# 74HC165; 74HCT165

# 8-bit parallel-in/serial out shift register Rev. 4 — 28 December 2015

**Product data sheet** 

#### 1. **General description**

The 74HC165; 74HCT165 is an 8-bit serial or parallel-in/serial-out shift register. The device features a serial data input (DS), eight parallel data inputs (D0 to D7) and two complementary serial outputs (Q7 and Q7). When the parallel load input (PL) is LOW the data from D0 to D7 is loaded into the shift register asynchronously. When PL is HIGH data enters the register serially at DS. When the clock enable input (CE) is LOW data is shifted on the LOW-to-HIGH transitions of the CP input. A HIGH on CE will disable the CP input. Inputs include clamp diodes, this enables the use of current limiting resistors to interface inputs to voltages in excess of V<sub>CC</sub>.

#### 2. Features and benefits

- Asynchronous 8-bit parallel load
- Synchronous serial input
- Complies with JEDEC standard no. 7A
- Input levels:
  - ◆ For 74HC165: CMOS level ◆ For 74HCT165: TTL level
- ESD protection:
  - HBM JESD22-A114F exceeds 2000 V
  - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

#### **Applications** 3.

Parallel-to-serial data conversion

## **Ordering information**

Table 1. **Ordering information** 

| Type number | Package           |        | Package                                                    |          |  |  |  |  |  |  |  |  |
|-------------|-------------------|--------|------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|
|             | Temperature range | Name   | Description                                                | Version  |  |  |  |  |  |  |  |  |
| 74HC165D    | –40 °C to +125 °C | SO16   | plastic small outline package; 16 leads; body width 3.9 mm | SOT109-1 |  |  |  |  |  |  |  |  |
| 74HCT165D   |                   |        |                                                            |          |  |  |  |  |  |  |  |  |
| 74HC165DB   | -40 °C to +125 °C | SSOP16 | plastic shrink small outline package; 16 leads;            | SOT338-1 |  |  |  |  |  |  |  |  |
| 74HCT165DB  | -                 |        | body width 5.3 mm                                          |          |  |  |  |  |  |  |  |  |



 Table 1.
 Ordering information ...continued

| Type number | Package           |          |                                                                                 |          |
|-------------|-------------------|----------|---------------------------------------------------------------------------------|----------|
|             | Temperature range | Name     | Description                                                                     | Version  |
| 74HC165PW   | –40 °C to +125 °C | TSSOP16  | plastic thin shrink small outline package; 16 leads; body                       | SOT403-1 |
| 74HCT165PW  |                   |          | width 4.4 mm                                                                    |          |
| 74HC165BQ   | –40 °C to +125 °C | DHVQFN16 | plastic dual in-line compatible thermal enhanced very thin                      | SOT763-1 |
| 74HCT165BQ  |                   |          | quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm |          |

## 5. Functional diagram





# 6. Pinning information

## 6.1 Pinning



### 6.2 Pin description

Table 2. Pin description

| Symbol          | Pin                        | Description                                   |
|-----------------|----------------------------|-----------------------------------------------|
| PL              | 1                          | asynchronous parallel load input (active LOW) |
| СР              | 2                          | clock input (LOW-to-HIGH edge-triggered)      |
| Q7              | 7                          | complementary output from the last stage      |
| GND             | 8                          | ground (0 V)                                  |
| Q7              | 9                          | serial output from the last stage             |
| DS              | 10                         | serial data input                             |
| D0 to D7        | 11, 12, 13, 14, 3, 4, 5, 6 | parallel data inputs (also referred to as Dn) |
| CE              | 15                         | clock enable input (active LOW)               |
| V <sub>CC</sub> | 16                         | positive supply voltage                       |

## 7. Functional description

Table 3. Function table[1]

| Operating modes   | Inputs |    |    |    |          | Qn reg | isters   | Outputs |                |
|-------------------|--------|----|----|----|----------|--------|----------|---------|----------------|
|                   | PL     | CE | СР | DS | D0 to D7 | Q0     | Q1 to Q6 | Q7      | Q7             |
| parallel load     | L      | Х  | Х  | Х  | L        | L      | L to L   | L       | Н              |
|                   | L      | Х  | X  | Х  | Н        | Н      | H to H   | Н       | L              |
| serial shift      | Н      | L  | 1  | I  | Х        | L      | q0 to q5 | q6      | <del>q</del> 6 |
|                   | Н      | L  | 1  | h  | Х        | Н      | q0 to q5 | q6      | <del>q</del> 6 |
|                   | Н      | 1  | L  | I  | Х        | L      | q0 to q5 | q6      | <del>q</del> 6 |
|                   | Н      | 1  | L  | h  | Х        | Н      | q0 to q5 | q6      | <del>q</del> 6 |
| hold "do nothing" | Н      | Н  | Х  | Х  | Х        | q0     | q1 to q6 | q7      | <del>q</del> 7 |
|                   | Н      | Х  | Н  | Х  | Х        | q0     | q1 to q6 | q7      | <del>q</del> 7 |

#### [1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;

q = state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition;

X = don't care;

 $\uparrow$  = LOW-to-HIGH clock transition.



