

CS120: Computer Networks

Lecture 10. RIP and OSPF

Zhice Yang

Forwarding with IP Address

- Router Behavior
 - if IP.network == PortX.IP.network
 - forward to the host connected to PortX
 - else
 - forward to the router (Which? given by routing alg.)

Network 2 (Ethernet)

Network 1

(Wireless)

H1: 200.155.11.5

H2: 200.155.11.3

H3: 200.155.11.2

 $\underline{110}01000.10011011.00001011.\underline{XXXXXXXX}$

Network 4 (Ethernet)

H1 H2 H3

H8 R3 H9

NO need to check the host part

H8: 210.168.1.10

H9: 210.168.1.200

11010010.10101000.00000001.XXXXXXXX

197.168.23.* Interface 0
200.155.11.* Interface 1
210.168.1.* R2

H4: 197.168.23.1

H5: 197.168.23.11

Network 3

(Point-point)

H6: 197.168.23.111 <u>110</u>00101.10101000.00010111.XXXXXXXX

H7: 197.168.23.2

Routing Protocols

- Routing Information Protocol (RIP)
 - Algorithm: Distance Vector
- Open Shortest Path First (OSPF)
 - Algorithm: Link State
- Border Gateway Protocol (BGP)

Intradomain Routing Protocol

Interdomain Routing Protocol

Network as a Graph

- The basic problem of routing is to find the low(est)-cost path between any two nodes
 - Static approach has several shortcomings
 - Can not handle node or link failures
 - Can not handle addition of new nodes or links
 - Edge costs cannot change
 - Centralized solution does not scale
 - ➤ Distributed and dynamic protocol

Bellman-Ford equation

let

 $d_x(y)$ =cost of lowest-cost path from x to y

then

$$d_{x}(y) = \min_{v} \{c(x, v) + d_{v}(y)\}$$
lowest-cost from neighbor v to destination y cost to neighbor v
min taken over all neighbors v of x

Example

- $d_C(A) = ?$
 - $d_B(A) = 2$
 - $d_D(A) = 2$
 - $d_C(A) = \min(d_B(A) + 4, d_D(A) + 9) = 6$

- x maintains its distance vector estimate $\mathbf{D}_{x}(y) = \{D_{x}(y): y \in N\}$
- x knows:
 - cost to each neighbor v: c(x, v)
 - neighbors' distance vectors estimate: $\mathbf{D}_{v}(y) = \{D_{v}(y): y \in N\}$
- Algorithm idea:
 - From time-to-time, each node sends its own distance vector estimate to neighbors
 - When x receives new distance vector estimates from neighbors, it updates its own distance vector estimate using Bellman-Ford equation
 - Under minor, natural conditions, the estimate $D_x(y)$ will converge to the actual lowest cost $d_x(y)$

у	$D_A(y)$
Α	0
В	inf
С	inf
D	inf
Ε	inf
F	inf
G	inf

y	$D_{\mathrm{B}}(y)$
Α	inf
В	0
С	inf
D	inf
Ε	inf
F	inf
G	inf

y	$D_D(y)$
Α	inf
В	inf
С	inf
D	0
Ε	inf
F	inf
G	inf

y	$D_{E}(y)$
Α	inf
В	inf
С	inf
D	inf
Ε	0
F	inf
G	inf

y	$D_{F}(y)$
Α	inf
В	inf
С	inf
D	inf
Ε	inf
F	0
G	inf

$D_{G}(y)$
inf
0

y	$D_A(y)$
Α	0
В	1
С	1
D	inf
Ε	1
F	1
G	inf

y	$D_{\mathrm{B}}(y)$
Α	1
В	0
С	1
D	inf
Ε	inf
F	inf
G	inf

$D_{C}(y)$
1
1
0
1
inf
inf
inf

y	$D_D(y)$
Α	inf
В	inf
С	1
D	0
Ε	inf
F	inf
G	1

y	$D_{E}(y)$
Α	1
В	inf
С	inf
D	inf
Ε	0
F	inf
G	inf

у	$D_{F}(y)$
Α	1
В	inf
С	inf
D	inf
Ε	inf
F	0
G	1

$D_{G}(y)$
inf
inf
inf
1
inf
1
0

- Every T seconds each router sends its table to its neighbor
- Each router then updates its table based on the new information

