Advanced Shortest Paths: A-star Algorithm (A^*)

Michael Levin

Higher School of Economics

Graph Algorithms

Data Structures and Algorithms

Outline

- 1 Directed Search
- 2 Bidirectional A*
- 3 Lower Bounds
- 4 Landmarks

Bidirectional Search

Directed Search

Potential Function

Take any potential function $\pi(v)$ mapping vertices to real numbers.

Potential Function

- Take any potential function $\pi(v)$ mapping vertices to real numbers.
- It defines new edge weights $\ell_{\pi}(u, v) = \ell(u, v) \pi(u) + \pi(v)$

Potential Function

- Take any potential function $\pi(v)$ mapping vertices to real numbers.
- It defines new edge weights $\ell_{\pi}(u, v) = \ell(u, v) \pi(u) + \pi(v)$
- Replacing ℓ by ℓ_π does not change shortest paths

Lemma

For any potential function $\pi: V \to \mathbb{R}$, for any two vertices s and t in the graph and

any two vertices
$$s$$
 and t in the graph and any path P between them,

 $\ell_{\pi}(P) = \ell(P) - \pi(s) + \pi(t).$

$$P: s = v_1 \rightarrow v_2 \cdots \rightarrow v_k = t$$

 $\ell_\pi(P) = \sum \ell_\pi(v_i, v_{i+1}) =$

$$i=1 \\ = \ell(v_1, v_2) - \pi(v_1) + \pi(v_2) + \\ + \ell(v_2, v_3) - \pi(v_2) + \pi(v_3) + \\ + \dots + \\ + \ell(v_{k-2}, v_{k-1}) - \pi(v_{k-2}) + \pi(v_{k-1}) + \\ + \ell(v_{k-1}, v_k) - \pi(v_{k-1}) + \pi(v_k) = \\ = \sum_{i=1}^{k-1} \ell(v_i, v_{i+1}) - \pi(v_1) + \pi(v_k) = \\ = \ell(P) - \pi(s) + \pi(t)$$

■ Take some potential function π

- Take some potential function π
- Launch Dijkstra algorithm with edge weights ℓ_{π}

- Take some potential function π
- Launch Dijkstra algorithm with edge weights ℓ_{π}
- The resulting shortest path is also a shortest path initially

- $lue{}$ Take some potential function π
- Launch Dijkstra algorithm with edge weights ℓ_{π}
- The resulting shortest path is also a shortest path initially
- Does any π fit us?

- lacktriangle Take some potential function π
- Launch Dijkstra algorithm with edge weights ℓ_{π}
- The resulting shortest path is also a shortest path initially
- Does any π fit us?
- For any edge (u, v), the new length $\ell_{\pi}(u, v)$ must be non-negative such π is called feasible

Intuition

- $\pi(v)$ is an estimation of d(v, t) "how far is it from here to t?"
- If we have such estimation, we can often avoid going wrong direction — directed search
- Typically $\pi(v)$ is a lower bound on d(v,t)
- I.e., on a real map a path from v to t cannot be shorter than the straight line segment from v to t

*A** ≡ Dijkstra

- On each step, pick the vertex v minimizing dist $[v] \pi(s) + \pi(v)$
- $\pi(s)$ is the same for all v, so v minimizes $\operatorname{dist}[v] + \pi(v)$ the most promising vertex
- \blacksquare $\pi(v)$ is an estimate of d(v,t)
- Pick the vertex v with the minimum current estimate of d(s, v) + d(v, t)
- Thus the search is directed

Performance of A^*

If $\pi(v)$ gives lower bound on d(v, t)

- Worst case: $\pi(v) = 0$ for all v the same as Dijkstra
- Best case: $\pi(v) = d(v, t)$ for all v then $\ell_{\pi}(u, v) = 0$ iff (u, v) is on a shortest path to t, so search visits only the edges of shortest s t paths
- It can be shown that the tighter are the lower bounds — the fewer vertices will be scanned