74HC\_HCT165

## 8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V)

| Symbol           | Parameter               | Conditions                                                                    |            | Min  | Max  | Unit |
|------------------|-------------------------|-------------------------------------------------------------------------------|------------|------|------|------|
| V <sub>CC</sub>  | supply voltage          |                                                                               |            | -0.5 | +7   | V    |
| I <sub>IK</sub>  | input clamping current  | $V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$                   | <u>[1]</u> | -    | ±20  | mA   |
| I <sub>OK</sub>  | output clamping current | $V_{O} < -0.5 \text{ V or } V_{O} > V_{CC} + 0.5 \text{ V}$                   | <u>[1]</u> | -    | ±20  | mA   |
| Io               | output current          | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ |            | -    | ±25  | mA   |
| I <sub>CC</sub>  | supply current          |                                                                               |            | -    | 50   | mA   |
| $I_{GND}$        | ground current          |                                                                               |            | -50  | -    | mA   |
| T <sub>stg</sub> | storage temperature     |                                                                               |            | -65  | +150 | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40  ^{\circ}\text{C} \text{ to } +125  ^{\circ}\text{C}$          |            |      |      |      |
|                  |                         | SO16 package                                                                  | [2]        | -    | 500  | mW   |
|                  |                         | (T)SSOP16 package                                                             | <u>[3]</u> | -    | 500  | mW   |
|                  |                         | DHVQFN16 package                                                              | <u>[4]</u> | -    | 500  | mW   |

- [1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- [2] Ptot derates linearly with 8 mW/K above 70 °C.
- [3] Ptot derates linearly with 5.5 mW/K above 60 °C.
- [4] Ptot derates linearly with 4.5 mW/K above 60 °C.

## 9. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

| Symbol           | Parameter                           | Conditions               | •   | 74HC165 |                 |     | 74HCT165 |                 |      |  |
|------------------|-------------------------------------|--------------------------|-----|---------|-----------------|-----|----------|-----------------|------|--|
|                  |                                     |                          | Min | Тур     | Max             | Min | Тур      | Max             |      |  |
| V <sub>CC</sub>  | supply voltage                      |                          | 2.0 | 5.0     | 6.0             | 4.5 | 5.0      | 5.5             | V    |  |
| VI               | input voltage                       |                          | 0   | -       | V <sub>CC</sub> | 0   | -        | V <sub>CC</sub> | V    |  |
| Vo               | output voltage                      |                          | 0   | -       | V <sub>CC</sub> | 0   | -        | V <sub>CC</sub> | V    |  |
| T <sub>amb</sub> | ambient temperature                 |                          | -40 | -       | +125            | -40 | -        | +125            | °C   |  |
| Δt/ΔV            | input transition rise and fall rate | V <sub>CC</sub> = 2.0 V  | -   | -       | 625             | -   | -        | -               | ns/V |  |
|                  |                                     | $V_{CC} = 4.5 \text{ V}$ | -   | 1.67    | 139             | -   | 1.67     | 139             | ns/V |  |
|                  |                                     | $V_{CC} = 6.0 \text{ V}$ | -   | -       | 83              | -   | -        | -               | ns/V |  |

