# **02\_Modelling Framework of Hybrid Systems**

#### 1. Frameworks

Piecewise Affine Systems (PWA)

Mixed Logical Dynamical (MLD) Systems

Linear Complementarity (LC) systems

**Extended Linear Complementarity (ELC) systems** 

Max-Min-Plus-Scaling (MMPS) systems

2. Equivalence of MLD, LC, ELC, PWA, and MMPS systems

**Definition of Equivalence** 

**Equivalence Relations** 

**Different Advantages** 

3. Transformation Among Different Models

MLD and LC systems

LC and ELC systems

**PWA and MLD systems** 

**MMPS and ELC** 

MLD and ELC systems

An example

4. Timed Automata

Timed Automaton

**Properties** 

5. Timed Petri Nets

**Time Analysis** 

Summary

## 1. Frameworks

## **Piecewise Affine Systems (PWA)**

region partition and piece-wise affine constraint

$$egin{aligned} x(k+1) &= A_i x(k) + B_i u(k) + f_i \ y(k) &= C_i x(k) + D_i u(k) + g_i \end{aligned} ext{ for } \left[egin{array}{c} x(k) \ u(k) \end{array}
ight] \in \Omega_i, i=1,\ldots,N$$

with

 $\Omega_1, \dots, \Omega_N$ : **convex** polyhedra (i.e., given by finite number of linear inequalities) in input/state space, **non-overlapping** interiors

• PWA can be used as **approximation of nonlinear model:** e.g. using least square criterion

#### Example

## Integrator with upper saturation:

$$x(k+1) = \begin{cases} x(k) + u(k) & \text{if } x(k) + u(k) \leqslant 1\\ 1 & \text{if } x(k) + u(k) \geqslant 1 \end{cases}$$
$$y(k) = x(k)$$

deterministic?

- \* if in blue, no problem
- \* if in green, no problem
- \* if in red line, output is equal to 1 so, if from input-output behavior: deterministic

if from mode perspective, cannot deterministic



hs\_mod.5

### Mixed Logical Dynamical (MLD) Systems

boolean variable + linear equality constraint

$$egin{aligned} x(k+1) &= Ax(k) + B_1 u(k) + B_2 \delta(k) + B_3 z(k) \ y(k) &= Cx(k) + D_1 u(k) + D_2 \delta(k) + D_3 z(k) \ E_1 x(k) + E_2 u(k) + E_3 \delta(k) + E_4 z(k) \leqslant g_5, \end{aligned}$$

- $x(k) = \left[x_{ ext{r}}^ op(k)x_{ ext{b}}^ op(k)
  ight]^ op$  with  $x_{ ext{r}}(k)$  real-valued,  $x_{ ext{b}}(k)$  boolean
- z(k): real-valued auxiliary variables
- $\delta(k)$ : boolean auxiliary variables

#### **Transformation of Logical part**

• Associate with literal  $X_i$  logical variable  $\delta_i \in \{0,1\}$ :

$$\delta_i = 1$$
 iff  $X_i = \mathrm{T}, \delta_i = 0$  iff  $X_i = \mathrm{F}$ 

• Other Logical Operations

$$X_1 \wedge X_2$$
 equivalent to  $\delta_1 = \delta_2 = 1$   $X_1 \vee X_2$  equivalent to  $\delta_1 + \delta_2 \geqslant 1$   $\sim X_1$  equivalent to  $\delta_1 = 0$   $X_1 \Rightarrow X_2$  equivalent to  $\delta_1 - \delta_2 \leqslant 0$   $X_1 \Leftrightarrow X_2$  equivalent to  $\delta_1 - \delta_2 = 0$   $X_1 \oplus X_2$  equivalent to  $\delta_1 + \delta_2 = 1$ 

