第 十 六 讲 数学物理方程

北京大学 物理学院 数学物理方法课程组

2007年春

- 物理学中的数学物理方程
 - 弦的横振动方程
 - 杆的纵振动方程
 - 热传导方程
 - 稳定问题
- ② 边界条件与初始条件
 - 初始条件
 - 边界条件
- ③ 偏微分方程定解问题
 - 定解问题的适定性

- 物理学中的数学物理方程
 - 弦的横振动方程
 - 杆的纵振动方程
 - 热传导方程
 - 稳定问题
- ② 边界条件与初始条件
 - 初始条件
 - 边界条件
- ③ 偏微分方程定解问题
 - 定解问题的适定性

- 物理学中的数学物理方程
 - 弦的横振动方程
 - 杆的纵振动方程
 - 热传导方程
 - 稳定问题
- ② 边界条件与初始条件
 - 初始条件
 - 边界条件
- ③ 偏微分方程定解问题
 - 定解问题的适定性

References

▶ 吴崇试, 《数学物理方法》, 第12章

🌭 梁昆淼, 《数学物理方法》, 第7章

● 胡嗣柱、倪光炯、《数学物理方法》,第9章

Fransverse Vibration of Strings Longitudinal Vibration of Flexible Rods Heat Conduction Equation Fime-independent and Steady-state Problems

数学物理方程

- 静电势和引力势满足的Laplace方程或Poisson方程
- 波的传播所满足的波动方程
- 热传导问题和扩散问题中的热传导方程
- 描写电磁场运动变化的Maxwell方程组
- 作为微观物质运动基本规律的Schrodinger方柱
- · 弹性力学中的Saint-Venant方程组
- · 绅性刀字中的Dallit-Vellallt力程组
- 连续介质力字甲的Navier-Stockes万程组和Luler万程组

- 静电势和引力势满足的Laplace方程或Poisson方程
- 波的传播所满足的波动方程
- 热传导问题和扩散问题中的热传导方程
- 描写电磁场运动变化的Maxwell方程组
- 作为微观物质运动基本规律的Schrödinger方程
 - 和Dirac万柱
- 弹性力学中的Saint-Venant方程组
- 连续介质力学中的Navier-Stockes方程组和Euler方程组

- 静电势和引力势满足的Laplace方程或Poisson方程
- 波的传播所满足的波动方程
- 热传导问题和扩散问题中的热传导方程
- 描写电磁场运动变化的Maxwell方程组
- 作为微观物质运动基本规律的Schrödinger方程和Dirac方程
- 弹性力学中的Saint-Venant方程组

- 静电势和引力势满足的Laplace方程或Poisson方程
- 波的传播所满足的波动方程
- 热传导问题和扩散问题中的热传导方程
- 描写电磁场运动变化的Maxwell方程组
- 作为微观物质运动基本规律的Schrödinger方程和Dirac方程
- 弹性力学中的Saint-Venant方程组
- 连续介质力学中的Navier-Stockes方程组和Euler方程组

- 静电势和引力势满足的Laplace方程或Poisson方程
- 波的传播所满足的波动方程
- 热传导问题和扩散问题中的热传导方程
- 描写电磁场运动变化的Maxwell方程组
- 作为微观物质运动基本规律的Schrödinger方程和Dirac方程
- 弹性力学中的Saint-Venant方程组
- 连续介质力学中的Navier-Stockes方程组和Euler方程组

数学物理方程,通常指从物理学及其他各门自然科学、技术科学中所产生的偏微 分方程,有时也包括与此有关的积分方程、微分积分方程和常微分方程.例如

- 静电势和引力势满足的Laplace方程或Poisson方程
- 波的传播所满足的波动方程
- 热传导问题和扩散问题中的热传导方程
- 描写电磁场运动变化的Maxwell方程组
- 作为微观物质运动基本规律的Schrödinger方程和Dirac方程
- 弹性力学中的Saint-Venant方程组
- 连续介质力学中的Navier-Stockes方程组和Euler方程组

这些方程(组)多是二阶线性偏微分方程(组).所以,本课> 将集中讨论几种典型的二阶线性偏微分方程

数学物理方程,通常指从物理学及其他各门自然科学、技 术科学中所产生的偏微 分方程,有时也包括与此有关的积 分方程、微分积分方程和常微分方程.例如

- 静电势和引力势满足的Laplace方程或Poisson方程
- 波的传播所满足的波动方程
- 热传导问题和扩散问题中的热传导方程
- 描写电磁场运动变化的Maxwell方程组
- 作为微观物质运动基本规律的Schrödinger方程和Dirac方程
- 弹性力学中的Saint-Venant方程组
- 连续介质力学中的Navier-Stockes方程组和Euler方程组

这些方程(组)多是二阶线性偏微分方程(组). 所以,本课;将集中讨论几种典型的二阶线性偏微分方程

数学物理方程,通常指从物理学及其他各门自然科学、技术科学中所产生的偏微 分方程,有时也包括与此有关的积分方程、微分积分方程和常微分方程.例如

- 静电势和引力势满足的Laplace方程或Poisson方程
- 波的传播所满足的波动方程
- 热传导问题和扩散问题中的热传导方程
- 描写电磁场运动变化的Maxwell方程组
- 作为微观物质运动基本规律的Schrödinger方程和Dirac方程
- 弹性力学中的Saint-Venant方程组
- 连续介质力学中的Navier-Stockes方程组和Euler方程组

这些方程(组)多是二阶线性偏微分方程(组). 所以,本课程将集中讨论几种典型的二阶线性偏微分方程

Transverse Vibration of Strings Longitudinal Vibration of Flexible Rods Heat Conduction Equation Time-independent and Steady-state Problems

数学物理方程

本讲从一些物理问题导出一些典型的二阶线性偏微分方程

- 物理学中的数学物理方程
 - 弦的横振动方程
 - 杆的纵振动方程
 - 热传导方程
 - 稳定问题
- ② 边界条件与初始条件
 - 初始条件
 - 边界条件
- ③ 偏微分方程定解问题
 - 定解问题的适定性

Transverse Vibration of Strings Longitudinal Vibration of Flexible Rods Heat Conduction Equation Time-independent and Steady-state Problems

弦的横振动方程

物理问题 有一个完全柔软的均匀弦,沿水平直线绷紧,而后以某种方法激发,使弦在同一个平面上作小振动.列出弦的横振动方程

取弦的平衡位置为x轴,且令端点坐标为x = 0与x = l

设u(x,t)是坐标为x的弦上一点在t时刻的(横向)位移.在弦上隔离出长为dx的一小段(弦元).弦元的弦长足够小,以至于可以把它看成是质点

分析弦元受力:它在两个端点x及x+dx处受到 力的作用

物理问题 有一个完全柔软的均匀弦,沿水平直线绷紧,而后以某种方法激发, 使弦在同一个平面上作小振动. 列出弦的横振动方程

取弦的平衡位置为x轴,且令端点坐标为x = 0与x = l

设u(x,t)是坐标为x的弦上一点在t时刻的(横向)位移.在弦上隔离出长为dx的一小段(弦元).弦元的弦长足够小,以至于可以把它看成是质点

分析弦元受力:它在两个端点x及x+dx处受到强力的作用

物理问题 有一个完全柔软的均匀弦,沿水平直线绷紧,而后以某种方法激发,使弦在同一个平面上作小振动.列出弦的横振动方程

取弦的平衡位置为x轴,且令端点坐标为x = 0与 x = l

设u(x,t)是坐标为x的弦上一点在t时刻的(横向)位移.在弦上隔离出长为dx的一小段(弦元). 弦元的弦长足够小,以至于可以把它看成是质点

分析弦元受力:它在两个端点x及x+dx处受到强力的作用

物理问题 有一个完全柔软的均匀弦,沿水平直线绷紧,而后以某种方法激发,使弦在同一个平面上作小振动.列出弦的横振动方程

取弦的平衡位置为x轴,且令端点坐标为x = 0与x = l

设u(x,t)是坐标为x的弦上一点在t时刻的(横向)位移.在弦上隔离出长为dx的一小段(弦元).弦元的弦长足够小,以至于可以把它看成是质点

分析弦元受力:它在两个端点x及x + dx处受到张力的作用

因为弦是完全柔软的,故 只受到切向应力——张力T 的作用,而没有法向应 力. 同时,略去了重力的 作用. 因此有

$$(T\sin\theta)_{x+dx} - (T\sin\theta)_x = dm \frac{\partial^2 u}{\partial t^2}$$

