THE SURPRISING POWER OF MODERN CRYPTOGRAPHY

Mark Zhandry – Stanford University

Typical Crypto Application

Privacy

Goals Integrity

Authenticity

Solution (Pre 1970's)

Major question: how to obtain secret keys?

Diffie-Hellman Key Exchange [DH'76]

a.k.a. Non-Interactive Key Exchange (NIKE)

Benefit of Non-Interactive Key Exchange

Re-usable:

n parties: O(n²) shared keys

- Non-interactive protocol: **O(n)** messages
- Interactive protocol: O(n²) messages

The Modern Cryptographic Landscape

Goal 1: New Cutting-Edge Crypto

Another Look at the Cryptographic Landscape

Goal 2: Bring Cutting-Edge Closer to Practice

Contributions

	Initial Constructions	Efficiency Improvements
Multiparty NIKE w/o Setup	[B <mark>Z</mark> '13, ABGS <mark>Z</mark> '13]	[<mark>Zha</mark> '14a]
Order-Revealing Encryption (ORE)	(Folklore)	[BLRS <mark>Z</mark> Z'14]
Obfuscation	([GGHRSW'13])	[BMS <mark>Z</mark> '15]
Broadcast Encryption	[BZ'13, ABGSZ'13, Zha'14b]	[BWZ'14, Zha'14a, Zha'14b]
Functional Encryption	([GGHRSW'13])	[GGH <mark>Z</mark> '14]
Universal Samplers	[HJKSW <mark>Z</mark> '14]	(Hopefully still to come?)

[BZ'15]: ORE ⇒ impossibility for differentially-private learning

This Talk: Multiparty Key Exchange

Motivation: Group Communication

Multiparty NIKE: Natural Generalization

Multiparty NIKE: Natural Generalization

Constructing Multiparty Key Exchange

Tool: Cryptographic Multilinear Maps [BS'03]

"Source Group"
$$G = \{ 1, g, g^2, g^3, ... \}$$
"Target Group" $G_T = \{ 1, g_T, g_{T}^2, g_{T}^3, ... \}$
"Pairing" operation: e: $G^n \rightarrow G_T$ where
$$e(g^a, g^b, ..., g^z) = g_T^{ab...z}$$

2000-2001: **n=2** [Joux'00,BF'01]

• Instrumental for solving many problems (IBE, 3-party NIKE,...)

2012: First candidate construction for n>2 [GGH'12]

• (n+1)-party NIKE, obfuscation, and more

Limitation of NIKE Using Mmaps

Goal: No Setup

Constructing Multiparty Key Exchange

Removing Setup Using Obfuscation

Step 1: Use basic locking mechanism

Dream World: Oracle Computes Shared Key

Problem: how to implement oracle without interaction?

General Purpose Program Obfuscation

"Scramble" a program, hiding implementation details

Requirements:

- Efficiency: O "efficient", much slower than properties.
- Ideal security: having <u>code</u> in "as good as" <u>oracle</u> for
 - Too strong ([BGIRSVY'01]), but provides intuition
 - In reality, use weaker notion: indistinguishability obfuscation (iO)

[GGHRSW'13]: First candidate obfuscator

Step 2: Cloud Obfuscates Oracle

Step 3: "Master" User Obfuscates Oracle

Security of Protocol

Theorem

iO + OWF

Multiparty NIKE

(without setup)

Constructing Multiparty Key Exchange

Multilinear Maps
[BS'03, GGH'12]
Non-interactive ✓
Trusted Setup X

Implementing Obfuscation

Can build obfuscator using multilinear maps [GGHRSW'13]

- Step 2: Encode branching program in multilinear map
- Step 3: Additional costly steps
 - FHE and more

[AGIS'14,BMSZ'15]: Efficiency improvements for Step 1

Still extremely impractical

Constructing Multiparty Key Exchange

Multilinear Maps
[BS'03, GGH'12]
Non-interactive ✓
Trusted Setup X

Removing Obfuscation

Are we working too hard?

