情報数学 III 期末試験 解答

1

2次方程式

に対して、以下の問に答えなさい。(各5点)

- (2) 行列 A の固有値を求めなさい.
- (3) ②式が表す2次曲面がどのような図形(放物線, 楕円, 双曲線)か答えなさい.

$$(1) \ A = \left(\begin{array}{cc} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{array} \right)$$

- (2) $\Phi_A(t) = \det(tE_2 A) = (t+2)(t-2)$ より、A の固有値は ±2.
- (3) (2) の結果から、問題の 2 次方程式が $2\tilde{x}^2 2\tilde{y}^2 = 1$ となるように座標変換できる.したがって,この 2 次曲線は双曲線(説明が何もない場合は 2 点の減点.説明に不備がある場合は 1 点の減点).

2

$$S=\left(egin{array}{c} -1 \ 6 \ 10 \end{array}
ight)$$
 を視点とし、平面 $z=0$ を投影面とする透視投影を $arphi_S$ とする。以下の問に答

えなさい

(1) 同次座標系において φ_S は行列の積で表すことができる.その $\underline{4$ 次正方行列</u> を答えな さい.($\mathbf{3}$ 点)

$$(2) 4 点 A = \begin{pmatrix} 2 \\ \frac{5}{2} \\ 2 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, C = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, D = \begin{pmatrix} 2 \\ \frac{3}{2} \\ \frac{7}{2} \end{pmatrix}$$
の φ_S による像

 $\varphi_S(A), \varphi_S(B), \varphi_S(C), \varphi_S(D)$ を求め、直交座標で答えなさい。(各 2 点)

(3) 4 点 A, B, C, D を頂点とする四面体の φ_S による像のワイヤーフレームとして正しいものを (\mathcal{P}) ~ (ウ) の中から選びなさい (ただしグラフの 1 目盛りは 0.5). (4 点)

(1) この行列は一意には決まらない。S の同時座標の決め方に依る。S の同次座標を

 $\begin{vmatrix}
-1 \\
6 \\
10
\end{vmatrix}$

情報数学 III 期末試験 解答

とすると、
$$\varphi_S = \begin{pmatrix} -10 & 0 & -1 & 0 \\ 0 & -10 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -10 \end{pmatrix}$$
. (2) $\varphi_S(A) = \begin{pmatrix} \frac{11}{4} \\ \frac{13}{8} \\ 0 \end{pmatrix}$, $\varphi_S(B) = \begin{pmatrix} \frac{3}{2} \\ -\frac{1}{4} \\ 0 \end{pmatrix}$, $\varphi_S(C) = \begin{pmatrix} 4 \\ -\frac{1}{4} \\ 0 \end{pmatrix}$, $\varphi_S(C) = \begin{pmatrix} 4 \\ -\frac{1}{4} \\ 0 \end{pmatrix}$, (同次座標のままの場合はそれぞれ 1 点の減点) (3) (ウ)

- 3

平行投影を定義するには定ベクトル \vec{v} と投影面 π が必要です。ただし, \vec{v} は π の法線ベクトルと直交しないと仮定します。なぜなら, \vec{v} が π の法線ベクトルと直交する場合, $\underline{\pi}$ 上にない任意の点 \underline{A} に対し,点 \underline{A} を通り,方向ベクトルが \underline{v} の直線は $\underline{\pi}$ と交わらない。からです。一方,透視投影を定義するには視点 \underline{S} と投影面 $\underline{\pi}$ が必要です。透視投影の場合,一般に始点 \underline{S} は投影面 $\underline{\pi}$ 上の点でないことを仮定します。

以上のことをふまえ、次の間に答えなさい。(各5点)

- (1) π 上の点 S を視点とする透視投影 $\varphi_S: \mathbf{R}^3 \to \pi$ はどのような写像か答えなさい.
- (2) 視点 S が投影面 π 上の点でない場合でも、透視投影のよる像 $\varphi_S(A)$ が定義できない点 A が存在します.この点 A はどのような点か説明しなさい.
- (1) 透視投影 $\varphi_S: \mathbf{R}^3 \to \pi$ とは、点 \underline{A} に対し、 \underline{A} と \underline{S} を通る直線と投影面 π との交点 \underline{B} を対応させる写像 である。視点 \underline{S} が π 上にあるとき、任意の点 \underline{A} と \underline{S} を通る直線は必ず点 \underline{S} で π と交わる(ただし、 \underline{A} が π 上の点でないとき)。つまり、 π 上の点ではない任意の点の φ_S による像は一点 \underline{S} である。一方、 \underline{A} が π 上の点のときは \underline{S} と \underline{A} を通る直線は π 内の直線となるので、 φ_S による \underline{A} の像を決めることができない。つまり、 φ_S は (i) π 上にない任意の点 \underline{A} に対し、 $\varphi_S(\underline{A}) = \underline{S}$ となる写像で、(ii) π 上の点 \underline{B} に対しては $\varphi_S(\underline{B})$ は定義できない((i) か (ii) のどちらか一方を書いていれば \underline{S} 点)。
- (2) 点 A と視点 S の 2 点を通る直線が投影面 π の法線ベクトルと直交するとき,この直線は π と交わることはないので, $\varphi_S(A)$ を定義することはできない.したがって,点 A は,S を 通り π に平行な平面上の点である(「点 A が視点 S のとき」は 2 点,「点 A と視点 S を通る 直線が投影面と交わらないような点」は 3 点(このような状況になる点 A の説明を求めているので 2 点の減点),言葉による説明は不十分だが図で正しく説明されている場合は 4 点).