CS170 Computation Theory

Lecture 8

September 28, 2023

Megumi Ando

Review of Last Lecture

- Notation for Encodings and TMs
- Decision procedures for DFAs

Today's Topics

- Notation for Encodings and TMs
- Decision procedures for DFAs

- Decision procedures for CFGs
- The reducibility method

Recall: T-recognizability and Decidability

Definition (p. 170): Let M be a TM. Let $A = \{w \mid M \text{ accepts } w\}$. Then, A is the language recognized by M, i.e., A = L(M).

Definition (p. 170): A language is <u>T-recognizable</u> if there is a TM that recognizes it.

Definition (p. 170): A TM \underline{M} is a decider if it halts on all inputs.

Definition (p. 170): A language A is T-decidable (or just decidable) if A = L(M) for some TM decider M.

Acceptance Problem for CFGs

Theorem (p.198): The language $A_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$ is decidable.

Proof Attempt 1: Let $D_{A_{\mathrm{CFG}}}'$ be the following TM.

 $D_{A_{\mathrm{CFG}}}'$ = "On input $\langle B, w \rangle$ where B is a CFG and w is a string,

- 1. Convert B to an equivalent PDA B' using the procedure from Lecture 4.
- 2. Simulate the computation of B' on w.
- 3. If B' ends in an accept state, accept. Otherwise, reject."

 $D_{A_{\operatorname{CFG}}}'$ decides A_{CFG} .

Acceptance Problem for CFGs

Theorem (p.198): The language $A_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$ is decidable.

Proof Attempt 1: Let $D'_{A_{\mathrm{CFG}}}$ be the following TM.

 $D_{A_{\mathrm{CFG}}}'$ = "On input $\langle B, w \rangle$ where B is a CFG and w is a string,

- 1. Convert B to an equivalent PDA B' using the procedure from Lecture 4.
- 2. Simulate the computation of B' on w.
- 3. If B' ends in an accept state, accept. Otherwise, reject."

 $D_{A_{\operatorname{CFG}}}'$ decides A_{CFG} .

(ϵ -transitions make argument tricky.)

Chomsky Normal Form

Definition (p.109): A CFG is in Chomsky normal form if every rule is:

$$T \rightarrow UV$$

$$T \rightarrow a$$

where U and V are not the start variable S. (With the one exception: $S \to \epsilon$.)

Lemma 1: Every CFL can be generated by a CFG in Chomsky normal form.

Proof in Sipser Book (p. 109).

Lemma 2: If G is a CFG in Chomsky normal form and $w \in L(G)$, then every derivation of w has 2 |w| - 1 steps.

Lemma 2: If G is a CFG in Chomsky normal form and $w \in L(G)$, then every derivation of w has 2|w|-1 steps.

Proof:

(1) Let $w = w_1 w_2 ... w_n$ be any string in L(G).

Lemma 2: If G is a CFG in Chomsky normal form and $w \in L(G)$, then every derivation of w has 2|w|-1 steps.

Proof:

- (1) Let $w = w_1 w_2 ... w_n$ be any string in L(G).
- (2) It takes n-1 steps to "expand" the start variable into n variables $V_1V_2...V_n$.

Lemma 2: If G is a CFG in Chomsky normal form and $w \in L(G)$, then every derivation of w has 2|w|-1 steps.

Proof:

- (1) Let $w = w_1 w_2 ... w_n$ be any string in L(G).
- (2) It takes n-1 steps to "expand" the start variable into n variables $V_1V_2...V_n$.
- (3) For each variable V_i , it takes one step to substitute it for a terminal symbol.

Q.E.D.

Theorem (p.194): The language $A_{\text{CFG}} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$ is decidable.

Theorem (p.194): The language $A_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$ is decidable.

Proof: Let $D_{A_{CFG}}$ be the following TM.

Theorem (p.194): The language $A_{\text{CFG}} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$ is decidable.

Proof: Let $D_{A_{CFG}}$ be the following TM.

 $D_{A_{\text{CFG}}}$ = "On input $\langle B, w \rangle$ where B is a CFG and w is a string,

Theorem (p.194): The language $A_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$ is decidable.

Proof: Let $D_{A_{CFG}}$ be the following TM.

