Tema 2: Sistemas dinámicos unidimensionales Resolución numérica de ecuaciones en derivadas parciales

Alicia Cordero, Juan R. Torregrosa

Contenido

- 1 Conceptos básicos
 - Representación gráfica de EDO
 - Teorema fundamental local
 - Flujo de una ecuación diferencial
- 2 Dinámica de las EDOs autónomas
 - EDO libre de parámetros
 - EDO uniparamétrica
 - Bifurcaciones
- Referencias

Representación gráfica de EDO: campo de direcciones

- No siempre es posible o fácil representar la solución de la EDO
 - Campo de direcciones
- Derivada: pendiente de la recta tangente en un punto

Campo de direcciones

- \blacksquare Representa el comportamiento de las infinitas soluciones en cada punto (t,x)
- \blacksquare En cada punto (t,x) se representa como un vector de pendiente f(t,x)
- Dicho vector es tangente a la solución de la EDO
- \blacksquare Invariante respecto a las condiciones iniciales \Rightarrow tangente a cualquier solución particular

Ejemplo:
$$x' = x - t, x(0) = 0$$

- EDO lineal
- Solución general: $x(t) = Ce^t + t + 1$
- Solución particular: $x(t) = -e^t + t + 1$

Conceptos básicos

Un sistema dinámico es una aplicación $\phi: \mathbb{R} \times S \to S$, $\phi \in \mathcal{C}^1(\mathbb{R} \times S)$, donde $S \subseteq \mathbb{R}^n$ abierto o bien $S \subseteq E$, siendo E un espacio vectorial normado, tal que satisface:

- 1. ϕ_0 es la identidad,
- 2. $\phi_t \circ \phi_s = \phi_{t+s}$.

Se denota $\phi_t(x) = \phi(t, x)$ y a la familia $\{\phi_t(x)\}_{t \in \mathbb{R}}$ se le llama sistema dinámico sobre S.

- Todas las ϕ_t tienen inversa, ϕ_{-t} .
- A todo sistema dinámico se le puede asociar una ecuación diferencial (escalar o vectorial), x' = f(x), definiendo el campo vectorial $f: S \to E$. Entonces,

$$f(x) = \frac{d}{dt}\phi_t(x)|_{t=0}$$
, para todo $x \in S$.

- La soluciones de la ecuación diferencial en el sistema dinámico reciben el nombre de órbitas. Si son cerradas, se llaman órbitas periódicas.
- Suele considerarse $(t_0, x_0) = (0, 0)$.

Existencia y unicidad de la solución

Resolver la ecuación diferencial x' = f(x) es encontrar una curva solución $u: J \to W$, con J intervalo real tal que, para todo $t \in J$,

$$u'(t) = f(u(t)),$$

donde $f: W \to E, W \subset E$ abierto, tal que x' = f(x).

Teorema fundamental local

Sea E un espacio vectorial normado, $W \subset E$ y sea $f: W \to E$ de clase \mathcal{C}^1 . Entonces existe $a \in J, \ a > 0$, y una única solución u de la ecuación diferencial x' = f(x) que satisface la condidión inicial $x(0) = x_0$, tal que $u: (-a, a) \to W$.

Dependencia de la solución respecto a las condiciones iniciales

Sea $W \subset E$ abierto y $f: W \to E$ Lipschitziana. Sean z(t) e y(t) dos soluciones del sistema dinámico x' = f(x) en el intervalo $[t_0, t_1] \subset J$. Entonces, para todo $t \in [t_0, t_1]$,

$$|y(t) - z(t)| \le e^{k(t-t_0)}|y(t_0) - z(t_0)|,$$

donde k es la condición de Lipschitz.

Existencia y unicidad de la solución

Ejemplo: Consideremos el PVI

$$x' = \frac{1}{2}(x^2 - 4)(\sin^2(x^3) + \cos(x) - 2), \quad x(0) = \frac{1}{2}.$$

No es fácil resolver este problema analíticamente.

Sin embargo, es fácil ver que x=2 anula la parte derecha de la ecuación. Luego $x_1(t)=2$ es una solución de equilibrio.

