

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE171101102

FCC REPORT

(Bluetooth)

Applicant: Shenzhen AlldoCube Technology and Science Co.,Ltd

Address of Applicant:

Building No.1, Suwang Industrial Park, Xiahenglang, Dalang,

Longhua District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: i1101, KNOTE

Trade mark: ALLDOCUBE

FCC ID: 2AKO6ADC03

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 02 Nov., 2017

Date of Test: 02 Nov., to 21 Nov., 2017

Date of report issued: 22 Nov., 2017

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE171101102

2 Version

Version No.	Date	Description
00	22 Nov., 2017	Original

Tested by: Quey (hen Date: 22 Nov., 2017

Test Engineer

Reviewed by: Date: 22 Nov., 2017

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		
3		
4	4 TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T.	
	5.3 TEST ENVIRONMENT AND TEST MODE	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 Measurement Uncertainty	6
	5.6 LABORATORY FACILITY	6
	5.7 LABORATORY LOCATION	
	5.8 TEST INSTRUMENTS LIST	7
6	6 TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT	8
	6.2 CONDUCTED EMISSIONS	9
	6.3 CONDUCTED OUTPUT POWER	12
	6.4 20DB OCCUPY BANDWIDTH	
	6.5 CARRIER FREQUENCIES SEPARATION	
	6.6 HOPPING CHANNEL NUMBER	
	6.7 DWELL TIME	
	6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9 BAND EDGE	
	6.9.1 Conducted Emission Method	
	6.10 Spurious Emission Metriod	
	6.10.1 Conducted Emission Method	
	6.10.2 Radiated Emission Method	
7		
8	8 FUT CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Items	Section in CFR 47	Result			
Antenna Requirement	15.203/15.247 (c)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(1)	Pass			
20dB Occupied Bandwidth	15.247 (a)(1)	Pass			
Carrier Frequencies Separation	15.247 (a)(1)	Pass			
Hopping Channel Number	15.247 (a)(1)	Pass			
Dwell Time	15.247 (a)(1)	Pass			
Spurious Emission	15.205/15.209	Pass			
Band Edge 15.247(d) Pass					
Pass: The EUT complies with the essential requirements in the standard.					

5 **General Information**

5.1 Client Information

Applicant:	Shenzhen AlldoCube Technology and Science Co.,Ltd
Address:	Building No.1,Suwang Industrial Park, Xiahenglang,Dalang,Longhua District,Shenzhen,China
Manufacturer/ Factory:	Shenzhen Alldocube Technology and science Co., LTD
Address:	Building No.1,Suwang Industrial Park, Xiahenglang,Dalang,Longhua District,Shenzhen,China

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	i1101, KNOTE
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-2.81 dBi
Power supply:	Rechargeable Li-ion Battery DC7.6V/4000mAh
AC adapter:	Model:AK36WG-120025U Input: AC100-240V, 50/60Hz, 0.8A Output: DC 12V, 2.5A
Remark:	Model No.: i1101, KNOTE were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz		
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz		
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz		
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz		
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz		
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz		
							•••		
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz		
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz		
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz		
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz		
19	2421MHz	39	2441MHz	59	2461MHz				

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE171101102

Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty			
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)			
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)			
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)			
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)			
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)			

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:								
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020			
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2017	02-24-2018			
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2017	02-24-2018			
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2017	02-24-2018			
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A			
Pre-amplifier	HP	8447D 2944A09358		02-25-2017	02-24-2018			
Pre-amplifier	CD	PAP-1G18	11804	02-25-2017	02-24-2018			
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-25-2017	02-24-2018			
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-25-2017	02-24-2018			
Cable	Cable ZDECL		1608458	02-25-2017	02-24-2018			
Cable	MICRO-COAX	MFR64639	K10742-5	02-25-2017	02-24-2018			
Cable	SUHNER	SUCOFLEX100	58193/4PE	02-25-2017	02-24-2018			

