Kapitola VI. Modely pro bezkontextové jazyky

Bezkontextová gramatika (BKG)

Myšlenka: *Gramatika* je založena na konečné množině gramatických pravidel, které generují řetězce daného jazyka.

Bezkontextová gramatika: Definice

Definice: Bezkontextová gramatika (BKG) je čtveřice G = (N, T, P, S), kde

- N je abeceda neterminálů
- T je abeceda terminálů, přičemž $N \cap T = \emptyset$
- P je konečná množina pravidel tvaru $A \rightarrow x$, kde $A \in N, x \in (N \cup T)^*$
- $S \in N$ je počáteční neterminál

Matematická poznámka k pravidlům:

- Čistě matematicky, P je relace z N do $(N \cup T)^*$
- Místo relačního zápisu $(A, x) \in P$ zapisujeme pravidla $A \to x \in P$
- $A \rightarrow x$ znamená, že A má být přepsáno na x
- $A \rightarrow \epsilon$ je nazýváno ϵ -pravidlo

Konvence

- A, \ldots, F, S : neterminály
- S : počáteční neterminál
- *a*, ..., *d* : terminály
- U, \ldots, Z : prvky množiny $(N \cup T)$
- u, \ldots, z : prvky množiny $(N \cup T)^*$
- π : sekvence pravidel

Každá podmnožina pravidel tvaru:

$$A \rightarrow x_1, A \rightarrow x_2, ..., A \rightarrow x_n$$

může být zjednodušeně zapsána jako:

$$A \rightarrow x_1 \mid x_2 \mid \dots \mid x_n$$

Derivační krok u BKG

Myšlenka: Změnění řetězce použitím pravidla

Definice: Necht' G = (N, T, P, S) je BKG. Necht' $u, v \in (N \cup T)^*$ a $p = A \rightarrow x \in P$. Potom, uAv $p\check{r}imo\ derivuje\ uxv\ za\ použiti\ p\ v\ G,\ zapsáno <math>uAv \Rightarrow uxv\ [p]$ nebo zjednodušeně $uAv \Rightarrow uxv$.

Pozn.: Pokud $uAv \Rightarrow uxv \vee G$, můžeme říct, že G provádí derivační krok z uAv do uxv.

Sekvence derivačních kroků 1/2

Myšlenka: Několik derivačních kroků po sobě

Definice: Necht' $u \in (N \cup T)^*$. G provede nula derivačních kroků z u do u; zapisujeme: $u \Rightarrow^0 u$ [ε] nebo zjednodušeně $u \Rightarrow^0 u$

Definice: Nechť $u_0,...,u_n \in (N \cup T)^*, n \ge 1$ a $u_{i-1} \Rightarrow u_i [p_i], p_i \in P$ pro všechna i = 1,...,n, což znamená:

$$u_0 \Rightarrow u_1 [p_1] \Rightarrow u_2 [p_2] \dots \Rightarrow u_n [p_n]$$

Pak, G provede n derivačních kroků z u_0 do u_n ; zapisujeme:

$$u_0 \Rightarrow^n u_n [p_1...p_n]$$
 nebo zjednodušeně $u_0 \Rightarrow^n u_n$

Sekvence derivačních kroků 2/2

```
Pokud u_0 \Rightarrow^n u_n [\pi] pro nějaké n \ge 1, pak u_0 derivuje u_n v G, zapisujeme: u_0 \Rightarrow^+ u_n [\pi].
```

Pokud $u_0 \Rightarrow^n u_n$ [π] pro nějaké $n \ge 0$, pak u_0 derivuje u_n v G, zapisujeme: $u_0 \Rightarrow^* u_n$ [π].

