Statistics ST2334 Short Recap: About a Mean

DONT COUNT ON THIS ALONE

2011/2012 Semester 2

Random sample

- ▶ Suppose we have a random sample $X_1, X_2, ..., X_n$. That is, they are independent and identically distributed with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$.
- We think of this as a simple random sample in a very large population.
- ► There are several objectives that we may be interested in; and they all rely on the sample mean:

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \cdots + X_n)$$

Some Objectives

They include

- 1. Determine how the sample mean behaves given population parameters. E.g. what happens when you repeatedly make a bet?
- 2. Give a point estimate for μ given the sample, and error estimate. E.g. what is the average height of students in NUS? How sure are you?
- 3. Form a confidence interval for μ . E.g. what's a plausible range for μ based on the sample?
- 4. Determine sample size needed for a desired error level or interval width.
- 5. Hypothesis testing. E.g. Can we reject the current belief based on new evidence?

Sample Mean

We first note that the sample mean

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \cdots + X_n)$$

has

$$E(\bar{X}) = E(\frac{1}{n}(X_1 + X_2 + \dots + X_n))$$

$$= \frac{1}{n}(E(X_1) + E(X_2) + \dots + E(X_n))$$

$$= \mu, \text{ since } E(X_i) = \mu$$

and

$$Var(\bar{X}) = \frac{1}{n^2} Var(X_1 + X_2 + \dots + X_n)$$

$$= \frac{1}{n^2} (Var(X_1) + \dots + Var(X_n)), \text{ by independence}$$

$$= \frac{\sigma^2}{n}, \text{ since } Var(X_i) = \sigma^2$$

Normalized Sample Mean

➤ To give a more general description, we use the normalized version of the sample mean by subtracting it's mean and dividing by its standard deviation.

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

- ▶ This is just shifting and scaling \bar{X} so that it has mean 0 and variance 1.
- ▶ The shape of its distribution does not change.

Ok so what about the shape of the distribution?

- Now if our population is normal, that is each of our sample X_i follows the normal distribution, then \bar{X} is also normal.
- If our population is unknown, but we have a large enough sample $(n \ge 30)$, CLT tells us \bar{X} is normal.
- In these cases, we therefore conclude that

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$

Related forms

ightharpoonup Sometimes, σ is not available, and we use

$$s = \sqrt{\frac{1}{n-1}\sum_{i}^{n}(X_{i}-\bar{X})^{2}}$$

as a substitute.

▶ If *n* is large, this is a good estimate and we still have

$$rac{ar{X}-\mu}{s/\sqrt{n}}\sim {\sf N}(0,1)$$

▶ If *n* is small but we know *X* is normal,

$$\frac{\bar{X}-\mu}{s/\sqrt{n}}\sim t_{n-1}$$

Summary

▶ We can summarize the above cases to

Case	σ	n	Population	Statistic	Ε
I	known	any	Normal	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
Ш	known	large	any	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
Ш	unknown	small	Normal	$t = rac{ar{X} - \mu}{s / \sqrt{n}}$	$t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$
IV	unknown	large	any	$Z = \frac{\bar{X} - \mu}{s / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$

Back to the objectives

- 1. We now know the distribution of the sample mean given population parameters. Can find probabilities etc.
- 2. We use \bar{X} to estimate μ ,
 - the standard error (SE) is σ/\sqrt{n} , the standard deviation of \bar{X} .
 - the maximum error E with probability 1- α is given by the table.
- 3. The (1- α) CI for μ is $\bar{X} \pm E$.
- 4. We rearrange the expression for E and solve for n.
- 5. We use the normalized sample mean as our test statistic.

Key Terms involving α

- ▶ Confidence Level (1α)
 - ► This is for after estimates are made. e.g. we are 95% confident the population mean is in (a, b).
 - ▶ It is the probability of the *procedure* being correct, not the particular estimate.
- ightharpoonup Significance Level α
 - Property of a hypothesis test.
 - It is the probability of making a Type I error when using said test.
 - It is an attempt to quantify how "significant" the result of a successful null hypothesis rejection.
 - The lower the significance level, the more confident that you correctly rejected the null.

Key Terms involving α

Rejection Region

- \blacktriangleright Based on the significance level α and the distribution of the test statistic.
- ► The region depends on the alternative hypothesis. It is where the test statistic is deemed too extreme assuming the null (and more reasonable assuming the alternative).
- ▶ The probability of the test statistic lying in the rejection region under the null hypothesis is α .

p-value

- The probability of observing your statistic or more "extreme" data, under the null hypothesis.
- ▶ It is sometimes called the observed significance level.
- ▶ The smaller the *p*-value, the more "unlikely" the null is. (Note that whether the null hypothesis is true is not random.)
- ▶ The *p*-value is smaller than the significance level α if and only if the test statistic is in the rejection region.