$$(T\cos\theta)_{x+dx} - (T\cos\theta)_x = 0$$

因为弦是完全柔软的,故 只受到切向应力——张力T 的作用,而没有法向应 力.同时,略去了重力的 作用.因此有

$$(T\sin\theta)_{x+dx} - (T\sin\theta)_x = dm \frac{\partial^2 u}{\partial t^2}$$

$$(T\cos\theta)_{x+dx} - (T\cos\theta)_x = 0$$

因为弦是完全柔软的,故 只受到切向应力——张力T 的作用,而没有法向应 力.同时,略去了重力的 作用.因此有

$$(T\sin\theta)_{x+dx} - (T\sin\theta)_x = dm\frac{\partial^2 u}{\partial t^2}$$
$$(T\cos\theta)_{x+dx} - (T\cos\theta)_x = 0$$

$$(T\sin\theta)_{x+dx} - (T\sin\theta)_x = dm \frac{\partial^2 u}{\partial t^2}$$
$$(T\cos\theta)_{x+dx} - (T\cos\theta)_x = 0$$

$$(T\sin\theta)_{x+dx} - (T\sin\theta)_x = dm \frac{\partial^2 u}{\partial t^2}$$
$$(T\cos\theta)_{x+dx} - (T\cos\theta)_x = 0$$

小振动近似:x + dx = bx两点间任一时刻横向位移之差 u(x + dx, t) - u(x, t),与dx相比是一个小量,即

$$\left| \frac{\partial u}{\partial x} \right| \ll 1$$

$$(T\sin\theta)_{x+dx} - (T\sin\theta)_x = dm \frac{\partial^2 u}{\partial t^2}$$
$$(T\cos\theta)_{x+dx} - (T\cos\theta)_x = 0$$

$$\left| \frac{\partial u}{\partial x} \right| \ll 1 \right| \implies$$

$$\sin\theta \approx \tan\theta = \frac{\partial u}{\partial x}$$
$$\cos\theta \approx 1$$

$$(T\sin\theta)_{x+dx} - (T\sin\theta)_x = dm \frac{\partial^2 u}{\partial t^2}$$
$$(T\cos\theta)_{x+dx} - (T\cos\theta)_x = 0$$

$$\left| \frac{\partial u}{\partial x} \right| \ll 1$$
 \Longrightarrow $\sin \theta \approx \tan \theta = \frac{\partial u}{\partial x}$ $\cos \theta \approx 1$

$$\cos \theta \approx 1$$
 \Longrightarrow $(T)_{x+dx} - (T)_x = 0$

即T不随x变化,弦中各点张力相等

$$(T\sin\theta)_{x+dx} - (T\sin\theta)_x = dm \frac{\partial^2 u}{\partial t^2}$$
$$(T\cos\theta)_{x+dx} - (T\cos\theta)_x = 0$$

$$\sin\theta \approx \tan\theta = \frac{\partial u}{\partial x}$$
$$\cos\theta \approx 1$$

$$\rho dx \frac{\partial^2 u}{\partial t^2} = T \left[\left(\frac{\partial u}{\partial x} \right)_{x+dx} - \left(\frac{\partial u}{\partial x} \right)_x \right] = T \frac{\partial^2 u}{\partial x^2} dx$$

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = 0$$

其中 ρ 是弦的线密度(单位长度的质量)。定义

$$a = \sqrt{T/\rho}$$

则方程可以写成

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$$

a就是弦的振动传播速度

Transverse Vibration of Strings Longitudinal Vibration of Flexible Rods Heat Conduction Equation Time-independent and Steady-state Problems

弦的横振动方程

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = 0$$

其中 ρ 是弦的线密度(单位长度的质量). 定义

$$a = \sqrt{T/\rho}$$

则方程可以写成

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$$

a就是弦的振动传播速度

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = 0$$

其中 ρ 是弦的线密度(单位长度的质量). 定义

$$a = \sqrt{T/\rho}$$

则方程可以写成

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$$

a就是弦的振动传播速度

Transverse Vibration of Strings Longitudinal Vibration of Flexible Rods Heat Conduction Equation Time-independent and Steady-state Problems

进一步的讨论

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = 0$$

在小振动近似下, 张力T与t无关

理由: 因为弦元的伸长

$$ds - dx = \sqrt{du^2 + dx^2} - dx$$

$$= \left[\sqrt{1 + \left(\frac{\partial u}{\partial x}\right)^2} - 1 \right] dx = O\left(\left(\frac{\partial u}{\partial x}\right)^2\right)$$

在准确到 $\partial u/\partial x$ 的一级项(小振动近似)的条件下, 弦元长

度不随t变化. 因此,按照Hooke定律,T也不随t变化

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = 0$$

在小振动近似下,张力T与t无关

理由: 因为弦元的伸长

$$ds - dx = \sqrt{du^2 + dx^2 - dx}$$

$$= \left[\sqrt{1 + \left(\frac{\partial u}{\partial x}\right)^2} - 1 \right] dx = O\left(\left(\frac{\partial u}{\partial x}\right)^2\right)$$

在准确到 $\partial u/\partial x$ 的一级项(小振动近似)的条件下, 弦元长

◆ロト ◆部ト ◆注ト ◆注ト 注 りゅう

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = 0$$

在小振动近似下,张力T与t无关

理由: 因为弦元的伸长

$$ds - dx = \sqrt{du^2 + dx^2} - dx$$

$$= \left[\sqrt{1 + \left(\frac{\partial u}{\partial x}\right)^2} - 1 \right] dx = O\left(\left(\frac{\partial u}{\partial x}\right)^2\right)$$

在准确到 $\partial u/\partial x$ 的一级项(小振动近似)的条件下, 弦元长度不随t变化. 因此,按照Hooke定律,T也不随t变化

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = 0$$

在小振动近似下,张力T与t无关

前面又已经证明过,T也不随x变化,所以T是一个常数

$$\rho \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} = \mathbf{0}$$

在小振动近似下,张力T与t无关

前面又已经证明过,T也不随x变化,所以T是一个常数

讨论: 有外力的情形

如果弦在横向(即位移u的正向)上还受到外力的作用,设单位长度所受的外力为f,则有

$$\rho \mathrm{d}x \frac{\partial^2 u}{\partial t^2} = T \frac{\partial^2 u}{\partial x^2} \mathrm{d}x + f \mathrm{d}x$$

因此

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = \frac{f}{\rho}$$

非齐次项 $\frac{f}{\rho}$ ——单位质量所受的外力

讨论: 有外力的情形

如果弦在横向(即位移u的正向)上还受到外力的作用,设单位长度所受的外力为f,则有

$$\rho \mathrm{d}x \frac{\partial^2 u}{\partial t^2} = T \frac{\partial^2 u}{\partial x^2} \mathrm{d}x + f \mathrm{d}x$$

