一元一次方程习题课

图像考察

草图回顾

一次函数	$y=kx+b(k,b$ 为常数, $k\neq 0$) (特别地, 当 $b=0$ 时, $y=kx$ 为正比例函数)					
图象 (草图)	O	O	0	O S	c = 0	$O_{\overline{x}}$
经过的象限	一、二、三	一、三	一、三、四	一、二、四	二、四	二、三、四
与x 轴交点 坐标	$\phi_y=0$, 求对应的 x 值, 交点坐标为 $(-\frac{b}{k}, 0)$					
与y轴交点坐 标						

例1: 根据图像解答方程与不等式

思想: 尽可能化解题意,避免过多考虑

1. [2017 新疆乌鲁木齐, 6]一次函数 y=kx+b(k, b) 是 常数, $k\neq 0$)的图象如图所示,则不等式 kx+b>0 的解集是

A.
$$x < 2$$

A.
$$x < 2$$
 B. $x < 0$

C.
$$x>0$$
 D. $x>2$

D.
$$x>2$$

思路: 求特殊点的值, 辅助理解

2. 如图已知直线 $y_1 = -\frac{1}{2}x + 1$ 与x轴交于点A,与直线 $y_2 = -\frac{3}{2}x$ 交天点B

 $y_2 = -\frac{3}{2}x$ 交子点B.

- (1)求△AOB的面积;
- (2)求 $y_1>y_2$ 时x的取值范围;
- (3)求sin **ZBAO**的值.

- (3) 如图,已知一次函数的图象分别交x轴、y轴于A、B两点,且OA= OB=3,一次函数 y_2 = $\frac{1}{2}x$ +1的图象与其交于点C,与y轴交于点D.
- ①求该一次函数的解析式;
- ②求交点C的坐标及 $\triangle BDC$ 的面积;

应用题考察

考点1:读懂图像,理解图像与实际关系的联系

- 如图,反映了小明从家到超市购物的全过程,时间与距家路程之间关系如图。
- (1) 图中反映了哪两个变量之间的关系? 超市离家多远?
- (2) 小明在超市待了多少时间? 小明从超市回到家花了多少时间?
- (3) 小明从家到超市时的平均速度是多少?
- (4) 求返回时距离与时间(分)之间的函数关系式。

考点2: 按题意做函数

6、某商场欲购进 A、B 两种品牌的饮料共 500 箱,此两种饮料每箱的进价和售价如下表所示。设购进 A 种饮料 X 箱,且所购进的两种饮料能全部卖出,获得的总利润为 Y 元。

品牌	A	В
进价(元/箱)	55	35
售价(元/箱)	63	40

- (1) 求 y 关于 x 的函数关系式:
- (2) 如果购进两种饮料的总费用不超过 20000 元,那么该商场如何进货才能获利最多?并求出最大利润。(注:利润=售价-进价)

考点3:综合应用题:结合不等式

- 例 3 荆门火车货运站现有甲种货物 1530 吨, 乙种货物 1150 吨, 安排用一列货车将这批货物运往广州, 这列货车可挂 A、B 两种不同规格的货厢 50 节,已知用一节 A 型货厢的运费是 0.5 万元,用一节 B 型货厢的运费是 0.8 万元。
- (1)设运输这批货物的总运费为 y (万元),用 A 型货厢的节数为 x (节),试写出 y 与 x 之间的函数关系式;
- (2)已知甲种货物 35 吨和乙种货物 15 吨,可装满一节 A 型货厢,甲种货物 25 吨和乙种货物 35 吨可装满一节 B 型货厢,按此要求安排 A、B 两种货厢的节数,有哪几种运输方案?请你设计出来。
 - (3) 利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?

例 4 某工厂现有甲种原料 360 千克, 乙种原料 290 千克, 计划利用这两种原料生产 A、B 两种产品, 共 50 件。已知生产一件 A 种产品, 需用甲种原料 9 千克、乙种原料 3 千克, 可获利润 700 元; 生产一件 B 种产品, 需用甲种原料 4 千克、乙种原料 10 千克, 可获利润 1200 元。

- (1) 按要求安排 A、B两种产品的生产件数,有哪几种方案?请你设计出来;
- (2) 设生产 A、B 两种产品获总利润为 y (元),生产 A 种产品 x 件,试写出 y 与 x 之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?