Summer Internship : Brain PET Image Denoising

2022.08.19

Soyon Park

Outline

Brain PET Image Denoising

- 1. Introduction
- 2. Method
- 3. Results
- 4. Discussion
- 5. Conclusion
- 6. Future work

1. Introduction

- PET (Positron Emission Tomography) Imaging
 - Low spatial resolution and signal-to-noise ratio <u>limit</u> the detection and quantitative accuracy of PET imaging

⇒ To improve PET image quality, denoising has become a crucial pre-processing step for PET imaging

1. Introduction

- PET image: three-dimensional, volumetric medical data
- 3D Medical Image

1. Introduction

Learning Algorithm

1. Dataset

- Dataset: ¹⁸F-Florbetaben Brain PET data of 47 patients (40 for Training/ 7 for Testing)
- β-amyloid neuritic plaque density in the brain \Rightarrow Alzheimer's disease diagnosis
- ¹⁸F-Florbetaben is a radiotracer highly specific and sensitive for the β-amyloid neuritic plaque density
- The intake of β-amyloid deposits in ¹⁸F-FBB informs that it is the progress of Alzheimer's disease

Normal and positive 18F-florbetaben scans in regions of interest.

1. Dataset

- List-mode PET data
- : 20 data bins with 30 second duration and 600 second reference data
- PET image matrix size: $200 \times 200 \times 109$, pixel size: $2.04 \times 2.04 \times 2.03 \ mm^3$

2. Network Architecture and Training

2. Network Architecture and Training

2D Data Preprocessing

2. Network Architecture and Training 2D U-Net

2. Network Architecture and Training 2D U-Net

2. Network Architecture and Training 2D U-Net

2. Network Architecture and Training

3D U-Net

3D Data Preprocessing

- $-32 \times 32 \times 32$ patch
- A total of 3200 possible patch center positions are calculated by applying a small random perturbation to the equally distanced 3D grids
 - → Randomly select 400 patches
- Patch Thresholding:

$$p = (1 - |r - 0.5| \times r)$$

p: The relative probability that a patch center position is selected, r: ratio of foreground pixels in the patch

2. Network Architecture and Training

ACS U-Net

ACS U-Net

2. Network Architecture and Training

Normalization

- 99th percentile
- \Rightarrow Normalize wide dynamic range of PET image intensity (0~thousands) \rightarrow (0~1.xx)

Training

- Batch size: 16
- Epoch: 30
- Learning rate: 0.0001(Initial)/ "ReduceOnPlateau" learning rate scheduler
- Optimization: Adam
- Clinical PET images: L2 loss (mean square error)

- Models
- 2D/3D/ACS Convolution
 - 2D U-Net
 - Transaxial
 - Coronal
 - Sagittal
 - Transaxial+Coronal+Sagittal
 - Tri-planar: (Transaxial, Coronal, Sagittal) 3 channels
 - 3D U-Net
 - 3D patch based
 - ACS U-Net
 - 3D patch based
- Learning Algorithm
 - Noise2Clean
 - Noise2Noise

- 3. Image Analysis
- 1) PSNR

$$PSNR = 10 \log_{10} \left(\frac{MAX^2}{MSE} \right)$$

MAX: maximum value of the reference image, MSE: mean square error between the tested and reference image

- **PSNR**: common method to **measure the fidelity** that is independent of the dynamic range of images
- 2) SSIM

$$SSIM = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

$$x, y: compared images, \quad \mu: mean, \sigma: variance, \quad C_1, C_2: constants$$

- SSIM: take advantage of the human visual system, assessing image quality by extracting structural information and calculating the similarity by three comparisons: Luminance, Contrast, and Structure

3. Results PSNR: 2D/3D U-Net N2C/N2N

U-Net	Data	Noise2Clean		Noise2Noise	
Input			33.	11	
2D U-Net	Transaxial	36.85	37.20	36.57	37.20
	Coronal	37.74		37.86	
	Sagittal	37.01		37.17	
	Transaxial +Coronal +Sagittal	37.08		36.15	
	Tri-planar (3 channels)	36.17		36.28	
3D U-Net	3D Patch	37.36		37.34	
ACS U-Net	3D Patch	37.43		37.41	

3. Results SSIM: 2D/3D U-Net N2C/N2N

U-Net Dat		Noise2Clean		Noise2Noise		
Input		0.9893				
2D U-Net	Transaxial	0.9954	0.9956	0.9951	0.9955	
	Coronal	0.9959		0.9956		
	Sagittal	0.9954		0.9957		
	Transaxial +Coronal +Sagittal	0.9948		0.9948		
	Tri-planar (3 channels)	0.9946		0.9944		
3D U-Net	3D Patch	0.9972		0.9971		
ACS U-Net	3D Patch	0.9975		0.9974		

N2C Results

N2N Results

4. Discussion

Region of Interest (ROI)

- Training the image only with the ROI → improve the performance of denoising
- Brain would be the ROI and background should be excluded
- If the background of an image is included when measuring PSNR and SSIM
- ⇒ Quality of noisy image can be overestimated

5. Conclusion

- We compared 2D U-Net and 3D U-Net for Noise2Clean and Noise2Noise framework to reduce the noise in short scan time ¹⁸F-Florbetaben brain PET images
- The applied deep learning methods showed remarkable performance for reducing noise in PET images
- Noise2Noise gave comparable results to Noise2Clean without using reference images
- ⇒ Self-supervised methods can replace the traditional supervised method

6. Future Work

Other Convolution Methods

- Transfer Learning
 - Hybrid Convolution: H-Dense U-Net
 - Uses 2D pretrained networks with multi-slice inputs and 3D networks that are initialized randomly with volumetric inputs together for training

Other Learning Methods

- Self-supervised Methods
 - Noiser2Noise
 - Image denoising without access to clean training examples or access to paired noisy training examples
 - requires only a single noisy realization of each training example and a statistical model of the noise distribution

Thank you for your attention

For more information,

Codes on GitHub: https://github.com/soyon007

Email Address: soyon0304@naver.com