MA2202S Cheat Sheet

1 Normal Subgroups

- 1. $N \triangleleft G$ is equivalent to for all $g \in G$:
 - (a) $gng^{-1} \in N$ for all $n \in N$.
 - (b) $gNg^{-1} \subseteq N$
 - (c) $gNg^{-1} = N$
 - (d) gN = Ng
- 2. $N \triangleleft G, K \leq G$. Then $N \cap K \triangleleft K$.
- 3. $K \triangleleft H \leq G$. Then if $N \triangleleft G$, $NK \triangleleft NH$.

2 Cyclic Groups

- 1. |G| = n is cyclic is iff:
 - (a) There is a **unique** subgroup of order d for every positive divisor d of n.
 - (b) $gcd(\varphi(n), n) = 1$.
- 2. |G| = n is cyclic if:
 - (a) |G| = pq and $p > q, p \not\equiv 1 \pmod{q}$.
- 3. $\operatorname{Aut}(C_n) \cong C_{\phi(n)}$

3 Homomorphism

1. The kernel of a homomorphism is a normal subgroup.

4 Simple Groups

- 1. For $n \geq 5$, A_n is simple.
- 2. If |G| = n, G simple, then
 - (a) $|G| \mid k!$ for any subgroup of index k. Furthermore, if not k = |G| = 2, then $|G| \mid k!/2$.

5 Abelian Groups

- 1. A group G is Abelian iff
 - (a) G/Z(G) is cyclic.
 - (b) All Sylow subgrops are normal and Abelian.

6 X-groups, X-Composition series

- 1. G is a X-group if X acts on G such that $x \cdot (g_1g_2) = (x \cdot g_1)(x \cdot g_2)$.
 - (a) $H \leq G$ is a X-subgroup if $x \cdot H \subseteq H$.
 - (b) $H \triangleleft G$ is X-normal if $x \cdot H \subseteq H$.
 - (c) $H \leq G$ is X-simple if it has no X-subgroups. H might not be simple.
- 2. If X = Inn(X), then
 - (a) $H \triangleleft G \iff H \triangleleft_X G$
 - (b) H simple in $G \iff H$ is X-simple in G
 - (c) G/N simple $\iff G/N$ is X-simple.
- 3. G has composition series $\iff G/H$ and H has composition series.
- 4. (Zassenhaus' Lemma) $A_1 \triangleleft A_2, B_1 \triangleleft B_2$ are X-subgroups of G, then

$$\frac{A_1(A_2 \cap B_2)}{A_1(A_2 \cap B_1)} \cong \frac{B_1(A_2 \cap B_2)}{B_1(A_1 \cap B_2)}$$

- 5. (Dedekind Modular Law) $AB \cap C = A(B \cap C)$.
- 6. $G = H \times K, H, K$ simple. How many composition/chief series?
 - (a) If K is non-Abelian, then $1 \triangleleft H \triangleleft G$ and $1 \triangleleft K \triangleleft G$ are the only chief/composition series.
 - (b) If both are Abelian ($\implies C_p$): if $C_p \times C_q$ then same as above, otherwise $C_p \times C_p$ then there are p+1 normal subgroups.
- 7. Isomorphic \implies isomorphic X-composition series. Converse is false.

7 Nilpotent and Soluble Groups

- 1. $[H, N] \leq N$.
- 2. $H, K \triangleleft G \implies [H, K] \triangleleft G$ and $[H, K] \leq H \cap K$.
- 3. Nilpotent group iff:
 - (a) Any maximal subgroup must be normal.
 - (b) Cannot have self-normalizing subgroups.
 - (c) All Sylow p-subgroups are normal.
 - (d) Is a direct product of all its Sylow subgroups.
 - (e) $\gamma_n = 1$, where $\gamma_n = [\gamma_{n-1}, G]$.
 - (f) $\zeta_n = G$, where $\zeta_i/\zeta_{i-1} = Z(G/\zeta_{i-1})$. (pre-image of center of quotient group)

8 p-groups

- 1. For each divisor, there is a normal subgroup of that order.
- 2. Every chief and composition factor are $\cong C_p$, composition length = power.
- 3. Every chief series is a composition series but converse is false.