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| Cl | CI              | Cl                  | 1 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | Н               | Н                   | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| CT | Н               | Н                   | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | $CH_3$          | H                   | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | $CH_3$          | H                   | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | CI              | H                   | 2 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| CI | Cl              | Н                   | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | $CH_3$          | $CH_3$              | 2 | $\mathrm{CH_2CH_2CH_3}$                         | $CH_3$          |
| Č1 | $CH_3$          | $\bar{\text{CH}}_3$ | 2 | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | Cl              | Cl                  | 2 | $\mathrm{CH_{2}CH_{2}CH_{3}}$                   | CH <sub>3</sub> |
| Cl | CI              | Cl                  | 2 | $CH_2CH_2CH_3$                                  | $CH_3$          |
| SH | H               | Н                   | 1 | Η,                                              | Cl              |
| Cl | Н               | Н                   | 1 | H                                               | C1              |
| SH | $CH_3$          | Н                   | 1 | H                                               | Cl              |
| Cl | $CH_3$          | Н                   | l | H                                               | Cl              |
| SH | Cl              | H                   | 1 | Н                                               | Cl              |
| Cl | Cl ·            | Н                   | 1 | Н                                               | Cl              |
| SH | CH <sub>3</sub> | $CH_3$              | 1 | Н                                               | CI              |
| Cl | $CH_3$          | $CH_3$              | i | Н                                               | CI              |
| SH | Cl              | Cl                  | 1 | Н                                               | CI              |
| CI | Cl              | CI                  | 1 | Н                                               | Cl              |
| SH | Н               | Н                   | 2 | Н                                               | CI              |
| Cl | Н               | Н                   | 2 | Н                                               | CI              |
| SH | $CH_3$          | Н                   | 2 | Н                                               | Cl              |
| Cl | $CH_3$          | Н                   | 2 | Н                                               | Cl              |
| SH | CI              | Н                   | 2 | Н                                               | C1 ·            |
|    |                 |                     |   |                                                 |                 |

| Cl   | Cl              | Н               | 2 | Н                               | Cl |
|------|-----------------|-----------------|---|---------------------------------|----|
| SH   | $CH_3$          | $CH_3$          | 2 | Н                               | CI |
| Cl   | $CH_3$          | $CH_3$          | 2 | Н                               | CI |
| SH   | Cl              | CI              | 2 | Н                               | Cl |
| Cl   | Cl              | Cl              | 2 | Н                               | Cl |
| SH   | Н               | Н               | 1 | CH <sub>3</sub>                 | Cl |
| C!   | Н               | Н               | ! | CH <sub>3</sub>                 | Cl |
| SH   | $CH_3$          | Н               | 1 | CH <sub>3</sub>                 | C1 |
| Cl   | $CH_3$          | Н               | 1 | CH <sub>3</sub>                 | Cl |
| SH   | Cl              | Н               | I | CH <sub>3</sub>                 | Cl |
| Cl   | Cl              | H               | 1 | CH <sub>3</sub>                 | CI |
| SH   | $CH_3$          | CH <sub>3</sub> | 1 | CH <sub>3</sub>                 | Cl |
| Cl   | $CH_3$          | CH <sub>3</sub> | 1 | CH <sub>3</sub>                 | Cl |
| SH   | Cl              | Cl              | 1 | CH <sub>3</sub>                 | CL |
| Cl   | Cl              | Cl              | 1 | CH <sub>3</sub>                 | Cl |
| SH   | Н               | Н               | 2 | CH <sub>3</sub>                 | C1 |
| Cl   | Н               | Н               | 2 | CH <sub>3</sub>                 | C1 |
| SH   | $CH_3$          | H               | 2 | CH <sub>3</sub>                 | CL |
| Cl   | CH <sub>3</sub> | H               | 2 | CH <sub>3</sub>                 | CL |
| SH   | Cl              | Н               | 2 | CH <sub>3</sub>                 | CI |
| Cl   | Cl              | Н               | 2 | CH <sub>3</sub>                 | C1 |
| SH   | CH <sub>3</sub> | $CH_3$          | 2 | CH <sub>3</sub>                 | Cl |
| Cl   | $CH_3$          | $CH_3$          | 2 | CH <sub>3</sub>                 | Cl |
| SH   | Cl              | CI              | 2 | CH <sub>3</sub>                 | Cl |
| Cl   | Cl              | Cl              | 2 | CH <sub>3</sub>                 | Cl |
| SH   | H               | Н               | l | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| Cl   | Н               | Н               | l | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH   | $CH_3$          | Н               | I | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| Cl   | $CH_3$          | Н               | ì | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH   | Cl              | Н               | 1 | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| Cl   | Cl              | Н               | l | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH   | CH <sub>3</sub> | $CH_3$          | 1 | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| Cl   | $CH_3$          | $CH_3$          | 1 | CH <sub>2</sub> CH <sub>3</sub> | CI |
| SH   | Cl              | Cl              | I | CH <sub>2</sub> CH <sub>3</sub> | CI |
| . Cl | Cl              | Cl              | 1 | CH <sub>2</sub> CH <sub>3</sub> | CI |
| SH   | Н               | Н               | 2 | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| Cl   | Н               | Н               | 2 | CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH   | CH <sub>3</sub> | Н               | 2 | CH <sub>2</sub> CH <sub>3</sub> | Cl |
|      |                 |                 |   |                                 |    |

| CI | CH <sub>3</sub>     | H      | 2   | CH <sub>2</sub> CH <sub>3</sub>                 | C1 |
|----|---------------------|--------|-----|-------------------------------------------------|----|
| SH | CI                  | Н      | 2   | CH <sub>2</sub> CH <sub>3</sub>                 | CI |
| Cl | CI                  | Н      | 2   | CH <sub>2</sub> CH <sub>3</sub>                 | Cl |
| SH | $CH_3$              | $CH_3$ | 2   | CH <sub>2</sub> CH <sub>3</sub>                 | CI |
| Cl | $CH_3$              | $CH_3$ | 2   | CH <sub>2</sub> CH <sub>3</sub>                 | Cl |
| SH | Cl                  | Cl     | 2   | CH <sub>2</sub> CH <sub>3</sub>                 | CI |
| CI | Cl                  | Cl     | 2   | CH <sub>2</sub> CH <sub>3</sub>                 | Cl |
| SH | Н                   | Н      | 1   | $CH_2CH_2CH_3$                                  | Cl |
| Cl | H                   | Н      | 1   | $CH_2CH_2CH_3$                                  | Cl |
| SH | $CH_3$              | Н      | 1   | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
| Cl | $CH_3$              | H      | 1   | $CH_2CH_2CH_3$                                  | CI |
| SH | Cl                  | Н      | 1   | $CH_2CH_2CH_3$                                  | Cl |
| Cl | Cl                  | Н      | l   | $CH_2CH_2CH_3$                                  | Cl |
| SH | $CH_3$              | $CH_3$ | 1   | $CH_2CH_2CH_3$                                  | Cl |
| Cl | $CH_3$              | $CH_3$ | 1   | $CH_2CH_2CH_3$                                  | Cl |
| SH | Cl                  | Cl     | l   | $CH_2CH_2CH_3$                                  | Cl |
| Ci | CI                  | Cl     | 1   | $CH_2CH_2CH_3$                                  | CI |
| SH | Н                   | Н      | 2 . | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| Cl | Н                   | Н      | 2   | $CH_2CH_2CH_3$                                  | Cl |
| SH | $CH_3$              | Н      | 2   | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| CI | $CH_3$              | Н      | 2   | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | Cl                  | Н      | 2   | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| Cl | Cl                  | H      | 2   | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl |
| SH | $CH_3$              | $CH_3$ | 2   | $CH_2CH_2CH_3$                                  | Cl |
| Cl | $CH_{\mathfrak{F}}$ | $CH_3$ | 2   | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI |
| SH | Cl                  | Cl     | 2   | $CH_2CH_2CH_3$                                  | Cl |
| Cl | Cl                  | C1     | 2   | CH2CH2CH3                                       | C1 |

$$\begin{array}{c|c} \text{Table 17} \\ \text{O} & R^1 & N-N \\ \text{CH}_3\text{CH}_2 & \text{O} & \text{O} \end{array}$$

| R <sup>1</sup><br>H<br>CH <sub>3</sub> | R <sup>2</sup><br>H<br>H<br>H | R17<br>CH(CH <sub>3</sub> ) <sub>2</sub><br>CH(CH <sub>3</sub> ) <sub>2</sub> | R <sup>18</sup><br>H<br>H |
|----------------------------------------|-------------------------------|-------------------------------------------------------------------------------|---------------------------|
|                                        | Н                             | CH(CH <sub>3</sub> ) <sub>2</sub>                                             |                           |
| CH2                                    |                               |                                                                               | ы                         |
| 03                                     | Н                             |                                                                               | 1 1                       |
| Cl                                     |                               | СН(СН <sub>3</sub> ) <sub>2</sub>                                             | Н                         |
| CH <sub>3</sub>                        | CH <sub>3</sub>               | CH(CH <sub>3</sub> ) <sub>2</sub>                                             | Н                         |
| Cl                                     | Cl                            | CH(CH <sub>3</sub> ) <sub>2</sub>                                             | Н                         |
| Н                                      | Н                             | phenyl                                                                        | H                         |
| CH <sub>3</sub>                        | H                             | phenyl                                                                        | Н                         |
| CI                                     | Н                             | phenyl                                                                        | Н                         |
| CH <sub>3</sub>                        | CH <sub>3</sub>               | phenyl                                                                        | H                         |
| Cl                                     | Cl                            | phenyl                                                                        | H                         |
| Н                                      | H                             | (4-CH <sub>3</sub> )Ph                                                        | Н                         |
| CH <sub>3</sub>                        | H                             | (4-CH <sub>3</sub> )Ph                                                        | Н                         |
| Cl                                     | Н                             | (4-CH <sub>3</sub> )Ph                                                        | H                         |
| CH <sub>3</sub>                        | CH <sub>3</sub>               | (4-CH <sub>3</sub> )Ph                                                        | Н                         |
| Cl                                     | Cl                            | (4-CH <sub>3</sub> )Ph                                                        | H                         |
| Н                                      | Н                             | (4-Cl)Ph                                                                      | Н                         |
| CH <sub>3</sub>                        | Н                             | (4-Cl)Ph                                                                      | Н                         |
| CI                                     | Н                             | (4-Cl)Ph                                                                      | Н                         |
| CH <sub>3</sub> .                      | CH <sub>3</sub>               | (4-C1)Ph                                                                      | Н                         |
| Cl                                     | Cl                            | (4-Cl)Ph                                                                      | Н                         |
| Н                                      | Н                             | (4-NO <sub>2</sub> )Ph                                                        | Н                         |
| CH <sub>3</sub>                        | Н                             | (4-NO <sub>2</sub> )Ph                                                        | H                         |
| Cl                                     | Н                             | (4-NO <sub>2</sub> )Ph                                                        | Н                         |
| CH <sub>3</sub>                        | CH <sub>3</sub>               | (4-NO <sub>2</sub> )Ph                                                        | Н                         |
| Cl                                     | Cl                            | (4-NO <sub>2</sub> )Ph                                                        | Н                         |
| Н                                      | Н                             | (4-CN)Ph                                                                      | Н                         |
| CH <sub>3</sub>                        | Н                             | (4-CN)Ph                                                                      | Н                         |
| Cl                                     | Н                             | (4-CN)Ph                                                                      | Н                         |

| CH <sub>3</sub> | CH <sub>3</sub> | (4-CN)Ph                          | Н  |
|-----------------|-----------------|-----------------------------------|----|
| CI              | Cl              | (4-CN)Ph                          | Н  |
| Н               | H               | 2-pyridyl                         | Н  |
| CH <sub>3</sub> | Н               | 2-pyridyl                         | H  |
| CI              | Н               | 2-pyridyl                         | Н  |
| CH <sub>3</sub> | CH <sub>3</sub> | 2-pyridyl                         | H  |
| CI              | Cl              | 2-pyridyl                         | Н  |
| Н               | Н               | 4-pyridyl                         | H  |
| CH <sub>3</sub> | Н               | 4-pyridyl                         | Н  |
| Cl              | Н               | 4-pyridyl                         | Н  |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-pyridyl                         | Н  |
| CI              | CI              | 4-pyridyl                         | Н  |
| Н               | Н               | CH <sub>2</sub> CF <sub>3</sub>   | Н  |
| CH <sub>3</sub> | Н               | CH <sub>2</sub> CF <sub>3</sub>   | Н  |
| CI              | Н               | CH <sub>2</sub> CF <sub>3</sub>   | Н  |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CF <sub>3</sub>   | Н  |
| Cl              | Cl              | CH <sub>2</sub> CF <sub>3</sub>   | Н  |
| Н               | Н               | CH(CH <sub>3</sub> ) <sub>2</sub> | CI |
| CH <sub>3</sub> | Н               | CH(CH <sub>3</sub> ) <sub>2</sub> | Cl |
| CI              | Н               | CH(CH <sub>3</sub> ) <sub>2</sub> | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | CH(CH <sub>3</sub> ) <sub>2</sub> | Cl |
| Cl              | CI              | CH(CH <sub>3</sub> ) <sub>2</sub> | CF |
| Н               | Н               | phenyl                            | Cl |
| CH <sub>3</sub> | Н               | phenyl                            | CI |
| Cl              | Н               | phenyl                            | CI |
| CH <sub>3</sub> | CH <sub>3</sub> | phenyl                            | Cl |
| CI              | CI              | phenyl                            | Cl |
| Н               | Н               | (4-CH <sub>3</sub> )Ph            | Cl |
| CH <sub>3</sub> | Н               | (4-CH <sub>3</sub> )Ph            | CI |
| Cl              | Н               | (4-CH <sub>3</sub> )Ph            | Cl |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CH <sub>3</sub> )Ph            | Cl |
| Cl              | CI              | (4-CH <sub>3</sub> )Ph            | Cl |
| Н               | Н               | (4-Cl)Ph                          | Cl |
| CH <sub>3</sub> | Н               | (4-Cl)Ph                          | Cl |
| CI              | Н               | (4-Cl)Ph                          | CI |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CI)Ph                          | CI |
| Cl              | Cl              | (4-Cl)Ph                          | Cl |
| Н               | H               | (4-NO <sub>2</sub> )Ph ·          | Cl |

| CH <sub>3</sub> | H               | (4-NO <sub>2</sub> )Ph            | Cl              |
|-----------------|-----------------|-----------------------------------|-----------------|
| Cl              | Н               | (4-NO <sub>2</sub> )Ph            | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-NO <sub>2</sub> )Ph            | Cl              |
| Cl              | Cl              | (4-NO <sub>2</sub> )Ph            | Cl              |
| Н               | Н               | (4-CN)Ph                          | CI              |
| CH <sub>3</sub> | Н               | (4-CN)Ph                          | CI              |
| Cl              | Н               | (4-CN)Ph                          | CI              |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CN)Ph                          | Cl              |
| Cl              | Cl              | (4-CN)Ph                          | Cl              |
| Н               | Н               | 2-pyridyl                         | Cl              |
| CH <sub>3</sub> | Н               | 2-pyridyl                         | Cl              |
| ĆI              | Н               | 2-pyridyl                         | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | 2-pyridyl                         | Cl              |
| Cl              | Cl              | 2-pyridyl                         | Cl              |
| Н               | H               | 4-pyridyl                         | Cl              |
| CH <sub>3</sub> | Н               | 4-pyridyl                         | C1              |
| Cl              | Н               | 4-pyridyl                         | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-pyridyl                         | Cl              |
| Cl              | Cl              | 4-pyridyl                         | Cl              |
| Н               | Н               | CH <sub>2</sub> CF <sub>3</sub>   | Cl              |
| CH <sub>3</sub> | H               | CH <sub>2</sub> CF <sub>3</sub>   | Cl              |
| Cl              | Н               | CH <sub>2</sub> CF <sub>3</sub>   | Cl              |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CF <sub>3</sub>   | Cl              |
| Cl              | Cl              | CH <sub>2</sub> CF <sub>3</sub>   | Cl              |
| Н               | Н               | CH(CH <sub>3</sub> ) <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | Н               | CH(CH <sub>3</sub> ) <sub>2</sub> | $CH_3$          |
| Cl              | Н               | CH(CH <sub>3</sub> ) <sub>2</sub> | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH(CH <sub>3</sub> ) <sub>2</sub> | $CH_3$          |
| Cl              | Cl              | CH(CH <sub>3</sub> ) <sub>2</sub> | $CH_3$          |
| Н               | Н               | phenyl                            | CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | phenyl                            | $CH_3$          |
| CI              | Н               | phenyl                            | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | phenyl                            | $CH_3$          |
| Cl              | Cl              | phenyl                            | $CH_3$          |
| Н               | Н               | (4-CH <sub>3</sub> )Ph            | $CH_3$          |
| CH <sub>3</sub> | Н               | (4-CH <sub>3</sub> )Ph            | CH <sub>3</sub> |
| Cl              | H               | (4-CH <sub>3</sub> )Ph            | CH <sub>3</sub> |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CH <sub>3</sub> )Ph            | $CH_3$          |
|                 |                 |                                   |                 |

| Cl              | Cl              | (4-CH <sub>3</sub> )Ph          | $CH_3$          |
|-----------------|-----------------|---------------------------------|-----------------|
| Н               | H               | (4-C1)Ph                        | CH <sub>3</sub> |
| CH <sub>3</sub> | Н               | (4-C1)Ph                        | $CH_3$          |
| Cl              | Н               | (4-CI)Ph                        | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-C1)Ph                        | $CH_3$          |
| CI              | Cl              | (4-Cl)Ph                        | CH <sub>3</sub> |
| Н               | Н               | (4-NO <sub>2</sub> )Ph          | $CH_3$          |
| CH <sub>3</sub> | Н               | (4-NO <sub>2</sub> )Ph          | $CH_3$          |
| Cl              | H               | (4-NO <sub>2</sub> )Ph          | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-NO <sub>2</sub> )Ph          | $CH_3$          |
| Cl              | Cl              | (4-NO <sub>2</sub> )Ph          | $CH_3$          |
| Н               | Н               | (4-CN)Ph                        | $CH_3$          |
| CH <sub>3</sub> | Н               | (4-CN)Ph                        | $CH_3$          |
| Cl              | Н               | (4-CN)Ph                        | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | (4-CN)Ph                        | $CH_3$          |
| Cl              | CI              | (4-CN)Ph                        | $CH_3$          |
| Н               | Н               | 2-pyridyl                       | $CH_3$          |
| CH <sub>3</sub> | H               | 2-pyridyl                       | CH <sub>3</sub> |
| Cl              | H               | 2-pyridyl                       | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | 2-pyridyl                       | $CH_3$          |
| C1              | CI              | 2-pyridyl                       | $CH_3$          |
| Н               | Н               | 4-pyridyl                       | $CH_3$          |
| CH <sub>3</sub> | Н               | 4-pyridyl                       | CH <sub>3</sub> |
| Cl              | Н               | 4-pyridyl                       | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | 4-pyridyl                       | $CH_3$          |
| Cl              | Cl              | 4-pyridyl                       | $CH_3$          |
| Н               | Н               | CH <sub>2</sub> CF <sub>3</sub> | $CH_3$          |
| CH <sub>3</sub> | Н               | CH <sub>2</sub> CF <sub>3</sub> | $CH_3$          |
| Cl              | Н               | $CH_2CF_3$                      | $CH_3$          |
| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CF <sub>3</sub> | $CH_3$          |
| Cl              | Cl              | CH <sub>2</sub> CF <sub>3</sub> | $CH_3$          |



| R <sup>6</sup> | <u>R 1</u>                      | <u>R<sup>2</sup></u> | <u>R17</u>      | $R^{18}$            |
|----------------|---------------------------------|----------------------|-----------------|---------------------|
| ОН             | CH₂CH₃                          | Ĥ                    | H               | Н                   |
| SH             | CH <sub>2</sub> CH <sub>3</sub> | , H                  | "Н              | Н                   |
| Cl             | CH <sub>2</sub> CH <sub>3</sub> | Н                    | Н               | Ĥ                   |
| ОН             | NO <sub>2</sub>                 | Н                    | Н               | μ                   |
| SH             | $NO_2$                          | H                    | Н               | Н                   |
| Cl             | $NO_2$                          | , <b>H</b>           | Н               | Н                   |
| ОН             | OCH <sub>3</sub>                | H 4.                 | H :             | Н                   |
| SH             | OCH <sub>3</sub>                | Н                    | H               | Н                   |
| Cl             | OCH <sub>3</sub>                | Н                    | H               | Н                   |
| ОН             | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>      | H               | H                   |
| SH             | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>      | Н               | H                   |
| Cl             | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>      | Н               | H                   |
| ОН             | $NO_2$                          | CH <sub>3</sub>      | . H             | Н                   |
| SH             | $NO_2$                          | CH <sub>3</sub>      | Н               | Н                   |
| Cl             | $NO_2$                          | CH <sub>3</sub>      | Н.              | Н                   |
| ОН             | OCH <sub>3</sub>                | CH <sub>3</sub>      | Н .             | H                   |
| SH             | OCH <sub>3</sub>                | CH <sub>3</sub> .    | Н               | H                   |
| Cl             | OCH <sub>3</sub>                | CH <sub>3</sub>      | H               | $\tilde{H}^{-}\neq$ |
| ОН             | CH <sub>2</sub> CH <sub>3</sub> | Cl                   | H               | H                   |
| SH             | CH <sub>2</sub> CH <sub>3</sub> | CI                   | Н               | H                   |
| Cl             | CH <sub>2</sub> CH <sub>3</sub> | Cl                   | H               | H                   |
| OH             | $NO_2$                          | Cl                   | · H             | Н                   |
| SH             | $NO_2$                          | CI                   | H               | Н                   |
| Cl             | $NO_2$                          | .Cl                  | Н               | Н                   |
| ОН             | OCH <sub>3</sub>                | Cl                   | Н               | Н                   |
| SH             | OCH <sub>3</sub>                | Cl                   | н               | Н                   |
| Cl             | OCH <sub>3</sub>                | Cl                   | H               | H                   |
| ÔH ***         | CH <sub>2</sub> CH <sub>3</sub> | H                    | CH <sub>3</sub> | Ĥ <sup>™</sup>      |

| SH   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub>                 | Н   |
|------|---------------------------------|-----------------|---------------------------------|-----|
| CI   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub>                 | Н   |
| ОН   | $NO_2$                          | Н               | CH <sub>3</sub>                 | Н   |
| SH   | $NO_2$                          | Н               | CH <sub>3</sub>                 | Н   |
| C1   | NO <sub>2</sub>                 | Н               | CH <sub>3</sub>                 | Н   |
| ОН   | $OCH_3$                         | Н               | CH <sub>3</sub>                 | Н   |
| SH   | $OCH_3$                         | Н               | CH <sub>3</sub>                 | Н   |
| Cl   | OCH <sub>3</sub>                | Н               | CH <sub>3</sub>                 | Н   |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | CH <sub>3</sub>                 | Н   |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                 | Н   |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                 | Н   |
| OH   | $NO_2$                          | $CH_3$          | CH <sub>3</sub>                 | Н   |
| SH   | NO <sub>2</sub>                 | $CH_3$          | CH <sub>3</sub>                 | Н   |
| Cl · | $NO_2$                          | CH <sub>3</sub> | CH <sub>3</sub>                 | Н   |
| ÖН   | OCH <sub>3</sub>                | CH <sub>3</sub> | $CH_3$                          | Н   |
| SH   | $OCH_3$                         | CH <sub>3</sub> | CH <sub>3</sub>                 | Н   |
| Cl   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub>                 | Н   |
| OH   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>3</sub>                 | Н   |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | CI              | CH <sub>3</sub>                 | H   |
| Cl   | $CH_2CH_3$                      | Cl              | $CH_3$                          | Н   |
| ОН   | $NO_2$                          | Cl              | CH <sub>3</sub>                 | H   |
| SH   | $NO_2$                          | CI              | CH <sub>3</sub>                 | Н   |
| CI   | $NO_2$                          | Cl              | CH <sub>3</sub>                 | Н   |
| ОН   | OCH <sub>3</sub>                | CI              | CH <sub>3</sub>                 | Н   |
| SH   | OCH <sub>3</sub>                | CI              | $CH_3$                          | H   |
| Cl   | OCH <sub>3</sub>                | Cl              | CH <sub>3</sub>                 | I-I |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| Cl   | $CH_2CH_3$                      | Н               | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| OH   | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH   | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| CI   | $NO_2$                          | H               | $\mathrm{CH_{2}CH_{3}}$         | Н   |
| OH   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| CI   | $OCH_3$                         | Н               | CH <sub>2</sub> CH <sub>3</sub> | H   |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          | CH <sub>2</sub> CH <sub>3</sub> | Н   |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Н   |
|      |                                 |                 |                                 |     |

| ОН   | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
|------|---------------------------------|-----------------|-------------------------------------------------|-----|
| SH   | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | ١٤  |
| Cl   | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| ОН   | $OCH_3$                         | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| SH   | OCH <sub>3</sub>                | СН3             | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| Cl   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                 | I-I |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | CI              | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | H   |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | H   |
| OH   | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | H   |
| SH   | NO <sub>2</sub>                 | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| Cl   | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| ОН   | OCH <sub>3</sub>                | CI              | CH <sub>2</sub> CH <sub>3</sub>                 | H   |
| SH   | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| Cl   | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Н   |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | H               | $CH_2CH_2CH_3$                                  | H   |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | H               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| ОН   | NO <sub>2</sub>                 | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH   | NO <sub>2</sub>                 | H               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| CI   | $NO_2$                          | H               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H   |
| ОН   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| Cl   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 11  |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H   |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H   |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| ОН   | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH   | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| Cl   | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| ОН   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| Cl   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | H   |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | C1              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| ОН   | NO <sub>2</sub>                 | CI              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
| SH . | NO <sub>2</sub>                 | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н   |
|      |                                 |                 |                                                 |     |

| CI | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н      |
|----|---------------------------------|-----------------|-------------------------------------------------|--------|
| ОН | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н      |
| SH | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н      |
| Cl | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Н      |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | H               | Н                                               | $CH_3$ |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Н               | Н                                               | $CH_3$ |
| CI | CH <sub>2</sub> CH <sub>3</sub> | Н               | Н                                               | $CH_3$ |
| ОН | NO <sub>2</sub>                 | Н               | Н                                               | $CH_3$ |
| SH | $NO_2$                          | Н .             | Н                                               | $CH_3$ |
| Cl | $NO_2$                          | Н               | Н                                               | $CH_3$ |
| ОН | OCH <sub>3</sub>                | Н               | H                                               | $CH_3$ |
| SH | OCH <sub>3</sub>                | Н               | Н                                               | $CH_3$ |
| CI | OCH <sub>3</sub>                | Н               | Н                                               | $CH_3$ |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | Н                                               | $CH_3$ |
| SH | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | Н                                               | $CH_3$ |
| CI | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | Н                                               | $CH_3$ |
| ОН | NO <sub>2</sub>                 | CH <sub>3</sub> | H                                               | $CH_3$ |
| SH | $NO_2$                          | CH <sub>3</sub> | Н                                               | $CH_3$ |
| Cl | $NO_2$                          | CH <sub>3</sub> | Н                                               | $CH_3$ |
| ОН | OCH <sub>3</sub>                | CH <sub>3</sub> | Н                                               | $CH_3$ |
| SH | OCH <sub>3</sub>                | CH <sub>3</sub> | Н                                               | $CH_3$ |
| CI | OCH <sub>3</sub>                | CH <sub>3</sub> | Н                                               | $CH_3$ |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | Cl              | Н                                               | $CH_3$ |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Cl              | Н                                               | $CH_3$ |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | Cl              | Н                                               | $CH_3$ |
| ОН | NO <sub>2</sub>                 | Cl              | Н                                               | $CH_3$ |
| SH | $NO_2$                          | Cl              | Н                                               | $CH_3$ |
| CI | $NO_2$                          | Cl              | Н                                               | $CH_3$ |
| ОН | OCH <sub>3</sub>                | Cl              | Н                                               | $CH_3$ |
| SH | OCH <sub>3</sub>                | Cl              | Н                                               | $CH_3$ |
| Cl | OCH <sub>3</sub>                | Cl              | Н                                               | $CH_3$ |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub>                                 | $CH_3$ |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub>                                 | $CH_3$ |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>3</sub>                                 | $CH_3$ |
| ОН | $NO_2$                          | Н               | CH <sub>3</sub>                                 | $CH_3$ |
| SH | $NO_2$                          | Н               | CH <sub>3</sub>                                 | $CH_3$ |
| Cl | $NO_2$                          | Н               | CH <sub>3</sub>                                 | $CH_3$ |
| ОН | $OCH_3$                         | Н               | CH <sub>3</sub>                                 | $CH_3$ |

| SH   | OСH <sub>3</sub>                | н               | CH <sub>3</sub>                 | $CH_3$          |
|------|---------------------------------|-----------------|---------------------------------|-----------------|
| Cl   | OCH <sub>3</sub>                | Н               | CH <sub>3</sub>                 | $CH_3$          |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          |
| Cl   | $CH_2CH_3$                      | CH <sub>3</sub> | $CH_3$                          | $CH_3$          |
| ОН   | $NO_2$                          | СН3             | CH <sub>3</sub>                 | $CH_3$          |
| SH . | $NO_2$                          | CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          |
| Cl   | $NO_2$                          | CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          |
| ОН   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          |
| SH   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub>                 | $CH_3$          |
| Cl   | OCH <sub>3</sub>                | CH <sub>3</sub> | $CH_3$                          | $CH_3$          |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>3</sub>                 | $CH_3$          |
| SH   | $CH_2CH_3$                      | Cl              | CH <sub>3</sub>                 | $CH_3$          |
| CI   | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>3</sub>                 | $CH_3$          |
| ОН   | $NO_2$                          | Cl              | CH <sub>3</sub>                 | $CH_3$          |
| SH   | $NO_2$                          | C1              | CH <sub>3</sub>                 | $CH_3$          |
| Cl   | $NO_2$                          | Cl .            | CH <sub>3</sub>                 | $CH_3$          |
| ОН   | $OCH_3$                         | Cl              | CH <sub>3</sub>                 | $CH_3$          |
| SH   | OCH <sub>3</sub>                | CI              | CH <sub>3</sub>                 | $CH_3$          |
| CI   | OCH <sub>3</sub>                | Cl              | CH <sub>3</sub>                 | $CH_3$          |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | H               | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | H               | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl   | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| ОН   | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH   | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| CI   | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| ОН   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH   | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl   | OCH <sub>3</sub>                | H               | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| ОН   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| CI   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| ОН   | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| SH   | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| CI   | $NO_2$                          | СН3             | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| ОН   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl   | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
|      |                                 |                 |                                 |                 |

| ОН | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | $CH_3$          |
|----|---------------------------------|-----------------|-------------------------------------------------|-----------------|
| SH | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| ОН | NO <sub>2</sub>                 | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH | NO <sub>2</sub>                 | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| Cl | NO <sub>2</sub>                 | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| ОН | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| SH | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| Cl | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | CH <sub>3</sub> |
| он | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| CI | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| ОН | NO <sub>2</sub>                 | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | $NO_2$                          | H               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | $NO_2$                          | Н               | CH2CH2CH3                                       | $CH_3$          |
| ОН | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| SH | OCH <sub>3</sub>                | Н               | CH2CH2CH3                                       | $CH_3$          |
| Cl | OCH <sub>3</sub>                | Н               | CH2CH2CH3                                       | $CH_3$          |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | СН3             | CH2CH2CH3                                       | $CH_3$          |
| SH | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| ОН | $NO_2$                          | CH <sub>3</sub> | CH2CH2CH3                                       | $CH_3$          |
| SH | $NO_2$                          | $CH_3$          | CH2CH2CH3                                       | $CH_3$          |
| Cl | $NO_2$                          | CH <sub>3</sub> | CH2CH2CH3                                       | $CH_3$          |
| ОН | $OCH_3$                         | $CH_3$          | CH2CH2CH3                                       | $CH_3$          |
| SH | OCH <sub>3</sub>                | CH <sub>3</sub> | $CH_2CH_2CH_3$                                  | $CH_3$          |
| Cl | $OCH_3$                         | CH <sub>3</sub> | $CH_2CH_2CH_3$                                  | $CH_3$          |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | CI              | CH2CH2CH3                                       | CH <sub>3</sub> |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | CI              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| ОН | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | $CH_3$          |
| SH | $NO_2$                          | Cl              | CH2CH2CH3                                       | $CH_3$          |
| Cl | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> |
| ОН | OCH <sub>3</sub>                | CI              | CH2CH2CH3                                       | CH <sub>3</sub> |
| SH | OCH <sub>3</sub>                | Cl              | $CH_2CH_2CH_3$                                  | $CH_3$          |
| CI | OCH <sub>3</sub>                | Cl              | $CH_2CH_2CH_3$                                  | CH <sub>3</sub> |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | H               | Н                                               | Cl              |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Н               | Н                                               | Cl              |
|    |                                 |                 |                                                 |                 |

| Cl       | CH <sub>2</sub> CH <sub>3</sub> | H                | H                 | CI   |
|----------|---------------------------------|------------------|-------------------|------|
| ОН       | $NO_2$                          | Н                | H                 | Cl   |
| SH       | NO <sub>2</sub>                 | H                | Н                 | Cl   |
| CI       | $NO_2$                          | Н                | Н                 | · CI |
| ОН       | OCH <sub>3</sub>                | H                | H                 | Cl   |
| SH       | OCH <sub>3</sub>                | H.,              | H                 | CI   |
| Cl       | OCH <sub>3</sub>                | H                | Н                 | Cl   |
| ОН       | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>  | Н                 | . C1 |
| SH       | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>  | Н                 | Cl   |
| CI       | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>  | H                 | - Cl |
| OH       | NO <sub>2</sub>                 | CH <sub>3</sub>  | H                 | CI   |
| SH       | NO <sub>2</sub>                 | CH <sub>3</sub>  | Н                 | CI   |
| Cl       | $NO_2$                          | CH <sub>3</sub>  | H John            | CL   |
| ОН       | OCH <sub>3</sub>                | CH <sub>3</sub>  | Н                 | CI   |
| · SH     | OCH <sub>3</sub>                | CH <sub>3</sub>  | н                 | Cl   |
| Cl       | OCH <sub>3</sub>                | CH <sub>3</sub>  | Н                 | CL   |
| ОН       | CH <sub>2</sub> CH <sub>3</sub> | Cl               | Н                 | Cl   |
| SH       | CH <sub>2</sub> CH <sub>3</sub> | Cl               | Н                 | Cl   |
| · Cl · " | CH <sub>2</sub> CH <sub>3</sub> | C1               | Н                 | Cl   |
| ОН       | $NO_2$                          | Cl               | Н                 | Cl   |
| SH       | NO <sub>2</sub>                 | C1               | Н                 | Cl   |
| Cl       | NO <sub>2</sub>                 | CI               | Н                 | Cl   |
| OH       | OCH <sub>3</sub>                | Cl               | Н                 | CI   |
| SH       | OCH <sub>3</sub>                | Cl               | Н                 | Cl   |
| Cľ       | OCH <sub>3</sub>                | Cl               | H                 | CI   |
| ОН       | CH <sub>2</sub> CH <sub>3</sub> | н                | СН3               | Cl,  |
| SH       | CH <sub>2</sub> CH <sub>3</sub> | H                | CH <sub>3</sub> . | C1   |
| Cl       | CH <sub>2</sub> CH <sub>3</sub> | Ĥ                | CH <sub>3</sub>   | CI   |
| ОН       | $NO_2$                          | Н                | CH <sub>3</sub>   | Cl   |
| SH       | NO <sub>2</sub>                 | H                | CH <sub>3</sub> . | Cl   |
| · Cl     | NO <sub>2</sub>                 | H                | CH <sub>3</sub>   | Ci   |
| ОН       | OCH <sub>3</sub>                | Н                | CH <sub>3</sub>   | CI   |
| SH       | OCH <sub>3</sub>                | . <b>H</b>       | CH <sub>3</sub>   | CI   |
| Cl       | OCH <sub>3</sub>                | Н                | CH <sub>3</sub>   | CI   |
| ОН       | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>  | CH <sub>3</sub>   | Cl   |
| SH       | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>  | CH <sub>3</sub>   | Cl   |
| Cl       | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>  | CH <sub>3</sub>   | Cl   |
| OH .     | NO5                             | GH <sub>36</sub> | SCH34.2.35.       | ·Ci  |
|          |                                 |                  |                   |      |

| SH | $NO_2$                          | CH <sub>3</sub> | CH <sub>3</sub>                 | CI   |
|----|---------------------------------|-----------------|---------------------------------|------|
| Cl | $NO_2$                          | CH <sub>3</sub> | CH <sub>3</sub>                 | C1   |
| ОН | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub>                 | C1   |
| SH | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>3</sub>                 | CI   |
| Cl | OCH <sub>3</sub>                | $CH_3$          | CH <sub>3</sub>                 | CI   |
| ОН | CH₂CH₃                          | CI              | CH <sub>3</sub>                 | Cl   |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>3</sub>                 | Cl   |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | Cl              | CH <sub>3</sub>                 | CI   |
| ОН | NO <sub>2</sub>                 | Cl              | CH <sub>3</sub>                 | Cl   |
| SH | NO <sub>2</sub>                 | CI              | CH <sub>3</sub>                 | C1   |
| Cl | $NO_2$                          | Cl              | CH <sub>3</sub>                 | CI   |
| он | OCH <sub>3</sub>                | Cl              | CH <sub>3</sub>                 | Cl   |
| SH | OCH <sub>3</sub>                | Cl              | $CH_3$                          | C1   |
| Cl | OCH <sub>3</sub>                | Cl              | CH <sub>3</sub>                 | C1   |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>3</sub> | CI   |
| SH | CH₂CH₃                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | CI   |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | H               | $CH_2CH_3$                      | Cl   |
| ОН | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| SH | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| Cl | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| ОН | OCH <sub>3</sub>                | H               | $CH_2CH_3$                      | Cl   |
| SH | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| Cl | OCH <sub>3</sub>                | · H             | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | $CH_2CH_3$                      | CI   |
| SH | $CH_2CH_3$                      | $CH_3$          | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| ОН | NO <sub>2</sub>                 | CH <sub>3</sub> | $CH_2CH_3$                      | CI   |
| SH | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CI   |
| Cl | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| ОН | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| SH | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| Cl | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| ОН | $CH_2CH_3$                      | Cl              | CH <sub>2</sub> CH <sub>3</sub> | CI   |
| SH | $CH_2CH_3$                      | Cl              | CH <sub>2</sub> CH <sub>3</sub> | CI   |
| Cl | $CH_2CH_3$                      | Cl              | CH <sub>2</sub> CH <sub>3</sub> | CI   |
| ОН | NO <sub>2</sub>                 | Cl              | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| SH | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| CI | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>3</sub> | CI - |
|    |                                 |                 |                                 |      |

| ОН | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | CI   |
|----|---------------------------------|-----------------|-------------------------------------------------|------|
| SH | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>3</sub>                 | Cl   |
| Cl | OCH <sub>3</sub>                | CI              | CH <sub>2</sub> CH <sub>3</sub>                 | Cl   |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| SH | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| CI | CH <sub>2</sub> CH <sub>3</sub> | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| ОН | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| SH | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| Cl | $NO_2$                          | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| ОН | OCH <sub>3</sub>                | Н               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| SH | OCH <sub>3</sub>                | H               | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| Cl | OCH <sub>3</sub>                | H .             | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| ОН | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| SH | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| ОН | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| SH | $NO_2$                          | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| Cl | NO <sub>2</sub>                 | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| ОН | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| SH | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| CI | OCH <sub>3</sub>                | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| ОН | CH₂CH₃                          | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| SH | $CH_2CH_3$                      | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | .C1  |
| Cl | CH <sub>2</sub> CH <sub>3</sub> | CI              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| OH | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| SH | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl - |
| Cl | $NO_2$                          | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CI   |
| ÒН | OCH <sub>3</sub>                | Cl              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CL   |
| SH | OCH <sub>3</sub>                | CI              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
| Cl | OCH <sub>3</sub>                | CI              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Cl   |
|    |                                 |                 |                                                 |      |

10

15

20

25

## Formulation/Utility

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets. films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

|                                                                         | Weight Percent       |                  |            |
|-------------------------------------------------------------------------|----------------------|------------------|------------|
| _                                                                       | Active<br>Ingredient | <u>Diluent</u>   | Surfactant |
| Water-Dispersible and Water-soluble Granules, Tablets and Powders.      | 5–9()                | ()94             | 1-15       |
| Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates) | 5-50                 | 40-95            | 0-15       |
| Dusts<br>Granules and Pellets                                           | 1-25<br>0.01-99      | 70-99<br>5-99.99 | 05<br>015  |
| High Strength Compositions                                              | 90-99                | 0-10             | 0-2        |

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden. Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood. Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964. list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, *N*,*N*-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, tale, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, *N*,*N*-dimethylformamide, dimethyl sulfoxide, *N*-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wetmilling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", *Chemical Engineering*, December 4, 1967, pp 147-48, *Perry's Chemical Engineer's Handbook*, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, *Weed Control as a Science*, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., *Weed Control Handbook*, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-C.

5

10

15

20

25

|          | Example A                                                                                                                    |                             |
|----------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|          | High Strength Concentrate                                                                                                    |                             |
|          | Compound 2                                                                                                                   | 98.5%                       |
|          | silica aerogel                                                                                                               | 0.5%                        |
| 5        | synthetic amorphous fine silica                                                                                              | 1.0%.                       |
|          | Example B                                                                                                                    |                             |
|          | Wettable Powder                                                                                                              |                             |
|          | Compound 1                                                                                                                   | 65.0%                       |
|          | dodecylphenol polyethylene glycol ether                                                                                      | 2.0%                        |
| 10       | sodium ligninsulfonate                                                                                                       | 4.0%                        |
|          | sodium silicoaluminate                                                                                                       | 6.0%                        |
|          | montmorillonite (calcined)                                                                                                   | 23.0%.                      |
|          | Example C                                                                                                                    |                             |
|          | Granule                                                                                                                      |                             |
| 15       | Compound 15                                                                                                                  | 10.0%                       |
|          | attapulgite granules (low volatile matter,                                                                                   |                             |
|          | 0.71/0.30 mm; U.S.S. No. 25–50 sieves)                                                                                       | 90.0%.                      |
|          | Example D                                                                                                                    |                             |
| <b>.</b> | Extruded Pellet                                                                                                              | 2.5.007                     |
| 20       | Compound 6                                                                                                                   | 25.0%                       |
|          | anhydrous sodium sulfate                                                                                                     | 10.0%                       |
|          | crude calcium ligninsulfonate                                                                                                | 5.0%                        |
|          | sodium alkylnaphthalenesulfonate                                                                                             | 1.0%                        |
| 2.5      | calcium/magnesium bentonite                                                                                                  | 59.0%.                      |
| 25       | Test results indicate that the compounds of the prese                                                                        |                             |
|          | preemergent and postemergent herbicides or plant growth                                                                      |                             |
|          | have utility for broad-spectrum pre- and/or postemergence                                                                    |                             |
|          | complete control of all vegetation is desired such as aroun storage areas, parking lots, drive-in theaters, air fields, rive | _                           |
| 30       |                                                                                                                              | · ·                         |
| 30       | waterways, around billboards and highway and railroad str                                                                    |                             |
|          | compounds will be useful for the control of selected grass                                                                   |                             |
|          | tolerance to important agronomic crops which include but                                                                     |                             |
|          | cotton, wheat, rape, sugar beets, corn (maize), soybeans, r                                                                  | ·                           |
| 25       | plantation crops including coffee, cocoa, oil palm, rubber,                                                                  |                             |
| 35       | trees, nut trees, banana, plantain, pineapple, hops, tea, force                                                              | isis such as eucarypius and |

conifers, e.g., loblolly pine, and turf species, e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass. Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject

compounds are useful to modify plant growth.

BNSDOCID: <WO\_\_\_9719087A1\_I\_>

Compounds of this invention can be used alone or in combination with other commercial herbicides, insecticides or fungicides. Compounds of this invention can also be used in combination with commercial herbicide safeners such as benoxacor, dichlormid and furilazole to increase safety to certain crops. A mixture of one or more 5 of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, ametryn, amidosulfuron, amitrole, ammonium sulfamate. anilofos, asulam, atrazine, azimsulfuron, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, bifenox, bromacil, bromoxynil, 10 bromoxynil octanoate, butachlor, butralin, butylate, chlomethoxyfen, chloramben, chlorbromuron, chloridazon, chlorimuron-ethyl, chlornitrofen, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, cinmethylin, cinosulfuron, clethodim, clodinafop, clomazone, clopyralid, clopyralid-olamine, cyanazine, cycloate, cyclosulfamuron, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its 15 dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium. dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, 2-[4.5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-20 5-methyl-3-pyridinecarboxylic acid (AC 263.222), difenzoquat metilsulfate. diflufenican, dimepiperate, dimethenamid, dimethylarsinic acid and its sodium salt, dinitramine, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC. esprocarb, ethalfluralin, ethametsulfuron-methyl, ethofumesate, ethyl 0,2-dichloro-5-[4-(difluoromethyl)-4.5-dihydro-3-methyl-5-oxo-1*H*-1,2,4-triazol-1-vl]-4-25 fluorobenzenepropanoate (F8426), fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, fluazifop-butyl, fluazifop-P-butyl, fluchloralin, flumetsulam, flumicloracpentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, fluridone, flurochloridone, fluroxypyr, fluthiacet-methyl, fomesafen, fosamine-ammonium, 30 glufosinate, glufosinate-ammonium, glyphosate, glyphosate-isopropylammonium, glyphosate-sesquisodium, glyphosate-trimesium, halosulfuron-methyl, haloxyfop-etotyl. haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox (AC 299 263), imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isouron, 35 isoxaben, isoxaflutole (RPA 201772), lactofen, lenacil, linuron, maleic hydrazide. MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, mecoprop, mecoprop-P, mefenacet, mefluidide, metam-sodium, methabenzthiazuron, methyl [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1,3,4]thiadiazolo[3,4a]pyridazin-1-ylidene)amino]phenyl]thioacetate (KIH 9201), methylarsonic acid and its

10

20

25

30

35

calcium, monoammonium, monosodium and disodium salts, methyl [[[1-[5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrophenyl]-2-methoxyethylidene]amino]oxy]acetate (AKH-7088), methyl 5-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1*H*-pyrazole-4-

carboxylate (NC-330), metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, napropamide, naptalam, neburon, nicosulfuron, norflurazon, oryzalin, oxadiazon, 3-oxetanyl 2-[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoate (CGA 277476), oxyfluorfen, paraquat dichloride, pebulate, pendimethalin, perfluidone, phenmedipham, picloram, picloram-potassium, pretilachlor, primisulfuron-methyl, prometon, prometryn,

propachlor, propanil, propaquizafop, propazine, propham, propyzamide, prosulfuron, pyrazolynate, pyrazosulfuron-ethyl, pyridate, pyrithiobac, pyrithiobac-sodium, quinclorac, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, sethoxydim, siduron, simazine, sulcotrione (ICIA0051), sulfentrazone,

sulfometuron-methyl, sulfosulfuron, TCA, TCA-sodium, tebuthiuron, terbacil, terbuthylazine, terbutryn, thenylchlor, thiafluamide (BAY 11390), thifensulfuron-methyl, thiobencarb, tralkoxydim, tri-allate, triasulfuron, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane, trifluralin, triflusulfuron-methyl, and vernolate.

