ds3_nematoda_limpieza_de_datos

December 14, 2020

Limpieza de datos

```
[1]: import pandas as pd
  import seaborn as sns
  import numpy as np
  import os
  import matplotlib.pyplot as plt
  import warnings
  warnings.filterwarnings("ignore")
  %matplotlib inline
  from mlxtend.preprocessing import standardize
  from scipy import stats
```

1 Declaración de variables

```
[2]: organismo ="nematoda"
    dataset = 3
    nombre = ("ds" + str(dataset) + "_" + str(organismo))
    nombre2 = (str(organismo)+ " dataset " + str(dataset))
    r2 = ("Datos/resultados/"+ str(organismo) + "/" + str(nombre) + "/
     r3 = ("Datos/resultados/"+ str(organismo) + "/" + str(nombre) + "/
     nom1 = ("/ds" + str(dataset) + "_AAC efectores_" + str(organismo) + ".txt")
    nom2 = ("/ds" + str(dataset) + "_ACC_hidro_mass_efectores_" + str(organismo) +__
     →".txt")
    nom3 = ("/ds" + str(dataset) + "_ACC_mass_efectores_" + str(organismo) + ".txt")
    nom4 = ("/ds" + str(dataset) + "_ACC_hidro_efectores_" + str(organismo) + ".
     →txt")
    nom5 = ("/ds" + str(dataset) + "_PseAAC_hidro_mass_efectores_" + str(organismo)_

→+ ".txt")

    nom6 = ("/ds" + str(dataset) + "_PseAAC_mass_efectores_" + str(organismo) + ".
    nom7 = ("/ds" + str(dataset) + "_PseAAC_hidro_efectores_" + str(organismo) + ".
     →txt")
```

```
nom8 = ("/ds" + str(dataset) + "_AAC_no_efectores_" + str(organismo) + ".txt")
nom9 = ("/ds" + str(dataset) + "_ACC_hidro_mass_no_efectores_" + str(organismo)__

→+ ".txt")

nom10 = ("/ds" + str(dataset) + " ACC mass no efectores " + str(organismo) + ".
nom11 = ("/ds" + str(dataset) + "_ACC_hidro_no_efectores_" + str(organismo) + ".
→txt")
nom12 = ("/ds" + str(dataset) + " PseAAC hidro mass no efectores " + 11

→str(organismo) + ".txt")
nom13 = ("/ds" + str(dataset) + "_PseAAC_mass_no_efectores_" + str(organismo) +__
nom14 = ("/ds" + str(dataset) + "_PseAAC_hidro_no_efectores_" + str(organismo)__

→+ ".txt")

#Efectores
AAC_efec= pd.read_csv(str(r2) + str(nom1), header=None,prefix='X',sep=',')
ACC_hidro_mass_efec = pd.read_csv(str(r2) + str(nom2),__
→header=None,prefix='X',sep=',')
ACC_mass_efec = pd.read_csv(str(r2) + str(nom3), header=None,prefix='X',sep=',')
ACC_hidro_efec = pd.read_csv(str(r2) + str(nom4),__
→header=None,prefix='X',sep=',')
PseAAC_hidro_mass_efec = pd.read_csv(str(r2) +str(nom5),__
→header=None, prefix='X', sep=',')
PseAAC_mass_efec = pd.read_csv(str(r2) + str(nom6),__
→header=None,prefix='X',sep=',')
PseAAC_hidro_efec = pd.read_csv(str(r2) + str(nom7),__
→header=None,prefix='X',sep=',')
#No efectores
AAC no efec= pd.read csv(str(r2) + str(nom8), header=None, prefix='X', sep=',')
ACC_hidro_mass_no_efec =pd.read_csv(str(r2) + str(nom9),__
→header=None,prefix='X',sep=',')
ACC_mass_no_efec =pd.read_csv(str(r2) + str(nom10),__
→header=None,prefix='X',sep=',')
ACC_hidro_no_efec =pd.read_csv(str(r2) + str(nom11),__
→header=None,prefix='X',sep=',')
PseAAC_hidro_mass_no_efec =pd.read_csv(str(r2) + str(nom12),__
→header=None,prefix='X',sep=',')
PseAAC_mass_no_efec =pd.read_csv(str(r2) + str(nom13),__
→header=None,prefix='X',sep=',')
PseAAC_hidro_no_efec =pd.read_csv(str(r2) + str(nom14),__
 →header=None,prefix='X',sep=',')
```

2 Composición de aminoácidos (AAC)

```
[3]: transf = "Composición de aminoácidos (AAC) "
     etiq="efectores "
     estado = "con valores atípicos.\n"
     df=""
     for etiq in "efectores", "no_efectores":
         titulo = (str(transf) + str(etiq) + " " + str(nombre2) + ", " +str(estado))
         print (str(etiq))
         if etiq == "efectores":
             df=AAC_efec
         if etiq == "no_efectores":
             df=AAC_no_efec
         #del df['X20']
         print (str(titulo) + "Valores del documento csv.\n")
         print (df)
         print ("\n\n" + str(titulo) + "Estadísticas.\n")
         print(df.describe())
         print ("\n\n")
         #Gráfica de caja y bigotes
         sns.set(style="whitegrid")
         fig , ax = plt.subplots(figsize=(14,7))
         ax = sns.boxplot(data=df)
         ax.set_title(organismo +' '+str(etiq) +" dataset "+ str(dataset)+"__
      →"+str(transf)+" "+str(estado))
```

efectores

Composición de aminoácidos (AAC) efectores nematoda dataset 3, con valores atípicos.

```
XΟ
               Х1
                     Х2
                           ХЗ
                                  Х4
                                        Х5
                                              Х6
                                                     Х7
                                                            Х8
                                                                  X9 \
     7.426
0
            5.941 3.465 6.436 3.960 6.436 5.446
                                                   3.465 2.970 4.950
           16.832 2.970 3.960 2.970 5.941 4.950
1
     9.901
                                                   1.980 1.980 3.960
2
     7.500 10.000 0.000 2.500 0.000 5.000 5.000
                                                   0.000 0.000 5.000
     4.286 14.286 1.429 2.857 1.429 5.714 4.286
3
                                                   2.857 1.429 4.286
4
     5.941
           4.950 6.931 6.931 0.990 3.960 2.970
                                                   1.980 0.990 1.980
495
     7.036
            3.412 3.838 5.330 0.853 6.823 3.838 11.940 1.493 3.838
496
    6.027 4.932 6.027 6.575 0.822 7.945 3.288
                                                   2.740 2.740 3.288
497
    12.000
            5.333 2.667 2.667 2.222 3.556 2.667
                                                   5.333 0.444 7.111
498
    8.750
            6.528 4.306 6.528 2.500 6.250 2.222
                                                   6.111 3.889 4.444
```

```
7.179 6.667 6.154 1.026 9.231 3.590
499
     7.179
                                                      5.641 2.051 5.641
                                         X15
                                                 X16
                                                               X18
                                                                       X19 \
          X11
                  X12
                          X13
                                 X14
                                                        X17
0
        8.911
                3.960
                        2.970 3.960
                                       5.941
                                               1.980 1.485
                                                             3.465
                                                                     6.931
1
        6.931
                1.980
                        3.960 3.960
                                      10.891
                                               3.960 1.980
                                                             1.980
                                                                     4.950
2
        5.000
               12.500
                        2.500 7.500
                                      12.500
                                               2.500
                                                      0.000
                                                             0.000
                                                                    12.500
3
        2.857
                4.286 10.000 2.857
                                       1.429
                                              10.000
                                                      2.857
                                                             7.143
                                                                     7.143
                                               7.921 1.980
                                                            7.921
4
        6.931
                5.941
                        1.980 3.960
                                      11.881
                                                                     2.970
                                 ...
                                                 •••
. .
          •••
                                                       •••
                                                                     7.249
        7.036
                1.706
                        4.051
                                               7.463 0.853
                                                            3.838
495
                              7.036
                                       6.183
496
       10.685
                        2.192 4.658
                                      12.877
                                               6.849 0.274 2.740
                                                                     5.753
                1.644
497
        2.222
                4.444
                        8.000 3.111
                                      10.667
                                               4.000 1.778 3.111
                                                                     5.778
        4.722
                                               4.028 0.833
                                                             2.500
                                                                     8.889
498
                3.056
                        2.917 3.611
                                       6.111
499
        6.154
                2.564
                        3.077 4.615
                                       5.128
                                               1.538 1.026 3.077
                                                                     6.154
           X20
0
     efectores
1
     efectores
2
     efectores
3
     efectores
4
     efectores
. .
495
     efectores
496
     efectores
497
     efectores
498
     efectores
499
     efectores
```

[500 rows x 21 columns]

Composición de aminoácidos (AAC) efectores nematoda dataset 3, con valores atípicos.

Estadísticas.

	XO	X1	Х2	ХЗ	X4	Х5	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	6.809128	6.039334	4.410460	5.031770	2.338910	6.072492	
std	2.533559	2.652233	2.039699	2.498164	1.938216	3.017880	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	5.336250	4.462750	3.052000	3.544500	1.159500	4.042000	
50%	6.511000	5.777000	4.305500	4.962000	1.951000	5.882000	
75%	8.000000	7.347000	5.556000	6.306000	2.972250	7.411750	
max	18.531000	21.053000	12.346000	28.788000	17.647000	16.854000	
	Х6	Х7	Х8	Х9	X10	X11	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	3.923442	5.736838	2.394836	5.687022	8.872892	5.875948	

std	2.395484	3.346760	1.442926	2.429213	2.962644	3.011283	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	2.564000	3.844750	1.446000	4.185750	7.071000	3.964250	
50%	3.618500	5.371000	2.353000	5.401500	8.730000	5.579000	
75%	4.786000	6.898250	3.078750	7.150500	10.620000	7.390500	
max	29.412000	32.090000	13.187000	21.667000	20.408000	26.316000	
	X12	X13	X14	X15	X16	X17	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	2.956944	4.624396	4.853238	7.737420	5.610934	1.229042	
std	1.507993	2.492863	3.493567	2.994639	2.067805	1.015367	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.978500	3.073000	3.113250	5.820250	4.348000	0.495000	
50%	2.694500	4.334000	4.397000	7.374000	5.508000	1.101500	
75%	3.695750	5.848250	5.618000	9.168000	6.859500	1.686750	
max	12.500000	29.487000	49.231000	19.192000	14.118000	6.667000	
	X18	X19					
count	500.000000	500.00000					
mean	3.278126	6.51681					
std	1.898936	2.41929					
min	0.000000	0.00000					
25%	2.068750	5.04000					
50%	3.108500	6.25000					
75%	4.214500	7.92500					
max	14.407000	19.50200					

no_efectores

Composición de aminoácidos (AAC) no_efectores nematoda dataset 3, con valores atípicos.

	XO	X1	X2	ХЗ	X4	Х5	Х6	Х7	X8	Х9	\
0	12.857	7.143	7.143	4.286	5.714	4.286	1.429	1.429	0.000	5.714	
1	7.143	3.439	4.497	10.053	1.587	11.111	2.381	5.820	2.116	7.937	
2	7.552	5.469	5.729	5.729	1.042	7.812	5.469	6.771	2.865	4.167	
3	7.557	5.290	3.778	3.023	2.519	2.519	4.786	5.038	2.519	11.335	
4	5.852	4.647	3.442	6.196	1.721	8.950	4.819	3.959	2.410	5.680	
				•••			•••				
495	11.765	5.882	3.676	5.147	1.471	8.824	2.941	2.451	2.451	7.843	
496	6.852	3.640	3.212	3.854	5.782	11.991	2.784	6.210	1.499	4.711	
497	4.697	6.849	4.697	6.262	4.305	4.697	4.110	4.305	1.957	7.241	
498	3.518	8.543	4.020	7.035	3.015	4.523	3.518	6.030	2.010	8.040	
499	6.276	4.184	5.858	2.929	2.092	3.766	2.510	3.347	1.674	6.695	
	Х	11 X	12 X	13 X1	4 X1	5 X16	X17	X18	X19	\	

```
0
       8.571 4.286 4.286 7.143 7.143 2.857 2.857 2.857 4.286
1
       11.905 1.058 2.910
                           3.439 3.704
                                       3.175 0.794 1.852 6.349
2
              2.865 4.948
                           5.208 7.812 4.427 0.260 2.083 4.427
       6.771
3
       3.023
              3.023 8.816
                           2.771 7.809
                                       3.526 1.259 3.023 6.297
              2.582 3.959
                                       6.540 0.516 2.754 6.713
4
       9.639
                           4.991 6.540
. .
495
       9.314
              2.451 3.186
                           1.961
                                7.598
                                       3.431
                                             0.245
                                                    3.431
       10.064 2.355 3.212
                                       7.066 0.857
                                                    2.141 6.210
496
                           4.283 8.779
497
       3.131 1.761 3.523
                           3.718 9.589
                                       5.284 0.196 3.131 5.479
498
       4.020 2.513 5.528
                          7.035 5.025 4.020 1.005 3.015 8.543
499
       5.439 4.603 5.858 4.603 5.858 9.623 2.092 3.766 5.439
```

X20

- 0 no_efectores
- 1 no_efectores
- 2 no_efectores
- 3 no_efectores
- 4 no_efectores
-
- 495 no efectores
- 496 no_efectores
- 497 no efectores
- 498 no_efectores
- 499 no_efectores

[500 rows x 21 columns]

Composición de aminoácidos (AAC) no_efectores nematoda dataset 3, con valores atípicos.

Estadísticas.

XO	X1	Х2	ХЗ	Х4	Х5	\
500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
6.006338	5.600768	5.262376	5.079808	2.128404	6.714734	
2.866247	2.631884	2.407633	2.797731	1.817490	2.969434	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
4.306750	4.054000	3.826500	3.620750	1.062250	4.828000	
5.659000	5.464500	4.849500	5.008000	1.731500	6.305000	
7.220750	6.718000	6.209750	6.340750	2.703000	8.186500	
30.120000	21.212000	20.134000	44.715000	14.013000	20.134000	
Х6	Х7	Х8	Х9	X10	X11	\
500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
3.887828	5.429862	2.238290	6.213740	8.956788	6.860034	
2.007169	3.248521	1.292904	2.491856	3.390382	3.250935	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
2.663500	3.907250	1.466250	4.681250	7.216750	4.800000	
	500.000000 6.006338 2.866247 0.000000 4.306750 5.659000 7.220750 30.120000 X6 500.000000 3.887828 2.007169 0.000000	500.000000 500.000000 6.006338 5.600768 2.866247 2.631884 0.000000 0.000000 4.306750 4.054000 5.659000 5.464500 7.220750 6.718000 30.120000 21.212000 X6 X7 500.000000 500.000000 3.887828 5.429862 2.007169 3.248521 0.000000 0.0000000	500.000000 500.000000 500.000000 6.006338 5.600768 5.262376 2.866247 2.631884 2.407633 0.000000 0.000000 0.000000 4.306750 4.054000 3.826500 5.659000 5.464500 4.849500 7.220750 6.718000 6.209750 30.120000 21.212000 20.134000 X6 X7 X8 500.000000 500.000000 500.000000 3.887828 5.429862 2.238290 2.007169 3.248521 1.292904 0.000000 0.0000000 0.0000000	500.000000 500.000000 500.000000 500.000000 6.006338 5.600768 5.262376 5.079808 2.866247 2.631884 2.407633 2.797731 0.000000 0.000000 0.000000 0.000000 4.306750 4.054000 3.826500 3.620750 5.659000 5.464500 4.849500 5.008000 7.220750 6.718000 6.209750 6.340750 30.120000 21.212000 20.134000 44.715000 X6 X7 X8 X9 500.000000 500.000000 500.000000 500.000000 3.887828 5.429862 2.238290 6.213740 2.007169 3.248521 1.292904 2.491856 0.000000 0.000000 0.000000 0.000000	500.000000 500.000000 500.000000 500.000000 500.000000 6.006338 5.600768 5.262376 5.079808 2.128404 2.866247 2.631884 2.407633 2.797731 1.817490 0.000000 0.000000 0.000000 0.000000 0.000000 4.306750 4.054000 3.826500 3.620750 1.062250 5.659000 5.464500 4.849500 5.008000 1.731500 7.220750 6.718000 6.209750 6.340750 2.703000 30.120000 21.212000 20.134000 44.715000 14.013000 X6 X7 X8 X9 X10 500.000000 500.000000 500.000000 500.000000 500.000000 3.887828 5.429862 2.238290 6.213740 8.956788 2.007169 3.248521 1.292904 2.491856 3.390382 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000	500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 6.714734 2.866247 2.631884 2.407633 2.797731 1.817490 2.969434 0.0000000 0.000000 0.000000 0.000000

50%	3.622000	5.080000	2.105500	5.958000	8.887500	6.341000	
75%	4.890500	6.359250	2.819000	7.622250	10.469250	8.548500	
max	16.320000	48.892000	9.639000	16.239000	48.449000	23.200000	
	X12	X13	X14	X15	X16	X17	\
count	500.000000	500.000000	500.00000	500.000000	500.000000	500.000000	
mean	2.515828	4.873424	4.70791	7.915898	5.378348	1.174434	
std	1.292354	2.354156	2.76313	2.778729	2.147377	0.966822	
min	0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	
25%	1.649500	3.430750	3.12300	6.131000	4.222250	0.476250	
50%	2.354000	4.564000	4.21300	7.692000	5.285500	1.011000	
75%	3.059750	6.085250	5.70100	9.350750	6.395750	1.629750	
max	11.364000	21.944000	32.71000	23.507000	20.619000	7.333000	
	X18	X19					
count	500.000000	500.000000					
mean	3.096562	5.958668					
std	1.898575	2.104613					
min	0.000000	0.000000					
25%	2.017750	4.623000					
50%	2.997000	5.958500					
75%	4.070000	7.242250					
max	23.585000	13.514000					

nematoda efectores dataset 3 Composición de aminoácidos (AAC) con valores atípicos.

2.1 Composición de aminoácidos (AAC), sin valores atípicos

```
[4]: transf = "Composición de aminoácidos (AAC) "
     estado = "sin valores atípicos.\n"
     transf2="AAC"
     out = (str(r3) + '/ds' + str(dataset) + '_' + str(transf2) + '_' + __'
     ⇔str(organismo) + '.csv')
     os.makedirs(str(r3), exist_ok=True)
     df=""
     df_out = pd.DataFrame()
     for etiq in "efectores", "no_efectores":
         titulo = (str(transf) + str(etiq) + " " + str(nombre2) + ", " +str(estado))
         print (str(etiq))
         if etiq == "efectores":
             df=AAC_efec
         if etiq == "no_efectores":
             df=AAC_no_efec
         del df['X20']
         #Se eliminan todas las filas que tengan valores atípicos en al menos una de∟
      \hookrightarrowsus columnas.
         df = (df[(np.abs(stats.zscore(df)) < 3).all(axis=1)])</pre>
```

efectores

Composición de aminoácidos (AAC) efectores nematoda dataset 3, sin valores atípicos.

```
XΟ
               Х1
                      Х2
                            ХЗ
                                   Х4
                                         Х5
                                               Х6
                                                       Х7
                                                             Х8
                                                                    X9 \
0
     7.426
            5.941 3.465 6.436 3.960 6.436 5.446
                                                          2.970 4.950
                                                    3.465
     5.941
            4.950 6.931 6.931 0.990 3.960 2.970
4
                                                    1.980 0.990 1.980
5
     2.817
            8.451 5.634 5.634 4.225 7.042 0.000
                                                    7.042 4.225 4.225
6
    11.905 10.714 7.143 3.571 2.381 2.381 0.000
                                                    8.333 0.000 8.333
8
     6.024
           8.434 9.639 3.614 6.024 3.614 6.024
                                                    3.614 2.410 6.024
                                     6.823 3.838 11.940 1.493 3.838
495
     7.036
            3.412 3.838 5.330 0.853
496
     6.027
            4.932 6.027 6.575 0.822 7.945 3.288
                                                    2.740 2.740 3.288
497
    12.000
                                2.222
                                     3.556 2.667
                                                    5.333 0.444 7.111
            5.333 2.667 2.667
            6.528 4.306 6.528 2.500 6.250 2.222
498
     8.750
                                                    6.111
                                                           3.889 4.444
499
     7.179
            7.179 6.667 6.154 1.026 9.231 3.590
                                                    5.641 2.051 5.641
          X11
                X12
                      X13
                             X14
                                    X15
                                           X16
                                                 X17
                                                        X18
                                                              X19 \
        8.911
              3.960 2.970
                           3.960
                                   5.941
                                        1.980 1.485
                                                      3.465 6.931
0
                           3.960 11.881 7.921 1.980
4
        6.931
              5.941 1.980
                                                      7.921
                                                            2.970
        1.408 5.634 4.225
                           4.225
                                  5.634 9.859 0.000
5
                                                      7.042 4.225
6
        3.571 2.381 4.762
                           3.571
                                   5.952 8.333 2.381
                                                      3.571 8.333
8
        8.434
              2.410 0.000
                           4.819
                                   9.639
                                         3.614 0.000 6.024 2.410
```

```
7.036 1.706 4.051 7.036
                                   6.183 7.463 0.853 3.838 7.249
495 ...
496 ... 10.685 1.644 2.192 4.658 12.877 6.849 0.274 2.740 5.753
497
        2.222 4.444 8.000
                           3.111 10.667 4.000 1.778 3.111 5.778
498 ...
        4.722 3.056 2.917
                           3.611
                                   6.111 4.028 0.833 2.500 8.889
499
        6.154 2.564 3.077 4.615
                                   5.128 1.538 1.026 3.077 6.154
          X20
    efectores
0
4
    efectores
5
    efectores
6
    efectores
8
    efectores
495
    efectores
496
    efectores
497
    efectores
498
    efectores
499
    efectores
```

[417 rows x 21 columns]

Composición de aminoácidos (AAC) efectores nematoda dataset 3, sin valores atípicos.

Estadísticas.

