Σειρά 2 Προαιρετικών Εργασιών

Κουτσουμπίδης Αθανάσιος AEM: 10419 athanasnk@ece.auth.gr

1. Ανάλυση δικωνικής κεραίας

Μήκος κύματος : λ=0.25m

Κεντρική συχνότητα : f_0 =1200MHz

α) Εύρος συχνοτήτων: 600 - 4800MHz

Θεωρώντας γραμμή τροφοδοσίας 50Ω έχουμε:

Μεταβολή του πραγματικού και του φανταστικού μέρους της Z_{in} της κεραίας

Παρατηρούμε πως με την παρούσα γραμμή τροφοδοσίας δεν επιτυγχάνεται καλή λειτουργία, καθώς τα μέγιστα του συντελεστή ανάκλασης παρατηρούνται σε συχνότητες διαφορετικές των πολλαπλασίων της \mathbf{f}_0 (\mathbf{f}_0 ,2 \mathbf{f}_0 ,3 \mathbf{f}_0 ,4 \mathbf{f}_0).

Για τον λόγο αυτό αλλάζουμε την χαρακτηριστική αντίσταση γραμμής τροφοδοσίας. Η καινούργια τιμή πρέπει να αντιστοιχεί με ένα από τα **μέγιστα** της Z_{in} , ώστε να πετύχουμε **προσαρμογή**. Έπειτα από δοκιμές, η καλύτερη λειτουργία παρατηρείται για χαρακτηριστική αντίσταση γραμμής τροφοδοσίας ίση με **289Ω**.

Μέτρο του νέου συντελεστή ανάκλασης

Παρατηρούμε πως πλέον ο συντελεστής ανάκλασης μεγιστοποιείται στις συχνότητες $1075 \text{MHz} \approx f_0$, $2350 \text{MHz} \approx 2f_0$, $3600 \text{MHz} = 3f_0$, $4800 \text{MHz} = 4f_0$.

β) Διαγράμματα ακτινοβολίας

$f_0=1200MHz$

Κατακόρυφα διαγράμματα ακτινοβολίας

$4f_0 = 4800MHz$

Παρατηρούμε πως όσο αυξάνεται η συχνότητα, αυξάνονται οι πλευρικοί λοβοί της κεραίας, κάτι το οποίο θέλουμε να αποφύγουμε. Η καλύτερη λειτουργία της κεραίας παρατηρείται στην συχνότητα \mathbf{f}_0 =1200MHz, όπου έχουμε δύο κύριους λοβούς.

2. Ελικοειδής κεραία

Κεντρική συχνότητα : f_0 =600MHz

Μήκος κύματος : λ=0.5m

α) Μεταβολή του μέτρου της Z_{in} της κεραίας

Παρατηρούμε μια ιδιαίτερα **ασταθή** συμπεριφορά της Z_{in} στις αρχικές συχνότητες. Για τον λόγο αυτό, επιλέγουμε η χαρακτηριστική αντίσταση γραμμής τροφοδοσίας να βρίσκεται μετά το σημείο 223.214 . Έστω λοιπόν **Char. Impedance=330Ω.**

β) Μέτρο του συντελεστή ανάκλασης

Παρατηρούμε πως δεν θα μπορούσαμε να χαρακτηρίσουμε την κεραία ευρυζωνική, καθώς η καλύτερη λειτουργία της παρατηρείται στην κεντρική συχνότητα f_0 =600MHz και περίπου στην $1.6f_0$ =980MHz.

γ) Κατακόρυφα και 3D διαγράμματα ακτινοβολίας

$0.1f_0 = 60MHz$

$0.3f_0 = 180MHz$

$0.7f_0 = 420MHz$

$f_0 = 600MHz$

$1.3f_0 = 780MHz$

$2f_0 = 1200MHz$

$4f_0 = 2400MHz$

- Παρατηρούμε πως στην συχνότητα 0.1f₀=60MHz
 η κεραία έχει ευρύπλευρη ακτινοβολία
- Όσο αυξάνεται η συχνότητα, κεραία γίνεται όλο και πιο ακροπυροδοτική, μέχρι και την συχνότητα f₀=600MHz. Έπειτα από αυτήν, χάνεται η ακροπυροδοτική της λειτουργία.
- Επιβεβαιώνουμε ότι η κεραία λειτουργεί στον αξονικό ρυθμό, από το γεγονός ότι ακτινοβολεί στην διεύθυνση του άξονά της.

Επομένως, συμπεραίνουμε ότι η καλύτερη λειτουργία της κεραίας παρατηρείται στην κεντρική της συχνότητα f_0 =600MHz, όπου έχει και τον μεγαλύτερο συντελεστή ανάκλασης.