

Республиканская физическая олимпиада 2024 года (III этап)

Теоретический тур

10 класс.

Внимание! Прочтите это в первую очередь!

- 1. Полный комплект состоит из трех заданий. Для вашего удобства вопросы, на которые Вам необходимо ответить, помещены в рамки.
- 2. Каждое задание включает условие задания и Листы ответов. Для решения задач

используйте рабочие листы. Часть из них используйте в качестве черновиков. После окончания работы черновые листы перечеркните.

В чистовых рабочих листах приведите решения задач (рисунки, исходные уравнения, математические преобразования, графики, окончательные результаты). Жюри будет проверять чистовые рабочие листы. Кроме того, каждое задание включает Листы ответов. В соответствующие графы Листов ответов занесите окончательные требуемые ответы. Для построения графиков, которые требуется по условию задачи, в Листах ответов подготовлены соответствующие бланки. Графики стройте на этих бланках. Дублировать их в рабочих листах не требуется.

- 3. При оформлении работы каждое задание начинайте с новой страницы. При недостатке бумаги обращайтесь к организаторам!
- 4. Подписывать рабочие листы запрещается.
- 5. В ходе работы можете использовать ручки, карандаши, чертежные принадлежности, инженерный калькулятор.
- 6. Со всеми вопросами, связанными с условиями задач, обращайтесь к организаторам олимпиады.

Пакет заданий содержит:

- титульный лист (1 стр.);
- условия 3 теоретических заданий с Листами ответов (10 стр.).

Задание 10-1. Лихо закручено

Справочные данные и параметры рассматриваемых систем: трением и сопротивлением воздуха в данном задании пренебречь, ускорение свободного падения $g = 9.81 \text{ м/c}^2$.

1.1 «Два шарика на нити» Два небольших шарика массами m_1 и m_2 , связанные легкой нитью длиной l, вращаются с угловой скоростью ω в горизонтальной плоскости (Рис. 1). Найдите силы натяжения нитей T_1 и T_2 , действующие на каждый из шариков, соответственно. Трением и сопротивлением воздуха пренебречь.

1.2 «**Три шарика на нити**» Усложним задачу и добавим к середине нити длиной l третий небольшой шарик массой m_3 (Рис. 2). При вращении такой системы на горизонтальной плоскости оказалось, что модуль силы натяжения легкой нити у первого шарика равен T_1 , а у второго, T_2 . Найдите массу m_3 третьего шарика и соответственно, угловую скорость ω вращения системы, считая массы шариков m_1 и m_2 известными.

1.3 «Космическое вращение» Космическая станция состоит из двух отсеков массами m_1 и m_2 , соединенных длинным однородным тросом длины l. Станция вращается вокруг оси, перпендикулярной тросу, при этом модуль силы натяжения троса вблизи одного отсека равен T, а вблизи другого $T + \Delta T$ ($\Delta T \ll T$). Найдите массу соединительного троса $m_{\scriptscriptstyle \mathrm{T}}$ и угловую скорость $\omega_{\scriptscriptstyle \mathrm{KC}}$ вращения космической станции.

Лист ответов. Задание 10-1. Лихо закручено

1.1 Сила натяжения нити T_1 :
Сила натяжения нити T_2 :
1.2 Масса m_3 шарика:
Угловая скорость ω системы:
1.3 Масса соединительного троса $m_{\scriptscriptstyle { m T}}$:
Угловая скорость $\omega_{\kappa c}$:

Задание 10-2. Годограф

Годографом вектора называется кривая, представляющая собой множество концов

переменного со временем вектора $\vec{r}(t)$, начало которого (Рис. 1) для всех t есть фиксированная точка O («Математический энциклопедический словарь»). Иными словами годограф вектора представляет собой множество точек, по которым «движется» конец данного вектора со временем, если положение его начала зафиксировать в некоторой точке O.

