Глава 2

Линеарни оператори

2.1 Линеарна пресликавања векторских простора

- 1. Нека је дат векторски простор V над пољем $\mathbb F$ и нека је $a \in V$ неки фиксан вектор. Дефинишимо пресликавање $\varphi: V \mapsto V$ са $\varphi(v) = a \times v$. Провјерити да ли је φ линеарни оператор. Ако јесте, одредити му матрицу у односу на канонску базу.
- 2. Нека је дат векторски простор V над пољем \mathbb{F} и нека је $a \in V$ неки фиксан вектор. Ако је пресликавање $\varphi: V \mapsto V$ задато са $\varphi(v) = (v \cdot a) \cdot v + (v \times a) 2v$. Провјерити да ли је φ линеарни оператор па ако јесте одредити му матрицу у односу на канонску базу.
- 3. Доказати да је пресликавање $\varphi: P_3(\mathbb{R}) \mapsto P_3(\mathbb{R})$ задато са $\varphi(p)(t) = p(t-1)$ линеарни оператор. Одредити матрицу пресликавања φ у канонској бази $\{v_i(t)=t^i: i=\overline{1,4}\}.$
- 4. Нека је $d:P_3(\mathbb{R})\mapsto P_3(\mathbb{R})$ линеарни оператор задан са

$$d(p)(t) = t \cdot p'(t).$$

Одредити пресликавање d^n .

5. Нека су X_1 и X_2 потпростори реалног простора X и нека је на $X_1 \oplus X_2$ пресликавање p_1 задано са

$$p_1(x_1 + x_2) = x_1, x_1 \in X_1, x_2 \in X_2.$$

Доказати да је

- (a) p_1 линеарно пресликавање,
- (b) $p_1+p_2=id$, гдје је p_2 пресликавање задано на $X_1\oplus X_2$ са

$$p_1(x_1 + x_2) = x_1, x_1 \in X_1, x_2 \in X_2.$$

- (c) $p_i^2 = p_i, i = \overline{1,2}$.
- (d) Наћи матрицу пресликавања p_1 по базама $B_{X_1}=\{e_1,e_2,\ldots,e_m\}$ и $B_{X_2}=\{e_{m+1},e_{m+2},\ldots,e_n.\}$
- 6. Нека је на векторском простору $M_{n\times n}(\mathbb{R})$ задано пресликавање

$$\tau(A) = tr(A).$$

Доказати да је au линеарни оператор.

2.2 Језгро и слика линеарног оператора

- 1. Одредити језгро оператора из задатка 1.2.
- 2. Нека је $\begin{vmatrix} 1 & 2 & 0 & 1 \\ -1 & 0 & -1 & 2 \\ 2 & 5 & -3 & 1 \end{vmatrix}$ матрица пресликавања $f: \mathbb{R}^4 \mapsto \mathbb{R}^3$ по базама

 $B_{\mathbb{R}^4}=\{e_1,e_2,e_3,e_4\}$ и $B_{\mathbb{R}^3}=\{f_1,f_2,f_3\}$. Одредити језгро пресликавања, а затим одредити матрицу пресликавања по базама $B_{\mathbb{R}^4}=\{e_1,e_2,e_3,a\}$ и $B_{\mathbb{R}^3}=\{f(e_1),f(e_2),f(e_3)\}$, ако је a вектор који генерише језгро.

3. (30.01.2017.) Нека су P и Q, тим редом, потпростори векторских простора V и W над истим пољем K и нека је V коначнодимензион. Ако је

$$\dim P + \dim Q = \dim V,$$

доказати да постоји линеарни оператор $\mathcal{L}:V\mapsto W$ за који је $Ker\mathcal{L}=P$ и $Im\mathcal{L}=Q$. Дати детаљно објашњење.

- 4. (15.06.2016. K2) Одредити $a,b\in\mathbb{R}$ тако да за линеарно пресликавање $f:\mathbb{R}^3\mapsto\mathbb{R}^3$ дато матрицом $F=\begin{bmatrix}a&1&1\\1&b&1\\1&2b&1\end{bmatrix}$ у канонској бази вриједи $(4,3,4)\in Im(f)$.
- 5. Нека су $V,\,W$ и Z векторски простори. Доказати:
 - (a) $dim(V+W) \le dimV + dimW$,
 - (b) Ако су $f,g:V\mapsto W$ линеарни оператори онда важи

$$r(f+g) \le r(f) + r(g),$$

(c) Ако су $f:V\mapsto W$ и $g:W\mapsto Z$ линеарни оператори тада важи

$$r(g \circ f) \le min\{r(f), r(g)\}.$$