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for  $-\frac{1}{24}$  preventing the development of resistant weeds.

Certain combinations of compounds of this invention with other herbicides may provide synergistic herbicidal effects on weeds or may provide enhanced crop safety.

Preferred for better control of undesired vegetation in winter wheat, winter barley, spring wheat, spring barley, and peas (e.g., lower use rate, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds in winter wheat, winter barley, spring wheat, spring barley, and peas are mixtures of a compound of this invention with one or more of the herbicides selected from the group tribenuron-methyl, thifensulfuron-methyl, metsulfuron-methyl, chlorsulfuron, triasulfuron, 2,4-D, dicamba, bromoxynil, MCPA, fluroxypyr, clopyralid, fenoxaprop, diclofop, tralkoxydim, clodinafop, imazamethabenz, sulfosulfuron, difenzoquat, propanil, prosulfuron, metribuzin, glyphosate, triallate, trifluralin, paraquat, diallate, linuron, diflufenican, pendimethalin, cyanazine, neburon, terbutryn, prosulfocarb, isoproturon, chlortoluron, methabenzthiazuron, metoxuron, simazine, ioxynil, mecoprop, metosulam, fluroglycophen-ethyl, flamprop-M-isopropyl, benzoylpropethyl, ethametsulfuron-methyl, quinclorac, and bentazone.

Specifically preferred mixtures for use in winter wheat, winter barley, spring wheat, spring barley, and peas are selected from the group:

a) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione *S*,*S*-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

|             |                       |             | Preferred |          | Preferred   |
|-------------|-----------------------|-------------|-----------|----------|-------------|
|             |                       |             | Ratio     | Use Rate | Use Rate    |
| Combination |                       | Ratio Range | Range     | Range of | Range       |
| Number      | Mixture Partner B     | of A:B      | of A:B    | B (g/ha) | of B (g/ha) |
|             | tribenuron-methyl     | 1:10-300:1  | 1:1-14:1  | 1-50     | 5-20        |
| 2           | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1   | 1-100    | 10-40       |
| 3           | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1   | 1-50     | 10-20       |
|             | in combination with   |             |           |          |             |
|             | tribenuron-methyl     | 1:5-300:1   | 2:1-14:1  | 1-20     | 5-10        |
| 4           | metsulturon-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 5           | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1   | 1-100    | 10-40       |
|             | in combination with   |             |           |          |             |
|             | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 6           | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1   | 1-50     | 10-20       |
|             | in combination with   |             |           |          |             |
|             | tribenuron-methyl     | 1:10-300:1  | 1:1-7:1   | 1-20     | 5-10        |
|             | in combination with   |             |           |          |             |
|             | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 7           | chlorsulfuron         | 1:10-300:1  | 2:3-7:1   | 1-50     | 10-30       |
| 8           | chlorsulfuron         | 1:10-300:1  | 1:1-7:1   | 1 50     | 10-20       |
|             | in combination with   |             |           |          |             |
|             | metsulfuron-methyl    | 1:2-300:1   | 5:1-35:1  | 1-10     | 2-4         |
| 9           | triasulfuron          | 1:10-300:1  | 2:3-7:1   | 1-50     | 10-30       |
| 10          | 2,4-D                 | 1:1000-3:1  | 1:100-1:3 | 100-4000 | 200-2000    |
| 11          | dicamba               | 1:150-10:1  | 1:15-1:1  | 30-600   | 70-300      |
| 12          | bromoxynil            | 1:500-3:1   | 1:50-1:4  | 100-2000 | 250-1000    |
| 13          | МСРА                  | 1:500-6:1   | 1:50-1:1  | 50-2000  | 100-1000    |
| 14          | bromoxynil            | 1:500-3:1   | 1:50-1:4  | 100-2000 | 250-1000    |
|             | in combination with   |             |           |          |             |
|             | МСРА                  | 1:500-6:1   | 1:50-1:1  | 50-2000  | 100-1000    |
| 15          | fluroxypvr            | 1:150-10:1  | 1:15-1:1  | 30-600   | 70-300      |
| 16          | clopyralid            | 1:125-30:1  | 1:12-1:1  | 10-500   | j<br>50-250 |

| 17  | fenoxaprop             | 1:50-30:1   | 1:5-2:1  | 10-200   | 40-100   |
|-----|------------------------|-------------|----------|----------|----------|
| 17  | -                      |             |          |          |          |
|     | in combination with    | *           |          |          |          |
|     | fenchlorazole          | 1:12-300:1  | 1:1-7:1  | 1-50     | 10-25    |
| 18  | diclofop               | 1:500-3:1   | 1:50-1:7 | 100-2000 | 500-1000 |
| 19  | ıralkoxydim            | 1:125-3:1   | 1:15-1:2 | 100-500  | 150-300  |
| 20  | clodinafop             | 1:50-30:1   | 1:5-2:1  | 10-200   | 40-100   |
|     | in combination with    |             |          |          |          |
|     | cloquintocet-mexyl     | 1:12-300:1  | 1:1-7:1  | 1-50     | 10-25    |
| 21  | sulfosulfuron          | 1:12-300:1  | 1:2-20:1 | 1-50     | 4-4()    |
| 22  | prosulfuron            | 1:125-125:1 | 1:3-3:1  | 4-300    | 20-70    |
| 23  | metribuzin             | 1:250-30:1  | 1:25-1:1 | 10-1000  | 50-500   |
| 24  | glyphosate             | 1:500-3:1   | 1:50-1:4 | 100-2000 | 250-1000 |
| 2.5 | ethametsulfuron-methyl | 1:10-300:1  | 2:3-7:1  | 1-50     | 10-30    |

b) 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1.3-cyclohexanedione S,S-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

|             |                       |             | Preferred |          | Preferred   |
|-------------|-----------------------|-------------|-----------|----------|-------------|
|             |                       |             | Ratio     | Use Rate | Use Rate    |
| Combination |                       | Ratio Range | Range     | Range of | Range       |
| Number      | Mixture Partner B     | of A:B      | of A:B    | B (g/ha) | of B (g/ha) |
| 1           | tribenuron-methyl     | 1:10-300:1  | 1:1-14:1  | 1-50     | 5-20        |
| 2           | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1   | 1-100    | 10-40       |
| 3           | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1   | 1-50     | 10-20       |
|             | in combination with   |             |           |          |             |
|             | tribenuron-methyl     | 1:5-300:1   | 2:1-14:1  | 1-20     | 5-10        |
| 4           | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 5           | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1   | 1-100    | 10-40       |
|             | in combination with   |             |           |          |             |
|             | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 6           | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1   | 1-50     | 10-20       |
|             | in combination with   |             |           |          |             |
|             | tribenuron-methyl     | 1:10-300:1  | 1:1-7:1   | 1-20     | 5-10        |
|             | in combination with   |             |           |          |             |
|             | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 7           | chlorsulfuron         | 1:10-300:1  | 2:3-7:1   | 1-50     | 10-30       |

|    | <del>,</del>           |             |           |          |          |
|----|------------------------|-------------|-----------|----------|----------|
| 8  | chlorsulfuron          | 1:10-300:1  | 1:1-7:1   | 1-50     | 10-20    |
|    | in combination with    |             |           |          |          |
|    | metsulfuron-methyl     | 1:2-300:1   | 5:1-35:1  | 1-10     | 2-4      |
| 9  | triasulfuron           | 1:10-300:1  | 2:3-7:1   | 1-50     | 10-30    |
| 10 | 2.4-D                  | 1:1000-3:1  | 1:100-1:3 | 100-4000 | 200-2000 |
| 11 | dicamba                | 1:150-10:1  | 1:15-1:1  | 30-600   | 70-300   |
| 12 | bromoxynil             | 1:500-3:1   | 1:50-1:4  | 100-2000 | 250-1000 |
| 13 | МСРА                   | 1:500-6:1   | 1:50-1:1  | 50-2000  | 100-1000 |
| 14 | bromoxynil             | 1:500-3:1   | 1:50-1:4  | 100-2000 | 250-1000 |
|    | in combination with    |             |           |          |          |
|    | МСРА                   | 1:500-6:1   | 1:50-1:1  | 50-2000  | 100-1000 |
| 15 | fluroxypyr             | 1:150-10:1  | 1:15-1:1  | 30-600   | 70-300   |
| 16 | clopyralid             | 1:125-30:1  | 1:12-1:1  | 10-500   | 50-250   |
| 17 | fenoxaprop             | 1:50-30:1   | 1:5-2:1   | 10-200   | 40-100   |
| ,  | in combination with    |             |           |          |          |
|    | fenchlorazole          | 1:12-300:1  | 1:1-7:1   | 1-50     | 10-25    |
| 18 | diclofop               | 1:500-3:1   | 1:50-1:7  | 100-2000 | 500-1000 |
| 19 | tralkoxydim            | 1:125-3:1   | 1:15-1:2  | 100-500  | 150-300  |
| 20 | clodinafop             | 1:50-30:1   | 1:5-2:1   | 10-200   | 40-100   |
|    | in combination with    |             |           |          |          |
|    | cloquintocet-mexyl     | 1:12-300:1  | 1:1-7:1   | 1-50     | 10-25    |
| 21 | sulfosulfuron          | 1:12-300:1  | 1:2-20:1  | 1-50     | 4-4()    |
| 22 | prosulfuron            | 1:125-125:1 | 1:3-3:1   | 4-300    | 20-70    |
| 23 | metribuzin             | 1:250-30:1  | 1:25-1:1  | 10-1000  | 50-500   |
| 24 | glyphosate             | 1:500-3:1   | 1:50-1:4  | 100-2000 | 250-1000 |
| 25 | ethametsulfuron-methyl | 1:10-300:1  | 2:3-7:1   | 1-50     | 10-30    |

c) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-5-methyl-1,3-cyclohexanedione *S.S*-dioxide (mixture partner A. generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

|             |                       |             | Preferred |          | Preferred   |
|-------------|-----------------------|-------------|-----------|----------|-------------|
|             |                       |             | Ratio     | Use Rate | Use Rate    |
| Combination |                       | Ratio Range | Range     | Range of | Range       |
| Number      | Mixture Partner B     | of A:B      | of A:B    | B (g/ha) | of B (g/ha) |
| 1           | tribenuron-methyl     | 1:10-300:1  | 1:1-14:1  | 1-50     | 5-20        |
| 2           | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1   | 1-100    | 10-40       |
| 3           | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1   | 1-50     | 10-20       |
|             | in combination with   |             |           |          |             |
|             | tribenuron-methyl     | 1:5-300:1   | 2:1-14:1  | 1-20     | 5-10        |
| 4           | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 5           | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1   | 1-100    | 10-40       |
|             | in combination with   |             |           |          |             |
|             | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 6           | thifensulfuron-methyl | 1:10-300:1  | 1:4-7:1   | 1-50     | 10-20       |
|             | in combination with   |             |           |          |             |
|             | tribenuron-methyl     | 1:10-300:1  | 1:1-7:1   | 1-20     | 5-10        |
|             | in combination with   |             |           |          | •           |
|             | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 7           | chlorsulfuron         | 1:10-300:1  | 2:3-7:1   | 1-50     | 10-30       |
| 8           | chlorsulfuron         | 1:10-300:1  | 1:1-7:1   | 1-50     | 10-20       |
|             | in combination with   |             |           |          |             |
|             | metsulfuron-methyl    | 1:2-300:1   | 5:1-35:1  | 1-10     | 2-4         |
| 9           | triasulfuron          | 1:10-300:1  | 2:3-7:1   | 1-50     | 10-30       |
| 1()         | 2.4-Г)                | 1:1000-3:1  | 1:100-1:3 | 100-4000 | 200-2000    |
| 11          | dicamba               | 1:150-10:1  | 1:15-1:1  | 30-600   | 70-300      |
| 12          | bromoxynil            | 1:500-3:1   | 1:50-1:4  | 100-2000 | 250-1000    |
| 13          | МСРА                  | 1:500-6:1   | 1:50-1:1  | 50-2000  | 100-1000    |
| 14          | bromoxynil            | 1:500-3:1   | 1:50-1:4  | 100-2000 | 250-1000    |
|             | in combination with   |             |           |          | ·           |
|             | МСРА                  | 1:500-6:1   | 1:50-1:1  | 50-2000  | 100-1000    |
| 15          | fluroxypyr            | 1:150-10:1  | 1:15-1:1  | 30-600   | 70-300      |
| 16          | clopyralid            | 1:125-30:1  | 1:12-1:1  | 10-500   | 50-250      |
| 17          | fenoxaprop            | 1:50-30:1   | 1:5-2:1   | 10-200   | 40-100      |
|             | in combination with   |             |           |          |             |
|             | fenchlorazole         | 1:12-300:1  | 1:1-7:1   | 1-50     | 10-25       |
| 18          | diclofop              | 1:500-3:1   | 1:50-1:7  | 100-2000 | 500-1000    |

| 19 | tralkoxydim            | 1:125-3:1   | 1:15-1:2 | 100-500  | 150-300  |
|----|------------------------|-------------|----------|----------|----------|
| 20 | clodinafop             | 1:50-30:1   | 1:5-2:1  | 10-200   | 40-100   |
|    | in combination with    |             |          |          |          |
|    | cloquintocet-mexyl     | 1:12-300:1  | 1:1-7:1  | 1-50     | 10-25    |
| 21 | sulfosulfuron          | 1:12-300:1  | 1:2-20:1 | 1-50     | 4-4()    |
| 22 | prosulfuron            | 1:125-125:1 | 1:3-3:1  | 4-300    | 20-70    |
| 23 | metribuzin             | 1:250-30:1  | 1:25-1:1 | 10-1000  | 50-500   |
| 24 | glyphosate             | 1:500-3:1   | 1:50-1:4 | 100-2000 | 250-1000 |
| 25 | ethametsulfuron-methyl | 1:10-300:1  | 2:3-7:1  | 1-5()    | 10-30    |

d) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S.S*-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

|             |                       |             | Preferred<br>Ratio | Use Rate | Preferred<br>Use Rate |
|-------------|-----------------------|-------------|--------------------|----------|-----------------------|
| Combination |                       | Ratio Range | Range              | Range of | Range                 |
| Number      | Mixture Partner B     | of A:B      | of A:B             | B (g/ha) | of B (g/ha)           |
| ı           | tribenuron-methyl     | 1:10-300:1  | 1:1-14:1           | 1-50     | 5-20                  |
| 2           | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1            | 1-100    | 10-40                 |
| 3           | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1            | 1-5()    | 10-20                 |
|             | in combination with   |             |                    |          | •<br>•<br>•           |
|             | tribenuron-methyl     | 1:5-300:1   | 2:1-14:1           | 1-20     | 5-10                  |
| 4           | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1           | 1-20     | 2-6                   |
| 5           | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1            | 1-100    | 10-40                 |
|             | in combination with   |             |                    |          |                       |
|             | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1           | 1-20     | 2-6                   |
| 6           | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1            | 1-50     | 10-20                 |
|             | in combination with   |             |                    |          |                       |
|             | tribenuron-methyl     | 1:10-300:1  | 1:1-7:1            | 1-20     | 5-10                  |
|             | in combination with   |             |                    |          |                       |
|             | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1           | 1-20     | 2-6                   |
| 7           | chlorsulfuron         | 1:10-300:1  | 2:3-7:1            | 1-50     | 10-30                 |
| 8           | chlorsulfuron         | 1:10-300:1  | 1:1-7:1            | 1-50     | 10-20                 |
|             | in combination with   |             |                    |          |                       |
|             | metsulfuron-methyl    | 1:2-300:1   | 5:1-35:1           | 1.10     | 2.4                   |

|    |                        | <del>,                                      </del> |           |          |          |
|----|------------------------|----------------------------------------------------|-----------|----------|----------|
| 9  | triasulfuron           | 1:10-300:1                                         | 2:3-7:1   | 1-50     | 10-30    |
| 10 | 2,4-D                  | 1:1000-3:1                                         | 1:100-1:3 | 100-4000 | 200-2000 |
| 11 | dicamba                | 1:150-10:1                                         | 1:15-1:1  | 30-600   | 70-300   |
| 12 | bromoxynil             | 1:500-3:1                                          | 1:50-1:4  | 100-2000 | 250-1000 |
| 13 | МСРА                   | 1:500-6:1                                          | 1:50-1:1  | 50-2000  | 100-1000 |
| 14 | bromoxynil             | 1:500-3:1                                          | 1:50-1:4  | 100-2000 | 250-1000 |
|    | in combination with    |                                                    |           |          |          |
|    | МСРА                   | 1:500-6:1                                          | 1:50-1:1  | 50-2000  | 100-1000 |
| 15 | fluroxypyr             | 1:150-10:1                                         | 1:15-1:1  | 30-600   | 70-300   |
| 16 | clopyralid             | 1:125-30:1                                         | 1:12-1:1  | 10-500   | 50-250   |
| 17 | fenoxaprop             | 1:50-30:1                                          | 1:5-2:1   | 10-200   | 40-100   |
|    | in combination with    |                                                    |           |          |          |
|    | fenchlorazole          | 1:12-300:1                                         | 1:1-7:1   | 1-50     | 10-25    |
| 18 | diclofop               | 1:500-3:1                                          | 1:50-1:7  | 100-2000 | 500-1000 |
| 19 | tralkoxvdim            | 1:125-3:1                                          | 1:15-1:2  | 100-500  | 150-300  |
| 20 | clodinafop             | 1:50-30:1                                          | 1:5-2:1   | 10-200   | 40-100   |
|    | in combination with    |                                                    |           |          | e.       |
|    | cloquintocet-mexyl     | 1:12-300:1                                         | 1:1-7:1   | 1-50     | 10-25    |
| 21 | sulfosulfuron          | 1:12-300:1                                         | 1:2-20:1  | 1-50     | 4-4()    |
| 22 | prosulfuron            | 1:125-125:1                                        | 1:3-3:1   | 4-300    | 20-70    |
| 23 | metribuzin             | 1:250-30:1                                         | 1:25-1:1  | 10-1000  | 50-500   |
| 24 | glyphosate             | 1:500-3:1                                          | 1:50-1:4  | 100-2000 | 250-1000 |
| 25 | ethametsulfuron-methyl | 1:10-300:1                                         | 2:3-7:1   | 1-50     | 10-30    |

e) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

|             |                       |             | Preferred |          | Preferred   |
|-------------|-----------------------|-------------|-----------|----------|-------------|
|             |                       |             | Ratio     | Use Rate | Use Rate    |
| Combination |                       | Ratio Range | Range     | Range of | Range       |
| Number      | Mixture Partner B     | of A:B      | of A:B    | B (g/ha) | of B (g/ha) |
| 1           | tribenuron-methyl     | 1:10-300:1  | 1:1-14:1  | 1-50     | 5-20        |
| 2           | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1   | 1-100    | 10-40       |

|    |                       | <del></del> | [         | · · · · · · · · · · · · · · · · · · · |          |
|----|-----------------------|-------------|-----------|---------------------------------------|----------|
| 3  | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1   | 1-50                                  | 10-20    |
|    | in combination with   |             |           |                                       |          |
|    | tribenuron-methyl     | 1:5-300:1   | 2:1-14:1  | 1-20                                  | 5-10     |
| 4  | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20                                  | 2-6      |
| 5  | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1   | 1-100                                 | 10-40    |
| ** | in combination with   |             |           |                                       |          |
|    | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20                                  | 2-6      |
| 6  | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1   | 1-50                                  | 10-20    |
|    | in combination with   |             |           |                                       |          |
|    | tribenuron-methyl     | 1:10-300:1  | 1:1-7:1   | 1-20                                  | 5-10     |
|    | in combination with   |             |           |                                       |          |
|    | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20                                  | 2-6      |
| 7  | chlorsulfuron         | 1:10-300:1  | 2:3-7:1   | 1-50                                  | 10-30    |
| 8  | chlorsulfuron         | 1:10-300:1  | 1:1-7:1   | 1-50                                  | 10-20    |
|    | in combination with   |             |           |                                       |          |
|    | metsulfuron-methyl    | 1:2-300:1   | 5:1-35:1  | 1-10                                  | 2-4      |
| 9  | triasulfuron          | 1:10-300:1  | 2:3-7:1   | 1-50                                  | 10-30    |
| 10 | 2,4-D                 | 1:1000-3:1  | 1:100-1:3 | 100-4000                              | 200-2000 |
| 11 | dicamba               | 1:150-10:1  | 1:15-1:1  | 30-600                                | 70-300   |
| 12 | bromoxynil            | 1:500-3:1   | 1:50-1:4  | 100-2000                              | 250-1000 |
| 13 | МСРА                  | 1:500-6:1   | 1:50-1:1  | 50-2000                               | 100-1000 |
| 14 | bromoxynil            | 1:500-3:1   | 1:50-1:4  | 100-2000                              | 250-1000 |
|    | in combination with   |             |           |                                       |          |
|    | МСРА                  | 1:5(X)-6:1  | 1:50-1:1  | 50-2000                               | 100-1000 |
| 15 | fluroxypyr            | 1:150-10:1  | 1:15-1:1  | 30-600                                | 70-300   |
| 16 | clopyralid            | 1:125-30:1  | 1:12-1:1  | 10-500                                | 50-250   |
| 17 | fenoxaprop            | 1:50-30:1   | 1:5-2:1   | 10-200                                | 40-100   |
|    | in combination with   |             |           |                                       |          |
|    | fenchlorazole         | 1:12-300:1  | 1:1-7:1   | 1-50                                  | 10-25    |
| 18 | diclofop              | 1:500-3:1   | 1:50-1:7  | 100-2000                              | 500-1000 |
| 19 | trałkoxydim           | 1:125-3:1   | 1:15-1:2  | 100-500                               | 150-300  |
| 20 | clodinafop            | 1:50-30:1   | 1:5-2:1   | 10-200                                | 40-100   |
|    | in combination with   |             |           |                                       |          |
|    | cloquintocet-mexyl    | 1:12-300:1  | 1:1-7:1   | 1-50                                  | 10-25    |
| 21 | sulfosulfuron         | 1:12-300:1  | 1:2-20:1  | 1-50                                  | 4-4()    |
| 22 | prosulfuron           | 1:125-125:1 | 1:3-3:1   | 4-300                                 | 20-70    |
| 23 | metribuzin            | 1:250-30:1  | 1:25-1:1  | 10-1000                               | 50-500   |
|    |                       |             |           | 1 .0                                  |          |

| 24 | glyphosate             | 1:500-3:1  | 1:50-1:4 | 100-2000 | 250-1000 |
|----|------------------------|------------|----------|----------|----------|
| 25 | ethametsulfuron-methyl | 1:10-300:1 | 2:3-7:1  | 1-50     | 10-30    |

f) 2-[(4,5-dihydro-2,7,10-trimethyl-2*H*[1]benzothiepino[5,4-*c*]pyrazol-9-yl)carbonyl]-5-methyl-1,3-cyclohexanedione *S,S*-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

|             |                       |             | Preferred |          | Preferred   |
|-------------|-----------------------|-------------|-----------|----------|-------------|
|             |                       |             | Ratio     | Use Rate | Use Rate    |
| Combination |                       | Ratio Range | Range     | Range of | Range       |
| Number      | Mixture Partner B     | of A:B      | of A:B    | B (g/ha) | of B (g/ha) |
| 1           | tribenuron-methyl     | 1:10-300:1  | 1:1-14:1  | 1-50     | 5-20        |
| 2           | thirensulfuron-methyl | 1:25-300:1  | 1:2-7:1   | 1-100    | 1()-4()     |
| 3           | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1   | 1-50     | 10-20       |
|             | in combination with   |             |           |          |             |
|             | tribenuron-methyl     | 1:5-300:1   | 2:1-14:1  | 1-20     | 5-10        |
| 4           | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 5           | thifensulfuron-methyl | 1:25-300:1  | 1:2-7:1   | 1-100    | 10-40       |
|             | in combination with   |             |           |          |             |
|             | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 6           | thifensulfuron-methyl | 1:10-300:1  | 1:1-7:1   | 1-50     | 10-20       |
|             | in combination with   |             |           |          |             |
|             | tribenuron-methyl     | 1:10-300:1  | 1:1-7:1   | 1-20     | 5-10        |
|             | in combination with   |             |           |          |             |
|             | metsulfuron-methyl    | 1:5-300:1   | 3:1-35:1  | 1-20     | 2-6         |
| 7           | chlorsulfuron         | 1:10-300:1  | 2:3-7:1   | 1-50     | 10-30       |
| 8           | chlorsulfuron         | 1:10-300:1  | 1:1-7:1   | 1-50     | 10-20       |
| ·           | in combination with   |             |           |          |             |
|             | metsulfuron-methyl    | 1:2-300:1   | 5:1-35:1  | 1-10     | 2-4         |
| ý           | triasulfuron          | 1:10-300:1  | 2:3-7:1   | 1-50     | 10-30       |
| 10          | 2,4-D                 | 1:1000-3:1  | 1:100-1:3 | 100-4000 | 200-2000    |
| 11          | dicamba               | 1:150-10:1  | 1:15-1:1  | 30-600   | 70-300      |
| 12          | bromoxynil            | 1:500-3:1   | 1:50-1:4  | 100-2000 | 250-1000    |
| 13          | МСРА                  | 1:500-6:1   | 1:50-1:1  | 50-2000  | 100-1000    |

| 14                                    | bromoxynil in combination with | 1:500-3:1   | 1:50-1:4 | 100-2000 | 250-1000 |
|---------------------------------------|--------------------------------|-------------|----------|----------|----------|
| · · · · · · · · · · · · · · · · · · · | МСРА                           | 1:500-6:1   | 1:50-1:1 | 50-2000  | 100-1000 |
| 15                                    | fluroxypyr                     | 1:150-10:1  | 1:15-1:1 | 30-600   | 70-300   |
| 16                                    | clopyralid                     | 1:125-30:1  | 1:12-1:1 | 10-500   | 50-250   |
| 17                                    | fenoxaprop                     | 1:50-30:1   | 1:5-2:1  | 10-200   | 40-100   |
|                                       | in combination with            |             | -        |          |          |
|                                       | fenchlorazole                  | 1:12-300:1  | 1:1-7:1  | 1-50     | 10-25    |
| 18                                    | diclotop                       | 1:500-3:1   | 1:50-1:7 | 100-2000 | 500-1000 |
| 19                                    | tralkoxydim                    | 1:125-3:1   | 1:15-1:2 | 100-500  | 150-300  |
| 20                                    | clodinafop                     | 1:50-30:1   | 1:5-2:1  | 10-200   | 40-100   |
|                                       | in combination with            |             |          |          |          |
|                                       | cloquintocet-mexyl             | 1:12-300:1  | 1:1-7:1  | 1-50     | 10-25    |
| 21                                    | sulfosulfuron                  | 1:12-300:1  | 1:2-20:1 | 1-50     | 4-4()    |
| 22                                    | prosulfuron                    | 1:125-125:1 | 1:3-3:1  | 4-300    | 20-70    |
| 23                                    | metribuzin                     | 1:250-30:1  | 1:25-1:1 | 10-1000  | 50-500   |
| 24                                    | glyphosate                     | 1:500-3:1   | 1:50-1:4 | 100-2000 | 250-1000 |
| 25                                    | ethametsulfuron-methyl         | 1:10-300:1  | 2:3-7:1  | 1-50     | 10-30    |

Preferred for better control of undesired vegetation in corn (e.g., lower use rate. broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds in corn are mixtures of a compound of this invention with one or more of the herbicides selected from the group thisensulfuron-methyl, rimsulfuron, nicosulfuron, primisulfuron, atrazine, terbuthylazine, 2,4-D, dicamba, ... bromoxynil, imazethapyr, clopyralid, prosulfuron, glyphosate, glyphosate-trimesium, glufosinate, fluthiacet-methyl, quizalofop-P-ethyl, bentazone, flumetsulam,

10 halosulfuron, sethoxydim, and flumiclorac-pentyl.

> Specifically preferred mixtures for use in corn are selected from the group: a) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

15

|             |                       |             | Preferred |          | Preferred   |
|-------------|-----------------------|-------------|-----------|----------|-------------|
|             |                       |             | Ratio     | Use Rate | Use Rate    |
| Combination |                       | Ratio Range | Range     | Range of | Range       |
| Number      | Mixture Partner B     | of A:B      | of A:B    | B (g/ha) | of B (g/ha) |
| 1           | rimsulfuron           | 1:5-300:1   | 1:1-70:1  | 1-20     | 1-10        |
| 2           | thifensulfuron-methyl | 1:2-300:1   | 1:1-70:1  | 1-10     | 1-5         |
| 3           | nicosulfuron          | 1:10-300:1  | 1:1-70:1  | 1-50     | 1-10        |
| 4           | rimsulfuron           | 1:5-300:1   | 1:1-70:1  | 1-20     | 1-10        |
|             | in combination with   |             |           |          |             |
|             | nicosulfuron          | 1:10-300:1  | 1:1-70:1  | 1-50     | 1-10        |
| 5           | rimsulfuron           | 1:5-300:1   | 1:1-70:1  | 1-20     | 1-10        |
|             | in combination with   |             |           |          |             |
|             | thifensulfuron-methyl | 1:2-300:1   | 1:1-70:1  | 1-10     | 1-5         |
| 6           | prosulfuron           | 1:10-300:1  | 2:1-70.1  | 1-50     | 1-10        |
| 7           | prosulfuron           | 1:10-300:1  | 2:1-70:1  | 1-50     | 1-10        |
|             | in combination with   |             |           |          |             |
|             | primisulfuron         | 1:10-300:1  | 2:1-70:1  | 1-50     | 1-10        |
| 8           | atrazine              | 1:500-3:1   | 1:25-1:1  | 100-2000 | 100-500     |
| 9           | terbuthylazine        | 1:500-3:1   | 1:25-1:1  | 100-2000 | 100-500     |
| 10          | dicamba               | 1:125-30:1  | 1:5-7:1   | 10-500   | 10-100      |
| 11          | 2,4-D                 | 1:250-6:1   | 1:25-1:1  | 50-1000  | 50-500      |
| 12          | bromoxynil            | 1:250-6:1   | 1:25-1:1  | 50-1000  | 50-500      |
| 13          | imazethapyr           | 1:25-300:1  | 1:2-14:1  | 1-100    | 5-50        |
| 14          | glyphosate            | 1:250-6:1   | 1:25-1:1  | 50-1000  | 50-500      |
| 15          | glufosinate           | 1:250-6:1   | 1:25-1:1  | 50-1000  | 50-500      |
| 16          | glyphosate-trimesium  | 1:250-6:1   | 1:25-1:1  | 50-1000  | 50-500      |

b) 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S.S-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

|             |                       |             | Preferred |          | Preferred   |
|-------------|-----------------------|-------------|-----------|----------|-------------|
|             |                       |             | Ratio     | Use Rate | Use Rate    |
| Combination |                       | Ratio Range | Range     | Range of | Range       |
| Number      | Mixture Partner B     | of A:B      | of A:B    | B (g/ha) | of B (g/ha) |
| 1           | rimsulfuron           | 1:5-300:1   | 1:1-70:1  | 1-20     | 1-10        |
| 2           | thifensulfuron-methyl | 1:2-300:1   | 1:1-70:1  | 1-10     | 1-5         |
| 3           | nicosulfuron          | 1:10-300:1  | 1:1-70:1  | 1-50     | 1-10        |
| 4           | rimsulfuron           | 1:5-300:1   | 1:1-70:1  | 1-20     | 1-10        |
|             | in combination with   |             |           | 1 20     | 1-10        |
|             | nicosulfuron          | 1:10-300:1  | 1:1-70:1  | 1-50     | 1-10        |
| 5           | rımsulfuron           | 1:5-300:1   | 1:1-70:1  | 1-20     | 1-10        |
|             | in combination with   |             |           |          |             |
|             | thifensulfuron-methyl | 1:2-300:1   | F:1-70:1  | 1-10     | 1-5         |
| 6           | prosulfuron           | 1:10-300:1  | 2:1-70:1  | 1-50     | 1-10        |
| 7           | prosulfuron           | 1:10-300:1  | 2:1-70:1  | 1-50     | 1-10        |
|             | in combination with   |             |           | • • •    | 1-10        |
|             | primisulfuron         | 1:10-300:1  | 2:1-70:1  | 1-50     | 1-10        |
| 8           | atrazine              | 1:500-3:1   | 1:25-1:1  | 100-2000 | 100-500     |
| 4)          | terbuthylazine        | 1:500-3:1   | 1:25-1:1  | 100-2000 | 100-500     |
| 10          | dicamba               | 1:125-30:1  | 1:5-7:1   | 10-500   | 10-100      |
| 11          | 2.4-D                 | 1:250-6:1   | 1:25-1:1  | 50-1000  | 50-500      |
| 12          | bromoxynil            | 1:250-6:1   | 1:25-1:1  | 50-1000  | 50-500      |
| 13          | imazethapyr           | 1:25-300:1  | 1:2-14:1  | 1-100    | 5-50        |
| 14          | glyphosate            | 1:250-6:1   | 1:25-1:1  | 50-1000  |             |
| 15          | glufosinate           | 1:250-6:1   | 1:25-1:1  |          | 50-500      |
| 16          | glyphosate-trimesium  | 1:250-6:1   | 1:25-1:1  | 50-1000  | 50-500      |
|             | Gyphonaic dimestant   | 1 1.230-0.1 | 1.60-1.1  | 50-1000  | 50-500      |

c) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-5-methyl-1,3-cyclohexanedione <math>S,S-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

|             |                        |                     | Preferred |          | Preferred   |
|-------------|------------------------|---------------------|-----------|----------|-------------|
|             |                        |                     | Ratio     | Use Rate | Use Rate    |
| Combination |                        | Ratio Range         | Range     | Range of | Range       |
| Number      | Mixture Partner B      | of A:B              | of A:B    | B (g/ha) | of B (g/ha) |
| 1           | rimsulfuron            | 1:5-300:1           | 1:1-70:1  | 1-20     | 1-1()       |
| 2           | thifensulfuron-methyl  | 1:2-300:1           | 1:1-70:1  | 1-10     | 1-5         |
| 3           | nicosulfuron           | 1:10-300:1          | 1:1-70:1  | 1-50     | 1-1()       |
| 4           | rimsulfuron            | 1:5-300:1           | 1:1-70:1  | 1-20     | 1-10        |
|             | in combination with    |                     |           |          |             |
| ,           | nicosulfuron           | 1:10-300:1          | 1:1-70:1  | 1-50     | 1.10        |
| 5           | rimsulfuron            | 1:5-300:1           | 1:1-70:1  | 1-20     | 1-10        |
| •           | in combination with    |                     |           |          |             |
|             | thifensulfuron-methyl  | 1:2-300:1           | 1:1-70:1  | 1-10     | 1-5         |
| 6           | prosulfuron            | 1:10-300:1          | 2:1-70:1  | 1-50     | ] - [ (1    |
| 7           | prosulfuron            | 1:10-300:1          | 2:1-70:1  | 1-50     | 1-10        |
| ,           | in combination with    |                     |           |          | į           |
|             | primisulfuron          | 1:10-300:1          | 2:1-70:1  | 1-50     | 1-10        |
| 8           | atrazine               | 1:500-3:1           | 1:25-1:1  | 100-2000 | 100-500     |
| 9           | terbuthylazine         | 1:500-3:1           | 1:25-1:1  | 100-2000 | 100-500     |
| 10          | dicamba                | 1:125-30:1          | 1:5-7:1   | 10-500   | 10-100      |
| 11          | 2.4-D                  | 1:250-6:1           | 1:25-1:1  | 50-1000# | 50-500      |
| 12          | bromoxynil             | 1:250-6:1           | 1:25-1:1  | 50-1000  | 50-500      |
| 13          | imazethapyr            | 1:25-300:1          | 1:2-14:1  | 1-100    | 5-50        |
| 14          | glyphosate             | 1:250-6:1           | 1:25-1:1  | 50-1000  | 50-500      |
| 15          | glufosinate            | 1:250-6:1           | 1:25-1:1  | 50-1000  | 50-500      |
|             | glyphosate-trimesium   | 1:250-6:1           | 1:25-1:1  | 50-1000  | 50-500      |
| 16          | 1 Stabilosure-minesiam | 1 4 July 137 S.F. X | 1         |          |             |

d) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethyl-5-hydroxy-1*H*-pyrazol-4-yl)methanone *S,S*-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

|             |                       | <del></del> | <del></del> |          | -           |
|-------------|-----------------------|-------------|-------------|----------|-------------|
|             |                       |             | Preferred   |          | Preferred   |
|             |                       |             | Ratio       | Use Rate | Use Rate    |
| Combination |                       | Ratio Range | Range       | Range of | Range       |
| Number      | Mixture Partner B     | of A:B      | of A:B      | B (g/ha) | of B (g/ha) |
| 1           | rimsulfuron           | 1:5-300:1   | 1:1-70:1    | 1-20     | 1-10        |
| 2           | thifensulfuron-methyl | 1:2-300:1   | 1:1-70:1    | 1-10     | 1-5         |
| 3           | nicosulfuron          | 1:10-300:1  | 1:1-70:1    | 1-50     | 1-10        |
| 4           | rimsulfuron           | 1:5-300:1   | 1:1-70:1    | 1-20     | 1-10        |
|             | in combination with   |             |             |          |             |
|             | nicosulfuron          | 1:10-300:1  | 1:1-70:1    | 1-50     | 1-10        |
| 5           | rimsulfuron           | 1:5-300:1   | 1:1-70:1    | 1-20     | 1-10        |
|             | in combination with   |             |             | 1 2      | 1-10        |
|             | thifensulfuron-methyl | 1:2-300:1   | 1:1-70:1    | 1-10     | 1-5         |
| 6           | prosulfuron           | 1:10-300:1  | 2:1-70:1    | 1-50     | 1-10        |
| 7           | prosulfuron           | 1:10-300:1  | 2:1-70:1    | 1-50     | 1-10        |
|             | in combination with   |             |             | 1 30     | 1-10        |
|             | primisulfuron         | 1:10-300:1  | 2:1-70:1    | 1-50     | 1-10        |
| 8           | atrazine              | 1:500-3:1   | 1:25-1:1    | 100-2000 | 100-500     |
| 9           | terhuthylazine        | 1:500-3:1   | 1:25-1:1    | 100-2000 | 100-300     |
| 10          | dicamba               | 1:125-30:1  | 1:5-7:1     | 10-500   | 10-100      |
| 11          | 2.4-D                 | 1:250-6:1   | 1:25-1:1    | 50-1000  |             |
| 12          | bromoxynil            | 1:250-6:1   | 1:25-1:1    |          | 50-500      |
| 13          | ımazethapyr           | 1:25-300:1  |             | 50-1000  | 5()-5()()   |
| 14          | glyphosate            |             | 1:2-14:1    | 1-100    | 5-50        |
| 15          |                       | 1:250-6:1   | 1:25-1:1    | 50-1000  | 50-500      |
|             | glufosinate           | 1:250-6:1   | 1:25-1:1    | 50-1000  | 50-500      |
| 16          | glvphosate-trimesium  | 1:250-6:1   | 1:25-1:1    | 50-1000  | 50-500      |

e) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione *S,S*-dioxide (mixture partner A, generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

|                       |                                                                                                                                                                                               | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preferred                                                                |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                       |                                                                                                                                                                                               | Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Use Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Use Rate                                                                 |
|                       | Ratio Range                                                                                                                                                                                   | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Range of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Range                                                                    |
| Mixture Partner B     | of A:B                                                                                                                                                                                        | of A:B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B (g/ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of B (g/ha)                                                              |
| rimsulfuron           | 1:5-300:1                                                                                                                                                                                     | 1:1-70:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-10                                                                     |
| thifensulfuron-methyl | 1:2-300:1                                                                                                                                                                                     | 1:1-70:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ] - [()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-5                                                                      |
| nicosulfuron          | 1:10-300:1                                                                                                                                                                                    | 1:1-70:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-10                                                                     |
| rimsulfuron           | 1:5-300:1                                                                                                                                                                                     | 1:1-70:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-10                                                                     |
| in combination with   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |
| nicosulfuron          | 1:10-300:1                                                                                                                                                                                    | 1:1-70:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-10                                                                     |
| rimsulfuron           | 1:5-300:1                                                                                                                                                                                     | 1:1-70:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , 1-10                                                                   |
| in combination with   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |
| thifensulfuron-methyl | 1:2-300:1                                                                                                                                                                                     | 1:1-70:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-5                                                                      |
| prosulfuron           | 1:10-300:1                                                                                                                                                                                    | 2:1-70:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-1()                                                                    |
| prosulfuron           | 1:10-300:1                                                                                                                                                                                    | 2:1-70:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-10                                                                     |
| in combination with   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |
| primisulfuron         | 1:10-300:1                                                                                                                                                                                    | 2:1-70:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-10                                                                     |
| atrazine              | 1:500-3:1                                                                                                                                                                                     | 1:25-1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100-500                                                                  |
| terbuthylazine        | 1:500-3:1                                                                                                                                                                                     | 1:25-1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100-500                                                                  |
|                       | 1:125-30:1                                                                                                                                                                                    | 1:5-7:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10-500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | {0-100                                                                   |
|                       | 1:250-6:1                                                                                                                                                                                     | 1:25-1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50-500                                                                   |
|                       | 1:250-6:1                                                                                                                                                                                     | 1:25-1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5()-5()0                                                                 |
|                       | 1:25-300:1                                                                                                                                                                                    | 1:2-14:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15-50                                                                    |
|                       | 1:250-6:1                                                                                                                                                                                     | 1:25-1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50-500                                                                   |
|                       | 1:250-6:1                                                                                                                                                                                     | 1:25-1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50-500                                                                   |
|                       | 1:250-6:1                                                                                                                                                                                     | 1:25-1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50-500                                                                   |
|                       | rimsulfuron thifensulfuron-methyl nicosulfuron rimsulfuron in combination with nicosulfuron rimsulfuron in combination with thifensulfuron-methyl prosulfuron prosulfuron in combination with | Mixture Partner B         of A:B           rimsulfuron         1:5-300:1           thifensulfuron-methyl         1:2-300:1           nicosulfuron         1:10-300:1           rimsulfuron         1:5-300:1           in combination with         1:10-300:1           nicosulfuron         1:5-300:1           rimsulfuron         1:10-300:1           prosulfuron         1:10-300:1           prosulfuron         1:10-300:1           in combination with         1:10-300:1           primisulfuron         1:10-300:1           atrazine         1:500-3:1           dicamba         1:125-30:1           2.4-D         1:250-6:1           bromoxynil         1:250-6:1           imazethapyr         1:25-300:1           glyphosate         1:250-6:1           glufosinate         1:250-6:1 | Mixture Partner B         Ratio Range         Range of A:B           rimsulfuron         1:5-300:1         1:4-70:1           thifensulfuron-methyl         1:2-300:1         1:4-70:1           nicosulfuron         1:10-300:1         1:1-70:1           rimsulfuron         1:5-300:1         1:1-70:1           rimsulfuron         1:5-300:1         1:1-70:1           rimsulfuron         1:5-300:1         1:1-70:1           rimsulfuron         1:5-300:1         1:1-70:1           rimsulfuron         1:10-300:1         2:1-70:1           prosulfuron         1:10-300:1         2:1-70:1           prosulfuron         1:10-300:1         2:1-70:1           in combination with         1:10-300:1         2:1-70:1           prosulfuron         1:10-300:1         2:1-70:1           atrazine         1:500-3:1         1:25-1:1           dicamba         1:125-0-3:1         1:25-1:1           dicamba         1:125-0-6:1         1:25-1:1           bromoxynil         1:250-6:1         1:25-1:1           imazethapyr         1:25-0-6:1         1:25-1:1           glufosinate         1:250-6:1         1:25-1:1 | Ratio Range   Range   Range   Range   Range   of A:B   of A:B   B (g/ha) |

f) 2-[(4,5-dihydro-2,7,10-trimethyl-2*H*[1]benzothiepino[5,4-*c*]pyrazol-9-yl)carbonyl]-5-methyl-1,3-cyclohexanedione *S.S*-dioxide (mixture partner A. generally applied at a rate of 4 to 280 g/ha, preferably applied at a rate of 8 to 70 g/ha) in combination with:

| T             |                       |             |           |          |                                         |
|---------------|-----------------------|-------------|-----------|----------|-----------------------------------------|
|               |                       |             | Preferred |          | Preferred                               |
|               |                       | ļ           | Ratio     | Use Rate | Use Rate                                |
| Combination - |                       | Ratio Range | Range     | Range of | Range                                   |
| Number        | Mixture Partner B     | of A:B      | of A:B    | B (g/ha) | of B (g/ha)                             |
| 1             | rimsulfuron           | 1:5-300:1   | 1:1-70:1  | 1-20     | 1-10                                    |
| 2             | thifensulfuron-methyl | 1:2-300:1   | 1:1-70:1  | .1-10    | 1-5                                     |
| 3             | nicosulfuron          | 1:10-300:1  | 1:1-70:1  | 1-50     | 1-10                                    |
| 4             | rimsulfuron           | 1:5-300:1   | 1:1-70:1  | 1-20     | 1-10                                    |
|               | in combination with   |             |           |          | . 10                                    |
|               | nicosulfuron          | 1:10-300:1  | 1:1-70:1  | 1-50     | [-]()                                   |
| 5             | rimsulfuron           | 1:5-300:1   | 1:1-70:1  | 1-20     | 1-10                                    |
|               | in combination with   |             |           |          |                                         |
|               | thifensulfuron-methyl | 1:2-300:1   | 1:1-70:1  | 1-10     | 1-5                                     |
| 6             | prosulfuron           | 1:10-300:1  | 2:1-70:1  | 1-50     | 1-10                                    |
| 7             | prosulfuron           | 1:10-300:1  | 2:1-70:1  | 1-50     | 1-10                                    |
|               | in combination with   |             |           | •        | , , , , , , , , , , , , , , , , , , , , |
|               | primisulfuron         | 1:10-300:1  | 2:1-70:1  | 1-50     | 1-1()                                   |
| 8             | atrazine              | 1:500-3:1   | 1:25-1:1  | 100-2000 | 100-500                                 |
| 9             | terbuthylazine        | 1:500-3:1   | 1:25-1:1  | 100-2000 | 100-500                                 |
| 10            | dicamba               | 1:125-30:1  | 1:5-7:1   | 10-500   | 10-100                                  |
| 11            | 2.4-D                 | 1:250-6:1   | 1:25-1:1  | 50-1000  | 50-500                                  |
| 12            | bromoxynil            | 1:250-6:1   | 1:25-1:1  | 50-1000  | 50-500                                  |
| 13            | imazethapyr           | 1:25-300:1  | 1:2-14:1  | 1-100    | 5-50                                    |
| 14            | glyphosate            | 1:250-6:1   | 1:25-1:1  | 50-1000  |                                         |
| 15            | glufosinate           | 1:250-6:1   | 1:25-1:1  |          | 50-500                                  |
| 16            | glyphosate-trimesium  | 1:250-6:1   |           | 50-1000  | 50-500                                  |
|               | g. phosace a mestum   | 1.230-0:1   | 1:25-1:1  | 50-1000  | 50-500                                  |

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is 0.001 to 20 kg/ha with a preferred range of 0.004 to 1.0 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control. The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A-D for compound descriptions. The following abbreviation is used in the Index Tables which follow: Ph = phenyl. The abbreviation "dec." indicates that the compound appeared to decompose on melting.

