Vorlesung Systemtheorie und Regelungstechnik I (SR1) Albert-Ludwigs-Universität Freiburg – Sommersemester 2020

Übungsblatt 10: Regler und Reserven (zu Kapitel 8, 9 und 10)

Prof. Dr. Moritz Diehl, Jochem De Schutter

- 1. (Python) Betrachten Sie den stabilen offenen Kreis $G_0(s) = \frac{s+2}{s^3+s^2+5s+2}$.
 - (a) Definieren Sie das System in Python und zeichnen Sie das Nyquist-Diagramm. Erfüllt das System das Nyquist-Kriterium? Wäre der geschlossene Kreis $\frac{G_0(s)}{1+G_0(s)}$ stabil? (1 P.) TIPP: Hilfreiche Befehle: tf(...), nyquist_plot(...).
 - (b) Wo schneidet das Nyquist-Diagramm die negative reelle Achse? Welche Amplitudenreserve hat das System? (1 P.)
 - (c) Zeichnen Sie den Einheitskreis in das erstellte Nyquist-Diagramm ein. Für welche Winkel ϕ ist $|G_0(s)|=1$, bzw. $|G_0(s)|_{\rm dB}=0$? Welche Phasenreserve hat das System? (1 P.) TIPP: Einen Kreis kann man mit t=np.linspace(0,2*pi,100); plt.plot(np.cos(t),np.sin(t)) erzeugen.
 - (d) Plotten Sie das Bode-Diagramm des offenen Kreises und lesen Sie die Werte und Frequenzen der Amplituden- und Phasenreserve ab. (1 P.)
- 2. (Python) In dieser Aufgabe soll die erste Methode von Ziegler-Nichols verwendet werden, um eine Strecke zu regeln. Dazu sollen Sie die zunächst unbekannte Strecke anhand seiner Sprungantwort identifizieren und darauf aufbauend den Regler auslegen. Die Sprungantwort können Sie sich ansehen, indem Sie die Funktion y, t = srl.unknown_step() aufrufen und dann y über t plotten.
 - (a) Machen Sie für die unbekannte Strecke den Ansatz $G(s) = \frac{k_{\rm s}}{T\,s+1}e^{-T_{\rm t}s}$ und finden Sie Parameter $k_{\rm s}$, T und $T_{\rm t}$, die die gegebene Sprungantwort gut approximieren. Die Verzögerung $e^{-T_{\rm t}s}$ erzeugt eine Totzeit von $T_{\rm t}$ Sekunden. Diese Verzögerung können Sie zu einem System mit ${\rm sys} = {\rm srl.delay}({\rm sys},{\rm Tt})$ hinzufügen. TIPP: Es empfiehlt sich die Sprungantwort des unbekannten Systems und die Sprungantwort von G(s) in das gleiche Fenster zu plotten. Verändern Sie dann die drei Parameter $k_{\rm s}$, T und $T_{\rm t}$ so lange, bis die Sprungantwort gut approximiert wird. Achten Sie hierbei vor allem auf eine gute Übereinstimmung der Anstiegszeit (rise time). (1 P.)

Tabelle 1: Bestimmung der P-, PI-, und PID-Reglerparameter nach der Approximationsmethode von Ziegler und Nichols (Methode 1, siehe Skript Kapitel 10.2).

Тур	Konstante $K_{\rm P}$	Zeitkonstanten $T_{\rm I}, T_{ m D}$	Konstanten $K_{\rm I}, K_{\rm D}$
P	$K_{\rm P} = \frac{T}{k_{\rm s} T_{\rm t}}$	-	-
PI	$K_{\rm P} = 0.9 \frac{T}{k_{\rm s} T_{\rm t}}$	$T_{ m I}=3.33T_{ m t}$	$K_{\rm I} = 0.27 \frac{T}{k_{\rm s} T_{\rm t}^2}$
			$K_{\rm I} = 0.6 \frac{T}{k_{\rm s} T_{\rm t}^2}, \ K_{\rm D} = 0.6 \frac{T}{k_{\rm s}}$

- 3. Gehen Sie im Folgenden vom Standardregelkreis mit einer Störung W(s) am Ausgang der Strecke und Messrauschen V(s) aus wie in Abbildung 8.1 des Skripts dargestellt.
 - (a) Wie hängt der Ausgang Y(s) vom Eingang U(s), den Störungen W(s) und dem Messrauschen V(s) ab? Wie werden die auftretenden Übertragungsfunktionen genannt und welche Werte sollen diese für eine gute Regelung idealerweise annehmen?
 - (b) Wie sind die Sensitivitätsfunktion und die komplementäre Sensitivitätsfunktion definiert und was beschreiben sie? (1 P.)
 - (c) Gegeben sei folgende Sensitivitätsfunktion und komplementäre Sensitivitätsfunktion eines geregelten Systems.

Abbildung 1: Amplituden von $S(j\omega)$ und $T(j\omega)$

Wieso können die Amplituden von S(s) und T(s) größer sein als 1, obwohl gilt S(s) + T(s) = 1? (1 P.)

(d) Ist der Regelkreis aus Abbildung 1 geeignet für Referenzsignale mit $0.4\,\frac{\rm rad}{\rm s}$ wenn Störsignale mit $0.2\,\frac{\rm rad}{\rm s}$ auftreten? Begründen Sie Ihre Antwort.