Universidad Torcuato Di Tella Estrategias y Técnicas Cuantitativas en Ciencia Política II

Profesor: Mauricio Grotz Alumno: Germán Epelbaum Trabajo Práctico N°3

Fecha de entrega: 22/9/2023

Datos de Panel

Algunos estados de EE.UU. han promulgado leyes que permiten a los ciudadanos llevar armas. Estas leyes son conocidas como leyes de «emisión obligatoria», debido a que obligan a las autoridades locales a emitir un permiso para llevar armas a todos los solicitantes que sean ciudadanos: sean mentalmente competentes y no hayan sido condenados por un delito grave (algunos estados imponen algunas restricciones adicionales). Sus defensores sostienen que, si más personas llevan armas, el crimen se reducirá debido a que los criminales serán disuadidos de atacar a otras personas. Sus opositores argumentan que el crimen aumentará debido al uso accidental o espontáneo de las armas. En este ejercicio, se analiza el efecto de las leyes sobre la tenencia de armas sobre los crímenes violentos. En el campus virtual se encuentra el archivo de datos Guns.dta que contiene un panel balanceado de datos sobre 50 estados de EE.UU., más el Distrito de Columbia para los años 1977 a 1999. Se ofrece una descripción detallada en el archivo Guns—Description, también disponible en el campus virtual.

1) Presente las estadísticas descriptivas de las variables vio, rob, mur y shall. Interprete los resultados, analizando la variabilidad general, temporal y entre unidades de análisis.

Std. Dev.	Mean	Obs	Variable
334.2772	503.0747	1173	vio
170.51	161.8202	1173	rob
7.52271	7.665132	1173	mur
6.636079	88	1173	year
.4290581	.2429668	1173	shall
170.51 7.52271 6.636079		161.8202 7.665132 88	1173 161.8202 1173 7.665132 1173 88

El panel presenta las estadísticas descriptivas de las variables, mostrando 1173 observaciones por variable. Las observaciones se repiten entre estados, de modo que para analizar la variabilidad temporal necesitamos otros recursos Esto será realizado en el siguiente inciso.

2) Presente los gráficos que considere adecuados para dar cuenta de la heterogeneidad individual y temporal observada de la variable vio.

En el gráfico de caja (boxplot) se observa la existencia de heterogeneidad entre los estados. Se destaca la cantidad de hechos de violencia acaecidos en el estado N°11.

El gráfico de caja anualizado, permite observar la existencia de variabilidad temporal al interior de los propios estados, aunque no en la medida que se da entre los estados. Ante esta situación, se presenta como valiosa la posibilidad de realizar una prueba de efectos fijos, a fin de profundizar en esta hipótesis,

3) Estime una regresión lineal simple de la variable vio sobre la variable shall y una regresión lineal múltiple con las variables independientes shall, incarc_rate, density, avginc, pop, pb1064, pw1064 y pm1029.

. reg vio shal	11							
Source	SS	df		MS		Number of obs		1173
						F(1, 1171)	=	52.36
Model	5605560.24	1	56055	60.24		Prob > F	=	0.0000
Residual	125355176	1171	10704	9.681		R-squared	=	0.0428
						Adj R-squared	=	0.0420
Total	130960737	1172	11174	1.243		Root MSE	=	327.18
vio	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
shall	-161.1868	22.27	475	-7.24	0.000	-204.8897	-	117.484
_cons	542.2377	10.97	959	49.39	0.000	520.6959	5	63.7796

. reg vio shall	l incarc_rate	density	avginc	pop pb106	4 pw1064 p	m1029	
Source	SS	df	MS		Number of o		1173
Model	94776406.5	8 11	.847050.8		F(8, 116 Prob > F	(4) = =	381.10
Residual	36184330.1		.086.1942		R-squared	=	0.7237
Total	130960737	1172 11	.1741.243		Adj R-squar Root MSE	red = =	0.7218 176.31
vio	Coef.	Std. Err	. t	P> t	[95% Con	ıf. In	terval]
shall	-92.72125	13.4257	-6.9	0.000	-119.0625	-6	6.37997
incarc_rate	.8155948	.044174	18.4	0.000	.7289253	3	9022642
density	94.66882	5.428439	17.4	4 0.000	84.0182	2 10	05.3194
avginc	1.234759	3.207344	0.3	0.700	-5.058062	2 7	.527581
pop	18.50567	1.054859	17.5	4 0.000	16.43603	3 20	0.57531
pb1064	11.29196	6.864417	1.6	4 0.100	-2.176053	3 2	4.75998
pw1064	2.702383	3.453603	0.78	0.434	-4.0736	5 9	. 478366
pm1029	9.316543	4.441374	2.10	0.036	. 602549	1	8.03054
_cons	-178.7774	224.0104	-0.80	0.425	-618.2867	2	60.7319

a. Interprete el coeficiente de la variable shall de la regresión lineal simple e indique si considera que el efecto de la legislación es sustantivo.

