4-4 In-Class Exercise

1. Determine whether the vectors are linearly independent or are linearly dependent in R^3 .

$$(-3,0,4), (5,-1,2), (1,1,3)$$

2. Determine whether the three vectors lie on the same line in \mathbb{R}^3 .

(a)
$$\mathbf{v}_1 = (-1, 2, 3), \ \mathbf{v}_2 = (2, -4, -6), \ \mathbf{v}_3 = (-3, 6, 0)$$

(b)
$$\mathbf{v}_1 = (4, 6, 8), \ \mathbf{v}_2 = (2, 3, 4), \ \mathbf{v}_3 = (-2, -3, -4)$$

4-4 Suggested Exercises

1. Determine whether the vectors are linearly independent or are linearly dependent in P_2 .

$$2-x+4x^2$$
, $3+6x+2x^2$, $2+10x-4x^2$

2. Determine whether the matrices are linearly independent or dependent.

$$\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$ in M_{22}

3. Show that the three vectors v1 = (0, 3, 1, -1), v2 = (6, 0, 5, 1), and v3 = (4, -7, 1, 3) form a linearly dependent set in R^4 .

4. In each part, let $T_A: R^3 \to R^3$ be multiplication by A, and let $\mathbf{u}_1 = (1,0,0)$, $\mathbf{u}_2 = (2,-1,1)$, and $\mathbf{u}_3 = (0,1,1)$. Determine whether the set $\{T_A(\mathbf{u}_1), T_A(\mathbf{u}_2), T_A(\mathbf{u}_3)\}$ is linearly independent in R^3 .

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & -3 \\ 2 & 2 & 0 \end{bmatrix}$$