Supongamos que $x_2(t)$ es una solución del problema que cumple la condición inicial, $x_2(0) = \frac{1}{2}$.

Por el Teorema de existencia y unicidad, $x_2(t) < 2$, ya que de otro modo ambas soluciones se cortarían.

Flujo de una ecuación diferencial

Sea x'=f(x) una ecuación diferencial tal que $f:W\to E,\,f\in\mathcal{C}^1,\,W\subset E$ abierto. Para cada $y\in W$ existe una única solución $\phi(t)$ con $\phi(0)=x_0$ definida en un intervalo abierto maximal $J(x_0)\subset\mathbb{R}$. Para indicar la dependencia de la condición inicial, denotamos

$$\phi(t) = \phi(t, x_0)$$
, luego $\phi(0, x_0) = x_0$.

Definamos el conjunto

$$\Omega = \{(t, x_0) \in \mathbb{R} \times W \text{ tales que } t \in J(x_0)\}.$$

A la aplicación

$$\phi: \Omega \to W$$
, tal que $\phi(t, x_0) = \phi_t(x_0)$

se la conoce como flujo de la ecuación diferencial.

Ejemplo:

Soa x' = Ax, siendo $A \in \mathcal{L}(E)$. Entonces, su flujo es $\phi_t(x_0) = e^{tA}x_0$. Supongamos A = 2 y $x_0 = 0.5$ (véase gráfica); el flujo define conjuntos de soluciones dependientes de la estimación inicial usada.

Flujo de una ecuación diferencial

El flujo ϕ de una ecuación diferencial satisface las siguientes propiedades:

- $\bullet \phi_{s+t}(x) = \phi_s(\phi_t(x)).$
- El conjunto Ω es abierto en $\mathbb{R} \times W$ y $\phi : \Omega \to W$ es una aplicación de clase \mathcal{C}^1 .
- Sea $(t, x_0) \in \Omega$; entonces existe un entorno $U \subset W$ de x_0 con $t \times U \subset \Omega$. La aplicación $\phi_t(x), \phi_t : U \to W$, envía U al conjunto abierto V y ϕ_{-t} está definida en V y envía V a U.

Dada una ecuación diferencial, su flujo define un sistema dinámico.

Conceptos fundamentales

■ EDO autónoma: no presenta estímulo externo

$$x' = f(x)$$

■ Punto fijo o de equilibrio: no existe variación temporal (el punto permanece invariante)

$$x' = f(x) = 0 \to x^*(t) = x^* \forall t \in \mathbb{R}$$

- Clasificación de los puntos de equilibrio x^* :
 - $f'(x^*) > 0$ Fuente (Repulsor, inestable)
 - $f'(x^*) < 0$ Sumidero (Atractor, estable)
 - $f'(x^*) = 0$ Nodo
- Línea de fase: representa el comportamiento de los puntos de equilibrio

Figura: (a) atractor; (b) repulsor; (c) nodo

Cómo dibujar líneas de fase

Línea de fase de una ecuación autónoma x' = f(x)

- lacksquare Dibuja la línea x.
- Calcula los puntos de equilibrio x^* y márcalos sobre la línea.
- ullet Obtén los intervalos para los cuales f(x) > 0 y dibuja sobre ellos flechas hacia arriba.
- Calcula los intervalos para los cuales f(x) < 0 y dibuja sobre ellos flechas hacia abajo.

Ejemplo: Ecuación logística y' = (1 - y)y.

L. fase

Diagrama de flujo

EDO libre de parámetros

Ejemplo: Dada la ecuación diferencial $x'=3+2x-x^2,\ x(0)=3,$ obtener los puntos de equilibrio, clasificarlos y dibujar la línea de fase

- Puntos de equilibrio:

$$f(x) = 0 \Leftrightarrow 3 + 2x - x^2 = 0 \Leftrightarrow x^* \in \{-1, 3\}$$

• Clasificación: f'(x) = -2x + 2

$$\Rightarrow \left\{ \begin{array}{ll} f'(-1)=4>0 & \text{repulsor o fuente} \\ f'(3)=-4<0 & \text{atractor o sumidero} \end{array} \right.$$

