BIG DATA SYSTEMS

CS 564- Fall 2018

ACKs: Magda Balazinska

WHAT IS BIG DATA?

The three V's:

- high Volume
- high Variety
- high Velocity

VOLUME

- Databases parallelize easily
- Techniques available from the 80's (GAMMA project started @ Wisconsin!)
 - data partitioning
 - parallel query processing
- SQL is embarrassingly parallel

VARIETY

- complex workloads:
 - Machine Learning tasks: e.g. click prediction, topic modeling, SVM, k-means
- various types of data:
 - text data
 - semi-structured data
 - graph data
 - multimedia (video, photos)

VELOCITY

- data is generated very fast
- data needs to be processed very fast
- real time data analytics
- data streaming (each data item can be processed only once!): e.g. financial data

ANOTHER V: VERACITY

The data collected is often uncertain

- inconsistent data (violated constraints)
- incomplete data (missing values)
- ambiguous data

Example: sensor data

DATA ANALYTICS COMPANIES

- Greenplum: founded in 2003 acquired by EMC in 2010. A parallel shared-nothing DBMS
- Vertica: founded in 2005 and acquired by HP in 2011. A parallel column-store shared-nothing DBMS
- AsterData: founded in 2005 acquired by Teradata in 2011. A parallel, shared-nothing, MapReducebased data processing system
- Netezza: founded in 2000 and acquired by IBM in 2010. A parallel shared-nothing DBMS

THE BIG DATA LANDSCAPE

SCALING FOR BIG DATA

- OLTP: Online Transaction Processing
 - scale transactions per second
 - Amazon, Facebook, Twitter, ...

- OLAP: Online Analytical Processing
 - scale query response time
 - analysis of massive datasets, decision making, ...

2 APPROACHES

- Parallel databases, started at the 80s. Both for
 - OLTP (transaction processing)
 - OLAP (decision support queries)
- MapReduce
 - first developed by Google, published in 2004
 - only for decision support queries
 - ecosystem around it: Hadoop, PigLatin, Hive, ...

Today these two approaches have been converging!

PARALLEL DBMS

- The goal is to improve performance by executing multiple operations in parallel
- Terminology to measure performance:
 - Speed-up: using more processors, how much faster does the task run (if problem size is fixed)?
 - Scale-up: using more processors, does performance remain the same as we increase the problem size?

SCALE-UP VS SCALE-OUT

Scale-up

 using more powerful machines, more processors/RAM per machine

Scale-out

using a larger number of servers

ARCHITECTURES

- Shared memory
 - nodes share RAM + disk
 - easy to program, expensive to scale
- Shared disk
 - nodes access the same disk, hard to scale
- Shared nothing
 - nodes have their own RAM+disk
 - connected through a fast network

PARALLEL QUERY EVALUATION

- Multiple DBMS instances also called nodes execute on machines in a cluster
 - one instance plays role of the coordinator
 - other instances play role of workers
- Workers execute queries
 - typically all workers execute the same plan (intraoperator parallelism, intra-query parallelism)
 - workers can execute multiple queries at the same time (inter-query parallelism)

PARALLEL DATA STORAGE

Horizontal data partitioning

- block partitioned
- hash partitioned
- range partitioned

Uniform vs skewed partitioning

PARALLEL QUERY ALGORITHMS

Parallel Selection

- Parallel Join
 - hash join
 - broadcast join

BEYOND PARALLEL DBMS

Many big data systems go beyond the capabilities of relational systems:

- MapReduce/Hadoop
- Spark, SparkSQL
- Mlib, Tensorflow
- Graph processing systems
- Stream processing systems