31-07-2023

In []: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [436]: a=pd.read_csv(r"C:\Users\user\Downloads\20_states.csv")
a

Out[436]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	longitude
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	70.811995
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	63.769538
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	68.745306
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060	66.897537
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	67.821210
5072	1953	Mashonaland West Province	247	ZW	Zimbabwe	MW	NaN	-17.485103	29.788925
5073	1960	Masvingo Province	247	ZW	Zimbabwe	MV	NaN	-20.624151	31.262637
5074	1954	Matabeleland North Province	247	ZW	Zimbabwe	MN	NaN	-18.533157	27.549585
5075	1952	Matabeleland South Province	247	ZW	Zimbabwe	MS	NaN	-21.052337	29.045993
5076	1957	Mid l ands Province	247	ZW	Zimbabwe	MI	NaN	-19.055201	29.603549

5077 rows × 9 columns

```
In [437]: a=a.head(10)
a
```

Out[437]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	longitude
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	70.811995
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	63.769538
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	68.745306
3	3884	Ba l kh	1	AF	Afghanistan	BAL	NaN	36.755060	66.897537
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	67.821210
5	3892	Daykundi	1	AF	Afghanistan	DAY	NaN	33.669495	66.046353
6	3899	Farah	1	AF	Afghanistan	FRA	NaN	32.495328	62.262663
7	3889	Faryab	1	AF	Afghanistan	FYB	NaN	36.079561	64.905955
8	3870	Ghazni	1	AF	Afghanistan	GHA	NaN	33.545059	68.417397
9	3888	Ghōr	1	AF	Afghanistan	GHO	NaN	34.099578	64.905955

In [438]: a.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 9 columns):
```

	,	,	
#	Column	Non-Null Count	Dtype
0	id	10 non-null	int64
1	name	10 non-null	object
2	country_id	10 non-null	int64
3	country_code	10 non-null	object
4	country_name	10 non-null	object
5	state_code	10 non-null	object
6	type	0 non-null	object
7	latitude	10 non-null	float64
8	longitude	10 non-null	float64
dtype	es: float64(2)	, int64(2), obje	ct(5)

```
In [439]: a.columns
```

memory usage: 848.0+ bytes

Out[440]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	longitude
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	70.811995
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	63.769538
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	68.745306
3	3884	Ba l kh	1	AF	Afghanistan	BAL	NaN	36.755060	66.897537
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	67.821210
5	3892	Daykundi	1	AF	Afghanistan	DAY	NaN	33.669495	66.046353
6	3899	Farah	1	AF	Afghanistan	FRA	NaN	32.495328	62.262663
7	3889	Faryab	1	AF	Afghanistan	FYB	NaN	36.079561	64.905955
8	3870	Ghazni	1	AF	Afghanistan	GHA	NaN	33.545059	68.417397
9	3888	Ghōr	1	AF	Afghanistan	GHO	NaN	34.099578	64.905955

In [441]: d.describe()

Out[441]:

	id	country_id	latitude	Iongitude
count	10.000000	10.0	10.000000	10.000000
mean	3884.100000	1.0	34.953490	66.458391
std	11.589746	0.0	1.477933	2.579742
min	3870.000000	1.0	32.495328	62.262663
25%	3872.750000	1.0	33.777016	64.905955
50%	3886.000000	1.0	34.988570	66.471945
75%	3891.250000	1.0	36.154067	68.268350
max	3901.000000	1.0	36.755060	70.811995

In [443]: sns.distplot(a['longitude'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Please
adapt your code to use either `displot` (a figure-level function with similar flexibil
ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[443]: <AxesSubplot:xlabel='longitude', ylabel='Density'>

In [404]: x1=a[['id', 'country_id', 'latitude']]

```
In [405]: sns.heatmap(x1.corr())
Out[405]: <AxesSubplot:>
                                                                                      - 1.0
               Location.Cordinates.Latitude
                                                                                       - 0.8
                                                                                      - 0.6
                                                                                      - 0.4
              Location.Cordinates.Longitude -
                                                                                      - 0.2
                     Data.Magnitude.Body -
                                                                                       - 0.0
                                                                                        -0.2
                   Data.Magnitude.Surface -
                                                                                        -0.4
                                                                                       -0.6
                                                                 Data.Magnitude.Body -
                                                                            Data.Magnitude.Surface
                                                      Location.Cordinates.Longitude
In [444]: | x=a[['id', 'country_id', 'latitude']]
            y=a['longitude']
In [445]: | from sklearn.model_selection import train_test_split
            x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [446]: from sklearn.linear_model import LinearRegression
            lr=LinearRegression()
            lr.fit(x_train,y_train)
Out[446]: LinearRegression()
In [447]: print(lr.intercept_)
             550.0605887546454
In [448]: | coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
            coeff
Out[448]:
                         Co-efficient
                           -0.126970
                     id
             country_id
                           0.000000
                latitude
                           0.241712
```

```
prediction=lr.predict(x_test)
In [449]:
          plt.scatter(y_test,prediction)
Out[449]: <matplotlib.collections.PathCollection at 0x190c6452130>
           66.5
           66.0
           65.5
           65.0
           64.5
           64.0
                66
                         67
                                  68
                                          69
                                                   70
In [450]: print(lr.score(x_test,y_test))
          -4.207250283337438
In [451]:
         from sklearn.linear_model import Ridge,Lasso
          rr=Ridge(alpha=10)
In [452]:
          rr.fit(x_train,y_train)
Out[452]: Ridge(alpha=10)
In [453]: |rr.score(x_test,y_test)
Out[453]: -4.528670035890717
In [454]: la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[454]: Lasso(alpha=10)
In [455]: la.score(x_test,y_test)
Out[455]: -2.9515925374866674
In [456]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[456]: ElasticNet()
In [457]: print(en.coef_)
          [-0.12806125 0.
                                     0.
                                                1
```

```
In [458]:
          print(en.intercept_)
          562.6840904609145
In [459]:
          print(en.predict(x test))
          [63.11714975 66.44674228 64.26970101]
In [460]: en.score(x_test,y_test)
Out[460]: -4.922673415078662
In [461]: from sklearn import metrics
In [462]:
          print("Mean Absolute Error", metrics.mean_absolute_error(y_test, prediction))
          Mean Absolute Error 3.716914720062898
In [463]: print("Mean Squared Error", metrics.mean squared error(y test, prediction))
          Mean Squared Error 19.826254267954145
In [464]: | print(" Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction))
           Root Mean Squared Error 4.452668218939532
In [465]:
          import pickle
          filename="prediction"
In [466]:
          pickle.dump(lr,open(filename,'wb'))
In [467]:
          import pandas as pd
          import pickle
In [468]:
          filename="prediction"
          model=pickle.load(open(filename, "rb"))
In [469]:
          real=[[10,20,24,],[15,30,36]]
          result=model.predict(real)
In [470]: result
Out[470]: array([554.59196495, 556.85765305])
```