#### **Transformation of Real-Value Function**

- ullet For  $f:\mathbb{R}^n o\mathbb{R}$  and  $x\in\mathscr{X}with\mathscr{X}$  bounded, define
- $M \stackrel{\mathrm{def}}{=} \max_{x \in \mathscr{X}} f(x)$   $m \stackrel{\mathrm{def}}{=} \min_{x \in \mathscr{X}} f(x)$
- Mixture Logic of real-value function and boolean variables

$$egin{aligned} &[f(x)\leqslant 0]\wedge [\delta=1] ext{ true iff } f(x)-\delta\leqslant -1+m(1-\delta) \ &[f(x)\leqslant 0]\vee [\delta=1] ext{ true iff } f(x)\leqslant M\delta \ &\sim [f(x)\leqslant 0] ext{ true iff } f(x)\geqslant arepsilon & ext{ (with } arepsilon ext{ machine precision)} \ &[f(x)\leqslant 0]\Rightarrow [\delta=1] ext{ true iff } f(x)\geqslant arepsilon+(m-arepsilon)\delta \ &[f(x)\leqslant 0]\Leftrightarrow [\delta=1] ext{ true iff } egin{aligned} f(x)\leqslant M(1-\delta) \ f(x)\geqslant arepsilon+(m-arepsilon)\delta \end{aligned}$$

#### **Transformation of Product of Logic Variable**

Product  $\delta_1 \, \delta_2$  can be replaced by auxiliary variable  $\delta_3 \, = \, \delta_1 \, \delta_2$ 

$$\delta_3 = \delta_1 \delta_2 \quad ext{ is equivalent to } \left\{ egin{array}{l} -\delta_1 + \delta_3 \leqslant 0 \ -\delta_2 + \delta_3 \leqslant 0 \ \delta_1 + \delta_2 - \delta_3 \leqslant 1 \end{array} 
ight.$$

#### Transformation of Product of Logic Variable and Real-value Function

 $\delta f(x)$  can be replaced by auxiliary real variable  $y=\delta f(x)$ 

$$y = \delta f(x)$$
 is equivalent to  $\left\{ egin{array}{l} y \leqslant M\delta \ y \geqslant m\delta \ y \leqslant f(x) - m(1-\delta) \ y \geqslant f(x) - M(1-\delta) \end{array} 
ight.$ 

#### One example of transformation from PWA to MLD

Consider PWA system:

$$x(k+1) = \begin{cases} 0.8x(k) + u(k) & \text{if } x(k) \ge 0\\ -0.8x(k) + u(k) & \text{if } x(k) < 0 \end{cases}$$

where  $x(k) \in [-10, 10]$  and  $u(k) \in [-1, 1]$ 

• Associate binary variable  $\delta(k)$  to condition  $x(k) \ge 0$  such that  $[\delta(k) = 1] \Leftrightarrow [x(k) \ge 0]$  or

$$-m\delta(k) \leqslant x(k) - m$$
$$-(M+\varepsilon)\delta(k) \leqslant -x(k) - \varepsilon$$

where M = -m = 10, and  $\varepsilon$  is machine precision

PWA system can be rewritten as

$$x(k+1) = 1.6 \,\delta(k)x(k) - 0.8x(k) + u(k)$$
 hs\_mod.11

- $\bullet \ x(k+1) = 1.6 \,\delta(k) x(k) 0.8 \,x(k) + u(k)$
- Define new variable  $z(k) = \delta(k)x(k)$  or

$$z(k) \leq M\delta(k)$$

$$z(k) \geq m\delta(k)$$

$$z(k) \leq x(k) - m(1 - \delta(k))$$

$$z(k) \geq x(k) - M(1 - \delta(k))$$

PWA system now becomes

$$x(k+1) = 1.6z(k) - 0.8x(k) + u(k)$$

subject to linear constraints above  $\rightarrow$  MLD

## Linear Complementarity (LC) systems

complementarity condition + linear equality constraint

$$egin{aligned} x(k+1) &= Ax(k) + B_1 u(k) + B_2 w(k) \ y(k) &= Cx(k) + D_1 u(k) + D_2 w(k) \ v(k) &= E_1 x(k) + E_2 u(k) + E_3 w(k) + e_4 \ 0 \leqslant v(k) \perp w(k) \geqslant 0 \end{aligned}$$

v(k), w(k): "complementarity variables" (real-valued)

- ullet LC systems do not have  $\delta$  and inequality constraints
- · LC systems only have equation and complementary conditions

### **Extended Linear Complementarity (ELC) systems**

group complementarity condition + linear equality constraint

$$egin{aligned} x(k+1) &= Ax(k) + B_1 u(k) + B_2 d(k) \ y(k) &= Cx(k) + D_1 u(k) + D_2 d(k) \ E_1 x(k) + E_2 u(k) + E_3 d(k) \leqslant e_4 \ \sum_{i=1}^p \prod_{j \in \phi_i} \left( e_4 - E_1 x(k) - E_2 u(k) - E_3 d(k) 
ight)_j = 0 \end{aligned}$$

