Roll	No.	:	
TOIL	TIO.		

SCHOOL OF MATHEMATICS, TIET, PATIALA Mid Semester Exam, March 2023

B.E. IV Semester	UCS410 : Probability & Statistics
Time Limit: 02 Hours, Maximum Marks: 25	Instructor : Dr. Jatinderdeep Kaur

Instructions: You are expected to answer all questions. Non-programmable calculators are permitted.

- 1. (a) The following data represent the length of life in years, measured to the nearest tenth, of 30 similar fuel pumps:
 - $2.0 \quad 3.0 \quad 0.3 \quad 3.3 \quad 1.3 \quad 0.4 \quad 0.2 \quad 6.0 \quad 5.5 \quad 6.5 \quad 0.2 \quad 2.3 \quad 1.0 \quad 6.0 \quad 5.6$
 - $1.5 \quad 4.0 \quad 5.9 \quad 1.8 \quad 4.7 \quad 0.7 \quad 4.5 \quad 0.3 \quad 1.5 \quad 0.5 \quad 2.5 \quad 5.0 \quad 6.0 \quad 1.2 \quad 0.2$
 - (i) Construct a stem-and-leaf plot for the life in years of the fuel pumps.
 - (ii) Compute the sample mean and sample range.

[1+1.5 marks]

- (b) A producer of a certain type of electronic component ships to suppliers in lots of twenty. Suppose that 60% of all such lots contain no defective components, 30% contain one defective component, and 10% contain two defective components. A lot is picked, two components from the lot are randomly selected and tested, and neither is defective.
 - (i) What is the probability that zero defective components exist in the lot?
 - (ii) What is the probability that one defective exists in the lot?

[3 marks]

- (c) If A and B are two events such that $P(A^c) = 0.6$, P(B) = 0.7, $P(A \cup B) = 0.6$, then find
 - (i) $P(A \cap B)$
- (ii) $P(B^c|A^c)$.

[2.5 marks]

2. (a) The probability distribution function of a random variable X is given by

$$x$$
 0 1 2 $p(x)$ $3k^2$ $4k - 10k^2$ $5k - 1$.

Where k > 0. Find k and also find P(X < 2).

[2.5 marks]

- (b) If a random variable X is defined such that $E[(X-1)^2] = 10$ and $E[(X-2)^2] = 6$, find μ and σ^2 . [2.5 marks]
- (c) A random variable X has a mean $\mu=10$ and a variance $\sigma^2=4$. Using Chebyshev's theorem, find
 - (i) $P(|X 10| \ge 3)$;
 - (ii) the value of the constant c such that $P(|X 10| \ge c) \le 0.04$.

[3 marks]

- 3. (a) According to Chemical Engineering Progress, approximately 30% of all pipework failures in chemical plants are caused by operator error.
 - (i) What is the probability that out of the next 20 pipework failures at least 10 are due to operator error?
 - (ii) What is the probability that no less than 5 out of 20 such failures are due to operator

error? (Given:
$$\sum_{x=0}^{4} B(x; n, p) = 0.2375$$
 and $\sum_{x=5}^{9} B(x; n, p) = 0.7145$) [3 marks]

- (b) If X is a Poisson variate such that $P(X = 2) = \frac{2}{3}P(X = 1)$; find variance and moment generating function of a random variable X. [3 marks]
- (c) In a normal distribution, 7% of the items are under 35 and 89% are under 63. Find mean and variance of the distribution. Given that P(Z > 1.5) = .07 and P(Z < 1.3) = 0.89.

[3 marks]