Raport - Zaawansowane metody klasyfikacji oraz analiza skupień – algorytmy grupujące i hierarchiczne

Filip Michewicz 282239 Wiktor Niedźwiedzki 258882

10 czerwca 2025 Anno Domini

Spis treści

1	Zaa	wansowane metody klasyfikacji	3
	1.1	Rodziny klasyfikatorów/uczenie zespołowe	
		1.1.1 Drzewa klasyfikacyjne	3
	1.2	Metoda wektorów nośnych (SVM)	3
		1.2.1 Jądro liniowe	3
		1.2.2 Jądro wielomianowe	4
		1.2.3 Jądro radialne	6
		1.2.4 Jadro sigmoidalne	7
	1.3	Wnioski	Ć.
2	And	oligo glaupicó - olgowytrzy gwupujące i biowewskiego	ç
4	2.1	aliza skupień – algorytmy grupujące i hierarchiczne Charakterystyka danych	(
	$\frac{2.1}{2.2}$		11
	2.2	• • •	
			12
		· /	13
			14
	2.0		17
	2.3		19
			19
		J	21
	2.4	Wnioski	26
3	Pod	dsumowanie	26
$\mathbf{S}_{]}$	pis	wykresów	
	1	Liczność poszczególnych typów szkła	10
	2		10
	3	· - · · · · · · · · · · · · · · · · · ·	11
	4	· · · · · · · · · · · · · · · · · · ·	11
	5		12
	6		12
	7		13
	8		14
	9		15
	10		16
	10		17
	11	AGINED: average minage	Τ (

12	AGNES: average linkage	18
13	AGNES: average linkage	19
14	Connectivity	20
15	Dunn	20
16	Silhouette	21
17	PCA, kolory - rzeczywiste, kształt - wyniki, k=2	22
18		22
19	coś, k=2	23
20	coś, z medoidami, k=2	23
21		25
22	DIANA, k=3	26
Spis	tabel	
- P		
1	Średnia poprawa dokładności klasyfikacji za pomocą drzewa klasyfikacyjnego, z podziałem na	
		3
2		3
3	·	4
4		4
5	· ·	4
6	Jądro wielomianowe - cross-validation, bez skalowania	4
7	Jądro wielomianowe - cross-validation, ze skalowaniem	5
8		5
9	· ·	5
10	Badanie wpływu stopnia wielomianu na dokładność - wielokrotny podział, najbardziej dokładna	
	kombinacja gammy i kary dla opcji default (stopień 3	6
11	Jądro radialne - wielokrotny podział, bez skalowania	6
12	Jądro radialne - wielokrotny podział, ze skalowaniem	6
13	Jądro radialne - cross-validation, bez skalowania	6
14	Jądro radialne - cross-validation, ze skalowaniem	7
15	Jądro radialne - bootstrap, bez skalowania	7
16	Jądro radialne - bootstrap, ze skalowaniem	7
17	Jądro sigmoidalne - wielokrotny podział, bez skalowania	7
18	Jądro sigmoidalne - wielokrotny podział, ze skalowaniem	8
19		8
20		8
21	t o	8
22	1,	9
23	Opis zmiennych w zbiorze danych wine	9
24	Macierz błędów; metoda k-średnich	12
25	,	14
26	Macierz błędów; metoda k-średnich	14
27		15
28		16
29	ξ / 6 /	17
30	· · · · · · · · · · · · · · · · · · ·	18
31		19
32	Dane medoidów, k=2	23

1 Zaawansowane metody klasyfikacji

W pierwszej części zadania zastosujemy algorytmy ensemble learning (bagging, boosting i random forest) w celu poprawy dokładności cech klasyfikacyjnych. W drugiej natomiast poznamy i ocenimy nową metodę klasyfikacji - metodę wektorów nośnych (SVM).

Zadanie zostanie wykonane na zbiorze danych wine, którego szczegółowy opis znajduje się w poprzednim raporcie.

