(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 12.12.2001 Bulletin 2001/50

(21) Application number: 00987728.3

(22) Date of filing: 22.12.2000

(51) Int Cl.7: **C07D 209/12**, C07D 235/18, C07D 235/30, C07D 401/04, C07D 401/10, C07D 401/12, C07D 401/14, C07D 403/12, C07D 405/04, C07D 405/12, C07D 409/04, C07D 409/12, C07D 409/14, C07D 413/04, C07D 413/12, C07D 471/04, C07D 487/04

(86) International application number: PCT/JP00/09181

(87) International publication number: WO 01/47883 (05.07.2001 Gazette 2001/27)

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 27.12.1999 JP 36900899

(71) Applicant: Japan Tobacco Inc. Tokyo 105-8422 (JP)

(72) Inventors:

HASHIMOTO, Hiromasa, Ctr. Pharm. Res. Inst. Japan Takatsuku-shi, Osaka 569-1125 (JP) MIZUTANI, Kenji, Ctr. Pharm. Res. Inst. of Japan Takatsuki-shi, Osaka 569-1125 (JP)

 YOSHIDA, Atsuhito, Ctr. Pharm. Res. Inst. Japan Takatsuki-shi, Osaka 569-1125 (JP)

(74) Representative:
von Kreisler, Alek, Dipl.-Chem. et al
Patentanwälte
von Kreisler-Selting-Werner
Postfach 10 22 41
50462 Köln (DE)

(54) FUSED-RING COMPOUNDS AND USE THEREOF AS DRUGS

(57) The present invention provides a fused ring compound of the following formula [I]

wherein each symbol is as defined in the specification, a pharmaceutically acceptable salt thereof, and a therapeutic agent for hepatitis C, which contains this compound. The compound of the present invention shows an anti-hapatitis C virus (HCV) action based on the HCV polymerase inhibitory activity, and is useful as a therapeutic agent or prophylactic agent for hepatitis C.

Description

Technical Field

[0001] The present invention relates to a novel fused ring compound and a pharmaceutically acceptable salt thereof useful as a therapeutic agent for hepatitis C. The present invention also relates to a novel use of a certain fused ring compound or a pharmaceutically acceptable salt thereof as a therapeutic agent for hepatitis C. More particularly, the present invention relates to a therapeutic agent for hepatitis C, which contains a novel fused ring compound or a pharmaceutically acceptable salt thereof, which is effective for the prophylaxis or treatment of hepatitis C and which shows anti-hepatitis C virus (HCV) activity, particularly anti-HCV activity based on an RNA-dependent RNA polymerase 10 inhibitory activity.

Background Art

15

20

55

[0002] In 1989, a main causative virus of non-A non-B posttransfusion hepatitis was found and named hepatitis C virus (HCV). Since then, several types of hepatitis viruses have been found besides type A, type B and type C, wherein hepatitis caused by HCV is called hepatitis C.

[0003] The patients infected with HCV are considered to involve several percent of the world population, and the infection with HCV characteristically becomes chronic.

[0004] HCV is an envelope RNA virus, wherein the genome is a single strand plus-strand RNA, and belongs to the genus Hepacivirus of Flavivirus (from The International Committee on Taxonomy of Viruses, International Union of Microbiological Societies). Of the same hepatitis viruses, for example, hepatitis B virus (HBV), which is a DNA virus, is eliminated by the immune system and the infection with this virus ends in an acute infection except for neonates and infants having yet immature immunological competence. In contrast, HCV somehow avoids the immune system of the host due to an unknown mechanism. Once infected with this virus, even an adult having a mature immune system frequently develops persistent infection.

[0005] When chronic hepatitis is associated with the persistent infection with HCV, it advances to cirrhosis or hepatic cancer in a high rate. Enucleation of tumor by operation does not help much, because the patient often develops recurrent hepatic cancer due to the sequela inflammation in non-cancerous parts.

[0006] Thus, an effective therapeutic method of hepatitis C is desired. Apart from the symptomatic therapy to suppress inflammation with an anti-inflammatory agent, the development of a therapeutic agent that reduces HCV to a low level free from inflammation and that eradicates HCV has been strongly demanded.

[0007] At present, a treatment with interferon is the only effective method known for the eradication of HCV. However, interferon can eradicate the virus only in about one-third of the patient population. For the rest of the patients, it has no effect or provides only a temporary effect. Therefore, an anti-HCV drug to be used in the place of or concurrently with interferon is awaited in great expectation.

[0008] In recent years, Ribavirin (1-β-D-ribofuranosyl-1H-1,2,4-triazole-3-carboxamide) has become commercially available as a therapeutic agent for hepatitis C, which is to be used concurrently with interferon. It enhances the efficacy of interferon but only to a low efficacy rate, and a different novel therapeutic agent for hepatitis C is desired.

[0009] Also, an attempt has been made to potentiate the immunocompetence of the patient with an interferon agonist, an interleukin-12 agonist and the like, thereby to eradicate the virus, but an effective pharmaceutical agent has not

[0010] In addition, the inhibition of HCV growth, wherein HCV-specific protein is targeted, has been drawing attention

[0011] The gene of HCV encodes a protein such as serine protease, RNA helicase, RNA-dependent RNA polymerase 45 and the like. These proteins function as a specific protein essential for the growth of HCV.

[0012] One of the specific proteins, RNA-dependent RNA polymerase (hereinafter to be also briefly referred to as an HCV polymerase), is an enzyme essential for the growth of the virus. The gene replication of HCV having a plusstrand RNA gene is considered to involve synthesis of a complementary minus-strand RNA by the use of the plusstrand RNA as a template, and, using the obtained minus-strand RNA as a template, amplifying the plus-strand RNA. The portion called NS5B of a protein precursor, that HCV codes for, has been found to show an RNA-dependent RNA polymerase activity (EMBO J., 15, 12-22, 1996), and is considered to play a central role in the HCV gene replication. [0013] Therefore, an HCV polymerase inhibitor can be a target in the development of an anti-HCV drug, and the development thereof is eagerly awaited. However, an effective HCV polymerase inhibitor has not been developed yet, like in other attempts to develop an anti-HCV drug based on other action mechanisms. As the situation stands, no pharmaceutical agent can treat hepatitis C satisfactorily.

[0014] The following discloses known compounds relatively similar to the compound of the present invention.

[0015] A known therapeutic agent for hepatitis C having a benzimidazole skeleton is disclosed in WO97/36866,

Japanese Patent Application under PCT laid-open under kohyo No. 2000-511899 (EP906097) and WO99/51619. [0016] WO97/36866 discloses the following compound D and the like, and HCV helicase inhibitory activity of the compounds.

[0017] Japanese Patent Application under PCT laid-open under kohyo No. 2000-511899 (EP906097) discloses the following compound E and the like, and WO99/51619 discloses the following compound F and the like, in both of which a possibility of these compounds being effective as an HCV inhibitor is mentioned.

[0018] However, these publications do not include the compound disclosed in the present specification, or a disclosure suggestive thereof.

10

15

20

25

30

35

40

45

50

55

compound E compound F

HO

[0019] A known anti-hepatitis virus agent having a benzimidazole skeleton is disclosed in Japanese Patent Application under PCT laid-open under kohyo No. 2000-503017 (WO97/25316) and Japanese Patent Application under PCT laid-open under kohyo No. 10-505092 (WO96/7646).

HCI

[0020] WO97/25316 discloses the following compound A and the like, wherein the use thereof is for a treatment of viral infection. The target virus is a DNA virus such as hepatitis B virus and the like. However, this publication does not include the compound disclosed in the present specification or a description regarding or suggestive of HCV.

[0021] Japanese Patent Application under PCT laid-open under kohyo No. 10-505092 discloses the following compound B and the like, wherein the use thereof is for a treatment of viral infection. The target virus is a DNA virus such as herpesvirus and hepatitis B virus. However, this publication does not include the compound disclosed in the present specification or a description regarding or suggestive of HCV.

[0022] The benzimidazole derivatives having an antiviral activity have been disclosed in JP-A-3-31264, US3644382 and US3778504. In addition, WO98/37072 discloses, as a production inhibitor of tumor necrosis factor (TNF) and cyclic AMP, a benzimidazole derivative for the use as an anti-human immunodeficiency virus (HIV) agent and an anti-inflammation agent. WO98/05327 discloses, as a reverse transcriptase inhibitor, a benzimidazole derivative for the use as an anti-HIV agent. J. Med. Chem. (13(4), 697-704, 1970) discloses, as a neuraminidase inhibitor, a benzimidazole derivative for the use as an anti-influenza virus agent.

[0023] However, none of these publications includes the compound of the present invention or a description regarding

5

10

15

20

25

30

35

40

45

50

55

[0024] Known benzimidazole derivatives having a pharmaceutical use other than as an antiviral agent are disclosed in JP-A-8-501318 (US5824651) and JP-A-8-134073 (US5563243). These publications disclose the following compound C and the like as a catechol diether compound, and the use thereof as an anti-inflammation agent. However, neither of the publications includes the compound of the present invention, and as the action mechanism, the former discloses phosphodiesterase IV and the latter discloses TNF. These publications do not include a description regarding

[0025] Japanese Patent Application under PCT laid-open under kohyo No. 2000-159749 (EP882718) discloses the following compound G and the like, and the use thereof for the treatment of bronchitis, glomerulonephritis and the like. However, this publication does not include the compound of the present invention, but discloses only a phosphodiesterase IV inhibitory and hypoglycemic action. This publication does not include a description regarding or suggestive of an anti-HCV effect.

[0026] WO98/50029, WO98/50030 and WO98/50031 disclose benzimidazole derivatives as an antitumor agent having a protein isoprenyl transferase action. While this publication discloses a wide scope of the claims, at least it does not include a compound analogous to the compound of the present invention or a description regarding or suggestive

[0027] JP-A-8-109169 (EP694535) discloses the application of a tachykinin receptor antagonist to treat an inflammatory disease, and WO96/35713 discloses the application thereof as a growth hormone release promoter to treat a growth hormone-related disease such as osteoporosis and the like. However, none of these publications includes a description regarding or suggestive of an anti-HCV effect.

[0028] JP-A-53-14735 discloses a benzimidazole derivative as a brightener besides its pharmaceutical use, but this publication does not include the compound of the present invention.

Disclosure of the Invention

[0029] Based on the findings from the preceding studies, it has been elucidated that a pharmaceutical agent having an anti-HCV activity is effective for the prophylaxis and treatment of hepatitis C, and particularly an anti-HCV agent having an inhibitory activity on RNA-dependent RNA polymerase of HCV can be a prophylactic and therapeutic agent effective against hepatitis C and a prophylactic and therapeutic agent for the disease caused by hepatitis C.

[0030] Accordingly, the present invention provides a pharmaceutical agent having an anti-HCV activity, particularly a pharmaceutical agent having an RNA-dependent RNA polymerase inhibitory activity.

[0031] The present inventors have made an in-depth study of compounds having an anti-HCV activity, particularly RNA-dependent RNA polymerase inhibitory activity, and completed the present invention.

[0032] Thus, the present invention provides the following (1) to (43).

(1) A therapeutic agent for hepatitis C, which comprises a fused ring compound of the following formula [I] or a pharmaceutically acceptable salt thereof as an active ingredient:

wherein

5

10

15

20

30

35

40

45

50

55

a broken line is a single bond or a double bond,

is C(-R1) or a nitrogen atom, G1 is C(-R2) or a nitrogen atom, G^2 is C(-R3) or a nitrogen atom, G³ is C(-R4) or a nitrogen atom,

G⁴

are each independently a carbon atom or a nitrogen atom, is C(-R⁷), an oxygen atom, a sulfur atom, or a nitrogen atom optionally substituted by R⁸, G5, G6, G8 and G9 G7

wherein R1, R2, R3 and R4 are each independently,

25 (1) hydrogen atom,

(2) C₁₋₆ alkanoyl,

(3) carboxyl,

(4) cyano,

(6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A,

group A, halogen atom, hydroxyl group, carboxyl, amino, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl and C_{1-6} alkylamino,

wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B,

group B; halogen atom, cyano, nitro, C₁₋₆ alkyl,

halogenated C₁₋₆ alkyl, C₁₋₆ alkanoyl,

 $-(CH_2)_r - COOR^{b1}, -(CH_2)_r - CONR^{b1}R^{b2}, -(CH_2)_r - NR^{b1}R^{b2}, -(CH_2)_r - NR^{b1}R^$

ORb1, - (CH2),-SRb1, -(CH2),-SO2Rb1 and -(CH2),-SO2NRb1Rb2

wherein Rb1 and Rb2 are each independently hydrogen atom or C1.6 alkyl and r is 0 or an integer of 1 to 6,

wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (8) -CONRa2Ra3 (as defined above),

(9) -C(=NRa4)NH2

wherein Ra4 is hydrogen atom or hydroxyl group,

(10) -NHRa5

wherein R^{a5} is hydrogen atom, C_{1-6} alkanoyl or C_{1-6} alkylsulfonyl,

wherein Ra6 is hydrogen atom or optionally substituted C₁₋₆ alkyl(as defined above),

(12) -SO₂Ra7

wherein R^{a7} is hydroxyl group, amino, C_{1-6} alkyl or C_{1-6} alkylamino

wherein R^{a31} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and

 ${\sf R}^7$ and ${\sf R}^8$ are each hydrogen atom or optionally substituted ${\sf C}_{\sf 1-6}$ alkyl(as defined above), ring Cy is

(1) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C₁₋₆ alkyl and C₁₋₆ alkoxy,

(2) C₃₋₈ cycloalkenyl optionally substituted by 1 to 5 substituent(s) selected from the above group C, or

5

10

15

20

30

35

40

45

50

55

wherein u and v are each independently an integer of 1 to 3,

ring A is

(1) C₆₋₁₄ aryl,

(2) C3-8 cycloalkyl,

(4) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur

R5 and R6 are each independently 25

(1) hydrogen atom,

(2) halogen atom,

(3) optionally substituted C_{1-6} alkyl (as defined above) or

(4) -ORa8

wherein R^{a8} is hydrogen atom, $\mathsf{C}_{\mathsf{1-6}}$ alkyl or $\mathsf{C}_{\mathsf{6-14}}$ aryl $\mathsf{C}_{\mathsf{1-6}}$ alkyl, and

X is

(1) hydrogen atom,

(2) halogen atom,

(3) cyano,

(4) nitro,

(5) amino, C₁₋₆ alkanoylamino,

(6) C₁₋₆ alkylsulfonyl,

(7) optionally substituted C₁₋₆ alkyl(as defined above),

(8) C₂₋₆ alkenyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,

(9) -COORa9

wherein Ra9 is hydrogen atom or C₁₋₆ alkyl,

(10) -CONH-(CH₂)₁-Ra10

wherein R^{a10} is optionally substituted C_{1-6} alkyl (as defined above), C_{1-6} alkoxycarbonyl or C_{1-6} alkanoylamino and 1 is 0 or an integer of 1 to 6,

(11) -ORa11

wherein R^{a11} is hydrogen atom or optionally substituted C_{1-6} alkyl (as defined above)

or

(12)

```
wherein
                 ring B is
                (1') C<sub>6-14</sub> aryl,
                (2') C<sub>3-8</sub> cycloalkyl or
5
                (3') heterocyclic group (as defined above),
                  each Z is independently
                (1') a group selected from the following group D,
                (2') C<sub>6-14</sub> aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
10
                (3') C<sub>3-8</sub> cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
                (4') C<sub>6-14</sub> aryl C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or
                 (5') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D
                         wherein the heterocyclic group has 1 to 4 hetero-atom(s) selected from an oxygen atom, a nitrogen
15
            atom and a sulfur atom,
                         group D:
                 (a) hydrogen atom,
 20
                  (b) halogen atom,
                  (c) cyano,
                  (d) nitro,
                  (e) optionally substituted C<sub>1-6</sub> alkyl (as defined above),
                  (f) -(CH<sub>2</sub>)<sub>t</sub>-CORa18,
 25
                  (hereinafter each t means independently 0 or an integer of 1 to 6),
                        wherein Ra18 is
                       (1") optionally substituted C_{1-6} alkyl (as defined above),
                       (2") C<sub>6-14</sub> aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
                       (3") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B
  30
                       wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom
                       and a sulfur atom,
                   wherein R^{a19} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl
                   (g) -(CH<sub>2</sub>)<sub>t</sub>-COORa19
  35
                   optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                   (h) -(CH<sub>2</sub>)<sub>t</sub>-CONRa27Ra28
                   wherein Ra27 and Ra28 are each independently,
   40
                        (1") hydrogen atom,
                        (2") optionally substituted C<sub>1-6</sub> alkyl (as defined above),
                        (3") C<sub>6-14</sub> aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                        (4") C<sub>6-14</sub> aryl C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                         (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                         (6") heterocycle C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
   45
                         wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by
                         1 to 5 substituent(s) selected from the above group B, as defined above,
                         (7") C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or
                         (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group
    50
                         В.
                     (i)-(CH_2)_t-C(=NR^{a33})NH_2
                     wherein Ra33 is hydrogen atom or C1-6 alkyl,
                     (j) -(CH<sub>2</sub>)<sub>t</sub>-OR<sup>a20</sup>
    55
                     wherein Ra20 is
```

