

- NeCOL -Neural CO-evolutionary Learning

UNA-MAY O'REILLY UNAMAY@CSAIL.MIT.EDU

JAMAL TOUTOUH

TOUTOUH@MIT.EDU

JAMAL@LCC.UMA.ES

Smart Cities & Cybersecurity

More than half of the world's population lives in urban areas → From Cities to **Smart Cities**

Improve economic, social, and environmental sustainability

- Takes the advantage of IoT and Big Data
- Smart Services based on ML/DL models

Cybersecurity threats

Adversarial attacks to the models

"Smart cities are going to be a **security nightmare**..."
The Harvard Business Review

NeCOL

Neural CO-evolutionary Learning

- Competitive performance
- Robustness
- Multi-level optimization
- Scalable and easy to parallelize

RNN Deep Neuroevolution for Smart Cities

Evolving an RNN (architecture) to model a predictor of the waste generation

The quality or fitness of the evolved RNNs is evaluated according to the **mean absolute error (MAE)**

Waste Generation Prediction Under Uncertainty in Smart Cities through Deep Neuroevolution, Revista Facultad de Ingeniería

ML/DL Cybersecurity

Cybersecurity presents continuous arms races

Attackers vs defenders -> conflicting objectives

Main challenges of applying ML/DL to cybersecurity:

- Data scarcity
- Data imbalance

Generative models can address these issues

Detectors not modelled for unseen data

Generative Adversarial Networks

GANs create **generative** and **discriminative** models

Minmax optimization

Expected Result

GANs, Coev, and Biological Arms Races

Nature presents continuous biological arms races between individuals of different species

Can coevolution help to improve robustness in other adversarial settings?

- Multiple comparisons can aid robustness
- Multiple variations based on quality measurements improve diversity

Adversarial Genetic Programming for Cyber Security: A Rising Application Domain Where GP Matters, under review

Mustangs: Gradient-based Coevolution

A distributed, coevolutionary framework to train GANs with gradient-based optimizers

https://github.com/mustang-gan/mustang

Mustangs: Gradient-based Coevolution

12,00
10,00
10,00
10,00
2,00
2,00
0,00
1 4 16 25 36

Accurate generators

Scalable

Diversity

Escape from mode collapse

- Improves convergence
- Diverse solutions
- Robustness
- Scalability

Spatial Evolutionary Generative Adversarial Networks, GECCO 2019
Spatial Coevolution for Robust Scalable Generative Adversarial
Network Training, work in progress

JAMAL TOUTOUH

Future Work

Mustangs for Cybersecurity

- Generating more malicious data to allow to train stronger detectors
- Generating malicious data which can deceive and evade the detection
- Generating adversarial examples to fool ML models

The more diversity, the better performance?

- Probabilistic GANs approaches
- More theory (minmax optimization, game theory)

Using spatial co-evolution for other generative approaches

Variational autoencoder

 Cooperative (Encoder-Decoder)

Thanks!

Comments?

NECOL WEBSITE NECOL.NET

JAMAL TOUTOUH TOUTOUH@MIT.EDU