 $D_{A_{\mathrm{CFG}}}$ = "On input $\langle B, w \rangle$ where B is a CFG and w is a string,

1. Convert B to an equivalent CFG B' in Chomsky normal form.

Theorem (p.194): The language $A_{\text{CFG}} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$ is decidable.

Proof: Let $D_{A_{CFG}}$ be the following TM.

 $D_{A_{\mathrm{CFG}}}$ = "On input $\langle B, w \rangle$ where B is a CFG and w is a string,

- 1. Convert B to an equivalent CFG B' in Chomsky normal form.
- 2. Try all derivations of length 2|w| 1.

Theorem (p.194): The language $A_{\text{CFG}} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$ is decidable.

Proof: Let $D_{A_{CFG}}$ be the following TM.

 $D_{A_{\mathrm{CFG}}}$ = "On input $\langle B, w \rangle$ where B is a CFG and w is a string,

- 1. Convert B to an equivalent CFG B' in Chomsky normal form.
- 2. Try all derivations of length 2 |w| 1.
- 3. If any derivation generates w, accept. Otherwise, reject."

Theorem (p.194): The language $A_{\text{CFG}} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$ is decidable.

Proof: Let $D_{A_{CFG}}$ be the following TM.

 $D_{A_{\mathrm{CFG}}}$ = "On input $\langle B, w \rangle$ where B is a CFG and w is a string,

- 1. Convert B to an equivalent CFG B' in Chomsky normal form.
- 2. Try all derivations of length 2 |w| 1.
- 3. If any derivation generates w, accept. Otherwise, reject."

 $D_{A_{
m CFG}}$ decides $A_{
m CFG}$.

Theorem (p.194): The language $A_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$ is decidable.

Proof: Let $D_{A_{CFG}}$ be the following TM.

 $D_{A_{\mathrm{CFG}}}$ = "On input $\langle B, w \rangle$ where B is a CFG and w is a string,

- 1. Convert B to an equivalent CFG B' in Chomsky normal form.
- 2. Try all derivations of length 2 |w| 1.
- 3. If any derivation generates w, accept. Otherwise, reject."

 $D_{A_{
m CFG}}$ decides $A_{
m CFG}$.

Each derivation takes O(|w|) sub-steps.

Q.E.D.

Check-In 1 (Break)

Prove that every context-free language is decidable.

(Hint: Consider what we just saw in the last slide: A_{CFG} .)

Check-In 1 (Break)

Theorem (p.199): The language $E_{\rm CFG}=\{\langle B\rangle\,|\,B$ is a CFG and $L(B)=\varnothing\}$ is decidable.

Theorem (p.199): The language $E_{\rm CFG}=\{\langle B\rangle\,|\,B$ is a CFG and $L(B)=\varnothing\}$ is decidable.

Proof: Let $D_{E_{CFG}}$ be the following TM.

Theorem (p.199): The language $E_{\rm CFG}=\{\langle B\rangle\,|\,B$ is a CFG and $L(B)=\varnothing\}$ is decidable.

Proof: Let $D_{E_{CFG}}$ be the following TM.

 $D_{E_{\mathrm{CFG}}}$ = "On input $\langle B \rangle$ where B is a CFG,

Theorem (p.199): The language $E_{\rm CFG} = \{\langle B \rangle \, | \, B \text{ is a CFG and } L(B) = \emptyset \}$ is decidable.

Proof: Let $D_{E_{CFG}}$ be the following TM.

 $D_{E_{\mathrm{CFG}}}$ = "On input $\langle B \rangle$ where B is a CFG,

1. Mark all terminals.

Theorem (p.199): The language $E_{\rm CFG}=\{\langle B\rangle\,|\,B$ is a CFG and $L(B)=\varnothing\}$ is decidable.

Proof: Let $D_{E_{CFG}}$ be the following TM.

 $D_{E_{\mathrm{CFG}}}$ = "On input $\langle B \rangle$ where B is a CFG,

- 1. Mark all terminals.
- 2. Repeat until no new variables are marked: mark all occurrences of variable V if $V \rightarrow u_1 u_2 \dots u_k$ is a rule, and all u_i 's are marked.