(1") hydrogen atom,

```
(2") optionally substituted C<sub>1-6</sub> alkyl (as defined above),
                                   (3") optionally substituted C<sub>2-6</sub> alkenyl (as defined above),
                                   (4") C<sub>2-6</sub> alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
                                   (5") C<sub>6-14</sub> aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                                   (6") C<sub>6-14</sub> aryl C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                                   (7") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
5
                                   (8") heterocycle C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                                   (9") C<sub>3-8</sub> cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or
                                   (10") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group
10
                            (k) -(CH<sub>2</sub>)<sub>t</sub>-O-(CH<sub>2</sub>)<sub>p</sub>-COR<sup>a21</sup>
                            wherein Ra21 is C1-6 alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected
                            from the above group B, and p is 0 or an integer of 1 to 6,
                            (1) -(CH<sub>2</sub>)<sub>t</sub>-NR<sup>a22</sup>R<sup>a23</sup>
15
                            wherein Ra22 and Ra23 are each independently
                                     (1") hydrogen atom,
                                     (2") optionally substituted C<sub>1-6</sub> alkyl (as defined above),
                                     (3") C<sub>6-14</sub> aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                                     (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
20
                                     (5") heterocycle C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                             (m) -(CH<sub>2</sub>)<sub>t</sub>-NR<sup>a29</sup>CO-R<sup>a24</sup>
                             wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6} alkyl (as defined
                             above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic
 25
                              group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                              (n) -(CH<sub>2</sub>)<sub>t</sub>-NHSO<sub>2</sub>-Ra25
                              wherein R^{a25} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally sub-
                              stituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted
  30
                              by 1 to 5 substituent(s) selected from the above group B,
                              (o) -(CH_2)_t-S(O)_{\sigma}-R^{a25}
                              wherein Ra25 is as defined above, and q is 0, 1 or 2,
                               (p)-(CH<sub>2</sub>)<sub>t</sub>-SO<sub>2</sub>-NHRa26
                               wherein R^{a26} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally
  35
                               substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted
                               by to 5 substituent(s) selected from the above group B,
                                  w is an integer of 1 to 3, and
   40
                                  Y is
                                (1') a single bond,
                                (2') C<sub>1-6</sub> alkylene,
                                (3') C<sub>2-6</sub> alkenylene,
    45
                                (4') - (CH_2)_m - O - (CH_2)_n 
                                (hereinafter m and n are each independently 0 or an integer of 1 to 6),
                                (5') -CO-.
                                (6') -CO<sub>2</sub>-(CH<sub>2</sub>)<sub>n</sub>-,
                                 (7') -CONH-(CH<sub>2</sub>)<sub>n</sub>-NH-,
    50
                                 (8') -NHCO2-,
                                 (9') -NHCONH-,
                                 (10') -O-(CH<sub>2</sub>)<sub>n</sub>-CO-,
                                 (11') -O-(CH<sub>2</sub>)<sub>n</sub>-O-,
                                 (12') -SO<sub>2</sub>-,
     55
                                 (13') -(CH<sub>2</sub>)<sub>m</sub>-NRa12-(CH<sub>2</sub>)<sub>n</sub>-
                                            wherein Ra12 is
```

(1") hydrogen atom,

(2") optionally substituted C₁₋₆ alkyl (as defined above),

(3") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(4") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(6") -COORb5 (Rb5 is as defined above) or

(7") -SO₂Rb5 (Rb5 is as defined above),

(14') -NRa12CO- (Ra12 is as defined above),

wherein R^{a13} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

wherein Ra14 is C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (17') -O-(CH₂)_m-CRa15Ra16-(CH₂)_n-

wherein Ra15 and Ra16 are each independently

20

25

30

5

10

15

(1") hydrogen atom,

(2") carboxyl,

(3") C₁₋₆ alkyl,

(4") -ORb6

wherein R^{b6} is C_{1-6} alkyl or C_{6-14} aryl C_{1-6} alkyl, or

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or R^{a15} is optionally

(6")

35

40

45

50

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

(18')-(CH $_2$) $_n$ -NR a12 -CHR a15 - (R a12 and R a15 are each as defined above),

(19') -NRa17SO₂-

wherein Ra17 is hydrogen atom or C1-6 alkyl or

(20') $-S(O)_e - (CH_2)_m - CR^{a_{15}}R^{a_{16}} - (CH_2)_n - (e is 0, 1 or 2, R^{a_{15}})$ and $R^{a_{16}}$ are each as defined above).

(2) The therapeutic agent of (1) above, wherein 1 to 4 of the G1, G2, G3, G4, G5, G6, G7, G8 and G9 is (are) a

(3) The therapeutic agent of (2) above, wherein G² is C(-R²) and G⁶ is a carbon atom.

(4) The therapeutic agent of (2) or (3) above, wherein G⁵ is a nitrogen atom.

(5) The therapeutic agent of (1) above, wherein, in formula [I], the moiety

55

is a fused ring selected from

5
$$R^{2} + R^{1} + R^{2} + R^$$

(6) The therapeutic agent of (5) above, wherein, in formula [I], the moiety

is a fused ring selected from

55

45

50

(7) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-1]

wherein each symbol is as defined in (1),

5

10

15

20

25

30

35

40

45

50

55

or a pharmaceutically acceptable salt thereof as an active ingredient.

(8) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [1-2]

$$\begin{array}{c|c}
R^2 & R^5 \\
\hline
R^3 & R^4 & Cy
\end{array}$$

$$\begin{array}{c|c}
R^5 \\
\hline
R^6
\end{array}$$
[1-2]

wherein each symbol is as defined in (1),

or a pharmaceutically acceptable salt thereof as an active ingredient.

(9) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-3]

$$\begin{array}{c|c}
R^2 & R^5 \\
\hline
R^3 & N & R^6
\end{array}$$

$$\begin{array}{c|c}
R^5 & \\
\hline
Cy & R^6
\end{array}$$

wherein each symbol is as defined in (1),

or a pharmaceutically acceptable salt thereof as an active ingredient.

(10) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-4]

$$\begin{array}{c|c}
R^2 & R^5 \\
R^3 & R^4 & Cy
\end{array}$$

$$\begin{array}{c|c}
R^5 & \\
R^6 & \\
\end{array}$$

wherein each symbol is as defined in (1),

or a pharmaceutically acceptable salt thereof as an active ingredient.

(11) The therapeutic agent of any of (1) to (10) above, wherein at least one of R1, R2, R3 and R4 is carboxyl, -COORa1, -CONRa2Ra3 or -SO₂Ra7 wherein Ra1, Ra2, Ra3 and Ra7 are as defined in (1).

(12) The therapeutic agent of any of (1) to (11) above, wherein the ring Cy is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl.

(13) The therapeutic agent of any of (1) to (12) above, wherein the ring A is C_{6-14} aryl.

(14) A fused ring compound of the following formula [II]

wherein the moiety

5

10

15

20

25

30

35

40

45

50

55

is a fused ring selected from

wherein R1, R2, R3 and R4 are each independently,

(1) hydrogen atom,

EP 1 162 196 A1 (2) C₁₋₆ alkanoyl, (3) carboxyl, (4) cyano, (5) nitro, (6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, 5 group A; halogen atom, hydroxyl group, carboxyl, amino, C₁₋₆ alkoxy, C₁₋₆ alkoxycarbonyl and C₁₋₆ alkylamino, (7) -COORa1 wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B, group B; halogen atom, cyano, nitro, C_{1-6} alkyl, halogenated C_{1-6} alkyl, C_{1-6} alkanoyl, 10 $-(CH_2)_r - COOR^{b1}, -(CH_2)_r - CONR^{b1}R^{b2}, -(CH_2)_r - NR^{b1}R^{b2}, -(CH_2)_r - NR^{b1} - COR^{b2}, -(CH_2)_r - NHSO_2R^{b1}, -(CH_2)_r - NR^{b1}R^{b2}, -(CH_2)_r - NR^{b$ OR^{b1} , $-(CH_2)_r-SR^{b1}$, $-(CH_2)_r-SO_2R^{b1}$ and $-(CH_2)_r-SO_2NR^{b1}R^{b2}$ wherein Rb1 and Rb2 are each independently hydrogen atom or C1-6 alkyl and r is 0 or an integer of 1 to 6, (8) -CONRa2Ra3 wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl 15 (as defined above), (9) -C(=NRa4)NH₂ wherein Ra4 is hydrogen atom or hydroxyl group, (10) -NHRa5 wherein Ra5 is hydrogen atom, C1-6 alkanoyl or C1-6 alkylsulfonyl, 20 (11) -ORa6 wherein Ra6 is hydrogen atom or optionally substituted C₁₋₆ alkyl (as defined above), (12) -SO₂Ra7 wherein Ra7 is hydroxyl group, amino, C₁₋₆ alkyl or C₁₋₆ alkylamino 25 (13) -P(=O) (ORa31)2 wherein Ra31 is hydrogen atom, optionally substituted C1-8 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and R7 is hydrogen atom or optionally substituted C₁₋₆ alkyl (as defined above), 30 ring Cy' is (1) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C₁₋₆ alkyl and C₁₋₆ alkoxy, or 35 (2)40 wherein u and v are each independently an integer of 1 to 3, 45 ring A' is a group selected from a group consisting of phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl and thienyl,

R5' and R6' are each independently

- (1) hydrogen atom,
- (2) halogen atom,
- (3) optionally substituted C₁₋₆ alkyl (as defined above) or
- (4) hydroxyl group

ring B is

50

55

(1) C₆₋₁₄ aryl,

(2) C₃₋₈ cycloalkyl or (3) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, each Z is independently 5 (1) a group selected from the following group D, (2) C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D, (3) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D, (4) C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or 10 (5) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, group D: (a) hydrogen atom, 15 (b) halogen atom, (c) cyano, (d) nitro, (e) optionally substituted C₁₋₆ alkyl (as defined above), (f) -(CH₂)_t-CORa18, 20 (hereinafter each t means independently 0 or an integer of 1 to 6), wherein Ra18 is (1') optionally substituted C₁₋₆ alkyl (as defined above), (2') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or 25 (3') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, 30 (g) -(CH₂)_t-COORa19 wherein R^{a19} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (h) -(CH₂),-CONRa27Ra28 wherein Ra27 and Ra28 are each independently, 35 (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 40 group B, (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B. (6") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 45 wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the 50

(i) $-(CH_2)_t$ - $C(=NR^{a33})NH_2$

above group B,

wherein Ra33 is hydrogen atom or C₁₋₆ alkyl,

(j) -(CH₂)_t-OR^{a20} wherein R^{a20} is

55

(1') hydrogen atom,

(2') optionally substituted C₁₋₆ alkyl (as defined above),

(3') optionally substituted C₂₋₆ alkenyl (as defined above), (4') C₂₋₆ alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A, (5') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 5 (7') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (8') heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 10 (9') C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group (10') C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 15 (k) - (CH₂)_t-O-(CH₂)_p-COR^{a21} wherein Ra21 is C₁₋₆ alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, and p is 0 or an integer of 1 to 6, (I) -(CH₂)_t-NRa22Ra23 wherein Ra22 and Ra23 are each independently 20 (1') hydrogen atom, (2') optionally substituted C₁₋₆ alkyl (as defined above), (3') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 25 group B or $^-$ (5') heterocycle C $_{1-6}$ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (m) -(CH₂)_t-NR^{a29}CO-R^{a24} 30 wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6} alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (n)-(CH₂)_t-NHSO₂-Ra25 35 wherein R^{a25} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (o) -(CH₂)_t-S(O)_a-R^{a25} wherein Ra25 is as defined above, and q is 0, 1 or 2, 40 (p) -(CH₂)_t-SO₂-NHRa26 wherein Ra26 is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, 45 is an integer of 1 to 3, and (1) a single bond, 50 (2) C₁₋₆ alkylene, (3) C₂₋₆ alkenylene, $(4) - (CH_2)_m - O - (CH_2)_n - (CH_2)_n$ (hereinafter m and n are each independently 0 or an integer of 1 to 6), (5) -CO-, 55 (6) -CO₂-(CH₂)_n-, (7) -CONH-(CH₂)_n-NH-, (8) -NHCO2-,

(9) -NHCONH-, (10) -O-(CH₂)_n-CO-, (11) -O-(CH₂)_n-O-, (12) -SO₂-, (13) -(CH₂)_m-NRa12-(CH₂)_nwherein Ra12 is

(1') hydrogen atom,

(2') optionally substituted C₁₋₆ alkyl (as defined above),

(3') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(4') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(5') -CORb5

5

10

15

20

25

30

35

40

45

50

55

wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(6') -COORb5 (Rb5 is as defined above) or

(7') -SO₂Rb5 (Rb5 is as defined above),

(14) -NRa12CO- (Ra12 is as defined above),

(15) -CONRa13-(CH2)n-

wherein R^{a13} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(16) -CONH-CHRa14-

wherein R^{a14} is C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (17) -O-(CH₂)_m-CRa15Ra16-(CH₂)_n-

wherein Ra15 and Ra16 are each independently

(1') hydrogen atom,

(2') carboxyl,

(3') C₁₋₆ alkyl,

(4') -ORb6

wherein Rb6 is C1-6 alkyl or C6-14 aryl C1-6 alkyl, or

wherein R^{b7} is hydrogen atom, C_{1-6} alkyl, C_{1-6} alkanoyl or C_{6-14} aryl C_{1-6} alkyloxycarbonyl, or R^{a15} is optionally

(6')

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

(18) -(CH₂)_n-NR^{a12}-CHR^{a15}- (R^{a12} and R^{a15} are each as defined above),

(19) -NRa17SO2-

wherein Ra17 is hydrogen atom or C1-6 alkyl or

(20) $-S(O)_e - (CH_2)_m - CR^{a15}R^{a16} - (CR_2)_n - (e is 0, 1 or 2, R^{a15})$ and R^{a16} are each as defined above),

or a pharmaceutically acceptable salt thereof.

(15) The fused ring compound of (14) above, which is represented by the following formula [II-1]

16

$$\begin{array}{c|c}
R^2 & R^1 & R^7 \\
\hline
R^3 & R^4 & Cy'
\end{array}$$

$$\begin{array}{c|c}
R^{5'} & \\
\hline
R^{6'} & \\
\end{array}$$

$$\begin{array}{c|c}
R^{5''} & \\
\hline
R^{6''} & \\
\end{array}$$

$$\begin{array}{c|c}
R & \\
\end{array}$$

$$\begin{array}{c|c}
R & \\
\end{array}$$

$$\begin{array}{c|c}
R & \\
\end{array}$$

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

(16) The fused ring compound of (14) above, which is represented by the following formula [II-2]

$$\begin{array}{c|c}
R^2 & & \\
\hline
R^3 & & \\
\hline
R^4 & & \\
\hline
Cy'
\end{array}$$

$$\begin{array}{c}
R^{5'} \\
\hline
R^{6'}
\end{array}$$

$$\begin{array}{c}
R^{5'} \\
\hline
R^{6'}
\end{array}$$

$$\begin{array}{c}
R^{5'} \\
\hline
R^{5'}
\end{array}$$

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

(17) The fused ring compound of (14) above, which is represented by the following formula [II-3]

wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.

(18) The fused ring compound of (14) above, which is represented by the following formula [II-4]

$$\begin{array}{c|c}
R^{2} & R^{1} \\
\hline
 & R^{5} \\
\hline
 & R^{6} \\
\hline
 &$$

wherein each symbol is as defined in (14),

5

10

15

20

25

30

35

40

45

50

55

or a pharmaceutically acceptable salt thereof.

