Plug-In DA&C Cards

Data Acquisition and Control Tutorial & Soft	ware	6-2
Data Acquisition and Control Card Selection		6-4
PCI-bus Data Acquisition and Control		
PCI / Universal PCI Multifunction Car PCI-1710/1710L/ 1710HG/1710HGL	100 kS/s, 12-bit, (High-gain), PCI-bus Multifunction Card	6-10
PCI-1710/1710L/ 1710HG/1710HGL	100 kS/s, 12-bit, (High-gain), PCI-bus Multifunction Card	
PCI-1712/1712L	1 MS/s, 12-bit, 16-ch High-speed Multifunction Card	6-14
PCI-1716/1716L	250 kS/s, 16-bit, 16-ch High-resolution Multifunction Card	6-16
PCI-1718HDU/PCI-1718HGU (New) PCI-1741U (New)	12-bit Multifunction DAS Card for PCI Bus 16-bit, 200kS/s High-Resolution Multifunction Card	6-18 6-20
PCI-174TO (New)	250 kS/s 16-bit, 64-ch Analog Inputs Card	6-22
PCI / Universal PCI Analog Input Card		
PCI-1713	100 kS/s, 12-bit, 32-channel Isolated Analog Input Card	6-24
PCI-1714/1714UL (New) PCI / Universal PCI Analog Output Ca	30 MS/s Simultaneous 4-ch Analog Input Card	6-25
PCI-1720/1720U (New)	4-ch Isolated Analog Output Card	6-26
PCI-1721	12-bit, 4-ch Advanced Analog Output Card	6-27
PCI-1723	12-bit, 8-ch Isolated Analog Output Card	6-28
PCI-1724U PCI-1727U (New)	14-bit, 32-ch Analog Output Card 12-ch D/A Output Card	6-29 6-30
PCI / Universal PCI Non-Isolated Dig		0.00
PCI-1751/1751U (New)	48-bit Digital I/O and Counter Card	6-31
PCI-1753/1753E	96/192-bit Digital I/O Card	6-32
PCI-1755 PCI / Universal PCI Isolated Digital I/	80 MB/s Ultra high-speed 32-ch Digital I/O Card	6-33
PCI-1730	32-ch Isolated Digital I/O Card	6-34
PCI-1733	32-ch Isolated Digital Input Card	6-34
PCI-1734 PCI-1752	32-ch Isolated Digital Output Card	6-34 6-36
PCI-1752 PCI-1754	64-ch Isolated Digital Output Card 64-ch Isolated Digital Input Card	6-36
PCI-1756	64-ch Isolated Digital I/O Card	6-36
PCI-1758UDI/ PCI-1758UDO (New)	128-ch Isolated Digital I/O Card	6-38
PCI-1757UP PCI-1736UP (New)	12-bit Multifunction DAS Card for PCI Bus 32-ch Isolated Digital IO Low-profile PCI Card	6-40 6-41
PCI-1763UP	8-ch Relay and 8-ch IDI Low-profile PCI Card	6-42
PCI-1750	32-ch Isolated Digital I/O and Counter Card	6-43
PCI-1761	8-ch Relay Actuator and 8-ch Isolated D/I Card 8-ch Relay Actuator and Isolated D/I Card	6-44 6-45
PCI-1760/1760U (New) PCI-1762	16-ch Relay Actuator and 16-ch Isolated D/I Card	6-46
Counter Cards		
PCI-1780	8-ch Counter/ Timer Card	6-47
ISA-Bus Data Acquisition and Contro Multifunction Cards	i Cards	
PCL-711B/S	Analog and Digital I/O Card	6-48
PCL-812PG	MultiLab Analog and Digital I/O Card	6-49
PCL-818 Series	High-performance Multifunction Card	6-50 6-51
PCL-818L/LS/H PCL-818HD/HG	40 kS/s Multifunction Card High-performance Multifunction Card	6-52
Analog Input Cards		
PCL-813B	32-ch S.E. Isolated A/D Card	6-53
Analog Output Cards PCL-726	6-ch D/A Output Card	6-54
PCL-727	12-ch D/A Output Card	6-54
PCL-728	Isolated 2-ch D/A Output Card	6-54
Non-Isolated Digital I/O Cards	District 1/O and Occuptor Cond	
PCL-720+ PCL-722	Digital I/O and Counter Card 144-bit Digital I/O Card	6-55 6-56
PCL-724	24-bit Digital I/O Card	6-56
PCL-731	48-bit Digital I/O Card	6-56
Isolated Digital I/O Cards PCL-725	Relay Actuator and Isolated D/I Card	6-57
PCL-725 PCL-735	12-ch Relay Actuator Card Counter Card	6-57
PCL-730	32-ch Isolated Digital I/O Card	6-58
PCL-733	32-ch Isolated Digital Input Card	6-58
PCL-734 PCL-836	32-ch Isolated Digital Output Card 6-ch Counter/Timer Card	6-58 6-60
PC/104 I/O Modules		2 00
PCM-3712	12-bit, 2-ch Analog Output Module	6-61
PCM-3718H/HG/PCM-3718HO (New) PCM-3724	100 kS/s, 12-bit, 16-ch Multi-function Module 48-ch Digital I/O Module	6-61 6-61
PCM-3724 PCM-3725	8-ch Isolated Digital Input and 8-ch Relay Output Module	6-62
PCM-3730	16-ch Isolated Digital I/O Module	6-62
PCM-3780 (New)	2-ch Counter/Timer with 24 ch TTL DIO Module	6-62
GPIB interface series PCI-1670	GPIB interface PCI card	6-63
PCI-1671 (New)	High-Performance IEEE-488.2 Interface for PCI-Bus Computer	
Portable Data Acquisition Modules	100101 1011100 101110	
USB-4711 (New) USB-4716 (New)	100 kS/s, 12-bit USB Multifunction Module	6~65
USB-4718 (New)	100 kS/s, 16-bit USB Multifunction module 8-ch Thermocouple Input Module	6~66 6~67
ISA-Compatible PCI Cards	o-on memocouple input wodule	6~68

Data Acquisition and Control **Tutorial**

PC-based Data Acquisition System Overview

In the last few years, industrial PC I/O interface products have become increasingly reliable, accurate and affordable. Because of this, PC-based data acquisition and control systems are now widely used in industrial and laboratory applications such as: monitoring, control, data acquisition and automated testing.

Selecting and building a DA&C (Data Acquisition and Control) system that actually does what you want it to do requires some knowledge of electrical and computer engineering. This tutorial gives a brief introduction to what DA&C systems do and how to configure them. It covers:

- Transducers and actuators
- Signal conditioning
- Data acquisition and control hardware
- Getting Started
- Computer systems software

Transducers and Actuators

A transducer converts temperature, pressure, level, length, position, etc. into voltage, current, frequency, pulses or other signals.

Thermocouples, thermistors and resistance temperature detectors (RTDs) are common transducers for temperature measurements. Other types of transducers include flow sensors, pressure sensors, strain gauges, load cells and LVDTs, which measure flow rate, pressure variances, force or displacement.

An actuator is a device that activates process control equipment by using pneumatic, hydraulic or electrical power. For example, a valve actuator can open and close a valve to control fluid rates.

Signal Conditioning

Signal conditioning circuits improve the quality of signals generated by transducers before they are converted into digital signals by the PC's data-acquisition hardware. Examples of signal conditioning are signal scaling, amplification, linearization, cold-junction compensation, filtering, attenuation, excitation, common-mode rejection, and so on.

One of the most common signal conditioning functions is amplification. For maximum resolution, the voltage range of the input signals should be approximately equal to the maximum input range of the A/D converter. Amplification expands the range of the transducer signals so that they match the input range of the A/D converter. For example, a x10 amplifier maps transducer signals that range from 0 to 1 V into the range 0 to 10 V before they go into the A/D converter.

Using digital I/O and SSRs to open and close a valve

The layout of a typical PC-based data acquisition system

DA&C Tutorial

Data Acquisition & Control Hardware

Data acquisition and control hardware generally performs one or more of the following functions: analog input, analog output, digital input, digital output and counter/timer functions. This section will discuss each function and list some considerations that are important when you select a data acquisition and control system.

Analog Inputs (A/D)

Analog to digital (A/D) conversion changes analog voltage or current levels into digital information. The conversion is necessary to enable a computer to process or store the signals.

The most significant criteria when selecting A/D hardware are:

- 1. Number of input channels
- 2. Single-ended or differential input signals
- 3. Sampling rate (in samples per second)
- 4. Resolution (usually measured in bits of resolution)
- 5. Input range (specified in full-scale volts)
- 6. Noise and nonlinearity

Analog Outputs (D/A)

The opposite of analog to digital conversion is digital to analog (D/A) conversion. This operation converts digital information into analog voltage or current. D/A devices allow a computer to control real-world events.

Analog output signals may directly control process equipment. The process can give feedback in the form of analog input signals. This is referred to as a closed loop control system with PID control. Analog outputs can also be used to generate waveforms. In this case, the device behaves as a function generator.

Digital Inputs and Outputs

Digital input/output functions are useful in applications such as contact closure and switch status monitoring, industrial On/Off control and digital communications.

Counter/timer

A counter/timer can be used for event counting, flowmeter monitoring, frequency counting, pulse width measurement, time period measurement, and so on.

Getting Started

Advantech: The source for what you need

Advantech manufactures data acquisition hardware and software for measurement, monitoring and applications control. The following guide is provided to help you choose components for your data acquisition system.

Step 1: Know your fundamental goal

Decide whether your DA&C system will be used primarily for measurement, monitoring, control, or analysis. Know the data requirements of your process, and know the number of data collection points in your system. Know the required data collection speed, the sampling rate, the type of measurement, the voltage or current being produced, the desired accuracy and the output resolution at each data collection point. Finally, know the timing of events in your system, and any special environmental conditions that exist.

Step 2: Hardware selection

Select the hardware required to achieve your fundamental goal. Advantech provides plug-in boards for Analog-to-Digital, Digital-to-Analog, Digital I/O, RS-232 or RS-485 needs. Both ISA and PCI bus products are available. Your hardware selection should be based on five major criteria:

- 1. Number and types of channels
- 2. Differential or single-ended inputs
- 3. Resolution
- 4. Speed
- 5. Software compatibility with hardware

Step 3: Accessory selection

Most applications require additional accessories which are available as separate items. These include:

- 1. Expansion peripherals to add channels to your system
- 2. Cables, signal conditioners and external boxes such as screw terminals or BNC

Step 4: Software selection

More than any other single factor, software will determine your system start-up time, as well as its effectiveness, suitability for your application, and ease of modification.

Three major criteria should determine the choice of software:

- 1. Operating system used
- 2. User programming expertise
- 3. Software compatibility with hardware

ATM & AWS

AD\ANTECH Last updated: January 2005

Data Acquisition and Control Cards

	Bus					PCI			
	Categ	ory		<u> </u>	T.	Multifunction	Г	Г	
	Mode	el	PCI-1710/1710L	PCI-1710HG/HGL	PCI-1711/1711L	PCI1712/1712L	PCI-1716/1716L	PCI-1718HDU/HGU	PCI-1741U
		Resolution	12 bits	12 bits	12 bits	12 bits	16 bits	12 bits	16 bits
	Camanal	Channels	16 SE/8 Diff.	16 SE/8 Diff.	16 SE	16 SE/8 Diff.	16 SE/8 Diff.	16 SE/8 Diff.	16 SE/8 Diff.
	General Spec.	Onboard FIFO	4K samples	4K samples	1K samples	1K samples	1K samples	4K samples	1K samples
	орос.	Sampling Rate	100 kS/s	100 kS/s	100 kS/s	1 MS/s	250 kS/s	100 kS/s	200 kS/s
		Auto Channel Scanning	✓	✓	✓	✓	✓	✓	✓
1		Unipolar Inputs (V)	0 ~ 10, 0 ~ 5, 0 ~ 2.5, 0 ~ 1.25	0 ~ 10, 0 ~ 1, 0 ~ 0.1, 0 ~ 0.01	-	0 ~ 10, 0 ~ 5, 0 ~ 2.5, 0 ~ 1.25	0 ~ 10, 0 ~ 5, 0 ~ 2.5, 0 ~ 1.25	0~10,0~5, 0~2.5,0~1.25 (PCI-1718HDU) 0~10,0~1,0~0.1, 0~0.01 (PCI-1718HGU)	0 ~ 10, 0 ~ 5, 0 ~ 2.5, 0 ~ 1.25
Analog Input	Input Ranges	Bipolar Inputs (V)	±10, 5, 2.5, 1.25, 0.625	±10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005	±10, 5, 2.5, 1.25, 0.625	±10, 5, 2.5, 1.25, 0.625	±10, 5, 2.5, 1.25, 0.625	±10, 5, 2.5, 1.25, 0.625 (PCI-1718HDU) ±10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005 (PCI-1718HGU)	±10, 5, 2.5, 1.25, 0.625
		Configurable Per-Channel	✓	✓	✓	✓	✓	✓	-
		Pacer/Software/ External Pulse	✓	✓	✓	✓	✓	✓	✓
	Trigger Mede	Analog Slope	-	-	-	✓	-	-	-
	Trigger Mode	Pretrigger	-	-	-	✓	-	-	-
		Post-trigger	-	-	-	✓ ✓	-	-	-
		About-trigger Software	-		-	√	-	-	- ✓
	Data Transfer Mode	DMA	-	-	-	Bus-mastering	Bus-mastering	-	-
	Resc		12 bits	12 bits	12 bits	12 bits	16 bits	12 bits	16 bits
		Number of Channels	2 (PCI-1710 only)	2 (PCI-1710HG only)	2 (PCI-1711 only)	2 (PCI-1712 only)	2 (PCI-1716 only)	1	-
		On-board FIFO	-	-	-	32K samples	-	-	-
A	nalog Output	Output Range (V)	0 ~ 5, 0 ~ 10	0 ~ 5, 0 ~ 10	0 ~ 5, 0 ~ 10	0 ~ 5, 0 ~ 10, ±5, ±10	0 ~ 5, 0 ~ 10, ±5, ±10	0 ~ 5, 0 ~ 10	-5~5V, -10~10V
		Throughput	38 kS/s Typical**	38 kS/s Typical**	38 kS/s Typical**	1 MS/s	200 kS/s Typical**	100 kS/s Typical**	200 kS/s Typical**
		DMA Transfer	-	-	-	✓	-	-	-
	Digital I/O	Input Channels	16	16 16	16	16 (mixed)	16	16	16
		Output Channels Channels	16 1	16	16 1	3	1	16 1	16 1
т	imer/Counter	Resolution	16-bit	16-bit	16-bit	16-bit	16-bit	16-bit	16-bit
· '	51, 00011101	Time Base	10 MHz	10 MHz	10 MHz	10 MHz	10 MHz	10 MHz	10 MHz
	Isolation \		-	-	-	-	-	-	-
	Auto Calil		-	-	-	✓	✓	-	✓
	BoardID™		✓	✓	-	-	✓	✓	✓
	Dimension	,	175 x 100	175 x 100	175 x 100	175 x 100	175 x 100	175 x 100	175 x 100
	Conne		68-pin SCSI-II	68-pin SCSI-II	68-pin SCSI-II	68-pin SCSI-II	68-pin SCSI-II	DB-37	68-pin SCSI-II
-	Windows® 98/2000/XP DLL Driver		✓	✓	✓	✓	✓	✓	✓
_ v	Windows® 98/2000/XP Test Utility		✓ ✓	✓	✓	✓ ✓	✓ ✓	✓	√
VC++, VB & Delphi Examples		✓	✓	✓ ✓	✓ ✓	✓ ✓	✓	✓ ✓	
	Advantech ActiveDAQ LabView® I/O Drivers		✓	✓	✓	✓	✓	✓	✓
	(Ver.6i and 7.0) MathWorks MATLAB & Simulink Data Acquisition Tool Box 2.5.1		✓ 6.10	√	✓ 6.10	✓ 6.14	-	-	-
	Pag		6-10	6-10	6-12	6-14	6-16	6-18	6-20

^{*} Note: SS = <u>Single</u> DMA channel, Single A/D channel scan SM = Single DMA channel, Multiple A/D channel scan DM = Dual DMA channel, Multiple A/D channel scan

Selection Guide

PCI-1713											
PCH-1713				Р	CI					Δ2Ι	
PCI-1713		ΔΙ			OI .	ΔΩ					
Table Tabl	_		_	PCI-1720/			_	_		Γ	
28 SER DIES 4 SEC 64 SESS 2018 - - - - - - - - - -				1720U	PCI-1721	PCI-1723	PCI-1724	PCI-1727U			-
4-Secondary		12 bits	16 bits	-	-	-	-	-	12 bits	12 bits	12 bits
## Samples 26 K samples 11 K samples 1 K samples 1		4 SE	64 SE/32 Diff.	-	-	-	-	-	8 SE	16 SE	16 SE/8 Diff
Control Cont		32 K samples	1K samples	-	-	-	-	-	-	-	-
0-10,0-5	100 kS/s	30 MS/s	250 kS/s	-	-	-	-	-	25 kS/s	30 kS/s	40 kS/s
0 - 2.5,	✓	✓	✓	-	-	-	-	-	-	-	✓
T25, 0825 35, 25, 1, 0.5 1.05, 0825 1.25, 0825	0 ~ 2.5,	-	0 ~ 2.5,	-	=	-	-	-	-	-	-
✓ ✓ ✓ .	±10, 5, 2.5, 1.25, 0.625	±5, 2.5, 1, 0.5		-	-	-	-	-		1.25, 0.625,	
-	✓	✓	√	-	-	-	-	-	✓	✓	✓
-	✓	✓	✓	-	-	-	-	-	✓	✓	✓
	-	✓	-	-	-	-	-	-	-	-	-
	-		-	-	-	-	-	-		-	-
Bus-mastering Bus-masterin											_
- Bus-mastering Bus-mastering 12 bits 12 bits 16 bits 14 bits 14 bits 12 bits 12 bits 12 bits 12 bits 12 bits 12 bits 14 bits 14 bits 12 bits 14 bits 14 bits 14 bits 12 bits 14 bits 14 bits 14 bits 14 bits 12 bits 12 bits 12 bits 12 bits 14 bits 14 bits 14 bits 12 bits 12 bits 12 bits 14 bits 15 b							-				
-	•			-	_	-		-			
	-	Bus-mastering		-	-	-	-	-	-	SS*	SM*
	-	-	-	12 bits		16 bits	14 bits		12 bits	12 bits	12 bits
	-	-	-		(Waveform	8	32		1	2	1
-	-	-	-	-	· ' /	-	-	-	-	-	-
	-	-	-	±5, ±10, 0 ~ 20 mA,	±5, ±10, 0 ~ 20 mA,	0 ~ 20 mA,	±10, 0 ~ 20 mA		0 ~ 5, 0 ~ 10	0 ~ 5, 0 ~ 10	0 ~ 5, 0 ~ 10
	-	-	-					-			
	-				Bus-mastering	-	-				
- 1					16	16	-				
- 8-bit 16-bit - 16-bit 16-bit 16-bit 10 MHz 10 MHz 10 MHz 10 MHz 2 MHz 2 MHz 10 MHz 10 MHz 2,500 V _{DC} 2,500 V _{DC}					1	_	_			-	
10 MHz											
-	10 MHz										
-							-	-			
175 x 100 185 x 100 155 x 100 DB-37 4 BNC 68-pin SCSI-II DB-37 68-pin SCSI-II DB-62 2 x 20-pin, DB-37 2 x 20-pin 2 x 20-pin DB-37 V <td></td>											
DB-37 4 BNC 68-pin SCSI-II DB-37 68-pin SCSI-II 68-pin SCSI-II DB-62 2 x 20-pin DB-37 DB-37 2 x 20-pin DB-37 DB-37 Y											
DB-37											
V V			·			·		DB-37	·		
V V											
V V											
1 1 <td></td>											
6-24 6-25 6-22 6-26 6-27 6-28 6-29 6-30 6-48 6-49 6-51	√	-	-	✓	-	-	-	-	✓	✓	✓
	6-24	6-25	6-22	6-26	6-27	6-28	6-29	6-30	6-48	6-49	6-51

^{**} Note: System-dependent

AD\ANTECH
Last updated : January 2005

ADAM-3000

Data Acquisition and Control Cards

	Bus				IS	SA		
	Categ	ory		Multifunction	Al		AO	
	Mode	el	PCL-818HD	PCL-818HG	PCL-813B	PCL-726	PCL-727	PCL-728
		Resolution	12 bits	12 bits	12 bits	-	-	-
		Number of Channels	16 SE/8 Diff	16 SE/8 Diff	32 SE	-	-	-
	General Spec.	Onboard FIFO	1K samples	1K samples	-	=	-	-
	ороо.	Sampling Rate	100 kS/s	100 kS/s	25 kS/s	-	-	-
		Auto Channel Scanning	✓	✓	-	-	-	-
_		Unipolar Inputs (V)	0 ~ 10, 0 ~ 5, 0 ~ 2.5, 0 ~ 1.25	0 ~ 10, 0 ~ 1, 0 ~ 0.1, 0 ~ 0.01	0 ~ 10, 0 ~ 5, 0 ~ 2.5, 0 ~ 1.25	-	-	-
Analog Input	Input Ranges	Bipolar Inputs (V)	±10, 5, 2.5, 1.25, 0.625	±10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005	±10, 5, 2.5, 1.25, 0.625	-	-	-
Analo		Configurable Per-Channel	✓	✓	✓	-	-	-
		Pacer/Software/ External Pulse	✓	✓	Software only	-	-	-
	Trigger Mede	Analog Slope	=	-	-	-	-	-
	Trigger Mode	Pretrigger	=	-	-	-	-	-
		Post-trigger	-	-	-	-	-	-
		About-trigger	=	-	-	-	-	-
	Data Transfer	Software	✓	✓	Software only	-	-	-
	Mode	DMA	SM*	SM*	-	-	-	-
	Resolution		12 bits	12 bits	-	12 bits	12 bits	12 bits
		Number of Channels	1	1	-	6	12	2 (Isolation)
		On-board FIFO	=	-	-	-	-	-
A	nalog Output	Output Range (V)	0 ~ 5, 0 ~ 10	0 ~ 5, 0 ~ 10	-	0 ~ 5, 0 ~ 10, ±5, ±10, 4 ~ 20 mA	-0 ~ 5, 0 ~ 10, ±5, 4 ~ 20 mA	0 ~ 5, 0 ~ 10, ±5, ±10, 0 ~ 20 mA, 4 ~ 20 mA
		Throughput	30 kS/s Typical**	30 kS/s Typical**	-	15 kS/s Typical**	15 kS/s Typical**	17 kS/s Typical**
		DMA Transfer	-	-	-	-	-	-
	District 1/0	Input Channels	16	16	-	16	16	-
	Digital I/O	Output Channels	16	16	-	16	16	-
		Number of Channels	1	1	-	-	-	-
1	imer/Counter	Resolution	16-bit	16-bit	-	-	-	-
		Time Base	10 MHz	10 MHz	-	-	-	-
	Isolation V	/oltage		-	500 V _{DC} min	-	-	500 V _{DC}
	Auto Calib	ration	-	-	-	-	-	-
	BoardID™	Switch	-	-	-	-	-	-
	Dimension	s (mm)	185 x 100	185 x 100	219 x 100	337 x 112	337 x 112	185 x 120
	Connec		DB37	DB37	DB37	4 x 20-pin	2 x 20-pin, DB37	2 x DB9
		000/XP DLL Driver	✓	✓	√	✓	✓	✓
Wind	Windows® 95/98/ME/2000/XP Test Utility		✓	✓	✓	√	✓	✓
<u> </u>	VC++, VB & Delphi Examples		✓	✓	✓	✓	✓	✓
	Advantech ActiveDAQ		✓	✓	✓	✓	✓	✓
	LabView® I/0 (Ver.6i an	d 7.0)	✓	✓	✓	✓	✓	✓
	MathWo S & MATLAB Data Acquisition	Simulink	✓	✓	✓	✓	√	✓
	Pago	е	6-52	6-52	6-53	6-54	6-54	6-54
	ı ayı	•	0 02	1 0 02	1 000	0 07	L 0 07	1 0 0 7

^{*} Note: SS = <u>Single</u> DMA channel, Single A/D channel scan SM = Single DMA channel, Multiple A/D channel scan DM = Dual DMA channel, Multiple A/D channel scan

Selection Guide

		Bus	Y			PCI			
	Ca	tegory		Non-Isolated DI/O			Isolate	ed DI/O	
	N	lodel	PCI-1751/1751U	PCI-1753/1753E	PCI-1755	PCI-1730	PCI-1733	PCI-1734	PCI-1752
	Inp	ut Channels	40	00	00	16	=	-	-
9	Out	put Channels	- 48	96	32	16	-	-	-
TTL DI/0	Output	Sink Current	24 mA @ 0.4 V	24 mA @ 0.44 V	48 mA @ 0.5 V	8 mA @ 0.5 V	-	-	-
	Channel	Source Current	15 mA @ 2.4 V	24 mA @ 3.76 V	15 mA @ 2.4 V	0.4 mA @ 2.4 V	-	-	-
	Input	Number of Channels (Input type)	-	-	-	16 (Sink)	32 (Sink)	-	-
	Channels	Isolation Voltage	-	-	-	2,500 V _{DC}	2,500 V _{DC}	-	-
0/0		Input Range	-	-	=	5 ~ 30 V _{DC}	5 ~ 30 V _{DC}	-	-
solated DI/O		Number of Channels (Output Type)	-	-	=	16 (Sink)	-	32 (Sink)	64 (Sink)
<u>s</u>	Output Channels	Isolation Voltage	-	-	-	2,500 V _{DC}	-	2,500 V _{DC}	2,500 V _{DC}
	Gliaillieis	Output Range	-	-	-	5 ~ 40 V _{DC}	-	5 ~ 40 V _{DC}	5 ~ 40 V _{DC}
		Max. Sink Current	-	-	-	200 mA	-	200 mA	200 mA
	Number of Channels		3	-	3	-	-	-	-
Tim	ner/Counter	Resolution	16-bit	=	16-bit	-	=	-	-
	Time Base		5 MHz	-	10 MHz	-	-	-	-
	Pattern Match		-	✓	✓	-	=	-	-
Advanced Functions	Cha	ange of State	-	✓	✓	-	-	-	-
E	Boa	rdID™ Switch	-	-	✓	✓	-	✓	✓
nced	Channe	I-Freeze Function	-	-	✓	✓	-	✓	✓
Adva	Output	Status Read Back	✓	✓	-	✓	-	✓	✓
	Dry	/Wet Contact	✓	✓	-	✓*	✓*	-	-
	Dimen	sions (mm)	175 x 100	175 x 100	175 x 100	175 x 100	175 x 100	175 x 100	175 x 100
	Con	nectors	68-pin SCSI-II	100-pin SCSI-II	100-pin SCSI-II	1 x DB37 4 x 20-pin	1 x DB37	1 x DB37	100-pin SCSI-II
Win	dows® 95/98/N	NE/2000/XP DLL Driver	✓	✓	✓	✓	✓	✓	✓
Win	dows® 95/98/N	NE/2000/XP Test Utility	✓	✓	✓	✓	✓	✓	✓
	VC++, VB &	Delphi Examples	✓	✓	✓	✓	✓	✓	✓
	Advanted	ch ActiveDAQ	✓	✓	=	✓	✓	✓	✓
		® I/O Drivers ii and 7.0)	✓	✓	✓	✓	✓	✓	✓
	MathWorks MATLAB & Simulink Data Acquisition Tool Box 2.5.1		~	√	-	√	√	√	~
		Page	6-31	6-32	6-33	6-34	6-34	6-34	6-36

^{*} Dry/wet contact can be mixed at the same time within one group.

ADAM-3000

AD\ANTECH
Last updated : January 2005

Data Acquisition and Control Cards

		Bus				F	PCI			
	C	ategory				Isolat	ed DI/O			
	ı	Model	PUI-1/54	PUI-1/56	PCI-1/58UUI	PCI-1/58UUU	PCI-1/600	PUI-1/61	PUI-1/62	PUI-1/50
	In	put Channels	-	-	-	-	-	-	-	-
TTL DI/0	Ou	tput Channels	-	-	-	-	-	-	-	-
E	Output	Sink Current	-	-	-	-	-	-	-	-
	Channels	Source Current			-	-	-	-	-	-
	Input	Number of Channels (Input type)	64 (Sink)	32 (Sink)	128	-	8 (Sink)	8 (Sink)	16 (Sink)	16 (Sink)
	Channels	Isolation Voltage	2,500 V _{DC}	2,500 V _{DC}	2500 V _{RMS}	-	2,500 V _{DC}	2,500 V _{DC}	2,500 V _{DC}	2,500 V _{DC}
0/0		Input Range	10 ~ 50 V _{DC}	10 ~ 50 V _{DC}	5 ~ 25 V _{DC}	-	5 ~ 12 V _{DC}	10 ~ 50 V _{DC}	10 ~ 50 V _{DC}	5 ~ 50 V _{DC}
solated DI/O		Number of Channels (Output Type)	-	32 (Sink)	-	128	8 X Form C	4 X Form A 4 X Form C	16 X Form C	16 (Sink)
<u>~</u>	Output	Isolation Voltage	-	2,500 V _{DC}	-	2500 V _{RMS}	2,500 V _{DC}	2,500 V _{DC}	2,500 V _{DC}	2,500 V _{DC}
	Channels	Output Range	-	5 ~ 40 V _{DC}	-	5 ~ 40 V _{DC}	120 V _{AC} @ 0.5 A	250 V _{AC} @ 3 A	120 V _{AC} @ 0.5 A	5 ~ 40 V _{DC}
		Max. Sink Current	-	200 mA	-	90 mA	120 V _{AC} @ 0.5 A 30 V _{DC} @ 1 A	24 V _{DC} @ 3 A	120 V _{AC} @ 0.5 A 30 V _{DC} @ 1 A	200 mA
	Number of Channels		=	=	-	-	Up CTR for DI 2 X PWM	-	-	1
Tim	er/Counter	Resolution	=	=	-	-	16-bit (2,500 Isolation)	-	-	16-bit
		Time Base	-	-	-	-	500 Hz for Up CTR	-	-	1 MHz
	P	attern Match	-	-	-	-	✓	-	-	-
tions	Ch	ange of State	-	-	-	-	✓	-	-	-
Func	Boa	ardID™ Switch	✓	✓	✓	✓	✓	✓	✓	-
nced	Channe	el-Freeze Function	✓	✓	-	-	-	✓	✓	-
Advanced Functions	Output	Status Read Back	=	✓	-	✓	✓	✓	✓	-
	Dr	y/Wet Contact	-	-	✓	✓	✓	-	-	-
	Dimen	sions (mm)	175 x 100	175 x 100	175 x 100	175 x 100	175 x 100	175 x 100	175 x 100	175 x 100
	Coi	nnectors	100-pin SCSI-II	100-pin SCSI-II	dual 100-pin mini-SCSI	dual 100-pin mini-SCSI	1 X DB37	1 X DB37	1 X DB62	1 X DB37
Wind	ows® 95/98/ľ	ME/2000/XP DLL Driver	✓	✓	✓	✓	✓	✓	✓	✓
Wind	ows® 95/98/I	ME/2000/XP Test Utility	✓	✓	✓	✓	✓	✓	✓	✓
	VC++, VB &	Delphi Examples	✓	✓	✓	✓	✓	✓	✓	✓
	Advantech ActiveDAQ		✓	✓	✓	✓	✓	✓	✓	✓
	LabView (Ver.6	r® I/O Drivers Si and 7.0)	√	✓	√	√	√	√	✓	✓
I	MathWorks MATLAB & Simulink Data Acquisition Tool Box 2.5.1		✓	✓	-	√	√	√	✓	✓
		Page	6-36	6-36	6-38	6-38	6-45	6-44	6-46	6-43

^{*} Dry/wet contact can be mixed at the same time within one group.