5

The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

## Index Table A

$$R^a$$
 $R^b$ 
 $R^b$ 
 $R^b$ 
 $R^b$ 
 $R^b$ 
 $R^b$ 
 $R^b$ 
 $R^b$ 

| Cmpd | <u>R</u> a      | $R^{b}$         | <u>R</u>                       | <u>R1</u>                                       | <u>n</u> | m.p. (°C)      |
|------|-----------------|-----------------|--------------------------------|-------------------------------------------------|----------|----------------|
| 1    | Н               | Н               | ОН                             | CH <sub>3</sub>                                 | 2        | 228 (dec.)     |
| 2    | H               | Н               | ОН                             | $CH_2CH_3$                                      | 2        | 205 (dec.)     |
| 3    | Н               | Н               | ОН                             | CH(CH <sub>3</sub> ) <sub>2</sub>               | 2        | 92 (dec.)      |
| 4    | H               | Н               | ОН                             | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 2        | 104 (dec.)     |
| 5    | CH <sub>3</sub> | CH <sub>3</sub> | ОН                             | CH <sub>3</sub>                                 | 2        | 106 (dec.)     |
| 6    | CH <sub>3</sub> | Н               | ОН                             | СН <sub>3</sub>                                 | 2        | >210           |
| 7    | Н               | Н               | ОН                             | CH <sub>3</sub>                                 | 0        | 98 (dec.)      |
| 8    | Н               | Н               | ОН                             | CH <sub>3</sub>                                 | i        | (95 (dec.)     |
| 9    | Н               | Н               | Cl                             | CH <sub>2</sub> CH <sub>3</sub>                 | 2        | 157-159 (dec.) |
| 10   | Н               | Н               | $OCH_3$                        | CH <sub>2</sub> CH <sub>3</sub>                 | 2        | semi-solid *   |
| 11   | Н               | Н               | OSO <sub>2</sub> Ph            | CH <sub>2</sub> CH <sub>3</sub>                 | 2        | semi-solid *   |
| 12   | H               | Н               | O-Et <sub>3</sub> NH+          | $CH_2CH_3$                                      | 2        | 171-182        |
| 13   | Н               | Н               | O-K+                           | $CH_2CH_3$                                      | 2        | 208-210 (dec.) |
| 14   | Н               | Н               | O-Na <sup>+</sup>              | CH <sub>2</sub> CH <sub>3</sub>                 | 2        | 210-212 (dec.) |
| 32   | Н               | H               | OH                             | phenyl                                          | 2        | 237-240        |
| 33   | Н               | Н               | (2-CH <sub>3</sub> )phenylthio | phenyl                                          | 2        | >245           |
| 34   | Н               | Н               | (2-Cl)phenylthio               | $CH_2CH_2CH_3$                                  | 2        | 204-208        |
| 35   | Н               | Н               | (3-methoxy)phenylthio          | $CH_2CH_2CH_3$                                  | 2        | 198-200        |
| 36   | Н               | Н               | (4-CH <sub>3</sub> )phenylthio | $CH_2CH_2CH_3$                                  | 2        | 218-224        |
| 37   | Н               | Н               | (2-CH <sub>3</sub> )phenylthio | $CH_2CH_2CH_3$                                  | 2        | 226-228        |
| 38   | Н               | Н               | (2,6-diCl)phenylthio           | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 2        | 190-197        |
| 39   | Н               | Н               | phenylthio                     | $CH_2CH_2CH_3$                                  | 2        | 230-233        |

| 40 | Н | Н | benzylthio | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 2 | 197-199        |
|----|---|---|------------|-------------------------------------------------|---|----------------|
| 41 | Н | Н | phenylthio | CH <sub>2</sub> CH <sub>3</sub>                 | 2 | 261-262        |
| 42 | Н | Н | Cl         | CH <sub>3</sub>                                 | 2 | 140-141 (dec.) |
| 43 | Н | Н | O-Na+      | CH <sub>3</sub>                                 | 2 | >230           |

# Index Table B

$$CH_3$$
 $N$ 
 $OR^2$ 
 $CH_3$ 
 $N$ 
 $OR^2$ 
 $CH_3$ 
 $OR^2$ 
 $CH_3$ 
 $OR^2$ 
 | <u>Cmpd</u> | <u>R1</u>                       | <u>R<sup>2</sup></u>               | <u>R3</u>                       | ņ  | m.p. (°C)    |
|-------------|---------------------------------|------------------------------------|---------------------------------|----|--------------|
| 15          | CH <sub>2</sub> CH <sub>3</sub> | Н                                  | CH <sub>2</sub> CH <sub>3</sub> | 2  | 97 (dec.)    |
| 16          | CH <sub>2</sub> CH <sub>3</sub> | Н                                  | CH <sub>3</sub>                 | 2  | 133 (dec.)   |
| 17          | CH <sub>3</sub>                 | Н                                  | CH <sub>3</sub>                 | 2  | 134 (dec.)   |
| 18          | CH <sub>2</sub> CH <sub>3</sub> | SO <sub>2</sub> CH <sub>2</sub> CI | CH <sub>3</sub>                 | 2  | oil*         |
| 19          | CH <sub>3</sub>                 | Н                                  | CH <sub>3</sub>                 | () | 90-91 (dec.) |
| 20          | CH <sub>2</sub> CH <sub>3</sub> | Н                                  | CH <sub>3</sub>                 | () | 58 (dec.)    |
| 21          | CH <sub>3</sub>                 | Н                                  | CH <sub>3</sub>                 | 1  | semi-solid * |
| 22          | CH <sub>2</sub> CH <sub>3</sub> | Н                                  | CH <sub>3</sub>                 | 1  | 124 (dec.)   |
| 23          | CH <sub>3</sub>                 | SO <sub>2</sub> Ph                 | CH <sub>3</sub>                 | 2  | 78 (dec.)    |
| 44          | CH <sub>2</sub> CH <sub>3</sub> | (4-CH <sub>3</sub> )phenylsulfonyl | CH <sub>3</sub>                 | 2  | 74-75        |
| 45          | CH <sub>2</sub> CH <sub>3</sub> | C(=O)Ph                            | CH <sub>3</sub>                 | 2  | 208-210      |
| 46          | CH <sub>2</sub> CH <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub>    | CH <sub>3</sub>                 | 2  | 194-196      |
| 47          | CH <sub>2</sub> CH <sub>3</sub> | SO <sub>2</sub> Ph                 | CH <sub>3</sub>                 | 2  | oil*         |
| 48          | CH <sub>2</sub> CH <sub>3</sub> | Na                                 | CH <sub>2</sub>                 | 2  | >230         |

#### Index Table C

|          | Index Table C                                                                                                                   |            |
|----------|---------------------------------------------------------------------------------------------------------------------------------|------------|
| Cmpd No. | Structure                                                                                                                       | m.p. (°C)  |
| 24       | CH <sub>2</sub> CH <sub>3</sub>                                                                                                 | 196 (dec.) |
|          | OH CH <sub>3</sub> N-N-CI                                                                                                       |            |
| 25       | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 150-152    |
| 26       | O O CH <sub>3</sub> N-N CH <sub>3</sub>                                                                                         | 75 (dec.)  |
| 27       | CH <sub>3</sub> O CH <sub>3</sub> N N N CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> O O                     | 120 (dec.) |
| 28       | OH CH3 N-N CH3 N-N CH3 N-N                                                                                                      | >220       |

$$H_3C$$
 96 (dec.)

CH<sub>2</sub>CH<sub>3</sub> 51 69-71 ÇH3 CH<sub>3</sub> O ÇH3 52 171-173 ОН ĊH3 ÇH3 53 212-216 ОН CH<sub>3</sub> CH<sub>3</sub> 54 202-206 ОН CH3 CH<sub>3</sub> O 55 ÇH3 229-250 Ċн<sub>3</sub> о ĊH<sub>2</sub>CH<sub>3</sub>

163

PCT/US96/18381

\*See Index Table D for <sup>1</sup>H NMR data.

### Index Table D

| Cmpd No. | <sup>1</sup> H NMR Data (CDCl <sub>3</sub> solution unless indicated otherwise) <sup>a</sup> |
|----------|----------------------------------------------------------------------------------------------|
| 10       | δ 7.44 (s, 1H), 6.78 (s, 1H), 4.38 (s, 2H), 4.2 (q, 2H), 3.1 (m, 2H), 2.8 (m,                |
|          | 2H), 2.71 (s, 3H), 2.54 (s, 3H), 2.2 (m, 1H), 1.8 (m, 1H), 1.52 (t, 3H), 1.48                |
|          | (s, 3H).                                                                                     |
| 11       | $\delta~7.7-7.3~(m,~6H),~7.1~(s,~1H),~4.36~(s,~2H),~4.21~(q,~2H),~3.1~(t,~2H),~2.7-2.5$      |
|          | (m, 8H), 2.2 (m, 2H), 1.54 (t, 3H).                                                          |
| 18       | $\delta$ 7.48 (s. 1H), 7.43 (s, 1H), 7.12 (s. 1H), 5.46 (s, 2H), 4.41 (s, 2H), 4.22 (q,      |
|          | 2H), 3.97 (s, 3H), 2.76 (s, 3H), 2.64 (s, 3H), 1.54 (t, 3H).                                 |
| 21       | $\delta~7.50~(s,~1H),~7.36~(s,~1H),~7.2~(s,~1H),~4.4~(d,~1H),~4.0~(s,~3H),~3.8~(d,~1H),$     |
|          | 3.72 (s, 3H), 2.75 (s, 3H), 2.74 (s, 3H).                                                    |
| 30       | δ 7.29 (s. 1H), 6.92 (s. 1H), 3.95 (s. 3H), 3.64 (t. 2H), 2.9-2.74 (m. 4H),                  |
|          | 2.73 (s, 3H), 2.44 (m, 2H), 2.26 (s, 3H), 2.05 (m, 2H).                                      |
| 47       | 8 7.97 (d, 2H), 7.7-7.5 (m, 3H), 7.45 (s, 1H), 7.34 (s, 1H), 6.91 (s, 1H), 4.3               |
|          | (s, 2H), 4.12 (q, 2H), 3.86 (s, 3H), 2.63 (s, 3H), 2.51 (s, 3H), 1.43 (t, 3H).               |

a <sup>1</sup>H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated
 by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet.

#### TEST A

The compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application), to water that covered the soil surface (flood application), and to plants that were in the one-to-four leaf stage (postemergence application). A sandy loam soil was used for the preemergence and postemergence tests, while a silt loam soil was used in the flood test. Water depth was approximately 2.5 cm for the flood test and was maintained at this level for the duration of the test.

10

15

20

25

30

Plant species in the preemergence and postemergence tests consisted of barnyardgrass (Echinochloa crus-galli), barley (Hordeum vulgare), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), johnsongrass (Sorghum halpense), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), ryegrass (Lolium multiflorum), soybean (Glycine max), speedwell (Veronica persica), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), and wild oat (Avena fatua). All plant species were planted one day before application of the compound for the preemergence portion of this test. Plantings of these species were adjusted to produce plants of appropriate size for the postemergence portion of the test. Plant species in the flood test consisted of rice (Oryza sativa), umbrella sedge (Cyperus difformis), duck salad (Heteranthera limosa), barnyardgrass (Echinochloa crus-galli) and Late watergrass (Echinochloa oryzicola) grown to the 2 leaf stage for testing.

All plant species were grown using normal greenhouse practices. Visual evaluations of injury expressed on treated plants, when compared to untreated controls, were recorded approximately fourteen to twenty one days after application of the test compound. Plant response this ratings, summarized in Table A, were recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

| Table A         |      | СОМ | POUND |   | Table A         |     | COMPOUND   |
|-----------------|------|-----|-------|---|-----------------|-----|------------|
| Rate 250 g/ha   | 1    | 1.9 | 28    |   | Rate 250 g/ha   | 1   | 28         |
| POSTEMERGENCE   |      |     |       |   | PREEMERGENCE    |     |            |
| Barley Igri     | 90   | -   | 15    |   | Barley Igri     | 65  | G          |
| Barnyard 2      | 100  | 0   | 95    |   | Barnyardgrass   | 100 | 2 <i>C</i> |
| Barnyardgrass   | 90   | _   | 9 C   |   | Bedstraw        | 40  | С          |
| Bedstraw        | 100  |     | 45    |   | Blackgrass      | 65  | 0          |
| Blackgrass      | 95   | -   | 40    |   | Chickweed       | 100 | 30         |
| Chickweed       | 100  | _   | 50    |   | Cocklebur       | 100 | О          |
| Cocklebur       | 90   | -   | 85    |   | Corn            | 10  | 20         |
| Corn            | 80   | -   | 0     |   | Cotton          | 100 | 45         |
| Cotton          | 100  | ~   | 90    |   | Crabgrass       | 100 | 100        |
| Crabgrass       | 90   |     | 90    |   | Downy Brome     | 90  | 0          |
| Downy Brome     | 85   |     | 25    |   | Giant foxtail   | 100 | O          |
| Duck salad      | 70   | 15  | 60    |   | Italn. Rygrass  | 80  | С          |
| Giant foxtail   | 90   | -   | 85    |   | Johnsongrass    | 100 | ,0         |
| Italn. Rygrass  | 85   | -   | 0     |   | Lambsquarter    | 100 | 95         |
| Johnsengrass    | 100  | -   | 90    | İ | Morningglory    | 80  | 5.0        |
| Lambsquarter    | 100  |     | 100   |   | Rape            | 3.0 | 20         |
| Morningglory    | 100  | -   | 95    |   | Redroot Pigweed | 100 | 90         |
| Rape            | 100  | -   | 85    |   | Soybean         | 70  | 60         |
| Redroot Pigweed | 95   | -   | 90    |   | Speedwell       | 100 | 95         |
| Rice Japonica   | 95   | 0   | 95    |   | Sugar beet      | 100 | 100        |
| Soybean         | 90   | -   | 90    |   | Velvetleaf      | 100 | 10C        |
| Speedwell       | 100  | -   | 95    |   | Wheat           | ô   | О          |
| Sugar beet      | 100  | -   | 100   |   | Wild buckwheat  | 80  | 55         |
| Umbrella sedge  | 95   | 10  | 95    |   | Wild oat        | 85  | O          |
| Velvetleaf      | 100  | -   | 90    |   |                 |     |            |
| Watergrass 2    | 100  | •   | 30    |   |                 |     |            |
| Wheat           | 80   | -   | 45    |   |                 |     |            |
| Wild buckwheat  | 100  | -   | 65    |   |                 |     |            |
| Wild oat        | 1.00 | -   | 15    |   |                 |     |            |

| Table A         |     |     |     | COM | POUN       | D   |         |     |    |            |
|-----------------|-----|-----|-----|-----|------------|-----|---------|-----|----|------------|
| Rate 125 g/ha   | 1   | 2   | 3   | 12  | 14         | 16  | 19      | 25  | 26 | 38         |
| POSTEMERGENCE   |     |     |     |     |            |     |         |     |    |            |
| Barley Igri     | 80  | 70  | 30  | 55  | <b>6</b> 5 | 0   | <b></b> | O   | 10 | 10         |
| Barnyard 2      | 100 | -   | 80  | 90  | -          |     | 10      | 15  | 25 | 80         |
| Barnyardgrass   | 90  | 95  | 95  | 100 | 95         | 100 | -       | 90  | 90 | 90         |
| Bedstraw        | 95  | 8.0 | 90  | 80  | 90         | 100 |         | 70  | 70 | 45         |
| Blackgrass      | 95  | 95  | 60  | 95  | 90         | 80  |         | 0   | 30 | 35         |
| Chickweed       | 100 | 100 | 100 | 100 | 100        | 100 | -       |     | -  | 5 C        |
| Cocklebur       | 90  | 90  | 90  | 95  | 95         | 100 |         | 90  | 90 | ,85        |
| Corn            | 80  | 1 C | 0   | Э   | 10         | 55  |         | 10  | 20 | 0          |
| Cotton          | 100 | 100 | 90  | 100 | 100        | 100 | -       | 70  | 90 | 90         |
| Crabgrass       | 90  | 95  | 9 C | 95  | 95         | 100 | -       | 85  | 50 | 90         |
| Downy Brome     | 85  | 90  | 60  | 80  | 90         | 65  | -       | Ċ   | O  | 25         |
| Duck salad      | 70  | -   | 50  | 90  | -          | -   | 0       | 10  | 70 | 35         |
| Giant foxtail   | 90  | 95  | 70  | 95  | 95         | 100 |         | 60  | 70 | 70         |
| Italm. Rygrass  | 85  | 75  | 50  | 95  | 70         | 0   | -       | 0   | C  | 9          |
| Johnsongrass    | 95  | 100 | 90  | 80  | 95         | 90  | -       | 20  | 40 | 80         |
| Lambsquarter    | 100 | 100 | 95  | 100 | 100        | 95  |         | 90  | 90 | 100        |
| Morningglory    | 100 | 90  | 90  | 90  | 90         | 90  | -       | 4 C | 90 | 90         |
| Rape            | 100 | 90  | 80  | -   | 95         | 10  | -       | 50  | 90 | 85         |
| Redroot Pigweed | 95  | 90  | 90  | 100 | 95         | 95  | -       | 90  | 80 | -          |
| Rice Japonica   | 95  |     | 55  | 90  | -          | -   | 0       | 0   | 60 | 95         |
| Soybean         | 90  | 90  | 90  | 95  | 90         | 50  | -       | 5.5 | 60 | 90         |
| Speedwell       | 100 | 100 | 100 | 100 | 100        | 100 | -       | 80  | 70 | 85         |
| Sugar beet      | 100 | 100 | 100 | 100 | 100        | 100 | -       |     | -  | 100        |
| Umbrella sedge  | 95  | -   | 50  | 90  | -          |     | 25      | 50  | 85 | 90         |
| Velvetleaf      | 100 | 10C | 100 | 100 | 100        | 100 | -       | 90  | 90 | <b>9</b> 0 |
| Watergrass 2    | 95  | -   | 80  |     | ••         | _   | -       |     | -  | -          |
| Wheat           | 70  | 90  | 50  | 70  | 85         | О   | -       | 0   | 0  | 3.0        |
| Wild buckwheat  | 100 | 95  | -   | 80  | 90         | 70  | -       | 0   | 60 | 65         |
| Wild oat        | 100 | 100 | 65  | 95  | 100        | 95  |         | 0   | 20 | O          |

|   | 3 |
|---|---|
| • |   |
|   |   |

| Table A         |     |     | CO   | MPOU | ND   |      |      |                  |     |
|-----------------|-----|-----|------|------|------|------|------|------------------|-----|
| Rate 125 g/ha   | · 1 | 2   | 3    | 12   | 14   | 16   | 25   | 26               | 28  |
| PREEMERGENCE    |     |     |      |      |      |      |      |                  |     |
| Barley Igri     | 0   | C   | 0    | 0    | 0    | 0    | e    | 0                | Û   |
| Barnyardgrass   | 100 | 95  | 70   | 95   | 100  | 100  | 0    | <b>5</b> 0       | 10  |
| Bedstraw        | 30  | 50  | 1.0  | 70   | 55   | -90  | 0~   | <sup>33</sup> 30 | Û   |
| Blackgrass      | 10  | 50  | 10   | . 0  | 1.0  | 10   | - 0  | 3.0              | С   |
| Chickweed       | 95  | 100 | 90   | 100  | 100  | 90   | 0,   | 100              | 3 G |
| Cocklebur       | 100 | 20  | 75   | 35   | 40   | 20   | 0    | - 0              | 0   |
| Corn            | C   | С   | 0    | 0    | O    | , e  | - Q- | 0                | 0   |
| Cotton          | 100 | 50  | 20   | 30   | 30   | 10   | 20   | 4.0              | 35  |
| Crabgrass       | 100 | 100 | 100  | 100  | 100  | 100  | C.   | 70               | 65  |
| Downy Brome     | 40  | 0   | 0    | 95   | 55   | Ç    | 0    | 0                | 0   |
| Giant foxtail   | 100 | 9.0 | 40   | 30   | 90   | 90., | .0   | -30              | Э   |
| Italn. Rygrass  | 80  | C   | 30   | 0    | 3.0  | 0    | 1 C  | 0-               | 0 - |
| Johnsongrass    | 95  | 75  | 8.0  | 70   | 60   | 3,0  | . 0  | 20               | 03  |
| Lambsquarter    | 100 | 100 | 100  | 100  | 100  | 1.00 | 3.0  | 95               | 95  |
| Morningglory    | 40  | 40  | 60   | 100  | 60   | 40   | 0    | 40               | 50  |
| Rape            | С   | 8.5 | 20   | -    | 75   | 0    | 0    | 0                | 0   |
| Redroot Pigweed | 100 | -   | 90   | -    | -    | 80   | 0    | 7.0              | 60  |
| Soybean         | 70  | 3.0 | 3.0  | 40   | 40   | -c · | 1.0  | 3.0              | 5.0 |
| Speedwell       | 100 | 100 | 95   | 100  | 100  | 100  | 2.0  | 3.0              | 80  |
| Sugar, beet     | 100 | 100 | 1.00 | 100  | -100 | 9.0  |      |                  | 100 |
| Velvetleaf      | 100 | 100 | 100  | 100  | 100  | 100  | О    | 75               | 100 |
| Wheat           | 5   | 3.0 | C    | C    | 35   | . 0  | O    | 0                | 0   |
| Wild buckwheat  | 10  | 0   | 10   | 20   | 20   | C    | 9.   | O:               | 10  |
| Wild oat        | 80  | 30  | 40   | 0    | 25   | 0.   | Ö    | : 0              | - 0 |

| Table A         |     |     |     |     | CC  | OMPOL | JND |      |    |     |     |     |            |
|-----------------|-----|-----|-----|-----|-----|-------|-----|------|----|-----|-----|-----|------------|
| Rate 62 g/ha    | 1   | 2   | 3   | 4   | 12  | 1.4   | 16  | 18   | 19 | 24  | 25  | 26  | 28         |
| POSTEMERGENCE   |     |     |     |     |     |       |     |      |    |     |     |     |            |
| Barley Igri     | 70  | 25  | 20  | 1.0 | 45  | 45    | 0   | C    | -  | 20  | O   | С   | 10         |
| Barnyard 2      | 95  |     | 75  | 3.0 | 90  | -     | -   | 1.00 | 0  | C   | 10  | 10  | 4.5        |
| Barnyardgrass   | 90  | 95  | 95  | 90  | 100 | 95    | 100 | 90   | -  | 90  | 90  | 90  | 90         |
| Bedstraw        | 95  | 90  | 80  | 70  | 80  | 90    | 95  | 9 C  | -  | 80  | 60  | 70  | 4 Ŏ        |
| Blackgrass      | ,90 | 60  | 50  | 50  | 75  | 90    | 70  | 60   | -  | 60  | 0   | 30  | 20         |
| Chickweed       | 100 | 100 | 100 | 90  | 100 | 100   | 100 | 95   | -  | 95  | -   | 70  | 50         |
| Cocklebur       | 90  | 90  | 90  | 90  | 95  | 90    | 100 | 90   | -  | 90  | 90  | 80  | 80         |
| Corn            | 80  | 20  | C   | 0   | О   | 5     | 45  | 45   | -  | 0   | 10  | 10  | C          |
| Cotton          | 100 | 100 | 90  | 95  | 100 | 100   | 100 | 100  | -  | 8.0 | 60  | 80  | 90         |
| Crabgrass       | 90  | 90  | 90  | 95  | 90  | 90    | 90  | 90   | -  | 90  | 80  | 50  | 90         |
| Downy Brome     | 8.0 | 65  | 30  | 3.0 | 8.0 | 30    | 20  | 60   | -  | 7.5 | 0   | 0   | 10         |
| Duck salad      | 50  | -   | 3.0 | 40  | 70  | -     | -   | 70   | 0  | C   | 0   | C   | 35         |
| Giant foxtail   | 90  | 90  | 50  | 70  | 90  | 90    | 90  | 90   | -  | 8 C | 50  | 60  | 50         |
| Italn. Rygrass  | 60  | 70  | 20  | 3.0 | 60  | 50    | 0   | 30   | -  | 10  | 0   | С   | 0          |
| Johnsongrass    | 95  | 50  | 90  | 70  | 80  | 90    | 70  | 100  |    | 70  | 20  | 35  | <b>5</b> 0 |
| Lambsquarter    | 100 | 100 | 95  | 100 | 100 | 100   | 95  | 100  | -  | 90  | 7 C | 90  | 100        |
| Morningglory    | 95  | 95  | 90  | 90  | 90  | 90    | 90  | 90   | ** | 90  | 3 C | 25  | 90         |
| Rape            | 95  | 95  | 80  | 70  |     | 90    | 10  | õ    | -  | -   | 3.0 | 8.0 | 40         |
| Redroot Pigweed | 95  | 95  | 90  | 90  | 95  | 90    | 90  | 90   | -  | 7.5 | è 0 | 70  | 90         |
| Rice Japonica   | 90  | ~   | 3.5 | 50  | 80  | -     | -   | 25   | 20 | C   | Ċ.  | 50  | 55         |
| Soybean         | 90  | 90  | 8.0 | 90  | 95  | 90    | 40  | 60   | -  | 9.0 | 55  | 50  | 90         |
| Speedwell       | 100 | 100 | 100 | 100 | 100 | 95    | 100 | 100  | -  | 100 | 4.0 | -   | 80         |
| Sugar beet      | 100 | 100 | 100 | 100 | 100 | 100   | 100 | 60   | -  |     | -   | -   | 100        |
| Umbrella sedge  | 95  | -   | 40  | 90  | 80  | -     | -   | 70   | 0  | O   | 30  | 60  | 25         |
| Velvetleaf      | 100 | 100 | 100 | 90  | 100 | 100   | 100 | 90   | -  | 90  | 35  | 80  | 90         |
| Watergrass 2    | 95  |     | 70  | 25  | -   | -     | -   | -    |    | -   | -   | -   | 3.0        |
| Wheat           | 45  | 50  | 40  | 30  | 65  | 75    | С   | 10   | -  | 20  | 0   | 0   | 20         |
| Wild buckwheat  | 8.0 | 80  | 85  | 80  | 70  | 90    | -   | 30   | -  | 0   | 0   | 20  | 65         |
| Wild oat        | 100 | 95  | 50  | 60  | 95  | 95    | 95  | 60   | -  | 70  | C   | 0   | C          |

BNSDOCID: <WO\_\_\_9719087A1\_I\_>

| Table A         |     |      |            |    | (   | COMPO | DUND |      |     |    |          |     |  |
|-----------------|-----|------|------------|----|-----|-------|------|------|-----|----|----------|-----|--|
| Rate 62 g/ha    | 1   | 2    | 3          | 4  | 12  | 14    | 16   | 18   | 24  | 25 | 26       | 2.8 |  |
| PREEMERGENCE    |     |      |            |    |     |       |      |      |     |    |          |     |  |
| Barley Igri     | 0   | 0    | С          | _  | 0   | 0     | С    | 0    | 0   | 0  | . 0      | С   |  |
| Barnyardgrass   | 95  | 85   | 50         | 50 | 45  | 90    | 3 C  | 10   | С   | O  | 10       | 9   |  |
| Bedstraw        | С   | 0    | 10         | ~  | 70  | 30    | 4 C  | 20   | С   | 0  | Э        | Э   |  |
| Blackgrass      | 0   | 20   | С          | -  | -   | 10    | Û    | 3.0  | 10  | C  | 23       | 0   |  |
| Chickweed       | 95  | 100  | 45         | _  | 100 | 100   | 80   | 60   | 50  | C  | 90       | 10  |  |
| Cocklebur       | 70  | 10   | <b>4</b> C | 65 | 20  | 30    | 9    | C    | 0   | 9  | 0        | G   |  |
| Corn            | 0   | 0    | 0          | 0  | 0   | 0     | C    | 0    | 0   | Ō  | 6        | 0   |  |
| Cotton          | 90  | 50   | 10         | C  | 30  | 20    | 10   | 20   | G   | 10 | 20       | 25  |  |
| Crabgrass       | 100 | 95   | 100        | 80 | 100 | 100   | 70   | 100  | 70  | Э  | 4 C      | 3.0 |  |
| Downy Brome     | 25  | 0    | 0          |    | 95  | 30    | 0    | С    | _   | 0  | 9        | O   |  |
| Giant foxtail   | 95  | 60   | 10         | 0  | 40  | 70    | 50   | 70   | 0   | ਂ  | 1.0      | Ĵ   |  |
| Italn. Rygrass  | 60  | О    | 20         | -  | 0   | Э     | Э    | 0    | 0   | С  | <u> </u> | 0   |  |
| Johnsongrass    | 30  | 45   | 50         | 80 | 40  | 30    | 20   | 0    | 0   | 0  | 0        | 0   |  |
| Lambsquarter    | 100 | 100  | 100        | -  | 100 | 100   | 100  | 100  | 9.5 | 20 | 95       | 95  |  |
| Morningglory    | 30  | 0    | 3 C        | 0  | 3.0 | 20    | 40   | 0    | C   | 0  | C        | ٥   |  |
| Rape            | С   | -    | 0          | ~  | Э   | 25    | C    | 0    | 0   | 0  | ō.       | 9   |  |
| Redroot Pigweed | 95  | -    | 80         | 60 | -   | ~-    | 70   | 50   | C   | -  | 3 0      | 10  |  |
| Soybean         | 50  | 30   | 10         | 10 | 30  | 30    | 0    | C    | 0   | 0  | O        | 4.0 |  |
| Speedwell       | 95  | 100  | 95         | -  | 100 | 100   | 100  | 100  | 100 | 0  | 3.0      | 0.8 |  |
| Sugar beet      | 90  | 100  | 100        | -  | 100 | 100   | 80   | -    | -   | -  |          | 95  |  |
| Velvetleaf      | 100 | 1.00 | 100        | 60 | 100 | 100   | 100  | 1.00 | 100 | )  | 0        | 60  |  |
| Wheat           | 0   | 3.0  | O          | -  | 0   | 3.5   | 0    | G    | С   | 0  | 0        | 0   |  |
| Wild buckwheat  | С   | 0    | 0          | 0  | -   | 20    | 0    | С    | 10  | )  | O,       | 0   |  |
| Wild oat        | 70  | 3 C  | 30         | -  | G   | 25    | 0    | 0    | 10  | 0  | 0        | 0   |  |
|                 |     |      |            |    |     |       |      |      |     |    |          |     |  |

| Table A         |     |     |     |     |          |                | Ö       | COMPOUND | Q       |     |     |     |     |     |     |                  |
|-----------------|-----|-----|-----|-----|----------|----------------|---------|----------|---------|-----|-----|-----|-----|-----|-----|------------------|
| Rate 31 g/ha    | e i | 2   | ٣   | 4   | Ŋ        | ŵ              | 2       | ,-·      |         | 18  | 19  | 2.4 | 25  | 36  | 23  | c:               |
| POSTEMERGENCE   |     |     |     |     |          |                |         |          |         |     |     |     |     |     |     |                  |
| Barley Igri     | 30  | 25  | 10  | ស   | 40       | 85             | 0.4     | 30       | 0       | 0   | :   | 2.0 | 0   | 0   | 0   |                  |
| Barnyard 2      | 95  | 80  | 7.0 | 20  | 2.0      | 2.0            | 05      | !        | 2.0     | 10  | 2.0 | 0   | 0   | 0   | 15  | _                |
| Barnyardgrass   | 9.0 | 95  | 06  | 90  | 96       | 95             | 100     | 95.      | 100     | 06  | ı   | 06  | 8.0 | 9.0 | 9   | 6                |
| Bedstraw        | 9.0 | 70  | 8.0 | 70  | 100      | 80             | 69      | 07.      | ©<br>80 | 9.0 | ı   | 80  | 3.0 | 09  | 7.5 | 2                |
| Blackgrass      | 80  | 45  | 40  | 10  | 06       | 95             | 0.9     | 07.      | 09      | 5.0 | i   | 20  | 0   | 15  | 55  | Ţ                |
| Chickweed       | 100 | 100 | 100 | 9.0 | 1        | 95             | 000     | 0        | 100     | 1   | ,   | 1   | ı   | 40  |     | 2                |
| Cocklebur       | 90  | 06  | 06  | 90  | 06       | 90             | 9.0     | 9.0      | 95      | 90  | 1   | 06  | 90  | 80  | 06  | 7                |
| Corn            | 7.0 | 0   | O   | 0   | 0        | 0              | 0       | 0        | 40      | 30  |     | 0   | 0   | ្រ  | 30  |                  |
| Cotton          | 100 | 95  | 9.0 | 95  | 9.0      | 100            | 100     | 100      | 100     | 100 | ŧ   | 80  | 40  | 09  | 80  | ω                |
| Crabgrass       | 90  | 90  | 9.0 | 96  | 06       | 9.5            | 85      | 06       | 06      | 06  | ı   | 08  | 07. | 40  | 06  | 6                |
| Downy Brome     | 07. | 50  | 10  | 10  | 7.0      | 75             | C       | 7.0      | O       | 09  | :   | 40  | 0   | 0   | 3.0 | 1                |
| Duck salad      | 40  | .0  | 10  | 30  | 80       | 75             | 2       | 1        | 08      | 20  | 0   | 0   | 0   | 0   | 7.0 |                  |
| Giant foxtail   | 9.0 | 9.0 | 20  | 50  | 9.0      | 06             | 7.0     | 85       | 0.6     | 80  | :   | 80  | 4.0 | 60  | 09  | J.               |
| Italn. Rygrass  | 3.0 | 25  | 20  | 10  | 3.0      | 55             | 2.0     | 20       | 0       | 10  | ı   | 0   | 0   | 0   | 0   |                  |
| Johnsongrass    | 95  | 75  | 01. | 40  | 9.0      | 9.0            | 7.0     | 85       | 69      | 80  | ı   | 09  | 10  | 30  | 08  | S                |
| Lambsquarter    | 100 | 100 | 95  | 90  | 100      | 100            | 90      | 100      | 9.5     | 06  | 1   | 70  | 09  | 0   | 100 | 0.5              |
| Morningglory    | 06  | 9.6 | 9.0 | 9.0 | 06       | 9.0            | 06      | 9.0      | 06      | 06  | ı   | 90  | 2.0 | 80  | 97  | σ                |
| Rape            | 06  | 80  | 7.0 | 50  | 8.0      | 50             | ŀ       | 40       | 0       | 0   | ι   | 06  | 0   | 20  | 07. | <del>vij</del> t |
| Redroot Pigweed | 90  | 9.0 | 06  | 75  | 9.0      | 0.0            | 9.0     | 96       | 32      | 9.0 | ı   | 1   | 75  | 90  | 90  | 6                |
| Rice Japonica   | 7.5 | 30  | 35  | 40  | <b>₽</b> | 5              | 30      |          | 20      | 10  | 0   | 0   | 0   | ၁   | 09  | ~                |
| Soybean         | 9.0 | 9.0 | 7.0 | 80  | 9.0      | 96             | 33      | 9.0      | 35      | 50  | į   | 90  | 45  | ্ণ  | 82  | <b>σ</b> 3       |
| Speedwell       | 100 | 100 | 100 | 100 | 0.6      | <del>9</del> ج | 9<br>13 | 9.5      | 95      | 100 | 1   | 1   | 25  | 30  | 100 | œ                |

| igar beet     | 100  | 1001  | 90 10 | 0      | 100                                                 | 100 | 100  | 100 | 48      |            | v . | · 1 | Ţ    |        | 0  |
|---------------|------|-------|-------|--------|-----------------------------------------------------|-----|------|-----|---------|------------|-----|-----|------|--------|----|
| nbrella sedge | 8.5  | 2.0   | 30 6  | 3 75   | 8.0                                                 | 0.8 |      | 7.0 | 25      | 0          | Ó   | 10  | 30   | 8<br>5 |    |
| glvetleaf     | 1.00 | 100 1 | 0.0   | 06 . 0 | 190 100 100 90 90 95 100 100 100 90 - 90 85 80 90 9 | 001 | 1.00 | 100 | 9.0     | . <b>1</b> | 06  | 85  | 80   | 9.0    | 6  |
| tergrass 2    | 7.0  | 8.5   | 50 2  |        | 1                                                   | 1.5 |      | ĵ.  | ñ.      | 1          | ï   |     | J.   | 1      |    |
| ieat<br>•     | 35   | 3.5   | 30. 1 | 5 70   | 9.<br>3.                                            | 45  | 70   | C)  | 10      | Ž.         | 100 | Ö   | , C, | 30     | ~  |
| I'd buckwheat | 7.0  | 7.5   | 80 5( | 75     | .e.<br>.c.                                          | 65  | 0,6  | 07. | 50      | 111,       | 0   | 0,  | O    | 10     | 9  |
| ild oat       | 100  | 30°E  | 35 4( | 0.6    | 100                                                 | 75  | 9.0  | 95  | 4.<br>O |            | 70  | C   | Ċ    | 70.    | 自中 |

| Table A         |                  |     |     |    |     |     | COM  | COMPOUND | _      |          |    |    |     |        |           |     |  |
|-----------------|------------------|-----|-----|----|-----|-----|------|----------|--------|----------|----|----|-----|--------|-----------|-----|--|
| Rate 31 g/ha    | <del>, -</del> 1 | C1  | m   | 4  | ហៈ  | 9   | 12   | 14       | 16     | α.<br>.⊶ | 54 | 25 | 56  | C:3    | €.)<br>30 | ~   |  |
| PREEMERGENCE    |                  |     |     |    |     |     |      |          |        |          |    |    |     |        |           |     |  |
| Barley Igri     | Ö                | 0   | 0   | :  | 0   | 0   | 0    | 0        | ၁      | 0        | 0  | 0  | 0   | O      | 0         |     |  |
| Barnyardgrass   | 80               | 15  | 10  | 20 | 70  | 35  | 10   | 7.0      | С      | Û        | 0  | 0  | 0   | 0      | С         | 7   |  |
| Bedstraw        | 0                | 0   | 10  | 1  | 40  | 0   | 25   | 30       | 0      | 10       | 0  | Ó  | 0   | 3.0    | 0         |     |  |
| Blackgrass      | 0                | 0   | 0   | 1  | 10  | 15  | 0    | 10       | 0      | 20       | 0  | 0  | 10  | 0      | 0         |     |  |
| Chickweed       | g.               | 10  | 30  | ı  | 0   | 82  | 96   | 100      | S<br>0 | 09       | 0  | 0  | 7.0 | 0      | 0         | 6   |  |
| Cocklebur       | 30               | 2.0 | 30  | 30 | 20  | 0   |      | 20       | 0      | 0        | ಏ  | O  | 0   | 0      | ೦         |     |  |
| Corn            | 0                | 0   | 0   | 0  | 0   | 0   | O    | 0        | С      | 0        | C  | 0  | 0   | C      | 0         |     |  |
| Cotton          | 30               | 30  | 10  | C  | ပ   | 30  |      | 0:       | 0      | 2.0      | 0  | O  | 10  | 0      | 20        | ۳.  |  |
| Crabgrass       | 95               | 95  | 100 | 35 | 100 | 06  | 0.6  | 007      | 7.0    | 08       | 30 | 0  | 0   | 98     | 07        | 4   |  |
| Downy Brome     | С                | 0   | 0   | i  | O   | 0   | 9.5  | 30       | 0      | 0        | С  | 0  | 0   | C      | 0         |     |  |
| Giant foxtail   | 75               | 20  | O   | 0  | 50  | 40  | 20   | 3.0      | 30     | 20       | O  | 0  | 0   | 10     | 0         |     |  |
| Italn. Rygrass  | 40               | 0   | 10  | •  | 0   | 0   | 0    | 0        | 0      | 0        | 0  | 0  | 0   | 0      | 0         |     |  |
| Johnsongrass    | 20               | 10  | t   | 0  | 10  | 20  | 30   | 20       | 0      | 0        | 0  | 0  | 0   | 0      | 0         |     |  |
| Lambsquarter    | 100              | 95  | 100 | 1  | 95  | 100 | 100  | 100      | 0.6    | 100      | 09 | C  | 09  | 06     | 9.6       | 10  |  |
| Morningglory    | 10               | 2.0 | 0   | 0  | 0   | 10  | ı    | 1        | 20     | 0        | С  | 0  | 0   | ೦      | 0         | 10  |  |
| Rape            | С                | 0   | 0   | 1  | 0   | O   | ı    | 0        | c      | C        | 0  | С  | С   | 1.0    | 0         |     |  |
| Redroot Pigweed | 3.0              | 08  | 7.0 | 30 | 07. | ŧ   | :    | 1        | 50     | :        | 0  | 0  | 0   | 2.0    | 1         | 7.  |  |
| Soybean         | ္<br>•7          | O   | 0   | 10 | 0   | 10  | 3.0  | 10       | 0      | 0        | ت  | 0  | 0   | С      | ្         |     |  |
| Speedwell       | 7.0              | 160 | 95  | ;  | 0   | 100 | 100  | 100      | 100    | 100      | O  | 1  | ;   | 50     | 03        | 10  |  |
| Sugar beet      | 9                | 100 | 95  | i  | 1   | 80  | 100  | 100      | 50     |          |    | ı  |     |        | 95        | 6   |  |
| Velvetleaf      | 100              | 160 | 100 | 30 | 100 | 100 | 1.00 | 100      | 09     | 100      | 08 | 0  | 0   | 0<br>6 | 90        | نسا |  |
| Wheat           | ā                | 0   | 0   | ;  | 0   | 3.0 | 0    | 30       | 0      | 0        | 0  | 0  | 0   | 0      | Ç         |     |  |
| Wild buckwheat  | 0                | 0   | 0   | 1  | 0   | 0   | 0    | 0        | 0      | C        | C. | ٥  | 0   | 0      | 0         |     |  |
| Wild oat        | 40               | C   | 10  | 1  | 0   | 25  | 0    | 25       | 0      | 0        | 10 | 0  | 0   | 0      | 0         |     |  |

