

Stacho Mudrák Martin Budaj

Therion is copyrighted software. Distributed under the GNU General Public License.

Copyright © 1999-2017 Stacho Mudrak, Martin Budaj

This book describes Therion 5.4.1 (2017-04-18).

Code contributions by Olly Betts, Marco Corvi, Vladimir Georgiev, Georg Pacher and Dimitrios Zachariadis.

We owe thanks to Martin Sluka, Ladislav Blazek, Martin Heller, Wookey, Olly Betts and all users for their feedback, support and suggestions.

Переводы (%):

Language	XTherion	Map header	Loch	Translated by
bg	86	87	100	Alexander Yanev, Ivo Tachev, Vladimir Georgiev
$^{\mathrm{CZ}}$	81	88	_	Ladislav Blažek
de	82	92	_	Roger Schuster, Georg Pacher, Benedikt Hallinger
el	85	87	_	Stelios Zacharias
$en[_GB _US]$	75	93	100	Stacho Mudrák, Olly Betts
es	75	83	_	Roman Muñoz
fr	_	87	_	Eric Madelaine, Gilbert Fernandes
it	86	92	_	Marco Corvi
mi	_	91	_	Kyle Davis, Bruce Mutton
pl	_	90	_	Krzysztof Dudziński
$\operatorname{pt}[_BR\big _PT]$	_	83	_	Toni Cavalheiro, Rodrigo Severo
ru	81	86	_	Vasily V. Suhachev, Andrey Kozhenkov
sk	85	93	96	Stacho Mudrák
sq	85	87	_	Fatos Katallozi
zh	86	91	_	Zhang Yuan Hai, Duncan Collis

The cover picture shows survey sketch of *Hrozny kamenolom* Chamber in the Cave of Dead Bats in Slovakia and the map of it produced by Therion.

Содержание

Введение	5
Почему Therion?	5
Особенности	6
Требования к ПО	7
Инсталяция	8
Настройка среды	8
	8
-	0
-	1
	1
Типы данных	2
• •	3
	4
	4
	5
3	5
1	5
•	7
	22
1	25
•	28
	2
	2
J	3
1	4
1	55
	6
1	37
9	7
	; ;7
	88
	88
1 1	9
	2
• •	3
1 1	6
Как ввести нитку хода?	6
	6
	8
• • • • • • • • • • • • • • • • • • • •	8
1	8
	1
<u> </u>	1
1 71 . 1	51
•	i 1
9	i 1
0 0	i 2
	i2
1	14 13

'source'	52
'select'	53
'unselect'	54
'text'	54
'layout'	54
'setup3d'	61
'sketch-colors'	61
'export'	62
Запуск Therion'a	65
XTherion – компилятор	66
Что мы получаем?	67
Информационный файл	67
Файл журнала	67
XTherion	67
Экспорт SQL	67
Списки – пещеры, съемки, продолжения (перспективы)	69
2D-карты	69
Карты для печати	70
Карты для GIS	70
Специальные карты	70
3D-модели	71
Loch	71
Изменение макета PDF-карт	72
Макет страницы в режиме атласа	72
Макет страницы в режиме карты	78
Customizing text labels	78
New map symbols	79
Point symbols	80
Line symbols	81
Area symbols	81
Special symbols	82
Приложение	83
Компиляция	83
Быстрый старт	84
Руководство для хакеров	84
Переменные среды	86
Файлы инициализации	86
Therion	86
XTherion	89
Ограничения	90
Примеры данных	90
History	91
Future	92
General	92
2D-карты	93
3D-модели	93
XTherion	93
Loch	93
Labyrinth	93

LET NO ONE IGNORANT OF GEOMETRY ENTER HERE

AFERMETPHTOS MHAEIS EISITA

—alleged inscription over the entrance of Plato's Academy, 4th century BC

Введение

Therion это программа для создания карт пещер. Ее цель состоит в том, чтобы помочь:

- архивировать данные съемки на компьютере в форме, максимально приближенной к оригинальным записям и зарисовкам, и обрабатывать их удобным и эффективным способом;
- рисовать красивые современные планы и разрезы;
- создавать реалистичные 3D-модели пещер.

Therion работает в операционных системах Unix, Linux, MacOS X и Win32. Исходный код и установщик для Windows доступны на веб-странице (https://therion.speleo.sk).

Therion распространяется под лицензией GNU General Public License.

Почему Therion?

В 1990-е мы активно занимались спелеологией и созданием карт. Имелось несколько компьютерных программ, которые строили нитку хода после закрытия колец и разброса ошибки. Это было большим подспорьев в работе, особенно работая над крупными и сложными пещерными системами. Мы использовали вывод одного из них (ТЈІКРR) в качестве фонового слоя со станциями для ручного рисования карт. После окончания огромного 166-страничного Атласа пещер мертвых летучих мышей в начале 1997 года у нас вскоре возникла проблема: мы нашли новые ходы, соединения между известными ходами. После обработки данных в ТЈІКРR, новые кольца повлияли на положение старых станций, большинство станций уже имели иную позицию из-за разброса невязки колец. Таким образом мы могли бы перерисовывать весь Атлас снова, или принять, что местоположение некоторых новых мест на карте было изображено не точно (в случае колец с длиной около 1 км ошибки достигали 10 м) и пытаться подогнать новые хода к старым съемкам.

Эти проблемы оставались, когда мы пытались рисовать карты с помощью некоторых программ CAD в 1998 и 1999 годах. Всегда было трудно добавить новые исследования без адаптации старых к новым рассчитанным позициям

станций во всей пещере. Мы не нашли ни одной программы, которая могла бы нарисовать современную сложную карту (т.е. не только нитку хода с LRUD), в которых старые части съемки изменялись в соответствии с новыми расчетными координатами станций.

В 1999 году мы начали думать о создании собственной программы для рисования карт. Мы знали о программах, которые идеально подходили для конкретных подзадач. Это был METAPOST— язык программирования высокого уровня для описания векторной графики, Survex — отличная программа для обработки нитки хода, и ТеХ — для верстки результатов. Нужно было только сложить их вместе. В рождество 1999 года мы уже имели первую версию Therion'а. Она состояла примерно из 32 КБ Perl скриптов и МЕТА-РОST макросов, но программа показала, что наши идеи были осуществимы.

В перирод 2000–2001 годов мы искали оптимальный формат входных данных, язык программирования, концепцию интерактивного редактирования карт и внутренних алгоритмов с помощью Martin Sluka (Прага) и Martin Heller (Zurich). В 2002 году мы представили первую версию Therion'а, которая отвечала нашим требованиям.

Особенности

Therion — приложение для командной строки. Он обрабатывает входные файлы в текстовом формате, в том числе 2D-карты, и создает файлы с 2D-картами или 3D-моделью в качестве вывода.

Синтаксис входных файлов подробно описан в последующих главах. Вы можете создавать эти файлы в любом текстовом редакторе, например ed или vi. Файлы содержат инструкции для Therion, такие как:

point 1303 1004 pillar

где point — комманда для символа точки, за которым следуют его координаты и специфический тип символа.

Ручное редактирование таких файлов непросто, особенно когда вы рисуете карты и вам нужно думать о пространственных (декартовых координатах). Поэтому существует специальный графический интерфейс для Therion, называемый XTherion. XTherion работает как расширенный текстовый редактор, редактор карт (где карты рисуются в полностью интерактивном режиме) и компилятор (который запускает Therion).

Это может выглядеть довольно сложно, но этот подход имеет много преимуществ:

• Строгое разделение данных и визуализации. В файлах данных указывается только то, что есть, а не то, на что это похоже. Визуальное

представление добавляется METAPOST на более поздних этапах обработки данных (это очень похоже на представление XML-данных).

Это позволяет изменять символы карты, используемые без изменения входных данных, или объединить большие карты, созданные разными людьми в разных стилях, в одну карту с едиными символами.

2D-карты адаптированы для конкретного масштаба (уровень абстракции, нелинейное масштабирование символов и текстов).

- Все данные привязываются к положениям пикетов съемки. Если координаты станций съемки изменяются в процессе закрытия колец, то все связанные данные перемещаются соответственно, поэтому карта всегда актуальна.
- Therion не зависит от конкретной операционной системы, кодировки символов или редактора входных файлов; входные файлы останутся читабельными для человека.
- Можно добавить новые форматы вывода.
- 3D-модель создается из 2D-карт, чтобы получить реалистичную трехмерную модель не вводя слишком много данных.
- Хотя поддержка WYSIWYG ограничена, вы всегда можете получить то, что хотите.

Требования к ПО

"Программа должна делать одну задачу, и должна делать это хорошо" (Кен Томпсон). Поэтому мы используем несколько внешних программ, которые обрабатывают и визуализируют данные. Therion в связке с другими программами может выполнить свою задачу намного лучше.

Therion'y необходимо:

- T_EX дистрибутив. Необходимо только в том случае, если вы хотите создавать 2D-карты в формате PDF или SVG.
- Tcl/Tk с *BWidget* и опциональным расширением *tkImg*. Это требуется только для XTherion.
- LCDF Typetools, если вы хотите использовать легкую настройку для пользовательских шрифтов в PDF-картах.
- Утилиты *convert* и *identify* из дистрибутива ImageMagick, если вы хотите использовать деформирование эскизов.
- *ghostscript*, если вы хотите создавать калиброванные изображения с геопривязанными PDF-картами.

Установщик для Windows включает все необходимые пакеты, за исключением ghostscript. Прочтите *Приложение*, если вы хотите скомпилировать Therion самостоятельно.

Для отображения карт и моделей вы можете использовать любую из следующих программ:

- любой просмотрщик PDF или SVG для просмотра 2D-карт;
- любые GIS поддерживающие DXF или shapefile форматы для анализа карт;
- соответствующий 3D просмотрщик для моделей, экспортированных в формате отличном от стандартного;
- любой клиент базы данных SQL для обработки экспортированной базы данных.

Инсталяция

Установка из исходников (therion-5.*.tar.gz package):

Исходники — главный дистрибутив Therion. Его необходимо скомпилировать и установить в соответствии с инструкциями в *Приложении*.

Установка в Windows:

Запустите программу установки и следуйте инструкциям. Он устанавливает все необходимые материалы и создает ярлыки для XTherion и Therion Book.

Настройка среды

Therion считывает настройки из файла инициализации. Настройки по умолчанию должны работать отлично для пользователей использующих только латинские символы 1 , стандартные $T_{\!F\!X}$ и METAPOST.

Если вы хотите использовать собственные шрифты для латинских или нелатинских символов в PDF-картах, отредактируйте файл инициализации. Инструкции о том, как это сделать, приведены в *Приложении*.

Как это работает?

Итак, теперь ясно, что нужно Therion'у, давайте посмотрим как он взаимодействует со всеми этими программами:

¹ На PDF-картах Therion отображает большинство акцентированных символов как сочетание акцента и базового символа. Некоторые неявные акценты могут быть опущены. Предустановленные буквы с акцентом включены для словацкого и чешского языков.

НЕ ПАНИКУЙТЕ! Когда ваша система настроена правильно, большинство из файлов скрыто от пользователя, и все необходимые программы автоматически запускаются Therion'ом.

Для работы с Therion'ом достаточно знать, что вам нужно создавать входные данные (лучше всего делать это в XTherion), запускать Therion и отображать выходные файлы (3D-модель, карта, лог-файл) в соответствующей программе.

Для тех, кто хочет больше узнать об этом, кратко изложим приведенную выше блок-схему. Названия программ отображены прямым шрифтом, а файлы данных выделены курсивом. Стрелки показывают поток данных между программами. Временные файлы данных не показаны. Значение пветов:

- черный программы и макросы Therion'a (XTherion написан на Tcl/Tk, поэтому для него требуется этот интерпретатор);
- красный ТЕХ пакет;
- зеленый входные файлы, созданные пользователем и выходные файлы, созданные Therion'ом.

Сам Therion выполняет главную задачу. Он считывает входные файлы, интерпретирует их, находит замкнутые кольца и раскидывает ошибки. Затем он преобразует все другие данные (например 2D-карты) в соответствии с позицией новых станций. Therion экспортирует данные для 2D-карт в формате METAPOST. МЕТAPOST дает фактическую форму абстрактным символам карты в соответствии с определениями символов карты; он создает много файлов PostScript с небольшими фрагментами пещеры. Они считываются и преобразуются в PDF формат, который формирует входные данные для pdfTeX. PdfTeX собирает все фрагменты и создает PDF-файл карты пещеры.

Therion также экспортирует трехмерную модель (полную или нитку хода) в различных форматах.

Нитка хода может быть экспортирована для дальнейшей обработки в любую базу данных SQL.

Первый запуск

После объяснения основных принципов работы Therion'а давайте попробуем его на примерах реальных данных.

- Скачайте примеры данных с сайта Therion'а и распакуйте их на жесткий диск.
- Запустите XTherion (под Unix и MacOS X введя в командной строке 'xtherion', под Windows ярлык в меню *Старт*). Откройте файл 'thconfig' из каталога примеров данных в окне 'therion компилятор'.
- Нажмите 'F9' или 'Компилировать' в меню для запуска Therion'а вы получите несколько сообщений от Therion'а, МЕТАРОЅТ и ТЕХ. PDF-карты и 3D-модель создаются в каталоге с данными.

Кроме того, вы можете открыть файлы данных съемки (*.th) в окне 'therion текстовый редактор' и файлы абрисов карт (*.th2) в окне 'therion редактор карт'. Наличие различных форматов данных может выглядеть запутанным по началу, но все они будут разъяснены в следующих главах.

Only for you, children of doctrine and learning, have we written this work. Examine this book, ponder the meaning we have dispersed in various places and gathered again; what we have concealed in one place we have disclosed in another, that it may be understood by your wisdom.

Vos igitur doctrinę & sapientiæ filii, perquirite in hoc libro, colligendo nostram dispersam intentione, quam in diuersis locis proposuimus, & quod occultatum est à nobis in uno loco, manifestum fecimus illud in alio, ut sapientibus uobis patesiat, uobis enim solis scripsimus

—Henricus C. Agrippa ab Nettesheym, 1533

Создание файлов данных

Основы

Входные файлы для Therion'а имеют текстовый формат. Существует несколько правил о том, как должен выглядеть такой файл:

- Есть два типа команд. Однострочные команды и многострочные команды.
- Однострочная команда завершается символом конца строки. Их синтаксис

command arg1 ... argN [-option1 value1 -option2 value2 ...]

где $arg1 \dots argN$ являются обязательными аргументами, а пары -option value являются параметрами, которые вы можете свободно пропустить. Какие аргументы и опции доступны, зависит от конкретной команды. Примером может служить

```
point 643.5 505.0 gradient -orientation 144.7
```

с тремя обязательными аргументами и одной дополнительной парой опция/значение. Иногда параметров нет или может быть несколько значений.

• Многострочные команды начинаются аналогично однострочным, но продолжаются на последующих строках до явного завершения команды. Эти строки могут содержать либо данные, либо параметры, которые применяются к последующим данным. Если строка данных начинается со слова, зарезервированного для опции, вам нужно вставить '!' перед ней. Синтаксис

```
command arg1 ... argN [-option1 value1 -option2 value2 ...]
...
optionX valueX
data
...
endcommand
```

Опять же, для лучшей иллюстрации приведем пример:

```
line wall -id walltobereferenced
1174.0 744.5
1194.0 756.5 1192.5 757.5 1176.0 791.0
smooth off
1205.5 788.0 1195.5 832.5 1173.5 879.0
endline
```

Эта команда line имеет один обязательный аргумент, тип линии (коренная стена в данном случае), за которой следует одина опция. Следующие две строки содержат данные (координаты кривых Безье). Следующая строка ("smooth off") указывает параметр, который применяется к последующим данным (т.е. не для всей строки, в отличие от опции -id в первой строке), и последняя строка содержит еще несколько данных.

- Если значение параметра или аргумента содержит пробелы, вы должны заключить это значение в " " или []. Если вы хотите поместить двойную кавычку " в текст в " " вам нужно вставить его дважды. Кавычки используются для строк; скобки для числовых значений и ключевых слов.
- Каждая строка, заканчивающаяся обратным слэшем (\), считается продолженной на следующей строке, как будто не было ни разрыва строки, ни зазора.
- Все, что следует за # и до конца строки, даже внутри команды, считается комментарием и игнорируется.
- Многострочные комментарии внутри comment ... endcomment блока разрешены в файлах данных и конфигурационных файлах.

Типы данных

Therion использует следующие типы данных:

- *keyword* ⊳ последовательность A-Z, a-z, 0-9 и _-/ символов (не начинающиеся с '-').
- $ext_keyword >$ слово, которое также может содержать $+^*.,'$ символы, но не в первой позиции.
- date > спецификация даты (или временного интервала) в формате YYYY.MM.DD@HH:MM:SS.SS - YYYY.MM.DD@HH:MM:SS.SS или '-' чтобы указать неопределенную дату.
- person > имя и фамилия человека, разделенные пробельными символами. Используйте '/' чтобы отделить имя и фамилию, если есть несколько имен.
- 5.3 string ▷ последовательность любых символов. Строки могут содержать специальный тег <lang:XX> для разделения переводов. В многоязычных строках только текст между <lang:XX> (где XX это язык, выбранный в

файле инициализации или конфигурации) и следующим тегом <lang:YY> отображается на выходе. Если совпадение не найдено, все до появления тега <lang:ZZ> отображается.

• units \triangleright поддерживаемые единицы длины: meter[s], centimeter[s], inch[es], feet[s], yard[s] (можно сокращать m, cm, in, ft, yd). Поддерживаемые угловые единицы: degree[s], minute[s] (можно сокращать deg, min), grad[s], mil[s], percent[age] (только для угла наклона). Значение градуса может быть введено в десятичной системе (x.y) или в специальной нотации для градусов, минут и секунд (deg[:min[:sec]]).

Системы координат

Therion поддерживает преобразования координат в геодезические системы координат. Вы можете указать опцию сs в объектах centreline, surface, import и layout и ввести XY в выбранной системе координат. Вы также можете указать вывод сs в конфигурационном файле.

Если вы не указали какой-либо сs в вашем наборе данных, то предполагается, что вы работаете в local системе координат, и никакие преобразования не выполняются. Если вы укажете сs в любом месте данных, то вы должны указать его для всех данных местоположения (fix, origin и layout и т. д.).

сѕ применяется ко всем последующим данным местоположения, пока другие сѕ не будут указаны или до конца текущего объекта, в зависимости от того, что наступит раньше.

Поддерживаются следующие системы координат:

- UTM1 UTM60 ⊳ Универсальная поперечная проекция Меркатора (Universal Transverse Mercator) в северном полушарии и заданной зоне, WGS84.
- UTM1N UTM60N ⊳ то же, что и UTM1 UTM60
- UTM1S UTM60S ⊳ UTM в южном полушарии, WGS84.
- lat-long, long-lat ▷ широта (N положительная, S отрицательная) и долгота (Е положительная, W отрицательная) в заданном порядке в градусах (разрешено deg[:min[:sec]]), WGS84. По умолчанию не поддерживается на выходе.
- EPSG:<number> > Большинство систем координат EPSG. Почти каждая система координат, используемая во всем мире, имеет собственный номер EPSG. Чтобы найти номер вашей системы, см. extern/proj4/nad/epsg файл в дистрибутиве исходников.
- ESRI:<number> ▷ Аналогично EPSG, но стандарт ESRI.
- JTSK, iJTSK ⊳ Чехословацкая система S-JTSK, используемая с 1920-х годов с южной и западной осью (JTSK) и ее модифицированной версией с осью,

указывающей восток и север отрицательными числми (iJTSK). JTSK не поддерживается на выходе (как и iJTSK).