y	$D_A(y)$
Α	0
В	1
С	1
D	inf
Ε	1
F	1
G	inf

y	$D_{\mathrm{B}}(y)$
Α	1
В	0
С	1
D	inf
Ε	inf
F	inf
G	inf

y	$D_{C}(y)$
Α	1
В	1
С	0
D	1
Ε	inf
F	inf
G	inf

y	$D_D(y)$
Α	inf
В	inf
С	1
D	0
Ε	inf
F	inf
G	1

y	$D_{E}(y)$
Α	1
В	inf
С	inf
D	inf
Ε	0
F	inf
G	inf

y	$D_{F}(y)$
Α	1
В	inf
С	inf
D	inf
Ε	inf
F	0
G	1

$D_{G}(y)$
inf
inf
inf
1
inf
1
0

y	$D_A(y)$
Α	0
В	1
С	1
D	inf
Ε	1
F	1
G	inf

$D_{\mathrm{B}}(y)$
1
0
1
inf
inf
inf
inf

y	$D_{C}(y)$
Α	1
В	1
С	0
D	1
Ε	inf
F	inf
G	inf

y	$D_D(y)$
Α	inf
В	inf
С	1
D	0
Ε	inf
F	inf
G	1

y	$D_{E}(y)$
Α	1
В	inf
С	inf
D	inf
Ε	0
F	inf
G	inf

y	$D_{F}(y)$
Α	1
В	inf
С	inf
D	inf
Ε	inf
F	0
G	1

$D_{G}(y)$
inf
inf
inf
1
inf
1
0

у	$D_A(y)$
Α	0
В	1
С	1
D	2
Ε	1
F	1
G	inf

y	$D_{\mathrm{B}}(y)$
Α	1
В	0
С	1
D	inf
Ε	inf
F	inf
G	inf

y	$D_{C}(y)$
Α	1
В	1
С	0
D	1
Ε	inf
F	inf
G	inf

y	$D_D(y)$
Α	inf
В	inf
С	1
D	0
Ε	inf
F	inf
G	1

y	$D_{E}(y)$
Α	1
В	inf
С	inf
D	inf
Ε	0
F	inf
G	inf

$_{\mathrm{F}}(\mathrm{y})$
1
inf
inf
inf
inf
0
1

$D_{G}(y)$
inf
inf
inf
1
inf
1
0

y	$D_A(y)$
Α	0
В	1
С	1
D	2
Ε	1
F	1
G	inf

y	$D_{\mathrm{B}}(y)$
Α	1
В	0
С	1
D	inf
Ε	inf
F	inf
G	inf

y	$D_{C}(y)$
Α	1
В	1
С	0
D	1
Ε	inf
F	inf
G	inf

y	$D_D(y)$
Α	inf
В	inf
С	1
D	0
Ε	inf
F	inf
G	1

$D_{E}(y)$
1
inf
inf
inf
0
inf
inf

y)
:
•

$D_{G}(y)$
inf
inf
inf
1
inf
1
0

y	$D_A(y)$
Α	0
В	1
С	1
D	2
Ε	1
F	1
G	2

y	$D_{\mathrm{B}}(y)$
Α	1
В	0
С	1
D	inf
Ε	inf
F	inf
G	inf

y	$D_{C}(y)$
Α	1
В	1
С	0
D	1
Ε	inf
F	inf
G	inf

y	$D_D(y)$
Α	inf
В	inf
С	1
D	0
Ε	inf
F	inf
G	1

y	$D_{E}(y)$
Α	1
В	inf
С	inf
D	inf
Ε	0
F	inf
G	inf

y	$D_F(y)$
Α	1
В	inf
С	inf
D	inf
Ε	inf
F	0
G	1

Information	Distance to Reach Node							
Stored at Node	Α	В	С	D	Е	F	G	
Α	0	1	1	2	1	1	2	
В	1	0	1	2	2	2	3	
С	1	1	0	1	2	2	2	
D	2	2	1	0	3	2	1	
E	1	2	2	3	0	2	3	
F	1	2	2	2	2	0	1	
G	2	3	2	1	3	1	0	

y	$D_A(y)$	via
Α	0	А
В	1	В
С	1	С
D	2	С
Ε	1	Е
F	1	F
G	2	F

Information			Distance	e to Rea	ch Node	e					
Stored at Node	Α	В	С	D	Е	F	G				
А	0	1	1	2	1	1	2				
В	1	0	1	2	2	2	3				
С	1	1	0	1	2	2	2				
D	2	2	1	0	3	2	1				
Е	1	2	2	3	0	2	3				
F	1	2	2	2	2	0	1				
G	2	3	2	1	3	1	0				

