Innholdsfortegnelse

01 Laplace og Z-transformasjon av en forsinket firkant puls	. 1
02 Sampling og filtrering og derivering av en trekant strømpuls	. 2
03 Digitalt Chebyshev filter	. 3
04 Digitalisering av Besselfilter	4
05 Finn algoritme fra gitt H(z)	. 5
06 Gitt H(z), finn algoritme	. 5
07 Gitt algoritme, finn H(z)	. 6
08 Lag et digitalt filter fra impulsresponsen til et analogt filter	
09 Analog and digital allpass filter	. 7
10 Analog and digital filter	
11 Filtrering av signal med h(k)	. 8
12 Butterworth filter. Fra analog H(s) til digital filteralgoritme	9
13 Amplitude respons for et middelverdi filter	9
14 Integrasjonsfilter	

01 Laplace og Z-transformasjon av en forsinket firkant puls.

Figuren under viser en firkant puls med amplitude A, som er forsinket med tiden $d = 2\Delta t$ Pulsens varighet $\tau = 3.5 \Delta t$. Under pulsen vises et signal f(t) som består av en rekke med delta pulser. Modulasjonen mellom v(t) og f(t) gir et nytt signal $v(k\Delta t)$.

Signalet v(t) i figuren under kan lages av to forsinkede enhetstrinnfunksjoner. Med amplitude A og definisjonene $d = 2\Delta t$ og $\tau = 3.5\Delta t$ kan vi skrive signalet som.

$$v(t) = Au(t-d) - Au(t-d-\tau)$$

Figur 1. Skisse av v(t) og f(t)

- a) Utfør en Laplacetransformasjon av v(t) og finn signalet V(s)
- b) Skisser signalet $v(k\Delta t)$ i samme volt / tid diagram som v(t) i figuren.
- c) hvor stor blir τ for den digitale pulsen.
- d) Utfør en z-transform av $v(k\Delta t)$ og finn V(z)
- e) Erstatt nå z med definisjonen av z i utrykket for V(z) og skriv utrykkene for V(z) og V(s) under hverandre. Diskuter forskjeller og likheter.

02 Sampling og filtrering og derivering av en trekant strømpuls

Laplace transformasjon av strømpulsen i(t) vil gi følgende løsning. (Beregnet i tidligere oppgaver)

$$I(s) = \frac{A}{Ts^{2}} (1 - e^{-Ts})^{2}$$

Strømpulsen samples med en stabil samplefrekvens med periodetid $\Delta t = T/2$. Første sampling skjer ved tiden t=0.

- a) Finn den samplede strømpulsen i(k) fra i(t)
- b) Utfør en z-transformasjon av strømpulsen i(k) og finn I(z)
- c) Et diskret filter har følgende overføringsfunksjon $H(z) = \frac{1}{\Delta t}(1 z^{-1})$ Finn responsen R(z) ut fra filteret når I(z) sendes inn i filteret.
- d) Finn og skisser responsen r(k).
- e) Hva slags filter er H(z)
- f) utfør en diskret derivasjon av strøm pulsen i(k)
- g) Send strømpulsen i(t) inn i en spole med induktans L. Finn spenningsfallet v(t) over spolen. sammenlikn v(t) med responsen r(k) og kommenter likheter og forskjeller.

03 Digitalt Chebyshev filter

Dette er en modifisert utgave av eksamensoppgave H00-4e NB Første del av oppgaven a..d er finnes i filteroppgavesamlingen.

