[c8]

Claims

Ciaii	113
[c1]	A method for facilitating a fabrication of a high temperature superconducting electrical machine, said method comprising the steps of: fabricating a back iron; attaching a plurality of non-magnetic teeth to the back iron; and installing the back iron in the machine.
[c2]	A method according to Claim 1 wherein said step of fabricating a back iron further comprises the step of fabricating a back iron having a plurality of tooth slots, said step of attaching a plurality of non-magnetic teeth further comprises the step of attaching a back section of each tooth to a tooth slot.
[c3]	A method according to Claim 1 wherein said step of attaching a plurality of non-magnetic teeth further comprises the step of attaching a plurality of non-magnetic teeth to the back iron with at least one key.
[c4]	A method according to Claim 3 wherein said step of attaching a plurality of non-magnetic teeth further comprises the step of attaching a plurality of non-magnetic teeth to the back iron with an adhesive.
[c5]	A method according to Claim 1 wherein said step of attaching a plurality of non-magnetic teeth further comprises the step of attaching a plurality of non-magnetic teeth comprising at least one of a glass laminate, a carbon fiber, and a fiber polymer to the back iron with at least one key.
[c6]	A method according to Claim 1 wherein said step of attaching a plurality of non-magnetic teeth further comprises the step of attaching at least one non-magnetic tooth including at least one embedded conductor.
[c7]	A method for fabricating a stator with non-magnetic teeth, said method comprises the steps of: fabricating a back iron; and attaching a non-magnetic tooth back portion to the back iron.

A method according to Claim 7 wherein said step of attaching a plurality of

non-magnetic teeth further comprises the step of attaching a substantially circular back portion unitary with the plurality of non-magnetic teeth to the back iron.

- [c9] A method according to Claim 8 wherein said step of attaching a plurality of non-magnetic teeth further comprises the step of attaching a substantially circular back portion unitary with the plurality of non-magnetic teeth to the back iron with a key.
- [c10] A method according to Claim 7 wherein said step of attaching a plurality of non-magnetic teeth further comprises the step of attaching a plurality of non-magnetic teeth comprising at least one of a glass laminate, a carbon fiber, and a fiber polymer to the back iron.
- [c11] A method according to Claim 7 wherein said step of attaching a non-magnetic tooth back portion further comprises the step of attaching a non-magnetic tooth back portion including at least one embedded conductor to the back iron.
- [c12] A stator comprising:

 a back iron; and

 a plurality of non-magnetic teeth unitary with a back portion, said back portion mounted on said back iron.
- [c13] A stator according to Claim 12 wherein said back portion is substantially circular.
- [c14] A stator according to Claim 13 further comprising at least one key extending from said back portion.
- [c15] A stator according to Claim 12 wherein said back portion is mounted on said back iron with a key.
- [c16] A stator according to Claim 12 wherein said non-magnetic teeth comprise at least one of a glass laminate, a carbon fiber, and a fiber polymer.

[c17]	teeth comprises at least one embedded conductor.
[c18]	A dynamoelectric machine comprising: a housing;
	a stator comprising a bore therethrough mounted in said housing, said
	stator comprising a back iron and a plurality of non-magnetic teeth unitary
	with a back portion, said back portion mounted to said back iron;
	a plurality of armature windings mounted on said teeth; and
	a rotor rotatably mounted in said bore, said rotor comprising a plurality of field windings.
[c19]	A machine according to Claim 18 wherein said back section is substantially circular.
[c20]	A machine according to Claim 18 wherein said field windings are superconducting field windings.
[c21]	A machine according to Claim 20 further comprising:
	a rotor jacket surrounding said field windings; and
	a vacuum pump in flow communication with an interior of said rotor jacket.
[c22]	A machine according to Claim 21 further comprising a cryogenic cooler coupled to said rotor shaft.
[c23]	A machine according to Claim 18 wherein said field windings configured for synchronous operation with said armature windings.
[c24]	A machine according to Claim 18 wherein said back portion keyed to said back iron.
[c25]	A machine according to Claim 24 wherein said back portion adhesively bonded to said back iron.
[c26]	A machine according to Claim 18 wherein said non-magnetic teeth comprise at least one of a glass laminate, a fiber polymer, and a carbon fiber.

[c27] A machine according to Claim 18 wherein at least one of said non-magnetic teeth comprise at least one conductor.