Echo State Networks

Jyotirmaya Shivottam

S-Lab

September 12, 2023

Problem Overview

- LTSF Long-Term Sequence Forecasting
 - Predicting the future evolution of a time-series, given its history.
- Approaches
 - Linear models Auto-Regressive Integrated Moving Average (ARIMA), etc.
 - Recurrent Neural Networks (RNNs)
 - Echo State Network (ESNs)
 - Long Short-Term Memory (LSTM)
 - Self-attention based methods Transformers

Echo State Networks & More 2/22

Echo State Networks (ESNs)

- A type of RNNs. Also a type of Reservoir Computing. Similar to Liquid State Machines (LSMs).
- Designed to capture transient + long-term dependencies.
- Only the readout layer is trained; the internal weights are randomly initialized and kept fixed.
- Training process is very fast and efficient, enabling online-learning.
- Two key ideas:
 - Random initialization of internal weights
 - Sparse connectivity

ESN Architecture

Echo State Networks & More 4/22

ESN Architecture

Echo State Networks & More 5/22

Echo State Property (ESP)

- The random initialization of the internal weights is done in such a way that the network has the Echo State Property (ESP).
- Mathematically, an ESN has ESP if ho(W) < 1 where W is the internal weight matrix for a 0-input signal, and spectral radius, $ho(W) = \max_i |\lambda_i|.$
- ullet Empirically, W is rescaled to have ho(W) < 1 during initialization.

Echo State Networks & More 6/2

Echo State Property (ESP)

- The idea is that the network should not be too sensitive to the initial conditions.
 - \circ Sparse W and ESP ensure that for a given signal, the network (ideally) takes the same (similar) pathways each time to converge to the same state, irrespective of the initial state \to Short-term memory.
 - If the network generalizes well, it should be able to find the right pathways for a new signal, by decomposing it into a non-linear combination of the pathways it has already seen (ideal case).
 - In other words, the dynamics of the internal state of the reservoir should echo, i.e., "reflect" / "mimic" the dynamics of the input signal.

Echo State Networks & More 7/22

Some formulae

- $ullet x(t) = (1-lpha)x(t-1) + lpha f(W_{in}u(t) + Wx(t-1))$
- $ullet y(t) = W_{out} x(t)$
- ullet $W_{in} \in \mathbb{R}^{N imes K}$, $W \in \mathbb{R}^{N imes N}$, $W_{out} \in \mathbb{R}^{L imes N}$
- ullet $lpha \in [0,1]$, $x(t) \in \mathbb{R}^N$, $u(t) \in \mathbb{R}^K$, $y(t) \in \mathbb{R}^L$.
- ullet f is a non-linear activation function, e.g., anh, σ , etc.
- α is the leaking rate.
- ullet Usually, ridge regression (Tikhonov Regularization) is used to train W_{out} .
- SVM, Linear layers etc. can also be used.

Echo State Networks & More

Main hyperparameters

- ullet Reservoir size, N \uparrow o \uparrow memory / "capacity".
- ullet Spectral radius, ho(W)
 - $\circ~
 ho(W) < 1
 ightarrow extsf{ESP}$
 - $\circ \uparrow \rightarrow \uparrow$ chaotic dynamics
- ullet Leaking rate, $lpha \in [0,1]$
 - $\circ \; lpha = 1
 ightarrow \mathsf{no} \; \mathsf{memory}$
 - $\circ \ lpha = 0
 ightarrow {\sf no learning}$
- Input scaling, β Regulates non-linearity.

Some other considerations

- Different types of ESN
 - $\circ \rightarrow \textit{MultiReservoirESN}$
 - GroupedESN
 - DeepESN
 - HierarchicalESN
 - GraphESN
 - DynamicGraphESN
- Usage areas
 - Physical systems, mainly for chaotic systems
 - In silico
 - $\circ \to \mathsf{Neuromorphic}$ computing

Echo State Networks & More

Advantages / Disadvantages

- Advantages
 - Very fast training
 - Online learning is possible
 - Only effective method for chaotic systems
 - Can be used for neuromorphic / in silico computing
- Disadvantages
 - \circ Hyperparameter tuning is difficult \rightarrow research ongoing.
 - Random / Grid Search
 - Evolutionary Algorithms
 - Genetic Algorithms
 - Reservoir size does not scale well for problems such as in NLP, though MultiReservoirESN can help.

Echo State Networks & More 11/22

Results

• Refer to code.

Echo State Networks & More 12/22

- On ETTh1 (Real-world dataset)
 - o Task: To predict transformer "Oil Temperature" 336 steps ahead

Model	MSE	R^2	Time (in s)
ESN	0.0059	-0.87	3.7
LSTM	0.0038	-3.10	37
Linear	0.0909		31
DLinear	0.0910		28

Echo State Networks & More 13/22

- On Mackey-Glass (Synthetic dataset)
 - Task: To predict evolution of a chaotic system 336 steps ahead

Model	MSE	R^2	Time (in s)
ESN	0.021	0.62	3.7
LSTM	0.0331	-0.66	45

Result caveats

- No hyperparameter optimization done for ESN & LSTM here.
- They are not GPU-accelerated.
- Linear models are using GPU.

Echo State Networks & More 14/22

Comparison with Linear & Transformers

- "Linear" as in Linear NN layer, not Linear Regression or ARIMA.
- Refer to <u>Are Transformers Effective for Time Series Forecasting?</u>.

Echo State Networks & More 15/22

Results - Linear on ETTh1

Echo State Networks & More 16/22

Results - DLinear on ETTh1

Echo State Networks & More 17/22

Final comments

• Based on own results & literature survey:

$$\mathrm{ESN} > \mathrm{GRU} \sim \mathrm{LSTM} > \mathrm{Linear} \sim \mathrm{Transformer} \; \mathrm{for} \; \mathrm{LTSF}$$

- However, there is a literature gap here:
 - None of the Transformer papers compares with ESN / RC (Sample size = 6+).
 - They rarely compare against LSTM; mostly other transformer variants or ARIMA.
 - Transformer papers usually sometimes don't plot predictions. When they do, they don't match very well with GT.
 - Transformer papers use MSE / MAE as the metric (demonstrably not very useful w/o additional context).

Echo State Networks & More 18/22

M-Y	Model	vs LSTM	Plots output
Mar 2021	Informer	N.A.	~
Jan 2022	Autoformer	✓	(#1)
Feb 2022	TS2Vec	~	
Jun 2022	FEDFormer	×	×
June 2022	CATN	~	X
Aug 2022	(N/D)Linear★	×	V
Feb 2023	CrossFormer	~	(#1)
Mar 2023	PatchTST	×	(#1)
May 2023	CARD	X	V

- (#1) In Appendix.
- 🖈 Personally tested.
- CARD DLinear results are anomalous for some datapoints.

Echo State Networks & More 19/22

Additional comments

- No paper compares with ESN / RC.
- Only PatchTST seems to outperform (N/D)Linear. Ignoring CARD's anomalous data, the difference with (N/D)Linear is minimal.
- Informer seems to perform the worst in all papers.
- TS2Vec is not compared in any paper, except PatchTST. Informer fares better here, compared to even its own paper.

Echo State Networks & More 20/2

References

- Echo State Network Scholarpedia
- ReservoirPy Hyperopt
- A Practical Guide to Applying Echo State Networks Mantas Lukosevicius - 2012
- Are Transformers Effective for Time Series Forecasting?
- Too many to put here. I'll compile & share on iLibrary

Echo State Networks & More 21/22

Thank you! Questions?