Exploring Data through Summary Statistics

After this video you will be able to...

- Define what a summary statistic is
- List three common summary statistics
- Explain how summary statistics are useful in exploring data

What are summary statistics?

- Quantities that summarize and describe a set of data values
- Measures of
 - Location: mean, median
 - Spread: standard deviation
 - Shape: skewness

Measures of Location

Describe central or typical value of dataset

Measures of Location - Example

Age
35
42
78
22
56
50
42
78
21
87

Age (sorted)
21
22
35
42
42
50
56
78
78
87

Mean = 51.1

Median = (42+50)/2 = 46

Mode = 42 & 78

Measures of Spread

Describe how dispersed or varied data is

minimum maximum standard variation deviation

Measures of Spread – Example

Age
35
42
78
22
56
50
42
78
21
87

Age (sorted)
21
22
35
42
42
50
56
78
78
87

```
Range = 87 - 21 = 66
```

Standard deviation = 23.426

Measures of Shape

Negatively skewed distribution or Skewed to the left Skewness < 0

Symmetrical Skewness = 0

Positively skewed distribution or Skewed to the right Skewness > 0

skewness

kurtosis

Measures of Shape – Example

Age

Skewness = 0.2995

Kurtosis = -1.2028

Measures of Dependence Describe relationship between variables

correlation

Measures of Dependence – Example

Height	Weight
180	68
153	70
204	84
133	44
208	81
142	53
122	40
168	50
175	64
200	72

Correlation = 0.8906

Statistics on Categorical Variables Describe number of categories and frequency of each category

Color/P et	White	Brown	Black	Orange	Total
Dog	34	44	32	0	110
Cat	25	2	43	0	70
Fish	1	0	5	33	39
Total	60	46	80	33	219

contingency table

Contingency Table - Example

Color/P et	White	Brown	Black	Orange	Total
Dog	34	44	32	0	110
Cat	25	2	43	0	70
Fish	1	0	5	33	39
Total	60	46	80	33	219

Check Dimensions

Check number of rows and columns

+# columns = # variables ?

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	75	0.1
2	2016-06-18	52	78	0.0
3	2010-06-19	50	78	0.0
4	2010-06-20	54	77	0.0

rows = # samples ?

Check Values

Check values in some samples

Should temperature values in F or C?

Is this correct?

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	24	0.1
2	2016-06-18	52	26	3,678.9
3	2010-06-19	50	26	0.0
4	2010-06-20	54	25	0.0

Is this date or timestamp?

Check Missing Values

ID	Date	MinTemp	MaxTemp	Rainfall
1	2010-06-17	56	75	🗲
2	2016-06-18	52	78	
3	2010-06-19	_K	78	0.1
4	2010-06-20	54	77	1

Does feature have mostly missing values?

How many samples have missing values?

Summary Statistics

- Measures of
 - Location, spread, shape, dependence
- Contingency table
 - For categorical variables
- Data validation
 - Dimensions, missing values