Universidad Nacional del Altiplano Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Autor: Erika Mishelle Arapa Condori

GITHUB

https://github.com/Mishell03/trabajo-caso-2-y-caso-3.git

Trabajo Encargado - Caso 3

Ejercicio 3.1

En este capítulo, determinaremos el número de operaciones aritméticas necesarias para realizar la eliminación gaussiana y resolver un sistema de ecuaciones con variables.

Considera un sistema lineal con n variables.

$$G(n) = \frac{4n^3}{3} + 9n^2 - 13n - \left(\frac{2}{3}n^3\right) = 0$$

DATOS

La función que representa el número de operaciones aritméticas necesarias para realizar la eliminación gaussiana es:

$$G(n) = \frac{4n^3 + 9n^2 - 13n}{6}$$

También se nos da la aproximación:

$$O\left(\frac{2}{3}n^3\right)$$

Y se nos indica que estamos trabajando con un sistema de 412 variables.

i) ¿Cuál es el número exacto de operaciones aritméticas necesarias para utilizar la eliminación gaussiana y resolver este sistema?

Para resolver esta parte, simplemente sustituimos n = 412 en la fórmula exacta de G(n).

$$G(412) = \frac{4(412)^3 + 9(412)^2 - 13(412)}{6}$$

Vamos a calcular cada parte:

- 1. $412^3 = 412 \times 412 \times 412 = 70,034,428$
- $2.4(412^3) = 4 \times 70,034,428 = 280,137,712$
- $3.412^2 = 412 \times 412 = 169,744$
- 4. $9(412^2) = 9 \times 169,744 = 1,527,696$
- $5. 13(412) = 13 \times 412 = 5.356$

Ahora sustituimos estos valores en la fórmula:

$$G(412) = \frac{280, 137, 712 + 1, 527, 696 - 5, 356}{6}$$

Sumamos:

$$280, 137, 712 + 1,527,696 - 5,356 = 281,660,052$$

Finalmente, dividimos entre 6:

$$G(412) = \frac{281,660,052}{6} = 46,943,342$$

Por lo tanto, el número exacto de operaciones aritméticas es de 46,943,342.

ii) Calcula el valor de $G\left(\frac{2}{3}n^3\right)$ para este sistema y determina el porcentaje del error aproximado de G(n).

Ahora vamos a calcular la aproximación usando la expresión $O\left(\frac{2}{3}n^3\right)$. Sustituimos n=412 en la aproximación:

$$\left(\frac{2}{3}(412)^3\right) = \frac{2}{3} \times 70,034,428 = 46,689,618,67$$

El error porcentual se calcula con la fórmula:

Error porcentual =
$$\left(\frac{\text{Valor exacto} - \text{Valor aproximado}}{\text{Valor exacto}}\right) \times 100$$

Sustituyendo los valores:

Error porcentual =
$$\left| \frac{46,943,342 - 46,689,618,67}{46,943,342} \right| \times 100$$

Calculamos la diferencia:

$$46,943,342 - 46,689,618,67 = 253,723,33$$

Ahora, calculamos el error porcentual:

Error porcentual =
$$\frac{253,723,33}{46,943,342} \times 100 = 0.54\%$$

Por lo tanto, el error porcentual es aproximadamente 0.54 %.

iii) ¿Cuál es el primer valor de n tal que $\left(\frac{2}{3}\right)n$ tiene un error menor al 1 porciento aproximado de G(n)?

Para resolver esta parte, debemos encontrar el valor de n para el cual el error porcentual es menor al 1%. Sabemos que el error porcentual se reduce a medida que n crece, así que intentamos con algunos valores de n.

Ya sabemos que para n=412, el error es de 0.54%, lo cual ya es menor al 1%. Así que el primer valor de n con un error menor al 1% es 412.

Ejercicio 3.2

Parte 1: Demostrar que $x^2 + x + 1$ es $O(x^2)$.

Queremos demostrar que $x^2 + x + 1$ es $O(x^2)$, es decir, que la función $g(x) = x^2 + x + 1$ crece como mucho tan rápido como $f(x) = x^2$ para valores grandes de x.

Paso 1: Encontrar un valor de C y x_0 tal que:

$$|x^2 + x + 1| \le C|x^2|$$

para todo $x \ge x_0$.

Observemos que para x grande, el término dominante de $g(x) = x^2 + x + 1$ es x^2 , porque el término x y el término constante 1 se vuelven insignificantes comparados con x^2 a medida que x aumenta.

Paso 2: Evaluar cómo se comporta $x^2 + x + 1$ en términos de x^2 .

$$|x^2 + x + 1| \le |x^2| + |x| + 1 = O(x^2)$$

Paso 3: Concluir la demostración.

De esto, podemos concluir que para C=3 y cualquier $x\geq 1$, se cumple la desigualdad:

$$x^2 + x + 1 \le Cx^2$$

lo que demuestra que $x^2 + x + 1$ es $O(x^2)$.

Parte 2: Demostrar que $x^2 + x + 1$ no es O(x)

Ahora queremos demostrar que $x^2 + 1$ no crece como mucho de la manera proporcional a x, es decir, que no es O(x).

Paso 1: Supongamos, por el contrario, que x^2+1 es O(x). Entonces debe existir una constante C y un x_0 tales que para todo $x>x_0$:

$$x^2 + 1 < Cx$$

Paso 2: Verificar si esta desigualdad es posible.

Para valores grandes de x, el término x^2 crece mucho más rápido que Cx. Si $x^2 + x + 1 < Cx$, entonces el término x^2 debería estar dominado por el término Cx, lo cual no es posible para x grande, ya que x^2 crece mucho más rápido que Cx.

Por ejemplo, para valores grandes de x, x^2 será siempre mayor que cualquier valor de Cx, lo que hace que la desigualdad sea falsa.

Paso 3: Concluir la demostración.

Por lo tanto, $x^2 + x + 1$ no es O(x) porque no es posible encontrar una constante C que satisfaga la desigualdad $x^2 + x + 1 \le Cx$ para valores grandes de x.

CODIGO

```
import numpy as np
import matplotlib.pyplot as plt
# Valores de x
x = np.linspace(1, 100, 100)
# Funciones
g x = x^{**2} + x + 1
0 \times 2 = x^{**}2
o_x = x
# Graficar
plt.figure(figsize=(10, 6))
plt.plot(x, g_x, label=r'$x^2 + x + 1$', color='blue')
plt.plot(x, o_x2, label=r'$x^2$', linestyle='--', color='green')
plt.plot(x, o_x, label=r'$x$', linestyle='--', color='red')
# Títulos y leyendas
plt.title('Comparación entre x^2 + x + 1, (x^2) y (x^3))
plt.xlabel('x')
plt.ylabel('Valores')
plt.legend()
# Mostrar gráfico
plt.grid(True)
plt.show()
```

RESULTADO

Interpretación:

- 1. $x^2 + x + 1$ es $O(x^2)$: A medida que x aumenta, puedes ver que las curvas azul y verde crecen casi de manera idéntica. Esto indica que para valores grandes de x, $x^2 + x + 1$ se comporta de manera muy similar a x^2 , confirmando que $x^2 + x + 1$ es $O(x^2)$.
- 2. $x^2 + x + 1$ no es O(x): La curva roja, que representa O(x), crece mucho más lentamente que la curva azul. Esto muestra claramente que $x^2 + x + 1$ crece mucho más rápido que x para valores grandes de x, confirmando que no es O(x).