Ekip: Burcu Tokol - 19120205055 Dilara Karaduman - 19120205068 Yusuf Altundal - 19120205057

```
import pandas as pd
   from scipy.spatial import distance
   import matplotlib.pyplot as plt
   import • numpy • as • np
   import.scipv.
   from·scipy·import·stats
   from · numpy.linalg · import · norm
   from·matplotlib.pyplot·import·figure
   import seaborn as sns
   import math
   from sklearn.preprocessing import OneHotEncoder
   from sklearn import tree
   from sklearn.metrics import accuracy score
   %matplotlib inline
   url = 'https://drive.google.com/file/d/1Eg8Lffm49bc-bGFkv 4ddrQw8U8WE6P4/view?usp=sharing'
   url2021 = 'https://drive.google.com/uc?id=' + url.split('/')[-2]
   url3= 'https://drive.google.com/file/d/1bliHgeBlBOS7BX0F7KPRlrycVYcj14qG/view?usp=sharing'
   url4 = 'https://drive.google.com/uc?id=' + url3.split('/')[-2]
   url5='https://drive.google.com/file/d/1St Y8kECwGmZIGgMHlVCrAX8DP6GbHwB/view?usp=sharing'
   url vaccination='https://drive.google.com/uc?id=' + url5.split('/')[-2]
   df = pd.read csv(url2021) #lokasyon datas1
   df2 = pd.read csv(url4) #günlük vaka-ölüm-iyilesme vb data
   df3= pd.read csv(url vaccination) #aşı datası
   x=0
   y = 295
   df2.loc[x:y]
   df2.loc[x:y].index
   df2.drop(df2.loc[x:y].index, inplace=True)
   df2 = df2 dron(["Δcıklamalar"."vatak doluluk orani"."Unnamed 0"."eriskin vogun hakim doluluk orani".'Δğır Hasta'.'YBU'.'Entuhe'.'Gun
https://colab.research.google.com/drive/1rcfsA0 EnAnCuST3PwnC3yrblp7AwyOA#scrollTo=FejWcLTdFOsD&printMode=true
                                                                                                                                            1/18
```

```
df2['Gunluk Vefat'] = df2['Gunluk Vefat'].fillna(0)
df2['Gunluk ivilesen'] = df2['Gunluk ivilesen'].fillna(0)
df2['Toplam ivilesen'] = df2['Toplam ivilesen'].fillna(0)
df3['total vaccinations'] = df3['total vaccinations'].fillna(0)
df2['Tarih'] = df2['Tarih'].astype('str')
df2['Tarih'] = df2['Tarih'].str.replace('.', '')
df2['Tarih'] = pd.to numeric(df2['Tarih'], errors='coerce')
df2['Tarih'] = df2['Tarih']/10000
df2['Tarih'] = df2['Tarih'].mod(100)
df2['Tarih'] =df2['Tarih'].astype('int')
df2['Günlük Vaka'] = df2['Günlük Vaka'].astype('str')
df2['Günlük Vaka'] = df2['Günlük Vaka'].str.replace('.', '')
df2['Günlük Vaka'] = pd.to numeric(df2['Günlük Vaka'], errors='coerce')
df2['Gunluk iyilesen'] = df2['Gunluk iyilesen'].astype('str')
df2['Gunluk iyilesen'] = df2['Gunluk iyilesen'].str.replace('.', '')
df2['Gunluk iyilesen'] = pd.to numeric(df2['Gunluk iyilesen'], errors='coerce')
df2['Toplam iyilesen'] = df2['Toplam iyilesen'].astype('str')
df2['Toplam_iyilesen'] = df2['Toplam_iyilesen'].str.replace('.', '')
df2['Toplam iyilesen'] = pd.to numeric(df2['Toplam iyilesen'], errors='coerce')
df2['Toplam Vaka'] = df2['Toplam Vaka'].astype('str')
df2['Toplam Vaka'] = df2['Toplam Vaka'].str.replace('.', '')
df2['Toplam Vaka'] = pd.to numeric(df2['Toplam Vaka'], errors='coerce')
```

```
df3['total_vaccinations'] = df3['total_vaccinations'].astype('str')
df3['total vaccinations'] = df3['total vaccinations'].str.replace('.'. '')
df3['total vaccinations'] = pd.to numeric(df3['total vaccinations'], errors='coerce')
df3['people vaccinated'] = df3['people vaccinated'].astype('str')
df3['people vaccinated'] = df3['people vaccinated'].str.replace('.', '')
df3['people vaccinated'] = pd.to numeric(df3['people vaccinated'], errors='coerce')
df3['people fully vaccinated'] = df3['people fully vaccinated'].astype('str')
df3['people fully vaccinated'] = df3['people fully vaccinated'].str.replace('.', '')
df3['people fully vaccinated'] = pd.to numeric(df3['people fully vaccinated'], errors='coerce')
df3['total boosters'] = df3['total boosters'].astype('str')