Příklad: Uvažujme

```
aAb \implies aaBbb \quad [1:A \rightarrow aBb] a aaBbb \implies aacbb \quad [2:B \rightarrow c]. Potom: aAb \implies^2 aacbb \quad [1\ 2], aAb \implies^+ aacbb \quad [1\ 2], aAb \implies^+ aacbb \quad [1\ 2]
```

Generovaný jazyk

Myšlenka: *G generuje* řetězec terminálů w pomocí sekvence derivačních kroků z *S* do w

Definice: Necht' G = (N, T, P, S) je BKG. *Jazyk generovaný* BKG G, L(G), je definován: $L(G) = \{w: w \in T^*, S \Rightarrow^* w\}$

Ilustrace:

$$G = (N, T, P, S)$$
, necht' $w = a_1 a_2 ... a_n$; $a_i \in T$ pro $i = 1..n$

pokud $S \Rightarrow ... \Rightarrow ... \Rightarrow a_1 a_2 ... a_n$, pak $w \in L(G)$;

jinak $w \notin L(G)$

Bezkontextový jazyk (BKJ)

Myšlenka: Jazyk generovaný bezkontextovou gramatikou

Definice: Nechť *L* je jazyk. *L* je bezkontextový jazyk (BKJ), pokud existuje bezkontextová gramatika, která generuje tento jazyk *L*.

Příklad:

```
G = (N, T, P, S), kde N = \{S\}, T = \{a, b\},

P = \{1: S \rightarrow aSb, 2: S \rightarrow \varepsilon\}

S \Rightarrow \varepsilon [2] L(G) = \{a^nb^n: n \ge 0\}

S \Rightarrow aSb [1] \Rightarrow ab [2]

S \Rightarrow aSb [1] \Rightarrow aaSbb [1] \Rightarrow aabb [2]

\vdots

L = \{a^nb^n: n \ge 0\} je bezkontextový jazyk.
```

Pravidlový strom

Pravidlový strom graficky znázorňuje pravidlo

• Derivační strom odpovídá použitým pravidlům

Derivační strom: Příklad

$$G = (N, T, P, E), \text{ kde } N = \{E, F, T\}, T = \{i, +, *, (,)\},\$$
 $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i\}$

Jednotlivé derivace:

$$\underline{E} \Rightarrow E + \underline{T} \qquad [1]$$

$$\Rightarrow E + \underline{T} * F \qquad [3]$$

$$\Rightarrow E + \underline{F} * F \qquad [4]$$

$$\Rightarrow E + i * F \qquad [6]$$

$$\Rightarrow T + i * \underline{F} \qquad [2]$$

$$\Rightarrow T + i * i \qquad [6]$$

$$\Rightarrow F + i * i \qquad [4]$$

$$\Rightarrow i + i * i \qquad [6]$$

Derivační strom:

Nejlevější derivace

Myšlenka: Během nejlevějšího derivačního kroku je přepsán nejlevější neterminál.

Definice: Necht' G = (N, T, P, S) je BKG, necht' $u \in T^*$, $v \in (N \cup T)^*$, $p = A \rightarrow x \in P$ je pravidlo. Pak uAv přímo derivuje uxv za pomocí *nejlevější derivace* užitím pravidla p v G, zapsáno jako: $uAv \Rightarrow_{lm} uxv [p]$

Pozn.: $\Rightarrow_{lm}^+ a \Rightarrow_{lm}^* je definováno pomocí <math>\Rightarrow_{lm}$ stejně jako $\Rightarrow^+ a \Rightarrow^* je dříve definováno pomocí <math>\Rightarrow$.

Nejlevější derivace: Příklad

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \to E + T,$ $2: E \to T,$ $3: T \to T * F,$
 $4: T \to F,$ $5: F \to (E),$ $6: F \to i$

Nejlevější derivace:

$\underline{E} \Rightarrow_{lm} \underline{E} + T$ [1] $\Rightarrow_{lm} \underline{T} + T$ [2] $\Rightarrow_{lm} \underline{F} + T$ [4] $\Rightarrow_{lm} i + \underline{T}$ [6] $\Rightarrow_{lm} i + T * F [3]$ $\Rightarrow_{lm} i + \underline{F} * F [4]$ $\Rightarrow_{lm} i + i * \underline{F}$ [6] $\Rightarrow_{lm} i + i * i [6]$

Derivační strom:

Nejpravější derivace

Myšlenka: Během nejpravějšího derivačního kroku je přepsán nejpravější neterminál.