	XO	X1	X2	ХЗ	Х4	Х5	\
count	417.000000	417.000000	417.000000	417.000000	417.000000	417.000000	
mean	6.756734	6.092110	4.485398	5.109012	2.217194	6.127089	
std	2.259148	2.304366	1.815248	2.022324	1.530661	2.603057	
min	1.471000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	5.385000	4.552000	3.289000	3.760000	1.235000	4.464000	
50%	6.436000	5.839000	4.342000	5.078000	1.961000	6.069000	
75%	7.865000	7.246000	5.556000	6.349000	2.920000	7.407000	
max	14.286000	13.861000	10.286000	12.500000	8.000000	14.554000	
	Х6	Х7	Х8	Х9	X10	X11	\
count	417.000000	417.000000	417.000000	417.000000	417.000000	417.000000	
mean	3.799592	5.481242	2.415161	5.841242	9.092602	5.893772	
std	1.812777	2.239726	1.199805	2.138719	2.599760	2.415326	
min	0.000000	0.000000	0.000000	0.000000	1.980000	0.000000	
25%	2.667000	3.922000	1.586000	4.375000	7.347000	4.337000	
50%	3.604000	5.381000	2.410000	5.571000	8.929000	5.741000	
75%	4.667000	6.829000	3.077000	7.246000	10.784000	7.287000	
max	10.740000	13.265000	6.667000	12.613000	17.647000	14.286000	
	X12	X13	X14	X15	X16	X17	\
count	417.000000	417.000000	417.000000	417.000000	417.000000	417.000000	

mean	2.845444	4.715727	4.534384	7.844583	5.616564	1.221964
std	1.245925	2.048263	1.927563	2.573204	1.859148	0.896744
min	0.429000	0.000000	0.000000	1.639000	0.503000	0.000000
25%	1.983000	3.352000	3.247000	5.970000	4.412000	0.573000
50%	2.691000	4.484000	4.367000	7.438000	5.525000	1.111000
75%	3.472000	5.882000	5.426000	9.231000	6.818000	1.684000
max	7.407000	11.465000	13.514000	16.516000	11.594000	4.000000
	X18	X19				
count	417.000000	417.000000				
mean	3.308285	6.601897				
std	1.557814	2.186805				
min	0.000000	0.000000				
25%	2.198000	5.263000				
50%	3.193000	6.439000				
75%	4.206000	8.000000				
max	7.921000	13.453000				

no_efectores

Composición de aminoácidos (AAC) no_efectores nematoda dataset 3, sin valores atípicos.

		XO	Х	1	Х2		ХЗ	X4	Х5	Х6	Х7	X8	Х9	\
0	12.8	357	7.14	3 7	. 143	4.	286	5.714	4.286	1.429	1.429	0.000	5.714	
1	7.1	143	3.43	9 4	. 497	10.	053	1.587	11.111	2.381	5.820	2.116	7.937	
2	7.5	552	5.46	9 5	.729	5.	729	1.042	7.812	5.469	6.771	2.865	4.167	
3	7.5	557	5.29	0 3	.778	3.	023	2.519	2.519	4.786	5.038	2.519	11.335	
4	5.8	352	4.64	7 3	.442	6.	196	1.721	8.950	4.819	3.959	2.410	5.680	
			•••	•••	•••		•		•••	•••	•••			
495	11.7	765	5.88	2 3	.676	5.	147	1.471	8.824	2.941	2.451	2.451	7.843	
496	6.8	352	3.64	.0 3	.212	3.	854	5.782	11.991	2.784	6.210	1.499	4.711	
497	4.6	397	6.84	9 4	.697	6.	262	4.305	4.697	4.110	4.305	1.957	7.241	
498	3.5	518	8.54	3 4	.020	7.	035	3.015	4.523	3.518	6.030	2.010	8.040	
499	6.2	276	4.18	4 5	.858	2.	929	2.092	3.766	2.510	3.347	1.674	6.695	
	•••	X	11	X12)	۲13	X14	k X1	5 X16	X17	X18	X19	\	
0	•••	8.57	71 4	.286	4.2	286	7.143	7.14	3 2.857	2.857	2.857	4.286		
1	1	11.90	05 1	.058	2.9	910	3.439	3.70	4 3.175	0.794	1.852	6.349		
2	•••	6.77	71 2	.865	4.9	948	5.208	7.81	2 4.427	0.260	2.083	4.427		
3	•••	3.02	23 3	.023	8.8	316	2.771	7.80	9 3.526	1.259	3.023	6.297		
4	•••	9.63	39 2	.582	3.9	959	4.991	6.54	0 6.540	0.516	2.754	6.713		
	•••				••	•••	•••	•••		•••				
495	•••	9.3	14 2	.451	3.1	L86	1.961	7.59	8 3.431	0.245	3.431	6.127		
496	1	10.06	34 2	.355	3.2	212	4.283	8.77	9 7.066	0.857	2.141	6.210		
497	•••	3.13	31 1	.761	3.5	523	3.718	9.58	9 5.284	0.196	3.131	5.479		

```
498 ... 4.020 2.513 5.528 7.035 5.025 4.020 1.005 3.015 8.543
499 ... 5.439 4.603 5.858 4.603 5.858 9.623 2.092 3.766 5.439
```

X20

- 0 no_efectores
- 1 no_efectores
- 2 no_efectores
- 3 no_efectores
- 4 no_efectores

. .

- 495 no_efectores
- 496 no_efectores
- 497 no_efectores
- 498 no_efectores
- 499 no_efectores

[411 rows x 21 columns]

Composición de aminoácidos (AAC) no_efectores nematoda dataset 3, sin valores atípicos.

Estadísticas.

	XO	X1	X2	ХЗ	X4	Х5	\
count	411.000000	411.000000	411.000000	411.000000	411.000000	411.000000	
mean	6.008696	5.565051	5.126611	5.122662	2.060540	6.688328	
std	2.219507	2.029366	1.913439	1.908449	1.340975	2.489281	
min	0.331000	0.606000	0.000000	0.000000	0.000000	0.000000	
25%	4.557500	4.279000	3.914000	4.143500	1.177000	5.000000	
50%	5.837000	5.505000	4.847000	5.110000	1.770000	6.331000	
75%	7.205500	6.695500	6.041000	6.347000	2.604000	7.985500	
max	14.004000	13.103000	12.322000	12.088000	7.353000	14.773000	
	Х6	Х7	8X	Х9	X10	X11	\
count	411.000000	411.000000	411.000000	411.000000	411.000000	411.000000	
mean	3.859718	5.178109	2.203440	6.412630	9.231277	6.668224	
std	1.624005	2.084957	1.083721	2.126471	2.515513	2.656513	
min	0.000000	0.000000	0.000000	1.471000	1.961000	0.000000	
25%	2.824500	3.949500	1.507500	5.009500	7.595000	4.881000	
50%	3.664000	5.024000	2.135000	6.216000	9.091000	6.366000	
75%	4.823000	6.130500	2.733000	7.712000	10.560000	8.395000	
max	9.790000	14.783000	5.941000	13.174000	17.568000	16.201000	
	X12	X13	X14	X15	X16	X17	\
count	411.000000	411.000000	411.000000	411.000000	411.000000	411.000000	
mean	2.499637	4.999630	4.601190	7.879365	5.437543	1.173905	
std	1.011244	1.977021	1.980622	2.341358	1.733373	0.817733	
min	0.405000	0.000000	0.000000	1.111000	0.000000	0.000000	

25% 50% 75% max	1.818000 2.397000 3.031000 5.797000	3.726000 4.724000 6.074000 11.688000	3.260500 4.260000 5.543000 11.200000	6.267500 7.733000 9.185500 14.740000	4.378000 5.370000 6.356500 11.765000	0.569500 1.047000 1.644000 3.922000
	X18	X19				
count	411.000000	411.000000				
mean	3.165229	6.118253				
std	1.466506	1.786737				
min	0.000000	0.746000				
25%	2.252000	4.962500				
50%	3.030000	6.098000				
75%	4.091000	7.241000				
max	7.918000	11.667000				

3 Composición de pseudo aminoácidos (PseAAC) hidro_mass

```
[5]: #hidro_mass
     transf = "Composición de pseudo aminoácidos (PseAAC) "
     transf2 = "PseAAC"
     estado = "con valores atípicos.\n"
     comp = "hidro_mass"
     df=""
     for etiq in "efectores", "no_efectores":
         titulo = (str(transf)+" "+ str(comp)+" "+ str(etiq) + " "+ str(nombre2) +",
     →" + str(estado))
         print (str(etiq))
         if etiq == "efectores":
             df=PseAAC_hidro_mass_efec
         if etiq == "no_efectores":
             df=PseAAC_hidro_mass_no_efec
         #del df['X83']
         print (str(titulo) + "Valores del documento csv.\n")
         print ("\n\n" + str(titulo) + "Estadísticas.\n")
         print(df.describe())
         print ("\n\n")
```

efectores

Composición de pseudo aminoácidos (PseAAC) hidro_mass efectores nematoda dataset 3, con valores atípicos.

```
XΟ
                    Х1
                             X2
                                       ХЗ
                                                          Х5
                                                                    X6 \
                                                 Х4
0
    0.052053
              0.027761 0.045112 0.045112 0.020821 0.024291
                                                              0.020821
1
    0.030081 \quad 0.009024 \quad 0.012032 \quad 0.018049 \quad 0.012032 \quad 0.006016 \quad 0.006016
2
    0.307491 \quad 0.000000 \quad 0.102497 \quad 0.204994 \quad 0.102497 \quad 0.000000 \quad 0.000000
3
    0.016563 \quad 0.005521 \quad 0.011042 \quad 0.022084 \quad 0.038647 \quad 0.011042 \quad 0.005521
4
    0.015532 0.002589 0.018120 0.010355 0.005177 0.005177 0.002589
. .
495
    0.023742 0.002878 0.017987 0.023023 0.013670 0.040290 0.005036
496
    0.014907 0.002033 0.016262 0.019650 0.005421 0.006776 0.006776
497
    0.038569 \quad 0.007142 \quad 0.008571 \quad 0.011428 \quad 0.025713 \quad 0.017142 \quad 0.001428
498
    0.022348
499
    0.039732 0.005676 0.034056 0.051084 0.017028 0.031218 0.011352
          Х7
                    Х8
                              Х9
                                         X74
                                                   X75
                                                             X76 \
0
    0.034702 0.062463 0.069404 ... 0.019534 0.008682 0.014497
1
                                    0.049216 0.029254 -0.005171
    0.012032 0.021057 0.012032 ...
2
    0.204994 0.204994 0.409989 ... 1.043890 0.827113 0.117325
3
    0.016563 0.011042 0.033126
                                    0.018686 0.040416 -0.014304
4
    ... ...
. .
495 0.012950 0.023742 0.020865 ... -0.007354 0.002107 0.018654
496
    0.008131 0.026425 0.019650 ... 0.019950 0.025965 0.007675
497
    0.022856 0.007142 0.041426 ... -0.004229 -0.007440 0.005023
498
    0.025541 0.027137
                        0.067842 ... -0.027646 -0.011185 0.021757
499
    0.031218  0.034056  0.068112  ...  0.007740  0.027655  -0.025516
         X77
                   X78
                             X79
                                      X80
                                                X81
                                                          X82
                                                                    X83
   -0.051407 0.003311 -0.009435 0.023001 0.056030 0.027411 efectores
0
    0.016928 0.019320 0.004039 -0.014436 -0.009909 0.016525 efectores
1
2
   -0.843008 -0.480917 0.304078 -1.308953 -0.778083 0.337291 efectores
3
    0.000827 0.009116 -0.031933
                                 0.003914 0.002056 0.025715 efectores
    0.005643 0.019018 0.014884 0.015680 0.016220 -0.011417
4
                                                              efectores
. .
                                                •••
    0.007867
              0.000920
                        0.027213 0.006271
                                          0.010150
                                                     0.025487
495
                                                               efectores
    0.012852 0.014462 0.016175 0.012098 0.014030 0.003432 efectores
496
```

[500 rows x 84 columns]

Composición de pseudo aminoácidos (PseAAC) hidro_mass efectores nematoda dataset 3, con valores atípicos. Estadísticas.

count mean std min 25% 50% 75% max	X0 500.000000 0.042021 0.082741 -0.022074 0.021666 0.032691 0.044136 1.656900	X1 500.000000 0.013996 0.020411 -0.044147 0.004705 0.009502 0.017223 0.331380	X2 500.000000 0.030731 0.048549 0.000000 0.013642 0.025962 0.037552 0.994140	X3 500.000000 0.035922 0.049893 -0.044147 0.017907 0.029426 0.044398 0.994140	X4 500.000000 0.030039 0.062825 -0.044147 0.012978 0.022135 0.034216 1.325520	X5 500.000000 0.031060 0.034287 -0.066221 0.016852 0.026426 0.039353 0.662760	\
count mean std min 25% 50% 75% max	X6 500.000000 0.015654 0.031938 0.000000 0.005768 0.011037 0.018991 0.662760	X7 500.000000 0.036866 0.078813 -0.044147 0.017095 0.027404 0.040331 1.656900	X8 500.000000 0.036926 0.077462 -0.022074 0.017660 0.028399 0.043217 1.656900	X9 500.000000 0.060461 0.166520 -0.022074 0.027869 0.044461 0.064369 3.645181	X 500.0000 0.0062 0.07211.31000.0014 0.0087 0.0218 0.3589	42 29 63 67 66 78	
count mean std min 25% 50% 75% max	X74 500.000000 0.002781 0.072809 -0.635076 -0.010305 0.004239 0.017953 1.043890	X75 500.000000 0.005870 0.076589 -1.239796 -0.003274 0.007774 0.020805 0.827113	X76 500.000000 0.004612 0.083868 -1.567496 -0.002935 0.008922 0.021739 0.202576	X77 500.000000 0.000172 0.079473 -0.843008 -0.008981 0.003762 0.016347 0.918723	X78 500.000000 0.004986 0.043964 -0.480917 -0.004706 0.007074 0.018589 0.268089	X79 500.000000 0.007976 0.041561 -0.355593 0.000122 0.009774 0.023382 0.304078	
count mean std min 25% 50%	X80 500.000000 0.003142 0.123365 -1.308953 -0.010623 0.003532	X81 500.000000 0.008409 0.080029 -0.778083 -0.004615 0.005711	X82 500.000000 0.008832 0.067329 -0.871451 -0.002677 0.008385				

```
75% 0.014693 0.019701 0.021976 max 2.162058 1.215805 0.969783
```

[8 rows x 83 columns]

${\tt no_efectores}$

Composición de pseudo aminoácidos (PseAAC) hidro_mass no_efectores nematoda dataset 3, con valores atípicos.

	ХО	X1	Х2	ХЗ	Х4	Х5	X6 \
0	0.061971	0.027543	0.020657		0.020657	0.006886	0.000000
1	0.025673	0.005705	0.036133		0.010460	0.020919	0.007607
2	0.035252	0.004862	0.026743		0.023096	0.031606	0.013372
3	0.025967	0.008656	0.010387		0.030295	0.017311	0.008656
4	0.030051	0.008839	0.031819	0.045960	0.020329	0.020329	0.012374
	•••	•••	•••		•••	•••	
495	0.069606	0.008701	0.030453		0.018852	0.014501	0.014501
496	0.015717	0.013261	0.008841	0.027504	0.007367	0.014243	0.003438
497	0.042182	0.038666	0.056242	0.042182	0.031636	0.038666	0.017576
498	0.019611	0.016809	0.039221	0.025214	0.030817	0.033618	0.011206
499	0.024945	0.008315	0.011641	0.014967	0.023282	0.013304	0.006652
	X7	Х8	Х9	X	X74 X	75 X	76 \
0	0.027543	0.041314	0.027543	0.0626	0.0663	20 -0.0175	575
1	0.028526	0.042789	0.031379	0.0009	96 0.0291	10 0.0133	344
2	0.019450	0.031606	0.040115	0.0149	937 -0.0000	80 0.0110	92
3	0.038951	0.010387	0.041547	0.0005	71 -0.0015	67 0.0170)45
4	0.029167	0.049496	0.041541	 -0.0056	0.0062	33 0.0025	548
		•••					
495	0.046404	0.055105	0.058005	0.0190	0.0343	81 0.0083	886
496	0.010805	0.023084	0.010314	0.0005	0.0172	97 0.0052	288
497	0.065030	0.028121	0.135332	0.0311	65 -0.0316	59 0.0065	509
498	0.044824	0.022412	0.050427	0.0196	325 -0.0052	13 -0.0120	063
499	0.026608	0.021619	0.053217	0.0316	558 0.0220	53 0.0069	13
	X77	X78	Х79	X80	X81	X82	X83
0	-0.012191	0.014652			-0.013160		no_efectores
1	-0.011936	0.028765	0.008884		0.020409	0.007852	no_efectores
2		-0.001697	0.005605			0.001026	no_efectores
3	0.035694	0.015288	0.008107			0.002080	no_efectores
4	-0.009640	0.021503	0.015348	-0.005744	0.012837	0.005744	no_efectores
	•••	•••	•••		•••	***	
495	0.012967	0.019396			-0.001416		no_efectores
496	0.011878	0.028791		0.006630		0.009892	no_efectores
497	-0.035886	-0.023151	0.017147	-0.044206	-0.051800	0.039261	no_efectores

[500 rows x 84 columns]

Composición de pseudo aminoácidos (PseAAC) hidro_mass no_efectores nematoda dataset 3, con valores atípicos. Estadísticas.

count mean std min 25% 50% 75% max	X0 500.000000 0.049592 0.431477 0.000000 0.019330 0.028640 0.037608 9.670514	X1 500.000000 0.040447 0.648313 0.000000 0.004201 0.008921 0.015040 14.505771	X2 500.000000 0.026439 0.017384 0.000000 0.013919 0.023866 0.035104 0.155152	X3 500.000000 0.054113 0.431464 0.000000 0.020438 0.032024 0.044520 9.670514	X4 500.000000 0.057025 0.648054 0.000000 0.013937 0.023636 0.034583 14.505771	X5 500.000000 0.046761 0.431590 0.000000 0.015900 0.025482 0.034861 9.670514	\
count mean std min 25% 50% 75% max	X6 500.000000 0.041170 0.648247 0.000000 0.005649 0.010299 0.016343 14.505771	X7 500.000000 0.073175 0.863867 0.000000 0.018381 0.031244 0.044639 19.341028	X8 500.000000 0.074597 0.863786 0.000000 0.020587 0.031580 0.044537 19.341028	X9 500.000000 0.116998 1.511862 0.000000 0.028779 0.043058 0.060289 33.846799	X 500.0000 0.0249 0.37630.14370.0000 0.0080 0.0176 8.4086	04 07 45 85 88 84	
count mean std min 25% 50% 75% max	X74 500.000000 -0.109468 2.544864 -56.892261 -0.007937 0.003956 0.015594 0.725381	X75 500.000000 -0.062795 1.622886 -36.271328 -0.001600 0.008354 0.020844 0.430034	X76 500.000000 0.032061 0.504143 -0.113304 -0.000240 0.008323 0.018996 11.270435	X77 500.000000 0.002357 0.036962 -0.268797 -0.008475 0.003256 0.013316 0.496420	X78 500.000000 0.005744 0.057601 -1.033456 -0.002702 0.007760 0.019964 0.377490	X79 500.000000 -0.035517 0.997647 -22.294511 -0.000429 0.008679 0.018216 0.121025	\
count mean std min 25% 50% 75%	X80 500.000000 -0.056255 1.280240 -28.612730 -0.008907 0.004167 0.015344	X81 500.000000 -0.013640 0.467672 -10.420946 -0.003432 0.007568 0.019375	X82 500.000000 -0.042675 1.155750 -25.826075 -0.000162 0.008344 0.018840				

max 0.145884 0.239124 0.354207

[8 rows x 83 columns]

nematoda efectores dataset 3 Composición de pseudo aminoácidos (PseAAC) hidro_mass con valores atípicos.

nematoda no_efectores dataset 3 Composición de pseudo aminoácidos (PseAAC) hidro_mass con valores atípicos.

3.1 Composición de pseudo aminoácidos (PseAAC) hidro_mass, sin valores atípicos

```
[6]: #hidro_mass
    transf = "Composición de pseudo aminoácidos (PseAAC) "
    transf2 = "PseAAC"
    estado = "sin valores atípicos.\n"
    comp = "hidro_mass"
    df=""
    out = (str(r3) + '/ds' + str(dataset) + '_' + str(transf2) + '_' + str(comp) +_{\square}
     os.makedirs(str(r3), exist_ok=True)
    df_out = pd.DataFrame()
    for etiq in "efectores", "no_efectores":
        titulo = (str(transf)+" "+ str(comp)+" "+ str(etiq) + " "+ str(nombre2) +",
     →" + str(estado))
        print (str(etiq))
        if etiq == "efectores":
            df=PseAAC_hidro_mass_efec
        if etiq == "no_efectores":
            df=PseAAC_hidro_mass_no_efec
        del df['X83']
         #Se eliminan todas las filas que tengan valores atípicos en al menos una de∟
     ⇒sus columnas.
        df = (df[(np.abs(stats.zscore(df)) < 3).all(axis=1)])</pre>
        df['X83'] = etiq
        df_out = pd.concat([df_out,df])
        #Guarda la lista csv sin valores atípicos.
        df_out.to_csv(str(out), index=False, header=False)
        print (str(titulo) + "Valores del documento csv.\n")
        print (df)
        print ("\n\n" + str(titulo) + "Estadísticas.\n")
        print(df.describe())
        print ("\n\n")
        #Gráfica de caja y bigotes
        sns.set(style="whitegrid")
        fig , ax = plt.subplots(figsize=(14,7))
```

```
ax = sns.boxplot(data=df)
ax.set_title(organismo +' '+str(etiq)+" dataset "+str(dataset)+"

$\to$"+str(transf)+" "+str(comp))
```

efectores

Composición de pseudo aminoácidos (PseAAC) hidro_mass efectores nematoda dataset 3, sin valores atípicos.

```
XΟ
                   Х1
                            Х2
                                     ХЗ
                                              Х4
                                                       Х5
                                                                X6 \
    0.052053 \quad 0.027761 \quad 0.045112 \quad 0.045112 \quad 0.020821 \quad 0.024291 \quad 0.020821
0
1
    0.030081 \quad 0.009024 \quad 0.012032 \quad 0.018049 \quad 0.012032 \quad 0.006016 \quad 0.006016
3
    0.016563 \quad 0.005521 \quad 0.011042 \quad 0.022084 \quad 0.038647 \quad 0.011042 \quad 0.005521
4
    0.015532 0.002589 0.018120 0.010355 0.005177 0.005177
                                                           0.002589
6
    . .
    0.023742 \quad 0.002878 \quad 0.017987 \quad 0.023023 \quad 0.013670 \quad 0.040290 \quad 0.005036
495
496
    0.014907 \quad 0.002033 \quad 0.016262 \quad 0.019650 \quad 0.005421 \quad 0.006776 \quad 0.006776
497
    0.038569 0.007142 0.008571 0.011428 0.025713 0.017142 0.001428
498
    0.050283 0.014367 0.037513 0.035917
                                        0.016761 0.035118 0.022348
499
    0.039732 0.005676 0.034056 0.051084 0.017028 0.031218 0.011352
          Х7
                   Х8
                            Х9
                                       X74
                                                X75
                                                         X76 \
0
    0.034702 0.062463 0.069404 ... 0.019534 0.008682 0.014497
                      0.012032 ... 0.049216 0.029254 -0.005171
1
    0.012032 0.021057
3
    0.016563  0.011042  0.033126  ...  0.018686  0.040416  -0.014304
4
    0.005177 0.018120
                      0.028475 ... -0.020667 -0.015108 0.037667
    6
                       ... ...
. .
495
    0.012950 0.023742
                      0.020865 ... -0.007354 0.002107 0.018654
496
    0.008131 0.026425 0.019650 ... 0.019950 0.025965 0.007675
497
    0.022856 0.007142 0.041426 ... -0.004229 -0.007440 0.005023
498
    0.025541 0.027137 0.067842 ... -0.027646 -0.011185 0.021757
    499
         X77
                  X78
                           X79
                                    X80
                                             X81
                                                      X82
                                                                X83
   -0.051407
             0.003311 -0.009435
0
                               0.023001 0.056030 0.027411
                                                           efectores
1
    0.016928 0.019320
                      0.004039 -0.014436 -0.009909
                                                  0.016525
                                                           efectores
3
    0.000827
             0.009116 -0.031933
                               0.003914
                                        0.002056 0.025715
                                                           efectores
4
    0.005643 0.019018
                      0.014884
                               0.015680
                                        0.016220 -0.011417
                                                           efectores
6
    0.048108
                                                           efectores
                •••
. .
         •••
                                                     •••
495
    0.007867 0.000920 0.027213 0.006271 0.010150 0.025487
                                                           efectores
    0.012852  0.014462  0.016175  0.012098  0.014030  0.003432
496
                                                           efectores
    0.015193
             0.000576 0.006853
                               0.002293 -0.007782 0.006205
                                                           efectores
0.023092
                                                           efectores
499 -0.002094 0.035896 0.017444 0.019893 0.027209 -0.015606 efectores
```

[469 rows x 84 columns]

Composición de pseudo aminoácidos (PseAAC) hidro_mass efectores nematoda dataset 3, sin valores atípicos. Estadísticas.