df3['total boosters'] = df3['total boosters'].str.replace('.', '')
df3['total boosters'] = pd.to numeric(df3['total boosters'], errors='coerce')
     <ipython-input-4-291dfdf5ebd8>:2: FutureWarning: The default value of regex will change from True to False in a future version.
       df2['Tarih'] = df2['Tarih'].str.replace('.', '')
     <ipython-input-4-291dfdf5ebd8>:9: FutureWarning: The default value of regex will change from True to False in a future version.
       df2['Günlük Vaka'] = df2['Günlük Vaka'].str.replace('.', '')
     <ipython-input-4-291dfdf5ebd8>:13: FutureWarning: The default value of regex will change from True to False in a future version
       df2['Gunluk iyilesen'] = df2['Gunluk iyilesen'].str.replace('.', '')
     <ipython-input-4-291dfdf5ebd8>:17: FutureWarning: The default value of regex will change from True to False in a future version
       df2['Toplam ivilesen'] = df2['Toplam ivilesen'].str.replace('.', '')
     <ipython-input-4-291dfdf5ebd8>:21: FutureWarning: The default value of regex will change from True to False in a future version
       df2['Toplam Vaka'] = df2['Toplam Vaka'].str.replace('.', '')
     <ipython-input-4-291dfdf5ebd8>:27: FutureWarning: The default value of regex will change from True to False in a future version
       df3['total vaccinations'] = df3['total vaccinations'].str.replace('.', '')
     <ipython-input-4-291dfdf5ebd8>:31: FutureWarning: The default value of regex will change from True to False in a future version
       df3['people_vaccinated'] = df3['people_vaccinated'].str.replace('.', '')
     <ipython-input-4-291dfdf5ebd8>:36: FutureWarning: The default value of regex will change from True to False in a future version
       df3['people_fully_vaccinated'] = df3['people_fully_vaccinated'].str.replace('.', '')
     <ipython-input-4-291dfdf5ebd8>:41: FutureWarning: The default value of regex will change from True to False in a future version
       df3['total boosters'] = df3['total boosters'].str.replace('.', '')
```

```
count=len(df2['Toplam Vaka'])
df2['Günlük Vaka'][296] = df2['Toplam Vaka'][296]
df2['Gunluk iyilesen'][296] = df2['Toplam iyilesen'][296]
df2['Günlük Vaka'] = df2['Günlük Vaka'].fillna(-5)
df2['Günlük Vaka'] = df2['Günlük Vaka'].astype('int')
for i in range(296, count):
  if (df2['Günlük Vaka'][i]==(-5)):
   df2.loc[i, 'Günlük Vaka'] = (df2['Toplam Vaka'][i]-df2['Toplam Vaka'][i-1])
   df2.loc[i, 'Gunluk iyilesen'] = (df2['Toplam iyilesen'][i]-df2['Toplam iyilesen'][i-1])
  if(df2['Günlük Vaka'][i]>=(100000000)):
    df2['Günlük Vaka'][i] =df2['Günlük Vaka'][i]/1000000000000
  if(df2['Gunluk iyilesen'][i]>=(100000000)):
     df2['Gunluk iyilesen'][i] =df2['Gunluk iyilesen'][i]/100000000000
     <ipython-input-5-81f97d3ca940>:2: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ve
       df2['Günlük Vaka'][296] = df2['Toplam Vaka'][296]
     <ipython-input-5-81f97d3ca940>:3: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ve">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ve</a>
       df2['Gunluk iyilesen'][296] = df2['Toplam iyilesen'][296]
df2 =df2.drop(["Toplam Vaka"],axis = 1)
pd.set option('mode.chained assignment', None)
df2.rename(columns={'Tarih': 'date'}, inplace=True)
ay=df2.groupby(df2['date']).mean() #aylara göre gruplama
ay = ay.rename({'Tarih':'date','Günlük Vaka':'Ort Gunluk Vaka','Gunluk Hasta': 'Ort Gunluk hasta', 'Gunluk Vefat': 'Ort Gunluk Vefat'
```

```
ay = ay.reset_index()
ay['Ort_Gunluk_Vaka'] = ay['Ort_Gunluk_Vaka'].astype('int')
ay['Ort_Gunluk_Vefat'] = ay['Ort_Gunluk_Vefat'].astype('int')
ay['Toplam_iyilesen'] = ay['Toplam_iyilesen'].astype('int')
ay['Ort_Gunluk_iyilesen'] = ay['Ort_Gunluk_iyilesen'].astype('int')
ay =ay.drop(["Toplam_iyilesen"],axis = 1)
```

