Kapitel 2

2.2 Newtons metod

Exempel 2.1

Betrakta ekvationen f(x) = 0 där $f(x) = x^3 + x^2 - 3$. Låt $x_0 = 0.5$ vara approximation. Vad blir x_1 med Newtons metod?

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0, 1, \dots$$

2.3 Newtons metod - varianter

Exempel 2.4

Betrakta ekvationen f(x) = 0 där $f(x) = x^3 + x^2 - 3$. Låt $x_0 = 0.5$ vara startapproximation. Vad blir x_1 med dämpad Newtons metod då dämpad steglängden $\alpha_0 = 0.6$?

$$x_{k+1} = x_k - \alpha_k \frac{f(x_k)}{f'(x_k)}, k = 0, 1, \dots$$

2.4 Newtons metod för system

Exempel 2.4

Formulera Newtons metod för följande system av ickelinjära ekvationer:

$$\begin{cases} x_1^2 + x_2^2 + x_3^2 = 3\\ x_1^2 - x_2 = 0\\ x_2^2 + x_3 = 2 \end{cases}$$

$$\begin{cases} J(x_k)s_k = -f(x_k) \\ x_{k+1} = x_k + s_k \end{cases}, k = 0, 1, \dots$$

Exempel 2.5

Betrakta ekvationen f(x) = 0 där $f(x) = x^3 + x^2 - 3$. Låt $x_0 = 0.5$ och $x_1 = 1.5$ vara startapproximationer. Vad blir x_2 med sekantmetoden?

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}, k = 1, 2, \dots$$

Exempel 2.6

Betrakta ekvationen f(x) = 0 där $f(x) = x^3 + x^2 - 3$. Låt $x_0 = -1$ och $x_1 = 0$ vara startapproximationer. Vad blir x_2, x_3, x_4, \cdots med sekantmetoden?

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}, k = 1, 2, \dots$$

Exempel 2.5

Antag att vi löser ekvationen $f(x) = 0 \mod f(x) = x^3 + x^2 - 3$. f(x) skrivs om på formen $g(x) = x - \frac{x^3 + x^2 - 3}{5}$

- a) Kontrollera först att omskrivningarna till fixpunktsiteration är korrekta.
- b) Undersök om $x_{k+1} = g(x_k)$ är lokalt konvergenta.
- c) Vad blir x_1 med fixpunktsiteration om $x_0 = 1$?

$$|g'(x^*)| < 1$$

Exempel 2.8

Formulera fixpunktiteration för följande system av ickelinjära ekvationer

$$\begin{cases} x_1^2 + x_2^2 + \frac{x_3^2}{2} = 1\\ \frac{x_1^2}{3} - x_2 = 0\\ \frac{x_2^2}{2} + x_3 = 1 \end{cases}$$

med startapproximationen $(x_1, x_2, x_3) = (0.5, 0.5, 0.5)$.
