

Universidad Nacional Autónoma de México

CENTRO DE CIENCIAS MATEMÁTICAS

R-Ladies

Ejemplo de Rmarkdown con Latex

Nombres Apellidos (email_1@gmail.com) Nombres Apellidos (email_2@gmail.com)

Morelia

14 de mayo de 2022

${\bf \acute{I}ndice}$

1.	Introducción	3
2.	Sintaxis de LaTeX	3
	2.1. Ecuaciones	3
	2.2. Listas	4
	2.3. Teoremas y figuras	4
	2.4. Tablas en Rmarkdown	
	2.5. Tablas en LaTeX	
3.	Código en R	6
	3.1. Formato a tablas	8
	3.1.1. Dividir la tabla	
4.	Ejercicios	13
Re	eferencias	13

1. Introducción

Primero debemos instalar: Rmarkdown

```
# Install from CRAN
#install.packages('rmarkdown')
```

Si ya tienen alguna versión de Latex, no hacer nada, Si no tienen instalado Latex, entonces instalar alguna distribución MiKTeX, MacTeX, and TeX Live o TinyTex

```
#install.packages('tinytex')
#tinytex::install_tinytex()
# to uninstall TinyTeX, run
# tinytex::uninstall_tinytex()
```

2. Sintaxis de LaTeX

2.1. Ecuaciones

En LaTeX, el texto matemático lo escribimos entre signos de pesos x+2. Por ejemplo, si escribimos $f(x)=2x^2-7x+4$, el resultado que obtenemos es: $f(x)=2x^2-7x+4$.

Cuando usamos doble signo de pesos, el efecto que obtenemos es que el texto matemático se centra. Al escribir $\$g(x)=\frac{7x-2}{x+4}.\$$ obtenemos:

$$g(x) = \frac{7x - 2}{x + 4}.$$

Otros entornos que podemos usar son los siguientes.

■ Entorno \begin{equation*}...\end{equation*}:

$$\begin{cases} 8x - y = 29 \\ 2x + y = 11 \end{cases}$$

■ Entorno \begin{bmatrix} ... \end{bmatrix}:

$$X = \begin{bmatrix} 1 & 4 \\ 5 & 8 \\ 3 & 8 \end{bmatrix}$$

■ Entorno \begin{pmatrix} ... \end{pmatrix}:

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

■ Entorno \begin{equation}...\end{equation}:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc. \tag{1}$$

Para hacer referencia a una ecuación, necesitamos colocar un \label{nombre} junto al entorno de ecuación y para referirnos a dicha ecuación usamos $\ref{eq:determinante}$, así, podemos decir que la ecuación 1, muestra como se calcula el determinante de una matriz de tamaño 2×2 .

2.2. Listas

Las listas también se pueden crear con los entornos de \begin{itemize}...\end{itemize} o de \begin{enumerate}...\end{enumerate}.

- 1. De 3a + 2b c restar 2a + 3b c
- 2. De 3x 7y + 4z restar 9z 7y + 3x
- 3. De $x^2 5xy + 8xz$ restar $8zx 5xy 9x^2$

Podemos tener listas y sublistas.

- Se hacen 3 lanzamientos con una moneda. Calcula las siguientes probabilidades.
 - 1. P(Salir tres caras)
 - 2. P(Salir dos caras)
 - 3. P(Salir al menos una cara)
- Se tiran dos dados. Calcular las probabilidades de los siguientes eventos.
 - 1. A = El número mayor es 1.
 - 2. B = El número mayor es 2.
 - 3. C = El número mayor es 3.

2.3. Teoremas y figuras

En LaTeX existe los entornos de teoremas, sin embargo también podemos modificarlos usando:

- \newtheorem{teorema}{Teorema}
- \newtheorem{lema}[teorema]{Lema}.

Entonces, para escribir un teorema, usamos el entorno que acabamos de definir \begin{teorema} \end{teorema}.

Definición 1. Un triángulo rectángulo es un triángulo que tiene un ángulo recto.

