A QUANTITATIVE STUDY FOR THE PREDICTION OF ANXIETY, STRESS AND DEPRESSION

Group: 4

Team Line-Up:

- 1) Brandon Schoener
- 2) Ishansh Sahni
- 3) Rajiv Nagesh

PHASE-2 DISCUSSIONS

- 1) Project Pipeline
- 2) Data Cleaning
- 3) Feature Engineering
- 4) Intermediate ML Model (K-Means)
- 5) Research Questions

Project Pipeline

University at Buffalo The State University of New York

Data Engineering

- 1. Data Cleaning
- 2. Fake Responses (Check)
- 3. Feature Selection

VCL1	boat
VCL2	incoherent
VCL3	pallid
VCL4	robot
VCL5	audible
VCL6	cuivocal
VCL7	paucity
VCL8	epistemology
VCL9	florted
VCL10	decide
VCL11	pastiche
VCL12	verdid
VCL13	abysmal
VCL14	lucid
VCL15	betray
VCL16	funny

Fig1: Fake Responses Check

Α	В	С	D	E	F	G	Н	1
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9
4	4	2	4	4	4	4	4	2
4	1	2	3	4	4	3	4	3
3	1	4	1	4	3	1	3	2
2	3	2	1	3	3	4	2	3
2	2	3	4	4	2	4	4	4
1	1	2	1	3	1	1	3	3
1	1	2	3	4	1	3	3	3
1	1	1	1	3	2	2	1	1
4	4	3	4	3	4	4	4	4
3		4	1	4	4	3	4	4
3		2	1	3	3	1	3	1
3	3	2	2	4	3	1	3	4
1	1	1	1	1	2	1	3	1
1	4	1	2	3	1	1	3	2
1	1	1	1	1	1	1	1	1
3	_	2	2	2	1	1	1	2
3		2	2	1	3	1	3	4
3		2	1	2	3	1	2	2
3	2	2	1	3	1	1	2	1

Fig2: data snippet

AP	AQ	AR	AS	AT		AU	AV		AX		AZ		BB	BC	BD	BE	BF	BG
42	country		TIPI1	TIPI2	TIPI		ГІРІ4	TIPI5	TIPI6	TIPI7	TIPI8	TIPI9	TIPI10	education	gender	age	married	familysize
	4 IN	167		1	5	7		7	7	7	7	5	1	1 2				1 2
	2 US	193		6	5	4		7	5	4	7	7	1	5 2				1 4
	4 PL	271		2	5	2		2	5	6	5	5	3	2 2				1 3
	2 US	261		1	1	7		4	6	4	6	1	6	1 1				1 5
	3 MY	164		2	5	3		6	5	5	5	6	3	3 3	3 2			1 4
	2 US	349		2	1	6		1	7	7	7	2	6	7 2	2	20		1 4
	3 MX	45459		2	5	6		5	3	2	6	3	5	5 2	2	17		1 4
	2 GB	232		7	6	4		5	3	2	6	3	5	2 4	1 2	29		1 2
	4 US	195		1	4	5		7	5	7	6	7	1	4 2	2 1	16		1 4
	4 DE	120		1	7	5		7	5	7	1	2	1	7 1	. 2	18		1 3
	2 US	162		5	3	6		6	3	4	4	7	5	7 1	. 1	15		1
	2 US	511		6	5	6		6	6	2	5	3	3	3 2	2	18		1
	2 US	113		5	1	4		6	5	5	7	6	2	1 3	3 2	20		1 :
	3 EE	175		5	2	5		5	2	6	7	6	6	2 4	1	31		1 !
	1 US	143		3	5	6		1	6	5	3	2	7	2 3	1	34		3 :
	3 US	155		3	5	4		5	6	5	4	3	4	4 2	2	17		1 :
	3 US	148		1	7	5		7	1	6	5	4	1	3 2	2	19		1 2
	1 GB	99		1	4	4		0	7	5	4	4	3	1 3	3 2	18		1 5
	4 US	128		2	7	7		1	6	5	4	7	6	2 2	. 1	19		1 :
	4 US	280		2	2	5		4	6	7	4	6	3	6 2	2	19		1 :
	2 US	182		7	1	3		6	6	1	7	6	1	1 1	. 2	15		1 !
	3 US	236		1	6	5		7	2	6	2	7	2	7 1	. 1			1
	3 CA	118		3	3	5		5	5	5	5	3	1	1 2	2 2	22		1
	4 EC	223		1	5	5		6	3	6	5	3	3	5 2	2 2	19		1
	3 AU	254		2	4	3		5	5	6	5	7	3	4 2				1
	4 US	229		1	6	5		7	7	7	1	6	1	2 1				1

Fig3: data snippet

Feature Engineering

- 1. Computed ASD Score
- 2. Aggregated Time Elapsed (Each Survey)
- 3. Standardizing Numerical Features
- 4. Encoding Categorical Features

ASD (Anxiety, Stress, Disorder)

Score: The score computed on the basis of responses of 42 questions to each individual with their agreement/disagreement. Ranges between 0 and 1 where 0 means not stressed and 1 means showing prominent signs of anxiety, stress or disorder.

In the past week...
I felt that I had nothing to look forward to.

- Did not apply to me at all
- Applied to me to some degree, or some of the time
- Applied to me to a considerable degree, or a good part of the time
- Applied to me very much, or most of the time

υ redo last question 5 / 42

Fig4: Sample Question

Total_Score	ASD_Score
143	0.8015873
110	0.53968254
110	0.53968254
91	0.3888889
143	0.8015873
73	0.24603175
106	0.50793651
56	0.11111111
149	0.84920635
146	0.82539683
82	0.31746032
108	0.52380952
89	0.37301587

Fig5: ASD Score

Intermediate Machine Learning Model (K-Means)

Education Level

Distribution of Stress Levels among different clusters

Distribution of Stress Levels on the basis of Gender

Research Questions and Future Scope

- 1) Using ASD score as a metric in the everyday working scenario in organizations.
- 2) Creating an interactive R Shiny Dashboard with different metrics like Age, Gender, Country to classify which class and sector of people tend to be more/least depressed.
- 3) In the mental health department, psychiatrists can use the ASD score and treat an individual and use the model analysis to work on a particular behavior of an individual.

Challenges

- 1) Cannot totally rely on data. (For ex., a person's mental state can change on a given day).
- 2) Lack of clinical data to verify clusters obtained.
- 3) Lack of terminology for the ASD Score.