Selection Guide

				ISA					PCI	ISA
	Non-Isola	ated DI/O		10/1		Isolated DI/O			Cou	
PCL-720+	PCL-722	PCL-724	PCL-731	PCL-725	PCL-730	PCL-733	PCL-734	PCL-735	PCI-1780	PCL-836
32	444	24	40	-	16	-	-	-	8	16
32	144	24	48	-	16	-	-	-	8	16
24 mA @ 0.5 V	24 mA @ 0.5 V	24 mA @ 0.4 V	24 mA @ 0.4 V	-	8 mA @ 0.5 V	-	-	-	24 mA @ 0.5 V	8 mA @ 0.5 V
3 mA @ 2.4 V	15 mA @ 2.4 V	15 mA @ 2.4 V	15 mA @ 2.4 V	-	0.4 mA @ 2.4 V	-	-	-	15 mA @ 2.4 V	0.4 mA @ 2.4 V
-	-	-	-	8 (Sink)	16 (Sink)	32 (Sink)	-	-	-	-
-	-	-	-	1,500 V _{DC}	2,500 V _{DC}	2,500 V _{DC}	-	-	-	-
-	-	-	-	5 ~ 24 V _{DC}	5 ~ 24 V _{DC}	5 ~ 24 V _{DC}	-	-	-	-
-	-	-	-	4 X Form A 4 X Form C	16 (Sink)	-	32 (Sink)	12 X Form C	-	-
-	-	-	-	1,000 V _{DC}	1,000 V _{DC}	-	1,000 V _{DC}	1,000 V _{DC}	-	-
-	-	-	-	120 V _{AC} @ 0.5 A	5 ~ 40 V _{DC}	-	5 ~ 40 V _{DC}	0.6 A @ 100 V _{DC}		-
-	-	-	-	120 V _{AC} @ 0.5 A 30 V _{DC} @ 1 A	200 mA	-	200 mA	0.6 A @ 125 V _{DC}	-	-
3	-	-	-	-	-	-	-	-	8 X CTR	6 X CTR 3 X PWM
16-bit	-	-	-	-	-	=	-	-	16-bit	16-bit
1 MHz	-	-	-	-	-	-	-	-	20 MHz	10 MHz
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	✓	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
185 x 100	334 x 100	125 x 100	185 x 100	147 x 95	185 x 100	185 x 100	185 x 100	155 x 100	175 x 100	185 x 100
5 X 20- pin	6 x 50-pin	1 x 50-pin 2 x 20-pin	2 x 50-pin	1 x DB37	1 x DB37 4 x 20-pin	1 x DB37	1 x DB37	1 x DB37	68-pin SCSI-II	1 x DB37 2 x 20-pin
✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
✓	✓	✓	✓	✓	✓	✓	✓	✓	-	-
✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
✓	✓	✓	✓	✓	~	~	✓	√	-	✓
6-55	6-56	6-56	6-56	6-59	6-57	6-57	6-57	6-59	6-47	6-60

ADAM-3000

PCI-1710 PCI-1710HG

100 kS/s, 12-bit, PCI-bus Multifunction Card 100 kS/s, 12-bit, (High-gain), PCI-bus Multifunction Card

Features

- 16 single-ended, 8 differential or a combination of analog inputs
- 12-bit A/D converter, with up to 100 kHz sampling rate
- Programmable gain for each input channel
- Free combination of single-ended and differential inputs
- On-board 4 K samples FIFO buffer
- Two 12-bit analog output channels
- 16 digital inputs and 16 digital outputs
- Programmable pacer/counter
- BoardID™ Switch
- · Short circuit protection

Introduction

The PCI-1710 Series are multifunction cards for the PCI bus. Their advanced circuit design provides higher quality and more functions, including the five most desired measurement and control functions: 12-bit A/D conversion, D/A conversion, digital input, digital output, and counter/timer.

Specifications

Analog Input

• Channels 16 single-ended or 8 differential (software programmable)

Resolution 12-bit
 On-board FIFO 4 K samples
 Maximum Input Overvoltage ±30 V

Input Range (V, software programmable)

Model	PCL-1710/1710L	PCI-1710HG/1710HGL
Bipolar	±10, ±5, ±2.5, ±1.25, ±0.625	±10, ±5, ±1, ±0.5, ±0.1 ±0.05, ±0.01, ±0.005
Unipolar	0 ~ 10, 0 ~ 5, 0 ~ 2.5, 0 ~ 1.25	0 ~ 10, 0 ~ 1, 0 ~ 0.1, 0 ~ 0.01

Common Mode Rejection Ratio (CMRR)

PCI-171	0/1710L	PCI-1710HG/1710HGL			
Gain	CMRR	Gain	CMRR		
0.5, 1	75 dB	0.5, 1	75 dB		
2	80 dB	10	90 dB		
4	84 dB	100	106 dB		
8	84 dB	1000	106 dB		

Maximum Sampling Rate (S/s, depending on PGIA settling time)

Model	Gain	Max. Sampling Rate
PCI-1710/1710L	0.5, 1, 2, 4, 8	100 kS/s
	0.5, 1	100 kS/s
PCI-1710HG/1710HGL	5, 10	35 kS/s
PCI-1710HG/1710HGL	20, 100	7 kS/s
	500, 1000	770 S/s

Note: The sampling rate depends on the computer hardware architecture and software environment. The rates may vary due to programming language, code efficiency, CPU utilization and so on. Accuracy (depends on gain)
 * S.E.: Single-ended D: Differential

PC	I-1710/1710L	PCI-1710HG/1710HGL					
Gain	Accuracy	Gain	Accuracy	Remar.k			
0.5, 1	0.01% of FSR ±1 LSB	0.5, 1	0.01% of FSR ±1 LSB	S.E./D			
2	0.02% of FSR ±1 LSB	5, 10	0.02% of FSR ±1 LSB	S.E./D			
4	0.02% of FSR ±1 LSB	50, 100	0.04% of FSR ±1 LSB	D			
8	0.04% of FSR ±1 LSB	500, 1000	0.08% of FSR ±1 LSB	D			

Linearity Error ±1 LSB
 Input Impedance 1 GΩ

Trigger Mode Software, onboard programmable pacer or external

Analog Output (PCI-1710/1710HG only)

Channels 2
 Resolution 12-bit
 Relative Accuracy ±1/2 LSB
 Gain Error ±1 LSB

• **Throughput** PC dependent, Software update (direct AO)

Slow Rate
 10 V/ms

• Output Range Internal reference: $0 \sim +5 \text{ V} @ -5 \text{ V}$,

(software programmable) $0 \sim +10 \text{ V}$ @ -10 V

External reference: $0 \sim +x \vee @ -x \vee (-10 \le x \cdot 10)$

• Driving Capability 10 mA

Digital Input

• Channels 16

■ Input Voltage Low: 0.4 V max.

High: 2.4 V min.

■ **Input Load** Low: -0.2 mA @ 0.4 V High: 20 mA @ 2.7 V

PCI-1710 PCI-1710HG

ATM & AWS

DA&C

cPCI

0

0

Specifications Cont.

Digital Output

Channels

 Output Voltage Low: 0.4 V max. @ 8.0 mA (sink)

High: 2.4 V min. @ -0.4 mA (source)

Programmable Timer/Counter

 Counter Chip 82C54 or equivalent

Counters 3 channels, 16 bits, 2 channels are permanently

configured as a 32-bit programmable pacer; 1 channel

is free for user applications

TTL/CMOS compatible Input, gate

Time Base Channel 1: 10 MHz

Channel 2: Takes input from output of channel 1 Channel 0: Internal 1 MHz or external clock (10 MHz max.) selected by software.

General

CE Certified to CISPR 22 class B

I/O Connector 68-pin SCSI-II female connector +5 V @ 850 mA (Typical), - Power Consumption +5 V @ 1.0 A (Max.)

• Operating Temperature $0 \sim 60^{\circ}$ C (32 $\sim 140^{\circ}$ F) (refer to IEC 68-2-1, 2)

-20 ~ 70° C (-4 ~ 158° F) Storage Temperature

 Operating Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

 Dimensions (L x H) 175 x 100 mm (6.9" x 3.9")

MTBF Over 64,770 hrs @ 25° C, grounded-fix environment

Ordering Information

100 kS/s, 12-bit Multifunction Card, user's manual and PCI-1710 driver CD-ROM. (cable not included)

PCI-1710L 100 kS/s, 12-bit Multifunction Card w/o AO, user's

manual and driver CD-ROM. (cable not included)

 PCI-1710HG 100 kS/s, 12-bit High-Gain Multifunction Card, user's manual and driver CD-ROM. (cable not included)

 PCI-1710HGL 100 kS/s, 12-bit High-Gain Multifunction Card w/o

AO, user's manual and driver CD-ROM. (cable not

 PCLD-8710 Industrial Wiring Terminal Board with CJC circuit for

DIN-rail mounting (cable not included)

PCL-10168 68-pin SCSI-II cable with male connectors on both

ends and special shielding for noise reduction, 1 m. 68-pin SCSI-II cable with male connectors on both

PCL-10168-2 ends and special shielding for noise reduction, 2 m.

 ADAM-3968 68-pin SCSI-II Wiring Terminal Board for DIN-rail

Mounting

Feature Details

PCI-1710 series provide specific functions for different user requirements:

PCI-1710 100 kS/s, 12-bit Multifunction Card

PCI-1710L 100 kS/s, 12-bit Multifunction Card w/o AO PCI-1710HG 100 kS/s, 12-bit High-Gain Multifunction Card PCI-1710HGL 100 kS/s, 12-bit High-Gain Multifunction Card w/o AO

Mixed Single-ended or Differential Analog Inputs

PCI-1710 and PCI-1710HG feature an automatic channel/gain scanning circuit. The circuit, rather than your software, controls multiplexer switching during sampling. The on-board SRAM stores different gain values and configurations for each channel. This design lets you perform multi-channel high-speed sampling (up to 100 KHz) with different gains for each channel and allows free combination of single-ended and differential inputs.

On-board FIFO (First In First Out) Memory

PCI-1710. PCI-1710L, PCI-1710HG and PCI-1710HGL have an on-board FIFO buffer that can store up to 4 K A/D samples. PCI-1710 and PCI-1710HG generate an interrupt when the FIFO is half full. This feature provides continuous high-speed data transfer and more predictable performance on Windows systems.

On-board Programmable Counter

The PCI-1710/1710/1710HG/1710HGL provides a programmable counter to generate a pacer trigger for the A/D conversion. The counter chip is an 82C54 or equivalent, which includes three 16-bit counters on a 10 MHz clock. One counter is used as an event counter for counting events coming from the input channels. The other two are cascaded together to make a 32-bit timer for a pacer trigger.

Special Shielded Cable for Noise Reduction

The PCL-10168 shielded cable is specially designed for the PCI-1710/1710HG to reduce noise in the analog signal lines. Its wires are all twisted pairs, and the analog lines and digital lines are separately shielded, providing minimal cross talk between signals and great protection against EMI/EMC problems.

Pin Assignments

^{*:} Pins 23~25 and pins 57~59 are not defined for PCI-1710L/1710HGL

AD\4NTECH Last updated: January 2005

PCI-1711 PCI-1711L

100 kS/s, 12-bit, 16-ch S.E. Inputs Low-cost Multifunction Card

100 kS/s, 12-bit, 16-ch S.E. Inputs Low-cost Multifunction Card w/o AO

Features

- 16 single-ended analog inputs
- 12-bit A/D converter, with up to 100 kHz sampling rate
- Programmable gain for each input channel
- · Automatic channel/gain scanning
- On-board 1K samples FIFO buffer
- Two 12-bit analog output channels (Only for PCI-1711)
- 16 digital inputs and 16 digital outputs
- · Programmable pacer/counter

Introduction

PCI-1711 and PCI-1711L are powerful, but low-cost multifunction cards for the PCI bus. PCI-1711 comes with 2 analog output channels, while the PCI-1711L doesn't. Thus, PCI-1711L represents a cost saver for those that do not need analog output.

Specifications

Analog Input

Channels 16 Single-Ended
Resolution 12-bit
FIFO Size 1K samples
Sampling Rate* 100 kS/s max.

Input range and	Gain	1	2	4	8	16
Gain List	Input	± 10 V	± 5 V	± 2.5 V	± 1.25 V	± 0.625 V
	Gain	1	2	4	8	16
Drift (ppm/°C)	Zero	15	15	15	15	15
	Gain	25	25	25	30	40
Small Signal	Gain	1	2	4	8	16
Bandwidth for PGA	Bandwidth	4.0 MHz	2.0 MHz	1.5 MHz	0.65 MHz	0.35 MHz

Max. Input Overvoltage 20 V
 Input Protect 30 Vp-p
 Input Impedance 2 MΩ/5 pF

Trigger Mode Software, On-board Programmable Pacer or external

	DC	INLE: ±0.5 LSB
		Monotonicity: 12 bits
Accuracy		Offset error: Adjustable to zero
Accuracy		Gain error: 0.005% FSR (Gain=1)
	AC	SNR: 68 dB
		ENOB: 11 bits

Programmable Counter / Timer

Channels 1
 Resolution 16-bit
 Compatibility TTL level
 Base Clock 10 MHz
 Max. Input Frequency 10 MHz

Note:

The sampling rate and throughput depends on the computer hardware architecture and software environment. The rates may vary due to programming language, code efficiency, CPU utilization and so on.

Analog Output (only for PCI-1711)

Channels 2Resolution 12-bit

	Output Range	Internal Reference	0 ~ +5 V, 0 ~ +10 V		
	(Internal & External Reference)	External Reference	$0 \sim +x \ V @ -x \ V (-10 \le x \le 10)$		
	Acquiracy	Relative	±1/2 LSB		
	Accuracy	Differential Non-linearity	+1/2 LSB		

Gain Error Adjustable to zero
 Slew Rate 11 V/µs
 Drift 40 ppm/° C
 Driving Capability 3 mA

Throughput
 PC dependent, Software update (direct AO)

• Output Impedance 0.81Ω

 Settling Time
 26 μs (to ±1/2 LSB of FSR)

 Reference Voltage
 Internal
 -5 or -10 V

 External
 -10 or +10 V

Digital Input / Output

Input Channels	16					
Input Voltage	Low	0.8 V max.				
iliput voltage	High	2.0 V max.				
Output Channels	16					
Outnut Voltage	Low	0.8 V max.@ 8.0 mA (sink)				
Output Voltage	High	2.0 V min.@ -0.4 mA (source)				

General

I/O Connector Type	68-pin SCSI-II female					
Dimensions	175 x 100 mm (6.9" x 3.9")					
	Tunical	PCI-1711	PCI-1711L			
Power Consumption	Typical	+5 V @ 850 mA	+5 V @ 700 mA			
	Max.	Max. +5 V @ 1.0 A				
	Oncretion	0 ~ 60° C (32 ~ 140° F)				
Temperature	Operation	(refer to IEC 68-2-1, 2)				
	Storage	Storage -20 ~ 70° C (-4 ~ 158° F)				
Relative Humidity	5 % ~ 95 % RH non-condensing (refer to IEC 68-2-3)					

PCI-1711/1711L

Ordering Information

PCI-1711	100 kS/s, 12-bit, 16-ch S.E. inputs Low-cost
	Multifunction Card, user's manual and driver CD-ROM.
	/ I I I I IV

(cable not included)

• PCI-1711L 100 kS/s, 12-bit, 16-ch S.E. inputs Low-cost Multifunction Card w/o analog output, user's manual

and driver CD-ROM. (cable not included)

 PCLD-8710 Industrial Wiring Terminal Board with CJC circuit for

DIN-rail mounting (cable not included)

PCL-10168 68-pin SCSI-II cable with male connectors on both

ends and special shielding for noise reduction,

 ADAM-3968 68-pin SCSI-II Wiring Terminal Board for DIN-rail

Mounting

Pin Assignments

	_		
AI0	68	34	Al1
Al2	67	33	Al3
Al4	66	32	AI5
Al6	65	31	AI7
AI8	64	30	AI9
AI10	63	29	Al11
Al12	62	28	Al13
AI14	61	27	Al15
AIGND	60	26	AIGND
AO0_REF	59	25	AOI_REF
AO0_OUT	58	24	AOI_OUT
AOGND	57	23	AOGND
DI0	56	22	DI1
DI2	55	21	DI3
DI4	54	20	DI5
DI6	53	19	DI7
DI8	52	18	DI9
DI10	51	17	DI11
DI12	50	16	DI13
DI14	49	15	DI15
DGND	48	14	DGND
DO0	47	13	DO1
DO2	46	12	DO3
DO4	45	11	DO5
DO6	44	10	DO7
DO8	43	9	DO9
DO10	42	8	DO11
DO12	41	7	DO13
DO14	40	6	DO15
DGND	39	5	DGND
CNT0 CLK	38	4	PACER OUT
CNT0 OUT	37	3	TRG GATE
CNT0 GATE	36	2	EXT TRG
+12V	35	1	+5V
	_	_	

^{*:} Pins 23~25 and pins 57~59 are not defined for PCI-1711L

Feature Details

Plug & Play Function

PCI-1711 and PCI-1711L fully comply complies with the PCI Specification Rev 2.1. and thus are Plug & Play devices. During card installation, it is virtually unnecessary to set any jumpers or DIP switches. Instead, all bus-related configurations such as base I/O address and interrupts are conveniently taken care of by the Plug & Play function.

Flexible Input Types and Range Settings

PCI-1711 and PCI-1711L feature an automatic channel/gain scanning circuit. This circuit design controls multiplexer switching during sampling. You can set different gain values for each channel according to your needs for the corresponding range of input voltages. The gain values thus selected are stored in the SRAM. This flexible design enables multi-channel and high-speed sampling for high-performance data acquisition (up to 100 kS/s).

On-board FIFO Memory

PCI-1711 and PCI-1711L provide an onboard FIFO (First In First Out) memory buffer, storing up to 1 K A/D samplings. You can either enable or disable the interrupt request feature of the FIFO buffer. While the interrupt request for FIFO is enabled, you can further specify whether the interrupt request will be sent whenever one sampling takes place or when the FIFO buffer is half saturated. This feature enables a continuous high-speed data transfer with more predictable performance on Windows systems.

Onboard Programmable Counter

PCI-1711 and PCI-1711L are equipped with a programmable counter, which can serve as a pacer trigger for A/D conversions. The counter chip is an 82C54 or equivalent, which incorporates three 16-bit counters on a 10 MHz clock. One of the three counters is used as an event counter for input channels. The other two are cascaded into a 32-bit timer for pacer triggering.

Applications

- · Process monitoring and control
- Transducer and sensor measurement
- Multi-channel DC voltage measurement

Online Download www.advantech.com/products

PCI-1712 PCI-1712L

1MS/s, 12-bit High-speed Multifunction Card 1MS/s, 12-bit High-speed Multifunction Card w/o AO function

Features

- PCI-bus mastering for data transfer
- 16 single-ended, 8 differential or a combination of analog inputs
- 12-bit A/D converter, with up to 1 MHz sampling rate
- Pre-, post-, about- and delay-trigger data acquisition modes for analog input channels
- Programmable gain for each analog input channel
- Automatic channel/SD*/BU* scanning
- On-board FIFO buffer storing up to 1K samples for A/D and 32K samples for D/A
- Two 12-bit analog output channels with continuous waveform output function
- Auto calibration of analog input and output channels
- 16 digital input and output channels
- Three 16-bit programmable multifunction counter/timers on 10 MHz

Introduction

The PCI-1712/1712L is a powerful high-speed multifunction card for the PCI bus. It features a 1 MHz 12-bit A/D converter, an onboard FIFO buffer (storing up to 1 K samples for A/D, and up to 32 K samples for D/A conversion). The PCI-1712 provides a total of up to 16 single-ended or 8 differential A/D input channels or a mixed combination, two 12-bit D/A output channels, 16 digital input/output channels, and three 10MHz 16-bit multifunction counter channels. PCI-1712/1712L provides specific functions for different user requirements:

Specifications

Analog Input

Anaiog input							
Channels		16 Single-Ended or 8 Differential or Combination					
Resolution		12-bit		FIFO Size		1 K samples	
Max. Sampling Rate		M	Multi-channel, single gain: 1 MS/s Multi-channel, multi gain: 600 kS/s Multi-channel, multi gain, unipolar/bipolar: 400 kS/s				S
Common Mode voltage			±11 V r	nax. (opera	ational)		
		Gain	0.5	1	2	4	8
Input Range and Gain List		Unipolar	N/A	0 ~ 10	0 ~ 5	0 ~ 2.5	0 ~ 1.25
duiii List		Bipolar	±10	±5	±2.5	±1.25	±0.625
	Gain		0.5	1	2	4	8
Drift	Zero (μV/° C)		±80	±30	±30	±30	±30
	Gain (ppm/° C)		±30	±30	±30	±30	±30
Small Signal	Gain (0.5	1	2	4	8
Bandwidth for PGA	Bandwidth		4.0 MHz	4.0 MHz	2.0 MHz	1.5 MHz	0.65 MHz
Max. Input Voltage		±20 V		Input Protect 30 Vp-p			
Input Impedance		10	0Ω 10pF ((Off); 100 ⊆	2 100pF (C	n)	
Trigger Mode	Software, On-board Programmable Pacer or External, Pre-trigger, Post-trigger, Delay-trigger, About-trigger						
		DNLE:	±1LSB; IN	ILE: ±1LS	B; Offset	error < 1	LSB
	DC	Gain	0.5	1	2	4	8
Accuracy		Gain Error: (% FSR)	0.15	0.03	0.03	0.05	0.1
	AC	SNR:	68 dB; EN	OB: 11 bit	s; THD: -7	5 dB typica	ıl

Digital Input /Output

•					
Input Channels	16		Number of ports	2 (8-ch/port)	
Innut	Low	0.8 V max.	High	2.0V min.	
Input Voltage	Low	0.5 V max. @ +24 mA (sink)	High	2.4 V min. @ -15 mA (source)	

Note: The sampling rate depends on the computer hardware architecture and software environment. The rates may vary due to programming language, code efficiency, CPU utilization and more.

Analog Output

Channels	2				
Resolution	12-bit	FIFO Size 32 K samples			
Operation Mode	Single output	, continuous output, wavefo	rm output		
Output Range	Using Internal Reference	0 ~ +5 V, 0 ~ +10 V, -5 ~ +5 V, -10 ~ +10			
(Internal & External Reference)	Using External	0 ~ +x V @ +x V (-10	≤ x ≤ 10)		
Ticici ciioc)	Reference	$-x \sim +x \vee @ +x \vee (-10 \le x \le 10)$			
	Relative	±1 LSB			
Accuracy	Differential Non-linearity	±1 LSB (monotonic)			
Offset	<1 LSB	Slew Rate	20 V/μs		
Drift	10 ppm/° C	Driving Capability	±10 mA		
May Transfer Date	Single Channel: 1 MS/s max. for FSR				
Max. Transfer Rate	Dual Channel: 500 kS/s max. for FSR				
Output Impedance	0.1 Ω max. Max. Digital Update Rate 5 MHz				
Settling Time	2 μs (to ±1/2 LSB of FSB)				

Counter/Timer

Channels		3	Resolution	16-bit	
Compatibility	TTL level	Max. Input F	10 MHz		
BASE Clock		10 MHz, 1 MI	Z		
Clock Input	Low	0.8 V max.	0.8 V max. High		
Gate Input	Low	0.8 V max.	High	2.0 V min.	
Counter	Low	0.5 V max. @ +24 mA	High	2.0 V min. @ -15 mA	

General

I/O Connector Type	68-pin SCSI-II female					
Dimensions	175 x 100 mm (6.9" x 3.9")					
Power Consumption	Typical	+5 V @ 850 mA; +12 V @ 600 mA				
rower Gunsumption	Max.	+5 V @ 1 A; +12 V @ 700 mA				
	Operating Storage	0 ~ 60° C (32 ~ 140° F)				
Temperature		(refer to IEC 68-2-1, 2)				
		-20 ~ 85° C (-4 ~ 185° F)				
Relative Humidity	5 ~ 95 % RH non-condensing (refer to IEC 68-2-3)					
Certification	CE certified					

PCI-1712 PCI-1712L

Ordering Information

PCI-1712 1MS/s, 12-bit High-speed Multifunction Card, user's manual and driver CD-ROM. (cable not included)

PCI-1712L 1MS/s. 12-bit High-speed Multifunction Card w/o AO, user's manual and driver CD-ROM. (cable not

included)

 PCLD-8712 Industrial Wiring Terminal Board for DIN-rail mounting.

(cable not included)

68-pin SCSI-II cable with male connectors on both PCL-10168 ends and special shielding for noise reduction, 1 and 2

 ADAM-3968 68-pin SCSI-II Wiring Terminal Board for DIN-rail

Mounting

Pin Assignments

AIO AI4 AI6 AI8 AI10 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 AI13 AI14 AIGND AO0_REF* AI15 AO1 REF AO0 OUT* AO1 OUT* AOGND* AI_CLK* AI_TRG DGND DGND AO_CLK* CNTO GA TE CNT0_CLK CNT1_CLK CNT1_OUT DGND CNT1_GA_TE DGND CNT2 CLK CNT2 GA TE CNT2_CUT DIO0 DIO1 12 11 10 DIO2 DIO3 DIO4 DIO6 DIO5 DIO7 DGND DGND DIO8 DIO9 DIO1 1 DIO12 DIO13 DIO14 DGND AI_TRG_OUT AI CLK OUT

*: Pin 20, 22~25, 54, 56~59 are not defined on PCI-1712L

Block Diagram

Feature Details

PCI-bus Mastering Data Transfer

PCI-1712 and PCI-1712L support PCI-Bus mastering DMA for high-speed data transfer and gap-free analog input and analog output. By setting aside a block of memory in the PC, PCI-1712 and PCI-1712L perform bus-mastering data transfers without CPU intervention, setting the CPU free to perform other more urgent tasks such as data analysis and graphic manipulation. The function allows users to run all I/O functions simultaneously at full speed without losing data.

Plug & Play Function

PCI-1712 and PCI-1712L are Plug & Play devices, which fully complies with the PCI Specification Rev 2.2. During card installation, there is no need to set any jumpers or DIP switches. Instead, all bus-related configurations such as base I/O address and interrupt are automatically done by the Plug & Play function.

On-board FIFO Memory

PCI-1712 provides an on-board FIFO (First In First Out) memory buffer, storing up to 1K samples for A/D and 32K for D/A conversion.

Automatic Channel/Gain/SD*/BU* Scanning

PCI-1712 and PCI-1712L feature an automatic channel/Gain/SD/BU scanning circuit. This circuit controls multiplexer switching during sampling in a way that is much more efficient than software implementation. Onboard SRAM stores different gain, SD and BU values for each channel. This combination lets users perform multi-channel high-speed sampling with different gain, SD and BU values for each channel.

SD: Single-Ended/Differential; BU: Bipolar/Unipolar

Flexible Triggering and Clocking Capabilities

PCI-1712 and PCI-1712L provide flexibility in triggering action, both in the available trigger modes and trigger events for analog input. You can acquire data using post-trigger, pre-trigger, delay-trigger and about-trigger modes. The trigger source could be either an analog or digital signal. The analog trigger could originate from a dedicated input pin. In fact, you can designate any of the analog input channels as the analog trigger input. You can set the analog trigger level within a voltage range from zero to A/D FSR. With the trigger signal being digital, you can pace A/D and D/A conversion using software interrupt, internal or external clock.

Continuous Analog Output (PCI-1712 only)

PCI-1712 provides two analog output channels. Both can perform continuous waveform output. The analog output can be up to 500 kS/s for each analog output channel. Or you can load a cyclic waveform into an on-board FIFO, which will continuously output the cyclic waveform. The on-board FIFO of the PCI-1712 can store 2 to 32K samples of the waveform

On-board Programmable Multifunction Counter/Timer

PCI-1712 and PCI-1712L are equipped with 3 programmable multifunction counter/timers, which can serve as a pacer trigger for A/D conversion. The counter chip is an 82C54 or equivalent, which incorporates three 16-bit channels on a 10 MHz clock. And then we enhance the gate and clock input function for more applications, of event counting, pulse generation, duty cycle frequency generation, one shot, frequency measurement and pulse width measurement.

ATM & AWS

0

ADVANTECH Last updated: January 2005

PCI-1716 PCI-1716L

16-bit High-resolution Multifunction Card 16-bit High-resolution Multifunction Card w/o AO function

Features

- 16-bit high resolution
- 250 kS/s sampling rate
- Auto calibration function
- PCI-bus mastering for data transfer
- 16 analog input channels with 1K FIFO
- 16 S.E. or 8 Diff. Al, or a combination
- Unipolar/Bipolar input range
- 2 analog output channels (PCI-1716 only)
- 16 digital input channels
- 16 digital output channels
- One 10 MHz 16-bit resolution counter
- BoardID™ Switch

 $C \in$

Introduction

PCI-1716 and PCI-1716L are powerful high-resolution multifunction cards for the PCI bus. They feature a 250 kS/s 16-bit A/D converter, and an on-board 1K sample FIFO buffer for A/D. The cards can also have up to sixteen single-ended or eight differential A/D input channels or a combination of these; two 16-bit D/A output channels, 16 digital input/output channels, and one 10 MHz 16-bit counter channel. PCI-1716 and PCI-1716L provide specific functions for different user requirements.

Specifications

Analog Input

Channels
 16 Single-Ended, 8 differential or combination

Resolution 16-bit
 FIFO Size 1K samples
 Sampling Rate* 250 kS/s max.

