## **PCT**

## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification 7:                                                                                                                                                                                                                                                                                                                               |                            | (11) International Publication Number: WO 00/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3503                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| C12N 9/16                                                                                                                                                                                                                                                                                                                                                                 | A1                         | (43) International Publication Date: 27 July 2000 (27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07.00)                                                                                      |
| (21) International Application Number: PCT/DK (22) International Filing Date: 21 January 2000 (2) (30) Priority Data: PA 1999 00092 22 January 1999 (22.01.99) PA 1999 01340 21 September 1999 (21.09.9) (71) Applicant: NOVO NORDISK A/S [DK/DK]; Enzymess Patents, Novo Allé, DK-2880 Bagsværd (DK) (72) Inventor: LEHMANN, Martin; 258 Sayre Drive, Prince 07043 (US). | 21.01.0<br>199) D<br>me Bu | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BH BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RC SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KM, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, BY, KG, KZ, MD, RU, TJ, TM), European patent (AC, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GN, GW, ML, MR, NE, SN, TD, TG). | B, BG,<br>M, EE,<br>IS, JP,<br>MA,<br>D, RU,<br>L, UG,<br>E, LS,<br>M, AZ,<br>T, BE,<br>MC. |

#### (57) Abstract

This invention relates to improved phytases, preferably phytases of an increased thermostability, and a process of producing them. In particular, stabilizing amino acid mutations are introduced into a homologous protein, or the active site of a phytase is replaced in part or in total. The corresponding DNA sequences and methods of preparing them are also disclosed, as are methods of producing the improved phytases, and the use thereof. Specific variants of Aspergillus fumigatus phytase and of consensus phytases are disclosed.

BEST AVAILABLE COPY

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES | Spain ·             | LS | Lesotho               | SI   | Slovenia                |
|----|--------------------------|----|---------------------|----|-----------------------|------|-------------------------|
| AM | Armenia                  | FI | Finland             | LT | Lithuania             | SK   | Slovakia                |
| ΑT | Austria                  | FR | France              | LU | Luxembourg            | SN   | Senegal                 |
| ΑU | Australia                | GA | Gabon               | LV | Latvia                | SZ   | Swaziland               |
| ΑZ | Azerbaijan               | GB | United Kingdom      | MC | Мопасо                | TD   | Chad                    |
| BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG   | Togo                    |
| BB | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ   | Tajikistan              |
| BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM   | Turkmenistan            |
| BF | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR   | Turkey                  |
| BG | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT   | Trinidad and Tobago     |
| BJ | Benin                    | IE | Ireland             | MN | Mongolia              | ÜA   | Ukraine                 |
| BR | Brazil                   | IL | Israel              | MR | Mauritania            | UG   | Uganda                  |
| BY | Belarus                  | IS | Iceland             | MW | Malawi                | US   | United States of Americ |
| CA | Canada                   | IT | Italy               | MX | Mexico                | UZ   | Uzbekistan              |
| CF | Central African Republic | JP | Japan               | NE | Niger                 | VN   | Viet Nam                |
| CG | Congo                    | KE | Kenya               | NL | Netherlands           | YU   | Yugoslavia              |
| CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | zw   | Zimbabwe                |
| CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           | 2,,, | Zanoabwe                |
| CM | Cameroon                 |    | Republic of Korea   | PL | Poland                |      |                         |
| CN | China                    | KR | Republic of Korea   | PT | Portugal              |      |                         |
| CU | Cuba                     | KZ | Kazakstan           | RO | Romania               |      |                         |
| CZ | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |      |                         |
| DE | Germany                  | Li | Liechtenstein       | SD | Sudan                 |      |                         |
| DK | Denmark                  | LK | Sri Lanka           | SE | Sweden                |      |                         |
| EE | Estonia                  | LR | Liberia             | SG | Singapore             |      |                         |

1

#### Improved phytases

Phytases are enzymes that hydrolyze phytate (myo-inositol hexakisphosphate) to myo-inositol and inorganic phosphate. They are known to be valuable feed additives.

The present invention relates to improved phytases, viz. phytases of amended characteristics, e.g. amended activity characteristics, reference being made to e.g. the phytase(s) it has been derived from, or to known phytases. Amended activity characteristics means amended in at least one phytase activity related respect, such as (non-exclusive list): pH stability, temperature stability, pH profile, temperature profile, specific activity (in particular in relation to pH and temperature), substrate specificity, substrate cleavage pattern, substrate binding, position specificity, the velocity and level of release of phosphate from corn, reaction rate, phytate degradation rate), end level of released phosphate reached.

Examples of amended activity characteristics are amended specific activity (e.g. increased, e.g. increased at a pH of 3, 20 4, 5, or 6); amended pH or temperature profile; and/or amended (e.g. increased) thermostability, e.g. of an increased melting temperature as measured using Differential Scanning Calorimetry (DSC).

The present invention also relates to a process for the
25 preparation of a modified protein, wherein in a first step a
consensus sequence is determined from a number of highly
homologous sequences according to steps a), b) and c) below:

 a) at least three, preferably at least four amino acid sequences are aligned by any standard alignment program known in 30 the art;

2

- b) at every position of the amino acid sequence alignment, the amino acids are evaluated for their evolutionary similarity and a consensus residue is chosen by any standard program known in the art, whereby the minimal requirements for calculation of a consensus residue are set in such a way that the program is already able to determine a consensus residue if a given residue occurs in only two of the aligned sequences. However, if there is a subgroup of sequences among the compared amino acid sequences that shows a much higher degree of similarity with each other than with the remaining sequences of the alignment, the subgroup may be represented in the calculation only with its consensus sequence determined in the same way as outlined in EP 897985, or alternatively, to each sequence of the subgroup, a vote weight of 1 divided by the number of sequences in the subgroup will be assigned;
  - c) in case no consensus amino acid at a defined position is identified by the program, any of the amino acids, preferably the most frequently occurring amino acid at this position is selected.
- In a second aspect of the invention, a homologous sequence is compared with the consensus sequence, and one or more non-consensus residues in this homologous sequence are replaced by the corresponding consensus residues.

Preferably, only such amino acid residues are replaced in
the homologous amino acid sequence where a consensus residue can
clearly be defined by the program under moderately stringent
conditions whereas at all positions of the alignment where no
preferred consensus amino acid can be determined under
moderately stringent conditions, the amino acids of the
homologous protein remain unchanged.

3

In a third aspect of the invention, the active center of the protein of interest is determined, comprising all amino acid residues that are involved in forming the active center, both in the consensus sequence, and in the sequence of a homologous protein; subsequently, some or all of the divergent amino acid residues of the homologous protein are inserted in the backbone of the consensus sequence.

In one embodiment of this process, the program used for the comparison of amino acids at a defined position regarding 10 their evolutionary similarity is the program "PRETTY".

The active center of the protein can be determined by using an analysis of the three-dimensional structure of the protein.

An example of a homologous protein is an enzyme family, an example of a defined protein family is the family of phytases, e.g. of fungal origin.

For example, the amino acid sequence of the phytase can be changed by the introduction of at least one mutation or substitution chosen from

| 20 | E58A          | F54Y  |
|----|---------------|-------|
|    | D69K          | 173V  |
|    | D197 <b>N</b> | K94A  |
|    | T214L         | R101A |
|    | E222T         | N153K |
| 25 | E267D         | V158I |
|    | R291I         | A203G |
|    | R329H         | S205G |
|    | S364T         | V217A |
|    | A379K         | A227V |
| 30 | G404A         | V234L |
|    |               | P238A |

WO 00/43503

5

4

Q277E

A287H

A292Q

V366I

A396S

E4150

G437A

R451E

the amino acid behind the number, i.e. A.

For interpreting these abbreviations, as an example, the mutation E58A is to be interpreted as follows: When subtracting 26 from the number, you get the position or residue number in the consensus phytase sequence or another phytase sequence aligned as shown in Fig. 1 (corresponding to the addition of a 26 amino acid signal sequence to the sequences shown in Fig. 1). For example, in E58A, number 58 means position number 32 (58-26=32). And the letter before the number, i.e. E, represents the amino acid in the phytase to be modified which is replaced by

The above-mentioned amino acid replacements, alone and/or 20 in combination, have a positive effect on the protein stability.

The following sub-groups of mutations are also interesting (i.e. phytases comprising at least one mutation selected from either one of the groups of):

E58A, D69K, D197N, T214L, E222T, E267D, R291I, R329H, 25 S364T, A379K, G404A;

F54Y, I73V, K94A, R101A, N153K, V158I, A203G, S205G, V217A, A227V, V234L, P238A, Q277E, A287H, A292Q, V366I, A396S, E415Q, G437A, R451E;

E58A, D69K, D197N, F54Y, I73V, K94A;

30 T214L, E222T, E267DR101A, N153K, V158I;

R291I, R329H, S364TA203G, S205G, V217A;

5

A379K, G404AA227V, V234L, P238A, Q277E;

A287H, A292Q, V366I, A396S, E415Q, G437A, R451E;

T214L, E222T, S364T, V158I, A203G, G404A, A227V, P238A, A396S, G437A, R451E.

Examples of host cells are plant cells, animal cells, and microbial cells, e.g. prokaryotic or eukaryotic cells, such as bacterial, fungal or yeast cells. An example of a fungal host is a strain of the genus Aspergillus, and examples of yeast hosts are strains of Saccharomyces, and strains of Hansenula.

The invention also relates to a modified protein obtainable or obtained by any of the processes described above.

The invention also relates to a variant or mutein of a phytase such as (but not limited to) the consensus phytase-1, wherein, in the amino acid sequence in Figure 2, at least one of the following replacements have been effected: Q50L, Q50T, Q50G, Q50T-Y51N, Q50L-Y51N or Q50T-K91A.

In the third aspect mentioned above, a consensus sequence is determined from homologous sequences as described above; in a second step the active center of the protein comprising all 20 amino acid residues that are involved in forming the active center is determined in the consensus sequence and in the sequence of a single homologous protein as well. The single homologous protein may have preferred properties like high specific activity or different pH dependency of enzymatic 25 activity. In a third step some or all amino acid residues that are involved in forming the active center of the homologous protein are inserted into the backbone of the consensus sequence. The result thereof is a chimeric protein having the active center derived from a single protein and the backbone of 30 the consensus sequence.

6

The active center of the protein can be determined e.g. by using any analysis of the three-dimensional structure of the protein, e.g. by homology modelling on the basis of a known 3D-structure of a known protein.

The present invention also provides consensus proteins obtainable or obtained by such processes, in particular proteins comprising at least one of the amino acid sequences shown in Figures 2-6, 10 or 21, or variants or muteins thereof. Examples of such variants are shown in Figs. 7-9.

Such variants or muteins can be defined and prepared on the basis of the teachings given in European Patent Application number 0897010, e.g. Q50L, Q50T, Q50G, Q50L-Y51N, or Q50T-Y51N. These mutations are defined as above, or, alternatively, by reference to Fig. 2. When referring to Fig. 2, no subtraction of the 26 amino acid signal peptide is required (e.g. in "Q50L," at position 50 of the amino acid sequence of Fig. 2, the amino acid Q has been replaced by amino acid L).

A food, feed, or pharmaceutical composition comprising the phytases of the invention is another aspect of the invention.

In this context, and relating to the process of the invention, "at least three, preferably at least four amino acid sequences of such defined protein family" means that three, four, five, six to twelve, twenty, fifty, or even more sequences can be used for the alignment and the comparison to create the amino acid sequence of the consensus protein. "Sequences of a defined protein family" means that such sequences fold into a three-dimensional structure, wherein the alpha-helices, the beta-sheets and beta-turns are at the same position so that such structures are, as called by the man skilled in the art, largely superimposable. Furthermore these sequences characterize proteins that show the same type of biological activity, e.g. a

7

defined enzyme class, e.g. the phytases. The three-dimensional structure of one such protein is sufficient to allow the modelling of the structure of the other homologous proteins of such a family. An example, how this can be done, is given in 5 Example 1. "Evolutionary similarity" in the context of the present invention refers to a scheme which classifies amino acids regarding their structural similarity which allows that one amino acid can be replaced by another amino acid with a minimal influence on the overall structure, as this is done e.g. 10 by programs, like "PRETTY", known in the art. The phrase "the degree of similarity provided by such a program...is set to less stringent number" means in the context of the present invention that values for the parameters which determine the degree of similarity in the program used in the practice of the present 15 invention are chosen in a way to allow the program to define a consensus amino acid for a maximum of positions of the whole amino acid sequence, e. g. in case of the program PRETTY a value of 2 or 3 for the THRESHOLD and a value of 2 for the PLURALITY can be chosen. Furthermore, "a vote weight of one divided by the 20 number of such sequences" means in the context of the present invention that the sequences which define a group of sequences with a higher degree of similarity as the other sequences used for the determination of the consensus sequence only contribute to such determination with a factor which is equal to one 25 divided by the number of all sequences of this group.

As mentioned before, should the program not allow to select the consensus amino acid, the most frequent amino acid is selected; should the latter be impossible the man skilled in the art will select an amino acid from all the sequences used for the comparison which is known in the art for its property to improve the thermostability in proteins as discussed e.g. by

Janecek, S. (1993), Process Biochem. 28, 435-445; Fersht, A. R.
& Serrano, L. (1993), Curr. Opin. Struct. Biol. 3, 75-83; Alber,
T. (1989), Annu. Rev. Biochem. 58, 765-798; Matthews, B. W.
(1987), Biochemistry 26, 6885-6888; or Matthews, B. W. (1991),
5 Curr. Opin. Struct. Biol. 1, 17-21.

8

The stability of an enzyme is relevant for many industrial applications. Therefore, a lot of attempts, more or less successful, have been made to improve the stability, preferably the thermostability of enzymes by rational or random approaches.

Here we present an alternative way to improve the thermostability of a protein.

The invention provides a process for the preparation of a consensus protein comprising a process to calculate an amino acid residue for nearly all positions of a so-called consensus protein and to synthesize a complete gene from this sequence that can be expressed in a pro- or eukaryotic expression system.

DNA sequences of the present invention can be constructed starting from genomic or cDNA sequences encoding the proteins, e.g. phytases, of interest. For example, they can be constructed 20 by methods of in vitro mutagenesis [see e.g. Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, New York]. A widely used strategy for "site-directed mutagenesis", as originally outlined by Hurchinson and Edgell [J. Virol. 8, 181 (1971)], involves the annealing of а synthetic 25 oligonucleotide carrying the desired nucleotide substitution to a target region of a single-stranded DNA sequence wherein the mutation should be introduced [for review see Smith, Annu. Rev. Genet. 19, 423 (1985), and for improved methods, see references 2-6 in Stanssen et al., Nucl. Acids Res., 17, 4441-4454 (1989). 30 Another possibility of mutating a given DNA sequence is the mutagenesis by using the polymerase chain reaction (PCR). DNA as

9

starting material can be isolated by methods known in the art and described e.g. in Sambrook et al. (Molecular Cloning) from the respective strains.

For strain information, see e.g. EP 684313 or any depository authority indicated below. Aspergillus niger [ATCC 9142], Myceliophthora thermophila [ATCC 48102], Talaromyces thermophilus [ATCC 20186] and Aspergillus fumigatus [ATCC 34625] have been redeposited according to the conditions of the Budapest Treaty at the American Type Culture Cell Collection under the following accession numbers: ATCC 74337, ATCC 74340, ATCC 74338 and ATCC 74339, respectively. It is, however, understood that DNA encoding a consensus protein in accordance with the present invention can also be prepared in a synthetic manner as described, e.g. in EP 747483 or EP 897985, or in the examples, by methods known in the art.

For sequence information, see e.g. EP 684313, or sequence data bases, for example like Genbank (Intelligenetics, California, USA), European Bioinformatics Institute (Hinston Hall, Cambridge, GB), NBRF (Georgetown University, Medical Centre, Washington DC, USA) and Vecbase (University of Wisconsin, Biotechnology Centre, Madison, Wisconsin, USA).

The process of the present invention can e.g. be used to improve the thermostability of the enzyme phytase.

Once complete DNA sequences of the present invention have 25 been obtained they can be integrated into vectors by methods known in the art and described e.g. in Sambrook et al. (s.a.) to overexpress the encoded polypeptide in appropriate host systems. However, a man skilled in the art knows that also the DNA sequences themselves can be used to transform the suitable host 30 systems of the invention to get overexpression of the encoded polypeptide. Appropriate host systems are for example fungi,

10

Aspergilli, e.g. Aspergillus niger [ATCC like 9142] orAspergillus ficuum [NRRL 3135] or like Trichoderma, Trichoderma reesei; or yeasts, like Saccharomyces, Saccharomyces cerevisiae or Pichia, like Pichia pastoris, or 5 Hansenula polymorpha, e.g. H. polymorpha (DSM5215); or plants, as described, e.g. by Pen et al., Bio/Technology 11, 811-814 (1994). A man skilled in the art knows that such microorganisms are available from depository authorities, e.g. the American Culture Collection (ATCC), the Centraalbureau 10 Schimmelcultures (CBS) orthe Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH (DSM) or any other depository authority as listed in the Journal "Industrial Property" [(1991) 1, pages 29-40]. Bacteria which can be used are e.g. E. coli; Bacilli as, e.g., Bacillus subtilis; or 15 Streptomyces, e.g. Streptomyces lividans (see e.g. Anné and Mallaert in FEMS Microbiol. Lett. 114, 121 (1993). Preferred E. coli strains, which can be used are E. coli K12 strains e.g. M15 [described as DZ 291 by Villarejo et al. in J. Bacteriol. 120, 466-474 (1974)], HB 101 [ATCC No. 33694] or E. coli SG13009 20 [Gottesman et al., J. Bacteriol. 148, 265-273 (1981)].

Vectors which can be used for expression in fungi are known in the art and described e.g. in EP 420358, or by Cullen et al. [Bio/Technology 5, 369-376 (1987)], Ward [Molecular Industrial Mycology, Systems and Applications for Filamentous Marcel Dekker, New York (1991)], Upshall al. [Bio/Technology 5, 1301-1304 (1987)], Gwynne [Bio/Technology 5, 71-79 (1987)], or Punt et al. [J. Biotechnol. 17, 19-34 (1991)]; and for yeasts by Sreekrishna et al. Basic Microbiol. 28, 265-278 (1988), Biochemistry 28, 4117-4125 30 (1989)], Hitzemann et al. [Nature 293, 717-722 (1981)] or in EP 183070, EP 183071, EP 248227, or EP 263311. Suitable vectors

11

WO 00/43503

which can be used for expression in E. coli are mentioned, e.g. by Sambrook et al. [s.a.], Fiers et al. [Procd. 8th Int. Biotechnology Symposium", Soc. Franc. de Microbiol., Paris (Durand et al., eds.), pp. 680-697 (1988)], Bujard et al. [Meth. 5 Enzymol. 155, 416-433 (1987)], or Stüber et al. [Immunological Methods, eds. Lefkovits and Pernis, Academic Press, Inc., Vol. IV, 121-152 (1990)]. Vectors that can be used for expression in Bacilli are known in the art and described, e.g. in EP 207459, EP 405370, Proc. Natl. Acad. Sci. USA 81, 439 (1984) or Yansura and Henner, Meth. Enzymol. 185, 199-228 (1990). Vectors which can be used for the expression in H. Polymorpha are known in the art and described, e.g. in Gellissen et al., Biotechnology 9, 291-295 (1991).

PCT/DK00/00025

Either such vectors already carry regulatory elements, 15 e.g. promotors, or the DNA sequences of the present invention can be engineered to contain such elements. Suitable promotor elements which can be used are known in the art and are, e.g. for Trichoderma reesei the cbh1- [Haarki et al., Biotechnology 7, 596-600 (1989)] or the pkil-promotor [Schindler et al., Gene 20 130, 271-275 (1993)]; for Aspergillus oryzae the amy-promotor [Christensen et al., Abstr. 19th Lunteren Lectures on Molecular Genetics F23 (1987), Christensen et al., Biotechnology 6, 1419-1422 (1988), Tada et al., Mol. Gen. Genet. 229, 301 (1991)]; and for Aspergillus niger the glaA- [Cullen et al., Bio/Technology 25 5, 369-376 (1987), Gwynne et al., Bio/Technology 5, 713-719 (1987), Ward in Molecular Industrial Mycology, Systems and Applications for Filamentous Fungi, Marcel Dekker, New York, 83-106 (1991)], alcA- [Gwynne et al., Bio/Technology 5, 718-719 (1987)], sucl- [Boddy et al., Curr. Genet. 24, 60-66 (1993)], 30 aphA- [MacRae et al., Gene 71, 339-348 (1988), MacRae et al., Gene 132, 193-198 (1993)], tpiA- [McKnight et al., Cell 46, 143-

12

147 (1986), Upshall et al., Bio/Technology 5, 1301-1304 (1987)], gpdA- [Punt et al., Gene 69, 49-57 (1988), Punt et al., J. Biotechnol. 17, 19-37 (1991)] and the pkiA-promotor [de Graaff et al., Curr. Genet. 22, 21-27 (1992)]. Suitable promotor elements that can be used for expression in yeast are known in the art and are, e.g. the pho5-promotor [Vogel et al., Mol. Cell. Biol., 2050-2057 (1989); Rudolf and Hinnen, Proc. Natl. Acad. Sci. 84, 1340-1344 (1987)] or the gap-promotor for expression in Saccharomyces cerevisiae; the aox1-promotor [Koutz et al., Yeast 5, 167-177 (1989); Sreekrishna et al., J. Basic Microbiol. 28, 265-278 (1988)] for Pichia pastoris; or the FMD promoter [Hollenberg et al., EPA No. 0299108] or MOX-promotor [Ledeboer et al., Nucl. Acids Res. 13, 3063-3082 (1985)] for H. polymorpha.

Accordingly vectors comprising DNA sequences of the present invention, preferably for the expression of said DNA sequences in bacteria or a fungal or a yeast host and such transformed bacteria or fungal or yeast hosts are also a part of the invention.

The invention also provides a system that allows for high expression of proteins, in particular of the phytases of the invention, such as recombinant Hansenula strains. To achieve that, the codons of the DNA sequence of such a protein may be selected on the basis of a codon frequency table of the organism used for expression, e.g. of yeast as in the present case (see e.g. in Example 1). Optionally, the codons for the signal sequence may be selected in a manner as described for the specific case in Example 1; that means that a codon frequency table is prepared on the basis of the codons used in the DNA sequences which encode the amino acid sequences of the given protein family. Then the codons for the design of the DNA

13

sequence of the signal sequence are selected from a codon frequency table of the host cell used for expression whereby always codons of comparable frequency in both tables are used.

Once such DNA sequences have been expressed in an appropriate host cell in a suitable medium, the encoded protein can be isolated either from the medium in the case the protein is secreted into the medium or from the host organism in case such protein is present intracellularly by methods known in the art of protein purification or described in case of a phytase, e.g. in EP 420358. Accordingly, a process for the preparation of a polypeptide of the present invention wherein transformed bacteria or a host cell as described above are cultured under suitable culture conditions, and the polypeptide is recovered therefrom and a polypeptide when produced by such a process; or 15 a polypeptide encoded by a DNA sequence of the present invention, are also a part of the present invention.

Once obtained, the polypeptides of the present invention can be characterized regarding their properties that make them useful in agriculture by any assay known in the art.

In general, the polypeptides of the present invention can be used without being limited to a specific field of application, e.g. in case of phytases for the conversion of inositol polyphosphates, like phytate, to inositol and inorganic phosphate.

Furthermore, the polypeptides of the present invention can be used in a process for the preparation of a pharmaceutical composition or compound food or feeds wherein the components of such a composition are mixed with at least one polypeptide of the present invention. Accordingly, compound food or feeds or pharmaceutical compositions comprising at least one polypeptide of the present invention are also a part of the present WO 00/43503

14

PCT/DK00/00025

invention. A man skilled in the art is familiar with their process of preparation. Such pharmaceutical compositions or compound foods or feeds can further comprise additives or components generally used for such purpose and known in the state of the art.

The present invention also provides a process for the reduction of levels of phytate in animal manure wherein an animal is fed such a feed composition in an amount effective in converting phytate contained in the feedstuff to lower inositol phosphates and/or inositol, and inorganic phosphate.

In the present context, a phytase is an enzyme or polypeptide that has phytase activity. A phytase can be e.g. a myo-inositol hexakisphosphate phosphohydrolase, such as (myo-inositol hexakisphosphate 3-phosphohydrolase, EC 3.1.3.8) and (myo-inositol hexakisphosphate 6-phosphohydrolase, EC 3.1.3.26).

In one embodiment, the phytase is purified, viz. at least 85%, preferably at least 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% pure, as evaluated by SDS-PAGE. The phytase may be isolated. Phytase activity can be determined using any phytase assay known in the art, e.g. the assay described herein (see Example 9). The assay temperature may be the optimum temperature of the actual phytase, and the assay pH may be the optimum pH of the actual phytase.

The assay temperature may e.g. be selected within the 25 range of 20-90°C, or 30-80°C, or 35-75°C, for instance temperatures of 37°C, 50°C, 60°C, or 70°C.

The assay pH may e.g. be selected within the range of pH  $^{2-9}$ , or  $^{3-8}$ , or  $^{3-6}$ , for instance assay pH values of  $^{3}$ ,  $^{4}$ ,  $^{5}$ , or  $^{7}$  may be chosen.

Amino acid sequence homology (or polypeptide or amino acid homology) is determined as the degree of identity between two

sequences. This may suitably be determined by means of computer programs known in the art such as GAP provided in the GCG program package [Program Manual for the Wisconsin Package, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin 53711, USA], see also Needleman, S.B. and Wunsch, C.D., (1970), J. Mol. Biol., 48, 443-453]. In release 9.1, for comparing polypeptide sequences, the Length Weight is set to 0, and the Gap Weight is set to 3.0.

15

The degree of identity or homology between two DNA (nucleic acid) sequences may be determined by means of computer programs known in the art such as GAP provided in the GCG program package [Program Manual for the Wisconsin Package, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin 53711, USA), see also Needleman, S.B. and Wunsch, C.D., (1970), J. Mol. Biol., 48, 443-453]. In release 9.1, GAP is used with the following settings for DNA sequence comparison: GAP creation penalty of 50 and GAP extension penalty of 3.

Suitable experimental conditions for determining whether a given DNA or RNA sequence hybridizes to a specified nucleotide 20 or oligonucleotide probe involves presoaking of the filter containing the DNA or RNA fragments to examine for hybridization in 5 x SSC (Sodium chloride/Sodium citrate; (J. Sambrook, E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning, A Laboratory Manual, 2nd edition, Cold Spring Harbor, New York) for 10 min, 25 and prehybridization of the filter in a solution of 5 x SSC, 5 x Denhardt's solution, 0.5 % SDS and 100 µg/ml of denatured sonicated salmon sperm DNA (Sambrook et al. 1989), followed by hybridization in the same solution containing a concentration of 10 ng/ml of a random-primed (Feinberg, A. P. and Vogelstein, B. 30 (1983) Anal. Biochem. 132:6-13), 32P-dCTP-labeled (specific

WO 00/43503

16

PCT/DK00/00025

activity > 1 x  $10^9$  cpm/ $\mu$ g) probe for 12 hours at approximately 45°C.

The filter is then washed twice for 30 minutes in 2 x SSC, 0.5 % SDS at at least 55°C (low stringency), at at least 60°C (medium stringency), at at least 65°C (medium/high stringency), at at least 70°C (high stringency), or at at least 75°C (very high stringency).

Molecules to which the oligonucleotide probe hybridizes under these conditions can be detected using an x-ray film.

Phytases of amended thermostability, or thermostable 10 phytases, aspect of are one the present invention. "thermostable" phytase is a phytase that has a Tm (melting temperature) - as measured on purified phytase protein by Differential Scanning Calorimetry (DSC) - of at least 65°C. For 15 the DSC, a constant heating rate may be used, e.g. of 10°C/min. In alternative embodiments, the Tm is at least 66, 67, 68, 69, 70, 71, 72, 73, 74 or 75°C. Or, the Tm is equal to or lower than 150°C, or equal to or lower than 145, 140, 135, 130, 125, 120, 115 or 110°C. Accordingly, examples of intervals of Tm are: 65-20 150°C, 66-150°C, - (etc.) - 75-150°C; 65-145°C, 66-145°C, -(etc.) - 75-145°C; 65-140°C, - (etc.) - 75-140°C; - (etc.) - 65-110°C, 66-110°C, - (etc.) - 75-110°C.

Particular ranges for Tm are the following: between 65 and 110°C; between 70 and 110°C; between 70 and 100°C; between 75 and 95°C, or between 80 and 90°C.

In Examples 9 and 10 below, the measurement of Tm by DSC is described, and the Tm's of a number of phytases are shown.

The optimum temperatures are also indicated, since - as an alternative mean - a thermostable phytase can be defined as a phytase having a temperature-optimum of at least 60°C. Preferably, the optimum temperature is determined on the

17

substrate phytate or phytic acid at pH 5.0 or 5.5. Example 9 describes an example of a phytase assay, including a definition of units.

In alternative embodiments, the optimum temperature is at 5 least 61, 62, 63, 64, 65, 66, 67, 68, 69 or 70°C. In a particular embodiment, the optimum temperature is equal to or lower than 140°C, or equal to or lower than 135, 130, 125, 120, 115, 110, 105 or 100°C. Accordingly, examples of intervals of optimum temperature are: 60-140°C, 61-140°C, - (etc.) - 70-10 140°C; 60-135°C, 61-135°C, - (etc.) - 70-135°C; 60-130°C, - (etc.) - 70-130°C; - (etc.) - 60-100°C, 61-100°C, - (etc.) - 70-100°C.

Before describing the present invention in more detail a short explanation of the Figures enclosed is given below.

15

Figure 1: Design of the consensus phytase-1 sequence. The letters represent the amino acid residues in the one-letter code. The following sequences were used for the alignment: phyA from Aspergillus terreus 9A-1 [Mitchell, D. B., Vogel, 20 Weimann, B. J., Pasamontes, L. & van Loon, A. P. G. M. (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila, Microbiology 143, 245-252); from amino acid (aa) 27; SEQ ID NO: 1]; phyA from A. 25 terreus cbs116.46 [EP 897985]. A heat resistant phytase of Aspergillus fumigatus with superior performance in animal experiments. Phytase optimization and natural variability. In: The Biochemistry of phytate and phytases (eds. Rasmussen, S.K; Raboy, V.; Dalbøge, H. and Loewus, F.; Kluwer Academic 30 Publishers); from aa 27; SEQ ID NO: 2; phyA from Aspergillus niger var. awamori (Piddington et al (1993) Gene 133, 55-62;

18

from aa 27; SEQ ID NO: 3); phyA from A. niger T213 (EP 897985); from aa 27; SEQ ID NO: 4); phyA from A. niger strain NRRL3135 [van Hartingsveldt, W., van Zeijl, C. M. F., Harteveld, G. M., Gouka, R. J., Suykerbuyk, M. E. G., Luiten, R. G. M., van 5 Paridon, P. A., Selten, G. C. M., Veenstra, A. E., van Gorcom, R. F. M., & van den Hondel, C. A. M. J. J. (1993) Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127, 87-94; from aa 27; SEQ ID NO: 5]; phyA from Aspergillus fumigatus ATCC 13073 (Pasamontes, 10 L., Haiker, M., Wyss, M., Tessier, M. & van Loon, A. P. G. M. (1997) Cloning, purification and characterization of a heat stable phytase from the fungus Aspergillus fumigatus, Appl. Environ. Microbiol. 63, 1696-1700; from aa 25; SEQ ID NO: 6]; phyA from A. fumigatus ATCC 32722 (EP 897985); from aa 27; SEQ 15 ID NO: 7); phyA from A. fumigatus ATCC 58128 (EP 897985); from aa 27; SEQ ID NO: 8); phyA from A. fumigatus ATCC 26906 (EP 897985); from aa 27; SEQ ID NO: 9); phyA from A. fumigatus ATCC 32239 (EP 897985); from aa 30; SEQ ID NO: 10; phyA from Emericella nidulans [Pasamontes, L., Haiker, M., Henriquez-20 Huecas, M., Mitchell, D. B. & van Loon, A. P. G. M. (1997a). Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochim. Biophys. Acta 1353, 217-223; from aa 25; SEQ ID NO: 11]; phyA from Talaromyces thermophilus (Pasamontes et al., 1997a; from aa 24; 25 SEQ ID NO: 12); and phyA from Myceliophthora thermophila (Mitchell et al., 1997; from aa 19; SEQ ID NO: 13). alignment was calculated using the program PILEUP. The location of the gaps was refined by hand. Capitalized amino acid residues in the alignment at a given position belong to the amino acid 30 coalition that establish the consensus residue. In bold, beneath the calculated consensus sequence, the amino acid sequence of

19

the finally constructed consensus phytase (Fcp) is shown (SEQ ID NO: 14). The gaps in the calculated consensus sequence were filled by hand according to principals stated in Example 1.

- Figure 2: DNA sequence (SEQ ID NO: 15) of the consensus phytase-1 gene (fcp) and of the primers used for the gene construction. The calculated amino acid sequence (Figure 1, SEQ ID NO: 14) was converted into a DNA sequence using the program BACKTRANSLATE [Devereux, J., Haeberli, P. & Smithies, O. (1984) 10 A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12, 387-395], and the codon frequency table of highly expressed yeast genes (GCG program package, 9.0). The signal peptide of the phytase from A. terreus cbs 116.46 was fused to the N-terminus. The amino acid sequence shown in Fig. 2 15 is SEQ ID NO: 16. The bold bases represent the sequences of the oligonucleotides used to generate the gene. The names of the respective oligonucleotides are alternately noted above or below the sequence. The underlined bases represent the start and stop codon of the gene. The bases written in italics represent the 20 two introduced Eco RI sites.
- Figure 3: Alignment and consensus sequence of five Basidiomycete phytases. The letters represent the amino acid residues in the one-letter code. The amino acid sequences of the phytases from Paxillus involutus, phyA1 (from aa 21; SEQ ID NO: 17; and phyA2 (from aa 21, WO 98/28409; SEQ ID NO: 18); Trametes pubescens (from aa 24, WO 98/28409; SEQ ID NO: 19); Agrocybe pediades (from aa 19, WO 98/28409; SEQ ID NO: 20); and Peniophora lycii (from aa 21, WO 98/28409; SEQ ID NO: 21), starting with the amino acid residues mentioned in parentheses, were used for the alignment and the calculation of the

20

corresponding consensus sequence called "Basidio" (Example 2; SEQ ID NO: 22). The alignment was performed with the program PILEPUP. The location of the gaps was refined by hand. The consensus sequence was calculated by the program PRETTY. While a vote weight of 0.5 was assigned to the two P. involutus phytases, all other genes were used with a vote weight of 1.0 for the consensus sequence calculation. At positions where the program was not able to determine a consensus residue, the Basidio sequence contains a dash. Capitalized amino acid residues in the alignment at a given position represent the amino acid coalition that established the consensus residue.

Figure 4: Design of consensus phytase-10 amino acid sequence. By adding the sequence of Thermomyces lanuginosus 15 phytase [Berka, R. M., Rey, M. W., Brown, K. M., Byun, T. & Klotz, A. V. (1998) Molecular characterization and expression of from the thermophilic phytase gene fungus Thermomyces lanuginosus. Appl. Environ. Microbiol. 64, 4423-4427; SEQ ID NO: and the consensus sequence of the phytases from five 20 Basidiomycetes (SEQ ID NO: 22) to the alignment of Figure 1, an improved consensus sequence was calculated by the program PRETTY. Additionally, the amino acid sequence of A. niger T213 was omitted, and a vote weight of 0.5 was assigned to the remaining two A. niger phytase sequences. For further 25 information see Example 2.

Figure 5: DNA and amino acid sequence of consensus phytase-10 (SEQ ID NO: 25, and SEQ ID NO: 26, respectively). The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The sequence of the oligonucleotides that were used to assemble the gene are in

21

bold letters. The names of the respective oligonucleotides and the amino acids that differ relative to consensus phytase-1 are underlined. The fcp10 gene was assembled from the following oligonucleotides: CP-1, CP-2, CP-3.10, CP-4.10, CP-5.10, CP-6, 5 CP-7.10, CP-8.10, CP-9.10, CP-10.10, CP-11.10, CP-12.10, CP-13.10, CP-14.10, CP-15.10, CP-16.10, CP-17.10, CP18.10, CP-19.10, CP-20.10, CP-21.10, and CP-22.10. The newly synthesized oligonucleotides are additionally marked by the number 10. The phytase contains the following 32 exchanges relative to consensus phytase-1: Y54F, E58A, D69K, D70G, A94K, N134Q, I158V, S187A, Q188N, D197N, S204A, T214L, D220E, L234V, A238P, D246H, T251N, Y259N, E267D, E277Q, A283D, R291I, A320V, R329H, S364T, I366V, A379K, S396A, G404A, Q415E, A437G, A463E. The underlined mutations revealed a stabilizing effect on consensus phytase-1.

Figure 6: Alignment for the design of consensus phytase-11 (SEQ ID NO: 27). In contrast to the design of consensus phytase-10, for the design of the amino acid sequence of consensus phytase-11, all Basidiomycete phytases were used as independent sequences using an assigned vote weight of 0.2 for each Basidiomycete sequence. Additionally, the amino acid sequence of A. niger T213 was again used in this alignment.

Figure 7: DNA and amino acid sequence of consensus phytase-1-thermo[8]-Q50T-K91A (SEQ ID NO: 28, and SEQ ID NO: 29, respectively). The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues (relative to consensus phytase-1) are underlined. The stop codon of the gene is marked by a star (\*).

22

Figure 8: DNA and amino acid sequence of consensus phytase-10-thermo[3]-Q50T-K91A (SEQ ID NO: 30, and SEQ ID NO: 31, respectively). The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues (relative to consensus phytase-10) are underlined. The stop codon of the gene is marked by a star (\*).

Figure 9: DNA and amino acid sequence of A. fumigatus ATCC 13073 phytase alpha-mutant Q51T (SEQ ID NO: 32, and SEQ ID NO: 33, respectively). The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues (relative to A. fumigatus ATCC 15 13073 phytase) are underlined. The stop codon of the gene is marked by a star (\*).

Figure 10: DNA and amino acid sequence of consensus phytase-7 (SEQ ID NO: 34, and SEQ ID NO: 35, respectively). The amino acids are written above the corresponding DNA sequence using the one-letter code. The sequence of the oligonucleotides used to assemble the gene are in bold letters. Oligonucleotides and amino acids that were exchanged (relative to consensus phytase-1) are underlined and the corresponding triplets are written in small case letters. The fcp7 gene was assembled from the following oligonucleotides: CP-1, CP-2, CP-3, CP-4.7, CP-5.7, CP-6, CP-7, CP-8.7, CP-9, CP-10.7, CP-11.7, CP-12.7, CP-13.7, CP-14.7, CP-15.7, CP-16, CP-17.7, CP-18.7, CP-19.7, CP-20, CP-21, and CP-22. The newly synthesized oligonucleotides are additionally marked by the number 7. Consensus phytase-7 contains the following 24 exchanges in comparison to the

original consensus phytase-1: S89D, S92G, A94K, D164S, P201S, G203A, G205S, H212P, G224A, D226T, E255T, D256E, V258T, P265S, Q292H, G300K, Y305H, A314T, S364G, M365I, A397S, S398A, G404A, and A405S.

23

5

Figure 11: Differential scanning calorimetry (DSC) of consensus phytase-1 and consensus phytase-10. The protein samples were concentrated to about 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10°C/min was applied up to 95°C. DSC of consensus phytase-10 (upper graph) yielded a melting temperature of 85.4°C, which is 7.3°C higher than the melting point of consensus phytase-1 (78.1°C, lower graph).

- Figure 12: Differential scanning calorimetry (DSC) of consensus phytase-10-thermo[3]-Q50T and consensus phytase-10-thermo[3]-Q50T-K91A. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10°C/min was applied up to 95°C. DSC of consensus phytase-10-thermo[3]-Q50T (upper graph) yielded a melting temperature of 88.6°C, while the melting temperature of consensus phytase-10-thermo-Q50T-K91A was determined to be 89.3°C.
- Figure 13: Comparison of the temperature optimum between consensus phytase-1, consensus phytase-10 and consensus phytase-10-thermo[3]-Q50T. For the determination of the temperature optimum, the phytase standard assay of Example 9 was performed at a series of temperatures between 37 and 86°C. The diluted supernatant of transformed S. cerevisiae strains was used for the determination. The other components of the supernatant had

WO 00/43503

24

PCT/DK00/00025

no influence on the determination of the temperature optimum: ∧, consensus phytase-1; ⋄, consensus phytase-10; ■, consensus phytase 10-thermo[3]-Q50T.

5 Figure 14: pH-dependent activity profile and substrate specificity of consensus phytase-10 and its variants thermo[3]thermo[3]-Q50T-K91A. Q50T and The phytase activity was determined using the standard assay in appropriate buffers (see Example 9) at different pH-values. Graph a) shows the pH-10 dependent activity profile of consensus phytase-10  $(\Box)$ , consensus phytase-10-thermo[3]-Q50T (.), and consensus phytase-10-thermo[3]-Q50T-K91A (A). Graph b) shows the corresponding substrate specificity tested by replacement of phytate in the standard assay by the indicated compounds; open bars, consensus 15 phytase-10; grey bars, consensus phytase-10-thermo[3]-Q50T; dark bars, consensus phytase-10-thermo[3]-Q50T-K91A). The numbers correspond to the following substrates: 1, phytate; 2, pnitrophenyl phosphate; 3, phenyl phosphate; 4, fructose-1,6bisphosphate; 5, fructose-6-phosphate; 6, glucose-6-phosphate; 20 7, ribose-5-phosphate; 8, DL-glycerol-3-phosphate; 9, glycerol-2-phosphate; 10, 3-phosphoglycerate; 11, phosphoenolpyruvate; 12, AMP; 13, ADP; 14, ATP.

Figure 15: pH-dependent activity profile and substrate specificity of consensus phytase-1-thermo[8]-Q50T and of consensus phytase-1-thermo[8]-Q50T-K91A. The phytase activity was determined using the standard assay in appropriate buffers (see Example 9) at different pH-values. Graph a) shows the pH-dependent activity profile of the Q50T- (1) and the Q50T-K91A-

25

variant (.). Graph b) shows the corresponding substrate specificities tested by replacement of phytate in the standard assay by the indicated compounds (open bars, consensus phytase-1-thermo[8]-Q50T; filled bars, consensus phytase-1-thermo[8]-Q50T-K91A). The substrates are listed in the legend of Figure 14.

Figure 16: Differential scanning calorimetry (DSC) of consensus phytase-1-thermo[8]-Q50T and consensus phytase-110 thermo[8]-Q50T-K91A. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10°C/min was applied up to 95°C. DSC of consensus phytase-1-thermo[8]-Q50T (upper graph) showed a melting temperature of 84.7°C, while the melting point of consensus phytase-1-thermo[8]-Q50T-K91A was found at 85.7°C.

Figure 17: Comparison of the temperature optimum between consensus phytase-1, consensus phytase-1-thermo[3] and consensus phytase-1-thermo[8]. For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 86°C. Protein purified from the supernatant of transformed S. cerevisiae strains was used for the determination. O, consensus phytase-1; [], consensus phytase-1-thermo[8].

Figure 18: Comparison of the pH-dependent activity profile and substrate specificity between consensus phytase-1, consensus phytase-7, and the phytase from A. niger NRRL 3135. The phytase activity was determined using the standard assay in appropriate buffers (see Example 9) at different pH-values. Graph a) shows

PCT/DK00/00025

the pH-dependent activity profile of consensus phytase-1 (■), the phytase from A. niger NRRL 3135 (0), and of consensus phytase-7 (▲). Graph b) shows the corresponding substrate specificities tested by replacement of phytate in the standard assay by the indicated compounds (black bars, A. niger NRRL 3135 phytase; open bars, consensus phytase-1; dashed bars, consensus phytase-7). The substrates are listed in the legend of Figure 14.

26

Figure 19: Differential scanning calorimetry (DSC) of the phytase from A. fumigatus ATCC 13073 and of its stabilized alpha-mutant, which contains the following amino acid exchanges: F55Y, V100I, F114Y, A243L, S265P, and N294D.

The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10°C/min was applied up to 95°C. DSC of A. fumigatus 13073 phytase (lower graph) revealed a melting temperature of 62.5°C, while the melting point of the alphamutant was found at 67.0°C.

20

Figure 20: Comparison of the temperature optima of A. fumigatus 13073 wild-type phytase, its alpha-mutant, and a further stabilized alpha-mutant (E59A-S154N-R329H-S364T-G404A). For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 75°C. The diluted supernatant of transformed S. cerevisiae strains was used for the determination. The other components of the supernatant had no influence on the determination of the temperature optimum. O, A. fumigatus ATCC

30 13073 phytase; ▲, A. fumigatus ATCC 13073 alpha-mutant; □, A.

WO 00/43503 27

fumigatus ATCC 13073 alpha-mutant-(E59A-S154N-R329H-S364T-

PCT/DK00/00025

G404A)-Q27T; **I**, A. fumigatus ATCC 13073 alpha-mutant-(E59A-S154N-R329H-S364T-G404A)-Q51T-K92A. Q51T and K92A correspond to consensus phytase-1 substitutions Q50T and K91A, respectively.

5

Figure 21: Amino acid sequence of consensus phytase-12 (consphy12; SEQ ID NO: 36) which contains a number of active site residues transferred from the "basidio" consensus sequence to consensus phytase-10-thermo[3]-Q50T-K91A (underlined).

10

Figure 22: DNA and amino acid sequence of consensus phytase-3-thermo[11]-Q50T. The amino acids are written below the corresponding DNA sequence using the one-letter code.

Figure 23: DNA and amino acid sequence of consensus phytase-3-thermo[11]-Q50T-K91A. The amino acids are written below the corresponding DNA sequence using the one-letter code.

Figure 24: DNA and amino acid sequence of consensus
20 phytase-10-thermo[5]-Q50T. The amino acids are written below the
corresponding DNA sequence using the one-letter code.

Figure 25: DNA and amino acid sequence of consensus phytase-10-thermo[5]-Q50T-K91A. The amino acids are written below the corresponding DNA sequence using the one-letter code.

The phytase-producing microorganism strains mentioned herein, viz. Paxillus involutus CBS 100231; Peniophora lycii CBS 686.96; Agrocybe pediades CBS 900.96; and Trametes pubescens CBS 100232; were isolated from natural samples originating from, respectively, Denmark; Denmark; Denmark; and Sweden (the Uppsala

collection. The samples were collected in November 1992; October 1993; June 1995; and in November 1995, respectively.

#### Example 1

### 5 Consensus phytase-1

The amino acid sequence of consensus phytase-1 (fungal consensus phytase, fcp) was designed and calculated as described in Examples 1 and 2 of EP 897985. Table 1 below shows the origin and vote weight of the phytase amino acid sequences used for the design of consensus phytase-1. The consensus phytase-1 sequence was furthermore converted into a DNA sequence as described in Example 3 of EP 897985, and the consensus phytase-1 gene was constructed and cloned as described in Example 4 of EP 897985.

#### 15 Table 1

### Origin and vote weight of the phytase amino acid sequences

- phyA from Aspergillus terreus 9A-1, aa 27, vote weight 0.5 (Mitchell et al., 1997)
- phyA from Aspergillus terreus cbs116.46, aa 27, vote weight 20 0.5 (EP 897985)
- phyA from Aspergillus niger var. awamori, aa 27, vote weight
   0.33 [Piddington, C. S., Houston, C. S., Paloheimo, M., Cantrell, M., Miettinen-Oinonen, A., Nevalainen, H., & Rambosek, J. (1993) The cloning and sequencing of the genes encoding
   phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from
- phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene 133, 55-62].
  - phyA from Aspergillus niger T213 (EP 897985), aa 27, vote weight 0.33
- 30 phyA from Aspergillus niger strain NRRL3135, aa 27, vote
  weight 0.33 (van Hartingsveldt et al., 1993)

- phyA from Aspergillus fumigatus ATCC 13073, aa 26, vote weight 0.2 (Pasamontes et al., 1997)
- phyA from Aspergillus fumigatus ATCC 32722, aa 26, vote weight 0.2 (EP 897985)
- 5 phyA from Aspergillus fumigatus ATCC 58128, aa 26, vote weight 0.2 (EP 897985)
  - phyA from Aspergillus fumigatus ATCC 26906, aa 26, vote weight 0.2 (EP 897985)
- phyA from Aspergillus fumigatus ATCC 32239, aa 30, vote weight 10 0.2 (EP 897985)
  - phyA from Emericella nidulans , aa 25, vote weight 1.0 (Pasamontes et al., 1997a)
  - phyA from Talaromyces thermophilus ATCC 20186, aa 24, vote weight 1.0 (Pasamontes et al., 1997a)
- 15 phyA from Myceliophthora thermophila, aa 19, vote weight 1.0 (Mitchell et al., 1997)

#### Example 2

20

Design of an improved consensus phytase (consensus phytase-10) amino acid sequence

The alignments used for the design of consensus phytase-10 were calculated using the program PILEUP from the GCG Sequence Analysis Package Release 9.0 (Devereux et al., 1984) with the 25 standard parameters (gap creation penalty 12, gap extension penalty 4). The location of the gaps was refined using a text editor.

The following sequences were used for the alignment of the Basiodiomycete phytases starting with the amino acid (aa) 30 mentioned in Table 2:

#### Table 2

Origin and vote weight of five Basidiomycete phytases used for the calculation of the corresponding consensus amino acid sequence (basidio)

5

- phyA1 from Paxillus involutus CBS No. 100231, aa 21, vote weight 0.5 (WO 98/28409)
- phyA2 from Paxillus involutus CBS No. 100231, aa 21, vote weight 0.5 (WO 98/28409)
- 10 phyA from Trametes pubescens CBS No. 100232, aa 24, vote weight 1.0 (WO 98/28409)
  - phyA from Agrocybe pediades CBS No. 900.96, aa 19, vote weight 1.0 (WO 98/28409)
- phyA from Peniophora lycii CBS No. 686.96, aa 21, vote weight
   15 1.0 (WO 98/28409)

The alignment is shown in Figure 3.

In Table 3 the genes that were used for the final 20 alignment are listed. The first amino acid (aa) of the sequence that is used in the alignment is mentioned behind the organism's designation.

#### Table 3

- 25 Origin and vote weight of the phytase sequences used for the design of consensus phytase-10
  - phyA from Aspergillus terreus 9A-1, aa 27, vote weight 0.5 (Mitchell et al., 1997)
- 30 phyA from Aspergillus terreus cbs116.46, aa 27, vote weight
  0.5 (EP 897985)

31

- phyA from Aspergillus niger var. awamori, aa 27, vote weight 0.5 (Piddington et al., 1993)
- phyA from Aspergillus niger strain NRRL3135, aa 27, vote weight 0.5 (van Hartingsveldt et al., 1993)
- 5 phyA from Aspergillus fumigatus ATCC 13073, aa 26, vote weight 0.2 (Pasamontes et al., 1997)
  - phyA from Aspergillus fumigatus ATCC 32722, aa 26, vote weight 0.2 (EP 897985)
- phyA from Aspergillus fumigatus ATCC 58128, aa 26, vote weight 10 0.2 (EP 897985)
  - phyA from Aspergillus fumigatus ATCC 26906, aa 26, vote weight 0.2 (EP 897985)
  - phyA from Aspergillus fumigatus ATCC 32239, aa 30, vote weight 0.2 (EP 897985)
- 15 phyA from Emericella nidulans , aa 25, vote weight 1.0 (Pasamontes et al., 1997a)
  - phyA from Talaromyces thermophilus ATCC 20186, aa 24, vote weight 1.0 (Pasamontes et al., 1997a)
- phyA from Myceliophthora thermophila, aa 19, vote weight 1.0 20 (Mitchell et al., 1997)
  - phyA from Thermomyces lanuginosus, aa 36, vote weight 1.0 (Berka et al., 1998)
  - Consensus sequence of five Basidiomycete phytases, vote weight 1.0 (Basidio, Figure 3)

25

The corresponding alignment is shown in Figure 4.

## Calculation of the amino acid sequence of consensus phytase-10

To improve the alignment, we added the original consensus sequence of five phytases from four different Basidiomycetes

32

(called Basidio; still containing the undefined sequence positions; see Figure 3), nearly all phytase sequences used for the calculation of the original consensus phytase sequences and one new phytase sequence from the Ascomycete Thermomyces lanuginosus to a larger alignment.

We set plurality on 2.0 and threshold on 3. The used vote weights are listed in Table 3. The alignment and the corresponding consensus sequence are presented in Figure 4. The new consensus phytase sequence has 32 different amino acids in comparison to the original consensus phytase-1. Positions for which the program PRETTY was not able to calculate a consensus amino acid residue were filled according to rules mentioned in Example 1. None of the residues suggested by the program was replaced.

15 Furthermore, in another calculation, we included all Basidiomycete phytases as single amino acid sequences but assigning a vote weight of 0.2 in the calculation. The corresponding alignment is shown in Figure 6. The calculated consensus amino acid sequence (consensus phytase-11) has the 20 following differences to the sequence of consensus phytase-10. Letter X means that the program was not able to calculate a consensus amino acid; the amino acid in parenthesis corresponds to the amino acid finally included into consensus phytase-10.

D35X (first letter for consensus phytase-10, last letter for consensus phytase-11), X(K)69K, X(E)100E, A101R, Q134N, X(K)153N, X(H)190H, X(A)204S, X(E)220D, E222T, V227A, X(R)271R, H287A, X(D)288D, X(K)379K, X(I)389I, E390X, X(E)415E, X(A)416A, X(R)446L, E463A. The numbering is as in Fig. 5.

We also checked single amino acid replacements suggested 30 by the improved consensus sequences 10 and 11 on their influence

33 .

on the stability of the original consensus phytase-1. The approach is described in example 3.

## Conversion of the consensus phytase-10 amino acid sequence 5 into a DNA sequence

The first 26 amino acid residues of A. terreus cbs116.46 phytase were used as signal peptide and fused to the N-terminus of consensus phytase-10. The used procedure is further described in Example 1.

The resulting sequence of the fcp10 gene is shown in Figure 5.

# Construction and cloning of the consensus phytase-10 gene (fcp10)

The calculated DNA sequence of fcp10 was divided into oligonucleotides of 85 bp, alternately using the sequence of the sense and the anti-sense strand. Every oligonucleotide overlaps 20 bp with the previous and the following oligonucleotide of the opposite strand. The location of all primers, purchased from Microsynth, Balgach (Switzerland) and obtained in a PAGE-purified form, is indicated in Figure 5.

#### PCR-Reactions

In three PCR reactions, the synthesized oligonucleotides
25 were composed to the entire gene. For the PCR, the High Fidelity
Kit from Boehringer Mannheim (Boehringer Mannheim, Mannheim,
Germany) and the thermo cycler "The ProtokolTM" from AMS
Biotechnology (Europe) Ltd. (Lugano, Switzerland) were used. The
following oligonucleotides were used in a concentration of 0.2
30 pMol/ml.

34

Mix 1.10: CP-1, CP-2, CP-3.10, CP-4.10, CP-5.10, CP-6, CP-7.10, CP-8.10, CP-9.10, CP-10.10

Mix 2.10: CP-9.10, CP-11.10, CP-12.10, CP-13.10, CP-14.10, CP-15.10, CP-16.10, CP-17.10, CP18.10, CP-19.10, CP-20.10, CP-21.10, CP-22.10

The newly synthesized oligonucleotides are marked by the number 10. Consensus phytase-10 contains the following 32 exchanges, which are underlined in Figure 5, in comparison to the original consensus phytase-1: Y54F, E58A, D69K, D70G, A94K, N134Q, I158V, S187A, Q188N, D197N, S204A, T214L, D220E, L234V, A238P, D246H, T251N, Y259N, E267D, E277Q, A283D, R291I, A320V, R329H, S364T, I366V, A379K, S396A, G404A, Q415E, A437G, A463E.

Four short PCR primers were used for the assembling of the 15 oligonucleotides:

CP-a: Eco RI

5'-TATATGAATTCATGGGCGTGTTCGTC-3' (SEQ ID NO: 37)

20 CP-b:

5'-TGAAAAGTTCATTGAAGGTTTC-3' (SEQ ID NO: 38)

CP-c.10:

5'-TCTTCGAAAGCAGTACACAAAC-3' (SEQ ID NO: 39)

25

CP-e: Eco RI

5'-TATATGAATTCTTAAGCGAAAC-3' (SEQ ID NO: 40)

35

PCR reaction a: 10  $\mu$ l 1.10 (2.0 Mix pmol of each oligonucleotide) 2  $\mu$ l nucleotides (10 mM of each nucleotide) 2  $\mu$ l primer CP-a (10 pmol/ml) 2  $\mu$ l primer CP-c.10 (10 pmol/ml) 5 10,0  $\mu$ l PCR buffer 0.75  $\mu$ l polymerase mixture (2.6 U) 73.25 μl H<sub>2</sub>O 10 PCR reaction b: 10  $\mu$ l Mix 2.10 (2.0 pmol of each oligonucleotide) 2  $\mu$ l nucleotides (10 mM each nucleotide) 2  $\mu$ l primer CP-b (10 pmol/ml) 2  $\mu$ l primer CP-e (10 pmol/ml) 15 10,0  $\mu$ l PCR buffer 0.75  $\mu$ l polymerase mixture (2.6 U)

Reaction conditions for PCR reactions a and b:

73.25  $\mu$ l H<sub>2</sub>O

step 1 2 min - 45°C step 2 30 sec - 72°C step 3 30 sec - 94°C step 4 30 sec - 52°C step 5 1 min - 72°C

25

Steps 3 to 5 were repeated 40-times.

The PCR products (670 and 905 bp) were purified by agarose gel electrophoresis (0.9% agarose), followed by gel extraction 30 (QIAEX II Gel Extraction Kit, Qiagen, Hilden, Germany). The purified DNA fragments were used for the PCR reaction c.

36

PCR reaction c: 6  $\mu$ l PCR product of reaction a  $\approx 50$  ng) 6  $\mu$ l PCR product of reaction b  $\approx 50$  ng) 2  $\mu$ l primer CP-a (10 pmol/ml) 2  $\mu$ l primer CP-e (10 pmol/ml) 10,0  $\mu$ l PCR buffer 0.75  $\mu$ l polymerase mixture (2.6 U)

10 Reaction conditions for PCR reaction c:

 step 1
 2 min - 94°C

 step 2
 30 sec - 94°C

 step 3
 30 sec - 55°C

 step 4
 1 min - 72°C

73.25  $\mu$ l H<sub>2</sub>O

15

5

Steps 2 to 4 were repeated 31-times.

The resulting PCR product (1.4 kb) was purified as mentioned above, digested with EcoRI, and ligated in an EcoRI- digested and dephosphorylated pBsk(-)-vector (Stratagene, La Jolla, CA, USA). 1  $\mu$ l of the ligation mixture was used to transform E. coli XL-1 competent cells (Stratagene, La Jolla, CA, USA). All standard procedures were carried out as described by Sambrook et al. (1987). The DNA sequence of the constructed gene (fcp10) was checked by sequencing as known in the art.

37

Example 3

5

Increasing the thermostability of consensus phytase-1 by introduction of single mutations suggested by the amino acid sequences of consensus phytase-10 and consensus phytase-11

In order to increase the thermostability of homologous genes, it is also possible to test the stability effect of each differing amino acid residue between the protein of interest and the calculated consensus sequence and to combine all stabilizing mutations into the protein of interest. We used the consensus phytase-1 as protein of interest and tested the effect on the protein stability of 34 amino acid residues that differ relative to consensus phytase-10 and/or -11 by single site-directed mutagenesis.

To construct muteins for expression in A. niger, cerevisiae, or H. polymorpha, the corresponding expression plasmid containing the consensus phytase-1 gene was used as template for site-directed mutagenesis (see Examples 6-8). 20 Mutations were introduced using the "quick exchangeTM sitedirected mutagenesis kit" from Stratagene (La Jolla, CA, USA) manufacturer's following the protocol and using the corresponding primers. All mutations made and the corresponding primers are summarized in Table 4. Plasmids harboring the 25 desired mutation were identified by DNA sequence analysis as known in the art.

#### Table 4

Primers used for site-directed mutagenesis of consensus phytase-

38

Exchanged bases are highlighted in bold. The introduction of a serviction site is marked above the sequence. When a restriction site is written in parenthesis, the mentioned site was destroyed by introduction of the mutation.

mutation Primer set 10 Kpn I 5'-CACTTGTGGGGTACCTACTCTCCATACTTCTC-3' (SEQ ID NO: 41) Q50T 5'-GAGAAGTATGGAGAGTACCCCACAAGTG-3' 5'-GGTCAATACTCTCCATTCTTTTGGAAG-3'(SEQ ID NO: 42) Y54F 15 5'-CTTCCAAAGAGAATGGAGAGTATTGACC-3' 5'-CATACTTCTCTTTGGCAGACGAATCTGC-3' (SEQ ID NO: 43) E58A 5'-GCAGATTCGTCTGCCAAAGAGAAGTATG-3' 20 Aat II D69K 5'-CTCCAGACGTCCCAAAGGACTGTAGAGTTAC-3' (SEQ ID NO: 44) 5'-GTAACTCTACAGTCCTTTGGGACGTCTGGAG-3' Aat II 25 D70G 5'-CTCCAGACGTCCCAGACGGCTGTAGAGTTAC-3' (SEQ ID NO: 45) 5'-GTAACTCTACAGCCGTCTGGAG-3' 5'-GATACCCAACTTCTTCTGCGTCTAAGGCTTACTCTG-3' K91A (SEQ ID NO: 46) 5'-CAGAGTAAGCCTTAGACGCAGAAGAAGTTGGGTATC-3' 30 Sca I A94K 5'-CTTCTAAGTCTAAGAAGTACTCTGCTTTG-3' (SEQ ID NO:47) 5'-CAAAGCAGAGTACTTCTTAGACTTAGAAG-3' 35 5'-GCTTACTCTGCTTTGATTGAACGGATTCAAAAGAACGCTAC-3' A101R (SEQ ID NO: 48) 5'-GTAGCGTTCTTTTGAATCCGTTCAATCAAAGCAGAGTAAGC-3' 5'-CCATTCGGTGAACAGCAAATGGTTAACTC-3' (SEQ ID NO: 49) 40 N134O 5'-GAGTTAACCATTTGCTGTTCACCGAATGG-3'

39

```
Nru I
   K153N 5'-GATACAAGGCTCTCGCGAGAAACATTGTTC -3' (SEQ ID NO: 50)
            5'-GGAACAATGTTTCTCGCGAGAGCCTTGTATC-3'
 5
                              Bss HI
           5'-GATTGTTCCATTCGTGCGCCTTCTGGTTC-3' (SEQ ID NO: 51)
   I158V
            5'-GAACCAGAAGCGCGCACGAATGGAACAATC-3'
                         Apa I
10 S187A
           5'-GGCTGACCCAGGGGCCCAACCACCACCAAGC-3' (SEQ ID NO: 53)
           5'-GCTTGGTGTGGTTGGGCC-3'
                             Bcl I
  D197N
          5'-CTCCAGTTATTAACGTGATCATTCCAGAAGG-3' (SEQ ID NO: 52)
           5'-CCTTCTGGAATGATCACGTTAATAACTGGAG-3'
15
                       Nco I
           5'-CACTTTGGACCATGGTCTTTGTACTGCTTTCG-3' (SEQ ID NO: 54)
   T214L
           5'-CGAAAGCAGTACAAAGACCATGGTCCAAAGTG-3'
20
                               Avr II
  E222T 5'-GCTTTCGAAGACTCTACCCTAGGTGACGACGTTG-3'
                                                   (SEQ ID NO: 55)
           5'-CAACGTCGTCACCTAGGGTAGAGTCTTCGAAAGC-3'
25
  V227A
           5'-GGTGACGCTGAAGCTAACTTCAC-3' (SEQ ID NO: 56)
           5'-GTGAAGTTAGCTTCAGCGTCGTCACC-3'
                        Sac II
30 L234V
          5'-CTAACTTCACCGCGGTGTTCGCTCCAG-3' (SEQ ID NO: 57)
           5'-CTGGAGCGAACACCGCGGTGAAGTTAG-3'
          5'-GCTTTGTTCGCTCCACCTATTAGAGCTAGATTGG-3'
  A238P
                                                    (SEO ID NO: 58)
35
           5'-CCAATCTAGCTCTAATAGGTGGAGCGAACAAAGC-3'
                     Hpa I
  T251N
           5'-GCCAGGTGTTAACTTGACTGACGAAG-3' (SEQ ID NO: 59)
           5'-TTCGTCAGTCAAGTTAACACCTGGC-3'
40
                    Aat II
           5'-GACGAAGACGTCGTTAACTTGATGGAC-3' (SEQ ID NO: 60)
  Y259N
           5'-GTCCATCAAGTTAACGACGTCTTCGTC-3'
45
                      Asp I
  E267D
           5'-GTCCATTCGACACTGTCGCTAGAACTTC-3' (SEQ ID NO: 61)
           5'-GAAGTTCTAGCGACAGTGTCGAATGGAC-3'
```

40

E277Q 5'-CTGACGCTACTCAGCTGTCTCCATTC-3' (SEQ ID NO: 62) 5'-GAATGGAGACAGCTGAGTAGCGTCAG-3' 5 A283D 5'-GTCTCCATTCTGTGATTTGTTCACTCAC-3' (SEQ ID NO: 63) 5'-GTGAGTGAACAAATCACAGAATGGAGAC-3' Ksp I 5'-GCTTTGTTCACCGCGCGACGAATGGAG-3' (SEQ ID NO: 64) H287A 10 5'-CTCCATTCGTCCGCGGTGAACAAGC-3' Bam HI R291I 5'-CACGACGAATGGATCCAATACGACTAC-3' (SEQ ID NO: 65) 5'-GTAGTCGTATTGGATCCATTCGTCGTG-3' 15 Bsi WI Q292A 5'-GACGAATGGAGAGCGTACGACTACTTG-3' (SEQ ID NO: 66) 5'-CAAGTAGTCGTACGCTCTCCATTCGTC-3' 20 Hpa I A320V 5'-GGTGTTGGTTTCGTTAACGAATTGATTGC-3' (SEQ ID NO: 67) 5'-GCAATCAATTCGTTAACGAAACCAACACC-3' (Bgl II) 25 R329H 5'-GCTAGATTGACTCACTCTCCAGTTCAAG-3' (SEQ ID NO: 68) 5'-CTTGAACTGGAGAGTGAGTCAATCTAGC-3' Eco RV 5'-CTCACGACAACACTATGATATCTATTTTCTTC-3' (SEQ ID NO: 69) S364T 5'-GAAGAAATAGATATCATAGTGTTGTCGTGAG-3' 30 Nco I 5'-CGACAACTCCATGGTTTCTATTTTCTTCGC-3' (SEQ ID NO: 70) I366V 5'-GCGAAGAAATAGAAACCATGGAGTTGTCG-3' 35 Kpn I A379K 5'-GTACAACGGTACCAAGCCATTGTCTAC-3' (SEQ ID NO: 71) 5'-GTAGACAATGGCTTGGTACCGTTGTAC-3' 5'-CTGACGGTTACGCTGCTTCTTGGAC-3' (SEQ ID NO: 72) 40 S396A 5'-GTCCAAGAAGCAGCGTAACCGTCAG-3' G404A 5'-CTGTTCCATTCGCTGCTAGAGCTTAC-3' (SEQ ID NO: 73) 5'-GTAAGCTCTAGCAGCGAATGGAACAG-3' 45 5'-GATGCAATGTGAAGCTGAAAAGGAACC-3' (SEQ ID NO: 74) Q415E 5'-GGTTCCTTTTCAGCTTCACATTGCATC-3'

41

Sal I

A437G 5'-CACGGTTGTGGTGTCGACAAGTTGGG-3' (SEQ ID NO: 75)

5'-CCCAACTTGTCGACACCACAACCGTG-3'

5

Mun I

A463E 5'-GATCTGGTGGCAATTGGGAGGAATGTTTCG-3' (SEQ ID NO: 76)

5'-CGAAACATTCCTCCCAATTGCCACCAGATC-3'

10 and, accordingly, for other mutations.

The temperature optimum of the purified phytases, expressed in Saccharomyces cerevisiae (Example 7), was determined as outlined in Example 9. Table 5 shows the effect of each mutation introduced on the stability of consensus phytase-1.

### Table 5

## Stability effect of the individual amino acid replacements in consensus phytase-1

+ or - means a positive, respectively, negative effect on the protein stability up to 1°C, ++ and -- means a positive, respectively, negative effect on the protein stability between 1 and 3°C; the numbers 10 or 11 in parentheses indicate the consensus phytase sequence that suggested the amino acid replacement.

stabilizing neutral

destabilizing

| mutation   | effect | mutation   | ef-  | mutation   | effect     |
|------------|--------|------------|------|------------|------------|
|            |        |            | fect |            |            |
| E58A (10)  | +      | D69A       | ±    | Y54F (10)  | -          |
| D69K (11)  | +      | D70G (10)  | ±    | V73I       | _          |
| D197N (10) | +      | N134Q (10) | ±    | A94K (10)  | _          |
| T214L (10) | + +    | G186H      | ±    | A101R (11) | _          |
| E222T (11) | + +    | S187A (10) | ±    | K153N (11) | _          |
| E267D (10) | +      | T214V      | ±    | I158V (10) |            |
| R291I      | +      | T251N (10) | ±    | G203A      |            |
| R329H (10) | +      | Y259N (10) | ±    | G205S      | -          |
| S364T (10) | + +    | A283D (10) | ±    | A217V      | -          |
| A379K (11) | +      | A320V (10) | ±    | V227A (11) |            |
| G404A (10) | + +    | K445T      | ±    | L234V (10) | -          |
|            |        | A463E (10) | ±    | A238P (10) |            |
|            |        |            |      | E277Q (10) | _          |
|            |        |            | ļ    | H287A (11) | -          |
|            |        |            |      | Q292A      | -          |
|            |        |            |      | I366V (10) | -          |
|            |        |            |      | S396A (10) | <b>-</b> - |
|            |        |            |      | Q415E (11) | -          |
|            |        |            |      | A437G (10) | <u>-</u> - |
|            |        |            |      | E451R      |            |

We combined eight positive mutations (E58A, D197N, E267D, R291I, R329H, S364T, A379K, G404A) in consensus phytase-1 thermo[8], using the primers and the technique mentioned above in this example. Furthermore, the mutations Q50T and/or K91A were introduced which mainly influence the catalytic characteristics of phytase (see patent applications EP 897010 and EP 897985, as well as Example 9). The DNA and amino acid sequence of the resulting phytase (consensus phytase-1-thermo[8]-Q50T-K91A) are shown in Figure 7. In this way, the temperature optimum and the melting point of the consensus phytase were increased by 7°C (Figures 15, 16, 17).

In a further consensus protein, we combined eleven positive mutations (E58A, D69K, D197N, T214L, E222T, E267D, R291I, R329H, S364T, A379K, G404A) in consensus phytase-1 thermo[11]. Furthermore, the mutations Q50T and/or K91A were

43

introduced. In this way, the melting temperature was increased by another  $3-4\,^{\circ}\text{C}$  when compared to consensus phytase-1 thermo[8].

Using the results of Table 5, we further improved the thermostability of consensus phytase-10 by the back mutations 5 K94A, V158I, and A396S, the reverse of which (A94K, I158V, and S396A) revealed a strong negative influence on the stability of consensus phytase-1. The resulting protein was called consensus phytase-10-thermo[3]. SEQ ID NO: 26 plus the three mutations K94A, V158I, and A396S. Furthermore, we introduced the mutations 10 Q50T and K91A that mainly influence the catalytic characteristics of consensus phytase (see patent applications EP 897010 and EP 897985, as well as Example 9 and Figures 14 and 15). The resulting DNA and amino acid sequence are shown in Figure 8. The optimized phytase showed a 4°C higher temperature 15 optimum and melting point than consensus phytase-10 (Figures 12 and 13). Furthermore, the phytase has also a strongly increased specific activity with phytate as substrate of 250 U/mg at pH 5.5 (Figure 14).

In a still further consensus protein, two additional mutations were introduced into consensus phytase-10 thermo[3] (E222T, G437A) which yielded consensus phytase-10 thermo[5]. Furthermore, the mutations Q50T and/or K91A were introduced. In this way, the melting temperature was increased by another 1-2°C when compared to consensus phytase-10 thermo[3].

25

44

### Example 4

Stabilization of the phytase of A. fumigatus ATCC 13073 by replacement of amino acid residues with the corresponding consensus phytase-1 and/or consensus phytase-10 residues

5

At six amino acid sequence positions where A. fumigatus 13073 phytase is the only or nearly the only phytase in the alignment of Figure 1 that does not contain the corresponding consensus phytase amino acid residue, the non-consensus amino acid residue was replaced by the consensus one. The following amino acids were substituted in A. fumigatus 13073 phytase, containing additionally the Q51(24)T substitution (influencing the catalytic properties and corresponding to the Q50T substitution in the consensus phytases) and the signal sequence of A. terreus cbs116.46 phytase (see European Patent Application No. 0897010, and Figure 9): F55(28)Y, V100(73)I, F114(87)Y, A243(220)L, S265(242)P, N294(282)D. The numbers in parentheses refer to the numbering in Figure 1.

In a second round, four of the seven stabilizing amino 20 acid exchanges (E58A, R329H, S364T, G404A) identified in consensus phytase-10 and tested as single mutations in consensus phytase-1 (Table 5) were additionally introduced into the A. fumigatus alpha-mutant. Furthermore, the amino acid replacement S154N, shown to reduce the protease susceptibility of the 25 phytase, was introduced.

The mutations were introduced as described in Example 3 (see Table 6) and expressed as described in Examples 6 to 8. The resulting A. fumigatus 13073 phytase variants were called alphamutant (i.e. the A. fumigatus ATCC 13073 phytase with the substitutions Q24T, F28Y, V73I, F87Y, A220L, S242P, N282D) and "optimized" alpha-mutant (i.e. the A. fumigatus alpha-mutant

45

having the additional substitutions E59A-S154N-R329H-S364T-G404A). K92A is an additional preferred mutation.

PCT/DK00/00025

The temperature optimum (60°C, Figure 20) and the melting temperature (67.0°C, Figure 19) of the A. fumigatus 13073 alpha-5 mutant phytase were increased by 5-7°C in comparison to the values of the wild-type phytase (temperature optimum: 55°C, Tm: 60°C). The five additional amino acid replacements further increased the temperature optimum by 3°C (Figure 20).

### 10 <u>Table 6</u>

WO 00/43503

Mutagenesis primers for the stabilization of A. fumigatus ATCC 13073 phytase

|    | Mutation | Primer                                                                                                  |
|----|----------|---------------------------------------------------------------------------------------------------------|
| 15 | F55Y     | 5'-CACGTACTCGCCA <b>TAC</b> TTTTCGCTCGAG-3' (SEQ ID NO: 77) 5'-CTCGAGCGAAAAGT <b>ATG</b> GCGAGTACGTG-3' |
|    |          | (Xho I)                                                                                                 |
|    | E58A     | 5'-CCATACTTTTCG <i>CTCG</i> CGACGAGCTGTCCGTG-3'                                                         |
| 20 |          | (SEQ ID NO: 78) 5'-CACGGACAGCTCGTCCGCGAGCGAAAAGTAGG-3'                                                  |
|    | V100I    | 5'-GTATAAGAAGCTT <b>ATT</b> ACGGCGATCCAGGCC-3'                                                          |
| 25 |          | (SEQ ID NO: 79) 5'-GGCCTGGATCGCCGTAATAAGCTTCTTATAC-3'                                                   |
|    | F114Y    | 5'-CTTCAAGGGCAAG <b>TAC</b> GCCTTTTTGAAGACG-3' (SEQ ID NO: 80)                                          |
| 30 |          | 5'-CGTCTTCAAAAAGGCGTACTTGCCCTTGAAG-3'                                                                   |
|    | A243L    | 5'-CATCCGAGCTCGCCTCGAGAAGCATCTTC-3'(SEQ ID NO: 81) 5'-GAAGATGCTTCTCGAGGCGAGCTCGGATG-3'                  |
| 35 | S265P    | 5'-CTAATGGA TGTGTCCGTTTGATACGGTAG-3' (SEQ ID NO: 82) 5'-CTACCGTATCAAACGGACACATGTCCATTAG-3'              |
|    | N294D    | 5'-GTGGAAGAAGTACGACTACCTTCAGTC-3' (SEQ ID NO: 83) 5'-GACTGAAGGTAGTCGTACTTCTTCCAC-3'                     |

46

(Mlu I)

R329H 5'-GCCCGGTTGACGCATTCGCCAGTGCAGG-3' (SEQ ID NO: 84) 5'-CCTGCACTGGCGAATGCGTCAACCGGGC-3'

5 Nco I

5'-CACACGACAACACCATGGTTTCCATCTTC-3' (SEQ ID NO: 85)
5'-GAAGATGGAAACCATGGTGTTGTCGTGTG-3'

(Bss HI)

10 G404A 5'-GTGGTGCCTTTCGCCGCGCGAGCCTACTTC-3' (SEQ ID NO: 86) 5'-GAAGTAGGCTCGCGCGCGAAAGGCACCAC-3'

### Example 5

# Introduction of the active site amino acid residues of A. niger NRRL 3135 phytase into consensus phytase-1

We used the crystal structure of Aspergillus niger NRRL 3135 phytase to define all active site amino acid residues (see Example 1, and EP 897010). Using the alignment of Figure 1, we replaced the following active site residues and additionally the non-identical adjacent ones of consensus phytase-1 by those of A. niger phytase:

S89D, S92G, A94K, D164S, P201S, G203A, G205S, H212P, G224A, D226T, E255T, D256E, V258T, P265S, Q292H, G300K, Y305H, A314T, S364G, M365I, A397S, S398A, G404A, and A405S.

- The new consensus phytase-7 protein sequence was backtranslated into a DNA sequence (Figure 10) as described in Example 1. The corresponding gene (fcp7) was generated as described in Example 1 using the following oligonucleotide mixes:
- 30 Mix 1.7: CP-1, CP-2, CP-3, CP-4.7, CP-5.7, CP-6, CP-7, CP-8.7, CP-9, CP-10.7
- Mix 2.7: CP-9, CP-10.7, CP-11.7, CP-12.7, CP-13.7, CP-14.7, CP-15.7, CP-16, CP-17.7, CP-18.7, CP-19.7, CP-20, CP-21, CP-22.

The DNA sequences of the oligonucleotides are indicated in Figure 10. The newly synthesized oligonucleotides are additionally marked by the number 7. After assembling of the oligonucleotides using the same PCR primers as mentioned in Example 1, the gene was cloned into an expression vector as described in Examples 6-8.

The pH-profile of the enzyme determined after expression in H. polymorpha and purification was very similar to that of A. 10 niger phytase (see Figure 18).

### Example 6

## Expression of the consensus phytase genes in Hansenula polymorpha

The phytase expression vectors used to transform H. polymorpha RB11 [Gellissen, G., Hollenberg, C. P., Janowicz, Z. A. (1994) Gene expression in methylotrophic yeasts, in Smith, A. (ed.) Gene expression in recombinant microorganisms. Dekker, New York, pp. 395-439] were constructed by inserting the Eco RI fragment of pBsk-fcp or variants thereof into the multiple cloning site of the H. polymorpha expression vector pFPMT121, which is based on an ura3 selection marker from S. cerevisiae, a formate dehydrogenase (FMD) promoter element and a methanol oxidase (MO) terminator element from H. polymorpha. The 5' end of the fcp gene is fused to the FMD promoter, the 3' end to the MOX terminator (Gellissen et al., Appl. Microbiol. Biotechnol. 46, 46-54, 1996; EP 299108). The resulting expression vectors are designated pFPMTfcp, pFPMTfcp10, and pFPMTfcp7.

The constructed plasmids were propagated in E. coli.
30 Plasmid DNA was purified using standard state of the art
procedures. The expression plasmids were transformed into the H.

48

polymorpha strain RB11 deficient in orotidine-5'-phosphate decarboxylase (ura3) using the procedure for preparation of competent cells and for transformation of yeast as described in Gellissen et al. (1996). Each transformation mixture was plated 5 on YNB medium (0.14% w/v Difco YNB and 0.5% ammonium sulfate) containing 2% glucose and 1.8% agar, and incubated at 37 °C. After 4 to 5 days individual transformant colonies were picked and grown in the liquid medium described above for 2 days at 37 °C. Subsequently, an aliquot of this culture was used to 10 inoculate fresh vials with YNB-medium containing 2% glucose. After seven further passages in selective medium, the expression vector had integrated into the yeast genome in multimeric form. Subsequently, mitotically stable transformants were obtained by two additional cultivation steps in 3 ml non-selective liquid 15 medium (YPD, 2% glucose, 10 g/l yeast extract, and 20 g/l peptone). In order to obtain genetically homogeneous recombinant strains, an aliquot from the last stabilization culture was plated on a selective plate. Single colonies were isolated for analysis of phytase expression in YNB containing 2% glycerol 20 instead of glucose to derepress the FMD promoter. Purification of the consensus phytases was done as described in Example 7.

#### Example 7

25

Expression of the consensus phytase genes in Saccharomyces cerevisiae and purification of the phytases from the culture supernatant

The consensus phytase genes were isolated from the corresponding Bluescript-plasmid (pBsk-fcp, pBSK-fcp10, pBsk-30 fcp7) and ligated into the Eco RI sites of the expression cassette of the Saccharomyces cerevisiae expression vector pYES2

49

(Invitrogen, San Diego, CA, USA) or subcloned between the (glyceraldhyde-3-phosphate dehydrogenase) shortened GAPFL promoter and the pho5 terminator as described by Janes et al., Curr. Genet. 18, 97-103. The correct orientation of the gene was 5 checked by PCR. Transformation of S. cerevisiae strains, e.g. INVSc1 (Invitrogen, San Diego, CA, USA), was done according to Hinnen et al., Proc. Natl. Acad. Sci. USA 75, 1929-1933 (1978). Single colonies harboring the phytase gene under the control of the GAPFL promoter were picked and cultivated in 5 ml selection 10 medium [SD-uracil; Sherman, J. P., Finck, G. R. & Hicks, J. B. (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor University] at 30°C under vigorous shaking (250 rpm) for one day. The preculture was then added to 500  $\mathrm{ml}$ YPD medium (Sherman et al., 1986) and grown under the same 15 conditions. Induction of the gall promoter was done according to the manufacturer's instructions. After four days of incubation, the cell broth was centrifuged (7000 rpm, GS3 rotor, 15 min, 5°C) to remove the cells, and the supernatant was concentrated by way of ultrafiltration in Amicon 8400 cells (PM30 membranes; 20 Grace AG, Wallizeller, Switzerland) and ultrafree-15 centrifugal filter devices (Biomax-30K, Millipore, Bedford, MA, USA). concentrate (10 ml) was desalted on a 40 ml Sephadex G25 Superfine column (Pharmacia Biotech, Freiburg, Germany), with 10 mM sodium acetate, pH 5.0, serving as elution buffer. 25 desalted sample was brought to 2 M  $(NH_4)_2SO_4$  and directly loaded onto a 1 ml Butyl Sepharose 4 Fast Flow hydrophobic interaction chromatography column (Pharmacia Biotech, Feiburg, which was eluted with a linear gradient from 2 M to 0 M  $(NH_4)_2SO_4$ in 10 mM sodium acetate, pH 5.0. Phytase was eluted in the 30 breakthrough, concentrated and loaded on a 120 ml Sephacryl S-300 gel permeation chromatography column (Pharmacia Biotech,

50

Freiburg, Germany). Consensus phytases -1, -7 and -10 eluted as a homogeneous symmetrical peak and were shown by SDS-PAGE to be approx. 95% pure.

#### 5 Example 8

Expression of the consensus phytase genes in Aspergillus niger

The Bluescript-plasmids pBsk-fcp, pBsk-fcp10, and pBsk-fcp7 were used as template for the introduction of a Bsp HI-site upstream of the start codon of the genes and an Eco RV-site downstream of the stop codon. The ExpandTM High Fidelity PCR Kit (Boehringer Mannheim, Mannheim, Germany) was used with the following primers:

15 Primer Asp-1:

Bsp HI

5'-TATATCATGAGCGTGTTCGTCGTGCTACTGTTC-3' (SEQ ID NO: 87)

Primer Asp-2 used for cloning of fcp and fcp7:

20

Eco RV

3'-ACCCGACTTACAAAGCGAATTCTATAGATATAT-5' (SEQ ID NO: 88)

Primer Asp-3 used for cloning of fcp10:

25

Eco RV

3'-ACCCTTCTTACAAAGCGAATTCTATAGATATAT-5' (SEQ ID NO: 89)

The reaction was performed as described by the supplier.

30 The PCR-amplified fcp-genes had a new Bsp HI site at the start codon, introduced by primer Asp-1, which resulted in a

51

replacement of the second amino acid residue glycine by serine. Subsequently, the DNA-fragment was digested with Bsp HI and Eco into the Nco I site downstream of ligated glucoamylase promoter of Aspergillus niger (glaA) and the Eco RV 5 site upstream of the Aspergillus nidulans tryptophan C terminator (trpC) (Mullaney et al., 1985). After this cloning step, the genes were sequenced to detect possible errors introduced by PCR. The resulting expression plasmids, which basically correspond to the pGLAC vector as described in Example 684313, contained 10 9 of  $\mathbf{EP}$ the orotidine-5'-phosphate decarboxylase gene (pyr4) of Neurospora crassa as a selection marker. Transformation of Aspergillus niger and expression of the consensus phytase genes was done as described in EP 684313. The consensus phytases were purified as described in Example 7.

