

自动控制理论

第六章 频率特性分析法

CHAPTER 6 Frequency Response

第六章主要内容

- 概述
- Bode 图 (对数坐标图)
- ✓ 极坐标图
- ✓ Nyquist稳定性判据
- ✓ 频域指标 vs 时域动态指标

少频域指标与射域动态

典型单位负反馈二阶系统

开环传递函数
$$G(s) = \frac{K}{s(Ts+1)} = \frac{K/T}{s(s+1)}, K > 0, T > 0, 最小相位$$

闭环传递函数
$$\Phi(s) = \frac{K/T}{s^2 + s/T + K/T} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \omega_n = \sqrt{K/T}, \zeta = 1/\sqrt{4KT} > 0$$

开环频率特性
$$G(j\omega) = \frac{\omega_n^2}{j\omega(j\omega + 2\zeta\omega_n)}$$

记开环频率特性的截止频率为一

$$\left| G(j\omega_c) \right| = \frac{\omega_n^2}{\omega_c \sqrt{\omega_c^2 + 4\zeta^2 \omega_n^2}} = 1 \qquad \Longrightarrow \qquad \left(\frac{\omega_c^2}{\omega_n^2} \right)^2 + 4\zeta^2 \left(\frac{\omega_c^2}{\omega_n^2} \right) - 1 = 0$$

$$\left(\frac{\omega_c^2}{\omega_n^2}\right)^2 + 4\zeta^2 \left(\frac{\omega_c^2}{\omega_n^2}\right) - 1 = 0$$

$$\left(\frac{\omega_c}{\omega_n}\right) = \left(\sqrt{4\zeta^4 + 1} - 2\zeta^2\right)^{\frac{1}{2}}$$

当阻尼比 ζ 一定的情况下,开环截止频率 ω_c 越大,自然频率 ω_n 也越大,闭环系统 的上升时间、峰值时间和调节时间越小, 系统的响应速度加快

>> 频域指标与时域动态

开环频率特性 $G(j\omega) = \frac{\omega_n^2}{j\omega(j\omega + 2\zeta\omega_n)}$

开环相频特性
$$\angle G(j\omega) = -90^{\circ} - \operatorname{atan}\left(\frac{\omega}{2\zeta\omega_n}\right)$$

$$\gamma = 180^{\circ} + \angle G(\omega_c) = 180^{\circ} - 90^{\circ} - \operatorname{atan} \frac{\omega_c}{2\zeta\omega_n}$$
$$= 90^{\circ} - \operatorname{atan} \frac{\omega_c}{2\zeta\omega_n}$$

$$= \operatorname{atan}\left(\frac{2\zeta\omega_n}{\omega_c}\right)$$

$$= \operatorname{atan}\left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}\right)$$

$$\left(\frac{\omega_c}{\omega_n}\right) = \left(\sqrt{4\zeta^4 + 1} - 2\zeta^2\right)^{\frac{1}{2}}$$

 γ 仅与 ζ 有关, ζ 为 γ 的增函数,且 在 $\zeta \leq 0.7$ 的范围内,可以近似地用 一条直线表示它们之间的关系

$$\zeta \approx 0.01 \gamma$$

V CSE

***频域指标与射域动态指标的关系

闭环频率特性
$$\Phi(j\omega) = \frac{1}{1 - (\omega/\omega_n)^2 + j2\zeta(\omega/\omega_n)}$$

 $\zeta > 0, \Phi(s)$ 无极点和零点在原点

记闭环频率特性 $\Phi(j\omega)$ 的带宽频率为 ω_{k}

$$20\lg|\Phi(j\omega_b)| = 20\lg|\Phi(0)| - 3$$

$$|\Phi(j\omega_b)| = 10^{-\frac{3}{20}} = 0.708$$

$$\frac{1}{\left(1 - (\omega_b/\omega_n)^2\right)^2 + 4\zeta^2 (\omega_b/\omega_n)^2} = 0.708^2$$

$$\left(1 - \frac{\omega_b^2}{\omega_n^2}\right)^2 + 4\zeta^2 \left(\frac{\omega_b^2}{\omega_n^2}\right) - 2 = 0$$

$$\frac{\omega_b}{\omega_n} = \sqrt{1 - 2\zeta^2 + \sqrt{2 - 4\zeta^2 + 4\zeta^4}}$$

当阻尼比 ζ 一定的情况下,闭环带宽频率 $\omega_{\rm b}$ 越大,自然频率 $\omega_{\rm n}$ 也越大,闭环系统 的上升时间、峰值时间和调节时间越小, 系统的响应速度加快

