HARARE INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

DEPARTMENT OF SOFTWARE ENGINEERING

B.TECH DEGREE SOFTWARE ENGINEERING

ISE 125: DISCRETE MATHEMATICS

TIME: 3 HOURS

DATE: MAY/JUNE 2018

INSTRUCTIONS TO CANDIDATES:

- Answer ALL questions from Section A.
- Answer THREE questions from section B.

ADDITIONAL MATERIALS

• None

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A5.

(a) Let α be the permutation on $\{1,2,3,4,5\}$ with $\alpha:1\mapsto 4,2\mapsto 3,3\mapsto 1,4\mapsto 1$ A1. $5,5\mapsto 2,$ and β be the permutation on $\{1,2,3,4,5\}$ with $\beta:1\mapsto 4,2\mapsto 2,3\mapsto$ $5, 4 \mapsto 1, 5 \mapsto 3.$

Express $\alpha\beta$ in the arrow form.

[3]

(b) Find the rotational symmetries of regular pentagon.

[5]

(a) Given that $A = \{a, b, c, 0, c\}$ and $B = \{0, 0, a, a\}$. Find A2.

(i) $A \times B$,

[2]

(ii) A^2 .

[2]

(b) Show that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$

[4]

A3. (a) Using the sets $\{1,2,3,4\}$ and $\{a,b,c\}$ construct a function that is

(i) onto.

[2]

(ii) one-to-one.

[3]

(b) Sketch the graph of $f(x) = \lfloor 3x - 1 \rfloor$, for $0 \le x \le 1$.

[3]

(a) Prove that A4.

$$p(E \cup F) = p(E) + p(F) - p(E \cap F).$$

[4]

- (b) In the game of lotto a player wins a prize if she selects 4 to 6 numbers(in any order) picked by rolling the first 6 balls numbered 1 to 49 out of a ball holder. What is the probability that she wins a prize?
- (a) How many integers between 1000 and 10 000 are divisible by 6 and 9? A5. [5]
 - (b) How many number plates are possible in the Zimbabwe system where three letters and four digits are used? The letters I, O and U are prohibited.

SECTION B (60 marks)

Candidates may attempt THREE questions being careful to number them B6 to B12.

B6. Let
$$\varepsilon = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
, $\rho = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $\phi = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$,

- (a) Show that $\{\varepsilon, \rho, \rho^2, \phi, \phi\rho, \rho^2\phi\}$ is the set S_3 of all permutations on $\{1, 2, 3\}$. [8]
- (b) Complete the following multiplication table for S_3

- B7. (a) Suppose that E and F are events such that $p(E) = \frac{2}{3}$, $p(F) = \frac{1}{5}$. What are the largest and smallest values of $p(E \cap F)$? Give examples to show that both extremes are possible.
 - (b) State Bayes' Theorem and use it to find p(F|E) if $p(E|F) = \frac{1}{4}$, $p(E|F^C) = \frac{1}{5}$, and $p(F) = \frac{1}{3}$ where E and F are events from a sample space S. [7]
 - (c) An octahedral die has eight faces that are numbered 1 though 8. One such die is biased such that the odds are twice likely to appear than evens when it is rolled. What is the
 - (i) expected value
 - (ii) variance [7]

of the number of outcomes, when the biased die is rolled?

B8. Let
$$\mathbf{e} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{I} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $\mathbf{J} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ and $\mathbf{K} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$ where $i^2 = -1$. By constructing the multiplication table, or otherwise, show that

$$Q_8 = \{\pm \mathbf{e}, \pm \mathbf{I}, \pm \mathbf{J}, \pm \mathbf{K}\}$$

is a group under the usual matrix multiplication.

[20]

- B9. A computer repair technician can use 25 different types of keyboards, 12 types of mice and 6 types of LCD screens.
 - (a) in how many ways can five computers be repaired so that each type of keyboard is used more than once and the order does not matter. [4]

- (b) How many different computers can be fitted so that it has each type of keyboard, mouse and LCD screen? [2]
- (c) How many different computers can be fitted for a client so that there are three batches, where each keyboard can be used more than once and the order does not matter; two kinds of mice where each mouse can be used only once and the order does not matter; and three LCD screens are where each can be used only once and the order does not matter?

(d) Given that
$$A_k = (-k, k]$$
, find $\bigcup_{k=1}^{\infty} A_k$ and $\bigcap_{k=1}^{\infty} A_k$. [7]

B10. Let A, B and C be sets

- (a) Show that $(A \setminus B) \setminus C \subseteq (A \setminus C)$. [4]
- (b) Show that $A \oplus B = B \oplus A$. [5]
- (c) Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. [11]
- B11. (a) Determine whether the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$

$$f(m,n) = m^2 + n^2 - 2mn + 3$$

is onto. [4]

(b) Let
$$f(x) = \lceil \frac{x^3}{4} \rceil$$
, find $f(S)$ is $S = \{-2, -1, 3, 5, 10\}$. [3]

- (c) Data are transmitted over a particular Ethernet network in blocks of 956 octets (blocks of 8 bits). How many blocks are required to transmit 2,516 megabytes of data?
- (d) Using the same sets X and Y and the function f
 - (i) Let f be a function from X to Y, and S,T be subsets of X. Show that $f(S \cap T) \subseteq f(S) \cap f(T)$.
 - (ii) Let f be a function from X to Y, and S,T be subsets of Y. Show that $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$.

END OF QUESTION PAPER