B-07 (ANSYS)

Формулировка задачи:

http://www.tychina.pro

Дано: Стержень между двумя заделками.

Hайти: эпюры N , σ , ε , w.

Аналитический расчёт (см. В-07) даёт следующие решения:

Задача данного примера: при помощи ANSYS Multyphisics получить эти же решения методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый:

U M > PlotCtrls > Style > Colors > Reverse Video

Скрываем пункты меню, не относящиеся к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера узлов и номера конечных элементов (один участок – один конечный элемент):

```
U_M > PlotCtrls > Numbering >
OTMETUTЬ NODE;

Установить Elem на "Element numbers";
Установить [/NUM] на "Colors&numbers"
> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > 
Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > 
Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

№	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи (задаём):U_M > Parameters > Scalar Parameters >F=60e3	Scalar Parameters
2	Таблица элементов:Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3.М_М > PreprocessorС_Р > ЕТ,1, ВЕАМЗ > EnterВторая строчка — контактный элемент CONTA178:М_М > Preprocessor > Element Type > Add/Edit/Delete > AddЕlement reference number пишем 2В левом окошке выбираем "Contact"В правом окошке "nd-to-nd 178"> ОК >В окошке Element types отметить вторую строчку "2 CONTA178"> Орtions >К2 установить "Penalty method"К4 установить "Real const GAP"К5 установить "Nodal coor - X"> ОК > Close	Defined Element Types: Type 1 BEAM3 Type 2 CONTA178 Add Options Delete Close Help

№	Действие	Результат
	Конечноэлементная модель	
6	Узлы 1, 2, 3, 4, 5 и 6 в точках О, С, К', К'', D и G: М_M> Preprocessor> Modeling> Create> Nodes> In Active CS > NODE пишем 1 X, Y, Z пишем 0, 0, 0 > Apply > NODE пишем 2 X, Y, Z пишем 1, 0, 0 > Apply > NODE пишем 3 X, Y, Z пишем 2*1, 0, 0 > Apply > NODE пишем 4 X, Y, Z пишем 2*1+Delta, 0, 0 > Apply > NODE пишем 5 X, Y, Z пишем 5 X, Y, Z пишем 6 X, Y, Z пишем 6 X, Y, Z пишем 4*1, 0, 0 > ОК Справа от рабочего поля нажимаем кнопку Fit	NODES NODE NUM X X X X X X X X X X X X X X X X X X
7	Cкрываем оси системы координат: U_M > PlotCtrls > Window Controls > Window Options > [/Triad] установить "Not Shown" > OK A Window Option In Cryst Vector Options In Cryst Vector In Cryst Vector Options In Cryst Vector Options In Cryst V	NODES NODE NUM 1 2 & .5 .6

http://www.tychina.pro

No	Действие	Результат
	Балочные конечные элементы (протягиваем по направлению оси X): Свойства участка стержня площалью A: M_M> Preprocessor> Modeling> Create> Elements> ElemAttributes> [TYPE]установить "1 ВЕАМЗ" [MAT]установить "1" [REAL]установить "2" > ОК	
8	Участки ① и ② - часть стержень площалью 2A: M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем на узлы 1 и 2 > Apply > 2 и 3 > OK	1 E-N 1 1 2 2 3 3 5 4 6
	Свойства участков стержня площалью A: M_M> Preprocessor> Modeling> Create> Elements> ElemAttributes> [REAL] установить "1" > OK	
	Участок ③ и ④ - часть стержня площалью 2A: M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем на узлы 4 и 5 > Apply > 5 и 6 > OK	
	Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	

№	Действие	Результат
11	Заделки: M_M> Preprocessor> Loads> Define Loads> Apply> Structural> > Displacement> On Nodes> Левой кнопкой мыши нажать на 1 и 6 узлы > ОК > Lab2 установить "All DOF" > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 E-N
12	Bнешние силы: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On nodes > Левой кнопкой мыши нажимаем на узел 2 > OK > Lab установить "FX" VALUE пишем 3*F > Apply > Левой кнопкой мыши нажимаем на узел 5 > OK Lab установить "FX" VALUE пишем -F > OK	1 E-N U ROT F

№	Действие	Результат