	XO	X1	Х2	ХЗ	Х4	Х5	\
count	469.000000	469.000000	469.000000	469.000000	469.000000	469.000000	
mean	0.034230	0.012302	0.026551	0.031414	0.024368	0.028279	
std	0.017782	0.011439	0.016067	0.019842	0.017166	0.015975	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.021391	0.004708	0.013455	0.017471	0.012751	0.016564	
50%	0.031208	0.009399	0.025372	0.028683	0.021424	0.025417	
75%	0.042554	0.016217	0.036415	0.042226	0.032149	0.037811	
max	0.116530	0.072990	0.097263	0.129212	0.129477	0.111866	
	Х6	X7	Х8	Х9	X	73 \	
count	469.000000	469.000000	469.000000	469.000000	469.0000	00	
mean	0.012944	0.029948	0.030431	0.047402	0.0113	53	
std	0.010570	0.019375	0.019328	0.028979	0.0211	33	
min	0.000000	0.000000	0.000000	0.000000	0.0687	52	
25%	0.005774	0.016563	0.017081	0.027293	0.0000	19	
50%	0.010615	0.026560	0.027214	0.042867	0.0093	86	
75%	0.016891	0.038124	0.040709	0.061216	0.0216	16	
max	0.079268	0.142992	0.120586	0.220112	0.1575	56	
	X74	X75	X76	X77	X78	X79	\
count	X74 469.000000	X75 469.000000	X76 469.000000	X77 469.000000	X78 469.000000	X79 469.000000	\
count mean							\
	469.000000	469.000000	469.000000	469.000000	469.000000	469.000000	\
mean	469.000000 0.002559	469.000000 0.007003	469.000000 0.008553	469.000000 0.001276	469.000000 0.005950	469.000000 0.010748	\
mean std	469.000000 0.002559 0.031206	469.000000 0.007003 0.023592	469.000000 0.008553 0.021254	469.000000 0.001276 0.029544	469.000000 0.005950 0.022227	469.000000 0.010748 0.020602	\
mean std min	469.000000 0.002559 0.031206 -0.183074	469.000000 0.007003 0.023592 -0.123452	469.000000 0.008553 0.021254 -0.121497	469.000000 0.001276 0.029544 -0.165190	469.000000 0.005950 0.022227 -0.121887	469.000000 0.010748 0.020602 -0.082430	\
mean std min 25%	469.000000 0.002559 0.031206 -0.183074 -0.008598	469.000000 0.007003 0.023592 -0.123452 -0.003033	469.000000 0.008553 0.021254 -0.121497 -0.001897	469.000000 0.001276 0.029544 -0.165190 -0.008452	469.000000 0.005950 0.022227 -0.121887 -0.003904	469.000000 0.010748 0.020602 -0.082430 0.000761	\
mean std min 25% 50%	469.000000 0.002559 0.031206 -0.183074 -0.008598 0.004600	469.000000 0.007003 0.023592 -0.123452 -0.003033 0.007706	469.000000 0.008553 0.021254 -0.121497 -0.001897 0.008946	469.000000 0.001276 0.029544 -0.165190 -0.008452 0.003768	469.000000 0.005950 0.022227 -0.121887 -0.003904 0.007024	469.000000 0.010748 0.020602 -0.082430 0.000761 0.009849	\
mean std min 25% 50% 75%	469.000000 0.002559 0.031206 -0.183074 -0.008598 0.004600 0.017409	469.000000 0.007003 0.023592 -0.123452 -0.003033 0.007706 0.020537	469.000000 0.008553 0.021254 -0.121497 -0.001897 0.008946 0.021221	469.000000 0.001276 0.029544 -0.165190 -0.008452 0.003768 0.015387	469.000000 0.005950 0.022227 -0.121887 -0.003904 0.007024 0.017833	469.000000 0.010748 0.020602 -0.082430 0.000761 0.009849 0.022667	\
mean std min 25% 50% 75%	469.000000 0.002559 0.031206 -0.183074 -0.008598 0.004600 0.017409	469.000000 0.007003 0.023592 -0.123452 -0.003033 0.007706 0.020537	469.000000 0.008553 0.021254 -0.121497 -0.001897 0.008946 0.021221	469.000000 0.001276 0.029544 -0.165190 -0.008452 0.003768 0.015387	469.000000 0.005950 0.022227 -0.121887 -0.003904 0.007024 0.017833	469.000000 0.010748 0.020602 -0.082430 0.000761 0.009849 0.022667	\
mean std min 25% 50% 75%	469.000000 0.002559 0.031206 -0.183074 -0.008598 0.004600 0.017409 0.129358	469.000000 0.007003 0.023592 -0.123452 -0.003033 0.007706 0.020537 0.097635	469.000000 0.008553 0.021254 -0.121497 -0.001897 0.008946 0.021221 0.080528	469.000000 0.001276 0.029544 -0.165190 -0.008452 0.003768 0.015387	469.000000 0.005950 0.022227 -0.121887 -0.003904 0.007024 0.017833	469.000000 0.010748 0.020602 -0.082430 0.000761 0.009849 0.022667	\
mean std min 25% 50% 75% max	469.000000 0.002559 0.031206 -0.183074 -0.008598 0.004600 0.017409 0.129358	469.000000 0.007003 0.023592 -0.123452 -0.003033 0.007706 0.020537 0.097635	469.000000 0.008553 0.021254 -0.121497 -0.001897 0.008946 0.021221 0.080528	469.000000 0.001276 0.029544 -0.165190 -0.008452 0.003768 0.015387	469.000000 0.005950 0.022227 -0.121887 -0.003904 0.007024 0.017833	469.000000 0.010748 0.020602 -0.082430 0.000761 0.009849 0.022667	\
mean std min 25% 50% 75% max	469.000000 0.002559 0.031206 -0.183074 -0.008598 0.004600 0.017409 0.129358 X80 469.000000	469.000000 0.007003 0.023592 -0.123452 -0.003033 0.007706 0.020537 0.097635 X81 469.000000	469.000000 0.008553 0.021254 -0.121497 -0.001897 0.008946 0.021221 0.080528 X82 469.000000	469.000000 0.001276 0.029544 -0.165190 -0.008452 0.003768 0.015387	469.000000 0.005950 0.022227 -0.121887 -0.003904 0.007024 0.017833	469.000000 0.010748 0.020602 -0.082430 0.000761 0.009849 0.022667	\
mean std min 25% 50% 75% max count mean	469.000000 0.002559 0.031206 -0.183074 -0.008598 0.004600 0.017409 0.129358 X80 469.000000 0.003985	469.000000 0.007003 0.023592 -0.123452 -0.003033 0.007706 0.020537 0.097635 X81 469.000000 0.008551	469.000000 0.008553 0.021254 -0.121497 -0.001897 0.008946 0.021221 0.080528 X82 469.000000 0.009358	469.000000 0.001276 0.029544 -0.165190 -0.008452 0.003768 0.015387	469.000000 0.005950 0.022227 -0.121887 -0.003904 0.007024 0.017833	469.000000 0.010748 0.020602 -0.082430 0.000761 0.009849 0.022667	\
mean std min 25% 50% 75% max count mean std	469.000000 0.002559 0.031206 -0.183074 -0.008598 0.004600 0.017409 0.129358 X80 469.000000 0.003985 0.029726	469.000000 0.007003 0.023592 -0.123452 -0.003033 0.007706 0.020537 0.097635 X81 469.000000 0.008551 0.024179	469.000000 0.008553 0.021254 -0.121497 -0.001897 0.008946 0.021221 0.080528 X82 469.000000 0.009358 0.020973	469.000000 0.001276 0.029544 -0.165190 -0.008452 0.003768 0.015387	469.000000 0.005950 0.022227 -0.121887 -0.003904 0.007024 0.017833	469.000000 0.010748 0.020602 -0.082430 0.000761 0.009849 0.022667	\
mean std min 25% 50% 75% max count mean std min	469.000000 0.002559 0.031206 -0.183074 -0.008598 0.004600 0.017409 0.129358 X80 469.000000 0.003985 0.029726 -0.142507	469.000000 0.007003 0.023592 -0.123452 -0.003033 0.007706 0.020537 0.097635 X81 469.000000 0.008551 0.024179 -0.070095	469.000000 0.008553 0.021254 -0.121497 -0.001897 0.008946 0.021221 0.080528 X82 469.000000 0.009358 0.020973 -0.120307	469.000000 0.001276 0.029544 -0.165190 -0.008452 0.003768 0.015387	469.000000 0.005950 0.022227 -0.121887 -0.003904 0.007024 0.017833	469.000000 0.010748 0.020602 -0.082430 0.000761 0.009849 0.022667	
mean std min 25% 50% 75% max count mean std min 25%	469.000000 0.002559 0.031206 -0.183074 -0.008598 0.004600 0.017409 0.129358 X80 469.000000 0.003985 0.029726 -0.142507 -0.008655	469.000000 0.007003 0.023592 -0.123452 -0.003033 0.007706 0.020537 0.097635 X81 469.000000 0.008551 0.024179 -0.070095 -0.003518	469.000000 0.008553 0.021254 -0.121497 -0.001897 0.008946 0.021221 0.080528 X82 469.000000 0.009358 0.020973 -0.120307 -0.001555	469.000000 0.001276 0.029544 -0.165190 -0.008452 0.003768 0.015387	469.000000 0.005950 0.022227 -0.121887 -0.003904 0.007024 0.017833	469.000000 0.010748 0.020602 -0.082430 0.000761 0.009849 0.022667	

no_efectores

Composición de pseudo aminoácidos (PseAAC) hidro_mass no_efectores nematoda dataset 3, sin valores atípicos.

	W.O.	37.4	¥0	V O	37.4	7.5	W.C. \
•	0X	X1	Х2	ХЗ	Х4	X5	X6 \
0	0.061971	0.027543	0.020657		0.020657	0.006886	0.000000
1	0.025673	0.005705	0.036133	0.039937	0.010460	0.020919	0.007607
2	0.035252	0.004862	0.026743	0.036468	0.023096	0.031606	0.013372
3	0.025967	0.008656	0.010387		0.030295	0.017311	0.008656
4	0.030051	0.008839	0.031819	0.045960	0.020329	0.020329	0.012374
• •						•••	
495	0.069606	0.008701	0.030453	0.052205	0.018852	0.014501	0.014501
496	0.015717	0.013261	0.008841	0.027504	0.007367	0.014243	0.003438
497	0.042182	0.038666	0.056242		0.031636	0.038666	0.017576
498	0.019611	0.016809	0.039221	0.025214	0.030817	0.033618	0.011206
499	0.024945	0.008315	0.011641	0.014967	0.023282	0.013304	0.006652
				_			
_	X7	X8	Х9				(76 \
0	0.027543	0.041314	0.027543			320 -0.0175	
1	0.028526	0.042789	0.031379				
2	0.019450	0.031606	0.040115		937 -0.0000		
3	0.038951	0.010387	0.041547		571 -0.0015		
4	0.029167	0.049496	0.041541	 -0.0056	33 0.0062	233 0.0025	548
	•••	•••		•••			
495	0.046404	0.055105	0.058005	0.0190	0.0343	381 0.0083	386
496	0.010805	0.023084	0.010314	0.0005	0.0172	297 0.0052	288
497	0.065030	0.028121	0.135332	0.0311	65 -0.0316	359 0.0065	509
498	0.044824	0.022412	0.050427	0.0196	325 -0.0052	213 -0.0120)63
499	0.026608	0.021619	0.053217	0.0316	558 0.0220	0.0069	913
	X77	Х78	Х79	X80	X81	X82	X83
0	-0.012191	0.014652	0.007137	-0.054621	-0.013160	-0.024573	no_efectores
1	-0.011936	0.028765	0.008884	0.007259	0.020409	0.007852	no_efectores
2	-0.009026	-0.001697	0.005605	0.017371	0.044306	0.001026	no_efectores
3	0.035694	0.015288	0.008107	0.016652	0.009317	0.002080	no_efectores
4	-0.009640	0.021503	0.015348	-0.005744	0.012837	0.005744	no_efectores
		•••	•••		•••		
495	0.012967	0.019396	0.028571	-0.007252	-0.001416	0.025443	no_efectores
496	0.011878	0.028791	0.017527	0.006630	0.017697	0.009892	no_efectores
497	-0.035886	-0.023151	0.017147	-0.044206	-0.051800	0.039261	no_efectores
498		-0.001909	0.000544	0.034152	0.030578	0.034490	no_efectores
499	0.007720	0.011554		-0.003920			no_efectores

[479 rows x 84 columns]

Composición de pseudo aminoácidos (PseAAC) hidro_mass no_efectores nematoda dataset 3, sin valores atípicos. Estadísticas.

	XO	X1	X2	ХЗ	Х4	X5	\
count	479.000000	479.000000	479.000000	479.000000	479.000000	479.000000	
mean	0.029120	0.010985	0.025145	0.033273	0.025461	0.025912	
std	0.014525	0.010055	0.014287	0.018146	0.016912	0.014326	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.019038	0.004237	0.013837	0.019929	0.013692	0.015503	
50%	0.028257	0.008701	0.023650	0.031140	0.023054	0.024581	
75%	0.036974	0.014344	0.034082	0.043128	0.033331	0.033528	
max	0.084823	0.076900	0.076750	0.107660	0.107660	0.123040	
	Х6	Х7	Х8	Х9	X	73 \	
count	479.000000	479.000000	479.000000	479.000000	479.0000	00	
mean	0.011462	0.032510	0.033529	0.046402	0.0085	53	
std	0.008394	0.020214	0.019657	0.027208	0.0184	01	
min	0.000000	0.000000	0.000000	0.000000	0.0779	79	
25%	0.005579	0.017873	0.020300	0.028437	0.0004	62	
50%	0.010144	0.030518	0.030449	0.042545	0.0080	16	
75%	0.015927	0.042892	0.042073	0.057436	0.0174	19	
max	0.048847	0.159163	0.138420	0.204335	0.1101	75	
	X74	X75	X76	X77	X78	X79	\
count	479.000000	479.000000	479.000000	479.000000	479.000000	479.000000	\
count mean	479.000000 0.002587	479.000000 0.009293	479.000000 0.009519	479.000000 0.002952	479.000000 0.008200	479.000000 0.009429	\
	479.000000 0.002587 0.022003	479.000000	479.000000 0.009519 0.017672	479.000000 0.002952 0.021833	479.000000	479.000000 0.009429 0.016499	\
mean std min	479.000000 0.002587 0.022003 -0.092573	479.000000 0.009293	479.000000 0.009519	479.000000 0.002952	479.000000 0.008200	479.000000 0.009429	\
mean std	479.000000 0.002587 0.022003	479.000000 0.009293 0.020457	479.000000 0.009519 0.017672	479.000000 0.002952 0.021833	479.000000 0.008200 0.021114	479.000000 0.009429 0.016499	\
mean std min	479.000000 0.002587 0.022003 -0.092573	479.000000 0.009293 0.020457 -0.076354	479.000000 0.009519 0.017672 -0.097885	479.000000 0.002952 0.021833 -0.105025	479.000000 0.008200 0.021114 -0.115076	479.000000 0.009429 0.016499 -0.083056	\
mean std min 25%	479.000000 0.002587 0.022003 -0.092573 -0.007399	479.000000 0.009293 0.020457 -0.076354 -0.001471	479.000000 0.009519 0.017672 -0.097885 -0.000167	479.000000 0.002952 0.021833 -0.105025 -0.007560	479.000000 0.008200 0.021114 -0.115076 -0.001874	479.000000 0.009429 0.016499 -0.083056 0.000154	\
mean std min 25% 50%	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761	\
mean std min 25% 50% 75%	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686 0.014590 0.078385	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348 0.020466 0.094227	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223 0.018940 0.105836	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541 0.013323	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805 0.019274	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761 0.018055	\
mean std min 25% 50% 75%	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686 0.014590 0.078385	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348 0.020466 0.094227	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223 0.018940	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541 0.013323	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805 0.019274	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761 0.018055	\
mean std min 25% 50% 75%	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686 0.014590 0.078385	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348 0.020466 0.094227 X81 479.000000	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223 0.018940 0.105836	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541 0.013323	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805 0.019274	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761 0.018055	\
mean std min 25% 50% 75% max	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686 0.014590 0.078385	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348 0.020466 0.094227	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223 0.018940 0.105836	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541 0.013323	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805 0.019274	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761 0.018055	\
mean std min 25% 50% 75% max	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686 0.014590 0.078385 X80 479.000000 0.002459 0.025576	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348 0.020466 0.094227 X81 479.000000	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223 0.018940 0.105836 X82 479.000000	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541 0.013323	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805 0.019274	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761 0.018055	\
mean std min 25% 50% 75% max count mean std min	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686 0.014590 0.078385 X80 479.000000 0.002459	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348 0.020466 0.094227 X81 479.000000 0.008054	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223 0.018940 0.105836 X82 479.000000 0.009209	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541 0.013323	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805 0.019274	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761 0.018055	
mean std min 25% 50% 75% max count mean std	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686 0.014590 0.078385 X80 479.000000 0.002459 0.025576	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348 0.020466 0.094227 X81 479.000000 0.008054 0.019694	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223 0.018940 0.105836 X82 479.000000 0.009209 0.017227	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541 0.013323	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805 0.019274	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761 0.018055	
mean std min 25% 50% 75% max count mean std min	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686 0.014590 0.078385 X80 479.000000 0.002459 0.025576 -0.170566	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348 0.020466 0.094227 X81 479.000000 0.008054 0.019694 -0.084513	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223 0.018940 0.105836 X82 479.000000 0.009209 0.017227 -0.062947	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541 0.013323	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805 0.019274	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761 0.018055	
mean std min 25% 50% 75% max count mean std min 25%	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686 0.014590 0.078385 X80 479.000000 0.002459 0.025576 -0.170566 -0.006887	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348 0.020466 0.094227 X81 479.000000 0.008054 0.019694 -0.084513 -0.002414	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223 0.018940 0.105836 X82 479.000000 0.009209 0.017227 -0.062947 0.000270	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541 0.013323	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805 0.019274	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761 0.018055	
mean std min 25% 50% 75% max count mean std min 25% 50%	479.000000 0.002587 0.022003 -0.092573 -0.007399 0.003686 0.014590 0.078385 X80 479.000000 0.002459 0.025576 -0.170566 -0.006887 0.004462	479.000000 0.009293 0.020457 -0.076354 -0.001471 0.008348 0.020466 0.094227 X81 479.000000 0.008054 0.019694 -0.084513 -0.002414 0.008071	479.000000 0.009519 0.017672 -0.097885 -0.000167 0.008223 0.018940 0.105836 X82 479.000000 0.009209 0.017227 -0.062947 0.000270 0.008436	479.000000 0.002952 0.021833 -0.105025 -0.007560 0.003541 0.013323	479.000000 0.008200 0.021114 -0.115076 -0.001874 0.007805 0.019274	479.000000 0.009429 0.016499 -0.083056 0.000154 0.008761 0.018055	

[8 rows x 83 columns]

