- 1. a) Demostrar: Si $l_i = log_r \left(\frac{1}{P_i}\right)$ y l_i es un entero entonces $L = H_r(S)$.
 - b) Dado el alfabeto de una fuente de información $S = \{s_1, s_2, \ldots, s_5\}$. Especifique un código binario tal que L = H(S).
- 2. Demostrar: H(S)≤ L si el alfabeto del código es binario.
- 3. Considere una fuente de información que emite símbolos con las probabilidades que se muestran a continuación.
 - s_i $P(s_i)$
 - s_1 0.5
 - s_2 0.25
 - s_3 0.125
 - $s_4 0.1$
 - s_5 0.025
 - a) Construya un código instantáneo binario con longitud promedio L = 1.8 binits/símbolo.
 - b) Construya un código instantáneo binario con longitudes que satisfagan el primer teorema de Shannon.
- **4.** Considere una fuente de información que emite símbolos con las probabilidades que se muestran a continuación.
 - s_i $P(s_i)$
 - $s_1 0.4$
 - s_2 0.3
 - s_3 0.1
 - s_4 0.1
 - s₅ 0.06
 - $s_6 0.04$

Construya un código instantáneo binario utilizando el método descrito en clase con longitudes l_1 = 1, l_2 = 2, y l_3 = l_4 = l_5 = l_6 = 4. Calcule la longitud promedio del código. Compare L con H(S).