- **Ex 1** Soit $x \in \mathbb{R}_+$. Démontrer à l'aide du binôme de Newton que : $\forall n \in \mathbb{N}, (1+x)^n \geqslant 1 + nx$.
- **Ex 2** Linéariser $\sin^7 x$, $\cosh^5 x$ et $\sinh^6 x$
- **Ex 3** a) Quel est le coefficient de $x^2y^2z^2$ dans le développement de $(x+y+z)^7$?
 - b) Quel est le coefficient de $x^2y^3z^2$ dans le développement de $(x+y+z)^7$?
 - c) Plus généralement, si $i+j \le n$, quel est le coefficient de $x^i y^j z^{n-i-j}$ dans le développement de $(x+y+z)^n$?
- **Ex 4** Pour $n \in \mathbb{N}$, calculer les sommes suivantes : $S_n = \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{2^{n-k}}$ et $T_n = \sum_{k=0}^n \binom{n+1}{k} \frac{(-1)^{n-k}}{3^{n-k}}$
- **Ex 5** Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Simplifier l'expression $S_n = \sum_{k=0}^{\infty} \binom{n}{k} \operatorname{sh}(kx)$.
- **Ex 6** Soient $0 \le k \le p \le n$. Montrer que que $\binom{n}{k}\binom{n-k}{p-k} = \binom{p}{k}\binom{n}{p}$ et en déduire une simplification de

$$\sum_{k=0}^{p} \binom{n}{k} \binom{n-k}{p-k}$$

- **Ex 7** a) Soit $n \in \mathbb{N}$. En dérivant $x \mapsto (1+x)^n$, trouver la valeur de $\sum_{k=1}^n k \binom{n}{k}$.
 - b) A l'aide de la formule $k \binom{n}{k} = n \binom{n-1}{k-1}$ et retrouver le résultat précédent.
 - c) A l'aide de $\int_0^1 (1+x)^n dx$ calculer $\sum_{k=0}^n \frac{1}{k+1} \binom{n}{k}$
- $\mathbf{Ex~8}~$ Soient p et q des réels positifs tels que p+q=1. A l'aide de la question b) de l'exercice précédent calculer

$$\sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} \quad \sum_{k=0}^{n} k \binom{n}{k} p^k q^{n-k} \quad \sum_{k=0}^{n} k \left(k-1\right) \binom{n}{k} p^k q^{n-k} \quad \text{et} \quad \sum_{k=0}^{n} k^2 \binom{n}{k} p^k q^{n-k}$$

Ex 9 Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$. On pose $S_n = \sum_{k=0}^n \binom{2n}{2k} x^{2k}$ et $T_n = \sum_{k=0}^{n-1} \binom{2n}{2k+1} x^{2k+1}$.

Calculer
$$S_n$$
 et T_n , et en déduire $\sum_{k=0}^n \binom{2n}{2k}$ et $\sum_{k=0}^{n-1} \binom{2n}{2k+1}$

- Ex 10 On pose $T_n = \sum_{k=1}^n k^2$ a) Soit p un entier fixé. Montrer que : $\forall n \geqslant p$, $\sum_{k=p}^n \binom{k}{p} = \binom{n+1}{p+1}$. Interpréter sur le triangle de Pascal.
 - b) On pose $S_n = \sum_{k=1}^n k$. Montrer que : $\forall n \geqslant 2$, $\sum_{k=2}^n \binom{k}{2} = \frac{1}{2} (T_n S_n)$.
 - c) En déduire l'expression (factorisée) de T_n .
- **Ex 11** Calculer la somme double $\sum_{i=0}^{n} \sum_{j=0}^{n} {i \choose j}$
- **Ex 12** Montrer par récurrence que : $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{(-1)^{k+1}}{k} \binom{n}{k} = \sum_{k=1}^n \frac{1}{k}$
- **Ex 13** Soit $n \ge 2$. Montrer que si $2 \le k \le n-2$, $\binom{n}{k} \ge \binom{n}{2}$, et en déduire la limite de $u_n = \sum_{k=0}^{n} \binom{n}{k}^{-1}$.

PCSI 1 Thiers 2019/2020

Ex 14 Montrer que
$$\forall n \in \mathbb{N}^*$$
, $\prod_{k=0}^n \binom{n}{k} = \prod_{k=1}^n k^{2k-n-1}$.

Ex 15 Soit
$$n \in \mathbb{N}^*$$
. Montrer que $\forall k \in [[0,n]]$, $\frac{\binom{n}{k}}{\binom{2n-1}{k}} = 2\left(\frac{\binom{n}{k}}{\binom{2n}{k}} - \frac{\binom{n}{k+1}}{\binom{2n}{k+1}}\right)$. En déduire une simplification de $S_n = \sum_{k=0}^n \frac{\binom{n}{k}}{\binom{2n-1}{k}}$

Ex 16 Soit
$$(f_n)$$
 la suite de Fibonacci définie par $f_0=0,\ f_1=1$ et $\forall n\in\mathbb{N},\ f_{n+2}=f_{n+1}+f_n$. Montrer (par récurrence) que $\forall n\in\mathbb{N},\ \forall p\in\mathbb{N},\ \sum_{k=0}^p \binom{p}{k} f_{n+k}=f_{n+2p}$

Ex 17 Formule d'inversion de Pascal

a) Vérifier que pour tout triplet d'entiers naturels
$$(j,k,n)$$
 on a $\binom{n}{k}\binom{k}{j}=\binom{n}{j}\binom{n-j}{k-j}$

b) Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites réelles ou complexes vérifiant

$$\forall n \in \mathbb{N}, \ a_n = \sum_{k=0}^n \binom{n}{k} b_k$$

Montrer que

$$\forall n \in \mathbb{N}, \ b_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} a_k$$

Indication : on pourra réindexer les sommes triangulaires qui interviennent dans le membre de droite.

Ex 18 Pour
$$p \in \mathbb{N}$$
, et pour tout entier $n \ge p$ on pose $S_n(p) = \sum_{k=0}^n (-1)^k \binom{n}{k} k^p$.

- a) Cas où p=0. Calculer $S_n(0)$ pour tout $n \in \mathbb{N}$, en distinguant le cas n=0.
- b) Cas où p=1. Soit $n \in \mathbb{N}^*$. On considère la fonction polynomiale $f: x \to \sum_{k=0}^n (-1)^k \binom{n}{k} x^k$.
 - i. Simplifier f(x) pour $x \in \mathbb{R}$, et en déduire deux expressions de la dérivée f'(x).
 - ii. En déduire $S_n(1)$, en distinguant le cas n=1

c) Cas où
$$p=2$$
. Soit $n\geqslant 2$. On considère la fonction $g:x\to \sum_{k=0}^n \left(-1\right)^k \binom{n}{k} e^{kx}$.

- i. Simplifier g(x) pour $x \in \mathbb{R}$ et en déduire deux expressions de la dérivée seconde g''(x).
- ii. En déduire $S_n(2)$, en distinguant le cas n=2
- d) Cas général.
 - i. Soit $p \in \mathbb{N}$ et $n \ge p+1$. Montrer que $S_n(p+1) = n(S_n(p) S_{n-1}(p))$
 - ii. Montrer par récurrence sur p que $\forall p \in \mathbb{N}, \ [S_p\left(p\right) = \left(-1\right)^p p! \quad \text{et} \quad \forall n > p, \ S_n\left(p\right) = 0]$