Chapter 6

Limits of sequences

6.1 Convergence and limit laws

Definition 6.1.1 (Distance between two real numbers).

Given two real numbers x and y, we define their distance d(x,y) to be d(x,y) := |x-y|.

Definition 6.1.2 (ε -close real numbers).

Let $\varepsilon > 0$ be a real number. We say that two real numbers x, y are ε -close iff we have $d(y, x) \leq \varepsilon$.

Definition 6.1.3 (Cauchy sequences of reals).

Let $\varepsilon > 0$ be a real number. A sequence $(a_n)_{n=N}^{\infty}$ of real numbers starting at some integer index N is said to be ε -steady iff a_j and a_k are ε -close for every $j, k \geq N$. A sequence $(a_n)_{n=m}^{\infty}$ starting at some integer index m is said to be eventually ε -steady iff there exists an $N \geq m$ such that $(a_n)_{n=N}^{\infty}$ is ε -steady. We say that $(a_n)_{n=m}^{\infty}$ is a Cauchy sequence iff it is eventually ε -steady for every $\varepsilon > 0$.

Proposition 6.1.4.

Let $(a_n)_{n=m}^{\infty}$ be a sequence of rational numbers starting at some integer index m. Then $(a_n)_{n=m}^{\infty}$ is a Cauchy sequence in the sense of Definition 5.1.8 if and only if it is a Cauchy sequence in the sense of Definition 6.1.3.

Definition 6.1.5 (Convergence of sequences).

Let $\varepsilon > 0$ be a real number, and let L be a real number. A sequence $(a_n)_{n=N}^{\infty}$ of real numbers is said to be ε -close to L iff a_n is ε -close to L for every $n \geq N$, i.e., we have $|a_n - L| \leq \varepsilon$ for every $n \geq N$. We say that a sequence $(a_n)_{n=m}^{\infty}$ is eventually ε -close to L iff there exists an $N \geq m$ such that $(a_n)_{n=N}^{\infty}$ is ε -close to L. We say that a sequence $(a_n)_{n=m}^{\infty}$ converges to L iff it is eventually ε -close to L for every real $\varepsilon > 0$.

Proposition 6.1.7 (Uniqueness of limits).

Let $(a_n)_{n=m}^{\infty}$ be a real sequence starting at some integer index m, and let L = L' be two distinct real numbers. Then it is not possible for $(a_n)_{n=m}^{\infty}$ to converge to L while also converging to L'.

Definition 6.1.8 (Limits of sequences).

If a sequence $(a_n)_{n=m}^{\infty}$ converges to some real number L, we say that $(a_n)_{n=m}^{\infty}$ is convergent and that its limit is L; we write

$$L = \lim_{n \to \infty} a_n$$

to denote this fact. If a sequence $(a_n)_{n=m}^{\infty}$ is not converging to any real number L, we say that the sequence $(a_n)_{n=m}^{\infty}$ is divergent and we leave $\lim_{n\to\infty} a_n$ undefined.

Proposition 6.1.11.

We have $\lim_{n\to\infty} 1/n = 0$.

Proposition 6.1.12 (Convergent sequences are Cauchy).

Suppose that $(a_n)_{n=m}^{\infty}$ is a convergent sequence of real numbers. Then $(a_n)_{n=m}^{\infty}$ is also a Cauchy sequence.

Proposition 6.1.15 (Formal limits are genuine limits).

Suppose that $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence of rational numbers. Then $(a_n)_{n=1}^{\infty}$ converges to $LIM_{n\to\infty}a_n$, i.e.,

$$LIM_{n\to\infty}a_n = \lim_{n\to\infty}a_n.$$

Definition 6.1.16 (Bounded sequences).

A sequence $(a_n)_{n=m}^{\infty}$ of real numbers is bounded by a real number M iff we have $|a_n| \leq M$ for all $n \geq m$. We say that $(a_n)_{n=m}^{\infty}$ is bounded iff it is bounded by M for some real number M > 0.

Corollary 6.1.17.

Every convergent sequence of real numbers is bounded.

Theorem 6.1.19 (Limit Laws).

Let $(a_n)_{n=m}^{\infty}$ and $(b_n)_{n=m}^{\infty}$ be convergent sequences of real numbers, and let x, y be the real numbers $x := \lim_{n \to \infty} a_n$ and $y := \lim_{n \to \infty} b_n$.