Teorema 1 (Teorema de Pitágoras). En un triángulo rectángulo, la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa:

$$a^2 = b^2 + c^2$$
.

Ejemplo 2. Calcula el cateto o hipotenusa faltante de cada uno de los triángulos rectángulos de la Figura 1.

Figura 1: Triángulo rectángulos

Los entornos que nos sirven para insertar figuras son:

- \begin{figure} ... \end{figure}
- \includegraphics[]{ruta/nombre_figura}
- subfigure[]{\includegraphics[]{ruta}}

Figura 2: Varias figuras en un solo entorno

2.4. Tablas en Rmarkdown

En álgebra, usamos símbolos para representar cantidades, estos símbolos pueden ser números o letras. Los números los usamos para representar cantidades conocidas, mientras que las letras las usamos para representar cantidades desconocidas. Este tipo de expresiones las llamamos **términos algebraicos**. Los términos algebraicos constan de coeficientes, bases y exponentes.

Término	Coeficiente(s)	Base(s)	Exponente(s)
$5x^3$	5	x	3
$8m^{2}n^{3}$	8	m, n	2,3
$-\frac{2}{7}(x+y)^3$	$-\frac{2}{7}$	(x+y)	3

Término	Coeficiente(s)	Base(s)	Exponente(s)
\overline{p}	1	p	1

Ejemplo de opción múltiple:

I. Selecciona la respuesta correcta en cada caso.			
1) El doble de un número menos 15			
a) $15 - 2x$	b) $2x - 15$	c) 2x	d) $15x + 2$
2) Años de Margot hace tres años.			
a) 3x	b) $3 - x$	c) $2x - 1$	d) $x - 3$

2.5. Tablas en LaTeX.

Una tabla en LaTeX se puede escribir usando el entorno \begin{tabular}{cantidad de columnas o tamaño}.... \end{tabular}.

1. Suma y Resta $ \begin{cases} 8x - y = 29 \\ 2x + y = 11 \end{cases} $	2. Suma y Resta $ \begin{cases} 8x - 3y = 5 \\ 5x - 2y = 4 \end{cases} $
3. Igualación $ \begin{cases} 2x + 9y = 39 \\ 5x - y = -20 \end{cases} $	4. Igualación $ \begin{cases} 2x + y = -2 \\ 6x - 5y = 18 \end{cases} $

3. Código en R

Existen dos tipos de R código en R
markdown, código en línea y chunks. La sintaxis para escribir código R
 en línea es \dot{r} R_CODE \dot{r} . Por ejemplo, supongamos que queremos calcular la suma de 1+1, entonces escribimos 2.

Para los chunks, veamos lo siguiente.

Leemos la base de datos y la asignamos a la variable gapminder. Vamos a agregar un nombre a nuestro chunk y los atributos message=FALSE, warning=FALSE para que no se despiegle los mensajes de error o los warning si es que existen en nuestro pdf.

```
gapminder <- read.csv("bd/gapminder_data.csv", stringsAsFactors = TRUE)</pre>
```

Vamos a realizar un gráfico de dispersión para darnos una idea de como están los datos en nuestra base de datos gapminder, las variables que usaremos serán gdpPercap y lifeExp.

Figura 3: Primera gráfica

Atributos del chunk:

- fig.cap: nos sirve para darle un título a nuestro gráfico. Para hacer referencia a dicho gráfico más adelante, se usa la sintaxis \ref{fig:nombre}.
- fig.width, fig.height: nos indica el tamaño real de la figura.
- out.width: nos indica el tamaño del output de la figura.
- fig.align: nos indica que la posición de la figura.

Para mostrar dos plots juntos, usamos fig.show='hold'.

