Task1: MissingTile

Theorem: Any 2ⁿ -by- 2ⁿ grid with one painted cell can be tiled using L-shaped triominoes such that the entire grid is covered by triominoes but no triominoes overlap with each other nor the painted cell.

Proof: By Induction

Predicate: P(i): Any 2ⁱ -by- 2ⁱ grid with one painted cell can be fully tiled using L-shaped triominoes.

Base Case: P(1): 2 -by- 2 grid with one painted square can be filled with L-shaped triominoes. TRUE

Induction Step: Assume that P(k) is true for all k>0, $2^k * 2^k$ grid with one painted square can be filled with L-shaped triominoes.

Want to show: P(k+1): 2^{k+1} -by- 2^{k+1} grid with one painted square can be filled with L-shaped triominoes as well.

Consider 2^{k+1} -by- 2^{k+1} grid divided into 4 pieces and one of them is colored.

Since $2^{k+1} * 2^{k+1} = 2^{2k+2}$, if divide it by 4 we'll get $\frac{2^{2k+2}}{4} = \frac{2^{2k}*2*2}{4}$

= 2 , if divide it by 4 we if get
$$\frac{1}{4} = \frac{1}{4}$$

So now we have only 3 of $2^k * 2^k$ grids left, which we can apply the inductive hypothesis to each grid and it will work.

Therefore, by mathematical induction, we can conclude that any 2^n -by- 2^n grid with one painted cell can be fully tiled using L-shaped triominoes, where n can be any positive integers.

Task4: TailSumofSquares

Consider the following snippet of Java code:

```
int sumHelper(int n , int a) {
      if (n==0) return a;
      else return sumHelper(n-1, a + n*n);
}
int sumSqr(int n) { return sumHelper(n, 0); }
```

YourTask: Prove that for $n \ge 1$, sumSqr $(n) \hookrightarrow 1^2 + 2^2 + 3^2 + \dots + n^2$. To prove this, use induction to show that sumHelper computes the "right thing." (*Hint: How did we prove* fact_helper *in class?*)

Theorem: sumHelper $(n, 0) \hookrightarrow 1^2 + 2^2 + 3^2 + \dots + n^2$, for $n \ge 1$.

Proof: P(n): sumSqr(n) \Rightarrow 1²+2²+3²+...+n², for $n \ge 1$.

Base Case: P(1): $sumSqr(1) \rightarrow 1^2 == 1$ TRUE

Induction Step: Assume P(n) is true, thus $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Want to show: P(n+1) is also true: sumSqr $(n + 1) \rightarrow 1^2 + 2^2 + 3^2 + \dots + n^2 + (n + 1)^2 = \frac{(n+1)(n+2)(2n+3)}{6}$ $1^2 + 2^2 + 3^2 + \dots + n^2 + (n + 1)^2 = \frac{n(n+1)(2n+1)}{6} + (n + 1)^2$ $= \frac{n(n+1)(2n+1)}{6} + (n + 1)^2$ $= \frac{n(2n+1) + 6(n+1)}{6} * (n + 1)$ $= \frac{(2n^2 + n) + (6n+6)}{6} * (n + 1)$ $= \frac{(2n^2 + 7n + 6}{6} * (n + 1)$ $= \frac{(n+1)(n+2)(2n+3)}{6}$

Therefore, by mathematical induction, we can conclude that for $n \ge 1$, $sumSqr(n) \hookrightarrow 1^2 + 2^2 + 3^2 + \dots + n^2$, sumHelper is able to compute correctly.

Task5: MysteriousFunction

Consider the following Python function foo, which takes as input an integer $n \ge 1$ and returns a tuple of length 2 of integers:

def foo(n):

return (1, 2)

else:

$$p, q = foo(n-1)$$

Proof: for $n \ge 1$, foo(n) \Rightarrow (p,q) such that $\frac{p}{q} = 1 - \frac{1}{n+1}$

Base Case: $foo(1) \hookrightarrow (1,2)$ TRUE

Induction Step: Assume foo(n) is true, thus $\frac{p_n}{q_n} = 1 - \frac{1}{n+1} = \frac{n}{n+1}$

Then
$$p_n = n$$
 and $q_n = n + 1$

Want to show: foo(n+1) is also true, thus $\frac{p_{n+1}}{q_{n+1}} = 1 - \frac{1}{n+2} = \frac{n+1}{n+2}$

Since foo(n+1) is one step after foo(n) it means that

$$\frac{p_{n+1}}{q_{n+1}} = \frac{q_n + p_n^*(n+1)^*(n+2)}{q_n^*(n+1)^*(n+2)} = \frac{(n+1) + (n^*(n+1)^*(n+2))}{(n+1)^*(n+1)^*(n+2)}$$

$$= \frac{n^3 + 3n^2 + 3n + 1}{(n+1)^2(n+2)}$$

$$= \frac{(n+1)^3}{(n+1)^2(n+2)}$$

$$= \frac{(n+1)}{(n+2)}$$

Therefore, by mathematical induction, we can conclude that for $n \ge 1$, foo(n) (p,q) such that

$$\frac{p}{q} = 1 - \frac{1}{n+1}$$

Task7: Midway Tower of Hanoi

You'll begin by showing a useful property. Prove, using mathematical induction, that for any $n \ge 0$, solve_hanoi (n, ...) generates exactly $2^n - 1$ lines of instructions.

Theorem: For any n disks stack on each other where the largest is always at the bottom and the smallest one is at the top. It will generate exactly $2^n - 1$ moves.

Predicate: P(i): any i disks take 2ⁱ - 1 lines of instructions.

Base Case: P(1): $2^1 - 1 = 1$ TRUE since 1 desk only takes 1 move from one pec to another.

Induction Step: Assume $P(n) = 2^n - 1$ is true.

Want to show: $P(n+1) = 2^{n+1} - 1$ is also true.

Before we will get to move the last piece of the desk(largest), in this case it is n+1 one, we will have to move the one before first: (n+1)-1 ones. But since desk n is larger than previous moved desks, moving to an empty pec is the only choice if we follow the rule, then it will take an extra 1 step.

$$2^{n+1}$$
 – 1 = move n disks out + move the desk (n+1) + move n desks to pile on top of the current dest n+1
= P(n) + 1 + P(n)
= $(2^n - 1) + 1 + (2^n - 1)$
= $2 * 2^n - 1$
= $2^{n+1} - 1$

Therefore, by mathematical induction, we can conclude that any i well stacked disks take 2^{i} – 1 moves from one pec to another.