Theorem (p.199): The language $E_{\rm CFG}=\{\langle B\rangle\,|\,B$ is a CFG and $L(B)=\varnothing\}$ is decidable.

Proof: Let $D_{E_{CFG}}$ be the following TM.

 $D_{E_{\mathrm{CFG}}}$ = "On input $\langle B \rangle$ where B is a CFG,

- 1. Mark all terminals.
- 2. Repeat until no new variables are marked: mark all occurrences of variable V if $V \rightarrow u_1 u_2 \dots u_k$ is a rule, and all u_i 's are marked.
- 3. If start variable is not marked, accept. Else, reject."

Theorem (p.199): The language $E_{\rm CFG}=\{\langle B\rangle\,|\,B$ is a CFG and $L(B)=\varnothing\}$ is decidable.

Proof: Let $D_{E_{CFG}}$ be the following TM.

 $D_{E_{\mathrm{CFG}}}$ = "On input $\langle B \rangle$ where B is a CFG,

- 1. Mark all terminals.
- 2. Repeat until no new variables are marked: mark all occurrences of variable V if $V \to u_1 u_2 \dots u_k$ is a rule, and all u_i 's are marked.
- 3. If start variable is not marked, accept. Else, reject."

 $D_{E_{
m CFG}}$ decides $E_{
m CFG}$.

Theorem (p.199): The language $E_{\rm CFG} = \{\langle B \rangle \, | \, B \text{ is a CFG and } L(B) = \emptyset \}$ is decidable.

Proof: Let $D_{E_{CFG}}$ be the following TM.

 $D_{E_{\mathrm{CFG}}}$ = "On input $\langle B \rangle$ where B is a CFG,

- 1. Mark all terminals.
- 2. Repeat until no new variables are marked: mark all occurrences of variable V if $V \to u_1 u_2 \dots u_k$ is a rule, and all u_i 's are marked.

11

3. If start variable is not marked, accept. Else, reject."

 $D_{E_{\mathrm{CFG}}}$ decides E_{CFG} .

 $D_{E_{\mathrm{CFG}}}$ always halts within O(|V|) sub-steps.

Q.E.D.

Check In 2 (Break)

Fake Theorem: The language

 $ALL_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG such that } L(G) = \Sigma^* \}$ is decidable.

Fake Proof: Let $D_{ALL_{CGF}}$ be the following TM.

 $D_{ALL_{CGF}}$ = "On input $\langle G \rangle$ where G is a CFG,

- 1. Determine the CFG \overline{G} that generates the language $\overline{L(G)}$.
- 2. Run $D_{E_{\mathrm{CFG}}}$ (from previous slide) on $\langle \overline{G} \rangle$.
- 3. If $D_{E_{\rm CFG}}$ accepts, accept. Else, reject."

 $D_{ALL_{\mathrm{CGF}}}$ decides ALL_{CFG} .

What's wrong with this proof?

	Acceptance Problem	Emptiness Problem	Equivalence Problem
DFA			
CFG			
TM			

	Acceptance Problem	Emptiness Problem	Equivalence Problem
DFA	Decidable (Lecture 7)		
CFG			
TM			

	Acceptance Problem	Emptiness Problem	Equivalence Problem
DFA	Decidable (Lecture 7)	Decidable (Lecture 7)	
CFG			
TM			

	Acceptance	Emptiness	Equivalence
	Problem	Problem	Problem
DFA	Decidable	Decidable	Decidable
	(Lecture 7)	(Lecture 7)	(Lecture 7)
CFG			
TM			

	Acceptance	Emptiness	Equivalence
	Problem	Problem	Problem
DFA	Decidable	Decidable	Decidable
	(Lecture 7)	(Lecture 7)	(Lecture 7)
CFG	Decidable		
TM			

Summary Table of Decidability

	Acceptance	Emptiness	Equivalence
	Problem	Problem	Problem
DFA	Decidable	Decidable	Decidable
	(Lecture 7)	(Lecture 7)	(Lecture 7)
CFG	Decidable	Decidable	
TM			

Summary Table of Decidability

	Acceptance	Emptiness	Equivalence
	Problem	Problem	Problem
DFA	Decidable	Decidable	Decidable
	(Lecture 7)	(Lecture 7)	(Lecture 7)
CFG	Decidable	Decidable	Not Decidable
TM			

