Sabes lab expermiental control software

UCSF

September 12 2012

To the best of my rather limited knowledge.

Present implementation:

Previous plan, August 15th 2012

New design:

- Synchronization is an issue.
 - Count TDT sample clocks, tag all relevant events, and store.
 - Put the counter on the PCI bus so the transaction latency \approx = clock period (40.96 μ s)
 - USB bulk/control transaction latency 5.5 ms on Windows. 1 2

¹http://doc.utwente.nl/56344/1/Korver03adequacy.pdf

²Lower for polled HID devices – 125Hz to 1kHz) ←□ → ←② → ←② → ←② → → ② → ○ ○

- Latency should be minimized.
 - Most of the latency is likely in the projector $\approx 16ms + \text{Polhemus } (3.5 \text{ ms}) + \text{non-isochonous USB channel } (\approx 5.5 \text{ ms}) + \text{Windows networking latency } (\approx 0.5\text{ms}).$
 - New 120Hz monitor and projector look great.
 - Lua is fast $(50\mu s)$... but is it worth the effort when most of the latency is elsewhere?

- It makes the most sense to use the native data structures & serialization of a given language.
 - Tables for Lua, *.mat for Matlab, binary files for C.
 - Could post-process lua tables into Matlab.
- Writing EKF / UKF / Wiener filters should be done in Matlab.
- Debugging embedded Lua is a bit of a PITA
 - Avoiding threads / continuations makes things easier.
- People in the lab already know Matlab ...