HW 4 Problem 1 a C21 = CZ(d) Cy(B) CZ(Y) = -CX SX -CY CBSX, CY SX + CBCX SY, -CX SB -CX SX -CY CBSX, CX CX-CBSX SX, SB SX CX SB, SX SB, CB b) Since (21(3,3) = CB and is only spot with I angle, check B for- $\beta = \pi \implies C_{21} - \begin{bmatrix} C(8-\alpha) & -5(8-\alpha) & 6 \\ -5(8-\alpha) & C(8-\alpha) & 6 \end{bmatrix}$ connot be soled $\beta = -\pi$ = 7 = $\zeta_{21} = \begin{bmatrix} -\zeta(8-\alpha) & -\zeta(8-\alpha) & 0 \\ -\zeta(8-\alpha) & \zeta(8-\alpha) & 0 \end{bmatrix}$ cannot be solved B = 6 $Z = \begin{cases} C(8+\alpha) & S(8+\alpha) & O \\ -S(8+\alpha) & C(8+\alpha) & O \end{cases}$ $S = \frac{1}{2} =$ $W_{21} = \begin{pmatrix} 0 \\ 0 \\ \lambda \end{pmatrix} + C_{2}(\lambda) \begin{pmatrix} 0 \\ \beta \\ 0 \end{pmatrix} + C_{2}(\lambda) C_{y}(\beta) \begin{pmatrix} 0 \\ 0 \\ \delta \end{pmatrix} = \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda - \gamma & c \lambda & s \beta \\ \beta & c \lambda + \gamma & s \beta & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \beta \\ \beta & c \lambda & s \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \beta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda \end{pmatrix} - \begin{pmatrix} \beta & s \lambda & s \lambda & s \lambda \\ \delta & c \lambda & s \lambda$ $R = \begin{bmatrix} 0 & 3\alpha & -C\alpha S\beta \\ 0 & C\alpha & S\beta S\alpha \end{bmatrix}$ $Such that \qquad U_{21} = R \begin{bmatrix} \beta \\ \beta \end{bmatrix}$ $1 & 0 & C\beta \end{bmatrix}$ $If we assum Swall angle a proximation, <math display="block">R = \begin{bmatrix} 0 & \alpha & -\beta \\ 0 & 1 & \alpha B \end{bmatrix}$

Problem 3

1)
$$\vec{r} = \vec{r}_z \vec{r}_z$$
, $\vec{r}_z = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \pm \alpha_0 t^2$
2) $\vec{r} = \vec{r}_z \vec{r}_z$, $\vec{r}_z = \pm \vec{r}_z = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \alpha_0 t$

3)
$$\vec{w}_{21} = \vec{f}_{2}^{T}(\vec{g})w$$

3)
$$W_{21} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} W$$

4) $V = \begin{bmatrix} 1 \\ 1 \end{bmatrix} V$, $V_{1} = C_{12} V_{2}$, $C_{12} = C_{2}(-0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} C_{12} C$

$$\dot{Y}_{1} = \begin{pmatrix} c\theta \\ s\theta \\ 0 \end{pmatrix} a_{0}t + \begin{pmatrix} -s\theta \\ c\theta \\ 0 \end{pmatrix} \frac{1}{2}a_{0}t^{2}w, \dot{Y}_{1} = \begin{pmatrix} c\theta \\ s\theta \\ 0 \end{pmatrix} a_{0}t + \begin{pmatrix} -s\theta \\ c\theta \\ 0 \end{pmatrix} \frac{1}{2}a_{0}t^{2}w^{2}$$