Input range and Gain List	Gain	0.5	1	2	4	8
	Unipolar	N/A	0~10	0 ~5	0 ~2.5	0 ~1.25
	Bipolar	± 10	± 5	± 2.5	± 1.25	± 0.625
Small Signal Bandwidth for PGA Gain	Gain	0.5	1	2	4	8
	Bandwidth	4.0 MHz	4.0 MHz	2.0 MHz	1.5 MHz	0.65 MHz

• Common Mode Voltage ± 11 V max. (operational)

Max. Input Overvoltage ±20 V
 Input Protection 30 Vp-p

Input Impedance 100 MΩ/10 pF (0ff); 100 MΩ/100pF (0n)
Trigger Mode Software, Onboard Programmable Pacer or external

		DNLE: ±1 LSB					
		INLE: ±1 LSB					
	DC	Zero (Offset) err	or: Adjusta	ble ±1 LSE	}		
	50	Gain	0.5	1	2	4	8
Accuracy		Gain error (%FSR)	0.15	0.03	0.03	0.05	0.1
		SNR: 82 dB					
	1 F	ENOB: 13.5 bits					
		THD: -84 dB typical					
	Trig	ger Mode	Software, on-board programmable pacer or external				
Clocking and	A/D	pacer clock	250 k Hz	(max.); 58	μHz (min.)	
Trigger Inputs	ernal A/D	rnal A/D Min. Pulse width: 2 μs (high); 2 μs (low)					
trigger clock Max. frequency: 250 KHz							

Note

The sampling rate and throughput depends on the computer hardware architecture and software environment. The rates may vary due to programming language, code efficiency, CPU utilization and other factors.

Digital Input /Output

Input Channels	16			
Innut Voltage	Low	0.4 V max.		
Input Voltage	High	2.4 V max.		
lumint I and	Low	0.4 V max.@ -0.2 mA		
Input Load	High	2.7 V max.@ 2.0 μA		
Output Channels	16			
Output Voltage	Low	0.4 V max.@ 0.8 mA (sink)		
Output Voltage	High	2.4 V min.@ -0.4 mA (source)		

Counter/Timer

• **Channels** 3 channels, 2 channels are permanently configured

as programmable pacers; 1 channel is free for user

application

Resolution 16-bitCompatibility TTL level

Base Clock Channel 2: Takes input from output of channel 1

Channel 1: 10 MHz

Channel 0: Internal 1 MHz or external clock (10 MHz)

max Selected by software

Max. Input Frequency 1 MHz

Clock Input	Low	0.8 V max.	
	High	2.0 V min.	
Gate Input	Low	0.8 V max.	
	High	2.0 V min.	
Counter Output	Low	0.5 V max. @ +24 mA	
	High	2.4 V min. @ -15 mA	

General

■ I/O Connector Type 68-pin SCSI-II female ■ Dimensions 175 x 100 mm (6.9" x 3.9")

Power Consumption Typical +5 V @ 850 mA, +12 V @ 600 mA

Max. +5 V @ 1 A, +12 V @ 700 mA• Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 158^{\circ} \text{ F}) \text{ (refer to IEC 68-2-1, 2)}$

■ Storage Temperature -20 ~ 85° C (-4 ~ 158° F)

Operating Humidity 5 ~ 85% RH non-condensing(refer to IEC 68-1, -2, -3)
Storage Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-1, -2, -3)

Certifications CE

6-16

PCI-1716 PCI-1716L

Analog Output (PCI-1716 only)

Channels 2
Resolution 16-bit
Operation Mode Single output

Throughput*
 PC dependent, Software update (direct AO)

Output Range (Internal	Using Internal Reference		0 ~ +5 V, 0 ~ +10 V, -5 ~ +5 V, -10 ~ +10 V	
& External	Using	External	$0 \sim +x \ V @ +x \ V \ (-10 \le x \le 10)$	
Reference)	Reference		-x ~ +x V @ +x V (-10 ≤ x ≤ 10)	
		DNLE: ±1 LSE	3 (monotonic)	
Ассиноси	DC	INLE: ±1 LSB		
Accuracy	DC	Zero (Offset) error: Adjustable ±1 LSB		
		Gain (Full-scale) error: Adjustable ±1 LSB		
Dynamic	Settling Time	5 μs (to 4 LSE	B of FSB)	
Performance	Slew Rate	20 V/μs		
Drift	10 ppm/° C			
Driving Capability	±20 mA			
Output Impedance	0.1 Ω max.			

Drift 10 ppm/° C
 Driving Capability ±20 mA
 Output Impedance 0.1 Ω max.

Ordering Information

 PCI-1716
 250 kS/s, 16-bit, 16-ch High-resolution Multifunction Card, user's manual and driver CD-ROM. (cable not

included)

• **PCI-1716L** 250 kS/s, 16-bit, 16-ch High-resolution Multifunction

Card w/o analog output, user's manual and driver

CD-ROM. (cable not included)

PCLD-8710 Industrial Wiring Terminal Board with CJC circuit for

DIN-rail Mounting. (cable not included)

• PCL-10168 68-pin SCSI-II cable with male connectors on both

ends and special shielding for noise reduction,

1 and 2 m

ADAM-3968
 68-pin SCSI-II Wiring Terminal Board for DIN-rail

Nounting

Feature Details

PCI-Bus Mastering Data Transfer

PCI-1716 and PCI-1716L support PCI-Bus mastering DMA for high-speed data transfer and gap-free analog input and analog output. By setting aside a block of memory in the PC, PCI-1716 and PCI-1716L performs bus-mastering data transfers without CPU intervention, setting the CPU free to perform other more urgent tasks such as data analysis and graphic manipulation. The function allows users to run all I/O functions simultaneously at full speed without losing data.

Auto-calibration Function

PCI-1716 and PCI-1716L provide an auto-calibration function by using a calibration utility. The built-in calibration circuitry of the PCI-1716 and PCI-1716L corrects gain and offset errors in analog input and analog output channels thereby eliminating the need for external equipment and user adjustments.

BoardID™ Switch

PCI-1716 and PCI-1716L have a built-in BoardID™ DIP switch that helps define each card's unique identity when multiple identical PCI cards have been installed in the same computer. The BoardID switch is very useful when you build your system with multiple identical PCI cards. With the correct BoardID switch settings, you can easily identify and access each card during hardware configuration and software programming.

Plug & Play Function

PCI-1716 and PCI-1716L are Plug & Play devices, which fully complies with PCI Specification Rev 2.2. During card installation, there is no need to set jumpers or DIP switches (Unless you are using several identical cards (See BoardID switch)). Instead, all bus-related configurations such as base I/O address and interrupt are automatically done by the Plug & Play function.

Automatic Channel/Gain/SD*/BU* Scanning

PCI-1716 and PCI-1716L feature an automatic channel/gain/SD/BU scanning circuit. This circuit controls multiplexer switching during sampling in a way that is more efficient than software implementation. On-board SRAM stores different gain, SD and BU values for each channel. This combination lets users perform multi-channel high-speed sampling with different gain, SD and BU values for each channel.

SD: Single-Ended/Differential; BU: Bipolar/Unipolar

On-board FIFO Memory

PCI-1716 and PCI-1716L provide 1K sample on-board FIFO (First In First Out) memory buffer for AD. This is an important feature for faster data transfer and more predictable performance under the Windows system.

On-board Programmable Timer/Counter

PCI-1716 and PCI-1716L provide a programmable timer counter for generating a pacer trigger for the A/D conversion. The timer/counter chip is 82C54, which includes three 16-bit counter 10 MHz clocks. One counter is used as an event counter for counting events coming from the input channel. The other two are cascaded together to make a 32-bit timer for a pacer trigger time base.

Pin Assignments

*: Pins 23~25 and pins 57~59 are not defined for the PCI-1716L

PCI-1718HDU PCI-1718HGU

12-bit Multi-function Card with PCI BUS 12-bit High-gain Multi-function card with PCI BUS (ISA Compatible)

Features

- 16 single-ended or 8 differential analog inputs
- 12-bit A/D converter
- Programmable gain for each input channel
- Automatic channel/gain/SD scanning
- On-board FIFO for AI
- One 12-bit analog output channel
- 16 digital inputs and 16 digital outputs
- · PCI-bus mastering for data transfer
- Universal PCI bus (support 3.3 V or 5 V PCI bus signal)
- BoardID™ switch

 $C \in$

Introduction

PCI-1718HDU/HGU is a multifunction data acquisition card based on the PCI bus. It offers the five most desired measurement and control functions: 12-bit A/D conversion, 12-bit D/A conversion, digital input, digital output, and counter/timer.

PCI-Bus Plug & Play

The PCI-1718HDU/HGU uses a PCI controller to interface the card to the PCI bus. The controller fully implements the PCI bus specification Rev 2.2. All bus relative configurations, such as base address and interrupt assignment, are automatically controlled by software. No jumper or DIP switch is required for user configuration.

Automatic Channel/Gain/SD Scanning

PCI-1718HDU/HGU features an automatic channel/Gain/SD scanning circuit. This circuit, instead of your software, controls multiplexer switching during sampling. On-board SRAM stores different gain and SD values for each channel. This combination lets user perform multi-channel high-speed sampling (up to 100kHz) with different gains and SD for each channel

On-board FIFO

There are 4k samples FIFO for A/D (AI) on PCI-1718HDU/1718HGU. This is an important feature for faster data transfer and more predictable performance under Windows system.

On Board Programmable Timer/Counter

PCI-1718HDU/1718HGU provides a programmable timer counter for generating pacer trigger for the A/D conversion. The timer/counter chip is 82C54, which includes three 16-bit counters of 10 MHz clock. One counter is used as an event counter for counting events coming from the input channel. The other two are cascaded together to make a 32-bit timer for pacer trigger time base.

Specifications

Analog Input

• **Channels** 16 single-ended or 8 differential or combination

Resolution 12-bit
FIFO Size 4 K samples
Max. Sampling Rate 100 kS/s

Input range and	Gain	0.5	1	2	2	4	1		8
Gain List for	Unipolar	N/A	0~10	0-	-5	0~2	2.5	0~	1.25
PCI-1718HDU/ HGU	Bipolar	±10	±5	±2	2.5	±1.	25	±0.	625
Input range and	Gain	0.5	1	5	10	50	100	500	1000
Gain List for	Unipolar	N/A	0~10	N/A	0~1	N/A	0~0.1	N/A	0~0.01
PCI-1718HDU/ HGU	Bipolar	±10	±5	±1	±0.5	±0.1	±0.05	±0.01	±0.005
PCI-1718HDU/	Gain	0.5	i, 1		2	4	1		8
HGU PGA Bandwidth	Bandwidth	5.0	MHz	4.0	MHz	1.3	MHz	0.6	MHz

PCI-1718HDU/	Gain	0.5, 1	5, 10	50, 100	500, 1000
HGU PGA	Bandwidth	1.0 MHz	80 kHz	10 kHz	1 kHz
Bandwidth	Danuwium	1.0 1011 12	OU KI IZ	TO KITZ	I NIIZ
Drift	Zero (µV/.)			15	
Dill	Gain (ppm/.)	40			

• Common Mode Voltage ±11 V max. (operational)

Max. Input voltage ±15 V
 Input Protection 30 Vp-p

Input Impedance
 Trigger Mode
 100 MΩ/10pF(0ff); 100 MΩ/100pF(0n)
 Software, on-board or external programmable pacer

		DNLE: ±1LSB					
	DC	INLE: ±1LSB					
PCI-1718HDU/HGU		Offset error: Adjustable to 0					
		Gain	0.5	1	2	4	8
Accuracy		Gain error(% FSR)	0.01	0.01	0.02	0.02	0.04
	AC	THD: -80 dB					
	AC	EN	IOB: 11	bits			

PCI-1718HDU PCI-1718HGU

	r						
	DC	DNLE: ±1LSB					
		IN	ILE: ±1L	_SB			
PCI-1718HDU/HGU		Offset err	or: Adju	ıstable t	0 0		
		Gain	0.5,1	5,10	50,100	500	1000
Accuracy		Gain error(% FSR)	0.01	0.02	0.02	0.04	0.08
	AC	THD: -80 dB					
	AU	ENOB: 11 bits					
External TTL Trigger	Low	0.8 V max.					
Input	High	2.0 V min.					

Analog Output

Channels Resolution 12-bit Max. Transfer Rate 100 kS/s

Output Range	Using Internal Reference	0 ~ +5 V, 0 ~ +10 V
(Internal & External	Using External Reference	0 ~ x V @ x V
Reference)	Oshig External reference	$(-10 \le x \le 10)$
	INLE	±1 LSB
Ассиноси	DNLE	±1 LSB (monotonic)
Accuracy	Offset error	Adjustable to ±1 LSB
	Gain error	Adjustable to ±1 LSB
Dynamic Performance	Slew Rate	10 V/μs
	Settling Time	2μs to 0.01% of FSR

Drift 10 ppm/°C Driving Capability ±10mA - Output Impedance $0.1\,\Omega$ max.

Digital Input

Input Channels	16			
Innut Valtage	Low	0.4 V max.		
Input Voltage	High	2.4 V min.		
Input Load	Low	0.4 V max.@ -0.2 mA		
	High	2.7 V min.@ 20 μA		

Digital Output

Output Channels	16			
Output Voltage	Low	0.4 V max.@ +8.0 mA (sink)		
	High	2.4 V min.@-0.4 mA(source)		

Counter/Timer

 Counter Chip 82C54 or equivalent

Channels 3 channels, 2 channels are permanently configured

as programmable pacers; 1 channel is free for user

application Resolution 16 bit

- Compatibility TTL level

 Base Clock Channel 1: 10 MHz

Channel 2: Takes input from output of channel 1

Channel 0: Internal 100 kHz or external clock (10 MHz

max.) selected by software

Max. Input Frequency 10 MHz

Clock Innut	Low	0.8 V max.
Clock Input	High	2.0 V min.
Cata Innut	Low	0.8 V max.
Gate Input	High	2.0 V min.
Countar Outnut	Low	0.5 V max.@ +24 mA
Counter Output	High	2.4 V min.@ -15 mA

General

 I/O Connector Type 37-pin DSUB female for Analog One 20-pin Box Header for DI One 20-pin Box Header for DO

Dimensions 175 x 100 mm (6.9" x 3.9")

Power	Typical	+5 V @ 850 mA
Consumption	Max.	+5 V @ 1 A

Tammavatura	Operating	0 ~ 60 °C (32 ~ 158 °F)
Temperature	Storage	-20 ~ 70 °C (-4 ~ 158 °F)
Relative	Operating	5~85%RH non-condensing (refer to IEC 68-1,-2,-3)
Humidity	Storage	5~95%RH non-condensing (refer to IEC 68-1,-2,-3)
Certification		CE certified

Ordering Information

 PCI-1718HDU 12-bit multi-function card with PCI bus

PCI-1718HGU 12-bit high-gain multi-function card with PCI bus

PCL-10120-1 20-pin flat cable, 1m PCL-10120-2 20-pin flat cable, 2m PCL-10137-1 DB37 cable assembly, 1m PCL-10137-2 DB37 cable assembly, 2m PCL-10137-3 DB37 cable assembly, 3m PCLD-8115 Wiring terminal board CE

Pin Assignments

A/D S0	1	20	A/D S
A/D S1	2	21	A/D S
A/D S2	3	22	A/D S
A/D S3	4	23	A/D S
A/D S4	5	24	A/D S
A/D S5	6	25	A/D S
A/D S6	7	26	A/D S
A/D S7	8	27	A/D S
A.GND	9	28	A.GN
A.GND	10	29	A.GN
V.REF	11	30	DA0.O
S0*	12	31	DA0.VI
+12 V	13	32	S1*
S2*	14	33	S3*
D.GND	15	34	D.GN
NC	16	35	EXT.TF
Counter 0 CLK	17	36	Counter
Counter 0 OUT	18	37	PACE
+5V	19		

A/D S8
A/D S9
A/D S10
A/D S11
A/D S12
A/D S13
A/D S14
A/D S15
A.GND
A.GND
DA0.OUT
DA0.VREF
S1*
S3*
D.GND
EXT.TRIG
Counter 0 GATE
PACER

					_		
A/D S0	1	20	A/D S8	A/D H0	1	20	A/D L0
A/D S1	2	21	A/D S9	A/D H1	2	21	A/D L1
A/D S2	3	22	A/D S10	A/D H2	3	22	A/D L2
A/D S3	4	23	A/D S11	A/D H3	4	23	A/D L3
A/D S4	5	24	A/D S12	A/D H4	5	24	A/D L4
A/D S5	6	25	A/D S13	A/D H5	6	25	A/D L5
A/D S6	7	26	A/D S14	A/D H6	7	26	A/D L6
A/D S7	8	27	A/D S15	A/D H7	8	27	A/D L7
A.GND	9	28	A.GND	A.GND	9	28	A.GND
A.GND	10	29	A.GND	A.GND	10	29	A.GND
V.REF	11	30	DA0.OUT	V.REF	11	30	DA0.OUT
S0*	12	31	DA0.VREF	S0*	12	31	DA0.VREF
+12 V	13	32	S1*	+12 V	13	32	S1*
S2*	14	33	S3*	S2*	14	33	S3*
D.GND	15	34	D.GND	D.GND	15	34	D.GND
NC	16	35	EXT.TRIG	NC	16	35	EXT.TRIG
Counter 0 CLK	17	36	Counter 0 GATE	Counter 0 CLK	17	36	Counter 0 GATE
Counter 0 OUT	18	37	PACER	Counter 0 OUT	18	37	PACER
+5V	19			+5V	19		

ADVANTECH

Last updated : January 2005

PCI-1741U

16-bit, 200 kS/s Low cost Multifunction card w/A0

Features

- 16-bit high resolution
- 200 kS/s sampling rate
- Auto calibration function
- 16 S.E. or 8 Diff. Al
- Unipolar/Bipolar input range
- 1 K samples FIFO for AI
- Universal PCI bus (support 3.3 V or 5 V PCI bus signal)
- BoardID™ switch

 $C \in$

Introduction

PCI-1741U is a powerful high-resolution multifunction DAS card for the PCI bus. Its sampling rate is up to 200 kS/s and the 16-bit resolution makes it suitable for most data acquisition applications. PCI-1741U provides 16 single-ended or 8 differential analog input channels, one 16-bit D/A output channel, 16 digital input/output channels, and one 10 MHz 16-bit counter channel.

Auto-calibration Function

PCI-1741U provides an auto-calibration function by using a calibration utility. The built-in calibration circuitry of the PCI-1741U corrects gain and offset errors in analog input and analog output channels thereby eliminating the need for external equipment and user adjustments.

BoardID™ Switch

PCI-1741U has a built-in BoardID™ DIP switch that helps define each card's unique identity when multiple identical PCI cards have been installed in the same computer. The BoardID switch is very useful when you build your system with multiple identical PCI cards. With the correct BoardID switch settings, you can easily identify and access each card during hardware configuration and software programming.

Plug & Play Function

The PCI-1741U is a Plug & Play device, which fully complies with PCI Specification Rev 2.2. During card installation, there is no need to set jumpers or DIP switches. Instead, all bus-related configurations such as base I/O address and interrupt are automatically done by the Plug & Play function.

On-board FIFO Memory

The PCI-1741U provides 1K samples on-board FIFO (First In First Out) memory buffer for AD. This is an important feature for faster data transfer and more predictable performance under the Windows system.

On Board Programmable Timer/Counter

The PCI-1741U provides a programmable timer counter for generating a pacer trigger for the A/D conversion. The timer/counter chip is 82C54, which includes three 16-bit counter 10 MHz clocks. One counter is used as an event counter for counting events coming from the input channel. The other two are cascaded together to make a 32-bit timer for pacer trigger time base.

Specifications

Analog Input

• **Channels** 16 single-ended or 8 differential or combination

Resolution 16-bit
FIFO Size 1 K samples
Max. Sampling Rate 200 kS/s

Innut vonce and	Gain	0.5	1	2	4	8
Input range and Gain List	Unipolar	N/A	0~10	0~5	0~2.5	0~1.25
ualii List	Bipolar	±10	±5	±2.5	±1.25	±0.625
	Gain	0.5	1	2	4	8
Bandwidth for PGA	Bandwidth	4.0 MHz	4.0 MHz	2.0 MHz	1.5 MHz	0.65 MHz

Common mode voltage ±11 V max. (operational)

• Max. Input voltage ±20 V (protection)

Input Protect 30Vp-p

Input Impedance 100 M Ω /10pF(Off); 100 M Ω /100pF(On)

		DNLE: ±1LSB							
		INLE: ±1LSB							
	DC	Zero (Of	Zero (Offset) error: Adjustable to ±1 LSB						
Accuracy	D0	Gain	0.5	1	2	4	8		
Accuracy		Gain error (% FSR)	0.03	0.02	0.02	0.03	0.04		
	AC	THD: -90 dB							
	AU	ENOB: 13.5 bits							
Clocking and Trigger	Trigger Mode	Software, on-board programmable pacer or external					r or		
Inputs	A/D pacer clock	200 kHz (max.); 2.328mHz (min.)							

Analog Output

Channels 1Resolution 16-bit

Operation mode
 Throughput
 Single output
 PC dependent, Software update (Direct AO)

PCI-1741U

Output Range	Using Internal Reference	0 ~ +5 V, 0 ~ +10 V, -5 ~ +5 V,-10 ~ +10 V		
(Internal & External Reference)	Using External	0 ~ +x V@ +x V (-10.x.10)		
,	Reference	-x ~ +x V@ +x V (-10.x.10)		
		DNLE: ±1LSB (monotonic)		
	DC	INLE: ±1LSB		
Accuracy		Zero (Offset) error:Adjustable to ±1 LSB		
		Gain (Full-scale) error:Adjustable to ±1 LSB		
Dynamic	Settling Time	5µs (to 4 LSB of FSR)		
Performance	Slew Rate	20 V/μs		

Drift 10 ppm/. - Driving Capability ±20 mA - Output Impedance 0.1Ω max.

Digital Input /Output

 Input Channels 16 Output Channels 16 **Number of Ports** 2

Innut Valtage	Low	0.8 V max.			
Input Voltage	High	2.0 V min.			
Output Voltage	Low	0.5 V max. @ +24 mA (sink)			
	High	2.4 V min. @ -15 mA (source)			
	High	2.0 V min.			

Counter/Timer

- Counter Chip 82C54 or equivalent

Channels 3 channels, 2 channels are permanently configured

as programmable pacers; 1 channel is free for user

application

- Counter 0 16-bit counter

Counter 1, 2 Cascade as a 32-bit clock divider for pacer clock for

A/D conversion

Resolution 16-bit

 Base Clock Channel 1: 10 MHz

Channel 2: Takes input from output of channel 1

Channel 0: Internal 100 kHz or external

 Compatibility TTL level

Clock Innut	Low	0.8 V max.					
Clock Input	High	2.0 V min.					
Gate Input	Low	0.8 V max.					
	High	2.0 V min.					
Countar Outnut	Low	0.5 V max. @ +24 mA (sink)					
Counter Output	High	2.4 V min. @ -15 mA (source)					

General

- I/O Connector Type 68-pin SCSI-II female Dimensions 175 x 100 mm (6.9" x 3.9")

Bower Consumption	Typical	+5 V @ 850 mA +12 V @ 600 mA		
Power Consumption	Max.	+5 V @ 1 A +12 V @ 700 m A		
Temperature	Operation	0 ~ 60 °C (32 ~ 158 °F) (refer to IEC 68-2-1, 2)		
	Storage	-20 ~ 70 °C (-4 ~ 185 °F)		

Relative Humidity 5 ~ 95%RH non-condensing (refer to IEC 68-2-3)

Certifications CE certified

Pin Assignments

AI0 AI2 AI4 AI6 AI8 AI10 AI12 AI14 AIGND AO0_REF AO0_OUT AOGND DI0 DI2 DI4 DI6 DI8 DI10 DI12 DI14 DGND DO0 DO2 DO4 DO6 DO8 DO10 DO12 DO14 DGND CNTO_CLK CNTO_OUT CNTO_GATE +12V	68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 40 39 38 37 36 35	34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	AI1 AI3 AI5 AI7 AI9 AI11 AI13 AI15 AIGND AO1_REF AO1_OUT AOGND DI1 DI3 DI5 DI7 DI9 DI11 DI13 DI15 DGND DO1 DO3 DO1 DO3 DO5 DO7 DO9 DO11 DO13 DO15 DGND PACER_OUT TRG_GATE EXT_TRG +5V

Ordering Information

PCI-1741U

PCL-10168

Card, user's manual and driver CD-ROM. (cable not

ends and special shielding for noise reduction, 1m.

68-pin SCSI-II cable with male connectors on both

PCL-10168-2

ADAM-3968

PCLD-8710

68-pin SCSI-II cable with male connectors on both ends and special shielding for noise reduction, 2m.

68-pin SCSI-II Wiring Terminal Board for DIN-rail

Mounting

Industrial Wiring Terminal Board with CJC circuit for DIN-rail Mounting. (cable not included)

PCI-1741S PCI-1741U with PCLD-8710 and PCL-10168 cable

200 kS/s, 16-bit, 16-ch High-Resolution Multifunction

Online Download www.advantech.com/products

ADVANTECH

PCI-1747U

250 kS/s, 16-bit, 64-ch Analog Input Card

Features

- 16-bit high resolution
- 250 kS/s sampling rate
- 64 S.E. or 32 Diff. Al, or a combination
- Auto calibration function
- Unipolar/Bipolar input range
- 1k samples FIFO for Al
- Bus master DMA data transfer
- Universal PCI Bus
- BoardID™ switch

((

Introduction

PCI-1747U is a high-resolution high channel count analog input card for the PCI bus. Its sampling rate is up to 250 kS/s and 16-bit resolution provides the power needed for most data acquisition applications. PCI-1747U provides 64 single-ended, 32 differential analog input channels or a combination of these. It also has built in a 1k-sample FIFO buffer for analog input data.

Specifications

Analog Input

• **Channels** 64 single-ended or 32 differential or combination

Resolution 16-bit
 FIFO Size 1 K samples
 Max. Sampling Rate 250 kS/s

Innut source and	Gain	0.5	1	2	4	8
Input range and Gain List	Unipolar	N/A	0~10	0~5	0~2.5	0~1.25
Gaill List	Bipolar	±10	±5	±2.5	±1.25	±0.625
Bandwidth for	Gain	0.5	1	2	4	8
PGA	Bandwidth	4.0	4.0	2.0	1.5	0.65
PUA	Danuwiulii	MHz	MHz	MHz	MHz	MHz

• Common mode voltage ±11 V max. (operational)

Max. Input voltage ±20 V
 Input Protect 30 Vp-p

• Input Impedance 100 M Ω /10pF(Off); 100 M Ω /100pF(On)

	Transfer of the Control of the Contr							
	DC	DNLE: ±1LSB						
		INLE: ±1LSB						
		Zero (Offsi	et) erro	r: Adju	stable	to ±1	LSB	
Accuracy		Gain	0.5	1	2	4	8	
Accuracy		Gain error (% FSR)	0.03	0.02	0.02	0.03	0.04	
	AC	THD: -90 dB						
		ENOB: 13.5 bits						
Clocking and	Trigger Mode	Software, on-board programmable pacer						
Clocking and Trigger Inputs		or external						
	A/D pacer clock	250 kHz (max.); 2.328mHz (min.))	

Counter/Timer

Counter chip 82C54 or equivalent

• Channels 3 channels, 2 channels are permanently configured as programmable pacers; 1 channel is for internal use

only

Resolution 16-bit

Base Clock Channel 1: 10 MHz

Channel 2: Takes input from output of channel 1

Channel 0: Internal 100 kHz

• Counter 0 16-bit timer

Counter 1, 2 Cascade as a 32-bit clock divider for pacer clock for

A/D conversion

General

I/O Connector Type
 Dimensions
 68-pin SCSI-II female
 175 x 100 mm (6.9" x 3.9")

Power Consumption	Typical	+5 V @ 850 mA +12 V @ 600 mA
rower Consumption	Max.	+5 V @ 1 A +12 V @ 700 m A
Temperature	Operating	0 ~ 60 °C (32 ~ 158 °F) (refer to IEC 68-2-1,2)
	Storage	-20 ~ 70°C (-4 ~ 185°F)

• **Relative Humidity** 5 ~ 95%RH non-condensing (refer to IEC 68-2-3)

Certifications
 CE certified

Ordering Information:

• PCI-1747U 250 kS/s, 16-bit, 64-ch, analog input universal PCI bus card

ADAM-3968 68-pin SCSI cable wiring terminal for DIN-rail mounting

 PCL-10168
 68-pin SCSI-II cable with male connectors on both ends and special shielding for noise reduction, 1m.

• PCL-10168-2 68-pin SCSI-II cable with male connectors on both ends and special shielding for noise reduction, 2m.

PCI-1747U

Feature Details

Auto-Calibration Function

The PCI-1747U provides an auto-calibration function with an calibration utility. The builtin calibration circuitry of the PCI-1747U corrects gain and offset errors in analog input, thereby eliminating the need for external equipment and user adjustments.

On-Board Programmable Timer/Counter

PCI-1747U provides a programmable timer counter for generating a pacer trigger for the A/D conversion. The timer/counter chip is 82C54, which includes three 16-bit counter 10 MHz clocks. One counter is used as an event counter for counting events coming from the input channel. The other two are cascaded together to make a 32-bit timer for pacer trigger time base.

Plug & Play Function

The PCI-1747U is a Plug & Play device, which fully complies with PCI Specification Rev 2.2. During card installation, there is no need to set jumpers or DIP switches. Instead, all bus-related configurations such as base I/O address and interrupt are automatically done by the Plug & Play function.

Automatic Channel/Gain/SD/BU Scanning

The PCI-1747U features an automatic channel/gain/SD/BU scanning circuit. This circuit controls multiplexer switching during sampling in a way that is more efficient than software implementation. An on-board SRAM stores different gain, SD (Single-Ended/ Differential) and BU (Bipolar/Unipolar) values for each channel. This combination lets users perform multi-channel high-speed sampling with different gain, SD and BU values for each channel.

PCI-Bus Mastering Data Transfer

PCI-1747U supports PCI-Bus mastering DMA for high-speed data transfer and gap-free analog input and analog output. By setting aside a block of memory in the PC, the PCI-1747U performs bus-mastering data transfers without CPU intervention, setting the CPU free to perform more urgent tasks such as data analysis and graphics manipulation. The function makes it possible to run all I/O functions simultaneously at full speed without losing data.

On-board FIFO Memory

PCI-1747U provides 1K samples on-board FIFO (First In First Out) memory buffer for AD. This is an important feature for faster data transfer and more predictable performance under the Windows system.

