

The WILLIAM STATES LEE COLLEGE of ENGINEERING

Real-time Al Lecture 2:Intro to GPUs

Hamed Tabkhi

Department of Electrical and Computer Engineering, University of North Carolina Charlotte (UNCC)

htabkhiv@uncc.edu

Uniprocessor Performance (SPECint)

: 25%/year 1978 to 1986 VAX

• RISC + x86: 52%/year 1986 to 2002

• RISC + x86: ??%/year 2002 to present

Power, Frequency, ILP

Moore's Law and part and a second control and a se

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Frequency Has Stopped Scaling Too

Heterogeneous Architecture for Domain–Specific Computing

History

- 2007 NVIDIA CUDA
 - First GPGPU solution, restricted to NVIDIA GPUs
- 2007 AMD Stream SDK (previously CTM)
- 2009 OpenCL, Direct Compute
- 2011 OpenCL revision 1.2
- 2012 NVIDIA Kepler Architecture
- 2013 OpenCL revision 2.0
- 2014 NVIDIA Maxwell Architecture
- 2016 OpenCL revision 2.2, NVIDIA Pascal
- 2017 NVIDIA OpenCL 2.0 beta

GPU in comparison with CPU

• CPU

- Few cores per chip
- General purpose cores
- Processing different threads
- Huge caches to reduce memory latency
 - Locality of reference problem

GPU

- Many cores per chip
- Cores specialized for numeric computations
- SIMT thread processing
- Huge amount of threads and fast context switch
 - Results in more complex memory transfers

NVIDIA Fermi

- GPU Architecture
 - 16 SMP units
 - 512 CUDA cores
 - 786kB L2 cane

Note that one CUDA core corresponds to one 5D AMD Stream Processor (VLIW5). Therefore Radeon 5870 has 320 cores with 4-way SIMD capabilities and one SFU.

GPU Execution Model

- Data Parallelism
 - Many data elements are processed concurrently by the same routine
 - GPUs are designed under this particular paradigm
 - Also have limited ways to express task parallelism
- Threading Execution Model
 - One function (kernel) is executed in many threads
 - Much more lightweight than the CPU threads
 - Threads are grouped into blocks/work groups of the same size

GPU Memory Structures

NVIDIA Fermi

Streaming Multiprocessor

- 32 CUDA cores
- 64kB shared memory (or L1 cache)
- 1024 registers per core
- 16 load/store units
- 4 special function units
- 16 double precision ops per clock
- 1 instruction decoder
 - All cores are running in lockstep

Kepler Architecture

- Kepler's Major Improvements
 - Streaming Processors Next Generation (SMX)
 - 192 cores, 32 SFUs, 32 load/store units
 - 3 cores share a DP unit, 6 cores share LD and SFU
 - Dynamic Parallelism
 - Kernel may spawn child kernels (to depth of 24)
 - Implies the work group context-switch capability
 - Hyper-Q
 - Up to 32 simultaneous GPU-host connections
 - Better throughput if multiple processes/threads use the GPU (concurrent connections are managed in HW)

Maxwell Architecture

- Maxwell's Major Improvements
 - Maxwell Symmetric Multiprocessor (SMM)
 - Many internal optimizations, better power efficiency
 - Improved scheduling, increased occupancy
 - Reduced arithmetic instruction latency
 - Larger L2 cache (2MB)
 - Dedicated shared memory (separate L1 cache)
 - Native shared memory atomics
 - Better support for dynamic parallelism

Volta Architecture

Pascal Architecture

Heterogeneous Computing

- Terminology:
 - Host The CPU and its memory (host memory)
 - Device The GPU and its memory (device memory)

Simple Processing Flow

Simple Processing Flow

Simple Processing Flow

