- Very Low Power Consumption
- Typical Supply Current . . . 200 μA (Per Amplifier)
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Common-Mode Input Voltage Range Includes V_{CC+}
- Output Short-Circuit Protection
- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation
- Latch-Up-Free Operation
- High Slew Rate . . . 3.5 V/μs Typ

description

The JFET-input operational amplifiers of the TL06_series are designed as low-power versions of the TL08_series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and input bias currents. The TL06_series feature the same terminal assignments as the TL07_ and TL08_series. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 85°C, and the M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C.

TL061 ... U PACKAGE

TL062, TL062A, TL062B

TL062...U PACKAGE (TOP VIEW)

TL064...D, J, N, PW, OR W PACKAGE TL064A, TL064B...D OR N PACKAGE (TOP VIEW)

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TL061, TL061A, TL061B, TL062, TL062A TL062B, TL064, TL064A, TL064B LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

SLOS078G - NOVEMBER 1978 - REVISED MAY 2002

NC - No internal connection

AVAILABLE OPTIONS

			_	PACKAGE	_	_
TA	V _{IO} MAX AT 25°C			PLASTIC DIP (N)	PLASTIC DIP (P)	TSSOP (PW)
	15 mV 6 mV 3 mV	TL061CD TL061ACD TL061BCD			TL061CP TL061ACP TL061BCP	TL061CPW
0°C to 70°C	15 mV 6 mV 3 mV	TL062CD TL062ACD TL062BCD			TL062CP TL062ACP TL062BCP	TL062CPW
	15 mV 6 mV 3 mV		TL064CD TL064ACD TL064BCD	TL064CN TL064ACN TL064BCN		TL064CPW

						PACKAGE				
TA	V _{IO} MAX AT 25°C	SMALL OUTLINE (D008)†	SMALL OUTLINE (D014)†	CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC DIP (JG)	PLASTIC DIP (N)	PLASTIC DIP (P)	FLAT PACK (U)	FLAT PACK (W)
-40°C to 85°C	6 mV	TL061ID TL062ID	TL064ID				TL064IN	TL061IP TL062IP		
–55°C to 125°C	6 mV 9 mV			TL062MFK TL064MFK	TL064MJ	TL062MJG			TL062MU	TL064MW

[†] The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL061CDR).

symbol (each amplifier)

schematic (each amplifier)

C1 = 10 pF on TL061, TL062, and TL064 Component values shown are nominal.

TL061, TL061A, TL061B, TL062, TL062A TL062B, TL064, TL064A, TL064B LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

SLOS078G - NOVEMBER 1978 - REVISED MAY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

		TL06_C TL06_AC TL06_BC	TL06_I	TL06_M	UNIT
Supply voltage, V _{CC+} (see Note 1)		18	18	18	V
Supply voltage, V _{CC} – (see Note 1)		-18	-18	-18	V
Differential input voltage, V _{ID} (see Note 2)		±30	±30	±30	V
Input voltage, V _I (see Notes 1 and 3)		±15	±15	±15	V
Duration of output short circuit (see Note 4)		Unlimited	Unlimited	Unlimited	
Continuous total dissipation		See Dissipati	on Rating Table)	
Storage temperature range, T _{Stg}		-65 to 150	-65 to 150	-65 to 150	°C
Case temperature for 60 seconds	FK package			260	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J, JG, U, or W package			300	°C
Lead temperature 1,6 mm (1/6 inch) from case for 10 seconds	D, N, P, or PW package	260	260		°C

The Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values except differential voltages are with respect to the midpoint between V_{CC+} and V_{CC-}
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D (8 pin)	680 mW	5.8 mW/°C	33°C	465 mW	378 mW	N/A
D (14 pin)	680 mW	7.6 mW/°C	60°C	604 mW	490 mW	N/A
FK	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
J	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
JG	680 mW	8.4 mW/°C	69°C	672 mW	546 mW	210 mW
N	680 mW	9.2 mW/°C	76°C	680 mW	597 mW	N/A
Р	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	N/A
PW (8 pin)	525 mW	4.2 mW/°C	25°C	336 mW	N/A	N/A
PW (14 pin)	700 mW	5.6 mW/°C	25°C	448 mW	N/A	N/A
U	675 mW	5.4 mW/°C	25°C	432 mW	351 mW	135 mW
W	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	200 mW

electrical characteristics, $V_{CC\pm}$ = ± 15 V (unless otherwise noted)

