Teoría de Grafos

Gustavo Montero

Escuela de Informática Universidad de Las Palmas de Gran Canaria

Curso 2004-2005

- Introducción
- 2 Tipos de grafos
- 3 Grafos Eulerianos y Hamiltonianos
- 4 Exploración de grafos

- Introducción
- 2 Tipos de grafos
- 3 Grafos Eulerianos y Hamiltonianos
- 4 Exploración de grafos

Exploración de grafos

El problema de Euler

Los puentes de la ciudad de Königsberg

Esta ciudad contaba con siete puentes que comunicaban dos islas entre sí y con sus dos orillas.

La cuestion era si una persona podía cruzar los siete puentes pasando una sola vez por cada uno.

Exploración de grafos

El problema de Euler

Los puentes de la ciudad de Königsberg

Esta ciudad contaba con siete puentes que comunicaban dos islas entre sí y con sus dos orillas.

La cuestion era si una persona podía cruzar los siete puentes pasando una sola vez por cada uno.

Grafo del problema

Euler probó en 1736 que esto era imposible, reemplazando las dos islas v las dos orillas por puntos y los siete puentes por curvas.

El problema de Euler

Los puentes de la ciudad de Königsberg

Esta ciudad contaba con siete puentes que comunicaban dos islas entre sí v con sus dos orillas.

La cuestion era si una persona podía cruzar los siete puentes pasando una sola vez por cada uno.

Grafo del problema

Euler probó en 1736 que esto era imposible, reemplazando las dos islas v las dos orillas por puntos y los siete puentes por curvas.

Definición de grafo

- Grafo $G(V, A, \delta)$: conjunto de vértices o nodos $V \neq \emptyset$, conjunto de aristas A y una aplicación $\delta: A \rightarrow V \times V$
- Extremos de la arista: $1 \rightarrow (A, B)$
- Aristas incidentes: A → (1, 2, 3)
- Grado de un vértice: $A \rightarrow 3$
 - Aristas paralelas: $(A, B) \rightarrow (1, 2)$
- Bucles: Arista que conecta un nodo consigo mismo
- Aristas orientadas: El par de nodos asociados a una arista es un par ordenado

Aplicaciones de la Teoría de Grafos

Aplicaciones en Informática e Ingeniería

- Diagramas de flujo
- Redes de ordenadores
- Redes teléfonicas

Aplicaciones de la Teoría de Grafos

Aplicaciones en Informática e Ingeniería

- Diagramas de flujo
- Redes de ordenadores
- Redes teléfonicas

Aplicaciones en Economía

- Organización de la Producción
- Planificación de proyectos

Aplicaciones de la Teoría de Grafos

Aplicaciones en Informática e Ingeniería

- Diagramas de flujo
- Redes de ordenadores
- Redes teléfonicas

Aplicaciones en Economía

- Organización de la Producción
- Planificación de proyectos

Aplicaciones en Simulación Numérica

- Generación y optimización de mallas
- Reordenación de matrices asociadas a técnicas de discretización

- 1 Introducción
- 2 Tipos de grafos
- 3 Grafos Eulerianos y Hamiltonianos
- Exploración de grafos

Clasificación de los grafos

Grafo simple

El que no tiene aristas paralelas, ni bucles y no están orientadas.

Introducción Tipos de grafos Grafos Eulerianos y Hamiltonianos Exploración de grafos Clasificación de los grafos Primer teorema de la Teoría de Grafos Grafos isomorfos Grafos homeomorfos Subgrafos Grafos especiales

Clasificación de los grafos

Grafo simple

El que no tiene aristas paralelas, ni bucles y no están orientadas.

Multigrafo

El que tiene aristas paralelas.

Clasificación de los grafos Primer teorema de la Teoría de Grafos Grafos isomorfos **Grafos homeomorfos**

Subgrafos Grafos especiales

Clasificación de los grafos

Grafo simple

El que no tiene aristas paralelas, ni bucles y no están orientadas.

Multigrafo

El que tiene aristas paralelas.

Pseudografo

El que tiene bucles.

Clasificación de los grafos Primer teorema de la Teoría de Grafos

Primer teorema de la Teoría de Grafos Grafos isomorfos Grafos homeomorfos Subgrafos Grafos especiales Tabla de grafos simples

Clasificación de los grafos

Grafo simple

El que no tiene aristas paralelas, ni bucles y no están orientadas.

Multigrafo

El que tiene aristas paralelas.

Pseudogra<u>fo</u>

El que tiene bucles.

Digrafo

El que tiene aristas orientadas. Se llama también grafo orientado o dirigido.

Primer teorema de la Teoría de Grafos

Teorema

En un grafo cualquiera $G = (V, A, \delta)$ se verifica:

$$\sum_{v_i \in V} gr(v_i) = 2|A|$$

Primer teorema de la Teoría de Grafos

Teorema

En un grafo cualquiera $G = (V, A, \delta)$ se verifica:

$$\sum_{v_i \in V} gr(v_i) = 2|A|$$

Corolario

En todo grafo el número de vértices de grado impar es un número par.