1.1 Rodziny klasyfikatorów/uczenie zespołowe

Wyróżniamy trzy algorytmy uczenia zespołowego (ang. ensemble learning):

- Bagging generujemy B-bootstrapowych replikacji zbioru uczącego, na podstawie których tworzymy B klasyfikatorów. Następnie łączymy je w klasyfikator zagregowany, który przydziela dane cechy do klas za pomocą reguły "głosowania większości" (w przypadku remisu wybiera losowo). Każdy klasyfikator powstaje niezależnie (w sensie takim, że wyniki poprzednich nie mają wpływu na generowanie nowych).
- boosting podobnie jak w bagging, tworzymy klasyfikator zagregowany złożony z wielu pojedynczych
 klasyfikatorów. Jednak różnica jest taka, że klasyfikatory powstają sekwencyjnie. Na początku każda
 cecha w zbiorze ma przypisaną taką samą wagę. Z każdą kolejną iteracją natomiast waga zwiększa się
 dla uprzednio źle sklasyfikowanych przypadków.
- random forest (dla drzew klasyfikacyjnych) metoda podobna do bagging z tą różnicą, że klasyfikatory powstają na podstawie różnych m-elementowych podzbiorach cech (m mniejsze bądź równe wszystkim cechom).

1.1.1 Drzewa klasyfikacyjne

MOŻE BYĆ NIEPOPRAWNIE W CHUJ

Tabela 1: Średnia poprawa dokładności klasyfikacji za pomocą drzewa klasyfikacyjnego, z podziałem na algorytmy uczenia zespołowego oraz liczbę replikacji

	1	5	10	20	30	40	50	100
Bagging	19.08	52.50	47.25	64.91	61.25	51.00	66.50	57.71
Random Forest	87.44	88.16	87.55	84.90	84.69	86.26	87.59	84.90
Boosting	73.49	70.44	73.56	74.10	79.94	75.98	75.62	67.32
Średnia	60.01	70.37	69.45	74.64	75.29	71.08	76.57	69.98

1.2 Metoda wektorów nośnych (SVM)

W tej części przeprowadzona będzie klasyfikacja na podstawie metody wektorów nośnych, z podziałem na różne funkcje jądrowe.

COŚ O TYM CO TO WOGÓLE JEST

1.2.1 Jądro liniowe

Tabela 2: Jadro liniowe - bez skalowania

	0.001	0.01	0.1	1	10	100	1000
Wielokrotny podział	37.00	97.17	97.67	96.00	97.33	96.50	97.50
Cross-validation	33.33	50.12	90.07	89.51	89.51	89.51	89.51
Bootstrap	38.32	96.95	97.17	95.68	96.50	97.24	96.49

Tabela 2: Jądro liniowe - bez skalowania (kontynuacja)

	0.001	0.01	0.1	1	10	100	1000
Średnio	36.22	81.41	94.97	93.73	94.45	94.42	94.50

Tabela 3: Jądro liniowe - ze skalowaniem

	0.001	0.01	0.1	1	10	100	1000
Wielokrotny podział	38.33	96.50	96.17	95.50	96.17	96.67	96.17
Cross-validation	44.39	49.70	92.19	92.51	92.51	92.51	92.51
Bootstrap	40.23	96.74	96.52	96.76	96.66	96.67	96.78
Średnio	40.99	80.98	94.96	94.92	95.11	95.28	95.15

1.2.2 Jądro wielomianowe

Tabela 4: Jądro wielomianowe - wielokrotny podział, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	35.67	94.83	95.67	92.50	96.17	95.50	95.17	96.67	95.17	94.83
0.01	35.50	93.83	94.00	96.00	95.50	94.50	96.17	94.17	94.33	95.17
0.1	41.00	95.50	96.83	94.67	95.33	95.33	95.50	93.50	94.33	95.50
1	35.83	95.17	94.83	92.83	95.00	96.00	94.83	95.67	95.33	94.17
10	41.67	95.83	95.33	96.50	95.17	94.67	95.67	95.17	96.33	94.50
100	86.00	95.33	96.67	94.00	94.83	94.67	95.00	95.17	95.33	95.33
1000	95.67	95.33	95.67	96.17	96.50	96.17	96.17	97.00	95.33	95.50

