EV proteomic analysis for mitohondrial and surface proteins

Adrian Parrilla

Intoduction

This script will identify mitochondrial and surface proteins in large and small EVs using the Mitocarta, Cell Surface Protein atlas and Human CD markers databases.

```
#Load needed libraries
library(tidyverse)
library(VennDiagram)
library(writexl)
library(readxl)
library(pheatmap)
library(RColorBrewer)
library(org.Hs.eg.db)
library(clusterProfiler)
library(ggrepel)
#Load data and reference datasets
setwd("../data")
mitocarta <- read_excel("Mitocarta.xlsx")</pre>
vesiclepedia <- read_excel("Vesiclepedia.xlsx")</pre>
HPPs <- read_excel("Human plasma proteins.xlsx")</pre>
CD_proteins <- read_excel("CD proteins.xlsx")</pre>
CSPA <- read_excel("Surface Proteins.xlsx")</pre>
full_ds <- read.table("Full_dataset_V2.csv", header = TRUE, sep = ",",</pre>
                       stringsAsFactors = FALSE)
# Definig Mitocarta evidence to Literature, manual or APEX_matrix | IMS (OPTIONAL)
mitocarta_sub <- mitocarta[grep(c("literature|manual|APEX_matrix|APEX_IMS"),</pre>
                                  mitocarta$Evidence),]
```

Overview of proteins detected

```
venn.plot.Vesic.HPPs.CD <- venn.diagram(
    x = list(full_ds$Gene, HPPs$Gene, CD_proteins$CD, CSPA$`ENTREZ gene symbol`),
    category.names = c("EV prots detected" , "HPPs", "CD markers", "Surface proteins"),
    filename = NULL,
    fill = c("#F9F9F9","#0072B4","#C3DBFD", "lightblue"),
    alpha = 0.5,
    label.col = "black",
    cex = 1,
    fontfamily = "sans",</pre>
```

```
cat.cex = 1.5,
cat.fontfamily = "sans",
#cat.pos = c(-10, 5, 180),
#cat.dist = c(0.04, 0.04),
euler.d=FALSE,
scaled=FALSE
)

grid.newpage()
grid.draw(venn.plot.Vesic.HPPs.CD)
```



```
unlink(list.files()[grep(".log", list.files())])
```

Identification of Mitochondrial proteins

```
setwd("../outputs/")

# Count how many mitoprots have been detected
table(full_ds$Gene %in% mitocarta_sub$Symbol)

##

## FALSE TRUE

## 2031 128

# Create the Venn diagram
venn.plot.mitoc <- venn.diagram(</pre>
```

```
x = list(full_ds$Gene, mitocarta_sub$Symbol),
  category.names = c("EV prots detected" , "Mitocarta"),
  filename = NULL,
  fill = c("#0072B4", "#C3DBFD"),
  alpha = 0.5,
  label.col = "black",
  cex = 3,
 fontfamily = "sans",
  cat.cex = 2,
  cat.fontfamily = "sans",
  cat.pos = c(-20, 20),
  cat.dist = c(0.04, 0.04),
  euler.d=FALSE,
  scaled=FALSE
unlink(list.files()[grep(".log", list.files())]) # remove the log files generated
grid.newpage()
grid.draw(venn.plot.mitoc)
```



```
# Subset the results table to only include those rows that have mitoprots
#and select columns with normalised intensity
full_ds_mito <- full_ds %>% filter(full_ds$Gene %in% mitocarta_sub$Symbol) %>%
    select(Gene, Protein.Description, starts_with("norm_reporter_intensity"))
```

```
# Add information about the proteins from the Mitocarta dataset
full_ds_mito <- merge(full_ds_mito, mitocarta[,c("Symbol","Evidence",</pre>
                                                 "SubMitoLocalization", "MitoPathways")],
                      by.x = "Gene", by.y = "Symbol", all.x = TRUE)
#Save the resutls in an excel file
write_xlsx(full_ds_mito, "Mitochondrial proteins detected in EVs.xlsx")
# Assess the submitochondrial location of this proteins
table(full_ds_mito$SubMitoLocalization)
##
##
      IMS Matrix
                    MIM
                           MOM
##
              64
                     49
                            14
# Make a barplot with it
full_ds_mito %>% group_by(SubMitoLocalization) %>% summarise(Frequency = n()) %>%
  ggplot(aes(x = SubMitoLocalization, y = Frequency, fill=SubMitoLocalization)) +
 geom_bar(stat = "identity")+
  geom_text(aes(label=Frequency), vjust= -1, fontface = "bold", size = 8)+
  xlab("")+
 ylim(c(0,80))+
 theme_classic()+
  theme(legend.position="none",
        axis.title.y = element_text(face = "bold", margin = margin(0,20,0,0),
                                    size = rel(1.1), color = 'black'),
        axis.title.x = element_text(hjust = 0.5, face = "bold",
                                    margin = margin(20,0,0,0),
                                    size = rel(1.1), color = 'black'),
        axis.text.x = element text(face = "bold", size = rel(2.5)),
        plot.title = element_text(hjust = 0.5))
```