Grafos isomorfos

Definición

Dos grafos simples $G=(V,A,\delta)$ y $G'=(V',A',\delta')$ se dice que son isomorfos si existe una aplicación biyectiva f entre los nodos de G y G', conservándose las adyacencias de nodos,

- $f: V \to V'$, biyectiva

Grafos isomorfos

Definición

Dos grafos simples $G=(V,A,\delta)$ y $G'=(V',A',\delta')$ se dice que son isomorfos si existe una aplicación biyectiva f entre los nodos de G y G', conservándose las adyacencias de nodos,

- $lackbox{0} f: V \rightarrow V'$, biyectiva

Digrafos isomorfos

Dos grafos dirigidos $G=(V,A,\delta)$ y $G'=(V',A',\delta')$ se dice que son isomorfos si existe una aplicación biyectiva f entre los nodos de G y G', conservándose las adyacencias de nodos, y otra aplicación biyectiva g entre las aristas de A y A' tal que se conservan las adyacencias de nodos y orientaciones de las aristas.

- lacktriangledown f: V o V', biyectiva
- $lacktriangledown g: A \rightarrow A'$, biyectiva

Grafos homeomorfos

Subdivisón elemental

Establecemos una subdivisión elemental en un grafo simple G cuando realizamos los siguientes pasos:

- Supresión de una arista {x, y}
- Anexión de un vértice z
- Creación de las aristas {x, z}, {z, y}

Grafos homeomorfos

Subdivisón elemental

Establecemos una subdivisión elemental en un grafo simple G cuando realizamos los siguientes pasos:

- Supresión de una arista $\{x, y\}$
- Anexión de un vértice z
- Creación de las aristas {x, z}, {z, y}

Definición de grafo homeomorfo

Se dice que G y G^\prime son homeomorfos si cumplen alguna de las siguientes condiciones:

- Son isomorfos
- Cada uno de ellos puede obtenerse de un mismo grafo mediante una sucesión de subdivisiones elementales
- Creación de las aristas $\{x, z\}$, $\{z, y\}$

Subgrafos

Definición

Dado un grafo $G=(V,A,\delta)$ se dice que el grafo $G'=(V',A',\delta')$ es subgrafo de G si,

- \circ $V' \subset V$
- \bullet $A' \subset A$
- lacktriangle Cada arista de A' es incidente en los nodos de $\subset V'$

Subgrafos

Definición

Dado un grafo $G = (V, A, \delta)$ se dice que el grafo $G' = (V', A', \delta')$ es subgrafo de G si,

- \bullet $A' \subset A$
- lacktriangle Cada arista de A' es incidente en los nodos de $\subset V'$

Grafos especiales

Grafos especiales

Grafo nulo

Grafo que carece de aristas.

Grafo completo

Grafo simple en el que cada vértice está conectado con todos los demás.

Grafos especiales

Grafo regular de grado n

Grafo en el que todos sus vértices tienen el mismo grado n.

Grafos especiales

Grafo regular de grado n

Grafo en el que todos sus vértices tienen el mismo grado n.

Grafo bipartito

Grafo $G = (V, A, \delta)$ en el que el conjunto de sus vértices V puede clasificarse en dos subconjuntos disjuntos, $V = B \cup N$ y cada arista de G posee un vértice en B y otro en N.

Tabla de grafos simples

Tabla de grafos simples

- 1 Introducción
- 2 Tipos de grafos
- Grafos Eulerianos y Hamiltonianos
- 4 Exploración de grafos

Camino

Es una sucesión finita de nodos y aristas de un grafo G no dirigido, en este orden y aternativamente, donde cada arista tiene por extremos los vértices anterior y posterior que aparecen en la sucesión:

$$(V_0, V_0 V_1, V_1, V_1 V_2, V_2, \dots, V_{n-1}, V_{n-1} V_n, V_n)$$

En un grafo simple se puede expresar por la sucesión de los nodos del camino, $(V_0, V_1, V_2, \dots, V_{n-1}, V_n)$

- Longitud del camino: es el número de aristas que posee
- Extremos del camino: vértices V₀, V_n
- Grafo conexo: Si $\forall V_i, V_i \in G, \exists$ un camino que los une
- Grafo inconexo o desconexo: Si no ocurre lo anterior. Constan de dos o más componentes conexas. E número de componentes conexas de un grafo G se denota por $\kappa(G)$
- Vértice de corte o articulación: vértice que al ser suprimido junto con todas las aristas incidentes en é
 produce un subgrafo con más componentes conexas que el original
- Arista de corte o puente: arista que al ser suprimida produce un subgrafo con un mayor número de
- Camino cerrado: Si coinciden sus extremos, $V_0 = V_n$
- Camino cerrado simple: si en la sucesión de nodos no hay ninguno repetido
- Ciclo: es un camino cerrado simple donde solo coinciden sus extremos $V_0=V_n$
- Circuito, camino cerrado que no repite aristas y puede o no repetir nodos o vertices
- Grafo circuito: grafo conexo regular de grado 2. Se denota por C_n , donde n es el número de vértices