Figura 4: Dos plots

En los chunks, podemos modificar su queremos que aparesca el código de R o no cambiando la opción de include=TRUE o include=FALSE.

```
calcGDP <- function(dat, year=NULL, country=NULL) {
  if(!is.null(year)) {
    dat <- dat[dat$year %in% year, ]
  }
  if (!is.null(country)) {</pre>
```



```
dat <- dat[dat$country %in% country,]
}
gdp <- dat$pop * dat$gdpPercap

new <- cbind(dat, gdp=gdp)
 return(new)
}</pre>
```

Vamos a usar la función con los parámetros year=2007 y country=Australia.

	country	year	pop	continent	lifeExp	gdpPercap	gdp
72	Australia	2007	20434176	Oceania	81.235	34435.37	703658358894

Tambien podemos definir ciertas variables en los chunks y después mandarlas a llamar dentro del texto.

Vamos a calcular la media de la columna dgp de Africa, la vamos a asignar a una variable para después poderla llamar en cualquier parte del texto.

La media es $2,0904783 \times 10^{10}$.

3.1. Formato a tablas

Para dar un formato más amigable a las tablas, usamos el paquete kable.

Cuadro 3: Primeras 15 filas de la base de datos "gapminder"

country	year	pop	continent	lifeExp	$\operatorname{gdpPercap}$
Afghanistan	1952	8425333	Asia	28.801	779.4453
Afghanistan	1957	9240934	Asia	30.332	820.8530
Afghanistan	1962	10267083	Asia	31.997	853.1007
Afghanistan	1967	11537966	Asia	34.020	836.1971
Afghanistan	1972	13079460	Asia	36.088	739.9811
Afghanistan	1977	14880372	Asia	38.438	786.1134
Afghanistan	1982	12881816	Asia	39.854	978.0114
Afghanistan	1987	13867957	Asia	40.822	852.3959
Afghanistan	1992	16317921	Asia	41.674	649.3414
Afghanistan	1997	22227415	Asia	41.763	635.3414
Afghanistan	2002	25268405	Asia	42.129	726.7341
Afghanistan	2007	31889923	Asia	43.828	974.5803
Albania	1952	1282697	Europe	55.230	1601.0561
Albania	1957	1476505	Europe	59.280	1942.2842
Albania	1962	1728137	Europe	64.820	2312.8890

Vamos a cambiar el nombre de las columnas usando la opción col.names.

Vamos a usar de nuevo nuestra función calGDP con los parámetros year=2007, country=Australia y lo vamos a asignar a la variable australia_2007.

Cuadro 4: Columnas 1 a 3 de la base "gapminder'

Ciudad	Año	Población
Afghanistan	1952	8425333
Afghanistan	1957	9240934
Afghanistan	1962	10267083
Afghanistan	1967	11537966
Afghanistan	1972	13079460
Afghanistan	1977	14880372
Afghanistan	1982	12881816
Afghanistan	1987	13867957
Afghanistan	1992	16317921
Afghanistan	1997	22227415

Cuadro 5: Media de GDP de Australia en 2007

	country	year	pop	continent	lifeExp	$\operatorname{gdpPercap}$	gdp
72	Australia	2007	20434176	Oceania	81.235	34435.37	703658358894

3.1.1. Dividir la tabla

Supongamos que tenemos una tabla muy grande, para permitir partirla amigablemente en varias páginas, usamos el paquete longatable y colocamos el argumento longatable=TRUE dentro de las opciones de kable.

Cuadro 6: Tabla dividida

country	year	pop	continent	life Exp	$\operatorname{gdpPercap}$
Afghanistan	1952	8425333	Asia	28.801	779.4453
Afghanistan	1957	9240934	Asia	30.332	820.8530
Afghanistan	1962	10267083	Asia	31.997	853.1007
Afghanistan	1967	11537966	Asia	34.020	836.1971
Afghanistan	1972	13079460	Asia	36.088	739.9811
Afghanistan	1977	14880372	Asia	38.438	786.1134
Afghanistan	1982	12881816	Asia	39.854	978.0114
Afghanistan	1987	13867957	Asia	40.822	852.3959
Afghanistan	1992	16317921	Asia	41.674	649.3414
Afghanistan	1997	22227415	Asia	41.763	635.3414
Afghanistan	2002	25268405	Asia	42.129	726.7341
Afghanistan	2007	31889923	Asia	43.828	974.5803
Albania	1952	1282697	Europe	55.230	1601.0561
Albania	1957	1476505	Europe	59.280	1942.2842
Albania	1962	1728137	Europe	64.820	2312.8890
Albania	1967	1984060	Europe	66.220	2760.1969
Albania	1972	2263554	Europe	67.690	3313.4222
Albania	1977	2509048	Europe	68.930	3533.0039
Albania	1982	2780097	Europe	70.420	3630.8807
Albania	1987	3075321	Europe	72.000	3738.9327
Albania	1992	3326498	Europe	71.581	2497.4379

