543 Peanoavithmetik. 4.22 Det. Die Axiome der Peanoarithmetik P hestehen aus den Axiomen von Q. sowie dem Induktionsschema: $\forall x_{1}...,x_{n} \ [\ \varphi(x,0) \land \ \forall y \ (\varphi(x,y) \rightarrow \varphi(x,S(y))$ ∀y ¢(x,y)] Bem: M is) ein Modell von P m + a ist Modell von P, wenn jede durch eine Fmi des hare Menge, die O enthâlt und unter s abg. ist, schon ganz Menshall Lemma 4.23. Nie Jolgenden Aussagen Jolgen aus P-(1) S ist injektiv jedles Element außer O hat einen Vorganger (2.) < ist eine lin. Ordnung, o ist das kleinsk Element, s(x) ist der unmisterhare Nachjolger VON X (3.) +, - desinieren einen kommutativen Halbring mit Nullelement o und Einselement Da (4.) +, o und monoton. Es gill: P - X < y 20 32 X + 2 = y Bew Siehe Ziegler oder als ÜA no Elementare 2T lässt sich in Phetreiben (*) Bem: Nach 4.15 ist D unentscheidhar ~ genug zu 1Un in elem Zahlentheorie!

	emma 424 (verallgemeinerte Incluktion). Für jede
	$1m - 7m \cdot d(x_0, x_0, y) = g(1)$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	minus loce nicht-leeve cletbave TM eines
	Modells von P hal ein kleinsles Elemens.
	ROW SOI MEP DOLD ON 1851 GEWANT MIL
	$M \models \forall \forall (\forall 2 < \forall \ \phi(\overline{a}, 2) \rightarrow \phi(\overline{a}, y))$
	$M \models \forall \forall (\forall 2 < \forall \Leftrightarrow (\bar{a}, 2) \rightarrow \Leftrightarrow (\bar{a}, \gamma))$ $\int ((\bar{a}, 2) + \bar{b}) + \bar{b} = (\bar{a}, \gamma)$
	=0 O E A Salls DE A solgi m + ¢[a,b]
	und damit s(b) eA. = A = M. ZI
	vir Jühren neue Fkssymbole jür Z Fml ein, (lie
	in p tunklionen delinieren:
	sei c(V, V, V, V, V) line Z, -Imi, die in P line 1K1.
	activity of h DE VV V. IV. Q VV. Va. Va. Va.
	ruge juv jedes solche & ein neves Fkl Zeichen
	Fûge sûr jeder solche & ein neves Fkl zeichen Fûge sûr jeder solche & ein neves Fkl zeichen Fûge sûr jeder solche & ein neves Fkl zeichen
	Erweijerung von Lm. sowie
	EVWEIJEVUNG VON LIM. JOHIE P* = PULVA,-, Va & (V.,-, Va, FQ(Va,-, Va)):
	d wie oben & giene
	die ensprechende desiniforische Erw. von P (2.16
	Wir nennen For eine Z.P. Funktion.
J.	3em: Nach 2.16 ist jede 1* - Fm1 in 7* 20 einer Lw-Fm1
	Samualoni es all also das mascinema in Pri 10V
	1 x Tormoin lede 2 - thi 205 LW WIRD MIKENTED
	in eine Z Fm1 aus Liv Übersetzt (vgl. Bew. 2.16)
	$P^{**} = P^*$

jedes Fo desiniers eine Fks. 11x" -011x, diese wird in P* durch v. = Fo(v., ., v.,) repräsensiers und in P durch & Ja12 4.28 jedle prim rek FKL ist durch eine Z. FKI. dej-bar. (also s. 11/1 - 11/2 p. r. = P f = For Sur & geeignes) Lemma 4.26 (1) Die Godelsche B-FKI ist avrch eine E. F. Funktion desinierhar (diese nezeichnen wir auch mit 3) (11) Für diese Funktion gilt: P* + V X Y V, 2 3 X', Y' (V W < V (3 (X, Y, W) = B(X', Y W) 1 A 20 = (3(x', y', v')) Evinnerung B (abi) isi eine rek TKI, 1.d. gills ld endl Folgen co. cn. ex 2, b mil B(2, b, i) = ci 10V 1=000, N-1. Ben. von 426 (i) Nach dem Beweis von 331 wird (3(2, b,i) von der Z1- FMI ((V1, V2, V3, V0) = (V0 < V2 (V3+1)+1 A] y V1 = V0 + y (V2 (V3+1)+1)) desiniers (ii) Es gill m + 21 (selze c. = B(a,b,0)..., cv-1 + B(a,b,v-1) Nach (*) lājsi jie ji (halso in P* beweisen @