En la regresión lineal simple se observa que la modificación de la variable independiente tiene un efecto por cada unidad de -161.19 unidades sobre la variable dependiente (crímenes violentos cada cien mil habitantes). Siendo el coeficiente p significativo, podemos afirmar con un 95% de certeza que el verdadero parámetro se encuentra entre -204,89 y -117.48.

A su vez, el R ajustado nos indica que la modificación de esta variable se asocia en un 4,2% en el cambio de la variable dependiente. Este es un valor sustantivo, de modo que podemos asociar la mencionada ley con una reducción de los incidentes armados.

Estos resultados aportan información bastante relativa, puesto que puede verse afectado por el sesgo de variable omitida.

b. Al añadir las variables de control en la regresión múltiple ¿cambia el efecto estimado de la ley de emisión obligatoria? Justifique.

Al añadir nuevas variables de control, la variación de la variable independiente en cuestión se asocia, ceteris paribus, con una modificación de la variable dependiente de -92,72 unidades por cada modificación de la variable independiente, una curva menos pronunciada que en el modelo de regresión simple.

Aplicando las variables de control a la regresión, sigue siendo muy significativo el peso de la variable shall, aunque con menos fuerza que en el modelo con sólo dos variables. Su efecto es negativo también, de manera que la aplicación de esta ley se asocia con una reducción de estos incidentes. Esto puede afirmarse al ser significativos los resultados del test P, con un 95% de certeza. Podemos sostener que el verdadero parámetro se encuentra entre menos 119.06 y -66.38.

Cuando se incorporan las variables de control se evidencia que la influencia de la variable shale sobre la dependiente está sobredimensionada. A su vez, disminuye el error estándar, que pasa de 22,27 a 13,42, haciendo más acotado el intervalo de confianza.

Destacamos que los resultados de la regresión múltiple pueden aportar indicios sobre nuestras hipótesis, pero deben ser analizados con reparos: se trata de observaciones repetidas en estados. Es relevante la aplicación de una técnica de panel, que permita estudiar en qué medida los cambios se deben a las características propiedades no observadas de cada estado o a modificaciones dadas en el tiempo. Esto se da mediante la contemplación de la correlación de los errores, tomando como error del modelo a la variación de la que no se puede dar cuenta.

c. Sugiera una variable que cambie entre los estados, pero que probablemente cambie poco, o nada en absoluto, en el tiempo y que pudiera causar sesgo de variable omitida en la regresión.

Un factor que hipotetizamos tiene que ver con los incidentes y la violencia armada radica en características de las sociedades en las cuales se producen estos hechos. Centralmente, me interesaría detectar grados de conflictividad social como una variable explicativa de estos incidentes.

La hostilidad o conflictividad entre las personas no necesariamente se expresa a través del uso de agresiones mediante armamento. Sin embargo, entendemos que este puede ser un factor determinante.

Al respecto, construiría un índice que pondere el nivel de resolución violenta de conflictos en un estado. Utilizaría, por ejemplo, los registros de inspectores escolares en escuelas sobre hechos de violencia y agresión en centros educativos, consideraría peleas y reyertas en espectáculos deportivos, musicales, como también a nivel familiar. De este modo, a partir de la operacionalización de esta dimensión de la unidad de análisis podríamos dar cuenta del grado de tensión o violencia en un estado. Suponemos que este nivel de violencia puede ser una de las variables explicativas de incidentes armados, siendo idiosincrática de cada uno de estos estados y bastante durable en el tiempo.

d. ¿Resulta apropiado aplicar un modelo POLS? Justifique.

El modelo POLS se presenta en la regresión lineal múltiple -con variables de control- más arriba en este trabajo. Estima individualmente los coeficientes, tomando unidades como diferentes y asumiendo que la estructura de panel no agrega información, cuando en realidad esto no es así, puesto que hay observaciones que se repiten en los estados.