- JTSK03, iJTSK03 ⊳ новая реализация S-JTSK, введенная в Словакии в 2011 году.
- OSGB:<H, N, O, S или T><A-Z исключая I> \triangleright Британская Национальная 5.4 Сеть.
 - S-MERC ▷ сферическая проекция Меркатора, используемая различными сайтами онлайн-сопоставления.

Магнитное склонение

Therion содержит встроенный IGRF² — модель геомагнитного поля Земли, 5.4 действительная для периода 1900–2020 гг. Он автоматически используется, если пещера находится в пространстве с использованием любой из поддерживаемых геодезических систем координат, и никакое склонение не определяется пользователем. Вычисленное склонение указано в файле LOG для информации.

Формат данных

Синтаксис входных файлов объясняется в описании отдельных команд. Изучение примеров файлов, распространяемых вместе с Therion, поможет вам понять основы. Смотрите также примеры в *Приложении*.

В каждом из следующих разделов описывается одна команда Therion, использующая следующую структуру:

Описание: примечания относительно этой команды.

Синтаксис: описание синтаксиса.

Контекст: указывает контекст, в котором используется эта команда. Контекст survey означает, что команда должна быть заключена в пару survey ... endsurvey. Контекст scrap означает, что команда должна быть заключена в пару scrap ... endscrap. Контекст all означает, что команда может использоваться в любом месте.

Аргументы: список обязательных аргументов с пояснениями.

Опции: список доступных опций.

Опции командной строки: для многострочных команд, которые могут быть указаны среди строк данных.

² Cm. https://www.ngdc.noaa.gov/IAGA/vmod/

'encoding'

Описание:

устанавливает кодировку входного файла. Это позволяет использовать символы не ASCII во входных файлах.

Синтаксис:

encoding <encoding-name>

Контекст:

Это должна быть самая первая команда в файле.

Аргументы:

• <encoding-name> ▷ чтобы увидеть список всех поддерживаемых имен кодировок, запустите Therion с опцией –print-encodings. Кодировки 'UTF-8' (Unicode) и 'ASCII' (7 бит) всегда поддерживаются.

'input'

Описание:

вставляет содержимое файла на место команды. Расширение по умолчанию '.th' и его можно не указывать. Для максимальной портабельности используйте относительные пути, а для разделения каталогов используйте характерный для Unix '/', а не обратный слеш используемый в Windows '\'.

Синтаксис:

input <file-name>

Контекст:

all

Аргументы:

• <имя файла>

'survey'

Описание:

Survey - основная структура данных.

Survey могут быть вложенными – это позволяет построить иерархическую структуру. Обычный уровень иерархической структуры survey представлен

пещерами, более высокие уровни карстовыми областями, а более низкие уровни, например, ходами пещеры.

Каждый survey имеет собственное пространство имен, указанное его <id>аргументом. Объекты (например станции или скрапы, см. ниже), которые относятся к subsurvey текущего survey, записываются как

```
<object-id>@<subsurvey-id>,
```

или, если есть больше уровней вложения

```
<object-id>@<subsubsurvey-id>.<subsurvey-id>.³
```

Это означает, что идентификаторы объектов должны быть уникальными только в рамках одного survey. Например, имена станций съемки могут быть одинаковыми, если они находятся в разных survey. Это позволяет делать нумерацию станций с 0 в каждом survey или объединение двух пещер в одну пещерную систему без переименования станций съемки.

Синтаксис:

```
survey <id> [OPTIONS]
... другие объекты ...
endsurvey [<id>]
```

Контекст:

none, survey

Аргументы:

• <id>> идентификатор

Onuuu:

- namespace <on/off> > указывает, создавать ли survey пространство имен (on по умолчанию).
- declination <specification> > устанавливает склонение по умолчанию для всех объектов данных в этом survey (которые могут быть переопределены новым склонением в suburveys). The <specification> имеет три формы:
 - 1. [] пустую строку. Это приведет к сбросу склонения.
 - 2. [<значение> <единицы>] установит одно значение (также для undated survey).
 - 3. [<дата1> <начение1> [<дата2> <значение2> ...] <единицы>] установит склонение для нескольких дат. Тогда склонение каждого замера будет установлено в соответствии со спецификацией даты объекта данных. Если вы хотите явно указать склонение для данных без даты, используйте '-' вместо даты.

 $^{^{3}}$ Примечание: невозможно связать любой объект с survey более высокого уровня.

Если не определено склонение и определена какая-либо геодезическая система координат, склонение автоматически вычисляется с использованием встроенной геомагнитной модели.

Обратите внимание: склонение положительно, когда магнитный север находится к востоку от истинного севера.

- person-rename <старое имя> <новое имя> ▷ переименовать человека, имя которого было изменено.
- title <cтрока> > описание объекта.
- entrance <имя-станции> > указывает главный вход в пещеру, представленный в этом survey. Если это не указано, и в этом survey есть только одна станция отмеченная входом, он считается также входом в пещеру. Эта информация используется для cave-list экспорта.

'centreline'

Описание:

Описание данных survey (нитки хода). Синтаксис заимствован из Survex с небольшими изменениями; руководство Survex может быть полезно в качестве дополнительной справки для использования. Можно использовать синоним 'centerline'.

Синтаксис:

```
centreline [OPTIONS]
  date <дата>
  team <персона> [<poли>]
  explo-date <дата>
  explo-team <персона>
  instrument <quantity list> <описание>
  calibrate <quantity list> <zero error> [<scale>]
  units <quantity list> [<factor>] <единицы>
  sd <quantity list> <значение> <единицы>
   grade <grade list>
   declination <значение> <единицы>
   grid-angle <значение> <единицы>
  infer <what> <on/off>
  mark <тип>
  flags <shot flags>
  station <cтанция> <комментарий> [<flags>]
  cs <система координат>
  fix <cтанция> [<x> <y> <z> [<std x> <std y> <std z>]]
  equate <station list>
```

```
data <cтиль> <readings order>
break
group
endgroup
walls <auto/on/off>
vthreshold <число> <единицы>
extend <spec> [<cтанция> [<cтанция>]]
station-names <префикс> <cyффикс>
...
[данные съемки]
```

endcentreline

Контекст:

none, survey

Опции:

- id <ext_keyword> ⊳ id объекта
- author <дата> <персона> ⊳ автор данных и дата их создания
- copyright <дата> <строка> ⊳ дата и имя авторского права
- title <cтрока> ⊳ описание объекта

Опции командной строки:

- date <дата> > дата съемки. Если указано несколько дат, создается временной интервал.
- explo-date <дата> > дата исследования. Если указано несколько дат, создается временной интервал.
- team <персона> [<poли>] > член съемочного отделения. Первый аргумент его имя, остальные описывают роли человека в команде (необязательно в настоящее время не используется). Поддерживаются следующие значения: station, length, tape, [back]compass, [back]bearing, [back]clino, [back]gradient, counter, depth, station, position, notes, pictures, pics, instruments (insts), assistant (dog).
- explo-team <персона> > член исследовательского отделения.
- instrument <quantity list> <description> > описание инструмента, который использовался для определения количественных данных (те же значения, что и роль человека в команде).
- infer <what> <on/off> > 'infer plumbs on' говорит программе интерпретировать угол наклона $\pm 90^{\circ}$ как UP/DOWN (это означает, что угол наклона не будет изменяться при раскидывании невязки). 'infer equates on' программа

будет интерпретировать замеры с длиной 0 в качестве команды equate (что означает, что не применяются никакие корректировки длины).

• declination <значение> <единицы> ⊳ задает склонение для последующих замеров

истинный азимут = измеренный азимут + склонение

Склонение положительно, когда магнитный север находится к востоку от истинного севера. Если ни одно склонение не указано, или склонение сброшено (-), тогда действительная спецификация склонения ищется во всех съемках, в которых находится объект данных. См. опцию declination команды survey.

- grid-angle <значение> <единицы> > задает угол магнитной сетки (склонение от направления на север).
- sd <quantity list> <значение> <единицы> > задает стандартное отклонение для данных измерений. Quantity list может содержать следующие значения: length, tape, bearing, compass, gradient, clino, counter, depth, x, y, z, position, easting, dx, northing, dy, altitude, dz.
- grade <grade list> ▷ устанавливаются стандартные отклонения для угла наклона съемки (смотрите команду grade). Все ранее заданные стандартные отклонения или определения теряются. Если вы хотите изменить SD, используйте опцию sd после этой команды. Если указано несколько определений, то применяется только последнее. Вы можете указать определения только для позиции или только для съемок. Если вы хотите их комбинировать, вы должны использовать их в одной строке.
- units <quantity list> [<factor>] <единицы> > установка единиц для данных измерений (так же как и для sd).
- calibrate <quantity list> <zero error> [<масштаб>] ▷ установка калибровки прибора. Измеренное значение рассчитывается по следующей формуле: измеренное значение = (прочитанное значение zero error) × масштаб. Поддерживаемые единицы такие же, как в sd.
- break ▷ может использоваться между данными, чтобы отделить два пересечения.
- mark [<список станций>] <тип> > установить тип именованных станций.
 <тип> может принимать одно из значений: fixed (фиксированным), painted (нарисованный) и temporary (временным) (по умолчанию). Если список станций отсутствует, все последующие станции будут отмечены соответствующим типом.
- flags <флаги замеров> > установить флаги для следующих замеров. Поддерживаемые флаги: surface (для измерений на поверхности), duplicate (для

дублированных съемок), splay (для коротких боковых замеров, которые по умолчанию скрыты на картах и моделях). Они исключаются из расчетов длины.

Все замеры, имеющие в названии одной из станций '.' или '-' по умолчанию имеют тип splay (смотрите также команду data).

Если флаг установлен на approx[imate], он включается в вычисления общей длины, но также отображается отдельно в статистике съемки. Он должен использоваться для замеров, которые не были сняты должным образом и нуждаются в пересъемке.

Также перед флагом допускается приставка "not".

5.3

• station <станция> <комментарий> [<флаги>] ▷ установить комментарий станции и ее флаги. Если в качестве комментария указан "", то он игнорируется.

Поддерживаемые флаги: entrance (вход), continuation (продолжение), airdraught

[:winter/summer] (ток воздуха:зима/лето), sink (понор), spring (источник), doline (карстовая воронка), dig (раскоп), arch (свод), overhang (нависание потолка). Также приставка not может быть использована перед флагом, чтобы удалить ранее добавленный флаг.

Вы также можете указать пользовательские атрибуты для станции, используя флаг attr, за которым следуют имя и значение атрибута. Пример: station 4 "колодец для изучения" continuation attr code "V"

Если есть ход, который был исследован, но еще не снят, то предполагаемая исследуемая длина этого хода может быть учтена добавлением к станции флага continuation. Просто добавьте флаг explored <исследовательская-длинна> для станции. Исследовательские длины являются частью статистики съемки/пещеры, отображаемой отдельно. Пример: station 40 "ужасная прогулка" continuation explored 100m

- cs <система координат> ⊳ система координат для станций с фиксированными координатами.
- fix <station> [<x> <y> <z> [<std x> <std y> <std z>]] \triangleright фиксировать координаты станции (с указанными ошибками к ним применяется только преобразование единиц, а не калибровка).
- equate <список станций> > эквивалентность заданных точек.
- data <стиль> <порядок считывания> > установить стиль данных (normal, topofil, diving, cartesian, cylpolar, dimensions, nosurvey) и порядок считывания.

 Считывание может принимать одно из следующих ключевых слов: station,

from, to, tape/length, [back]compass/[back]bearing, [back]clino/[back]gradient, depth, fromdepth, todepth, depthchange, counter, fromcount, tocount, northing, easting, altitude, up/ceiling⁴, down/floor, left, right, ignore, ignoreall.

Смотрите руководство к Survex для подробностей.

Для разноуровневых данных поддерживаются ключевые слова новой строки и направления. Если есть прямые и обратные данные азимута или угла, то вычисляется среднее из них.

Если в замере одна из станций имеет название '.' или '-', то у замера 5.3 устанавливается атрибут splay. Dot следует использовать для замеров, заканчивающихся внутри хода, dash для замеров, заканчивающихся на стенах хода, на полу или потолке. Хотя Therion еще не делает различий между ними, его следует использовать для улучшения 3D-моделирования в будущем.

• group

- endgroup > group/endgroup пара позволяет пользователю делать временные изменения практически в любых настройках (калибровка, единицы, sd, данные, флаги...).
- walls <auto/on/off> ▷ включение/выключение генерации формы хода из данных LRUD для последующих замеров. Если установлен auto, то ход генерируется только в том случае, если отсутствует скрап содержащий данную нитку хода.
- vthreshold <число> <единицы> ⊳ пороговое значение для интерпретации показаний LRUD как показания лево-право-верх-низ, перпендикулярное замеру.

Если ходы горизонтальны (наклон < vthreshold), LR считается перпендикулярным к замеру, а UD вертикальными.

Если ходы более или менее вертикальные (наклон > vthreshold), тогда даже UD становится перпендикулярным к замеру, в противном случае ходы выглядят не очень хорошо. В случае вертикальных замеров UD интерпретируется как измерение с севера на юг от станции, чтобы построить вертикальные участки модели.

• extend <spec> [<cтанция>]] > определение развертки нитки хода. <spec> принимает следующие значения:

normal/reverse > развернуть данную и следующие станции в таком же/обратном направлении по отношению к предыдущей станции. Если заданы две станции – направление применяется только к данному замеру;

 $^{^4}$ Размер может быть задан как пара [<from> <to>], что означает размер в начале и в конце замера.

left/right ⊳ как указано выше, но направление указано явно;

vertical \triangleright не перемещает станцию (замер) в направлении X, использует только Z компонент замера;

start ⊳ указать начальную станцию (замер);

ignore > игнорирует указанную станцию (замер), продолжает развертку как у другой станции (замера), если возможно;

hide ⊳ не показывает указанную станцию (замер) в развертке;

Если ни одна из станций не указана, <spec> действует для следующих указанных замеров.

• station-names <префикс> <суффикс> > добавляет данный префикс/суффикс для всех станций съемки в текущей нитки хода. Для сохранения типизации. ■

'scrap'

Описание:

Скрап – это часть 2D-карты, которая не содержит пересекающихся ходов (т.е. все хода могут быть нарисованы на бумаге не пересекаясь). Для небольших и простых пещер вся пещера может поместиться в одном скрапе. В сложных системах скрап обычно представляет собой один грот или один ход. В идеале скрап содержит около 100 м пещеры. Каждый скрап обрабатывается отдельно METAPOST; слишком большие скрапы могут превысить размер памяти METAPOST и вызвать ошибки.

Скрап состоит из точечных, строковых и областных символов. Смотрите главу *Как карта собирается в единое целое* для объяснения, как и в котором порядке они выводятся при отображении.

Граница скрапа состоит из линий с опцией -outline или -outline in (стены хода по умалчанию имеют опцию -outline out). Эти линии не должны пересекаться, иначе, Therion (METAPOST) не может определить внутреннюю часть скрапа и METAPOST выдает предупреждение "scrap outline intersects itself".

⁵ Если необходимо, скрапы могут быть намного меньше, несколько метров пещеры. При определении размера скрапа учитывайте следующее: Использование небольших скрапов может потребовать больше времени для их обрисовки и для оптимизации их объединения. С другой стороны, маленькие скрапы, вероятно, будут менее искажены алгоритмами преобразования карт, чем более крупные скрапы. Слишком большие скрапы могут исчерпать память METAPOST, если часто используются заливки хода. Кроме того, редактор карт в XTherion'е медленнее реагирует при редактировании больших скрапов.

У каждого скрапа есть своя собственная локальная декартова система координат, которая обычно соответствует миллиметровой бумаге (если Вы определяете координаты символов карты вручную) или пикселям отсканированного изображения (если Вы используете XTherion). Therion делает преобразование этой локальной системы координат в реальные координаты, используя позиции станций съемки, которые определены в скрапе как символы точки на карте и определены в нитке хода. Если скрап не содержит по крайней мере две станции съемки с определением -name, тогда Вы должны использовать опцию -scale для калибровки скрапа (это обычно используется для сечений).

Трансформация состоит из следующих шагов:

- линейное преобразование (смещение, масштабирование и вращение), которые 'лучше всего' соответствуют станциям. 'Лучше всего' означает, что сумма квадратов расстояний между соответствующими станциями до и после трансформации минимальна. Результат отображается красный, если опция debug в команде layout установлена в on.
- Non-linear transformation of the scrap which (1) moves survey stations to their correct position, (2) is continuous. Отображается синим в режиме debug.
- Non-linear transformation of the scrap which (1) moves joined points together, (2) doesn't move survey stations, (3) is continuous. В конце положение контрольных точек кривых корректируется, чтобы сохранить гладкость. Результат готовая карта.

Синтаксис:scrap <id> [ОПЦИИ]... команды точек, линий и областей ...endscrap [<id>]

Контекст:

none, survey

Аргументы:

• <id>> идентификатор скрапа.

Опции:

- projection <спецификация> > указывает проекцию чертежа. Каждая проекция идентифицируется типом и дополнительно индексом в форме тип[:индекс].
 Индекс может быть любым ключевым словом. Поддерживаются следующие типы проекций:
 - 1. none > нет проекции, используется для сечений или карт, которые не зависят от данных съемки (например, оцифровка старых карт, где нет нитки хода). Для этой проекции не указывается индекс.
 - 2. plan ⊳ проекция основного плана (по умолчанию).

- 3. elevation ⊳ ортогональная проекция (проецируемый профиль a.k.a.), которая опционально принимает в качестве аргумента азимут сечения (например, [elevation 10] или [elevation 10 deq]).
- 4. extended ⊳ разрез-развертка (развертка a.k.a.).
- scale <спецификация> > используется для предварительного масштабирования (преобразования координат пикселей в метры) данных скрапа. Если проекция скрапа установлена в none, то это единственное преобразование, которое выполняется с координатами. <Спецификация> имеет четыре формы:
 - 1. <число> ⊳ <число> метров на единицу чертежа.
 - 2. [<число> <единица длины>] ⊳ <число> <единиц длины> на единицу чертежа.
 - 3. [<число1> <число2> <единица длины>] > <число1> чертежных единиц соответствует <число2> <единиц длины> в действительности.
 - 4. [<число1> ... <число8> [<единица длины>]] \triangleright это самый общий формат, где вы указываете по порядку координаты x и y двух точек в скрапе и две точки в действительности. При желании вы также можете указать единицы для координат 'точек в действительности'. Эта форма позволяет применять как масштабирование, так и поворот скрапа.
- cs <система координат> > предполагается, что (калиброванные) локальные координаты скрапа приведены к заданной системе координат. Это полезно для абсолютного размещения импортированных эскизов, где не указана ни одна станция съемки⁶.
- stations <список имен станций> ▷ станции, которые вы хотите использовать в скрапе, но которые не используются для его трансформации. Вам не нужно указывать (рисовать) их с помощью команды point station.
- sketch <имя файла> <х> <у> > определение растрового рисунка в качестве эскиза/подложки (координаты нижнего левого угла).
- walls <on/off/auto> ⊳ указывает, следует ли использовать скрап в создании 3D-модели.
- flip (none)/horizontal/vertical ⊳ зеркально отображает скрап после трансформации масштаба.
- station-names <префикс> <суффикс> ⊳ добавляет префикс/суффикс всем станциям скрапа в текущей съемки. Для сохранения типизации.
- author <дата> <персона> ⊳ автор данных и дата их создания.
- copyright <дата> <текст> > авторские права и их дата.
- title <текст> > описание объекта.

