Assignment 1

AVVARU BHARAT

Download all latex-tikz codes from

https://github.com/Bharat437/EE5803-FPGA-LAB/tree/main/Assignment-1

1 Problem

Draw the Logic Circuit for the following Boolean Expression: (X' + Y).Z + W'

2 Explanation

First we will simplify the given Boolean expression as below, so that NAND or NOR logic gates are used for designing logic circuit.

Using De Morgan's Law

$$(\overline{X} + Y).Z + \overline{W} = (\overline{X} + \overline{Y}).Z + \overline{W}$$

$$= \overline{X.\overline{Y}.Z} + \overline{W}$$

$$= (\overline{\overline{X.\overline{Y}.Z}}) + \overline{W}$$
(2.0.1)

$$\implies \left(\overline{X} + Y\right).Z + \overline{W} = \overline{\left(\overline{X.\overline{Y}.Z}\right).W}$$
 (2.0.2)

Now we will draw logic circuit according to the above simplified expression.

Figure 1: Logic circuit using NAND gate

X	Y	Z	W	Output
0	0	0	0	1
	0	0	1	0
0	0	1	0	1
0 0 0	0	1		1
0 0 0	1	0 0 1	1 0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0		0
1	0	1	1 0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1 0	0
1	1	1	0	1
1	1	1	1	1

Table 1: Truth table of above Logic circuit