- Longitud del camino: es el número de aristas que posee
- Extremos del camino: vértices V₀, V_n
- Grafo conexo: Si $\forall V_i, V_i \in G, \exists$ un camino que los une
- Grafo inconexo o desconexo: Si no ocurre lo anterior. Constan de dos o más componentes conexas. E número de componentes conexas de un grafo G se denota por κ(G)
- Vértice de corte o articulación: vértice que al ser suprimido junto con todas las aristas incidentes en él produce un subgrafo con más componentes conexas que el original
- Arista de corte o puente: arista que al ser suprimida produce un subgrafo con un mayor número de componentes conexas
- Camino cerrado: Si coinciden sus extremos, $V_0 = V_0$
- Camino cerrado simple: si en la sucesión de nodos no hay ninguno repetido
- Ciclo: es un camino cerrado simple donde sólo coinciden sus extremos $V_0 = V_n$
- Circuito: camino cerrado que no repite aristas y puede o no repetir nodos o vértices
 - Grafo circuito: grafo conexo regular de grado 2. Se denota por C_n , donde n es el número de vértices

- Longitud del camino: es el número de aristas que posee
- Extremos del camino: vértices V₀, V_n
- Grafo conexo: Si $\forall V_i, V_i \in G, \exists$ un camino que los une
- Grafo inconexo o desconexo: Si no ocurre lo anterior. Constan de dos o más componentes conexas. El número de componentes conexas de un grafo G se denota por $\kappa(G)$
- Vértice de corte o articulación: vértice que al ser suprimido junto con todas las aristas incidentes en él, produce un subgrafo con más componentes conexas que el original
- Arista de corte o puente: arista que al ser suprimida produce un subgrafo con un mayor número de componentes conexas
- Camino cerrado: Si coinciden sus extremos, $V_0 = V_n$
- Camino cerrado simple: si en la sucesión de nodos no hay ninguno repetido
- lacktriangledown Ciclo: es un camino cerrado simple donde sólo coinciden sus extremos $V_0=V_n$
- Circuito: camino cerrado que no repite aristas y puede o no repetir nodos o vertices

- Longitud del camino: es el número de aristas que posee
- Extremos del camino: vértices V₀, V_n
- Grafo conexo: Si $\forall V_i, V_i \in G, \exists$ un camino que los une
- Grafo inconexo o desconexo: Si no ocurre lo anterior. Constan de dos o más componentes conexas. El número de componentes conexas de un grafo G se denota por $\kappa(G)$
- Vértice de corte o articulación: vértice que al ser suprimido junto con todas las aristas incidentes en él, produce un subgrafo con más componentes conexas que el original
- Arista de corte o puente: arista que al ser suprimida produce un subgrafo con un mayor número de componentes conexas
- Camino cerrado: Si coinciden sus extremos, $V_0 = V_n$
- Camino cerrado simple: si en la sucesión de nodos no hay ninguno repetido
- Ciclo: es un camino cerrado simple donde sólo coinciden sus extremos Vo
- Grafo circuito: grafo conexo regular de grado 2. Se denota por C_n , donde n es el número de vértices

- Longitud del camino: es el número de aristas que posee
- Extremos del camino: vértices V₀, V_n
- Grafo conexo: Si $\forall V_i, V_i \in G, \exists$ un camino que los une
- Grafo inconexo o desconexo: Si no ocurre lo anterior. Constan de dos o más componentes conexas. El número de componentes conexas de un grafo G se denota por $\kappa(G)$
- Vértice de corte o articulación: vértice que al ser suprimido junto con todas las aristas incidentes en él, produce un subgrafo con más componentes conexas que el original
- Arista de corte o puente: arista que al ser suprimida produce un subgrafo con un mayor número de componentes conexas
- Camino cerrado: Si coinciden sus extremos, $V_0 = V_n$
- Camino cerrado simple: si en la sucesión de nodos no hay ninguno repetido
- ullet Ciclo: es un camino cerrado simple donde sólo coinciden sus extremos $V_0=V_n$
- Grafo circuito: grafo conexo regular de grado 2. Se denota por C_n , donde n es el número de vértices

- Longitud del camino: es el número de aristas que posee
- Extremos del camino: vértices V₀, V_n
- Grafo conexo: Si $\forall V_i, V_i \in G, \exists$ un camino que los une
- Grafo inconexo o desconexo: Si no ocurre lo anterior. Constan de dos o más componentes conexas. El número de componentes conexas de un grafo G se denota por κ(G)
- Vértice de corte o articulación: vértice que al ser suprimido junto con todas las aristas incidentes en él, produce un subgrafo con más componentes conexas que el original
- Arista de corte o puente: arista que al ser suprimida produce un subgrafo con un mayor número de componentes conexas
- Camino cerrado: Si coinciden sus extremos, $V_0 = V_n$
- Camino cerrado simple: si en la sucesión de nodos no hay ninguno repetido
- Ciclo: es un camino cerrado simple donde sólo coinciden sus extremos $V_0 = V_n$
- Circuito: camino cerrado que no repite aristas y puede o no repetir nodos o vertice

