Примерни изпитни задачи за функции

Ангел Димитриев

Задача 1:

Нека $h: A \to A$.

- а) Да се докаже, че следните две условия са еквивалентни:
 - $(\forall f \in A)(\forall g \in A)(h \circ f = h \circ g \implies f = g)$
 - \bullet h е инективна.
- б) Да се докаже, че следните две условия са еквивалентни:
 - $(\forall f \in A)(\forall g \in A)(f \circ h = g \circ h \implies f = g)$
 - h е сюрективна.

Забележка: С $h \in {}^A A$ означаваме, че h е **тотална функция** изобразяваща елементи на A в елементи на A.

Решение:

а)
$$\rightarrow$$
) Нека $(\forall f \in ^A A)(\forall g \in ^A A)(h \circ f = h \circ g \implies f = g)$. Т.е:

$$(\forall f \in ^A A)(\forall g \in ^A A)(\forall a \in A)[h(f(a)) = h(g(a)) \implies f = g]$$

Да допуснем, че h не е инективна. Тогава:

$$\exists a, b \in A(a \neq b \& h(a) = h(b))$$

Нека a_0 и b_0 са свидетели $(a_0 \neq b_0 \& h(a_0) = h(b_0))$. Нека $c \in A$. Да разгледаме:

$$f'(a) = \begin{cases} a, & a \neq c \\ a_0, & a = c \end{cases}$$

$$f''(a) = \begin{cases} a, & a \neq c \\ b_0, & a = c \end{cases}$$

Тогава $f',f''\in ^AA\&f'\neq f''$ Ще покажем, че $(\forall a\in A)[h(f'(a))=h(f''(a))]$ Нека $a\in A$ е произволно.

1сл)
$$a \neq c$$
. Тогава $h(f'(a)) = h(a) = h(f''(a))$

2сл) a=c. Тогава $h(f'(a))=h(a_0)=h(b_0)=h(f''(a))$. Но а произволно. Следователно $(\forall a\in A)[h(f'(a))=h(f''(a))]$. Но $f'\neq f''$. Абсурд! Следователно h е инективна.

←) Нека h е инективна. Ще покажем, че:

$$(\forall f \in A)(\forall g \in A)(h \circ f = h \circ g \implies f = g)$$

Нека f и g са произволни и нека $h \circ f = h \circ g$. Ще покажем, че f = g. Тоест ще покажем, че $\forall a \in A(f(a) = g(a))$.

Нека а е произволно. Тогава h(f(a)) = h(g(a)).

Но h е **инекция**. $(\forall x, y \in A[h(x) = h(y) \implies x = y])$. Следователно f(a) = g(a). Но a е произволно - $(\forall a \in A)(f(a) = g(a))$ Т.е f = g. Но f и g са произволни. Следователно:

$$(\forall f \in A)(\forall g \in A)(h \circ f = h \circ g \implies f = g)$$

.

б) \to) ($\forall f \in ^A A$)($\forall g \in ^A A$)($f \circ h = g \circ h \implies f = g$).Ще покажем, че h е сюрективна. Да допуснем, че h не е сюрективна. Тогава

$$\exists a \neg \exists b [h(b) = a]$$

Нека a_0 е свидетел. Нека $c,d\in A$ и $c\neq d$. Да разгледаме следните фунцкии:

$$f'(a) = \begin{cases} a, & a \neq a_0 \\ c, & a = a_0 \end{cases}$$

$$f''(a) = \begin{cases} a, & a \neq a_0 \\ d, & a = a_0 \end{cases}$$

Тогава $f', f'' \in {}^{A} A \& f' \neq f''$ Ще покажем, че $f' \circ h = f'' \circ h$. Т.е че $(\forall a \in A)(f(h(a)) = f''(h(a)))$ Нека а е произволно. h(a) = t За някое $t \in A$. Но $t \neq a_0$, защото $a_0 \notin Range(h)$. Т.е

$$f'(h(a)) = f'(t) = t = f''(t) = f''(h(a))$$

Но а е произволно. Тогава $f'\circ h=f''\circ h$. Но $f'\neq f''$. Противоречие! Следователно h е сюрективна.

←) Нека h е сюрективна. Ще покажем, че

$$(\forall f \in A)(\forall g \in A)(f \circ h = g \circ h \implies f = g)$$

Нека f и g са произволни и нека $f\circ h=g\circ h$. Ще покажем, че f = g ($\forall a\in A(f(a)=g(a))$). Нека a е произволно. Щом h е сюрективна, то $\exists t\in A(h(t)=a)$. Знаем, че $(f\circ h)(t)=(g\circ h)(t)$. Т.е:

$$f(h(t)) = g(h(t))$$

От следва, че:

$$f(a) = g(a)$$

Но а е произволно. Следователно f=g. Но f и g са произволни. Следователно:

$$(\forall f \in A)(\forall g \in A)(f \circ h = g \circ h \implies f = g)$$

Задача 2:

Нека А,В и С са множества. Да се окаже, че ако $|A\cup B|=|C\times C|$, то същестува сюрективна функция $g:A\to C$ или съществува инективна функция h $h:C\to B$

Решение:

От $|A \cup B| = |C \times C|$ следва, че съществува **биективна функция** $f:A \cup B \to C \times C$. Нека **HE** е вярно, че съществува сюрективна функция $g:A \to C$. Ще покажем, че съществува инективна функция $h:C \to B$. Да разгледаме $\pi:C \times C \to C$:

$$\pi(c_1, c_2) = c_1$$

 π е сюрективна. Да разгледаме $k=\pi\circ f|_A \ (k:A\to C)$. Тогава от допускането k не е сюрективна. Т.е:

$$\exists c \in C \forall a \in A[\pi(\left.f\right|_A(a)) \neq c]$$

Нека c_0 е свидетел. Тогава:

$$\forall a \in A \forall c \in C(f|_{A}(a) \neq (c_{0}, c))$$

$$\forall a \in A \forall c \in C(f(a) \neq (c_{0}, c))$$

$$\forall a \in A \forall c \in C(f^{-1}(c_{0}, c) \neq a)$$

$$\forall c \in C(f^{-1}(c_{0}, c) \notin A)$$

Ho $Range(f^{-1}) = A \cup B$. От което следва, че:

$$\forall c \in C(f^{-1}(c_0, c) \in B)$$

Така дефинираме функцията $h:C \to B$.

$$h(c) = f^{-1}(c_0, c)$$

Но f е функция. От тук следва, че f^{-1} е инективна. От тук следва, че h е инективна.