Pin Assignments

		_	
AI0	68	34	Al1
Al2	67	33	AI3
Al4	66	32	AI5
Al6	65	31	AI7
Al8	64	30	AI9
Al10	63	29	Ai11
Al12	62	28	Al13
Al14	61	27	Al15
AGND	60	26	AGND
Al16	59	25	Al17
Al18	58	24	Al19
Al20	57	23	Al21
Ai22	56	22	AI23
Al24	55	21	AI25
Al26	54	20	Al27
Al28	53	19	Al29
Al30	52	18	Al31
Al32	51	17	AI33
Al34	50	16	AI35
Al36	49	15	Al37
Al38	48	14	Al39
AI40	47	13	Al41
Al42	46	12	Al43
Al44	45	11	Al45
Al46	44	10	Al47
AGND	43	9	AGND
Al48	42	8	Al49
AI50	41	7	AI51
Al52	40	6	AI53
Al54	39	5	AI55
AI56	38	4	AI57
AI58	37	3	AI59
Al60	36	2	Al61
Ai62	35	1	Ai63

PCI-1713

100 kS/s, 12-bit, 32-ch, Isolated Analog Input Card

Features

- 2500 V_{DC} isolation protection
- 32 single-ended or 16 differential analog inputs, or a combination
- 12-bit resolution for A/D conversion
- Up to 100 kS/s sampling rate for A/D conversion
- Programmable gain for each input channel
- On-board 4 K samples FIFO buffer
- S/W, internal or external pacer triggering supported

 $(\epsilon$

Introduction

The PCI-1713 is an isolated high-speed analog input card for the PCI bus. It provides 32 analog input channels with a sampling rate up to 100 kS/s, 12-bit resolution and isolation protection of 2500 V_{pc}.

Specifications

Analog Input

• Channels 32 single-ended or 16 differential (software programmable)

Resolution 12-bitOnboard FIFO 4K samples

■ Input Range Bipolar: ±10 V, ±5 V, ±2.5 V, ±1.25 V, ±0.625 V (software programmable) Unipolar: 0 ~10 V, 0 ~ 5 V, 0 ~ 2.5 V, 0 ~ 1.25 V

Maximum Input ±30 V

Overvoltage

Common Mode Gain CMRR **Rejection Ratio(CMRR)** 0.5, 1 75dB

2 80dB 4 84dB 8 84dB

Maximum Sampling 100 kS/s

Rate Accuracy

Gain Accuracy

(depends on gain) 0.5, 1 0.01% of FSR±1LSB

2 0.02% of FSR±1LSB 4 0.02% of FSR±1LSB 8 0.04% of FSR±1LSB

• Linearity Error $\pm 1 \text{ LSB}$ • Input Impedance $1 \text{ G}\Omega$

• Trigger Mode Software, on-board programmable pacer or external

(TTL level)

Programmable Pacer

• **Timer** 32-bit programmable timer

■ **Time Base** 10 MHz

General

■ I/O Connector 37-pin D-type female connector
■ Dimensions (L x H) 175 x 100 mm (6.9" x 3.9")
■ Power Consumption +5 V @ 850 mA (Typical), +5 V @ 1.0 A (Max.)

■ **Operating Temperature** 0 ~ 60° C (32 ~ 140° F) (refer to IEC 68-2-1, 2)

• Storage Temperature $-20 \sim 70^{\circ} \text{ C } (-4 \sim 158^{\circ} \text{ F})$

• **Operating Humidity** 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

Ordering Information

PCI-1713
 100 kS/s, 12-bit, 32-channel Isolated Analog Input

Card, user's manual and driver CD-ROM. (cable not

included)

PCLD-881B Industrial Wiring Terminal Board (cable not included)

ADAM-3937 Wiring Terminal Board
 PCL-10137-1 DB37 cable assembly, 1m
 PCL-10137-2 DB37 cable assembly, 2m
 PCL-10137-3 DB37 cable assembly, 3m

Applications

- Signal isolation
- Process monitoring and control
- Transducer/sensor interfacing
- Multi-channel DC voltage measurement

PCI-1714 PCI-1714UL

30 MS/s Simultaneous 4-ch Analog Input Card

10 MS/s Simultaneous 4-ch Analog Input Card

Features

- 12-bit A/D converter up to 30 MS/s
- 4 single-ended analog input channels
- Programmable gain for each input channel
- 32 K samples on board FIFO memory
- 4 A/D converters simultaneously sampling
- Multiple A/D triggering modes
- Programmable pacer/counter
- BoardID™ switch

 $C \in$

Introduction

The PCI-1714 is an advanced-performance data acquisition card based on 32-bit PCI bus architecture. The maximum sampling rate of PCI-1714 is up to 30 MS/s, with an emphasis on continuous, non-stop, high-speed, streaming data of A/D samples to host memory.

Specifications

Analog Input

 Channels 4 single-ended analog input channels

Resolution

FIFO Size 32 K samples/ch for PCI-1714

8 K samples/ch for PCI-1714UL

 Max. Sampling Rate 30 MS/s for PCI-1714

10 MS/s for PCI-1714UL

General

4 BNC connector (for AI) I/O Connector Type

1 PS2 connector (for Ext. clock and trig)

137 x 107 mm (5.4" x 4.2") Dimensions

Power Consumption Typical+5 V @ 850 mA; +12 V @ 600 mA

+5 V @ 1 A ; +12 V @ 700m A

0 ~ 70° C (32~158° F) Operating Temperature Storage Temperature -20 ~ 85° C (-4~185° F)

 Relative Humidity 5 ~ 95%RH non-condensing (refer to IEC 68-2-3)

Certifications

Analog Input:

Channels	4 single-ended analog input channels				
Resolution	12-bit				
FIFO Size		32K locations	(8K for PCI-17	'14UL)	
Max. Sampling Rate1		30MHz 10N	IHz for PCI-171	14UL	
Input range and	Gain	1	2	5	10
Gain List	Range	±5V	±2.5V	±1V	±0.5V
	Gain	1	2	5	10
Drift	Zero (µV/° C)	±30	±30	±30	±30
	Gain (ppm//° C)	±30	±30	±30	±30
Small Signal	Gain	1	2	5	10
Bandwidth for PGA	Bandwidth (-3dB)	7 MHz	7 MHz	7 MHz	7 MHz
Max. Input voltage	±15 V		Input Surge Protect 30 Vp-p		30 Vp-p
Input Impedance	50)Ω/1MΩ/Hi Z j	umper selectab	le /100pF	
Trigger Mode	Software, pacer	, post-trigger, p	re-trigger, dela	y-trigger, about	t-trigger
			±1LSB (N	lo Missing Cod Guaranteed)	es:12 Bits
Accuracy	DC	INLE		±2LSB	
		Offset error	Ad	justable to ±1L	SB
		Gain error	Ad	justable to ±1L	SB

Accuracy	AC	SINAD S/(N+D)	68 dB		
Accuracy	AC AC	ENOB	11bits		
		THD	-75 dB		
	Logic level	TTL	(Low: 0.8 V max. High: 2.0 V min.)		
External Clock 1	Input impedance		50 Ω		
LAIGITIAI GIUGK I	Input coupled		DC		
	Frequency	Up to 3	30 MHzUp to 10 MHz for PCI-1714UL		
	Logic level		5.0V peak to peak sin wave		
External Clock 0	Input impedance	Hi Z			
EXICITIAL CIUCK U	Input coupled	AC			
	Frequency	Up to 30 MHzUp to 10 MHz for PCI-1714UL			
	Logic level	TTL	(Low: 0.8 V max. High: 2.0V min.)		
External Trigger 0	Input impedance	Hi Z			
	Input coupled	DC			
External Apolog	Range	By analog input range			
External Analog Trigger Input	Resolution	8-bit			
mggor mput	Frequency	Up to 1MHz			

Ordering Information

PCI-1714

30 MHz Simultaneous 4-ch Analog Input Card, user's manual and driver CD-ROM (PCL-10901-1 cable

included)

 PCI-1714UL 10MHz Simultaneous 4-ch Analog Input card ADAM-3909 DB-9 Wiring Terminal for DIN-rail Mounting

PCL-10901-1 PS2 to DB9 Wiring Cable, 1m PCL-10901-3 PS2 to DB9 Wiring Cable, 3m PCL-1010B-1 BNC to BNC Wiring Cable, 1m

Pin Assignments GND

EXT TRIGO NC

On board PS-2 connector

EXT CLK1 EXT CLK0-

GND GND GND EXT CLK1

Ps2 To DB-9 Cable Connector

PCI-1720 PCI-1720U

4-ch Isolated Analog Output Card

4-ch Universal Isolated Analog Output Card

Features

- Four 12-bit D/A output channels
- · Multiple output ranges
- 2,500 V_{pc} isolation between the outputs and the PCI bus
- · Keeps the output settings and values after system reset
- One DB37 connector for easy wiring
- Universal PCI and BoardID switch (PCI-1720U only)

 (ϵ)

Introduction

The PCI-1720 provides four 12-bit isolated digital-to-analog outputs for the PCI bus. With isolation protection of 2500 V_{DC} between the outputs and the PCI bus, the PCI-1720 is ideal for industrial applications where high-voltage protection is required.

Keeping the Output Settings and Values after System Reset

Users can independently set the four outputs to different ranges: 0 to +5 V, 0 to +10 V, $\pm 5 \text{ V}$, $\pm 10 \text{ V}$, 0 to 20 mA (sink) or 4 to 20 mA (sink). When the system is hot reset, (power is not shut off), the PCI-1720 can either retain the last analog output settings and values, or return to its default configuration, depending on jumper setting. This practical function eliminates danger caused by misoperation during an unexpected system reset.

PCI-Bus Plug & Play

The PCI-1720 uses a PCI controller to interface the card to the PCI bus. The controller fully implements the PCI bus specification Rev 2.1. All bus relative configurations, such as base address and interrupt assignment, are automatically controlled by software.

Specifications

Channels
 4 isolated D/A channels

Resolution 12 bits

• Output Range Unipolar: $0 \sim +5 \text{ V}$, $0 \sim +10 \text{ V}$

Bipolar: ±5 V, ±10 V

Current loop (sink): 0~ 20 mA, 4 ~ 20 mA

• **Throughput** 15 kHz min. @ full-scale output range

Accuracy ±0.024%

• Isolation Voltage 2,500 V_{DC} between the outputs and the PCI bus • Temperature Drift Typical: 10 PPM/° C (0 ~ 60° C) (32 ~ 140° F)

Maximum: 20 PPM/° C (0 ~ 60° C) (32 ~ 140° F)

• Output Drive ±5 mA max.

Current Loop Excitation 50 V (max.)

Voltage

On-board 12 VDC
 80 mA (max.)

Excitation Voltage

Power Consumption +5 V @ 350 mA (typical), 500 mA (max.)
 +12 V @ 200 mA (typical), 350 mA (max.)

• Operating Temperature $0 \sim 60^{\circ}$ C (32 $\sim 140^{\circ}$ F) (refer to IEC 68-2-1, 2)

• Storage Temperature $-20 \sim +70^{\circ} \text{ C} (-4 \sim 158^{\circ} \text{ F})$

• **Operating Humidity** 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

Connector DB-37 connector

■ **Dimensions (L x H)** 175 x 100 mm (6.9" x 3.9")

Ordering Information

PCI-1720
 4-channel Isolated Output Card, user's manual and

driver CD-ROM. (cable not included)

PCL-10137-1
 PCL-10137-2
 PCL-10137-3
 DB37 cable assembly, 2m
 DB37 cable assembly, 2m
 DB37 cable assembly, 3m

■ PCI-1720U

ADAM-3937PCLD-880

4-channel Isolated Output Card, user's manual and driver CD-ROM. (cable not included)

DB37 Wiring terminal for DIN-rail mounting

Screw terminal board

Applications

- Process control
- Programmable voltage source
- Programmable current sink
- Servo control

Pin Assignments

	$\overline{}$		
NC	1	20	NC
+12 Vout	2	21	NC
AGND	3		
AGND	4	22	NC
Vout 0	5	23	NC
AGND	6	24	NC
Isin k 0	7	25	NC
AGND	8	26	NC
AGND	9	27	NC
Isin k 1	10	28	NC
		29	NC
Vout 2	11	30	NC
AGND	12	31	NC
Isin k 2	13	32	NC
Vout 3	14	33	NC
AGND	15		
Isin k 3	16	34	NC
NC	17	35	NC
NC	18	36	NC
NC	19	37	NC
110	ت		

PCI-1721

12-bit, 4-ch Advanced Analog Output Card

Features

- 10 MHz maximum digital update rate
- PCI-bus mastering for data transfer
- Auto calibration function
- Four analog output channels with 1 K FIFO
- · A 12-bit DAC is equipped for each of analog output channels
- · Real-time waveform output function with internal/external pacer
- Synchronized output function
- · Flexible output types and range settings
- · Keeps the output settings and values after system reset
- 16-ch DI/O and one 10 MHz 16-bit resolution counter
- BoardID™ switch

FCC (€

Introduction

The PCI-1721 is an advanced high-speed analog output card for PCI bus, and each of analog output channels are equipped with a 12-bit, double-buffered DAC. It features many powerful and unique functions, like a waveform output function with 10 MHz maximum update rate, auto-calibration and a BoardID switch. The PCI-1721 is an ideal solution for industrial applications where high-speed continuous analog output or real-time waveform output functions are required.

Specifications

Analog Output

Channels 4
Resolution 12-bit
FIFO Size 1 K Samples

Operation Mode Single/ Continuous/ Wavefrom /Synchronized output

Output Range (Internal & External	Using Internal Reference	0 ~ +5 V, 0 ~ +10 V, -5 ~ +5 V, -10 ~ +10 V, 0 ~ 20 mA, 4 ~ 20 mA
Reference)	Using External Reference	$0 \sim +x \lor @ +x \lor (-10 \le x \le 10)$ -x \sim +x \t \@ +x \t \((-10 \le x \le 10)
	Relative	±1 LSB
Accuracy	Differential Non- linearity	±1 LSB (monotonic)

Offset <1 LSB
 Slew Rate 10 V/μs
 Driving Capability ±10 mA
 Output Impedance 0.1Ω max.

Max. Updata Rate
 Settling Time
 10 MHz (max. for one channel)
 5 µs (to ±1/1 LSB of FSR)

External Clock Input	Low	0.8 V max.
(Max. 10 MHz)	High	2.0 V min.
External TTL Trigger	Low	0.8 V max.
Input	High	2.0 V min.

Counter/Timer

Channels 1
Resolution 16-bit
Compatibility TTL level
Base Clock 10 MHz
Max. Input Frequency 10 MHz

Clock Innut	Low	0.8 V max.
Clock Input	High	2.0 V min.
Gate Input	Low	0.8 V max.
	High	2.0 V min.
Counter Output	Low	0.4 V max. @ +2.5 mA
	High	3.0 V min. @ -2.5 mA

General

I/O Connector Type		68-pin SCSI-II female			
Dimensions		175 x 100 mm (6.9" x 3.9")			
Power	Typical	Typical +5 V @ 850 mA, +12 V @ 600 mA			
Consumption	Max.	Max. +5 V @ 1 A, +12 V @ 700 mA			
Tomporoturo	Operation	Operation 0 ~ 60° C (32 ~ 140° F) (refer to IEC 68-2-1, 2)			
Temperature	Storage	Storage -20 ~ 85° C (-4 ~ 185° F)			
Relative Humidity	5 ~ 95% RH non-condensing (refer to IEC 68-2-3)				
Certifications		CE certified			

Digital Input /Output

16 (bi-directional)		
2		
Low	0.8 V max.	
High	2.0 V min.	
Low	0.5 V max.@ +24 mA (sink)	
High	2.0 V min.@ -15 mA (source)	
	Low High Low	

Ordering Information

PCI-1721
 12-bit, 4-ch Advanced Analog Output Card, user's

manual and driver CD-ROM. (cable not included)

• PCL-10168 68-pin SCSI-II cable with male connectors on both

ends and special shielding for noise reduction,

I and 2 m

• **ADAM-3968** 68-pin SCSI-II Wiring Terminal Board for DIN-rail

Mounting

PCI-1723

16-bit, 8-ch Non-isolated Analog Output Card

Features

- Auto calibration function
- A 16-bit DAC is equipped for each analog output channel
- Synchronized output function
- Output values retained after system hot reset
- 2-port (16-channel) user-defined digital input/output
- BoardID™ switch

((

Introduction

The PCI-1723 is a non-isolated multiple channel analog output card for the PCI bus, and each analog output channel is equipped with a 16-bit, double-buffered DAC. It also features an auto-calibration function and a BoardID™ switch.. The PCI-1723 is an ideal solution for industrial applications where multiple analog output channels are required.

Specifications

Analog Output

Output Channels 8Resolution 8

Operation Mode
 Output Range
 -10 ~ +10 V, 0 ~ 20 mA, 4 ~ 20 mA (Internal Reference only)
 Accuracy
 Relative
 ±6 LSI

Differential Non-linearity ±6 LSB (monotonic)

 $\begin{array}{ll} \bullet & \mbox{Offset} & < 6 \ \mbox{LSB} \\ \bullet & \mbox{Output Impedance} & 0.1 \ \Omega \ \mbox{max}. \end{array}$

• **Throughput** PC dependent, Software update (direct AO)

• **Settling time** 50 μ s (to ±6 LSB of FSR)

Digital Input/Output

Channels 16 (bi-directional)
 Number of Ports 2
 Input Voltage Low 0.8 V max.

High 2.0 V min.

Output Voltage
 Low 0.5 V max. @ 24 mA (sink)
 High 2.4 V min. @ -15 mA (source)

General

I/O Connector Type
 Dimensions
 68-pin SCSI-II female
 175 x 100 mm (6.9" x 3.9")

Power Consumption
 Typical +5 V @ 850 mA, +12 V @ 600 mA
 Max. +5 V @ 1 A, +12 V @ 700 mA

- Operating Temperature $~0\sim60^{\circ}$ C (32 $\sim158^{\circ}$ F) (IEC 68-2-1,2)

Storage Temperature $-20 \sim 85^{\circ} \text{ C } (-4 \sim 185^{\circ} \text{ F})$

• **Relative Humidity** 5 ~ 95 % RH non-condensing (IEC 68-2-3)

Certifications

Ordering Information

PCI-1723
 PCL-10168
 16-bit, 8-ch Non-isolated Analog Output Card
 68-pin SCSI-II cable with male connectors on both ends and special shielding for noise reduction, 1 and 2m

and special shielding for noise reduction, 1 and 2m
 68-pin SCSI-II Wiring Terminal Board for DIN-rail mounting

Applications

 Process control, Programmable voltage source, Programmable current sink, Servo control, Multiple loop PID control, V-command motion control

Pin Assignments

		$\overline{}$	
NC	68	34	NC
Vout0	67	33	Vout1
AGND	66	32	AGND
lout0	65	31	lout1
NC	64	30	NC
AGND	63	29	AGND
Vout2	62	28	Vout3
AGND	61	27	AGND
lout2	60	26	lout3
NC	59	25	NC
AGND	58	24	AGND
Vout4	57	23	Vout5
AGND	56	22	AGND
lout4	55	21	lout5
NC	54	20	NC
AGND	53	19	AGND
Vout6	52	18	Vout7
AGND	51	17	AGND
lout6	50	16	lout7
NC	49	15	NC
AGND	48	14	AGND
DIO0	47	13	DIO1
DIO2	46	12	DIO3
DIO4	45	11	D I O5
DIO6	44	10	DIO7
DIO8	43	9	DIO9
D I O10	42	8	D I O11
D I O12	41	7	D I O13
D I O14	40	6	DIO15
DGND	39	5	DGND
NC	38	4	NC
NC	37	3	NC
NC	36	2	NC
+12V	35	1	+5V
	_	_	

PCI-1724U

14-bit, 32-ch Isolated **Analog Output Card**

Features

- High-density 32-channel analog output channels
- Flexible Output Range: +/-10 V, 0 ~ 20 mA and 4 ~ 20 mA
- Synchronized output function
- Keeps output values after system hot reset
- BoardID™ switch

FCC \in

Introduction

The PCI-1724U is an isolated high-density multiple channel analog output card for the PCI bus, where each analog output channel is equipped with a 14-bit DAC. It feaures optional voltages, current output and a BoardID™ switch. The PCI-1724U is an ideal solution for industrial applications where multiple analog output channels are required.

Specifications

Analog Output

Channels 32 ch isolation Resolution 14-bit

 Operation Mode Single output, synchronized output Output Range -10 ~ +10 V, 0 ~ 20 mA, 4 ~ 20 mA (Internal Reference only)

Accuracy +/- 4 LSB

> Differential Non-linearity +/- 2 LSB (monotonic)

Offset < 2 LSB Output Impedance 0.1Ω max.

Throughput PC dependent, Software update (Direct AO)

Settling Time

Isolation 1,500 V_{nc} system isolation

General

- I/O Connector Type One 62-pin D-type connector 175 x 100 mm (6.9" x 3.9") - Dimensions (L x H)

• Operating Temperature $0 \sim 60^{\circ}$ C (32 $\sim 140^{\circ}$ F) (refer to IEC 68-2-1, 2)

 Storage Temperature -20 ~ 70° C (-4 ~ 158° F)

5 ~ 95 % RH non-condensing (refer to IEC 68-2-3) Operating Humidity

Ordering Information

 PCI-1724U 14-bit, 32-ch Isolated Analog Output Card PCI-10162 DB62 Cable Assembly (1m, 3m)

 ADAM-3962 DB62 Cable Wiring Terminal for Din-Rail Mounting

Applications

- Process control
- Programmable voltage source
- Programmable current sink
- Servo control
- Multiple loop PID control
- V-command motion control

Pin Assignments

AGND			22		
A08	AGND	1	23	43	AGND
AGND	A00	2	24	44	AO16
AO9	AGND	3	25	45	AGND
AGND	A01	4	26	46	A017
AO10	AGND	5	27	47	AGND
AGND	AO2	6	28	48	AO18
AGND AO11	AGND	7		49	AGND
	AO3	8	29 30	50	AO19
AGND	AGND	9	••	51	AGND
AO12	A04	10	31	52	AO20
AGND	AGND	11	32	53	AGND
AO13	AO5	12	33	54	AO21
AGND	AGND	13	34	55	AGND
A014	A06	14	35	56	A022
AGND	AGND	15	36	57	AGND
AO15	A07	16	37	58	AO23
AGND	AO24	17	38	59	AO28
AGND	AO25	18	39	60	AO29
AGND	AO26	19	40	61	AO30
AGND	AO27	20	41	62	AO31
NC			42	02	AU31
	NC	21			

ADVANTECH

PCI-1727U

12-channel D/A output Card (ISA Compatible)

Features

- Compatible with PCL-727
- 12 independent analog output channels
- Multiple output range, including 4~20mA current loop
- 16 DI and 16 DO channels
- Fuse on each channel
- Universal PCI and BoardID™ switch

 $C \in$

Introduction

The PCI-1727U provides twelve 14-bit analog output channels, and is pin-compatible with the ISA PCL-727 card. It supports both +/-10V and 0~20mA current loop (sink). The card's on board DC-to-DC converter ensures the full 10V D/A output is always available.

Each analog output channel has a built-in fuse to protect the circuit, PC and the external devices. The PCI-1727U is an ideal, economical solution for the applications which require multiple PID control loops.

In addition to its analog outputs, the PCI-1727U provides 16 TTL DI and 16 TTL DO channels that are easily applied with industrial on/off control applications.

Specifications

Analog Output

Chipset ADI AD5390
 Channels 12
 Resolution 14 bits
 Output Range ±10 V, 0 ~ 20 mA.
 Current Loop 8 V ~ 36 V

Excitation Voltage

Output Current in 15 mA max.
 Voltage Output

• Throughput Software Static Update

• Setting Time $\leq 70 \, \mu s$

- Power on Default Value All output ranges will output OV or OmA in power on

• Fuse on Each Channel 0.1A

Calibration Function

Digital Input

• Channels 16

Level TTL compatible
 Logic0 0.8 V max
 Logic1 2.0 V min

■ **Input loading** 0.5 V @ 0.4 mA max. (low) 2.7 V @ 50 µA max (high)

Digital Output

Channels
 16

Level TTL compatible
 Logic0 0.5 V @ 8 mA (sink)
 Logic1 2.4 V @ 0.4 mA (source)

Power Supply

+5V 250 mA typical, 500 mA max
 +12V 150 mA typical, 300 mA max
 -12V 100 mA typical, 130 mA max

General

Connector 37-pin D-type female
 Dimensions 175 × 100 mm (6.9" ×3.9")

• Operating Temperature $0 \sim 50 \, ^{\circ}\text{C}$ • Storage temperature $-20 \sim 65 \, ^{\circ}\text{C}$

■ **Relative Humidity** 5 ~ 95%, non-condensing

Ordering Information

PCI-1727U
 PCL-10120-1
 PCL-10137-1
 DB37 cable assembly, 1m

ADAM-3937 DB37 wiring terminal for DIN-rail mounting

PCLD-780 Two 20-pin screw terminal board
 PCLD-782 Opto-isolated D/l board

• PCLD-785 Relay output board

PCI-1751 PCI-1751U

48-bit Digital I/O Card and Counter Card

48-bit Universal Digital I/O and Counter Card

Features

- 48 TTL digital I/O lines
- Emulates mode 0 of 8255 PPI
- Buffered circuits for higher driving capacity than 8255
- Interrupt handling
- Timer/Counter interrupt capability
- Supports both dry and wet contact
- Keeps the I/O port setting and DO state after system reset
- Universal PCI & BoardID switch (PCI-1751U only)

 $C \in$

Introduction

PCI-1751 is a 48-bit digital I/O card for the PCI bus. Its 48 bits are divided into six 8-bit I/O ports and users can configure each port as input or output via software. The PCI-1751 also provides one event counter and two 16-bit timers, which can be cascaded to become a 32-bit timer.

Fulfilling the True Requirements of Industrial Applications

With two practical functions, the PCI-1751 fulfills the true requirements of industrial applications. When the system is hot reset, (power is not shut off), the PCI-1751 can either retain the last I/O port setting and output value, or reset to its default configuration, depending on jumper settings. This function protects the system from wrong operations during unexpected system resets. Additionally, the PCI-1751 supports both dry and wet contacts so that it can easily interface with other devices.

Interrupt Handling Capability

Two lines in each I/O port (CO and C4) and two of the three counter outputs (Timer 1 and Counter 2) are connected to the interrupt circuitry. Two interrupt request signals can be generated at the same time and the software can service the two request signals by ISR. Moreover, a pin in the connector can output a digital signal simultaneously with the card generating an interrupt, and users can utilize this function to trigger external devices with the interrupt.

Specifications

I/O Channels 48 digital I/O lines Programming Mode 8255 PPI mode 0

Digital Output

 Logic Level 0 0.4 V max. @ 24 mA (sink) Logic Level 1 2.4 V min. @ 15 mA (source)

Digital Input

 Logic Level 0 $0 \sim 0.8 \text{ V}$ Logic Level 1 2 ~ 5.25 V

Programmable timer/counter

 Frequency Range 0 ~ 10 MHz

Counters Two 16-bit counters or one 32-bit counter

One 16-bit event counter

General

5 V @ 850 mA (typical) Power Consumption 5 V @ 1.0 A (max.) Operating Temperature 0 ~ 70° C (32 ~ 158° F)

-20 ~ 80° C (-4 ~ 176° F) Storage Temperature

 $5 \sim 95\%$ RH non-condensing (refer to IEC 68-2-3) **Operating Humidity** 68-pin SCSI-II female connector (Centronics type) **Connectors**

Dimensions (L x H) 175 x 100 mm (6.9" x 3.9")

Applications

- Industrial AC/DC I/O monitoring and controlling
- Relay and switch monitoring and controlling
- Parallel data transfer
- TTL, DTL and CMOS logic signal sensing
- Indicator LED driving

Ordering Information

PCI-1751 48-bit digital I/O card and Counter Card, user's manual and driver CD-ROM. (cable not included)

PCI-1751U 48-bit universal digital I/O card and Counter Card,

user's manual and driver CD-ROM. (cable not included) PCL-10168 68-pin SCSI cable, 1 and 2m

ADAM-3968 68-pin SCSI cable wiring terminal for DIN-rail

mounting

68-pin SCSI-II to three 20-pin Wiring Terminal Module ADAM-3968/20

for DIN-Rail Mounting

ADAM-3968/50 68-pin SCSI to 2 x 50-pin box headers converter

module

48-ch Isolated DI Board PCLD-8751 PCLD-8761 24-ch Replay and 24-IDI Board

Pin Assignments

6 - 31

PCI-1753 PCI-1753E

96-ch Digital I/O Card

96-ch Digital I/O Extension Card for PCI-1753

Features

- Up to 192 (96+96) TTL digital I/O lines
- Emulates mode 0 of 8255 PPI
- Buffered circuits for higher driving capacity than 8255
- Multiple-source interrupt handling
- Interrupt output pin for simultaneously triggering external devices with the interrupt
- Output status read-back
- "Pattern match" and "Change of state" interrupt functions for critical I/O monitoring
- Keeps I/O setting and digital output values when hot system reset
- Supports dry contact and wet contact
- High-density 100-pin SCSI connector

Introduction

PCI-1753 is a 96-bit digital I/O card for the PCI bus, which can be extended to 192 digital I/O channels by connecting with its extension board, PCI-1753E. The card emulates mode 0 of the 8255 PPI chip, but the buffered circuits offer a higher driving capability than the 8255. The 96 I/O lines are divided into twelve 8-bit I/O ports: A0, B0, C0, A1, B1, C1, A2, B2, C2, A3, B3 and C3. You can configure each port as input or output via software.

Specifications

• I/O Channels 96 digital I/O lines for PCI-1753

192 digital I/O lines if extending with PCI-1753E

Programming Mode
 Input Signal
 8255 PPI mode 0
 logic level 0: 0.8 V max.

i**nput Signai** logic level 0: 0.8 V max. logic level 1: 2.0 V min.

Output Signal logic level 0: 0.44 V max. @ 24 mA (sink) logic level 1: 3.76 V min. @ 24 mA (source)

■ **Power Consumption** +5 V @ 400 mA (typical) +5 V @ 2.7 A (max.)