Definice: Nechť G = (N, T, P, S) je BKG, nechť $u \in (N \cup T)^*, v \in T^*, p = A \rightarrow x \in P$ je pravidlo. Pak uAv přímo derivuje uxv za pomocí nejpravější derivace užitím pravidla p v G, zapsáno jako: $uAv \Rightarrow_{rm} uxv [p]$

Pozn.: $\Rightarrow_{rm}^+ a \Rightarrow_{rm}^* je definováno pomocí <math>\Rightarrow_{rm}$ stejně jako $\Rightarrow^+ a \Rightarrow^* je dříve definováno pomocí <math>\Rightarrow$.

Nejpravější derivace: Příklad

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \to E + T,$ $2: E \to T,$ $3: T \to T * F,$
 $4: T \to F,$ $5: F \to (E),$ $6: F \to i$

Nejpravější derivace:

$$\underline{E} \Rightarrow_{rm} E + \underline{T} \qquad [1]$$

$$\Rightarrow_{rm} E + T * \underline{F} \qquad [3]$$

$$\Rightarrow_{rm} E + \underline{T} * i \qquad [6]$$

$$\Rightarrow_{rm} E + \underline{F} * i \qquad [4]$$

$$\Rightarrow_{rm} \underline{E} + i * i \qquad [6]$$

$$\Rightarrow_{rm} \underline{T} + i * i \qquad [2]$$

$$\Rightarrow_{rm} \underline{F} + i * i \qquad [4]$$

$$\Rightarrow_{rm} i + i * i \qquad [6]$$

Derivační strom:

Derivace: Shrnutí

• Necht' $A \rightarrow x \in P$ je pravidlo.

1) Derivace:

Necht' $u, v \in (N \cup T)^*$: $uAv \Rightarrow uxv$

Pozn.: Přepsán je <u>libovolný</u> neterminál

2) Nejlevější derivace:

Necht' $u \in T^*, v \in (N \cup T)^*: uAv \Rightarrow_{lm} uxv$

Pozn.: Přepsán je nejlevější neterminál

3) Nejpravější derivace:

Necht' $u \in (N \cup T)^*, v \in T^*: uAv \Rightarrow_{rm} uxv$

Pozn.: Přepsán je nejpravější neterminál

Redukce počtu možných derivací

Myšlenka: Bez újmy na obecnosti můžeme uvažovat používání pouze nejlevějších nebo nejpravějších derivací.

```
Tvrzení: Nechť G = (N, T, P, S) je BKG.
Následující 3 jazyky jsou totožné:
(1) \{w: w \in T^*, S \Rightarrow_{lm}^* w\}
(2) \{w: w \in T^*, S \Rightarrow_{rm}^* w\}
(3) \{w: w \in T^*, S \Rightarrow^* w\} = L(G)
```

Úvod do nejednoznačnosti

$$G_{expr1} = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \rightarrow E + T, 2: E \rightarrow T,$
 $3: T \rightarrow T * F, 4: T \rightarrow F,$
 $5: F \rightarrow (E), 6: F \rightarrow i\}$

Teorie: ⊗ × **Praxe:** ⊙

$$G_{expr2} = (N, T, P, E), \text{ kde}$$
 $N = \{E\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \rightarrow E + E, 2: E \rightarrow E * E,$
 $3: E \rightarrow (E), 4: E \rightarrow i\}$

Teorie: ⊙ × **Praxe: ⊗**

Pozn.: $L(G_{expr1}) = L(G_{expr2})$ Odstranit v průběhu kompilace!

Gramatická nejednoznačnost

Definice: Necht' G = (N, T, P, S) je BKG. Pokud existuje řetězec $x \in L(G)$ s více jak jedním derivačním stromem, potom G je nejednoznačná. Jinak G je jednoznačná.

Definice: BKJ *L* je *vnitřně nejednoznačný*, pokud *L* není generován žádnou jednoznačnou BKG.