因此

$$\left| \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = \frac{f}{\rho} \right|$$

非齐次项 $\frac{f}{\rho}$ ——单位质量所受的外力

Outline

- 物理学中的数学物理方程
 - 弦的横振动方程
 - 杆的纵振动方程
 - 热传导方程
 - 稳定问题
- ② 边界条件与初始条件
 - 初始条件
 - 边界条件
- ③ 偏微分方程定解问题
 - 定解问题的适定性

考虑一均匀细杆,沿杆长方向作小振动.假设在垂直杆长方向的任一截面上各点的振动情况(即位移)完全相同

取杆长方向为x轴方向,垂直于杆长方向的各截面均用它的平衡位置x标记

取杆长方向为x轴方向,垂直 于杆长方向的各截面均用它 的平衡位置x标记

★ 在任一时刻t,此截面相对于平衡位置的位移 为u(x,t)

取杆长方向为x轴方向,垂直于杆长方向的各截面均用它的平衡位置x标记

★ 在杆中隔离出一小段(x, x+dx),分析受力:

取杆长方向为x轴方向,垂直于杆长方向的各截面均用它的平衡位置x标记

- ★ 在杆中隔离出一小段(x, x+dx), 分析受力:
 - 通过截面x,受到弹性力P(x,t)S的作用 P(x,t)为单位面积所受的弹性力(应力), P(x,t)

取杆长方向为x轴方向,垂直于杆长方向的各截面均用它的平衡位置x标记

- ★ 在杆中隔离出一小段(x, x+dx), 分析受力:
 - 通过截面x + dx受到弹性力 P(x + dx, t)S的作用

取杆长方向为x轴方向,垂直 于杆长方向的各截面均用它 的平衡位置x标记

因此,根据Newton第二定律,就得到

$$dm \frac{\partial^2 u}{\partial t^2} = [P(x + dx, t) - P(x, t)] S$$

$$dm\frac{\partial^2 u}{\partial t^2} = [P(x + dx, t) - P(x, t)] S$$

如果略去垂直杆长方向的形变,根据Hooke定律

应力
$$P$$
与应变 $\frac{\partial u}{\partial x}$ 成正比

$$P = E \frac{\partial u}{\partial x}$$

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$$

$$\sharp + a = \sqrt{\frac{E}{\rho}}$$

$$dm \frac{\partial^2 u}{\partial t^2} = [P(x + dx, t) - P(x, t)] S$$

如果略去垂直杆长方向的形变,根据Hooke定律

应力
$$P$$
与应变 $\frac{\partial u}{\partial x}$ 成正比 $P = E \frac{\partial u}{\partial x}$

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$$

其中
$$a = \sqrt{\frac{E}{\rho}}$$

$$dm \frac{\partial^2 u}{\partial t^2} = [P(x + dx, t) - P(x, t)] S$$

$$\boxed{\mathrm{d}m = \rho S \mathrm{d}x} \quad \Longrightarrow \quad \left| \rho \frac{\partial^2 u}{\partial t^2} = \frac{\partial P}{\partial x} \right|$$

如果略去垂直杆长方向的形变,根据Hooke定律

应力
$$P$$
与应变 $\frac{\partial u}{\partial x}$ 成正比 $P=E\frac{\partial u}{\partial x}$

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$$

其中
$$a = \sqrt{\frac{E}{\rho}}$$

$$dm \frac{\partial^2 u}{\partial t^2} = [P(x + dx, t) - P(x, t)] S$$

$$\boxed{ dm = \rho S dx } \quad \Longrightarrow \quad \left| \rho \frac{\partial^2 u}{\partial t^2} = \frac{\partial P}{\partial x} \right|$$

如果略去垂直杆长方向的形变、根据Hooke定律

应力
$$P$$
与应变 $\frac{\partial u}{\partial x}$ 成正比 $P=E\frac{\partial u}{\partial x}$

$$\boxed{\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = \mathbf{0}} \qquad \sharp \, \mathbf{P} a = \sqrt{\frac{E}{\rho}}$$

其中
$$a = \sqrt{\frac{E}{\rho}}$$

杆的纵振动与弦的横振动机理并不完全相同,但它们满足的偏微分方程的形式却完全一样

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$$

这一类方程统称为波动方程

更一般地,在三维空间中的波动方程是

$$\left[\frac{\partial^2 u}{\partial t^2} - a^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right] = 0 \right]$$

杆的纵振动与弦的横振动机理并不完全相同,但它们满足的偏微分方程的形式却完全一样

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$$

这一类方程统称为波动方程 更一般地,在三维空间中的波动方程是

$$\left[\frac{\partial^2 u}{\partial t^2} - a^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right] = 0 \right]$$

$$\left[\frac{\partial^2 u}{\partial t^2} - a^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right] = 0 \right]$$

定义Laplace算符

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \nabla \cdot \nabla$$

$$\boxed{\frac{\partial^2 u}{\partial t^2} - a^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right] = 0}$$

定义Laplace算符

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \nabla \cdot \nabla$$

$$\boxed{\frac{\partial^2 u}{\partial t^2} - a^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right] = 0}$$

定义Laplace算符

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \nabla \cdot \nabla$$

即

$$\nabla^2 u \equiv \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \nabla \cdot (\nabla u)$$

$$\boxed{\frac{\partial^2 u}{\partial t^2} - a^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right] = 0}$$

定义Laplace算符

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \nabla \cdot \nabla$$

则波动方程就是

$$\left| \frac{\partial^2 u}{\partial t^2} - a^2 \nabla^2 u = 0 \right|$$

Outline

- 物理学中的数学物理方程
 - 弦的横振动方程
 - 杆的纵振动方程
 - 热传导方程
 - 稳定问题
- ② 边界条件与初始条件
 - 初始条件
 - 边界条件
- ③ 偏微分方程定解问题
 - 定解问题的适定性

基本思路

推导热传导方程所用的数学方法和上面的完全相同.不同之处在于具体的物理规律不同. 这里用到的是热学方面的两个基本规律,即

能量守恒定律 和 热传导的Fourier定律

设有一块连续介质. 取定一定坐标系, 并用 u(x,y,z,t)表示介质内空间坐标为(x,y,z)的一点 在t时刻的温度

设有一块连续介质. 取定一定坐标系, 并用 u(x,y,z,t)表示介质内空间坐标为(x,y,z)的一点 在t时刻的温度

若沿x方向有一定的温度差,在x方向也就一定有 热量的传递

从宏观上看,单位时间内通过垂直x方向的单位面积的热量q与温度的空间变化率成正比

$$q = -k \frac{\partial u}{\partial x}$$

q称为热流密度, k称为导热率

从宏观上看,单位时间内通过垂直x方向的单位 面积的热量q与温度的空间变化率成正比

$$q = -k \frac{\partial u}{\partial x}$$

q称为热流密度, k称为导热率

• k与介质的质料有关

从宏观上看,单位时间内通过垂直x方向的单位 面积的热量q与温度的空间变化率成正比

$$q = -k \frac{\partial u}{\partial x}$$

q称为热流密度, k称为导热率

- k与介质的质料有关
- 严格说来,与温度u也有关系

从宏观上看,单位时间内通过垂直x方向的单位 面积的热量q与温度的空间变化率成正比

$$q = -k \frac{\partial u}{\partial x}$$

q称为热流密度, k称为导热率

- k与介质的质料有关
- 严格说来,与温度u也有关系
- •如果温度的变化范围不大,则可以近似地 将k看成与u无关

从宏观上看,单位时间内通过垂直x方向的单位 面积的热量q与温度的空间变化率成正比

$$q = -k \frac{\partial u}{\partial x}$$

q称为热流密度, k称为导热率

公式中的负号表示热流的方向和温度变化的方向 正好相反,即热量由高温流向低温

研究三维各向同性介质中的热传导,在介质中三个方向上都存在温度差,则有

$$q_x = -k\frac{\partial u}{\partial x}, \quad q_y = -k\frac{\partial u}{\partial y}, \quad q_z = -k\frac{\partial u}{\partial z}$$

