Class Activity: Hypothesis Testing and Model Selection STAT 340: Applied Regression

Women's Labor Force Participation (1976)

The following data were drawn from the 1976 U.S. Panel Study of Income Dynamics; the response variable is married women's labor force participation.

- lfp: wife's labor force participation (factor, no, yes).
- k5: number of children ages 5 and younger (0-3, few 3s).
- k618: number of children ages 6 to 18 (0-8, few > 15).
- age: wife's age in years (30-60).
- wc: wife's college attendance (factor, no, yes).
- hc: husband's college attendance (factor, no, yes).
- lwg: log of wife's estimated wage rate.

Number of Fisher Scoring iterations: 4

• inc: family income excluding wife's income (\$1000s).

```
library("car")
## Loading required package: carData
## Fit model with all possible explanatory variables as main effects
mroz.mod <- glm(lfp ~ k5 + k618 + age + wc + hc + lwg + inc, family=binomial(link=logit), data=Mroz)</pre>
S(mroz.mod)
## Call: glm(formula = lfp \sim k5 + k618 + age + wc + hc + lwg + inc, family =
##
             binomial(link = logit), data = Mroz)
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.182140
                           0.644375
                                    4.938 7.88e-07 ***
                           0.197001 -7.426 1.12e-13 ***
## k5
               -1.462913
## k618
               -0.064571
                                    -0.950 0.342337
                          0.068001
## age
              -0.062871
                           0.012783 -4.918 8.73e-07 ***
## wcyes
               0.807274
                           0.229980
                                    3.510 0.000448 ***
## hcyes
                0.111734
                           0.206040
                                    0.542 0.587618
## lwg
               0.604693
                           0.150818
                                     4.009 6.09e-05 ***
              -0.034446
                           0.008208 -4.196 2.71e-05 ***
## inc
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1029.75
                               on 752 degrees of freedom
## Residual deviance: 905.27
                               on 745
                                       degrees of freedom
##
   logLik
                       AIC
##
                df
                               BTC
## -452.63
                 8
                   921.27 958.26
##
```

```
##
## Exponentiated Coefficients and Confidence Bounds
                Estimate
                             2.5 %
                                      97.5 %
## (Intercept) 24.0982799 6.9377228 87.0347916
               0.2315607 0.1555331 0.3370675
## k618
               0.9374698 0.8200446 1.0710837
               0.9390650 0.9154832 0.9625829
## age
               2.2417880 1.4347543 3.5387571
## wcyes
## hcyes
               1.1182149 0.7467654 1.6766380
               1.8306903 1.3689201 2.4768235
## lwg
## inc
               0.9661401 0.9502809 0.9814042
## Fit model that excludes k5 and k618 (update can be used to fit a nested model)
mroz.mod.2 <- update(mroz.mod, . ~ . - k5 - k618)</pre>
S(mroz.mod.2)
## Call: glm(formula = lfp ~ age + wc + hc + lwg + inc, family = binomial(link =
            logit), data = Mroz)
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.809890
                          0.451079 1.795 0.07258 .
                          0.009689 -1.752 0.07970 .
## age
              -0.016979
## wcyes
              0.652428
                         0.215562
                                   3.027 0.00247 **
## hcyes
              0.028581
                          0.195488
                                   0.146 0.88376
## lwg
              0.615726 0.145266
                                   4.239 2.25e-05 ***
              ## inc
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1029.75 on 752 degrees of freedom
## Residual deviance: 971.75 on 747 degrees of freedom
## logLik
               df
                      AIC
                              BIC
## -485.88
                6 983.75 1011.50
##
## Number of Fisher Scoring iterations: 4
##
## Exponentiated Coefficients and Confidence Bounds
               Estimate
                            2.5 %
                                  97.5 %
## (Intercept) 2.2476601 0.9296539 5.4579991
## age
              0.9831645 0.9646121 1.0019892
## wcyes
              1.9201981 1.2626460 2.9429640
## hcyes
              1.0289932 0.7010201 1.5099374
## lwg
              1.8510006 1.4005106 2.4791496
              0.9677297 0.9529277 0.9819626
## The anova() function performs analysis of deviance,
## specifying test gives us a p-value
anova(mroz.mod.2, mroz.mod, test="Chisq")
## Analysis of Deviance Table
```

```
## Model 1: lfp \sim age + wc + hc + lwg + inc
## Model 2: lfp ~ k5 + k618 + age + wc + hc + lwg + inc
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
          747
                  971.75
## 2
                  905.27 2
                            66.485 3.655e-15 ***
          745
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Linear hypothesis - computes general Wald chi-square tests:
linearHypothesis(mroz.mod, c("k5", "k618"))
## Linear hypothesis test
## Hypothesis:
## k5 = 0
## k618 = 0
##
## Model 1: restricted model
## Model 2: lfp ~ k5 + k618 + age + wc + hc + lwg + inc
##
   Res.Df Df Chisq Pr(>Chisq)
## 1
       747
## 2
       745 2 55.163 1.051e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
linearHypothesis(mroz.mod, "k5=k618")
## Linear hypothesis test
##
## Hypothesis:
## k5 - k618 = 0
## Model 1: restricted model
## Model 2: lfp \sim k5 + k618 + age + wc + hc + lwg + inc
##
##
   Res.Df Df Chisq Pr(>Chisq)
## 1
       746
## 2
       745 1 49.479 2.005e-12 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

(a) Write out the models associated with mroz.mod and mroz.mod.2, respectively.
(b) Write down the null and alternative hypotheses associated with anova($mroz.mod.2$, $mroz.mod$, test="Chisq").
(c) Test the hypothesis $H_0: \beta_{k5}=\beta_{k618}=0$ versus $H_A:$ at least one coefficient is not equal to 0. Interpret the result in the context of the problem.
(d) The S(model) function prints the summary of the model fit (summary(model)), and it also

gives us estimate effects (on the odds scale) and the associated 95% confidence interval. Consider the estimated effect for hc, husband's college attendance (yes/no). Interpret the estimate and associated 95% confidence interval in the context of the problem. This interpretation fol-

lows the structure of that for a linear model.