Math 170S Homework #2: Exploratory Data Analysis

Damien Ha

2023-01-25

Contents

Loading Data and Packages	1
Univariate Analysis Sex Age Salary Expense	2 2 2 5 7
Bivariate/Multivariate Analysis Expense vs Salary Salary vs Age Expense vs Age Scatterplot Matrix of Age, Salary, and Expense Loading Data and Packages	10 10 11 13 14
<pre>suppressWarnings(library(ggplot2)) df <- read.csv("HW2data.csv") head(df)</pre>	
## ID Sex Age Salary Expense ## 1 12 Male 22 2311 1050 ## 2 13 Male 24 3231 1265 ## 3 14 Male 27 2423 1109 ## 4 15 Male 19 3343 1511 ## 5 16 Female 20 2535 1147 ## 6 17 Female 24 3455 1564	
tail(df)	
## 46 39 Male 24 4877 2190 ## 47 39 Female 28 4069 1830 ## 48 39 Male 30 4989 2246 ## 49 39 Female 33 4181 1884 ## 50 39 Male 25 5101 2292 ## 51 39 Male 26 4293 1929	
Here is a function for calculating the mode	

```
getmode <- function(v) {
   uniqv <- unique(v)
   uniqv[which.max(tabulate(match(v, uniqv)))]
}</pre>
```

Univariate Analysis

Sex

```
pie(table(df$Sex), main = "Sex of Indidividuals in Data")
```

Sex of Indidividuals in Data

There is a near even split between male and female in this data, but with slightly more male

Age

```
summary(df$Age)
##
                     Median
                               Mean 3rd Qu.
      Min. 1st Qu.
                                                 Max.
     16.00
             22.00
                      24.00
                               24.51
                                                33.00
                                       27.00
getmode(df$Age)
## [1] 24
So the mean age is 24.51, the median age is 24, and the mode/most common age is also 24.
hist(df$Age, xlab = "Age", main = "Histogram of Ages", col = "deepskyblue")
```

Histogram of Ages

Age looks to be distributed fairly normally

barplot(table(df\$Age), xlab = "Age", ylab = "Number of People", main = "Bar Plot of Ages", col = "darkv

Bar Plot of Ages

pie(table(df\$Age), main = "Pie Chart of Ages")

Pie Chart of Ages

boxplot(df\$Age, col="indianred2", plot=T, horizontal=T, main="Boxplot of Age")

Boxplot of Age

20 25 30 There are fewer people at the oldest and youngest ends of the spectrum, i.e. fewer 16 and 17 year olds and 32 or 33 year olds than people in their 20s

boxplot(df\$Age ~ df\$Sex, col=c("deeppink","blue"), xlab="Sex", ylab="Age", main="Boxplot of Age by Sex"

Boxplot of Age by Sex

There seem to be more older female indidviduals in the data compared to males

Salary

```
summary(df$Salary)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2191 2991 3447 3472 4002 5101
getmode(df$Salary)
```

[1] 2311

So the average salary is 3472, the median salary is 3447, and the most common salary is 2311. There is a large jump from the mode to the mean and median; larger values/possible outliers may have some influence on the mean. We can see that the max value is much higher than the 3rd quartile

```
hist(df$Salary, xlab = "Salary", main = "Histogram of Salaries", col = "darkgreen")
```

Histogram of Salaries

Salary looks slightly right skewed, which supports what we saw in our previous observation.

boxplot(df\$Salary, col="darkorchid4", plot=T, horizontal=T, main="Boxplot of Salary Values")

Boxplot of Salary Values

Boxplot of Salary Values by Sex

Males in this data have a wider range of salary than females

Expense

```
summary(df$Expense)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 990 1324 1548 1559 1794 2292
getmode(df$Expense)
```

[1] 1351

So the mean is 1559, the median is 1548, and the mode is 1351. Again, large expense values may be increasing the mean

hist(df\$Expense, xlab = "Expense", main = "Histogram of Expense Values", col="darkgoldenrod1")

Histogram of Expense Values

Expense is not right skewed like salary, but the larger values around 2000 do seem to lie a bit more outside the rest of the data

```
qqnorm(df$Expense, pch = 19, frame = FALSE)
qqline(df$Expense, col = "steelblue", lwd = 2)
```

Normal Q-Q Plot

From the qqplot, expense is fairly normally distributed. The points on the plot seem to fall on a fairly straight line and don't seem to have some other pattern that would imply skewedness

boxplot(df\$Expense, col="dodgerblue", plot=T, horizontal=T, main="Boxplot of Expense Values")

Boxplot of Expense Values

boxplot(df\$Expense ~ df\$Sex, col=c("deeppink","blue"), xlab="Expense", ylab="Salary", main="Boxplot of I

Boxplot of Expense Values by Sex

Males in this data also have a wider range of expenses than females

Bivariate/Multivariate Analysis

Expense vs Salary

```
ggplot(df, aes(x=Expense, y=Salary)) + geom_point(colour="darkorange") + stat_smooth(method = "lm", col
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## `geom_smooth()` using formula = 'y ~ x'
```

Expense vs Salary

ggplot(df, aes(x=Expense, y=Salary)) + geom_point(aes(color = factor(Age))) + labs(colour = "Age", titl

cor(df\$Expense, df\$Salary)

[1] 0.9965094

Expense and salary appear to be very strongly correlated, as evidenced by the correlation coefficient and the near perfect linear relationship seen in the scatterplot

Salary vs Age

```
ggplot(df, aes(x=Age, y=Salary)) + geom_point(aes(color = factor(Sex))) + stat_smooth(method = "lm", co
## `geom_smooth()` using formula = 'y ~ x'
```


boxplot(Salary~Age,data=df, main="Salary Data by Age", xlab="Age", ylab="Salary", col=4)

Salary Data by Age

cor(df\$Salary, df\$Age)

[1] 0.4136556

Salary and age are weakly, positively correlated.

Expense vs Age

ggplot(df, aes(x=Expense, y=Age)) + geom_point() + stat_smooth(method = "lm", se= FALSE, size = 1) + lag
`geom_smooth()` using formula = 'y ~ x'

Expense vs Age

boxplot(Expense~Age,data=df, main="Expense Data by Age", xlab="Age", ylab="Expense", col=5)

Expense Data by Age

This boxplot looks very similar to the boxplot of salary by age, perhaps due to correlation between those variables.

cor(df\$Expense, df\$Age)

[1] 0.4189089

Expense and age have a somewhat weak, positive correlation, similar to salary and age

Scatterplot Matrix of Age, Salary, and Expense

```
plot(df[3:5], col="darkslategray2", main = "Scatterplot Matrix of Data", pch=19)
```

Scatterplot Matrix of Data

It's clear from the scatterplot matrix that expense and salary are very closely correlated, while age is not very strongly correlated with either salary or expense. All the relationships are positive