

planetmath.org

Math for the people, by the people.

PID and UFD are equivalent in a Dedekind domain

 ${\bf Canonical\ name} \quad {\bf PIDAndUFDAre Equivalent In ADedekind Domain}$

Date of creation 2013-03-22 17:53:45 Last modified on 2013-03-22 17:53:45

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 7

Author rm50 (10146)
Entry type Theorem
Classification msc 16D25
Classification msc 13G05
Classification msc 13A15
Classification msc 11N80

This article shows that if A is a Dedekind domain, then A is a UFD if and only if it is a PID. Note that this result implies the more specific result given in the article unique factorization and ideals in ring of integers.

Since any PID is a UFD, we need only prove the other direction. So assume A is a UFD, let \mathfrak{p} be a nonzero (proper) prime ideal, and choose $0 \neq x \in \mathfrak{p}$. Note that x is a nonunit since \mathfrak{p} is a proper ideal. Since A is a UFD, we may write x uniquely (up to units) as $x = p_1^{a_1} \cdots p_k^{a_k}$ where the p_i are distinct irreducibles in A, the a_i are positive integers, and k > 0 since x is not a unit. Since \mathfrak{p} is prime and $x \in \mathfrak{p}$, it follows that some p_i , say p_i , is in \mathfrak{p} . Then $(p_1) \subset \mathfrak{p}$. But (p_1) is prime since clearly in a UFD any ideal generated by an irreducible is prime. Since A is Dedekind and thus has Krull dimension 1, it must be that $(p_1) = \mathfrak{p}$ and thus \mathfrak{p} is principal.