或

$$\boxed{\boldsymbol{q} = -k\nabla u}$$

即热流密度矢量q与温度梯度 ∇u 成正比

Transverse Vibration of Strings Longitudinal Vibration of Flexible Rods Heat Conduction Equation Time-independent and Steady-state Proble

均匀各向同性介质内的热传导方程

在介质内部隔离出一个 平行六面体, 六个面都 和坐标面重合

在介质内部隔离出一个 平行六面体, 六个面都 和坐标面重合

★ Δt时间内沿x方向流入六面体的热量 $\begin{bmatrix} (q_x)_x - (q_x)_{x+\mathrm{d}x} \end{bmatrix} \Delta y \Delta z \Delta t$ $= \begin{bmatrix} \left(k \frac{\partial u}{\partial x} \right)_{x+\mathrm{d}x} - \left(k \frac{\partial u}{\partial x} \right)_x \end{bmatrix} \Delta y \Delta z \Delta t$ $= k \frac{\partial^2 u}{\partial x^2} \Delta x \Delta y \Delta z \Delta t$

在介质内部隔离出一个 平行六面体, 六个面都 和坐标面重合

★ Δt时间内沿y方向流入六面体的热量 $\begin{bmatrix} (q_y)_y - (q_y)_{y+\mathrm{d}y} \end{bmatrix} \Delta x \Delta z \Delta t$ $= \begin{bmatrix} \left(k \frac{\partial u}{\partial y} \right)_{y+\mathrm{d}y} - \left(k \frac{\partial u}{\partial y} \right)_y \end{bmatrix} \Delta x \Delta z \Delta t$ $= k \frac{\partial^2 u}{\partial y^2} \Delta x \Delta y \Delta z \Delta t$

在介质内部隔离出一个 平行六面体, 六个面都 和坐标面重合

★ Δt时间内沿z方向流入六面体的热量 $\begin{bmatrix} (q_z)_z - (q_z)_{z+\mathrm{d}z} \end{bmatrix} \Delta x \Delta y \Delta t$ $= \begin{bmatrix} \left(k \frac{\partial u}{\partial z} \right)_{z+\mathrm{d}z} - \left(k \frac{\partial u}{\partial z} \right)_z \end{bmatrix} \Delta x \Delta y \Delta t$ $= k \frac{\partial^2 u}{\partial z^2} \Delta x \Delta y \Delta z \Delta t$

★ Δt时间内净得热量

$$x$$
方向 $k \frac{\partial^2 u}{\partial x^2} \Delta x \Delta y \Delta z \Delta t$ y 方向 $k \frac{\partial^2 u}{\partial y^2} \Delta x \Delta y \Delta z \Delta t$ z 方向 $k \frac{\partial^2 u}{\partial z^2} \Delta x \Delta y \Delta z \Delta t$ 总计 $(k \nabla^2 u) \Delta x \Delta y \Delta z \Delta t$

★ Δt时间内净得热量

$$x$$
方向 $k \frac{\partial^2 u}{\partial x^2} \Delta x \Delta y \Delta z \Delta t$ y 方向 $k \frac{\partial^2 u}{\partial y^2} \Delta x \Delta y \Delta z \Delta t$ z 方向 $k \frac{\partial^2 u}{\partial z^2} \Delta x \Delta y \Delta z \Delta t$ 总计 $(k \nabla^2 u) \Delta x \Delta y \Delta z \Delta t$

若六面体内无其他热量来源或消耗,则根据能量守恒定律,净流入的热量应等于介质在此时间内温度升高所需的热量

均匀各向同性介质内的热传导方程

★ Δt时间内净得热量

$$x$$
方向
$$k \frac{\partial^2 u}{\partial x^2} \Delta x \Delta y \Delta z \Delta t$$
$$y$$
 方向
$$k \frac{\partial^2 u}{\partial y^2} \Delta x \Delta y \Delta z \Delta t$$
$$z$$
 方向
$$k \frac{\partial^2 u}{\partial z^2} \Delta x \Delta y \Delta z \Delta t$$
 总计
$$(k \nabla^2 u) \Delta x \Delta y \Delta z \Delta t$$

$$(k\nabla^2 u) \Delta x \Delta y \Delta z \Delta t = \rho \Delta x \Delta y \Delta z \cdot c \cdot \Delta u$$

均匀各向同性介质内的热传导方程

$$(k\nabla^2 u) \Delta x \Delta y \Delta z \Delta t = \rho \Delta x \Delta y \Delta z \cdot c \cdot \Delta u$$

由此即得到均匀各向同性介质内的热传导方程

$$\frac{\partial u}{\partial t} - \frac{k}{\rho c} \nabla^2 u = 0$$

其中 ρ 是介质的密度, c是比热容 令 $\kappa = k/\rho c$, 则有

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u = 0$$

其中κ称为扩散率(或温度传导率)。,

均匀各向同性介质内的热传导方程

$$(k\nabla^2 u) \Delta x \Delta y \Delta z \Delta t = \rho \Delta x \Delta y \Delta z \cdot c \cdot \Delta u$$

由此即得到均匀各向同性介质内的热传导方程

$$\frac{\partial u}{\partial t} - \frac{k}{\rho c} \nabla^2 u = \mathbf{0}$$

其中 ρ 是介质的密度, c是比热容 今 $\kappa = k/\rho c$. 则有

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u = 0$$

其中κ称为扩散率(或温度传导率)。, (Φ) (Φ)

均匀各向同性介质内的热传导方程

$$(k\nabla^2 u) \Delta x \Delta y \Delta z \Delta t = \rho \Delta x \Delta y \Delta z \cdot c \cdot \Delta u$$

由此即得到均匀各向同性介质内的热传导方程

$$\frac{\partial u}{\partial t} - \frac{k}{\rho c} \nabla^2 u = \mathbf{0}$$

其中 ρ 是介质的密度, c是比热容 令 $\kappa = k/\rho c$, 则有

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u = 0$$

均匀各向同性介质内的热传导方程: 有热源的情形

如果在介质内有热量产生(例如,有化学反应发生,或通有电流, \cdots),单位时间内单位体积介质中产生的热量为F(x,y,z,t)

$$k\nabla^2 u \Delta x \Delta y \Delta z \Delta t + F(x, y, z, t) \Delta x \Delta y \Delta z \Delta t$$
$$= \rho \Delta x \Delta y \Delta z \cdot c \cdot \Delta u$$

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u = \frac{1}{\rho c} F(x, y, z, t) = f(x, y, z, t)$$

均匀各向同性介质内的热传导方程: 有热源的情形

如果在介质内有热量产生(例如,有化学反应发生,或通有电流, \cdots),单位时间内单位体积介质中产生的热量为F(x,y,z,t)

$$k\nabla^2 u \Delta x \Delta y \Delta z \Delta t + F(x, y, z, t) \Delta x \Delta y \Delta z \Delta t$$
$$= \rho \Delta x \Delta y \Delta z \cdot c \cdot \Delta u$$

