AI 라이브러리 활용

13장 과적합 피하기

이찬우

학습 내용 : 과적합 피하기

- 1 | 데이터의 확인과 실행
- 2 | 과적합 이해하기
- 3 | 학습셋과 테스트셋
- 4 | 모델 저장과 재사용
- 5 | k겹 교차 검증

과적합 피하기

- **실습 데이터** 초음파 광물 예측
 - dataset/sonar.csv

과적합 피하기

- 1988년 존스홉킨스대학교의 세즈노프스키(Sejnowski) 교수는 2년 전 힌튼 교수가 발표한 역전파 알고리즘에 관심을 가지고 있었음
- 그는 은닉층과 역전파가 얼마나 큰 효과가 있는지를 직접 실험해 보고 싶었음
- 광석과 일반 돌을 가져다 놓고 음파 탐지기를 쏜 후 그 결과를 데이터로 정리함
- 오차 역전파 알고리즘을 사용한 신경망이 과연 얼마나 광석과 돌을 구분하는 데 효과적인지 알아보기 위해서임

dataset/sonar.csv 파일을 가져옴

```
import pandas as pd

df = pd.read_csv( ... dataset/sonar.csv', header=None)
print(df.info())
```

Range Index: 208 entries,0 to 207				
Data columns (total 61 columns):				
0	208	non-null	float64	
1	208	non-null	float64	
2	208	non-null	float64	
3	208	non-null	float64	
4	208	non-null	float64	

Range Index: 208 entries,0 to 207					
Data columns (total 61 columns):					
5	208	non-null	f <u>loat64</u>		
58	208	non-null	float64		
59	208	non-null	float64		
60	208	non-null	object		
Dtypes: float64(60), object(1)					
memory usage: 99,2+ KB					

- 모든 컬럼이 실수형(float64)인데, 맨 마지막 컬럼만 객체형인 것으로 보아 마지막에 나오는 컬럼은 클래스이며 데이터형 변환이 필요한 것을 알 수 있음
- ▶ 실제로 맞는지 일부를 출력해 확인해 보자

```
print(df.head())
```

					(D	61
	0	1	2	3	 59	60
0	0.02	0.0371	0.0428	0.0207	 0.0032	R
1	0.0453	0.0523	0.0843	0.0689	 0.0044	R
2	0.0262	0,0582	0.1099	0,1083	 0.0078	R
3	0.01	0.0171	0.0623	0.0205	 0.0117	R
4	0.0762	0.0666	0.0481	0.0394	 0.0094	R

코드 13-1 초음파 광물 예측하기: 데이터 확인과 실행

• 예제 소스: run_project/04_Sonar.ipynb

```
from keras.models import Sequential
from keras.layers.core import Dense
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import numpy
import tensorflow as tf
# seed 값 설정
numpy.random.seed(3)
tf.random.set seed(3)
```

```
# 데이터 입력
df = pd.read_csv('../dataset/sonar.csv', header=None)
dataset = df.values
X = dataset[:,0:60]
Y_obj = dataset[:,60]
# 문자열 변환
e = LabelEncoder()
e.fit(Y_obj)
Y = e.transform(Y_obj)
```

```
# 모델 설정
model = Sequential()
model.add(Dense(24, input_dim=60) activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# 모델 컴파일
model.compile(loss='mean_squared_error',
              optimizer='adam',
              metrics=['accuracy'])
```

```
#모델실행
model.fit(X, Y, epochs=200, batch_size=5)

#결과출력
print("\n Accuracy: %.4f" % (model.evaluate(X, Y)[1]))
```



```
Epoch 1/200
208/208 [==========] - 0s 601us/step - loss: 0.2449
- accuracy: 0.5673
Epoch 2/200
- accuracy: 0,5481
Epoch 3/200
accuracy: 0.6202
Epoch 4/200
208/208 [==========] - 0s 211us/step - loss: 0.2188
```

```
- accuracy: 0,6394
Epoch 5/200
208/208 [===========] - 0s 216us/step - loss: 0.2102
- accuracy: 0,7019
(중략)
Epoch (96/200)
3.8308e-04 - accuracy: 1.0000
Epoch 197/200
3.7724e-04 - accuracy: 1.0000
```

```
Epoch 198/200
3.6022e-04 - accuracy: 1.0000
Epoch 199/200
208/208 [============ ] - 0s 207us/step - loss:
3.5173e-04 - accuracy: 1.0000
Epoch 200/200
208/208 [============= ] - 0s 207us/step - loss:
3.5247e-04 - accuracy: 1.0000
208/208 [======] - 0s 86us/step
Accuracy: 1,0000
```