Only need to obfuscate "gatekeeper" programs

New Primitive: Witness PRFs [Zha'14]

Key Exchange from Witness PRFs

Key Exchange from Witness PRFs

What language L should be used to generate F, ??

Each party must have witness for **z** = (, , , , , , , , , , ,)

In particular, z∈L

Need witness hard to compute given **z**

Security of Protocol

Theorem

Witness PRFs + OWF

Multiparty NIKE (without setup)

Witness PRFs
OWF

Minor Modification to Protocol

Assume is a pseudorandom generator (PRG)

Possible to generate "empty" boxes

"Empty" box indistinguishable from "full" box

Can build from any one-way function [HILL'99]

Security Proof

Alternate World: Empty Boxes

Success in Real World ⇔ Success in Alternate World

Invoke Witness PRF Security

Constructing Witness PRFs

Construction of Witness PRFs

First, construct witness PRF for limited class of languages:

SubSums($a \in \mathbb{Z}^n$) = { $a \cdot w : w \in \{0,1\}^n$ } (i.e. subset-sums of elements of a)

Subset-sum problem: given ($a \in \mathbb{Z}^n$, $t \in \mathbb{Z}$), determine if $t \in SubSums(a)$

Witness PRF for SubSums(a):

Given $a_2 | a_3 | a_4 | a_5 | a_6 |$

• Construct "encoding functions" Enc: $\mathbb{Z} \to G$, Enc_T: $\mathbb{Z} \to G_T$ s.t.

a+b+c+d+e+f e Enc

a+b+c C d

Enc_T

• $F(\mid t \mid) = Enc_T(\mid t \mid) = t$

• $(a_1), (a_2), (a_3), (a_4), (a_5), (a_5), (a_6), (a_8), (a_8)$

How to Evaluate with Witness?

$$= (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, 0)$$

$$a_{1} \quad a_{2} \quad a_{3} \quad a_{4} \quad a_{5} \quad a_{6}$$

$$a_{2} \quad + \quad a_{5} + a_{6} = 1$$

$$e(0, a_{2}, 0, 0, a_{5}, a_{6}) = 1 = F(1)$$

Final Pieces

Security: If **† €** SubSums(a), no subset* of

⇒ Complexity assumption: given

Witness PRF for NP: we give new reduction from any language L∈NP to SubsetSum where:

- a only depends on language (not instance)
- † depends on language and instance

Witness PRF for **SubSums** ⇒ Witness PRF for **NP**

Comparison for Key Exchange

Use multilinearity **n** as proxy for efficiency

Basic mmap protocol: n = #(users)-1

With trusted setup

Obfuscation:

$$n = (\#(users) \times \lambda)^c$$

- Constant C>5 (maybe much larger)
- λ = security parameter (can set to 128)

Witness PRF:

$$n = \#(users) \times 8\lambda + O(\lambda)$$

• Still room for improvement, but orders of magnitude better

Constructing Multiparty Key Exchange

Public Key Encryption
Interactive X

⇒ online, one-time

Multilinear Maps

[BS'03, GGH'12]

Non-interactive

Trusted Setup

X

Possible Strategies

Obfuscation [BZ'13]

Non-interactive

No Setup

Totally impractical X

Witness PRFs [Zha'14a]

Non-interactive

1

No Setup

/

Almost Practical?

?

Still Much Work To Do

Theory: asymptotically polynomial ⇒ "efficient"

Practice: still far from implementation

Goal 1: Bring protocols even closer to practice

- Using LWE?
- By building more efficient multilinear maps?

Goal 2: Better security understanding for obfuscation, multilinear maps

Goal 3: Experiment with implementation

Into the Future: Quantum

Quantum Attacks on Classical Crypto

Post-quantum attacks (aka quantum computing attacks):

New quantum attacks:

Quantum Attacks on Classical Crypto

[BDFLSZ'11, Zha'12a]: Quantum random oracle model

[Zha'12b]: Pseudorandom functions

[BZ'13a]: Message authentication codes

[BZ'13b]: Signatures and encryption

[Zha'13]: Quantum collision resistance of random oracles

Thanks!