## 10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol          | Parameter                | Conditions                                                   |      | 25 °C |      | -40 °C t | o +85 °C | -40 °C t | o +125 °C | Unit |
|-----------------|--------------------------|--------------------------------------------------------------|------|-------|------|----------|----------|----------|-----------|------|
|                 |                          |                                                              | Min  | Тур   | Max  | Min      | Max      | Min      | Max       |      |
| 74HC16          | 5                        |                                                              |      |       |      |          |          |          |           |      |
| V <sub>IH</sub> | HIGH-level               | V <sub>CC</sub> = 2.0 V                                      | 1.5  | 1.2   | -    | 1.5      | -        | 1.5      | -         | V    |
|                 | input voltage            | V <sub>CC</sub> = 4.5 V                                      | 3.15 | 2.4   | -    | 3.15     | -        | 3.15     | -         | ٧    |
|                 |                          | $V_{CC} = 6.0 \text{ V}$                                     | 4.2  | 3.2   | -    | 4.2      | -        | 4.2      | -         | ٧    |
| V <sub>IL</sub> | LOW-level                | V <sub>CC</sub> = 2.0 V                                      | -    | 0.8   | 0.5  | -        | 0.5      | -        | 0.5       | V    |
|                 | input voltage            | V <sub>CC</sub> = 4.5 V                                      | -    | 2.1   | 1.35 | -        | 1.35     | -        | 1.35      | ٧    |
|                 |                          | V <sub>CC</sub> = 6.0 V                                      | -    | 2.8   | 1.8  | -        | 1.8      | -        | 1.8       | ٧    |
| V <sub>ОН</sub> | HIGH-level               | $V_I = V_{IH}$ or $V_{IL}$                                   |      |       |      |          |          |          |           |      |
|                 | output voltage           | $I_{O} = -20 \mu A; V_{CC} = 2.0 V$                          | 1.9  | 2.0   | -    | 1.9      | -        | 1.9      | -         | ٧    |
|                 |                          | $I_{O} = -20 \mu A; V_{CC} = 4.5 V$                          | 4.4  | 4.5   | -    | 4.4      | -        | 4.4      | -         | ٧    |
|                 |                          | $I_{O} = -20 \mu A; V_{CC} = 6.0 \text{ V}$                  | 5.9  | 6.0   | -    | 5.9      | -        | 5.9      | -         | ٧    |
|                 |                          | $I_O = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$              | 3.98 | 4.32  | -    | 3.84     | -        | 3.7      | -         | ٧    |
|                 |                          | $I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$            | 5.48 | 5.81  | -    | 5.34     | -        | 5.2      | -         | V    |
| V <sub>OL</sub> | LOW-level                | $V_I = V_{IH}$ or $V_{IL}$                                   |      |       |      |          |          |          |           |      |
|                 | output voltage           | $I_O = 20 \mu A; V_{CC} = 2.0 V$                             | -    | 0     | 0.1  | -        | 0.1      | -        | 0.1       | V    |
|                 |                          | $I_O = 20 \mu A; V_{CC} = 4.5 V$                             | -    | 0     | 0.1  | -        | 0.1      | -        | 0.1       | V    |
|                 |                          | $I_O = 20 \mu A; V_{CC} = 6.0 \text{ V}$                     | -    | 0     | 0.1  | -        | 0.1      | -        | 0.1       | V    |
|                 |                          | $I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$               | -    | 0.15  | 0.26 | -        | 0.33     | -        | 0.4       | V    |
|                 |                          | $I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$             | -    | 0.16  | 0.26 | -        | 0.33     | -        | 0.4       | V    |
| lı              | input leakage<br>current | $V_I = V_{CC}$ or GND;<br>$V_{CC} = 6.0 \text{ V}$           | -    | -     | ±0.1 | -        | ±1       | -        | ±1        | μΑ   |
| I <sub>CC</sub> | supply current           | $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$ | -    | -     | 8.0  | -        | 80       | -        | 160       | μА   |
| Cı              | input capacitance        |                                                              | -    | 3.5   | -    | -        | -        | -        | -         | pF   |
| 74HCT1          | 65                       |                                                              |      |       |      |          |          | I .      |           |      |
| V <sub>IH</sub> | HIGH-level input voltage | V <sub>CC</sub> = 4.5 V to 5.5 V                             | 2.0  | 1.6   | -    | 2.0      | -        | 2.0      | -         | V    |
| V <sub>IL</sub> | LOW-level input voltage  | V <sub>CC</sub> = 4.5 V to 5.5 V                             | -    | 1.2   | 8.0  | -        | 0.8      | -        | 0.8       | V    |
| V <sub>ОН</sub> | HIGH-level               | $V_I = V_{IH}$ or $V_{IL}$ ; $V_{CC} = 4.5 \text{ V}$        |      |       |      |          |          |          |           |      |
|                 | output voltage           | I <sub>O</sub> = -20 μA                                      | 4.4  | 4.5   | -    | 4.4      | -        | 4.4      | -         | V    |
|                 |                          | $I_{O} = -4.0 \text{ mA}$                                    | 3.98 | 4.32  | -    | 3.84     | -        | 3.7      | -         | V    |
| V <sub>OL</sub> | LOW-level                | $V_I = V_{IH}$ or $V_{IL}$ ; $V_{CC} = 4.5 \text{ V}$        |      |       |      |          |          |          |           |      |
|                 | output voltage           | $I_O = 20 \mu A; V_{CC} = 4.5 V$                             | -    | 0     | 0.1  | -        | 0.1      | -        | 0.1       | V    |
|                 |                          | $I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$             | -    | 0.16  | 0.26 | -        | 0.33     | -        | 0.4       | V    |
| lı              | input leakage<br>current | $V_I = V_{CC}$ or GND;<br>$V_{CC} = 6.0 \text{ V}$           | -    | -     | ±0.1 | -        | ±1       | -        | ±1        | μА   |

 Table 6.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter                 | Conditions                                                                                                                 | 25 °C |     | -40 °C to | +85 °C | -40 °C to | Unit |       |    |
|------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------|-------|-----|-----------|--------|-----------|------|-------|----|
|                  |                           |                                                                                                                            | Min   | Тур | Max       | Min    | Max       | Min  | Max   |    |
| I <sub>CC</sub>  | supply current            | $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$                                                               | -     | -   | 8.0       | -      | 80        | -    | 160   | μΑ |
| Δl <sub>CC</sub> | additional supply current | per input pin;<br>$V_I = V_{CC} - 2.1 \text{ V};$<br>other inputs at $V_{CC}$ or GND;<br>$V_{CC} = 4.5 \text{ V}$ to 5.5 V |       |     |           |        |           |      |       |    |
|                  |                           | Dn and DS inputs                                                                                                           | -     | 35  | 126       | -      | 157.5     | -    | 171.5 | μΑ |
|                  |                           | CP CE, and PL inputs                                                                                                       | -     | 65  | 234       | -      | 292.5     | -    | 318.5 | μΑ |
| Cı               | input<br>capacitance      |                                                                                                                            | -     | 3.5 | -         | -      | -         | -    | -     | pF |

