Subjecte algebra iulie 2022

- 1. Rimel principal gi L um R modul de nang m. bom. că orice R submodul al lui el este R modul liber de nang $\leq m$. 2. Fil L = ((2,-1,1), (2,0,1), (-1,2,1), (0,3,3))
 - a) factorii invarianti și e Z basă pentru L
 - b) sunt modulelle Z3 și L egale?
 - 3. x13-x10-4x8+4x5+4x3-4EQ[X]
 - a) gradul extimolerii QCQf.
- b) Să se arate că (3) un res. m natural a.1. Q(5) este inclus mo cel de-al m-lea cosp ciclotomic.

Solution baren detalist.

Solubii m' borem decare.

Ex 1 (Leoniz) · Inductie : carul
$$n=1$$
 (0,5 puncts)

· panul de inductie $n-1 \mapsto n$ (2 puncts).

Ex 4 (4) $\phi_{240} = ?$
 $\phi_{240}(x) = \phi_{24,3.5}(x) \stackrel{\textcircled{a}}{=} \phi_{2.3.5}(x) \stackrel{\textcircled{a}}{=} \phi_{2.3.5}(x)$
 $\phi_{2.3.5}(x) \stackrel{\textcircled{a}}{=} \phi_{3.5}(x) \stackrel{\textcircled{a}}{=} \phi_{2.3.5}(x) \stackrel{\textcircled{a}}{=} \phi_{2.3.5}(x)$
 $\phi_{3.5}(x) \stackrel{\textcircled{a}}{=} \phi_{3}(x^{5}) = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{5} + 1}{x^{2} + x + 1} = \frac{x^{10} + x^{10} + 1}{x^{2} + x +$

Ex. 2 (1) Factorii immorianti ai lui L în Z³ sunt d₁ = 1, d₂ = 1 și d₃ = 3, deci rang L = 3. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} = :D = UAV, \text{ unde } A = \begin{pmatrix} 2 & -1 & 1 \\ 2 & 0 & 1 \\ -1 & 2 & 1 \\ 0 & 3 & 3 \end{pmatrix},$ U=D3(-1) T32(-3) T43(-2) T41(-3) T31(-1) T21(-1) EGL4(2), V = P13 T12(1) T3(-2) & GL3(Z). (1 punct) Notand Zer, ez, ez ? baza camonica a Z-modulului Z, aven ca 3 fr. fz, fz ? este de asemenea Z-baza a lui \mathbb{Z}^3 , mude $\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \sqrt{\begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}}$, ion o boja su L'este 3 d, fi, defe, d3 f3}, aunue {2e,-e2+e3, e2,3e3}. (1 punct) (2) L # \mathbb{Z}^3 raci d_3 # $U(\mathbb{Z})$. (0,5 puncte)

Dacă, prin absurd, L = \mathbb{Z}^3 , atunci matricea

D= (100) ar romspunde muei schimbari de bara

D= (100) ar romspunde muei schimbari de bara

Lu \mathbb{Z}^3 , deci \mathbb{Z} = \mathbb{G} L₃(\mathbb{Z}), reea re e fals.

3.(1)Qg = Q(TZ, G, Z,) - 0,5 pour de Q = Q(\$\fiz) * Q(\fiz) * Q(\fiz) * Q(\fiz); [Q(1): Q]=5, [Q(5): Q]=9(1)=8, 81 cam (5,8)=1, 2020 CC [Q:Q]=5.8=40-(2) + i e & = cos \frac{20}{8} + i sin \frac{20}{8} = cos \frac{1}{4} + i sin \frac{1}{4} = cos \frac{1}{4} 0,25 printe.

Prince armore, \$\square, \$\squar - Q(524); deci gå sim n=21-0,5 pour le ALITEL: Obsession ca 5 = 63 th 5 = 624 asa ca \(\frac{7}{21} + \frac{7}{24} \) (\frac{8}{24} + \frac{7}{24} + \frac{7}{24} \) (\frac{8}{24} + \frac{7}{24} + \frac{7}{2