|          | 33           |               | 2.0         | 0          | 95            | 09       | -80        | ,         | 100       | 0    | 08       | 06         | 2.0         | 0          | 06            | 40             | 0            | 09           | 09           | 92             | 0&                           | 0             | 80      | 4         | 1          | 0              |
|----------|--------------|---------------|-------------|------------|---------------|----------|------------|-----------|-----------|------|----------|------------|-------------|------------|---------------|----------------|--------------|--------------|--------------|----------------|------------------------------|---------------|---------|-----------|------------|----------------|
|          | 30           |               | 20          | 01         | 100           | 7.0      | 50         | 06        | 1         | 0    | 06       | 95         | 50          | 0          | 80            | 30             | 80           | 0            | 69           | 06             | 80                           | C             | 3.0     | 1         | 100        | 15             |
|          | 27           | 1             | 0           | Ę          | 95            | 50       | 33         | 1         | 06        | 2.0  | 80       | 8.0        | 1.0         | ιn         | 50            | 0              | 7.0          | 80           | 5.0          | 5.0            | $\overset{\bigcirc}{\alpha}$ | 3.0           | ္တ      | 0.5       |            | 117            |
|          | 36           |               | 0           | 0          | 82            | 20       | 0.1        | 1         | 20        | Q    | 45       | 40         | 0           | 0          | 0             | 0              | 30           | 202          | 80           | 02             | 20                           | ರ             | ⊙.      |           | š 1        | <u>.</u>       |
|          | (.4<br>(U.   |               | 0           | 0          | <b>₽</b>      | 3.0      | 0          | ı         | 80        | 0    | 40       | 09         | Ö           | 0          | 25            | 0              | 0            | 20           | ្ន           | ĸ.T.           | S.                           | 0             | .C.     | 1         | ,          | 0              |
|          | 5.2          |               | 20          | 0          | 0.6           | 08       | 20         |           | 0         | 0    | 7.0      | 98         | 40          | 0          | 0.9           | 0              | 10           | 55           | 06           | 08             | 09                           | 0             | 80      | 08        |            | e e            |
|          |              |               | 0           | - C .      | 06            | 80       | 30         | ï         | O         | 10   | 0.6      | Ω          | 3.0         | 35         | û /.          | 0              | 7.0          | C .          | ι <u>ς</u> ς | 0              | 75                           | 0.1           | 4.0     | 80        |            | 0              |
| 2        | 16           |               | 0           | 2.0        | 00:           | . 08     | 30         | 06        | 0 6       |      | ()<br>() | ic<br>æ    | 0           | 40         | ω<br>α        | 0              | 0.9          | 06           | 0.6          | Ç              | 80.                          | 20            | in .    | 2.5       | 9.5        | 1.0            |
| COMPOUND | ্ত           | • 7           | 10          | ı          | 95            | 55       | 09         | .c        | 0.6       | 0.   | 9.0      |            | 45          | :          | 80            | in<br>m        | 7.5          | 0.5          | 06           | 30             | 0.0                          | 1             | 9.0     | 0.6       | 0.0        | ı              |
| CON      | 1.2          |               | 40          | 9.0        | 95            | . 09     | 40.        | 9.2       | 0.6       | ς    | 100      | ιΩ<br>(~ . |             | 70         | . 09          | 0              | 50           | 0,6          | 0.6          | 1              | un<br>co                     | 20.           | 85      | 08        | 50 1       | 8.0            |
|          | Ψ            |               | 0.9         | . 15       | 95            | 70       | 0.6        | 0.6       | 0.6       | 0    | 1001     | .06        | 46          | 25         | 85            | 0              | 0.6          | ുഗ<br>റ      | 80           | 0.             | 7.0                          |               | 08      | 80.       | 95 1       | 80             |
| 45       | ເປ           |               | 40          | 01         | 0.6           | 06       | 75         | 06        | 0.6       | 0    | 70 1     | 0.6        | 70          | . 57       | 70            | 30             | 06           | 06           | 06           | 80             | 0 6                          | 0             | 0.8     | 1         | 1          | 5.0            |
|          | 4            |               | 0           | . 5        | <b>06</b>     | . 09     | O          | 0.4       | 06        | 0    | , 58     | 0.6        |             | . 02       | 30            | 0              | 40           | 06           | 0.6          | 30 . 1         | 75                           | 0.1           | 80 8    | 80        | 100        | 30             |
| 4        | , m          | , d           | 0           | 30         | 0.6           |          | ر<br>ا     | . 56      | 6 06      | 0    | 85       | 85         | 0           | 0          |               | 10.            | , 0,2        | 9.5          | 8.5          | <br>           | 80                           | ιΩ            | 70 %    | 00        | 100 1      | Ċ              |
|          | , C1         |               | 10          | 70         | 06            |          | 35.        |           | 5 06      | 0    | 9.5.8    | 3 .06      | 10          | . 0        | 90 4          | 25 1           | 7.5          | 100          | 3 06         | 80             | 3 06                         | 25 . 2        | 70: 7   | 95,10     |            | 0              |
|          |              |               | S           | 2          | Ŋ             | 0        | ı,         | 0 100     |           | 75   |          | ن          | ıΩ          | 0          | 95 - 9        | 40 2           |              | 95 10        | 6 06         | 25 8           | 6 0.6                        | 46- 2         | 90 7    | 65 9      | 0 100      | 20-            |
|          |              |               | ſ           | S          | , o           | 7        | ά          | 100       | . 100     | 7    | 100      | 9          | ın,         | (۲)        | σı            | ব্য            | 100          | σ.           | 6            | C:             |                              |               | v       | O1        | 3.00       | €.i            |
| Table A  | Rate 16 g/ha | POSTEMERGENCE | Barley 19ri | Barnyard 2 | Barnyardgrass | Bedstraw | Bjackgrass | Chickweed | Cocklebur | Corn | Cotton   | Crabgrass  | Downy Brome | Důck salad | Giant foxtail | Italn. Rygrass | Johnsongrass | Lambsquarter | Morningglory | <b>ಸ್ಥಿ</b> ರಂ | Redroot Pigweed              | Mice Japonica | Søybean | Speedwell | Sügar beet | Umbrella sedge |
|          |              |               |             | 9 - 1      |               |          |            |           |           |      |          |            |             |            | Şr            |                |              |              |              |                |                              |               |         |           |            |                |

| Velvetleaf     | 100 |       | 100 100  | 9.0      | 06 0 | 9.0 | 9.5 | 100 | 95 90 |    | 0.6           | 80 | 80 | 80 | 100 | 06  |
|----------------|-----|-------|----------|----------|------|-----|-----|-----|-------|----|---------------|----|----|----|-----|-----|
| Watergrass 2   | 30  | 25    | 30 25 30 | ı        |      |     | ι   |     |       | ı  | 1             | 1  | i  | 1  |     | ı   |
| Wheat          | 30  | 30 25 | 20       | 10       | 5.0  | 85  | 20  | 50  | 0     | 0  | 0 0 10 0 0    | 0  | 0  | 20 | 09  | 6.5 |
| Wild buckwheat | 85  | 85 65 | 9        | 30 40 75 | 40   |     | 30  | 75  | 2.0   | 0  | 70 0 0 0 0 30 | 0  | 0  | 30 | 30  | 2.0 |
| Wild oat       | 90  | 90 65 | 25       | 5        | 50   | 95  | 65  | 80  | 7.0   | 30 | 0.0           | 0  | 0  | 50 | 0.6 | 06  |

|   |                 |          | 1          |      |     |     | -        | 1        | 000        |            |                     |                | į į     |          |        |     |     |    |
|---|-----------------|----------|------------|------|-----|-----|----------|----------|------------|------------|---------------------|----------------|---------|----------|--------|-----|-----|----|
|   | <b>&lt;</b>     | . 4      | ¥. *       |      |     |     |          | ، ز      | COMPOUND   | JND        |                     |                |         |          |        |     |     |    |
|   | Rate 16 g/ha    | -        | 2          | .n   | 4   | ហ   | 9        | CO<br>TT | <b>□</b> . | 16         | $\frac{\infty}{-1}$ | . 54.          | 25      | 26       | . 22   | 3.0 | 31  |    |
|   | PREEMERGENCE    |          |            |      |     |     |          |          |            |            |                     |                |         |          |        |     |     |    |
|   | Barley Igri     | 0        | 0          | 0    | ;   | 0   | 0        | 0        | 0          | O          | 0                   | 0              | 0       | 0        | ø      | 0   | : 0 | 9  |
|   | Barnyardgrass   | 09       | ,-O        | 0    | 0   | 30  | 1.0      |          | 10         | 0          | 0                   | 0              | 0       | 0        | 0      | Ö   | 0   |    |
|   | Bedstraw        | 0 .      | 0          | 0    | 1   | 10  | 0        |          | , 0        | 0          | 0                   | 0              | 0       | 0        | 50     | 0   | 0   |    |
|   | Blackgrass      | 0        | 0          | 0    | ı   | 0   | 10       | C        | 101        | 0          | 0                   | 0              | $\circ$ | 0        | O      | 0   | 30  |    |
|   | Ghickweed       | 20       | <b>O</b> . | 30   | 1   | 0   | 10,      | 95       | 100        | 30         | ₽                   | C              | 0       | 30       | 0      | ×   | 00  |    |
|   | Gocklebur       | 20       | Ô          | 20   | 10  | 0   | 0        | 20       | 20         | 0          | 0                   | 0              | , 0     | 9        | 0      | 0   | 0   |    |
|   | dorn<br>Corn    | 20       | 0,         | -0   | 0   | 0   | C        | 0        | 0          | 0          | ,0                  | 0              | ت       | 0        | 0      | 0   | 0   |    |
| P | Çotton          | 9        | 3.0        | C    | 0   | O   | 30       | 1"       | 0          | 0          | 10                  | 0              | 0       | 0        | 0      | 0   | 0   |    |
|   | Grass           | 09       | 80         | 100  | 20  | 75  | 08       | 4.0      | L-<br>η)   | 30         | 80                  | 0              | 0       | 0        | 50     | 2.0 | £   |    |
|   | Downy Brome     | 0        | 0          | , O' | ı   | 0   | 0        | 95       | 30         | O a        | 0                   | O <sub>2</sub> | 0       | 0        | 0      | C   | 0   |    |
|   | Guant foxtail   | 200      | 10         | 0    | O   | 10  | 2.0      | 16       | رن<br>س    | 0          | .0                  | 0              | ೦       | Ģ        | 10     | 0   | 25  | Ē. |
|   | italn. Rygrass  | 0,       | 0          | 10   |     | C ; | 0        | 0        | <u>C.5</u> | 0          | o.                  | Ö              | 0       | 0        | 0      | 0   | 0   |    |
|   | Johnsongrass    | 2.0      | 0          | 40   | C   | 0   | 10       | С        | 1          | 0          | 0                   | 0              | 0       | 0        | 0      | 0   | 10  |    |
|   | Çambsquarter    | 70       | 9.5        | 100  | ŧ   | 95  | 100      | 100      | 100        | 90         | 6.0                 | ij             | 0       | <u>्</u> | * at * | ~   | 1.0 |    |
|   | Morningglory    | 30       | 0          | 0    | 0.  | Ó   | 0,       | G<br>    | 0          | 3.0        | 0                   | r <u>i</u> l   | 0       | 0        | c      | 3.0 | 1.0 |    |
|   | Rape            | 0        | 0          | 0    |     | 0   | 0        | 1.       | - 1        | Çı         | 0                   | 0              | 0       | 0        | Š      | 0   | Ō   |    |
| - | Redroot Pigweed | 40       | 30         | 70.  | 0   | 40  | 1        | ٠.       | F          | 0          | 2.0                 | 0              | Ö       | 0        | 40     | 0,  | 30  |    |
|   | Soybean         | 3.0      | 0          | 0    | 0   | Q.  | 10       | 00       | 0          | , <b>0</b> | 9                   | <b>ာ</b>       | O       | 0        | 0      | 0   | 0   |    |
|   | Speedwell       | 100      | 001        | 0.6  | 1   | . ! | 100      | 100      | 100        | Θa         | 2.0                 | C,             | Ç.      | O        | C      | 96  | 07. |    |
| 6 | Sugar beet      | 25       | 0.         | 10   | 1.8 | 1   | 1        | 06       | 50         | ø          | ı                   |                |         | i        | 1      | ن   | (   |    |
|   | Velvetleaf      | .0<br>.0 | 06         | 85   | 20  | 100 | 100      | 05       | 100        | 40         | 0.7                 | (i)            | C.      | Ö        | 37.0   | 0   | 90  |    |
|   | Wheat           | C        | Ç          | Ç    | 1   | с:  | <.       | C)       | 07         | c)<br>•    | <b>.</b> 59         | .* %           | Ø,      | Э        | O      | (2) | ÷   |    |
|   | Wild buckwheat  | Ç.       | O.         | 0    |     | ၀   | 0        | 0        | <u></u>    | 0          | 0                   | C.             | 0       | O        | Ö      | Û   | 0   |    |
|   | Wild oat        | 0        | 0          | 0.1  | e I | Ō   | in<br>Ci | ¢.       | 25         | 0          | <u></u>             | C              | 0       | 0        | C      | O   | 0   |    |

| Table A         |      |     |     |    |     |    | COM | POUN | D   |     |    |     |     |
|-----------------|------|-----|-----|----|-----|----|-----|------|-----|-----|----|-----|-----|
| Rate 8 g/ha     | 1    | 2   | 4   | 5  | 6   | 12 | 14  | 16   | 1.5 | 24  | 27 | 30  | 31  |
| POSTEMERGENCE   |      |     |     |    |     |    |     |      |     |     |    |     |     |
| Barley Igri     | 35   | 0   | 0   | 30 | 50  | 40 | 10  | 0    | 0   | 0   | 0  | 0   | 10  |
| Barnyard 2      | 3.5  | 40  | 1 C | 10 | Э   | 10 | _   | 15   | 0   | 0   | 10 | 0   | 0   |
| Barnyardgrass   | 95   | 90  | 90  | 90 | 95  | 95 | 90  | 90   | 90  | 90  | 95 | 95  | 9.5 |
| Bedstraw        | 60   | O   | 50  | 90 | 40  | 10 | 30  | 80   | 0.8 | 60  | 50 | 40  | 50  |
| Blackgrass      | 60   | 1 C | 0   | 60 | 80  | 0  | 40  | 1 C  | 3.0 | 3.0 | 20 | 3.0 | 40  |
| Chickweed       | 95   | 90  | 70  | 90 | 80  | 75 | 90  | 75   |     | 90  |    | 8 C |     |
| Cocklebur       | 100  | 90  | 70  | 90 | 9 C | 85 | 9.5 | 90   | 90  | 8.5 | 90 | 90  | 60  |
| Corn            | 55   | 0   | 0   | С  | O   | 0  | 0   | 15   | 5   | 0   | 15 | O   | C   |
| Cotton          | 100  | 90  | 85  | 60 | 90  | 95 | 90  | 70   | 40  | 70  | 70 | 80  | 50  |
| Crabgrass       | 90   | 85  | 70  | 90 | 85  | 60 | 75  | 0.8  | 85  | 80  | 80 | 85  | 80  |
| Downy Brome     | 40   | 0   | . 0 | 70 | 3 C | C  | 3 5 | 0    | 20  | 10  | 0  | 3.0 | 20  |
| Duck salad      | 30   | 0   | 10  | 0  | 10  | 0  | -   | 1.0  | 0   | С   | 0  | Û   | О   |
| Giant foxtail   | 90   | 85  | 2 C | 70 | 75  | 40 | 55  | 7.5  | 40  | 35  | 40 | 75  | 80  |
| Italn. Rygrass  | 30   | 1.0 | 0   | 20 | 0   | С  | 20  | 0    | O   | 0   | C  | 20  | 0   |
| Johnsongrass    | 95   | 65  | 3.0 | 70 | 85  | 35 | 70  | 40   | 35  | 20  | 70 | 8.0 | 85  |
| Lambsquarter    | 85   | 95  | 90  | 90 | 95  | 85 | 85  | 8.0  | 8.0 | 20  | 70 | 80  | 50  |
| Morningglory    | 90   | 90  | 3.0 | 90 | 60  | 85 | 90  | 40   | 1 5 | 90  | 40 | 40  | 50  |
| Rape            | 10   | 75  | 10  | 80 | 0   | -  | 3.0 | G    | C   | 30  | 30 | 7.0 | 10  |
| Redroot Pigweed | 90   | 90  | 65  | 85 | 50  | 80 | 80  | 70   |     | 50  | 80 | 5.5 | 70  |
| Rice Japonica   | 35   | 10  | 10  | Ü  | 10  | 0  |     | 15   | 0   | C   | 10 | 0   | 3   |
| Soybean         | 90   | 70  | 70  | 75 | 8.0 | 70 | 85  | 40   | 1.5 | 79  | 75 | 70  | 70  |
| Speedwell       | 90   | 70  | 80  | 60 | 80  | 70 | 8.5 | 60   | 70  | 70  | 70 | С   | 80  |
| Sugar beet      | 100  | 100 | 90  | ٠  | 90  | 95 | 100 | -    | -   | -   | -  | 100 | -   |
| Umbrella sedge  | 20   | 0   | 20  | 0  | 20  | 50 | -   | 20   | 0   | Э   | 0  | 0   | C   |
| Velvetleaf      | 1.00 | 100 | 70  | 90 | 90  | 95 | 95  | 90   | 80  | 85  | 80 | 90  | 90  |
| Watergrass 2    | 25   | 10  | 0   | -  |     | -  | _   | -    | -   | -   | -  |     | -   |
| Wheat           | 10   | 0   | 0   | 35 | 80  | 0  | 35  | 0    | . 0 | 0   | 10 | 10  | 15  |
| Wild buckwheat  | 60   | 65  | 30  | 30 | 50  | 30 | 35  | 40   | 0   | Ċ   | 20 | 20  | 0   |
| Wild oat        | 90   | 25  | 10  | 55 | 90  | 20 | 70  | Û    | 10  | 35  | 30 | 70  | 50  |

WO 97/19087 PCT/US96/18381

| Table A         |     |     |     |    |     |     | COMP | POUNE | )  |    |               |     |     |
|-----------------|-----|-----|-----|----|-----|-----|------|-------|----|----|---------------|-----|-----|
| Rate 8 g/ha     | 1   | 2   | 4   | 5  | 6   | 12  | 14   | 1.6   | 16 | 24 | 27            | 3 G | 3.1 |
| PREEMERGENCE    |     |     |     |    |     |     |      |       |    |    |               |     |     |
| Barley 1gri     | O   | 0   |     | 0  | 0   | 0   | 0    | 0     | 0  | 0  | C             | 0   | Ç   |
| Barnyardgrass   | 20  | O   | 0   | 0  | 0   | 0   | 0    | С     | è  | 0  | Ç             | Ç   | G   |
| Bedstraw        | О   | С   | -   | 0  | 0   | ٥   | Ō    | 10    | 0  | O  | 9             | Э   | Ċ   |
| Blackgrass      | О   | 0   | -   | С  | 10  | C   | 1.0  | 0     | ~  | O  | Û             | 9   | 20  |
| Chickweed       | 0   | 0   | -   | 0  | -   | -   | 95   | C     | -  | 0  | -             | 2.5 | 70  |
| Cocklebur       | 10  | 0"  | 0   | ð  | 0   | С   | 0    | 0     | S  | Ö  | ?             | 0   | Ō   |
| Corn            | 0   | 0   | 0   | 0  | 0   | 0   | Ö    | 0     | C  | G  | 0             | C   | 0   |
| Cotton          | 0   | 0   | С   | 0  | 10  | 20  | 1•   | 0     | 19 | O  | 0             | 0   | Ċ   |
| Crabgrass       | 20  | 20  | О   | 30 | 50  | 10  | 3.0  | 60    | 40 | 9  | .0            | Ç   | 40  |
| Downy Brome     | 0   | 0   | -   | 0  | С   | 95  | 30   | 0     | C  | 0  | 6             | Ç   | 0   |
| Giant foxtail   | 10  | C   | С   | 10 | 1.0 | 0   | 0    | О     | 0  | 0  | 0             | G   | 15  |
| Italn. Rygrass  | 0   | O   | -   | 0  | 0   | 0   | 0    | С     | C  | О  | 0             | Ç   | 0   |
| Johnsongrass    | 10  | 0   | 0   | 0  | 0   | О   | C    | 0     | G  | 0  | C             | Ō   | Ç   |
| Lambsquarter    | 50  | 90  | -   | 70 | 100 | 0   | 100  | 80    | 60 | 0  | C             | 0   | 0   |
| Morningglory    | 0   | 0   | C   | 0  | 0   | 0   | 0    | 0     | Û  | 0  | $\mathcal{O}$ | Ç   | Q   |
| Rape            | С   | 0   | *** | С  | -   | G   |      | 0     | ¢  | Э  | 2             | -,  | ť,  |
| Redroot Pigweed | 20  | . 0 | 0   | 20 | -   | -   | -    | 50    | Ç. | O  | 2€            | 0   | 0   |
| Soybean         | 10  | 0   | 0   | 0  | -   | 20  | 0    | 0     | 0  | 0  | C             | 0   | Ç   |
| Speedwell       | 90  | O   |     | -  | 100 | 100 | 1.00 | 0     | 50 | -  | 9             | **  | 0   |
| Sugar beet      | C   | 0   | -   | -  | 20  | 90  | 35   | _     |    | -  | -             | Ċ   | -   |
| Velvetleaf      | 4 C | 20  | 0   | 80 | 80  | 50  | 60   | 65    | 40 | 0  | 60            | Û   | 60  |
| Wheat           | С   | О   | -   | Ċ  | 30  | G   | 30   | Ó     | Ģ  | С  | Û             | О   | Q   |
| Wild buckwheat  | 0   | 0   | -   | G  | 0   | -   | 0    | C     | 0  | 0  | ÷             | ¢   | 0   |
| Wild oat        | С   | 0   | -   | С  | 25  | 0   | 25   | С     | 0  | 0  | 9             | Ĵ   | 0   |



| Table A         |     |     | C   | COMPO | מאטכ |     |     |     |
|-----------------|-----|-----|-----|-------|------|-----|-----|-----|
| Rate 4 g/ha     | 1   | 2   | 5   | ó     | 16   | 27  | 30  | 31  |
| POSTEMERGENCE   |     |     |     |       |      |     |     |     |
| Barley Igri     | 0   | О   | Э   | 30    | 0    | 0   | 0   | 0   |
| Barnyard 2      | 3.0 | 25  | 0   | 0     | 10   | O   | 0   | 0   |
| Barnyardgrass   | 90  | 90  | 90  | 95    | 90   | 90  | 95  | 90  |
| Bedstraw        | 45  | 0   | 50  | 3.5   | 6 C  | -   | 40  | 50  |
| Blackgrass      | 35  | 0   | 20  | 65    | C    | 0   | 10  | 3.0 |
| Chickweed       | 95  | 75  | 80  | 45    | -    | -   | 60  |     |
| Cocklebur       | 9 C | 90  | 80  | 80    | 6.3  | 80  | 80  | 50  |
| Corn            | 20  | 0   | С   | C     | 10   | 10  | 0   | 0   |
| Cotton          | 90  | 90  | 60  | 80    | 70   | 70  | 40  | 50  |
| Crabgrass       | 6.8 | 80  | 75  | 85    | 80   | 60  | 60  | 70  |
| Downy Brome     | 30  | 0   | 20  | Э     | O    | 0   | 10  | 10  |
| Duck salad      | 20  | С   | 0   | O     | С    | С   | О   | 0   |
| Giant foxtail   | 90  | 65  | 40  | 50    | 50   | 10  | 50  | 70  |
| Italn. Rygrass  | 10  | C   | 15  | 0     | 0    | 0   | 0   | 0   |
| Johnsongrass    | 95  | 60  | 50  | ć 5   | 3.0  | 40  | 60  | 70  |
| Lambsquarter    | 80  | 75  | 8.0 | 90    | 70   | 50  | 5.5 | 15  |
| Morningglory    | 90  | 90  | 90  | 3.0   | 40   | 40  | 10  | 25  |
| Rape            | 0   | 3.0 | 5.0 | С     | 0    | 20  | 40  | 0   |
| Redroot Pigweed | 6 C | 90  | 80  | 4.5   | 40   | 7 C | 50  | 70  |
| Rice Japonica   | 20  | 0   | С   | ÷     | 15   | 10  | 0   | 0   |
| Soybean         | 85  | 45  | 70  | 70    | 40   | 75  | 40  | 50  |
| Speedwell       | 85  | 70  |     | 60    | 30   | 70  | 0   | 60  |
| Sugar beet      | 100 | 100 | -   | 60    | -    | -   | 90  |     |
| Umbrella sedge  | 1 C | С   | O   | С     | 10   | 0   | 0   | 0   |
| Velvetleaf      | 100 | 100 | 90  | 90    | 9 C  | 80  | 90  | 90  |
| Watergrass 2    | 2.0 | 10  | -   | -     | -    | -   | -   | -   |
| Wheat           |     | 0   |     |       |      | 0   | 0   | 0   |
| Wild buckwheat  | 25  | 20  | 10  | 30    | 0    | 0   | 10  | -   |
| Wild oat        |     | С   |     | 7 C   | , e  | 10  | 20  | 35  |

| Table A         |      |     |     | COMP | OUND |     |     |     |
|-----------------|------|-----|-----|------|------|-----|-----|-----|
| Rate 4 g/ha     | 1    | 2   | 5   | 6    | 16   | 27  | 3 O | 31  |
| PREEMERGENCE    |      |     |     |      |      |     |     |     |
| Barley Igri     | C    | 0   | 0   | Э    | 0    | 0   | О   | 0   |
| Barnyardgrass   | 0    | 0   | 0   | 0    | 0    | 0   | 0   | 0   |
| Bedstraw        | O    | 0   | 0   | C    | O    | О   | 0   | 0   |
| Blackgrass -    | 0    | 0   | 0   | 0    | 0    | O   | C   | 0   |
| Chickweed       | 0    | 0   | O   | _    | 0    | 0   | 25  | С   |
| Cocklebur       | 0    | C   | O   | С    | O    | . 0 | О   | 0   |
| Corn            | 0    | Э   | O   | 0    | G    | Э   | 0,  | 0   |
| Cotton          | . 0  | 0   | 0   | 0    | 0    | 0   | 0.  | 0   |
| Crabgrass       | 0    | 10  | 10  | 20   | 3 C  | О   | C   | 0   |
| Downy Brome     | 9    | C   | 0   | 0    | 0    | Ĝ   | 0   | Û   |
| Giant foxtail   | , 0  | 0   | O   | 0    | 0    | Э.  | О   | 10  |
| Italn. Fygrass  | 0    | С   | 0   | О    | 0    | 0   | 0   | 0   |
| Johnsongrass    | 0    | 0   | 0   | 0    | 0    | 0   | 0   | С   |
| Lambsquarter    | 20   | 70  | 0   | 100  | 50   | 0   | 0   | 0   |
| Morningglory    | 0    | 0   | 0   | 0    | C    | . C | - C | 0   |
| Rape            | c a  | 0   | 0   | С    | 0    | 0 1 | 0   | 0   |
| Redroot Pigweed | 0    | C,  | 10  | Ž.   | 3.0  | 0   | G   | 0   |
| Soybean         | О    | 0   | C   | Ú    | 0.1  | 0   | 0   | 0   |
| Speedwell .     | 2.0  | 0   |     | 3.0  | О    | C   | 95. | 1 1 |
| Sugar beet      | ° O  | , 0 |     | 20   | ~    | -   | C.  | 112 |
| Velvetleåf 🔻    | . 20 | 0   | 40  | 0    | 50   | 40  | Э   | 20  |
| Wheat           | 0    | 0   | . 0 | 3.0  | 0    | * O | 0   | 0   |
| Wild buckwheat  | 0    | 0   | - 0 | 0    | 0,   | . 0 | 0   | С   |
| Wild oat        | 0    | 0   | С   | 25   | 0    | 0   | 0   | 0   |

| Table A         | COMPOUND | Table A         | COMPOUND |
|-----------------|----------|-----------------|----------|
| Rate 2 g/ha     | 1        | Rate 2 g/ha     | <u>:</u> |
| POSTEMERGENCE   |          | PREEMERGENCE    |          |
| Barley Igri     | С        | Barley Igri     | 9        |
| Barnyard 2      | 30       | Barnyardgrass   | 0        |
| Barnyarögrass   | 90       | Bedstraw        | G        |
| Bedstraw        | 10       | Blackgrass      | 0        |
| Blackgrass      | 3 0      | Chickweed       | Q        |
| Chickweed       | 70       | Cocklebur       | 0        |
| Cocklebur       | 8.0      | Corn            | €        |
| Corn            | С        | Cotton          | Ç        |
| Cotton          | 80       | Crabgrass       | 9        |
| Crabgrass       | 80       | Downy Brome     | 0        |
| Downy Brome     | 10       | Giant foxtail   | 0        |
| Duck salad      | 20       | Italn. Rygrass  | Ĝ        |
| Giant foxtail   | 80       | Johnsongrass    | G .      |
| Italn. Rygrass  | 0        | Lambsquarter    | 20       |
| Johnsongrass    | 70       | Morningglory    | C        |
| Lambsquarter    | 40       | Rape            | C C      |
| Morningglory    | 70       | Redroot Figweed | Û        |
| Rape            | 0        | Soypean         | 9        |
| Redroot Pigweed | 60       | Speedwell       | 20       |
| Rice Japonica   | 10       | Sugar beet      | 0        |
| Soybean         | 85       | Velvetleaf      | 0        |
| Speedwell       | 3.5      | Wheat           | 0        |
| Sugar beet      | 95       | Wild buckwheat  | 0        |
| Umbrella sedge  | С        | Wild oat        | 0        |
| Velvetleaf      | 100      |                 |          |
| Watergrass 2    | 20       |                 |          |
| Wheat           | С        |                 |          |
| Wild buckwheat  | 0        |                 |          |
| Wild oat        | 40       |                 |          |

| Table A         | COMPOUND | Table A         | COMPOUND |
|-----------------|----------|-----------------|----------|
| Rate 1 g/ha     | 1        | Rate 1 g/ha     | 1        |
| POSTEMERGENCE   |          | PREEMERGENCE    |          |
| Barley Igri     | Э        | Barley Igri     | 0        |
| Barnyard 2      | 30       | Barnyardgrass   | 0        |
| Barnyardgrass   | 90       | Bedstraw        | 0        |
| Bedstraw        | Э        | Blackgrass      | 0        |
| Blackgrass      | 10       | Chickweed       | 0        |
| Chickweed       | 60       | Cocklebur       | 0        |
| Cocklebur       | 80       | Corn            | 0        |
| Corn            | 0        | Cotton          | G ·      |
| Cotton          | 50       | Crabgrass       | 0        |
| Crabgrass       | 70       | Downy Brome     | 0        |
| Downy Brome     | G        | Giant foxtail   | C        |
| Duck salad      | 0        | Italn, Rygrass  | 0        |
| Giant foxtail   | 60       | Johnsongrass    | 0        |
| Italn. Rygrass  | 0        | Lambsquarter    | 10       |
| Johnsongrass    | 50       | Morningglory    | 9        |
| Lambsquarter    | 20       | Rape            | θ        |
| Morningglory    | 40       | Redroot Pigweed | 6        |
| Rape            | 3        | Soybear.        | Q        |
| Redroot Pigweed | 30       | Speedwell       | 10       |
| Rice Japonica   | 10       | Sugar beet      | Q        |
| Soybean         | 70       | Velvetleaf      | 0        |
| Speedwell       | 30       | Wheat           | 0        |
| Sugar beet      | 95       | Wild buckwheat  | O        |
| Umbrella sedge  | 0        | Wild oat        | 0        |
| Velvetleaf      | 90       |                 |          |
| Watergrass 2    | 20       |                 |          |
| Wheat           | C        |                 |          |
| Wild buckwheat  | 0        |                 |          |
| Wild oat        | 35       | ·               |          |

## TEST B

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test, and 13 days after the last postemergence planting.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include alexandergrass (*Brachiaria plantaginea*), american black nightshade (*Solanum americanum*), apple-of-Peru (*Nicandra physaloides*), arrowleaf sida (*Sida rhombifolia*), brazilian sicklepod (*Cassia tora Brazilian*), brazilian signalgrass (*Brachiaria decumbens*), capim-colchao (*Digitaria horizontalis*), cristalina soybean (*Glycine max Cristalina*), florida beggarweed (*Desmodium purpureum*), hairy beggarticks (*Bidens pilosa*), slender amaranth (*Amaranthus viridis*), southern sandur (*Cenchrus echinatus*), tall morningglory (*Ipomoea purpurea*), tropical spiderwort (*Commelina henghalensis*), W20 Soybean (Glycine max W20), W4-4 Soybean (Glycine max W4-4) and wild pointsettia (*Eupohorbia heterophylla*).

Treated plants and untreated controls were maintained in a greenhouse for approximately 13 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table B, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

| Table B         | C   | COMPO | OUND | Table B         | C    | COMPO | GNUC |
|-----------------|-----|-------|------|-----------------|------|-------|------|
| Rate 280 g/ha   | 1   | 2     | 4    | Rate 140 g/ha   | 1    | 2     | 4    |
| POSTEMERGENCE   |     |       |      | POSTEMERGENCE   |      |       |      |
| Acanthospermum  | 100 | 100   | 100  | Acanthospermum  | 100  | 90    | 100  |
| Alexandergrass  | 100 | 100   | 100  | Alexandergrass  | 100  | 100   | 100  |
| Apple-of-Peru   | 100 | 100   | 100  | Apple-of-Peru   | 100  | 100   | 100  |
| Arrowleaf Sida  | 80  | 85    | 100  | Arrowleaf Sida  | 70   | 80    | 100  |
| B. Signalgrass  | 100 | 90    | 100  | B. Signalgrass  | 100  | 95    | 100  |
| Bl. Nightshade  | 100 | 100   | 100  | Bl. Nightshade  | .100 | 100   | 100  |
| Braz Sicklepod  | 60  | 65    | 100  | Braz Sicklepod  | 55   | 40    | 50   |
| Capim-Colch     | 100 | 100   | 100  | Capim-Colch     | 100  | 85    | 100  |
| Crist. Soybean  | 95  | 2.5   | 90   | Crist. Soybean  | 100  | 9.5   | 90   |
| Fl. Beggarweed  | 100 | 100   | 100  | Fl. Beggarweed  | 100  | 100   | -    |
| H. Beggarticks  | 95  | 100   | 100  | H. Beggarticks  | 8.0  | 8.0   | 100  |
| Morningglory    | 100 | 90    | 75   | Morningglory    | 100  | 100   | 100  |
| SI. Amaranth    | 100 | 100   | 80   | Sl. Amaranth    | 100  | 85    | 80   |
| Tr. Spiderwort  | 100 | 100   | 100  | Tr. Spiderwort  | 85   | 70    | 90   |
| Wld Pointsettia | 100 | 100   | 100  | Wld Pointsettia | 100  | 100   | 100  |
| W2C Soybean     | 85  | 30    | 90   | W20 Soybean     | 90   | 85    | 90   |
| W4-4 Soybean    | 95  | 80    | 100  | W4-4 Soybean    | 95   | 85    | 100  |

| Table B         |       | COMPC | CUND | Tā | able B   |         | C    | OMPC | DUND |
|-----------------|-------|-------|------|----|----------|---------|------|------|------|
| Rate 70 g/ha    | 1     | 2     | 4    | Ra | ate 35   | g/ha    | 1    | 2    | 4    |
| POSTEMERGENCE   |       |       |      | 20 | STEMERO  | GENCE   |      |      |      |
| Acanthospermum  | 100   | 90    | 100  | Ac | canthos  | oermum  | 100  | 8.0  | 100  |
| Alexandergrass  | 100   | 100   | 85   | A  | Lexander | grass   | 100  | 95   | 75   |
| Apple-of-Peru   | 100   | 100   | 80   | A  | ple-of   | -Peru   | 70   | 100  | 70   |
| Arrowleaf Sida  | 65    | 75    | 100  | Aı | crowlea  | f Sida  | 60   | 65   | 1.00 |
| B. Signalgrass  | 90    | 90    | 70   | В. | . Signal | lgrass  | 90   | 80   | 7 C  |
| Bl. Nightshade  | 100   | 100   | 100  | В  | l. Nigh  | tshade  | 100  | 100  | 100  |
| Braz Sicklepod  | 50    | 3 O   | 40   | Bı | raz Sic  | klepod  | 15   | 15   | 20   |
| Capim-Colch     | 90    | 75    | 100  | Ca | apim-Co. | ich     | 80   | 6.5  | 80   |
| Crist. Soybean  | 1.C Ó | 90    | 80   | Cı | rist. S  | oybean  | 160  | 8.0  | 8 C  |
| Fl. Beggarweed  | 100   | 8.0   | -    | F. | l. Begg  | arweed  | 80   | 8.0  | -    |
| H. Beggarticks  | 75    | 70    | 8 C  | H  | . Begga  | rticks  | 70   | 69   | 6.5  |
| Morningglory    | 100   | 8.5   | 1.00 | Mo | orningg  | lory    | 100  | 70   | 8.5  |
| Sl. Amaranth    | 75    | 8.0   | 70   | s  | l. Amar  | anth    | 75   | 55   | 65   |
| Tr. Spiderwort  | 80    | 6.5   | 85   | Т  | r. Spid  | erwort  | 75   | 6.5  | 60   |
| Wld Pointsettia | 100   | 100   | 100  | W. | ld Poin  | tsettia | 1.00 | 100  | 8.5  |
| W20 Soybean     | 90    | 85    | 85   | พ  | 20 Soyb  | ear.    | 90   | 85   | 85   |
| W4-4 Soybean    | 90    | 85    | 90   | w  | 4-4 Soy  | bean    | 90   | 85   | 90   |

| <b></b>         |     |      |      | 1               |     |      |      |
|-----------------|-----|------|------|-----------------|-----|------|------|
| Table B         | (   | COMP | OUND | Table B         | (   | COMP | CNUO |
| Rate 17 g/ha    | -   | 2    | 4    | Rate 8 g/ha     | 1   | 2    | 4    |
| POSTEMERGENCE   |     |      |      | POSTEMERGENCE   |     |      |      |
| Acanthospermum  | 100 | 70   | 85   | Acanthospermum  | 90  | 70   | 80   |
| Alexandergrass  | 100 | 9 C  | 70   | Alexandergrass  | 85  | 80   | 60   |
| Apple-of-Peru   | 70  | 100  | 60   | Apple-of-Peru   | 65  | 100  | 40   |
| Arrowleaf Sida  | 60  | 65   | 70   | Arrowleaf Sida  | 50  | 65   | 50   |
| B. Signalgrass  | 85  | 70   | 70   | B. Signalgrass  | 80  | 60   | 65   |
| Bl. Nightshade  | 70  | 85   | 100  | Bl. Nightshade  | 70  | 85   | 80   |
| Braz Sicklepod  | 10  | 15   | 15   | Braz Sicklepod  | 0   | 10   | 1.0  |
| Capim-Colch     | 70  | 40   | 55   | Capim-Colch     | 55  | 25   | 25   |
| Crist. Soybean  | 100 | 75   | 80   | Crist. Soybean  | 80  | 75   | 55   |
| Fl. Beggarweed  | 0.8 | 80   | 100  | Fl. Beggarweed  | 80  | 70   | 100  |
| H. Beggarticks  | 6.5 | 55   | 65   | H. Beggarticks  | 5.5 | 50   | 60   |
| Morningglory    | 80  | 65   | 75   | Morningglory    | 70  | 65   | 5.5  |
| S1. Amaranth    | 65  | 65   | 55   | Sl. Amaranth    | 60  | 60   | 50   |
| Tr. Spiderwort  | 60  | 60   | 50   | Tr. Spiderwort  | 40  | 40   | 35   |
| Wld Pointsettia | 70  | 85   | 75   | Wld Pointsettia | 70  | 65   | 50   |
| W20 Soybean     | 85  | 75   | 85   | W20 Soybean     | 75  | 70   | 65   |
| W4-4 Soybear.   | 85  | 75   | 85   | W4-4 Soybean    | 85  | 65   | 65   |

## TEST C

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include American black nightshade (Solanum americanum), arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), corn (Zea mays), cotton (Gossypium hirsutum), eastern black nightshade (Solanum ptycanthum), fall panicum (Panicum dichotomiflorum), field bindweed (Convolvulus arvensis), Florida beggarweed (Desmodium purpureum), giant foxtail (Setaria faberii), hairy beggarticks (Bidens pilosa), ivyleaf morningglory (Ipomoea hederacea), johnsongrass (Sorghum halepense), ladysthumb (Polygonum persicaria), large crabgrass (Digitaria sanguinalis), purple nutsedge (Cyperus roundus), redroot pigweed (Amaranthus retroflexus), soybean (Glycine max), surinam grass (Brachiaria decumbens), velvetleaf (Abutilon theophrasti) and wild poinsettia (Euphorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 14 to 21 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table C, were based upon a 0 to 100 scale where 0 was no effect and 100 was complete control. A dash response (-) means no test result.

| Table C         | COM  | POUND | )    | Table C         | COM  | POUNE |
|-----------------|------|-------|------|-----------------|------|-------|
| Rate 280 g/ha   | 2    | 4     |      | Rate 280 g/ha   | 2    | 4     |
| POSTEMERGENCE   |      |       |      | PREEMERGENCE    |      |       |
| Arrowleaw Sida  | 70   | 75    |      | Arrowleaw Sida  | 95   | 100   |
| Barnyardgrass   | 100  | 100.  |      | Barnyardgrass   | 100  | 90    |
| Cocklebur       | 100  | 100   |      | Cocklebur       | 95   | 55    |
| Common Ragweed  | 100  | 100   |      | Common Ragweed  | 100  | 100   |
| Corn            | 10   | 10    |      | Corn            | 0    | С     |
| Cotton          | 100  | 100   |      | Cotton          | 100  | 25    |
| Estrn Blknight  | 100  | 100   |      | Estrn Blknight  | -    | -     |
| Fall Panicum    | 100  | 100   |      | Fall Panicum    | 100  | -100  |
| Field Bindweed  | 100  | 90    |      | Field Bindweed  | 90   | 90    |
| Fl Beggarweed   | 10C  | 100   |      | Fl Beggarweed   | 100  | 100   |
| Giant Foxtail   | 1,00 | 100   |      | Giant Foxtail   | 160  | 100   |
| Hairy Beggartic | 75   | 70    |      | Hairy Beggartic | 100  | 60    |
| Ivyleaw Mrnglry | 100  | 100   | P    | Ivyleaw Mrnglry | 55   | 65    |
| Johnsongrass    | 9.5  | 80    |      | Johnsongrass    | 75   | - 5.5 |
| Ladysthumb      | 100  | 100   |      | Ladysthumb      | 100  | 1.00  |
| Lambsquarters   | 100  | 100   |      | Lambsquarters   | * -  | -     |
| Large Crabgrass | -190 | 100   | 4    | Large Crabgrass | 100  | 100   |
| Purple Nutsedge | 90   | 75.   |      | Purple Nutsedge | . 80 | 60    |
| Redroot Pigweed | 100  | -     | 8 0  | Redroot Pigweed | 100  | 100   |
| Soybean         | 100  | 100   |      | Soybear.        | 70   | 201   |
| Surinam Grass   | 100  | 100   | . 30 | Surinam Grass   | 100  | 90    |
| Velvetleaf      | 100  | 100   | -    | Velvetleaf      | 100  | 100   |
| Wild Poinsettia | 100  | 100   |      | Wild Poinsettia | 95   | 90    |
|                 |      |       |      |                 |      |       |

|                 |     |      |       |     |              | 1               |     |       |     |
|-----------------|-----|------|-------|-----|--------------|-----------------|-----|-------|-----|
| Table C         |     | CC   | OMPOU | JND |              | Table C         | C   | OMPOU | JND |
| Rate 140 g/ha   | ÷   | 2    | 4     | 5   | , 6 <u>.</u> | Rate 140 g/ha   | 1   | 2     | 1   |
| POSTEMERGENCE   |     |      |       |     |              | PREEMERGENCE    |     |       |     |
| Arrowleaw Sida  | 100 | 50   | 55    | 60  | 90           | Arrowleaw Sida  | 100 | 40    | 45  |
| Barnyardgrass   | 100 | 100  | 95    | 100 | 100          | Barnyardgrass   | 100 | 100   | 25  |
| Cocklebur       | 100 | 100  | 100   | 95  | 100          | Cocklebur       | 90  | 75    | 40  |
| Common Ragweed  | 100 | 1.00 | 100   | 100 | 100          | Common Ragweed  | 100 | 100   | 95  |
| Corn.           | 0   | 0    | 0     | 45  | 5            | Corn            | 0   | 0     | 0   |
| Cotton          | 100 | 1.00 | 90    | 95  | 100          | Cotton          | 45  | 65    | 10  |
| Estrn Blknight  | 100 | 100  | 100   | 100 | 100          | Estrn Blknight  | 100 | 100   | -   |
| Fall Panicum    | 100 | 95   | 95    | 100 | 100          | Fall Panicum    | 100 | 100   | 100 |
| Field Bindweed  | 100 | 95   | 85    | 100 | 90           | Field Bindweed  | 60  | 50    | 55  |
| Fl Beggarweed   | 100 | 100  | 100   | 100 | 100          | Fl Beggarweed   | 100 | 100   | 100 |
| Giant Foxtail   | 100 | 100  | 95    | 100 | 100          | Giant Foxtail   | 100 | 95    | 70  |
| Hairy Beggartic | 85  | 65   | 65    | 95  | 100          | Hairy Beggartic | 1.0 | 90    | 35  |
| Ivyleaw Mrnglry | 80  | 100  | 95    | 100 | 100          | Ivyleaw Mrnglry | 20  | 3.0   | 25  |
| Johnsongrass    | 100 | 85   | 70    | 100 | 100          | Johnsongrass    | 9 Ĉ | 45    | 15  |
| Ladysthumb      | 100 | 100  | 100   | 100 | 100          | Ladysthumb      | 100 | 100   | 100 |
| Lambsquarters   | 100 | 100  | 100   | 95  | 95           | Lambsquarters   | 95  | 100   | -   |
| Large Crabgrass | 90  | 95   | 95    | 100 | 100          | Large Crabgrass | 100 | 100   | 90  |
| Purple Nutsedge | 85  | 80   | 45    | 20  | 100          | Purple Nutsedge | 10  | 70    | 25  |
| Redroot Pigweed | 100 | 100  | -     | 100 | 90           | Redroot Pigweed | 100 | 100   | 85  |
| Soybean         | 100 | 100  | 100   | 95  | 90           | Soybean         | 60  | 20    | 0   |
| Surinam Grass   | 100 | 90   | 90    | 90  | 100          | Surinam Grass   | 100 | 60    | 65  |
| Velvetleaf      | 100 | 1,00 | 100   | 100 | 100          | Velvetleaf      | 100 | 100   | 100 |
| Wild Poinsettia | 100 | 100  | 100   | 100 | 100          | Wild Poinsettia | 100 | 45    | 3.0 |

