Notes on Fibrational Semantics of Simple, Polymorphic, and Dependent Type Theory

Harley Eades III

1 The Simple Fibration

Definition 1.1. A CT-structure is a pair (\mathbb{B}, T) where \mathbb{B} is a category with finite products, and $T \subseteq \mathsf{Obj}(\mathbb{B})$ is a collection of types.

A CT-structure (\mathbb{B}, T) should be thought of as a category of contexts \mathbb{B} whose types draw their atomic elements from T. Given contexts $\Gamma, \Delta \in \mathsf{Obj}(\mathbb{B})$, their concatenation is defined as $(\Gamma, \Delta) = (\Gamma \times \Delta)$.

Definition 1.2. ...

Definition 1.3. ...

Definition 1.4. The category \mathcal{L}_1 is defined as follows:

Objects: Contexts $\Gamma = x_1 : T_1, \dots, x_n : T_n$.

Morphisms: Let Γ and $\Delta = y_1 : T_1, \ldots, y_n : T_n$ be contexts, then a morphism $\Gamma \longrightarrow \Delta$ is a n-tuple, $([t_1], \ldots, [t_n])$, such that $[t_i] = \{t \mid t \text{ differs from } t_i \text{ only by the names of its free variables}\}$ is the equivalence class of terms such that $\Gamma \vdash t_i : T_i \text{ holds for each } 1 \le i \le n$.

Lemma 1.5 (Classifying Category for STLC). \mathcal{L}_1 is indeed a category.

Proof. (Identities) Suppose $\Gamma = x_1 : T_1, \dots, x_i : T_i$ is a context. Then $\mathsf{id} = (x_1, \dots, x_i) : \Gamma \longrightarrow \Gamma$, because $\Gamma \vdash x_j : T_j$ for $1 \le j \le i$ each hold by the variable rules.

(Composition.) Suppose Γ , $\Delta = y_1 : T_1, \ldots, y_i : T_i$ and $\Phi = z_1 : T'_1, \ldots, z_j : T'_j$ are contexts, and $f = (t_1, \ldots, t_i) : \Gamma \longrightarrow \Delta$ and $g = (t'_1, \ldots, t'_j) : \Delta \longrightarrow \Phi$ are morphisms. Then define their composition $f; g = ([t_1/y_1] \cdots [t_i/y_i]t'_1, \ldots, [t_1/y_1] \cdots [t_i/y_i]t'_j) : \Gamma \longrightarrow \Phi$.

(Composition respects identities.). Suppose $\Gamma = x_1 : T_1, \dots, x_i : T_i$ and $\Delta = y_1 : T_1, \dots, y_j : T_j$ are contexts, and $f = (t_1, \dots, t_j) : \Gamma \longrightarrow \Delta$ is a morphism. Then:

$$id_{\Gamma}; f = ([x_1/x_1] \cdots [x_i/x_i]t_1, \dots, [x_1/x_1] \cdots [x_i/x_i]t_j)$$

= (t_1, \dots, t_j)
= f

and

$$\begin{array}{rcl} f; id_{\Delta} & = & ([t_1/y_1] \cdots [t_j/y_j] y_1, \dots, [t_1/y_1] \cdots [t_j/y_j] y_j) \\ & = & (t_1, \dots, t_j) \\ & = & f \end{array}$$