ay

	date	Ort_Gunluk_Vaka	Ort_Gunluk_Vefat	Ort_Gunluk_iyilesen
0	1	78676	164	75810
1	2	7546	92	6657
2	3	18571	95	13933
3	4	46445	286	41960
4	5	13078	238	25182
5	6	5541	73	5732
6	7	8356	51	5004
7	8	18250	173	12350
8	9	25524	244	24386
9	10	23996	211	24901
10	11	23860	207	25499
11	12	17036	182	22943

```
month=df.groupby(pd.DatetimeIndex(df['date']).month).mean() #aylara göre gruplama
month = month.reset_index()
month
```

month_vaccination=df3.groupby(pd.DatetimeIndex(df3['date']).month).mean() #aylara göre gruplama
month_vaccination = month_vaccination.reset_index()

month_vaccination

```
month_vaccination['total_boosters']=month_vaccination['total_boosters'].fillna(0)
month_vaccination['total_vaccinations'] = month_vaccination['total_vaccinations'].astype('int')
month_vaccination['people_vaccinated'] = month_vaccination['people_vaccinated'].astype('int')
month_vaccination['people_fully_vaccinated'] = month_vaccination['people_fully_vaccinated'].astype('int')
month_vaccination['total_boosters'] = month_vaccination['total_boosters'].astype('int')
month_vaccination
```

	date	total_vaccinations	people_vaccinated	<pre>people_fully_vaccinated</pre>	total_booste
0	1	19034583	569406666	516459786	2376108
1	2	4765912	52006350	10008810	
2	3	11892469	78768283	40156413	
3	4	19421360	116648352	77565253	
4	5	26234885	152053879	110294975	
5	6	38341267	243385980	139927085	29884
6	7	61814264	384354722	201624394	321635
7	8	83804649	443639021	325864113	685433
8	9	102884359	517526246	410155760	1011615
9	10	113576219	547760884	470208241	1177930
10	11	118581187	558773449	497013495	1300249
11	12	124340572	566058513	510648789	1666984

dfinal = ay.merge(month, on="date", how = 'inner') #ölüm ve lokasyon datası birleştirildi
dfinal2 = dfinal.merge(month_vaccination, on="date", how='inner') #aşı datası eklendi
dfinal2

	date	Ort_Gunluk_Vaka	Ort_Gunluk_Vefat	Ort_Gunluk_iyilesen	metro_area	census_fi
0	1	78676	164	75810	NaN	
1	2	7546	92	6657	NaN	
2	3	18571	95	13933	NaN	
3	4	46445	286	41960	NaN	
4	5	13078	238	25182	NaN	
5	6	5541	73	5732	NaN	
6	7	8356	51	5004	NaN	
7	8	18250	173	12350	NaN	
8	9	25524	244	24386	NaN	
9	10	23996	211	24901	NaN	

