Parallel plate metal waveguide

Broad Topics

- ✓ Parallel plate metal waveguide
- \checkmark TE and TM modes, E and H fields distribution
- ✓ Dispersion relations, cut-off properties
- √ Modes of rectangular metal waveguide

1. Parallel plate metal waveguide

The wave equations:

$$\nabla^2 E = -\omega^2 \mu_0 \varepsilon E$$
 and

$$\nabla^2 H = -\omega^2 \mu_0 \varepsilon H$$

We look for the solutions of the *E*-field equations: $abla^2 E = -\omega^2 \mu_0 \varepsilon E$

The structure is invariant along z

The z- dependence is that of the wave going in z- direction

The z- dependence of the solution will be $e^{-ik_zz} \approx e^{-i\beta z}$ $[k_z = \beta]$

Wave equations for TE- and TM modes

$$\frac{\partial^2 E_y}{\partial x^2} + (k_0^2 n^2 - \beta^2) E_y = 0 \quad \text{wave equation in } E_y$$

$$\frac{\partial^2 H_y}{\partial x^2} + (k_0^2 n^2 - \beta^2) H_y = 0 \quad \text{wave equation in } H_y$$

Transverse Modes

TE-mode

For a TE-guided wave

- ✓ The electric field is transverse to the direction of propagation of wave
- ✓ The field will be represented by

$$E_y = \widehat{y} E_y(x) e^{-i\beta z}$$

The \vec{E} field vector is pointing along y —direction

Using this solution in the wave equation: $abla^2 E_y = -\omega^2 \mu_0 \varepsilon E_y$

$$\Rightarrow \left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial x^2}\right) E_y = -\omega^2 \mu_0 \epsilon E_y \qquad : \quad \frac{\partial^2}{\partial y^2} = no \ dependence$$

$$\Rightarrow \frac{\partial^2 E_y}{\partial x^2} + (\omega^2 \mu_0 \varepsilon - \beta^2) E_y = 0$$

Perfect metallic boundary

Boundary Conditions: $E_y(x = 0) = E_y(x = d) = 0$

Now $\omega^2 \mu_0 \varepsilon - k_z^2 = \omega^2 \mu_0 \varepsilon_0 \varepsilon_r - \beta^2$

$$= \frac{\omega^2 n^2}{c^2} - \beta^2 = k^2 - \beta^2 = k_x^2$$

Also $k_y = 0$ therefore $k^2 = k_x^2 + k_z^2$;

Therefore,
$$\frac{\partial^2 E_y}{\partial x^2} + (\omega^2 \mu_0 \varepsilon - \beta^2) E_y = 0 \rightarrow \frac{\partial^2 E_y(x)}{\partial x^2} + k_x^2 E_y(x) = 0$$

This has the solution:

$$E_y(x) = A_0 e^{-ik_x x} + B_0 e^{+ik_x x} = E_0 \sin k_x x + E'_0 \cos k_x x$$

Complete field solutions: TE Modes

Boundary Condition: $E_y(x = 0) = 0 \Rightarrow E_y = E_0 \sin k_x x$

But k_x cannot be arbitrary -----

Second Boundary Condition: $E_y(x = d) = 0$ restricts $E_y = E_0 sin k_x d = 0$

$$\Rightarrow \sin(k_x d) = \sin(m\pi) \Rightarrow k_x = \frac{m\pi}{d}$$
 where $m = 1, 2, 3, ...$

So, the solution becomes: $E_y(x) = E_0 \sin(\frac{m\pi}{d}x)$

The complete solution is: $E_y(x, z) = \hat{y}E_0 \sin(\frac{m\pi}{d}x)e^{-i\beta z}$

Electric field: TE Modes: from field configuration also

$$\vec{E} = \hat{y} E_{i} e^{-i(-k_{x}x + k_{z}z)} + \hat{y} \Gamma_{TE} E_{i} e^{-i(k_{x}x + k_{z}z)} \text{ where } \Gamma_{TE} = -1$$

$$= \hat{y} E_{i} e^{i(k_{x}x - k_{z}z)} - \hat{y} E_{i} e^{-i(k_{x}x + k_{z}z)}$$

$$= \hat{y} E_{i} \left(e^{ik_{x}x} - e^{-ik_{x}x} \right) e^{-ik_{z}z}$$

$$= \hat{y} E_{i} 2i \sin(k_{x}x) e^{-ik_{z}z}$$

Field distribution: TE Modes

The \vec{E} field solution: $E_y(x,z) = \hat{y}E_0 \sin(\frac{m\pi}{d}x)e^{-i\beta z}$