A partir del gráfico de cajas, habíamos encontrado indicios de que no se puede ignorar la heterogeneidad entre las distintas unidades de análisis .Por ejemplo, la unidad de análisis "estado N1995" comparte características con la unidad de análisis "estado N1196", que impactan sobre la dependiente pero que este modelo no puede ver.

4) ¿Cambian los resultados de la regresión múltiple cuando se agregan los efectos fijos individuales de cada estado? Si es así, ¿qué modelo considera más adecuado y por qué?

Fixed-effects	(within) rea	ression		Number	of obs =	1173
		Lession				
Group variable	e: stateid			Number	of groups =	51
R-sq: within	= 0.2038			Obs per	group: min =	23
between	n = 0.3446				avg =	23.0
overall	1 = 0.2658				max =	23
				F(8.111	.4) =	35.64
corr(u_i, Xb)	= -0.8388			Prob >		
,,	0.000				-	
vio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
shall	-18.57508	11.56324	-1.61	0.108	-41.26327	4.113097
incarc rate	.0967879	.0573672	1.69	0.092	015772	.2093479
density	-155.9533	52.11761	-2.99	0.003	-258.213	-53.69351
avginc	-4.066645	3.621108	-1.12	0.262	-11.17161	3.038316
pop	12.24406	5.346751	2.29	0.022	1.753224	22.7349
pb1064	12.80803	10.88266	1.18	0.239	-8.54479	34.16085
pw1064	10.32325	3.110094	3.32	0.001	4.220951	16.42556
pm1029	-23.86385	3.924761	-6.08	0.000	-31.56461	-16.16309
_cons	203.0109	235.8217	0.86	0.389	-259.6938	665.7157
sigma u	500.37955					
sigma e	98.505026					
rho	.96269175	(fraction	of variar	nce due t	o u_i)	
F test that al	ll u_i=0:	F(50, 1114)	= 52	. 30	Prob >	F = 0.0000

El modelo de regresión incorporando los factores fijos, permite dar cuenta de aquellos aspectos constantes en el tiempo pero no observados entre los estados. Permite dar un mayor grado de certeza sobre ciertos aspectos de la variable que previamente aparecen como errores de medición, y que permanecen en el tiempo.

Esto resulta interesante considerando que el gráfico de cajas nos había dado indicios de que la variabilidad depende más de las características de cada estado que del paso del tiempo. Ofrece un mayor grado de acercamiento sobre el papel de las variables independientes en la modificación de la dependiente, por lo que los valores se expresan con mayor seguridad. El valor de la variable shall es (coeficiente de -18,58) es menor que en los modelos anteriores,

aunque con un valor p tan elevado que impide descartar la hipótesis nula, por lo que deja de ser significativa. Esto también sucede con las variable avginc, con Pbl064 y con la constante. Los estadísticos p son menores en el primer modelo de regresión para la variable shall, incarc_rate, density, pop, Pbl064. Pbl064 y Pml 029 tienen un estadistico p menor en el segundo modelo.

A su vez, el menor valor del R2 en el segundo modelo, supone que este explica menos la variación de la variable que el anterior. Sin embargo, lo hace con mayor grado de confianza. Dados estos resultados, considerando los aspectos que el modelo permite revelar y las observaciones que se vienen realizando sobre nuestro objeto de estudio, resultaría relevante incorporar efectos fijos al estudio de la problemática en cuestión.

5) ¿Incorporaría efectos fijos temporales? Justifique su respuesta.

. xtset stateid year

panel variable: stateid (strongly balanced)