Příklad:

- G_{expr1} je **jednoznačná**, protože pro každé $x \in L(G_{expr1})$ existuje **jeden derivační strom**
- G_{expr2} je **nejednoznačná**, protože pro $i+i*i \in L(G_{expr2})$ existují **dva derivační stromy**
- $L_{expr} = L(G_{expr1}) = L(G_{expr2})$ není vnitřně nejednoznačný, protože G_{expr1} je jednoznačná

Zásobníkové automaty (ZA)

Myšlenka: Je to KA rozšířený o zásobník

Zásobníkové automaty: Definice

Definice: Zásobníkový automat (ZA) je sedmice: $M = (Q, \Sigma, \Gamma, R, s, S, F)$, kde

- Q je konečná množina stavů
- Σ je vstupní abeceda
- Γ je zásobníková abeceda
- R je $konečná množina pravidel tvaru <math>Apa \rightarrow wq$, $kde A \in \Gamma, p, q \in Q, a \in \Sigma \cup \{\epsilon\}, w \in \Gamma^*$
- $s \in Q$ je počáteční stav
- $S \in \Gamma$ je počáteční symbol na zásobníku
- $F \subseteq Q$ je množina koncových stavů

Poznámky k pravidlům

Matematická poznámka k pravidlům:

- Čistě matematicky, R je konečná relace z $\Gamma \times Q \times (\Sigma \cup \{\epsilon\})$ do $\Gamma^* \times Q$
- Místo relačního zápisu $(Apa, wq) \in R$ zapisujeme $Apa \rightarrow wq \in R$
- Interpretace pravidel: Apa → wq znamená, že pokud je aktuální stav p, aktuální symbol na vstupní pásce a a symbol na vrcholu zásobníku A, potom M může přečíst a a na zásobníku nahradit A za w a přejít ze stavu p do q.
- Pozn.: pokud $\alpha = \varepsilon$, symbol z pásky není přečten

Grafická reprezentace

- q označuje stav $q \in Q$
- \rightarrow označuje počáteční stav $s \in Q$
 - foznačuje koncový stav $f \in F$
 - $p \xrightarrow{A/w, a} q$ označuje $Apa \rightarrow wq \in R$

Grafická reprezentace: Příklad

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
          apa \rightarrow aap,
          apb \rightarrow q,
          aqb \rightarrow q,
          Sq \rightarrow f
• F = \{f\}
```


Konfigurace u ZA

Myšlenka: Instance popisu ZA

Definice: Necht' $M = (Q, \Sigma, \Gamma, R, s, S, F)$ je ZA.

Konfigurace ZA M je řetězec $\chi \in \Gamma^* Q\Sigma^*$

Přechod u ZA

Myšlenka: Jeden výpočetní krok ZA

Definice: Nechť xApay a xwqy jsou dvě konfigurace ZAM, kde x, $w \in \Gamma^*$, $A \in \Gamma$, p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $y \in \Sigma^*$. Nechť $r = Apa \rightarrow wq \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z xApay do xwqy za použití r, zapsáno $xApay \vdash xwqy$ [r] nebo zjednodušeně $xApay \vdash xwqy$.

Pozn.: pokud $\alpha = \varepsilon$, není ze vstupu přečten žádný symbol

Sekvence přechodů 1/2

Myšlenka: několik výpočetních kroků po sobě

Definice: Nechť χ je konfigurace. M provede nula přechodů z χ do χ ; zapisujeme: $\chi \vdash 0 \chi$ [ε] nebo zjednodušeně $\chi \vdash 0 \chi$

Sekvence přechodů 2/2

```
Pokud \chi_0 \vdash^n \chi_n [\rho] pro nějaké n \ge 1, pak \chi_0 \vdash^+ \chi_n [\rho].
```

Pokud χ_0 $\vdash^n \chi_n$ $[\rho]$ pro nějaké $n \ge 0$, pak χ_0 $\vdash^* \chi_n$ $[\rho]$.

Příklad: Uvažujme