PARAMETER		TEST CO	TEST CONDITIONS [†]		TL061C TL062C TL064C		Т	L061AC L062AC L064AC		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage	$V_{O} = 0$,	T _A = 25°C		3	15		3	6	mV
۷IO	input onset voltage	$R_S = 50 \Omega$	T _A = Full range			20			7.5	IIIV
$\alpha_{ m V_{IO}}$	Temperature coefficient of input offset voltage	$V_O = 0$, $R_S = 0$ $T_A = Full range$			10			10		μV/°C
lio	Input offset current	V _O = 0	T _A = 25°C		5	200		5	100	pА
טוי	input onset current	VO = 0	T _A = Full range			5			3	nA
I _{IB}	Input bias current‡	V _O = 0	T _A = 25°C		30	400		30	200	pА
אוי	Input bias current+	VO = 0	T _A = Full range			10			7	nA
VICR	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		±11	-12 to 15		٧
	Maximum peak output	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C	±10	±13.5		±10	±13.5		
VOM	voltage swing	$R_L \ge 10 \text{ k}\Omega$,	T _A = Full range	±10			±10			V
Λ	Large-signal differential	$V_0 = \pm 10 \text{ V},$	T _A = 25°C	3	6		4	6		V/mV
AVD	voltage amplification	R _L ≥ 10 kΩ	T _A = Full range	3			4			V/IIIV
B ₁	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$,	$T_A = 25^{\circ}C$		1			1		MHz
rį	Input resistance	T _A = 25°C			10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}mi$ $R_S = 50 \Omega, T_A$		70	86		80	86		dB
kSVR	Supply-voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 9 \text{ V to}$ $V_{O} = 0, R_{S} = 5$ $T_{A} = 25^{\circ}C$		70	95		80	95		dB
PD	Total power dissipation (each amplifier)	V _O = 0, No load	T _A = 25°C,		6	7.5		6	7.5	mW
ICC	Supply current (each amplifier)	V _O = 0, No load	T _A = 25°C,		200	250		200	250	μΑ
VO1/VO2	Crosstalk attenuation	$A_{VD} = 100,$	T _A = 25°C		120			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is 0°C to 70°C for TL06_C, TL06_AC, and TL06_BC and -40°C to 85°C for TL06_I.

[‡] Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

TL061, TL061A, TL061B, TL062, TL062A TL062B, TL064, TL064A, TL064B LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

SLOS078G - NOVEMBER 1978 - REVISED MAY 2002

electrical characteristics, $V_{CC\pm}$ = $\pm 15~V$ (unless otherwise noted)

PARAMETER		TEST CO	ONDITIONS†	Т	L061BC L062BC L064BC	;	TL061I TL062I TL064I			UNIT
					TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage	$V_{O} = 0$,	T _A = 25°C		2	3		3	6	mV
۷۱٥	input onset voltage	$R_S = 50 \Omega$	T _A = Full range			5			9	IIIV
$\alpha_{V_{IO}}$	Temperature coefficient of input offset voltage	$V_O = 0$, $R_S = T_A = Full rang$			10			10		μV/°C
lio	Input offset current	V _O = 0	T _A = 25°C		5	100		5	100	pА
10	input onset current	VO = 0	T _A = Full range			3			10	nA
I _{IB}	Input bias current‡	V _O = 0	T _A = 25°C		30	200		30	200	pА
чВ	input bias current+	VO = 0	T _A = Full range			7			20	nA
VICR	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		±11	–12 to 15		V
V	Maximum peak output	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C	±10	±13.5		±10	±13.5		V
VOM	voltage swing	$R_L \ge 10 \text{ k}\Omega$	T _A = Full range	±10			±10			V
Δ. σ	Large-signal differential	$V_0 = \pm 10 \text{ V},$	T _A = 25°C	4	6		4	6		V/mV
AVD	voltage amplification	$R_L \ge 10 \text{ k}\Omega$	T _A = Full range	4			4			V/IIIV
B ₁	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C		1			1		MHz
rį	Input resistance	T _A = 25°C			1012			1012		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}^{mi}$ $R_S = 50 \Omega, T_A$		80	86		80	86		dB
kSVR	Supply-voltage rejection ratio $(\Delta V_{CCT}/\Delta V_{IO})$	$V_{CC} = \pm 9 \text{ V to}$ $V_{O} = 0, R_{S} = 0$ $T_{A} = 25^{\circ}C$		80	95		80	95		dB
PD	Total power dissipation (each amplifier)	V _O = 0, No load	T _A = 25°C,		6	7.5		6	7.5	mW
Icc	Supply current (each amplifier)	V _O = 0, No load	T _A = 25°C,		200	250		200	250	μΑ
V _{O1} /V _{O2}	Crosstalk attenuation	$A_{VD} = 100,$	T _A = 25°C		120			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range for T_A is 0°C to 70°C for TL06_C, TL06_AC, and TL06_BC and -40°C to 85°C for TL06_I.
‡ Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

