Laboratorio 3 - Temario B - LCD

Utilizando el microcontrolador PIC16F887 con el compilador XC8

Parte 1

Implemente una rutina la cual obtenga a partir de dos potenciómetros el valor de voltaje de cada uno simulando dos sensores analógicos y lo despliegue en la LCD como se muestra en la figura del circuito. **Deberá utilizar su librería de ADC y su librería de 8 bits para inicializar la LCD.**

Parte 2

Implemente la comunicación USART con la computadora para poder enviar y recibir datos. Desde el microcontrolador tendrá que enviar el resultado de los dos potenciómetros. **Deberá utilizar su librería para la comunicación USART.**

Parte 3

Desde consola deberá poder incrementar un contador en el microcontrolador enviando los caracteres "+" y "-" respectivamente para incrementar o decrementar. Tendrá que desplegar el valor del contador en la LCD como sensor 3.

Figura 1. Circuito

Lista de pines

FUNCTION	PIN NUMBER	NAME	LOGIC STATE	DESCRIPTION			
Ground	1	Vss	-	0V			
Power supply	2	Vdd	-	+5V			
Contrast	3	Vee	-	0 - Vdd			
	4	RS	0 1	D0 - D7 are interpreted as commands D0 - D7 are interpreted as data			
Control of operating	5	R/W	0 1	Write data (from controller to LCD) Read data (from LCD to controller)			
	6	Е	0 1 From 1 to 0	Access to LCD disabled Normal operating Data/commands are transferred to LCD			
	7	D0	0/1	Bit 0 LSB			
Data / commands	8	D1	0/1	Bit 1			
	9	D2	0/1	Bit 2			
	10	D3	0/1	Bit 3			
	11	D4	0/1	Bit 4			
	12	D5	0/1	Bit 5			
	13	D6	0/1	Bit 6			
	14	D7	0/1	Bit 7 MSB			

Lista de commandos

COMMAND	RS	RW	D7	D 6	D 5	D4	D3	D2	D1	D 0	EXECUTION TIME
Clear display	0	0	0	0	0	0	0	0	0	1	1.64mS
Cursor home	0	0	0	0	0	0	0	0	1	×	1.64mS
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	40uS
Display on/off control	0	0	0	0	0	0	1	D	U	В	40uS
Cursor/Display Shift	0	0	0	0	0	1	D/C	R/L	×	×	40uS
Function set	0	0	0	0	1	DL	N	F	×	×	40uS
Set CGRAM address	0	0	0	1 CGRAM address					40uS		
Set DDRAM address	0	0	1	DDRAM address					40uS		
Read "BUSY" flag (BF)	0	1	BF	DDRAM address					-		
Write to CGRAM or DDRAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	40uS
Read from CGRAM or DDRAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	40uS

I/D 1 = Increment (by 1) 0 = Decrement (by 1)	
S 1 = Display shift on	DL 1 = 8-bit interface
0 = Display shift off	0 = 4-bit interface
D 1 = Display on	N 1 = Display in two lines
O = Display off	0 = Display in one line
U 1 = Cursor on	F 1 = Character format 5x10 dots
O = Cursor off	0 = Character format 5x7 dots
B 1 = Cursor blink on	D/C 1 = Display shift
0 = Cursor blink off	0 = Cursor shift

Figura 3. Interconexión de la computadora con el microcontrolador

Figura 4. Código de Arduino para implementar FTDI con Arduino

```
MultiSerial Arduino 1.8.10
Archivo Editar Programa Herramientas Ayuda
  MultiSerial
  This example works only with boards with more t
  - any serial device attached to Serial port 1
  - Serial Monitor open on Serial port 0
  created 30 Dec 2008
  modified 20 May 2012
  by Tom Igoe & Jed Roach
  modified 27 Nov 2015
  by Arturo Guadalupi
  This example code is in the public domain.
                                         Configurar al baudrate que se
void setup() {
                                          programó el microcontrolador
  // initialize both serial ports:
  Serial.begin (9600);
                           Borrar línea
  Serial1.begin(9600);
  // read from port 1, send to port 0:
  if (Serial1.available()) {
                                           Borrar líneas
    int inByte = Serial1.read();
    Serial.write(inByte);
  // read from port 0, send to port 1:
  if (Serial.available()) {
    int inByte = Serial.read(); Modificar por:
    Serial1.write(inByte);
                                 Serial.write(inByte);
```

Links de ayuda:

- https://pythonprogramming.net/python-3-tkinter-basics-tutorial/
- https://pythonprogramming.net/tkinter-python-3-tutorial-adding-buttons/?completed=/python-3-tkinter-basics-tutorial/
- https://pythonprogramming.net/tkinter-tutorial-python-3-event-handling/?completed=/tkinter-python-3-tutorial-adding-buttons/
- https://www.programcreek.com/python/example/1568/serial.Serial
- http://www.varesano.net/blog/fabio/serial%20rs232%20connections%20python