Figuren over viser skjema et Sallen and Key filter konfigurert som aktivt lavpass filter der operasjonsforsterkeren. Med ideelle betingelser og med en bestemt verdi av k kan det vises at filteret blir et Chebychev filter med følgende overførings funksjon

$$H(s) = \frac{3.31}{\left(\frac{s}{\omega_c}\right)^2 + 2.37\left(\frac{s}{\omega_c}\right) + 3.31}$$

Lag en digital filter algoritme som når den eksekveres, vil utføre Chebychev lavpassfiltrering av et digitalt inngangssignal.

a) Utfør en z-transformasjon av H(s) og finn H(z)

$$s \rightarrow (1 - z^{-1})/\Delta t$$

La $1/\Delta t = 10 \omega_c$, og sørg for at dc-forsterkningen blir 1.

b) Invers z-transformasjon

Vi vet at $H(z) = \frac{R(z)}{E(z)}$ hvor e står for eksitasjon eller inngangsignal og R står for respons

eller utgagnsignal. Ved hjelp av H(z), finn først et utrykk for E(z). Utfør så en invers z-transformasjon på dette utrykket.

c) Fra det invers z-transformerte uttrykket, finn en algoritme som beregner responsen eller med andre ord det Chebychev lavpass filtrerte utgangssignalet når vi sender inn et vilkårlig signal.

d) Aliasing og maksimal inngangs frekvens.

La filteret ha en knekkfrekvens på 1000 Hz.

Hva mener vi med aliasing? Finn høyeste frekvens som inngangssignalet kan ha uten at vi får aliasing.

04 Digitalisering av Besselfilter

Modifisert eksamensoppgave fra H99 – 1

a) Skriv opp systemfunksjonen for et 2.ordens Bessel lavpass filter. Lag figur i s-planet som presist viser polenes plassering. Hvilke egenskaper er karakteristiske for et Bessel filter?

Figur 2 Skjema for et passivt lavpass-filter.

- b) Finn systemfunksjonen V_0/V_i for kretsen. Finn R uttrykt ved L og C slik at kretsen blir et Bessel filter.
- c) Det er en likhet mellom den komplekse frekvensen, s, i beskrivelsen av analoge systemer og størrelsen, $(1-z^{-1})/\Delta t$, for diskrete-tid systemer. Forklar sammenhengen.
- d) Finn en rekursiv formel som beskriver et digitalt Bessel filter tilsvarende den analoge kretsen over.

05 Finn algoritme fra gitt H(z)

Gitt overføringsfunksjon

$$H(z) = a \cdot z^{-1} + b \cdot z^{-2}$$

- a) Finn en algoritme.
- b) Vis om dette er et FIR eller IIR filter.

06 Gitt H(z), finn algoritme

Oppgave: Gitt H(z) Finn algoritme Gitt følgende funksjon

$$H(z) = \frac{a_1 \cdot z^{-2} + a_2 \cdot z^{-3}}{b_1 \cdot z^{-1} - b_2 \cdot z^{-2}}$$

- a) Finn en algoritme.
- b) Vurdere stabilitet.
- c) Vis om dette er et FIR eller IIR filter.

07 Gitt algoritme, finn H(z)

ref H.Balk

Oppgaven: Gitt algoritme Finn overføringsfunksjon H(z)

$$r_k = a_1 \cdot e_{k-1} + a_2 e_{k-2} + b r_{k-1}$$

- a) Finn H(z).
- b) Finn polene til H(z), og vurder stabilitet.
- c) Tegn blokkskjema.
- d) Vis om dette er et FIR eller IIR filter.

08 Lag et digitalt filter fra impulsresponsen til et analogt filter

Oppgaven

Lavpass filteret i (i) over har følgende system funksjon.

$$H(s) = \frac{1}{\left(RCs + 1\right)} = \frac{1/RC}{\left(s + 1/RC\right)}$$

- a) Ved hjelp av systemfunksjonen H(s), finn impulsresponsen funksjonen h(t)
- b) Finn C og plot impulsresponsen

