Chapitre 9 : Fonctions vectorielles à valeurs dans un espace euclidien

E désigne ici un \mathbb{R} -ev euclidien de dimension p, $\mathfrak{B} = (e_1, e_2, ... e_p)$ en est une base.

D est une partie de \mathbb{R} , $F:D\to E$ est une fonction de D dans E.

On note $f_1, f_2, ..., f_p$ les fonctions de D dans \mathbb{R} définies par $\forall t \in D, F(t) = \sum_{i=1}^p f_i(t)e_i$

(On les appelle les fonctions coordonnées de F dans la base \mathfrak{B})

I Limite, continuité

Définition, proposition:

Soit $a \in \mathbb{R}$ un point adhérent à D, et $l \in E$ de coordonnées $l_1, l_2, ... l_p$ dans \mathfrak{B} .

$$\lim_{a} f = l \iff \forall \varepsilon > 0, \exists \alpha > 0, \forall t \in D, (|t - a| < \alpha \implies ||F(t) - l|| < \varepsilon)$$

$$\iff \forall i \in [1, p], \lim_{a} f_{i} = l_{i}$$

$$\iff \lim_{t \to a} ||F(t) - l|| = 0$$

Définition, proposition analogues pour l'éventuelle limite en $+\infty$ ou $-\infty$ lorsque D est non majorée ou non minorée.

Définition et proposition analogues pour les éventuelles limites à droite ou à gauche en un point a de \mathbb{R} tel que a soit adhérent à $D \cap a$, $+\infty$ ou $D \cap a$.

On établit aisément les résultats concernant les opérations classiques sur les fonctions vectorielles : si $F,G:D\to E$ on des limites en un point a de $\overline{\mathbb{R}}$ adhérent à D, si $\lambda\in\mathbb{R}$ et si $\varphi:D\to\mathbb{R}$ a une limite finie en a.

Alors F + G, λF , φF , $F \cdot G$ et ||F|| on des limites en a, qui sont respectivement :

$$\lim_{a} F + \lim_{a} G, \ \lambda \lim_{a} F, \ \lim_{a} \varphi \cdot \lim_{a} F, \ \lim_{a} F \cdot \lim_{a} G \text{ et } \left\| \lim_{a} F \right\|.$$

Et dans les cas où E est orienté et de dimension 3, $F \wedge G$ a une limite en a qui est $\lim F \wedge \lim G$

On a aussi le théorème de composition :

Si $\varphi: A \to \mathbb{R}$ (avec $A \subset \mathbb{R}$), si $F: D \to E$ (avec $\varphi(A) \subset D$), si $\alpha \in \overline{\mathbb{R}}$ est adhérent à A et si φ a une limite $a \in \overline{\mathbb{R}}$ en α , alors a est adhérent à D, et si de plus F a une limite en a, alors $F \circ \varphi$ a une limite en α , qui est $\lim F$.

Définition, proposition:

Soit $a \in D$.

F est continue en $a \Leftrightarrow F$ admet une limite en a (c'est alors nécessairement F(a))

 $\Leftrightarrow \forall i \in [1, p], f_i \text{ est continue en } a.$

(Définition, proposition analogues pour l'éventuelle continuité à droite/à gauche en a)

Définition, proposition :

F est continue sur D $\Leftrightarrow \forall \in D$, F est continue en a.

$$\Leftrightarrow \forall i \in [1, p], f_i \text{ est continue sur } D.$$

On justifie aisément les résultats attendus concernant la continuité et les opérations classiques sur les fonctions vectorielles...

On montre aussi facilement le théorème :

Si K est un segment de \mathbb{R} , et si $F: K \to E$ est continue sur K, alors F est bornée sur K (c'est-à-dire qu'il existe $M \in \mathbb{R}$ tel que $\forall t \in K, ||F(t)|| \leq M$)

On a en effet l'équivalence suivante :

F est bornée $\Leftrightarrow \forall i \in [1, p], f_i$ est bornée.

II Dérivabilité

Ici, I désigne un intervalle infini de \mathbb{R} , on conserve les notations du début avec D = I(ainsi, F est une fonction de I dans E)

A) Définition, proposition

Soit $a \in I$.

F est dérivable en $a \Leftrightarrow$ l'application $I \setminus \{a\} \to E$ a une limite en a. $t \mapsto \frac{F(t) - (a)}{t - a}$ a une limite en a. $\Leftrightarrow \forall i \in [1, p], \ f_i \text{ est dérivable en } a.$

$$t-a$$

Cette limite est alors notée F'(a) ou $\frac{dF}{dt}(a)$, et on a $F'(a) = \sum_{i=1}^{p} f'_{i}(a)e_{i}$.

