Note for Complex Analysis

lumi

- 1 The Complex Numbers
- 2 Functions of the Complex Variable z
- 3 Analytic Functions
- 4 Line Integrals and Entire Functions
- 5 Properties of Entire Functions

Theorem 1. (5.10; Liouville's Theorem) A bounded entire function is constant.

Theorem 2. (5.11; The ExtendedLiouville's Theorem) If f is entire and if, for some integer $k \ge 0$, there exist positive constants A and B such that

$$f(z) \le A + B|z|^k$$

then f is a polynomial of degree at most k.

Theorem 3. (5.12; Fundamental Theorem of Algebra)

$$\mathbb{C}=\overline{\mathbb{C}}$$

6 Properties of Analytic Functions

Property 1. (6.8) If f is analytic at α , so is

$$g(z) = \begin{cases} \frac{f(z) - f(\alpha)}{z - \alpha} \\ f'(\alpha) \end{cases}$$

Property 2. (6.9; Uniqueness Theorem) Suppose that f is analytic in a region D and that $f(z_n) = 0$ where $\{z_n\}$ is a sequence of distinct points and $z_n \to z_0 \in D$. Then $f \equiv 0$ in D.

Corollary 1. (6.10) If two functions f and g, analytic in D, agree at a set of points with an accumulation point in D, then $f \equiv g$ in D.

Theorem 4. (6.11) If f is entire and if $f(z) \to \infty$ as $z \to \infty$, then f is a polynomial.

Theorem 5. (6.12; Mean Value Theorem) Let f be analytic in D and $\alpha \in D$. For r > 0 such that $D(\alpha; r) \subseteq D$,

$$f(\alpha) = \frac{1}{2\pi} \int_{0}^{2\pi} f(\alpha + re^{i\theta}) d\theta$$

Theorem 6. (6.13; Maximum-Modulus Theorem) Let f be a non-constant analytic function in a region D. For each $z \in D$ and $\delta > 0$, there exists some $\omega \in D(z; \delta) \cup D$ such that $|f(\omega)| > |f(z)|$.

Corollary 2. (6.14; Minimum-Modulus Theorem) Let f be a non-constant analytic function in a region D. $z \in D$ is a relative minimum of f iff f(z) = 0.

Theorem 7. (6.15) Suppose f is nonconstant and analytic on the closed disc D. Assume that f's maximum modulus at boundary point z_0 . Then, $f'(z_0) \neq 0$.

Definition 1. (6.16) z_0 is a saddle point of an analytic function f if it's a saddle point of |f|. i.e. $|f|_x(z_0) = |f|_y(z_0) = 0$ but z_0 is neither a local maximum nor a local minimum.

Theorem 8. (6.17) z_0 is a saddle point of analytic f iff $f'(z_0) = 0$ and $f(z_0) \neq 0$.

7 Further Properties of Analytic Functions

Theorem 9. (7.1; Open Mapping Theorem) A non-constant analytic function is an open function.

Theorem 10. (7.2; Schwarz' Lemma) Suppose that f is analytic in the unit disc, the |f| < 1 there and that f(0) = 0. Then $|f(z)| \le |z|$ and $|f'(0)| \le 1$.

In addition, |f(z)| = |z|, |f'(0)| = 1 and $f(z) = e^{i\theta}z$ are equivalent.

Proposition 1. (7.3) If f is entire and satisfies

$$|f(z)| \le 1/|\operatorname{Im} z|$$

for all z, then $f \equiv 0$.

Theorem 11. (7.4; Morera's Theorem) Let f be a continuous function on an open set D. If

$$\int_{\Gamma} f(z)dz = 0$$

whenever Γ is the boundary of a closed rectangle in D, then F is analytic on D.

Theorem 12. (7.6) Suppose $\{f_n\}$ represents a sequence of functions, analytic in an open domain D and such that $f_n \to f$ uniformly on compacta. Then f is analytic in D.

Theorem 13. (7.7) Suppose f is continuous in an open set D and analytic there except possibly at the points of a line segment L. Then f is analytic throughout D.

