CS/BCA(N)/ODD/SEM-1/BMN-101/2019-20

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BMN-101

PUID: 01100 (To be mentioned in the main answer script)

BASIC MATHEMATICAL COMPUTATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) If A and B are square matrices and A^{-1} and B^{-1} exist then $(AB)^{-1}$ =
 - $A^{-1}B^{-1}$

b) AB^{-1}

c) $B^{-1}A^{-1}$

- d) $A^{-1}B$.
- ii) The coefficient of x^{13} in the expansion of $(1-x)^5 (1+x+x^2+x^3)^4$ is
 - a) 0

b) - 4

c) 6

d) 4.

* *-1407/1(N)

| Turn over

- iii) The area of the triangle which the straight line 2x + 3y 12 = 0 forms with the co-ordinate axes is
 - a) 11

b) 14

c) 12

- d) 10.
- iv) The length of latus rectum of the ellipse $16x^2 + 9y^2 = 1$ is
 - a) $\frac{16}{3}$

- (b) $\frac{32}{3}$
- c) $\frac{9}{4}$
- $\frac{9}{2}$
- v) If the origin is shifted to the point (1, -2), then the transformer equation of the curve $x^2 + 4y = 3$ is
 - a) $x^{i2} 2x^i 4y^i + 10 = 0$
 - b) $x^{12} 2x^{1} + 4y^{1} + 10 = 0$
 - c) $x^{1/2} + 2x^1 + 4y^1 10 = 0$
 - d) none of these.
- vi) The value of $\lim_{x \to 0} \frac{4^x 1}{x}$ is
 - a) 4

b) $\frac{1}{2}$

c) 2

al none of these.

* *-1407/1(N)

- vii) The function $f(x) = \frac{x^2}{x-2}$ is
 - a) continuous everywhere
 - discontinuous at x = 2
 - c) discontinuous at x = -2
 - d) none of these.
- viii) If f(x) satisfies the conditions of Rolle's theorem in an interval [a, b] then f'(x) becomes zero at
 - a) only one point in (a, b)
 - b) two points in (a, b)
 - c) three points in (a, b)

none of these.

ix)
$$\begin{array}{ccc} \lim & x \to 0 & x \\ y \to 0 & y \end{array} =$$

- (a) 0
 - b) 1
 - c) ∞
 - d) does not exist.

**-1407/1(N)

3

| Turn over

- The slope of the tangent to the parabola $y^2 = 4ax$ at X) the point $(at^2, 2at)$ is
 - a) $\frac{1}{t}$

b) t

c) -t

- d) none of these.
- xi) The value of $\int \tan 2x \, dx$ is
 - a) $\frac{1}{2} \log \sec 2x$ b) $\frac{1}{2} \sec^2 2x$ c) $\log \sec x$ d) $\sec^2 2x$.

- xii) The value of $\int_{1}^{1} |x| dx$ is

d) none of these.

GROUP - B (Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

How many words can be made using all the letters in the word MONDAY?

* * -1407 / 1(N)

- 3. Find the point on the conic $\frac{6}{r} = 1 + 4 \cos \theta$ whose vectorial angle is $\frac{\pi}{3}$.
- $4. \quad \text{Find } \frac{d}{dx} \left(\frac{(x+1)^3}{x} \right).$
 - 5. Evaluate $\int \frac{x^2 dx}{\sqrt{1+x^3}}$.
 - 6. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx.$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Find the equation of the circle passing through the three points (3, 4), (3, -6) and (-1, 2)
 - b) If the eccentricities of the ellipses $\frac{x^2}{a^1} + \frac{y^2}{\beta^2} = 1$ and $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ be same, show that $a\beta = ba$. 7 + 8
- 8. a) Evaluate $\lim_{x\to 0} \frac{(1+x)^{\frac{9}{2}}-1}{x}$.

* *-1407/1(N)

5

| Turn over

CS/BCA(N)/ODD/SEM-1/BMN-101/2019-20

b) Find
$$\frac{dy}{dx}$$
, where $y = \log \left(\tan \frac{x}{2} \right)$.

c) Find
$$\frac{dy}{dx}$$
, where $x = a(t + \sin t)$, $y = a(1 + \cos t)$ at $t = \frac{\pi}{2}$.

9 a) If
$$u = x^2y + y^2z + z^2x$$
, show that
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = (x + y + z)^2$$

- b) Verify Euler's theorem (1st order) for the function $u(x,y) = x^3 y^3 + 3x^2y + 3xy^2.$ 7 + 8
- 10. a) Evaluate $\int \frac{dx}{x^2 + 4x + 5}$.
 - b) Evaluate $\lim_{x\to 0} \frac{\log x 1}{x e}$.
 - c) Evaluate $\int x^2 e^x dx$.

11. a) Verify Rolle's theorem for the function $f(x) = x^2 - 5x + 6 \text{ in } [2, 3].$

* *-1407/1(N)

6

b) A room has 6 doors. In how many way can a man enter the room through one and come out through a different door?

c) Find
$$\frac{dy}{dx}$$
 when $x^y + y^x = 1$. $6 + 4 + 5$

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये,

Paytm or Google Pay से

https://www.makaut.com