Fundação Getúlio Vargas

Matemática Aplicada	
Nome:	
Monitor: Jeann	

Exercício 1 - Ínfimo

Seja $X \neq \emptyset$ limitado inferiormente, com $a = \inf X$. Suponha que $a \notin X$. Mostre que

- (a) existe sequência (x_n) em X tal que $x_n \to a$.
- (b) descreva uma forma de extrair uma subsequência (y_n) estritamente decrescente de (x_n) .

Exercício 2 - Intervalos Encaixados

Sejam $A_1\supset A_2\supset A_3\supset ...$ intervalos limitados tais que $\bigcap\limits_{k=1}^\infty A_k
eq \emptyset$. Mostre que

$$\sup igcap_{n=1}^\infty A_n = \inf \left\{ \sup A_n | n \in \mathbb{N}
ight\}$$

Analogamente,

$$\inf igcap_{n=1}^\infty A_n = \sup \left\{\inf A_n | n \in \mathbb{N}
ight\}$$

Exercício 3 - A Propriedade Arquimediana

Mostre que as seguintes propriedades são equivalentes:

- (i) \mathbb{N} é ilimitado superiormente
- (ii) $orall a,b>0, \exists n\in\mathbb{N}$ tal que an>b
- $\text{(iii)} \ \, \forall r>0, \exists n\in\mathbb{N} \text{ tal que } \frac{1}{n}< r.$

Agora, use o Axioma do Supremo para provar alguma destas 3 propriedades e, consequentemente, obter as demais.

Exercício 4 - Radicais Aninhados

Robertinha estava analisando propriedades dos números reais. Ela sabia que $\sqrt{2}$ era um único número em \mathbb{R}_+ tal que o seu quadrado é igual a 2. Porém, ela pensou se poderia obter o 2 de outro modo a partir do $\sqrt{2}$. Ela então considerou o conjunto

$$X = \left\{ \sqrt{2}, \sqrt{2 + \sqrt{2}}, \sqrt{2 + \sqrt{2 + \sqrt{2}}}, \sqrt{2 + \sqrt{2 + \sqrt{2}}}, ...
ight\}$$

Ajude Robertinha mostrando que X é limitado superiormente e que sup X=2. Ou seja, podemos escrever $2=\sqrt{2+\sqrt{2+\sqrt{2+\dots}}}$

Exercício 1 - Solução

(a) Para cada $k\in\mathbb{N}$, escolha $x_k\in X\cap\left(a,a+rac{1}{n}
ight)$, que deve existir pois $a=\inf X$ e a
otin X. Assim

$$|x_k-a|=x_k-a<\left(a+rac{1}{n}
ight)-a=rac{1}{n} o 0$$

(b) Defina $n_1=1$ e $y_1=x_1$. Agora, supondo já obtidos $n_1,n_2,...,n_k\in\mathbb{N}$, com $n_1< n_2<...< n_k$, e $y_i=x_{n_i}$ (i=1,...,k) tais que $y_1>y_2>...>y_k$, tome $n_{k+1}=\min\{n\in\mathbb{N}|x_n< y_i, \forall i=1,...,k\}$, que existe pelo Princípio da Boa Ordenação (observe, que $\{n\in\mathbb{N}|x_n< y_i, \forall i=1,...,k\}\neq\emptyset$, pois se fosse vazio, teríamos $x_n\geq y_k, \forall n\in\mathbb{N}$, que no limite implicaria $a\geq y_k$, que é um absurdo). Fazendo, então $y_{k+1}=x_{n_{k+1}}$, obtemos, por cosntrução, uma subsequência $(y_k)=(x_{n_k})$ de (x_n) que é estritamente decrescente e tal que $y_k\to a$ (já que $x_n\to a$).

Exercício 2 - Solução

Sendo $a_k=\inf A_k, b_k=\sup A_k, A=\{a_1,a_2,...\}, B=\{b_1,b_2,...\}$ e $c=\sup \bigcap\limits_{n=1}^{\infty}A_n.$ Como $\bigcap\limits_{n=1}^{\infty}A_n\subset ...\subset A_n\subset ...\subset A_2\subset A_1,$ vem que

$$a_1 \le a_2 \le ... \le a_n \le ... \le c \le ... \le b_n \le ... \le b_2 \le b_1$$

donde $c \leq \inf B$.

Além disso, deve ser $c=\inf B$, caso contrário se fosse $c<\inf B$, todo ponto $x\in (c,\inf B)$ (que existiria, pois nesse caso o intervalo é não-degenerado) seria tal que $x<\inf B\le b_n, \forall n\in\mathbb{N}$ e $x>c\ge a_n, \forall n\in\mathbb{N}$, isto é, $x\in (a_n,b_n)\subset A_n, \forall n\in\mathbb{N}$. Ou seja, $x\in\bigcap_{n=1}^\infty A_n$, o que contradiria o fato de c ser supremo.

Analogamente, mostra-se a outra igualdade.

Exercício 3 - Solução

Vamos mostrar que $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$.