	1	Ber	M	315		V	OY	7		Ц	2	5																			i			<u></u>		3		1	
	1		1 1	1			ik!		1	1			1	1	1		11	21)		10/	10	,	in	V)		R	0	10	13		V	าก	9.1	Li)		
			3	:	5	P	2 - 1	FI	()			in	d	C	21	0/	2		111	11	DV		1))	1		7	1	1			01	01	1	1	7	11		
			4		0	0	in	117	DV	1	(11) [[]	VI	rV	1	19	5'	P	V i	TI	1		6	1	_/_	1	ſ		41	0 (D	h	OX	1	0	11/2	111	rļ	7
					Lu	1	(X	. ((1)		.	0	/ X	1	1	1	41	1	ίχ		V.	11)	1	۲., ا	1 (V		4	4	1	V,	11	1)	11	Vi	r		
							1																-1	-	•	1,	Λ	-	71	1	_\/	λ (4	1.					
				2	Z	a p	7	1	ny	1	[.	-1	1	17,	1	1	1	V.	1	1	10	1	rk	1	. 0	١١	in i	0	5		_]	Γ'n	1	1	ti	1	n l	iv	iii
	1			- 太 (2.) r																																11
111			1																													Υı	λ	13	Q,	V	'/	21	3
	11				6	11	VI J	1		4	(^	1	11	7	10	, k	1		- /11	14)	la	2	1	2	1	Ē,	U	()	1	-		13			Ŋ	12	1	1
		[2]				7		- 2	13	1							٨	V	M		Y	10	1) (ا	Q	1)), \ -	u.	1	1	=	11	ιX	l 4	-	3	lu	(V	(M
			4		2	nV	1	-	4	a	115	ini	er	1	'n	2	<u>V</u>	7	t s'	P)	Ti	di in	Di lx	Υ,	11	14		1								-	-	
13/35/	1 /		1		D	(I	50		1	+	KO	7	-	1	11	4	-0	5	4	i	TIN	10	14	1	.11	11	1	n	+	in		1	ılz	11	1	M	1	ih	nv
	-						Be																																
	76	191	11			130		J'C Li	1	Y	#	0.	r		10	dı	1	2	4	1	10 1	1;	7	\ \(\alpha\)		di	り		10	nı	1	1:	51	(0	1),	U	1 =	01
	-	H			3 64		P	118	50 d	1	1	r	D.	F	*	V)	1	Z	-1	1	¥	()	X	Ų	-1	えか	<i>)</i>	b	7	0	(X	()	=	t	1.			_	\
	13	11		1.4	1	Н							1	17	1	K	1	1	5.)(10	9		1		-	4	1	Z		ψ	()	(,		-1	Z).
	-	+	-			H	΄ }		N	1	1	1	1				+	1	6					4		1		L			-	-		w.	1	-		_	
	-								20 12	1) (4	JK	10	1	11	-		P		t-	7	Χı	Y]	2) [φ	()	X,	Y	+1	1	7	1)		i		
			h	-	-		h	h	19	W.	18	1	n	d	()	1	_ l.	V		7	2	1	M	14	1	, (P (X	14	1+	1,	, 2	()		U	1	CI		
			2					(9,	b)	W	ni	1.1	1	2	21 (()	(,)	γ,	Z	1	di	b)		1		1							1			
					-		4	L	26	2	20																									(3	1, 1)ι	J)
	-			-	-					H	1/2	1	11	10	1_	(5(2	9	b	. \	4.4	1	1	=		HI	(X		1,	2	.)	-	: 2		-		1		
	1		14	d		H	13	1)6	d.N	N	y	11	4		2	{ (X	-1-	Y	+1	1,_	£	. 1	2,	b)	U	N	Cl	(da	ìľ	16	V					
						v.l.						. \												1			ĮŲ	,								-	-	,	_
		la l	a		r)) j	d	e	V	Y	lU	N		2		M	11/1	}.	(<u>)</u> (X		y.	11		2	_).	4	V.	2	1:		7	=	- 2	£ 1	.		-
		-				1)d	nr	1	9	X.	9	a.	b	j	M	ίŀ	- Ja	2	(X	,	14	1,	Ź	1	2	,b)		Se	1	U.	+	B	, (d	3, 1	21
									g																														

