

RC-XD

Pipe inspection robo

Mohammed Yaser Mohamme

Momen Mohsen

Ahmed mohammed nasr

- Statistics and surveys
- Value Proposition Canvas
- Lean Canvas Model
- Product description
- Features
- Mechanical Design

Statistics and surveys

- Egyptian market has more than 50 companies in the inspection field excluding petroleum companies.
- Less than 5% of them use robotics in their field.
- More than 40% of yearly jobs deal with pipelines with more than 10 meters in length with different diameters.
- Normal inspection jobs take 3-4 days in average.
- Average small companies take 80+ jobs/year.

.III GAIN CREATORS

- -Less Workers
- -Record the inspection process
- -More professional method
- -Adjustable robot -Semi-
- autonomous

SERVI

PRODUCTS

-Scratch-free material

- -Time efficient & less effort
- -Flawless automatic inspection
- -Adjustable with different pipes diameter & length

- -Safe inspection
- -Customer satisfaction

- CUSTOMER JOB(S) -Case study -Inspection of pipes
- in Oil & Gas field
- -Deal with extreme cases
- -Time consuming process
- -Unprof. workers faults

8 PAINS

Lean canvas model

Product description

- Pipeline systems deteriorate progressively over time through various means.
- This product aims to create a pipeline inspection robot that has an adaptable structure to the pipe diameter, and cheap at the same time.
- Pipeline inspection robots are designed to act in inaccessible environment and also to remove the human factor from labour intensive or dangerous work environments.
- Our challenge is to make this robot adaptable to pipe diameters varying from 450mm to 700mm with an adjustable probe mount.

Features

- Adjustable diameter range (45-70 cm)
- Long travel ranges up to 30m
- Crack identification
- Shape identification for cracks
- Locating crack places
- Live video record
- Electrically insulated
- Scratch free wheels and safe to pipes insulation materials
- Easy to transport
- Easy interface

Original Mechanical Design

Original Mechanical Design

Prototype Mechanical Design

Main Body Working Drawing

 In sheet Metal working drawings aren't needed as it Is made by laser cutting and bending machines, so they require either a PDF file or a Dxf. file - in order to get the flat pattern view - according to the manufacturer

Overall Dimensions

Maximum Diameter

Minimum Diameter

Diameter Adjustment Mechanism

In a nutshell we used a 4bar mechanism to actuate a 4bar mechanism.

The power screw rotates with the set angle moving the bushes a certain distance.

• The bushes moves a rectangular link attached to it that moves relative to a hinged link in the joint fixed to the base.

Attached to the moving links the main link connected to the arms holding the wheels so moving the link changes the angle of the hinged links changing the central

distance of the wheel.

Wheel Assembly

- DC motor is bolted with a L-stand with M4 bolts and then both are bolted with the main link.
- Rubber wheels are used to protect the pipes from scratches

Stress Analysis

Assuming Worst Case:

- Robot's weight is 10 kg
- Only two wheel carries the whole weight
- Motor Radial Load = 60 N.m (From datasheet)
- Minimum safety factor of 5 which pretty safe

Standard gearbox shaft : see di	mensions					
General characteristics						
Motor		82 810 0	82 810 0	82 810 0		
Gearbox		81 035 0	81 035 0	81 035 0		
Maximum permitted torque on gearbox for continuous rating	N.m	5	5	5		
Avial load (dunamic)	daki	6	6	6		
Radial load (dynamic)	daN	6	6	6		
madmum usable power	100	18.9	9.9	9		
Nominal usable power	W	9.4	8.7	8.2		
Gearbox case temperature rise	*C	45	46	45		
Weight	9	820	820	820		

Mechanical BOM

No.	Part Name	Qty	Description	Price EGP/1	Total Price
1	Central Base	1	Sheet Metal	400	400
2	Front Cover	1	Sheet Metal	250	500
3	Control Box Drawer	1	Sheet Metal	100	200
4	Main Link	3	Sheet Metal	20	240
5	Side Link	6	Sheet Metal	150	900
6	Middle Link	3	Sheet Metal	600	600
7	Power Screw	3	Purchasing	120	360
8	Bearing House 8mm	0	Purchasing	40	40
9	Coupler	3	Purchasing	30	30
10	Wheels	6	Purchasing	15	120
11	DC motor mount	3	Purchasing	40	80
12	Stepper motor mount	3	Purchasing	50	150
13	Power Screw Nut	3	Purchasing	50	150
14	Nut Housing	3	Purchasing	50	150
15	Spacers	18	Purchasing	30	30
Total					

Control Box

- Control box contains the PCB & the Battery.
- While the raspberry pi is attached to the front cover.

