

למידה עמוקה

פעולות בסיסיות באלגברה לינארית

תוכן

- וקטורים •
- פעולות בסיסיות על וקטורים
 - מכפלה פנימית
 - מטריצות •
- פעולות בסיסיות על מטריצות
 - מכפלת מטריצות •

feature vectors – וקטור מאפיינים

וקטור מאפיינים הוא אוסף מספרים המייצגים אובייקט בעולם

Feature vector = [sepal length, sepal width, petal length, petal width]

v = [5.1,3.5,1.4,0.2]u = [4.9,3.0,1.4,0.2]

וקטור

אובייקט מתמטי אוסף סדור של מספרים

פעולות על וקטורים

$$v = [5.1,3.5,1.4,0.2]$$

 $u = [4.9,3.0,1.4,0.2]$

$$v+u = [10.0, 6.5, 2.8, 0.4]$$

$$v-u = [0.2, 0.5, 0.0, 0.0]$$

$$v * 2 = [10.2, 7.0, 2.8, 0.4]$$

חיבור חיסור כפל בסקלר (מספר)

תרגיל 1 – פתרו את התרגילים הבאים

$$v = [1,2,-1,0]$$

$$u = [2,1,3,-1]$$

- 1. 2*v
- 2. V*2
- 3. U+V
- 4. u+3*v
- 5. u-3*v

מכפלה פנימית dot product

$$v = [v_1, v_2, \dots v_n]$$

$$u = [u_1, u_2, \dots u_n]$$

$$v \cdot u = v_1 u_1 + v_2 u_2 + \dots + v_n u_n = \sum_{i=1}^n v_i u_i$$

תרגיל 2 - מכפלה פנימית

חשבו את המכפלות הפנימיות הבאות:

- **1**. [5,5]•[1,1]
- **2**. [5,-5]•[1,1]
- 3. $[5,0] \bullet [1,1]$
- **4.** [3,0]•[0,4]
- **5**. [1,2,3,4,5]•[5,4,3,2,1]

רשימות אינן וקטורים

```
11 = [5.1, 3.5, 1.4, 0.2]
12 = [4.9, 3.0, 1.4, 0.2]
11+12
[5.1, 3.5, 1.4, 0.2, 4.9, 3.0, 1.4, 0.2]
11-12
                                           Traceback (most recent call last)
TypeError
<ipython-input-5-a1de8c818da3> in <module>()
----> 1 11-12
TypeError: unsupported operand type(s) for -: 'list' and 'list'
 SEARCH STACK OVERFLOW
```

$$v1+v2 = [10.0, 6.5, 2.8, 0.8]$$

$$v1-v2 = [0.2, 0.5, 0.0, 0.0]$$

$$v1 * 2 = [10.2, 7.0, 2.8, 0.4]$$

2*11

[5.1, 3.5, 1.4, 0.2, 5.1, 3.5, 1.4, 0.2]

תרגיל 3 – פעולות על וקטורים בpython

ממשו את הפעולות הבאות:

- u+v כרשימות ומחזירה רשימה המכילה את סכום הוקטורים add(u,v) מעולה מקבלת שני וקטורים u,v
- u-v כרשימות ומחזירה רשימה המכילה את הפרש הוקטורים sub(u,v)
 - s*v ווקטור v כרשימה ומחזירה רשימה המכילה את המכפלה mul(s,v)
 - uullet v ברשימות ומחזירה את ערך המכפלה dot(v,u) הפעולה מקבלת שני וקטורים u,v
 - בדקו את הפעולות שכתבתםן באמצעות תרגילים 7.1,7.2

import numpy as np v1 = np.array(11)v2 = np.array(12)v1+v2 array([10., 6.5, 2.8, 0.4]) v1-v2 array([0.2, 0.5, 0., 0.]) 2*v1 array([10.2, 7., 2.8, 0.4])