Summary Table of Decidability

	Acceptance	Emptiness	Equivalence
	Problem	Problem	Problem
DFA	Decidable	Decidable	Decidable
	(Lecture 7)	(Lecture 7)	(Lecture 7)
CFG	Decidable	Decidable	Not Decidable
TM	Not Decidable	Not Decidable	Not Decidable

Roadmap for Proving Undecidable Problems

To show that a language B is undecidable by a <u>reduction</u>:

- 1. Show that there is an undecidable problem: A (next lecture).
- 2. Show that \underline{A} reduces to \underline{B} : we can decide A by using a decider for B as a subroutine.
 - Implication: B decidable $\Longrightarrow A$ decidable

A proof by reduction is essentially a proof by contradiction.

- A proof by reduction is essentially a proof by contradiction.
- Suppose A is a known undecidable problem.

- A proof by reduction is essentially a proof by contradiction.
- Suppose A is a known undecidable problem.
- We want to prove ... | **Thm:** B is undecidable.

- A proof by reduction is essentially a proof by contradiction.
- Suppose A is a known undecidable problem.
- We want to prove ... | **Thm:** B is undecidable.
- Proof by Reduction:

- A proof by reduction is essentially a proof by contradiction.
- Suppose A is a known undecidable problem.
- We want to prove ... | Thm: B is undecidable.
- Proof by Reduction:
 - (1) For the sake of reaching a contradiction, assume B is decidable.

- A proof by reduction is essentially a proof by contradiction.
- Suppose A is a known undecidable problem.
- We want to prove ... | Thm: B is undecidable.
- Proof by Reduction:
 - (1) For the sake of reaching a contradiction, assume B is decidable.
 - (2) So, there exists a decider D_B for B.

- A proof by reduction is essentially a proof by contradiction.
- Suppose A is a known undecidable problem.
- We want to prove ... | Thm: B is undecidable.
- Proof by Reduction:
 - (1) For the sake of reaching a contradiction, assume B is decidable.
 - (2) So, there exists a decider D_B for B.
 - (3) Construct a procedure D_A that uses D_B to decide A.

- A proof by reduction is essentially a proof by contradiction.
- Suppose A is a known undecidable problem.
- We want to prove ... | Thm: B is undecidable.
- Proof by Reduction:
 - (1) For the sake of reaching a contradiction, assume B is decidable.
 - (2) So, there exists a decider D_B for B.
 - (3) Construct a procedure D_A that uses D_B to decide A.
 - (4) Conclude that A is decidable.

- A proof by reduction is essentially a proof by contradiction.
- Suppose A is a known undecidable problem.
- We want to prove ... | **Thm:** B is undecidable.
- Proof by Reduction:
 - (1) For the sake of reaching a contradiction, assume B is decidable.
 - (2) So, there exists a decider D_B for B.
 - (3) Construct a procedure D_A that uses D_B to decide A.
 - (4) Conclude that A is decidable.
 - (5) Line (4) contradicts assumption that A is undecidable. Q.E.D.

Let $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } w \in L(M) \}.$

Let $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } w \in L(M) \}.$

Theorem: A_{TM} is recognizable.

Let $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } w \in L(M) \}.$

Theorem: A_{TM} is recognizable.

Consider the following TM $R_{A_{\mathsf{TM}}}$ recognizes A_{TM} .

Let $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in L(M) \}.$

Theorem: A_{TM} is recognizable.

Consider the following TM $R_{A_{TM}}$ recognizes A_{TM} .

 $R_{A_{\mathsf{TM}}}$ = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

Let $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in L(M) \}.$

Theorem: A_{TM} is recognizable.

Consider the following TM $R_{A_{TM}}$ recognizes A_{TM} .

 $R_{A_{\mathsf{TM}}}$ = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

1. Simulate M on w.

Let $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } w \in L(M) \}.$

Theorem: A_{TM} is recognizable.

Consider the following TM $R_{A_{\mathsf{TM}}}$ recognizes A_{TM} .

 $R_{A_{\mathsf{TM}}}$ = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

- 1. Simulate M on w.
- 2. Accept if *M* halts and accepts.

Let $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } w \in L(M) \}.$

Theorem: A_{TM} is recognizable.