Tabela 5: Jądro wielomianowe - wielokrotny podział, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	38.17	96.00	94.67	96.33	95.33	96.00	95.33	95.50	94.17	93.83
0.01	39.67	95.83	95.17	96.50	94.00	96.33	95.67	94.83	96.33	96.83
0.1	35.83	95.83	96.50	96.33	94.67	95.17	94.83	95.33	95.17	95.33
1	38.17	94.00	96.83	94.83	95.67	94.67	96.67	94.67	96.00	95.33
10	40.00	93.83	96.17	95.33	96.00	95.00	95.67	96.00	96.50	95.17
100	87.67	96.17	95.33	95.83	95.83	96.17	95.50	96.00	96.17	94.50
1000	96.33	94.67	96.00	94.00	94.83	95.50	95.00	95.00	95.00	94.83

Tabela 6: Jądro wielomianowe - cross-validation, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.80	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11
0.01	39.80	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11
0.1	39.80	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11
1	39.80	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11
10	44.28	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11

Tabela 6: Jądro wielomianowe - cross-validation, bez skalowania (kontynuacja)

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
100	87.61	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11
1000	95.00	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11

Tabela 7: Jądro wielomianowe - cross-validation, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	40.00	97.78	96.08	96.67	96.67	96.67	96.67	96.67	96.67	96.67
0.01	40.00	96.08	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67
0.1	40.00	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67
1	40.00	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67
10	43.95	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67
100	88.24 96.11	96.67 96.67								

Tabela 8: Jądro wielomianowe - bootstrap, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	37.30	94.96	92.79	93.79	93.06	96.20	95.14	94.33	92.90	93.78
0.01	36.30	94.38	93.73	94.72	95.31	94.64	94.58	94.85	94.79	93.92
0.1	36.85	93.90	94.55	93.91	95.05	93.28	94.25	94.46	94.68	93.72
1	32.77	93.92	95.03	94.77	92.97	94.20	93.11	93.36	94.73	94.13
10	39.36	95.14	95.54	96.42	93.46	94.80	93.71	94.34	94.90	92.69
100	86.17	95.19	94.79	94.86	92.67	95.01	94.67	93.97	93.45	95.10
1000	94.38	94.81	93.22	93.29	94.01	94.91	93.04	94.51	94.13	94.48

Tabela 9: Jądro wielomianowe - bootstrap, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	35.97	93.62	94.60	94.90	93.00	93.75	94.94	92.08	94.30	94.27
0.01	37.09	94.76	94.26	94.54	94.29	95.00	95.70	93.39	95.81	93.90
0.1	39.87	95.09	94.28	93.77	94.31	92.36	94.92	94.60	95.24	94.70
1	32.07	93.55	94.86	94.43	93.36	93.91	94.14	94.54	95.61	93.10
10	39.96	94.39	94.78	94.43	94.73	94.75	93.79	94.75	95.14	95.35
100	87.85	95.95	96.22	94.10	93.82	94.00	93.64	94.64	93.62	94.45
1000	93.80	94.77	96.07	94.57	95.15	94.99	92.96	95.04	94.78	92.77

Najlepsza gamma: 10, najlepsza kara: 0.01. Robimy dla danych po standaryzacji, bo tak i chuj. Badamy tylko na podstawie wielokrotnego podziału, bo tak i chuj również.

Tabela 10: Badanie wpływu stopnia wielomianu na dokładność - wielokrotny podział, najbardziej dokładna kombinacja gammy i kary dla opcji default (stopień 3

	2	3	4	5	6	7
Dokładność	88.33	95.17	88.67	89	77.83	79.17

1.2.3 Jądro radialne

Tabela 11: Jądro radialne - wielokrotny podział, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
0.01	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
0.1	80.85	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
1	98.30	56.83	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
10	96.63	59.61	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
100	96.63	59.61	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
1000	96.63	59.61	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03

Tabela 12: Jądro radialne - wielokrotny podział, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
0.01	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
0.1	80.85	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
1	98.30	53.86	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
10	97.75	59.51	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
100	97.19	59.51	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
1000	97.19	59.51	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87

Tabela 13: Jądro radialne - cross-validation, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.80	39.80	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
0.01	39.80	39.80	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
0.1	79.74	39.80	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
1	98.89	57.84	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
10	97.22	61.76	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
100	95.56	61.76	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
1000	95.56	61.76	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8