# 11. Dynamic characteristics

#### Table 7. Dynamic characteristics

GND (ground = 0 V);  $C_L = 50 \text{ pF}$  unless otherwise specified; for test circuit, see Figure 12

| Symbol          | Parameter         | Conditions                                                                |     | 25 °C |     | –40 °C t | o +85 °C | -40 °C to | +125 °C | Unit |
|-----------------|-------------------|---------------------------------------------------------------------------|-----|-------|-----|----------|----------|-----------|---------|------|
|                 |                   |                                                                           | Min | Тур   | Max | Min      | Max      | Min       | Max     |      |
| 74HC16          | 5                 |                                                                           |     |       |     |          | 1        |           |         |      |
| t <sub>pd</sub> | propagation delay | CP or $\overline{\text{CE}}$ to Q7, $\overline{\text{Q7}}$ ; see Figure 7 |     |       |     |          |          |           |         |      |
|                 |                   | V <sub>CC</sub> = 2.0 V                                                   | -   | 52    | 165 | -        | 205      | -         | 250     | ns   |
|                 |                   | V <sub>CC</sub> = 4.5 V                                                   | -   | 19    | 33  | -        | 41       | -         | 50      | ns   |
|                 |                   | V <sub>CC</sub> = 6.0 V                                                   | -   | 15    | 28  | -        | 35       | -         | 43      | ns   |
|                 |                   | $V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$                             | -   | 16    | -   | -        | -        | -         | -       | ns   |
|                 |                   | PL to Q7, Q7; see Figure 8                                                |     |       |     |          |          |           |         |      |
|                 |                   | V <sub>CC</sub> = 2.0 V                                                   | -   | 50    | 165 | -        | 205      | -         | 250     | ns   |
|                 |                   | V <sub>CC</sub> = 4.5 V                                                   | -   | 18    | 33  | -        | 41       | -         | 50      | ns   |
|                 |                   | V <sub>CC</sub> = 6.0 V                                                   | -   | 14    | 28  | -        | 35       | -         | 43      | ns   |
|                 |                   | $V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$                             | -   | 15    | -   | -        | -        | -         | -       | ns   |
|                 |                   | D7 to Q7, Q7; see Figure 9                                                |     |       |     |          |          |           |         |      |
|                 |                   | V <sub>CC</sub> = 2.0 V                                                   | -   | 36    | 120 | -        | 150      | -         | 180     | ns   |
|                 |                   | V <sub>CC</sub> = 4.5 V                                                   | -   | 13    | 24  | -        | 30       | -         | 36      | ns   |
|                 |                   | V <sub>CC</sub> = 6.0 V                                                   | -   | 10    | 20  | -        | 26       | -         | 31      | ns   |
|                 |                   | $V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$                             | -   | 11    | -   | -        | -        | -         | -       | ns   |
| t <sub>t</sub>  | transition        | Q7, Q7 output; see Figure 7 2                                             |     |       |     |          |          |           |         |      |
|                 | time              | V <sub>CC</sub> = 2.0 V                                                   | -   | 19    | 75  | -        | 95       | -         | 110     | ns   |
|                 |                   | V <sub>CC</sub> = 4.5 V                                                   | -   | 7     | 15  | -        | 19       | -         | 22      | ns   |
|                 |                   | V <sub>CC</sub> = 6.0 V                                                   | -   | 6     | 13  | -        | 16       | -         | 19      | ns   |

 Table 7.
 Dynamic characteristics ...continued

GND (ground = 0 V);  $C_L = 50 \text{ pF}$  unless otherwise specified; for test circuit, see Figure 12

