Първо контролно по Изчислимост и сложност

Част 1: теория

- **1)** Дайте определение за примитивна рекурсивност на предикат $P: \mathbb{N}^n \longrightarrow \{\mathbf{t}, \mathbf{f}\}.$
- **2)** Нека $\mathcal{K} \subseteq \mathcal{F}_1$ е клас от едноместни частични функции. Кажете кога функцията U(a,x) е универсална за класа \mathcal{K} .
- **3)** Формулирайте S_n^m -теоремата за изчислимата функция f(a,b,x) (с параметри a и b).

Част 2: задачи

Нека $\mathcal{K} = \{mx + n | m \in \mathbb{N}, n \in \mathbb{N}\}$ е класът на всички линейни функции с коефициенти от \mathbb{N} . За всяка линейна функция f(x) = mx + n дефинираме $\kappa(f) - \kappa o \partial$ на f — по следния начин:

$$\kappa(f) = \Pi(m, n).$$

По-надолу с f_a ще означаваме линейната функция с код a.

- **1)** Докажете, че изображението $\kappa: \mathcal{K} \longrightarrow \mathbb{N}$ е биекция.
- **2)** Докажете, че класът \mathcal{K} има универсална функция (конструирайте я).
- **3)** Докажете, че никоя универсална функция U(a,x) за класа $\mathcal K$ не може да бъде линейна.
- **4)** Докажете, че съществува рекурсивна функция h(a), такава че за всяко $a \in \mathbb{N}$:

$$\varphi_{h(a)} = f_a.$$

5) (бонус:)) Докажете, че е примитивно рекурсивен предикатът P, който се определя с еквивалентността:

$$P(a,y) \iff y \in Range(f_a).$$

По определение $Range(f) = \{y \mid \exists x \in \mathbb{N} : f(x) \simeq y\}$.

Успех! 🛎