15

### Example 9

Determination of phytase activity and of the pH and temperature optima

This example relates i.a. to the determination of phytase 20 activity and of the temperature optimum. Various phytases have been tested.

The phytase of Aspergillus niger NRRL 3135 was prepared as described in EP 420358 and by van Hartingsveldt et al. (Gene 127, 87-94, 1993).

- 25 The phytases of Aspergillus fumigatus ATCC Aspergillus terreus 9A-1, Aspergillus terreus cbs116.46, Emericella nidulans, Myceliophthora thermophila, and Talaromyces thermophilus were prepared as described in EP-0897985 and in the references therein.
- The remaining phytases tested were prepared as described herein.

WO 00/43503

Consensus phytase-1-thermo(8) designates a variant of consensus phytase-1, which further comprises the eight mutations which are underlined in the legend to Figure 5. Consensus phytase-1 is shown in Fig. 1 (SEQ ID NO: 14) without signal 5 peptide, and in Fig. 2 (SEQ ID NO: 16) with the signal peptide.

Phytase activity was determined basically as described by Mitchell et al. (1997). The activity was measured in an assay mixture containing 0.5% phytic acid ( $\approx 5$  mM) in 200 mM sodium acetate, pH 5.0. After 15 min of incubation at 37°C, the reac-10 tion was stopped by addition of an equal volume of 15% trichloroacetic acid. The liberated inorganic phosphate was quantified by mixing 100  $\mu l$  of the assay mixture with 900  $\mu l$   $H_2O$  and 1 ml of 0.6 M  $\rm H_2SO_4$ , 2% ascorbic acid and 0.5% ammonium molybdate. Standard solutions of potassium phosphate were used as refer-15 ence. One unit of enzyme activity was defined as the amount of enzyme that releases 1  $\mu mol$  phosphate per minute at 37°C. The protein concentration was determined using the enzyme extinction coefficient at 280 nm calculated according to Pace et al. [Pace N. C., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. (1995) How 20 to measure and predict the molar absorption coefficient of a protein. Prot. Sci. 4, 2411-2423]: 1 absorption unit (1 OD) at 280 nm corresponds to 1.101 mg/ml of consensus phytase-1, 1.068 mg/ml of consensus phytase-7, and 1.039 mg/ml of consensus phytase-10.

In case of pH-optimum curves, the purified enzymes were diluted in 10 mM sodium acetate, pH 5.0. Incubations were started by mixing aliquots of the diluted protein with an equal volume of 1% phytic acid (≈10 mM) in a series of different buffers: 0.4 M glycine/HCl, pH 2.5; 0.4 M acetate/NaOH, pH 3.0, 3.5, 4.0, 4.5, 5.0, 5.5; 0.4 M imidazole/HCl, pH 6.0, 6.5; 0.4 M Tris/HCl pH 7.0, 7.5, 8.0, 8.5, 9.0. Control experiments showed

53

that pH was only slightly affected by the mixing step. Incubations were performed for 15 min at 37°C as described above.

For determination of the substrate specificities of the 5 phytases, phytic acid in the assay mixture was replaced by 5 mM concentrations of the respective phosphate compounds. Besides, the activity tests were performed as described above.

For determination of the temperature optimum, enzyme (100  $\mu$ l) and substrate solution (100  $\mu$ l) were pre-incubated for 5 min at the given temperature. The reaction was started by addition of the substrate solution to the enzyme. After 15 min of incubation, the reaction was stopped with trichloroacetic acid, and the amount of phosphate released was determined.

The pH-optimum of consensus phytase-1 was around pH 6.0-15 6.5 (70 U/mg). Introduction of the Q50T mutation shifted the pH-optimum to pH 6.0 (130 U/mg). Introduction of the K91A mutation further shifted the pH optimum into the more acidic pH-range. Comparable effects of the Q50T and K91A mutations were also observed for consensus phytase-10 and for further stabilized consensus phytase variants (Figures 14 and 15).

Consensus phytase-7, which was constructed to transfer the catalytic characteristics of A. niger NRRL 3135 phytase to consensus phytase-1, had a pH-profile very similar to that of A. niger NRRL 3135 phytase (see Figure 18). The substrate specificity also resembled more that of A. niger NRRL 3135 phytase than that of consensus phytase-1.

The temperature optimum of consensus phytase-1 (71°C) was 16-26°C higher than the temperature optima of the wild-type phytases (45-55°C, Table 7) that were used to calculate the consensus sequence. The improved consensus phytase-10 showed a further increase of its temperature optimum to 80°C (Figure 13).

WO 00/43503

54

The temperature optimum of consensus phytase-1-thermo[8] was found to be in the same range (78°C) when using the supernatant of an overproducing S. cerevisiae strain. The highest temperature optimum reached of 82°C was determined for consensus phytase-10-thermo[3]-Q50T-K91A.Table 7

Temperature optima and Tm-values of consensus phytase and of the phytases from A. fumigatus, A. niger, E. nidulans, and M. thermophila.

10

The determination of the temperature optimum was performed as described in Example 9. The Tm-values were determined by differential scanning calorimetry as described in Example 10.

| Phytase                                          | Optimum temperature | Tm (°C) |
|--------------------------------------------------|---------------------|---------|
|                                                  | (°C)                |         |
| Aspergillus niger<br>NRRL 3135                   | 55                  | 63.3    |
| Aspergillus<br>fumigatus ATCC 13073              | 55                  | 62.5    |
| Aspergillus terreus<br>9A-1                      | 49                  | 57.5    |
| Aspergillus terreus<br>cbs116.46                 | 45                  | 58.5    |
| Emericella nidulans                              | 45                  | 55.7    |
| Myceliophthora<br>thermophila                    | 55                  | -       |
| Talaromyces<br>thermophilus                      | 45                  | -       |
| Consensus phytase-                               | -                   | 90.4    |
| 10-thermo[5]-Q50T-                               |                     |         |
| K91A                                             |                     |         |
| Consensus-phytase-<br>10-thermo[3]-Q50T-<br>K91A | 82                  | 89.3    |

55

|                                                                                             | 33 |      |
|---------------------------------------------------------------------------------------------|----|------|
| Consensus-phytase-<br>10-thermo[3]-Q50T                                                     | 82 | 88.6 |
| Consensus-phytase-10                                                                        | 80 | 85.4 |
| Consensus phytase-1-<br>thermo[11]-Q50T-K91A                                                | _  | 88.0 |
| Consensus phytase-1-<br>thermo[11]-Q50T                                                     | -  | 88.5 |
| Consensus-phytase-1-<br>thermo[8]-Q50T-K91A                                                 | _  | 85.7 |
| Consensus-phytase-1-<br>thermo[8]-Q50T                                                      | 78 | 84.7 |
| Consensus-phytase-1-<br>thermo[8]                                                           | 81 | _    |
| Consensus-phytase-1-<br>thermo[3]                                                           | 75 | _    |
| Consensus-phytase-1-<br>Q50T                                                                | _  | 78.9 |
| Consensus-phytase-1                                                                         | 71 | 78.1 |
| Aspergillus<br>fumigatus α-mutant<br>Q51T                                                   | 60 | 67.0 |
| Aspergillus<br>fumigatus α-mutant,<br>plus mutations E59A,<br>S154N, R329H, S364T,<br>G404A | 63 | _    |
| Aspergillus fumigatus ''optimized'' alpha- mutant, plus mutation K92A                       | 63 |      |

56

### Example 10

Determination of the melting temperature by differential scanning calorimetry (DSC)

In order to determine the unfolding temperature of the phytases, differential scanning calorimetry was applied as described by Brugger et al., 1997 [Brugger, R., Mascarello, F., Augem, S., van Loon, A. P. G. M. & Wyss, M. (1997). Thermal denaturation of phytases and pH 2.5 acid phosphatase studied by differential scanning calorimetry. In The Biochemistry of phytate and phytase (eds. Rasmussen, S.K.; Raboy, V.; Dalbøge, H. and Loewus, F.; Kluwer Academic Publishers, Dordrecht, the Netherlands]. Solutions of 50-60 mg/ml of homogeneous phytase were used for the tests. A constant heating rate of 10°C/min was applied up to 90-95°C.

The determined melting points confirm the results obtained for the temperature optima (Table 7). The most stable consensus phytase designed so far is consensus phytase-10-thermo[3]-Q50T-K91A showing a melting temperature under the chosen conditions of 89.3°C. This is 26.0 to 33.6°C higher than the melting temperature of the wild-type phytases used.

### Example 11

25

Transfer of basidiomycete phytase active site into consensus phytase-10-thermo[3]-Q50T-K91A

As described previously (Example 5), mutations derived from the basidiomycete phytase active sites were introduced into consensus phytase-10. The following five constructs a) to e) were prepared:

a) The construct called consensus phytase-12, and it comprises a selected number of active site residues of the

basidio consensus sequence. Its amino acid sequence is shown in Fig. 21 (the first 26 amino acids form the signal peptide; positions differing from consensus phytase-10-thermo[3]-Q50T-K91A are underlined);

- b) a cluster of mutations (Cluster II) was transferred to the consensus phytase-1 and -10 sequences, viz.: S80Q, Y86F, S90G, K91A, S92A, K93T, A94R, Y95I;
- c) in a similar way, another cluster of mutations (Cluster III) was transferred, viz.: T129V, E133A, Q134N, M136S, V137S, 10 N138Q, S139A;
  - d) in a similar way, a further cluster of mutations (Cluster IV) was transferred, viz.: A168D, E171T, K172N, F173W;
  - e) and finally, a further cluster of mutations (Cluster V) was transferred, viz.: Q297G, S298D, G300D, Y305T.
- These constructs were expressed as described in Examples 6 to 8.

#### Example 12

### Phytase alignment using GAP

- The phytases described herein i.e. the amino acid sequences as well as the corresponding DNA sequences were aligned against each other. Also some other phytases were correspondingly aligned, viz. the following:
  - the consensus phytase-1 described in EP 897985;
- 25 the phytase derived from Aspergillus niger (ficuum) NRRL 3135 (A. niger NRRL3135) described in EP 420358;
  - the phytases derived from Aspergillus fumigatus ATCC 13073 (A. fumigatus 13073); Aspergillus fumigatus ATCC 32239 (A. fumigatus 32239); Aspergillus terreus cbs116.46 (A.terreus cbs);
- 30 Emericella nidulans (E. nidulans); and Talaromyces thermophilus (T. thermophilus) all described in EP 897010;

- the phytases derived from Myceliophthora thermophila (M. thermophila); and Aspergillus terreus 9-A1 (A. terreus 9-A1) both described in EP 684313;
- the phytase derived from Thermomyces lanuginosus (T. 5 lanuginosus) described in WO 9735017 (PCT/US97/04559);
  - the phytases derived from Agrocybe pediades (A. pediades), Paxillus involutus 1 and 2 (P. involutus phyA1 and phyA2); and Trametes pubescens (T. pubescens) - all described in WO 98/28409; and
- 10 the phytase derived from Peniophora lycii (P. lycii) described in WO 98/28408.

For the alignments, the program GAP was used with the settings as described above.

For polypeptide comparisons, the signal peptides were 15 included with the exception of comparisons with consensus phytase-11.

The results of the amino acid sequence comparisons are shown in Table 8 below. The first number in each cell is the amino acid similarity, the second number is the amino acid 20 identity.

For DNA sequence comparisons, the signal sequence was always included. The results are shown in Table 9 below.

This invention comprises e.g. the following embodiments (A) to (J) that are described below.

In these embodiments, when determining % identity or % similarity at the amino acid level for another phytase, its amino acid sequence is aligned with the reference sequence (e.g. in embodiment (A) the consensus phytase-10 amino acid sequence), using an alignment program such as GAP referred to above. 30 Percentage identity, as well as percentage similarity,

59

calculated by the program. The amino acid sequence of the other phytase may or may not include the signal peptide.

When determining % identity on the DNA level for another phytase-encoding DNA, this DNA sequence is aligned with the 5 reference sequence [e.g. in embodiment (A) nucleotides 12-1412 of SEQ ID NO: 25 (the DNA sequence of consensus phytase-10 (Fcp10) as shown in Fig. 5], using an alignment program such as GAP referred to above. Percentage identity is calculated by the program. The DNA sequence encoding the other phytase can be a genomic DNA sequence including introns, or it can be a cDNA sequence. It may or may not include the signal peptide-encoding part.

When determining hybridization, the probe to be used is the specified DNA sequence [e.g. in embodiment (A) nucleotides 12-1412 of SEQ ID NO: 25 (the DNA sequence of consensus phytase-10 (Fcp10) as shown in Fig. 5)]. The DNA sequence encoding the other phytase can be a genomic DNA sample which contains a phytase-encoding DNA-sequence; a purified genomic DNA sequence (purified with respect to the phytase-encoding DNA sequence); or it can be a phytase-encoding cDNA sequence, preferably purified or amplified, e.g. PCR-amplified. The phytase-encoding DNA, whatever type, may or may not include the signal peptide-encoding part. Suitable hybridization conditions are referred to above.

The term "DNA sequence" includes such fragments or parts of the herein exemplified DNA sequences, as long as they are capable of encoding an active enzyme (e.g. phytase).

The term "amino acid sequence" includes such fragments or parts of the herein exemplified amino acid sequences, as long as they are enzymatically active (e.g. displaying phytase activity).

60

## (A) Phytases and corresponding DNA sequences related to consensus phytase-10 (CP10, Fcp 10)

A phytase that comprises an amino acid sequence which is at least 93.80%; or at least 94, 94.5, 95, 95.5, 96, 96.5, 97, 5 97.5, 98, 98.5, 99, 99.5% identical to the sequence of amino acids 1-467 of consensus phytase-10 (Fcp10) as shown in Fig. 5.

A phytase that comprises an amino acid sequence which is at least 95.09%; or at least 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% similar to the sequence of amino acids 1-467 of consensus phytase-10.

A phytase which is encoded by a DNA sequence which is at least 95.88%; or at least 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to nucleotides 12-1412 of the DNA sequence of consensus phytase-10 (Fcp10) as shown in Fig. 5.

A DNA sequence which encodes a phytase and which (i) is at least 95.88%; or at least 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical; or (ii) hybridizes under low, or medium, medium/high, high, or very high stringency conditions to nucleotides 12-1412 of the DNA sequence of consensus phytase-10 (Fcp10) as shown in Fig. 5. A suitable negative control is DNA encoding consensus phytase-1. A suitable positive control is DNA encoding any of CP10, CP10-thermo[3]-Q50T, K91A, CP1-thermo[8], CP1-thermo[8]Q50T,K91A.

A DNA sequence which encodes a phytase comprising an amino acid sequence which is at least 93.80%; or at least 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the sequence of amino acids 1-467 of consensus phytase-10 (Fcp10) as shown in Fig. 5.

61

## (B) Phytases and corresponding DNA sequences related to consensus phytase-10-thermo[3]-Q50T-K91A

A phytase which comprises an amino acid sequence which is at least 93.37%; or at least 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the sequence of amino acids 1-467 of consensus phytase-10-thermo[3]-Q50T-K91A as shown in Fig. 8.

A phytase which comprises an amino acid sequence which is at least 94.66%; or at least 95.0, 95.5, 96, 96.5, 97, 97.5, 98, 10 98.5, 99, 99.5% similar to the sequence of amino acids 1-467 of consensus phytase-10-thermo[3]-Q50T-K91A as shown in Fig. 8.

A phytase which is encoded by a DNA sequence which is at least 95.88%; or at least 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to nucleotides 12-1412 of the DNA sequence of consensus phytase-10-thermo[3]-Q50T-K91A as shown in Fig. 8.

A DNA sequence which encodes a phytase and which (i) is at least 95.88%; or at least 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical; or (ii) hybridizes under low, or medium, medium/high, high, or very high stringency conditions to nucleotides 12-1412 of the DNA sequence of consensus phytase-10-thermo[3]-Q50T-K91A as shown in Fig. 8. A suitable negative control is DNA encoding consensus phytase-1. A suitable positive control is DNA encoding any of CP10, CP10-thermo[3]-Q50T-K91A, CP1-thermo[8], or CP1-thermo[8]-Q50T-K91A.

A DNA sequence which encodes a phytase comprising an amino acid sequence which is at least 93.37%; or at least 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the sequence of amino acids 1-467 of consensus phytase-10-thermo[3]-Q50T-K91A as shown in Fig. 8.

30

62

## (C) Phytases and corresponding DNA sequences related to consensus phytase-1-thermo[8]

A phytase which comprises an amino acid sequence which is at least 98.30%; or at least 98.5, 99, 99.5% identical to the sequence of amino acids 1-467 of consensus phytase-1-thermo[8] (as shown in Fig. 7; backmutations T50Q and A91K to be added).

A phytase which comprises an amino acid sequence which is at least 98.51%; or at least 99, 99.5% similar to the sequence of amino acids 1-467 of consensus phytase-1-thermo[8] (as shown in Fig. 7; backmutations T50Q and A91K to be added).

A phytase which is encoded by a DNA sequence which is at least 98.73%; or at least 99, 99.5% identical to nucleotides 1-1407 of the DNA sequence of consensus phytase-1-thermo[8] (as shown in Fig. 7; backmutations T50Q and A91K to be added).

15 A DNA sequence which encodes a phytase and which (i) is at least 98.73%; or at least 99, 99.5% identical; or (ii) hybridizes under low, or medium, medium/high, high, or very high stringency conditions to nucleotides 1-1407 of the DNA sequence of consensus phytase-1-thermo[8] (as shown in Fig. 7; 20 backmutations T50Q and A91K to be added). A suitable negative control is DNA encoding consensus phytase-1. A suitable positive control is DNA encoding any of CP1-thermo[8], CP1-thermo[8]-Q50T-K91A.

A DNA sequence which encodes a phytase comprising an amino acid sequence which is at least 98.30%; or at least 98.5, 99, 99.5% identical to the sequence of amino acids 1-467 of consensus phytase-1-thermo[8] (as shown in Fig. 7; backmutations T50Q and A91K to be added).

WO 00/43503

# (D) Phytases and corresponding DNA sequences related to consensus phytase-1-thermo[8]-Q50T-K91A

A phytase which comprises an amino acid sequence which is at least 97.87%; or at least 98, 98.5, 99, 99.5% identical to 5 the sequence of amino acids 1-467 of consensus phytase-1-thermo[8]-Q50T-K91A as shown in Fig. 7.

A phytase which comprises an amino acid sequence which is at least 98.08%; or at least 98.5, 99, 99.5% similar to the sequence of amino acids 1-467 of consensus phytase-1-thermo[8]10 Q50T-K91A as shown in Fig. 7.

A phytase which is encoded by a DNA sequence which is at least 98.37%; or at least 98.5, 99, 99.5% identical to nucleotides 1-1407 of the DNA sequence of consensus phytase-1-thermo[8]-Q50T-K91A as shown in Fig. 7.

15 A DNA sequence which encodes a phytase and which (i) is at least 98.37%; or at least 98.5, 99, 99.5% identical; or (ii) hybridizes under low, or medium, medium/high, high, or very high stringency conditions to nucleotides 1-1407 of the DNA sequence of consensus phytase-1-thermo[8]-Q50T-K91A as shown in Fig. 7. A 20 suitable negative control is DNA encoding consensus phytase-1. A suitable positive control is DNA encoding any of CP1-thermo[8], CP1-thermo[8]-Q50T-K91A.

A DNA sequence which encodes a phytase comprising an amino acid sequence which is at least 97.87%; or at least 98, 98.5, 25 99, 99.5% identical to the sequence of amino acids 1-467 of consensus phytase 1-thermo[8]-Q50T-K91A as shown in Fig. 7.

## (E) Phytases and corresponding DNA sequences related to consensus phytase-11

A phytase that comprises an amino acid sequence which is at least 90.71%; or at least 91, 91.5, 92, 92.5, 93, 93.5, 94,

94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the sequence of amino acids 1-482 of consensus phytase-11 as shown in Fig. 6.

64

A phytase that comprises an amino acid sequence which is 5 at least 92.07%; or at least 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% similar to the sequence of amino acids 1-482 of consensus phytase-11 as shown in Fig. 6.

A DNA sequence that encodes a phytase comprising an amino acid sequence which is at least 90.71%; or at least 91. 91.5, 10 92, 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the sequence of amino acids 1-482 of consensus phytase-11 as shown in Fig. 6.

## (F) Phytases and corresponding DNA sequences related to A. 15 fumigatus alpha-mutant

A phytase that comprises an amino acid sequence which is at least 97.17%; or at least 97.5, 98, 98.5, 99, 99.5% identical to the sequence of amino acids 1-467 of A. fumigatus alphamutant (phytase) as shown in Fig. 9.

A phytase that comprises an amino acid sequence that is at least 97.82%; or at least 98, 98.5, 99, 99.5% similar to the sequence of amino acids 1-467 of A. fumigatus alpha-mutant (phytase) as shown in Fig. 9.

A phytase which is encoded by a DNA sequence which is at 25 least 96.13%; or at least 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to nucleotides 1-1401 of the DNA sequence of A. fumigatus ATCC 13073 alpha-mutant (phytase) as shown in Fig. 9.

A DNA sequence which encodes a phytase comprising an amino acid sequence which is at least 97.17%; or at least 97.5, 98, 30 98.5, 99, 99.5% identical to the sequence of amino acids 1-467

65

of A. fumigatus ATCC 13073 alpha-mutant (phytase) as shown in Fig. 9.

A DNA sequence which encodes a phytase and which (i) is at least 96.13%; or 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical; 5 or (ii) hybridizes under low, or medium, medium/high, high, or very high stringency conditions to nucleotides 1-1401 of the DNA sequence of A. fumigatus ATCC 13073 alpha-mutant (phytase) shown in Fig. 9. A suitable negative control is DNA encoding A. fumigatus 13073 phytase. A suitable positive control is DNA encoding any one of the A. fumigatus ATCC 13073 alpha mutant phytase or the optimised alpha-mutant.

# (G) Phytases and corresponding DNA sequences related to the optimized A. fumigatus alpha-mutant

A phytase that comprises an amino acid sequence that is at least 96.08%; or at least 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the sequence of the phytase of the optimized A. fumigatus alpha-mutant.

A phytase that comprises an amino acid sequence that is at 20 least 96.74%; or at least 97, 97.5, 98, 98.5, 99, 99.5% similar to the sequence of the phytase of the optimized A. fumigatus alpha-mutant.

A phytase which is encoded by a DNA sequence which is at least 95.63%; or at least 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to nucleotides 1-1401 of the DNA sequence encoding the optimized A. fumigatus alpha-mutant phytase.

A DNA sequence that encodes a phytase comprising an amino acid sequence that is at least 96.08%; or at least 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the optimized A. fumigatus alpha-mutant phytase.

66

A DNA sequence which encodes a phytase and which (i) is at least 95.63%; or at least 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical; or (ii) hybridizes under low, or medium, medium/high, high, very high stringency conditions to nucleotides 1-1401 of the DNA sequence encoding the optimized A. fumigatus alpha-mutant phytase.

A suitable negative control is DNA encoding A. fumigatus ATCC 13073 phytase. A suitable positive control is DNA encoding any one of the A. fumigatus ATCC 13073 alpha mutant phytase of the optimised alpha-mutant.

## (H) Phytases and corresponding DNA sequences related to consensus phytase-7

A phytase that comprises an amino acid sequence which is at least 94.87%; or at least 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the sequence of amino acids 1-467 of consensus phytase-7 as shown in Fig. 10.

A phytase that comprises an amino acid sequence which is at least 95.30%; or at least 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 20 99, 99.5% similar to the sequence of amino acids 1-467 of consensus phytase-7 as shown in Fig. 10.

A phytase which is encoded by a DNA sequence which is at least 96.38%; or 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to nucleotides 12-1412 of the DNA sequence of consensus phytase-25 7 shown in Fig. 10.

A DNA sequence which encodes a phytase and which (i) is at least 96.38%; or at least 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical; or (ii) hybridizes under low, or medium, medium/high, high, or very high stringency conditions to nucleotides 12-1412 of the DNA sequence of consensus phytase-7 as shown in Fig. 10.

WO 00/43503

67

PCT/DK00/00025

A DNA sequence which encodes a phytase comprising an amino acid sequence which is at least 94.87%; or at least 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the sequence of amino acids 1-467 of consensus phytase-7 as shown in 5 Fig. 10.

### (I) Phytases related to basidio consensus phytase

A phytase which comprises an amino acid sequence which is at least 76.23%; or at least 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the combined sequence of (i) amino acids 1-441 of basidio consensus phytase shown in Fig. 3, and (ii) amino acids 1-26 shown in Fig. 5 (the sequence

A phytase that comprises an amino acid sequence which is at least 79.50%; or at least 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% similar to the sequence of amino acids 1-441 of basidio consensus phytase as shown in Fig. 3.

of (ii) to be added at the N-terminus of the sequence of (i)).

### (J) Phytases related to consensus phytase-12

- A phytase which comprises an amino acid sequence which is at least 70, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% identical to the sequence of amino acids 1-467 of consensus phytase-12 as shown in Fig. 21.
- A phytase which comprises an amino acid sequence which is at least 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99, 99.5% similar to the sequence of amino acids 1-467 of consensus phytase-12 as shown in Fig. 21.

Comparison of phytase amino acid sequences

|                                              | 2                       | 6                 | 4               | J <sub>6</sub> | 4           | <u>ا</u>           | 7                  | 6               | 1               | CV.            | l <sub>-</sub> | _           | Ī.,            | <u></u>        |
|----------------------------------------------|-------------------------|-------------------|-----------------|----------------|-------------|--------------------|--------------------|-----------------|-----------------|----------------|----------------|-------------|----------------|----------------|
| A. fumiga-<br>tus alpha-<br>mutant<br>(opt.) | 84.73/81.72             | 74.95/70/99       | 69.45/64.84     | 72.37/67.76    | 72.11/67.54 | 70.96/£1.96        | 89.57/85.87        | 72.69/67.49     | 66.44/58.68     | 69.61/61.72    | 62.47/55.91    | 62.13/53.07 | 59.95/52.20    | 61.04/52.47    |
| A. fumiga-<br>tus alpha-<br>mutant           | 85.59/82.58             | 74.07/70.11       | 69.67/64.84     | 72.59/67.76    | 72.39/67.83 | 97.82/97.16        | 90.22/86.52        | 72.01/66.82     | 66.21/58.45     | 68.91/61.02    | 64.08/57.11    | 61.64/52.38 | 59.59/51.81    | 61.26/52.62    |
| Basidio                                      | 69.42/62.16             | 67.19/59.32       | 65.39/58.02     | 66.92/59.65    | 67.20/58.13 | 63.54/57.91        | 63.61/54.97        | 61.54/54.36     | 65.56/57.91     | 67.20/57.41    | 77.75/73.07    | 78.92/74.71 | 79.49/76.22    | 78.09/74.59    |
| CP7                                          | 95.29/94.86             | 84.02/81.64       | 75.76/71.18     | 79.17/75.00    | 76.96/73.04 | 80.13/76.20        | 79.13/75.22        | 76.51/73.15     | 68.82/62.13     | 69.50/62.62    | 63.13/56.50    | 63.05/51.15 | 65.33/56.53    | 64.27/54.13    |
| CP11                                         | 92.06/90.70             | 79.27/76.31       | 76.51/73.02     | 77.19/73.27    | 80.56/76.62 | 81.36/78.64        | 79.95/76.08        | 78.47/74.76     | 69.65/63.06     | 74.21/68.86    | 65.03/59.84    | 64.50/52.30 | 63.30/54.52    | 66.30/56.35    |
| CP1.<br>thermo[8]-<br>Q50T-K91A              | 98.07/97.86             | 79.91/77.32       | 76.25/72.11     | 79.26/75.55    | 79.35/75.44 | 81.88/78.60        | 80.65/77.17        | 78.22/74.44     | 69.59/63.36     | 71.46/64.16    | 64.46/58.36    | 63.33/51.54 | 64.84/56.77    | 66.58/56.68    |
| CP1-<br>thermo[8]                            | 98.50/98.29             | 80.35/77.75       | 76.47/72.33     | 79.48/75.76    | 79.78/75.87 | 82.31/79.04        | 81.09/77.61        | 78.67/74.89     | 69.27/62.84     | 71.92/64.61    | 64.46/58.09    | 62.98/51.41 | 64.84/56.51    | 66.85/56.87    |
| CP10-<br>thermo[3]-<br>Q50T-K91A             | 94.65/93.36             | 79.05/76.03       | 75.82/71.90     | 78.82/74.89    |             | 82.50/79.87        | 80.87/76.96        | 77.38/73.39     | 69.48/63.33     | 73.06/66.44    | 64.91/59.37    | 64.86/51.94 | 66.67/58.33    | 65.30/55.53    |
| CP10                                         | 95.08/93.79             | 79.48/76.46       | 76.04/72.11     | 79.04/75.11    | 78.70/74.35 | 82.93/80.31        | 81.30/77.39        | 77.83/73.84     | 69.16/62.81     | 73.52/66.70    | 64.92/59.10    | 64.51/51.81 | 66.67/58.07    | 65.54/55.70    |
| Phytase                                      | Consensus phytase-<br>1 | A. niger NRRL3135 | A. terreus 9-Al | A. terreus cbs | E. nidulans | A. fumigatus 13073 | A. fumigatus 32239 | T. thermophilus | M . thermophila | T. lanuginosus | P. lycii       | A. pediades | P. involutus 1 | P. involutus 2 |

WO 00/43503

| $\overline{}$                       |             |                   |              |                  |                      |             |             |                            |                            |
|-------------------------------------|-------------|-------------------|--------------|------------------|----------------------|-------------|-------------|----------------------------|----------------------------|
| 62.30/55.24                         | 85.99/83.62 | 85.99/83.62       | 85.38/82.80  | 85.38/82.80      | 83.37/80.87          | 81.72/78.50 | 66.41/60.68 | 98.93/98.93                | 1                          |
| 64.08/57.11                         | 85.13/82.76 | 85.13/82.76       | 84.52/81.94  | 84.52/81.94      | 82.23/79.73          | 81.94/78.71 | 65.97/60.52 |                            | 98.93/98.93                |
| 78.34/75.12                         | 70.22/62.28 | 70.47/62.28       | 68.40/60.74  | 68.64/60.74      | 68.27/59.73          | 69.80/62.69 | -           | 65.97/60.52                | 66.41/60.68                |
| 65.03/57.65 63.28/56.51 78.34/75.12 | 91.01/89.29 | 90.58/88.87       | 94.43/93.79  | 94.00/93.36      | 88.44/86.62          | -           | 69.80/62.69 | 81.94/78.71                | 81.72/78.50                |
| 65.03/57.65                         | 95.02/94.56 | 94.56/94.10       | 93.42/92.29  | 92.97/91.84      |                      | 88.44/86.62 | 68.27/59.73 | 82.23/79.73                | 83.37/80.87                |
| 63.14/55.93                         | 96.15/95.08 | 96.57/95.50       | 99.57/99.57  | ,                | 92.97/91.84          | 94.00/93.36 | 68.64/60.74 | 84.52/81.94                | 85.38/82.80                |
| 62.89/55.67 63.14/55.93             | 96.57/95.50 | 96.15/95.08       | ,            | 99.57/99.57      | 56/94.10 93.42/92.29 | 94.43/93.79 | 68.40/60.74 | 84.52/81.94                | 85.38/82.80                |
| 65.72/57.47                         | 99.57/99.57 | •                 | 96.15/95.08  | 96.57/95.50      | 94.56/94.10          | 90.58/88.87 | 70.47/62.28 | 85.13/82.76                | 85.99/83.62                |
| 65.46/57.22                         |             | 99.57/99.57       | 96.57/95.50  | 96.15/95.08      | 95.02/94.56          | 91.01/89.29 | 70.22/62.28 | 85.13/82.76                | 85.99/83.62                |
| T. pubescens                        | CP10        | CP10t [3]Q50TK91A | CP1thermo[8] | CP1t [8]QS0TK91A | CP11                 | CP7         | Basidio     | A.fumigatus alpha-<br>mut. | A. fum alpha-mut -<br>opt. |

Comparison of phytase encoding DNA sequences

Table 9

| Phytase                 | CP10  | CP10-<br>thermo[3]-<br>Q50T-K91A | CP1-<br>thermo[8] | CP1-<br>thermo[8]-<br>Q50T-K91A | CP7   | Basidio | A. fumigatus<br>alpha-mutant | A. fumi-gatus<br>alpha-mutant<br>(opt.) |  |
|-------------------------|-------|----------------------------------|-------------------|---------------------------------|-------|---------|------------------------------|-----------------------------------------|--|
| Consensus phytase-<br>1 | 95.87 | 95.87                            | 98.72             | 98.36                           | 96.37 | 65.46   | 66.88                        | 66.88                                   |  |
| A. niger NRRL3135       | 65.10 | 64.82                            | 66.10             | 65.74                           | 67.52 | 50.68   | 65.88                        | 66.17                                   |  |
| A. terreus 9-A1         | 61.74 | 61.53                            | 62.17             | 62.03                           | 60.53 | 49.40   | 66.24                        | 66.31                                   |  |
| A. terreus cbs          | 62.52 | 62.30                            | 63.02             | 62.88                           | 61.45 | 49.74   | 68.17                        | 68.24                                   |  |
| E. nidulans             | 65.08 | 64.94                            | 65.30             | 65.01                           | 64.22 | 49.92   | 64.90                        | 65.44                                   |  |
| A. fumigatus 13073      | 99.59 | 65.38                            | 64.19             | 64.08                           | 63.65 | 48.27   | 96.12                        | 95.62                                   |  |
| T. thermophilus         | 62.52 | 62.50                            | 62.53             | 62.66                           | 62.00 | 52.19   | 61.77                        | 61.92                                   |  |
| M . thermophila         | 55.51 | 55.15                            | 55.36             | 55.22                           | 53.91 | 48.44   | 58.17                        | 58.24                                   |  |
| T. lanuginosus          | 57.56 | 57.20                            | 56.76             | 56.47                           | 62.00 | 44.66   | 59.71                        | 60.07                                   |  |
| P. lycii                | 45.76 | 46.51                            | 45.14             | 55.21                           | 55.46 | 58.50   | 48.91                        | 49.44                                   |  |
| A. pediades             | 49.89 | 49.89                            | 49.89             | 50.11                           | 45.54 | 61.66   | 47.49                        | 47.56                                   |  |
| P. involutus 1          | 48.32 | 49.03                            | 47.81             | 47.96                           | 49.59 | 59.80   | 49.96                        | 50.19                                   |  |
| P. involutus 2          | 48.24 | 49.00                            | 48.08             | 48.63                           | 47.94 | 60.16   | 47.56                        | 47.63                                   |  |
| T. pubescens            | 47.00 | 47.17                            | 46.46             | 47.62                           | 46.83 | 60.37   | 49.89                        | 49.96                                   |  |
| CP10                    | •     | 99.43                            | 96.40             | 96.05                           | 93.73 | 66.40   | 67.81                        | 68.24                                   |  |
|                         |       |                                  |                   |                                 |       |         |                              |                                         |  |

|                            | 5     | ı     | 96.37 | 96.58 | 93.45 | 66.29 | 67.81 | 68.24 |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Cplthermo[8]               | 96.40 | 96.37 |       | 99.65 | 95.30 | 65.40 | 66.74 | 67.17 |
| CP1t[8]Q50TK91A            | 96.05 | 96.58 | 99.65 |       | 94.94 | 65.47 | 66.74 | 67.17 |
| CP7                        | 93.73 | 93.45 | 95.30 | 94.94 | -     | 64.56 | 65.88 | 65.88 |
| Basidio                    | 66.40 | 66.29 | 65.40 | 65.47 | 64.56 | ı     | 50.41 | 50.49 |
| A.fumigatus alpha-<br>mut. | 67.81 | 67.81 | 66.74 | 66.74 | 65.88 | 50.41 |       | 99.50 |
| A. fum alpha-mut - opt.    | 68.24 | 68.24 | 67.17 | 67.17 | 65.88 | 50.49 | 99.50 | 1     |

72

#### CLAIMS

- A phytase that comprises an amino acid sequence which is at least 93.80% identical to the sequence of amino acids 1-467 of consensus phytase-10 (SEQ ID NO: 26).
  - 2. A phytase that is encoded by a DNA sequence that is at least 95.88% identical to nucleotides 12-1412 of the DNA sequence of consensus phytase-10 (SEQ ID NO: 25).

10

- 3. A phytase that comprises
- an amino acid sequence chosen from
- (i) SEQ ID NO: 26, or amino acids 1-438 thereof; or an amino acid sequence encoded by
- (ii) nucleotides 12-1412, or 90-1412 of SEQ ID NO: 25.
  - 4. A phytase that comprises

an amino acid sequence chosen from

- (i) consensus phytase-10-thermo[3],
- 20 (ii) variants of (i), further including the mutations Q50T, K91A, or (Q50T+K91A), the latter variant being shown in Fig. 8,
  - (iii) amino acids 27-467 of any of the sequences of (i)
     and (ii),
- 25 (iv) SEQ ID NO: 31, or amino acids 1-441 thereof; or an amino acid sequence encoded by
  - (v) nucleotides 1-1401, or 79-1401 of SEQ ID NO: 30.
  - 5. A phytase that comprises
- 30 an amino acid sequence chosen from
  - (i) consensus phytase-1-thermo[8],

73

(ii) variants of (i), further including the mutations Q50T, K91A, or (Q50T+K91A), the latter variant being shown in Fig. 7,

- (iii) amino acids 27-467 of any of the sequences of (i)
   and (ii), or
- (iv) SEQ ID NO: 29, or amino acids 1-441 thereof; or an amino acid sequence encoded by

5

15

- (v) nucleotides 1-1407, or 79-1407 of SEQ ID NO: 28.
- 10 6. A phytase that comprises the amino acid sequence of consensus phytase-11 (SEQ ID NO: 27).
  - 7. A DNA sequence that comprises a DNA-sequence encoding a phytase of any one of claims 1-6.
- 8. A DNA sequence that comprises a DNA-sequence encoding a phytase, and wherein the phytase-encoding DNA-sequence is (i) at least 95.88% identical, or (ii) hybridizes under high stringency conditions, to nucleotides 12-1412 of the DNA sequence of consensus phytase-10 (SEQ ID NO: 25).
- 9. A DNA sequence that comprises a DNA-sequence that encodes a phytase, wherein the phytase comprises an amino acid sequence that is at least 93.80% identical to the sequence of amino acids 1-467 of consensus phytase 10 (SEQ ID NO: 26).
  - 10. A DNA sequence that comprises a DNA-sequence that encodes a phytase, and wherein the phytase-encoding DNA-sequence comprises
- nucleotides 12-1412, or 90-1412 of the DNA sequence of consensus phytase-10 (SEQ ID NO: 25);

74

| (ii) | nucleotides  | 1-1401,    | or  | 79-1401  | of   | the   | DNA  |
|------|--------------|------------|-----|----------|------|-------|------|
|      | sequence of  | f consens  | sus | phytase- | 10-t | hermo | [3]- |
|      | Q50T-K91A (8 | SEQ ID NO: | 30) | ; or     |      |       |      |

- nucleotides 1-1401, or 79-1401 of the DNA sequence of consensus phytase-1-thermo[8]-Q50T-K91A (SEQ ID NO: 28).
  - 11. A vector comprising a DNA sequence according to any one of claims 7-10.

10

- 12. A microbial host cell comprising a DNA sequence according to any one of claims 7-10, or the vector according to claim 11.
- 13. A process for producing a phytase, the process comprising culturing the host cell according to claim 12 under conditions permitting the production of the phytase, and recovering the phytase from the culture broth.
- 14. A food, feed or pharmaceutical composition comprising a 20 phytase of any one of claims 1-6.

PCT/DK00/00025

#### **AMENDED CLAIMS**

75

[received by the International Bureau on 16 June 2000 (16.06.00); original claims 1 to 14 replaced by new claims 1 to 14 (3 pages)]

- A phytase that comprises an amino acid sequence which is at least 93.80% identical to the sequence of amino acids -26 to 5 +441 of consensus phytase 10 (SEQ ID NO: 26).
  - 2. A phytase that is encoded by a DNA sequence that is at least 95.88% identical to nucleotides 12-1412 of the DNA sequence of consensus phytase 10 (SEQ ID NO: 25).

10

- 3. A phytase that comprises
- an amino acid sequence chosen from
- (i) SEQ ID NO: 26, or amino acids 1-438 thereof; or an amino acid sequence encoded by
- 15 (ii) nucleotides 12-1412, or 90-1412 of SEQ ID NO:25.
  - 4. A phytase that comprises

an amino acid sequence chosen from

- (i) consensus phytase-10-thermo[3],
- 20 (ii) variants of (i), further including the mutations Q50T, K91A, or (Q50T+K91A), the latter variant being shown in Fig. 8,
  - (iii) amino acids 27-467 of any of the sequences of (i) and (ii),
- 25 (iv) SEQ ID NO: 31, or amino acids 1-441 thereof; or an amino acid sequence encoded by
  - (v) nucleotides 1-1401, or 79-1401 of SEQ ID NO:30.
  - 5. A phytase that comprises
- 30 an amino acid sequence chosen from
  - (i) consensus phytase-1-thermo[8],
  - (ii) variants of (i), further including the mutations Q50T, K91A, or (Q50T+K91A), the latter variant being shown in Fig. 7,

**AMENDED SHEET (ARTICLE 19)** 

- (iii) amino acids 27-467 of any of the sequences of (i)
   and (iv), or
- (iv) SEQ ID NO: 29, or amino acids 1-441 thereof; or an amino acid sequence encoded by
- 5 (v) nucleotides 1-1401, or 79-1401 of SEQ ID NO: 28.
  - 6. A phytase that comprises the amino acid sequence of consensus phytase-11 (SEQ ID NO: 27).
- 10 7. A DNA sequence that comprises a DNA-sequence encoding the phytase of any one of claims 1-6.
  - 8. A DNA sequence that comprises a DNA-sequence encoding a phytase, and wherein the phytase-encoding DNA-sequence is (i)
- 15 at least 95.88% identical, or (ii) hybridizes under high stringency conditions, to nucleotides 12-1412 of the DNA sequence of consensus phytase 10 (SEQ ID NO: 25).
- 9. A DNA sequence that comprises a DNA-sequence that encodes a 20 phytase, wherein the phytase comprises an amino acid sequence that is at least 93.80% identical to the sequence of amino acids -26 to + 441 of consensus phytase 10 (SEQ ID NO: 26).
- 10. A DNA sequence that comprises a DNA-sequence that encodes 25 a phytase, and wherein the phytase-encoding DNA-sequence comprises
  - (i) nucleotides 12-1412, or 90-1412 of the DNA sequence of consensus phytase 10 (SEQ ID NO: 25);
- (ii) nucleotides 1-1401, or 79-1401 of the DNA sequence of consensus phytase-10-thermo[3]-Q50T, K91A (SEQ ID NO: 30); or
  - (iii) nucleotides 1-1401, or 79-1401 of the DNA sequence
     of consensus phytase-1-thermo[8]-Q50T, K91A (SEQ ID
     NO: 28).

#### **AMENDED SHEET (ARTICLE 19)**

77

- 11. A vector comprising the DNA sequence according to any one of claims 7-10.
- 5 12. A microbial host cell comprising the DNA sequence according to any one of claims 7-10, or the vector according to claim 6.
- 13. A process for producing a phytase, the process comprising culturing the host cell according to claim 12 under conditions permitting the production of the phytase, and recovering the phytase from the culture broth.
- 14. A food, feed or pharmaceutical composition comprising the 15 phytase of any one of claims 1-6.

|                                        | 1            |               |              |               | 50                       |
|----------------------------------------|--------------|---------------|--------------|---------------|--------------------------|
| A. terreus 9A-1                        |              | GVOCEDELCH    | LUCI VA DVEC | t oppopped a  | 50<br>VPEDChITFV         |
| A. terreus cbs                         | WhatCTSWor   | CVOCEDET CU   | YMGTIWEILD   | LODESPERID    | VPDDChITFV               |
| A. niger var. awamori                  | NGSTCDTVDO   | CVOCECETER    | TWCOAYDEEC   | LANESAISPD    | VPDDCnitrv               |
| A. niger T213                          | NGSSCDTVDQ   | CVOCECETEU    | INCOVADEEC   | LANESAISPD    | VPAGCTVTFA<br>VPAGCTVTFA |
| A. niger NRRL3135                      | NGSCDTVDQ    | GVOCECETCH    | LWCOVADEEC   | LANESVISPD    | VPAGCTVTFA<br>VPAGCTVTFA |
| A. fumigatus 13073                     | GSkSCDTVD    | GVOCODATEU    | IMCOACUEEC   | LEDEISVSSK    | VPAGCTVTFA               |
| A. fumigatus 32722                     | GSKSCDTVDI   | GYOCODATCU    | LWCOVODERO   | LEDEISVSSK    | LPKDCTITLV               |
| A. fumigatus 58128                     | GSKSCDTVDI   | GYOCADATCH    | LWGQISPFFS   | LEDEISVSSK    | LPKDCTITLV               |
| A. fumigatus 26906                     | GSKSCDTVDI   | CVOCaDAMON    | LWGQISPFFS   | LEDEISVSSK    | LPKDCTITLV               |
| A. fumigatus 32239                     | CCKACDTVDI   | CVOCaromou    | LWGQISPFFS   | LEDELSVSSK    | LPKDCrITLV               |
| E. nidulans                            | OMECNEADO    | CVOCEDATION   | LWGQYSPFFS   | LEDELSVSSD    | LPKDCrVTFV               |
| T. thermophilus                        | Denecatance  | GIQCEPNVSH    | VWGQYSPYFS   | IEQESAISeD    | VPHGCeVTFV               |
| M. thermophila                         | D3U3CNIAEG   | GIQCIPEISH    | SWGQYSPFFS   | LADQSEISPD    | VPONCKITFV               |
| M. Chelmophila                         | PSKECDIDDI   | GFQCGTAISH    | FWGQYSPYFS   | VpSElDaS      | IPDDCeVTFA               |
| Consensus                              | NSHSCOTOG    | GVOCEDETCU    | TWOOVEDVDG   | 7 DDDG3 7 GDD |                          |
| Consensus phytase                      | NSHSCDIVDG   | CVOCEDETCH    | LWGQYSPYFS   | LEDESAISPD    | VPDDC-VTFV               |
| conscissos paycase                     | Manacatvag   | GIQCFPEISH    | LWGQYSPYFS   | LEDESAISPD    | VPDDCRVTFV               |
|                                        |              |               |              |               |                          |
|                                        | 51           |               |              |               |                          |
| A. terreus 9A-1                        |              | りでトクレーションス    | 3-13310803   | m. n. arma na | 100                      |
| A. terreus cbs                         | OVIADUCADO   | PINSKLKAIA    | ACIAALQKSA   | TafpGKYAFL    | QSYNYSLDSE               |
| A. niger var. awamori                  | OVILARGIGARS | PIDSKLKAIA    | ACIAAIQKNA   | TalpGKYAFL    | KSYNYSMGSE               |
| A. niger T213                          | OULCDROADA   | PIESKGKKIS    | ALIEEIQQNV   | TEFDGKYAFL    | KTYNYSLGAD               |
| A. niger NRRL3135                      | OUT CHUCKEY  | PIESKYKKIS    | ALTERIOONA   | TtFDGKYAFL    | KTYNYSLGAD               |
| A. fumigatus 13073                     | OVICRUCARY   | PIDSKGKKYS    | ALIEETQQNA   | TtFDGKYAFL    | KTYNYSLGAD               |
| A. fumigatus 32722                     | OVICHUCARY   | PISSKEKKYK    | KLVTAIQANA   | Tdfkgkfafl    | KTYNYTLGAD               |
| A. fumigatus 58128                     | OVICAUCARY   | PTSSKSKKYK    | KLVTAIQANA   | Tdfkgkfafl    | KTYNYTLGAD               |
| A. fumigatus 26906                     | OULCDUCARY   | PISSKSKKYK    | KLVTAIQANA   | Tdfkgkfafl    | KTYNYTLGAD               |
| A. fumigatus 32239                     | OVICABLOARY  | PISSKSKKYK    | KLVTAIQANA   | Tdfkgkfafl    | KTYNYTLGAD               |
| E. nidulans                            | OVICHURARY   | PTASKSKKYK    | RLVTAIQKNA   | TeFKGKFAFL    | ETYNYTLGAD               |
| T. thermophilus                        | OLICRUCARY   | PTESKBKAYS    | GLIEAIQKNA   | TsFwGQYAFL    | ESYNYTLGAD               |
| M. thermophila                         | OUI CRUCARA  | PISSKEELYS    | QLISTIQKTA   | TaYKGyYAFL    | KDYrYqLGAN               |
| ii. chelmophila                        | QVLSKHGAKA   | PTIKKAASYV    | DLIDTIHHGA   | IsYgPgYEFL    | RTYDYTLGAD               |
| Consensus                              | OULCDUCADA   | DECCK KANG    | ** ***       |               |                          |
| Consensus phytase                      | OUT CRUCKRY  | PISSK-KAYS    | ALIEAIQKNA   | T-FKGKYAFL    | KTYNYTLGAD               |
| combensus phytase                      | QVLSKRGAKI   | PISSKSKAYS    | ALIEAIQKNA   | TAFKGKYAFL    | KTYNYTLGAD               |
|                                        |              |               |              |               |                          |
|                                        | 101          |               |              |               |                          |
| A. terreus 9A-1                        |              | D1 (1- OFFICE | *****        |               | 150                      |
| A. terreus cbs                         | MI TOPOCHOL  | -DlG-OFFER    | YNALTRNINP   | FVRATDASRV    | hESAEKFVEG               |
|                                        | NUTPEGENQL   | dorgania.     | YDTLTRhinP   | FVRAADSSRV    | hesaekfveg               |
| A. niger var. awamori<br>A. niger T213 | DITPECECEL   | VNSGIKFYQR    | YESLTRNIIP   | FIRSSGSSRV    | IASGEKFIEG               |
| A. niger NRRL3135                      | DLTPFGEQEL   | VNSGIKFYQR    | YESLTRNIIP   | FIRSSGSSRV    | IASGEKFIEG               |
| A. fumigatus 13073                     | DLTPFGEQEL   | VNSGIKFYQR    | YESLTRNIVP   | FIRSSGSSRV    | IASGKKFIEG               |
| A. fumigatus 32722                     | DLTPFGEQQL   | ANSCIKEAÖK    | YKALARSVVP   | FIRASGSDRV    | IASGEKFIEG               |
| A. fumigatus 58128                     | DLTPFGEQQL   | AMSGTKEAÖK    | YKALARSVVP   | FIRASGSDRV    | IASGEKFIEG               |
|                                        | DLTPFGEQQL   | ANSCT KEAÖK   | YKALARSVVP   | FIRASGSDRV    | IASGEKFIEG               |
| _                                      | DLTREGEOOM   | ANDCIKE AOS   | YKALARSVVP   | FIRASGSDRV    | IASGEKFIEG               |
| _                                      | DLTS ECENOM  | ANSCIKEAOK    | YKALAGSVVP   | FIRSSGSDRV    | IASGEKFIEG               |
|                                        | DLTIFGENOM   | VDSGakFYRR    | YKNLARKnTP   | FIRASGSDRV    | VASAEKFING               |
| M. thermophila                         | DLTPFGENOM   | TOTGIKEAUH    | YKSLARNaVP   | FVRCSGSDRV    | IASGrlFIEG               |
| mermobilita                            | ELTRtGQQQM   | VNSGIKFYRR    | YKALARKSIP   | FVRTAGqDRV    | VhSAENFTQG               |
| Consensus                              | DI TIDECENO: | Inicoty       |              |               |                          |
| Consensus whereas                      | DLTPFGENOM   | VNSGIKFYRR    | YKALARK-VP   | FVRASGSDRV    | IASAEKFIEG               |
| Consensus phytase                      | DLTPFGENQM   | VNSGIKFYRR    | YKALARKIVP   | FIRASGSDRV    | IASARKFIEG               |
|                                        |              |               |              |               |                          |

Fig. 1a

|                                          | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |                                        |             |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|----------------------------------------|-------------|
| A. terreus 9A-1                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANDUODOD        | DII-TERROREI | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 200         |
| A. terreus cbs                           | FONNBACDDIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AMPHOPSPIV      | DValPEGSAY   | NNTLEHSICT                             | AFESSTV     |
|                                          | FONAKQGDPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANDHOPSPYV      | DVVIPEGTAY   | NNTLEHSICT                             | AFEASTV     |
| A. niger var. awamori                    | POSTKLKDPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Adpgosspki      | DVVISEASSS   | NNTLDPGTCT                             | VFEDSEL     |
| A. niger T213                            | FOSTKLEDPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AdpgOSSPkI      | DVVISEASSS   | NNTLDPGTCT                             | VFEDSEL     |
| A. niger NRRL3135                        | FOSTKLEDPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AqpgQSSPkI      | DVVISEASSs   | NNTLDPGTCT                             | VFEDSEL     |
| A. fumigatus 13073                       | FQQAKLADPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A.TNRAAPAI      | SVIIPESETF   | NNTLDHGVCT                             | kFEASQL     |
| A. fumigatus 32722                       | FQQAKLADPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A.TNRAAPAI      | SVIIPESETF   | NNTLDHGVCT                             | kFEASQL     |
| A. fumigatus 58128                       | FQQAKLADPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A.TNRAAPAI      | SVIIPESETF   | NNTLDHGVCT                             | kFEASQL     |
| A. fumigatus 26906                       | FQqAKLADPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A.TNRAAPAI      | SVIIPESETF   | NNTLDHGVCT                             | kFEASQL     |
| A. fumigatus 32239                       | FQQANVADPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A. TNRAAPVI     | SVIIPESETY   | NNTLDHSVCT                             | NFEASEL     |
| E. nidulans                              | FRKAQLhDHG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SgQATPVV        | NVIIPEIDGF   | NNTLDHSTCV                             | SFENDEr     |
| T. thermophilus                          | FQSAKVlDPh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDkHDAPPTI      | NVIIeEGPSY   | NNTLDtGSCP                             | VFEDSSg     |
| M. thermophila                           | FHSAlLADRG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STVRPTlPyd      | mVVIPETAGa   | NNTLHND1CT                             | AFEEgpySTI  |
| <b>G</b>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                                        |             |
| Consensus                                | FQSAKLADPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-PHQASPVI      | NVIIPEGSGY   | NNTLDHGTCT                             | AFEDSEL     |
| Consensus phytase                        | FQSAKLADPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SQPHQASPVI      | DVIIPEGSGY   | NNTLDHGTCT                             | AFEDSEL     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                                        |             |
|                                          | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |                                        |             |
| A. terreus 9A-1                          | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1103 D3 T - 007 |              |                                        | 250         |
| A. terreus cbs                           | CDANADARMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VEAPATAURL      | EADLPGVqLS   | TDDVVnLMAM                             | CPFETVS1TD  |
|                                          | ADMIE ANERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VFAPATAKKL      | EADLPGVqLS   | ADDVVnLMAM                             | CPFETVSlTD  |
| A. niger var. awamori<br>A. niger T213   | ADIVEANTIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TFAPSIRORL      | ENDLSGVTLT   | DTEVTYLMDM                             | CSFDTIStST  |
| A. niger NRRL3135                        | ADIVEANTIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TFAPSIRORL      | ENDLSGVTLT   | DTEVTYLMDM                             | CSFDTIStST  |
| A. fumigatus 13073                       | CDETTABLEMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TEVPSIRORL      | ENDLSGVTLT   | DTEVTYLMDM                             | CSFDTIStST  |
| A. fumigatus 32722                       | CDEVAANTIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1FAPDIRARA      | EkHLPGVTLT   | DEDVVsLMDM                             | CSFDTVARTS  |
| <del>-</del>                             | GDEVAANFTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1FAPDIRARa      | EkHLPGVTLT   | DEDVVsLMDM                             | CSFDTVARTS  |
| A. fumigatus 58128<br>A. fumigatus 26906 | GDEVAANFTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1FAPDIRARa      | EkHLPGVTLT   | DEDVVsLMDM                             | CSFDTVARTS  |
| A. fumigatus 32239                       | GDEVAANFTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IFAPDIRARA      | KkHLPGVTLT   | DEDVVsLMDM                             | CSFDTVARTS  |
| E. nidulans                              | GDEVEANTIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IFAPAIRARI      | EkHLPGVqLT   | MCMLaVVCCC                             | CSFDTVARTA  |
| T. thermophilus                          | ADELEANFTA CUDA CEUCA CE | IMGPPIRKRL      | ENDLPGIKLT   | NENVIYLMDM                             | CSFDTMARTA  |
| M. thermophila                           | GHDAQEKFAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QFAPALLEKI      | KDHLPGVDLA   | vSDVpyLMDL                             | CPFETLARNH  |
| M. Glermophila                           | GDDAQDTTIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TFAGPITARV      | NANLPGANLT   | DADTVaLMDL                             | CPFETVASSS  |
| Consensus                                | GDDAEANETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEADATEADT.     | EADLPGVTLT   | DEDITE TABLE                           | CD50m12.nmc |
| Consensus phytase                        | GDDAEANTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T.PAPATRARL     | EADLPGVILT   | DEDAA-PWDW                             | CPFETVARTS  |
| ocasombus piny cube                      | GDD VIMMETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEAFAIRARL      | EMDLPGVTLT   | DEDVVYLMDM                             | CPFETVARTS  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                                        |             |
|                                          | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |                                        | 300         |
| A. terreus 9A-1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .DAhTLSPFC      | DLFTAtEWtq   | YNYIJI SI DKY                          | VGVGGGNDI.G |
| A. terreus cbs                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .DAhTLSPFC      | DLFTAaEWtq   | YNYLISLDKY                             | YGYGGGNDI.G |
| A. niger var. awamori                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .vDTKLSPFC      | DLFTHdEWih   | YDYLOSIAKY                             | YGHGAGNPLG  |
| A. niger T213                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .vDTKLSPFC      | DLFTHdEWih   | YDYLRSI.kKY                            | YGHGAGNDI.G |
| A. niger NRRL3135                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .vDTKLSPFC      | DLFTHdEWin   | YDYLOSIAKY                             | YGHGAGNDI.G |
| A. fumigatus 13073                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .DASOLSPFC      | QLFTHnEWkk   | YNYLOSLCKY                             | VCVCACNDI.C |
| A. fumigatus 32722                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .DASOLSPFC      | QLFTHnEWkk   | ANATOSTOKA                             | VGVGAGNDI G |
| A. fumigatus 58128                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .DASOLSPFC      | QLFTHnEWkk   | ANAIOSIGKA                             | ACACMENT C  |
| A. fumigatus 26906                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .DASOLSPFC      | QLFTHnEWkk   | ANAI'OGI'GKA                           | VCVCACNDIC  |
| A. fumigatus 32239                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .DASELSPFC      | AIFTHnEWkk   | ADAI'UGI'GKA                           | AGAGAGNATG  |
| E. nidulans                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .HGTELSPFC      | AIFTEKEWlq   | ADAL'OGI'GRA                           | AGAGAGMATIG |
| T. thermophilus                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .TDT.LSPFC      | ALsTQeEWqa   | ADAAOGIUKA                             | AGUGGGMULG  |
| M. thermophila                           | sdpatadagg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | qNGrpLSPFC      | rLFSEgEWra   | ADAI OGAGAN                            | AGAGDGMDIG  |
| -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J F             |              | TO LEGG V G KW                         | FIGHDADIEL  |
| Consensus                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -DATELSPFC      | ALFTE-EW     | YDYLOSIGKY                             | YGYGAGNDIA  |
| Consensus phytase                        | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .DATELSPFC      | ALFTHDEWRO   | YDYLQSLGKY                             | YGYGAGNPLG  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                                        |             |

|                                        | 301        |            |              |                    | 350        |
|----------------------------------------|------------|------------|--------------|--------------------|------------|
| A. terreus 9A-1                        | PVQGVGWaNE | LMARLTRAPV | HDHTCVNNTL   | DASPATFPLN         | ATLYADFSHD |
| A. terreus cbs                         | PVQGVGWaNE | LIARLTRSPV | HDHTCVNNTL   | DANPATFPLN         | ATLYADFSHD |
| A. niger var. awamori                  |            |            |              |                    |            |
| A. niger T213                          | PTQGVGYaNE | LIARLTHSPV | HDDTSSNHTL   | DSNPATFPLN         | STLYADFSHD |
| A. niger NRRL3135                      | PTQGVGYaNE | LIARLTHSPV | HDDTSSNHTL   | DSSPATFPLN         | STLYADFSHD |
| A. fumigatus 13073                     | PAQGIGFTNE | LIARLTRSPV | QDHTSTNsTL   | VSNPATFPLN         | ATMYVDFSHD |
| A. fumigatus 32722                     | PAQGIGFTNE | LIARLTRSPV | QDHTSTNsTL   | <b>v</b> SNPATFPLN | ATMYVDFSHD |
| A. fumigatus 58128                     | PAQGIGFtNE | LIARLTRSPV | QDHTSTNsTL   | <b>vSNPATFPLN</b>  | ATMYVDFSHD |
| A. fumigatus 26906                     | PAQGIGFtNE | LIARLTRSPV | QDHTSTNsTL   | vSNPATFPLN         | ATMYVDFSHD |
| A. fumigatus 32239                     | PAQGIGFtNE | LIARLTNSPV | QDHTSTNsTL   | DSDPATFPLN         | ATIYVDFSHD |
| E. nidulans                            | PAQGIGFtNE | LIARLTQSPV | QDNTSTNHTL   | DSNPATFPLD         | rKLYADFSHD |
| T. thermophilus                        | PAQGVGF√NE | LIARMTHSPV | QDYTTVNHTL   | DSNPATFPLN         | ATLYADFSHD |
| M. thermophila                         | PTQGVGFvNE | LLARLAGVPV | RDqTSTNRTL   | DGDPrTFPLG         | rPLYADFSHD |
| •                                      |            |            | -            |                    |            |
| Consensus                              | PAQGVGF-NE | LIARLTHSPV | QDHTSTNHTL   | DSNPATFPLN         | ATLYADESHD |
| Consensus phytase                      | PAQGVGFANE | LIARLTRSPV | QDHTSTNHTL   | DSNPATFPLN         | ATLYADESHD |
|                                        |            |            |              |                    |            |
|                                        |            |            |              |                    |            |
|                                        | 351        |            |              |                    | 400        |
| A. terreus 9A-1                        | SNLVSIFWAL | GLYNGTAPLS | qTSVESVSQT   | DGYAAAWTVP         | FAARAYVEMM |
| A. terreus cbs                         | SNLVSIFWAL | GLYNGTkPLS | qTTVEDITrT   | DGYAAAWTVP         | FAARAYIEMM |
| A. niger var. awamori                  | NGIISILFAL | GLYNGTkPLS | TTTVENITQT   | DGFSSAWTVP         | FASRLYVEMM |
| A. niger T213                          | NGIISILFAL | GLYNGTkPLS | TTTVENITQT   | DGFSSAWTVP         | FASR1YVEMM |
| A. niger NRRL3135                      | NGIISILFAL | GLYNGTkPLS | TTTVENITQT   | DGFSSAWTVP         | FASR1YVEMM |
| A. fumigatus 13073                     |            |            | rTSVESaKEl   |                    |            |
| A. fumigatus 32722                     | NSMVSIFFAL | GLYNGTGPLS | rTSVESaKEl   | DGYSASWVVP         | FGARAYFETM |
| A. fumigatus 58128                     | NSMVSIFFAL | GLYNGTEPLS | rTSVESaKEl   | DGYSASWVVP         | FGARAYFETM |
| A. fumigatus 26906                     |            |            | rTSVESaKEl   |                    |            |
| A. fumigatus 32239                     | NGMIPIFFAM | GLYNGTEPLS | qTSeESTKES   | NGYSASWAVP         | FGARAYFELM |
| E. nidulans                            | NSMISIFFAM | GLYNGTQPLS | mDSVESIQEm   | DGYAASWTVP         | FGARAYFELM |
| T. thermophilus                        | NTMTSIFaAL | GLYNGTAKLS | TTEIKSIEET   | DGYSAAWTVP         | FGGRAYIEMM |
| M. thermophila                         | NDMMGVLgAL | GaYDGVPPLD | KTArrDpEEl   | GGYAASWAVP         | FAARIYVEKM |
|                                        |            |            |              |                    |            |
| Consensus                              |            |            | TTSVESIEET   |                    |            |
| Consensus phytase                      | NSMISIFFAL | GLYNGTAPLS | TTSVESIEET   | DGYSASWTVP         | FGARAYVEMM |
|                                        |            |            |              |                    |            |
|                                        | 401        |            |              |                    |            |
| A. terreus 9A-1                        |            | מעם גל     | DI MOMENTANO | THANK HOODES       | 450        |
| A. terreus cbs                         | 00         | DARKO      | PLVRVLVNDR   | VMPLHGCPTD         | KLGRCKTDAF |
|                                        | 00         | RAERQ      | PLVRVLVNDR   | VMPLHGCAVD         | NLGRCKYDDF |
| A. niger var. awamori<br>A. niger T213 | 00         | QAEQE      | PLVKVLVNDR   | VVPLHGCPID         | aLGRCTrDSF |
| A. niger NRRL3135                      | 00         | QAEQE      | PLVRVLVNDR   | VVPLHGCPID         | aLGRCTrDSF |
| A. fumigatus 13073                     | 00         | QAEQE      | PLVRVLVNDR   | VVPLHGCPVD         | aLGRCTrDSF |
| A. fumigatus 13073 A. fumigatus 32722  | 00         | KSEKE      | PLVRALINDR   | VVPLHGCDVD         | KLGRCKLNDF |
|                                        | QC         | KSEKE      | PLVRALINDR   | VVPLHGCDVD         | KLGRCKLNDF |
| A. fumigatus 58128                     | 00         | KSEKE      | SLVRALINDR   | VVPLHGCDVD         | KLGRCKLNDF |
| A. fumigatus 26906                     | 00         | KSEKE      | PLVRALINDR   | VVPLHGCDVD         | KLGRCKLNDF |
| A. fumigatus 32239                     | 00         | KSEKE      | PLVRALINDR   | VVPLHGCAVD         | KLGRCKLKDF |
| E. nidulans                            | QC         | E.KKE      | PLVRVLVNDR   | VVPLHGCAVD         | KFGRCTLDDW |
| T. thermophilus                        | DC         | DDSDE      | PVVRVLVNDR   | VVPLHGCEVD         | SLGRCKrDDF |
| M. thermophila                         | ксэддддддд | ggegrQEKDE | eMVRVLVNDR   | VMTLkGCGAD         | ErGMCTLErF |
| Consensus                              | 00         | A          |              |                    |            |
|                                        | QC         | QAEKE      | PLVRVLVNDR   | VVPLHGCAVD         | KLGRCKLDDF |
| Consensus phytase                      | <b>V</b> C | QAEKE      | PLVRVLVNDR   | VVPLHGCAVD         | KLGRCKRDDF |

|                       | 451        | 471          |
|-----------------------|------------|--------------|
| A. terreus 9A-1       | VAGLSFAQAG | GNWADCF ~    |
| A. terreus cbs        | VEGLSFARAG | NWAECF~~~    |
| A. niger var. awamori | VrGLSFARSG | GDWAECsA~~ ~ |
| A. niger T213         | VrGLSFARSG | GDWAECFA     |
| A. niger NRRL3135     | VrGLSFARSG | DWAECFA~~    |
| A. fumigatus 13073    | VKGLSWARSG | GNWGECFS~~ ~ |
| A. fumigatus 32722    | VKGLSWARSG | GNWGECFS     |
| A. fumigatus 58128    | VKGLSWARSG | GNWGECFS~~ ~ |
| A. fumigatus 26906    | VKGLSWARSG | GNWGECFS     |
| A. fumigatus 32239    | VKGLSWARSG | NSEQSFS~~    |
| E. nidulans           | VEGLNFARSG | GNWkTCFT1~ ~ |
| T. thermophilus       | VrGLSFARqG | GNWEGCYAas e |
| M. thermophila        |            | GKWDlCFA~~ ~ |
|                       |            |              |
| Consensus             | VEGLSFARSG | GNWAECFA     |
| Consensus phytase     | VEGLSFARSG | GNWAECFA     |

|     | CP-T      |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            |     |
|-----|-----------|----------|-----------|----------------|----------|----------|-----|----------|-----|----------|----------|------|----------|------------|----------|----------|----------|-----------|----------|------------|-----|
|     | E         | co       | RI        | M              | G        | V        | F   | V        | V   | L        | L        | S    | I        | A          | T        | L        | F        | G         | s        | T          |     |
|     | TATA      |          |           |                | _        |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            |     |
| 1   | ATAT      |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            | 60  |
|     | ATAT      | ACI      | IAP       | GIA            | ıccc     | .GCA     | CAA | GCA      | GCA | CGA      | IGA      | CAG  | GIA      | ACG        | GIG      | GAA      | CAA      | GCC       | AAG      | GI         |     |
|     | s         | G        | Т         | A              | L        | G        | P   | R        | G   | N        | s        | H    | s        | С          | D        | T        | v        | D         | G        | G          |     |
|     | CATC      | CGG      | TAC       | :CGC           | CTT:     | 'GGG     | TCC | TCG      | TGG | TAA      | TTC      | TCA  | CTC      | TTG        | TGA      | CAC      | TGT      | TGA       | CGG      | TG         |     |
| 61  |           |          | +         | . <del>-</del> |          |          | +   |          |     | -+-      |          |      | +        |            |          |          | +        |           |          | -+         | 120 |
|     | GTAG      |          |           | GCG            | GAA      | CCC      | AGG | AGC      | ACC | ATT      | AAG      | AGT  | GAG      | AAC        | ACT      | GTG      | ACA      | AÇT       | GCC      | AC         |     |
|     |           | CP       | -2        | CP-            | 3        |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            |     |
|     | Y         | 0        | С         |                | _        | E        | т   | s        | н   | τ.       | W        | G    | 0        | Y          | s        | Þ        | v        | F         | s        | L          |     |
|     | GTTA      | ~        |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           | -        |            |     |
| 121 |           |          | +         |                | <b>-</b> |          | +   |          |     | -+-      |          |      | +        |            |          |          | +        |           |          | -+         | 180 |
|     | CAAT      | GGT      | TAC       | 'AAA           | 'GGG     | TCT      | TTA | AAG      | AGT | GAA      | CAC      | CCC  | AGT      | TAT        | GAG      | AGG      | TAT      | GAA       | GAG      | AA         |     |
|     | 127       | D        | <b>.</b>  | c              | А        | т        | c   | ъ        | ъ   | 17       | ъ        | _    | ъ        | _          | _        | 17       | m        | 173       | **       | _          |     |
|     | E<br>TGGA |          | E<br>.CGA | S<br>ATC       |          |          |     | P<br>TCC |     |          |          |      |          |            |          |          |          |           |          | ~          |     |
| 181 |           |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            | 240 |
|     | ACCT      | TCT      | 'GC'I     | 'TAG           | ACG      | ATA      | AAG | AGG      | TCT | GCA      | AGG      | TCT  | GCT      | GAC        | ATC      | TCA      | ATG      | AAA       | GCA      | AG         |     |
|     |           |          |           |                | С        | P-4      |     |          |     |          |          |      |          |            |          |          |          |           |          |            |     |
|     | 17        | т        | c         | р              | T.I      | G        | CP  | _        | v   | ъ        | m        | _    | _        | 7.7        | _        | 17       |          | 77        | ~        |            |     |
|     | AAGT      |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            |     |
| 241 |           |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            | 300 |
|     | TTCA      | AAA      | CAG       | ATC            | TGT      | GCC      | ACG | ATC      | TAT | GGG      | TTG      | AAG. | AAG      | ATT        | CAG      | ATT      | CCG      | AAT       | GAG      | AC         |     |
|     | _         |          |           | _              | _        | _        |     |          |     |          |          |      |          |            |          |          |          |           |          |            |     |
|     | L<br>CTTT |          | E<br>TCA  |                |          | Q<br>TCA |     |          |     |          |          |      |          |            |          |          |          |           |          |            |     |
| 301 |           |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            | 360 |
|     | GAAA      |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            | 500 |
|     |           |          |           |                |          |          |     |          | CP- | 6        |          |      |          |            |          |          |          |           |          |            |     |
|     | m         | v        | 1.7       | 3.7            | _        |          | ~   | _        | _   |          | P-7      |      | _        | _          | _        | _        |          | _         |          |            |     |
|     | T<br>AGAC |          |           |                |          | ${f L}$  |     |          |     |          |          |      |          |            |          |          | N        | -         | M<br>aam |            |     |
| 361 |           |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            | 420 |
|     | TCTG      |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            |     |
|     |           | _        | _         | _              |          | _        |     |          |     |          |          |      |          |            |          |          |          |           |          |            |     |
|     | N         | S        |           |                |          | F        |     |          |     | Y        |          |      |          |            |          |          | _        | -         | _        | _          |     |
| 421 | TTAA      |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            | 490 |
|     | AATT      | GAG      | ACC       | ATA            | ATT      | CAA      | GAT | GTC      | TTC | TAT      | GTT      | CCG  | AAA      | CCG        | ATC      | TTT      | CTA      | ACA       | AGG'     | TA         | 400 |
|     |           |          |           |                |          |          |     |          |     |          |          | CP   |          |            |          |          |          |           |          |            |     |
|     | _         | _        | _         | _              | _        | _        |     |          |     |          |          |      |          | CP-        |          |          |          |           |          |            |     |
|     | T         | R<br>™∧∽ | A<br>NCC  | S              | G        | S        | D   | R        | V   | I        | A        | S    | A        | E          | K        | F<br>    | I        | E         | G        | F          |     |
| 481 | TCAT      |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            | E40 |
|     | AGTA      |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            | 540 |
|     | Ω         | S        | Δ         | ĸ              | т.       | A        | ח   | Ð        | G   | c        | ^        | D    | U        | 0          | 7        | e        | r        | 77        | <b>T</b> |            |     |
|     | TCCA      | ATC      | TGC       | TAA            | GTT      | GGC'     | TGA | CCC      | AGG | o<br>TTC | U<br>TCA | ACC: | л<br>ACA | CCA<br>CCA | A<br>AGC | S<br>TTC | TCC<br>T | ∨<br>AGT" | ገንጥ<br>ተ | יט<br>דרבי |     |
| 541 |           |          | +         |                |          |          | +   |          |     | -+-      |          |      | +        |            |          |          | <br>+    |           |          | -+         | 600 |
|     | AGGT      |          |           |                |          |          |     |          |     |          |          |      |          |            |          |          |          |           |          |            |     |

Fig. 2a

CP-10 CP-11 V I I P E G S G Y N N T L D H G T C T A  $\textbf{ACGTT} \textbf{ATTATTCCAGAAGGATCcGGTTACAACAACACTTTGGACCACGGT\textbf{ACTTGTACTG}}$ 601 ------ 660  ${\tt TGCAATAATAAGGTCTTCCtAGgCCAATGTTGTTGTGAAACCTGGTGCCATGAACATGAC}$ FEDSELGDDVEANFTALFAP CTTTCGAAGACTCTGAATTGGGTGACGACGTTGAAGCTAACTTCACTGCTTTGTTCGCTC 661 ------ 720 GAAAGCTTCTGAGACTTAACCCACTGCTGCAACTTCGATTGAAGTGACGAAACAAGCGAG AIRARLEADLPGVTLTDEDV CAGCTATTAGAGCTA GATTGGAAGCTGACTTGCCAGGTGTTACTTTGACTGACGAAGACGCP-13 V Y L M D M C P F E T V A R T S D A T E TTGTTTACTTGATGGACATGTGTCCATTCGAAACTGTTGCTAGAACTTCTGACGCTACTG 781 ------- 840 **AACAAATGAACTACCTGTAC**ACAGGTAAGCTTTGACAACGATCTTGAAGACTGCGATGAC LSPFCALFTHDEWRQYDYLQ  ${\tt AATTGTCTCCATTCTGTGCTTTGTTCACTCACGACGAATGGAGACAATACGACTACTTGC}$ TTAACAGAGGTAAGACACGAAACAAGTGAGTGCTGCTTACCTCTGTTATGCTGATGAACG CP-15 S L G K Y Y G Y G A G N P L G P A Q G V  ${\tt AATCTTTGGGTAAGTACTACGGTTACGGTGCTGGTAACCCATTGGGTCCAGCTCAAGGTG}$ TTAGAAACCCATTCATGATGCCAATGCCACGACCATTGGGTAACCCAGGTCGAGTTCCAC G F A N E L I A R L T R S P V Q D H T S TTGGTTTCGCTAACGAATTGATTGCTAGATTGACTAGATCTCCAGTTCAAGACCACACTT 961 -----+ 1020 AACCAAAGCGATTGCTTAACTAACGATCTAACTGATCTAGAGGTCAAGTTCTGGTGTGAA CP-16 CP-17 T N H T L D S N P A T F P L N A T L Y A CTACTAACCACACTTTGGACTCTAACCCAGCTACTTTCCCATTGAACGCTACTTTGTACG 1021 ------+ 1080 GATGATTGGTGTGAAACCTGAGATTGGGTCGATGAAAGGGTAACTTGCGATGAAACATGC D F S H D N S M I S I F F A L G L Y N G  $\textbf{CTGACTTCTCACGACAACTCTATGATTTCTATTTTCTTCGCTT} \\ \textbf{GGTTTGTACAACG}$ 1081 ------- 1140 GACTGAAGAGGGGTGCTGTTGAGATACTAAAGATAAAAGAAGCGAAACCCAAACATGTTGC CP-18 CP-19 T A P L S T T S V E S I E E T D G Y S A  ${\tt GTACTGCTCCATTGTCTACTACTTCTGTTG} \textbf{AATCTATTGAAGAAACTGACGGTTACTCTG}$ 1141 -----+ 1200 CATGACGAGGTAACAGATGAAGACAACTTAGATAACTTCTTTGACTGCCAATGAGAC

Fig. 2b

|      |       | S             | W    | T    | V        | P    | F    | G    | Α        | R      | Α   | Y        | V           | E       | М            | M        | Q     | С   | Q   | Α   | E       |      |
|------|-------|---------------|------|------|----------|------|------|------|----------|--------|-----|----------|-------------|---------|--------------|----------|-------|-----|-----|-----|---------|------|
|      | CT    | rc            | TG   | 3AC  | TGT      | TCC  | ATT  | CGG  | TGC      | TAG    | AGC | TTA      | CGTT        | rga:    | TAA          | GAT      | GCA   | ATG | TCA | AGC | TG      |      |
| 1201 |       |               |      | +    |          |      |      | +    | <b>-</b> |        | -+- |          |             | +       |              |          |       | +   |     |     | -+      | 1260 |
|      | GA    | AG/           | AAC  | CTG. | ACA      | AGG' | TAA  | GCC  | ACG.     | ATC    | TCG | AAT      | G <b>CA</b> | CT:     | ГТА          | CTA      | CGT   | TAC | AGT | TCG | AC      |      |
|      |       |               |      |      |          |      |      |      |          |        |     |          | CP-         |         |              |          |       |     |     |     |         |      |
|      |       |               |      |      |          |      |      |      |          |        |     |          |             |         | CP-          | 21       |       |     |     |     |         |      |
|      | 1     | ·             | 다    | ъ    | т.       | 17   | Ð    | 17   | T        | 37     | M   | ъ        | R           |         |              |          | -     | **  | _   | _   |         |      |
|      |       |               |      |      |          |      |      |      |          |        |     |          |             |         |              |          |       |     |     |     |         |      |
|      |       |               |      |      |          |      |      |      |          |        |     |          | CAGA        |         |              |          |       |     |     |     |         |      |
| 1261 |       |               |      |      |          |      |      |      |          |        |     |          |             |         |              |          |       |     |     |     |         | 1320 |
|      | TT:   | rtc           | CT:  | rgg' | TAA      | CCA  | ATC' | TCA  | AAA      | CCA    | ATT | GCT      | GTC1        | CA      | ACA          | AGG      | TAA   | CGT | GCC | AAC | AC      |      |
|      |       |               |      |      |          |      |      |      |          |        |     |          |             |         |              |          |       |     |     |     |         |      |
|      | 7     | V             | D    | K    | ${f L}$  | G    | R    | C    | K        | R      | D   | D        | F           | v       | $\mathbf{E}$ | G        | L     | s   | F   | A   | R       |      |
|      | CTC   | 3T7           | GA(  | CAAC | GTT(     | GGG' | rag: | ATG' | TAA      | GAG    | AGA | CGA      | CTTC        | GT      | rga.         | AGG      | TTT   | GTC | TTT | CGC | TA      |      |
| 1321 |       |               |      | +    |          |      |      | +    |          |        | -+- |          |             | - + -   |              |          |       | +   |     |     | -+      | 1380 |
|      | GAG   | CAA           | CTC  | STT  | CAA      | CCC  | ATC' | TAC  | ATT      | CTC'   | CT  | GCT      | GAAC        | CAZ     | АСТ          | TCC      | 444   | CAG | 444 | מרמ | ·<br>ΔT |      |
|      |       |               |      |      |          |      |      |      |          |        |     |          |             |         |              |          | P-2   |     |     |     |         |      |
|      | 9     | 3             | G    | G    | N        | W    | Δ    | 163  | C        | F      | λ   | *        | Ecc         | . 10.1  | r            | _        | F - Z | _   |     |     |         |      |
|      | C 2 7 |               |      |      |          |      |      |      |          |        |     |          | AGAA        |         | -            |          |       |     |     |     |         |      |
| 1201 |       |               | . GG | . GG | T S-75-7 | CIG  | 300. | . GA | AIG.     | 1 1.1. | - ا | I'I'A    | AGAA        | Z.T.T.C |              |          |       |     |     |     |         |      |
| 1381 |       |               |      | +    |          |      |      | +    |          |        | -+- |          |             | -+-     |              |          | 14    | 26  |     |     |         |      |
|      | CTA   | $\lambda G A$ | CCZ  | \CC2 | ATT      | GAC  | CCG  | ידיא | TAC      | A A A  | 300 | יידי מ מ | L/ALI       | יא מי   | יגידי        | ידי אידי |       |     |     |     |         |      |

| P. involutus P. involutus T. pubescens A. pediades P. lycii Basidio |                    | SvP.RniAPK<br>hiPlRdTSAc<br>GgvvQaTfvQ<br>StQfsfvAAQ | FSIPeseQrn<br>LdVTrDvQqs<br>pfFPpQiQds<br>LPIPaQntsn | WSPYSPYFPL WSPYSPYFPL WSmYSPYFPa WAAYTPYYPV WGPYdPFFPV WSPYSPYFPV                | AeYKAPPAGC<br>AtYvAPPASC<br>qaYtPPPkDC<br>EpYaAPPEGC | EInQVNIIQR<br>QInQVHIIQR<br>KItQVNIIQR<br>tVtQVNLIQR |
|---------------------------------------------------------------------|--------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| P. involutus P. involutus T. pubescens A. pediades P. lycii Basidio | (phyA1)<br>(phyA2) | HGARFPTSGA<br>HGARFPTSGA<br>HGARFPTSGA<br>HGARWPTSGA | ATRIKAGLSK<br>AKRIQTAVAK<br>GTRIQAAVKK<br>rSRqvAAVAK | LQSvqnfTDP<br>LKAAsnyTDP<br>LQSAktyTDP<br>IQmArpfTDP                             | KFDFIkSfTY<br>1LAFVtNYTY<br>RLDFLtNYTY<br>KYEFLnDfvY | dLGtsDLVPF<br>sLGqDsLVeL<br>tLGhDDLVPF<br>kFGvADLLPF |
| Basidio                                                             |                    | HGARFPISGA                                           | ATRIQAAVAK                                           | LQSATDP                                                                          | KLDFL-N-TY                                           | -LG-DDLVPF                                           |
| P. involutus P. involutus T. pubescens A. pediades P. lycii         |                    | GAaQSfDAG1<br>GAtQSSEAGQ<br>GAlQSSQAGE               | Evfarysklv<br>EAFTRYSslv<br>ETFqRYSflv               | Sknnlpfira<br>SsDnlpfirs<br>SaDELpfvra<br>SkEnlpfvra<br>egGDVPfVra               | dgsdrvvdta<br>sgsdrvvata<br>sssnrvvdsa               | TNWTAGFASA<br>nNWTAGFAlA<br>TNWTEGFSAA               |
| Basidio                                                             |                    | GA-QSSQAGQ                                           | EAFTRYS-LV                                           | S-DNLPFVRA                                                                       | SGSDRVVDSA                                           | TNWTAGFA-A                                           |
| P. involutus P. involutus T. pubescens A. pediades P. lycii Basidio | (phyA2)            | SrNAiqPkLd<br>SsNSitPvLs<br>ShHvlnPiLf<br>SgETvlPtLq | LILPQtGNDT<br>VIISEaGNDT<br>VILSEs1NDT<br>VVLqEeGNCT | LEDNMCPaAG LEDNMCPaAG LDDNMCPaAG LDDaMCPnAG LCNNMCPnEv                           | ESDPQvDaWL<br>DSDPQvNqWL<br>sSDPQtGiWt<br>DGDest.tWL | AsafPSVTAQ<br>AqFAPPMTAR<br>SIYGTPIANR<br>GVFAPNITAR |
| P. involutus P. involutus T. pubescens A. pediades P. lycii Basidio | (phyA2)            | LNAAAPGANL<br>LNAGAPGANL<br>LNQQAPGANI<br>LNAAAPSANL | TDaDAfNLvs<br>TDtDTyNLlt<br>TAaDvsNLip<br>SDsDAltLmd | LCAF1TVSKE<br>LCPFmTVSKE<br>LCPFETVATE<br>LCAFETIVKE<br>MCPFDTLSSG<br>LCPFETVS-E | qkSdFCtLFE<br>rrSeFCDIYE<br>tpSpFCNLF.<br>naSpFCDLF. | giPGsFeAFa<br>elQAE.dAFa<br>.tPEEFaqFe<br>.tAEEYvSYe |

