AUTOMATY A GRAMATIKY

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

12

Varianty Turingových strojů
Lineární omezení TS
Rekurzivní jazyky
Univerzální Turingův stroj
Problém zastavení

Vícepáskový Turingův stroj (1)

- \square **k-páskový** TS T = (Q, X, δ , q_0 , b, F), kde
 - - případně nedeterministický δ : (Q-F)×X^k \rightarrow 2^{Q×X^k×{-1, 0, +1}^k}
- existuje 1-páskový TS T', že L(T')=L(T)
 - případně nedeterministický 1-páskový T'
- T' použije 2k-stopou pásku
 - k-stop na obsah původních pásek, zbylé stopy na označení čtených pozic
 - i-tá buňka pásky T' bude obsahovat 2k-tici
 - $(y_1,p_1,y_2,p_2,...,y_k,p_k)$, kde
 - y_i je obsah i-té buňky j-té pásky stroje T
 - $p_j = 1 \text{ když stroj T čte i-tou buňku j-té pásky,}$ $p_i = 0 \text{ jinak}$

Vícepáskový Turingův stroj (2)

simulace kroku

- na začátku T' čte nejlevější buňku, že existuje páska původního T, kde T čte odpovídající buňku
- T' postupuje vpravo
 - narazí-li na buňku obsahující (y₁,p₁,y₂,p₂,...,y_k,p_k) s p_j=1, uloží y_i do stavu
 - po přečtení všech čtených pozic určí výsledek
 přechodové funkce δ a uloží jej do stavu
- T' postupuje vlevo
 - narazí-li na buňku obsahující (y₁,p₁,y₂,p₂,...,yk,pk) s
 p₁=1, aktualizuje y₂ podle přechodové funkce a p₂=1
 na sousedních buňkách
 - po aktualizaci všech čtených pozic simulace dalšího kroku
- je-li simulovaný stav přijímajícím stavem T, T' přijímá

У1	
0	
y ₂	
1	
•••	
У _к О	
0	

y ₁		
0		
y ₂ '		
0	1	
•••		
y _k		
0		

Nedeterministický TS

- **nedeterministický** 1-páskový TS T = (Q, X, δ, q_0 , b, F), kde
 - δ : (Q-F)×X \rightarrow 2^{Q×X×{-1, 0, +1}}
- existuje 3-páskový deterministický TS T', že L(T') = L(T)
 - $(\exists k \in \mathbb{N}) |\delta(q,x)| \leq k$ pro každé $q \in \mathbb{Q}$ a $x \in X$
 - volba prvků ve výsledku přechodové funkce lze zakódovat jako posloupnost v₁,...,vո, kde v¡∈{1,2,...,k}
 - 1. páska je pouze vstupní
 - obsahuje vstupní slovo, T' na ni nic nepíše
 - 2. páska obsahuje volbu výsledků přechodové funkce
 - T' systematicky na tuto pásku generuje všechny konečné posloupnosti $v_1,...,v_n$, s $v_i \in \{1,2,...,k\}$
 - 3. páska je pracovní
 - pracovní prostor pro simulovaný TS T
- simulace výpočtu
 - T' vygeneruje na 2. pásku další konečnou posloupnost v₁,...,v_n
 - na 3. pásku zkopíruje vstupní slovo z 1. pásky
 - v <mark>s-tém kroku pro s≤n, čte T' v, na druhé pásce, x na 3. pásce a nachází se ve stavu q</mark>
 - když $|\delta(q,x)| < v_s$ simulace pokračuje generováním další posloupnosti na 2. pásce
 - jinak T' na 3. pásce provede krok podle v_s-tého prvku δ(q,x)
 - T' přijme, pokud simulovaný T přijme (při některém simulovaném výpočtu)

Lineární omezení

- na pásce je označen levý a pravý konec symbolem # resp. \$ a výpočet nikdy nepřekročí # vlevo resp. \$ vpravo
 - symboly # a \$ nelze přepsat
- počáteční konfigurace se vstupním sloven w∈X* je (λ, q₀,#w\$)
 - lineární omezení lze zavést i pro k-pásek
- lineárně omezené Turingovy stroje přijímají právě kontextové

jazyky

- souvislost s nezkracující gramatikou
 - délka odvozeného slova nikdy nepřekročí délku nakonec odvozeného terminálního slova

Pozn.:

deterministické lineárně omezené TS definují třídu tzv. <u>deterministických</u> <u>kontextových jazyků</u>

LBA problém: platí deterministické kontextové = kontextové?