Définitions, propositions analogues pour l'éventuelle dérivabilité et dérivée à droite ou à gauche en a, et pour la dérivabilité et la dérivée sur I.

Proposition:

(Rappel : I est un intervalle de \mathbb{R})

Si F est dérivable sur I, alors $F'=0 \Leftrightarrow F=\text{cte}$

Notions de dérivées successives, de classes de fonctions analogues aux définitions des fonctions réelles...

B) Opérations sur les fonctions dérivables en un point

Si $F,G:I\to E$ sont dérivables en a, si $\lambda\in\mathbb{R}$ et si $\varphi:I\to\mathbb{R}$ est dérivable en a,

alors
$$F + G$$
, λF , φF et $F \cdot G$ sont dérivables en a , et on a : $(F + G)'(a) = F'(a) + G'(a)$

$$(\lambda .F)'(a) = \lambda .F'(a)$$

$$(\varphi.F)'(a) = \varphi'(a).F(a) + \varphi(a).F'(a)$$

$$(F \cdot G)'(a) = F'(a) \cdot G(a) + F(a) \cdot G'(a)$$

Et, dans le cas où E est de dimension 3 et orienté, $F \wedge G$ est dérivable en a et :

$$(F \wedge G)'(a) = F'(a) \wedge G(a) + F(a) \wedge G'(a).$$

Remarque:

On obtient ensuite par récurrence les formules de Leibniz pour $(\varphi F)^{(n)}$, $(F \cdot G)^{(n)}$ et $(F \wedge G)^{(n)}$, lorsque F, G et φ sont de classe C^n .

Théorème de composition :

Si $\varphi: J \to \mathbb{R}$, $F: I \to E$ avec $\varphi(J) \subset I$, si $\alpha \in J$ et si φ est dérivable en α et F dérivable en $\varphi(\alpha)$, alors $F \circ \varphi$ est dérivable en α , et $(F \circ \varphi)'(\alpha) = \varphi'(\alpha)F'(\varphi(\alpha))$

Proposition:

Si $F: I \to E$ est dérivable en a, et si $F(a) \neq 0$, alors ||F|| est dérivable en a, et :

$$(\|F\|)'(a) = \frac{F(a) \cdot F'(a)}{\|F(a)\|}$$

En effet, $||F|| = \sqrt{F \cdot F}$, et en appliquant le théorème de dérivation pour la composition des fonctions réelles $F \cdot F$ et $u \mapsto \sqrt{u}$:

Si $F(a) \cdot F(a) \neq 0$ (c'est-à-dire si $F(a) \neq 0$), alors $\sqrt{F \cdot F}$ est dérivable en a, de dérivée $\frac{1}{2} \frac{2F(a) \cdot F'(a)}{\sqrt{F(a) \cdot F(a)}} = \frac{F(a) \cdot F'(a)}{\|F(a)\|}$.

Proposition:

Si F est dérivable sur I, et si ||F|| = cte, alors $F \perp F'$

(c'est-à-dire $\forall t \in I, F(t) \perp F'(t)$)

En effet:

Si ||F|| = cte = 0, c'est que F = cte = 0, d'où le résultat.

Sinon, selon la propriété précédente, on peut écrire :

$$\forall a \in I, 0 = (\|F\|)'(a) = \frac{F(a) \cdot F'(a)}{\|F(a)\|}$$

Exemple:

 \mathbb{C} est un cas particulier d'espace euclidien sur \mathbb{R} . (de dimension 2, une base orthonormée étant par exemple la base (1,i), la norme euclidienne étant le module)

On a déjà traité le cas des fonctions d'une partie de $\mathbb R$ dans $\mathbb C$ (et on a dans ce cas une opération supplémentaire, à savoir la multiplication)

Pour tout $m \in \mathbb{C}$, la fonction $t \mapsto e^{mt}$ est dérivable sur \mathbb{R} , de dérivée $t \mapsto me^{mt}$.

Lorsqu'on prend m = i, cette fonction, $t \mapsto e^{i \cdot t}$ est de module constant égal à 1, et sa dérivée $t \mapsto i e^{i \cdot t} = e^{i(t + \frac{\pi}{2})}$ lui est bien orthogonale.

III Intégration

Proposition, définition:

Soit $F:[a,b] \to E$, continue. Alors la valeur de $\sum_{i=1}^{p} \left(\int_{a}^{b} f_{i}(t) dt \right) e_{i}$ est indépendante du

choix de la base $\mathfrak{B} = (e_1, e_2, ... e_p)$. Cette valeur est par définition $\int_a^b F(t)dt$.

