

Statistika Non Parametrik TSD - Ganjil 2022/2023

Pertemuan 5:

Uji Keselarasan / Kesesuaian / GoF

Outline

- 1. Uji Chi-square
- 2. Uji Kolmogorov-Smirnov
- 3. Uji distribusi Uniform (dengan uji Chi-Sq)
- 4. Uji distribusi Binomial (dengan uji Chi-Sq)
- 5. Uji distribusi Poisson (dengan uji Chi-Sq)
- 6. Uji distribusi Uniform (dengan uji KS) (Next Week)
- 7. Uji distribusi Binomial (dengan uji KS) (Next Week)
- 8. Uji distribusi Poisson (dengan uji KS) (Next Week)
- 9. Uji distribusi Normal (dengan uji Chi-Sq, KS, Liliefors) (Next Week)

UJI KESELARASAN/ KESESUAIAN/ GOODNES OF FIT

- Ada dua macam cara pengujian untuk keselarasan/kesesuaian data dengan suatu distribusi peluang tertentu yaitu dengan menggunakan UJI CHI-SQUARE dan UJI KOLMOGOROV SMIRNOV.
 Sedangkan khusus untuk menguji keselarasan distribusi normal masih ada uji lainnya yaitu UJI LILLIEFORS.
- Pengujian hipotesis keselarasan (*goodness of fit*) merupakan pengujian hipotesis untuk menentukan apakah suatu himpunan frekuensi yang diharapkan sama dengan frekuensi yang diperoleh dari suatu distribusi, seperti distribusi binomial, poisson, normal, atau dari perbandingan lain.
- Jadi, uji goodness of fit merupakan pengujian kecocokan atau kebaikan antara hasil pengamatan (frekuensi pengamatan) tertentu dengan frekuensi yang diperoleh berdasarkan nilai harapannya (frekuensi teoretis)

UJI KESELARASAN/ KESESUAIAN/ GOODNES OF FIT

- ASUMSI ASUMSI :
 - 1. sampel terdiri n pengamatan bebas
 - 2. skala pengukuran minimal yang mungkin digunakan nominal
 - 3. hasil pengamatan diklasifikasikan dalam r kategori yang tidak saling tumpang tindih
- Adapun bentuk perumusan hipotesisnya secara umum dapat dituliskan seperti berikut di bawah ini.
- HIPOTESIS:

H₀: data sampel berasal dari suatu populasi berdistribusi

H₁: data sampel tidak berasal dari suatu populasi berdistribusi

Uji Chi-square

Uji Chi-square

Langkah-langkah yang dilakukan secara umum dalam pengujian chi square sebagai berikut :

- a. Membuat formulasi hipotesis (H_0 dan H_1)
- b. Menentukan taraf signifikansi (α)
- c. Memilih uji statistik yang sesuai (χ^2_{hitung} dibandingkan dengan χ^2_{tabel})
- d. Menentukan kesimpulan / pengambilan keputusan

Uji Chi-square

Perumusan hipotesis

H₀: **tidak ada** perbedaan antara frekuensi yang diamati dengan frekuensi yang diharapkan

H₁: ada perbedaan antara frekuensi yang diamati dengan frekuensi yang diharapkan

Statistik uji

$$\chi^2_{hitung} = \sum \left\lceil \frac{\left(f_o - f_e\right)^2}{f_e} \right\rceil$$

 f_0 = besarnya frekuensi yang diamati (*observed*)

= besarnya frekuensi yang diharapkan (expected)

Daerah penolakan

Daerah penolakan

Tolak
$$H_0$$
 apabila $\chi^2_{hitung} \ge \chi^2_{tabel} \longrightarrow \chi^2_{\alpha,(k-1)}$

k : banyaknya kategori atau jumlah kelas

Untuk menarik konsumen dilakukan pembungkusan barang dengan menggunakan warna yang berbeda. Dari pasaran bebas diteliti pilihan warna dari konsumen. Hasilnya dari 1000 barang ternyata para konsumen telah membeli dengan pembungkus warna merah, hijau, biru, dan kuning berturut-turut 205, 286, 315 dan 194. Apakah penelitian ini berhasil memperlihatkan bahwa warna-warna pembungkus berlainan telah mengakibatkan selera pembeli yang berlainan pula? Gunakan taraf signifikansi 5% .