Lineární omezení ⇒ nezkracování

- □ mějme **lineárně omezený** TS T = (Q, X∪{#,\$}, δ, q_0 , b, F)
 - nezkracující gramatikou chceme vygenerovat slovo $w=x_1x_2...x_n$ s $x_i \in X$, že $w \in L(T)$
 - použijeme více stop v neterminálech
 - (nedeterministicky) vygenerujeme (x₁,[q₀,#,x₁]), (x₂,x₂), ... (x_n,[\$,x_n])
 - horní stopa obsahuje w
 - dolní stopa obsahuje prostor pro výpočet
 - dolní stopa obsahuje stav, symbol, případně indikátor konce

horní stopa -	x ₁	x ₂	•••	X _n
È	\mathbf{x}_1	x_2	•••	X _n
dolní stopa	q_0			
·	#			\$

- nezkracujícími pravidly simulujeme výpočet v dolní stopě
 - stejně jako u převodu TS ⇒ gramatika (pouze přizpůsobit více stopám)
 - při dosažení přijímajícího stavu vymažeme dolní stopu
- přijímání prázdného slova ošetříme zvlášť
 - pokud $\lambda \in L(T)$, přidáme pravidlo $S \rightarrow \lambda$

Nezkracování ⇒ lineární omezení

- □ mějme nezkracující gramatiku $G = (V_N, V_T, S, P)$
 - odvozování slova w=x₁x₂...x_n s x_i∈X pomocí G budeme simulovat lineárně omezeným TS T
 - T bude mít dvoustopou pásku
 - horní stopa bude obsahovat vstupní slovo
 - v<u>dolní stopě</u> bude probíhat odvozování slova

horní stopa -	ш	x ₁	x ₂	•••	X _n	¢
dolní stopa 🚽	#	S				Þ

- nedeterministicky vybereme pravidlo $\alpha \rightarrow \beta$
 - důležitost nedeterminismu lineárně omezených TS
- určí výskyt α v dolní stopě (při více výskytech vybere nedeterministicky)
 - přepíše výskyt α na β
 - vytvoření prostoru
 - přepis
- jsou-li na druhé stopě samé terminály
 - porovná druhou a první stopu
 - při shodě přijme

Rekurzivní jazyky

- Turingův stroj T = $(Q, X, \delta, q_0, b, F)$ rozhoduje jazyk L, jestliže L(T) = L a Tskončí pro každé slovo w∈X*
 - nepřijetí slova u Turigova stroje nastane, když
 - (a) skončí v nepřijímacím stavu
 - (b) neskončí zacyklí se
 - problematická situace
 - když stále ještě neskončil, nelze říci, zda nakonec nepřijme později
 - jazyk L, který je rozhodován nějakým TS, se nazývá rekurzivní
- Postova věta:
 - □ (jazyk L je **rekurzivní**) ⇔ L a -L jsou **rekurzivně spočetné**)
 - - pro L máme rozhodovací TS T, odtud L je rekurzivně spočetný, prohozením přijímajících a nepřijímajících stavů v T máme rozhodovací TS pro -L, tedy -L je rekurzivně spočetný
 - ←
- pro L máme TS T_1 , že $L(T_1) = L$, pro -L máme TS T_2 , že $L(T_2) = -L$
- zkonstruujeme TS, který paralelně simuluje T₁ a T₂ nad daným slovem
 - přijme-li T₁, přijmeme
 - přijme-li T₂, odmítneme
 - platí, že T₁ nebo T₂ přijme a toto nastane po konečně mnoha krocích

Univerzální Turingův stroj (1)

- uvažujme 1-páskové deterministické Turingovy stroje pracující s abecedou {0, 1, (b)}
 - očíslujeme prvky komponent TS
 - Q stavy q₁ (počáteční), q₂ (přijímající), q₃, ... (další stavy)
 - **X** symboly x_1 (symbol 0), x_2 (symbol 1), x_3 (symbol b), x_4 , ... (další symboly)
 - \blacksquare {-1,0,+1} směry d₁ (směr -1), d₂ (směr 0), d₃ (směr +1)
- kódování přechodové funkce
 - položka přechodové funkce δ(q_i,x_i)=(q_k,x_i,d_m) bude kódována slovem
 - 0i10j10k10l10m
 - i,j,k,l,m>0, kód neobsahuje podslovo 11
 - 11 může být využito jako oddělovač
- kódování Turingova stroje T kód(T)
 - konkatenace kódů jednotlivých položek přechodové funkce
 - kód₁.11.kód₂.11.kód₃.11...11.kód_n, kde
 - kód; je kód i-té položky přechodové funkce

Univerzální Turingův stroj (2)