Tabela 14: Jądro radialne - cross-validation, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97
0.01	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97
0.1	80.92	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97
1	98.30	57.45	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97
10	97.19	61.44	40.56	39.97	39.97	39.97	39.97	39.97	39.97	39.97
100	96.08	61.44	40.56	39.97	39.97	39.97	39.97	39.97	39.97	39.97
1000	96.08	61.44	40.56	39.97	39.97	39.97	39.97	39.97	39.97	39.97

Tabela 15: Jądro radialne - bootstrap, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.44	35.19	38.09	37.56	38.24	36.51	37.37	33.77	37.01	38.05
0.01	37.61	38.08	34.79	37.87	35.97	37.30	39.55	36.03	38.57	33.31
0.1	52.32	36.76	33.05	37.36	35.12	36.75	38.88	32.40	40.04	38.82
1	97.13	49.89	37.44	37.13	37.20	40.12	36.40	37.28	38.82	35.95
10	96.85	53.86	38.25	37.49	38.28	36.42	36.90	37.72	38.51	39.46
100	97.51	48.61	41.25	37.40	39.36	36.69	36.11	38.37	37.57	36.84
1000	96.04	51.69	39.35	37.67	40.31	40.71	35.66	36.45	39.61	36.03

Tabela 16: Jądro radialne - bootstrap, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	36.38	38.00	34.28	35.66	38.14	35.34	38.63	38.56	36.59	36.93
0.01	44.29	34.10	36.08	33.77	37.20	35.12	35.16	35.62	38.13	35.21
0.1	51.91	36.81	36.89	34.64	37.43	37.62	35.26	35.74	39.98	37.51
1	97.13	45.91	41.10	37.88	38.31	36.54	40.25	37.96	37.35	36.27
10	96.99	55.21	36.87	38.56	38.27	38.40	37.21	35.04	39.23	37.96
100	97.00	55.27	38.28	38.21	38.07	38.63	38.60	37.05	39.56	36.93
1000	96.72	55.64	35.79	36.66	36.84	35.85	32.43	36.38	38.67	36.04

${\bf 1.2.4}\quad {\bf Jadro~sigmoidalne}$

Tabela 17: Jądro sigmoidalne - wielokrotny podział, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	38.50	38.83	38.50	40.33	41.33	46.33	38.33	39.17	38.83	43.17
0.01	38.83	63.00	57.83	61.83	67.50	68.33	60.67	59.33	62.83	61.50
0.1	40.33	89.50	89.00	87.50	86.33	90.33	88.50	87.17	86.67	86.00
1	97.00	81.17	81.83	81.33	81.50	78.83	81.17	82.00	79.00	82.83
10	98.00	84.17	83.67	78.50	79.83	80.00	81.67	79.67	80.17	80.33
100	96.50	81.50	82.67	79.83	81.83	80.17	80.00	82.33	79.83	79.17
1000	97.17	79.33	79.83	79.83	80.83	79.33	82.33	81.00	77.83	82.50

Tabela 18: Jądro sigmoidalne - wielokrotny podział, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	40.17	39.33	42.50	36.33	45.67	37.50	36.83	37.83	40.50	37.00
0.01	39.00	64.17	63.67	63.00	65.67	64.50	70.83	55.50	70.00	57.00
0.1	38.50	89.33	86.50	86.33	86.83	88.33	85.33	87.17	88.00	87.83
1	98.50	83.00	79.50	79.50	82.33	80.00	78.17	81.83	80.50	83.83
10	98.00	83.67	78.33	82.83	79.17	78.00	81.67	81.00	84.17	82.67
100	96.17	80.67	79.83	81.50	82.17	78.00	78.50	80.33	79.83	80.33
1000	97.17	84.50	78.50	81.50	80.50	78.00	80.33	80.50	78.33	81.00

