CS664 Lecture #17: Robust statistics

Other M-estimators

- There are a bunch of other choices for p with relatively similar behaviors
 - Different models for how inlier noise behaves, and different shapes
- Important idea is the influence function: $\frac{d}{dx}$
 - Controls how much a point pulls the line as a function of its distance from the line
 - "Redescending" M-estimators have influence functions that go to zero in the limit
 - In other words, ρ itself flattens out

Breakdown point

- Another important concept concerns how much "bad" data a method can ignore
 - For M-estimation, or LS, the answer is none
 - Since any bad point can move the line of best fit by at least a little bit
- Obviously you can't in general tolerate more than 50% outliers, or the outliers become the inliers
 - Is there an optimal method?
 - Note: you can tolerate >50% outliers if you are willing to make some assumption (MINPRAN)

Least median squares

- Instead of changing ρ, let's compute the median of the set ρ(r_i)
 - Doesn't really matter what ρ we use
 - Any monotonic symmetric choice of ρ will obviously give the same answer
- We can now ignore up to 50% outliers
- Futhermore, there is no scale parameter
 - In effect, dynamically estimated from the data
- Nice geometric intuition also

Computing a robust fit

- It's possible to perform M-estimation fairly efficiently using a variant of least squares
- Think of Ax, where A is a matrix and x is a vector, as a linear combination of the columns of A, weighted by elements of x
 - If we consider all possible choices of x we span a subspace. The solution to Ax = y is the "coordinates" of y in terms of the columns of A
 - What if y isn't in the subspace? We can ask for the point in the subspace that is as close as possible to y (the least squares fit)

Solving least squares

- The least squares solution to Ax = y is $\hat{x} = \arg\min_{x} \lVert y Ax \rVert$
- An elegant result, due to Gauss, is that the solution to this is the pseudoinverse $(A^tA)^{-1}A^ty$
 - Easy to re-derive: A^tA is square!
- If we weight each residual by w_i we get $\arg\min_x \|W(y-Ax)\| = (A^tW^2A)^{-1}A^tWy$
 - Here, W is a diagonal matrix of w_i 's

Iterative reweighted least squares

- IRLS algorithm
 - Start with all weights being 1
 - Compute least squares fit and residuals
 - Adjust W to reduce the weighting of the large residuals
 - Re-fit and repeat

Non-parametric approaches

- Non-parametric model fitting usually relies on ranks (i.e., ordering information)
- Given our data points (x_i,y_i) we can replace the values by the ranks among all the x_i or y_i
 - Write this as $(\tilde{x_i}, \tilde{y_i})$
 - Now based on the ranked data we can compute, for instance, the L₂ distance

$$r_{\rm spr} = \sum_i \left(\tilde{x_i} - \tilde{y_i} \right)^2$$

Spearman and ranks

- r_{spr} is Spearman's correlation coefficient
 - Outliers lead to small change in rank
 - Distance is 0 if y_i is a monotonic function of x_i
 - Tolerates changes in image gain and bias
- Too slow to do locally
 - Each local window must be sorted!
 - Can't really re-use this computation
- Approximation via rank transform
 - What is the rank of the center pixel, with respect to the rest of the window?

Kendall and census

- Alternative: Kendall's τ
 - Consider a pair of points $(x_i, y_i), (x_j, y_j)$
 - We say this pair is concordant if $[(x_i > x_j) \land (y_i > y_j)]$
 - Or if we replace ">" with "<"
 - τ counts the number of concordant pairs
- Local version: compare the center pixel with all other pixels (view as a bit string)
 - Can compare windows via Hamming distance
 - Ideal for hardware (Tyzx)

Robustness and discontinuities

- Why do we get outliers in vision?
 - Occasionally you will see them in stereo due to camera sampling artifacts
 - "Mixed pixels" with non-integer disparity
- They happen a lot in vision in general
 - Usually an image has a lot of very different phenomena going on in it
- The geometry of stereo causes them to occur at discontinuities
 - This is (partly) why discontinuities are so hard

Left image

Right image

- Window A is very similar to B
 - Gaussian noise is the only difference
- Window C is not very similar to D
 - Red versus yellow pixels in background: outliers!

Local vs. global stereo

- Two basic classes of algorithm
 - Compute answer independently at each pixel
 - Local methods: compare windows
 - Search the space of possible disparity maps
 - Global methods: energy minimization
- Local methods are fast, and robust statistics can make them a bit better
- Global methods give much better answers
 - Now that we can minimize the energy fast