Cuadro 6: Tabla dividida (continued)

country	year	pop	continent	lifeExp	gdpPercap
Albania	1997	3428038	Europe	72.950	3193.0546
Albania	2002	3508512	Europe	75.651	4604.2117
Albania	2007	3600523	Europe	76.423	5937.0295
Algeria	1952	9279525	Africa	43.077	2449.0082
Algeria	1957	10270856	Africa	45.685	3013.9760
Algeria	1962	11000948	Africa	48.303	2550.8169
Algeria	1967	12760499	Africa	51.407	3246.9918
Algeria	1972	14760787	Africa	54.518	4182.6638
Algeria	1977	17152804	Africa	58.014	4910.4168
Algeria	1982	20033753	Africa	61.368	5745.1602
Algeria	1987	23254956	Africa	65.799	5681.3585
Algeria	1992	26298373	Africa	67.744	5023.2166
Algeria	1997	29072015	Africa	69.152	4797.2951
Algeria	2002	31287142	Africa	70.994	5288.0404
Algeria	2007	33333216	Africa	72.301	6223.3675
Angola	1952	4232095	Africa	30.015	3520.6103
Angola	1957	4561361	Africa	31.999	3827.9405
Angola	1962	4826015	Africa	34.000	4269.2767
Angola	1967	5247469	Africa	35.985	5522.7764
Angola	1972	5894858	Africa	37.928	5473.2880
Angola	1977	6162675	Africa	39.483	3008.6474
Angola	1982	7016384	Africa	39.942	2756.9537
Angola	1987	7874230	Africa	39.906	2430.2083
Angola	1992	8735988	Africa	40.647	2627.8457
Angola	1997	9875024	Africa	40.963	2277.1409
Angola	2002	10866106	Africa	41.003	2773.2873
Angola	2007	12420476	Africa	42.731	4797.2313
Argentina	1952	17876956	Americas	62.485	5911.3151
Argentina	1957	19610538	Americas	64.399	6856.8562
Argentina	1962	21283783	Americas	65.142	7133.1660
Argentina	1967	22934225	Americas	65.634	8052.9530
Argentina	1972	24779799	Americas	67.065	9443.0385
Argentina	1977	26983828	Americas	68.481	10079.0267
Argentina	1982	29341374	Americas	69.942	8997.8974
Argentina	1987	31620918	Americas	70.774	9139.6714
Argentina	1992	33958947	Americas	71.868	9308.4187
Argentina	1997	36203463	Americas	73.275	10967.2820
Argentina	2002	38331121	Americas	74.340	8797.6407
Argentina	2007	40301927	Americas	75.320	12779.3796
Australia	1952	8691212	Oceania	69.120	10039.5956
Australia	1957	9712569	Oceania	70.330	10949.6496
Australia	1962	10794968	Oceania	70.930	12217.2269
Australia	1967	11872264	Oceania	71.100	14526.1246
Australia	1972	13177000	Oceania	71.930	16788.6295
Australia	1977	14074100	Oceania	73.490	18334.1975
Australia	1982	15184200	Oceania	74.740	19477.0093
Australia	1987	16257249	Oceania	76.320	21888.8890

Cuadro 6: Tabla dividida (continued)

country	year	pop	continent	lifeExp	gdpPercap
Australia	1992	17481977	Oceania	77.560	23424.7668
Australia	1997	18565243	Oceania	78.830	26997.9366