Information		Distance to Reach Node						
Stored at Node	Α	В	С	D	Е	F	G	
А	0	1	1	2	1	1	2	
В	1	0	1	2	2	2	3	
С	1	1	0	1	2	2	1	
D	2	2	1	0	3	2	1	
Е	1	2	2	3	0	2	3	
F	1	2	2	2	2	0	1	
G	2	3	1	1	3	1	0	

				4			
Information		Distance to Reach Node					
Stored at Node	Α	В	С	D	Е	F	G
A	0	1	1	2	1	1	2
В	1	0	1	2	2	2	2
С	1	1	0	1	2	2	1
D	2	2	1	0	3	2	1
E	1	2	2	3	0	2	3
F	1	2	2	2	2	0	1
G	2	2	1	1	3	1	0

Information			Distance	e to Rea	ch Node	2					
Stored at Node	Α	В	С	D	Е	F	G				
А	0	1	1	2	1	1	2				
В	1	0	1	2	2	2	3				
С	1	1	0	1	2	2	2				
D	2	2	1	0	3	2	1				
Е	inf	2	2	3	0	2	3				
F	1	2	2	2	2	0	1				
G	2	3	2	1	3	1	0				

Information		[Distance	e to Rea	ch Node	2					
Stored at Node	Α	В	С	D	Е	F	G				
А	0	1	1	2	1	1	2				
В	1	0	1	2	2	2	3				
С	1	1	0	1	2	2	2				
D	2	2	1	0	3	2	1				
Е	inf	inf	2	3	0	2	3				
F	1	2	2	2	2	0	1				
G	2	3	2	1	3	1	0				

Information			Distance	e to Rea	ch Node	2						
Stored at Node	Α	В	С	D	Е	F	G					
А	0	1	1	2	1	1	2					
В	1	0	1	2	2	2	3					
С	1	1	0	1	2	2	2					
D	2	2	1	0	3	2	1					
Е	inf	3	2	3	0	2	3					
F	1	2	2	2	2	0	1					
G	2	3	2	1	3	1	0					

Information		Distance to Reach Node						
Stored at Node	Α	В	С	D	Е	F	G	
А	0	1	1	2	1	1	2	
В	1	0	1	2	2	2	3	
С	1	1	0	1	2	2	2	
D	2	2	1	0	3	2	1	
Е	4	3	2	3	0	2	3	
F	1	2	2	2	2	0	1	
G	2	3	2	1	3	1	0	

Information		ı	Distance	e to Rea	ch Node	2					
Stored at Node	Α	В	С	D	Е	F	G				
А	0	1	1	2	1	1	2				
В	1	0	1	2	2	2	3				
С	1	1	0	1	2	2	2				
D	2	2	1	0	3	2	1				
Е	4	3	5	3	0	2	3				
F	1	2	2	2	2	0	1				
G	2	3	2	1	3	1	0				

Routing Information Protocol (RIP)

- Included in BSD-UNIX distribution in 1982
- Use distance vector algorithm
 - Distance metric: # hops (max = 15 hops), each link has cost 1
 - Distance Vectors exchanged with neighbors every 30 sec in response message
 - Each message: list of up to 25 destination subnets

Routing Table A

SubnetNum	Distance	NextHop
1	0	Interface to 1
2	0	Interface to 2
3	1	С
4	3	С
5	2	С
6	2	С

Routing Protocols

- Routing Information Protocol (RIP)
 - Algorithm: Distance Vector
- Open Shortest Path First (OSPF)
 - Algorithm: Link State
- Border Gateway Protocol (BGP)

