Master semester project presentation

Introduction

Background

Materials and

Result

Conclusion

Questions

Securing biometric templates on smart cards

Jonathan Cheseaux - jonathan.cheseaux@epfl.ch

Supervisors : Andrzej Drygajlo - Leila Mirmohamadsadeghi

May 30, 2013

Outline

Master semester project presentation

Introduction

Background

Materials and methods

Result

Conclusion

Questions 7

- 1 Introduction
- 2 Background
- 3 Materials and methods
- 4 Results
- 5 Conclusion
- 6 Questions?

Master semester project presentation

Introduction

Background

Materials and

Results

Conclusio

Questions '

Introduction

Objectives

Master semester project presentation

Introduction

Background

Materials and

Result

Conclusion

Questions

Master semester project presentation

Introduction

Background

Materials and

Results

Conclusion

Questions '

Background

Recognition chain Minutiae Cylinder-Code (MCC)

Master semester project presentation

Introductio

Background

Materials and methods

Result

Conclusion

Questions

Fingerprints quality can be altered by different factors

- Physical pressure on the scanner
- Finger orientation, distortion
- Wet/Dry fingers
- Age of the user

Minutiae Cylinder-Code (MCC)

- ✓ Robust against feature extraction errors
- ✓ Does not depend on finger orientations/distortions
- ✓ Produces fixed-size descriptors

Recognition chain Minutiae Cylinder-Code (MCC)

Master semester project presentation

Introduction

Background

Materials and

Recult

Conclusio

Questions

Recognition chain

Template transformation

Master semester project presentation

Introductio

 ${\sf Background}$

Materials and methods

Result

Conclusion

Questions '

Identity theft can have serious consequences

- Fingerprints are sensitive data!
- Biometrics templates should not be reversible
- Biometrics templates should be revocable
- Privacy protection needed

Properties of the template transformation

- ✓ Revocable (key)
- ✓ Irreversible (transformation + binarization)

Recognition chain

Template transformation

Master semester project presentation

Introductio

Background

Materials and

Result

Conclusio

Questions (

```
Algorithm 1: Biometric template privacy protection
   Input: D, a set of minutia descriptors \langle T_1, T_2, \dots, T_n \rangle
   Input: H, the encryption key
   Output: P, the transformed template
 1 P \leftarrow (0, 0, \dots, 0);
 2 index \leftarrow 0:
 3 A \leftarrow 5000; threshold \leftarrow 10^5; \\ Tuning parameters
 4 for each descriptor T in D do
       for i \leftarrow 0 to length(T) do
            if i even then
                p \leftarrow (A * (T[H[i]] + T[H[i+1]]))^2 \text{ mod } n
                if p > threshold then
 8
                 P[index] \leftarrow 1
10
                else
                 P[index] \leftarrow 0
11
                index \leftarrow index + 1:
12
```

Figure: Biometric template privacy protection

Recognition chain

Template matching

Master semester project presentation

Introductio

 ${\sf Background}$

Materials and

Result

Conclusion

Questions

Perfect fingerprint matching impossible

- No two transformed templates of the same finger are 100% identical
- Depends on feature extraction quality

Local similarity sort

- ✓ Compares distances of all 2-by-2 cylinders
- ✓ Based on angular differences of minutiae pairs
- ✓ Produces a similarity score from 0.0 (no match) to 1.0 (perfect match)

