initial_modelling

June 5, 2022

1 Linear Regression

1.0.1 Importing libraries

```
[11]: import pandas as pd
import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score, median_absolute_error
import sklearn.metrics as metrics
```

1.0.2 Uploading data

[3]: data.head()

```
[3]: symbol score Date log_rate
0 A 0.572765 2008-07-02 -0.063982
1 A 0.576979 2008-07-16 0.016846
2 A 0.579936 2008-07-30 0.019815
3 A 0.569940 2008-08-13 -0.019493
4 A 0.550504 2016-07-13 0.042472
```

1.0.3 Information about dataset

Data types:

[5]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 29996 entries, 0 to 29995
Data columns (total 4 columns):
    # Column Non-Null Count Dtype
```

```
0
           symbol
                     29996 non-null
                                      object
      1
           score
                     29996 non-null
                                      float64
      2
           Date
                     29996 non-null
                                      object
      3
           log_rate 29996 non-null
                                      float64
     dtypes: float64(2), object(2)
     memory usage: 937.5+ KB
     Changing the type of 'date' variable:
[39]: data["Date"] = pd.to datetime(data["Date"])
      data = data.set_index('Date')
      data.sort_index(inplace=True)
[40]: data.head()
[40]:
                  symbol
                             score log_rate
      Date
      2004-02-11
                    FCFS
                          0.686924
                                     0.049570
      2004-02-11
                          0.757159
                                     0.003422
                     RCI
      2004-02-11
                     ESE
                         0.747727
                                     0.005126
      2004-02-11
                      NL
                          0.709419 0.017833
      2004-02-11
                    KSWS 0.826617 -0.020834
     Fundamental statistics on numeric variables
 [8]: data.describe()
 [8]:
                                 log_rate
                     score
             29996.000000
                            29996.000000
      count
                                0.006215
      mean
                 0.731574
      std
                 0.117569
                                 0.055155
      min
                 0.413554
                               -0.527210
      25%
                 0.654207
                               -0.020007
      50%
                  0.741993
                                0.007245
      75%
                  0.813804
                                 0.033962
                  0.987225
                                 0.916291
      max
     There are in total 29 996 observations. The mean score for this dataset is 0,73 and mean return
     rate is 0,006.
 [9]: data.symbol.value_counts()
 [9]: SHW
              170
      GEF
              140
      ORLY
              138
      INGR
              122
      GPC
              122
```

BMI

1

```
BOOT 1
POST 1
ULH 1
HLX 1
Name: symbol, Length: 1319, dtype: int64
```

There are 1319 companies in total, some of them occur only once in the time series and some even over 100 times.

1.0.4 Splitting the data into training and test sets

Training set involves data from 2010 to 2020 and test set includes the year 2021.

```
[63]: X_train = data['2010':'2020'].drop(['symbol','log_rate'], axis = 1)
y_train = data.loc['2010':'2020', 'log_rate']

X_test = data['2021':'2022'].drop(['symbol','log_rate'], axis = 1)
y_test = data.loc['2021':'2022', 'log_rate']
```

```
[64]: fig, ax=plt.subplots(figsize=(12, 6))

plt.plot(y_train, color = "black")
plt.plot(y_test, color = "red")
```

[64]: [<matplotlib.lines.Line2D at 0x19b387269d0>]


```
[65]: print("Number transactions X_train dataset: ", X_train.shape)
print("Number transactions y_train dataset: ", y_train.shape)
print("Number transactions X_test dataset: ", X_test.shape)
```

```
print("Number transactions y_test dataset: ", y_test.shape)
     Number transactions X_train dataset: (19328, 1)
     Number transactions y_train dataset: (19328,)
     Number transactions X_test dataset: (2260, 1)
     Number transactions y_test dataset:
                                          (2260,)
     1.0.5 Dummy regression
[66]: from sklearn.dummy import DummyRegressor
[67]: # train model
      reg_dummy = DummyRegressor(strategy = 'mean').fit(X_train, y_train)
      print('Coefficient of determination:', reg_dummy.score(X_train, y_train))
     Coefficient of determination: 0.0
     0% indicates that the model does not fit the training data.
[68]: # predict & evaluate
      y_pred_dum = reg_dummy.predict(X_test)
      print("Coefficient of determination (R2): %.5f" % r2_score(y_test , y_pred_dum)
      →)
      print("Mean absolute error (MAE): %.5f" % np.mean(np.absolute(y_pred_dum -__
      →y_test)))
      print("Residual sum of squares (MSE): %.5f" % mean_squared_error(y_test,_
      →y_pred_dum))
      print("Root mean squared error (RMSE): %.5f" % np.sqrt(metrics.
       →mean_squared_error(y_test, y_pred_dum)))
     Coefficient of determination (R2): -0.00022
     Mean absolute error (MAE): 0.04444
     Residual sum of squares (MSE): 0.00349
     Root mean squared error (RMSE): 0.05905
     1.0.6 Linear regression
[69]: from sklearn import metrics
      # train model
      lm = LinearRegression().fit(X_train, y_train)
      print('Coefficient of determination:', lm.score(X_train, y_train))
      print('Intercept:', lm.intercept_)
      print('Slope:', lm.coef_)
```

```
Coefficient of determination: 0.00040496151184277185   
Intercept: 0.013150793836373038   
Slope: [-0.00907272]   
f(x) = b \ x + b   f(x) = -0.009x + 0.013   ^2 = 0.0004
```

0.0004% indicates that the model does not fit the training data.

Measure of fit a model

predicted response:

```
[0.00565683 0.0075637 0.0068274 ... 0.00566467 0.00608964 0.00454928]
Coefficient of determination (R2): -0.00050
Mean absolute error (MAE): 0.04445
Residual sum of squares (MSE): 0.00349
Root mean squared error (RMSE): 0.05906
```

Adjusted R squared is adjusted for the number of independent variables in the model and equal -0.00050 (adjusted R^2 will always be less than or equal to R^2).

The average of the residuals equal 0.04445.

The variance of the residuals equal 0.00349.

The standard deviation of residuals equal 0.05906.

1.0.7 Comparison between dummy regression and linear regression combinated with observations from the test set.

[71]: <matplotlib.legend.Legend at 0x19b45b79820>

Model does not explain any of the variation in the response variable around its mean.

Linear regression is marginally better than dummy regression.

Both models do not fit the variables.