

第3讲工业流程——陌生图表快速破解

[3]	陌生图表的作用	Ē

①便于选择适宜的	•		、反应

②便于对比不同方案之间的优缺点

例:制备 $Fe(OH)_3$ 胶体:向沸水中逐滴加入 $5\sim6$ 滴 $FeCl_3$ 饱和溶液,继续煮沸至呈红褐色,停止加热。

【核心思想】适可而止,见好就收,综合分析,选择最优

思考角度

物质性质: 热稳定、水解、溶解度、挥发、胶体聚沉、氧化性或还原性、熔沸点

反应原理: 反应速率、平衡移动、催化剂活性、主副反应竞争

经济角度:能耗

1. 温度选择问题

选择××°C的原因:温度低于××°C时,随温度升高,反应速率加快;温度高于××°C时,随温度升

高,××易分解/易挥发/易水解

例: (2017全国卷 I) $TiO_2 \cdot xH_2O$ 沉淀与双氧水、氨水反应40min所得实验结果如下:

温度/°C	30	35	40	45	50
TiO ₂ ·xH ₂ O转化率/%	92	95	97	93	88

分析 40° C时 $\mathrm{TiO_{2}\cdot xH_{2}O}$ 转化率最高的原因:	

练: (2019西城期末)

吸收塔中的温度不宜过高,可能的原因是

例:熔融温度和钛的提取率关系如右图,适宜温度500°C,理由是:

2. 综合分析类问题

例: Al_a——Al³⁺单体形态铝

Al_b ——[Al₂(OH)_nCl_{6-n}]_m聚合形态铝

Al_c——Al(OH)₃胶体形态

Al_T——铝的总浓度

当T > 80°C时, Al_T 明显降低的原因是:

______0

二、溶液的pH值

思考角度

物质性质:离子沉淀、同价不同形,水解、钝化、胶体稳定性、氧化性或还原性

反应原理: 反应速率、平衡移动

经济角度:后续中和酸碱的处理

1. pH**范围选择问题**

pH过高可能导致: ______

pH过低可能导致: ______

例:制备Al(OH)₃

例:制备FeCO₃

练:制备K₂Cr₂O₇、制备NaVO₃、处理Na₂FeO₄

$$\operatorname{CrO}_4^{2-} \xrightarrow{\operatorname{H}^+} \operatorname{Cr}_2\operatorname{O}_7^{2-} \xrightarrow{\operatorname{H}^+} \operatorname{Cr}_3\operatorname{O}_{10}^{2-} \xrightarrow{\operatorname{H}^+} \operatorname{Cr}_4\operatorname{O}_{13}^{2-}$$

рН	$4\sim 6$	$6\sim 8$	$8\sim 10$	$10\sim12$
主要离子	VO_2^+	VO_3^-	$ m V_2O_7^{4-}$	VO_4^{3-}

2. 调pH分离离子

调节pH在xx范围的理由:使xx完全沉淀,且保证xx不形成沉淀

	${ m Fe}({ m OH})_3$	${ m Zn}({ m OH})_2$	${ m Mg(OH)_2}$
开始沉淀的pH	1.9	6.4	10.4
沉淀完全的pH	3.2	8.0	12.4
开始溶解的pH	<u>—</u>	10.5	<u>—</u>

例:用金属钴板(含少量Fe、Ni)制备氯化钴工艺流程如下:

注: 钴与盐酸反应极慢,需加入催化剂硝酸才可能进行实际生产。

化学式	沉淀完全pH	钴镍性质
$\mathrm{Co}(\mathrm{OH})_2$	9.4	
$\mathrm{Fe}(\mathrm{OH})_2$	9.6	$egin{aligned} { m Co^{2+}} + 2{ m NH_3} \cdot { m H_2O} &= { m Co(OH)_2} \downarrow + 2{ m NH_4^+} \ & { m Ni^{2+}} + 6{ m NH_3} \cdot { m H_2O} &= { m [Ni(NH_3)_6]^{2+}} + 6{ m H_2O} \end{aligned}$
$\mathrm{Fe}(\mathrm{OH})_3$	3.7	$\frac{1}{1} + 0 \frac{1}{1} \frac{1}{3} \cdot \frac{1}{1} \frac{1}{2} O = \left[\frac{1}{1} \frac{1}{1} \left(\frac{1}{1} \frac{1}{3} \right)_{6} \right] + 0 \frac{1}{1} \frac{1}{2} O$

(1) "除镍"步骤中, $\mathrm{NH_3\cdot H_2OH}$ 量对反应收率的影响见下表:从表中可知 $\mathrm{x=}$ _____时,除镍效果最好。