Recognition chain Template matching

Master semester project presentation

Introductio

Background

Materials and

Result

Conclusion

Questions ?

```
Algorithm 2: Local similarity sort
   M1, enrolment minutiae directions
    (M_1^{(1)}, M_1^{(2)}, \dots, M_1^{(n)})
            M2, verification minutiae directions
    \langle M_2^{(1)}, M_2^{(2)}, \dots, M_2^{(n)} \rangle
   Output: score, the matching score between 0.0 and 1.0
 1 P \leftarrow (0,0,\ldots,0); index \leftarrow 0; gamma \leftarrow (0,0,\ldots,0)
 2 minNP ← 3: maxNP ← 10: muP ← 30: tauP ← 0.4:
 3 for i \leftarrow 1 to n do
        for j \leftarrow 1 to n do
             norm \leftarrow ||T_1^{(i)}|| + ||T_2^{(j)}||
           if angularDiff(M_1^{(i)}, M_2^{(j)}) \le delta then
                \begin{aligned} & \text{gamma}[\text{index}] \leftarrow 1.0 - \frac{\|\text{hammingDistance}(\tau_1^{(i)}, \tau_2^{(j)})\|}{\text{norm}} \\ & \text{index} = \text{index} + 1 \end{aligned}
 9 sort(gamma)
10 z \leftarrow (1 + \exp(-tauP * (n - muP)))
11 nP \leftarrow minNP + |(z * (maxNP - minNP))|
12 sum ← 0
13 for i ← 0 to nP do
   sum = sum + gamma[i]
15 return sum/nP
```

Figure: Local similarity sort

Using smart cards for recognition Smart card specifications

Master semester project presentation

Introduction

 ${\sf Background}$

Materials and

Result

Conclusion

Questions ?

	Java Card 2.2	Java Card 3.0
byte, short	✓	✓
int, long, char, String	×	\checkmark
Threads	×	\checkmark
Garbage collection	×	\checkmark
Networking	×	\checkmark
2D Arrays	×	\checkmark
CPU	8-bit CPU	32-bit CPU
RAM	8kB of RAM	24kB of RAM

Table: Comparison of Java Card 2.2 and Java Card 3.0

Using smart cards for recognition Communication protocol

Master semester project presentation

Introduction

Background

Materials and

D. . . ls

Conclusio

Questions

Mandatory header						
CLA	INS	P1	P2	Lc	Data field	Le

Table: Command APDU structure

Optional body	Mandatory trailer			
Data field	SW1	SW2		

Table: Response APDU structure

Using smart cards for recognition Smart card simulator

Master semester project presentation

Introduction

 ${\sf Background}$

Materials and methods

Results

Conclusion

Questions

Java Card Workstation Development Environment JCWDE

- Simulator that emulates a Java Card
- Communication through APDU exchanges
- No debugging tools

Debugging a Java Card application

- First developed in Java world, under Java Card restrictions
- Possibility to use the Java Debugger tool and the console display
- Switching the entire application on Java Card remains a tough challenge

Using smart cards for recognition

Java Card programming environment

Master semester project presentation

Introductio

Background

Materials and

Reculto

Conclusion

Questions 7

32-bit integers not implemented

- Use 16-bit Short type instead
- Maximum value : $2^{15} 1 = 32767$

Floating-point values not implemented

Only integer values allowed (Short)

Garbage collector not implemented

- Impossible to instantiate Objects outside the constructor
- Be cautious with memory usage

Master semester project presentation

Introductio

Background

Materials and methods

Results

Conclusion

Questions '

Materials and methods

Hardware APDU command instructions

Master semester project presentation

Introductio

Background

Materials and methods

Result

Conclusio

Questions ?

INS code	Corresponding instruction
0×01	Load verification template
0×02	Load verification minutiae
0×03	Enrol user's template
0×04	Enrol user's minutiae
0×05	Initiate fingerprint matching
0×06	Reset the card

Table: CLA codes for the project

Hardware

Set-up connection to the card (simulator)

Master semester project presentation

Introductio

Background

Materials and methods

Result

Conclusior

Questions

Connection to the card

- Connexion to the simulator through a TCP socket.
- Applet loaded on the card is identified with a unique AID
- If fields SW1 and SW2 in the APDU response are 0x90 and 0x00 it means that selection is successful

CLA	INS	P1	P2	Lc	Data field
0×00	0xA4	0×04	0×00	0×A0	0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x00 0x00

Table: Command APDU content for the applet selection

Hardware Data transfer to the card

Master semester project presentation

Introductio

Background

Materials and methods

Result

Conclusion

Questions

Templates and Minutiae uploading

- APDU size limit is 255 bytes in total
- Templates and minutiae are broken into several chunks and sent separately.
- Fields P1 and P2 inform which packet is being sent

