

ID5055: Foundations of Machine Learning

Faculty: B. Ravindran (CS) and Nirav Bhatt (BT)

Objective

The objective of this course is to introduce fundamentals of machine learning techniques and their applications in different problems

Core Course

IDDD-DS, IDDD- QuanFin, IITM-UoB MSc, I2MP DS Students

Prerequisite

Basics of Linear Algebra, Probability, and Statistics

Credits: 12

Lectures: 3 (50 minutes), Tutorial: 1 (50 minutes), Self-study: 8 (50 hours)

Lectures (G Slot)

Monday: 12-12:50, Wednesday: 17-17:50, Thursday: 10-10:50, Friday: 9-9:50

Grading Policy

(To be announced)

- Modules: 5
 - Module 1: Unsupervised Learning
 - Module 2:Supervised Learning and Regression
 - Module 3:Binary Classification
 - Module 4:Advanced Methods for classification
 - Module 5:Sequential Decision Making

- Module 1: Unsupervised Learning
 - Representation Learning PCA
 - Estimation Review of MLE, Bayesian estimation
 - Clustering K-Means, Hierarchical Clustering, Spectral Clustering
- Module 2: Supervised Learning
 - Functional Approximations and regression
 - Regression
 - Linear Regression, Ordinary Least Squares, PCR
 - Non-linear regression (basis functions)
 - Ridge Regression, LASSO

- Module 3: Binary Classification
 - K-Nearest Neighbors
 - Decision Trees, CART
 - Bias-Variance Dichotomy, Model Validation: Cross validation
 - Bayesian Decision Theory
 - Generative vs Discriminative Modeling for classification
 - Generative
 - Naive Bayes, Gaussian Discriminant Analysis
 - Hidden Markov Model
 - Discriminative
 - Logistic Regression

- Module 4: Advanced Methods for Classification
 - Support Vector Machines Kernels
 - Ensemble Methods:
 - Bagging Random Forest
 - Boosting Adaboost/GBDT/XgBoost
 - Artificial Neural Networks
 - Multi-Class Classification one vs all, one vs one
- Module 5: Sequential Decision Making:
 - Online learning,
 - Bandit Problem,
 - Reinforcement Learning

Text book:

- Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009).
 The elements of statistical learning: data mining, inference, and prediction. New York: Springer.
- Bishop C. M. & Nasrabadi. N. M. (2006). Pattern Recognition and Machine Learning, New York: Springer.

Reference Materials

- Duda, R. O. & Hart, P. E. (2006). Pattern Classification. John Wiley & Sons.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer.
- Notes and scientific papers