ZigZag-Project: Enabling Fast Architecture-Mapping DSE for Deep Learning Accelerators

ISPASS2023 Tutorial

Arne Symons, Linyan Mei, Guilherme Paim Prof. Marian Verhelst

MICAS Labs, ESAT, KU Leuven, Belgium

Tutorial Outline

- \rightarrow Introduction (8:30 8:50)
- ➤ Lab 1: Assess HW performance of DNN layer onto accelerator, with fixed temporal mapping (8:50 9:30)
- ➤ Lab 2: Automate temporal mapping optimization (9:30 10:00)
- Break (10:00 to 10:30)
- ➤ Lab 3: Understand the HW architecture definition (10:30 11:00)
- ➤ Lab 4: Explore layer-fused mappings on multi-core architectures using Stream (11:00 11:45)
- ➤ Concluding remarks (11:45 12:00)

ZigZag Project

> Project started Dec. 2018

Many contributors

Prof. Marian Verhelst

Pouya Houshmand

Steven Colleman

Vikram Jain

Guilherme Paim

Koen Goetschalckx

Arne Symons

Linyan Mei

Victor JUNG (ETHz)

Sebastian Karl (TUM)

A high-level view

DNN Layer

for Input

for Weight

for Output

for b = 0 to B-1 for k = 0 to K-1 for c = 0 to C-1 for oy = 0 to OY-1 for ox = 0 to OX-1

for ox = 0 to OX-1 for fy = 0 to FY-1 for fx = 0 to FX-1 (B: I/O batch size)

(K: O channel/W kernel)

(C: I/W channel)

(**OY**: O row)

(OX: O column)

(FY: W kernel row)

(FX: W kernel column)

 $O[b][k][oy][ox] += I[b][c][oy+fy][ox+fx] \times W[k][c][fy][fx]$

	В	K	С	OY	ОХ	FY	FX
W	×	✓	✓	×	×	\	✓
-1	√	×	✓	$?^{IY}$? ^{IX}	$?^{IY}$	$?^{IX}$
0	✓	✓	×	✓	✓	×	×

√ relevant (r)

× irrelevant (ir)

? partially relevant (pr)
?^{IX/IY} partially relevant to IX/IY

A DNN Conv2D layer:

3D operand (W/I/O) space.

7D nested for-loop MAC operation.

Each Operand has its own (ir)relevant loop dimensions.

- r loops contribute to data size.
- ir loops contribute to data reuse.
- pr loops contribute to both data size and data reuse.

DNN Layer

Workload	I Batch size	O channel	I / W channel	O row	O column	W row	W column
Conv2D (right fig.)	В	K	C	OY	OX	FY	FX
Conv1D	В	K	С	1	OX	1	FX
Depthwise Conv2D*	В	1	1	OY	OX	FY	FX
Pointwise Conv2D	В	K	С	OY	OX	1	1
Matrix-Vector Multi.	1	K	С	1	1	1	1
Matrix-Matrix Multi.	В	K	С	1	1	1	1

^{*} Repeat 'C' or 'K' times to finish one Depthwise Conv2D layer (C = K).

Most **ML** workloads fit into the regular **nested for-loop format**.

No data dependency between each for-loop.

DNN Accelerator

Large Design Degrees of Freedom!

Mapping (a.k.a. Dataflow)

(Loop tilling, ordering)

Data Stationarity

for b = 0 **to** B-1 for Input (B: I/O batch size) for Weight **for** k = 0 **to** K-1(K: O channel/W kernel) for Output **for** c = 0 **to** C-1(C: I/W channel) **for** oy = 0 **to** OY-1 (**OY**: O row) for ox = 0 to OX-1(OX: O column) **for** fy = 0 **to** FY-1 (FY: W kernel row) for fx = 0 to FX-1(FX: W kernel column) $O[b][k][oy][ox] += I[b][c][oy+fy][ox+fx] \times W[k][c][fy][fx]$

Operation Parallelism

Large Design
Degrees of Freedom!

Spatial Mapping (Loop unrolling)

Loop Ordering and Splitting

Co-Exploration

Technology and Others

Technology: 65nm/40nm/28nm/..., NVM, CIM, 3D IC, etc.

Others: Sparsity, various precisions, cross-layer execution, etc.

HUGE design space at each level & at combined levels.

Getting Started

https://github.com/ZigZag-Project/zigzag

- \$ git clone git@github.com:ZigZag-Project/zigzag.git
- \$ cd zigzag
- \$ conda create --name my-zigzag-env python=3.10
- \$ conda activate my-zigzag-env
- \$ pip install -r requirements.txt
- \$ git checkout ispass2023-tutorial
- \$ code.