• Operating Temperature $0 \sim 60^\circ$ C $(32 \sim 140^\circ$ F) (refer to IEC 68-2-1, 2)

Storage Temperature -20 ~ 70° C (-4 ~ 158° F) (refer to IEC 68-2-3)
 Operating Humidity 5 ~ 95% RH non-condensing

- Connector ScSI female connector (Centronics™

type)

Dimensions (L x H) 175 x 100 mm (6.9" x 3.9")

Ordering Information

 PCI-1753
 96 ch. Digital I/O Card, user's manual and driver CD-ROM. (cable not included)

• **PCI-1753E** Extension Board for PCI-1753

• **PCL-10268** 100-pin to 2x68-pin SCSI cable, 1 and 2m

(PCL-10268 100-pin SCSI-II male connector P/N:

16549A0000)

ADAM-3968
 ADAM-3968/20
 68-pin SCSI wiring terminal for DIN-rail mounting
 68-pin SCSI-II to Three 20-pin Wiring Terminal

Module for DIN-Rail Mounting

• ADAM-3968/50 68-pin SCSI wiring terminal for DIN-rail mounting

• PCLD-8751 48-ch Isolated DI Board

PCLD-8761 24-ch Replay and 24-IDI Board

Applications

- Industrial AC/DC I/O devices for monitoring and controlling
- Relay and switch monitoring and controlling
- · Parallel data transfer
- TTL, DTL and CMOS logic signal sensing
- Indicator LED driving

Pin Assignments

		$\overline{}$	
PA00	1	51	PA20
PA01	2	52	PA21
PA02	3	53	PA22
PA03	4	54	PA23
PA04	5	55	PA24
PA05	6	56	PA25
PA06	7	57	PA26
PA07	8	58	PA27
PB00	9	59	PB20
PB01	10	60	PB21
PB02	11	61	PB22
PB03	12	62	PB23
PB04	13	63	PB24
PB05	14	64	PB25
PB06	15	65	PB26
PB07	16	66	PB27
PC00	17	67	PC20
PC01	18	68	PC21
PC02	19	69	PC22
PC03	20	70	PC23
PC04	21	71	PC24
PC05	22	72	PC25
PC06	23	73	PC26
PC07	24	74	PC27
GND	25	75	GND
PA10	26	76	PA30
PA 11	27	77	PA31
PA12	28	78	PA32
PA13	29	79	PA33
PA14	30	80	PA34
PA15	31	81	PA35
PA16	32	82	PA36
PA17	33	83	PA37
PB10	34	84	PB30
PB1 1	35	85	PB31
PB12	36	86	PB32
PB13	37	87	PB33
PB14	38	88	PB34
PB15	39	89	PB35
PB16	40	90	PB36
PB17	41	91	PB37
PC10	42	92	PC30
PC1 1	43	93	PC31
PC12	44	94	PC32
PC13	45	95	PC33
PC14	46	96	PC34
PC15	47	97	PC35
PC16	48	98	PC36
PC17	49	99	PC37
VCC	50	100	VCC
	_	<u> </u>	l

PA00 ~PA07: I/O pins of Port A0
PA10 ~PA17: I/O pins of Port A1
PA20 ~PA27: I/O pins of Port A2
PA30 ~PA37: I/O pins of Port A3
PB00 ~PB07: I/O pins of Port B1
PB10 ~PB17: I/O pins of Port B1
PB20 ~PB27: I/O pins of Port B1
PB20 ~PB27: I/O pins of Port B2
PB30 ~PB37: I/O pins of Port B2
PB30 ~PC07: I/O pins of Port C0
PC10 ~PC17: I/O pins of Port C1
PC20 ~PC27: I/O pins of Port C1
PC20 ~PC37: I/O pins of Port C1
CC3 ~PC37: I/O pins of Port C3
GND: Ground
VCC: +5V voltage output

PCI-1755

Ultra-Speed 32-ch Digital I/O Card

Features

- Bus-mastering DMA data transfer with scatter gather technology
- 32/16/8-bit Pattern I/O with start and stop trigger function, 2 modes Handshaking I/O Interrupt handling capability
- On-board active terminators for high speed and long distance transfer
- Pattern match and Change state detection interrupt function
- General-purpose 8-ch DI/O

FCC (€

Introduction

The PCI-1755 supports PCI-bus mastering DMA for high-speed data transfer. By setting aside a block of memory in the PC, the PCI-1755 performs bus-mastering data transfers without CPU intervention, setting the CPU free to perform other more urgent tasks such as data analysis and graphic manipulation. The function allows users to run all I/O functions simultaneously at full speed without losing data.

Specifications

Channels	32 TTL compatible					
Number of Ports		rt C and Port D (8 bit				
I/O Configuration	32DI (PA~PD) (de (PC) (Programma); 16DI (PA~PB) & 1	6DO (PC~PD); 8DI (PA) & 8DO		
On-board FIFO	16 KB for DI & 16	KB DO channels				
	Data Transfer Mode	Bus Mastering DMA	with Scatter-Gather			
	Data Transfer Bus Width	8/16/32 bits (progra	ımmable)			
Transfer Characteristics	Max. Transfer Rate	Di: 80 M bytes/sec, 32-bit @ 20 MHz 120 M bytes/sec, 32-bit @ 40 MHz external pacer when data length is less than FIFO size DO: 80 MBytes/sec, 32-bit @ 20 MHz				
	Operation Mode	Handshaking				
	Direction	1/0	Samples No.	Finite transfer, Continuous I/O		
	Asynchronous	8255 Emulation	Synchronous	Burst Handshaking		
Handshaking Mode	for Burst	Internal: 30 MHz, 20 MHz, 15 MHz, 12 MHz, 10 MHz, Timer#0 for DI & Timer#1 for D0				
	Handshaking	External: EXT_CLKIN for DI & EXT_CLKOUT for DO				
	Input Data Acquisition at a predetermined rate by internal/external					
	Output	Waveform Generation at a predetermined rate by internal/external clock				
	Clock Source	Internal: 30 MHz, 20 MHz, 15 MHz, 12 MHz, 10 MHz, Timer#0				
	for DI	External: EXT_CLKIN				
Normal Mode	Clock Source	Internal: 30 MHz, 20 MHz, 15 MHz, 12 MHz, 10 MHz, Timer#1				
ivormai iviodo	for DO	External: EXT_CLKOUT				
	Start Mode	Software command/Trigger signal occurred from DI_STR or DO_STR/ Pattern DI				
	Stop Mode	Software command/Trigger signal occurred from DI_STP (for DI) or DO_STR (for D0)/Pattern DI/"Finite transfers"				
		nd then issue a IRQ		ever there is a transition on one		
Chang Detection	Clock Source	Internal: 30 MHz, 20) MHz, 15 MHz, 12 I	MHz, 10 MHz, Timer#0		
(DI only)	for DI	External: EXT_CLKI	N			
(DI UIIIy)	Start Mode			red from DI_STP/Pattern DI		
	Stop Mode	Software command/Trigger signal occurred from DI_STP/ Pattern DI/"Finite transfers"				
	DI trigger signal	DI_STR, DI_STP	DO trigger signal	DO_STR, DO_STP		
	Low	0.8 V max.	High	2.0 V min.		
	Trigger Type	Rising or falling edg	e, or digital pattern	(for DI only)		
Trigger Capability	Pulse width for edge triggers	10 ns min.				
	Pattern trigger detection capabilities	or mismatch on us	er-selected data lines			
Terminator	On-board Schottky diode termination					

Messaging	2. When a specified input pattern is matched, 3. When a measurement operation completes.					
Input Voltage	Low	0 V min.; 0.8 V max.	High	2.0 V min.; 5 V max.		
	Terminator OFF: TTL compatible					
	Low	+0.5 V @ ±20 mA	High	+2.7 V @ ±1 mA max.		
	Terminator ON					
Input Load	Terminator Resistor	110 Ω	Termination Voltage	2.9 V		
	Low	+0.5 V @ ±22.4 mA	High	+2.7 V @ ±1 mA max.		
Output Voltage	Low	0.5 V max.	High 2.7 V min.			
Driving Capacity	Low	0.5 V max @ +48 mA (sink)	High	2.4 V min. @ -15 mA (source)		
Hysteresis	500 mV	Power Available at I/O connector +4.65 ~ +5.25 V _{DC} @ 1A				
General-purpose	DI Channels	DIO ~ DI7 (TTL compatible)				
DI/O	DO Channels	D00 ~ D07 (TTL co	mpatible)			
Interrupt Source	DIO-7 and Timer#2, Pattern match and Change detection, DI FIFO overflow and DO FIFO underflow, DI_STP and DO_STP					

Pacer

Channels Timer#0, Timer#1 and Timer#2 Timer#0 Timer pacer for digital input Timer#1 Timer pacer for digital output Timer#2 Interrupt source Resolution 16-bit Base Clock 10 MHz

General

I/O Connector Type		100-pin SCSI-II female					
Dimensions (L x H)		175 x 100 mi	m (6.9" x 3.9	9")			
Power Consumption	Typical	Typical Terminator OFF: +5 V @ 1 A Max. Terminator ON: +5 V @ 1 A Terminator ON: +5 V @ 1 A					
Temperature	Operating	Operating 0 ~ 60° C (32 ~ 140° F) (refer to IEC 68-2-1,2)		-20 ~ 85° C (-4 ~ 185° F)			
Relative Humidity	5 ~ 95% RH non-condensing (refer to IEC 68-2-3)		Cert.	FCC, CE certified			

Ordering Information

PCI-1755

ADAM-39100

PCL-101100-1

Ultra-speed 32-ch Digital I/O Card PCI-1755 Wiring Terminal for DIN-rail Mounting 100-pin SCSI-II cable with male connectors on both ends and special shielding for noise reduction, 1 m

PCI-1730 PCI-1733 **PCI-1734**

32-ch Isolated Digital I/O Card (ISA Compatible)

32-ch Isolated Digital Input Card (ISA Compatible)

32-ch Isolated Digital Output Card (ISA Compatible)

PCI-1730

 $C \in$

 (ϵ)

$C \in$

Features

- 32 isolated DIO ch. (16 inputs and 16 outputs)
- 32 TTL-level DIO ch. (16 inputs and 16 outputs)
- High output driving capacity
- Interrupt capability
- Two 20-pin connectors for isolated digital I/O channels and two for TTL digital I/O channels
- D-type connector for isolated input and output ch.

Features

- 32 isolated, bidirectional digital input channels
- High-voltage isolation (2,500 V_{DC})
- Interrupt capacity
- D-type connectors for isolated input channels
- Reverse voltage protection for isolated input channels (up to 24 VDC)

Features

- 32 isolated digital output channels
- · High output driving capacity
- High-voltage isolation on output channels (2,500
- High sink current on isolated output channels (200 mA/channel)
- Integral suppression diodes for inductive loads
- Wide output range (5 ~ 40 V_{DC})
- D-type connectors for isolated output channels

Specifications

Isolated Digital Input

Input Channels 16 (16-ch/group) Interrupt Inputs 4 (IDIO, IDI1, DIO, DI1) Interrupt Levels 2 - 7 Input Voltage $5 \sim 30 \, V_{DC}$ Input Resistance 2.7 kΩ @ 1 W 2,500 V_{DC} Optical Isolation

10 kHz max.

37-pin D-type female

185 x 100 mm

Isolated Digital Output

I/O Connector Type

Dimensions (L x H)

Throughput

 Output Channels 16 (16-ch/group) $2,500 V_{DC}$ Optical Isolation Throughput 10 kHz - Supply Voltage 5 ~ 40 V_{DC} Sink Current 200 mA max./channel

General

(7.3"x3.9") - Power Consumption Typical: +5 V @ 330 mA Max: +5 V @ 500 mA • Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$ Storage Temperature -20~70° C (-4~158° F) Relative Humidity 5 ~ 95% (IEC 68-2-3) non-condensing

Ordering Information

Specifications

Isolated Digital Input

 Input Channels 32 (16-ch/group) Interrupt Inputs 4 (IDIO, IDI1, IDI16, IDI17) Interrupt Levels 2, 3, 5, 7, 10, 11, 12, 15 5 ~ 30 V_{DC} **Input Voltage** Input Voltage $5 \sim 30 \, V_{no}$ Input Resistance $2.7 \text{ k}\Omega$ @ 1 W **Optical Isolation** $2,500 \, V_{DC}$ Throughput 10 kHz max.

General 37-pin D-type female I/O Connector Type Dimensions (L x H) 185 x 100 mm (7.3" x 3.9") **Power Consumption** Typical: +5 V @ 320 mA Max: +5 V @ 500 mA Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$ Storage Temperature -20~70° C (-4~158° F)

Specifications

Isolated Digital Output

 Output Channels 32 (16-ch/group) $2,500 V_{DC}$ Optical Isolation Throughput 10 kHz Supply Voltage $5 \sim 40 \, V_{DC}$ Sink Current 200 mA max./channel

General

 I/O Connector Type 37-pin D-type female 185 x 100 mm Dimensions (L x H) (7.3" x 3.9") Power Consumption Typical: +5 V @ 330 mA Max: +5 V @ 500 mA Operating Temperature 0 ~ 60°C (32 ~ 140°F) Storage Temperature -20~70° C(-4~158° F) Relative Humidity 5 ~ 95% (IEC 68-2-3) non-condensing

Ordering Information

PCI-1733

Relative Humidity

32-channel isolated digital input card, manual and driver CD-ROM (cable not included)

5 ~ 95% (IEC 68-2-3)

non-condensing

Ordering Information

PCI-1734

32-channel Isolated digital output card. user's manual and driver CD-ROM (cable not included)

6-34 AD\ANTECH |

PCI-1730

Plug-in DA&C Cards

Card, manual and driver

CD-ROM (cable not.

included.)

PCI-1730 PCI-1733 PCI-1734

PCI-1730 Accessories

PCL-10120-1 20-pin flat cable, 1m PCL-10120-2 20-pin flat cable, 2m

PCLD-782 16-channel opto-isolated D/I board

 ADAM-3920 20-pin flat cable wiring terminal for DIN-rail mounting

PCLD-885 16-channel power relay (form A) output board

PCLD-785 16-channel relay output board

PCLD-786 8-channel SSR I/O module carrier board

General Accessories

 PCLD-780 Universal screw terminal board PCLD-880 Universal screw terminal board

 ADAM-3937 DB37 wiring terminal for DIN-rail mounting

PCL-10137-1 DB37 cable, 1m PCL-10137-2 DB37 cable, 2m PCL-10137-3 DB37 cable, 3m

Introduction

The PCI-1730/1733/1734 cards offer isolated digital input channels as well as isolated digital output channels with isolation protection up to 2,500 $V_{\rm nc}$, which makes them ideal for industrial applications where high-voltage isolation is required. In addition, all output channels are provided with high-voltage protection.

Applications

- Industrial on/off control
- Contact closure monitoring
- Switch status sensing
- BCD interfacing
- Digital input control
- Industrial and lab automation

Isolated Input Circuit Diagram

Isolated Output Circuit Diagram

Pin Assignments

CN1 of PCI-1730

IDO 0	1	2	IDO 1
IDO 2	3	4	IDO 3
IDO 4	5	6	ID0 5
IDO 6	7	8	ID0 7
IDO 8	9	10	IDO 9
IDO 10	11	12	IDO 11
IDO 12	13	14	IDO 13
IDO 14	15	16	IDO 15
EGND	17	18	EGND
PCOM0/EGND	19	20	PCOM1
	ı		

CN3 of PCI-1730

DO 0 DO 2	1 3	2	DO 1 DO 3
DO 4	5	6	DO 5
DO 6	7	8	DO 7
DO 8	9	10	DO 9
DO 10	11	12	DO 11
DO 12	13	14	DO 13
DO 14	15	16	DO 15
GND	17	18	GND
+5V	19	20	+12V

CN6 of PCI-1730

IDI0 IDI2 IDI4 IDI8 IDI10 IDI110 IDI112 IDI14 ECOMO PCOMO/FGND IDO 0 IDO 2 IDO 4 IDO 6 IDO 8 IDO 10 IDO 12 IDO 14 PCOM1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	IDI1 IDI3 IDI5 IDI7 IDI9 IDI11 IDI13 IDI13 IDI15 ECOM1/EGND EGND ID0 1 ID0 3 ID0 5 ID0 7 ID0 7 ID0 11 ID0 13 ID0 13 ID0 15				

EGND ECOM GND **PCOM**

D0 DI

ID0

IDI

Digital output Digital input Isolated digital output Isolated digital input External ground for isolated output External common for isolated input Digital ground Free wheeling common diode

CN1 of PCI-1733

	$\overline{}$	_	
IDIO IDI2 IDI4 IDI6 ECOMO IDI9 IDI13 IDI15 IDI16 IDI20 IDI22 ECOMI2 IDI22 IDI27 IDI27 IDI29 IDI29 IDI21 IDI29 IDI21 IDI29 IDI21 IDI29 IDI21 IDI29 IDI31 IDI29 IDI29 IDI31 IDI29 IDI31 IDI29 IDI31 IDI29 IDI31 IDI29 IDI31 IDI29 IDI31 IDI29 IDI31 IDI29 IDI31 IDI29 IDI31 IDI29 IDI31 IDI29 IDI31 IDI29 IDI31 IDI3	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	IDI1 IDI3 IDI5 IDI7 IDI8 IDI10 IDI112 IDI14 ECOMM IDI17 IDI19 IDI21 IDI23 IDI24 IDI26 IDI28 IDI30 ECOMM

	\sim	_	
ID00 ID02 ID04 ID06 PC0M0 ID09 ID011 ID013 ID015 ID016 ID018 ID022 PC0M2 ID025 ID025 ID027 ID029 ID031 EGND	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	ID01 ID03 ID05 ID07 ID08 ID010 ID012 ID014 PC0M ID017 ID019 ID021 ID023 ID024 ID026 ID028 ID030 PC0M

CN2 of PCI-1730

0112 011 01 1700						
IDI 0	1	2	IDI 1			
IDI 2	3	4	IDI 3			
IDI 4	5	6	IDI 5			
IDI 6	7	8	IDI 7			
IDI 8	9	10	IDI 9			
IDI 10	11	12	IDI 11			
IDI 12	13	14	IDI 13			
IDI 14	15	16	IDI 15			
ECOM0	17	18	ECOM1			
ECOM0	19	20	ECOM1			

CN4 of PCI-1730

0111 01 1 01 1100			
DI 0	1	2	DI 1
DI 2	3	4	DI 3
DI 4	5	6	DI 5
DI 6	7	8	DI 7
DI8	9	10	DI 9
DI 10	11	12	DI 11
DI 12	13	14	DI 13
DI 14	15	16	DI 15
GND	17	18	GND
+5V	19	20	+12V
	l .		

CN1 of PCI-1734

6 - 35

PCI-1752 PCI-1754 PCI-1756

64-ch Isolated Digital Output Card

64-ch Isolated Digital Input Card

64-ch Isolated Digital I/O Card

Features

- 64 isolated digital output channels
- High-voltage isolation on output channels (2500 V_{DC})
- 2000 V_{DC} ESD protection
- Wide output range (5 ~ 40 V_{DC})
- High-sink current on isolated output channels (200 mA max./channel)
- Output status read-back
- · Keeps digital output values when hot system reset
- · Channel-freeze function
- · High-density 100-pin SCSI connector

Specifications

General

 I/O Connector Type Dimensions (L x H)

Power Consumption

Storage Temperature

Relative Humidity

100-pin SCSI-II female 175x100mm (6.9"x3.9")

Typical: +5 V @ 230 mA Max.: +5 V @ 500 mA

• Operating Temperature $0\sim60^{\circ}$ C (32 $\sim 140^{\circ}$ F) (IEC 68-2-1, 2)

-20~70° C (-4 ~ 158° F)

5~95 % (IEC 68-2-3) non-condensing

Isolated Digital Output

Output Channels

64 (16-ch/group) $2,500 V_{DC}$

 Optical Isolation Opto-isolator resp. time 25 μs

 Supply Voltage $5 \sim 40 \, V_{DC}$

 Sink Current 200 mA max./channel

Ordering Information

PCI-1752

64-channel Isolated Digital Output Card, user's manual and driver CD-ROM (cable not included)

Features

- 64 isolated digital input channels
- Either +/- voltage input for DI by group
- High-voltage isolation on input channels (2500 V_{DC})
- High over-voltage protection (70 V_{DC})
- Wide input range (10 ~ 50 V_{DC})
- Interrupt handling capability
- High-density 100-pin SCSI connector

Specifications

General

 I/O Connector Type Dimensions (L x H)

Power Consumption

Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$

Storage Temperature

Relative Humidity

-20~70° C (-4 ~ 158° F) 5~95 % (IEC 68-2-3) non-condensing

(IEC 68-2-1, 2)

100-pin SCSI-II female

175x100mm (6.9"x3.9")

Typical: +5 V @ 340 mA

Max.: +5 V @ 450 mA

Isolated Digital Input

 Input Channels 64 (16-ch/group) Interrupt Inputs

Optical Isolation $2,500 \, V_{pc}$ Opto-Isolator Resp. 25 µs

Over-Voltage Protection 70 Vpc

ESD $2,000 \, V_{DC}$

Input Voltage

Time

50 V_{DC} VIH (max.) $10\,\mathrm{V}_\mathrm{DC}$ VIH (min.) VIL (max.) $3\,\mathrm{V}_{\mathrm{DC}}$

Input Current

10 V_{DC} 1.7 mA (typical) 12 V_{DC} 2.1 mA (typical) $24 \, V_{DC}$ 4.4 mA (typical) 48 V_{DC} 9.0 mA (typical) 50 V_{DC} 9.4 mA (typical)

Ordering Information

PCI-1754

64-channel Isolated Digital Input Card

Features

- Either +/- voltage input for DI by group
- Output status read-back for output channels
- Keeps digital output values after hot system reset

Specifications

General

• I/O Connector Type

Dimensions (L x H)

Power Consumption

Storage Temperature

Relative Humidity

100-pin SCSI-II female 175x100mm (6.9"x3.9") Typical: +5 V @ 285 mA

Max.: +5 V @ 475 mA • Operating Temperature $0\sim60^{\circ}$ C (32 $\sim 140^{\circ}$ F)

(IEC 68-2-1, 2) -20~70° C (-4 ~ 158° F)

5~95 % (IEC 68-2-3) non-condensing

32 (16-ch/group)

 $\rm 2,500~V_{DC}$

5 ~ 40 V_{DC}

25 µs

Isolated Digital Output

 Output Channels **Optical Isolation**

Opto-Isolator Resp.

Supply Voltage

Sink Current

200 mA max./channel

Isolated Digital Input

Input Channels 32 (16-ch/group) 2 (IDI0, IDI16) Interrupt Inputs 2,500 V_{DC} **Optical Isolation** Opto-Isolator Resp. 25 µs Time

Over-Voltage Protection 70 V 2,000 V_{DC} ESD

Input Voltage

 $50 \, V_{DC}$ VIH (max.) 10 V_{DC} VIH (min.) VIL (max.) $3V_{DC}$

Input Current

1.7 mA (typical) 10 V_{DC} 2.1 mA (typical) 12 V_{DC} $24 \, \mathrm{V}_{\mathrm{DC}}$ 4.4 mA (typical) 48 V_{DC} 9.0 mA (typical) 50 V_{DC} 9.4 mA (typical)

Ordering Information

PCI-1756

64-channel Isolated Digital I/O Card

6-36

PCI-1752 PCI-1754 PCI-1756

Accessories

PCL-10250

PCL-10250-2 ADAM-3951

ADAM-3950S

ADAM-3950D

100-pin SCSI to two 50-pin SCSI cable, 1m 100-pin SCSI to two 50-pin SCSI cable, 2m Wiring terminal module with LED indicators for

DIN-rail mounting

50-pin SCSI-II Wiring Terminal Dual 50-pin SCSI-II Wiring Terminal

Block Diagram (PCI-1756)

Pin Assignments

IDO00 ~ IDO15 :Isolated digital output of Group 0 IDO16 ~ IDO31 :Isolated digital output of Group 1 IDO32 ~ IDO47 :Isolated digital output of Group 2 IDO48 ~ IDO63 :Isolated digital output of Group 3 PCOM0 : External common input of Group 0 PCOM1 : External common input of Group 1 PCOM2 : External common input of Group 2

PCOM3 : External common input of Group 3

IGND : Isolated ground

CH_FRZ_IN :Channel-Freeze input pin

CH FRZ COM: Common pin for Channel-Freeze input

IDI00 ~ IDI15 :Isolated digital input of Group 0 IDI16 ~ IDI31 :Isolated digital input of Group 1 IDI32 ~ IDI47 :Isolated digital input of Group 2 IDI48 ~ IDI63 :Isolated digital input of Group 3 ECOM0 : External common input of Group 0 ECOM1 : External common input of Group 1 ECOM2: External common input of Group 2 ECOM3: External common input of Group 3 NC : No connection

Applications

- Industrial On/Off control
- Switch status sensing
- BCD interfacing
- Digital I/O control
- Industrial and lab automation
- SMT/PCB machinery
- Semi-conductor machinery
- PC-based Industrial Machinery
- · Testing & Measurement
- Laboratory & Education

Feature Details

PCI-1752, PCI-1754 and PCI-1756 offer isolated digital input channels and isolated digital output channels with isolation protection up to 2,500 VDC. This makes them ideal for industrial applications where high-voltage isolation is required. In addition, all output channels are able to keep their last values after a hot system reset. Furthermore, the PCI-1752 and PCI-1756 provide a channel-freeze function that keeps the current output status unchanged for each channel during operation.

Robust Protection

PCI-1752, PCI-1754 and PCI-1756 feature robust isolation protection for applications in industrial, lab and machinery automation. It can durably withstand voltage up to 2,500 VDC, preventing your host system from any incidental harm. If connected to an external input source with surge-protection, PCI-1754 and 1756 can offer up to 2,000 V DC ESD (Electrostatic Discharge) protection for input channels. If the input voltage rises up to 70 V DC, the input channels of PCI-1754 and PCI-1756 can still manage to work properly for a short period of time.

Wide Input/Output Range

PCI-1754 and PCI-1756 have a wide range of input voltages from 10 to 50 V DC, and is therefore suitable for most industrial applications with 12 V DC, 24 V DC and 48 V DC input voltage. PCI-1752 and PCI-1756 feature a wide output voltage range from 5 to 40 V DC, suitable for most industrial applications with 12 V DC/24 V DC output voltages. In the meantime, you can also request specific input/output voltage ranges as products can be tailored to specifications.

BoardID™ Switch

PCI-1752, PCI-1754 and PCI-1756 have a built-in BoardID™ DIP switch that helps define each card's unique identity when multiple identical PCI cards have been installed in the same computer. The BoardID switch is very useful when you build your system with multiple identical PCI cards. With the correct BoardID switch settings, you can easily identify and access each card during hardware configuration and software programming.

Channel-Freeze Function

PCI-1752 and PCI-1756 provide a Channel-Freeze function, which can be enabled either in dry contact or wet contact mode (selected by the on-board jumper). When the Channel-Freeze function is enabled, the last status of each digital output channel will be safely kept for emergency use. Moreover, you can enable this function through software as it is useful in software simulation and testing program.

Reset Protection Fulfills Requirement for Industrial Applications

If the system has undergone a hot reset (i.e. without turning off the system power), PCI-1752 and PCI-1756 can either retain the output values of each channel or return to its default configuration as open status, depending on its on-board jumper setting. This function protects the system from performing wrong operations during unexpected system resets.

DA&C

cPCI

0

0 Motion Control

Online Download www.advantech.com/products ADVANTECH

PCI-1758U

128-ch Isolated Digital I/O Card

Specifications

Isolated Digital Input

Model Name	PCI-1758UDI		
Input Channels	128		
Interrupt Input	128		
Optical Isolation	2,500 V _{DC}		
Opto-Isolator Response Time	50 μs		
	VIH (max)	25V	
Input Voltage	VIH (min)	5V	
	VIL (max)	2.5V	
Input Resistance	3 kΩ		

Isolated Digital Output

Model Name	PCI-1758UDO
Output Channels	128
Optical Isolation	2,500 V _{DC}
Opto-Isolator Response Time	50 μs
Supply Voltage	5-40 V
Sink Current	90 mA max./Channel

General

Model Name		PCI-1758UDI PCI-1758UDO		
I/O Connector Type MINI-SCSI HDRA-E100 Female) Female		
Dimensions		175 x 100 mm (6.9" x 3.9")		
Power	Typical	+5 V @ 0.3 A	+5 V @ 1.1 A	
Consumption Max.		+5 V @ 0.6 A	+5 V @ 2.2 A	
Temperature Operating Storage		0 ~ 60° C (32 ~ 140° F) (refer to IEC 68-2-1,2)		
		-20 ~ 70° C (-4 ~ 158° F)		
Relative Humi	dity	5 ~ 95% RH non-condensing (refer to IEC 68-2-3)		

Ordering Information

 PCI-1758UDI 128-channel Isolated Digital Input Card PCI-1758UD0 128-channel Isolated Digital Output Card

PCL-101100S-1 100-pin SCSI Cable, 1m

All product specifications are subject to change without notice

ADAM-39100 100-pin SCSI wiring terminal, DIN-rail mounting

Features

PCI-1758UDO card

- 128 isolated digital output channels
- High-voltage isolation on output channels (2,500 V_{nr})
- Wide output range (5 \sim 40 $V_{\rm pc}$) High-sink current for isolated output channels (90 mA max./Channel)
- Current protection for each port
- BoardID™ switch
- Output status read-back
- Digital output value retained after hot system reset
- Programmable Power-Up States
- Watchdog timer

PCI-1758UDI card

- 128 isolated digital input channels
- Wide input range (5 \sim 25 V_{DC}) High ESD protection (2,000 V_{DC})
- Digital Filter function
- BoardID™ switch
- Interrupt handling capability for each channel (128-ch)

Feature Details

Interrupt Function (PCI-1758UDI)

PCI-1758UDI provides an interrupt function for every digital input channel. All the isolated digital input channels are connected to the interrupt circuitry. You can disable/enable the interrupt functions, select trigger type by setting the Rising Edge Interrupt Registers and Falling Edge Interrupt Registers of PCI-1758UDI. When the interrupt request signals occur, software will service these interrupt requests by ISR. The multiple interrupt sources provide the card with more capability and flexibility.

Digital Filter Function (PCI-1758UDI)

The digital filter function is used to eliminate glitches on input data and reduce the number of changes to examine and process. The filter blocks pulses that are shorter than the specified timing interval and passes pulses that are twice as long as the specified interval. Intermediate-length pulses that are longer than half of the interval, but less than the interval, may or may not pass the filter.

Watchdog Timer Function (PCI-1758UDO)

This feature is used to set critical outputs to safe states in the event of a software failure. When the watch-dog timer is enabled, the PCI-1758UDO has to receive a "watchdog clear" software command within the interval time specified for the watchdog timer. If it doesn't, this is considered a loss of communication between the application and PCI-1758UDO, and the outputs go to a user-defined safe state and remain in that state until the watchdog timer is disabled and new values are written by the software. After the watchdog timer expires, the PCI-1758UDO will ignore any writes until the watchdog timer is disabled. You can set the watchdog timer timeout period through the WDT register to specify the amount of time that must elapse before the watchdog timer expires. The counter on the watchdog timer is configurable up to $(2^{32}-1) \times 100$ ns (approximately seven minutes) before it expires.

Programmable Power-up Status Function (PCI-1758UDO)

User-configurable power-up states are useful for ensuring that the PCI-1758UDO powers up in a known state. When the system is power-up, all output lines of PCI-1758UDO are user-configurable for logic high output or logic low output. So the output can be predefined by users. This function ensures the card's output state can be defined at any time.