length=len(dfinal2['date'])

dfinal2['out_of_home_area']=0.00 #dis mekanlar bir değişkende toplandi

for i in range(0,length):

dfinal2['out_of_home_area'][i] = dfinal2['retail_and_recreation_percent_change_from_baseline'][i] + dfinal2['grocery_and_pharmacy
+ dfinal2['workplaces percent change from baseline']

dfinal2 =dfinal2.drop(["metro_area","census_fips_code","retail_and_recreation_percent_change_from_baseline","grocery_and_pharmacy_per
dfinal2

	date	Ort_Gunluk_Vaka	Ort_Gunluk_Vefat	Ort_Gunluk_iyilesen	residential_percent_c
0	1	78676	164	75810	
1	2	7546	92	6657	
2	3	18571	95	13933	
3	4	46445	286	41960	
4	5	13078	238	25182	
_	6	EE11	79	E720	

dfinal2['ratio_gunluk_vaka']=0.00 #bir önceki güne göre artış oranı hesaplandı

dfinal2['ratio gunluk vefat']=0.00

dfinal2['ratio gunluk iyilesen']=0.00

dfinal2['ratio gunluk asi']=0.00

for i in range(1,length):

dfinal2['ratio_gunluk_vaka'][i] = ((dfinal2['Ort_Gunluk_Vaka'][i]-dfinal2['Ort_Gunluk_Vaka'][i-1])/dfinal2['Ort_Gunluk_Vaka'][i-1])*
dfinal2['ratio_gunluk_vefat'][i] = ((dfinal2['Ort_Gunluk_Vefat'][i]-dfinal2['Ort_Gunluk_Vefat'][i-1])/dfinal2['Ort_Gunluk_Vefat'][i-dfinal2['Ort_Gunluk_iyilesen'][i]-dfinal2['Ort_Gunluk_iyilesen'][i-1])/dfinal2['Ort_Gunluk_i
dfinal2['ratio_gunluk_asi'][i] = ((dfinal2['total_vaccinations'][i]-dfinal2['total_vaccinations'][i-1])/dfinal2['total_vaccinations']
dfinal2

```
        date
        Ort_Gunluk_Vaka
        Ort_Gunluk_Vefat
        Ort_Gunluk_iyilesen
        residential_percent_change_from_baseline
        total_vaccinations

        0
        1
        78676
        164
        75810
        13.586489
        19034583

        1
        2
        7546
        92
        6657
        9.778199
        4765912
```

```
dfinal2['change ratio gunluk vaka']=0 #oranların artışı veya azalışı bool olarak ifade edildi
dfinal2['change_ratio_gunluk_vefat']=0
dfinal2['change ratio gunluk ivilesen']=0
dfinal2['change residential percent change from baseline']=0
dfinal2['change out of home area']=0
count=len(dfinal2['date'])
for i in range(1, count):
    if dfinal2['ratio gunluk vaka'][i]>0:
        dfinal2['change ratio gunluk vaka'][i]=1
    elif dfinal2['ratio gunluk vaka'][i]<=0:
        dfinal2['change ratio gunluk vaka'][i]=0
    if dfinal2['ratio gunluk vefat'][i]>0:
        dfinal2['change ratio gunluk vefat'][i]=1
    elif dfinal2['ratio gunluk vefat'][i]<=0:
        dfinal2['change ratio gunluk vefat'][i]=0
    if dfinal2['ratio gunluk iyilesen'][i]>0:
        dfinal2['change ratio gunluk iyilesen'][i]=1
    elif dfinal2['ratio gunluk iyilesen'][i]<=0:
        dfinal2['change ratio gunluk iyilesen'][i]=0
    if dfinal2['residential percent change from baseline'][i]>0:
        dfinal2['change residential percent change from baseline'][i]=1
    elif dfinal2['residential percent change from baseline'][i]<=0:
        dfinal2['change residential percent change from baseline'][i]=0
    if dfinal2['out_of_home_area'][i]>0:
        dfinal2['change_out_of_home_area'][i]=1
    elif dfinal2['out of home area'][i]<=0:
        dfinal2['change_out_of_home_area'][i]=0
```