| Symbol           | Parameter     | Conditions                               |     | 25 °C |     | -40 °C t | o +85 °C | -40 °C to +125 °C |     | Unit |
|------------------|---------------|------------------------------------------|-----|-------|-----|----------|----------|-------------------|-----|------|
|                  |               |                                          | Min | Тур   | Max | Min      | Max      | Min               | Max |      |
| t <sub>W</sub>   | pulse width   | CP input HIGH or LOW;<br>see Figure 7    |     |       |     |          |          |                   |     |      |
|                  |               | V <sub>CC</sub> = 2.0 V                  | 80  | 17    | -   | 100      | -        | 120               | -   | ns   |
|                  |               | V <sub>CC</sub> = 4.5 V                  | 16  | 6     | -   | 20       | -        | 24                | -   | ns   |
|                  |               | V <sub>CC</sub> = 6.0 V                  | 14  | 5     | -   | 17       | -        | 20                | -   | ns   |
|                  |               | PL input LOW; see Figure 8               |     |       |     |          |          |                   |     |      |
|                  |               | V <sub>CC</sub> = 2.0 V                  | 80  | 14    | -   | 100      | -        | 120               | -   | ns   |
|                  |               | V <sub>CC</sub> = 4.5 V                  | 16  | 5     | -   | 20       | -        | 24                | -   | ns   |
|                  |               | V <sub>CC</sub> = 6.0 V                  | 14  | 4     | -   | 17       | -        | 20                | -   | ns   |
| t <sub>rec</sub> | recovery time | PL to CP, CE; see Figure 8               |     |       |     |          |          |                   |     |      |
|                  |               | V <sub>CC</sub> = 2.0 V                  | 100 | 22    | -   | 125      | -        | 150               | -   | ns   |
|                  |               | V <sub>CC</sub> = 4.5 V                  | 20  | 8     | -   | 25       | -        | 30                | -   | ns   |
|                  |               | V <sub>CC</sub> = 6.0 V                  | 17  | 6     | -   | 21       | -        | 26                | -   | ns   |
| t <sub>su</sub>  | set-up time   | DS to CP, CE; see Figure 10              |     |       |     |          |          |                   |     |      |
|                  |               | V <sub>CC</sub> = 2.0 V                  | 80  | 11    | -   | 100      | -        | 120               | -   | ns   |
|                  |               | V <sub>CC</sub> = 4.5 V                  | 16  | 4     | -   | 20       | -        | 24                | -   | ns   |
|                  |               | V <sub>CC</sub> = 6.0 V                  | 14  | 3     | -   | 17       | -        | 20                | -   | ns   |
|                  |               | CE to CP and CP to CE; see Figure 10     |     |       |     |          |          |                   |     |      |
|                  |               | V <sub>CC</sub> = 2.0 V                  | 80  | 17    | -   | 100      | -        | 120               | -   | ns   |
|                  |               | V <sub>CC</sub> = 4.5 V                  | 16  | 6     | -   | 20       | -        | 24                | -   | ns   |
|                  |               | V <sub>CC</sub> = 6.0 V                  | 14  | 5     | -   | 17       | -        | 20                | -   | ns   |
|                  |               | Dn to PL; see Figure 11                  |     |       |     |          |          |                   |     |      |
|                  |               | V <sub>CC</sub> = 2.0 V                  | 80  | 22    | -   | 100      | -        | 120               | -   | ns   |
|                  |               | V <sub>CC</sub> = 4.5 V                  | 16  | 8     | -   | 20       | -        | 24                | -   | ns   |
|                  |               | V <sub>CC</sub> = 6.0 V                  | 14  | 6     | -   | 17       | -        | 20                | -   | ns   |
| t <sub>h</sub>   | hold time     | DS to CP, CE and Dn to PL; see Figure 10 |     |       |     |          |          |                   |     |      |
|                  |               | V <sub>CC</sub> = 2.0 V                  | 5   | 6     | -   | 5        | -        | 5                 | -   | ns   |
|                  |               | V <sub>CC</sub> = 4.5 V                  | 5   | 2     | -   | 5        | -        | 5                 | -   | ns   |
|                  |               | V <sub>CC</sub> = 6.0 V                  | 5   | 2     | -   | 5        | -        | 5                 | -   | ns   |
|                  |               | CE to CP and CP to CE; see Figure 10     |     |       |     |          |          |                   |     |      |
|                  |               | V <sub>CC</sub> = 2.0 V                  | 5   | -17   | -   | 5        | -        | 5                 | -   | ns   |
|                  |               | V <sub>CC</sub> = 4.5 V                  | 5   | -6    | -   | 5        | -        | 5                 | -   | ns   |
|                  |               | V <sub>CC</sub> = 6.0 V                  | 5   | -5    | -   | 5        | -        | 5                 | -   | ns   |

 Table 7.
 Dynamic characteristics ...continued

GND (ground = 0 V);  $C_L = 50 \text{ pF}$  unless otherwise specified; for test circuit, see Figure 12