- univerzální Turingův stroj U pro abecedu {0, 1, (b)} dostane na vstupu <u>kód</u> Turingova stroje T a <mark>vstupní slovo w∈X*</mark> ve tvaru
 - kód(T).111.w
- U **simuluje** práci T nad slovem w
 - předpoklady
 - w zakóduje
 - $1 \to 001, 0 \to 000$
 - označí písmeno čtené T
 - například pomocí 011 (čtený symbol 1) resp. 010 (čtený symbol 0)
 - na začátku bude označené první písmeno w
 - na konec vstupního slova zapíše kód počátečního stavu (oddělený 111)
 - reprezentuje aktuální stav
 - na začátku je zapsáno 111.0
 - další prostor na pásce je využit při simulaci
 - v cyklu se opakuje
 - zkontroluje, zda je aktuální stav přijímající v T
 - pokud ano, U přijme vstup
 - v kód(T) vyhledá aplikovatelný přechod pro aktuální stav a čtené písmeno
 - nalezne-li přechod, aplikuje jej přepíše se aktuální stav a čtené písmeno
 - nenajde-li přechod, simulace končí, U nepřijme vstup

Pozn.:

univerzální TS U má abecedu {0, 1, b}, tj. stejnou abecedu jako simulovaný TS T

Pozn.:

v technické praxi U odpovídá např.: interpret Pascalu napsaný v Pascalu nebo interpret Javy napsaný v Javě

Diagonalizace s TS

- pro TS T lze kód(T) interpretovat jako pořadové číslo T
 - □ interpretace $b(b_{n-1}...b_1b_0) = \sum b_i 2^i + 2^n$, kde $b_i \in \{0,1\}$ pro i=0,1,...,n-1
 - T je **b(kód(T))-tý Turingův stroj**
 - jestliže číslu i neodpovídá kód, který je smysluplný, předpokládáme, že i-tý TS nic nepřijímá slova
 - T_i nechť je i-tý Turingův stroj

v stroj		310 V G					
		1	2	3	4	5	•••
	1	10	0	1	1	0	
	2		10				_
Turingovy	3			01			_
stroje	4				01		
	5					10	
	•••						_

- definujeme jazyk $L_d = \{ w \mid w \in \{0,1\}^* \land w \text{ je i-tý binární řetězec} \Rightarrow w \notin L(T_i) \}$
 - pro L_d neexistuje TS, který jej přijímá, tedy L_d není rekurzivně spočetný

Univerzální jazyk

- □ definujeme jazyk $L_u = \{ \frac{k \acute{o} d(T).111.w}{TS T p \acute{e} ij \acute{e} im\acute{e} w} \}$
 - L_u se nazývá univerzální jazyk
 - □ (L_u = L(U) pro U univerzální Turingův stroj
 - L_u je rekurzivně spočetný jazyk (díky univerzálnímu TS)
- L není rekurzivní (nelze rozhodovat)
 - pro spor předpokládejme, že L, rekurzivní je
 - podle Postovy věty L, i -L, jsou rekurzivně spočetné
 - když -L, je rekurzivně spočetný, je i L_d rekurzivně spočetný, což je spor
 - mějme TS T, že $L(T) = -L_u$, zkonstruujeme TS D, že $L(D) = L_d$
 - vstup x
 - D ověří, zda x je kód nějakého TS
 - pokud ne, D přijme
 - zapíše na pásku x.111.x a spustí na tomto vstupu T
 - když T přijme, D přijme
- přijímání u TS se někdy definuje pomocí zastavení (nepokračování přechodové funkce)
 - přijímání zastavením dává stejné jazyky jako přijímání přijímajícím stavem
 - rozhodování L_u pak znamená rozhodovat o zastavení daného TS pro dané slovo
 - L_{II} je znám také jako problém zastavení Turingova stroje (Halting problem)

Pozn.:

alternativně bez Postovy věty: když rozhodovací T' pro L_u

- (i) přijme, pak D nepřijme
- (ii) nepřijme, pak D přijme

Důležité důsledky

- rekurzivně spočetné jazyky **nejsou uzavřené na doplňky**
 - □ zatímco kontextové jsou uzavřené na doplňky
 - L_u je rekurzivně spočetný, ale není kontextový

L_d ukazuje, že nikoli všechny jazyky je možné přijímat TS či generovat

gramatikou

Pozn.:

rozhodnutelnost bezkontextových jazyků ukazuje algoritmus CYK

- $\ \ \ \ \mathcal{L}_{_{f 0}} \supsetneq \mathsf{rekurzivn}$ í jazyky $\supsetneq \mathcal{L}_{_{f 1}}$
 - neformálně
 - kontextové jazyky jsou rozhodnutelné (rekurzivní)
 - pro daný vstup w vygenerujeme všechna možná odvoditelná slova v, že (|v|≤|w|), je-li mezi nimi w přijmeme, jinak odmítneme
 - na pásce ukládáme dosud vygenerovaná slova a kontrolujeme opakování
 - máme horní odhad prostorové složitosti
 - rozhodnutelný problém s větší prostorovou složitostí než je nelezený horní odhad není kontextový

