CS626 -Speech, Natural Language Processing, and the Web

Assignment-3 Named Entity Identification

Group ID -68

Rana Das –22B0684 –Civil Dept.

Ankit -22B0684 -Civil Dept.

Aman Mitra -22B0684 -Civil Dept.

Swapna Sourav Rout –24D1623 –KCDH

Date: 04/11/24

Problem Statement

- Perform Named-Entity Identification using SVM classifier with appropriate feature engineering
- Technique to be used: SVM classifier
- Dataset: CoNLL-2003 NER Data; https://paperswithcode.com/dataset/conll-2003 and https://huggingface.co/datasets/conll2003 (they are same data, but have common and distinct information)

(Map B, I tags to 1, Rest 0)

Problem Statement

- Input: A sentence
- Output: Name-No Name tagged for each word in the sentence
- Example:
 - Input: Washington DC is the capital of United States of America
 - Output: Washington_1 DC_1 is_0 the_0 capital_0 of_0
 United_1 States_1 of_1 America_1

Data Processing Info (Preprocessing)

- 1. Tokenization handling: The system processes both free-form text and structured CoNLL data by identifying word boundaries while preserving special characters and maintaining the original data format integrity, as seen in `utils.py`'s `preprocess_sentence()` function.
- 2. Abbreviation handling: Common abbreviations like Mr., Dr., Ph.D. are treated as single tokens by using regex patterns that prevent sentence splitting at periods in these cases (e.g., `(?<!Mr)(?<!Ms)(?<!Dr)(?<!Jr)\.\s`).
- 3. Case preservation: While tokens are converted to lowercase for consistent feature extraction, the original capitalization is maintained in a separate array to preserve named entity indicators and proper formatting, implemented through parallel token arrays.
- 4. Sentence boundary detection: The system uses a combination of period detection and context analysis to accurately identify sentence boundaries while avoiding false splits at abbreviations or numbers, using pattern matching in the preprocessing pipeline.

Feature Engineering

< Important: You will need to design the features appropriately so that the feature vector is able
to distinguish name from no-name. For example, capitalization is a strong feature, though not allpowerful because starting words in a sentence can have capitalization. Think well on feature
engineering >

Feature Engineering:

- Basic Token Features:

Capitalization patterns (first letter, all caps, internal caps)

Token length and position

Alphanumeric characteristics

Punctuation analysis

Custom patterns (e.g., Roman numerals)

- Contextual Features:

Previous and next token information

Surrounding word patterns

Position in sentence (first, last, etc.)

Sequential capitalization patterns

- Entity-Specific Features:

Administrative unit detection

Entity connector words ("of", "and", etc.)

Directional terms (north, south, etc.)

Custom entity patterns

- Support Vector Machine in NER System
- Theory: Linear Support Vector Classification (LinearSVC)
- Linear Support Vector Classification works by finding an optimal hyperplane that maximizes the margin between different classes. In our Named Entity Recognition (NER) system, these classes represent entity vs. non-entity tokens.
- Mathematical Foundation: * Objective Function: $\min\left(\frac{1}{2}\left||w|\right|^2+C\right.$ * $\Sigma\max\left(0,1-yi(w^{Txi}+b)\right)$ Where: w: weight vector determining the hyperplane C: regularization parameter controlling margin violations yi: class labels (+1/-1 for entity/non-entity) xi: feature vectors representing tokens

Implementation Details

1. Pipeline Architecture The system implements SVM through a scikit-learn pipeline:

Implementation Details

2. Key Components

- Feature Vectorization: * Uses DictVectorizer for converting feature dictionaries to sparse matrices * Implements sparse format to efficiently handle high-dimensional feature space * Optimizes memory usage for processing large text datasets
- Feature Scaling: * Employs StandardScaler for normalizing features * Uses sparse-optimized scaling (with_mean=False) * Improves model convergence and overall accuracy
- SVM Configuration: * dual='auto': Automatically selects between primal and dual optimization * class_weight='balanced': Handles imbalance between entity and non-entity classes * max_iter=1000: Ensures sufficient iterations for convergence * Includes built-in regularization through the C parameter

