

Backward Propagation

```
• \partial L/\partial W = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial g(z_3)/\partial z_3)[H_2 + W((\partial g(z_2)/\partial z_2)[H_1 + W((\partial g(z_1)/\partial z_1)[H_0 + W(\partial H_0/\partial W)])])]
```

```
• \partial L/\partial U = (\partial L/\partial \hat{y}) \cdot (\partial \hat{y}/\partial H_3) \cdot (\partial g(z_3)/\partial z_3)[x_3 + (W(\partial g(z_2)/\partial z_2) \cdot [x_2 + (W(\partial g(z_1)/\partial z_1) \cdot [x_1 + (\partial WH_0/\partial U)])])]
```


9L/3W

9L/3U

• $9\text{L}/9\text{M} \rightarrow 9\text{H}^{\text{u}}/9\text{M}$

 $\bullet \quad 9\text{L}/9\text{L} \rightarrow 9\text{H}^{\text{u}}/9\text{L}$

• $\partial L/\partial W \rightarrow \partial H_n/\partial W \rightarrow \partial H_{n-1}/\partial W$

• $\partial L/\partial U \to \partial H_n/\partial U \to \partial H_{n-1}/\partial U$

• $\partial L/\partial W \to \partial H_n/\partial W \to \partial H_{n-1}/\partial W \dots \partial H_0/\partial W$

• $\partial L/\partial U \rightarrow \partial H_n/\partial U \rightarrow \partial H_{n-1}/\partial U \dots \partial H_0/\partial U$

• $\partial L/\partial W \rightarrow \partial H_n/\partial W \rightarrow \partial H_{n-1}/\partial W \dots \partial H_0/\partial W$

• $\partial L/\partial U \rightarrow \partial H_n/\partial U \rightarrow \partial H_{n-1}/\partial U \dots \partial H_0/\partial U$

L = Loss

• $\partial L/\partial W \rightarrow \partial H_n/\partial W \rightarrow \partial H_{n-1}/\partial W \dots \partial H_0/\partial W$

• $\partial L/\partial U \rightarrow \partial H_n/\partial U \rightarrow \partial H_{n-1}/\partial U \dots \partial H_0/\partial U$

• If gradients < 1

• $\partial L/\partial W \rightarrow \partial H_n/\partial W \rightarrow \partial H_{n-1}/\partial W \dots \partial H_0/\partial W$

•
$$\partial L/\partial U \rightarrow \partial H_n/\partial U \rightarrow \partial H_{n-1}/\partial U \dots \partial H_0/\partial U$$

If gradients < 1

then **∂L/∂W** and **∂L/∂U** will be infinitesimally small

• $\partial L/\partial W \to \partial H_n/\partial W \to \partial H_{n-1}/\partial W \dots \partial H_0/\partial W$

•
$$\partial L/\partial U \rightarrow \partial H_n/\partial U \rightarrow \partial H_{n-1}/\partial U \dots \partial H_0/\partial U$$

• If gradients < 1

then **al**/**aw** and **al**/**au** will be infinitesimally small

$$(0.5)^10 = 0.00097$$

• $\partial L/\partial M \approx \partial L/\partial U \approx 0$

• $\partial L/\partial W \approx \partial L/\partial U \approx 0$

• $W = W - \alpha (\partial L/\partial W)$ $U = U - \alpha (\partial L/\partial U)$

updating weights

• $\partial L/\partial W \approx \partial L/\partial U \approx 0$

• $W = W - \alpha (\partial L/\partial W)$ $U = U - \alpha (\partial L/\partial U)$ updating weights

• $W_{\text{before}} \approx W_{\text{after}}$ $U_{\text{before}} \approx U_{\text{after}}$

• $\partial L/\partial W \rightarrow \partial H_n/\partial W \rightarrow \partial H_{n-1}/\partial W \dots \partial H_0/\partial W$

• $\partial L/\partial U \rightarrow \partial H_n/\partial U \rightarrow \partial H_{n-1}/\partial U \dots \partial H_0/\partial U$

L = Loss

• $\partial L/\partial W \rightarrow \partial H_n/\partial W \rightarrow \partial H_{n-1}/\partial W \dots \partial H_0/\partial W$

• $\partial L/\partial U \rightarrow \partial H_n/\partial U \rightarrow \partial H_{n-1}/\partial U \dots \partial H_0/\partial U$

If gradients > 1

then $\partial L/\partial W$ and $\partial L/\partial U$ are very large

• $\partial L/\partial W \to \partial H_n/\partial W \to \partial H_{n-1}/\partial W \dots \partial H_0/\partial W$

•
$$\partial L/\partial U \rightarrow \partial H_n/\partial U \rightarrow \partial H_{n-1}/\partial U \dots \partial H_0/\partial U$$

• If gradients > 1 then $\partial L/\partial W$ and $\partial L/\partial U$ are very large $(1.5)^10 = 57.665$

• $W = W - \alpha (\partial L/\partial W)$ $U = U - \alpha (\partial L/\partial U)$ updating weights

Vanishing Gradient

RNN does not perform well for long sentences

Vanishing Gradient

RNN does not perform well for long sentences

Eg: The writer of the books

Vanishing Gradient

RNN does not perform well for long sentences

Eg: The writer of the books

Vanishing Gradient

RNN does not perform well for long sentences

Eg: The writer of the books is

Vanishing Gradient

RNN does not perform well for long sentences

Eg: The writer of the books is
The writer of the books are

Vanishing Gradient

RNN does not perform well for long sentences

Eg: The writer of the books is
The writer of the books are

Exploding Gradient

Gradients are large

Vanishing Gradient

RNN does not perform well for long sentences

Eg: The writer of the books is
The writer of the books are

Exploding Gradient

- Gradients are large
- Poor predictions

How to mitigate exploding and vanishing gradients?

How to mitigate exploding and vanishing gradients?

Exploding Gradients

Gradient Clipping

How to mitigate exploding and vanishing gradients?

Exploding Gradients

Gradient Clipping

Threshold = 0.1

- if gradient > threshold, then gradient = threshold
- if gradient <= threshold, then gradient = gradient

How to mitigate exploding and vanishing gradients?

Exploding Gradients	Vanishing Gradients
Gradient Clipping	LSTM or GRU

Thank You