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ymbol | Parameter     | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 25 °C |     | -40 °C t | o +85 °C | –40 °C to +125 °C |     | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|----------|----------|-------------------|-----|------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min | Тур   | Max | Min      | Max      | Min               | Max |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ıax   | maximum       | CP input; see Figure 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |       |     |          |          |                   |     |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | frequency     | V <sub>CC</sub> = 2.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6   | 17    | -   | 5        | -        | 4                 | -   | MHz  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30  | 51    | -   | 24       | -        | 20                | -   | MHz  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               | V <sub>CC</sub> = 6.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35  | 61    | -   | 28       | -        | 24                | -   | MHz  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               | V <sub>CC</sub> = 5.0 V; C <sub>L</sub> = 15 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   | 56    | -   | -        | -        | -                 | -   | MHz  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | dissipation   | F -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -   | 35    | -   | -        | -        | -                 | -   | pF   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HCT16 | 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |          |          |                   |     |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |          |          |                   |     |      |
| $ \begin{array}{ c c c c c c }\hline \hline PL \ to \ Q7, \ \overline{Q7}; see \ \underline{Figure \ 8} \\ \hline V_{CC} = 4.5 \ V \\ \hline V_{CC} = 5.0 \ V; \ C_L = 15 \ pF \\ \hline \hline D7 \ to \ Q7, \ \overline{Q7}; see \ \underline{Figure \ 9} \\ \hline V_{CC} = 4.5 \ V \\ \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline \ V_{CC} = 5.0 \ V; \ C_L = 15 \ pF \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   | 17    | 34  | -        | 43       | -                 | 51  | ns   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               | $V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -   | 14    | -   | -        | -        | -                 | -   | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               | PL to Q7, Q7; see Figure 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |       |     |          |          |                   |     |      |
| $ \begin{array}{ c c c c c c }\hline D7 \ to \ Q7, \ \overline{Q7}; \ see \ \underline{Figure} \ 9 \\ \hline V_{CC} = 4.5 \ V \\ \hline V_{CC} = 5.0 \ V; \ C_L = 15 \ pF \\ \hline t_t \\ \hline \hline transition \\ time \\ \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline \hline \hline \hline \hline \hline V_{CC} = 4.5 \ V \\ \hline V_{CC} = 4.5 \ V \\ \hline \hline$ |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   | 20    | 40  | -        | 50       | -                 | 60  | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               | $V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -   | 17    | -   | -        | -        | -                 | -   | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               | D7 to Q7, Q7; see Figure 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |       |     |          |          |                   |     |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   | 14    | 28  | -        | 35       | -                 | 42  | ns   |
| $t_{W} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |               | V <sub>CC</sub> = 5.0 V; C <sub>L</sub> = 15 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   | 11    | -   | -        | -        | -                 | -   | ns   |
| $t_{W}  \text{pulse width}  \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | transition    | Q7, Q7 output; see Figure 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |       |     |          |          |                   |     |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | time          | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   | 7     | 15  | -        | 19       | -                 | 22  | ns   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I     | pulse width   | CP input; see Figure 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |       |     |          |          |                   |     |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16  | 6     | -   | 20       | -        | 24                | -   | ns   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               | PL input; see Figure 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |       |     |          |          |                   |     |      |
| $V_{CC} = 4.5 \text{ V} \qquad 20  8  -  25  -  30$ $t_{su} \qquad \text{set-up time} \qquad DS \text{ to CP, } \overline{CE}; \text{ see } \underline{Figure \ 10} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20  | 9     | -   | 25       | -        | 30                | -   | ns   |
| $V_{CC} = 4.5 \text{ V} \qquad 20  8  -  25  -  30$ $t_{su} \qquad \text{set-up time} \qquad DS \text{ to CP, } \overline{CE}; \text{ see } \underline{Figure \ 10} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ec    | recovery time | PL to CP, CE; see Figure 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |       |     |          |          |                   |     |      |
| V <sub>CC</sub> = 4.5 V       20       2       -       25       -       30         CE to CP and CP to CE; see Figure 10       0       -       25       -       30         V <sub>CC</sub> = 4.5 V       20       7       -       25       -       30         Dn to PL; see Figure 11       -       -       25       -       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20  | 8     | -   | 25       | -        | 30                | -   | ns   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | u     | set-up time   | DS to CP, CE; see Figure 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |       |     |          |          |                   |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20  | 2     | -   | 25       | -        | 30                | -   | ns   |
| Dn to PL; see Figure 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |               | CE to CP and CP to CE;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |       |     |          |          |                   |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20  | 7     | -   | 25       | -        | 30                | -   | ns   |
| V <sub>CC</sub> = 4.5 V 20 10 - 25 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |               | Dn to PL; see Figure 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |       |     |          |          |                   |     |      |
| 20 10 20 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20  | 10    | -   | 25       | -        | 30                | -   | ns   |
| $t_h$ hold time DS to CP, $\overline{\text{CE}}$ and Dn to $\overline{\text{PL}}$ ; see $\underline{\text{Figure 10}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | hold time     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |       |     |          |          |                   |     |      |
| V <sub>CC</sub> = 4.5 V 7 -1 - 9 - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7   | -1    | -   | 9        | -        | 11                | -   | ns   |
| CE to CP and CP to CE; see Figure 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               | The state of the s |     |       |     |          |          |                   |     |      |
| V <sub>CC</sub> = 4.5 V 0 -7 - 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               | V <sub>CC</sub> = 4.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0   | -7    | -   | 0        | -        | 0                 | -   | ns   |

 Table 7.
 Dynamic characteristics ...continued

GND (ground = 0 V);  $C_L = 50$  pF unless otherwise specified; for test circuit, see Figure 12

| Symbol           | Parameter                           | ter Conditions                                   | 25 °C |     |     | -40 °C to | to +85 °C   -40 °C to +125 °C |     |     | Unit |
|------------------|-------------------------------------|--------------------------------------------------|-------|-----|-----|-----------|-------------------------------|-----|-----|------|
|                  |                                     |                                                  | Min   | Тур | Max | Min       | Max                           | Min | Max |      |
| f <sub>max</sub> | maximum                             | CP input; see Figure 7                           |       |     |     |           |                               |     |     |      |
|                  | frequency                           | V <sub>CC</sub> = 4.5 V                          | 26    | 44  | -   | 21        | -                             | 17  | -   | MHz  |
|                  |                                     | $V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$    | -     | 48  | -   | -         | -                             | -   | -   | MHz  |
| C <sub>PD</sub>  | power<br>dissipation<br>capacitance | per package; [3] $V_I = GND$ to $V_{CC} - 1.5$ V | -     | 35  | -   | -         | -                             | -   | -   | pF   |

- [1]  $t_{pd}$  is the same as  $t_{PHL}$  and  $t_{PLH}$ .
- [2]  $t_t$  is the same as  $t_{THL}$  and  $t_{TLH}$ .
- [3]  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$  where:

f<sub>i</sub> = input frequency in MHz;

f<sub>o</sub> = output frequency in MHz;

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs};$ 

C<sub>L</sub> = output load capacitance in pF;

V<sub>CC</sub> = supply voltage in V.