EDO libre de parámetros

Ejemplo:Realiza el estudio dinámico de $x' = \sin\left(\frac{x}{2}\right)$

Puntos de equilibrio:

$$\sin\left(\frac{x}{2}\right) = 0 \Leftrightarrow x^* \in \{2k\pi : k \in \mathbb{Z}\}$$

$$\Rightarrow f'(x^*) = \begin{cases} 1/2 > 0, & k \text{ par} \\ -1/2 < 0, & k \text{ impar} \end{cases}$$

- Repulsores/fuentes: $x^* = 0, 4\pi, 8\pi, \dots, -4\pi, -8\pi, \dots$
- Attractores/sumideros: $x^* = 2\pi, 6\pi, 10\pi, \dots, -2\pi, -6\pi, \dots$

Ejemplo: Consideremos la familia paramétrica de ecuaciones diferenciales

$$y' = f_{\mu}(y) = y^2 - 2y + \mu$$

- Idea: Para cada valor del parámetro, tenemos una ecuación diferencial.
- ¿Qué valores analizamos? Por ejemplo: $\mu \in \{-4, -2, 0, 2, 4\}$.
- Cálculo de los puntos de equlibrio y su estabilidad:

$$y^2 - 2y + \mu = 0 \implies y^* = 1 \pm \sqrt{1 - \mu}.$$

	$\mu = -4$	$\mu = -2$	$\mu = 0$	$\mu = 2$	$\mu = 4$
Ptos. Eq.	$y^* = 1 \pm \sqrt{5}$	$y^* = 1 \pm \sqrt{3}$	$y^* = 2, y^* = 0$	Æ	Æ
Fuente	$f'(1+\sqrt{5}) > 0$	$f'(1+\sqrt{5}) > 0$	f'(2) > 0	-	-
Sumidero	$f'(1-\sqrt{5})<0$	$f'(1-\sqrt{5})<0$	f'(0) > 0	-	-

• En general,

$$1\pm\sqrt{1-\mu}\in\mathbb{R}$$
si y sólo si $\mu\leq 1,$

 $y^2-2y+\mu$ tiene dos raíces para $\mu<1,$ una para $\mu=1$ y ninguna para $\mu>1.$

• $\mu = 1$ es un valor de bifurcación.

- $\mu < 1$: dos puntos de equilibrio en $y^* = 1 \pm \sqrt{1 \mu}$
- 1 fuente en $y = 1 + \sqrt{1 \mu}$
- 1 sumidero en $y = 1 \sqrt{1 \mu}$

 $\mu < 1$

$$y' = f_{\mu}(y) = y^2 - 2y + \mu$$

- $\mu = 1$: un punto de equilibrio en $y^* = 1$
- 1 nodo

$$y' = f_{\mu}(y) = y^2 - 2y + \mu$$

- $\mu > 1$: no existen puntos de equilibrio
- f(y) > 0 órbitas crecientes no acotadas.

EDO uniparamétrica: diagrama de bifurcación

$$y' = f_{\mu}(y) = y^2 - 2y + \mu$$

Diagrama de bifurcación

- Representa los cambios que se producen en el comportamiento del sistema dinámico en función del valor de los parámetros
- Eje de abscisas: parámetro
- Eje de ordenadas: magnitud
- Líneas de fase verticales (comportamiento de cada punto de equilibrio)

Bifurcaciones: silla-nodo

Bifurcación silla-nodo

Los puntos de equilibrio de $x^\prime=f(x)$ se crean o se destruyen

Forma normal: $x' = x^2 + a$

Bifurcaciones: silla-nodo

Bifurcaciones: transcrítica

Bifurcación transcrítica

Hay un intercambio de estabilidad entre los puntos de equilibrio de $x^\prime=f(x)$

Forma normal: $x' = ax - x^2$

Bifurcaciones: transcrítica

Bifurcaciones

Bifurcación tridente (pitchfork)

Los puntos de equilibrio de x' = f(x) aparecen y desaparecen por pares debido a una simetría del modelo. En el punto de bifurcación, un punto de equilibrio previamente existente les cede su estabilidad, que cambia a partir de ahí. Dos tipos:

- Supercrítica: en el valor de bifurcación se crean un par de puntos de equilibrio estables que existen después de la bifurcación.
- Subcrítica: en el valor de bifurcación se crean un par de puntos de equilibrio inestables que existen antes de la bifurcación.

