一. 系统组成

主机: PC 上位机或者控制器 从机: BMS (锂电池保护板)

二. 通信方式

USART

波特率: 9600, 数据位 8, 无校验, 一个停止位

三. 通信协议组成

帧头	地址	命令	数据长	数据内	校验位	校验位	帧尾	帧尾
(0x3A)	(0x16)		度	容	低字节	高字节	1(0x0D)	2(0x0A)

数据长度:指数据内容的长度

校验计算: 从地址开始算起, 到数据内容截止, 期间的数据累加和

数据:数据都是低字节在前,高字节在后

四. 命令列表

0x08	电池组内部温度(2BYTES)	(上报-2731)/10 = 实际温度		
		(0.1度)		
0x09	电池总电压(2BYTES)	mV		
0x0A	电池实时电流(2BYTES)	mA(充电为正,放电为负)		
0x0D	相对容量百分比(2BYTES)			
0x0E	绝对容量百分比(2BYTES)			
0x0F	剩余容量(2BYTES)	mAH		
0x10	满电容量(2BYTES)	mAH		
0x17	循环次数(2BYTES)			
0x24	1-7 节电池电压(14BYTES)	mV		
0x25	8-14 节电池电压(14BYTES)	mV		
0x26	15-21 节电池电压(14BYTES)	mV		
0x55	让电池进入 shipmode			
0x37	关掉或者打开放电 mos			
0x38	电池休眠 GPRS 模块指令	电池主动发送给 GPRS		

电流计算:

上报值为 0xff00 此时最高位为 1, 代表负电流(放电)转化为实际电流

~0xff00+1= 实际电流 = 256->2560mA

上报值为 0x0010, 此时最高位为 0,代表正电流(充电)转化为实际电流

0x0010 = 16mA

五. 应用举例

主机发: 3A 16 08 01 0B 2A 00 0D 0A BMS 回复: 3A 16 08 02 73 0B 9E 00 0D 0A

0x009E 0x16 + 0x08 + 0x02 + 0x73 + 0x0B = 0x009E

六.电池进入 shipmode

主机发: 3A 16 55 01 0B 77 00 0D 0A

七.控制电池放电 mos 的打开或者关闭

0x37

举例: 打开放电 mos

主机发送: 3A 16 37 01 00 54 00 0D 0A

举例:关闭放电 mos

主机发送: 3A 16 37 01 01 55 00 0D 0A

八.电池休眠 GPRS

GPRS 要能够唤醒电池,当客户在 APP 端操作了 APP,需要获取数据时,GPRS 此时要发送读取电池数据的命令,唤醒电池,在唤醒状态下 GPRS 可以每隔 30s 读取一下电池数据,当电池需要休眠时,会发送休眠指令给 GPRS 模块,当 GPRS 模块休眠后,不应该再发读取电池数据的命令,除非收到了手机端用户操作 APP

九.GPRS 后台目前不需要存储电池数据(后续有可能增加)