Lista 2

1. Seja l^{∞} o conjunto das seqüências limitadas reais. Para $x,y\in l^{\infty}$ definimos

$$|x - y|_{\infty} = \sup \{|x_n - y_n| : n \ge 1\}.$$

Vefique que $(l^{\infty}, |\cdot|_{\infty})$ é um espaço normado.

- 2. Demonstre que l^{∞} não é separável. Sugestão: Considere $S=\{0,1\}^{\mathbb{N}}\subset l^{\infty}$ e note que se $x\neq x'$ estão em $S,\,|x-x'|_{\infty}=1.$
- 3. Seja $Y=\{x\in l^\infty: \exists n\geq 1, \forall m\geq n, x_m=0\}.$ Então Yé um subespaço separável de $l^\infty.$
- 4. Seja Xum conjunto não—vazio e $F=\{f:X\to\mathbb{R}:f$ é limitada}. Então

$$|f - g_{\infty}| = \sup\{|f(x) - g(x)| : x \in X\}$$

é uma norma (denominada de norma do sup ou norma da convergência uniforme)

5. Seja $l^2 = \{(x_n)_{n=1}^{\infty} : x_n \in \mathbb{R}, \sum_{n=1}^{\infty} x_n^2 < \infty\}$. Então verifique que

$$|x|_2 = \sqrt{\sum_{n=1}^{\infty} x_n^2}$$

é uma norma obtida a partir do produto interno, $\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n$.

- 6. Seja $l^1 = \{(x_n)_{n=1}^{\infty} : \sum_{n=1}^{\infty} |x_n| < \infty\}$. A função $|x|_1 = \sum_{n=1}^{\infty} |x_n|$ é uma norma em l^1 .
- 7. Demonstre que l^1 e l^2 são separáveis.
- 8. Verifique que [0,1] é fechado mas não é aberto de $\mathbb{R}.$
- 9. (a) O conjunto $\left\{\frac{1}{n}:n\in\mathbb{Z}\setminus\{0\}\right\}$ não é fechado nos reais. Entretanto $\left\{\frac{1}{n}:n\in\mathbb{Z}\setminus\{0\}\right\}$ é fechado em $\mathbb{R}\setminus\{0\}$. Justifique.
 - (b) Para U aberto não-vazio de \mathbb{R} defina para $x,y\in U,\ x\sim y$ se existir $(a,b)\subset U$ tal que $x,y\in (a,b)$. Demontre que \sim é uma relação de equivalência e use isto para demonstrar que U é uma união enumerável de intervalos abertos dois a dois disjuntos.

 $^{^{1}}$ os intervalos da forma (x,∞) e $(-\infty,x)$ também são intervalos abertos.

- 10. Demonstre que num espaço métrico todo conjunto fechado é uma intersecção enumerável de conjuntos abertos. E que todo conjunto aberto é uma união enumerável de fechados.
- 11. Verifique que para espaços normados, B(x,r) = x + rB(0,1) sempre que r > 0.
- 12. Seja $(B, \|\cdot\|)$ um espaço normado. Demonstre que $+: B \times B \to B$, +(x,y) = x + y e $\cdot: \mathbb{R} \times B \to B$, $\cdot(\lambda,x) = \lambda x$ são funções contínuas.
- 13. Se M é um subconjunto limitado do espaço normado B e $\lambda_n \to 0$ então para toda sequência $m_n \in M$, $\lim_n \lambda_n m_n = 0$.
- 14. Seja $Z = X \times Y$ sendo X e Y espaços métricos. Se $U \subset Z$ é aberto e $z = (x,y) \in U$ demonstre que existem $V \subset X$ e $W \subset Y$ abertos tais que $(x,y) \in V \times W \subset Z$.
- 15. Seja $X = \prod_{n=1}^{\infty} X_n$ sendo (X_n, d_n) métrico, $n \ge 1$. Seja $U \subset X$ aberto da métrica produto e $x = (x_n)_{n=1}^{\infty} \in U$. Demonstre que existe natural N e bolas abertas, $B(x_n, r_n) \subset X_n$ para $1 \le n \le N$ tais que

$$x \in \{z \in X : z_n \in B(x_n, r_n), 1 \le n \le N\} \subset U.$$

16. Seja $E = \prod_{n=1}^{\infty} E_n$ o produto cartesiano dos espaços normados $(E_n, |\cdot|_n)$, $E_n \neq \{0\}$. Então E não é normado. Sugestão: Se $\|\cdot\|$ é uma norma em E que define a mesma topologia que a métrica do produto cartesiano, note que $M = \{x \in E : \|x\| < 1\}$ é aberto e limitado (na norma). Seja $0 \in U \subset M$, U aberto na métrica do produto cartesiano. Pelo exercício anterior existe N tal que