- (19) The fused ring compound of any of (14) to (18) above, wherein at least one of R1, R2, R3 and R4 is carboxyl, -COORa1 or -SO₂Ra7 wherein Ra1 and Ra7 are as defined in (14), or a pharmaceutically acceptable salt thereof. (20) The fused ring compound of (19) above, wherein at least one of R1, R2, R3 and R4 is carboxyl or -COORa1 wherein Ra1 is as defined in (14), or a pharmaceutically acceptable salt thereof.
- (21) The fused ring compound of (20) above, wherein R² is carboxyl and R¹, R³ and R⁴ are hydrogen atoms, or a pharmaceutically acceptable salt thereof.
- (22) The fused ring compound of any of (14) to (21) above, wherein the ring Cy' is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl, or a pharmaceutically acceptable sait thereof.
- (23) The fused ring compound of (22) above, wherein the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, or a pharmaceutically acceptable salt thereof.
- (24) The fused ring compound of any of (14) to (23) above, wherein the ring A' is phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, or a pharmaceutically acceptable salt thereof.
- (25) The fused ring compound of (24) above, wherein the ring A' is phenyl or pyridyl, or a pharmaceutically acceptable salt thereof.
- . (26) The fused ring compound of (25) above, wherein the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.
- (27) The fused ring compound of any of (14) to (26) above, wherein the Y is $-(CH_2)_m$ -O- $-(CH_2)_n$ -, $-NHCO_2$ -, -CONH-CHRa14-, -(CH₂)_m-NRa12-(CH₂)_n-, -CONRa13-(CH₂)_n-, -O-(CH₂)_m-CRa15Ra16-(CH₂)_n- or -(CH₂)_n-NRa12-CHRa15-(wherein each symbol is as defined in (14)), or a pharmaceutically acceptable salt thereof.
- (28) The fused ring compound of (27) above, wherein the Y is $(CH_2)_m$ -O- $(CH_2)_n$ or -O- $(CH_2)_m$ - $CR^{a15}R^{a16}$ -(CH₂)_n- (wherein each symbol is as defined in (14)), or a pharmaceutically acceptable salt thereof.
- (29) The fused ring compound of (28) above, wherein the Y is $-(CH_2)_m$ -O- $(CH_2)_n$ wherein each symbol is as defined in (14), or a pharmaceutically acceptable salt thereof.
- (30) The fused ring compound of any of (14) to (29) above, wherein the R2 is carboxyl, R1, R3 and R4 are hydrogen atoms, the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, and the ring A' is phenyl, or a pharmaceutically ac-
- (31) The fused ring compound of the formula [I] or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of
 - ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 1),
 - 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 2),
 - ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (Example 3),
 - ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 4),
 - ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Exam-
 - 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
 - ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 7), ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Ex-
- 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 9),
 - ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylate (Example 10),
 - 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylic acid (Example 11),

```
2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 12),
             2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide (Example 13),
             2-(4-benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole (Example 14),
             2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime (Example 15),
             ethyl 1-cyclohexyl-2-[4-[4-(4-fluorophenyl)-2-methyl-5-thiazolyl]methoxy]phenyl]benzimidazole-5-carboxy-
5
             late (Example 16),
             1-cyclohexyl-2-{4-[{4- (4-fluorophenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic ac-
             id (Example 17),
             ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)benzimidazole-5-carboxylate (Example 18),
             ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example
10
              19),
              2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
              20),
              ethyl 1-cyclopentyl-2- (4-nitrophenyl)benzimidazole-5-carboxylate (Example 21),
              ethyl 2-(4-aminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (Example 22),
15
              ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (Example 23),
              2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 24),
              ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 25),
              2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 26),
              ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 27),
20
              ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]benzimidazole-5-carboxylate (Example 28),
              ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}-benzimidazole-5-carboxylate (Example 29),
              1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}-benzimidazole-5-carboxylic acid (Example 30),
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 31),
              ethyl 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5- carboxylate (Example 32),
25
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N,N-dimethylbenzimidazole-5-carboxamide (Example 33),
              2-(4-benzyloxyphenyl)-1-cyclopentyl-N-methoxy-N-methylbenzimidazole-5-carboxamide (Example 34),
              2-(4-benzyloxyphenyl)-1-cyclopentyl-5-(1-hydroxy-1-methylethyl)benzimidazole (Example 35),
               5-acetyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 36),
               2-(4-benzyloxyphenyl)-1-cyclopentyl-N-(2-dimethylaminoethyl)-benzimidazole-5-carboxamide dihydrochlo-
 30
               ride (Example 37),
               2-(4-benzyloxyphenyl)-1-cyclopentyl-5-nitrobenzimidazole (Example 38),
               5-amino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole hydrochloride (Example 39),
               5-acetylamino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 40),
               2-(4-benzyloxyphenyl)-1-cyclopentyl-5-methanesulfonyl-aminobenzimidazole (Example 41),
 35
               5-sulfamoyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 42),
               2-[4-(4-tert-butylbenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 43),
               2-[4-(4-carboxybenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 44),
               2-[4-(4-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 45),
               2-{4-[(2-chloro-5-thienyl)methoxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 46),
 40
               1-cyclopentyl-2-[4- (4-trifluoromethylbenzyloxy)phenyl]-benzimidazole-5-carboxylic acid (Example 47),
               1-cyclopentyl-2-[4-(4-methoxybenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 48),
                1-cyclopentyl-2-[4-(4-pyridylmethoxy)phenyl]benzimidazole-5-carboxylic acid hydrochloride (Example 49),
                1-cyclopentyl-2-[4-(4-methylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 50),
                1-cyclopentyl-2-{4-[(3,5-dimethyl-4-isoxazolyl)methoxy]phenyl}-benzimidazole-5-carboxylic acid (Example
 45
                51),
                1-cyclopentyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylic acid (Example 52),
                [2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazol-5-yl]-carbonylaminoacetic acid (Example 53),
                2-[4-(2-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 54),
                2-[4-(3-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 55),
  50
                2-(4-benzyloxyphenyl)-3-cyclopentylbenzimidazole-5-carboxylic acid (Example 56),
                2-[4-(benzenesulfonylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 57),
                1-cyclopentyl-2-[4-(3,5-dichlorophenylcarbonylamino)phenyl]-benzimidazole-5-carboxylic acid (Example 58),
                2-{4-[(4-chlorophenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 59),
                2-{4-[(4-tert-butylphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 60),
  55
                2-{4-[(4-benzyloxyphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example
                61),
                trans-4-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]cyclohexan-1-ol (Example 62),
```

```
trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-methoxycyclohexane (Example 63),
             2-(4-benzyloxyphenyl)-5-carboxymethyl-1-cyclopentylbenzimidazole (Example 64),
             2-[1-benzyloxycarbonyl-4-piperidyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 65),
             2-[(4-cyclohexylphenyl)carbonylamino]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 66),
             1-cyclopentyl-2-[4- (3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 67),
5
             1-cyclopentyl-2-[4- (3,4-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 68),
             1-cyclopentyl-2-[4-(phenylcarbamoylamino)phenyl]benzimidazole-5-carboxylic acid (Example 69),
             1-cyclopentyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 70),
             1-cyclopentyl-2-(4-phenethyloxyphenyl)benzimidazole-5-carboxylic acid (Example 71),
             trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-tert-butylcyclohexane (Example 72),
10
             2-(4-benzyloxyphenyl)-5-carboxymethoxy-1-cyclopentylbenzimidazole (Example 73),
             2-(4-benzylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 74),
              2-[4-(N-benzenesulfonyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example
              2-[4-(N-benzyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 76),
15
              1-cyclohexyl-2-(4-phenethylphenyl)benzimidazole-5-carboxylic acid (Example 77),
              2-(1-benzyl-4-piperidyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 78),
              2-(1-benzoyl-4-piperidyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 79),
              1-cyclopentyl-2-[1-(p-toluenesulfonyl)-4-piperidyl]benzimidazole-5-carboxylic acid (Example 80),
              1-cyclohexyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 81),
20
              1-cyclohexyl-2-[4- (diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 82),
              1-cyclohexyl-2- [4- (3,5-di-tert-butylbenzyloxy)phenyl]-benzimidazole-5-carboxylic acid (Example 83),
              2-(4-benzyloxyphenyl)-1-(4-methylcyclohexyl)benzimidazole-5-carboxylic acid (Example 84),
              1-cyclohexyl-2-{4-[2-(2-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 85),
              1-cyclohexyl-2-[4-(1-naphthyl)methoxyphenyl]benzimidazole-5-carboxylic acid (Example 86),
25
              1-cyclohexyl-2-[4-(dibenzylamino)phenyl]benzimidazole-5-carboxylic acid (Example 87),
              2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 88),
              2-(4-benzyloxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 89),
               1-cyclohexyl-2-[4- (dibenzylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 90),
              2-(4-benzoylmethoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 91),
 30
              2-(4-benzyl-1-piperazinyl)-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 92),
               1-cyclohexyl-2-[4-(3,3-diphenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 93),
               2-[4-(3-chloro-6-phenylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 94),
               2-(4-benzyloxypiperidino)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 95),
               1-cyclohexyl-2-{4-[2-(phenoxy)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 96),
 35
               1-cyclohexyl-2-[4-(3-phenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 97),
               1-cyclohexyl-2-[4-(5-phenylpentyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 98),
               2-(3-benzyloxy-5-isoxazolyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 99),
               2-(2-benzyloxy-5-pyridyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 100),
               1-cyclohexyl-2-{4-[2-(3,4,5-trimethoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 101),
 40
               2-(4-benzyloxyphenyl)-1-(4,4-dimethylcyclohexyl)benzimidazole-5-carboxylic acid (Example 102),
               1-cyclohexyl-2-{4-[2-(1-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 103),
               2-[4-(2-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 104),
               2-[4-(3-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 105),
               1-cyclohexyl-2-[4-(2-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 106),
 45
               1-cyclohexyl-2-[4-(3-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 107),
                1-cyclohexyl-2-[4-(2-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 108),
                1-cyclohexyl-2-[4-(3-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 109),
                1-cyclohexyl-2-[4-(2-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 110),
                1-cyclohexyl-2-[4-(3-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 111),
  50
                1-cyclohexyl-2-{4-[2-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid
                                                                                                               (Example
                112),
                1-cyclohexyl-2-{4-[3-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid
                                                                                                               (Example
                1-cyclohexyl-2-[4-(2-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 114),
  55
                1-cyclohexyl-2-[4-(3-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 115),
                1-cyclohexyl-2-{4-[2-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)ethoxy]phenyl}benzimidazole-5-carboxylic
                acid (Example 116),
```

```
1-cyclohexyl-2-{4-[2-(4-trifluoromethylphenyl)benzyloxy]-phenyl}benzimidazole-5-carboxylic acid (Example
             2-{4-[bis(4-chlorophenyl) methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 118),
             1-cyclohexyl-2-{4-[2-(4-methoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 119),
             1-cyclohexyl-2-{4-[2-(2-methoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 120),
             1-cyclohexyl-2-{4-[2-(3-methoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 121),
5
             2-(4-benzyloxyphenyl)-1-cycloheptylbenzimidazole-5-carboxylic acid (Example 122),
              1-cyclohexyl-2-[4-(2-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 123),
              1-cyclohexyl-2-[4-(3-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 124),
              1-cyclohexyl-2-[4-(2,2-diphenylethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 125),
              2-(4-benzyloxyphenyl)-1-(3-cyclohexenyl)benzimidazole-5-carboxylic acid (Example 126),
10
              cis-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-fluorocyclohexane (Example 127),
              1-cyclohexyl-2-[4-(2-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 128),
              1-cyclohexyl-2-[4-(3-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 129),
              2-{4-[(2R)-2-benzyloxycarbonylamino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
15
              1-cyclohexyl-2-{2-fluoro-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic
              (Example 130),
                                                                                                                  acid
              2-[4-(4-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 132),
              (Example 131),
              2-{4-[bis(4-methylphenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 133),
              2-{4-[bis(4-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 134),
 20
               1-cyclohexyl-6-methoxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid (Example 135),
               1-cyclohexyl-6-hydroxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid (Example 136),
               1-cyclohexyl-6-methyl-2- [4- (3-phenylpropoxy) phenyl]benzimidazole-5-carboxylic acid (Example 137),
               2-{4-[2-(2-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 138),
               2-{4-[2-(3-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 139),
 25
               2-[4-(2-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 140),
               2-[4-(3-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 141),
               2-{4-[3-chloro-6-(4-methylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
               2-{4-[3-chloro-6-(4-methoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
 30
               1-cyclohexyl-2-{2-methyl-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid
               2-{4-[2-(4-tert-butylphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
  35
                2-{4-(3-chloro-6-phenylbenzyloxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
                2-{4-[3-chloro-6-(3,5-dichlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
                2-{4-[bis(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
  40
                2-{4-(4-benzyloxyphenoxy)-2-chlorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 149),
                2-{4-(4-benzyloxyphenoxy)-2-trifluoromethylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
                2-{4- [3-chloro-6- (2-trifluoromethylphenyl) benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
  45
                2-{4-[(2R)-2-amino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 152),
                 (Example 151),
                 2-[4-(2-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 153),
                 2-[4-(3-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 154),
                 2-{4-[2-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
   50
                 2-{4-[3-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
                 ylic acid (Example 155),
                 ylic acid (Example 156),
                 2-{4-[3-chloro-6- (3,4,5-trimethoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
   55
                 (Example 157),
                 2-{4-[2-(2-biphenylyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 158),
                 2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 159),
```

1-cyclohexyl-2-{4-[2-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride (Example 160), 1-cyclohexyl-2-{4-[3-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride (Example 161). 2-{4-[(2R)-2-acetylamino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 5 1-cyclohexyl-2-{4-[3-(4-methyl-3-pentenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 1-cyclohexyl-2-{4-[3-(3-methyl-3-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid 2-{4-[{(2S)-1-benzyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexyl-benzimidazole-5-carboxylic acid hydrochlo-10 ride (Example 165), 2-{4-[3-chloro-6-(4-methylthiophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-2-{4-[3-chloro-6-(4-methanesulfonylphenyl)benzyloxy)phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 15 2-{4-[3-chloro-6-(2-thienyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 168), (Example 167), 2-{4-[3-chloro-6-(3-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 2-{4-[3-chloro-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 170), 2-{4-[3-chloro-6-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 20 2-[4-(4-benzyloxyphenoxy)-3-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 172), 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 173), 2-{4-[3-chloro-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 25 2-{4-[2-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-(Example 174), ple 175), 2-{4-[3-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 176). 1-cyclohexyl-2-{4-[3-(2-propynyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid (Example 177), 30 1-cyclohexyl-2-{4-[3-(3-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 178), 2-(4-benzyloxy-2-methoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 179), 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 180), 2-[4-(carboxydiphenylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 181), 2-{4-[2-(4-chlorophenyl)-5-nitrobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 35 2-{4-[3-acetylamino-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Ex-182). 2-{4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example ample 183). 40 2-{4-[{(2S)-1-benzyloxycarbonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 185), 2-{2-chloro-4-[2-(4-trifluoromethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 1-cyclohexyl-2-{4- [3- (2-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 187), 45 2-{4-[2-(4-chlorophenyl)-5-fluorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 2-{4-[3-carboxy-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-50 1-cyclohexyl-2-{4-[2-(dimethylcarbamoylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Example 190). 1-cyclohexyl-2-{4-[2-(piperidinocarbonylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Exam-55 2-{4-{{(2S)-1-benzenesulfonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 193),

```
2-{4-[{(2S)-1-benzoyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example
             194).
             2-{4-[2-(4-carbamoylphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
             ple 195),
             1-cyclohexyl-2-{4-[3-(dimethylcarbamoylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Exam-
5
             1-cyclohexyl-2-{4-[3-(piperidinocarbonylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Exam-
             ple 197).
             1-cyclohexyl-2-{4-[3-{(1-methanesulfonyl-4-piperidyl)methoxy}-phenoxy]phenyl}benzimidazole-5-carboxylic
              acid (Example 198),
              1-cyclohexyl-2-{4-[{2-methyl-5-(4-chlorophenyl) -4-oxazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic ac-
10
              id (Example 199),
              2-{4-[3-(3-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 200),
              2-{4-[3-(4-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 201),
              1-cyclohexyl-2-{4-[3-(4-fluorobenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 202),
              1-cyclohexyl-2-(4-[{(2S)-1- (4-nitrophenyl) -2-pyrrolidinyl)-methoxy]phenyl}benzimidazole-5-carboxylic acid
15
              (Example 203),
              1-cyclohexyl-2-{4-[{(2S) -1-phenyl-2-pyrrolidinyl}methoxy]-phenyl}benzimidazole-5-carboxylic acid hydro-
              chloride (Example 204),
              2-{4-[{(2S)-1-(4-acetylaminophenyl)-2-pyrrolidinyl}methoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxyl-
20
              ic acid (Example 205),
              2-{4-[{5-(4-chlorophenyl)-2-methyl-4-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
              2-{4-[bis(3-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 207),
              (Example 206),
               1-cyclohexyl-2-{4-[2-(4-chlorophenyl)-3-nitrobenzyloxy]phenyl}-benzimidazole-5-carboxylic acid (Example
25
               1-cyclohexyl-2-{4-[3-(4-tetrahydropyranyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example
               1-cyclohexyl-2-{4-[3-(4-trifluoromethylbenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example
               1-cyclohexyl-2-{4-[3-{(1-methyl-4-piperidyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Ex-
 30
               2-{4-[3-(4-tert-butylbenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 212),
               ample 211),
               2-{4-[3-(2-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 213),
               1-cyclohexyl-2-{4-[3-(3-pyridyl)phenoxy]phenyl}benzimidazole-5-carboxylic acid (Example 214),
               2-{4-[3- (4-chlorophenyl) phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 215),
 35
               1-cyclohexyl-2-{4-[3-(4-methoxyphenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 216),
               1-cyclohexyl-2-{4-[{4-(4-methanesulfonylphenyl)-2-methyl-5-thiazolylyl}methoxy]phenyl}benzimidazole-
               5-carboxylic acid (Example 217),
               2-{4-{4-(4-chlorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
 40
               (Example 218),
               2-{4-[1-(4-chlorobenzyl)-3-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 219),
                1-cyclohexyl-2-{4-[3-{(2-methyl-4-thiazolyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Ex-
                1-cyclohexyl-2-{4-[3-{(2,4-dimethyl-5-thiazolyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic
                ample 220),
  45
                (Example 221),
                1-cyclohexyl-2-{4-[3-(3,5-dichlorophenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 222),
                2-{4-[1-(4-chlorobenzyl)-4-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 223),
                2-{4-[3-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 224),
                2-{4-[4-carbamoyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
  50
                2-{4-[4-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 226),
                2-{4-[3-{(2-chloro-4-pyridyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-
                                                               -2-pyrrolidinyl}-methoxy]phenyl}-1-cyclohexylbenzimidazole-
                2-{4-[{(2S)-1-(4-dimethylcarbamoylphenyl)
  55
                5-carboxylic acid (Example 228),
                2-{4-[2- (4-chlorophenyl) -5-ethoxycarbonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
                 (Example 229),
```