## 12. Waveforms



Measurement points are given in Table 8.

V<sub>OL</sub> and V<sub>OH</sub> are typical voltage output levels that occur with the output load.

Fig 7. The clock (CP) or clock enable (CE) to output (Q7 or Q7) propagation delays, the clock pulse width, the maximum clock frequency and the output transition times



Fig 8. The parallel load (PL) pulse width, the parallel load to output (Q7 or Q7) propagation delays, the parallel load to clock (CP) and clock enable (CE) recovery time





The shaded areas indicate when the input is permitted to change for predictable output performance Measurement points are given in Table 8.

 $\ensuremath{V_{OL}}$  and  $\ensuremath{V_{OH}}$  are typical voltage output levels that occur with the output load.

(1)  $\overline{\text{CE}}$  may change only from HIGH-to-LOW while CP is LOW, see Section 1.

Fig 10. The set-up and hold times from the serial data input (DS) to the clock (CP) and clock enable (CE) inputs, from the clock enable input (CE) to the clock input (CP) and from the clock input (CP) to the clock enable input (CE)



Measurement points are given in Table 8.

 $V_{\text{OL}}$  and  $V_{\text{OH}}$  are typical voltage output levels that occur with the output load.

Fig 11. The set-up and hold times from the data inputs (Dn) to the parallel load input (PL)

Table 8. Measurement points

| Туре     | Input           | Output             |                    |
|----------|-----------------|--------------------|--------------------|
|          | V <sub>I</sub>  | V <sub>M</sub>     | V <sub>M</sub>     |
| 74HC165  | V <sub>CC</sub> | 0.5V <sub>CC</sub> | 0.5V <sub>CC</sub> |
| 74HCT165 | 3 V             | 1.3 V              | 1.3 V              |

74HC\_HCT165





Test data is given in Table 9.

Definitions for test circuit:

 $R_T$  = Termination resistance should be equal to output impedance  $Z_o$  of the pulse generator.

 $C_L$  = Load capacitance including jig and probe capacitance.

R<sub>L</sub> = Load resistance.

S1 = Test selection switch

Fig 12. Test circuit for measuring switching times

Table 9. Test data

| Туре     | Input           |                                 | Load         | S1 position |                                     |
|----------|-----------------|---------------------------------|--------------|-------------|-------------------------------------|
|          | V <sub>I</sub>  | t <sub>r</sub> , t <sub>f</sub> | CL           | $R_L$       | t <sub>PHL</sub> , t <sub>PLH</sub> |
| 74HC165  | V <sub>CC</sub> | 6 ns                            | 15 pF, 50 pF | 1 kΩ        | open                                |
| 74HCT165 | 3 V             | 6 ns                            | 15 pF, 50 pF | 1 kΩ        | open                                |

## 13. Package outline

#### SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1



#### Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

| OUTLINE  |        | REFER  | EUROPEAN | ISSUE DATE |            |                                 |  |
|----------|--------|--------|----------|------------|------------|---------------------------------|--|
| VERSION  | IEC    | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                      |  |
| SOT109-1 | 076E07 | MS-012 |          |            |            | <del>99-12-27</del><br>03-02-19 |  |

Fig 13. Package outline SOT109-1 (SO16)

74HC\_HCT165

All information provided in this document is subject to legal disclaimers.

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1



| UNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | <b>A</b> <sub>3</sub> | b <sub>p</sub> | C            | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | HE         | L    | Lp           | Q          | ٧   | w    | у   | Z <sup>(1)</sup> | θ        |
|------|-----------|----------------|----------------|-----------------------|----------------|--------------|------------------|------------------|------|------------|------|--------------|------------|-----|------|-----|------------------|----------|
| mm   | 2         | 0.21<br>0.05   | 1.80<br>1.65   | 0.25                  | 0.38<br>0.25   | 0.20<br>0.09 | 6.4<br>6.0       | 5.4<br>5.2       | 0.65 | 7.9<br>7.6 | 1.25 | 1.03<br>0.63 | 0.9<br>0.7 | 0.2 | 0.13 | 0.1 | 1.00<br>0.55     | 8°<br>0° |

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE<br>VERSION |     | REFER  | ENCES | EUROPEAN   | ISSUE DATE                      |
|--------------------|-----|--------|-------|------------|---------------------------------|
|                    | IEC | JEDEC  | JEITA | PROJECTION | ISSUE DATE                      |
| SOT338-1           |     | MO-150 |       |            | <del>99-12-27</del><br>03-02-19 |

Fig 14. Package outline SOT338-1 (SSOP16)

74HC\_HCT165

All information provided in this document is subject to legal disclaimers.

