ECOSTRESS STARS NDVI & Albedo User Guide

Contents

1	ECOSTRESS Collection 3 Level-2 STARS NDVI & Albedo Data Product User Guide 1.1 Authors	2
	1.2 Table of Contents	
2	Introduction 2.1 Product Overview 2.2 File Format and Structure 2.3 Quality Flags 2.4 Spatial and Temporal Characteristics 2.5 Quality Flags 2.6 Data Access and Availability	5 6 6 6
3	Product Specifications 3.1 Data Layers	8
4	Data Usage Guidelines 4.1 Recommended Processing Workflow	10
5	Common Applications 5.1 Scientific Research 5.2 Agricultural Applications 5.3 Environmental Monitoring 5.4 Operational Uses	11 11
6	Troubleshooting 6.1 Common Issues and Solutions	
7	Metadata	13
8	Acknowledgements	15
9	References 9.1 Primary Algorithm Reference	

9.3 Supporting References
1 ECOSTRESS Collection 3 Level-2 STARS NDVI & Albedo Data Prod- uct User Guide
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)
October 8, 2025
1.1 Authors
Gregory H. Halverson ECOSTRESS Science Team Jet Propulsion Laboratory California Institute of Technology
Margaret Johnson ECOSTRESS Science Team Jet Propulsion Laboratory California Institute of Technology
Simon Hook ECOSTRESS Science Team Jet Propulsion Laboratory California Institute of Technology
Kerry Cawse-Nicholson ECOSTRESS Science Team Jet Propulsion Laboratory California Institute of Technology
Claire Villanueva-Weeks ECOSTRESS Science Team Jet Propulsion Laboratory California Institute of Technology
© 2025 California Institute of Technology. Government sponsorship acknowledged.
National Aeronautics and Space Administration

4800 Oak Grove Drive

Pasadena, California 91109-8099 California Institute of Technology

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

© 2025. California Institute of Technology. Government sponsorship acknowledged.

This User Guide provides practical information for accessing, understanding, and using the ECOSTRESS Collection 3 Level-2 STARS NDVI & Albedo data products. It covers product specifications, data access procedures, file formats, quality assessment, and recommended processing workflows.

For detailed information on the scientific methodology, mathematical formulations, and algorithm implementation, please refer to the companion ECOSTRESS Collection 3 Level-2 STARS NDVI & Albedo Algorithm Theoretical Basis Document (ATBD).

This guide is designed to be a living document that is updated as the products evolve and user feedback is incorporated.

Contacts

Readers seeking additional information about this product may contact the following:

Gregory Halverson
 Jet Propulsion Laboratory
 4800 Oak Grove Dr.
 Pasadena, CA 91109

Email: gregory.h.halverson@jpl.nasa.gov

Office: (626) 660-6818

· Kerry Cawse-Nicholson

MS 183-601

Jet Propulsion Laboratory

4800 Oak Grove Dr.

Pasadena, CA 91109

Email: kerry-anne.cawse-nicholson@jpl.nasa.gov

Office: (818) 354-1594

Margaret Johnson
 Jet Propulsion Laboratory

4800 Oak Grove Dr.

Pasadena, CA 91109

Email: maggie.johnson@jpl.nasa.gov

Office: (818) 354-8885

Simon Hook

MS 183-600

Jet Propulsion Laboratory

4800 Oak Grove Dr.

Pasadena, CA 91109

Email: simon.j.hook@jpl.nasa.gov

Office: (818) 354-0974

1.2 Table of Contents

- 1. Introduction
 - Product Overview
 - · Data Access and Availability
 - · File Format and Structure
- 2. Product Specifications
 - · Data Layers
 - · Quality Flags
 - · Spatial and Temporal Characteristics
- 3. Data Usage Guidelines
 - Recommended Processing Workflow
 - Software Compatibility
 - · Quality Assessment
- 4. Common Applications
- 5. Metadata
- 6. Troubleshooting
- 7. Acknowledgements
- 8. References