Fig. 3a

| P. involutus              | (phyA1)   | 251<br>YgGDLDKFYG | TGYGQeLGPV  | OGVGYVNELI        | ARLTnsAVRD   | 300<br>NTOTNRTLDA |
|---------------------------|-----------|-------------------|-------------|-------------------|--------------|-------------------|
| P. involutus              | (phyA2)   | YaGDLDKFYG        | TGYGOALGPV  | OGVGYINELL        | ARLTnsAVnD   | NTOTNETLDA        |
| T. pubescens              | •         | YnADLDKFYG        | TGYGQPLGPV  | OGVGYINELI        | ARLTaQnVsD   | HTOTNSTLDS        |
| A. pediades               |           |                   |             |                   |              | NTQTNRTLDS        |
| P. lycii                  |           |                   |             |                   | ARLTgQAVRD   |                   |
|                           |           |                   |             |                   | -            | <u> </u>          |
| Basidio                   |           | Y-GDLDKFYG        | TGYGQPLGPV  | <b>QGVGYINELL</b> | ARLT-QAVRD   | NTQTNRTLDS        |
|                           |           |                   |             |                   |              |                   |
|                           |           | 207               |             |                   |              |                   |
| D. dmaralleder            | ( b 3 1 \ | 301               | *****       |                   |              | 350               |
| P. involutus              | (phyA1)   | SPVIFPLNKT        | FYADFSHDNI  | MVAVFSAMGL        | FrQPAPLsTS   | VPNPwRTWrT        |
| P. involutus T. pubescens | (pnyA2)   | APOTEPLNKT        | MYADFSHDNI  | MVAVFSAMGL        | FrQSAPLsTS   | <b>tPDPNRTWLT</b> |
| A. pediades               |           | SPETFPLNRT        | LYADFSHDNO  | MVAIFSAMGL        | FNQSAPLDPT   | tPDPaRTFLv        |
| P. lycii                  |           | SPITFPLDRS        | IYADLSHDNQ  | MIAIFSAMGL        | FNQSSPLDPS   | <b>fPNPKRTWVT</b> |
| P. lyc11                  |           | dPaTFPLNRT        | FYADFSHDNt  | MVPIFAALGL        | FNaTA.LDPl   | kPDeNRlWVd        |
| Basidio                   |           | SP-TFPLNRT        | FVADEGEDNO  | MINTEGNACI        | FNQSAPLDPS   |                   |
|                           |           | D1 111111111      | TIMESIDAQ   | MVALESAMGL        | FNQSAPLDPS   | -PDPMRTWVT        |
|                           |           |                   |             |                   |              |                   |
|                           |           | 351               |             |                   |              | 400               |
| P. involutus              | (phyA1)   | SsLVPFSGRM        | VVERLsCf    | GT                | tkV          | RVLVODaVOP        |
| P. involutus              | (phyA2)   | SsVVPFSARM        | aVERLsCa    | GT                | tkV          | RVLVODaVOP        |
| T. pubescens              |           | kKIVPFSARM        | VVERLdCg    | GA                | qsV          | RLLVNDAVOP        |
| A. pediades               |           | SRLtPFSARM        | VtERLlCgrd  | GTgsggpsri        | mrngnvqtfV   | RILVNDALOP        |
| P. lycii                  |           | SKLVPFSGHM        | tVEKLaC     |                   | sgkeaV       | RVLVNDAVQP        |
|                           |           |                   |             |                   |              |                   |
| Basidio                   |           | SKLVPFSARM        | VVERL-C     | GT                | v            | RVLVNDAVQP        |
|                           |           |                   |             |                   |              |                   |
|                           |           | 401               |             |                   |              |                   |
| P. involutus              | (phvA1)   |                   | ] CTLAREVES | OFFADADGAG        | DEEXCEASE:   |                   |
| P. involutus              | (phyA2)   | LEFCGGDang        | 1CALDERVES  | OSVAPACCSC        | DEEKCI VAL-  | ~                 |
| T. pubescens              | ,,        | LAFCGADtaG        | VCTLDARVES  | Oa VA DATOCEC     | DEEKCHWIIA   | ~                 |
| A. pediades               |           | LKFCGGDmDS        | CILDATVES   | OF AND EDGOG      | DEEKCEAT~~   | ~                 |
| P. lycii                  |           |                   | TOTHUME VES | <b>SYTHYPDOOQ</b> | Drekcen~~~   | ~                 |
| ,                         |           | TERCCC VDC        | ひつしょうかいりゅう  | OF VADDATOOG      | ひひか ひのーチー・マー | _                 |
|                           |           | LEFCGG.vDG        | vCeLsAFVES  | QtYARENGQG        | DFAKCgfvPs   | е                 |

```
A. terreus 9al
                      KhsdCNSVDh GYQCfPELSH kWGlYAPYFS LqDESPFPlD VPeDCHITFV
                      NhsdCtSVDr GYQCfPELSH kWGlYAPYFS LqDESPFPlD VPdDCHITFV
A. terreus cbs
A. niger var. awamori NqsTCDTVDq GYQCfSEtSH LWGQYAPFFS LANESAISPD VPaGCRVTFa
A. niger NRRL3135
                     NqsSCDTVDq GYQCfSEtSH LWGQYAPFFS LANESvISPE VPaGCRVTFa
A. fumigatus 13073
                      GSkSCDTVDl GYQCsPAtSH LWGQYSPFFS LEDELSVSSK LPkDCRITLV
                      GSkSCDTVD1 GYQCsPAtSH LWGQYSPFFS LEDE1SVSSK LPkDCRITLV
A. fumigatus 32722
A. fumigatus 58128
                      GSkSCDTVDl GYQCsPAtSH LWGQYSPFFS LEDElSVSSK LPkDCRITLV
A. fumigatus 26906
                     GSkSCDTVDl GYQCsPAtSH LWGQYSPFFS LEDE1SVSSK LPkDCRITLV
                     GSkACDTVE1 GYQCaPGtSH LWGQYSPFFS LEDELSVSSD LPkDCRVTFV
A. fumigatus 32239
E. nidulans
                      QNHSCNTaDG GYQCfPNVSH VWGQYSPYFS IEQESAISeD VPhGCeVTFV
T. thermophilus
                     DSHSCNTVEG GYQCrPEISH sWGQYSPFFS LADQSEISPD VPQNCKITFV
                      ~~~~~~~ ~~~nvDIAR hWGQYSPFFS LAEvSEISPA VPkGCRVeFV
T. lanuginosus
M. thermophila
                     ESRPCDTpD1 GFQCgTAISH FWGQYSPYFS VPsElDaS.. IPdDCeVTFa
Basidio
                      xSxPxrxtAA qLPipxQxqx xWSPYSPYFP VAxyxA.... pPaGCQIxqV
           Consensus NSHSCDTVDG GYQC-PEISH LWGQYSPFFS LADESAISPD VP-GCRVTFV
               Fcp10 NSHSCDTVDG GYQCFPEISH LWGQYSPFFS LADESAISPD VPKGCRVTFV
                      51
A. terreus 9al
                      QVLARHGARS PThSKTKAYA AtlaAlQKSA TaFpGKYAFL QSYNYSLDSE
A. terreus cbs
                      QVLARHGARS PTdSKTKaYA AtlaAlQKNA TalpGKYAFL KSYNYSMGSE
A. niger var. awamori QVLSRHGARY PTESKGKKYS ALIEEIQQNv TtFDGKYAFL KTYNYSLGAD
A. niger NRRL3135
                     QVLSRHGARY PTdSKGKKYS ALIEEIQQNA TtFDGKYAFL KTYNYSLGAD
                     QVLSRHGARY PTSSKSKKYk kLVtAIQaNA TdFKGKFAFL KTYNYTLGAD
A. fumigatus 13073
                     QVLSRHGARY PTSSKSKKYK KLVtAIQaNA TdFKGKFAFL KTYNYTLGAD
A. fumigatus 32722
A. fumigatus 58128
                     QVLSRHGARY PTSSKSKKYk kLVtAIQaNA TdFKGKFAFL KTYNYTLGAD
A. fumigatus 26906
                     QVLSRHGARY PTSSKSKKYk kLVtAIQaNA TdFKGKFAFL KTYNYTLGAD
A. fumigatus 32239
                     QVLSRHGARY PTASKSKKYk kLVtAIQKNA TeFKGKFAFL ETYNYTLGAD
E. nidulans
                     QVLSRHGARY PTESKSKAYS GLIEAIQKNA TSFWGQYAFL ESYNYTLGAD
T. thermophilus
                     QLLSRHGARY PTSSKTElYS qLIsrIQKtA TaYKGYYAFL KdYrYqLGAN
T. lanuginosus
                      QVLSRHGARY PTAhKSEvya ELLgriQDta TeFKGDFAFL RdyayhLGAD
M. thermophila
                     QVLSRHGARa PTlkRAasyv DLIdrIHhGA isYgPgYEFL RTYDYTLGAD
Basidio
                     NIIqRHGARF PTSGaAtRiq AaVakLQsax xxtDPKLDFL xnxtYxLGxD
           Consensus QVLSRHGARY PTSSKSKKYS ALI-AIQKNA T-FKGKYAFL KTYNYTLGAD
              Fcp10 QVLSRHGARY PTSSKSKKYS ALIEAIQKNA TAFKGKYAFL KTYNYTLGAD
                      101
A. terreus 9a1
                     ELTPFGrNQL rDlGaQFYeR YNAL.TRhin PFVRATDAsR VhESAEKFVE
A. terreus cbs
                     NLTPFGrNQL qDlGaQFYRR YDTL.TRhIn PFVRAADSsR VhESAEKFVE
A. niger var. awamori DLTPFGEQEL VNSGIKFYQR YESL.TRnII PFIRSSGSsR VIASGEKFIE
A. niger NRRL3135 DLTPFGEQEL VNSGIKFYQR YESL.TRnIV PFIRSSGSSR VIASGKKFIE
A. fumigatus 13073
                     DLTPFGEQQL VNSGIKFYQR YKAL.ARSVV PFIRASGSDR VIASGEKFIE
A. fumigatus 32722
                     DLTPFGEQQL VNSGIKFYQR YKAL.ARSVV PFIRASGSDR VIASGEKFIE
                     DLTPFGEQQL VNSGIKFYQR YKAL.ARSVV PFIRASGSDR VIASGEKFIE
A. fumigatus 58128
A. fumigatus 26906
                     DLTAFGEQQL VNSGIKFYQR YKAL.ARSVV PFIRASGSDR VIASGEKFIE
A. fumigatus 32239
                     DLTPFGEQQM VNSGIKFYQK YKAL.AgsVV PFIRSSGSDR VIASGEKFIE
                     DLTiFGENQM VDSGaKFYRR YKnL.ARknt PFIRASGSDR VVASAEKFIN
E. nidulans
T. thermophilus
                     DLTPFGENQM IQlGIKFYnH YKSL.ARnaV PFVRCSGSDR VIASGrlFIE
                      NLTRFGEEQM MESGrQFYHR YREq.AReIV PFVRAAGSAR VIASAEfFnr
T. lanuginosus
M. thermophila
                     ELTRtGQQQM VNSGIKFYRR YRAL.ARksI PFVRTAGqDR VVhSAENFtQ
Basidio
                     DLvPFGAxQs sQAGqEaFtR YsxLvSxdnL PFVRASGSDR VVDSAtNWtA
          Consensus DLTPFGEQQM VNSGIKFYRR YKAL-AR-IV PFVRASGSDR VIASAEKFIE
              Fcpl0 DLTPFGEQQM VNSGIKFYRR YKAL.ARKIV PFVRASGSDR VIASAEKFIE
```

Fig. 4a

```
200
A. terreus 9al
                     GFQTARqDDh hAnphQPSPr VDVaIPEGsA YNNTLEHSLC TAFEs...St
A. terreus cbs
                     GFQNARqGDP hAnphQPSPr VDVVIPEGtA YNNTLEHSIC TAFEa...St
A. niger var. awamori GFQSTKLkDP rAqpqQSSPk IDVVISEASS sNNTLDpGtC TvFEd...SE
A. niger NRRL3135
                     GFQSTKLkDP rAqpgQSSPk IDVVISEASS sNNTLDpGtC TvFEd...SE
                     GFQQAKLADP gAt.nRAAPa ISVIIPESeT FNNTLDHGVC TkFEa...SQ
A. fumigatus 13073
A. fumigatus 32722
                     GFQQAKLADP gAt.nRAAPa ISVIIPESeT FNNTLDHGVC TkFEa...SQ
                     GFQqAKLADP gAt.nRAAPa ISVIIPESeT FNNTLDHGVC TkFEa...SQ
A. fumigatus 58128
A. fumigatus 26906
                     GFQQAKLADP gAt.nRAAPa ISVIIPESeT FNNTLDHGVC TkFEa...SQ
                     GFQqANVADP gAt.nRAAPV ISVIIPESeT YNNTLDHSVC TnFEa...SE
A. fumigatus 32239
E. nidulans
                     GFRkAQLhDh g.s.gQATPV VNVIIPEidG FNNTLDHStC vSFEn...dE
                     GFQSAKVlDP hSdkhDAPPt INVIIeEGpS YNNTLDtGsC PvFEd...Ss
T. thermophilus
T. lanuqinosus
                     GFQdAKdrDP rSnkdQAePV INVIISEEtG sNNTLDgltC PAaEe...Ap
M. thermophila
                     GFHSALLADR gStvrPTlPy dmVVIPETaG aNNTLHNDLC TAFEegPySt
Basidio
                     GFaxA.....PxAG
          Consensus GFQSAKLADP -A---QASPV INVIIPEG-G YNNTLDHGLC TAFE--P-SE
              Fcp10 GFQSAKLADP GANPHQASPV INVIIPEGAG YNNTLDHGLC TAFEE...SE
A. terreus 9al
                     VGDDavANFT AVFAPAIaqR LEAdLPGVQL StDDVVNLMA MCPFETVSlT
                     VGDAaADNFT AVFAPAIakR LEAGLPGVQL SADDVVNLMA MCPFETVSlT
A. terreus cbs
A. niger var. awamori LADtVEANFT AtFAPSIRQR LENGLSGVtL TDtEVtyLMD MCSFDTIStS
A. niger NRRL3135 LADtVEANFT AtfvPSIRqR LEndLSGVtL TDtEVtyLMD MCSFDTIStS
A. fumigatus 13073
                     LGDEVAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD MCSFDTVArT
A. fumigatus 32722 LGDEVAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD MCSFDTVATT
A. fumigatus 58128 LGDEVAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD MCSFDTVArT
A. fumigatus 26906 LGDEVAANFT ALFAPdIRAR aKkhLPGVtL TDEDVVSLMD MCSFDTVArT
A. fumigatus 32239 LGDEVEANFT ALFAPAIRAR IEKhLPGVQL TDDDVVSLMD MCSFDTVArT
E. nidulans
                     rADEIEANFT AIMGPPIRKR LENGLPGIKL TNENVIYLMD MCSFDTMArT
T. thermophilus
                     gGHDaQEKFA kqFAPAIlEK IKDhLPGVDL AvsDVpyLMD LCPFETLArn
T. lanuginosus
                     .DptqpAEF1 qVFGPRVlkK ItkhMPGVNL TlEDVplFMD LCPFDTVGsd
M. thermophila
                     IGDDaQDtYl StFAGPItAR VNAnLPGaNL TDADtVaLMD LCPFETVASS
Basidio
                     dSDpqxnxWl AVFAPPItAR LNAaaPGaNL TDxDaxNLxx LCPFETVS..
          Consensus LGDDVEANFT AVFAPPIRAR LEA-LPGVNL TDEDVVNLMD MCPFDTVA-T
              Fcp10 LGDDVEANFT AVFAPPIRAR LEAHLPGVNL TDEDVVNLMD MCPFDTVART
                     251
                                                                       300
A. terreus 9al
                     dD..Aht... .....LSPF CDLFTa..tE WtQYNYLlSL dKYYGYGGGN
A. terreus cbs
                     dD..Aht... .....LSPF CDLFTa..aE WtQYNYLlSL dKYYGYGGGN
A. niger var. awamori Tv..DTK... .....LSPF CDLFTH..dE WiHYDYLQSL kKYYGHGAGN
A. niger NRRL3135 Tv..DTK... ....LSPF CDLFTH..dE WinyDyLQSL kKYYGHGAGN
                   SD..ASQ.....LSPF CQLFTH..nE WKKYNYLQSL GKYYGYGAGN
A. fumigatus 13073
A. fumigatus 32722
                    SD..ASQ... LSPF CQLFTH..nE WKKYNYLQSL gKYYGYGAGN
                     SD..ASQ... LSPF CQLFTH..nE WKKYNYLQSL GKYYGYGAGN
A. fumigatus 58128
A. fumigatus 26906
                    SD. ASQ... LSPF CQLFTH..nE WKKYNYLQSL GKYYGYGAGN
                   AD..ASE... .....LSPF CAIFTH..nE WkKYDYLQSL gKYYGYGAGN
A. fumigatus 32239
E. nidulans
                     AH..GTE... LSPF CAIFTE..kE WlQYDYLQSL BKYYGYGAGS
T. thermophilus
T. lanuginosus
                    ht..DT.... LSPF CALSTQ..eE WqaYDYYQSL gKYYGnGGGN
                     PvlfPrQ....LSPF CHLFTa..dD WmaYDYYYTL dKYYSHGGGS
M. thermophila
                     SsdpATadag ggngrpLSPF CrLFSE..sE WraYDYLQSV gKWYGYGPGN
Basidio
                     .....xexxSxF CDLFexxpeE FxaFxYxgdL dKFYGtGyGQ
          Consensus SD--ATQ--- -----LSPF CDLFTH---E W-QYDYLQSL -KYYGYGAGN
              Fcp10 SD..ATQ... .....LSPF CDLFTH..DE WIQYDYLQSL GKYYGYGAGN
```

|                       | 301         |             |              |                     | 350                      |
|-----------------------|-------------|-------------|--------------|---------------------|--------------------------|
| A. terreus 9al        |             | aNELMARLTR  | y Diminates  | MATTER TO A CODA TO | 350                      |
| A. terreus cbs        |             | aNELIARLTR  |              |                     |                          |
| A. niger var. awamori | PI GPTOCVOV | SMELIARDICI | C DUMIDDACO  | MALIDAMPAT          | PPLNAILIAD               |
| A. niger NRRL3135     | DI CDTOCVCY | aneliarlth  | S.PVIDDISS   | NHILDSNPAT          | FPLNSTLYAD               |
| A. fumigatus 13073    | PLGP1QGVG1  | aneliarlin  | S.PVHDDTSS   | NHTLDSSPAT          | FPLNSTLYAD               |
| A. fumigatus 32722    | PLOPAQGIGE  | tNELIARLTR  | S.PVQDHTST   | NSTLVSNPAT          | FPLNATMYvD               |
|                       | PLGPAQGIGE  | tNELIARLTR  | S.PVQDHTST   | NSTLVSNPAT          | FPLNATMYvD               |
| A. fumigatus 58128    | PLGPAQGIGE  | tNELIARLTR  | S.PVQDHTST   | NSTLVSNPAT          | FPLNATMY∨D               |
| A. fumigatus 26906    | PLGPAQGIGE  | tNELIARLTR  | S.PVQDHTST   | NatlySNPAT          | <b>FPLNATMYvD</b>        |
| A. fumigatus 32239    | PLGPAQGIGF  | tNELIARLTN  | S.PVQDHTST   | NsTLDSDPAT          | FPLNATIYvD               |
| E. nidulans           | PLGPAQGIGF  | tNELIARLTQ  | S.PVQDNTST   | NHTLDSNPAT          | <b>FPLDrkLYAD</b>        |
| T. thermophilus       | PLGPAQGVGF  | VNELIARMTH  | S.PVQDYTTv   | NHTLDSNPAT          | FPLNATLYAD               |
| T. lanuginosus        | AFGPSRGVG   | F VNELIARMT | g NlPVKDHTT  | v NHTLDdNPE         | T FPLDAvLYAD             |
| M. thermophila        | PLGPTQGVGF  | VNELLARLA.  | GvPVRDgTST   | NRTLDGDPrT          | FPLGrPLYAD               |
| Basidio               | PLGPvQGVGY  | inellarltx  | qa.VRDNTqT   | NRTLDSSPxT          | FPLNrTFYAD               |
|                       |             |             |              |                     |                          |
| Consensus             | PLGPAQGVGF  | -NELIARLTH  | S-PVQDHTST   | NHTLDSNPAT          | FPLNATLYAD               |
| Fcp10                 | PLGPAQGVGF  | VNELIARLTH  | S.PVQDHTST   | NHTLDSNPAT          | FPLNATLYAD               |
|                       |             |             |              |                     |                          |
|                       | 351         |             |              |                     | 400                      |
| A. terreus 9al        | FSHDSnLVSI  | FWALGLYNGT  | aPLSqTSVE.   | .SvsQTDGYA          | AAWTVPFAAR               |
| A. terreus cbs        | FSHDSnLVSI  | FWALGLYNGT  | kPLSqTTVE.   |                     | AAWTVPFAAR               |
| A. niger var. awamori |             |             |              | .NitQTDGFS          | SAWTVPFASR               |
| A. niger NRRL3135     | FSHDNGIISI  | LFALGLYNGT  | kPLSTTTVE.   | .NitQTDGFS          | SAWTVPFASR               |
| A. fumigatus 13073    | FSHDNSMVSI  | FFALGLYNGT  | ePLSrTSVE.   |                     | ASWvVPFGAR               |
| A. fumigatus 32722    | FSHDNSMVSI  | FFALGLYNGT  | gPLSrTSVE.   | .SaKElDGYS          | ASWvVPFGAR               |
| A. fumigatus 58128    | FSHDNSMVSI  | FFALGLYNGT  | ePLSrTSVE.   |                     | ASWvVPFGAR               |
| A. fumigatus 26906    | FSHDNSMVSI  | FFALGLYNGT  | ePLSrTSVE.   | .SaKElDGYS          | ASWvVPFGAR               |
| A. fumigatus 32239    | FSHDNGMIPI  | FFAMGLYNGT  | ePLSgTSeE.   | .StKESNGYS          | ASWAVPEGAR               |
| E. nidulans           | FSHDNSMISI  | FFAMGLYNGT  | GPLSmdSVE.   | SiOEmDGYA           | ASWTVPFGAR               |
| T. thermophilus       |             | FaALGLYNGT  |              |                     | AAWTVPFGGR               |
| T. lanuginosus        |             |             |              |                     | A ASWTVPFAAR             |
| M. thermophila        | FSHDNdMMGV  | LgALGaYDGv  | pPIdkTA R    | rdnEElGGVA          | Y TRAILALL WHE           |
| Basidio               | FSHDNgMVAI  | FsAMGLFNqS  | aPIdPSxnDP   | nrt Wv              | TSkludesad               |
|                       | •           |             | ar Dar Onpor |                     | IORIVEFUAR               |
| Consensus             | FSHDNTMVSI  | FFALGLYNGT  | -PLSTTSVEP   | -S-EETDGYA          | ASWTVPFAAR               |
| Fcp10                 | FSHDNTMVSI  | FFALGLYNGT  | KPLSTTSVE.   | . SIEETDGYA         | ASWTVPFAAR               |
|                       |             |             |              |                     |                          |
|                       | 401         |             |              |                     | 450                      |
| A. terreus 9al        | AYVEMMQC    | ra          | EKEPL        | VRVLVNDRVM          | PLHGCPtDKL               |
| A. terreus cbs        | AYIEMMQC    | ra          | EKOPL        | VRVLVNDRVM          | PLHGCAVDNI.              |
| A. niger var. awamori | lyvemmqc    | Qa          | EOEPL        | VRVLVNDRVV          | PLHGCPIDal               |
| A. niger NRRL3135     | lyvemmqc    | Qa          | EOEPL        | VRVLVNDRVV          | PLHGCPVDat               |
| A. fumigatus 13073    | AYfEtMQC    | Ks          | EKEPI        | VRALINDRVV          | PLHCCDVDKI.              |
| A. fumigatus 32722    | AYfEtMOC    | Ks          | EKEPI        | VRaLINDRVV          | DI.HCCDVDKI              |
| A. fumigatus 58128    | AYFETMOC    | Ks          | EKESI        | VPal.TNDPW          | DI RCCDADKI              |
| A. fumigatus 26906    | AYFETMOC.   | Ks          | EKEDI        | VRALTMONV           | DI.HGCDVDKI              |
| A. fumigatus 32239    | AYFELMOC.   | Ks          | TREAT        | VPal.TMDRVV         | PLUCCATOUT               |
| E. nidulans           | AYFELMOC    | E           | WWEDT        | AVGUINDKAA          | PL HCCVIDAD              |
| T. thermophilus       | AYIEMMOC    | Dd          | משחה         | AKATIANDKAA         | PLUCCETTO-T              |
| T. lanuqinosus        | AYVELLEC    | Eteteseee   | anesa        | ATCATIANTICA A      | PLHGCEVDSL<br>PLHGCrVDRW |
| M. thermophila        | iYVEkMRC    | sggggggggg  | FGrackbeam   | AWATIANTIKAN        | TI POCCE DE-             |
| Basidio               | mvVErLxCxx  | xgtxxxxxxxx | Perdempes    | MANUMATINGM         | DIRECCEDET               |
| - · · -               |             |             |              | AKAHAMNYAAd         | FPFICGGDXG               |
| Consensus             | AYVEMMOC    | E           | EGFYEDI      | TREADURE TO GIVE    | מייים או                 |
| Fcp10                 | AYVEMMOC    | EA          | PVPDT        | AVATIANTICAA        | PT HOCOLDAN              |
| <b>_</b>              |             |             | ardfu        | AWADAMDKAA          | ETURCA ADKT              |

Fig. 4c

|                       | 451          |            | 4            | 82   |
|-----------------------|--------------|------------|--------------|------|
| A. terreus 9al        | GRCKrDAFVA C | GLSFAQAG   | GNWADCF      | ~~   |
| A. terreus cbs        | GRCKrDDFVE C | GLSFARAG   | GNWAECF~~~   | ~~   |
| A. niger var. awamori | GRCtrDsFVr C | GLSFARSG   | GDWAECsA~~   |      |
| A. niger NRRL3135     | GRCtrDsFVr ( | GLSFARSG   | GDWAECFA~~   | ~~   |
| A. fumigatus 13073    | GRCKINDFVK C | GLSWARSG   | GNWGECFS~~   | ~~   |
| A. fumigatus 32722    | GRCKINDFVK C | GLSWARSG   | GNWGECFS     |      |
| A. fumigatus 58128    | GRCK1NDFVK C | GLSWARSG   | GNWGECFS~~   | ~~   |
| A. fumigatus 26906    | GRCKINDFVK C | GLSWARSG   | GNWGECFS     | ~~   |
| A. fumigatus 32239    | GRCK1KDFVK C | GLSWARSG   | GNSEQSFS~~   | ~~   |
| E. nidulans           | GRCtlDDWVE C | GLNFARSG   | GNWKtCFT1~   | ~~   |
| T. thermophilus       | GRCKrDDFVr C | GLSFARqG   | GNWEGCYAas   | e~   |
| T. lanuginosus        | GRCRrDEWIK   | GLTFARqG.  | . GHWDrCF~~~ | . ~- |
| M. thermophila        | GmCtlErFIE S | SMAFARGN   | GKWDlCFA~~   | ~~   |
| Basidio               | GxCtlDAFVE S | SqxYAReDgq | GDFEKCFAtp   | ж    |
|                       |              |            |              |      |
| Consensus             | GRCK-DDFVE C | GLSFARSG   | GNWEECFA     |      |
| Fcp10                 | GRCKRDDFVE C | GLSFARSG   | GNWEECFA     | • •  |

|      | CP-1       |              |               |             |                |                    |              |        |         |             |          |              |                  |               |         |             |                |                  |             |            |     |
|------|------------|--------------|---------------|-------------|----------------|--------------------|--------------|--------|---------|-------------|----------|--------------|------------------|---------------|---------|-------------|----------------|------------------|-------------|------------|-----|
|      | E          | CO           | RI            | M           | G              | V                  | F            | V      | v       | L           | L        | s            | I                | A             | T       | L           | F              | G                | s           | Т          | 1   |
|      | TATA       | TGA          | ATT           | C <u>AT</u> | <u>G</u> GG    | CGT                | GTT          | CGI    | 'CGI    | 'GC'I       | 'ACI     | GTC          | CAT              | TGC           | CAC     | CTI         | GTI            | 'CGG             | TTC         | CA.        |     |
| 1    |            |              | +             |             |                |                    | +            |        |         | -+-         |          |              | +                |               |         |             | +              |                  |             | -+         | 60  |
|      | ATAT       | ACT          | TAA           | GTA         | CCC            | :GCA               | CAA          | .GCA   | GCA     | CGF         | ATGA     | CAG          | GTA              | ACG           | GTG     | GAA         | CAA            | GCC              | AAG         | GT         |     |
|      |            |              |               |             |                |                    |              |        |         |             |          |              |                  |               |         |             |                |                  |             |            |     |
|      | s          | G            | T             | A           | L              | G                  | P            | R      | G       | N           | s        | H            | s                | C             | D       | Т           | V              | D                | G           | G          | 37  |
|      | CATC       | :CGG         | TAC           | CGC         | CTT            | GGG                | TCC          | TCG    | TGG     | TAA         | TTC      | TCA          | CTC              | TTG           | TGA     | CAC         | TGT            | 'TGA             | .CGG        | TG         |     |
| 61   |            |              |               |             |                |                    |              |        |         |             |          |              |                  |               |         |             |                |                  |             |            | 120 |
|      | GTAG       |              |               | GCG         | GAA            | CCC                | AGG          | AGC    | ACC     | ATI         | 'AAG     | AGT          | GAG              | AAC           | ACT     | 'GTG        | ACA            | ACT              | GCC         | AC         |     |
|      |            | CP           |               | <b>a</b> n  |                | _                  |              |        |         |             |          |              |                  |               |         |             |                |                  |             |            |     |
|      | Y          | _            |               | CP-         |                | _                  | _            | _      |         | _           |          | _            | _                |               | _       | _           |                |                  |             |            |     |
|      |            | ערא<br>ע     | ע<br>איזירטיי | T<br>Tital  | P<br>000       | E                  | 2 2 LL       | S      | H       | _<br>       | W        | G            | Q                | Y             | S       | P<br>       | <u> </u>       | F                | S           | L          | 57  |
| 121  | GTTA       |              | T             |             |                | AGA                | AAT          | TTC    | TCA     | CTT         | GTG      | GGG          | TCA              | ATA           | CTC     | TCC         | ATT            | CTT              | CTC         | TT         |     |
| -2.1 | CAAT       | CGT          | TAC           | AAA         | aaa            | тст                | ייי<br>מיזיי | 226    | ACT     | -+-<br>7333 | רא כי    |              | ~ <del>- +</del> | ~ ~ ~         |         | 700         | TD 7           |                  |             | -+         | 180 |
|      |            |              |               |             |                |                    |              | ·      | AG I    | GAA         | CAC      | CCC          | MGI              | TAT           | GAG     | AGG         | IAA            | GAA              | GAG         | AA         |     |
|      | A          | D            | E             | s           | A              | I                  | s            | P      | D       | v           | Þ        | <u>K</u>     | G                | C             | Ð       | v           | т              | 묘                | 37          | ^          | 7-  |
|      | TGGC       | TGA          | CGA.          | ATC'        | TGC            | TAT                | TTC          | TCC    | AGA     | CGT         | TCC      | AAA          | _=<br>GGG        | TTG           | TAG     | AGT         | TAC            | LLL.             | CGT         | TC.        | ,,  |
| 181  |            |              | +             |             |                |                    | +            |        |         | -+-         |          |              | +                |               |         |             | +              |                  |             | -+         | 240 |
|      | ACCG.      | ACT          | GCT           | TAG         | ACG.           | ATA.               | AAG.         | AGG    | TCT     | GCA         | AGG      | TTT          | CCC              | GAC           | ATC     | TCA         | ATG            | AAA              | GCA         | AG         |     |
|      |            |              |               |             | 9              | CP-                | 4.1          | _      |         |             |          |              |                  |               |         |             |                |                  |             |            |     |
|      |            |              |               |             |                |                    |              |        | .10     |             |          |              |                  |               |         |             |                |                  |             |            |     |
|      | V          | L            | _S<br>        | R           | H              | G                  | A            | R      | Y       | P           | T        | s            | S                | K             | S       | K           | <u>K</u>       | Y                | S           | Α          | 97  |
| 041  | AAGT'      | TTT          | GTC'          | rag:        | ACA            | CGG'               | TGC:         | TAG.   | ATA     | CCC         | AAC      | TTC'         | TTC              | TAA           | GTC     | TAA         | GAA            | GTA              | CTC         | TG         |     |
| 241  |            | 222          | +·            |             | ·              |                    | +            |        |         | -+-<br>     |          |              | +                | <del></del> - | <b></b> | <del></del> | +              | <del></del>      |             | -+         | 300 |
|      | TTCA       | MMM          | CMG           | RIC.        | rGr            | ناتان              | ACG.         | ATC.   | TAT     | GGG         | TTG      | AAG          | AAG              | ATT           | CAG     | ATT         | CTT            | CAT              | GAG         | AC         |     |
|      | L          | I            | E             | A           | т              | 0                  | ĸ            | N      | 70      | T           | 7        | F            | v                | C             | v       | v           | 70             | ъ                |             | 7,         |     |
|      | CTTT       | _            |               |             |                |                    |              |        |         |             |          |              |                  |               |         |             |                |                  |             |            | 11/ |
| 301  |            |              | +             |             |                |                    | +            |        |         | -+-         |          |              | +                |               |         |             | +              |                  |             | -+         | 360 |
|      | GAAA       |              |               |             |                |                    |              |        |         |             |          |              |                  |               |         |             |                |                  |             |            | 500 |
|      |            |              |               |             |                |                    |              |        | CP      |             |          |              |                  |               |         |             |                |                  |             |            |     |
|      |            |              |               |             |                |                    |              |        |         |             |          | 7.10         |                  |               |         |             |                |                  |             |            |     |
|      |            | Y            |               |             |                | L                  | G            | Α      | D       | D           | L        | T            | P                | F             | G       | E           | Q              | Q                | M           | v          | 137 |
|      | AGAC'      | TTA          | CAAC          | CTAC        | CAC            | TTTC               | GGC.         | rgc'   | TGA(    | CGA         | CTT      | GAC'         | rcci             | TTA           | CGG'    | TGA.        | ACA.           | ACA              | TAA         | <b>G</b> G |     |
| 361  |            | :            | +-            |             |                |                    | +            |        |         | -+-         |          |              | +-               |               |         |             | +              |                  | <b></b> - · | -+         | 420 |
|      | TCTG       | AAT          | 3TT(          | ATC         | STG2           | AAA                | CCC          | ACG    | ACT     | GCT         | GAA      | CTG          | AGG:             | raa(          | 3CC     | ACT"        | rgt'           | rgt'             | TTA(        | CC         |     |
|      | N          | s            | G             | I           | ĸ              | 177                | Y            | _      | _       |             |          | _            | _                | _             | _       |             | _              |                  | _           |            |     |
|      | TTAA       |              |               |             |                |                    |              |        | R       |             |          | A            |                  |               |         | K           | I              | V                | P           | F          | 157 |
| 421  |            |              | +-            |             |                |                    |              | -MG2   | MAG     | ATA         | CAA      | . بافاد      | -1-1-(           | : C:          | ľAG     | AAA         | 3 <b>A</b> 1". | rgt.             | rcci        | AT         |     |
|      | AATTO      | GAG!         | ACCZ          | ATA         | TTC            | 'AAC               | 3ATC         | יטידני | ייייייי | ייד ביי     |          | ~cai         | +-               | rce:          | ת שי    | ·           | +:             |                  |             | -+<br>na   | 480 |
|      |            |              |               |             |                |                    |              |        |         |             | J11.     |              | -8.1             |               | arc.    |             | - 1 242        | L.M.             | AGG:        | LA         |     |
|      |            |              |               |             |                |                    |              |        |         |             |          | <u> </u>     |                  | _             | 9.10    | 0           |                |                  |             |            |     |
|      | <u>v</u>   | R            | A             | s           | G              | s                  | D            | R      | v       | I           | A        | s            | A                |               |         | _           | I              | Е                | G           | F          | 177 |
|      | TCGT       | rag <i>i</i> | AGC'I         | TCT         | rggi           | rtci               | rga(         | CAG    | AGT:    | rat'        | TGC:     | rrc1         | rgci             | rga.          | AAA     | TTC         | CAT?           | rga <sub>l</sub> | AGGI        | ГT         |     |
| 481  |            |              | +-            |             |                | 4                  |              |        |         | -+-         |          |              | -+-              | - <b>-</b> -  |         |             | <b></b>        |                  |             | -+         | 540 |
|      | AGCA       | ATCI         | rcg           | LAGA        | CCA            | \AG#               | CTO          | TC     | [CA]    | ATA         | ACG      | <b>AAG</b> I | \CGI             | CT            | CTT     | CAAC        | TAI            | CT               | rcc#        | \A         |     |
|      | _          | _            | _             |             | _              | _                  | _            | _      |         |             |          |              |                  |               |         |             |                |                  |             |            |     |
|      | Q<br>macri | S            | A             | K           | L              | A                  | D            | P      | G       | <u>A</u>    | <u>N</u> | P            | H                | Q             | Α       | s           | P              | V                | I           | <u>N</u>   | 197 |
| 541  | TCCA       | . I C I      |               | AAG         | TIC            | :GCI               | GAC          | :CCI   | \GG?    | rGC'        | )AA1     | CCL          | CAC              | CA            | \GC'    | rtc:        | CCX            | \GTT             | CTAT        | A.         |     |
| つずエ  | AGGTT      | יים מי       | -+-           | TTC         | ים ארי.<br>ממי | ע בארא.<br>+ – – - |              |        | י       | +           |          |              | -+-              |               |         |             |                |                  |             | + 4        | 600 |
|      |            |              |               |             |                |                    | -C T C       | ر دی.  |         |             | 21.1     | いいばん         | GIC              | ודטכ          | LUGZ    | MG          | .GGT           | CAZ              | 'TAI        | LT.        |     |

Fig. 5a

|      | <u>CP-10.10</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | CP-11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|      | V I I P E G A G Y N N T L D H G L C T A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 217  |
|      | ACGTTATTATTCCAGAAGGTGCTGGTTACAACACACTTTGGACCACGGTTTGTGTACTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 601  | The state of the s |      |
| 901  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 660  |
|      | TGCAATAATAAGGTCTTCCACGACCAATGTTGTTGTGAAACCTGGTGCCAAACACATGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | F E E S E L G D D V E A N F T A V F A P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 237  |
|      | CTTTCGAAGAATCTGAATTGGGTGACGACGTTGAAGCTAACTTCACTGCTGTTTTCGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 661  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 720  |
|      | GAAAGCTTCTTAGACTTAACCCACTGCTGCAACTTCGATTGAAGTGACGACAAAAGCGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 720  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | <u>CP-12</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 10 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | PIRARLEA <u>H</u> LPGV <u>N</u> LTDEDV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 257  |
|      | CACCTATTAGAGCTAGATTGGAAGCTCACTTGCCAGGTGTTAACTTGACTGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 721  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 780  |
|      | GTGGATAATCTCGATCTAACCTTCGAGTGAACGGTCCACAATTGAACTGACTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , 00 |
|      | one of the state o |      |
|      | CD 13 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|      | <u>CP-13.10</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | V <u>N</u> L M D M C P F <u>D</u> T V A R T S D A T Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 277  |
|      | TTGTTAACTTGATGGACATGTGTCCATTCGACACTGTTGCTAGAACTTCTGACGCTACTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 781  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 840  |
|      | AACAATTGAACTACCTGTACACAGGTAAGCTGTGACAACGATCTTGAAGACTGCGATGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|      | TO THE PROPERTY OF THE PROPERT |      |
|      | LSPFCDLFTHDEWIOVDVIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 297  |
|      | AATTGTCTCCATTCTGTGACTTGTTCACTCACGACGAATGGATTCAATACGACTACTTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 841  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900  |
|      | TTAACAGAGGTAAGACACTGAACAAGTGAGTGCTGCTTACCTAAGTTATGCTGATGAACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|      | CP-14.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|      | CP-15.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210  |
|      | AATCTTTGGGTAAGTACTACGGTTACGGTGCTGGTAACCCATTGGGTCCAGCTCAAGGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 317  |
| 001  | ATCITIGGIAAGIACIACGGIACCCATTGGGTCCAGGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 301  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 960  |
|      | TTAGAAACCCATTCATGATGCCAATGCCACGACCATTGGGTAACCCAGGTCGAGTTCCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | G F <u>V</u> N E L I A R L T <u>H</u> S P V Q D H T S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 337  |
|      | TTGGTTTCGTTAACGAATTGATTGCTAGATTGACTCACTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| 961  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000 |
|      | AACCAAAGCAATTGCTTAACTAACGATCTAACTGAGTGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1020 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | <u>CP-16.10</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | <u>CP-17.10</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | TNHTLDSNPATFPLNATLYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 357  |
|      | CTACTAACCACATTTGGACTCTAACCCAGCTACTTTCCCATTGAACGCTACTTTGTACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 1021 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000 |
|      | GATGATTGGTGTGAAACCTGAGATTGGGTCGATGAAAGGGTAACTTGCGATGAAACATGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000 |
|      | The state of the s |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | D F S H D N T M V S I F F A L G L Y N G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 377  |
|      | CTGACTTCTCCACGACAACACTATGGTTTCTATTTTCTTCGCTTTGGGTTTGTACAACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 1081 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1140 |
|      | GACTGAAGAGAGTGCTGTTGTGATACCAAAGATAAAAGAAGCGAAACCCAAACATGTTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|      | CP-18.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | CP-19.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|      | T K P L S T T S V E S I E E T D G Y A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 397  |
|      | GTACTAAGCCATTGTCTACTACTTCTGTTGAATCTATTGAAGAAACTGACGGTTACGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1200 |
|      | CATGATTCGGTAACAGATGATGAAGACAACTTTACATTACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACAT |      |

Fig. 5b

| CTTCTTGGACTGTTCCATTCGCTGCTAGAGCTTACGTTGAAATGATGCAATGTGAAGCTG  1201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     | S   | W   | T   | V    | P     | F        | <u>A</u> | A    | R    | A    | Y    | v    | E   | M   | M        | Q   | С   | E   | A        | E  | 417  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|-----|-----|------|-------|----------|----------|------|------|------|------|------|-----|-----|----------|-----|-----|-----|----------|----|------|
| GAAGAACCTGACAAGGTAAGCCACGATCTCGAATGCAACTTTACTACGTTACACTTCGAC  CP-20.10  CP-21.10  K E P L V R V L V N D R V V P L H G C G 437  AAAAGGAACCATTGGTTAGAGTTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTG  1261  TTTTCCTTGGTAACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACAC  V D K L G R C K R D D F V E G L S F A R 457  GTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTA  1321  CACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT  CACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT  S G G N W E E C F A * Eco RI 467  GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA  1381 |      | CT  | TC  | TTG | GAC | TGT  | TCC   | ATT      | CGC      | TGC  | TAG  | AGC  | TTA  | CGT  | TGA | AAT | GAT      | GCA | ATG | TGA | AGC      | TG |      |
| CP-20.10   CP-21.10     K E P L V R V L V N D R V V P L H G C G 437     AAAAGGAACCATTGGTTAGAGTTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1201 |     |     |     | +   |      |       |          | +        |      |      | -+-  |      |      | +   |     | <b>-</b> |     | +   |     |          | -+ | 1260 |
| CP-21.10  K E P L V R V L V N D R V V P L H G C G 437  AAAAGGAACCATTGGTTAGAGTTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTG  1261  TTTTCCTTGGTAACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACAC  V D K L G R C K R D D F V E G L S F A R 457  GTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTA  1321  CACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT  CACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT  S G G N W E E C F A * ECO RI 467  GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA  1381  1381                                                                   |      | GΑ  | AG. | AAC | CTG | ACA  | AGG   | TAA      | GCC      | ACG. | ATC  | TCG  | AAT  | GCA. | ACT | TTA | CTA      | CGT | TAC | ACT | TCG      | AC |      |
| K E P L V R V L V N D R V V P L H G C G 437  AAAAGGAACCATTGGTTAGAGTTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTG  1261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |     |     |     |      |       |          |          |      |      |      |      | CP   | -20 | .10 |          |     |     |     |          |    |      |
| AAAAGGAACCATTGGTTAGAGTTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTG  1261+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |     |     |     |      |       |          |          |      |      |      |      |      |     | CP- | 21.      | 10  |     |     |          |    |      |
| AAAAGGAACCATTGGTTAGAGTTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTG  1261+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     | K   | E   | P   | L    | v     | R        | v        | L    | v    | N    | D    | R    | v   | v   | P        | L   | H   | G   | С        | G  | 437  |
| TTTTCCTTGGTAACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACAC  V D K L G R C K R D D F V E G L S F A R 457  GTGTTGACAAGTTGGGTAGATGTAAGAGAGCGACTTCGTTGAAGGTTTGTCTTTCGCTA  1321+                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |     |     |     |      |       |          |          |      |      |      |      |      |     |     |          |     |     |     |          |    |      |
| V D K L G R C K R D D F V E G L S F A R 457  GTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTA  1321+ 1380  CACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT  CP-22.10  S G G N W E E C F A * ECO RI 467  GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA  1381                                                                                                                                                                                                                                                                                                                | 1261 |     |     |     | +   |      |       |          | +        |      |      | -+-  |      |      | +   |     |          |     | +   |     |          | -+ | 1320 |
| V D K L G R C K R D D F V E G L S F A R 457  GTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTA  1321+ 1380  CACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT  CP-22.10  S G G N W E E C F A * ECO RI 467  GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA  1381                                                                                                                                                                                                                                                                                                                |      | TT  | TT  | CCT | TGG | TAA  | CCA   | ATC      | TCA      | AAA  | CCA  | ATT  | GCT  | GTC' | TCA | ACA | AGG      | TAA | CGT | GCC | AAC      | AC |      |
| GTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTA  1321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |     |     |     |      |       |          |          |      |      |      |      |      |     |     |          |     |     |     |          |    |      |
| GTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTA  1321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     | V   | D   | K   | L    | G     | R        | С        | K    | R    | D    | D    | F    | v   | E   | G        | L   | s   | F   | A        | R  | 457  |
| CACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT  CP-22.10  S G G N W E E C F A * ECO RI 467  GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA  1381                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | GT  | GT: | TGA | CAA | GTT  | 'GGG' | TAG.     | ATG      | TAA  | GAG. | AGA  | CGA  | CTT  | CGT | TGA | AGG      | TTT | GTÇ | TTT | CGC      | TA |      |
| S G G N W E E C F A * Eco RI 467  GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA  1381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1321 |     |     |     | +   |      |       |          | +        |      |      | -+-  |      |      | +   |     |          |     | +   |     | <b>-</b> | -+ | 1380 |
| S G G N W E E C F A * Eco RI 467  GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA  1381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | CA  | CA  | ACT | GTT | 'CAA | CCC   | ATC      | TAC      | ATT  | CTC  | TCT  | GCT  | GAA  | GCA | ACT | TCC      | AAA | CAG | AAA | GCG      | ΑT |      |
| GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA  1381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |     |     |     |      |       |          |          |      |      |      |      |      |     |     | С        | P-2 | 2.1 | 0   |          |    |      |
| GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA  1381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 1   | s   | G   | G   | N    | W     | E        | E        | C    | F    | A    | *    | Ec   | o R | I   | _        | 4   | 67  | _   |          |    |      |
| 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |     |     |     |      |       |          |          |      |      |      |      |      |     |     |          |     |     |     |          |    |      |
| CTAGACCACCATTGACCCTTCTTACAAAGCGAATTCTTAAGTATAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1381 |     |     |     | +   |      |       | <b>-</b> | +        |      |      | -+-  |      |      | +   |     |          | 14  | 26  |     |          |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | CT. | AG  | ACC | ACC | ATT  | GAC   | CCT      | TCT      | TAC  | AAA  | GCG. | AAT' | TCT: | TAA | GTA | TAT      |     |     |     |          |    |      |

|                                              |                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | involutus (phyA1)                                                                                                                                                                                                                                                | ~~~~~~~                                                                                                                                                                                                                                | ~FPipeseqR                                                                                                                                                                                                                                                                                  | nWSPYSPYFP                                                                                                                                                                                                                                               | LAEykA                                                                                                                                                                                                                       | pPaGCQInqV                                                                                                                                                                                                                                                                                                                     |
|                                              | involutus (phyA2)                                                                                                                                                                                                                                                | ~~~~~~~                                                                                                                                                                                                                                | ~FsipeseqR                                                                                                                                                                                                                                                                                  | nWSPYSPYFP                                                                                                                                                                                                                                               | LAEykA                                                                                                                                                                                                                       | pPaGCeInqV                                                                                                                                                                                                                                                                                                                     |
|                                              | pubescens                                                                                                                                                                                                                                                        | ~~~~~~~                                                                                                                                                                                                                                | ~LDvtRDVqQ                                                                                                                                                                                                                                                                                  | sWSmYSPYFP                                                                                                                                                                                                                                               | aAtyvA                                                                                                                                                                                                                       | pPaSCQInqV                                                                                                                                                                                                                                                                                                                     |
|                                              | pediades                                                                                                                                                                                                                                                         | ~~~~~~~                                                                                                                                                                                                                                | ~pffpPQIqD                                                                                                                                                                                                                                                                                  | sWAaYTPYYP                                                                                                                                                                                                                                               | VqAyTP                                                                                                                                                                                                                       | pPKDCKITqV                                                                                                                                                                                                                                                                                                                     |
| P.                                           | lycii                                                                                                                                                                                                                                                            | ~~~~~~~                                                                                                                                                                                                                                | ~LPipAQnTs                                                                                                                                                                                                                                                                                  | nWGPYdPFFP                                                                                                                                                                                                                                               | VEpyAA                                                                                                                                                                                                                       | pPEGCtVTqV                                                                                                                                                                                                                                                                                                                     |
| A.                                           | terreus 9al                                                                                                                                                                                                                                                      | KhadCNSVDh                                                                                                                                                                                                                             | GYQCfPELSH                                                                                                                                                                                                                                                                                  | <b>kWGlyapyfs</b>                                                                                                                                                                                                                                        | LqDESPFPlD                                                                                                                                                                                                                   | VPEDCHITFV                                                                                                                                                                                                                                                                                                                     |
| Α.                                           | terreus cbs                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          | LqDESPFPlD                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                |
| A.                                           | niger var. awamori                                                                                                                                                                                                                                               | NqsTCDTVDq                                                                                                                                                                                                                             | GYQCfSEtSH                                                                                                                                                                                                                                                                                  | LWGQYAPFFS                                                                                                                                                                                                                                               | LANESAISPD                                                                                                                                                                                                                   | VPaGCRVTFa                                                                                                                                                                                                                                                                                                                     |
| A.                                           | niger T213                                                                                                                                                                                                                                                       | NqsSCDTVDq                                                                                                                                                                                                                             | GYQCfSEtSH                                                                                                                                                                                                                                                                                  | LWGQYAPFFS                                                                                                                                                                                                                                               | LANESvISPD                                                                                                                                                                                                                   | VPaGCRVTFa                                                                                                                                                                                                                                                                                                                     |
| A.                                           | niger NRRL3135                                                                                                                                                                                                                                                   | NqsSCDTVDq                                                                                                                                                                                                                             | GYQCfSEtSH                                                                                                                                                                                                                                                                                  | LWGQYAPFFS                                                                                                                                                                                                                                               | LANESVISPE                                                                                                                                                                                                                   | VPaGCRVTFa                                                                                                                                                                                                                                                                                                                     |
| А.                                           | fumigatus ATCC13073                                                                                                                                                                                                                                              | GSkSCDTVDl                                                                                                                                                                                                                             | GYQCsPAtSH                                                                                                                                                                                                                                                                                  | LWGQYSPFFS                                                                                                                                                                                                                                               | LEDElSVSSK                                                                                                                                                                                                                   | LPKDCRITLV                                                                                                                                                                                                                                                                                                                     |
| A.                                           | fumigatus ATCC32722                                                                                                                                                                                                                                              | GSkSCDTVD1                                                                                                                                                                                                                             | GYQCsPAtSH                                                                                                                                                                                                                                                                                  | LWGQYSPFFS                                                                                                                                                                                                                                               | LEDElSVSSK                                                                                                                                                                                                                   | LPKDCRITLV                                                                                                                                                                                                                                                                                                                     |
| Α.                                           | fumigatus ATCC58128                                                                                                                                                                                                                                              | GSkSCDTVD1                                                                                                                                                                                                                             | GYQCsPAtSH                                                                                                                                                                                                                                                                                  | LWGQYSPFFS                                                                                                                                                                                                                                               | LEDELSVSSK                                                                                                                                                                                                                   | LPKDCRITLV                                                                                                                                                                                                                                                                                                                     |
| A.                                           | fumigatus ATCC26906                                                                                                                                                                                                                                              | GSkSCDTVD1                                                                                                                                                                                                                             | GYQCsPAtSH                                                                                                                                                                                                                                                                                  | LWGQYSPFFS                                                                                                                                                                                                                                               | LEDElSVSSK                                                                                                                                                                                                                   | LPKDCRITLV                                                                                                                                                                                                                                                                                                                     |
| Α.                                           | fumigatus ATCC32239                                                                                                                                                                                                                                              | GSkACDTVEl                                                                                                                                                                                                                             | GYQCsPGtSH                                                                                                                                                                                                                                                                                  | LWGQYSPFFS                                                                                                                                                                                                                                               | LEDElSVSSD                                                                                                                                                                                                                   | LPKDCRVTFV                                                                                                                                                                                                                                                                                                                     |
| E .                                          | nidulans                                                                                                                                                                                                                                                         | QNHSCNTaDg                                                                                                                                                                                                                             | GYQCfPNVSH                                                                                                                                                                                                                                                                                  | VWGQYSPYFS                                                                                                                                                                                                                                               | IEQESAISeD                                                                                                                                                                                                                   | VPhGCeVTFV                                                                                                                                                                                                                                                                                                                     |
| T.                                           | thermophilus                                                                                                                                                                                                                                                     | DSHSCNTVEg                                                                                                                                                                                                                             | GYQCrPEISH                                                                                                                                                                                                                                                                                  | sWGQYSPFFS                                                                                                                                                                                                                                               | LADQSEISPD                                                                                                                                                                                                                   | VPQNCKITFV                                                                                                                                                                                                                                                                                                                     |
| T.                                           | lanuginosus                                                                                                                                                                                                                                                      | ~~~~~~~                                                                                                                                                                                                                                | ~ ~~~nvDIA                                                                                                                                                                                                                                                                                  | R hwgqyspff:                                                                                                                                                                                                                                             | S LAEVSEISPA                                                                                                                                                                                                                 | A VPKGCRVeFV                                                                                                                                                                                                                                                                                                                   |
| М.                                           | thermophila                                                                                                                                                                                                                                                      | ESRPCDTpD1                                                                                                                                                                                                                             | GFQCgTAISH                                                                                                                                                                                                                                                                                  | FWGQYSPYFS                                                                                                                                                                                                                                               | VPsElDaS                                                                                                                                                                                                                     | IPDDCeVTFa                                                                                                                                                                                                                                                                                                                     |
|                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |
| Cor                                          | nsensus Seq. 11                                                                                                                                                                                                                                                  | NSHSCDTVD-                                                                                                                                                                                                                             | GYQC-PEISH                                                                                                                                                                                                                                                                                  | LWGQYSPFFS                                                                                                                                                                                                                                               | LADESAISPD                                                                                                                                                                                                                   | VPKGCRVTFV                                                                                                                                                                                                                                                                                                                     |
|                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                  | 51                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                            |
|                                              | involutus (phyA1)                                                                                                                                                                                                                                                | NIIqRHGARF                                                                                                                                                                                                                             | PTSGaTtRik                                                                                                                                                                                                                                                                                  | AgLtKLQgvq                                                                                                                                                                                                                                               | nftDAKFnFI                                                                                                                                                                                                                   | KSFKYdLGns                                                                                                                                                                                                                                                                                                                     |
| P.                                           | involutus (phyA2)                                                                                                                                                                                                                                                | NIIQRHGARF<br>NIIQRHGARF                                                                                                                                                                                                               | PTSGaAtRik                                                                                                                                                                                                                                                                                  | AgLsKLQsvq                                                                                                                                                                                                                                               | nftDPKFDFI                                                                                                                                                                                                                   | KSFKYdLGns<br>KSFtYdLGTs                                                                                                                                                                                                                                                                                                       |
| r.                                           | involutus (phyA2)<br>pubescens                                                                                                                                                                                                                                   | NIIQRHGARF<br>NIIQRHGARF<br>HIIQRHGARF                                                                                                                                                                                                 | PTSGaAtRik<br>PTSGaAKRiq                                                                                                                                                                                                                                                                    | AgLsKLQsvq<br>TaVAKLKaaS                                                                                                                                                                                                                                 | nftDPKFDFI<br>nytDPlLAFV                                                                                                                                                                                                     | KSFKYdLGns<br>KSFtYdLGTs<br>tnYtYSLGqD                                                                                                                                                                                                                                                                                         |
| P.<br>T.<br>A.                               | involutus (phyA2)<br>pubescens<br>pediades                                                                                                                                                                                                                       | NIIQRHGARF<br>NIIQRHGARF<br>HIIQRHGARF<br>NIIQRHGARF                                                                                                                                                                                   | PTSGaAtRik<br>PTSGaAKRiq<br>PTSGaGtRiq                                                                                                                                                                                                                                                      | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak                                                                                                                                                                                                                   | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL                                                                                                                                                                                       | KSFKYdLGns<br>KSFtYdLGTs<br>tnYtYSLGqD<br>tnYtYTLGhD                                                                                                                                                                                                                                                                           |
| P.<br>T.<br>A.<br>P.                         | involutus (phyA2)<br>pubescens<br>pediades<br>lycii                                                                                                                                                                                                              | NIIQRHGARF<br>NIIQRHGARF<br>HIIQRHGARF<br>NIIQRHGARF<br>NLIQRHGARW                                                                                                                                                                     | PTSGaAtRik<br>PTSGaAKRiq<br>PTSGaGtRiq<br>PTSGarsRqv                                                                                                                                                                                                                                        | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar                                                                                                                                                                                                     | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL                                                                                                                                                                         | KSFKYdLGns<br>KSFtYdLGTs<br>tnYtYSLGqD<br>tnYtYTLGhD<br>NdFvYkFGvA                                                                                                                                                                                                                                                             |
| P.<br>T.<br>A.<br>P.                         | involutus (phyA2) pubescens pediades lycii terreus 9al                                                                                                                                                                                                           | NIIQRHGARF<br>NIIQRHGARF<br>HIIQRHGARF<br>NIIQRHGARW<br>QVLARHGARS                                                                                                                                                                     | PTSGaAtRik<br>PTSGaAKRiq<br>PTSGaGtRiq<br>PTSGarsRqv<br>PThSKTKaYA                                                                                                                                                                                                                          | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA                                                                                                                                                                                       | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL                                                                                                                                                           | KSFKYdLGns<br>KSFtYdLGTs<br>tnYtYSLGqD<br>tnYtYTLGhD<br>NdFvYkFGvA<br>QSYNYSLDSE                                                                                                                                                                                                                                               |
| P.<br>T.<br>A.<br>P.<br>A.                   | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs                                                                                                                                                                                               | NIIQRHGARF<br>NIIQRHGARF<br>HIIQRHGARF<br>NIIQRHGARF<br>NLIQRHGARW<br>QVLARHGARS<br>QVLARHGARS                                                                                                                                         | PTSGaAtrik<br>PTSGaAKriq<br>PTSGaGtriq<br>PTSGarsRqv<br>PThSKTKaYA<br>PTdSKTKaYA                                                                                                                                                                                                            | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA<br>AtIAaIQKNA                                                                                                                                                                         | nftDPKFDFI<br>nytDP1LAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TaLpGKYAFL                                                                                                                                             | KSFKYdLGns KSFtYdLGTs tnYtYSLGqD tnYtYTLGhD NdFvYkFGvA QSYNYSLDSE KSYNYSMGSE                                                                                                                                                                                                                                                   |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.             | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori                                                                                                                                                                            | NIIQRHGARF<br>NIIQRHGARF<br>HIIQRHGARF<br>NIIQRHGARW<br>QVLARHGARS<br>QVLARHGARS<br>QVLARHGARS                                                                                                                                         | PTSGaAtrik<br>PTSGaAKRiq<br>PTSGaGtriq<br>PTSGarsRqv<br>PThSKTKaYA<br>PTGSKTKAYA<br>PTGSKGKKYS                                                                                                                                                                                              | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA<br>AtIAaIQKNA<br>ALIEeIQQNv                                                                                                                                                           | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TaLpGKYAFL<br>TtFDGKYAFL                                                                                                                               | KSFKYdLGns KSFtYdLGTs tnYtYSLGqD tnYtYTLGhD NdFvYkFGvA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD                                                                                                                                                                                                                                        |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.             | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213                                                                                                                                                                 | NIIQRHGARF<br>NIIQRHGARF<br>HIIQRHGARF<br>NIIQRHGARW<br>QVLARHGARS<br>QVLARHGARS<br>QVLARHGARY<br>QVLSRHGARY                                                                                                                           | PTSGaAtrik<br>PTSGaAKRiq<br>PTSGaGtriq<br>PTSGarsRqv<br>PThSKTKaYA<br>PTGSKTKAYA<br>PTESKGKKYS<br>PTESKGKKYS                                                                                                                                                                                | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA<br>AtIAaIQKNA<br>ALIEEIQQNv<br>ALIEEIQQNv                                                                                                                                             | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TaLpGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL                                                                                                                 | KSFKYdLGns KSFtYdLGTs tnYtYSLGqD tnYtYTLGhD NdFvYkFGvA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD                                                                                                                                                                                                                             |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.<br>A.       | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135                                                                                                                                                  | NIIQRHGARF<br>NIIQRHGARF<br>HIIQRHGARF<br>NIIQRHGARW<br>QVLARHGARS<br>QVLARHGARS<br>QVLSRHGARY<br>QVLSRHGARY<br>QVLSRHGARY                                                                                                             | PTSGaAtrik<br>PTSGaAKRiq<br>PTSGaGtriq<br>PTSGarsRqv<br>PThSKTKAYA<br>PTGSKTKAYA<br>PTESKGKKYS<br>PTESKGKKYS<br>PTGSKGKKYS                                                                                                                                                                  | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA<br>AtIAaIQKNA<br>ALIEEIQQNv<br>ALIEEIQQNv<br>ALIEEIQQNA                                                                                                                               | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TaLpGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL                                                                                                                 | KSFKYdLGns KSFtYdLGTs tnYtYSLGqD tnYtYTLGhD NdFvYkFGvA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD                                                                                                                                                                                                                  |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.<br>A.<br>A. | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073                                                                                                                              | NIIQRHGARF<br>NIIQRHGARF<br>HIIQRHGARF<br>NIIQRHGARW<br>QVLARHGARS<br>QVLARHGARS<br>QVLSRHGARY<br>QVLSRHGARY<br>QVLSRHGARY<br>QVLSRHGARY<br>QVLSRHGARY                                                                                 | PTSGaAtrik<br>PTSGaAKRiq<br>PTSGaGtriq<br>PTSGarsRqv<br>PTHSKTKAYA<br>PTGSKTKAYA<br>PTGSKGKKYS<br>PTGSKGKKYS<br>PTGSKGKKYS<br>PTGSKGKKYS                                                                                                                                                    | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA<br>AtIAaIQKNA<br>ALIEEIQQNv<br>ALIEEIQQNv<br>ALIEEIQQNA<br>kLVtaIQaNA                                                                                                                 | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TaLpGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL                                                                                     | KSFKYdLGns KSFtYdLGTs tnYtYSLGqD tnYtYTLGhD NdFvYkFGvA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD                                                                                                                                                                                                       |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.       | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722                                                                                                          | NIIQRHGARF NIIQRHGARF HIIQRHGARF NIIQRHGARW QVLARHGARS QVLARHGARS QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY                                                                                         | PTSGaAtrik PTSGaAKRiq PTSGaGtriq PTSGarsrqv PThSKTKAYA PTGSKTKAYA PTESKGKKYS PTESKGKKYS PTGSKGKKYS PTSSKSKKYK PTSSKSKKYK                                                                                                                                                                    | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA<br>AtIAaIQKNA<br>ALIEEIQQNV<br>ALIEEIQQNV<br>ALIEEIQQNA<br>kLVtaIQANA<br>kLVtaIQANA                                                                                                   | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TaFDGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TdFKGKFAFL<br>TdFKGKFAFL                                                                       | KSFKYdLGns KSFtYdLGTs tnYtYSLGqD tnYtYTLGhD NdFvYkFGvA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYTLGAD KTYNYTLGAD                                                                                                                                                                                 |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.<br>A. | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128                                                                                      | NIIQRHGARF NIIQRHGARF HIIQRHGARF NIIQRHGARW QVLARHGARS QVLARHGARS QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY                                                                                         | PTSGaAtrik PTSGaAKRiq PTSGaGtRiq PTSGarsRqv PThSKTKAYA PTGSKKKYS PTESKGKKYS PTGSKGKKYS PTSSKSKKYk PTSSKSKKYk                                                                                                                                                                                | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA<br>AtIAaIQKNA<br>ALIEEIQQNV<br>ALIEEIQQNV<br>ALIEEIQQNA<br>kLVtaIQaNA<br>kLVtaIQaNA<br>kLVtaIQANA                                                                                     | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TtFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL                                                                       | KSFKYdLGns KSFTYdLGTS tnYtYSLGQD tnYtYTLGhD NdFvYkFGvA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD                                                                                                                                                                                 |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.<br>A. | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906                                                                  | NIIQRHGARF NIIQRHGARF HIIQRHGARF NIIQRHGARW QVLARHGARS QVLARHGARS QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY QVLSRHGARY                                                                   | PTSGaAtrik PTSGaAKRiq PTSGaGtRiq PTSGarsRqv PThSKTKAYA PTGSKKKYS PTESKGKKYS PTGSKGKKYS PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK                                                                                                                                                                     | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA<br>AtIAaIQKNA<br>ALIEEIQQNv<br>ALIEEIQQNV<br>ALIEEIQQNA<br>kLVtaIQANA<br>kLVtaIQANA<br>kLVtaIQANA<br>kLVtaIQANA                                                                       | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL                                                         | KSFKYdLGns KSFTYDLGTS TNYTYSLGQD TNYTYTLGHD NDFVYKFGVA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD                                                                                                                                                           |
| P. A. A. A. A. A. A. A. A.                   | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC3239                                               | NIIqRHGARF NIIqRHGARF HIIQRHGARF NIIQRHGARW QVLARHGARS QVLARHGARS QVLSRHGARY                                                        | PTSGaAtrik PTSGaAKRiq PTSGaGtRiq PTSGarsRqv PThSKTKAYA PTGSKKKYS PTESKGKKYS PTESKGKKYS PTSSKSKKYk PTSSKSKKYk PTSSKSKKYk PTSSKSKKYk                                                                                                                                                          | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA<br>AtIAaIQKNA<br>ALIEEIQQNv<br>ALIEEIQQNV<br>ALIEEIQQNA<br>kLVtaIQANA<br>kLVtaIQANA<br>kLVtaIQANA<br>kLVtaIQANA<br>kLVtaIQANA<br>kLVtaIQANA                                           | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TaLPGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL                                           | KSFKYdLGns KSFTYDLGTS tnYTYSLGQD tnYTYTLGhD NDFYYKFGVA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD                                                                                                                                                           |
| P. T. A. P. A. A. A. A. A. A. E.             | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans                                     | NIIQRHGARF NIIQRHGARF HIIQRHGARF NIIQRHGARW QVLARHGARS QVLSRHGARY                                             | PTSGaAtrik PTSGaAKRiq PTSGaGtRiq PTSGarsRqv PThSKTKAYA PTGSKKKYS PTESKGKKYS PTESKGKKYS PTSSKSKKYk PTSSKSKKYk PTSSKSKKYk PTSSKSKKYk PTSSKSKKYk                                                                                                                                               | AgLsKLQsvq<br>TaVAKLKaaS<br>AaVKKLQsak<br>AaVAKIQmar<br>AtIAaIQKSA<br>AtIAaIQKNA<br>ALIEEIQQNV<br>ALIEEIQQNV<br>ALIEEIQQNA<br>kLVtaIQANA<br>kLVtaIQANA<br>kLVtaIQANA<br>kLVtaIQANA<br>kLVtaIQANA<br>kLVtaIQANA<br>KLVtaIQANA<br>KLVtaIQKNA<br>GLIEAIQKNA | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TaLPGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL               | KSFKYdLGns KSFTYDLGTS tnYTYSLGQD tnYTYTLGhD NDFYYKFGVA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD ETYNYTLGAD                                                                                                                                                |
| P. T. A. P. A. A. A. A. A. T.                | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans thermophilus                        | NIIQRHGARF NIIQRHGARF HIIQRHGARF NIIQRHGARW QVLARHGARS QVLARHGARS QVLSRHGARY                       | PTSGaAtrik PTSGaAKRiq PTSGaGtriq PTSGarsrqv PThSKTKAYA PTGSKKKYS PTGSKGKKYS PTGSKGKKYS PTSSKSKKYk PTSSKSKKYk PTSSKSKKYk PTSSKSKKYk PTSSKSKKYk PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK                                                                                                              | AgLsKLQsvq TaVAKLKaaS AaVKKLQsak AaVAKIQmar AtIAaIQKSA AtIAaIQKNA ALIEEIQQNv ALIEEIQQNv ALIEEIQQNA kLVtaIQANA kLVtaIQANA kLVtaIQANA kLVtaIQANA kLVtaIQANA kLVtaIQANA CLIEAIQKNA qLISRIQKNA                                                               | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TaLPGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TaFKGKFAFL | KSFKYdLGns KSFTYDLGTS tnYtYSLGQD tnYtYTLGhD NdFVYKFGVA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD ETYNYTLGAD ETYNYTLGAD ESYNYTLGAD KGYTYDLGAD KGYTYTLGAD                                                                                                               |
| P. T. A. A. A. A. A. A. T.                   | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans thermophilus lanuginosus            | NIIQRHGARF NIIQRHGARF HIIQRHGARF HIIQRHGARF NIIQRHGARW QVLARHGARS QVLARHGARS QVLSRHGARY                       | PTSGAALRIK PTSGAAKRIQ PTSGAGTRIQ PTSGATSRQV PTHSKTKAYA PTGSKTKAYA PTGSKGKKYS PTGSKGKKYS PTSSKSKKYK                                                                            | AgLsKLQsvq TaVAKLKaaS AaVKKLQsak AaVAKIQmar AtIAaIQKSA AtIAaIQKNA ALIEEIQQNv ALIEEIQQNv ALIEEIQQNA kLVtaIQANA kLVtaIQANA kLVtaIQANA kLVtaIQANA GLIEAIQKNA qLISRIQKTA                                                                                     | nftDPKFDFI nytDPlLAFV TytDPRLDFL PftDPKYEFL TaFpGKYAFL TatpGKYAFL TtFDGKYAFL TtFDGKYAFL TtFDGKYAFL TdFKGKFAFL TdFKGKFAFL TdFKGKFAFL TdFKGKFAFL TGFKGKFAFL TEFKGKFAFL TEFKGKFAFL                                              | KSFKYdLGns KSFTYDLGTS TNYTYSLGQD TNYTYTLGHD NDFVYKFGVA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD ETYNYTLGAD ETYNYTLGAD KTYNYTLGAD                                  |
| P. T. A. A. A. A. A. A. T.                   | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans thermophilus                        | NIIQRHGARF NIIQRHGARF HIIQRHGARF HIIQRHGARF NIIQRHGARW QVLARHGARS QVLARHGARS QVLSRHGARY                       | PTSGAALRIK PTSGAAKRIQ PTSGAGTRIQ PTSGATSRQV PTHSKTKAYA PTGSKTKAYA PTGSKGKKYS PTGSKGKKYS PTSSKSKKYK                                                                            | AgLsKLQsvq TaVAKLKaaS AaVKKLQsak AaVAKIQmar AtIAaIQKSA AtIAaIQKNA ALIEEIQQNv ALIEEIQQNv ALIEEIQQNA kLVtaIQANA kLVtaIQANA kLVtaIQANA kLVtaIQANA GLIEAIQKNA qLISRIQKTA                                                                                     | nftDPKFDFI<br>nytDPlLAFV<br>TytDPRLDFL<br>PftDPKYEFL<br>TaFpGKYAFL<br>TaLPGKYAFL<br>TtFDGKYAFL<br>TtFDGKYAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TdFKGKFAFL<br>TaFKGKFAFL | KSFKYdLGns KSFTYDLGTS TNYTYSLGQD TNYTYTLGHD NDFVYKFGVA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD ETYNYTLGAD ETYNYTLGAD KTYNYTLGAD                                  |
| P. T. A. A. A. A. A. A. T. M.                | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC58128 fumigatus ATCC58128 fumigatus ATCC32722 fumigatus ATCC3239 nidulans thermophilus lanuginosus thermophila | NIIQRHGARF NIIQRHGARF HIIQRHGARF HIIQRHGARF NIIQRHGARW QVLARHGARS QVLARHGARS QVLSRHGARY | PTSGAALRIK PTSGAAKRIQ PTSGAGTRIQ PTSGATSRQV PTHSKTKAYA PTGSKKKYS PTGSKGKKYS PTGSKGKKYS PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKYK PTSSKSKYK PTSSKSKYK PTSSKSKYK PTASKSKYK PTSKSKYK PTSKSKYK PTASKSKYK PTASKSKYY PTAKSEVYP PTIKRAASYV | AgLsKLQsvq TaVAKLKaaS AaVKKLQsak AaVAKIQmar AtIAaIQKSA AtIAaIQKNA ALIEEIQQNv ALIEEIQQNv ALIEEIQQNA kLVtaIQANA kLVtaIQANA kLVtaIQANA kLVtaIQKNA GLIEAIQKNA GLIEAIQKNA QLISRIQKTA DLIDRIHHGA                                                               | nftDPKFDFI nytDPlLAFV TytDPRLDFL PftDPKYEFL TaFpGKYAFL TaLpGKYAFL TtFDGKYAFL TtFDGKYAFL TtFDGKYAFL TdFKGKFAFL TdFKGKFAFL TdFKGKFAFL TdFKGKFAFL TGFKGKFAFL TEFKGKFAFL TEFKGKFAFL TEFKGKFAFL TSFWGQYAFL TAYKGYYAFL TEFKGDFAFL  | KSFKYdLGns KSFKYdLGns KSFtYdLGTs tnytYSLGqD tnytYTLGhD NdFvYkFGvA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD ETYNYTLGAD ETYNYTLGAD KTYNYTLGAD |
| P. T. A. A. A. A. A. A. T. M.                | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans thermophilus lanuginosus            | NIIQRHGARF NIIQRHGARF HIIQRHGARF HIIQRHGARF NIIQRHGARW QVLARHGARS QVLARHGARS QVLSRHGARY | PTSGAALRIK PTSGAAKRIQ PTSGAGTRIQ PTSGATSRQV PTHSKTKAYA PTGSKKKYS PTGSKGKKYS PTGSKGKKYS PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKKYK PTSSKSKYK PTSSKSKYK PTSSKSKYK PTSSKSKYK PTASKSKYK PTSKSKYK PTSKSKYK PTASKSKYK PTASKSKYY PTAKSEVYP PTIKRAASYV | AgLsKLQsvq TaVAKLKaaS AaVKKLQsak AaVAKIQmar AtIAaIQKSA AtIAaIQKNA ALIEEIQQNv ALIEEIQQNv ALIEEIQQNA kLVtaIQANA kLVtaIQANA kLVtaIQANA kLVtaIQKNA GLIEAIQKNA GLIEAIQKNA QLISRIQKTA DLIDRIHHGA                                                               | nftDPKFDFI nytDPlLAFV TytDPRLDFL PftDPKYEFL TaFpGKYAFL TatpGKYAFL TtFDGKYAFL TtFDGKYAFL TtFDGKYAFL TdFKGKFAFL TdFKGKFAFL TdFKGKFAFL TdFKGKFAFL TGFKGKFAFL TEFKGKFAFL TEFKGKFAFL                                              | KSFKYdLGns KSFKYdLGns KSFtYdLGTs tnytYSLGqD tnytYTLGhD NdFvYkFGvA QSYNYSLDSE KSYNYSMGSE KTYNYSLGAD KTYNYSLGAD KTYNYSLGAD KTYNYTLGAD KTYNYTLGAD KTYNYTLGAD ETYNYTLGAD ETYNYTLGAD KTYNYTLGAD |