Same analysis for LEV and SEV separately

```
# make a new data frame for LEV and SEV
full_ds_mito_LEV <- full_ds_mito[,c(1, grep("LEV_",colnames(full_ds_mito)), 20)]</pre>
full ds mito LEV <- full ds mito LEV ">" filter(rowSums(full ds mito LEV[2:8])>= 0)
full_ds_mito_SEV <- full_ds_mito[,c(1, grep("SEV_",colnames(full_ds_mito)), 20)]</pre>
full_ds_mito_SEV <- full_ds_mito_SEV %>% filter(rowSums(full_ds_mito_SEV[2:8])>= 0)
full_ds_mito_LEV %>%
  group_by(SubMitoLocalization) %>% summarise(Frequency = n()) %>%
  ggplot(aes(x = SubMitoLocalization, y = Frequency, fill=SubMitoLocalization)) +
  geom_bar(stat = "identity")+
  geom_text(aes(label=Frequency), vjust= -1, fontface = "bold", size = 8)+
 xlab("")+
  ylim(c(0,80))+
  theme_classic()+
  theme(legend.position="none",
        axis.title.y = element_text(face = "bold", margin = margin(0,20,0,0),
                                    size = rel(1.1), color = 'black'),
        axis.title.x = element_text(hjust = 0.5, face = "bold",
                                    margin = margin(20,0,0,0),
                                    size = rel(1.1), color = 'black'),
        axis.text.x = element_text(face = "bold", size = rel(2.5)),
        plot.title = element text(hjust = 0.5))
```



```
full ds mito SEV %>%
  filter(Gene %in% c("ALDH2", "ALDH7A1", "CKMT1B", "GRHPR", "MPST", "PLSCR3")) %>%
  group_by(SubMitoLocalization) %>% summarise(Frequency = n()) %>%
  ggplot(aes(x = SubMitoLocalization, y = Frequency, fill=SubMitoLocalization)) +
  geom_bar(stat = "identity")+
  geom_text(aes(label=Frequency), vjust= -1, fontface = "bold", size = 8)+
  xlab("")+
  ylim(c(0,80))+
  theme_classic()+
  theme(legend.position="none",
        axis.title.y = element_text(face = "bold", margin = margin(0,20,0,0),
                                    size = rel(1.1), color = 'black'),
        axis.title.x = element_text(hjust = 0.5, face = "bold",
                                    margin = margin(20,0,0,0),
                                    size = rel(1.1), color = 'black'),
        axis.text.x = element_text(face = "bold", size = rel(2.5)),
        plot.title = element_text(hjust = 0.5))
```



```
# Save proteins that are uniquely located in LEV or SEV
full_ds_mito_LEV_unique <- full_ds_mito_LEV[which(!full_ds_mito_LEV$Gene %in% full_ds_mito_SEV$Gene),]
#write_xlsx(full_ds_mito_LEV_unique, "Mitoprots LEV unique.xlsx")
full_ds_mito_SEV_unique <- full_ds_mito_SEV[which(!full_ds_mito_SEV$Gene %in% full_ds_mito_LEV$Gene),]
#write_xlsx(full_ds_mito_SEV_unique, "Mitoprots SEV unique.xlsx")
# Make a heatmap with mitoprots
heatmap_data <- full_ds_mito %>% select(Gene, starts_with("norm_reporter_intensity")) %>%
  column_to_rownames("Gene")
# Remove the prefix from the column names
colnames(heatmap_data)<- gsub("norm_reporter_intensity_", "", colnames(heatmap_data))</pre>
pheatmap(heatmap_data,
         show_rownames = T,
         cluster_rows = F, cluster_cols = F, scale = "row",
         colorRampPalette(colors = c("blue", "white", "red"))(30),
         main = "Mitochondrial proteins in Old vs Young EVs",
         fontsize_row = 3, fontsize_col = 10)
```