Ergonomics

Actuator Sizing

Estimated total weight from CAD is 10 kg driven by two DC motors and the two actuated wheels have the same parameters and conditions.

Wheel outer diameter = 66 mm

Assumed wheel mass = 0.3 kg

Rolling Coefficient of friction between wheel and pipe = 0.3

Assume all pipes has no inclination.

Assumed fixed speed operation = 2 rad/sec

tacc= 1 sec

J_{tot}=J_m+J_{eff} (on each actuated wheel)

 $J_{actuated wheel} = (0.5*m*r^2)=(0.5*0.3*(66 \times 10^{-3}/2)^2)=1.6335*10^{-4} \text{ kg·m}^2$

Using kinetic conversion theorem:

•
$$J_{body} = m*r^2 = 10*(66 \times 10^3 / 2)^2 = 10.89*10^3 \text{ kg·m}^2$$

•
$$J_{rolling wheel} = 0.5*m*r^2 = 0.5*0.3*(66 \times 10^{-3} / 2)^2 = 1.6335*10^{-4} \text{ kg·m}^2$$

$$J_{eff} = 1.6335*10^4 + 10.89*10^3 + 1.6335*10^4 = 11.22*10^3$$

$$J_{tot}=J_{m}+J_{eff}=11.22*10^{-3} + 11.22*10^{-3} = 0.02243 \text{ kg} \cdot \text{m}^{-2}$$

$$T_r$$
 (assumed resistive torque) = $9.8(5+(0.3*3))*0.3*(66 \times 10^{-3}/2) = 0.57$ Nm

$$\theta_{acc} = 2/0.1 = 20 \text{ rad/sec}$$

PID GRAPHS

• PID In **no load** condition

• PID In **normal loading** conditions

Battery Sizing

Average current draw by each component:

•	Arduino uno board	0.05 A
•	Raspberry pi	2.5 A
•	Three driving DC motors	3.5 A
•	Power screw three Stepper motor	5.25 A
•	Ultrasonic sensor	0.015A
•	Camera	0.5Δ

For motors $I(amp) = (N\omega^* 2\pi/V^* 60)$

Consumed Power = ((0.05+2.5+0.015+0.5)*5)+((3.5+5.25)*12) = 120 W

Assumed total power losses 10 W

Total power = 130 W

Battery Voltage 12V

Total current = 10 A

Operating time 30 minutes

Battery size = 5 Ah

PCB Board

PCB Board in Real Life

Electrical BOM

No.	Part Name	Qty	Price EGP/1	Total Price
1	Raspberry PI	1	1250	1250
2	DC Motor	3	200	600
4	PI Camera	1	450	450
5	Battery	1	750	750
6	Charging Port	1	50	50
7	Start/Stop Button	2	20	40
8	Arduino uno	2	160	320
9	PCB	1	200	200
Total				3500

Electrical Design

Sensor Selection:

• RC-XD uses five sensors, three encoders for each motor for position feedback, one camera to detect the cracks and an ultrasonic to detect blockage in pipes.

Used Sensors:

- Raspberry PI Camera NV
- Ultrasonic sensor
- DC Motor Encoder

Simulation in SW

${\sf FlowChart}$

Communication Protocols

Bluetooth Module with Arduino1 UART

Raspberry Pi with Arduino2 UART

Arduino with Arduino I2C

Vision

 RC-XD's main purpose is to identify any crack, locate its position, get its shape and save photos named with the identified crack position and degree with its dimensions.

Test Case Photos

Real Case Photos

V-REP Simulation

Full Functioning Prototype Video Test Cases

