

Modellierung & Simulation I

WS 2018/2019 Prof. Dr. M. Menth D. Merling

Exercise 8 3. Dezember 2018

Abgabe: 10. Dezember 2018, 12:00 Uhr

Briefly discuss your findings. Results without an explanation will not be assessed!

Problem 8.1: *Birth-death processes*

Given is a queuing system with two Markov service units and two waiting slots. The service rate is μ . The arrival rate is λ if no customer is waiting, $\frac{\lambda}{2}$ otherwise. In the following, the offered load is denoted by $a = \lambda/\mu$ and the relative offered load is $\rho = a/n$.

1.	Give the states and briefly describe their meaning!	5 Points
2.	Give the state transition diagram including transition rates!	10 Points
3.	Formally derive the stationary state probabilities! Define appropriate macro states for this purpose!	or 20 Points
4.	Plot diagrams with states on the x-axis and corresponding probabilities on the y-axi Connect the points belonging to the same $\rho \in \{0.3, 0.7, 0.9\}$ with an interpolating lin and scale the diagram appropriately!	
5.	Calculate the time-average probabilities that new customers need to wait or are blocked	d! 5 Points
6.	Calculate the waiting and blocking probability for new customers! Take into account that the arrival rate depends on the system state!	nt 5 Points
7.	Plot the waiting and blocking probability for new customers in the interval $\rho \in (0,1)!$	10 Points
8.	Calculate the mean server utilization and the mean waiting queue length!	10 Points
9.	Plot the mean utilization and the mean waiting queue length (as multiple of $\frac{1}{\mu}$) in the interval $\rho \in (0,1)!$	ne 5 Points
10.	Formally derive the distribution function of the waiting time for all waiting and for a non-rejected customers, respectively!	all 10 Points
11.	Plot the complementary distribution function of the waiting time for all waiting ar for all non-rejected customers for $\rho=0.9$ in one diagram! Plot the waiting time as multiple of $\frac{1}{\mu}$ on the x-axis and the corresponding probabilities on the y-axis!	
	Total	: 100 Points