Analiza numeryczna L 2016/2017

Wykład 9

Kwadratury – całkowanie numeryczne

Podstawowe całki:

$$\int f(x)dx = F(x) + C \Leftrightarrow F'(x) = f(x)$$

$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int \sin(x)dx = -\cos(x) + C$$

$$\int \frac{dx}{x^2 + 1} = \arctan(x) + C$$

$$\int xe^{x^2}dx = \frac{1}{2}e^{x^2} + C$$

$$\int_a^b f(x)dx = F(b) - F(a)$$

Idea całkowania numerycznego:

f - funkcja trudna

g - funkcja łatwa (do całkowania), np. wielomian

$$x \in [a, b] : f(x) \approx g(x) \Rightarrow \int_{a}^{b} f(x)dx \approx \int_{a}^{b} g(x)dx$$

Kwadratury liniowe

1. $F \equiv F[a, b]$ – zbiór funkcji całkowalnych w [a,b]

2. Funkcjonał I:
$$I(f) = \int_a^b f(x) dx$$
 dla $(f \in F)$

Niech dane będa parami różne liczby $x_0^{(n)}, x_1^{(n)}, ..., x_n^{(n)}$ (węzły kwadratury) oraz liczby rzeczywiste $A_0^{(n)}, A_1^{(n)}, ..., A_n^{(n)}$ (współczynniki/wagi kwadratury). Wyrażenie postaci:

$$Q_n(f) = \sum_{k=0}^{n} A_k^{(n)} f(x_k^{(n)})$$

nazywamy kwadraturą liniową.

Cel: Dobrać współczynniki $A_k^{(n)}$ oraz węzły $x_k^{(n)}$ w taki sposób, aby dla "wielu" $f \in F$ zachodziło:

$$I(f) \approx Q_n(f)$$

Zatem węzły i współczynniki nie powinny być bezpośrednio związane z funkcją f.

Błąd kwadratury:

$$I(f) = Q_n(f) + R_n(f)$$

, gdzie $R_n(f)$ to błąd kwadratury.

Rząd kwadratury:

Mówimy, że kwadratura liniowa Q_n ma rząd r wtw, gdy:

$$\forall_{w \in \Pi_{r-1}} R_n(w) = 0 \qquad (I(w) = Q_n(w))$$

$$\exists_{w \in \Pi_r/\Pi_{r-1}} R_n(w) \neq 0 \qquad (I(w) \neq Q_n(w))$$

Przyjmując, że rząd kwadratury jest dobrym wyznacznikiem jej jakości, powinniśmy przy ustalonym n dążyć do zmaksymalizowania rzędu kwadratury.

Twierdzenie: Rząd kwadratury liniowej

$$Q_n \le 2n+2$$

Kwadratury interpolacyjne

Idea: zastąpić funkcję podcałkową wielomianem interpolacyjnym dla węzłów $x_0^{(n)}, x_1^{(n)}, ..., x_n^{(n)}$ i całkę $\int_a^b f(x)dx$ przybiżyć całkę $\int_a^b Ln(x)dx$.

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} Ln(x)dx = \int_{a}^{b} \sum_{k=0}^{n} (\lambda_{k}(x)f(x_{k}))dx$$
$$\lambda_{k}(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_{i}}{x_{k} - x_{i}}$$
$$\int_{a}^{b} Ln(x)dx = \sum_{k=0}^{n} (\int_{a}^{b} \lambda_{k}(x)dx)f(x_{k}) \equiv \sum_{k=0}^{n} A_{k}^{(n)}f(x_{k}^{(n)})$$
$$I(f) = \int_{a}^{b} f(x)dx \approx Q_{n}(f) = \sum_{k=0}^{n} A_{k}^{(n)}f(x_{k}^{(n)})$$

Twierdzenie: Rząd kwadratury liniowej Q_n wynosi co najmniej n+1 wtw, gdy jest ona kwadraturą interpolacyjną.

Wniosek:

$$n+1 \le rzd(Q_n) \le 2n+2$$

Błąd kwadratury interpolacyjnej:

Jeśli $f \in C^{n+1}[a,b]$ to błąd interpolacji wyraża się wzorem:

$$r_n(x) = \frac{f^{(n+1)}\eta(x)}{(n+1)!}(x - x_0)...(x - x_n)$$

$$\int_a^b f(x)dx = \int_a^b Ln(x)dx + \int_a^b rn(x)dx \equiv Q_n(f) + R_n(f)$$