(a) The sequence $(a_n + b_n)_{n=m}^{\infty}$ converges to x + y; in other words,

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n.$$

(b) The sequence $(a_n b_n)_{n=m}^{\infty}$ converges to xy; in other words,

$$\lim_{n \to \infty} (a_n b_n) = (\lim_{n \to \infty} a_n) (\lim_{n \to \infty} b_n).$$

(c) For any real number c, the sequence $(ca_n)_{n=m}^{\infty}$ converges to cx; in other words,

$$\lim_{n \to \infty} (ca_n) = c \lim_{n \to \infty} a_n.$$

(d) The sequence $(a_n - b_n)_{n=m}^{\infty}$ converges to x - y; in other words,

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n.$$

(e) Suppose that $y \neq 0$, and that $b_n \neq 0$ for all $n \geq m$. Then the sequence $(b_n^{-1})_{n=m}^{\infty}$ converges to y^{-1} ; in other words,

$$\lim_{n \to \infty} b_n^{-1} = \left(\lim_{n \to \infty} b_n\right)^{-1}.$$

(f) Suppose that $y \neq 0$, and that $b_n \neq 0$ for all $n \geq m$. Then the sequence $(a_n/b_n)_{n=m}^{\infty}$ converges to x/y; in other words,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$$

(g) The sequence $(\max(a_n, b_n))_{n=m}^{\infty}$ converges to $\max(x, y)$; in other words,

$$\lim_{n \to \infty} \max(a_n, b_n) = \max(\lim_{n \to \infty} a_n, \lim_{n \to \infty} b_n).$$

(h) The sequence $(\min(a_n, b_n))_{n=m}^{\infty}$ converges to $\min(x, y)$; in other words,

$$\lim_{n\to\infty} \min(a_n, b_n) = \min(\lim_{n\to\infty} a_n, \lim_{n\to\infty} b_n).$$

Exercise 6.1.1.

Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers, such that $a_{n+1} > a_n$ for each natural number n. Prove that whenever n and m are natural numbers such that m > n, then we have $a_m > a_n$.

Proof. Induct on p to show that $a_{n+p} > a_n$ for all positive integers p. When p = 1, as stated in the problem, we have $a_{n+p} = a_{n+1} > a_n$. Suppose inductively $a_{n+p} > a_n$ for positive integer p. Then $a_{n+p+1} > a_{n+p} > a_n$. This closes the induction. Since m > n, m - n is a positive integer. Therefore, $a_{n+(m-n)} = a_m > a_n$.

Exercise 6.1.2.

Let $(a_n)_{n=m}^{\infty}$ be a sequence of real numbers, and let L be a real number. Show that $(a_n)_{n=m}^{\infty}$ converges to L if and only if, given any real $\varepsilon > 0$, one can find an $N \ge m$ such that $|a_n - L| \le \varepsilon$ for all $n \ge N$.

Proof. Suppose $(a_n)_{n=m}^{\infty}$ converges to L. By definition, $(a_n)_{n=m}^{\infty}$ is eventually ε -close to L for every real $\varepsilon > 0$. Therefore, for any real $\varepsilon > 0$, there exists $N \geq m$ such that $|a_n - L| \leq \varepsilon$ for all $n \geq N$.

Suppose given any real $\varepsilon > 0$, one can find an $N \geq m$ such that $|a_n - L| \leq \varepsilon$ for all $n \geq N$. Then any real $\varepsilon > 0$, there exists an $N \geq m$ such that $(a_n)_{n=m}^{\infty}$ is eventually ε -close to L. Therefore, by definition, $(a_n)_{n=m}^{\infty}$ converges to L.

Exercise 6.1.3.

Let $(a_n)_{n=m}^{\infty}$ be sequence of real numbers, let c be a real number, and let $m' \geq m$ be an integer. Show that $(a_n)_{n=m}^{\infty}$ converges to c if and only if $(a_n)_{n=m'}^{\infty}$ converges to c.