|                                                    |                                                                                                                                                                                                                                               | 101                                                                                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D                                                  | involutus (phyA1)                                                                                                                                                                                                                             |                                                                                                                                                                                                          | fD3C~PoPoP                                                                                                                                                                               | V-1-7 0101-1                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          | 150                                                                                                                                                                                                                                                                                                                                   |
|                                                    | involutus (phyA2)                                                                                                                                                                                                                             | DIVERGRACE                                                                                                                                                                                               | EDAGGEARAR                                                                                                                                                                               | ISKLVSKNIL                                                                                                                                                                                                                                     | PFIRAdGSDR                                                                                                                                                                                                                                               | VVDSAtNWtA                                                                                                                                                                                                                                                                                                                            |
|                                                    | pubescens                                                                                                                                                                                                                                     | CITCL CAROS                                                                                                                                                                                              | TDAGLEVFAR                                                                                                                                                                               | ISKLVSSDIL                                                                                                                                                                                                                                     | PFIRSdGSDR                                                                                                                                                                                                                                               | VVDTAENWEA                                                                                                                                                                                                                                                                                                                            |
|                                                    | pediades                                                                                                                                                                                                                                      | PI **DECK!O*                                                                                                                                                                                             | seaGqeartr                                                                                                                                                                               | restvsabet                                                                                                                                                                                                                                     | PFVRASGSDR                                                                                                                                                                                                                                               | VVATANNWtA                                                                                                                                                                                                                                                                                                                            |
|                                                    | -                                                                                                                                                                                                                                             | DLVPFGAIQS                                                                                                                                                                                               | BOAGEEFOR                                                                                                                                                                                | YSILVSKENL                                                                                                                                                                                                                                     | PFVRASSSNR                                                                                                                                                                                                                                               | VVDSAtNWtE                                                                                                                                                                                                                                                                                                                            |
|                                                    | lycii                                                                                                                                                                                                                                         | DLIPFGANQS                                                                                                                                                                                               | notgedmyer                                                                                                                                                                               | YsTLfEgGdV                                                                                                                                                                                                                                     | PFVRAAGdQR                                                                                                                                                                                                                                               | VVDSStNWtA                                                                                                                                                                                                                                                                                                                            |
|                                                    | terreus 9al                                                                                                                                                                                                                                   | ELTPFGrNQL                                                                                                                                                                                               | rDlGaQFYeR                                                                                                                                                                               | YNAL.TRHIn                                                                                                                                                                                                                                     | PFVRATDAsR                                                                                                                                                                                                                                               | Vhesaekfve                                                                                                                                                                                                                                                                                                                            |
|                                                    | terreus cbs                                                                                                                                                                                                                                   | NLTPFGrNQL                                                                                                                                                                                               | qD1GaQFYRR                                                                                                                                                                               | YDTL.TRHIn                                                                                                                                                                                                                                     | PFVRAADSsR                                                                                                                                                                                                                                               | Vhesaekfve                                                                                                                                                                                                                                                                                                                            |
|                                                    | niger var. awamori                                                                                                                                                                                                                            | DLTPFGEQEL                                                                                                                                                                                               | VNSGIKFYQR                                                                                                                                                                               | YESL.TRNII                                                                                                                                                                                                                                     | PFIRSSGSsR                                                                                                                                                                                                                                               | VIASGEKFIE                                                                                                                                                                                                                                                                                                                            |
|                                                    | niger T213                                                                                                                                                                                                                                    | DLTPFGEQEL                                                                                                                                                                                               | VNSGIKFYQR                                                                                                                                                                               | YESL.TRNII                                                                                                                                                                                                                                     | PFIRSSGSsR                                                                                                                                                                                                                                               | VIASGEKFIE                                                                                                                                                                                                                                                                                                                            |
|                                                    | niger NRRL3135                                                                                                                                                                                                                                | DLTPFGEQEL                                                                                                                                                                                               | VNSGIKFYQR                                                                                                                                                                               | YESL.TRNIV                                                                                                                                                                                                                                     | PFIRSSGSsR                                                                                                                                                                                                                                               | VIASGKKFIE                                                                                                                                                                                                                                                                                                                            |
|                                                    | fumigatus ATCC13073                                                                                                                                                                                                                           | DLTPFGEQQL                                                                                                                                                                                               | VNSGIKFYQR                                                                                                                                                                               | YKAL.ARSVV                                                                                                                                                                                                                                     | PFIRASGSDR                                                                                                                                                                                                                                               | VIASGEKFIE                                                                                                                                                                                                                                                                                                                            |
| Α.                                                 | fumigatus ATCC32722                                                                                                                                                                                                                           | DLTPFGEQQL                                                                                                                                                                                               | VNSGIKFYOR                                                                                                                                                                               | YKAL.ARSVV                                                                                                                                                                                                                                     | PFIRASGSDR                                                                                                                                                                                                                                               | VIASGEKFIE                                                                                                                                                                                                                                                                                                                            |
| Α.                                                 | fumigatus ATCC58128                                                                                                                                                                                                                           | DLTPFGEQQL                                                                                                                                                                                               | VNSGIKFYQR                                                                                                                                                                               | YKAL.ARSVV                                                                                                                                                                                                                                     | PFIRASGSDR                                                                                                                                                                                                                                               | VIASGEKFIE                                                                                                                                                                                                                                                                                                                            |
| Α.                                                 | fumigatus ATCC26906                                                                                                                                                                                                                           | DLTAFGEQQL                                                                                                                                                                                               | VNSGIKFYQR                                                                                                                                                                               | YKAL.ARSVV                                                                                                                                                                                                                                     | PFIRASGSDR                                                                                                                                                                                                                                               | VIASGEKFIE                                                                                                                                                                                                                                                                                                                            |
| A.                                                 | fumigatus ATCC32239                                                                                                                                                                                                                           | DLTPFGEQQM                                                                                                                                                                                               | VNSGIKFYQK                                                                                                                                                                               | YKAL.AqSVV                                                                                                                                                                                                                                     | PFIRSSGSDR                                                                                                                                                                                                                                               | VIASGEKFIE                                                                                                                                                                                                                                                                                                                            |
| E.                                                 | nidulans                                                                                                                                                                                                                                      | DLTiFGENQM                                                                                                                                                                                               | VDSGaKFYRR                                                                                                                                                                               | YKnL.ARKnt                                                                                                                                                                                                                                     | PFIRASGSDR                                                                                                                                                                                                                                               | VVASAEKETN                                                                                                                                                                                                                                                                                                                            |
| T.                                                 | thermophilus                                                                                                                                                                                                                                  | DLTPFGENQM                                                                                                                                                                                               | IQlGIKFYnH                                                                                                                                                                               | YKSL.ARNaV                                                                                                                                                                                                                                     | PFVRCSGSDR                                                                                                                                                                                                                                               | VIASGr1FIE                                                                                                                                                                                                                                                                                                                            |
| T.                                                 | lanuginosus                                                                                                                                                                                                                                   | NLTRFGEEON                                                                                                                                                                                               | MESGrofyH                                                                                                                                                                                | R YREG ARETY                                                                                                                                                                                                                                   | / PFVRAAGSAF                                                                                                                                                                                                                                             | VIASAEfFnr                                                                                                                                                                                                                                                                                                                            |
| М.                                                 | thermophila                                                                                                                                                                                                                                   | ELTRtGOOOM                                                                                                                                                                                               | VNSGIKFYRR                                                                                                                                                                               | YRAL, ARKST                                                                                                                                                                                                                                    | PFVRTAGqDR                                                                                                                                                                                                                                               | Whearner                                                                                                                                                                                                                                                                                                                              |
|                                                    | -                                                                                                                                                                                                                                             |                                                                                                                                                                                                          |                                                                                                                                                                                          |                                                                                                                                                                                                                                                | r r vicinoqDic                                                                                                                                                                                                                                           | VVIISAENFCQ                                                                                                                                                                                                                                                                                                                           |
| Co                                                 | nsensus Seg. 11                                                                                                                                                                                                                               | DLTPFGENOM                                                                                                                                                                                               | VNSGIKFYRR                                                                                                                                                                               | YKAL-ARNTU                                                                                                                                                                                                                                     | PFVRASGSDR                                                                                                                                                                                                                                               | VTACADVDTD                                                                                                                                                                                                                                                                                                                            |
|                                                    | -                                                                                                                                                                                                                                             | _                                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          | ATUCKETE                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                                                                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                                                                                                          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                       |
|                                                    |                                                                                                                                                                                                                                               | 151                                                                                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                   |
| P.                                                 | involutus (phyA1)                                                                                                                                                                                                                             |                                                                                                                                                                                                          | shNtvaPk                                                                                                                                                                                 |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          | 200<br>PAaGD                                                                                                                                                                                                                                                                                                                          |
|                                                    | involutus (phyA1) involutus (phyA2)                                                                                                                                                                                                           | GFaSA                                                                                                                                                                                                    | shNtvqPk<br>srNaigPk                                                                                                                                                                     | LNLILPQT                                                                                                                                                                                                                                       | gNDTLEDNMC                                                                                                                                                                                                                                               | PAaGD                                                                                                                                                                                                                                                                                                                                 |
| P.                                                 |                                                                                                                                                                                                                                               | GFaSA                                                                                                                                                                                                    | srNaiqPk                                                                                                                                                                                 | LNLILPQT<br>LDLILPQT                                                                                                                                                                                                                           | gNDTLEDNMC                                                                                                                                                                                                                                               | PAaGD<br>PAaGE                                                                                                                                                                                                                                                                                                                        |
| P.<br>T.                                           | involutus (phyA2)                                                                                                                                                                                                                             | GFaSA<br>GFaSA<br>GFalA                                                                                                                                                                                  | srNaiqPk<br>ssNsiTPV                                                                                                                                                                     | LNLILPQT<br>LDLILPQT<br>LSVIISEA                                                                                                                                                                                                               | GNDTLEDNMC GNDTLEDNMC                                                                                                                                                                                                                                    | PAaGD<br>PAaGE<br>PAaGD                                                                                                                                                                                                                                                                                                               |
| P.<br>T.<br>A.                                     | involutus (phyA2)<br>pubescens                                                                                                                                                                                                                | GFaSA<br>GFaSA<br>GFalA                                                                                                                                                                                  | srNaiqPk<br>ssNsiTPV<br>shHvlNPI                                                                                                                                                         | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES                                                                                                                                                                                                   | GNDTLEDNMC<br>GNDTLEDNMC<br>GNDTLDDNMC<br>LNDTLDDAMC                                                                                                                                                                                                     | PAaGD PAaGE PAaGD PnaGs                                                                                                                                                                                                                                                                                                               |
| P.<br>T.<br>A.<br>P.                               | involutus (phyA2)<br>pubescens<br>pediades                                                                                                                                                                                                    | GFaSA GFalA GFsAA GFgdA                                                                                                                                                                                  | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt                                                                                                                                             | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE                                                                                                                                                                                       | gndtlednmc<br>gndtlednmc<br>gndtlddnmc<br>Lndtlddamc<br>gnctlcnnmc                                                                                                                                                                                       | PAaGD PAaGE PAaGD PnaGS PnevD                                                                                                                                                                                                                                                                                                         |
| P.<br>T.<br>A.<br>P.                               | involutus (phyA2) pubescens pediades lycii                                                                                                                                                                                                    | GFaSA GFaSA GFalA GFsAA GFgdA GFQTARqDDh                                                                                                                                                                 | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr                                                                                                                               | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVaIPEGSA                                                                                                                                                                         | gndtlednmc<br>gndtlednmc<br>gndtlddnmc<br>Lndtlddamc<br>gnctlcnnmc<br>ynntlehslc                                                                                                                                                                         | PAaGD PAaGE PAaGD PnaGs PnevD TAFEsST                                                                                                                                                                                                                                                                                                 |
| P.<br>T.<br>A.<br>P.<br>A.                         | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs                                                                                                                                                                            | GFaSA<br>GFalA<br>GFsAA<br>GFgdA<br>GFQTARqDDh<br>GFQNARqGDP                                                                                                                                             | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr<br>hAnpHQPSPr                                                                                                                 | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVaIPEGSA<br>VDVVIPEGTA                                                                                                                                                           | gndtlednmc<br>gndtlednmc<br>gndtlddnmc<br>Lndtlddamc<br>gnctlcnnmc<br>Ynntlehslc<br>Ynntlehslc                                                                                                                                                           | PAAGD PAAGE PAAGD PnaGs PnevD TAFESST                                                                                                                                                                                                                                                                                                 |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.                   | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori                                                                                                                                                         | GFaSA GFalA GFsAA GFgdA GFQTARqDDh GFQNARqGDP GFQSTKLkDP                                                                                                                                                 | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr<br>hAnpHQPSPr<br>rAqpgQSSPk                                                                                                   | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVaIPEGSA<br>VDVVIPEGTA<br>IDVVISEASS                                                                                                                                             | gndtlednmc<br>gndtlednmc<br>gndtlddnmc<br>Lndtlddamc<br>gnctlennmc<br>Ynntlehslc<br>Ynntlehslc<br>snntldpgtc                                                                                                                                             | PAAGD PAAGE PAAGD PnaGs PnevD TAFESST TAFEAST TVFEDSe                                                                                                                                                                                                                                                                                 |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.                   | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213                                                                                                                                              | GFaSA GFalA GFsAA GFgdA GFQTARqDDh GFQNARqGDP GFQSTKLkDP                                                                                                                                                 | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr<br>hAnpHQPSPr<br>rAqpgQSSPk<br>rAqpgQSSPk                                                                                     | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVAIPEGSA<br>VDVVIPEGTA<br>IDVVISEASS<br>IDVVISEASS                                                                                                                               | gndtlednmc<br>gndtlednmc<br>gndtlddnmc<br>Lndtlddamc<br>gnctlcnnmc<br>ynntlehslc<br>ynntlehslc<br>snntldpgtc<br>snntldpgtc                                                                                                                               | PAAGD PAAGE PAAGD PnaGs PnevD TAFESST TAFEAST TVFEDSe TVFEDSe                                                                                                                                                                                                                                                                         |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.<br>A.             | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135                                                                                                                               | GFaSA GFalA GFsAA GFgdA GFQTARqDDh GFQNARqGDP GFQSTKLkDP GFQSTKLkDP                                                                                                                                      | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr<br>hAnpHQPSPr<br>rAqpgQSSPk<br>rAqpgQSSPk<br>rAqpgQSSPk                                                                       | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVAIPEGSA<br>VDVVIPEGTA<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS                                                                                                                 | gndtlednmc<br>gndtlednmc<br>gndtlddnmc<br>Lndtlddamc<br>gnctlennmc<br>ynntlehslc<br>ynntlehslc<br>snntldpgtc<br>snntldpgtc<br>snntldpgtc                                                                                                                 | PAAGD PAAGE PAAGD PnaGs PnevD TAFESST TAFEAST TVFEDSe TVFEDSe                                                                                                                                                                                                                                                                         |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.<br>A.             | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073                                                                                                           | GFaSA GFaIA GFsAA GFgdA GFQTARqDDh GFQNARqGDP GFQSTKLkDP GFQSTKLkDP GFQSTKLkDP                                                                                                                           | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr<br>hAnpHQPSPr<br>rAqpgQSSPk<br>rAqpgQSSPk<br>rAqpgQSSPk<br>gAt.NRAAPa                                                         | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVAIPEGTA<br>VDVVIPEGTA<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>ISVIIPESET                                                                                     | gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlennmc Ynntlehsic Ynntlehsic snntldpgtc snntldpgtc snntldpgtc snntldpgtc                                                                                                                                 | PAAGD PAAGE PAAGD PnaGs PnevD TAFESST TVFEDSe TVFEDSe TVFEDSe TKFEASG                                                                                                                                                                                                                                                                 |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.<br>A.<br>A.       | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722                                                                                       | GFaSA GFaIA GFsAA GFgdA GFQTARqDDh GFQNARqGDP GFQSTKLkDP GFQSTKLkDP GFQSTKLkDP GFQAKLADP GFQQAKLADP                                                                                                      | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr<br>hAnpHQPSPr<br>rAqpgQSSPk<br>rAqpgQSSPk<br>rAqpgQSSPk<br>gAt.NRAAPa<br>gAt.NRAAPa                                           | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVAIPEGTA<br>VDVVIPEGTA<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>ISVIIPESET<br>ISVIIPESET                                                                       | gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlennmc Ynntlehsic Ynntlehsic snntldpgtc snntldpgtc snntldpgtc fnntldhgvc Fnntldhgvc                                                                                                                      | PAAGD PAAGE PAAGD PnaGs PnevD TAFESST TVFEDSE TVFEDSE TVFEDSE TVFEDSE TKFEASQ TKFEASQ                                                                                                                                                                                                                                                 |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.<br>A.       | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128                                                                   | GFaSA GFaSA GFsAA GFgdA GFQTARqDDh GFQNARqGDP GFQSTKLkDP GFQSTKLkDP GFQSTKLkDP GFQQAKLADP GFQQAKLADP GFQQAKLADP                                                                                          | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr<br>hAnpHQPSPr<br>rAqpgQSSPk<br>rAqpgQSSPk<br>rAqpgQSSPk<br>gAt.NRAAPa<br>gAt.NRAAPa                                           | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVAIPEGSA<br>VDVVIPEGTA<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>ISVIIPESET<br>ISVIIPESET                                                                                     | gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlennmc Ynntlehsic Ynntlehsic snntldpgtc snntldpgtc snntldpgtc snntldpgtc fnntldhgvc Fnntldhgvc Fnntldhgvc                                                                                                | PAAGD PAAGE PAAGD PnaGs PnevD TAFESST TAFEAST TVFEDSe TVFEDSe TVFEDSe TKFEASq TKFEASq TKFEASq                                                                                                                                                                                                                                         |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.<br>A.       | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906                                               | GFaSA GFaSA GFsAA GFgdA GFQTARqDDh GFQNARqGDP GFQSTKLkDP GFQSTKLkDP GFQSTKLkDP GFQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP                                                                                | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr<br>hAnpHQPSPr<br>rAqpgQSSPk<br>rAqpgQSSPk<br>rAqpgQSSPk<br>gAt.NRAAPa<br>gAt.NRAAPa<br>gAt.NRAAPa                             | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVAIPEGSA<br>VDVVIPEGTA<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET                                                         | gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlennmc Ynntlehslc Ynntlehslc snntldpgtc snntldpgtc snntldpgtc fnntldhgvc fnntldhgvc fnntldhgvc fnntldhgvc fnntldhgvc                                                                                     | PAAGD PAAGE PAAGD PnaGS PnevD TAFESST TAFEAST TVFEDSe TVFEDSe TVFEDSe TKFEASq TKFEASq TKFEASq TKFEASq                                                                                                                                                                                                                                 |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.<br>A.       | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC232722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239                          | GFaSA GFaSA GFalA GFgdA GFQTARQDDh GFQNARQGDP GFQSTKLkDP GFQSTKLkDP GFQSTKLkDP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP                                                         | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr<br>hAnpHQPSPr<br>rAqpgQSSPk<br>rAqpgQSSPk<br>rAqpgQSSPk<br>gAt.NRAAPa<br>gAt.NRAAPa<br>gAt.NRAAPa<br>gAt.NRAAPa               | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVAIPEGSA<br>VDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET                                           | gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlcnnmc Ynntlehsic Ynntlehsic snntldpgtc snntldpgtc snntldpgtc fnntldhgvc fnntldhgvc fnntldhgvc fnntldhgvc fnntldhgvc ynntldhgvc                                                                          | PAAGD PAAGE PAAGD PnaGS PnevD TAFESST TAFEAST TVFEDSe TVFEDSe TVFEDSe TKFEASq TKFEASq TKFEASq TKFEASq TKFEASq TKFEASq                                                                                                                                                                                                                 |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.<br>A.<br>A. | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans                  | GFaSA GFaSA GFalA GFgdA GFQTARQDDh GFQNARQGDP GFQSTKLkDP GFQSTKLkDP GFQSTKLkDP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP                                              | srNaiqPk<br>ssNsiTPV<br>shHvlNPI<br>sgEtvlPt<br>hAnpHQPSPr<br>hAnpHQPSPr<br>rAqpgQSSPk<br>rAqpgQSSPk<br>rAqpgQSSPk<br>gAt.NRAAPa<br>gAt.NRAAPa<br>gAt.NRAAPa<br>gAt.NRAAPa<br>gAt.NRAAPa | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVAIPEGSA<br>VDVVIPEGTA<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET<br>VNVIIPEIGG | gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlcnnmc Ynntlehsic Ynntlehsic snntldpgtc snntldpgtc snntldpgtc fnntldhgvc                              | PAAGD PAAGE PAAGE PAAGD PnaGs PnevD TAFES ST TAFEA ST TVFED Se TVFED Se TVFED Se TKFEA Sq                                                                                                                                                                              |
| P. T. A. A. A. A. A. A. T.                         | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC52722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans thermophilus     | GFaSA GFaSA GFalA GFgdA GFQTARQDDh GFQNARQGDP GFQSTKLkDP GFQSTKLkDP GFQSTKLkDP GFQQAKLADP             | srNaiqPkssNsiTPVshHvlNPIsgEtvlPt hAnpHQPSPr hAnpHQPSPr rAqpgQSSPk rAqpgQSSPk rAqpgQSSPk gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa                                | LNLILPQT<br>LDLILPQT<br>LSVIISEA<br>LfVILSES<br>LQVVLQEE<br>VDVAIPEGSA<br>VDVVIPEGTA<br>IDVVISEASS<br>IDVVISEASS<br>IDVVISEASS<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET<br>ISVIIPESET<br>VNVIIPESET<br>VNVIIPEIGG<br>INVIIEEGPS | gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlcnnmc Ynntlehslc Ynntlehslc Snntldpgtc snntldpgtc snntldpgtc Fnntldhgvc Fnntldhgvc Fnntldhgvc Fnntldhgvc Ynntldhsvc Ynntldhsvc Ynntldhsvc Ynntldhsvc Ynntldhsc                                          | PAAGD PAAGE PAAGE PAAGD PnaGs PnevD TAFESST TAFEAST TVFEDSe TVFEDSe TVFEDSe TKFEASq TKFEASq TKFEASq TKFEASq TKFEASq TKFEASq TKFEASq TKFEASq                                                                                                                                                                                           |
| P. T. A. A. A. A. A. A. T.                         | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32229 nidulans thermophilus lanuginosus             | GFaSA GFaSA GFalA GFgdA GFQTARQDDh GFQNARQGDP GFQSTKLkDP GFQSTKLkDP GFQCSTKLkDP GFQQAKLADP GFQAKLADP  | srNaiqPkssNsiTPVshHvlNPIsgEtvlPt hAnpHQPSPr hAnpHQPSPr rAqpgQSSPk rAqpgQSSPk rAqpgQSSPk gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa                     | LNLILPQT LDLILPQT LSVIISEA LfVILSES LQVVLQEE VDVAIPEGSA VDVVIPEGTA IDVVISEASS IDVVISEASS IDVVISEASS ISVIIPESET ISVIIPESET ISVIIPESET ISVIIPESET VNVIIPESET VNVIIPEIGG INVIIEEGPS                                                               | gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlcnnmc Ynntlehslc Ynntlehslc Snntldpgtc snntldpgtc snntldpgtc Fnntldhgvc Fnntldhgvc Fnntldhgvc Ynntldhsvc Fnntldhsvc Fnntldhstc Ynntldtgsc Fnntldhstc Ynntldtgsc                                         | PAAGD PAAGE PAAGE PAAGD PnaGS PnevD TAFESST TAFEAST TVFEDSe TVFEDSe TVFEDSe TKFEASq                                                                                                   |
| P. T. A. A. A. A. A. A. T.                         | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC52722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans thermophilus     | GFaSA GFaSA GFalA GFgdA GFQTARQDDh GFQNARQGDP GFQSTKLkDP GFQSTKLkDP GFQCSTKLkDP GFQQAKLADP GFQAKLADP  | srNaiqPkssNsiTPVshHvlNPIsgEtvlPt hAnpHQPSPr hAnpHQPSPr rAqpgQSSPk rAqpgQSSPk rAqpgQSSPk gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa                     | LNLILPQT LDLILPQT LSVIISEA LfVILSES LQVVLQEE VDVAIPEGSA VDVVIPEGTA IDVVISEASS IDVVISEASS IDVVISEASS ISVIIPESET ISVIIPESET ISVIIPESET ISVIIPESET VNVIIPESET VNVIIPEIGG INVIIEEGPS                                                               | gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlcnnmc Ynntlehslc Ynntlehslc Snntldpgtc snntldpgtc snntldpgtc Fnntldhgvc Fnntldhgvc Fnntldhgvc Fnntldhgvc Ynntldhsvc Ynntldhsvc Ynntldhsvc Ynntldhsvc Ynntldhsc                                          | PAAGD PAAGE PAAGE PAAGD PnaGS PnevD TAFESST TAFEAST TVFEDSe TVFEDSe TVFEDSe TKFEASq                                                                                                   |
| P. T. A. A. A. A. A. A. T. T. M.                   | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32229 nidulans thermophilus lanuginosus thermophila | GFaSA GFaSA GFalA GFsAA GFgdA GFQTARQDDh GFQNARQGDP GFQSTKLkDP GFQSTKLkDP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQAKLADP GFQAKLADP GFQAKLADP GFQAKAQL | srNaiqPkssNsiTPVshHvlNPIsgEtvlPt hAnpHQPSPr hAnpHQPSPr rAqpgQSSPk rAqpgQSSPk rAqpgQSSPk gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPv g.s.gQATPV hSdkHDAPPt rSnkDQAePV gStvRPTlPy          | LNLILPQT LDLILPQT LSVIISEA LfVILSES LQVVLQEE VDVAIPEGSA VDVVIPEGTA IDVVISEASS IDVVISEASS IDVVISEASS ISVIIPESET ISVIIPESET ISVIIPESET ISVIIPESET ISVIIPESET VNVIIPEIGG INVIIEEGPS INVIISEETG dmVVIPETAG                                         | gndtlednmc gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlcnnmc Ynntlehslc Ynntlehslc snntldpgtc snntldpgtc snntldpgtc fnntldhgvc fnntldhgvc fnntldhgvc fnntldhgvc fnntldhgvc ynntldhsvc ynntldhstc Ynntldtgc ynntldtgc ynntldtgc anntldtgc anntlhndlc | PAAGD PAAGE PAAGE PAAGD PnaGS PnevD TAFES ST TAFEA ST TVFED Se TVFED Se TKFEA Sq TAFEEGPYST |
| P. T. A. A. A. A. A. A. T. T. M.                   | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32229 nidulans thermophilus lanuginosus             | GFaSA GFaSA GFalA GFsAA GFgdA GFQTARQDDh GFQNARQGDP GFQSTKLkDP GFQSTKLkDP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQQAKLADP GFQAKLADP GFQAKLADP GFQAKLADP GFQAKAQL | srNaiqPkssNsiTPVshHvlNPIsgEtvlPt hAnpHQPSPr hAnpHQPSPr rAqpgQSSPk rAqpgQSSPk rAqpgQSSPk gAt.NRAAPa gAt.NRAAPa gAt.NRAAPa gAt.NRAAPv g.s.gQATPV hSdkHDAPPt rSnkDQAePV gStvRPTlPy          | LNLILPQT LDLILPQT LSVIISEA LfVILSES LQVVLQEE VDVAIPEGSA VDVVIPEGTA IDVVISEASS IDVVISEASS IDVVISEASS ISVIIPESET ISVIIPESET ISVIIPESET ISVIIPESET ISVIIPESET VNVIIPEIGG INVIIEEGPS INVIISEETG dmVVIPETAG                                         | gndtlednmc gndtlednmc gndtlddnmc Lndtlddamc gnctlcnnmc Ynntlehslc Ynntlehslc Snntldpgtc snntldpgtc snntldpgtc Fnntldhgvc Fnntldhgvc Fnntldhgvc Ynntldhsvc Fnntldhsvc Fnntldhstc Ynntldtgsc Fnntldhstc Ynntldtgsc                                         | PAAGD PAAGE PAAGE PAAGD PnaGS PnevD TAFES ST TAFEA ST TVFED Se TVFED Se TKFEA Sq TAFEEGPYST |

|                                                    |                                                                                                                                                                                                                                                       | 201                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                          | 250                                                                                                                                                                                                                         |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P.                                                 | involutus (phyA1)                                                                                                                                                                                                                                     |                                                                                                                      | AVafPSTtAR                                                                                                                                                       | LNAaa PSVNI.                                                                                                                                                                                                     | TDtDafNLVs                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | involutus (phyA2)                                                                                                                                                                                                                                     |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | TDADafNLVs                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | pubescens                                                                                                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | TDtDtyNLLt                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | pediades                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | TAADVSNLIp                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | lycii                                                                                                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | SDSDaLtLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | terreus 9al                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | Stddvvnlma                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | terreus cbs                                                                                                                                                                                                                                           |                                                                                                                      | _                                                                                                                                                                |                                                                                                                                                                                                                  | SADDVVNLMA                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | niger var. awamori                                                                                                                                                                                                                                    |                                                                                                                      |                                                                                                                                                                  | _                                                                                                                                                                                                                | TDtEVtyLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | niger T213                                                                                                                                                                                                                                            |                                                                                                                      | -                                                                                                                                                                |                                                                                                                                                                                                                  | TDtEVtyLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | niger NRRL3135                                                                                                                                                                                                                                        |                                                                                                                      | -                                                                                                                                                                |                                                                                                                                                                                                                  | TDtEVtyLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | fumigatus ATCC13073                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | TDEDVVSLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | fumigatus ATCC32722                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | TDEDVVSLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | fumigatus ATCC58128                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                    | •                                                                                                                                                                                                                                                     |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | TDEDVVSLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | fumigatus ATCC26906                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | TDEDVVSLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | fumigatus ATCC32239                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                  | -                                                                                                                                                                                                                | TDDDVVSLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | nidulans                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | TNENVIYLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | thermophilus                                                                                                                                                                                                                                          | _                                                                                                                    | _                                                                                                                                                                |                                                                                                                                                                                                                  | AvsDVpyLMD                                                                                                                                                                                                               |                                                                                                                                                                                                                             |
|                                                    | lanuginosus                                                                                                                                                                                                                                           |                                                                                                                      | -                                                                                                                                                                |                                                                                                                                                                                                                  | -                                                                                                                                                                                                                        | LCPFDTVGsd                                                                                                                                                                                                                  |
| М.                                                 | thermophila                                                                                                                                                                                                                                           | IGDDAQDtY1                                                                                                           | StFAGPItAR                                                                                                                                                       | VNAnLPGaNL                                                                                                                                                                                                       | TDADtVaLMD                                                                                                                                                                                                               | LCPFETVAsS                                                                                                                                                                                                                  |
| _                                                  |                                                                                                                                                                                                                                                       |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |
| Co                                                 | nsensus Seq. 11                                                                                                                                                                                                                                       | LGDDAEANFT                                                                                                           | AVFAPPIRAR                                                                                                                                                       | LEA-LPGVNL                                                                                                                                                                                                       | TDEDVVNLMD                                                                                                                                                                                                               | MCPFDTVART                                                                                                                                                                                                                  |
|                                                    |                                                                                                                                                                                                                                                       |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |
|                                                    |                                                                                                                                                                                                                                                       | 251                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                         |
| D                                                  | involutus (phys)                                                                                                                                                                                                                                      | 251                                                                                                                  |                                                                                                                                                                  | Chi Book DCo                                                                                                                                                                                                     | P P3V 41                                                                                                                                                                                                                 | 300                                                                                                                                                                                                                         |
|                                                    | involutus (phyA1)                                                                                                                                                                                                                                     |                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                  | FeaFAYggdL                                                                                                                                                                                                               | dKFYGtGyGQ                                                                                                                                                                                                                  |
| P.                                                 | involutus (phyA2)                                                                                                                                                                                                                                     |                                                                                                                      | $\dots$ eqkSdF                                                                                                                                                   | CtLFegiPGs                                                                                                                                                                                                       | FeaFAYagdL                                                                                                                                                                                                               | dKFYGtGyGQ<br>dKFYGtGyGQ                                                                                                                                                                                                    |
| P.<br>T.                                           | involutus (phyA2)<br>pubescens                                                                                                                                                                                                                        |                                                                                                                      | eqkSdF<br>errSeF                                                                                                                                                 | CtLFegiPGs<br>CDIYeelqAE                                                                                                                                                                                         | FeaFAYagdL<br>.daFAYnadL                                                                                                                                                                                                 | dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ                                                                                                                                                                                      |
| P.<br>T.<br>A.                                     | involutus (phyA2)<br>pubescens<br>pediades                                                                                                                                                                                                            |                                                                                                                      | eqkSdF<br>errSeF<br>etpSPF                                                                                                                                       | CtLFegiPGs<br>CDIYeelqAE<br>CNLFTPEE                                                                                                                                                                             | FeaFAYagdL<br>.daFAYnadL<br>FaQFEYFgdL                                                                                                                                                                                   | dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ                                                                                                                                                                        |
| P.<br>T.<br>A.<br>P.                               | involutus (phyA2)<br>pubescens<br>pediades<br>lycii                                                                                                                                                                                                   |                                                                                                                      | eqkSdF<br>errSeF<br>etpSPF<br>gnaSPF                                                                                                                             | CtlFegiPGs<br>CDIYeelqAE<br>CNLFTPEE<br>CDLFTAEE                                                                                                                                                                 | FeaFAYagdL<br>.daFAYnadL<br>FaQFEYFgdL<br>YvsYEYYydL                                                                                                                                                                     | dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKYYGtGPGN                                                                                                                                                          |
| P.<br>T.<br>A.<br>P.                               | involutus (phyA2) pubescens pediades lycii terreus 9al                                                                                                                                                                                                | dDAht                                                                                                                | eqkSdFerrSeFetpSPFgnaSPFLSPF                                                                                                                                     | CtlFegiPGs<br>CDIYeelqAE<br>CNLFTPEE<br>CDLFTAEE<br>CDLFTAtE                                                                                                                                                     | FeaFAYagdL<br>.daFAYnadL<br>FaQFEYFgdL<br>YvsYEYYydL<br>WtQYNYLlSL                                                                                                                                                       | dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKYYGtGPGN<br>dKYYGYGGGN                                                                                                                                            |
| P.<br>T.<br>A.<br>P.<br>A.                         | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs                                                                                                                                                                                    | dDAht                                                                                                                | eqkSdF<br>errSeF<br>etpSPF<br>gnaSPF<br>LSPF                                                                                                                     | CtlFegiPGs<br>CDIYeelqAE<br>CNLFTPEE<br>CDLFTAEE<br>CDLFTATE<br>CDLFTAAE                                                                                                                                         | FeaFAYagdL<br>.daFAYnadL<br>FaQFEYFgdL<br>YvsYEYYydL<br>WtQYNYLlSL<br>WtQYNYLlSL                                                                                                                                         | dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKYYGtGPGN<br>dKYYGYGGGN<br>dKYYGYGGGN                                                                                                                              |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.                   | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori                                                                                                                                                                 | dD. AhtdD. Aht                                                                                                       | eqkSdF errSeF etpSPF gnaSPF LSPF LSPF                                                                                                                            | CtlFegiPGs<br>CDIYeelqAE<br>CNLFTPEE<br>CDLFTAEE<br>CDLFTALE<br>CDLFTAAE<br>CDLFTADE                                                                                                                             | FeaFAYagdL<br>.daFAYnadL<br>FaQFEYFgdL<br>YvsYEYYydL<br>WtQYNYLlSL<br>WtQYNYLlSL<br>WiHYDYLQSL                                                                                                                           | dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKYYGtGPGN<br>dKYYGYGGGN<br>dKYYGYGGGN<br>kKYYGHGAGN                                                                                                                |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.                   | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213                                                                                                                                                      | dD. AhtdD. AhtTv. DTK                                                                                                | eqkSdF errSeF etpSPF gnaSPF LSPF LSPF LSPF                                                                                                                       | CtlFegiPGs<br>CDIYeelqAE<br>CNLFTPEE<br>CDLFTAEE<br>CDLFTALE<br>CDLFTAAE<br>CDLFThDE<br>CDLFThDE                                                                                                                 | FeaFAYagdL<br>.daFAYnadL<br>FaQFEYFgdL<br>YvsYEYYYdL<br>WtQYNYLlSL<br>WtQYNYLlSL<br>WiHYDYLQSL<br>WiHYDYLRSL                                                                                                             | dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKFYGtGyGQ<br>dKYYGtGPGN<br>dKYYGYGGGN<br>dKYYGYGGGN<br>kKYYGHGAGN<br>kKYYGHGAGN                                                                                                  |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.<br>A.             | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135                                                                                                                                       | dD. AhtdD. AhtTv. DTKTv. DTK                                                                                         | eqkSdF errSeF gnaSPF Spr LSPF LSPF LSPF LSPF LSPF                                                                                                                | CtlFegiPGs<br>CDIYeelqAE<br>CNLFTPEE<br>CDLFTAEE<br>CDLFTAAE<br>CDLFTAAE<br>CDLFThDE<br>CDLFThDE<br>CDLFThDE                                                                                                     | FeaFAYagdL .daFAYnadL FaQFEYFgdL YvsYEYYydL WtQYNYLlSL WtQYNYLlSL WiHYDYLQSL WiHYDYLRSL WiNYDYLQSL                                                                                                                       | dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKYYGtGPGN dKYYGYGGGN dKYYGYGGGN kKYYGHGAGN kKYYGHGAGN kKYYGHGAGN                                                                                                               |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.             | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073                                                                                                                   | dD. AhtdD. AhtTv. DTKTv. DTKTv. DTKTv. DTKTv. DTKSD. ASQ.                                                            | eqkSdF errSeF gnaSPF Spr LSPF LSPF LSPF LSPF LSPF LSPF LSPF                                                                                                      | CtlFegiPGs<br>CDIYeelqAE<br>CNLFTPEE<br>CDLFTAEE<br>CDLFTAAE<br>CDLFTAAE<br>CDLFThDE<br>CDLFThDE<br>CDLFThDE                                                                                                     | FeaFAYagdL .daFAYnadL FaQFEYFgdL YvsYEYYYdL WtQYNYLlSL WtQYNYLlSL WiHYDYLQSL WiHYDYLRSL WiNYDYLQSL WKKYNYLQSL                                                                                                            | dKFYGŁGYGQ dKFYGŁGYGQ dKFYGŁGYGQ dKFYGŁGYGQ dKYYGŁGPGN dKYYGYGGGN dKYYGYGGGN kKYYGHGAGN kKYYGHGAGN kKYYGHGAGN                                                                                                               |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.             | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722                                                                                               | dD. Aht. dD. Aht. Tv. DTK. Tv. DTK. Tv. DTK. SD. ASQ. SD. ASQ.                                                       | eqkSdF errSeF gnaSPF Span LSPF LSPF LSPF LSPF LSPF LSPF LSPF LSPF                                                                                                | CtlFegiPGs<br>CDIYeelqAE<br>CNLFTPEE<br>CDLFTAEE<br>CDLFTAAE<br>CDLFThDE<br>CDLFThDE<br>CDLFThDE<br>CDLFThDE<br>CQLFThNE<br>CQLFThNE                                                                             | FeaFAYagdL .daFAYnadL FaQFEYFgdL YVSYEYYYdL WtQYNYLlSL WtQYNYLlSL WiHYDYLQSL WiHYDYLRSL WiNYDYLQSL WKKYNYLQSL WKKYNYLQSL                                                                                                 | dKFYGŁGYGQ dKFYGŁGYGQ dKFYGŁGYGQ dKFYGŁGYGQ dKYYGŁGPGN dKYYGYGGGN dKYYGYGGGN kKYYGHGAGN kKYYGHGAGN kKYYGHGAGN gKYYGYGAGN                                                                                                    |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.             | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128                                                                           | dD. Aht. dD. Aht. Tv. DTK. Tv. DTK. Tv. DTK. SD. ASQ. SD. ASQ. SD. ASQ.                                              | eqkSdF errSeF gnaSPF Span LSPF LSPF LSPF LSPF LSPF LSPF LSPF LSPF                                                                                                | CtlFegiPGs<br>CDIYeelqAE<br>CNLFTPEE<br>CDLFTAEE<br>CDLFTAAE<br>CDLFThDE<br>CDLFThDE<br>CDLFThDE<br>CQLFThNE<br>CQLFThNE<br>CQLFThNE<br>CQLFThNE                                                                 | FeaFAYagdL .daFAYnadL FaQFEYFgdL YVSYEYYYdL WtQYNYL1SL WtQYNYL1SL WiHYDYLQSL WiHYDYLRSL WiNYDYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL                                                                                      | dKFYGŁGYGQ dKFYGŁGYGQ dKFYGŁGYGQ dKFYGŁGYGQ dKYYGŁGPGN dKYYGYGGGN dKYYGYGGGN kKYYGHGAGN kKYYGHGAGN kKYYGHGAGN gKYYGYGAGN                                                                                                    |
| P.<br>T.<br>A.<br>P.<br>A.<br>A.<br>A.<br>A.<br>A. | involutus (phyA2) pubescens pediades lycii terreus 9a1 terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906                                                       | dD. Aht dD. Aht Tv. DTK Tv. DTK SD. ASQ SD. ASQ SD. ASQ SD. ASQ                                                      | eqkSdF errSeF gnaSPF spr                                                                                                     | CtlFegiPGs<br>CDIYeelqAE<br>CNLFTPEE<br>CDLFTAEE<br>CDLFTAAE<br>CDLFThDE<br>CDLFThDE<br>CDLFThDE<br>CQLFThNE<br>CQLFThNE<br>CQLFThNE<br>CQLFThNE<br>CQLFThNE                                                     | FeafAYagdL .dafAYnadL faQfEYfgdL YvsYEYYydL WtQYNYLISL WtQYNYLISL WiHYDYLQSL WiHYDYLRSL WiNYDYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL                                                     | dKFYGLGYGQ dKFYGLGYGQ dKFYGLGYGQ dKFYGLGYGQ dKYYGLGPGN dKYYGYGGGN dKYYGYGGGN kKYYGHGAGN kKYYGHGAGN kKYYGHGAGN gKYYGYGAGN gKYYGYGAGN                                                                                         |
| P.<br>T.<br>A.<br>A.<br>A.<br>A.<br>A.<br>A.       | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC3239                                    | dD. Aht dD. Aht Tv. DTK Tv. DTK SD. ASQ SD. ASQ SD. ASQ SD. ASQ SD. ASQ                                              | eqkSdF errSeF gnaSPF spr                                                                                                     | CtlFegiPGs CDIYeelqAE CNLFTPEE CDLFTAEE CDLFTAAE CDLFThDE CDLFThDE CDLFThDE CQLFThNE CQLFThNE CQLFThNE CQLFThNE CQLFTHNE CQLFTHNE CQLFTHNE                                                                       | FeafAYagdL .dafAYnadL faQfEYfgdL YvsYEYYydL WtQYNYL1SL WtQYNYL1SL WiHYDYLQSL WiHYDYLQSL WiNYDYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL                                          | dKFYGLGYGQ dKFYGLGYGQ dKFYGLGYGQ dKFYGLGYGQ dKYYGLGPGN dKYYGYGGGN dKYYGYGGGN kKYYGHGAGN kKYYGHGAGN kKYYGHGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN                                                                   |
| P. T. A. P. A. A. A. A. A. A. E.                   | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans                          | dD. Aht. dD. Aht. Tv. DTK. Tv. DTK. SD. ASQ. SD. ASQ. SD. ASQ. SD. ASQ. ASQ. ASQ. ASQ. ASQ. ASQ. ASQ. ASQ.           | eqkSdF errSeF gnaSPF sgnaSPF sprant LSPF | CtlFegiPGs CDIYeelqAE CNLFTPEE CDLFTAEE CDLFTAAE CDLFThDE CDLFThDE CDLFThDE CQLFThNE CQLFThNE CQLFThNE CQLFTHNE CQLFTHNE CQLFTHNE CQLFTHNE CQLFTHNE                                                              | FeafAYagdL .dafAYnadL faQfEYfgdL YvsYEYYydL WtQYNYL1SL WtQYNYL1SL WiHYDYLQSL WiHYDYLQSL WiKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKYNYLQSL WKYYNYLQSL WKYYNYLQSL WKYYYLQSL           | dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKYYGtGPGN dKYYGYGGGN dKYYGYGGGN kKYYGHGAGN kKYYGHGAGN kKYYGHGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN                                                        |
| P. T. A. A. A. A. A. A. E. T.                      | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans thermophilus             | dD. Aht. dD. Aht. Tv. DTK. Tv. DTK. SD. ASQ. SD. ASQ. SD. ASQ. SD. ASQ. ASQ. AD. ASE. AH. GTE.                       | eqkSdF errSeF gnaSPF Spr LSPF LSPF LSPF LSPF LSPF LSPF LSPF LSPF                                                                                                 | CtlFegiPGs CDIYeelqAE CNLFTPEE CDLFTAEE CDLFTALE CDLFThDE CDLFThDE CDLFThDE CQLFThNE CQLFThNE CQLFThNE CQLFTHNE CQLFTHNE CQLFTHNE CQLFTHNE CAIFTHNE CAIFTHNE CAIFTEKE CALSTQEE                                   | FeafAYagdL .dafAYnadL faQfEYfgdL YvsYEYYydL WtQYNYL1SL WtQYNYL1SL WiHYDYLQSL WiHYDYLQSL WiKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKYNYLQSL WKYYNYLQSL WKYYNYLQSL WKYYYLQSL WGYDYLQSL WqayDYYQSL | dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKFYGtGPGN dKYYGYGGGN dKYYGYGGGN kKYYGHGAGN kKYYGHGAGN kKYYGHGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN                                             |
| P. T. A. A. A. A. A. A. T. T.                      | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans thermophilus lanuginosus | dD. Aht. dD. Aht. Tv. DTK. Tv. DTK. SD. ASQ. SD. ASQ. SD. ASQ. SD. ASQ. ASD. ASQ. AD. ASE. AH. GTE. ht. DT. PvlfPrQ. | eqkSdF errSeF gnaSPF Spr LSPF LSPF LSPF LSPF LSPF LSPF LSPF LSPF                                                                                                 | CtlFegiPGs CDIYeelqAE CNLF. TPEE CDLF. TAEE CDLF. TALE CDLF. ThDE CDLF. ThDE CDLF. ThDE CQLF. ThNE CAIF. THNE CAIF. TEKE CALS. TQEE CCLF. TADI | FeaFAYagdL .daFAYnadL FaQFEYFgdL YvsYEYYydL WtQYNYLISL WtQYNYLISL WiHYDYLQSL WiHYDYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKYNYLQSL WKYNYLQSL WKYYYLQSL WGYDYLQSL WqaYDYYQSL                        | dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKYYGtGPGN dKYYGYGGGN dKYYGYGGGN kKYYGHGAGN kKYYGHGAGN kKYYGHGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN |
| P. T. A. A. A. A. A. A. T. T.                      | involutus (phyA2) pubescens pediades lycii terreus 9al terreus cbs niger var. awamori niger T213 niger NRRL3135 fumigatus ATCC13073 fumigatus ATCC32722 fumigatus ATCC58128 fumigatus ATCC26906 fumigatus ATCC32239 nidulans thermophilus             | dD. Aht. dD. Aht. Tv. DTK. Tv. DTK. SD. ASQ. SD. ASQ. SD. ASQ. SD. ASQ. ASD. ASQ. AD. ASE. AH. GTE. ht. DT. PvlfPrQ. | eqkSdF errSeF gnaSPF Spr LSPF LSPF LSPF LSPF LSPF LSPF LSPF LSPF                                                                                                 | CtlFegiPGs CDIYeelqAE CNLF. TPEE CDLF. TAEE CDLF. TALE CDLF. ThDE CDLF. ThDE CDLF. ThDE CQLF. ThNE CAIF. THNE CAIF. TEKE CALS. TQEE CCLF. TADI | FeafAYagdL .dafAYnadL faQfEYfgdL YvsYEYYydL WtQYNYL1SL WtQYNYL1SL WiHYDYLQSL WiHYDYLQSL WiKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKKYNYLQSL WKYNYLQSL WKYYNYLQSL WKYYNYLQSL WKYYYLQSL WGYDYLQSL WqayDYYQSL | dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKFYGtGyGQ dKYYGtGPGN dKYYGYGGGN dKYYGYGGGN kKYYGHGAGN kKYYGHGAGN kKYYGHGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN gKYYGYGAGN |

|                                                                                                                                                                                                                                                                                                                  | 301                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                                                                 | 350                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P. involutus (phyA1)                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     | WNELTABLTN                                                                                                                                                                                                                  | S AMBUNITAT                                                                                                                                                                                                                  | NRTLDASPVT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| P. involutus (phyA2)                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | NRTLDAaPDT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| T. pubescens                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             | -                                                                                                                                                                                                                            | NSTLDSSPET                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. pediades                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | NRTLDSSPLT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| P. lycii                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | NRTLDSDPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. terreus 9al                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                           | •                                                                                                                                                                                                                            | NNTLDASPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. terreus cbs                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | NNTLDANPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. niger var. awamori                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | NHTLDSNPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. niger T213                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | NHTLDSNPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. niger NRRL3135                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | NHTLDSSPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. fumigatus ATCC13073                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | NatlySNPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. fumigatus ATCC32722                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | NSTLVSNPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. fumigatus ATCC58128                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             | _                                                                                                                                                                                                                            | NSTLVSNPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. fumigatus ATCC26906                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                             | _                                                                                                                                                                                                                            | NSTLVSNPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| A. fumigatus ATCC32239                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             | -                                                                                                                                                                                                                            | NSTLDSDPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| E. nidulans                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                             | _                                                                                                                                                                                                                            |                                                                                                                                                 |                                                                                                                                                                                                                                                                         |
| _ : <del></del>                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                           | -                                                                                                                                                                                                                            | NHTLDSNPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| T. thermophilus                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             | _                                                                                                                                                                                                                            | NHTLDSNPAT                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| T. lanuginosus                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             | -                                                                                                                                                                                                                            |                                                                                                                                                 | FPLDAVLYAD                                                                                                                                                                                                                                                              |
| M. thermophila                                                                                                                                                                                                                                                                                                   | PLGPTQGVGF                                                                                                                                                                                                                                                                                                          | VNELLARLA.                                                                                                                                                                                                                  | GVPVRDGTST                                                                                                                                                                                                                   | NRTLDGDPrT                                                                                                                                      | FPLGTPLYAD                                                                                                                                                                                                                                                              |
| Consensus Seq. 11                                                                                                                                                                                                                                                                                                | PLGPAGGVGF                                                                                                                                                                                                                                                                                                          | -NELTARITH                                                                                                                                                                                                                  | S. PVODHTST                                                                                                                                                                                                                  | NHTLDSNPAT                                                                                                                                      | RDI.NATI.VAD                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             | D KDD.                                                                                                                                                                                                                       |                                                                                                                                                 |                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                  | 351                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                                                                 | 400                                                                                                                                                                                                                                                                     |
| P. involutus (phyA1)                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     | FsAMGLFrqP                                                                                                                                                                                                                  | aPLSTSvpNP                                                                                                                                                                                                                   | wrtWr                                                                                                                                           |                                                                                                                                                                                                                                                                         |
| P. involutus (phyA1) P. involutus (phyA2)                                                                                                                                                                                                                                                                        | FSHDN1MVAV                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | wrtWr                                                                                                                                           | TSSlVPFSGR                                                                                                                                                                                                                                                              |
| <del></del>                                                                                                                                                                                                                                                                                                      | FSHDN1MVAV<br>FSHDN1MVAV                                                                                                                                                                                                                                                                                            | FsAMGLFrqS                                                                                                                                                                                                                  | aPLSTSTpDP                                                                                                                                                                                                                   |                                                                                                                                                 | TSS1VPFSGR<br>TSSvVPFSAR                                                                                                                                                                                                                                                |
| P. involutus (phyA2)                                                                                                                                                                                                                                                                                             | FSHDN1MVAV<br>FSHDN1MVAV<br>FSHDNQMVAI                                                                                                                                                                                                                                                                              | FsAMGLFrqS<br>FsAMGLFNqS                                                                                                                                                                                                    | aPLSTSTpDP<br>aPLdPTTpDP                                                                                                                                                                                                     | nrtWl                                                                                                                                           | TSS1VPFSGR<br>TSSvVPFSAR<br>vkkiVPFSAR                                                                                                                                                                                                                                  |
| P. involutus (phyA2)<br>T. pubescens                                                                                                                                                                                                                                                                             | FSHDN1MVAV<br>FSHDN1MVAV<br>FSHDNQMVAI<br>LSHDNQMIAI                                                                                                                                                                                                                                                                | FsAMGLFrqS<br>FsAMGLFnqS<br>FsAMGLFnqS                                                                                                                                                                                      | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP                                                                                                                                                                                       | nrtWl artFl                                                                                                                                     | TSS1VPFSGR<br>TSSvVPFSAR<br>vkkiVPFSAR<br>TSR1tPFSAR                                                                                                                                                                                                                    |
| P. involutus (phyA2) T. pubescens A. pediades                                                                                                                                                                                                                                                                    | FSHDN1MVAV<br>FSHDN1MVAV<br>FSHDNQMVAI<br>LSHDNQMIAI<br>FSHDNTMVPI                                                                                                                                                                                                                                                  | FBAMGLF1qS<br>FBAMGLF1qS<br>FBAMGLF1qS<br>FBALGLF1AT                                                                                                                                                                        | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe                                                                                                                                                                         | nrtWl<br>artFl<br>krtWv                                                                                                                         | TSS1VPFSGR<br>TSSvVPFSAR<br>vkkiVPFSAR<br>TSR1tPFSAR<br>DSk1VPFSGH                                                                                                                                                                                                      |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii                                                                                                                                                                                                                                                           | FSHDN1MVAV<br>FSHDN1MVAV<br>FSHDNQMVAI<br>LSHDNQMIAI<br>FSHDNTMVPI<br>FSHDSnLVSI                                                                                                                                                                                                                                    | FBAMGLFTQS<br>FBAMGLFTQS<br>FBALGLFTAT<br>FWALGLYNGT                                                                                                                                                                        | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES                                                                                                                                                           | nrtWl<br>artFl<br>krtWv<br>nrlWv                                                                                                                | TSSIVPFSGR<br>TSSVVPFSAR<br>VkkiVPFSAR<br>TSRItPFSAR<br>DSkIVPFSGH<br>AAWTVPFAAR                                                                                                                                                                                        |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9a1                                                                                                                                                                                                                                            | FSHDN1MVAV<br>FSHDN1MVAV<br>FSHDNQMVAI<br>LSHDNQMIAI<br>FSHDNTMVPI<br>FSHDSnLVSI<br>FSHDSnLVSI                                                                                                                                                                                                                      | FSAMGLFYGS<br>FSAMGLFNGS<br>FSAMGLFNAT<br>FWALGLYNGT<br>FWALGLYNGT                                                                                                                                                          | aPLSTSTPDP<br>aPLdPTTPDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES<br>KPLSqTTVEd                                                                                                                                             | nrtWl artFl krtWv nrlWv VsQTDGYA                                                                                                                | TSSIVPFSGR<br>TSSVVPFSAR<br>VKKIVPFSAR<br>TSRITPFSAR<br>DSKIVPFSGH<br>AAWTVPFAAR<br>AAWTVPFAAR                                                                                                                                                                          |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9a1 A. terreus cbs                                                                                                                                                                                                                             | FSHDN1MVAV<br>FSHDN1MVAV<br>FSHDNQMVAI<br>LSHDNQMIAI<br>FSHDNTMVPI<br>FSHDSnLVSI<br>FSHDSnLVSI<br>FSHDNGIISI                                                                                                                                                                                                        | FSAMGLFYGS<br>FSAMGLFNGS<br>FSAMGLFNAT<br>FAALGLYNGT<br>FWALGLYNGT<br>LFALGLYNGT                                                                                                                                            | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES<br>KPLSqTTVEd<br>KPLSTTTVEN                                                                                                                               | nrtWl artFl krtWv nrlWv VsQTDGYA ItrTDGYA                                                                                                       | TSSIVPFSGR<br>TSSVVPFSAR<br>VkkiVPFSAR<br>TSRILPFSAR<br>DSKIVPFSGH<br>AAWTVPFAAR<br>AAWTVPFAAR<br>SAWTVPFASR                                                                                                                                                            |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9al A. terreus cbs A. niger var. awamori                                                                                                                                                                                                       | FSHDN1MVAV<br>FSHDN1MVAV<br>FSHDNQMVAI<br>LSHDNQMIAI<br>FSHDNTMVPI<br>FSHDSnLVSI<br>FSHDSnLVSI<br>FSHDNGIISI<br>FSHDNGIISI                                                                                                                                                                                          | FSAMGLFTQS FSAMGLFNQS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT                                                                                                                                                | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES<br>KPLSqTTVEd<br>KPLSTTTVEN<br>KPLSTTTVEN                                                                                                                 | nrtWl artFl krtWv nrlWv VsQTDGYA ItrTDGYA ItQTDGFS                                                                                              | TSSIVPFSGR TSSVVPFSAR VkkiVPFSAR TSRILPFSAR DSKIVPFSGH AAWTVPFAAR AAWTVPFAAR SAWTVPFASR SAWTVPFASR                                                                                                                                                                      |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9al A. terreus cbs A. niger var. awamori A. niger T213                                                                                                                                                                                         | FSHDN1MVAV<br>FSHDN1MVAV<br>FSHDNQMVAI<br>LSHDNQMIAI<br>FSHDNTMVPI<br>FSHDSnLVSI<br>FSHDSnLVSI<br>FSHDNGIISI<br>FSHDNGIISI<br>FSHDNGIISI                                                                                                                                                                            | FSAMGLFTQS FSAMGLFNQS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT LFALGLYNGT LFALGLYNGT                                                                                                                          | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES<br>KPLSqTTVEd<br>KPLSTTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN                                                                                                   | nrtWl artFl krtWv nrlWv VsQTDGYA ItrTDGYA ItQTDGFS ItQTDGFS                                                                                     | TSSIVPFSGR TSSVVPFSAR VkkiVPFSAR TSRILPFSAR DSKIVPFSGH AAWTVPFAAR AAWTVPFAAR SAWTVPFASR SAWTVPFASR SAWTVPFASR                                                                                                                                                           |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9al A. terreus cbs A. niger var. awamori A. niger T213 A. niger NRRL3135                                                                                                                                                                       | FSHDN1MVAV FSHDN1MVAV FSHDNQMVAI LSHDNQMIAI FSHDNTMVPI FSHDSnLVSI FSHDSnLVSI FSHDNGIISI FSHDNGIISI FSHDNGIISI FSHDNGIISI FSHDNGIISI FSHDNGIISI                                                                                                                                                                      | FSAMGLFYGS FSAMGLFNGS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT LFALGLYNGT FFALGLYNGT FFALGLYNGT                                                                                                               | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES<br>KPLSqTTVED<br>KPLSTTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>EPLSTTSVES                                                                                     | nrtWl artFl krtWv nrlWv VsQTDGYA ItrTDGYA ItQTDGFS ItQTDGFS ItQTDGFS                                                                            | TSSIVPFSGR TSSVVPFSAR VkkiVPFSAR TSRItPFSAR DSkIVPFSGH AAWTVPFAAR AAWTVPFAAR SAWTVPFASR SAWTVPFASR SAWTVPFASR SAWTVPFASR ASWVVPFGAR                                                                                                                                     |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9al A. terreus cbs A. niger var. awamori A. niger T213 A. niger NRRL3135 A. fumigatus ATCC13073                                                                                                                                                | FSHDN1MVAV FSHDN1MVAV FSHDNqMVAI LSHDNqMIAI FSHDNTMVPI FSHDSnLVSI FSHDSnLVSI FSHDNGIISI FSHDNGIISI FSHDNGIISI FSHDNGIISI FSHDNSMVSI FSHDNSMVSI                                                                                                                                                                      | FSAMGLFYGS FSAMGLFNGS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT LFALGLYNGT FFALGLYNGT FFALGLYNGT                                                                                                               | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES<br>KPLSqTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>EPLSTTSVES<br>gPLSTTSVES                                                                       | nrtWl artFl krtWv nrlWv VsQTDGYA ItrTDGYA ItQTDGFS ItQTDGFS AkElDGYS                                                                            | TSSIVPFSGR TSSVVPFSAR VkkiVPFSAR TSRItPFSAR DSkIVPFSGH AAWTVPFAAR AAWTVPFAAR SAWTVPFASR SAWTVPFASR SAWTVPFASR SAWTVPFASR ASWVVPFGAR ASWVVPFGAR                                                                                                                          |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9al A. terreus cbs A. niger var. awamori A. niger T213 A. niger NRRL3135 A. fumigatus ATCC13073 A. fumigatus ATCC32722                                                                                                                         | FSHDN1MVAV FSHDN1MVAV FSHDNQMVAI LSHDNQMIAI FSHDNTMVPI FSHDSnLVSI FSHDNGIISI FSHDNGIISI FSHDNGIISI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI                                                                                                                                                | FSAMGLFIQS FSAMGLFNQS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT                                                                   | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES<br>KPLSQTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>EPLSTTSVES<br>gPLSTTSVES<br>EPLSTTSVES<br>EPLSTTSVES                                           | nrtWl artFl krtWv nrlWv VSQTDGYA ItTTDGYA ItQTDGFS ItQTDGFS itQTDGFS akElDGYS akElDGYS akElDGYS akElDGYS                                        | TSSIVPFSGR TSSVVPFSAR VkkiVPFSAR TSRITPFSAR DSKIVPFSGH AAWTVPFAAR AAWTVPFAAR SAWTVPFASR SAWTVPFASR SAWTVPFASR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR                                                                                                               |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9al A. terreus cbs A. niger var. awamori A. niger T213 A. niger NRRL3135 A. fumigatus ATCC13073 A. fumigatus ATCC58128                                                                                                                         | FSHDN1MVAV FSHDN1MVAV FSHDNQMVAI LSHDNQMIAI FSHDNTMVPI FSHDSnLVSI FSHDNGIISI FSHDNGIISI FSHDNGIISI FSHDNSMVSI                                                                                         | FSAMGLFYQS FSAMGLFNQS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT LFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT                                  | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES<br>KPLSQTTVEM<br>KPLSTTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>EPLSTTSVES<br>gPLSTTSVES<br>EPLSTTSVES<br>EPLSTTSVES<br>EPLSQTSEES               | nrtWl artFl krtWv nrlWv VSQTDGYA ItrTDGYA ItQTDGFS ItQTDGFS itQTDGFS akElDGYS akElDGYS akElDGYS akElDGYS tkESNGYS                               | TSSIVPFSGR TSSVVPFSAR VkkiVPFSAR TSRITPFSAR DSKIVPFSGH AAWTVPFAAR AAWTVPFAAR SAWTVPFASR SAWTVPFASR SAWTVPFASR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR                                                                                         |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9al A. terreus cbs A. niger var. awamori A. niger T213 A. niger NRRL3135 A. fumigatus ATCC13073 A. fumigatus ATCC232722 A. fumigatus ATCC58128 A. fumigatus ATCC26906                                                                          | FSHDN1MVAV FSHDN1MVAV FSHDNQMVAI LSHDNQMIAI FSHDNTMVPI FSHDSnLVSI FSHDNGIISI FSHDNGIISI FSHDNGIISI FSHDNSMVSI                                                                                         | FSAMGLFYQS FSAMGLFNQS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT LFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT                                  | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES<br>KPLSQTTVEM<br>KPLSTTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>EPLSTTSVES<br>gPLSTTSVES<br>EPLSTTSVES<br>EPLSTTSVES<br>EPLSQTSEES               | nrtWl artFl krtWv nrlWv VSQTDGYA ItTTDGYA ItQTDGFS ItQTDGFS itQTDGFS akElDGYS akElDGYS akElDGYS akElDGYS                                        | TSSIVPFSGR TSSVVPFSAR VkkiVPFSAR TSRITPFSAR DSKIVPFSGH AAWTVPFAAR AAWTVPFAAR SAWTVPFASR SAWTVPFASR SAWTVPFASR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR                                                                                         |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9a1 A. terreus cbs A. niger var. awamori A. niger T213 A. niger NRRL3135 A. fumigatus ATCC13073 A. fumigatus ATCC32722 A. fumigatus ATCC58128 A. fumigatus ATCC58128 A. fumigatus ATCC32239                                                    | FSHDN1MVAV FSHDN1MVAV FSHDNQMVAI LSHDNQMIAI FSHDNTMVPI FSHDSNLVSI FSHDNGIISI FSHDNGIISI FSHDNGIISI FSHDNSMVSI FSHDNSMISI                                                                                         | FSAMGLFYQS FSAMGLFNQS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT FFALGLYNGT FFAMGLYNGT | aPLSTSTpDP<br>aPLdPTTpDP<br>sPLdPSfpNP<br>a.LdPlkpDe<br>aPLSqTSVES<br>KPLSQTTVEM<br>KPLSTTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>KPLSTTTVEN<br>EPLSTTSVES<br>GPLSTTSVES<br>EPLSTTSVES<br>EPLSTTSVES<br>EPLSQTSEES<br>QPLSMdSVES | nrtWl artFl krtWv nrlWv VSQTDGYA ItrTDGYA ItQTDGFS ItQTDGFS itQTDGFS akElDGYS akElDGYS akElDGYS akElDGYS tkESNGYS                               | TSSIVPFSGR TSSVVPFSAR VkkiVPFSAR TSRITPFSAR DSKIVPFSGH AAWTVPFAAR AAWTVPFAAR SAWTVPFASR SAWTVPFASR SAWTVPFASR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR                                                        |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9a1 A. terreus cbs A. niger var. awamori A. niger T213 A. niger NRRL3135 A. fumigatus ATCC13073 A. fumigatus ATCC32722 A. fumigatus ATCC58128 A. fumigatus ATCC5906 A. fumigatus ATCC32239 E. nidulans                                         | FSHDN1MVAV FSHDN1MVAV FSHDNQMVAI LSHDNQMIAI FSHDNTMVPI FSHDSNLVSI FSHDNGIISI FSHDNGIISI FSHDNSMVSI FSHDNSMISI FSHDNSMISI FSHDNTMtSI | FSAMGLFIQS FSAMGLFNQS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT FFALGLYNGT FFAMGLYNGT FFAMGLYNGT FFAMGLYNGT | aPLSTSTpDP aPLdPTTpDP sPLdPSfpNP a.LdPlkpDe aPLSqTSVES KPLSQTTVEA KPLSTTTVEN KPLSTTTVEN KPLSTTTVEN KPLSTTTVEN EPLSTTSVES GPLSTTSVES EPLSTTSVES EPLSTTSVES EPLSTTSVES CPLSQTSeES QPLSmdSVES akLSTTEIKS                        | nrtWl artFl krtWv nrlWv VsQTDGYA ItrTDGYA ItQTDGFS ItQTDGFS itQTDGFS akElDGYS akElDGYS akElDGYS akElDGYS tkESNGYS IqEmDGYA IeETDGYS             | TSSIVPFSGR TSSVVPFSAR VkkiVPFSAR TSRITPFSAR DSKIVPFSGH AAWTVPFAAR AAWTVPFAAR SAWTVPFASR SAWTVPFASR SAWTVPFASR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR                                                        |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9al A. terreus cbs A. niger var. awamori A. niger T213 A. niger NRRL3135 A. fumigatus ATCC13073 A. fumigatus ATCC32722 A. fumigatus ATCC32722 A. fumigatus ATCC32722 A. fumigatus ATCC32722 D. fumigatus ATCC32739 E. nidulans T. thermophilus | FSHDN1MVAV FSHDN1MVAV FSHDNQMVAI LSHDNQMIAI FSHDNTMVPI FSHDSNLVSI FSHDNGIISI FSHDNGIISI FSHDNGIISI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMISI FSHDNSMISI FSHDNSMISI FSHDNSMISI FSHDNTMtSI FSHDNTMtSI                                                                              | FSAMGLFIQS FSAMGLFNQS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT LFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFAMGLYNGT FFAMGLYNGT FAMGLYNGT FSAMGLYNGT FSAMGLYNGT             | aPLSTSTpDP aPLdPTTpDP sPLdPSfpNP a.LdPlkpDe aPLSqTSVES KPLSqTTVEN KPLSTTTVEN KPLSTTTVEN KPLSTTTVEN EPLSrTSVES EPLSrTSVES EPLSrTSVES EPLSrTSVES EPLSqTSeES OPLSmdSVES akLSTTeIKS                                              | nrtWl artFl krtWv nrlWv VsQTDGYA ItrTDGYA ItQTDGFS ItQTDGFS itQTDGFS akElDGYS akElDGYS akElDGYS akElDGYS tkESNGYS IqEmDGYA IeETDGYS             | TSSIVPFSGR TSSVVPFSAR VkkiVPFSAR VKRIVPFSAR DSKIVPFSGH AAWTVPFAAR AAWTVPFAAR SAWTVPFASR SAWTVPFASR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWTVPFGAR ASWTVPFGAR ASWTVPFGAR ASWTVPFGAR                                             |
| P. involutus (phyA2) T. pubescens A. pediades P. lycii A. terreus 9al A. terreus cbs A. niger var. awamori A. niger T213 A. niger NRRL3135 A. fumigatus ATCC13073 A. fumigatus ATCC32722 A. fumigatus ATCC58128 A. fumigatus ATCC26906 A. fumigatus ATCC32239 E. nidulans T. thermophilus T. lanuginosus         | FSHDN1MVAV FSHDN1MVAV FSHDNQMVAI LSHDNQMIAI FSHDNTMVPI FSHDSNLVSI FSHDSNLVSI FSHDNGIISI FSHDNGIISI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMVSI FSHDNSMISI FSHDNSMISI FSHDNSMISI FSHDNTMtSI FSHDNTMtSI FSHDNTMtSI FSHDNTMtGI FSHDNTMTGI                                  | FSAMGLFIQS FSAMGLFNQS FSAMGLFNAT FWALGLYNGT FWALGLYNGT LFALGLYNGT LFALGLYNGT LFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFALGLYNGT FFAMGLYNGT FFAMGLYNGT FAMGLYNGT FAMGLYNGT LFAMGLYNGT FSAMGLYNGT LGALGAYDGV   | aPLSTSTpDP aPLdPTTpDP sPLdPSfpNP a.LdPlkpDe aPLSqTSVES KPLSqTTVEN KPLSTTTVEN KPLSTTTVEN EPLSTTSVES gPLSrTSVES EPLSrTSVES EPLSrTSVES EPLSqTSeES OPLSmdSVES akLSTTeIKS T KPLSTSkIQ pPLdkTArrd                                  | nrtWl artFl krtWv nrlWv VsQTDGYA ItrTDGYA ItQTDGFS ItQTDGFS itQTDGFS akElDGYS akElDGYS akElDGYS akElDGYS akElDGYS akELDGYS akELDGYS predaAADGYA | TSSIVPFSGR TSSVVPFSAR vkkiVPFSAR TSRItPFSAR DSKIVPFSGH AAWTVPFAAR AAWTVPFASR SAWTVPFASR SAWTVPFASR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWVVPFGAR ASWTVPFGAR ASWTVPFGAR ASWTVPFGAR ASWTVPFGAR ASWTVPFGAR ASWTVPFGAR ASWTVPFGAR ASWTVPFAAR ASWTVPFAAR |

```
401
                                                                        450
P. involutus (phyA1)
                      mvVErLsC.. fGt...... Tk VRVLVQDQVq PLEfCGqDRn
P. involutus (phyA2)
                      maVErLsC.. AGt...... Tk VRVLVQDQVq PLEfCGgDQd
T. pubescens
                      mvVErLDC.. GGa...... Qs VRLLVNDaVq PLafCGaDts
A. pediades
P. lycii
                      mvtErLlCQr DGtGsGGpsr imrNgnvQTF VRILVNDaLq PLkfCGgDmd
                      mtVEkLaC....sgKea VRVLVNDaVq PLEfCGg.vd
AYVEMMQCrA.....EK..EPL VRVLVNDRVM PLHGCPtDKL
A. terreus 9al
A. terreus cbs
                      AYIEMMQCrA ..... ..EK...QPL VRVLVNDRVM PLHGCAVDNL
A. niger var. awamori 1YVEMMQCQA ......EQ...EPL VRVLVNDRVV PLHGCPIDaL
A. niger T213
                      lyvemmqcqa ..... ..eq...epl vrvlvndrvv plhgcpidal
A. niger NRRL3135
                      1YVEMMQCQA .....EQ...EPL VRVLVNDRVV PLHGCPVDaL
A. fumigatus ATCC13073 AYFETMQCKS ...... .EK. .EPL VRALINDRVV PLHGCDVDKL
A. fumigatus ATCC32722 AYfEtMQCKS ......EK...EPL VRaLINDRVV PLHGCDVDKL
A. fumigatus ATCC58128 AYfEtMQCKS ...... ..EK...ESL VRaLINDRVV PLHGCDVDKL
A. fumigatus ATCC26906 AYfEtMQCKS ...... ..EK...EPL VRaLINDRVV PLHGCDVDKL
A. fumigatus ATCC32239 AYfEtMQCKS .....EK...EPL VRaLINDRVV PLHGCAVDKL
                     E. nidulans
T. thermophilus
                      AYVELLRCET ETSSeEEeEG ..ED...EPF VRVLVNDRVV PLHGCrVDRW
T. lanuqinosus
M. thermophila
                      iYVEkMRCsG GGgGGGGEG ..rQekdEeM VRVLVNDRVM TLkGCGaDEr
Consensus Seq. 11
                      AYVEMMQCEA GG-G-GG-EG --EK---EPL VRVLVNDRVV PLHGCGVDKL
                       GlCtLAKFVE SqTFARSDga GDFEKCFAts a~
P. involutus (phyA1)
P. involutus (phyA2)
                      GlCaLDKFVE SqAYARSGga GDFEKCLAtt v~
T. pubescens
                      GvCtLDAFVE SqayaRNDge GDFEKCFAt~ ~~
A. pediades
                       SlCtLEAFVE SqkYAReDgq GDFEKCFD~~ ~~
P. lycii
                      GvCELsAFVE SqTYAReNgq GDFAKCgfvp se
A. terreus 9al
                      GRCKrDAFVA GLSFAQAG.. GNWADCF--- --
A. terreus cbs
                      GRCKrDDFVE GLSFARAG.. GNWAECF~~~ ~~
A. niger var. awamori GRCtrDsFVr GLSFARSG.. GDWAECsA-- --
A. niger T213
                      GRCtrDsFVr GLSFARSG.. GDWAECFA-- --
A. niger NRRL3135
                       GRCtrDsFVr GLSFARSG.. GDWAECFA-- --
A. fumigatus ATCC13073 GRCKLNDFVK GLSWARSG.. GNWGECFS -- --
A. fumigatus ATCC32722 GRCKLNDFVK GLSWARSG.. GNWGECFS -- --
A. fumigatus ATCC58128 GRCKLNDFVK GLSWARSG.. GNWGECFS-- --
A. fumigatus ATCC26906 GRCKLNDFVK GLSWARSG.. GNWGECFS -- --
A. fumigatus ATCC32239 GRCKLKDFVK GLSWARSG.. GNSEQSFS-- --
E. nidulans
                      GRCtLDDWVE GLNFARSG.. GNWktCFT1~ ~~
T. thermophilus
                     GRCKrDDFVr GLSFARqG.. GNWEGCYAas e-
T. lanuginosus
                       GRCRrDEWIK GLTFARqG.. GHWDrCF~~~ ~~
                      GmCtLErFIE SMAFARGN.. GKWDlCFA~~ ~~
M. thermophila
Consensus Seq. 11
                      GRCKLDDFVE GLSFARSG-- GNWAECFA-- --
```

Fig. 6e

|     | M<br>ATG | G<br>SGG  |           |          | V<br>CGT  |              |           |          |          |          |          |          |          | F<br>GTI  |          | S<br>TTC | T<br>CAC        | S<br>ATC  | G<br>CGG  | T<br>TACC | 20  |
|-----|----------|-----------|-----------|----------|-----------|--------------|-----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|-----------------|-----------|-----------|-----------|-----|
| 1   |          |           |           |          |           |              |           |          |          |          |          |          |          |           |          |          |                 |           |           | +<br>ATGG | 60  |
|     | A<br>GCC |           |           | P<br>TCC |           | G<br>TGG     |           |          |          |          |          |          |          | V<br>TGT  |          |          |                 |           | Q<br>.CCA | C<br>ATGT | 40  |
| 61  |          |           |           |          |           |              |           |          |          |          |          |          |          |           |          |          |                 |           |           | TACA      | 120 |
|     | F<br>TTC | -         | E<br>AGA  | I<br>AAT |           | H<br>TCA     | L<br>CTT  | W<br>GTG | G<br>GGG | _        |          |          |          | Y<br>'ATA |          |          |                 | _         | D<br>AGA  | E<br>CGAA | 60  |
| 121 |          |           |           |          |           |              |           |          |          |          |          |          |          |           |          |          |                 |           |           | +<br>GCTT | 180 |
|     |          | A<br>'GC' | I<br>TAT  | · .      |           |              |           |          |          |          |          |          |          | T<br>TAC  |          | V<br>CGT | ~               | V<br>AGT  |           | S<br>GTCT | 80  |
| 187 |          |           |           |          |           |              |           |          |          |          |          |          |          |           |          |          |                 |           |           | +<br>CAGA | 240 |
|     | R<br>AGA |           | G<br>CGG  |          |           |              | P<br>.CCC |          |          | s<br>TTC | _        |          |          | A<br>.GGC |          |          | A<br>TGC        | L<br>TTT  | I<br>GAT  | E<br>TGAA | 100 |
| 241 |          |           |           |          |           |              |           |          |          |          |          |          |          |           |          |          |                 |           |           | +<br>ACTT | 300 |
|     | A<br>GCI |           |           |          |           |              |           |          |          |          |          |          |          | A<br>.CGC |          |          |                 |           |           | N<br>CAAC | 120 |
| 301 |          |           |           |          |           |              |           |          |          |          |          |          |          |           |          |          |                 |           |           | +<br>GTTG | 360 |
|     | Y<br>TAC |           | L<br>PTT  |          | A<br>TGC  |              | D<br>.CGA |          |          |          |          |          |          |           |          |          | V<br>'GGT       |           | S<br>CTC  | G<br>TGGT | 140 |
| 361 |          |           |           |          |           |              |           |          |          |          |          |          |          |           |          |          |                 |           |           | +<br>ACCA | 420 |
|     |          |           |           |          |           |              | Y<br>ATA  |          |          |          |          |          |          |           |          |          |                 | I<br>CAT  |           | A<br>AGCT | 160 |
| 421 |          |           |           | -+-      |           |              | +         |          |          |          | +        |          |          | -+-       |          | <b>-</b> | +               |           |           | +<br>TCGA | 480 |
|     |          | G<br>'GG' | S<br>ITC' | D<br>IGA | R<br>CAG. | V<br>AGT     | I<br>TAT  | A<br>TGC | S<br>TTC | A<br>TGC | E<br>TGA | K<br>AAA | F<br>GTT | I<br>CAT  | E<br>TGA | G<br>AGG | F               | Q<br>CCA  | S<br>ATC  | A<br>TGCT | 180 |
| 481 |          |           |           | -+-      |           | <del>-</del> | +         |          |          |          | +        |          |          | -+-       |          |          | +               |           |           | +<br>ACGA | 540 |
|     | K<br>AAG | L<br>TTC  | A<br>BGC' | D<br>IGA | P<br>CCC. | G<br>AGG     | S<br>TTC  | Q<br>TCA | P<br>ACC | H<br>ACA | Q<br>CCA | A<br>AGC | S        | P<br>TCC  | V<br>AGT | I<br>TAT | <u>N</u><br>TAA | V<br>.CGT | I<br>GAT  | I<br>CATT | 200 |
| 541 |          | <b>-</b>  |           | -+-      |           |              | +         | <b>-</b> |          |          | +        |          |          | -+-       |          |          | +               |           | - <b></b> | +<br>GTAA | 600 |
|     |          |           |           |          |           |              |           |          |          |          |          |          |          | T<br>TAC  |          |          |                 |           |           | D<br>AGAC | 220 |
| 601 |          |           |           | - + -    |           | <b>-</b>     | +         |          |          |          | +        |          |          | -+-       |          |          | +               |           |           | +<br>TCTC | 660 |

Fig. 7a

| <i>cc</i> 1 | S E L G D D V E A N F T A L F A P A I R TCTGAATTAGGTGACGACGTTGAAGCTAACTTCACTGCTTTGTTCGCTCCAGCTATTAG                                               | 240<br>A    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 991         | 1AGACTTAATCCACTGCTGCAACTTCGATTGAAGTGACGAAACAAGCGAGGTCGATAATC                                                                                      |             |
|             | A R L E A D L P G V T L T D E D V V Y L GCTAGATTGGAAGACGTTGTTTACTT                                                                                | 260<br>G    |
| 721         | CGATCTAACCTTCGACTGAACGGTCCACAATGAAACTGACTG                                                                                                        |             |
|             | M D M C P F $\underline{\mathtt{D}}$ T V A R T S D A T E L S P ATGGACATGTGTCCACTGTCGCTAGAACTTCTGACGCTACTGAATTGTCTCC                               | 280<br>A    |
| 781         | TACCTGTACACAGGTAAGCTGTGACAGCGATCTTGAAGACTGCGATGACTTAACAGAGG                                                                                       |             |
|             | F C A L F T H D E W $\underline{\mathtt{I}}$ Q Y D Y L Q S L G TTCTGTGCTTGTTCACTCACGACGAATGGATCCAATACGACTACTTGCAAAGCTTGGG                         | 300<br>T    |
| 841         | AAGACACGAAACAAGTGAGTGCTGCTTACCTAGGTTATGCTGATGAACGTTTCGAACCC                                                                                       |             |
|             | K Y Y G Y G A G N P L G P A Q G V G F A AAGTACTACGGTTACGGTGGTAACCCATTGGGTCCAGCTCAAGGTGTTGGTTTCGC                                                  | 320<br>r    |
| 901         | TTCATGATGCCAATGCCACGACCATTGGGTAACCCAGGTCGAGTTCCACAACCAAAGCG                                                                                       | + 960<br>A  |
|             | N E L I A R L T $\underline{\mathrm{H}}$ S P V Q D H T S T N H AACGAATTGATTGCTAGATTGACTCACTCTCCAGTTCAAGACCACACTTCTACTAACCAC                       | 340         |
| 961         | TTGCTTAACTAACGATCTAACTGAGTGAGAGGTCAAGTTCTGGTGTGAAGATGATTGGTG                                                                                      |             |
|             | T L D S N P A T F P L N A T L Y A D F S ACTTTGGACTCTAACCCAGCTACTTTCCCATTGAACGCTACTTTGTACGCTGACTTCTC                                               | 360<br>[    |
| 1021        | TGAAACCTGAGATTGGGTCGATGAAAGGGTAACTTGCGATGAAACATGCGACTGAAGAG                                                                                       | + 1080<br>\ |
|             | H D N $\underline{\mathtt{T}}$ M I S I F F A L G L Y N G T $\underline{\mathtt{K}}$ P CACGACAACACTATGATATCTATTTCTTCGCTTTGGGTTTGTACAACGGTACCAAGCCA | 380         |
| 1081        | GTGCTGTTGTGATACTATAGATAAAAGAAGCGAAACCCAAACATGTTGCCATGGTTCGGT                                                                                      | 1140        |
|             | L S T T S V E S I E E T D G Y S A S W T TTGTCTACTTCTGTTGAATCTATTGAAGAAACTGACGGTTACTCTGCTTCTTGGACT                                                 | 400         |
| 1141        | AACAGATGATGAAGACAACTTAGATAACTTCTTTGACTGCCAATGAGACGAAGAACCTGA                                                                                      | 1200        |
|             | V P F <u>A</u> A R A Y V E M M Q C Q A E K E P<br>GTTCCATTCGCTGCTAGAGCTTACGTTGAAATGATGCAATGTCAAGCTGAAAAGGAACCA                                    | 420         |
| 1201        | CAAGGTAAGCGACGATCTCGAATGCAACTTTACTACGTTACAGTTCGACTTTTCCTTGGT                                                                                      | 1260        |
|             | L V R V L V N D R V V P L H G C A V D K TTGGTTAGAGTTTTGGTTAACGACAGGTTGTTCCATTGCACGGTTGTGCTTGACAAG                                                 | 440         |
| 1261        | AACCAATCTCAAAACCAATTGCTGTCTCAACAACGTAACGTCAACACCAACACGAACTCTTTTC                                                                                  | 1320        |

Fig. 7b

|      | _ | _   | <br>_   |   |   |   | D              | _        |     |   |                  |     |      |   |      |                   | 460  |
|------|---|-----|---------|---|---|---|----------------|----------|-----|---|------------------|-----|------|---|------|-------------------|------|
| 1321 |   |     | <br>-+- |   |   | + |                | <b>-</b> |     | + | <br><del>-</del> | -+- | <br> | + | <br> | TGGT<br>+<br>ACCA | 1380 |
|      |   | ••• | <br>_   | - | _ | A |                | _        | 467 |   |                  |     |      |   |      |                   |      |
| 1381 |   |     | <br>-+- |   |   | + | TTA<br><br>AAT | - 1      | 410 |   |                  |     |      |   |      |                   |      |

|     | M G V F V V L L S I A T L F G S T<br>ATGGGCGTGTTCGTCGTGCTGCTCCACACACACACACACA                                       | S G T 20               |
|-----|---------------------------------------------------------------------------------------------------------------------|------------------------|
| 1   | 1++                                                                                                                 | + 60                   |
|     | A L G P R G N S H S C D T V D G G                                                                                   | Y Q C 40               |
| 61  | GCCTTGGGTCCTCGTGGTAACTCTCACTCTTGTGACACTGTTGACGGTGGT  1+                                                             | + 120                  |
|     | FPEISHLWG $\underline{\mathtt{T}}$ YSPFFSL $\underline{\mathtt{TTCCCAGAAATTTCTCACTTGTGGGGTACATACTCTCCATTCTTCTTTTG}$ | ADE 60                 |
| 121 | 1+                                                                                                                  | + 180                  |
|     | S A I S P D V P K G C R V T F V Q TCTGCTATTCTCCAGACGTTCCAAAGGGTTGTAGAGTTACTTTCGTTCAA                                | GTTTTGTCT              |
| 181 | 1                                                                                                                   | + 240                  |
|     | AGACACGGTGCTAGATACCCAACTTCTTCTGCGTCTAAGGCGTACTCTGCT                                                                 | L I E 100<br>PTGATTGAA |
| 241 | 1                                                                                                                   | + 300<br>AACTAACTT     |
| 207 | A I Q K N A T A F K G K Y A F L K C GCTATTCAAAAGAACGCTACTGCTTTCAAGGGTAAGTACGCTTTCTTGAAGA                            | ACTTACAAC              |
| 301 | 1                                                                                                                   | + 360<br>IGAATGTTG     |
| 261 | Y T L G A D D L T P F G E Q Q M V 1 TACACTTTGGGTGCTGACGACTTGACTCCATTCGGTGAACAACAAATGGTTA                            | AACTCTGGT              |
| 361 | 1+                                                                                                                  | TTGAGACCA              |
| 421 | I K F Y R R Y K A L A R K I V P F I ATTAAGTTCTACAGAAGATACAAGGCTTTGGCTAGAAAGATTGTTCCATTCA                            | TTAGAGCT               |
| 121 | 1+                                                                                                                  | TAATCTCGA              |
| 481 | S G S D R V I A S A E K F I E G F ( TCTGGTTCTGACAGAGTTATTGCTTCTGCTGAAAAGTTCATTGAAGGTTTCC 1+                         | CAATCTGCT              |
|     | AGACCAAGACTGTCTCAATAACGAAGACGACTTTTCAAGTAACTTCCAAAGG                                                                | STTAGACGA              |
| 541 | K L A D P G A N P H Q A S P V I N V AAGTTGGCTGACCCAGGTGCTAACCCACCCAAGCTTCTCCAGTTATTAACC 1                           | TTATTATT               |
|     | TTCAACCGACTGGGTCCACGATTGGGTGGTTCGAAGAGGTCAATAATTGC                                                                  | CAATAATAA              |
|     | PEGAGYNNTLDHGLCTAF<br>CCAGAAGGTGCTGGTTACAACAACACTTTGGACCACGGTTTGTGTACTGCTT                                          | TCGAAGAA               |
|     | GGTCTTCCACGACCAATGTTGTTGTGAAACCTGGTGCCAAACACATGACGAA                                                                |                        |

Fig. 8a

|      | TC      | E<br>TGA  | ATI       | 'GGG               | TGA           | D<br>CGA  | CGI            | TGA       | AGC       | 'TAA         | CTI       | CAC       | TGC        | TGT  | TTT      | CGC  | TCC      | CACC     | :AAT      | R<br>TAGA      | 240         |
|------|---------|-----------|-----------|--------------------|---------------|-----------|----------------|-----------|-----------|--------------|-----------|-----------|------------|------|----------|------|----------|----------|-----------|----------------|-------------|
| 661  |         |           |           |                    |               |           |                |           |           |              |           |           |            |      |          |      |          |          |           | ATCT           |             |
|      |         | TAG       | ATT       | 'GGA               | AGC           |           | CTI            | GCC       | AGG       | TGT          | TAA       | CTI       | GAC        | TGA  | CGA      |      | CGT      |          | TAA       | L<br>.CTTG     |             |
| 721  |         |           |           |                    |               |           |                |           |           |              |           |           |            |      |          |      |          |          |           | GAAC           |             |
| 701  | AT      | D<br>GGA  | CAT       | GTG                | TCC           | F<br>ATT  | 'CGA           | CAC       | TGT       | TGC          | TAG       | AAC       | TTC        | TGA  | CGC      | TAC  | TCA      | L<br>ATI | GTC       | P<br>TCCA      | 280         |
| 781  |         |           |           |                    |               |           |                |           |           |              |           |           |            |      |          |      |          |          |           | +<br>AGGT      | 840         |
| 841  | TT      |           | TGA       | CTT                |               | CAC       | TCA            | CGA       | CGA       | ATG          | GAT       | TCA       | ATA        |      | CTA      | CTI  |          |          |           | G<br>GGGT<br>+ | 300         |
| 041  |         |           |           |                    |               |           |                |           |           |              |           |           |            |      |          |      |          |          |           | CCCA           | 900         |
| 901  | AA      | GTA       | CTA       | CGG                | TTA           |           | TGC            | TGG       | TAA       | CCC          | ATT       | GGG       | TCC        |      | TCA      | AGG  | TGT      | TGG      |           | V<br>CGTT<br>+ | 320<br>960  |
|      | тт      | CAT       | GAT       | GCC                | ААТ           | GCC       | ACG            | ACC       | ATT       | GGG          | TAA       | CCC       | AGG        | TCG  | AGT      | TCC  | ACA      |          |           | GCAA           | 300         |
| 961  |         | CGA       | TTA       | GAT                | TGC           | TAG.      | ATT            | GAC       | TCA       | CTC          | TCC       | AGT       | TCA        |      | CCA      | CAC  | TTC      |          |           | H<br>CCAC      | 340<br>1020 |
|      | TT      | GCT'      | TAA       |                    |               |           |                |           |           |              |           |           |            |      |          |      |          |          |           | GGTG           | 1020        |
| 1021 |         | TTT       | GGA       |                    |               | CCC       | AGC            |           | TTT       | CCC          | ATT       |           | CGC        |      | TTT      | GTA  | CGC      |          |           | CTCT           | 360<br>1080 |
|      | TG      |           | CCT       | GAG.               | ATT           | GGG'      | TCG.           | ATG.      |           |              |           |           |            |      |          |      |          |          |           | GAGA           | 1080        |
| 1081 | H<br>CA | D<br>CGA  | CAA       | T<br>CAC'<br>-+-   | TAT           | V<br>GGT' | TTC'           | TAT'      | TTT       | F<br>CTT     | CGC'      | TTT       | GGG'       | TTT  | GTA      | CAA  | CGG      | T<br>TAC | K<br>TAA  | P<br>GCCA      | 380<br>1140 |
|      | GT      |           |           |                    |               |           |                |           |           |              |           |           |            |      |          |      |          |          |           | CGGT           | 1140        |
| 1141 | TTC     | S<br>STC: | T<br>TAC' | T<br>TAC'<br>- + - | S<br>TTC'<br> | V<br>TGT' | E<br>TGA:<br>+ | S<br>ATC: | I<br>FAT' | E<br>FGA<br> | E<br>AGA: | T<br>AAC' | <b>IGA</b> | CGG' | Y<br>TTA | CTC  | A<br>TGC | TTC      | W<br>TTG( | T<br>GACT      | 1200        |
|      | AA      | CAG       | ATG       | ATG                | AAG           | ACA       | ACT'           | rag:      | ATA       | ACT:         | rct'      | rtg:      | ACT        | GCC  | AAT      | GAG. | ACG.     | AAG.     | AAC       | CTGA           | 1200        |
| 1201 | GT.     | rcc2      | TT        | CGC'               | TGC'          | R<br>TAG  | AGC'           | TTA(      | CGT       | rga:         | \AT(      | GAT       | GCA        | ATG' | TGA      | AGC' | TGA      | AAA      | GGA       | ACCA           | 420         |
|      | CA      | AGG:      | raa(      | GCG2               | ACG           | ATC:      | rcg            | AAT       | GCA/      | ACT'         | CTA       | CTA       | CGT:       | TAC  | ACT'     | TCG  | ACT"     | TTT      | CCT:      | rggt           | 1200        |
| 1261 | TTC     | GT.       | rag/      | AGT                | TTT(          | V<br>GGT  | CAA1           | CGA       | CAG       | AGT          | rgr:      | rcc       | TT         | GCA  | CGG'     | TTG' | rgg'     | TGT"     | TGA(      | K<br>CAAG      | 1320        |
|      |         |           |           |                    |               |           |                |           |           |              |           |           |            |      |          |      |          |          |           | TOP T          |             |