- Longitud del camino: es el número de aristas que posee
- Extremos del camino: vértices V₀, V_n
- lacktriangle Grafo conexo: Si $\forall V_i,\,V_j\in G,\,\exists$ un camino que los une
- Grafo inconexo o desconexo: Si no ocurre lo anterior. Constan de dos o más componentes conexas. El número de componentes conexas de un grafo G se denota por κ(G)
- Vértice de corte o articulación: vértice que al ser suprimido junto con todas las aristas incidentes en él, produce un subgrafo con más componentes conexas que el original
- Arista de corte o puente: arista que al ser suprimida produce un subgrafo con un mayor número de componentes conexas
- Camino cerrado: Si coinciden sus extremos, $V_0 = V_n$
- O Camino cerrado simple: si en la sucesión de nodos no hay ninguno repetido
- Ociclo: es un camino cerrado simple donde sólo coinciden sus extremos $V_0 = V_n$
- Circuito: camino cerrado que no repite aristas y puede o no repetir nodos o vértices
- Grafo circuito: grafo conexo regular de grado 2. Se denota por C_n , donde n es el numero de vértices

- Longitud del camino: es el número de aristas que posee
- Extremos del camino: vértices V₀, V_n
- lacktriangle Grafo conexo: Si $\forall V_i,\,V_j\in G,\,\exists$ un camino que los une
- Grafo inconexo o desconexo: Si no ocurre lo anterior. Constan de dos o más componentes conexas. El número de componentes conexas de un grafo G se denota por κ(G)
- Vértice de corte o articulación: vértice que al ser suprimido junto con todas las aristas incidentes en él, produce un subgrafo con más componentes conexas que el original
- Arista de corte o puente: arista que al ser suprimida produce un subgrafo con un mayor número de componentes conexas
- Camino cerrado: Si coinciden sus extremos, $V_0 = V_n$
- Camino cerrado simple: si en la sucesión de nodos no hay ninguno repetido
- lacktriangle Ciclo: es un camino cerrado simple donde sólo coinciden sus extremos $V_0=V_n$
- Circuito: camino cerrado que no repite aristas y puede o no repetir nodos o vértice
- ullet Grafo circuito: grafo conexo regular de grado 2. Se denota por C_n , donde n es el número de vértice:

- Longitud del camino: es el número de aristas que posee
- Extremos del camino: vértices V₀, V_n
- Grafo conexo: Si $\forall V_i, V_i \in G, \exists$ un camino que los une
- Grafo inconexo o desconexo: Si no ocurre lo anterior. Constan de dos o más componentes conexas. El número de componentes conexas de un grafo G se denota por κ(G)
- Vértice de corte o articulación: vértice que al ser suprimido junto con todas las aristas incidentes en él, produce un subgrafo con más componentes conexas que el original
- Arista de corte o puente: arista que al ser suprimida produce un subgrafo con un mayor número de componentes conexas
- Camino cerrado: Si coinciden sus extremos, $V_0 = V_n$
- O Camino cerrado simple: si en la sucesión de nodos no hay ninguno repetido
- Ciclo: es un camino cerrado simple donde sólo coinciden sus extremos $V_0 = V_n$

- O Circuito: camino cerrado que no repite aristas y puede o no repetir nodos o vértices
- Grafo circuito: grafo conexo regular de grado 2. Se denota por C_n , donde n es el número de vértices

- Longitud del camino: es el número de aristas que posee
- Extremos del camino: vértices V₀, V_n
- Grafo conexo: Si $\forall V_i, V_i \in G, \exists$ un camino que los une
- Grafo inconexo o desconexo: Si no ocurre lo anterior. Constan de dos o más componentes conexas. El número de componentes conexas de un grafo G se denota por $\kappa(G)$
- Vértice de corte o articulación: vértice que al ser suprimido junto con todas las aristas incidentes en él, produce un subgrafo con más componentes conexas que el original
- Arista de corte o puente: arista que al ser suprimida produce un subgrafo con un mayor número de componentes conexas
- Camino cerrado: Si coinciden sus extremos, $V_0 = V_n$
- O Camino cerrado simple: si en la sucesión de nodos no hay ninguno repetido
- lacktriangle Ciclo: es un camino cerrado simple donde sólo coinciden sus extremos $V_0=V_n$
- Circuito: camino cerrado que no repite aristas y puede o no repetir nodos o vértices
- Grafo circuito: grafo conexo regular de grado 2. Se denota por C_n , donde n es el número de vértices

Grafos Eulerianos Grafos Hamiltonianos Condiciones suficientes y necesarias para Grafos Hamiltoniano:

Grafos Eulerianos

Camino Euleriano

Es un camino que contiene todas las aristas del grafo apareciendo cada una de ellas exactamente una vez

Grafos Eulerianos Grafos Hamiltonianos Condiciones suficientes y necesarias para Grafos Hamiltoniano

Grafos Eulerianos

Camino Euleriano

Es un camino que contiene todas las aristas del grafo apareciendo cada una de ellas exactamente una vez