time variable: year, 77 to 99

delta: 1 unit

. xtreg vio sh	nall incarc_ra	te density	avginc	pop pb1064	pw1064	pm1029	i.year, fe
Fixed-effects	(within) regr	ession		Number of	obs	=	1173
Group variable	e: stateid			Number of	groups	=	51
R-sq: within	= 0.4202			Obs per g	roup: min	=	23
betweer	1 = 0.4545				avg	= :	23.0
overall	L = 0.2462				max	=	23
				F(30,1092	2)	= 2	6.38
corr(u_i, Xb)	= -0.7698			Prob > F		= 0.	0000
vio	Coef.	Std. Err.	t	P> t	[95% Con:	f. Inter	val]
shall	8390586	10.40307	-0.08	0.936	-21.25132	19.	5732
incarc_rate	.1915715	.0547407	3.50	0.000	.0841626	.298	9803
density	-95.20334	46.25107	-2.06	0.040	-185.9544	-4.45	2321
avginc	6.887878	3.901603	1.77	0.078	7676083	14.5	4337
pop	2.057769	4.770199	0.43	0.666	-7.302025	11.4	1756
pb1064	-36.09287	13.75854	-2.62	0.009	-63.08904	-9.	0967
pw1064	-10.93647	4.766677	-2.29	0.022	-20.28935	-1.58	3584
pm1029	47.17105	9.466965	4.98	0.000	28.59555	65.7	4655

```
F test that all u i=0: F(50, 1092) = 66.05
                                                        Prob > F = 0.0000
. testparm i.year
 ( 1) 78.year = 0
(2) 79.year = 0
(3) 80.year = 0
 (4) 81.year = 0
(5) 82.year = 0
 (6) 83.year = 0
 (7) 84.year = 0
 (8) 85.year = 0
 ( 9) 86.year = 0
 (10) 87.year = 0
 (11) 88.year = 0
(13) 90.year = 0
(14) 91.year = 0
 (15) 92.year = 0
 (16) 93.year = 0
 (17) 94.year = 0
 (18) 95.year = 0
 (19) 96.year = 0
 (20) 97.year = 0
 (21) 98.year = 0
 (22) 99.year = 0
      F(22, 1092) = 18.53
           Prob > F =
                        0.0000
```

El modelo de efectos temporales es útil cuando tenemos la sospecha de que en cierto año pasó determinado evento que puede incidir en los resultados. Por el contrario, la debilidad emerge ante sus dificultades para estimar variables constantes.

En este modelo la variable shall tiene un coeficiente de -8390586, con un parámetro que pasa va desde el -21.25132 al 19.5732, por lo cual pasa por el valor 0 (no se rechaza hipótesis nula). El error estándar es de 10.40307 con un estadístico p de 0.936, que tampoco permite negar la hipótesis nula.

El hecho de que aparezca el valor 0.0 junto a cada año supone que el modelo necesita efectos temporales. Cuando dichos efectos se agregan, la variable shale pierde incidencia, a la vez que los valores p son altísimos.

Se devela según este modelo que las leyes sobre portación de armas no tienen incidencia en la reducción de los crímenes violentos, dentro de cada estado, a lo largo del tiempo.

6) Discuta si le parece adecuado o no utilizar un modelo con efectos aleatorios. Realice el test correspondiente. Justifique brevemente.

. hausman fe re

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fe	re	Difference	S.E.
shall	-18.57508	-37.19344	18.61836	
incarc_rate	.0967879	.3931534	2963654	.0413254
density	-155.9533	104.7166	-260.6699	49.60782
avginc	-4.066645	-6.025157	1.958512	.8710399
pop	12.24406	13.15851	9144534	4.374196
pb1064	12.80803	20.61077	-7.802738	8.163496
pw1064	10.32325	8.026554	2.2967	.3248615
pm1029	-23.86385	-9.640604	-14.22325	1.508542

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

El test de Hausman nos permite averiguar si cambia sustantivamente la estimación de coeficientes agregando efectos fijos o aleatorios.

En este caso el resultado del test es cercano a cero, sugiriendo el uso del modelo de efectos fiios.

La probabilidad del chi2 del test es:

Prob > chi2 = 0.0000

7) Presente una tabla que compare las distintas regresiones múltiples: POLS, Efectos Aleatorios, Efectos Fijos Individuales, Efectos Fijos Individuales y Temporales. (Nota: incluya en la tabla solo las variables independientes: shall, incarcerate, density, avginc, pop, pb1064, pw1064 y pm1029). ¿Qué modelo le parece el más adecuado? Justifique brevemente utilizando los tests correspondientes.

