Assembly process description

#Long-read assembly pipelines

The single-molecule sequencing (SMS) data are assembled following a hierarchical approach: (a) select a subset of longer reads as seed data and correct through canu/falcon;(b) use the error-corrected reads for a draft assembly through different assemblers; (c)polish the draft assembly through Quiver/Arrow and Pilon.

##Different assemblers

Canu is a comprehensive and scalable pipeline for SMS data assembly (available at https://github.com/marbl/canu, v1.5). In the correction step, Canu first selects longer seed reads with the settings 'genomeSize=430000000' and 'corOutCoverage=80', then detects raw reads overlapping through a high sensitive overlapper MHAP (mhap-2.1.2, option 'corMhapSensitivity=low/normal/high'), and finally performs an error correction through falcon_sense method (option 'correctedErrorRate=0.025'). In the next step, with the default parameters, error-corrected reads are trimmed unsupperted bases and hairpin adapters to get their longest supported range. In the last step, Canu generates the draft assembly using longest 80 coverage trimmed reads. Reference: Koren S, et al. "Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation." Genome research 27.5(2017):722.

Falcon is a hierarchical and haplotype aware genome assembler (available at https://github.com/PacificBiosciences/FALCON, v0.3.0). In the correction step, Falcon first selects longer seed reads with the setting 'length_cutoff = 3000', then detects raw reads overlapping through daligner overlapper (pa_HPCdaligner_option, '-v -B128 -e.70 -l4800 -s100 -k18 -w8 -h480 -M8 -T4'), and finally performs an error correction through falcon_sense method (falcon_sense_option, '--output_multi --min_idt 0.70 --min_cov 3 --max_n_read 200 --n_core 4'). In the assembly step, Falcon selects pre-assembly reads with the setting 'length_cutoff_pr = 8000', then detects reads overlapping (ovlp_HPCdaligner_option, '-v -B128 -e.96 - 12400 -s100 -k18 -h1024 -M8 -T4'), and finally performs a directed string graph with the setting 'overlap_filtering_setting = --max_diff 120 --max_cov 120 --min_cov 3 --n core 4 --bestn 8'.

Reference: Chin, Chen Shan, et al. "Phased Diploid Genome Assembly with Single Molecule Real-Time Sequencing." Nature Methods 13.12(2016):1050.

Wtdbg is a SMS data assembler by constructing fuzzy Brujin graph (available at https://github.com/ruanjue/wtdbg). Wtdbg first generates a draft assembly with the command 'wtdbg -i pbreads.fasta -t 64 -H -k 21 -S 1.02 -e 3 -o wtdbg'. Using error-corrected reads from canu gets a better assembly performance. And then a consensus assembly is obtained with the command 'wtdbg-cns -t 64 -i wtdbg.ctg.lay -o wtdbg.ctg.lay.fa -k 15'.

Reference: https://github.com/ruanjue/wtdbg

##Merge assemblies

Quickmerge merges different assemblies to produce a more contiguous assembly (available at https://github.com/mahulchak/quickmerge). Quickmerge uses contigs from canu as query input, and contigs from wtdbg as ref input. The two contigs are aligned through mummer (v4.0.0, available at https://github.com/mummer4/mummer) with the nucmer parameters '-b 500 -c 100 -l 200 -t 12' and delta-filter parameters '-i 90 -r -q', and then merged through quickmerge with the parameters '-hco 5.0 -c 1.5 -l 100000 -ml 5000'.

Reference: Chakraborty, M, et al. "Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage." Nucleic Acids Research 44.19(2016):e147-e147.

##Polish assembly

The draft assembly is polished to obtain the final assembly. The first round polishing adopts quiver/arrow algorithm using SMS data with the 40 threads. The second polishing adopts pilon algorithm (v1.22, available at

https://github.com/broadinstitute/pilon) using illumina data with the parameters '--mindepth 10 --changes --threads 4 --fix bases'.

Genome annotation software and parameters

1) Repeat annotation:

	Software version or database	The main parameters
	version	
LTR-FINDER	v1.05	default
PILER	V1.0	default
RepeatScout	v1.0.5	default
PASTEClassifier	V1.0	default
Repbase(database)	19.06	null
RepeatMasker	v4.0.5	-nolow -no_is -norna -engine
		wublast -qq -frag 20000

2) gene prediction

Method		Software	The main
			parameters
gene	Ab initio	Genscan_3.1	default
prediction	based	Augustus_3.1	
		GlimmerHMM_v1.2	
		SNAP(version	
		2006-07-	
		28)	
	Homology	GeMoMav1.3.1	
	based		

RNA-seq	Hisat v2.0.4	default
	Stringtie v1.2.3	
	TransDecoderv2.0	
	GeneMarkS-Tv5.1	
	PASA v2.0.2	
Integration	EVMv1.1.1	default

3) Pseudogene prediction

Pseudogene	GenBlastA v1.0.4	-e 1e-5
prediction	GeneWise2.4.1	-both -pseudo

4) ncRNA prediction

ncRNA	tRNA	tRNAscan-		default
		SE_v1.3.1		
	snoRNA	Blast_v2.2.31	Rfam_v12.1	1e-5
	snRNA	Infenal_v1.1.1	miRBase_v21	
	rRNA			

5) Gene function annotation

Function	NR,KOG,GO,KEGG	BLAST	NR,KOG,GO,KEGG,	1e-
annotation	,TrEMBL,swissprot	v2.2.31	TrEMBL,swissprot	5

6) Motif prediction

l Motif	InterProScan	PROSITE,HAMAP,Pfam,PRINTS,ProDom,SMART,TIGRFA	default
	v5.8-49.0	Ms, PIRSF, SUPERFAMILY, CATHGene 3D, PANTHER	
prediction			