Assignment 2 - Probability and Statistics in Data Analysis

Here is the solution to each question from the exercises provided in assignment 2 of the Probability and Statistics in Data Analysis course

Exercise 1

Question a

Provide a 99% confidence interval for Cholesterol values

Solution

99% Confidence Interval for Cholesterol values: 180.6816 185.5204

Question b

Provide a 95% confidence interval for Cholesterol values after receiving drug A and B, respectively

Solution

95% Confidence Interval for Cholesterol values after recieving the Drug A: 178.6626 183.3694

95% Confidence Interval for Cholesterol values after recieving the Drug B: 182.4306 187.9414

Question c

Provide a 90% confidence interval for the mean difference in Cholesterol values after receiving drug A and drug B, respectively

Solution

90% Confidence Interval for the mean difference in Cholesterol values after receiving drug A and drug B: -7.164971 -1.175029

Question d

Examine the following hypothesis test:

$$H_0: \mu_A = \mu_B$$

$$H_1: \mu_A < \mu_B$$

where μ_A and μ_B are the mean Cholesterol values after receiving drug A and B, respectively. The level of significance is $\alpha=0.05$

Solution

Welch Two Sample t-test

data: drug_a_data Cholesterol and drug_b_data Cholesterol t = -2.3126, df = 95.66, p-value = 0.01144 alternative hypothesis: true difference in means is less than 0 95 percent confidence interval: -Inf -1.175029 sample estimates: mean of x mean of y 181.016 185.186

Since the p-value=0.01144 is less than 0.05 the null hypothesis is rejected and the mean cholesterol level for drug A is significantly less than for drug B

Question e

Provide a hypothesis test (α = 0.01) for the equality of variances of Glucose levels after receiving drug A and drug B, respectively

Solution

F test to compare two variances

data: drug_a_data Glucose and drug_b_data Glucose

F = 1.0484, num df = 49, denom df = 49, p-value = 0.8694

alternative hypothesis: true ratio of variances is not equal to 1

99 percent confidence interval:

0.4961326 2.2152165

sample estimates:

ratio of variances

1.048352

Since the p-value=0.8694 is greater than 0.01 there is no enough evidence of a difference in variances

Question f

At a significance level of 5%, test if there is a statistically significant side effect on Glucose levels

Solution

Welch Two Sample t-test

```
data: drug_a_data Glucose and drug_b_data Glucose
t = 1.5297, df = 97.945, p-value = 0.1293
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.7431617 5.7431617
sample estimates:
mean of x mean of y
```

Since the p-value=0.1293 is greater than 0.05, there is no enough evidence for statistically significant side effect on Glucose levels between the drugs

Question g

92.118 89.618

Provide a 95% confidence interval for the proportion of volunteers who had Myalgia symptoms

Solution

95% Confidence Interval for the proportion of volunteers who had Myalgia symptoms: 0.02860529 0.13891973

Question h

Test if the proportion of volunteers who had Myalgia symptoms is statistically greater than 5% at a significance level of 5%

Solution

Exact binomial test

```
data: count(with_myalgia_data)nandcount(data)n number of successes = 7, number of trials = 100, p-value = 0.234 alternative hypothesis: true probability of success is greater than 0.05 95 percent confidence interval: 0.03331192 1.00000000 sample estimates: probability of success 0.07
```

Since the p-value = 0.234 is greater than 0.05 there is no evidence the proportion exceeds 5%

Question i

Test if the drug and the presence of Myalgia symptoms are independent ($\alpha = 0.05$)

Solution

Fisher's Exact Test for Count Data

data: contingency_table

p-value = 0.1117

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.003194961 1.328490415

sample estimates:

odds ratio

0.1520682

Since p-value = 0.1117 is greater than 0.05, there is no statistically significant association between Drug type and Myalgia symptoms at the α =0.05 level

Question j

Provide a 95% confidence interval for the mean difference $\mu_1 - \mu_2$, where μ_1 and μ_2 are the mean Glucose levels for volunteers with and without Myalgia symptoms, respectively

Solution

95% Confidence Interval for the mean difference in Glucose levels with and without Myalgia symptoms: -12.62472 4.73655

Exercise 2

Question a-i

Provide a graphical representation of each continuous variable versus the categorical variable

Solution

Question a-ii

Provide the ANOVA output

Solution

Anova on Y-W

```
Df Sum Sq Mean Sq F value Pr(>F)
W 2 333 166.71 4.352 0.0141 *
Residuals 197 7546 38.31
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Because the p-value < 0.05, significant differences exist between groups

Anova on X1-W

```
Df Sum Sq Mean Sq F value Pr(>F)
W 2 76.3 38.13 2.42 0.0915 .
Residuals 197 3104.1 15.76
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Because the p-value > 0.05, no significant differences exist between groups

Anova on X2-W

Df Sum Sq Mean Sq F value Pr(>F)
W 2 17.0 8.489 2.079 0.128
Residuals 197 804.3 4.083

Because the p-value > 0.05, no significant differences exist between groups

Anova on X3-W

```
Df Sum Sq Mean Sq F value Pr(>F)
W 2 0.28 0.1397 0.133 0.876
Residuals 197 207.24 1.0520
```