- d(k): real-valued auxiliary variable
- The 4th condition is equal to  $\prod_{j\in\phi_i}\left(e_4-E_1x(k)-E_2u(k)-E_3d(k)
  ight)_j=0$  for each  $i\in\{1,\ldots,p\}$ 
  - $\circ$  system of linear inequalities with p groups, in each group at least one inequality should hold with equality

## Max-Min-Plus-Scaling (MMPS) systems

Max-min-plus-scaling expression:

$$f:=x_i|lpha|\max\left(f_k,f_l
ight)|\min\left(f_k,f_l
ight)|f_k+f_l\mideta f_k$$

with  $lpha,eta\in\mathbb{R}$  and  $f_k,f_l$  again **MMPS expressions.** 

#### **MMPS Systems**

$$egin{aligned} x(k+1) &= \mathscr{M}_x(x(k),u(k),d(k)) \ y(k) &= \mathscr{M}_y(x(k),u(k),d(k)) \ \mathscr{M}_c(x(k),u(k),d(k)) \leqslant c \ & ext{with } \mathscr{M}_x,\mathscr{M}_y,\mathscr{M}_c ext{ MMPS expressions} \end{aligned}$$

d(k): real-valued auxiliary variables

• It is good for systems with soft & hard synchronization constraints

#### **Some Illustrated Example**

- max: one of two product is ready is okay
- min: both of two product are needed

#### Example

• Integrator with upper saturation:

$$x(k+1) = \begin{cases} x(k) + u(k) & \text{if } x(k) + u(k) \leqslant 1\\ 1 & \text{if } x(k) + u(k) \geqslant 1 \end{cases}$$
$$y(k) = x(k)$$

can be recast as

$$x(k+1) = \min(x(k) + u(k), 1)$$
  
$$y(k) = x(k)$$

## 2. Equivalence of MLD, LC, ELC, PWA, and MMPS systems

### **Definition of Equivalence**

Equivalence between model classes  ${\mathscr A}$  and  ${\mathscr B}$  :

for each model  $\in \mathscr{A}$  there exists model  $\in \mathscr{B}$  with same input/output behavior (+ vice versa )

## **Equivalence Relations**



• Red Star means this transformation need some constraints

## **Different Advantages**

Each subclass has own advantages:

- stability criteria for PWA
- · control and verification techniques for MLD
- **control** techniques for MMPS

- conditions of **existence and uniqueness** of solutions for LC
- transfer techniques from one class to other

Based on the transformation, we can transform among them for different usage.

## 3. Transformation Among Different Models

### MLD and LC systems

#### Theorem

Every MLD system can be written as LC system

#### Method

•  $\delta_i(k) \in \{0,1\}$  is equivalent to  $0 \le \delta_i(k) \perp 1 - \delta_i(k) \ge 0$  $\rightarrow$  introduce auxiliary variable  $p(k) = [1 \ 1 \dots 1]^{\mathsf{T}} - \delta(k)$  with  $0 \le \delta(k) \perp p(k) \ge 0$ 

• For constraint  $E_1x(k) + E_2u(k) + E_3\delta(k) + E_4z(k) \le g_5$ , introduce auxiliary variables  $q(k) = g_5 - E_1x(k) - E_2u(k) - E_3\delta(k) - E_4z(k) \ge 0$  and  $r(k) \ge 0$  with

$$0 \leqslant q(k) \perp r(k) \geqslant 0$$

Complementarity condition will always hold (select r(k) = 0)

• For LC: all variables  $\geqslant 0$  $\rightarrow$  split real-valued variable z(k) in "positive" and "negative part":  $z(k) = z^+(k) - z^-(k)$  with  $z^+(k) = \max(0, z(k))$ ,  $z^-(k) = \max(0, -z(k))$  or  $0 \leqslant z^+(k) \perp z^-(k) \geqslant 0$ 