Jawab

Perumusan hipotesis

H₀: warna pembungkus **tidak mempengaruhi** selera pembeli

H₁: warna pembungkus **mempengaruhi** selera pembeli

• Taraf Signifikansi

$$\alpha = 5\%$$

Statistik uji

Warna	fo	fe	(fo-fe)	(fo-fe)^2	(fo-fe)^2/fe
Merah	205	250	-45	2025	8.1
Hijau	286	250	36	1296	5.184
Biru	315	250	65	4225	16.9
Kuning	194	250	-56	3136	12.544
Jumlah	1000	1000			42.728

$$\chi^2_{hitung} = \sum \left[\frac{\left(f_o - f_e \right)^2}{f_e} \right] = 42,728$$

Daerah penolakan

Berdasarkan Tabel diperoleh $\chi^2_{tabel} = \chi^2_{\alpha,(k-1)} = \chi^2_{5\%,(4-1)} = \chi^2_{5\%,(3)} = 7,815$ Daerah kritisnya adalah $\geq 7,815$

Kesimpulan

Karena $\chi^2_{hitung} > \chi^2_{tabel}$ maka TOLAK H₀

Artinya penelitian ini berhasil memperlihatkan bahwa warna-warna pembungkus berlainan telah mengakibatkan selera pembeli yang berlainan pula

Table A.5 (continued) Critical Values of the Chi-Squared Distribution

	α								
$oldsymbol{v}$	0.30	0.25	0.20	0.10	0.05	0.025	0.02		
1	1.074	1.323	1.642	2.706	3.841	5.024	5.412		
2	2.408	2.773	3.219	4.605	5.991	7.378	7.824		
3	3.665	4.108	4.642	6.251	7.815	9.348	9.837		
4	4.878	5.385	5.989	7.779	9.488	11.143	11.668		
5	6.064	6.626	7.289	9.236	11.070	12.832	13.388		

Bagaimana hubungan antara **pengetahuan**, **sikap** dan **perilaku** wanita hamil tentang mual-muntah di poliklinik kebidanan RSCM tahun 2021?

Kerangka konsep penelitian: Pengetahuan→Sikap→Perilaku

Dikelompokkan menjadi Baik, Cukup, dan Kurang

Ujilah apakah ada hubungan antara **Pengetahuan** dan **Perilaku** wanita hamil di poliklinik kebidanan RSCM tahun 2021.

PENGETAHUAN	Baik	Cukup	Kurang	
Baik	18 (a)	10 (b)	7 (c)	35
Cukup	13 (d)	14 (e)	13 (f)	40
Kurang	13 (g)	12 (h)	25 (i)	50
TOTAL	44	36	45	125

Jawab

Perumusan hipotesis

H₀: Pengetahuan **tidak mempengaruhi** perilaku ibu hamil

H₁: Pengetahuan **mempengaruhi** perilaku ibu hamil

Statistik uji

Pengetahuan baik, perilaku baik (sel a)

- observed=18

- Expected=
$$\frac{total\ baris\ 1 \times total\ kolom\ 1}{grand\ total} = \frac{35 \times 44}{125} = 12,32$$

Sel	Observed	Expected	(O-E)	(O-E)^2	(O-E)^2/E
a	18	12.32	5.68	32.2624	2.618701
b	10	10.08	-0.08	0.0064	0.000635
С	7	12.6	-5.6	31.36	2.488889
d	13	14.08	-1.08	1.1664	0.082841
е	14	11.52	2.48	6.1504	0.533889
f	13	14.4	-1.4	1.96	0.136111
g	13	17.6	-4.6	21.16	1.202273
h	12	14.4	-2.4	5.76	0.4
i	25	18	7	49	2.722222
Total	125	125			10.18556

$$\chi_{hitung}^{2} = \sum \left[\frac{\left(f_{o} - f_{e} \right)^{2}}{f_{e}} \right] = 10,185$$

Taraf Signifikansi

$$\alpha = 5\%$$

Daerah penolakan

df=(baris-1)(kolom-1)

Berdasarkan Tabel diperoleh $\chi^2_{tabel} = \chi^2_{\alpha,(3-1)(3-1)} = \chi^2_{5\%,(4)} = 9,488$

Daerah kritisnya adalah ≥ 9,488

Kesimpulan

Karena $\chi^2_{hitung} > \chi^2_{tabel}$ maka TOLAK H₀

Artinya penelitian ini berhasil memperlihatkan bahwa pengetahuan mempengaruhi perilaku ibu hamil