Circuito Euleriano

Es un camino cerrado que contiene todas las aristas del grafo apareciendo cada una de ellas exactamente una vez

Grafos Eulerianos

Camino Euleriano

Es un camino que contiene todas las aristas del grafo apareciendo cada una de ellas exactamente una vez

Circuito Euleriano

Es un camino cerrado que contiene todas las aristas del grafo apareciendo cada una de ellas exactamente una vez

Definiciones

Grafo Euleriano

Es un grafo que admite un circuito euleriano

Grafos Eulerianos
Grafos Hamiltonianos
Condiciones suficientes y necesarias para Grafos Hamiltonianos

Definiciones

Grafos Eulerianos

Lema 1

Si G es un grafo euleriano, entonces todos sus vértices tienen grado par

Grafos Eulerianos Grafos Hamiltonianos Condiciones suficientes y necesarias para Grafos Hamiltoniano

Grafos Eulerianos

Lema 1

Si G es un grafo euleriano, entonces todos sus vértices tienen grado par

Lema 2

Si G es un grafo que posee un camino euleriano, entonces o bien todos los vértices tienen grado par o bien exactamente dos de los vértices tienen grado impar

Grafos Eulerianos

Lema 1

Si G es un grafo euleriano, entonces todos sus vértices tienen grado par

Lema 2

Si G es un grafo que posee un camino euleriano, entonces o bien todos los vértices tienen grado par o bien exactamente dos de los vértices tienen grado impar

Teorema

Un grafo conexo es euleriano, si y sólo si cada vértice tiene grado par

Grafos Eulerianos Grafos Hamiltonianos Condiciones suficientes y necesarias para Grafos Hamiltonian

Definiciones

Grafos Hamiltonianos

Camino Hamiltoniano

Es un camino simple (que no repite vértices) que incluye todos los vértices de ${\it G}$

Camino Hamiltoniano

Es un camino simple (que no repite vértices) que incluye todos los vértices de ${\it G}$

Circuito Hamiltoniano

Es un camino cerrado que pasa una sola vez por todos y cada uno de los vértices del grafo, es decir, es un ciclo que a su vez es un camino hamiltoniano

Camino Hamiltoniano

Es un camino simple (que no repite vértices) que incluye todos los vértices de ${\it G}$

Circuito Hamiltoniano

Es un camino cerrado que pasa una sola vez por todos y cada uno de los vértices del grafo, es decir, es un ciclo que a su vez es un camino hamiltoniano

Grafo Hamiltoniano

Es un grafo que admite un circuito hamiltoniano

- Dado un grafo con un ciclo de Hamilton, si suprimimos una de sus aristas se obtiene un camino de Hamilton
- Un grafo puede tener un camino de Hamilton y no poseer ningún ciclo de Hamilton
- Un grafo con vértice de grado uno no posee nungún ciclo de Hamilton, puesto que en estos ciclos cada vértice del grafo es incidente con dos aristas
- Si un vértice de un grafo tiene grado dos, entonces las dos aristas incidentes en este vértice forman parte de cualquier ciclo de Hamilton que hubiera en el grafo
- Cuando se está construyendo un ciclo de Hamilton y éste pasa por un vértice, entonces ignoramos a efecto de su construcción, las restantes aristas incidentes en este vértices que no forman parte del ciclo
- Un ciclo de Hamilton no puede contener otro ciclo más pequeño dentro de él
- Un grafo de Hamilton no puede tener vértices de corte o articulación
- Si G tiene un ciclo de Hamilton, entonces todos los vértices tienen grado mayor o igual que 2

- Dado un grafo con un ciclo de Hamilton, si suprimimos una de sus aristas se obtiene un camino de Hamilton
- Un grafo puede tener un camino de Hamilton y no poseer ningún ciclo de Hamilton
- Un grafo con vértice de grado uno no posee nungún ciclo de Hamilton, puesto que en estos ciclos cada vértice del grafo es incidente con dos aristas
- Si un vértice de un grafo tiene grado dos, entonces las dos aristas incidentes en este vértice forman parte de cualquier ciclo de Hamilton que hubiera en el grafo
- Cuando se está construyendo un ciclo de Hamilton y éste pasa por un vértice, entonces ignoramos a efecto de su construcción, las restantes aristas incidentes en este vértices que no forman parte del ciclo
- Un ciclo de Hamilton no puede contener otro ciclo más pequeño dentro de él
- Un grafo de Hamilton no puede tener vértices de corte o articulaci
- Si G tiene un ciclo de Hamilton, entonces todos los vértices tienen grado mayor o igual que 2

- Dado un grafo con un ciclo de Hamilton, si suprimimos una de sus aristas se obtiene un camino de Hamilton
- Un grafo puede tener un camino de Hamilton y no poseer ningún ciclo de Hamilton
- Un grafo con vértice de grado uno no posee nungún ciclo de Hamilton, puesto que en estos ciclos cada vértice del grafo es incidente con dos aristas
- Si un vértice de un grafo tiene grado dos, entonces las dos aristas incidentes en este vértice forman parte de cualquier ciclo de Hamilton que hubiera en el grafo
- Cuando se está construyendo un ciclo de Hamilton y éste pasa por un vértice, entonces ignoramos a efecto de su construcción, las restantes aristas incidentes en este vértices que no forman parte del ciclo
- Un ciclo de Hamilton no puede contener otro ciclo más pequeño dentro de é
- Un grafo de Hamilton no nuede tener vértices de corte o articulación.

