STAT 3355 Introduction to Data Analysis

Lecture 09: Summaries for Univariate Data III

Created by: Qiwei Li Assistant Professor of Statistics Presented by: Octavious Smiley Assistant Professor of Instruction

Department of Mathematical Sciences The University of Texas at Dallas

Last Class

Summarize a univariate data

		Continuous	
	Discrete	Value-based	Position-based
Numeric	table(x)	mean(x)	median(x)
		var(x)	IQR(x)
			$\mathtt{quantile}(x)$
			min(x)
			$\max(x)$
			range(x)
Graphic	barplot(table(x))		

Quiz 4

- Load the dataset mpg in the library ggplot2. Create a new variable cmb = (cty + hwy)/2.
 - Problem 1: What is the mode of variable cy1?
 - Problem 2: What is the difference of the median combined mpg between front-wheel drive and four-wheel drive cars?
 - Problem 3: What is the sample standard deviation of combined mpg of toyota cars?

Quiz 4

Answers

```
# Load data
library(ggplot2)
data(mpg)

# Create the new variable
mpg$cmb <- (mpg$hwy + mpg$cty)/2

# Problem 1
names(which.max(table(mpg$cyl)))</pre>
```

Quiz 4

Answers

```
# Problem 2
fwd_index <- which(mpg$drv == "f")
awd_index <- which(mpg$drv == "4")
median(mpg$cmb[fwd_index]) - median(mpg$cmb[
    awd_index])

# Problem 3
toyota_index <- which(mpg$manufacturer == "
    toyota")
sd(mpg$cmb[toyota_index])</pre>
```

Learning Goals

- Graphical summaries for continuous data
 - Histogram
 - Boxplot

Table of Contents

 A special bar chart that turns a numeric data into a ordinal data by binning

- A special bar chart that turns a numeric data into a ordinal data by binning
 - Break up an interval that covers all the values in x into several bins (consecutive, non-overlapping, equally-sized)
 - lacksquare Count the number of x entries in each bin

- A special bar chart that turns a numeric data into a ordinal data by binning
 - Break up an interval that covers all the values in x into several bins (consecutive, non-overlapping, equally-sized)
 - Count the number of x entries in each bin
 - x axis arranges the bins
 - y axis represents their frequency with a bar of a height proportional to the frequency

- Implementation in R
 - lacksquare x is a numeric vector
 - \blacksquare hist(x)
 - lacksquare x is a numeric variable in a data frame X
 - \blacksquare hist(X\$x_name)

Examples

```
# Load data babies
library(UsingR)
data("babies")

# Baby weight variable
x <- babies$wt

# Draw the histogram
hist(x)</pre>
```

- Important arguments controlling the bars
 - breaks:
 - A number that gives the approximate number of bins
 - A numeric vector that gives the breakpoints between bins, e.g. via the function seq(min(x), max(x), length.out =)

- Important arguments controlling the bars
 - breaks:
 - A number that gives the approximate number of bins
 - A numeric vector that gives the breakpoints between bins, e.g. via the function seq(min(x), max(x), length.out =)
 - col: A number/string of a color for all bars
 - Colors in R
 - rgb(red = , green = , blue = , alpha =)
 - **border**: A number/string of a color for all bar borders

- Important arguments controlling the bars
 - breaks:
 - A number that gives the approximate number of bins
 - A numeric vector that gives the breakpoints between bins, e.g. via the function seq(min(x), max(x), length.out =)
 - col: A number/string of a color for all bars
 - Colors in R
 - rgb(red = , green = , blue = , alpha =)
 - border: A number/string of a color for all bar borders
 - xlim and ylim: A numerical vector of two values indicating the limits of the axis

- Important arguments controlling the labels
 - freq: A logical value for a representation of frequencies or probability densities
 - main: A string of title
 - xlab and ylab: A string of label for the axis names
 - **las**: A numeric value of $\{0,1,2,3\}$ for the orientation of axis tick labels

