Lecture Three: How to Learn

Yi Ma

Director of the School of Computing and Data Science

Director of the Institute of Data Science

What to Learn? Predictable information from data sensed of the external world

Mathematically, all predictable information can be modeled as certain low-dimensional structures in the high-dimensional data

Computational complexity associated with realizing intelligence:

incomputable -> computable -> tractable -> scalable

Kolmogorov & Solomonoff

Turing & Shannon

NP vs P

DNN and **BP**

Data lie on a low-dim linear subspace

If we view the data (image) as a matrix

$$A = [\mathbf{a}_1 \mid \cdots \mid \mathbf{a}_n] \in \mathbb{R}^{m \times n}$$

then

$$r \doteq \operatorname{rank}(A) \ll m$$
.

Principal Component Analysis (PCA) via singular value decomposition (SVD):

- Optimal estimate of A under iid Gaussian noise D = A + Z
- Efficient and scalable computation
- Fundamental statistical tool, with huge impact in practice...

Singular Value Decomposition (SVD)

Given $A \in \mathbb{R}^{m \times n}$ with rank(A) = r, we like to decompose it into a special matrix form:

$$U_r = [\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r]$$
 orthogonal

$$V_r = [\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r]$$
 orthogonal

$$\Sigma_r = \operatorname{diag}\{\sigma_1, \sigma_2, \dots, \sigma_r\} > 0$$

$$A = U_r \Sigma_r V_r^{\top} = \begin{bmatrix} \vec{u}_1, \vec{u}_2, \dots, \vec{u}_r \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_r \end{bmatrix} \begin{bmatrix} \vec{v}_1^{\top} \\ \vec{v}_2^{\top} \\ \vdots \\ \vec{v}_r^{\top} \end{bmatrix}$$

Singular Value Decomposition (SVD)

Given $A \in \mathbb{R}^{m \times n}$ with rank(A) = r, we like to decompose it into a special matrix form:

$$A = U_r \Sigma_r V_r^{\top} = \begin{bmatrix} \vec{u}_1, \vec{u}_2, \dots, \vec{u}_r \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_r \end{bmatrix} \begin{bmatrix} \vec{v}_1^{\top} \\ \vec{v}_2^{\top} \\ \vdots \\ \vec{v}_r^{\top} \end{bmatrix}$$

Theorem: given $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A) = r$, let $A^{\top}A = \sum_{i=1}^{r} \lambda_i \vec{v_i} \vec{v_i}^{\top}$ and $\sigma_i = \sqrt{\lambda_i}$, $\vec{u_i} = \frac{1}{\sigma_i} A \vec{v_i} \in \mathbb{R}^m, \ i = 1, \dots, r$. Then we have $U_r = [\vec{u_1}, \vec{u_2}, \dots, \vec{u_r}]$ orthogonal, and

$$A = \sum_{i=1}^{r} \sigma_i \vec{u}_i \vec{v}_i^{\top} = U_r \Sigma_r V_r^{\top} \qquad \Sigma_r = \operatorname{diag} \{ \sigma_1, \dots, \sigma_r \} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_r \end{bmatrix}$$

Low-Rank Approximation: Eckart-Young Theorem

Approximate a matrix $A \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$ by a lower-rank matrix.

$$A = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n] = \sum_{i=1}^r \sigma_i \vec{u}_i \vec{v}_i^\top = \sum_{i=1}^\ell \sigma_i \vec{u}_i \vec{v}_i^\top + \sum_{i=\ell+1}^r \sigma_i \vec{u}_i \vec{v}_i^\top \quad \text{with } \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r \ge 0$$

Theorem [Eckart-Young 1936]: The optimal solution to the low-rank approximation problem: $\min_{B\in\mathbb{R}^{m\times n}}\|A-B\|_F^2 \quad \text{subject to} \quad \text{rank}(B)=\ell$

is given by:
$$B_\star = A_\ell = \sum_{i=1}^\ell \sigma_i \vec{u}_i \vec{v}_i^ op.$$

Low-Rank Approximation: Rank Minimization

Approximate a matrix $A \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$ by a lower-rank matrix.

$$A = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n] = \sum_{i=1}^r \sigma_i \vec{u}_i \vec{v}_i^{\top} = \sum_{i=1}^{\ell} \sigma_i \vec{u}_i \vec{v}_i^{\top} + \sum_{i=\ell+1}^r \sigma_i \vec{u}_i \vec{v}_i^{\top}$$

Rank minimization problem:

$$\min_{B \in \mathbb{R}^{m \times n}} \operatorname{rank}(B) \quad \text{subject to} \quad ||A - B||_F^2 \le \epsilon^2 ?$$

Low-Rank Approximation: Model Selection

Approximate a matrix $A \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$ by a lower-rank matrix.