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u = \frac{1}{\rho c} F(x, y, z, t) = f(x, y, z, t)$$

均匀各向同性介质内的热传导方程: 有热源的情形

如果在介质内有热量产生(例如,有化学反应发生,或通有电流, \cdots),单位时间内单位体积介质中产生的热量为F(x,y,z,t)

$$k\nabla^2 u \Delta x \Delta y \Delta z \Delta t + F(x, y, z, t) \Delta x \Delta y \Delta z \Delta t$$
$$= \rho \Delta x \Delta y \Delta z \cdot c \cdot \Delta u$$

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u = \frac{1}{\rho c} F(x, y, z, t) = f(x, y, z, t)$$

- 从分子运动的角度看,温度的高低是分子热运动激烈程度的反映
- 分子热运动的不平衡,通过碰撞交换能量, 在宏观上就表现为热量的传递

如果介质内存在别种不均匀状况,例如物质浓度的不均匀,通过分子的运动也会发生物质的交换,宏观上就表现为分子的扩散

从分子运动的角度看,温度的高低是分子热运动激烈程度的反映

- 分子热运动的不平衡,通过碰撞交换能量, 在宏观上就表现为热量的传递
- 如果介质内存在别种不均匀状况,例如物质浓度的不均匀,通过分子的运动也会发生物质的交换,宏观上就表现为分子的扩散

从分子运动的角度看,温度的高低是分子热运动激烈程度的反映

- 分子热运动的不平衡,通过碰撞交换能量, 在宏观上就表现为热量的传递
- 如果介质内存在别种不均匀状况,例如物质浓度的不均匀,通过分子的运动也会发生物质的交换,宏观上就表现为分子的扩散

微观机理上的相似性,就决定了扩散方程和 热传导方程有相同的形式

$$\frac{\partial u}{\partial t} - D\nabla^2 u = f(x, y, z, t)$$

其中u(x,y,z,t)代表分子浓度,D是扩散率, f(x,y,z,t)是单位时间内在单位体积中该种分子的产率

Outline

- 物理学中的数学物理方程
 - 弦的横振动方程
 - 杆的纵振动方程
 - 热传导方程
 - 稳定问题
- ② 边界条件与初始条件
 - 初始条件
 - 边界条件
- ③ 偏微分方程定解问题
 - 定解问题的适定性

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u = \frac{1}{\rho c} F(x, y, z, t) = f(x, y, z, t)$$

在一定条件下,物体的 温度达到稳定、即不随 时间变化时,则温度分 布满足Poisson方程

$$\nabla^2 u = -\frac{f}{\kappa}$$

特别是,如果f = 0,则有Laplace方程

$$\nabla^2 u = 0$$

这两种方程描写的是达到稳恒的物理状态, ...

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u = \frac{1}{\rho c} F(x, y, z, t) = f(x, y, z, t)$$

在一定条件下,物体的 温度达到稳定、即不随 时间变化时,则温度分 布满足Poisson方程

$$\nabla^2 u = -\frac{f}{\kappa}$$

特别是,如果f=0, 则有Laplace方程

$$\nabla^2 u = \mathbf{0}$$

这两种方程描写的是达到稳恒的物理状态,,

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u = \frac{1}{\rho c} F(x, y, z, t) = f(x, y, z, t)$$

在一定条件下,物体的 温度达到稳定、即不随 时间变化时,则温度分 布满足Poisson方程

$$\nabla^2 u = -\frac{f}{\kappa}$$

特别是,如果f = 0,则有Laplace方程

$$\nabla^2 u = \mathbf{0}$$

这两种方程描写的是达到稳恒的物理状态,,

$$\frac{\partial u}{\partial t} - \kappa \nabla^2 u = \frac{1}{\rho c} F(x, y, z, t) = f(x, y, z, t)$$

在一定条件下,物体的 温度达到稳定、即不随 时间变化时,则温度分 布满足Poisson方程

$$\nabla^2 u = -\frac{f}{\kappa}$$

特别是,如果f = 0,则有Laplace方程

$$\nabla^2 u = \mathbf{0}$$

这两种方程描写的是达到稳恒的物理状态

静电场的电势

Gauss定理

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0}$$

 ε_0 其中 ρ 是电荷密度, ε_0 为真空 电容率(真空介电常数) 电场强度与电势 $E = -\nabla u$

所以,静电势满足Poisson方程

$$\nabla^2 u = -\frac{\rho}{\varepsilon_0}$$

$$\nabla^2 u(x, y, z) = 0$$

静电场的电势

Gauss定理

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0}$$

其中 ρ 是电荷密度, ε_0 为真空电容率(真空介电常数)

电场强度与电势 $E = -\nabla u$

所以,静电势满足Poisson方程

$$\nabla^2 u = -\frac{\rho}{\varepsilon_0}$$

$$\nabla^2 u(x, y, z) = 0$$

静电场的电势

Gauss定理

$$abla \cdot oldsymbol{E} = rac{
ho}{arepsilon_0}$$

 ε_0 其中 ρ 是电荷密度, ε_0 为真空 电容率(真空介电常数)

电场强度与电势 $E = -\nabla u$

所以,静电势满足Poisson方程

$$\nabla^2 u = -\frac{\rho}{\varepsilon_0}$$

$$\nabla^2 u(x, y, z) = 0$$

静电场的电势

Gauss定理

$$abla \cdot oldsymbol{E} = rac{
ho}{arepsilon_0}$$

 ε_0 其中 ρ 是电荷密度, ε_0 为真空 电容率(真空介电常数)

电场强度与电势 $E = -\nabla u$

所以,静电势满足Poisson方程

$$\nabla^2 u = -\frac{\rho}{\varepsilon_0}$$

$$\nabla^2 u(x, y, z) = 0$$

单色波

波动方程

$$\frac{\partial^2 u}{\partial t^2} - a^2 \nabla^2 u = 0$$

$$u(x, y, z, t) = v(x, y, z)e^{-i\omega t}$$

则v(x,y,z)满足Helmholtz方程

$$\nabla^2 v(x, y, z) + k^2 v(x, y, z) = 0$$

其中 $k = \omega/a$ 称为波数

单色波

波动方程

$$\frac{\partial^2 u}{\partial t^2} - a^2 \nabla^2 u = 0$$

$$u(x, y, z, t) = v(x, y, z)e^{-i\omega t}$$

则v(x, y, z)满足Helmholtz方程

$$\nabla^2 v(x, y, z) + k^2 v(x, y, z) = 0$$

其中 $k = \omega/\alpha$ 称为波数

单色波

波动方程

$$\frac{\partial^2 u}{\partial t^2} - a^2 \nabla^2 u = 0$$

$$u(x, y, z, t) = v(x, y, z)e^{-i\omega t}$$

则v(x, y, z)满足Helmholtz方程

$$\nabla^2 v(x, y, z) + k^2 v(x, y, z) = 0$$

其中 $k = \omega/a$ 称为波数

总结

方程名称

物理过程(分类) 数学分类

波动方程

热传导方程

Poisson方程 Laplace方程 Helmholtz方程

总结

方程名称

物理过程(分类) 数学分类

波动方程

波动过程

热传导方程

Poisson方程 Laplace方程 Helmholtz方程

总结

方程名称

物理过程(分类) 数学分类

波动方程

波动过程

热传导方程

扩散过程

Poisson方程 Laplace方程 Helmholtz方程

总结

方程名称 物理过程(分类) 数学分类

波动方程 波动过程

热传导方程 扩散过程

Poisson方程 Laplace方程 稳恒状态 Helmholtz方程

总结

方程名称 物理过程(分类) 数学分类

波动方程 波动过程 双曲型方程

热传导方程 扩散过程

Poisson方程 Laplace方程 稳恒状态 Helmholtz方程

总结

方程名称 物理过程(分类) 数学分类

波动方程 波动过程 双曲型方程

热传导方程 扩散过程

抛物型方程

Poisson方程 Laplace方程 稳恒状态 Helmholtz方程

总结

方程名称 物理过程(分类) 数学分类 波动方程 双曲型方程 波动过程 扩散过程 热传导方程 抛物型方程 Poisson方程 Laplace方程 稳恒状态 椭圆型方程 Helmholtz方程