- Important arguments controlling the label size
 - **cex.main**: A numeric value for the title size
 - cex.lab: A numeric value for the size of axis labels
 - cex.axis: A numeric value for the size of axis tick labels

$$k = \left\lceil \frac{x_{[n]} - x_{[1]}}{h} \right\rceil$$

- \blacksquare The look depends on the bin number k or bin width h
 - Small *k*: blocky
 - Large *k*: spiky

$$k = \left\lceil \frac{x_{[n]} - x_{[1]}}{h} \right\rceil$$

- $lue{}$ The look depends on the bin number k or bin width h
 - Small *k*: blocky
 - Large *k*: spiky
- Existing methods make strong assumptions about the data
 - Square-root choice: $k = \lceil \sqrt{n} \rceil$
 - Sturges' formula: $k = 1 + \lceil \log_2 n \rceil$
 - Rice rule: $k = \lceil 2\sqrt[3]{n} \rceil$

$$k = \left\lceil \frac{x_{[n]} - x_{[1]}}{h} \right\rceil$$

- $lue{}$ The look depends on the bin number k or bin width h
 - Small k: blocky
 - Large k: spiky
- Existing methods make strong assumptions about the data
 - Square-root choice: $k = \lceil \sqrt{n} \rceil$
 - Sturges' formula: $k = 1 + \lceil \log_2 n \rceil$
 - Rice rule: $k = \lceil 2\sqrt[3]{n} \rceil$
 - Scott's normal reference rule: $h = \frac{3.5s}{\sqrt[3]{n}}$
 - Freedman-Diaconi's choice: $h = 2 \frac{IQR}{\sqrt[3]{n}}$

Examples

```
x <- babies$wt
n <- length(x)
# Square-root choice
k <- ceiling(sqrt(n))</pre>
# Sturges' formula
k \leftarrow 1 + ceiling(log2(n))
# Rice rule
k \leftarrow ceiling(2*n^(1/3))
hist(x, breaks = seq(min(x), max(x), length.
   out = k + 1), xlab = "Weight", main =
```

Your Turn

- Continue to work on the wt variable in the babies dataset
 - Calculate the Scott's normal reference for the bin width h and the corresponding bin number k via the formula $k = \left\lceil \frac{x_{[n]} x_{[1]}}{h} \right\rceil$
 - Draw the resulting histogram in UTD Eco Green color ('#154734')
 - Repeat the above steps for the Freedman-Diaconi's choice

Your Turn

Solutions

```
# Scott's normal reference
h <- 3.5 * sqrt(var(x)) / n^(1/3)
k <- ceiling((max(x) - min(x)) / h)

# Plot the histogram
hist(x, breaks = seq(min(x), max(x), length.
    out = k + 1), xlab = "Weight", main = "",
    col = "#008542", las = 1)</pre>
```

Your Turn

Solutions

```
# Freedman-Diaconi's choice
h <- 2 * IQR(x) / n^(1/3)
k <- ceiling((max(x) - min(x)) / h)

# Plot the histogram
hist(x, breaks = seq(min(x), max(x), length.
    out = k + 1), xlab = "Weight", main = "",
    col = "#008542", las = 1)</pre>
```

- Easy to identity the center
 - The peak is the mode
 - The balancing point is the mean
 - The point splitting the area into half is the median
- Easy to identity the spread
- Easy to identity the shape

- Easy to identity the center
 - The peak is the mode
 - The balancing point is the mean
 - The point splitting the area into half is the median
- Easy to identity the spread
- Easy to identity the shape

- Easy to identity the center
 - The peak is the mode
 - The balancing point is the mean
 - The point splitting the area into half is the median
- Easy to identity the spread
- Easy to identity the shape

Examples

```
data("exec.pay")
x <- exec.pay
n <- length(x)
# Freedman-Diaconi's choice
h \leftarrow 2*IQR(x)/(n^{(1/3)})
k \leftarrow ceiling((max(x) - min(x))/h)
hist(x, breaks = seq(min(x), max(x), length.
   out = k + 1), xlab = "Compensation (10k)"
hist(x, breaks = seq(min(x), max(x), length.
   out = k + 1), xlim = c(0, 200), xlab = "
   Compensation (10k)")
```

■ Difficult for comparing samples from different groups

- Difficult for comparing samples from different groups
 - Combine multiple plots into one graph via the function
 par(mfrow = c(,))
 - Density plot via the function plot(density())

The histogram of baby weights

The histogram of baby weights

The histogram of baby weights

The histogram of baby weights

The histogram of baby weights

The histogram of baby weights

- Visualizes the probability distribution of the data by drawing a continuous curve
 - x axis represents the value of the data
 - y axis represents the probability density
 - The height of the curve is scaled such that the area under the curve equals one