8 Simply Connected Domain

Definition 2. (8.1) A region D is simply connected if its complement is connected within $\epsilon to\infty$ (i.e. for any $z_0 \in \mathbb{C} \setminus D$, there is a curve γ such that $d(\gamma(t), \mathbb{C} \setminus D) < \epsilon$ for all $t \geq 0$, $\gamma(0) = z_0$, $\lim_{t\to\infty} \gamma(t) = \infty$))a

Definition 3. (8.2) The number of levels of Γ is the number of different imaginary part of points in horizontal lines in the polygonal path Γ .

Theorem 14. (8.4) For every function which is analytic in a simply connected domain, there is a primitive function.

Theorem 15. (8.5; General Closed Curve Theorem) Suppose that f is analytic in a simply connected region D and that C is a smooth closed curve contained in D. Then,

$$\int_C f = 0$$

Theorem 16. (8.8) Suppose that D is simply connected and that $0 \notin D$. Choose $z_0 \in D$, fix a value of $\log z_0$ and set

$$f(z) = \int_{z_0}^{z} \frac{d\zeta}{\zeta} + \log z_0$$

Then f is an analytic branch of $\log z$ in D.

9 Isolated Singularities of an Analytic Function

Theorem 17. (9.3-9.5) Suppose f is analytic in a deleted neighborhood of z_0 and z_0 is a singularity of f. Then,

- 1. If $\lim_{z\to z_0}(z-z_0)f(z)=0$, z_0 is a removable singularity.
- 2. If f is bounded in a deleted neighborhood, z_0 is a removable singularity.
- 3. If there is a posigive integer k such that

$$\lim_{z \to z_0} (z - z_0)^k f(z) \neq 0, \lim_{z \to z_0} (z - z_0)^{k+1} f(z) = 0$$

then, z_0 is a pole of order k.

Theorem 18. (9.6; Casorati-Weierstrass Theorem) If f has an essential singularity at z_0 and if D is a deleted neighborhood of z_0 , then the range $R = \{f(z) \mid z \in D\}$ is dense in the complex plane.

Theorem 19. (9.10) Every function which is analytic in some annulus has a unique representation as a Laurent Series, where the coefficient of z^k is

$$a_k = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{k+1}}$$

Definition 4. (9.12) Every terms of Laurent series with degress lower then 0 is a *principal part*, and other terms is an *analytic part*.

10 The Residue Theorem

Theorem 20. Let z_0 be a simple pole of f.

$$\operatorname{Res}(f; z_0) = \lim_{z \to z_0} f(z)$$

Let z_0 be an order $k \geq 1$ pole of f.

Res
$$(f; z_0) = \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} (z - z_0)^k f(z)$$

Definition 5. The winding number of γ around a is

$$n(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a}$$

This is an integer.

Theorem 21. (10.5; Cauchy's Residue Theorem) Suppose f is analytic in a simply connected domain D except for isolated singularities at z_1, \dots, z_m . Let γ be a closed curve not intersecting any of the singularities. Then,

$$\int_{\gamma} f = 2\pi i \sum_{k=1}^{m} n(\gamma, z_k) \operatorname{Res}(f; z_k)$$

Definition 6. (10.7) f is meromorphic if f is analytic there except at isolated poles.

Theorem 22. (10.8) For regular curve γ and f which is analytic in and on γ , where every zero and pole of f is not on γ ,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} = \mathbb{Z} - \mathbb{P}$$

where \mathbb{Z}/\mathbb{P} is the number of zeros/poles of f inside γ .

Corollary 3. (10.9; Argument Principle) If f analytic inside and on a regular closed curve γ where zeros of f are not on γ , then $\mathbb{Z} = \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f}$.

If $\gamma: z(t)$ where $t \in [0, 1]$,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} = \frac{\log f(z(1)) - \log f(z(0))}{2\pi i} = \frac{1}{2\pi} \Delta \operatorname{Arg} f(z)$$

Theorem 23. (10.10; Rouch's Theorem) Suppose that f and g are analytic inside and on a regular closed curve γ and that |f(z)| > |g(z)| for all $z \in \gamma$. Then

$$\mathbb{Z}(f+g) = \mathbb{Z}(f)$$

inside γ .

