Heuristics Based Isomap

Project Group

Student : Mengoli Emanuele Student : Florido Poka Samir Fernando

> Professor Liberti Leo Course: INF580

> > March 29, 2024

Overview

- Introduction
- 2 Methodology
 - Floyd-Warshall algorithm
 - Push and Pull Method
 - Modified Breadth first search (BFS)
 - Slack/Surplus Variables (SSV)
 - Centers tracker
 - Random walk completion algorithm
- 3 Experimental Results
- Experimental Results
- 5 Conclusion

Introduction

Project Background

- Investigates the role of the Isomap algorithm in dimensionality reduction.
- Focus: Solving Euclidean Distance Geometry Problems (EDGP).
- Builds upon the foundational work by Tenenbaum et al. [1] and Liberti & D'Ambrosio [2].

Research Objectives

- Aim: To propose six completion algorithms for Isomap applications to EDGP.
- Goal: Enable the transformation of high-dimensional data into insightful, lower-dimensional forms

ISOMAP Algorithm: Part 1

Algorithm ISOMAP Algorithm (Part 1)

Require: A set of points $X \subset \mathbb{R}^n$

- 1: Compute all pairwise distances for X to obtain distance matrix D
- 2: Select a subset of distances to form a simple connected weighted graph G=(V,E,d) where $V\in\mathbb{R}^n$, $d:E\to\mathbb{R}_+$
- 3: Compute all shortest paths in G to produce the approximate distance matrix \widetilde{D} , where \widetilde{D}_{ij} equals the shortest path distance from i to j

The six graph completion algorithms correspond to a variant of step 3 of pseudocode 1, taken from [2].

4 / 21

ISOMAP Algorithm: Part 2

Algorithm ISOMAP Algorithm (Part 2)

Require: The approximate distance matrix \widetilde{D} from Part 1

- 1: Derive the approximate Gram matrix $\widetilde{B}=-\frac{1}{2}J\widetilde{D}^2J$, where $J=I_n-\frac{1}{n}11^T$
- 2: Perform eigen decomposition on \widetilde{B} to find Λ and P, such that $\widetilde{B} = P\Lambda P^T$
- 3: Replace any negative eigenvalues in Λ with zeros to obtain a positive semi-definite (PSD) matrix
- 4: If there are more than K positive eigenvalues, keep only the largest K ones to form $\widehat{\Lambda}$
- 5: Get the *K*-dimensional realization $X = P^T \sqrt{\widehat{\Lambda}}$
- 6: **return** the lower-dimensional representation $X \subset \mathbb{R}^K$

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥9

Algorithm Floyd Warshall Algorithm

```
Require: G = (V, E, d), \tilde{D} initialized as D \in \mathbb{R}^{n \times n} partial matrix
Ensure: completed distance matrix \tilde{D} \in \mathbb{R}^{n \times n}
 1: for each k \in V do
          for each i \in V do
 2:
               for each j \in V do
 3:
 4.
                     if i \neq k and j \neq k and i \neq j then
                         if \tilde{d}[i][j] > \tilde{d}[i][k] + \tilde{d}[k][j] then
 5:
                               \tilde{d}[i][i] \leftarrow \tilde{d}[i][k] + \tilde{d}[k][i]
 6:
                          end if
 7:
                    end if
 8:
               end for
 g.
          end for
10.
11: end for
12: return \tilde{D}
```

6/21

Push and Pull

Another approach to compute \tilde{D} is by solving the following Semi-Definite Program (SDP):

$$\max_{x} \sum_{\{u,v\} \in E} \|x_{u} - x_{v}\|^{2} \quad \text{s.t.} \quad \|x_{u} - x_{v}\|^{2} \leq d_{uv}^{2} \quad \forall \{u,v\} \in E$$

Figure: Isomap realization obtained with PaP with an inital graph of 5 vertices

FLORIDO and MEGOLI Isomap Heuristics March 29, 2024 7/21

Modified Breadth first search (BFS): Initialization

Algorithm Modified BFS, realization in \mathbb{R}^K - Initialization

Require: G(V, E, d)