dfinal2

	date	Ort_Gunluk_Vaka	Ort_Gunluk_Vefat	Ort_Gunluk_iyilesen	residential_percent_change_from_baseline	total_vaccinations
0	1	78676	164	75810	13.586489	19034583
1	2	7546	92	6657	9.778199	4765912
2	3	18571	95	13933	6.377278	11892469
3	4	46445	286	41960	11.048254	19421360
4	5	13078	238	25182	12.395152	26234885
5	6	5541	73	5732	0.311459	38341267
6	7	8356	51	5004	-2.827990	61814264
7	8	18250	173	12350	-2.106539	83804649
8	9	25524	244	24386	-1.655904	102884359
9	10	23996	211	24901	-0.911099	113576219

sns.regplot(x=dfinal2["residential_percent_change_from_baseline"], y=dfinal2["ratio_gunluk_vaka"]) #evde kalma oranı ile vaka oranı k
plt.show()

sns.regplot(x=dfinal2["out_of_home_area"], y=dfinal2["ratio_gunluk_vaka"]) #dis mekan oranlari ile vaka orani karsilastirmasi
plt.show()

sns.regplot(x=dfinal2["ratio_gunluk_asi"], y=dfinal2["ratio_gunluk_vaka"]) #dış mekan oranları ile vaka oranı karşılaştırması
plt.show()

dfinal2=dfinal2.astype(int)
decTree=dfinal2[['out_of_home_area','residential_percent_change_from_baseline','ratio_gunluk_asi','change_ratio_gunluk_vaka']]

decTree #agacta kullanılmak icin df olusturuldu

	out_of_home_area	residential_percent_change_from_baseline	ratio_gunluk_asi	chang
0	-130	13	0	
1	-84	9	-74	
2	-28	6	149	
3	-55	11	63	
4	-71	12	35	
5	98	0	46	
6	216	-2	61	
7	194	-2	35	
8	165	-1	22	
9	147	0	10	

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

X = decTree[['out_of_home_area','residential_percent_change_from_baseline','ratio_gunluk_asi']] #inputlar
y = decTree[['change_ratio_gunluk_vaka']] #output
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 1) #test ve egitim datasi olusturuldu

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix as cm

```
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3, random_state=10)
rf = RandomForestClassifier(n_estimators=100, max_depth = 8, random_state=42)
rf.fit(X_train, y_train.values.ravel())
```

```
predictions = rf.predict(X_test)
score = round(accuracy_score(y_test, predictions), 5)
cm1 = cm(y_test, predictions)
sns.heatmap(cm1, annot=True, fmt=".0f")
plt.xlabel('Predicted Values')
plt.ylabel('Actual Values')
plt.title('Accuracy Score: {0}'.format(score), size = 15)
plt.show()
```



```
graph = pydotplus.graph from dot data(dot data1.getvalue())
graph.write_png('rf_5b.png')
Image(value = graph.create png())
    from sklearn.metrics import classification report
rf = RandomForestClassifier(n estimators=100, max depth = 8, random state=42)
rf.fit(X train, y train.values.ravel())
predictions = rf.predict(X test)
print(classification report(y test, predictions, target names=['<=50K', '>50K']))
plt.figure(figsize=(16, 9))
ranking = rf.feature importances
features = np.argsort(ranking)[::-1][:10]
columns = X.columns
plt.title("Feature importances based on Random Forest Classifier", y = 1.03, size = 18)
plt.bar(range(len(features)), ranking[features], color="pink", align="center")
plt.xticks(range(len(features)), columns[features], rotation=80)
plt.show()
```

	precision	recall	f1-score	support
<=50K	0.00	0.00	0.00	1
>50K	0.67	1.00	0.80	2
accuracy			0.67	3
macro avg	0.33	0.50	0.40	3
weighted avg	0.44	0.67	0.53	3

C:\Users\90542\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1221: Una
_warn_prf(average, modifier, msg_start, len(result))

Feature importances based on Random Forest Classifier

esi

×