Вычисление орбит в потенциале Галактики

Руководитель: А. В. Веселова Выполнил: П. Л. Соболев

Задачи

• Рассчитать орбиты нескольких шаровых звёздных скоплений в ряде моделей потенциала Галактики.

Теория

Пусть задан потенциал Галактики $\Phi(R,Z)$. Пусть $(x_0,y_0,z_0,u_0,v_0,w_0)$ — начальные положения и скорости тестовой частицы в гелиоцентрической системе координат. Начальные положения (X,Y,Z) и скорости (U,V,W) тестовой частицы к Галактоцентрической декартовой системе координат определяются по следующим формулам:

$$\begin{split} X &= R_{\odot} - x_0, \ Y = y_0, \ Z = z_0 + h_{\odot}, \\ U &= u_0 + u_{\odot}, \ V = v_0 + v_{\odot} + V_{\odot}, \ W = w_0 + w_{\odot}, \end{split} \tag{1}$$

где $R_{\odot}=8.3$ кпк и $V_{\odot}=244$ км с $^{-1}$ — Галактоцентрическое расстояние и линейная скорость локального стандарта покоя относительно Галактического центра, $h_{\odot}=16$ пк — высота Солнца над Галактической плоскостью, $(u_{\odot},v_{\odot},w_{\odot})=(11.1,12.2,7.3)\pm(0.7,0.5,0.4)$ км с $^{-1}$ — пекулярная скорость Солнца относительно локального стандарта покоя.

Начальные положения (R,ψ,Z) в Галактоцентрической цилиндрической системе координат и их производные по времени $(\dot{R},\dot{\psi},\dot{Z})$ могут быть определены по следующим формулам:

$$R = \sqrt{X^2 + Y^2},$$

$$\psi = \operatorname{atan2}(Y, X),$$

$$\dot{R} = -U \cos \phi + V \sin \psi,$$

$$\dot{\psi} = (U \sin \psi + V \cos \psi)/R,$$

$$\dot{Z} = W.$$
(2)

Отсюда мы определяем начальные значения канонических моментов:

$$p_R^0 = \dot{R}, \ p_{\psi}^0 = R^2 \dot{\psi}, \ p_Z^0 = \dot{Z}.$$
 (3)

Наконец, орбита вычисляется путем интегрирования уравнений Лагранжа:

$$\begin{split} \dot{R} &= p_R, \\ \dot{\psi} &= p_\psi/R^2, \\ \dot{Z} &= p_Z, \\ \dot{p_R} &= -\partial \Phi(R,Z)/\partial R + p_\psi^2/R^3, \\ \dot{p_\psi} &= 0, \\ \dot{p_Z} &= -\partial \Phi(R,Z)/\partial Z. \end{split} \tag{4}$$

Для вычисления полной энергии мы сначала определяем радиальную скорость

$$\Pi = -U\frac{X}{R} + V\frac{Y}{R} = -(-p_r\cos\psi + (p_\psi/R)\sin\psi)\cos\psi + (p_R\sin\psi - (p_\psi/R)\cos\psi)\sin\psi,$$
(5)

тангенциальную скорость

$$\Omega = U\frac{Y}{R} + V\frac{X}{R} = (-p_r \cos \psi + (p_\psi/R)\sin \psi)\sin \psi + (p_R \sin \psi - (p_\psi/R)\cos \psi)\cos \psi,$$

$$(6)$$

а затем полную скорость $V_{\text{полн.}}=\sqrt{\Pi^2+\Omega^2+W^2}=\sqrt{\Pi^2+\Omega^2+p_Z^2}.$ После этого полная энергия может быть вычислена как $E=\Psi(R,Z)+V_{\text{полн.}}^2/2.$

Модели

Рассматриваются две модели Галактического потенциала:

1.
$$\Phi = \Phi_{\text{балдж}} + \Phi_{\text{диск}} + \Phi_{\text{гало}};$$

$$2. \ \Phi = \Phi_{\text{балдж}} + \Phi_{\text{тонкий диск}} + \Phi_{\text{толстый диск}} + \Phi_{\text{гало}},$$