1-cyclohexyl-2-[4-(3-trifluoromethylphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 230),

1-cyclohexyl-2-{4-[{4-(4-dimethylcarbamoylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 231), 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 232), 2-{4-[{4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic 5 acid hydrochloride (Example 233), 2-{4-[{2-(4-chlorophenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 234), 2-{4-[{3-(4-chlorophenyl)-2-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 10 2-{4-[2-(3-chlorophenyl)-4-methylamino-1,3,5-triazin-6-yloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluoroacetate (Example 236), 2-{4-[2-(4-chlorophenyl)-4-(5-tetrazolyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Ex-2-[4-(4-benzyloxy-6-pyrimidinyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 238), 15 1-cyclohexyl-2-{4-[4-(4-pyridylmethoxy)-6-pyrimidinyloxy]phenyl}-benzimidazole-5-carboxylic acid (Example 2-{4-[4-(3-chlorophenyl)-6-pyrimidinyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Ex-20 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-benzimidazole-5-carboxylic acid hydroethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Examchloride (Example 242), 25 ple 243). methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 244), methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 245), methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hy-30 drochloride (Example 246), methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 247), 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 35 hydrochloride (Example 248), 2-{4-[3-(tert-butylsulfamoyl)-6-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 249), 2-{4-[2-(4-chlorophenyl)-5-sulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluoroacetate (Example 250), 40 2-(4-benzyloxycyclohexyl)-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 251), 2-[2-(2-biphenylyloxymethyl)-5-thienyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 252), 2-[2-(2-biphenylyloxymethyl)-5-furyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 253), 1-cyclohexyl-2-{4-[{4- (4-fluorophenyl) -2-hydroxymethyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 254), 1-cyclohexyl-2-{4-[{4-(4-carboxyphenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic 45 acid hydrochloride (Example 255), 1-cyclohexyl-2-{2-fluoro-4-[4-fluoro-2-(3-fluorobenzoyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic (Example 256). 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-sulfonic acid (Example 50 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexylbenzimidazole-4-carboxylic acid (Exam-1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-5-(4-pyridylmethoxy)-phenoxy]phenyl}benzimidazole-5-carboxylic acid dihydrochloride (Example 259), 1-cyclohexyl-2-{4-[3-carboxy-5-(4-pyridylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid dihydro-55 chloride (Example 260), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-4-carboxylic acid (Exam-

	ple 261), 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-
	2-{4-[3-carbamoyl-b-(4-chilorophienyr)benzyroxy]prionyry
	chloride (Example 262), 2-{4-[{2-(4-carboxyphenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-2-{4-[{2-(4-carboxyphenyl)-3-pyridyl}methoxy]phenyl}
_	2-(4-((2-(4-calbox)priority) = pyray y
5	ple 263), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-5-carboxyl-
	ic acid (Example 264),
	ic acid (Example 264), 2-{4-{2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
	id hydrochloride (Example 265),
10	1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-trifluoromethylphenyl)denzyloxyjphenyljasi
	boxylic acid hydrochloride (Example 266), 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-methylthiophenyl)-benzyloxy]phenyl}benzimidazole-5-carboxy-
	lic acid hydrochloride (Example 267), 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
	2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylberizyloxy]-2 hadrophistry
15	boxylic acid hydrochloride (Example 268), 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
	boxylic acid hydrochloride (Example 269),
	boxylic acid hydrochloride (Example 269), 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
20	id hydrochloride (Example 270), 2-{4-[3-dimethylcarbamoyl-6-(4-methanesulfonylphenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-
20	5-carboxylic acid hydrochloride (Example 271),
	5-carboxylic acid hydrochloride (Example 2/1), 2-{4-[3-dimethylcarbamoyl-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihy-
	drochloride (Example 272),
	2-{4-[3-dimethylcarbamoyl-6-(4-dimethylcarbamoylpnenyl)-benzyloxylpnenylj - 5yelensylmenyl
25	
	5-carboxylic acid (Example 273), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(1-oxo-4-tetrahydrothiopyranyl)benzimidazole-
	5-carboxylic acid (Example 274), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(1,1-dioxo-4-tetrahydrothiopyranyl)benzimidazole-
	2-[4-[2-(4-chlorophenyl)-5-methoxyberizyloxy]phenyly (1,1 dexes 2)
	5-carboxylic acid (Example 275), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-
30	5-carboxylic acid (Example 276),
	5-carboxylic acid (Example 276), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(I-oxo-4-tetrahydrothiopyranyl)benzimida-
	zole-5-carboxylic acid (Example 277),
	zole-5-carboxylic acid (Example 277), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(1,1-dioxo-4-tetrahydrothiopyranyl)benzimi-
35	dazole-5-carboxylic acid (Example 278),
00	dazole-5-carboxylic acid (Example 278), 2-{4-[2-(4-chlorophenyl)-5-dimethylsulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
	hydrochloride (Example 279),
	hydrochloride (Example 279), 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
	hydrochloride (Example 280), methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxy-
40	methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-habiophenyl,
	late hydrochloride (Example 281), 2-{4-[2-(4-chlorophenyl)-5-dimethylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid di-
	hydrochloride (Example 282), 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxyl-
45	
45	ic acid hydrochloride (Example 283), 2-{4-[2-(4-chlorophenyl)-5-diethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
	2-{4-[2-(4-chlorophenyl)-5-isopropylcarbamoylbenzyloxy]-2-hudrophenyly 1 5/01010-1, 1
50	boxylic acid hydrochloride (Example 285), 2-{4-[2-(4-chlorophenyl)-5-piperidinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-
	boxylic acid hydrochloride (Example 286), 2-{4-[2-(4-chlorophenyl)-5-(1-pyrrolidinyl)carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-
	2-{4-[2-(4-chlorophenyl)-5-(1-pyrrolidinyl)carbonylberizyloxy] 2 masters y
	5-carboxylic acid hydrochloride (Example 287), 2-{4- [2-(4-chlorophenyl)-5- (2-hydroxyethyl)carbamoylbenzyloxy] -2-fluorophenyl}-1-cyclohexylbenzimida-
_	2-{4- [2-(4-chlorophenyl)-5- (2-hydroxyethyl)datable 288, zole-5-carboxylic acid hydrochloride (Example 288,
55	2 (4-chlorophenyl)-5-(4-hydroxypiperidino)-carbonylbenzyloxyj z maorej menyly
	dazole-5-carboxylic acid hydrochloride (Example 289),
	dazole-5-carboxylic acid hydrochloride (Example 269), 2-{4-[2-(4-chlorophenyl)-5-morpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-

boxylic acid hydrochloride (Example 290), 2-{4-[2-(4-chlorophenyl)-5-thiomorpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 291), 2-{4-[3-(carboxymethylcarbamoyl)-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 292), 2-{4-[2-{4-(2-carboxyethyl) phenyl}-5-chlorobenzyloxy] phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 5 2-{4-[3-chloro-6-(4-hydroxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hy-(Example 293). drochloride (Example 294), 2-{4-[3-chloro-6-(4-methoxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic 10 hydrochloride (Example 295), 2-{4-[2-(3-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 2-{4-[2-(4-chlorophenyl)-5-methylthiobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-2-{4-[2-(4-chlorophenyl)-5-methylsulfinylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Ex-15 2-{4-[2-(4-chlorophenyl)-5-cyanobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 299), 2-{4-[bis(3-pyridyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 300), 2-{4-[bis(4-dimethylcarbamoylphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 20 sodium 2-{4-[2-thienyl-3-thienylmethoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Exam-2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidaple 302). methyl 25 zole-5-carboxylate (Example 303), 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 304), 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid 2-{4-[2-(4-carboxyphenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Exam-30 2-{4-[2-(4-carbamoylphenyl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 307), 2-{4-[5-amino-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 35 2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfinyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 309), 2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfonyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 310), 2-{4-[2-(4-chlorophenyl)-5-methoxybenzylthio]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-40 2-{4-[bis(4-carboxyphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example chloride (Example 311), 2-[4-(phenyl-3-pyridylmethoxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 313), methyl 2-{4-[2-(4-chlorophenyl)-5-(methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-45 5-carboxylate (Example 314), 2-{4-[5-chloro-2-(4-pyridyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 315), 2-{4-[2-(4-chlorophenyl)-5-(benzylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-50 boxylic acid hydrochloride (Example 316), 2-{4-[2-(4-chlorophenyl)-5-(cyclohexylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 317), 2-{4-[2-(4-chlorophenyl)-5-(4-pyridylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 318), 2-{4-[2- (4-chlorophenyl) -5- (N-benzyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzim-55 idazole-5-carboxylic acid hydrochloride (Example 319),

methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate (Exam-

5

10

15

20

25

30

35

45

55

2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylic acid (Example 2-(4-benzyloxyphenyl)-1-cyclopentyl-IH-indole-5-carboxylic acid (Example 503), ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate (Example 601),

- 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylic acid (Example 602), and 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid (Example 701).
- (32) A pharmaceutical composition comprising a fused ring compound of any of (14) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier. (33) A hepatitis C virus polymerase inhibitor comprising a fused ring compound of any of (1) to (31) above, or a
 - pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - (34) An anti-hepatitis C virus agent comprising a fused ring compound of any of (1) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - (35) A therapeutic agent for hepatitis C comprising a fused ring compound of any of (14) to (31) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - (36) A method for treating hepatitis C, which comprises administering an effective amount of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof.
 - (37) A method for inhibiting hepatitis C virus polymerase, which comprises administering an effective amount of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof.
 - (38) Use of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof for the production of a pharmaceutical agent for treating hepatitis C.
 - (39) Use of a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof for the production of a hepatitis C virus polymerase inhibitor.
 - (40) A pharmaceutical composition for the treatment of hepatitis C, which comprises a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable
 - (41) A pharmaceutical composition for inhibiting hepatitis C virus polymerase, which comprises a fused ring compound of the above-mentioned formula [I] or a pharmaceutically acceptable salt thereof, and a pharmaceutically
 - (42) A commercial package comprising a pharmaceutical composition of (40) above and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for treating hepatitis
 - (43) A commercial package comprising a pharmaceutical composition of (41) above and a written matter associated C. therewith, the written matter stating that the pharmaceutical composition can or should be used for inhibiting hepatitis C virus polymerase.
 - [0033] The definitions of respective substituents and moieties used in the present specification are as follows.
- [0034] The halogen atom is a fluorine atom, chlorine atom, bromine atom or iodine atom, preferably fluorine atom, 40
 - [0035] Particularly preferably, the halogen atom is fluorine atom at R⁵, R⁵, R⁶, R⁶, group A and group C, and fluorine atom or chlorine atom at X, Z, Z', group B and group D.
 - [0036] The C₁₋₆ alkyl is straight chain or branched chain alkyl having 1 to 6 carbon atoms, and is exemplified by methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, tert-pentyl, hexyl and the like.
 - [0037] Preferably, it is straight chain or branched chain alkyl having 1 to 4 carbon atoms, and is particularly preferably methyl at Ra7, Ra8, Ra9, Ra15, Ra16, Ra17, Ra29, Ra33, Rb6 and Rb7 and methyl or tert-butyl at Rb1, Rb2, group B and
- [0038] The halogenated C₁₋₆ alkyl is the above-defined C₁₋₆ alkyl except that it is substituted by the above-defined halogen atom. Preferably, it is halogenated alkyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include fluoromethyl, difluoromethyl, trifluoromethyl, bromomethyl, 50 chloromethyl, 1,2-dichloromethyl, 2,2-dichloromethyl, 2,2,2-trifluoroethyl and the like.
 - [0039] The halogenated C₁₋₆ alkyl is particularly preferably trifluoromethyl at group B.
 - [0040] The C₁₋₆ alkylene is straight chain alkylene having 1 to 6 carbon atoms, and is exemplified by methylene, ethylene, trimethylene, tetramethylene, pentamethylene or hexamethylene.
 - [0041] The C_{1-6} alkylene is preferably methylene or ethylene at Y.
 - [0042] The C₂₋₆ alkenylene is straight chain alkenylene having 2 to 6 carbon atoms, and is exemplified by vinylene, propenylene, 1-butenylene, 1,3-butadienylene and the like.

[0043] The C_{2-6} alkenylene is preferably vinylene at Y.

5

25

35

50

- [0044] The C_{1-6} alkoxy is alkyloxy wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, it is alkoxy wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy, tert-butyloxy, pentyloxy, hexyloxy and the
- The C_{1-6} alkoxy is particularly preferably methoxy at R^{a2} , R^{a3} , group A and group C.
- The C_{1-6} alkanoyl is alkylcarbonyl wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, [0045] it is alkanoyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include acetyl, propionyl, butyryl, isobutyryl, pivaloyl and the like.
- [0047] The C₁₋₆ alkanoyl is particularly preferably acetyl at R¹, R², R³, R⁴, R^{a5}, R^{a29}, R^{b7} and group B. 10
 - [0048] The C_{1-6} alkoxycarbonyl is alkyloxycarbonyl wherein the alkoxy moiety thereof is the above-defined C_{1-6} alkoxy. Preferably, it is alkoxycarbonyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropyloxycarbonyl, butoxycarbonyl, isobutyloxycarbonyl, tert-butyloxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl and the like.
- [0049] The C₁₋₆ alkoxycarbonyl is particularly preferably methoxycarbonyl or ethoxycarbonyl at Ra10 and group A. [0050] The C_{1-6} alkylamino is alkylamino or dialkylamino wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, it is alkylamino or dialkylamino wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, tert-butylamino, pentylamino, hexylamino, dimethylamino, diethylamino, methylethylamino, N-isopropyl-N-isobutylamino and the like. 20
 - [0051] The C₁₋₆ alkylamino is particularly preferably methylamino at R^{a7}, and particularly preferably dimethylamino
 - [0052] The C_{1-6} alkanoylamino is alkylcarbonylamino wherein the alkanoyl moiety thereof is the above-defined C_{1-6} alkanoyl. Preferably, it is alkylcarbonylamino wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include acetylamino, propionylamino, butyrylamino, isobutyrylamino, pivaloylamino and the like.
 - [0053] The C₁₋₆ alkanoylamino is particularly preferably acetylamino at X and R^{a10}.
 - The C_{1-6} alkylsulfonyl is alkylsulfonyl wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl. Preferably, it is alkylsulfonyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, tertbutylsulfonyl, pentylsulfonyl, hexylsulfonyl and the like.
 - The C_{1-6} alkylsuifonyl is particularly preferably methylsulfonyl at X and R^{a5} . [0055]
 - The C₆₋₁₄ aryl is aromatic hydrocarbon having 6 to 14 carbon atoms. Examples thereof include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl and the like.
 - [0057] The C₆₋₁₄ aryl is preferably phenyl or naphthyl, particularly preferably phenyl at the ring A, ring B and
 - [0058] The C₃₋₈ cycloalkyl is saturated cycloalkyl having 3 to 8, preferably 5 to 7, carbon atoms. Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
 - [0059] The C₃₋₈ cycloalkyl is particularly preferably cyclohexyl at the ring A, ring A', ring B and ring B'.
 - [0060] The C₃₋₈ cycloalkenyl is cycloalkenyl having 3 to 8, preferably 5 to 7, carbon atoms and has at least 1, preferably 1 or 2, double bond(s). Examples thereof include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, cycloheptenyl and cyclooctenyl and the like, but do not include aryl (e.g., phenyl) or completely saturated cycloalkyl.
 - [0061] The C_{3-8} cycloalkenyl is preferably cyclohexenyl at the ring A and ring A'.
 - [0062] The heterocyclic group has, as an atom constituting the ring, 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, besides a carbon atom, and includes saturated ring and unsaturated ring, 45 monocyclic ring and fused ring having the number of ring atom constituting the ring of 3 to 14.
 - [0063] The heterocyclic group as a monocyclic ring includes, for example, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahy-
 - [0064] Examples of the heterocyclic group as a fused ring include quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolyl, benzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl and the like.
 - [0065] Preferably, it is a heterocyclic group which is a 5-membered or a 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl and the like.

