

Sistemas Digitais Experimental Introdução

Professor Ricardo Kerschbaumer ricardo.kerschbaumer@ifc.edu.br

http://professor.luzerna.ifc.edu.br/ricardo-kerschbaumer/

Plano de Ensino

http://professor.luzerna.ifc.edu.br/ricardo-kerschbaumer/

Conceitos introdutórios

Sistemas Digitais

Decimal	BCD	Gray	Decimal	BCD	Gray
0	0000	0000	5	0101	0111
1	0001	0001	6	0110	0101
2	0010	0011	7	0111	0100
3	0011	0010	8	1000	1100
4	0100	0110	9	1001	1101

Instituto Federal Portas lógicas e álgebra booleana

Porta "E"

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Porta "OU"

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Porta "Inversora"

Α	Υ
0	1
1	0

$$\overline{X + Y} = \overline{X}\overline{Y}$$

Circuitos lógicos combinacionais

Circuitos lógicos sequenciais

Aritmética digital

Exemplo de Somador

Er	Entradas			das
Α	В	R	S	R
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Contadores e registradores

Circuitos Integrados

(Medium Scale Integration)

INSTITUTO FEDERAL Dispositivos lógicos programáveis

Simulações

Simulide - https://www.simulide.com/

Simulações

hneemann digital - https://github.com/hneemann/Digital

Simulações

Tinkercad - https://www.tinkercad.com/

Tensão elétrica

A tensão elétrica, que em volt (V) é a diferença de potencial elétrico entre dois pontos.

Simbologia para fontes de tensão

Tensão elétrica

Corrente elétrica

O deslocamento de cargas elétricas para uma determinada direção e sentido é o que se chama de **corrente elétrica**. A unidade padrão para medida de intensidade de corrente é o **ampère (A)**.

Múltiplos e submúltiplos

Múltiplo/submúltiplo	Símbolo	Valor
Giga	G	10^{9}
Mega	M	10^{6}
Kilo	K	10^{3}
mili	m	10^{-3}
micro	μ	10^{-6} 10^{-9}
nano	n	10^{-9}

Condutores e isolantes

Com relação a condução de corrente elétrica podemos classificar os materiais como condutores, isolantes ou semicondutores de corrente elétrica.

Materiais Condutores

Dizemos que um material é condutor, quando os elétrons são fracamente ligados ao núcleo e ao serem submetidos a uma diferença de potencial passam a se locomover no interior do material. Podemos citar como exemplo o ouro, a prata, o cobre e outros.

Materiais Isolantes

Dizemos que um material é isolante, quando os elétrons se encontram fortemente presos em suas ligações, evitando a circulação desses elétrons. Podemos citar como exemplo, a borracha, a mica, a porcelana, etc.

Materiais Semicondutores

Dizemos que um material é semicondutor se sua resistência se encontra entre a dos condutores e a dos isolantes. Os principais semicondutores utilizados são:

Silício (Si)

Germânio (Ge)

Circuitos elétricos

Costuma-se chamar de circuito elétrico um caminho fechado por onde a corrente elétrica pode circular.

Resistência elétrica

A resistência elétrica é a capacidade de um corpo qualquer se opor à passagem de corrente elétrica mesmo quando existe uma diferença de potencial aplicada. A unidade de medida de resistência elétrica é dada em **ohms** (Ω).

A figura apresenta o símbolo adotado nos diagramas eletrônicos para o resistor.

Cor	1º Faixa	2ª Faixa	3ª Faixa	Multiplicador	Tolerância
Preto	0	0	0	x1Ω	
Marrom	1	1	1	x 10 Ω	+/- 1%
Vermelho			2	× 100 Ω	11.2%
Laranja	3	3	3	x 1K Ω	
Amarelo	4	4	4	x 10K Ω	
Verde	5	5	5	× 100K Ω	11- 5%
Azul	6	6	6	×1MΩ	+/- 25%
Violeta	7	7	7	x 10M Ω	+/1%
Cinza	8	8	8		+/05%
Branco	9	9	9		
Dourado				x.1Ω	+/- 5%
Prateado				χ.01Ω	+/- 10%

Professor Ricardo Kerschbaumer

Lei de Ohm

A 1ª lei de Ohm revela como as 3 grandesas básicas da eletricidade (tensão, corrente e resistência) se relacionam. Esta lei é dada pela equação.

V = R·I onde V é a tensão, R a resistência e I a corrente.

Potência elétrica

A potência é um indicativo da quantidade de conversão de energia que pode ser realizado em um certo período de tempo. Ou seja, a quantidade de energia que está realizando trabalho. A unidade de potência é dada em watts (W). A potência é normalmente simbolizada pela letra P. De forma simplificada a potência pode ser calculada da seguinte forma.

$$P = V \cdot I$$

$$P = R \cdot I^2$$

$$P = \frac{V^2}{R}$$

Frequência

A frequência está relacionada com o número de vezes que um sinal se repete em um segundo. Ou seja, o número de ciclos por segundo. A unidade de medida de frequência é o Hertz (Hz). A frequência de um sinal pode ser obtida do período pela equação.

$$F = \frac{1}{T}$$

onde F é a frequência em Hz e T é o período em segundos (s).

Voltímetro

Instrumento utilizado para a medida de tensão elétrica.

Amperimetro

Instrumento de medida da corrente elétrica.

Ohmímetro

Instrumento utilizado para a medição de resistência elétrica.

Multímetro

É um instrumento de medida multifuncional que integra funções de voltímetro, amperímetro e ohmímetro, além de outras funções relacionadas com o teste de dispositivos eletrônicos.

Fonte ajustável

É um equipamento utilizado para gerar tenções contínuas para alimentação de circuitos eletrônicos. Além do ajuste da tensão de saída pode ter ajuste de corrente máxima.

Protoboard

Protoboard ou placa de ensaio ou ainda matriz de contato, (breadboard em inglês) é uma placa com furos e conexões condutoras para montagem de circuitos eletrônicos experimentais.

Protoboard

Ligações no protoboard

Protoboard

Diodos Emissores de Luz (LEDs)

	LEDs				
Cor do LED	Tensão em Volts (V)	Corrente em Miliamperes (mA)			
Vermelho	1,8V -2,0V	20 mA			
Amarelo	1,8V - 2,0V	20 mA			
Laranja	1,8V - 2,0V	20 mA			
Verde	2,0V - 2,5V	20 mA			
Azul	2,5V - 3,0V	20 mA			
Branco	2,5V - 3,0V	20 mA			

Diagramas esquemáticos

Diagramas esquemáticos

Professor Ricardo Kerschbaumer