где в качестве потенциала балджа берется потенциал Пламмера с параметрами (M,b), в качестве потенциалов дисков берется потенциал Миямото–Нагаи с параметрами (M,a,b), а потенциал гало описан в форме Наварро–Френка–Уайта с параметрами (M,a):

$$\Phi_{\text{балдж}} = -\frac{M}{(R^2 + Z^2 + b^2)^{1/2}},\tag{7}$$

$$\Phi_{\text{диск}} = \Phi_{\text{тонкий диск}} = \Phi_{\text{толстый диск}} = -\frac{M}{\left[R^2 + (a + \sqrt{Z^2 + b^2})^2\right]^{1/2}}, \tag{8}$$

$$\Phi_{\text{\tiny rano}} = -\frac{M}{R^2 + Z^2} \ln\left(1 + \frac{r}{a}\right). \tag{9}$$

Параметры потенциалов взяты из работ Bajkova, Bobylev (2020, v1), Pouliasis et al. (2017, model I), Eilers (2018).

Таблица 1: Параметры моделей ($M_0 = 2.325 \times 10^7 M_{\odot}$)

Модели Параметры	1	2
$M_{ m балдж}\left[M_0 ight]$	443.0	460.0
$b_{ m балдж}[m kпк]$	0.2672	0.3
$M_{\scriptscriptstyle m диск} \left[M_0 ight]$	2798.0	_
$a_{ m диск}[{ m к}{ m I}{ m K}]$	4.4	_
$b_{ m дис\kappa}[{ m к}{ m IK}]$	0.3084	_
$M_{ m au OHKureve u}$ диск $[M_0]$		1700.0
$a_{\scriptscriptstyle \mathrm{тонкий}}$ диск [КПК]	_	5.3
$b_{\scriptscriptstyle m TOHKHreve{H}}$ диск $[{ m K\Pi K}]$		0.25
$M_{ m ext{толстый диск}}\left[M_0 ight]$	_	1700.0
$a_{\scriptscriptstyle \mathrm{TOЛСТЫЙ}}$ диск [КПК]	_	2.6
$b_{\scriptscriptstyle ext{толстый диск}}[ext{кпк}]$	_	0.8
$M_{ m ra, no}\left[M_0 ight]$	12474.0	18572.8229
$a_{\scriptscriptstyle{\mbox{\scriptsize FB,IIO}}}[\kappa$ пк]	7.7	14.8

Модель с потенциалом Миямото-Нагаи в качестве потенциала балджа, как предложено в задании, опущена, так как эта модель сводится к модели 1 при оптимизации параметров, как показано в Miyamoto, Nagai (1975).

Реализация

Программа для вычисления орбит реализована на языке программирования Rust; графики для визуализаций получены с помощью скриптов, написанных на языке программирования Julia. Код расположен в GitLab репозитории Stellar Astronomy Laboratory Workshop S09-2021. Для воспроизведения результатов следуй инструкциям в файле README.md.

Начальные значения положений и скоростей шаровых звездных скоплений в гелиоцентрической системе координат взяты из Bajkova, Bobylev (2020, v1).

Рис. 1: Орбиты шаровых скоплений при первой модели потенциала, интегрированные до 5 миллиардов лет назад

Рис. 2: Орбиты шаровых скоплений при второй модели потенциала, интегрированные до 5 миллиардов лет назад

Рис. 3: Графики изменения полной энергии при первой модели потенциала и интегрировании до 5 миллиардов лет назад

Рис. 4: Графики изменения полной энергии при второй модели потенциала и интегрировании до 5 миллиардов лет назад

Рис. 5: Распределения апоцентрических (слева) и перицентрических (справа) расстояний при первой модели при применении метода Монте-Карло с количеством итераций 200 и интегрировании до 1 миллиарда лет назад

Рис. 6: Распределения апоцентрических (слева) и перицентрических (справа) расстояний при второй модели при применении метода Монте-Карло с количеством итераций 200 и интегрировании до 1 миллиарда лет назад

Рис. 7: Тепловые карты орбит шаровых скоплений при первой модели при применении метода Монте-Карло с количеством итераций 200 и интегрировании до 1 миллиарда лет назад