- Dado un grafo con un ciclo de Hamilton, si suprimimos una de sus aristas se obtiene un camino de Hamilton
- Un grafo puede tener un camino de Hamilton y no poseer ningún ciclo de Hamilton
- Un grafo con vértice de grado uno no posee nungún ciclo de Hamilton, puesto que en estos ciclos cada vértice del grafo es incidente con dos aristas
- Si un vértice de un grafo tiene grado dos, entonces las dos aristas incidentes en este vértice forman parte de cualquier ciclo de Hamilton que hubiera en el grafo
- Cuando se está construyendo un ciclo de Hamilton y éste pasa por un vértice, entonces ignoramos a efecto de su construcción, las restantes aristas incidentes en este vértices que no forman parte del ciclo
- Un ciclo de Hamilton no puede contener otro ciclo más pequeño dentro de é
- Un grafo de Hamilton no puede tener vértices de corte o articulación

- Dado un grafo con un ciclo de Hamilton, si suprimimos una de sus aristas se obtiene un camino de Hamilton
- Un grafo puede tener un camino de Hamilton y no poseer ningún ciclo de Hamilton
- Un grafo con vértice de grado uno no posee nungún ciclo de Hamilton, puesto que en estos ciclos cada vértice del grafo es incidente con dos aristas
- Si un vértice de un grafo tiene grado dos, entonces las dos aristas incidentes en este vértice forman parte de cualquier ciclo de Hamilton que hubiera en el grafo
- Cuando se está construyendo un ciclo de Hamilton y éste pasa por un vértice, entonces ignoramos a efecto de su construcción, las restantes aristas incidentes en este vértices que no forman parte del ciclo
- Un ciclo de Hamilton no puede contener otro ciclo más pequeño dentro de él
- Un grafo de Hamilton no puede tener vértices de corte o articulación
- Si G tiene un ciclo de Hamilton, entonces todos los vértices tienen grado mayor o igual que 2

- Dado un grafo con un ciclo de Hamilton, si suprimimos una de sus aristas se obtiene un camino de Hamilton
- Un grafo puede tener un camino de Hamilton y no poseer ningún ciclo de Hamilton
- Un grafo con vértice de grado uno no posee nungún ciclo de Hamilton, puesto que en estos ciclos cada vértice del grafo es incidente con dos aristas
- Si un vértice de un grafo tiene grado dos, entonces las dos aristas incidentes en este vértice forman parte de cualquier ciclo de Hamilton que hubiera en el grafo
- Cuando se está construyendo un ciclo de Hamilton y éste pasa por un vértice, entonces ignoramos a efecto de su construcción, las restantes aristas incidentes en este vértices que no forman parte del ciclo
- Un ciclo de Hamilton no puede contener otro ciclo más pequeño dentro de él
- Un grafo de Hamilton no puede tener vértices de corte o articulación
- ullet Si G tiene un ciclo de Hamilton, entonces todos los vértices tienen grado mayor o igual que 2

- Dado un grafo con un ciclo de Hamilton, si suprimimos una de sus aristas se obtiene un camino de Hamilton
- Un grafo puede tener un camino de Hamilton y no poseer ningún ciclo de Hamilton
- Un grafo con vértice de grado uno no posee nungún ciclo de Hamilton, puesto que en estos ciclos cada vértice del grafo es incidente con dos aristas
- Si un vértice de un grafo tiene grado dos, entonces las dos aristas incidentes en este vértice forman parte de cualquier ciclo de Hamilton que hubiera en el grafo
- Cuando se está construyendo un ciclo de Hamilton y éste pasa por un vértice, entonces ignoramos a efecto de su construcción, las restantes aristas incidentes en este vértices que no forman parte del ciclo
- Un ciclo de Hamilton no puede contener otro ciclo más pequeño dentro de él
- Un grafo de Hamilton no puede tener vértices de corte o articulación
- ullet Si G tiene un ciclo de Hamilton, entonces todos los vértices tienen grado mayor o igual que 2

- Dado un grafo con un ciclo de Hamilton, si suprimimos una de sus aristas se obtiene un camino de Hamilton
- Un grafo puede tener un camino de Hamilton y no poseer ningún ciclo de Hamilton
- Un grafo con vértice de grado uno no posee nungún ciclo de Hamilton, puesto que en estos ciclos cada vértice del grafo es incidente con dos aristas
- Si un vértice de un grafo tiene grado dos, entonces las dos aristas incidentes en este vértice forman parte de cualquier ciclo de Hamilton que hubiera en el grafo
- Cuando se está construyendo un ciclo de Hamilton y éste pasa por un vértice, entonces ignoramos a efecto de su construcción, las restantes aristas incidentes en este vértices que no forman parte del ciclo
- Un ciclo de Hamilton no puede contener otro ciclo más pequeño dentro de él
- Un grafo de Hamilton no puede tener vértices de corte o articulación
- Si G tiene un ciclo de Hamilton, entonces todos los vértices tienen grado mayor o igual que 2