加NH ₃ ·H ₂ O调pH	收率/%	Ni ²⁺ 含量/%
9	98.1	0.08
9.5	98	0.05
10	97.6	0.005
10.3	94	0.005

例:工业上用含三价钒(V_2O_3)为主的某石煤为原料(含有 Al_2O_3 、CaO等杂质),钙化法焙烧制备 V_2O_5 ,其流程如下:

(1) 酸浸:酸度对钒和铝的溶解量的影响如右图所示:酸浸时溶液的酸度控制在大约3.2%,根据右图推测,酸浸时不选择更高酸度的原因是

【资料】+5价钒在溶液中的主要存在形式与溶液pH的关系:

pH	$4\sim 6$	$6\sim 8$	$8\sim 10$	$10\sim12$
主要离子	VO_2^+	VO_3^-	$\mathrm{V}_2\mathrm{O}_7^{4-}$	VO_4^{3-}

(2) 转沉:将浸出液中的钒转化为 NH_4VO_3 固体,其流程如下:

①浸出液中加入石灰乳的作用是_____。

②向 $(NH_4)_3$ VO_4 溶液中加入 NH_4 Cl溶液,控制溶液的pH=7.5。 当 pH>8时, NH_4 VO_3 的产量明显降低,原因是

练:亚砷酸 (H_3AsO_3) 可以用于治疗白血病,其在溶液中存在多种微粒形态,各种微粒物质的量分数与溶液pH关系如下图所示。

工业含砷(III)废水常用铁盐处理后排放。其原理是:铁盐混凝剂在溶液中产生 $Fe(OH)_3$ 胶粒,其表面带有正电荷,可吸附含砷化合物。经测定不同pH条件下铁盐对含砷(III)化合物的去除率如右图所示。pH在 $5\sim9$ 时,随溶液pH增大,铁盐混凝剂对含砷(III)化合物的吸附效果增强。结合图示解释可能的原因:

三、试剂用量/浓度选择

用量过少:______

用量过多: ______

例:次氯酸盐氧化法制备K₂FeO₄工艺流程如下:

已知发生副反应: $4 \text{FeO}_4^2 + 10 \text{H}_2 \text{O} \rightleftharpoons 4 \text{Fe(OH)} 3 + 3 \text{O}_2 + 8 \text{OH}^-$

Fe(NO ₃) ₃ ·9H ₂ O 添加量/g	碱性反应液外观	K ₂ FeO ₄ 晶体产量/g	K ₂ FeO ₄ 晶体纯度/%
15.5	少量 Fe(OH)₃↓	8.2	-
20.0	无任何可见铁沉淀物	13.73	18
24.0	有 Fe(OH ₃)↓	7.0	15.47

"合成"步骤中生成 K_2 FeO $_4$,根据下表,铁盐添加量最佳值为_____, K_2 FeO $_4$ 产量随铁盐的加入

先增大后减小的原因可能是______

练:(2020临颍月考)金属钛在航天、潜海和医疗方面应用广泛。以钛铁矿 [主要成分为钛酸亚铁 $({
m FeTiO_3})$,含少量 ${
m Fe_2O_3}]$ 为原料制备钛的工艺流程如图所示。

- (1) 步骤②、③、④中,均需进行的操作是_____(填操作名称)。
- (2) 硫酸质量分数对钛、铁浸出率的影响如图所示,据此判断,酸浸时

所加硫酸的质量分数应为_____(填范围)。

【题目特训】(2019秋・平度市期末)采用焙烧、碳酸钠浸出、硝酸浸出等湿法冶金工艺,从高碳镍钼 矿(主要含有 MoS_2 、 $CaCO_3$ 、Nis和石墨)中提取镍和钼等元索素,其主要工业流程如图:

已知: ①钼酸、钼酸钙和钼酸镍均难溶于水,钼酸钠和钼酸铵易溶于水;

②常温下,
$$K_{sp}$$
 (CaMoO₄) = 1.46×10^{-8} , K_{sp} (CacO₃) = 3.0×10^{-9} , K_{sp} (CaSO₄) = 9×10^{-6} , K_{sp} [Ni(OH)₂] = 5.4×10^{-16} , K_{sp} (NiCO₃) = 1.4×10^{-6}

请回答下列问题:

- (1) 钼酸铵晶体 $[(NH_4)_6 Mo_7 O_{24} \cdot 4H_2 O]$ 中钼元素的化合价为_____。写出"焙烧"过程中 MoS_2 转化为 MoO_3 的化学方程式为_____。
- (2) "碱浸"过程中,液固比(NaOH和Na₂CO₃混合液的体积与"焙砂"的质量之比)与碱浸率之间的关系如图所示,则"碱浸"时应选用的最佳液固比为_____。经实验测定,不同浸出剂对Mo元素的浸出效果对比表如下:

