スマートフォンとモバイルネットワーク環境 を利用したTLIFESの提案と実装

Proposal of TLIFES Using SmartPhones and Mobile Network Environments and Its Implementation

名城大学 大学院 理工学研究科 **情報工学専攻**

113430006

渡邊研究室 大野 雄基

研究背景

- ▶少子高齢化と核家族化が進行
 - ▶高齢者人口、高齢者世帯が増加
 - ▶徘徊行動、孤独死、運転事故の多発などが深刻な社会問題
 - ▶特に徘徊行動対策は喫緊の重要課題

提案

TLIFES: Total LIFE Support system

スマートフォンとモバイルネットワーク環境を利用して住民が情報を共有し、安心して生活できる社会を作るための統合生活支援システム

- ▶TLIFESを利用した徘徊行動の検出
 - ▶対象者の通常行動範囲(通常時に行動する範囲)を自動的に学習
 - ▶この範囲を逸脱した場合に徘徊行動を検出できるシステムの構築

徘徊行動対策の既存システム

- ▶どこ・イルカ、パーソナルセキュリティシステム
 - ▶予め地図上で通常行動範囲を手動で設定する
 - ▶この範囲を逸脱した場合に異常として判断する

欠点

- ▶ 弱者、または見守る側が地図上で通常行動範囲 の設定を予め手動で行う必要がある
- ▶ 核家族化で見守る側が弱者の代わりに設定できない可能性がある

パーソナルセキュ リティシステム

提案システムTLIFES 全員がスマートフォンを所持

スマートフォンの機能

スマートフォン自身によるセンシング

周辺機器との連携によるセンシング

緯度経度、移動速度、進行方向

状態の把握(行動情報)

步行移動中、停滞中、乗車中、 放置中、転倒

管理サーバへの送信

スマート

フォン

Wi-Fi

GPS

加速度センサ

磁気センサ

ジャイロセンサ

3G

車体のぶれ、居眠り運転、 ブレーキ/アクセルの操作、衝突

車載スマートフォン

Bluetooth

健康機器からの情報収集(健康情報)

血圧、体重

管理サーバの機能

アカウント作成 リアルタイム閲覧

自分自身の情報 弱者の情報(許可された人であれば可)

異常検出時

メール、チャット、掲示板、 通話、ナビゲーション

From: $\triangle \triangle \triangle \triangle$

件名:アラームメール

通常行動範囲を逸脱した可能性があります。 連絡をとり安否を確認してください。

現在地:

https://www. $\bullet \bullet \bullet \bullet$. $\triangle \triangle$. OO

スマートフォン

センサ情報

他機関へのデータ提供

- ・弱者の活動範囲
- ・事故発生前とセンサ データの関係

管理サーバ

利用者ごとのデータベース

・過去のデータと比較して異常検出 いつもは行かない場所に行ってしまう(徘徊行動検出) いつもとは違う血圧

本発表の主な対象

TLIFESの主な利用用途

一人が複数の弱者を見守る

弱者同士で見守る

複数の人が一人の弱者を見守る

友達同士などお互いの情報を共有

徘徊行動の定義

- ▶位置に関する徘徊行動
 - ▶通常は行かない場所に対象者がいる事象
 - ▶例:近辺(自宅、病院など)で行動しているが、その他の場所にいる場合
- ▶時間に関する徘徊行動
 - ▶通常は特定の時間帯にいるはずの場所に対象者がいない事象
 - ▶例:夜間に自宅で過ごすが、別の場所にいる場合

Watanabe Lab

徘徊行動検出の概要

:管理サーバに蓄積された位置情報

🕢 :新たに取得した位置情報

🖺 :アラームメール

:通常行動範囲

▶管理サーバに蓄積された位置情報 から対象者の存在確率を計算

⇒通常行動範囲

徘徊行動検出後

位置と時間に関する徘徊行動の検出方法

低速移動

全期間(1ヶ月など)を通したもの

位置に関する徘徊行動を検出

高速移動

1日を時間帯ごとに分けたもの

時間に関する徘徊行動を検出

:通常行動範囲

実装 -モジュール構成-

▶通常行動範囲の更新(1日1回)

13

実装 -モジュール構成-

▶徘徊行動を検出した場合、見守る側にメール配信

実装 -モジュール構成-

- ▶新規ユーザ登録、変更
- ▶情報共有相手の追加、解除

評価 -システム構成-

被験者:自分

学習用データ:1ヶ月間の日時と位置

サンプリング間隔:1分

▶ Android端末から取得した位置情報を管理サーバに蓄積

▶この位置情報を用いて通常行動範囲を学習

管理サーバでの表示例

通常行動範囲の学習結果

- ▶1ヶ月間の確率密度関数
 - ▶大学にいる存在確率が高い
- ▶1ヶ月間の午前8時~9時までの確率密度関数
 - ▶自宅にいる存在確率が高い

1ヶ月間の存在確率

1ヶ月間の午前8時~9時までの存在確率

徘徊行動の検出結果

徘徊行動の検出結果

低速移動時:検出率ほぼ100%

高速移動時:検出率80%

処理時間

- ▶通常行動範囲の学習に要する処理時間(1ヶ月間)
 - ▶約21秒
 - ▶行動範囲が狭くなると処理時間が速くなる (今回の被験者の行動範囲が移動直線距離100kmと広い)
- ▶徘徊行動の判定に要する処理時間(1パケット毎)
 - ▶約1ミリ秒

測定条件

CPU: AMD Phenom 2.8GHz

メモリ:4GB

既存システムとの比較

	パーソナルセキュ リティシステム	どこ・イルカ	TLIFES
自宅、外出中、運転中	外出中	外出中	自宅、外出中、運転中
把握できる情報	位置	位置	位置情報、行動情報運転情報、健康情報
情報共有相手の設定	無	無	有
通常行動範囲の設定	手動	手動	自動

まとめ

- ▶スマートフォンを介して住民が情報を共有し、安心して生活できる社会を作るための統合生活支援システムTLIFESを提案
- ▶TLIFESの一部機能として、徘徊行動の検出を実現
- ▶今後の予定
 - ▶被験者を実際の弱者として検証実験
 - ▶処理時間の結果を用いて、TLIFESに収容できる人数の評価