Справедливости ради отметим, что школьники косвенно знакомы с данным понятием, поскольку годографом радиус-вектора $\vec{r}_i(t)$ $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6)$ движущейся материальной точки является ... её траектория, отмеченная на рисунке 1 пунктирной линией. Годограф вектора наглядно представляет его эволюцию с течением времени, а также используется при различных расчетах.

Часть 1. Вычисление полного ускорения

1.1 Небольшой массивный шарик, подвешенный на легкой нерастяжимой нити, отклонили так, что нить стала горизонтальна и аккуратно отпустили без натяжения нити (рис. 2). При движении шарик будет приобретать как центростермительное (нормальное) ускорение \vec{a}_n , направленное

вдоль нити, так и касательное (тангенциальное) \vec{a}_{τ} ускорение, направленное перпендикулярно нити (см. рис. 2). Сумма $\vec{a} = \vec{a}_n + \vec{a}_{\tau}$ называется *полным* ускорением тела. Найдите зависимости модулей ускорений \vec{a}_n и \vec{a}_{τ} от угла α , образованного нитью с вертикалью. Сопротивлением воздуха пренебречь. Ускорение свободного падения \vec{g} .

1.3 Поскольку вектор полного ускорения шарика поворачивается со временем, то в некоторый момент он будет горизонтален. Найдите полное ускорение шарика a_1 и угол α_1 между нитью и вертикалью в этот момент времени.

Часть 2. Построение годографа полного ускорения шарика

- **2.1** Найдите зависимости проекций a_x и a_y полного ускорения шарика от угла α в стандартной (декартовой) системе координат. Выразите их в безразмерных единицах $a_x^* = a_x/g$ и $a_y^* = a_y/g$.
- **2.2** Чему равен модуль максимального горизонтального ускорения $a_{x \max}$ шарика в процессе движения до низшей точки траектории? Максимального вертикального ускорения $a_{y \max}$?

- **2.3** Разбейте прямой угол α на интервалы по $\Delta \alpha = 5^{\circ}$ градусов и вычислите проекции ускорений a_x^* и a_y^* для точек в диапазоне $0^{\circ} \le \alpha \le 90^{\circ}$. Результаты вычислений занесите в Таблицу 1 (см. ниже).
- **2.4** Пользуясь Таблицей 1, постройте на выданном бланке годограф полного ускорения шарика при его движении до нижней точки траектории.
- **2.5** Проанализируйте построенный годограф, отметьте его существенные особенности и попытайтесь описать их математически (например, получить уравнение, описывающее полученную кривую).

Лист ответов. Задание 10-2. Годограф

Таблица 1. Вычисление a_x^* и a_y^* . Бланк для построения годографа ускорения шарика по Таблице 1.

Угол	a_x^*	a_y^*
90°		
85 °		
80°		
75 °		
70°		
65 °		
60°		
55 °		
50°		
45 °		
40°		
35°		
30°		
25 °		
20°		
15 °		
10°		
5 °		
0 °		

Лист ответов. Задание 10-2. Годограф

1.1 \vec{a}_n от угла α :
$ec{a}_{ au}$ от угла $lpha$:
1.2 Зависимость модуля полного ускорения $a(\alpha)$:
1.3 a_1 :
$lpha_{_1}$:
2.1 Зависимость проекции a_x полного ускорения шарика от угла α :
Зависимость проекции a_y полного ускорения шарика от угла α
2.2 $a_{x \max}$:
$a_{y \max}$:

2.3	Заполните Таблицу 1. (См. выше)
`	
2.4	Постройте годограф ускорения на Бланке (См. выше)
2.5	Анализ построенного годографа

Задание 10-3. Не хуже Карно ..?

Двигатели внутреннего сгорания (ДВС), работающие по различным термодинамическим циклам, успешно работают в современном мире. Миллионы машин используют как бензиновые,

> так и дизельные ДВС, а доля электромобилей на мировом рынке в настоящий момент крайне невелика – около 2 %.

> ДВС в середине XIX века перед инженерами и При создании конструкторами встал важный прикладной (и научный!) вопрос: а какой тепловой двигатель имеет максимальный термодинамический КПД, т.е. является идеальной тепловой машиной?