总结

方程名称 物理过程(分类) 数学分类 波动方程 波动过程 双曲型方程 热传导方程 扩散过程 抛物型方程

Poisson方程

Laplace方程

稳恒状态

椭圆型方程

Helmholtz方程

求解这三类方程,将是本课程的中心任务

常微分方程的情形

- 只根据Newton第二定律列出的动力学方程并不能唯一地确定质点的运动
- 要完全确定一个质点的运动,除了微分方程 之外,还必须有初始条件
- 二阶常微分方程的通解中含有两个任意常数,故而解不唯一确定

常微分方程的情形

- 只根据Newton第二定律列出的动力学方程并不能唯一地确定质点的运动
- 要完全确定一个质点的运动,除了微分方程 之外,还必须有初始条件
- 二阶常微分方程的通解中含有两个任意常数,故而解不唯一确定

常微分方程的情形

- 只根据Newton第二定律列出的动力学方程并不能唯一地确定质点的运动
- 要完全确定一个质点的运动,除了微分方程 之外,还必须有初始条件
- 二阶常微分方程的通解中含有两个任意常数,故而解不唯一确定

偏微分方程的情形

- 只有偏微分方程,也不能唯一地、确定地描写某一个具体的物理过程
- 二阶偏微分方程的通解,含有两个任意函数.例如,偏微分方程

$$\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0$$

的通解就是(其中f, g是任意函数)

$$u(x,y) = f(x+iy) + g(x-iy)$$

偏微分方程的情形

- 只有偏微分方程,也不能唯一地、确定地描写某一个具体的物理过程
- 二阶偏微分方程的通解,含有两个任意函数.例如,偏微分方程

$$\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0$$

的通解就是(其中f, g是任意函数)

$$u(x,y) = f(x+iy) + g(x-iy)$$

仅有方程,解并不唯一. 从物理上来看,也是自然的,因为

仅有方程,解并不唯一. 从物理上来看,也是自然的,因为

- 在推导方程时,只考虑了介质的内部,并没有考虑介质通过表面和外界的相互作用.因此,严格说来,方程只适用于介质内部
- 如果问题与时间有关的话,在推导方程时也并没有考虑介质的历史状况.因此,方程也只适用于初始时刻t > 0以后的任一时刻

仅有方程,解并不唯一. 从物理上来看,也是自然的,因为

- 在推导方程时,只考虑了介质的内部,并没有考虑介质通过表面和外界的相互作用.因此,严格说来,方程只适用于介质内部
- •如果问题与时间有关的话,在推导方程时也并没有考虑介质的历史状况.因此,方程也只适用于初始时刻t>0以后的任一时刻

为了完全描写一个具有确定解的物理问题,在数学上就是要构成一个定解问题:除了微分方程之外,还必须有边界条件和初始条件,(a),(a),(a)

仅有方程,解并不唯一. 从物理上来看,也是自然的,因为

- 在推导方程时,只考虑了介质的内部,并没有考虑介质通过表面和外界的相互作用.因此,严格说来,方程只适用于介质内部
- 如果问题与时间有关的话,在推导方程时也并没有考虑介质的历史状况.因此,方程也只适用于初始时刻t>0以后的任一时刻

为了完全描写一个具有确定解的物理问题,在数学上就是要构成一个定解问题:除了微分方程之外,还必须有边界条件和初始条件

Outline

- 物理学中的数学物理方程
 - 弦的横振动方程
 - 杆的纵振动方程
 - 热传导方程
 - 稳定问题
- ② 边界条件与初始条件
 - 初始条件
 - 边界条件
- ③ 偏微分方程定解问题
 - 定解问题的适定性

定解条件(一)

初始条件

总的原则是:初始条件应该完全描写初始时刻(t=0时)介质内部及边界上任意一点的状况

定解条件(一)

初始条件

总的原则是:初始条件应该完全描写初始时刻(t=0时)介质内部及边界上任意一点的状况

初始条件

对于波动方程来说,就是应该给出初始时刻的位移和速度(以力学问题为例)

$$\begin{vmatrix} u \big|_{t=0} = \phi(x, y, z) \\ \frac{\partial u}{\partial t} \big|_{t=0} = \psi(x, y, z) \end{vmatrix} (x, y, z) \in \overline{V}$$

• 对于热传导方程,由于方程中只出现未知函数u(x,y,z,t)对t的一阶偏微商, 所以只需给出初始时刻的温度

$$|u|_{t=0} = \phi(x, y, z)$$
 $(x, y, z) \in \overline{V}$

初始条件

对于波动方程来说,就是应该给出初始时刻的位移和速度(以力学问题为例)

$$\begin{vmatrix} u \big|_{t=0} = \phi(x, y, z) \\ \frac{\partial u}{\partial t} \big|_{t=0} = \psi(x, y, z) \end{vmatrix} (x, y, z) \in \overline{V}$$

•对于热传导方程,由于方程中只出现未知函数u(x,y,z,t)对t的一阶偏微商, 所以只需给出初始时刻的温度

$$\left|u\right|_{t=0} = \phi(x, y, z) \qquad (x, y, z) \in \overline{V}$$

Outline

- 物理学中的数学物理方程
 - 弦的横振动方程
 - 杆的纵振动方程
 - 热传导方程
 - 稳定问题
- ② 边界条件与初始条件
 - 初始条件
 - 边界条件
- ③ 偏微分方程定解问题
 - 定解问题的适定性

边界条件

边界条件的形式比较多样化,要由具体问题中描述的具体状况决定

总的原则是:边界条件应该完全描写边界上各点在任一时刻 $(t \ge 0)$ 的状况

边界条件

边界条件的形式比较多样化,要由具体问题中描述的具体状况决定

总的原则是: 边界条件应该完全描写边界上各点在任一时刻 $(t \ge 0)$ 的状况

边界条件

边界条件的形式比较多样化,要由具体问题中描述的具体状况决定

总的原则是:边界条件应该完全描写边界上各点在任一时刻 $(t \ge 0)$ 的状况

举例(一)

弦的横振动

如果弦的"两端固定",则边界条件就是

$$\begin{aligned} u\big|_{x=0} &= 0\\ u\big|_{x=l} &= 0 \end{aligned} \qquad t \ge 0$$

杆的纵振动

若x=0端固定,则x=0端的边界条件仍是

$$u\big|_{r=0} = 0$$

举例(一)

弦的横振动

如果弦的"两端固定",则边界条件就是

$$\begin{aligned} u\big|_{x=0} &= 0\\ u\big|_{x=l} &= 0 \end{aligned} \qquad t \ge 0$$

杆的纵振动

若x = 0端固定,则x = 0端的边界条件仍是

$$u|_{x=0} = 0$$

杆的纵振动

若另一端(x = l)受x方向上的外力作用,单面积上的力是F(t)

杆的纵振动

若另一端(x = l)受x方向上的外力作用,单面积上的力是F(t)