1.2.1 List of Tables

- Table 1: Listing of ECOSTRESS tiled products long names and short names
- Table 2: Listing of the L2T STARS data layers
- Table 3: StandardMetadata fields in L2T/L3T/L4T products
- Table 4: ProductMetadata fields in L2T/L3T/L4T products

2 Introduction

2.1 Product Overview

The ECOSTRESS Collection 3 Level-2 STARS NDVI & Albedo product (L2T_STARS) provides high-resolution (70 m) estimates of Normalized Difference Vegetation Index (NDVI) and broadband shortwave albedo that are temporally and spatially coincident with each ECOSTRESS Land Surface Temperature & Emissivity (L2T_LSTE) observation.

These products are generated using the Spatial Timeseries for Automated high-Resolution multi-Sensor data fusion (STARS) algorithm, which optimally combines: - High spatial resolution data from Harmonized Landsat Sentinel (HLS) 2.0 products (30 m, 3-5 day revisit) - High temporal resolution data from VIIRS VNP09GA products (500 m-1 km, daily coverage)

The result is gap-filled, analysis-ready NDVI and albedo data at ECOSTRESS resolution with quantified uncertainties, essential for evapotranspiration modeling and land surface analysis.

Product Long Name	Product Short Name
STARS NDVI/Albedo	L2T STARS
Surface Energy Balance	L3T SEB
Soil Moisture	L3T SM
Meteorology	L3T MET
Ecosystem Auxiliary Inputs	L3T ETAUX
Evapotranspiration Ensemble	L3T JET
DisALEXI-JPL Evapotranspiration	L3T ET ALEXI
Evaporative Stress Index	L4T ESI
DisALEXI-JPL Evaporative Stress Index	L4T ESI ALEXI
Water Use Efficiency	L4T WUE

Table 1. Listing of ECOSTRESS tiled products long names and short names.

2.2 File Format and Structure

2.2.1 Cloud-Optimized GeoTIFF (COG) Format

All L2T_STARS products are distributed as Cloud-Optimized GeoTIFFs, providing: - Efficient streaming and partial data access - Universal compatibility with GIS software and programming libraries - Built-in pyramids for multi-resolution visualization - Standardized georeferencing with embedded spatial reference information

2.2.2 Tiling System

• Tiling scheme: Modified Military Grid Reference System (MGRS) used by Sentinel-2

• Tile size: 109.8 km × 109.8 km

• Pixel size: 70 m × 70 m

• Array dimensions: 1,568 × 1,568 pixels per tile

• Projection: UTM zone-specific

2.2.3 File Naming Convention

 ${\tt ECOSTRESS_L2T_STARS_[TileID]_[AcquisitionDateTime]_[ProductionDateTime]_[Version].tif}$

Example:

ECOSTRESS_L2T_STARS_T11SPS_20241008T183000_20241009T120000_02.tif

2.2.4 File Components

Each L2T_STARS granule contains: - Data files: Individual GeoTIFF files for each data layer - Browse images: JPEG preview images for quick visualization - Metadata file: JSON file with product and standard metadata - Quality layers: Cloud and water masks

2.3 Quality Flags

2.4 Spatial and Temporal Characteristics

2.4.1 Spatial Resolution

Native resolution: 70 m × 70 m

Coordinate system: UTM (zone-specific)

· Resampling method: Bilinear interpolation from input sources

Spatial extent: Global land areas (±60° latitude)

2.4.2 Temporal Resolution

Observation frequency: Variable based on ISS orbit (typically 3-4 days)

· Temporal coverage: Daytime overpasses only

Data continuity: Gap-filled using temporal fusion algorithm

Archive period: 2018-present

2.5 Quality Flags

2.5.1 Standard Quality Masks

Two binary quality flags are provided as unsigned 8-bit integer layers:

- cloud: Cloud detection mask from L2_CLOUD product
 - -0 = Clear sky
 - 1 = Cloud detected
- · water: Surface water body mask from SRTM DEM
 - 0 = Land surface
 - 1 = Open water surface

2.5.2 Data Quality Indicators

• Fill values: NaN (Not-a-Number) for float32 data layers

· Valid data range:

