Paul Gustafson

Texas A&M University - Math 467

Instructor: Stephen Fulling

HW 4

4 To Show: If $\angle BAC$ and $\angle B'A'C'$ are right angles and $AB \cong A'B'$ and $BC \cong B'C'$, then $\triangle ABC \cong \triangle A'B'C'$.

Proof. Following the hint, construct D on the ray opposite to \overrightarrow{AC} such that $AD \cong A'C'$. Then by SAS, $\triangle DAB \cong \triangle C'A'B'$. Thus, $BD \cong BC$, so $\triangle DBC$ is isosceles with $\angle D \cong \angle C$. Hence, by SAA, $\triangle ABC \cong \triangle ABD \cong A'B'C'$. \square

30 To Show: If $\Box ABCD$ is a convex quadrilateral and l is a line intersecting AB between A and B, then exactly one of the following holds:

- 1. There exists a point O such that B * O * C and O is incident to l.
- 2. There exists a point O such that C * O * D and O is incident to l.
- 3. There exists a point O such that A * O * D and O is incident to l.
- 4. O := C is incident to l.
- 5. O := D is incident to l.

Proof. To see that at least one of these must hold, apply Pasch's theorem to $\triangle ABC$ to get that exactly one of (1),(4), and l intersects AC between A and C holds. In the last case, apply Pasch's theorem to $\triangle ACD$ to get that exactly one of (2), (3), and (5) holds.

From the preceding argument, it suffices to show that each of (2), (3), and (5) implies l intersects AC between A and C.

Let M denote the intersection of l and AB. Since A * M * B, M and B are on the same side of \overrightarrow{AC} . Note that by Exercise 28, B and D are on opposite sides of \overrightarrow{AC} . Thus, M and D are on opposite sides of \overrightarrow{AC} .

Note that in each of the cases (2), (3), and (5), O is on the same side of \overrightarrow{AC} as D. Thus, M and O are on opposite sides of \overrightarrow{AC} .

Let I denote the point of intersection of MO and \overrightarrow{AC} . It suffices to show that I lies in the interior of $\Box ABCD$, for then we have A*I*C.

To see that I lies in the interior, first note that M*I*O implies that I and O lie on the same side of \overrightarrow{AB} . Since $\Box ABCD$ is convex, O and D lie on the same side of \overrightarrow{AB} in all cases. Thus, I, C, and D lie on the same side of \overrightarrow{AB} .

On the other hand, M*I*O also implies M and I are on the same side of \overrightarrow{CD} . Thus, I,A, and B are on the same side of \overrightarrow{DD} . Since M,O,A, and D are on the same side of \overrightarrow{BC} , I is on the same side of \overrightarrow{BC} as AD. Similarly, I is on the same side of \overrightarrow{AD} as BC.

Thus, I lies in the interior of $\Box ABCD$.

32 Using Figure 4.33, note that $\angle A'B'B''$ is supplementary to $\angle A'B'B$. Moreover, $\angle ABB''$ is supplementary to $\angle B'BC$. Thus, since two angles are congruent iff their supplementary angles are congruent, $\angle A'B'B'' \cong \angle ABB''$ iff $\angle A'B'B \cong \angle B'BC$, one of the pairs of alternate interior angles. We get a similar equivalence between the other pair of corresponding angles and alternate interior angles.