```
import numpy as np
import pandas as pd
data = pd.read_csv('C:\\states_all.csv')
```

In [2]:

data

									Out[2]:
	PRIMARY_KEY	STATE	YEAR	ENROLL	TOTAL_REVENUE	FEDERAL_REVENUE	STATE_REVENUE	LOCAL_REVENUE	TOTAL_EXPEND
0	1992_ALABAMA	ALABAMA	1992	NaN	2678885.0	304177.0	1659028.0	715680.0	265
1	1992_ALASKA	ALASKA	1992	NaN	1049591.0	106780.0	720711.0	222100.0	97
2	1992_ARIZONA	ARIZONA	1992	NaN	3258079.0	297888.0	1369815.0	1590376.0	340
3	1992_ARKANSAS	ARKANSAS	1992	NaN	1711959.0	178571.0	958785.0	574603.0	174
4	1992_CALIFORNIA	CALIFORNIA	1992	NaN	26260025.0	2072470.0	16546514.0	7641041.0	2713
•••									
1710	2019_VIRGINIA	VIRGINIA	2019	NaN	NaN	NaN	NaN	NaN	
1711	2019_WASHINGTON	WASHINGTON	2019	NaN	NaN	NaN	NaN	NaN	
1712	2019_WEST_VIRGINIA	WEST_VIRGINIA	2019	NaN	NaN	NaN	NaN	NaN	
1713	2019_WISCONSIN	WISCONSIN	2019	NaN	NaN	NaN	NaN	NaN	
1714	2019_WYOMING	WYOMING	2019	NaN	NaN	NaN	NaN	NaN	

1715 rows × 25 columns

data.columns

Out[22]:

In [3]:

data.shape

Out[3]:

(1715, 25)

(в наборе данных 1715 строк и 25 столбцов)

In [4]:

data.dtypes

			N. 4541.
PRIMARY KEY	object		Out[4]:
STATE	object		
YEAR	int64		
ENROLL	float64		
TOTAL REVENUE	float64		
FEDERAL REVENUE	float64		
STATE REVENUE	float64		
LOCAL REVENUE	float64		
TOTAL EXPENDITURE	float64		
INSTRUCTION EXPENDITURE	float64		
SUPPORT SERVICES EXPENDITURE	float64		
OTHER_EXPENDITURE	float64		
CAPITAL_OUTLAY_EXPENDITURE	float64		
GRADES_PK_G	float64		
GRADES_KG_G	float64		
GRADES_4_G	float64		
GRADES_8_G	float64		
GRADES_12_G	float64		
GRADES_1_8_G	float64		
GRADES_9_12_G	float64		
GRADES_ALL_G	float64		
AVG_MATH_4_SCORE	float64		
AVG_MATH_8_SCORE	float64		
AVG_READING_4_SCORE AVG_READING_8_SCORE	float64		
	float64		
dtype: object			In [E]:
1			In [5]:
data.isnull().sum()			
		C	Out[5]:
PRIMARY_KEY	0		
STATE	0		
YEAR	0		
ENROLL	491		
TOTAL_REVENUE	440		
FEDERAL_REVENUE	440		
STATE_REVENUE	440		
LOCAL_REVENUE	440		
TOTAL_EXPENDITURE	440		
INSTRUCTION_EXPENDITURE	440		
SUPPORT SERVICES EXPENDITURE	440 491		
OTHER_EXPENDITURE CAPITAL OUTLAY EXPENDITURE	440		
GRADES PK G	173		
GRADES KG G	83		
GRADES 4 G	83		
GRADES 8 G	83		
GRADES 12 G	83		
GRADES 1 8 G	695		
GRADES 9 12 G	644		
GRADES ALL G	83		
AVG_MATH_4_SCORE	1150		
AVG_MATH_8_SCORE	1113		
AVG_READING_4_SCORE	1065		
AVG_READING_8_SCORE	1153		
dtype: int64			
		Ir	n [26]:
1153 / 1715			

0.6723032069970846

Какие выводы мы можем сделать о данных и об их возможном вкладе в модель?