NDVI: -1.0 to 1.0Albedo: 0.0 to 1.0

- Uncertainties: 0.0 to maximum valid range

2.6 Data Access and Availability

2.6.1 Distribution and Access

The L2T_STARS products are distributed through: - NASA Earthdata: https://earthdata.nasa.gov/ - LP DAAC Data Pool: https://e4ftl01.cr.usgs.gov/ - NASA Worldview: https://worldview.earthdata.nasa.gov/ - AppEEARS: https://appeears.earthdatacloud.nasa.gov/

2.6.2 Data Latency

- Near Real-Time: Products are typically available within 1-3 days of ECOSTRESS observation
- Reprocessing: Historical data are reprocessed as algorithm improvements are implemented

2.6.3 Spatial Coverage

- Global land areas excluding regions poleward of ±60° latitude
- · Tiled format using modified MGRS tiling system
- Individual tiles: 109.8 km × 109.8 km at 70 m resolution

2.6.4 Authentication Requirements

- NASA Earthdata Login account required for data access
- Free registration at: https://urs.earthdata.nasa.gov/

3 Product Specifications

3.1 Data Layers

The L2T_STARS product contains eight data layers providing NDVI and albedo estimates with associated uncertainties and bias corrections:

3.1.1 Primary Data Products:

• NDVI: Normalized Difference Vegetation Index estimates

• albedo: Broadband shortwave albedo estimates

3.1.2 Uncertainty Products:

NDVI-UQ: One-sigma uncertainty of NDVI estimates

• albedo-UQ: One-sigma uncertainty of albedo estimates

3.1.3 Bias Correction Products:

· NDVI-bias: Systematic bias correction applied to NDVI

· albedo-bias: Systematic bias correction applied to albedo

• NDVI-bias-UQ: Uncertainty in NDVI bias correction

• albedo-bias-UQ: Uncertainty in albedo bias correction

Layer				Valid		
Name	Description	Data Type	Units	Range	Fill Value	File Size
NDVI	Normalized Difference Vegetation Index	float32	Dimensionle	ss-1.0 to 1.0	NaN	12.96 MB
NDVI-UQ	NDVI One-sigma Uncertainty	float32	Dimensionle	ss0.0 to 1.0	NaN	12.96 MB
NDVI-bias	NDVI Bias Correction	float32	Dimensionles	ssVariable	NaN	12.96 MB
NDVI-bias- UQ	NDVI Bias Uncertainty	float32	Dimensionles	ss0.0 to 1.0	NaN	12.96 MB
albedo	Broadband Shortwave Albedo	float32	Dimensionles	ss0.0 to 1.0	NaN	12.96 MB

Layer				Valid		
Name	Description	Data Type	Units	Range	Fill Value	File Size
albedo-UQ	Albedo One-sigma Uncertainty	float32	Dimensionle	ss0.0 to 1.0	NaN	12.96 MB
albedo-bias	Albedo Bias Correction	float32	Dimensionle	ssVariable	NaN	12.96 MB
albedo- bias-UQ	Albedo Bias Uncertainty	float32	Dimensionle	ss0.0 to 1.0	NaN	12.96 MB

Table 2. L2T_STARS data layer specifications.

4 Data Usage Guidelines

4.1 Recommended Processing Workflow

4.1.1 1. Data Discovery and Download

```
# Example using Python
import requests
from pathlib import Path

# Search for L2T_STARS data using CMR API
# Download data using NASA Earthdata authentication
```

4.1.2 2. Data Loading and Inspection

```
# Example using rioxarray
import rioxarray as rxr
import numpy as np

# Load NDVI data
ndvi = rxr.open_rasterio('ECOSTRESS_L2T_STARS_*_NDVI.tif')
ndvi_unc = rxr.open_rasterio('ECOSTRESS_L2T_STARS_*_NDVI-UQ.tif')

# Check data quality
```

```
valid_data = ~np.isnan(ndvi.values)
print(f"Valid pixels: {valid_data.sum()} / {valid_data.size}")
```