Proof. Suppose $(a_n)_{n=m}^{\infty}$ converges to c. Then for any arbitrary $\varepsilon > 0$, there exists $N_{\varepsilon} \geq m$ such that $|a_n - c| \leq \varepsilon$. So for any arbitrary $\varepsilon > 0$, we can find $M_{\varepsilon} = \max(N_{\varepsilon}, m')$ such that $|a_n - c| \leq \varepsilon$ for all $n \geq M_{\varepsilon} \geq m'$. Therefore, $(a_n)_{n=m}^{\infty}$ converges to c.

Suppose $(a_n)_{n=m'}^{\infty}$ converges to c. For any arbitrary $\varepsilon > 0$, there exists $N_{\varepsilon} \geq m'$ such that $|a_n - c| \leq \varepsilon$ for all $n \geq N_{\varepsilon}$, since $m' \geq m$, we have $N_{\varepsilon} \geq m$. Therefore, for any arbitrary $\varepsilon > 0$, we can find $N_{\varepsilon} \geq m$ such that $|a_n - c| \leq \varepsilon$ for all $n \geq N_{\varepsilon}$.

Thus,
$$(a_n)_{n=m}^{\infty}$$
 converges to $c \iff (a_n)_{n=m}^{\infty}$ converges to c .

Exercise 6.1.4.

Let $(a_n)_{n=m}^{\infty}$ be a sequence of real numbers, let c be a real number, and let $k \geq 0$ be a non-negative integer. Show that $(a_n)_{n=m}^{\infty}$ converges to c if and only if $(a_{n+k})_{n=m}^{\infty}$ converges to c.

Proof. We can rewrite $(a_{n+k})_{n=m}^{\infty} = (a_n)_{m+k}^{\infty}$ since both of them are equal to the infinite sequence $a_{m+k}, a_{m+k+1}, \ldots$ Since $k \geq 0, m+k \geq m$. Therefore, by Exercise 6.1.4, we have $(a_n)_{n=m}^{\infty}$ converges to c if and only if $(a_n)_{m+k}^{\infty} = (a_{n+k})_{n=m}^{\infty}$ converges to c.

Exercise 6.1.5.

Prove proposition 6.1.12.

Proof. Suppose $\lim_{n\to\infty} (a_n)_{n=m}^{\infty} = L$. By definition, for all real $\varepsilon/2 > 0$, there exists $N_{\varepsilon} \geq m$ such that $|a_i - L| \leq \varepsilon/2$ and $|a_j - L| = |L - a_j| \leq \varepsilon/2$ for all $i, j \geq N_{\varepsilon}$. Then for all real $\varepsilon > 0$, let $N = N_{\varepsilon} \geq m$, we have $|a_i - a_j| \leq |a_i - L| + |L - a_j| \leq \varepsilon/2 + \varepsilon/2 = \varepsilon$ for all $n, m \geq N$. Therefore, $(a_n)_{n=m}^{\infty}$ is a Cauchy sequence.

Exercise 6.1.6.

Prove Proposition 6.1.15.

Proof. Write $L := \text{LIM}_{n \to \infty} a_n$. We want to show that $L = \lim_{n \to \infty} a_n$. Suppose L and $(a_n)_{n=m}^{\infty}$ are not eventually ε -close. Consider an arbitrary $\varepsilon/2 > 0$, since $(a_n)_{n=m}^{\infty}$ is Cauchy, there exists $N \ge m$ such that $|a_i - a_j| \le \varepsilon/2$ for all $i, j \ge N$. For this N, since L and $(a_n)_{n=m}^{\infty}$ are not eventually ε -close, there exists $i \ge N$ such that $|a_i - L| > \varepsilon$. And since this $i \ge N$, we have $|a_i - a_j| \le \varepsilon/2$ for all $j \ge i$. Since $|a_i - L| > \varepsilon$, we have

$$a_i > L + \varepsilon$$
 or $a_i < L - \varepsilon$.

If $a_i > L + \varepsilon$, since $|a_i - a_j| \le \varepsilon/2 \implies a_i - \varepsilon/2 \le a_j \le a_i + \varepsilon/2$, we have $L + \varepsilon/2 < a_i - \varepsilon/2 \le a_j$. If $a_i < L - \varepsilon$, since $a_i - \varepsilon/2 \le a_j \le a_i + \varepsilon/2$, we have $a_j \le a_i + \varepsilon/2 < L - \varepsilon/2$. Therefore, we either have $a_j < L - \varepsilon/2$ or $a_j > L + \varepsilon/2$ for all $j \ge i$.