Consider the following TM $R_{A_{\mathsf{TM}}}$ recognizes A_{TM} .

 $R_{A_{\mathsf{TM}}}$ = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

- 1. Simulate M on w.
- 2. Accept if *M* halts and accepts.
- 3. Reject if *M* halts and rejects."

Let $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } w \in L(M) \}.$

Theorem: A_{TM} is recognizable.

Consider the following TM $R_{A_{\mathsf{TM}}}$ recognizes A_{TM} .

 $R'_{A_{\mathsf{TM}}}$ = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

- 1. Simulate M on w.
- 2. Accept if *M* halts and accepts.
- 3. Reject if M halts and rejects.
- 4. Reject if *M* never halts."

Let $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } w \in L(M) \}.$

Theorem: A_{TM} is recognizable.

Consider the following TM $R_{A_{TM}}$ recognizes A_{TM} .

 $R'_{A_{\mathsf{TM}}}$ = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

- 1. Simulate M on w.
- 2. Accept if *M* halts and accepts.
- 3. Reject if M halts and rejects.
- 4. Reject if M never halts."

Not a legal TM action.

Let $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } w \in L(M) \}.$

Theorem: A_{TM} is recognizable.

Consider the following TM $R_{A_{TM}}$ recognizes A_{TM} .

 $R'_{A_{\mathsf{TM}}}$ = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

- 1. Simulate M on w.
- 2. Accept if *M* halts and accepts.
- 3. Reject if M halts and rejects.
- 4. Reject if *M* never halts."

 Not a legal TM action.

Fig. Turing's original <u>universal TM</u>, capable of simulating any other TM.

Theorem (p.207): The language $A_{\mathsf{TM}} = \{\langle M, w \rangle \, | \, M \text{ is a TM and } w \in L(M)\}$ is undecidable.

Theorem (p.207): The language $A_{\mathsf{TM}} = \{ \langle M, w \rangle \, | \, M \text{ is a TM and } w \in L(M) \}$ is undecidable.

Proof: Next lecture.

Theorem (p.207): The language $A_{\mathsf{TM}} = \{ \langle M, w \rangle \, | \, M \text{ is a TM and } w \in L(M) \}$ is undecidable.

Proof: Next lecture.

Theorem (p.216): The language

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and halts on input } w \} \text{ is undecidable.}$

Theorem (p.207): The language $A_{\mathsf{TM}} = \{ \langle M, w \rangle \, | \, M \text{ is a TM and } w \in L(M) \}$ is undecidable.

Proof: Next lecture.

Theorem (p.216): The language

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and halts on input } w \} \text{ is undecidable.}$

Proof by reduction.

A:

Theorem (p.207): The language $A_{\mathsf{TM}} = \{\langle M, w \rangle \, | \, M \text{ is a TM and } w \in L(M) \}$ is undecidable.

Proof: Next lecture.

Theorem (p.216): The language B:

 $HALT_{\mathsf{TM}} = \{\langle M, w \rangle \, | \, M \text{ is a TM and halts on input } w \}$ is undecidable.

Proof by reduction.

Proof by Reduction:

(1) For the sake of reaching a contradiction, assume $HALT_{\mathsf{TM}}$ is decidable.

Proof by Reduction:

- (1) For the sake of reaching a contradiction, assume $HALT_{\mathsf{TM}}$ is decidable.
- (2) So, there exists a decider $D_{HALT_{\mathsf{TM}}}$ for $HALT_{\mathsf{TM}}$.

Proof by Reduction:

- (1) For the sake of reaching a contradiction, assume $HALT_{\mathsf{TM}}$ is decidable.
- (2) So, there exists a decider $D_{HALT_{\mathsf{TM}}}$ for $HALT_{\mathsf{TM}}$.
- (3) Let $D_{A_{\mathsf{TM}}}$ be the following TM that uses $D_{HALT_{\mathsf{TM}}}$ to decide A_{TM} :

Proof by Reduction:

- (1) For the sake of reaching a contradiction, assume $HALT_{\mathsf{TM}}$ is decidable.
- (2) So, there exists a decider $D_{HALT_{\mathsf{TM}}}$ for $HALT_{\mathsf{TM}}$.
- (3) Let $D_{A_{\mathsf{TM}}}$ be the following TM that uses $D_{HALT_{\mathsf{TM}}}$ to decide A_{TM} :

