ASSIGNMENT-4

RETAIL STORE STOCK INVENTORY ANALYTICS

TEAM ID: PNT2022TMID08352 NAME: S.Navaneethakrishnan

Answer the questions or complete the tasks:

1.LOADING THE DATASET

```
1. LOADING THE DATASET
[ ] import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   ## 2.load the dataset
   data = pd.read_csv('abalone.csv')
   data.head()
     Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
   0 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150
    1 M 0.350 0.265 0.090 0.2255
                                        0.0995
                                                   0.0485
                                                               0.070
                                                                      7
    2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 9
                             0.5160
                                         0.2155
                                                     0.1140
                                                                      10
    3 M 0.440 0.365 0.125
                                                               0.155
      I 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.055
                                                                     7
```

2. PERFORM THE VISUALIZATION

3. PERFORM DESCRIPTIVE STATISTICS ON THE DATASET

4. CHECK FOR MISSING VALUES AND DEAL WITH THEM

5. FIND THE OUTLIERS AND REPLACE THEM OUTLIERS

6. CHECK FOR CATEGORICAL COLUMNS AND PERFORM ENCODING

```
7.CHECK FOR CATEGORICAL COLUMNS AND PERFORM ENCODING
data['Sex'].replace({'M':1,'F':0,'I':2},inplace=True)
         Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
     0 1 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.1500 15

        1
        1
        0.350
        0.265
        0.090
        0.2255
        0.0995
        0.0485
        0.0700
        7

        2
        0
        0.530
        0.420
        0.135
        0.6770
        0.2565
        0.1415
        0.2100
        9

             1 0.440 0.365 0.125
                                                 0.5160
                                                                    0.2155
                                                                                                   0.1550 10
                                                                                     0.1140
     4 2 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.0550 7
    4172 0 0.565 0.450 0.165 0.8870 0.3700 0.2390 0.2490 11
     4173 1 0.590 0.440 0.135 0.9660
                                                                                    0.2145
                                                                  0.4390
                                                                                                   0.2605 10
     4174 1 0.600 0.475 0.205 1.1760 0.5255 0.2875 0.3080 9

        4175
        0
        0.625
        0.485
        0.150
        1.0945
        0.5310
        0.2610
        0.2960
        10

        4176
        1
        0.710
        0.555
        0.195
        1.9485
        0.9455
        0.3765
        0.4950
        12
```

7. SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

```
8.SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES
x=data.drop(columns= ['Rings'])
y=data['Rings']
x
        Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight

        0
        1
        0.455
        0.365
        0.095
        0.5140
        0.2245
        0.1010
        0.1500

         1 0.350 0.265 0.090
                                 0.2255
                                              0.0995
                                                          0.0485
                                                                     0.0700
    2 0 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.2100
         1 0.440
                   0.365 0.125
                                   0.5160
                                               0.2155
                                                          0.1140
                                                                     0.1550
   4 2 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.0550
    4172 0 0.565 0.450 0.165 0.8870 0.3700 0.2390 0.2490
    4173 1 0.590 0.440 0.135
                                   0.9660
                                              0.4390
                                                          0.2145
   4174 1 0.600 0.475 0.205 1.1760 0.5255 0.2875 0.3080
    4175 0 0.625 0.485 0.150 1.0945
                                             0.5310
                                                          0.2610
                                                                     0.2960
    4176 1 0.710 0.555 0.195 1.9485 0.9455 0.3765 0.4950
   4177 rows x 8 columns
```

```
0 15
1 7
2 9
3 10
4 7
...
4172 11
4173 10
4174 9
4175 10
4176 12
Name: Rings, Length: 4177, dtype: int64
```

8. SCALE THE INDEPENDENT VARIABLES

```
9.SCALE THE INDEPENDENT VARIABLES

from sklearn.preprocessing import scale
x = scale(x)
x

array([[-0.0105225 , -0.57455813, -0.43214879, ..., -0.60768536, -0.72621157, -0.63821689],
[-0.0105225 , -1.44898585, -1.439929 , ..., -1.17690984, -1.20522124, -1.2129732],
[-1.26630752, 0.05003309, 0.12213032, ..., -0.4634999 , -0.35668983, -0.20713907],
...,
[-0.0105225 , 0.6329849 , 0.67640943, ..., 0.74855917, 0.97541324, 0.49695471],
[-1.26630752, 0.841818198, 0.77718745, ..., 0.77334105, 0.73362741, 0.41073914],
[-0.0105225 , 1.54905203, 1.48263359, ..., 2.64099341, 1.78744868, 1.84048058]])
```

9. SPLIT THE DATA INTO TRAINING AND TESTING

```
10.SPLIT THE DATA INTO TRAINING AND TESTING

[ ] from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2)
    print(x_train.shape, x_test.shape)

(3341, 8) (836, 8)
```

10. BUILD THE MODEL

11. TRAIN THE MODEL

```
12.TRAIN THE MODEL

[ ] MLR.fit(x_train,y_train)

LinearRegression()
```

12. TEST THE MODEL

```
13.TESTTHE MODEL

↑ pred

| array([14.44666767, 7.40745222, 10.78252097, 6.67673552, 8.36060517, 9.93175721, 7.5379313, 8.2773596, 12.08060513, 12.29838344, 8.25734382, 10.08474082, 10.115888, 20.4165106, 18.4087657, 9.01191045, 8.151407249, 11.17728349, 7.8817167, 9.25267153, 7.22475815, 10.37380964, 9.6344661, 10.40746492, 11.53950746, 10.9544095, 10.9544095, 10.9544095, 10.9544095, 10.9544095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9545095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 10.9555095, 1
```