Applications

- 1. Industrial On/Off control
- 2. Relay and switch monitoring and controlling
- 3. Industrial and lab automation

PCI-1758U

Pin Assignments

I/O Connector Pin Assignment for PCI-1758UDI

I/O Connector Pin Assignment for PCI-1758UDO

Block Diagram

PCI-1758UDI Block Diagram

PCI-1758UDO Block Diagram

ADVANTECH

Last updated : January 2005

PCI-1757UP

24-channel Digital Input/Output Low Profile Universal PCI Card

Features

- Low profile PCI card
- Universal PCI card, fits 3.3 V and 5 V PCI slot
- 24 TTL level digital I/O lines
- Emulates mode 0 of 8255 PPI
- Buffered circuits provide higher driving capability
- Output status read-back
- I/O configurable by software or on board DIP switch
- Keeps port I/O settings and digital output states after hot reset
- BoardID™ switch
- High density D-SUB 25-pin connector

 $C \in$

Introduction

The PCI-1757UP is a 24-bit DI/O low profile PCI card that meets the PCI standard REV.2.2 (universal PCI expansion card). The card also works with 3.3 V and 5 V PCI slots, and provides you with 24 bits of parallel digital input/output, that emulates mode 0 of the 8255 PPI chip. However, the buffered circuits offer a higher driving capability than the 8255.

Specifications

Digital Input

 Logic High Voltage 2.0 to 5.25 V Logic Low Voltage 0.0 to 0.80 V High Level 20 mA

Input Current

Low Level -0.2 mA

Input Current

Digital Output

- Logic High Voltage 2.4 V minimum Logic Low Voltage 0.4 V maximum

 High Level 15 mA maximum (source)

Input Current

Low Level 24 mA maximum (sink)

Input Current

- Driving Capability 15 LS TTL

Interrupt Source

PC0, PC4

Humidity

General

Connector One D-SUB 25-pin female connector

 Power Consumption 5 V @ 140 mA (Typical) • Operating Temperature $0 \sim 70^{\circ} \text{ C} (32 \sim 158^{\circ} \text{ F})$ ■ Storage Temperature -20 ~ 80° C(-4 ~ 176° F)

5 ~ 95% non-condensing Dimensions 119.91 x 64.41 mm (4.721" x 2.536") Low profile PCI

MD1 card size

Ordering Information

PCI-1757UP 24-channel Digital Input/Output Card ADAM-3925 DB-25 wiring terminal for DIN-rail mounting

Pin Assignments

PCI-1736UP

32-channel Isolated Digital Input/Output Card

Features

- 32 isolated DI/O channels (16 inputs and 16 outputs)
- High output driving capacity
- High-voltage isolation on I/O channels (2500 VDC)
- Interrupt handling capability
- D-type connector for isolated input and output channels
- Keep digital output values when hot system reset
- Wide input range (5 ~ 50 V_{pc})
- Surge protection
- Universal PCI Bus
- Low profile card
- BoardID™ switch

Introduction

PCI-1736UP offer isolated digital input channels as well as isolated digital output channels with isolation protection up to 2,500 V_{nc}, which makes it ideal for industrial applications where high-voltage isolation is required.

In addition, all output channels provide high-voltage protection. The low profile PCI form factor and universal PCI connector (V2.2 compliant) meet requirements for size and power consumption.

Specifications

IRQ

 Bus interface PCI bus spec. 2.2 compliant

PCI universal card (both 3.3V and 5V signaling) All ports use the same IRQ assigned by PCI Plug-and-

I/O Channels 16 Isolated DI and 16 Isolated DO

 Isolation Protection 2500 V_{DC} Input Voltage Range 5-50 V_{DC}

 Output Voltage Range Open collector 5-40 V_{nc} Connector DB-44 female connector

Dimensions Low profile PCI MD1 (119.91 x 64.41 mm)

Operating Temperature $0 \sim 60 \,^{\circ}\text{C} \, (32 \sim 140^{\circ} \, \text{F})$ Storage Temperature -25 ~ 85 °C (-4 ~ 185° F)

 Operating Humidity 5 ~ 95% Relative Humidity, non-condensing

Ordering Information

 PCI-1736UP 32-channel isolated digital input/output card

PCL-10144-1 DB 44-pin cable, 1m

 ADAM-3944 DB-44 Wiring Terminal for DIN-rail mounting

Applications

- Industrial on/off control
- · Contact closure monitoring
- · Switch status sensing
- BCD interfacing
- · Digital input control
- Industrial and lab automation

Pin Assignments

EI.WCOM1	30		:N1	
EI.WCOM2	15	- -	44	IDI0
IDI1	29	ᡨ		
IDI2	14	⊕ ŏ	43	IDI3
_IDI4	28	<u>,</u>		
IDI5	13	ഹ്ര	42	IDI6
IDI7	27			
IDI8	12	ഹ്ര	41	IDI9
IDI10	26			
IDI11	11	ഹ്ക	40	IDI12
IDI13	25	<u> </u>		
IDI14	10	-o ŏ-	39	IDI15
EI.DCOM1	24		85-0-00	
EI.DCOM2	9	-o o-	38	E.GND1
E.GND1	23	~~~~	892.51093	200111
PCOM1	8	-o o-	37	PCOM1
IDO0	22		2000000	
_ID01	7	-റ്ദ-	36	ID02
IDO3	21			
IDO4	6	-o -o-	35	IDO5
IDO6	20			
IDO7	5	-о [*] о-	34	ID08
IDO9	19	o		
ID010	4	-о [*] о-	33	ID011
IDO12	18	_ 0	90000	
IDO13	3	-о ° ф-	32	IDO14
IDO15	17	_0		
PCOM2	2	-о [*] о-	31	PCOM2
E.GND2	16	-0		
E.GND2	_1	-0	CON	NECTOR DB44
	8			

PCI-1763UP

8-ch Relay and 8-ch Isolated DI card

Features

- 8 relay output channels and 8 isolated digital input channels
- LED indicators to show activated relays
- 8 Form C type relay output channels
- Output status read-back
- Retained relay output values when hot system reset
- High-voltage isolation on input channels (3,750 V_{pc})
- High ESD protection (2,000 V_{pc})
- High over-voltage protection (70 V_{DC})
- Wide input range (10 ~ 50 V_{nc})
- Interrupt handling capability
- Support Universal PCI Bus
- · Low Profile PCI card
- BoardID™ switch

Introduction

PCI-1763UP relay actuator and isolated D/I card is an add-on card for the PCI bus. It provides 8 optically-isolated digital inputs with isolation protection of 2500 VDC for collecting digital inputs in noisy environments, and 8 relay actuators for serving as on/off control devices or small power switches. For easy monitoring, each relay is equipped with one red LED

to show its on/off status. The PCI-1761's eight optically-isolated digital input channels are ideal for digital input in noisy environments or with floating potentials. The low profile PCI form factor and universal PCI connector (V2.2 compliant), meet requirements for size and reduced power consumption.

Specifications

Isolated Digital Input

Channels 8
 Optical Isolation 3,750 V_{DC}
 Opto-isolator 25 µs
 Response Time

Over-Voltage Protection 70 V_{DC}
 Input Voltage 5 ~ 50 V_{DC}
 Input Current 3.16 mA @ 10 V_{DC}

17.3 mA @ 50 V_{DC}

Relay Output

• Channels 8

• Relay Type DPDT (8 Form C)

 \bullet Rating (resistive) $0.25~\text{A} @ 240~\text{V}_{\text{AC}}~\text{or}~1~\text{A} @ 30~\text{V}_{\text{DC}}$

• Max. Switching Power 62.5 AV, 60 W

• Insulation Resistance 1,000 M Ω min. (at 500 V_{pc})

Operate Time 5 ms max.
 Release Time 4 ms max.
 I/O Connector Type DB44 female
 Dimensions 119.91 x 64.41 mm
 Power Consumption +5V @ 107.5 mA (typical) +5V @ 301.3 mA (max.)

Environment

• Operating Temperature $0 \sim 60^{\circ}$ C (32 $\sim 140^{\circ}$ F) (refer to IEC 68-2-1,2)

• Storage Temperature $-20 \sim 70^{\circ} \text{ C } (-4 \sim 158^{\circ} \text{ F})$

• **Relative Humidity** 5 ~ 95 % RH non-condensing (refer to IEC 68-2-3)

Pin Assignments

		CN1			
NO0	30		<u> </u>		
COM0	15	<u>ب</u>	9	44	NC0
NO1	29	_	ວິ		
COM1	14	┢`	Т Ө	43	NC1
NO2	28	_	ວັ		
COM2	13	Ι-о і	- О	42	NC2
NO3	27	<u> </u>	כ כ		NO
COM3 NO4	12	Ю	Э	41	NC3
COM4	26 11	₩	0	40	NC4
NO5	25	 0	Ф	40	1104
COM5	10	ı `	0	39	NC5
NO6	24	Ю.	<u>_</u> Ө–	39	
COM6	9		כ (38	NC6
NO7	23	Ю,	ุ Ѳ−		
COM7	8	5	ت و	37	NC7
×-	22	\square	٦		
· ·	7	┢`	Т Ы	36	DIOL
DIOH '	21	Ľ	າັ		
DI1L	<u>6</u>	₩.	о Н	35	DI1H
DI2L	20	Ľ	o T		DIOL
DI2H DI3H	5	ю	Э	34	DI3L_
DI3H DI4L	19	₩	o	22	DI4H
DISL	<u>4</u> 18	Ю	Ф	33	<u> </u>
DISH	3	Ι `	O	32	DI6L
DIGH	17	 -0	₋ ⊖-	32	DIOL
DI7L	<u>''</u> 2	ı `	ס ַ	31	DI7H
	16	Ю,	ุ Ѳ−	<u> </u>	
×-	1		כ		
_		\Box			
		-			

Ordering Information

PCI-1763UP
 8-ch Relay and 8-ch Isolated DI card

PCL-10144-1
 DB 44-pin cable, 1m

ADAM-3944 DB-44 Wiring Terminal for DIN-rail mounting

PCI-1750

32-ch Isolated Digital I/O and Counter Card

Features

- 16 isolated DI and 16 isolated DO channels
- High voltage isolation on all isolated channels (2.500 V_{so})
- High sink current on isolated output channels (200 mA/channel)
- Supports dry contact or 5 ~ 50 V_{pc} isolated inputs
- Interrupt handling
- Timer/counter interrupt capability

 $C \in$

Introduction

PCI-1750 offers 16 isolated digital input channels, 16 isolated digital output channels, and one isolated counter/timer for the PCI bus. With isolation protection of 2,500 V_{no}, and dry contact support, PCI-1750 is ideal for industrial applications where high-voltage protection is required. Each I/O channel of the PCI-1750 corresponds to a bit in a PC I/O port. This makes PCI-1750 very easy to program. This card also offers a counter or timer interrupt and two digital input interrupt lines to a PC. So you can then easily do configurations by software.

Plug & Play

PCI-1750 uses a PCI controller to interface the card to the PCI bus. The controller fully implements PCI bus specification Rev 2.1. All bus relative configurations, such as base address and interrupt assignment, are automatically controlled by the software. No jumper or DIP switch is required for user configuration.

On-board Programmable Counter/Timer

PCI-1750 provides a programmable counter/timer for generating periodic interrupts to the host computer. The counter/timer chip is an 82C54, which includes three 16-bit counters based on a 10 MHz clock. One counter is used to count events coming from the isolated input channel. The other two are cascaded together to make a 32-bit timer.

Specifications

Digital Input

16 Optically-isolated Inputs

 Input Range $5 \sim 50 V_{DC}$ or dry contact

 Isolation Voltage $2,500 V_{DC}$ Throughput 10 kHz

Digital Output

16 Optically-isolated Outputs

Output Range Open collector 5 ~ 40 V_{DC} Sink Current 200 mA max. per channel

Isolation Voltage Throughput 10 kHz

Programmable Counter/Timer

One 32-bit timer

One 16-bit optically-isolated Counter

Shares pin with isolated input 15

- Throughput: 1 MHz max.

- Isolation voltage: 2,500 V_{DC}

General

Interrupt Source Isolated input 0, 8, counter and timer

Power Consumption 5 V @ 850 mA (typical), 5 V @ 1.0 A (max.)

Operating Temperature 0 ~ 70° C (32 ~ 158° F)

-20 ~ 80° C (-4 ~ 176° F) Storage Temperature

Operating Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

Connectors One 37-pin D-type female connector

One 2-pin terminal block for extended ground

 Dimensions (L x H) 175 x 100 mm (6.9" x 3.9")

Ordering Information

PCI-1750

32-channel Isolated DIO and Counter Card, user's manual

and driver CD-ROM. (cable not included)

PCL-10137-1

DB37 cable assembly, 1m

PCL-10137-2 PCL-10137-3

DB37 cable assembly, 2m

DB37 cable assembly, 3m

ADAM-3937

37-pin D-type cable wiring terminal for DIN-rail mounting

Applications

- Industrial on/off control
- Contact closure monitoring
- Switch status sensing
- BCD interfacing
- Digital I/O control
- Industrial and lab automation

Pin Assignments

PCI-1761

8-ch Relay Actuator and 8-ch Isolated Digital Input Card

Features

- 8 relay output channels and 8 isolated digital input channels
- LED indicators to show activated relavs
- 4 Form C and 4 Form A type relay output channels
- Output status read-back
- Retained relay output values when hot system reset
- High-voltage isolation on input channels (3,750 V_{pc})
- High ESD protection (2,000 V_{DC})
- High over-voltage protection (70 V_{pc})
- Wide input range (10 ~ 50 V_{pc})
- Interrupt handling capability
- BoardID™ switch

 $C \in$

Introduction

The PCI-1761 relay actuator and isolated D/I card is an add-on card for the PCI bus. It provides 8 optically-isolated digital inputs with isolation protection of 3,750 V_{nc} for collecting digital inputs in noisy environments and 8 relay actuators for serving as on/off control devices or small power switches. For easy monitoring, each relay is equipped with one red LED to show its on/off status. The PCI-1761's eight optically-isolated digital input channels are ideal for digital input in noisy environments or with floating potentials.

Rugged Protection

The PCI-1761 digital input channels feature a rugged isolation protection for industrial, lab and machinery automation applications. It durably withstands voltage up to 3,750 V_{pc} protecting your host system from any incidental harms. If connected to an external input source with surge-protection, the PCI-1761 can offer up to a maximum of 2,000 V_{nc} EŠĎ (Electrostatic Discharge) protection. Even with an input voltage rising up to 70 V_{nc}, the PCI-1761 can still manage to work properly, albeit for only a short period of time.

Reset Protection Fulfills Requirement for Industrial Applications

When the system has undergone a hot reset (i.e. without turning off the system power), the PCI-1761 can either retain output values of each channel, or return to its default configuration as open status, depending on its onboard jumper setting. This function protects the system from unwanted operations during unexpected system resets.

Specifications

Isolated Digital Input

Channels 3,750 V_{DC} Optical Isolation Opto-isolator 25 µs

Response Time

- Over-Voltage Protection 70 $V_{\rm DC}$ Input Voltage $10 \sim 50 V_{DC}$ 1.6 mA @ 10 V_{DC} Input Current 8.9 mA @ 50 V

Relay Output

Channels

 Relay Type SPDT (4 Form C and 4 Form A) 3 A @ 250 V_{AC} or 3 A @ 24 V_{DC} Rating (resistive)

• Max. Switching Power 750 AV, 72 W 10 mA @ 5 V_{DC} Max. Switching Load

 Insulation Resistance 1,000 M Ω min. (at 500 V_{pc})

 Operate Time 15 ms max. Release Time 5 ms max.

General

Connector One 37-pin D-type connector 175 x 100 mm (6.9" x 3.9") Dimensions (L x H) +5 V @ 220 mA (typical) Power Consumption +5 V @ 750 mA (max.)

• Operating Temperature $0 \sim 60^{\circ}$ C (32 $\sim 140^{\circ}$ F) (refer to IEC 68-2-1, 2)

Storage Temperature -20 ~ 70° C (-4 ~ 158° F)

 Operating Humidity 5 ~ 95 % RH non-condensing (refer to IEC 68-2-3)

Ordering Information

PCI-1761 8-ch Relay Actuator and 8-ch Isolated D/I Card

PCL-10137-1 DB37 cable assembly, 1m PCL-10137-2 DB37 cable assembly, 2m PCL-10137-3 DB37 cable assembly, 3m

ADAM-3937 DB37 Wiring Terminal for Din-rail Mounting

 PCLD-880 Universal screw terminal board

PCI-1760 PCI-1760U

8-ch Relay Actuator and Isolated D/I Card

Features

- Universal PCI card, for 3.3 V and 5 V PCI slot
- 8 opto-isolated digital input channels
- 8 relay actuator output channels
- 2 opto-isolated PWM outputs
- LED indicators to show activated relays
- Jumper selectable dry contact/wet contact input signals
- Up event counters for DI
- Programmable digital filter function for DI
- · Pattern match interrupt function for DI
- · "Change of State" interrupt function for DI
- Universal PCI and BoardID switch (PCI-1760U only)

FCC (€

Introduction

The PCI-1760U relay actuator and isolated D/I card is a PC add-on card for the PCI bus. It meets the PCI standard Rev. 2.2 (Universal PCI expansion card), and works with both 3.3 V and 5 V PCI slots. It provides 8 opto-isolated digital inputs with isolation protection of 2,500 V_{DC} for collecting digital inputs in noisy environments, 8 relay actuators that can be used as a on/off control devices or small power switches, and 2 isolated PWM (Pulse Width Modulation) outputs for custom applications.

For easy monitoring, each relay is equipped with one red LED to show its on/off status. Each isolated input supports both dry contact and wet contact so that it can easily interface with other devices when no voltage is present in the external circuit.

Specifications

Isolated Digital Input

Channels 8 (Sink)
 Opto-isolator PC354
 Input Voltage 5 ~ 12 V_{DC} High: > 4.5 V Low: < 1.0 V

Uncertain: $1.0 \text{ V} \ge \text{Vin} \ge 4.5 \text{ V}$

 $\begin{array}{lll} \bullet & \mbox{Input Resistance} & 1 \ \mbox{$k\Omega$ 1/4$ W} \\ \bullet & \mbox{Isolation Voltage} & 2,500 \ \mbox{V_{DC}} \end{array}$

■ **Digital Filter** Minimum effective high input period \geq [(2 ~ 65535) x

5 ms] + 5 ms

Minimum effective low input period \geq [(2 ~ 65535) x

5 ms] + 5 ms

• 16-bit UP Counter Maximum effective input frequency: 500 Hz

Minimum High period ≥ 1 ms Minimum Low period ≥ 1 ms

Relay Output

Channels

Relay Type
 Output Type
 Single-pole double-throw (SPDT, Form C)
 CHO and CH1: NC and NO outputs

CH2 ~ CH7: NC or NO outputs (selected by jumper)

• Rating Contact Load 120 V_{DC} @ 0.5 A or 30 V_{DC} @ 1 A Less than 100 m Ω initially

Dielectric Strength Coil to contacts (deenergized): 1,500 V_{RMS} (1 minute)
 Between open contacts (deenergized & energized):

1,000 V_{BMS} (1 minute)

Life Expectancy
 200,000 operations @ 0.5 A 120 V_{AC}
 500,000 operations @ 1.0 A 30 V_{DC}

Operating Time 5 ms max.
 Releasing Time 5 ms max.

Isolated PWM output

Channels
 Isolation Voltage
 2,500 V_{DC}

• Scaling Resolution 16 bits (100 ms for each step)

High period = $[(1 \sim 65535) \times 100 \text{ ms}] + 50 \text{ ms} \text{ (max.)}$

Low period = $[(1 \sim 65535) \times 100 \text{ ms}] + 50 \text{ ms (max.)}$

- Output Level High: (5 ± 0.5) V Low: < 0.8 V

General

Power Consumption +5 V @ 450 mA (typical), 850 mA (max.)
 Operating Temperature 0 ~ 60° C (32 ~ 140° F) (IEC 68 - 2 - 1, 2)

• Storage Temperature $-20 \sim 70^{\circ} \text{ C } (-4 \sim 158^{\circ} \text{ F})$

• Operating Humidity 5 ~ 95 % RH non-condensing (IEC 68-2-3)

Physical

Connector
 Dimensions (L x H)
 One 37-pin D-type connector
 175 x 100 mm (6.9" x 3.9")

Ordering Information

 PCI-1760U Relay Actuator and Isolated D/I Card, user's manual and driver CD-ROM (cable not included)

PCI-1760 8-ch Relay Actuator and Isolated D/I card PCL-10137-1 DB37 cable assembly, 1m PCL-10137-2 DB37 cable assembly, 2m DB37 cable assembly, 3m

ADAM-3937 DB37 wiring terminal for DIN-rail mounting

Applications

- Digital signal and contact status monitoring
- Industrial On/Off control
- Signal switching
- External relay driving

AD\ANTECH

PCI-1762

16-ch Isolated Digital Input and 16-ch Relay Output Card

Features

- 16 relay output channels and 16 isolated digital input channels
- LED indicators to show activated relays
- Jumper selectable Form A/Form B-type relay output channel
- Output status read-back
- · Retain relay output values when hot system reset
- High-voltage isolation on input channels (2,500 V_{pc})
- High ESD protection (2,000 V_{DC})
- High over-voltage protection (70 V_{pc})
- Wide input range (10 ~ 50 V_{nc})
- Interrupt handling capability
- High-density DB-62 connector
- BoardID™ switch

((

Introduction

The PCI-1762 relay actuator and isolated D/I card is a PC add-on card for the PCI bus. It provides 16 opto-isolated digital inputs with isolation protection of 2,500 V_{DC} for collecting digital inputs in noisy environments, 16 relay actuators for serving as on/off control devices or small power switches. For easy monitoring, each relay is equipped with one red LED to show its on/off status. The PCI-1762's sixteen optically-isolated digital input channels are ideal for digital input in noisy environments or with floating potentials.

Specifications

Isolated Digital Input

Input Channels
 Optical Isolation
 Opto-Isolator
 Response Time

Over-Voltage Protection 70 V_{DC}

Input Voltage
 VIH (max.)
 50 V_D

VIH (min.) 10 V_{DC} VIL (max.) 3 V_{DC}

VIL (max.) 3 V_{DC} • VIL (max.) 10 V_{DC} 1.6 mA (typical)

 $\begin{array}{l} 10~V_{\rm DC}~1.6~{\rm mA~(typical)} \\ 12~V_{\rm DC}~1.9~{\rm mA~(typical)} \\ 24~V_{\rm DC}~4.1~{\rm mA~(typical)} \\ 48~V_{\rm DC}~8.5~{\rm mA~(typical)} \\ 50~V_{\rm DC}~8.9~{\rm mA~(typical)} \end{array}$

Relay Output

Output Channels
 16

• **Relay Type** SPDT (Form A or Form B, Jumper selectable)

■ Rating (resistive) 0.5 A @ 125 V_{AC} or 1 A @ 30 V_{DC}

Max. Switching Power 62.5 AV, 30 W
 Max. Switching Voltage 250 V_{AC}, 220 V_{DC}

Max. Switching Current 2 A

• Minimum Switching 10 μ A @ 10 m V_{DC}

Load

Breakdown Voltage 1,500 V_{AC} for 1 min. (between coil and contacts)

Operate Time 6 ms max.
 Release Time 4 ms max.

• Insulation Resistance 1,000 M Ω min. (at 500 V_{DC})

Life Expectancy
 2 x 105 ops. min. (0.5 A @ 125 V_{AC}), 5 x 105 ops.

min. (1 A @ 30 V_{DC})

General

I/O Connector Type
 Dimensions
 Power Consumption
 PSV @ 250 mA (typical)
 +5V @ 620 mA (max.)

• Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F}) (\text{IEC } 68\text{-}2\text{-}1,2)$

• Storage Temperature $-20 \sim 70^{\circ} \text{ C } (-4 \sim 158^{\circ} \text{ F})$

• Relative Humidity 5 - 95 % non-condensing (IEC 68-2-3)

Certification CE Class /

Ordering Information

• PCI-1762 16-ch Isolated Digital Input and 16-ch Relay Output

Card

PCL-10162-1
 PCL-10162-3
 PCL-10162-3
 PCL-10162-5
 PCL-10162-5
 DB-62 cable assembly, 3m
 PCL-10162-5
 DB-62 cable assembly, 5m
 ADAM-3962
 DB62 Wiring Terminal for Din-rail Mounting

Applications

Industrial On/Off control

Switch status sensing

Digital I/O control

• Industrial and lab automation

SMT/PCB machinery

Semi-conductor machinery

PC-based Industrial Machinery

Testing & Measurement

Laboratory & Education

External relay driving

PCI-1780

8-ch Counter/Timer Card

Features

- 8 independent 16-bit counters
- 8 programmable clock source
- 8 digital TTL outputs and 8 digital TTL inputs
- Up to 20 MHz input frequency
- Multiple counter clock source selectable
- Counter output programmable
- Counter gate function
- Flexible interrupt source select
- BoardID™ switch

 $C \in$

Introduction

PCI-1780 is a general purpose multiple channel counter/timer card for the PCI bus. It targets the AM9513 to implement the counter/timer function by CPLD. Plus, it provides eight 16-bit counter channels and 8 digital outputs and 8 digital inputs. Advantech has designed powerful counter functions to for a broad range of industrial and laboratory applications.

Flexible Counter Modes

The PCI-1780 features up to 12 programmable counter modes, to provide one shot output, PWM output, periodic interrupt output, time-delay output, and to measure the frequency and the pulse width. The PCI-1780 is an ideal solution for various counter/timer applications.

Special Shielded Cable for Noise Reduction

The PCL-10168 shielded cable is specially designed for the PCI-1780 for reducing noise. Its wires are all twisted pairs, and the input signals and output signals are separately shielded, providing minimal cross talk between signals and the best protection against EMI/EMC problems.

BoardID™ Switch

PCI-1780 has a built-in BoardID™ DIP switch that helps define each card's unique identity when multiple identical PCI cards have been installed in the same computer. The BoardID switch is very useful when you build your system with multiple identical PCI cards. With the correct BoardID switch settings, you can easily identify and access each card during hardware configuration and software programming.

Plug & Play Function

PCI-1780 is a Plug & Play device which fully complies with PCI Specification Rev 2.2. During card installation, there is no need to set jumpers or DIP switches. Instead, all

Specifications

Programmable Counter

Channels 8 (independent) Resolution 16-bit **Programmable** 8 independent

Clock Source

 Programmable 12

Counter Modes

Max. Frequency

 Interrupt Source 8 counter outputs

Digital Input/Output

Input Channels

 Input Voltage Low: 0.8 V max. High: 2.4 V min. Interrupt Source Channel 0

Output Channels

 Output Voltage 0.5 V max. @ 24 mA (sink)

High 2.4 V min. @ -15 mA (source)

General

 I/O Connector Type 68-pin SCSI-II female **Dimensions** 175 x 100 mm (6.9" x 3.9") **Power Consumption** Typical: +5 V @ 900 mA

Max.: +5 V @ 1.2 A

Operating Temperature 0 ~ 60° C (32 ~ 140° F) (IEC 68-2-1, 2)

Storage Temperature -20 ~ 70 °C (-4 ~ 158 °F)

Relative Humidity 5 ~ 95 % RH non-condensing (IEC 68-2-3)

Certifications CE certified PWM Range 0.0005 ~ 60 Sec.

Ordering Information

PCI-1780 8-channel Counter/Timer Card

PCL-10168 68-pin SCSI-II cable with male connectors on both ends

and special shielding for noise reduction, 1 and 2 m

Last updated: January 2005

 ADAM-3968 68-pin SCSI-II Wiring Terminal Board for DIN-rail

mounting

Online Download www.advantech.com/products **ADVANTECH**

PCL-711

Analog and Digital I/O Card

Features

- Eight single-ended analog inputs
- Programmable A/D input range
- A/D, D/A with pacer
- One analog output
- 12-bit A/D and D/A resolution
- 16 digital inputs
- 16 digital outputs
- Includes versatile drivers in popular programming languages plus calibration, demo and example programs
- Screw-terminal board and cable included

Introduction

PCL-711 is a fully-integrated package that offers four of the most popular I/O functions for PC/AT and compatible systems: A/D conversion, D/A conversion, digital input and digital output.

The inexpensive PCL-711 is ideal for entry level applications. The features of this half-sized card include: eight 12-bit analog inputs, one 12-bit analog output, 16 digital inputs and 16 digital outputs. In addition, it comes with a 20-point screw-terminal board and a flat cable connector.

PCL-711 performs a variety of I/O jobs, and features solid software support and a large selection of available daughterboards and accessories. It is an ideal and affordable performer for OEMs, schools and hobbyists who require a combination of analog and digital I/O.

Specifications

Analog Input

• Channels 8 single-ended

A/D Converter
 Input Range (V)
 ±5, ±2.5, ±1.25, ±0.625, ±0.3125
 Trigger Mode
 Data Transfer
 12 bit, 25 µs conversion time
 ±5, ±2.5, ±1.25, ±0.625, ±0.3125
 Software, pacer or external trigger
 Program control, interrupt (IRQs 2 ~ 7)

• Accuracy ±2 LSB

- Common Mode Rejection

Input Overvoltage ±30 V_{DC} max.

Analog Output

Channels
 One 12-bit double-buffered channel

D/A Range $0 \sim 5 \text{ V or } 0 \sim 10 \text{ V}$

- Settling Time 30 μs

Digital Input

Channels
 16, TTL level

Digital Output

- Channels 16

Logic level 0
 Logic level 1
 0.5 V max. @ 8 mA (sink)
 2.4 V min. @ 0.4 mA (source)

General

■ Power Consumption +5 V @ 500 mA typical, 1.0 A max.

+12 V @ 50 mA typical, 100 mA max.

-12 V @ 14 mA typical, 20 mA max.

• Operating Temperature $0 \sim 50^{\circ} \text{ C } (32 \sim 122^{\circ} \text{ F})$ • Storage Temperature $-20 \sim 65^{\circ} \text{ C } (-4 \sim 149^{\circ} \text{ F})$

• **Operating Humidity** 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

• I/O Ports 16 consecutive I/O ports per card

• Connectors One 20-pin flat cable connector for A/D and D/A

One 20-pin flat cable connector for digital input One 20-pin flat cable connector for digital output

■ **Dimensions (L x H)** 155 x 100 mm (6.1" x 3.9")

Ordering Information

• **PCL-711S** PCL-711B card, user's manual, driver CD-ROM,

PCLD-7115 and 1 m 20-pin flat cable (PCL-10120-1) PCL-711B card only (PCLD-7115, 1 m 20-pin cable,

 PCL-711B PCL-711B card only (PCLD-7115, 1 m 20-pin cable, user manual and driver CD-ROM NOT included).

• PCL-10120-1 20-pin flat cable, 1m

• **PCL-10120-2** 20-pin flat cable, 7ml

Applications

DC voltage measurement

Transducer/sensor interfacing

Process control

Contact closure monitoring

Digital signal and BCD interfacing

Industrial On/Off control

Multiplexer and relay control

PCL-812PG

MultiLab Analog and Digital I/O Card

Features

- 16 single-ended 12-bit analog input channels
- Two 12-bit analog output channels
- Programmable sampling rate of up to 30 kHz
- A/D with DMA or interrupt
- 16 digital input channels
- 16 digital output channels
- Programmable counter/timer
- Programmable A/D ranges (gains)
- Includes C/C++, Pascal and BASIC drivers as well as calibration, demo and example programs
- Comprehensive application software support

 $C \in$

Introduction

PCL-812PG is a multifunction analog and digital I/O card that features the five most desired measurement and control functions for PC/AT and compatible systems: A/D conversion, D/A conversion, digital input, digital output and counter/timer. This half-size card neatly packages 16 12-bit analog input channels, two 12-bit analog output channels, 16 digital input channels, 16 digital output channels and a programmable counter/timer.

