Combining Neural Language Models with n-grams

Sargur N. Srihari srihari@cedar.buffalo.edu

This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/CSE676

Topics

- 1. N-gram Models
- 2. Neural Language Models
- 3. High-Dimensional Outputs
- Combining Neural Language Models with n-grams
- 5. Neural Machine Translation
- 6. Other Applications

Goal of Language Modeling

- Goal: Estimate probabilities of word sequences
 - Equivalent to estimating conditional probability of a word given preceding words, by chain rule
 - It is key to NLP, with applications to
 - Type-ahead systems

- Machine Translation
- Automatic Speech Recognition

Basic Model

- Goal is to estimate the probability $P(w_t|\mathbf{c})$ of a next word w_t given its context sequence $\mathbf{c} = (w_{t-1},...,w_1)$
 - the context being empty if t= 1

N-gram models

- $P(w_t|\mathbf{c})$: Probability of word w_t given $\mathbf{c} = (w_{t-1},...,w_1)$
 - Relies on Markov assumption:
 - Next word depends only on N-1 previous words:

$$P(w_t|\mathbf{c}) = P(w_t|\mathbf{c}_{N-1})$$
 where $\mathbf{c}_{N-1} = (w_{t-1},...,w_{t-N+1})$

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Bigram Probabilities

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

– Maximum likelihood estimate:

$$P(w_t|\mathbf{c}_{N-1}) = C(w_t, \mathbf{c}_{N-1}) / C(\mathbf{c}_{N-1})$$

• where C(•) is no. of occurrences of sequence • in the training corpus

N-gram with Backoff

- For high order models, e.g, N= 5, only a small fraction of N-grams appear in training corpus
 - a problem of data sparsity
 - with 0 probability for almost all sentences
- This is overcome by *n*-gram (*NG*) with back-off:

– where α are back-off coefficients and p are discounted probabilities

Neural Language Model

- Another way to reduce sparsity: encode context ${\bf c}$ as a fixed length dense vector h_t
 - Each word w is mapped to embedding vector v(w)
 - The sequence of vectors $v(w_1),...,v(w_t)$ is then fed to a neural network f to produce h_t
 - A linear classifier a is then applied to h_t to estimate the probability distribution over the next word:

$$\mathbf{P}^{NN}(\bullet|\mathbf{c}) = a\left(f(v(w_1), \dots, v(w_{t-1}))\right)$$

- Different networks can be used as encoder:
 - Fully connected, convolutional, recurrent. LSTM

Compare N-grams to Neural model

- Neural models need less memory and generalize better
 - But increased computation at training and test time
 - Increased computation with increased no of parameters
- N-gram models achieve high model capacity
- See next

Capacity of N-gram models

- N-gram models achieve high capacity
 - By storing frequencies of very many tuples

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

- Require little computation to process an example
 - By looking up a few tuples that match the current context
- With hash tables or trees to access counts, computation is independent of capacity

Capacity of neural network

- Doubling no. of parameters of a neural network doubles computation time
- Layers based on matrix multiplication use amount of computation proportional to no. of parameters

Ensemble of neural net and *n*-gram

- Can add capacity by combining two models:
 - 1. Neural language model
 - 2. N-gram language model
- It can reduce test error if ensemble members make independent mistakes
- Best performing language model is often an ensemble of a neural language model with ngrams

Pairing neural net with maximum entropy model

- Viewed as training a neural net with extra inputs connected to output, not to any other part
 - Extra inputs are indicators for presence of particular N-grams in the input context, so these variables are very high-dimensional and very sparse
- Increase in model capacity is huge
 - New portion of the architecture contains upto $|sV|^N$ parameters
 - But added computation needed to process an input is minimal because the extra inputs are sparse