ENSAE TD noté, mardi 12 décembre 2017

Le programme devra être envoyé par mail au chargé de TD et au professeur. Toutes les questions valent 2 points.

1

- 1) Générer un ensemble aléatoire de 1000 nombres (X_i, Y_i) qui vérifie :
 - X_i suit une loi uniforme sur [0, 16]
 - $Y_i = \mathbf{1}_{\{[\sqrt{X_i}] \mod 2 = 0\}}$ où [A] est la partie entière de A.

On pourra se servir de la fonction random du module random. Vous pourrez vérifier que le nuage de points correspond à ce qui est demandé en exécutant le code suivant (si vous êtes dans un notebook, n'oubliez pas %matplotlib inline).

```
import matplotlib.pyplot as plt
plt.plot(X, Y, '.')
```

- 2) Trier les points selon les X. L'instruction list(zip(X,Y)) devrait vous mettre sur la piste.
- 3) On suppose que les Y sont triés selon les X_i croissants. Calculer la somme des différences entre les Y_i et la moyenne m des Y_i (en valeur absolue) sur un intervalle [i,j], j exclu. Ecrire une fonction def somme_diff(nuage, i, j) qui exécute ce calcul qui correspond à $\sum_{k=i}^{j-1} |Y_k m|$ avec $m = (\sum_{k=i}^{j-1} Y_k)/(j-i)$.
- 4) Soit i,j deux entiers, on coupe l'intervalle en deux : i,k et k,j. On calcule somme_diff sur ces deux intervalles, on compare leur somme à celle obtenue sur l'ensemble de l'intervalle. On écrit la fonction def difference(nuage, i, j, k) :. Elle doit calculer $|\Delta_i^k + \Delta_k^j \Delta_i^j|$ où Δ correspond à la fonction somme_diff.
- 5) Le langage Python permet de passer une fonction à une autre fonction en tant qu'argument :

```
def fct(x, y):
    return abs(x-y)
def distance_list(list_x, list_y, f):
    return sum(f(x,y) for x,y in zip(list_x, list_y))
distance_list([0, 1], [0, 2], fct)
```

On veut réécrire les fonctions def somme_diff(nuage, i, j, fct) et def difference(nuage, i, j, k, fct) : de telle sorte que somme_diff calcule $(\sum_{k=i}^{j-1} \mathbf{fct}(Y_k, m)$.

- **6)** On veut déterminer le k optimal, celui qui maximise la quantité précédente dans l'intervalle [i,j] = [0,16]. On souhaite garder la fonction fct comme argument. Pour cela, implémenter la fonction def optimise(nuage, i, j, fct):. Elle retourne le point de coupure et la quantité optimale.
- 7) Recommencer sur les deux intervalles trouvés [i, k], [k, j] et calculer le résultat.
- 8) Pouvez-vous imaginer une fonction récursive qui produit toutes les séparations. Entre deux séparations, tous les Y sont constants. Ecrire la fonction def recursive(nuage, i, j, fct):.
- 9) Quel est le coût de la fonction optimise en fonction de la taille de l'intervalle? Peut-on mieux faire (ce qu'on n'implémentera pas).
- 10) Comment l'algorithme se comporte-t-il lorsque tous les points sont distincts?

ENSAE TD noté, mardi 12 décembre 2017

Le programme devra être envoyé par mail au chargé de TD et au professeur. Toutes les questions valent 2 points.

$\mathbf{2}$

- 1) Générer un ensemble aléatoire de 1000 nombres (X_i, Y_i) qui vérifie :
 - X_i suit une loi uniforme sur [0, 16]
 - $Y_i = \sqrt{X_i} [\sqrt{X_i}]$ où [A] est la partie entière de A.

On pourra se servir de la fonction random du module random. Vous pourrez vérifier que le nuage de points correspond à ce qui est demandé en exécutant le code suivant.

```
%matplotlib inline import matplotlib.pyplot as plt plt.plot(X, Y, '.')
```

- 2) Trier les points selon les X. L'instruction list(zip(X,Y)) devrait vous mettre sur la piste.
- 3) On suppose que les Y sont triés selon les X_i croissants. Calculer la somme des différences au carré entre les Y_i et la moyenne m des Y_i sur un intervalle [i,j], j exclu. Ecrire une fonction def somme_diff(nuage, i, j) qui exécute ce calcul qui correspond à $\sum_{k=i}^{j-1} (Y_k m)^2$ avec $m = (\sum_{k=i}^{j-1} Y_k)/(j-i)$.
- 4) Soit i,j deux entiers, on coupe l'intervalle en deux : i,k et k,j. On calcule somme_diff sur ces deux intervalles, on compare leur somme à celle obtenue sur l'ensemble de l'intervalle. On écrit la fonction def difference(nuage, i, j, k) :. Elle doit calculer $|\Delta_i^k + \Delta_k^j \Delta_i^j|$ où Δ correspond à la fonction somme_diff.
- 5) Le langage Python permet de passer une fonction à une autre fonction en tant qu'argument :

```
def fct(x, y): return (x-y)**2
def distance_list(list_x, list_y, f): return sum(f(x,y) for x,y in zip(list_x, list_y))
distance_list([0, 1], [0, 2], fct)
```

On veut réécrire les fonctions def somme_diff(nuage, i, j, fct) et def difference(nuage, i, j, k, fct) : de telle sorte que somme_diff calcule $(\sum_{k=i}^{j-1} \mathbf{fct}(Y_k, m))$.

- **6)** On veut déterminer le k optimal, celui qui maximise la quantité précédente dans l'intervalle [i,j] = [0,16]. On souhaite garder la fonction fct comme argument. Pour cela, implémenter la fonction def optimise(nuage, i, j,fct):. Elle retourne le point de coupure et la quantité optimale.
- 7) Recommencer sur les deux intervalles trouvés [i,k], [k,j] et calculer le résultat.
- 8) Pouvez-vous imaginer une fonction récursive qui produit toutes les séparations. Entre deux séparations, tous les Y sont constants. Ecrire la fonction def recursive(nuage, i, j, fct):.
- 9) L'algorithme produit beaucoup de points de coupures. On souhaite arrêter la récursion plus tôt en mettant un seuil sur la quantité obtenue $|\Delta_i^k + \Delta_k^j \Delta_i^j|$ qui doit être supérieur à 50.
- 10) Quel est le coût de la fonction optimise en fonction de la taille de l'intervalle? Peut-on mieux faire (ce qu'on n'implémentera pas).