	Расчёт	
13	Запускаем расчёт: M_M > Solution > Solve > Current LS Синхронно появляются два окна: белое информационное и серое исполнительное. Белое закрываем, на сером нажимаем ОК. Расчёт пошёл. Когда он закончится, появится окно «Solution is done!». Закройте это окно. Расчёт окончен.	Time = 1 1.0E+13 1.0E+13 1.0E+12 1.0E+10 1.0E+10 1.0E+09 1.0E+09 1.0E+06 1.0E+06 1.0E+07 1.0E+06 1.0E+07 1.0E+01 1.0E

Лействие No Просмотр результатов Силовая схема: U M > PlotCtrls > Symbols > [/РВС] устанавливаем в положение "For Individual" Убираем галочку с "Miscellaneous" Surface Load Symbols устанавливаем Pressures Show pres and convect as устанавливаем Arrows > OK > В окне "Applied Boundary Conditions" U установить "Off" Rot установить "Off" F установить "Symbol+Value" М установить "Symbol+Value" 14 > OK > В окне "Reactions" NFOR установить "Off" NMOM установить "Off" RFOR установить "Symbol+Value" RMOM установить "Symbol+Value" > OK > Обновляем изображение: U M > Plot > Elements В рабочем поле видим следующее: - Красным цветом начерчена внешняя сила; - Малиновым цветом начерчены реактивные силы Минусы означают направление векторов против оси X.

Результат

Левая реакция равна 149,980 H, аналитический расчёт (*puc. 1a.*) показал её значение 150 H. Расхождение:

$$\Delta = \left| \frac{150 - 149,980}{150} \right| \cdot 100 \% = 0.01 \%$$

Правая реакция равна 29,980 H, аналитический расчёт (*puc. 1a.*) показал её значение 30 H. Расхождение:

$$\Delta = \left| \frac{30 - 29,980}{30} \right| \cdot 100 \% = 0.7 \%$$

Далее подсчитывать эти ничтожные погрешности не будем, ограничимся замечанием «погрешность менее процента».

No	Действие	Результат
15	Цветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK	

No	Действие	Результат
18	Cocmaeление эпюры осевого напряжения: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "LS,", "1" > Apply > "By sequence num", "LS,", "4" > OK > > Close	A theorem Table Oats
19	Прорисовка эпюры осевого напряжения: M_M > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "LS1" LabJ установить "LS4" > ОК Видим эпюру, состоящую из прямоугольников. Высоту каждого можно определить по его цвету, а можно посмотреть в виде списка: M_M > General Postproc > List Results > Elem Table Data > Отметить мышью строчку LS1 > ОК Получаем тот же результат, что и на рис. 1в. с погрешностями менее процента.	LINE STRESS STEP=1 SUB =1 TIME=1 LS1

№	Действие	Результат
20	Cocmaвление эпюры линейной осевой деформации: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "LEPEL,", "1" > Apply > "By sequence num", "LEPEL,", "4" > OK > > Close	Current table Cora
21	Прорисовка эпюры линейной осевой деформации: М_M > General Postproc > Plot Results > Contour Plot >	Comparison

No	Действие	Результат
22	Oceвые перемещения сечений стержня (таблица): M_M > General Postproc > List Results > Nodal Solution > Nodal Solution > DOF Solution > X-Component of displacement> > OK Получаем окно "PRNSOL Command" с табличкой, где NODE — номер узла конечноэлементной модели, а UX — его перемещение по горизонтали. Погрешности вычисления перемещений узлов менее процента.	PRINT U NODAL SOLUTION PER NODE ****** POST1 NODAL DEGREE OF FREEDOH LISTING ****** LOAD STEP= 1 SUBSTEP= 1 TIHE= 1.0000 LOAD CASE= 0 THE FOLLOHING DEGREE OF FREEDOH RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.49993E-03 3 0.39987E-03 4 -0.13341E-06 5 -0.19987E-03 6 0.0000 HAXIHUH ABSOLUTE VALUES NODE 2 VALUE 0.49993E-03

Результат

Получаем ту же самую эпюру, которая изображёна на puc. 1d.

Нулевая отметка, к сожалению не выделяется. Выполнить это можно только в графическом редакторе:

> OK

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.