Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра обчислювальної техніки

ЗВІТ ДО ЛАБОРАТОРНОЇ РОБОТИ №2 ПРОЕКТУВАННЯ ТА ДОСЛІДЖЕННЯ ПРИСТРОЇВ ДЛЯ МНОЖЕННЯ ЧИСЕЛ

Виконав:

студент групи IB-71

Мазан Я. В.

Залікова книжка № IB-7109

Перевірив:

Верба О. А.

Мета роботи: вивчити методи реалізації операції множення чисел в прямих кодах, одержати навики в дослідженні операційних пристроїв.

Теоретичні відомості:

При множенні чисел у прямих кодах знакові та основні розряди обробляються роздільно. Для визначення знака добутку здійснюють підсумовування за модулем 2 цифр, записаних в знакових розрядах співмножників. Будемо вважати, що множене Y і множник X — правильні двійкові дроби виду $X = x_1 x_2 ... x_n$, $Y = y_1 y_2 ... y_n$, де двійкові розряди x_i , $y_i \in \{0,1\}$. Тоді добуток Z модулів чисел дорівнює

$$Z = YX = Yx_1 2^{-1} + Yx_2 2^{-2} + \dots + Yx_i 2^{-i} + \dots + Yx_n 2^{-n}$$

Множення Y і X може бути реалізоване шляхом виконання циклічного процесу, характер якого залежить від конкретної форми виразу (2.1). Один цикл множення складається з додавання чергового часткового добутку, що представляє собою добуток множеного на одну цифру множника, до суми часткових добутків. Розрізняють чотири способи множення.

Перший спосіб множення

Отримані суми часткових добутків в i-му циклі ($i=\overline{1,n}$) зводиться до обчислення

$$Z_{i} = (Z_{i-1} + Yx_{n-i+1})2^{-1}$$

з початковими значеннями i=1, $Z_0=0$, причому $Z_n=Z=YX$.

Множення здійснюється з молодших розрядів множника, сума часткових добутків зсувається вправо, а множене залишається нерухомим.

Другий спосіб множення.

Процес множення може бути зведений до п-кратного виконання циклу

$$Z_i = Z_{i-1} + Y_i x_{n-i+1}, Y_i = 2Y_{i-1},$$

з початковими значеннями i=1, $Y_0=Y2^{-n}$, $Z_0=0$. Множення здійснюється з молодших розрядів, множене зсувається вліво, а сума часткових добутків залишається нерухомою.

Третій спосіб множення.

Суму часткових добутків у і-м циклі ($i=\overline{1,n}$) можна одержати за формулою

$$Z_i = 2Z_{i-1} + Y2^{-n}x_i$$

Початковими значеннями ϵ i=1, Z_0 =0. Множення здійснюється зі старших розрядів множника, сума часткових добутків зсувається вліво, а множене нерухоме.

Четвертий спосіб множення.

Процес множення може бути зведений до *п*-кратного виконання циклу

$$Z_i = Z_{i-1} + Y_{i-1}x_i, Y_i = Y_{i-1}2^{-1}$$

с початковими значеннями i=1, $Y_0=Y2^{-1}$, $Z_0=0$.

Множення виконується зі старших розрядів множника, сума часткових добутків залишається нерухомою, а множене зсувається вправо.

Принцип побудови пристроїв, що реалізують різні способи множення, показаний на рис. 2.1, де RG3 — регістр множеного, RG1 — регістр добутку, RG2 — регістр множника. Цифрами зазначені номери розрядів SM і регістрів, а стрілками показаний напрямок зсуву кодів у регістрах.

Рис. 2.1. Операційні схеми пристроїв для множення чисел: a — перший спосіб; δ — другий спосіб; ϵ — третій спосіб; ϵ — четвертий спосіб

Етапи побудови операційних пристроїв для множення чисел.

- 1. Вивчити алгоритм множення чисел заданим методом.
- 2. Побудувати операційну схему пристрою.
- 3. Розробити змістовний (функціональний) мікроалгоритм з використанням операторів присвоєння та зсуву.
- 4. Виконати логічне моделювання роботи пристрою за допомогою таблиці станів вузлів (регістрів, лічильника) у кожному такті. Перевірити правильність вибору розрядності вузлів на операційній схемі.
- 5. Побудувати функціональну схему з відображенням управляючих сигналів для всіх вузлів.
- 6. Розробити структурний мікроалгоритм.
- 7. Побудувати і відлагодити схему.

Хід роботи:

1. Номер залікової книжки - 7109 = 101111000101₂. $a_7 = 1$; $a_6 = 0$; $a_5 = 0$; $a_4 = 0$; $a_3 = 1$; $a_2 = 0$; $a_1 = 1$;

2	a 3	\mathbf{a}_2	a ₁	Спосіб множення, розрядність операндів	Значення додатних операндів		Повна операція	
	1	0	1	2-й, 6	,100001	,111010	-	F=XY

Результат множення:

$$F = 0.011101111010_2$$

2. Операційна схема для мого способу множення

3. Змістовний мікроалгоритм

4. Логічне моделювання за допомогою таблиці станів

Такт	Операція	RG3	RG2	RG1	STOP	Мікрооперації
0	ПС	000000100001	00111010	000000000000	0	RG3:=X,RG2:=Y, RG1:=0
1	SHIFT	000001000010	00011101	000000000000	0	RG3:=l(RG3).0, RG2:=0.r(RG2)
2	SUM	000001000010	00111010	000001000010	0	RG1:=0+RG3
3	SHIFT	000010000100	00001110	000001000010	0	RG3:=l(RG3).0, RG2:=0.r(RG2)
4	SHIFT	000100001000	00000111	000001000010	0	RG3:=l(RG3).0, RG2:=0.r(RG2)
5	SUM	000100001000	00000111	000101001010	0	RG1:=RG1+RG3
6	SHIFT	001000010000	00000011	000101001010	0	RG3:=l(RG3).0, RG2:=0.r(RG2)
7	SUM	001000010000	00000011	001101011010	0	RG1:=RG1+RG3
8	SHIFT	010000100000	00000001	001101011010	0	RG3:=l(RG3).0, RG2:=0.r(RG2)
9	SUM	010000100000	00000001	011101111010	0	RG1:=RG1+RG3
10	SHIFT	100001000000	00000000	011101111010	1	RG3:=l(RG3).0, RG2:=0.r(RG2)

5. Структурний мікроалгоритм

6. Функціональна схема

7. Схема в AFDK

8. Висновок

Під час виконання даної лабораторної роботи я освоїв навички побудови функціональних схем для множення двох двійкових чисел, зокрема досконало вивчив другий спосіб множення чисел.