4 Composición de pseudo aminoácidos (PseAAC) mass

```
[7]: #mass
     transf = "Composición de pseudo aminoácidos (PseAAC) "
     transf2 = "PseAAC"
     estado = "con valores atípicos.\n"
     comp = "mass"
     df=""
     for etiq in "efectores", "no_efectores":
         titulo = (str(transf)+" "+ str(comp)+" "+ str(etiq) + " "+ str(nombre2) +",
      →" + str(estado))
         print (str(etiq))
         if etiq == "efectores":
             df=PseAAC_mass_efec
         if etiq == "no_efectores":
             df=PseAAC_mass_no_efec
         #del df['X41']
         print (str(titulo) + "Valores del documento csv.\n")
         print ("\n\n" + str(titulo) + "Estadísticas.\n")
         print(df.describe())
         print ("\n\n")
         #Gráfica de caja y bigotes
         sns.set(style="whitegrid")
         fig , ax = plt.subplots(figsize=(14,7))
         ax = sns.boxplot(data=df)
         ax.set_title(organismo +' '+str(etiq)+" dataset "+str(dataset)+"__
      →"+str(transf)+" "+str(comp)+" "+str(estado))
```

efectores

Composición de pseudo aminoácidos (PseAAC) mass efectores nematoda dataset 3, con valores atípicos.

```
XΟ
                                        Х2
                                                     ХЗ
                                                                                Х5
                           Х1
                                                                   Х4
                                                                                             X6 \
      0.067505 \quad 0.036003 \quad 0.058504 \quad 0.058504 \quad 0.027002 \quad 0.031502 \quad 0.027002
0
      0.104985 \quad 0.031495 \quad 0.041994 \quad 0.062991 \quad 0.041994 \quad 0.020997 \quad 0.020997
1
      0.064027 \quad 0.000000 \quad 0.021342 \quad 0.042685 \quad 0.021342 \quad 0.000000 \quad 0.000000
      0.051200 \quad 0.017067 \quad 0.034134 \quad 0.068267 \quad 0.119468 \quad 0.034134 \quad 0.017067
3
      0.038406 \quad 0.006401 \quad 0.044807 \quad 0.025604 \quad 0.012802 \quad 0.012802 \quad 0.006401
4
. .
495 0.029647 0.003594 0.022460 0.028749 0.017070 0.050310 0.006289
```

```
496
    0.036780 \quad 0.005015 \quad 0.040124 \quad 0.048483 \quad 0.013375 \quad 0.016718 \quad 0.016718
497
    0.077319 \quad 0.014318 \quad 0.017182 \quad 0.022909 \quad 0.051546 \quad 0.034364 \quad 0.002864
                         0.037489 0.035893 0.016750 0.035096
498
    0.050251 0.014357
                                                                 0.022334
499
    0.065953 0.009422 0.056531 0.084796 0.028265 0.051820 0.018844
           Х7
                     Х8
                               Х9
                                           X32
                                                     X33
                                                                X34 \
0
     0.045003
               0.081006
                         0.090007
                                   ... 0.020947 0.007597
                                                           0.020320
1
     0.041994 0.073489
                         0.041994
                                   ... -0.010842 -0.074997 0.021876
2
     0.042685 0.042685
                         0.085370 ... 0.019953 0.081352 0.034221
                         0.102401
3
     0.051200 0.034134
                                   ... -0.097785 -0.137502 0.008863
4
     0.012802 0.044807
                         0.070411
                                   ... -0.034038 -0.005718 0.078032
. .
                                      0.032995
                                               0.025333 0.030230
495
    0.016171
               0.029647
                         0.026054
496
     0.020062 0.065201
                         0.048483 ...
                                      0.028380 0.023596 0.015893
497
     0.045819 0.014318
                         0.083046
                                      0.004456 0.007167 0.002740
498
    0.025524 0.027119
                         0.067799 ... 0.026802 0.031055 0.017780
499
     0.051820 0.056531 0.113061 ... 0.027086 0.019852 0.003929
          X35
                    X36
                              X37
                                        X38
                                                  X39
                                                             X40
                                                                        X41
0
     0.032476 \ -0.008824 \ \ 0.016551 \ \ 0.018800 \ -0.012236 \ \ 0.035548
                                                                 efectores
     0.035255 - 0.022839 \ 0.011010 - 0.018049 \ 0.014095 \ 0.057675
1
                                                                  efectores
2
     0.003770 -0.067455 -0.090486 0.024430
                                             0.063317
                                                       0.070232
                                                                 efectores
   -0.113023 0.034421 -0.020420 -0.044218 -0.098714 0.079490
3
                                                                  efectores
4
     0.066743 -0.040882 -0.054970 0.093141 0.036804 -0.028232
                                                                 efectores
. .
                  ...
                                                  •••
                                                            •••
                         0.020048 0.023294 0.033981 0.031825
495
    0.013312 0.025662
                                                                 efectores
496
    0.009017 0.011056 0.011813 0.018938 0.039910 0.008468
                                                                 efectores
497
     0.055300 0.032826 0.036349
                                   0.010069 0.013737
                                                       0.012439
                                                                  efectores
498
     0.024007
               0.032422 0.013844
                                             0.024587
                                   0.021743
                                                       0.023078
                                                                  efectores
499
     0.020987
               0.007451 -0.048003 -0.042354 0.028955 -0.025904
                                                                  efectores
```

[500 rows x 42 columns]

Composición de pseudo aminoácidos (PseAAC) mass efectores nematoda dataset 3, con valores atípicos. Estadísticas.

	XO	X1	X2	ХЗ	X4	X5	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.046889	0.016417	0.036258	0.044001	0.034315	0.036522	
std	0.020758	0.017071	0.020718	0.028761	0.025410	0.020441	
min	-0.085005	-0.170009	0.000000	-0.170009	-0.170009	-0.255014	
25%	0.035171	0.007226	0.022727	0.025611	0.019028	0.027191	
50%	0.044512	0.013534	0.034131	0.041664	0.029886	0.035758	
75%	0.056244	0.023030	0.046549	0.056560	0.045516	0.045165	
max	0.155546	0.115622	0.162217	0.167659	0.198587	0.109705	

	Х6	Х7	Х8	Х9	X	.31 \	
count	500.000000	500.000000	500.000000	500.000000	500.0000	00	
mean	0.017772	0.041002	0.043223	0.065435	0.0131	.63	
std	0.012856	0.024718	0.028018	0.033970	0.0319	09	
min	0.000000	-0.170009	-0.085005	-0.085005	0.2040	85	
25%	0.009102	0.025854	0.024504	0.044376	0.0002	:09	
50%	0.015628	0.038111	0.038485	0.060825	0.0150	72	
75%	0.024092	0.052996	0.056339	0.082313	0.0300	41	
max	0.105477	0.205476	0.200546	0.255238	0.1120	55	
	Х32	Х33	X34	X35	Х36	Х37	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.011063	0.014569	0.012414	0.011448	0.013481	0.013836	
std	0.029110	0.040855	0.027305	0.040667	0.031415	0.068326	
min	-0.196488	-0.235444	-0.091046	-0.161173	-0.146336	-0.110642	
25%	-0.003466	0.001585	0.000860	-0.000880	-0.001124	-0.002270	
50%	0.014995	0.017446	0.015675	0.013467	0.015614	0.013538	
75%	0.028404	0.030906	0.027752	0.027467	0.028210	0.027121	
max	0.107836	0.498330	0.132626	0.596673	0.176573	1.382175	
	X38	X39	X40				
count	500.000000	500.000000	500.000000				
mean	0.010698	0.011504	0.011597				
std	0.033598	0.034287	0.042335				
min	-0.314112	-0.237512	-0.193957				
25%	-0.004901	0.000324	-0.004412				
50%	0.012801	0.014638	0.012922				
75%	0.027832	0.027753	0.028984				
max	0.201780	0.184176	0.627360				

[8 rows x 41 columns]

no_efectores

Composición de pseudo aminoácidos (PseAAC) mass no_efectores nematoda dataset 3, con valores atípicos.

	XO	X1	Х2	ХЗ	Х4	Х5	Х6	\
0	0.126917	0.056407	0.042306	0.042306	0.042306	0.014102	0.000000	
1	0.054236	0.012052	0.076332	0.084367	0.022096	0.044192	0.016070	
2	0.050012	0.006898	0.037940	0.051737	0.032767	0.044839	0.018970	
3	0.052189	0.017396	0.020876	0.017396	0.060887	0.034793	0.017396	
4	0.043437	0.012776	0.045992	0.066433	0.029384	0.029384	0.017886	
		•••	•••		•••	•••		
495	0.081805	0.010226	0.035790	0.061354	0.022155	0.017043	0.017043	
496	0.038242	0.032266	0.021511	0.066923	0.017926	0.034656	0.008365	

```
497
    0.033894 0.031069
                       0.045192 0.033894 0.025420
                                                   0.031069
                                                             0.014122
498
    0.026967
              0.023114
                       0.053934
                                 0.034672
                                          0.042376
                                                   0.046229
                                                             0.015410
499
    0.042662 0.014221
                       0.019909
                                 0.025597
                                          0.039818
                                                   0.022753
                                                             0.011376
          Х7
                   Х8
                             Х9
                                        X32
                                                  X33
                                                           X34 \
    0.056407
              0.084611
                       0.056407
                                 ... -0.020299
0
                                             0.083577 -0.046302
1
    0.060262
              0.090394
                       0.066289
                                   0.020083
                                             0.005932 -0.008716
2
    0.027593 0.044839
                       0.056911
                                   0.018030 -0.009399 -0.003369
3
                       0.083502 ...
    0.078283 0.020876
                                   0.036929 -0.004607
                                                      0.007353
4
    0.042160 0.071543
                       0.060045
                                   0.012087 0.002022 0.006735
                        ... ...
. .
                 •••
                                          •••
495
    0.054537
              0.064762
                       0.068171
                                   0.007923 -0.003907 0.032467
496
    0.026291
                       0.025096
                                   0.013434 0.025588 0.039001
              0.056167
497
    0.052253
              0.022596
                       0.108743 ... -0.003053 -0.008427 0.016080
498
    0.061639
              0.030819
                       0.069343
                                   0.004002 0.016111 0.029623
                                            0.008392 0.029503
499
    0.045506 0.036974
                       0.091012 ...
                                   0.033901
         X35
                  X36
                            X37
                                     X38
                                               X39
                                                        X40
                                                                      X41
0
    0.085951 -0.018426
                       0.101324 -0.035994
                                          0.014616 -0.050325
                                                             no_efectores
1
    0.018768
                                                   0.016588
                                                             no efectores
2
    0.003707
              0.002654
                       0.008913
                                 0.015737
                                          0.007951
                                                   0.001455
                                                             no efectores
3
    0.020635 0.006097
                       0.019653
                                 0.034257
                                          0.016294
                                                   0.004180
                                                             no efectores
4
    0.017913 0.004489
                       0.004747
                                 0.003683
                                          0.022184 0.008302
                                                             no_efectores
. .
495
    0.023797 0.001323
                       0.005770 0.009856
                                          0.033578 0.029902
                                                             no_efectores
496
    0.019524
              0.012043
                       0.023243
                                          0.042646 0.024069
                                                             no_efectores
                                 0.012866
497
    0.009719
              0.014500
                       0.000304
                                0.005230
                                          0.013778
                                                   0.031547
                                                             no_efectores
498 -0.007499 -0.042395
                       0.028881 -0.016588
                                          0.000748
                                                   0.047428
                                                             no_efectores
              0.007987 0.025699 0.011822
    0.018599
                                          0.038302 -0.009808
                                                             no_efectores
```

[500 rows x 42 columns]

Composición de pseudo aminoácidos (PseAAC) mass no_efectores nematoda dataset 3, con valores atípicos. Estadísticas.

	XO	X1	X2	ХЗ	X4	Х5	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.042016	0.015478	0.037469	0.050671	0.037504	0.037331	
std	0.017169	0.013338	0.024627	0.028765	0.023678	0.016306	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.032639	0.006819	0.023931	0.030992	0.021069	0.028526	
50%	0.040683	0.012515	0.035244	0.045136	0.033992	0.036245	
75%	0.050380	0.021043	0.047359	0.066340	0.050078	0.044074	
max	0.126917	0.105113	0.361219	0.198404	0.228594	0.127575	
	Х6	Х7	X8	χq	Х	31 \	

coun	t 500.000000	500.000000	500.000000	500.000000	 500.0000	00	
mean	0.016844	0.047054	0.052459	0.066792	0.0109	83	
std	0.011378	0.025346	0.033354	0.030419	0.0258	63	
min	0.000000	0.000000	0.000000	0.000000	0.1442	84	
25%	0.009698	0.029135	0.030860	0.046664	0.0026	25	
50%	0.015114	0.044440	0.046769	0.063211	0.0127	74	
75%	0.022088	0.059601	0.065434	0.084900	0.0267	33	
max	0.096411	0.163022	0.331095	0.206264	0.1414	89	
	X32	Х33	X34	X35	X36	Х37	\
coun	t 500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.010503	0.013449	0.011003	0.011469	0.011719	0.010572	
std	0.030222	0.027577	0.025823	0.026883	0.026798	0.027189	
min	-0.185954	-0.212065	-0.129516	-0.165789	-0.129807	-0.109203	
25%	-0.000309	0.000217	0.000392	-0.001179	0.000979	-0.000128	
50%	0.013651	0.014674	0.012706	0.012603	0.013854	0.013357	
75%	0.025563	0.027261	0.025294	0.025817	0.024846	0.024382	
max	0.233705	0.148430	0.132073	0.157568	0.138868	0.133929	
	X38	X39	X40				
coun	t 500.000000	500.000000	500.000000				
mean	0.012899	0.011941	0.010868				
std	0.027028	0.025887	0.030950				
min	-0.170891	-0.127773	-0.255780				
25%	-0.000463	-0.001062	-0.000471				
50%	0.012846	0.013207	0.011996				
75%	0.027636	0.025292	0.025315				
max	0.142407	0.142258	0.224199				

[8 rows x 41 columns]

nematoda efectores dataset 3 Composición de pseudo aminoácidos (PseAAC) mass con valores atípicos.

nematoda no_efectores dataset 3 Composición de pseudo aminoácidos (PseAAC) mass con valores atípicos.

4.1 Composición de pseudo aminoácidos (PseAAC) mass, sin valores atípicos

```
[8]: #mass
transf = "Composición de pseudo aminoácidos (PseAAC) "
transf2 = "PseAAC"
estado = "sin valores atípicos.\n"
comp = "mass"
```

```
df=""
out = (str(r3) + '/ds' + str(dataset) + '_' + str(transf2) + '_' + str(comp) +_{\square}

→'_' + str(organismo) + '.csv')
os.makedirs(str(r3), exist_ok=True)
df out = pd.DataFrame()
for etiq in "efectores", "no_efectores":
    titulo = (str(transf)+" "+ str(comp)+" "+ str(etiq) + " "+ str(nombre2) +",
→" + str(estado))
    if etiq == "efectores":
        df=PseAAC_mass_efec
    if etiq == "no_efectores":
        df=PseAAC_mass_no_efec
    del df['X41']
    df = (df[(np.abs(stats.zscore(df)) < 3).all(axis=1)])</pre>
    df['X41'] = etiq
    df_out = pd.concat([df_out,df])
    #Guarda la lista csv sin valores atípicos.
    df_out.to_csv(str(out), index=False, header=False)
    print (str(titulo) + "Valores del documento csv.\n")
    print ("\n\n" + str(titulo) + "Estadísticas.\n")
    print(df.describe())
    print ("\n\n")
    #Gráfica de caja y bigotes
    sns.set(style="whitegrid")
    fig , ax = plt.subplots(figsize=(14,7))
    ax = sns.boxplot(data=df)
    ax.set_title(organismo +' '+str(etiq)+" dataset "+str(dataset)+"__
 →"+str(transf)+" "+str(comp))
```

Composición de pseudo aminoácidos (PseAAC) mass efectores nematoda dataset 3, \sin valores atípicos.

```
X0 X1 X2 X3 X4 X5 X6 \
0 0.067505 0.036003 0.058504 0.058504 0.027002 0.031502 0.027002 
4 0.038406 0.006401 0.044807 0.025604 0.012802 0.012802 0.006401 
6 0.042308 0.008462 0.012692 0.008462 0.016923 0.029616 0.000000 
9 0.041647 0.011713 0.052059 0.059868 0.041647 0.031235 0.020824
```

```
10
    0.046494 0.030996 0.023247 0.054243 0.015498 0.046494 0.030996
. .
495
    0.029647
              0.003594
                        0.022460
                                  0.028749
                                           0.017070
                                                     0.050310
                                                               0.006289
496
              0.005015
                        0.040124
                                  0.048483
                                                     0.016718
    0.036780
                                           0.013375
                                                               0.016718
497
    0.077319
              0.014318
                        0.017182
                                  0.022909
                                           0.051546
                                                     0.034364
                                                               0.002864
498
    0.050251
                        0.037489
                                  0.035893
                                           0.016750
                                                               0.022334
              0.014357
                                                     0.035096
499
    0.065953 0.009422
                        0.056531 0.084796
                                           0.028265
                                                     0.051820
                                                               0.018844
          Х7
                    Х8
                              Х9
                                          X32
                                                   X33
                                                             X34
                                     0.020947
0
    0.045003 0.081006
                        0.090007
                                              0.007597 0.020320
4
                        0.070411
    0.012802
              0.044807
                                  ... -0.034038 -0.005718 0.078032
6
    0.029616
                        0.008462
                                     0.015178
                                              0.025320 0.037479
              0.012692
9
    0.045552
              0.055963
                        0.067677
                                     0.024101
                                              0.011145 -0.007021
    0.023247
                                     0.009008
                                              0.010477 -0.034241
10
              0.069741
                        0.054243
. .
                         ... ...
    0.016171
              0.029647
                        0.026054
                                     0.032995
                                              0.025333 0.030230
495
496
    0.020062 0.065201
                        0.048483
                                     0.028380 0.023596 0.015893
497
    0.045819
              0.014318
                        0.083046 ...
                                     0.004456 0.007167 0.002740
498
    0.025524
              0.027119
                        0.067799
                                     0.026802 0.031055 0.017780
499
    0.051820 0.056531 0.113061 ... 0.027086 0.019852 0.003929
                                                                     X41
         X35
                   X36
                             X37
                                       X38
                                                X39
                                                          X40
0
    0.032476 -0.008824 0.016551 0.018800 -0.012236
                                                     0.035548
                                                               efectores
4
    0.066743 -0.040882 -0.054970 0.093141 0.036804 -0.028232
                                                               efectores
6
    0.039796 0.031826 0.011495 0.010188 0.001388 0.036231 efectores
9
   -0.006411 0.023441 -0.018522 -0.009457 -0.007564
                                                     0.033872
                                                               efectores
    0.032674 0.003535
                        0.096727 -0.009247 -0.046054 -0.027300
10
                                                               efectores
. .
                 •••
                                                         •••
    0.013312
              0.025662
495
                        0.020048
                                  0.023294
                                           0.033981
                                                     0.031825
                                                               efectores
496
    0.009017
              0.011056
                        0.011813
                                  0.018938
                                           0.039910
                                                     0.008468
                                                               efectores
497
    0.055300 0.032826
                        0.036349
                                 0.010069
                                           0.013737
                                                     0.012439
                                                               efectores
498
    0.024007
              0.032422 0.013844
                                  0.021743
                                           0.024587
                                                     0.023078
                                                               efectores
499
    0.020987
              0.007451 -0.048003 -0.042354 0.028955 -0.025904
                                                               efectores
```

[407 rows x 42 columns]

Composición de pseudo aminoácidos (PseAAC) mass efectores nematoda dataset 3, sin valores atípicos.
Estadísticas.

	XO	X1	X2	ХЗ	Х4	X5	\
count	407.000000	407.000000	407.000000	407.000000	407.000000	407.000000	
mean	0.044645	0.014695	0.034715	0.042208	0.030730	0.036828	
std	0.015276	0.010928	0.016478	0.023890	0.016980	0.013249	
min	0.004896	0.000000	0.000000	0.000000	0.000000	0.005280	
25%	0.035167	0.006844	0.023396	0.025745	0.018552	0.027921	
50%	0.043280	0.012657	0.033704	0.040592	0.028145	0.035663	

75%	0.053083	0.020621	0.045718	0.054023	0.041369	0.043902	
max	0.094509	0.063942	0.089645	0.124813	0.088905	0.086401	
	Х6	Х7	Х8	Х9		31 \	
count	407.000000	407.000000	407.000000	407.000000	407.0000		
mean	0.016186	0.038642	0.039784	0.060728	0.0160		
std	0.009755	0.018308	0.021248	0.026347	0.0220	44	
min	0.000000	0.000000	0.000000	0.000000	0.0541	33	
25%	0.008980	0.025597	0.024297	0.043334	0.0028	61	
50%	0.014855	0.037187	0.037722	0.058029	0.0163	40	
75%	0.021853	0.050463	0.051751	0.076791	0.0293	83	
max	0.055166	0.098632	0.115201	0.147622	0.0979	50	
	X32	X33	X34	X35	Х36	X37	\
count	407.000000	407.000000	407.000000	407.000000	407.000000	407.000000	
mean	0.013599	0.016248	0.014508	0.014268	0.013786	0.015208	
std	0.021328	0.021268	0.021905	0.020700	0.021584	0.022605	
min	-0.056241	-0.056715	-0.064498	-0.050241	-0.068056	-0.058873	
25%	0.001614	0.004451	0.002945	0.003729	0.000435	0.001914	
50%	0.016079	0.017852	0.016589	0.014700	0.015765	0.015384	
75%	0.027604	0.030319	0.027432	0.027523	0.027294	0.027183	
max	0.079879	0.095447	0.078032	0.084533	0.100160	0.096727	
	Х38	X39	X40				
count	407.000000	407.000000	407.000000				
mean	0.013559	0.014606	0.012246				
std	0.022776	0.022344	0.023026				
min	-0.058063	-0.069783	-0.060632				
25%	0.000136	0.003220	-0.001800				
50%	0.014304	0.015784	0.013858				
75%	0.027601	0.027770	0.028041				
max	0.105319	0.097819	0.072713				

[8 rows x 41 columns]

Composición de pseudo aminoácidos (PseAAC) mass no_efectores nematoda dataset 3, sin valores atípicos.

