Credit Card Fraud Detection Project

1. Project Overview

The main objective of this project is to detect fraudulent credit card transactions using machine learning algorithms.

The focus is on building a model capable of identifying fraudulent activities while maintaining an **optimal trade-off between precision and recall**, minimizing both false positives and false negatives.

2. Dataset

• **Source:** Credit Card Fraud Detection Dataset (anonymized transactions)

• **Total Samples:** 284,807

• Fraud Cases: 492 (~0.17%)

• Features: 30 numeric features (V1–V28, Amount, Time)

• **Target Column:** $Class \rightarrow 0 = Non-Fraud$, 1 = Fraud

The dataset was divided as follows:

Dataset Type	Number of Samples
Training Set	170,884
Validation Set	56,960
Test Set	56,960

After Applying SMOTE

Class	Before Balancing	After Balancing
0 (Non- Fraud)	170,579	170,579
1 (Fraud)	305	170,579

3. Data Preprocessing

The following preprocessing steps were performed before training:

- 1. **Data Cleaning:** Removed duplicates and handled missing values.
- 2. **Feature Scaling:** Scaled numerical columns using StandardScaler.
- 3. **Data Balancing:** Applied **SMOTE (Synthetic Minority Oversampling Technique)** to handle class imbalance also I used other approaches to balancing this data like (Oversampling, Undersampling)
- 4. **Data Splitting:** Divided the dataset into training, validation, and test subsets.

4. Model Training

- Algorithm: XGBoost Classifier
- **Reason for Selection:** XGBoost provides outstanding performance with imbalanced data, effectively handles non-linear relationships, and includes regularization to prevent overfitting.
- Balanced Training: Trained on SMOTE-balanced data.

• Other Approaches Tested: Oversampling and undersampling, but SMOTE produced the best stability and accuracy.

Training Configuration

Parameter	Value
max_depth	8
n_estimators	400
learning_rate	0.05
scale_pos_weigh t	2

5. Model Performance

Training Results

Metric	Value
F1-Score	0.9999
Precision	0.9999
Recall	1.0000
PR-AUC	0.9999
Best Threshold (Train)	0.978

Validation Results

Metric	Value
F1-Score	0.8690
Precision	0.9359
Recall	0.8111
PR-AUC	0.8537
Best Threshold (Validation)	0.950

Test Results (Using Validation Threshold = 0.950)

Metric	Value
F1-Score	0.8718
Precision	0.8673
Recall	0.8763
PR-AUC	0.8701

6. Visual Analysis

To better understand model performance and behavior, several visualizations were created:

1. **Precision–Recall Curve:** Demonstrates the balance between recall and precision.

- 2. **ROC Curve:** Plots the trade-off between true positive and false positive rates.
- 3. **Confusion Matrix:** Visual summary of prediction accuracy.
- 4. **Predicted Probability Distribution:** Shows probability separation between fraud and non-fraud cases.
- 5. **Feature Importance Plot:** Highlights which features had the most influence on predictions.

Top important features: V14, V12, and V10 — key indicators in identifying fraudulent activity.

7. Conclusion

The XGBoost model achieved **high precision (0.867)** and **strong recall (0.87)** on the test data, making it highly effective for fraud detection. And my important matrices in this Project was **F1-Score (0.8718)** Its robustness and ability to handle class imbalance made it the best-performing algorithm among those tested.

8. Technologies Used

Category	Tools / Libraries
Programming Language	Python 3.12
Libraries	XGBoost, Scikit-learn, Pandas, Matplotlib, Seaborn

Category Tools / Libraries

Environment PyCharm + Virtual Environment

(.venv)

Hardware CPU (CUDA GPU optional)

9. Author

Author: Ibrahem Ali