```
AApabc \vdash ABqbc [1:Apa \rightarrow Bq] a ABqbc \vdash ABCrc [2:Bqb \rightarrow BCr]. Potom, AApabc \vdash ABCrc [1\ 2], AApabc \vdash ABCrc [1\ 2], AApabc \vdash ABCrc [1\ 2],
```

Přijímaný jazyk: Tři typy

Definice: Necht' $M = (Q, \Sigma, \Gamma, R, s, S, F)$ je ZA.

- 1) Jazyk přijímaný ZA M přechodem do koncového stavu, značen jako $L(M)_f$, je definován: $L(M)_f = \{w: w \in \Sigma^*, Ssw \mid -^* zf, z \in \Gamma^*, f \in F\}$
- 2) Jazyk přijímaný ZA M vyprázdněním zásobníku, značen jako $L(M)_{\epsilon}$, je definován: $L(M)_{\epsilon} = \{w: w \in \Sigma^*, Ssw \mid -^* zf, z = \epsilon, f \in Q\}$
- 3) Jazyk přijímaný ZA M přechodem do koncového stavu a vyprázdněním zásobníku, značen jako $L(M)_{f\epsilon}$, je definován:

$$L(M)_{f\varepsilon} = \{ w : w \in \Sigma^*, Ssw \vdash^* zf, z = \varepsilon, f \in F \}$$

ZA: Příklad

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
                                      Otázka: aabb \in L(M)_{fe}?
 kde:
                                            Prav.: Ssa \rightarrow Sap
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
                                            Prav.: apa \rightarrow aap
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
                                            Prav.: apb \rightarrow q
          apa \rightarrow aap,
          apb \rightarrow q,
                                            Prav.: aqb \rightarrow q
          aqb \rightarrow q,
                                                                  Koncový
          Sq \rightarrow f
                           Prázdný
                                            Prav.: Sq \rightarrow f
                                                                     stav
                             zásobník
• F = \{f\}
                                                           Odpověď: ANO
```

 $Ssaabb \vdash Sapabb \vdash Saapbb \vdash Saqb \vdash Sq \vdash f$

Pozn.: $L(M)_f = L(M)_{\varepsilon} = L(M)_{f\varepsilon} = \{a^n b^n : n \ge 1\}$

Tři typy přijímaných jazyků: Ekvivalence

Tvrzení:

- $L = L(M_f)_f$ pro ZA $M_f \Leftrightarrow L = L(M_{f\epsilon})_{f\epsilon}$ pro ZA $M_{f\epsilon}$
- $L = L(M_{\varepsilon})_{\varepsilon}$ pro ZA $M_{\varepsilon} \Leftrightarrow L = L(M_{f\varepsilon})_{f\varepsilon}$ pro ZA $M_{f\varepsilon}$
- $L = L(M_f)_f$ pro ZA $M_f \Leftrightarrow L = L(M_{\epsilon})_{\epsilon}$ pro ZA M_{ϵ}

Pozn. Existují algoritmy pro následující převody:

Deterministický ZA (DZA)

Myšlenka: Deterministický ZA může provést z každé konfigurace maximálně jeden přechod

Definice: Nechť $M = (Q, \Sigma, \Gamma, R, s, S, F)$ je ZA. M je deterministický ZA, pokud pro každé pravidlo tvaru $Apa \rightarrow wq \in R$ platí, že množina $R - \{Apa \rightarrow wq\}$ neobsahuje žádné pravidlo s levou stranou Apa nebo Ap.

Ilustrace:

Maximálně jedno pravidlo tvarů:

ZA jsou silnější než DZA

Tvrzení: Neexistuje žádný DZA $M_{f\epsilon}$ přijímající:

$$L = \{xy: x, y \in \Sigma^*, y = reversal(x)\}$$

Důkaz: Viz str. 431 v knize [Meduna: Automata and Languages]

Ilustrace:

$$L = \{xy: x, y \in \Sigma^*, y = reversal(x)\}$$

Třída deterministických
bezkontextových
jazyků—jazyků
přijímaných DZA

Třída jazyků přijímaných ZA

Rozšířený ZA (RZA)

Myšlenka: Z vrcholu zásobníku v RZA lze číst celý řetězec (v ZA to byl pouze jeden symbol)

Definice: Rozšířený zásobníkový automat (RZA) je sedmice $M = (Q, \Sigma, \Gamma, R, s, S, F)$, kde Q, Σ, Γ , s, S, F jsou definovány stejně jako u ZA a R je konečná množina pravidel tvaru: $vpa \rightarrow wq$, kde $v, w \in \Gamma^*, p, q \in Q, a \in \Sigma \cup \{\epsilon\}$

Ilustrace:

Zásobník ZA:

Ze ZA lze číst jeden symbol z vrcholu zásobníku

Zásobník RZA:

Z RZA lze číst řetězec z vrcholu zásobníku

Přechod u RZA

Definice: Necht' xvpay a xwqy jsou dvě konfigurace RZA M, kde x, v, $w \in \Gamma^*$, p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $y \in \Sigma^*$. Necht' $r = vpa \rightarrow wq \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z xvpay do xwqy za použití r, zapsáno: $xvpay \vdash xwqy$ [r] nebo $xvpay \vdash xwqy$.

