MA 544: Homework 11

Carlos Salinas

April 15, 2016

PROBLEM 11.1 (WHEEDEN & ZYGMUND §7, Ex. 11)

Prove the following result concerning changes of variable. Let g(t) be monotone increasing and absolutely continuous on $[\alpha, \beta]$ and let f be integrable on [a, b], $a = g(\alpha)$, $b = g(\beta)$. Then f(g(t))g'(t) is measurable and integrable on $[\alpha, \beta]$, and

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t)dt.$$

(Consider the case when f is the characteristic function of an interval, an open set, etc.)

Proof.

PROBLEM 11.2 (WHEEDEN & ZYGMUND §7, Ex. 15)

Theorem 7.43 shows that a convex function is the indefinite integral of a monotone increasing function. Prove the converse: If $\varphi(x) = \int_a^x f(t)dt + \varphi(a)$ in (a,b) and f is monotone increasing, then φ is convex in (a,b). (Use Exercise 14.)

Proof.

PROBLEM 11.3 (WHEEDEN & ZYGMUND §5, Ex. 8)

Prove (5.49).

Proof. Recall the content of equation 5.49: For f measurable, we have

$$\omega(\alpha) \le \frac{1}{\alpha^p} \int_{\{f > \alpha\}} f^p, \quad \alpha > 0.$$
 (11.1)

MA 544: Homework 11

PROBLEM 11.4 (WHEEDEN & ZYGMUND §5, Ex. 11)

For which p does $1/x \in L^p(0,1)$? $L^p(1,\infty)$? $L^p(0,\infty)$?

Proof.

MA 544: Homework 11

PROBLEM 11.5 (WHEEDEN & ZYGMUND §5, Ex. 12)

Give an example of a bounded continuous f on $(0,\infty)$ such that $\lim_{x\to\infty} f(x)=0$ but $f\notin L^p(0,\infty)$ for any p>0.

Proof.

PROBLEM 11.6 (WHEEDEN & ZYGMUND §5, Ex. 17)

If $f \ge 0$, show that $f \in L^p$ if and only if $\sum_{k=-\infty}^{\infty} 2^{kp} \omega(2^k) < \infty$. (Use Exercise 16.)

Proof.

MA 544: Homework 11