		EFECTOS ALEATORIO	EFECTOS	EFECTOS FIJOS Y TEMPORAL	
VARIABLES	POLS	S	FIJOS	ES	
shall	-92.72***	-37.19***	-18.58	-839	
	(13.43)	(11.60)	(11.56)	(10.40)	
incarc_rate	0.816***	0.393***	0.0968*	0.192***	
	-442	-398	-574	-547	
density	94.67***	104.7***	-156.0***	-95.20**	
	-5.428	(15.98)	(52.12)	(46.25)	
avginc	1.235	-6.025*	-4.067	6.888*	
	-3.207	-3.515	-3.621	-3.902	
pop	18.51***	13.16***	12.24**	2.058	
	-1.055	-3.075	-5.347	-4.770	
pb1064	11.29	20.61***	12.81	-36.09***	
	-6.864	-7.197	(10.88)	(13.76)	
pw1064	2.702	8.027***	10.32***	-10.94**	
	-3.454	-3.093	-3.110	-4.767	
pm1029	9.317**	-9.641***	-23.86***	47.17***	
	-4.441	-3.623	-3.925	-9.467	
Constant	-178 (224			203.0 235.8)	315.3 (285.9)
Observation R-squared Number of	0.72		(1,173 0.204 51	1,173 0.420 51
		Standard	errors in parenthe	ses	

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Según lo que puede verse en las tablas, en el modelo POLS el valor de R2 es el mayor de todos los comparativos. A su vez, en este la variable shall -de interés para este trabajo- resulta significativa según los estadísticos p.

No obstante, hay errores de especificación que no deben pasarse por alto, dando la pauta de que se está trabajando con modelos inadecuados para el tipo de datos disponibles.

Más adelante se verá como ninguna de estas variables es significativa, por lo que estos modelos no son útiles para el trabajo emprendido.

8) A partir de su análisis previo, ¿qué conclusiones sacaría sobre los efectos de las leyes de tenencia de armas sobre los crímenes violentos?

Los primeros modelos parecían mostrarnos que las leyes de portación de armas tienen incidencia sobre los crímenes violentos.

No obstante, al ir aplicando los modelos subsiguientes se pudo observar que el pretendido efecto de esta variable sobre la dependiente desaparece. Podemos afirmar que no hay indicios estadísticos que vinculen a las leyes de tenencia de armas con la reducción de crímenes violentos.

9) Para el modelo seleccionado, analice si presenta problemas de heteroscedasticidad, correlación contemporánea y/o correlación serial. A partir de los resultados obtenidos, ejecute una regresión utilizando Panel-Corrected Standard Errors (Beck y Katz, 1995) y analice si se ven afectadas las conclusiones a las que arribó en el punto anterior.

. xtreg vio shall incarc_rate density avginc pop pb1064 pw1064 pm1029 i.year, fe robust

Fixed-effects (within) regression	Number of obs	= 1173
Group variable: stateid	Number of groups	= 51
R-sq: within = 0.4202	Obs per group: min	= 23
between = 0.4545	avg	= 23.0
overall = 0.2462	max	= 23
	F(30,50)	= 183.67
corr(u_i, Xb) = -0.7698	Prob > F	= 0.0000

(Std. Err. adjusted for 51 clusters in stateid)

			Robust		
P> t [95% Conf. Interval]	P> t	t	Std. Err.	Coef.	vio
0.966 -40.67812 39	0.96	-0.04	19.83465	8390586	shall
0.1130471942 .4303371	0.11	1.61	.1188741	.1915715	incarc_rate
0.269 -266.4358 76.02911	0.26	-1.12	85.25139	-95.20334	density
0.415 -9.945525 23.72128	0.41	0.82	8.380836	6.887878	avginc
0.841 -18.45188 22.56741	0.84	0.20	10.21112	2.057769	pop
0.363 -114.9775 42.79172	0.36	-0.92	39.27422	-36.09287	pb1064
0.484 -42.11857 20.24564	0.48	-0.70	15.52461	-10.93647	pw1064
0.151 -17.72268 112.0648	0.15	1.46	32.3086	47.17105	pm1029

Esta regresión corrige errores de panel, tornando más robustos a los errores. No cambia sustancialmente, permaneciendo iguales los coeficientes. Es decir que el el efecto promedio sobre la variable dependiente es el mismo,

El coeficiente de la variable shall es el mismo, aunque se incrementa el error estándar Esto nos da una menor noción del intervalo de confianza y vuelve menos significativa a las variables.

Los errores estándar corregidos por panel hicieron que ninguna variable sea significativa, pasando todas por el cero.

Como se viene afirmando, los crímenes violentos dependen más de características propias del estado que de la evolución de las propias variables.