Mitochondrial proteins in Old vs Young EVs


```
#set NA to O so we can do row clustering
heatmap_data_0 <- heatmap_data
heatmap_data_0[is.na(heatmap_data_0)] <- 0</pre>
# Add Mitochondrial location as row annotations
row_annot <- data.frame(Location = full_ds_mito$SubMitoLocalization)</pre>
rownames(row_annot) <- rownames(heatmap_data_0)</pre>
pheatmap(heatmap_data_0,
         show_rownames = T,
         cluster_rows = T, cluster_cols = F, scale = "row",
         colorRampPalette(colors = c("blue", "white", "red"))(30),
         main = "Mitochondrial proteins in Old vs Young EVs",
         breaks = c(seq(-2.3,3.5,length.out=31)),
         legend_breaks = c(-1.6,0.8,3.1),
         annotation_row = row_annot,
         legend_labels = c("Low", "Medium", "High"),
         fontsize_row = 1, fontsize_col = 10)
```

Mitochondrial proteins in Old vs Young EVs

Clustering keeping NAs

```
#Apply Z score normalization
heatmap_data_scaled <- as.data.frame(t(apply(heatmap_data[,c(1:16)], 1, function(x) {
  (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
})))
# remove those rows whose distance matrix can not be calculated in case clustering is not working
giveNAs = which(is.na(as.matrix(dist(heatmap_data_scaled))),arr.ind=TRUE)
tab = sort(table(c(giveNAs)),decreasing=TRUE)
checkNA = sapply(1:length(tab),function(i){
  sum(is.na(as.matrix(dist(heatmap_data_scaled[-as.numeric(names(tab[1:i])),]))))
})
rmv = names(tab)[1:min(which(checkNA==0))]
heatmap_data_scaled = heatmap_data_scaled[-as.numeric(rmv),]
row_annot_scl <- data.frame(</pre>
  Location = full ds mito $SubMitoLocalization[full ds mito $Gene %in% rownames(heatmap data scaled)])
rownames(row_annot_scl) <- rownames(heatmap_data_scaled)</pre>
pheatmap(heatmap_data_scaled,
         show_rownames = T,
         cluster_rows = T, cluster_cols = F, scale = "none",
         colorRampPalette(colors = c("blue", "white", "red"))(30),
         main = "Mitochondrial proteins in Old vs Young EVs",
```

```
breaks = c(seq(-2.3,3.5,length.out=31)),
legend_breaks = c(-1.6,0.8,3.1),
annotation_row = row_annot_scl,
legend_labels = c("Low", "Medium", "High"),
fontsize_row = 3, fontsize_col = 10)
```

Mitochondrial proteins in Old vs Young EVs

Surfaceome analisys: Identification of surface markers

```
# make a vector for the alternative names of CD markers
CD_alternative <- unlist(strsplit(CD_proteins$`Alternative name`, ",\\s*"))
surf <- c()
# For each gene detected, look for coincidences in the 3 datasets
for (i in full ds$Gene){
  if (i %in% CSPA$`ENTREZ gene symbol` | i %in% CD_proteins$CD | i %in% CD_alternative){
    surf <- append(surf, i)</pre>
  }
}
full_ds_surf <- full_ds[full_ds$Gene %in% surf,]</pre>
full_ds_surf <- full_ds_surf%>% select(Gene, Protein.Description, starts_with("norm_reporter_intensity"
write_xlsx(full_ds_surf, "Surface proteins detected in EVs.xlsx")
# Heatmap
rownames(full_ds_surf) <- NULL</pre>
heatmap_surf <- full_ds_surf %>% select(Gene, starts_with("norm_reporter_intensity")) %>% column_to_row
colnames(heatmap_surf)<- gsub("norm_reporter_intensity_", "", colnames(heatmap_surf))</pre>
heatmap_surf_0 <- heatmap_surf
heatmap_surf_0[is.na(heatmap_surf_0)] <- 0
```

