バッテリー最適化プロジェクト 計算概要

作成日: 2025年5月

目次

- 1. 用語集
- 2. アクション別の動作仕様
- 3. 電池残量 (SoC) の計算
- 4. 収益 (PnL) の計算
- 5. 制約条件
- 6. 月次集計
- 7. 計算例

1. 用語集

1.1 基本パラメータ

項目	説明	単位	例
battery_power_kW	バッテリーの最大充放電電力 (60分間での最大充放電量)	kW	100 kW
battery_capacity_kWh	バッテリーの蓄電容量	kWh	200 kWh
half_power_kWh	1スロット (30分) での最大充放電量 battery_power_kW × 0.5	kWh	50 kWh

1.2 損失率

項目	説明	例
battery_loss_rate	バッテリー内部損失率 (放電時)	0.05 (5%)
wheeling_loss_rate	送電損失率(充電時)	0.03 (3%)

1.3 料金体系

項目	説明	単位
wheeling_basic_fee	託送基本料金	円/kW・月
wheeling_usage_fee	託送料金単価	円/kWh
renewable_energy_surcharge	再工ネ賦課金単価	円/kWh

2. アクション別の動作仕様

2.1 アクション概要

各スロット(30分間)で以下のいずれか1つのアクションを実行:

アクション	概要	主な用途
charge	市場から電力を調達してバッテリーに充電	安価な時間帯での蓄電
discharge	バッテリーから放電して市場に販売	高価な時間帯での売電
eprx1	一次調整力(30分間一定出力)	系統安定化サービス
eprx3	三次調整力(指令に応じた出力調整)	需給バランス調整
idle	待機状態	市場条件が不利な場合

2.2 各アクションの詳細仕様

2.2.1 charge (充電)

動作:

- 充電量 = charge割合 × half_power_kWh
- 調達量 = 充電量 ÷ (1 wheeling_loss_rate)

制約:

- 充電後のSoCがbattery_capacity_kWhを超えない
- charge割合は0.0~1.0の範囲

2.2.2 discharge (放電)

動作:

- 放電量 = discharge割合 × half_power_kWh
- 販売量 = 放電量 × (1 battery_loss_rate)

制約:

- 放電後のSoCがOを下回らない
- discharge割合は0.0~1.0の範囲

2.2.3 eprx1 (一次調整力)

動作:

- 30分間一定の出力を維持
- SoCを40~60%の範囲で保持

制約:

• クールダウン期間の遵守

• 1日あたりの稼働スロット数上限

2.2.4 eprx3 (三次調整力)

動作:

- half_power_kWhを必ず放電
- 有効放電量 = half_power_kWh × (1 battery_loss_rate)

収入構成:

1. kW価値:battery_power_kW × EPRX3価格

2. kWh価値:有効放電量 × インバランス価格

3. 電池残量 (SoC) の計算

3.1 基本計算式

次スロットのSoC (kWh) = 現在のSoC (kWh) + 充電量 - 放電量 - eprx3固定放電量

3.2 アクション別のSoC変化

アクション SoC変化量

charge	+charge割合 × half_power_kWh
discharge	-discharge割合 × half_power_kWh
eprx1	SoCを40~60%範囲で調整
eprx3	-half_power_kWh
idle	変化なし

3.3 制約条件

• 上限制約:SoC ≤ battery_capacity_kWh

• 下限制約: SoC ≥ 0

• EPRX1制約:0.4 × battery_capacity_kWh ≤ SoC ≤ 0.6 × battery_capacity_kWh

4. 収益 (PnL) の計算

4.1 充電時のコスト

充電コスト (円) = JEPX予想価格 (円/kWh) × 調達量 (kWh) × 税率 調達量 (kWh) = 充電量 ÷ (1 - wheeling_loss_rate)

例:

