# Large Language Models

Advanced Attention Mechanisms - I

ELL881 - AIL821

Sourish Dasgupta
Assistant Professor, DA-IICT, Gandhinagar
<a href="https://www.daiict.ac.in/faculty/sourish-dasgupta">https://www.daiict.ac.in/faculty/sourish-dasgupta</a>







# Self Attention









Year: 2017, NeurIPS

X

 $\sqrt{4096}$ 

Q

(6, 4096)



N: Lepneuer length

Causal (Forward Masked) Attention







Zoom-in! (simplified without Scale and Softmax)





# Why do we need to do better?







# KV Cache based (Forward Masked) Attention









Year: 2020, Arxiv

Sliding Window Attention

Sliding Window Attention

Window size = W (4,5,6)





(b) Sliding window attention





Year: 2020, Arxiv



# **Sliding Window Attention**

$$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$



|       | THE    | CAT   | ıs    | ON    | A     | CHAIR |
|-------|--------|-------|-------|-------|-------|-------|
| THE   | 1.0    | 0     | 0     | 0     | 0     | 0     |
| CAT   | 0.461  | 0.538 | 0     | 0     | 0     | 0     |
| IS    | 0.3219 | 0.317 | 0.361 | 0     | 0     | 0     |
| ON    | 0      | 0.316 | 0.341 | 0.343 | 0     | 0     |
| A     | 0      | 0     | 0.326 | 0.323 | 0.351 | 0     |
| CHAIR | 0      | 0     | 0     | 0.313 | 0.331 | 0.356 |







Year: 2020, Arxiv



# What happens to the KV Cache?







Going back to year: 2017, NeurIPS



# Multi-Head Self Attention







Year: 2019, arxiv Google

# Multi-Query Attention (MQA)





# Do we lose out on something?

- Decline in performance quality
- Training instability









Uptraining: Converting (MHA) to MQA









# What can still go wrong?

- Decline in performance quality
- Training instability



Year: 2023; EMNLP



**Grouped Query Attention** Grouped-query/ Multi-head Multi-query gother. Values Keys Queries



# What did we gain?

| Mode | el     | Tinfer | Average | CNN            | arXiv          | PubMed | MediaSum | MultiNews        | WMT  | TriviaQA |
|------|--------|--------|---------|----------------|----------------|--------|----------|------------------|------|----------|
| -    |        | s      |         | $\mathbb{R}_1$ | $\mathbf{R}_1$ | $R_1$  | $R_1$    | $\mathbf{R}_{1}$ | BLEU | F1       |
| MHA  | -Large | 0.37   | 46.0    | 42.9           | 44.6           | 46.2   | 35.5     | 46.6             | 27.7 | 78.2     |
| MHA  |        | 1.51   | 47.2    | 43.8           | 45.6           | 47.5   | 36.4     | 46.9             | 28.4 | 81.9     |
| MQA  | -XXL   | 0.24   | 46.6    | 43.0           | 45.0           | 46.9   | 36.1     | 46.5             | 28.5 | 81.3     |
| GQA  | -8-XXL | 0.28   | 47.1    | 43.5           | 45.4           | 47.7   | 36.3     | 47.2             | 28.4 | 81.6     |









# So are we all set? Key

- GQA/MQA Aim: To reduce the need for storing a large amount of KV cache
- LLM server can handle more requests, larger batch sizes and increased throughput
  - Cannot significantly reduce the computational load
  - Quality degradation remains



# Large Language Models

Advanced Attention Mechanisms - II

ELL881 - AIL821

Sourish Dasgupta
Assistant Professor, DA-IICT, Gandhinagar
<a href="https://www.daiict.ac.in/faculty/sourish-dasgupta">https://www.daiict.ac.in/faculty/sourish-dasgupta</a>



# Can we optimize without performance degradation?





# A bit more about the GPU





# What was happening so far:





Matmul\_op (Q,K)

- a. Read Q,K to SRAM (read-op)
- b. Compute matmul A=QxK (compute-op)
- c. Write A to HBM (write-op)

## Mask\_op

- a. Read A to SRAM (read-op)
- b. Mask A into A' (compute-op)
- c. Write A' to HBM (write-op)

## Softmax\_op

- a. Read A' to SRAM (read-op)
- b. Softmax A' into A" (compute-op)
- c. Write A" to HBM (write-op)









# The magic: Fused Kernel (GPU Operations)!









# The magic does not end here! More optimization











# The magic does not end here! *Tiling*











# Does the story end here? What's the problem?











# The softmax denominator problem











# **Summary Statistics** - the final touch!











# Summary Statistics - the final touch!



$$D = 0, O = 0$$

# Treat each element as a block, # so we have three blocks for i in range(3):

$$D_b = exp(Q[i] imes K[i])$$

$$N_b = V[i] * exp(Q[i] imes K[i])$$

$$\int O = rac{1}{D+D_b}[Dst O + N_b].$$

$$D = D + D_b$$







# How well did they do?

### Attention on GPT-2



| BERT Implementation    | Training time (minutes) |
|------------------------|-------------------------|
| Nvidia MLPerf 1.1 [58] | $20.0 \pm 1.5$          |
| FLASHATTENTION (ours)  | $17.4 \pm 1.4$          |



# **Key Takeaways**

- Avoid unnecessary HBM writes
- Maximize SRAM computation



# Want more? Follow:





Browse State-of-the-Art

Datasets

Methods

More v

#### Attention

General • 126 methods

Attention is a technique for attending to different parts of an input vector to capture long-term dependencies. Within the context of NLP, traditional sequence-to-sequence models compressed the input sequence to a fixed-length context vector, which hindered their ability to remember long inputs such as sentences. In contrast, attention creates shortcuts between the context vector and the entire source input. Below you will find a continuously updating list of attention based building blocks used in deep learning.

#### Subcategories

- 1 Attention Mechanisms
- 2 Attention Modules

☑ Edit

Add a Method



https://paperswithcode.com/methods/category/attention-mechanisms

#### Methods

| Method                                                                                                          | Year | Papers |
|-----------------------------------------------------------------------------------------------------------------|------|--------|
| Grouped-query attention  O GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints | 2023 | 13     |
| Attention Sinks                                                                                                 |      |        |



