Resolviendo Recurrencias

Mauro Jaskelioff

20/03/2023

Análisis de Algoritmos

- Queremos poder evaluar la performance de algoritmos.
- Para esto utilizamos
 - Notación Asintótica
 - Modelo de Costo basado en Lenguaje
 - Analizamos trabajo (W) y profundidad (S)
- Al plantear el trabajo y profundidad de algoritmos recursivos surgen recurrencias.
- ¿Cómo resolver las recurrencias?
 - Veremos varias técnicas...

Método de Substitución

- Seguimos el siguiente procedimiento
 - 1. Adivinar la forma de la solución.
 - 2. Probar que la forma es correcta usando inducción matemática.
- ► Ejemplo (recordar mergesort)

$$W(0) = c_0$$

$$W(1) = c_1$$

$$W(n) = 2W(\lfloor n/2 \rfloor) + c_2 n$$

- ▶ Adivinamos que $W(n) \in O(n \lg n)$
- ▶ Probamos que $\exists c$ tal que $W(n) \leqslant cn \lg n$.

▶ Reemplazamos nuestra solución en la recurrencia

$$W(n) \leq 2(c \lfloor n/2 \rfloor \lg \lfloor n/2 \rfloor) + c_2 n$$

$$\leq cn \lg (n/2) + c_2 n$$

$$= cn(\lg n - \lg 2) + c_2 n$$

$$= cn \lg n - cn + c_2 n$$

$$\leq cn \lg n \qquad \text{siempre y cuando } c \geqslant c_2.$$

- ► Faltan chequear los casos bases. $\not W(0) \le c \cdot 0 \cdot \lg 0$? $\not W(1) \le c \cdot 1 \cdot \lg 1$?
- La notación O sólo requiere $W(n) \leqslant cn \lg n$ para $n \geqslant N$. Tomamos N = 2

$$W(2) = 2W(1) + 2c_2 = 2c_1 + 2c_2 \le c \cdot 2\lg 2 = 2c$$

 $W(3) = 2W(1) + 3c_2 = 2c_1 + 3c_2 \le c \cdot 3\lg 3$

Elegimos *c* suficientemente grande.

Acerca de la adivinanza

- Como adivinanza de una solución $O(n \lg n)$ utilizamos una función $f(n) = cn(\lg n)$ para una constante arbitraria c.
- ► Es obvio que $f(n) \in O(n \lg n)$.
- ▶ Podemos utilizar **cualquier** función $O(n \lg n)$. Por ejemplo:
 - $f(n) = cn(\lg n) + c_1 n,$
 - $ightharpoonup f(n) = cn(\lg n) c_2$, o
 - $f(n) = cn(\lg n) c_1 n + c_2.$
- ► El sumar o restar elementos de menor orden puede ser crucial para poder terminar la prueba.

Árboles de recurrencia

- Una técnica general para resolver recurrencias son los árboles de recurrencia
- Los ilustramos usando la recurrencia

$$T(1) = c_1$$

$$T(n) = 3T(n/4) + cn^2$$

► Hacemos un árbol que en su raíz tiene el costo para el n inicial, con ramas indicando cada una de las llamadas recursivas.

Árboles de recurrencia (cont.)

Las ramas correspondientes a las llamadas recursivas se expanden, ahora tienen el costo correspondiente a cada llamada y generan nuevas hojas.

Árboles de recurrencia (cont.)

- Se sigue expandiendo el árbol hasta llegar a un caso base.
- ► En cada nivel se suma el total de operaciones por nivel. El costo total es la suma de todos los niveles.

Árboles de recurrencia (cont.)

La suma obtenida se manipula algebraicamente para llegar al resultado.

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4}n - 1}cn^{2} + kn^{\log_{4}3}$$

$$= \sum_{i=0}^{\log_{4}n - 1} \left(\frac{3}{16}\right)^{i}cn^{2} + kn^{\log_{4}3}$$

$$= \frac{(3/16)^{\log_{4}n} - 1}{(3/16) - 1}cn^{2} + kn^{\log_{4}3}$$

$$\in O(n^{2})$$

- Si somos prolijos, el método nos da una solución exacta.
- Si no, al menos nos da un candidato para usar el método de substitución.

Ejercicio

Verificar usando el método de la substitución que la cota obtenida es ajustada. Es decir, probar que

$$T(n) = 3T(n/4) + cn^2 \in \Theta(n^2)$$

Nota: De aquí en más, si no se menciona caso base, suponerlo(s) constante(s).

Simplificando Recurrencias

- Para el análisis de mergesort, nos olvidamos de los $\lfloor \cdot \rfloor$ y los $\lceil \cdot \rceil$
- ¿Cuando es válido hacer estas aproximaciones?
- ▶ Si $n = b^k$ entonces $n/b = \lfloor n/b \rfloor = \lceil n/b \rceil$.
- ▶ Notar que no alcanza que *n* sea múltiplo de *b*.
- Podría suceder que la solución asintótica para entradas $n = b^k$ sea la solución para cualquier entrada.