2 | 과적합 이해하기

▶ 완전히 새로운 데이터에 적용하면 이 선을 통해 정확히 두 그룹으로 나누지 못하게 됨

그림 13-1 과적합이 일어난 경우(빨간색)와 학습이 제대로 이루어지지 않은 경우(초록색)

2 | 과적합 이해하기

- 과적합은 층이 너무 많거나 변수가 복잡해서 발생하기도 하고 테스트셋과 학습셋이 중복될 때 생기기도 함
- 딥러닝은 학습 단계에서 입력층, 은닉층, 출력층의 노드들에 상당히 많은 변수들이 투입됨

relu

■ 딥러닝을 진행하는 동안 과적합에 빠지지 않게 늘 주의해야 함

- 과적합을 방지하려면 어떻게 해야 할까?
 - → 먼저 학습을 하는 데이터셋과 이를 테스트할 데이터셋을 완전히 구분한 다음 학습과 동시에 테스트를 병행하며 진행하는 것이 한 방법
- 데이터셋이 총 100개의 샘플로 이루어져 있다면 다음과 같이 두 개의 셋으로 나눔

70개 샘플은 학습셋으로

30개 샘플은 테스트셋으로

- ▶ 신경망을 만들어 70개의 샘플로 학습을 진행한 후 이 학습의 결과를 저장함
 - → 이렇게 저장된 파일을 '모델'이라고 부름
- 모델은 다른 셋에 적용할 경우 학습 단계에서 각인되었던 그대로 다시 수행함
- 나머지 30개의 샘플로 실험해서 정확도를 살펴보면 학습이 얼마나 잘 되었는지를 알수 있는 것

딥러닝 같은 알고리즘을 충분히 조절하여 가장 나은 모델이 만들어지면,
 이를 실생활에 대입하여 활용하는 것이 바로 머신러닝의 개발 순서

그림 13-2 학습셋과 테스트셋

- 학습 데이터를 이용해 정확도를 측정한 것은 데이터에 들어있는
 모든 샘플을 그대로 테스트에 활용한 결과임
- 학습에 사용된 샘플은 테스트에 쓸 수 없으므로
 학습 단계에서 테스트할 샘플은 자동으로 빼고,
 이를 테스트한 결과를 모아 정확도를 계산하는 것
- 이러한 방법은 빠른 시간에 모델 성능을 파악하고 수정할 수 있도록 도와 줌
- 머신러닝의 최종 목적은 과거의 데이터를 토대로 새로운 데이터를 예측하는 것
- 테스트셋을 만들어 정확한 평가를 병행하는 것이 매우 중요함

- 학습셋만 가지고 평가할때, 층을 더하거나 에포크(epoch) 값을 높여 실행 횟수를 늘리면 정확도가 계속해서 올라갈 수 있음
- 학습이 깊어져서 학습셋 내부에서의 성공률은 높아져도 테스트셋에서는
 효과가 없다면 과적합이 일어나고 있는 것

그림 13-3 학습이 계속되면 학습셋에서의 정확도는 계속 올라가지만, 테스트셋에서는 과적합이 발생

- 학습을 진행해도 테스트 결과가 더 이상 좋아지지 않는 지점에서 학습을 멈춰야 함
- 이때의 학습 정도가 가장 적절한 것으로 볼 수 있음
- 우리가 다루는 초음파 광물 예측 데이터를 만든 세즈노프스키 교수가 실험 결과를 발표한 논문
 의 일부를 가져와 보겠음

		TABLE 2 Aspect-Angle Dependent Ser	ies	
Number of Hidden Units	Average Performance on Training Sets (%)	Standard Deviation on Training Sets (%)	Average Performance on Testing Sets (%)	Standard Deviation on Testing Sets (%)
0	79.3	3.4	73.1	4.8
2	96.2	2.2	85.7	6.3
3	98.1	1.5	87.6	3.0
6	99.4	0.9	89.3	2.4
12	99.8	0.6	90.4	1.8
24	100.0	0.0	89.2	1.4

Summary of the results of the aspect-angle dependent series of experiments with training and testing sets selected to include all target aspect angles. The standard deviation shown is across networks with different initial conditions.