Bifurcaciones: tridente

Bifurcación tridente (pitchfork) supercrítica

x

Forma normal: $x' = ax - x^3$

Bifurcaciones:tridente

Bifurcaciones: tridente

Bifurcación tridente (pitchfork) subcrítica

Forma normal: $x' = ax + x^3$, (hasta orden 5, $x' = ax + x^3 - x^5$)

Bifurcaciones

Bifurcaciones en EDOs uniparamétricas

Ejemplo: Modelo logístico de población: $x' = ax(1-x), x(0) = x_0$

- Solución particular: $x(t) = \frac{x_0 e^{at}}{1 x_0 + x_0 e^{at}}$
- Puntos de equilibrio:

$$a = 0$$

$$f(x) = 0, \forall x$$
$$f'(x) = 0, \forall x$$

 \Rightarrow todos los puntos son de equilibrio y son nodos

$$a \neq 0$$

$$f(x) = 0 \Leftrightarrow x^* \in \{0, 1\}$$
$$f'(x) = a - 2ax$$

$$\Rightarrow \left\{ \begin{array}{c} f'(0) = a \\ f'(1) = -a \end{array} \right.$$

Bifurcaciones en EDOs uniparamétricas

a	$x^* = 0$	$x^* = 1$
a < 0	atractor	repulsor
a > 0	repulsor	atractor

Figura: Diagrama de bifurcación

Ejercicio 1

Analiza el comportamiento cualitativo de las soluciones de la familia paramétrica

$$y' = y^3 - \alpha y, \ \alpha \in \mathbb{R}.$$

Para ello:

- Calcula sus puntos de equilibrio y clasifícalos.
- Determina los intervalos donde f_{α} cambia de signo, si existen.
- Representa las líneas de fase y los diagramas de flujo para distintos valores del parámetro, tratando de que cubran todas las situaciones posibles.
- ¿Existen valores de bifurcación? En caso afirmativo, genera el diagrama de bifurcación e identifícala.

Ejercicio 2

Analiza el comportamiento cualitativo de las soluciones de la familia paramétrica

$$y' = y(1-y)^2 + \mu, \ \mu \in \mathbb{R}.$$

Para ello:

- Calcula sus puntos de equilibrio y clasifícalos.
- Determina los intervalos donde f_{μ} cambia de signo, si existen.
- Representa las líneas de fase y los diagramas de flujo para distintos valores del parámetro, tratando de que cubran todas las situaciones posibles.
- ¿Existen valores de bifurcación? En caso afirmativo, genera el diagrama de bifurcación e identifícala.

Ejercicio 3

La población P(t) de un cierto tipo de pez se modeliza mediante el modelo logístico

$$P' = kP(t)\left(1 - \frac{P(t)}{N}\right),\,$$

donde k es el parámetro de razón de crecimiento y N es la capacidad de soporte del hábitat. Supongamos que la pesca elimina un número constante C de peces de la población por estación. Entonces, el modelo queda:

$$P' = kP(t)\left(1 - \frac{P(t)}{N}\right) - C,$$

¿Cómo varía la población de peces cuando C se incrementa?

Referencias

M.W. Hirsch, S. Smale, R.L. Devaney, Differential equations, dynamical systems and an introduction to Chaos. Ed. Elsevier, Amsterdan, 2004.

G.F. Simmons, Ecuaciones diferenciales. Con aplicaciones y notas históricas, Ed. McGraw-Hill, 1991.

L. Perko, Differential Equations and Dynamical Systems, Ed. Springer-Verlag, 1991.

P. Blanchard, R.L. Devaney, G.R. Hall, Ecuaciones diferenciales, Ed, Thomson, México, 1998.