Research on the stability of generative adversarial network

Zubkov Maxim, Filatov Andrey

Moscow Institute of Physics and Technology (MIPT), Moscow, Russia

20 August 2020

Introduction

Figure 1: GAN structure

Image credit: jrmerwin.github.io

Training issues

- ► Vanishing gradinets
- Discriminator's overfitting
- Hyperparameter sensitivity
- ▶ Mode collapse

Problem statement

Let $\Phi_{\it w}$ be a discriminator and μ_{θ} be a distribution produced by generator

In common case min-max problem is to solved :

$$\min_{\mu_{\theta}} J(\mu_{0}, \mu_{\theta}) = \min_{\mu_{\theta}} \max_{\Phi_{w}} \Psi(\mu_{\theta}, \Phi_{w})$$

Problem statement

Let $\Phi_{\it w}$ be a discriminator and μ_{θ} be a distribution produced by generator

In common case min-max problem is to solved :

$$\min_{\mu_{\theta}} J(\mu_{0}, \mu_{\theta}) = \min_{\mu_{\theta}} \max_{\Phi_{w}} \Psi(\mu_{\theta}, \Phi_{w})$$

Wasserstein-GAN metric:

$$J(\mu_0,\mu_\theta) = \max_{\Phi_w} \Psi(\mu_\theta,\Phi_w) = \max_{\|\Phi_w\|_{Lip} \leq 1} \mathbb{E}_{x \sim \mu_{\boldsymbol{0}}}[\Phi_w(x)] - \mathbb{E}_{x \sim \mu_{\boldsymbol{\theta}}}[\Phi_w(x)]$$

Theoretical insights

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ is a L-smooth and has a lower bound. Let $x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$. Then $\|\nabla f(x_k)\| \to 0$ at $k \to \infty$.

Theorem (Chu et al.)

Let $J: \mu_{\theta} \to \mathbb{R}$ be a convex function. Fix $\mu := \mu_{\theta}$ and consider the optimal discriminator: $\Phi_{\mu}: Y \to [0,1]$. Let it satisfies regularity conditions. Then $\theta \mapsto J(\mu_{\theta})$ is L-smooth.

Regularity conditions

- (D1) $x \mapsto \Phi_{\mu}(x) \alpha$ -Lipschitz,
- (D2) $x \mapsto \nabla_x \Phi_\mu(x) \beta_1$ -Lipschitz,
- (D3) $\mu \mapsto \nabla_x \Phi_{\mu}(x) \beta_2$ -Lipschitz w.r.t 1-Wasserstein distance.

Also, let $f_{\theta}(\omega)$ be a family of generators that satisfies:

- (G1) $\theta \mapsto f_{\theta}(z)$ A-Lipschitz in expectation for $z \sim \omega$, i.e, $\mathbb{E}_{z \sim \omega}[\|f_{\theta_1}(z) f_{\theta_2}(z)\|_2] \le A\|\theta_1 \theta_2\|_2$,
- (G2) $\theta \mapsto D_{\theta} f_{\theta}(z)$ *B*-Lipschitz in expectation for $z \sim \omega$, i.e., $\mathbb{E}_{z \sim \omega}[\|D_{\theta}, f_{\theta}, (z) D_{\theta_2} f_{\theta_2}(z)\|_2] < B\|\theta_1 \theta_2\|_2$.

And smooth constant $L = \alpha B + A^2(\beta_1 + \beta_2)$.

Methods

Aim	Methods	
Discriminator optimality	Vary number of	
	dicriminator iterations	
Lipschitz discriminator	Spectral Norm	
	Adversarial Lipschitz	
	Regularization	
Lipschitz gradient of	Smooth activation	
discriminator	function, Spectral Norm	

Figure 2: Methods

Algorithm 1

3:

5:

6. 7:

8:

9:

10:

1: **while** θ has not converged **do**

2: for
$$t = 0, ..., n_{cr}$$
 do

end for

11: end while

 $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} \Phi_{w}(f_{\theta}(\mathbf{z}^{(i)}))$

 $\theta \leftarrow \theta - \alpha \cdot \mathsf{Adam}(\theta, g_{\theta})$

 $w \leftarrow w + \alpha \cdot \mathsf{Adam}(w, g_w)$

 $g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m \Phi_w(\mathbf{x}^{(i)}) - \frac{1}{m} \sum_{i=1}^m \Phi_w(f_\theta(\mathbf{z}^{(i)})) \right]$

Sample $\{\mathbf{z}^{(i)}\}_{i=1}^m \sim \mu_{\theta}$ a batch of prior samples.

Sample $\{\mathbf{z}^{(i)}\}_{i=1}^m \sim \mu_{\theta}$ a batch of prior samples.

Sample $\{\mathbf{x}^{(i)}\}_{i=1}^m \sim \mu_0$ a batch from the real data.

Training set

Figure 3: Linear combination of normal distributions

Results

Figure 4: GAN training process

Results

Comparison of Improved GAN with different n_{cr}

Conclusion

- Gradient step size, proposed in the theorem guarantees convergence
- \triangleright n_{cr} barely affect Improved GAN, but causes learning process destabilize it at Default GAN

Improved	n _{cr}	Epoch time	Convergence
-	2	2.92 ± 0.04 c	+
-	4	$2.77\pm0.04~\mathrm{c}$	-
-	6	$2.62\pm0.03~\mathrm{c}$	-
+	2	$4.59\pm0.04~\mathrm{c}$	+
+	4	4.26 ± 0.05	+
+	6	4.12 ± 0.02	±

Future work

- ► Ability to generate complex data such as picture
- ► Examine more complex neural architectures
- ► Apply this approach to other gradient methods

Thank you for attention!

Telegram: @mv2357, @aerowind