$$A = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n] = \sum_{i=1}^r \sigma_i \vec{u}_i \vec{v}_i^{\top} = \sum_{i=1}^\ell \sigma_i \vec{u}_i \vec{v}_i^{\top} + \sum_{i=\ell+1}^r \sigma_i \vec{u}_i \vec{v}_i^{\top}$$

Selecting a good tradeoff between rank and residual:

- 1. $\min_{B \in \mathbb{R}^{m \times n}} \operatorname{rank}(B) = d$ subject to $\sigma_{d+1}^2 \leq \tau$?
- 2. $\min_{B \in \mathbb{R}^{m \times n}} \alpha \cdot \operatorname{rank}(B) + \beta \cdot \sigma_{d+1}^2$?

Principal Component Analysis (Statistics)

Problem [Pearson, 1901, Hotelling, 1933]: given

$$A = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n] \in \mathbb{R}^{m \times n}$$
 $\vec{\mu} = \frac{1}{n}(\vec{a}_1 + \vec{a}_2 + \dots + \vec{a}_n) = \mathbf{0}$

find a normal vector $\|\vec{u}\|_2 = 1$ such that $\max_{\vec{u}} \|\vec{u}^{\top} A\|_2^2 = \|\vec{u}\vec{u}^{\top} A\|_2^2$.

How to Learn? Pursuing low-dimensional models

Generalized Principal Component Analysis (GPCA):

The data are on a mixture of subspaces

1. Clustering Mixed Data (Interpolation)

via Expectation Maximization (EM):

$$\max_{x,\hat{f}} E \log_{\hat{f}_{j}} \hat{f}_{j}(x, x) \underset{j=1}{\overset{h}{\downarrow}} \chi^{k} \qquad \underset{j=1}{\overset{h}$$

Difficulties: ML is not well-defined when distributions are degenerate.

Clustering via Compression

[Yi Ma, Harm Derksen, Wei Hong, and John Wright, TPAMI'07]

A Fundamental Idea:
Data belong to mixed low-dim
structures should be compressible.

Cluster Criterion:
Whether the number of binary bits required to store the data is less (information gain):

$$\# bits(X [Y) \ge \# bits(X) + \# bits(Y)?$$

"The whole is greater than the sum of the parts."

— Aristotle, 320 BC

Theorem (Ma, TPAMI'07)

The number of bits needed to encode data $X = [x_1, x_2, ..., x_m] \ 2 \ R^{D \to m}$ up to a precision $kx - \hat{x} k_2 \le -is$ bounded by:

$$L(X, -) = \frac{\sqrt{m+D}}{2} \log \det I + \frac{D}{m^2} X X^{>}.$$

This can be derived from constructively quantifying SVD of X or by sphere packing vol(X) as samples of a noisy Gaussian source.

Cluster to Compress

$$L(X) \ge L^{c}(X) \doteq L(X_{1}) + L(X_{2}) + H(|X_{1}|, |X_{2}|)$$
?

partitioning:

sifting:

A Greedy Algorithm

Seek a partition of the data $m{X} o [m{X}_1, m{X}_2, \dots, m{X}_k]$ such that

$$\min L^{c}(\boldsymbol{X}) \doteq L(\boldsymbol{X}_{1}) + \cdots + L(\boldsymbol{X}_{k}) + H(|\boldsymbol{X}_{1}|, \dots, |\boldsymbol{X}_{k}|).$$

Optimize with a bottom-up pair-wise merging algorithm [Ma, TPAMI'07]:

- 1: **input:** the data $\boldsymbol{X} = [\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_m] \in \mathbb{R}^{D \times m}$ and a distortion $\epsilon^2 > 0$.
- 2: initialize S as a set of sets with a single datum $\{S = \{x\} \mid x \in X\}$.
- 3: while $|\mathcal{S}| > 1$ do
- 4: choose distinct sets $S_1, S_2 \in \mathcal{S}$ such that $L^c(S_1 \cup S_2) L^c(S_1, S_2)$ is minimal.
- 5: **if** $L^{c}(S_{1} \cup S_{2}) L^{c}(S_{1}, S_{2}) \geq 0$ **then** break;
- 6: else $\mathcal{S}:=ig(\mathcal{S}\setminus\{S_1,S_2\}ig)\cup\{S_1\cup S_2\}.$
- 7: **end**
- 8: output: S

Surprisingly Good Performance

Empirically, find global optimum and extremely robust to outliers

A strikingly sharp **phase transition** w.r.t. quantization ϵ

Natural Image Segmentation [Mobahi et.al., IJCV'09]

Compression alone, without any supervision, leads to state of the art segmentation on natural images (and many other types of data).

How to Learn a more general low-dim distribution?