$$\{z \in E : z = (0, \dots, 0, x_{N+1}, x_{N+2}, \dots)\} \subset U.$$

Mas então temos uma contradição com exercício 13: se $\lambda_n \neq 0$ tende a 0, podemos para cada m > N, encontrar $x_m^n \in E_m$ tal que $\|\lambda_n x_m^n\|_m = 1$ e portanto $z^n = \left(0,\dots,x_{N+1}^n,x_{N+2}^n,\dots\right) \in M$ mas $d\left(\lambda_n z^n,0\right) = \sum_{m=N+1}^{\infty} \frac{|\lambda_n x_m^n|}{1+|\lambda_n x_m^n|} = \sum_{m=N+1}^{\infty} \frac{1}{2^{m+1}} > 0$.

17. Sejam $\|\cdot\|$ e $\|\cdot\|'$ normas equivalentes² em V. Demonstre que existe $\epsilon > 0$ tal que para todo $v \in V$, $\epsilon \|v\| \le \|v\|' \le \frac{1}{\epsilon} \|v\|$.

²Ou seja normas que definem métricas equivalentes.

18. Para $A \subset X$ definamos o interior de A,

$$\mathring{A} = \operatorname{int} A := \bigcup \{ U \subset A : U \text{ \'e aberto} \}.$$

Verifique as propriedades:

- (a) $A \subset B \subset X \implies \mathring{A} \subset \mathring{B}$
- (b) $(\mathring{A})^{\circ} = \mathring{A}$
- (c) int $(A \cap B) = \text{int } A \cap \text{int } B$.
- (d) $\bigcup_{i \in I} \operatorname{int} A_i \subset \operatorname{int} (\bigcup_{i \in I} A_i)$.
- 19. Demonstre que $\mathring{A} = X \setminus \overline{X \setminus A}$.
- 20. Um espaço métrico (X, ρ) é dito ultramétrico se para todos x, y, z em X,

$$\rho(x, z) \le \max \{\rho(x, y), \rho(y, z)\}.$$

Demonstre que num espaço ultramétrico todo ponto da bola $B\left(x,r\right)$ é centro da mesma.

- 21. Seja $f:X\to Z$ contínua e sobrejetora. SeX for separável, Z também é.
- 22. Sejam (X_n, d_n) espaços métricos, $X = \prod_{n=1}^{\infty} X_n$ o produto cartesiano com a métrico usual do produto, $d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{d_n(x_n,y_n)}{1+d_n(x_n,y_n)}$. Demonstre que
 - **a.** Se cada X_n for separável, X é.
 - **b.** A projeção $f: X \to X_1 \times \ldots \times X_N$, $f(x) = (x_1, \ldots, x_N)$ é contínua.
 - **c.** Se $f^k \in X$ para $k \ge 1$ e $\lim_{k \to \infty} f^k(n) = f(n) \in X_n, n \ge 1$. Então $\lim_{k \to \infty} f^k = (f(n))_{n=1}^{\infty}$ na métrica de X.
- 23. Sejam V e W espaços normados e $T:V\to W$ linear. Então
 - (a) T é contínua se e somente se for contínua na origem.
 - (b) T é contínua na origem se e somente se $||T|| := \sup \{||T(x)|| : ||x|| \le 1\} < \infty$. E nesse caso temos $||T(x)|| \le ||T|| \, ||x||, x \in V$.
- 24. Seja B um espaço de Banach. Suponhamos que $B[x_n, r_n] \supset B[x_{n+1}, r_{n+1}]$ para n natural. Então $\bigcap_{n=1}^{\infty} B[x_n, r_n] \neq \emptyset$.

- 25. Seja (X,d) completo. Existe $\tilde{d} \leq 1$ métrica e equivalente a d e tal que $\left(X,\tilde{d}\right)$ é completo.
- 26. Seja (X,d)métrico completo. Uma função $f:X\to X$ é uma contração se existir $\lambda\in(0,1)$ tal que

$$d(f(x), f(y)) \le \lambda d(x, y)$$
.

Demonstre que se f tem ponto fixo o ponto fixo é único.

27. (continuação) Seja $x_0 \in X$ e $x_{n+1} = f(x_n)$. Demonstre que $(x_n)_n$ converge. E o limite é um ponto fixo de f.