 $^{^{6}}$ Если в скрапе есть несколько станций съемки, св игнорируется.

'point'

Описание:

Точка - это команда для рисования символа точки.

Синтаксис:

point $\langle x \rangle \langle y \rangle \langle \tau u \pi \rangle$ [ОПЦИИ]

Контекст:

scrap

Аргументы:

- <х> и <у> являются координатами чертежа объекта.
- <тип> определяет тип объекта. Поддерживаются следующие типы:

специальные объекты: station⁷, section⁸, dimensions⁹;

метки: label, remark, altitude¹⁰, height¹¹, passage-height¹², station-name¹³, date;

символы заполнения $xoga^{14}$: bedrock, sand, raft, clay, pebbles, debris, blocks, water, ice, guano, snow;

спелео-формы: flowstone, moonmilk, stalactite, stalagmite, pillar, curtain, helictite, soda-straw, crystal, wall-calcite, popcorn, disk, gypsum, gypsum-flower, aragonite, cave-pearl, rimstone-pool, rimstone-dam, anastomosis, karren, scallop, flute, raft-cone, clay-tree;

5.4

оборудование: anchor, rope, fixed-ladder, rope-ladder, steps, bridge, traverse, camp, no-equipment;

⁷ Станция съемки. Для каждого скрапа (за исключением скрапов с проекцией 'none') должна быть указана хотя бы одна станция с опцией -name.

⁸ section является местом для размещения поперечного сечения в этой точке. Этот символ не имеет визуального представления. Поперечное сечение должно быть в отдельном скрапе с проекцией 'none'. Вы можете указать ее через опцию -scrap.

⁹ Используя опцию -value можно указать размеры хода выше/ниже плоскости нитки хода, используемой при создании 3D-модели.

 $^{^{10}}$ Знак общей высоты. Все высоты экспортируются как разница от Z сетки (по умолчанию 0). Чтобы отобразить высоту на стене прохода, используйте опцию altitude для любой точки линии стены хода.

¹¹ Высота внутри хода (например, яма и т. д.); смотрите ниже подробнее.

¹² Высота хода; смотрите ниже.

 $^{^{13}}$ Если текст не указан, используется имя ближайшей станции.

 $^{^{14}\,\}mathrm{B}$ отличие от других точечных символов, они подрезаются границей скрапа. Смотрите главу Как карта собирается в единое целое.

окончание ходов: continuation, narrow-end, low-end, flowstone-choke, breakdownchoke, clay-choke, entrance; 5.4

gpyrue: dig, archeo-material, paleo-material, vegetable-debris, root, water-flow, spring¹⁵, sink, ice-stalactite, ice-stalagmite, ice-pillar, gradient, air-draught¹⁶, 5.4 map-connection¹⁷, extra¹⁸, u¹⁹.

Опции:

• subtype <подтип> > определяет подтип объекта. Поддерживаются следующие подтипы для заданных типов:

station (станция)²⁰: temporary (default), painted, natural, fixed;

air-draught (ток воздуха): winter (зимой), summer (летом), undefined (не определено) (по умолчанию);

water-flow (водоток): permanent (по умолчанию), intermittent, paleo.

Подтип может быть указан также непосредственно в $\langle type \rangle$ с использованием ':' в качестве разделителя²¹.

Любой подтип может использоваться с пользовательским типом (u). В этом случае вам также необходимо определить соответствующий метапост символ (смотрите главу *Новые символы карты*).

- orientation/orient <число> > определяет ориентацию символа. Если не указано, то ориентировано на север. $0 \le$ число < 360.
- align ▷ выравнивание символа или текста. Принимает следующие значения: center, c, top, t, bottom, b, left, l, right, r, top-left, tl, top-right, tr, bottom-left, bl, bottom-right, br.
- scale \triangleright масштаб символа, может принимать значения: tiny (xs), small (s), normal (m), large (l), huge (xl) или числовое значение. По умолчанию normal. Именованные масштабы кратны $\sqrt{2}$, и имеют следующие значения $xs\equiv 0.5$, $s\equiv 0.707$, $m\equiv 1.0$, $l\equiv 1.414$ и $xl\equiv 2.0$.
- place <bottom/default/top> > порядок отображения изменений на карте.
- clip <on/off> > указывает, подрезать ли символ границей скрапа. Вы не можете указать этот параметр для следующих символов: station, stationname, label, remark, date, altitude, height, passage-height.

 $^{^{15}\,\}mathrm{Bcerдa}$ используйте символы spring и sink со стрелкой water-flow.

 $^{^{16}}$ Number of ticks is set according to -scale option.

 $^{^{17}}$ Виртуальная точка, используемая для указания соединения между выносками карт (разрез-развертка, смещение карты).

¹⁸ Точка морфинга.

 $^{^{19}}$ Пользовательские точечные символы.

 $^{^{20}}$ Если подтип станции не указан, Therion считает ее пикетом, если она указана в нитке хода.

 $^{^{21}\,\}mathrm{Haпpumep}$, station:fixed.

- dist <дистанция> ▷ применяется для дополнительных точек, указывает расстояние до ближайшей станции (или станции, указанной с помощью опции -from. Если не указано, используется соответствующее значение из данных LRUD.
- from <станция> > применяется для дополнительных точек, указывает опорную станцию.
- visibility <on/off> > отображает/скрывает символ.
- context <point/line/area> <тип символа> ▷ (для использования с опциями symbol-hide и symbol-show в layout) символ будет скрыт/показан в соответствии с правилами для указанного <типа символа>²².
- id <идентификатор> ⊳ идентификатор символа.

Специальные параметры:

- name <cсылка> > если тип точки это station (станция), то эта опция дает ссылку на реальную станцию съемки.
- extend [prev[ious] <станция>] ▷ если тип точки это station (станция), а скрап является extended elevation (разрез-разверткой), то вы можете регулировать развертку нитки хода, используя эту опцию.
- scrap <cноска> ⊳ если тип точки это section (сечение), то эта сноска ссылается на скрап поперечного сечения.
- explored <длина> > если тип точки это continuation (продолжение), то вы можете указать длину ходов, исследованных, но пока не снятых. Это значение впоследствии отображается в статистике съемки/пещеры.
- text \triangleright текст label (метки), remark (примечания) или continuation (продолжения). Он может содержать следующие зарезервированные слова для форматирования²³:

 > разрыв строки;

<center>/<centre>, <left>, <right> ▷ выравнивание строк для многострочных меток. Игнорируется, если нет тега
br>;

<thsp> ⊳ тонкий пробел;

²² Пример: если вы укажете -context point air-draught текстовую метку, на которой отображается дата наблюдения, команда symbol-hide point air-draught скроет стрелку ток воздуха и соответствующую ей текстовую метку.

 $^{^{23}}$ Для вывода SVG учитываются только зарезервированные слова

thsp>, <it>, <bf>, <rm> и <lang: XX>; все остальные игнорируются.

<rm>, <it>, <bf>, <ss>, <si> > переключают шрифты;

<rtl> и </rtl> > отмечает начало и конец вывода текста справа налево;

те 5.3

5.3

<lang:XX> > создает многоязычную текстовую метку (подробнее смотрите описание типа string).

• value > значение точек height (высота уступа/камина/колодца), passageheight (высота хода), altitude (высотная отметка) или dimensions (размеры хода).

height (высота уступа/камина/колодца): в зависимости от знака значения (положительный, отрицательный или без знака), этот тип символа представляет собой высоту трубы, глубину колодца или высоту уступа. Числовое значение может сопровождаться необязательным символом '?', чтобы добавить единицы измерения (например -value [40? ft]).

passage-height (высота хода): поддерживаются следующие четыре формы значения: +<число> (высота потолка), -<число> (глубина этажа или глубина воды), <число> (расстояние между потолком и полом) и [+<число> -<число>] расстояние до потолка и расстояние до пола).

altitude (высотная отметка): указанное значение представляет собой разницу высот по сравнению с ближайшей станции. Если значение altitude (высотная отметка) имеет префикс "fix" (например -value [fix 1300]), то это значение используется как абсолютная высота. Значение может сопровождаться единицами измерения.

dimensions (размеры хода): -value [<выше> <ниже> [<единицы>]] определяет размеры ходов выше/ниже плоскости нитки хода, используется в 3D-модели.

'line'

Описание:

Line – это команда для рисования символа линии на карте. Каждый символ линии ориентирован, и его визуализация может зависеть от его ориентации (например, галочка на границе линии). Главное правило заключается в том, что свободное пространство хода находится слева, а порода справа. Examples: the lower side of a pitch, higher side of a chimney and interior of a passage are on the left side of pitch, chimney or wall symbols, respectively.

Синтаксис:

```
line <тип> [OPTIONS]
        [OPTIONS]
        ...
        [LINE DATA]
        ...
        [OPTIONS]
        ...
        [LINE DATA]
        ...
endline

Kонтекст:
scrap
```

Аргументы:

• <тип> это зарезервированное слово, которое определяет тип линии. Поддерживаются следующие типы:

символы ходов: wall (стена), contour (контур), slope (склон) 24 , floor-step (уступ пола), pit (колодец), ceiling-step (уступ потолка), chimney (камин), overhang (нависание потолка), ceiling-meander (меандр, канал в потолке), floor-meander (меандр, канал в потолке);

заливка ходов: flowstone (натечный каскад), moonmilk (мондмильх), rockborder (внешняя кромка глыбы) 25 , rock-edge (внутренняя кромка глыбы) 26 , water-flow (водоток);

текстовые метки: label (текстовая метка);

cnequaльныe: border (граница), arrow (стрелка), section (выносная линия сечения)²⁷, survey (нитка хода)²⁸, map-connection (линия выноса)²⁹, u³⁰.

²⁷ Линия показывает положение поперечного сечения. If both control points (red dots) of a Bezier curve (grey line) are given then the section line (blue) is drawn up to the perpendicular projection (dotted) of the first control point and from the projection (dotted) of the section control point. Кривая сечения не отображается.

 $^{^{28}\,\}mathrm{Hutka}$ хода автоматически рисуется Therion'ом.

²⁴ Линия склона обозначает верхнюю границу области склона. Необходимо указать 1size по меньшей мере для одной точки. Длина и ориентация уклона определяется указанными 1-size и orientation (ориентация) в ближайших точках. Если ориентация отсутствует, то градиентные метки перпендикулярны линии наклона.

 $^{^{25}}$ Внешние границы крупных валунов. Если линия замкнута, она заполняется цветом фона.

 $^{^{26}}$ Внутренние края больших валунов.

 $^{^{29}}$ Используется для указания соединения между картами (при смещении или же точками в разрез-развертке).

³⁰ Для определенных пользователем линейных символов.

Опции командной строки:

5.4

• subtype <подтип> > определяет подтип линии. Для данных типов поддерживаются следующие подтипы:

wall (стена): invisible (неотображаемая), bedrock (коренная порода) (по умолчанию), sand (песчаная), clay (глинистая), pebbles (из крупной гальки), debris (из щебня), blocks (из блоков), ice (ледяная), underlying (лежащая ниже), overlying (лежащая выше), unsurveyed (не привязанная к опорным точкам), presumed (предполагаемая), pit (стены колодца)³¹, flowstone (глыбовые), moonmilk (покрытые мондмильхом);

border (граница): visible (видимая) (по умолчанию), invisible (неотображаемая), temporary (временная), presumed (предполагаемая);

water-flow (водоток): permanent (постоянный) (по умолчанию), conjectural (предполагаемый), intermittent (временный);

survey (нитка хода): cave (пещерная) (по умолчанию), surface (поверхностная) (по умолчанию, если нитка хода имеет флаг surface).

Подтип может быть указан также непосредственно в <типе> с использованием ':' в качестве разделителя 32 .

Любой подтип может использоваться с пользовательским типом (u). В этом случае вам также необходимо определить соответствующий метапост символ (смотрите главу *Новые символы карты*).

- [LINE DATA] specify either the coordinates of a line segment $\langle x \rangle \langle y \rangle$, or coordinates of a Bezier curve arc $\langle c1x \rangle \langle c1y \rangle \langle c2x \rangle \langle c2y \rangle \langle x \rangle \langle y \rangle$, where c indicates the control point.
- close <on/off/auto> > determines whether a line is closed or not
- mark <keyword> ▷ is used to mark the point on the line (see join command).
- orientation/orient <number> \triangleright orientation of the symbols on the line. If not specified, it's perpendicular to the line on its left side. $0 \le \text{number} < 360$.
- outline <in/out/none> > determines whether the line serves as a border line for a scrap. Default value is 'out' for walls, 'none' for all other lines. Use -outline in for large pillars etc.
- reverse <on/off> > whether points are given in reverse order.
- size <number> > line width (left and right sizes are set to one half of this value)
- r-size <number> > size of the line to the right
- l-size <number> > same to the left. Required for slope type.

 $^{^{31}}$ Обычно открытые с поверхности.

³² Например, border:invisible.

- smooth <on/off/auto> ▷ whether the line is smooth at the given point. Auto is default.
- adjust <horizontal/vertical> \triangleright shifts the line point to be aligned horizontally/vertically with the previous point (or next point if there is no previous point). The result is horizontal/vertical line segment). If all line points have this option, they are aligned to the average y or x coordinate, respectively. This option is not allowed in the plan projection.
- place <bottom/default/top> > порядок отображения изменений на карте.
- clip <on/off> > указывает, подрезать ли символ границей скрапа.
- visibility <on/off> > отображает/скрывает символ.
- context <point/line/area> <symbol-type> ▷ (to be used with symbol-hide and symbol-show layout options) symbol will be hidden/shown according to rules for specified <symbol-type>.

Специальные параметры:

- altitude <value> > can be specified only with the wall type. This option creates an altitude label on the wall. Все высоты экспортируются как разница от Z сетки (по умолчанию 0). If the value is specified, it gives the altitude difference of the point on the wall relative to the nearest station. The value can be prefixed by a keyword "fix", then no nearest station is taken into consideration; the absolute given value is used instead. Units can follow the value. Examples: +4, [+4 m], [fix 1510 m].
- border <on/off> ▷ this option can be specified only with the 'slope' symbol type. It switches on/off the border line of the slope.
- direction <begin/end/both/none/point> ▷ can be used only with the section type. It indicates where to put a direction arrow on the section line. None is default.
- gradient <none/center/point> > can be used only with the contour type and indicates where to put a gradient mark on the contour line. If there is no gradient specification, behaviour is symbol-set dependent (e.g. no tick in UIS, tick in the middle in SKBB).
- head <begin/end/both/none> ▷ can be used only with the arrow type and indicates where to put an arrow head. End is default.
- text <string> > valid only for label lines.
- height <value> > height of pit or wall:pit; available in METAPOST as a numeric 5.4
 variable ATTR_height.

Опции:

• id $\langle ext_keyword \rangle \triangleright ID$ of the symbol.

'area'

Описание:

Area is specified by surrounding border lines. They may be of any type, but must be listed in order and each pair of consecutive lines must intersect. In order to be sure that lines intersect even after scrap transformation you may e.g. continue a lake border 1 cm behind a passage wall—these overlaps will be automatically clipped by scrap border. You may use invisible border to achieve this inside of the passage.

Синтаксис:

area <type> place <bottom/default/top> clip <on/off> visibility <on/off> ... border line references ... endarea

Контекст:

scrap

Аргументы:

• <type> is one of following: water, sump, sand, debris, blocks, flowstone, moonmilk, snow, ice, clay, pebbles, bedrock³³, u³⁴.

Опции командной строки:

- the data lines consist of border line references (IDs)
- place <bottom/default/top> > changes displaying order in the map.
- clip <on/off> > указывает, подрезать ли символ границей скрапа.
- visibility <on/off> ▷ отображает/скрывает символ.
- context <point/line/area> <symbol-type> ▷ (to be used with symbol-hide and symbol-show layout options) symbol will be hidden/shown according to rules for specified <symbol-type>.

Onuuu:

• id <ext_keyword> ▷ ID of the symbol.

'join'

Описание:

Join works in two modes: it joins either two scraps or two or more points or lines in a map together.

³³ An empty area which can be used to clean the background.

³⁴ For user defined area symbols, may be followed by arbitrary subtype.

When joining more than two points or lines, use one join command for all of them, not a sequence of join commands for pairs.³⁵

When joining scraps, only passage walls are joined. It's a good idea to place a scrap join in the passage which is as simple as possible, otherwise you have to specify join for each pair of objects which should be joined.³⁶

Синтаксис:

```
join <point1> <point2> ... <pointN> [OPTIONS]
```

Контекст:

none, scrap, survey

Аргументы:

• <pointX> can be an ID of a point or line symbol, optionally followed by a line point mark <id>:<mark> (e.g. podangl_l31@podangl:mark1). <mark> can be also 'end' (end of the line) or line point index (where 0 is the first point).

A special case is when <point1> and <point2> are scrap IDs—than the closest scrap ends are joined together.

Опции:

- smooth <on/off> indicates whether two lines are to be connected smoothly.
- count N (when used with scraps) \triangleright Therion will try to join scraps which connect in N locations/passages.

'equate'

Описание:

Устанавливает эквивалентность станций съемки.

Синтаксис:

equate <список станций>

Контекст:

none, survey

 $^{^{35}}$ E.g. use join a b c, not join a b followed by join b c.

³⁶ If you want some object which is clipped by a scrap boundary to continue to a neighbouring scrap, use -clip off option for that object.

'map'

Описание:

A map is a collection of either scraps or other maps of the same projection type. It's possible to include survey in the map—this will display centreline in the map. Map object simplifies the data management when selecting data for output. See the chapter *How the map is put together* for more thorough explanation.

Синтаксис:

map <id> [OPTIONS] ... scrap, survey or other map references ... break ... next level scrap, survey or other map references ... preview <above/below> <other map id> endmap

Контекст:

none, survey

Аргументы:

• <id>> идентификатор скрапа.

Опции командной строки:

- the data lines consist of scrap or map references. Note that you can not mix them together.
- if you refer to map, you can specify offset at which this sub-map will be displayed together with preview type of its original position. Syntax is following: <map reference> [<offset X> <offset Y> <units>] <above/below/none>
- scraps following the break will be placed on another level
- preview <above/below> <other map id> will put the outline of the other map in the specified preview position relative to the current map.

Preview is displayed only if the map is in the map-level level as specified by the select command.

Use the revise command if you want to add maps from higher levels to the preview.

• colo[u]r <color> ▷ set the map colour; this option overrides the automatic choice when the layout specifies colour map-fg [map].

Опции:

- projection/proj <plan/elevation/extended/none> > required if the map contains survey.
- title <string> > description of the object
- 5.4 survey <id> > associate a survey with map (e.g. all surveying statistics from this survey will be used when this map is selected for output).

'surface'

Описание:

Surface (terrain) specification. It is possible to display it in two ways: as a scanned topographical map (both in 2D map and 3D model³⁷) or surface grid – digital elevation model (in 3D model only).