Conducted Emission:									
Test Equipment	Manufacturer	Model No. Serial No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	02-25-2017	02-24-2018				
Pulse Limiter	Pulse Limiter SCHWARZBECK		9731	02-25-2017	02-24-2018				
LISN	CHASE	MN2050D	1447	02-25-2017	02-24-2018				
LISN	LISN Rohde & Schwarz		8438621/010	07-21-2017	07-20-2018				
Cable	HP	10503A	N/A	02-25-2017	02-24-2018				
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A				

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an Internal Antenna which permanently attached, and the best case gain of the antenna is -2.81 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 1	5 207				
'						
Test Method:	ANSI C63.4:2014					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz, Sweep time=auto				
Limit:	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the log	arithm of the frequency.				
Test setup:	Reference	Plane				
	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T Equipment Under Test LISh! Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Hopping mode					
Test results:	Pass					

Measurement Data:

Line:

: CCIS Shielding Room : FCC PARTI5 B QP LISN LINE Site Condition : Tablet PC EUT

: ill01 Model Test Mode : BT mode Power Rating : AC 120V/50Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Carey

emark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	₫B	dBu₹	dBu₹	dB	
1	0.158	32.81	-0.55	10.77	43.03	55.56	-12.53	Average
2 3	0.166	48.14	-0.55	10.77	58.36	65.16	-6.80	QP
3	0.178	32.90	-0.54	10.77	43.13	54.59	-11.46	Average
4 5 6 7 8 9	0.182	48.12	-0.53	10.77	58.36		-6.06	
5	0.230	43.58	-0.52	10.75	53.81	62.44	-8.63	QP
6	0.230	27.88	-0.52	10.75	38.11	52.44	-14.33	Average
7	0.299	35, 27	-0.51	10.74	45.50	60.28	-14.78	QP
8	0.346	33.18	-0.50	10.73	43.41	59.05	-15.64	QP
9	0.402	23.24	-0.50	10.72	33.46	47.81	-14.35	Average
10	0.489	22.46	-0.49	10.76	32.73	46.19	-13.46	Average
11	13.551	37.39	-0.49	10.91	47.81	60.00	-12.19	QP
12	13.551	28.22	-0.49	10.91	38.64	50.00	-11.36	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : Tablet PC Condition

EUT Model : i1101 Test Mode : BI mode Power Rating : AC 120V/50Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Vewgik	- Ro	Read	LISN	Cable	100	Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
-	MHz	dBu∛	₫B	₫₿	dBu∛	dBu∛	₫B	
1	0.150	50.50	-0.38	10.78	60.90	66.00	-5.10	QP
2	0.182	48.75	-0.35	10.77	59.17	64.42	-5.25	QP
3	0.182	32, 42	-0.35	10.77	42.84	54.42	-11.58	Average
4	0.190	47.85	-0.35	10.76	58.26	64.02	-5.76	QP
1 2 3 4 5 6 7 8 9	0.202	22.79	-0.34	10.76	33.21	53.54	-20.33	Average
6	0.246	41.18	-0.33	10.75	51.60	61.91	-10.31	QP
7	0.246	23.20	-0.33	10.75	33.62	51.91	-18.29	Average
8	0.302	39.42	-0.32	10.74	49.84		-10.35	
9	0.398	18.16	-0.32	10.72	28.56	47.90	-19.34	Average
10	0.809	15.60	-0.30	10.81	26.11	46.00	-19.89	Average
11	13.479	35.48	-0.13	10.91	46.26	60.00	-13.74	QP
12	13,623	27.09	-0.16	10.91	37.84	50.00	-12.16	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer Non-Conducted Table		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
	GFSK mode					
Lowest	3.51	30.00	Pass			
Middle	3.78	30.00	Pass			
Highest	2.94	30.00	Pass			
	π/4-DQPSK mode					
Lowest	0.97	21.00	Pass			
Middle	1.30	21.00	Pass			
Highest	0.51	21.00	Pass			
	8DPSK mode					
Lowest	-0.04	21.00	Pass			
Middle	0.29	21.00	Pass			
Highest	-0.53	21.00	Pass			

