Solving a recurrence by expansion

Example:
$$T(n) = T(n-3)+2$$
 for $n > 0$; $T(0) = T(1)=T(2)=5$.

Step 1: Calculate the first few values to get some insight and understanding

N	$T(\kappa)$
0	5
2	5
3	
23456	7
6	q
1	q
7 8	

Step 2: Expand the definition and look for a pattern

$$T(n) = T(n-3)+2$$

$$= T(n-6)+2+2$$

$$= T(n-9)+2+2+2$$

Here we assumed n is a multiple of 3, for simplicity

So we conclude
$$T(n) = 5 + \frac{2n}{3}$$
, when n is a multiple of 3.

Step 3: check agreement with step 1. Also use an online tool like Wolfram Alpha to check the answer. (but it way with help!!)