$$x(k+1) = Ax(k) + B_1u(k) + \begin{bmatrix} B_2 & 0 & B_3 & -B_3 \end{bmatrix}w(k) \ y(k) = Cx(k) + D_1u(k) + \begin{bmatrix} D_2 & 0 & D_3 & -D_3 \end{bmatrix}w(k) \ \begin{pmatrix} p(k) \\ q(k) \\ s(k) \\ t(k) \end{pmatrix} = \begin{pmatrix} e \\ g_5 - E_1x(k) - E_2u(k) \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -I & 0 & 0 & 0 \\ -E_3 & 0 & -E_4 & E_4 \\ 0 & 0 & 0 & I \\ 0 & 0 & I & 0 \end{pmatrix} \begin{pmatrix} \delta(k) \\ r(k) \\ z^+(k) \\ z^-(k) \end{pmatrix} = \underbrace{ v(k) \\ 0 \leqslant v(k) \perp w(k) \geqslant 0 } = \underbrace{ w(k) }$$

#### Theorem

Every LC system can be written as MLD provided that w(k) and v(k) are **bounded** 

#### Method

- Transform v(k) and w(k)
  - $\circ$  LC complementarity condition  $0\leqslant v(k)\perp w(k)\geqslant 0$  implies that for each i we have  $v_i(k)=0,w_i(k)\geqslant 0$  or  $v_i(k)\geqslant 0,w_i(k)=0$
  - **Introduce boolean vector**  $\delta(k)$  such that

$$v_i(k) = 0, w_i(k) \geqslant 0 \leftrightarrow \delta_i(k) = 1$$
  
 $v_i(k) \geqslant 0, w_i(k) = 0 \leftrightarrow \delta_i(k) = 0$ 

Can be achieved by introducing constraints

$$egin{aligned} w(k) \leqslant M_w \delta(k) \ v(k) \leqslant M_v \left( [11 \dots 1]^ op - \delta(k) 
ight) \ w(k), v(k) \geqslant 0 \end{aligned}$$

with  $M_w$ ,  $M_v$  diagonal matrices containing **upper bounds** on w(k), v(k) (in practice, the upper bounds usually known due to physical reasons/insight)

- $\circ$  use z(k) to repesent w(k)
- $\circ$  replacing linear equality constraints: Replacing v(k) by  $E_1x(k)+E_2u(k)+E_3w(k)+e_4$  in inequalities finally results in MLD model

$$x(k+1) = Ax(k) + B_1u(k) + B_2z(k)$$
 
$$y(k) = Cx(k) + D_1u(k) + D_2z(k)$$
 
$$\begin{bmatrix} 0 \\ E_1 \\ 0 \\ -E_1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ E_2 \\ 0 \\ -E_2 \end{bmatrix} u(k) + \begin{bmatrix} -M_w \\ M_v \\ 0 \\ 0 \end{bmatrix} \delta(k) + \begin{bmatrix} I \\ E_3 \\ -I \\ -E_3 \end{bmatrix} z(k) \leqslant \begin{bmatrix} 0 \\ M_ve - e_4 \\ 0 \\ e_4 \end{bmatrix}$$
 with  $e = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^\top$ ,  $z(k) = w(k)$ 

## LC and ELC systems

#### **Theorem**

Every LC system can be written as ELC system

$$v(k) \perp w(k)$$
 is equivalent to  $\sum v_i(k)w_i(k) = 0$ 

### **PWA and MLD systems**

#### Theorem

Well-posed PWA system can be rewritten as MLD system assuming that set of feasible states and inputs is bounded

See the example

#### Theorem

Completely well-posed MLD can be rewritten as PWA

**<u>well-posed</u>**: given x(k), u(k), then x(k+1), u(k+1) are unique

<u>completely well-posed</u>: given x(k), u(k), then x(k+1), u(k+1),  $\delta(k)$ , z(k) are unique. In MLD it means the inequalities can only yield one possible solution

### **MMPS** and ELC

#### Theorem

The classes of MMPS and ELC systems coincide

### $\mathbf{MMPS} \subseteq \mathbf{ELC}$

- Expressions of form  $f=x_i, f=lpha, f=f_k+f_l, f=eta f_k$  result in linear equations
- $f = \max\left(f_k, f_l
  ight) = -\min\left(-f_k, -f_l
  ight)$  can be rewritten as

$$f-f_k\geqslant 0,\quad f-f_l\geqslant 0,\quad (f-f_k)\,(f-f_l)=0$$

• Two or more ELC systems can be combined into one large ELC

#### $ELC \subseteq MMPS$

- Linear equations are MMPS expressions
- Complementarity condition can be transformed

$$ullet \ \forall i,\exists j\in\phi_i ext{ such that } \underbrace{\left(e_4-E_1x(k)-E_2u(k)-E_3d(k)
ight)_j}_{\geqslant 0}=0$$