对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减

合理选择控制系统的带宽: 既以所需精度跟踪输入信号,又能抵制噪声扰动信号

***频域指标与射域动态指标的关系

二阶系统频域指标与时域指标的关系

闭环谐振峰值
$$M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}, \ \zeta \le 0.707$$
 $\sigma = e^{-\pi\sqrt{\frac{M_r-\sqrt{M_r^2-1}}{M_r+\sqrt{M_r^2-1}}}} \times 100\%$

$$\sigma = e^{-\pi \sqrt{\frac{M_r - \sqrt{M_r^2 - 1}}{M_r + \sqrt{M_r^2 - 1}}}} \times 100\%$$

闭环谐振频率
$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}, \ \zeta \le 0.707$$

闭环带宽频率

$$\omega_b = \omega_n \sqrt{1 - 2\zeta^2 + \sqrt{2 - 4\zeta^2 + 4\zeta^4}}$$

开环截止频率
$$\omega_c = \omega_n \sqrt{\sqrt{1 + 4\zeta^4} - 2\zeta^2}$$

相位裕度

$$\gamma = arctg \left(\frac{2\zeta}{\sqrt{\sqrt{1 + 4\zeta^4} - 2\zeta^2}} \right)$$

调节时间

$$T_s = \frac{3.5}{\zeta \omega_n}$$

$$T_s = \frac{3.5}{\zeta \omega_n} \qquad \omega_n T_s = \frac{7}{tg\gamma}$$

二阶系统的谐振峰值 $M_r = 1.2 \sim 1.5$ 时,对 应的系统超调量 $\sigma=20\sim30\%$,这时系统 $\frac{\omega_b = \omega_n \sqrt{1 - 2\zeta^2 + \sqrt{2 - 4\zeta^2 + 4\zeta^4}}}{\text{可以获得较为满意的过渡过程。如果} M_r}$ >2,则系统的超调量 σ 将超过40%。

频域指标与射域动态指标的关系

高阶系统:如存在主导极点,可采用二阶系统的公式; 如不存在主导极点,有相应的频域与时域指标的近似公 式:

谐振峰值

$$M_r = \frac{1}{|\sin \gamma|}$$

超调量

$$\sigma = 0.16 + 0.4(M_r - 1), 1 \le M_r \le 1.8$$

调节时间

$$T_s = \frac{K_0 \pi}{\omega_c}$$

$$K_0 = 2 + 1.5(M_r - 1) + 2.5(M_r - 1)^2, 1 \le M_r \le 1.8$$

频域指标与射域动态指标的关系

◆ 一般情况下,若性能指标以稳态误差 e_{ss} 、峰值时间 T_p 、最大超调 量 σ 和过渡过程时间(调节时间) $T_{\rm c}$ 等时域性能指标给出时,应 用根轨迹法进行综合比较方便

◆ 如果性能指标是以相位裕度 γ 、幅值裕度 h 、谐振峰值 M_r 、谐振频 率 ω_r 和系统带宽 ω_h 等频域性能指标给出时,应用频率特性法进行 综合与校正更合适

性能与方法

域特性	时域 微分方程 分析法	复域 传递函数 根轨迹法	频域 频率特性 频率法(开环Bode图法) 开环因果且最小相位 主要用于0型、1型和2型
稳 定 性	自由响应收敛到零	闭环极点位于左半开平 面	相位裕度大于0、幅值裕度大于1 截止频率附近相当宽的频段内斜率为-20dB/dec
稳 态	对阶跃、斜坡、加速度等的稳态响应 与输入信号间的差	原点处的开环极点数 工作点处的开环根轨迹 增益	对数幅频曲线的起始斜率 低频段幅值
动 态	调节时间 $T_{ m s}$ 最大超调量 σ	主导极点的阻尼比 ζ 主导极点的自然频率 $\omega_{ m n}$	相位裕度 γ 截止频率 $\omega_{\rm c}$

*** 系统校正的频域法

(1) 稳

相位裕度 γ 不低于45度 幅值裕度不低于6dB

(2) 快

相位裕度%在45度到60度之间 尽可能大的开环截止频率 ω_c

(3) 准

开环幅频起始斜率为-20dB/dec或-40dB/dec 低频段应有较高幅值

(4) 抗干扰

开环高频段应有尽可能大的斜率。高频段特性是由小时间常数的环节决 定的,由于其转折频率远离截止频率 ω_c ,所以对系统动态响应影响不 大。但从系统的抗高频干扰能力来看,则需引起重视。 10

全 系统校正的频域法

三个频段