Intradomain Routing Protocol

Interdomain Routing Protocol

Link State Routing

- Network topology is known to all routers
 - Accomplished via broadcasting link state packets (LSP) to all routers
- Routing Algorithm: computes shortest paths from one node (source) to all other nodes
 - Based on Dijkstra's algorithm

```
Initialization:
M = \{s\}
for all nodes v
  if v adjacent to s
then D_s(v) = c(u, v)
else D_s(v) = \inf
Loop
  find w not in M such that D_s(w) is a minimum
    add w to M
    update D_s(v) for all v adjacent to w and not in M:
        D_{S}(v) = \min(D_{S}(v), D_{S}(w) + c(w, v))
until all nodes in M
```

- M: set of node processed
- S: node of the local router
- v: node of other routers
- $D_s(v)$ distance from s to v
- c(u, v) link weight between node u and v

M	$D_{D}(A)$	$D_D(B)$	$D_{D}(C)$
{D}	Inf, from D	11, from D	2, from D

VI	$D_D(A)$	$D_D(B)$	$D_D(C)$
D}	Inf, from D	11, from D	2, from D
D, C}	12, from C	5, from C	2, from D

M	$D_{D}(A)$	$D_D(B)$	$D_{D}(C)$
[D}	Inf, from D	11, from D	2, from D
[D, C}	12, from C	5, from C	2, from D
[D, C, B}	10, from B	5, from C	2, from D

M	$D_{D}(A)$	$D_D(B)$	$D_{\mathrm{D}}(C)$
{D}	Inf, from D	11, from D	2, from D
{D, C}	12, from C	5, from C	2, from D
{D, C, B}	10, from B	5, from C	2, from D
{D, C, B, C}	10, from B	5, from C	2, from D

Dijkstra's Algorithm (Another notation)

<Destination, Cost, Nexthop>

Step	Confirmed	Tentative
1	(D,0,-)	
2	(D,0,-)	(B,11,B) (C,2,C)
3	(D,0,-) (C,2,C)	(B,11,B)
4	(D,0,-) (C,2,C)	(B,5,C) (A,12,C)
5	(D,0,-) (C,2,C) (B,5,C)	(A,12,C)
6	(D,0,-) (C,2,C) (B,5,C)	(A,10,C)
7	(D,0,-) (C,2,C) (B,5,C) (A,10,C)	

Open Shortest Path First (OSPF)

- "Open": nonproprietary standard created under Engineering Task Force (IETF).
 - Security: all OSPF messages authenticated (to prevent malicious intrusion)
 - Hierarchical routing: OSPF in large domains
 - Load balancing: multiple same-cost paths allowed (only one path in RIP)

OSPF: Link State Announcement

- Link State Announcement (LSA) contains key Information to describe the network topology
 - ID of the router
 - Neighbors of the router, and the cost to the neighbor (link state of its neighbors)
 - i.e., neighbor ID and link weight
 - Connected network IDs, x.x.x.x/xx
- LSA is broadcasted to other routers
- Routers use the link states of other routers to construct the topology of entitle net
 - Based on that to calculate the shortest path

OSPF: Link State Announcement

- Flooding method
 - Basic Flooding
 - Transmit LSA to adjacent routers
 - Routers ACK the received LSA
 - Routers store the received (new) LSA
 - Forward LSA to adjacent routers
 - Key Designs: avoid duplication and out-of-date LSA
 - Seq: each LSA contains an increasing sequence number
 - Differentiate duplicated and old LSA.
 - Restart? Send out-of-order LSA to neighbors, neighbors ack the last stored seq
 - Aging: each LSA is associated with an increasing age
 - Flush LSA when reaching the max age (typically 1 hour)
 - Routers periodically broadcast LSA to refresh LSA (typically 0.5 hour)

Forwarding Table vs. Routing Table

- Forwarding table
 - Determines local forwarding
 - Optimized for looking up an address when forwarding a packet
 - Normally in hardware
 - Contains mappings from network numbers to outgoing interfaces and next-hop destination MAC addresses
- Routing table
 - Built by the routing algorithm as a precursor to build the forwarding table
 - Optimized for calculating changes in network topology
 - Normally in software
 - Contains mappings from network numbers to next hop routers (IP)

Reference

• Textbook 3.3