은닉층 수의 변화	학습셋의 예측률	테스트셋의 예측률
0	79.3	73.1
2	96.2	85.7
3	98.1	87.6
6	99.4	89.3
12	99.8	90.4
24	100	89.2

표 13-1 은닉층 수의 변화에 따른 학습셋 및 테스트셋의 예측률

식이 복잡해지고 학습량이 늘어날수록 학습 데이터를 통한 예측률은 계속해서
 올라가지만, 테스트셋을 이용한 예측률은 오히려 떨어지는 것을 확인할 수 있음

- 불러온 X 데이터와 Y 데이터에서 각각 정해진 비율(%)만큼 구분하여 한 그룹은 학습에 사용함
- 다른 한 그룹은 테스트에 사용하게 하는 함수가 sklearn 라이브러리의 train_test_split() 함수임
- 학습셋을 70%, 테스트셋을 30%로 설정했을때의 예

from sklearn.model_selection import train_test_split

학습셋과 테스트셋의 구분

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_ size=0.3, random_state=seed)

모델을 실행하는 부분에서 위에서 만들어진 학습셋으로 학습을,
 테스트셋으로 테스트를 하게 하려면 다음과 같이 실행함

```
model.fit(X_train, Y_train, epochs=130, batch_size=5)

# 테스트셋에 모델 적용

print("\n Test Accuracy: %.4f" % (model.evaluate(X_test, Y_test)
[1]))
```

코드 13-2 초음파 광물 예측하기: 학습셋과 테스트셋 구분

• 예제 소스: run_project/05_Sonar_Train_Test.ipynb

```
from keras.models import Sequential
from keras.layers.core import Dense
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy
import tensorflow as tf
```

```
# seed 값 설정
seed = 0
numpy.random.seed(seed)
tf.random.set_seed(3)
df = pd.read_csv('../dataset/sonar.csv', header=None)
dataset = df.values
X = dataset[:,0:60]
Y_obj = dataset[:,60]
e = LabelEncoder()
e.fit(Y_obj)
Y = e.transform(Y_obj)
```

```
# 학습셋과 테스트셋의 구분
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_
size=0.3, random_state=seed)
model = Sequential()
model.add(Dense(24, input_dim=60, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='mean_squared_error',
             optimizer='adam',
             metrics=['accuracy'])
model.fit(X_train, Y_train, epochs=130, batch_size=5)
```

```
# 테스트셋에 모델 적용

print("\n Test Accuracy: %.4f" % (model.evaluate(X_test, Y_test)
[1]))
```

<u>실행</u> 결과


```
Epoch 1/130
accuracy: 0.5379
Epoch 2/130
- accuracy: 0,5931
Epoch 3/130
145/145 [=======] - 0s 214us/step - loss: 0.2233
- accuracy: 0,7241
Epoch 4/130
accuracy: 0,6966
```

```
Epoch 5/130
accuracy: 0,7310
(중략)
Epoch 126/130
accuracy: 1,0000
Epoch 127/130
accuracy: 1,0000
Epoch 128/130
accuracy: 0.9931
```

실전에서는 더 정확한 테스트를 위해 테스트셋을 두 개로 나누어, 하나는 앞서 설명한 방식대로 테스트셋으로 사용하고, 나머지 하나는 최종으로 만들어 낸 모델을 다시 한번 테스트하는 용도로 사용하기도 합니다. 추가로 만들어낸 테스트셋을 검증셋(Validation sets)이라고도 부릅니다.

4 | 모델 저장과 재사용

- 학습이 끝난 후 테스트해 본 결과가 만족스러울 때 이를 모델로 저장하여
 새로운 데이터에 사용할 수 있음
- 앞서 학습한 결과를 모델로 저장하려면 다음과 같이 실행함

```
from keras.models import load_model

model.save('my_model.h5')
```