CLA	INS	P1	P2	Lc	Data field
0×00	0×03	Packet number		Packet size	Packet content

Table: Command APDU content for enrolling a user's template

Local Similarity-Sort matching

Master semester project presentation

Introduction

Background

Materials and methods

Result

Conclusio

Fingerprint matching

- Templates/minutiae loaded on the card
- APDU request sent to initiate matching process

CLA	INS	P1	P2
0×00	0×05	0×00	0×00

Table: Command APDU content for initiating matching process

Data field	SW1	SW2	
score (2 bytes)	90	00	

Table: Response APDU

LSS algorithm (non Java Card version)

Master semester project presentation

Introduction

Background

Materials and methods

Result

Conclusio

Questions '

```
1 for i \leftarrow 1 to n do
 2
          for j \leftarrow 1 to n do
               norm \leftarrow ||T_1^{(i)}|| + ||T_2^{(j)}||
               if angularDiff(M_1^{(i)}, M_2^{(j)}) \leq delta then
                     gamma[index] \leftarrow 1.0 - \frac{\|\mathsf{hammingDistance}(\mathcal{T}_1^{(i)}, \mathcal{T}_2^{(j)})\|}{\|\mathsf{hammingDistance}(\mathcal{T}_1^{(i)}, \mathcal{T}_2^{(j)})\|}
                     index = index + 1
 4 sort(gamma)
 5 z \leftarrow (1 + \exp(-tauP * (n - muP)))
 6 nP \leftarrow minNP + |(z * (maxNP - minNP))|
 7 sum \leftarrow 0
 8 for i \leftarrow 0 to nP do
      sum = sum + gamma[i]
10 return sum/nP
```

LSS algorithm for Java Card environment

Master semester project presentation

Introductio

Background

Materials and methods

Results

Conclusion

Questions

```
1 P \leftarrow 1550
2 for i \leftarrow 1 to n do
3 for j \leftarrow 1 to n do
4 for j \leftarrow 1 to n do
norm \leftarrow \|T_1^{(i)}\| + \|T_2^{(j)}\|
if angularDiff(M_1^{(i)}, M_2^{(j)}) \leq delta then
gamma[index] \leftarrow P - \frac{P*\|\text{hammingDistance}(T_1^{(i)}, T_2^{(j)})\|}{norm}
index = index + 1
```

6
$$z \leftarrow (1 + \exp(-tauP * (n - muP)))$$

7
$$nP \leftarrow minNP + \lfloor (z * (maxNP - minNP)) \rfloor$$

8
$$sum \leftarrow 0$$

9 for
$$i \leftarrow 0$$
 to nP do

$$sum = sum + gamma[i]$$

11 return sum/nP

LSS algorithm (non Java Card version)

Master semester project presentation

Introduction

Background

Materials and methods

Result

Conclusio

Questions 1

```
for i \leftarrow 1 to n do
         for j \leftarrow 1 to n do
 2
               norm \leftarrow ||T_1^{(i)}|| + ||T_2^{(j)}||
 3
              if angular Diff(M_1^{(i)}, M_2^{(j)}) \leq delta then
 4
                    gamma[index] \leftarrow 1.0 - \frac{\|\mathsf{hammingDistance}(T_1^{(i)}, T_2^{(j)})\|}{norm}
 5
                   index = index + 1
 6
 7 sort(gamma)
    z \leftarrow (1 + \exp(-tauP * (n - muP)))
nP \leftarrow minNP + |(z * (maxNP - minNP))|
    sum \leftarrow 0
 9 for i \leftarrow 0 to nP do
      sum = sum + gamma[i]
11 return sum/nP
```

LSS algorithm for Java Card environment

Master semester project presentation

Introduction

Background

Materials and methods

Result

Conclusion

```
\begin{array}{lll} 1 & P \leftarrow 1550 \\ 2 & \textbf{for } i \leftarrow 1 & \textbf{to } n & \textbf{do} \\ 3 & & \textbf{for } j \leftarrow 1 & \textbf{to } n & \textbf{do} \\ 4 & & & & & & & \\ 5 & & & & & & & \\ 6 & & & & & & & \\ 7 & & & & & & & \\ \hline \end{array}
```

8 sort(gamma)

9
$$nP \leftarrow LOOKUPTABLE[n]$$

 $sum \leftarrow 0$

10 for
$$i \leftarrow 0$$
 to nP do

11
$$| sum = sum + gamma[i]$$

12 return sum/nP

Software Demonstration

Master semester project presentation

Introductio

Background

Materials and methods

Questions 3

Demonstration

Master semester project presentation

Introduction

Background

Materials an

Results

Canalusia

Questions ?