Outline

- 1 Directed Search
- 2 Bidirectional A*
- 3 Lower Bounds
- 4 Landmarks

Bidirectional A*

- Same as Bidirectional Dijkstra, but with potentials
- Needs two potential functions: $\pi_f(v)$ estimates d(v, t), $\pi_r(v)$ estimates d(s, v)
- Problem: different edge weights: $\ell_{\pi_f}(u, v) = \ell(u, v) \pi_f(u) + \pi_f(v),$ $\ell_{\pi_r}(u, v) = \ell(u, v) \pi_r(v) + \pi_r(u)$

Bidirectional A*

- We need $\ell_{\pi_f}(u,v) = \ell_{\pi_r}(u,v) \Rightarrow$ $\pi_f(u) + \pi_r(u) = \pi_f(v) + \pi_r(v)$ for any (u,v)
- Need constant $\pi_f(u) + \pi_r(u)$ for any u
- Use $p_f(u) = \frac{\pi_f(u) \pi_r(u)}{2}, p_r(u) = -p_f(u)$
- Then $p_f(u) + p_r(u) = 0$ for any u

Lemma

If π_f is a feasible potential for forward search, and π_r is a feasible potential for reverse search, then $p_f = \frac{\pi_f - \pi_r}{2}$ is a feasible

potential for forward search.

$$\ell(u,v) - \pi_f(u) + \pi_f(v) \geq 0$$

$$\ell(u,v) - \pi_f(u) + \pi_f(v) \geq 0$$

$$\ell(u,v) - \pi_r(u) + \pi_r(v) \ge 0$$

$$\ell(u,v) - \pi_r(v) + \pi_r(u) \ge 0$$

$$\ell(u,v) - \pi_f(u) + \pi_f(v) \geq 0$$

$$\ell(u,v) - \pi_r(v) + \pi_r(u) \geq 0$$

$$\ell(u, v) - \pi_r(v) + \pi_r(u) \ge 0$$

$$2\ell(u, v) - (\pi_f(u) - \pi_r(u)) + (\pi_f(v) - \pi_r(u))$$

 $\pi_r(v)) > 0$

$$\ell(u, v) - \pi_f(u) + \pi_f(v) \geq 0$$

•
$$\ell(u, v) - \pi_r(v) + \pi_r(u) \ge 0$$

■
$$2\ell(u, v) - (\pi_f(u) - \pi_r(u)) + (\pi_f(v) - \pi_r(v)) \ge 0$$

$$\ell(u,v) - \frac{\pi_f(u) - \pi_r(u)}{2} + \frac{\pi_f(v) - \pi_r(v)}{2} \ge 0$$

$$\ell(u, v) - \pi_f(u) + \pi_f(v) \ge 0$$

$$\ell(u,v) - \pi_r(v) + \pi_r(u) \geq 0$$

$$\ell(u,v) - \pi_r(v) + \pi_r(u) \geq 0$$

$$= 2\ell(u, v) - (\pi_f(u) - \pi_r(u)) + (\pi_f(v) - \pi_f(v))$$

$$2\ell(u,v) - (\pi_f(u) - \pi_r(u))$$

$$2\ell(u, v) - (\pi_f(u) - \pi_r(u)) - \pi_r(u) > 0$$

$$\ell(u, v) - \frac{\pi_f(u) - \pi_r(u)}{2} + \frac{\pi_f(v) - \pi_r(v)}{2} \ge 0$$

$$\ell(u, v) - p_f(u) + p_f(v) > 0$$

$$\pi_r(v)) \ge 0$$

$$\ell(u, v) - \frac{\pi_f(u) - \pi_r(u)}{2} + \frac{\pi_f(v) - \pi_r(v)}{2} \ge 0$$

