Dies ist der Titel der Abschlussarbeit der sich auch über mehrere Zeilen erstrecken kann

Abschlussarbeit

zur Erlangung des akademischen Grades Master of Science (M.Sc.)

an der

Hochschule für Technik und Wirtschaft Berlin Fachbereich Wirtschaftswissenschaften II Studiengang Angewandte Informatik

Prüfer: Max Mustermann
 Prüfer: Max Mustermann

Eingereicht von: Max Mustermann

Matrikelnummer: s0000000 Datum der Abgabe: 25.04.2017

Inhaltsverzeichnis

\mathbf{A}	bbildungsverzeichnis	\mathbf{A}
	Finite Differenzen der stationären Gleichung 2.1 Lineare stationäre Gleichung	2 2
1	Einleitung	1

1 Einleitung

In dieser Hausarbeit sollen die Grundlagen einer Simulation der Dynamik in neuartigen Perowskit-Solarzellen gelegt werden. Diese Art der Dünnschicht Solarzellen erreicht hohe Wirkungsgerade von über 20% und ist somit für die Forschung von großer Interesse[Prof.Dr.AndreasZeiser.April2021].

2 Finite Differenzen der stationären Gleichung

Im folgendem Kapitel soll die stationäre Verteilung der Ladungsträger bei kontinuierlicher Bestrahlung modelliert werden. Dadurch kann die zeitliche Abhängigkeit vernachlässige werden $(\frac{\partial u}{\partial t} = 0)$

Die allgemeine DGL ist gegeben durch:

$$\frac{\partial u}{\partial t} = D \cdot \frac{\partial^2 u}{\partial z^2} - (k1 + k2 \cdot N_D) \cdot u - k2u^2 + s(t, z)$$
(2.1)

Mit $\frac{\partial u}{\partial t} = 0$ folgt die stationäre Gleichung:

$$D \cdot \frac{du}{dt} - (k_1 + k_2 N_D) \cdot u - k_2 \cdot u^2 = -s(z), \quad 0 < z < d$$
 (2.2)

mit den Randbedingungen:

$$D \cdot \frac{\partial u}{\partial z}(0) = S_L u(0), \quad D \frac{\partial u}{\partial z}(d) = -S_R u(d)$$
 (2.3)

2.1 Lineare stationäre Gleichung

Im Folgendem Kapitel soll nur der in u lineare Anteil der stationären, zeitunabhängigen Gleichung (Eq. 2.1) ohne den quadratischen Term $-k_2u^2$ behandelt werden [**Prof.Dr.AndreasZeiser.Ap**

1. Erarbeiten Sie sich Abschnitt 8.8 aus [1] und beschreiben Sie Ihr Vorgehen für die Anwendung der Methode auf Gleichung (6).

Mit der Verwendung dieser Methode auf die Gleichung 6 lässt sich ein Matrix berechnen, womit man die zeitabhängige Stelle der Leitungsträgerdichte u mathematisch beschreiben kann.dadurch kann ein Modell aus der Diskretisierung der Methode erstellt, das die lange dieser Ladungsträgerdichte an einer Zeit beschreibt.

2. Leiten Sie analog zu Gleichung (8.128) die Gleichungen für die gesuchten Werte u0, u1, . . . , uN an den Punkten z0, . . . , zN her. Die Gleichungen enthalten u_1undu_{N+1} , die im nächsten Schritt eliminiert werden. Verwenden Sie dabei die Abkürzung si = s(zi).

$$D \cdot \frac{du}{dt} - (k_1 + k_2 N_D) \cdot u - k_2 \cdot u^2 = -s(z), \quad 0 < z < d$$
 (2.4)

$$k = k_1 + k_2 * N_D$$
$$s_i = s(z_i)$$
$$u(i) \approx u_i$$

$$\frac{\partial u}{\partial z} = (u_i + 1 - u_i)/(2 \cdot h) \tag{2.5}$$

$$\frac{\partial^2 u}{\partial z^2} = (u_i + 1 - 2 \cdot u_i + u_i - 1)/(h^2) \quad i = 1, 2, \dots, N$$
(2.6)

$$D \cdot ((u_i + 1 - 2 \cdot u_i + u_i - 1)/(h^2)) - k \cdot u = -s_i$$
(2.7)

$$(D/h^2) \cdot u_i - 1 - (2D/h^2 + k) \cdot u_i + (D/h^2) \cdot u_i + 1 = -s_i$$
(2.8)

Abbildungsverzeichnis