WO 97/19087 PCT/US96/18381

| Table C COMPOUND |      |      |     |      |                |     |      |     |  |  |  |  |
|------------------|------|------|-----|------|----------------|-----|------|-----|--|--|--|--|
| Rate 70 g/ha     | 1    | 2    | 3   | ί,   | 5              | 5   | 16   | 3 1 |  |  |  |  |
| POSTEMERGENCE    |      |      |     |      |                |     |      |     |  |  |  |  |
| Arrowleaw Sida   | 100  | 50   | 85  | 70   | 60             | 85  | 65   | -   |  |  |  |  |
| Barnyardgrass    | 100  | 95   | 95  | 95   | 95             | 100 | 100  | 95  |  |  |  |  |
| Cocklebur        | 95   | 100  | 85  | 95   | 95             | 95  | 95   | 60  |  |  |  |  |
| Common Ragweed   | 100  | 100  | 100 | 100  | 100            | 100 | 100  | 95  |  |  |  |  |
| Corn             | О    | 10   | 1 C | O    | 30             | 5   | 60   | 0   |  |  |  |  |
| Cotton           | 1.00 | 95   | 85  | 90   | 95             | 100 | 95   | 95  |  |  |  |  |
| Estrn Blknight   | 100  | 100  | 100 | 95   | 100            | 100 | 100  | 100 |  |  |  |  |
| Fall Panicum     | 100  | 95   | 80  | 100  | 100            | 100 | 95   | 95  |  |  |  |  |
| Field Bindweed   | 90   | 100  | 85  | 65   | 80             | 6 C | 60   | 50  |  |  |  |  |
| Fl Beggarweed    | 100  | 100  | 100 | 100  | 100            | 100 | 1.00 | 95  |  |  |  |  |
| Giant Foxtail    | 95   | 95   | 50  | 8 C  | 100            | 100 | 95   | 90  |  |  |  |  |
| Hairy Beggartic  | 70   | 65   | 75  | 60   | 85             | 85  | C 3  | 90  |  |  |  |  |
| Ivyleaw Mrnglry  | 0.8  | 100  | 90  | 95   | 95             | 100 | 15   | 80  |  |  |  |  |
| Johnsongrass     | 95   | 1.00 | 25  | 60   | 95             | 100 | 65   | 95  |  |  |  |  |
| Ladysthumb       | 1.00 | 100  | 95  | 100  | 100            | 100 | 100  | 100 |  |  |  |  |
| Lambsquarters    | 100  | 100  | 100 | 1.00 | 95             | 95  | 100  | 100 |  |  |  |  |
| Large Crabgrass  | 90   | 95   | 80  | 80   | 100            | 100 | 95   | 90  |  |  |  |  |
| Purple Nutsedge  | 80   | 80   | 0   | 2.5  | 20             | 95  | 95   | 75  |  |  |  |  |
| Redroot Pigweed  | 100  | 100  | 100 | 9.5  | 100            | 90  | 100  | 100 |  |  |  |  |
| Soybean          | 100  | 100  | 95  | 95   | 90             | 85  | 60   | 80  |  |  |  |  |
| Surinam Grass    | 95   | 95   | 80  | 65   | <del>3</del> 0 | 100 | 90   | 9 C |  |  |  |  |
| Velvetleaf       | 100  | 100  | 100 | 90   | 100            | 100 | 100  | 100 |  |  |  |  |
| Wild Poinsettia  | 100  | 95   | 100 | 100  | 85             | 90  | 65   | 8 C |  |  |  |  |

| Table C         |     | COMP | ОИИО | ,   |
|-----------------|-----|------|------|-----|
| Rate 70 g/ha    | -   | 2    | 3    | 4   |
| PREEMERGENCE    |     |      |      |     |
| Arrowleaw Sida  | 80  | 50   | С    | 15  |
| Barnyardgrass   | 100 | 95   | 35   | 15  |
| Cocklebur       | 90  | 10   | 0    | 0   |
| Common Ragweed  | 95  | 100  | 95   | 55  |
| Corn            | 0   | 0    | 0    | 0   |
| Cotton          | 20  | 0    | 10   | 10  |
| Estrn Blknight  | 100 | 100  | -    | 100 |
| Fall Panicum    | 100 | 100  | 75   | 85  |
| Field Bindweed  | 50  | 3.0  | 10   | C   |
| F! Beggarweed   | 95  | 85   | -    | 100 |
| Giant Foxtail   | 100 | 35   | 10   | 20  |
| Hairy Beggartic | O   | 25   | 10   | 20  |
| Ivyleaw Mrnglry | 20  | 0    | С    | C   |
| Johnsongrass    | 40  | 25   | 25   | 10  |
| Ladysthumb      | 90  | 65   | -    | 50  |
| Lambsquarters   | 95  | 95   | -    | 95  |
| Large Crabgrass | 100 | 100  | 100  | 100 |
| Purple Nutsedge | 5   | 60   | 0    | (   |
| Redroot Pigweed | 90  | 80   | 5.5  | 3 5 |
| Soybean         | 55  | 15   | 0    | (   |
| Surinam Grass   | 100 | 70   | 60   | 1 ( |
| Veivetleaf      | 100 | 100  | 100  | 9 9 |
| Wild Poinsettia | 80  | 35   | 20   | 15  |

| Table C COMPOUND |            |     |     |     |     |     |     |     |     |     |
|------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Rate 35 g/ha     | 1          | 2   | 3   | 4   | 5   | 6   | 16  | 18  | 3.0 | 3.1 |
| POSTEMERGENCE    |            |     |     |     |     |     |     |     |     |     |
| Arrowleaw Sida   | 80         | 90  | 70  | 4.5 | 60  | 50  | 20  | 70  | 70  | 65  |
| Barnyardgrass    | 100        | 100 | 95  | 90  | 85  | 100 | 95  | 90  | 100 | 95  |
| Cocklebur        | 90         | 100 | 80  | 95  | 90  | 95  | 95  | 80  | 95  | 60  |
| Common Ragweed   | 100        | 100 | 100 | 90  | 100 | 100 | 100 | 100 | 95  | 95  |
| Corn             | О          | 20  | 15  | Q   | 20  | 0   | 20  | 35  | 5   | 0   |
| Cotton           | 100        | 100 | 75  | 80  | 25  | 100 | 95  | 90  | 95  | 9 C |
| Estrn Blknight   | 100        | 100 | 95  | 8.5 | 100 | 95  | 100 | 85  | 100 | 100 |
| Fall Panicum     | 90         | 100 | 75  | 95  | 100 | 100 | 100 | 90  | 100 | 9.5 |
| Field Bindweed   | 90         | 8.0 | 8.0 | 50  | 80  | 60  | 50  | 65  | 5   | 50  |
| Fl Beggarweed    | 90         | 100 | 95  | 100 | 90  | 50  | 95  | 100 | 100 | 100 |
| Giant Foxtail    | 8.0        | 95  | 40  | 65  | 85  | 100 | 100 | 85  | 100 | 90  |
| Hairy Beggartic  | <b>7</b> 0 | 70  | 60  | 40  | 60  | 6.8 | 70  | 70  | 70  | 80  |
| Ivyleaw Mrnglry  | 70         | 9.5 | 80  | 95  | 90  | 80  | 40  | 60  | 60  | 65  |
| Johnsongrass     | 8 C        | 90  | 20  | 60  | 70  | 100 | 20  | 70  | 100 | 85  |
| Ladysthumb       | 100        | 100 | 95  | 90  | 100 | 100 | 190 | 100 | 100 | 100 |
| Lambsquarters    | 95         | 100 | 95  | 100 | 95  | 95  | 90  | 80  | 100 | 95  |
| Large Crabgrass  | 85         | 9.5 | 75  | 7 C | 8.5 | 100 | 100 | 100 | 100 | 90  |
| Purple Nutsedge  | 30         | 8.5 | C   | 25  | 20  | 3 0 | 90  | 75  | 75  | -   |
| Redroot Pigweed  | 95         | 100 | 95  | 90  | 80  | 9.0 | 95  | 80  | 199 | 100 |
| Soybean          | 8.5        | 100 | 95  | 95  | 95  | 80  | 40  | 65  | 9.5 | 75  |
| Surinam Grass    | 90         | 95  | 70  | 65  | 8.0 | 95  | 90  | 75  | 20  | 85  |
| Velvetleaf       | 100        | 100 | 95  | 9 C | 100 | 100 | 100 | 100 | 100 | 100 |
| Wild Poinsettia  | 90         | 100 | 95  | 90  | 85  | 85  | 20  | 65  | CR  | 75  |

| Table C         |     | COMP | OUND |     |
|-----------------|-----|------|------|-----|
| Rate 35 g/ha    | 1   | 2    | 3    | 4   |
| PREEMERGENCE    |     |      |      |     |
| Arrowleaw Sida  | 80  | 25   | 0    | C   |
| Barnyardgrass   | 20  | 15   | 10   | 0   |
| Cocklebur       | 20  | 55   | C    | 0   |
| Common Ragweed  | 90  | 75   | 35   | 20  |
| Corn            | 0   | 0    | Э    | 0   |
| Catton          | 5   | 100  | 0    | О   |
| Estrn Blknight  | 100 | 95   | -    | 95  |
| Fall Panicum    | 100 | 100  | 15   | 75  |
| Field Bindweed  | 50  | 3 C  | 0    | 0   |
| Fl Beggarweed   | -   | 50   | 25   | 15  |
| Giant Foxtail   | 100 | 15   | O    | 0   |
| Hairy Beggartic | 0   | 35   | O    | O   |
| lvyleaw Mrnglry | O   | С    | C    | 0   |
| Johnsongrass    | 10  | 0    | 0    | 0   |
| Ladysthumb      | -   | 30   |      | 30  |
| Lambsquarters   | С   | 95   |      | 75  |
| Large Crabgrass | -   | 95   | 70   | 3.5 |
| Purple Nutsedge | 0   | 25   | 0    | Ō   |
| Redroot Pigweed | 50  | 7 C  | -    | 15  |
| Soybear         | 40  | 0    | ij   | 0   |
| Surinam Grass   | 95  | 45   | 10   | 0   |
| Velvetleaf      | 100 | 100  | 100  | 70  |
| Wild Poinsettia | 50  | 25   | 0    | С   |

| Table C         |     |     |     |    | COM | POUN | D   |     |     |            |
|-----------------|-----|-----|-----|----|-----|------|-----|-----|-----|------------|
| Rate 17 g/ha    | 1   | 2   | 3   | 4  | 5   | 6    | 16  | 18  | 30  | 31         |
| POSTEMERGENCE   |     |     |     |    |     |      |     |     |     |            |
| Arrowleaw Sida  | 50  | 6 C | 65  | 35 | 10  | 50   | 20  | 70  | 20  | 80         |
| Barnyardgrass   | 100 | 95  | 90  | 90 | 70  | 100  | 95  | 90  | 100 | 90         |
| Cocklebur       | 90  | 100 | 70  | 90 | 90  | 90   | 85  | 85  | 85  | 50         |
| Common Ragweed  | 100 | 100 | 100 | 95 | 85  | 90   | 100 | 80  | 95  | 90         |
| Corn            | 0   | 0   | Э   | 0  | 5   | 0    | 20  | 25  | 5   | 0          |
| Cotton          | 100 | 100 | 70  | 70 | 60  | 90   | 90  | 80  | 90  | 75         |
| Estrn Blknight  | 95  | 100 | 95  | 80 | 95  | 9 C  | 100 | 80  | 100 | 100        |
| Fall Panicum    | 70  | 85  | 4.5 | 40 | 85  | 100  | 100 | 85  | 95  | 85         |
| Field Bindweed  | 80  | 65  | 55  | 45 | 8 û | 60   | 20  | 55  | 5   | 25         |
| Fl Beggarweed   | 85  | 100 | 7.5 | 60 | 85  | 50   | 0.8 | 90  | 100 | 100        |
| Giant Foxtail   | 65  | 60  | 25  | 45 | 0.8 | 90   | 100 | 80  | 95  | 80         |
| Hairy Beggartic | 50  | 65  | 40  | 30 | 60  | 10   | 30  | 60  | 60  | 65         |
| Ivyleaw Mrnglry | 70  | 95  | 60  | 80 | 80  | 80   | 40  | 45  | 60  | <b>5</b> 5 |
| Johnsongrass    | 50  | 80  | 15  | 15 | 70  | 80   | 5   | 60  | 95  | 80         |
| Ladysthumb      | 90  | 55  | 85  | 75 | 100 | 95   | 100 | 90  | 100 | 100        |
| Lambsquarters   | 8 C | 100 | 80  | 85 | 95  | 80   | 90  | 80  | 100 | 100        |
| Large Crabgrass | 85  | 85  | 45  | 55 | 60  | 100  | 90  | 90  | 100 | 85         |
| Purple Nutsedge | 5   | 60  | 0   | 15 | 5   | 30   | 50  | 45  | 20  |            |
| Redroot Pigweed | 80  | 95  | 80  | 90 | 75  | 80   | 90  | 80  | 100 | 95         |
| Soybean         | 85  | 100 | 85  | 85 | 90  | 70   | 3.5 | 3.5 | 85  | 70         |
| Surinam Grass   | 90  | 80  | 4.5 | бῦ | 60  | .80  | 80  | 70  | 5   | 70         |
| Velvetleaf      | 100 | 100 | 95  | 95 | 100 | 100  | 100 | 100 | 100 | 95         |
| Wild Poinsettia | 70  | 95  | 85  | 90 | 80  | 80   | 5   | 50  | 60  | 65         |

| Table C         |                    | COMP | GNUC |     |
|-----------------|--------------------|------|------|-----|
| Rate 17 g/ha    | -                  | 2    | 3    | 4   |
| PREEMERGENCE    |                    |      |      |     |
| Arrowleaw Sida  | 50                 | 15   | О    | 0   |
| Barnyardgrass   | 10                 | 10   | 0    | 0   |
| Cocklebur       | 20                 | 20   | 0    | C   |
| Common Ragweed  | 20                 | 55   | 0    | O   |
| Corn            | G                  | 0    | 0    | G   |
| Cotton          | C                  | 15   | 0    | 0   |
| Estrn Blknight  | 0                  | 60   | -    | 20  |
| Fall Panicum    | 50                 | 65   | 0    | 15  |
| Field Bindweed  | 20                 | 0    | 0    | C   |
| Fl Beggarweed   | $\bar{\mathbf{c}}$ | 15   | 0    | 0   |
| Giant Foxtail   | 0                  | О    | O    | 0   |
| Hairy Beggartic | O                  | 1,5  | C    | C   |
| Ivyleaw Mrnglry | 0                  | 0    | 0    | 0   |
| Johnsongrass    | 5                  | 0    | 0    | С   |
| Ladysthumb      | -                  | 30   | -    | 0   |
| Lambsquarters   | 0                  | 45   | -    | 3 5 |
| Large Crabgrass | 100                | 15   | 35   | С   |
| Purple Nutsedge | Q                  | 0    | 0    | 0   |
| Redroot Pigweed | 0                  | 20   | -    | 10  |
| Soybean         | C                  | G    | С    | 0   |
| Surinam Grass   | 10                 | 0    | C    | 0   |
| Velvetleaf      | 100                | 35   | 35   | 35  |
| Wild Poinsettia | 45                 | 10   | 0    | С   |

| Table C         |     |     |           |      | COMI | POUNI | )    |      |       |      |
|-----------------|-----|-----|-----------|------|------|-------|------|------|-------|------|
| Rate 8 g/ha     | 1   | 2   | 3         | 4    | 5.   | б     | 16   | 18   | 30    | 31   |
| POSTEMERGENCE   |     |     |           |      |      |       |      |      |       |      |
| Arrowleaw Sida  | 50  | 45  | 55        | 1.5  | 5    | 10    | 1.0  | 65   | -     | 35   |
| Barnyardgrass   | 100 | 90  | 85        | 85   | 65   | 100   | 9.0  | 90   | 95    | 90   |
| Cocklebur       | 80  | 100 | 65        | 50   | 8 C  | 85    | 85   | 75   | 8.0   | 20   |
| Common Ragweed  | 95  | 95  | 95        | 75   | 50   | 90    | 100  | 8,0  | 80    | 90   |
| Corn            | . 0 | 10  | ့ ဝ       | 0    | 0    | 0     | 5    | .15  | ø     | С    |
| Cotton          | 100 | 95  | 3.0       | 3.5  | 50   | 8,0   | -80  | 70   | 70    | 70   |
| Estrn Blknight  | 95  | 100 | 90        | 75   | 85   | 90    | 100  | 75   | 100   | 100  |
| Fall Panicum    | 50  | 80  | 25        | 2,5  | 60   | 70    | 95   | 80   | 90    | 8.5  |
| Field Bindweed  | 70  | 35  | 30        | 3.5  | 10   | . 6Ç  | 10   | 50   | 5     | 10   |
| Fl Beggarweed   | 70  | 100 | 55        | 60   | 80   | 50    | 50   | 85   | e 0   | 85   |
| Giant Foxtail   | 60  | 70  | 10        | 20   | 70   | 8.0   | 7.70 | 75   | 90    | 8.0  |
| Hairy Beggartic | 50  | 50  | 3 0       | 20   | 55   | С     | 30   | 55   | 40    | 50   |
| Ivyleaw Mrnglry | 70  | 70  | 45        | 80   | 70   | 65    | 25   | 35   | .5    | 10   |
| Johnsongrass    | 30  | 50  | 1 C       | 20   | 60   | 55    | 5    | 55   | €5    | 40   |
| Ladysthumb      | -90 | 40  | 75.       | 65   | 10   | 90    | 100  | 75   | 70    | 10   |
| Lambsquarters   | 70  | 95  | -75       | 75   | 90   | 4.0   | 90   | . 75 | 0.8   | 65   |
| Large Crabgrass | 80  | 80  | 3 5       | 50   | 6.0  | 85    | 9.5  | 85   | 90    | 75   |
| Purple Nutsédge | , 0 | 0   | 0         | . 5  | C    | 10,   | Ċ,   | ,25  | . 15. | . 20 |
| Redroot Pigweed | 85  | 95  | 75        | 65   | 70   | 7 C   | 80   | 80   | 80    | 85   |
| Soybean         | 80  | 100 | 75        | , 60 | 70   | 60    | 2,0  | 20   | 80    | 4.5  |
| Surinam Grass   | 80  | 65  | 25        | 40   | 40   | 45    | 70   | 65   | 0     | 20   |
| Velvetleaf      | 100 | 100 | <b>95</b> | 75   | 100  | 100   | .85  | 85   | 95    | 95   |
| Wild Poinsettia | 5.0 | 85  | 7.0       | 60   | 70   | 7.0   | 0    | 3.0  | 15    | - 50 |

| Table C         |    | COMPO | DUND |    |
|-----------------|----|-------|------|----|
| Rate 8 g/ha     | 1  | 2     | 3    | 4  |
| PREEMERGENCE    |    |       |      |    |
| Arrowleaw Sida  | 50 | C.    | 0    | 0  |
| Barnyardgrass   | 0  | 0     | С    | 0  |
| Cocklebur       | G  | 10    | Ó    | 0  |
| Common Ragweed  | 0  | 50    | 0    | 0  |
| Corn            | ¢. | 0     | C    | 0  |
| Cotton          | 0  | 0     | 0    | 0  |
| Estrn Blknight  | 0  | 45    | -    | -  |
| Fall Panicum    | e  | 20    | 0    | О  |
| Field Bindweed  | Ç. | C     | 0    | C  |
| Fl Beggarweed   | 0  | 0     | С    | C  |
| Giant Foxtail   | 0  | 0     | 0    | С  |
| Hairy Beggartic | 0  | 0     | C    | С  |
| Ivyleaw Mrnglry | Û  | 0     | 0    | 0  |
| Johnsongrass    | Э  | C     | С    | C  |
| Ladysthumb      | 0  | 0     |      | С  |
| Lambsquarters   | Э  | 3.0   | -    | 10 |
| Large Crabgrass | 80 | 0     | C    | С  |
| Purple Nutsedge | C: | 0     | C    | 0  |
| Redroot Pigweed | G  | C     | -    | 0  |
| Soybean         | C  | G     | 0    | 0  |
| Surinam Grass   | C  | С     | 0    | 0  |
| Velvetleaf      | 70 | 15    | 10   | 20 |
| Wild Poinsettia | C  | 10    | 0    | C  |

| Table C         |     |    | C  | COMPO | UND        |    |     |
|-----------------|-----|----|----|-------|------------|----|-----|
| Rate 4 g/ha     | 2   | 3  | 4  | 16    | 18         | 30 | 31  |
| POSTEMERGENCE   |     |    |    |       |            |    |     |
| Arrowleaw Sida  | 35  | 45 | 15 | 5     | 55         | 5  | 35  |
| Barnyardgrass   | 90  | 30 | 55 | 90    | 85         | 95 | 85  |
| Cocklebur       | 95  | 30 | 45 | 70    | 65         | 70 | 10  |
| Common Ragweed  | 90  | 85 | 65 | 95    | 55         | C  | 60' |
| Corn            | 0   | 0  | 0  | O     | 10         | 0  | O   |
| Cotton          | 60  | 15 | 25 | 70    | 60         | 65 | 35  |
| Estrn Blknight  | 80  | 75 | 65 | 100   | 70         | 95 | 100 |
| Fall Panicum    | 60  | 10 | 20 | 90    | <b>7</b> 0 | 80 | 40  |
| Field Bindweed  | 25  | 20 | 10 | 5     | 3.0        | 0  | 10  |
| Fl Beggarweed   | 100 | 50 | 25 | 75    | 70         | 75 | 100 |
| Giant Foxtail   | 55  | 0  | 15 | 65    | 65         | 70 | 50  |
| Hairy Beggartic | 25  | 20 | 10 | 10    | 50         | 30 | 25  |
| Ivyleaw Mrnglry | 60  | 25 | 70 | 0     | 20         | 5  | C   |
| Johnsongrass    | 35  | 0  | Ø  | G     | 50         | 10 | 10  |
| Ladysthumb      | 25  | 60 | 25 | 100   | 45         | 70 | 1C  |
| Lambsquarters   | 85  | 70 | 60 | 75    | 70         | 40 | 50  |
| Large Crabgrass | 55  | 25 | 20 | 90    | 75         | 85 | 65  |
| Purple Nutsedge | C   | 0  | 0  | 5     | 20         | 10 | 50  |
| Redroot Pigweed | 75  | 70 | 60 | 8.0   | 75         | 60 | 65  |
| Soybean         | 90  | 60 | 60 | 15    | 15         | 70 | 1.5 |
| Surinam Grass   | 55  | 15 | 20 | 4 C   | 5.5        | 0  | 20  |
| Velvetleaf      | 100 | 60 | 60 | 70    | 75         | 90 | 75  |
| Wild Poinsettia | 75  | 45 | 30 | 0     | 20         | 15 | 40  |

| Table C         | COMPOU |     |    | Table C |                 |     | COMPOUND |  |  |
|-----------------|--------|-----|----|---------|-----------------|-----|----------|--|--|
| Rate 4 g/ha     | 2      | 3   | 4  |         | Rate 2 g/ha     | 2   | 4        |  |  |
| PREEMERGENCE    |        |     |    |         | POSTEMERGENCE . |     |          |  |  |
| Arrowleaw Sida  | 0      | 0.  | С  |         | Arrowleaw Sida  | 25  | 10       |  |  |
| Barnyardgrass   | 0      | 0   | 0  |         | Barnyardgrass   | 75  | 25       |  |  |
| Cocklebur       | 0      | 0   | 0  |         | Cocklebur       | 80  | 0        |  |  |
| Common Ragweed  | 25     | 0   | 0  |         | Common Ragweed  | 85  | 60       |  |  |
| Corn            | 0      | o Î | 0  |         | Corn            | С   | С        |  |  |
| Cotton          | O      | 0   | 0  |         | Cotton          | 25  | 15       |  |  |
| Estrn Blknight  | 0      | -   | 0  |         | Estrn Blknight  | 75  | 6C       |  |  |
| Fall Panicum    | G      | Ó   | O  |         | Fall Panicum    | 15  | 15       |  |  |
| Field Bindweed  | -      | С   | 0  |         | Field Bindweed  | 20  | 5        |  |  |
| Fl Beggarweed   | Ô      | C   | С  |         | Fl Beggarweed   | 100 | 5 C      |  |  |
| Giant Foxtail   | C      | 0   | 0  |         | Giant Foxtail   | 15  | 0        |  |  |
| Hairy Beggartic | 0      | 0   | 0, |         | Hairy Beggartic | 15  | 10       |  |  |
| Ivyleaw Mrnglry | Э      | 0   | 0  |         | Ivyleaw Mrnglry | 40  | 10       |  |  |
| Johnsongrass    | 0      | 0   | 0  |         | Johnsongrass    | 0   | C        |  |  |
| Ladysthumb      | C      | -   | 0  |         | Ladysthumb      | 10  | 10       |  |  |
| Lambsquarters   | С      | =   | С  |         | Lambsquarters   | 85  | 60       |  |  |
| Large Crabgrass | Э      | C   | 0  |         | Large Crabgrass | 45  | 10       |  |  |
| Purple Nutsedge | 0      | О   | 0  |         | Purple Nutsedge | О   | O        |  |  |
| Redroot Pigweed | C      | 25  | 0  |         | Redroot Pigweed | 70  | 45       |  |  |
| Soybean         | С      | O   | 0  |         | Soybear         | 70  | 20       |  |  |
| Surinam Grass   | О      | G   | С  |         | Surinam Grass   | 3.0 | С        |  |  |
| Velvetleaf      | 10     | 0   | 0  |         | Velvetleaf      | 95  | .15      |  |  |
| Wild Poinsettia | С      | 0   | 0  |         | Wild Poinsettia | 50  | 20       |  |  |

| Table C         |   | COMPOUND |
|-----------------|---|----------|
| Rate 2 g/ha     | 2 | 4        |
| PREEMERGENCE    |   |          |
| Arrowleaw Sida  | 0 | 0        |
| Barnyardgrass   | 0 | 0        |
| Cocklebur       | 0 | 0        |
| Common Ragweed  | 0 | 0        |
| Corn            | O | О        |
| Cotton          | 0 | . 0      |
| Estrn Blknight  | 0 | 0        |
| Fall Panicum    | 0 | 0        |
| Field Bindweed  | С | C        |
| Fl Beggarweed   | Э | 0        |
| Giant Foxtail   | 0 | 5        |
| Hairy Beggartic | 0 | 0        |
| Ivyleaw Mrnglry | С | 0        |
| Johnsongrass    | 0 | 0        |
| Ladysthumb      | 0 | -        |
| Lambsquarters   | 0 | 0        |
| Large Crabgrass | 0 | 0        |
| Purple Nutsedge | О | 0        |
| Redroot Pigweed | 0 | 0        |
| Soybean         | 0 | 0        |
| Surinam Grass   | O | 0        |
| Velvetleaf      | С | 0        |
| Wild Poinsettia | 0 | С        |

## TEST D

Seeds of barnyardgrass (Echinochloa crus-galli), bindweed (Concolculus arvensis), black nightshade (Solanum ptycanthum dunal), cassia (Cassia obtusifolia), cocklebur (Xanthium strumarium), common ragweed (Ambrosia artemisiifolia), corn (Zea mays), cotton (Gossypium hirsutam), crabgrass (Digitaria spp.), fall panicum (Panicum dichotomi- florum), giant foxtail (Setaria faberii), green foxtail (Setaria viridis), jimsonweed (Datura stramonium), johnsongrass (Sorghum halepense), lambsquarter (Chenopodium album), morningglory (Ipomoea spp.), pigweed (Amaranthus retroflexus), prickly sida (Sida spinosa). shattercane (Sorghum vulgare), signalgrass (Brachiaria platyphylla), smartweed (Polygonum pensylvanicum), soybean (Glycine max), sunflower (Helianthus annuus), velvetleaf (Abutilon theophrasti), wild proso (Pancium miliaceum), woolly cupgrass (Eriochloa villosa), yellow foxtail (Setaria lutescens) and purple nutsedge (Cyperus rotundus) tubers were planted into a sandy loam or clay loam soil. These crops and weeds were grown in the greenhouse until the plants ranged in height from two to eighteen cm (one to four leaf stage), then treated postemergence with the test chemicals formulated in a nonphytotoxic solvent mixture which included a surfactant. Pots receiving preemergence treatments were planted immediatley prior to test chemical application. Pots treated in this fashion were placed in the greenhouse and maintained according to routine greenhouse procedures.

Treated plants and untreated controls were maintained in the greenhouse approximately 14-21 days after application of the test compound. Visual evaluations of plant injury responses were then recorded. Plant response ratings, summarized in Table D, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control.

| Table D         | •   | COMP | DUND |   | Table D         |     | СОМР | OUND     |
|-----------------|-----|------|------|---|-----------------|-----|------|----------|
| Rate 280 g/ha   | 1   | 2    | 4    |   | Rate 140 g/ha   | 1   | ~    | <u>:</u> |
| POSTEMERGENCE   |     |      |      |   | POSTEMERGENCE   |     |      |          |
| Barnyardgrass   | 100 | 100  | 1.00 |   | Barnyardgrass   | 100 | 100  | 100      |
| Bindweed        | 95  | 95   | 100  |   | Bindweed        | 95  | 100  | 100      |
| Blk Nightshade  | 100 | 100  | 1.00 |   | Blk Nightshade  | 100 | 100  | 100      |
| Cassia          | 60  | 20   | 10   |   | Cassia          | 50  | 5    | 10       |
| Cocklebur       | 100 | 100  | 100  |   | Cocklebur       | 100 | 100  | 100      |
| Corn            | 10  | 35   | 20   |   | Corn            | 5   | 3.0  | 20       |
| Cotton          | 90  | 90   | 100  | : | Cotton          | 90  | 100  | 100      |
| Crabgrass       | 95  | 95   | 100. |   | Crabgrass       | 95  | 100  | 100      |
| Fall Panicum    | 100 | 95   | 100  |   | Fall Panicum    | 95  | 100  | 100      |
| Giant Foxtail   | 95  | 95   | 100  |   | Grant Foxtail   | 95  | 100  | 100      |
| Green Foxtail   | 95  | 95   | 100  |   | Green Foxtail   | 95  | 100  | 100      |
| Jimsonweed      | 100 | 100  | 100  |   | Jimsonweed      | 100 | 100  | 100      |
| Johnson Grass   | 95  | 95   | 100  |   | Johnson Grass   | 95  | 100  | 100      |
| Lambsquarter    | 95  | 95   | 100  |   | Lambsquarter    | 95  | 100  | 100      |
| Morningglory    | 10C | 100  | 100  |   | Morningglory    | 100 | 90   | 100      |
| Nutsedge        | 95  | 95   | 80   |   | Nutsedge        | 95  | 100  | 60       |
| Pigweed         | 100 | 9.5  | 100  |   | Pigweed         | 100 | 100  | 90       |
| Prickly Sida    | 80  | 50   | 80   |   | Prickly Sida    | 80  | 50   | 50       |
| Ragweed         | 100 | 100  | 100  |   | Ragweed         | 100 | 100  | 100      |
| Shattercane     | 100 | 100  | 100  |   | Shattercane     | 100 | 100  | 100      |
| Signalgrass     | 95  | 100  | 10C  |   | Signalgrass     | 95  | 100  | 100      |
| Smartweed       | 100 | 100  | 100  |   | Smartweed       | 100 | 100  | 1,00     |
| Soybean         | 90  | 90   | 100  |   | Soybean         | 90  | 100  | 100      |
| Sunflower       | 100 | 100  | 100  |   | Sunflower       | 100 | 100  | 100      |
| Velvetleaf      | 100 | 100  | 100  |   | Velvetleaf      | 100 | 100  | 100      |
| Wild Proso      | 95  | 95   | 1.00 |   | Wild Proso      | 95  | 100  | 100      |
| Woolly cupgrass | 95  | 95   | 80   |   | Woolly cupgrass | 95  | 100  | 8 C      |
| Yellow Foxtail  | 95  | 95   | 100  |   | Yellow Foxtail  | 95  | 100  | 100      |

| Table D         |     | COMP | OUNE | )   | ŀ | Table D         |            | COMP | OUND | )   |
|-----------------|-----|------|------|-----|---|-----------------|------------|------|------|-----|
| Rate 70 g/ha    | 1   | 2    | 4    | 28  |   | Rate 35 g/ha    | i.         | 2    | 4    | 28  |
| POSTEMERGENCE   |     |      |      |     |   | POSTEMERGENCE   |            |      |      |     |
| Barnyardgrass   | 100 | 100  | 100  | 90  |   | Barnyardgrass   | 95         | 100  | 100  | 60  |
| Bindweed        | 9 C | 100  | 100  | 60  |   | Bindweed        | 90         | 95   | 90   | 50  |
| Blk Nightshade  | 100 | 100  | 100  | 100 |   | Blk Nightshade  | 100        | 100  | 100  | 90  |
| Cassia          | 5   | 5    | 5    | 0   | ļ | Cassia          | 5          | Ĉ    | 5    | C   |
| Cocklebur       | 100 | 100  | 100  | 50  |   | Cocklebur       | 100        | 100  | 95   | 4 C |
| Corn            | 5   | 50   | 1.5  | С   |   | Corn            | 0          | 3.0  | 15   | 0   |
| Cotton          | 90  | 100  | 100  | 50  |   | Cotton          | 90         | 100  | 100  | 50  |
| Crabgrass       | 95  | 100  | 100  | 70  |   | Crabgrass       | 90         | 90   | 100  | 50  |
| Fall Panicum    | 95  | 100  | 1.00 | 20  |   | Fall Panicum    | 95         | 100  | 80   | 5   |
| Giant Foxtail   | 95  | 100  | 95   | C   |   | Giant Foxtail   | 90         | 100  | 85   | C   |
| Green Foxtail   | 95  | 100  | 100  | C   |   | Green Foxtail   | 95         | 100  | 90   | C   |
| Jimsonweed      | 100 | 100  | 100  | 100 |   | Jimsorweed      | 100        | 100  | 100  | 95  |
| Johnson Grass   | 90  | 100  | 80   | 10  |   | Johnson Grass   | 90         | 100  | 0.8  | Ü   |
| Lambsquarter    | 90  | 100  | 100  | 100 | i | Lambsquarter    | 90         | 100  | 90   | 100 |
| Morningglory    | 100 | 100  | 100  | 90  |   | Morningglory    | 1.00       | 1.00 | 90   | 60  |
| Nutsedge        | 95  | 100  | 30   | 10  |   | Nutsedge        | 90         | 90   | 10   | 5   |
| Pigweed         | 100 | 100  | 8.0  | 60  |   | Pigweed         | 95         | 100  | 70   | 60  |
| Prickly Sida    | 50  | 60   | 20   | Э   |   | Prickly Sida    | 10         | 50   | 5    | Э   |
| Ragweed         | 100 | 100  | 100  | 40  |   | Ragweed         | 100        | 100  | 100  | 40  |
| Shattercane     | 100 | 100  | 100  | O   |   | Shattercane     | 100        | 100  | 100  | С   |
| Signalgrass     | 95  | 100  | 100  | -   |   | Signalgrass     | 95         | 100  | 60   | -   |
| Smartweed       | 100 | 100  | 100  | 90  |   | Smartweed       | 100        | 100  | 100  | 60  |
| Soybean         | 90  | 100  | 95   | 70  |   | Soybean         | <u>9</u> 0 | 100  | 95   | 70  |
| Sunflower       | 100 | 100  | 100  | 3 C |   | Sunflower       | 100        | 100  | 100  | 30  |
| Velvetleaf      | 100 | 100  | 100  | 90  |   | Velvetleaf      | 100        | 100  | 100  | 85  |
| Wild Proso      | 95  | 100  | 90   | 20  |   | Wild Proso      | 95         | 100  | 83   | 5   |
| Woolly cupgrass | 90  | 90   | 70   | 5   |   | Woolly cupgrass | 90         | 80,  | 7.0  | C   |
| Yellow Foxtail  | 95  | 100  | 100  | 0   |   | Yellow Foxtail  | 95         | 100  | 50   | O   |
|                 |     |      |      |     |   |                 |            |      |      |     |

| Table D         |     | COM  | POUN | D   | Table D         |     | COM | POUNI | )   |
|-----------------|-----|------|------|-----|-----------------|-----|-----|-------|-----|
| Rate 17 g/ha    | 1   | 2    | 4    | 28  | Rate 8 g/ha     | 1   | 2   | 4     | 28  |
| POSTEMERGENCE   |     |      |      |     | POSTEMERGENCE   |     |     |       |     |
| Barnyardgrass   | 95  | 100  | 100  | 60  | Barnyardgrass   | 90  | 100 | 100   | 5   |
| Bindweed        | 90  | 90   | 80   | 50  | Bindweed        | 8.5 | 90  | 20    | 40  |
| Blk Nightshade  | 100 | 100  | 80   | 70  | Blk Nightshade  | 100 | 100 | 70    | 70  |
| Cassia          | 0   | 0    | 0    | 0   | Cassia          | O   | 0   | O     | Ç   |
| Cocklebur       | 100 | 1.00 | 80   | 3.0 | Cocklebur       | 100 | 100 | 60    | 0   |
| Corn            | 0   | 5    | 0    | 0   | Corn            | 0   | 5   | 0     | С   |
| Cotton          | 90  | 100  | 80   | 5 C | Cotton          | 90  | 100 | 50    | 35  |
| Crabgrass       | 90  | 90   | 80   | 5   | Crabgrass       | 8.0 | 80  | 60    | 0   |
| Fall Panicum    | 95  | 90   | 70   | С   | Fall Panicum    | 9.0 | 80  | 30    | 0   |
| Giant Foxtail   | 90  | 70   | 60   | 0   | Giant Foxtail   | 70  | 60  | 3.0   | 0   |
| Green Foxtail   | 90  | 90   | 80   | 0   | Green Foxtail   | 90  | 70  | 5     | 0   |
| Jimsonweed      | 100 | 100  | 100  | 60  | Jimsonweed      | 95  | 100 | 1 C O | 60  |
| Johnson Grass   | 90  | 0.8  | 60   | О   | Johnson Grass   | 70  | 7.0 | 5     | 9   |
| Lambsquarter    | 25  | 100  | 75   | 100 | Lambsquarter    | 3.0 | 90  | 50    | 90  |
| Morningglory    | 100 | 100  | 80   | 20  | Morningglory    | 90  | 85  | 80    | 0   |
| Nutsedge        | 90  | 90   | C    | 0   | Nutsedge        | 60  | 70  | Û     | Ú   |
| Pigweed         | 95  | 100  | 70   | 40  | Pigweed         | 8.5 | 80  | 40    | 40  |
| Prickly Sida    | 0   | 50   | C    | Ō   | Prickly Sida    | е   | 30  | 0     | C   |
| Ragweed         | 100 | 100  | 100  | 40  | Ragweed         | 9 Ç | 95  | 60    | 3 C |
| Shattercane     | 100 | 100  | 70   | 0   | Shattercane     | 90  | 80  | 40    | О   |
| Signalgrass     | 95  | 100  | 60   | -   | Signalgrass     | 90  | 90  | 55    | -   |
| Smartweed       | 100 | 100  | 80   | 50  | Smartweed       | 90  | 90  | 70    | 50  |
| Soybean         | 90  | 100  | 90   | 6 C | Soybean         | C 8 | 90  | 70    | 55  |
| Sunflower       | 100 | 100  | 85   | 0   | Sunflower       | 90  | 100 | 60    | С   |
| Velvetleaf      | 100 | 100  | 100  | 85  | Velvetleaf      | 100 | 100 | C 8   | 70  |
| Wild Proso      | 95  | 100  | 70   | 0   | Wild Proso      | 9 O | 100 | 60    | 0   |
| Woolly cupgrass | 85  | 50   | 50   | 0   | Woolly cupgrass | 50  | 1.0 | 1.0   | 0   |
| Yellow Foxtail  | 95  | 90   | 50   | С   | Yellow Foxtail  | 95  | 90  | 40    | 0   |

| Table D         |            | COMPO | DUND |
|-----------------|------------|-------|------|
| Rate 4 g/ha     | 1          | 2     |      |
| POSTEMERGENCE   |            |       |      |
| Barnyardgrass   | 100        | 100   |      |
| Bindweed        | 70         | 90    |      |
| Blk Nightshade  | 70         | 95    |      |
| Cassia          | 0          | 0     |      |
| Cocklebur       | 70         | 100   |      |
| Corn            | C          | 0     |      |
| Cotton          | 70         | 95    |      |
| Crabgrass       | 60         | 60    |      |
| Fall Panicum    | 70         | 50    |      |
| Giant Foxtail   | 50         | 30    |      |
| Green Foxtail   | <b>6</b> 0 | 30    |      |
| Jimsonweed      | 100        | 100   |      |
| Johnson Grass   | 30         | 40    |      |
| Lambsquarter    | 0          | 60    |      |
| Morningglory    | 60         | 90    |      |
| Nutsedge        | Û          | 5     |      |
| Pigweed         | 60         | 80    |      |
| Prickly Sida    | 0          | 9     |      |
| Ragweed         | 90         | 90    |      |
| Shattercane     | 70         | 60    |      |
| Signalgrass     | 80         | 80    |      |
| Smartweed       | 40         | 80    |      |
| Soybean         | 50         | 90    | •    |
| Sunflower       | 80         | 90    |      |
| Velvetleaf      | 100        | 100   |      |
| Wild Proso      | 80         | 80    |      |
| Woolly cupgrass | 70         | 10    |      |
| Yellow Foxtail  | 8.0        | 85    |      |
|                 |            |       |      |

## TEST E

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), rape (Brassica napus), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, these crop and weed species were also treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table E, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

|                |     |        | ı              |     |        |
|----------------|-----|--------|----------------|-----|--------|
| Table E        | CON | MPOUND | Table E        | COI | 1POUND |
| Rate 2000 g/ha | 1   | 28     | Rate 2000 g/ha | 1   | 28     |
| POSTEMERGENCE  |     |        | Pre Soil       |     |        |
| Barley         | 9   | 6      | Barley         | 5   | 0      |
| Barnyardgrass  | 9   | 9      | Barnyardgrass  | 10  | 8      |
| Bedstraw       | 10  | 9      | Bedstraw       | 9   | 8      |
| Blackgrass     | 10  | 3      | Blackgrass     | 9   | 4      |
| Chickweed      | 1,0 | 9      | Chickweed      | 9   | 8      |
| Cocklebur      | 9   | 9      | Cocklebur      | 9   | 5      |
| Corn           | 10  | 4      | Corn           | 6   | Ç      |
| Cotton         | 10  | è      | Cotton         | ò   | 7      |
| Crabgrass      | 9   | 9      | Crabgrass      | 10  | 10     |
| Downy brome    | 9   | 7      | Downy brome    | 10  | 9      |
| Giant foxtail  | ò   | 8      | Giant foxtail  | 10  | 9      |
| Lambsquarter   | 9   | 9      | Lambsquarter   | 10  | 10     |
| Morningglory   | è   | 10     | Morningglory   | 10  | 9      |
| Nutsedge       | 8   | 7      | Nutsedge       | 10  | 4      |
| Rape           | 10  | 1.0    | Rape           | 10  | 7      |
| Rice           | 8   | 9      | Rice           | 1.0 | 10     |
| Sorghum        | 10  | 8      | Sorghum        | 10  | 3      |
| Soybean        | 9   | 1.0    | Soybean        | 9   | 9      |
| Sugar beet     | 9   | 10     | Sugar beet     | 10  | 10     |
| Velvetleaf     | 10  | 10     | Velvetleaf     | 10  | 10     |
| Wheat          | 1.0 | 10     | Wheat          | 8   | 4      |
| Wild buckwheat | 9   | 8      | Wild buckwheat | 10  | 7      |
| Wild oat       | 10  | 5      | Wild oat       | 10  | 5      |

WO 97/19087 PCT/US96/18381

208

| Table E        |      |       | C   | OMPC   | INUC | )   |     |     |
|----------------|------|-------|-----|--------|------|-----|-----|-----|
| Rate 400 g/ha  | 1    | 2     | 12  | 15     | 16   | 18  | 28  | 29  |
| POSTEMERGENCE  |      |       |     |        |      |     |     |     |
| Barley         | 9    | 9     | 8   | 15 2 T | 3    | 4   | 5   | 2   |
| Barnyardgrass  | 9    | . 9   | 10  | 9      | 10   | 9   | 9   | 9   |
| Bedstraw       | 10   | 9     | 9   | 7      | 10   | 9   | 8   | 9   |
| Blackgrass     | 9    | 9     | 9   | 7      | 9    | 9-  | 3   | . 0 |
| Chickweed      | 9    | 9     | 10  | 9      | 10   | . 9 | 9   | 9   |
| Cocklebur      | 9    | 9     | 10  | 9      | 10   | 10  | . 9 | 9   |
| Corn           | 10   | 10    | 6   | 5      | 9    | ÷8  | . 3 | ó   |
| Cotton         | 10   | 10    | 10  | 9      | 1.0  | 1 C | 9-  | 9   |
| Crabgrass      | ò    | 9     | 1,0 | 9      | 1.0  | : 9 | 9   | 9   |
| Downy brome    | 9    | è     | è   | 2      | 7    | . 7 | 7   | 6   |
| Giant foxtail  | . 9  | 9     | 10  | 9      | . 9  | 9   | 8   | 6   |
| Lambsquarter   | 9    | 9     | 9   | 8      | 10   | 9   | 9   | 9   |
| Morningglory   | 1,0  | 9     | 10  | - 13   | 7-   | 9   | 9   | 0   |
| Nutsedge       | 9    | 8,    | .9  | 9      | 9    | 7   | 5   | C   |
| Rape           | 10   | 10    | 10  | 3      | 10   | 5.  | . 8 | 9   |
| Rice           | 8-   | - , 9 | 10] | 9-     | . 9  | .9  | 8   | 8   |
| Sorghum        | 9    | 10    | 1.0 | 6-     | 9    | 1.0 | 6   | 7   |
| Soybean        | 9    | ò     | 9   | 7,     | 9    | 7   | 9   | -8  |
| Sugar beet     | 10   | 10    | 1'0 | 8      | 1.0  | 10, | -10 | 1.0 |
| Velvetleaf     | - 10 | 1.0   | -10 | 8      | 3.0  | 9   | 10  | 9   |
| Wheat          | 9    | 9     | . 9 | - 6    | . 9  | 5   | 9   | 2   |
| Wild buckwheat | 9    | 9     | 9   | 2      | 1 C  | 9   | . 8 | 8,  |
| Wild oat       | 10   | 9     | 10  | 9      | 1.0  | 10  | 4   | 9   |