"碱浸"的浸出剂种类	浸出剂中 $\operatorname{c}\left(\operatorname{Na}^{+}\right)/\operatorname{mol}\cdot\operatorname{L}^{-1}$	浸出率(Mo元素)/%
NaOH溶液	1.0	45.44
NaOH和Na ₂ CO ₃ 混合液	1.0	75.35

试分析	试分析NaOH溶液对焙烧渣的浸出率低于NaOH和 Na $_2$ CO $_3$ 混合液的原因 $_{$					
		;	侧 浸道	的主要成分为	(填化学式)。	
(3)	"氨溶解"	过程中需要控制温	度在70°C,	温度过高或过低都会导致产品的]产量降低,原因为	
0						
(4)若"酸浸 $oxed{I}$ "过程所得的浸出液中 $oxed{c}\left(\mathrm{SO}_4^{2-} ight)=1.8\ \mathrm{mol}\cdot\mathrm{L}^{-1}$,此时溶液中 $oxed{c}\left(\mathrm{Ca}^{2+} ight)$ 为						

(2020福建模拟)钛被称为继铁、铝之后的第三金属。工业上常用硫酸酸解钛铁矿(主要成分为 ${
m FeTiO_3}$,还含有部分 ${
m Fe_2O_3}$)的方法制取金红石(${
m TiO_2}$),再还原 ${
m TiO_2}$ 制取金属钛。工业制取 ${
m TiO_2}$ 的工艺流程图如下:

- (1) 钛酸亚铁(FeTiO₃)中Ti的化合价为_____。
- (2)钛液1中钛以TiO $^{2+}$ 的形式存在,则FeTiO $_3$ 与硫酸反应的离子方程式为:

- (3) 为提高钛铁矿的酸解率,可添加适量氧化剂,依据下图判断,添加的最佳氧化剂为______ (填化学式)。
- (4)钛液1中加入的A物质是_____,流程中的操作a是_____。

(2020春・韶关期末)工业以软锰矿(主要成分是 MnO_2 ,含有 SiO_2 、 Fe_2O_3 等少量杂质)为主要原料制备高性能的磁性材料碳酸锰($MnCO_3$)。其工业流程如图1。

- (1) 为了提高"浸锰"过程中原料的浸出率,可以采取的措施有____。(写一条)
- (2)浸锰过程中 ${
 m Fe_2O_3}$ 与 ${
 m SO_2}$ 反应的化学方程式为: ${
 m Fe_2O_3}+{
 m SO_2}+2{
 m H}^+=2{
 m Fe}^{2+}+{
 m SO_4}^2+{
 m H_2O}$,该反应是经历以下两步反应实现的:i. ${
 m Fe_2O_3}+6{
 m H}^+=2{
 m Fe}^{3+}+3{
 m H_2O}$;ii. ……

写出 ii 的离子方程式: ______。

- (3) 过滤 I 所得滤液中主要存在的两种金属阳离子为____。(填离子符号)
- (4) "浸锰"反应中往往有副产物 ${
 m MnS_2O_6}$ 生成,温度对"浸锰"反应的影响如图 ${
 m 2NnS_2O_6}$ 的生成,"浸锰"的适宜温度是_____。
 - (5) 写出"氧化"过程中 MnO_2 与 SO_2 反应的化学方程式

- (6) 滤渣Ⅱ是____。(填化学式)
- (7)向过滤Ⅱ所得的滤液中加入NH₄HCO₃溶液时温度不宜太高的原因是

练:赤泥是铝土矿提取氧化铝过程中产生的固体废弃物,其主要成分为 Fe_2O_3 、 Al_2O_3 、CaO、 TiO_2 、 SiO_2 等,属于强碱性废渣。从赤泥中回收钛的工艺流程如下:

- (1)赤泥颗粒孔隙大,具有较大的比表面积,可作为废气 SO_2 的吸收剂,研究表明该过程中主要利用了化学中和反应,其次是_____。
- (2) 赤泥加一定量水打散的目的是。
- (3)已知高温烧结时, ${
 m TiO_2}$ 发生的反应是 ${
 m Na_2CO_3}+{
 m TiO_2}={
 m NaTiO_3}+{
 m CO_2}$,且 ${
 m Na_2TiO_3}$ 不溶于水。 则 ${
 m Al_2O_3}$ 在烧结中发生的反应是_______,水浸液里的主要溶质有______。
- (4) 酸浸时,若使钛的浸出率η达到90%,则根据图工业上应采取的适宜条件是:酸浓度和液固比的取值分别约为_____、___。同时浸出温度过高可能造成的环境污染是_____。