Mode field (\vec{E} field) distributions of two lowest order modes m=1, m=2

Magnetic field components: TE Modes

Electric field: $E_y(x, z) = \hat{y}E_0 \sin(\frac{m\pi}{d}x)e^{-i\beta z}$

Magnetic field is determined from: $abla imes \vec{E} = -i\omega \mu_0 \vec{H}$

$$\vec{H} = \frac{iE_0}{\omega\mu_0} \left[\hat{z} \left(\frac{m\pi}{d} \right) \cos \left(\frac{m\pi}{d} x \right) + \hat{x} i\beta \sin \left(\frac{m\pi}{d} x \right) \right] e^{-i\beta z}$$

Perfect metallic boundary condition: $H_x(x=0)=H_x(x=d)=0$ is automatically satisfied

Magnetic field: TE Modes from field configuration also

$$H_{z} = \underbrace{E_{i}}_{H_{z}} \underbrace{E_{r}}_{H_{z}} \underbrace{E_{r}}_{H_{$$

$$\begin{aligned} \hat{\mathbf{z}}H_{\mathbf{z}} &= -H_{i}\hat{\mathbf{z}} + \Gamma H_{i}\hat{\mathbf{z}} \text{where } \Gamma = -1 \\ &= -\hat{\mathbf{z}} H_{i}e^{-i(-k_{x}x + k_{z}z)} - \hat{\mathbf{z}}H_{i}e^{-i(k_{x}x + k_{z}z)} \\ &= -\hat{\mathbf{z}} H_{i}\left(e^{ik_{x}x} + e^{-ik_{x}x}\right)e^{-ik_{z}z} \\ &= -\hat{\mathbf{z}} H_{i} 2\cos(k_{x}x)e^{-ik_{z}z} \end{aligned}$$

$$= -\hat{\mathbf{z}} H_0 \cos\left(\frac{m\pi}{d}x\right) e^{-i\beta z}$$

Similarly for $\hat{x}H_x$ field and the complete magnetic field is

$$\overrightarrow{H} = \frac{iE_0}{\omega\mu_0} \left[\widehat{z} \left(\frac{m\pi}{d} \right) \cos \left(\frac{m\pi}{d} x \right) + \widehat{x} i\beta \sin \left(\frac{m\pi}{d} x \right) \right] e^{-i\beta z}$$

Complete field solutions: TE mode

$$E_{y} = \widehat{y} E_{0} \sin\left(\frac{m\pi}{d}x\right) e^{-i\beta Z}$$

$$H_x = -\widehat{x} \, \frac{\beta E_0}{\omega \mu_0} \sin\left(\frac{m\pi}{d}x\right) e^{-i\beta Z}$$

$$H_z = \hat{z} \frac{iE_0}{\omega \mu_0} \frac{m\pi}{d} \cos\left(\frac{m\pi}{d}x\right) e^{-i\beta z}$$

Each value of m refers to a particular field configuration or mode. It denotes the number of half period variations of electric field along the x-direction of the parallel planes. A particular mode is written as TE_{m0} where subscript 0 refers to y-direction and will have some integral value in a waveguide where planes in y-direction will be considered for restricting/guiding the wave.

Since in this case, m=0 reduces the whole field of TE mode to zero (all components), the lowest order mode that can exist is TE_{10} .

Dispersion relation: TE Modes

The propagation constant is given by $eta^2 + k_x^2 = \omega^2 \mu_0 arepsilon$

$$\Rightarrow \quad \boldsymbol{\beta}^2 = \boldsymbol{\omega}^2 \mu_0 \boldsymbol{\varepsilon} - \boldsymbol{k}_x^2 = \boldsymbol{\omega}^2 \mu_0 \boldsymbol{\varepsilon} - \left(\frac{\boldsymbol{m}\boldsymbol{\pi}}{\boldsymbol{d}}\right)^2$$

so
$$\beta_m = \sqrt{\omega^2 \mu_0 \varepsilon - \left(\frac{m\pi}{d}\right)^2}$$

The propagation is possible only when $\beta_m > 0$

That means $\omega^2 \mu_0 \varepsilon > \left(\frac{m\pi}{d}\right)^2$ which decides the frequency above which the propagation is possible.

