Prueba Suplementaria - Probabilidad y Estadística

Viernes 19 de abril de 2013

Número de lista	APELLIDO, Nombre		Cédula de identidad
	Múltiple Opción		
	Wattiple Opeion		

La pregunta múltiple opción correcta vale 2 puntos. El desarrollo vale 3 puntos (uno por parte). Rellenar con claridad y en mayúscula la opción que considere correcta.

Se permite el uso de cuadernos, textos, calculadora y lápices.

Problema

Se toma una muestra de tamaño 10 de un universo compuesto de dos estratos A y B (ambos muy grandes), formado por los lotes de producción diaria de dos filiales de la misma empresa, de modo tal que A representa una porporción 0,80 del universo total y B una proporción 0,20. Por dicho motivo se decide tomar una proporción 0,80 de la muestra (o sea 8) de A y un 0,20 de la muestra (o sea 2) de B. Dentro de A la proporción de artículos defectuosos es 0,08 y en B es 0,06.

Se supone que los resultados de la muestra dentro de A y los de la muestra dentro de B son independientes entre sí.

- (1) Calcular la probabilidad de sacar al menos un defectuoso en la muestra.
- (2) Calcular la probabilidad de que de salgan estrictamente más defectuosos de B que de A.
- (3) Supongamos que en la muestra de 10 elementos hay un solo artículo defectuoso. Calcular la probabilidad de que provenga de A.

Múltiple Opción

Se consideran tres variables independientes con distribución exponencial de parámetro $\lambda=1,$ X,Y,Z. Se definen las variables $U=\max(X,Y),V=\min(Y,Z)$ y el suceso $A=\{V>1,U<2\}$. Entonces:

- **A):** U, V son independientes y $P(A) = e^{-3}$.
- **B):** U, V no son independientes y $P(A) = e^{-3}$.
- C): U, V no son independientes y $P(A) = (1 e^{-1})^3$.
- **D):** U, V no son independientes y $P(A) = e^{-2}(1 e^{-1})^2$.
- **E):** U, V son independientes y $P(A) = e^{-2}(1 e^{-1})^2$.
- **F):** Ninguna de las opciones anteriores es correcta.

Solución

Problema

Sean X e Y la cantidad respectiva de artículos defectuosos dentro de las muestras A y B. Por definición son independientes, y además $X \sim Bin(8,0.08)$ e $Y \sim Bin(2,0.06)$.

a)
$$P(X+Y \ge 1) = 1 - P(X+Y=0) = 1 - P(X=0)P(Y=0) = 1 - 0.92^80.94^2 \cong 0.54652.$$

b)
$$P(Y>X) = P(Y=2, X=1) + P(Y=2, X=0) + P(Y=1, X=0) = P(Y=2)[P(X=1) + P(X=0)] + P(Y=1)P(X=0) = 0.06^2(8 \times 0, 08^10.92^7 + 0.92^8) + 2 \times 0.06^10.94^10.92^8 \cong 0.061.$$

c)
$$P(X = 1/X + Y = 1) = \frac{P(X = 1, Y = 0)}{P(X + Y = 1)}$$

$$= \frac{P(X = 1, Y = 0)}{P(X = 1, Y = 0) + P(X = 0, Y = 1)}$$

$$= \frac{P(X = 1)P(Y = 0)}{P(X = 1)P(Y = 0) + P(X = 0)P(Y = 1)}$$

$$= \frac{8 \times 0.08^{1}0.92^{7}0.94^{2}}{8 \times 0.08^{1}0.92^{7}0.94^{2} + 2 \times 0.92^{8}0.06^{1}0.94^{1}}$$

$$\cong 0.845.$$

Múltiple Opción

Se observa que $U = \max(X, Y) \ge Y \ge \min(Y, Z) = V$, por lo que U y V NO son independientes. Utilizando propiedades de variables máximo, mínimo e independencia:

$$\begin{split} P(A) &= P(V > 1, U < 2) = P(\min\{Y, Z\} > 1, \max\{X, Y\} < 2) = P(Y > 1, Z > 1, X < 2, Y < 2) \\ &= P(X < 2)P(Z > 1)P(1 < Y < 2) \\ &= (1 - e^{-2})(e^{-1})(e^{-1} - e^{-2}) \end{split}$$

Por lo tanto la respuesta correcta es la F.