TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 3.-7.12.2018

7. Übung Analysis III für Mathematiker(innen)

(Volumina von Körpern, Elementarinhalte)

Themen der großen Übung am 26.11.

Der unendlich lange Kreiszylinder $Z:=\{(x,y,z)\in \mathbb{R}^3\colon x^2+y^2\leq R^2\}$ mit Radius R>0 bohrt aus der Kugel $\overline{B_{2R}(0)}$ den Körper $K:=Z\cap \overline{B_{2R}(0)}$. Wir berechnen $\operatorname{Vol}_3(K)$.

Seien nun $0 < r < R < \infty$ und T der Volltorus, der durch Rotation von

$$D = \{(x, y, z) \colon y = 0, (x - R)^2 + z^2 \le r^2\}$$

um die z-Achse entsteht. Wir bestimmen $Vol_3(T)$.

Wir zeigen, dass die Definition $\lambda(A) = \sum_{i=1}^{n} \lambda(R_i)$, falls A die disjunkte Vereinigung der Rechtecke $R_1, \ldots, R_n \in \mathcal{R}$ mit $n \in \mathbb{N}$ ist, nicht von der Wahl der Rechtecke abhängt.

Tutoriumsvorschläge

18. Aufgabe

Skizzieren Sie die beiden unendlich langen Zylinder

$$Z_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + z^2 \le 1\} \text{ und } Z_2 = \{(x, y, z) \in \mathbb{R}^3 \mid y^2 + z^2 \le 1\}.$$

Berechnen Sie dann das Volumen des Durchschnittes $Z_1 \cap Z_2$ mittels eines geeigneten Integrals.

19. Aufgabe

- (i) Betrachten Sie $p \in \mathbb{R}^d$ und zeigen Sie, dass $\mathbb{1}_{\{p\}} \in \mathcal{H}^{\downarrow}(\mathbb{R}^d)$ gilt. Berechnen Sie $\int_{\mathbb{R}^d} \mathbb{1}_{\{p\}}$.
- (ii) Wir betrachten die charakteristische Funktion $\mathbb{1}_Z$ der Menge

$$Z := \{(x_1, x_2, x_3) \in \mathbb{Z}^3 : |x_i| \le 42, i = 1, 2, 3\}.$$

Entscheiden Sie, ob $\mathbb{1}_Z$ ein Element von $\mathcal{H}^{\uparrow}(\mathbb{R}^3)$ oder von $\mathcal{H}^{\downarrow}(\mathbb{R}^3)$ ist, und berechnen Sie dann gegebenenfalls $\int_{\mathbb{R}^3} \mathbb{1}_Z d(x, y, z)$.

20. Aufgabe

Zeigen Sie, dass in der Definition (2.1.5) des äußeren Maßes einer Menge $A \subset E = [0, 1]^2$ an Stelle von Rechtecken R_n auch elementare Mengen R_n eingesetzt werden können.

21. Aufgabe

Sei $E := [0,1]^2$ das Einheitsquadrat. Zeigen Sie, dass jede elementare Menge in E auch Lebesgue messbar ist, d.h. $\mathcal{E}_E \subseteq \mathcal{F}_E$

Hausaufgaben

Organisatorischer Hinweis: Das 7. Blatt ist das letzte Blatt welches zur ersten Hälfte des Semesters zählt. Sollten Ihnen noch Punkte zum 50% Kriterium auf den Blättern 1-7 fehlen, so habe Sie am Ende des Semesters die Gelegenheit Diese noch auf dem Bonusblatt 15 (vermischte Aufgaben mit insgesamt 20 Punkten) zu sammeln.

23. Aufgabe (5 Punkte)

Es sei $M=\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ eine positiv definite Matrix. Berechnen Sie das Volumen des Körpers $P:=\{(x,y,z)\in\mathbb{R}^3\mid ax^2+2bxy+cy^2\leq z\leq 1\}.$

$$1 \cdot ((\omega, g, z) \subseteq \mathbb{I}^2 \mid \omega\omega \mid 2\omega g \mid \omega g \subseteq z \subseteq 1).$$

24. Aufgabe (6 Punkte) Prüfen Sie jeweils, ob die gegebene Funktion in $\mathcal{H}^{\uparrow}(\mathbb{R}^d)$ oder in $\mathcal{H}^{\downarrow}(\mathbb{R}^d)$ liegt, und berechnen

Prüfen Sie jeweils, ob die gegebene Funktion in $\mathcal{H}^{\uparrow}(\mathbb{R}^d)$ oder in $\mathcal{H}^{\downarrow}(\mathbb{R}^d)$ liegt, und berechnen Sie dann gegebenenfalls ihr Integral.

- (i) $1_{\mathbb{N}}$,
- (ii) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = (x+y)e^{x+y} \mathbb{1}_{(0,2)\times(1,2)}(x,y)$,
- (iii) $\mathbb{1}_D$, wobei $D \subseteq \mathbb{R}^d$ kompakt und $\forall x \in D$ gibt es $U_x \subseteq \mathbb{R}^d$ offen mit $U_x \cap D = \{x\}$.

25. Aufgabe (4 Punkte)

Seien $A, B \subseteq \mathbb{R}^2$ zwei elementare Mengen, d.h. Vereinigungen von endlich vielen disjunkten achsenparallelen beschränkten Rechtecken. Zeigen Sie, dass auch die Differenzmenge $A \setminus B$ und die symmetrische Differenz $A \triangle B$ elementar sind.

26. Aufgabe (5 Punkte)

Zeigen Sie, dass $\lambda \colon \mathcal{E} \to [0, \infty)$ subadditiv und monoton ist, d.h.:

Für jedes $n \in \mathbb{N}$ und alle (nicht notwendigerweise paarweise disjunkten) elementaren Mengen A_1, \ldots, A_n gilt

 $\lambda\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \lambda(A_i),$

und für alle elementaren Mengen $A \subseteq B$ gilt $\lambda(A) \leq \lambda(B)$.

Gesamtpunktzahl: 20