Синтаксис:

surface [<name>] cs <coordinate system> bitmap <filename> <calibration> gridunits <units> grid <origin x> <origin y> <x spacing> <y spacing> <x count> <y count> grid-flip (none)/vertical/horizontal [grid data] endsurface

Контекст:

none, survey

Опции командной строки:

- cs <coordinate system> ▷ coordinate system for bitmap calibration and grid origin specification
- bitmap <filename> <calibration> > scanned topographical map.
 calibration may have two forms:
 - 1. [X1 Y1 x1 y1 X2 Y2 x2 y2 [units]], where upper case X/Y variables are picture coordinates (pixels; lower-left corner is 0 0), lower-case x/y variables are real coordinates. Optional units apply to real coordinates (metres by default).
 - 2. [X1 Y1 station1 X2 Y2 station2], where upper case X/Y variables are picture coordinates and station1 and station2 are survey stations names.
- grid-units <units> ▷ units in which grid is specified. Metres by default.
- grid <origin x> <origin y> <x spacing> <y spacing> <x count> <y count>
 <origin x> <origin y> > specify coordinates of the lower-left (S-W) corner of the grid

<x spacing> <y spacing> > distance between grid nodes in W-E and S-N directions

³⁷ You need to enter elevation data in order to display the topographical map in 3D model. Currently only JPEG maps are supported in 3D.

< x count > < y count > > number of nodes in the row and number of rows which form the grid (see below).

- [grid data] \triangleright a stream of numbers giving the altitude a.s.l. in grid nodes. It starts in the grid-origin and fills the grid in rows (in the row from W to E; rows from S to N).
- grid-flip (none)/vertical/horizontal > useful if your grid (exported from other program) needs to be flipped

'import'

Описание:

Reads survey data in different formats (currently processed centreline in *.3d, *.plt, *.xyz formats). Survey stations may be referenced in scraps etc. When importing Survex' 3D file, stations are inserted in survey hierarchy, if there exists identical hierarchy to that in 3D file.

Синтаксис:

import <file-name> [OPTIONS]

Контекст:

survey / all³⁸

Onuuu:

- filter
 filter
 prefix
 > if specified, only stations with given prefix and shots between
 them will be imported. Prefix will be removed from station names.
- surveys (create)/use/ignore > specifies how to import survey structure (works only with .3d files).

create \triangleright split stations into subsurveys, if subsurveys do not exist, create them use \triangleright split stations into existing subsurveys

ignore ▷ do not split stations into sub-surveys

- cs <coordinate system> ▷ coordinate system for stations with fixed coordinates
- calibrate [<x> <y> <z> <X> <Y> <Z>] \triangleright coordinates in the imported file are shifted from lower-case coordinates to upper-case coordinates.

 $^{^{38}}$ only with .3d files, where survey structure is specified

'grade'

Описание:

This command is used to store predefined precisions of centreline data. See sd option description for centreline command.

```
Cuнтаксис: : grade <id> ... [<quantity list> <value> <units>] ... endgrade 
Контекст:
```

all

'revise'

Описание:

This command is used to set or change properties of an already existing object.

Синтаксис:

The syntax of this command for object created with "single line" command is revise id [-option1 value1 -option2 value2 ...]

For objects created with "multi line" commands is syntax following revise id [-option1 value1 -option2 value2 ...] ... optionX valueX data ... endrevise Kohmekcm:

all

Аргументы:

The id stands for object identifier (the id of an object you want to revise must always be specified).

Custom attributes

Objects *survey*, *centreline*, *scrap*, *point*, *line*, *area*, *map* and *surface* can contain user-defined attributes in a form -attr <name> <value>. <name> may contain alphanumeric characters, <value> is a string.

The custom attributes are used in map export depending on output format:

- in shapefile export they are written directly to the associated dbf file,
- in maps generated using METAPOST (PDF, SVG) the attributes are written in the METAPOST source file as strings (named like ATTR_<name>) and can be evaluated and used by user in symbols definition macros.

You can test presence of such a variable using if known ATTR_<name>: ... fi.

XTherion

XTherion – графический пользовательский интерфейс для Therion. Он помогает в создании файлов входных данных. В настоящее время он работает в трех основных режимах: текстовый редактор, редактор карт и компилятор.³⁹

Его не обязательно использовать для Therion – вы можете редактировать входные файлы в своем любимом текстовом редакторе и запускать Therion из командной строки. XTherion также не является единственным графическим интерфейсом, который можно использовать с Therion. Можно написать лучшую, более удобную для пользователя, более WYSIWYG, быструю, более надежную и удобную в использовании. Есть желающие?

В этом руководстве не описываются такие знакомые вещи, как 'если вы хотите сохранить файл, перейдите в меню Файл и выберите Сохранить или нажмите Ctrl-s'. Просмотрите верхнее меню, чтобы почувствовать XTherion.

Для каждого режима работы есть дополнительное меню справа или слева. Подменю могут быть свернуты; вы можете развернуть их, нажав кнопку меню. Для большинства меню и кнопок в строке состояния есть короткое описание, поэтому нетрудно догадаться о значении каждого из них. Показ подменю сбоку может быть настроен пользователем. Right-click on the menu button and select in the menu which of the other menus it should be swapped with.

XTherion – текстовый редактор

Текстовый редактор XTherion предлагает некоторые интересные функции, которые могут помочь в создании текстовых входных файлов: поддержка кодировки Unicode и возможность открытия нескольких файлов. 40

Чтобы упростить ввод данных, он поддерживает форматирование таблиц нитки хода. Для ввода данных существует меню *Таблица данных*. Она может быть настроена на ввод данных пользователя, нажав кнопку *Определить формат данных*, когда курсор находится под спецификацией данных (опция 'дата' в команде 'centreline').

³⁹ Здесь мы обсуждаем созданием данных, поэтому в этом разделе описаны только два первых режима. Функции компилятора смотрите в главе Обработка данных.

 $^{^{40}}$ Кодировка файла указана в первой строке файла. Эта строка скрыта XTherion'ом и может быть доступна только косвенно, используя правое меню.

XTherion – редактор карт

Редактор карт позволяет вам рисовать и редактировать карту полностью в интерактивном режиме. Но не ожидайте слишком многого. XTherion не является редактором WYSIWYG. Он отображает только позицию, а не фактическую форму, нарисованных точек или линий. Визуально нет никакой разницы между геликтитом и текстовой меткой – оба они отображаются как простые точки. Тип и другие атрибуты любого объекта указываются только в меню Точка и Линия.

Упражнение: Найдите две существенные причины, почему карта, нарисованная в XTherion, не может быть идентична выходу Therion. (Если вы ответите на это, вы узнаете, почему XTherion никогда не будет истинным редактором WYSIWYG. Лень авторов – не правильный ответ.)

Начнем с описания типичного использования редактора карт. Во-первых, вам нужно решить, какую часть пещеры (какой скрап) вы рисуете. 41

После создания нового файла в редакторе карт вы можете загрузить одно или несколько изображений – сканированные эскизы съемки пещеры⁴² – в качестве подложки для рисования. Нажмите кнопку Вставка в меню Фоновые изображения. К сожалению, из-за ограничений языка Tcl/Tk, поддерживаются только изображения в форматах GIF, PNM и PPM (плюс PNG и JPEG, если вы установили расширение tkImg). Кроме того, XTherion поддерживает XVI (XTherion vector image), в котором отображается нитка хода и LRUD, и данные PocketTopo экспортируются в формат Therion'а (см. ниже). Все добавленные изображения помещаются в верхний левый угол рабочей области. Переместите их можно двойным щелчком правой кнопкой мыши на изображении и перетаскиванием или через меню. Для повышения производительности на более медленных компьютерах можно временно выгрузить неиспользуемое изображение из памяти, сняв флажок показать. Можно открыть существующий файл без загрузки фоновых изображений с помощью меню Открыть (без картинок). 43

Размер и масштабирование **области рисования** настраивается в соответствующем меню. *Авто* вычисляет оптимальный размер рабочей области в соответствии с размерами и позициями загруженных фоновых изображений.

⁴¹ В одном файле можно нарисовать несколько скрапов, в этом случае все неактивные скрапы отображаются желтым.

 $^{^{42}}$ XTherion не может масштабировать и поворачивать отдельные изображения, поэтому используйте ту же ориентацию, масштаб и DPI для всех изображений, используемых в одном и том же скрапе.

 $^{^{43}}$ Примечание: Therion никак не использует фоновые изображения, если вы не назначили их для определенного скрапа с помощью опции -sketch.

После этих этапов подготовки вы готовы к рисованию или, точнее, для создания файла данных карты. Важно помнить, что вы на самом деле создаете текстовый файл, который должен соответствовать синтаксису, описанному в главе Формат данных. На самом деле в редакторе карт используются только несколько команд Therion'a: многострочная команда scrap ... endscrap может содержать команды point, line и area. (См. главу Формат данных). Это соответствует этапу ручного рисованния карты, которая строится из точек, линий и заполненных областей.

Итак, первым шагом является определение **скрапа** с помощью scrap ... end-scrap многострочной команды. В меню *Команды в файле* выберите подменю *Действие* и выберите *Вставить скрап*. Это изменит кнопку *Действие* на *Вставить скрап*, если у нее было другое значение. После нажатия этой кнопки в начало файла будет вставлен новый скрап. Вы должны видеть строки

scrap - scrap1 endscrap end of file

в окне предварительного просмотра над кнопкой *Вставить скрап*. Это окно представляет собой упрощенный вывод текстового файла, который будет сохранен XTherion'ом. Показаваются только команды (scrap, point, line, text – почему так, смотрите ниже) и их типы (для point и line) или ID (для scrap).

Полное содержимое любой команды отображается в меню *Просмотр команды*.

Для изменения ранее созданных команд есть дополнительные меню – например Ckpan для команды scrap. Здесь вы можете изменить ID (очень важно!) и другие опции. Подробнее смотрите главу $\Phiopmam\ ganhux$.

Теперь можно вставить некоторые **точечные символы**. Как и в случае вставки скрапа, перейдите в меню *Команды в файле*, нажмите подменю *Действие* и выберите *Вставить точку*; затем нажать кнопку с изменившимся названием на *Вставить точку*. Сочетание клавишь для этого – Ctrl-p. Затем нажмите на нужное место в рабочей области, и вы увидите синюю точку, представляющую символ точки. Ее атрибуты можно настроить в меню *Точка*. Вы останетесь в режиме 'вставки' – каждый щелчок по рабочей области добавляет новый символ точки. Старайтесь не нажимать дважды в одном месте – тогда вы вставите два точечных символа в одном и том же месте! Чтобы выйти из режима 'вставить', нажмите клавишу *Esc* на клавиатуре или кнопку *Выбрать* в меню *Команды в файле*.

Каков порядок команд в выходном файле? Точно такой же, как в меню *Команды в файле*. Вновь созданные точечные, линейные и текстовые объекты добавляются перед текущей выделенной строкой. Можно изменить

порядок, выбрав строку и нажав кнопки *Вниз, Вверх* или *Переместить* в меню *Команды в файле*. Таким образом вы также можете перемещать объекты между скрапами.

Рисование линий аналогично рисованию в других программах редактирования векторной графики, которые работают с кривыми Безье. (Угадайте, как войти в режим вставки линии кроме использования сочетания Ctrll.) Нажмите, где должна быть первая точка, затем перетащите мышь с нажатой левой кнопкой и отпустите ее в том месте, где должна быть первая контрольная точка. Затем нажмите где-нибудь еще (эта точка будет второй точкой кривой) и перетащите мышь (отрегулируйте вторую контрольную точку предыдущей дуги и первую контрольную точку следующего дуги, одновременно). Если это объяснение кажется слишком неясным, вы может поработать в некоторых стандартных векторных редакторах. Линия будет завершена после выхода из режима вставки. Начало и ориентация линии отмечены небольшой оранжевой галочкой в первой точке.

Для символов линии существуют два управляющих меню: *Линия* и *Точка линии*. Сначала устанавливаются атрибуты для всей кривой, такие как тип или имя. Важным является чек-бокс *обратная*: Therion требует ориентированных кривых, и нет ничего необычного в том, что вы начинаете рисовать с неправильного конца. Меню *Точка линии* позволяет вам отрегулировать атрибуты любой выбранной точки на линии, например, сглаживание кривой в этой точке (которая включена по умолчанию) или наличие соседних контрольных точек ('«' и '»').

Области определяются окружающими их линиями. Нажмите *Вставить область*, а затем щелкните строки окружающие нужную область. Они автоматически вставляются в *Область* и называются (если они еще не названы). Альтернативный способ вставить их как text⁴⁴, содержимое которого (введенное в меню *Редактор* в редакторе карты) обычно многострочная команда area ... endarea (см. раздел *Формат данных*.)

Если вы нарисуете несколько скрапов с none проекцией, необходимо **откалибровать** область рисования. Масштаб можно определить только одним способом в XTherion – используя координаты двух точек (заданных как в системе координат изображения, так и в 'реальной' системе координат).

После выбора скрапа (щелкните по его заголовку в меню *Команды в файле*) появятся два небольших красных квадрата, соединенных красной стрелкой (по умолчанию они будут в нижних углах области рисования). Вы должны

⁴⁴ ВНИМАНИЕ! Команда text — это не команда Therion'a! Это всего лишь псевдоним для блока произвольного текста в XTherion. В файле, сохраненном XTherion'ом, будет только то, что вы введете в Редакторе или смотрите в Просмотре команд. Это может быть определение области или что угодно, например комментарий, начинающийся с символа '#'.

перетащить их в точки с известными координатами – обычно пересечения линий сетки на миллиметровке на отсканированном чертеже. Если вы не видите их, вы можете:

- нажать кнопку *Масштаб* в меню *Скрап* и щелкнуть два разных места на изображении, где должны быть конечные точки калибровочной стрелки, или
- переместить указатель мыши в нужную позицию, прочитать координаты указателя и ввести эти координаты в масштабирующие точки для картинки в меню Скрап. После заполнения пар координат X1, Y1 и X2, Y2 стрелка калибровки будет перемещаться соответственно.

Затем вам нужно ввести реальные координаты этих точек (Х1, У1, Х2, У2).

В **режиме выбора** вы можете выбрать существующие линейные или точечные объекты и установить их атрибуты в соответствующих меню, переместить их или удалить их (Ctrl-d или *Кнопка действия* в меню *Команды в файле* после установки *Действие* на *Удалить*).

Существует меню *Поиск и выделение*, которое позволяет легко переключаться между объектами и показывать элементы, которые вы не видите при взгляде на изображение. Например, если вы введете слово 'station' и нажмите *Показать все*, все станции на экране станут красными.

XTherion не выполняет проверку синтаксиса; он только записывает объекты с атрибутами в текстовый файл. Любые ошибки обнаруживаются только при обработке этих файлов с помощью Therion.

СОВЕТ. Ввод символов одного и того же типа одновременно экономит вам много времени, потому что вам не нужно менять тип символа и параметры заполнения для каждого нового символа. Поле *Опции* сохраняет старое значение, и достаточно изменить всего несколько символов. ⁴⁵ Рекомендуется начать с рисования всех станций съемки (не забудьте дать им имена (номера) в соответствии с настоящими именами в команде centreline), далее все хода, за которыми следуют все остальные точечные символы, линии и области. В конец рисуем поперечные сечения.

Дополнительные инструменты

5.3 **Помощь/Привязать изображение** создает файл MAP совместимый с OziExplorer на основе геоданных включенных в карту PDF⁴⁶.

 $^{^{45}\,\}mathrm{B}$ случае станций съемки XTherion автоматически увеличивает номер станции для следующего вставленного символа.

⁴⁶ Может присутствовать до девяти калибровочных точек в виде фиксированных станций в нитке хода с использованием геодезической системы координат.

Если карта в формате PDF была преобразована в растровое изображение с использованием внешней программы, конвертер использует растровое изображение u pdf-карту с тем же базовым именем, расположенным в том же каталоге, для вычисления калибровочных данных.

Если используется непосредственно файл PDF, то вам необходимо установить DPI и формат вывода перед автоматическим преобразованием 47 в растровый формат.

Данные РоскеtТоро экспортированные в формате Therion' a^{48} из приложения PocketTopo можно импортировать в текстовом редакторе, а также в редакторе карт (Φ айл \to Uмпорт \to PocketTopo therion export и Φ оновые изображения \to Bставить \to PocketTopo therion export). Тот же файл используется для обоих импортов. Импорт эскиза напрямую не создает данные скрапа. Рисунок просто отображается на фоне как сканированное растровое изображение, и должен быть оцифрован вручную.

Сочитания клавишь и мыши в редакторе карт

Общие

- Ctrl+Z ⊳ отменить изменения;
- Ctrl+Y ⊳ вернуть изменения;
- F9 ⊳ компилировать текущий проект;
- для выбора объекта в списке с помощью клавиатуры: переключайтесь с помощью 'Tab' в желаемый список; перемещаться на нужный объект (объект подчеркивается); нажмите 'Пробел';
- PageUp/PageDown > скролинг вверх/вниз в боковой панели;
- Shift+PageUp/PageDown ⊳ скролинг вверх/вниз в окне Команды в файле.

Область рисования и фоновые изображения

- клик правой кнопкой мыши ⊳ скролинг области рисования;
- двойной щелчок правой кнопкой мыши по изображению > перемещение изображения.

Вставка скрапа

• Ctrl+R ⊳ вставить скрап.

 $^{^{47}}$ Ghostscript и convert должны быть установлены в вашей системе. Обратите внимание, что установщик Windows не содержит ghostscript.

⁴⁸ Это специальный текстовый формат, который нужно импортировать с помощью XTherion'а и не может обрабатываться непосредственно Therion'ом.

Вставка линии

- Crtl+L ▷ вставить новую линию и войти в режим 'вставка точек линии';
- щелчек левой кнопкой мыши > вставить точку линии (без контрольных точек)
- Ctrl+щелчек левой кнопкой мыши ⊳ вставить точку линии очень близко к существующей точке (обычно она вставляется на ближайшую существующую точку);
- щелчек левой кнопкой мыши+тянуть ⊳ вставить точку линии (с контрольными точками);
- удерживать Ctrl при перемещении > изменить расстояние предыдущей контрольной точки;
- щелчек левой кнопкой мыши+переместить контрольную точку > переместить ее положение;
- щелчек правой кнопкой мыши на одной из предыдущих точек ▷ выбирает предыдущую точку в режиме вставки (полезно, если вы хотите изменить также направление предыдущей контрольной точки);
- Esc или щелчек левой кнопкой мыши на последней точке > завершение вставки линии;
- щелчек левой кнопкой мыши на первой точке линии > замкнуть линию и завершить вставку линии.

Редактирование линии

- щелчок левой кнопкой мыши+перемещение ⊳ перемещение точки линии;
- Ctrl+щелчок левой кнопкой мыши+перемещение ▷ перемещение точки линии близко к существующей точке (обычно она перемещается на ближайшую существующую точку);
- щелчок левой кнопкой мыши на контрольной точке+перемещение > переместить контрольную точку.

Добавление точки линии

• выберите точку, перед которой вы хотите вставить новые точки; вставить необходимые точки; нажмите Esc или щелкните левой кнопкой мыши по выбранной вами точке в начале.

Удаление точки линии

ullet выберите точку, которую хотите удалить; нажмите *Править линию* o *Удалить точку* в панели *Линия*.

Раздиление линии

ullet выберите точку, в которой вы хотите разделить линию; нажмите *Править линию* o *Разделить линию* в панели *Линия*.

Вставка точек

- Ctrl+P ⊳ переход в режим 'вставки точки';
- щелчок левой кнопкой мыши ⊳ вставка точки в заданной позицию;
- Ctrl+щелчок левой кнопкой мыши > вставка точки очень близко к существующей точке (обычно она будет вставлена на ближайшую точку);
- Esc ⊳ выход из режим 'вставки точки'.