BNSDOCID: <WO\_\_\_9719087A1\_I\_>

THE RELIGION OF THE

| Table E        |     |    | C  | OMP | ומטכ | )  |          |    |
|----------------|-----|----|----|-----|------|----|----------|----|
| Rate 400 g/ha  | 1   | 2  | 12 | 15  | 16   | 18 | 28       | 29 |
| PREEMERGENCE   |     |    |    |     |      |    |          |    |
| Barley         | 1   | О  | 0  | С   | 0    | 0  | 0        | С  |
| Barnyardgrass  | 8   | 10 | 9  | 9   | 10   | 5  | 2        | 1  |
| Bedstraw       | 7   | 3  | 8  | 9   | 10   | 8  | 5        | Э  |
| Blackgrass     | 8   | 5  | 5  | 3   | 4    | 3  | 0        | 0  |
| Chickweed      | 9   | 8  | 10 | 8   | 9    | 8  | 3        | 8  |
| Cocklebur      | 7   | 8  | 8  | 3   | 6    | 6  | 2        | Э  |
| Corn           | 1   | 1  | 1. | 0   | :    | 1  | О        | 0  |
| Cotton         | 9   | 4  | 3  | 3   | 3    | 3  | 2        | С  |
| Crabgrass      | 1.0 | 9  | 10 | 9   | 10   | 10 | 9        | 9  |
| Downy brome    | 9   | 9  | Ģ  | 2   | 10   | 0  | 0        | 0  |
| Giant foxtail  | 10  | 8  | 7  | 5   | 9    | 9  | 2        | 3  |
| Lambsquarter   | 1.0 | 10 | 10 | 9   | 1.0  | 9  | 1.0      | 9  |
| Morningglory   | 7   | 3  | 9  | 0   | 1    | 1  | 3        | 0  |
| Nutsedge       | 6   | 2  | 5  | С   | 8    | 3  | 0        | 0  |
| Rape           | 4   | 2  | 5  | 2   | С    | 1  | 4        | 5  |
| Rice           | 9   | 9  | 10 | 8   | 9    | Е  | 8        | 4  |
| Sorghum        | 8   | 9  | 9  | 0   | è    | 4  | 1        | 0  |
| Soybean        | 9   | 8  | 9  | 0   | 0    | :  | 6        | 2  |
| Sugar beet     | 10  | 10 | 10 | 8   | 10   | 10 | 10       | 8  |
| Velvetleaf     | 10  | 10 | 10 | 7   | 10   | 10 | 10       | 5  |
| Wheat          | 3   | 1  | 4  | 0   | 2    | -  | 0        | 0  |
| Wild buckwheat | 7   | 5  | 6  | 2   | С    | 1  | 0        | 0  |
| Wild oat       | 7   | 7  | 7  | 3   | 10   | 9  | <u>.</u> | 0  |

| Table E        |          |     |    |          |         |        |        | 00           | COMPOUND   | CIND            |            |        |         |     |              |            |            |        |          |  |
|----------------|----------|-----|----|----------|---------|--------|--------|--------------|------------|-----------------|------------|--------|---------|-----|--------------|------------|------------|--------|----------|--|
| Rate 200 g/ha  | <b>~</b> | c:  | m  | -7"      | 60      | 9      | 6      | 1.0          | 15         | 9               | 2.0        | (N     | 23      | 24  | 25           | 56         | 27         | 30     | 3.1      |  |
| POSTEMERGENCE  |          |     |    |          |         |        |        |              |            |                 |            |        |         |     |              |            |            |        |          |  |
| Barley         | ∞        | ω   | 9  | ۱,       | 9       | 6      | 1      | 0            | !~         | 0               | _          | 2      | $\sim$  | 1.  | 0            | <u>~</u>   | 4          | 10     | 6        |  |
| Barnyardgrass  | 10       | 9   | ο/ | 9        | 0       | 10     | 10.    | <del>-</del> | 0          | œ               | 0          | 6      | 6       | 9   | 2,           | 6          | 10         | σ      | 10       |  |
| Bedstraw       | 6        | σ   | σ  | 6        | 10      | 9      | 9      | 1            | ۵١         | 2               | $\alpha$   | 1.     | 9       | 6   | 0            | 6          | 1.0        | 6      | $\infty$ |  |
| Blackgrass     | 6        | 6   | 7  | 5        | 6       | · 0/   | $\sim$ | 0            | œ          | <del></del> i   | R)         | 9      | $\sim$  | ω   | \$           | 2          | φ          | 6      | 6        |  |
| Chickweed      | 6        | 10  | 10 | σ        | 6       | 9      | 6      | ~            | 10         | L.              | $\infty$   | 5      | 6       | σ   | 6            | ı          | 10         | 6      | σ.       |  |
| Cocklebur      | 10       | 9   | 6  | 9        | 10      | 1.0    | 10     | 0            | 10         | 9               | 10         | 10     | 10      | 6   | 10           | 10         | 0          | 10     | 10       |  |
| Corn           | χ.       | 6   | m  | ٦        | 7       | C4     | 2      | ; <b>(</b>   | 6          | Н               | æ          | C      | 9       | Ŋ   | $\sim$       | <b>ሶ</b> ን | $\infty$   | $\sim$ | <b>(</b> |  |
| Cotton         | 10       | 10  | 6  | 10       | 10      | 10     | 1.0    | m            | 10         | ক               | 6          | 6      | 10      | 0   | 10           | 1.0        | 1.0        | 10     | 10       |  |
| Crabgrass      | 6        | 6   | 6  | 6.       | 10      | 10     | 6      | 0            | 6          | ₽,              | 4          | மி     | 10      | σ   | m            | m          | 10         | 6      | g)       |  |
| Downy brome    | œ        | 6   | 6  | α)       | σ       | æ.     | <ħ     | 0            | Ð          | 0               | m          |        | மி      | ω   | c            | C1         | S          | 6      | σι       |  |
| Giant foxtail  | 6        | 9   | Ŋ  | $\infty$ | 6       | 10     | σ      | 1            | σi         | C;              | 64         | വ      | 10      | 6   | m            | ιΩ         | 6          | 9      | 6        |  |
| Lambsquarter   | 6        | 9   | 10 | σι       | 6       | 10     | σ      | 64           | 6          | 6               | 6          | 6      | 6       | 6   | σ·           | 6          | 10         | 6      | 6        |  |
| Morningglory   | 10       | 6   | 6  | 10       | 10      | 10     | ထ      | ٦            | <b>3</b> 0 | 14%             | C3         | 5,7    | 6.      | 10  | <del>,</del> | 6          | 6          | 6      | 10       |  |
| Nutsedge       | 1        | œ   | 4  | $\sim$   | ம்.     | c,     |        | 1            | ۲~         | T               | C3         |        |         | 7   | 7            | 1-         | 6          | Ø١     | 5        |  |
| Rape           | 9        | 10  | 10 | œ        | 10      | 10     | (T)    | 0            | 10         | ব্য             | <b>(</b> ~ | ω      | 10      | 10  | $\infty$     | 10         | 10         | 10     | 6        |  |
| Rice           | σ        | Φ,  | œ  | 10       | σ       | 10     | σ      | 0            | 9          | ιΩ              | ထ          | s)     | თ       | Ø,  | 9            | 6          | σ          | 6      | s)       |  |
| , sorghum      | σ.       | 10  | ထ  | 6        | 10      | 10     | g)     | 0            | 10         | $\bigcirc$      | m          | C3     | 6       | œ   | Ų.           | $\sim$     | 10         | 10     | 10       |  |
| Soybean        | 10       | v   | S  | φ,       | 10      | 10     | Φ.     | 04           | (~         | না              | ÷          | 5      | 0       | σ   | 1.           | 9          | σ.         | œ      | 10       |  |
| Sugar beet     | o)       | 1.0 | 10 | 10       | 70      | 10     | ∝      | T.           | · · ·      |                 | 10         | :<br>: | g,      | σv  | 10           | 10         | 10         | 10     | 10       |  |
| Velvetleaf     | O        | 10  | C) | 음        | 0       | 0<br>H | 0      | (4           | ○          | $\alpha_{\ell}$ | ٥١         | ***    | C¹<br>↔ | 10  | 07           | 0.1        | 10         | 0      | 10       |  |
| Wheat          | 9        | 6   | 7. | cc       | o.      | ¢.     | বা     | Ů            | φ.         |                 | ( )        | CN.    | t/~     | ۲-  | 4            | č\$        | Ø:         | 6      | 3/       |  |
| gild buckwheat | s)       | 9   | 7  | Q,       | 0<br>:- | φ.     |        | 0            | Φ          |                 | 64         | cs     | 0.7     | (C) | $^{\circ}$   | <u>; -</u> | 6          | œ      | œ        |  |
| Tac Dags       | 6        | 6   | α: | G:       | 10      | 10     | 1.     | Ċ            | C:         | 1               | ſ,         | Ð      | α       | 6   | $\sim$       | ব          | $\bigcirc$ | 10     | 10       |  |

| Table E        |     |          |     |        |            |          | •            | COM        | COMPOUND      | g          |     |              |          |              |        |     |          |     |                              |  |
|----------------|-----|----------|-----|--------|------------|----------|--------------|------------|---------------|------------|-----|--------------|----------|--------------|--------|-----|----------|-----|------------------------------|--|
| Rate 200 g/ha  | r-1 | $\sim$   | س   | ₹      | ĸ.         | Ψ        | 6            | 0          | 1.6           | 19         | 20  | 2.1          | 23       | <del>.</del> | 25.    | 26  | 27       | 30  | 3.1                          |  |
| PREEMERGENCE   |     |          |     |        |            |          |              |            |               |            |     |              |          |              |        |     |          | • : |                              |  |
| Barley         | 0   | 0        | 0   | 0      | Μ          | C.J      | 0            | 0          | 0             | 0          | 0   | 0            | 0        | 0            | 0      | 0   | 0        | 0   | (1)                          |  |
| Barnyardgrass  | 6   | 0        | 10  | 9      | σ          | un.      | ۲-           | Ö          | 10            | 0          | 0   | $\leftarrow$ | m        | i            | 0      | C)  | 5        | ¢.  | 0                            |  |
| Bedstraw       | ~   | $\infty$ | W)  | 10     | :-         | :-       | 0            | Ċ          | C-)           | 0          | ı   |              |          | 7            |        | 0   | 6        | 6   | $\sigma_i$                   |  |
| Blackgrass     | 4   | C4       | 2   | 9      | $\infty$   | 6        | $\leftarrow$ | C          | L.J           | 0          | 1   | С            | 0        | Н            | Ç      | 0   | ۲4       | 9   | ۍ                            |  |
| Chickweed      | 6   | 6        | 1   | σ      | 6          | 6        | 9            | O          | 0.            |            | C-3 | 1            | rr:      | δ            | ,      | ı   | σ,       | 10  | 0                            |  |
| Cocklebur      | ι   | 7        | ₹.  | 2      | 10         | [~       | Ċ            | $\circ$    | m             | C          | 0   | 0            | 0        | 0            | 0      | ₹   | $\sim$   | -   | ~`1                          |  |
| Corn           | 0   | 0        | ~   | 0      | Ç1         | 0        | Û            | $\circ$    | C·            | O          | 0   | 0            | 0        | 0            | Ö      | 0   | ၁        | O   | ت                            |  |
| Cotton         | -   | 4        | 5   | C1     | C4         | ~ h      | 0            | $\circ$    | $\odot$       | C          | c   | 0            | $C^{2}$  | C            | Ċ      | -   | 9        | 30  | œ                            |  |
| Crabgrass      | 6   | 6        | 10  | Q.     | 10         | 0.7      | 9            | C          | 10            | 0          | _   | ~            | 10       | D)           | -      | C3  | 10       | 0.1 | 10                           |  |
| Downy brome    | 7   | 7        | -   | ထ      | 6          | α.       | 9            | 0          | :-            | 0          | 0   | 0            | 0        | Т            | 0      | 0   | $\infty$ | 9   | ÛŢ.                          |  |
| Giant foxtail  | 7   | ω        | 9   | ٠-1    | တ          | 9        |              | Ö          | 1~            | 0          | 0   | 4            | ۲-       | $\sim$       | 0      | r-i | $\infty$ | 9   | o:                           |  |
| Lambsguarter   | 0   | 10       | 1.0 | 9      | 6          | 0        | èυ           | ¢          | Φ.            | ;          | ۲-  | 1            | 1.0      | σı.          |        | 1   | 10       | 10  | 10                           |  |
| Morningglory   | C-C | ٣.       | 1   | $\sim$ | œ          | 7        | m            | C          | 0             | 0          | 0   | 0            | 0        | 7            | 0      | ~   | ·M       | die | 9                            |  |
| Nutsedge       | ı   | 0.       |     | ?      | 4          | ₹        |              | ;          | 0             | 0          | С   | Ç            | -        | 0            | 0      | C1  | 1        | C1  | $\stackrel{\bigcirc}{\prec}$ |  |
| Rape           | 0   | :-       | cc  | IC:    | <b>c</b> o | ~        | 4            | $\bigcirc$ | <del></del>   | С          | 0   | Ü            | 0        | œ            | 0      | 0   | ~;       | ~   | <i>`.</i>                    |  |
| Rice           | ထ   | 6        | α,  | Ċ      | 9          | 6        | C:           | C          | ې             | 0          | 0   | Ç            | ~        | 69           | 0      | ~1  | 4        | 9   | <u>်</u>                     |  |
| Sorghum        | œ   | 6        | 7   | C4     | 0          | 2,       | O            | ٥,         | ٠.            | 0          | )   | 0            | C)       | ifT*         | O      | 0   | Ç.       | ₹.  | σ                            |  |
| Soybean        | 9   | un:      | 9   | 0      | .7         | ďγ       | 0            | 0          | <del>-:</del> | O          | С   | 0            | 0        | <b>?</b> :   | C.     | )   | O        | J.  | α;                           |  |
| Sugar beet     | 9   | 10       | 10  | C      | 10         | : T      | ø.           | 0          | ್ಷ            | ľ.         | C   | $\circ$      | $\infty$ | 7            | 0      | 0   | 6        | ð   | 10                           |  |
| Velvetleaf     | 10  | 10       | 5   | œ      | 10         | <u> </u> | ្យ           | G          | <u></u>       | 0          | 0   | C4           | 2,       | 10           | $\sim$ | 9   | 10       | 10  | 10                           |  |
| Wheat          | 7   | 0        | 0   | 0      | Ş          | <b>!</b> | O            | C          | =             | 0          | O   | 0            | 0        | 0            | 0      | 0   | -4       | 0   | i_                           |  |
| Wild buckwheat | 0   | ব        | ~   | 2      | ₹          | J'N      | C            | ÷          | 0             | 0          | 0   | 0            | 0        | ₩.           | 0      | 0   | 0        | m   | OI.                          |  |
| Wild oat       | 10  | ~        | ~)  | 4      | 9          | æ        | ≂r           | $\circ$    | 741           | $\Diamond$ | 0   | 0            | C        | $\infty$     | 0      | 0   | σv       | C1  | 10                           |  |

| Table E        |     |      |    |    | CC         | MPC | INUC | )   |      |     |     |
|----------------|-----|------|----|----|------------|-----|------|-----|------|-----|-----|
| Rate 100 g/ha  | 1   | 2    | 5  | 5  | 7          | 8   | 12   | 15  | 16   | 18  | 29  |
| POSTEMERGENCE  |     |      |    |    |            |     |      |     |      |     |     |
| Barley         | 5   | 8    | 9  | 9  | 2          | 8   | 4    | 1   | 1    | 1   | 0   |
| Barnyardgrass  | 10  | 10   | 10 | 10 | 10         | 10  | 10   | 9   | 10   | 9   | 9   |
| Bedstraw       | 9   | 8    | 9  | 9  | 9          | 8   | 3    | 8   | 10   | 9   | 7   |
| Blackgrass     | 9   | 9    | 9  | 9  | 5          | 8   | 7    | 5   | а    | 8   | 0   |
| Chickweed      | 9   | 9    | 9  | 9  | 9          | 8   | 1. C | 9   | 10   | 9   | 9   |
| Cocklebur      | 10  | 9    | 10 | 10 | 9          | 9   | 9    | 9   | 10   | 1.0 | 9   |
| Corn           | 1   | 9    | 7  | 2  | 2          | 0   | 2    | 3   | 8    | 6   | 2   |
| Cotton         | 10  | 1. O | 10 | 10 | 8          | 10  | 10   | . 5 | 10   | 1.0 | 9   |
| Crabgrass      | 9   | 9    | 9  | 10 | 9          | 9   | 9    | 9   | 10   | 9   | 9   |
| Downy brome    | 7   | 8    | 9  | 8  | 3          | 3   | ទូ   | 1   | 6    | 5   | 0   |
| Giant foxtail  | 9   | 9    | 9  | 9  | 6          | 8   | 9    | 9   | ò    | 9   | 1   |
| Lambsquarter   | 9   | 9    | 9  | 9  | 9          | 8   | 9    | 3   | 10   | 9   | 9   |
| Morningglory   | 1.0 | 9    | 9  | 9  | 9          | 9   | 10   | 3   | 8    | 9   | 0   |
| Nutsedge       | 8   | 8    | -  | 8  | <b>`</b> 5 | S   | 8    | 2   | 6    | 5   | С   |
| Rape           | 7   | 10   | 9  | 10 | - 9        | 10  | 10   | 2   | 7    | 5   | 7   |
| Rice           | 9   | 9    | 9  | 8  | 9          | 9   | 10   | 9   | 9    | 8   | 8   |
| Sorghum        | 9   | 10   | 9  | 9  | 9          | 9   | 10   | 2   | 9    | 9   | 3   |
| Soybean        | 10  | 9    | 10 | 10 | 6          | 9   | 9    | 3   | 7    | 7   | 6   |
| Sugar beet     | 9   | 10   | 10 | 10 | 10         | 10  | 10   | 8   | 10   | 10  | 1.0 |
| Velvetleaf     | 10  | 9    | 10 | 7  | <u> </u>   | Ġ   | 10   | 8   | 1. C | 9   | 7   |
| Wheat          | б   | 9    | 9  | 9  | 4          | 9   | 7    | 6   | 8    | 5   | 0   |
| Wild buckwheat | 7   | 8    | 6  | 9  | 4          | 2   | 8    | 2   | 10   | 9   | 7   |
| Wild oat       | 9   | 9    | 9  | 9  | 5          | 9   | 10   | 6   | 9    | 9   | 4   |
|                |     |      |    |    |            |     |      |     |      |     |     |

WO 97/19087 PCT/US96/18381

213

in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

| Table E        |    |    |    |    | C | OMP | NUC | D  |     |    |                |
|----------------|----|----|----|----|---|-----|-----|----|-----|----|----------------|
| Rate 100 g/ha  | 1  | 2  | 5  | б  | 7 | 8   | 12  | 15 | 16  | 18 | 29             |
| PREEMERGENCE   |    |    |    |    |   |     |     |    |     |    |                |
| Barley         | 0  | 0  | 0  | Э  | 0 | 0   | 0   | 0  | 0   | 0  | 0              |
| Barnyardgrass  | 6  | 7  | 2  | 3  | 2 | 3   | 2   | 0  | 3   | 1  | C              |
| Bedstraw       | С  | 3  | C  | C  | 0 | 2   | 0   | 4  | 9   | 1  | 0              |
| Blackgrass     | 3  | 1  | 4  | 4  | 0 | 1   | 3   | 0  | 2   | ĩ. | 0              |
| Chickweed      | 7  | 8  | 8  | 3  | 2 | 5   | 5   | 7  | 9   | 7  | 3              |
| Cocklebur      | 3  | 4  | 5  | 2  | - | 8   | 3   | 0  | 7   | -  | ō              |
| Corn           | C  | 0  | С  | С  | 0 | 0   | Û   | 0  | O   | 0  | ð              |
| Cotton         | 0  | 2  | 0  | 3  | 0 | О   | 2   | 0  | 0   | 9  | ð              |
| Crabgrass      | 5  | 9  | 5  | 5  | 3 | 7   | 9   | 9  | 9   | è  |                |
| Downy brome    | 3  | 7  | 3  | 7  | 0 | 3   | 2   | 0  | 4   | C  | Q              |
| Giant foxtail  | 4  | 5  | 3  | 3  | 0 | 3   | 2   | 3  | ક   | 4  | O              |
| Lambsquarter   | 10 | 10 | 9  | 9  | 8 | 9   | 9   | 9  | 1.0 | 9  | $\mathfrak{S}$ |
| Morningglory   | 2  | 2  | 3  | 3  | 0 | -   | 35  | C  | 0   | Ċ  | 0              |
| Nutsedge       | -  | 0  | -  |    | O | 3   | С   | 0  | 4   | 1  | 0              |
| Rape           | 0  | 1. | Э  | 0  | G | C   | Э   | 0  | C   | 0  | Э              |
| Rice           | 3  | 9  | 5  | 5  | С | 0   | 8   | 0  | 3   | Û  | 0              |
| Sorghum        | 5  | 0  | 6  | 5  | 0 | 0   | 0   | 0  | 2   | 3  | 0              |
| Soybean        | 3  | 0  | C  | 0  | ö | 0   | 5   | 0  | 0   | 0  | С              |
| Sugar beet     | 7  | 10 | 0  | 0  | 0 | 3   | 9   | ÷  | 10  | 9  | Ō              |
| Velvetleaf     | 9  | 10 | 10 | 10 | O | S   | 10  | 0  | 10  | 10 | 0              |
| Wheat          | С  | 0  | 0  | 0  | 0 | 0   | 0   | O  | 0   | Ó  | Ĉ              |
| Wild buckwheat | 0  | 2  | 0  | Ö  | C | С   | 0   | 2  | Ç   | С  | O              |
| Wild oat       | 7  | 1  | 5  | 7  | 0 | 1   | 7   | 0  | 9   | 2  | 0              |

BNSDOCID: <WO\_\_\_9719087A1\_I\_>

| Table E        |     |           |          |          |     |    |                |          | Ö         | OM P | COMPOUND | <u> </u>       |            |               |            |            |           |               |         |                |             |  |
|----------------|-----|-----------|----------|----------|-----|----|----------------|----------|-----------|------|----------|----------------|------------|---------------|------------|------------|-----------|---------------|---------|----------------|-------------|--|
| Rate 50 g/ha   |     | <b>C1</b> | ~        | 4        | 5   | 9  |                | α0       | ø,        | 10   | 16       | 13             | 20         | 2.1           | 23         | <b>5</b> 5 | 23<br>101 | 56            | 2.3     | 30             | (4)         |  |
| POSTEMERGENCE  |     |           |          |          |     |    |                |          |           |      |          |                |            |               |            |            |           |               |         |                |             |  |
| Barley         | עט  | 4         | C)       | 7        | 6   | 6  | -7             | $\sim$   | C;        | 0    | C1       | 0              | 0          | 0             | cs:        | 9          | 0         | <b>,_</b>     | (,)     | יכ             | 6           |  |
| Barnyardgrass  | 10  | 10        | 9        | 9        | 10  | 10 | 10             | 10       | 94        | 0    | 10       | 5              | 9          | 4             | ڼ          | σ          | œ         | ø,            | ල<br>ස් | 9              | 10          |  |
| Bedstraw       | ω   | σ         | $\infty$ | 6        | 9   | 6  | œ              | ω        | ריז       | 0    | 2        | $\bigcirc$ 1   | 7          | 9             | 6          | 2          | 7         | ø,            | 1.0     | σ,             | 7           |  |
| Blackgrass     | .3  | æ         | ιΩ       | 4        | σ.  | σ  | N              | 3        | 7         | C    | 7        | 0              | •~-1       | <del></del> 1 | ٣ì         | বা         | m         | $\sim$        | 9       | 0              | φ           |  |
| Chickweed      | 6   | 10        | 10       | 9        | 6   | δ  | 7              | œ        | α         | 0    | 10       | C1             | ,          | 1             | 6          | σ          | 6         | 1             | 10      | 9              | ı           |  |
| Cocklebur      | 10  | 6         | ω        | 6        | 1.0 | 10 | σ              | 9        | 0.1       | 0    | 10       | 9              | 97         | $\infty$      | 10         | σ          | රා        | σ             | C       | 0:             | 6           |  |
| Corn           | 0   | 6         | ₹~4      | ~        | m   | 7  | $\sim$         | ၁        | $\vdash$  | 0    | Θ        | $\bigcirc$     | 0          | 0             | Μ          | 1          | 0         | e- <b>-</b> 1 | 5       | ٤٦             | <i>;</i> ≥1 |  |
| Cotton         | 10  | 0         | ထ        | ø.       | 10  | 10 | $\alpha$       | 1.       | σ.        | C    | 10       | 2              | 6          | 6.            | 10         | 6          | 9         | Φ             | 10      | 10             | 10          |  |
| Crabgrass      | 6   | O         | 6        | œ        | 6   | ЭJ | (-             | 6        | σ'n       | С    | σ'n      | m              | C4         | C1            | σı         | œ          | m         | -             | x       | 6              | 6           |  |
| Downy brome    | ļ.  | 7         | 9        | Φ        | 6   | 6  | <del>-</del> i | 9        | ~         | O    | 7        | 9              | 0          | ပ             |            | <;•        | 0         | C4            | দ       | 6              | 6           |  |
| Giant foxtail  | σ   | σ         | 3        | 5        | 9   | 6  | r).            | 7        | σ         | Н    | σ        | <del>, -</del> |            | -             | σ          | ω          | ᆏ         | r*5           | α       | σ <sub>1</sub> | 6           |  |
| Lambsquarter   | သ   | 9,        | 6        | σ        | ø,  | ς, | œ              | 1        | on.       | Ç    | 9        | œ              | တ          | ;~            | 6          | φΣ         | $\infty$  | 57            | σ.      | 6.             | 2           |  |
| Morningglory   | Q   | 6         | δ        | 0:       | 10  | 6  | ∞              | $\infty$ | α.        | ,—   | $\infty$ |                |            |               | S          | 5          | C4        | œ             | co      | ω.             | $\infty$    |  |
| Nutsedge       | 7   | $\alpha$  | ₹        | m        | 4   | 5  | S              | CS:      |           | 1    | ۲-       | O              | 0          | 0             |            | C-1        | 0         | 2             | :-      | ক              | ۲           |  |
| Rape           | 7   | 6         | 0 :      | $\infty$ | 10  | 6  | œ              | 0        |           | 0    | 1        | $\propto$      | ۲.         | ហ             | 9          | <u>ن</u>   | 75        | σ,            | 10      | 10             | α           |  |
| Rice           | σ   | 6         | 00       | ъ,       | σ   | Φ. | $\infty$       | 9        | 6         | 0    | 6        | O              | m          | ۲-            | δ          | ¢γ         | 2         | o,            | σı      | ď١             | σ.          |  |
| Sorghum        | 6   | 0         | œ        | 6        | 6)  | 6  | 9              | 6        | σ         | С    | 9        | $\bigcirc$     | m          | C             | $\alpha$   | c٦.        | (N        | G,            | C١      | 10             | 10          |  |
| Soybean        | 10  | σ         | ٠.       | 6        | 10  | 6  | :              | $\infty$ | oc.       | 0    | 9        | 다              | ~          | C4            | σ          | ۵,         | 77        | 41.           | 31      | Ø1             | σ           |  |
| Sugar beet     | Q,  | 10        | σı       | 10       | 1.0 | 10 | 2              | 10       | σι        | 0    | 10       | ŗ              | δ          | œ             | 6          | æ          | 10        | ø,            | 10      | j ()           | <b>∞</b>    |  |
| Velvetleaf     | 0.1 | 10        | σı       | 0        | 0:  | 0  | 6              | Cı       | $\ominus$ | 0    | ĵ (      | ۲-             | œ          | :`            | 10         | Ċ          | Ġ,        | Ċ.            | 1.0     | 0 -            | 6           |  |
| Wheat          | 'n  | œ         | 4        | 1.       | 6,  | ⊅. | 4              | u.       | ~         | Э    | ın       | Ċ.             | 1          |               | •=         | •ব্        | : :       |               | Œ       | ď١             | 57          |  |
| Wild buckwheat | Ð   | œ         |          | 7        | 6   | J. | C4             | -        | Ċ         |      | 7        | $\vec{a}$      | , <b>-</b> |               | 9          | ۳;         | c:        | Ġ             | φ       | 4              | m,          |  |
| Wild oat       | σ   | œ         | m        | (_       | 10  | 10 | ഹ              | $\infty$ | 44        | 0    | 6        | C              | m          | ന             | <b>~</b> ? | σ.         | $\approx$ | 750           | C١      | 0.7            | 10          |  |

| Table E        |          |     |     |    |    |              |         |     |    |         | COMPOUND          | 9       |     |    |            |        |     |      |            |           |                  |  |
|----------------|----------|-----|-----|----|----|--------------|---------|-----|----|---------|-------------------|---------|-----|----|------------|--------|-----|------|------------|-----------|------------------|--|
| Rate 50 g/ha   | _        | C1  | ~;  | ₹. | 5  | 5            | ζ.      | œ   | 6  | 0.1     | 16                | 19      | 2.0 | C: | 23         | 24     | 2.5 | 26   | C:         | 30        | ~;<br>~;         |  |
| PREEMERGENCE   |          |     |     |    |    |              |         |     |    |         |                   |         |     |    |            |        |     |      |            |           |                  |  |
| Barley         | 0        | 0   | 0   | ၁  | 0  | 0            | 0       | Ċ   | 0  | 0       | 0                 | 0       | 0   | 0  | ÷          | C      | 0   | 0    | C          |           | C                |  |
| Barnyardgrass  | m        | C.1 | 7   | 0  | 8  | <b>C</b> 3   | 0       |     | ~  | ၁       | 0                 | C       | 0   | 0  | Ċ          | С      | 0   | ٦    | u;         |           | C1               |  |
| Bedstraw       | 0        | u;  | t   | χ  | 7  | 4.           | 0       | 0   | 0  | 0       | C:                | t       | C:  | 0  | 0          | m      | C   | ٥    | CI         | m         | 4                |  |
| Blackgrass     | 0        | 0   | -   | 0  | 2  | 9            | 0       | 0   | 0  | 0       | 0                 | 0       | ာ   | C  | 0          | Ú      | 0   | 0    | 0          | <b>C1</b> | 9                |  |
| Chickweed      | 1        | œ   | 4   | ۲- | 8  | 7            | 0       | 'n  | 0  | 0       | 6                 | С       | 0   | T  | ~          | 9      | 1   | 0    | $\infty$   | 10        | 9                |  |
| Cocklebur      | 0        | ۲۳. | 2   | 2  | 4  | <:<br><:     | 0       | 0   | 0  | 0       | κ:                | 0       | 0   | 0  | ာ          | 0      | 0   | 0    | 0          | 0         | 0                |  |
| Corn           | 0        | 0   | 0   | 0  | 0  | 0            | 0       | 0   | O  | 0       | $\hookrightarrow$ | C       | 0   | 0  | 0          | 0      | C   | 0    | 0          | C         | 0                |  |
| Cotton         | 0        | 0   | 0   | 0  | 0  | 0            | 0       | 0   | 0  | C)      | 0                 | 0       | O   | 0  | 0          | $\sim$ | 0   | 0    | 0          | С         | <del>, - 1</del> |  |
| Crabgrass      | Ŋ        | 9   | æ   | 9  | 6  | 10           | C1      | ις: | 4  | 0       | 6                 | O       | 0   | 0  | ထ          | 7      | 1   |      | 9          | 10        | 10               |  |
| Downy brome    | 0        | 0   | 0   | 4  | 2  | খ্য          | 0       | 0   | 0  | 0       | C>                | 0       | 0   | 0  | 0          | 0      | 0   | ¢    | c:         | ~1        | 9                |  |
| Giant foxtail  | 3        | 2   | 1   | 0  | m  | 9            | 0       | 0   | 0  | C       | m                 | 0       | 0   | 0  | €1         | 0      | 0   | 0    | <b>-</b> : | m         | Ŋ                |  |
| Lambsquarter   | 6        | σ·  | ۵,  | œ  | 9  | σ            | 0       | ထ   | œ  | C       | 6                 | 0       | ,   | 0  | 10         | 7      | 0   | 0    | 10         | 97        | 10               |  |
| Morningglory   | 0        | C4  | ~   | -  | 0  | 0            | 0       | С   | -  | 0       | Û                 | С       | O   | 0  | Ĉ.         | 0      | 0   | 0    |            | 0         | O                |  |
| Nutsedge       |          | Φ.  | ı   | 0  | C3 | c:           | 0       | 0   | ı  |         | 0                 | 0       | 0   |    |            | 0      | 0   | 1    | ာ          | 0         | 0                |  |
| Rape           | 0        | C4  | C-1 | 'n | .n | . <b>○</b> i | 0       | 0   | 0  | 0       | 0                 | 0       | 0   | 0  | 0          | Ü      | 0   | С    | Ξ)         | L.J       | J.               |  |
| Rice           | n        | 0   | 다   | 0  | S  | 7            | $\circ$ | Ó   | Ö  | 0       | (2)               | 0       | 0   | 0  | 0          | Û      | 0   |      | C:         | ***       | ٠,               |  |
| Sorghum        | <#       | 0   | ~   | 0  | 5  | ıΩ           | 0       | 0   | 0  | 0       | 0                 | 0       | Ü   | 0  | C          | Ð      | C   | C    | C          |           | C3               |  |
| Soybean        | 1        | S   | 7   | С  | ~  | 0            | 0       | 0   | 0  | 0       | 0                 | C       | 0   | 0  | 0          | 0      | С   | ٥    | C          | e:        | (1               |  |
| Sugar beet     | 7        | 10  | 9   | 10 | 10 | 6            | 0       | 0   | -  | $\circ$ | 7                 | 0       | C)  | C  | $\bigcirc$ | C      | 0   | 0    |            | ÇQ        | 97               |  |
| Velvetleaf     | 10       | (-  | 4   | 1. | 10 | 10           | 0       | -5  | cc | С       | 10                | 0       | 0   | 0  | m          | α      | O   | *::* | ۲,         | Q,        | 10               |  |
| Wheat          | 0        | С   | 0   | ୍  | -  | 0            | 0       | 0   | Ċ  | С       | 0                 | $\circ$ | 0   | C  | C          | 0      | 0   | C    | ć.         | C         | বা               |  |
| Wild buckwheat | 0        | C   | 0   | O  | 1  | ďΊ           | 0       | 0   | 0  | 0       | 0                 | 0       | 0   | 0  | 0          | 0      | 0   | 0    | C.         | 0         | 0                |  |
| Wild oat       | $\infty$ |     | C   | w  | 7  | 4            | 0       | С   | 0  | Ç       | C)                | 0       | С   | 0  | С          | زا     | C   | C    | (          | -         | Ç()              |  |

|                |          | ı              |     |      |    |
|----------------|----------|----------------|-----|------|----|
| Table E        | COMPOUND | Table E        | CON | 1POU | ND |
| Rate 20 g/ha   | 1 5 6    | Rate 20 g/ha   | 1   | 5    | 6  |
| POSTEMERGENCE  |          | PREEMERGENCE   |     |      |    |
| Barley         | 4 9 8    | Barley         | Ū;  | 0    | 0  |
| Barnyardgrass  | 10 10 9  | Barnyardgrass  | 0   | 1    | ŀ  |
| Bedstraw       | 8 8 8    | Bedstraw       | 0   | 0    | 0  |
| Blackgrass     | 7 9 6    | Blackgrass     | 0   | 0    | 0  |
| Chickweed      | 7 9 8    | Chickweed      | 0   | 5    | 0  |
| Cocklebur      | 10 10 10 | Cocklebur      | 0   | 0    | 0  |
| Corn           | 0 1 1    | Corn           | 0   | Ģ    | 0  |
| Cotton         | 9 8 10   | Cotton         | 0   | Ç    | Q  |
| Crabgrass      | 9 8 9    | Crabgrass      | 2   | 1    | 1  |
| Downy brome    | 6 7 7    | Downy brome    | 0   | С    | O  |
| Giant foxtail  | 9 9 9    | Giant foxtail  | Û   | C    | Ĺ  |
| Lambsquarter   | 8 9 9    | Lambsquarter   | 6   | 9    | 8  |
| Morningglory   | 9 9 8    | Morningglory   | 0   | 0    | Э  |
| Nutsedge       | 8 4 4    | Nutsedge       | -   | -    |    |
| Rape           | 2 9 6    | Rape           | 0   | 0    | Ġ. |
| Rice           | 9 9 8    | Rice           | Ç   | 0    | 0  |
| Sorghum        | 9 9 9    | Sorghum        | 0   | O    | Ú  |
| Soybean        | 10 9 8   | Soybean        | 0   | 0    | 0  |
| Sugar beet     | 9 10 7   | Sugar beet     | 0   | Э    | 0  |
| Velvetleaf     | 10 10 10 | Velvetleaf     | 10  | 10   | à  |
| Wheat          | 5 9 9    | Wheat          | C   | 0    | Q  |
| Wild buckwheat | 4 7 7    | Wild buckwheat | 0   | 0    | 0  |
| Wild oat       | 9 9 9    | Wild oat       | 0   | 3    | 3  |

|                |     |        | f .            |      |          |
|----------------|-----|--------|----------------|------|----------|
| Table E        | CO1 | 1POUND | Table E        | COMP | DUND     |
| Rate 10 g/ha   | 7   | 8      | Rate 10 g/ha   | 7    | 8        |
| POSTEMERGENCE  |     |        | PREEMERGENCE   |      |          |
| Barley         | 0   | 0      | Barley         | 0    | 0        |
| Barnyardgrass  | 9   | 3      | Barnyardgrass  | 0    | 0        |
| Bedstraw       | 4   | 2      | Bedstraw       | 0    | 0        |
| Blackgrass     | 0   | 1      | Blackgrass     | 0    | 0        |
| Chickweed      | 5   | 6      | Chickweed      | 0    | 0        |
| Cocklebur      | 8   | 6      | Cocklebur      | О    | 0        |
| Corn           | 0   | 0      | Corn           | 0    | 0        |
| Cotton         | 3   | 4      | Cotton         | 0    | C        |
| Crabgrass      | 3   | 3      | Crabgrass      | 0    | 0        |
| Downy brome    | 0   | 0      | Downy brome    | 0    | <u> </u> |
| Giant foxtail  | 2   | 2      | Giant foxtail  | 0    | Ĉ        |
| Lambsquarter   | 7   | 3      | Lambsquarter   | 0    | С        |
| Morningglory   | 7   | 2      | Morningglory   | 0.   | C        |
| Nutsedge       | 2   | 3      | Nutsedge       | C    | ¢        |
| Rape           | O   | 2      | Rape           | Û    | Ü        |
| Rice           | 4   | ?      | Rice           | О    | 0        |
| Sorghum        | 4   | 6      | Sorghum        | 0    | С        |
| Soybean        | 3   | 3      | Soybear.       | Ç.   | Ó        |
| Sugar beet     | 6   | 9      | Sugar beet     | 0    | Ç        |
| Velvetleaf     | 5   | 7      | Velvetleaf     | C    | 0        |
| Wheat          | 1.  | 2      | Wheat          | 0    | G        |
| Wild buckwheat | 0   | 0      | Wild buckwheat | 0    | 0        |
| Wild oat       | 0   | 2      | Wild oat       | . 0  | 0        |

## TEST F

5

10

15

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture and applied to the surface of the water which was contained in each pot. Individual containers of barnyardgrass (*Echinochloa oryzicola*), small flower umbrella sedge (*Cyperus difformus*), common falsepimpernel (*Lindernia procumbens*), monochoria (*Monochoria vaginalis*) and bulrush (*Scirpus juncoides*) were seeded and allowed to grow until the 1.5 to 2.5 leaf stage of development. A clay loam soil was used for this propagation. Japonica rice (*Oryza sativa*) was tran-splanted at 0 and 2 cm depth five days before application of the test compound to the water surface.

Treated plants and untreated controls were maintained under greenhouse conditions for twenty to thirty days at which time treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table F, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) indicated that no test result was recorded.

| Table F COMPOUND    | Table F COMPOUNE    |
|---------------------|---------------------|
| Rate 250 g/ha 3     | Rate 125 g/ha 3     |
| Flood Saita soi     | Flood Saita soi     |
| barnyard early 100  | barnyard early 100  |
| barnyard late 85    | barnyard late 70    |
| C. difformis ea 80  | C. difformis ea 85  |
| C. difformis la 90  | C. difformis la 70  |
| Caponi rice 0cm 100 | Japoni rice 0cm 100 |
| Japoni rice 2cm 100 | Japoni rice 2cm 40  |
| L. procumben ea 100 | L. procumben ea 100 |
| t. procumben la 100 | L. procumben la 100 |
| M. vaginalis ea 100 | M. vaginalis ea 100 |
| M. vaginalis la 80  | M. vaginalis la 80  |
| S. juncoides 1. 90  | S. juncoides 1. 85  |
| S. juncoides 2. 70  | 3. juncoides 2. 50  |
|                     |                     |

| Table F COMPOUND                                   | Table F COMPOUND                                                     |
|----------------------------------------------------|----------------------------------------------------------------------|
| Rate 64 g/ha 2 3                                   | Rate 32 g/ha 1 2 3                                                   |
| Flood Saita soi                                    | Flood Saita soi                                                      |
| barnyard early 90 70                               | barnyard early 85 45 20                                              |
| barnyard late 65 40                                | barnyard late 50 45 20                                               |
| C. difformis ea 100 95                             | C. difformis ea 80 55 60                                             |
| C. difformis la 70 40                              | C. difformis la 85 50 40                                             |
| Japoni rice Ocm 100 95                             | Japoni rice Ocm 90 75 40                                             |
| Japoni rice 2cm 75 70                              | Japoni rice 2cm 65 5 0                                               |
| 1. procumben ea 100 100                            | L. procumber ea 100 100 100                                          |
| L. procumben la 100 100                            | L. procumben la 100 90 100                                           |
| M. vaginalis éa 100 100                            | M. vaginalis ea 100 80 70                                            |
| M. vaginalis la 80 80                              | M. vaginalis la 70 75 70                                             |
| S. juncoides L. 75 70                              | S. juncoides 1. 80 65 50                                             |
| S. juncoides 2. 65 50                              | S. juncoides 2. 60 40 30                                             |
|                                                    | 1                                                                    |
| Table F COMPOUND                                   | Table F COMPOUND                                                     |
| Rate 16 g/ha 1 2                                   | Rate 8 g/ha 1 2                                                      |
| Flood Saita soi                                    | Flood Saita soi                                                      |
| barnyard early 40 20                               | barnyard early 40 20                                                 |
| barnyard late 65 45                                | barnyard late 30 20                                                  |
| C. difformis ea 80 50                              | C. difformis ea 55 20                                                |
| C. difformis la 75 50                              | C. difformis la 50 20                                                |
| Japoni rice 0cm 65 40                              | Japoni rice 0cm 35 10                                                |
| Japoni rice 2cm 25 0 °                             | Japoni rice 2cm 0 0                                                  |
|                                                    |                                                                      |
| L. procumben ea 100 100                            | L. procumben ea 100 100                                              |
| L. procumben ea 100 100<br>L. procumben la 100 100 | L. procumben ea 100 100 L. procumben la 100 100                      |
|                                                    | •                                                                    |
| E. procumben la 100 100                            | L. procumben la 100 100 M. vaginalis ea 70 60. M. vaginalis la 70 65 |
| E. procumben la 100 100<br>M. vaginalis ea 90 75   | L. procumben la 100 100 M. vaginalis ea 70 60                        |

| Table F         | COMPOUNE |
|-----------------|----------|
| Rate 4 g/ha     | _        |
| Flood Saita soi |          |
| barnyard early  | 30       |
| barnyard late   | 40       |
| C. difformis ea | 30       |
| C. difformis la | 20       |
| Japoni rice 0cm | 20       |
| Japoni rice 2cm | 5        |
| 1. procumben ea | 100      |
| L. procumben la | 100      |
| M. vaginalis ea | 50       |
| M. vaginalis la | 65       |
| S. juncoides 1. | 20       |
| S. juncoides 2. | 30       |

#### TEST G

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were in the one-to four leaf stage (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test.

10

15

20

25

30

5

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include annual bluegrass (*Poa annua*), black nightshade (*Solanum nigra*), blackgrass (*Alopecurus myosuroides*), chickweed (*Stellaria media*), deadnettle (*Lamium amplexicaule*), downy brome (*Bromus tectorum*), field violet (*Viola arvensis*), galium (*Galium aparine*), green foxtail (*Setaria viridis*), jointed goatgrass (*Aegilops cylindrica*), kochia (*Kochia scoparia*), lambsquarters (*Chenopodium album*), littleseed canarygrass (*Phalaris minor*), rape (*Brassica napus*), redroot pigweed (*Amaranthus retroflexus*), ryegrass (*Lolium multiflorum*), sentless chamonile (*Matricaria inodora*), speedwell (*Veronica persica*), spring barely (*Hordeum vulgare cv. 'Klages'*), spring wheat (*Triticum aestivum cv. 'ERA'*), sugar beet (*Beta vulgaris cv. 'USI'*), sunflower (*Helianthus annuus cv. 'Russian Giant'*), wild buckwheat (*Polygonum convolvulus*), wild mustard (*Sinapis arvensis*), wild oat (*Avena fatua*), windgrass (*Apera spica-venti*), winter barley (*Hordeum vulgare cv. 'Igri'*) and winter wheat (*Triticum aestivum cv. 'Talent'*).

