2.4.2 Solution:

Claim: $\sup S = 1$ and $\inf S = -1$.

Proof: Since $n, m \in \mathbb{N}$, $n \ge 1, m \ge 1 \Rightarrow 0 < 1/n \le 1$ and $0 < 1/m \le 1 \Rightarrow -1 \le -1/m < 0$, thus for all $n, m \in \mathbb{N}$, we have -1 < 1/n - 1/m < 1. As a result, 1 is a upper bound of S and -1 is a lower bound of S.

Suppose 1 is not the supremum, then exists s that for all $x \in S$ that $x \le s < 1$. Let s = 1 - s' where s' > 0. Then when n = 1, $\forall s' > 0$, we can always find m that 0 < 1/m < s', so there exists n, m that make x > s, which means s is not an upper bound at all. As a result, sup S = 1.

Similarly, suppose -1 is not the infimum, then exists i that for all $x \in S$ that $-1 < i \le x$. Let s = -1 + s' = s' - 1, where s' > 0. When m = 1, $\forall s' > 0$ we can always find 0 < 1/n < s' that make x < i. So i is not a lower bound. As a result, inf S = -1.

In conclusion, sup S = 1 and inf S = -1.

2.4.3 Proof: Suppose u is not an upper bound, then there is $x \in S$ that x > u, so x - u > 0. Hence, there is $n_0 \in \mathbb{N}$ that $0 < 1/n_0 < x - u \Rightarrow x > u + 1/n_0$, which contradicts with the condition given. Thus, u is an upper bound of S, namely $\forall x \in S, x \leq u$.

Suppose u is not the supremum, then there is $x \le v < u$ for all $x \in S$. Then $\forall n \in \mathbb{N}$, there is $x \in S$ that $v - 1/n < x - 1/n \le u - 1/n < x$. Since for all $n \in \mathbb{N}$, u - 1/n is not an upper bound, so v can't be an upper bound.

As a result, $u = \sup S$.

2.4.9 Solution:

- (a) $\sup\{h(x,y): y \in Y\} = 2x + 1 \text{ and } \inf\{f(x): x \in X\} = 1.$
- (b) $\inf\{h(x,y) : x \in X\} = 2x \text{ and } \sup\{g(y) : y \in Y\} = 2.$

2.4.10 Solution:

- (a) $\sup\{h(x,y): y \in Y\} = 1$ and $\inf\{f(x): x \in X\} = 1$.
- (b) $\inf\{h(x,y): x \in X\} = 0 \text{ and } \sup\{g(y): y \in Y\} = 0.$

2.5.3 Proof: $\forall x \in S$, we have $\inf S \leq x \leq \sup S \in I_S$, so $S \subseteq I_S$.

 $\forall x \in I_S$, inf $S \le x \le \sup S$. Since $S \subseteq J$, J = [a, b] in which a is a lower bound of S and b us an upper bound of S. So we have $a \le \inf S \le x \le \sup S \le b$ by Completeness Axiom for all $x \in J$. As a result, $x \in J$ for all $s \in I_S$.

As a result, $I_S \subseteq J$.

2.5.7 Proof: Since for all $n \in \mathbb{N}$, $0 \in [0, 1/n]$, so $0 \in \bigcap_{n=1}^{\infty} I_n$. Suppose there is a nonzero number $\epsilon \in \bigcap_{n=1}^{\infty} I_n$, so that $\forall n \in \mathbb{N}$, $\epsilon \leq 1/n$. Since for all t > 0, there is always n_t that $0 \leq 1/n_t < t$, so there is a $n_{\epsilon} < \epsilon$ which contradicts with the assumption. Hence, for all $n \in \mathbb{N}$, $n \notin \bigcap_{n=1}^{\infty} I_n$.

As a result, $\bigcap_{n=1}^{\infty} I_n = \{0\}$.

2.5.9 Proof: Suppose there is a real number $t \in \bigcap_{n=1}^{\infty} K_n$, then for all $n \in \mathbb{N}$, $t \in K_n \Rightarrow t > n$. But by Archimedean Property, there is an $n_t \in \mathbb{N}$ that $n_t > n$, which contradicts with our assumption's corollary.

As a result, for all $x \in \mathbb{R}$, $x \notin \bigcap_{n=1}^{\infty} K_n$, so we have $\bigcap_{n=1}^{\infty} K_n = \emptyset$.