Table A.5 (continued) Critical Values of the Chi-Squared Distribution

	$_{-}$								
$oldsymbol{v}$	0.30	0.25	0.20	0.10	0.05	0.025	0.02		
1	1.074	1.323	1.642	2.706	3.841	5.024	5.412		
2	2.408	2.773	3.219	4.605	5.991	7.378	7.824		
3	3.665	4.108	4.642	6.251	7.815	9.348	9.837		
4	4.878	5.385	5.989	7.779	9.488	11.143	11.668		
5	6.064	6.626	7.289	9.236	11.070	12.832	13.388		

Uji Kolmogorov-Smirnov

Uji Kolmogorov-Smirnov

K-S 1 variable digunakan untuk membandingkan distribusi pengamatan dengan distribusi teoritis pada 1 variabel dengan skala ordinal

K-S 2 variabel digunakan untuk mencari sebab dan akibat berbeda dari 2 variabel dengan skala ordinal

$$KS_{\text{hitung}} = \mathbf{max} |D|$$

$$D = F_{\text{observed}} - F_{\text{expected}}$$

Daerah penolakan

Tolak H_0 apabila $KS_{\text{hitung}} > KS_{\text{tabel}}$

Rasa sakit pada saat melahirkan ditunjukkan dengan nilai skor (1-5) oleh 10 orang wanita. Tunjukkan apakah ada perbedaan dalam pemilihan skor rasa sakit. Dengan taraf signifikansi 5%.

Skor	1	2	3	4	5	Jumlah
Jumlah Ibu	0	1	0	5	4	10

Jawab

Perumusan hipotesis

H₀: Tidak ada perbedaan dalam pemilihan skor rasa sakit

H₁: Terdapat perbedaan dalam pemilihan skor rasa sakit

Taraf Signifikansi

$$\alpha = 5\%$$

• Statistik uji

Skor	1	2	3	4	5	Jumlah
Jumlah Ibu	0	1	0	5	4	10
p observed	0	0.1	0	0.5	0.4	
p expected	0.2	0.2	0.2	0.2	0.2	
F Observed	0	0.1	0.1	0.6	1	
F Expected	0.2	0.4	0.6	0.8	1	
(FO-FE)	-0.2	-0.3	-0.5	-0.2	0	
FO-FE	0.2	0.3	0.5	0.2	0	
			KS hitung			

$$KS_{\text{hitung}} = \mathbf{max} |D| = 0,5$$

Daerah penolakan

Berdasarkan Tabel diperoleh

$$KS_{\text{tabel}} = 0,409$$

Kesimpulan

Karena $KS_{\text{hitung}} > KS_{\text{tabel}}$ maka TOLAK H₀

Artinya penelitian ini berhasil memperlihatkan bahwa terdapat perbedaan dalam pemilihan skor rasa sakit

Tabel Nilai Kritis Uji Kolmogorov-Smirnov

n	α = 0,20	α = 0,10	α = 0,05	α = 0,02	α = 0,01
1	0,900	0,950	0,975	0,990	0,995
2	0,684	0,776	0,842	0,900	0,929
3	0,565	0,636	0,708	0,785	0,829
4	0,493	0,565	0,624	0,689	0,734
5	0,447	0,509	0,563	0,627	0,669
6	0,410	0,468	0,519	0,577	0,617
7	0,381	0,436	0,483	0,538	0,576
8	0,359	0,410	0,454	0,507	0,542
9	0,339	0,387	0.430	0,480	0,513
10	0,323	0,369	0,409	0,457	0,486
11	0,308	0,352	0,391	0,437	0,468
12	0,296	0,338	0,375	0,419	0,449
13	0.285	0.325	0.361	0.404	0.432

Uji distribusi Uniform (dengan Chi-sq Test)

Uji distribusi Uniform (dengan Chi-sq Test)

Perumusan hipotesis

H₀: data sampel berasal dari suatu populasi berdistribusi Uniform

 H_1 : data sampel tidak berasal dari suatu populasi berdistribusi Uniform

Statistik uji

$$\chi^{2} = \sum_{i=1}^{r} \frac{(o_{i} - e_{i})^{2}}{e_{i}}$$

• Daerah penolakan Tolak H_0 apabila $\chi^2_{hitung} \ge \chi^2_{\alpha,(k-1)}$

• Pada pengujian keselarasan untuk distribusi Uniform, nilai peluangnya adalah $p_i = \frac{1}{r}$, i = 1, 2,, r. Sehingga $e_i = p_i \times n$, dengan r adalah banyaknya kelas dan n adalah banyaknya data observasi.