Tabela 19: Jądro sigmoidalne - cross-validation, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.93	39.93	39.93	39.93	39.93	39.93	39.93	39.93	39.93	39.93
0.01	39.93	79.31	78.76	79.28	79.28	79.28	79.28	79.28	78.73	78.73
0.1	42.75	87.03	88.17	87.06	87.06	87.58	87.61	85.39	85.95	85.95
1	97.78	83.82	82.61	80.88	76.41	76.37	76.47	78.14	78.66	80.88
10	99.44	81.54	79.74	80.85	80.36	77.03	76.47	76.54	80.39	80.39
100	96.05	82.65	78.63	79.67	79.22	75.33	74.77	75.95	78.73	80.39
1000	96.60	83.20	80.29	80.23	76.96	74.18	73.63	75.92	79.25	78.73

Tabela 20: Jądro sigmoidalne - cross-validation, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
0.01	39.87	75.75	74.64	75.20	75.20	75.20	75.20	75.20	75.20	75.20
0.1	42.68	88.20	87.03	87.06	87.61	86.50	86.50	87.06	86.50	85.95
1	98.30	81.41	80.88	78.63	79.25	80.36	78.14	77.06	78.73	76.47
10	98.89	77.55	80.98	74.15	76.37	75.85	77.03	74.22	75.92	75.33
100	97.16	81.41	81.47	74.15	75.23	77.48	78.10	77.03	77.61	77.58
1000	97.75	82.03	81.47	76.37	75.26	76.37	77.52	75.33	76.50	77.03

Tabela 21: Jądro sigmoidalne - bootstrap, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	38.03	35.42	32.60	33.82	37.92	40.67	36.77	36.83	40.69	38.03
0.01	38.76	56.17	55.34	57.54	67.60	62.66	62.88	51.72	57.66	61.78
0.1	35.08	85.15	87.53	86.61	86.67	87.19	87.28	86.17	86.12	84.70
1	96.43	79.20	83.35	79.20	80.82	81.15	81.00	84.18	78.42	80.30
10	97.78	83.04	80.24	76.51	79.92	80.63	80.50	79.17	82.40	81.75
100	97.11	76.26	79.87	78.22	77.83	79.00	77.89	79.94	78.86	83.10
1000	95.41	76.93	80.35	80.86	79.87	77.75	78.71	77.39	79.76	78.75

Tabela 22: Jądro sigmoidalne - bootstrap, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	35.96	33.55	36.45	38.58	40.31	41.96	39.79	33.05	42.64	38.63
0.01	44.24	56.08	58.36	57.75	65.58	64.09	62.02	56.66	70.28	60.61
0.1	37.47	88.41	86.62	85.84	85.19	88.23	84.05	84.71	84.97	84.48
1	96.89	83.02	78.30	77.96	81.46	79.68	78.83	81.34	80.43	79.81
10	96.90	80.66	78.31	79.23	78.28	78.48	83.28	80.58	79.72	79.16
100	95.16 96.86	81.85 80.48	77.85 80.60	77.58 80.61	82.50 81.92	82.16 80.41	82.94 82.63	80.50	77.31 82.08	79.11 79.93

elo

1.3 Wnioski

е

2 Analiza skupień – algorytmy grupujące i hierarchiczne

W tym zadaniu zastosujemy i porównamy ze sobą metody analizy skupień - k-średnich i PAM jako algorytmy grupujące, oraz AGNES - algorytm hierarhiczny.

Zadanie zostanie wykonane na zbiorze danych wine, którego szczegółowy opis znajduje się w poprzednim raporcie.

To zadanie zostanie wykonane już na innym danych, którymi będzie zbiór glass.

2.1 Charakterystyka danych

Zbiór danych glass zawiera 214 przypadków sześciu rodzajów szkła oraz 10 cech. Liczba brakujących danych wynosi 0.

Znaczenie poszczególnych cech oraz ich typ przedstawiono w tabeli 23.

Tabela 23: Opis zmiennych w zbiorze danych wine

Zmienna	Тур	Opis
RI	numeric	Współczynnik załamania światła
Na	numeric	Zawartość azotu (procent wagowy w odpowiednim tlenku, podobnie jak atrybuty 3-9)
Mg	numeric	Zawartość magnezu
Al	numeric	Zawartość aluminium
Si	numeric	Zawartość krzemu
K	numeric	Zawartość potasu
Ca	numeric	Zawartość wapnia
Ba	numeric	Zawartość baru
Fe	numeric	Zawartość żelaza
Type	factor	Klasa (typ szkła: 1, 2, 3, 5, 6, 7)

W poszczególnych przypadkach sumy procentów wagowych znajdują się w zakresie 99.02-100.1. Nadmiar spowodowany jest najprawdopodobniej przez błędy przy zaokrąglaniu do dwóch miejsc po przecinku. Niedomiar natomiast może być spowodowany przez zawartość innych pierwiastków chemicznych, niezawartych w zbiorze.