Because the p-value > 0.05, no significant differences exist between groups

Anova on X4-W

```
Df Sum Sq Mean Sq F value Pr(>F)
W 2 75.8 37.89 4.171 0.0168 *
Residuals 197 1789.6 9.08
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Because the p-value < 0.05, significant differences exist between groups

Question a-iii

Check the assumptions

Solution

1. Normality Assumption

Y versus W

Q-Q plot

Normal Q-Q Plot Y Versus W

• Shapiro-Wilk normality test

Shapiro-Wilk normality test

data: residuals(anova_Y)
W = 0.98923, p-value = 0.1374

X1 versus W

Normal Q-Q Plot X1 Versus W

• Shapiro-Wilk normality test

Shapiro-Wilk normality test

data: residuals(anova_X1)
W = 0.99123, p-value = 0.268

X2 versus W

Normal Q-Q Plot X2 Versus W

• Shapiro-Wilk normality test

Shapiro-Wilk normality test

data: residuals(anova_X2)
W = 0.99539, p-value = 0.8049

X3 versus W

Normal Q-Q Plot X3 Versus W

• Shapiro-Wilk normality test

Shapiro-Wilk normality test

data: residuals(anova_X3)
W = 0.99108, p-value = 0.2555

X4 versus W

Normal Q-Q Plot X4 Versus W

• Shapiro-Wilk normality test

Shapiro-Wilk normality test

We observe that the null hypothesis of normality of the residuals holds for all the combinations since the significance level α =0.05 is less than the p-value in all cases

2. Homogeneity of Variances Assumption

Y versus W

Because, the p-value is less than 0.05, the assumption of homogeneity of variances is violated

X1 versus W

```
Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 2 1.0945 0.3367

197
```

Because, the p-value is greater than 0.05, the assumption of homogeneity of variances is not violated

X2 versus W

```
Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 2 1.081 0.3412

197
```

Because, the p-value is greater than 0.05, the assumption of homogeneity of variances is not violated

X3 versus W

```
Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 2 7.4498 0.0007605 ***

197
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Because, the p-value is less than 0.05, the assumption of homogeneity of variances is violated

X4 versus W

```
Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 2 2.2203 0.1113

197
```

Because, the p-value is greater than 0.05, the assumption of homogeneity of variances is not violated

Provide also diagnostic plots to verify the above interpretations:

Y versus W

X1 versus W

X2 versus W

X3 versus W

X4 versus W

Question b

Provide a scatter-plot matrix of Y, X1, X2, X3, and X4, annotating the different levels of W in each plot using a different color

Solution

Below we can see the scatter-plot matrix where shows the correlations between variables in the upper triangle, displays the scatter plots in the lower triangle and the density plots in the diagonal

Question c

Run the regression model of Y on X4

Solution

Regression model

Call:

 $lm(formula = Y \sim X4, data = data)$

Residuals:

Min 1Q Median 3Q Max -5.5133 -1.3818 0.1039 1.4803 5.9044

Coefficients:

Residual standard error: 2.129 on 198 degrees of freedom Multiple R-squared: 0.8861, Adjusted R-squared: 0.8855 F-statistic: 1540 on 1 and 198 DF, p-value: < 2.2e-16

Regression line

Question d

Run the regression model of Y on all the remaining variables (X1, X2, X3, X4, W), including the non-additive terms (i.e., interactions of the continuous predictors with the categorical variable)

Solution

```
Call:
```

 $lm(formula = Y \sim (X1 + X2 + X3 + X4) * W, data = data)$

Residuals:

Min 1Q Median 3Q Max -3.8807 -1.3656 -0.0337 1.0723 5.4653

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	28.3612	7.1589	3.962	0.000106	***
X1	1.1682	0.2570	4.545	9.90e-06	***
X2	2.7008	0.5276	5.119	7.64e-07	***
X3	0.3221	0.2313	1.393	0.165391	
X4	-0.5859	0.5015	-1.168	0.244184	
WB	-8.2392	11.6561	-0.707	0.480544	
WC	-24.4132	10.7774	-2.265	0.024658	*
X1:WB	-0.2119	0.3432	-0.617	0.537741	
X1:WC	-0.4392	0.3618	-1.214	0.226304	
X2:WB	-0.9233	0.7186	-1.285	0.200463	
X2:WC	-1.3562	0.7368	-1.841	0.067257	
X3:WB	0.2838	0.3743	0.758	0.449266	
X3:WC	-0.3090	0.3076	-1.005	0.316355	
X4:WB	0.6572	0.6797	0.967	0.334848	
X4:WC	1.3478	0.7030	1.917	0.056730	
	- ()			(

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 1.879 on 185 degrees of freedom Multiple R-squared: 0.9171, Adjusted R-squared: 0.9108 F-statistic: 146.2 on 14 and 185 DF, p-value: < 2.2e-16