Theorem 24. (10.11; Generalized Cauchy Integral Formula) For a function f analytic in a simply connected domain D,

$$f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(\omega)}{(\omega - z)^{k+1}} d\omega$$

Theorem 25. (10.12) Suppose $\{f_n\}$ represents a sequence of functions, analytic in an open domain D and such that $f_n \to f$ uniformly on compacta. Then f is analytic in D, $f'_n \to f'$ uniformly on compacta.

Theorem 26. (10.13; Hurwitz's Theorem) Let $\{f_n\}$ be a sequence of non-vanishing analytic functions in a region D and suppose $f_n \to f$ uniformly on compacta of D. Then either $f \equiv 0$ in D or $f(z) \neq 0$ for all $z \in D$.

Corollary 4. (10.14) Suppose that f_n is a sequence of analytic function in a region D, that $f_n \to f$ uniformly on compact in D, and that $f_n \neq a$. Then either $f \equiv a$ or $f \neq a$ in D.

Theorem 27. (10.15) Suppose that f_n is a sequence of analytic function in a region D, that $f_n \to f$ uniformly on compact in D. If f_n is 1-1 in D for all n, then either f is constant or f is 1-1 in D.

11 Applications of the Residue Theorem to the Evaluation of Integral of Sums

Proposition 2. If P, Q are polynomials and $\deg Q - \deg P > 1$,

$$\lim_{R\to\infty}\int_{\Gamma_R}\frac{P(z)}{Q(z)}dz=0$$

where Γ_R is an arc of radius R.

Proposition 3. If P, Q are polynomials and $\deg Q > \deg P$,

$$\lim_{R \to \infty} \int_{\Gamma_R} e^{iz} \frac{P(z)}{Q(z)} dz = 0$$

where Γ_R is an arc of radius R.

Proposition 4. Let P, Q be polynomials and $\deg Q - \deg P \geq 2$.

$$\lim_{R\to\infty}\int_{\Gamma_R}\frac{P(z)}{Q(z)}\log zdz=0$$

where Γ_R is an arc of radius R.

$$\lim_{r \to 0} \int_{\Gamma_n} \frac{P(z)}{Q(z)} \log z dz = 0$$

where Γ_r is an arc of radius R in $x \leq 0$ half-plane.

$$\int_0^\infty \frac{P(x)}{Q(x)} dx = -\sum_k \operatorname{Res}\left(\frac{P(z)}{Q(z)} \log z; z_k\right)$$

Proposition 5.

$$\sum_{n=-\infty}^{\infty} f(n) = \lim_{N \to \infty} \int_{C_N} f(z) \pi \cot \pi z dz = -\sum_k \operatorname{Res}(f(z) \pi \cot \pi z; z_k)$$

Proposition 6.

$$\sum_{n=-\infty}^{\infty} (-1)^n f(n) = \lim_{N \to \infty} \int_{C_N} f(z) \pi \csc \pi z dz = -\sum_k \operatorname{Res}(f(z) \pi \csc \pi z; z_k)$$

Proposition 7.

$$\binom{n}{k} = \frac{1}{2\pi i} \int_C \frac{(1+z)^n}{z^{k+1}}$$

Proposition 8.

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \frac{1}{2\pi i} \int_{C} (1+z)^{n} \left(1 + \frac{1}{z}\right)^{n} \frac{dz}{z}$$

12 Further Contour Integarl Techniques

Proposition 9.

$$\lim_{R \to \infty} \int_{C_R} e^z f(z) dz = 0$$

where the real part of C_R is bounded above and |f| is bounded.

Proposition 10.

$$\int_{C_R} \frac{1}{az + \varepsilon(z)} \simeq \int_{C_R} \frac{1}{az}$$

for sufficient large R where the integral are equal for all sufficient large R.

13 Introduction to Conformal Mapping

Theorem 28. (13.4) If f is analytic at z_0 and has non-zero derivative f' at z_0 , then f is conformal and locally 1-1 at z_0 .

Theorem 29. (13.6) For integer k, z^k magnifies angles at 0 by a factor of k, and maps D(0;r) onto $D(0;r^k)$.

Theorem 30. (13.7) Suppose f is analytic at z_0 with $f'(z_0) = 0$. If f is non-constant, there is some small open neighborhood of z_0 where f is a k-to-1 mapping and f magnifies angles at z_0 by a factor of k, where k is the least positive integer of which $f^{(k)}(z_0) \neq 0$.