Редактирование точки

- щелчок левой кнопкой мыши+перетаскивание ⊳ перемещение точки;
- Ctrl+щелчок левой кнопкой мыши+перетаскивание ▷ перемещение точки близко к существующей точке (обычно она перемещается на ближайшую существующую точку);
- щелчок левой кнопкой мыши+перетаскивание стрелок точки ⊳ изменение ориентации и/или размера точки (согласно заданным переключателям в панели управления точки).

Вставка области

- нажмите Ctrl+A или *Команды в файле* \to *Вставить* \to *область*, чтобы переключиться в режим 'вставки границ области';
- щелчок правой кнопкой мыши на линиях, которые окружают желаемую область:
- Esc, чтобы закончить ввод границ области.

Редактирование области

- выберите область, которую вы хотите отредактировать;
- нажмите 'Вставить' в *Область*, чтобы вставить другие границы в текущую позицию курсора;
- нажмите 'Вставить по ID', чтобы вставить границу с заданным ID в текущую позицию курсора;
- нажмите 'Delete', чтобы удалить выбранную границу области.

Выбор существующего объекта

- щелчок левой кнопкой мыши ⊳ выбрать верхний объект;
- щелчок правой кнопкой мыши > выбрать объект под верхним объектом (полезно, когда несколько точек лежат друг над другом).

Несколько мыслей о Therion'e

Несмотря на то, что все (ну, почти все) о входных файлах Therion'а было сказано, в этой главе приведены некоторые дополнительные советы и подсказки.

Как ввести нитку хода?

Основным блоком построения карт является команда centreline. Если пещера больше нескольких метров, неплохо было бы разделить данные в большем количестве файлов и отделить данные нитки хода от данных карты.

Обычно мы используем один *.th файл содержащий нитку хода для каждой отдельной съемки. Удобно начинать с пустого файла шаблона, как показано ниже, где точки будут заменены соответствующим текстом.

Чтобы создать уникальное пространство имен команда centreline заключена в команду syrvey ... endsurvey. Это полезно, если survey имеет то же имя, что и файл, который его содержит. ⁴⁹ На точки можно будет ссылаться используя символ @ – смотрите описание команды survey.

Для действительно больших пещер можно построить иерархическую структуру каталогов. В этом случае мы создаем один специальный файл с именем INDEX.th который включает все остальные *.th файлы из данного каталога и содержит команды equate для определения связей между съемками.

Как рисовать карты?

Самое главное – придумать деление пещеры на скрапы. Скрап является основным блоком карты. Попытка подобрать скрап к соответствующему

⁴⁹ Например survey entrance в файле entry.th.

*.th файлу с ниткой хода одной съемки – это почти всегда *плохая* идея. Причина в том, что соединения между скрапами должны быть как можно более простыми. Скрапы в целом независимы от иерархии нитки хода, поэтому старайтесь не привязываться к съемке когда рисуете карты и выбираете лучшие объединения скрапов.

We usually insert maps in the last-but-one level in survey hierarchy. ⁵⁰ Each scrap may than contain arbitrary part of any survey in the last level of hierarchy. Например, есть survey main который содержит surveys a, b, c u d. Surveys a – d содержат данные нитки хода от четырех съемок, u каждый u3 них находится b3 отдельном файле. Есть карта main_map которая содержит скрапы b4 u7 и b7. Если main_map находится b8 survey main, скрап b8 может содержать часть нитки хода b9 и часть b9 будет содержать часть b9 b9 и полную нитку b9. Названия станций survey будут иметь символ b9 (например, b9).

Скрапы обычно хранятся в *.th2 файлах. Каждый файл может содержать несколько скрапов. Чтобы данные были хорошо организованы, мы приняли несколько соглашений об именах файлов: в файле foo.th2 все скрапы именуются foo_si, где i – 1, 2 и так далее. Поперечные сечения именуются foo_ci, линии foo_li и т.п. Это очень помогает с большими пещерными системами; если упоминается какой-то скрап, вы сразу же знаете в каком файле он был определен.

Можно создавать один файл INDEX.th2 на каталог, который подключает все *.th2 файлы, описывает maps и объединения скрапов.

При рисовании скрапов вы должны проверить, правильно ли определен контур: все линии создающие внешнюю границу ходов должны иметь опцию -outline out; все линии окружающие внутренние колонны опцию -outline in. Границы скрапа не могут пересекаться, иначе внутренняя сторона скрапа не может быть определена. Есть два простых теста, которые определяют правильность скрапа:

- не выводится предупреждение METAPOST "scrap outline intersects itself";
- когда вы устанавливаете цвет заливки ходов (color map-fg <номер> опция в layout), вы можете видеть что Therion считает внутренней областью скрапа.

⁵⁰ Remember that surveys create namespaces, so you may reference only objects in the given survey and all subsurveys.

⁵¹ Если вы подключаете файлы карт в начале survey, вы можете ссылаться на любую станцию в любом скрапе, что представляет собой очень гибким инструмент. С другой стороны вы можете использовать более длинные имена в ссылках на станции, например 3@dno.katakomby.jmn.dumbier.

Как создавать модели?

Модель создается из внешних линий скрапов. Высота и глубина хода вычисляются по символьным точкам высота хода (passage-height) и размер хода (dimensions).

Therion in depth

Как карта собирается в единое целое

В этой главе объясняется работа опций -clip, -place, -visibility и -context команд point, line и area. Также объясняются опции color, transparent, symbol-hide и symbol-show команды layout.

При экспорте карты Therion должен определить три атрибута для каждого из символов – точки, линии или области: видимость, подрезание и упорядочение.

- (1) Символ отображается, если верно следующее:
- он имеет опцию -visibility со значением on (все символы по умолчанию);
- он не был скрыт опцией -symbol-hide в layout;
- если его опция -context установлена, а соответствующий символ не был скрыт опцией -symbol-hide в layout.

Экспортируются только видимые символы.

- (2) Некоторые символы могут подрезаться абрисом скрапа. По умолчанию это все следующие объекты:
- точечные символы: символы наполнения ходов (почва...гуано);
- линейные символы: все символы линий, которые не имеют опцию -outline, за исключением section (выносная линия сечения), arrow (стрелка), label (текстовая метка), gradient (уклон хода) и water-flow (водоток);
- символы области: все.

Значение по умолчанию может быть изменено с помощью опции -clip, если это разрешено для определенного символа. Все остальные символы не подрезаются границей скрапа.

Упорядочевание: каждый символ относится к одной из следующих групп, которые последовательно выводятся:

• bottom ⊳ все символы с опцией -place bottom;

- default-bottom ⊳ все символы области по умолчанию;
- default > символы, которые не принадлежат ни к какой другой группе;
- default-top > ceiling-step (уступ потолка) и chimney (камин) по умолчанию;
- top ⊳ все символы с опцией -place top.

Порядок символов внутри каждой группы соответствует порядку команд во входном файле 52 : символы, которые идут первыми, нарисованы последними (т.е. они отображаются в верхней части каждой группы).

Теперь мы готовы описать как строится карта (или атлас):

- область карты заполняется color map-bg;
- растровые изображения поверхности отображаются, если surface установлен в bottom;
- ДЛЯ каждого скрапа: абрисы заполняются белым;
- рисуется сетка если grid установлен в bottom;
- анонс внизу⁵³ заполняется color preview-below;
- $\Delta \Lambda Я$ каждого уровня⁵⁴:

НАЧАЛО отсечения

ДЛЯ каждого скрапа: абрис заполняется color map-fg

ДЛЯ каждого скрапа: символы области заполняются и отсекаются до границы скрапа

КОНЕЦ отсечения

НАЧАЛО отсечения текстовых меток (для всех текстовых меток на этом и верхних уровнях)

ДЛЯ каждого скрапа:

рисуются все символы прошедшие отсечение (за исключением line survey), упорядочиваются снизу вверх рисуются line survey символы отсекаются границы скрапов

ДЛЯ каждого скрапа:

рисуются все неотсеченные символы (за исключением

⁵² Или в меню Команды в файле XTherion'a.

 $^{^{53}\,\}mathrm{Co}$ гласно спецификации опции preview в команде map.

 $^{^{54}\,\}mathrm{Уровень}$ – это коллекция скрапов не разделенная break в команде map.

point station и всех текстовых меток), упорядочеваются снизу вверх

рисуются point station символы

КОНЕЦ отсечения текстовых меток

ДЛЯ каждого скрапа: рисуются все (точечные и линейные) текстовые метки (в том числе wall-altitude);

- анонс рисуется поверх с color preview-above;
- растровые изображения поверхности отображаются если surface установлен в top;
- сетка отображается если grid установлен в top.

Невозможно дважды войти в одну реку.

Ποταμοίς τοίς αὐτοίς ἐμβαίνομέν τε καὶ οὐκ ἐμβαίνομεν.

—Heraclitus of Ephesus, 6th/5th century BC

Обработка данных

Помимо файлов данных, содержащих данные съемки, Therion использует файл конфигурации, содержащий инструкции о том, как данные должны обрабатываться.

Конфигурационный файл

Имя конфигурационного файла можно указать в качестве аргумента для Therion'а. По умолчанию Therion ищет файл с именем theonfig в текущем рабочем каталоге. Он обрабатывается как любой другой файл (т.е. одна команда на строку, пустые строки или строки, начинающиеся с '#', игнорируются; строки, заканчивающиеся на обратную косую черту, продолжаются в следующей строке.) Ниже список поддерживаемых в данный момент команд.

'system'

Позволяет выполнять системные команды во время компиляции 55 . Обычно Therion ожидает завершения подпроцесса. Если вы хотите продолжить компиляцию без ожидания, используйте команду <command> & для Linux и start <command> для Windows.

'encoding'

Работает аналогично команде encoding в файлах данных – задает кодировку символов.

'language'

Синтаксис:

language <xx_[YY]>

Устанавливает язык вывода для переводимых текстов.

 $\overline{}^{55}$ Например, чтобы открыть или обновить внешний просмоторщик PDF.

5.3

'CS'

Синтаксис:

- сs <система координат>
- 5.3 Вне команды layout определяет систему координат для вывода. Невозможно указать несколько систем координат для разных выходных данных (последнее указание сs используется для всех выходных файлов).

Если сs не определяется в файле конфигурации, то будет использован первый сs в файлах данных.

Внутри layout определяется система координат для последующих данных о местоположении (origin, grid-origin).

'sketch-warp'

Синтаксис:

• sketch-warp <алгоритм>

Указывает, какой алгоритм преобразования скрапа (морфинг) использовать. Возможные алгоритмы: line – по умолчанию; plaquette – разработанный Marco Corvi.

'input'

Работает как команда input в файлах данных - подключает другие файлы.

'source'

Описание:

Указывает, какие файлы съемки (данных) Therion должны читать. Здесь вы можете указать несколько файлов; по одной в каждой строке. Вы также можете указать их с помощью опции -s командной строки (см. ниже).

Также можно ввести некоторые небольшие фрагменты кода непосредственно в файле конфигурации, используя многострочный синтаксис.

Синтаксис:

source <имя файла>

ИΛИ

source

...команды Therion'а...

endsource

Аргументы:

• <имя файла>

'select'

Описание:

выбирает объекты (съемки и карты) для экспорта. По умолчанию выбираются все объекты съемки. Если карта не выбрана, то выбираются все скрапы принадлежащие выбранным съемкам.

Если в данных нет скрапов или карт, то на карте будет отображаться нитка хода из всех съемок.

При экспорте карт в разных проекциях вам нужно выбирать их для каждой проекции отдельно.

Синтаксис:

select <объект> [ОПЦИИ]

Аргументы:

• <объект> ⊳ любая съемка или карта, имеющие идентификатор ID.

Опции:

- recursive <on/off> ▷ действует только при выборе съемки. По умолчанию установлен в on, все подсъемки данной съемки рекурсивно выбираются/не выбираются.
- map-level <число> > действует только при выборе карты. Определяет уровень, на котором прекращается расширение карты для экспорта в виде атласа. По умолчанию используется 0; если указано 'basic', расширение выполняется до основных карт (т.е. все). Примечание: Предварительный просмотр карт отображается только в соответствии с картами в текущем map-level.
- chapter-level <число> ▷ действует только при выборе карты. Определяет уровень, при котором прекращается расширение главы для экспорта в виде атласа. По умолчанию используется 0; если используется '-' или '.', то для этой карты не экспортируется ни одна глава. Если опция title-pages в layout включена, то каждая глава начинается с титульной страницы.

'unselect'

Описание:

Отменяет выбор объектов для экспорта.

Синтаксис:

```
unselect <объект> [ОПЦИИ]
```

Аргументы:

Так же, как и в команде select.

Onuuu:

Так же, как и в команде select.

'text'

Описание:

Задает перевод текста по умолчанию для вывода.

Синтаксис:

```
text <ID языка> <therion текст> <перевод>
```

Аргументы:

- <ID языка> ▷ стандартный идентификатор языка ISO (например, en или en GB).
- <therion текст> > текст Therion'а для перевода. Список текстов и доступных переводов смотрите в файле thlang/texts.txt.

'layout'

Описание:

Задает макет для 2D-карт. Настройки, применяемые к режиму атласа, отмечены 'A'; к режиму карт – 'M'.

Синтаксис:

```
layout <id> [ОПЦИИ]
  copy <id исходного макета>
  cs <cистема координат>
  north <true/grid>
  scale <длина изображения> <pеальная длина>
  base-scale <длина изображения> <pеальная длина>
```

```
units <metric/imperial>
rotate <число>
symbol-set <набор символов>
symbol-assign <point/line/area/group/special> <тип символа>
   <набор символов>
symbol-hide <point/line/area/group/special> <тип символа>
symbol-show <point/line/area/group/special> <тип символа>
symbol-colour <point/line/area/group/special> <тип символа> <цвет>
min-symbol-scale <масштаб>
fonts-setup <tinysize> <smallsize> <normalsize> <largesize> <hugesize>
size <ширина> <высота> <единицы>
overlap <значение> <единицы>
page-setup <размеры> <единицы>
page-numbers <on/off>
exclude-pages <on/off> <список>
title-pages <on/off>
nav-factor <фактор>
nav-size <x-размер> <y-размер>
transparency <on/off>
opacity <значение>
surface <top/bottom/off>
surface-opacity <значение>
sketches <on/off>
layers <on/off>
grid <off/top/bottom>
grid-origin <x> <y> <x> <eдиницы>
grid-size <x> <y> <z> <eдиницы>
grid-coords <off/border/all>
origin <x> <y> <z> <eдиницы>
origin-label <x-метка> <y-метка>
own-pages <число>
page-grid <on/off>
legend <on/off/all>
legend-columns <число>
legend-width <n> <единицы>
map-comment < Tekct >
map-header \langle x \rangle \langle y \rangle \langle off/n/s/e/w/ne/nw/se/sw/center \rangle
map-header-bg <on/off>
map-image <x> <y> <n/s/e/w/ne/nw/se/sw/center> <имя файла>
statistics <explo/topo/carto/copyright all/off/number>
   <explo/topo-length on/off>
scale-bar <длина> <единицы>
```

```
survey-level <N/all>
language <xx[_YY]>
colour/color <item> <цвет>
debug <on/all/first/second/scrap-names/station-names/off>
doc-author <текст>
doc-keywords <текст>
doc-subject <текст>
doc-title <текст>
code <metapost/tex-map/tex-atlas>
endcode
endlayout
```

Аргументы:

<id>> идентификатор макета (используется в команде export).

Опции командной строки:

• сору <id исходного макета> > устанавливаются свойства макета, которые берутся из данных исходного макета.

Относящиеся к представлениям в виде карт:

- scale <длина изображения> <реальная длина> > устанавливает масштаб выходной карты или атласа (М, А; по умолчанию: 1 200).
- base-scale <длина изображения> <реальная длина> > если установлено, Therion будет масштабировать карту с коэффициентом (scale/base-scale). Это имеет такой же эффект, как если бы карта, распечатанная в base-scale, была бы масштабирована к scale. (M, A).
- rotate <значение> ⊳ вращает карту (М, А; по умолчанию: 0).
- units <metric/imperial> > установить единицы измерения (М, А; по умолчанию: metric).
- symbol-set <набор символов> > использование набора символов для всех символов карты, если они доступны. Помните, что имя набора символов чувствительно к регистру. (М, А).

Therion использует следующие предопределенные наборы символов:

UIS (Международный союз спелеологии)

ASF (Австралийская спелеологическая федерация)

AUT (Австрийская спелеологическая ассоциация)

- 5.4 CCNP (Национальный парк Карлсбадских пещер)
- 5.4 NZSS (набор символов Новой Зеландии)

SKBB (спелеоклуб Banská Bystrica).

• symbol-assign <point/line/area/group/special> <тип символа> <набор символов> > отображение определенного символа в заданном наборе символов. Этот опция переопределяет опцию symbol-set.

Если символ имеет подтип, аргумент <тип символа> может иметь одну из следующих форм: тип:подтип или просто тип, который присваивает новый набор символов всем подтипам данного символа.

Следующие символы не могут использоваться с этой опцией: точечный section (который вообще не отображается) и все точечные и линейные надписи (label, remark, altitude, height, passage-height, station-name, date). Смотрите главу Изменение макета/Настройка текстовых меток, чтобы узнать, как изменить внешний вид надписей. (М, А).

Группа (group) может быть одной из следующих: all (все), centerline (нитка хода), sections (сечения), water (вода), speleothems (спелеотемы), passage-fills (рельеф хода), ice (лед), sediments (отложения), equipment (оборудование).

5.3

5.4

Есть два специальных символа: north-arrow (стрелка на север), scale-bar (шкала масштаба).

• symbol-hide <point/line/area/group/special> <тип символа> ▷ не отображать конкретный символ или группу символов.

Вы можете использовать group cave-centerline, group surface-centerline, point cave-station, point surface-station и group text в командах symbol-hide 5.4 и symbol-show.

Используйте flag:<entrance/continuation/sink/spring/doline/dig> как <тип символа> чтобы скрыть станции с определенными флагами (например, symbol-hide point flag:entrance).

Может комбинироваться с symbol-show. (M, A).

- symbol-show <point/line/area/group/special> <тип символа> > отображать определенный символ или группу символов. Может комбинироваться с symbol-hide. (M, A).
- symbol-colo[u]r <point/line/area/group/special> <тип символа> <цвет> \triangleright 5.3 изменить цвет конкретного символа или группы символов⁵⁶. (M, A).
- min-symbol-scale <масштаб> > определить минимальный <масштаб>, при 5.4.1 котором точечные и линейные символы отображаются на карте. Например, при опции min-symbol-scale M никакие точечные или линейные символы при масштабе S и XS не будут показаны на карте. <Масштаб> имеет тот же формат, что и масштаб для точечных и линейных символов.

 $^{^{56}}$ Примечание: изменение цвета в настоящее время применяется к заполнению шаблона только в том случае, если (1) формат вывода PDF и (2) МЕТАРОST версия не ниже 1.000.

