Agrégation d'estimateurs pour le débruitage d'images

Troisièmes Rencontres des Jeunes Statisticiens -Aussois

Joseph Salmon ¹ et Erwan Le Pennec ^{1,2}

 $^{1} {\sf LPMA}$ Université Paris Diderot - Paris 7

²Projet SELECT INRIA - Saclay

31 Août - 4 septembre 2009

Sommaire

Méthodes à noyaux et NL-Means

Image, bruit et méthodes à noyaux Patchs et NL-Means Liens avec les Noyaux

Agrégation en statistique

Pré-estimateurs et agrégation Agrégation PAC-Bayesienne

Agrégation de Patchs

Agrégation de Patchs et résultats théoriques Implémentation de l'estimateur PAC-Bayesien Résultats numériques

Conclusion

NL-Means et Agrégation

Cadre

Estimer une image f à partir d'une observation bruitée Y $Y = f + \sigma W \qquad (W \text{ Normale, centrée, réduite})$

État de l'art

- ► Lissage selon les valeurs d'un pixel (pb : floutage)
- ► Approche orientée "Patch" : utiliser des voisinages de pixels plutôt que juste les valeurs des pixels
- ▶ NL-Means : Lissage gaussien dans un espace de Patchs

Point de vue de l'agrégation d'estimateurs

- Regarder les NL-means comme une recherche de la meilleur combinaison de patchs
- ► Cadre statistique de l'agrégation
- ▶ Nouveau point de vue et nouveaux résultats...

Image, bruit et estimation

Image $N \times N$

- ▶ $f(i_1, i_2) \in \mathbb{R}$ avec $i = (i_1, i_2) \in [1, N]^2$.
- ▶ Norme euclidienne

Observation bruitée

- $Y(i_1, i_2) = f(i_1, i_2) + \sigma W(i_1, i_2) .$
- $W(i_1, i_2)$ bruits gaussiens i.i.d. centrés, réduits. σ^2 connue
- Autres bruits possibles

Estimation

- ▶ Estimer $f(i_1, i_2)$ à partir de Y
- ► Comportement non local possible...

Méthodes à Noyaux

Principe

- Estimer $f(i_1, i_2)$ par une moyenne locale $\hat{f}(i_1, i_2) = \sum_{(k_1, k_2) \in \llbracket 1, N \rrbracket^2} \theta_{i_1, i_2, k_1, k_2} Y_{k_1, k_2}$
- ▶ Les poids $\theta_{i_1,i_2,k_1,k_2} = \theta_{i,k}$ peuvent (vont) dependre de Y

Noyau Classique

 $\bullet \ \theta_{i_1,i_2,k_1,k_2} = \frac{K(i_1 - k_1, i_2 - k_2)}{\sum_{k_1',k_2'} K(i_1 - k_1', i_2 - k_2')} \ \text{(ne dépend pas de } Y\text{)}$

▶ Exemple : Noyau gaussien $K(i_1,i_2)=e^{-(i_1^2+i_2^2)/2h^2}$

Noyaux dépendants des données

Bilateral filtering

$$\bullet \ \theta_{i,k} = \frac{K(i_1 - k_1, i_2 - k_2) \times K'(Y(i_1, i_2) - Y(k_1, k_2))}{\sum_{k'_1, k'_2} K(i_1 - k'_1, i_2 - k'_2) \times K'(Y(i_1, i_2) - Y(k'_1, k'_2))}$$

▶ Version Gaussienne :

$$\theta_{i,k} = \frac{e^{-\frac{(i_1-k_1)^2+(i_2-k_2)^2}{2h^2}} \times e^{-\frac{(Y(i_1,i_2)-Y(k_1,k_2))^2}{2h'^2}}}{\sum_{k_1',k_2'} e^{-\frac{(i_1-k_1')^2+(i_2-k_2')^2}{2h^2}} \times e^{-\frac{(Y(i_1,i_2)-Y(k_1',k_2'))^2}{2h'^2}}$$