	XO	X1	Х2	ХЗ	Х4	Х5	Х6	\
1	0.054236	0.012052	0.076332	0.084367	0.022096	0.044192	0.016070	
2	0.050012	0.006898	0.037940	0.051737	0.032767	0.044839	0.018970	
3	0.052189	0.017396	0.020876	0.017396	0.060887	0.034793	0.017396	
4	0.043437	0.012776	0.045992	0.066433	0.029384	0.029384	0.017886	
5	0.040570	0.025356	0.060855	0.045641	0.070998	0.030428	0.025356	
	•••	•••	•••		•••	•••		

```
495
    0.081805 0.010226
                        0.035790
                                  0.061354 0.022155 0.017043
                                                               0.017043
496
    0.038242 0.032266
                        0.021511
                                  0.066923
                                            0.017926
                                                     0.034656
                                                               0.008365
497
    0.033894
              0.031069
                        0.045192
                                  0.033894
                                            0.025420
                                                     0.031069
                                                               0.014122
498
    0.026967
              0.023114
                        0.053934
                                  0.034672
                                            0.042376
                                                     0.046229
                                                               0.015410
    0.042662
              0.014221
                        0.019909
                                            0.039818
499
                                  0.025597
                                                     0.022753
                                                               0.011376
          Х7
                    Х8
                              Х9
                                          X32
                                                    X33
                                                             X34 \
1
    0.060262
              0.090394
                        0.066289
                                     0.020083
                                              0.005932 -0.008716
2
    0.027593
              0.044839
                        0.056911
                                     0.018030 -0.009399 -0.003369
3
    0.078283 0.020876
                        0.083502
                                     0.036929 -0.004607
                                                        0.007353
4
    0.042160
              0.071543
                        0.060045
                                     0.012087 0.002022 0.006735
5
    0.086211
              0.065926
                        0.111568
                                     0.009213 -0.006795 0.002367
. .
                                  ... 0.007923 -0.003907 0.032467
    0.054537
495
              0.064762
                        0.068171
496
    0.026291
              0.056167
                        0.025096
                                     0.013434
                                              0.025588 0.039001
497
    0.052253
              0.022596
                        0.108743 ... -0.003053 -0.008427 0.016080
498
    0.061639
              0.030819
                        0.069343
                                     0.004002
                                              0.016111 0.029623
499
    0.045506
              0.036974
                        0.091012 ...
                                     0.033901 0.008392 0.029503
         X35
                   X36
                             X37
                                       X38
                                                 X39
                                                          X40
                                                                        X41
    0.018439
                                                     0.016588
1
              0.030751 -0.001900
                                  0.028189
                                            0.018768
                                                               no efectores
2
              0.002654
    0.003707
                        0.008913
                                  0.015737
                                            0.007951
                                                      0.001455
                                                               no efectores
3
    0.020635
              0.006097
                        0.019653
                                  0.034257
                                            0.016294
                                                     0.004180
                                                               no_efectores
4
     0.017913
              0.004489
                        0.004747
                                  0.003683
                                            0.022184
                                                     0.008302
                                                               no_efectores
5
   -0.027653
              0.054465
                        0.034048 -0.012052 -0.007379 0.014136
                                                               no efectores
. .
495
    0.023797
              0.001323
                        0.005770
                                  0.009856
                                            0.033578
                                                     0.029902
                                                               no_efectores
496
    0.019524
              0.012043
                        0.023243
                                  0.012866
                                            0.042646
                                                     0.024069
                                                               no_efectores
497
                        0.000304
    0.009719
              0.014500
                                  0.005230
                                            0.013778
                                                      0.031547
                                                               no_efectores
498 -0.007499 -0.042395
                        0.028881 -0.016588
                                            0.000748
                                                      0.047428
                                                               no_efectores
499
    0.018599
              0.007987
                        0.025699
                                  0.011822
                                            0.038302 -0.009808
                                                               no_efectores
```

[404 rows x 42 columns]

Composición de pseudo aminoácidos (PseAAC) mass no_efectores nematoda dataset 3, sin valores atípicos.
Estadísticas.

	XO	X1	X2	ХЗ	X4	Х5	\
count	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	
mean	0.040314	0.013975	0.036349	0.047388	0.034148	0.035230	
std	0.014276	0.010110	0.016408	0.023599	0.018480	0.011814	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.032639	0.007052	0.025579	0.030605	0.020730	0.028496	
50%	0.039812	0.012034	0.035794	0.043071	0.031740	0.034778	
75%	0.048810	0.018582	0.046847	0.062688	0.045200	0.042594	
max	0.088514	0.054655	0.105430	0.122341	0.099809	0.074550	

	Х6	X7	Х8	Х9	X	31 \	
count	404.000000	404.000000	404.000000	404.000000	404.0000	00	
mean	0.015299	0.044991	0.047133	0.063875	0.0131	04	
std	0.008274	0.021940	0.024780	0.027006	0.0193	51	
min	0.000000	0.000000	0.000000	0.003702	0.0544	80	
25%	0.009681	0.029270	0.029016	0.046123	0.003112		
50%	0.014860	0.042447	0.042855	0.061857	0.014229		
75%	0.020542	0.056749	0.061429	0.078583	0.026529		
max	0.043362	0.119275	0.141705	0.139595	0.077662		
	Х32	Х33	X34	X35	Х36	Х37	\
count	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	
mean	0.015108	0.014017	0.012735	0.013208	0.014852	0.013287	
std	0.018451	0.019372	0.017639	0.018476	0.018751	0.019254	
min	-0.054850	-0.045350	-0.051849	-0.048372	-0.045922	-0.061652	
25%	0.004363	0.003136	0.003391	0.001709	0.004029	0.002970	
50%	0.015551	0.015664	0.013515	0.015478	0.014763	0.014356	
75%	0.026249	0.026157	0.024230	0.025866	0.025317	0.024361	
max	0.091282	0.090468	0.064361	0.077008	0.079663	0.077833	
	Х38	X39	X40				
count	404.000000	404.000000	404.000000				
mean	0.012236	0.013579	0.013475				
std	0.020454	0.019584	0.017548				
min	-0.062683	-0.055095	-0.046301				
25%	-0.000054	0.001952	0.002642				
50%	0.012846	0.013925	0.014022				
75%	0.025964	0.024836	0.025315				
max	0.077744	0.081595	0.072635				

[8 rows x 41 columns]

5 Composición de pseudo aminoácidos (PseAAC) hidro

```
[9]: #hidro
transf = "Composición de pseudo aminoácidos (PseAAC) "
transf2 = "PseAAC"
estado = "con valores atípicos.\n"
comp = "hidro"
df=""
```

```
for etiq in "efectores", "no_efectores":
   titulo = (str(transf)+" "+ str(comp)+" "+ str(etiq) + " "+ str(nombre2) +", |
→" + str(estado))
   print (str(etiq))
   if etiq == "efectores":
       df=PseAAC_hidro_efec
   if etiq == "no_efectores":
       df=PseAAC_hidro_no_efec
   #del df['X62']
   print (str(titulo) + "Valores del documento csv.\n")
   print ("\n\n" + str(titulo) + "Estadísticas.\n")
   print(df.describe())
   print ("\n\n")
   #Gráfica de caja y bigotes
   sns.set(style="whitegrid")
   fig , ax = plt.subplots(figsize=(14,7))
   ax = sns.boxplot(data=df)
   ax.set_title(organismo +' '+str(etiq)+" dataset "+str(dataset)+"__
```

efectores

Composición de pseudo aminoácidos (PseAAC) hidro efectores nematoda dataset 3, con valores atípicos.

```
XΟ
                      Х1
                                X2
                                           ХЗ
                                                      Х4
                                                                Х5
                                                                           X6 \
     0.055978 \quad 0.029855 \quad 0.048514 \quad 0.048514 \quad 0.022391 \quad 0.026123 \quad 0.022391
0
     0.029570 \quad 0.008871 \quad 0.011828 \quad 0.017742 \quad 0.011828 \quad 0.005914 \quad 0.005914
1
2
     1.034003 0.000000 0.344668 0.689335 0.344668 0.000000 0.000000
3
     0.015582 \quad 0.005194 \quad 0.010388 \quad 0.020776 \quad 0.036358 \quad 0.010388 \quad 0.005194
4
     0.018123 \quad 0.003020 \quad 0.021143 \quad 0.012082 \quad 0.006041 \quad 0.006041 \quad 0.003020
495 0.044246 0.005363 0.033520 0.042906 0.025475 0.075085 0.009386
496 0.017703 0.002414 0.019313 0.023336 0.006438 0.008047 0.008047
497
     0.046888 0.008683 0.010420 0.013893 0.031259 0.020839 0.001737
     0.087598 \quad 0.025028 \quad 0.065351 \quad 0.062570 \quad 0.029199 \quad 0.061180 \quad 0.038933
498
499
    0.041780 0.005969 0.035812 0.053718 0.017906 0.032827 0.011937
                                 Х9 ...
           Х7
                      Х8
                                             X53
                                                        X54
                                                                   X55 \
0
     0.037318 0.067173 0.074637 ... 0.048459 -0.000277 -0.027318
1
```

```
2
    3
    0.015582 0.010388 0.031164 ... -0.016302 -0.045539 0.013393
4
    0.006041 0.021143 0.033225
                            ... -0.004579 -0.011408 0.018592
. .
495
   0.024134 0.044246 0.038883 ... 0.011441 0.015151 0.021451
   0.009656 0.031383 0.023336
                            ... 0.015727 0.009994 0.022773
496
497
   498
   0.044494 0.047275 0.118188
                              0.000862 0.009738 0.035002
499
   X56
                X57
                        X58
                                X59
                                        X60
                                                X61
                                                         X62
    0.021007 \quad 0.009337 \quad -0.055284 \quad 0.003561 \quad 0.024735 \quad 0.060255
0
                                                    efectores
1
    0.048379 0.028757
                   0.016641 0.018991 -0.014191 -0.009741
                                                    efectores
2
    3.510292 2.781337 -2.834788 -1.617181 -4.401623 -2.616463 efectores
3
    0.017579 0.038021
                   0.000778
                           0.008576
                                   0.003682 0.001934
                                                    efectores
   -0.024115 -0.017628
                    0.006584 0.022190
                                    0.018295 0.018925
                                                    efectores
495 -0.013705 0.003927 0.014660 0.001714 0.011687
                                            0.018916 efectores
496 0.023692 0.030836
                   0.015264 0.017175 0.014368 0.016662 efectores
497 -0.005141 -0.009045 0.018470 0.000700 0.002788 -0.009461 efectores
498 -0.048161 -0.019486 -0.003353 -0.019298 -0.002355 -0.020354 efectores
   0.028611 efectores
```

[500 rows x 63 columns]

Composición de pseudo aminoácidos (PseAAC) hidro efectores nematoda dataset 3, con valores atípicos. Estadísticas.

	XO	X1	Х2	ХЗ		X4	X5	\
count	500.000000	500.000000	500.000000	500.000000	50	0.000000	500.000000	
mean	0.076465	0.017905	0.038853	0.053295		0.056816	0.052244	
std	0.481385	0.022976	0.029570	0.194373		0.479174	0.194042	
min	-0.117113	-0.234227	0.000000	-0.234227	-	0.234227	-0.351340	
25%	0.027960	0.006197	0.019139	0.025540		0.018642	0.020749	
50%	0.044466	0.013209	0.033850	0.040496		0.029850	0.035515	
75%	0.064697	0.022539	0.050031	0.057949		0.045089	0.059148	
max	10.725089	0.137482	0.344668	4.290036	1	0.725089	4.290036	
	Х6	Х7	Х8	Х9		Х	52 \	
count	500.000000	500.000000	500.000000	500.000000	•••	500.0000	00	
mean	0.023242	0.057904	0.053197	0.092798	•••	0.0091	44	
std	0.096605	0.289650	0.194663	0.482678	•••	0.2446	10	
min	0.000000	-0.234227	-0.117113	-0.117113	•••	-1.0233	63	
25%	0.007627	0.024086	0.023183	0.037954	•••	-0.0148	03	
50%	0.014838	0.036775	0.038127	0.059800		0.0044	68	
75%	0.025271	0.052509	0.057121	0.090092	•••	0.0225	66	

max	2.145018	6.435053	4.290036	10.725089	 5.2407	64	
	Х53	X54	X55	X56	X57	X58	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.015102	-0.023582	-0.020596	0.003605	-0.002784	-0.012372	
std	0.138691	0.363320	0.450119	0.192714	0.353462	0.277910	
min	-0.188512	-7.369123	-9.726807	-2.157024	-7.265702	-5.303105	
25%	-0.005365	-0.017826	-0.009985	-0.015244	-0.005309	-0.012622	
50%	0.009743	0.005887	0.010095	0.006055	0.010129	0.005437	
75%	0.024242	0.020143	0.024412	0.023400	0.026317	0.021380	
max	2.829359	0.208974	0.238095	3.510292	2.781337	0.771557	
	X59	X60	X61				
count	500.000000	500.000000	500.000000				
mean	0.003454	-0.038149	-0.006595				
std	0.088130	0.758666	0.313579				
min	-1.617181	-16.303808	-6.185048				
25%	-0.007636	-0.014161	-0.007349				
50%	0.009543	0.004870	0.008249				
75%	0.023925	0.019119	0.024403				
max	0.275106	1.058852	1.620887				

[8 rows x 62 columns]

no_efectores

Composición de pseudo aminoácidos (PseAAC) hidro no_efectores nematoda dataset 3, con valores atípicos.

	XO	X1	X2	ХЗ	X4	Х5	Х6	\
0	0.062363	0.027717	0.020788	0.020788	0.020788	0.006929	0.000000	
1	0.028975	0.006439	0.040779	0.045072	0.011805	0.023609	0.008585	
2	0.046268	0.006382	0.035100	0.047864	0.030314	0.041482	0.017550	
3	0.030691	0.010230	0.012277	0.010230	0.035807	0.020461	0.010230	
4	0.036572	0.010757	0.038724	0.055934	0.024740	0.024740	0.015059	
	•••	•••	•••		•••	•••		
495	0.093964	0.011746	0.041109	0.070473	0.025449	0.019576	0.019576	
496	0.019205	0.016204	0.010803	0.033608	0.009002	0.017404	0.004201	
497	0.064537	0.059159	0.086049	0.064537	0.048403	0.059159	0.026890	
498	0.023619	0.020245	0.047238	0.030367	0.037116	0.040490	0.013497	
499	0.030693	0.010231	0.014323	0.018416	0.028647	0.016370	0.008185	
	Х7	Х8	Х9	X	.53 X	.54 X	55 \	
0	0.027717	0.041575	0.027717	0.0227	55 -0.0277	72 -0.0401	86	
1	0.032194	0.048291	0.035414	0.0260	01 -0.0035	69 0.0369	75	
2	0.025527	0.041482	0.052650	0.0047	26 0.0222	28 0.0200	23	

```
3
   4
   . .
495 0.062643 0.074388 0.078303 ... 0.045966 -0.049441 -0.002661
496 0.013203 0.028207 0.012603 ... 0.023483 0.013542 0.024293
497
   498
   499
   0.032739 0.026600 0.065478
                       ... 0.017829 0.033015 0.023070
      X56
             X57
                   X58
                          X59
                                 X60
                                       X61
                                                 X62
   0
  -0.001124 0.032853 -0.013471 0.032464 0.008192 0.023034 no_efectores
1
2
  -0.019605 -0.000105 -0.011847 -0.002227 0.022799 0.058150
                                           no_efectores
3
  -0.000675 -0.001852 0.042188 0.018069
                             0.019682 0.011012
                                           no_efectores
4
  no_efectores
495 0.025651 0.046412 0.017504 0.026184 -0.009789 -0.001911 no_efectores
496 -0.000618 0.021135 0.014514 0.035181 0.008102 0.021625 no_efectores
497 -0.047682 -0.048437 -0.054905 -0.035420 -0.067635 -0.079254 no_efectores
498 -0.023636 -0.006279 0.018027 -0.002299 0.041133 0.036828 no efectores
   0.038952 0.027134 0.009499 0.014217 -0.004823 -0.016712 no efectores
```

[500 rows x 63 columns]

Composición de pseudo aminoácidos (PseAAC) hidro no_efectores nematoda dataset 3, con valores atípicos. Estadísticas.

	XO	X1	Х2	ХЗ	Х4	Х5	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.051268	0.016348	0.035238	0.050270	0.041526	0.048356	
std	0.229809	0.027258	0.030066	0.146368	0.147588	0.250519	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.022376	0.005535	0.018084	0.027236	0.019748	0.019349	
50%	0.035581	0.011821	0.032561	0.042454	0.030503	0.031999	
75%	0.050996	0.019931	0.046870	0.056666	0.044637	0.046664	
max	5.141557	0.467414	0.467414	3.271900	3.271900	5.608971	
	Х6	Х7	Х8	Х9	X	52 \	
count	500.000000	500.000000	500.000000	500.000000	500.0000	00	
mean	0.016959	0.052206	0.049546	0.074212	0.0028	38	
std	0.025468	0.188894	0.106613	0.251847	0.1203	28	
min	0.000000	0.000000	0.000000	0.000000	 -2.5382	32	
25%	0.007081	0.025003	0.026770	0.039036	0.0118	79	
50%	0.012784	0.039812	0.041014	0.057708	0.0059	74	
75%	0.020981	0.055720	0.056522	0.078214	0.0187	67	
max	0.467414	4.206729	2.337071	5.608971	0.4127	36	

	X53	X54	X55	X56	X57	X58	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.007993	-0.012604	0.000743	-0.009710	0.003971	0.004053	
std	0.048877	0.339661	0.185569	0.283626	0.139823	0.066584	
min	-0.690517	-7.525995	-4.052485	-6.206825	-2.954282	-0.280320	
25%	-0.002213	-0.011181	-0.004450	-0.011223	-0.002171	-0.011758	
50%	0.011098	0.006667	0.011372	0.005608	0.010866	0.004554	
75%	0.025442	0.019514	0.023762	0.018448	0.025150	0.016302	
max	0.341654	0.364084	0.239491	0.469021	0.278054	1.264647	
	Х59	X60	X61				
count	500.000000	500.000000	500.000000				
mean	0.007217	-0.002351	0.012114				
std	0.059143	0.084595	0.085769				
min	-1.011706	-1.606068	-0.337749				
25%	-0.003443	-0.010664	-0.004153				
50%	0.010307	0.005188	0.010037				
75%	0.025588	0.019094	0.024282				
max	0.244080	0.144160	1.765819				

[8 rows x 62 columns]

nematoda efectores dataset 3 Composición de pseudo aminoácidos (PseAAC) hidro con valores atípicos.

nematoda no_efectores dataset 3 Composición de pseudo aminoácidos (PseAAC) hidro con valores atípicos.

5.1 Composición de pseudo aminoácidos (PseAAC) hidro, sin valores atípicos

```
[10]: #hidro
      transf = "Composición de pseudo aminoácidos (PseAAC) "
      transf2 = "PseAAC"
      estado = "sin valores atípicos.\n"
      comp = "hidro"
      df=""
      out = (str(r3) + '/ds' + str(dataset) + '_' + str(transf2) + '_' + str(comp) +_{\square}
      →'_' + str(organismo) + '.csv')
      os.makedirs(str(r3), exist_ok=True)
      df_out = pd.DataFrame()
      for etiq in "efectores", "no_efectores":
          titulo = (str(transf) +" "+ str(etiq) + " " + str(nombre2) + ", " +
       →str(estado))
          print (str(etiq))
          if etiq == "efectores":
              df=PseAAC_hidro_efec
          if etiq == "no_efectores":
              df=PseAAC_hidro_no_efec
          del df['X62']
```

```
#Se eliminan todas las filas que tengan valores atípicos en al menos una de<sub>l</sub>
\rightarrow sus columnas.
   df = (df[(np.abs(stats.zscore(df)) < 3).all(axis=1)])</pre>
   df['X62'] = etiq
   df_out = pd.concat([df_out,df])
   #Guarda la lista csv sin valores atípicos.
   df_out.to_csv(str(out), index=False, header=False)
   print (str(titulo) + "Valores del documento csv.\n")
   print (df)
   print ("\n\n" + str(titulo) + "Estadísticas.\n")
   print(df.describe())
   print ("\n\n")
   #Gráfica de caja y bigotes
   sns.set(style="whitegrid")
   fig , ax = plt.subplots(figsize=(14,7))
   ax = sns.boxplot(data=df)
   ax.set title(organismo +' '+str(etiq)+" dataset "+str(dataset)+"]
→"+str(transf)+" "+str(comp))
```

efectores

Composición de pseudo aminoácidos (PseAAC) efectores nematoda dataset 3, sin valores atípicos.

```
XΟ
                     Х1
                                Х2
                                          ХЗ
                                                     Х4
                                                               Х5
                                                                          X6 \
0
     0.055978 \quad 0.029855 \quad 0.048514 \quad 0.048514 \quad 0.022391 \quad 0.026123 \quad 0.022391
     0.029570 \quad 0.008871 \quad 0.011828 \quad 0.017742 \quad 0.011828 \quad 0.005914 \quad 0.005914
1
3
     0.015582 \quad 0.005194 \quad 0.010388 \quad 0.020776 \quad 0.036358 \quad 0.010388 \quad 0.005194
4
     0.018123 \quad 0.003020 \quad 0.021143 \quad 0.012082 \quad 0.006041 \quad 0.006041 \quad 0.003020
5
     0.043883 0.065825 0.087766 0.109708 0.065825 0.109708 0.065825
. .
495 0.044246 0.005363 0.033520 0.042906 0.025475 0.075085 0.009386
496 0.017703 0.002414 0.019313 0.023336 0.006438 0.008047 0.008047
497
     0.046888 0.008683 0.010420 0.013893 0.031259 0.020839 0.001737
498
     0.087598 0.025028 0.065351 0.062570 0.029199 0.061180 0.038933
    0.041780 0.005969 0.035812 0.053718 0.017906 0.032827 0.011937
499
           Х7
                      Х8
                                Х9 ...
                                             X53
                                                       X54
                                                                  X55 \
0
     0.037318 0.067173 0.074637 ... 0.048459 -0.000277 -0.027318
1
     0.011828 0.020699 0.011828 ... 0.027624 0.056985 0.031360
3
     4
     0.006041 0.021143 0.033225 ... -0.004579 -0.011408 0.018592
5
     0.065825 \quad 0.021942 \quad 0.131649 \quad \dots \quad 0.098492 \quad 0.208974 \quad -0.035171
```

. . 495 0.024134 0.044246 0.038883 0.011441 0.015151 0.021451 496 0.009656 0.031383 0.023336 0.015727 0.009994 0.022773 497 0.027786 0.008683 0.050361 -0.005450 -0.029997 -0.023161 498 0.044494 0.047275 0.118188 0.000862 0.009738 0.035002 499 0.032827 0.035812 0.071623 0.051547 0.013507 0.018238 X56 X57 X58 X59 X60 X61 X62 0.021007 0 0.009337 -0.055284 0.003561 0.024735 0.060255 efectores 1 0.048379 0.028757 0.016641 0.018991 -0.014191 -0.009741 efectores 3 0.038021 0.000778 0.017579 0.008576 0.003682 0.001934 efectores 4 -0.024115 -0.017628 0.006584 0.022190 0.018295 0.018925 efectores 5 -0.027953 -0.081525 0.088316 0.130404 -0.149197 -0.168224 efectores 495 -0.013705 0.003927 0.014660 0.001714 0.011687 0.018916 efectores 0.023692 0.030836 0.015264 0.017175 0.014368 0.016662 efectores 497 -0.005141 -0.009045 0.018470 0.000700 0.002788 -0.009461 efectores 498 -0.048161 -0.019486 -0.003353 -0.019298 -0.002355 -0.020354 efectores 0.008139 0.029081 -0.002202 499 0.037746 0.020919 0.028611 efectores

[473 rows x 63 columns]

Composición de pseudo aminoácidos (PseAAC) efectores nematoda dataset 3, sin valores atípicos. Estadísticas.