- fonts-setup <tinysize> <smallsize> <normalsize> <largesize> <hugesize> ▷ 5.4.1 указать размер текста в точечных символах. <normalsize> применяется к точечному символу 'подпись', <smallsize> к 'заметке' и всем другим точечным текстовым символам. Каждый из этих размеров может применяться к строковому текстовому символу в соответствии с ее опцией -size. По умолчанию: 8 10 12 16 24 для шкал до 1:100; 7 8 10 14 20 для шкал до 1:200; 6 7 8 10 14 для шкал до 1:500 и 5 6 7 8 10 для шкал менее 1:500. Относящиеся к макету страницы:
- size <ширина> <высота> <единицы> > задает размер карты в режиме атласа. Если не указано, то размер будет рассчитан по page-setup и overlap. Применяется в режиме карты, если page-grid установлен в on (M, A; по умолчанию: 18 22,2 см).
- overlap <значение> <единицы> > установить размер перекрытия в единицах в режиме атласа или поля карты в режиме карты (М, А; по умолчанию: 1 см).
- page-setup <pазмеры> <единицы> > установить размеры страницы в таком порядке: ширина бумаги, высота бумаги, ширина страницы, высота страницы, левое поле и верхнее поле. Если не указано, то размеры будут вычислены из size и overlap (A; по умолчанию: 21 29,7 20 28,7 0,5 0,5 см).
- page-numbers <on/off> ▷ включить/выключить нумерацию страниц (A; по умолчанию: on).
- exclude-pages <on/off> <cписок > р исключить указанные страницы из атласа. Список может содержать номера страниц, разделенные запятой или тире (для интервалов), например, 2,4-7,9,23 означает, что страницы 2, 4, 5, 6, 7, 9 и 23 должны не выводиться. Только страницы карты должны подсчитываться. (Установите own-pages 0 и title-pages off чтобы получить корректные номера страниц после исключения). Изменения опций own-pages или title-pages не влияют на исключение страниц. (A).
- title-pages <on/off> > включение/выключение титульных страниц перед каждой главой атласа (A; по умолчанию: off).
- nav-factor <фактор> > установить коэффициент масштабирования навигатора атласа (A; по умолчанию: 30).
- nav-size <x-размер> <y-размер> > установить количество страниц атласа в обоих направлениях навигатора (A; по умолчанию: 2 2).
- transparency <on/off> > установить прозрачность для ходов (отображаются только видимые ходы) (М, А; по умолчанию: on).
- opacity <значение> > установить значение непрозрачности (используется, если transparent установлен в on). Диапазон значений 0-100. (М, А; по умолчанию: 70).

- surface-opacity <значение> > установить прозрачность растровой поверхности (используется, если transparent установлен в on). Диапазон значений 0-100. (М, А; по умолчанию: 70).
- surface <top/bottom/off> > установить положение растрового изображения выше/ниже карты. (М, А; по умолчанию: off).
- sketches <on/off> ▷ отображать/скрыть растровые изображения с эскизом подвергшимся морфингу. (М, А; по умолчанию: off).
- layers <on/off> ▷ включение/отключение слоев PDF 1.5 (M, A; по умолчанию: on).
- grid <off/bottom/top> > отображать/скрыть сетку (опционально могут также отображаться значения координат) (М, А; по умолчанию: off).
- cs <cистема координат> > система координат для origin и grid-origin.
- north <true/grid> ▷ указать ориентацию карты по умолчанию. По умолчанию используется истинный (астрономический) север. Он игнорируется при использовании с локальной системой координат.
- grid-origin <x> <y> <x> <eдиницы> > заданные координаты начала сетки (M, A).
- grid-size $\langle x \rangle \langle y \rangle \langle z \rangle$ <единицы $\rangle \triangleright$ задать размер сетки в реальных единицах (M, A, по умолчанию равен размеру шкалы).
- grid-coords <off/border/all> > указать, где маркировать сетку координатами. (М, А; по умолчанию: off).
- \bullet origin $\langle x \rangle \langle y \rangle \langle z \rangle$ <единицы $\rangle \triangleright$ установить начало страниц атласа (M, A).
- origin-label <x-метка> <y-метка> ▷ set label for atlas page which has the lower left corner at the given origin coordinates. Может быть либо числом, либо символом. (М, А; по умолчанию: 0 0).
- own-pages <число> > установить количество собственных страниц, добавленных до первой страницы автоматически созданных страниц в режиме атласа (в настоящее время требуется для правильной нумерации страниц) (А; по умолчанию: 0).
- page-grid <on/off> > show pages key plan (М; по умолчанию: off).
 Относящиеся к легенде карты:

map-header $\langle x \rangle \langle y \rangle <$ off/n/s/e/w/ne/nw/se/sw/center $\rangle \rangle$ напечатать заголовок карты в месте, указанном координатами $\langle x \rangle \langle y \rangle$. Предопределенный заголовок карты содержит некоторую базовую информацию о пещере: имя, масштаб, направление на север, список съемщиков и т.д. Он полностью настраивается (подробнее смотрите главу *Изменение макета*). $\langle x \rangle$

- на восток (слева направо на странице). $\langle y \rangle$ на север (вверх/вниз страницы). Диапазоны для $\langle x \rangle$ и $\langle y \rangle$ 0-100. Нижний левый угол карты равен 0 0, верхний правый угол 100 100. Заголовок выравнивается с указанным углом или сбоку от этой точки привязки. (М; по умолчанию: 0 100 nw).
- map-header-bg <on/off> > когда включено, фон заголовка карты заполняется цветом фона (например, для скрытия сетки). (М; по умолчанию: off).
- map-image $\langle x \rangle \langle y \rangle \langle n/s/e/w/ne/nw/se/sw/center \rangle \langle имя файла \rangle в ключить изображение, указанное в <math>\langle uмя \rangle \langle ums \rangle \langle$
- legend-width <n> <единицы> ⊳ ширина легенды (М, А; по умолчанию: 14 см).
- legend <on/off/all> > отобразить список используемых символов карты в заголовке карты. Если установлено значение all, то отображаются все символы из текущего набора символов. (М, А; по умолчанию: off).
- colo[u]r-legend <on/off> ▷ показать/скрыть легенду цветов map-fg, когда map-fg установлен по высоте, скрапу или карте (M, A).
- legend-columns <число> ⊳ указывает количество столбцов легенды (М, А; по умолчанию: 2).
- map-comment <текст> > необязательный комментарий, отображаемый в заголовке карты (M).
- statistics <explo/topo/carto/copyright all/off/number> или

5.4

- statistics <explo/topo-length on/hide/off> ▷ отобразить некоторые основные статистические данные; если установлено значение off, то члены команды сортируются в алфавитном порядке; в противном случае в зависимости от их вклада в работу (М, А; по умолчанию: off).
- scale-bar <длина> <единицы> > установить длину шкалы (М, А).
- language <xx[_YY]> > установить язык вывода. Доступные языки перечислены на странице авторских прав. Смотрите *Приложение*, если вы хотите добавить или настроить переводы. (М, A).
- colo[u]r <item> <цвет> ⊳ настроить цвет для специальных элементов карты (map-fg, map-bg, preview-above, preview-below, label). Цветовой диапазон 0-100 для оттенков серого, [0-100 0-100 0-100] для цветов в пространстве RGB.

Для map-fg вы можете использовать altitude, scrap или map как цвета. В этом случае карта окрашена в соответствии с высотой, скрапом или картой.

Для map-bg вы можете использовать transparent чтобы полностью исключить фон страницы.

Для подписей вы можете включать/выключать цвет on/off. Если on, то подписи окрашиваются с использованием цвета связанного скрапа.

- debug <on/all/first/second/scrap-names/station-names/off> > рисовать скрап на разных этапах преобразования в разных цветах, чтобы увидеть, как Therion искажает данные карты. Смотрите описание scrap для подробностей. Точечные символы, расположение которых больше всего изменились во время преобразования, отображаются оранжевым цветом. Если scrapnames указано, имена скрапов отображаются для каждого скрапа, stationnames отображает имя каждой станции съемки.
- survey-level <N/all> ▷ N количество уровней съемки, отображаемых рядом с именем станции (М, А; по умолчанию: 0).

 Относящиеся к PDF:
- doc-author <текст> > установить автора документа (М, А).
- doc-keywords <текст> > установить ключевые слова документа (М, А).
- doc-subject <текст> > задать тему документа (М, А).
- doc-title <текст> ⊳ установить название документа (М, А). *Настройка:*
- code <metapost/tex-map/tex-atlas> ▷ Добавить/переопределить макросы ТЕХ и МЕТАРОЅТ. Это позволяет пользователю настраивать различные элементы (например, пользовательские символы, макет карты и атласа в одном месте и т.д.). Для подробностей смотрите главу Изменение макета.
- endcode > должен заканчивать разделы TeX и METAPOST.

'setup3d'

Синтаксис:

• setup3d <значение>

Temporary hack to set sampling distance in meters when generating piecewise 5.3 linear 3d model from passage walls made of Bézier curves.

'sketch-colors'

Синтаксис:

• sketch-colors < number-of-colors >

Этот параметр можно использовать для уменьшения размера растровых изо- 5.4 бражений эскиза на картах.

'export'

Описание:

Экспортирует выбранные съемки или карты.

Синтаксис:

• export <тип> [ОПЦИИ]

Аргументы:

• <тип> ⊳ поддерживаются следующие типы экспорта:

```
model ▷ 3D-модель пещеры;
map ▷ одностраничная 2D-карта;
atlas ▷ 2D-атлас на нескольких страницах;
cave-list ▷ сводная таблица пещер;
survey-list ▷ сводная таблица съемок;
continuation-list ▷ список возможных продолжений (перспектив);
database ▷ база данных SQL с ниткой хода.
```

Опции:

общие:

- encoding/enc <кодировка> ⊳ установить кодировку вывода.
- output/o <файл> > установить выходной файл. Если имя файла не задано, префикс "cave." используется с расширением, соответствующим выходному формату.

Если задано имя выходного файла и не указан выходной формат, формат определяется из расширения имени файла.

model (модель):

- format/fmt <формат> > установить формат вывода модели. В настоящее время поддерживаются следующие форматы вывода: loch (собственный формат, по умолчанию), compass (plt файл), survex (3d файл), dxf, esri (3d shapefiles), vrml, 3dmf и kml (Google Earth).
- enable <walls/[cave/surface-]centerline/splay-shots/surface/all> и
- disable <walls/[cave/surface-]centerline/splay-shots/surface/all> ▷ выбирает, какие функции экспортировать, если формат поддерживает его. Поверхность в настоящее время экспортируется только в формате therion.
- wall-source <maps/centerline/all> > установить исходные данные для моделирования стен хода.

map/atlas (карты/атлас):

• format/fmt <формат> \triangleright установить формат карты. В данный момент поддерживаются форматы pdf, svg, xhtml⁵⁷, survex, dxf, esri⁵⁸, kml (Google Earth), xvi⁵⁹ и bbox⁶⁰ для карты; pdf для атласа.

5.3

 57 SVG, встроенный в XHTML-файл, который также содержит легенду.

 $^{^{58}}$ ESRI shapefiles. Несколько файлов записываются в каталог с указанным именем файла.

⁵⁹ Векторное изображение Xtherion'a. Изображения XVI могут использоваться для рисования карт в масштабе. Scale (принято разрешение изображения в 100 DPI) и grid-size макета используются в экспорте.

 $^{^{60}}$ Текстовый файл, содержащий географические координаты нижних и верхних правых углов области карты.

- projection <id> > уникальный идентификатор, который задает тип проекции карты. (Для деталей смотрите команду scrap).
 Если карта не определена, экспортируются все скрапы в данной проекции.
 Если нет скрапов с указанной проекцией, Therion отобразит нитку хода из выбранных съемок.
- layout <id> ▷ использовать предопределенный макет карты или атласа.
- layout-xxx ▷ где xxx означает другие опции макета. Используя это, вы можете изменить некоторые свойства макета непосредственно в команде export.
- encoding/enc <кодировка> > установить кодировку вывода. общее для list (списков):
- format/fmt <формат> > установить формат списка возможных продолжений (перспектив). В настоящее время поддерживаются следующие форматы вывода: html (по умолчанию), txt, kml⁶¹ и dbf.

 continuation-list (список перспектив):
- attributes <(on)/off> ▷ указывает, следует ли экспортировать определенные пользователем атрибуты в таблице списка продолжений (перспектив).
- 5.3 filter <(on)/off> > указывает, следует ли продолжения (перспективы) без комментариев/текста фильтровать.
 cave-list (список пещер):
 - location <on/(off)> ⊳ указать, следует ли экспортировать координаты входов пещеры в таблицу.
- 5.3 surveys (on)/off > экспортирует необработанный список пещер при установке off. Иначе отображается структура съемки со статистикой.
 database (база данных):
 - format/fmt <формат> ▷ в настоящее время поддерживаются форматы sql и csv.
 - encoding/enc <кодировка> > установить кодировку вывода.

Форматы файлов:

5.4

	тип экспорта	noggерживаемые форматы
	model (модель)	loch, dxf, esri, compass, survex, vrml, 3dmf, kml
5.3	тар (карта)	pdf, svg, xhtml, dxf, esri, survex, xvi, kml, bbox
	atlas (атлас)	pdf
5.4	database (база данных)	sql, csv
	lists (списки)	html, txt, kml, dbf

 $^{^{61}}$ Для списка пещер и списка продолжений (перспектив).

Запуск Therion'a

Теперь, после освоения данных и файлов конфигурации, мы готовы запустить Therion. Обычно это делается из командной строки в каталоге данных путем ввода

therion

```
Полный синтаксис
```

```
therion [-q]
       [-L]
       [-1 <файл журнала>]
       [-s <исходный файл>] [-р <путь поиска>]
       [-b/-bezier]
       [-d]
       [-x]
       [-use-extern-libs]
       [<конфигурационный файл>]
или
therion [-h/-help]
       [-v/-version]
       [-print-encodings]
       [-print-environment]
       [-print-init-file]
       [-print-library-src]
       [-print-symbols]
       [-print-tex-encodings]
       [-print-xtherion-src]
```

Аргументы:

<конфигурационный файл> > Therion принимает только один необязательный аргумент: имя конфигурационного файла. Если имя не указано, то ищется файл theonfig в текущем каталоге. Если не существует файла theonfig (например, текущий каталог не является каталогом данных), тогда Therion выдает сообщение об ошибке.

Опции:

- -d > включить режим отладки. Текущая реализация создает временный каталог с именем thTMPDIR (в вашем временном системном каталоге) и не удаляет временные файлы.
- -h, -help ⊳ показать краткую справку.

- -L > не создавайте файл журнала. Обычно Therion записывает все сообщения в файл therion.log в текущем каталоге.
- -l <файл журнала> > изменить имя файла журнала.
- -p <путь поиска > > эта опция используется для установки пути поиска (или списка путей разделенных двоеточиями), который использует Therion для поиска его исходных файлов (если он не находит их в рабочем каталоге).
- -q > запустить Therion в тихом режиме. Он будет печатать только предупреждения и сообщения об ошибках в STDERR.
- −print-encodings > выводит список всех поддерживаемых входных кодировок.
- -print-tex-encodings > выводит список всех поддерживаемых кодировок для вывода в PDF.
- -print-init-file > выводит файл инициализации по умолчанию. Более подробную информацию смотрите в разделе *Инициализация* в *Приложении*.
- -print-environment ⊳ выводит настройки среды для Therion'а.
- -print-symbols ⊳ выводит список всех символов карты, поддерживаемых Therion'ом в файл symbols.xhtml.
- -s <исходный файл> > установить имя исходного файла.
- -use-extern-libs \triangleright не копирует макросы T_EX и METAPOST в рабочий каталог. T_EX и METAPOST должны искать их самостоятельно. Используйте с осторожностью.
- -v, -version ⊳ отображать информацию о версии.
- -x > создает файл '.xtherion.dat' с дополнительной информацией о XTherion'e.

XTherion – компилятор

XTherion упрощает запуск Therion'a, особенно в системах без вывода командной строки. Окно компилятора – это окно по умолчанию в XTherion'e. Для запуска Therion'a достаточно открыть конфигурационный файл и нажать кнопку 'F9' или 'Компилировать'.

XTherion отображает сообщения Therion'а в нижней части экрана. Каждое сообщение об ошибке подсвечивается и является гиперссылкой на исходный файл, где произошла ошибка.

После первого запуска активируются дополнительные меню *Структура съемки* и *Структура карты*. Пользователь может с комфортом выбрать съемку или карту для экспорта, дважды щелкнув некоторые элементы в дереве структуры. Простой щелчок в дереве *Структура съемки* отображает основную информацию о съемке в меню *Информация*.

Что мы получаем?

Информационный файл

Файл журнала

Помимо сообщений от Therion'а и других используемых программ, файл журнала содержит информацию о вычисленных значениях магнитного склонения и конвергенции меридиана, ошибок колец и искажений скрапов.

Абсолютная ошибка кольца равна $\sqrt{d_x^2+d_y^2+d_z^2}$, где d_x разность между одинаковыми начальными и конечными точками кольца до распределения ошибок, измеренная вдоль оси координат x; аналогично для y и z. Процентная погрешность кольца вычисляется как абсолютная ошибка / длину кольца. Средняя ошибка — это простое арифметическое среднее всех ошибок кольца.

Искажение скрапа вычисляется с использованием меры искажения, определенной для всех пар точек (точечные символы, точки и контрольные точки линейных символов) в скрапе. Мера рассчитывается как $\frac{|d_a-d_b|}{d_b}$, где d_b – это расстояние до деформирования, а d_a – расстояние до точек после деформирования. Максимальные и средние искажения скрапа вычисляются как максимальные или средние значения таких мер, применяемых ко всем парам точек.

XTherion

Если опция -х включена, то Therion выводит некоторые основные данные о каждой съемки (длина, амплитуда, длина с севера на юг, длина с запада на восток, количество замеров и станций). Эта информация отображается в окне XTherion'а Компилятор, в меню Информация, когда выбрана какая-либо съемка в меню Структура съемки.

Экспорт SQL

Экспорт SQL позволяет легко получить очень подробную информацию о нитке хода. Это текстовый файл, начинающийся с объявления таблиц (where '?' stands in the following listing for a maximal value required by the column data)

```
create table SURVEY (ID integer, PARENT ID integer,
  NAME varchar(?), FULL NAME varchar(?), TITLE varchar(?));
create table CENTRELINE (ID integer, SURVEY ID integer,
  TITLE varchar(?), TOPO DATE date, EXPLO DATE date,
  LENGTH real, SURFACE LENGTH real, DUPLICATE LENGTH real);
create table PERSON (ID integer, NAME varchar(?), SURNAME varchar(?));
create table EXPLO (PERSON ID integer, CENTRELINE ID integer);
create table TOPO (PERSON ID integer, CENTRELINE ID integer);
create table STATION (ID integer, NAME varchar(?),
  SURVEY_ID integer, X real, Y real, Z real);
create table STATION FLAG (STATION ID integer, FLAG char(3));
create table SHOT (ID integer, FROM ID integer, TO ID integer,
  CENTRELINE ID integer, LENGTH real, BEARING real, GRADIENT real,
  ADJ LENGTH real, ADJ BEARING real, ADJ GRADIENT real,
  ERR LENGTH real, ERR BEARING real, ERR GRADIENT real);
create table SHOT_FLAG (SHOT_ID integer, FLAG char(3));
```

за которым следуют команды SQL 'insert'. Этот файл может быть загружен в любую базу данных SQL (после некоторой инициализации, зависящей от базы данных, которая может включать запуск SQL-сервера и подключение к нему, создание базы данных и подключение к ней. Хорошая идея – начать транзакцию перед загрузкой этого файла, если база данных не запускает транзакцию автоматически). Важно настроить кодировку базы данных так, чтобы она соответствовала той, которая указана в команде экспорта базы данных Therion'а – export database.

Table and column names are self-explaining; for undefined or non-existing values NULL is used. FLAG в таблице SHOT_FLAG принимает значения dpl или srf для дублированных или поверхностных замеров; в таблице STATION_FLAG – ent, con, fix, spr, sin, dol, dig, air, ove, arc для станций с атрибутами entrance (вход), continuation (продолжение), fixed (фиксированный), spring (???), sink (???), doline (???), dig (раскоп), air-draught (ток воздуха), overhang (???) или arch (арка), соответственно.