[0066] The heterocyclic group is preferably pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl which is an aromatic group, and particularly preferably pyridyl at the ring A and ring A'.

[0067] The heterocyclic group is particularly preferably pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thiadiazolyl, which is an aromatic group, at the ring B and ring B'. More preferably it is pyridyl or thiazolyl, most preferably

[0068] The C_{6-14} aryl C_{1-6} alkyl is arylalkyl wherein the alkyl moiety thereof is the above-defined C_{1-6} alkyl and the aryl moiety is the above-defined C₆₋₁₄ aryl. Preferably, it is arylalkyl wherein the alkyl moiety thereof is straight chain alkyl having 1 to 4 carbon atoms and the aryl moiety is phenyl. Examples thereof include benzyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 4-phenylbutyl and the like.

[0069] The C_{6-14} aryl C_{1-6} alkyl is particularly preferably benzyl at R^{a8} and R^{b6} .

25

40

50

[0070] The C_{6-14} aryl C_{1-6} alkyloxycarbonyl is arylalkyloxycarbonyl wherein the C_{6-14} aryl C_{1-6} alkyl moiety thereof is the above-defined C_{6-14} aryl C_{1-6} alkyl. Preferably, it is anylalkyloxycarbonyl wherein the alkyl moiety thereof is straight chain alkyl having 1 to 4 carbon atoms and the aryl moiety is phenyl. Examples thereof include benzyloxycarbonyl, phenethyloxycarbonyl, 3-phenylpropyloxycarbonyl, 2-phenylpropyloxycarbonyl, 4-phenylbutyloxycarbonyl and the like. The C_{6-14} aryl C_{1-6} alkyloxycarbonyl is particularly preferably benzyloxycarbonyl at \mathbb{R}^{57} .

[0072] The optionally substituted C_{1-6} alkyl is the above-defined C_{1-6} alkyl, preferably that wherein straight chain or branched chain alkyl having 1 to 4 carbon atoms is optionally substituted with 1 to 3 substituent(s), and includes unsubstituted alkyl. The substituent(s) is(are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C_{1-6} alkoxy, the above-defined C_{1-6} alkoxycarbonyl and the above-defined C_{1-6} alkylamino. Examples of optionally substituted C₁₋₆ alkyl include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tertbutyl, pentyl, isopentyl, tert-pentyl, neopentyl, 1-ethylpropyl, hexyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 1-hydroxy-1-methylethyl, carboxylmethyl, 2-carboxylethyl, methoxymethyl, ethoxycarbonylmethyl, 2-ethoxycarbonylethyl, 2-dimethylaminoethyl and the like.

[0073] Preferably, the optionally substituted C₁₋₆ alkyl is methyl, 1-hydroxy-1-methylethyl, carboxylmethyl or 2-dimethylaminoethyl at R¹, R², R³ and R⁴, methyl or trifluoromethyl at R⁵, R⁵, R⁶ and R⁶, methyl at R⁷, R⁸, R^{a18}, Ra24, Ra25, Ra31 and Rb5, methyl or ethyl at Ra1 and Ra19, methyl, carboxylmethyl or 2-dimethylaminoethyl at Ra2 and Ra3, methyl or carboxylmethyl at Ra6, methyl, ethyl, isopropyl, butyl or trifluoromethyl at X, methyl, ethyl, isopropyl, butyl, isobutyl, tert-butyl, isopentyl, neopentyl, 1-ethylpropyl or carboxylmethyl at Ra10, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, trifluoromethyl, 2-hydroxyethyl or carboxylmethyl at Ra11, methyl or 4-hydroxybutyl at Ra12, methyl, ethyl, isopropyl, butyl, 2-hydroxyethyl, 4-hydroxybutyl, ethoxycarbonylmethyl, 2-(ethoxycarbonyl)ethyl or 2-dimethylaminoethyl at Ra13, methyl, propyl, butyl, isopentyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl or carboxymethyl at Ra20, methyl or ethyl at Ra22 and Ra23, methyl or tert-butyl at Ra26, methyl, ethyl, isopropyl, 2-hydroxyethyl or carboxylmethyl at Ra27 and Ra28, and methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 2-carboxylethyl, methoxymethyl or ethoxycarbonylmethyl at Z, Z' and group D.

[0074] It is particularly preferably, trifluoromethyl at R⁵, R⁶ and R⁶, methyl or tert-butyl at R^{a26}, methyl, tert-butyl, trifluoromethyl or hydroxymethyl at Z, Z' and group D, and methyl at other substituents.

[0075] The optionally substituted C₂₋₆ alkenyl is that wherein straight chain or branched chain alkenyl having 2 to 6 carbon atoms is optionally substituted by 1 to 3 substituent(s), and includes unsubstituted alkenyl. The substituent(s) is (are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C_{1-6} alkoxy, the above-defined C_{1-6} alkoxycarbonyl and the above-defined C_{1-6} alkylamino. Examples of optionally substituted C_{2-6} alkenyl include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 1,3-butadienyl, 2-isopentenyl, 3-isohexenyl, 4-methyl-3-pentenyl, 2-carboxylethenyl and the like.

[0076] The optionally substituted C₂₋₆ alkenyl is preferably 2-carboxylethenyl at X, and preferably 2-isopentenyl, 3-isohexenyl or 4-methyl-3-pentenyl at Ra20.

[0077] The optionally substituted C_{2-6} alkynyl is that wherein straight chain or branched chain alkynyl having 2 to 6 carbon atoms is optionally substituted by 1 to 3 substituent(s), and includes unsubstituted alkynyl. The substituent(s) is (are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C_{1-6} alkoxy, the above-defined C_{1-6} alkoxycarbonyl and the above-defined C_{1-6} alkylamino. Examples thereof include ethynyl, 1-propynyl, 2-propynyl, 3-butynyl and the like.

[0078] The optionally substituted C_{2-6} alkynyl is preferably 2-propynyl at R^{a20} .

[0079] The C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the abovedefined C₆₋₁₄ aryl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the above-defined halogen atom, cyano, nitro, the above-defined C₁₋₆ alkyl, the above-defined halogenated C_{1-6} alkyl, the above-defined C_{1-6} alkanoyl, $-(CH_2)_r$ -COOR^{b1}, $-(CH_2)_r$ -CONR^{b1}Rb2, $-(CH_2)_r$ -NRb1Rb2, $-(CH_2)_r$ -NRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -NRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -NRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -NRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -NRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -CONRb1Rb2, $-(CH_2)_r$ -NRb1Rb2, $-(CH_2)_r$ -NRb $(CH_2)_r - NR^{b1} - COR^{b2}, -(CH_2)_r - NHSO_2R^{b1}, -(CH_2)_r - OR^{b1}, -(CH_2)_r - SR^{b1}, -(CH_2)_r - SO_2R^{b1} \text{ and } -(CH_2)_r - SO_2R^{b1}R^{b2}$ (wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined C₁₋₆ alkyl and r is 0 or an integer

[0080] Examples thereof include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,5-dichlorophenyl, pentafluorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-nitrophenyl, 4-cyanophenyl, 4-acetylphenyl, 4-carboxylphenyl, 4-carbamoylphenyl, 4-aminophenyl, 4-dimethylaminophenyl, 4-acetylaminophenyl, 4-(methylsulfonylamino)phenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-methylthiophenyl, 4-methylsulfonylphenyl, 4-aminosulfonylphenyl, 3-nitro-4-methoxyphenyl and 4-nitro-3-methoxyphenyl.

[0081] The aryl moiety is preferably phenyl, the group B here is preferably the above-defined halogen atom, nitro, the above-defined C₁₋₆ alkyl, the above-defined halogenated C₁₋₆ alkyl or -(CH₂)_r-OR^{b1}. Examples of group B include fluorine atom, chlorine atom, nitro, methyl, tert-butyl, trifluoromethyl and methoxy. Particularly preferably, it is fluorine

[0082] With regard to "C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group B", it is preferably phenyl, 4-tert-butylphenyl, 3-chlorophenyl, 4-chlorophenyl, 4-methoxyphenyl or 4-trifluoromethylphenyl at Ra12, Ra27 and Ra28, phenyl at Ra14, Ra22, Ra23, Ra26 and Rb5, phenyl or 3-fluorophenyl at Ra18, phenyl or 2,4-dichlorophenyl at Ra20, phenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, 3,5-dichlorophenyl, 3-nitro-4-methoxyphenyl or 4-nitro-3-methoxyphenyl at Ra24, and phenyl or 4-methylphenyl at Ra25.

[0083] It is particularly preferably phenyl at other substituents.

10

20

30

40

[0084] The C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the abovedefined C₆₋₁₄ aryl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the above-mentioned group D (substituents shown under (a) to (p)).

[0085] Examples of group D here include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy, propyloxy, isopropyloxy, isopentyloxy, 2-isopentenyloxy, 3-isohexenyloxy, 4-methyl-3-pentenyloxy, 2-propynyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, methylaminosulfonyl and dimethylaminosulfonyl.

[0086] Examples of C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chloroph enyl, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, pentafluorophenyl, 4-methylphenyl, 4-tertbutylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, 4-acetylaminophenyl, 4-cyanophenyl, 4-acetylphenyl, 4-aminophenyl, 4-dimethylaminophenyl, 4-(methylsulfonylamino)phenyl, 4-methylsulfinylphenyl, 4-aminosulfonylphenyl and 3-nitro-4-methoxyphenyl and 4-nitro-3-methoxyphenyl.

[0087] At Z and Z', the aryl moiety is preferably phenyl, and group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C₁₋₆ alkyl, -(CH₂)_t-COOR^{a19}, -(CH₂)_t-CONR^{a27}R^{a28}, - (CH₂)_t-ORa20, -(CH₂)_t-NRa29CO-Ra24, -(CH₂)_t-S(O)_q-Ra25 or -(CH₂)_t-SO₂-NHRa26.

[0088] Examples of C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D preferably include phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, 5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, 5-dichlorophenyl, 5-di enyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, 4-acetylaminophenyl, 4-methylsulfinylphenyl and 4-aminosulfonylphenyl.

[0089] Particularly preferably, it is the above-defined halogen atom, the above-defined optionally substituted C₁₋₆ alkyl, -(CH₂)_tCOOR^{a19}, -(CH₂)_t-CONR^{a27}R^{a28}, (CH₂)_t-OR^{a20} or - (CH₂)_t-S (O)_q-R^{a25}, which is specifically fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino. More preferably, it is fluorine atom, chlorine atom, methyl, tert-butyl, carboxyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino, most preferably fluorine atom or chlorine atom.

[0090] The heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined heterocyclic group is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocyclic group. The substituent(s) is(are) selected from the above-defined halogen atom, cyano, nitro, the abovedefined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl, the above-defined C_{1-6} alkanoyl, -(CH₂)_r-COOR^{b1}, - $(CH_2)_r$ - $CONR^{b1}R^{b2}$, $-(CH_2)_r$ - $NR^{b1}R^{b2}$, $-(CH_2)_r$ - NR^{b1} - COR^{b2} , $-(CH_2)_r$ - $NHSO_2R^{b1}$, $-(CH_2)_r$ - OR^{b1} , $-(CH_2)_r$ - SR^{b1} , $-(CH_2)_r$ - $-(CH_2)_r$ --SO₂Rb1 and -(CH₂)_r-SO₂NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined C₁₋₆ alkyl and r is 0 or an integer of 1 to 6.

[0091] Examples thereof include 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-fluoropyridin-4-yl, 3-chloropyridin-4-yl, 4-chloropy-

ridin-3-yl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, furyl, oxazolyl, 2-methyloxazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl, 2,5-dimethylthiazol-4-yl, 2,4-dimethylthiazol-5-yl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, 3-hydroxypyrrolidinyl, imidazolidinyl, piperidyl, 3-hydroxypiperidino, 4-hydroxypiperidino, 3,4-dihydroxypiperidino, 4-methoxypiperidino, 4-carboxypiperidino, 4-(hydroxymethyl)-piperidino, 2-oxopiperidino, 4-oxopiperidino, 2,2,6,6-tetramethylpiperidino, 2,2,6,6-tetramethyl-4-hydroxypiperidino, N-methylpiperidin-4-yl, N-(tert-butoxycarbonyl)piperidin-4-yl, N-acetylpiperidin-4-yl, N-methylsulfonylpiperidin-4-yl, piperazinyl, 4-methylsulfonylpiperazinyl, morpholinyl, thiomorpholinyl, 1-oxothiomorpholin-4-yl, 1,1-dioxothiomorpholin-4-yl, tetrahydropyranyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolyl, benzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzoxazolyl,

[0092] The heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or a 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the group B here is preferably the abovedefined halogen atom, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl, the above-defined C_{1-6} alkanoyl, -(CH₂)_r-COOR^{b1}, -(CH₂)_r-CONR^{b1}R̄^{b2} or -(CH₂)_r-OR^{b1}.

10

20

25

30

35

45

50

[0093] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group B preferably include piperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-(methylsulfonyl)piperidin-4-yl, 1-pyrrolidinyl, morpholino, 4-thiomorpholinyl, tetrahydropyranyl, pyridyl and thiazolyl. Particularly preferably, it is piperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-pyrrolidinyl, morpholino or 4-thiomorpholinyl at Ra18, tetrahydropyranyl or 4-hydroxypiperidino at Ra20, piperidino at Ra21, pyridyl at Ra24 and Ra25, pyridyl or thiazolyl at Ra26 and at Ra27 and Ra28, it is 1-(methylsulfonyl)piperidin-4-yl, 3-hydroxypyrrolidinyl, 3-hydroxypiperidino, 4-hydroxypiperidino, 3,4-dihydroxypiperidino, 4-methoxypiperidino, 4-carboxypiperidino, 4-(hydroxymethyl)piperidino, 2-oxopiperidino, 4-oxopiperidino, 2,2,6,6-tetramethylpiperidino, 2,2,6,6-tetramethyl-4-hydroxypiperidino, 4-methylsulfonylpiperazinyl, 1-oxothiomorpholin-4-yl or 1,1-dioxothiomor-

[0094] The heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined heterocyclic group is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocyclic group. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (p)).

[0095] Examples of the group D here include the substituent(s) exemplified for C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D.

[0096] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D include 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-fluoropyridin-4-yl, 3-chloropyridin-4-yl, 4-chloropyridin-3-yl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, furyl, oxazolyl, 2-methyloxazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl, 2,5-dimethylthiazol-4-yl, 2,4-dimethylthiazol-5-yl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, imidazolidinyl, piperidyl, N-methylpiperidin-4-yl, N-(tert-butoxycarbonyl)piperidin-4-yl, N-acetylpiperidin-4-yl, N-methylsulfonylpiperidin-4-yl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolinyl, benzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl and the like.

[0097] In addition, the heterocyclic group may be substituted at the 3-, 4-, 5- or 6-position of 2-pyridyl, at the 2-, 4-, 5- or 6-position of 3-pyridyl, at the 2-, 3-, 5- or 6-position of 4-pyridinyl, at the 3-, 4- or 5-position of 2-thienyl, or at the 2-, 4- or 5-position of 3-thienyl, by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

[0098] At Z and Z', the heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolinyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl. The group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C_{1-6} alkyl, - $(CH_2)_t$ - $COOR^{a19}$, - $(CH_2)_t$ - $\mathsf{CONR}^{a27}\mathsf{R}^{a28}, -(\mathsf{CH}_2)_t - \mathsf{OR}^{a20}, -(\mathsf{CH}_2)_t - \mathsf{NR}^{a29}\mathsf{CO} - \mathsf{R}^{a24}, -(\mathsf{CH}_2)_t - \mathsf{S}(\mathsf{O})_q - \mathsf{R}^{a25} \text{ or } -(\mathsf{CH}_2)_t - \mathsf{SO}_2 - \mathsf{NHR}^{a26} - \mathsf{NHR}^{a26$

[0099] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D preferably include piperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-pyrrolidinyl, morpholino, 4-thiomorpholinyl, 4-tetrahydropyranyl, 3-pyridyl, 2-pyrimidinyl, 5-tetrazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl and 2-thienyl.

[0100] Particularly preferably, it is pyridyl, pyrimidinyl, tetrazolyl, thienyl or piperidyl.

[0101] The C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group C is that wherein the above-defined C₃₋₈ cycloalkyl is optionally substituted by the 1 to 5 substituent(s) selected from hydroxyl group, the above-defined halogen atom, the above-defined C₁₋₆ alkyl and the above-defined C₁₋₆ alkoxy, which may be unsubstituted. Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, dfluorocyclohexyl,

2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tertbutylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

[0102] The cycloalkyl moiety is preferably cyclopentyl or cyclohexyl, particularly preferably cyclohexyl.

10

20

[0103] At the ring Cy and ring Cy', the C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group C is preferably cyclopentyl, cyclohexyl, 4-fluorocyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 4-tertbutylcyclohexyl, 4-hydroxycyclohexyl or 4-methoxycyclohexyl, more preferably cyclopentyl or cyclohexyl, particularly

[0104] The C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B is that wherein the above-defined C₃₋₈ cycloalkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkyl. The substituents are selected from the above group B.