Outline

- 1 Directed Search
- 2 Bidirectional A*
- **3** Lower Bounds
- 4 Landmarks

Lemma

If π is feasible, and $\pi(t) \leq 0$, then $\pi(v) \leq d(v,t)$ for any v

- $\ell_{\pi}(x,y) > 0$ for any x,y, so $\ell_{\pi}(P) > 0$ for any path P

d(v,t)

Take a
$$v - t$$
 shortest path

 $0 < \ell_{\pi}(P) = \ell(P) - \pi(v) + \pi(t) < 0$

 $\ell(P) - \pi(v) \Rightarrow \pi(v) \leq \ell(P) =$

Euclidean Potential

Lemma

Consider a road network on a plane map with each vertex v having coordinates (v.x, v.y). The potential given by Euclidean distance (length of a line segment) between v and t $\pi(v) = d_E(v, t) =$ $\sqrt{(v.x-t.x)^2+(v.y-t.y)^2}$ is feasible, and $\pi(t) = 0$.

For any edge $(u, v) \in E$, $\ell(u, v) \ge d_E(u, v)$, because line segment is the shortest path between two points on a plane

- For any edge $(u, v) \in E$, $\ell(u, v) \ge d_E(u, v)$, because line segment is the shortest path between two points on a plane
- $\pi(u) = d_E(u, t) \leq_{\text{(triangle inequality)}} d_E(u, v) + d_E(v, t) \leq \ell(u, v) + \pi(v) \Rightarrow \ell(u, v) \pi(u) + \pi(v) > 0$

- For any edge $(u, v) \in E$, $\ell(u, v) \ge d_E(u, v)$, because line segment is the shortest path between two points on a plane
- $\pi(u) = d_E(u,t) \leq_{\text{(triangle inequality)}}$ $d_E(u,v) + d_E(v,t) \leq \ell(u,v) + \pi(v) \Rightarrow$ $\ell(u,v) \pi(u) + \pi(v) \geq 0$

$$\pi(t) = d_E(t,t) = 0$$

A* on a Plane Map

- Need to find the shortest path from s to t
- For each v, compute $\pi(v) = d_E(v, t)$
- Launch Dijkstra with potentials $\pi(v)$

Outline

- 1 Directed Search
- 2 Bidirectional A*
- 3 Lower Bounds
- 4 Landmarks

Landmarks

Lemma

Fix some vertex $A \in V$, we will call it a landmark. Then the potential $\pi(v) = d(A, t) - d(A, v)$ is feasible, and $\pi(t) = 0$.

$$\ell(u,v) - \pi(u) + \pi(v) = \ell(u,v) - \mu(u,v) - \mu(u,v) = \mu(u,v) = \mu(u,v) - \mu(u,v) = \mu(u,v) = \mu(u,v) = \mu(u,v) - \mu(u,v) = \mu(u,$$

$$d(A, t) + d(A, u) + d(A, t) - d(A, v) =$$

 $\pi(t) = d(A, t) - d(A, t) = 0$

$$d(A, t) + d(A, u) + d(A, t) - d(A, v)$$

 $d(A, u) + \ell(u, v) -$

$$d(A, u) + \ell(u, v) - d(A, v) \ge_{\text{(triangle inequality)}} 0$$

Landmarks

- Select several landmarks and precompute their distances to all other vertices
- For any landmark A, $d(v,t) \ge d(A,t) d(A,v)$, $d(v,t) \ge d(v,A) d(t,A)$
- Tightest lower bound $d(v, t) \ge \max(d(A, t) d(A, v), d(v, A) d(t, A))$ over all A

Landmark Selection

Good landmark appears "before" v or "after" w:

For any query (s, t), we need some landmarks before s and after t

Landmark Selection

Choosing landmarks on the border seems reasonable:

Landmark Selection

Choosing landmarks on the border seems reasonable:

Conclusion

- Directed search can scan fewer vertices
- A* is a directed search algorithm based on Dijkstra and potential functions
- A* can also be bidirectional
- Euclidean distance is a potential for a plane (road networks)
- Landmarks can be used for good potential function, but we need preprocessing to use them