PUSHDOWN AUTOMATA (PDA)

PUSHDOWN AUTOMATA

FIGURE **2.11**Schematic of a finite automaton

Pushdown Automata (Continuation...)

FIGURE 2.12
Schematic of a pushdown automaton

Lecturer Akib Zaman, Department of CSE, UIU

Formal Definition of a Pushdown Automaton

DEFINITION 2.13

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- 1. Q is the set of states,
- 2. Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

Examples of Pushdown Automaton

EXAMPLE 2.14

The following is the formal description of the PDA (page 110) that recognizes the language $\{0^n 1^n | n \ge 0\}$. Let M_1 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{\mathtt{0,1}\},$
 $\Gamma = \{\mathtt{0,\$}\},$
 $F = \{q_1, q_4\}, ext{ and }$

 δ is given by the following table, wherein blank entries signify \emptyset .

Input:	0			1			ϵ		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2,\mathtt{0})\}$						
q_3				$\{(q_3, \boldsymbol{\varepsilon})\}$				$\{(q_4, oldsymbol{arepsilon})\}$	
q_4									

Lecturer Akib Zaman, Department of CSE, UIU

Examples of Pushdown Automaton: 2

EXAMPLE 2.16

This example illustrates a pushdown automaton that recognizes the language

$$\{\mathbf{a}^i\mathbf{b}^j\mathbf{c}^k|\ i,j,k\geq 0\ \text{and}\ i=j\ \text{or}\ i=k\}.$$

Lecturer Akib Zaman, Department of CSE, UIU

Examples of Pushdown Automaton: 3

EXAMPLE 2.18

In this example we give a PDA M_3 recognizing the language $\{ww^{\mathcal{R}}|w\in\{0,1\}^*\}$.

Practice Problems of Pushdown Automaton

- Design a NPDA for the following languages:
 - $\{0^n1^{2n} \mid \text{ where } n > = 1\}$
 - $\{0^{2n}1^n \mid \text{ where n>=1}\}$
 - $\{a^nb^mc^r \mid where m,n,r>=0 \text{ and } r=n+m\}$
 - $\{a^nb^mc^r \mid where m,n,r>=0 \text{ and } r=n-m\}$