4.1.3 3. Quality Assessment

```
# Apply quality filters
cloud_mask = rxr.open_rasterio('ECOSTRESS_L2T_STARS_*_cloud.tif')
water_mask = rxr.open_rasterio('ECOSTRESS_L2T_STARS_*_water.tif')
# Create combined quality mask
quality_mask = (cloud_mask == 0) & (water_mask == 0)
filtered_ndvi = ndvi.where(quality_mask)
```

4.2 Software Compatibility

4.2.1 Python Libraries

- rioxarray: Recommended for xarray-based analysis
- GDAL/rasterio: Low-level raster operations
- · xarray: Multi-dimensional data analysis
- · matplotlib/cartopy: Visualization and mapping

4.2.2 R Packages

- · terra: Modern raster data handling
- · raster: Traditional raster operations
- · stars: Spatiotemporal data cubes
- · sf: Spatial data manipulation

4.2.3 Desktop GIS Software

- QGIS: Free, open-source GIS
- · ArcGIS: Commercial GIS software
- ENVI: Specialized remote sensing software

4.2.4 Command Line Tools

- GDAL utilities: gdalinfo, gdal_translate, gdalwarp
- NCO operators: For netCDF-like operations

4.3 Quality Assessment

4.3.1 Uncertainty Interpretation

- Low uncertainty (< 0.1): High confidence in estimates
- Moderate uncertainty (0.1 0.3): Reasonable confidence
- High uncertainty (> 0.3): Use with caution

4.3.2 Recommended Quality Filters

- 1. Remove cloudy pixels: Use cloud mask
- 2. Consider water pixels: Apply water mask if studying land only
- 3. Check uncertainty values: Filter based on application requirements
- 4. Validate against field data: When available for your study area

4.3.3 Common Quality Issues

- · High uncertainty near cloud edges
- · Potential artifacts in mountainous terrain
- · Reduced accuracy in very dense canopies
- · Seasonal bias in high-latitude regions

5 Common Applications

5.1 Scientific Research

- Evapotranspiration modeling: Primary input for ET algorithms
- Vegetation monitoring: Phenology and health assessment
- · Land surface energy balance: Albedo for radiation modeling
- Climate studies: Surface property characterization

5.2 Agricultural Applications

- · Crop health monitoring: NDVI time series analysis
- · Irrigation management: Water stress detection
- · Yield prediction: Vegetation vigor assessment
- Precision agriculture: Field-scale variability mapping

5.3 Environmental Monitoring

· Drought assessment: Vegetation stress indicators

- Ecosystem health: Biodiversity and conservation
- · Land cover change: Deforestation and urbanization
- · Fire risk assessment: Vegetation moisture content

5.4 Operational Uses

- Water resource management: ET-based water budgets
- · Natural resource inventory: Forest and rangeland assessment
- · Disaster response: Rapid vegetation assessment
- Policy support: Environmental compliance monitoring

6 Troubleshooting

6.1 Common Issues and Solutions

6.1.1 Data Access Problems

Issue: Cannot download data from LP DAAC Solution: - Verify Earthdata Login credentials - Check network connectivity - Ensure proper authentication in download scripts

Issue: Files appear corrupted or incomplete Solution: - Re-download the file - Verify file size matches expected size - Check MD5 checksums if provided

6.1.2 Data Processing Issues

Issue: Cannot open GeoTIFF files Solution: - Update GDAL to version 3.0 or higher - Verify file integrity with gdalinfo - Check for proper file extension (.tif)

Issue: Unexpected NaN values Solution: - Check cloud and water masks - Verify data is within valid range - Consider seasonal data availability

6.1.3 Quality Assessment Problems

Issue: High uncertainty values everywhere Solution: - Check input data availability for that time period - Verify geographic location (polar regions excluded) - Consider atmospheric conditions (heavy aerosols, persistent clouds)

Issue: NDVI values seem unrealistic Solution: - Verify units (should be -1 to 1) - Check for scaling issues in your software - Compare with concurrent Landsat/Sentinel-2 data

