Fonctions cosinus et sinus

Rappels. Dans un plan muni d'un repère orthonormé (0; I; J), on appelle <u>cercle trigonométrique</u> le cercle \mathcal{C} de centre l'origine O du repère et de rayon OI = 1. Etant donné un réel x, on parcourt une distance x le long de \mathcal{C} dans le sens contraire (si x > 0) des aiguilles d'une montre, et on note M_x le point image où on atterrit sur \mathcal{C} .

Définition. Pour tout $x \in \mathbb{R}$, $(\cos(x); \sin(x))$ sont définis comme les coordonnées du point image M_x sur \mathcal{C} . De plus quand $\cos(x) \neq 0$, on définit $\tan(x) = \frac{\sin(x)}{\cos(x)}$

Propriété. Considérant un angle x non droit d'un triangle rectangle d'hypoténuse H, de côté adjacent A, de côté opposé O, on a : $\sin(x) = \frac{O}{H} \cos(x) = \frac{A}{H} \tan(x) = \frac{O}{A}$ (SOH CAH TOA)

Définition. On définit la fonction $cos: \mathbb{R} \to \mathbb{R}: x \mapsto cos(x)$ et la fonction $sin: \mathbb{R} \to \mathbb{R}: x \mapsto sin(x)$

(Connaitre l'allure et les sens de variations de cos et de sin)

Rappels des valeurs remarquables.

x	$-\frac{5\pi}{6}$	$-\frac{3\pi}{4}$	$-\frac{2\pi}{3}$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\cos(x)$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
sin(x)	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Propriété. Pour tout $x \in \mathbb{R}$, $(\cos(x))^2 + (\sin(x))^2 = 1$

Propriété. Pour tout $x \in \mathbb{R}$, $-1 \le \cos(x) \le 1$ et $-1 \le \sin(x) \le 1$

Propriété de 2\pi-périodicité. Pour tout $x \in \mathbb{R}$, $\cos(x+2\pi) = \cos(x)$ et $\sin(x+2\pi) = \sin(x)$

Propriété. Pour tout $x \in \mathbb{R}$, $\cos(-x) = \cos(x)$ (\cos est paire)

Propriété. Pour tout $x \in \mathbb{R}$, $\sin(-x) = -\sin(x)$ (\sin est impaire)

Propriété. cos et sin sont dérivables sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $\cos'(x) = -\sin(x)$ et $\sin'(x) = \cos(x)$

Propriété. Pour tout $x \in \mathbb{R}$, $\cos\left(x + \frac{\pi}{2}\right) = -\sin(x) = \cos'(x)$ (dériver \cos c'est tourner d'un angle de $\frac{\pi}{2}$)

Propriété. Pour tout $x \in \mathbb{R}$, $\sin\left(x + \frac{\pi}{2}\right) = \cos(x) = \sin'(x)$ (dériver \sin c'est tourner d'un angle de $\frac{\pi}{2}$)

Astuce. Pour résoudre une équation du type $\cos(x) = \cos(a)$ ou $\sin(x) = \sin(a)$ on s'appuie sur le cercle trigonométrique pour ne pas oublier de solutions. (Idem pour les inéquations trigonométriques)

Propriété (résolution d'une équation trigonométrique). Soit $a, x \in \mathbb{R}$.

 $cos(x) = cos(a) \Leftrightarrow \exists k \in \mathbb{Z}, x = a + 2k\pi \text{ ou } x = -a + 2k\pi \Leftrightarrow x \in \{a + 2k\pi : k \in \mathbb{Z}\} \cup \{-a + 2k\pi : k \in \mathbb{Z}\}$

 $\sin(x) = \sin(a) \Leftrightarrow \exists k \in \mathbb{Z}, x = a + 2k\pi \text{ ou } x = \pi - a + 2k\pi \Leftrightarrow x \in \{a + 2k\pi : k \in \mathbb{Z}\} \cup \{\pi - a + 2k\pi : k \in \mathbb{Z}\}$

Propriété (résolution d'une inéquation trigonométrique). Soit $a, x \in \mathbb{R}$.

 $\cos(x) \le \cos(a) \Leftrightarrow \exists k \in \mathbb{Z}, a + 2k\pi \le x \le 2\pi - a + 2k\pi \Leftrightarrow \exists k \in \mathbb{Z}, x \in [a + 2k\pi; 2\pi - a + 2k\pi]$

 $\sin(x) \le \sin(a) \Leftrightarrow \exists k \in \mathbb{Z}, -\pi - a + 2k\pi \le x \le a + 2k\pi \Leftrightarrow \exists k \in \mathbb{Z}, x \in [-\pi - a + 2k\pi; a + 2k\pi]$