2.5

2.6

2.10 (a) The inverse transform is given by:

$$(x,y) = (e^{-u}, \frac{v}{e^{2u}}).$$

(b) Time derivatives of u, v:

$$\frac{d}{dt}u = \frac{-x'}{x} = \frac{-x}{x} = 1$$

$$\begin{split} \frac{d}{dt}v &= 2xyx' + x^2y' \\ &= 2x^2y + x^2((xy - \frac{1}{x})^2 - \frac{2}{x^2}) \\ &= 2x^2y + (x^2y - 1)^2 - 1 \\ &= 2x^2y + x^4y^2 - 2x^2y + 1 - 2 \\ &= x^4y^2 - 1 \\ &= v^2 - 1 \end{split}$$

Thus the vector field \vec{w} for the system $\vec{u}' = \vec{w}(\vec{u})$ is given by: $\vec{w} = (-1, v^2 - 1)$. This is clearly decoupled as specified.

(c) Solving the decoupled system for $\vec{u}(0) = (u_0, v_0)$. Since u' = -1, then $u = u_0 - t$. For $v' = v^2 - 1$, by barrow's formula we get the equation

$$t = \int_{v_0}^{v} \frac{dz}{z^2 - 1}.$$

Splitting $\frac{1}{z^2-1}$ apart by partial fraction decomposition yields

$$\frac{1}{z^2 - 1} = \frac{1}{2(v - 1)} + \frac{-1}{2(v + 1)}.$$

This results in the integral being evaluated as

$$t - t_0 = ln\left(\sqrt{\frac{v-1}{v+1}}\right) - ln(\sqrt{\frac{v_0-1}{v_0+1}}).$$

Inverting to get v yields:

$$v(t) = \frac{v_0 + 1 + (v_0 - 1)e^{2(t - t_0)}}{v_0 + 1 - (v_0 - 1)e^{2(t - t_0)}}$$

We must show that this solution for \vec{u} with $\vec{u}(0) = (u_0, v_0)$ exists uniquely for all t if and only if $|v_0| \leq 1$.

• (\Rightarrow) Suppose the solution given above at $\vec{u} = (u_0, v_0)$ exists for all t and is unique. Then we must show $|v_0| \leq 1$. Suppose for contradiction that $|v_0| > 1$. Then let's see if we can get the denominator of v to be 0.

$$0 = v_0 + 1 - (v_0 - 1)e^{2(t - t_0)}$$
$$(v_0 - 1)e^{2(t - t_0)} = v_0 + 1$$
$$2(t - t_0) = ln(\frac{v_0 + 1}{v_0 - 1})$$

Since $v_0 > 1$, then $v_0 - 1 > 0$, therefore the natural log is defined, and we can get a value for t, which means that v has a singularity, which contradicts the solution existing for all t. Therefore $|v_0| \le 1$.

• (\Leftarrow) Suppose $|v_0| \leq 1$. We must show there exists a unique solution for all t at $\vec{u} = (u_0, v_0)$. Note that by definition we're operating inside of the maximal interval (-1,1) and the endpoints $\{-1,1\}$. First for the cases where $v_0 \in (-1,1)$. Since we need to show the existence and uniqueness of a solution, we simply need to show that \vec{w} is Lipschitz on (-1,1). Note that since $w_1 = -1$, that for any value of v_0 , w_1 is always bounded. For $v' = w_2 = v^2 - 1$, since $v \in (-1,1)$, then $\max(|w_2(v)|) = 1$. Then we have the inequality

$$|x^2 - 1 - y^2 + 1| \le |x^2 - y^2| \le |x + y||x - y| \le 2|x - y|$$

Therefore on (-1,1) we have each component of \vec{w} lipschitz continuous, thus $\|\vec{w}\|$ is lipschitz. For the case of $v_0=1$, we must show that the constant solution is the only one for $v'=v^2-1$. Since $\lim_{\delta\to 0}\int_{1-\delta}^1\frac{dz}{|z^2-1|}\geq \lim_{\delta\to 0}|artanh(1-\delta)-artanh(1)|=\lim_{\delta\to 0}\infty=|artanh(1)-artanh(1+\delta)|\leq \lim_{\delta\to 0}\int_1^{1+\delta}\frac{dz}{|z^2-1|}$, then the times for which v leaves 1 is infinite, therefore the constant solution is the unique solution when $v_0=1$. Also note that |artanh(x)|=|artanh(-x)|, therefore these inequalities can be converted to also show the uniqueness of the steady state solution for v=-1.

(d)