Wild out was treated at two growth stages. The first stage (1) was when the plant had two to three leaves. The second stage (2) was when the plant had approximately four leaves or in the initial stages of tillering. Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table G, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

|                 | 1      |                 |     |     |     |      | _    |     |      |
|-----------------|--------|-----------------|-----|-----|-----|------|------|-----|------|
| Table G CC      | CNUOQM | Table G         |     |     |     | POUN |      |     | - 0  |
| Rate 250 g/ha   | 10     | Rate 125 g/ha   | 2   | 5   | 5   | 3    | 9    | 10  | 12   |
| POSTEMERGENCE   |        | POSTEMERGENCE   |     |     |     |      |      |     |      |
| Annual Bluegras | 30     | Annual Bluegras | 85  | 100 | 65  | 100  | 40   | 20  | 20   |
| Blackgrass (2)  | 30     | Blackgrass (2)  | 45  | 3.0 | 20  | 70   | 45   | 30  | 20   |
| Blk Nightshade  | 100    | Blk Nightshade  | 100 | 100 | 100 | 100  | 100  | 100 | 1,00 |
| Chickweed       | 100    | Chickweed       | 100 | 100 | 100 | 95   | 100  | 100 | 100  |
| Deadnettle      | 100    | Deadnettle      | 100 | 100 | 100 | 100  | 100  | 100 | 196  |
| Downy brome     | 50     | Downy brome     | 5.0 | 40  | 55  | 75   | 25   | 30  | 20   |
| Field violet    | 100    | Field violet    | 100 | 60  | 70  | 100  | 1.00 | 100 | 75   |
| Galium (2)      | 100    | Galium (2)      | 40  | 50  | 60  | 60   | 7.0  | 75  | 9.8  |
| Green foxtail   | 100    | Green foxtail   | 100 | 100 | 75  | 100  | 100  | 100 | 100  |
| Jointed Goatgra | 30     | Jointed Goatgra | 40  | 3.0 | 40  | 100  | 30   | 20  | 3.0  |
| Kochia          | 85     | Kochia          | 100 | 100 | 7.5 | 100  | 100  | 100 | 100  |
| Lambsquarters   | 100    | Lambsquarters   | 100 | 100 | 95  | 100  | 100  | 100 | 100  |
| LS Canarygrass  | 100    | LS Canarygrass  | 100 | 60  | 70  | 100  | 70   | 4.5 | 30   |
| Rape            | -      | Rape            | -   | -   | 100 |      | -    | -   | 40   |
| Redroot Pigweed | 100    | Redroot Pigweed | 100 | 100 | 65  | 100  | 100  | 100 | 100  |
| Russian Thistle | 100    | Russian Thistle | 100 | 100 | -   | 80   | 100  | 100 | -    |
| Ryegrass        | 20     | Ryegrass        | 20  | 20  | 15  | 2.0  | 5    | . Ç | C    |
| Scentless Chamo | 95     | Scentless Chamo | 100 | 100 | 100 | 100  | 100  | 75  | 100  |
| Speedwell       | -      | Speedwell       |     |     | -   | -    |      | -   |      |
| Spring Barley   | 30     | Spring Barley   | 4 C | 40  | 50  | 8.5  | 10   | 10  | Û    |
| Sugar beet      | -      | Sugar beet      | -   |     | 10  | -    | -    | -   | 100  |
| Sunflower       | -      | Sunflower       |     | -   | 7.0 | -    |      | -   | 100  |
| Veronica hedera | 100    | Veronica hedera | 100 | 100 | -   | 100  | 100  | 109 | 100  |
| Wheat (Spring)  | 3 C    | Wheat (Spring)  | 40  | 3.0 | 40  | 100  | 40   | 20  | 30   |
| Wheat (Winter)  | 20     | Wheat (Winter)  | 60  | 40  | 20  | 95   | 20   | 15  | 20   |
| Wild buckwheat  | 100    | Wild buckwheat  | 100 | 55  | 1.5 | 50   | 100  | -   | 4 C  |
| Wild mustard    | 100    | Wild mustard    | 100 | 100 | 70  | 100  | 100  | 100 | 100  |
| Wild oat (1)    | 65     | Wild oat (1)    | 100 | 100 | 75  | 100  | 100  | 4.0 | 100  |
| Wild oat (2)    | -      | Wild oat (2)    | -   |     | -   | _    | -    | -   | -    |
| Windgrass       | 45     | Windgrass       | 50  | 55  | 4.5 | 95   | 60   | 20  | 3.0  |
| Winter Barley   | 30     | Winter Barley   | 3.0 | 20  | 5 5 | 45   | 10   | 10  | 6    |

WO 97/19087 PCT/US96/18381

223.

| Table G         |     |            |      |            | COM | POUN | D   |     |     |     |     |
|-----------------|-----|------------|------|------------|-----|------|-----|-----|-----|-----|-----|
| Rate 62 g/ha    | 1   | 2          | 4    | 5          | 6   | 7    | 8   | 9   | 10  | 12  | 30  |
| POSTEMERGENCE   |     |            |      |            |     |      |     |     |     |     |     |
| Annual Bluegras | 100 | 60         |      | 70         | 50  | 100  | 100 | 50  | 10  | 20  | 100 |
| Blackgrass (2)  | 55  | 35         | -    | 25         | 20  | 50   | 60  | 4.0 | 20  | 30  | 60  |
| Blk Nightshade  | 100 | 100        | 100  | 100        | 75  | 100  | 100 | 100 | 75  | 100 | 100 |
| Chickweed       | 100 | 100        | 100  | 100        | 75  | 100  | 100 | 100 | 100 | 100 | 100 |
| Deadnettle      | 100 | 100        | 1.00 | 100        | 100 | 100  | 100 | 100 | 100 | 100 | 100 |
| Downy brome     | 60  | 40         | -    | <b>5</b> 0 | 30  | 100  | 75  | 25  | 20  | 1.0 | 95  |
| Field violet    | 100 | 1.00       | 100  | 50         | 70  | 100  | 100 | 70  | 70  | 60  | 70  |
| Galium (2)      | 65  | 3 C        | 60   | 40         | 30  | 55   | €0  | 70  | 60  | 70  | 40  |
| Green foxtail   | 75  | 100        | -    | 65         | 60  | 100  | 100 | 100 | 100 | 100 | 100 |
| Jointed Goatgra | 40  | 30         | -    | 3.0        | 20  | 100  | 100 | 20  | 10  | 20  | 100 |
| Kochia          | 65  | 65         | 65   | 100        | 60  | 50   | 100 | 100 | 75  | 55  | 90  |
| Lambsquarters   | 100 | 100        | 100  | 100        | 60  | 100  | 100 | 100 | 100 | 100 | 100 |
| LS Canarygrass  | 100 | <b>4</b> O | -    | 40         | 50  | 100  | 100 | 50  | 40  | 20  | 100 |
| Rape            | 100 |            | -    | -          | 7 C | _    | -   | -   | -   | 40  |     |
| Redroot Pigweed | 100 | 70         | 100  | 100        | 30  | 100  | 100 | 100 | 100 | 100 | 100 |
| Russian Thistle | 100 | 100        | 1.00 | 100        | 30  | 100  | 80  | 8.5 | 100 | *** | 100 |
| Ryegrass        | 30  | 20         |      | 20         | 1.0 | 15   | 25  | 0   | 0   | 0   | 30. |
| Scentless Chamo | 100 | 100        | 60   | 100        | 65  | 100  | 100 | 100 | 7.0 | 60  | 100 |
| Speedwell       | -   | -          | -    | -          | -   | -    |     |     | -   | _   | -   |
| Spring Barley   | 60  | 3.0        | 20   | 3.0        | 4 C | 100  | 60  | 5   | 20  | 0   | 80  |
| Sugar beet      | 100 | -          | -    | -          | 10  | -    |     | -   | -   | 100 | -   |
| Sunflower       | 100 | -          | -    | -          | 40  |      | _   | -   | -   | 100 | -   |
| Veronica hedera | 100 | 100        | 100  | 100        | 20  | 100  | 100 | 100 | 100 | 100 | 100 |
| Wheat (Spring)  | 30  | 30         | 25   | 20         | 30  | 100  | 85  | 30  | 10  | 20  | 100 |
| Wheat (Winter)  | 40  | 3.0        | 30   | 3.0        | 15  | 100  | 100 | 20  | 10  | 10  | 100 |
| Wild buckwheat  | 60  | 70         | 50   | 40         | 10  | 100  | 70  | 100 | 100 | 1 C | 10  |
| Wild mustard    | 100 | 100        | -    | 100        | 75  |      | 70  | 60  | 100 | 50  | 100 |
| Wild oat (1)    | 95  | 100        | -    | 100        | 70  | 100  | 100 | 50  | 30  | 60  | 100 |
| Wild oat (2)    | ~   | -          | -    | -          | -   | -    | -   | -   | -   | -   | -   |
| Windgrass       | 100 | 30         | -    | 30         | 45  | 85   | 100 | 50  | 20  | 30  | 100 |
| Winter Barley   | 50  | 20         | 20   | 20         | 30  | 85   | 40  | 15  | 10  | īC  | 70  |

| Table G         |     |     |            | C   | OMP | DUND |      |     |     |      |     |
|-----------------|-----|-----|------------|-----|-----|------|------|-----|-----|------|-----|
| Rate 31 g/ha    | 1   | 2   | 4          | 5   | 6   | 7    | 8    | 9   | 10  | 12   | 3.0 |
| POSTEMERGENCE   |     |     |            |     |     |      |      |     |     |      |     |
| Annual Bluegras | 60  | 50  | -          | 30  | 1 C | 100  | 100  | 30  | 20  | 10   | 100 |
| Blackgrass (2)  | 50  | 30  | -          | 20  | 10  | 40   | 50   | 30  | 20  | 15   | 50  |
| Blk Nightshade  | 100 | 100 | 100        | 100 | 75  | 100  | 100  | 100 | 75  | 100  | 100 |
| Chickweed       | 100 | 100 | 100        | 100 | 60  | 100  | 8.0  | 100 | 100 | 70   | 100 |
| Deadnettle      | 100 | 100 | 60         | 100 | 75  | 65   | 75   | 100 | 100 | 70   | 100 |
| Downy brome     | 50  | 30  | -          | 30  | 20  | 65   | 50   | 20  | 10  | 15   | 75  |
| Field violet    | 100 | 65  | 60         | -   | 50  | 60   | 100  | 50  | 60  | 50   |     |
| Galium (2)      | 65  | 30  | 60         | 20  | 20  | 50   | 50   | 60  | 50  | 50   | 40  |
| Green foxtail   | 70  | 70  | -          | 65  | 55  | 100  | 75   | 100 | 68  | 65   | 100 |
| Jointed Goatgra | 30  | 20  | -          | 1.5 | 10  | 45   | 75   | 10  | 0   | 20   | 50  |
| Kochia          | 60  | 55  | 60         | 60  | 50  | 20   | 60   | 70  | 60  | 40   | 70  |
| Lambsquarters   | 100 | 100 | 100        | 100 | 50  | 100  | 100  | 100 | 100 | 75   | 100 |
| LS Canarygrass  | 100 | 30  | -          | 3 0 | 3.0 | 100  | 100  | 35  | 30  | 15   | 100 |
| Rape            | 70  |     | -          | -   | 60  | -    | -    | _   | -   | 20   |     |
| Redroot Pigweed | 100 | 50  | -          | 75  | 3 0 | 70   | 50   | 80  | 70  | 70   | 100 |
| Russian Thistle | 100 | 75  | 100        | 75  | 20  | 100  | 70   | 80  | 70  |      | 80  |
| Ryegrass        | 20  | 10  | -          | 10  | 0   | 15   | 20   | 0   | O   | 0    | 50  |
| Scentless Chamo | 100 | 75  | 50         | 7.0 | 60  | 100  | 100  | 100 | 60  | 60   | 100 |
| Speedwell       | 100 | -   | -          | **  | -   | ••   | -    | -   | -   |      | -   |
| Spring Barley   | 45  | 20  | 19         | 2.0 | 3.0 | 100  | 65   | O   | 5   | 0    | 50  |
| Sugar beet      | 100 | -   |            | -   | 0   | -    |      | -   | -   | 1.00 | -   |
| Sunflower       | 100 | ~   | -          | -   | 3 C | -    | -    | -   | -   | 85   | -   |
| Veronica hedera | 100 | 70  | 100        | 100 | 1.0 | 100  | 60   |     | 60  | 75   | 100 |
| Wheat (Spring)  | 20  | 20  | 10         | 20  | 20  | 95   | 75   |     | 10  | 20   | 70  |
| Wheat (Winter)  | 3 C | 20  | 2.0        | 20  | 15  | 55   |      |     |     | 10   |     |
| Wild buckwheat  | 100 | 50  | <b>4</b> C | 50  | С   | 100  |      |     |     | 10   | 10  |
| Wild mustard    | 100 | 70  | -          |     |     |      |      |     |     |      | 100 |
| Wild oat (1)    | 50  | 100 | -          | 65  | 50  | 100  | 1.00 |     |     |      | 100 |
| Wild oat (2)    | 100 | 45  | -          | -   | -   |      |      |     |     | -    | -   |
| Windgrass       | 70  | 10  | -          | 20  |     |      |      |     |     |      |     |
| Winter Barley   | 30  | 20  | 10         | 30  | 20  | 5 5  | 3 0  | ) 0 | 0   | 0    | 30  |

| Table G         | COM  | POUNE | ) |
|-----------------|------|-------|---|
| Rate 31 g/ha    | 1    | 2     |   |
| PREEMERGENCE    |      |       |   |
| Annual Bluegras | 0    | C     |   |
| 31ackgrass (2)  | 0    | 15    |   |
| Blk Nightshade  | 35   | 0     |   |
| Chickweed       | 15   | 10    |   |
| Deadnettle      | 60   | 20    |   |
| Downy brome     | С    | 5     |   |
| Galium (2)      | 0    | 5     |   |
| Green foxtail   | 10   | 0     |   |
| Jointed Goatgra | Э    | 0     |   |
| Kochia          | 15   | 40    |   |
| Lambsquarters   | 85   | 95    |   |
| LS Canarygrass  | 9    | 0     |   |
| Redroot Pigweed | 60   | -     |   |
| Ryegrass        | 0    | 0     |   |
| Scentless Chamo | 0    | 0     |   |
| Speedwell       | 1.0C | 70    |   |
| Spring Barley   | С    | 0     |   |
| Wheat (Spring)  | C    | 0     |   |
| Wheat (Winter)  | Ç    | 0     |   |
| Wild buckwheat  | Q    | 20    |   |
| Wild mustard    | C    | 10    |   |
| Wild oat (1)    | О    | 0     |   |
| Windgrass       | 0    | 0     |   |
| Winter Barley   | 0    | 0     |   |

| Table G         |            |     |     | CO  | MPOU | ND  |      |      |     |
|-----------------|------------|-----|-----|-----|------|-----|------|------|-----|
| Rate 16 g/ha    | 1          | 2   | 4   | 5   | 6    | 7   | 6    | 9    | 30  |
| POSTEMERGENCE   |            |     |     |     |      |     |      |      |     |
| Annual Bluegras | 50         | 10  | -   | 2 C | 4 C  | 70  | 80   | 20   | 85  |
| Blackgrass (2)  | <b>4</b> C | 2 C | _   | 10  | 35   | 20  | 30   | 20   | 30  |
| Bik Nightshade  | 100        | 75  | 100 | 100 | 55   | 100 | 75   | 100  | 100 |
| Chickweed       | 100        | 100 | 100 | 100 | 75   | 80  | 70   | 75   | 100 |
| Deadnettle      | 100        | 100 | 65  | 100 | 45   | 50  | 65   | 65   | 70  |
| Downy brome     | 30         | 20  |     | 20  | C    | 40  | 30   | 1.0  | 5 C |
| Field violet    | 100        | 5 C | *** | 30  | 45   | 3 C | 60   | 50   | 60  |
| Galium (2)      | 60         | 15  | 50  | 3.0 | 2.0  | 50  | 3.0  | 60   | 30  |
| Green foxtail   | 65         | 50  |     | :00 | 55   | 100 | 70   | 70   | 100 |
| Jointed Goatgra | 20         | 10  | -   | 10  | 0    | .50 | 3.0  | 10   | 40  |
| Kochia          | 60         | 25  | 55  | 60  | 40   | 1.0 | 50   | 40   | 5.5 |
| Lambsquarters   | 100        | 100 | 100 | 100 | 20   | 100 | 100  | 100  | 100 |
| LS Canarygrass  | 100        | 20  | -   | 20  | 40   | 50  | 1.00 | 3.0  | 100 |
| Rape            | 50         | -   | -   | -   | ~    | _   | -    | -    |     |
| Redroot Pigweed | 100        | 65  | 60  | 60  | 20   | 60  | 370  | 80   | 100 |
| Russian Thistle | 100        | 75  | 7.0 | 80  | 0    | 100 | 60   | 80   | 70  |
| Ryegrass        | 20         | 10  | -   | 5   | 0    | 10  | 10   | 0    | 20  |
| Scentless Chamo | 50         | 75  | 50  | 60  | 60   | 75  | 70   | 60   | 75  |
| Speedwell       | 100        | -   |     | _   | -    | -   |      | *    | •   |
| Spring Barley   | 20         | 20  | 10  | 20  | 0    | 100 | 3 C  | C    | 30  |
| Sugar beet      | 100        | _   |     |     |      | -   |      | ma : | -   |
| Sunflower       | 65         |     |     | -   | -    |     |      | -    | -   |
| Veronica hedera | 100        | 75  | 70  | 100 | 3 0  | 65  | 60   | 75   | 70  |
| Wheat (Spring)  | 10         | 20  | 10  | 20  | 10   | 65  | 3.0  | 10   | 70  |
| Wheat (Winter)  | 20         | 10  | 10  | 15  | 0    | 50  | 3 C  | 5    | 50  |
| Wild buckwheat  | 60         | 30  | 20  | 40  | 10   | 50  | 10   | 60   | 20  |
| Wild mustard    | 100        | 65  |     | 60  | -    | -   | 60   | 3 0  | 100 |
| Wild oat (1)    | 70         | 100 | -   | 75  | 30   | 100 | 75   | 3.0  | 85  |
| Wild oat (2)    | 85         | 45  | -   | -   | -    | -   | -    | -    |     |
| Windgrass       | 50         | 10  | -   | 1 C | 30   | 30  | 50   | 20   | 50  |
| Winter Barley   | 20         | 10  | 10  | 20  | 5    | 55  | 20   | 0    | 20  |

| Table G         | COM | 1POUND |
|-----------------|-----|--------|
| Rate 16 g/ha    | 1   | 2      |
| PREEMERGENCE    |     |        |
| Annual Bluegras | 0   | 0      |
| Blackgrass (2)  | 0   | 5      |
| 31k Nightshade  | 35  | 0      |
| Chickweed       | 20  | 0      |
| Deadnettle      | 15  | 0      |
| Downy brome     | 0   | 0      |
| Galium (2)      | ō   | C      |
| Green foxtail   | Ģ   | 0      |
| Jointed Goatgra | e   | 0      |
| Kochia          | 10  | 3.0    |
| Lambsquarters   | 7.6 | 95     |
| LS Canarygrass  | Ģ   | 0      |
| Redroot Pigweed | 75  | 65     |
| Ryegrass        | 0   | 0      |
| Scentless Chamo | -   | 0      |
| Speedwell       | 60  | 60     |
| Spring Barley   | 0   | O      |
| Wheat (Spring)  | 0   | 0      |
| Wheat (Winter)  | C   | 0      |
| Wild buckwheat  | 0   | 5      |
| Wild mustard    | 0   | 5      |
| Wild oat (1)    | 0   | 0      |
| Windgrass       | 0   | Э      |
| Winter Barley   | 0   | O      |

| Table G         |     |    | С    | OMPO | DUND |     |      |     |
|-----------------|-----|----|------|------|------|-----|------|-----|
| Rate 8 g/ha     | 1   | 2  | 4    | 6    | 7    | 8   | 9 :  | 30  |
| POSTEMERGENCE   |     |    |      |      |      |     |      |     |
| Annual Bluegras | 50  | -  | -    | 10   | 40   | 55  | 10   | -   |
| Blackgrass (2)  | 30  | 5  | _    | 10   | 10   | 20  | 10   | 20  |
| Blk Nightshade  | 100 | 85 | 100  | 40   | 100  | 75  | 100  | 75  |
| Chickweed       | 55  | 85 | 100  | 60   | 70   | 50  | 100  | 80  |
| Deadnettle      | 100 | 50 | 60   | 30   | 3.0  | 30  | 100  | 55  |
| Downy brome     | 20  | 10 | -    | 0    | 20   | 20  | 0    | 40  |
| Field violet    | 75  | 15 | 60   | .3 0 | 40   | 50  | 60   | 50  |
| Galium (2)      | 50  | 15 | 40   | 10   | 3.0  | 10  | 60   | 20  |
| Green foxtail   | 65  | 75 | =    | 55   | 60   | 65  | 100  | 65  |
| Jointed Goatgra | 20  | 0  | -    | O    | 10   | 1.0 | 10   | 3 C |
| Kochia          | 55  | -  | 50   | 3 C  | 10   | 30  | 20   | 35  |
| Lambsquarters   | 100 | 30 | 65   | 20   | 75   | 95  | 100  | 70  |
| LS Canarygrass  | 100 | 5  |      | 40   | 40   | 65  | 25   | 65  |
| Rape            | 40  |    | -    | -    | -    | -   | -    | -   |
| Redroot Pigweed | 60  | 25 | 50   | 1. 0 | 50   | 3.0 | 70   | 70  |
| Russian Thistle | 100 | -  | 60   | 0    | 75   | 50  | 40   | 70  |
| Ryegrass        | 10  | 0  | -    | 0    | 5    | 10  | 0    | 20  |
| Scentless Chamo | 65  | 25 | 50   | 50   | 6C   | 60  | 60   | 7 C |
| Speedwell       | 65  | 35 | -    | -    |      |     | -    | -   |
| Spring Barley   | 10  | C  | 10   | Э    | 40   | 10  | 1.0  | 20  |
| Sugar beet      | 100 |    | . ~  | -    | -    | •   | -    | -   |
| Sunflower       | 65  | -  | · -  | -    |      |     |      | -   |
| Veronica hedera | 100 | -  | - 50 | 30   |      | 60  |      | 60  |
| Wheat (Spring)  | 10  | (  | 10   | 10   | 3 C  |     | 10   |     |
| Wheat (Winter)  | 10  | (  | ) 10 | 0    | 30   |     | ) 5  |     |
| Wild buckwheat  | 40  | (  | 0 25 | C    |      |     |      |     |
| Wild mustard    | 100 |    |      | 3.3  | 50   |     |      | 100 |
| Wild oat (1)    | 30  | 1  | С -  | 20   |      |     |      | 75  |
| Wild oat (2)    | 75  | 1  | 5    |      |      |     |      |     |
| Windgrass       | 30  |    | 0 -  |      | 3 40 |     | 0 10 |     |
| Winter Barley   | 10  | ,  | 0 10 | ) (  | 0 30 | 1   | 0 10 | 10  |

, istorija ja

| Table G         | COM | POUND |
|-----------------|-----|-------|
| Rate 8 g/ha     | 1.  | 2     |
| PREEMERGENCE    |     |       |
| Annual Bluegras | C   | O     |
| Blackgrass (2)  | 0   | 0     |
| Blk Nightshade  | О   | . 0   |
| Chickweed       | 0   | 0     |
| Deadnettle      | 5   | 0     |
| Downy brome     | 0   | 0     |
| Galium (2)      | 0   | 0     |
| Green foxtail   | 0   | 0     |
| Jointed Goatgra | 0   | C     |
| Kochia          | 0   | Ĉ     |
| Lambsquarters   | 50  | 65    |
| LS Canarygrass  | 0   | C     |
| Redroct Pigweed | 60  | 25    |
| Ryegrass        | 0   | 0     |
| Scentless Chamo | 0   | 0     |
| Speedwell       | 20  | 30    |
| Spring Barley   | 0   | 0     |
| Wheat (Spring)  | С   | 0     |
| Wheat (Winter)  | -   | 0     |
| Wild buckwheat  | -   | 0     |
| Wild mustard    | C   | õ     |
| Wild oat (1)    | 0   | 0     |
| Windgrass       | С   | 0     |
| Winter Barley   | С   | 0     |

| Table G         |     | C  | OMPO | UND |     |          |
|-----------------|-----|----|------|-----|-----|----------|
| Rate 4 g/ha     | 1   | 2  | 6    | 7   | 9   | 30       |
| POSTEMERGENCE   |     |    |      |     |     |          |
| Annual Bluegras | 30  | -  | 10   | 20  | 10  | 10       |
| Blackgrass (2)  | 40  | 5  | 10   | 10  | 0   | 10       |
| Blk Nightshade  | 100 | 75 | 30   | 65  | 75  | 70       |
| Chickweed       | 50  | 60 | 50   | 60  | 50  | 70       |
| Deadnettle      | 100 | 45 | 20   | 20  | 1 C | 30       |
| Downy brome     | 20  | 0  | 0    | 10  | 0   | 20       |
| Field violet    | 60  | 0  | 30   | 30  | 40  | 40       |
| Galium (2)      | 30  | 15 | 0    | 20  | 10  | 10       |
| Green foxtail   | 60  | 60 | 3.0  | 45  | 45  | 50       |
| Jointed Goatgra | 1:0 | 0  | 0    | 5,  | C   | 20       |
| Kochia          | 30  |    | 20   | 0   | 10  | 30       |
| Lambsquarters   | 60  | 25 | 15   | 70  | 65  | 50       |
| LS Canarygrass  | 55  | Э  | 20   | 3.0 | 10  | 60       |
| Rape            | 3 C |    | -    | -   | -   | -        |
| Redroot Pigweed | 50  | 10 | 30   | 3.3 | 4 C | 50       |
| Russian Thistle | 70  |    | 0    | 70  | 10  | 50       |
| Ryegrass        | 5   | 0  | 0    | 0   | 0   | 1.0      |
| Scentless Chamo | 55  | 45 | 10   | 50  | 50  | 60       |
| Speedwell       | 40  | 15 | -    | -   | -   | -        |
| Spring Barley   | 5   | 0  | O    | 1.0 | 0   | 5        |
| Sugar beet      | 100 | _  | -    | -   | -   | <b>~</b> |
| Sunflower       | 50  | _  | -    | -   | -   | -        |
| Veronica hedera | 100 | -  | 30   | 50  | 30  | 50       |
| Wheat (Spring)  | 5   | G  | 5    | 30  | 5   | 30       |
| Wheat (Winter)  | 5   | C  | 0    | 20  | 0   | 10       |
| Wild buckwheat  | 50  | С  | 0    | 35  | С   | 0        |
| Wild mustard    | 100 | 15 | 15   | 10  | 0   | 60       |
| Wild oat (1)    | 20  | 5  | 10   | 30  | 1 C | 30       |
| Wild oat (2)    | -   | 0  | -    | -   |     | ·        |
| Windgrass       | 10  | 0  | 0    | 10  | 0   | 20       |
| Winter Barley   | 10  | 0  | 0    | 10  | О   | 5        |

| Table G         | 100                | 1POUND |
|-----------------|--------------------|--------|
| Rate 4 g/ha     | 1                  | 2      |
| PREEMERGENCE    |                    |        |
| Annual Bluegras | G                  | 0      |
| Blackgrass (2)  | С                  | 0      |
| Blk Nightshade  | Э                  | 0      |
| Chickweed       | 0                  | 0      |
| Deadnettle      | 0                  | 0      |
| Downy brome     | 0                  | 0      |
| Galium (2)      | 0                  | С      |
| Green foxtail   | 0                  | 0      |
| Jointed Goatgra | C                  | 0      |
| Kochia          | 0                  | O      |
| Lambsquarters   | 35                 | 25     |
| LS Canarygrass  | 0                  | 0      |
| Redroot Pigweed | 9                  | 10     |
| Ryegrass        | 0                  | C      |
| Scentless Chamo | Ō                  | C      |
| Speedwell       | 15                 | 15     |
| Spring Barley   | 0                  | 0      |
| Wheat (Spring)  | 0                  | 0      |
| Wheat (Winter)  | (i                 | 0      |
| Wild buckwheat  | $\bar{\mathbf{c}}$ | Ō      |
| Wild mustard    | Û                  | 0      |
| Wild oat (1)    | C                  | 0      |
| Windgrass       | C                  | 0      |
| Winter Barley   | 0                  | 0      |

#### TEST H

20

Seeds, tubers, or plant parts of alexandergrass (Brachiaria plantaginea), alfalfa (Medicago sativa), bermudagrass (Cynodon dactylon), broadleaf signalgrass (Brachiaria plantyphylla), common purslane (Portulaca oleracea), common ragweed 5 (Ambrosia elatior), cotton (Gossypium hirsutum), dallisgrass (Paspalum dilatatum), goosegrass (Eleusine indica), guineagrass (Panicum maximum), itchgrass (Rotthoellia exaltata), johnson grass (Sorghum halepense), large crabgrass (Digitaria sanguinalis), peanuts (Arachis hypogaea), pitted morningglory (Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), sandbur (Cenchrus echinatus), sourgrass (Trichachne insularis), 10 surinam grass (Brachiaria decumbens) and texas panicum (Panicum Texas) were planted into greenhouse pots of flats containing greenhouse planting medium. Plant species were grown grown in separate pots or individual compartments. Preemergence applications were made within one day of planting the seed or plant part. Postemergence applications were applied when the plants were in the two to four leaf stage (three to 15 twenty cm).

Test chemicals were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied preemergence and postemergence to the plants. Untreated control plants and treated plants were placed in the greenhouse and visually evaluated for injury 13 to 21 days after herbicide application. Plant response ratings, summarized in Table H, are based on a 0 to 100 scale where 0 is no injury and 100 is complete control. A dash (-) response means no test result.

| Table H CC      | MPOUND | Table H        | COMPOUND |
|-----------------|--------|----------------|----------|
| Rate 1000 g/ha  | 1      | Rate 1000 g/ha | 1.       |
| POSTEMERGENCE   |        | PREEMERGENCE   |          |
| Alexandergrass  | -      | Alexandergrass | -        |
| ADexandergrass  | -      | Bermudagrass   | ~        |
| Bermudagrass    | -      | Brdlf Sgnlgras | s -      |
| Brdlf Sgnlgrass | -      | Cmn Purslane   | -        |
| Cmn Purslane    | -      | Cmm Ragweed    |          |
| Cmn Ragweed     | -      | Cotton         |          |
| Cotton          | ~      | Dallisgrass    | -        |
| Dallisgrass     | -      | Goosegrass     |          |
| Goosegrass      | -      | Guinea Grass   | -        |
| Guineagrass     | -      | Guineagrass    |          |
| Itchgrass       | -      | Itchgrass      | -        |
|                 |        |                |          |

| Johnson grass   | -  | Johnson grass   | -  |
|-----------------|----|-----------------|----|
| Large Crabgrass | -  | Johnsongrass    | -  |
| Peanuts         | -  | Large Crabgrass | -  |
| Pit Morninglory | -  | Peanuts         | -  |
| Purple Nutsedge | -  | Pit Morninglory |    |
| Sandbur         | -  | Purple Nutsedge | -  |
| Sourgrass       | -  | Sandbur         | -  |
| Sugarcane       | 90 | Sourgrass       | -  |
| Surinam grass   | -  | Sugarcane       | 35 |
|                 |    | Surinam grass   | -  |

| Table H         | COMPOUND     | Table H         | COMPOUND   |
|-----------------|--------------|-----------------|------------|
| Rate 500 g/ha   | -<br>-       | Rate 500 g/ha   | <u>.</u>   |
| POSTEMERGENCE   |              | PREEMERGENÇE    |            |
| Alexandergrass  | -            | Alexandergrass  | -          |
| ADexandergrass  | -            | Bermudagrass    | -          |
| Bermudagrass    | -            | Brdlf Sgnlgrass | ; <b>-</b> |
| Brdlf Sgnlgrass | 5 -          | Cmr. Purslane   | -          |
| Cmm Purslane    | -            | Cmn Ragweed     | -          |
| Cmr. Ragweed    | -            | Cotton          | -          |
| Cotton          |              | Dallisgrass     | -          |
| Dallisgrass     | -            | Goosegrass      | **         |
| Goosegrass      | -            | Guinea Grass    | ~          |
| Guineagrass     | 1996         | Guineagrass     | -          |
| Itchgrass       | -            | Itchgrass       | -          |
| Johnson grass   | 440          | Johnson grass   | -          |
| Large Crabgrass | <del>.</del> | Johnsongrass    | ±          |
| Peanuts         | -            | Large Crabgrass | -          |
| Pit Morninglory | -            | Peanuts         | -          |
| Purple Nutsedge | ·            | Pit Morninglory |            |
| Sandbur         | -            | Purple Nutsedge | _          |
| Sourgrass       | -            | Sandbur         | -          |
| Sugarcane       | 80           | Sourgrass       | -          |
| Surinam grass   | ***          | Sugarcane       | 10         |
|                 | •            | Surinam grass   | -          |

| Table H         |     |     |     |     | COMP | OUND           |      |                      |      |      |
|-----------------|-----|-----|-----|-----|------|----------------|------|----------------------|------|------|
| Rate 250 g/ha   | 1   | 2   | 3   | 4   | 5    | 6              | 12   | 14                   | 24   | 30   |
| POSTEMERGENCE   |     |     |     |     |      |                |      |                      |      |      |
| Alexandergrass  | 100 | 90  | 9,5 | 95  | 90   | 70             | 75   | 75                   | 90   | 85   |
| ADexandergrass  | 98  |     |     | -   |      | · · · · · · .  | ₹    | · ·                  | - ,. |      |
| Bermudagrass    | 95  | 75  | 85  | 90  | 65   | 65             | 65 " | 65                   | 70   | 70,  |
| Brdlf Sgnlgrass | 100 | 98  | 98  | 100 | 50   | 70             | 70   | 6.5                  | 85   | . 80 |
| Cmn Purslane    | 100 | 80  | 65  | 3.5 | 55   | 35             | 40   | 50                   | 0    | 9    |
| Cmn Ragweed     | 100 | 100 | 95  | 90  | 8.5  | 70             | 70   | 75                   | 75   | -    |
| Cotton          | 100 | 9,8 | 98  | 98  | 65   | 100            | 95   | 75°                  | 90   | 98   |
| Dallisgrass     | 100 | 90  | 95  | 90  | 65   | <sub></sub> 65 | 8.0  | 80                   | 90   | 90   |
| Goosegrass      | 85  | 40  | 50  | 90  | 65   | 70             | 65   | 20                   | 85   | 60   |
| Guineagrass     | 9,8 | 80  | 50  | 65  | 7:5  | 60             | 8.0  | -6.0                 | 80   | 25   |
| Itchgrass       | 90  | -   | -   |     | 80   | 55             | 8.0  | 75                   | 75   | 70   |
| Johnson grass   | 100 | 98  | 65  | -   | 75   | 60             | 75   | 70                   | 50   | , 85 |
| Large Crabgrass | 100 | 75  | 80  | 80  | 70   | 75             | 65   | 70                   | 85   | 9.8  |
| Peanuts         | 40  | 60  | 50  | 10  | . 70 | 40             | 4.0  | 3.0                  | 12.0 | 10   |
| Pit Morninglory | 100 | 80  | 85  | 95  | 75   | 75             | 60   | 50                   | 80   | 85   |
| Purple Nutsedge | 75  | 7.5 | 70  | 75  | 20   | 25             | 30   | 65                   | 20   | 45   |
| Sandbur         | 100 | 60  |     | 50  | 75   | 6,5            | 75   | 35                   | 80   | - 70 |
| Sourgrass       | 90  | 75  | 65  | 70  | 65   | 7.0            | 50   | 60 <sub>.</sub>      | 85   | 75   |
| Sugarcane       | 80  |     |     |     | -    |                |      | $_{\tau_{\pm}}=\xi=$ |      | -    |
| Surinam grass   | 100 | 90  | 75  | 90  | 80   | 7.0            | 75   | 75                   | . 75 | 45   |

WO 97/19087 PCT/US96/18381

| Table H         |     |     |     |     | COMP | OUND |     |     |     |     |     |
|-----------------|-----|-----|-----|-----|------|------|-----|-----|-----|-----|-----|
| Rate 250 g/ha   | 1   | 2   | 3   | 4   | 5    | 6    | 12  | 1.4 | 16  | 24  | 3 0 |
| PREEMERGENCE    |     |     |     |     |      |      |     |     |     |     |     |
| Alexandergrass  | 95  | 98  | 0   | 0   | 100  | 100  | 100 | 100 | 80  | 10  | 100 |
| Bermudagrass    | 98  | 100 | 98  | 98  | 100  | 100  | 100 | 100 | 100 | 95  | 100 |
| Brdlf Sgnlgrass | 95  | 100 | -   | 0   | 90   | 100  | 98  | 98  | 8,0 | 40  | 98  |
| Cmn Purslane    | 100 | 100 | 95  | 100 | 100  | 100  | 100 | 100 | 100 | 75  | 30  |
| Cmn Ragweed     | 10C | 100 | 100 | 100 | -    | 100  | -   |     | 100 | -   | 100 |
| Cotton          | 100 | 10  | 15  | 0   | 30   | 20   | 50  | 90  | 10  | 0   | 9.8 |
| Dallisgrass     | 98  | 100 | 98  | 20  | 100  | 100  | 100 | 100 | 100 | C   | 100 |
| Goosegrass      | 80  | 100 | 98  | 98  | 100  | 100  | 100 | 100 | 9.8 | 100 | 100 |
| Guinea Grass    | -   | -   | -   | -   |      |      | -   | -   | -   | ~   | -   |
| Guineagrass     | 95  | 95  | 20  | Э   | 95   | 100  | 80  | 95  | 80  | 10  | €5  |
| Itchgrass       | 40  | 50  | 0   | 0   | 0    | 10   | 10  | 30  | C   | 0   | 25  |
| Johnson grass   | 85  | 90  | 80  | 70  | 95   | 98   | 95  | 95  | 90  | 3.5 | 100 |
| Johnsongrass    | -   | -   | _   |     |      | -    | -   | -   | -   | -   | _   |
| Large Crabgrass | 65  | 100 | 100 | 98  | 100  | 100  | 100 | 100 | 100 | 35  | 9.8 |
| Peanuts         | 40  | 30  | 5   | C   | 60   | 3.5  | 50  | 40  | 0   | 20  | 70  |
| Pit Morninglory | 30  | 95  | 2.0 | 35  | 80   | 95   | 85  | 80  | 90  | 70  | 96  |
| Purple Nutsedge | 65  | 20  | 5   | 10  | . 0  | 3 C  | 30  | 60  | 10  | 5   | 3 C |
| Sandbur         | 100 | 80  | 3.0 | 50  | 9.8  | 85   | 98  | 65  | 85  | 0   | 90  |
| Sourgrass       | 100 | 100 | 100 | 90  | 100  | 100  | 100 | 100 | 100 | 95  | 100 |
| Sugarcane       | 5   | -   | -   | -   | -    | -    | -   | -   | -   |     | -   |
| Surinam grass   | 100 | 35  | 4.0 | 5   | 100  | 100  | 100 | 98  | 9.8 | 10  | 10  |

| Table H         |     |     | CO  | MPOUN | ND  |     |     |     |
|-----------------|-----|-----|-----|-------|-----|-----|-----|-----|
| Rate 125 g/ha   | 1   | 2   | 3   | 4     | 5   | 12  | 14  | 30  |
| POSTEMERGENCE   |     |     |     |       |     |     |     |     |
| Alexandergrass  | 100 | 85  | 70  | 75    | 80  | 75  | 75  | 80  |
| ADexandergrass  |     | -   | -   | -     |     | -   | -   | -   |
| Bermudagrass    | 95  | 75  | 70  | 90    | 60  | 50  | 65  | 55  |
| Brdlf Sgnlgrass | 100 | 90  | 90  | 90    | 50  | 50  | 65  | 75  |
| Cmn Purslane    | 100 | 75  | 65  | 75    | 50  | 30  | 60  | 0   |
| Cmn Ragweed     | 100 | 98  | 0.8 | 95    | 0.8 | 65  | 6.3 | •   |
| Cotton          | 100 | 9.8 | 100 | 80    | 65  | 75  | 85  | 35  |
| Dallisgrass     | 100 | 85  | 90  | 85    | 75  | 75  | 80  | 75  |
| Goosegrass      | 85  | 40  | 30  | 50    | 65  | 20  | 30  | 40  |
| Guineagrass     | 90  | 75  | 50  | 40    | 80  | 75  | 80  | 20  |
| Itchgrass       | 90  | -   | -   |       | 8.0 | 75  | 70  | 55  |
| Johnson grass   | 100 | 90  | 65  | 90    | 9.0 | 75  | 70  | 65  |
| Large Crabgrass | 95  | 75  | -   | 80    | 40  | 65  | 70  | 85  |
| Peanuts         | 35  | 10  | 10  | 10    |     | 35  | 30  | 10  |
| Pit Morninglory | 100 | 75  | 85  | 95    | 65  | 3.0 | 35  | 80  |
| Purple Nutsedge | 9.8 | 75  | 5.0 | 50    | Ç   | 30  | 65  | 25  |
| Sandbur         | 98  | 30  | 10  | 40    | 75  | 1.0 | 10  | 60  |
| Sourgrass       | 80  | 75  | 50  | 3.0   | 65  | 50  | 60  | 75  |
| Sugarcane       | -   | -   | _   |       | -   | •   |     | -   |
| Surinam grass   | 95  | 90  | 50  | 9.0   | 85  | 75  | 75  | 3 5 |

| Table H         |     |      |     | СОМР | OUND | )   |                |     |     |  |
|-----------------|-----|------|-----|------|------|-----|----------------|-----|-----|--|
| Rate 125 g/ha   | 1   | 2    | 3   | 4    | 5    | 5   | 12             | 14  | 16  |  |
| PREEMERGENCE    |     |      |     |      |      |     |                |     |     |  |
| Alexandergrass  | 95  | 85   | 0   | 0    | 98   | 98  | 90             | 90  | 25  |  |
| Bermudagrass    | 98  | 100  | 80  | 80   | 100  | 100 | 95             | 90  | 98, |  |
| Brdlf Sgnlgrass | 35  | 75   | 30  | 0    | 80   | 85  | 95             | 5.0 | С   |  |
| Cmn Purslane    | 100 | 80   | 90  | 1.00 | 100  | ~   | 100            | 100 | 100 |  |
| Cmr. Ragweed    | 100 | 100  | 100 | 100  |      | 100 | -              | -   | 100 |  |
| Cotton          | 60  | 0    | 0   | 0    | 30   | 0   | 10             | 50  | 10  |  |
| Dallisgrass     | 95  | 100  | C   | C    | 100  | 90  | 95             | 100 | 100 |  |
| Goosegrass      | 100 | 100  | 98  | 90   | 100  | 100 | <del>9</del> 8 | 100 | 100 |  |
| Guinea Grass    | -   | -    | ~   | -    | -    | *** | -              |     | -   |  |
| Guineagrass     | 65  | 90   | 0   | 0    | 85   | 90  | 50             | 40  | 45  |  |
| Itchgrass       | 10  | 40   | 0   | C    | 0    | С   | 10             | 3.0 | 0   |  |
| Johnson grass   | 75  | 40   | 40  | 0    | 8.0  | 90  | С              | 75  | 20  |  |
| Johnsongrass    | -   | ~    | _   | -    | -    |     | -              | -   | -   |  |
| Large Crabgrass | 100 | 100  | 90  | 100  | 100  | 100 | 100            | 100 | 98  |  |
| Peanuts         | 40  | 40   | 0   | 0    | 60   | 30  | 50             | 10  | Û   |  |
| Pit Morninglory | 80  | 75   | 35  | 30   | 80   | 95  | 75             | 50  | 80  |  |
| Purple Nutsedge | 0   | 0    | 5   | 5    | С    | 25  | 30             | 20  | С   |  |
| Sandbur         | 85  | 65   | 20  | 0    | 95   | 40  | 50             | -   | 7.0 |  |
| Sourgrass       | 100 | 1.00 | 90  | 70   | 100  | 100 | 100            | 100 | 100 |  |
| Sugarcane       | -   | -    | -   | -    |      | •   |                | -   | -   |  |
| Surinam grass   | 9.8 | 10   | 0   | 0    | 100  | 98  | 90             | 95  | 9.0 |  |

| Table H         |      | C   | OMPO | JND |          |     |
|-----------------|------|-----|------|-----|----------|-----|
| Rate 64 g/ha    | 1    | 2   | 3    | 4   | 5        | 30  |
| POSTEMERGENCE   |      |     |      |     |          |     |
| Alexandergrass  | 100  | 85  | 80   | 75  | 80       | 80  |
| ADexandergrass  |      | -   | -    | -   | -        | ~   |
| Bermudagrass    | 95   | 75  | 40   | 80  | 60       | 45  |
| Brdlf Sgnlgrass | 100  | 85  | 90   | 90  | 50       | 65  |
| Cmn Purslane    | 100  | 75  | 65   | 70  | 50       | 0   |
| Cmn Ragweed     | 100  | 9.8 | 60   | 90  | 60       | -   |
| Cotton          | 100  | 98  | 70   | 90  | 65       | 35  |
| Dallisgrass     | 100  | 75  | 70   | 70  | 80       | 70  |
| Goosegrass      | 75   | 40  | 35   | 3 C | 65       | 40  |
| Guineagrass     | 80   | 50  | -    | 5.0 | 65       | O   |
| Itchgrass       | 1:00 |     | -    | -   | 75       | 45  |
| Johnson grass   | 100  | 75  | 65   | 75  | 8.0      | 50  |
| Large Crabgrass | 90   | 60  | 60   | 90  | 40       | 75  |
| Peanuts         | 25   | 5   | 0    | 10  | 60       | 5   |
| Pit Morninglory | 100  | 60  | 7 C  | 90  | 65       | 60  |
| Purple Nutsedge | 65   | 75  | 10   | 35  | $\Theta$ | 20  |
| Sandbur         | 75   |     | О    | 20  | 4.0      | 40  |
| Sourgrass       | 95   | 50  | 3.0  | 35  | 60       | 75  |
| Sugarcane       | -    | -   |      |     | ••       | -   |
| Surinam grass   | 9.0  | 65  | 3.0  | 40  | 70       | 3.5 |