יישום וקטורים ב-numpy

$$v1 = [5.1,3.5,1.4,0.2]$$

 $v2 = [4.9,3.0,1.4,0.2]$

$$v1+v2 = [10.0, 6.5, 2.8, 0.8]$$

$$v1-v2 = [0.2, 0.5, 0.0, 0.0]$$

$$v1 * 2 = [10.2, 7.0, 2.8, 0.4]$$


```
v1=np.array([5.1,3.5,1.4,0.2])
 print(v1)
 print(v1.shape)
 [5.1 3.5 1.4 0.2]
(4,)
 r1=np.array([[5.1,3.5,1.4,0.2]])
 print(r1)
 print(r1.shape)
[[5.1 3.5 1.4 0.2]]
(1, 4)
c1=np.array([[5.1],[4.9],[4.7]])
print(c1)
print(c1.shape)
[[5.1]
 [4.9]
```

וקטורי שורה וקטורי עמודה

$$r1 = [5.1 \quad 3.5 \quad 1.4 \quad 0.2]$$

$$c1 = \begin{bmatrix} 5.1 \\ 4.9 \\ 4.7 \end{bmatrix}$$

feature matrix – מטריצת מאפיינים

מטריצת מאפיינים הוא אוסף מספרים המייצגים מספר אובייקטים בעולם

SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.2

$$A = \begin{bmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 4.7 & 3.2 & 1.3 & 0.2 \end{bmatrix}$$

$$B = \begin{bmatrix} 4.6 & 3.1 & 1.5 & 0.2 \\ 5.0 & 3.6 & 1.4 & 0.2 \\ 5.4 & 3.9 & 1.7 & 0.4 \end{bmatrix}$$

מטריצה

אובייקט מתמטי אוסף דו-ממדי סדור של מספרים

$$A = \begin{bmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 4.7 & 3.2 & 1.3 & 0.2 \end{bmatrix}$$

3

ממדי מטריצה

4

A is 3 X 4 matrix

סימון איברי ממטריצה

אינדקס שורה

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,m} \end{bmatrix}$$

$$A = \begin{bmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 4.7 & 3.2 & 1.3 & 0.2 \end{bmatrix}$$

$$B = \begin{bmatrix} 4.6 & 3.1 & 1.5 & 0.2 \\ 5.0 & 3.6 & 1.4 & 0.2 \\ 5.4 & 3.9 & 1.7 & 0.4 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 9.7 & 6.6 & 2.9 & 0.4 \\ 9.9 & 6.6 & 2.8 & 0.4 \\ 10.1 & 7.1 & 3.0 & 0.6 \end{bmatrix}$$

$$A - B = \begin{bmatrix} .5 & .5 & -.1 & 0 \\ -.1 & -.6 & 0 & 0 \\ -.7 & -.7 & -.4 & -.2 \end{bmatrix}$$

$$2 * A = \begin{bmatrix} 10.2 & 7 & 2.8 & 0.4 \\ 9.8 & 6 & 2.8 & 0.4 \\ 9.4 & 6.4 & 2.6 & 0.4 \end{bmatrix}$$

פעולות על מטריצות

חיבור חיסור

כפל בסקלר (מספר)

. . .

תרגיל 4 – פעולות על מטריצות

:פתרו את התרגילים הבאים

- 1. 3*A
- 2. 3*A+B

$$A = \begin{bmatrix} 5.1 & 3.5 & 1.2 \\ 4.9 & 3.0 & 2.2 \\ 4.7 & 3.2 & 1.2 \end{bmatrix}$$

$$B = \begin{bmatrix} 4.6 & 3.1 & 2.2 \\ 5.0 & 3.6 & 2.2 \\ 5.4 & 3.9 & 1.4 \end{bmatrix}$$

array - numpy-בטריצות ב


```
m1+m2
```

```
array([[ 9.7, 6.6, 2.9, 0.4], [ 9.9, 6.6, 2.8, 0.4], [ 10.1, 7.1, 3., 0.6]])
```

m1-m2

```
array([[ 0.5, 0.4, -0.1, 0. ], [-0.1, -0.6, 0. , 0. ], [-0.7, -0.7, -0.4, -0.2]])
```

2*m1

```
array([[10.2, 7., 2.8, 0.4], [9.8, 6., 2.8, 0.4], [9.4, 6.4, 2.6, 0.4]])
```

