

Neural networks: Training and regularization

Lecture 17 of "Mathematics and Al"

Schwarze Math 76.01 Summer 2024

Outline

- 1. Anatomy of a supervised learner
- 2. Training
 Backpropagation
- 3. Regularization SGD, drop-out, pruning, architecture constraints
- 4. Convolutional neural networks

Anatomy of a supervised learner

Supervised learning (recap)

Hello Machine ...

Let me show you some queries ...

Let me tell you the correct answers to those queries ...

Find the pattern!

Here are some queries that you haven't seen before.

Let me check how well you can answer those based on the pattern that you learned.

Supervised learning (recap)

Hello Machine	
---------------	--

Let me show you some queries	Comple	Training oot	
Let me tell you the correct answers to those queries	Sample	Training set	
Find the pattern!	Fit the model	Train a model	
	Quality of fit (within sample)	Training accuracy	
Here are some queries that			
you haven't seen before.	Out-of-sample prediction	Test set	
Let me check how well you can answer those based on the pattern that you learned.	Out-of-sample quality of fit	Test accuracy	

A machine-learning model for supervised learning

Example 1: OLS linear regression

Example 2:

Parameter-free approaches (e.g., KNN)

Training neural networks

Backpropagation

- How should a discrepancy between y and \hat{y} affect the weights $w_{ij}^{(k)}$?
- Update rule for weights: SGD + "backpropagation"
- Backpropagation: use chain rule to determine updates in ealier layers

Backpropagation in equations

- Loss function L (model parameters, training data)
- Parameters: $W^{(1)}, W^{(2)}, ..., W^{(k)}, \vec{b}^{(1)}, \vec{b}^{(2)}, ..., \vec{b}^{(k)}$
- Training data: $\vec{x}_1, y_1, ..., \vec{x}_n, y_n$
- Example: OLS loss for FNN

$$L = \sum_{i=1}^{n} \left(y_i - f_k(W^{(k)}, \vec{b}^{(k)}, \vec{x}_i^{(k)}) \right)^2$$

Backpropagation in equations

Example: OLS loss for FNN

$$L = \sum_{i=1}^{n} \left(y_i - f_k(W^{(k)}, \vec{b}^{(k)}, \vec{x}_i^{(k)}) \right)^2$$

$$L = \sum_{i=1}^{n} \left(y_i - f_k(W^{(k)}, \vec{b}^{(k)}, f_{k-1}(W^{(k-1)}, \vec{b}^{(k-1)}, \vec{x}_i^{(k-1)})) \right)^2$$

$$L = \sum_{i=1}^{n} \left(y_i - f_k(W^{(k)}, \vec{b}^{(k)}, f_{k-1}(W^{(k-1)}, \vec{b}^{(k-1)}, f_{k-2}(W^{(k-2)}, \vec{b}^{(k-2)}, \vec{x}_i^{(k-2)})) \right)^2$$

Regularization

Why do we want to regularize?

Data generating process

Model parameter space

Models with (too) many parameters

Data generating process

∞ many models configuration with low validation error

Model parameter space

Models with (too) many parameters

Data generating process

∞ many models configuration with low validation error

Model parameter space

Regularizers

- Regularizers in loss function:
 - Ridge penalty
 - Lasso penalty
- Regularizers in training algorithm (SGD):
 - Minibatch
 - momentum

Specific regularization methods for neural networks

- Early stopping
- Drop-out learning
- Weight pruning
- Architecture constraints

Early stopping

Stop training before 0
 training error is reached

Drop-out learning

 Ignore a randomly chosen set of nodes and their associated weights in each training instance of SGD

FIGURE 10.19. Dropout Learning. Left: a fully connected network. Right: network with dropout in the input and hidden layer. The nodes in grey are selected at random, and ignored in an instance of training.

Weight pruning

Set smallest*
 weights to zero
 after one* epoch

Before pruning

After pruning

Architecture constraints

- Set some weights to zero before training and keep them fixed
- Force some weights to have identical values
- Example: Convolutional neural networks

Convolutional neural networks

Convolutional neural networks (CNN)

- Used for image classification
- Computer vision: convolutions with small filters/ kernels

Feature extraction

Convolution with filters

Original Image =
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \\ j & k & l \end{bmatrix}.$$

Now consider a 2×2 filter of the form

Convolution Filter =
$$\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$
.

When we *convolve* the image with the filter, we get the result⁷

Convolved Image =
$$\begin{bmatrix} a\alpha + b\beta + d\gamma + e\delta & b\alpha + c\beta + e\gamma + f\delta \\ d\alpha + e\beta + g\gamma + h\delta & e\alpha + f\beta + h\gamma + i\delta \\ g\alpha + h\beta + j\gamma + k\delta & h\alpha + i\beta + k\gamma + l\delta \end{bmatrix}.$$

Convolution layers

Original	Gaussian Blur	Sharpen	Edge Detection	
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Pooling layers

Reduce image size in hidden layers

Example

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html