In addition to all the features listed above, PCL-812PG offers the convenience of programmable analog input ranges, where the analog input range can be switched by software commands instead of DIP switches. PCL-812PG also delivers convenience and maximum resolution for applications that need different gains for different channels or different gains for different stages of a process.

Comprehensive software support, numerous I/O options and a wide range of available daughterboards make the PCL-812PG ideal for industrial applications that require a combination of analog and digital I/O.

Specifications

Analog Input

 Channels 16 single-ended

 A/D Converter 12-bit, 25 µs conversion time

• Input Range (V, software programmable)

±10, ±5, ±2.5, ±1.25, ±0.625, ±0.3125 Software, pacer or external trigger

 Data Transfer Program controlled, interrupt 2 ~ 7, 9 ~ 12, 14, 15 or

DMA (Channel 1 or 3) for single channel scan

 Accuracy 0.01% of reading ±1 LSB

 Common Mode 60 dB typical

Rejection

Trigger Mode

 Input Impedance $>10~\text{M}\Omega$

 Overvoltage Continuous ±30 V_{DC} max.

Analog Output

• Channels Two double-buffered 12-bit channels

±½ bit

• D/A Range (in V) 0 ~ 5. 0 ~ 10 w/internal reference: ±10 V max. with external AC or DC reference (accuracy for output above

±9 V may vary depending on power supply used)

• Settling Time 30 µs Throughput 30 kS/s max. • Output Current ±5 mA max.

 Linearity **Digital Input**

 Channels 16, TTL level

Digital Output

Channels 16, TTL compatible Driving Capacity 8.0 mA @ 0.5 V (sink); 0.4 mA @ 2.4 V (source)

A/D pacer and counter (8254 compatible)

 A/D Pacer 32-bit timer with a 20 MHz time base

Max. and Min. Rates 500 kHz ~ 0.00046 Hz (one sample every 36 minutes)

Counter One 16-bit counter with a 2 MHz time base

General

 Power Consumption +5 V @ 500 mA typical, 1.0 A max.

+12 V @ 50 mA typical, 100 mA max.

 Operating Temperature 0 ~ 50° C (32 ~ 122° F) Storage Temperature -20 ~ 65° C (-4 ~ 149° F)

Operating Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

I/O Ports 16 consecutive bytes Two 20-pin flat cable connectors Connectors

 Dimensions (L x H) 185 x 100 mm (7.3" x 3.9")

Ordering Information

 PCL-812PG MultiLab Analog and Digital I/O Card, user's manual

and driver CD-ROM. (cable not included)

PCL-10120-1 20-pin flat cable, 1m PCL-10120-2 20-pin flat cable, 2m PCLD-780 Screw terminal board

PCLD-8115 Industrial wiring terminal board with CJC circuit

Online Download www.advantech.com/products **ADVANTECH**

Last updated: January 2005

PCL-818 Series

High-Performance Multifunction Cards

Features

- 16 single-ended or 8 differential analog inputs
- 12-bit A/D converter
- Programmable gain for each input channel
- Automatic channel/gain scanning with DMA
- 16 digital inputs and 16 digital outputs
- One 12-bit analog output channel
- Programmable pacer/counter

 $C \in$

Introduction

The PCL-818 series is a family of high-performance, multifunction cards that offer the five most desired measurement and control functions: 12-bit A/D conversion, D/A conversion, digital input, digital output and counter/timer.

Automatic Channel/Gain Scanning

All PCL-818 cards feature an automatic channel/gain scanning circuit. This circuit, instead of your software, controls multiplexer switching during sampling. On-board SRAM stores different gain values for each channel. This combination lets you perform multi-channel high-speed sampling (up to 100 kHz) with different gains for each channel and DMA data transfer.

Unique Technology

PCL-818 cards share a custom-designed 160-pin ASIC chip that has a gate count of over 7,000 and utilizes 1.0 mm CMOS technology. This custom integration gives higher performance and reliability with lower power consumption on a smaller board.

Wide Selection with Migration Path

The PCL-818 series lets you choose the card that exactly matches your application and price range. The PCL-818L is designed for lower budgets, with the best price/performance ratio in the market. If you need more power, you can easily upgrade to any other card in the series.

Specifications

Analog Input

• **Channels** 16 single-ended or 8 differential

• **Resolution** 12 bits

• Input Range Selection Software controlled

Auto Channel/Gain Scanning

• **Triggering** Software, pacer or external

■ **Data Transfer** Program control, interrupt (IRQ 2 ~ 7)

or DMA (Ch. 1 or 3)

■ Input Impedance 10 MΩ
■ Input Overvoltage ±30 V_{DC} max.

Analog Output (D/A Converter)

• Channels One 12-bit (double-buffered)

• Output Range $0 \sim +5 \text{ V or } 0 \sim +10 \text{ V with internal reference}$

 $0 \sim +10 \text{ V}$ or $0 \sim -10 \text{ V}$ with external reference

Digital Input/Output

• Channels 16 inputs, 16 outputs (all TTL compatible)

• Input Voltage Low $(0 \sim +0.8 \text{ V})$

High (min. +2.0 V)

■ **Input Load** Low: +0.5 V @ 0.4 mA max.

High: +2.7 V @ 0.05 mA max.

• Output Voltage Low: $0 \sim +0.4 \text{ V}$

High: min. +2.4 V

■ **Driving Capacity** Low: (sink) 8 mA @ 0.5 V max.

High: (source) -0.4 mA @ 2.4 V min.

A/D Pacer and Counter (8254)

• A/D Pacer 32-bit with 10 MHz or 1 MHz time base

Max. and Min. Rates2.5 MHz to 0.00023 Hz

• Counter One 16-bit counter with 100 KHz time base

General

Operating Temperature 0 ~ 50° C (32 ~ 122° F)
 Storage Temperature -20 ~ 65° C (-4 ~ 149° F)

• **Operating Humidity** 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

PCL-818L

40 kHz Multifunction Card

Features

PCL-818L

- 16 single-ended or 8 differential analog inputs
- 40 kHz 12-bit A/D converter
- Programmable gain for each input channel (up to 8)
- Automatic channel/gain scanning with DMA
- 16 digital inputs and 16 digital outputs

PCL-818LS

Low cost package of PCL-818L with PCLD-8115 and PCL-10137

Introduction

The PCL-818L is the entry-level model in the PCL-818 series. We designed it with the cost-sensitive customer in mind. It offers the same functions as the rest of the series, except that it has a 40 kHz sampling rate and only accepts bipolar inputs. It is fully software and connector compatible with the PCL-818HD and PCL-818HG. This lets you upgrade your applications to these higher performance cards without hardware or software changes.

The PCL-818LS Bundle

The PCL-818LS bundle consists of the PCL-818L card, the PCLD-8115 wiring terminal board and a DB37 cable assembly. The PCLD-8115 accommodates on-board passive signal conditioning components (resistors and capacitors), allowing you to easily implement a low-pass filter, a voltage attenuator or a 4 ~ 20 mA voltage converter.

Specifications

Analog Input

 Input Range (V) Bipolar: ± 10 , ± 5 , ± 2.5 , ± 1.25 , ± 0.625 Maximum Sampling 40 kS/s for all input ranges Rate

Accuracy Gain = 0.5, 10.01% of FSR ±1 LSB Gain = 2, 40.02% of FSR ±1 LSB 0.04% of FSR ±1 LSB Gain = 8

General

 Power Consumption +5 V @ 210 mA typical, 500 mA max. +12 V @ 20 mA typical, 100 mA max.

-12 V @ 20 mA typical, 40 mA max.

I/O Ports 16 consecutive bytes

A/D, D/A Connector

 Dimensions (L x H) 155 x 100 mm (6.1" x 3.9")

Ordering Information

PCL-10137-3

 PCL-818L Low-cost high-performance half-size multi-function card, user's manual and driver CD-ROM.(cable not included)

PCL-818L with PCLD-8115 and DB-37 cable PCL-818LS assembly (PCL-10137-1)

DB37 cable assembly, 1m PCL-10137-1 PCL-10137-2 DB37 cable assembly, 2m

DB37 cable assembly, 3m PCLD-8115 Industrial Wiring Terminal with CJC circuit and DB37

connector

 PCLD-880 Industrial Wiring Terminal with DB37 connector

Online Download www.advantech.com/products

ADVANTECH

PCL-818HD PCL-818HG

High-Performance Half-Size Multifunction Card

High-Performance Multifunction Card

Introduction

The PCL-818HD has guaranteed 100 kHz sampling and transfer speeds at all gains (x 1, 2, 4 or 8, programmable) and input ranges. It features an onboard 1 K sample FIFO (First In First Out) buffer for faster data transfer and more predictable performance under Windows.

Specifications

Analog Input

■ Input Range (V) Bipolar: ±10, ±5, ±2.5, ±1.25, ±0.625 Unipolar: 0 ~ 10, 0 ~ 5, 0 ~ 2.5, 0 ~ 1.25

Maximum Sampling Rate

100 kHz for all input ranges

Accuracy
 Gain = 0.5, 1
 Gain = 2, 4
 Gain = 2, 4
 Gain = 8
 0.04% of FSR ±1 LSB
 0.04% of FSR ±1 LSB

General

• On-board Memory 1K samples FIFO for A/D. Can generate an interrupt

when full or half full

Power Consumption
 I/O Ports
 +5 V @ 500 mA max., +12 V @ 200 mA max
 32 bytes with FIFO active or 16 bytes with FIFO

disabled

A/D, D/A Connector DB37

Dimensions (L x H) 185 x 100 mm (7.3" x 3.9")

Ordering Information

PCL-818HD High-performance half-size multifunction card with DB-37connector, user's manual and driver CD-ROM

(cable not included)

PCL-10137-1
 PCL-10137-2
 PCL-10137-3
 DB37 cable assembly, 2m
 DB37 cable assembly, 2m
 DB37 cable assembly, 3m

PCLD-8115 Industrial Wiring Terminal with CJC circuit and DB37

connecto

PCLD-880 Industrial Wiring Terminal with DB37 connector

Introduction

The PCL-818HG offers the same functions as the PCL-818HD, but it features a special high-gain programmable instrument amplifier for reading very low level input signals (x 0.5, 1, 5, 10, 50, 100, 500 or 1000).

The PCL-818HG package includes a special wiring board (PCLD-8115) with a DB-37 connector and CJC. This combination lets you measure low-level thermocouple signals without an external signal-conditioning board.

Specifications

Analog Input

• Conversion Time 8 µsed

• Input Range (V) Bipolar: ± 10 , ± 5 , ± 1 , ± 0.5 , ± 0.1 , ± 0.05 , ± 0.01 , ± 0.005 Unipolar: $0 \sim 10$, $0 \sim 1$, $0 \sim 0.1$, $0 \sim 0.01$

Maximum Sampling Rate

(depends on input amplifier settling time and slew rate)

Gain Speed Channels 0.5, 1 100 kHz Single (input signal £ 3 V p-p) 0.5, 1, 5, 10 35 kHz Multiple 50, 100 7 kHz Multiple Multiple 500.1000 1 kHz Gain = 0.5.10.01% of FSR ±1 LSB Accuracy Gain = 5, 100.02% of FSR ±1 LSB Gain = 50, 1000.04% of FSR ±1 LSB Gain = 500, 1000 0.08% of FSR ± 1 LSB

General

See PCL-818HD

Ordering Information

• PCL-818HG High-performance and High-gain multifunction card

PCL-10137-1 DB37 cable assembly, 1m PCL-10137-2 DB37 cable assembly, 2m PCL-10137-3 DB37 cable assembly, 3m

PCLD-8115 Industrial Wiring Terminal with CJC circuit and DB37

connector

PCLD-880 Industrial Wiring Terminal with DB37 connector

6-59

PCL-813B

32-ch S.E. Isolated Analog Input Card

Features

- 32 single-ended analog input channels
- Over 500 V_{nc} isolation
- 12-bit successive approximation A/D converter
- Analog input ranges (V): ± 5 , ± 2.5 , ± 1.25 , ± 0.625 , $0 \sim 10$, $0 \sim 5$, $0 \sim 2.5$, $0 \sim 10$
- Program-controlled A/D trigger and data transfer

Introduction

The PCL-813B is a 12-bit 32-channel A/D card which offers high-voltage isolation on each analog input. The PCL-813B is an extremely cost effective solution for applications in industrial measurement and monitoring. The card offers 32 A/D channels with software programmable gain on each channel and two DC-to-DC converters on a 4-layer PCB with an integral ground plane. Optically-isolated inputs provide over 500 V_{DC} of isolation between the analog inputs and the PC, protecting the PC and peripherals from damage due to high voltages on the input lines. The PCL-813B is ideal for situations where the budget-conscious user requires flexibility, stability and a high level of isolation protection. The PCL-813B comes with the PCLD-881 wiring terminal board and a DB-37 cable assembly.

Specifications

Input

Channels 32 single-ended with isolation

 Resolution 12 bits, SAR

 Input Ranges Bipolar: ±5 V, ±2.5 V, ±1.25 V, ±0.625 V (software programmable)

Unipolar: $0 \sim 10 \text{ V}, 0 \sim 5 \text{ V}, 0 \sim 2.5 \text{ V}, 0 \sim 1.25 \text{ V}$

(jumper selectable)

 Over Voltage Continuous ±30 V (max.)

Converter AD574 (or equivalent) w/25 µsec. conversion time

Data Transfer Rate 25 kHz maximum, software control only

0 ~ 5 V: ±1 LSB Offset Error +5 V, 0 ~ 10 V: ±2 LSB

Accuracy 0.01% of reading ±1 LSB Isolation Voltage > 500 V_{DC} from analog input to PC

 Trigger Mode software trigger Input Impedance $> 10 \ M\Omega$ ■ Temperature Coefficient ±25 PPM/° C

General

 Power Consumption +5 V @ 660 mA max. +12 V @ 140 mA max.

• Operating Temperature $0 \sim 50^{\circ} \text{ C} (32 \sim 122^{\circ} \text{ F})$ Storage Temperature -20 ~ 65° C (-4 ~ 149° F)

 Operating Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

I/O Connector DB37 female connector for input port - Dimensions (L x H) 219 x 100 mm (8.6" x 3.9")

Typical application for PCL-813B:

Industrial 4 ~ 20 mA Output Device Monitoring

Ordering Information

 PCL-813B 32-ch. isolated analog input card, PCLD-881B wiring terminal board, DB-37 cable assembly, manual and

> driver CD-ROM.

Industrial terminal board for PCI-1713 & PCL-813B PCLD-881B

PCL-10137-1 DB37 cable assembly, 1m PCL-10137-2 DB37 cable assembly, 2m DB37 cable assembly, 3m PCL-10137-3

ADAM-3937 DB37 wiring terminal for DIN-rail mounting

ADVANTECH

Last updated : January 2005

PCL-726 PCL-727 PCL-728

6-ch Digital Analog Output Card

12-ch Digital Analog Output Card

6-ch Analog Output Card

Features

- 6 independent analog output channels
- 12-bit resolution double-buffered D/A converter
- Multiple voltage ranges: $\pm 10 \text{ V}$, $\pm 5 \text{ V}$, $0 \sim +5 \text{ V}$, $0 \sim +10 \text{ V}$ and $4 \sim 20 \text{ mA}$ current loop (sink)
- 16 digital input channels and 16 digital output channels

 $C \in$

Introduction

The PCL-726 provides six 12-bit D/A channels on a full-size add-on card. You can individually configure each channel to any of the following ranges: 0 to +5 V, 0 to +10 V, ±5 V, ±10 V and 4 to 20 mA current loop (sink). Designed for use in industrial environments, the PCL-726 is an ideal, economical solution for applications that require multiple analog outputs or current loops.

In addition to its analog outputs, the PCL-726 also provides 16 digital output channels plus 16 digital input channels. Its TTL-compatible D/l and D/O ports easily interface with our line of daughterboards for industrial On/Off control and sensing applications.

Specifications

Analog Output (D/A Converter)

Channels

 Resolution 12 bits, double buffered Unipolar: 0 ~ +5 V, 0 ~ +10 V **Output Ranges**

Bipolar: ±5 V, ±10 V

Current loop (sink): 4 ~ 20 mA, ±10 V with external DC

or AC reference

15 kHz Throughput **Settling Time** ≤ 70 µs

Accuracy ±0.012% full scale range • Temperature Drift: 5 PPM/° C (0° ~ 50° C)

Linearity

Voltage Output Current ±5 mA max.

Current Loop Excitation Minimum +8 V, maximum +36 V for 4 ~ 20 Voltage mA Voltage

current loop

Reset (Power-on) Status all D/A channels will be at 0 V output after reset or power-on (both bipolar and unipolar modes)

Digital Input

Channels 16-ch TTL compatible DI

 Logic Level 0 0.8 V max. Logic Level 1 2.0 V min.

 Input Loading 0.5 V @ 0.4 mA max. (low) 2.7 V @ 50 mA max. (high)

Digital Output

16-ch TTL compatible DO Channel Logic Level 0 0.5 V @ 8.0 mA (sink) Logic Level 1 2.4 V @ 0.05 mA (source)

All product specifications are subject to change without notice

General

 Power Consumption +5 V @ 500 mA typical, 1 A max. +12 V @ 80 mA typical, 110 mA max.

-12 V @ 60 mA typical, 90 mA max.

• Operating Temperature $0 \sim 50^{\circ} \text{ C} (32 \sim 122^{\circ} \text{ F})$ Storage Temperature 0 ~ 65° C (32 ~ 149° F)

 $5\% \sim 95\%$ RH non-condensing (refer to IEC 68-2-3) **Operating Humidity**

Connectors One 37-pin D type female connector Two 20-pin male ribbon cable connectors

 Dimensions (LxH) 340 x 100 mm (13.4" x 3.9")

Ordering Information

PCL-726 6-channel D/A output and DIO card, user's manual and

driver CD-ROM (cable not included) PCL-727 6-ch Digital Analog Output Card PCL-728 12-ch Digital Analog Output Card

PCL-10120-1 20-pin flat cable, 1 m PCL-10120-2 20-pin flat cable, 2 m PCLD-780 Screw terminal board

PCLD-782 Opto-Isolated D/I board (16-ch) PCLD-785 Relay output board (16-ch)

 ADAM-3920 20-pin wiring terminal for DIN-rail mounting

Applications

- PID loop control
- Programmable voltage source
- Servo control
- Programmable current sink
- Function generator

PCL-720+

Digital I/O and Counter Card

Features

- 32 TTL-level digital input channels
- 32 TTL-level digital output channels
- High-output driving capacity
- Low-input loading
- 3 programmable counter/timer channels
- User configurable clock source
- Breadboard area for custom circuits

 $C \in$

Introduction

The PCL-720+ digital I/O and counter card is a PC-compatible add-on card with 32 digital input channels, 32 digital output channels and three programmable counter/timer channels. Its digital I/O channels are TTL-compatible and use 74LS244 driver/ buffer circuits to provide high output driving capacity. These buffered circuits also require lower input loading current than regular TTL circuits. The PCL-720+'s 8254 programmable counter/timer provides three flexible 16-bit counter/timer channels. You can generate waves and pulses by programming the 8254. Jumper settings determine the clock crystal frequency. The PCL-720+ also includes a breadboard area perfect for customized circuits.

Specifications

Digital Input

Input Lines Logic Level 0 0.8 V max. Logic Level 1 2.0 V min.

Digital Output

Output Lines

 Logic Level 0 0.5 V max. @ 24 mA (sink) Logic Level 1 2.0 V min. @ 15 mA (source)

Programmable Counter/Timer

 Frequency Range 0 ~ 2.6 MHz

3 independent 16-bit counters Counters 6 programmable modes Modes Usable Pins CLOCK and GATE for each channel

Clock Source

 Clock Frequency 2 MHz, 1 MHz, 500 kHz or 250 kHz; jumper selectable

 Frequency Divider Divided by 1, 10, 100 or user adjustable

General

 I/O Port Address Eight consecutive bytes from hex 200 ~ 3F8 Breadboard Area 540 (30 x 18) plated-through "donuts", each with a

.036" hole on 0.10" centers. Further, provide +5 V on

the left side, and provide GND on the right side

 Power Consumption +5 V @ 500 mA typical • Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$ -20 ~ 70° C (-4 ~ 158° F) Storage Temperature

Operating Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-2-3) Connectors Five 20-pin male ribbon-cable connectors

- Dimensions (L x H) 185 x 100 mm (7.3" x 4")

Ordering Information

PCL-720 Digital I/O and counter card, user's manual, user's manual and driver CD-ROM (cable not included)

PCL-10120-1 20-pin flat cable, 1 m PCL-10120-2 20-pin flat cable, 2 m PCLD-780 Screw terminal board

PCLD-782 24/16 Channel opto-isolated D/I board PCLD-785 24/16 Channel relay output board PCLD-786 SSR and relay driver board

PCLD-885 16-Channel power relay (form A) output board ADAM-3920 20-pin flat cable wiring terminal for DIN-rail mounting

Applications

Digital Input

- Contact-closure monitoring
- Switch-panel status sensor
- BCD interface receiver
- Digital signal interface

Digital Output

- Industrial on/off controller
- Digital signal interface
- BCD interface driver

Counter/Timer

- · Period and pulse-width measurement
- Event and frequency counting
- Waveform and pulse generation

Online Download www.advantech.com/products

ADVANTECH Last updated: January 2005

PCL-722 PCL-724 PCL-731

144-bit Digital I/O Card

24-bit Digital I/O Card

48-bit Digital I/O Card

Features

- Emulates 8255 PPI mode 0
- · Buffered circuits for higher driving capacity than the
- Interrupt handing
- Output status readback
- Pin compatible with Opto-22 I/O module racks

Specifications

I/O Lines Programming Mode

8255 PPI mode 0 bits 0 and 3 of Port C Interrupts can generate an interrupt to IRQ 2, 3, 4, 5, 6 or 7

Digital output

Port A and Port B Logic 0: 0.4 V max. @

12 mA (sink) Logic 1: 2.4 V min. @ 8.0 mA (source) Logic 0: 0.5 V max. @

144 (24 bits x 6 ports)

24 mA (sink) Logic 1: 2.0 V min. @ 15 mA (source)

Logic Level 0: 0.8 V max.

Digital input

Port C

Port A and Port B

Logic Level 1: 2.0 V min. Port C Logic Level 0: 0.8 V max. Logic Level 1: 2.0 V min.

General

Power Consumption

+5 V @ 1.3 A typical +5 V @ 1.8 A max.

• Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$

Storage Temperature

-20 ~ 70° C (-4 ~ 158° F)

Operating Humidity

5~95% RH non-condensing (refer

Connectors

to IEC 68-2-3) Six 50-pin male ribboncable connectors. Pin assignments are fully compatible with Opto-22 I/O module racks

Dimensions (L x H)

334 x 100 mm (13.2" x 3.9")

Specifications

I/O Lines

Programming Mode

Interrupt

8255 PPI mode 0 Bit 0 of one port can

generate an interrupt to IRQ2 ~ 7

Interrupt Triggering

Rising or falling edge triggering, jumperselectable Logic 0: 0.4 V max. @

- Digital Output

Digital Input

Logic 1: 2.4 V min. @ 15 mA (source) Logic 0: 0.4 V max. Logic 1: 2.4 V min.

24 mA (sink)

General

Power Consumption

+5 V @ 0.5 A (typical) +5 V @ 0.8 A (max.)

Storage Temperature

Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$ -20 ~ 70° C (-4 ~ 158° F)

Operating Humidity

Connectors

non-condensing 50-pin male

GND GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

Dimensions (L x H)

Pin Assignments

PC 2

PB 5

PB 0

PA 6

PA 5 PA 4

PA 3 PA 2

5 ~ 95% RH (refer to IEC 68-2-3) ribbon-cable connector 125 x 100 mm (4.9" x 3.9")

Specifications

I/O Lines

Programming Mode

Interrupt

8255 PPI mode 0 Bit 0 of one port can generate an interrupt to IRQ 2~15

Interrupt Triggering

Rising or falling edge triggering, jumperselectable Logic 0: 0.4 V max. @

- Digital Output

24 mA (sink) Logic 1: 2.4 V min. @ 15 mA (source) Logic 0: 0.4 V max. Logic 1: 2.4 V min.

Digital Input

General

Power Consumption

• Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$

Storage Temperature

Operating Humidity

Connectors

- Dimensions (L x H)

+5 V @ 0.5 A typical +5 V @ 0.8 A max.

-20 ~ 70° C

(-4 ~ 158° F) 5 ~ 95% RH non-condensing

(refer to IEC 68-2-3) Two 50-pin male

ribbon-cable connectors 185 x 100 mm (7.3" x 3.9")

Ordering Information

PCL-722

PCL-724

PCL-731

PCL-10150-1.2

PCLD-782B

 PCLD-785B PCLD-7216

PCLD-885

ADAM-3950

144-bit digital I/O card, user's manual and driver CD-ROM (cable not included)

24-bit digital I/O card, user's manual and driver CD-ROM (cable not included)

48-bit digital I/O card, user's manual and driver CD-ROM (cable not included)

50-pin flat cable, 1.2 m 24/16-ch. opto-isolated digital input board

24/16-ch. relay output board

16-ch. carrier board for SSR I/O modules 16-ch. power relay

(Form A) output board 50-pin flat cable wiring terminal for DIN-rail

mounting

ADVANTECH

6-56

Plug-in DA&C Cards

PCL-725 PCL-735

Relay Actuator and Isolated Digital Input Card

12-ch Relay Actuator Card

Features

PCL-725

- 8 relay outputs
- 8 optically-isolated digital inputs
- LED relay status indicators
- Isolated or non-isolated digital inputs
- Male DB37 matching connector included

PCL-735

- 12 relay outputs
- LED relay status indicators
- Male DB37 matching connector included
- Relay status readback function

 $C \in$

Introduction

PCL-735 is a relay actuator card, while PCL-725 is combination of a relay actuator and isolated digital input card. Both half-size cards provide electromechanical SPDT relays. An on-board DB-37 connector provides access to all input and output channels.

Specifications

PCL-725

Isolated Digital Input

 Input Channels Opto-Isolator 4N25 Input Voltage 5 ~ 24 V

 Input Resistance 560 Ω (1 W @ 24 V input) Input Buffers Voltage comparators Threshold Voltage 1.5 V_{DC}, adjustable

 Breakdown Voltage $300 V_{DC}$ Throughput 10 kHz (max)

Relay Output

- Output Channels

Single-pole double-throw (SPDT, Form C) Relay Type

 Output Type CHO ~ CH3 with Normally Open and Normally Closed,

CH4 ~ CH7 with Normally Open only

 Contact Rating 120 V_{AC} @ 0.5 A or

30 V_{DC} @ 1 A

 Breakdown Voltage 300 V AC/DC min. Relay on Time 5 ms. typical Relay off Time 5 ms. typical Total Switching Time 10 ms. typical Insulation Resistance $100 \text{ M}\Omega \text{ min.}$

 Life Expectancy > 5 x 10⁵ operations at AC: 110 V/0.3 A, DC: 24 V/1.25 A

 Relay Driver + 12 V @ 33 mA for each relay

General

 Power Consumption +5 V @ < 0.2 A; +12 V @ 33 mA for each relay, < 0.27

A if all eight relays are energized

• Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$ Storage Temperature -20 ~ 70° C (-4 ~ 158° F)

- Operating Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-2-3) I/O Port Address Two consecutive bytes from hex 200 ~ 3F8

Connector 37-pin D-type female connector

Dimensions (L x H) 147 x 100 mm (5.75" x 3.9")

PCL-735

Relay Output

 Relay Type Single-pole double-throw (SPDT, Form C) **Output Type** Ch0 to Ch11, normally open/normally closed

Contact Rating 2 A @ 30 V_{DC} , 1 A @ 125 V_{AC}

Breakdown Voltage 1,000 V_{AC/DC} min. **Relay on Time** 5 ms. typical 5 ms. typical Relay off Time **Total Switching Time** 10 ms. typical

Insulation Resistance $1,000 \text{ M}\Omega$ @ 500 V_{DC} min.

 Life Expectancy $> 5 \times 10^5$ operations @ 30 V_{DC} and 2 A $> 2 \times 10^6$ operations @ 30 V_{DC} and 1 A

General

 Power Consumption +5 V @ 280 mA (typical) +12 V @ 200 mA (max.)

• Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$

-20 ~ 70° C (-4 ~ 158° F) Storage Temperature Connector One 37-pin D-type female connector

Operating Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-2-3) I/O Port Address Two consecutive bytes from hex 200 ~ 3F8

Dimensions (L x H) 155 x 100 mm (6.1" x 3.9")

Ordering Information

PCL-725 Relay actuator and isolated D/I Card, user's manual, dirver CD-ROM and one DB-37 male connector (P/N:

PCL-10437-0)

PCL-735 12-channel relay actuator card, user's manual, driver CD-ROM and one DB-37 male connector (P/N: PCL-

10437-0)

PCL-10137-1 DB37 cable assembly, 1m DB37 cable assembly, 2m PCL-10137-2 PCL-10137-3 DB37 cable assembly, 3m PCLD-880 Screw terminal board

 ADAM-3937 DB37 wiring terminal for DIN-rail mounting

ADVANTECH

6 - 57

PCL-730 PCL-733 PCL-734

32-ch. Isolated Digital I/O Card

32-ch. Isolated Digital Input Card

32-ch. Isolated Digital Output Card

PCL-733

PCL-734

 $C \in$

 $C \in$

Features

- 32 isolated DIO channels (16 inputs and 16 outputs)
- 32 TTL-level DIO channels (16 inputs and 16 outputs)
- High output driving capacity
- High-voltage isolation on isolated I/O channels $(2,500 V_{DC})$
- Interrupt capability
- Two 20-pin connectors for isolated digital I/O channels and two for TTL digital I/O channels
- D-type connector for isolated input and output

Features

- 32 isolated, bidirectional digital input channels
- High-voltage isolation (2,500 V_{DC})
- Interrupt capacity
- D-type connectors for isolated input channels
- Reverse voltage protection for isolated input channels (up to 24 VDC)

Features

- 32 isolated digital output channels
- · High output driving capacity
- High-voltage isolation on output channels (1,000
- High sink current on isolated output channels (200 mA/channel)
- Integral suppression diodes for inductive loads
- Wide output range (5 ~ 40 V_{DC})
- D-type connectors for isolated output channels

Introduction

The PCL-730/733/734 cards offer isolated digital input channels as well as isolated digital output channels with isolation protection up to 2,500 V_{nc}, which makes it ideal for industrial applications where high-voltage isolation is required. In addition, all output channels are provide high-voltage protection.