- Implementation in R
 - \mathbf{x} is a numeric vector
 - \blacksquare plot(density(x))
 - hist(x, freq = FALSE) and lines(density(x))
 - lacksquare x is a numeric variable in a data frame X
 - plot(density(X\$x_name))
 - hist(X\$x_name, freq = FALSE) and lines(density(X\$x_name))

Density Plot

```
# Baby weight variable
x <- babies$wt
# Histogram
hist(x, xlab = "", freq = TRUE, las = 1)
# Histogram and density plot
hist(x, xlab = "", freq = FALSE, las = 1)
lines(density(x))
# Density plot only
plot(density(x), xlab = "", las = 1, main =
   "Density plot of x")
```

Boxplot

- Displays the five-number summary (the output of the function summary())
 - One axis represents the value of the data
 - A box is drawn from Q(0.25) to Q(0.75), representing the IQR
 - lacksquare A thick line through the box indicates Q(0.5), i.e. the median
 - Whiskers are drawn from $\max(Q(0.25)-1.5 \text{IQR}, Q(0))$ and $\max(Q(0.75)+1.5 \text{IQR}, Q(1))$ to the box
 - Points are the outliers

The boxplot of baby weights

Boxplot

- Implementation in R
 - lacksquare x is a numeric vector
 - \blacksquare boxplot(x)
 - lacksquare x is a numeric variable in a data frame X
 - lacksquare boxplot(X\$x_name)

Boxplot

```
# Baby weight variable
x <- babies$wt

# Get the quantile summary
summary(x)

# Draw the boxplot
boxplot(x)
boxplot(x, horizontal = TRUE)</pre>
```

The Function boxplot()

- Important arguments controlling the box
 - horizontal: A logical value for the orientation of the box
 - range: A number that determines how far the whiskers extend out from the box
 - outline: A logical value for drawing the outlines defined by the range
 - col: A vector of colors for each box
 - border: A vector of colors for the boarder of each box
 - ylim: A numerical vector of two values indicating the limits for the axis that represents the values

The Function boxplot()

- Important arguments controlling the labels
 - main: A string of title
 - xlab and ylab: A string of label for the axis names
 - \blacksquare las: A numeric value of $\{0,1,2,3\}$ for the orientation of axis labels

The Function boxplot()

- Important arguments controlling the label size
 - cex.main: A numeric value for the title size
 - cex.lab: A numeric value for the size of axis labels
 - cex.axis: A numeric value for the size of x axis label

Discussions

- Easy to identity the center: The median
- Easy to identity the spread: The IQR
- Easy to identity the shape: The location of the median within the box and the lengths of the two whiskers.

Symmetric

Discussions

- Easy to identity the center: The median
- Easy to identity the spread: The IQR
- Easy to identity the shape: The location of the median within the box and the lengths of the two whiskers.

Discussions

- Easy to identity the center: The median
- Easy to identity the spread: The IQR
- Easy to identity the shape: The location of the median within the box and the lengths of the two whiskers.

Combine Multiple Plots

- Stack multiple plots into one graph via the function
 par(mfrow = c(,))
- The graphics device will remain divided until changing it back with par(mfrow = c(1, 1))

Combine Multiple Plots

Violin Plot

- A hybrid of boxplot and histogram
 - A boxplot within
 - A histogram smoothed by a kernel density estimator on each side
- More informative, such as the mode and the full distribution of the data
- Harder to grasp the meanings due to the unpopularity

Violin Plot

- Implementation in R
 - Don't use the function violinplot() in the package UsingR
 - Install the package vioplot
 - x is a numeric vector
 - vioplot(x)
 - lacksquare x is a numeric variable in a data frame X
 - \blacksquare vioplot(X\$x_name)

Violin Plot

```
violinplot(x, col = "orange")

library(vioplot)
vioplot(x, horizontal = TRUE, xlab = "
   Newborn weight (oz)", col = "orange",
   main = "The violin plot of baby weights",
   cex.main = 1.8)
```

After-class Reading

- Using R for Introductory Statistics (1st Ed.) by John Verzani
- Chapter 2 Univariate data
 - Section 2.3 Shape of a distribution
 - Subsection 2.3.1 Histogram
 - Subsection 2.3.2 Modes, symmetry, and skew
 - Subsection 2.3.3 Boxplots

After-class Reading

- Using R for Introductory Statistics (2nd Ed.) by John Verzani
- Chapter 2 Univariate data
 - Section 2.3 Numeric summaries