La définition peut s'étendre aux fonctions continues par morceaux...

Propriété : linéarité, relation de Chasles...

Théorème (admis):

Si $F:[a,b] \to E$ est continue (ou continue par morceaux), et si $a \le b$, alors :

$$\left\| \int_a^b F(t)dt \right\| \le \int_a^b \left\| F(t) \right\| dt$$

Théorème:

Si I est un intervalle de \mathbb{R} , et si $F: I \to E$ est continue, alors la fonction $x \mapsto \int_a^x F(t)dt$ est une primitive de F sur I, et c'est l'unique primitive de F sur I nulle en a.

Il en résulte que si $F: I \to E$ est continue sur I, alors F admet une primitive G, et pour tous a, b de I, $\int_a^b F(t)dt = G(b) - G(a)$.

Conséquences : théorème d'intégration par parties, de changement de variables...

Remarque : La formule de la moyenne est fausse (Avec $E = \mathbb{C}$ par exemple).

IV Inégalités et formules de Taylor diverses

Inégalité des accroissements finis :

Si F est continue sur [a,b], dérivable sur]a,b[, et si il existe $k \in \mathbb{R}^+$ tel que $\forall t \in]a,b[,\|F'(t)\| \le k$, alors $\|F(b)-F(a)\| \le k|b-a|$.

L'égalité des accroissements finis est fausse (voir encore avec $E = \mathbb{C}$)

Inégalité de Taylor–Lagrange à l'ordre n-1:

Si F est de classe C^n $(n \ge 1)$ sur [a,b], et si $M_n = \sup_{t \in [a,b]} ||F^{(n)}(t)||$ (qui existe d'après le $\underline{\mathbf{I}}$),

alors
$$\left\| F(b) - (F(a) + (b-a)F'(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!} F^{(n-1)}(a) \right\| \le \frac{\left| b-a \right|^n}{n!} M_n$$

L'égalité de Taylor-Lagrange est fausse (elle est vraie dans R mais hors programme)

Formule de Taylor avec reste intégral (à l'ordre n-1):

 $F:[a,b] \to E$ est de classe C^n $(n \ge 1)$, alors:

$$F(b) = F(a) + (b-a)F'(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!}F^{(n-1)}(a) + \int_a^b \frac{|b-t|^{n-1}}{(n-1)!}F^{(n)}(t)dt$$

(Cette formule s'établit aisément grâce à des intégrations par parties successives, et donne ainsi une preuve de l'inégalité de Taylor-Lagrange grâce au théorème de majoration vu au III)

Formule de Taylor–Young (à l'ordre *n*) :

Si $F: I \to E$ est de classe C^n sur un intervalle I contenant 0, alors il existe $\varepsilon: I \to E$, telle que $\lim \varepsilon(t) = 0$ et :

$$\forall t \in I, F(t) = F(0) + t \cdot F'(0) + \frac{t^2}{2} \cdot F''(0) + \dots + \frac{t^n}{n!} \cdot F^{(n)}(0) + t^n \mathcal{E}(t)$$

V Développements limités

Définition:

Soient *I* un intervalle infini de \mathbb{R} , $t_0 \in I$, notons D = I ou $I \setminus \{t_0\}$, et $F : D \to E$.

On dit que F admet un DL à l'ordre n en t_0 lorsqu'il existe une fonction $\varepsilon:D\to E$ et des éléments $a_0,a_1,...a_n$ de E tels que :

- $\lim_{t \to t_0} \mathcal{E}(t) = 0$
- $\forall t \in D, F(t) = a_0 + (t t_0)a_1 + (t t_0)^2 a_2 + \dots + (t t_0)^n a_n + (t t_0)^n \mathcal{E}(t)$

Propriétés:

- Unicité de l'éventuel DL à l'ordre n en t_0 .
- Existence d'un DL à l'ordre n en $t_0 \implies$ existence de DL en t_0 à tout ordre $q \le n$.
- Existence d'un DL à l'ordre 0 en $t_0 \Leftrightarrow$ existence d'une limite en t_0

En supposant maintenant que $t_0 \in I$ (c'est-à-dire que D = I):

- Existence de DL à l'ordre 1 en $t_0 \Leftrightarrow$ dérivabilité en t_0

(Mais ne s'étend pas aux ordres supérieurs)

- F est de classe C^n au voisinage de $t_0 \Rightarrow F$ a un DL à l'ordre n en t_0

(Donné alors par la formule de Taylor-Young)

Opérations sur les DL:

- Somme, produit par un scalaire : évident.
- Pour les autres opérations : voir ce qui se passe dans chaque cas particulier.