Test plot as follows:

Modulation mode: GFSK

Date: 3.NOV.2017 16:17:12

Lowest channel

Date: 3.NOV.2017 16:17:37

Date: 3.NOV.2017 16:17:55

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Date: 3.NOV.2017 16:18:52

Lowest channel

Date: 3.NOV.2017 16:18:35

Middle channel

Date: 3.NOV.2017 16:18:18

Highest channel

Date: 3.NOV.2017 16:19:11

Lowest channel

Date: 3.NOV.2017 16:19:43

Middle channel

Date: 3.NOV.2017 16:19:58

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	20dB Occupy Bandwidth (kHz)		
rest channel	GFSK	π/4-DQPSK	8DPSK
Lowest	944	1488	1476
Middle	940	1470	1470
Highest	944	1470	1482

Test plot as follows:

Modulation mode: GFSK

Date: 3.NOV.2017 16:27:08

Lowest channel

Date: 3.NOV.2017 16:26:27

Date: 3.NOV.2017 16:25:53

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Date: 3.NOV.2017 16:23:18

Lowest channel

Date: 3.NOV.2017 16:24:34

Middle channel

Date: 3.NOV.2017 16:25:09

Highest channel

Date: 3.NOV.2017 16:22:27

Lowest channel

Date: 3.NOV.2017 16:21:41

Middle channel

Date: 3.NOV.2017 16:21:06

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
	GFSK					
Lowest	1004	944.00	Pass			
Middle	1008	944.00	Pass			
Highest	Highest 1000		Pass			
	π/4-DQPSK mode					
Lowest	1000	992.00	Pass			
Middle	1000	992.00	Pass			
Highest 1000		992.00	Pass			
8DPSK mode						
Lowest	1000	988.00	Pass			
Middle	1000	988.00	Pass			
Highest	1000	988.00	Pass			

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	944	944.00
π/4-DQPSK	1488	992.00
8DPSK	1482	988.00

Test plot as follows:

Modulation mode: GFSK

Date: 3.NOV.2017 16:28:47

Date: 3.NOV.2017 16:34:26

Date: 3.NOV.2017 16:33:38

Date: 3.NOV.2017 16:30:17

Middle channel

Date: 3.NOV.2017 16:31:29 Highest channel Date: 3.NOV.2017 16:32:44

Highest channel

Date: 3.NOV.2017 16:35:17

Lowest channel

Date: 3.NOV.2017 16:36:13

Middle channel

Date: 3.NOV.2017 16:37:24

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

Date: 3.NOV.2017 16:44:55

Date: 3.NOV.2017 16:46:31

Date: 3.NOV.2017 16:47:35

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB DA00-705		
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.15488		
GFSK	DH3	0.28256	0.4	Pass
	DH5	0.32277		
π/4-DQPSK	2-DH1	0.15936		
	2-DH3	0.28160	0.4	Pass
	2-DH5	0.32107		
	3-DH1	0.15744		
8DPSK	3-DH3	0.28320	0.4	Pass
	3-DH5	0.32107		

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.416*(1600/(2*79))*31.6=154.88ms DH3 time slot=1.686*(1600/(4*79))*31.6=282.56ms DH5 time slot=2.952*(1600/(6*79))*31.6=322.77ms

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Project No.: CCISE1711011 No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test plot as follows:

Date: 3.NOV.2017 16:53:00

Date: 3.NOV.2017 16:52:37

DH5

Modulation mode: $\pi/4$ -DQPSK

Date: 3.NOV.2017 16:53:38

Date: 3.NOV.2017 16:53:16

Date: 3.NOV.2017 16:52:15

2-DH5

Date: 3.NOV.2017 16:50:26

3-DH1

Date: 3.NOV.2017 16:51:09

3-DH3

Date: 3.NOV.2017 16:51:34

3-DH5

Report No: CCISE171101102

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Test plot as follows:

GFSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

Date: 3.NOV.2017 17:19:15

Date: 3.NOV.2017 17:18:45

No-hopping mode

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

Date: 3.NOV.2017 17:13:08

Date: 3.NOV.2017 17:13:49

No-hopping mode

Hopping mode

Highest Channel

Date: 3.NOV.2017 17:17:33

Date: 3.NOV.2017 17:18:09

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

Date: 3.NOV.2017 17:15:22

Date: 3.NOV.2017 17:14:55

No-hopping mode

Hopping mode

Highest Channel

Date: 3.NOV.2017 17:16:24

Date: 3.NOV.2017 17:17:04

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 1	5.209	and 15.205				
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test Distance:	3m							
Receiver setup:	Frequency Detector RBW VBW						Remark	
	Ab 01/0 4 CU -	Peak		1MHz	3MHz		Peak Value	
	Above 1GHz	RMS		1MHz	3MHz		Average Value	
Limit:	Frequen	су	Lim	it (dBuV/m @3	3m)		Remark	
	Above 1G	2∐-z		54.00		Average Value		
	Above 10	JI 12		74.00		Peak Value		
	Horn Antenna Tower Ground Reference Plane Test Receiver Amplier Controller							
Test Procedure:	ground at a determine the second at a determine the second and antenna, who tower. 3. The antenna ground to de horizontal and measureme second and then the and the rotal maximum results. The test-reduction Specified Bases. If the emission limit specifies EUT would a second and second	3 meter cane position as set 3 maich was maich was maich was maich wertical ant. spected ea antenna a table was eading. seiver system and width was eading to be ed, then te be reporten would be	variene massic was to turne was to turne was to turne to the Esting of the Ferre-teepens was to the ferre-teepens was to the teepens was to the te	r. The table wat highest radial away from the away from the ed on the top of the aximum value of the aximum value of the aximum to degree as set to Peak laximum Hold I EUT in peak mould be stoppherwise the emission of the aximum Hold I axim	as rotation. interf f a va ter to of the anter as arra s from ees to Detect Mode ode w ed an nission ne usi	ference- riable-h four me field stre fina are anged to a 1 mete a 360 de ct Functi day as 10db ad the pe ans that co	receiving eight antenna eters above the ength. Both set to make the coits worst case er to 4 meters egrees to find the did not have k, quasi-peak or	
Test Instruments:	Refer to sectio	•						
Test mode:	Non-hopping m	node						
Test results:	Passed							

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Tablet PC : 11101 Model : DH1-L mode Test mode Power Rating: AC 120V/60Hz Environment: Temp: 25.5°C Huni: 55% Test Engineer: Carey

REMARK

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Tablet PC Model 11101

Test mode : DH1-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK

		Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
,	MHz	dBuV	dB/m	d₿	dB	dBuV/m	dBu∀/m	dB	
	2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Tablet PC Condition

EUT Model : 11101 Test mode : DH1-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

5 352	ReadAntenna		Cable	Preamp		Limit	Over		
Freq								Remark	
MHz	dBu₹	dB/m	dB	<u>d</u> B	dBuV/m	dBuV/m	dB		
2483.500 2483.500									

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC Condition

EUT : 11101 Model Test mode : DH1-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

MIL									
		ReadAnten		Cable P	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
	2483.500	200,000,000,000	25.66			51.10			
	2483.500	0.13	25.00	4.81	0.00	38.00	54.00	-15.40	Average

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Tablet PC Model : 11101 Test mode : 2DH1-L mode Power Rating: AC 120V/60Hz Environment: Temp: 25.5°C Huni: 55% Test Engineer: Carey

:

REMARK

		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∀	dB/m	dB	₫₿	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000								