 $\circ$  Then:  $\min_{j \in \phi_i} \left( e_4 - E_1 x(k) - E_2 u(k) - E_3 d(k) 
ight)_j = 0$  for each i

## MLD and ELC systems

#### **Theorem**

Every MLD system can be rewritten as ELC system

• boolean variables:

$$egin{aligned} -\delta_i(k) \leqslant 0 \ \delta_i(k) \leqslant 1 \ \delta_i(k) \left(1 - \delta_i(k)
ight) = 0 \end{aligned}$$

• Note, if want to direct transform MLD to MMPS:

$$\max\left(-\delta_i(k), \delta_i(k) - 1\right) = 0 \ \min\left(\delta_i(k), 1 - \delta_i(k)\right) = 0$$

#### **Theorem**

Every ELC system can be written as MLD system, provided that  $e_4-E_1x(k)-E_2u(k)-E_3d(k)$  is **bounded** 

• Transform Complementary Condition

$$egin{aligned} &(e_4)_j-\left(E_1x(k)+E_2u(k)+E_3d(k)
ight)_j\leqslant M_j\delta_j(k) & ext{ for each } j\in\phi_i\ \sum_{j\in\phi_i}\delta_j(k)\leqslant\#\phi_i-1 \end{aligned}$$

with  $\delta_j(k) \in \{0,1\}$  auxiliary variables, and  $M_j$  upper bound for  $(e_4-E_1x(k)-E_2u(k)-E_3d(k))_j$ 

### An example

See Lecture

## 4. Timed Automata

#### **Definition: Rectangular Sets**

Subset of  $\mathbb{R}^n$  set is called **rectangular** if it can be written as finite boolean combination of constraints of form

$$x_i \leqslant a, \quad x_i < b, \quad x_i = c, \quad x_i \geqslant d, \quad x_i > e$$

• Rectangular sets are "rectangles" or "boxes" in  $\mathbb{R}^n$  whose sides are **aligned with the axes**, or **unions** of such rectangles/boxes(including empty set)

#### **Timed Automaton**

Timed automaton is hybrid automaton with following characteristics:

- automaton involves **differential equations of form**  $\dot{x}_i=1$  continuous variables governed by this differential equation are called "clocks" or "timers"
- sets involved in definition of initial states, guards, and invariants are **rectangular sets**
- reset maps involve either rectangular set, or may leave certain states unchanged

### **Properties**



Timed automata involve simple continuous dynamics

- all differential equations of form  $\dot{x}=1$  (clock dynamics)
- all invariants, guards, etc. involve comparison of real-valued states with constants
- reset maps involve either rectangular set, or may leave certain states unchanged

Timed automata are limited for modeling physical systems and very well suited for encoding timing constraints

### 5. Timed Petri Nets

• **Transition enabled** if all input places  $(\bullet_t)$  contain at least 1 token

Compared to Untimed Petri Nets, Timed Petri Nets has two more variables:

- **discrete state variables** (markings,  $m_{\theta}(p)$ )
- **continuous state variables**(arrival times  $M_{\theta}(p)$ )

 $M_{\theta}(p) := \{\theta_1, \dots, \theta_{m_{\theta}(p)}\}$ , with arrival times  $\theta_1 \leqslant \theta_2 \leqslant \dots \leqslant \theta_{m_{\theta}(p)}$  of  $m_{\theta}(p)$  token in place p. And we also have **interval** [L(t), U(t)]: time interval for specified token during which it must be transmitted

## **Time Analysis**

Transition t becomes enabled at

$$\max_{p\inullet}\min M_{ heta}(p)$$

Then transition t may fire at some time

$$heta \in \left[ \max_{p \in ullet t} \min M_{ heta}(p) + L(t), \max_{p \in ullet t} \min M_{ heta}(p) + U(t) 
ight]$$

- If enabling condition is still **valid at final time** of firing interval, then transition is **forced to fire**
- However, many problems are undecidable or NP-hard

# **Summary**

- Frameworks
  - PWA
  - MLD
  - LC
  - ELC
  - MMPS
- Equivalence of these systems
- Transformation among these models
- Timed automata and Timed Petri Nets