electrical characteristics, $V_{CC\pm}$ = ± 15 V (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS		TL061M TL062M		TL064M			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage	V _O = 0,	T _A = 25°C		3	6		3	9	mV
۷IO	input onset voltage	$R_S = 50 \Omega$	$T_A = -55^{\circ}C$ to $125^{\circ}C$			9			15	IIIV
$\alpha_{ m V_{IO}}$	Temperature coefficient of input offset voltage	$V_O = 0$, $R_S = 0$ $T_A = -55^{\circ}C$ to			10			10		μV/°C
			T _A = 25°C		5	100		5	100	pА
I _{IO}	Input offset current	V _O = 0	$T_A = -55^{\circ}C$			20*			20*	nA
			T _A = 125°C			20			20	ПА
			T _A = 25°C		30	200		30	200	pА
I _{IB}	Input bias current‡	VO = 0	$T_A = -55^{\circ}C$			50*			50*	nA
			T _A = 125°C			50			50	ПА
VICR	Common-mode input voltage range	T _A = 25°C		±11.5	–12 to 15		±11.5	-12 to 15		V
	Maximum peak output	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C	±10	±13.5		±10	±13.5		V
VOM	voltage swing	$R_L \ge 10 \text{ k}\Omega$,	$T_A = -55^{\circ}C$ to $125^{\circ}C$	±10			±10			V
Λ	Large-signal differential	$V_0 = \pm 10 \text{ V},$	T _A = 25°C	4	6		4	6		V/mV
AVD	voltage amplification	R _L ≥ 10 kΩ	$T_A = -55^{\circ}C$ to $125^{\circ}C$	4			4			V/IIIV
B ₁	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C							MHz
rį	Input resistance	T _A = 25°C			1012			1012		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ mir $R_S = 50 \Omega, T_A$		80	86		80	86		dB
ksvR	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 9 \text{ V to}$ $R_S = 50 \Omega, T_A$	$\pm 15 \text{ V, V}_{O} = 0,$ = 25°C	80	95		80	95		dB
PD	Total power dissipation (each amplifier)	V _O = 0, No load	T _A = 25°C,		6	7.5		6	7.5	mW
ICC	Supply current (each amplifier)	V _O = 0, No load	T _A = 25°C,		200	250		200	250	μΑ
V _{O1} /V _{O2}	Crosstalk attenuation	$A_{VD} = 100,$	T _A = 25°C		120			120		dB

^{*} This parameter is not production tested.

operating characteristics, $V_{CC\pm}$ = ±15 V, T_A = 25°C

	PARAMETER	TEST CO	MIN	TYP	MAX	UNIT	
SR	Slew rate at unity gain (see Note 5)	V _I = 10 V, C _L = 100 pF,	C and I suffix	1.5	3.5		V/µs
5	Siew rate at unity gain (see Note 5)	$R_L = 10 kΩ$, See Figure 1	M suffix	2	3.5		ν/μ5
t _r	Rise time	V _I = 20 V,	R _L = 10 kΩ,		0.2		
	Overshoot factor	$C_L = 100 pF$,	See Figure 1		10%		μs
٧n	Equivalent input noise voltage	$R_S = 20 \Omega$	f = 1 kHz		42	, and the second	nV/√ Hz

NOTE 5: Slew rate at -55°C to 125°C is 0.7 V/µs min.