Pozn.: $|-^n$, $|-^+$, $|-^*$, $L(M)_f$, $L(M)_{\varepsilon}$ a $L(M)_{f\varepsilon}$ jsou definovány stejně jako u ZA.

RZA: Příklad

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 kde:
• Q = \{s, f\};
• \Sigma = \{\boldsymbol{a}, \boldsymbol{b}\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
                sb \rightarrow bs,
                s \rightarrow Cs
           aCsa \rightarrow Cs,
           bCsb \rightarrow Cs,
           SCs \rightarrow f
• F = \{f\}
```


Otázka: $abba \in L_{f\varepsilon}(M)$?

Odpověď: YES

Pozn.: $L(M)_f = L(M)_{\varepsilon} = L(M)_{f\varepsilon} = \{xy: x, y \in \Sigma^*, y = \text{reversal}(x)\}$

Tři typy přijímaných jazyků: Ekvivalence

Tvrzení:

- $L = L(M_f)_f$ pro RZA $M_f \Leftrightarrow L = L(M_{f\epsilon})_{f\epsilon}$ pro RZA $M_{f\epsilon}$
- $L = L(M_{\varepsilon})_{\varepsilon}$ pro RZA $M_{\varepsilon} \Leftrightarrow L = L(M_{f\varepsilon})_{f\varepsilon}$ pro RZA $M_{f\varepsilon}$
- $L = L(M_f)_f$ pro RZA $M_f \Leftrightarrow L = L(M_{\epsilon})_{\epsilon}$ pro RZA M_{ϵ}

Pozn. Existují algoritmy pro následující převody:

RZA a ZA jsou ekvivalentní

Tvrzení: Pro každý RZA M existuje takový ZA M, pro který platí: $L(M)_f = L(M')_f$.

Důkaz: Viz str. 419 v knize [Meduna: Automata and Languages]

RZA a ZA jako modely pro synt. analýzu

Myšlenka: RZA nebo ZA mohou simulovat konstrukci derivačního stromu pro BKG

• Dva základní přístupy:

1) Shora dolů

Z S směrem ke vstupnímu řetězci 2) Zdola nahoru

Ze vstupního řetězce směrem k S

RZA: Modely pro SA zdola nahoru 1/2

Myšlenka: Na RZA M je založena SA pracující zdola nahoru

1) *M* obsahuje *shiftovací* pravidla, které přesouvají vstupní symboly na zásobník:

Pro každé $a \in \Sigma$:

přidej $sa \rightarrow as$ do R;

2) *M* obsahuje *redukční* pravidla, které simulují aplikaci gramatických pravidel pozpátku:

Pro každé $A \rightarrow x \in P \vee G$: přidej $xs \rightarrow As$ to R;

3) M také obsahuje speciální pravidlo $\#Ss \rightarrow f$, pomocí kterého provede M přechod do koncového stavu

RZA: Modely pro SA zdola nahoru 2/2

Konstrukce derivačního stromu zdola nahoru:

Algoritmus: Z BKG na RZA

- Vstup: BKG G = (N, T, P, S)
- Výstup: RZA $M = (Q, \Sigma, \Gamma, R, s, \#, F); L(G) = L(M)_f$
- Metoda:
- $Q := \{s, f\};$
- $\Sigma := T$;
- $\Gamma := N \cup T \cup \{\#\};$
- Konstrukce množiny *R*:
 - for each $a \in \Sigma$: přidej $sa \to as$ do R;
 - for each $A \to x \in P$: přidej $xs \to As$ do R;
 - přidej # $Ss \rightarrow f$ do R;
- $F := \{f\};$

Z BKG na RZA: Příklad 1/2

• G = (N, T, P, S), kde:

 $F = \{f\}$

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

Máme nalézt: RZA M, pro který platí: $L(G) = L(M)_f$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F) \text{ kde:}$$

$$Q = \{s, f\}; \ \Sigma = T = \{(,)\}; \ \Gamma = N \cup T \cup \{\#\} = \{S, (,), \#\}$$

$$\text{``('' \in T \quad ``)'' \in T \quad S \rightarrow (S) \in P \quad S \rightarrow () \in P$$