[0105] Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, clohexyl, 2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

[0106] Also exemplified are those wherein cyclopentyl or cyclohexyl is substituted by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

[0107] At cycloalkyl moiety, it is preferably cyclopentyl or cyclohexyl. As the C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, it is particularly preferably cyclohexyl or 4-hydroxycyclohexyl at

[0108] The C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined C₃₋₈ cycloalkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkyl. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under

[0109] The group D here includes the substituents recited with regard to C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from group D.

[0110] Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, 2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tertbutylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.

[0111] The group D may be, for example, cyclopentyl or cyclohexyl substituted by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

[0112] The cycloalkyl moiety is preferably cyclopentyl or cyclohexyl, and at Z and Z', it is particularly preferably

[0113] The optionally substituted C_{3-8} cycloalkenyl is that wherein the above-defined C_{3-8} cycloalkenyl is optionally substituted by substituent(s) selected from hydroxyl group, the above-defined halogen atom, the above-defined C_{1-6} alkyl and the above-defined C₁₋₆ alkoxy, which may be unsubstituted. Examples thereof include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 4-fluoro-2-cyclohexenyl, 4-methyl-2-cyclohexenyl, 4-methyl-3-cyclohexenyl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, cycloheptenyl and cyclooctenyl and the like, but do not include aryl (e.g., phenyl) or completely saturated cycloalkyl.

[0114] The optionally substituted C₃₋₈ cycloalkenyl is particularly preferably cyclohexenyl at the ring Cy.

[0115] The C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined C_{6-14} aryl C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted arylalkyl. The substituent(s) is(are) selected from the above-mentioned group B.

[0116] Examples thereof include benzyl, 1-naphthylmethyl, 2-naphthylmethyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 2,4-dichlorobenzyl, 3,5-dichlorobenzyl, pentafluorobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-nitrobenzyl, 4-cyanobenzyl, 4-acetylbenzyl, 4-carboxylbenzyl, 4-carbamoylbenzyl, 4-aminobenzyl, 4-dimethylaminobenzyl, 4-acetylaminobenzyl, 4-(methylsulfonylamino)benzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-methylthiobenzyl, 4-methylsulfonylbenzyl, 4-aminosulfonylbenzyl, 3-nitro-4-methoxybenzyl and 4-nitro-3-methoxybenzyl.

[0117] The C₆₋₁₄ aryl C₁₋₆ alkyl moiety is preferably benzyl or phenethyl, particularly preferably benzyl. The group B is preferably the above-defined halogen atom, nitro, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl or -(CH₂)_r-OR^{b1}. Examples thereof include fluorine atom, chlorine atom, nitro, methyl, tert-butyl, trifluoromethyl, methoxy or trifluoromethyloxy, particularly preferably fluorine atom or chlorine atom.

[0118] The specific C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B at R^{a12} and Ra13 is preferably benzyl, phenethyl, 3-chlorobenzyl, 4-chlorobenzyl, 4-tert-butylbenzyl or 3-trifluoromethylbenzyl, it is preferably benzyl at Ra1, Ra19, Ra27, Ra28, Ra31 and Rb5, it is preferably benzyl, phenethyl, 4-fluorobenzyl, 2-chlorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 4-tert-butylbenzyl or 4-trifluoromethylbenzyl at Ra20, and 4-chlorobenzyl, 3,5-dichlorobenzyl or 4-trifluoromethylbenzyl at R^{a22} and R^{a23} .

[0119] It is particularly preferably benzyl at other substituents.

10

30

40

45

50

[0120] The C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined C_{6-14} aryl C_{1-6} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under

[0121] Examples of group D include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy, isopropyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, methylaminosulfonyl and dimethylaminosulfonyl. [0122] Examples of C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group D include benzyl, 1-naphthylmethyl, 2-naphthylmethyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 2,4-dichlorobenzyl, 3,5-dichlorobenzyl, 4-bromobenzyl, 4-nitrobenzyl, pentafluorobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-(hydroxymethyl)benzyl, 4- (methoxymethyl)benzyl, 4-(2-carboxylethyl)benzyl, 3-carboxylbenzyl, 4-carboxylbenzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-carbamoylbenzyl, 4-methylthiobenzyl, 4-(dimethylaminocarbonyl)benzyl, 4-methylsulfonylbenzyl, 4-(acetylamino)benzyl, 4-cyanobenzyl, 4-acetylbenzyl, 4-aminobenzyl, 4-dimethylaminobenzyl, 4-(methylsulfonylamino) benzyl, 4-methylsulfinylbenzyl, 4-aminosulfonylbenzyl, (3-nitro-4-methoxyphenyl)methyl and (4-nitro-3-methoxyphe-

[0123] At Z and Z', the C_{6-14} aryl C_{1-6} alkyl moiety is preferably benzyl or phenethyl, and the group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C₁₋₆ alkyl, -(CH₂)_t-COOR^{a19}, -(CH₂)_t- $\mathsf{CONR}^{a27} \mathsf{R}^{a28}, \ -(\mathsf{CH}_2)_t - \mathsf{OR}^{a20}, \ -(\mathsf{CH}_2)_t - \mathsf{NR}^{a29} \mathsf{CO-R}^{a24}, \ -(\mathsf{CH}_2)_t - \mathsf{S(O)}_q - \mathsf{R}^{a25} \ \text{or} \ -(\mathsf{CH}_2)_t - \mathsf{SO}_2 - \mathsf{NHR}^{a26}.$

[0124] The C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is preferably benzyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 3,5-dichlorobenzyl, 4-bromobenzyl, 4-nitrobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-(hydroxymethyl)benzyl, 4-(methoxymethyl)benzyl, 4-(2-carboxylethyl)benzyl, 3-carboxylbenzyl, 4-carboxylbenzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-carbamoylbenzyl, 4-methylthiobenzyl, 4-(dimethylaminocarbonyl)benzyl, 4-methylsulfonylbenzyl, 4-acetylaminobenzyl, 4-methylsulfinylbenzyl or 4-aminosulfonylbenzyl.

[0125] It is particularly preferably the above-defined halogen atom, the above-defined optionally substituted C_{1-6} alkyl, -(CH₂)_t-COOR^{a19}, -(CH₂)_t-CONR^{a27}R^{a28}, -(CH₂)_t-OR^{a20} or - (CH₂)_t-S(O)_q-R^{a25}. Examples thereof include fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl and acetylamino. It is more preferably fluorine atom, chlorine atom, methyl, tert-butyl, carboxyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl or methylsulfonyl, most preferably fluorine atom or chlorine atom.

[0126] The heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined heterocycle C₁₋₆ alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocycle C₁₋₆ alkyl. The substituent(s) is(are) selected from the above-mentioned group B.

[0127] Examples thereof include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, pyrrolylmethyl, imidazolylmethyl, 2-thienylmethyl, 3-thienylmethyl, 2-furylmethyl, 2-oxazolylmethyl, 5-isothiazolylmethyl, 2-methyloxazol-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 5-thiazolylmethyl, 2-methylthiazol-4-ylmethyl, 2-methyl ylthiazol-5-ylmethyl, 2,5-dimethylthiazol-4-ylmethyl, 4-methylthiazol-2-ylmethyl, 2,4-dimethylthiazol-5-ylmethyl, 2-isothiazolylmethyl, 2-pyrrolinylmethyl, pyrrolidinylmethyl, piperidylmethyl, 4-piperidylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-acetylpiperidin-4-ylmethyl, 1-methylsulfonylpiperidin-4-ylmethyl, piperazinylmethyl, morpholinomethyl, thiomorpholinylmethyl, 1-tetrahydropyranylmethyl, 2-quinolylmethyl, 1-isoquinolylmethyl and the like.

[0128] The heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the alkyl moiety thereof is preferably straight chain alkyl having 1 to 4 carbon atoms. The group B here is preferably the above-defined halogen atom, the above-defined C_{1-6} alkyl, the above-defined halogenated C_{1-6} alkyl, the above-defined C_{1-6} alkanoyl, -(CH₂)_r-COOR^{b1}, -(CH₂

[0129] Examples of heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from group B preferably include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl) piperidin-4-ylmethyl, 1-(methylsulfonyl)-piperidin-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 2-methylthiazolin-4-yl-

methyl, 2,4-dimethylthiazolin-5-ylmethyl and 4-methylthiazol-2-ylmethyl. Particularly preferably, it is 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-(methylsulfonyl)piperidin-4-ylmethyl, 2-methylthiazolin-4-ylmethyl, 2,4-dimethylthiazolin-5-ylmethyl or 4-methylthiazol-2-ylmethyl at Ra20, 2-pyridylmethyl at Ra22 and Ra23, and 4-pyridylmethyl or 4-methylthiazol-2-ylmethyl at Ra27 and Ra28.

[0130] The C₃₋₈ cycloalkyl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B is that wherein the above-defined C_{3-8} cycloalkyl C_{1-8} alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkylalkyl. The substituents are selected from the above group B.

[0131] Specific examples thereof include cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclopentylmethyl, 2-(cyclopentyl)ethyl, 2-(cyclohexyl)ethyl, cycloheptylmethyl, 4-fluorocyclohexylmethyl, 2-methylcyclopentylmethyl, 3-methylcyclohexylmethyl, 4-methylcyclohexylmethyl, 4,4-dimethylcyclohexylmethyl, 3,5-dimethylcyclohexylmethyl, 4-tert-butylcyclohexylmethyl, 4-hydroxycyclohexylmethyl, 4-methoxycyclohexylmethyl and 2,3,4,5,6-pentafluorocy-

[0132] Also exemplified are those wherein cyclopentylmethyl or cyclohexylmethyl is substituted by fluorine atom, chlorine atom, bromine atom, nito, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.

[0133] At cycloalkyl moiety, it is preferably cyclopentylmethyl or cyclohexylmethyl, and at Ra20, Ra27 and Ra28, it is particularly preferably cyclohexylmethyl.

[0134] In formula [I], X is preferably

5

10

20

25

30

35

40

45

50

55

wherein each symbol is as defined above.

[0135] G¹, G², G³ and G⁴ are each preferably (C-R¹), (C-R²), (C-R³) and (C-R⁴), G⁵ is preferably a nitrogen atom, and G⁶, G⁸ and G⁹ are preferably a carbon atom. G⁷ is preferably C(-R⁷) or unsubstituted nitrogen atom, wherein R⁷ is preferably hydrogen atom.

[0136] A preferable combination is G² of (C-R²) and G⁶ of a carbon atom, particularly preferably G² of (C-R²), G⁶ of a carbon atom and G⁵ of a nitrogen atom, most preferably G² of (C-R²), G⁶ of a carbon atom, G⁵ of a nitrogen atom and G7 of unsubstituted nitrogen atom.

[0137] In formulas [I] and [II], 1 to 4 of G1 to G9 in the moiety

is(are) preferably a nitrogen atom, specifically preferably

$$\begin{array}{c|c}
R^{2} & R^{1} \\
R^{3} & R^{4}
\end{array}$$

$$\begin{array}{c|c}
R^{2} & R^{1} \\
R^{3} & R^{4}
\end{array}$$
or
$$\begin{array}{c|c}
R^{2} & R^{1} \\
R^{3} & R^{4}
\end{array}$$

particularly preferably

45
$$R^3$$
 R^4 R^3 R^4 R^4

50 more preferably

most preferably

5

10

15

20

25

30

35

45

50

[0138] R1 and R4 are preferably hydrogen atom. R2 is preferably carboxyl, -COORa1, -CONRa2Ra3 or -SO₂Ra7 (each symbol is as defined above), particularly preferably carboxyl, -COORa1 or -SO2Ra7, more preferably carboxyl or -COORa1, most preferably carboxyl. R3 is preferably hydrogen atom or -ORa6 (Ra6 is as defined above), particularly preferably hydrogen atom.

[0139] The ring Cy and ring Cy' are preferably cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl, particularly preferably cyclopentyl, cyclohexyl or cycloheptyl, more preferably cyclohexyl.

[0140] The ring A and ring A' are preferably phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl or thienyl, particularly preferably phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, more preferably phenyl or pyridyl, and most preferably phenyl.

[0141] The ring B and ring B' are preferably C₁₋₆ aryl or heterocyclic group, specifically preferably, phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thiadiazolyl, particularly preferably phenyl, pyrimidinyl, 1,3,5-triazinyl or thiazolyl, more preferably, phenyl, pyridyl or thiazolyl, and most preferably phenyl or thiazolyl.

[0142] With regard to R^5 and R^6 , one of them is preferably hydrogen atom and the other is halogen atom, particularly fluorine atom. Alternatively, the both arepreferably hydrogen atoms. When ring A is phenyl, R5 and R6 preferably are present at an ortho position from G^6 . The same applies to $R^{5^{\circ}}$ and $R^{6^{\circ}}$.

[0143] Y is preferably -(CH₂)_m-O-(CH₂)_n-, -NHCO₂-, -CONH-CHR^{a14}-, - (CH₂)_m-NR^{a12}-(CH₂)_n-, -CONR^{a13}- (CH₂)_n-, -CONR^{a13}- (CH₂)_n-, -CONR^{a14}-, -(CH₂)_m-NR^{a14}-, -(CH₂)_m-NR^{a14}-, -(CH₂)_n-, -CONR^{a15}-, -CONR^{a15}-, -CONR^{a15}-, -CONR^{a16}-, -CONR^{a17}-, -CONR^{a18}-, -CONR^{a18}-, -CONR^{a19}-, -CONR -O-(CH₂)_m-CRa15Ra16-(CH₂)_n- or -(CH₂)_n-NRa12-CHRa15- (each symbol is as defined above), more preferably, - $(CH_2)_m$ -O- $(CH_2)_n$ - or -O- $(CH_2)_m$ -CRa¹⁵Ra¹⁶- $(CH_2)_n$ -, most preferably -O- $(CH_2)_m$ -CRa¹⁵Ra¹⁶- $(CH_2)_n$ -.

[0144] The 1, m and n are preferably 0 or an integer of 1 to 4, particularly preferably 0, 1 or 2, at Y. In -(CH₂)_m-O- $(CH_2)_{n^-}$, m=n=0 or m=0 and n=1 is more preferable, most preferably m=n=0. In $-O-(CH_2)_{m^-}$ $-CR^{a15}R^{a16}-(CH_2)_{n^-}$, m=n=0, $-O-(CH_2)_{m^-}$ m=0 and n=1, m=1 and n=0 or m=1 and n=1 is more preferable, most preferably m=n=0.

[0145] When Y is -O- (CH₂)_m-CR^{a15}R^{a16}- (CH₂)_n-, R^{a16} is preferably hydrogen atom, R^{a15} is preferably

wherein the

55

10

20

25

35

45

50

moiety is preferably symmetric. The preferable mode of n, ring B, Z and w and the preferable mode of n', ring B', Z' and w' are the same.

[0146] When ring A is phenyl, X or Y is preferably present at the para-position relative to G⁶. When ring B and ring B' are phenyl, Z is preferably present at the ortho or meta-position relative to Y. It is preferable that the 3-position on phenyl have one substituent or the 2-position and the 5-position on phenyl each have one substituent.

[0147] When ring B is thiazolyl, Y is preferably substituted at the 5-position, and Z is preferably substituted at the 2-position, the 4-position or the 2-position and the 4-position. Similarly, when ring B' is thiazolyl, (CH₂)_{n'} is also preferably substituted at the 2-position, the 4-position or the 2-position and the 4-position.

[0148] Z and Z' are preferably group D, " C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D" or "heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D", particularly preferably group D or " C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from group D".

[0149] More preferably, they are the above-defined halogen atom, nitro, the above-defined optionally substituted C_{1-6} alkyl, $-(CH_2)_t$ -COOR^{a19}- $(CH_2)_t$ -CONR^{a27}Ra28, $-(CH_2)_t$ -ORa20, $(CH_2)_t$ -NRa29CO-Ra24, $-(CH_2)_t$ -S(O)_q-Ra25 or $-(CH_2)_t$ -SO₂-NHRa26, or C_{6-14} aryl or heterocyclic group optionally substituted by these.

With regard to Z and Z', the preferable mode of group D that directly substitutes each ring B and ring B' and the Preferable mode of group D that substitutes C_{6-14} aryl, C_{3-8} cycloalkyl, C_{6-14} aryl C_{1-6} alkyl or heterocyclic group are the same, wherein they may be the same with or different from each other.