Funciones suaves

▶ Una función $f: \mathbb{N} \to \mathbb{R}^+$ es eventualmente no decreciente si

$$\exists N \in \mathbb{N}. \ f(n) \leqslant f(n+1)$$
 para todo $n \geqslant N$

- ▶ Una función $f: \mathbb{N} \to \mathbb{R}^+$ es *b-suave* (smooth) si
 - 1. es eventualmente no decreciente y
 - $2. \ f(bn) \in O(f(n)).$
- ▶ Una función es *suave* si es *b*-suave para todo *b*.
- Propiedad: si f es b-suave para un $b \ge 2$, entonces es suave para todo b.
- ▶ Ejemplos de funciones suaves: n^2 , n^r (para todo r), $n \lg n$.
- Ejemplos de funciones no suaves: $n^{\lg n}$, 2^n , n!.
- ▶ Ejercicio: verificar que n^2 es suave y que 2^n no lo es.

Regla de suavidad

▶ Regla de suavidad: Sea f suave y sea g eventualmente no decreciente. Para todo $b \ge 2$,

$$g(b^k) \in \Theta(f(b^k)) \quad \Rightarrow \quad g(n) \in \Theta(f(n))$$

Ejemplo de uso: Considere la siguiente recurrencia

$$W(1) = c$$

$$W(n) = W(\lceil n/2 \rceil) + W(\lfloor n/2 \rfloor) + kn$$

Si sólo consideramos potencias de 2 obtenemos

$$W'(1) = c$$

$$W'(n) = 2W'(n/2) + kn$$

que es $\Theta(n \lg n)$.

Uso de la Regla de suavidad

- \triangleright $W'(n) \in \Theta(n \lg n)$
- Pero W'(n) = W(n) para potencias de 2.
- Por lo tanto $W(2^k) = W'(2^k) \in \Theta(2^k \lg(2^k))$.
- Como n lg n es suave, por regla de suavidad,

$$W(n) \in \Theta(n \lg n)$$

.

Resolviendo recurrencias

► Las recurrencias que aparecen en algoritmos "Divide & Conquer" usualmente tienen la forma:

$$T(n) = aT(n/b) + f(n)$$

► En general, podemos obtener el orden de estas recurrencias directamente usando una resolución general.

"El Teorema Maestro"

El Teorema Maestro

▶ Dados $a \ge 1$ y b > 1 y la recurrencia

$$T(n) = aT(n/b) + f(n) ,$$

entonces

$$T(n) \in \left\{ \begin{array}{ll} \Theta(n^{\lg_b a}) & \text{si } \exists \epsilon > 0. \ f(n) \in O(n^{(\lg_b a) - \epsilon}) \\ \\ \Theta(n^{\lg_b a} \lg n) & \text{si } f(n) \in \Theta(n^{\lg_b a}) \\ \\ \text{si } \exists \epsilon > 0. \ f(n) \in \Omega(n^{(\lg_b a) + \epsilon}) \\ \\ \Theta(f(n)) & \text{y } \exists c < 1, N \in \mathbb{N}. \ \forall n > N. \\ \\ & af(n/b) \leqslant cf(n) \end{array} \right.$$

Para $W(n) = 2W(\lfloor n/2 \rfloor) + c_2 n$ estamos en el 2do caso ya que $\lg_2 2 = 1$ y $g(n) \in \Theta(n^1)$, y por lo tanto $W(n) = \Theta(n \lg n)$

Comentarios acerca del Teorema Maestro

- ▶ Los casos se deciden comparando f(n) y $n^{\lg_b a}$.
 - ightharpoonup Caso 1: $n^{\lg_b a}$ es mas grande.
 - Caso 2: f(n) y $n^{\lg_b a}$ tienen el mismo orden.
 - ightharpoonup Caso 3: f(n) es mas grande.
- ► En realidad no basta con que una sea mas grande que la otra, sino que debe serlo polinomialmente.
 - $ightharpoonup f(n) = n \lg n$ no es polinomialmente mas grande que g(n) = n.
- Los tres casos **no** cubren todas las posibilidades

Ejercicios

Resolver usando el teorema maestro.

1.
$$S(n) = 2S(n/4) + 3n^2$$

2.
$$W(n) = 2W(n/2) + 14n$$

3.
$$T(n) = 2T(n/2) + 14$$

Resumen

Resolución de recurrencias usando:

- Substitución
- ► Árbol de recurrencias.
- ► Regla de suavidad
- ► Teorema Maestro

Referencias

- ► Introduction to Algorithms. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
- ► Fundamentals of Algorithmics. Gilles Brassard, Paul Bratley