Wykres 1: Liczność poszczególnych typów szkła

Z Wykresu 1. można odczytać, że liczba obserwacji poszczególnych klas w zbiorze danych jest bardzo zróżnicowana. Siedemdziesiąt obserwacji lub więcej posiadają typy 1. oraz 2. (co stanowi 68.22% danych), reszta już po mniej niż 30 obserwacji.

Wykres 2: Wykres pudełkowy, zmienne bez standaryzacji

KURWA STANDARYZACJA MACHEN

Wykres 3: Wykres pudełkowe, po standaryzacji

Teraz jest zajebiście

Wykres 4: Wizualizacja danych, PCA

Chuja widać, ciekawe kto wybrał ten zbiór?

2.2 Wyniki grupowania

Przeprowadzamy dla rzeczywistej liczby etykiet, która wynosi ${\bf 6}.$

2.2.1 k-średnie

Wykres 5: PCA, kolory - rzeczywiste, kształt - wyniki

Gównianie mu poszło

Wykres 6: Wykres RI od Na, aby pokazać gdzie są wyznaczone centra skupień

Centra wywalone w kosmos, ale fajnie

Tabela 24: Macierz błędów; metoda k-średnich

	1	2	3	5	6	7
1	20	4	2	0	0	3

	1	2	3	5	6	7
$\overline{2}$	38	42	12	2	5	2
3	12	20	3	1	0	0
5	0	10	0	7	1	0
6	0	0	0	2	0	0
7	0	0	0	1	3	24

Dokładność (macierz): 44.86%.

Dokładność (matchClasses, "exact"): 44.86%.

2.2.2 Partitioning Around Medoids (PAM)

Wykres 7: coś

Też słabo

Wykres 8: coś, z medoidami

 ${\rm Meh}$

Tabela 25: Dane medoidów, k=6

	RI	Na	Mg	Al	Si	K	Ca	Ba	Fe	Type	PAM
44	1.52210	13.73	3.84	0.72	71.76	0.17	9.74	0.00	0.00	1	1
43	1.51779	13.21	3.39	1.33	72.76	0.59	8.59	0.00	0.00	1	2
33	1.51775	12.85	3.48	1.23	72.97	0.61	8.56	0.09	0.22	1	3
171	1.52369	13.44	0.00	1.58	72.22	0.32	12.24	0.00	0.00	5	4
205	1.51617	14.95	0.00	2.27	73.30	0.00	8.71	0.67	0.00	7	5
173	1.51321	13.00	0.00	3.02	70.70	6.21	6.93	0.00	0.00	5	6

Tabela 26: Macierz błędów; metoda k-średnich

	-1	0	2	۲	c	
	1	2	3	5	6	
1	17	2	2	0	0	3
2	40	43	12	2	4	3
3	13	21	3	2	0	0
5	0	10	0	6	2	0
6	0	0	0	1	3	23
7	0	0	0	2	0	0

Dokładność: 33.64%.

Dokładność (matchClasses, "exact"): 42.99%.

Gorzej niż k-średnie shocked emoji.

2.2.3 Agglomerative Nesting (AGNES)

2.2.3.1 Najbliższy sąsiad

Wykres 9: AGNES: single linkage

Tabela 27: Macierz błędów; agnes, najbliższy sąsiad

	1	2	3	5	6	7
1	70	74	17	11	8	28
2	0	1	0	0	0	0
3	0	1	0	0	0	0
5	0	0	0	2	0	0
6	0	0	0	0	1	0
7	0	0	0	0	0	1
_						

Dokładność: 35.05%.

Dokładność (matchClasses, "exact"): 36.45%.