- Open lab1/main.py
- > Expects three **arguments**:
 - accelerator
 - model
 - mapping
- Extracts names from the given arguments and sets inputs
- Defines the sequence of stages to be executed
- > Runs the sequence of stages with inputs
- Plots the returned CostModelEvaluation (CME)

Model (workload)

First layer of ResNet18 (ONNX format)

Accelerator

> TPU-like architecture

Mapping

Defines mapping of layers onto accelerator

```
mapping = {
"/conv1/Conv": {  # first ResNet18 layer name in onnx model
"spatial_mapping": {"D1": ("K", 32), "D2": ("C", 32)},
"temporal_ordering": [
# Innermost loop
("OX", 112),
("OY", 112),
("FX", 7),
 ("FY", 7),
("K", 2),
# Outermost loop
"core_allocation": 1,
"memory_operand_links": {
"0": "0",
"W": "I2",
"I": "I1",
```


Mapping

Defines mapping of layers onto accelerator

```
mapping = {
"/conv1/Conv": {  # first ResNet18 layer name in onnx model
"spatial_mapping": {"D1": ("K", 32), "D2": ("C", 32)},
"temporal_ordering": [
# Innermost loop
("OX", 112),
("OY", 112),
("FX", 7),
 ("FY", 7),
("K", 2),
# Outermost loop
"core_allocation": 1,
"memory_operand_links": {
"0": "0",
"W": "I2",
 "I": "I1",
```


First experiment:

- model = "lab1/resnet18_first_layer.onnx"
- accelerator = "zigzag.inputs.examples.hardware.TPU_like"
- mapping = "mapping"
- Run lab1/main.py

Second experiment:

- Modify lab1/mapping.py:
 - > Change temporal loop ordering
 - Run lab1/main.py

Lab 2: Automating temporal mapping

- ➤ Copy lab1/main.py → lab2/main.py
- ➤ Replace TemporalOrderingConversionStage → LomaStage
- Change dump_filename_pattern
- Change plotting save_path
- Copy lab1/mapping.py -> lab2/mapping.py
- Remove temporal_ordering

Lab 2: Automating temporal mapping

First experiment:

- model = "lab2/resnet18_first_layer.onnx"
- accelerator = "zigzag.inputs.examples.hardware.TPU_like"
- mapping = "mapping"
- Run lab2/main.py

Lab 2: User-defined workload

- Copy lab2/main.py -> lab2/main_user_defined.py
- ➤ Replace ONNXModelParserStage → WorkloadParserStage
- Change dump_filename_pattern
- Change plotting save_path

Lab 2: User-defined workload

Second experiment:

- model = "resnet18_first_layer"
- accelerator = "zigzag.inputs.examples.hardware.TPU_like"
- mapping = "mapping"
- Run lab2/main_user_defined.py

ZigZag is also distributed on PyPI

```
~/zigzag$ pip install zigzag-dse
```

> API call for common use-case

```
from zigzag.api import get_hardware_performance_zigzag

def get_hardware_performance_zigzag(
    workload,
    accelerator,
    mapping,
    opt="latency",
    dump_filename_pattern="outputs/{datetime}.json",
    pickle_filename="outputs/list_of_cmes.pickle",
):
```


Break

- ➤ Lab 3 & 4 after the break
- > Start at 10.30 AM

Lab 3: Architectural impact

- Open lab3/inputs/hardware/c_k.py
 - Definition of multiplier array
 - > Definition of memory hierarchy
 - Definition of core

memory_instances

dram

Lab 3: c_k.py

multiplier_array

multiplier_array rf_1B

Lab 3: c_k.py

multiplier_array rf 1B rf_1B

multiplier_array rf_1B rf_1B rf_4B

multiplier_array rf_1B rf_1B rf_4B I1 w

multiplier_array rf_1B rf_1B rf_4B l1_w l1_io

Lab 3: c_k.py

multiplier_array
rf_1B
rf_1B
rf_4B
l1_w
l1_io
l2_w

Lab 3: c_k.py

multiplier_array rf_1B rf_1B rf_4B l1_w l1_io

12_w

I2_io

Lab 3: c_k.py

multiplier_array rf 1B rf_1B rf_4B l1 w **I**1_io 12_w l2_io

dram

Lab 3: Architectural impact

- Open lab3/inputs/hardware/c_k.py
 - Definition of multiplier array
 - Definition of memory hierarchy
 - > Definition of core
- Open lab3/inputs/mapping/...
 - Definition of spatial mappings

Lab 3: Architectural impact

- Open lab3/inputs/hardware/c_k.py
 - Definition of multiplier array
 - Definition of memory hierarchy
 - Definition of core
- Open lab3/inputs/mapping/...
 - Definition of spatial mappings
- Open lab3/main.py
 - Uses API call for every core architecture mapping
 - Uses API call for architecture comparison plot

Lab 3: Architectural impact

First experiment:

Run lab3/main.py

Conclusion: ZigZag

- Hardware accelerator model based on array of multipliers and attached memory hierarchy
- Hardware performance estimation of DNN layer through analytical cost model
- > Optimization of layer mapping through different stages
- Enables co-exploration of accelerator & mapping

From ZigZag to Stream

Frameworks	Workload	Hardware	Mapping
ZigZag	A NN layer	Single-core accelerator	Single-layer mapping
Stream	One/more NN(s)	Multi-core accelerator	Fine-grained layer- fused mapping

Focus on **Stream** for the rest of the session

Traditional DNN Acceleration

An example workload

An example accelerator

Multi-core DNN Acceleration

An example workload

A multi-core accelerator

Layer-fused processing

Tiled for layer-fused processing

A multi-core accelerator

Stream

An example workload

Tiled for layer-fused scheduling

Schedule the workload to hardware accelerators

What can Stream do?