| Table H         |                        |     | C     | OMPO | UND |     |     |     |  |  |  |
|-----------------|------------------------|-----|-------|------|-----|-----|-----|-----|--|--|--|
| Rate 64 g/ha    | 64 g/ha 1 2 3 4 5 5 16 |     |       |      |     |     |     |     |  |  |  |
| PREEMERGENCE    |                        |     |       |      |     |     |     |     |  |  |  |
| Alexandergrass  | 90                     | 60  | С     | 0    | 30  | 0   | 9   | 20  |  |  |  |
| Bermudagrass    | 98                     | 100 | - 5 C | 75   | 95  | 90  | 85  | 100 |  |  |  |
| Brdlf Sgnlgrass | 6                      | 10  | 20    | 0    | 50  | 5   | 0   | 0   |  |  |  |
| Cmn Purslane    | 10                     | 60  | 65    | 50   | 100 | -   | 100 | 0   |  |  |  |
| Cmn Ragweed     | 100                    | 100 | 80    | 100  |     | 100 | 100 | 100 |  |  |  |
| Cotton          | 20                     | 0   | С     | 0    | 30  | Ō   | Ĵ   | 46  |  |  |  |
| Dallisgrass     | 80                     | 98  | -     | С    | 100 | 90  | 85  | 70  |  |  |  |
| Goosegrass      | 100                    | 98  | 50    | 9.8  | 100 | 3 6 | 98  | 100 |  |  |  |
| Guinea Grass    | -                      | -   | -     | -    | -   | _   | -   | -   |  |  |  |
| Guineagrass     | 5                      | 85  | Ů     | Ĉ    | 10  | 50  | G   | C   |  |  |  |
| Itchgrass       | 0                      | O   | -     | 0    | O   | *** | 0   | 0   |  |  |  |
| Johnson grass   | 50                     | 20  | 0     | 0    | 30  | 20  | 0   | 0   |  |  |  |
| Johnsongrass    | -                      |     | ~     | -    | -   | -   |     | -   |  |  |  |
| Large Crabgrass | 50                     | 98  | 0     | 50   | 75  | 70  | 98  | 100 |  |  |  |
| Peanuts         | 5                      | 20  | 0     | С    | 60  | 0   | O   | 0   |  |  |  |
| Pit Morninglory | 90                     | 65  | С     | -    | 75  | 80  | 40  | 40  |  |  |  |
| Purple Nutsedge | C                      | 0   | С     | 0    | 0   | 5   | 0   | Q   |  |  |  |
| Sandbur         | 40                     | 50  | 0     | Û    | 65  | 0   | 5.0 | 9.8 |  |  |  |
| Sourgrass       | 100                    | 100 | 90    | 4.0  | 100 | 98  | 98  | 100 |  |  |  |
| Sugarcane       | -                      | -   | -     | ••   |     | -   |     | -   |  |  |  |
| Surinam grass   | 98                     | Ü   | 0     | C    | 95  | 20  | 80  | ú   |  |  |  |

| Table H         | C   | COMPO | DUND |            |            |
|-----------------|-----|-------|------|------------|------------|
| Rate 32 g/ha    | 1   | 2     | 3    | 4          | 5          |
| POSTEMERGENCE   |     |       |      |            |            |
| Alexandergrass  |     | 75    | 75   | 75         | 0.8        |
| ADexandergrass  |     | -     | -    | -          | -          |
| Bermudagrass    | 90  | 60    | 40   | 70         | 50         |
| Brdlf Sgnlgrass | 95  | 80    | 40   | 98         | 30         |
| Cmn Purslane    | 95  | 60    | 40   | 65         | 50         |
| Cmn Ragweed     | 100 | 98    | 75   | 95         | 50         |
| Cotton          | 100 | 75    | 90   | 70         | 50         |
| Dallisgrass     | 95  | 75    | 40   | 35         | 80         |
| Goosegrass      | 70  | 30    | 20   | 30         | 65         |
| Guineagrass     | 75  | 3.0   | 40   | 50         | 65         |
| Itchgrass       | 80  | ~-    | -    | -          | 70         |
| Johnson grass   | 100 | 65    | 20   | 50         | <b>7</b> 0 |
| Large Crabgrass | 90  | 40    | 35   | 50         | 35         |
| Peanuts         | 25  | 5     | 0    | 10         | 50         |
| Pit Morninglory | 100 |       | 70   | 90         | 35         |
| Purple Nutsedge | 65  | 40    | 10   | 10         | 0          |
| Sandbur         | 60  |       | 0    | 20         | 50         |
| Sourgrass       | 8.0 | 60    | 40   | 3 C        | 50         |
| Sugarcane       | -   | -     |      |            | -          |
| Surinam grass   | 8.0 | 45    | 40   | <b>6</b> 0 | 65         |

| Table H         | COMPOUND           |      |     |    |     |     |     |  |  |  |  |
|-----------------|--------------------|------|-----|----|-----|-----|-----|--|--|--|--|
| Rate 32 g/ha    | 2 g/ha 1 2 3 4 5 6 |      |     |    |     |     |     |  |  |  |  |
| PREEMERGENCE    |                    |      |     |    |     |     |     |  |  |  |  |
| Alexandergrass  | 20                 | 45   | 0   | 0  | 0   | 20  | 0   |  |  |  |  |
| Bermudagrass    | 9.8                | 75   | 40  | 30 | 5 0 | 90  | 75  |  |  |  |  |
| Brdlf Sgnlgrass | C                  | c    | 0   | 0  | 50  | 0   | О   |  |  |  |  |
| Cmn Purslane    | 50                 | 40   | 40  | 30 | 100 |     | 100 |  |  |  |  |
| Cmn Ragweed     | 80                 | 80   | 100 | 75 | -   | 100 | 100 |  |  |  |  |
| Cotton          | 50                 | 0    | 0   | 0  | 20  | C   | O   |  |  |  |  |
| Dallisgrass     | 65                 | 20   | 0   | C  | 100 | 10  | 0   |  |  |  |  |
| Goosegrass      | 25                 | 85   | O   | 90 | 100 | 98  | 90  |  |  |  |  |
| Guinea Grass    | -                  | -    | -   | -  | -   | -   | 0   |  |  |  |  |
| Guineagrass     | 1.0                | 60   | 0   | 0  | 10  | 40  |     |  |  |  |  |
| Itchgrass       | Ü                  | 0    |     | С  | C   | *** | 0   |  |  |  |  |
| Johnson grass   | 10                 | 0    | С   | C  | O   | 10  |     |  |  |  |  |
| Johnsongrass    |                    | -    | -   | -  |     |     | С   |  |  |  |  |
| Large Crabgrass | 40                 | 75   | Û   | 30 | 70  | 65  | 75  |  |  |  |  |
| Peanuts         | 0                  | 20   | 0   | 0  | 10  | -   | 0   |  |  |  |  |
| Pit Morninglory | 80                 | 50   | -   | 30 | 20  | 75  | 25  |  |  |  |  |
| Purple Nutsedge | Ç                  | Ō    | 0   | 0  | 0   | ٥   | 0   |  |  |  |  |
| Sandbur         | -                  | 0    | 0   | С  | 5 C | 0   | 0   |  |  |  |  |
| Sourgrass       | 98                 | 100  | Õ   | 20 | 100 | 98  | 8.5 |  |  |  |  |
| Sugarcane       | -                  | 55.5 | -   |    | _   |     | -   |  |  |  |  |
| Surinam grass   | 10                 | 0    | Q   | 0  | 40  | 0   | 0   |  |  |  |  |

| Table H         | ,          | COMP | DUND |    |      | Table H         | (   | COME | OUND |            |     |
|-----------------|------------|------|------|----|------|-----------------|-----|------|------|------------|-----|
| Rate 16 g/ha    |            | 2    | 3    | 4  | 5    | Rate 16 g/ha    | :   | 2    | 3    | 4          | 5   |
| POSTEMERGENCE   |            |      |      |    |      | PREEMERGENCE    |     |      |      |            |     |
| Alexandergrass  | 73         | 70   | 50   | 60 | 75   | Alexandergrass  | 0   | 30   | 0    | Ō          | 0   |
| ADexandergrass  | _          |      | _    | -  |      | Bermudagrass    | 35  | 0    | 40   | 3 0        | 30  |
| Bermudagrass    | 90         | 40   | 1.0  | 50 | 40   | Brdlf Sgnlgrass | 0   | 0    | 0    | C          | 50  |
| Brdlf Sgnlgrass | 100        | 75   | 20   | 20 | О    | Cmn Purslane    | 0   | 0    | 40   | 0          | 80  |
| Cmn Purslane    | 98         | 50   | 20   | 60 | 20   | Cmn Ragweed     | 50  | 20   | 100  | 20         |     |
| Cmn Ragweed     | 100        | 70   | 70   | 75 | -10- | Cotton          |     | C    | 0    | C          | C   |
| Cotton          | 100        | 60   | 70   | 55 | 20   | Dallisgrass     | 5   | 0    | Ģ    | C.         | 90  |
| Dallisgrass     | <b>7</b> 0 | 80   | 2 C  | 20 | 80   | Goosegrass      | 0   | 20   | 0    |            | 9.0 |
| Goosegrass      | 7.0        | 3.0  | С    | Ō  | 40   | Guinea Grass    | -   | ~    | -    | -          | -   |
| Guineagrass     | 50         | 3.0  | 10   | 5  | 50   | Guineagrass     | 0   | O    | ::   | ·          | 0   |
| ltchgrass       | 60         | -    | -    | -  | 50   | Itchgrass       | 0   | О    |      | 0          | S   |
| Johnson grass   | 90         | 35   | C    |    | 60   | Johnson grass   | C   | 0    | 0    | 0          | Ö   |
| Large Crabgrass | 75         | 3 C  | 5    | 50 | 35   | Johnsongrass    | -   | -    | -    | -          | -   |
| Peanuts         | 5          | G    | C    | 10 | _    | Large Crabgrass | 2.0 | C    | ņ    | 10         | 3.0 |
| Pit Morninglory | 90         | 3 0  | 10   | 80 | 35   | Peanuts         | C   | С    | 0    | C          | 0   |
| Purple Nutsedge | 98         | 20   | 5    | 5  | 0    | Pit Morninglory | 50  | 0    | 0    | Ģ          | 3.0 |
| Sandbur         | 75         | 20   | О    | 20 | 20   | Purple Nutsedge | 0   | 0    | 0    | Ō          | -   |
| Sourgrass       | 75         | 40   | 10   | 20 | 6C   | Sandbur         |     | 0    | 0    | Ċ.         | 0   |
| Sugarcane       |            | -    |      | -  | -    | Sourgrass       | 98  | 70   | Ò    | <i>C</i> ; | 95  |
| Surinam grass   | 70         | 45   | 20   | 40 | 5 C  | Sugarcane       | -   | -    |      | -          |     |
|                 |            |      |      |    |      | Surinam grass   | 20  | 0    | 0    | 0          | 10  |

|                 |     |      |      |     |     | 1               |     |      |      |            |     |
|-----------------|-----|------|------|-----|-----|-----------------|-----|------|------|------------|-----|
| Table H         |     | COME | OUNE | )   |     | Table H         |     | COME | OUND | :          |     |
| Rate 8 g/ha     | 1   | 2    | 3    | 4   | 5   | Rate 8 g/ha     | 1.  | 2    | 3    | 4          | 5   |
| POSTEMERGENCE   |     |      |      |     |     | PREEMERGENCE    |     |      |      |            |     |
| Alexandergrass  | -   | 70   | 10   | 5   | 60  | Alexandergrass  | 0   | 20   | 0    | 0          | 0   |
| ADexandergrass  | -   | -    | -    | ~   | -   | Bermudagrass    | 5   | 0    | 0    | 20         | 0   |
| Bermudagrass    | 80  | 40   | 0    | 35  | 40  | Brdlf Sgnlgrass | C   | 0    | 0    | 0          | 10  |
| Brdlf Sgnlgrass | 75  | 40   | 0    | С   | 0   | Cmn Purslane    | 0   | Q.   | 30   | O          | 0   |
| Cmm Purslane    | 90  | 25   | 20   | 5 ¢ | 20  | Cmn Ragweed     | 0   | 0    | 50   | 0          | _   |
| Cmn Ragweed     | 95  | 50   | 40   | 10  | 30  | Cotton          | 0   | 0    | 0    | Э          | 0   |
| Cotton          | 100 | 40   | C    | 5   | 20  | Dallisgrass     | 6)  | Ģ    | o    | •          | 20  |
| Dallisgrass     | 50  | 10   | 20   | 10  | 80  | Goosegrass      | O   | ō.   | C    | Ç          | O   |
| Goosegrass      | 60  | 0    | 0    | 0   | 10  | Guinea Grass    | _   | -    | -    |            | -   |
| Guineagrass     | 40  | 20   | C    | 5   | 20  | Guineagrass     | С   | S    | Ç.   | <u>;</u> . | ū   |
| Itchgrass       | 30  | -    | -    | -   | 50  | Itchgrass       | Ò   | Ó    | O    | ō.         | 0   |
| Johnson grass   | 80  | 30   | 0    | 5   | 50  | Johnson grass   | 0   | Э    | 0    | 0          | Э   |
| Large Crabgrass | 75  | 25   | 5    | 35  | 3.5 | Johnsongrass    |     | -    | -    | -          | ~   |
| Peanuts         | Ĉ   | 0    | 0    | 10  | 30  | Large Crabgrass | 20  | 0    | 0    | 5          | 3.0 |
| Pit Morninglory | 75  | 0    | -    | 75  | 2 C | Peanuts         | C   | 50   | e    | 0          | Ç   |
| Purple Nutsedge | 0   | 20   | С    | 0   | 0   | Pit Morninglory | 80  | Ç    | C    | (;         | 0   |
| Sandbur         | 75  | 0    | О    | 20  | 10  | Purple Nutsedge | 0   | _    | 0    | 0          | 0   |
| Sourgrass       | 6.5 | 20   | 0    | 0   | 30  | Sandbur         | -   | С    | 0    | 0          | _   |
| Sugarcane       | -   | -    | -    | -   | -   | Scurgrass       | 8 C | 50   | C    | C          | 50  |
| Surinam grass   | 4 û | 10   | 0    | C   | 65  | Sugarcane       | -   | -    | -    | -          | -   |
|                 |     |      |      |     |     | Surinam grass   | 0   | e    | 0    | Ċ          | 0   |
|                 |     |      |      |     |     |                 |     |      |      |            |     |

PCT/US96/18381

| Table H         | C   | OMPO | DUND | Table H         | C   | OMPC | UND |
|-----------------|-----|------|------|-----------------|-----|------|-----|
| Rate 4 g/ha     | 1   | 2    | 5    | Rate 4 g/ha     | 1   | 2    | 5   |
| POSTEMERGENCE   |     |      |      | PREEMERGENCE    |     |      |     |
| Alexandergrass  | 100 | 6 C  | 60   | Alexandergrass  | G   | 10   | 0   |
| ADexandergrass  | -   | -    | -    | Bermudagrass    | 0   | 0    | C   |
| Bermudagrass    | 75  | 0    | 20   | Brdlf Sgnlgrass | 0   | 0    | 10  |
| Brdlf Sgnlgrass | 75  | 40   | 0    | Cmn Purslane    | 0   | 0    | 0 - |
| Cmn Purslane    | 65  | 0    | 0    | Cmn Ragweed     | 0   | 0    |     |
| Cmn Ragweed     | 80  | 65   | 30   | Cotton          | 0   | 0    | 0   |
| Cotton          | 80  | 0    | 20   | Dallisgrass     | 0   | 0    | 10  |
| Dallisgrass     | 20  | 0    | 65   | Goosegrass      | С   | 0    | -   |
| Goosegrass      | 3.0 | 20   | ŷ.   | Guinea Grass    | -   |      |     |
| Guineagrass     | 10  | C    | 0    | Guineagrass     | C   | C,   | 0   |
| Itchgrass       | 20  | _    | 0    | Itchgrass       | 0   | 0    | 0   |
| Johnson grass   | 35  | 0    | 20   | Johnson grass   | 0   | Ō    | G   |
| Large Crabgrass | 65  | 0    | 20   | Johnsongrass    | -   | -    | *** |
| Peanuts         | 0   | 0    | 30   | Large Crabgrass | 3.0 | C    | 3 C |
| Pit Morninglory | 80  | 0    | 20   | Peanuts         | 0   | 0    | С   |
| Purple Nutsedge | 0   | Ú    | 0    | Pit Morninglory | 60  | Э    | 0   |
| Sandbur         | 35  |      | C    | Purple Nutsedge | 0   | 0    | -   |
| Sourgrass       | 35  | 1 C  | .10  | Sandbur         | -   | O    | O   |
| Sugarcane       | -   |      |      | Sourgrass       | 0   | 20   | C   |
| Surinam grass   | 50  | Ō    | 3.0  | Sugarcane       | -   | -    |     |
|                 |     |      |      | Surinam grass   | О   | 0    | 0   |

### **CLAIMS**

What is claimed is:

1. A compound selected from Formula I, *N*-oxides and agriculturally-suitable salts thereof,

5

wherein

Q is

Q-3

J is

$$\mathbb{R}^{1}$$
 $\mathbb{R}^{3}$ 
 $\mathbb{R}^{2}$ 
 $\mathbb{R}^{2}$ 

15

10

X is O,  $S(O)_r$ ,  $N(C_1-C_2$  alkyl) or  $CH_2$  optionally substituted with 1-2  $C_1-C_2$  alkyl; Y together with the carbons to which it is attached form a phenyl ring or a fused five or six-membered heterocyclic ring, which may be fully aromatic or

|    | partially or fully saturated, containing 1 to 3 heteroatoms independently                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | selected from the group nitrogen, oxygen, and sulfur, provided that the                                                                              |
|    | heterocyclic ring contains no more than 2 oxygens and no more than 2                                                                                 |
|    | sulfurs, and the ring is optionally substituted with one to three groups                                                                             |
| 5  | independently selected from the group C <sub>1</sub> -C <sub>6</sub> alkyl, C <sub>1</sub> -C <sub>6</sub> haloalkyl, C <sub>1</sub> -C <sub>6</sub> |
|    | alkoxy, $C_1$ - $C_6$ haloalkoxy, $C_1$ - $C_6$ alkylthio, $C_1$ - $C_6$ haloalkylthio, $C_1$ - $C_6$                                                |
|    | alkylsulfinyl, $C_1$ - $C_6$ haloalkylsulfinyl, $C_1$ - $C_6$ alkylsulfonyl, $C_1$ - $C_6$                                                           |
|    | haloalkylsulfonyl, aminosulfonyl, $C_1$ - $C_2$ alkylaminosulfonyl, $C_2$ - $C_4$                                                                    |
|    | dialkylaminosulfonyl, $NR^{15}R^{16}$ , $C_2$ - $C_6$ alkoxyalkyl, $C_2$ - $C_6$ alkoxycarbonyl,                                                     |
| 10 | C2-C6 alkylcarbonyl, halogen, cyano, nitro, phenyl optionally substituted                                                                            |
|    | with C <sub>1</sub> -C <sub>3</sub> alkyl, halogen, cyano or nitro, and pyridyl optionally substituted                                               |
|    | with $C_1$ - $C_3$ alkyl, halogen, cyano or nitro, provided that when a nitrogen                                                                     |
|    | atom of the fused heterocyclic ring is substituted, then the nitrogen                                                                                |
|    | substituent is other than halogen;                                                                                                                   |
| 15 | Z is selected from the group -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> -, -OCH <sub>2</sub> CH <sub>2</sub> -, -O-CH=CH-,                     |
|    | $-NR^{13}CH_2CH_2$ -, $-NR^{13}CH=CH$ -, $-N=CHCH_2$ $-OCH_2O$ -,                                                                                    |
|    | $-NR^{13}CH_2NR^{13}$ -, $-N=CHNR^{13}$ -, $-CH_2OCH_2$ -, $-CH_2NR^{13}CH_2$ -,                                                                     |
|    | $-CH_2S(O)_rCH_{2^-}, -CH_2C(O)CH_{2^-}, -CH=NCH_{2^-}, -CH_2CH_{2^-}, -OCH_{2^-},$                                                                  |
|    | -SCH <sub>2</sub> -, and -NR <sup>13</sup> CH <sub>2</sub> -, each group optionally substituted with one to four                                     |
| 20 | R <sup>5</sup> , and the directionality of the Z linkage is defined such that the moiety                                                             |
|    | depicted on the left side of the linkage is bonded to the carbonyl carbon of                                                                         |
|    | Q-1;                                                                                                                                                 |
|    | $R^1$ and $R^2$ are independently H, $C_1$ - $C_6$ alkyl, $C_1$ - $C_6$ haloalkyl, $C_1$ - $C_6$ alkoxy,                                             |
|    | $C_1$ - $C_6$ haloalkoxy, $C_1$ - $C_6$ alkylthio, $C_1$ - $C_6$ haloalkylthio, $C_1$ - $C_6$                                                        |
| 25 | alkylsulfinyl, $C_1$ - $C_6$ haloalkylsulfinyl, $C_1$ - $C_6$ alkylsulfonyl, $C_1$ - $C_6$                                                           |
|    | haloalkylsulfonyl, aminosulfonyl, $C_1$ - $C_2$ alkylaminosulfonyl, $C_2$ - $C_4$                                                                    |
|    | dialkylaminosulfonyl, halogen, cyano or nitro;                                                                                                       |
|    | each $R^3$ is $C_1$ - $C_2$ alkyl;                                                                                                                   |
|    | $R^4$ is $OR^{14}$ , $SH$ , $C_1$ - $C_6$ alkylthio, $C_1$ - $C_6$ haloalkylthio, $C_1$ - $C_6$ alkylsulfinyl, $C_1$ - $C_6$                         |
| 30 | haloalkylsulfinyl, $C_1$ - $C_6$ alkylsulfonyl, $C_1$ - $C_6$ haloalkylsulfonyl, halogen or                                                          |
|    | NR <sup>15</sup> R <sup>16</sup> ; or R <sup>4</sup> is phenylthio, phenylsulfonyl or -SCH <sub>2</sub> C(O)Ph, each                                 |
|    | optionally substituted with C <sub>1</sub> -C <sub>3</sub> alkyl, halogen, cyano or nitro;                                                           |
|    | each $R^5$ is independently H, $C_1$ - $C_3$ alkyl, $C_3$ - $C_6$ alkenyl, $C_3$ - $C_6$ alkynyl, $C_1$ - $C_3$                                      |
|    | alkoxy, formyl, $C_2$ - $C_6$ alkoxycarbonyl, -CH( $C_1$ - $C_3$ alkoxy) <sub>2</sub> , $C_1$ - $C_3$                                                |
| 35 | alkylthio, C <sub>2</sub> -C <sub>4</sub> alkylthioalkyl, cyano or halogen: or when two R <sup>5</sup> are                                           |
|    | attached to the same carbon atom, then said R <sup>5</sup> pair can be taken together to                                                             |

```
form -OCH2CH2O-, -OCH2CH2CH2O-, -SCH2CH2S- or -SCH2CH2CH2S-.
                           each group optionally substituted with 1-4 CH<sub>3</sub>;
                  R<sup>6</sup> is OR<sup>14</sup>, SH, C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>1</sub>-C<sub>6</sub> haloalkylthio, C<sub>1</sub>-C<sub>6</sub> alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>
                           haloalkylsulfinyl, C<sub>1</sub>-C<sub>6</sub> alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfonyl, halogen or
  5
                           NR<sup>15</sup>R<sup>16</sup>; or R<sup>4</sup> is phenylthio, phenylsulfonyl or -SCH<sub>2</sub>C(O)Ph, each
                           optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;
                  R<sup>7</sup> is H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl or
                           -CH<sub>2</sub>CH<sub>2</sub>OR<sup>13</sup>; or R<sup>7</sup> is phenyl or benzyl, each optionally substituted on the
                           phenyl ring with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;
10
                  R<sup>8</sup> is H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, halogen,
                           cyano or nitro;
                  R<sup>9</sup> is H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl or C<sub>3</sub>-C<sub>6</sub> halocycloalkyl;
                  R<sup>10</sup> is H, C<sub>2</sub>-C<sub>6</sub> alkoxycarbonyl, C<sub>2</sub>-C<sub>6</sub> haloalkoxycarbonyl, CO<sub>2</sub>H or cyano;
                  R<sup>11</sup> is C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl optionally substituted with
                           1-4 C<sub>1</sub>-C<sub>3</sub> alkyl or C<sub>3</sub>-C<sub>6</sub> halocycloalkyl;
15
                  R^{12} is eyano, C_2-C_6 alkoxycarbonyl, C_2-C_6 alkylcarbonyl, S(O)_r R^{16} or
                           C(O)NR<sup>15</sup>R<sup>16</sup>:
                  R^{13} is H or C_1-C_6 alkyl;
                  R^{14} is H, C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_2-C_6 alkoxyalkyl, formyl, C_2-C_6
                           alkylcarbonyl, C2-C6 alkoxycarbonyl, C(O)NR15R16, C1-C6 alkylsulfonyl or
20
                          C_1-C_6 haloalkylsulfonyl; or R^{14} is phenyl, benzyl, benzyl,
                           -CH<sub>2</sub>C(O)phenyl or phenylsulfonyl, each optionally substituted on the
                          phenyl ring with C_1-C_3 alkyl, halogen, cyano or nitro;
                  R^{15} is H or C_1-C_6 alkyl;
                 R^{16} is C_1-C_6 alkyl or C_1-C_6 alkoxy; or
25
                 R^{15} and R^{16} can be taken together as -CH2CH2-, -CH2CH2CH2-,
                          -CH2CH2CH2CH2-, -CH2CH2CH2CH2CH2- or -CH2CH2OCH2CH2-;
                 m is 0, 1 or 2;
                 n is 1 or 2;
30
                 p is 0, 1, or 2; and
```

r is 0, 1 or 2.

# 2. A compound of Claim 1 wherein J is selected from the group

$$\begin{array}{c|c}
R^{1} & N - N \\
R^{18} \\
R^{18} \\
R^{18}
\end{array}$$

J-1

J-3

$$\begin{array}{c|c}
R^1 & O & N \\
\hline
(R^2)_n & (R^3)_p
\end{array}$$

J-5

$$\mathbb{R}^{18}$$
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 
 $\mathbb{R}^{18}$ 

J-7

$$\begin{array}{c}
\mathbb{R}^{18} \\
\mathbb{R}^{17} \\
\mathbb{R}^{10} \\
\mathbb{R}^{10} \\
\mathbb{R}^{10}
\end{array}$$

J-2

$$(\mathbb{R}^2)_n$$

$$\mathbb{R}^1$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

J-4

$$\mathbb{R}^{1}$$
  $\mathbb{R}^{18}$   $\mathbb{R}^{18}$   $\mathbb{R}^{18}$   $\mathbb{R}^{18}$ 

J-6

J-8

$$\begin{array}{c}
R^{18} \\
 & O \\
 & (R^3)_p \\
 & (R^3)_p
\end{array}$$

$$R^{17}$$
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 

$$\begin{array}{c} R^{18} \\ R^{18} \\ R^{2} $

J-13

$$R^{18}$$
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 

J-15

J-1()

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

J-12

$$R^{18}$$
 $R^{17}$ 
 $R^{18}$ 
 $R^{17}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{19}$ 
 $R^{18}$ 

J-14

$$\begin{array}{c}
R^{18} \\
 & S \\
 & R^{18}
\end{array}$$

$$\begin{array}{c}
R^{18} \\
 & R^{18}
\end{array}$$

$$\begin{array}{c}
R^{18} \\
 & R^{18}
\end{array}$$

$$R^{18}$$
 $R^{18}$ 
 $R^{19}$ 
 $R$ 

$$\begin{array}{c} R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18} \\ R^{18$$

$$\begin{array}{c|c} R^{17} & R^{18} \\ \hline \\ R^{1} & N \\ \hline \\ (R^{2})_{m} & R^{18} \\ \hline \\ (R^{3})_{p} & R^{18} \\ \hline \end{array}$$

J-21

$$R^{18}$$
 $R^{18}$ 
 $R$ 

$$\begin{array}{c|c} R^{1} & N & R^{18} \\ \hline N & N & R^{17} \\ \hline (R^2)_n & X & N & R^{17} \end{array}$$

J-2()

J-22

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

J-24

$$\begin{array}{c|c} R^{18} \\ \hline \\ R^{1} \\ \hline \\ R^{3} \\ \hline \\ R^{3} \\ \hline \\ R^{3} \\ \hline \\ \end{array}$$

$$\begin{array}{c}
R^{17} \\
N - N \\
(R^3)_p
\end{array}$$

$$\begin{array}{c}
R^{18} \\
X
\end{array}$$

J-27

$$(R^2)_n$$

$$R^1$$

$$(R^3)_p$$

$$R^{18}$$

J-29

$$(R^{18})_q$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-31

$$(R^2)_n$$
 $(R^3)_p$ 
 $(R^{19})_q$ 

J-26

$$\begin{array}{c}
R^{18} \\
N \\
N \\
R^{17} \\
N \\
R^{17} \\
R^{3}i_{p}
\end{array}$$

J-28

$$(R^2)_n$$

$$(R^3)_p$$

$$(R^{19})_q$$

J-3()

$$(\mathbb{R}^{18})_q$$

$$(\mathbb{R}^{2})_n$$

$$(\mathbb{R}^{3})_p$$

$$(\mathbb{R}^2)_n$$

$$(R^{18})_q$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-35

$$(R^{18})_q$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-37

$$(R^{18})_q$$

$$(R^{18})_p$$

$$(R^{2})_n$$

$$(R^{3})_p$$

252

$$(R^{18})_q$$

$$(R^{2})_n$$

$$(R^{3})_p$$

J-34

$$(R^2)_n$$

$$(R^3)_p$$

$$(R^3)_p$$

J-36

$$(\mathbb{R}^{2})_{n}$$

J-38

$$(R^{18})_q$$

$$(R^{3})_p$$

$$(R^{2})_n$$

**J-4**0

5

10

$$R^{1} \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$(R^{2})_{n} \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$X \xrightarrow{N} \stackrel{N}{\longrightarrow} R^{18}$$

$$\mathbb{R}^{18}$$

J-42

R<sup>17</sup> is H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, C<sub>1</sub>-C<sub>6</sub> alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub> haloalkylsulfonyl, aminosulfonyl, C<sub>1</sub>-C<sub>2</sub> alkylaminosulfonyl, C<sub>2</sub>-C<sub>6</sub> alkoxyalkyl, C<sub>2</sub>-C<sub>6</sub> alkoxyalkyl, C<sub>2</sub>-C<sub>6</sub> alkoxyarbonyl or C<sub>2</sub>-C<sub>6</sub> alkylcarbonyl; or R<sup>17</sup> is phenyl or pyridyl, each optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl, halogen, cyano or nitro;

each R<sup>18</sup> is independently H,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  haloalkoxy,  $C_1$ - $C_6$  alkylthio,  $C_1$ - $C_6$  haloalkylthio,  $C_1$ - $C_6$  alkylsulfinyl,  $C_1$ - $C_6$  haloalkylsulfinyl,  $C_1$ - $C_6$  haloalkylsulfonyl,  $C_1$ - $C_6$  haloalkylsulfonyl, aminosulfonyl,  $C_1$ - $C_2$  alkylaminosulfonyl,  $C_2$ - $C_4$  dialkylaminosulfonyl,  $C_1$ - $C_6$  alkoxyalkyl,  $C_2$ - $C_6$  alkoxyarbonyl,  $C_2$ - $C_6$  alkylcarbonyl, halogen, cyano or nitro;

each  $R^{19}$  is independently H,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  haloalkyl,  $C_2$ - $C_6$  alkoxyalkyl,  $C_2$ - $C_6$  alkoxycarbonyl or  $C_2$ - $C_6$  alkylcarbonyl; and

15 q is 0, 1 or 2.

3. A compound of Claim 2 wherein: Q is Q-1.

4. A compound of Claim 3 wherein:

Z is CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> optionally substituted with one to four R<sup>5</sup>;

20 R<sup>1</sup> and R<sup>2</sup> are independently H,  $C_1$ - $C_3$  alkyl,  $C_1$ - $C_3$  alkoxy, halogen or nitro: R<sup>4</sup> is  $OR^{14}$ ; and

 $R^{14}$  is H or  $C_1$ - $C_4$  alkylsulfonyl; or  $R^{14}$  is benzoyl or phenylsulfonyl, each optionally substituted with  $C_1$ - $C_3$  alkyl, halogen, cyano or nitro.

5. A compound of Claim 4 wherein:

25  $X \text{ is } S(O)_r$ ; m is 1 or 2; and

254

PCT/US96/18381

r is 2.

6. A compound of Claim 2 wherein:

Q is Q-2.

7. A compound of Claim 6 wherein:

5  $R^1$  and  $R^2$  are independently H,  $C_1$ - $C_3$  alkyl,  $C_1$ - $C_3$  alkoxy, halogen or nitro:

 $R^6$  is H or  $C_1$ - $C_4$  alkylsulfonyl; or  $R^6$  is benzoyl or phenylsulfonyl, each optionally substituted with  $C_1$ - $C_3$  alkyl, halogen, evano, or nitro:

 $R^7$  is H,  $C_1$ - $C_6$  alkyl, or  $C_3$ - $C_6$  alkenyl; and

R<sup>8</sup> is H.

10 8. A compound of Claim 7 wherein:

X is  $S(O)_r$ ;

m is 1 or 2; and

r is 2.

9. A compound of Claim 2 wherein:

15 Q is Q-3.

10. A compound of Claim 9 wherein:

 $R^1$  and  $R^2$  are independently H,  $C_1$ - $C_3$  alkyl,  $C_4$ - $C_3$  alkoxy, halogen or nitro;

 $R^9$  is H,  $C_1$ - $C_3$  alkyl, or cyclopropyl; and

 $R^{10}$  is H or  $C_2$ - $C_3$  alkoxycarbonyl.

20 11. A compound of Claim 10 wherein:

X is  $S(O)_r$ ;

m is 1 or 2; and

r is 2.

12. A compound of Claim 2 wherein:

25 Q is Q-4.

13. A compound of Claim 12 wherein:

R<sup>1</sup> and R<sup>2</sup> are independently H, C<sub>1</sub>-C<sub>3</sub> alkyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, halogen or nitro;

 $R^{11}$  is  $C_3$ - $C_6$  cycloalkyl or  $C_3$ - $C_6$  halocycloalkyl, each optionally substituted with 1-4  $C_1$ - $C_3$  alkyl; and

R<sup>12</sup> is cyano or  $C_2$ - $C_6$  alkoxycarbonyl.

14. A compound of Claim 13 wherein:

X is  $S(O)_r$ ;

m is 1 or 2; and

r is 2.

35

|    | 15. The compound of Claim 1 which is selected from the group:                              |
|----|--------------------------------------------------------------------------------------------|
|    | a) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-                      |
|    | yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide;                                             |
|    | b) 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-                 |
| 5  | yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide;                                             |
|    | c) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-                      |
|    | yl)carbonyl]-5-methyl-1,3-cyclohexanedione S,S-dioxide;                                    |
|    | d) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethy               |
|    | 5-hydroxy-1 <i>H</i> -pyrazol-4-yl)methanone <i>S</i> , <i>S</i> -dioxide;                 |
| 10 | e) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-                    |
|    | c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide;                                 |
|    | f) $2-[(4,5-dihydro-2,7,10-trimethyl-2H[1]benzothiepino[5,4-c]pyrazol-9-$                  |
|    | yl)carbonyl]-5-methyl-1,3-cyclohexanedione S,S-dioxide;                                    |
|    | g) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-                      |
| 15 | yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide monosodium salt;                             |
|    | h) 2-[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-                 |
|    | yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide monosodium salt;                             |
|    | i) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-                      |
|    | yl)carbonyl]-5-methyl-1,3-cyclohexanedione S,S-dioxide monosodium salt;                    |
| 20 | j) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethy               |
|    | 5-hydroxy-1 <i>H</i> -pyrazol-4-yl)methanone <i>S</i> , <i>S</i> -dioxide monosodium salt; |
|    | k) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-                    |
|    | c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione $S$ , $S$ -dioxide monosodium salt:          |
|    | 1) $2-[(4,5-dihydro-2,7,10-trimethyl-2H[1]benzothiepino[5,4-c]pyrazol-9-$                  |
| 25 | yl)carbonyl]-5-methyl-1,3-cyclohexanedione S,S-dioxide monosodium salt;                    |
|    | m) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-                      |
|    | yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide monopotassium salt;                          |
|    | n) 2- $[(2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-$              |
|    | yl)carbonyl]-1,3-cyclohexanedione S,S-dioxide monopotassium salt;                          |
| 30 | o) 2-[(2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-                      |
|    | yl)carbonyl]-5-methyl-1,3-cyclohexanedione S,S-dioxide monopotassium salt                  |
|    | p) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)(1-ethy               |
|    | 5-hydroxy-1H-pyrazol-4-yl)methanone S,S-dioxide monopotassium salt;                        |
|    | q) 2-[(3-chloro-2-ethyl-2,4-dihydro-6,9-dimethyl[1]benzothiopyrano[4,3-                    |
| 35 | c]pyrazol-8-yl)carbonyl]-1,3-cyclohexanedione $S$ , $S$ -dioxide monopotassium             |
|    | salt;                                                                                      |

- r) 2-[(4,5-dihydro-2,7,10-trimethyl-2*H*[1]benzothiepino[5,4-*c*]pyrazol-9-yl)carbonyl]-5-methyl-1,3-cyclohexanedione *S*,*S*-dioxide monopotassium salt;
- s) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)[1-ethyl-5-[(methylsulfonyl)oxy]-1*H*-pyrazol-4-yl] methanone *S*,*S*-dioxide; and
- t) (2,4-dihydro-2,6,9-trimethyl[1]benzothiopyrano[4,3-c]pyrazol-8-yl)[1-ethyl-5-[(4-methylphenyl)sulfonyloxy]-1*H*-pyrazol-4-yl] methanone *S*,*S*-dioxide.
- 16. A mixture comprising a herbicidally effective amount of a compound of Claim 15 with a herbicidally effective amount of one or more compounds selected from tribenuron-methyl, thifensulfuron-methyl, metsulfuron-methyl, chlorsulfuron, triasulfuron, 2,4-D, dicamba, bromoxynil, MCPA, fluroxypyr, clopyralid, fenoxaprop, diclofop, tralkoxydim, clodinafop, imazamethabenz, sulfosulfuron, difenzoquat, propanil, prosulfuron, metribuzin, glyphosate, triallate, trifluralin, paraquat, diallate, linuron, diflufenican, pendimethalin, cyanazine, neburon, terbutryn, prosulfocarb, isoproturon, chlortoluron, methabenzthiazuron, metoxuron, simazine, ioxynil, mecoprop, metosulam, fluroglycophen-ethyl, flamprop-M-isopropyl, benzoylpropethyl, ethametsulfuron-methyl, quinclorac, bentazone, rimsulfuron, nicosulfuron, primisulfuron, atrazine, terbuthylazine, imazethapyr, glyphosate-trimesium, glufosinate, fluthiacet-methyl, quizalofop-P-ethyl, flumetsulam, halosulfuron, sethoxydim, and flumiclorac-pentyl.
  - 17. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
  - 18. A herbicidal composition comprising a herbicidally effective amount of a mixture of Claim 16 and at least one of a surfactant, a solid diluent or a liquid diluent.
  - 19. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.
  - 20. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a mixture of Claim 16.

5

10

15

20

25

P S 96/18381

|                                                                                                                                                                                      | CO7D498/04, 335:00,261:00), (CO7D                                                                                                                 | 495/04,335:00,239:00),                                                                                                                        | 13/90                                                                                                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                      | o International Patent Classification (IPC) or to both national cla                                                                               | issification and IPC                                                                                                                          |                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                      | s SEARCHED<br>locumentation searched (classification system followed by classifi                                                                  | cation symbols)                                                                                                                               |                                                                                                                                                                                                                                    |  |
| IPC 6                                                                                                                                                                                | CO7D A01N                                                                                                                                         |                                                                                                                                               |                                                                                                                                                                                                                                    |  |
| Documenta                                                                                                                                                                            | tion searched other than minimum documentation to the extent th                                                                                   | iat such documents are included in the fields se                                                                                              | arched                                                                                                                                                                                                                             |  |
| Electronic                                                                                                                                                                           | data base consulted during the international search (name of data                                                                                 | hase and, where practical, search terms used)                                                                                                 |                                                                                                                                                                                                                                    |  |
| C. DOCUS                                                                                                                                                                             | MENTS CONSIDERED TO BE RELEVANT                                                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                                    |  |
| Category *                                                                                                                                                                           | Citation of document, with indication, where appropriate, of the                                                                                  | e relevant passages                                                                                                                           | Relevant to claim No.                                                                                                                                                                                                              |  |
| А                                                                                                                                                                                    | US 3 341 552 A (CORNELL) 12 Sep<br>see column 1, line 63 - column<br>claim 1                                                                      | otember 1967<br>2, line 2;                                                                                                                    | 1,17                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                               | ***                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                               | ****                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                               | <b></b>                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                               | . الم                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                      |                                                                                                                                                   | •                                                                                                                                             |                                                                                                                                                                                                                                    |  |
| ŀ                                                                                                                                                                                    |                                                                                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                                    |  |
| İ                                                                                                                                                                                    |                                                                                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                                    |  |
| Fu                                                                                                                                                                                   | rther documents are listed in the continuation of box C.                                                                                          | Patent family members are listed                                                                                                              | in annex.                                                                                                                                                                                                                          |  |
| 'A' docur                                                                                                                                                                            | nategories of cited documents:  ment defining the general state of the art which is not idered to be of particular relevance                      | T later document published after the into<br>or priority date and not in conflict we<br>cited to understand the principle or the<br>invention | th the application out                                                                                                                                                                                                             |  |
| E' earlie                                                                                                                                                                            | r document but published on or after the international                                                                                            | 'X' document of particular relevance; the cannot be considered novel or cannot                                                                | claimed invention<br>t be considered to                                                                                                                                                                                            |  |
| filing date  *L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) |                                                                                                                                                   | 'Y' document of particular relevance; the                                                                                                     | 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document. |  |
| other                                                                                                                                                                                | ment referring to an oral disclosure, use, exhibition or remains means ment published prior to the international filing date but                  | ments, such combination being obvious in the art.                                                                                             | us to a person skilled                                                                                                                                                                                                             |  |
| later                                                                                                                                                                                | than the priority date claimed                                                                                                                    | &' document member of the same patent                                                                                                         |                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                      | ne actual completion of the international search                                                                                                  | 2 1. 04. 97                                                                                                                                   | ·                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                      | 1 mailing address of the ISA                                                                                                                      | Authorized officer                                                                                                                            |                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                      | European Patent Office, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Riiswijk<br>Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,<br>Fazc (- 31-70) 340-3016 | Alfaro Faus, I                                                                                                                                |                                                                                                                                                                                                                                    |  |

Form PCT-ISA/210 (second sheet) (July 1992)

1

| inter | nal A | pplication No | <br>_ |
|-------|-------|---------------|-------|
| PC.   | r/US  | 96/18381      |       |

| A. CLASSII<br>IPC 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FICATION OF SUBJECT MATTER (C07D495/04,335:00,221:00),(C07D495 (C07D495/04,335:00,333:00)                                                                              | 5/04,337:00,231:00),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| According to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | International Patent Classification (IPC) or to both national classific                                                                                                | cation and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SEARCHED                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Minimum do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum documentation searched (classification system followed by classification symbols)                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Electronic data hase consulted during the international search (name of data base and, where practical, search terms used)                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| C. DOCUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IENTS CONSIDERED TO BE RELEVANT                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Category *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Citation of document, with indication, where appropriate, of the rela                                                                                                  | levant passages Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Fur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ther documents are listed in the continuation of box C.                                                                                                                | Patent family members are listed in annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 'A' document defining the general state of the art which is not considered to be of particular relevance.  'E' earlier document but published on or after the international filing date.  'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).  'O' document referring to an oral disclosure, use, exhibition or other means.  The designation of the international filing date but |                                                                                                                                                                        | Patent tarnity members are insect in aniex.  The later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.  X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.  Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  &' document member of the same patent family  Date of mailing of the international search report |  |  |  |
| Name and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d mailing address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016 | Authonzed officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

Form PCT/ISA/210 (second sheet) (July 1992)

ational application No.

#### INTERNATIONAL SEARCH REPORT

PCT/US 96/18381

| Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                            |
| 1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                        |
|                                                                                                                                                                                                                     |
| Claims Nos.:     because they relate to parts of the International Application that do not comply with the prescribed requirements to such                                                                          |
| an exient that no meaningful International Search can be carried out, specifically:  see next sheet                                                                                                                 |
|                                                                                                                                                                                                                     |
| 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                             |
| Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                     |
| This International Searching Authority found multiple inventions in this international application, as follows:                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
| As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.                                                                            |
| As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                |
|                                                                                                                                                                                                                     |
| 3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:             |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
| 4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
| Remark on Protest  The additional search fees were accompanied by the applicant's protest.                                                                                                                          |
| No protest accompanied the payment of additional search fees.                                                                                                                                                       |
|                                                                                                                                                                                                                     |

International Application No. PCT/US 96/ 18381

| FURTHER INFORMATION CONTINUED FROM PCT/ISA/210                                                                                                                                                                                                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| On grounds of Articles 6 and 17.2(ii) of the PCT (conciseness of claims) and of the Guidelines for Examination in the EPO, Part B, Chapter III, 2.2 (economic reasons) the search has been restricted to a generalization of the preparation examples disclosed in the description. |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                     |  |

nnal Application No. us 96/18381

on on patent family members Publication Patent family Publication Patent document date member(s) date cited in search report 13-08-68 US 3397271 A 12-09-67 US 3341552 A

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)