2.2.3.2 Najdalszy sąsiad

Wykres 10: AGNES: complete linkage

Tabela 28: Macierz błędów; agnes, najdalszy sąsiad

	1	2	3	5	6	7
1	70	64	17	6	8	26
2	0	11	0	4	0	0
3	0	1	0	0	0	0
5	0	0	0	1	0	3
6	0	0	0	2	0	0
7	0	0	0	0	1	0

Dokładność: 38.32%.

Dokładność (match Classes, "exact"): 40.65%.

2.2.3.3 Średnia odległość

Wykres 11: AGNES: average linkage

Tabela 29: Macierz błędów; agnes, średnia odległość

	1	2	3	5	6	7
1	70	70	17	10	8	26
2	0	1	0	0	0	0
3	0	5	0	0	0	0
5	0	0	0	1	0	3
6	0	0	0	2	0	0
7	0	0	0	0	1	0

Dokładność: 33.64%.

Dokładność (matchClasses, "exact"): 37.85%.

2.2.4 Divisive clustering (DIANA)

2.2.4.1 Odległość euklidesowa

Wykres 12: AGNES: average linkage

Tabela 30: Macierz błędów; agnes, średnia odległość

	1	2	3	5	6	7
1	70	69	17	10	6	4
2	0	6	0	0	0	0
3	0	1	0	0	0	0
5	0	0	0	1	2	25
6	0	0	0	2	0	0
7	0	0	0	0	1	0

Dokładność: 35.98%.

Dokładność (matchClasses, "exact"): 48.6%.

2.2.4.2 Odległość Manhattan (taksówkowa)

Wykres 13: AGNES: average linkage

Tabela 31: Macierz błędów; agnes, średnia odległość

	1	2	3	5	6	7
1	70	69	17	10	6	4
2	0	6	0	0	0	0
3	0	1	0	0	0	0
5	0	0	0	1	2	25
6	0	0	0	2	0	0
7	0	0	0	0	1	0

Dokładność: 35.98%.

Dokładność (matchClasses, "exact"): 48.6%.

2.3 Ocena jakości grupowania i wizualizacja najlepszych wyników

2.3.1 Ocena

Legenda:

- 1 kmeans,
- 2 PAM,
- 3 AGNES,
- 4 DIANA.

Wykres 14: Connectivity

Connectivity - im mniejszy, tym lepszy:

- kmeans 2,
- PAM 2,
- AGNES 2 (najlepszy),
- DIANA 3.

Wykres 15: Dunn

Dunn - im większy, tym lepszy:

- kmeans 2,
- PAM 2,
- AGNES 2 (najlepszy),

• DIANA - 3.

Wykres 16: Silhouette

Dunn - im większy, tym lepszy:

- kmeans 2,
- PAM 2,
- AGNES 2 (najlepszy),
 DIANA 2.

2.3.2 Wizualizacja

2.3.2.1 k-średnie

Wykres 17: PCA, kolory - rzeczywiste, kształt - wyniki, k=2

Gównianie mu poszło

Wykres 18: Wykres RI od Na, aby pokazać gdzie są wyznaczone centra skupień, k=2

Centra wywalone w kosmos, ale fajnie

Dokładność (matchedClasses): 96.19%.

2.3.2.2 PAM

Wykres 19: coś, k=2

Też słabo

Wykres 20: coś, z medoidami, k=2

Meh $\label{eq:decomposition} \mbox{Dokładność (matchedClasses): } 94.29\%.$

Tabela 32: Dane medoidów, k=2

	RI	Na	Mg	Al	Si	K	Ca	Ba	Fe	Type	PAM
43	1.51779	13.21	3.39	1.33	72.76	0.59	8.59	0.00	0	1	1
198	1.51727	14.70	0.00	2.34	73.28	0.00	8.95	0.66	0	7	2

2.3.2.3 AGNES

Wykres 21: AGNES: complete linage, k=2

Tylko dla najdalszych sąsiadów, bo dał najlepsze wyniki.

Dokładność (matched Classes): 87.64%.

2.3.2.4 DIANA

Wykres 22: DIANA, k=3

Dokładność (matched Classes): 49.69%.

2.4 Wnioski

3 Podsumowanie

PS. Czas wykonywania kodu wynosi 0 minut i 42 sekund.