

Grand Canonical Approach to Modeling Dynamic Catalysts

Electrochemical Restructing Surfaces
... where Thermodynamics and Kinetics Fight

Zisheng Zhang

Alexandrova Lab

Department of Chemistry and Biochemistry

University of California, Los Angeles

Email: zisheng@chem.ucla.edu

Website: zishengz.github.io

Background: Catalysis and the simplistic model

Dynamic restructuring in different conditions & scales

Sub-nanometer **Clusters**

Chem. Comm., 2019, 55, 4753-4756

Nanoparticles

Angew. Chem. Int. Ed., 2018, 57, 1261

Polycrystalline **Electrodes**

Nat. Catal., 2020, 3, 797-803

Different catalyst states, pathways, and energetics

Canonical Ensemble (*NVT*)

States: same composition

Pt₇/FTO

Grand Canonical Ensemble (μVT)

States: different composition

Pt₇H_x/FTO

Angew. Chem. Int. Ed., 2023, 135, e202218575

H-rich

condition

Exploring the off-stoichiometric chemical space

Composition: A, B

GC Free Energy: $\Omega = U - TS - \sum_{i}^{\text{elem.}} \mu_{i} N$

Grand Canonical Genetic Algorithm

https://github.com/zishengz/gocia

JACS, 2022, 144, 19284–19293

X-dependent Grand Canonical Ensemble

h-BN for oxidative dehydrogenation

Dynamic phase diagram:

JPCL, 2018, 10, 20-25

Rxn mechanism:

ACIE, 2020, 59, 16527-16535

NMR simulation:

JACS, 2023, 145, 17265-17273

R-ray Raman simulation:

JACS, 2023, 145, 25686–25694 (Cover)

Electrochemistry on supported clusters

B cluster for HER:

ACS Catal., 2020, 10, 13867–13877

Fluxionality breaks activity volcano:

ChemCatChem, 2022, 14, e202200345

Potential dependent active site:

ACS Catal., 2022, 12, 14517–14526

Ensemble-based kinetics model:

ACIE, 2023, 135, e202218575

Intro: Electrochemical restructuring of Cu

Beyond CO

No activity

CO Formate

Nat. Catal., 2020, 3, 797-803

Fixed CO2RR Potential (-0.90 V vs. SHE) in 0.1 M KOH.

Langmuir, 2014, 30, 15053–15056

Nat. Commun., 2018, 9, 3117

JPCL, 2015, 6, 4073-4082

Electrochemical STM

GC ensemble of H and electrons

5/29/2024

STM simulations of the structures from ensemble

Dissection of the grand canonical free energy surface

JACS, 2022, 144, 19284-19293

Nat. Catal., 2023, 6, 837-846

- Bright spots formed in-situ
- universal activation mechanism of Cu?

Replacement of ALL *CO by *H???

VISTA Seminar

JACS, 2024, accepted, preprint: 10.26434/chemrxiv-2024-j819s

16

Potential-dependent free energy landscape

JACS, 2024, accepted, preprint: 10.26434/chemrxiv-2024-j819s

17

VISTA Seminar

Quasi-kinetic Monte Carlo – One step at a time

Slow potential scan change after quasi-equilibrium

JACS, 2024, accepted, preprint: 10.26434/chemrxiv-2024-j819s

Quasi-kinetic Monte Carlo: tracing the path

Metastable states that the system MUST visit – Cu*CO

 $\theta_{H} = 0.67$ $\theta_{CO} = 0.14$

JACS, 2024, accepted, preprint: 10.26434/chemrxiv-2024-j819s

Summary: GC Ensemble Approach in Comp Catalysis

Structural dynamics Electronic structure analysis

Phase diagram
Reaction mechanism & kinetics

Microscopy/spectroscopy simulation

Non-equilibrium behaviors

21

Funding: DOE, NSF, AFOSR, Sloan, CSST

Computing: Hoffman2, NERSC, INCITE, ACCESS, TACC

Prof. Anastassia Alexandrova

Dr. Elisa Jimenes-Izal

Dr. Julen Munarriz

Dr. Daniel Bim

Dr. Han Guo

Dr. Harry Morgan

Dr. Huanchen Zhai

Dr. Zhihao Cui

Dr. Borna Zandkarimi

Dr. Patricia Poths

Zerina Mehmedovic

Kirill Shumilov

Matthew Hennefarth

Claire Dickerson

Santiago Vargas

Robert Lavroff

Winston Gee

William Laderer

Tom Hong

Shawn Chiu

•••

Prof. Philippe Sautet
Dr. Geng Sun
Dr. Ziyang Wei
Dr. Simran Kumari
Dongfang Cheng

THANKYOU! Q&A