XΟ Х1 Х2 ХЗ Х4 Х5 473.000000 473.000000 473.000000 473.000000 473.000000 473.000000 count 0.049298 0.016153 0.036556 0.042431 0.033110 0.042204 mean std 0.030525 0.014527 0.021972 0.024901 0.022305 0.030938 0.000000 0.000000 0.000000 0.000000 0.000000 min 0.000000 25% 0.027317 0.006209 0.019151 0.025463 0.018449 0.020437 50% 0.029097 0.043365 0.012706 0.033541 0.040026 0.034623 75% 0.056525 0.061856 0.021393 0.048953 0.044192 0.056657 max0.201605 0.084885 0.109161 0.195194 0.167309 0.212486 X7 Х9 Х6 Х8 X52 \ 473.000000 473.000000 count 473.000000 473.000000 473.000000 0.018249 0.041402 0.041101 0.065063 0.001476 mean std 0.015046 0.026566 0.025136 0.038279 0.044271 0.000000 0.000000 0.000000 0.001661 -0.290300 min 25% 0.007864 0.024128 0.022934 0.037353 -0.013138 50% 0.014707 0.036026 0.037014 0.058827 0.004629 75% 0.024100 0.050880 0.054040 0.084773 0.022270 0.093301 0.193236 0.158102 0.253829 0.224969 maxX53 X54 X55 X56 X57 X58 \

count	473.000000	473.000000	473.000000	473.000000	473.000000	473.000000
mean	0.007578	0.000596	0.005831	0.002871	0.009561	0.002486
std	0.031696	0.043237	0.036063	0.043596	0.032426	0.043741
min	-0.188512	-0.256201	-0.285538	-0.244358	-0.145975	-0.265219
25%	-0.004402	-0.016683	-0.008791	-0.013554	-0.004371	-0.010859
50%	0.009890	0.006147	0.010309	0.006343	0.010405	0.005853
75%	0.024185	0.020026	0.024222	0.023376	0.026306	0.021170
max	0.124168	0.208974	0.161968	0.190750	0.243353	0.234014
	X59	X60	X61			
count	X59 473.000000	X60 473.000000	X61 473.000000			
count mean						
	473.000000	473.000000	473.000000			
mean	473.000000 0.007736	473.000000 0.003153	473.000000 0.008247			
mean std	473.000000 0.007736 0.029933	473.000000 0.003153 0.043655	473.000000 0.008247 0.031350			
mean std min	473.000000 0.007736 0.029933 -0.147334	473.000000 0.003153 0.043655 -0.298681	473.000000 0.008247 0.031350 -0.168224			
mean std min 25%	473.000000 0.007736 0.029933 -0.147334 -0.005571	473.000000 0.003153 0.043655 -0.298681 -0.012126	473.000000 0.008247 0.031350 -0.168224 -0.006058			
mean std min 25% 50%	473.000000 0.007736 0.029933 -0.147334 -0.005571 0.010024	473.000000 0.003153 0.043655 -0.298681 -0.012126 0.005155	473.000000 0.008247 0.031350 -0.168224 -0.006058 0.008461			

[8 rows x 62 columns]

no_efectores

Composición de pseudo aminoácidos (PseAAC) no_{e} no_efectores nematoda dataset 3, sin valores atípicos.

	XO	X1	Х2	ХЗ	X4	Х5	Х6	\
0	0.062363	0.027717	0.020788	0.020788	0.020788	0.006929	0.000000	
1	0.028975	0.006439	0.040779	0.045072	0.011805	0.023609	0.008585	
2	0.046268	0.006382	0.035100	0.047864	0.030314	0.041482	0.017550	
3	0.030691	0.010230	0.012277	0.010230	0.035807	0.020461	0.010230	
4	0.036572	0.010757	0.038724	0.055934	0.024740	0.024740	0.015059	
	•••	•••	•••		•••			
495	0.093964	0.011746	0.041109	0.070473	0.025449	0.019576	0.019576	
496	0.019205	0.016204	0.010803	0.033608	0.009002	0.017404	0.004201	
497	0.064537	0.059159	0.086049	0.064537	0.048403	0.059159	0.026890	
498	0.023619	0.020245	0.047238	0.030367	0.037116	0.040490	0.013497	
499	0.030693	0.010231	0.014323	0.018416	0.028647	0.016370	0.008185	
	Х7	Х8	Х9	X	53 X	54 X	55 \	
0	0.027717	0.041575	0.027717	0.0227	55 -0.0277	72 -0.0401	86	
1	0.032194	0.048291	0.035414	0.0260	01 -0.0035	69 0.0369	75	
2	0.025527	0.041482	0.052650	0.0047	26 0.0222	28 0.0200	23	
3	0.046037	0.012277	0.049106	0.0047	89 -0.0075	23 0.0082	18	
4	0.035497	0.060237	0.050556	0.0317	51 -0.0144	61 0.0141	97	
	•••	•••		•••				

```
496 0.013203 0.028207 0.012603 ... 0.023483 0.013542 0.024293
497
   498
   499
   X58
      X56
             X57
                           X59
                                  X60
                                         X61
                                                   X62
   0
                                            no_efectores
  -0.001124 0.032853 -0.013471 0.032464 0.008192 0.023034 no efectores
1
  -0.019605 -0.000105 -0.011847 -0.002227 0.022799 0.058150
2
                                            no_efectores
3
  -0.000675 -0.001852 0.042188 0.018069 0.019682 0.011012 no_efectores
4
  -0.006856 0.007585 -0.011732 0.026169 -0.006991 0.015623 no_efectores
495 0.025651 0.046412 0.017504 0.026184 -0.009789 -0.001911 no_efectores
496 -0.000618 0.021135 0.014514 0.035181 0.008102 0.021625 no_efectores
497 -0.047682 -0.048437 -0.054905 -0.035420 -0.067635 -0.079254 no_efectores
498 -0.023636 -0.006279 0.018027 -0.002299 0.041133 0.036828 no_efectores
499 0.038952 0.027134 0.009499 0.014217 -0.004823 -0.016712 no_efectores
```

[477 rows x 63 columns]

Composición de pseudo aminoácidos (PseAAC) no_efectores nematoda dataset 3, sin valores atípicos.

Estadísticas.

	XO	X1	Х2	хз	X4	X 5	\
count	477.000000	477.000000	477.000000	477.000000	477.000000	477.000000	
mean	0.038896	0.013754	0.033015	0.041787	0.032019	0.035386	
std	0.024163	0.011904	0.019033	0.020508	0.019591	0.023437	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.022051	0.005512	0.017996	0.026340	0.018771	0.018497	
50%	0.034575	0.011200	0.031644	0.041837	0.029706	0.031336	
75%	0.048096	0.019077	0.045710	0.054669	0.042065	0.044729	
max	0.194395	0.085746	0.122018	0.107262	0.103246	0.168948	
	Х6	Х7	Х8	Х9	X	52 \	
count	477.000000	477.000000	477.000000	477.000000	477.0000	00	
mean	0.015251	0.041285	0.042121	0.059213	0.0027	19	
std	0.011378	0.023805	0.022416	0.032820	0.0295	13	
min	0.000000	0.000000	0.000000	0.000000	0.1653	11	
25%	0.007085	0.024808	0.026600	0.037238	0.0109	55	
50%	0.012737	0.039144	0.040528	0.055930	0.0060	50	
75%	0.020426	0.053895	0.053840	0.076336	0.0183	59	
max	0.066898	0.158563	0.154894	0.207056	0.0914	83	
	Х53	X54	X55	X56	X57	X58	\
count	477.000000	477.000000	477.000000	477.000000	477.000000	477.000000	

mean	0.010631	0.003591	0.010349	0.004046	0.011068	0.002671
std	0.024691	0.027738	0.024272	0.026193	0.024653	0.027765
min	-0.092859	-0.148573	-0.089081	-0.105365	-0.106846	-0.126204
25%	-0.001215	-0.009619	-0.002672	-0.010202	-0.001852	-0.011161
50%	0.011268	0.006902	0.011630	0.005696	0.011008	0.004718
75%	0.025015	0.019189	0.023551	0.018322	0.024429	0.016077
max	0.104376	0.128666	0.109119	0.121140	0.126364	0.165482
	X59	X60	X61			
count	477.000000	477.000000	477.000000			
mean	0.009389	0.002794	0.009599			
std	0.025635	0.030040	0.025174			
min	-0.095959	-0.151764	-0.108193			
25%	-0.002541	-0.009566	-0.003287			
50%	0.010404	0.005432	0.010356			
75%	0.024790	0.018648	0.024256			
max	0.107120	0.132980	0.080119			

[8 rows x 62 columns]

6 Covarianza de auto cruzamiento (ACC) hidro_mass

```
[11]: #hidro_mass
      transf = "Covarianza de auto cruzamiento (ACC) "
      transf2 = "ACC"
      estado = "con valores atípicos.\n"
      comp = "hidro_mass"
      df=""
      for etiq in "efectores", "no_efectores":
         titulo = (str(transf)+" "+ str(comp)+" "+ str(etiq) + " "+ str(nombre2) +",
       →" + str(estado))
          print (str(etiq))
          if etiq == "efectores":
              df=ACC_hidro_mass_efec
          if etiq == "no_efectores":
              df=ACC_hidro_mass_no_efec
          #del df['X13']
          print (str(titulo) + "Valores del documento csv.\n")
          print ("\n\n" + str(titulo) + "Estadísticas.\n")
          print(df.describe())
          print ("\n\n")
```

```
#Gráfica de caja y bigotes

sns.set(style="whitegrid")

fig , ax = plt.subplots(figsize=(14,7))

ax = sns.boxplot(data=df)

ax.set_title(organismo +' '+str(etiq)+" dataset "+str(dataset)+"

→"+str(transf)+" "+str(comp)+" "+str(estado))
```

efectores

Covarianza de auto cruzamiento (ACC) hidro_mass efectores nematoda dataset 3, con valores atípicos.

Valores del documento csv.

```
XΟ
                    Х1
                              X2
                                        ХЗ
                                                  Х4
                                                           Х5
                                                                     X6 \
   -0.067574 0.014875 0.035373 -0.044539 -0.081174 -0.002364 0.026290
0
   -0.038948 -0.021504 -0.063170 -0.002248 0.041282 0.032201 0.005037
2
    0.032394 - 0.166128 - 0.030822 - 0.140125 - 0.140222 - 0.057108 0.168507
    0.034751 -0.121128 -0.018064 0.151695 0.029766 -0.007470 0.081695
3
4
    0.038887 - 0.178362 \quad 0.081188 \quad 0.217353 \quad 0.051034 - 0.073401 \quad 0.031043
495 -0.040382 0.063172 -0.017651 -0.128119 0.045118 0.051010 0.018887
496 0.045805 0.001007 -0.026085 -0.056956 0.053699 0.035992 -0.011649
497 0.027568 0.007965 0.007640 -0.043602 -0.019084 0.056352 -0.099296
498 0.027346 -0.063347 -0.007162 0.006551 0.012856 -0.041870
                                                               0.027789
499 0.095074 0.009598 0.064270 -0.069404 -0.057066 -0.021500 0.059777
          Х7
                              Х9
                                       X10
                                                                     X13
                    Х8
                                                 X11
                                                          X12
0
   -0.051971 0.048886 -0.074416 -0.009161 -0.036376 0.031173
                                                               efectores
   -0.053610 0.029868 0.059712 0.041194 -0.188499 -0.019537
1
                                                               efectores
    0.135215 -0.012155 -0.032203 -0.014851 -0.101480 0.025777 efectores
2
3
   -0.002985 -0.051724 0.040106 0.128700 -0.263257 -0.183772 efectores
    0.154368 0.045239 0.042857 0.227094 0.038654 -0.108649 efectores
4
. .
495 0.052714 0.020648 -0.022387 0.016803 -0.022150 0.030789 efectores
496 0.070088 -0.027904 0.021147 0.016688 0.015516 0.042576 efectores
497 -0.104812 -0.155987 0.016726 -0.042135 -0.001740 -0.061822 efectores
498 0.000744 -0.012621 0.021992 -0.009248 -0.002035 0.029154 efectores
499 -0.065315 -0.049809 0.047032 -0.031616 -0.053430 0.041541 efectores
```

[500 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) hidro $_$ mass efectores nematoda dataset 3, con valores atípicos.

Estadísticas.

X0 X1 X2 X3 X4 X5 \
count 500.000000 500.000000 500.000000 500.000000 500.000000

mean	0.019660	0.008109	0.013582	0.007004	0.005833	0.010581	
std	0.071147	0.073303	0.083608	0.071025	0.067429	0.083164	
min	-0.245955	-0.298363	-0.485052	-0.284438	-0.247287	-0.352898	
25%	-0.019716	-0.031548	-0.029756	-0.027688	-0.031639	-0.029165	
50%	0.016492	0.010240	0.008611	0.011593	0.007622	0.009733	
75%	0.057163	0.053576	0.053927	0.046652	0.041791	0.039709	
max	0.242964	0.280443	0.630979	0.235888	0.330367	0.705028	
	Х6	Х7	Х8	Х9	X10	X11	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.003799	0.000524	0.005211	0.007145	0.004338	0.007213	
std	0.074315	0.071398	0.083589	0.079034	0.072246	0.083414	
min	-0.267772	-0.319206	-0.380071	-0.335842	-0.271925	-0.327207	
25%	-0.033101	-0.037720	-0.040085	-0.034437	-0.033826	-0.033710	
50%	0.005090	0.004349	0.002168	0.005941	0.004491	0.004258	
75%	0.044660	0.041310	0.046363	0.041352	0.044328	0.047744	
max	0.320432	0.267904	0.766804	0.702911	0.309136	0.588851	
	X12						
count	500.000000						
mean	-0.001829						
std	0.072951						
min	-0.406405						
25%	-0.041158						
50%	0.000453						
75%	0.036659						
max	0.398449						

no_efectores

Covarianza de auto cruzamiento (ACC) hidro $_$ mass no $_$ efectores nematoda dataset 3, con valores atípicos.

	XO	X1	X2	ХЗ	X4	Х5	Х6	\
0	-0.080318	0.415328	-0.230321	0.083258	-0.274482	-0.242999	-0.193973	
1	-0.001729	-0.023643	-0.046531	-0.024700	0.019356	-0.021432	-0.015418	
2	0.061067	0.069078	-0.024183	0.105004	0.002223	-0.012671	0.012263	
3	-0.032425	0.046906	-0.034851	0.043032	-0.030402	0.048499	0.051594	
4	0.017289	0.057714	-0.020004	0.054341	-0.058852	-0.012305	-0.033200	
	•••	•••	•••	•••	•••	•••		
495	-0.041017	-0.029259	0.000538	-0.026881	0.071518	0.018035	0.041053	
496	-0.001644	0.006011	0.034200	-0.016577	0.029214	-0.036656	0.005452	
497	0.012145	-0.048386	0.032361	0.018159	0.005582	0.006625	-0.015101	
498	-0.051507	-0.059683	0.055028	0.077163	-0.064524	0.129438	0.075755	
499	0.110203	-0.017338	0.003435	0.005879	-0.027668	0.027413	0.052665	

	Х7	Х8	Х9	X10	X11	X12	X13
0	-0.037777	-0.019144	0.047755	-0.069682	0.139663	-0.057241	no_efectores
1	-0.027785	-0.018700	0.016540	-0.033451	-0.008687	0.014901	no_efectores
2	-0.014634	0.025758	-0.106538	0.060003	0.055937	0.001520	no_efectores
3	-0.057391	0.098589	-0.018735	0.021412	-0.021453	0.076114	no_efectores
4	0.003182	0.030371	0.067385	-0.005745	0.060547	0.008385	no_efectores
		•••	•••			•••	
495	0.027128	-0.067596	0.022308	0.010472	0.010027	-0.011926	no_efectores
496	-0.023508	-0.010705	0.014787	0.018378	-0.087119	-0.027442	no_efectores
497	-0.001780	0.009955	-0.024945	0.011112	0.004385	-0.052488	no_efectores
498	-0.001550	0.021319	0.014881	-0.010143	0.068720	-0.003104	no_efectores
499	0.044254	0.071150	-0.073051	0.014066	0.001662	0.081498	no_efectores

[500 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) hidro_mass no_efectores nematoda dataset 3, con valores atípicos. Estadísticas.

XΟ Х1 X2 ХЗ Х4 Х5 500.000000 500.000000 count 500.000000 500.000000 500.000000 500.000000 mean 0.010041 0.007967 0.004467 0.012789 -0.0006270.007570 0.068832 0.073274 0.077439 0.074485 0.071224 std 0.077780 -0.824744 -0.405688 -0.822580 -0.290487 -0.820578 -0.242999 min 25% -0.019782 -0.022986 -0.028450 -0.024903 -0.026458 -0.025067 0.010915 0.008452 0.005190 0.011391 0.004826 0.006426 50% 75% 0.045574 0.039256 0.036523 0.045041 0.033344 0.033700 0.384854 0.284696 0.847939 0.857303 0.329170 0.864414 maxХ7 Х6 Х8 Х9 X10 X11 500.000000 500.000000 500.000000 500.000000 500.000000 500.000000 count 0.008370 0.003639 -0.000849 0.005538 0.005861 0.002915 mean 0.069103 0.069536 0.071382 0.074395 0.075869 0.074883 std -0.825343 -0.229665 -0.805523 -0.437411-0.825913 -0.321234 min 25% -0.025439 -0.029541 -0.027618 -0.031478 -0.027611 -0.032269 -0.000880 50% 0.010231 0.001016 0.002460 0.007077 0.003245 75% 0.043422 0.027233 0.031719 0.037526 0.036517 0.037688 0.387990 0.869286 0.883810 0.896302 0.319127 0.485997

X12 500.000000 count -0.000529 mean std 0.077085 -0.814735 min 25% -0.029889 50% 0.001695 75% 0.038198

max

max 0.520689

nematoda efectores dataset 3 Covarianza de auto cruzamiento (ACC) hidro_mass con valores atípicos.

nematoda no_efectores dataset 3 Covarianza de auto cruzamiento (ACC) hidro_mass con valores atípicos.

6.1 Covarianza de auto cruzamiento (ACC) hidro_mass, sin valores atípicos

```
[12]: #hidro mass
      transf = "Covarianza de auto cruzamiento (ACC) "
      transf2 = "ACC"
      estado = "sin valores atípicos.\n"
      comp = "hidro_mass"
      df=""
      out = (str(r3) + '/ds' + str(dataset) + '_' + str(transf2) + '_' + str(comp) +_{\square}
      os.makedirs(str(r3), exist_ok=True)
      df_out = pd.DataFrame()
      for etiq in "efectores", "no_efectores":
         titulo = (str(transf)+" "+ str(comp)+" "+ str(etiq) + " "+ str(nombre2) +", __
      →" + str(estado))
         print (str(etiq))
         if etiq == "efectores":
             df=ACC_hidro_mass_efec
         if etiq == "no efectores":
             df=ACC_hidro_mass_no_efec
         del df['X13']
         #Se eliminan todas las filas que tengan valores atípicos en al menos una de l
      ⇒sus columnas.
         df = (df[(np.abs(stats.zscore(df)) < 3).all(axis=1)])</pre>
         df['X13'] = etiq
         df_out = pd.concat([df_out,df])
         #Guarda la lista csv sin valores atípicos.
         df_out.to_csv(str(out), index=False, header=False)
         print (str(titulo) + "Valores del documento csv.\n")
         print ("\n\n" + str(titulo) + "Estadísticas.\n")
         print(df.describe())
         print ("\n\n")
         #Gráfica de caja y bigotes
         sns.set(style="whitegrid")
         fig , ax = plt.subplots(figsize=(14,7))
         ax = sns.boxplot(data=df)
         ax.set_title(organismo +' '+str(etiq)+" dataset "+str(dataset)+"__
       →"+str(transf)+" "+str(comp))
```

efectores

Covarianza de auto cruzamiento (ACC) hidro_mass efectores nematoda dataset 3, sin valores atípicos.

Valores del documento csv.

```
XΟ
                    Х1
                             Х2
                                       ХЗ
                                                Х4
                                                                    X6 \
0
   -0.067574 0.014875 0.035373 -0.044539 -0.081174 -0.002364 0.026290
   -0.038948 -0.021504 -0.063170 -0.002248 0.041282 0.032201 0.005037
    0.032394 -0.166128 -0.030822 -0.140125 -0.140222 -0.057108 0.168507
6
    0.231971 0.115592 0.136653 0.120364 0.125282 0.251953 0.223327
   -0.037751 0.101132 0.235923 -0.039544 0.044689 -0.049065 0.069713
8
495 -0.040382 0.063172 -0.017651 -0.128119 0.045118 0.051010
                                                              0.018887
496 0.045805 0.001007 -0.026085 -0.056956 0.053699 0.035992 -0.011649
497
    0.027568 0.007965 0.007640 -0.043602 -0.019084 0.056352 -0.099296
498 0.027346 -0.063347 -0.007162 0.006551 0.012856 -0.041870 0.027789
499 0.095074 0.009598 0.064270 -0.069404 -0.057066 -0.021500 0.059777
          Х7
                    Х8
                             Х9
                                      X10
                                                X11
                                                         X12
                                                                    X13
0
   -0.051971 0.048886 -0.074416 -0.009161 -0.036376 0.031173 efectores
   -0.053610 0.029868 0.059712 0.041194 -0.188499 -0.019537
1
                                                              efectores
2
    0.135215 -0.012155 -0.032203 -0.014851 -0.101480
                                                    0.025777 efectores
   -0.071779 0.237496 0.216809 0.057060 -0.053500 0.029196 efectores
    0.009519 -0.152949 -0.013519 -0.072980 -0.136514 -0.082855 efectores
. .
    0.052714 0.020648 -0.022387 0.016803 -0.022150 0.030789 efectores
495
496 0.070088 -0.027904 0.021147 0.016688 0.015516 0.042576 efectores
497 -0.104812 -0.155987 0.016726 -0.042135 -0.001740 -0.061822 efectores
498 0.000744 -0.012621 0.021992 -0.009248 -0.002035
                                                    0.029154
                                                              efectores
499 -0.065315 -0.049809 0.047032 -0.031616 -0.053430 0.041541 efectores
```

[462 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) hidro_mass efectores nematoda dataset 3, sin valores atípicos. Estadísticas.