Fig. 8b

|      | L                                                          | G                                                            | R  | С  | K | R           | D | D | F | v     | E | G | L | s | F | A | R | s | G | G | 460  |
|------|------------------------------------------------------------|--------------------------------------------------------------|----|----|---|-------------|---|---|---|-------|---|---|---|---|---|---|---|---|---|---|------|
| 1321 | TT                                                         | TTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTAGATCTGGTGGT |    |    |   |             |   |   |   |       |   |   |   |   |   |   |   |   |   |   |      |
|      |                                                            |                                                              |    |    |   |             |   |   |   |       |   |   |   |   |   |   |   |   |   | + | 1380 |
|      | AACCCATCTACATTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGATCTAGACCACCA |                                                              |    |    |   |             |   |   |   |       |   |   |   |   |   |   |   |   |   |   |      |
|      | NT                                                         | f.T                                                          | 10 | 12 | _ | <b>T</b> 71 |   | _ |   | 4 6 7 |   |   |   |   |   |   |   |   |   |   |      |
|      | N W E E C F A * 467 AACTGGGAAGAATGTTTCGCTTAA               |                                                              |    |    |   |             |   |   |   |       |   |   |   |   |   |   |   |   |   |   |      |
| 1381 |                                                            |                                                              |    |    |   |             |   |   |   |       |   |   |   |   |   |   |   |   |   |   |      |
|      |                                                            | TTGACCCTTCTTACAAAGCGAATT                                     |    |    |   |             |   |   |   |       |   |   |   |   |   |   |   |   |   |   |      |

| 1   | M G V F V V L L S I A T L F G S T S G T ATGGGGGGTTTTCGTCGTTCTATTATCTATCGCGACTCTGTTCGGCAGCACATCGGGCAC                     | 20<br>T                                                         |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
|     | TACCCCCAAAAGCAGCAAGATAATAGATAGCGCTGAGACAAGCCGTCGTGTAGCCCGTGA                                                             |                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 61  | A L G P R G N H S K S C D T V D L G Y Q GCGCTGGGCCCCCGTGGAAATCACTCCAAGTCCTGCGATACGGTAGACCTAGGGTACCA                      | 40<br>\G                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | CGCGACCCGGGGGCACCTTTAGTGAGGTTCAGGACGCTATGCCATCTGGATCCCATGGTC                                                             |                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 121 | C S P A T S H L W G T Y S P Y F S L E D TGCTCCCCTGCGACTTCTCATCTATGGGGCACGTACTCGCCATaCTTTTCGCTCGAGGA                      | 60<br>C<br>+ 180                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | ACGAGGGACGCTGAAGAGTAGATACCCCGtgCATGAGCGGTAtGAAAAGCGAGCTCCTG                                                              |                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 181 | E L S V S S K L P K D C R I T L V Q V L GAGCTGTCCGTGTCGAGTAAGCTTCCCAAGGATTGCCGGATCACCTTGGTACAGGTGCT                      | 'A                                                              |  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | CTCGACAGGCACAGCTCATTCGAAGGGTTCCTAACGGCCTAGTGGAACCATGTCCACGA                                                              | ++ 240<br>GGCACAGCTCATTCGAAGGGTTCCTAACGGCCTAGTGGAACCATGTCCACGAT |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 241 | S R H G A R Y P T S S K S K K Y K K L $\underline{\mathbf{I}}$ TCGCGCCATGGAGCGGTACCCAACCAGCTCCAAGAGCAAAAAGTATAAGAAGCTTAT | 't                                                              |  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | AGCGCGGTACCTCGCGCCATGGGTTGGTCGAGGTTCTCGTTTTTCATATTCTTCGAALA                                                              |                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | T A I Q A N A T D F K G K $\underline{Y}$ A F L K T Y ACGGCGATCCAGGCCAATGCCACCGACTTCAAGGGCAAGTacGCCTTTTTGAAGACGTA        | .C                                                              |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 301 | TGCCGCTAGGTCCGGTTACGGTGGCTGAAGTTCCCGTTCAtgCGGAAAAACTTCTGCATG                                                             |                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | N Y T L G A D D L T P F G E Q Q L V N S AACTATACTCTGGGTGCGGATGACCTCCCTTTGGGGAGCAGCAGCTGGTGAACTC                          | 140<br>G                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 361 | TTGATATGAGACCCACGCCTACTGGAGTGAGGGAAACCCCTCGTCGTCGACCACTTGAGC                                                             |                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | G I K F Y Q R Y K A L A R S V V P F I R GGCATCAAGTTCTACCAGAGGTACAAGGCTCTGGCGCGCAGTGTGGTGCCGTTTATTCG                      | 160<br>C                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 121 | CCGTAGTTCAAGATGGTCTCCATGTTCCGAGACCGCGCGTCACACCACGGCAAATAAGC                                                              | + 480<br>G                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 181 | A S G S D R V I A S G E K F I E G F Q Q GCCTCAGGCTCGGACCGGGTTATTGCTTCGGGAGAGAAGTTCATCGAGGGGTTCCAGCA                      | 180<br>G                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | CGGAGTCCGAGCCTGGCCCAATAACGAAGCCCTCTCTTCAAGTAGCTCCCCAAGGTCGT                                                              | + 540<br>C                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 541 | A K L A D P G A T N R A A P A I S V I I GCGAAGCTGGCTGATCCTGGCGGCGACCGACCGCCGCTCCGGCGATTAGTGTGATTAT                       | 200<br>T                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | CGCTTCGACCGACTAGGACCGCGCTGCTTGGCGCGGCGAGGCCGCTAATCACACTAATA                                                              |                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 501 | P E S E T F N N T L D H G V C T K F E A CCGGAGAGCGAGACGTTCAACAATACGCTGGACCACGGTGTGCACGAAGTTTGAGGC                        | G                                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |
|     | GGCCTCTCGCTCTGCAAGTTGTTATGCGACCTGGTGCCACACACGTGCTTCAAACTCCG                                                              | + 660                                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |

Fig. 9a

| 661  |                                                              | rca(                                                         | GCT( | GGG. | AGA' | TGA | GGT" | TGC | GGC  | CAA' | rtt( | CAC' | rgc( |      | CTT  | TGC  | ACC  | CGA | CAT  | R<br>CCGA   | 240        |
|------|--------------------------------------------------------------|--------------------------------------------------------------|------|------|------|-----|------|-----|------|------|------|------|------|------|------|------|------|-----|------|-------------|------------|
|      |                                                              |                                                              |      |      |      |     |      |     |      |      |      |      |      |      |      |      |      |     |      | GGCT        | 720        |
| 721  | GC                                                           | TCG                                                          | Cct  | CGA  | GAA  | GCA | TCT  | TCC | TGG  | CGT  | GAC  | GCT  | GAC  |      | CGA  | GGA  | CGT' | TGT | CAG: | <b>ICTA</b> | 260        |
|      | CGAGCGgaGCTCTTCGTAGAAGGACCGCACTGCGACTGTCTGCTCCTGCAACAGTCAGAT |                                                              |      |      |      |     |      |     |      |      |      |      |      |      |      | 780  |      |     |      |             |            |
| 781  | AT                                                           | GGA                                                          | CAT  | GTG  | TcC  | GTT | TGA' | TAC | GGT. | AGC  | GCG  | CAC  | CAG  |      | CGC  | AAG' | TCA  | GCT |      | P<br>ACCG   | 280        |
|      |                                                              | TACCTGTACACAGGCAAACTATGCCATCGCGCGTGGTCGCTTCAGTCGACAGTGGC     |      |      |      |     |      |     |      |      |      |      |      |      |      |      | 840  |     |      |             |            |
|      | TT                                                           |                                                              | TCA  | ACT  | CTT  | CAC |      | CAA | TGA  | GTG  | GAA  | GAA  | GTA  |      | CTA  | CCT  | TCA  | GTC | CTT  | GGC         | 300        |
| 841  |                                                              |                                                              |      |      |      |     |      |     |      |      |      |      |      |      |      |      |      |     |      | CCCG        | 900        |
| 901  | AA                                                           | GTA                                                          | CTA  | CGG  | CTA  | CGG |      | AGG | CAA  |      | TCT  | GGG. | ACC  | GGC' | TCA  |      |      |     |      | T<br>CACC   | 320<br>960 |
|      |                                                              |                                                              |      |      |      | GCC | GCG  | TCC | GTT  | GGG  | AGA  | CCC  | TGG  | CCG. | AGT  | CCC  | CTA  | TCC | CAA  | GTGG        |            |
| 061  |                                                              |                                                              |      | GAT  | TGC  | CCG |      | GAC | gCG  | TTC  | GCC  | AGT  | GCA  |      | CCA  | CAC  | CAG  | CAC |      | CTCG        | 340        |
| 961  |                                                              | TTGCTCGACTAACGGGCCAACTGcGCAAGCGGTCACGTCCTGGTGTGGTCGTGATTGAGC |      |      |      |     |      |     |      |      |      |      |      |      |      |      |      |     |      |             |            |
| 1001 |                                                              | TCT                                                          |      | CTC  | CAA  |     | :GGC | CAC | CTT  |      | GTT  | GAA  | CGC  |      | CAT  | GTA  | CGT  | CGA |      | TTCA        | 360        |
| 1021 | TGAGATCAGAGGTTGGGCCGGTGGAAGGGCAACTTGCGATGGTACATGCAGCTGAAAAGT |                                                              |      |      |      |     |      |     |      |      |      |      |      |      | 1000 |      |      |     |      |             |            |
|      |                                                              |                                                              |      | CAG  | CAT  | GGI | TTC  | CAT | CTI  | CTT  | TGC  | ATT  | GGG  |      | GTA  | CAA  | .CGG | CAC |      | P<br>ACCC   | 380        |
| 1081 |                                                              |                                                              |      |      |      |     |      |     |      |      |      |      |      |      |      |      |      |     |      | TGGG        | 1140       |
| 1141 |                                                              |                                                              |      |      |      |     |      |     |      |      |      |      |      |      |      |      |      |     |      | V<br>GGTG   | 1200       |
|      |                                                              |                                                              |      |      |      |     |      |     |      |      |      |      |      |      |      |      |      |     |      | CCAC        | 1200       |
| 1201 | GI                                                           | 'GCC                                                         | TTI  | 'CGG | CGC  | GCG | AGC  | CTA | CTI  | 'CGA | GAC  | GAT  | GCA  |      | CAA  | GTC  | GGA  | AAA | .GGA | GCCT        | 420        |
|      |                                                              |                                                              |      |      |      |     |      |     |      |      |      |      |      |      |      |      |      |     |      | +<br>CGGA   | 1260       |
|      | CI                                                           | TGT                                                          | TCG  | CGC  | TTT  | GAT | TAA  | TGA | CCG  | GGI  | 'TGI | 'GCC | ACT  |      | TGG  | CTG  | CGA  | TGT | GGA  | CAAG        | 440        |
| 1261 |                                                              |                                                              |      |      |      |     |      |     |      |      |      |      |      |      |      |      |      |     |      | +           | 1320       |

Fig. 9b

|      | L  | G   | R    | С    | K   | L   | N   | D    | F    | v   | K   | G   | L   | s    | W   | Α   | Ŕ   | s   | G   | G    | 460  |
|------|----|-----|------|------|-----|-----|-----|------|------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|------|------|
|      |    |     |      |      |     |     |     |      |      |     |     |     |     |      |     |     |     |     |     | GGGC |      |
| 1321 |    |     |      |      |     |     |     |      |      |     |     |     |     |      |     |     |     |     |     |      | 1380 |
|      | GA | CCC | CGC  | TAC  | GTT | CGA | CTT | ACTO | SAAZ | ACA | GTT | CCC | TAA | CTC. | AAC | CCG | GTC | TAG | ACC | CCCG |      |
|      | N  | W   | G    | E    | С   | F   | s   | *    | 4    | 167 |     |     |     |      |     |     |     |     |     |      |      |
|      | AA | CTG | GGG  | AGA  | GTG | CTT | TAG | TTG. | A    |     |     |     |     |      |     |     |     |     |     |      |      |
| 1381 |    |     |      |      |     |     |     |      |      | 04  |     |     |     |      |     |     |     |     |     |      |      |
|      | TT | GAC | CCC. | TCT( | CAC | GAA | ATC | AACI | ľ    |     |     |     |     |      |     |     |     |     |     |      |      |

Fig. 9c

|     | CP-1  |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       |       |
|-----|-------|--------------|------|-----------|-----------------|------------|----------|------|--------------|--------------|----------|----------|------------------|------------------|------|------|------|------|--------------|-----------------------|-------|
|     | TATA  |              |      |           |                 |            |          |      | V            |              |          |          |                  |                  |      |      |      | G    |              | T                     |       |
| 1   |       |              | 4    |           |                 |            | - +      |      |              |              | ACI      | GIC      | CAI              | TGC              | CAC  | CIT  | GII  | CGG  | TTC          | CA                    | 60    |
| _   | ATAT  |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       | 80    |
|     |       |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       |       |
|     | s     |              |      | Α         |                 |            |          |      | G            |              |          |          |                  |                  |      |      | v    |      |              |                       |       |
|     | CATO  | CGG          | TAC  | :CGC      | CTI             | rgge       | TCC      | TCG  | TGG          | TAP          | TTC      | TCA      | CTC              | TTG              | TGA  | CAC  | TGT  | TGA  | CGG          | TG                    |       |
| 61  |       |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       | 120   |
|     | GTAG  |              |      | GCG       | GA              | rccc       | CAGG     | AGC  | ACC          | LTA:         | 'AAG     | AGT      | GAG              | AAC              | ACT  | GTG  | ACA  | ACT  | GCC.         | AC                    |       |
|     |       | CF           | -2   | CP-       | . 2             |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       |       |
|     | Y     | 0            | C    |           | -               | E          | т        | S    | Н            | τ.           | w        | G        | 0                | v                | c    | D    | Y    | E.   | s            | L                     |       |
|     | GTTA  |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       |       |
| 121 |       |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       | 180   |
|     | CAAT  |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       |       |
|     |       |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       |       |
|     | E     | D            | E    | _         | A<br>           |            |          |      | D            |              |          |          |                  |                  |      |      |      |      |              |                       |       |
| 101 | TGGA  |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       |       |
| 101 | ACCI  | тст          | GCT  | TAG       | ACG             | ATA        | AAG      | AGG  | יייטייי      | -+-<br>'CC'A | ACC      | <br>TCT  | +<br>            | GDC              |      |      | +    |      |              | -+                    | 240   |
|     |       |              |      |           |                 |            | 4.7      |      |              | 001          | 21.00    | 101      | GCI              | GAC              | AIC  | 1 CA | AIG. | mmn' | GUA          | MG                    |       |
|     |       |              |      |           |                 |            | C        | P-5  | . 7          |              |          |          |                  |                  |      |      |      |      |              |                       |       |
|     | V     | L            | s    | R         | H               | G          | A        | R    | Y            | P            | T        | <u>D</u> | S                | ĸ                | G    | ĸ    | ĸ    | Y    | s            | A                     |       |
|     | AAGT  | TTT          | GTC  | TAG       | ACA             | CGG        | TGC      | TAG  | ATA          | CCC          | AAC      | Tga      | cTC'             | TAA              | Ggg  | tAA  | Gaa  | gTA( | CTC:         | ΓG                    |       |
| 241 |       |              | +    |           |                 |            | +        |      | <del>-</del> | -+-          |          |          | +                |                  |      |      | +    |      |              | -+                    | 300   |
|     | TTCA  | AAA          | CAG  | ATC       | TGT             | GCC        | ACG      | ATC  | TAT          | GGG          | TTG      | Act      | gAG.             | ATT              | Ccc  | aTT  | Ctt  | CAT  | GAG          | AC                    |       |
|     | L     | I            | E    | A         | I               | 0          | к        | N    | Α            | T            | A        | F        | v                | C                | ĸ    | v    | A    | F    | L            | к                     |       |
|     | CTTT  | GAT          |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       |       |
| 301 |       |              | +    |           |                 |            | +        |      |              | -+-          |          |          | +                | - <i>-</i> -     |      |      | +    |      |              | -+                    | 360   |
|     | GAAA  | CTA          | ACT  | TCG       | ATA             | AGT        | TTT      | CTT  | GCG          | ATG          | ACG.     | AAA      | GTT(             | CCC              | ATT  | CAT  | GCG2 | AAA  | GAAC         | CT                    |       |
|     |       |              |      |           |                 |            |          |      | CP           | -            |          |          |                  |                  |      |      |      |      |              |                       |       |
|     | т     | Y            | 3.7  | v         | т.              | τ.         | _        |      | _            |              | CP-      |          | _                |                  | _    | _    |      |      |              |                       |       |
|     | AGAC  |              |      |           |                 | L<br>TTT   |          |      |              | מראי<br>מי   | L        | T        | p<br>P           | F                | G    | E    | N    |      | M            | V                     |       |
| 361 |       |              | +    |           |                 |            | +        |      |              | -+-          |          |          |                  | H11(             |      | - GA | AAA  | CA   | AATC         | ÷G:                   | 420   |
|     | TCTG  | AAT(         | GTT  | GAT       | GTG             | AAA        | CCC      | ACG. | ACT          | GCT          | GAA      | CTG      | AGG:             | TAAC             | GC2  | ACT  | rC   | GT   | ΓፓAC         | ار.<br><del>- ب</del> | 420   |
|     |       |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       |       |
|     | N     | S            | _    | _         |                 |            |          | R    |              | Y            |          |          | L                | A                |      | K    | I    | v    |              | F                     |       |
| 407 | TTAA  | CTC:         | rgg' | TAT       | TAA             | GTT        | CTA      | CAG  | AAG          | ATA          | CAA      | GGC:     | CTT              | GC.              | [AG  | AAA  | TAE  | GT?  | rcc <i>p</i> | T                     |       |
| 421 | ~     |              |      |           |                 |            |          |      |              |              |          |          |                  |                  |      |      |      |      |              |                       | 480   |
|     | AATT  | 3AG2         | ACC. | HIM       | WII             | CAA        | GAT      | GTC  | TTC          | TAT          | GTT(     |          |                  |                  | ATC: | rttc | CTA  | CA   | \GG1         | CA.                   |       |
|     |       |              |      |           |                 |            |          |      |              |              |          | CP.      | -8.              | <u>/</u><br>CP-9 | 2    |      |      |      |              |                       |       |
|     | I     | R            | A    | s         | G               | s          | s        | R    | v            | I            | А        | s        |                  |                  |      | F    | т    | E    | G            | F                     |       |
|     | TCAT' | rag/         | AGC' | TTC       | TGG             | TTC'       | Ttc      | tAG. | AGT'         | TAT'         | TGC:     | rrc1     | rgc <sub>1</sub> | rga.             | AAA  | TTC  | 'ATT | GA   | GGT          | т                     |       |
| 181 |       |              | +    |           |                 |            | +        |      |              | -+-          |          |          | +-               |                  |      | 4    |      |      |              | . 4                   | 540   |
|     | AGTA  | ATC:         | rcg  | AAG.      | ACC.            | AAG        | Aag      | aTC  | TCA          | ATA          | ACG2     | AAGI     | \CG2             | ACT1             | TTC  | 'AAC | TAF  | CTI  | CCA          | LA.                   |       |
|     | ^     | c            | 7    | v         |                 | 70         | _        | _    | ~            | _            | _        | _        |                  |                  |      |      |      |      |              |                       |       |
|     | TCCA  | S<br>ATC:    |      | א<br>ממיז | <b>ுரு</b><br>ப | A<br>פפריי | ጥር»<br>ህ | CCC. | G            | S            | Q<br>TC: | P        | H                | Q                | A    | S    | P    | V    | I            | D                     |       |
| 541 |       |              | +    |           |                 |            | +        |      |              | - + - ·      |          | 4CCI     | LCA(             | .CAZ             | .GCT | TCI  | CCA  | GTI  | ATT          | G                     | - 0 0 |
|     | AGGT  | rag <i>i</i> | ACG  | ATT       | CAA             | CCG        | ACT      | GGG' | rcc:         | AAG          | AGTT     | rgg7     | GTO              | GTI              | CGA  | LAGA | .GGT | 'CAA | TAA          | T I                   | 500   |

Fig. 10a

|      | <u>CP-10.7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      | CP-11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|      | VII SE A S S Y N N T L D P G T C T A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|      | ACGTTATTATTTCtGACGCtTCTtctTACAACAACACTTTGGACccaGGTACTTGTACTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 601  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | TGCAATAATAAagaCTgcgaAGGagaATGTTGTTGTGAAACCTGggtCCATGAACATGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 660   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | FEDSELADTVEANETALEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | CTTTCGAAGACTCTGAATTGgctGACactGTTGAAGCTAACTTCACTGCTTTGTTCGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 661  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 720   |
|      | <b>GAAAGCTTCT</b> GAGACTTAACcgaCTGtgaCAACTTCGATTGAAGTGACGAAACAA <b>GCGAG</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|      | CP-12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | AIRARLEADLPGVTLTDTEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|      | CAGCTATTAGAGCTAGATTGGAAGCTGACTTGCCAGGTGTTACTTTGACTGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 721  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700   |
|      | GTCGATAATCTCGATCTAACCTTCGACTGAACGGTCCACAATGAAACTGACTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 780   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | CP-13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 701  | TTactTACTTGATGGACATGTGTtctTCGAAACTGTTGCTAGAACTTCTGACGCTACTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| /61  | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 840   |
|      | <b>AAtgaATGAACTACCTGTAC</b> ACAagaAAGCTTTGACAACGATCTTGAAGACTGCGATGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | L S P F C A L F T H D E W R H Y D Y L Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|      | <b>AATTGTCTCCATTCTGTGCTTTGTT</b> CACTCACGACGAATGGAGACCACTACGACTACTTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 841  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900   |
|      | TTAACAGAGGTAAGACACGAAACAAGTGAGTGCTGCTTACCTCTgtgATGCTGATGAACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - • • |
|      | CP-14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|      | CP-15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|      | SLKKYYGHGAGNPLGP <u>T</u> QGV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|      | AATCTTTGaagAAGTACTACGGTCacGGTGCTGGTAACCCATTGGGTCCAactCAAGGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 901  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50  |
|      | TTAGAAACttcTTCATGATGCCAgtgCCACGACCATTGGGTAACCCAGGTtgaGTTCCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | G F A N E L I A R I, T R S P V O D H T C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 963  | TTGGTTTCGCTAACGAATTGATTGCTAGATTGACTAGATCTCCAGTTCAAGACCACACTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 201  | A A CCA A A CCCA PROGRAM & CREATE A CRE | 1020  |
|      | AACCAAAGCGATTGCTTAACTAACGATCTAACTGATCTAGAGGTCAAGTTCTGGTGTGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|      | CP-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|      | <u>CP-17.7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|      | TNHTLDSNPATFPLNATLYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|      | CTACTAACCACACTTTGGACTCTAACCCAGCTACTTTCCCATTGAACGCTACTTTGTACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 1021 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1080  |
|      | GATGATTGGTGTGAAACCTGAGATTGGGTCGATGAAAGGGTAACTTGCGATGAAACATGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | DFSHDN <u>G</u> IISIFFALGLYNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|      | CTGACTTCTCACGACAACggtattATTTCTATTTTCTTCGCTTTGGGTTTGTACAACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 1081 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1140  |
|      | GACTGAAGAGAGTGCTGTTGccataaTAAAGATAAAAGAAGCGAAACCCAAACATGTTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1140  |
|      | CP-18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | TAPLSTTSVESTEREDGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|      | TAPLSTTSVESIEETDGYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 1141 | GTACTGCTCCATTGTCTACTTCTGTTGAATCTATTGAAGAAACTGACGGTTACTCTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| **** | CATTCA CCATCATTCA TO A TO A TO A TO A TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1200  |
|      | CATGACGAGGTAACAGATGATGAAGACAACTTAGATAACTTCTTTGACTGCCAATGAGAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |

Fig. 10b

|      | A    | W            | 7   | r '      | V   | P    | F            | A            | <u>s</u>     | R    | Α    | Y           | V       | E    | M      | M           | Q    | С           | Q    | A    | E  |      |
|------|------|--------------|-----|----------|-----|------|--------------|--------------|--------------|------|------|-------------|---------|------|--------|-------------|------|-------------|------|------|----|------|
|      | ctg  | tT           | GG  | CT       | GTI | CCI  | TT           | Cgcl         | ttc          | tag: | AGC: | CTA         | CGTI    | 'GA  | AAT    | GAT         | GCA. | <b>AT</b> G | TCA  | AGC' | TG |      |
| 1201 |      | - <b>-</b> - |     | -+-      |     |      |              | <b>+</b>     | - <b>-</b> - |      | -+-  |             |         | -+   |        |             |      | +           |      |      | -+ | 1260 |
|      | gac  | gaA          | CCI | rga      | CAA | \GG7 | CAA'         | Gcga         | aaga         | aTC' | rcg/ | AAT         | GCAP    | CT   | TTA    | CTA         | CGT  | TAC         | AGT  | TCG  | AÇ |      |
|      |      |              |     |          |     |      |              |              |              |      |      |             | CP-     | 20   |        |             |      |             |      |      |    |      |
|      |      |              |     |          |     |      |              |              |              |      |      |             |         | (    | CP-    | 21          |      |             |      |      |    |      |
|      | K    | E            | I   |          | L   | v    | R            | v            | L            | v    | N    | D           | R       | v    | ν      | P           | L    | H           | G    | С    | Α  |      |
|      | AAA  | \GG          | AAC | CCA      | TTG | GT   | rag <i>i</i> | AGT:         | rrr          | GT"  | raa( | CGA         | CAGA    | GT   | rgt:   | rcc.        | TTA  | GCA         | CGG  | TTG  | TG |      |
| 1261 |      |              |     | -+-      |     |      |              | <b>+</b>     |              |      | -+-  |             |         | -+   |        |             |      | +           |      |      | -+ | 1320 |
|      | TTTT | rcc          | TT  | GT.      | AAC | CAZ  | ATC:         | CAI          | AAA          | CCA  | ATT  | CTC         | 3TCI    | CA   | ACA    | AGG'        | TAA  | CGT         | GCC. | AAC  | AC |      |
|      |      |              |     |          |     |      |              |              |              |      |      |             |         |      |        |             |      |             |      |      |    |      |
|      | v    | D            | F   | <b>(</b> | L   | G    | R            | С            | K            | R    | D    | D           | F       | v    | E      | G           | L    | s           | F    | Α    | R  |      |
|      | CTGT | rTG          | AC  | \AG'     | TTG | GG1  | ragi         | ATG:         | raa(         | GAG  | AGA  | CGA         | CTTC    | GT   | rga:   | AGG'        | rt T | GTC         | TTT  | CGC  | TA |      |
| 1321 |      |              |     | -+-      |     |      |              | <b></b>      |              |      | -+   |             |         | -+   |        |             |      | +           |      |      | -+ | 1380 |
|      | GAC  | AAC          | TGT | TC.      | AAC | CCZ  | ATC:         | rac:         | TT           | CTC  | rcto | 3CT(        | GAAG    | CA   | ACT'   | rc <b>c</b> | AAA  | CAG         | AAA  | GCG. | AT |      |
|      |      |              |     |          |     |      |              |              |              |      |      |             |         |      |        | C           | P-2  | 2           |      |      |    |      |
|      | s    | G            |     | 3 1      | N   | W    | A            | E            | C            | F    | Α    | *           | Ecc     | R    | Γ      |             |      |             |      |      |    |      |
|      | GATO | <b>T</b> G   | GTG | GT.      | AAC | TGC  | GC:          | rga <i>i</i> | ATG:         | rtt  | CGC: | r <i>TA</i> | AGAA    | TT   | CAT    | ATA         |      |             |      |      |    |      |
| 1381 |      |              |     | -+-      |     |      |              | <b></b> -    |              |      | -+-  |             |         | -+   |        |             | 14:  | 26          |      |      |    |      |
|      | СТАС | PAC          | CAC | CA       | ттс | !ACC | CG           | CT           | ראכי         | AAA  | 200  | ייד מ       | רידיטיו | יבבי | ימידיב | ייאי        |      |             |      |      |    |      |





Fig. 11





Fig. 12



Fig. 13



Fig. 14





Fig. 15



Fig. 16



Fig. 17





Fig. 18





Fig. 19



Fig. 20

| 1   | MGALAADDSI                           | AILFGSISGT          | ALGPRGNSHS          | CDTVDGGYQC                  | FPEISSNWSP          |
|-----|--------------------------------------|---------------------|---------------------|-----------------------------|---------------------|
| 51  | YSP <u>Y</u> FSLADE                  | SAISPDVPKG          | CRVTFVQVLQ          | RHGAR <u>F</u> PTS <u>G</u> | A <u>ATRI</u> SALIE |
| 101 | AIQKNATAFK                           | GKYAFLKTYN          | YTLGADDL <u>V</u> P | FG <u>AN</u> QSSQAG         | IKFYRRYKAL          |
| 151 | ARKIVPFIRA                           | sgsdrvi <u>d</u> sa | <u>TNW</u> IEGFQSA  | KLADPGANPH                  | QASPVINVII          |
| 201 | PEGAGYNNTL                           | DHGLCTAFEE          | SELGDDVEAN          | FTAVFAPPIR                  | ARLEAHLPGV          |
| 251 | NLTDEDVVNL                           | MDMCPFDTVA          | RTSDAT <u>E</u> LSP | FCDLFTHDEW                  | IOADArgdrd          |
| 301 | KYYG <u>T</u> GAGNP                  | LGPAQGVGFV          | NELIARLTHS          | PVQDHTSTNH                  | TLDSNPATFP          |
| 351 | LNATLYADFS                           | HDNTMV <u>A</u> lff | ALGLYNGTKP          | LSTTSVESIE                  | ETDGYSASW <u>L</u>  |
| 401 | <b>V</b> PF <u>S</u> AR <u>M</u> YVE | MMQCEAEKEP          | LVRVLVNDRV          | VPLHGCGVDK                  | LGRCKRDDFV          |
| 451 | FCI.SENDSCC                          | NWPPCEX             |                     |                             |                     |

Fig. 21



Fig. 22a

| F 4.1 |         |      |          |            |        |          |           |                |     |            |      |           |          |      |        |          |     |           |         |          | CATT              |      |
|-------|---------|------|----------|------------|--------|----------|-----------|----------------|-----|------------|------|-----------|----------|------|--------|----------|-----|-----------|---------|----------|-------------------|------|
| 541   |         |      |          |            |        |          |           |                |     |            |      |           |          |      |        |          |     |           |         |          | +<br>GTAA         |      |
|       | K       | L    | A        | D          | P      | G        | s         | Q              | P   | Н          | Q    | A         | s        | P    | v      | 7 ]      | [ ] | N         | v       | I        | I                 | -    |
| 601   |         |      |          | +-         |        |          |           | +              |     |            | -+-  |           | <b>-</b> | +    |        |          |     | -+-       |         |          | AGAC<br>+<br>TCTG | 660  |
|       | P       | E    | G        | s          | G      |          |           |                |     |            | D    |           |          |      | C      |          |     | A         | F       | E        | D                 | _    |
| 661   | TC      | TAC  | CCI      | AGC        | TG     | ACG2     | ACG'      | TTG:           | AAG | CTA        | ACT  | TCA       | CTG      | CTT  | TGT    | TCG      | CT  | CCF       | AGC:    | rat'     | TAGA              | 720  |
|       | AG      | ATO  | GGP      | ATC        | CAC    | rgc:     | rgcz      | AAC'           | TTC | GAT'       | TGA. | AGT       | GAC      | GAA  | ACA    | AGC      | 'GA | GGI       | CGZ     | ATA      | ATCT              | 720  |
|       | S       | Т    |          | G          | D      | D        | v         | _              | A   |            |      | Т         |          |      | _      | -        |     | P         | A       | 1        | R                 | -    |
| 721   |         |      |          | -+-        |        |          |           | <del>+ -</del> |     |            | -+-  |           |          | +    |        |          |     | -+-       |         |          | CTTG<br>+<br>GAAC | 780  |
|       | A       | R    | L        | E          | A      | D        | L         | P              | G   | v          | Т    | L         | т        | D    | E      | D        | ٠ ٦ | J         | v       | Y        | L                 | -    |
| 781   |         |      |          | -+-        |        |          |           |                |     | <b>-</b> . | -+-  |           |          | +    |        |          |     | -+-       |         | <b>-</b> | rcca              | 840  |
|       | TA<br>M | .CCI |          |            |        |          |           |                |     |            |      |           |          |      |        |          |     |           |         | AG       | AGGT              |      |
|       |         | _    | M<br>TGC |            | P<br>P | F<br>Cac | D<br>TUCZ |                |     | A<br>NTC   |      | _         |          | _    |        |          |     |           | L       | S        | P<br>GGT          | -    |
| 841   |         |      |          | -+-        |        |          |           | <b></b> -      |     | - <b>-</b> | -+   |           |          | +-   |        |          |     | -+-       |         |          | GGT<br>+<br>CCCA  | 900  |
|       | F       | С    | A        | L          | F      | T        | н         | D              | E   | W          | 1    | Q         | Y        | D    | Y      | L        | Ç   | 2         | s       | L        | G                 | -    |
| 901   |         |      |          | -+-        |        |          | +         |                |     | - <b>-</b> | - +  | <b></b> - |          | +-   |        |          |     | +-        |         |          | GCT<br>+<br>GCGA  | 960  |
|       |         | Y    | Y        |            | Y      | G        | A         | G              | N   | P          |      | G         | P        | A    | Q<br>Q |          |     | _         |         | F        | A                 | _    |
| 061   | AA      | CGA  | ATT      | GAT        | TGC    | TAG      | ATT       | 'GAC           | TCA | CTC        | TCC  | AGI       | TC       | \AG# | ACC    | ACA(     | CTT | CT.       | ACT     | AAC      | CAC               |      |
| 361   | TT      | GCT  | TAA      | -+-<br>CTA | ACG    | ATC      | +<br>TAA  | CTG            | AGI | GAG        | AGG  | TCA       | AGI      | TCI  | GGT    | rgt      | GAA | +-<br>GA' | <br>TGA | TTG      | GTG               | 1020 |
|       | N       | E    | L        | I          | A      | R        | L         | T              | н   | s          | P    | v         | Q        | D    | н      | T        | s   | : '       | r       | N        | Н                 | -    |
| 1021  |         |      |          | -+-        |        |          | +         |                |     |            | +    |           |          | -+-  |        | <b>-</b> |     | +-        |         |          | TCT<br>+<br>AGA   | 1080 |
|       |         |      |          |            |        |          |           |                |     |            |      |           | -        | -A10 | - AAA  | sСА'.    | ıGC | AU.       | ∴TG.    | AAG      | AGA               |      |

Fig. 22b

|      |   |                  |   |     |         |              |   |              |     |              |   |   |   |     |   |   |   |   |   | GCCA              |      |
|------|---|------------------|---|-----|---------|--------------|---|--------------|-----|--------------|---|---|---|-----|---|---|---|---|---|-------------------|------|
| 1081 |   |                  |   |     |         |              |   |              |     |              |   |   |   |     |   |   |   |   |   | CGGT              | 1140 |
|      | H | D                | N | т   | M       | I            | s | I            | F   | F            | A | L | G | L   | Y | N | G | T | ĸ | P                 | _    |
| 1141 |   |                  |   | -+- |         | - <b></b>    | + |              |     |              | + |   |   | -+- |   |   | + |   |   | GACT<br>+<br>CTGA | 1200 |
|      | L | s                | T | T   | s       | v            | E | s            | I   | E            | E | т | D | G   | Y | s | A | s | W | T                 | -    |
| 1201 |   |                  |   | -+- |         |              | + |              |     |              | + |   |   | -+- |   |   | + |   |   | ACCA<br>+<br>TGGT | 1260 |
|      | v | P                | F | A   | A       | R            | A | Y            | v   | E            | M | M | Q | С   | Q | A | E | ĸ | E | P                 | -    |
| 1261 |   |                  |   | -+- |         |              | + | <del>-</del> |     | - <b></b>    | + |   |   | -+- |   |   | + |   |   | CAAG<br>+<br>GTTC | 1320 |
|      | L | v                | R | v   | L       | v            | N | D            | R   | v            | v | P | L | н   | G | C | A | v | D | ĸ                 | -    |
| 1321 |   |                  |   | -+  | <b></b> |              | + |              |     | - <b>-</b> - | + |   |   | -+- |   |   | + |   |   | TGGT<br>+<br>ACCA | 1380 |
|      | L | G                | R | С   | ĸ       | R            | D | D            | F   | v            | E | G | L | s   | F | A | R | s | G | G                 | -    |
| 1381 |   | CTG(<br><br>SAC( |   | - + |         | - <b>-</b> - | + |              | - 1 | 404          |   |   |   |     |   |   |   |   |   |                   |      |
|      |   | 7.7              |   | _   | _       | _            |   |              |     |              |   |   |   |     |   |   |   |   |   |                   |      |

Fig. 22c

| -   |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | TACC      |     |
|-----|----|-----|------|------------|-----|-----|------|-----|-------|-----|-----|-----|----------|------|-----|-----|-----|-----|------|-----------|-----|
| 7   |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | CATGG     | 60  |
|     | M  | G   | v    | F          | v   | v   | L    | L   | s     | I   | A   | т   | L        | F    | G   | s   | T   | s   | G    | T         | -   |
| 61  |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | ATGT      | 120 |
|     |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | TACA      |     |
|     | A  | L   | G    | P          | R   | G   | N    | s   | н     | s   | С   | D   | Т        | v    | D   | G   | G   | Y   | Q    | С         | -   |
| 121 |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | CGAA      | 180 |
|     |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | GCTT      |     |
|     | F  | P   | E    | I          | s   | H   | L    | W   | G     | Т   | Y   | s   | P        | Y    | F   | s   | L   | A   | D    | E         | -   |
| 181 | TC | TGC | TAT  | TTC<br>-+- | TCC | AGA | .CGI | CCC | 'AAA' | GGA | CTC | TAC | AG1      | TAC  | TTT | CGI | TCA | AGI | TTT  | GTCT      | 240 |
|     |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | CAGA      |     |
|     |    | A   | _    |            |     |     |      |     |       |     |     |     |          | T    |     |     |     |     |      |           | -   |
| 241 |    |     |      | -+-        |     |     | +    |     |       |     | +   |     |          | +-   |     |     | +   |     |      | TGAA<br>+ | 300 |
|     |    |     | GCC. | ACG        | ATC | TAT | GGG  | TTG | AAG   | AAG | ACG | CAC | 'ATI     | rcce | TAA | GAG | ACG | AAA | .CTA | ACTT      |     |
|     | R  | н   | G    | A          |     | Y   | P    | Т   | s     | s   | A   | S   | K        |      | Y   | s   | A   | L   | Ι    | Е         | -   |
| 301 |    |     |      | -+-        |     |     | +    |     |       |     | +   |     | <b>-</b> | -+-  |     |     | +   |     |      | CAAC      | 360 |
|     |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | GTTG      |     |
|     |    | I   | ~    | K          | N   | A   |      |     |       | K   |     |     |          | A    |     | L   |     | Т   | Y    | N         | -   |
| 361 |    |     |      | -+-        |     |     | +    |     |       |     | +   |     |          | -+-  |     |     | +   |     |      | TGGT      | 420 |
|     |    |     |      |            |     | D D |      |     |       |     |     |     |          |      |     |     |     |     |      | ACCA      |     |
|     |    |     |      |            |     |     |      |     |       |     |     |     |          | N    | Q   |     | V   |     | S    | G<br>AGCT | -   |
| 421 |    |     |      | -+-        |     |     | +    |     |       |     | +   |     |          | -+-  |     |     | +   |     |      | TCGA      | 480 |
|     |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | A         |     |
|     |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | TGCT      |     |
| 481 |    |     |      | -+-        |     |     | +    |     |       |     | +   |     |          | -+-  |     |     | +   |     |      | +<br>ACGA | 540 |
|     |    |     |      |            |     |     |      |     |       |     |     |     |          |      |     |     |     |     |      | A         | _   |

Fig. 23a



Fig. 23b

| 1001 |    |      |     |      |      |     |     |      |     |      |     |      |     |      |     |     |      |      |     | GCCA      | 1140 |
|------|----|------|-----|------|------|-----|-----|------|-----|------|-----|------|-----|------|-----|-----|------|------|-----|-----------|------|
| 1091 |    |      |     |      |      |     |     |      |     |      |     |      |     | -    |     |     | -    |      |     | CGGT      | 1140 |
|      | H  | D    | N   | т    | M    | I   | S   | I    | F   | F    | A   | L    | G   | L    | Y   | N   | G    | T    | ĸ   | P         | -    |
|      | TT | GTC' | TAC | TAC' | TTC' | TGT | TGA | ATC' | TAT | TGA  | AGA | AAC  | TGA | CGG  | TTA | CTC | TGC  | TTC  | TTG | GACT      |      |
| 1141 |    |      |     |      |      |     |     |      |     |      |     |      |     |      |     |     |      |      |     |           | 1200 |
|      |    |      |     |      |      |     |     |      |     |      |     |      |     |      |     |     |      |      |     | CTGA      |      |
|      | L  | s    | Т   | Т    | S    | V   | E   | S    | I   | E    | E   | т    | D   | G    | Y   | s   | Α    | S    | W   | T         | -    |
| 1201 |    |      |     |      |      |     |     |      |     |      |     |      |     |      |     |     |      |      |     | ACCA      | 1260 |
|      |    |      |     |      |      |     |     |      |     |      |     |      |     |      |     |     |      |      |     | TGGT      | 1200 |
|      | V  | P    | F   | A    | A    | R   | A   | Y    | V   | E    | M   | M    | Q   | C    | Q   | A   | E    | ĸ    | E   | P         | -    |
|      |    |      |     |      |      |     |     |      |     |      |     |      |     |      |     |     |      |      |     | CAAG      |      |
| 1261 |    |      |     |      |      |     |     |      |     |      |     |      |     |      |     |     |      |      |     | +<br>GTTC | 1320 |
|      | L  | v    | R   | v    | L    | v   | N   | D    | R   | v    | v   | P    | L   | н    | G   | С   | A    | v    | D   | ĸ         | -    |
|      | TT | GGG' | TAG | ATG: | raac | GAG | AGA | CGA  | CTT | CGT" | TGA | AGG' | TTT | GTC' | TTT | CGC | TAG. | ATC' | TGG | TGGT      |      |
| 1321 |    |      |     |      |      |     |     |      |     |      |     |      |     |      |     |     |      |      |     | ACCA      | 1380 |
|      | L  | G    | R   | С    | ĸ    | R   | D   | D    | F   | v    | E   | G    | L   | s    | F   | A   | R    | s    | G   | G         | -    |
| 1381 |    |      |     |      | ATG: |     |     |      | _   | 104  |     |      |     |      |     |     |      |      |     |           |      |
| .301 |    |      |     |      | raca |     |     |      |     | ±04  |     |      |     |      |     |     |      |      |     |           |      |
|      | N  | W    | A   | E    | С    | F   | A   | *    |     |      |     |      |     |      |     |     |      |      |     |           |      |

| _   |     |          |       |              |      |              |          |          |      |     |                |     |             |      |     |     |      |          |            | STACC             | '   |
|-----|-----|----------|-------|--------------|------|--------------|----------|----------|------|-----|----------------|-----|-------------|------|-----|-----|------|----------|------------|-------------------|-----|
| 1   |     |          |       |              |      |              |          |          |      |     |                |     |             |      |     |     |      |          |            | CATGG             |     |
|     | M   | G        | v     | F            | v    | v            | L        | L        | s    | I   | A              | т   | L           | F    | G   | s   | т    | s        | G          | T                 | -   |
| 61  |     |          |       |              |      |              |          |          |      |     |                |     |             |      |     |     |      |          |            | ATGT              |     |
|     |     |          |       |              |      |              |          |          |      |     |                |     |             |      |     |     |      |          |            | TACA              |     |
|     | A   | L        | G     | P            | R    | G            | N        | s        | H    | S   | С              | D   | T           | v    | D   | G   | G    | Y        | Q          | С                 | -   |
| 121 |     |          |       | -+-          |      |              | 4        |          |      |     | - <b>+ -</b> - |     | - <b></b> . | +    |     |     |      | +        |            | CGAA              |     |
|     |     |          |       |              |      |              |          |          |      |     |                |     |             |      |     |     |      |          | ACI        | GCTT              |     |
|     |     | P<br>    | E<br> |              | _    | H            |          |          |      |     |                |     |             |      |     |     | L    |          | D          | E                 | -   |
| 181 |     |          |       | -+-          |      |              | +        |          |      |     | - +            |     |             | +-   |     |     |      | <b>-</b> | . <b>-</b> | GTCT              | 240 |
|     |     |          |       |              |      |              |          |          |      |     |                |     |             |      |     |     |      |          |            | CAGA              |     |
|     |     | A<br>aca |       | -            |      |              |          |          |      |     | C              |     |             |      |     |     | _    |          | L          | S                 | -   |
| 241 |     |          |       | -+-          |      |              | +        |          |      |     | +              |     |             | -+-  |     |     | +    |          |            | TGAA<br>+<br>ACTT | 300 |
|     | R   | н        | _     | A            |      | Y            | P        | т        | s    | s   | K              | s   |             | A    |     |     | A    |          | I          | E                 | _   |
|     | GC' | TAT'     | TCA   | AAA          | .GAA | .CGC         | TAC      | TGC      | TTT: | CAA | \GGG           |     |             |      |     |     |      |          |            | -<br>CAAT         |     |
| 301 |     |          |       | - <b>+</b> - |      |              | +        | <b>-</b> |      |     | +              |     |             | -+-  |     |     | +    |          |            | +<br>GTTA         | 360 |
|     | A   | I        | Q     | ĸ            | N    | A            | т        | A        | F    | к   | G              | ĸ   | Y           | A    | F   | L   | ĸ    | T        | Y          | N                 | _   |
|     | TA  | CAC'     | rtt(  | GGG          | TGC  | TGA          | CGA      | CTT      | GAC  | TCC | 'ATT           | CGG | TGA         | ACA  | ACA | LAA | GGI  | TAA      | .CTC       | TGGT              |     |
| 361 | ATO | GTG      | AAA   | CCC.         | ACG. | ACT          | +<br>GCT | GAA      | CTG  | AGG | TAA            | GCC | ACT         | TGI  | TGT | TT  | CCA  | ATT      | GAG        | +<br>ACCA         | 420 |
|     | Y   | T        | L     | G            | A    | D            | D        | L        | T    | P   | F              | G   | E           | Q    | Q   | М   | v    | N        | s          | G                 | -   |
| 121 | AT' | TAA(     | GTT(  | CTA          | CAG  | AAG          | ATA<br>+ | CAA      | GGC  | TTT | GGC            | TAG | AAA         | GAT  | TGI | TCC | ATT  | CAT      | TAG        | AGCT              | 400 |
|     | TA  | ATT      | CAAC  | GAT          | GTC' | TTC'         | TAT      | GTT      | CCG  | AAA | CCG            | ATC | TTT         | 'CTA | ACA | AGG | TAA  | GTA.     | ATC        | TCGA              | 400 |
|     | I   | ĸ        | F     | Y            | R    | R            | Y        | ĸ        | A    | L   | A              | R   | ĸ           | ı    | v   | P   | F    | I        | R          | A                 | -   |
| 181 |     |          |       | -+-          |      |              | +        |          |      |     | +              |     |             | -+-  |     |     | +    |          |            | TGCT              | 540 |
|     | AG  | ACC      | AAGA  | ACT          | GTC: | rca <i>i</i> | ATA      | ACG.     | AAG  | ACG | GCT            | TTT | CAA         | GTA  | ACT | TCC | 'AAA | GGT'     | TAG        | ACGA              |     |
|     | S   | G        | s     | D            | R    | V            | I        | A        | s    | Α   | E              | K   | F           | I    | E   | G   | F    | 0        | S          | Α                 | _   |

Fig. 24a



Fig. 24b

| 1081 |   | <b>-</b> | <br>-+- |                | <br>+                  |            |      |     | + | <br> | -+- |              | <br>+ | <br> | GCCA<br>+<br>CGGT | 1140       |
|------|---|----------|---------|----------------|------------------------|------------|------|-----|---|------|-----|--------------|-------|------|-------------------|------------|
|      |   |          |         |                | s<br>S                 |            |      |     |   |      |     |              |       |      |                   | _          |
| 1141 |   |          | <br>-+- |                | <br>+                  |            |      |     | + | <br> | -+- | <del>-</del> | <br>+ | <br> |                   | 1200       |
|      |   |          |         |                | ACT<br>E               |            |      |     |   |      |     |              |       |      | CTGA<br>· T       | -          |
| 1201 |   |          | <br>-+- |                | <br>+                  |            |      |     | + | <br> | -+- |              | <br>+ | <br> |                   | 1260       |
|      |   |          |         |                |                        |            |      |     |   |      |     |              |       |      | TGGT<br>P         | <b>-</b> . |
| 1261 |   |          | <br>-+- |                | <br>+                  |            |      |     | + | <br> | -+- |              | <br>+ | <br> |                   | 1320       |
|      |   |          |         |                | N                      |            |      |     |   |      |     |              |       |      | GTTC<br>K         | -          |
| 1321 |   |          | <br>-+- |                | <br>+                  |            | ·    |     | + | <br> | -+- |              | <br>+ | <br> | TGGT<br>+<br>ACCA | 1380       |
|      |   |          |         |                |                        |            |      |     |   |      |     |              |       |      | G                 | -          |
| 1381 |   |          | <br>-+  | <del>-</del> - | <br>CGC:<br>+-<br>GCG! | - <b>-</b> | - 14 | 404 |   |      |     |              |       |      |                   |            |
|      | N |          |         |                | acg <i>i</i><br>A      |            | L    |     |   |      |     |              |       |      |                   |            |

Fig. 24c



Fig. 25a

| E 4 1 |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | TATT      | 600  |
|-------|----|------|-----|-----|-----|------|-----|--------------|------|------|------|------|------|-----|------|------|------|-----|-----|-----|-----------|------|
| 241   |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | ATAA      | 800  |
|       | K  | L    | A   | D   | P   | G    | A   | N            | P    | Н    | Q    | A    | s    | P   | v    | I    | N    | 1   | V   | I   | I         | -    |
| 601   |    |      |     | -+- |     |      |     | - <b>-</b> - |      |      | +    |      |      | +-  |      |      |      | +   |     |     | AGAA<br>+ | 660  |
|       | GG | TCT  | TCC | ACG | ACC | TAA: | GTI | 'GT'I        | rGTC | IAA! | ACCI | rggn | rgco | CAA | ACA  | CATO | SAC  | GA  | AAC | 3CT | TCTT      |      |
|       | P  | E    | G   | A   | G   | Y    | И   | N            | T    | L    | D    | Н    | G    | L   | С    | T    | A    | 1   | F   | E   | E         | -    |
| 661   |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | TAGA<br>+ | 720  |
|       |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | ATCT      |      |
|       | s  | T    | L   | G   | D   | D    | V   | Е            | A    | N    | F    | Т    | A    | V   | F    | A    | P    | 1   | P   | I   | R         | -    |
| 721   |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | CTTG      | 780  |
|       |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | GAAC      |      |
|       | A  | R    | L   | E   | A   | н    | L   | P            | G    | v    | N    | L    | T    | D   | E    | D    | v    | 7   | V   | N   | L         | -    |
| 781   |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | TCCA      | 840  |
|       | TA | .CCT | GTA | CAC | AGG | TAA  | GC1 | GTG          | ACA  | ACG  | ATC  | TTC  | AAC  | ACI | GCC  | SATO | GAG' | TT  | AAC | AG  | AGGT      |      |
|       | M  | D    | M   | С   | P   | F    | D   | T            | v    | A    | R    | T    | s    | D   | A    | T    | Q    | I   | Ĺ   | s   | P         | -    |
| 841   |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | GGGT      | 900  |
|       |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | CCCA      | 200  |
|       | F  | С    | D   | L   | F   | Т    | H   | D            | E    | W    | I    | Q    | Y    | D   | Y    | L    | Q    | 5   | 3   | L   | G         | -    |
| 901   |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | CGTT      |      |
| 901   |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | GCAA      | 960  |
|       | ĸ  | Y    | Y   | G   | Y   | G    | A   | G            | N    | P    | L    | G    | P    | A   | Q    | G    | v    | c   | 3   | F   | v         | -    |
| 961   |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | CCAC      |      |
| 701   |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | GTG       | 1020 |
|       | N  | E    | L   | I   | A   | R    | L   | T            | н    | s    | P    | v    | Q    | D   | Н    | т    | s    | 1   | r   | N   | н         | _    |
|       | AC | TTT  | GGA | CTC | TAA | ccc  | AGC | TAC          | TTT  | ccc  | TTA: | GAA  | CGC  | TAC | TTT: | GTA  | CG   | CTG | AC  | TTC | CTCT      |      |
| 1021  |    |      |     |     |     |      |     |              |      |      |      |      |      |     |      |      |      |     |     |     | GAGA      | 1080 |
|       | T  | L    | D   | s   | N   | P    | A   | т            | F    | P    | L    | N    | A    | т   | L    | Y    | A    | Ľ   | )   | F   | s         | -    |

Fig. 25b

| 1001 |                                                                                                    |     |     |      |      |          |      |      |          |     |     |              |     |     |     |     |      |              |     | GCCA |      |
|------|----------------------------------------------------------------------------------------------------|-----|-----|------|------|----------|------|------|----------|-----|-----|--------------|-----|-----|-----|-----|------|--------------|-----|------|------|
| 1081 |                                                                                                    |     |     |      |      |          |      |      |          |     |     |              |     |     |     |     |      |              |     | CGGT | 1140 |
|      | н                                                                                                  | D   | N   | T    | M    | v        | s    | I    | F        | F   | A   | L            | G   | L   | Y   | N   | G    | T            | ĸ   | P    | -    |
| 1141 |                                                                                                    |     |     |      |      |          |      |      |          |     |     |              |     |     |     |     |      |              |     | GACT | 1200 |
|      | AA                                                                                                 | CAG | ATG | ATG. | AAG. | ACA      | ACT  | TAG. | ATA      | ACT | TCT | TTG          | ACT | GCC | AAT | GAG | ACG. | AAG          | AAC | CTGA |      |
|      | L                                                                                                  | s   | Т   | Т    | S    | V        | E    | s    | I        | E   | E   | T            | D   | G   | Y   | s   | A    | s            | W   | T    | -    |
| 1201 |                                                                                                    |     |     | -+-  |      |          | +    |      | <b>-</b> |     | +   |              |     | -+- |     |     | +    | <del>-</del> |     |      | 1260 |
|      |                                                                                                    |     |     |      |      |          |      |      |          |     |     |              |     |     |     |     |      |              |     | TGGT |      |
|      | V P F A A R A Y V E M M Q C E A E K E P  TTGGTTAGAGTTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTGCTGACAAG |     |     |      |      |          |      |      |          |     |     |              |     |     |     | -   |      |              |     |      |      |
| 1261 |                                                                                                    |     |     | -+-  |      | <b>-</b> | +    |      |          |     | +   | <del>-</del> |     | -+- |     |     | +    |              |     |      | 1320 |
|      |                                                                                                    |     |     |      |      |          |      |      |          |     |     |              |     |     |     |     | A    |              |     |      | _    |
| 1221 |                                                                                                    |     |     |      |      |          |      |      |          |     |     |              |     |     |     |     |      |              |     | TGGT | 1380 |
| 1321 |                                                                                                    |     |     |      |      |          |      |      |          |     |     |              |     |     |     |     |      |              |     | ACCA | 1380 |
|      | L                                                                                                  | G   | R   | С    | K    | R        | D    | D    | F        | v   | E   | G            | L   | s   | F   | A   | R    | s            | G   | G    | -    |
| 1381 |                                                                                                    |     |     |      |      |          | CGC: |      | -        | 104 |     |              |     |     |     |     |      |              |     |      |      |
|      |                                                                                                    |     |     |      |      |          | GCG! |      | r        |     |     |              |     |     |     |     |      |              |     |      |      |
|      | N                                                                                                  | W   | E   | E    | C    | F        | Α    | *    |          |     |     |              |     |     |     |     |      |              |     |      |      |

Fig. 25c

1

#### SEQUENCE LISTING

<110> Novo Nordisk A/S <120> Improved phytases <130> seqlist171299 <140> <141> <150> DK 99/00092 <151> 1999-01-22 <150> DK 99/01340 <151> 1999-09-21 <160> 89 <170> PatentIn Ver. 2.1 <210> 1 <211> 440 <212> PRT <213> Aspergillus terreus 9A-1 Lys His Ser Asp Cys Asn Ser Val Asp His Gly Tyr Gln Cys Phe Pro Glu Leu Ser His Lys Trp Gly Leu Tyr Ala Pro Tyr Phe Ser Leu Gln Asp Glu Ser Pro Phe Pro Leu Asp Val Pro Glu Asp Cys His Ile Thr 40 45 Phe Val Gln Val Leu Ala Arg His Gly Ala Arg Ser Pro Thr His Ser Lys Thr Lys Ala Tyr Ala Ala Thr Ile Ala Ala Ile Gln Lys Ser Ala Thr Ala Phe Pro Gly Lys Tyr Ala Phe Leu Gln Ser Tyr Asn Tyr Ser Leu Asp Ser Glu Glu Leu Thr Pro Phe Gly Arg Asn Gln Leu Arg Asp 100 Leu Gly Ala Gln Phe Tyr Glu Arg Tyr Asn Ala Leu Thr Arg His Ile 120 Asn Pro Phe Val Arg Ala Thr Asp Ala Ser Arg Val His Glu Ser Ala 135

2

| Glu<br>145 | Lys        | Phe        | Val        | Glu        | Gly<br>150 | Phe        | Gln        | Thr        | Ala        | Arg<br>155 |            | Asp        | Asp        | His        | His<br>160 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala        | Asn        | Pro        | His        | Gln<br>165 | Pro        | Ser        | Pro        | Arg        | Val<br>170 |            | Val        | Ala        | Ile        | Pro<br>175 |            |
| Gly        | Ser        | Ala        | Tyr<br>180 | Asn        | Asn        | Thr        | Leu        | Glu<br>185 | His        | Ser        | Leu        | Cys        | Thr<br>190 |            | Phe        |
| Glu        | Ser        | Ser<br>195 | Thr        | Val        | Gly        | Asp        | Asp<br>200 | Ala        | Val        | Ala        | Asn        | Phe<br>205 | Thr        | Ala        | . Val      |
| Phe        | Ala<br>210 | Pro        | Ala        | Ile        | Ala        | Gln<br>215 | Arg        | Leu        | Glu        | Ala        | Asp<br>220 | Leu        | Pro        | Gly        | Val        |
| Gln<br>225 | Leu        | Ser        | Thr        | Asp        | Asp<br>230 | Val        | Val        | Asn        | Leu        | Met<br>235 | Ala        | Met        | Cys        | Pro        | Phe<br>240 |
| Glu        | Thr        | Val        | Ser        | Leu<br>245 | Thr        | Asp        | Asp        | Ala        | His<br>250 | Thr        | Leu        | Ser        | Pro        | Phe<br>255 | _          |
| Asp        | Leu        | Phe        | Thr<br>260 | Ala        | Thr        | Glu        | Trp        | Thr<br>265 | Gln        | Tyr        | Asn        | Tyr        | Leu<br>270 | Leu        | Ser        |
| Leu        | Asp        | Lys<br>275 | Tyr        | Tyr        | Gly        | Tyr        | Gly<br>280 | Gly        | Gly        | Asn        | Pro        | Leu<br>285 | Gly        | Pro        | Val        |
| Gln        | Gly<br>290 | Val        | Gly        | Trp        | Ala        | Asn<br>295 | Glu        | Leu        | Met        | Ala        | Arg<br>300 | Leu        | Thr        | Arg        | Ala        |
| Pro<br>305 | Val        | His        | Asp        | His        | Thr<br>310 | Cys        | Val        | Asn        | Asn        | Thr<br>315 | Leu        | Asp        | Ala        | Ser        | Pro<br>320 |
| Ala        | Thr        | Phe        | Pro        | Leu<br>325 | Asn        | Ala        | Thr        | Leu        | Tyr<br>330 | Ala        | Asp        | Phe        | Ser        | His<br>335 | ĄaĄ        |
| Ser        | Asn        | Leu        | Val<br>340 | Ser        | Ile        | Phe        | Trp        | Ala<br>345 | Leu        | Gly        | Leu        | Tyr        | Asn<br>350 | Gly        | Thr        |
| Ala        | Pro        | Leu<br>355 | Ser        | Gln        | Thr        | Ser        | Val<br>360 | Glu        | Ser        | Val        | Ser        | Gln<br>365 | Thr        | Asp        | Gly        |
| Tyr        | Ala<br>370 | Ala        | Ala        | Trp        |            | Val<br>375 | Pro        | Phe        | Ala        | Ala        | Arg<br>380 | Ala        | Tyr        | Val        | Glu        |
| Met<br>385 | Met        | Gln        | Cys        | Arg        | Ala<br>390 | Glu        | Lys        | Glu        | Pro        | Leu<br>395 | Val        | Arg        | Val        | Leu        | Val<br>400 |
| Asn        | Asp        | Arg        | Val        | Met<br>405 | Pro        | Leu        | His        | Gly        | Cys<br>410 | Pro        | Thr        | Asp        | Lys        | Leu<br>415 | Gly        |
| Arg        | Cys        | Lys        | Arg<br>420 | Asp        | Ala        | Phe        | Val        | Ala<br>425 | Gly        | Leu        | Ser        | Phe        | Ala<br>430 | Gln        | Ala        |

Gly Gly Asn Trp Ala Asp Cys Phe 435 440

<210> 2

<211> 440

WO 00/43503

<212> PRT

<213> Aspergillus terreus cbs

<400> 2

Asn His Ser Asp Cys Thr Ser Val Asp Arg Gly Tyr Gln Cys Phe Pro 1 5 10 15

3

PCT/DK00/00025

Glu Leu Ser His Lys Trp Gly Leu Tyr Ala Pro Tyr Phe Ser Leu Gln
20 25 30

Asp Glu Ser Pro Phe Pro Leu Asp Val Pro Asp Asp Cys His Ile Thr 35 40 45

Phe Val Gln Val Leu Ala Arg His Gly Ala Arg Ser Pro Thr Asp Ser 50 55 60

Lys Thr Lys Ala Tyr Ala Ala Thr Ile Ala Ala Ile Gln Lys Asn Ala 65 70 75 80

Thr Ala Leu Pro Gly Lys Tyr Ala Phe Leu Lys Ser Tyr Asn Tyr Ser 85 90 95

Met Gly Ser Glu Asn Leu Thr Pro Phe Gly Arg Asn Gln Leu Gln Asp 100 105 110

Leu Gly Ala Gln Phe Tyr Arg Arg Tyr Asp Thr Leu Thr Arg His Ile 115 120 125

Asn Pro Phe Val Arg Ala Ala Asp Ser Ser Arg Val His Glu Ser Ala 130 135 140

Glu Lys Phe Val Glu Gly Phe Gln Asn Ala Arg Gln Gly Asp Pro His 145 150 155 160

Ala Asn Pro His Gln Pro Ser Pro Arg Val Asp Val Val Ile Pro Glu 165 170 175

Gly Thr Ala Tyr Asn Asn Thr Leu Glu His Ser Ile Cys Thr Ala Phe 180 185 190

Glu Ala Ser Thr Val Gly Asp Ala Ala Ala Asp Asn Phe Thr Ala Val 195 200 205

Phe Ala Pro Ala Ile Ala Lys Arg Leu Glu Ala Asp Leu Pro Gly Val 210 215 220

Gln Leu Ser Ala Asp Asp Val Val Asn Leu Met Ala Met Cys Pro Phe 225 230 235 240

4

| Glu              | Thr          | Val        | Ser        | Leu<br>245 | Thr        | Asp        | Asp        | Ala        | His<br>250 | Thr        | Leu        | Ser        | Pro        | Phe<br>255 | Cys        |
|------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asp              | Leu          | Phe        | Thr<br>260 | Ala        | Ala        | Glu        | Trp        | Thr<br>265 | Gln        | Tyr        | Asn        | Tyr        | Leu<br>270 | Leu        | Ser        |
| Leu              | Asp          | Lys<br>275 | Tyr        | Tyr        | Gly        | Tyr        | Gly<br>280 | Gly        | Gly        | Asn        | Pro        | Leu<br>285 | Gly        | Pro        | Val        |
| Gln              | Gly<br>290   | Val        | Gly        | Trp        | Ala        | Asn<br>295 | Glu        | Leu        | Ile        | Ala        | Arg<br>300 | Leu        | Thr        | Arg        | Ser        |
| Pro<br>305       | Val          | His        | Asp        | His        | Thr<br>310 | Cys        | Val        | Asn        | Asn        | Thr<br>315 | Leu        | Asp        | Ala        | Asn        | Pro<br>320 |
| Ala              | Thr          | Phe        | Pro        | Leu<br>325 | Asn        | Ala        | Thr        | Leu        | Tyr<br>330 | Ala        | Asp        | Phe        | Ser        | His<br>335 | Asp        |
| Ser              | Asn          | Leu        | Val<br>340 | Ser        | Ile        | Phe        | Trp        | Ala<br>345 | Leu        | Gly        | Leu        | Tyr        | Asn<br>350 | Gly        | Thr        |
| Lys              | Pro          | Leu<br>355 | Ser        | Gln        | Thr        | Thr        | Val<br>360 | Glu        | Asp        | Ile        | Thr        | Arg<br>365 | Thr        | Asp        | Gly        |
| Tyr              | Ala<br>370   | Ala        | Ala        | Trp        | Thr        | Val<br>375 | Pro        | Phe        | Ala        | Ala        | Arg<br>380 | Ala        | Tyr        | Ile        | Glu        |
| Met<br>385       | Met          | Gln        | Cys        | Arg        | Ala<br>390 | Glu        | Lys        | Gln        | Pro        | Leu<br>395 | Val        | Arg        | Val        | Leu        | Val<br>400 |
| Asn              | Asp          | Arg        | Val        | Met<br>405 | Pro        | Leu        | His        | Gly        | Cys<br>410 | Ala        | Val        | Asp        | Asn        | Leu<br>415 | Gly        |
| Arg              | Cys          | Lys        | Arg<br>420 | Asp        | Asp        | Phe        | Val        | Glu<br>425 | Gly        | Leu        | Ser        | Phe        | Ala<br>430 | Arg        | Ala        |
| Gly              | Gly          | Asn<br>435 | Trp        | Ala        | Glu        | Cys        | Phe<br>440 | ٠          |            |            |            |            |            |            |            |
| <212             | > 44<br>> PF | ΣT         | gillu      | ıs ni      | .ger       | var.       | awa        | mori       | -          |            |            |            |            |            |            |
| <400<br>Asn<br>1 |              | Ser        | Thr        | Cys<br>5   | Asp        | Thr        | Val        | Asp        | Gln<br>10  | Gly        | Tyr        | Gln        | Cys        | Phe<br>15  | Ser        |

Glu Thr Ser His Leu Trp Gly Gln Tyr Ala Pro Phe Phe Ser Leu Ala 20 25 30

5

| Asn        | Glu        | Ser        | Ala        | Tle        | Ser        | Pro        | Acn        | V D 3      | Dro        | - רג       | . Al-      |            | <b>.</b> 3 |            | m\.        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            |            | 35         |            |            |            |            | 40         |            |            |            |            | 45         | i          |            |            |
| Phe        | Ala<br>50  | Gln        | Val        | Leu        | Ser        | Arg<br>55  | His        | Gly        | Ala        | Arg        | 60         |            | Thr        | Glu        | ı Sei      |
| Lys<br>65  | Gly        | Lys        | Lys        | Tyr        | Ser<br>70  | Ala        | Leu        | Ile        | Glu        | Glu<br>75  |            | Gln        | Gln        | Asn        | Va]        |
| Thr        | Thr        | Phe        | Asp        | Gly<br>85  | Lys        | Tyr        | Ala        | Phe        | Leu<br>90  |            | Thr        | Tyr        | Asn        | Tyr<br>95  |            |
| Leu        | Gly        | Ala        | Asp<br>100 | Asp        | Leu        | Thr        | Pro        | Phe<br>105 | Gly        | Glu        | Gln        | Glu        | Leu<br>110 | Val        | Asn        |
| Ser        | Gly        | Ile<br>115 | Lys        | Phe        | Tyr        | Gln        | Arg<br>120 | Tyr        | Glu        | Ser        | Leu        | Thr<br>125 |            | Asn        | Ile        |
| Ile        | Pro<br>130 | Phe        | Ile        | Arg        | Ser        | Ser<br>135 | Gly        | Ser        | Ser        | Arg        | Val<br>140 | Ile        | Ala        | Ser        | Gly        |
| 145        |            | Phe        |            |            | 150        |            |            |            |            | 155        |            |            |            |            | 160        |
|            |            | Pro        |            | 165        |            |            |            |            | 170        |            |            |            |            | 175        |            |
|            |            | Ser        | 180        |            |            |            |            | 185        |            |            |            |            | 190        |            |            |
| Glu        | Asp        | Ser<br>195 | Glu        | Leu        | Ala        | Asp        | Thr<br>200 | Val        | Glu        | Ala        | Asn        | Phe<br>205 | Thr        | Ala        | Thr        |
|            | 210        | Pro        |            |            |            | 215        |            |            |            |            | 220        |            |            |            |            |
| Thr<br>225 | Leu        | Thr        | Asp        | Thr        | Glu<br>230 | Val        | Thr        | Tyr        | Leu        | Met<br>235 | Asp        | Met        | Cys        | Ser        | Phe<br>240 |
| qaA        | Thr        | Ile        | Ser        | Thr<br>245 | Ser        | Thr        | Val        | Asp        | Thr<br>250 | Lys        | Leu        | Ser        | Pro        | Phe<br>255 | Сув        |
| Asp        | Leu        | Phe        | Thr<br>260 | His        | Asp        | Glu        | Trp        | Ile<br>265 | His        | Tyr        | Asp        | Tyr        | Leu<br>270 | Gln        | Ser        |
| Leu        | Lys        | Lys<br>275 | Tyr        | Tyr        | Gly        | His        | Gly<br>280 | Ala        | Gly        | Asn        | Pro        | Leu<br>285 | Gly        | Pro        | Thr        |
| Gln        | Gly<br>290 | Val        | Gly        | Tyr        | Ala        | Asn<br>295 | Glu        | Leu        | Ile        | Ala        | Arg<br>300 | Leu        | Thr        | His        | Ser        |
| Pro<br>305 | Val        | His        | Asp        | Asp        | Thr<br>310 | Ser        | Ser        | Asn        | His        | Thr<br>315 | Leu        | Asp        | Ser        | Asn        | Pro<br>320 |

6

Ala Thr Phe Pro Leu Asn Ser Thr Leu Tyr Ala Asp Phe Ser His Asp 325 330 335

Asn Gly Ile Ile Ser Ile Leu Phe Ala Leu Gly Leu Tyr Asn Gly Thr 340 345 350

Lys Pro Leu Ser Thr Thr Thr Val Glu Asn Ile Thr Gln Thr Asp Gly 355 360 365

Phe Ser Ser Ala Trp Thr Val Pro Phe Ala Ser Arg Leu Tyr Val Glu 370 380

Met Met Gln Cys Gln Ala Glu Gln Glu Pro Leu Val Arg Val Leu Val 385 390 395 400

Asn Asp Arg Val Val Pro Leu His Gly Cys Pro Ile Asp Ala Leu Gly
405 410 415

Arg Cys Thr Arg Asp Ser Phe Val Arg Gly Leu Ser Phe Ala Arg Ser 420 425 430

Gly Gly Asp Trp Ala Glu Cys Ser Ala 435 440

<210> 4

<211> 441

<212> PRT

<213> Aspergillus niger T213

<400> 4

Asn Gln Ser Ser Cys Asp Thr Val Asp Gln Gly Tyr Gln Cys Phe Ser 1 5 10 15

Glu Thr Ser His Leu Trp Gly Gln Tyr Ala Pro Phe Phe Ser Leu Ala 20 25 30

Asn Glu Ser Val Ile Ser Pro Asp Val Pro Ala Gly Cys Arg Val Thr 35 40 45

Phe Ala Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Glu Ser 50 55 60

Lys Gly Lys Lys Tyr Ser Ala Leu Ile Glu Glu Ile Gln Gln Asn Val 65 70 75 80

Thr Thr Phe Asp Gly Lys Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Ser 85 90 95

Leu Gly Ala Asp Asp Leu Thr Pro Phe Gly Glu Gln Glu Leu Val Asn 100 105 110

Ser Gly Ile Lys Phe Tyr Gln Arg Tyr Glu Ser Leu Thr Arg Asn Ile 115 120 125

| Ile        | Pro<br>130 | Phe        | Ile        | Arg        | Ser        | Ser<br>135 |            | Ser        | Ser        | Arg        | Val<br>140 |            | Ala        | Ser        | Gly        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Glu<br>145 | Lys        | Phe        | Ile        | Glu        | Gly<br>150 | Phe        | Gln        | Ser        | Thr        | Lys<br>155 |            | Lys        | Asp        | Pro        | Arg<br>160 |
| Ala        | Gln        | Pro        | Gly        | Gln<br>165 | Ser        | Ser        | Pro        | Lys        | Ile<br>170 |            | Val        | Val        | Ile        | Ser<br>175 | Glu        |
| Ala        | Ser        | Ser        | Ser<br>180 | Asn        | Asn        | Thr        | Leu        | Asp<br>185 | Pro        | Gly        | Thr        | Cys        | Thr<br>190 | Val        | Phe        |
| Glu        | Asp        | Ser<br>195 | Glu        | Leu        | Ala        | Asp        | Thr<br>200 | Val        | Glu        | Ala        | Asn        | Phe<br>205 | Thr        | Ala        | Thr        |
| Phe        | Ala<br>210 | Pro        | Ser        | Ile        | Arg        | Gln<br>215 | Arg        | Leu        | Glu        | Asn        | Asp<br>220 | Leu        | Ser        | Gly        | Val        |
| Thr<br>225 | Leu        | Thr        | Asp        | Thr        | Glu<br>230 | Val        | Thr        | Tyr        | Leu        | Met<br>235 | Asp        | Met        | Cys        | Ser        | Phe<br>240 |
| Asp        | Thr        | Ile        | Ser        | Thr<br>245 | Ser        | Thr        | Val        | Asp        | Thr<br>250 | Lys        | Leu        | Ser        | Pro        | Phe<br>255 | Cys        |
| Asp        | Leu        | Phe        | Thr<br>260 | His        | Asp        | Glu        | Trp        | Ile<br>265 | His        | Tyr        | Asp        | Tyr        | Leu<br>270 | Arg        | Ser        |
| Leu        | Lys        | Lys<br>275 | Tyr        | Tyr        | Gly        | His        | Gly<br>280 | Ala        | Gly        | Asn        | Pro        | Leu<br>285 | Gly        | Pro        | Thr        |
| Gln        | Gly<br>290 | Val        | Gly        | Tyr        | Ala        | Asn<br>295 | Glu        | Leu        | Ile        | Ala        | Arg<br>300 | Leu        | Thr        | His        | Ser        |
| Pro<br>305 | Val        | His        | Asp        | Asp        | Thr<br>310 | Ser        | Ser        | Asn        | His        | Thr<br>315 | Leu        | Asp        | Ser        | Asn        | Pro<br>320 |
| Ala        | Thr        | Phe        | Pro        | Leu<br>325 | Asn        | Ser        | Thr        | Leu        | Tyr<br>330 | Ala        | Asp        | Phe        | Ser        | His<br>335 | Asp        |
| Asn        | Gly        | Ile        | Ile<br>340 | Ser        | Ile        | Leu        | Phe        | Ala<br>345 | Leu        | Gly        | Leu        | Tyr        | Asn<br>350 | Gly        | Thr        |
| Lys        | Pro        | Leu<br>355 | Ser        | Thr        | Thr        | Thr        | Val<br>360 | Glu        | Asn        | Ile        | Thr        | Gln<br>365 | Thr        | Asp        | Gly        |
| Phe        | Ser<br>370 | Ser        | Ala        | Trp        | Thr        | Val<br>375 | Pro        | Phe        | Ala        | Ser        | Arg<br>380 | Leu        | Tyr        | Val        | Glu        |
| Met<br>385 | Met        | Gln        | Сув        | Gln        | Ala<br>390 | Glu        | Gln        | Glu        | Pro        | Leu<br>395 | Val        | Arg        | Val        | Leu        | Val<br>400 |
| Asn        | Asp        | Arg        | Val        | Val<br>405 | Pro        | Leu        | His        | Gly        | Cys<br>410 | Pro        | Ile        | Asp        | Ala        | Leu<br>415 | Gly        |

8

Arg Cys Thr Arg Asp Ser Phe Val Arg Gly Leu Ser Phe Ala Arg Ser 420 425 430

Gly Gly Asp Trp Ala Glu Cys Phe Ala 435 440

<210> 5

<211> 441

<212> PRT

<213> Aspergillus niger NRRL3135

<400> 5

Asn Gln Ser Ser Cys Asp Thr Val Asp Gln Gly Tyr Gln Cys Phe Ser 1 5 10 15

Glu Thr Ser His Leu Trp Gly Gln Tyr Ala Pro Phe Phe Ser Leu Ala 20 25 30

Asn Glu Ser Val Ile Ser Pro Glu Val Pro Ala Gly Cys Arg Val Thr 35 40 45

Phe Ala Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Asp Ser 50 55 60

Lys Gly Lys Lys Tyr Ser Ala Leu Ile Glu Glu Ile Gln Gln Asn Ala 65 70 75 80

Thr Thr Phe Asp Gly Lys Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Ser 85 90 95

Leu Gly Ala Asp Asp Leu Thr Pro Phe Gly Glu Gln Glu Leu Val Asn 100 105 110

Ser Gly Ile Lys Phe Tyr Gln Arg Tyr Glu Ser Leu Thr Arg Asn Ile 115 120 125

Val Pro Phe Ile Arg Ser Ser Gly Ser Ser Arg Val Ile Ala Ser Gly
130 140

Lys Lys Phe Ile Glu Gly Phe Gln Ser Thr Lys Leu Lys Asp Pro Arg 145 150 155 160

Ala Gln Pro Gly Gln Ser Ser Pro Lys Ile Asp Val Val Ile Ser Glu 165 170 175

Ala Ser Ser Ser Asn Asn Thr Leu Asp Pro Gly Thr Cys Thr Val Phe 180 185 190

Glu Asp Ser Glu Leu Ala Asp Thr Val Glu Ala Asn Phe Thr Ala Thr 195 200 205

9

| Phe        | Val<br>210 | Pro        | Ser        | Ile        | Arg        | Gln<br>215 | Arg        | Leu        | Glu         | Asn        | Asp<br>220 | Leu        | Ser        | Gly        | Val        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|
| Thr<br>225 | Leu        | Thr        | Asp        | Thr        | Glu<br>230 | Val        | Thr        | Tyr        | Leu         | Met<br>235 | Asp        | Met        | Cys        | Ser        | Phe<br>240 |
| Asp        | Thr        | Ile        | Ser        | Thr<br>245 | Ser        | Thr        | Val        | Asp        | Thr<br>250  | Lys        | Leu        | Ser        | Pro        | Phe<br>255 | Cys        |
| Asp        | Leu        | Phe        | Thr<br>260 | His        | Asp        | Glu        | Trp        | Ile<br>265 | Asn         | Tyr        | Asp        | Tyr        | Leu<br>270 | Gln        | Ser        |
| Leu        | Lys        | Lys<br>275 | Tyr        | Tyr        | Gly        | His        | Gly<br>280 | Ala        | Gly         | Asn        | Pro        | Leu<br>285 | Gly        | Pro        | Thr        |
| Gln        | Gly<br>290 | Val        | Gly        | Tyr        | Ala        | Asn<br>295 | Glu        | Leu        | Ile         | Ala        | Arg<br>300 | Leu        | Thr        | His        | Ser        |
| Pro<br>305 | Val        | His        | Asp        | Asp        | Thr<br>310 | Ser        | Ser        | Asn        | His         | Thr<br>315 | Leu        | Asp        | Ser        | Ser        | Pro<br>320 |
| Ala        | Thr        | Phe        | Pro        | Leu<br>325 | Asn        | Ser        | Thr        | Leu        | Tyr<br>330  | Ala        | Asp        | Phe        | Ser        | His<br>335 | Asp        |
| Asn        | Gly        | Ile        | Ile<br>340 | Ser        | Ile        | Leu        | Phe        | Ala<br>345 | Leu         | Gly        | Leu        | Tyr        | Asn<br>350 | Gly        | Thr        |
| Lys        | Pro        | Leu<br>355 | Ser        | Thr        | Thr        | Thr        | Val<br>360 | Glu        | Asn         | Ile        | Thr        | Gln<br>365 | Thr        | Asp        | Gly        |
| Phe        | Ser<br>370 | Ser        | Ala        | Trp        | Thr        | Val<br>375 | Pro        | Phe        | <b>Al</b> a | Ser        | Arg<br>380 | Leu        | Tyr        | Val        | Glu        |
| Met<br>385 | Met        | Gln        | Cys        | Gln        | Ala<br>390 | Glu        | Gln        | Glu        | Pro         | Leu<br>395 | Val        | Arg        | Val        | Leu        | Val<br>400 |
| Asn        | Asp        | Arg        | Val        | Val<br>405 | Pro        | Leu        | His        | Gly        | Cys<br>410  | Pro        | Val        | Asp        | Ala        | Leu<br>415 | Gly        |
| Arg        | Cys        | Thr        | Arg<br>420 | Asp        | Ser        | Phe        | Val        | Arg<br>425 | Gly         | Leu        | Ser        | Phe        | Ala<br>430 | Arg        | Ser        |
| Gly        | Gly        | Asp<br>435 | Trp        | Ala        | Glu        | Cys        | Phe<br>440 | Ala        |             |            |            |            |            |            |            |

<210> 6 <211> 440 <212> PRT <213> Aspergillus fumigatus 13073

WO 00/43503

- Ala Thr Ser His Leu Trp Gly Gln Tyr Ser Pro Phe Phe Ser Leu Glu 20 25 30
- Asp Glu Leu Ser Val Ser Ser Lys Leu Pro Lys Asp Cys Arg Ile Thr 35 40 45
- Leu Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser 50 55 60
- Lys Ser Lys Lys Tyr Lys Lys Leu Val Thr Ala Ile Gln Ala Asn Ala 65 70 75 80
- Thr Asp Phe Lys Gly Lys Phe Ala Phe Leu Lys Thr Tyr Asn Tyr Thr
  85 90 95
- Leu Gly Ala Asp Asp Leu Phe Gln Gln Ala Lys Leu Ala Asp Pro Gly
  100 105 110
- Ala Thr Asn Arg Ala Ala Pro Ala Ile Ser Val Ile Ile Pro Glu Ser 115 120 125
- Glu Thr Phe Asn Asn Thr Leu Asp His Gly Val Cys Thr Lys Phe Glu 130 135 140
- Ala Ser Gln Leu Thr Pro Phe Gly Glu Gln Gln Leu Val Asn Ser Gly 145 150 155 160
- Ile Lys Phe Tyr Gln Arg Tyr Lys Ala Leu Ala Arg Ser Val Val Pro 165 170 175
- Phe Ile Arg Ala Ser Gly Ser Asp Arg Val Ile Ala Ser Gly Glu Lys 180 185 190
- Phe Ile Glu Gly Gly Asp Glu Val Ala Ala Asn Phe Thr Ala Leu Phe 195 200 205
- Ala Pro Asp Ile Arg Ala Arg Ala Glu Lys His Leu Pro Gly Val Thr 210 215 220
- Leu Thr Asp Glu Asp Val Val Ser Leu Met Asp Met Cys Ser Phe Asp 225 235 235
- Thr Val Ala Arg Thr Ser Asp Ala Ser Gln Leu Ser Pro Phe Cys Gln 245 250 255
- Leu Phe Thr His Asn Glu Trp Lys Lys Tyr Asn Tyr Leu Gln Ser Leu 260 265 270
- Gly Lys Tyr Tyr Gly Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln 275 280 285
- Gly Ile Gly Phe Thr Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro 290 295 300

WO 00/43503

11

Val Gln Asp His Thr Ser Thr Asn Ser Thr Leu Val Ser Asn Pro Ala 305 310 315 320

Thr Phe Pro Leu Asn Ala Thr Met Tyr Val Asp Phe Ser His Asp Asn 325 330 335

Ser Met Val Ser Ile Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Glu 340 345 350