6.1.4 Performance Issues

Issue: Slow data loading Solution: - Use COG-aware libraries (rioxarray, GDAL 3.x) - Implement spatial/temporal subsetting - Consider using lower resolution overviews for exploration

6.2 Getting Help

6.2.1 Support Resources

- LP DAAC User Services: https://lpdaac.usgs.gov/contact-us/
- ECOSTRESS Documentation: https://ecostress.jpl.nasa.gov/
- Earthdata Forum: https://forum.earthdata.nasa.gov/

6.2.2 Reporting Issues

When reporting data quality issues, please provide: - Product name and version - Specific tile ID and date - Geographic coordinates of the issue - Screenshots or data examples - Description of expected vs. observed behavior

7 Metadata

Each ECOSTRESS product bundle contains two sets of product metadata:

- ProductMetadata
- StandardMetadata

Each product contains a custom set of ProductMetadata attributes, as listed in Table 4. The StandardMetadata attributes are consistent across products at each orbit/scene, as listed in Table 3.

Name	Туре
AncillaryInputPointer	string
AutomaticQualityFlag	string
AutomaticQualityFlagExplanation	string
BuildID	string
CRS	string
CampaignShortName	string
CollectionLabel	string
DataFormatType	string
DayNightFlag	string
EastBoundingCoordinate	float

Name	Туре
FieldOfViewObstruction	string
ImageLines	float
ImageLineSpacing	integer
ImagePixels	float
ImagePixelSpacing	integer
InputPointer	string
InstrumentShortName	string
LocalGranuleID	string
LongName	string
NorthBoundingCoordinate	float
PGEName	string
PGEVersion	string
PlatformLongName	string
PlatformShortName	string
PlatformType	string
ProcessingEnvironment	string
ProcessingLevelDescription	string
ProcessingLevelID	string
ProducerAgency	string
ProducerInstitution	string
ProductionDateTime	string
ProductionLocation	string
RangeBeginningDate	string
RangeBeginningTime	string
RangeEndingDate	string
RangeEndingTime	string
RegionID	string
SISName	string
SISVersion	string
SceneBoundaryLatLonWKT	string
SceneID	string
ShortName	string
SouthBoundingCoordinate	float
StartOrbitNumber	string
StopOrbitNumber	string
WestBoundingCoordinate	float

Table 3. Name and type of metadata fields contained in the common StandardMetadata group in

each L2T/L3T/L4T product.

at
eger
ng
at
at
ng

Table 4. Name and type of metadata fields contained in the common ProductMetadata group in each L2T/L3T/L4T product.

8 Acknowledgements

We would like to thank Joshua Fisher as the initial science lead of the ECOSTRESS mission and PI of the ROSES project to re-design the ECOSTRESS products.

We would like to thank the HLS and VIIRS teams for providing the input data products that make STARS data fusion possible.

We would like to thank the entire ECOSTRESS Science Team for their contributions to algorithm development and product validation.

9 References

9.1 Primary Algorithm Reference

Johnson, M. C., G. Halverson, J. Susiluoto, K. Cawse-Nicholson, G. Hulley, and J. B. Fisher (2022), STARS: Spatial Timeseries for Automated high-Resolution multi-Sensor data fusion [Presentation], ECOSTRESS Science and Applications Team Meeting, Nov 2022, Ventura, CA.

9.2 Related Documentation

- ECOSTRESS L2T_STARS ATBD: Algorithm Theoretical Basis Document for detailed methodology
- HLS User Guide: https://lpdaac.usgs.gov/documents/1698/HLS_User_Guide_V2.pdf
- VIIRS Surface Reflectance Guide: https://viirsland.gsfc.nasa.gov/PDF/VIIRS_Surf_Refl_UserGuide_v1.3.pd

9.3 Supporting References

Schaaf, C. (2017), MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global - 500m V006 [Data set], NASA EOSDIS Land Processes DAAC.

Liang, S. (2001), Narrowband to broadband conversions of land surface albedo I: Algorithms, Remote Sensing of Environment, 76(2), 213-238.