Рис. 8: Тепловые карты орбит шаровых скоплений при второй модели при применении метода Монте-Карло с количеством итераций 200 и интегрировании до 1 миллиарда лет назад

Таблица 2: Максимальные и минимальные апоцентрические и перицентрические расстояния, а также их значения на нулевой итерации при применении метода Монте-Карло с количеством итераций 200 и интегрировании до 1 миллиарда лет назад

Объект	apo_0	$\mathrm{apo}_{\mathrm{max}}$	$\mathrm{apo}_{\mathrm{min}}$	peri_0	$\mathrm{peri}_{\mathrm{max}}$	$\mathrm{peri}_{\mathrm{min}}$
NGC 5927 (1)	5.2278	6.5853	4.5355	4.1679	5.3690	2.5104
NGC 5927 (2)	5.4556	7.0415	4.6040	4.2644	5.4875	2.5505
Pyxis (1)	204.3124	266.4856	128.8591	41.4660	47.8032	35.2884
Pyxis (2)	202.1624	262.9893	129.5878	41.4660	47.8032	35.2884

Таблица 3: Приближенные значения полной энергии и абсолютная разница между её максимальным и минимальным значениями при первой модели

Объект	E	$E_{\rm max} - E_{\rm min}$
E 1	-15920.0155	$4.9658 \cdot 10^{-10}$
FSR 1716	-137219.3917	$4.0163 \cdot 10^{-9}$
NGC 104	-126273.0039	$3.1432 \cdot 10^{-9}$
NGC 1851	-94070.2957	17.4013
NGC 2419	-35900.4089	$4.0454 \cdot 10^{-9}$
NGC 5927	-148718.9985	$8.1491 \cdot 10^{-10}$
NGC 6284	-142355.8299	0.3021
NGC 7078	-119925.4869	$1.0477 \cdot 10^{-8}$
Pal 1	-78091.3353	$8.4401 \cdot 10^{-10}$
Pal 3	-20077.8430	$1.8699 \cdot 10^{-9}$
Pal 4	-31065.2031	$4.1910 \cdot 10^{-9}$
Pal 7	-147038.9077	$1.9500 \cdot 10^{-9}$
Pyxis	-15063.6213	$1.3424 \cdot 10^{-9}$
Whiting 1	-42247.9317	$3.3833 \cdot 10^{-9}$

Таблица 4: Приближенные значения полной энергии и абсолютная разница между её максимальным и минимальным значениями при второй модели

Объект	E	$E_{\rm max} - E_{\rm min}$
E 1	-21370.1103	$7.9308 \cdot 10^{-10}$
FSR 1716	-130830.5639	$4.0163 \cdot 10^{-9}$
NGC 104	-122116.5508	$1.9645 \cdot 10^{-9}$
NGC 1851	-95529.4946	59.3171
NGC 2419	-41761.2868	$2.6776 \cdot 10^{-9}$
NGC 5927	-142332.4880	$9.8953 \cdot 10^{-10}$
NGC 6284	-137959.5028	0.1470
NGC 7078	-118044.6702	$8.1491 \cdot 10^{-9}$
Pal 1	-79809.8959	$7.4215 \cdot 10^{-10}$
Pal 3	-25875.3863	$1.1787 \cdot 10^{-9}$
Pal 4	-36678.2791	$2.7285 \cdot 10^{-9}$
Pal 7	-140089.7162	$2.2701 \cdot 10^{-9}$
Pyxis	-20588.5039	$1.6080 \cdot 10^{-9}$
Whiting 1	-47265.1220	$2.7067 \cdot 10^{-9}$

Заключение

Введение дисковой подсистемы приводит к заметному усложнению орбит с относительно малым периодом (например, у объектов FSR 1716, NGC 5927, Pal 1), что проявляется в учащении колебаний значения галактоцентрического расстояния. В остальном же, распределения галактоцентрических расстояний, как и их максимальные и минимальные значения, остаются схожими. Также заметно увеличение значения полной энергии при переходе ко второй модели у объектов с относительно большим периодом (например, у Е 1, Pal 3, Pal 4).