> Заметим, что цикл Отто (бензиновый двигатель) и цикл Дизеля (дизельный двигатель) не являются идеальными тепловыми циклами, хотя автомобили, работающие по этим циклам, и составляют львиную долю современного производства.

Идеальная тепловая машина была описана в 1824 г. французским физиком и инженером Сади Карно (Рис. 1) в работе «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Идеальный цикл Карно (Рис. 2), состоящий из двух изотерм и двух адиабат, сегодня известен каждому школьнику.

В данном задании мы немного «пофантазируем» и предложим свой цикл, который также использует элементы знаменитого цикла Карно.

Справочные данные и параметры рассматриваемой системы: если $a^n b^m = const$, то при малых Δa и Δb ($\Delta a \ll a$, $\Delta b \ll b$) справедливо равенство: $n\frac{\Delta a}{a} + m\frac{\Delta b}{b} = 0$ (справедливо также и обратное утверждение); молярная газовая постоянная $R = 8.31 \, \text{Дж/(моль · K)}$.

Часть 1. Адиабатный процесс

Рис. 1

Термодинамический процесс, проводимый без теплообмена (Q = 0) с окружающей средой (т.е. в теплоизолированной системе), называется адиабатным процессом. Адиабатными являются многие быстропротекающие процессы (взрыв, быстрое расширение (сжатие) газа, распространение звуковой волны), процесс подъема теплого воздуха с поверхности земли с последующим охлаждением, конденсацией пара и образованием облаков и т.д.

- Теплоёмкость c^{M} идеального газа, взятого в количестве $\nu = 1$ моль (m = M), называется 1.1 молярной теплоёмкостью. Найдите молярную теплоёмкость c_V^M идеального одноатомного газа при изохорном процессе, т.е. при постоянном объёме (V = const). Запишите формулу для внутренней энергии U идеального одноатомного газа через c_V^M и в дальнейшем используйте её для любого идеального газа.
- **1.2** Выразите молярную теплоемкость идеального газа c_p^M при постоянном давлении (p=const), т.е. при изобарном процессе, через c_V^M .
- 1.3 Получите уравнение адиабатного процесса для произвольного идеального газа в переменных (T,V) с показателем адиабаты $\gamma = \frac{c_p^M}{c_v^M}$.
- 1.4 В полученном уравнении сделайте замену переменных и запишите уравнение адиабатного процесса (уравнение Пуассона) для произвольного идеального газа в «традиционном» виде, т.е. в переменных (p, V).

1.5 Схематически изобразите на одной (p, V) — диаграмме ход адиабаты и изотермы идеального газа. Кратко охарактеризуйте особенности построенных графиков.

Часть 2. Цикл с адиабатой

С идеальным одноатомным газом провели циклический процесс $A \to B \to C \to A$ (Рис. 3), состоящий из изобары $A \to B$, изохоры $B \to C$ и адиабаты $C \to A$.

Вычислите термодинамический КПД η_1 цикла, изображенного на Рис. 4.

Рис. 3

 V/V_0

Лист ответов. Задание 10-3. Не хуже Карно

1.1 Формула для внутренней энергии U идеального одноатомного газа через c_V^M :

1.2 Молярная теплоемкость идеального газа c_p^M :

1.3 Уравнение адиабатного процесса для произвольного идеального газа в переменных (T,V) с показателем адиабаты $\gamma = \frac{c_p^M}{c_V^M}$:

1.4 Уравнение адиабатного процесса для любого идеального газа в переменных (p, V):

1.5 Схематическая диаграмма адиабаты и изотермы:

Третий этап республиканской олимпиады по учебному предмету «Физика» 2023-2024 учебный год

2.1 Количество теплоты Q_1 :	
p_C :	
2.3 Участки цикла, на которых работал холодильник:	
Количество теплоты Q_2 :	
2.4 Формула для термодинамического КПД η :	
Как значение η зависит от параметров V_A и p_A ? :	
2.5 η_{max} :	
2.6 η_1 :	