- ► Intuition : moyenne des pixels proches en distance et en valeurs
- ► Limite : la valeur d'un pixel est un paramètre trop local

Méthode à Patchs

Patch

- ▶ Patch : version moins localisée que la valeur d'un pixel
- ▶ Patch centré en P(f)(i) de largeur w : $P(f)(i)(k_1,k_2) = f(i_1+k_1,i_1+k_2), \text{ with } 0 \leq |k_1|, |k_2| \leq \frac{w-1}{2}$
- lacktriangle On retrouve facilement une image f à partir de patchs P(f)

Intuition

► Utiliser des poids qui rendent compte de la ressemblance des patchs

Patch $P(Y)(i) = P_i$:

- ► Patch *P* à débruiter
- ► Patchs similaires, utiles : fort poids
- Patchs moins similaires, moins utiles : petits poids
- Patchs très différents, inutiles : poids à zéro

Zone de recherche, poids et patchs

NL-Means

NL-Means [BCM05]

- ► Choisir une mesure de similarité *D* entre patchs
- ▶ Utiliser des poids $\theta_{i,k} = \frac{K'(D(P_i, P_k))}{\sum_k K'(D(P_i, P_k))}$ avec $D(P_i, P_k) = \|P_i P_k\|$ pour mesurer la similarité, un noyau gaussien $K'(x) = \exp(-x^2/\beta)$ et une température $\beta = \gamma \sigma^2$.

Résultats

- ► Méthode simple et efficace
- ▶ Performance proche des meilleurs méthodes de débruitage

Variations

- Choix automatique de la taille de la zone de recherche (Kervrann et al. [KB06])
- ► Polynômes locaux d'ordre plus élevé (Takeda et al. [TFM07])
- ► Changer la mesure de similarité (Azzabou et al. [APG07])

Interprétation des NL-Means

Noyau local optimal?

les NL-Means trouve un noyau local adapté à la géométrie!

Le meilleur noyau local?

▶ Peut-on comparer les NL-means au meilleur noyau local

$$\mathbb{E}(\|f - \hat{f}\|^2) \le C \arg\min_{\theta} \sum_{i} |f(i) - \sum_{k} \theta_{i,k} f(k)|^2 + N^2 \sigma^2 \|\theta\|^2 ?$$

Consistance de la méthode [BCM05]

Limites:

- ▶ besoin d'hypothèses fortes : stationnarité, β -mélange (vraies pour les textures . . .)
- ▶ zone de recherche = image entière : algorithme trop lent, déraisonable en pratique
- ► fenêtre $\longrightarrow 0$: choix [BCM05] $12\sigma^2$? Solution partielle [KB06] méthode Lepskii.

Morale:

Le cadre asymptotique explique mal les bonnes performances pratiques \Longrightarrow Changer de point de vue!

Pré-estimateurs et agrégation

Modèle et Pré-estimateurs

- ▶ $Y = f + \sigma W$ de taille $N \times N$.
- $ightharpoonup \{P_k\}$ ensemble de M de pré-estimateurs de f (obtenus indépendamment)

Agrégation

- ▶ Estimer f comme moyenne pondérée $\hat{f} = P_{\theta} = \sum_{k} \theta_{k} P_{k}$
- lacktriangle Procédure d'agrégation : manière de choisir $heta_k$ à partir de Y

Inégalité Oracle

ightharpoonup Résultat typique : agrégation "Optimale" parmi une classe Θ ,

$$\mathbb{E}(\|f - \hat{f}\|^2) \le C \inf_{\theta \in \Theta} \|f - P_{\theta}\|^2 + \operatorname{pen}(\theta, \sigma)$$

ightharpoonup C, Θ et pen dépendant de la procédure.

