Examenul de bacalaureat național 2018

Proba E. c)

Matematică *M_şt-nat*

Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	z = 3 + 4i	3p
	$\overline{z} = 3 - 4i$	2p
2.	Cum <i>n</i> este număr natural, $(n+4)(n-3) < 0 \Rightarrow n < 3$	2p
	n = 0, $n = 1$ sau $n = 2$	3 p
3.	$\lg(x+1) = \lg(x-5)^2 \Rightarrow x+1 = (x-5)^2$	2p
	$x^2 - 11x + 24 = 0 \Rightarrow x = 3$, care nu verifică ecuația și $x = 8$, care verifică ecuația	3 p
4.	O mulțime cu n elemente are C_n^2 submulțimi cu două elemente	2p
	$\frac{n(n-1)}{2} = 45 \Rightarrow n = 10$	3p
5.	$\vec{v} = 2\vec{A}\vec{C}$, deci $AC = 10$	3 p
	Cum $ABCD$ este dreptunghi, obținem $BD = 10$	2p
6.	$\left(\sin x + \cos x\right)^2 = 2 \Rightarrow \sin x \cos x = \frac{1}{2}$	2p
	$ tg x + ctg x = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} = \frac{1}{\frac{1}{2}} = 2 $	3p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$A(2) = \begin{pmatrix} 1 & 0 & 4 \\ -4 & 1 & -8 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & 0 & 4 \\ -4 & 1 & -8 \\ 0 & 0 & 1 \end{vmatrix} =$	
	$A(2) = \begin{vmatrix} -4 & 1 & -8 \\ 0 & 0 & 1 \end{vmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} -4 & 1 & -8 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	=1+0+0-0-0-0=1	3 p
b)	$\begin{vmatrix} a+1 & 0 & 2a \end{vmatrix}$	
	$\det(A(a) + aA(0)) = \begin{vmatrix} -2a & a+1 & -2a^2 \end{vmatrix} = (a+1)^3$	3р
	$\det(A(a) + aA(0)) = \begin{vmatrix} a+1 & 0 & 2a \\ -2a & a+1 & -2a^2 \\ 0 & 0 & a+1 \end{vmatrix} = (a+1)^3$	
	$\left(a+1\right)^3 = 2^3 \Rightarrow a = 1$	2p
c)	$(m+n)^3 = m^3 + n^3 + 18$	2p
	mn(m+n) = 6 deci, cum m și n sunt numere naturale și $m < n$, obținem $m = 1$ și $n = 2$	3p
2.a)	$x * y = (xy + \hat{6}x) + (\hat{6}y + \hat{1}) + \hat{1} =$	3p
	$= x\left(y+\hat{6}\right) + \hat{6}\left(y+\hat{6}\right) + \hat{1} = \left(x+\hat{6}\right)\left(y+\hat{6}\right) + \hat{1}, \text{ pentru orice } x, y \in \mathbb{Z}_7$	2p
b)	$x * \hat{1} = (x + \hat{6})(\hat{1} + \hat{6}) + \hat{1} = \hat{0} + \hat{1} = \hat{1}$	2p
	$\hat{1} * x = (\hat{1} + \hat{6})(x + \hat{6}) + \hat{1} = \hat{0} + \hat{1} = \hat{1} = x * \hat{1}$, pentru orice $x \in \mathbb{Z}_7$	3p

Probă scrisă la matematică M_şt-nat

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științe ale naturii

c)	$\hat{0} * \hat{1} * \hat{2} * \hat{3} * \hat{4} * \hat{5} * \hat{6} = (\hat{0} * \hat{1}) * \hat{2} * \hat{3} * \hat{4} * \hat{5} * \hat{6} =$	3p
	$=\hat{1}*(\hat{2}*\hat{3}*\hat{4}*\hat{5}*\hat{6})=\hat{1}$	2p

SUBIECTUL al III-lea (30 de puncte)

SUBLECTUL ai III-lea (50 de puncte				
1.a)	$f'(x) = (e^x)'(x^2 - 6x + 9) + e^x(x^2 - 6x + 9)' =$	2p		
	$= e^{x} \left(x^{2} - 6x + 9 + 2x - 6 \right) = e^{x} \left(x^{2} - 4x + 3 \right), \ x \in \mathbb{R}$	3 p		
b)	$f'(x) = 0 \Leftrightarrow x = 1 \text{ și } x = 3$	2p		
	$f'(x) > 0$ pentru orice $x \in (-\infty,1)$, $f'(x) < 0$ pentru orice $x \in (1,3)$ și $f'(x) > 0$ pentru	2		
	orice $x \in (3, +\infty)$, deci punctele de extrem ale funcției f sunt $x = 1$ și $x = 3$	3 p		
c)	f este crescătoare pe $x \in (-\infty,1]$ și descrescătoare pe $x \in [1,3]$, deci $f(x) \le f(1)$ pentru orice $x \in (-\infty,3]$	3p		
	$f(1) = 4e$, deci $f(x) \le 4e \Leftrightarrow e^x(x-3)^2 \le 4e \Leftrightarrow (x-3)^2 \le 4e^{1-x}$, pentru orice $x \in (-\infty,3]$	2p		
2.a)	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} (3x^2 - 4x + 1) = 0, \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \frac{\ln x}{\sqrt{x}} = 0 \text{si, cum} f(1) = 0, \text{obţinem}$ $\lim_{x \to 1} f(x) = f(1), \text{ deci funcția } f \text{ este continuă în } x = 1$	3p		
	Cum funcția f este continuă pe $(-\infty,1)$ și pe $(1,+\infty)$, obținem că f este continuă pe $\mathbb R$, deci funcția f admite primitive pe $\mathbb R$	2p		
b)	$\int_{-1}^{e} f(x)dx = \int_{-1}^{1} f(x)dx + \int_{1}^{e} f(x)dx = \int_{-1}^{1} (3x^{2} - 4x + 1)dx + \int_{1}^{e} \frac{\ln x}{\sqrt{x}}dx =$	2p		
	$= \left(x^3 - 2x^2 + x\right) \begin{vmatrix} 1 \\ -1 \end{vmatrix} + \left(2\sqrt{x}\ln x - 4\sqrt{x}\right) \begin{vmatrix} e \\ 1 \end{vmatrix} = 4 - 2\sqrt{e} + 4 = 2\left(4 - \sqrt{e}\right)$	3 p		
c)	$\int_{e^n}^{e^{n+1}} f^2(x) dx = \int_{e^n}^{e^{n+1}} \frac{\ln^2 x}{x} dx = \frac{\ln^3 x}{3} \left \frac{e^{n+1}}{e^n} \right = \frac{3n^2 + 3n + 1}{3}$	3p		
	$\frac{3n^2 + 3n + 1}{3} = \frac{7}{3}$ şi, cum <i>n</i> este număr natural, obținem <i>n</i> = 1	2p		