模仿推导方程的办法,在x = l处截取一小块介质,长度为 ε . 根据Newton第二定律可知

$$\rho \varepsilon S \left. \frac{\partial^2 u}{\partial t^2} \right|_{x=l-\alpha \varepsilon} = P(l-\varepsilon,t)S - F(t)S$$

杆的纵振动

若另一端(x = l)受x方向上的外力作用,单面积上的力是F(t)

$$\rho \varepsilon S \left. \frac{\partial^2 u}{\partial t^2} \right|_{x=l-\alpha \varepsilon} = P(l-\varepsilon,t)S - F(t)S$$

其中 $0 \le \alpha \le 1$

杆的纵振动

若另一端(x = l)受x方向上的外力作用,单面积上的力是F(t)

$$\rho \varepsilon S \left. \frac{\partial^2 u}{\partial t^2} \right|_{x=l-\alpha \varepsilon} = P(l-\varepsilon,t)S - F(t)S$$

令 $\varepsilon \rightarrow 0$,即得

$$P(l,t) = F(t)$$

杆的纵振动

若另一端(x = l)受x方向上的外力作用,单面积上的力是F(t)

$$P(l,t) = F(t)$$

$$+$$

$$P = E \frac{\partial u}{\partial x}$$

$$\left| \frac{\partial u}{\partial x} \right|_{x=l} = \frac{1}{E} F(t)$$

杆的纵振动

$$\left. \frac{\partial u}{\partial x} \right|_{x=l} = \frac{1}{E} F(t)$$

杆的纵振动

$$\left. \frac{\partial u}{\partial x} \right|_{x=l} = \frac{1}{E} F(t)$$

• 如果外力为0,即x = l端是自由的,则

$$\left| \frac{\partial u}{\partial x} \right|_{x=l} = 0$$

杆的纵振动

$$\left. \frac{\partial u}{\partial x} \right|_{x=l} = \frac{1}{E} F(t)$$

• 如果外力F(t)不是一个确定的已知函数

杆的纵振动

$$\left. \frac{\partial u}{\partial x} \right|_{x=l} = \frac{1}{E} F(t)$$

• 如果外力F(t)不是一个确定的已知函数,而是由弹簧提供的弹性力,则

$$F(t) = -k \left[u(l,t) - u_0 \right]$$

k是弹簧的劲度系数

杆的纵振动

$$\left. \frac{\partial u}{\partial x} \right|_{x=l} = \frac{1}{E} F(t)$$

• 如果外力F(t)不是一个确定的已知函数,而是由弹簧提供的弹性力,则

$$F(t) = -k \left[u(l,t) - u_0 \right]$$

k是弹簧的劲度系数,于是

$$\left[\frac{\partial u}{\partial x} + \frac{k}{E}u\right]_{x=l} = \frac{k}{E}u_0$$

热传导问题的边界条件: 几种常见类型

★ 边界上各点的温度已知

$$|u|_{\Sigma} = \phi(\Sigma, t)$$

 Σ 表示边界上的变点,同时也表示这些点的坐标

热传导问题的边界条件: 几种常见类型

★ 单位时间内、通过单位面积的边界面流入的 热量已知

热传导问题的边界条件: 几种常见类型

★ 单位时间内、通过单位面积的边界面流入的 热量已知

在边界内侧截取一小薄层介质,一个底面在介质的表面,另一个底面在介质的表面,另一个底面在介质内部. 柱体的两底面积相等、厚度趋于0

热传导问题的边界条件: 几种常见类型

★ 单位时间内、通过单位面积的边界面流入的 热量已知

由介质表面流入的热量, 应当全部通过薄层的底面 流向介质内部. 所以, 边 界条件即为

$$\left| \frac{\partial u}{\partial n} \right|_{\Sigma} = \frac{1}{k} \psi(\Sigma, t)$$

热传导问题的边界条件: 几种常见类型

$$\left. \frac{\partial u}{\partial n} \right|_{\Sigma} = \frac{1}{k} \psi(\Sigma, t)$$

 $\frac{\partial}{\partial n}$ 称为法向微商,它是梯度矢量在外法线方向n上的投影

热传导问题的边界条件: 几种常见类型

$$\left. \frac{\partial u}{\partial n} \right|_{\Sigma} = \frac{1}{k} \psi(\Sigma, t)$$

★ 若单位时间内、通过单位面积的边界面流入 的热量已知

$$\left| \frac{\partial u}{\partial n} \right|_{\Sigma} = \frac{1}{k} \psi(\Sigma, t)$$

热传导问题的边界条件: 几种常见类型

$$\left. \frac{\partial u}{\partial n} \right|_{\Sigma} = \frac{1}{k} \psi(\Sigma, t)$$

• 边界绝热,则 $\psi \equiv 0$

$$\frac{\partial u}{\partial n}\Big|_{\varSigma}=\mathbf{0}$$

热传导问题的边界条件: 几种常见类型

$$\left. \frac{\partial u}{\partial n} \right|_{\Sigma} = \frac{1}{k} \psi(\Sigma, t)$$

★ 介质通过边界按Newton冷却定律散热:单位时间通过单位面积表面和外界交换的热量与介质表面温度u $|_{\Sigma}$ 和外界温度u0 之差成正比(取比例系数为H)

$$-k\frac{\partial u}{\partial n}\Big|_{\Sigma} = H\left(u\big|_{\Sigma} - u_0\right) \operatorname{Rp}\left[\left[\frac{\partial u}{\partial n} + hu\right]_{\Sigma} = hu_0\right]$$

边界条件分类

边界条件分类

波动方程 热传导方程 类 型 边界位移已知 边界温度已知

波动方程

热传导方程

类

型

$$u\big|_{\Sigma} = \phi(\Sigma, t)$$

波动方程

热传导方程

类 型

$$u\big|_{\Sigma} = \phi(\Sigma, t)$$

第一类边界条件

波动方程

热传导方程

类 型

$$u|_{\Sigma} = \phi(\Sigma, t)$$

第一类边界条件

边界受力已知

边界流入热量已知

边界自由

边界绝热

波动方程

热传导方程

类 型

$$u|_{\Sigma} = \phi(\Sigma, t)$$

第一类边界条件

$$\frac{\partial u}{\partial n}\Big|_{\Sigma} = f(\Sigma, t)$$

$$\left. \frac{\partial u}{\partial n} \right|_{\Sigma} = 0$$

波动方程

热传导方程

类 型

$$u|_{\Sigma} = \phi(\Sigma, t)$$

第一类边界条件

$$\frac{\partial u}{\partial n}\Big|_{\Sigma} = f(\Sigma, t)$$

$$\frac{\partial u}{\partial n}\Big|_{\Sigma} = 0$$

第二类边界条件

波动方程

热传导方程

类 型

$$u|_{\Sigma} = \phi(\Sigma, t)$$

第一类边界条件

$$\frac{\partial u}{\partial n}\Big|_{\Sigma} = f(\Sigma, t)$$

第二类边界条件

$$\frac{\partial u}{\partial n}\Big|_{\Sigma} = \mathbf{0}$$

边界有外加弹性 边界按Newton冷却 力 定律散热

波动方程

热传导方程

色 型

$$u|_{\Sigma} = \phi(\Sigma, t)$$

第一类边界条件

$$\frac{\partial u}{\partial n}\Big|_{\Sigma} = f(\Sigma, t)$$

第二类边界条件

$$\left. \frac{\partial u}{\partial n} \right|_{\Sigma} = \mathbf{0}$$

$$\left[\frac{\partial u}{\partial n} + hu\right]_{\Sigma} = f(\Sigma, t)$$

波动方程

热传导方程

본 型

$$u|_{\Sigma} = \phi(\Sigma, t)$$

第一类边界条件

$$\frac{\partial u}{\partial n}\Big|_{\Sigma} = f(\Sigma, t)$$

第二类边界条件

$$\left. \frac{\partial u}{\partial n} \right|_{\Sigma} = 0$$

$$\left[\frac{\partial u}{\partial n} + hu\right]_{\Sigma} = f(\Sigma, t)$$

第三类边界条件

说明

- 整个边界面上,各点的边界条件并不一定能有统一的表达式,也不见得同属一种类型. 上面讨论的弹性杆的边界条件,就是如此
- 无界空间的问题——边界条件应当给出未知函数在无穷远处的极限行为,例如