Diketahui data pada table di bawah. Apakah sebaran nilai tersebut Uniform? Gunakan alpha = 0.05.

Nilai	A	В	С	D	E
Frekuensi	14	18	32	20	16

Jawab

Hipotesis

H₀: data sampel berasal dari suatu populasi berdistribusi Uniform

H₁: data sampel tidak berasal dari suatu populasi berdistribusi Uniform

Statistik uji

r = banyaknya karakteristik yang diamati

$$p_i = \frac{1}{r} = \frac{1}{5}$$
; $e_i = p_i \times n = \frac{1}{5} \times 100 = 20$

$$\chi^{2}_{hitung} = \sum_{i=1}^{r} \frac{(o_{i} - e_{i})^{2}}{e_{i}} = 10$$

Nilai	Α	В	С	D	E	Total
oi	14	18	32	20	16	100
pi	0.2	0.2	0.2	0.2	0.2	1
ei	20	20	20	20	20	100
(oi-ei)	-6	-2	12	0	-4	
(oi-ei)^2	36	4	144	0	16	
(oi-ei)^2/ei	1.8	0.2	7.2	0	0.8	10

Daerah penolakan

Tolak
$$H_0$$
 karena $\chi^2_{0.05,(5-1)} = 9,488$; $\chi^2 \ge \chi^2_{\alpha,(4)} \to 10 \ge 9,488$

• Kesimpulan : Data sampel tidak berdistribusi Uniform

Table A.5 (continued) Critical Values of the Chi-Squared Distribution

		α										
$oldsymbol{v}$	0.30	0.25	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.001		
1	1.074	1.323	1.642	2.706	3.841	5.024	5.412	6.635	7.879	10.827		
2	2.408	2.773	3.219	4.605	5.991	7.378	7.824	9.210	10.597	13.815		
3	3.665	4.108	4.642	6.251	7.815	9.348	9.837	11.345	12.838	16.266		
4	4.878	5.385	5.989	7.779	9.488	11.143	11.668	13.277	14.860	18.466		
5	6.064	6.626	7.289	9.236	11.070	12.832	13.388	15.086	16.750	20.515		

Uji distribusi Binomial (dengan Chi-sq Test)

Uji distribusi Binomial

$$Pi = P(x = i) = \begin{bmatrix} r \\ I \end{bmatrix} p^{(i)} q^{(r-i)}$$

p = peluang sukses terjadi

$$q = 1 - p$$

Perumusan hipotesis

H₀: data sampel berasal dari suatu populasi berdistribusi Binomial

H₁: data sampel tidak berasal dari suatu populasi berdistribusi Binomial

Uji distribusi Binomial

Statistik uji

$$\chi^2 = \frac{\sum_{i=1}^r (o_i - e_i)^2}{e_i}$$

Daerah penolakan

Tolak
$$H_0$$
 apabila $\chi^2 \ge \chi^2_{\alpha,(k-1)}$

Uji kerapuhan 280 batang nylon ditekukkan pada 5 titik dan dicatat banyaknya patahan (0, 1, 2, 3, 4, 5). Uji apakah data berasal dari populasi berdistribusi Binomial dengan parameter p=0.5.

Banyak patahan	0	1	2	3	4	5	TOTAL
Banyak batang nylon	157	69	35	17	1	1	280

Uji distribusi Poisson (dengan Chi-sq Test)

Uji distribusi Poisson

$$Pi = P(x = i) = e^{-\lambda} \lambda^{x}$$
, $\lambda \approx \hat{\lambda} = rata - rata$

Perumusan hipotesis

H₀: data sampel berasal dari suatu populasi berdistribusi Poisson

H₁: data sampel tidak berasal dari suatu populasi berdistribusi

Poisson

• Banyak pasien di ruang tunggu dalam kurun waktu atau interval per 30 detik. Uji apakah banyak pasien menunggu dalam interval per 30 detik mengikuti distribusi Poisson dengan parameter $\lambda = 3$?

Banyak pasien teramati	0	1	2	3	4	5	6	7	Total
Banyak interval	20	54	74	67	45	25	11	4	300

Terima Kasih