Примеры простых запросов:

Список членов исследовательской группы с информацией о вкладе каждого из них в процесс съемки:

```
select sum(LENGTH), sum(SURFACE_LENGTH), NAME, SURNAME from CENTRELINE, TOPO, PERSON where CENTRELINE.ID = TOPO.CENTRELINE_ID and PERSON.ID = PERSON_ID group by NAME, SURNAME order by 1 desc, 4 asc;
```

Какие части пещеры были отсняты в 1998 году?

```
select TITLE from SURVEY where ID in (select SURVEY_ID from CENTRELINE where TOPO_DATE between '1998-01-01' and '1998-12-31');
```

Какова длина ходов промежутка между 1500 и 1550 м глубины?

```
select sum(LENGTH) from SHOT, STATION S1, STATION S2 where (S1.Z+S2.Z)/2 between 1500 and 1550 and SHOT.FROM ID = S1.ID and SHOT.TO ID = S2.ID.
```

Списки – пещеры, съемки, продолжения (перспективы)

Использование export continuation-list вы получите список всех точек в нитке хода и скрапах, отмеченных 62 как возможное продолжение.

Export cave-list дает вам информацию в виде таблицы об обследованных пещерах (вам нужно указать флаги entrance в ваши данных), включая длину, глубину и местоположение входа.

Подробная информация о каждой съемке дает команда export survey-list. Длина включает замеры с флагами approximate, но не с флагами explored, duplicate или surface.

2D-карты

 $^{^{62}\,\}mathrm{Mc}$ пользуя атрибут station для точки нитки хода и point continuation в скрапах.

Карты для печати

Карты создаются в форматах PDF и SVG, которые могут быть просмотрены или распечатаны в большом количестве программ. Обязательно снимите флаг *Fit page to paper (подогнать под размер страницы)* или аналогичный вариант, если вы хотите напечатать в реальном масштабе.

В режиме атласа на каждую страницу помещается дополнительная информация: номер страницы, название карты и метка страницы.

Особенно полезны номера соседних страниц в направлениях N, S, E и W, а также в верхнем и нижнем уровнях. Отображаются также гиперссылки на границе карты, если пещера продолжается на следующей странице и в соответствующих ячейках навигатора.

Файлы PDF высоко оптимизированы – скрапы сохраняются только один раз в документе в формах XObject и отображаются на соответствующих страницах. Therion использует самые продвинутые функции PDF, такие как прозрачность и слои.

Созданные PDF-файлы могут быть необязательно пост-обработаны в таких приложениях, как pdfT_EX или Adobe Acrobat – можно извлечь или изменить некоторые страницы, добавить комментарии или шифрование и т.д.

5.3 Если карта была создана с использованием данных с привязкой, то она также содержит информацию о геопривязке. Эти данные можно получить с помощью XTherion'а для создания растровых изображений с привязками (подробнее смотрите XTherion/Дополнительные инструменты).

Карты для GIS

Карты, созданные в форматах DXF, ESRI или KML, могут быть дополнительно обработаны в соответствующем программном обеспечении. Эти карты не содержат визуализированных символов карты.

Специальные карты

Карта в формате XVI содержит нитку хода с LRUD (и, возможно, эскизом подвергнувшимся морфингу) и может быть импортирована в XTherion, чтобы служить фоном для оцифровки.

Карта в формате Survex предназначена для быстрого просмотра в Aven.

3D-модели

Therion может экспортировать 3D-модель в различные форматы, помимо собственного формата. Они могут быть загружены в соответствующие программы просмотра, редактирования или трассировки для печати или дальнейшей обработки. Если формат не поддерживает отображение формы хода, то отображается только нитка хода.

Loch

Loch – просмотрщик 3D-моделей, включенный в дистрибутив Therion'а. Он поддерживает, например, рендеринг с высоким разрешением и стерео-просмотр с помощью 3D-очков.

Изменение макета PDF-карт

Эта глава чрезвычайно полезна, если вас не устраивает предопределенный макет символов карты и ее предоставление, и вы хотите адаптировать их к вашим желаниям. Тем не менее, вам нужно знать, как писать простые макросы ТеХ и METAPOST, чтобы добиться этого.

Макет страницы в режиме атласа

Команда layout позволяет произвести базовую настройку страницы в режиме атласа. Это делается с помощью таких опций, как page-setup или overlap. Но нет никаких опций, которые указывали бы положение карты, навигатора и других элементов внутри области, определяемой page-width и page-height; например, почему навигатор находится ниже карты, а не справа или слева?

Существует много возможных вариантов для страницы. Вместо того, чтобы использовать еще больше опций для команды layout, Therion использует язык ТЕХ для описания других макетов страниц.

Преимущество такого подхода состоит в том, что пользователь имеет прямой доступ к расширенному механизму набора текста, не делая язык Therion сверхсложным.

Therion использует $pdfT_EX$ с форматом *plain* для типографского набора. Поэтому вы должны быть знакомы с plain T_EX , если хотите определить новые макеты.

Подробнее о plain T_EX смотрите в

Knuth, D. E.: *The T_EXbook*, Reading, Massachusetts, Addison-Wesley ¹1984 Для освоения PdfT_EX имеется краткое руководство

Thanh, H. T.—Rahtz, S.—Hagen, H.: *The pdfT_EX user manual*, доступное на http://www.pdftex.org

ТеX макросы используются внутри code tex-atlas команды layout (подробнее смотрите главу *Обработка данных*). Основным определением Therion'а является макрос

\dopage

Идея проста: для каждой страницы Therion определяет переменные TEX (count, token и box registers), которые содержат элементы страницы (карта, навигатор, название страницы и т.д.). В конце каждой страницы вызывается макрос \dopage. Это определяет положение каждого элемента на странице. Переопределив этот макрос, вы получите желаемый макет страницы. Без этого переопределения вы получите стандартный макет.

Ниже приведен список переменных, определенных для каждой страницы:

Боксы:

• \mapbox ▷ бокс содержащий карту. Его ширина (высота) устанавливается в соответствии с опциями size и overlap команды layout.

```
size_width + 2*overlap или size_height + 2*overlap, соответственно.
```

• \navbox ⊳ бокс содержащий навигатор, с размерами

```
size_width * (2*nav_size_x+1) / nav_factor или size_height * (2*nav_size_y+1) / nav_factor, соответственно.
```

Оба бокса, \mapbox и \navbox, также содержат гиперссылки.

Регистровые счетчики:

- \pointerE, \pointerW, \pointerN, \pointerS содержат номер страницы соседних страниц в направлениях E, W, N и S. Если такой страницы нет, номер ее страницы равен 0.
- \pagenum содержит номер текущей страницы.

Регистры токенов:

• \pointerU, \pointerD содержат информацию о страницах выше и ниже текущей страницы. Они состоят из одной или нескольких конкатенированных записей. Каждая запись имеет специальный формат

```
page-name|page-number|destination||
```

Если таких страниц нет, то значение устанавливается в notdef.

Смотрите описание макроса \processpointeritem ниже, чтобы знать, как извлечь и использовать эту информацию.

- \pagename ▷ имя текущей карты в соответствии с опциями команды map.
- \pagelabel ▷ метка страницы, указанная опциями origin и origin-label в команде layout.

Следующие переменные задаются в начале документа:

- \hsize, \vsize > TEX размеры страницы, заданные в соответствии с параметрами page-width и page-height опции page-setup команды layout. Они устанавливают нашу площадку при определении макета страницы используя макрос \dopage.
- \ifpagenumbering ▷ это значение установлено в true или false в соответствии с опцией page-numbers команды layout.

Существуют также некоторые предопределенные макросы, которые помогают с обработкой \pointer* переменных:

- \showpointer с одним из \pointerE, \pointerW, \pointerN или \pointerS в качестве аргумента отображает значение аргумента. Если значение равно 0, тогда ничего не отображается. Это полезно, потому что нулевое значение (нет соседней страницы) не должно отображаться.
- \showpointerlist с одним из аргументов \pointerU или \pointerD представляет содержание этого аргумента. Содержимое \pointerU и \pointerD смотрите выше. Для каждой записи \showpointerlist вызывает макрос \processpointeritem, который отвечает за форматирование данных.

Макрос \showpointerlist следует использовать без переопределения в том месте, где вы хотите отобразить содержимое своего аргумента; для форматирования пользовательских данных переопределите макрос \processpointeritem.

• \processpointeritem имеет три аргумента – page-name (название страницы), page-number (номер страницы), destination (место отображения), и выводит эти данные. Аргументы разделяются следующим образом:

```
\def\processpointeritem#1|#2|#3\endarg{...}
Пример может быть следующим:
\def\processpointeritem#1|#2|#3\endarg{%
   \hbox{\pdfstartlink attr {/Border [0 0 0]}%
        goto name {#3} #2 (#1)\pdfendlink}%
}

(обратите внимание, как использовать аргумент destination), или намного проще (если нам не нужны функции гиперссылки):
\def\processpointeritem#1|#2|#3\endarg{%
   \hbox{#2 (#1)}%
}
```

Для управления шрифтом есть следующие макросы:

- \size[#1] для изменения размера,
- \color[#1 #2 #3] для изменения цвета (значения RGB в диапазоне 0-100) и
- \rm, \it, \bf, \ss, \si для изменения типа отображения.

Ниже приведен список предопределенных настроек текстов, которые могут быть использованы в атласе.

Также есть макрос \framed, который принимает бокс в качестве аргумента и отображает бокс в рамке. Стиль рамки можно настроить, переопределив макрос \linestyle, который по умолчанию равен 1 J 1 j 1.5 w.

Теперь мы готовы определить макрос \dopage. Вы можете выбрать, какой из предопределенных элементов использовать. Очень простой пример:

```
layout my_layout
    scale 1 200
    page-setup 29.7 21 27.7 19 1 1 cm
    size 26.7 18 cm
    overlap 0.5 cm
    code tex-atlas
     \def\dopage{\box\mapbox}
    \insertmaps
endlayout
```

который определяет размер формата А4 без навигатора и любых текстов. На странице есть только карта.

Обратите внимание на макрос \insertmaps. Страницы карты вставляются в его положение. Это не делается автоматически, потому что вы можете вставить некоторые другие страницы перед первой страницей карты.

Более продвинутым является определение по умолчанию макроса \dopage:

\def\dopage{ \vbox{\centerline{\framed{\mapbox}} \bigskip

```
% \medskip
```

 $\label{thm:linear_local_loca$

%%%%

\vss

\scalebar

```
}\hss \box\navbox } }
```

Используя другие plain макросы ТеХ или примитивы ТеХ, можно добавить другие функции, например другой макет для нечетных и четных страниц, заголовки и колонтитулы или добавить логотип на каждую страницу.

В дополнение к страницам карты атлас содержит дополнительные области: титульная страница, основные факты о пещере, легенда с использованием символов карты и т.д.

Therion автоматически генерирует список используемых символов карты и списки лиц, которые обнаружили, исследовали и нарисовали выбранную часть пещеры. Следующие регистровые токены могут использоваться (в соответствии с необходимостью до или после макроса \insertmaps):

- \explotitle, \topotitle, \cartotitle ⊳ перевод названий;
- \exploteam, \topoteam, \cartoteam > участники (в соответствии с опциями team, explo-team команды centreline и опции author для скрапов);
- \explodate, \topodate, \cartodate > соответствующие даты;
- \comment ▷ задано в соответствии с опцией map-comment команды layout;
- \copyrights > устанавливается в соответствии с вариантами авторского права для съемок и других объектов;
- \cavename ▷ имя экспортируемой карты, устанавливается в соответствии с опцией -title экспортируемой карты;
- \cavelength, \cavedepth ▷ приблизительная длина и глубина отображаемой карты;
- \cavelengthtitle, \cavedepthtitle ▷ переведенные метки;
- 5.4 \cavemaxz, \caveminz ▷ значение высоты max/min;
- 5.4 \thversion ⊳ текущая версия Therion'а;
- 5.4 \currentdate ▷ текущая дата;
- 5.4 \outcscode, \outcsname ⊳ вывести код и наименование системы координат;
- 5.4 \northdir ▷ 'true' или 'grid';

- 5.4 \magdecl ⊳ магнитное склонение в градусах;
- 5.4 \gridconv ⊳ конвергенция сетки меридиана в градусах.

Makpoc \atlastitlepages объединяет большинство перечисленных токенов, чтобы получить простой, предварительно отформатированный, вывод страницы в виде атласа.

Для отображения легенды есть макросы:

- \iflegend > условный; true если опция legend команды layout была установлена в on или all;
- \legendtitle > регистровый токен, содержащий переведенное название легенды;
- \insertlegend ▷ макрос для вставки изображений символов легенды с переведенными описаниями в указанное количество столбцов (в соответствии с опцией legend-columns макета);
- \formattedlegend \triangleright объединяет все три приведенные выше команды, чтобы получить предварительно отформатированную легенду с заголовком и символами в двух⁶³ столбцах, если опция legend установлена в on.

Стрелка направления на север и шкала масштаба могут отображаться с использованием:

- \ifnortharrow ⊳ условный; true, если проекция карты это план, а символ стрелки на север не скрыт в layout;
- \ifscalebar > условный; true, если шкала масштаба не скрыта;
- \northarrow ⊳ PDF-форма со стрелкой на север;
- \scalebar ⊳ PDF-форма со шкалой масштаба.

Есть макрос общего назначения для набора текста в нескольких столбцах 64 :

• \begmulti <i>, \endmulti > текст между этими макросами набирается в столбцы <i>.

Пример создания атласа со списками съемщиков и т.д. за которыми следуют карты и с легендой в конце:

code tex-atlas \atlastitlepages

\insertmaps

\formattedlegend

 $^{^{63}}$ Значение по умолчанию; устанавливайте опцию legend-columns макета, чтобы указать количество столбцов.

 $^{^{64}\,\}mathrm{He}$ используйте с легендой карты оформленной в несколько столбцов с помощью опции legend-columns макета.

Макет страницы в режиме карты

В режиме карты можно использовать множество предопределенных переменных, которые описаны в предыдущей главе:

\cavename, \comment, \copyrights, \explotitle, \topotitle, \cartotitle, \exploteam, \topoteam, \cartoteam, \explodate, \topodate, \cavedepth, \cavedepth, \cavedepthtitle, \cavedepthtitle, \cavedepthtitle, \cavemaxz, \caveminz, \thversion, \currentdate, \outcscode, \outcsname, \northdir, \magdecl, \gridconv, \ifnortharrow, \ifscalebar, \northarrow, \scalebar, \iflegend, \legendtitle, \insertlegend, \begmulti \left\(i), \endmulti, \formattedlegend, \legendcolumns.

In order to place them somewhere on the map page, you have to define \maplayout macro in the code tex-map section of the layout command. It should contain one or more \legendbox invocations. The \legendbox macro has four parameters: coordinates ranging 0–100, alignment specification (N, E, S, W, NE, SE, SW, NW or C) and the content to be displayed.

A simple example is

```
\def\maplayout{ \legendbox{0}{100}{NW}{\northarrow} }
```

which displays north arrow in the upper-left corner of the map sheet.

For user's convenience, there is \legendcontent token register. It contains preformatted cave name, north arrow, scale bar, explo/topo/carto teams, comment, copyrights and legend. (The \legendcontent is also used in the default map layout definition: $\def\maplayout{\legendbox{0}{100}{NW}{\the\legendcontent}}$).

Width of the above text may be adjusted by \legendwidth dimen register (its default value is set by legend-width layout option). The color and size of texts in the preformatted legend can be easily changed using \legendtextcolor, \legendtextsize, \legendtextsectionsize and \legendtextheadersize token registers, e.g. for large blue text:

It is possible to display the whole map framed by setting the \footnote{thm} the \footnote{thm} dimen register to positive value, e.g. 0.5mm.

Customizing text labels

Starting with the release 5.4.1 you can use fonts-setup layout option instead of the METAPOST macro fonts_setup().

New map symbols

Therion's layout command makes it easy to switch among various predefined map symbol sets. If there is no such symbol or symbol set you want, it's possible to design new map symbols.

However, this requires knowledge of the METAPOST language, which is used for map visualization. It's described in

```
Hobby, J. D.: A User's Manual for MetaPost, available at http://cm.bell-labs.com/cm/cs/cstr/162.ps.gz
```

User may also benefit from comprehensive reference to the METAFONT language, which is quite similar to METAPOST:

Knuth, D. E.: *The METAFONTbook*, Reading, Massachusetts, Addison-Wesley ¹1986

New symbols may be defined in the code metapost section of the layout command. This makes it easy to add new symbols at the run-time. It is also possible to add symbols permanently by compiling them into Therion executable (see the *Appendix* for instructions how to do this).

Each symbol has to have a unique name, which consists of following items:

- one of the letters 'p', 'l', 'a', 's' for point, line, area or special symbols, respectively;
- underscore character;
- symbol type as listed in the chapter Data format with all dashes removed;
- if the symbol has a subtype, add underscore character and subtype;
- underscore character;
- symbol set identifier in uppercase

Example: standard name for a point 'water-flow' symbol with a 'permanent' subtype in the 'MY' set is p_waterflow_permanent_MY. Standard name for user-defined symbol types should not include symbol set identifier, e.g. p u bat.

Each new symbol has to be registered by a macro call

```
initsymbol("<standard-name>");
```

unless it's compiled into Therion executable.

There are four predefined pens *PenA* (thickest) ... *PenD* (thinnest), which should be used for all drawings. For drawing and filling use thdraw and thfill commands instead of METAPOST's draw and fill.

The following variables are also available:

5.4

- boolean ATTR_shotflag_splay, ATTR_shotflag_duplicate,
 ATTR_shotflag_approx ▷ set for line survey
- boolean ATTR stationflag splay > set true for endstations of splay shots
- boolean ATTR scrap centerline ▷ set true for scraps created from centreline
- boolean ATTR__elevation > true for (extended) elevation, false for plan projection
- numeric ATTR height ▷ height of a pit or wall:pit
- string ATTR__id ▷ contains current object ID
- string ATTR survey ▷ contains current survey name
- string ATTR__scrap ▷ contains current scrap name
- picture ATTR__text ▷ contains typeset text e.g. for point continuation
- string NorthDir ▷ 'true' or 'grid'
- numeric MagDecl > magnetic declination in degrees
- numeric GridConv ▷ grid meridian convergence in degrees

Point symbols

Point symbols are defined as macros using def ... enddef; commands. Majority of point symbol definitions has four arguments: position (pair), rotation (numeric), scale (numeric) and alignment (pair). Exceptions are *section* which has no visual representation; all *labels*, which require special treatment as described in the previous chapter, and *station* which takes only one argument: position (pair).

All point symbols are drawn in local coordinates with the length unit u. Recommended ranges are $\langle -0.5u, 0.5u \rangle$ in both axes. The symbol should be centered at the coordinates' origin. For the final map, all drawings are transformed as specified in the T transformation variable, so it's necessary to set this variable before drawing.

This is usually done in two steps (assume that four arguments are P, R, S, A):

- set the U pair variable to $\left(\frac{width}{2}, \frac{height}{2}\right)$ of the symbol for correct alignment. The alignment argument A is a pair representing ratios $\left(\frac{shift_x}{U_x}\right)$ and $\left(\frac{shift_y}{U_y}\right)$. (Hence aligned A means shifted (xpart A * xpart U, ypart A * ypart U).)
- set the *T* transformation variable

T:=identity aligned A rotated R scaled S shifted P;

For drawing and filling use thdraw and thfill commands instead of METAPOST's draw and fill. These take automatically care of T transformation.