函数乃至它的导数在无穷远处有界

在有界空间的问题中,有时也要出现有界条件.例如采用极坐标系、柱坐标系或球坐标系时,偏微商∂u/∂r在坐标原点失去意义.因而需要针对具体情况,在坐标原点补充上有界条件

说明

- 整个边界面上,各点的边界条件并不一定能有统一的表达式,也不见得同属一种类型. 上面讨论的弹性杆的边界条件,就是如此
- 无界空间的问题——边界条件应当给出未知函数在无穷远处的极限行为,例如

函数乃至它的导数在无穷远处有界

在有界空间的问题中,有时也要出现有界条件.例如采用极坐标系、柱坐标系或球坐标系时,偏微商∂u/∂r在坐标原点失去意义.
 因而需要针对具体情况,在坐标原点补充上有界条件

说明

- 整个边界面上,各点的边界条件并不一定能有统一的表达式,也不见得同属一种类型. 上面讨论的弹性杆的边界条件,就是如此
- 无界空间的问题——边界条件应当给出未知函数在无穷远处的极限行为,例如

函数乃至它的导数在无穷远处有界

• 在有界空间的问题中,有时也要出现有界条件. 例如采用极坐标系、柱坐标系或球坐标系时, 偏微商 $\partial u/\partial r$ 在坐标原点失去意义. 因而需要针对具体情况,在坐标原点补充上有界条件

Outline

- 物理学中的数学物理方程
 - 弦的横振动方程
 - 杆的纵振动方程
 - 热传导方程
 - 稳定问题
- ② 边界条件与初始条件
 - 初始条件
 - 边界条件
- ③ 偏微分方程定解问题
 - 定解问题的适定性

何谓"定解问题"?

= 定解问题

在什么条件下,定解问题的解是存在的,唯一的,并且是稳定的?

在什么条件下,定解问题的解是存在的,唯一的,并且是稳定的?

★ 解的存在性——定解问题有解

在什么条件下,定解问题的解是存在的,唯一的,并且是稳定的?

★ 解的存在性——定解问题有解 如果定解条件过多,互相矛盾,则定解问题无解 例如,如果一方面要求弦的两端固定,另一方面 又要求它的端点受到确定的外力作用.这两个要 求就是互相矛盾的

在什么条件下,定解问题的解是存在的,唯一的,并且是稳定的?

- ★ 解的存在性——定解问题有解
- ★ 解的唯一性——定解问题的解是唯一的

在什么条件下,定解问题的解是存在的,唯一的,并且是稳定的?

- ★ 解的存在性——定解问题有解
- ★ 解的唯一性——定解问题的解是唯一的

如果定解条件不足, 定解问题的解就不是唯一的

在什么条件下,定解问题的解是存在的,唯一的,并且是稳定的?

- ★ 解的存在性——定解问题有解
- ★ 解的唯一性——定解问题的解是唯一的 如果定解条件不足,定解问题的解就不是唯一的 要求定解问题的解存在并且唯一,就是要求定解 问题抽象得"合理",定解条件要不多不少,恰 到好处

在什么条件下,定解问题的解是存在的,唯一的,并且是稳定的?

- ★ 解的存在性——定解问题有解
- ★ 解的唯一性——定解问题的解是唯一的
- ★ 解的稳定性——如果定解问题中的已知条件(例如方程或定解条件中的已知函数)有微小改变时,解也只有微小的改变

在什么条件下,定解问题的解是存在的,唯一的,并且是稳定的?

- ★ 解的存在性——定解问题有解
- ★ 解的唯一性——定解问题的解是唯一的
- ★ 解的稳定性——如果定解问题中的已知条件(例如方程或定解条件中的已知函数)有微小改变时,解也只有微小的改变

在构造定解问题时,不可避免地总要作简化和近似. 只有在稳定性所许可的限度内所作的简化和近似才是有意义的

定解问题解的存在性、唯一性和稳定性, 统称适定性

只要对实际物理问题的抽象是合理的:

- 初始条件的确是完全地、确定地描写了初始 时刻(通常取为t=0) 体系内部以及边界面上 任意一点的状况
- 边界条件的确是完全而且确定地描写了边界面上任意一点在t≥0的状况

这样构成的定解问题就一定是适定的,也就是说,解一定是存在的、唯一的,并且是稳定的

定解问题解的存在性、唯一性和稳定性, 统称适定性

只要对实际物理问题的抽象是合理的:

- 初始条件的确是完全地、确定地描写了初始 时刻(通常取为t=0) 体系内部以及边界面上 任意一点的状况
- 边界条件的确是完全而且确定地描写了边界面上任意一点在t≥0的状况

这样构成的定解问题就一定是适定的,也就是说,解一定是存在的、唯一的,并且是稳定的

相关的问题是:初始条件和边界条件中出现的已知函数必须满足一定的连续性要求

以热传导问题为例

边界条件

$$u(x, y, z, t)|_{\Sigma} = f(\Sigma, t)$$

初始条件

$$u(x, y, z, t)\big|_{t=0} = \phi(x, y, z)$$

就应当有

$$f(\Sigma,t)\big|_{t=0} = \phi(x,y,z)\big|_{\Sigma}$$

相关的问题是:初始条件和边界条件中出现的已知函数必须满足一定的连续性要求

以热传导问题为例

边界条件

$$u(x, y, z, t)|_{\Sigma} = f(\Sigma, t)$$

初始条件

$$u(x, y, z, t)\big|_{t=0} = \phi(x, y, z)$$

就应当有

$$f(\Sigma, t)\big|_{t=0} = \phi(x, y, z)\big|_{\Sigma}$$

相关的问题是:初始条件和边界条件中出现的已知函数必须满足一定的连续性要求

以热传导问题为例

边界条件

$$u(x, y, z, t)|_{\Sigma} = f(\Sigma, t)$$

初始条件

$$u(x,y,z,t)\big|_{t=0} = \phi(x,y,z)$$

就应当有

$$f(\Sigma,t)\big|_{t=0} = \phi(x,y,z)\big|_{\Sigma}$$

教学物理方程

定解问题的适定性

有些定解问题不一定满足这个要求. 可以设想,把初始温度分布为 $\phi(x,y,z)$ 的一块介质放到一个恒温环境 (例如温度恒为 u_0)中,从而使介质表面的温度也迅速达到恒温 u_0 ,如果要求的精度许可,介质表面冷却或升温过程的影响可以忽略,那么,就可以简单地将边界条件写成

$$u(x,y,z,t)\big|_{\Sigma}=u_0$$

这样做的结果,尽管和精确的边界条件还有差别,但只要这种差别足够小,那么,解的稳定性就告诉我们,由此引起的解的差异也是足够小的. 当然,如果我们就是要研究这种冷却或升温。程的影响,这种近似就是不可取的