[0150] Specific examples of the substituent preferably include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylamino-carbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)-aminocarbonyl, hydroxyl group, methoxy, ethoxy, propyloxy, isopropyloxy, butyloxy, isopentyloxy, 2-isopentenyloxy, 3-isohexenyloxy, 4-methyl-3-pentenyloxy, 2-propynyloxy, trifluoromethyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, methylaminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, 4-cyanophenyl, 4-methylphenyl, 4-ethylphenyl, 4-propylphenyl, 4-isopropylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl) phenyl, 4-(2-hydroxyethyl)phenyl, 4-(methoxymethyl)phenyl, 4- (2-carboxylethyl)phenyl, 4-(methoxycarbonylmethyl) phenyl, 4-(ethoxycarbonylmethyl)phenyl, 4-acetylphenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-(methoxycarbonyl) phenyl, 4-(ethoxycarbonyl)-phenyl, 4-carbamoylphenyl, 4-(methylaminocarbonyl)phenyl, 4-(isopropylaminocarbonyl) phenyl, 4-(dimethylaminocarbonyl)phenyl, 4-(diethylaminocarbonyl)phenyl, 4-[(2-hydroxyethyl)-aminocarbonyl]phenyl, 4-[(carboxylmethyl)aminocarbonyl]phenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-ethoxyphenyl, 4-propyloxyphenyl, 4-isopropyloxyphenyl, 4-butyloxyphenyl, 4-isopentyloxyphenyl, 4-(2-isopentenyloxy)phenyl, 4-(3-isohexenyloxy)phenyl, 4-(4-methyl-3-pentenyloxy)phenyl, 4-(2-propynyloxy)phenyl, 4-(trifluoromethyloxy) phenyl, 4-(hydroxymethyloxy)phenyl, 4-(carboxylmethyloxy)phenyl, 4-[(dimethylaminocarbonyl)methyloxy]phenyl, 4-aminophenyl, 4-(methylamino)phenyl, 4-(dimethylaminophenyl), 4-(diethylamino)-phenyl, 4-(acetylamino)phenyl, 4-(methylsulfonylamino)phenyl, 4-(methylthio)phenyl, 4- (methylsulfonyl)phenyl, 4- (methylsulfinyl)-phenyl, 4- (aminosulfonyl)phenyl, 4-(methylaminosulfonyl) phenyl, 4-(dimethylaminosulfonyl)phenyl, 4-(tert-butylaminosulfonyl)phenyl, cyclohexyl, benzyl, 4-chlorobenzyl, phenethyl, benzyloxy, 4-fluorobenzyloxy, 2-chlorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-tert-butylbenzyloxy, 4-trifluoromethylbenzyloxy, phenethyloxy, 2-thienyl, 2-thiazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 5-tetrazolyl, piperidino, piperidinocarbonyl, 4-hydroxypiperidinocarbonyl, 1-piperazinylcarbonyl, 1-pyrrolidinylcarbonyl, morpholinocarbonyl, 4-thiomorpholinylcarbonyl, phenoxy, 2,4-dichlorophenoxy, tetrahydropyranyloxy, 2-pyridylmethyloxy, 3-pyridylmethyloxy, 2-chloropyridin-4-ylmethyloxy, 4-pyridylmethyloxy, 2-piperidylmethyloxy, 3-piperidylmethyloxy, 4-piperidylmethyloxy, 1-methylpiperidin-4-ylmethyloxy, 1-acetylpiperidin-4-ylmethyloxy, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyloxy, 1-(methylsulfonyl)-piperidin-4-ylmethyloxy, 2-methylthiazolin-4-yloxy, 2,4-dimethylthiazolin-5-yloxy, dimethylaminocarbonylmethyloxy, piperidinocarbonylmethyloxy, 2-methylthiazol-4-yl, (2-methylthiazol-4-yl) methyloxy, (2,4-dimethylthiazol-5-yl)methyloxy, benzoyl, 3-fluorobenzoyl, 4-chlorobenzylamino, 3,5-dichlorobenzylamino, 4-trifluoromethylbenzylamino, 2-pyridylmethylamino, benzoylamino, 4-chlorobenzoylamino, 4-trifluoromethylbenzoylamino, 3,5-dichlorobenzoylamino, 3-nitro-4-methoxybenzoylamino, 4-nitro-3-methoxybenzoylamino, 3-pyridylcarbonylamino, 4-methylphenylsulfonylamino, 2-thiazolylaminosulfonyl, 2-pyridylaminosulfonyl, benzylaminocarbonyl, N-benzyl-N-methylaminocarbonyl, (4-pyridylmethyl)-aminocarbonyl or (cyclohexylmethyl)aminocarbonyl, 2-hydroxyethyloxy, 3-hydroxypropyloxy, 3-hydroxypyrrolidinylcarbonyl, 3-hydroxypiperidinocarbonyl, 3,4-dihydroxypiperidinocarbonyl, 4-methoxypiperidinocarbonyl, 4-carboxypiperidinocarbonyl, 4-(hydroxymethyl)piperidinocarbonyl, 2-oxopiperidinocarbonyl, 4-oxopiperidinocarbonyl, 2,2,6,6-tetramethylpiperidinocarbonyl, 2,2,6,6-tetramethyl-4-hydroxypiperidinocarbonyl, 1-oxothiomorpholin-4-ylcarbonyl, 1,1-dioxothiomorpholin-4-ylcarbonyl, 1-(methylsulfonyl)piperidin-4-ylaminocarbonyl, 4-methylsulfonylpiperazinylcarbonyl, N,N-bis(2-hydroxyethyl)-aminocarbonyl, phenylaminocarbonyl, cyclohexylaminocarbonyl, 4-hydroxycyclohexylaminocarbonyl, 4-methylthiazol-2-ylmethylaminocarbonyl, 2-(4-hydroxypiperidino)ethyloxy, 2-pyridylmethylaminocarbonyl, 3-pyridylmethylaminocarbonyl, N-methyl-N-(4-pyridylmethyl)aminocarbonyl, cyclohexylmethyloxy, 4-hydroxypiperidinocarbonylmethyloxy and 4-methylthiazol-2-ylmethyloxy.

10

20

25

45

50

[0151] Particularly preferable examples of the substituent include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, hydroxymethyl, carboxyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxylethyl)aminocarbonyl, (carboxymethyl)-aminocarbonyl, methoxy, 2-isopentenyloxy, 2-propynyloxy, methylthio, methylamino, dimethylamino, acetylamino, methylsulfonylamino, methylsulfonyl, aminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-nitrophenyl, 4-methylphenyl, 4-tert-butylphenyl, 4-trifluoromethylphenyl, 4-(methoxymethyl)phenyl, 4-(2-hydroxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, benzyl, phenethyl, benzyloxy, 4-fluorobenzyloxy, 4-chlorobenzyloxy, 2-thiazolyl, 3-pyridyl, 4-pyridyl, 4-pyridylmethyloxy, 2-piperidylmethyloxy, 3-piperidylmethyloxy, 4-piperidylmethyloxy, 1-methylpiperidin-4-ylmethyloxy, 1-acetylpiperidin-4-ylmethyloxy, 2-chloropiperidin-4-ylmethyloxy, 1-(methylsulfonyl)piperidin-4-ylmethyloxy, 2-methylthiazol-4-yl, (2-methylthiazol-4-yl)methyloxy, (2,4-dimethylthiazol-5-yl)methyloxy, 5-tetrazolyl, 3-fluorobenzoyl, piperidinocarbonyl, 4-hydroxylpiperidinocarbonyl, 1-pyrrolidinylcarbonyl, morpholinocarbonyl, 4-thiomorpholinylcarbonyl, benzylaminocarbonyl, N-benzyl-N-methylaminocarbonyl, (4-pyridylmethyl)aminocarbonyl and (cyclohexylmethyl)aminocarbonyl.

[0152] Most preferable substituents are fluorine atom, chlorine atom, methyl, hydroxymethyl, carboxyl, carbamoyl, methylaminocarbonyl, dimethylaminocarbonyl, methoxy, methylamino, acetylamino, aminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, enyl, 4-methylphenyl, 4-tert-butylphenyl, 4-trifluoromethylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl and 4-methylsulfonylphenyl.

[0153] The w is preferably 1 or 2, r and t are preferably 0, 1 or 2, particularly preferably 0 or 1, more preferably 0, p is preferably 1, and q is preferably 0 or 2.

[0154] The pharmaceutically acceptable salt may be any as long as it forms a non-toxic salt with a compound of the above-mentioned formula [I] or [II]. Such salt can be obtained by reacting the compound with an inorganic acid, such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid and the like, or an organic acid, such as oxalic acid, malonic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid, trifluoroacetic acid, gluconic acid, ascorbic acid, methylsulfonic acid, benzylsulfonic acid and the like, or an inorganic base, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, ammonium hydroxide and the like, or an organic base, such as methylamine, diethylamine, triethylamine, triethanolamine, ethylenediamine, tris(hydroxymethyl)methylamine, guanidine, choline, cinchonine and the like, with an amino acid, such as lysine, arginine, alanine and the like. The present invention encompasses water-retaining product, hydrate and solvate of each com-

[0155] The compounds of the above-mentioned formula [I] or [II] have various isomers. For example, E compound and Z compound are present as geometric isomers, and when the compound has an asymmetric carbon, an enantiomer and a diastereomer are present due to the asymmetric carbon. A tautomer may be also present. The present invention encompasses all of these isomers and mixtures thereof.

[0156] The present invention also encompasses prodrug and metabolite of each compound.

[0157] A prodrug means a derivative of the compound of the present invention, which is capable of chemical or metabolic decomposition, which shows inherent efficacy by reverting to the original compound after administration to a body, and which includes salts and complexes without a covalent bond.

[0158] When the inventive compound is used as a pharmaceutical preparation, the inventive compound is generally

admixed with pharmaceutically acceptable carriers, excipients, diluents, binders, disintegrators, stabilizers, preservatives, buffers, emulsifiers, aromatics, coloring agents, sweeteners, thickeners, correctives, solubilizers, and other additives such as water, vegetable oil, alcohol such as ethanol, benzyl alcohol and the like, polyethylene glycol, glycerol ditives such as water, vegetable oil, alcohol such as ethanol, benzyl alcohol and the like, polyethylene glycol, glycerol triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and triacetate, gelatin, lactose, carbohydrate such as starch and the like, polyethylene glycol, glycerol ditions, petrolatum and triacetate, gelatin, lactose, carbohydrate such as starch and the like, polyethylene glycol, glycerol ditions, petrolatum and triacetate, petrolatum and triacetate, gelatin, lactose, starch and the like, polyethylene glycol, glycerol ditions, petrolatum and triacetate, petrolatum and t

[0159] While the dose varies depending on the age, body weight, general condition, treatment effect, administration route and the like, it is from 0.1 mg to 1 g for an adult per dose, which is given one to several times a day.

[0160] The prophylaxis of hepatitis C means, for example, administration of a pharmaceutical agent to an individual found to carry an HCV by a test and the like but without a symptom of hepatitis C, or to an individual who shows an improved disease state of hepatitis after a treatment of hepatitis C, but who still carries an HCV and is associated with a risk of recurrence of hepatitis.

[0161] Examples of the production method of the compound to be used for the practice of the present invention are given in the following. However, the production method of the compound of the present invention is not limited to these examples.

[0162] Even if no directly corresponding disclosure is found in the following Production Methods, the steps may be modified for efficient production of the compound, such as introduction of a protecting group into a functional group with deprotection in a subsequent step, and changing the order of Production Methods and steps.

[0163] The treatment after reaction in each step may be conventional ones, for which typical methods, such as isolation and purification, crystallization, recrystallization, silica gel chromatography, preparative HPLC and the like, can be appropriately selected and combined.

Production Method 1

[0164] In this Production Method, a benzimidazole compound is formed from a nitrobenzene compound.

Production Method 1-1

[0165]

5

10

15

20

25

30

35
$$R^{2}$$
 R^{1} NO_{2} $Step 1$ R^{2} NO_{2} $Step 2$ R^{2} NH_{2} R^{3} R^{4} NH R^{4} R^{5} R^{5}

wherein Hal is halogen atom, such as chlorine atom, bromine atom and the like, R^{c1} is halogen atom, such as chlorine atom, bromine atom and the like, or hydroxyl group, and other symbols are as defined above.

Step 1

5

10

15

20

25

30

35

55

[0166] A compound [1] obtained by a conventional method or a commercially available compound [1] is reacted with amine compound [2] in a solvent such as N,N-dimethylformamide (DMF), acetonitrile, tetrahydrofuran (THF), toluene and the like in the presence or absence of a base such as potassium carbonate, triethylamine, potassium t-butoxide and the like at room temperature or with heating to give compound [3].

Step 2

[0167] The compound [3] is hydrogenated in a solvent such as methanol, ethanol, THF, ethyl acetate, acetic acid, water and the like in the presence of a catalyst such as palladium carbon, palladium hydroxide, platinum oxide, Raney nickel and the like at room temperature or with heating to give compound [4]. In addition, compound [3] is reduced with a reducing agent such as zinc, iron, tin(II) chloride, sodium sulfite and the like, or reacted with hydrazine in the presence of iron(III) chloride to give compound [4].

Step 3

[0168] The compound [4] is condensed with carboxylic acid compound [5] in a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like using a condensing agent such as dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, diphenylphosphoryl azide and the like and, where necessary, adding N-hydroxysuccinimide, 1-hydroxybenzotriazole and the like to give amide compound [6]. Alternatively, amide compound [6] can be obtained from compound [5] as follows. The carboxylic acid compound [5] is converted to an acid halide derived with thionyl chloride, oxalyl chloride and the like, or an active ester (e.g., mixed acid anhydride derived with ethyl chlorocarbonate and the like), which is then reacted in the presence of a base, such as triethylamine, potassium carbonate, pyridine and the like, or in an amine solvent, such as pyridine and the like, to give amide compound [6].

Step 4

[0169] The compound [6] is heated in a solvent such as ethanol, methanol, toluene, DMF, chloroform and the like or without a solvent in the presence of an acid such as acetic acid, formic acid, hydrochloric acid, dilute sulfuric acid, phosphoric acid, polyphosphoric acid, p-toluenesulfonic acid and the like, a halogenating agent such as zinc chloride, phosphorus oxychloride, thionyl chloride and the like or acid anhydride such as acetic anhydride and the like, to allow cyclization to give compound [1-2].

Production Method 1-2

[0170] This Production Method is an alternative method for producing compound [I-2].

45

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{5}

wherein each symbol is as defined above.

Step 1

[0171] The compound [3] obtained in the same manner as in Step 1 of Production Method 1-1 is subjected to amide condensation with compound [5] in the same manner as in Step 3 of Production Method 1-1 to give compound [7]. 5

Step 2

The compound [7] is reduced in the same manner as in Step 2 of Production Method 1-1 to give compound [8]. [0172] 10

Step 3

[0173] The compound [8] is subjected to cyclization in the same manner as in Step 4 of Production Method 1-1 to give compound [I-2].

Production Method 1-3

[0174]

20

25 30 [9] [4] or

[1-2]

35

40

45

50

55

[11] COOH

wherein R^{c2} is alkyl such as methyl, ethyl and the like, and other symbols are as defined above.

or

[0175] The compound [4] is reacted with imidate compound [9] in a solvent such as methanol, ethanol, acetic acid, DMF, THF, chloroform and the like at room temperature or with heating to give compound [I-2].

[10]

[0176] In addition, compound [4] may be reacted with aldehyde compound [10] in a solvent such as acetic acid, formic acid, acetonitrile, DMF, nitrobenzene, toluene and the like in the presence or absence of an oxidizing agent such as benzofuroxan, manganese dioxide, 2,3-dichloro-5,6-dicyano-p-benzbquinone, iodine, potassium ferricyanide and the like with heating to give compound [I-2].

[0177] Alternatively, compound [4] and carboxylic acid compound [11] may be heated to allow reaction in the presence of polyphosphoric acid, phosphoric acid, phosphorus oxychloride, hydrochloric acid and the like to give compound [I-2].

Production Method 2

5

10

15

20

25

30

55

[0178] In this Production Method, conversion of the substituents (R^1, R^2, R^3, R^4) on the benzene ring of benzimidazole is shown. While a method of converting R² when R¹, R³ and R⁴ are hydrogen atoms is shown, this Production Method is applicable irrespective of the position of substitution.

Production Method 2-1

[0179] Conversion of carboxylic acid ester moiety to amide

wherein E is a single bond, -(CH₂)_s-, -O-(CH₂)_s- or -NH-(CH₂)_s-(wherein s is an integer of 1 to 6), R^{c3}, R^{c4} and R^{c5} are C₁₋₆ alkyl, and other symbols are as defined above.

Step 1

[0180] The compound [I-2-1] obtained in the same manner as in the above-mentioned Production Method is subjected to hydrolysis in a solvent such as methanol, ethanol, THF, dioxane and the like, or in a mixed solvent of these solvents and water under basic conditions with sodium hydroxide, potassium hydroxide, potassium carbonate, lithium hydroxide and the like or under acidic conditions with hydrochloric acid, sulfuric acid and the like to give compound [I-2-2].

Step 2

[0181] The compound [I-2-2] is reacted with compound [12] in the same manner as in Step 3 of Production Method 1-1 to give compound [I-2-3].

Production Method 2-2

[0182] Conversion of cyano group to substituted amidino group 40

NC N A
$$\times$$
 NH₂OH \times NOH \times

wherein each symbol is as defined above.