Пример может быть следующим:

def p_entrance_UIS (expr P,R,S,A)= U:=(.2u,.5u); T:=identity aligned A rotated R scaled S shifted P; thfill (-.2u,-.5u)-(0,.5u)-(.2u,-.5u)-cycle; enddef; initsymbol("p_entrance_UIS");

Line symbols

Line symbols differ from point symbols in respect that there is no local coordinate system. Each line symbol gets the path in absolute coordinates as the first argument. Therefore it's necessary to set T variable to identity before drawing.

Following symbols take additional arguments:

- arrow > numeric: 0 is no arrows, 1 arrow at the end, 2 begin, 3 both ends
- contour \triangleright text: list of points which get the tick or one of -1, -2 or -3 to mark undefined tick, tick in the middle or no tick, respectively
- section \triangleright text: list of points which get the orientation arrow or -1 to indicate no arrows
- slope > numeric: 0 no border, 1 border; text: list of (point,direction,length) triplets

Usage example:

def l_wall_bedrock_UIS (expr P) = T:=identity; pickup PenA; thdraw P; enddef; initsymbol("l_wall_bedrock_UIS");

Area symbols

Areas are similar to lines: they take only one argument - path in absolute coordinates.

You may fill them in three ways:

- fill an uniform or randomised grid in a temporary picture (having dimensions bbox path) with some point symbols; clip it according to path and add to the currentpicture
- fill path with a solid colour
- fill path with a predefined pattern using a withpattern keyword.

Patterns are defined using the same user interface (without the patterncolor macro) as described in the article

Bolek, P.: "METAPOST and patterns," *TUGboat*, 3, XIX (1998), pp. 276–283, available online at https://www.tug.org/TUGboat/Articles/tb19-3/tb60bolek.pdf

You may use standard METAPOST draw and similar macros without setting of T variable in pattern definitions.

Example on how to define and use patterns:

beginpattern(pattern_water_UIS); draw origin-10up withpen pensquare scaled (0.02u); patternxstep(.18u); patterntransform(identity rotated 45); endpattern;

def a_water_UIS (expr p) = T:=identity; thclean p; thfill p withpattern pattern_water_UIS; enddef; initsymbol("a_water_UIS");

Special symbols

There are currently two special symbols: scale bar and north arrow. Both are experimental and subject to change.

- 1. Когда выдающийся, но пожилой ученый утверждает, что что-то возможно, он почти наверняка прав. Когда он утверждает, что что-то невозможно, он, вероятно, ошибается.
- 2. Единственный способ обнаружить пределы возможного это отправиться в путь к невозможному.
- 3. Любая достаточно развитая технология неотличима от магии.

- C. Clarke, 1973

Приложение

Компиляция

Если вы хотите скомпилировать Therion из исходников и запустить его, вам нужны (первые три необходимы только во время компиляции):

- GNU C/C++ компилятор.
- GNU make.
- Perl.
- Python 2.7 или 3.
- Tcl/Tk 8.4.3 или новее (https://www.tcl.tk) с набором виджетов *BWidget* (https://sourceforge.net/projects/tcllib/) и необязательным расширением *tkImg* (https://sourceforge.net/projects/tkimg/).
- T_EX дистрибутив с plain форматом T_EX, pdfT_EX, и METAPOST (https://www.tug.org).
- LCDF Typetools пакет (https://www.lcdf.org/type/).
- ImageMagick дистрибутив с утилитами *convert* и *identify*, если вы хотите использовать деформирование эскизы съемок.
- *ghostscript*, если вы хотите создать откалиброванные изображения карт с привязкой к географическим картам.

Для компиляции Loch вам необходимы:

- freetype 2 или новее с поддержкой freetype-config;
- wxWidgets 2.6 или новее с поддержкой wx-config;
- VTK 5.0 или новее;
- libjpeg, libpng, zlib.

Все программы (за исключением пакетов BWidget и tkImg) обычно включаются в дистрибутивы Linux, Unix или MacOS X. Для Windows необходимы MinGW и MSYS (http://www.mingw.org). Эти дистрибутивы содержат GNU make и GCC. (Кстати, почему бы не использовать предварительно скомпилированную версию для Windows?).

Быстрый старт

- распаковать исходники дистрибутива therion-5.*.tar.qz;
- cd therion:
- make config-macosx или make config-win32, если вы используете MacOS X или Windows, соответственно;
- make;
- sudo make install.

Руководство для хакеров

Make параметры

Файл Therion'a makefile может принимать некоторые необязательные опции:

- config-linux, config-macosx, config-win32 ⊳ настроить Therion для конкретной платформы. Linux по умолчанию;
- config-release, config-oxygen, config-ozone > установить уровень оптимизации для компилятора C++ (none, -O2 или -O3);
- config-debug > полезно перед отладкой программы;
- install ⊳ установить Therion;
- clean ⊳ удалить все временные файлы.
- 5.4 Кросс-компиляция для Windows

Therion поддерживает компиляцию исполняемых файлов Win32 в Linux с использованием кросс-компилятора МХЕ (http://mxe.cc).

- установите следующие static/win32-пакеты (i686-w64-mingw32.static-*) в директорию /usr/lib/mxe/: binutils, bzip2, expat, freetype-bootstrap, gcc, gettext, glib, harfbuzz, jpeg, libiconv, libpng, tiff, vtk, wxwidgets, xz, zlib;
- измените PATH: export PATH=/usr/lib/mxe/usr/bin:\$PATH;
- cd therion;
- make config-win32cross;
- make.

Добавление новых переводов

Therion поддерживает перевод текстовых меток на картах. Предположим, вы хотите добавить новый язык xx:

- запустите 'perl process.pl export xx' в подкаталоге Therion'a 'thlang'; Это создаст файл texts xx.txt. Этот файл имеет кодировку UTF-8;
- отредактируйте файл texts_xx.txt. Добавьте свои переводы в строки, начинающиеся с 'xx:';
- запустите make update;
- скомпилируйте Therion.

Добавление новых кодировок

Хотя кодировка Unicode UTF-8 содержит все символы, которые Therion может использовать, возможно вам будет неудобно использовать ее. В этом случае можно добавить поддержку любой 8-битной кодировки для текстовых входных файлов. Скопируйте файл перевода в thchencdata каталог; добавьте его имя в хэш-код 'ifiles' в начале скрипта Perl generate.pl; запустите его и перекомпилируйте Therion.

Файл перевода должен содержать два шестнадцатеричных символа (первый в 8-разрядной кодировке, второй в Unicode) в каждой строке. Можно добавлять комментарии за символом '#'.

Добавление новых Т_ЕХ кодировок

Легко добавить новые кодировки для вывода 2D-карты⁶⁵. Скопируйте соответствующий файл сопоставления кодировки с расширением *.enc в texenc/encodings, запустите скрипт Perl mktexenc.pl расположенный в каталоге texenc и перекомпилируйте Therion.

Therion использует те же файлы кодировки, что и программа afm2tfm из дистрибутива T_EX , который имеет тот же формат, что и векторная кодировка в шрифте PostScript. Вы можете найти более подробную информацию в главе 6.3.1.5 Формат файла кодировки в документации к программе Dvips.

Генерация новых header-файлов Т_ЕХ и METAPOST

Therion использует T_EX и METAPOST для 2D-визуализации карт и верстки. Предопределенные макросы компилируются в исполняемый файл Therion'а и копируются в рабочий каталог непосредственно перед запуском METAPOST и T_EX (если не используется опция –use-extern-libs). Команда layout позволяет изменять некоторые макросы в файле конфигурации во время выполнения.

 $^{^{65}}$ Этот раздел относится к выбору шрифтов старого стиля с использованием команды 5.3 tex-fonts в файле инициализации и устарела при использовании команды pdf-fonts.

Тем не менее, возможно внесение постоянных изменений в файлы макросов. После изменения файлов в каталогах mpost и tex необходимо запустить Perlскрипты genmpost.pl и gentex.pl, которые генерируют header файлы C++, и снова компилируют исполняемый файл Therion'a.

Переменные среды

Therion считывает следующие переменные среды:

- THERION ⊳ [не требуется] путь поиска для файла(ов) (x)therion.ini;
- HOME (HOMEDRIVE + HOMEPATH на WinXP) ▷ [не требуется, но обычно присутствует в вашей системе] путь поиска для файла(ов) (x)therion.ini;
- TEMP, TMP ▷ системный временный каталог, где Therion хранит временные файлы (в каталоге с именем th\$PID\$, где \$PID\$ является идентификатором процесса), если только tmp-path указан в файле инициализации.

Проконсультируйтесь с документацией вашей ОС о том, как их установить.

Файлы инициализации

Системно-зависимые параметры Therion'a и XTherion'a указаны в файле therion.ini или xtherion.ini, соответственно. Они ищутся в следующих каталогах:

- в UNIX: ., \$THERION, \$HOME/.therion, /etc, /usr/etc, /usr/local/etc;
- в Windows: ., \$THERION, \$HOME\.therion, <директория установки Therion'a>, C:\WINDOWS, C:\WINNT, C:\Program Files\Therion

Therion

Если файл не найден, Therion использует настройки по умолчанию. Если вы хотите их вывести, используйте опцию –print-init-file. Файл инициализации читается как любой другой файл. (Пустые строки или строки, начинающиеся с '#', игнорируются, строки, заканчивающиеся на обратную косую черту, продолжаются в следующей строке). В настоящее время поддерживаются команды инициализации:

- loop-closure <therion/survex>;
 - По умолчанию используется survex, если он установлен, иначе используется therion;
- encoding-default <имя кодировки>

Устанавливает стандартную выходную кодировку (в настоящее время не используется);

• encoding-sql <имя кодировки>

Устанавливает стандартную выходную кодировку для экспорта SQL;

• language <xx[YY]>

Язык вывода по умолчанию. Список доступных языков смотрите на странице авторских прав;

• units <metric/imperial>

Устанавливает единицы по умолчанию;

• mpost-path <путь файла>

Устанавливает полный путь к исполняемому файлу METAPOST, если Therion не сможет его найти ("mpost" является значением по умолчанию);

mpost-options <текст>

Устанавливает опции METAPOST;

• pdftex-path <путь файла>

Устанавливает полный путь к исполняемому файлу pdfT_EX, если Therion не сможет его найти ("pdfetex" является значением по умолчанию);

• identify-path <путь файла>

Устанавливает полный путь к идентификатору ImageMagick, если Therion не может его найти ("ident" является значением по умолчанию);

• convert-path <путь файла>

Устанавливает полный путь к исполняемому файлу ImageMagick, если Therion не может его найти ("convert" является значением по умолчанию);

• source-path <каталог>

Путь к файлам данных и конфигурации. Используется в основном для system-wide grades и определений макетов;

• tmp-path <каталог>

Путь, где должен быть создан временный каталог;

• tmp-remove <команда OC>

Системная команда для удаления файлов из временного каталога;

• tex-env <on/off>

Работает только в Windows. Когда установлено значение off (по умолчанию), Therion временно очищает все переменные среды, связанные с Т_FX. Полезно, если в вашей системе установлен другой дистрибутив Т_FX,

который настроил переменные среды, которые могут запутать программы T_EX и METAPOST, поставляемые с дистрибутивом Therion для Windows.

Установите в on, если вы используете другой дистрибутив T_EX для обработки карт;

• text <ID языка> <текст Therion'a> <свой текст>

С помощью этой опции вы можете изменить любой текст перевода по умолчанию на выходе. Список текстов и доступных переводов смотрите в файле thlang/texts.txt;

5.4 • cs-def <id> <proj4def>

Определяет новую систему координат <id> используя синтаксис Proj4;

5.3 • pdf-fonts <rm> <it> <bf> <ss> <si>

Настройка шрифтов, которые будут использоваться в PDF-картах. За командой должны следовать пути, указывающие, где в вашей системе расположены обычные, курсивные, полужирные, без засечек и наклонные без засечек шрифты. Поддерживаются шрифты TrueType и OpenType.

Для использования этой команды Therion требует установки LCDF Typetools в вашей системе. Пример:

5.3 • otf2pfb <on/off>

Когда установлено значение on (по умолчанию), шрифты OpenType, используемые в pdf-fonts, преобразуются в шрифты PFB, если они основаны на PostScript. Некоторая информация теряется в формате PFB, но есть преимущество в том, что pdfTeX может встраивать часть шрифтов PFB (в отличие от шрифтов OpenType, которые должны быть встроены полностью);

\bullet tex-fonts <кодировка> <rm> <it> <bf> <ss> <si>

Исходный и более сложный способ настройки шрифтов для PDF-карт. Вам нужно явно указать кодировку (не более 256 символов из шрифта, который будет использоваться). Список поддерживаемых в настоящее время кодировок выводится опцией –print-tex-encodings в командной строке. Та же кодировка должна использоваться при генерации Тех метрик (*.tfm файлов) для этих шрифтов (например, с использованием программы afm2tfm), и эта кодировка должна быть явно указана в файле карты в pdfTex. Единственным исключением является базовый набор

шрифтов Computer Modern, который использует 'сырую' кодировку. Эта кодировка не нуждается в указывании в файле карты pdfT_EX.

За кодировкой должны следовать пять спецификаций шрифтов для обычных, курсивных, полужирных, без засечек и наклонных без засечек. Значение по умолчанию: tex-fonts raw cmr10 cmti10 cmbx10 cmss10 cmssi10.

Пример использования других шрифтов (например, TrueType Palatino в кодировке xl2, кодировка, полученная из ISO8859-2). Запустите:

ttf2afm -e xl2.enc -o palatino.afm palatino.ttf

afm2tfm palatino.afm -u -v vpalatino -T xl2.enc

vptoví vpalatino.vpl vpalatino.vf vpalatino.tfm

Вы получите файлы vpalatino.vf, vpalatino.tfm и palatino.tfm. Добавьте строчку

palatino <xl2.enc <palatino.ttf

в pdfT_EX файл карты. То же самое должно быть сделано для курсивых и полужирных шрифтов и соответствующих шрифтов без засечек и наклонных без засечек. Если вы ленитесь, попробуйте:

tex-fonts xl2 palatino palatino palatino palatino

(Мы должны использовать виртуальный шрифт vpalatino вместо palatino, который не содержит кернинга или лигатуры, но pdfT_EX не поддерживает команду \pdfincludechars на виртуальных шрифтах. Будет улучшен).

Если вы хотите добавить некоторые неподдерживаемые кодировки, прочитайте главу *Компиляция / Руководство хакера*;

• tex-fonts-optional <кодировка> <rm> <it> <bf> <ss> <si>

Подобно смотрите в tex-fonts, но дополнительно проверяется, установлены ли в системе шрифты T_EX. Ничего не происходит, если какой-либо из указанных шрифтов отсутствует.

Этот параметр используется по умолчанию для чешских/словацких и кириллических шрифтов, чтобы избежать ошибок METAPOST для систем без этих шрифтов.

Поскольку тест занимает некоторое время (экземпляр pdfTeX запущен), вы можете полностью отключить поведение по умолчанию, установив tex-fonts в файле INI.

XTherion

Файл инициализации для XTherion на самом деле является сценарием Tcl, обрабатываемыми при запуске XTherion'а. Файл комментирован; смотрите комментарии для подробностей.

Ограничения

- ullet размер скрапа $ho \approx 2.8 imes 2.8 imes 8$ выходном масштабе (ограничение METAPOST);
- размер страницы ⊳

```
PDF-карта или атлас: \approx 5 \times 5 м (ограничение pdfTeX)
```

SVG-карта: без ограничений;

• количество скрапов ⊳ примерно 500–6000, в зависимости от частоты поперечных сечений

```
текущий предел METAPOST: 4(скрапы + сечения) < 4096 (может быть произвольно увеличено)
```

```
предел pdfTEX: 2 \times страницы + изображения + шаблоны + 6(скрапы + сечения) < 32500
```

Примеры данных

Следующий простой пример иллюстрирует базовое использование команд Therion'a:

```
survey main -title "Тестовая пещера"
```

encoding utf-8

```
survey first
centreline
units compass grad
data normal from to compass clino length
1 2 100 -5 10
endcentreline
endsurvey
```

survey second -declination [3 deg] centreline calibrate length 0 0.96 data normal from to compass length clino 1 2 0 10 \pm 10 endcentreline endsurvey

```
centreline equate 2@first 1@second endcentreline
```

scraps are usually in separate *.th2 files scrap s1 -author 2004 "Therion team"

point 763 746 station -name 2@second point 702 430 station -name 2@first point 352 469 station -name 1@first point 675 585 air-draught -orientation 240 -scale large

line wall -close on 287 475 281 354 687 331 755 367 981 486 846 879 683 739 476 561 293 611 287 475 endline

endscrap

map m1 -title "Test map" s1 endmap

endsurvey

Corresponding configuration file could be:

encoding utf-8 source test

layout 11 scale 1 100 layers off endlayout

select m1@main

export model -fmt survex export map -layout 11

If you save data file as 'test.th' and configuration file as 'thconfig' you may process them with Therion.

History

• 1999

Oct: first concrete ideas

Nov: start of programming (Perl scripts and METAPOST macros)

Dec 27: Therion compiles simple map in PostScript format for the first time (32 kB of Perl and 7 kB of METAPOST and TEX source code). The map warping model was substantially different from the current one (positions of features were relative to a particular survey shot, not to positions of all stations in a scrap). This version already included some interesting features such as transformation functions which allowed user specification of the input format for survey data, or splitting large maps to multiple sheets.

Dec 30: the first web page (with data examples but without source code)

• 2000

Jan: xthedit (Tcl/Tk), a graphical front-end for Therion

Feb 18: start of reprogramming (Perl)

Apr 1: the first hyperlinked PDF cave map / atlas

Aug: experiments with PDF, pdfTFX and METAPOST

• 2001

Nov: start of reimplementation from scratch: Therion (C++ with some Perl scripts inherited from the previous version); notion of a scrap; interactive 2D map editor ThEdit as a replacement of xthedit (Delphi)

Dec: ThEdit exports simple map for the first time

2002

Mar: Therion 0.1 — Therion is able to process survey data (centreline) of the Cave of Dead Bats. XTherion, text editor designed for Therion (Tcl/Tk).

Jul 27: Therion 0.2 — Therion compiles simple map (consisting of two scraps) for the first time (800 kB of source code)

Aug: XTherion extended to 2D map editor (as a replacement of ThEdit)

Sep: Therion compiles first real and complex map of a cave. XTherion extended to compiler.

• 2003

Mar: the first version of The Therion Book finished

Apr: Therion included in Debian GNU/Linux

Jun: all Perl scripts rewritten in C++, Therion is one executable program now (although using Survex and $T_{E}X$)

• 2004

Mar: Therion 0.3 — Therion exports 3D model created from 2D maps. Loop closure algorithm included into Therion.

• 2006

Oct: Therion 0.4 - New 3D viewer (Loch).

• 2007

Feb: Therion 0.5 — Support for bitmap sketches morphing.

Future

Although Therion is already used for map production, there are a lot of new features to be implemented:

General

• loop closure information in SQL

2D-карты

- complete the predefined symbol sets
- generate registers for atlas
- use MPlib instead of METAPOST

3D-модели

• improve passage walls modeling

XTherion

• improve 2D editing capabilities

Loch

- colour schemes
- survey tree for selecting sub-surveys to display
- spatial filtering (e.g. clipping by planes)
- support for multiple surfaces

Labyrinth

• completely new GUI in the far future (see https://labyrinth.speleo.sk)