Nonlinear Dynamics and Chaos

PHYMSCFUN12

Wladimir E. Banda Barragán

wbanda@yachaytech.edu.ec

MSc in Fundamental Physics

Yachay Tech University - 2025

A two-dimensional linear system is a system of the form:

$$\dot{x} = ax + by$$

 $\dot{y} = cx + dy$

$$\dot{x} = Ax, \qquad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ and } \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$

where a, b, c, d are parameters.

Linearity:

If x_1 and x_2 are solutions, any linear combination $c_1x_1 + c_2x_2$ is also a solution.

Fixed point at $x^* = 0$:

Notice that $\dot{x} = 0$ when x = 0, so $x^* = 0$ is always a fixed point for any choice of A.

Example 1: Simple Harmonic Oscillator

Linear ODE: $m\ddot{x} + kx = 0$

The motion in the phase plane is determined by a vector field that comes from this ODE. We need to find a **vector field** that characterises the state of the system:

The ODE determines the future states of the system given position x and velocity v

$$\dot{v} = -\frac{k}{m}x$$

$$\omega^2 = k/m$$

$$\dot{x} = v$$

$$\dot{v} = -\omega^2 x$$

 $\dot{x} = v$

ODE system:

$$\dot{v} = -\omega^2 x$$

Example 1: Simple Harmonic Oscillator

The ODE system assigns a vector $(\dot{x}, \dot{v}) = (v, -\omega^2 x)$ at each point (x, v), and therefore represents a **vector field** on the phase plane.

 $\dot{x} = v$

ODE system:

$$\dot{v} = -\omega^2 x$$

Example 1: Simple Harmonic Oscillator

The fixed point (x, v) = (0,0) corresponds to static equilibrium of the system.

The closed orbits are elipses, $\omega^2 x^2 + v^2 = C$, where C > 0 is a constant.

Uncoupled ODE system:

Example 2:

$$\dot{\mathbf{x}} = A\mathbf{x}$$

$$A = \begin{bmatrix} a & 0 \\ 0 & -1 \end{bmatrix}$$

$$\dot{y} = ax$$

$$\dot{y} = -y$$

$$x(t) = x_0 e^{at}$$

$$y(t) = y_0 e^{-t}$$

$$x(t) = x_0 e^{ut}$$

a varies from $-\infty$ to $+\infty$.

(c)
$$-1 < a < 0$$

$$x^* = 0$$
 (stable node)

$$x^* = 0$$
 (star node)

$$\dot{\mathbf{x}} = A\mathbf{x} \qquad A = \begin{pmatrix} a & 0 \\ 0 & -1 \end{pmatrix}$$

$$x(t) = x_0 e^{at}$$
$$y(t) = y_0 e^{-t}$$

(e) a > 0

The y-axis is called the stable manifold of the saddle point x^* defined as the set of initial conditions $\mathbf{x_0}$ such that $\mathbf{x(t)} \to \mathbf{x^*}$ as $t \to \infty$.

The x-axis is called the unstable manifold of the saddle point x^* defined as the set of initial conditions $\mathbf{x_0}$ such that $\mathbf{x(t)} \to \mathbf{x^*}$ as $t \to -\infty$.

(line of fixed points)

(d) a = 0

 $x^* = 0$ (saddle node)

Concepts and Stability

 $x^* = 0$ is an attracting fixed point:

$$\mathbf{x}(t) \to \mathbf{x}^* \text{ as } t \to \infty$$

Stability: behaviour of trajectories for all time.

 $\mathbf{x}^* = \mathbf{0}$ is **Liapunov stable** if all trajectories that start sufficiently close to \mathbf{x}^* remain close to it for all time.

 $\mathbf{x}^* = \mathbf{0}$ is **neutrally stable** when a fixed point is Liapunov stable but not attracting.

Neutral stability is commonly encountered in mechanical systems in the absence of friction (e.g. SAO equilibrium point).

Concepts and Stability

Stability

If a fixed point is both Liapunov stable and attracting, we call it **stable**, or sometimes **asymptotically stable**.

x* is unstable when it is neither attracting nor Liapunov stable.

Example: Vector field on the circle

$$\dot{\theta} = 1 - \cos \theta$$

Here $\theta^* = 0$ attracts all trajectories as $t \to \infty$, but it is not Liapunov stable.