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC : 11101 Condition

EUT Model

Test mode : 2DH1-L mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

	70	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	MHz dBuV dB/m dB	₫₿	dBuV/m	m dBuV/m	dB			
1 2	2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Tablet PC Condition

EUT : 11101 Model Test mode : 2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey

REMARK

	Freq	ReadAntenna Cable Level Factor Loss		Factor		Line	Limit	Remark
	MHz	dBu∀	dB/m dB		dBuV/m			
1 2	2483.500 2483.500							

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC : 11101 Condition

EUT Model : 2DH1-H mode Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	MHz dBuV dB/	dB/m	dB	dB	dBu∀/n	dBuV/m	dB		
1 2	2483.500 2483.500									

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Tablet PC Condition

EUT : 11101 Model Test mode : 3DH1-L mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

and the second	5255	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
1.5	MHz	Hz dBuV dB/m	₫B	dB dB d	dBuV/n	dBuV/n	dB		
1 2	2390.000 2390.000								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC Condition

EUT Iest mode : 3DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

EEA	Kh :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Tablet PC Condition

EUT : 11101 Model Test mode : 3DH1-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

1 2

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	dB/m	d₿	dB	dBuV/m	dBuV/m	−−−dB	
2483,500 2483,500								Peak Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC Condition

model : 11101
Test mode : 3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	MHz	z dBuV dB/m	dB dB	dBuV/m	dBuV/m	dB		
1 2	2483.500 2483.500								

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and DA00-705
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass

Test plot as follows:

GFSK

Date: 9.NOV.2017 18:14:42

-60

Date: 9.NOV.2017 18:19:23

30MHz~25GHz

Middle channel

Date: 9.NOV.2017 18:15:14

30MHz~25GHz

 $\pi/4$ -DQPSK

Lowest channel

Middle channel

Date: 9.NOV.2017 18:18:10

30MHz~25GHz

Highest channel

Date: 9.NOV.2017 18:15:38

30MHz~25GHz

Highest channel

Date: 9.NOV.2017 18:17:13

30MHz~25GHz

30MHz~25GHz

8DPSK

Lowest channel

Date: 9.NOV.2017 19:14:45

30MHz~25GHz

Date: 9.NOV.2017 19:16:34

30MHz~25GHz

Highest channel

Date: 9.NOV.2017 19:20:20

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission M		0 " 15	200						
Test Requirement:		FCC Part 15 C Section 15.209 ANSI C63.10: 2013							
Test Method:									
Test Frequency Range:	9 kHz to 25 GH	Z							
Test Distance:	3m	1 _							
Receiver setup:	Frequency	Detecto		RBW	VBW				
	30MHz-1GHz	Quasi-pe	ak	120kHz	300kF	'			
	Above 1GHz	Peak		1MHz	3MH:				
	_	RMS		1MHz	3MH:				
Limit:	Frequenc		Limi	t (dBuV/m @	⊉3m)	Remark			
	30MHz-88N			40.0		Quasi-peak Value			
	88MHz-216I			43.5		Quasi-peak Value			
	216MHz-960MHz 46.0 Quasi-peak Value								
	960MHz-1GHz 54.0 Quasi-peak Value								
	Above 1GHz 54.0 Average Value								
Test setup:	74.0 Peak Value								
	7/////	urn 0.8m	4m	3m	Horn Antenna Pre- Amptiser Con	Antenna Tower Search Antenna RF Test Receiver Antenna Tower			

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the
	ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL Condition

: Tablet PC EUT Model : 11101 Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey

EMARK	Freq		Antenna Factor				Limit Line	Over Limit	Remark
200	MHz	dBu₹	$\overline{-dB/m}$	dB	dB	dBuV/m	dBuV/m	dB	
1 2	47.994 81.497	42.08	14.40 8.92	1.27		27.91 28.66		-12.09 -11.34	100
3	143.830	50.16	8.38	2.44	29.25	31.73	43.50	-11.77	QP
5	167. 824 303. 544 564. 639		13.43	2.64 2.95 3.90	28.46	30.81 31.77 29.69	46.00	-14.23	QP