If $a_j < L - \varepsilon/2$ for all $j \ge i$, by Exericse 5.4.8, we have $\text{LIM}_{n \to \infty} a_n \le L - \varepsilon/2 < L$. If $a_j > L + \varepsilon/2$ for all $j \ge i$, by Exericse 5.4.8, we have $\text{LIM}_{n \to \infty} a_n \ge L + \varepsilon/2 > L$. Then we have either $\text{LIM}_{n \to \infty} a_n > L$ or $\text{LIM}_{n \to \infty} a_n < L$, and it contradicts the fact that $\text{LIM}_{n \to \infty} a_n = L$. Thus, L and $(a_n)_{n=m}^{\infty}$ are eventually ε -close, hence $L = \lim_{n \to \infty} a_n$.

Exercise 6.1.7.

Show that Definition 6.1.16 is consistent with Definition 5.1.12.

Proof. We would like to show that if $(a_n)_{n=1}^{\infty}$ is bounded by M then $(a_n)_{n=m}^{\infty}$ is bounded by M. If $(a_n)_{n=1}^{\infty}$ is bounded by M, by Definition 5.1.12, $|a_i| \leq M$ for all $i \geq 1$. Then for all $i \geq m \geq 1$, we have $|a_i| \leq M$. Therefore, $(a_n)_{n=m}^{\infty}$ is bounded by M.

Exercise 6.1.8.

Prove Theorem 6.1.19.

- (a) Proof. Consider an arbitrary $\varepsilon > 0$. Since $(a_n)_{n=m}^{\infty}$ converges to x, there exists $N_1 \geq m$ such that $|a_n x| \leq \varepsilon/2$ for all $n \geq N_1$. Since $(b_n)_{n=m}^{\infty}$ converges to x, there exists $N_2 \geq m$ such that $|b_n x| \leq \varepsilon/2$ for all $n \geq N_2$. Let $N = \max(N_1, N_2)$, we have $|(a_n + b_n) (x + y)| = |(a_n x) + (b_n y)| \leq |a_n x| + |b_n y| \leq \varepsilon/2 + \varepsilon/2 = \varepsilon$ for all $n \geq N$. Therefore, $\lim_{a_n + b_n} = x + y$. \square
- (b) Proof. Consider an arbitrary $\varepsilon > 0$. Since $(a_n)_{n=m}^{\infty}$ converges to x, $(a_n)_{n=m}^{\infty}$ is bounded by a positive number M_1 . There exists $N_1 \geq m$ such that $|a_n x| \leq \varepsilon/2M_1$ for all $n \geq N_1$. We can easily know that there exists a positive number M_2 such that $M_2 \geq |x|$. Since $(b_n)_{n=m}^{\infty}$ converges to y, there exists N_2 such that $|b_n y| \leq \varepsilon/2M_2$ for all $n \geq N_2$. Let $N = \max(N_1, N_2)$, then

$$|a_n b_n - xy| = |a_n b_n - x b_n + x b_n - xy|$$

$$\leq |b_n| \cdot |a_n - x| + |x| \cdot |b_n - y|$$

$$\leq M_1 \cdot \frac{\varepsilon}{2M_1} + M_2 \cdot \frac{\varepsilon}{2M_2}$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Therefore, $\lim_{n\to\infty} (a_n b_n) = (\lim_{n\to\infty} a_n)(\lim_{n\to\infty} b_n).$

- (c) Proof. Let $(b_n)_{n=m}^{\infty} = c, c, c, \ldots$, by (b), we have $\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} (ca_n) = c \lim_{n \to \infty} (a_n)$.
- (d) Proof. By (c), $\lim_{n\to\infty} (-b_n) = -\lim_{n\to\infty} b_n$. By (a), we have $\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} (a_n + (-b_n)) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} (-b_n) = \lim_{n\to\infty} a_n \lim_{n\to\infty} (b_n) = x y$.
- (e) Proof. Since $(b_n)_{n=m}^{\infty}$ converges to y, there exists $N \geq m$ such that $|b_n y| \leq |y|/2$ for all $n \geq N$. Then $y |y|/2 \leq b_n \leq y + |y|/2$. If y < 0, $b_n \leq y + |y|/2 = y y/2 = y/2 = -|y|/2$. If y > 0, $b_n \geq y y/2 = |y|/2$. Therefore, $|b_n| \geq |y|/2$ for $n \geq N$. Let $c = \min(|b_m|, \ldots, |b_{N-1}|, |y|/2)$, we have $|b_i| \leq c$ for all $i \geq m$. So $(b_n)_{n=m}^{\infty}$ is a Cauchy sequence bounded away from zero, hence $(b_n^{-1})_{n=m}^{\infty}$ is also a Cauchy sequence.