Poids Exponentiels

$$\widehat{\theta_j^{EW}} \stackrel{\triangle}{=} \frac{\exp\left(-\|Y - P_j\|^2/\beta\right)}{\sum_{k=1}^{M} \exp\left(-\|Y - P_k\|^2/\beta\right)}$$

Inégalité Oracle (Sélection de Modèle) [Lec07]

Soit P_1, \ldots, P_M des fonctions bornées sur [0,1]. Alors il existe une constante K>0, telle que pour tout $\varepsilon>0$, on a :

$$\mathbb{E}\|f_{\widehat{\theta}^{EW}} - f\|^2 \le (1 + \varepsilon) \min_{j=1,\dots,M} \left(\|f - P_j\|^2 \right) + \frac{K \log M}{\varepsilon}$$

Agrégation PAC-Bayesienne

Agrégation PAC-Bayesienne

- ▶ Procédure d'agrégation basée sur des poids exponentiels
- lacktriangle Définie pour un a priori π sur \mathbb{R}^M par $\hat{f}=P_{\theta_\pi}$, avec

$$\theta_{\pi} = \int_{\mathbb{R}^M} \frac{e^{-\frac{1}{\beta} \|Y - P_{\theta}\|^2}}{\int_{\mathbb{R}^M} e^{-\frac{1}{\beta} \|Y - P_{\theta'}\|^2} d\pi(\theta')} \theta d\pi(\theta).$$

Pour l'a priori $\pi = \sum_k \delta_k : \hat{f} = \sum_k \frac{e^{-\frac{1}{\beta}\|Y - P_k\|^2}}{\sum_k e^{-\frac{1}{\beta}\|Y - P_{k'}\|^2}} P_k$.

Inégalité Oracle

▶ Inégalité Oracle : si la température $\beta \ge 4\sigma^2$,

$$\mathbb{E}(\|f - \hat{f}\|^2) \le \inf_{p} \int_{\theta \in \mathbb{R}^M} \|f - P_{\theta}\|^2 dp + \beta \mathcal{K}(p, \pi).$$

avec $\mathcal{K}(p,\pi)$ la divergence de Kullback-Leibler

Choix de l'a priori

Borne de l'erreur et a priori

- $\blacktriangleright \mathbb{E}(\|f \hat{f}\|^2) \le \inf_{p} \int_{\theta \subset \mathbb{R}^M} \|f P_{\theta}\|^2 dp + \beta \mathcal{K}(p, \pi).$
- ► Compromis entre la localisation de p proche du meilleur aggrégat "Oracle" P_{θ} et une proximité avec l'a priori π .
- ightharpoonup Choisir π afin que cette quantité soit petite "uniformément"...

A priori discret

- ▶ A priori $\pi = \sum_k \delta_k : \mathbb{E}(\|f \hat{f}\|^2) \le \inf_k \|f P_k\|^2 + \beta \log M$.
- ► Aussi bon que le meilleur pré-estimateur...

A priori sparsifiant

- \blacktriangleright π : i.i.d. loi à queues épaisses : Student [DT07]
- ▶ Borne : $\mathbb{E}(\|f \hat{f}\|^2) \le \inf_{\theta \in \mathbb{R}^M} \|f P_{\theta}\|^2 + C\beta \|\theta\|_0 \log M$.
- Aussi bien que le meilleur agrégat "sparse"...

Inégalité Oracle Parcimonieuse

Prenons:

$$\Theta = \mathbb{R}^M$$
 et $\Pi(d\theta) = \pi(\theta)d\theta$:

$$\pi_0(t) = \frac{2}{\pi(1+t^2)^2}, \quad \forall t \in \mathbb{R}$$

$$\pi(\theta) = \prod_{j=1}^{M} \frac{1}{\tau} \pi_0(\frac{\theta_j}{\tau}), \quad \forall \theta \in \mathbb{R}^M$$

 π en dimension 2

Inégalité Oracle "Sparse" [DT07]

Si
$$W \sim \mathcal{N}(0, \sigma^2)$$
, $\tau = \frac{\beta}{\sqrt{nM}}$ et $\beta \geq 4\sigma^2$, il existe une constante c

$$\mathbb{E}\left(\|\widehat{f} - f\|^2\right) \le \inf_{\theta \in \mathbb{R}^M} \left[\|f_{\theta} - f\|^2 + 4\beta \|\theta\|_0 \log\left(1 + \frac{\|\theta\|_1}{\tau}\right) + c\beta \right]$$

Agrégation de Patchs

Patchs en tant que pré-estimateurs

- ▶ Utiliser les patchs P(Y)(k, l) comme pré-estimateurs
- ▶ Seul problème : non indépendance avec l'observée P(Y)(i,j).