✓ Model single-core architecture (identical to ZigZag)

What can Stream do?

- ✓ Model single-core architecture (identical to ZigZag)
- ✓ Model different multi-core topologies

What can Stream do?

- ✓ Model single-core architecture (identical to ZigZag)
- ✓ Model different multi-core topologies
- ✓ Model different scheduling granularities

A Multi-core Arch

(TPU-like dataflow accelerator)

What can Stream do?

- ✓ Model single-core architecture (identical to ZigZag)
- ✓ Model different multi-core topologies
- ✓ Model different scheduling granularities
- ✓ Model different scheduling heuristics

Stream Overview

Getting Started

https://github.com/ZigZag-Project/stream

- \$ git clone git@github.com:ZigZag-Project/stream.git
- \$ cd stream
- \$ conda create --name my-stream-env python=3.10
- \$ conda activate my-zigzag-env
- \$ pip install -r requirements.txt
- \$ git checkout ispass2023-tutorial
- \$ code.

- Open lab4/main_fixed.py
- > Defines inputs directly in file instead of arguments
- Extracts (from input names) and defines variables
- > Sets up the sequence of stages
- Runs the stages
- Plots the results

Workload

- Open lab4/inputs/workload/duplicated_resnet18_layer_fixed.py
- First layer of ResNet18 duplicated 4 times
- Dependencies between the layers (operand_source)
- operator_type overloaded for fixed mapping

<u>Accelerator</u>

- Open lab4/inputs/hardware/heterogeneous_quadcore.py
- Imports the "computational cores"
- Imports the pooling and simd cores
- > Imports the offchip core
- Creates a 2D mesh of these cores
- > Defines the multi-core Accelerator object

Mapping

- Open lab4/inputs/mapping/mapping_fixed.py
- Defines for each operator_type the possible layer-core allocations

First experiment:

- model = "...duplicated_resnet18_layer_fixed"
- accelerator = "...heterogeneous_quadcore"
- mapping = "...mapping_fixed"
- Run lab4/main_fixed.py

Second experiment:

- What happens if we remove the layer dependencies?
- Remove the operand_source and modify the constant_operands
- Run lab4/main_fixed.py

Third experiment:

- Allow genetic algorithm to find best layer-core allocation
- model = "...duplicated_resnet18_layer"
 - Modified operator_type
- mapping = "...mapping"
 - Modified for flexible layer-core allocation
- Run lab4/main_layer_by_layer.py

Layer Fusion: Computation Node (CN) KULEUVEN

Computation node (CN) granularity impacts scheduling flexibility

and others... Core utilization Intra-CN data reuse Data loading overhead Control overhead

- Open lab4/main_layer_fused.py
- hint_loops defines the outer-CN loops
 - hint_loops = [("OY", 2)] means 2 CNs per layer
 - hint_loops = [("OY", "all")] means OY CNs per layer

Fourth experiment:

- Assess the impact of layer-fused processing
- Run lab4/main_layer_fused.py

- Open lab4/main.py
- End-to-end ResNet18 onnx model
- Layer-by-layer

Last experiment:

- End-to-end ResNet18 example
- Run lab4/main.py (layer-by-layer)
- > If time permits:
 - Modify hint_loops with ("OY", "all")
 - > Re-run and analyze differences

What's to come?

- Automatically infer optimal CN granularity
- ➤ Integrate inter-core connect energy estimation framework
- > Automatically search for optimal multi-core architectures
- > Add optimization constraints (e.g. max latency, area, ...)
- Code generation for existing accelerators
- > Automatic hardware generation from hardware templates

Conclusion

- ZigZag enables fast hardware performance estimation for specialized DNN accelerator architectures
- Mapping optimizations yield better performance
- Co-exploration of architecture with mapping
- Stream extends the capabilities to multi-core architectures employing layer-fused scheduling
- Unified hardware model for different architecture topologies
- > Different scheduling granularities through computation node

Materials of ZigZag-project

- Goal: Enabling Fast Architecture-Scheduling/Mapping DSE for Machine Learning Accelerators
- Github: https://github.com/ZigZag-Project
 - ZigZag
 - ZigZag-Demo
 - DeFiNES
 - Stream
- ZigZag documentation: https://zigzag-project.github.io/zigzag/
- Stream documentation: Underway (end of May)
- ZigZag-related publications:

https://zigzag-project.github.io/zigzag/publications.html