Implementation Details

3. Prediction Process

- The model generates predictions using the following process:
- scores = model.decision_function(X_scaled)
 predictions = (scores >= threshold).astype(int)
- This approach provides: * Flexible threshold adjustment using decision function scores * Post-processing capabilities for entity consistency * Finetuning options for precision/recall trade-off optimization

Confusion Matrix

Confusion Matrix

Confusion Matrix

Overall performance

Detailed Metrics

	Split	Precision	Recall	F1 Score	Threshold
0	Train	1.000	1.000	1.000	0.450
1	Valid	0.968	0.924	0.946	0.300
2	Test	0.924	0.903	0.914	0.300

Error analysis

- Analysis of NER Model Confusions and Feature Limitations
- Confusion Matrix Summary
 - Test Set Performance:
 - False Positives (Type I errors): 602 cases
 - False Negatives (Type II errors): 784 cases
 - This indicates the model slightly favors negative predictions (non-entities)

Error analysis

Common Confusion Patterns

- Entity Connector Words
 - —Words like "of", "and", "in" within entity names
 - Example: "University of California"
 - Reason: Feature engineering treats connectors separately, sometimes breaking entity continuity
- Administrative Units
 - —Words like "Department", "Institute", "University"
 - Particularly when they appear without clear capitalization patterns
 - Reason: Over-reliance on capitalization features for administrative unit detection
- Multi-token Entity Names
 - Long organization or location names with mixed patterns
 - Example: "The United States Department of Défense"
 - Reason: Complex interaction between positional features and entity connectors
- Common Patterns in False Positives:
 - Capitalized words at sentence beginnings
 - —Professional titles without clear context
 - Reason: Over-emphasis on capitalization features without sufficient context
- Common Patterns in False Negatives:
 - Entity mentions with unusual formatting
 - -Non-standard abbreviations
 - Reason: Limited feature coverage for edge cases

Error analysis

Feature-Related Limitations

- Context Window Limitations
 - features.update({
 'prev_token': preprocessed_tokens[i-1],
 'next_token': preprocessed_tokens[i+1]
 })
 - Only considers immediate neighbors
 - Misses longer-range dependencies
- Capitalization Bias

```
'is_capitalized': token[0].isupper(),
'is_all_caps': token.isupper(),
'has_caps_inside': any(c.isupper() for c in token[1:])
```

- Heavy reliance on capitalization patterns
- Can be misleading in informal text or special formats
- Entity Pattern Recognition

```
'in_cap_sequence': prev_cap and curr_cap,
'starts_cap_sequence': not prev_cap and curr_cap and next_cap
```

- Rigid patterns for entity recognition
- Struggles with non-standard entity formats

Architecture Comparison

SVM-based System

- Linear SVM classifier with feature engineering
- Pipeline: DictVectorizer → StandardScaler → LinearSVC
- Parallel processing implementation
- Resource monitoring and logging system
- Interactive web interface

Traditional NER Systems

- CRF, LSTM, or Transformer-based architectures
- Word embeddings dependent
- Higher computational requirements
- Command-line based interfaces typically

Dataset Overview

Source: test_data.json

• Categories: 14

• Total Sentences: 70

 Test Scope: Various entity types including persons, organizations, locations, and complex mixed entities

Entity Recognition Patterns

Our System

Example: "Prime Minister Narendra Modi addressed the nation" Tagged: [Prime Minister Narendra Modi] addressed the nation

Entities: Prime, Minister, Narendra, Modi

ChatGPT's Analysis

Example: "Prime Minister Narendra Modi addressed the nation" Tagged: [Prime Minister] [Narendra Modi] addressed the nation Entities: {TITLE: "Prime Minister"}, {PERSON: "Narendra Modi"}

Key Differences: - our system treats titles and names as individual entities - ChatGPT's system groups entities by semantic role - our system uses single-level tagging - ChatGPT employs hierarchical entity categorization

Special Cases Our System:

Input: Indira Gandhi Open University is the largest college in India.

Tagged: [Indira Gandhi Open University] is the largest college in [India]

Entities: Indira, Gandhi, Open, University, India

POS Tags: Indira(NNP) Gandhi(NNP) Open(NNP) University(NNP) is(VBZ) the(DT) largest(JJS) college(NN) in(IN) India(NNP)

ChatGPT's:

Input: Indira Gandhi Open University is the largest college in India.