Cut-off frequency: TE Modes

- \checkmark Dispersion relation for TE_m mode: $\beta = \sqrt{\omega^2 \mu_0 \varepsilon \left(\frac{m\pi}{d}\right)^2}$
- \checkmark For this TE_m mode, if the frequency ω is less than $\frac{1}{\sqrt{\mu_0 \varepsilon}} \left(\frac{m\pi}{d}\right)$

- \checkmark Then β becomes entirely imaginary
- ✓ The mode does not propagate but decays exponentially with distance
- \checkmark Then the cut-off frequency is determined by the condition: $\omega_c^2 \mu_0 \varepsilon = \left(\frac{m\pi}{d}\right)^2$

So, the cut-off frequency: $\omega_c=\frac{1}{\sqrt{\mu_0\varepsilon}}\Big(\frac{m\pi}{d}\Big)=\frac{v_0m\pi}{d}$ and the frequency, $f_c=\frac{v_0m}{2d}$. Also, the cut-off wavelength is $\lambda_c=\frac{v_02d}{f_cm}$ implying that higher the separation between the plates, lower is the cut-off frequency. So propagation is possible if $\omega>\omega_c$ or $\lambda<\lambda_c$.

Phase velocity: TE Modes

The phase velocity/speed with which the wave travels within the guide is

$$v_{ph} = \frac{\omega}{\beta} = \frac{\omega}{\sqrt{\omega^2 \mu_0 \varepsilon - \left(\frac{m\pi}{d}\right)^2}} = \frac{\omega}{\sqrt{\omega^2 \mu_0 \varepsilon - \omega_c^2 \mu_0 \varepsilon}} = \frac{1}{\sqrt{\mu_0 \varepsilon} \sqrt{1 - \omega_c^2 / \omega^2}} = \frac{v_0}{\sqrt{1 - \lambda_0^2 / \lambda_c^2}}$$

TM-mode

For a TM-guided wave

- ✓ The magnetic field is transverse to the direction of propagation of the wave
- \checkmark The field will be represented by

$$H_y = \widehat{y}H_y(x)e^{-i\beta z}$$

The \vec{H} field vector is pointing along y –direction

Using this solution in the wave equation becomes

$$\nabla^{2}H_{y} = -\omega^{2}\mu_{0}\varepsilon H_{y}$$

$$\Rightarrow \frac{\partial^{2}H_{y}}{\partial x^{2}} + (\omega^{2}\mu_{0}\varepsilon - \beta^{2})H_{y} = 0$$

This has the solution: $H_y(x) = H_0 \cos k_x x$

here
$$k_x = \frac{m\pi}{d}$$
; where $m = 1, 2, 3, ...$

Using appropriate boundary conditions, the solution becomes:

$$H_y(x) = H_0 \cos\left(\frac{m\pi}{d}x\right)$$

And the complete solution is

$$H_{y}(x,z) = \widehat{y}H_{0}\cos\left(\frac{m\pi}{d}x\right)e^{-i\beta Z}$$

Electric field components: TM Modes

Magnetic field:
$$H_y(x, z) = \hat{y}H_0 \cos\left(\frac{m\pi}{d}x\right)e^{-i\beta z}$$

Electric field is determined from the relation: $abla imes \overrightarrow{H} = i\omega \varepsilon \overrightarrow{E}$

And therefore the electric fields

$$\vec{E} = -\frac{iH_0}{\omega \varepsilon} \left[-\hat{z} \left(\frac{m\pi}{d} \right) \sin \left(\frac{m\pi}{d} x \right) + \hat{x} i\beta \cos \left(\frac{m\pi}{d} x \right) \right] e^{-i\beta z}$$

Perfect metallic boundary condition: $E_z(x=\mathbf{0})=E_z(x=\mathbf{d})=\mathbf{0}$ is automatically satisfied

Magnetic field: TM Modes: from field configuration also

$$H_{v} = \hat{y} H_{i} e^{-i(-k_{x}x + k_{z}z)} + \hat{y} \Gamma_{TM} H_{i} e^{-i(k_{x}x + k_{z}z)}$$

for this case $\Gamma_{TM} = +1$

$$H_y = \widehat{y} \, H_i e^{i(k_x x - k_z z)} + \widehat{y} H_i e^{-i(k_x x + k_z z)}$$

$$H_{y}(x,z) = \widehat{y} \, 2H_{i} \cos(k_{x}x)e^{-i\beta z}$$

Electric field components: TM Modes: from field configuration also

$$\begin{split} E_{x} &= \widehat{x} \; E_{i} e^{-i(-k_{x}x+k_{z}z)} + \widehat{x} E_{r} e^{-i(k_{x}x+k_{z}z)} \\ &= \widehat{x} \; E_{i} e^{-i(-k_{x}x+k_{z}z)} + \widehat{x} \Gamma_{TM} E_{i} e^{-i(k_{x}x+k_{z}z)} \end{split}$$