Consider an arbitrary $\varepsilon > 0$. Since $|b_n| \ge c$ for all $n \ge m$, we have $1/|b_n| \le 1/c$ for all $n \ge m$. Since $(b_n)_{n=m}^{\infty}$ converges to y, there exists $N \ge m$ such that $|b_n - y| \le c|y|\varepsilon$. Then

$$\left| \frac{1}{b_n} - \frac{1}{y} \right| = \left| \frac{b_n - y}{b_n \cdot y} \right|$$

$$= \frac{1}{|b_n|} \cdot \frac{1}{|y|} \cdot |b_n - y|$$

$$\leq \frac{1}{c} \cdot \frac{1}{|y|} \cdot c|y|\varepsilon$$

$$= \varepsilon.$$

Thus, $(b_n^{-1})_{n=m}^{\infty}$ converges to 1/y.

(f) Proof. By (b), $\lim_{n\to\infty} \frac{a_n}{b_n} = (\lim_{n\to\infty} a_n)(\lim_{n\to\infty} \frac{1}{b_n})$. By (e), $\lim_{n\to\infty} \frac{1}{b_n} = 1/y$. Therefore, $\lim_{n\to\infty} \frac{a_n}{b_n} = x \cdot \frac{1}{y} = \frac{x}{y}$.

(g) Proof. Suppose $x \geq y$. Consider an arbitrary $\varepsilon > 0$. Since $(a_n)_{n=m}^{\infty}$ converges to x, there exists N_1 such that $|a_n - x| \leq (x - y)/2$ for $n \geq N_1$. Then $-(x - y)/2 \leq a_n - x \leq (x - y)/2$, hence $a_n \geq (x + y)/2$. Since $(b_n)_{n=m}^{\infty}$ converges to y, there exists N_2 such that $|b_n - y| \leq (x - y)/2$ for $n \geq N_2$. Then $b_n \leq (x + y)/2$. Let $N = \max(N_1, N_2)$, we have $a_n \geq (x + y)/2 \geq b_n$ for all $n \geq N$. So when $n \geq N$, $\max(a_n, b_n) = a_n$. Since $(a_n)_{n=m}^{\infty}$ converges to x, there exists $M_1 \geq m$ such that $|a_n - x| \leq \varepsilon$. Let $M = \max(N, M_1)$, we have $|\max(a_n, b_n) - \max(x, y)| = |a_n - x| \leq \varepsilon$ for all $n \geq M$.

Similarly, we can show that if y > x, there exists $M \ge m$ such that $|\max(a_n, b_n) - \max(x, y)| = |b_n - y| \le \varepsilon$ for all $n \ge M$. Thus, $(\max(a_n, b_n))_{n=m}^{\infty}$ converges to $\max(x, y)$.

(h) *Proof.* By (b) and (g), we have

$$\lim_{n \to \infty} \min(a_n, b_n) = -\lim_{n \to \infty} \max(-a_n, -b_n)$$

$$= -\max(\lim_{n \to \infty} (-a_n), \lim_{n \to \infty} (-b_n))$$

$$= -\max(-\lim_{n \to \infty} (a_n), -\lim_{n \to \infty} (b_n))$$

$$= \min(\lim_{n \to \infty} a_n, \lim_{n \to \infty} b_n).$$

Exercise 6.1.9.

Explain why Theorem 6.1.19 (f) fails when the limit of the denominator is 0.

Proof. 0 does not have a reciprocal. A counterexample is $a_n = 1$, $b_n = 1/n$. Then $(a_n/b_n)_{n=m}^{\infty} = (n)_{n=m}^{\infty}$ is not convergent and hence does not have a limit.

Exercise 6.1.10.

Show that the concept of equivalent Cauchy sequence, as defined in Definition 5.2.6, does not change if ε is required to be positive real instead of positive rational.