Condiciones suficientes y necesarias para Grafos Hamiltonianos

Teorema de Dirac (condición suficiente)

Sea $G=(V,A,\delta)$ un grafo conexo con $n\geq 3$ vértice. Si $\forall v\in V$ se verifica que $grad(v)\geq n/2$ entonces G es hamiltoniano

Condiciones suficientes y necesarias para Grafos Hamiltonianos

Teorema de Dirac (condición suficiente)

Sea $G = (V, A, \delta)$ un grafo conexo con $n \ge 3$ vértice. Si $\forall v \in V$ se verifica que $grad(v) \ge n/2$ entonces G es hamiltoniano

Teorema (condición necesaria)

Un grafo hamiltoniano no tiene ningún vértice de corte

Condiciones suficientes y necesarias para Grafos Hamiltonianos

Teorema de Ore (condición suficiente)

Sea $G=(V,A,\delta)$ un grafo sin bucles con $|V|=n\geq 2$. Si se verifica que $grad(v)+grad(w)\geq n-1, \forall v,w\in V$, con $v\neq w$, entonces G posee un camino de Hamilton Eiemplo:

El siguiente grafo cumple las condiciones del Teorema pues

 $|V|=5\ge 2$ y $\forall v, w\in V$, $grad(v)+grad(w)=4+4=8\ge 5-1=4$ Por tanto es un grafo de Hamilton con el siguiente ciclo de Hamilton:

Condiciones suficientes y necesarias para Grafos Hamiltonianos

Teorema de Ore (condición suficiente)

Sea $G=(V,A,\delta)$ un grafo sin bucles con $|V|=n\geq 2$. Si se verifica que $grad(v)+grad(w)\geq n-1, \forall v,w\in V$, con $v\neq w$, entonces G posee un camino de Hamilton

Corolario (condición suficiente)

Sea $G=(V,A,\delta)$ un grafo sin bucles con $|V|=n\geq 2$. Entonces G posee un camino de Hamilton si $grad(v)\geq \frac{n-1}{2}, \forall v\in V$

Definiciones Grafos Eulerianos Grafos Hamiltonianos Condiciones suficientes y necesarias para Grafos Hamiltonianos

Condiciones suficientes y necesarias para Grafos Hamiltonianos

Teorema (condición suficiente)

Sea $G=(V,A,\delta)$ un grafo sin bucles con $|V|=n\geq 3$. Entonces G posee un ciclo de Hamilton si $grad(v)+grad(w)\geq n$, para cualquier par de vértices v y w no advacentes de G

Condiciones suficientes y necesarias para Grafos Hamiltonianos

Teorema (condición suficiente)

Sea $G=(V,A,\delta)$ un grafo sin bucles con $|V|=n\geq 3$. Entonces G posee un ciclo de Hamilton si $grad(v)+grad(w)\geq n$, para cualquier par de vértices v y w no adyacentes de G

Corolario

Sea $G=(V,A,\delta)$ un grafo (no digrafo) sin bucles con $|V|=n\geq 3$. Si $grad(v)\geq n/2, \forall v\in V$, entonces G posee un ciclo de Hamilton

Condiciones suficientes y necesarias para Grafos Hamiltonianos

Corolario

Sea $G=(V,A,\delta)$ un grafo (no digrafo) sin bucles con $|V|=n\geq 3$. Si $|A|\geq \binom{n-1}{2}+2$, entonces G posee un ciclo de Hamilton

Condiciones suficientes y necesarias para Grafos Hamiltonianos

Corolario

Sea $G=(V,A,\delta)$ un grafo (no digrafo) sin bucles con $|V|=n\geq 3$. Si $|A|\geq \binom{n-1}{2}+2$, entonces G posee un ciclo de Hamilton

Teorema (condición necesaria)

Sea $G=(V,A,\delta)$ un grafo (no digrafo) con $|V|=n\geq 3$. Si G posee un ciclo de Hamilton, entonces $\forall U\subset V$, el subgrafo de G cuyos vértices son los de U-V y sus aristas son todas las de G que tienen extremos en U-V, tiene a lo sumo |U| componentes conexas. Por tanto, si hubiera un número de componentes conexas mayor que el cardinal de U entonces el grafo no es hamiltoniano.

Sea el grafo:

Si suprimimos los vértices $U=\{a,b\}$ y las aristas que inciden en ellos, tendremos el siguiente subgrafo con 3>|U|=2 componentes conexas y, por tanto, no es hamiltoniano.