פעולות על מטריצות

כפל מטריצות

כפל מטריצה הוא אוסף מכפלות סקלריות בין שורה משמאל ועמודה מימין

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

ניתן להכפיל רק מטריצות עם ממדים המאפשרים זאת. כלומר A מממד B-ו n,k ו-B מממד

כפל מטריצות (1)

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 2 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

כפל מטריצות (2)

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

$$B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

$$A * B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} * \begin{bmatrix} 7 & 8 \\ 10 & 11 \end{bmatrix} = \begin{bmatrix} 1 * 7 + 4 * 10 & 1 * 8 + 4 * 11 \\ 12 \end{bmatrix} = \begin{bmatrix} 1 * 7 + 4 * 10 & 1 * 8 + 4 * 11 \\ 12 \end{bmatrix}$$

כפל מטריצות (3)

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

$$A * B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} * \begin{bmatrix} 7 & 8 \\ 10 & 11 \end{bmatrix} = \begin{bmatrix} 1 * 7 + 4 * 10 & 1 * 8 + 4 * 11 & 1 * 9 + 4 * 12 \\ 12 \end{bmatrix}$$

כפל מטריצות (4)

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

כפל מטריצות (5)

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

$$A * B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} * \begin{bmatrix} 7 & 8 \\ 10 & 11 \end{bmatrix} * \begin{bmatrix} 9 \\ 12 \end{bmatrix} = \begin{bmatrix} 1 * 7 + 4 * 10 & 1 * 8 + 4 * 11 & 1 * 9 + 4 * 12 \\ 2 * 7 + 5 * 10 & 2 * 8 + 5 * 11 \end{bmatrix}$$

כפל מטריצות (6)

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

$$A * B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} * \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} = \begin{bmatrix} 1 * 7 + 4 * 10 & 1 * 8 + 4 * 11 & 1 * 9 + 4 * 12 \\ 2 * 7 + 5 * 10 & 2 * 8 + 5 * 11 & 2 * 9 + 5 * 12 \end{bmatrix}$$

כפל מטריצות (7)

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

$$A * B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} * \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} = \begin{bmatrix} 1 * 7 + 4 * 10 & 1 * 8 + 4 * 11 & 1 * 9 + 4 * 12 \\ 2 * 7 + 5 * 10 & 2 * 8 + 5 * 11 & 2 * 9 + 5 * 12 \\ 3 * 7 + 6 * 10 & 3 * 8 + 6 * 11 & 3 * 9 + 6 * 12 \end{bmatrix}$$

תרגיל 5 – כפל מטריצות

פתרו את התרגילים הבאים:

$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 5 & 7 \\ 6 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$$

תרגיל 5 – פתרון

$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 5 & 7 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 1 \cdot 5 - 1 \cdot 6 & 1 \cdot 7 - 1 \cdot 8 \\ 2 \cdot 5 + 3 \cdot 6 & 2 \cdot 7 + 3 \cdot 8 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 28 & 38 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 1 \cdot 7 + 2 \cdot 8 + 3 \cdot 9 \\ 4 \cdot 7 + 5 \cdot 8 + 6 \cdot 9 \end{bmatrix} = \begin{bmatrix} 50 \\ 122 \end{bmatrix}$$

כפל מטריצות – חישוב כללי

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} \\ a_{i,1} & a_{i,2} & \cdots & a_{i,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,m} \end{bmatrix}, B = \begin{bmatrix} b_{1,1} & b_{1,j} & \cdots & b_{1,k} \\ b_{2,1} & b_{2,j} & \cdots & b_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m,1} & b_{m,j} & \cdots & b_{m,k} \end{bmatrix}$$

$$C = A * B = \begin{bmatrix} c_{i,j} = \sum_{t=1}^{m} a_{i,t} * b_{t,j} \end{bmatrix}$$

תרגיל 6 - מימוש כפל מטריצות

numpy array-כ A,B ממשו פעולה mul(A,B) המקבלת שתי מטריצות

- הפעולה בודקת אם ניתן להכפיל את המטריצות
- במידה וכן הפעולה מחשבת את התוצאה על ידי נוסחת הכפלת המטריצות ומחזירה את התשובה
- numpy.dot) בדקו את הפעולה על גבי תרגילים 7.4 ועל ידי השוואה -

שאלות?