Proof. For all real $\varepsilon > 0$, suppose $(a_n)_{n=m}^{\infty}$ and $(b_n)_{n=m}^{\infty}$ are eventually ε -close. Since ε is also a rational number, we have $(a_n)_{n=m}^{\infty}$ and $(b_n)_{n=m}^{\infty}$ are eventually ε -close for every rational $\varepsilon > 0$. Suppose $(a_n)_{n=m}^{\infty}$ and $(b_n)_{n=m}^{\infty}$ are eventually ε -close for every rational $\varepsilon > 0$. Consider an arbitrary real $\varepsilon > 0$. Since there exists a rational number such that $0 < \varepsilon' < \varepsilon$. Since $(a_n)_{n=m}^{\infty}$ and $(b_n)_{n=m}^{\infty}$ are eventually ε' -close, there exists $N \ge m$ such that $|a_n - b_n| \le \varepsilon' < \varepsilon$ for all $n \ge N$. Therefore, $(a_n)_{n=m}^{\infty}$ and $(b_n)_{n=m}^{\infty}$ are eventually ε -close for all real $\varepsilon > 0$.

6.2 The Extended real number system

Definition 6.2.1 (Extended real number system).

The extended real number system \mathbf{R}^* is the real line \mathbf{R} with two additional elements attached, called $+\infty$ and $-\infty$. These elements are distinct from each other and also

distinct from every real number. An extended real number x is called finited iff it is a real number, and infinite iff it is equal to $+\infty$ and $-\infty$.

Definition 6.2.2 (Negation of extended reals).

The operation of negation $x \mapsto -x$ on \mathbf{R} , we now extend to \mathbf{R}^* by defining $-(+\infty) := -\infty$ and $-(-\infty) := +\infty$.

Definition 6.2.3 (Ordering of extended reals).

Let x and y be extended real numbers. We say that $x \ge y$, i.e., x is less than or equal to y, iff one of the following three statements is true:

- (a) x and y are real numbers, and $x \ge y$ as real numbers.
- (b) $y = +\infty$.
- (c) $x = -\infty$.

We say that x < y if we have $x \le y$ and $x \ne y$. We sometimes write x < y as y > x, and $x \le y$ as $y \ge x$.

Proposition 6.2.5.

Let x, y, z be extended real numbers. Then the following statements are true:

- (a) (Reflexivity) We have $x \leq x$.
- (b) (Trichotomy) Exactly one of the statements x < y, x = y, or x > y is true.
- (c) (Transitivity) If $x \leq y$ and $y \leq z$, then $x \leq z$.
- (d) (Negation reverses order) If $x \leq y$, then $-y \leq -x$.

Definition 6.2.6 (Supremum of sets of extended reals).

Let E be a subset of \mathbb{R}^* . Then we define the supremum $\sup(E)$ or least upper bound of E by the following rule.

- (a) If E is contained in **R** (i.e., $+\infty$ and $-\infty$ are not elements of E), then we let $\sup(E)$ be as defined in Definition 5.5.10.
- (b) If E contains $+\infty$, then we set $\sup(E) := +\infty$.
- (c) If E does not contain $+\infty$ but does contain $-\infty$, then we set $\sup(E) := \sup(E \setminus \{-\infty\})$ (which is a subset of \mathbf{R} and thus falls under case (a)).

We also define the infimum $\inf(E)$ of E (also known as the greatest lower bound of E) by the formula

$$\inf(E) := -\sup(-E)$$

where -E is the set $-E := \{-x : x \in E\}$.

Theorem 6.2.11.

Let E be a subset of \mathbb{R}^* . Then the following statements are true.

- (a) For every $x \in E$ we have $x \leq \sup(E)$ and $x \geq \inf(E)$.
- (b) Suppose that $M \in \mathbf{R}^*$ is an upper bound for E, i.e., $x \leq M$ for all $x \in E$. Then we have $\sup(E) \leq M$.
- (c) Suppose that $M \in \mathbf{R}^*$ is a lower bound for E, i.e., $x \geq M$ for all $x \in E$. Then we have $\inf(E) \geq M$.

Exercise 6.2.1.

Prove Proposition 6.2.5.