- Introducción
- 2 Tipos de grafos
- Grafos Eulerianos y Hamiltonianos
- 4 Exploración de grafos

Definición

Dado un grafo $G=(V,A,\delta)$ donde $V=\{v_1,v_2,\ldots,v_n\}$, se llama matriz de adyacencia de G a la matriz $M=(m_{ij})\in M_{n,n}$ tal que

$$m_{ij} = \begin{cases} 1, \text{si } v_i v_j \in A \\ 0, \text{si } v_i v_j \notin A \end{cases}$$

La matriz de adyacencia de un grafo simple es simétrica

Definición

Dado un grafo $G=(V,A,\delta)$ donde $V=\{v_1,v_2,\ldots,v_n\}$, se llama matriz de adyacencia de G a la matriz $M=(m_{ij})\in M_{n,n}$ tal que

$$m_{ij} = \begin{cases} 1, \text{si } v_i v_j \in A \\ 0, \text{si } v_i v_j \notin A \end{cases}$$

La matriz de adyacencia de un grafo simple es simétrica

Proposición

Si G y G' son dos grafos con la misma matriz de adyacencia, entonces son isomorfos Sin embargo, dos grafos pueden ser isomorfos y tener matrices de adyacencia diferentes.

Definición

Dado un grafo $G=(V,A,\delta)$ donde $V=\{v_1,v_2,\ldots,v_n\}$, se llama matriz de adyacencia de G a la matriz $M=(m_{ii})\in M_{n,n}$ tal que

$$m_{ij} = \begin{cases} 1, \text{si } v_i v_j \in A \\ 0, \text{si } v_i v_j \notin A \end{cases}$$

La matriz de adyacencia de un grafo simple es simétrica

Proposición

Si G y G' son dos grafos con la misma matriz de adyacencia, entonces son isomorfos Sin embargo, dos grafos pueden ser isomorfos y tener matrices de adyacencia diferentes.

Permutación simétrica

Se dice que una matriz se obtiene a partir de otra mediante permutación simétrica si es consecuencia de realizar ciertos intercambios de filas y estos mismos intercambios de columnas

Teorema

Sea M la matriz de adyacencia de un grafo G con n vértices, entonces la entrada (i,j) de la matriz M^P es el número de caminos de longitud p con extremos v_i, v_j Este teorema también es válido para digrafos

Teorema

Sea M la matriz de adyacencia de un grafo G con n vértices, entonces la entrada (i,j) de la matriz M^p es el número de caminos de longitud p con extremos v_i , v_j Este teorema también es válido para digrafos

Corolario 1

Sea M la matriz de adyacencia de un grafo G con vértices v_1, v_2, \ldots, v_n . Sea $Q = M^{n-1} + M^{n-2} + \ldots + M$. Existe un camino entre v_i y v_j si y sólo si la entrada de la posición (i,j) de Q es no nula

Teorema

Sea M la matriz de adyacencia de un grafo G con n vértices, entonces la entrada (i,j) de la matriz M^p es el número de caminos de longitud p con extremos v_i , v_j Este teorema también es válido para digrafos

Corolario 1

Sea M la matriz de adyacencia de un grafo G con vértices v_1, v_2, \ldots, v_n . Sea $Q = M^{n-1} + M^{n-2} + \ldots + M$. Existe un camino entre v_i y v_j si y sólo si la entrada de la posición (i,j) de Q es no nula

Corolario 2

Sea G un grafo con n nodos y con matriz de adyacencia M. Sea $Q=M^{n-1}+M^{n-2}+\ldots+M$. El grafo G es conexo si y sólo si todas las entradas de Q son no nulas

Definición de grafo etiquetado

Se dice que un grafo es etiquetado si cada una de sus aristas tienen asignado un número que recibe el nombre de etiqueta de la arista

Definición de grafo etiquetado

Se dice que un grafo es etiquetado si cada una de sus aristas tienen asignado un número que recibe el nombre de etiqueta de la arista

Longitud de un camino

Se define longitud de un camino a la suma de las etiquetas de las aristas que componen el camino

Definición de grafo etiquetado

Se dice que un grafo es etiquetado si cada una de sus aristas tienen asignado un número que recibe el nombre de etiqueta de la arista

Longitud de un camino

Se define longitud de un camino a la suma de las etiquetas de las aristas que componen el camino

Distancia entre dos vértices

Se define distancia entre dos vértices a la longitud del camino de longitud mínima que los conecta

Algoritmo de Dijkstra para hallar la d(x, y)

- Establecer una aplicación L, llamada valoración, entre el conjunto de vértices V y R ∪ ∞, tal que a x le corresponde el valor 0, L(x) = 0, a los conectados con x la etiqueta de la arista que los conecta y a los demás vértices le corresponde el valor ∞, es decir, L(y) = ∞. Hacer T = V
- Encontrar el vértice $v \in V$ con valor L(v) mínimo
- Si v = y entonces d(x, y) = L(v)
- Para cada w ∈ T tal que existe una arista orientada vw, si L(w) > L(v) + etiqueta(vw), entonces asignamos a L(w) el valor L(v) + etiqueta(vw)
- Eliminar el vértice y en T y volver al segundo paso

Para un ejemplo visitar la página

http://eupt2.unizar.es/asignaturas/itig/estructuras_de_datos/temario/Grafos.html