- (a) \Rightarrow (b): Se existem a,b>0 tais que nenhum $n\in\mathbb{N}$ é tal que an>b, então $an\leq b, \forall n\in\mathbb{N}$, donde $n\leq \frac{b}{a}, \forall n\in\mathbb{N}$, ou seja, $\frac{b}{a}$ seria uma cota superior de \mathbb{N} e, consequentemente, \mathbb{N} seria limitado superiormente, que é um absurdo.
- (b) \Rightarrow (c): Tomando a=1 e $b=rac{1}{r}$, temos que $\exists n\in\mathbb{N}$ tal que

$$an > b \Leftrightarrow n > rac{1}{r} \Leftrightarrow rac{1}{n} < r$$

(c) \Rightarrow (a): Se $\mathbb N$ fosse limitado superiormente, deveria existir $c=\sup \mathbb N$. Portanto, $c\geq n, \forall n\in \mathbb N$, donde $\frac{1}{c}\leq \frac{1}{n}, \forall n\in \mathbb N$, que é um absurdo.

Agora, mostraremos que o Axioma do Supremo implica em (a).

Se \mathbb{N} fosse limitado superiormente, deveria existir $c = \sup \mathbb{N}$. Assim, deve existir $n \in \mathbb{N} \cap (c-1,c]$, donde $c-1 < n \le c$, ou seja, c < n+1. Mas, $n+1 \in \mathbb{N}$, o que contradiz o fato de c ser o supremo de \mathbb{N} . Portanto, \mathbb{N} é ilimitado superiormente.

Exercício 4 - Solução

1º Solução)

Seja $x_1=\sqrt{2}$ e, recursivamente, $x_{n+1}=\sqrt{2+x_n}$. Então, $X=\{x_1,x_2,\ldots\}$. Note que $x_1=\sqrt{2}\leq 2$ e, se $x_k\leq 2$, para algum $k\in\mathbb{N}$, então $x_{k+1}=\sqrt{2+x_k}\leq \sqrt{2+2}=2$, donde segue por indução que $x_n\leq 2, \forall n\in\mathbb{N}$. Assim, 2 é cota superior de X e, portanto, X é limitado superiormente. Sendo $y=\sup X$, temos $\sqrt{2}=x_1\leq y<2\Rightarrow y^2<2y\Rightarrow y<\sqrt{2y}$. Suponha que y<2. Então, teríamos $x_n\leq y<2, \forall n\in\mathbb{N}$. Mas, $y<2\Rightarrow 2y-2< y$, donde existiria algum $k\in\mathbb{N}$ tal que

$$2y-2 < x_k \Leftrightarrow 2y < x_k+2 = x_{k+1}^2 \Leftrightarrow y < \sqrt{2y} < x_{k+1}$$

que é um absurdo. Logo, y = 2.

2º Solução)

Seja $x_1=\sqrt{2}$ e, recursivamente, $x_{n+1}=\sqrt{2+x_n}$. Então, $X=\{x_1,x_2,\ldots\}$. Note que $x_1=\sqrt{2}\leq 2$ e, se $x_k\leq 2$, para algum $k\in\mathbb{N}$, então $x_{k+1}=\sqrt{2+x_k}\leq \sqrt{2+2}=2$, donde segue por indução que $x_n\leq 2, \forall n\in\mathbb{N}$. Agora, vamos mostrar por indução que $x_n>2-\frac{1}{n}, \forall n>1$. Com efeito, $x_2=\sqrt{2+\sqrt{2}}>2-\frac{1}{2}$. Agora, supondo que $x_n>2-\frac{1}{n}$, temos que

$$egin{aligned} x_{n+1} &= \sqrt{2+x_n} > \sqrt{2+2-rac{1}{n}} = \sqrt{4-rac{1}{n}} \geq 2-rac{1}{n+1} \ &\Leftrightarrow 4-rac{1}{n} \geq 4-rac{2}{n+1} + rac{1}{(n+1)^2} \Leftrightarrow rac{n^2-n-1}{n(n+1)^2} \geq 0 \ &\Leftrightarrow n^2-n-1 \geq 0 \Leftrightarrow n \geq rac{1+\sqrt{5}}{2} > 1 \end{aligned}$$

Assim, 2 é a menor das cotas superiores (caso contrário, se r < 2 fosse cota superior, então $\exists n > 1$ tal que $r < 2 - \frac{1}{n}$, donde $x_n > r$, que não poderia ocorrer). Logo, sup X = 2.

3º Solução)

Seja $x_1=\sqrt{2}$ e, recursivamente, $x_{n+1}=\sqrt{2+x_n}$. Então, $X=\{x_1,x_2,\ldots\}$. Note que $x_1=\sqrt{2}\leq 2$ e, se $x_k\leq 2$, para algum $k\in\mathbb{N}$, então $x_{k+1}=\sqrt{2+x_k}\leq \sqrt{2+2}=2$, donde segue por indução que $x_n\leq 2, \forall n\in\mathbb{N}$. Além disso, (x_n) é crescente. Com efeito,

$$x_{n+1} = \sqrt{2 + x_n} > x_n \Leftrightarrow 2 + x_n > x_n^2 \Leftrightarrow -1 < x_n < 2$$

que é verdade para todo $n\in\mathbb{N}$. Assim, existe o limite $L=\lim x_n$. Portanto

$$x_{n+1}=\sqrt{2+x_n}\Rightarrow L=\sqrt{2+L}\Rightarrow L^2-L-2=0\Rightarrow L=-1$$
 ou $L=2$

Como $x_n \geq x_1 = \sqrt{2}$, segue que $\sup X = L = 2$.