(a) *Proof.* If x is a real number, since x = x, we have $x \le x$. If $x = +\infty$, by Definition 6.2.3, we have $x \le x$. If $x = -\infty$, by Definition 6.2.3, we have $x \le x$. Therefore, $x \le x$ for extended real x.

(b) Proof. x and y are both real numbers. By Proposition 5.4.7, the statement is true.

 $x=+\infty, y=+\infty$. By Definition 6.2.3, we have $x\leq y$. Since $x=y, x\not< y$ and $y\not< x$. Similarly, we can show that if $x=-\infty$ and $y=-\infty$, we have x=y but $x\not< y$ and $y\not< x$.

 $x=+\infty,\ y=-\infty.$ Since $x=+\infty$, by Definition 6.2.3, we have $y\leq x.$ As $x\neq y.\ y< x.$ Since $y\neq +\infty$ and $x\neq -\infty,\ x\neq y$ does not hold. Thus, $x\not< y.$ x is real $(x=+\infty),\ y=+\infty$ (y is real). Since $y=+\infty$, by Definition 6.2.3, $x\leq y.$ Since $x\neq +\infty,\ x\neq and$ hence x< y. Also by Definition 6.2.3, $y\leq x$ does not hold, hence $y\not< x.$ The cases of $x=-\infty$ (x is real), y is real $(y=-\infty)$ can be shown in a similar way.

(c) Proof. x, y, z are real. Can be derived from the transitivity of real numbers.

```
x = -\infty. By Definition 6.2.3, x \le z.
```

 $y=-\infty$. By Definition 6.2.3, we have $x=-\infty$, hence $x\leq z$.

 $z=-\infty$. By Definition 6.2.3, $y=-\infty$. Since $x\leq y,\ x=-\infty$. Hence, $x\leq z$.

 $x=+\infty$. Since $x\leq y$, by Definition 6.2.3, we have $y=+\infty$. Since $y\leq z$, by Definition 6.2.3, we have $z=+\infty$. Hence, $x\leq z$.

 $y=+\infty$. Since $y\leq z$, by Definition 6.2.3, we have $z=+\infty$. Hence, $x\leq z$.

$$z = +\infty$$
. By Definition 6.2.3, $x \le z$.

(d) Proof. x, y are real. Since $x \le y, y - x \ge 0$. Then $-y - (-x) \le 0$. Therefore, $-y \le -x$.

 $y = +\infty$. Then $-y = -\infty$, by Definition 6.2.3, $-y \le -x$.

$$x = -\infty$$
. Then $-x = +\infty$, by Definition 6.2.3, $-y \le -x$.

Exercise 6.2.2.

Prove Theorem 6.2.11.

(a) *Proof.* $E \subseteq \mathbf{R}$. By the definition of supremum, infimum, and the least upper bound, we have $x \leq \sup(E)$ and $x \geq \inf(E)$.

 $+\infty \in E$, $-\infty \notin E$. By Definition 6.2.6, $\sup(E) = +\infty$, and by Definition 6.2.3, $x \leq \sup(E)$. In this case, $\inf(E) = \inf(E \setminus \{+\infty\})$. For all $x \neq +\infty$, it

follows the case we have proved above $(E \subseteq \mathbf{R})$. For $x = +\infty$, by Definition 6.2.3, $x \ge \inf(E)$.

 $-\infty \in E$, $+\infty \in E$. Similar to the case above.

M.

$$+\infty \in E$$
, $-\infty \in E$. Since $+\infty \in E$, $x \leq \sup(E) = +\infty$. In this case, $\inf(E) = -\infty$. By Definition 6.2.3, $x \geq \inf(E)$.

- (b) Proof. $E \subseteq \mathbf{R}$. We have $x \leq \sup(E) \leq M$. $+\infty \in E$. Since $+\infty \leq M$, $M = +\infty$. By Definition 6.2.3, $\sup(E) \leq M = +\infty$. $-\infty \in E$, $+\infty \notin E$. $\sup(E) = \sup(E \setminus \{-\infty\})$, then $\sup(E) = \sup(E \setminus \{-\infty\}) \leq \max(E \setminus \{-\infty\})$
- (c) Proof. For all $x \in E$, $M \le x$. Then $-M \ge -x$ for all $-x \in -E$, so $-M \ge \sup(-E)$. Therefore, $M \le -\sup(-E) = \inf(-E)$.