Milestone 4 Detailed Design Checklist

Richard Boone, Kyle Douglas, Sayali Kakade, Sang Min Oh, & Aditya Wadaskar

I. INTENDED SOFTWARE STRUCTURE

PARENT DRONE

The parent drone has one on-board computer, a Raspberry Pi 3 B+, which will run Raspbian Lite (a headless Debian-based Linux distribution). The following table outlines the hardware-software interactions and the layout of the software with respect to each of the modules that will need to be programmed for interaction with the Raspberry Pi.

Hardware Connections to Software	Purpose of Software
USB1 → DJI N3 Flight Controller	UART connection: sends directional instructions to the par-
	ent drone to control its movement. We will explore the exact
	interfacing and API calls further.
USB2 → Wifi Adapter	USB connection: acts as a fail-safe for the DGPS module. It
	allows remote access to the Raspberry Pi for other communica-
	tions between the parent and child drones, if necessary.
USB3 → ublox DGPS Module	USB connection: provides RTK positioning, with the parent
	drone acting as the moving baseline in relation to the child
	drone.
GPIO Pin 2 → Linear Actuator	Applies a linear force to move batteries in and out of the battery-
	switching contraption on the child drone.

The structure of the software on the Raspberry Pi 3 B+ will be as follows:

State 1: Deactivated – The parent drone is not searching for the child drone

State 2: Activated – The parent drone is actively searching for the child drone

State 3: Battery Switching - The child drone is latched onto the parent drone

```
activate linear actuator;
insert new battery into child drone and push out stale battery;
signal child drone to power on and unlatch from parent drone;
while signal acknowledgment not received from child drone do
| keep electromagnets activated;
end
deactivate electromagnets;
while child is latched onto parent do
| hover in place;
end
transition back to state 1;
```

CHILD DRONE

The child drone will also have an on-board computer, a Raspberry Pi Zero W, which will also run Raspbian Lite. The child drone will have a PixRacer flight controller, which will be running the px4 flight control framework. The following table outlines the hardware-software interactions and the layout of the software for the child drone's on-board computer.

Hardware Connections to Software	Purpose of Software
USB → Telemetry1 of PixRacer	Serial port connection: controls the movement of the child
	drone motors using directional commands.
GPIO 4, $6 \rightarrow$ Step-Down Converter	Steps-down the battery voltage from 14.7 V to 5 V for powering
	other peripherals.
GPIO 8, 10 → OpenMV P4/P5	I ² C connection: communicates the location in which the April-
(TX/RX)	Tag (and thus, the parent drone) is detected.
$UART \rightarrow ublox DGPS Module$	Gets the current location of the parent drone with the child
	drone acting as the rover in the ublox RTK moving baseline
	model.

The structure of the software on the Raspberry Pi Zero W will be as follows:

State 1: Deactivated – The parent drone is not searching for the child drone

State 2: Activated - The child drone is hovering and waiting for the parent drone

State 3: Battery Switching - The child drone is latched onto the parent drone

II. SCHEMATICS

Figure 1: Parent Drone Schematic

Figure 2: Child Drone Schematic