Question e

Examine the regression assumptions and provide alternatives if any of them fail

Solution

Showing some plots and a Shapiro-Wilk test to check the regression assumptions

Residuals vs Fitted

Normal Q-Q Plot

Shapiro-Wilk normality test

data: residuals(model_all)
W = 0.9907, p-value = 0.2253

Based on the above images all the assumptions (linearity, independence of residuals, normality of residuals and homoscedasticity of residuls) are not violated

Question f

Use the "stepwise regression" approach to examine whether you can reduce the dimension of the model

Solution

• Stepwise Regression Approach - Steps

```
Start: AIC=266.69
Y \sim (X1 + X2 + X3 + X4) * W
       Df Sum of Sq
                              AIC
                       RSS
- X1:W
       2
            5.2069 658.33 264.28
- X3:W 2
            10.3202 663.44 265.83
- X2:W 2
            12.4535 665.58 266.47
- X4:W 2
           12.9877 666.11 266.63
<none>
                    653.12 266.69
Step: AIC=264.28
Y \sim X1 + X2 + X3 + X4 + W + X2:W + X3:W + X4:W
       Df Sum of Sq
                       RSS
                              AIC
              8.731 667.06 262.91
- X3:W
<none>
                    658.33 264.28
- X2:W 2
             20.832 679.16 266.51
+ X1:W 2
             5.207 653.12 266.69
- X4:W 2
             37.618 695.95 271.39
- X1
       1
            159.098 817.43 305.57
Step: AIC=262.91
Y \sim X1 + X2 + X3 + X4 + W + X2:W + X4:W
       Df Sum of Sq
                       RSS
                              AIC
                    667.06 262.91
<none>
+ X3:W 2
              8.731 658.33 264.28
- X3
             11.587 678.65 264.36
        1
- X2:W 2
            21.134 688.20 265.15
+ X1:W 2
              3.618 663.44 265.83
- X4:W 2
            35.695 702.76 269.34
- X1
        1
            162.414 829.48 304.50
```

We can observe that the final predictors are X1 + X2 + X3 + X4 + W + X2:W + X4:W

Summary of the final model

```
Call:
```

```
lm(formula = Y \sim X1 + X2 + X3 + X4 + W + X2:W + X4:W, data = data)
```

Residuals:

```
Min 1Q Median 3Q Max -4.0269 -1.2964 0.0009 1.1942 5.6151
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	30.5231	6.7564	4.518	1.10e-05	444
X1	0.9587	0.1413	6.784	1.46e-10	444
X2	2.2899	0.3218	7.117	2.23e-11	***
X3	0.2439	0.1346	1.812	0.07159	
X4	-0.1849	0.2903	-0.637	0.52487	
WB	-7.0505	10.8716	-0.649	0.51743	
WC	-29.9678	10.0516	-2.981	0.00325	**
X2:WB	-0.5349	0.2384	-2.244	0.02602	*
X2:WC	-0.4785	0.2481	-1.928	0.05531	
X4:WB	0.2633	0.1687	1.560	0.12036	
X4:WC	0.4966	0.1563	3.178	0.00173	**
Signif. code	es: 0 '**	*' 0.001 ' [*]	**' 0.01	' *' 0.05	'.' 0.1 ' ' 1

Residual standard error: 1.879 on 189 degrees of freedom Multiple R-squared: 0.9153, Adjusted R-squared: 0.9109 F-statistic: 204.4 on 10 and 189 DF, p-value: < 2.2e-16

Question g

Using the model found in (f), provide a point estimate and a 95% confidence interval for the prediction of Y when: (X1,X2,X3,X4,W) = (120, 30, 10, 90,B)

Solution

In the above image we can see the prediction of Y and the corresponding 95% confidence interval for this

Question h

Using the cut() function, create a categorical variable (named Z) with 3 levels based on the quantiles of X4. Provide the contingency table of Z and W

Solution

Below is the related contingency table of Z and W

```
A B C
Low 27 13 27
Medium 24 27 15
High 25 27 15
```

Question I

Run the parametric two-way ANOVA of Y on the categorical variables W and Z (including the interaction term). Provide the fit, examine the assumptions, and comment on the significance of the terms

Solution

Below is the two-way Anova model summary

```
Df Sum Sq Mean Sq F value
                                         Pr(>F)
W
                         166.7 19.010 2.96e-08 ***
                   333
Z
              2
                  5839
                        2919.7 332.926 < 2e-16 ***
W:Z
                    32
                           8.0
                                 0.912
                                          0.458
Residuals
            191
                  1675
                           8.8
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Comments on the significance of the terms:

- The categorical variable W has a statistically significant effect on Y (p<0.001) -> W influences Y
- The categorical variable Z has a statistically significant effect on Y (p<0.001) -> Z influences Y
- The interaction effect between W and Z is not statistically significant (p=0.458>0.05) ->
 No interaction effect

1. Normality Assumption

Q-Q plot

Normal Q-Q Plot

• Shapiro-Wilk normality test

Shapiro-Wilk normality test

From above we can observe that the normality of the residuals holds since the significance level α =0.05 is less than the p-value

2. Homogeneity of Variances Assumption

```
Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 8 1.3199 0.2356

191
```

Because, the p-value is greater than 0.05, the assumption of homogeneity of variances is not violated