Pro Leu Ser Arg Thr Ser Val Glu Ser Ala Lys Glu Leu Asp Gly Tyr 355 360 365

Ser Ala Ser Trp Val Val Pro Phe Gly Ala Arg Ala Tyr Phe Glu Thr 370 375 380

Met Gln Cys Lys Ser Glu Lys Glu Pro Leu Val Arg Ala Leu Ile Asn 385 390 395 400

Asp Arg Val Val Pro Leu His Gly Cys Asp Val Asp Lys Leu Gly Arg 405 410 415

Cys Lys Leu Asn Asp Phe Val Lys Gly Leu Ser Trp Ala Arg Ser Gly
420 425 430

Gly Asn Trp Gly Glu Cys Phe Ser 435 440

<210> 7

<211> 440

<212> PRT

<213> Aspergillus fumigatus 32722

<400> 7

Gly Ser Lys Ser Cys Asp Thr Val Asp Leu Gly Tyr Gln Cys Ser Pro 1 5 10 15

Ala Thr Ser His Leu Trp Gly Gln Tyr Ser Pro Phe Phe Ser Leu Glu 20 25 30

Asp Glu Leu Ser Val Ser Ser Lys Leu Pro Lys Asp Cys Arg Ile Thr 35 40 45

Leu Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser 50 55 60

Lys Ser Lys Lys Lys Lys Leu Val Thr Ala Ile Gln Ala Asn Ala 65 70 75 80

Thr Asp Phe Lys Gly Lys Phe Ala Phe Leu Lys Thr Tyr Asn Tyr Thr 85 90 95

| Leu        | Gly        | Ala        | Asp<br>100 | Asp        | Leu        | Thr        | Pro        | Phe<br>105 |            | Glu        | Gln        | Gln        | Leu<br>110 |            | Asn        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ser        | Gly        | Ile<br>115 |            | Phe        | Tyr        | Gln        | Arg<br>120 |            | Lys        | Ala        | Leu        | Ala<br>125 |            | Ser        | Val        |
| Val        | Pro<br>130 | Phe        | Ile        | Arg        | Ala        | Ser<br>135 |            | Ser        | Asp        | Arg        | Val<br>140 | Ile        | Ala        | Ser        | Gly        |
| Glu<br>145 | Lys        | Phe        | Ile        | Glu        | Gly<br>150 | Phe        | Gln        | Gln        | Ala        | Lys<br>155 |            | Ala        | Asp        | Pro        | Gly<br>160 |
| Ala        | Thr        | Asn        | Arg        | Ala<br>165 | Ala        | Pro        | Ala        | Ile        | Ser<br>170 |            | Ile        | Ile        | Pro        | Glu<br>175 | Ser        |
|            |            |            | 180        |            |            |            |            | 185        |            |            |            |            | 190        |            | Glu        |
| Ala        | Ser        | Gln<br>195 | Leu        | Gly        | Asp        | Glu        | Val<br>200 | Ala        | Ala        | Asn        | Phe        | Thr<br>205 | Ala        | Leu        | Phe        |
| Ala        | Pro<br>210 | Asp        | Ile        | Arg        | Ala        | Arg<br>215 | Ala        | Glu        | Lys        | His        | Leu<br>220 | Pro        | Gly        | Val        | Thr        |
| Leu<br>225 | Thr        | Asp        | Glu        | Asp        | Val<br>230 | Val        | Ser        | Leu        | Met        | Asp<br>235 | Met        | Cys        | Ser        | Phe        | Asp<br>240 |
| Thr        | Val        | Ala        | Arg        | Thr<br>245 | Ser        | Asp        | Ala        | Ser        | Gln<br>250 | Leu        | Ser        | Pro        | Phe        | Сув<br>255 | Gln        |
| Leu        | Phe        | Thr        | His<br>260 | Asn        | Glu        | Trp        | Lys        | Lys<br>265 | Tyr        | Asn        | Tyr        | Leu        | Gln<br>270 | Ser        | Leu        |
| Gly        | Lys        | Tyr<br>275 | Tyr        | Gly        | Tyr        | Gly        | Ala<br>280 | Gly        | Asn        | Pro        | Leu        | Gly<br>285 | Pro        | Ala        | Gln        |
| Gly        | Ile<br>290 | Gly        | Phe        | Thr        | Asn        | Glu<br>295 | Leu        | Ile        | Ala        | Arg        | Leu<br>300 | Thr        | Arg        | Ser        | Pro        |
| Val<br>305 | Gln        | Asp        | His        | Thr        | Ser<br>310 | Thr        | Asn        | Ser        | Thr        | Leu<br>315 | Val        | Ser        | Asn        | Pro        | Ala<br>320 |
| Thr        | Phe        | Pro        | Leu        | Asn<br>325 | Ala        | Thr        | Met        | Tyr        | Val<br>330 | Asp        | Phe        | Ser        | His        | Asp<br>335 | Asn        |
| Ser        | Met        | Val        | Ser<br>340 | Ile        | Phe        | Phe        | Ala        | Leu<br>345 | Gly        | Leu        | Tyr        | Asn        | Gly<br>350 | Thr        | Gly        |
| Pro        | Leu        | Ser<br>355 | Arg        | Thr        | Ser        | Val        | Glu<br>360 | Ser        | Ala        | Lys        | Glu        | Leu<br>365 | Asp        | Gly        | Tyr        |
| Ser        | Ala<br>370 | Ser        | Trp        | Val        | Val        | Pro<br>375 | Phe        | Gly        | Ala        | Arg        | Ala<br>380 | Tyr        | Phe        | Glu        | Thr        |

13

Met Gln Cys Lys Ser Glu Lys Glu Pro Leu Val Arg Ala Leu Ile Asn 385 390 395 400

Asp Arg Val Val Pro Leu His Gly Cys Asp Val Asp Lys Leu Gly Arg
405 410 415

Cys Lys Leu Asn Asp Phe Val Lys Gly Leu Ser Trp Ala Arg Ser Gly
420 425 430

Gly Asn Trp Gly Glu Cys Phe Ser 435 440

<210> 8

<211> 440

<212> PRT

<213> Aspergillus fumigatus 58128

<400> 8

Gly Ser Lys Ser Cys Asp Thr Val Asp Leu Gly Tyr Gln Cys Ser Pro 1 5 10 15

Ala Thr Ser His Leu Trp Gly Gln Tyr Ser Pro Phe Phe Ser Leu Glu 20 25 30

Asp Glu Leu Ser Val Ser Ser Lys Leu Pro Lys Asp Cys Arg Ile Thr 35 40 45

Leu Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser 50 55 60

Lys Ser Lys Lys Tyr Lys Leu Val Thr Ala Ile Gln Ala Asn Ala 65 70 75

Thr Asp Phe Lys Gly Lys Phe Ala Phe Leu Lys Thr Tyr Asn Tyr Thr
85 90

Leu Gly Ala Asp Asp Leu Thr Pro Phe Gly Glu Gln Gln Leu Val Asn 100 105 110

Ser Gly Ile Lys Phe Tyr Gln Arg Tyr Lys Ala Leu Ala Arg Ser Val 115 120 125

Val Pro Phe Ile Arg Ala Ser Gly Ser Asp Arg Val Ile Ala Ser Gly
130 135 140

Glu Lys Phe Ile Glu Gly Phe Gln Gln Ala Lys Leu Ala Asp Pro Gly
145 150 155 160

Ala Thr Asn Arg Ala Ala Pro Ala Ile Ser Val Ile Ile Pro Glu Ser 165 170 175

Glu Thr Phe Asn Asn Thr Leu Asp His Gly Val Cys Thr Lys Phe Glu 180 185 190

WO 00/43503 PCT/DK00/00025

| Ala        | Ser        | Gln<br>195 | Leu | Gly | Asp        | Glu        | Val<br>200 | Ala | Ala | Asn        | Phe        | Thr<br>205 | Ala | Leu | Phe        |
|------------|------------|------------|-----|-----|------------|------------|------------|-----|-----|------------|------------|------------|-----|-----|------------|
| Ala        | Pro<br>210 | Asp        | Ile | Arg | Ala        | Arg<br>215 | Ala        | Glu | Lys | His        | Leu<br>220 | Pro        | Gly | Val | Thr        |
| Leu<br>225 | Thr        | Asp        | Glu | Asp | Val<br>230 | Val        | Ser        | Leu | Met | Asp<br>235 | Met        | Cys        | Ser | Phe | Asp<br>240 |
| Thr        | Val        | Ala        | Arg | Thr | Ser        | Asp        | Ala        | Ser | Gln | Leu        | Ser        | Pro        | Phe | Cys | Gln        |

245 250 255

Leu Phe Thr His Asn Glu Trp Lys Lys Tyr Asn Tyr Leu Gln Ser Leu 260 265 270

Gly Lys Tyr Tyr Gly Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln 275 280 285

Gly Ile Gly Phe Thr Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro 290 295 300

Val Gln Asp His Thr Ser Thr Asn Ser Thr Leu Val Ser Asn Pro Ala 305 310 315 320

Thr Phe Pro Leu Asn Ala Thr Met Tyr Val Asp Phe Ser His Asp Asn 325 330 335

Ser Met Val Ser Ile Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Glu 340 345 350

Pro Leu Ser Arg Thr Ser Val Glu Ser Ala Lys Glu Leu Asp Gly Tyr 355 360 365

Ser Ala Ser Trp Val Val Pro Phe Gly Ala Arg Ala Tyr Phe Glu Thr 370 375 380

Met Gln Cys Lys Ser Glu Lys Glu Ser Leu Val Arg Ala Leu Ile Asn 385 390 395 400

Asp Arg Val Val Pro Leu His Gly Cys Asp Val Asp Lys Leu Gly Arg 405 410 415

Cys Lys Leu Asn Asp Phe Val Lys Gly Leu Ser Trp Ala Arg Ser Gly 420 425 430

Gly Asn Trp Gly Glu Cys Phe Ser 440

<210> 9

<211> 440

<212> PRT

<213> Aspergillus fumigatus 26906

| <40        | 0> 9       |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly<br>1   | Ser        | Lys        | Ser        | Cys<br>5   |            | Thr        | Val        | Asp        | Leu<br>10  |            | Tyr        | Gln        | Cys        | Ser<br>15  | Pro        |
| Ala        | Thr        | Ser        | His<br>20  | Leu        | Trp        | Gly        | Gln        | Tyr<br>25  |            | Pro        | Phe        | Phe        | Ser<br>30  |            | Glu        |
| Asp        | Glu        | Leu<br>35  | Ser        | Val        | Ser        | Ser        | Lys<br>40  |            | Pro        | Lys        | Asp        | Cys<br>45  | Arg        | Ile        | Thr        |
| Leu        | Val<br>50  | Gln        | Val        | Leu        | Ser        | Arg<br>55  | His        | Gly        | Ala        | Arg        | Tyr<br>60  | Pro        | Thr        | Ser        | Ser        |
| Lys<br>65  | Ser        | Lys        | Lys        | Tyr        | Lys<br>70  | Lys        | Leu        | Val        | Thr        | Ala<br>75  | Ile        | Gln        | Ala        | Asn        | Ala<br>80  |
| Thr        | Asp        | Phe        | Lys        | Gly<br>85  | Lys        | Phe        | Ala        | Phe        | Leu<br>90  | Lys        | Thr        | Tyr        | Asn        | Tyr<br>95  | Thr        |
| Leu        | Gly        | Ala        | Asp<br>100 | Asp        | Leu        | Thr        | Ala        | Phe<br>105 | Gly        | Glu        | Gln        | Gln        | Leu<br>110 | Val        | Asn        |
| Ser        | Gly        | Ile<br>115 | Lys        | Phe        | Tyr        | Gln        | Arg<br>120 | Tyr        | Lys        | Ala        | Leu        | Ala<br>125 | Arg        | Ser        | Val        |
| Val        | Pro<br>130 | Phe        | Ile        | Arg        | Ala        | Ser<br>135 | Gly        | Ser        | Asp        | Arg        | Val<br>140 | Ile        | Ala        | Ser        | Gly        |
| Glu<br>145 | Lys        | Phe        | Ile        | Glu        | Gly<br>150 | Phe        | Gln        | Gln        | Ala        | Lys<br>155 | Leu        | Ala        | Asp        | Pro        | Gly<br>160 |
| Ala        | Thr        | Asn        | Arg        | Ala<br>165 | Ala        | Pro        | Ala        | Ile        | Ser<br>170 | Val        | Ile        | Ile        | Pro        | Glu<br>175 | Ser        |
| Glu        | Thr        | Phe        | Asn<br>180 | Asn        | Thr        | Leu        | Asp        | His<br>185 | Gly        | Val        | Cys        | Thr        | Lys<br>190 | Phe        | Glu        |
| Ala        | Ser        | Gln<br>195 | Leu        | Gly        | Asp        | Glu        | Val<br>200 | Ala        | Ala        | Asn        | Phe        | Thr<br>205 | Ala        | Leu        | Phe        |
| Ala        | Pro<br>210 | Asp        | Ile        | Arg        | Ala        | Arg<br>215 | Ala        | Lys        | Lys        | His        | Leu<br>220 | Pro        | Gly        | Val        | Thr        |
| Leu<br>225 | Thr        | Asp        | Glu        | Asp        | Val<br>230 | Val        | Ser        | Leu        | Met        | Asp<br>235 | Met        | Cys        | Ser        | Phe        | Asp<br>240 |
| Thr        | Val        | Ala        | Arg        | Thr<br>245 | Ser        | Asp        | Ala        | Ser        | Gln<br>250 | Leu        | Ser        | Pro        | Phe        | Cys<br>255 | Gln        |
| Leu        | Phe        | Thr        | His<br>260 | Asn        | Glu        | Trp        |            | Lys<br>265 | Tyr        | Asn        | Tyr        | Leu        | Gln        | Ser        | Leu        |

16

Gly Lys Tyr Tyr Gly Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln 275 280 285

Gly Ile Gly Phe Thr Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro 290 295 300

Val Gln Asp His Thr Ser Thr Asn Ser Thr Leu Val Ser Asn Pro Ala 305 310 315 320

Thr Phe Pro Leu Asn Ala Thr Met Tyr Val Asp Phe Ser His Asp Asn 325 330 335

Ser Met Val Ser Ile Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Glu 340 345 350

Pro Leu Ser Arg Thr Ser Val Glu Ser Ala Lys Glu Leu Asp Gly Tyr 355 360 365

Ser Ala Ser Trp Val Val Pro Phe Gly Ala Arg Ala Tyr Phe Glu Thr 370 375 380

Met Gln Cys Lys Ser Glu Lys Glu Pro Leu Val Arg Ala Leu Ile Asn 385 390 395 400

Asp Arg Val Val Pro Leu His Gly Cys Asp Val Asp Lys Leu Gly Arg 405 410 415

Cys Lys Leu Asn Asp Phe Val Lys Gly Leu Ser Trp Ala Arg Ser Gly 420 425 430

Gly Asn Trp Gly Glu Cys Phe Ser 435 440

<210> 10

<211> 440

<212> PRT

<213> Aspergillus fumigatus 32239

<400> 10

Gly Ser Lys Ala Cys Asp Thr Val Glu Leu Gly Tyr Gln Cys Ser Pro 1 5 10

Gly Thr Ser His Leu Trp Gly Gln Tyr Ser Pro Phe Phe Ser Leu Glu 20 25 30

Asp Glu Leu Ser Val Ser Ser Asp Leu Pro Lys Asp Cys Arg Val Thr
35 40

Phe Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ala Ser 50 55 60

Lys Ser Lys Lys Tyr Lys Lys Leu Val Thr Ala Ile Gln Lys Asn Ala 65 70 75 80

| Thr        | Glu        | Phe        | Lys        | Gly<br>85  |            | Phe        | Ala        | Phe              | Leu<br>90  |            | Thr        | Туг        | Asn        | Tyr<br>95  | Thr        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------|------------|------------|
| Leu        | Gly        | Ala        | Asp<br>100 |            | Leu        | Thr        | Pro        | Phe<br>105       |            | Glu        | Gln        | Gln        | Met<br>110 |            | Asn        |
| Ser        | Gly        | Ile<br>115 | Lys        | Phe        | Tyr        | Gln        | Lys<br>120 |                  | Lys        | Ala        | Leu        | Ala<br>125 |            | Ser        | Val        |
| Val        | Pro<br>130 | Phe        | Ile        | Arg        | Ser        | Ser<br>135 | Gly        | Ser              | Asp        | Arg        | Val<br>140 | Ile        | Ala        | Ser        | Gly        |
| Glu<br>145 | Lys        | Phe        | Ile        | Glu        | Gly<br>150 | Phe        | Gln        | Gln              | Ala        | Asn<br>155 | Val        | Ala        | Asp        | Pro        | Gly<br>160 |
| Ala        | Thr        | Asn        | Arg        | Ala<br>165 | Ala        | Pro        | Val        | Ile              | Ser<br>170 | Val        | Ile        | Ile        | Pro        | Glu<br>175 | Ser        |
| Glu        | Thr        | Tyr        | Asn<br>180 | Asn        | Thr        | Leu        | Asp        | His<br>185       | Ser        | Val        | Cys        | Thr        | Asn<br>190 | Phe        | Glu        |
| Ala        | Ser        | Glu<br>195 | Leu        | Gly        | Asp        | Glu        | Val<br>200 | Glu              | Ala        | Asn        | Phe        | Thr<br>205 | Ala        | Leu        | Phe        |
| Ala        | Pro<br>210 | Ala        | Ile        | Arg        | Ala        | Arg<br>215 | Ile        | Glu              | Lys        | His        | Leu<br>220 | Pro        | Gly        | Val        | Gln        |
| Leu<br>225 | Thr        | Asp        | Asp        | Asp        | Val<br>230 | Val        | Ser        | Leu              | Met        | Asp<br>235 | Met        | Сув        | Ser        | Phe        | Asp<br>240 |
| Thr        | Val        | Ala        | Arg        | Thr<br>245 | Ala        | Asp        | Ala        | Ser              | Glu<br>250 | Leu        | Ser        | Pro        | Phe        | Cys<br>255 | Ala        |
| Ile        | Phe        | Thr        | His<br>260 | Asn        | Glu        | Trp        | Lys        | Lys<br>265       | Tyr        | qaA        | Tyr        | Leu        | Gln<br>270 | Ser        | Leu        |
| Gly        | Lys        | Tyr<br>275 | Tyr        | Gly        | Tyr        | Gly        | Ala<br>280 | Gly <sub>.</sub> | Asn        | Pro        | Leu        | Gly<br>285 | Pro        | Àla        | Gln        |
| Gly        | Ile<br>290 | Gly        | Phe        | Thr        | Asn        | Glu<br>295 | Leu        | Ile              | Ala        | Arg        | Leu<br>300 | Thr        | Asn        | Ser        | Pro        |
| Val<br>305 | Gln        | Asp        | His        | Thr        | Ser<br>310 | Thr        | Asn        | Ser              | Thr        | Leu<br>315 | qaA        | Ser        | Asp        | Pro        | Ala<br>320 |
| Thr        | Phe        | Pro        | Leu        | Asn<br>325 | Ala        | Thr        | Ile        | Tyr              | Val<br>330 | Asp        | Phe        | Ser        | His        | Asp<br>335 | Asn        |
| Gly        | Met        |            | Pro<br>340 | Ile        | Phe        | Phe        | Ala        | Met<br>345       | Gly        | Leu        | Tyr        | Asn        | Gly<br>350 | Thr        | Glu        |
| Pro        | Leu        | Ser<br>355 | Gln        | Thr        | Ser        | Glu        | Glu<br>360 | Ser              | Thr        | Lys        | Glu        | Ser<br>365 | Asn        | Gly        | Tyr        |

PCT/DK00/00025

Ser Ala Ser Trp Ala Val Pro Phe Gly Ala Arg Ala Tyr Phe Glu Thr 370 375 380

Met Gln Cys Lys Ser Glu Lys Glu Pro Leu Val Arg Ala Leu Ile Asn 385 390 395 400

Asp Arg Val Val Pro Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg 405 410 415

Cys Lys Leu Lys Asp Phe Val Lys Gly Leu Ser Trp Ala Arg Ser Gly
420 425 430

Gly Asn Ser Glu Gln Ser Phe Ser 440

<210> 11

WO 00/43503

<211> 439

<212> PRT

<213> Emericella nidulans

<400> 11

Gln Asn His Ser Cys Asn Thr Ala Asp Gly Gly Tyr Gln Cys Phe Pro 1 5 10 15

Asn Val Ser His Val Trp Gly Gln Tyr Ser Pro Tyr Phe Ser Ile Glu 20 25 30

Gln Glu Ser Ala Ile Ser Glu Asp Val Pro His Gly Cys Glu Val Thr 35 40 45

Phe Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Glu Ser 50 55 60

Lys Ser Lys Ala Tyr Ser Gly Leu Ile Glu Ala Ile Gln Lys Asn Ala 65 70 75 80

Thr Ser Phe Trp Gly Gln Tyr Ala Phe Leu Glu Ser Tyr Asn Tyr Thr 85 90 95

Leu Gly Ala Asp Asp Leu Thr Ile Phe Gly Glu Asn Gln Met Val Asp
100 105 110

Ser Gly Ala Lys Phe Tyr Arg Arg Tyr Lys Asn Leu Ala Arg Lys Asn 115 120 125

Thr Pro Phe Ile Arg Ala Ser Gly Ser Asp Arg Val Val Ala Ser Ala 130 135 140

Glu Lys Phe Ile Asn Gly Phe Arg Lys Ala Gln Leu His Asp His Gly 145 150 155 160

19

Ser Gly Gln Ala Thr Pro Val Val Asn Val Ile Ile Pro Glu Ile Asp 170 Gly Phe Asn Asn Thr Leu Asp His Ser Thr Cys Val Ser Phe Glu Asn Asp Glu Arg Ala Asp Glu Ile Glu Ala Asn Phe Thr Ala Ile Met Gly 200 Pro Pro Ile Arg Lys Arg Leu Glu Asn Asp Leu Pro Gly Ile Lys Leu Thr Asn Glu Asn Val Ile Tyr Leu Met Asp Met Cys Ser Phe Asp Thr Met Ala Arg Thr Ala His Gly Thr Glu Leu Ser Pro Phe Cys Ala Ile Phe Thr Glu Lys Glu Trp Leu Gln Tyr Asp Tyr Leu Gln Ser Leu Ser Lys Tyr Tyr Gly Tyr Gly Ala Gly Ser Pro Leu Gly Pro Ala Gln Gly 280 Ile Gly Phe Thr Asn Glu Leu Ile Ala Arg Leu Thr Gln Ser Pro Val 295 Gln Asp Asn Thr Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr 315 Phe Pro Leu Asp Arg Lys Leu Tyr Ala Asp Phe Ser His Asp Asn Ser 330 Met Ile Ser Ile Phe Phe Ala Met Gly Leu Tyr Asn Gly Thr Gln Pro Leu Ser Met Asp Ser Val Glu Ser Ile Gln Glu Met Asp Gly Tyr Ala 360 Ala Ser Trp Thr Val Pro Phe Gly Ala Arg Ala Tyr Phe Glu Leu Met Gln Cys Glu Lys Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg 390 395 Val Val Pro Leu His Gly Cys Ala Val Asp Lys Phe Gly Arg Cys Thr 405 Leu Asp Asp Trp Val Glu Gly Leu Asn Phe Ala Arg Ser Gly Gly Asn 425 Trp Lys Thr Cys Phe Thr Leu

<210> 12

<211> 443

<212> PRT

<213> Talaromyces thermophilus

<400> 12

Asp Ser His Ser Cys Asn Thr Val Glu Gly Gly Tyr Gln Cys Arg Pro 1 5 10 15

Glu Ile Ser His Ser Trp Gly Gln Tyr Ser Pro Phe Phe Ser Leu Ala 20 25 30

Asp Gln Ser Glu Ile Ser Pro Asp Val Pro Gln Asn Cys Lys Ile Thr 35 40 45

Phe Val Gln Leu Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser 50 55 60

Lys Thr Glu Leu Tyr Ser Gln Leu Ile Ser Arg Ile Gln Lys Thr Ala 65 70 75 80

Thr Ala Tyr Lys Gly Tyr Tyr Ala Phe Leu Lys Asp Tyr Arg Tyr Gln
85 90 95

Leu Gly Ala Asn Asp Leu Thr Pro Phe Gly Glu Asn Gln Met Ile Gln 100 105 110

Leu Gly Ile Lys Phe Tyr Asn His Tyr Lys Ser Leu Ala Arg Asn Ala 115 120 125

Val Pro Phe Val Arg Cys Ser Gly Ser Asp Arg Val Ile Ala Ser Gly 130 135 140

Arg Leu Phe Ile Glu Gly Phe Gln Ser Ala Lys Val Leu Asp Pro His 145 150 155 160

Ser Asp Lys His Asp Ala Pro Pro Thr Ile Asn Val Ile Ile Glu Glu 165 170 175

Gly Pro Ser Tyr Asn Asn Thr Leu Asp Thr Gly Ser Cys Pro Val Phe 180 185 190

Glu Asp Ser Ser Gly Gly His Asp Ala Gln Glu Lys Phe Ala Lys Gln
195 200 205

Phe Ala Pro Ala Ile Leu Glu Lys Ile Lys Asp His Leu Pro Gly Val 210 215 220

Asp Leu Ala Val Ser Asp Val Pro Tyr Leu Met Asp Leu Cys Pro Phe 225 230 235 240

Glu Thr Leu Ala Arg Asn His Thr Asp Thr Leu Ser Pro Phe Cys Ala 245 250 255

Leu Ser Thr Gln Glu Glu Trp Gln Ala Tyr Asp Tyr Tyr Gln Ser Leu 260 265 270

Gly Lys Tyr Tyr Gly Asn Gly Gly Gly Asn Pro Leu Gly Pro Ala Gln
275 280 285

Gly Val Gly Phe Val Asn Glu Leu Ile Ala Arg Met Thr His Ser Pro 290 295 300

Val Gln Asp Tyr Thr Thr Val Asn His Thr Leu Asp Ser Asn Pro Ala 305 310 315 320

Thr Phe Pro Leu Asn Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn 325 330 335

Thr Met Thr Ser Ile Phe Ala Ala Leu Gly Leu Tyr Asn Gly Thr Ala 340 345 350

Lys Leu Ser Thr Thr Glu Ile Lys Ser Ile Glu Glu Thr Asp Gly Tyr 355 360 365

Ser Ala Ala Trp Thr Val Pro Phe Gly Gly Arg Ala Tyr Ile Glu Met 370 380

Met Gln Cys Asp Asp Ser Asp Glu Pro Val Val Arg Val Leu Val Asn 385 390 395 400

Asp Arg Val Val Pro Leu His Gly Cys Glu Val Asp Ser Leu Gly Arg
405 410 415

Cys Lys Arg Asp Asp Phe Val Arg Gly Leu Ser Phe Ala Arg Gln Gly
420 425 430

Gly Asn Trp Glu Gly Cys Tyr Ala Ala Ser Glu 435 440

<210> 13

<211> 466

<212> PRT

<213> Myceliophthora thermophila

-400× 13

Glu Ser Arg Pro Cys Asp Thr Pro Asp Leu Gly Phe Gln Cys Gly Thr
1 5 10 15

Ala Ile Ser His Phe Trp Gly Gln Tyr Ser Pro Tyr Phe Ser Val Pro

Ser Glu Leu Asp Ala Ser Ile Pro Asp Asp Cys Glu Val Thr Phe Ala 35 40 45

| Gln        | Val<br>50  | Leu        | Ser        | Arg        | His        | Gly<br>55  | Ala        | Arg        | Ala        | Pro        | Thr<br>60  | Leu        | Lys        | Arg        | Ala        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala<br>65  | Ser        | Tyr        | Val        | Asp        | Leu<br>70  | Ile        | Asp        | Arg        | Ile        | His<br>75  | His        | Gly        | Ala        | Ile        | Ser<br>80  |
| Tyr        | Gly        | Pro        | Gly        | Tyr<br>85  | Glu        | Phe        | Leu        | Arg        | Thr<br>90  | Tyr        | Asp        | Tyr        | Thr        | Leu<br>95  | Gly        |
| Ala        | Asp        | Glu        | Leu<br>100 | Thr        | Arg        | Thr        | Gly        | Gln<br>105 | Gln        | Gln        | Met        | Val        | Asn<br>110 | Ser        | Gly        |
| Ile        | Lys        | Phe<br>115 | Tyr        | Arg        | Arg        | Tyr        | Arg<br>120 | Ala        | Leu        | Ala        | Arg        | Lys<br>125 | Ser        | Ile        | Pro        |
| Phe        | Val<br>130 | Arg        | Thr        | Ala        | Gly        | Gln<br>135 | Asp        | Arg        | Val        | Val        | His<br>140 | Ser        | Ala        | Glu        | Asn        |
| Phe<br>145 | Thr        | Gln        | Gly        | Phe        | His<br>150 | Ser        | Ala        | Leu        | Leu        | Ala<br>155 | Asp        | Arg        | Gly        | Ser        | Thr<br>160 |
| Val        | Arg        | Pro        | Thr        | Leu<br>165 | Pro        | Tyr        | Asp        | Met        | Val<br>170 | Val        | Ile        | Pro        | Glu        | Thr<br>175 | Ala        |
| Gly        | Ala        | Asn        | Asn<br>180 | Thr        | Leu        | His        | Asn        | Asp<br>185 | Leu        | Cys        | Thr        | Ala        | Phe<br>190 | Glu        | Glu        |
| Gly        | Pro        | Tyr<br>195 | Ser        | Thr        | Ile        | Gly        | Asp<br>200 | Asp        | Ala        | Gln        | Asp        | Thr<br>205 | Tyr        | Leu        | Ser        |
| Thr        | Phe<br>210 | Ala        | Gly        | Pro        | Ile        | Thr<br>215 | Ala        | Arg        | Val        | Asn        | Ala<br>220 | Asn        | Leu        | Pro        | Gly        |
| Ala<br>225 | Asn        | Leu        | Thr        | Asp        | Ala<br>230 | Asp        | Thr        | Val        | Ala        | Leu<br>235 | Met        | Asp        | Leu        | Cys        | Pro<br>240 |
|            |            |            |            | 245        |            |            |            |            | 250        |            |            |            |            | Asp<br>255 |            |
| -          | _          | -          | 260        | _          |            |            |            | 265        |            |            | _          |            | 270        | Phe        |            |
|            |            | 275        |            |            |            |            | 280        |            |            |            |            | 285        |            | Lys        |            |
|            | 290        |            |            |            |            | 295        |            |            |            |            | 300        |            |            | Val        |            |
| 305        |            |            |            |            | 310        |            |            |            |            | 315        |            |            |            | Arg        | 320        |
| Gly        | Thr        | Ser        | Thr        | Asn<br>325 | Arg        | Thr        | Leu        | Asp        | Gly<br>330 | Asp        | Pro        | Arg        | Thr        | Phe<br>335 | Pro        |

23

395

Leu Gly Arg Pro Leu Tyr Ala Asp Phe Ser His Asp Asn Asp Met Met 340

Gly Val Leu Gly Ala Leu Gly Ala Tyr Asp Gly Val Pro Pro Leu Asp 355

Lys Thr Ala Arg Arg Asp Pro Glu Glu Leu Gly Gly Tyr Ala Ala Ser 370

Trp Ala Val Pro Phe Ala Ala Arg Ile Tyr Val Glu Lys Met Arg Cys

Ser Gly Gly Gly Gly Gly Gly Gly Glu Gly Arg Gln Glu Lys
405
410
415

390

Asp Glu Glu Met Val Arg Val Leu Val Asn Asp Arg Val Met Thr Leu 420 425 430

Lys Gly Cys Gly Ala Asp Glu Arg Gly Met Cys Thr Leu Glu Arg Phe 435 440 445

Ile Glu Ser Met Ala Phe Ala Arg Gly Asn Gly Lys Trp Asp Leu Cys 450 455 460

Phe Ala 465

<210> 14 <211> 441 <212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: consensus
 phytase

<400> 14

Asn Ser His Ser Cys Asp Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro 1 5 10 15

Glu Ile Ser His Leu Trp Gly Gln Tyr Ser Pro Tyr Phe Ser Leu Glu 20 25 30

Asp Glu Ser Ala Ile Ser Pro Asp Val Pro Asp Asp Cys Arg Val Thr 35 40 45

Phe Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser 50 55 60

Lys Ser Lys Ala Tyr Ser Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala 65 70 75 80

| Thr        | Ala        | Phe        | Lys        | Gly<br>85  | Lys        | Tyr        | Ala        | Phe        | Leu<br>90  | Lys        | Thr        | Tyr        | Asn        | Tyr<br>95  | Thr        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu        | Gly        | Ala        | Asp<br>100 | Asp        | Leu        | Thr        | Pro        | Phe<br>105 | Gly        | Glu        | Asn        | Gln        | Met<br>110 | Val        | Asn        |
| Ser        | Gly        | Ile<br>115 | Lys        | Phe        | Tyr        | Arg        | Arg<br>120 | Tyr        | Lys        | Ala        | Leu        | Ala<br>125 | Arg        | Lys        | Ile        |
| Val        | Pro<br>130 | Phe        | Ile        | Arg        | Ala        | Ser<br>135 | Gly        | Ser        | Asp        | Arg        | Val<br>140 | Ile        | Ala        | Ser        | Ala        |
| Glu<br>145 | Lys        | Phe        | Ile        | Glu        | Gly<br>150 | Phe        | Gln        | Ser        | Ala        | Lys<br>155 | Leu        | Ala        | Asp        | Pro        | Gly<br>160 |
| Ser        | Gln        | Pro        | His        | Gln<br>165 | Ala        | Ser        | Pro        | Val        | Ile<br>170 | Asp        | Val        | Ile        | Ile        | Pro<br>175 | Glu        |
| Gly        | Ser        | Gly        | Tyr<br>180 | Asn        | Asn        | Thr        | Leu        | Asp<br>185 | His        | Gly        | Thr        | Cys        | Thr<br>190 | Ala        | Phe        |
| Glu        | Asp        | Ser<br>195 | Glu        | Leu        | Gly        | Asp        | Asp<br>200 | Val        | Glu        | Ala        | Asn        | Phe<br>205 | Thr        | Ala        | Leu        |
| Phe        | Ala<br>210 | Pro        | Ala        | Ile        | Arg        | Ala<br>215 | Arg        | Leu        | Glu        | Ala        | Asp<br>220 | Leu        | Pro        | Gly        | Val        |
| Thr<br>225 | Leu        | Thr        | Asp        | Glu        | Asp<br>230 | Val        | Val        | Tyr        | Leu        | Met<br>235 | Asp        | Met        | Cys        | Pro        | Phe<br>240 |
| Glu        | Thr        | Val        | Ala        | Arg<br>245 | Thr        | Ser        | qaA        | Ala        | Thr<br>250 | Glu        | Leu        | Ser        | Pro        | Phe<br>255 | Cys        |
| Ala        | Leu        | Phe        | Thr<br>260 | His        | Asp        | Glu        | Trp        | Arg<br>265 | Gln        | Tyr        | Asp        | Tyr        | Leu<br>270 | Gln        | Ser        |
| Leu        | Gly        | Lys<br>275 | Tyr        | Tyr        | Gly        | Tyr        | Gly<br>280 | Ala        | Gly        | Asn        | Pro        | Leu<br>285 | Gly        | Pro        | Ala        |
| Gln        | Gly<br>290 | Val        | Gly        | Phe        | Ala        | Asn<br>295 | Glu        | Leu        | Ile        | Ala        | Arg<br>300 | Leu        | Thr        | Arg        | Ser        |
| Pro<br>305 | Val        | Gln        | Asp        | His        | Thr<br>310 | Ser        | Thr        | Asn        | His        | Thr<br>315 | Leu        | Asp        | Ser        | Asn        | Pro<br>320 |
| Ala        | Thr        | Phe        | Pro        | Leu<br>325 | Asn        | Ala        | Thr        | Leu        | Tyr<br>330 | Ala        | Asp        | Phe        | Ser        | His<br>335 | Asp        |
| Asn        | Ser        | Met        | Ile<br>340 | Ser        | Ile        | Phe        | Phe        | Ala<br>345 | Leu        | Gly        | Leu        | Tyr        | Asn<br>350 | Gly        | Thr        |
| Ala        | Pro        | Leu<br>355 | Ser        | Thr        | Thr        | Ser        | Val<br>360 | Glu        | Ser        | Ile        | Glu        | Glu<br>365 | Thr        | Asp        | Gly        |

25

Tyr Ser Ala Ser Trp Thr Val Pro Phe Gly Ala Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala Glu Lys Glu Pro Leu Val Arg Val Leu Val 385 395 Asn Asp Arg Val Val Pro Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp Phe Val Glu Gly Leu Ser Phe Ala Arg Ser 420 Gly Gly Asn Trp Ala Glu Cys Phe Ala 435 <210> 15 <211> 1426 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: consensus <220> <221> CDS <222> (12)..(1412) <220> <221> sig\_peptide <222> (12)..(89) <220> <221> mat peptide <222> (90)..(1412) <400> 15 tatatgaatt c atg ggc gtg ttc gtc gtg cta ctg tcc att gcc acc ttg 50 Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu -25 ttc ggt tcc aca tcc ggt acc gcc ttg ggt cct cgt ggt aat tct cac 98 Phe Gly Ser Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His -10 -5 tet tgt gae act gtt gae ggt ggt tae caa tgt tte eea gaa att tet Ser Cys Asp Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser 5

cac ttg tgg ggt caa tac tct cca tac ttc tct ttg gaa gac gaa tct His Leu Trp Gly Gln Tyr Ser Pro Tyr Phe Ser Leu Glu Asp Glu Ser

25

| gct<br>Ala        | att<br>Ile       | tct<br>Ser        | cca<br>Pro        | gac<br>Asp<br>40  | gtt<br>Val        | cca<br>Pro       | gac<br>Asp        | gac<br>Asp        | tgt<br>Cys<br>45  | aga<br>Arg        | gtt<br>Val       | act<br>Thr        | ttc<br>Phe        | gtt<br>Val<br>50  | caa<br>Gln        | 242 |
|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-----|
| gtt<br>Val        | ttg<br>Leu       | tct<br>Ser        | aga<br>Arg<br>55  | cac<br>His        | ggt<br>Gly        | gct<br>Ala       | aga<br>Arg        | tac<br>Tyr<br>60  | cca<br>Pro        | act<br>Thr        | tct<br>Ser       | tct<br>Ser        | aag<br>Lys<br>65  | tct<br>Ser        | aag<br>Lys        | 290 |
| gct<br>Ala        | tac<br>Tyr       | tct<br>Ser<br>70  | gct<br>Ala        | ttg<br>Leu        | att<br>Ile        | gaa<br>Glu       | gct<br>Ala<br>75  | att<br>Ile        | caa<br>Gln        | aag<br>Lys        | aac<br>Asn       | gct<br>Ala<br>80  | act<br>Thr        | gct<br>Ala        | ttc<br>Phe        | 338 |
| aag<br>Lys        | ggt<br>Gly<br>85 | aag<br>Lys        | tac<br>Tyr        | gct<br>Ala        | ttc<br>Phe        | ttg<br>Leu<br>90 | aag<br>Lys        | act<br>Thr        | tac<br>Tyr        | aac<br>Asn        | tac<br>Tyr<br>95 | act<br>Thr        | ttg<br>Leu        | ggt<br>Gly        | gct<br>Ala        | 386 |
| gac<br>Asp<br>100 | gac<br>Asp       | ttg<br>Leu        | act<br>Thr        | cca<br>Pro        | ttc<br>Phe<br>105 | ggt<br>Gly       | gaa<br>Glu        | aac<br>Asn        | caa<br>Gln        | atg<br>Met<br>110 | gtt<br>Val       | aac<br>Asn        | tct<br>Ser        | ggt<br>Gly        | att<br>Ile<br>115 | 434 |
| aag<br>Lys        | ttc<br>Phe       | tac<br>Tyr        | aga<br>Arg        | aga<br>Arg<br>120 | tac<br>Tyr        | aag<br>Lys       | gct<br>Ala        | ttg<br>Leu        | gct<br>Ala<br>125 | aga<br>Arg        | aag<br>Lys       | att<br>Ile        | gtt<br>Val        | cca<br>Pro<br>130 | ttc<br>Phe        | 482 |
| att<br>Ile        | aga<br>Arg       | gct<br>Ala        | tct<br>Ser<br>135 | ggt<br>Gly        | tct<br>Ser        | gac<br>Asp       | aga<br>Arg        | gtt<br>Val<br>140 | att<br>Ile        | gct<br>Ala        | tct<br>Ser       | gct<br>Ala        | gaa<br>Glu<br>145 | aag<br>Lys        | ttc<br>Phe        | 530 |
| att<br>Ile        | gaa<br>Glu       | ggt<br>Gly<br>150 | ttc<br>Phe        | caa<br>Gln        | tct<br>Ser        | gct<br>Ala       | aag<br>Lys<br>155 | ttg<br>Leu        | gct<br>Ala        | gac<br>Asp        | cca<br>Pro       | ggt<br>Gly<br>160 | tct<br>Ser        | caa<br>Gln        | cca<br>Pro        | 578 |
| His               | Gln<br>165       | gct<br>Ala        | Ser               | Pro               | Val               | Ile<br>170       | Asp               | Val               | Ile               | Ile               | Pro<br>175       | Glu               | Gly               | Ser               | Gly               | 626 |
| Tyr<br>180        | Asn              | aac<br>Asn        | Thr               | Leu               | Asp<br>185        | His              | Gly               | Thṛ               | Cys               | Thr<br>190        | Ala              | Phe               | Glu               | Asp               | Ser<br>195        | 674 |
| Glu               | Leu              | ggt<br>Gly        | Asp               | Asp<br>200        | Val               | Glu              | Ala               | Asn               | Phe<br>205        | Thr               | Ala              | Leu               | Phe               | Ala<br>210        | Pro               | 722 |
| gct<br>Ala        | att<br>Ile       | aga<br>Arg        | gct<br>Ala<br>215 | aga<br>Arg        | ttg<br>Leu        | gaa<br>Glu       | gct<br>Ala        | gac<br>Asp<br>220 | ttg<br>Leu        | cca<br>Pro        | ggt<br>Gly       | gtt<br>Val        | act<br>Thr<br>225 | ttg<br>Leu        | act<br>Thr        | 770 |
| gac<br>Asp        | gaa<br>Glu       | gac<br>Asp<br>230 | gtt<br>Val        | gtt<br>Val        | tac<br>Tyr        | ttg<br>Leu       | atg<br>Met<br>235 | gac<br>Asp        | atg<br>Met        | tgt<br>Cys        | cca<br>Pro       | ttc<br>Phe<br>240 | gaa<br>Glu        | act<br>Thr        | gtt<br>Val        | 818 |
| gct<br>Ala        | aga<br>Arg       | act<br>Thr        | tct<br>Ser        | gac<br>Asp        | gct<br>Ala        | act<br>Thr       | gaa<br>Glu        | ttg<br>Leu        | tct<br>Ser        | cca<br>Pro        | ttc<br>Phe       | tgt<br>Cys        | gct<br>Ala        | ttg<br>Leu        | ttc<br>Phe        | 866 |

27

|                   | 245               |                   |                   |                   |                   | 250               |                   |                   |                   |                   | 255               |                   |                   |                   |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| act<br>Thr<br>260 | cac<br>His        | gac<br>Asp        | gaa<br>Glu        | tgg<br>Trp        | aga<br>Arg<br>265 | caa<br>Gln        | tac<br>Tyr        | gac<br>Asp        | tac<br>Tyr        | ttg<br>Leu<br>270 | caa<br>Gln        | tct<br>Ser        | ttg<br>Leu        | ggt<br>Gly        | aag<br>Lys<br>275 | 914  |
| tac<br>Tyr        | tac<br>Tyr        | ggt<br>Gly        | tac<br>Tyr        | ggt<br>Gly<br>280 | gct<br>Ala        | ggt<br>Gly        | aac<br>Asn        | cca<br>Pro        | ttg<br>Leu<br>285 | ggt<br>Gly        | cca<br>Pro        | gct<br>Ala        | caa<br>Gln        | ggt<br>Gly<br>290 | gtt<br>Val        | 962  |
| ggt<br>Gly        | ttc<br>Phe        | gct<br>Ala        | aac<br>Asn<br>295 | gaa<br>Glu        | ttg<br>Leu        | att<br>Ile        | gct<br>Ala        | aga<br>Arg<br>300 | ttg<br>Leu        | act<br>Thr        | aga<br>Arg        | tct<br>Ser        | cca<br>Pro<br>305 | gtt<br>Val        | caa<br>Gln        | 1010 |
| gac<br>Asp        | cac<br>His        | act<br>Thr<br>310 | tct<br>Ser        | act<br>Thr        | aac<br>Asn        | cac<br>His        | act<br>Thr<br>315 | ttg<br>Leu        | gac<br>Asp        | tct<br>Ser        | aac<br>Asn        | cca<br>Pro<br>320 | gct<br>Ala        | act<br>Thr        | ttc<br>Phe        | 1058 |
| cca<br>Pro        | ttg<br>Leu<br>325 | aac<br>Asn        | gct<br>Ala        | act<br>Thr        | ttg<br>Leu        | tac<br>Tyr<br>330 | gct<br>Ala        | gac<br>Asp        | ttc<br>Phe        | tct<br>Ser        | cac<br>His<br>335 | gac<br>Asp        | aac<br>Asn        | tct<br>Ser        | atg<br>Met        | 1106 |
| att<br>Ile<br>340 | tct<br>Ser        | att<br>Ile        | ttc<br>Phe        | ttc<br>Phe        | gct<br>Ala<br>345 | ttg<br>Leu        | ggt<br>Gly        | ttg<br>Leu        | tac<br>Tyr        | aac<br>Asn<br>350 | ggt<br>Gly        | act<br>Thr        | gct<br>Ala        | cca<br>Pro        | ttg<br>Leu<br>355 | 1154 |
| tct<br>Ser        | act<br>Thr        | act<br>Thr        | tct<br>Ser        | gtt<br>Val<br>360 | gaa<br>Glu        | tct<br>Ser        | att<br>Ile        | gaa<br>Glu        | gaa<br>Glu<br>365 | act<br>Thr        | gac<br>Asp        | ggt<br>Gly        | tac<br>Tyr        | tct<br>Ser<br>370 | gct<br>Ala        | 1202 |
| tct<br>Ser        | tgg<br>Trp        | act<br>Thr        | gtt<br>Val<br>375 | cca<br>Pro        | ttc<br>Phe        | ggt<br>Gly        | gct<br>Ala        | aga<br>Arg<br>380 | gct<br>Ala        | tac<br>Tyr        | gtt<br>Val        | gaa<br>Glu        | atg<br>Met<br>385 | atg<br>Met        | caa<br>Gln        | 1250 |
| tgt<br>Cys        | caa<br>Gln        | gct<br>Ala<br>390 | gaa<br>Glu        | aag<br>Lys        | gaa<br>Glu        | cca<br>Pro        | ttg<br>Leu<br>395 | gtt<br>Val        | aga<br>Arg        | gtt<br>Val        | ttg<br>Leu        | gtt<br>Val<br>400 | aac<br>Asn        | gac<br>Asp        | aga<br>Arg        | 1298 |
| gtt<br>Val        | gtt<br>Val<br>405 | cca<br>Pro        | ttg<br>Leu        | cac<br>His        | ggt<br>Gly        | tgt<br>Cys<br>410 | gct<br>Ala        | gtt<br>Val        | gac<br>Asp        | aag<br>Lys        | ttg<br>Leu<br>415 | ggt<br>Gly        | aga<br>Arg        | tgt<br>Cys        | aag<br>Lys        | 1346 |
| aga<br>Arg<br>420 | gac<br>Asp        | gac<br>Asp        | ttc<br>Phe        | gtt<br>Val        | gaa<br>Glu<br>425 | ggt<br>Gly        | ttg<br>Leu        | tct<br>Ser        | ttc<br>Phe        | gct<br>Ala<br>430 | aga<br>Arg        | tct<br>Ser        | ggt<br>Gly        | ggt<br>Gly        | aac<br>Asn<br>435 | 1394 |
|                   | -                 |                   | tgt<br>Cys        |                   | _                 | taag              | aatt              | ca t              | ata               |                   |                   |                   |                   |                   |                   | 1426 |

<210> 16

<211> 467

<212> PRT

PCT/DK00/00025

| <213> | Artificial | Sequence |
|-------|------------|----------|
|-------|------------|----------|

WO 00/43503

<223> Description of Artificial Sequence: consensus
 phytase

<400> 16

Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
-25 -20 -15

Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
-10 -5 -1 1 5

Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
10 15 20

Gly Gln Tyr Ser Pro Tyr Phe Ser Leu Glu Asp Glu Ser Ala Ile Ser 25 30 35

Pro Asp Val Pro Asp Asp Cys Arg Val Thr Phe Val Gln Val Leu Ser 40 45 50

Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys Ser Lys Ala Tyr Ser 55 60 65 70

Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys
75 80 85

Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu 90 95 100

Thr Pro Phe Gly Glu Asn Gln Met Val Asn Ser Gly Ile Lys Phe Tyr 105 110 115

Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala 120 125 130

Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly 135 140 145 150

Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ser Gln Pro His Gln Ala 155 160 165

Ser Pro Val Ile Asp Val Ile Ile Pro Glu Gly Ser Gly Tyr Asn Asn 170 175 180

Thr Leu Asp His Gly Thr Cys Thr Ala Phe Glu Asp Ser Glu Leu Gly 185 190 195

Asp Val Glu Ala Asn Phe Thr Ala Leu Phe Ala Pro Ala Ile Arg 200 205 210

Ala Arg Leu Glu Ala Asp Leu Pro Gly Val Thr Leu Thr Asp Glu Asp 215 220 225 230

29

Glu Trp Arg Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly 265 270 275

Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Ala 280 285 290

Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro Val Gln Asp His Thr 295 300 305 310

Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn 315 320 325

Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Ser Met Ile Ser Ile 330 335 340

Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu Ser Thr Thr 345 350 355

Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr 360 365 370

Val Pro Phe Gly Ala Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala 375 380 385 390

Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro
395 400 405

Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp 410 415

Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu 425 430 435

Cys Phe Ala 440

<210> 17

<211> 422

<212> PRT

<213> Paxillus involutus phyA1

<400> 17

Ser Val Pro Lys Asn Thr Ala Pro Thr Phe Pro Ile Pro Glu Ser Glu
1 5 10 15

WO 00/43503

30

PCT/DK00/00025

| Gln       | Arg        | Asn       | Trp<br>20  | Ser       | Pro       | Tyr        | Ser       | Pro<br>25  |           | Phe       | Pro        | Leu       | Ala<br>30  |           | Tyr       |
|-----------|------------|-----------|------------|-----------|-----------|------------|-----------|------------|-----------|-----------|------------|-----------|------------|-----------|-----------|
| Lys       | Ala        | Pro<br>35 | Pro        | Ala       | Gly       | Cys        | Gln<br>40 |            | Asn       | Gln       | Val        | Asn<br>45 | Ile        | Ile       | Gln       |
| Arg       | His<br>50  | Gly       | Ala        | Arg       | Phe       | Pro<br>55  | Thr       | Ser        | Gly       | Ala       | Thr<br>60  | Thr       | Arg        | Ile       | Lys       |
| Ala<br>65 | Gly        | Leu       | Thr        | Lys       | Leu<br>70 | Gln        | Gly       | Val        | Gln       | Asn<br>75 | Phe        | Thr       | Asp        | Ala       | Lys<br>80 |
| Phe       | Asn        | Phe       | Ile        | Lys<br>85 | Ser       | Phe        | Lys       | Tyr        | Asp<br>90 |           | Gly        | Asn       | Ser        | Asp<br>95 | Leu       |
| Val       | Pro        | Phe       | Gly<br>100 | Ala       | Ala       | Gln        | Ser       | Phe<br>105 | Asp       | Ala       | Gly        | Gln       | Glu<br>110 | Ala       | Phe       |
|           |            | 115       |            |           |           |            | 120       |            |           |           |            | 125       |            |           |           |
|           | 130        |           |            |           |           | 135        |           | Asp        |           |           | 140        |           |            |           |           |
| 145       |            |           |            |           | 150       |            |           | Thr        |           | 155       |            |           |            |           | 160       |
|           |            |           |            | 165       |           |            |           | Thr        | 170       |           |            |           |            | 175       |           |
|           |            |           | 180        |           |           |            |           | Val<br>185 |           |           |            |           | 190        |           |           |
|           |            | 195       |            |           |           |            | 200       | Asn        |           |           |            | 205       |            |           |           |
|           | 210        |           |            |           |           | 215        |           | Leu        |           |           | 220        |           |            |           |           |
| 225       |            |           |            |           | 230       |            |           | qaA        |           | 235       |            |           |            |           | 240       |
|           |            |           |            | 245       |           |            |           | Ala        | 250       |           |            |           |            | 255       |           |
|           |            |           | 260        |           |           |            |           | Glu<br>265 |           |           |            |           | 270        |           |           |
|           |            | 275       |            |           |           |            | 280       | Arg        |           |           |            | 285       |            |           |           |
| Asp       | Asn<br>290 | Thr       | Gln        | Thr       | Asn       | Arg<br>295 | Thr       | Leu        | Asp       | Ala       | Ser<br>300 | Pro       | Val        | Thr       | Phe       |

31

Pro Leu Asn Lys Thr Phe Tyr Ala Asp Phe Ser His Asp Asn Leu Met 305 310 315 320

Val Ala Val Phe Ser Ala Met Gly Leu Phe Arg Gln Pro Ala Pro Leu 325 330 335

Ser Thr Ser Val Pro Asn Pro Trp Arg Thr Trp Arg Thr Ser Ser Leu 340 345 350

Val Pro Phe Ser Gly Arg Met Val Val Glu Arg Leu Ser Cys Phe Gly 355 360 365

Thr Thr Lys Val Arg Val Leu Val Gln Asp Gln Val Gln Pro Leu Glu 370 380

Phe Cys Gly Gly Asp Arg Asn Gly Leu Cys Thr Leu Ala Lys Phe Val 385 390 395 400

Glu Ser Gln Thr Phe Ala Arg Ser Asp Gly Ala Gly Asp Phe Glu Lys 405 410 415

Cys Phe Ala Thr Ser Ala 420

<210> 18

<211> 422

<212> PRT

<213> Paxillus involutus phyA2

<400> 18

Ser Val Pro Arg Asn Ile Ala Pro Lys Phe Ser Ile Pro Glu Ser Glu 1 5 10 15

Gln Arg Asn Trp Ser Pro Tyr Ser Pro Tyr Phe Pro Leu Ala Glu Tyr 20 25 30

Lys Ala Pro Pro Ala Gly Cys Glu Ile Asn Gln Val Asn Ile Ile Gln 35 40 45

Arg His Gly Ala Arg Phe Pro Thr Ser Gly Ala Ala Thr Arg Ile Lys 50 55 60

Ala Gly Leu Ser Lys Leu Gln Ser Val Gln Asn Phe Thr Asp Pro Lys
65 70 75 80

Phe Asp Phe Ile Lys Ser Phe Thr Tyr Asp Leu Gly Thr Ser Asp Leu 85 90 95

Val Pro Phe Gly Ala Ala Gln Ser Phe Asp Ala Gly Leu Glu Val Phe 100 105 110

Ala Arg Tyr Ser Lys Leu Val Ser Ser Asp Asn Leu Pro Phe Ile Arg 115 120 125

| Ser        | Asp<br>130 |            | Ser        | Asp        | Arg        | Val<br>135 | Val        | Asp        | Thr        | Ala        | Thr<br>140 | Asn        | Trp        | Thr        | Ala        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly<br>145 | Phe        | Ala        | Ser        | Ala        | Ser<br>150 | Arg        | Asn        | Ala        | Ile        | Gln<br>155 | Pro        | Lys        | Leu        | Asp        | Leu<br>160 |
| Ile        | Leu        | Pro        | Gln        | Thr<br>165 | Gly        | Asn        | Asp        | Thr        | Leu<br>170 |            | Asp        | Asn        | Met        | Cys<br>175 | Pro        |
| Ala        | Ala        | Gly        | Glu<br>180 | Ser        | Asp        | Pro        | Gln        | Val<br>185 | Asp        | Ala        | Trp        | Leu        | Ala<br>190 | Ser        | Ala        |
| Phe        | Pro        | Ser<br>195 | Val        | Thr        | Ala        | Gln        | Leu<br>200 | Asn        | Ala        | Ala        | Ala        | Pro<br>205 | Gly        | Ala        | Asn        |
| Leu        | Thr<br>210 | Asp        | Ala        | Asp        | Ala        | Phe<br>215 | Asn        | Leu        | Val        | Ser        | Leu<br>220 | Cys        | Pro        | Phe        | Met        |
| Thr<br>225 | Val        | Ser        | Lys        | Glu        | Gln<br>230 | Lys        | Ser        | Asp        | Phe        | Cys<br>235 | Thr        | Leu        | Phe        | Glu        | Gly<br>240 |
| Ile        | Pro        | Gly        | Ser        | Phe<br>245 | Glu        | Ala        | Phe        | Ala        | Tyr<br>250 | Ala        | Gly        | Asp        | Leu        | Asp<br>255 | Lys        |
| Phe        | Tyr        | Gly        | Thr<br>260 | Gly        | Tyr        | Gly        | Gln        | Ala<br>265 | Leu        | Gly        | Pro        | Val        | Gln<br>270 | Gly        | Val        |
| Gly        | Tyr        | Ile<br>275 | Asn        | Glu        | Leu        | Leu        | Ala<br>280 | Arg        | Leu        | Thr        | Asn        | Ser<br>285 | Ala        | Val        | Asn        |
| Asp        | Asn<br>290 | Thr        | Gln        | Thr        | Asn        | Arg<br>295 | Thr        | Leu        | Asp        | Ala        | Ala<br>300 | Pro        | Asp        | Thr        | Phe        |
| Pro<br>305 | Leu        | Asn        | Lys        | Thr        | Met<br>310 | Tyr        | Ala        | Asp        | Phe        | Ser<br>315 | His        | Asp        | Asn        | Leu        | Met<br>320 |
| Val        | Ala        | Val        | Phe        | Ser<br>325 | Ala        | Met        | Gly        | Leụ        | Phe<br>330 | Arg        | Gln        | Ser        | Ala        | Pro<br>335 | Leu        |
| Ser        | Thr        | Ser        | Thr<br>340 | Pro        | Asp        | Pro        | Asn        | Arg<br>345 | Thr        | Trp        | Leu        | Thr        | Ser<br>350 | Ser        | Val        |
| Val        | Pro        | Phe<br>355 | Ser        | Ala        | Arg        | Met        | Ala<br>360 | Val        | Glu        | Arg        | Leu        | Ser<br>365 | Сув        | Ala        | Gly        |
| Fhr        | Thr<br>370 | Lys        | Val        | Arg        | Val        | Leu<br>375 | Val        | Gln        | Asp        | Gln        | Val<br>380 | Gln        | Pro        | Leu        | Glu        |
| Phe<br>385 | Cys        | Gly        | Gly        | Asp        | Gln<br>390 | Asp        | Gly        | Leu        | Cys        | Ala<br>395 | Leu        | Asp        | Lys        | Phe        | Val<br>400 |
| 3lu        | Ser        | Gln        | Ala        | Tyr<br>405 | Ala        | Arg        | Ser        | Gly        | Gly<br>410 | Ala        | Gly        | Asp        | Phe        | Glu<br>415 | Lys        |

Cys Leu Ala Thr Thr Val 420

WO 00/43503

<210> 19

<211> 420

<212> PRT

<213> Trametes pubescens

<400> 19

His Ile Pro Leu Arg Asp Thr Ser Ala Cys Leu Asp Val Thr Arg Asp 1 5 10 15

Val Gln Gln Ser Trp Ser Met Tyr Ser Pro Tyr Phe Pro Ala Ala Thr 20 25 30

Tyr Val Ala Pro Pro Ala Ser Cys Gln Ile Asn Gln Val His Ile Ile 35 40 45

Gln Arg His Gly Ala Arg Phe Pro Thr Ser Gly Ala Ala Lys Arg Ile
50 55 60

Gln Thr Ala Val Ala Lys Leu Lys Ala Ala Ser Asn Tyr Thr Asp Pro 65 70 75 80

Leu Leu Ala Phe Val Thr Asn Tyr Thr Tyr Ser Leu Gly Gln Asp Ser 85 90 95

Leu Val Glu Leu Gly Ala Thr Gln Ser Ser Glu Ala Gly Gln Glu Ala 100 105 110

Phe Thr Arg Tyr Ser Ser Leu Val Ser Ala Asp Glu Leu Pro Phe Val 115 120 125

Arg Ala Ser Gly Ser Asp Arg Val Val Ala Thr Ala Asn Asn Trp Thr 130 135 140

Ala Gly Phe Ala Leu Ala Ser Ser Asn Ser Ile Thr Pro Val Leu Ser 145 150 155 160

Val Ile Ile Ser Glu Ala Gly Asn Asp Thr Leu Asp Asp Asn Met Cys 165 170 175

Pro Ala Ala Gly Asp Ser Asp Pro Gln Val Asn Gln Trp Leu Ala Gln 180 185 190

Phe Ala Pro Pro Met Thr Ala Arg Leu Asn Ala Gly Ala Pro Gly Ala 195 200 205

Asn Leu Thr Asp Thr Asp Thr Tyr Asn Leu Leu Thr Leu Cys Pro Phe 210 215 220

34

Glu Thr Val Ala Thr Glu Arg Arg Ser Glu Phe Cys Asp Ile Tyr Glu 225 230 235 240

Glu Leu Gln Ala Glu Asp Ala Phe Ala Tyr Asn Ala Asp Leu Asp Lys 245 250 255

Phe Tyr Gly Thr Gly Tyr Gly Gln Pro Leu Gly Pro Val Gln Gly Val 260 265 270

Gly Tyr Ile Asn Glu Leu Ile Ala Arg Leu Thr Ala Gln Asn Val Ser 275 280 285

Asp His Thr Gln Thr Asn Ser Thr Leu Asp Ser Ser Pro Glu Thr Phe 290 295 300

Pro Leu Asn Arg Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Gln Met 305 310 315 320

Val Ala Ile Phe Ser Ala Met Gly Leu Phe Asn Gln Ser Ala Pro Leu 325 330 335

Asp Pro Thr Thr Pro Asp Pro Ala Arg Thr Phe Leu Val Lys Lys Ile 340 345 350

Val Pro Phe Ser Ala Arg Met Val Val Glu Arg Leu Asp Cys Gly Gly 355 360 365

Ala Gln Ser Val Arg Leu Leu Val Asn Asp Ala Val Gln Pro Leu Ala 370 380

Phe Cys Gly Ala Asp Thr Ser Gly Val Cys Thr Leu Asp Ala Phe Val 385 390 395 400

Glu Ser Gln Ala Tyr Ala Arg Asn Asp Gly Glu Gly Asp Phe Glu Lys 405 410 415

Cys Phe Ala Thr 420

<210> 20

<211> 435

<212> PRT

<213> Agrocybe pediades

<400> 20

Gly Gly Val Val Gln Ala Thr Phe Val Gln Pro Phe Phe Pro Pro Gln
1 5 10 15

Ile Gln Asp Ser Trp Ala Ala Tyr Thr Pro Tyr Tyr Pro Val Gln Ala

Tyr Thr Pro Pro Pro Lys Asp Cys Lys Ile Thr Gln Val Asn Ile Ile
35 40

| Gln        | Arg<br>50  | His        | Gly        | Ala        | Arg        | Phe<br>55  |                    | Thr        | Ser        | Gly        | Ala<br>60  | Gly        | Thr        | Arg        | Ile        |
|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gln<br>65  | Ala        | Ala        | Val        | Lys        | Lys<br>70  | Leu        | Gln                | Ser        | Ala        | Lys<br>75  |            | Tyr        | Thr        | Asp        | Pro<br>80  |
| Arg        | Leu        | Asp        | Phe        | Leu<br>85  | Thr        | Asn        | Tyr                | Thr        | Tyr<br>90  |            | Leu        | Gly        | His        | Asp<br>95  | Asp        |
| Leu        | Val        | Pro        | Phe<br>100 | Gly        | Ala        | Leu        | Gln                | Ser<br>105 | Ser        | Gln        | Ala        | Gly        | Glu<br>110 | Glu        | Thr        |
| Phe        | Gln        | Arg<br>115 | Tyr        | Ser        | Phe        | Leu        | Val<br>120         | Ser        | Lys        | Glu        | Asn        | Leu<br>125 | Pro        | Phe        | Val        |
| Arg        | Ala<br>130 | Ser        | Ser        | Ser        | Asn        | Arg<br>135 | Val                | Val        | Asp        | Ser        | Ala<br>140 | Thr        | Asn        | Trp        | Thr        |
| Glu<br>145 | Gly        | Phe        | Ser        | Ala        | Ala<br>150 | Ser        | His                | His        | Val        | Leu<br>155 | Asn        | Pro        | Ile        | Leu        | Phe<br>160 |
| Val        | Ile        | Leu        | Ser        | Glu<br>165 | Ser        | Leu        | Asn                | Asp        | Thr<br>170 | Leu        | Asp        | Asp        | Ala        | Met<br>175 | Cys        |
| Pro        | Asn        | Ala        | Gly<br>180 | Ser        | Ser        | Asp        | Pro                | Gln<br>185 | Thr        | Gly        | Ile        | Trp        | Thr<br>190 | Ser        | Ile        |
| Tyr        | Gly        | Thr<br>195 | Pro        | Ile        | Ala        | Asn        | Arg<br>200         | Leu        | Asn        | Gln        | Gln        | Ala<br>205 | Pro        | Gly        | Ala        |
| Asn        | Ile<br>210 | Thr        | Ala        | Ala        | Asp        | Val<br>215 | Ser                | Asn        | Leu        | Ile        | Pro<br>220 | Leu        | Cys        | Ala        | Phe        |
| Glu<br>225 | Thr        | Ile        | Val        | Lys        | Glu<br>230 | Thr        | Pro                | Ser        | Pro        | Phe<br>235 | Cys        | Asn        | Leu        | Phe        | Thr<br>240 |
| Pro        | Glu        | Glu        | Phe        | Ala<br>245 | Gln        | Phe        | Glu                | Tyr        | Phe<br>250 | Gly        | Asp        | Leu        | Asp        | Lys<br>255 | Phe        |
| Tyr        | Gly        | Thr        | Gly<br>260 | Tyr        | Gly        | Gln        | Pro                | Leu<br>265 | Gly        | Pro        | Val        | Gln        | Gly<br>270 | Val        | Gly        |
| Tyr        | Ile        | Asn<br>275 | Glu        | Leu        | Leu        | Ala        | <b>A</b> rg<br>280 | Leu        | Thr        | Glu        | Met        | Pro<br>285 | Val        | Arg        | Asp        |
| Asn        | Thr<br>290 | Gln        | Thr        | Asn        | Arg        | Thr<br>295 | Leu                | Asp        | Ser        | Ser        | Pro<br>300 | Leu        | Thr        | Phe        | Pro        |
| Leu<br>305 | qaA        | Arg        | Ser        | Ile        | Tyr<br>310 | Ala        | Asp                | Leu        | Ser        | His<br>315 | Asp        | Asn        | Gln        | Met        | Ile<br>320 |
| Ala        | Ile        | Phe        | Ser        | Ala<br>325 | Met        | Gly        | Leu                | Phe        | Asn<br>330 | Gln        | Ser        | Ser        | Pro        | Leu<br>335 | Asp        |

PCT/DK00/00025

Pro Ser Phe Pro Asn Pro Lys Arg Thr Trp Val Thr Ser Arg Leu Thr 340 345 350

Pro Phe Ser Ala Arg Met Val Thr Glu Arg Leu Leu Cys Gln Arg Asp 355 360 365

Gly Thr Gly Ser Gly Gly Pro Ser Arg Ile Met Arg Asn Gly Asn Val 370 375 380

Gln Thr Phe Val Arg Ile Leu Val Asn Asp Ala Leu Gln Pro Leu Lys 385 390 395 400

Phe Cys Gly Gly Asp Met Asp Ser Leu Cys Thr Leu Glu Ala Phe Val 405 410 415

Glu Ser Gln Lys Tyr Ala Arg Glu Asp Gly Gln Gly Asp Phe Glu Lys 420 425 430

Cys Phe Asp 435

WO 00/43503

<210> 21

<211> 419

<212> PRT

<213> Peniophora lycii

<400> 21

Ser Thr Gln Phe Ser Phe Val Ala Ala Gln Leu Pro Ile Pro Ala Gln
1 5 10 15

Asn Thr Ser Asn Trp Gly Pro Tyr Asp Pro Phe Phe Pro Val Glu Pro 20 25 30

Tyr Ala Ala Pro Pro Glu Gly Cys Thr Val Thr Gln Val Asn Leu Ile 35 40 45

Gln Arg His Gly Ala Arg Trp Pro Thr Ser Gly Ala Arg Ser Arg Gln
50 55 60

Val Ala Ala Val Ala Lys Ile Gln Met Ala Arg Pro Phe Thr Asp Pro
65 70 75 80

Lys Tyr Glu Phe Leu Asn Asp Phe Val Tyr Lys Phe Gly Val Ala Asp 85 90 95

Leu Leu Pro Phe Gly Ala Asn Gln Ser His Gln Thr Gly Thr Asp Met 100 105 110

Tyr Thr Arg Tyr Ser Thr Leu Phe Glu Gly Gly Asp Val Pro Phe Val 115 120 125

37 Arg Ala Ala Gly Asp Gln Arg Val Val Asp Ser Ser Thr Asn Trp Thr Ala Gly Phe Gly Asp Ala Ser Gly Glu Thr Val Leu Pro Thr Leu Gln 155 Val Val Leu Gln Glu Glu Gly Asn Cys Thr Leu Cys Asn Asn Met Cys Pro Asn Glu Val Asp Gly Asp Glu Ser Thr Thr Trp Leu Gly Val Phe Ala Pro Asn Ile Thr Ala Arg Leu Asn Ala Ala Ala Pro Ser Ala Asn Leu Ser Asp Ser Asp Ala Leu Thr Leu Met Asp Met Cys Pro Phe Asp 215 Thr Leu Ser Ser Gly Asn Ala Ser Pro Phe Cys Asp Leu Phe Thr Ala 230 Glu Glu Tyr Val Ser Tyr Glu Tyr Tyr Tyr Asp Leu Asp Lys Tyr Tyr 250 Gly Thr Gly Pro Gly Asn Ala Leu Gly Pro Val Gln Gly Val Gly Tyr Val Asn Glu Leu Leu Ala Arg Leu Thr Gly Gln Ala Val Arg Asp Glu Thr Gln Thr Asn Arg Thr Leu Asp Ser Asp Pro Ala Thr Phe Pro Leu 295 Asn Arg Thr Phe Tyr Ala Asp Phe Ser His Asp Asn Thr Met Val Pro 310 315 Ile Phe Ala Ala Leu Gly Leu Phe Asn Ala Thr Ala Leu Asp Pro Leu 330 Lys Pro Asp Glu Asn Arg Leu Trp Val Asp Ser Lys Leu Val Pro Phe 345 Ser Gly His Met Thr Val Glu Lys Leu Ala Cys Ser Gly Lys Glu Ala Val Arg Val Leu Val Asn Asp Ala Val Gln Pro Leu Glu Phe Cys Gly 375 Gly Val Asp Gly Val Cys Glu Leu Ser Ala Phe Val Glu Ser Gln Thr 395 Tyr Ala Arg Glu Asn Gly Gln Gly Asp Phe Ala Lys Cys Gly Phe Val

PCT/DK00/00025

Pro Ser Glu

WO 00/43503

<211> 369

<212> PRT

<213> Artificial Sequence

<220:

<223> Description of Artificial Sequence:basidio
 consensus

<400> 22

Ser Pro Arg Thr Ala Ala Gln Leu Pro Ile Pro Gln Gln Trp Ser Pro 1 5 10 15

Tyr Ser Pro Tyr Phe Pro Val Ala Tyr Ala Pro Pro Ala Gly Cys Gln
20 25 30

Ile Gln Val Asn Ile Ile Gln Arg His Gly Ala Arg Phe Pro Thr Ser
35 40 45

Gly Ala Ala Thr Arg Ile Gln Ala Ala Val Ala Lys Leu Gln Ser Ala 50 55 60

Thr Asp Pro Lys Leu Asp Phe Leu Asn Thr Tyr Leu Gly Asp Asp Leu 65 70 75 80

Val Pro Phe Gly Ala Gln Ser Ser Gln Ala Gly Gln Glu Ala Phe Thr 85 90 95

Arg Tyr Ser Leu Val Ser Asp Asn Leu Pro Phe Val Arg Ala Ser Gly 100 105 110

Ser Asp Arg Val Val Asp Ser Ala Thr Asn Trp Thr Ala Gly Phe Ala 115 120 125

Ala Ser Asn Thr Pro Leu Val Ile Leu Ser Glu Gly Asn Asp Thr Leu 130 135 140

Asp Asp Asn Met Cys Pro Ala Gly Asp Ser Asp Pro Gln Asn Trp Leu 145 150 155 160

Ala Val Phe Ala Pro Pro Ile Thr Ala Arg Leu Asn Ala Ala Ala Pro 165 170 175

Gly Ala Asn Leu Thr Asp Asp Ala Asn Leu Leu Cys Pro Phe Glu Thr 180 185 190

Val Ser Glu Ser Phe Cys Asp Leu Phe Glu Pro Glu Glu Phe Ala Phe 195 200 205

39

|            |            |            |            |            |            |            |            |            |            | _          |            |            |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Tyr        | Gly<br>210 | Asp        | Leu        | Asp        | Lys        | Phe<br>215 | Tyr        | Gly        | Thr        | Gly        | Tyr<br>220 | Gly        | Gln        | Pro        | Leu        |
| Gly<br>225 | Pro        | Val        | Gln        | Gly        | Val<br>230 | Gly        | Tyr        | Ile        | Asn        | Glu<br>235 | Leu        | Leu        | Ala        | Arg        | Leu<br>240 |
| Thr        | Gln        | Ala        | Val        | Arg<br>245 | Asp        | Asn        | Thr        | Gln        | Thr<br>250 | Asn        | Arg        | Thr        | Leu        | Asp<br>255 | Ser        |
| Ser        | Pro        | Thr        | Phe<br>260 | Pro        | Leu        | Asn        | Arg        | Thr<br>265 | Phe        | Tyr        | Ala        | Asp        | Phe<br>270 | Ser        | His        |
| Asp        | Asn        | Gln<br>275 | Met        | Val        | Ala        | Ile        | Phe<br>280 | Ser        | Ala        | Met        | Gly        | Leu<br>285 | Phe        | Asn        | Gln        |
| Ser        | Ala<br>290 | Pro        | Leu        | Asp        | Pro        | Ser<br>295 | Pro        | qaA        | Pro        | Asn        | Arg<br>300 | Thr        | Trp        | Val        | Thr        |
| Ser<br>305 | Lys        | Leu        | Val        | Pro        | Phe<br>310 | Ser        | Ala        | Arg        | Met        | Val<br>315 | Val        | Glu        | Arg        | Leu        | Сув<br>320 |
| Gly        | Thr        | Val        | Arg        | Val<br>325 | Leu        | Val        | Asn        | Asp        | Ala<br>330 | Val        | Gln        | Pro        | Leu        | Glu<br>335 | Phe        |
| Cys        | Gly        | Gly        | Asp<br>340 | Asp        | Gly        | Cys        | Thr        | Leu<br>345 | Asp        | Ala        | Phe        | Val        | Glu<br>350 | Ser        | Gln        |
| Tyr        | Ala        | Arg<br>355 | Glu        | Asp        | Gly        | Gln        | Gly<br>360 | Asp        | Phe        | Glu        | Lys        | Cys<br>365 | Phe        | Ala        | Thr        |

Pro

<210> 23

<211> 440

<212> PRT

<213> Thermomyces lanuginosus

<400> 23

Asn Val Asp Ile Ala Arg His Trp Gly Gln Tyr Ser Pro Phe Phe Ser 1 5 10 15

Leu Ala Glu Val Ser Glu Ile Ser Pro Ala Val Pro Lys Gly Cys Arg 20 25 30

Val Glu Phe Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr 35 40 45

Ala His Lys Ser Glu Val Tyr Ala Glu Leu Leu Gln Arg Ile Gln Asp 50 55 60

Thr Ala Thr Glu Phe Lys Gly Asp Phe Ala Phe Leu Arg Asp Tyr Ala 65 70 75 80

Tyr His Leu Gly Ala Asp Asn Leu Thr Arg Phe Gly Glu Glu Met Met Glu Ser Gly Arg Gln Phe Tyr His Arg Tyr Arg Glu Gln Ala Arg Glu Ile Val Pro Phe Val Arg Ala Ala Gly Ser Ala Arg Val Ile Ala 115 Ser Ala Glu Phe Phe Asn Arg Gly Phe Gln Asp Ala Lys Asp Arg Asp Pro Arg Ser Asn Lys Asp Gln Ala Glu Pro Val Ile Asn Val Ile Ile 150 Ser Glu Glu Thr Gly Ser Asn Asn Thr Leu Asp Gly Leu Thr Cys Pro Ala Ala Glu Glu Ala Pro Asp Pro Thr Gln Pro Ala Glu Phe Leu Gln 180 185 Val Phe Gly Pro Arg Val Leu Lys Lys Ile Thr Lys His Met Pro Gly 200 Val Asn Leu Thr Leu Glu Asp Val Pro Leu Phe Met Asp Leu Cys Pro Phe Asp Thr Val Gly Ser Asp Pro Val Leu Phe Pro Arg Gln Leu Ser 230 Pro Phe Cys His Leu Phe Thr Ala Asp Asp Trp Met Ala Tyr Asp Tyr Tyr Tyr Thr Leu Asp Lys Tyr Tyr Ser His Gly Gly Gly Ser Ala Phe 265 Gly Pro Ser Arg Gly Val Gly Phe Val Asn Glu Leu Ile Ala Arg Met Thr Gly Asn Leu Pro Val Lys Asp His Thr Thr Val Asn His Thr Leu Asp Asp Asn Pro Glu Thr Phe Pro Leu Asp Ala Val Leu Tyr Ala Asp 310

Tyr Asn Gly Thr Lys Pro Leu Ser Thr Ser Lys Ile Gln Pro Pro Thr 340 345 350

Gly Ala Ala Ala Asp Gly Tyr Ala Ala Ser Trp Thr Val Pro Phe Ala 355 360 365

Phe Ser His Asp Asn Thr Met Thr Gly Ile Phe Ser Ala Met Gly Leu

330

Ala Arg Ala Tyr Val Glu Leu Leu Arg Cys Glu Thr Glu Thr Ser Ser 370 375 380

Glu Glu Glu Glu Glu Gly Glu Asp Glu Pro Phe Val Arg Val Leu Val 385 390 395 400

Asn Asp Arg Val Val Pro Leu His Gly Cys Arg Val Asp Arg Trp Gly 405 410 415

Arg Cys Arg Arg Asp Glu Trp Ile Lys Gly Leu Thr Phe Ala Arg Gln
420 425 430

Gly Gly His Trp Asp Arg Cys Phe 435 440

<210> 24

<211> 441

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: consensus 10

<400> 24

Asn Ser His Ser Cys Asp Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro 1 5 10 15

Glu Ile Ser His Leu Trp Gly Gln Tyr Ser Pro Phe Phe Ser Leu Ala

Asp Glu Ser Ala Ile Ser Pro Asp Val Pro Lys Gly Cys Arg Val Thr 35 40 45

Phe Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser 50 55 60

Lys Ser Lys Lys Tyr Ser Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala 65 70 75 80

Thr Ala Phe Lys Gly Lys Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr 85 90 95

Leu Gly Ala Asp Asp Leu Thr Pro Phe Gly Glu Gln Gln Met Val Asn 100 105 110

Ser Gly Ile Lys Phe Tyr Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile 115 120 125

Val Pro Phe Val Arg Ala Ser Gly Ser Asp Arg Val Ile Ala Ser Ala 130 135 140

| Glu<br>145 | Lys        | Phe        | Ile        | Glu        | Gly<br>150 | Phe        | Gln        | Ser                     | Ala        | Lys<br>155 | Leu        | Ala        | Asp        | Pro        | Gly<br>160 |
|------------|------------|------------|------------|------------|------------|------------|------------|-------------------------|------------|------------|------------|------------|------------|------------|------------|
| Ala        | Asn        | Pro        | His        | Gln<br>165 | Ala        | Ser        | Pro        | Val                     | Ile<br>170 | Asn        | Val        | Ile        | Ile        | Pro<br>175 | Glu        |
| Gly        | Ala        | Gly        | Tyr<br>180 | Asn        | Asn        | Thr        | Leu        | Asp<br>185              | His        | Gly        | Leu        | Cys        | Thr<br>190 | Ala        | Phe        |
| Glu        | Glu        | Ser<br>195 | Glu        | Leu        | Gly        | Asp        | Asp<br>200 | Val                     | Glu        | Ala        | Asn        | Phe<br>205 | Thr        | Ala        | Val        |
| Phe        | Ala<br>210 | Pro        | Pro        | Ile        | Arg        | Ala<br>215 | Arg        | Leu                     | Glu        | Ala        | His<br>220 | Leu        | Pro        | Gly        | Val        |
| Asn<br>225 | Leu        | Thr        | Asp        | Glu        | Asp<br>230 | Val        | Val        | Asn                     | Leu        | Met<br>235 | Asp        | Met        | Cys        | Pro        | Phe<br>240 |
| Asp        | Thr        | Val        | Ala        | Arg<br>245 | Thr        | Ser        | Asp        | Ala                     | Thr<br>250 | Gln        | Leu        | Ser        | Pro        | Phe<br>255 | Cys        |
| Asp        | Leu        | Phe        | Thr<br>260 | His        | Asp        | Glu        | Trp        | Ile<br>265              | Gln        | Tyr        | Asp        | Tyr        | Leu<br>270 | Gln        | Ser        |
| Leu        | Gly        | Lys<br>275 | Tyr        | Tyr        | Gly        | Tyr        | Gly<br>280 | Ala                     | Gly        | Asn        | Pro        | Leu<br>285 | Gly        | Pro        | Ala        |
| Gln        | Gly<br>290 | Val        | Gly        | Phe        | Val        | Asn<br>295 | Glu        | Leu                     | Ile        | Ala        | Arg<br>300 | Leu        | Thr        | His        | Ser        |
| Pro<br>305 | Val        | Gln        | Asp        | His        | Thr<br>310 | Ser        | Thr        | Asn                     | His        | Thr<br>315 | Leu        | Asp        | Ser        | Asn        | Pro<br>320 |
| Ala        | Thr        | Phe        | Pro        | Leu<br>325 | Asn        | Ala        | Thr        | Leu                     | Tyr<br>330 | Ala        | Asp        | Phe        | Ser        | His<br>335 | Asp        |
| Asn        | Thr        | Met        | Val<br>340 | Ser        | Ile        | Phe        | Phe        | Ala<br>345 <sub>.</sub> | Leu        | Gly        | Leu        | Tyr        | Asn<br>350 | Gly        | Thr        |
| Lys        | Pro        | Leu<br>355 | Ser        | Thr        | Thr        | Ser        | Val<br>360 | Glu                     | Ser        | Ile        | Glu        | Glu<br>365 | Thr        | Asp        | Gly        |
| Tyr        | Ala<br>370 | Ala        | Ser        | Trp        | Thr        | Val<br>375 | Pro        | Phe                     | Ala        | Ala        | Arg<br>380 | Ala        | Tyr        | Val        | Glu        |
| Met<br>385 | Met        | Gln        | Сув        | Glu        | Ala<br>390 | Glu        | Lys        | Glu                     | Pro        | Leu<br>395 | Val        | Arg        | Val        | Leu        | Val<br>400 |
| Asn        | Asp        | Arg        | Val        | Val<br>405 | Pro        | Leu        | His        | Gly                     | Cys<br>410 | Gly        | Val        | Asp        | Lys        | Leu<br>415 | Gly        |
| Arg        | Cys        | Lys        | Arg<br>420 | Asp        | Asp        | Phe        | Val        | Glu<br>425              | Gly        | Leu        | Ser        | Phe        | Ala<br>430 | Arg        | Ser        |