Theorem 31. (13.8) Suppose f is a 1-1 analytic function in a region D. Then f^{-1} exists an analytic in f(D), and f and f^{-1} are conformal in D and f(D) respectively.

Theorem 32. (13.9) Conformal equivalence (existency of conformal mapping between two region) is an equivalence relation.

Definition 7. Bilinear transformation

$$\omega = \frac{az+b}{cz+d}$$

where $ad - bc \neq 0$. (: $\omega' = \frac{ad - bc}{(cz + d)^2}$, which must be non-zero for conformal mapping)

Lemma 1. (13.10) 1/z maps circle/line to circle/line.

Theorem 33. (13.11) The image of circle/line by a bilinear transformation is a circle/line.

Theorem 34. (13.13) For a given conformal mapping $f: D_1 \to D_2$,

If there is a conformal mapping $h: D_1 \to D_2$, there is a conformal automorphism $g: D_1 \to D_1$ such that $h = g \circ f$. (which is $g = h \circ f^{-1}$).

If h is a conformal automorphism of D, $h = f^{-1} \circ g \circ f$ for some conformal automorphism g of D_2 .

Lemma 2. (13.14) The only automorphisms of the unit disc with f(0) = 0 are given by $f(z) = e^{i\theta z}$.

Theorem 35. (13.15) The automorphisms of the unit disc are of the form $f(z) = e^{i\theta z} \left(\frac{z-\alpha}{1-\overline{\alpha}z} \right)$.

Theorem 36. (13.16) The conformal mappings h of the upper half plane onto the unit disc are of the form

$$h(z) = e^{i\theta} \left(\frac{z - \alpha}{z - \overline{\alpha}} \right)$$

where $\operatorname{Im} \alpha > 0$.

Theorem 37. (13.17) The automorphisms of the upper half-plane of the form

$$h(z) = \frac{az+b}{cz+d}$$

with $a, b, c, d \in \mathbb{R}$ and ad - bc > 0.

Theorem 38. (13.19) A non-identity bilinear transformation has a tmost two fixed points.

Lemma 3. (13.20) The unique bilinear mapping sending z_1, z_2, z_3 into $\infty, 0, 1$ respectively, is given by

$$T(z) = \frac{(z - z_2)(z_3 - z_1)}{(z - z_1)(z_3 - z_2)}$$

Definition 8. (13.21) The *cross-ratio* of four complex z_1, z_2, z_3, z_4 is

$$(z_1, z_2, z_3, z_4) = \frac{(z_4 - z_2)(z_3 - z_1)}{(z_4 - z_1)(z_3 - z_2)}$$

Theorem 39. (13.22) Bilinear transformation preserves cross-ratio

Theorem 40. (13.23) The unique bilinear transformation $\omega = f(z)$ mapping z_1, z_2, z_3 into $\omega_1, \omega_2, \omega_3$ respectively, is given by

$$\frac{(\omega - \omega_2)(\omega_3 - \omega_1)}{(\omega - \omega_1)(\omega_3 - \omega_2)} = \frac{(z - z_2)(z_3 - z_1)}{(z - z_1)(z_3 - z_2)}$$

Proposition 11. $f(z) = \sin z$ maps semi-infinite strip

$$\frac{-\pi}{2} < \operatorname{Re} z < \frac{\pi}{2}; \operatorname{Im} z > 0$$

conformally onto the upper half-plane by considering its behavior on the ractangle R:

$$\frac{-\pi}{2} < \operatorname{Re} z < \frac{\pi}{2}; 0 \le \operatorname{Im} z \le N$$

Note

 $\sin z = \sin x \cosh N + i \cos x \sinh N$

14 The Riemann Mapping Theorem

Theorem 41. (Riemann Mapping Theorem) For any simply connected domain $R(\neq \mathbb{C})$ and $z_0 \in R$, there exists a unique conformal mapping φ of R onto U (unit disk) such that $\varphi(z_0) = 0$ and $\varphi'(z_0) > 0$.

Note,

$$\varphi(z) = c \frac{z - z_0}{1 - \overline{z_0}z}$$