Proof by Reduction:

- (1) For the sake of reaching a contradiction, assume $HALT_{\mathsf{TM}}$ is decidable.
- (2) So, there exists a decider $D_{HALT_{\mathsf{TM}}}$ for $HALT_{\mathsf{TM}}$.
- (3) Let $D_{A_{\mathsf{TM}}}$ be the following TM that uses $D_{HALT_{\mathsf{TM}}}$ to decide A_{TM} :

"On input $\langle M, w \rangle$ where M is a TM and w is a string,

1. Run $D_{HALT_{TM}}$ on $\langle M, w \rangle$.

Proof by Reduction:

- (1) For the sake of reaching a contradiction, assume $HALT_{\mathsf{TM}}$ is decidable.
- (2) So, there exists a decider $D_{HALT_{\mathsf{TM}}}$ for $HALT_{\mathsf{TM}}$.
- (3) Let $D_{A_{\mathsf{TM}}}$ be the following TM that uses $D_{HALT_{\mathsf{TM}}}$ to decide A_{TM} :

- 1. Run $D_{HALT_{TM}}$ on $\langle M, w \rangle$.
- 2. If $D_{HALT_{TM}}$ rejects (i.e., M doesn't halt on w), reject.

Proof by Reduction:

- (1) For the sake of reaching a contradiction, assume $HALT_{\mathsf{TM}}$ is decidable.
- (2) So, there exists a decider $D_{HALT_{\mathsf{TM}}}$ for $HALT_{\mathsf{TM}}$.
- (3) Let $D_{A_{\mathsf{TM}}}$ be the following TM that uses $D_{HALT_{\mathsf{TM}}}$ to decide A_{TM} :

- 1. Run $D_{HALT_{TM}}$ on $\langle M, w \rangle$.
- 2. If $D_{HALT_{TM}}$ rejects (i.e., M doesn't halt on w), reject.
- 3. If $D_{HALT_{\mathsf{TM}}}$ accepts, simulate M on w until it halts.

Proof by Reduction:

- (1) For the sake of reaching a contradiction, assume $HALT_{\mathsf{TM}}$ is decidable.
- (2) So, there exists a decider $D_{HALT_{\mathsf{TM}}}$ for $HALT_{\mathsf{TM}}$.
- (3) Let $D_{A_{\mathsf{TM}}}$ be the following TM that uses $D_{HALT_{\mathsf{TM}}}$ to decide A_{TM} :

- 1. Run $D_{HALT_{TM}}$ on $\langle M, w \rangle$.
- 2. If $D_{HALT_{TM}}$ rejects (i.e., M doesn't halt on w), reject.
- 3. If $D_{HALT_{\mathsf{TM}}}$ accepts, simulate M on w until it halts.
- 4. If *M* accepts, accept. Otherwise, reject."

Proof by Reduction:

- (1) For the sake of reaching a contradiction, assume $HALT_{\mathsf{TM}}$ is decidable.
- (2) So, there exists a decider $D_{HALT_{\mathsf{TM}}}$ for $HALT_{\mathsf{TM}}$.
- (3) Let $D_{A_{\mathsf{TM}}}$ be the following TM that uses $D_{HALT_{\mathsf{TM}}}$ to decide A_{TM} :

- 1. Run $D_{HALT_{\mathsf{TM}}}$ on $\langle M, w \rangle$.
- 2. If $D_{HALT_{TM}}$ rejects (i.e., M doesn't halt on w), reject.
- 3. If $D_{HALT_{\mathsf{TM}}}$ accepts, simulate M on w until it halts.
- 4. If *M* accepts, accept. Otherwise, reject."
- (4) So, we've reached a contradiction, namely that A is decidable. Q.E.D.

Summary of Today's Lecture

- Decision procedures for CFGs
- The reducibility method

Acknowledgements

- These slides are based on lecture notes on Theory of Computation from other universities, namely Michael Sipser (MIT), Lorenzo De Stefani (Brown).
- Errata: If you let us know of any errors in the slides, we'll fix them and acknowledge you here!