	XO	X1	X2	ХЗ	X4	X5	\
count	462.000000	462.000000	462.000000	462.000000	462.000000	462.000000	
mean	0.019135	0.009654	0.010052	0.006980	0.005876	0.007203	
std	0.063627	0.063583	0.063042	0.063220	0.059104	0.060692	
min	-0.178700	-0.181927	-0.217473	-0.197299	-0.175029	-0.208822	
25%	-0.017882	-0.029280	-0.028373	-0.027212	-0.029631	-0.028275	
50%	0.016081	0.010240	0.008251	0.012035	0.007874	0.009733	
75%	0.053493	0.050550	0.050286	0.045019	0.040788	0.038187	
max	0.231971	0.194721	0.255835	0.201013	0.206744	0.251953	

	Х6	Х7	Х8	Х9	X10	X11	\
count	462.000000	462.000000	462.000000	462.000000	462.000000	462.000000	
mean	0.003725	0.001889	0.002628	0.001890	0.002905	0.003927	
std	0.064588	0.061580	0.066038	0.061507	0.059738	0.065117	
min	-0.184715	-0.197066	-0.183040	-0.178554	-0.208197	-0.189706	
25%	-0.030917	-0.034950	-0.036949	-0.035234	-0.032212	-0.033415	
50%	0.005344	0.006001	0.001500	0.004372	0.003844	0.002170	
75%	0.043767	0.040037	0.044863	0.035520	0.041116	0.044974	
max	0.223327	0.203857	0.252124	0.231388	0.203805	0.223539	
	X12						
count	462.000000						
mean	0.000224						
std	0.062096						
min	-0.195419						
25%	-0.034989						
50%	0.002688						
75%	0.036587						
max	0.190101						

no_efectores

Covarianza de auto cruzamiento (ACC) hidro $_$ mass no $_$ efectores nematoda dataset 3, sin valores atípicos.

	XO	X1	X2	ХЗ	X4	Х5	X6 \
1	-0.001729		-0.046531			-0.021432	•
2	0.061067		-0.024183	0.105004		-0.012671	0.012263
3	-0.032425	0.046906	-0.034851	0.043032	-0.030402	0.048499	0.051594
4	0.017289	0.057714	-0.020004	0.054341	-0.058852	-0.012305	-0.033200
5	-0.047089	0.022403	-0.073033	0.007530	-0.029163	-0.059911	0.092467
	•••	•••	•••		•••	•••	
495	-0.041017	-0.029259	0.000538	-0.026881	0.071518	0.018035	0.041053
496	-0.001644	0.006011	0.034200	-0.016577	0.029214	-0.036656	0.005452
497	0.012145	-0.048386	0.032361	0.018159	0.005582	0.006625	-0.015101
498	-0.051507	-0.059683	0.055028	0.077163	-0.064524	0.129438	0.075755
499	0.110203	-0.017338	0.003435	0.005879	-0.027668	0.027413	0.052665
	X7	Х8	Х9	X10	X11	X12	X13
1	-0.027785	-0.018700	0.016540	-0.033451	-0.008687	0.014901	no_efectores
2	-0.014634	0.025758	-0.106538	0.060003	0.055937	0.001520	no_efectores
3	-0.057391	0.098589	-0.018735	0.021412	-0.021453	0.076114	no_efectores
4	0.003182	0.030371	0.067385	-0.005745	0.060547	0.008385	no_efectores
5	-0.045124	-0.009771	-0.052347	-0.017109	-0.030457	0.003225	no_efectores
	•••	•••	•••		•••		
495	0.027128	-0.067596	0.022308	0.010472	0.010027	-0.011926	no_efectores

[471 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) hidro_mass no_efectores nematoda dataset 3, sin valores atípicos. Estadísticas.

	XO	X1	Х2	ХЗ	X4	Х5	\
count	471.000000	471.000000	471.000000	471.000000	471.000000	471.000000	
mean	0.012467	0.006045	0.006419	0.009549	0.002967	0.004528	
std	0.050160	0.052273	0.054690	0.055055	0.054975	0.049559	
min	-0.190985	-0.201155	-0.189637	-0.169785	-0.188606	-0.151625	
25%	-0.019132	-0.021773	-0.025381	-0.023955	-0.023477	-0.023206	
50%	0.011223	0.008464	0.005494	0.010819	0.005582	0.006510	
75%	0.043925	0.037789	0.035510	0.042720	0.032825	0.033031	
max	0.204710	0.216139	0.219266	0.202914	0.211820	0.231979	
	Х6	Х7	8X	Х9	X10	X11	\
count	471.000000	471.000000	471.000000	471.000000	471.000000	471.000000	
mean	0.008320	0.000615	0.000199	0.004243	0.006200	-0.001056	
std	0.051058	0.049946	0.049870	0.051017	0.051992	0.052709	
min	-0.193573	-0.194222	-0.202908	-0.152836	-0.210159	-0.171367	
25%	-0.024913	-0.027925	-0.026807	-0.029094	-0.026531	-0.031968	
50%	0.009604	0.000371	0.000771	0.003157	0.006807	0.002066	
75%	0.041138	0.025570	0.030264	0.035642	0.034334	0.033746	
max	0.172919	0.180820	0.143154	0.157962	0.197494	0.152817	
	7/40						
	X12						
count	471.000000						
mean	0.001571						
std	0.058013						
min	-0.200238						
25%	-0.027388						
50%	0.002086						
75%	0.036905						
max	0.221148						

7 Covarianza de auto cruzamiento (ACC) mass

```
[13]: #mass
    transf = "Covarianza de auto cruzamiento (ACC) "
    transf2 = "ACC"
    estado = "con valores atípicos.\n"
    comp = "mass"
    df=""
```

```
for etiq in "efectores", "no_efectores":
    titulo = (str(transf)+" "+ str(comp)+" "+ str(etiq) + " "+ str(nombre2) +", u
 →" + str(estado))
    print (str(etiq))
    if etiq == "efectores":
        df=ACC_mass_efec
    if etiq == "no_efectores":
        df=ACC_mass_no_efec
    #del df['X13']
    print (str(titulo) + "Valores del documento csv.\n")
    print ("\n\n" + str(titulo) + "Estadísticas.\n")
    print(df.describe())
    print ("\n\n")
    #Gráfica de caja y bigotes
    sns.set(style="whitegrid")
    fig , ax = plt.subplots(figsize=(14,7))
    ax = sns.boxplot(data=df)
    ax.set_title(organismo +' '+str(etiq)+" dataset "+str(dataset)+"__
 →"+str(transf)+" "+str(comp)+" "+str(estado))
```

efectores

Covarianza de auto cruzamiento (ACC) mass efectores nematoda dataset 3, con valores atípicos.

```
XΟ
                    Х1
                              X2
                                        ХЗ
                                                  Х4
                                                            Х5
                                                                      X6 \
0
   -0.067574 0.014875 0.035373 -0.044539 -0.081174 -0.002364 0.026290
   -0.038948 -0.021504 -0.063170 -0.002248 0.041282 0.032201 0.005037
    0.032394 - 0.166128 - 0.030822 - 0.140125 - 0.140222 - 0.057108 0.168507
3
    0.034751 -0.121128 -0.018064 0.151695 0.029766 -0.007470 0.081695
4
    0.038887 - 0.178362 \quad 0.081188 \quad 0.217353 \quad 0.051034 - 0.073401 \quad 0.031043
495 -0.040382 0.063172 -0.017651 -0.128119 0.045118 0.051010 0.018887
496 0.045805 0.001007 -0.026085 -0.056956 0.053699 0.035992 -0.011649
497 0.027568 0.007965 0.007640 -0.043602 -0.019084 0.056352 -0.099296
498 0.027346 -0.063347 -0.007162 0.006551 0.012856 -0.041870 0.027789
499 0.095074 0.009598 0.064270 -0.069404 -0.057066 -0.021500 0.059777
          Х7
                    X8
                              Х9
                                       X10
                                                 X11
                                                           X12
                                                                      X13
   -0.051971 0.04886 -0.074416 -0.009161 -0.036376 0.031173 efectores
0
   -0.053610 0.029868 0.059712 0.041194 -0.188499 -0.019537 efectores
```

[500 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) mass efectores nematoda dataset 3, con valores atípicos.

Estadísticas.

	XO	X1	Х2	ХЗ	X4	Х5	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.019660	0.008109	0.013582	0.007004	0.005833	0.010581	
std	0.071147	0.073303	0.083608	0.071025	0.067429	0.083164	
min	-0.245955	-0.298363	-0.485052	-0.284438	-0.247287	-0.352898	
25%	-0.019716	-0.031548	-0.029756	-0.027688	-0.031639	-0.029165	
50%	0.016492	0.010240	0.008611	0.011593	0.007622	0.009733	
75%	0.057163	0.053576	0.053927	0.046652	0.041791	0.039709	
max	0.242964	0.280443	0.630979	0.235888	0.330367	0.705028	
	Х6	Х7	Х8	Х9	X10	X11	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.003799	0.000524	0.005211	0.007145	0.004338	0.007213	
std	0.074315	0.071398	0.083589	0.079034	0.072246	0.083414	
min	-0.267772	-0.319206	-0.380071	-0.335842	-0.271925	-0.327207	
25%	-0.033101	-0.037720	-0.040085	-0.034437	-0.033826	-0.033710	
50%	0.005090	0.004349	0.002168	0.005941	0.004491	0.004258	
75%	0.044660	0.041310	0.046363	0.041352	0.044328	0.047744	
max	0.320432	0.267904	0.766804	0.702911	0.309136	0.588851	
	X12						
count	500.000000						
mean	-0.001829						
std	0.072951						
min	-0.406405						
25%	-0.041158						
50%	0.000453						
75%	0.036659						
max	0.398449						

no_efectores

Covarianza de auto cruzamiento (ACC) mass no_efectores nematoda dataset 3, con valores atípicos.

Valores del documento csv.

	ХО	X1	Х2	ХЗ	Х4	Х5	X6 \
0	-0.080318	0.415328	-0.230321	0.083258	-0.274482	-0.242999	-0.193973
1	-0.001729	-0.023643	-0.046531	-0.024700	0.019356	-0.021432	-0.015418
2	0.061067	0.069078	-0.024183	0.105004	0.002223	-0.012671	0.012263
3	-0.032425	0.046906	-0.034851	0.043032	-0.030402	0.048499	0.051594
4	0.017289	0.057714	-0.020004	0.054341	-0.058852	-0.012305	-0.033200
	•••	•••	•••		•••	•••	
495	-0.041017	-0.029259	0.000538	-0.026881	0.071518	0.018035	0.041053
496	-0.001644	0.006011	0.034200	-0.016577	0.029214	-0.036656	0.005452
497	0.012145	-0.048386	0.032361	0.018159	0.005582	0.006625	-0.015101
498	-0.051507	-0.059683	0.055028	0.077163	-0.064524	0.129438	0.075755
499	0.110203	-0.017338	0.003435	0.005879	-0.027668	0.027413	0.052665
	Х7	Х8	Х9	X10	X11	X12	X13
0	-0.037777	-0.019144	0.047755	-0.069682	0.139663	-0.057241	no_efectores
1	-0.037777	-0.019144 -0.018700	0.047755 0.016540	-0.069682 -0.033451	0.139663 -0.008687	-0.057241 0.014901	no_efectores no_efectores
1 2	-0.037777 -0.027785 -0.014634	-0.019144 -0.018700 0.025758	0.047755 0.016540 -0.106538	-0.069682 -0.033451 0.060003	0.139663 -0.008687 0.055937	-0.057241 0.014901 0.001520	no_efectores no_efectores no_efectores
1	-0.037777 -0.027785 -0.014634 -0.057391	-0.019144 -0.018700	0.047755 0.016540 -0.106538 -0.018735	-0.069682 -0.033451 0.060003 0.021412	0.139663 -0.008687 0.055937 -0.021453	-0.057241 0.014901 0.001520 0.076114	no_efectores no_efectores no_efectores no_efectores
1 2	-0.037777 -0.027785 -0.014634	-0.019144 -0.018700 0.025758	0.047755 0.016540 -0.106538 -0.018735	-0.069682 -0.033451 0.060003	0.139663 -0.008687 0.055937	-0.057241 0.014901 0.001520 0.076114	no_efectores no_efectores no_efectores
1 2 3	-0.037777 -0.027785 -0.014634 -0.057391	-0.019144 -0.018700 0.025758 0.098589	0.047755 0.016540 -0.106538 -0.018735 0.067385 	-0.069682 -0.033451 0.060003 0.021412 -0.005745	0.139663 -0.008687 0.055937 -0.021453 0.060547 	-0.057241 0.014901 0.001520 0.076114 0.008385	no_efectores no_efectores no_efectores no_efectores
1 2 3 4	-0.037777 -0.027785 -0.014634 -0.057391 0.003182	-0.019144 -0.018700 0.025758 0.098589 0.030371	0.047755 0.016540 -0.106538 -0.018735 0.067385	-0.069682 -0.033451 0.060003 0.021412 -0.005745	0.139663 -0.008687 0.055937 -0.021453 0.060547 	-0.057241 0.014901 0.001520 0.076114 0.008385	no_efectores no_efectores no_efectores no_efectores
1 2 3 4	-0.037777 -0.027785 -0.014634 -0.057391 0.003182 0.027128	-0.019144 -0.018700 0.025758 0.098589 0.030371	0.047755 0.016540 -0.106538 -0.018735 0.067385 	-0.069682 -0.033451 0.060003 0.021412 -0.005745	0.139663 -0.008687 0.055937 -0.021453 0.060547 0.010027 -0.087119	-0.057241 0.014901 0.001520 0.076114 0.008385 -0.011926 -0.027442	no_efectores no_efectores no_efectores no_efectores no_efectores
1 2 3 4 495	-0.037777 -0.027785 -0.014634 -0.057391 0.003182 0.027128	-0.019144 -0.018700 0.025758 0.098589 0.030371 -0.067596	0.047755 0.016540 -0.106538 -0.018735 0.067385 0.022308	-0.069682 -0.033451 0.060003 0.021412 -0.005745 0.010472	0.139663 -0.008687 0.055937 -0.021453 0.060547 0.010027 -0.087119 0.004385	-0.057241 0.014901 0.001520 0.076114 0.008385 -0.011926 -0.027442 -0.052488	no_efectores no_efectores no_efectores no_efectores no_efectores no_efectores no_efectores no_efectores
1 2 3 4 495 496	-0.037777 -0.027785 -0.014634 -0.057391 0.003182 0.027128 -0.023508	-0.019144 -0.018700 0.025758 0.098589 0.030371 -0.067596 -0.010705	0.047755 0.016540 -0.106538 -0.018735 0.067385 0.022308 0.014787 -0.024945	-0.069682 -0.033451 0.060003 0.021412 -0.005745 0.010472 0.018378	0.139663 -0.008687 0.055937 -0.021453 0.060547 0.010027 -0.087119 0.004385	-0.057241 0.014901 0.001520 0.076114 0.008385 -0.011926 -0.027442	no_efectores no_efectores no_efectores no_efectores no_efectores no_efectores no_efectores

[500 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) mass no_efectores nematoda dataset 3, con valores atípicos. Estadísticas.

	XO	X1	X2	ХЗ	Х4	Х5	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.010041	0.007967	0.004467	0.012789	-0.000627	0.007570	
std	0.068832	0.073274	0.077439	0.074485	0.071224	0.077780	
min	-0.824744	-0.405688	-0.822580	-0.290487	-0.820578	-0.242999	
25%	-0.019782	-0.022986	-0.028450	-0.024903	-0.026458	-0.025067	
50%	0.010915	0.008452	0.005190	0.011391	0.004826	0.006426	
75%	0.045574	0.039256	0.036523	0.045041	0.033344	0.033700	
max	0.284696	0.847939	0.384854	0.857303	0.329170	0.864414	

	Х6	X7	Х8	Х9	X10	X11	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.008370	0.003639	-0.000849	0.005538	0.005861	0.002915	
std	0.069103	0.069536	0.071382	0.074395	0.075869	0.074883	
min	-0.825343	-0.229665	-0.805523	-0.437411	-0.825913	-0.321234	
25%	-0.025439	-0.029541	-0.027618	-0.031478	-0.027611	-0.032269	
50%	0.010231	-0.000880	0.001016	0.002460	0.007077	0.003245	
75%	0.043422	0.027233	0.031719	0.037526	0.036517	0.037688	
max	0.387990	0.869286	0.319127	0.883810	0.485997	0.896302	

X12 500.000000 count -0.000529 mean 0.077085 std \min -0.814735 25% -0.029889 50% 0.001695 75% 0.038198 0.520689 max

nematoda efectores dataset 3 Covarianza de auto cruzamiento (ACC) mass con valores atípicos.

nematoda no_efectores dataset 3 Covarianza de auto cruzamiento (ACC) mass con valores atípicos.

7.1 Covarianza de auto cruzamiento (ACC) mass, sin valores atípicos

```
[14]: #mass
      transf = "Covarianza de auto cruzamiento (ACC) "
      transf2 = "ACC"
      estado = "sin valores atípicos.\n"
      comp = "mass"
      df=""
      #Se eliminan todas las filas que tengan valores atípicos en al menos una de sus⊔
       \rightarrow columnas.
      out = (str(r3) + \frac{ds'}{ds'} + str(dataset) + \frac{ds'}{ds'} + str(transf2) + \frac{ds'}{ds'} + str(comp) + \frac{ds'}{ds'}
       os.makedirs(str(r3), exist_ok=True)
      df=""
      df_out = pd.DataFrame()
      for etiq in "efectores", "no_efectores":
          titulo = (str(transf)+" "+ str(comp)+" "+ str(etiq) + " "+ str(nombre2) +",
       →" + str(estado))
          if etiq == "efectores":
               df = ACC_mass_efec
          if etiq == "no_efectores":
               {\tt df=ACC\_mass\_no\_efec}
```

```
del df['X13']
   #Se eliminan todas las filas que tengan valores atípicos en al menos una de<sub>l</sub>
  df = (df[(np.abs(stats.zscore(df)) < 3).all(axis=1)])</pre>
  df['X13'] = etiq
  df out = pd.concat([df out,df])
  #Guarda la lista csv sin valores atípicos.
  df_out.to_csv(str(out), index=False, header=False)
  print (str(titulo) + "Valores del documento csv.\n")
  print (df)
  print ("\n\n" + str(titulo) + "Estadísticas.\n")
  print(df.describe())
  print ("\n\n")
  #Gráfica de caja y bigotes
  sns.set(style="whitegrid")
  fig , ax = plt.subplots(figsize=(14,7))
  ax = sns.boxplot(data=df)
  ax.set title(organismo +' '+str(etiq)+" dataset "+str(dataset)+"
→"+str(transf)+" "+str(comp))
```

Covarianza de auto cruzamiento (ACC) mass efectores nematoda dataset 3, sin valores atípicos.

```
XΟ
                     Х1
                              X2
                                        ХЗ
                                                  Х4
                                                            Х5
                                                                      X6 \
   -0.067574 \quad 0.014875 \quad 0.035373 \quad -0.044539 \quad -0.081174 \quad -0.002364 \quad 0.026290
   -0.038948 -0.021504 -0.063170 -0.002248 0.041282 0.032201 0.005037
1
2
    0.032394 - 0.166128 - 0.030822 - 0.140125 - 0.140222 - 0.057108 0.168507
6
    0.231971 0.115592 0.136653 0.120364 0.125282 0.251953 0.223327
  -0.037751 0.101132 0.235923 -0.039544 0.044689 -0.049065 0.069713
8
495 -0.040382 0.063172 -0.017651 -0.128119 0.045118 0.051010 0.018887
496 0.045805 0.001007 -0.026085 -0.056956 0.053699 0.035992 -0.011649
497 0.027568 0.007965 0.007640 -0.043602 -0.019084 0.056352 -0.099296
498 0.027346 -0.063347 -0.007162 0.006551 0.012856 -0.041870 0.027789
499 0.095074 0.009598 0.064270 -0.069404 -0.057066 -0.021500 0.059777
          Х7
                    Х8
                              Х9
                                       X10
                                                 X11
                                                           X12
                                                                      X13
   -0.051971 0.048886 -0.074416 -0.009161 -0.036376 0.031173 efectores
0
1
   -0.053610 0.029868 0.059712 0.041194 -0.188499 -0.019537 efectores
    0.135215 -0.012155 -0.032203 -0.014851 -0.101480 0.025777 efectores
2
6
   -0.071779 0.237496 0.216809 0.057060 -0.053500 0.029196 efectores
    0.009519 -0.152949 -0.013519 -0.072980 -0.136514 -0.082855 efectores
8
```

```
495 0.052714 0.020648 -0.022387 0.016803 -0.022150 0.030789 efectores

496 0.070088 -0.027904 0.021147 0.016688 0.015516 0.042576 efectores

497 -0.104812 -0.155987 0.016726 -0.042135 -0.001740 -0.061822 efectores

498 0.000744 -0.012621 0.021992 -0.009248 -0.002035 0.029154 efectores

499 -0.065315 -0.049809 0.047032 -0.031616 -0.053430 0.041541 efectores
```

[462 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) mass efectores nematoda dataset 3, sin valores atípicos. Estadísticas.

	XO	X1	Х2	ХЗ	Х4	Х5	\
count	462.000000	462.000000	462.000000	462.000000	462.000000	462.000000	
mean	0.019135	0.009654	0.010052	0.006980	0.005876	0.007203	
std	0.063627	0.063583	0.063042	0.063220	0.059104	0.060692	
min	-0.178700	-0.181927	-0.217473	-0.197299	-0.175029	-0.208822	
25%	-0.017882	-0.029280	-0.028373	-0.027212	-0.029631	-0.028275	
50%	0.016081	0.010240	0.008251	0.012035	0.007874	0.009733	
75%	0.053493	0.050550	0.050286	0.045019	0.040788	0.038187	
max	0.231971	0.194721	0.255835	0.201013	0.206744	0.251953	
	Х6	Х7	Х8	Х9	X10	X11	\
count	462.000000	462.000000	462.000000	462.000000	462.000000	462.000000	
mean	0.003725	0.001889	0.002628	0.001890	0.002905	0.003927	
std	0.064588	0.061580	0.066038	0.061507	0.059738	0.065117	
min	-0.184715	-0.197066	-0.183040	-0.178554	-0.208197	-0.189706	
25%	-0.030917	-0.034950	-0.036949	-0.035234	-0.032212	-0.033415	
50%	0.005344	0.006001	0.001500	0.004372	0.003844	0.002170	
75%	0.043767	0.040037	0.044863	0.035520	0.041116	0.044974	
max	0.223327	0.203857	0.252124	0.231388	0.203805	0.223539	
	X12						
count	462.000000						
mean	0.000224						
std	0.062096						
min	-0.195419						
25%	-0.034989						
50%	0.002688						
75%	0.036587						
max	0.190101						

Covarianza de auto cruzamiento (ACC) mass no_efectores nematoda dataset 3, sin valores atípicos.

```
XΟ
                   Х1
                             Х2
                                      ХЗ
                                                Х4
                                                         Х5
                                                                  X6 \
   -0.001729 -0.023643 -0.046531 -0.024700 0.019356 -0.021432 -0.015418
1
2
    0.061067  0.069078  -0.024183  0.105004  0.002223  -0.012671  0.012263
   -0.032425 0.046906 -0.034851 0.043032 -0.030402 0.048499 0.051594
3
4
    0.017289 \quad 0.057714 \quad -0.020004 \quad 0.054341 \quad -0.058852 \quad -0.012305 \quad -0.033200
5
   -0.047089 0.022403 -0.073033 0.007530 -0.029163 -0.059911 0.092467
. .
                        •••
                               •••
495 -0.041017 -0.029259 0.000538 -0.026881 0.071518 0.018035 0.041053
496 -0.001644 0.006011 0.034200 -0.016577 0.029214 -0.036656 0.005452
497 0.012145 -0.048386 0.032361 0.018159 0.005582 0.006625 -0.015101
498 -0.051507 -0.059683 0.055028 0.077163 -0.064524 0.129438 0.075755
499 0.110203 -0.017338 0.003435 0.005879 -0.027668 0.027413 0.052665
          Х7
                   X8
                             Х9
                                     X10
                                               X11
                                                        X12
                                                                     X13
   -0.027785 -0.018700 0.016540 -0.033451 -0.008687 0.014901 no_efectores
1
2
   -0.014634 0.025758 -0.106538 0.060003 0.055937 0.001520 no_efectores
3
   -0.057391 0.098589 -0.018735 0.021412 -0.021453 0.076114 no_efectores
    4
5
   -0.045124 -0.009771 -0.052347 -0.017109 -0.030457 0.003225 no efectores
495 0.027128 -0.067596 0.022308 0.010472 0.010027 -0.011926 no efectores
496 -0.023508 -0.010705 0.014787 0.018378 -0.087119 -0.027442 no efectores
497 -0.001780 0.009955 -0.024945 0.011112 0.004385 -0.052488 no efectores
498 -0.001550 0.021319 0.014881 -0.010143 0.068720 -0.003104 no_efectores
499 0.044254 0.071150 -0.073051 0.014066 0.001662 0.081498 no_efectores
```

[471 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) mass no_efectores nematoda dataset 3, sin valores atípicos. Estadísticas.