Théorème?

▶ Même type que pour l'agrégation :

$$\mathbb{E}(\|P(f)(i,j) - P(\hat{f})(i,j)\|^{2})$$

$$\leq \inf_{p} \int_{\theta \in \mathbb{R}^{M}} (\|P(f)(i,j) - P_{\theta}\|^{2} + N^{2}\sigma^{2}\|\theta\|^{2}) dp + \beta \mathcal{K}(p,\pi)$$

▶ preuve : besoin d'un découpage ou de plus de travail...

A priori sur les patchs

- Discrèt (NL-Means) : sélection...
- ➤ "Sparsifiant" (Student, mélange Gaussien) : noyau optimal sparse!

Estimateur PAC-Bayesien et méthodes de Monte Carlo

Implémentation de l'estimateur PAC-Bayesien

- ► Intégrale en grande dimension, similaire à des intégrales apparaissant dans le cadre bayesien
- ► Problème important!
- ▶ Méthode de Monte Carlo basée sur une diffusion de Langevin
- ► Valeur approchée seulement... mais précision suffisante
- ► Encore des problèmes de convergence
- ▶ Un pré-sélection des patchs aide...

Résultats numériques (PSNR)

Originale

Bruitée (22.06 dB)

NL Means (29.69 dB)

PAC-Bayesien (29.69 dB)

Cadre expérimental

- lacktriangle Comparaison avec les NL-Means classiques $\gamma=12$
- ► Agrégation PAC-Bayesienne avec a priori de Student

Resultats

- ► Semblable aux NL-Means
- ► Améliorations possibles...

Originale

NL Means (29.69 dB)

Bruitée (22.06 dB)

PAC-Bayesien (29.69 dB)

NL Means (31.59 dB) PAC-Bayesien (30.78 dB)

Originale

NL Means (24.23dB)

Bruitée (22.21 dB)

PAC-Bayesien (26.96 dB)

Conclusion

Un nouveau regard sur les NL-means

- ▶ Un nouveau regard sur les poids exponentiels et sur la distance L_2 pour la similarité entre patchs
- Nouvelle procédure d'agrégation de performance comparable aux NL-Means avec un (peu de) contrôle théorique
- ► Adaptable à d'autres dictionnaires (pas seulement ceux provenants de l'image elle même)

Encore du pain sur la planche

- Étendre les théorèmes au cas dépendant,
- ► Choix du meilleur a priori
- ► Accélérer la convergence des chaînes de Monte Carlo
- **...**

Références bibliographiques I

- Noura Azzabou, Nikos Paragios, and Frederic Guichard.
 Image denoising based on adapted dictionary computation.
 In ICIP (3), pages 109–112. IEEE, 2007.
- ► Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A review of image denoising algorithms, with a new one. Multiscale Model. Simul., 4(2):490–530 (electronic), 2005.
- A. S. Dalalyan and A. B. Tsybakov.
 Aggregation by exponential weighting, sharp oracle inequalities and sparsity.
 In 20th Annual Conference on Learning Theory, COLT, pages 97–111, 2007.
- ► Charles Kervrann and Jérôme Boulanger.
 Optimal spatial adaptation for patch-based image denoising.

 IEEETIP, 15(10): '2866–2878, 2006.

Références bibliographiques II

► Guillaume Lecué.

Optimal rates of aggregation in classification under low noise assumption.

Bernoulli, 13(4):1000-1022, 2007.

► H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image processing and reconstruction. *IEEE Transactions on Image Processing*, 16(2):349–366, 2007.