Test and verification approaches in conformance checking

Kevin Jahns

RWTH Aachen University

kevin.jahns@rwth-aachen.de

January 27, 2014

 Kevin Jahns
 MBT
 January 27, 2014
 1 / 16

Overview

- Why testing
- 2 Conformance
- Test and verification approaches
 - Monkey testing
 - Model based testing
 - Model checking
- 4 Conclusion

 Kevin Jahns
 MBT
 January 27, 2014
 2 / 16

Why software testing and verifying is important

National Institute of Standards and Technology (2002)

Software errors cost the U.S. economy \$59.5 billion US dollars annually [2]

Cambridge University (2013)

Software errors cost the whole economy \$312 billion US dollars annually [3]

 Kevin Jahns
 MBT
 January 27, 2014
 3 / 16

Why software testing and verifying is important

990

Kevin Jahns MBT January 27, 2014

Conformance is ..

 Kevin Jahns
 MBT
 January 27, 2014
 5 / 16

Conformance is ..

(1) when it does not throw errors?

Conformance is ..

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?

Conformance is ..

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?

Conformance is ..

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?
- (4) when it does not explode;)

Conformance is ...

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?
- (4) when it does not explode;)
- (5) whet it conforms to some sort of specification?

Conformance is ...

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?
- (4) when it does not explode;)
- (5) whet it conforms to some sort of specification?
- → Conformance is hard to express

How to check conformance

Expressing conformance \rightarrow checking conformance

 Kevin Jahns
 MBT
 January 27, 2014
 6 / 16

Test vs. verification

Test

You may find an error after the execution of a test.

Verification

The evaluation of whether or not something complies with a specified conformance property

 Kevin Jahns
 MBT
 January 27, 2014
 7 / 16

Testing a robot

Test "Don't kill me"

 If the robot kills you, you can be sure that the property is not fulfilled.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

8 / 16

Kevin Jahns MBT January 27, 2014

Verifying a robot

Test "Don't kill me"

 After verifying that a robot won't kill you, he won't kill you
 :)

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

9 / 16

Monkey testing

Infinite monkey theorem

The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type a given text, such as the complete works of William Shakespeare.[1]

10 / 16

Kevin Jahns MBT January 27, 2014

Model based testing

Idea

- 1. Create Specification
- 2. Derive test cases
- 3. Test against software
- 4. If all tests succeed: Unit under test conforms

Pros and cons

- + Minimizes human error
- + Test cases are derived automatically
 - Evolving topic
 - Complicated

Figure: Candy machine specification

Model checking

```
main = do
     putStrLn $
 3
          "What is the the"
4
       ++ "answer to life"
5
       ++ "the universe"
6
7
       ++ "and everything?"
     answer <- getLine
8
     case answer of
       "42" ->
10
         putStrLn
11
            "You're right"
12
13
         putStrLn
14
            "Nope"
15
     main
```

Figure: Simple transition system

990 Kevin Jahns **MBT** January 27, 2014 12 / 16

Verifying average soft- ware	Real world TS	thousands of states

13 / 16

Kevin Jahns **MBT** January 27, 2014

Each state depends on the variables of the have thousands of variables $\approx 1000^{1000}$	Verifying average soft-	Real world TS	thousands of states
Each state depends on the variables of the have thousands of variables $\approx 1000^{1000}$	ware		
1 Togramm		have thousands of vari-	dimension of new TS $\approx 1000^{1000}$

200

Kevin Jahns **MBT** January 27, 2014 13 / 16

Verifying average soft-	Real world TS	thousands of states
ware		
Each state depends on the variables of the Programm	Real world programs have thousands of vari- ables	dimension of new TS $\approx 1000^{1000}$
Time complexety of model checking algorithm is NP-hard	$O(2^{TS})$ computation steps	$pprox 2^{1000^{1000}} pprox 10^{10^{3000}} cumputationsteps$

4□ > 4□ > 4 = > 4 = > = 90

 Kevin Jahns
 MBT
 January 27, 2014
 13 / 16

Verifying average soft- ware	Real world TS	thousands of states
Each state depends on the variables of the Programm	Real world programs have thousands of vari- ables	dimension of new TS $\approx 1000^{1000}$
Time complexety of model checking algorithm is NP-hard	$O(2^{TS})$ computation steps	$pprox 2^{1000^{1000}}pprox 10^{10^{3000}}$ cumputationsteps
Number of atoms in the entire observable universe		$pprox 10^{80}$

□ > <
 □ >
 □ >
 □ >
 □ >
 □ >
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □ <

 Kevin Jahns
 MBT
 January 27, 2014
 13 / 16

Which approaches do software developer use to test software

Kevin Jahns MBT January 27, 2014 14 / 16

References

Infinite monkey effect.

Department of Commerce's National Institute of Standards and Technology (NIST).

Software errors cost u.s. economy \$59.5 billion annually, June 2002.

 $URL: \ http://www.abeacha.com/NIST_press_release_bugs_cost.htm.$

Cambridge University.

Cambridge university study states software bugs cost economy \$312 billion per year, 2013.

URL: http://markets.financialcontent.com/stocks/news/read/23147130/Cambridge_University_Study_States_Software_Bugs_Cost

Economy\$312_Billion_Per_Year.

15 / 16

Kevin Jahns MBT January 27, 2014

That's it: Questions?