Specifications

Isolated Digital Input

	PCL-730	PCL-733			
Input Channels	16 (16-ch/group)	32 (16-ch/group)			
Interrupt Inputs	2 (IDI0, IDI1)	2 (IDI0, IDI16)			
Interrupt Level	2~7	2, 3, 5, 7, 10, 11, 12, 15			
Input Voltage	5 ~ 24 V _{DC}				
Input Resistance	1.2 kΩ @ 0.5 W				
Optical Isolation	2,500 V _{DC}				

Isolated Digital Output

	PCL-730	PCL-734		
Output Channels	16 (16-ch/group)	32 (16-ch/group)		
Optical Isolation	2,500 V _{DC}	1,000 V _{DC}		
Throughput	10 kHz			
Supply Voltage	5 ~ 40 V _{DC}			
Sink Current	200 mA max./channel			

General

		PCL-730	PCL-733	PCL-734	
I/O Connector Ty	/pe	37-pin D-type female			
Dimensions (L)	(H)	185 x 100 mm (7.3" x 3.9")			
Power	Typical	+5 V @ 330 mA	+5 V @ 320 mA	+5 V @ 330 mA	
Consumption	Max.	+5 V @ 500 mA	+5 V @ 500 mA	+5 V @ 500 mA	
Tomporaturo	Temperature Operating Storage		0 ~ 60° C (32 ~ 140° F)		
remperature			-20 ~ 70° C (-4 ~ 158° F)		
Relative Humid	ity	5 ~ 95% RH non-condensing (refer to IEC 68-2-3			

Note: The PCL-730 also provides 16-ch TTL Digital Input and 16-ch TTL Digital Output. Please refer to the PCL-730 User's Manual for the detail information.

Ordering Information

PCL-730 32-channel isolated digital I/O card, user's manual and driver CD-ROM (cable not included)

PCL-733 32-channel isolated digital input card, user's manual and driver CD-ROM (cable not included)

PCL-734 32-channel isolated digital output card, user's manual and driver CD-ROM (cable not included)

PCL-10120-1 20-pin flat cable, 1 m (for PCL-730 only) PCL-10120-2 20-pin flat cable, 2 m (for PCL-730 only)

6-58

PCL-730 **PCL-734**

	PCL-10137-1	DB37 cable assembly, 1m
	PCL-10137-2	DB37 cable assembly, 2m
•	PCL-10137-3	DB37 cable assembly, 3m
•	PCLD-782	16-channel opto-isolated D/I board (for PCL-730 only)
•	PCLD-785	16-channel relay output board (for PCL-730 only)
•	PCLD-786	8-channel SSR I/O module carrier board (for PCL-730 only)
•	PCLD-885	16-channel power relay (form A) output board (for PCL-730 only)
•	PCLD-780	Universal screw terminal board
•	PCLD-880	Universal screw terminal board
•	ADAM-3920	20-pin flat cable wiring terminal for DIN-rail mounting (for PCL-730 only)

DB37 wiring terminal for DIN-rail mounting

Applications

- Industrial On/Off control
- Contact closure monitoring
- Switch status sensing
- BCD interfacing

ADAM-3937

- Digital input control
- Industrial and lab automation

Isolated Input Circuit Diagram

Isolated Output Circuit Diagram

Pin Assignments CN1 of PCL-730

IDO 0	1	2	IDO 1	IDI 0	1
IDO 2	3	4	IDO 3	IDI 2	3
IDO 4	5	6	IDO 5	IDI 4	5
ID0 6	7	8	ID0 7	IDI 6	7
ID0 8	9	10	IDO 9	IDI 8	9
IDO 10	11	12	IDO 11	IDI 10	11
IDO 12	13	14	IDO 13	IDI 12	13
IDO 14	15	16	IDO 15	IDI 14	15
E.GND	17	18	E.GND	EI.GND 1	17
PCOM1/E.GND	19	20	PCOM2	EI.GND 1	19

CN3 of PCL-730

DO 0	1	2	DO 1
DO 2	3	4	DO 3
DO 4	5	6	DO 5
DO 6	7	8	D0 7
DO 8	9	10	DO 9
DO 10	11	12	DO 11
DO 12	13	14	DO 13
DO 14	15	16	DO 15
D.GND	17	18	D.GND 2
+5V	19	20	+12V

CN4 of PCL-730

CN2 of PCL-730

4 IDI 3 IDI 5

16 **IDI 15** EI.GND 2

18

20

EI.GND 2

	_		
DI 0	1	2	DI 1
DI 2	3	4	DI 3
DI 4	5	6	DI 5
DI 6	7	8	DI 7
DI 8	9	10	DI 9
DI 10	11	12	DI 11
DI 12	13	14	DI 13
DI 14	15	16	DI 15
D.GND	17	18	D.GND 2
+5V	19	20	+12V

CN6 of PCL-730

	\sim	_	
IDIO IDI2 IDI4 IDI6 IDI8 IDI10 IDI12 IDI14 EI.GND1 PCOM1/E.GND ID00 ID02 ID04 ID06 ID08 ID010 ID010 ID012 ID014 PCOM2	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	IDI1 IDI3 IDI5 IDI7 IDI9 IDI11 IDI13 IDI15 ELGND2 EGND IDO3 IDO5 IDO7 IDO9 IDO11 IDO13 IDO15

00	Digital output
וכ	Digital input
DO	Isolated digital output
DI	Isolated digital input
.GND	External ground for isolated out-
out E I.GND nput	External common for isolated
O.GND PCOM	Digital ground Free wheeling common diode

CN1 of PCL-733

	\frown	\	
IDIO IDI2 IDI4 IDI4 IDI9 IDI13 IDI15 IDI15 IDI16 IDI16 IDI20 IDI22 EL,GND3 IDI25 IDI27 IDI27 IDI27 IDI27	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	IDI1 IDI3 IDI5 IDI7 IDI8 IDI10 IDI12 IDI14 EI.GND2 IDI17 IDI23 IDI24 IDI28 IDI28 IDI30 EI.GND4

CN1 of PCL-734

	$\overline{}$	_	
ID00 ID02 ID04 ID06 PC0M1 ID09 ID0113 ID015 ID018 ID020 ID022 PC0M3 ID025 ID027 ID027 ID027 ID027 ID027	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	ID01 ID03 ID05 ID07 ID08 ID010 ID012 ID014 PC0M2 ID023 ID024 ID024 ID026 ID028 ID030 PC0M4

PCL-836

6-ch Counter/Timer Card

Features

- Periodic interrupt generation
- 6 independent 16-bit counters
- Digital filter for noise reduction
- Binary or BCD counting
- Programmable frequency output
- Complex duty-cycle output
- Single-shot output
- 16-bit TTL input and 16-bit TTL output ports
- Selectable interrupt input channel
- Up to 10 MHz input frequency
- Pulsewidth and period measurement
- Time-delay generation
- F/V conversion and accumulation

 $C \in$

Introduction

PCL-836 is a general purpose counter/timer and digital I/O card for PC/AT compatible computers. It provides six 16-bit counter channels. It also includes 16 digital outputs and 16 digital inputs. Two 8254 chips provide a variety of powerful counter/timer function modes to match your industrial and/or laboratory applications.

Unique Digital Filter

PCL-836 includes a unique digital filter to eliminate noise on the input signal. The frequency can be adjusted to provide more stable output readings.

Specifications

Programmable Counter

Counter Six independent 16-bit counter channels Modes Six programmable counter modes

Programmable Digital 1.6 ms to 52 ms

Noise Filter 3 PWM Output

• TTL Compatible Input/Output

Interrupt IRQ 2, 4, 5, 7, 10, 11, 12, 15 (jumper selectable)

Digital Input/Output

• 16 TTL Input Channels Logic level 0: 0.8 V max.

Logic level 1: 2.4 V min.

• 16 TTL Output Channels Logic level 0: 0.5 V max. @ 8 mA

Logic level 1: 2.4 V min. @ 0.4 mA

General

 Power Consumption +5 V @ 360 mA (typical)

+5 V @ 400 mA (max.)

• Operating Temperature $0 \sim 60^{\circ} \text{ C} (32 \sim 140^{\circ} \text{ F})$ Storage Temperature -20 ~ 70° C (-4 ~ 158° F)

 Operating Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

 Connector One 37-pin D-type female connector for counter I/O

Two 20-pin male flat-cable connector for digital I/O

 Dimensions (L x H) 185 x 100 mm (7.3" x 3.9")

Ordering Information

PCL-836 6-channel counter/timer card, user's manual and driver

CD-ROM (cable not included)

PCL-10137-1 DB37 cable assembly, 1m PCL-10137-2 DB37 cable assembly, 2m

PCL-10137-3 DB37 cable assembly, 3m PCLD-880 Screw terminal board

 ADAM-3937 DB-37 wiring terminal for DIN-rail mounting

Pin Assignments

CLK1 GATE1 CLK2 GATE2 CLK3 GATE3 CLK4 GATE4 CLK5 GATE5 CLK6 GATE6 Interrupt Input PWM1 PWM3 Fout1 Fout3 Fout5 +5V	1 20 2 21 3 22 4 23 5 24 6 25 7 26 8 27 9 28 10 29 11 30 12 31 13 32 14 33 15 34 16 35 17 36 19	OUT1 GND OUT2 GND OUT3 GND OUT4 GND OUT5 GND OUT6 GND Interrupt Enable PWM2 GND Fout2 Fout4 Fout6

Applications

- Event counting
- Industrial automation (flowmeter/wattmeter monitoring)
- Programmable frequency synthesis
- Frequency counter

PCM-3712 **PCM-3718H/HG/HO** PCM-3724

2-ch. Analog Output Module 12-bit Multifunction Module with Programmable Gain

48-ch Digital I/O Module

PCM-3712

((

Features

- 2 channels analog output module
- 0 to 5 V, 0 to 10 V, -2.5 V to +2.5 V, -5 V to +5 V, -10 V to +10 V,or 4 to 20 mA output range
- 12-bit resolution

Specifications

- Analog Output Channels 2
- Voltage Range Unipolar 0 to 5 V, 0 to 10 V
- **Bipolar** $\pm 2.5 \text{ V}, \pm 5 \text{ V}, \pm 10 \text{ V}$
- **Current Range** 4 ~ 20 mA
- **Output Current Range** ±5 mA
- Impedance 0.1 max./0.02 typ.
- Resolution
- **Nonlinearity** ±1 LSB
- Differential Nonlinearity±1/2 LSB
- System Accuracy ±0.025% FSR (Voltage)

12-bit

- ±0.05% FSR (Current)
- Dynamic Performance 5 V step: 16 μs
 - 0.3V/µs typ. (Voltage) 1.2mA/µs (Current)
- Settling Time to 1/2 LSB 10 V step: 33 μs
- Slew Rate 0.3 V/µs typ. (Voltage)
 - 1.2 mA/µs (Current)

 D/A Converter Single 33 kHz bit resolution Channel

Ordering Information

PCM-3712

2-channel analog output module (18 cm Flat Cable 10-pin to DB9 (F)

ADAM-3909

DB9 cable wiring for DIN-rail mounting

included)

PCM-3718H/HG

Features

- 16 single-ended or 8 differential analog inputs
- 12-bit A/D converter, up to 100 KHz sampling rate with DMA transfer
- Two 8-bit digital input/output TTL level channels
- One 12-bit Analog output channel (PCM-3718HO only)

Specifications

Analog Input

Channels

16 single-ended or 8 differential inputs 12 bits

Resolution

Analog Output

Input Range

- One 12-bit Channel
- $0 \sim +5V$ or $0 \sim +10V$ with **Output Range** int. reference
 - $0 \sim +10 V$ or $0 \sim -10 V$ with ext. reference Bipolar: ±10, ±5, ±1, ±0.5, ±0.1, ±0.05, ±0.01,

±0.005 Unipolar (PCM-3718HG): 0 ~ 10,

 $0 \sim 1, 0 \sim 0.01$

Two 8-bit TTL-level

Digital Input/Output

- Channels
- Input Voltage
- **Output Voltage**
- Logic 1: 2.0 V min. 6 mA (sink) Logic 1: 3.84 V min. @ 6 mA (source)
- Power Requirements
- Temperature
- Digital I/O channels Logic 0: 0.8 V max. Logic 0: 0.33 V max. @
- +5 V, ±5 % tolereance on
- power supply Operating: 0 ~ 60° C (32 ~ 140° F)
- Storage : -40 ~ 85° C (-40 ~ 185° F)

Ordering Information

PCM-3718H

12-bit multifunction module with progammable gain (cable not included) PCM-3718H w/high gain

PCM-3718HG PCM-3718H0 ADAM-3920

PCM-3718H w/AO 20-pin flat cable wiring terminal for DIN-Rail

20-pin flat cable, 1 m

mounting PCLD-780 Screw-terminal board for 20-pin flat cable

PCL-10120-1 PCL-10120-2

20-pin flat cable, 2 m

PCM-3724

Features

- · Output status read back
- Channels simulate 8255 PPI mode 0
- Interrupt triggering, rising/falling edge

Specifications

Digital I/O

- Channels
- Throughput
- Input Voltage
- Output Voltage
 - Power Requirements
 - Size/Weight
 - Temperature
- - Operating Humidity

48 digital I/O channels 300 kbps typical 400 kbps max.

Logic 0: 0.8 V max.

Logic 1: 2.0 V min. Logic 0: 0.5 V max. @

24 mA (sink) Logic 1: 2.0 V min. @

15 mA (source) +5 V. ±5 % tolerance on

power supply 96 x 90 mm (3.8"x 3.5")

0.084 kg (0.185 lb) Operating: 0 ~ 60° C

(32 ~ 140° F) Storage : -40 ~ 85° C (-40 ~ 185° F)

0 ~ 90% relative humidity, non-condensing

Ordering Information

PCM-3724

48-channel digital I/O module (cable not included)

ADAM-3950

PCLD-785B

50-pin flat cable wiring terminal for DIN-Rail mounting 24-channel relay output

PCLD-782B

24-channel opto-isolated digital input board

board

PCL-10150-1.2 50-pin flat cable, 1.2 m

0

0

6-61

ADVANTECH

PCM-3725 PCM-3730 PCM-3780

8-ch Isolated DI and 8-ch Relay Output Module

16-ch Isolated Digital I/O Module

3-ch Counter/Timer with 24-ch TTL DI/O Module

PCM-3730

PCM-3780

 (ϵ)

$C \in$

Features

- LED indicators to show activated relays
- Interrupt handling capability

Specifications

Isolated Digital Input

Channels Opto-Isolated 8 DI channels

• Over-Voltage Protection 70 V 2500 V_{DC} Isolation Voltage Isolator Response Time 25 μs

Relay Output

Channels 8-ch SPDT (Form C) Nominal Switch 1.5 A @ 30 V_{DC}

Capacity

 Switching Power 45 W max. **Switching Voltage** 220 V_{pc} max. **Switching Current** 1.5 A max. Breakdown Voltage 2000 V_{RMS} for 1 min.

- Power Consumption 100 mA @ +5 V (typical); 280 mA @ +5 V (max)

• Isolated DI Connector 20-pin post header Relay Output Connector 50-pin post header

Ordering Information

PCM-3725

8-ch Isolated Digital Input and 8-ch Relay manual and driver CD-ROM. (cable not included)

PCL-10120-1 PCL-10120-2 PCL-10150-1.2 ADAM-3920

ADAM-3950

PCLD-780

Output Module, user's 20-pin Flat Cable 1m

20-pin Flat Cable 2m 50-pin Flat Cable 1.2m 20-pin Flat Cable Wiring Terminal for DIN-Rail 50-pin Flat Cable Wiring Terminal for DIN-Rail Screw-Terminal Board

for 20-pin Flat Cable

Features

- High output driving capacity and high-voltage
- Interrupt capability
- High sink current on isolated output channels

Specifications

 Power Consumption 330 mA @ +5 V (typical); 500 mA @ +5 V (max)

Isolated Digital I/0

Channels Opto-Isolated 8DI and

 Input Resistance $2 \text{ k}\Omega @ 0.5 \text{ W}$ **Output Voltage** Open collector 5 to $40 V_{DC}$

200 mA max.

 $2,500 V_{DC}$

10 kHz max.

Output Sink Current Isolation Voltage

Throughput

TTL-level Digital I/O

Channels TTL-level 16DI and 16D0

Input Voltage Low: 0.8 V max. High: 2.0 V min.

 Output Voltage Low: Sink 8 mA @ 0.5 V max. High: Source -0.4 mA

@ 2.4 V min. Input Load Low: 0.4 mA @ 0.5 V max High: 0.05 mA @ 2.7

> V max. 30 kHz typical

Orderina Information

PCM-3730 16-ch isolated digital I/O module, user's manual

PCL-10120-1 PCL-10120-2

ADAM-3920

Throughput

PCLD-780 PCLD-785/885 and driver CD-ROM. (cable included) 20-pin flat cable, 1m 20-pin flat cable, 2m 20-pin flat cable wiring terminal for DIN-Rail mt. Screw-terminal board for 20-pin flat cable 16-ch relay/power relay output board

Specifications

Programmable counter

- 3 independent 16-bit counters
- 4 independent programmable clock sources (10 M, 1 M, 100 K, 10 K)
- 12 programmable counter modes
- TTL compatible logical level
- Maximum frequency 20 MHz

Digital input/output

24 TTL input/output channels (8255 mode 0)

Logic 0: 0.8V max. Logic 1: 2.4V min. Output TTL output channels:

Logic 0: 0.5 V max. @ 24 mA (sink) Logic 1: 2.4 V min. @ 15 mA (source)

Counter/Timer

Channels 3 Resolution 16-bit Compatibility TTL level Max. Input Frequency 20 MHz

 I/O Connector Type One 50 pin and one 20 pin box header 175 x 99 mm Dimensions

(6.9" x 3.9") Power Consumption Typical: +5 V @ ? mA

Max.: +5 V @ ? A

Temperature

Operating: 0 ~ 60° C (32 ~ 158° F) (refer to IEC 68-2-1, 2) Storage: -20 ~ 70° C (-4 ~ 158° F)

Relative Humidity

Operating: 5 ~ 85%RH non-condensing (refer to IEC 68-1,-2,-3) Storage: 5 ~ 95%RH non-condensing (refer to IEC

68-1,-2,-3)

Ordering Information

■ PCM-3780

24ch TTL DIO Module PCL-10120-1 PCL-10150-1.2

ADAM-3920/50

20-pin Flat Cable 1m 50-pin Flat Cable 1.2m 20/50-pin Flat Cable Wiring Terminal for DIN-Rail

3-ch Counter/Timer with

All product specifications are subject to change without notice

PCI-1670

GPIB Interface PCI-bus Card

Features

- Complete IEEE 488.2 compatibility
- Supports Windows® 95/98/NT/ME/2000/XP and DOS
- Full driver, library, and example support, including Visual C++®, C++ Builder®, LabWindows/CVI, Visual Basic®, Delphi® and LabView® drivers.
- Provides NI-like driver & function libraries.
- PCI bus specification 2.1 compliant
- I/O address automatically assigned by PCI Plug & Play
- Provides powerful and easy-to-use configuration utility

FCC (€

Introduction

PCI-1670 is a high-performance PCI-bus card with a GPIB interface. The card is fully compatible with IEEE 488.1 and 488.2 standards with its PCI 2.1 bus specification. With two driver control modes: controller mode and slave mode; PCI-1670 can perform basic the IEEE 488 talker, listener and controller functions required by IEEE 488.2. You can also connect up to 15 GPIB instruments. Therefore, PCI-1670 is especially suitable for instrument measurements and control.

PCI-1670 is available for Windows® 95/98/NT/ME/2000/XP and DOS, and it supports complete drivers and libraries. To make driver development easier, PCI-1670 comes with example drivers programmed in: Visual C++®, C++ Builder®, Labwindows/CVI®, Visual Basic®, Delphi® and LabVIEW®.

Furthermore, PCI-1670 also offers powerful testing features and a configuration utility that allows users to easily access and control instruments.

PCI-1670 offers a comprehensive supplementary controller driver database and provides NI-like commands to help users develop applications. Users can use an interactive GPIB window interface to control devices directly without any need of programming.

Specifications

 Bus interface PCI specification 2.1 compliant

IRQ and I/O memory automatically assigned by PCI plug-and-play

IEEE 488, IEEE 488.1 and IEEE 488.2 standard compatible

A maximum of 15 GPIB-instruments can be connected.

IEEE 488 standard 24-pin Connector

Speed GPIB-bus transfer rate up to 1M bytes/sec 0S Windows® 95/98/NT/2000/XP. DOS

Libraries Visual C++, Borland C++ Builder, LabWindows/CVI,

Visual Basic, Delphi, Labview

Dimensions 131 x 106 mm (5.15" x 4.17")

• Operating Temperature $0 \sim 55^{\circ}$ C

 Operating Humidity 10 ~ 90% Relative Humidity, non-condensing.

Ordering Information

 PCI-1670 GPIB Interface PCI-bus Card, IEEE-488 Cable, 2M

PCL-10488-1 IEEE-488 Cable, 1M PCL-10488-2 IEEE-488 Cable, 2M PCL-10488-4 IEEE-488 Cable, 4M

PCI-1671

High-Performance IEEE-488.2 Interface for PCI-Bus Computers

Features

- IEEE 488.2 Standard interface
- Complete Talker/Listener/Controller
- Industry standard 32-bit PCI bus
- Data transfer rates over 1 Megabytes/sec
- REP-INSW block transfer
- 1024-word FIFO buffer
- High-Speed State Machine Bus Manager
- 7 Interrupt lines, shared interrupt capability
- Transparent interrupt enabling/disabling
- Includes GPIB-Library software

 ϵ

Introduction

The PCI-1671 IEEE-488 interface converts any PCI bus personal computer into an instrumentation control and data acquisition system. Connect up to 14 instruments using standard IEEE-488 cables such as the PCL-10488-2, 2 meter IEEE-488 interface cable.

Greater than 1MB/s Transfer Rates

The PCI-GPIB transfers data over the GPIB at rates in excess of 1 million bytes per second using the maximum IEEE-488 specification cable length (2 meters times the # of devices). A 1024-word FIFO buffer and the advanced REP-INSW ISR data transfer method provide the horsepower required to then transfer the data between the GPIB board and the host computer. The high-speed state machine also provides byte-to-word packing and unpacking, and because words carry twice the information that bytes do, packed data requires fewer bus cycles to transfer the same GPIB information.

IEEE-488.2 (GPIB) Compatibility

The PCI-GPIB adheres to ANSI/IEEE Standard 488-1978. Often referred to as the IEEE-488.2 bus, GPIB bus or HP-IB bus, the GPIB (General Purpose Interface Bus) is a standard for instrumentation communication and control for instruments from manufacturers the world over. The GPIB provides handshaking and interface communications over an 8-bit data bus employing 5 control and 3 handshake signals. Equipped with a PCI-1671, a personal computer can:

Control GPIB instruments, gather data from GPIB test equipment, or become a data acquisition station in a GPIB system.

Software

The PCI-1671 includes powerful GPIB-Library. The library greatly simplifies your programming effort. The PCI-1671 is also supported by a wide variety of application software packages including SoftWIRE®, LabVIEW® and many others.

Windows® 95/98/2000/XP and DOS Compatibility

The PCI-GPIB hardware supports all popular operating systems and languages regardless of the operating systems support for Plug & Play. The installation software will manage resources for you on systems without Plug & Play.

Specifications

 IEEE Compatibility IEEE-488.1 and IEEE-488.2

Maximum Transfer >1 Mbyte/s

Rate

Power 5 V_{nc} @ 375 mA Typical IEEE-488 Standard 24 pin I/O Connector

Operating Temperature $0 \sim 60^{\circ}$ C @ 0-90% RH and Humidity

Storage Temperature -40 ~ 100° C @ 5-90% RH & Humidity

Ordering Information

PCI-1671 High-Performance IEEE-488.2 Interface for PCI-Bus Computers

PCL-10488-1 IEEE-488 Cable, 1M PCL-10488-2 IEEE-488 Cable, 2M PCL-10488-4 IEEE-488 Cable, 4M

USB-4711

100 kS/s, 12-bit USB Multifunction Module

Features

- Supports USB 2.0
- Portable
- No need for external power
- 16 analog input channels
- 12-bit resolution Al
- Sampling rate up to 100 kS/s
- 8DI/8DO, 2 AO and 1 16-bit counter (USB-4711L w/o AO)
- Wiring terminal on Modules

Introduction

The USB-4700 series consists of true Plug & Play data acquisition modules. No more opening up your computer chassis to install boards. Just plug in the module, then get the data. It's easy and efficient.

USB-4711 offers 16SE / 8DI inputs with 12-bit resolution, up to 100 kS/s throughput, 16 digital I/O lines and 1 user counter/timers, and optional 12-bit analog outputs.

Reliable and rugged enough for industrial applications, yet inexpensive enough for home projects, USB-4711 is perfect for adding measurement and control capability to any computer with an USB port. USB-4711 is fully USB Plug & Play compatible and easy to use. It obtains all required power from the USB port, so no external power supply is required.

Specifications

Analog Input

Channels 16 Single-Ended Resolution 12-bit FIFO Size 1K samples Sampling Rate 100 kS/s max. **Conversion Time** 10 µs

 Input Range \pm 10 V \pm 5 V \pm 2.5 V \pm 1.25 V \pm 0.625 V

 Input Protection 30 Vp-p Input Impedance $2 \Omega/5 pF$

• Trigger Mode Software On-board or external programmable pacer

Digital Input / Output

Input Channels

 Input Voltage Low 0.8 V max.

High 2.0 V max.

Output Channels

 Output Voltage Low 0.8 V max.@ 0.8 mA (sink)

High 2.0 V min.@ -0.4 mA (source)

Analog Output

Channels Resolution 12-bit Throughput 100 kS/s

Ordering Information

USB-4711 100 kS/s, 12-bit USB multifunction module 0

ADVANTECH

USB-4716

100 kS/s, 16-bit USB Multifunction Module

Features

- Supports USB 2.0
- Portable
- No need for the external power
- 16 analog input channels
- 16-bit resolution Al
- Sampling rate up to 100 kS/s
- 16 DIO, 2 AO and 1 32-bit counter (USB-4716L w/o AO)
- Wiring terminal on Modules

Introduction

The USB-4700 series consists of true Plug & Play data acquisition devices. No more opening up your computer chassis to install boards-just plug in the module, then get the data. It's easy and efficient. USB4716 offers 16SE inputs with 16-bit resolution, up to 100 kS/s throughput, 16 digital I/O lines and 2 user counter/timers, and optional 12-bit analog outputs.

Reliable and rugged enough for industrial applications, yet inexpensive enough for home projects, the USB-4716 is the perfect way to add measurement and control capability to any USB capable computer. The USB-4716 is fully USB Plug & Play and easy to use. It obtains all required power from the USB port, so no external power connection is ever required.

Specifications

Analog Input

Channels 16 Single-Ended Resolution 16-Bit Max. SPS 100 kS/s Conversion Time 10 µs

- Input Range/Gain /Bi-polar By GainGain = 1, 2, 4, 8

Max Input Overvoltage +/- 15V

 Trigger Mode Software / Internal Or External Pacer

DC/INL/DNL/... +/-1LSB / Gain Error - AC/SNR/ENOB 68dB / 11-Bit

Analog Output

2 Channels Resolution 16-Bit 0 ~ 5V, 0 ~ 10V Ranges DNL/INL = +/-1LSB Accuracy

Digital Input / Output

Input Channels

 Input Voltage Low 0.8 V max. High 2.0 V max.

- Output Channels

 Output Voltage Low 0.8 V max.@ 0.8 mA (sink) High 2.0 V min.@ -0.4 mA (source)

Programmable Counter / Timer

Channels Resolution 16-bit Compatibility TTL Level **Base Clock** 10 MHz Max. Input Frequency 10 MHz

Ordering Information

 USB-4716 100 kS/s, 16-bit USB multifunction module

USB-4718

8-channel Thermocouple Input Module

Features

- Supports USB 2.0
- Portable
- No need for the external power
- 8 thermocouple input channels
- 3000 V_{nc} isolation
- Supports 4~20mA
- Wiring terminal on Modules

Introduction

The USB-4700 series consists of true Plug & Play data acquisition devices. No more opening up your computer chassis to install boards-just plug in the module, then get the data. It's easy and efficient. USB4718 offers 8 thermocouple inputs with 16-bit resolution, up to 0.1% input range accuracy, or 4~20mA inputs.

Reliable and rugged enough for industrial applications, yet inexpensive enough for home projects, the USB-4718 is the perfect way to add measurement and control capability to any USB capable computer. The USB-4718 is fully USB plug and play and easy to use. It obtains all required power from the USB port, so no external power connection is ever required.

Specifications

Analog Input

 Effective Resolution 16-bit 8 differential Channels • Ch. Independent Conf. Yes

Input Type T/C & 4~20 mA T/C Type and J 0 ~ 760° C Temperature Ranges R 500 ~1750° C K 0 ~ 1370° C S 500 ~1750° C T -100 ~ 400° C B 500 ~1800° C

E 0 ~ 1000° C Isolation Voltage 3000 V_{DC}

Fault and Over-voltage Resists over-voltage up to 35 V

Protection

 Sampling Rate 10 samples/sec 0.1% for voltage input Accuracy

CMR @ 50/60 Hz 92 dB min

Ordering Information

USB-4718

8-channel Thermocouple Input Module

0

ISA-Compatible PCI Cards

Advantech ISA-Compatible Series

To support current ISA I/O card users and help the migration to PCI, Advantech has released several PCI I/O cards that are compatible with existing ISA cards.

The new PCI cards are compatible with the ISA cards' functions, connectors, and software APIs.

With functionally compatible PCI cards, ISA users can upgrade design-ready objects from their ISA platform to the PCI platform, and enjoy the improved performance of a new computer. With connector compatibility, ISA users can keep using all accessories, including the connected wiring boards and circuits. Lastly, the ISA-compatible cards use the same software API as the ISA cards, so there is no need to re-write the program when upgrading the system.

The ISA-compatible PCI cards are designed to assist users who would like to transfer their current application to a new platform in the shortest time possible. This not only saves time and money, but also raises the efficiency of the design. Following is a list of ISA-compatible products.

PCI	ISA	Product Features	Page
Multifunct	ion Cards		
PCI-1718HDU	PCL-818HD	12-bit 16-ch Multifunction	6-18
PCI-1718HGU	PCL-818HG	12-bit 16-ch High-Gain Card	6-18
Analog Output			
PCI-1727U	PCL-727	12-ch Analog Output Card	6-30
Isolated Digi	tal 10 Cards		
PCI-1730	PCL-730	16/16 Isolated Digital IO Card	6-34
PCI-1733	PCL-733	32-ch Isolated Digital Input Card	6-34
PCI-1734	PCL-734	32-ch Isolated Digital Output Card	6-34
Relay	Cards		
PCI-1761	PCL-725	8-Relay, 8 Isolated DI Card	6-44