for this case $\Gamma_{TM} = +1$

$$E_{x} = \widehat{x} E_{i} e^{-i(-k_{x}x + k_{z}z)} + \widehat{x} E_{i} e^{-i(k_{x}x + k_{z}z)}$$

$$E_x(x,z) = \widehat{x} \, 2E_i \cos(k_x x) e^{-i\beta z}$$

And for E_z

$$\begin{split} E_z &= \hat{\mathbf{z}} \, E_i e^{-i(-k_x x + k_z z)} - \hat{\mathbf{z}} E_r e^{-i(k_x x + k_z z)} \\ &= \hat{\mathbf{z}} \, E_i e^{-i(-k_x x + k_z z)} - \hat{\mathbf{z}} \Gamma_{TM} E_i e^{-i(k_x x + k_z z)} \end{split}$$

for this case $\Gamma_{TM} = +1$

$$E_z = \hat{\mathbf{z}} E_i e^{-i(-k_x x + k_z z)} - \hat{\mathbf{z}} E_i e^{-i(k_x x + k_z z)}$$

$$E_z(x,z) = \hat{z} \, 2iE_i \sin(k_x x) e^{-i\beta z}$$

So we get

$$\vec{E} = -\frac{iH_0}{\omega\varepsilon} \left[-\hat{z} \left(\frac{m\pi}{d} \right) \sin \left(\frac{m\pi}{d} x \right) + \hat{x} i\beta \cos \left(\frac{m\pi}{d} x \right) \right] e^{-i\beta z}$$

Complete field solutions: TM mode

$$H_{y} = \widehat{y} H_{0} \cos\left(\frac{m\pi}{d}x\right) e^{-i\beta Z}$$

$$E_x = \widehat{x} \frac{\beta H_0}{\omega \varepsilon} \cos\left(\frac{m\pi}{d}x\right) e^{-i\beta Z}$$

$$E_z = \hat{z} \frac{iH_0}{\omega \varepsilon} \frac{m\pi}{d} \sin\left(\frac{m\pi}{d}x\right) e^{-i\beta z}$$

It is obvious that in this case for m=0, all field components are not zero. That means, for the TM case, lowest mode will be TM_{00} containing

$$H_y = \widehat{y}H_0e^{-i\beta Z}$$
 and $E_x = \widehat{x}\frac{\beta H_0}{\omega \varepsilon}e^{-i\beta Z}$ and $E_z = 0$

Thus, in TM_{00} mode the longitudinal components of both electric and magnetic fields are zero. This is electric and magnetic fields both are transverse to the direction of propagation. \in therefore this wave is TEM wave.

Dispersion relation: TM_m Modes

$$\beta^2 + k_x^2 = \omega^2 \mu_0 \varepsilon$$

$$\Rightarrow \quad \beta_m^2 = \omega^2 \mu_0 \varepsilon - k_x^2 = \omega^2 \mu_0 \varepsilon - \left(\frac{m\pi}{d}\right)^2$$

so
$$\beta_m = \sqrt{\omega^2 \mu_0 \varepsilon - \left(\frac{m\pi}{d}\right)^2}$$

Cut-off frequency: TM_m Modes

- \checkmark Dispersion relation for TM_m mode: $\beta_m = \sqrt{\omega^2 \mu_0 \varepsilon \left(\frac{m\pi}{d}\right)^2}$
- \checkmark For this TM_mmode, if the frequency ω is less than $\frac{1}{\sqrt{\mu_0 \varepsilon}} \left(\frac{m\pi}{d}\right)$
- ✓ Then β becomes entirely imaginary
- ✓ The mode does not propagate but decays exponentially with distance

 \checkmark Then the cut-off frequency is determined by the condition: $\omega_c^2\mu_0\varepsilon=\left(\frac{m\pi}{d}\right)^2$

So, the cut-off frequency:
$$\ \omega_c = rac{1}{\sqrt{\mu_0 arepsilon}} \Big(rac{m \pi}{d}\Big)$$

Phase velocity: TM Modes

The phase velocity/speed with which the wave travels within the guide is

$$v_{ph} = \frac{\omega}{\beta} = \frac{\omega}{\sqrt{\omega^2 \mu_0 \varepsilon - \left(\frac{m\pi}{d}\right)^2}} = \frac{\omega}{\sqrt{\omega^2 \mu_0 \varepsilon - \omega_c^2 \mu_0 \varepsilon}} = \frac{1}{\sqrt{\mu_0 \varepsilon} \sqrt{1 - \omega_c^2/\omega^2}} = \frac{v_0}{\sqrt{1 - \lambda_0^2/\lambda_c^2}}$$