Answer model Intermediate test Calculus B, version 2a

1. Determine the domain of the function $f(x) = \frac{1}{1 - \ln \sqrt{e^2(x+1)}}$.

Answer: First of all the sqrt has to exist: $x \ge -1$, next the argument of ln has to be positive: x > -1. Finally the denominator of the fraction cannot be zero: $x + 1 \ne 1$, so the domain is the open interval $(-1, \infty)$ minus the point x = 0, or $D = (-1, 0) \cup (0, \infty)$.

2. A triangle ABC is given, with angles α , β and γ and opposite sides with lengths a, b en c. Furthermore we have $\sin \alpha = 3/5$, b = 4 and c = 5. Determine the two possible values of a.

Answer: The cosine law gives $a^2 = b^2 + c^2 - 2bc\cos\alpha = 41 - 40\cos\alpha$. Since $\sin\alpha = 3/5$, and $\sin^2 + \cos^2 = 1$, we have $\cos\alpha = \pm 4/5$. It follows that $a^2 = 41 \mp 32$, so a = 3 or $a = \sqrt{73}$.

3. Determine $\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 9x + 14}$.

Answer: Numerator and denominator vanish x=2, so both must be divisible by x-2. Canceling the factors x-2 we find $\frac{x^2+2x+4}{x-7}$, which equals -12/5 for x=2.

An alternative approach is to use l'Hôpital, $\frac{3x^2}{2x-9} \rightarrow -12/5$.

4. Determine the distance between the point (1, 1, 1) and the plane with equation 2x + 3y + 6z = 18.

Answer: The line through (1,1,1) perpendicular to the plane has vector representation $\underline{x} = (1,1,1)^{\top} + \lambda(2,3,6)^{\top}$. Inserting the coordinates of $\underline{x}(\lambda)$ in the equation of the plane gives $11 + 49\lambda = 18$, so $\lambda = 1/7$, the length of (2,3,6) is 7, so the distance is 1. You can also of course also $|1 \cdot 2 + 1 \cdot 3 + 1 \cdot 6 - 18|$

use the formula
$$d = \frac{|1 \cdot 2 + 1 \cdot 3 + 1 \cdot 6 - 18|}{\sqrt{2^2 + 3^2 + 6^2}}$$
.

Answer model Intermediate test Calculus B, version 2b

1. Determine the domain of the function $f(x) = \frac{1}{1 - \sqrt{\ln(x+e)}}$.

Answer: First of all the sqrt has to exist: $x \geq 1 - e$, next the the denominator of the fraction cannot be zero: $x \neq 0$, so the domain is the set $[1 - e, 0) \cup (0, \infty)$.

2. A triangle ABC is given, with angles α , β and γ and opposite sides with lengths a, b en c. Furthermore we have $\sin \alpha = 4/5$, b = 6 and c=5. Determine the two possible values of a.

Answer: The cosine law gives $a^2 = b^2 + c^2 - 2bc \cos \alpha = 61 - 60 \cos \alpha$. Since $\sin \alpha = 4/5$, and $\sin^2 + \cos^2 = 1$, we have $\cos \alpha = \pm 3/5$. It follows that $a^2 = 61 \mp 36$, so a = 5 or $a = \sqrt{97}$.

3. Determine $\lim_{x \to -2} \frac{x^3 + 8}{x^2 + 9x + 14}$.

Answer: Numerator and denominator vanish for x = -2, so both must be divisible by x + 2. Canceling the factors x + 2 we find $\frac{x^2 - 2x + 4}{x + 7}$, which equals 12/5 for x = -2.

An alternative approach is to use l'Hôpital, $\frac{3x^2}{2x+9} \to 12/5$.

4. Determine the distance between the point (1,1,1) and the plane with equation x + 4y + 8z = 22.

Answer: The line through (1, 1, 1) perpendicular to the plane has vector representation $x = (1, 1, 1)^{\top} + \lambda (1, 4, 8)^{\top}$. Inserting the coordinates of $x(\lambda)$ in the equation of the plane gives $13 + 81\lambda = 22$, so $\lambda = 1/9$, the length of (1,4,8) is 9, so the distance is 1. You can also of course also use the formula $d = \frac{|1 \cdot 1 + 1 \cdot 4 + 1 \cdot 8 - 22|}{\sqrt{1^2 + 4^2 + 8^2}}$.

use the formula
$$d = \frac{|1 \cdot 1 + 1 \cdot 4 + 1 \cdot 8 - 22|}{\sqrt{1^2 + 4^2 + 8^2}}$$