em 427 Wiv Netracure.

(lev Gödelschen β -Tkt.

(a) $\beta'(a,i) = \beta'(\beta'(a), \beta'(a), \beta'(a), i)$ (a) $\beta'(a,i) = \beta'(\beta'(a), \beta'(a), i)$ (b) $\beta'(a,i) = \beta'(\beta'(a), i)$ (c) $\beta'(a,i) = \beta'(x',w)$ (d) $\beta'(a,i) = \beta'(x',w)$ (ev Gödelschen β -Tkt.

(h) $\beta'(a,i) = \beta'(x',w)$ (h) $\beta'(a,i) = \beta'(a,i)$ (h) Del /Bem 427 Wir betrachten die solgende Variante 1 844 Der zweik Gödelsche Unvollständigkeitssatz
Del 428 sei ¢(x) L-7m1, T L-Theorie Lir sagen,
dass ¢(x) rogisch avs T jolgt, wenn vx ¢(x) in allen Modellen von Tgill (also. T = Vx &(x)). Lemma 4.29 (Deduktionslemma) jet Teine L-Theorie. Eine L-Imi & (x) jolgt genau dann logisch aus I, Wenn & (x) im Hilbertkalkül aus den Axiomen Von Therleithar ist.

Bew: "=>" Ang ¢(x) solgt logisch aust.

Vollskeitssatz (1.13) THYx¢(x) d.h. es ex. Axiome $21,...,2fn \in T$ $min + 21, 1... \land 21... \rightarrow \sqrt{x} \phi(\overline{x})$ 1.14(2) $1... \rightarrow \phi(\overline{x})$ 1.14(1) $1... \rightarrow \phi(\overline{x})$ "=" Prv Ind über die Länge der Herleitung von die)

d logisches Axiom oder de T. klar

MP & 3 - Finjuhrung Jühren FMI, die logisch

aus T Jolgen, wieder in Jolche üher Zu

Nun Definière Beweicharkeitsprächkat. Beschreihe zunächst die prek Relationen AUS = 4 r p 1 p Lw - Aussage 3

AX, = 4 r p 1 p Lw - Aussage, p ist logisches Axiom

oder Axiom von P 3 REG = 1 (507, 527, 527) . Q. 21, X LM-Fml, Q lolg1 aus 21 und X milels einer Regel des Hilberthalhūls3 durch Z, - Fml. Belrachte nun die Z. - Fml B'(s,n) = VI<n (Ax, (B'(s,i)) v J, K<i REG(B'(s,i), Dann desiniers B'(s,n) in m die Menge der Paare (s,n), s.d. sur 4 Lm-Fml mit 'p? = s. B'(os, o), B'(s, n-1) eine Herleitung von paus den Axiomen von Pim Hilberskalkül kodiers. Desinieve (vorlävsig!)

Bew'(i) = Aus(i) 1 3 n, s (B'(n,s) = 1 1 B'(s, n+1))

429 = o In M desinievs dies die Menge der Gödel
nummern der in P beweisbaren Aussagen Mir wollen clas auch lor m + P beliebig, d.h. miv wollen dass Ben die Loebaxiome erfüllt. Trick Erweitere P um alle Wahren Z. - Aussagen (jede davon ist nach 413 schon in P beweisbar, d.h. nix neves beweishar)