Recommender systems

SD-TSIA 211

Teachers : Anas Barakat, Olivier Fercoq, Nidham Gazagnadou, Ekhine Irurozki, Kimia Nadjahi 18 December 2020

You can do the computer lab alone or in pairs. Please write a report and post it on e-campus. You can do it as a jupyter notebook or a pdf file.

Then, each of you will have to evaluate a couple of other students' reports and give comments.

Only the fact that you produce a report and evaluate your peers count in the final grade, so do not worry if you do not finish everything.

1 Presentation of the model

U is the set of users, I is the set of items (here, films). For each couple (u, i), either user u has not watched film i and we do not have any datum, or we have a grade $R_{u,i}$ for film i by user u.

The model presented in [KBV09] makes the assumption that there exists a joint latent feature space F such that user-item interactions are inner products in that space. According to this model, one should have $R_{u,i} \approx \sum_{f \in F} Q_{u,f} P_{f,i}$ where $Q_{u,:}$ is a representation of user u in the feature space and $P_{:,i}$ is a representation of item i in the feature space. The strength of this model is to predict a probable grade that user u would give film i if she ever watched it. Thus, we can recommend her films that she has not watched but that she may enjoy.

We then train the model using regularized least squares:

$$(\hat{P}, \hat{Q}) = \arg\min_{P,Q} \frac{1}{2} \sum_{(u,i)\in K} \left(R_{u,i} - \sum_{f\in F} Q_{u,f} P_{f,i} \right)^2 + \frac{\rho}{2} \left(\sum_{u\in U, f\in F} Q_{u,f}^2 + \sum_{i\in I, f\in F} P_{f,i}^2 \right)$$

$$= \arg\min_{P,Q} \frac{1}{2} \|1_K \circ (R - QP)\|_F^2 + \frac{\rho}{2} \|Q\|_F^2 + \frac{\rho}{2} \|P\|_F^2$$

$$(1)$$

where K is the set of couples (u,i) for which $R_{u,i}$ is known, $\|\cdot\|_F$ is Frobenius's norm, $(1_K)_{u,i} = 0$ if $(u,i) \notin K$ and $(1_K)_{u,i} = 1$ if $(u,i) \in K$, $(A \circ B)_{u,i} = A_{u,i}B_{u,i}$ and $\rho > 0$ is a regularization parameter. We shall take here $\rho = 0.3$ and $F = \{0, 1, 2, 3\}$.

When $\rho = 0$ and $K = U \times I$, the solution of this problem is a truncated singular value decomposition. In the general case, we need to use an optimization algorithm.

Question 1.1

Download the Movielens database [HKBR99] on the website:

http://files.grouplens.org/datasets/movielens/ml-100k.zip.

Run the function load_movielens of movielens_utils.py with the correct file name and check that the matrix R has size 943×1682 . What is the minidata option doing?

Question 1.2

How many user and films are there in the database? What is the total number of grades?

2 Find P when Q^0 is fixed

We initialize the algorithm with Q^0 (resp. P^0) defined as the left (resp. right) singular vectors of R associated to the |F| largest singular values. The missing values of R will be fixed to 0 for this initialization phase. You may use the function scipy.sparse.linalg.svds.

First, we want to solve the following simpler problem:

$$g(P) = \frac{1}{2} \|1_K \circ (R - Q^0 P)\|_F^2 + \frac{\rho}{2} \|Q^0\|_F^2 + \frac{\rho}{2} \|P\|_F^2$$
$$P^1 = \arg\min_P \ g(P)$$

Question 2.1

Calculate the gradient of function g. We will admit that this gradient is Lipschitz continuous with constant $L_0 = \rho + ||(Q^0)^\top Q^0||_F$.

Question 2.2

The function objective provided in the file movielens_utils.py computes g(P). Complete this function so that it also computes $\nabla g(P)$. You may check your calculations with the function scipy.optimize.check_grad (you may need numpy.reshape and numpy.ravel because check_grad does not accept matrix variables).

Question 2.3

Code a function gradient(g, P0, gamma, epsilon) that minimizes a function g using the gradient method with a constant step size γ , starting from the initial point P^0 and with stopping criterion $\|\nabla g(P_k)\|_F \leq \epsilon$.

Question 2.4

Run the function coded in the previous question in order to minimize g up to the precision $\epsilon = 1$.

Question 2.5

Add a line search to your gradient method, so that you do not rely on the Lipschitz constant of the gradient any more.

3 Resolution of the full problem

Question 3.1

Let f be the function defined by $f(P,Q) = \frac{1}{2} \|1_K \circ (R - QP)\|_F^2 + \frac{\rho}{2} \|Q\|_F^2 + \frac{\rho}{2} \|P\|_F^2$.

By remarking that f is a polynomial of degree 4, show that its gradient is not Lipschitz continuous.

Question 3.2

Solve Problem (1) by the gradient method with line search until reaching the precision $\|\nabla f(P_k, Q_k)\|_F \leq \epsilon$ with $\epsilon = 100$. How do you interpret what the algorithm returns?

Question 3.3

What film would you recommend to user 300?

Références

- [HKBR99] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. An algorithmic framework for performing collaborative filtering. In *Proc. of 22nd ACM SIGIR conference*, pages 230–237. ACM, 1999.
- [KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. *Computer*, (8) :30–37, 2009.