Ensure: Positions of nodes $P: V \to \mathbb{R}^K$, Z explored set

1: $r \leftarrow \operatorname{argmax} \operatorname{deg}(v)$

▷ Node with the highest degree

2:
$$P[r] \leftarrow 0$$

 \triangleright Position r at origin in K-space

3:
$$Z \leftarrow \{r\}$$

4: $Q \leftarrow \mathsf{FIFO}$ queue initialized with r

Algorithm Modified BFS - Execution

```
1: while |Q| > 0 do
       v \leftarrow Q.dequeue()
 3: x_v \leftarrow P[v]
    for each w \in I_v do
                                                   \triangleright I_{v} is the set of neighbours of v
 4:
             if w \notin Z then
 5:
                 Z \leftarrow Z \cup \{w\}
 6:
                 x_w \leftarrow \text{sample from } \mathbb{S}^{K-1}(x_v, d_{vw})
                                                                           > surface of a
 7:
    K-dimensional sphere
                 P[w] \leftarrow x_w
 8:
                 Q.enqueue(w)
 9:
             end if
10.
    end for
11.
12: end while
13: D \leftarrow pairwise Euclidean distances on P
```

9 / 21

Slack/Surplus Variables (SSV)

Another technique for optimizing the objective function involves introducing slack/surplus variables. This is achieved by minimizing the expression:

$$\min_{x,s} \sum_{\{u,v\} \in E} s_{uv}^2$$

s.t.

$$\|x_u-x_v\|^2=d_{uv}^2+s_{uv}\quad\forall\{u,v\}\in E$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

FLORIDO and MEGOLI Isomap Heuristics March 29, 2024 10 / 21

Centers tracker: Identifying Centers

Algorithm Centers tracker - Identifying Centers

```
Require: G = (V, E, d)
Ensure: Intermediate lists \Gamma and C
 1: Initialize \Gamma = [\ ]
                                                         List to track vertices attained
 2: Initialize C = []
                                                                      List to store centers
 3: while |\Gamma| < |V| do

    □ Until all vertices are attained

     r \leftarrow \operatorname{argmax} \operatorname{deg}(v) s.t v \notin C \triangleright \operatorname{Node} with highest degree not
                   \bar{v} \in V
     in centers list
    C \leftarrow C \cup \{r\}
 5:
                                                          Append center to centers list
     for w \in \{I_r \setminus \Gamma\} do \triangleright For unattained neighbours (I_r) of the center
 6:
              \Gamma \leftarrow \Gamma \cup \{w\}
                                                           ▶ Mark neighbour as attained
 7:
         end for
 8.
```

9: end while

Centers tracker: Calculating Distances

Algorithm Centers tracker - Calculating Distances

Require: Lists Γ and C from Identifying Centers **Ensure:** completed distance matrix $\tilde{D} \in \mathbb{R}^{n \times n}$

- 1: for all $\{i,j\} \in C \times C$ do
- 2: **if** $d_{i,i}$ is not known **then**
- 3: $d_{i,j} \leftarrow \text{Dijkstra}(i,j)$
 - Dijkstra's algorithm
- 4: end if
- 5: end for
- 6: **for** a, b in $V \times V$ **do**
- 7: $\tilde{d}_{a,b} = d(a, \text{center}(a)) + d(\text{center}(a), \text{center}(b)) + d(\text{center}(b), b)$
- 8: end for
- 9: **return** \tilde{D}

▷ Calculate centers distance using

Random Walk - Introduction and Initialization

Algorithm Random walk Initialization

Require: G = (V, E, d), its partial distance matrix $D \in \mathbb{R}^{n \times n}$

Ensure: A completed distance matrix $\tilde{D} \in \mathbb{R}^{n \times n}$

- 1: Initialize C = [] \triangleright List to track visited vertices
- 2: Choose a random vertex u as the starting point
- 3: $C \leftarrow C \cup \{u\}$ ightharpoonup Append starting vertex to seen list

Random Walk - Main Loop and Path Finding

Algorithm Random walk Path Finding

```
1: while |C| < n do
        v \leftarrow 0
       weight \leftarrow 0
 3:
       Q \leftarrow \{0, 1, \ldots, n-1\} \setminus \{u\}
 4:
                                                          \triangleright Set of all vertices excluding u
       for all k \in Q do
 5:
              if \tilde{D}[u, k] \neq 0 then
 6:
                   Q \leftarrow Q \setminus \{k\}
                                                   Remove reachable vertices from Q
 7:
                   v \leftarrow k
 8:
              end if
 9.
         end for
10:
         weight \leftarrow \tilde{D}[u, v]
11:
          Initialize Z as an empty list
12:
                                                                                    ▷ passed list
```