	XO	X1	Х2	ХЗ	X4	Х5	\
count	471.000000	471.000000	471.000000	471.000000	471.000000	471.000000	
mean	0.012467	0.006045	0.006419	0.009549	0.002967	0.004528	
std	0.050160	0.052273	0.054690	0.055055	0.054975	0.049559	
min	-0.190985	-0.201155	-0.189637	-0.169785	-0.188606	-0.151625	
25%	-0.019132	-0.021773	-0.025381	-0.023955	-0.023477	-0.023206	
50%	0.011223	0.008464	0.005494	0.010819	0.005582	0.006510	
75%	0.043925	0.037789	0.035510	0.042720	0.032825	0.033031	
max	0.204710	0.216139	0.219266	0.202914	0.211820	0.231979	
	Х6	Х7	Х8	Х9	X10	X11	\
count	471.000000	471.000000	471.000000	471.000000	471.000000	471.000000	
mean	0.008320	0.000615	0.000199	0.004243	0.006200	-0.001056	
std	0.051058	0.049946	0.049870	0.051017	0.051992	0.052709	

min	-0.193573	-0.194222	-0.202908	-0.152836	-0.210159	-0.171367
25%	-0.024913	-0.027925	-0.026807	-0.029094	-0.026531	-0.031968
50%	0.009604	0.000371	0.000771	0.003157	0.006807	0.002066
75%	0.041138	0.025570	0.030264	0.035642	0.034334	0.033746
max	0.172919	0.180820	0.143154	0.157962	0.197494	0.152817

X12

count	471.000000
mean	0.001571
std	0.058013
min	-0.200238
25%	-0.027388
50%	0.002086
75%	0.036905
max	0.221148

8 Covarianza de auto cruzamiento (ACC) hidro

```
[15]: #hidro
      transf = "Covarianza de auto cruzamiento (ACC) "
      transf2 = "ACC"
      estado = "con valores atípicos.\n"
      comp = "hidro"
      df=""
      for etiq in "efectores", "no_efectores":
          titulo = (str(transf)+" "+ str(comp)+" "+ str(etiq) + " "+ str(nombre2) +",
       →" + str(estado))
          print (str(etiq))
          if etiq == "efectores":
              df=ACC_hidro_efec
          if etiq == "no_efectores":
              df=ACC_hidro_no_efec
          #del df['X13']
          print (str(titulo) + "Valores del documento csv.\n")
          print (df)
          print ("\n\n" + str(titulo) + "Estadísticas.\n")
          print(df.describe())
          print ("\n\n")
```

efectores

Covarianza de auto cruzamiento (ACC) hidro efectores nematoda dataset 3, con valores atípicos.

Valores del documento csv.

```
XΟ
                    Х1
                             X2
                                       ХЗ
                                                 Х4
                                                          Х5
                                                                    X6 \
0
   -0.045981 0.098141 0.106728 -0.060690 -0.083583 -0.059933 0.038655
   -0.064242 \ -0.111209 \ \ 0.002145 \ -0.092619 \ -0.108017 \ \ 0.006212 \ \ 0.173279
2
   -0.125122 \ -0.101022 \ -0.020189 \ \ 0.041991 \ -0.120725 \ \ 0.056036 \ -0.129436
3
    0.158284 0.049502 0.225241 0.205561 0.042274 -0.026775 0.296503
4
    0.158192 \quad 0.229680 \quad 0.317186 \quad 0.181821 \quad 0.113494 \quad 0.204116 \quad 0.200391
495 0.022047 -0.025041 0.001914 -0.045175 0.025893 -0.064922 0.115761
496 0.117091 0.045035 0.060781 0.056875 0.002347 -0.012986 0.000166
497 0.201939 0.032856 0.129623 0.086441 0.130097 0.160020 0.046970
498 -0.006665 -0.001886 0.053790 -0.008732 -0.041052 -0.077728 -0.032580
499 0.034034 -0.127440 0.068490 0.117965 -0.087883 -0.028590 0.181336
                             Х9
                                      X10
                                                X11
                                                          X12
                                                                    X13
          Х7
                    Х8
0
   -0.096047 0.041216 0.142697 -0.055478 0.101260 0.019191 efectores
1
   -0.050172 -0.086263 0.170115 0.025290 0.019953 -0.090582 efectores
   -0.041673  0.064656  0.067765  0.161517  0.032432  0.044532  efectores
2
3
    0.233072 -0.047139 -0.092498 0.303524 0.182702 -0.034421
                                                              efectores
    4
                                                              efectores
. .
495 0.069273 -0.016226 0.057860 -0.002810 0.058104 0.025849 efectores
496 -0.007123 0.090613 0.154763 0.060774 0.089672 -0.021026 efectores
497 -0.037663 0.058029 0.128414 0.107324 0.030105 -0.001787
                                                              efectores
498 -0.002603 -0.024867 0.007672 0.016852 -0.036210 -0.044216 efectores
499 -0.057070 -0.118728 -0.033217  0.136889 -0.045001 -0.015093 efectores
```

[500 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) hidro efectores nematoda dataset 3, con valores atípicos.

Estadísticas.

X0 X1 X2 X3 X4 X5 \
count 500.000000 500.000000 500.000000 500.000000 500.000000

mean	0.018561	-0.011022	0.021932	0.017985	-0.003495	-0.000566	
std	0.087253	0.090266	0.086915	0.079700	0.081272	0.088639	
min	-0.359508	-0.265240	-0.337171	-0.286149	-0.235185	-0.387759	
25%	-0.031974	-0.070691	-0.027334	-0.027404	-0.051504	-0.056298	
50%	0.013693	-0.011916	0.026794	0.018822	-0.005571	-0.000999	
75%	0.064545	0.039527	0.067824	0.062990	0.043409	0.045644	
max	0.414262	0.444901	0.394350	0.316122	0.316366	0.354060	
	Х6	Х7	8X	Х9	X10	X11	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.020979	0.009744	0.008633	0.012390	0.015126	0.013174	
std	0.093179	0.083346	0.084668	0.085585	0.083088	0.077669	
min	-0.452320	-0.293683	-0.338523	-0.501900	-0.339056	-0.251446	
25%	-0.028603	-0.040096	-0.039382	-0.034906	-0.030969	-0.034673	
50%	0.020259	0.013636	0.006426	0.006135	0.012363	0.007858	
75%	0.074332	0.058240	0.046991	0.058593	0.060607	0.054881	
max	0.304988	0.297161	0.424582	0.336555	0.377558	0.321936	
	X12						
count	500.000000						
mean	0.006906						
std	0.079718						
min	-0.273013						
25%	-0.039533						
50%	0.004579						
75%	0.052113						
max	0.488485						

no_efectores

Covarianza de auto cruzamiento (ACC) hidro no $_{\rm efectores}$ nematoda dataset 3, con valores atípicos.

	XO	X1	X2	ХЗ	X4	Х5	Х6	\
0	0.024149	-0.146056	0.032968	0.325623	0.162893	-0.011170	0.115122	
1	0.060115	-0.020551	0.023964	0.015334	0.008796	-0.022788	0.031953	
2	-0.036624	-0.027357	-0.034069	0.080519	-0.013715	0.041791	-0.008960	
3	0.059941	-0.003337	0.014720	0.044888	0.077855	0.003319	-0.014804	
4	-0.016187	-0.107803	0.022860	-0.021203	-0.043060	0.065203	-0.056146	
	•••	•••	•••		•••	•••		
495	-0.022327	-0.128425	0.052709	0.100502	-0.075212	-0.065055	0.027728	
496	0.114522	0.135757	0.099504	0.117890	0.117097	0.114322	0.055933	
497	-0.064704	-0.060712	0.002162	-0.012883	0.008811	-0.043261	-0.033871	
498	-0.032299	0.026906	-0.037384	0.023450	-0.008593	-0.014521	0.147196	
499	0.166789	0.102483	0.105533	0.146961	0.043878	0.017471	0.054146	

	Х7	8X	Х9	X10	X11	X12	X13
0	0.237448	0.065763	-0.159074	0.185205	0.274330	0.045060	no_efectores
1	0.055365	0.007469	-0.016994	-0.005724	-0.053762	0.078226	no_efectores
2	0.040142	0.047290	-0.090938	-0.070794	-0.009754	0.048348	no_efectores
3	-0.004206	0.146802	0.027236	0.031583	0.084101	0.004933	no_efectores
4	0.013895	0.022633	0.006470	0.048265	0.040571	-0.002068	no_efectores
	•••	•••	•••		•••	•••	
		 -0.074413				 -0.024313	no_efectores
		-0.074413		0.034252			no_efectores
495	-0.055039 0.151266	-0.074413	-0.018605 0.066404	0.034252 0.065705	0.059632	-0.024313	_
495 496	-0.055039 0.151266	-0.074413 0.129212	-0.018605 0.066404	0.034252 0.065705 0.015809	0.059632 0.071109	-0.024313 0.073378 0.011190	no_efectores

[500 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) hidro no $_{\rm efectores}$ nematoda dataset 3, con valores atípicos.

Estadísticas.

	XO	X1	Х2	ХЗ	Х4	Х5	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.013904	-0.014951	0.030323	0.028310	0.007203	0.005756	
std	0.088265	0.094191	0.083394	0.081831	0.086473	0.082243	
min	-0.315646	-0.568926	-0.263771	-0.272396	-0.276394	-0.358927	
25%	-0.036339	-0.068256	-0.015484	-0.025777	-0.044813	-0.037404	
50%	0.009359	-0.018783	0.032421	0.026995	0.005401	-0.000052	
75%	0.064478	0.038812	0.077860	0.074816	0.056880	0.046615	
max	0.364036	0.358161	0.332514	0.521675	0.425006	0.352649	
	Х6	Х7	Х8	Х9	X10	X11	\
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	
mean	0.027201	0.019172	0.003770	0.011406	0.017803	0.010355	
std	0.077194	0.073557	0.077206	0.074473	0.076221	0.082838	
min	-0.399369	-0.271266	-0.286537	-0.283461	-0.359140	-0.425886	
25%	-0.014003	-0.024674	-0.041908	-0.029700	-0.028954	-0.030308	
50%	0.024072	0.013987	0.004300	0.009806	0.014619	0.009347	
75%	0.069962	0.057655	0.048122	0.054839	0.057182	0.045932	
max	0.327096	0.302730	0.338130	0.351968	0.310558	0.604416	
	X12						
count	500.000000						
mean	0.003864						
std	0.075805						
min	-0.684136						
25%	-0.028476						
50%	0.008231						
75%	0.044163						

max 0.257356

nematoda efectores dataset 3 Covarianza de auto cruzamiento (ACC) hidro con valores atípicos.

nematoda no_efectores dataset 3 Covarianza de auto cruzamiento (ACC) hidro con valores atípicos.

8.1 Covarianza de auto cruzamiento (ACC) hidro, sin valores atípicos

```
[16]: #hidro
      transf = "Covarianza de auto cruzamiento (ACC) "
      transf2 = "ACC"
      estado = "sin valores atípicos.\n"
      comp = "hidro"
      df=""
      out = (str(r3) + '/ds' + str(dataset) + '_' + str(transf2) + '_' + str(comp) +_{\square}
      →'_' + str(organismo) + '.csv')
      os.makedirs(str(r3), exist_ok=True)
      df_out = pd.DataFrame()
      for etiq in "efectores", "no_efectores":
          titulo = (str(transf) +" "+ str(etiq) + " " + str(nombre2) + ", " +
       →str(estado))
          print (str(etiq))
          if etiq == "efectores":
              df=ACC_hidro_efec
          if etiq == "no_efectores":
              df=ACC_hidro_no_efec
          del df['X13']
          #Se eliminan todas las filas que tengan valores atípicos en al menos una de l
       ⇒sus columnas.
          df = (df[(np.abs(stats.zscore(df)) < 3).all(axis=1)])</pre>
          df['X13'] = etiq
          df_out = pd.concat([df_out,df])
          #Guarda la lista csv sin valores atípicos.
          df_out.to_csv(str(out), index=False, header=False)
          print (str(titulo) + "Valores del documento csv.\n")
          print ("\n\n" + str(titulo) + "Estadísticas.\n")
          print(df.describe())
          print ("\n\n")
          #Gráfica de caja y bigotes
          sns.set(style="whitegrid")
          fig , ax = plt.subplots(figsize=(14,7))
          ax = sns.boxplot(data=df)
          ax.set_title(organismo +' '+str(etiq)+" dataset "+str(dataset)+"__
       →"+str(transf)+" "+str(comp))
```

efectores

Covarianza de auto cruzamiento (ACC) efectores nematoda dataset 3, sin valores atípicos.

Valores del documento csv.

```
XΟ
                  Х1
                           Х2
                                    ХЗ
                                             Х4
                                                      Х5
                                                               X6 \
0
   -0.045981 0.098141 0.106728 -0.060690 -0.083583 -0.059933
                                                          0.038655
1
   -0.064242 -0.111209 0.002145 -0.092619 -0.108017 0.006212
                                                          0.173279
   -0.125122 -0.101022 -0.020189 0.041991 -0.120725 0.056036 -0.129436
   -0.008230 0.018932 -0.102613 -0.076962 -0.068001 -0.151432 0.064673
5
6
   -0.069047 -0.005825 -0.027232 -0.079459 -0.100788 -0.173063 0.129590
495 0.022047 -0.025041 0.001914 -0.045175 0.025893 -0.064922 0.115761
    0.117091 0.045035 0.060781 0.056875 0.002347 -0.012986
496
                                                          0.000166
497
    0.046970
499
    0.034034 -0.127440 0.068490 0.117965 -0.087883 -0.028590
                                                          0.181336
                                   X10
                                                     X12
                                                               X13
         Х7
                  Х8
                           Х9
                                            X11
0
   -0.096047 0.041216 0.142697 -0.055478 0.101260 0.019191
                                                          efectores
   -0.050172 -0.086263 0.170115 0.025290 0.019953 -0.090582
1
                                                          efectores
2
   -0.041673   0.064656   0.067765   0.161517   0.032432   0.044532
                                                          efectores
5
   -0.216429 -0.028035
                      0.093326 -0.034284 0.014136 0.091195
                                                          efectores
   -0.171413   0.162279   0.070822   -0.032743   -0.106873   -0.060606
                                                          efectores
. .
                                            •••
    0.069273 -0.016226  0.057860 -0.002810  0.058104  0.025849
                                                          efectores
495
496 -0.007123 0.090613 0.154763 0.060774 0.089672 -0.021026
                                                          efectores
497 -0.037663 0.058029 0.128414 0.107324 0.030105 -0.001787
                                                          efectores
498 -0.002603 -0.024867 0.007672 0.016852 -0.036210 -0.044216
                                                          efectores
499 -0.057070 -0.118728 -0.033217 0.136889 -0.045001 -0.015093
                                                          efectores
```

[457 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) efectores nematoda dataset 3, sin valores atípicos.

Estadísticas.

	XO	X1	X2	ХЗ	X4	Х5	\
count	457.000000	457.000000	457.000000	457.000000	457.000000	457.000000	
mean	0.017140	-0.014445	0.022072	0.017933	-0.007194	-0.004900	
std	0.075965	0.081194	0.072003	0.069448	0.072706	0.078343	
min	-0.236676	-0.265240	-0.184651	-0.212452	-0.212498	-0.255569	
25%	-0.030107	-0.071110	-0.024122	-0.025031	-0.051151	-0.056015	
50%	0.013374	-0.011850	0.026936	0.019875	-0.008399	-0.004568	
75%	0.060434	0.035241	0.064312	0.061176	0.039894	0.041068	
max	0.237340	0.246523	0.280830	0.218733	0.239859	0.237765	

	Х6	X7	Х8	Х9	X10	X11	\
count	457.000000	457.000000	457.000000	457.000000	457.000000	457.000000	
mean	0.021597	0.010565	0.004031	0.010811	0.013223	0.010802	
std	0.081006	0.073395	0.070379	0.070168	0.070939	0.069544	
min	-0.245844	-0.216429	-0.210370	-0.214901	-0.224822	-0.190010	
25%	-0.025586	-0.037663	-0.039288	-0.033217	-0.030279	-0.032651	
50%	0.020750	0.014195	0.005234	0.005655	0.010360	0.006214	
75%	0.069262	0.055376	0.042506	0.054851	0.057413	0.051297	
max	0.261944	0.237866	0.244563	0.259437	0.262151	0.217509	
	X12						
count	457.000000						
mean	0.006535						
std	0.065457						
min	-0.191041						
25%	-0.036554						
50%	0.004320						
75%	0.048409						
max	0.227271						

no_efectores

Covarianza de auto cruzamiento (ACC) $\,$ no_efectores nematoda dataset 3, sin valores atípicos.

	XO	X1	X2	ХЗ	X4	X5	X6 \
1	0.060115	-0.020551	0.023964	0.015334	0.008796	-0.022788	0.031953
2	-0.036624	-0.027357	-0.034069	0.080519	-0.013715	0.041791	-0.008960
3	0.059941	-0.003337	0.014720	0.044888	0.077855	0.003319	-0.014804
4	-0.016187	-0.107803	0.022860	-0.021203	-0.043060	0.065203	-0.056146
5	0.069376	-0.158192	-0.114478	-0.202364	0.087203	0.129728	-0.011743
	•••	•••	•••		•••		
495	-0.022327	-0.128425	0.052709	0.100502	-0.075212	-0.065055	0.027728
496	0.114522	0.135757	0.099504	0.117890	0.117097	0.114322	0.055933
497	-0.064704	-0.060712	0.002162	-0.012883	0.008811	-0.043261	-0.033871
498	-0.032299	0.026906	-0.037384	0.023450	-0.008593	-0.014521	0.147196
499	0.166789	0.102483	0.105533	0.146961	0.043878	0.017471	0.054146
	X7	X8	Х9	X10	X11	X12	X13
1	0.055365	0.007469	-0.016994	-0.005724	-0.053762	0.078226	no_efectores
2	0.040142	0.047290	-0.090938	-0.070794	-0.009754	0.048348	no_efectores
3	-0.004206	0.146802	0.027236	0.031583	0.084101	0.004933	no_efectores
4	0.013895	0.022633	0.006470	0.048265	0.040571	-0.002068	no_efectores
5	-0.096524	0.011332	-0.008499	0.096552	0.116052	-0.190655	no_efectores
					•••		
495	-0.055039	-0.074413	-0.018605	0.034252	0.059632	-0.024313	no_efectores

```
496 0.151266 0.129212 0.066404 0.065705 0.071109 0.073378 no_efectores
497 0.031993 -0.043157 -0.007131 0.015809 0.011016 0.011190 no_efectores
498 0.022592 0.069077 0.000445 0.120563 -0.037872 -0.127962 no_efectores
499 -0.090259 -0.003287 0.035221 0.035646 -0.080555 -0.000291 no_efectores
```

[458 rows x 14 columns]

Covarianza de auto cruzamiento (ACC) no_efectores nematoda dataset 3, sin valores atípicos. Estadísticas.

	XO	X1	Х2	ХЗ	X4	Х5	\
count	458.000000	458.000000	458.000000	458.000000	458.000000	458.000000	
mean	0.013989	-0.015805	0.032490	0.024814	0.005979	0.006033	
std	0.077244	0.079555	0.071971	0.069109	0.074961	0.066975	
min	-0.192993	-0.292593	-0.215000	-0.202364	-0.245092	-0.234868	
25%	-0.032327	-0.066590	-0.011647	-0.024919	-0.041797	-0.035041	
50%	0.010925	-0.019506	0.033348	0.026202	0.005982	-0.000101	
75%	0.063402	0.035275	0.077529	0.072405	0.055409	0.044595	
max	0.265980	0.256476	0.215412	0.237269	0.216027	0.250189	
	Х6	Х7	Х8	Х9	X10	X11	\
count	458.000000	458.000000	458.000000	458.000000	458.000000	458.000000	
mean	0.024818	0.016679	0.003227	0.009509	0.015338	0.009233	
std	0.066147	0.065792	0.066209	0.064447	0.064077	0.064239	
min	-0.179242	-0.179686	-0.210528	-0.197118	-0.204403	-0.207857	
25%	-0.013779	-0.024469	-0.037359	-0.029148	-0.025850	-0.027445	
50%	0.023928	0.013726	0.004681	0.009400	0.014268	0.009676	
75%	0.067678	0.055036	0.045157	0.052961	0.052396	0.044120	
max	0.251842	0.232048	0.215061	0.211827	0.246127	0.235198	
	X12						
count	458.000000						
mean	0.004896						
std	0.062749						
min	-0.200919						
25%	-0.026738						
50%	0.007605						
75%	0.041879						
max	0.189026						

