

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023(ODD)

Course Code &Title: 18MAB201T-Transforms and Boundary Value Problems

Year &Sem: II/III

Tutorial 1 Part A

Q. No	Questions
1	Classify the PDE
	$5u_{xx} - 3u_{yy} + \cos x \ u_x + e^y u_y + u = 0$
2	Classify the equation into hyperbolic, elliptic or parabolic type.
	$x u_{xx} + (x - y)u_{xy} - yu_{yy} = 0$
3	Verify $u(x,t) = -x^2 - (t-1)^2$ is a solution of the wave equation
	$u_{tt} = u_{xx}, -1 < x < 1, t > 0$
	$u(x,0) = -x^2 - 1, \ u_t(x,0) = 2,$
	$u(-1,t) = u(1,t) = -t^2 + 2t - 2.$
4.	Reduce two ODEs by the method of separation of variables from the PDE given below:
	$au_{xt} + bu = 0$,
	where a and b are constants.
5.	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially at rest in its equilibrium position. If it
	is set to vibrate by giving each point a velocity v_0 . Write down the corresponding partial differential equation, initial and boundary conditions.

Part B

6.	Derive all the possible solutions for the one-dimensional wave equation using separation of variable method.
7.	Solve the wave equation:
	$u_{tt} = 4u_{xx}, 0 < x < \pi, t > 0,$
	$u(0,t) = 0 = u(\pi,t), \ t \ge 0,$
	$u(x,0) = \sin x - 2\sin 3x, \ u_t(x,0) = 0, \ 0 \le x \le \pi.$
	Hence find $u\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.
8.	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in a position given by $y(x, 0) = y_0 \sin \frac{2\pi x}{l}$. If it is released from rest from this position, find the displacement y at any distance x from one end at any time t .
9.	Solve the wave equation:
	$u_{tt} = 9u_{xx}, 0 < x < 1, t > 0,$ $u(0,t) = 0 = u(1,t), t \ge 0,$ $u(x,0) = x(1-x), u_t(x,0) = 0, 0 \le x \le 1.$
10.	A taut string of length $2l$ is fastened at both ends. The mid point of the string is taken to a height b and then released from rest in that position. Find the displacement function.