Results

Test databases

Master semester project presentation

Introductio

Background

Materials and methods

Results

Conclusion

Questions ?

FVC 2000-2002-2004

- Databases provided by the Fingerprint Verification Competition
- Contains several users' fingers impression and also synthetic fingerprints
- Quality can vary a lot
- Features extracted with FingerJetFX software

Training set / Test set

- FVC2000 DB1-2-3 for parameters tuning
- FVC2004 DB1 for final results

Imposters/Genuine scores Original recognition algorithm

Master semester project presentation

Introduction

Background

Materials and

Results

Conclusion

Questions ?

Table: Original matching - Histograms of imposters (red) /genuine (blue) score repartition over 5000 samples. On the left: unknown key scenario. On the right: stolen key scenario.

Imposters/Genuine scores On-card matching

Master semester project presentation

Introduction

Background

Materials and

Results

Conclusion

Questions

Table: On-card matching - Histograms of imposters (red) /genuine (blue) score repartition over 2500 templates. On the left: unknown key scenario. On the right: stolen key scenario.

False match rate (FMR) and False non-match rate (FNMR) Original recognition algorithm

Master semester project presentation

Introduction

Background

Materials and

Results

Conclusion

Questions 1

Table: Original matching - EER (red) and DET curve (blue). On the left: unknown key scenario. On the right: stolen key scenario.

False match rate (FMR) and False non-match rate (FNMR) On-card matching

Master semester project presentation

Introduction

Background

Materials and

Results

Conclusion

Questions 1

Table: On-card matching - EER (red) and DET curve (blue). On the left: unknown key scenario. On the right: stolen key scenario.

Performance comparison

Master semester project presentation

Introduction

Background

Materials and methods

Results

Conclusion

Questions

Original algorithm						
Unkno	wn key	Stolen key				
FAR	FRR	FAR	FRR			
10%	5.34%	10%	11.52%			
1%	7.07%	1%	19.34%			
0.10%	7.55%	0.10%	21.55%			
EER :	6.41%	EER :	11.97%			

Java Card implementation							
Unkno	wn key	Stolen key					
FAR	FRR	FAR	FRR				
10%	4.00%	10%	23.29%				
1%	5.86%	1%	32.71%				
0.10%	6.71%	0.10%	37.00%				
EER :	4.63%	EER :	19.34%				

Table: FRR values for fixed FAR rates for two scenarios (key unknown and key stolen)

	G	enuine		Imposters			
	Genume		Unki	nown key	sto	len key	
	mean	deviation	mean	deviation	mean	deviation	
Original	0.53	0.11	0.37	0.05	0.41	0.05	
On-card	0.56	0.09	0.34	0.04	0.44	0.04	

Table: Mean and standard deviation of the score distributions for on-card matching and original algorithm

Master semester project presentation

Introduction

Background

Materials and

Results

Conclusion

Questions `

Conclusion

Future directions

Master semester project presentation

Introductio

Background

Materials and methods

Result

Conclusion

Ouestions '

Testing on real hardware

- Goal partially achieved :
 - Implementation works fine with simulator
 - Not tested on real devices
 - Compatibility with real devices not ensured

Precision loss

- Precision loss occurs because of integer division
- Solution: implement manually 32-bits floating-point values
- May not be suitable for smart cards

Future directions

Master semester project presentation

Introductio

 $\mathsf{Background}$

Materials and methods

Results

Conclusion

Questions 1

Encryption

- Sensitive informations
 - Minutiae angular directions
 - Protected template
 - Transformation key
- RSA encryption method already implemented in Java Card

Fine tuning parameters

- Several "empirical" parameters
 - Precision parameter, Template binarization threshold
 - Score threshold (accept/reject)
- Machine learning for optimizing choice of parameters

Master semester project presentation

Introduction

Background

Materials and

Results

Conclusio

Questions?

Questions?