Tagged: [Indira Gandhi Open University] is the largest college in [India]

Entities: Indira, Gandhi, Open, University, India

POS Tags: Indira(NNP) Gandhi(NNP) Open(NNP) University(NNP) is(VBZ) the(DT) largest(JJS) college(NN) in(IN) India(NNP)

Handling of Abbreviations

Example: "IBM Corporation" - our System: [IBM Corporation] - ChatGPT: {ORG: "IBM Corporation"}

Complex Titles

Example: "Chief Justice John Roberts" - our System: [Chief Justice John Roberts] - ChatGPT: {TITLE: "Chief Justice"} {PERSON: "John Roberts"}

Performance Metrics

SVM System Performance

• Training: F1 = 0.9998

Validation: F1 = 0.9458

• Test: F1 = 0.9136

Fast inference time

Traditional Systems

LSTM-CRF: F1 typically 0.90-0.92

BERT-based: F1 typically 0.92-0.95

Slower inference time

Higher resource usage

Performance Metrics

NER System Performance Comparison

Performance Summary

My System

- · Higher entity granularity
- · Better performance on complex sentences
- More detailed entity breakdown
- · Consistent component identification

ChatGPT

- · Semantic grouping
- Context-aware classification
- Hierarchical relationships
- Better abbreviation handling

Feature Engineering

SVM Features

- Token characteristics (capitalization, length)
- Contextual windows
- Administrative unit detection
- Entity connector recognition
- Sparse matrix representation

Traditional Systems

- Dense word embeddings
- Character-level embeddings
- Pre-trained language model features
- Automatic feature learning

Key Advantages

SVM System

- 1. Efficiency
 - Fast inference
 - Lower computational needs
 - Efficient memory usage
 - Real-time capability
- 2. Interpretability
 - Clear feature importance
 - Explainable decisions
 - Adjustable thresholds

Traditional Systems

- 1. Generalization
 - Better on unseen entities
 - Robust to variations
 - Context understanding
- 2. Feature Learning
 - Automatic feature extraction
 - Deep contextual understanding

Practical Considerations

SVM Benefits

- Lower computational requirements
- Easier deployment
- Simple maintenance
- Real-time processing
- Clear error analysis

Traditional System Challenges

- Complex training requirements
- Larger resource needs
- Harder to interpret
- Slower inference

Conclusion

The SVM-based system offers a balanced approach between performance and practicality, achieving competitive accuracy (F1: 0.9136) while maintaining: Better interpretability, Lower resource requirements, Faster inference, Easier deployment, Transparent error analysis

Best suited for: Resource-constrained environments, Real-time applications, Explainability requirements, Production systems needing easy maintenance

Learnings

Technical Insights

- Machine Learning
 - SVM with good feature engineering can match deep learning performance
 - Feature selection critically impacts model accuracy
 - Threshold tuning significantly affects precision-recall balance
 - Class imbalance handling is crucial for NER
- System Architecture
 - Parallel processing greatly improves performance
 - Sparse matrices essential for memory efficiency
 - Modular design enables easier maintenance
 - Resource monitoring prevents production issues

Learnings

Implementation Learnings

- Data Processing
 - Robust error handling is essential
 - Entity boundary detection needs careful attention
 - Preprocessing quality directly affects results
 - CoNLL format requires specialized handling
- Best Practices
 - Comprehensive logging saves debugging time
 - Regular performance monitoring is crucial
 - Documentation is vital for maintenance
 - Test cases prevent regression issues

Learnings

Key Takeaways

- Model Development
 - Start with simple models
 - Iterate based on error analysis
 - Monitor resource usage
 - Test thoroughly before scaling
- Performance
 - Achieved F1 score: 0.9136 (Test)
 - Fast inference time
 - Low resource requirements
 - Good scalability potential
- Future Improvements
 - Add word embeddings
 - Implement sequence modeling
 - Enhance error analysis
 - Consider active learning

Evaluation Scheme

- Demo working- 10/10 (if not working or no GUI 0)
- SVM implementation and Feature Selection 10/10
- Confusion matrix drawn and error analysed- 10/10
- Overall F1-score
 - > 90 10/10
 - >80 & <=90 8/10</p>
 - >70 & <=80 7/10</p>
 - so on.
- Comparison with ChatGPT (10)
- Note: Must have GUI, otherwise no mark will be given for demo.