$$R = \{s(\rightarrow (s, s) \rightarrow)s, \quad (S)s \rightarrow Ss, \quad ()s \rightarrow Ss, \quad \#Ss \rightarrow f\}$$

$$\text{shiftovaci} \qquad \text{redukčni}$$

$$\text{pravidla} \qquad \text{pravidla}$$

Z BKG na RZA: Příklad 2/2

$$M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ kde:}$$
 $Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}$
 $R = \{s(\to (s, s) \to)s, (S)s \to Ss, ()s \to Ss, \#Ss \to f\}$

Otázka: (())
$$\in L(M)_f$$
?

Pravidlo:
$$s(\rightarrow (s))$$

Pravidlo:
$$s(\rightarrow (s))$$

Pravidlo: $s \rightarrow s$

Pravidlo: ()
$$s \rightarrow S$$

Pravidlo:
$$s \rightarrow s$$

Pravidlo:
$$(S) \rightarrow S$$

Pravidlo:
$$\#Ss \rightarrow f$$

Odpověď: YES

ZA: Modely pro SA shora dolů 1/2

Myšlenka: Na ZA M je založena SA pracující shora dolů

1) *M* obsahuje *porovnávací* pravidla, která porovnají symbol z vrcholu zásobníku a aktuální symbol ze vstupní pásky:

2) *M* obsahuje *expanzivní* pravidla, která simulují gramatická pravidla:

ZA: Modely pro SA shora dolů 2/2

Konstrukce derivačního stromu shora dolů:

počáteční symbol na zásobníku

Algoritmus: Z BKG na ZA

- Vstup: BKG G = (N, T, P, S)
- Výstup: ZA $M = (Q, \Sigma, \Gamma, R, s, S, F); L(G) = L(M)_{\varepsilon}$
- Metoda:
- $Q := \{s\};$
- $\Sigma := T$;
- $\Gamma := N \cup T$;
- Konstrukce množiny R:
 - for each $a \in \Sigma$: přidej $asa \rightarrow s$ do R;
 - for each $A \to x \in P$: přidej $As \to ys$ do R, kde y = reversal(x);
- \bullet $F := \emptyset;$

Z BKG na ZA: Příklad 1/2

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

Máme nalézt: ZA M, pro který platí: $L(G) = L(M)_{\varepsilon}$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 kde:
 $Q = \{s\}; \quad \Sigma = T = \{(,)\}; \quad \Gamma = N \cup T = \{S, (,)\}$
"(" $\in T$ ")" $\in T$ $S \rightarrow (S) \in P$ $S \rightarrow () \in P$
 $R = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow ()s\}$
porovnávací expanzivní
 $F = \emptyset$ pravidla

Z BKG na ZA: Příklad 2/2

$$M = (Q, \Sigma, \Gamma, R, s, S, F), \text{ kde:}$$

$$Q = \{s\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S\}, F = \emptyset$$

$$P = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow)S(s, Ss \rightarrow)(s\}$$

$$Otázka: (()) \in L(M)_{\epsilon}?$$

$$Pravidlo: Ss \rightarrow)S(s)$$

$$Pravidlo: Ss \rightarrow)S(s)$$

$$Pravidlo: (s(\rightarrow s) \rightarrow s)$$

$$Pravidlo: (s(\rightarrow s) \rightarrow s)$$

$$Pravidlo: (s(\rightarrow s) \rightarrow s)$$

$$Pravidlo: Ss \rightarrow)(s)$$

zásobník

Odpověď: ANO

Modely pro bezkontextové jazyky

Tvrzení: Pro každou BKG G existuje ZA M, pro který platí: $L(G) = L(M)_{\varepsilon}$.

Důkaz je založen na předchozím algoritmu

Tvrzení: Pro každý ZA M existuje BKG G, pro kterou platí: $L(M)_{\varepsilon} = L(G)$.

Důkaz: Viz str. 486 v knize [Meduna: Automata and Languages]

Závěr: Fundamentální modely pro bezkontextové jazyky jsou:

1) Bezkontextové gramatiky 2) Zásobníkové automaty