Байесовская оптимизация для вывода демографических историй

Промежуточная презентация

Илья Шешуков Руководители: Екатерина Носкова (ИТМО), Вячеслав Боровицкий (СПбГУ)

Введение

Демографическая модель популяции

Имея геномы людей, хотим понять как изменялись их популяции. Как менялась численность, когда популяции разделялись, как сильно они мигрировали.

Рис. 1: Популяционная модель человеческой миграции из Африки

Аллель-частотный спектр

Определение (Аллель-частотный спектр)

Аллель-частотный спектр это распределение частоты аллелей в данных локусах в популяции или выборке.

Рис. 2: Хитмэп аллель-частотного спектра двух популяций

Пример

	SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8
	0	1	0	0	0	0	1	0
	1	0	1	0	0	0	1	0
	0	1	1	0	0	1	0	0
	0	0	0	0	1	0	1	1
	0	0	1	0	0	0	1	0
	0	0	0	1	0	1	1	0
Сумма	1	2	3	1	1	2	5	1

Спектр: (4 2 1 0 1)

- 4 ロト 4 団 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q ()

Как это делается сейчас

$\partial a \partial i$

https://bitbucket.org/gutenkunstlab/dadi/

- Плюсы
 - Она работает
 - Ей пользуются реальные люди
- Минусы
 - Решает дифференциальное уравнение в частных производных, что долго
 - Использует методы локальной оптимизации, что малоэффективно
 - Для работы необходимо руками писать Питон

moments

https://bitbucket.org/simongravel/moments

- Плюсы
 - ullet Эффективнее, чем $\partial a \partial i$, особенно на больших популяциях

GADMA

GADMA

https://github.com/ctlab/GADMA

- ullet Основана на $\partial a \partial i$ и moments
- Использует генетический алгоритм для поиска значения параметров демографической модели
- Не требует человеческого вмешательства

Что можно сделать

Давайте попробуем заменить генетический алгоритм на байесовскую оптимизацию

Байесовская оптимизация

- Алгоритм глобальной оптимизации
- Хорошо работает для сложновычислимых функций (например, если нужно решать уравнение в частных производных), т.е. хорошо подходит для задачи
- Можно параллелить
- Менее эвристична, чем генетический алгоритм

Планы

- **(**В процессе) Заменить в $\partial a \partial i$ алгоритм градиентного спуска на байесовскую оптимизацию.
- Посмотреть станет ли лучше

Конец

Спасибо за внимание