(e) a > 0

Analysing Fixed Points in 2D Systems

Linear Equation:
$$\dot{\mathbf{x}} = A\mathbf{x}$$

For the general case, we seek trajectories of the form: $\mathbf{x}(t) = e^{\lambda t}\mathbf{v}$

If such solutions exist, they correspond to exponential motion along the line spanned by the vector **v**.

The desired straight-line solutions exist if \mathbf{v} is an *eigenvector* of A with corresponding *eigenvalue* λ :

$$\lambda e^{\lambda t} \mathbf{v} = e^{\lambda t} A \mathbf{v}.$$

$$A\mathbf{v} = \lambda \mathbf{v}$$

The stability and dynamics of the fixed point at $x^* = 0$ are determined by the **eigenvalues** (λ_1, λ_2) of the matrix A.

Eigenvalues:

2x2 matrix:
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longrightarrow \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} = 0 \longrightarrow \lambda^2 - \tau\lambda + \Delta = 0$$

Where:
$$\tau = \operatorname{trace}(A) = a + d$$
,
 $\Delta = \det(A) = ad - bc$.

The eigenvalues depend only on the trace and determinant of the matrix A:

$$\lambda_{1} = \frac{\tau + \sqrt{\tau^{2} - 4\Delta}}{2}, \ \lambda_{2} = \frac{\tau - \sqrt{\tau^{2} - 4\Delta}}{2}$$

$$\lambda_{1,2} = \frac{1}{2} \left(\tau \pm \sqrt{\tau^{2} - 4\Delta} \right)$$

General solution:

Linear Equation:
$$\dot{\mathbf{x}} = A\mathbf{x}$$

Any initial condition x_0 can be written as a linear combination of eigenvectors:

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$$

The general solution for **x**(t) is:

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2$$

Stable & Unstable Nodes:

Typ	e	Description	Condition	Phase Portrait
Stable	Node	λ_1 , λ_2 are real, distinct, and negative	$\lambda_2 < \lambda_1 < 0$	Trajectories flow inward (stable). Approach the origin tangent to the eigenvector of λ ₁ (the smaller absolute value. Asymptotically stable.
Unstable	e Node	λ_1 , λ_2 are real, distinct, and positive	$0 < \lambda_1 < \lambda_2$	Trajectories flow outward (unstable). Depart tangent to the eigenvector of λ2 (the larger value).

Stable & Unstable Nodes:

$$A_{\text{stable}} = \begin{pmatrix} -2.0 & -1.0 \\ -1.0 & -2.0 \end{pmatrix}$$

$$\mathbf{A}_{\mathsf{unstable}} = \begin{pmatrix} 2.0 & 1.0 \\ 1.0 & 2.0 \end{pmatrix}$$

Saddle Point:

Type	Description	Condition	Phase Portrait
Saddle Point	λ ₁ , λ ₂ are real, distinct, and have opposite signs	$\lambda_1 < 0 < \lambda_2$	 Unstable. Defined by two key manifolds: Stable Manifold (along v₁) and Unstable Manifold (along v₂). Only trajectories starting
			on the stable manifold approach the origin.

Saddle Point:

$$\mathbf{A}_{\mathsf{saddle}} = \begin{pmatrix} 1.0 & 0.0 \\ 0.0 & -1.0 \end{pmatrix}$$

Eigenvalue (λ)	Eigenvector (v)	Axis	Flow Type	Manifold Type
λ1 =1.0	v1 =(1 0)	x-axis (y=0)	Repelling (Outward)	Unstable Manifold (W ^u)
λ2 =-1.0	v2 =(0 1)	y-axis (x=0)	Attracting (Inward)	Stable Manifold (W ^s)

Spirals and Centre: The case of complex eigenvalues

Example: Harmonic oscillator slightly damped.

The eigenvalues are:
$$\lambda_{1,2} = \frac{1}{2} \left(\tau \pm \sqrt{\tau^2 - 4\Delta} \right)$$

Complex eigenvalues occur when: $\tau^2 - 4\Delta < 0$

Eigenvalues:
$$\lambda_{1,2} = \alpha \pm i\omega$$
 with: $\alpha = \tau/2$, $\omega = \frac{1}{2}\sqrt{4\Delta - \tau^2}$

General solution:

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2$$

We have exponentially decaying oscillations if $\alpha = Re(\lambda) < 0$ (stable spiral) and growing oscillations if $\alpha = Re(\lambda) > 0$ (unstable spiral).