43

Gly Gly Asn Trp Glu Glu Cys Phe Ala

70

```
<210> 25
<211> 1426
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: consensus
      phytase 10
<220>
<221> CDS
<222> (12)..(1412)
<220>
<221> mat_peptide
<222> (90)..(1412)
<220>
<221> sig peptide
<222> (12)..(89)
<400> 25
tatatgaatt c atg ggc gtg ttc gtc gtg cta ctg tcc att gcc acc ttg 50
             Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu
                 -25
                                     -20
                                                         -15
ttc ggt tcc aca tcc ggt acc gcc ttg ggt cct cgt ggt aat tct cac
Phe Gly Ser Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His
            -10
                                                 -1
tct tgt gac act gtt gac ggt tac caa tgt ttc cca gaa att tct
                                                                  146
Ser Cys Asp Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser
cac ttg tgg ggt caa tac tct cca ttc tct ttg gct gac gaa tct
His Leu Trp Gly Gln Tyr Ser Pro Phe Phe Ser Leu Ala Asp Glu Ser
 20
gct att tct cca gac gtt cca aag ggt tgt aga gtt act ttc gtt caa
Ala Ile Ser Pro Asp Val Pro Lys Gly Cys Arg Val Thr Phe Val Gln
                 40
gtt ttg tct aga cac ggt gct aga tac cca act tct tct aag tct aag
                                                                  290
Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys
            55
aag tac tot got ttg att gaa got att caa aag aac got act got ttc
Lys Tyr Ser Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe
```

| aag<br>Lys        | ggt<br>Gly<br>85  | aag<br>Lys        | tac<br>Tyr        | gct<br>Ala        | ttc<br>Phe        | ttg<br>Leu<br>90  | aag<br>Lys        | act<br>Thr        | tac<br>Tyr        | aac<br>Asn        | tac<br>Tyr<br>95  | act<br>Thr        | ttg<br>Leu        | ggt<br>Gly        | gct<br>Ala        | 386 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| gac<br>Asp<br>100 | gac<br>Asp        | ttg<br>Leu        | act<br>Thr        | cca<br>Pro        | ttc<br>Phe<br>105 | ggt<br>Gly        | gaa<br>Glu        | caa<br>Gln        | caa<br>Gln        | atg<br>Met<br>110 | gtt<br>Val        | aac<br>Asn        | tct<br>Ser        | ggt<br>Gly        | att<br>Ile<br>115 | 434 |
| aag<br>Lys        | ttc<br>Phe        | tac<br>Tyr        | aga<br>Arg        | aga<br>Arg<br>120 | tac<br>Tyr        | aag<br>Lys        | gct<br>Ala        | ttg<br>Leu        | gct<br>Ala<br>125 | aga<br>Arg        | aag<br>Lys        | att<br>Ile        | gtt<br>Val        | cca<br>Pro<br>130 | ttc<br>Phe        | 482 |
| gtt<br>Val        | aga<br>Arg        | gct<br>Ala        | tct<br>Ser<br>135 | ggt<br>Gly        | tct<br>Ser        | gac<br>Asp        | aga<br>Arg        | gtt<br>Val<br>140 | att<br>Ile        | gct<br>Ala        | tct<br>Ser        | gct<br>Ala        | gaa<br>Glu<br>145 | aag<br>Lys        | ttc<br>Phe        | 530 |
| att<br>Ile        | gaa<br>Glu        | ggt<br>Gly<br>150 | ttc<br>Phe        | caa<br>Gln        | tct<br>Ser        | gct<br>Ala        | aag<br>Lys<br>155 | ttg<br>Leu        | gct<br>Ala        | gac<br>Asp        | cca<br>Pro        | ggt<br>Gly<br>160 | gct<br>Ala        | aac<br>Asn        | cca<br>Pro        | 578 |
| cac<br>His        | caa<br>Gln<br>165 | gct<br>Ala        | tct<br>Ser        | cca<br>Pro        | gtt<br>Val        | att<br>Ile<br>170 | aac<br>Asn        | gtt<br>Val        | att<br>Ile        | att<br>Ile        | cca<br>Pro<br>175 | gaa<br>Glu        | ggt<br>Gly        | gct<br>Ala        | ggt<br>Gly        | 626 |
| tac<br>Tyr<br>180 | aac<br>Asn        | aac<br>Asn        | act<br>Thr        | ttg<br>Leu        | gac<br>Asp<br>185 | cac<br>His        | ggt<br>Gly        | ttg<br>Leu        | tgt<br>Cys        | act<br>Thr<br>190 | gct<br>Ala        | ttc<br>Phe        | gaa<br>Glu        | gaa<br>Glu        | tct<br>Ser<br>195 | 674 |
| gaa<br>Glu        | ttg<br>Leu        | ggt<br>Gly        | gac<br>Asp        | gac<br>Asp<br>200 | gtt<br>Val        | gaa<br>Glu        | gct<br>Ala        | aac<br>Asn        | ttc<br>Phe<br>205 | act<br>Thr        | gct<br>Ala        | gtt<br>Val        | ttc<br>Phe        | gct<br>Ala<br>210 | cca<br>Pro        | 722 |
| cct<br>Pro        | att<br>Ile        | aga<br>Arg        | gct<br>Ala<br>215 | aga<br>Arg        | ttg<br>Leu        | gaa<br>Glu        | gct<br>Ala        | cac<br>His<br>220 | ttg<br>Leu        | cca<br>Pro        | ggt<br>Gly        | gtt<br>Val        | aac<br>Asn<br>225 | ttg<br>Leu        | act<br>Thr        | 770 |
| gac<br>Asp        | gaa<br>Glu        | gac<br>Asp<br>230 | gtt<br>Val        | gtt<br>Val        | aac<br>Asn        | ttg<br>Leu        | atg<br>Met<br>235 | gac<br>Asp        | atg<br>Met        | tgt<br>Cys        | cca<br>Pro        | ttc<br>Phe<br>240 | gac<br>Asp        | act<br>Thr        | gtt<br>Val        | 818 |
| gct<br>Ala        | aga<br>Arg<br>245 | act<br>Thr        | tct<br>Ser        | gac<br>Asp        | gct<br>Ala        | act<br>Thr<br>250 | caa<br>Gln        | ttg<br>Leu        | tct<br>Ser        | cca<br>Pro        | ttc<br>Phe<br>255 | tgt<br>Cys        | gac<br>Asp        | ttg<br>Leu        | ttc<br>Phe        | 866 |
| act<br>Thr<br>260 | cac<br>His        | gac<br>Asp        | gaa<br>Glu        | tgg<br>Trp        | att<br>Ile<br>265 | caa<br>Gln        | tac<br>Tyr        | gac<br>Asp        | tac<br>Tyr        | ttg<br>Leu<br>270 | caa<br>Gln        | tct<br>Ser        | ttg<br>Leu        | ggt<br>Gly        | aag<br>Lys<br>275 | 914 |
| tac<br>Tyr        | tac<br>Tyr        | ggt<br>Gly        | tac<br>Tyr        | ggt<br>Gly<br>280 | gct<br>Ala        | ggt<br>Gly        | aac<br>Asn        | cca<br>Pro        | ttg<br>Leu<br>285 | ggt<br>Gly        | cca<br>Pro        | gct<br>Ala        | caa<br>Gln        | ggt<br>Gly<br>290 | gtt<br>Val        | 962 |

45

| ggt<br>Gly           | ttc<br>Phe                                                                                                 | gtt<br>Val        | aac<br>Asn<br>295 | gaa<br>Glu        | ttg<br>Leu        | att<br>Ile        | gct<br>Ala        | aga<br>Arg<br>300 | ttg<br>Leu        | act<br>Thr        | cac<br>His        | tct<br>Ser        | cca<br>Pro<br>305 | gtt<br>Val        | caa<br>Gln        | 1010 |
|----------------------|------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gac<br>Asp           | cac<br>His                                                                                                 | act<br>Thr<br>310 | tct<br>Ser        | act<br>Thr        | aac<br>Asn        | cac<br>His        | act<br>Thr<br>315 | ttg<br>Leu        | gac<br>Asp        | tct<br>Ser        | aac<br>Asn        | cca<br>Pro<br>320 | gct<br>Ala        | act<br>Thr        | ttc<br>Phe        | 1058 |
| cca<br>Pro           | ttg<br>Leu<br>325                                                                                          | aac<br>Asn        | gct<br>Ala        | act<br>Thr        | ttg<br>Leu        | tac<br>Tyr<br>330 | gct<br>Ala        | gac<br>Asp        | ttc<br>Phe        | tct<br>Ser        | cac<br>His<br>335 | gac<br>Asp        | aac<br>Asn        | act<br>Thr        | atg<br>Met        | 1106 |
| gtt<br>Val<br>340    | tct<br>Ser                                                                                                 | att<br>Ile        | ttc<br>Phe        | ttc<br>Phe        | gct<br>Ala<br>345 | ttg<br>Leu        | ggt<br>Gly        | ttg<br>Leu        | tac<br>Tyr        | aac<br>Asn<br>350 | ggt<br>Gly        | act<br>Thr        | aag<br>Lys        | cca<br>Pro        | ttg<br>Leu<br>355 | 1154 |
| tct<br>Ser           | act<br>Thr                                                                                                 | act<br>Thr        | tct<br>Ser        | gtt<br>Val<br>360 | gaa<br>Glu        | tct<br>Ser        | att<br>Ile        | gaa<br>Glu        | gaa<br>Glu<br>365 | act<br>Thr        | gac<br>Asp        | ggt<br>Gly        | tac<br>Tyr        | gct<br>Ala<br>370 | gct<br>Ala        | 1202 |
| tct<br>Ser           | tgg<br>Trp                                                                                                 | act<br>Thr        | gtt<br>Val<br>375 | cca<br>Pro        | ttc<br>Phe        | gct<br>Ala        | gct<br>Ala        | aga<br>Arg<br>380 | gct<br>Ala        | tac<br>Tyr        | gtt<br>Val        | gaa<br>Glu        | atg<br>Met<br>385 | atg<br>Met        | caa<br>Gln        | 1250 |
| tgt<br>Cys           | gaa<br>Glu                                                                                                 | gct<br>Ala<br>390 | gaa<br>Glu        | aag<br>Lys        | gaa<br>Glu        | cca<br>Pro        | ttg<br>Leu<br>395 | gtt<br>Val        | aga<br>Arg        | gtt<br>Val        | ttg<br>Leu        | gtt<br>Val<br>400 | aac<br>Asn        | gac<br>Asp        | aga<br>Arg        | 1298 |
| gtt<br>Val           | gtt<br>Val<br>405                                                                                          | cca<br>Pro        | ttg<br>Leu        | cac<br>His        | ggt<br>Gly        | tgt<br>Cys<br>410 | ggt<br>Gly        | gtt<br>Val        | gac<br>Asp        | aag<br>Lys        | ttg<br>Leu<br>415 | ggt<br>Gly        | aga<br>Arg        | tgt<br>Cys        | aag<br>Lys        | 1346 |
| aga<br>Arg<br>420    | gac<br>Asp                                                                                                 | gac<br>Asp        | ttc<br>Phe        | gtt<br>Val        | gaa<br>Glu<br>425 | ggt<br>Gly        | ttg<br>Leu        | tct<br>Ser        | ttc<br>Phe        | gct<br>Ala<br>430 | aga<br>Arg        | tct<br>Ser        | ggt<br>Gly        | ggt<br>Gly        | aac<br>Asn<br>435 | 1394 |
|                      |                                                                                                            |                   | tgt<br>Cys        |                   | gct<br>Ala        | taag              | gaatt             | ca t              | ata               |                   |                   |                   |                   |                   |                   | 1426 |
| <211<br><212<br><213 | <210> 26 <211> 467 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: consensus |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |

<223> Description of Artificial Sequence: consensus phytase 10

<400> 26

Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser -20

Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp -1 1

| Thr       | Val        | Asp        | Gly<br>10 | Gly               | Tyr       | Gln        | Cys        | Phe<br>15 | Pro       | Glu       | Ile        | Ser        | His<br>20  | Leu        | Trp       |
|-----------|------------|------------|-----------|-------------------|-----------|------------|------------|-----------|-----------|-----------|------------|------------|------------|------------|-----------|
| Gly       | Gln        | Туг<br>25  | Ser       | Pro               | Phe       | Phe        | Ser<br>30  | Leu       | Ala       | Asp       | Glu        | Ser<br>35  | Ala        | Ile        | Ser       |
| Pro       | Asp<br>40  | Val        | Pro       | Lys               | Gly       | Cys<br>45  | Arg        | Val       | Thr       | Phe       | Val<br>50  | Gln        | Val        | Leu        | Ser       |
| Arg<br>55 | His        | Gly        | Ala       | Arg               | Tyr<br>60 | Pro        | Thr        | Ser       | Ser       | Lys<br>65 | Ser        | Lys        | Lys        | Tyr        | Ser<br>70 |
| Ala       | Leu        | Ile        | Glu       | <b>A</b> la<br>75 | Ile       | Gln        | Lys        | Asn       | Ala<br>80 | Thr       | Ala        | Phe        | Lys        | Gly<br>85  | Lys       |
| Tyr       | Ala        | Phe        | Leu<br>90 | Lys               | Thr       | Tyr        | Asn        | Туг<br>95 | Thr       | Leu       | Gly        | Ala        | Asp<br>100 | Asp        | Leu       |
| Thr       | Pro        | Phe<br>105 | Gly       | Glu               | Gln       | Gln        | Met<br>110 | Val       | Asn       | Ser       | Gly        | Ile<br>115 | Lys        | Phe        | Tyr       |
| Arg       | Arg<br>120 | Tyr        | Lys       | Ala               | Leu       | Ala<br>125 | Arg        | Lys       | Ile       | Val       | Pro<br>130 | Phe        | Val        | Arg        | Ala       |
| 135       |            |            |           |                   | 140       |            |            |           |           | 145       |            |            |            | Glu        | 150       |
|           |            |            |           | 155               |           |            |            |           | 160       |           |            |            |            | Gln<br>165 |           |
|           |            |            | 170       |                   |           |            |            | 175       |           |           |            |            | 180        | Asn        |           |
|           |            | 185        |           |                   |           |            | 190        |           |           |           |            | 195        |            | Leu        |           |
|           | 200        |            |           |                   |           | 205        |            |           |           |           | 210        |            |            | Ile        | _         |
| 215       |            |            |           |                   | 220       |            |            |           |           | 225       |            |            |            | Glu        | 230       |
|           |            |            |           | 235               |           |            |            |           | 240       |           |            |            |            | Arg<br>245 |           |
|           |            |            | 250       |                   |           |            |            | 255       |           |           |            |            | 260        | His        |           |
| Glu       | Trp        | Ile<br>265 | Gln       | Tyr               | Asp       | Tyr        | Leu<br>270 | Gln       | Ser       | Leu       | Gly        | Lys<br>275 | Tyr        | Tyr        | Gly       |
| Tyr       | Gly<br>280 | Ala        | Gly       | Asn               | Pro       | Leu<br>285 | Gly        | Pro       | Ala       |           | Gly<br>290 | Val        | Gly        | Phe        | Val       |

Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr 295 300 305 310

Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn 315 320 325

Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Val Ser Ile 330 335 340

Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr 345 350 355

Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ala Ala Ser Trp Thr 360 365 370

Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro 395 400 405

Leu His Gly Cys Gly Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp 410 415 420

Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Glu Glu 425 430 435

Cys Phe Ala 440

<210> 27

<211> 437

<212> PRT

<213> Artificial Sequence

<2205

<223> Description of Artificial Sequence: consensus
 phytase 11

<400> 27

Asn Ser His Ser Cys Asp Thr Val Asp Gly Tyr Gln Cys Pro Glu Ile 1 5 10 15

Ser His Leu Trp Gly Gln Tyr Ser Pro Phe Phe Ser Leu Ala Asp Glu 20 25 30

Ser Ala Ile Ser Pro Asp Val Pro Lys Gly Cys Arg Val Thr Phe Val 35 40 45

Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys Ser 50 55 60

| Lys<br>65  | Lys               | Tyr                | Ser        | Ala        | Leu<br>70  | Ile                | Glu        | Arg        | Ile        | Gln<br>75         | Lys        | Asn        | Ala        | Thr        | Phe<br>80  |
|------------|-------------------|--------------------|------------|------------|------------|--------------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|
| Lys        | Gly               | Lys                | Tyr        | Ala<br>85  | Phe        | Leu                | Lys        | Thr        | Tyr<br>90  | Asn               | Tyr        | Thr        | Leu        | Gly<br>95  | Ala        |
| Asp        | Asp               | Leu                | Thr<br>100 | Pro        | Phe        | Gly                | Glu        | Asn<br>105 | Gln        | Met               | Val        | Asn        | Ser<br>110 | Gly        | Ile        |
| Lys        | Phe               | Tyr<br>115         | Arg        | Arg        | Tyr        | Lys                | Ala<br>120 | Leu        | Ala        | Arg               | Asn        | Ile<br>125 | Val        | Pro        | Phe        |
| Val        | Arg<br>130        | Ala                | Ser        | Gly        | Ser        | <b>As</b> p<br>135 | Arg        | Val        | Ile        | Ala               | Ser<br>140 | Ala        | Glu        | Lys        | Phe        |
| Ile<br>145 | Glu               | Gly                | Phe        | Gln        | Ser<br>150 | Ala                | Lys        | Leu        | Ala        | <b>Asp</b><br>155 | Pro        | Ala        | His        | Gln        | Ala<br>160 |
| Ser        | Pro               | Val                | Ile        | Asn<br>165 | Val        | Ile                | Ile        | Pro        | Glu<br>170 | Gly               | Ser        | Gly        | Tyr        | Asn<br>175 | Asn        |
| Thr        | Leu               | Asp                | His<br>180 | Gly        | Leu        | Cys                | Thr        | Ala<br>185 | Phe        | Glu               | Asp        | Ser        | Thr<br>190 | Leu        | Gly        |
| Asp        | Asp               | Ala<br>195         | Glu        | Ala        | Asn        | Phe                | Thr<br>200 | Ala        | Val        | Phe               | Ala        | Pro<br>205 | Pro        | Ile        | Arg        |
| Ala        | <b>Arg</b><br>210 | Leu                | Glu        | Ala        | Leu        | Pro<br>215         | Gly        | Val        | Asn        | Leu               | Thr<br>220 | Asp        | Glu        | Asp        | Val        |
| Val<br>225 | Asn               | Leu                | Met        | Asp        | Met<br>230 | Cys                | Pro        | Phe        | Asp        | Thr<br>235        | Val        | Ala        | Arg        | Thr        | Ser<br>240 |
| Asp        | Ala               | Thr                | Gln        | Leu<br>245 | Ser        | Pro                | Phe        | Cys        | Asp<br>250 | Leu               | Phe        | Thr        | Ala        | Asp<br>255 | Glu        |
| Trp        | Gln               | Tyr                | Asp<br>260 | Tyr        | Leu        | Gln                | Ser        | Leu<br>265 | Lys        | Tyr               | Tyr        | Gly        | Tyr<br>270 | Gly        | Ala        |
| Gly        | Asn               | Pro<br><b>27</b> 5 | Leu        | Gly        | Pro        | Ala                | Gln<br>280 | Gly        | Val        | Gly               | Phe        | Asn<br>285 | Glu        | Leu        | Ile        |
| Ala        | Arg<br>290        | Leu                | Thr        | His        | Ser        | Pro<br>295         | Val        | Gln        | Asp        | His               | Thr<br>300 | Ser        | Thr        | Asn        | His        |
| Thr<br>305 | Leu               | Asp                | Ser        | Asn        | Pro<br>310 | Ala                | Thr        | Phe        | Pro        | Leu<br>315        | Asn        | Ala        | Thr        | Leu        | Tyr<br>320 |
| Ala        | Asp               | Phe                | Ser        | His<br>325 | Asp        | Asn                | Thr        | Met        | Val<br>330 | Ser               | Ile        | Phe        | Phe        | Ala<br>335 | Leu        |
| Gly        | Leu               | Tyr                | Asn<br>340 | Gly        | Thr        | Lys                | Pro        | Leu<br>345 | Ser        | Thr               | Thr        | Ser        | Val<br>350 | Glu        | Ser        |

49

Ile Glu Thr Asp Gly Tyr Ala Ala Ser Trp Thr Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Glu Ala Gly Gly Gly Gly 375 Glu Gly Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro Leu His Gly Cys Gly Val Asp Lys Leu Gly Arg Cys Lys Leu Asp Asp Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu Cys Phe Ala 435 <210> 28 <211> 1404 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: consensus phytase 1 thermo 8 q50t, k91a <220> <221> CDS <222> (1)..(1401) <220> <221> mat\_peptide <222> (79)..(1401) <220> <221> sig\_peptide <222> (1)..(78) <400> 28 atg ggc gtg ttc gtc gtg cta ctg tcc att gcc acc ttg ttc ggt tcc 48 Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser -25 -20 aca tcc ggt acc gcc ttg ggt cct cgt ggt aat tct cac tct tgt gac 96 Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp -10 -5 -1 act gtt gac ggt ggt tac caa tgt ttc cca gaa att tct cac ttg tgg 144 Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp 15

| ggt<br>Gly        | acc<br>Thr        | tac<br>Tyr<br>25  | tct<br>Ser        | cca<br>Pro | tac<br>Tyr        | ttc<br>Phe        | tct<br>Ser<br>30  | ttg<br>Leu        | gca<br>Ala | gac<br>Asp        | gaa<br>Glu        | tct<br>Ser<br>35  | gct<br>Ala        | att<br>Ile | tct<br>Ser        | 192 |
|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-----|
|                   |                   |                   |                   |            | gac<br>Asp        |                   |                   |                   |            |                   |                   |                   |                   |            |                   | 240 |
|                   |                   |                   |                   |            | tac<br>Tyr<br>60  |                   |                   |                   |            |                   |                   |                   |                   |            |                   | 288 |
|                   |                   |                   |                   |            | att<br>Ile        |                   |                   |                   |            |                   |                   |                   |                   |            |                   | 336 |
| tac<br>Tyr        | gct<br>Ala        | ttc<br>Phe        | ttg<br>Leu<br>90  | aag<br>Lys | act<br>Thr        | tac<br>Tyr        | aac<br>Asn        | tac<br>Tyr<br>95  | act<br>Thr | ttg<br>Leu        | ggt<br>Gly        | gct<br>Ala        | gac<br>Asp<br>100 | gac<br>Asp | ttg<br>Leu        | 384 |
| act<br>Thr        | cca<br>Pro        | ttc<br>Phe<br>105 | ggt<br>Gly        | gaa<br>Glu | aac<br>Asn        | caa<br>Gln        | atg<br>Met<br>110 | gtt<br>Val        | aac<br>Asn | tct<br>Ser        | ggt<br>Gly        | att<br>Ile<br>115 | aag<br>Lys        | ttc<br>Phe | tac<br>Tyr        | 432 |
| aga<br>Arg        | aga<br>Arg<br>120 | tac<br>Tyr        | aag<br>Lys        | gct<br>Ala | ttg<br>Leu        | gct<br>Ala<br>125 | aga<br>Arg        | aag<br>Lys        | att<br>Ile | gtt<br>Val        | cca<br>Pro<br>130 | ttc<br>Phe        | att<br>Ile        | aga<br>Arg | gct<br>Ala        | 480 |
|                   |                   |                   |                   |            | gtt<br>Val<br>140 |                   |                   |                   |            |                   |                   |                   |                   |            |                   | 528 |
|                   |                   |                   |                   |            | ttg<br>Leu        |                   |                   |                   |            |                   |                   |                   |                   |            |                   | 576 |
| tct<br>Ser        | cca<br>Pro        | gtt<br>Val        | att<br>Ile<br>170 | aac<br>Asn | gtg<br>Val        | atc<br>Ile        | att<br>Ile        | cca<br>Pro<br>175 | gaa<br>Glu | gga<br>Gly        | tcc<br>Ser        | ggt<br>Gly        | tac<br>Tyr<br>180 | aac<br>Asn | aac<br>Asn        | 624 |
| act<br>Thr        | ttg<br>Leu        | gac<br>Asp<br>185 | cac<br>His        | ggt<br>Gly | act<br>Thr        | tgt<br>Cys        | act<br>Thr<br>190 | gct<br>Ala        | ttc<br>Phe | gaa<br>Glu        | gac<br>Asp        | tct<br>Ser<br>195 | gaa<br>Glu        | tta<br>Leu | ggt<br>Gly        | 672 |
|                   |                   |                   |                   |            | aac<br>Asn        |                   |                   |                   |            |                   |                   |                   |                   |            |                   | 720 |
| gct<br>Ala<br>215 | aga<br>Arg        | ttg<br>Leu        | gaa<br>Glu        | gct<br>Ala | gac<br>Asp<br>220 | ttg<br>Leu        | cca<br>Pro        | ggt<br>Gly        | gtt<br>Val | act<br>Thr<br>225 | ttg<br>Leu        | act<br>Thr        | gac<br>Asp        | gaa<br>Glu | gac<br>Asp<br>230 | 768 |

| gtt<br>Val        | gtt<br>Val        | tac<br>Tyr        | ttg<br>Leu        | atg<br>Met<br>235 | gac<br>Asp        | atg<br>Met        | tgt<br>Cys        | cca<br>Pro        | ttc<br>Phe<br>240 | gac<br>Asp        | act<br>Thr        | gtc<br>Val        | gct<br>Ala        | aga<br>Arg<br>245 | act<br>Thr        | 816  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| tct<br>Ser        | gac<br>Asp        | gct<br>Ala        | act<br>Thr<br>250 | gaa<br>Glu        | ttg<br>Leu        | tct<br>Ser        | cca<br>Pro        | ttc<br>Phe<br>255 | tgt<br>Cys        | gct<br>Ala        | ttg<br>Leu        | ttc<br>Phe        | act<br>Thr<br>260 | cac<br>His        | gac<br>Asp        | 864  |
| gaa<br>Glu        | tgg<br>Trp        | atc<br>Ile<br>265 | caa<br>Gln        | tac<br>Tyr        | gac<br>Asp        | tac<br>Tyr        | ttg<br>Leu<br>270 | caa<br>Gln        | agc<br>Ser        | ttg<br>Leu        | ggt<br>Gly        | aag<br>Lys<br>275 | tac<br>Tyr        | tac<br>Tyr        | ggt<br>Gly        | 912  |
| tac<br>Tyr        | ggt<br>Gly<br>280 | gct<br>Ala        | ggt<br>Gly        | aac<br>Asn        | cca<br>Pro        | ttg<br>Leu<br>285 | ggt<br>Gly        | cca<br>Pro        | gct<br>Ala        | caa<br>Gln        | ggt<br>Gly<br>290 | gtt<br>Val        | ggt<br>Gly        | ttc<br>Phe        | gct<br>Ala        | 960  |
| aac<br>Asn<br>295 | gaa<br>Glu        | ttg<br>Leu        | att<br>Ile        | gct<br>Ala        | aga<br>Arg<br>300 | ttg<br>Leu        | act<br>Thr        | cac<br>His        | tct<br>Ser        | cca<br>Pro<br>305 | gtt<br>Val        | caa<br>Gln        | gac<br>Asp        | cac<br>His        | act<br>Thr<br>310 | 1008 |
|                   |                   |                   |                   |                   | ttg<br>Leu        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1056 |
|                   |                   |                   |                   |                   | gac<br>Asp        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1104 |
| ttc<br>Phe        | ttc<br>Phe        | gct<br>Ala<br>345 | ttg<br>Leu        | ggt<br>Gly        | ttg<br>Leu        | tac<br>Tyr        | aac<br>Asn<br>350 | ggt<br>Gly        | acc<br>Thr        | aag<br>Lys        | cca<br>Pro        | ttg<br>Leu<br>355 | tct<br>Ser        | act<br>Thr        | act<br>Thr        | 1152 |
| tct<br>Ser        | gtt<br>Val<br>360 | gaa<br>Glu        | tct<br>Ser        | att<br>Ile        | gaa<br>Glu        | gaa<br>Glu<br>365 | act<br>Thr        | gac<br>Asp        | ggt<br>Gly        | tac<br>Tyr        | tct<br>Ser<br>370 | gct<br>Ala        | tct<br>Ser        | tgg<br>Trp        | act<br>Thr        | 1200 |
| gtt<br>Val<br>375 | cca<br>Pro        | ttc<br>Phe        | gct<br>Ala        | gct<br>Ala        | aga<br>Arg<br>380 | gct<br>Ala        | tac<br>Tyr        | gtt<br>Vaļ        | gaa<br>Glu        | atg<br>Met<br>385 | atg<br>Met        | caa<br>Gln        | tgt<br>Cys        | caa<br>Gln        | gct<br>Ala<br>390 | 1248 |
| gaa<br>Glu        | aag<br>Lys        | gaa<br>Glu        | cca<br>Pro        | ttg<br>Leu<br>395 | gtt<br>Val        | aga<br>Arg        | gtt<br>Val        | ttg<br>Leu        | gtt<br>Val<br>400 | aac<br>Asn        | gac<br>Asp        | aga<br>Arg        | gtt<br>Val        | gtt<br>Val<br>405 | cca<br>Pro        | 1296 |
| ttg<br>Leu        | cac<br>His        | ggt<br>Gly        | tgt<br>Cys<br>410 | gct<br>Ala        | gtt<br>Val        | gac<br>Asp        | aag<br>Lys        | ttg<br>Leu<br>415 | ggt<br>Gly        | aga<br>Arg        | tgt<br>Cys        | aag<br>Lys        | aga<br>Arg<br>420 | gac<br>Asp        | gac<br>Asp        | 1344 |
| ttc<br>Phe        | gtt<br>Val        | gaa<br>Glu<br>425 | ggt<br>Gly        | ttg<br>Leu        | tct<br>Ser        | ttc<br>Phe        | gct<br>Ala<br>430 | aga<br>Arg        | tct<br>Ser        | ggt<br>Gly        | ggt<br>Gly        | aac<br>Asn<br>435 | tgg<br>Trp        | gct<br>Ala        | gaa<br>Glu        | 1392 |

52

tgt ttc gct taa Cys Phe Ala 440

1404

<210> 29

<211> 467

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: consensus
 phytase 1 thermo 8 q50t, k91a

<400> 29

Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
-25 -20 -15

Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
-10 -5 -1 1 5

Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
10 15 20

Gly Thr Tyr Ser Pro Tyr Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser 25 30 35

Pro Asp Val Pro Asp Asp Cys Arg Val Thr Phe Val Gln Val Leu Ser 40 45 50

Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Ala Ser Lys Ala Tyr Ser 55 60 65 70

Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys 75 80 85

Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu 90 95 100

Thr Pro Phe Gly Glu Asn Gln Met Val Asn Ser Gly Ile Lys Phe Tyr 105 110 115

Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala 120 125 130

Ser Gly Ser Asp Arg. Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly 135 140 145 150

Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ser Gln Pro His Gln Ala 155 160 165

Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ser Gly Tyr Asn Asn 170 175 180

Thr Leu Asp His Gly Thr Cys Thr Ala Phe Glu Asp Ser Glu Leu Gly
185 190 195

PCT/DK00/00025

| Asp | Asp<br>200 | Val | Glu | Ala | Asn | Phe<br>205 | Thr | Ala | Leu | Phe | Ala<br>210 | Pro | Ala | Ile | Arg |
|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|
|     |            |     |     |     |     |            |     |     |     |     |            |     |     |     |     |

Ala Arg Leu Glu Ala Asp Leu Pro Gly Val Thr Leu Thr Asp Glu Asp 215 220 230

Val Val Tyr Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr 235 240 245

Ser Asp Ala Thr Glu Leu Ser Pro Phe Cys Ala Leu Phe Thr His Asp 250 255 260

Glu Trp Ile Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly 265 270 275

Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Ala 280 285 290

Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr 295 300 305 310

Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn 315 320 325

Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Ile Ser Ile 330 335 340

Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr 345 350 355

Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr 360 365 370

Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala 375 380 385 390

Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro 395 400 405

Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp 410 415 420

Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu 425 430 435

Cys Phe Ala 440

<210> 30

<211> 1404

<212> DNA

| <21               | 3> A              | rtif              | icia             | l Se             | quen             | ce                |                   |                  |                  |                  |                   |                   |                   |                  |                  |     |
|-------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|-----|
| <22<br><22        | 3 > D             |                   |                  |                  | of Ar<br>ermo    |                   |                   |                  |                  | e: c             | onse              | nsus              |                   |                  |                  |     |
|                   | 1> C              | DS<br>1)          | (140             | 1)               |                  |                   |                   |                  |                  |                  |                   |                   |                   |                  |                  |     |
|                   | 1> m              | at_p<br>79).      |                  |                  |                  |                   |                   |                  |                  |                  |                   |                   |                   |                  |                  |     |
|                   | 1> s              | ig_p<br>1)        |                  | de               |                  |                   |                   |                  |                  |                  |                   |                   |                   |                  |                  |     |
|                   | 0> 3              |                   |                  |                  |                  |                   |                   |                  |                  |                  |                   |                   |                   |                  |                  |     |
| atg<br>Met        | ggc<br>Gly<br>-25 | Val               | ttc<br>Phe       | gtc<br>Val       | gtg<br>Val       | cta<br>Leu<br>-20 | ctg<br>Leu        | tcc<br>Ser       | att<br>Ile       | gcc<br>Ala       | acc<br>Thr<br>-15 | ttg<br>Leu        | ttc<br>Phe        | ggt<br>Gly       | tcc<br>Ser       | 48  |
| aca<br>Thr<br>-10 | tcc<br>Ser        | ggt<br>Gly        | acc<br>Thr       | gcc<br>Ala       | ttg<br>Leu<br>-5 | ggt<br>Gly        | cct<br>Pro        | cgt<br>Arg       | ggt<br>Gly<br>-1 | aac<br>Asn<br>1  | tct<br>Ser        | cac<br>His        | tct<br>Ser        | tgt<br>Cys<br>5  | gac<br>Asp       | 96  |
| act<br>Thr        | gtt<br>Val        | gac<br>Asp        | ggt<br>Gly<br>10 | ggt<br>Gly       | tac<br>Tyr       | caa<br>Gln        | tgt<br>Cys        | ttc<br>Phe<br>15 | cca<br>Pro       | gaa<br>Glu       | att<br>Ile        | tct<br>Ser        | cac<br>His<br>20  | ttg<br>Leu       | tgg<br>Trp       | 144 |
| ggt<br>Gly        | aca<br>Thr        | tac<br>Tyr<br>25  | tct<br>Ser       | cca<br>Pro       | ttc<br>Phe       | ttc<br>Phe        | tct<br>Ser<br>30  | ttg<br>Leu       | gct<br>Ala       | gac<br>Asp       | gaa<br>Glu        | tct<br>Ser<br>35  | gct<br>Ala        | att<br>Ile       | tct<br>Ser       | 192 |
| cca<br>Pro        | gac<br>Asp<br>40  | gtt<br>Val        | cca<br>Pro       | aag<br>Lys       | ggt<br>Gly       | tgt<br>Cys<br>45  | aga<br>Arg        | gtt<br>Val       | act<br>Thr       | ttc<br>Phe       | gtt<br>Val<br>50  | caa<br>Gln        | gtt<br>Val        | ttg<br>Leu       | tct<br>Ser       | 240 |
| aga<br>Arg<br>55  | cac<br>His        | ggt<br>Gly        | gct<br>Ala       | aga<br>Arg       | tac<br>Tyr<br>60 | cca<br>Pro        | act<br>Thr        | tct<br>Ser       | tct<br>Ser       | gcg<br>Ala<br>65 | tct<br>Ser        | aag<br>Lys        | gcg<br>Ala        | tac<br>Tyr       | tct<br>Ser<br>70 | 288 |
| gct<br>Ala        | ttg<br>Leu        | att<br>Ile        | gaa<br>Glu       | gct<br>Ala<br>75 | att<br>Ile       | caa<br>Gln        | aag<br>Lys        | aac<br>Asn       | gct<br>Ala<br>80 | act<br>Thr       | gct<br>Ala        | ttc<br>Phe        | aag<br>Lys        | ggt<br>Gly<br>85 | aag<br>Lys       | 336 |
| tac<br>Tyr        | gct<br>Ala        | ttc<br>Phe        | ttg<br>Leu<br>90 | aag<br>Lys       | act<br>Thr       | tac<br>Tyr        | aac<br>Asn        | tac<br>Tyr<br>95 | act<br>Thr       | ttg<br>Leu       | ggt<br>Gly        | gct<br>Ala        | gac<br>Asp<br>100 | gac<br>Asp       | ttg<br>Leu       | 384 |
| act<br>Thr        | cca<br>Pro        | ttc<br>Phe<br>105 | ggt<br>Gly       | gaa<br>Glu       | caa<br>Gln       | caa<br>Gln        | atg<br>Met<br>110 | gtt<br>Val       | aac<br>Asn       | tct<br>Ser       | ggt<br>Gly        | att<br>Ile<br>115 | aag<br>Lys        | ttc<br>Phe       | tac<br>Tyr       | 432 |

| aga<br>Arg        | aga<br>Arg<br>120  | tac<br>Tyr        | aag<br>Lys        | gct<br>Ala        | ttg<br>Leu        | gct<br>Ala<br>125 | aga<br>Arg        | aag<br>Lys        | att<br>Ile        | gtt<br>Val        | cca<br>Pro<br>130 | ttc<br>Phe        | att<br>Ile        | aga<br>Arg        | gct               | 480  |
|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| tct<br>Ser<br>135 | Gly                | tct<br>Ser        | gac<br>Asp        | aga<br>Arg        | gtt<br>Val<br>140 | att<br>Ile        | gct<br>Ala        | tct<br>Ser        | gct<br>Ala        | gaa<br>Glu<br>145 | aag<br>Lys        | ttc<br>Phe        | att<br>Ile        | gaa<br>Glu        | ggt<br>Gly<br>150 | 528  |
| ttc<br>Phe        | caa<br>Gln         | tct<br>Ser        | gct<br>Ala        | aag<br>Lys<br>155 | ttg<br>Leu        | gct<br>Ala        | gac<br>Asp        | cca<br>Pro        | ggt<br>Gly<br>160 | gct<br>Ala        | aac<br>Asn        | cca<br>Pro        | cac<br>His        | caa<br>Gln<br>165 | gct<br>Ala        | 576  |
| tct<br>Ser        | cca<br>Pro         | gtt<br>Val        | att<br>Ile<br>170 | aac<br>Asn        | gtt<br>Val        | att<br>Ile        | att<br>Ile        | cca<br>Pro<br>175 | gaa<br>Glu        | ggt<br>Gly        | gct<br>Ala        | ggt<br>Gly        | tac<br>Tyr<br>180 | aac<br>Asn        | aac<br>Asn        | 624  |
| act<br>Thr        | ttg<br>Leu         | gac<br>Asp<br>185 | cac<br>His        | ggt<br>Gly        | ttg<br>Leu        | tgt<br>Cys        | act<br>Thr<br>190 | gct<br>Ala        | ttc<br>Phe        | gaa<br>Glu        | gaa<br>Glu        | tct<br>Ser<br>195 | gaa<br>Glu        | ttg<br>Leu        | ggt<br>Gly        | 672  |
| gac<br>Asp        | gac<br>Asp<br>200  | gtt<br>Val        | gaa<br>Glu        | gct<br>Ala        | aac<br>Asn        | ttc<br>Phe<br>205 | act<br>Thr        | gct<br>Ala        | gtt<br>Val        | ttc<br>Phe        | gct<br>Ala<br>210 | cca<br>Pro        | cca<br>Pro        | att<br>Ile        | aga<br>Arg        | 720  |
| gct<br>Ala<br>215 | aga<br>Arg         | ttg<br>Leu        | gaa<br>Glu        | gct<br>Ala        | cac<br>His<br>220 | ttg<br>Leu        | cca<br>Pro        | ggt<br>Gly        | gtt<br>Val        | aac<br>Asn<br>225 | ttg<br>Leu        | act<br>Thr        | gac<br>Asp        | gaa<br>Glu        | gac<br>Asp<br>230 | 768  |
| gtt<br>Val        | gtt<br>Val         | aac<br>Asn        | ttg<br>Leu        | atg<br>Met<br>235 | gac<br>Asp        | atg<br>Met        | tgt<br>Cys        | cca<br>Pro        | ttc<br>Phe<br>240 | gac<br>Asp        | act<br>Thr        | gtt<br>Val        | gct<br>Ala        | aga<br>Arg<br>245 | act<br>Thr        | 816  |
| tct<br>Ser        | gac<br><b>A</b> sp | gct<br>Ala        | act<br>Thr<br>250 | caa<br>Gln        | ttg<br>Leu        | tct<br>Ser        | cca<br>Pro        | ttc<br>Phe<br>255 | tgt<br>Cys        | gac<br>Asp        | ttg<br>Leu        | ttc<br>Phe        | act<br>Thr<br>260 | cac<br>His        | gac<br>Asp        | 864  |
| gaa<br>Glu        | tgg<br>Trp         | att<br>Ile<br>265 | caa<br>Gln        | tac<br>Tyr        | gac<br>Asp        | tac<br>Tyr        | ttg<br>Leu<br>270 | caa<br>Gln        | tct<br>Ser        | ttg<br>Leu        | ggt<br>Gly        | aag<br>Lys<br>275 | tac<br>Tyr        | tac<br>Tyr        | ggt<br>Gly        | 912  |
| tac<br>Tyr        | ggt<br>Gly<br>280  | gct<br>Ala        | ggt<br>Gly        | aac<br>Asn        | cca<br>Pro        | ttg<br>Leu<br>285 | ggt<br>Gly        | cca<br>Pro        | gct<br>Ala        | caa<br>Gln        | ggt<br>Gly<br>290 | gtt<br>Val        | ggt<br>Gly        | ttc<br>Phe        | gtt<br>Val        | 960  |
| aac<br>Asn<br>295 | gaa<br>Glu         | ttg<br>Leu        | att<br>Ile        | gct<br>Ala        | aga<br>Arg<br>300 | ttg<br>Leu        | act<br>Thr        | cac<br>His        | tct<br>Ser        | cca<br>Pro<br>305 | gtt<br>Val        | caa<br>Gln        | gac<br>Asp        | cac<br>His        | act<br>Thr<br>310 | 1008 |
| tct<br>Ser        | act<br>Thr         | aac<br>Asn        | cac<br>His        | act<br>Thr<br>315 | ttg<br>Leu        | gac<br>Asp        | tct<br>Ser        | Asn               | cca<br>Pro<br>320 | gct<br>Ala        | act<br>Thr        | ttc<br>Phe        | cca<br>Pro        | ttg<br>Leu<br>325 | aac<br>Asn        | 1056 |

| gct act ttg<br>Ala Thr Leu                                               | tac gct<br>Tyr Ala<br>330 | gac ttc tct<br>Asp Phe Sei        | cac gac<br>His Asp<br>335 | aac act a<br>Asn Thr M        | itg gtt tct<br>iet Val Sei<br>340 | att 1104<br>:Ile           |
|--------------------------------------------------------------------------|---------------------------|-----------------------------------|---------------------------|-------------------------------|-----------------------------------|----------------------------|
| ttc ttc gct<br>Phe Phe Ala<br>345                                        | ttg ggt<br>Leu Gly        | ttg tac aad<br>Leu Tyr Asm<br>350 | Gly Thr                   | Lys Pro L                     | tg tct act<br>eu Ser Thr<br>55    | act 1152<br>Thr            |
| tct gtt gaa<br>Ser Val Glu<br>360                                        | tct att (                 | gaa gaa act<br>Glu Glu Thi<br>365 | gac ggt<br>Asp Gly        | tac tct g<br>Tyr Ser A<br>370 | ct tct tgc<br>la Ser Trp          | act 1200<br>Thr            |
| gtt cca ttc<br>Val Pro Phe<br>375                                        | Ala Ala                   | aga gct tad<br>Arg Ala Tyr<br>380 | gtt gaa<br>Val Glu        | atg atg c<br>Met Met G<br>385 | aa tgt gaa<br>In Cys Glu          | n gct 1248<br>1 Ala<br>390 |
| gaa aag gaa<br>Glu Lys Glu                                               | cca ttg o                 | gtt aga gtt<br>Val Arg Val        | ttg gtt<br>Leu Val<br>400 | aac gac a<br>Asn Asp A        | ga gtt gtt<br>rg Val Val<br>405   | Pro                        |
| ttg cac ggt<br>Leu His Gly                                               | tgt ggt g<br>Cys Gly 1    | gtt gac aac<br>Val Asp Lys        | ttg ggt<br>Leu Gly<br>415 | aga tgt a<br>Arg Cys L        | ag aga gac<br>ys Arg Asp<br>420   | gac 1344<br>Asp            |
| ttc gtt gaa<br>Phe Val Glu<br>425                                        | ggt ttg t<br>Gly Leu S    | tct ttc gct<br>Ser Phe Ala<br>430 | Arg Ser                   | Gly Gly A                     | ac tgg gaa<br>sn Trp Glu<br>35    | gaa 1392<br>Glu            |
| tgt ttc gct<br>Cys Phe Ala<br>440                                        | taa                       |                                   |                           |                               |                                   | 1404                       |
| <210> 31<br><211> 467<br><212> PRT<br><213> Artifi<br><223> Descriphytas | iption of                 |                                   |                           | e: consens                    | us                                |                            |
| <400> 31<br>Met Gly Val<br>-25                                           |                           | Val Leu Leu<br>-20                | Ser Ile                   | Ala Thr Le                    | eu Phe Gly                        | Ser                        |
| Thr Ser Gly                                                              | Thr Ala I                 | Leu Gly Pro<br>-5                 | Arg Gly                   | Asn Ser H                     | is Ser Cys<br>5                   | Asp                        |
| Thr Val Asp                                                              | Gly Gly T                 | Tyr Gln Cys                       | Phe Pro<br>15             | Glu Ile Se                    | er His Leu<br>20                  | Trp                        |
| Gly Thr Tyr<br>25                                                        | Ser Pro F                 | Phe Phe Ser<br>30                 |                           |                               | er Ala Ile<br>35                  | Ser                        |

WO 00/43503

57

PCT/DK00/00025

Pro Asp Val Pro Lys Gly Cys Arg Val Thr Phe Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Ala Ser Lys Ala Tyr Ser Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu Thr Pro Phe Gly Glu Gln Gln Met Val Asn Ser Gly Ile Lys Phe Tyr Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala 120 125 Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly 140 Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ala Asn Pro His Gln Ala 160 Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ala Gly Tyr Asn Asn Thr Leu Asp His Gly Leu Cys Thr Ala Phe Glu Glu Ser Glu Leu Gly Asp Asp Val Glu Ala Asn Phe Thr Ala Val Phe Ala Pro Pro Ile Arg 205 Ala Arg Leu Glu Ala His Leu Pro Gly Val Asn Leu Thr Asp Glu Asp 220 225 Val Val Asn Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr 240 Ser Asp Ala Thr Gln Leu Ser Pro Phe Cys Asp Leu Phe Thr His Asp 250 Glu Trp Ile Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly 270 Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Val 285 Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr 300 305 Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn 315 320

58

Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Val Ser Ile 335 Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr 350 Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr 365 Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Glu Ala 380 385 Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro 395 400 Leu His Gly Cys Gly Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp 415 Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Glu Glu 430 Cys Phe Ala 440 <210> 32 <211> 1404 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Aspergillus fumigatus alpha-mutant <220> <221> CDS <222> (1)..(1401) <220> <221> mat peptide <222> (79) . . (1401) <220> <221> sig\_peptide <222> (1)..(78) <400> 32 atg ggg gtt ttc gtc gtt cta tta tct atc gcg act ctg ttc ggc agc Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser -25

59

aca tcg ggc act gcg ctg ggc ccc cgt gga aat cac tcc aag tcc tgc Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn His Ser Lys Ser Cys -1 gat acg gta gac cta ggg tac cag tgc tcc cct gcg act tct cat cta Asp Thr Val Asp Leu Gly Tyr Gln Cys Ser Pro Ala Thr Ser His Leu tgg ggc acg tac tcg cca tac ttt tcg ctc gag gac gag ctg tcc gtg 192 Trp Gly Thr Tyr Ser Pro Tyr Phe Ser Leu Glu Asp Glu Leu Ser Val tcg agt aag ctt ccc aag gat tgc cgg atc acc ttg gta cag gtg cta 240 Ser Ser Lys Leu Pro Lys Asp Cys Arg Ile Thr Leu Val Gln Val Leu teg ege cat gga geg egg tac eca ace age tee aag age aaa aag tat 288 Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys Ser Lys Lys Tyr aag aag ctt att acg gcg atc cag gcc aat gcc acc gac ttc aag ggc 336 Lys Lys Leu Ile Thr Ala Ile Gln Ala Asn Ala Thr Asp Phe Lys Gly 75 aag tac gcc ttt ttg aag acg tac aac tat act ctg ggt gcg gat gac 384 Lys Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp 90 95 ctc act ccc ttt ggg gag cag cag ctg gtg aac tcg ggc atc aag ttc 432 Leu Thr Pro Phe Gly Glu Gln Gln Leu Val Asn Ser Gly Ile Lys Phe 105 tac cag agg tac aag gct ctg gcg cgc agt gtg gtg ccg ttt att cgc Tyr Gln Arg Tyr Lys Ala Leu Ala Arg Ser Val Val Pro Phe Ile Arg 120 gcc tca ggc tcg gac cgg gtt att gct tcg gga gag aag ttc atc gag 528 Ala Ser Gly Ser Asp Arg Val Ile Ala Ser Gly Glu Lys Phe Ile Glu 135 ggg ttc cag cag gcg aag ctg gct gat cct ggc gcg acg aac cgc gcc Gly Phe Gln Gln Ala Lys Leu Ala Asp Pro Gly Ala Thr Asn Arg Ala gct ccg gcg att agt gtg att att ccg gag agc gag acg ttc aac aat Ala Pro Ala Ile Ser Val Ile Ile Pro Glu Ser Glu Thr Phe Asn Asn 170 acg ctg gac cac ggt gtg tgc acg aag ttt gag gcg agt cag ctg gga 672 Thr Leu Asp His Gly Val Cys Thr Lys Phe Glu Ala Ser Gln Leu Gly 185 190

| gat<br>Asp        | gag<br>Glu<br>200 | gtt<br>Val | gcg<br>Ala | gcc<br>Ala        | aat<br>Asn        | ttc<br>Phe<br>205 | act<br>Thr | gcg<br>Ala | ctc<br>Leu        | ttt<br>Phe        | gca<br>Ala<br>210 | ccc<br>Pro | gac<br>Asp | atc<br>Ile        | cga<br>Arg        | 720  |
|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|------|
| gct<br>Ala<br>215 | cgc<br>Arg        | ctc<br>Leu | gag<br>Glu | aag<br>Lys        | cat<br>His<br>220 | ctt<br>Leu        | cct<br>Pro | ggc        | gtg<br>Val        | acg<br>Thr<br>225 | ctg<br>Leu        | aca<br>Thr | gac<br>Asp | gag<br>Glu        | gac<br>Asp<br>230 | 768  |
| Val               | Val               | Ser        | Leu        | Met<br>235        | Asp               | atg<br>Met        | Cys        | Pro        | Phe<br>240        | Asp               | Thr               | Val        | Ala        | Arg<br>245        | Thr               | 816  |
| Ser               | Asp               | Ala        | Ser<br>250 | Gln               | Leu               | tca<br>Ser        | Pro        | Phe<br>255 | Cys               | Gln               | Leu               | Phe        | Thr<br>260 | His               | Asn               | 864  |
| Glu               | Trp               | Lys<br>265 | Lys        | Tyr               | Asp               | tac<br>Tyr        | Leu<br>270 | Gln        | Ser               | Leu               | Gly               | Lys<br>275 | Tyr        | Tyr               | Gly               | 912  |
| Tyr               | Gly<br>280        | Ala        | Gly        | Asn               | Pro               | ctg<br>Leu<br>285 | Gly        | Pro        | Ala               | Gln               | Gly<br>290        | Ile        | Gly        | Phe               | Thr               | 960  |
| Asn<br>295        | Glu               | Leu        | Ile        | Ala               | Arg<br>300        | ttg<br>Leu        | Thr        | Arg        | Ser               | Pro<br>305        | Val               | Gln        | Asp        | His               | Thr<br>310        | 1008 |
| Ser               | Thr               | Asn        | Ser        | Thr<br>315        | Leu               | gtc<br>Val        | Ser        | Asn        | Pro<br>320        | Ala               | Thr               | Phe        | Pro        | Leu<br>325        | Asn               | 1056 |
| Ala               | Thr               | Met        | Tyr<br>330 | Val               | qaA               | ttt<br>Phe        | Ser        | His<br>335 | Asp               | Asn               | Ser               | Met        | Val<br>340 | Ser               | Ile               | 1104 |
| Phe               | Phe               | Ala<br>345 | Leu        | Gly               | Leu               | tac<br>Tyr        | Asn<br>350 | Gly        | Thr               | Glu               | Pro               | Leu<br>355 | Ser        | Arg               | Thr               | 1152 |
| Ser               | Val<br>360        | Glu        | Ser        | Ala               | Lys               | gaa<br>Glu<br>365 | Leu        | Asp        | Gly               | Tyr               | Ser<br>370        | Ala        | Ser        | Trp               | Val               | 1200 |
| Val<br>375        | Pro               | Phe        | Gly        | Ala               | Arg<br>380        | gcc<br>Ala        | Tyr        | Phe        | Glu               | Thr<br>385        | Met               | Gln        | Cys        | Lys               | Ser<br>390        | 1248 |
| gaa<br>Glu        | aag<br>Lys        | gag<br>Glu | cct<br>Pro | ctt<br>Leu<br>395 | gtt<br>Val        | cgc<br>Arg        | gct<br>Ala | ttg<br>Leu | att<br>Ile<br>400 | aat<br>Asn        | gac<br>Asp        | cgg<br>Arg | gtt<br>Val | gtg<br>Val<br>405 | cca<br>Pro        | 1296 |

| ctg<br>Leu           | cat<br>His          | ggc                        | tgc<br>Cys<br>410 | gat<br>Asp | gtg<br>Val | gac<br>Asp           | aag<br>Lys        | ctg<br>Leu<br>415 | ggg<br>Gly | cga<br>Arg | tgc<br>Cys | aag<br>Lys        | ctg<br>Leu<br>420 | aat<br>Asn | gac<br>Asp | 1344 |
|----------------------|---------------------|----------------------------|-------------------|------------|------------|----------------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------|
| ttt<br>Phe           | gtc<br>Val          | aag<br>Lys<br>425          | gga<br>Gly        | ttg<br>Leu | agt<br>Ser | tgg<br>Trp           | gcc<br>Ala<br>430 | aga<br>Arg        | tct<br>Ser | Gly<br>999 | ggc<br>Gly | aac<br>Asn<br>435 | tgg<br>Trp        | gga<br>Gly | gag<br>Glu | 1392 |
|                      |                     | agt<br>Ser                 | tga               |            |            |                      |                   |                   |            |            |            |                   |                   |            |            | 1404 |
| <213<br><213<br><213 | 3 > De              | 67<br>RT<br>rtif:<br>escr: | iptic             | on of      |            | ce<br>cific<br>ntant |                   | Seq               | uence      | e: A:      | sper       | gillı             | ıs                |            |            |      |
|                      | 0> 3:<br>Gly<br>-25 |                            | Phe               | Val        | Val        | Leu<br>-20           | Leu               | Ser               | Ile        | Ala        | Thr        | Leu               | Phe               | Gly        | Ser        |      |
| Thr<br>-10           | Ser                 | Gly                        | Thr               | Ala        | Leu<br>-5  | Gly                  | Pro               | Arg               | Gly<br>-1  | Asn<br>1   | His        | Ser               | Lys               | Ser<br>5   | Cys        |      |
| Asp                  | Thr                 | Val                        | Asp<br>10         | Leu        | Gly        | Tyr                  | Gln               | Cys<br>15         | Ser        | Pro        | Ala        | Thr               | Ser<br>20         | His        | Leu        |      |
| Trp                  | Gly                 | Thr<br>25                  | Tyr               | Ser        | Pro        | Tyr                  | Phe<br>30         | Ser               | Leu        | Glu        | Asp        | Glu<br>35         | Leu               | Ser        | Val        |      |
| Ser                  | Ser<br>40           | Lys                        | Leu               | Pro        | Lys        | Asp<br>45            | Сув               | Arg               | Ile        | Thr        | Leu<br>50  | Val               | Gln               | Val        | Leu        |      |
| Ser<br>55            | Arg                 | His                        | Gly               | Ala        | Arg<br>60  | Tyr                  | Pro               | Thr               | Ser        | Ser<br>65  | Lys        | Ser               | Lys               | Lys        | Tyr<br>70  |      |
| Lys                  | Lys                 | Leu                        | Ile               | Thr<br>75  | Ala        | Ile                  | Gln               | Ala               | Asn<br>80  | Ala        | Thr        | Asp               | Phe               | Lys<br>85  | Gly        |      |
| Lys                  | Tyr                 | Ala                        | Phe<br>90         | Leu        | Lys        | Thr                  | Tyr               | Asn<br>95         | Tyr        | Thr        | Leu        | Gly               | Ala<br>100        | Asp        | Asp        |      |
| Leu                  | Thr                 | Pro<br>105                 | Phe               | Gly        | Glu        | Gln                  | Gln<br>110        | Leu               | Val        | Asn        | Ser        | Gly<br>115        | Ile               | Lys        | Phe        |      |
| Tyr                  | Gln<br>120          | Arg                        | Tyr               | Lys        | Ala        | Leu<br>125           | Ala               | Arg               | Ser        | Val        | Val<br>130 | Pro               | Phe               | Ile        | Arg        |      |
| Ala<br>135           | Ser                 | Gly                        | Ser               | Asp        | Arg<br>140 | Val                  | Ile               | Ala               | Ser        | Gly<br>145 | Glu        | Lys               | Phe               | Ile        | Glu<br>150 |      |

| Gly        | Phe        | Gln        | Gln        | Ala<br>155 | Lys        | Leu        | Ala        | Asp        | Pro<br>160 |            | Ala        | Thr        | Asn        | Arg<br>165 | Ala        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala        | Pro        | Ala        | Ile<br>170 | Ser        | Val        | Ile        | Ile        | Pro<br>175 | Glu        | Ser        | Glu        | Thr        | Phe<br>180 | Asn        | Asn        |
| Thr        | Leu        | Asp<br>185 | His        | Gly        | Val        | Cys        | Thr<br>190 |            | Phe        | Glu        | Ala        | Ser<br>195 | Gln        | Leu        | Gly        |
| Asp        | Glu<br>200 | Val        | Ala        | Ala        | Asn        | Phe<br>205 | Thr        | Ala        | Leu        | Phe        | Ala<br>210 | Pro        | Asp        | Ile        | Arg        |
| Ala<br>215 | Arg        | Leu        | Glu        | Lys        | His<br>220 | Leu        | Pro        | Gly        | Val        | Thr<br>225 | Leu        | Thr        | Asp        | Glu        | Asp<br>230 |
|            |            |            |            | 235        |            |            |            |            | 240        |            |            |            |            | Arg<br>245 |            |
|            |            |            | 250        |            |            |            |            | 255        |            |            |            |            | 260        | His        |            |
|            |            | 265        |            |            |            |            | 270        |            |            |            |            | 275        |            | Tyr        | _          |
|            | 280        |            |            |            |            | 285        |            |            |            |            | 290        |            |            | Phe        |            |
| 295        |            |            |            |            | 300        |            |            |            |            | 305        |            |            |            | His        | 310        |
|            |            |            |            | 315        |            |            |            |            | 320        |            |            |            |            | Leu<br>325 |            |
|            |            |            | 330        |            |            |            |            | 335        |            |            |            |            | 340        | Ser        |            |
|            |            | 345        |            |            |            |            | 350        |            |            |            |            | 355        |            | Arg        |            |
|            | 360        |            |            |            |            | 365        |            |            |            |            | 370        |            |            | Trp        |            |
| Val<br>375 |            |            |            |            | 380        |            |            |            |            | 385        |            |            |            | Lys        | 390        |
|            |            |            |            | 395        |            |            |            |            | 400        |            |            |            |            | Val<br>405 |            |
|            |            |            | 410        |            |            |            |            | 415        |            |            |            |            | 420        | Asn        | _          |
| Phe        | Val        | Lys<br>425 | Gly        | Leu        | Ser        | Trp        | Ala<br>430 | Arg        | Ser        | Gly        | Gly        | Asn<br>435 | Trp        | Gly        | Glu        |

63

Cys Phe Ser

70

<210> 34 <211> 1426 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: consensus phytase 7 <220> <221> CDS <222> (12)..(1412) <220> <221> mat\_peptide <222> (90)..(1412) <220> <221> sig peptide <222> (12)..(89) <400> 34 tatatgaatt c atg ggc gtg ttc gtc gtg cta ctg tcc att gcc acc ttg Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu ttc ggt tcc aca tcc ggt acc gcc ttg ggt cct cqt qqt aat tct cac 98 Phe Gly Ser Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His tet tgt gac act gtt gac ggt ggt tac caa tgt ttc eca gaa att tet Ser Cys Asp Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser cac ttg tgg ggt caa tac tct cca tac ttc tct ttg gaa gac gaa tct 194 His Leu Trp Gly Gln Tyr Ser Pro Tyr Phe Ser Leu Glu Asp Glu Ser 25 gct att tct cca gac gtt cca gac gac tgt aga gtt act ttc gtt caa 242 Ala Ile Ser Pro Asp Val Pro Asp Asp Cys Arg Val Thr Phe Val Gln gtt ttg tct aga cac ggt gct aga tac cca act gac tct aag ggt aag 290 Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Asp Ser Lys Gly Lys aag tac tot got ttg att gaa got att caa aag aac got act got tto 338 Lys Tyr Ser Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe

| aag<br>Lys        | ggt<br>Gly<br>85  | aag<br>Lys        | tac<br>Tyr        | gct<br>Ala        | ttc<br>Phe        | ttg<br>Leu<br>90  | aag<br>Lys        | act<br>Thr        | tac<br>Tyr        | aac<br>Asn        | tac<br>Tyr<br>95  | act<br>Thr        | ttg<br>Leu        | ggt<br>Gly        | gct<br>Ala        | 386 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| gac<br>Asp<br>100 | gac<br>Asp        | ttg<br>Leu        | act<br>Thr        | cca<br>Pro        | ttc<br>Phe<br>105 | ggt<br>Gly        | gaa<br>Glu        | aac<br>Asn        | caa<br>Gln        | atg<br>Met<br>110 | gtt<br>Val        | aac<br>Asn        | tct<br>Ser        | ggt<br>Gly        | att<br>Ile<br>115 | 434 |
| aag<br>Lys        | ttc<br>Phe        | tac<br>Tyr        | aga<br>Arg        | aga<br>Arg<br>120 | tac<br>Tyr        | aag<br>Lys        | gct<br>Ala        | ttg<br>Leu        | gct<br>Ala<br>125 | aga<br>Arg        | aag<br>Lys        | att<br>Ile        | gtt<br>Val        | cca<br>Pro<br>130 | ttc<br>Phe        | 482 |
| att<br>Ile        | aga<br>Arg        | gct<br>Ala        | tct<br>Ser<br>135 | ggt<br>Gly        | tct<br>Ser        | tct<br>Ser        | aga<br>Arg        | gtt<br>Val<br>140 | att<br>Ile        | gct<br>Ala        | tct<br>Ser        | gct<br>Ala        | gaa<br>Glu<br>145 | aag<br>Lys        | ttc<br>Phe        | 530 |
| att<br>Ile        | gaa<br>Glu        | ggt<br>Gly<br>150 | ttc<br>Phe        | caa<br>Gln        | tct<br>Ser        | gct<br>Ala        | aag<br>Lys<br>155 | ttg<br>Leu        | gct<br>Ala        | gac<br>Asp        | cca<br>Pro        | ggt<br>Gly<br>160 | tct<br>Ser        | caa<br>Gln        | cca<br>Pro        | 578 |
| cac<br>His        | caa<br>Gln<br>165 | gct<br>Ala        | tct<br>Ser        | cca<br>Pro        | gtt<br>Val        | att<br>Ile<br>170 | gac<br>Asp        | gtt<br>Val        | att<br>Ile        | att<br>Ile        | tct<br>Ser<br>175 | gac<br>Asp        | gct<br>Ala        | tct<br>Ser        | tct<br>Ser        | 626 |
| tac<br>Tyr<br>180 | aac<br>Asn        | aac<br>Asn        | act<br>Thr        | ttg<br>Leu        | gac<br>Asp<br>185 | cca<br>Pro        | ggt<br>Gly        | act<br>Thr        | tgt<br>Cys        | act<br>Thr<br>190 | gct<br>Ala        | ttc<br>Phe        | gaa<br>Glu        | gac<br>Asp        | tct<br>Ser<br>195 | 674 |
| gaa<br>Glu        | ttg<br>Leu        | gct<br>Ala        | gac<br>Asp        | act<br>Thr<br>200 | gtt<br>Val        | gaa<br>Glu        | gct<br>Ala        | aac<br>Asn        | ttc<br>Phe<br>205 | act<br>Thr        | gct<br>Ala        | ttg<br>Leu        | ttc<br>Phe        | gct<br>Ala<br>210 | cca<br>Pro        | 722 |
| gct<br>Ala        | att<br>Ile        | aga<br>Arg        | gct<br>Ala<br>215 | aga<br>Arg        | ttg<br>Leu        | gaa<br>Glu        | gct<br>Ala        | gac<br>Asp<br>220 | ttg<br>Leu        | cca<br>Pro        | ggt<br>Gly        | gtt<br>Val        | act<br>Thr<br>225 | ttg<br>Leu        | act<br>Thr        | 770 |
| gac<br>Asp        | act<br>Thr        | gaa<br>Glu<br>230 | gtt<br>Val        | act<br>Thr        | tac<br>Tyr        | ttg<br>Leu        | atg<br>Met<br>235 | gaç<br>Asp        | atg<br>Met        | tgt<br>Cys        | tct<br>Ser        | ttc<br>Phe<br>240 | gaa<br>Glu        | act<br>Thr        | gtt<br>Val        | 818 |
| gct<br>Ala        | aga<br>Arg<br>245 | act<br>Thr        | tct<br>Ser        | gac<br>Asp        | gct<br>Ala        | act<br>Thr<br>250 | gaa<br>Glu        | ttg<br>Leu        | tct<br>Ser        | cca<br>Pro        | ttc<br>Phe<br>255 | tgt<br>Cys        | gct<br>Ala        | ttg<br>Leu        | ttc<br>Phe        | 866 |
| act<br>Thr<br>260 | cac<br>His        | gac<br>Asp        | gaa<br>Glu        | tgg<br>Trp        | aga<br>Arg<br>265 | cac<br>His        | tac<br>Tyr        | gac<br>Asp        | tac<br>Tyr        | ttg<br>Leu<br>270 | caa<br>Gln        | tct<br>Ser        | ttg<br>Leu        | aag<br>Lys        | aag<br>Lys<br>275 | 914 |
| tac<br>Tyr        | tac<br>Tyr        | ggt<br>Gly        | cac<br>His        | ggt<br>Gly<br>280 | gct<br>Ala        | ggt<br>Gly        | aac<br>Asn        | cca<br>Pro        | ttg<br>Leu<br>285 | ggt<br>Gly        | cca<br>Pro        | act<br>Thr        | caa<br>Gln        | ggt<br>Gly<br>290 | gtt<br>Val        | 962 |

WO 00/43503

65

PCT/DK00/00025

| ggt<br>Gly           | ttc<br>Phe        | gct<br>Ala        | aac<br>Asn<br>295 | gaa<br>Glu        | ttg<br>Leu        | att<br>Ile        | gct<br>Ala        | aga<br>Arg<br>300 | ttg<br>Leu        | act<br>Thr        | aga<br>Arg        | tct<br>Ser        | cca<br>Pro<br>305 | gtt<br>Val        | caa<br>Gln        | 1010 |
|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gac<br>Asp           | cac<br>His        | act<br>Thr<br>310 | tct<br>Ser        | act<br>Thr        | aac<br>Asn        | cac<br>His        | act<br>Thr<br>315 | ttg<br>Leu        | gac<br>Asp        | tct<br>Ser        | aac<br>Asn        | cca<br>Pro<br>320 | gct<br>Ala        | act<br>Thr        | ttc<br>Phe        | 1058 |
| cca<br>Pro           | ttg<br>Leu<br>325 | aac<br>Asn        | gct<br>Ala        | act<br>Thr        | ttg<br>Leu        | tac<br>Tyr<br>330 | gct<br>Ala        | gac<br>Asp        | ttc<br>Phe        | tct<br>Ser        | cac<br>His<br>335 | gac<br>Asp        | aac<br>Asn        | ggt<br>Gly        | att<br>Ile        | 1106 |
| att<br>Ile<br>340    | tct<br>Ser        | att<br>Ile        | ttc<br>Phe        | ttc<br>Phe        | gct<br>Ala<br>345 | ttg<br>Leu        | ggt<br>Gly        | ttg<br>Leu        | tac<br>Tyr        | aac<br>Asn<br>350 | ggt<br>Gly        | act<br>Thr        | gct<br>Ala        | cca<br>Pro        | ttg<br>Leu<br>355 | 1154 |
| tct<br>Ser           | act<br>Thr        | act<br>Thr        | tct<br>Ser        | gtt<br>Val<br>360 | gaa<br>Glu        | tct<br>Ser        | att<br>Ile        | gaa<br>Glu        | gaa<br>Glu<br>365 | act<br>Thr        | gac<br>Asp        | ggt<br>Gly        | tac<br>Tyr        | tct<br>Ser<br>370 | tct<br>Ser        | 1202 |
| gct<br>Ala           | tgg<br>Trp        | act<br>Thr        | gtt<br>Val<br>375 | cca<br>Pro        | ttc<br>Phe        | gct<br>Ala        | tct<br>Ser        | aga<br>Arg<br>380 | gct<br>Ala        | tac<br>Tyr        | gtt<br>Val        | gaa<br>Glu        | atg<br>Met<br>385 | atg<br>Met        | caa<br>Gln        | 1250 |
| tgt<br>Cys           | caa<br>Gln        | gct<br>Ala<br>390 | gaa<br>Glu        | aag<br>Lys        | gaa<br>Glu        | cca<br>Pro        | ttg<br>Leu<br>395 | gtt<br>Val        | aga<br>Arg        | gtt<br>Val        | ttg<br>Leu        | gtt<br>Val<br>400 | aac<br>Asn        | gac<br>Asp        | aga<br>Arg        | 1298 |
| gtt<br>Val           | gtt<br>Val<br>405 | cca<br>Pro        | ttg<br>Leu        | cac<br>His        | ggt<br>Gly        | tgt<br>Cys<br>410 | gct<br>Ala        | gtt<br>Val        | gac<br>Asp        | aag<br>Lys        | ttg<br>Leu<br>415 | ggt<br>Gly        | aga<br>Arg        | tgt<br>Cys        | aag<br>Lys        | 1346 |
| aga<br>Arg<br>420    | gac<br>Asp        | gac<br>Asp        | ttc<br>Phe        | gtt<br>Val        | gaa<br>Glu<br>425 | ggt<br>Gly        | ttg<br>Leu        | tct<br>Ser        | ttc<br>Phe        | gct<br>Ala<br>430 | aga<br>Arg        | tct<br>Ser        | ggt<br>Gly        | ggt<br>Gly        | aac<br>Asn<br>435 | 1394 |
|                      |                   |                   | tgt<br>Cys        |                   |                   | taag              | gaatt             | ca t              | ata               |                   |                   |                   |                   |                   |                   | 1426 |
| <211<br><212<br><213 | > De              | 7<br>T<br>tifi    |                   |                   |                   | e<br>ific         | ial               | Sequ              | ence              | : cc              | onsen             | sus               |                   |                   |                   |      |
| <400<br>Met          |                   |                   | Phe               | Val               | Val               | Leu<br>-20        | Leu               | Ser               | Ile               | Ala               | Thr<br>-15        | Leu               | Phe               | Gly               | Ser               |      |

Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp -10 -5 -1 1 5

| Thr        | Val        | Asp        | Gly<br>10  | Gly        | Tyr        | Gln        | Cys        | Phe<br>15  | Pro        | Glu        | Ile        | Ser        | His<br>20  | Leu        | Trp        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Gln        | Tyr<br>25  | Ser        | Pro        | Tyr        | Phe        | Ser<br>30  | Leu        | Glu        | Asp        | Glu        | Ser<br>35  | Ala        | Ile        | Ser        |
| Pro        | Asp<br>40  | Val        | Pro        | Asp        | Asp        | Cys<br>45  | Arg        | Val        | Thr        | Phe        | Val<br>50  | Gln        | Val        | Leu        | Ser        |
| Arg<br>55  | His        | Gly        | Ala        | Arg        | Tyr<br>60  | Pro        | Thr        | Asp        | Ser        | Lys<br>65  | Gly        | Lys        | Lys        | Tyr        | Ser<br>70  |
| Ala        | Leu        | Ile        | Glu        | Ala<br>75  | Ile        | Gln        | Lys        | Asn        | Ala<br>80  | Thr        | Ala        | Phe        | Lys        | Gly<br>85  | Lys        |
| Tyr        | Ala        | Phe        | Leu<br>90  | Lys        | Thr        | Tyr        | Asn        | Туr<br>95  | Thr        | Leu        | Gly        | Ala        | Asp<br>100 | Asp        | Leu        |
| Thr        | Pro        | Phe<br>105 | Gly        | Glu        | Asn        | Gln        | Met<br>110 | Val        | Asn        | Ser        | Gly        | Ile<br>115 | Lys        | Phe        | Tyr        |
| Arg        | Arg<br>120 | Tyr        | Lys        | Ala        | Leu        | Ala<br>125 | Arg        | Lys        | Ile        | Val        | Pro<br>130 | Phe        | Ile        | Arg        | Ala        |
| Ser<br>135 | Gly        | Ser        | Ser        | Arg        | Val<br>140 | Ile        | Ala        | Ser        | Ala        | Glu<br>145 | Lys        | Phe        | Ile        | Glu        | Gly<br>150 |
|            |            |            |            | 155        |            |            | _          |            | 160        |            |            |            | His        | 165        |            |
| Ser        | Pro        | Val        | Ile<br>170 | Asp        | Val        | Ile        | Ile        | Ser<br>175 | Asp        | Ala        | Ser        | Ser        | Tyr<br>180 | Asn        | Asn        |
|            |            | 185        |            |            |            | _          | 190        |            |            |            | _          | 195        | Glu        |            |            |
| Asp        | Thr<br>200 | Val        | Glu        | Ala        | Asn        | Phe<br>205 | Thr        | Ala        | Leu        | Phe        | Ala<br>210 | Pro        | Ala        | Ile        | Arg        |
| Ala<br>215 | Arg        | Leu        | Glu        | Ala        | Asp<br>220 | Leu        | Pro        | Gly        | Val        | Thr<br>225 | Leu        | Thr        | Asp        | Thr        | Glu<br>230 |
| Val        | Thr        | Tyr        |            | Met<br>235 |            | Met        | Сув        |            | Phe<br>240 | Glu        | Thr        | Val        | Ala        | Arg<br>245 | Thr        |
| Ser        | Asp        | Ala        | Thr<br>250 | Glu        | Leu        | Ser        | Pro        | Phe<br>255 | Cys        | Ala        | Leu        | Phe        | Thr<br>260 | His        | Asp        |
| Glu        | Trp        | Arg<br>265 | His        | Tyr        | Asp        | Tyr        | Leu<br>270 | Gln        | Ser        | Leu        | Lys        | Lys<br>275 | Tyr        | Tyr        | Gly        |
| His        | Gly<br>280 | Ala        | Gly        | Asn        | Pro        | Leu<br>285 | Gly        | Pro        | Thr        | Gln        | Gly<br>290 | Val        | Gly        | Phe        | Ala        |

PCT/DK00/00025

Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro Val Gln Asp His Thr 295 300 305 310

Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn 315 320 325

Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Gly Ile Ile Ser Ile 330 335 340

Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu Ser Thr Thr 345 350 355

Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ser Ala Trp Thr 360 365 370

Val Pro Phe Ala Ser Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala 375 380 385 390

Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro 395 400 405

Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp 410 415 420

Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu 425 430 435

Cys Phe Ala 440

WO 00/43503

<210> 36

<211> 467

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: consensus
 phytase 12

<400> 36

Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser 1 5 10 15

Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp 20 25 30

Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser Ser Asn Trp
35 40 45

Ser Pro Tyr Ser Pro Tyr Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser 50 55 60

| Pro<br>65  |            | Val        | Pro        | Lys        | Gly<br>70  | Cys        | Arg        | Val        | Thr                | Phe<br>75  | Val        | Gln        | Val        | Leu        | Gln<br>80  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|
| Arg        | His        | Gly        | Ala        | Arg<br>85  |            | Pro        | Thr        | Ser        | Gly<br>90          | Ala        | Ala        | Thr        | Arg        | Ile<br>95  | Ser        |
| Ala        | Leu        | Ile        | Glu<br>100 | Ala        | Ile        | Gln        | Lys        | Asn<br>105 |                    | Thr        | Ala        | Phe        | Lys<br>110 | Gly        | Lys        |
| Tyr        | Ala        | Phe<br>115 | Leu        | Lys        | Thr        | Tyr        | Asn<br>120 | Tyr        | Thr                | Leu        | Gly        | Ala<br>125 | Asp        | Asp        | Leu        |
| Val        | Pro<br>130 | Phe        | Gly        | Ala        | Asn        | Gln<br>135 | Ser        | Ser        | Gln                | Ala        | Gly<br>140 | Ile        | Lys        | Phe        | Tyr        |
| Arg<br>145 | Arg        | Tyr        | Lys        | Ala        | Leu<br>150 | Ala        | Arg        | Lys        | Ile                | Val<br>155 | Pro        | Phe        | Ile        | Arg        | Ala<br>160 |
| Ser        | Gly        | Ser        | Asp        | Arg<br>165 | Val        | Ile        | Asp        | Ser        | <b>A</b> la<br>170 | Thr        | Asn        | Trp        | Ile        | Glu<br>175 | Gly        |
| Phe        | Gln        | Ser        | Ala<br>180 | Lys        | Leu        | Ala        | Asp        | Pro<br>185 | Gly                | Ala        | Asn        | Pro        | His<br>190 | Gln        | Ala        |
| Ser        | Pro        | Val<br>195 | Ile        | Asn        | Val        | Ile        | Ile<br>200 | Pro        | Glu                | Gly        | Ala        | Gly<br>205 | Tyr        | Asn        | Asn        |
| Thr        | Leu<br>210 | Asp        | His        | Gly        | Leu        | Cys<br>215 | Thr        | Ala        | Phe                | Glu        | Glu<br>220 | Ser        | Glu        | Leu        | Gly        |
| Asp<br>225 | Asp        | Val        | Glu        | Ala        | Asn<br>230 | Phe        | Thr        | Ala        | <b>V</b> al        | Phe<br>235 | Ala        | Pro        | Pro        | Ile        | Arg<br>240 |
| Ala        | Arg        | Leu        | Glu        | Ala<br>245 | His        | Leu        | Pro        | Gly        | Val<br>250         | Asn        | Leu        | Thr        | Asp        | Glu<br>255 | Asp        |
| Val        | Val        | Asn        | Leu<br>260 | Met        | Asp        | Met        | Cys        | Pro<br>265 | Phe                | Asp        | Thr        | Val        | Ala<br>270 | Arg        | Thr        |
| Ser        | Asp        | Ala<br>275 | Thr        | Glu        | Leu        | Ser        | Pro<br>280 | Phe        | Сув                | Asp        | Leu        | Phe<br>285 | Thr        | His        | Asp        |
| Glu        | Trp<br>290 | Ile        | Gln        | Tyr        | Asp        | Tyr<br>295 | Leu        | Gly        | Asp                | Leu        | Asp<br>300 | Lys        | Tyr        | Tyr        | Gly        |
| Thr<br>305 | Gly        | Ala        | Gly        | Asn        | Pro<br>310 | Leu        | Gly        | Pro        | Ala                | Gln<br>315 | Gly        | Val        | Gly        | Phe        | Val<br>320 |
| Asn        | Glu        | Leu        | Ile        | Ala<br>325 | Arg        | Leu        | Thr        | His        | Ser<br>330         | Pro        | Val        | Gln        | Asp        | His<br>335 | Thr        |
| Ser        | Thr        | Asn        | His<br>340 | Thr        | Leu        | Asp        | Ser        | Asn<br>345 | Pro                | Ala        | Thr        | Phe        | Pro<br>350 | Leu        | Asn        |