• KOJOHKU GRADES_KG_G, GRADES_4_G, GRADES_8_G, GRADES_12_G, GRADES_ALL_G содержат менее 5% пропусков, их можно точно безопасно включать в модель и вообще строить её на их основе, то же справедливо и в отношении колонки GRADES_PK_G с примерно 10% пропущенных строк.

Out[26]:

- KOJOHKU ENROLL, TOTAL_REVENUE, FEDERAL_REVENUE, STATE_REVENUE, LOCAL_REVENUE, TOTAL_EXPENDITURE, INSTRUCTION_EXPENDITURE, SUPPORT_SERVICES_EXPENDITURE, OTHER_EXPENDITURE, CAPITAL_OUTLAY_EXPENDITURE содержат 25-28% пропущенных данных, их можно включать в модель.
- Колонки AVG_MATH_4_SCORE, AVG_MATH_8_SCORE, AVG_READING_4_SCORE, AVG_READING_8_SCORE содержат 62-67% пропусков это слишком много, эти признаки лучше не стоит включать в модель.

Вывели количество пропусков и тип данных в каждой колонке. Теперь можно заполнять пропуски.

Заполнение пропусков

Количественные данные

import seaborn as sns

Будем заполнять столбцы AVG_MATH_4_SCORE (средний балл по математике среди учеников 4 класса) и AVG_READING_4_SCORE (средний балл по чтению среди учеников 4 класса).

Я решил очистить от пропусков сразу два столбца, чтобы потом на их основе построить диаграмму jointplot, указанную в качестве доп.задания, и посмотреть, как соотносятся между собой эти признаки.

```
In [6]:
data.AVG MATH 4 SCORE.nunique()
                                                                                                                   Out[6]:
50
                                                                                                                   In [7]:
data.AVG MATH 4 SCORE.describe()
                                                                                                                   Out[7]:
count
          565.000000
mean
         236.327434
            9.285505
std
          192.000000
min
         232.000000
25%
50%
         238.000000
75%
         242.000000
         253,000000
max
Name: AVG MATH 4 SCORE, dtype: float64
                                                                                                                    In [8]:
from sklearn.impute import SimpleImputer
                                                                                                                    In [9]:
imputer = SimpleImputer(missing values=np.nan, strategy='median')
                                                                                                                   In [10]:
data.AVG MATH 4 SCORE = imputer.fit transform(data[['AVG MATH 4 SCORE']])
                                                                                                                  In [11]:
data.AVG MATH 4 SCORE.isnull().any()
                                                                                                                 Out[11]:
False
                                                                                                                  In [12]:
data.AVG MATH 4 SCORE.describe()
                                                                                                                 Out[12]:
         1715.000000
count.
          237.448980
mean
std
             5.384205
          192.000000
min
25%
          238.000000
          238.000000
50%
75%
           238.000000
           253.000000
Name: AVG MATH 4 SCORE, dtype: float64
В качестве "заглушки" для пропусков я использовал медиану, поэтому можно увидеть, как поменялось значение среднего по
колонке
                                                                                                                  In [13]:
data.AVG READING 4 SCORE.isnull().sum()
                                                                                                                 Out[13]:
1065
                                                                                                                  In [14]:
data.AVG READING 4 SCORE = imputer.fit transform(data[['AVG READING 4 SCORE']])
                                                                                                                  In [15]:
data.AVG READING 4 SCORE.isnull().sum()
                                                                                                                 Out[15]:
Итак, оба столбца заполнены, можем построить для них график jointplot.
                                                                                                                   In [16]:
```

Out[18]:

Категориальные данные

К сожалению, такое задание будет невозможно сделать на попавшем мне датасете, потому что есть только два признака с типом object: PRIMARY_KEY и STATE - и в обоих нет ни одного пропуска.