Surface markers analysis of Old vs Young EVs


```
# Save unique surface proteins for LEV and SEV
full_ds_surf_LEV <- full_ds_surf[,c(1, grep("LEV_",colnames(full_ds_surf)))]</pre>
full_ds_surf_LEV <- full_ds_surf_LEV[which(rowSums(full_ds_surf_LEV[,3:9])>=0),]
full_ds_surf_SEV <- full_ds_surf[,c(1, grep("SEV_",colnames(full_ds_surf)))]</pre>
full_ds_surf_SEV <- full_ds_surf_SEV[which(rowSums(full_ds_surf_SEV[,3:9])>=0),]
full_ds_surf_LEV_unique <- full_ds_surf_LEV[which(!full_ds_surf_LEV$Gene %in% full_ds_surf_SEV$Gene),]
full_ds_surf_LEV_unique <- merge(full_ds_surf_LEV_unique, full_ds_surf[,c(1,2)])</pre>
write_xlsx(full_ds_surf_LEV_unique, "Surface prots LEV unique.xlsx")
full_ds_surf_SEV_unique <- full_ds_surf_SEV[which(!full_ds_surf_SEV$Gene %in% full_ds_surf_LEV$Gene),]
full ds surf SEV unique <- merge(full ds surf SEV unique, full ds surf[,c(1,2)])
write_xlsx(full_ds_surf_SEV_unique, "Surface prots SEV unique.xlsx")
# Venn diagram for LEV and SEV surface proteins
venn.plot.surface.markers.LEV.SEV <- venn.diagram(</pre>
  x = list(full ds surf LEV$Gene, full ds surf SEV$Gene),
  category.names = c("LEV", "SEV"),
 filename = NULL,
  fill = c("#0072B4", "#C3DBFD"),
  alpha = 0.5,
  label.col = "black",
  cex = 2,
```

fontfamily = "sans",

cat.cex = 2,

```
cat.fontfamily = "sans",
cat.pos = c(0, 0),
cat.dist = c(0.06, 0.06),
euler.d=FALSE,
scaled=FALSE
)

grid.newpage()
grid.draw(venn.plot.surface.markers.LEV.SEV)
```



```
unlink(list.files()[grep(".log", list.files())])
# GO analysis of the LEV surface proteins
LEV_surf_ego_BP <- enrichGO(gene = full_ds_surf_LEV_unique$Gene,</pre>
                             OrgDb
                                         = 'org.Hs.eg.db',
                                           = "BP",
                             ont
                                           = "SYMBOL",
                             keyType
                             pAdjustMethod = "BH",
                             pvalueCutoff = 0.05,
                             readable
                                           = TRUE)
LEV_surf_ego_CC <- enrichGO(gene = full_ds_surf_LEV_unique$Gene,</pre>
                             OrgDb
                                           = 'org.Hs.eg.db',
                             ont
                                           = "CC",
```

```
keyType = "SYMBOL",
                            pAdjustMethod = "BH",
                            pvalueCutoff = 0.05,
                            readable
                                          = TRUE)
LEV_surf_ego_MF <- enrichGO(gene = full_ds_surf_LEV_unique$Gene,</pre>
                            OrgDb
                                          = 'org.Hs.eg.db',
                            ont
                                          = "MF",
                                        = "SYMBOL", #
                            keyType
                            pAdjustMethod = "BH",
                            pvalueCutoff = 0.05,
                            readable
                                          = TRUE)
dotplot(LEV_surf_ego_BP, showCategory=10, font.size = 10)
```


dotplot(LEV_surf_ego_CC, showCategory=10, font.size = 10)

dotplot(LEV_surf_ego_MF, showCategory=10, font.size = 10)


```
# GO analysis of the SEV surface proteins
SEV_surf_ego_BP <- enrichGO(gene = full_ds_surf_SEV_unique$Gene,
                            OrgDb
                                         = 'org.Hs.eg.db',
                            ont
                                         = "BP",
                                         = "SYMBOL",
                            keyType
                            pAdjustMethod = "BH",
                            pvalueCutoff = 0.05,
                                       = TRUE)
                            readable
SEV_surf_ego_CC <- enrichGO(gene = full_ds_surf_SEV_unique$Gene,
                            OrgDb
                                         = 'org.Hs.eg.db',
                            ont
                                         = "CC",
                           keyType = "SYMBOL",
                            pAdjustMethod = "BH",
                            pvalueCutoff = 0.05,
                                         = TRUE)
                            readable
SEV_surf_ego_MF <- enrichGO(gene = full_ds_surf_SEV_unique$Gene,
                                      = 'org.Hs.eg.db',
                            OrgDb
                                         = "MF",
                            ont
                            keyType
                                         = "SYMBOL",
                            pAdjustMethod = "BH",
                            pvalueCutoff = 0.05,
                                         = TRUE)
                            readable
```


dotplot(SEV_surf_ego_CC, showCategory=10, font.size = 10)

dotplot(SEV_surf_ego_MF, showCategory=10, font.size = 10)