69

Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Val Ala Ile Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Leu Val Pro Phe Ser Ala Arg Met Tyr Val Glu Met Met Gln Cys Glu Ala Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro 420 Leu His Gly Cys Gly Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Glu Glu 460 Cys Phe Ala 465 <210> 37 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 37 tatatgaatt catgggcgtg ttcgtc 26 <210> 38 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 38 tgaaaagttc attgaaggtt tc 22 <210> 39 <211> 22 <212> DNA <213> Artificial Sequence

| <220> <223> Description of Artificial Sequence: primer   |    |
|----------------------------------------------------------|----|
| <400> 39<br>tcttcgaaag cagtacacaa ac                     | 22 |
| <210> 40<br><211> 22                                     |    |
| <212> DNA<br><213> Artificial Sequence                   |    |
| <220>                                                    |    |
| <223> Description of Artificial Sequence:primer <400> 40 |    |
| tatatgaatt cttaagcgaa ac                                 | 22 |
| <210> 41                                                 |    |
| <211> 32                                                 |    |
| <212> DNA                                                |    |
| <213> Artificial Sequence                                |    |
| <220>                                                    |    |
| <223> Description of Artificial Sequence: primer         |    |
| <400> 41                                                 |    |
| cacttgtggg gtacctactc tccatacttc tc                      | 32 |
|                                                          |    |
| <210> 42                                                 |    |
| <211> 31                                                 |    |
| <212> DNA                                                |    |
| <213> Artificial Sequence                                |    |
| <220>                                                    |    |
| <223> Description of Artificial Sequence: primer         |    |
| <400> 42                                                 |    |
| ggtcaatact ctccattctt ctctttggaa g                       | 31 |
| <210> 43                                                 |    |
| <211> 28                                                 |    |
| <211> 20<br><212> DNA                                    |    |
| <213> Artificial Sequence                                |    |
| <220>                                                    |    |
| <223> Description of Artificial Sequence: primer         |    |
| <400> 43                                                 |    |
| catacttctc tttggcagac gaatctgc                           | 28 |

```
<210> 44
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 44
ctccagacgt cccaaaggac tgtagagtta c
                                                                     31
<210> 45
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 45
ctccagacgt cccagacggc tgtagagtta c
                                                                    31
<210> 46
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 46
gatacccaac ttcttctgcg tctaaggctt actctg
                                                                    36
<210> 47
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 47
cttctaagtc taagaagtac tctgctttg
                                                                    29
<210> 48
<211> 41
<212> DNA
<213> Artificial Sequence
```

| <220>                                            |    |
|--------------------------------------------------|----|
| <223> Description of Artificial Sequence: primer |    |
| <400> 48                                         |    |
| gettaetetg etttgattga aeggatteaa aagaaegeta e    | 41 |
|                                                  |    |
| <210> 49                                         |    |
| <211> 29                                         |    |
| <212> DNA                                        |    |
| <213> Artificial Sequence                        |    |
| <220>                                            |    |
| <223> Description of Artificial Sequence: primer |    |
| <400> 49                                         |    |
| ccattcggtg aacagcaaat ggttaactc                  | 29 |
|                                                  |    |
| <210> 50                                         |    |
| <211> 30                                         |    |
| <212> DNA                                        |    |
| <213> Artificial Sequence                        |    |
| <220>                                            |    |
| <223> Description of Artificial Sequence: primer |    |
| <400> 50                                         |    |
| gatacaaggc tetegegaga aacattgtte                 | 30 |
|                                                  |    |
| <210> 51                                         |    |
| <211> 30                                         |    |
| <212> DNA                                        |    |
| <213> Artificial Sequence                        |    |
| <220>                                            |    |
| <223> Description of Artificial Sequence: primer |    |
| <400> 51                                         |    |
| gattgtteca ttegtgegeg ettetggtte                 | 30 |
|                                                  |    |
| <210> 52                                         |    |
| <211> 31                                         |    |
| <212> DNA                                        |    |
| <213> Artificial Sequence                        |    |
| <220>                                            |    |
| <223> Description of Artificial Sequence: primer |    |
| -400- E2                                         |    |
| <400> 52<br>ctccagttat taacgtgatc attccagaag g   |    |
| stocayteat taacytyate attocayaay y               | 31 |

| <210><211><212> | 30                                         |    |
|-----------------|--------------------------------------------|----|
|                 | Artificial Sequence                        |    |
| <220>           | Description of Autificial C                |    |
| <223>           | Description of Artificial Sequence: primer |    |
| <400>           |                                            |    |
| ggctga          | accca ggggcccaac cacaccaagc                | 30 |
| <210>           |                                            |    |
| <211>           |                                            |    |
| <212>           | Artificial Sequence                        |    |
| \Z1J/           | ATTITUTUT DEGLETICE                        |    |
| <220>           |                                            |    |
| <223>           | Description of Artificial Sequence: primer |    |
| <400>           |                                            |    |
| cacttt          | ggac catggtettt gtactgettt eg              | 32 |
|                 |                                            |    |
| <210>           |                                            |    |
| <211>           |                                            |    |
| <212>           | Artificial Sequence                        |    |
| <b>\</b> 2137   | ATCITICIAL Sequence                        |    |
| <220>           |                                            |    |
| <223>           | Description of Artificial Sequence: primer |    |
| <400>           |                                            |    |
| gctttc          | gaag actctaccct aggtgacgac gttg            | 34 |
|                 |                                            |    |
| <210>           |                                            |    |
| <211>           |                                            |    |
| <212>           |                                            |    |
| <213>           | Artificial Sequence                        |    |
| <220>           |                                            |    |
| <223>           | Description of Artificial Sequence: primer |    |
| <400>           |                                            |    |
| ggtgac          | gacg ctgaagctaa cttcac                     | 26 |
|                 |                                            |    |
| <210>           | 57                                         |    |
| <211>           |                                            |    |
| <212>           |                                            |    |
| <213>           | Artificial Sequence                        |    |

| <220>                                            |    |
|--------------------------------------------------|----|
| <223> Description of Artificial Sequence: primer |    |
| <400> 57                                         |    |
| ctaacttcac cgcggtgttc gctccag                    | 2. |
|                                                  | 2* |
| <210> 58                                         |    |
| <211> 34                                         |    |
| <212> DNA                                        |    |
| <213> Artificial Sequence                        |    |
| <220>                                            |    |
| <223> Description of Artificial Sequence: primer |    |
| <400> 58                                         |    |
| gctttgttcg ctccacctat tagagctaga ttgg            | 34 |
| <210> 59                                         |    |
| <211> 26                                         |    |
| <212> DNA                                        |    |
| <213> Artificial Sequence                        |    |
| <220>                                            |    |
| <223> Description of Artificial Sequence: primer |    |
| <400> 59                                         |    |
| gccaggtgtt aacttgactg acgaag                     | 26 |
| <210> 60                                         |    |
| <211> 27                                         |    |
| <212> DNA                                        |    |
| <213> Artificial Sequence                        |    |
| <220>                                            |    |
| <223> Description of Artificial Sequence: primer |    |
| <400> 60                                         |    |
| gacgaagacg tegttaaett gatggae                    | 27 |
| 210 61                                           |    |
| <210> 61                                         |    |
| <211> 28                                         |    |
| <212> DNA                                        |    |
| <213> Artificial Sequence                        |    |
| <220>                                            |    |
| <223> Description of Artificial Sequence: primer |    |
| <400> 61                                         |    |
| gtccattcga cactgtcgct agaacttc                   | 28 |
|                                                  |    |

```
<210> 62
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 62
ctgacgctac tcagctgtct ccattc
                                                                    26
<210> 63
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 63
gtctccattc tgtgatttgt tcactcac
                                                                    28
<210> 64
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 64
gctttgttca ccgcggacga atggag
                                                                    26
<210> 65
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 65
cacgacgaat ggatccaata cgactac
                                                                    27
<210> 66
<211> 27
<212> DNA
<213> Artificial Sequence
```

| <220> <223> Description of Artificial Sequence: primer |    |
|--------------------------------------------------------|----|
| <400> 66                                               |    |
| gacgaatgga gagcgtacga ctacttg                          | 27 |
|                                                        |    |
| <210> 67<br><211> 29                                   |    |
| <211> 29 <212> DNA                                     |    |
| <213> Artificial Sequence                              |    |
| <220>                                                  |    |
| <223> Description of Artificial Sequence: primer       |    |
| <400> 67                                               |    |
| ggtgttggtt tcgttaacga attgattgc                        | 29 |
|                                                        |    |
| <210> 68                                               |    |
| <211> 28<br><212> DNA                                  |    |
| <213> Artificial Sequence                              |    |
|                                                        |    |
| <220>                                                  |    |
| <223> Description of Artificial Sequence: primer       |    |
| <400> 68                                               |    |
| gctagattga ctcactctcc agttcaag                         | 28 |
|                                                        |    |
| <210> 69                                               |    |
| <211> 32                                               |    |
| <212> DNA<br><213> Artificial Sequence                 |    |
| 12132 Altilitial Bequence                              |    |
| <220>                                                  |    |
| <223> Description of Artificial Sequence: primer       |    |
| <400> 69                                               |    |
| ctcacgacaa cactatgata tctattttct tc                    | 32 |
| -210. 70                                               |    |
| <210> 70<br><211> 30                                   |    |
| <211> 30<br><212> DNA                                  |    |
| <213> Artificial Sequence                              |    |
|                                                        |    |
| <220>                                                  |    |
| <223> Description of Artificial Sequence: primer       |    |
| <400> 70                                               |    |
| egacaactee atggttteta tittettege                       | 30 |

```
<210> 71
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 71
gtacaacggt accaagccat tgtctac
                                                                     27
<210> 72
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 72
ctgacggtta cgctgcttct tggac
                                                                     25
<210> 73
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 73
ctgttccatt cgctgctaga gcttac
                                                                    26
<210> 74
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 74
gatgcaatgt gaagctgaaa aggaacc
                                                                    27
<210> 75
<211> 26
<212> DNA
<213> Artificial Sequence
```

| <220><br><223> Description of Artificial Sequence: primer |    |
|-----------------------------------------------------------|----|
| <400> 75<br>cacggttgtg gtgtcgacaa gttggg                  | 26 |
| <210> 76 <211> 30                                         |    |
| <212> DNA                                                 |    |
| <213> Artificial Sequence                                 |    |
| <220>                                                     |    |
| <223> Description of Artificial Sequence: primer          |    |
| <400> 76                                                  |    |
| gatctggtgg caattgggag gaatgtttcg                          | 30 |
| <210> 77                                                  |    |
| <211> 28                                                  |    |
| <212> DNA                                                 |    |
| <213> Artificial Sequence                                 |    |
| <220>                                                     |    |
| <223> Description of Artificial Sequence: primer          |    |
| <400> 77                                                  |    |
| cacgtactcg ccatactttt cgctcgag                            | 28 |
| <210> 78                                                  |    |
| <211> 33                                                  |    |
| <212> DNA                                                 |    |
| <213> Artificial Sequence                                 |    |
| <220>                                                     |    |
| <223> Description of Artificial Sequence: primer          |    |
| <400> 78                                                  |    |
| ccatactttt cgctcgcgga cgagctgtcc gtg                      | 33 |
| <210> 79                                                  |    |
| <211> 31                                                  |    |
| <212> DNA                                                 |    |
| <213> Artificial Sequence                                 |    |
| <220>                                                     |    |
| <223> Description of Artificial Sequence: primer          |    |
| <400> 79                                                  |    |
| gtataagaag cttattacgg cgatccaggc c                        | 31 |

```
<210> 80
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 80
cttcaagggc aagtacgcct ttttgaagac g
                                                                    31
<210> 81
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 81
catccgagct cgcctcgaga agcatcttc
                                                                    29
<210> 82
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 82
ctaatggatg tgtccgtttg atacggtag
                                                                    29
<210> 83
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 83
gtggaagaag tacgactacc ttcagtc
                                                                    27
<210> 84
<211> 28
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Description of Artificial Sequence: primer
 <400> 84
gcccggttga cgcattcgcc agtgcagg
                                                                     28
 <210> 85
 <211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 85
cacacgacaa caccatggtt tccatcttc
                                                                     29
<210> 86
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 86
gtggtgcctt tcgccgcgcg agcctacttc
                                                                     30
<210> 87
<211> 33
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
tatatcatga gcgtgttcgt cgtgctactg ttc
                                                                    33
<210> 88
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 88
acccgactta caaagcgaat tctatagata tat
                                                                    33
```

```
<210> 89
<211> 33
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 89
accettetta caaagegaat tetatagata tat
                                                                    33
<210> 90
<211> 1404
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Consensus-phytase-3-thermo-11-Q50T
<220>
<221> CDS
<222> (1)..(1401)
<220>
<221> sig_peptide
<222> (1)..(69)
<220>
<221> mat peptide
<222> (70)..(1401)
<400> 90
atg ggc gtg ttc gtc gtg cta ctg tcc att gcc acc ttg ttc ggt tcc
                                                                   48
Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
aca tee ggt ace gee tig ggt eet egt ggt aat tet eac tet tgt gae
                                                                   96
Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
                         -1
act gtt gac ggt ggt tac caa tgt ttc cca gaa att tct cac ttg tgg
                                                                   144
Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
ggt acc tac tct cca tac ttc tct ttg gca gac gaa tct gct att tct
Gly Thr Tyr Ser Pro Tyr Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser
cca gac gtc cca aag gac tgt aga gtt act ttc gtt caa gtt ttg tct
                                                                   240
Pro Asp Val Pro Lys Asp Cys Arg Val Thr Phe Val Gln Val Leu Ser
             45
```

| aga<br>Arg        | cac<br>His        | ggt<br>Gly<br>60  | Ala               | aga<br>Arg        | tac<br>Tyr        | cca<br>Pro        | act<br>Thr<br>65  | Ser               | tct<br>Ser        | aag<br>Lys        | tct<br>Ser        | aag<br>Lys<br>70  | gct<br>Ala        | tac<br>Tyr        | tct<br>Ser        | 288 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| gct<br>Ala        | ttg<br>Leu<br>75  | att<br>Ile        | gaa<br>Glu        | gct<br>Ala        | att<br>Ile        | caa<br>Gln<br>80  | aag<br>Lys        | aac<br>Asn        | gct<br>Ala        | act<br>Thr        | gct<br>Ala<br>85  | Phe               | aag<br>Lys        | ggt<br>Gly        | aag<br>Lys        | 336 |
| tac<br>Tyr<br>90  | gct<br>Ala        | ttc<br>Phe        | ttg<br>Leu        | aag<br>Lys        | act<br>Thr<br>95  | tac<br>Tyr        | aac<br>Asn        | tac<br>Tyr        | act<br>Thr        | ttg<br>Leu<br>100 | ggt<br>Gly        | gct<br>Ala        | gac<br>Asp        | gac<br>Asp        | ttg<br>Leu<br>105 | 384 |
| act<br>Thr        | cca<br>Pro        | ttc<br>Phe        | ggt<br>Gly        | gaa<br>Glu<br>110 | aac<br>Asn        | caa<br>Gln        | atg<br>Met        | gtt<br>Val        | aac<br>Asn<br>115 | tct<br>Ser        | ggt<br>Gly        | att<br>Ile        | aag<br>Lys        | ttc<br>Phe<br>120 | tac<br>Tyr        | 432 |
| aga<br>Arg        | aga<br>Arg        | tac<br>Tyr        | aag<br>Lys<br>125 | gct<br>Ala        | ttg<br>Leu        | gct<br>Ala        | aga<br>Arg        | aag<br>Lys<br>130 | att<br>Ile        | gtt<br>Val        | cca<br>Pro        | ttc<br>Phe        | att<br>Ile<br>135 | aga<br>Arg        | gct<br>Ala        | 480 |
| tct<br>Ser        | ggt<br>Gly        | tct<br>Ser<br>140 | gac<br>Asp        | aga<br>Arg        | gtt<br>Val        | att<br>Ile        | gct<br>Ala<br>145 | tct<br>Ser        | gct<br>Ala        | gaa<br>Glu        | aag<br>Lys        | ttc<br>Phe<br>150 | att<br>Ile        | gaa<br>Glu        | ggt<br>Gly        | 528 |
| ttc<br>Phe        | caa<br>Gln<br>155 | tct<br>Ser        | gct<br>Ala        | aag<br>Lys        | ttg<br>Leu        | gct<br>Ala<br>160 | gac<br>Asp        | cca<br>Pro        | ggt<br>Gly        | tct<br>Ser        | caa<br>Gln<br>165 | cca<br>Pro        | cac<br>His        | caa<br>Gln        | gct<br>Ala        | 576 |
| tct<br>Ser<br>170 | cca<br>Pro        | gtt<br>Val        | att<br>Ile        | aac<br>Asn        | gtg<br>Val<br>175 | atc<br>Ile        | att<br>Ile        | cca<br>Pro        | gaa<br>Glu        | gga<br>Gly<br>180 | tcc<br>Ser        | ggt<br>Gly        | tac<br>Tyr        | aac<br>Asn        | aac<br>Asn<br>185 | 624 |
| act<br>Thr        | ttg<br>Leu        | gac<br>Asp        | cat<br>His        | ggt<br>Gly<br>190 | ctt<br>Leu        | tgt<br>Cys        | act<br>Thr        | gct<br>Ala        | ttc<br>Phe<br>195 | gaa<br>Glu        | gac<br>Asp        | tct<br>Ser        | acc<br>Thr        | cta<br>Leu<br>200 | ggt<br>Gly        | 672 |
| gac<br>Asp        | gac<br>Asp        | gtt<br>Val        | gaa<br>Glu<br>205 | gct<br>Ala        | aac<br>Asn        | ttc<br>Phe        | act<br>Thr        | gct<br>Ala<br>210 | ttg<br>Leu        | ttc<br>Phe        | gct<br>Ala        | cca<br>Pro        | gct<br>Ala<br>215 | att<br>Ile        | aga<br>Arg        | 720 |
| gct<br>Ala        | aga<br>Arg        | ttg<br>Leu<br>220 | gaa<br>Glu        | gct<br>Ala        | gac<br>Asp        | Leu               | cca<br>Pro<br>225 | Gly               | gtt<br>Val        | act<br>Thr        | Leu               | act<br>Thr<br>230 | gac<br>Asp        | gaa<br>Glu        | gac<br>Asp        | 768 |
| gtt<br>Val        | gtt<br>Val<br>235 | tac<br>Tyr        | ttg<br>Leu        | atg<br>Met        | gac<br>Asp        | atg<br>Met<br>240 | tgt<br>Cys        | cca<br>Pro        | ttc<br>Phe        | gac<br>Asp        | act<br>Thr<br>245 | gtc<br>Val        | gct<br>Ala        | aga<br>Arg        | act<br>Thr        | 816 |
| tct<br>Ser<br>250 | gac<br>Asp        | gct<br>Ala        | act<br>Thr        | gaa<br>Glu        | ttg<br>Leu<br>255 | tct<br>Ser        | cca<br>Pro        | ttc<br>Phe        | tgt<br>Cys        | gct<br>Ala<br>260 | ttg<br>Leu        | ttc<br>Phe        | act<br>Thr        | cac<br>His        | gac<br>Asp<br>265 | 864 |

WO 00/43503

| gaa<br>Glu        | tgg<br>Trp        | atc<br>Ile        | caa<br>Gln        | tac<br>Tyr<br>270 | gac<br>Asp        | tac<br>Tyr        | ttg<br>Leu        | caa<br>Gln        | agc<br>Ser<br>275 | ttg<br>Leu        | ggt<br>Gly        | aag<br>Lys        | tac<br>Tyr        | tac<br>Tyr<br>280 | ggt<br>Gly        | 912  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| tac<br>Tyr        | ggt<br>Gly        | gct<br>Ala        | ggt<br>Gly<br>285 | aac<br>Asn        | cca<br>Pro        | ttg<br>Leu        | ggt<br>Gly        | cca<br>Pro<br>290 | gct<br>Ala        | caa<br>Gln        | ggt<br>Gly        | gtt<br>Val        | ggt<br>Gly<br>295 | ttc<br>Phe        | gct<br>Ala        | 960  |
| aac<br>Asn        | gaa<br>Glu        | ttg<br>Leu<br>300 | att<br>Ile        | gct<br>Ala        | aga<br>Arg        | ttg<br>Leu        | act<br>Thr<br>305 | cac<br>His        | tct<br>Ser        | cca<br>Pro        | gtt<br>Val        | caa<br>Gln<br>310 | gac<br>Asp        | cac<br>His        | act<br>Thr        | 1008 |
| tct<br>Ser        | act<br>Thr<br>315 | aac<br>Asn        | cac<br>His        | act<br>Thr        | ttg<br>Leu        | gac<br>Asp<br>320 | tct<br>Ser        | aac<br>Asn        | cca<br>Pro        | gct<br>Ala        | act<br>Thr<br>325 | ttc<br>Phe        | cca<br>Pro        | ttg<br>Leu        | aac<br>Asn        | 1056 |
| gct<br>Ala<br>330 | act<br>Thr        | ttg<br>Leu        | tac<br>Tyr        | gct<br>Ala        | gac<br>Asp<br>335 | ttc<br>Phe        | tct<br>Ser        | cac<br>His        | gac<br>Asp        | aac<br>Asn<br>340 | act<br>Thr        | atg<br>Met        | ata<br>Ile        | tct<br>Ser        | att<br>Ile<br>345 | 1104 |
| ttc<br>Phe        | ttc<br>Phe        | gct<br>Ala        | ttg<br>Leu        | ggt<br>Gly<br>350 | ttg<br>Leu        | tac<br>Tyr        | aac<br>Asn        | ggt<br>Gly        | acc<br>Thr<br>355 | aag<br>Lys        | cca<br>Pro        | ttg<br>Leu        | tct<br>Ser        | act<br>Thr<br>360 | act<br>Thr        | 1152 |
| tct<br>Ser        | gtt<br>Val        | gaa<br>Glu        | tct<br>Ser<br>365 | att<br>Ile        | gaa<br>Glu        | gaa<br>Glu        | act<br>Thr        | gac<br>Asp<br>370 | ggt<br>Gly        | tac<br>Tyr        | tct<br>Ser        | gct<br>Ala        | tct<br>Ser<br>375 | tgg<br>Trp        | act<br>Thr        | 1200 |
| gtt<br>Val        | cca<br>Pro        | ttc<br>Phe<br>380 | gct<br>Ala        | gct<br>Ala        | aga<br>Arg        | gct<br>Ala        | tac<br>Tyr<br>385 | gtt<br>Val        | gaa<br>Glu        | atg<br>Met        | atg<br>Met        | caa<br>Gln<br>390 | tgt<br>Cys        | caa<br>Gln        | gct<br>Ala        | 1248 |
| gaa<br>Glu        | aag<br>Lys<br>395 | gaa<br>Glu        | cca<br>Pro        | ttg<br>Leu        | gtt<br>Val        | aga<br>Arg<br>400 | gtt<br>Val        | ttg<br>Leu        | gtt<br>Val        | aac<br>Asn        | gac<br>Asp<br>405 | aga<br>Arg        | gtt<br>Val        | gtt<br>Val        | cca<br>Pro        | 1296 |
| ttg<br>Leu<br>410 | cac<br>His        | ggt<br>Gly        | tgt<br>Cys        | gct<br>Ala        | gtt<br>Val<br>415 | gac<br>Asp        | aag<br>Lys        | ttg<br>Leų        | ggt<br>Gly        | aga<br>Arg<br>420 | tgt<br>Cys        | aag<br>Lys        | aga<br>Arg        | gac<br>Asp        | gac<br>Asp<br>425 | 1344 |
| ttc<br>Phe        | gtt<br>Val        | gaa<br>Glu        | ggt<br>Gly        | ttg<br>Leu<br>430 | tct<br>Ser        | ttc<br>Phe        | gct<br>Ala        | aga<br>Arg        | tct<br>Ser<br>435 | ggt<br>Gly        | ggt<br>Gly        | aac<br>Asn        | tgg<br>Trp        | gct<br>Ala<br>440 | gaa<br>Glu        | 1392 |
| _                 | ttc<br>Phe        | gct<br>Ala        | taa               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1404 |

<sup>&</sup>lt;210> 91

<sup>&</sup>lt;211> 467

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Artificial Sequence

<400> 91 Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp Gly Thr Tyr Ser Pro Tyr Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser Pro Asp Val Pro Lys Asp Cys Arg Val Thr Phe Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys Ser Lys Ala Tyr Ser Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu 95 Thr Pro Phe Gly Glu Asn Gln Met Val Asn Ser Gly Ile Lys Phe Tyr 115 Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala 130 Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ser Gln Pro His Gln Ala Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ser Gly Tyr Asn Asn 180 Thr Leu Asp His Gly Leu Cys Thr Ala Phe Glu Asp Ser Thr Leu Gly 190 Asp Asp Val Glu Ala Asn Phe Thr Ala Leu Phe Ala Pro Ala Ile Arg 210

Ala Arg Leu Glu Ala Asp Leu Pro Gly Val Thr Leu Thr Asp Glu Asp
220 225 230

Val Val Tyr Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr

85

Ser Asp Ala Thr Glu Leu Ser Pro Phe Cys Ala Leu Phe Thr His Asp 260 Glu Trp Ile Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly 275 Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Ala 290 Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn 320 Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Ile Ser Ile 335 340 Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr 355 Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala 385 Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro 395 400 Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu 435

Cys Phe Ala

<210> 92

<211> 1404

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus phytase-3-thermo-11-Q50T-K91A

<220>

<221> sig\_peptide

<222> (1)..(69)

|                  | 1> C             | DS<br>1)          | (140              | 1)                |                  |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |     |
|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-----|
|                  | 1> m             | at_p<br>70).      |                   |                   |                  |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |     |
| <40              | 0> 9             | 2                 |                   |                   |                  |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |     |
| atg<br>Met       | ggc<br>Gly       | gtg<br>Val        | ttc<br>Phe<br>-20 | Val               | gtg<br>Val       | cta<br>Leu       | ctg<br>Leu        | tcc<br>Ser<br>-15 | att<br>Ile        | gcc<br>Ala        | acc<br>Thr       | ttg<br>Leu        | Phe               | Gly               | tcc<br>Ser        | 48  |
| aca<br>Thr       | tcc<br>Ser       | ggt<br>Gly<br>-5  | acc<br>Thr        | gcc<br>Ala        | ttg<br>Leu       | ggt<br>Gly<br>-1 | cct<br>Pro<br>1   | cgt<br>Arg        | ggt<br>Gly        | aat<br>Asn        | tct<br>Ser<br>5  | His               | tct<br>Ser        | tgt<br>Cys        | gac<br>Asp        | 96  |
| act<br>Thr<br>10 | gtt<br>Val       | gac<br>Asp        | ggt<br>Gly        | ggt<br>Gly        | tac<br>Tyr<br>15 | caa<br>Gln       | tgt<br>Cys        | ttc<br>Phe        | cca<br>Pro        | gaa<br>Glu<br>20  | att<br>Ile       | tct<br>Ser        | cac<br>His        | ttg<br>Leu        | tgg<br>Trp<br>25  | 144 |
| ggt<br>Gly       | acc<br>Thr       | tac<br>Tyr        | tct<br>Ser        | cca<br>Pro<br>30  | tac<br>Tyr       | ttc<br>Phe       | tct<br>Ser        | ttg<br>Leu        | gca<br>Ala<br>35  | gac<br>Asp        | gaa<br>Glu       | tct<br>Ser        | gct<br>Ala        | att<br>Ile<br>40  | tct<br>Ser        | 192 |
| cca<br>Pro       | gac<br>Asp       | gtc<br>Val        | cca<br>Pro<br>45  | aag<br>Lys        | gac<br>Asp       | tgt<br>Cys       | aga<br>Arg        | gtt<br>Val<br>50  | act<br>Thr        | ttc<br>Phe        | gtt<br>Val       | caa<br>Gln        | gtt<br>Val<br>55  | ttg<br>Leu        | tct<br>Ser        | 240 |
| aga<br>Arg       | cac<br>His       | ggt<br>Gly<br>60  | gct<br>Ala        | aga<br>Arg        | tac<br>Tyr       | cca<br>Pro       | act<br>Thr<br>65  | tct<br>Ser        | tct<br>Ser        | gcg<br>Ala        | tct<br>Ser       | aag<br>Lys<br>70  | gct<br>Ala        | tac<br>Tyr        | tct<br>Ser        | 288 |
| gct<br>Ala       | ttg<br>Leu<br>75 | att<br>Ile        | gaa<br>Glu        | gct<br>Ala        | att<br>Ile       | caa<br>Gln<br>80 | aag<br>Lys        | aac<br>Asn        | gct<br>Ala        | act<br>Thr        | gct<br>Ala<br>85 | ttc<br>Phe        | aag<br>Lys        | ggt<br>Gly        | aag<br>Lys        | 336 |
| tac<br>Tyr<br>90 | gct<br>Ala       | ttc<br>Phe        | ttg<br>Leu        | aag<br>Lys        | act<br>Thr<br>95 | tac<br>Tyr       | aac<br>Asn        | tac<br>Tyr        | act<br>Thr        | ttg<br>Leu<br>100 | ggt<br>Gly       | gct<br>Ala        | gac<br>Asp        | gac<br>Asp        | ttg<br>Leu<br>105 | 384 |
| act<br>Thr       | cca<br>Pro       | ttc<br>Phe        | ggt<br>Gly        | gaa<br>Glu<br>110 | aac<br>Asn       | caa<br>Gln       | atg<br>Met        | gtt<br>Val        | aac<br>Asn<br>115 | tct<br>Ser        | ggt<br>Gly       | att<br>Ile        | aag<br>Lys        | ttc<br>Phe<br>120 | tac<br>Tyr        | 432 |
| aga<br>Arg       | aga<br>Arg       | tac<br>Tyr        | aag<br>Lys<br>125 | gct<br>Ala        | ttg<br>Leu       | gct<br>Ala       | aga<br>Arg        | aag<br>Lys<br>130 | att<br>Ile        | gtt<br>Val        | cca<br>Pro       | ttc<br>Phe        | att<br>Ile<br>135 | aga<br>Arg        | gct<br>Ala        | 480 |
| tct<br>Ser       | ggt<br>Gly       | tct<br>Ser<br>140 | gac<br>Asp        | aga<br>Arg        | gtt<br>Val       | att<br>Ile       | gct<br>Ala<br>145 | tct<br>Ser        | gct<br>Ala        | gaa<br>Glu        | aag<br>Lys       | ttc<br>Phe<br>150 | att<br>Ile        | gaa<br>Glu        | ggt<br>Gly        | 528 |

| ttc<br>Phe        | caa<br>Gln<br>155 | tct<br>Ser        | gct<br>Ala        | aag<br>Lys        | ttg<br>Leu        | gct<br>Ala<br>160 | gac<br>Asp        | cca<br>Pro        | ggt<br>Gly        | tct<br>Ser        | caa<br>Gln<br>165 | cca<br>Pro        | cac<br>His        | caa<br>Gln        | gct<br>Ala        | 576  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| tct<br>Ser<br>170 | cca<br>Pro        | gtt<br>Val        | att<br>Ile        | aac<br>Asn        | gtg<br>Val<br>175 | atc<br>Ile        | att<br>Ile        | cca<br>Pro        | gaa<br>Glu        | gga<br>Gly<br>180 | tcc<br>Ser        | ggt<br>Gly        | tac<br>Tyr        | aac<br>Asn        | aac<br>Asn<br>185 | 624  |
| act<br>Thr        | ttg<br>Leu        | gac<br>Asp        | cat<br>His        | ggt<br>Gly<br>190 | ctt<br>Leu        | tgt<br>Cys        | act<br>Thr        | gct<br>Ala        | ttc<br>Phe<br>195 | gaa<br>Glu        | gac<br>Asp        | tct<br>Ser        | acc<br>Thr        | cta<br>Leu<br>200 | ggt<br>Gly        | 672  |
| gac<br>Asp        | gac<br>Asp        | gtt<br>Val        | gaa<br>Glu<br>205 | gct<br>Ala        | aac<br>Asn        | ttc<br>Phe        | act<br>Thr        | gct<br>Ala<br>210 | ttg<br>Leu        | ttc<br>Phe        | gct<br>Ala        | cca<br>Pro        | gct<br>Ala<br>215 | att<br>Ile        | aga<br>Arg        | 720  |
| gct<br>Ala        | aga<br>Arg        | ttg<br>Leu<br>220 | gaa<br>Glu        | gct<br>Ala        | gac<br>Asp        | ttg<br>Leu        | cca<br>Pro<br>225 | ggt<br>Gly        | gtt<br>Val        | act<br>Thr        | ttg<br>Leu        | act<br>Thr<br>230 | gac<br>Asp        | gaa<br>Glu        | gac<br>Asp        | 768  |
| gtt<br>Val        | gtt<br>Val<br>235 | tac<br>Tyr        | ttg<br>Leu        | atg<br>Met        | gac<br>Asp        | atg<br>Met<br>240 | tgt<br>Cys        | cca<br>Pro        | ttc<br>Phe        | gac<br>Asp        | act<br>Thr<br>245 | gtc<br>Val        | gct<br>Ala        | aga<br>Arg        | act<br>Thr        | 816  |
| tct<br>Ser<br>250 | gac<br>Asp        | gct<br>Ala        | act<br>Thr        | gaa<br>Glu        | ttg<br>Leu<br>255 | tct<br>Ser        | cca<br>Pro        | ttc<br>Phe        | tgt<br>Cys        | gct<br>Ala<br>260 | ttg<br>Leu        | ttc<br>Phe        | act<br>Thr        | cac<br>His        | gac<br>Asp<br>265 | 864  |
| gaa<br>Glu        | tgg<br>Trp        | atc<br>Ile        | caa<br>Gln        | tac<br>Tyr<br>270 | gac<br>Asp        | tac<br>Tyr        | ttg<br>Leu        | caa<br>Gln        | agc<br>Ser<br>275 | ttg<br>Leu        | ggt<br>Gly        | aag<br>Lys        | tac<br>Tyr        | tac<br>Tyr<br>280 | ggt<br>Gly        | 912  |
| tac<br>Tyr        | ggt<br>Gly        | gct<br>Ala        | ggt<br>Gly<br>285 | aac<br>Asn        | cca<br>Pro        | ttg<br>Leu        | ggt<br>Gly        | cca<br>Pro<br>290 | gct<br>Ala        | caa<br>Gln        | ggt<br>Gly        | gtt<br>Val        | ggt<br>Gly<br>295 | ttc<br>Phe        | gct<br>Ala        | 960  |
| aac<br>Asn        | gaa<br>Glu        | ttg<br>Leu<br>300 | att<br>Ile        | gct<br>Ala        | aga<br>Arg        | ttg<br>Leu        | act<br>Thr<br>305 | cac<br>His        | tct<br>Ser        | cca<br>Pro        | gtt<br>Val        | caa<br>Gln<br>310 | gac<br>Asp        | cac<br>His        | act<br>Thr        | 1008 |
| tct<br>Ser        | act<br>Thr<br>315 | aac<br>Asn        | cac<br>His        | act<br>Thr        | ttg<br>Leu        | gac<br>Asp<br>320 | tct<br>Ser        | aac<br>Asn        | cca<br>Pro        | gct<br>Ala        | act<br>Thr<br>325 | ttc<br>Phe        | cca<br>Pro        | ttg<br>Leu        | aac<br>Asn        | 1056 |
| gct<br>Ala<br>330 | act<br>Thr        | ttg<br>Leu        | tac<br>Tyr        | gct<br>Ala        | gac<br>Asp<br>335 | ttc<br>Phe        | tct<br>Ser        | cac<br>His        | gac<br>Asp        | aac<br>Asn<br>340 | act<br>Thr        | atg<br>Met        | ata<br>Ile        | tct<br>Ser        | att<br>Ile<br>345 | 1104 |
| ttc<br>Phe        | ttc<br>Phe        | gct<br>Ala        | ttg<br>Leu        | ggt<br>Gly<br>350 | ttg<br>Leu        | tac<br>Tyr        | aac<br>Asn        | ggt<br>Gly        | acc<br>Thr<br>355 | aag<br>Lys        | cca<br>Pro        | ttg<br>Leu        | tct<br>Ser        | act<br>Thr<br>360 | act<br>Thr        | 1152 |

| tet et                                                   | + ~=                                                   | a tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a++                    | ~~~                                       | <b>a</b> nn            | 201                    |                                              |                                       |                                |                               |                          |                                 |                                |                         |      |
|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------|------------------------|------------------------|----------------------------------------------|---------------------------------------|--------------------------------|-------------------------------|--------------------------|---------------------------------|--------------------------------|-------------------------|------|
| tct gt<br>Ser Va                                         | l Gl                                                   | u Ser<br>365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ile                    | Glu                                       | Glu                    | Thr                    | Asp<br>370                                   | Gly                                   | Tyr                            | Ser                           | Ala                      | Ser<br>375                      | Trp                            | Thr                     | 1200 |
| gtt cc<br>Val Pr                                         | a tt<br>o Ph<br>38                                     | e Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gct<br>Ala             | aga<br>Arg                                | gct<br>Ala             | tac<br>Tyr<br>385      | gtt<br>Val                                   | gaa<br>Glu                            | atg<br>Met                     | atg<br>Met                    | caa<br>Gln<br>390        | tgt<br>Cys                      | caa<br>Gln                     | gct<br>Ala              | 1248 |
| gaa aa<br>Glu Ly<br>39                                   | s Gl                                                   | a cca<br>u Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ttg<br>Leu             | gtt<br>Val                                | aga<br>Arg<br>400      | gtt<br>Val             | ttg<br>Leu                                   | gtt<br>Val                            | aac<br>Asn                     | gac<br>Asp<br>405             | aga<br>Arg               | gtt<br>Val                      | gtt<br>Val                     | cca<br>Pro              | 1296 |
| ttg ca<br>Leu Hi<br>410                                  | c gg<br>s Gl                                           | t tgt<br>y Cys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gct<br>Ala             | gtt<br>Val<br>415                         | gac<br>Asp             | aag<br>Lys             | ttg<br>Leu                                   | ggt<br>Gly                            | aga<br>Arg<br>420              | tgt<br>Cys                    | aag<br>Lys               | aga<br>Arg                      | gac<br><b>As</b> p             | gac<br>Asp<br>425       | 1344 |
| ttc gt<br>Phe Va                                         | t ga<br>l Gl                                           | a ggt<br>ı Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ttg<br>Leu<br>430      | tct<br>Ser                                | ttc<br>Phe             | gct<br>Ala             | aga<br>Arg                                   | tct<br>Ser<br>435                     | ggt<br>Gly                     | ggt<br>Gly                    | aac<br>Asn               | tgg<br>Trp                      | gct<br>Ala<br>440              | gaa<br>Glu              | 1392 |
| tgt tte<br>Cys Phe                                       | _                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                           |                        |                        |                                              |                                       |                                |                               |                          |                                 |                                |                         | 1404 |
| <211> <                                                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                           |                        |                        |                                              |                                       |                                |                               |                          |                                 |                                |                         |      |
| <211> <212> 1                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                           |                        |                        |                                              |                                       |                                |                               |                          |                                 |                                |                         |      |
| <212> 1<br><213> 2<br><223> 1                            | PRT<br>Arti:<br>Desc:<br>phyta                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on of                  | f Art                                     | cific                  | cial<br>50T-H          | Seqı<br>K91A                                 | ience                                 | e: Co                          | onser                         | nsus                     |                                 |                                |                         |      |
| <212> 1<br><213> 2<br><223> 1<br>1<br><400> 9<br>Met Gly | PRT<br>Arti:<br>Desc:<br>phyta<br>93<br>y Val          | riptions in the second  | on of<br>thei          | f Art                                     | ific<br>11-Q           | EOT-1                  | Ser<br>-15                                   | Ile                                   | Ala                            | Thr                           | Leu                      | -10                             |                                |                         |      |
| <212> 1<br><213> 2<br><223> 1<br>1<br><400> 9            | PRT<br>Arti:<br>Desc:<br>phyta<br>93<br>y Val          | riptions of the riptions of th | on of<br>thei          | f Art                                     | ific<br>11-Q           | EOT-1                  | Ser<br>-15                                   | Ile                                   | Ala                            | Thr                           | Leu                      | -10                             |                                |                         |      |
| <212> 1<br><213> 2<br><223> 1<br>1<br><400> 9<br>Met Gly | PRT<br>Arti:<br>Desc:<br>phyta<br>93<br>Y Va.<br>r Gly | Phe -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on of<br>ther<br>Val   | f Art                                     | Leu Gly                | Leu<br>Pro             | Ser<br>-15<br>Arg                            | Ile<br>Gly                            | Ala<br>Asn                     | Thr<br>Ser<br>5               | Leu<br>His               | -10<br>Ser                      | Суз                            | Asp                     |      |
| <212> 1                                                  | PRT Arti: Desc: phyta 93 y Val r Gly -!                | Phe -20 Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Val Ala Gly            | f Art<br>rmo-1<br>Val<br>Leu<br>Tyr<br>15 | Leu Gly -1             | Leu<br>Pro<br>1<br>Cys | Ser<br>-15<br>Arg                            | Ile<br>Gly<br>Pro                     | Ala<br>Asn<br>Glu<br>20        | Thr<br>Ser<br>5               | Leu<br>His<br>Ser        | -10<br>Ser<br>His               | Cys<br>Leu                     | Asp<br>Trp<br>25        |      |
| <212> 1                                                  | PRT Arti: Desc: phyta 93 y Val r Gly -!                | Phe -20 Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Val Ala Gly Pro 30     | Val Leu Tyr 15                            | Leu Gly -1 Gln Phe     | Leu<br>Pro<br>1<br>Cys | Ser<br>-15<br>Arg<br>Phe                     | Ile<br>Gly<br>Pro<br>Ala<br>35        | Ala<br>Asn<br>Glu<br>20<br>Asp | Thr<br>Ser<br>5<br>Ile<br>Glu | Leu<br>His<br>Ser        | -10<br>Ser<br>His               | Cys<br>Leu<br>Ile<br>40        | Asp<br>Trp<br>25<br>Ser |      |
| <212> 1                                                  | PRT Arti: Desc: phyta 93 y Val -! 1 Asp Tyr D Val      | Phe -20 Thr Gly Ser Pro 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Val Ala Gly Pro 30 Lys | Val Leu Tyr 15 Tyr Asp                    | Leu Gly -1 Gln Phe Cys | Leu Pro 1 Cys Ser      | Ser<br>-15<br>Arg<br>Phe<br>Leu<br>Val<br>50 | Ile<br>Gly<br>Pro<br>Ala<br>35<br>Thr | Ala<br>Asn<br>Glu<br>20<br>Asp | Thr Ser 5 Ile Glu Val         | Leu<br>His<br>Ser<br>Ser | -10<br>Ser<br>His<br>Ala<br>Val | Cys<br>Leu<br>Ile<br>40<br>Leu | Asp<br>Trp<br>25<br>Ser |      |

| Tyr<br>90  | Ala        | Phe        | Leu        | Lys        | Thr<br>95  | Tyr        | Asn        | Tyr        | Thr        | Leu<br>100 | Gly        | Ala        | Asp        | Asp        | Leu<br>105 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Thr        | Pro        | Phe        | Gly        | Glu<br>110 | Asn        | Gln        | Met        | Val        | Asn<br>115 | Ser        | Gly        | Ile        | Lys        | Phe<br>120 | Tyr        |
| Arg        | Arg        | Tyr        | Lys<br>125 | Ala        | Leu        | Ala        | Arg        | Lys<br>130 | Ile        | Val        | Pro        | Phe        | Ile<br>135 | Arg        | Ala        |
| Ser        | Gly        | Ser<br>140 | Asp        | Arg        | Val        | Ile        | Ala<br>145 | Ser        | Ala        | Glu        | Lys        | Phe<br>150 | Ile        | Glu        | Gly        |
| Phe        | Gln<br>155 | Ser        | Ala        | Lys        | Leu        | Ala<br>160 | Asp        | Pro        | Gly        | Ser        | Gln<br>165 | Pro        | His        | Gln        | Ala        |
| Ser<br>170 | Pro        | Val        | Ile        | Asn        | Val<br>175 | Ile        | Ile        | Pro        | Glu        | Gly<br>180 | Ser        | Gly        | Tyr        | Asn        | Asn<br>185 |
| Thr        | Leu        | Asp        | His        | Gly<br>190 | Leu        | Cys        | Thr        | Ala        | Phe<br>195 | Glu        | Asp        | Ser        | Thr        | Leu<br>200 | Gly        |
| Asp        | Asp        | Val        | Glu<br>205 | Ala        | Asn        | Phe        | Thr        | Ala<br>210 | Leu        | Phe        | Ala        | Pro        | Ala<br>215 | Ile        | Arg        |
| Ala        | Arg        | Leu<br>220 | Glu        | Ala        | Asp        | Leu        | Pro<br>225 | Gly        | Val        | Thr        | Leu        | Thr<br>230 | Asp        | Glu        | Asp        |
| Val        | Val<br>235 | Tyr        | Leu        | Met        | Asp        | Met<br>240 | Cys        | Pro        | Phe        | Asp        | Thr<br>245 | Val        | Ala        | Arg        | Thr        |
| 250        |            |            |            |            | 255        |            |            |            |            | 260        |            |            |            | His        | 265        |
|            |            |            |            | 270        |            |            |            |            | 275        |            |            |            |            | Tyr<br>280 | _          |
|            |            |            | 285        |            |            |            |            | 290        |            |            |            |            | 295        | Phe        |            |
|            |            | 300        |            |            |            |            | 305        |            |            |            |            | 310        |            | His        |            |
|            | 315        |            |            |            |            | 320        |            |            |            |            | 325        |            |            | Leu        |            |
| 330        |            |            |            |            | 335        |            |            |            |            | 340        |            |            |            | Ser        | 345        |
|            |            |            |            | 350        |            |            |            |            | 355        |            |            |            |            | Thr<br>360 |            |
| Ser        | Val        | Glu        | Ser<br>365 | Ile        | Glu        | Glu        | Thr        | Asp<br>370 | Gly        | Tyr        | Ser        | Ala        | Ser<br>375 | Trp        | Thr        |

90

Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala 385 390 Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro 405 Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu Cys Phe Ala <210> 94 <211> 1404 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Consensus phytase-10-thermo-5-Q50T <220> <221> sig\_peptide <222> (1)..(69) <220> <221> CDS <222> (1)..(1401) <220> <221> mat peptide <222> (70)..(1401) <400> 94 atg ggc gtg ttc gtc gtg cta ctg tcc att gcc acc ttg ttc ggt tcc 48 Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser ~15 aca tee ggt ace gee ttg ggt eet egt ggt aat tet eac tet tgt gae 96 Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp act gtt gac ggt ggt tac caa tgt ttc cca gaa att tct cac ttg tgg Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp 20 ggt aca tac tct cca ttc ttc tct ttg gct gac gaa tct gct att tct 192 Gly Thr Tyr Ser Pro Phe Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser

| cca<br>Pro        | gac<br>Asp        | gtt<br>Val        | cca<br>Pro<br>45  | aag<br>Lys        | ggt<br>Gly        | tgt<br>Cys        | aga<br>Arg        | gtt<br>Val<br>50  | act<br>Thr        | ttc<br>Phe        | gtt<br>Val        | caa<br>Gln        | gtt<br>Val<br>55  | ttg<br>Leu        | tct<br>Ser        | 240 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| aga<br>Arg        | cac<br>His        | ggt<br>Gly<br>60  | gct<br>Ala        | aga<br>Arg        | tac<br>Tyr        | cca<br>Pro        | act<br>Thr<br>65  | tct<br>Ser        | tct<br>Ser        | aag<br>Lys        | tct<br>Ser        | aag<br>Lys<br>70  | gct<br>Ala        | tac<br>Tyr        | tct<br>Ser        | 288 |
| gct<br>Ala        | ttg<br>Leu<br>75  | att<br>Ile        | gaa<br>Glu        | gct<br>Ala        | att<br>Ile        | caa<br>Gln<br>80  | aag<br>Lys        | aac<br>Asn        | gct<br>Ala        | act<br>Thr        | gct<br>Ala<br>85  | ttc<br>Phe        | aag<br>Lys        | ggt<br>Gly        | aag<br>Lys        | 336 |
| tac<br>Tyr<br>90  | gct<br>Ala        | ttc<br>Phe        | ttg<br>Leu        | aag<br>Lys        | act<br>Thr<br>95  | tac<br>Tyr        | aat<br>Asn        | tac<br>Tyr        | act<br>Thr        | ttg<br>Leu<br>100 | ggt<br>Gly        | gct<br>Ala        | gac<br>Asp        | gac<br>Asp        | ttg<br>Leu<br>105 | 384 |
| act<br>Thr        | cca<br>Pro        | ttc<br>Phe        | ggt<br>Gly        | gaa<br>Glu<br>110 | caa<br>Gln        | caa<br>Gln        | atg<br>Met        | gtt<br>Val        | aac<br>Asn<br>115 | tct<br>Ser        | ggt<br>Gly        | att<br>Ile        | aag<br>Lys        | ttc<br>Phe<br>120 | tac<br>Tyr        | 432 |
| aga<br>Arg        | aga<br>Arg        | tac<br>Tyr        | aag<br>Lys<br>125 | gct<br>Ala        | ttg<br>Leu        | gct<br>Ala        | aga<br>Arg        | aag<br>Lys<br>130 | att<br>Ile        | gtt<br>Val        | cca<br>Pro        | ttc<br>Phe        | att<br>Ile<br>135 | aga<br>Arg        | gct<br>Ala        | 480 |
| tct<br>Ser        | ggt<br>Gly        | tct<br>Ser<br>140 | gac<br>Asp        | aga<br>Arg        | gtt<br>Val        | att<br>Ile        | gct<br>Ala<br>145 | tct<br>Ser        | gcc<br>Ala        | gaa<br>Glu        | aag<br>Lys        | ttc<br>Phe<br>150 | att<br>Ile        | gaa<br>Glu        | ggt<br>Gly        | 528 |
| ttc<br>Phe        | caa<br>Gln<br>155 | tct<br>Ser        | gct<br>Ala        | aag<br>Lys        | ttg<br>Leu        | gct<br>Ala<br>160 | gac<br>Asp        | cca<br>Pro        | ggt<br>Gly        | gct<br>Ala        | aac<br>Asn<br>165 | cca<br>Pro        | cac<br>His        | caa<br>Gln        | gct<br>Ala        | 576 |
| tct<br>Ser<br>170 | cca<br>Pro        | gtt<br>Val        | att<br>Ile        | aac<br>Asn        | gtt<br>Val<br>175 | att<br>Ile        | att<br>Ile        | cca<br>Pro        | gaa<br>Glu        | ggt<br>Gly<br>180 | gct<br>Ala        | ggt<br>Gly        | tac<br>Tyr        | aac<br>Asn        | aac<br>Asn<br>185 | 624 |
| act<br>Thr        | ttg<br>Leu        | gac<br>Asp        | cac<br>His        | ggt<br>Gly<br>190 | ttg<br>Leu        | tgt<br>Cys        | act<br>Thr        | gct<br>Ala        | ttc<br>Phe<br>195 | gaa<br>Glu        | gaa<br>Glu        | tct<br>Ser        | acc<br>Thr        | cta<br>Leu<br>200 | ggt<br>Gly        | 672 |
| gac<br>Asp        | gac<br>Asp        | gtt<br>Val        | gaa<br>Glu<br>205 | gct<br>Ala        | aac<br>Asn        | ttc<br>Phe        | act<br>Thr        | gct<br>Ala<br>210 | gtt<br>Val        | ttc<br>Phe        | gct<br>Ala        | cca<br>Pro        | cca<br>Pro<br>215 | att<br>Ile        | aga<br>Arg        | 720 |
| gct<br>Ala        | aga<br>Arg        | ttg<br>Leu<br>220 | gaa<br>Glu        | gct<br>Ala        | cac<br>His        | ttg<br>Leu        | cca<br>Pro<br>225 | ggt<br>Gly        | gtt<br>Val        | aac<br>Asn        | ttg<br>Leu        | act<br>Thr<br>230 | gac<br>Asp        | gaa<br>Glu        | gac<br>Asp        | 768 |
| gtt<br>Val        | gtt<br>Val<br>235 | aac<br>Asn        | ttg<br>Leu        | atg<br>Met        | gac<br>Asp        | atg<br>Met<br>240 | tgt<br>Cys        | cca<br>Pro        | ttc<br>Phe        | gac<br>Asp        | act<br>Thr<br>245 | gtt<br>Val        | gct<br>Ala        | aga<br>Arg        | act<br>Thr        | 816 |

| tct<br>Ser<br>250 | Asp               | gct<br>Ala        | act<br>Thr        | caa<br>Gln        | ttg<br>Leu<br>255 | tct<br>Ser        | cca<br>Pro        | ttc<br>Phe        | tgt<br>Cys        | gac<br>Asp<br>260 | ttg<br>Leu        | ttc<br>Phe        | act<br>Thr        | cac<br>His        | gac<br>Asp<br>265 | 864  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gaa<br>Glu        | tgg<br>Trp        | att<br>Ile        | caa<br>Gln        | tac<br>Tyr<br>270 | gac<br>Asp        | tac<br>Tyr        | ttg<br>Leu        | caa<br>Gln        | tct<br>Ser<br>275 | ttg<br>Leu        | ggt<br>Gly        | aag<br>Lys        | tac<br>Tyr        | tac<br>Tyr<br>280 | ggt<br>Gly        | 912  |
| tac<br>Tyr        | ggt<br>Gly        | gct<br>Ala        | ggt<br>Gly<br>285 | aac<br>Asn        | cca<br>Pro        | ttg<br>Leu        | ggt<br>Gly        | cca<br>Pro<br>290 | gct<br>Ala        | caa<br>Gln        | ggt<br>Gly        | gtt<br>Val        | ggt<br>Gly<br>295 | ttc<br>Phe        | gtt<br>Val        | 960  |
| aac<br>Asn        | gaa<br>Glu        | ttg<br>Leu<br>300 | att<br>Ile        | gct<br>Ala        | aga<br>Arg        | ttg<br>Leu        | act<br>Thr<br>305 | cac<br>His        | tct<br>Ser        | cca<br>Pro        | gtt<br>Val        | caa<br>Gln<br>310 | gac<br>Asp        | cac<br>His        | act<br>Thr        | 1008 |
| tct<br>Ser        | act<br>Thr<br>315 | aac<br>Asn        | cac<br>His        | act<br>Thr        | ttg<br>Leu        | gac<br>Asp<br>320 | tct<br>Ser        | aac<br>Asn        | cca<br>Pro        | gct<br>Ala        | act<br>Thr<br>325 | ttc<br>Phe        | cca<br>Pro        | ttg<br>Leu        | aac<br>Asn        | 1056 |
| gct<br>Ala<br>330 | act<br>Thr        | ttg<br>Leu        | tac<br>Tyr        | gct<br>Ala        | gac<br>Asp<br>335 | ttc<br>Phe        | tct<br>Ser        | cac<br>His        | gac<br>Asp        | aac<br>Asn<br>340 | act<br>Thr        | atg<br>Met        | gtt<br>Val        | tct<br>Ser        | att<br>Ile<br>345 | 1104 |
| ttc<br>Phe        | ttc<br>Phe        | gct<br>Ala        | ttg<br>Leu        | ggt<br>Gly<br>350 | ttg<br>Leu        | tac<br>Tyr        | aac<br>Asn        | ggt<br>Gly        | act<br>Thr<br>355 | aag<br>Lys        | cca<br>Pro        | ttg<br>Leu        | tct<br>Ser        | act<br>Thr<br>360 | act<br>Thr        | 1152 |
| tct<br>Ser        | gtt<br>Val        | gaa<br>Glu        | tct<br>Ser<br>365 | att<br>Ile        | gaa<br>Glu        | gaa<br>Glu        | act<br>Thr        | gac<br>Asp<br>370 | ggt<br>Gly        | tac<br>Tyr        | tct<br>Ser        | gct<br>Ala        | tct<br>Ser<br>375 | tgg<br>Trp        | act<br>Thr        | 1200 |
| gtt<br>Val        | cca<br>Pro        | ttc<br>Phe<br>380 | gct<br>Ala        | gct<br>Ala        | aga<br>Arg        | gct<br>Ala        | tac<br>Tyr<br>385 | gtt<br>Val        | gaa<br>Glu        | atg<br>Met        | atg<br>Met        | caa<br>Gln<br>390 | tgt<br>Cys        | gaa<br>Glu        | gct<br>Ala        | 1248 |
| gaa<br>Glu        | aag<br>Lys<br>395 | gaa<br>Glu        | cca<br>Pro        | ttg<br>Leu        | gtt<br>Val        | aga<br>Arg<br>400 | gtt<br>Val        | ttg<br>Leu        | gtt<br>Val        | aac<br>Asn        | gac<br>Asp<br>405 | aga<br>Arg        | gtt<br>Val        | gtt<br>Val        | cca<br>Pro        | 1296 |
| ttg<br>Leu<br>410 | cac<br>His        | ggt<br>Gly        | Сув               | Ala               | gtt<br>Val<br>415 | Asp               | aag<br>Lys        | ttg<br>Leu        | Gly               | aga<br>Arg<br>420 | tgt<br>Cys        | aag<br>Lys        | aga<br>Arg        | gac<br>Asp        | gac<br>Asp<br>425 | 1344 |
| ttc<br>Phe        | gtt<br>Val        | gaa<br>Glu        | ggt<br>Gly        | ttg<br>Leu<br>430 | tct<br>Ser        | ttc<br>Phe        | gct<br>Ala        | aga<br>Arg        | tct<br>Ser<br>435 | ggt<br>Gly        | ggt<br>Gly        | aac<br>Asn        | tgg<br>Trp        | gaa<br>Glu<br>440 | gaa<br>Glu        | 1392 |
|                   | ttc<br>Phe        | gct<br>Ala        | taa               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1404 |

<210> 95 <211> 467

<212> PRT

WO 00/43503

<213> Artificial Sequence

<223> Description of Artificial Sequence: Consensus
 phytase-10-thermo-5-Q50T

<400> 95

Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
-20 -15 -10

93

PCT/DK00/00025

Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
-5 -1 1 5

Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
10 20 25

Gly Thr Tyr Ser Pro Phe Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser 30 35 40

Pro Asp Val Pro Lys Gly Cys Arg Val Thr Phe Val Gln Val Leu Ser 45 50 55

Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys Ser Lys Ala Tyr Ser 60 65 70

Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys 75 80 85

Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu 90 95 100 105

Thr Pro Phe Gly Glu Gln Gln Met Val Asn Ser Gly Ile Lys Phe Tyr 110 115 120

Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala 125 130 135

Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly 140 145 150

Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ala Asn Pro His Gln Ala 155 160 165

Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ala Gly Tyr Asn Asn 170 185

Thr Leu Asp His Gly Leu Cys Thr Ala Phe Glu Glu Ser Thr Leu Gly
190 195 200

Asp Asp Val Glu Ala Asn Phe Thr Ala Val Phe Ala Pro Pro Ile Arg 205 210 215

Ala Arg Leu Glu Ala His Leu Pro Gly Val Asn Leu Thr Asp Glu Asp 220 225 230

94

| Val        | Val<br>235 | Asn        | Leu        | Met        | Asp        | Met<br>240 | Cys        | Pro        | Phe        | Asp        | Thr<br>245         | Val        | Ala        | Arg        | Thr        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|
| Ser<br>250 | Asp        | Ala        | Thr        | Gln        | Leu<br>255 | Ser        | Pro        | Phe        | Сув        | Asp<br>260 | Leu                | Phe        | Thr        | His        | Asp<br>265 |
| Glu        | Trp        | Ile        | Gln        | Туг<br>270 | Asp        | Tyr        | Leu        | Gln        | Ser<br>275 | Leu        | Gly                | Lys        | Tyr        | Tyr<br>280 | Gly        |
| Tyr        | Gly        | Ala        | Gly<br>285 | Asn        | Pro        | Leu        | Gly        | Pro<br>290 | Ala        | Gln        | Gly                | Val        | Gly<br>295 | Phe        | Val        |
| Asn        | Glu        | Leu<br>300 | Ile        | Ala        | Arg        | Leu        | Thr<br>305 | His        | Ser        | Pro        | Val                | Gln<br>310 | Asp        | His        | Thr        |
| Ser        | Thr<br>315 | Asn        | His        | Thr        | Leu        | Asp<br>320 | Ser        | Asn        | Pro        | Ala        | Thr<br>325         | Phe        | Pro        | Leu        | Asn        |
| Ala<br>330 | Thr        | Leu        | Tyr        | Ala        | Asp<br>335 | Phe        | Ser        | His        | Asp        | Asn<br>340 | Thr                | Met        | Val        | Ser        | Ile<br>345 |
| Phe        | Phe        | Ala        | Leu        | Gly<br>350 | Leu        | Tyr        | Asn        | Gly        | Thr<br>355 | Lys        | Pro                | Leu        | Ser        | Thr<br>360 | Thr        |
| Ser        | Val        | Glu        | Ser<br>365 | Ile        | Glu        | Glu        | Thr        | Asp<br>370 | Gly        | Tyr        | Ser                | Ala        | Ser<br>375 | Trp        | Thr        |
| Val        | Pro        | Phe<br>380 | Ala        | Ala        | Arg        | Ala        | Tyr<br>385 | Val        | Glu        | Met        | Met                | Gln<br>390 | Cys        | Glu        | Ala        |
| Glu        | Lys<br>395 | Glu        | Pro        | Leu        | Val        | Arg<br>400 | Val        | Leu        | Val        | Asn        | <b>As</b> p<br>405 | Arg        | Val        | Val        | Pro        |
| Leu<br>410 | His        | Gly        | Cys        | Ala        | Val<br>415 | Asp        | Lys        | Leu        | Gly        | Arg<br>420 | Cys                | Lys        | Arg        | Asp        | Asp<br>425 |
| Phe        | Val        | Glu        | Gly        | Leu<br>430 | Ser        | Phe        | Ala        |            | Ser<br>435 | Gly        | Gly                | Asn        | Trp        | Glu<br>440 | Glu        |

Cys Phe Ala

<210> 96

<211> 1404

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
 phytase-10-thermo-5-Q50T-K91A

<220>

|                  |                  | ig_p<br>1)       | epti<br>(69)      | de                 |                  |                  |                  |                   |                   |                  |                  |                  |                   |                   |                   |     |
|------------------|------------------|------------------|-------------------|--------------------|------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|-----|
|                  | 1 > C            |                  | (140              | 1)                 |                  |                  |                  |                   |                   |                  |                  |                  |                   |                   |                   |     |
|                  | 1 > m            |                  | epti<br>.(14      |                    |                  |                  |                  |                   |                   |                  |                  |                  |                   |                   |                   |     |
| -10              | 0> 9             | <i>-</i>         |                   |                    |                  |                  |                  |                   |                   |                  |                  |                  |                   |                   |                   |     |
| atg              | ggc              | gtg              | ttc<br>Phe<br>-20 | gtc<br><b>V</b> al | gtg<br>Val       | cta<br>Leu       | ctg<br>Leu       | tcc<br>Ser<br>-15 | att<br>Ile        | gcc<br>Ala       | acc<br>Thr       | ttg<br>Leu       | ttc<br>Phe<br>-10 | ggt<br>Gly        | tcc<br>Ser        | 48  |
| aca<br>Thr       | tcc<br>Ser       | ggt<br>Gly<br>-5 | acc<br>Thr        | gcc<br>Ala         | ttg<br>Leu       | ggt<br>Gly<br>-1 | cct<br>Pro<br>1  | cgt<br>Arg        | ggt<br>Gly        | aat<br>Asn       | tct<br>Ser<br>5  | cac<br>His       | tct<br>Ser        | tgt<br>Cys        | gac<br>Asp        | 96  |
| act<br>Thr<br>10 | gtt<br>Val       | gac<br>Asp       | ggt<br>Gly        | ggt<br>Gly         | tac<br>Tyr<br>15 | caa<br>Gln       | tgt<br>Cys       | ttc<br>Phe        | cca<br>Pro        | gaa<br>Glu<br>20 | att<br>Ile       | tct<br>Ser       | cac<br>His        | ttg<br>Leu        | tgg<br>Trp<br>25  | 144 |
| ggt<br>Gly       | aca<br>Thr       | tac<br>Tyr       | tct<br>Ser        | cca<br>Pro<br>30   | ttc<br>Phe       | ttc<br>Phe       | tct<br>Ser       | ttg<br>Leu        | gct<br>Ala<br>35  | gac<br>Asp       | gaa<br>Glu       | tct<br>Ser       | gct<br>Ala        | att<br>Ile<br>40  | tct<br>Ser        | 192 |
| cca<br>Pro       | gac<br>Asp       | gtt<br>Val       | cca<br>Pro<br>45  | aag<br>Lys         | ggt<br>Gly       | tgt<br>Cys       | aga<br>Arg       | gtt<br>Val<br>50  | act<br>Thr        | ttc<br>Phe       | gtt<br>Val       | caa<br>Gln       | gtt<br>Val<br>55  | ttg<br>Leu        | tct<br>Ser        | 240 |
| aga<br>Arg       | cac<br>His       | ggt<br>Gly<br>60 | gct<br>Ala        | aga<br>Arg         | tac<br>Tyr       | cca<br>Pro       | act<br>Thr<br>65 | tct<br>Ser        | tct<br>Ser        | gcg<br>Ala       | tct<br>Ser       | aag<br>Lys<br>70 | gct<br>Ala        | tac<br>Tyr        | tct<br>Ser        | 288 |
| gct<br>Ala       | ttg<br>Leu<br>75 | att<br>Ile       | gaa<br>Glu        | gct<br>Ala         | att<br>Ile       | caa<br>Gln<br>80 | aag<br>Lys       | aac<br>Asņ        | gct<br>Ala        | act<br>Thr       | gct<br>Ala<br>85 | ttc<br>Phe       | aag<br>Lys        | ggt<br>Gly        | aag<br>Lys        | 336 |
| tac<br>Tyr<br>90 | gct<br>Ala       | ttc<br>Phe       | ttg<br>Leu        | aag<br>Lys         | act<br>Thr<br>95 | tac<br>Tyr       | Asn              | tac<br>Tyr        | Thr               | Leu              | Gly              | gct<br>Ala       | gac<br>Asp        | gac<br>Asp        | ttg<br>Leu<br>105 | 384 |
| act<br>Thr       | cca<br>Pro       | ttc<br>Phe       | ggt<br>Gly        | gaa<br>Glu<br>110  | caa<br>Gln       | caa<br>Gln       | atg<br>Met       | gtt<br>Val        | aac<br>Asn<br>115 | tct<br>Ser       | ggt<br>Gly       | att<br>Ile       | aag<br>Lys        | ttc<br>Phe<br>120 | tac<br>Tyr        | 432 |
| aga<br>Arg       | aga<br>Arg       | tac<br>Tyr       | aag<br>Lys<br>125 | gct<br>Ala         | ttg<br>Leu       | gct<br>Ala       | aga<br>Arg       | aag<br>Lys<br>130 | att<br>Ile        | gtt<br>Val       | cca<br>Pro       | ttc<br>Phe       | att<br>Ile<br>135 | aga<br>Arg        | gct<br>Ala        | 480 |

WO 00/43503

| tct<br>Ser        | ggt<br>Gly        | tct<br>Ser<br>140 | gac<br>Asp        | aga<br>Arg        | gtt<br>Val        | att<br>Ile        | gct<br>Ala<br>145 | tct<br>Ser        | gcc<br>Ala        | gaa<br>Glu        | aag<br>Lys        | ttc<br>Phe<br>150 | att<br>Ile        | gaa<br>Glu        | ggt<br>Gly        | 528  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| ttc<br>Phe        | caa<br>Gln<br>155 | tct<br>Ser        | gct<br>Ala        | aag<br>Lys        | ttg<br>Leu        | gct<br>Ala<br>160 | gac<br>Asp        | cca<br>Pro        | ggt<br>Gly        | gct<br>Ala        | aac<br>Asn<br>165 | cca<br>Pro        | cac<br>His        | caa<br>Gln        | gct<br>Ala        | 576  |
| tct<br>Ser<br>170 | cca<br>Pro        | gtt<br>Val        | att<br>Ile        | aac<br>Asn        | gtt<br>Val<br>175 | att<br>Ile        | att<br>Ile        | cca<br>Pro        | gaa<br>Glu        | ggt<br>Gly<br>180 | gct<br>Ala        | ggt<br>Gly        | tac<br>Tyr        | aac<br>Asn        | aac<br>Asn<br>185 | 624  |
| act<br>Thr        | ttg<br>Leu        | gac<br>Asp        | cac<br>His        | ggt<br>Gly<br>190 | ttg<br>Leu        | tgt<br>Cys        | act<br>Thr        | gct<br>Ala        | ttc<br>Phe<br>195 | gaa<br>Glu        | gaa<br>Glu        | tct<br>Ser        | acc<br>Thr        | cta<br>Leu<br>200 | ggt<br>Gly        | 672  |
| gac<br>Asp        | gac<br>Asp        | gtt<br>Val        | gaa<br>Glu<br>205 | gct<br>Ala        | aac<br>Asn        | ttc<br>Phe        | act<br>Thr        | gct<br>Ala<br>210 | gtt<br>Val        | ttc<br>Phe        | gct<br>Ala        | cca<br>Pro        | cca<br>Pro<br>215 | att<br>Ile        | aga<br>Arg        | 720  |
| gct<br>Ala        | aga<br>Arg        | ttg<br>Leu<br>220 | gaa<br>Glu        | gct<br>Ala        | cac<br>His        | ttg<br>Leu        | cca<br>Pro<br>225 | ggt<br>Gly        | gtt<br>Val        | aac<br>Asn        | ttg<br>Leu        | act<br>Thr<br>230 | gac<br>Asp        | gaa<br>Glu        | gac<br>Asp        | 768  |
| gtt<br>Val        | gtt<br>Val<br>235 | aac<br>Asn        | ttg<br>Leu        | atg<br>Met        | gac<br>Asp        | atg<br>Met<br>240 | tgt<br>Cys        | cca<br>Pro        | ttc<br>Phe        | gac<br>Asp        | act<br>Thr<br>245 | gtt<br>Val        | gct<br>Ala        | aga<br>Arg        | act<br>Thr        | 816  |
| tct<br>Ser<br>250 | gac<br>Asp        | gct<br>Ala        | act<br>Thr        | caa<br>Gln        | ttg<br>Leu<br>255 | tct<br>Ser        | cca<br>Pro        | ttc<br>Phe        | tgt<br>Cys        | gac<br>Asp<br>260 | ttg<br>Leu        | ttc<br>Phe        | act<br>Thr        | cac<br>His        | gac<br>Asp<br>265 | 864  |
| gaa<br>Glu        | tgg<br>Trp        | att<br>Ile        | caa<br>Gln        | tac<br>Tyr<br>270 | gac<br>Asp        | tac<br>Tyr        | ttg<br>Leu        | caa<br>Gln        | tct<br>Ser<br>275 | ttg<br>Leu        | ggt<br>Gly        | aag<br>Lys        | tac<br>Tyr        | tac<br>Tyr<br>280 | ggt<br>Gly        | 912  |
| tac<br>Tyr        | ggt<br>Gly        | gct<br>Ala        | ggt<br>Gly<br>285 | aac<br>Asn        | cca<br>Pro        | ttg<br>Leu        | ggt<br>Gly        | cca<br>Pro<br>290 | gct<br>Ala        | caa<br>Gln        | ggt<br>Gly        | gtt<br>Val        | ggt<br>Gly<br>295 | ttc<br>Phe        | gtt<br>Val        | 960  |
| aac<br>Asn        | gaa<br>Glu        | ttg<br>Leu<br>300 | att<br>Ile        | gct<br>Ala        | aga<br>Arg        | ttg<br>Leu        | act<br>Thr<br>305 | cac<br>His        | tct<br>Ser        | cca<br>Pro        | Val               | caa<br>Gln<br>310 | Asp               | cac<br>His        | act<br>Thr        | 1008 |
| tct<br>Ser        | act<br>Thr<br>315 | aac<br>Asn        | cac<br>His        | act<br>Thr        | ttg<br>Leu        | gac<br>Asp<br>320 | tct<br>Ser        | aac<br>Asn        | cca<br>Pro        | gct<br>Ala        | act<br>Thr<br>325 | ttc<br>Phe        | cca<br>Pro        | ttg<br>Leu        | aac<br>Asn        | 1056 |
| gct<br>Ala<br>330 | act<br>Thr        | ttg<br>Leu        | tac<br>Tyr        | gct<br>Ala        | gac<br>Asp<br>335 | ttc<br>Phe        | tct<br>Ser        | cac<br>His        | gac<br>Asp        | aac<br>Asn<br>340 | act<br>Thr        | atg<br>Met        | gtt<br>Val        | tct<br>Ser        | att<br>Ile<br>345 | 1104 |

| ttc ttc<br>Phe Phe                              | gct<br>Ala             | ttg<br>Leu        | ggt<br>Gly<br>350 | ttg<br>Leu        | tac<br>Tyr        | aac<br>Asn        | ggt<br>Gly        | act<br>Thr<br>355 | aag<br>Lys        | cca<br>Pro        | ttg<br>Leu        | tct<br>Ser        | act<br>Thr<br>360 | act<br>Thr        | 1152 |
|-------------------------------------------------|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| tct gtt<br>Ser Val                              | gaa<br>Glu             | tct<br>Ser<br>365 | att<br>Ile        | gaa<br>Glu        | gaa<br>Glu        | act<br>Thr        | gac<br>Asp<br>370 | ggt<br>Gly        | tac<br>Tyr        | tct<br>Ser        | gct<br>Ala        | tct<br>Ser<br>375 | tgg<br>Trp        | act<br>Thr        | 1200 |
| gtt cca<br>Val Pro                              | ttc<br>Phe<br>380      | gct<br>Ala        | gct<br>Ala        | aga<br>Arg        | gct<br>Ala        | tac<br>Tyr<br>385 | gtt<br>Val        | gaa<br>Glu        | atg<br>Met        | atg<br>Met        | caa<br>Gln<br>390 | tgt<br>Cys        | gaa<br>Glu        | gct<br>Ala        | 1248 |
| gaa aag<br>Glu Lys<br>395                       | gaa<br>Glu             | cca<br>Pro        | ttg<br>Leu        | gtt<br>Val        | aga<br>Arg<br>400 | gtt<br>Val        | ttg<br>Leu        | gtt<br>Val        | aac<br>Asn        | gac<br>Asp<br>405 | aga<br>Arg        | gtt<br>Val        | gtt<br>Val        | cca<br>Pro        | 1296 |
| ttg cac<br>Leu His<br>410                       | ggt<br>Gly             | tgt<br>Cys        | gct<br>Ala        | gtt<br>Val<br>415 | gac<br>Asp        | aag<br>Lys        | ttg<br>Leu        | ggt<br>Gly        | aga<br>Arg<br>420 | tgt<br>Cys        | aag<br>Lys        | aga<br>Arg        | gac<br>Asp        | gac<br>Asp<br>425 | 1344 |
| ttc gtt<br>Phe Val                              | gaa<br>Glu             | ggt<br>Gly        | ttg<br>Leu<br>430 | tct<br>Ser        | ttc<br>Phe        | gct<br>Ala        | aga<br>Arg        | tct<br>Ser<br>435 | ggt<br>Gly        | ggt<br>Gly        | aac<br>Asn        | tgg<br>Trp        | gaa<br>Glu<br>440 | gaa<br>Glu        | 1392 |
| tgt ttc<br>Cys Phe                              |                        | taa               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1404 |
| <210> 97 <211> 46 <212> PR <213> Ar <223> De ph | 7<br>T<br>tifi<br>scri | ptic              | n of              | Art               |                   |                   |                   | ience             | e: Co             | onser             | nsus              |                   |                   |                   |      |
| <400> 97                                        |                        | D)                | **- 1             | **- 3             |                   | _                 | _                 |                   |                   |                   |                   |                   |                   |                   |      |
| Met Gly                                         | vaı                    | -20               | vai               | vai               | Leu               | ьеп               | -15               | IIe               | Ala               | Thr               | Leu               | Phe<br>-10        | Gly               | Ser               |      |
| Thr Ser                                         | Gly<br>-5              | Thr               | Ala               | Leu               | Gly<br>-1         | Pro<br>1          | Arg               | Gly               | Asn               | Ser<br>5          | His               | Ser               | Cys               | Asp               |      |
| Thr Val                                         | qaA                    | Gly               | Gly               | Tyr<br>15         | Gln               | Cys               | Phe               | Pro               | Glu<br>20         | Ile               | Ser               | His               | Leu               | Trp<br>25         |      |
| Gly Thr                                         | Tyr                    | Ser               | Pro<br>30         | Phe               | Phe               | Ser               | Leu               | Ala<br>35         | Asp               | Glu               | Ser               | Ala               | Ile<br>40         | Ser               |      |
| Pro Asp                                         | Val                    | Pro<br>45         | Lys               | Gly               | Cys               | Arg               | Val<br>50         | Thr               | Phe               | Val               | Gln               | Val<br>55         | Leu               | Ser               |      |
|                                                 |                        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |

WO 00/43503

98

PCT/DK00/00025

| Ala        | Leu<br>75  | Ile        | Glu        | Ala        | Ile        | Gln<br>80  | Lys        | Asn        | Ala        | Thr        | Ala<br>85  | Phe        | Lys        | Gly        | Lys        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Tyr<br>90  | Ala        | Phe        | Leu        | Lys        | Thr<br>95  | Tyr        | Asn        | Tyr        | Thr        | Leu<br>100 | Gly        | Ala        | Asp        | Asp        | Leu<br>105 |
| Thr        | Pro        | Phe        | Gly        | Glu<br>110 | Gln        | Gln        | Met        | Val        | Asn<br>115 | Ser        | Gly        | Ile        | Lys        | Phe<br>120 | Tyr        |
| Arg        | Arg        | Tyr        | Lys<br>125 | Ala        | Leu        | Ala        | Arg        | Lys<br>130 | Ile        | Val        | Pro        | Phe        | Ile<br>135 | Arg        | Ala        |
| Ser        | Gly        | Ser<br>140 | Asp        | Arg        | Val        | Ile        | Ala<br>145 | Ser        | Ala        | Glu        | Lys        | Phe<br>150 | Ile        | Glu        | Gly        |
| Phe        | Gln<br>155 | Ser        | Ala        | Lys        | Leu        | Ala<br>160 | Asp        | Pro        | Gly        | Ala        | Asn<br>165 | Pro        | His        | Gln        | Ala        |
| Ser<br>170 | Pro        | Val        | Ile        | Asn        | Val<br>175 | Ile        | Ile        | Pro        | Glu        | Gly<br>180 | Ala        | Gly        | Tyr        | Asn        | Asn<br>185 |
| Thr        | Leu        | Asp        | His        | Gly<br>190 | Leu        | Cys        | Thr        | Ala        | Phe<br>195 | Glu        | Glu        | Ser        | Thr        | Leu<br>200 | Gly        |
| Asp        | Asp        | Val        | Glu<br>205 | Ala        | Asn        | Phe        | Thr        | Ala<br>210 | Val        | Phe        | Ala        | Pro        | Pro<br>215 | Ile        | Arg        |
| Ala        | Arg        | Leu<br>220 | Glu        | Ala        | His        | Leu        | Pro<br>225 | Gly        | Val        | Asn        | Leu        | Thr<br>230 | Asp        | Glu        | Asp        |
| Val        | Val<br>235 | Asn        | Leu        | Met        | Asp        | Met<br>240 | Cys        | Pro        | Phe        | Asp        | Thr<br>245 | Val        | Ala        | Arg        | Thr        |
| Ser<br>250 | Ąsp        | Ala        | Thr        | Gln        | Leu<br>255 | Ser        | Pro        | Phe        | Сув        | Asp<br>260 | Leu        | Phe        | Thr        | His        | Asp<br>265 |
| Glu        | Trp        | Ile        | Gln        | Tyr<br>270 | qaA        | Tyr        | Leu        | Gln        | Ser<br>275 | Leu        | Gly        | Lys        | Tyr        | Tyr<br>280 | Gly        |
| Tyr        | Gly        | Ala        | Gly<br>285 | Asn        | Pro        | Leu        | Gly        | Pro<br>290 | Ala        | Gln        | Gly        | Val        | Gly<br>295 | Phe        | Val        |
| Asn        | Glu        | Leu<br>300 | Ile        | Ala        | Arg        | Leu        | Thr<br>305 | His        | Ser        | Pro        | Val        | Gln<br>310 | Asp        | His        | Thr        |
| Ser        | Thr<br>315 | Asn        | His        | Thr        | Leu        | Asp<br>320 | Ser        | Asn        | Pro        | Ala        | Thr<br>325 | Phe        | Pro        | Leu        | Asn        |
| Ala<br>330 | Thr        | Leu        | Tyr        | Ala        | Asp<br>335 | Phe        | Ser        | His        | Asp        | Asn<br>340 | Thr        | Met        | Val        | Ser        | 11e<br>345 |
| Phe        | Phe        | Ala        | Leu        | Gly<br>350 | Leu        | Tyr        | Asn        | Gly        | Thr<br>355 | Lys        | Pro        | Leu        | Ser        | Thr<br>360 | Thr        |

99

Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr 365 370 375

Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Glu Ala 380 385 390

Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro 395 400 405

Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp 410 415 420 425

Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Glu Glu 430 435 440

Cys Phe Ala

International application No.

PCT/DK 00/00025 A. CLASSIFICATION OF SUBJECT MATTER IPC7: C12N 9/16
According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC7: C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category\* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,X WO 9949022 A1 (NOVO NORDISK A/S), 30 Sept 1999 1-14 (30.09.99), see abstract, sequences, 100% homology WO 9948380 A1 (NOVO NORDISK A/S), 30 Sept 1999 P,X 1-14 (30.09.99), see abstract, sequences, 100% homology P,X EP 0897985 A2 (F. HOFFMANN-LA ROCHE AG), 1-14 24 February 1999 (24.02.99), see figure 3, page 13, lines 10-11, sequences Α EP 0422697 A1 (AMGEN INC.), 17 April 1991 1-14 (17.04.91)Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive "E" erlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone special reason (as specified) "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person stelled in the art "O" document referring to an oral disclosure, use, exhibition or other document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 17-05- 2000

Authorized officer

Yvonne Siösteen/EÖ
Telephone No. + 46 8 782 25 00

Form PCT/ISA 210 (second sheet) (July 1992)

Name and mailing address of the ISA:

Box 5055, S-102 42 STOCKHOLM

Facsimile No. +46 8 666 02 86

4 May 2000

Swedish Patent Office

International application No.
PCT/DK 00/00025

| C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT  Category*  Citation of document, with indication, where appropriate, of the relevant passages  Relevant to clai  A                                         |           |                                                                           | PCI/DK 00/    | 00025                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------|---------------|----------------------|
| A WO 9735016 Al (NOVO NORDISK BIOTECH, INC.), 25 Sept 1997 (25.09.97), see page 10, line 22 - page 11, line 18   A EP 0420358 Al (GIST-BROCADES N.V.), 3 April 1991 (03.04.91), see page 10, line 6 - line 14 and | Continua  | ation). DOCUMENTS CONSIDERED TO BE RELEVANT                               |               |                      |
| 25 Sept 1997 (25.09.97), see page 10, line 22 - page 11, line 18   A EP 0420358 A1 (GIST-BROCADES N.V.), 3 April 1991 (03.04.91), see page 10, line 6 - line 14 and                                               | Category* | Citation of document, with indication, where appropriate, of the relevant | vant passages | Relevant to claim No |
| (03.04.91), see page 10, line 6 - line 14 and                                                                                                                                                                     | A         | 25 Sept 1997 (25.09.97), see page 10, line                                | e 22 -        | 1-14                 |
|                                                                                                                                                                                                                   | A         | (03.04.91), see page 10, line 6 - line 14                                 | 991<br>and    | 1-14                 |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   | Ì         |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           | •                                                                         |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   | İ         |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |
|                                                                                                                                                                                                                   |           |                                                                           |               |                      |

International application No. PCT/DK 00/00025

| Box I     | Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This inte | ernational search report has not been established in respect of certain claims under Article 17(2 xa) for the following reasons:                                                                                                                  |
| 1.        | Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                                         |
| 2. 🔀      | Claims Nos.: Part of claims 1 and 5 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out. specifically: |
| 3.        | Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).:                                                                                                             |
| Box II    | Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                                          |
| This Inte | ernational Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                           |
| 1.        | As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                                                          |
| 2.        | As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                                              |
| 3.        | As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:                                              |
| 4.        | No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:                                  |
| Remark    | on Protest  The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.                                                                                                |

International application No. PCT/DK 00/00025

In claim 1 SEQ ID NO:26 is said to be 467 amino acids long whereas in the Sequence listing it is only composed of 441 amino acids. In claim 5 SEQ ID NO:29 is said to be 1407 nucleotides long whereas in the Sequence listing it is only composed of 1404 nucleotides. The search has been performed on the sequences as they are described in the Sequence listing.

Form PCT/ISA/210 (extra sheet) (July1992)

Information on patent family members

International application No. 02/12/99 | PCT/DK 00/00025

| cited | atent document<br>I in search repo |    | Publication date |          | Patent family<br>member(s) |       | Publication<br>date  |
|-------|------------------------------------|----|------------------|----------|----------------------------|-------|----------------------|
| 10    | 9949022                            | A1 | 30/09/99         | MO       | 9948380                    | A     | 30/09/99             |
| 0     | 9948380                            | A1 | 30/09/99         | WO       | 9949022                    | Α     | 30/09/99             |
| ΕP    | 0897985                            | A2 | 24/02/99         | CN       | 1208768                    |       | 24/02/99             |
|       |                                    |    |                  | JP<br>NO | 11146791<br>983364         |       | 02/06/99<br>25/01/99 |
|       |                                    |    |                  |          | 703304                     | ^<br> | 23/01/33             |
| P     | 0422697                            | A1 | 17/04/91         | AT       | 103636                     |       | 15/04/94             |
|       |                                    |    |                  | AT       | 70537                      |       | 15/01/92             |
|       |                                    |    |                  | AT       | 107698                     |       | 15/07/94             |
|       |                                    |    |                  | AT       | 115625                     |       | 15/12/94             |
|       |                                    |    |                  | DE       | 3382480                    |       | 30/01/92             |
|       |                                    |    |                  | DE       | 3382742                    |       | 28/07/94             |
|       |                                    |    |                  | DE       | 3382755                    |       | 27/10/94             |
|       |                                    |    |                  | DE       | 3382771                    |       | 27/04/95             |
|       |                                    |    |                  | EP       | 0108128                    |       | 16/05/84             |
|       |                                    |    |                  | SE       | 0108128                    |       | 24 /04 /01           |
|       |                                    |    |                  | EP<br>EP | 0423845                    |       | 24/04/91             |
|       |                                    |    |                  | SE<br>EP | 0423845                    |       | 02/05/91             |
|       |                                    |    |                  | SE       | 0424990                    |       | 02/03/31             |
|       |                                    |    |                  |          | 0424990<br>60097           |       | 16/05/97             |
|       |                                    |    |                  | HK<br>HK | 60197                      |       | 16/05/97             |
|       |                                    |    |                  | HK       | 217596                     |       | 27/12/96             |
|       |                                    |    |                  | IL       | 68581                      |       | 16/08/91             |
|       |                                    |    |                  | ΙĹ       | 87579                      |       | 25/01/94             |
|       |                                    |    |                  | IT       |                            |       |                      |
|       |                                    |    |                  | ĬŤ       | 1221076<br>8367500         |       | 21/06/90<br>00/00/00 |
|       |                                    |    |                  | JP       |                            |       |                      |
|       |                                    |    |                  |          | 2662520                    |       | 15/10/97             |
|       |                                    |    |                  | JP       | 7289260                    |       | 07/11/95             |
|       |                                    |    |                  | JP       | 7291998                    |       | 07/11/95             |
|       |                                    |    |                  | JP       | 8029105                    |       | 27/03/96             |
|       |                                    |    |                  | JP       | 8289795                    |       | 05/11/96             |
|       |                                    |    |                  | LU       | 90391                      |       | 29/06/99<br>20/12/95 |
|       |                                    |    | •                | LV       | 10973                      |       |                      |
|       |                                    |    | •                | US       | 4897471<br>5541293         |       | 30/01/90<br>30/07/96 |
|       |                                    |    |                  | US       |                            |       | 30/07/96             |
|       |                                    |    |                  | US<br>WO | 5661009                    |       | 26/08/97<br>24/11/83 |
|       |                                    |    |                  | WO       | 8304053                    |       | 24/11/83             |
|       |                                    |    |                  | CA<br>US | 1200515<br>4695623         |       | 11/02/86<br>22/09/87 |
|       | 0725016                            |    | 25 /00 /07       |          |                            |       |                      |
| )     | 9735016                            | A1 | 25/09/97         | AU       | 2077197                    |       | 10/10/97             |
|       |                                    |    |                  | UA       | 2539197                    |       | 10/10/97             |
|       |                                    |    |                  | CA       | 2248980                    |       | 25/09/97             |
|       |                                    |    |                  | CN       | 1214081                    |       | 14/04/99             |
|       |                                    |    |                  | EP       | 0904383                    |       | 31/03/99             |
|       |                                    |    |                  | US       | 5866118                    |       | 02/02/99             |
|       |                                    |    |                  | WO       | 9735 <b>0</b> 17           | А     | 25/09/97             |

Information on patent family members

02/12/99

International application No.
PCT/DK 00/00025

|    | atent document<br>d in search report | Publication<br>date | Patent family<br>member(s) |            | Publication<br>date |  |
|----|--------------------------------------|---------------------|----------------------------|------------|---------------------|--|
| EP | 0420358 A1                           | 03/04/91            | SE                         | 0420358 T3 |                     |  |
|    |                                      |                     | ΑT                         | 180014 T   | 15/05/99            |  |
|    |                                      |                     | AU                         | 636673 B   | 06/05/93            |  |
|    |                                      |                     | AU                         | 6501190 A  | 28/04/91            |  |
|    |                                      |                     | BG                         | 60108 A    | 15/10/93            |  |
|    |                                      |                     | CA                         | 2042054 A  | 28/03/91            |  |
|    |                                      |                     | CN                         | 1051058 A  | 01/05/91            |  |
|    |                                      |                     | DE                         | 420358 T   | 12/10/95            |  |
|    |                                      |                     | DE                         | 69033103 D | 00/00/00            |  |
|    |                                      |                     | EP                         | 0779037 A  | 18/06/97            |  |
|    |                                      |                     | ES                         | 2072834 T  | 01/08/95            |  |
|    |                                      |                     | FI                         | 912530 D   | 00/00/00            |  |
|    |                                      |                     | HU                         | 215179 B   | 28/10/98            |  |
|    |                                      |                     | IL                         | 95803 A    | 12/03/99            |  |
|    |                                      |                     | JP                         | 4506007 T  | 22/10/92            |  |
|    |                                      |                     | LT                         | 1527 A     | 26/06/95            |  |
|    |                                      |                     | LT                         | 3957 B     | 27/05/96            |  |
|    |                                      |                     | LV                         | 10310 A,B  | 20/10/94            |  |
|    |                                      |                     | NO                         | 303988 B   | 05/10/98            |  |
|    |                                      |                     | NZ                         | 235478 A   | 26/03/93            |  |
|    |                                      |                     | PL                         | 167790 B   | 30/11/95            |  |
|    |                                      |                     | PL                         | 168470 B   | 29/02/96            |  |
|    |                                      |                     | PT                         | 95447 A,B  | 22/05/91            |  |
|    |                                      |                     | US                         | 5436156 A  | 25/07/95            |  |
|    |                                      |                     | US                         | 5863533 A  | 26/01/99            |  |
|    |                                      |                     | WO                         | 9105053 A  | 18/04/91            |  |

Form PCT/ISA:210 (patent family annex) (July 1992)

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

# IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.