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL Condition

EUT : Tablet PC Model : 11101 Test mode : BT mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

Freq								
MHz	dBu₹	dB/m	d₿	dB	dBuV/m	dBuV/m	<u>d</u> B	
31.731	44.54	11.43	0.85	29.97	26.85	40.00	-13.15	QP
81.783	44.16	8.92	1.72	29.63	25.17	40.00	-14.83	QP
138.874	55.89	8.36	2.38	29.28	37.35	43.50	-6.15	QP
208.580	50.05	11.30	2.86	28.78	35.43	43.50	-8.07	QP
311.087	49.67	13.49	2.97	28.48	37.65	46.00	-8.35	QP
396.242	45.19	14.76	3.08	28.76	34.27	46.00	-11.73	QP
	MHz 31, 731 81, 783 138, 874 208, 580 311, 087	Freq Level MHz dBuV 31.731 44.54 81.783 44.16 138.874 55.89 208.580 50.05 311.087 49.67	MHz dBuV dB/m 31.731 44.54 11.43 81.783 44.16 8.92 138.874 55.89 8.36 208.580 50.05 11.30 311.087 49.67 13.49	MHz dBuV dB/m dB 31.731 44.54 11.43 0.85 81.783 44.16 8.92 1.72 138.874 55.89 8.36 2.38 208.580 50.05 11.30 2.86 311.087 49.67 13.49 2.97	MHz dBuV dB/m dB dB 31.731 44.54 11.43 0.85 29.97 81.783 44.16 8.92 1.72 29.63 138.874 55.89 8.36 2.38 29.28 208.580 50.05 11.30 2.86 28.78 311.087 49.67 13.49 2.97 28.48	MHz dBuV dB/m dB dB dBuV/m 31.731 44.54 11.43 0.85 29.97 26.85 81.783 44.16 8.92 1.72 29.63 25.17 138.874 55.89 8.36 2.38 29.28 37.35 208.580 50.05 11.30 2.86 28.78 35.43 311.087 49.67 13.49 2.97 28.48 37.65	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m 31.731 44.54 11.43 0.85 29.97 26.85 40.00 81.783 44.16 8.92 1.72 29.63 25.17 40.00 138.874 55.89 8.36 2.38 29.28 37.35 43.50 208.580 50.05 11.30 2.86 28.78 35.43 43.50 311.087 49.67 13.49 2.97 28.48 37.65 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB dBuV/m dBuV/m dB dBuV/m dBu

Above 1GHz:

Test channel:			Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.94	35.99	6.80	41.81	47.92	74.00	-26.08	Vertical
4804.00	47.03	35.99	6.80	41.81	48.01	74.00	-25.99	Horizontal
Test channel:			Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.85	35.99	6.80	41.81	37.83	54	-16.17	Vertical
4804.00	37.02	35.99	6.80	41.81	38.00	54	-16.00	Horizontal

Test channel:			Middle		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	46.37	36.38	6.86	41.84	47.77	74.00	-26.23	Vertical
4882.00	46.46	36.38	6.86	41.84	47.86	74.00	-26.14	Horizontal
Test channel:		Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	36.23	36.38	6.86	41.84	37.63	54.00	-16.37	Vertical
4882.00	36.45	36.38	6.86	41.84	37.85	54.00	-16.15	Horizontal

Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.91	36.71	6.91	41.87	48.66	74.00	-25.34	Vertical
4960.00	46.89	36.71	6.91	41.87	48.64	74.00	-25.36	Horizontal
Test channel:		Highest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.88	36.71	6.91	41.87	38.63	54.00	-15.37	Vertical
4960.00	36.58	36.71	6.91	41.87	38.33	54.00	-15.67	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.