充電量:100 kWh送電損失率:3%

● 調達量:100÷(1-0.03) = 103.09 kWh

4.2 放電時の収入

放電収入 (円) = JEPX予想価格 (円/kWh) \times 販売量 (kWh) \times 税率 販売量 (kWh) = 放電量 \times (1 - battery_loss_rate)

例:

放電量:100 kWhバッテリー損失率:5%

• 販売量: 100 × (1 - 0.05) = 95 kWh

4.3 EPRX1収入

EPRX1収入(円)= EPRX1予想価格(円/kW)× battery_power_kW × 税率

4.4 EPRX3収入

kW価値収入 (円) = battery_power_kW × EPRX3予想価格 (円/kW) kWh価値収入 (円) = 有効放電量 × インバランス価格 (円/kWh) EPRX3収入 (円) = (kW価値収入 + kWh価値収入) × 税率

有効放電量 (kWh) = half_power_kWh × (1 - battery_loss_rate)

4.5 スロット別PnL

スロットPnL (円) = -充電コスト + 放電収入 + EPRX1収入 + EPRX3収入

5. 制約条件

5.1 日次制約

5.1.1 充電サイクル制限

1日の総充電量 ≤ daily_cycle_limit × battery_capacity_kWh

5.1.2 EPRX1制約

クールダウン期間:連続稼働後の最小休止時間日次稼働上限:1日あたりの最大稼働スロット数

5.2 物理制約

5.2.1 SoC制約

• 最小値: 0 kWh

• 最大値:battery_capacity_kWh

• **EPRX1動作範囲**: 40~60%

5.2.2 出力制約

最大充電電力: battery_power_kW最大放電電力: battery_power_kW

6. 月次集計

6.1集計項目

項目 	計算方法	単位
Total_Charge_kWh	chargeアクションの充電量合計	kWh
Total_Discharge_kWh	discharge + eprx3の有効放電量合計	kWh
Total_Loss_kWh	バッテリー損失量の合計	kWh
Total_EPRX3_kWh	eprx3の有効放電量合計	kWh
Total_Daily_PnL	全スロットPnLの合計	円

6.2 月次費用

費用項目	計算式	説明
託送基本料金	wheeling_basic_fee × battery_power_kW	固定費
託送使用料	wheeling_usage_fee × Total_Loss_kWh	損失分に対する従量料金
再エネ賦課金	renewable_energy_surcharge × Total_Loss_kWh	 損失分に対する賦課金

6.3 最終利益

月次最終利益(円)= Total_Daily_PnL

- 託送基本料金
- 託送使用料
- 再エネ賦課金

7. 計算例

7.1 前提条件

• バッテリー仕様:

最大電力:100 kW容量:200 kWh

○ 30分最大充放電量:50 kWh

損失率:

o バッテリー損失率:5%

。 送電損失率:3%

7.2 充電時の計算例

シナリオ:50 kWh充電 (charge割合 = 1.0)

1. **充電量**:50 kWh

2. **調達量**:50 ÷ (1 - 0.03) = 51.55 kWh

3. **送電損失**: 1.55 kWh 4. **SoC增加**: 50 kWh

7.3 放電時の計算例

シナリオ:50 kWh放電 (discharge割合 = 1.0)

1. **放電量**:50 kWh

2. **販売量**: 50 × (1 - 0.05) = 47.5 kWh

3. バッテリー損失: 2.5 kWh

4. **SoC減少**:50 kWh

7.4 EPRX3の計算例

シナリオ: EPRX3実行

1. **固定放電量**:50 kWh

2. **有効放電量**:50 × (1 - 0.05) = 47.5 kWh

3. **kW価値収入**: 100 kW × EPRX3価格

4. **kWh価値収入**: 47.5 kWh × インバランス価格

7.5 損失の取り扱い

重要:託送料金はバッテリー損失分のみに課金

• **充電時の送電損失**: 託送料金対象外

• 放電時のバッテリー損失: 託送料金対象 (この例では2.5 kWh)