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

[‡] Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Unity-Gain Amplifier

Figure 2. Gain-of-10 Inverting Amplifier

Figure 3. Input Offset-Voltage Null Circuit

TYPICAL CHARACTERISTICS

Table of Graphs

	FIGURE
Maximum peak output voltage vs Supply voltage	4
Maximum peak output voltage vs Free-air temperature	5
Maximum peak output voltage vs Load resistance	6
Maximum peak output voltage vs Frequency	7
Differential voltage amplification vs Free-air temperature	8
Large-signal differential voltage amplification vs Frequency	9
Phase shift vs Frequency	9
Supply current vs Supply voltage	10
Supply current vs Free-air temperature	11
Total power dissipation vs Free-air temperature	12
Common-mode rejection ratio vs Free-air temperature	13
Normalized unity-gain bandwidth vs Free-air temperature	14
Normalized slew rate vs Free-air temperature	14
Normalized phase shift vs Free-air temperature	14
Input bias current vs Free-air temperature	15
Voltage-follower large-signal pulse response vs Time	16
Output voltage vs Elapsed time	17
Equivalent input noise voltage vs Frequency	18

TYPICAL CHARACTERISTICS[†]

Figure 7

Figure 6

[†] Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

DIFFERENTIAL VOLTAGE AMPLIFICATION VS

FREE-AIR TEMPERATURE 10 V_{CC±} = ±15 V R_L = 10 kΩ 7 2 1 -75 -50 -25 0 25 50 75 100 125

Figure 8

T_A - Free-Air Temperature - °C

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

† Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices.

Figure 9

TYPICAL CHARACTERISTICS[†]

TOTAL POWER DISSIPATION VS FREE-AIR TEMPERATURE 30 P_D – Total Power Dissipation – mW 25 TL064 $V_{CC\pm}$ = ±15 V No Signal 20 No Load 15 TL062 10 **TL061** 5 _75 -50 25 50 100 -25 75 125 T_A – Free-Air Temperature – °C

Figure 12

ALL EXCEPT TL06_C **COMMON-MODE REJECTION RATIO** vs FREE-AIR TEMPERATURE

[†] Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

NORMALIZED UNITY-GAIN BANDWIDTH, **SLEW RATE, AND PHASE SHIFT**

Figure 14

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE **INPUT BIAS CURRENT** vs FREE-AIR TEMPERATURE 6 100 Input $V_{CC\pm} = \pm 15 V$ 40 4 Input and Output Voltages - V IB - Input Bias Current - nA 10 4 2 0 0.4 -2 $V_{CC\pm} = \pm 15 V$ 0.1 $R_L = 10 \text{ k}\Omega$ $C_L = 100 pF$ 0.04 $T_A = 25^{\circ}C$ 0.01 -6 25 50 75 100 125 -50 -25 0 2 T_A – Free-Air Temperature – ${}^{\circ}C$ Figure 15 Figure 16

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

Table of Application Diagrams

APPLICATION DIAGRAM	PART NUMBER	FIGURE
Instrumentation amplifier	TL064	19
0.5-Hz square-wave oscillator	TL061	20
High-Q notch filter	TL061	21
Audio-distribution amplifier	TL064	22
Low-level light detector preamplifier	TL061	23
AC amplifier	TL061	24
Microphone preamplifier with tone control	TL061	25
Instrumentation amplifier	TL062	26
IC preamplifier	TL062	27

Figure 19. Instrumentation Amplifier

Figure 20. 0.5-Hz Square-Wave Oscillator

Figure 21. High-Q Notch Filter

APPLICATION INFORMATION

Figure 22. Audio-Distribution Amplifier

Figure 23. Low-Level Light Detector Preamplifier

APPLICATION INFORMATION

Figure 24. AC Amplifier

Figure 25. Microphone Preamplifier With Tone Control

Figure 26. Instrumentation Amplifier

APPLICATION INFORMATION

IC PREAMPLIFIER RESPONSE CHARACTERISTICS

Figure 27. IC Preamplifier

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.