Cuadro 7: Tabla con notas de pie y formato horizontal de página^a

	Grupo 1 ^b			Grupo 2 ^c		
country	year	pop	continent	lifeExp	gdpPercap	gdp
Afghanistan	1952	8425333	Asia	28.801	779.4453	6567086330
Afghanistan	1957	9240934	Asia	30.332	820.8530	7585448670
Afghanistan	1962	10267083	Asia	31.997	853.1007	8758855797
Afghanistan	1967	11537966	Asia	34.020	836.1971	9648014150
Afghanistan	1972	13079460	Asia	36.088	739.9811	9678553274
Afghanistan	1977	14880372	Asia	38.438	786.1134	11697659231
Afghanistan	1982	12881816	Asia	39.854	978.0114	12598563401
Afghanistan	1987	13867957	Asia	40.822	852.3959	11820990309
Afghanistan	1992	16317921	Asia	41.674	649.3414	10595901589
Afghanistan	1997	22227415	Asia	41.763	635.3414	14121995875
Afghanistan	2002	25268405	Asia	42.129	726.7341	18363410424
Afghanistan	2007	31889923	Asia	43.828	974.5803	31079291949
Albania	1952	1282697	Europe	55.230	1601.0561	2053669902
Albania	1957	1476505	Europe	59.280	1942.2842	2867792398
Albania	1962	1728137	Europe	64.820	2312.8890	3996988985
Albania	1967	1984060	Europe	66.220	2760.1969	5476396323
Albania	1972	2263554	Europe	67.690	3313.4222	7500110047
Albania	1977	2509048	Europe	68.930	3533.0039	8864476394
Albania	1982	2780097	Europe	70.420	3630.8807	10094200603
Albania	1987	3075321	Europe	72.000	3738.9327	11498418358
Albania	1992	3326498	Europe	71.581	2497.4379	8307722183
Albania	1997	3428038	Europe	72.950	3193.0546	10945912519
Albania	2002	3508512	Europe	75.651	4604.2117	16153932130
Albania	2007	3600523	Europe	76.423	5937.0295	21376411360
Algeria	1952	9279525	Africa	43.077	2449.0082	22725632678
Algeria	1957	10270856	Africa	45.685	3013.9760	30956113720
Algeria	1962	11000948	Africa	48.303	2550.8169	28061403854
Algeria	1967	12760499	Africa	51.407	3246.9918	41433235247
Algeria	1972	14760787	Africa	54.518	4182.6638	61739408943
Algeria	1977	17152804	Africa	58.014	4910.4168	84227416174

<sup>a Primeras 30 filas
b Grupo 1 contiene año, población, continente y esperanza de vida
c Grupo 2 contiene el GDP per capita y la media</sup>

4. Ejercicios

Vamos a usar los ejercicios de la lección 12 de R for Reproducible Scientific Analysis para darle formato a las tablas y a los gráficos.

Ejercicio 1:: Calcular la media de gdp por continente y darle formato a tabla usando kable, añadir nombres de las columnas

Ejercicio 2: Calcular la media de gdp agrupando por año y continente. Darle formato a la tabla.

Ejercicio 3: Calcular la media de gdp por continente y año usando daply. Dar formato a la tabla.

Ejercicio 4: Calcular la media de la variable lifeExp agrupando por continente y año. Calcular la media por continente del año 2007. Darle formato a la tabla, seleccionando solo las columnas continent y V1.

Referencias

- [1] Yihui Xie, bookdown: Authoring Books and Technical Documents with R Markdown, CRC Press, https://bookdown.org/yihui/bookdown/.
- [2] R for Reproducible Scientific Analysis, Software Carpentry, https://swcarpentry.github.io/r-novice-gapminder/.
- [3] Pakin, Scott, *The Comprehensive LaTeX Symbol List*, http://tug.ctan.org/info/symbols/comprehensive/symbols-a4.pdf.
- [4] Zhu, Hao, Create Awesome LaTeX Table with knitr::kable and KableExtra, https://haozhu233.github.io/kableExtra/awesome_table_in_pdf.pdf