Random Walk - Weight Update and Completion

Algorithm Random walk Completion

```
1: while |Q| > 0 do
 2:
        v' \leftarrow v
         for all k \in Q do
 3:
             if \tilde{D}[u, k] = 0 \& \tilde{D}[v, k] \neq 0 \& u \neq k \& k \notin Z then
 4:
                  Update variables: \tilde{D}[u, k], \tilde{D}[k, u]; Q; v; weight; Z<sup>1</sup>
 5:
             end if
 6:
         end for
 7:

    Stuck at current vertex

 8.
         if No update to v then
             Find new v s.t. \tilde{D}[u, v] \neq 0, v \notin Z: Update weight; Z
 9.
10:
         end if
         end while; C \leftarrow C \cup \{u\}; Choose new u \notin C randomly
11:
         end while; return \tilde{D}
12:
```

15 / 21

¹See Report for the full implementation

Experimental Results

Simulation Parameters:

|V| = 15, 50 simulations.

Type of Graph	Parameters Value
Erdős-Rényi	p = 0.5
Barabási–Albert	$\nu = 6$
Regular Graph	d=6

Table: Graph Configuration Simulation Parameters

Metrics:

$$\mathsf{MDE}(x,G) = \frac{1}{|E|} \sum_{(i,j) \in E} |||x_i - x_j||_2 - d_{ij}| \tag{1}$$

$$LDE(x, G) = \max_{(i,j) \in E} |||x_i - x_j||_2 - d_{ij}|$$
 (2)

$$RMSD(x,G) = \sqrt{\frac{1}{|E|} \sum_{(i,j) \in E} (\|x_i - x_j\|_2 - d_{ij})^2}$$
 (3)

FLORIDO and MEGOLI Isomap Heuristics March 29, 2024 16 / 21

Experimental Results

Mesure	Floyd Warshall	Centers tracker	Random path	BFS	Push and Pull	SSV
MDE	9.2964e-02	4.8227e-01	1.5096e-01	6.1542e-01	2.7027e-01	4.9461e-01
LDE	4.1406e-01	1.3468e+00	5.3254e-01	1.7650e+00	9.1143e-01	1.6366e+00
RMSD	1.3050e-01	5.8962e-01	1.9522e-01	7.4056e-01	3.6633e-01	6.3820e-01
CPU Time (s)	3.0566e-03	1.2310e-03	1.1783e-03	1.4362e-03	1.8954e+01	2.4819e+01

Table: Results obtained with the Erdos Renyi graph generator

Mesure	Floyd Warshall	Centers tracker	Random path	BFS	Push and Pull	SSV
MDE	7.9072e-02	2.8877e-01	1.3562e-01	5.4168e-01	2.6711e-01	4.5196e-01
LSE	3.6684e-01	9.7308e-01	4.8669e-01	1.6521e+00	9.0719e-01	1.5129e+00
RMSD	1.1121e-01	3.7104e-01	1.7710e-01	6.8466e-01	3.6470e-01	5.9447e-01
CPU Time (s)	2.8084e-03	1.0771e-03	1.1072e-03	1.4786e-03	1.8056e+01	2.6427e+01

Table: Results obtained with the Barabasi Albert graph generator

FLORIDO and MEGOLI Isomap Heuristics March 29, 2024 17 / 3

Experimental Results

Mesure	Floyd Warshall	Centers tracker	Random path	BFS	Push and Pull	SSV
MDE	3.9891e-01	1.1549e+00	3.2377e-01	6.5284e-01	3.6035e-01	5.7982e-01
LDE	1.1583e+00	3.1226e+00	8.6157e-01	1.8815e+00	9.4409e-01	1.6029e+00
RMSD	5.2543e-01	1.3895e+00	3.9362e-01	7.8684e-01	4.2411e-01	6.8544e-01
CPU Time (s)	3.0887e-03	1.1820e-03	1.1405e-03	1.5191e-03	2.1287e+01	2.4238e+01

Table: Results obtained with the random regular graph generator

Conclusion

Project Summary

 Developed six Isomap-based completion algorithms to address the Euclidean Distance Geometry Problem (EDGP).

Outcomes

- Our results emphasize the importance of considering both accuracy and computational efficiency when selecting heuristics for graph analysis.
- Tailored approaches for different graph topologies are necessary to achieve optimal performance.
- Further optimization and exploration of alternative algorithms may provide valuable avenues for improving performance in specific scenarios.

19 / 21

FLORIDO and MEGOLI Isomap Heuristics March 29, 2024

Q&A

References

J. B. Tenenbaum, V. d. Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," *science*, vol. 290, no. 5500, pp. 2319–2323, 2000.

L. Liberti and C. d'Ambrosio, "The isomap algorithm in distance geometry," in *16th International Symposium on Experimental Algorithms (SEA 2017)*. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.