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1



|      |           |                |                | ,                     |              | -,         |                  |            |      |            |   |              |            |     |      |     |                  |          |
|------|-----------|----------------|----------------|-----------------------|--------------|------------|------------------|------------|------|------------|---|--------------|------------|-----|------|-----|------------------|----------|
| UNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | <b>A</b> <sub>3</sub> | bp           | С          | D <sup>(1)</sup> | E (2)      | е    | HE         | L | Lp           | Q          | v   | w    | у   | Z <sup>(1)</sup> | θ        |
| mm   | 1.1       | 0.15<br>0.05   | 0.95<br>0.80   | 0.25                  | 0.30<br>0.19 | 0.2<br>0.1 | 5.1<br>4.9       | 4.5<br>4.3 | 0.65 | 6.6<br>6.2 | 1 | 0.75<br>0.50 | 0.4<br>0.3 | 0.2 | 0.13 | 0.1 | 0.40<br>0.06     | 8°<br>0° |

#### Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE<br>VERSION |       |     | REFER  | EUROPEAN | ISSUE DATE |            |                                  |
|--------------------|-------|-----|--------|----------|------------|------------|----------------------------------|
|                    |       | IEC | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                       |
| SOT4               | 403-1 |     | MO-153 |          |            |            | <del>-99-12-27</del><br>03-02-18 |
| SOT4               | 403-1 |     | MO-153 |          |            |            | <del>)</del>                     |

Fig 15. Package outline SOT403-1 (TSSOP16)

74HC\_HCT165

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserve

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1



Fig 16. Package outline SOT763-1 (DHVQFN16)

74HC\_HCT165

All information provided in this document is subject to legal disclaimers.

## 14. Abbreviations

#### Table 10. Abbreviations

| Acronym | Description                             |
|---------|-----------------------------------------|
| CMOS    | Complementary Metal-Oxide Semiconductor |
| DUT     | Device Under Test                       |
| ESD     | ElectroStatic Discharge                 |
| HBM     | Human Body Model                        |
| MM      | Machine Model                           |
| TTL     | Transistor-Transistor Logic             |

# 15. Revision history

### Table 11. Revision history

| Document ID         | Release date                                                                                                                                | Data sheet status                                      | Change notice     | Supersedes          |  |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------|---------------------|--|--|--|--|--|
| 74HC_HCT165 v.4     | 20151228                                                                                                                                    | Product data sheet                                     | -                 | 74HC_HCT165 v.3     |  |  |  |  |  |
| Modifications:      | Type numbers                                                                                                                                | Type numbers 74HC165N and 74HCT165N (SOT38-4) removed. |                   |                     |  |  |  |  |  |
| 74HC_HCT165 v.3     | 20080314                                                                                                                                    | Product data sheet                                     | -                 | 74HC_HCT165_CNV v.2 |  |  |  |  |  |
| Modifications:      | <ul> <li>The format of this data sheet has been redesigned to comply with the new identity<br/>guidelines of NXP Semiconductors.</li> </ul> |                                                        |                   |                     |  |  |  |  |  |
|                     | <ul> <li>Legal texts ha</li> </ul>                                                                                                          | ave been adapted to the new c                          | ompany name where | e appropriate.      |  |  |  |  |  |
|                     | <ul> <li>Package SOT763-1 (DHVQFN16) added to <u>Section 4 "Ordering information"</u> and <u>Section 13 "Package outline"</u>.</li> </ul>   |                                                        |                   |                     |  |  |  |  |  |
|                     | Family data added, see Section 10 "Static characteristics"                                                                                  |                                                        |                   |                     |  |  |  |  |  |
| 74HC_HCT165_CNV v.2 | December 1990                                                                                                                               | Product specification                                  | -                 | -                   |  |  |  |  |  |

## 16. Legal information

#### 16.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

#### 16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nexperia.com/profile/terms">http://www.nexperia.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74HC\_HCT165

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### 17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: <a href="mailto:salesaddresses@nexperia.com">salesaddresses@nexperia.com</a>

## 18. Contents

| 1    | General description                |
|------|------------------------------------|
| 2    | Features and benefits              |
| 3    | Applications                       |
| 4    | Ordering information 1             |
| 5    | Functional diagram 2               |
| 6    | Pinning information 3              |
| 6.1  | Pinning                            |
| 6.2  | Pin description                    |
| 7    | Functional description 4           |
| 8    | Limiting values 5                  |
| 9    | Recommended operating conditions 5 |
| 10   | Static characteristics 6           |
| 11   | Dynamic characteristics            |
| 12   | Waveforms                          |
| 13   | Package outline                    |
| 14   | Abbreviations                      |
| 15   | Revision history                   |
| 16   | Legal information                  |
| 16.1 | Data sheet status                  |
| 16.2 | Definitions                        |
| 16.3 | Disclaimers                        |
| 16.4 | Trademarks20                       |
| 17   | Contact information 20             |
| 18   | Contents                           |