■ 이를 불러오려면 다음과 같이 실행함

```
model = load_model('my_model.h5')
```

코드 13-3 초음파 광물 예측하기: 모델 저장과 재사용

• 예제 소스: run_project/06-Sonar-Save-Model.ipynb

```
from keras.models import Sequential, load_model
from keras.layers.core import Dense
from sklearn.preprocessing import LabelEncoder

import pandas as pd
import numpy
import tensorflow as tf
```

```
# seed 값 설정
seed = 0
numpy.random.seed(seed)
tf.random.set_seed(3)
df = pd.read_csv('../dataset/sonar.csv', header=None)
dataset = df.values
X = dataset[:,0:60]
Y_obj = dataset[:,60]
e = LabelEncoder()
e.fit(Y_obj)
Y = e.transform(Y_obj)
```

```
# 학습셋과 테스트셋을 나눔
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_
size=0.3, random_state=seed)
model = Sequential()
model.add(Dense(24, input_dim=60, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='mean_squared_error',
              optimizer='adam',
              metrics=['accuracy'])
```

```
model.fit(X_train, Y_train, epochs=130, batch_size=5)
model.save('my_model.h5') #모델을 컴퓨터에 저장

del model #테스트를 위해 메모리 내의 모델을 삭제
model = load_model('my_model.h5') #모델을 새로 불러옴

print("\n Test Accuracy: %.4f" % (model.evaluate(X_test, Y_test)
[1])) #불러온 모델로 테스트 실행
```

- 딥러닝 혹은 머신러닝 작업을 할 때 늘 어려운 문제 중 하나는 알고리즘을 충분히 테스트하였어도 데이터가 충분치 않으면 좋은 결과를 내기가 어렵다는 것
- 이러한 단점을 보완하고자 만든 방법이 바로 k겹 교차 검증 (k-fold cross validation)
- k겹 교차 검증:
 - 데이터셋을 여러 개로 나누어 하나씩 테스트셋으로 사용하고 나머지를 모두 합해서 학습셋으로 사용하는 방법
- 이렇게 하면 가지고 있는 데이터의 100%를 테스트셋으로 사용할 수 있음

그림 13-5 5겹 교차 검증의 도식

■ 데이터를 원하는 숫자만큼 쪼개 각각 학습셋과 테스트셋으로 사용되게 만드는 함수는 sklearn의 StratifiedKFold() 함수

```
from sklearn.model_selection import StratifiedKFold

n_fold = 10
skf = StratifiedKFold(n_splits=n_fold, shuffle=True, random_
state=seed)
```

■ 모델을 만들고 실행하는 부분을 for 구문으로 묶어 n_fold만큼 반복되게 함

```
for train, test in skf.split(X, Y):
    model = Sequential()
    model.add(Dense(24, input_dim=60, activation='relu'))
    model.add(Dense(10, activation='relu'))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(loss='mean_squared_error',
                  optimizer='adam',
                  metrics=['accuracy'])
    model.fit(X[train], Y[train], epochs=100, batch_size=5)
```

■ 정확도(Accuracy)를 매번 저장하여 한 번에 보여줄 수 있게 accuracy 배열을 만듦

```
accuracy = []
for train, test in skf.split(X, Y):
    (중략)
    k_accuracy = "%.4f" % (model.evaluate(X[test], Y[test])[1])
    accuracy.append(k_accuracy)
print("\n %.f fold accuracy:" % n_fold, accuracy)
```

코드 13-4 초음파 광물 예측하기: k겹 교차 검증

• 예제 소스: run_projec/07_Sonar-K-fold.ipynb

```
from keras.models import Sequential
from keras.layers.core import Dense
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import StratifiedKFold

import numpy
import pandas as pd
import tensorflow as tf
```

```
# seed 값 설정
seed = 0
numpy.random.seed(seed)
tf.set_random_seed(seed)
df = pd.read_csv('../dataset/sonar.csv', header=None)
dataset = df.values
X = dataset[:,0:60]
Y_obj = dataset[:,60]
e = LabelEncoder()
e.fit(Y_obj)
Y = e.transform(Y_obj)
```

```
#10개의 파일로 쪼갬

n_fold = 10

skf = StratifiedKFold(n_splits=n_fold, shuffle=True, random_state=seed)

# 빈 accuracy 배열
accuracy = []
```

```
# 모델의 설정, 컴파일, 실행
for train, test in skf.split(X, Y):
    model = Sequential()
    model.add(Dense(24, input_dim=60, activation='relu'))
    model.add(Dense(10, activation='relu'))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(loss='mean_squared_error',
                  optimizer='adam'.
                  metrics=['accuracy'])
    model.fit(X[train], Y[train], epochs=100, batch_size=5)
    k_accuracy = "%.4f" % (model.evaluate(X[test], Y[test])[1])
    accuracy.append(k_accuracy)
```

```
# 결과 출력
print("\n %.f fold accuracy:" % n_fold, accuracy)
```


정리 학습: 과적합 피하기

- 1 | 데이터의 확인과 실행
- 2 | 과적합 이해하기
- 3 | 학습셋과 테스트셋
- 4 | 모델 저장과 재사용
- 5 | k겹 교차 검증

다음 수업

베스트 모델 만들기