# UC Berkeley

Department of Electrical Engineering and Computer Sciences

#### EECS 126: Probability and Random Processes

## Problem Set 3

Fall 2021

#### 1. Graphical Density

Figure 1 shows the joint density  $f_{X,Y}$  of the random variables X and Y.



Figure 1: Joint density of X and Y.

- (a) Find A and sketch  $f_X$ ,  $f_Y$ , and  $f_{X|X+Y\leq 3}$ .
- (b) Find  $\mathbb{E}[X \mid Y = y]$  for  $1 \le y \le 3$  and  $\mathbb{E}[Y \mid X = x]$  for  $1 \le x \le 4$ .
- (c) Find cov(X, Y).

#### 2. Joint Density for Exponential Distribution

- (a) If  $X \sim \text{Exponential}(\lambda)$  and  $Y \sim \text{Exponential}(\mu)$ , X and Y independent, compute  $\mathbb{P}(X < Y)$ .
- (b) If  $X_k$ ,  $1 \le k \le n$  are independent and exponentially distributed with parameters  $\lambda_1, \ldots, \lambda_n$ , show that  $\min_{1 \le k \le n} X_k \sim \text{Exponential}(\sum_{j=1}^n \lambda_j)$ .
- (c) Deduce that

$$\mathbb{P}(X_i = \min_{1 \le k \le n} X_k) = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j}$$

#### 3. Packet Routing

Packets arriving at a switch are routed to either destination A (with probability p) or destination B (with probability 1-p). The destination of each packet is chosen independently of each other. In the time interval [0,1], the number of arriving packets is Poisson( $\lambda$ ).

- (a) Show that the number of packets routed to A is Poisson distributed. With what parameter?
- (b) Are the number of packets routed to A and to B independent?

### 4. Gaussian Densities

- (a) Let  $X_1 \sim \mathcal{N}(0,1)$ ,  $X_2 \sim \mathcal{N}(0,1)$ , where  $X_1$  and  $X_2$  are independent. Convolve the densities of  $X_1$  and  $X_2$  to show that  $X_1 + X_2 \sim \mathcal{N}(0,2)$ . Remark. Note that this property is similar to the one shared by independent Poisson random variables.
- (b) Let  $X \sim \mathcal{N}(0,1)$ . Compute  $\mathbb{E}[X^n]$  for all integers  $n \geq 1$ .

# 5. Moving Books Arround

You have N books on your shelf, labelled 1, 2, ..., N. You pick a book j with probability 1/N. Then you place it on the left of all others on the shelf. You repeat the process, independently. Construct a Markov chain which takes values in the set of all N! permutations of the books.

- (a) Find the transition probabilities of the Markov chain.
- (b) Find its stationary distribution.

Hint: You can guess the stationary distribution before computing it.