Spirals and Centre: The case of complex eigenvalues

Type Description		Condition	Phase Portrait
Stable Spiral	Complex with negative real part.	α<0	Trajectories spiral inward toward the origin (Stable). The fixed point is an attracting focus. Asymptotically Stable.
Unstable Spiral	Complex with positive real part	α>0	Trajectories spiral outward away from the origin (Unstable). The fixed point is a repelling focus.

Spirals and Centre

Type	Description	Condition	Phase Portrait
Centre	Purely imaginary	α=0	Trajectories are closed orbits (ellipses). Stable, but not asymptotically stable (they stay close, but don't converge).

Degenerate Cases (Repeated Eigenvalues)

Type	Description	Condition	Phase Portrait
Star/Proper Node	Real, equal, negative, with two eigenvectors	$\lambda 1 = \lambda 2$ $v_1 \neq v_2$	Trajectories are straight lines flowing directly inward (Stable). Highly symmetric convergence. Asymptotically Stable.
Degenerate/ Improper Node	Real, equal, negative, with one eigenvector.	$\lambda 1 = \lambda 2$ $v_1 = v_2$	Trajectories flow inward but are tangent to a single direction (the single eigenvector). Less symmetric convergence than a Star Node. Asymptotically Stable.

Repeated Eigenvalues, different eigenvectors:

If there are two independent eigenvectors, then they span the plane and so every vector is an eigenvector with this same eigenvalue λ .

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$$

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 \qquad \qquad \mathbf{A} \mathbf{x}_0 = A(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2) = c_1 \lambda \mathbf{v}_1 + c_2 \lambda \mathbf{v}_2 = \lambda \mathbf{x}_0$$

 $\mathbf{x_0}$ is also an eigenvector with eigenvalue λ . Multiplication by A simply stretches every vector by a factor λ .

$$A = egin{pmatrix} \lambda & 0 \ 0 & \lambda \end{pmatrix}$$

If $\lambda \neq 0$, all trajectories are straight lines through the origin $(\mathbf{x}(\mathbf{t}) = e^{\lambda t}\mathbf{x_0})$ and the fixed point is a star node.

Repeated Eigenvalues, same eigenvector:

The other possibility is that there's only one eigenvector. The eigenspace corresponding to is one-dimensional.

$$A = \begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix}$$
 with $b \neq 0$ has only a one-dimensional eigenspace.

When there's only one eigendirection, the fixed point is a **degenerate node**.

A degenerate node is created by deforming an ordinary node.

eigendirection

(a) node

(b) degenerate node

We can show the type and stability of all the different fixed points on a single diagram.

stars, degenerate nodes

non-isolated

fixed points

The axes of the diagram are the **trace** τ and the **determinant** Δ of the matrix A. All of the information in the diagram is implied by the following formulas:

$$\lambda_{1,2} = \frac{1}{2} \left(\tau \pm \sqrt{\tau^2 - 4\Delta} \right), \qquad \Delta = \lambda_1 \lambda_2, \qquad \tau = \lambda_1 + \lambda_2.$$

(spirals and centres).

The stability of the nodes and spirals is determined by τ . When $\tau < 0$, both eigenvalues have negative real parts, so the **fixed point is stable.**

Unstable spirals and nodes have $\tau > 0$. Neutrally stable centers live on the borderline $\tau = 0$, where the eigenvalues are purely imaginary.

If $\Delta=0$, at least one of the eigenvalues is zero. Then the origin is not an isolated fixed point. There is either a whole line of fixed points, or a plane of fixed points, if A=0.

Saddle points, nodes, and spirals are the major types of fixed points; they occur in large open regions of the (Δ, τ) plane.

Centers, stars, degenerate nodes, and non-isolated fixed points are **borderline** cases that occur along curves in the (Δ, τ) plane.

Of these borderline cases, centres are the most important. They occur very commonly in frictionless mechanical systems where energy is conserved.