Processamento de imagens - Morfologia Matemática

Alano Martins Pinto e Gildácio Sá

UECE - Universidade Estadual do Ceará

26 de junho de 2017

Tópicos

- Conceitos
- Teoria dos conjuntos
- Operações lógicas
- Dilatação e Erosão
- Abertura e fechamento
- Transformação Hit-or-miss
- Extração de bordas
- Extração de componentes conexas
- Conver Hull
- Thinning
- Thickening
- Esqueleto
- Poda
- Morfologia em escala de cinza

Teoria dos conjuntos

União: $C = A \cap B$

Interceção: $C=A\cup B$

Subtração: C=A-B

Figura: Propriedades básicas de conjuntos

Complementar

Definição

Conjunto de pontos que não estão em A

$$A^c = \{w \,|\, w \not\in A\}$$

Figura: Complementar de conjuntos

Translação

Definição

Move a origem de A para o ponto z

$$(A)z=\{c\,|\,c=a+z\text{, para }a\in A\}$$

Figura: Translação em vetor

Reflexão

Definição

Reflete todos os elementos de B sobrem a origme desse conjunto

$$B = \{w \mid w = -b, \text{ para } b \in B\}$$

Figura: Reflexão em figura

Operações lógicas (Binário)

- NOT
- AND
- OR
- XOR
- NOT-AND

Figura: Operações lógicas

Extração de bordas

Definição

Extrai bordas do pixels frontal. Realiza uma erosão e após a diferença do conjunto A com o resultado.

$$\beta(A) = A - (A \ominus B)$$

Figura: Extração de bordas 1

Figura: Extração de bordas 2

Preenchimento de regiões

Definição

Preenche ua região em A, dado um ponto inicial p.

$$X_k = (X_{k-1} \oplus B) \cap A^c \qquad k = 1, 2, 3$$

Figura: Preenchimento de regiões

Figura: Preenchimento de regiões

Extração de componentes conexos

Definição

Encontra um componente conectado X em A.

$$X_k = (X_{k-1} \oplus B) \cap A \qquad k = 1, 2, 3$$

Figura: Componentes conectos

Figura: Componentes conectos

Convex hull

Definicão

Encontra o envelopamento convexo de um conjunto A

$$X_k^i = (X_{k-1} \circledast B^i) \cup A \qquad i = 1, 2, 3, 4 \qquad k = 1, 2, 3, \dots$$

$$i = 1, 2, 3, 4$$

$$k = 1, 2, 3, ...$$

Figura: Convex hull

Figura: Convex hull

Afinamento

Definição

Encontra o envelopamento convexo de um conjunto A

$$A \otimes B = A - (A \circledast B)$$
 OU

$$A\cap (A\circledast B)^c$$

Afinamento

Figura: Afinamento

Espessamento

Definição

Aumenta a espessura de um conjunto A

$$A\odot B=A\cup (A\circledast B)$$

Espessamento

Figura: Espessamento

Esqueleto

Definição

Processo de redução da região foreground, preservando a extensão e conectividade.

Equação

$$S(A) = \bigcup_{k=0}^{k} \{ (A \ominus kB) - [(A \ominus kB) \circ B] \}$$

Reconstrução:

$$S(A) = \bigcup_{k=0}^{k} (S_k(A) \oplus kB)$$

Esqueleto

Figura: Esqueleto

Poda

Definição

Aumenta a espessura de um conjunto A

$$X_1 = A \otimes B \tag{1}$$

$$X_2 = \bigcup_{k=1}^{8} (X_1 \circledast B^k)$$
 (2)

$$X_3 = (X_2 \oplus H) \cap A \tag{3}$$

$$X_4 = X_1 \cup X_3 \tag{4}$$

Poda

Figura: Poda

Morfologia - Imagens monocromáticas

- Dilatação e Erosão
- Abertura e Fechamento
- Realce de contraste
- Granulometria
- Atenuação de ruidos

Dilatação e Erosão - Imagens monocromáticas

Definição

Similar a imagens binárias

$$(f \oplus b)(x,y) = \max\{f(x-m,y-n) + b(m,n\}$$

$$(f \ominus b)(x,y) = \min\{f(x-m,y-n) + b(m,n\}$$

Abertura e Fechamento - Imagens monocromáticas

Definição

Similar a imagens binárias

$$(f \circ b) = (f \ominus b) \oplus b$$

$$(f \bullet b) = (f \oplus b) \ominus b$$

Realce de contraste - Imagens monocromáticas

Definição

Realce de contraste para imagem

$$TH(f) = f - (f \circ b)$$

$$BH(f) = (f \bullet b) - f$$

$$g = f + TH(f) - BH(f)$$

Realce de contraste - Imagens monocromáticas

Top-Hat: Black-Hat:

Figura: Top Hat

Figura: Black Hat

Realce de contraste - Imagens monocromáticas

Aplicação do realce:

Figura: Realce

Granulometria

Definição

Estimativa da distribuição de tamanhos de objeto em uma imagem

Figura: Granulometria

Atenuação de ruidos

Definição

AAbertura da imagem para redução de pontos brancos isolados e fechamento para redução de pontos pretos isolados

Figura: Redução de ruidos

Bibliografia

Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (2nd Ed). Prentice Hall, 2002.

H. Pedrini and W. R. Schwartz. Análise de Imagens Digitais: Princípios, Algoritmos e Aplicações. Editora Thomson Learning, 2007. Obrigado!