La R=10k og finn C slik at filteret får en knekkfrekvens på 10kHz Plot impulsrespons funksjonen h(t) for de første 100uS . for eksempel i Excel eller PSPICE

c) digitaliser impulsresponsen h(t) Digitaliser h(t) \rightarrow h[k] med et sampelintervall på Δt =2 τ hvor τ =RC Beregn og noter de fem første elementene i h

$$h(k) = [?, ?, ?, ?, ?, ?]$$

c) Finn en algoritme

Finn en algoritme som kan utføre filtreringen ved at den beregner responsen r(k) når vi sender inn et signal e(k)

09 Analog and digital allpass filter

Assume ideal opamp

- a) Find the transfer function H(s) and show that this is an all pass filter with the same gain for all frequencies.
- b) Find the systems impulse response, meaning vo(t) when vi(t) = $a\delta(t)$
- c) Sketch vo(t) when R=2kOhm and C=10nF a=10⁻³ volt

A digital filter has an impulse response function r[k] given by

$$r[k] = \begin{cases} 0 & \text{for } k < 0 \\ -g & \text{for } k = 0 \\ g^{k-1} - g^{k+1} & \text{for } k > 0 \end{cases}$$

d) Make a graph that show r[k] for the case g=0.5 Show that

$$R(z) = \mathcal{Z}[r[k]] = \frac{z^{-1} - g}{1 - gz^{-1}}$$
 $\mathcal{Z}[r[k]]$ means the z-transform of r

e) Show that the digital filter also is an all pass filter.

10 Analog and digital filter

Assume ideal operation amplifiers and assume R₁=R₂ and C₂=C₃

- a) Find the system function H(s)=Vo(s)/Vi(s)
- b) Find the response on a ramp input signal $v_i(t) \propto t$

A recursive algorithm for calculating the second differentiated of a sampled signal e[k] is as follows:

$$R[k] = \frac{1}{\Delta t^2} e[k] - 2e[k-1] + e[k-2]$$

Where Δt is the sample interval.

- c) Make a figure that shows the digital filters response on a ramp excitation.
- d) Find the system function H(z)
- e) Make a plot of the filters ac-response.

11 Filtrering av signal med h(k)

Vi har en digital krets med impulsrespons h.

Gitt impuls respons

$$h(k) = [1/3, 1/3, 1/3]$$

Send inn en digitalt trekant puls

$$e(k)=[000121000]$$

- a) Beregn og plot responsen og vurder om dette er et LP eller HP filter
- b) Tegn blokkskjema for den digitale kretsen
- c) Er dette en IIR eller en FIR krets? Begrunn svaret
- d) endre signalet e til en trinnfunksjon e(k)=[0 0 0 1 1 1 1 1 1 1 1] og la h=[-1 1] beregn responsen og vurder om dette er et LP eller HP filter

12 Butterworth filter. Fra analog H(s) til digital filteralgoritme

Gitt H(s) for 2 ordens Butterworth algoritme

$$H(s) = \frac{1}{\left(\frac{s}{\omega_L}\right)^2 + \sqrt{2} \frac{s}{\omega_L} + 1}$$

- a) Finn H(z)
- b) Finn en eksekverbar algoritme som beregner Vut[k] når vi sender inn Vinn[k].

13 Amplitude respons for et middelverdi filter

gitt middelverdifilter

$$h(k) = a$$
, a , a , a

- a) finn H(z)
- b) Finn Amplitude responsen

14 Integrasjonsfilter

Integrasjon kan benyttes til å lavpassfiltere et signal på samme måte som et middelverdifilter og ande lavpassfiltre. Integrasjon idet diskrete domenet kan utrykkes som følger.

$$H(z) = \frac{1}{1 - az^{-1}}$$

I tillegg til ren integrasjon har vi med en faktor a

- a) Finn en algoritme som utfører denne filtreringen på et inngangsignal
- b) Studer resultatet og forklar hvordan du kan si om et integrasjonsfilter er et IIR eller FIR filter. Kan man se det direkte av H(z)?
- c) Vis om filteret er stabilt eller ikke.
- d) Finn amplitude responsen og vis at det er et lavpassfilter