[0183] The compound [1-2-4] obtained in the same manner as in the above-mentioned Production Method is reacted with hydroxylamine in a solvent such as water, methanol, ethanol, THF, DMF and the like to give compound [I-2-5]. When a salt of hydroxylamine such as hydrochloride and the like is used, the reaction is carried out in the presence of a base such as sodium hydrogencarbonate, sodium hydroxide, triethylamine and the like.

Production Method 2-3

5

10

15

20

25

30

55

[0184] Conversion of sulfonic acid ester moiety to sulfonic acid

wherein R^{c6} is C_{1-6} alkyl, and other symbols are as defined above.

[0185] The compound [1-2-6] obtained in the same manner as in the above-mentioned Production Method is reacted with iodide salt such as sodium iodide, lithium iodide and the like, bromide salt such as sodium bromide, trimethylammonium bromide and the like, amine such as pyridine, trimethylamine, triazole and the like, phosphine such as triphenylphosphine and the like in a solvent such as DMF, dimethyl sulfoxide (DMSO), acetonitrile, methanol, ethanol, water and the like with heating to give compound [I-2-7].

Production Method 3

[0186] This Production Method relates to convertion of the substituent(s) on phenyl group at the 2-position of benzimidazole. This Production Method can be used even when phenyl is a different ring.

Production Method 3-1

[0187] Conversion of hydroxyl group to ether

35

$$R^{2}$$
 R^{3}
 R^{4}
 R^{6}
 R^{6}

wherein R^{c7} is optionally substituted alkyl corresponding to R^{a11} , G^1 is a single bond, *- $(CH_2)_n$ -, *- $(CH_2)_n$ -O-, *- $(CH_2$ CO- or *-(CH₂)_m-CR^{a15}R^{a16})-(CH₂)_n-, wherein * show the side to be bonded to R^{c1}, and other symbols are as defined

[0188] When R^{c1} of compound [13] is halogen atom, compound [1-2-8] obtained in the same manner as in the abovementioned Production Method is reacted with compound [13] in a solvent such as DMF, DMSO, acetonitrile, ethanol, THF and the like in the presence of a base such as sodium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium ethoxide, potassium t-butoxide and the like at room temperature or with heating to give compound

[0189] When R^{c1} of compound [13] is hydroxyl group, the hydroxyl group of compound [13] is converted to halogen [11-2-1]. atom with thionyl chloride, phosphorus tribromide, carbon tetrabromide-triphenylphosphine and the like and reacted with compound [I-2-8] by the aforementioned method to give compound [II-2-1]. In this case, compound [I-2-8] may be subjected to Mitsunobu reaction with compound [13] in a solvent such as DMF, acetonitrile, THF and the like using triphenylphosphine - diethyl azodicarboxylate and the like to give compound [II-2-1].

[0190] The compound [I-2-9] can be obtained in the same manner from compound [I-2-8] and compound [14].

Production Method 3-2

10

[0191] Conversion of nitro to substituted amino group

wherein R^{c8} is C_{1-6} alkyl, G^2 is *-(CH_2)_n- or *- CHR^{a15} , G^3 is -CO-, *- CO_2 -, *-CONH- or - SO_2 -, and other symbols are as defined above. 45

Step 1

50

55

[0192] The nitro compound [I-2-10] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in Step 2 of Production Method 1-1 to give compound [I-2-11].

Step 2

[0193] The compound [I-2-11] is alkylated with compound [15] in the same manner as in Production Method 3-1 to give compound [II-2-2].

Step 3

5

10

15

20

25

30

35

40

45

[0194] When G³ of compound [16] is -CO-, -CO₂- or -CONH-, compound [I-2-11] is acylated with compound [16] in the same manner as in Step 3 of Production Method 1-1 to give compound [II-2-3].

[0195] When G³ of compound [16] is -SO₂-, sulfonylation is conducted using sulfonyl halide instead of acid halide used in Step 3 of Production Method 1-1 to give compound [II-2-3].

[0196] The compound [I-2-11] is acylated with compound [17] in the same manner as above to give compound [I-2-12].

[0197] This Production Method is applied in the same manner as above to give disubstituted compounds (tertiary amine) of compound [II-2-2], compound [II-2-3] and compound [I-2-12].

Production Method 3-3

[0198] Conversion of carboxylic acid ester moiety to amide

[1-2-14]

R

R

COOR

Step 2

COOH

Step 2 R^{a13} R^{a13} R^{a13} R^{a13} R^{a13} R^{a13} R^{a13} R^{a14} R^{a15} R^{a15} R^{a15} R^{a15} R^{a15} R^{a15} R^{a16} R^{a17} R^{a18} R^{a18} R^{a19} R^{a19}

wherein R^{c9} is C_{1-6} alkyl, G^4 is #- $(CH_2)_n$ -, #- $(CH_2)_n$ -NH- or #- CHR^{a14} -wherein # shows the side that is bounded to amine and other symbols are as defined above.

Step 1

[0199] The compound [I-2-13] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in Step 1 of Production Method 2-1 to give compound [I-2-14].

Step 2

[0200] The compound [I-2-14] is reacted with compound [18] in the same manner as in Step 2 of Production Method 2-1 to give compound [II-2-4].

[0201] The compound [I-2-15] is obtained from compound [I-2-14] and compound [19] in the same manner as above.

50 Production Method 4

[0202] In this Production Method, additional substituent(s) is(are) introduced into ring B on phenyl group that substitutes the 2-position of benzimidazole. This Production Method is applicable even when phenyl is a different ring.

55 Production Method 4-1

[0203] Direct bonding of ring Z" to ring B

wherein ring Z"-M is aryl metal compound, ring Z" moiety is optionally substituted C_{6-14} aryl or optionally substituted heterocyclic group corresponding to substituent Z, and the metal moiety contains boron, zinc, tin, magnesium and the like, such as phenylboronic acid, w" is 0, 1 or 2, and other symbols are as defined above.

[0204] The compound [II-2-5] obtained in the same manner as in the above-mentioned Production Method is reacted with aryl metal compound [20] in a solvent such as DMF, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like in the presence of a palladium catalyst such as tetrakis(triphenylphosphine)-palladium, bis(triphenylphosphine) palladium(II) dichloride, palladium acetate - triphenylphosphine and the like, a nickel catalyst such as nickel chloride, palladium(II) dichloride, palladium acetate - triphenylphosphine and the like, a nickel catalyst such as nickel chloride, [1,3-bis(diphenylphosphino)-propane]nickel(II) chloride and the like, and a base such as potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium phosphate, triethylamine and the like at room temperature or with heating, to give compound [II-2-6].

Production Method 4-2

5

10

20

25

40

45

50

55

[0205] Conversion of hydroxyl group to ether

30
$$R^{2}$$
 R^{3} R^{4} R^{5} R^{6} R

wherein R^{c10} is $-R^{a20}$ or $-(CH_2)_p$ - COR^{a21} corresponding to substituent Z, and other symbols are as defined above. [0206] The compound [II-2-7] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [21] in the same manner as in Production Method 3-1 to give compound [II-2-8].

Production Method 4-3

[0207] Synthesis in advance of ring B part such as compound [13] in Production Method 3-1

wherein R^{c11} is leaving group such as bromine atom, iodine atom, trifluoromethanesulfonyloxy and the like, R^{c12} is formyl, carboxyl or carboxylic acid ester such as methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl and the like, and other symbols are as defined above.

Step 1

30

35

40

45

50

[0208] Commercially available compound [22] or compound [22] obtained by a conventional method is reacted with aryl metal compound [20] in the same manner as in Production Method 4-1 to give compound [23].

Step 2

[0209] The compound [23] obtained in the same manner as in the above-mentioned Production Method is reduced according to a conventional method to give compound [24].

[0210] For example, compound [23] is reacted with in a solvent such as methanol, ethanol, THF and the like in the presence of a reducing agent such as lithium aluminum hydride, sodium borohydride and the like under cooling to heating to give compound [24].

Step 3

[0211] The compound [24] obtained in the same manner as in the above-mentioned Production Method is reacted in a solvent such as 1,4-dioxane, diethyl ether, THF, dichloromethane, chloroform, toluene and the like with a halogenating agent, such as phosphorus pentachloride, phosphorus tribromide, thionyl chloride and the like, in the presence of a tertiary amine such as pyridine and the like to give compound [25].

Step 4

[0212] The compound [24] or [25] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [I-2-8] in the same manner as in Production Method 3-1 to give compound [II-2-9].

Production Method 4-4

[0213]

15

20

25

30

35

40

45

50

(Z) w (A1] Step 1 (Z) w (Z') w' (B') -CH

wherein M' is a metal such as magnesium, lithium, zinc and the like, and other symbols are as defined above.

Step 1

[0214] Commercially available compound [41] or compound [41] obtained by a conventional method is converted to aryl metal reagent by a conventional method to give compound [42].

[0215] For example, when M' is magnesium, magnesium is reacted with compound [41] in a solvent such as THF, diethyl ether, benzene, toluene and the like, preferably THF, from cooling to heating preferably at -100°C to give compound [42].

Step 2

[0216] The compound [42] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [43] to give compound [44].

[0217] The compound [42] is reacted in a solvent such as diethyl ether, benzene, toluene, THF and the like, preferably THF, from cooling to room temperature, preferably at -100°C to 30°C to give compound [44].

Step 3

[0218] The compound [44] obtained in the same manner as in the above-mentioned Production Method is halogenated in the same manner as in Step 3 of Production Method 4-3 to give compound [45].

[0219] The compound [44] is reacted with thionyl chloride and pyridine preferably in toluene solvent to give compound [45].

[0220] When compound [45] is symmetric, namely, when the ring B-(Z)w moiety and the ring B'-(Z')w' moiety are the same, compound [42] is reacted with formate such as methyl formate, ethyl formate and the like, preferably ethyl formate, in a solvent such as diethyl ether, benzene, toluene, THF and the like, preferably THF, from cooling to room temperature, preferably at -100°C to 30°C, to give compound [45].

Production Method 4-5

[0221] Method including steps to introduce a protecting group into a functional group

wherein R^{c13} is carboxylic acid protecting group such as tert-butyl and the like, R^{c14} is carboxylic acid protecting group such as methyl and the like and other symbols are as defined above. **Step 1**

[0222] Commercially available compound [26] or compound [26] obtained by a conventional method is protected by a conventional method to give compound [27].

[0223] For example, when Rc13 is tert-butyl, compound [26] is converted to acid halide with thionyl chloride, oxalyl chloride and the like in a solvent such as THF, chloroform, dichloromethane, toluene and the like, and reacted with potassium tert-butoxide to give compound [27].

[0224] As used herein, R^{c13} may be a different protecting group as long as it is not removed during the Step 2 or Step 3 but removed in Step 4 without affecting -CO₂R^{c14}.

Step 2

30

35

40

45

50

[0225] The methyl group of compound [27] obtained in the same manner as in the above-mentioned Production Method is converted to bromomethyl with N-bromosuccinimide and N,N'-azobisisobutyronitrile and reacted with compound [I-2-16] in the same manner as in Production Method 3-1 to give compound [II-2-10].

Step 3

[0226] The compound [II-2-10] obtained in the same manner as in the above-mentioned Production Method is reacted with aryl metal compound [20] in the same manner as in Production Method 4-1 to give compound [II-2-11].

Step 4

[0227] The R^{c13} of the compound [II-2-11] obtained in the same manner as in the above-mentioned Production Method is removed by a conventional method to give compound [II-2-12].

[0228] The protecting group of carboxylic acid can be removed by a conventional deprotection method according to the protecting group. In this Step, the conditions free from reaction of Ro14 are preferable. For example, when Ro13 is

tert-butyl, compound [II-2-11] is treated with trifluoroacetic acid in a solvent such as dichloromethane, chloroform and the like to give compound [II-2-12].

Step 5

5

15

20

[0229] The compound [II-2-12] obtained in the same manner as in the above-mentioned Production Method is subjected to amide condensation with compound [28] in the same manner as in Step 3 of Production Method 1-1 to give compound [II-2-13].

10 Step 6

[0230] The compound [II-2-13] obtained in the same manner as in the above-mentioned Production Method is deprotected in the same manner as in Step 1 of Production Method 2-1 to give compound [II-2-14].

[0231] As used herein, R^{c14} is preferably a protecting group that does not react during the Step 1 through Step 5 but removed in this Step.

[0232] For example, when Rc14 is methyl, compound [II-2-13] is reacted in an alcohol solvent such as methanol, ethanol, n-propanol, isopropanol and the like or a mixed solvent of alcohol solvent and water in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide and the like from cooling to heating for deprotection, followed by acidifying the reaction solution to give compound [II-2-14].

Production Method 5

[0233] Formation of indole ring

25

Hal A Y B (Z) w Step 1

[29]
$$HC \equiv C - R^{015}$$
 $R^{015} - C \equiv C$ A Y B (Z) w

[30]

Step 2 R^2 R^1 R^2 R^3 R^4 R^4

wherein Rc15 is protecting group such as trimethylsilyl, tertbutyldimethylsilyl, tert-butyldiphenylsilyl and the like, and other symbols are as defined above.

Step 1

50

55

[0234] The compound [29] obtained in the same manner as in the above-mentioned Production Method or conventional method is reacted with compound [30] in a solvent such as DMF, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like using a palladium catalyst such as tetrakis(triphenylphosphine)palladium, bis(triphenylphosphine) palladium(II) dichloride, palladium acetate - triphenylphosphine and the like, a copper catalyst such as copper(I) iodide and the like or a mixture thereof, and in the presence of a base such as potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium phosphate, triethylamine and the like to give compound [31].

Step 2

5

10

15

20

[0235] The compound [31] obtained in the same manner as in the above-mentioned Production Method is reacted in an alcohol solvent such as methanol, ethanol and the like or a mixed solvent of an alcohol solvent and a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, methylene chloride, toluene and the like in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride and the like at room temperature or with heating for deprotection, and reacted with compound [32] obtained in the same manner as in Step 1 of Production Method 1-1 in the same manner as in Step 1 of Production Method 5 to give compound [33].

Step 3

[0236] The compound [33] obtained in the same manner as in the above-mentioned Production Method was subjected to cyclization in a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, methylene chloride, toluene and the like in the presence of a copper catalyst such as copper(I) iodide and the like or a palladium catalyst such as palladium(II) chloride and the like at room temperature or with heating to give compound [II-2-15].

Production Method 6

[0237] Formation of imidazo[1,2-a]pyridine ring

wherein R^{c16} and R^{c17} are each independently alkyl, such as methyl, ethyl and the like, and other symbols are as defined above.

Step 1

[0238] The compound [34] obtained by the above-mentioned Production Method or a conventional method is subjected to amide condensation with compound [35] in the same manner as in Step 3 of Production Method 1-1 to give compound [36].

Step 2

[0239] The compound [36] obtained by the above-mentioned Production Method is reacted with Grignard reagent [37] obtained by a conventional method to give compound [38].

[0240] Alternatively, an acid halide of compound [34] may be used instead of compound [36].

Step 3

10

20

30

35

40

45

50

55

[0241] The compound [38] obtained by the above-mentioned Production Method is subjected to halogenation by a conventional method to give compound [39].

[0242] For example, when Hal is a bromine atom, compound [38] is reacted with bromine under cooling or at room temperature in a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, toluene and the like to give compound [39].

[0243] Alternatively, a halogenating agent such as hypohalite (e.g., hypochlorite and the like), N-bromosuccinimide and the like may be used instead of bromine for halogenation

Step 4

[0244] The compound [39] obtained by the above-mentioned Production Method is subjected to cyclization with compound [40] obtained by a conventional or known method (JP-A-8-48651) in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride and the like in a solvent or without a solvent at room temperature or with heating to

[0245] The Production Methods shown in the above-mentioned Production Methods 2 to 4 can be used for the synthesis of compounds other than benzimidazole of the formulas [I] and [II], such as compounds [II-2-15] and [II-2-16]. [0246] The compounds of the formulas [I] and [II], and production methods thereof of the present invention are explained in detail in the following by way of Examples. It is needless to say that the present invention is not limited by these Examples.

Example 1

Production of ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0247]

Step 1: Production of ethyl 4-chloro-3-nitrobenzoate

4-Chloro-3-nitrobenzoic acid (300 g) was dissolved in ethyl alcohol (1500 ml) and concentrated sulfuric acid (100 ml) was added with ice-cooling. The mixture was refluxed under heating for 7 hr. The reaction mixture was poured into ice-cold water and the precipitated crystals were collected by filtration to give the title compound (332

¹H-NMR (300MHz, CDCl₃): 8.50(1H, d, J=2.1Hz), 8.16(1H, dd, J=8.4, 2.1Hz), 7.63(1H, d, J=8.4Hz), 4.43(2H, q, J=7.5Hz), 1.42(3H, t, J=7.5Hz)

Step 2: Production of ethyl 4-cyclohexylamino-3-nitrobenzoate

Ethyl 4-chloro-3-nitrobenzoate (330 g) obtained in the previous step was dissolved in acetonitrile (1500 ml), and cyclohexylamine (220 g) and triethylamine (195 g) were added. The mixture was refluxed under heating overnight. The reaction mixture was poured into ice-cold water and the precipitated crystals were collected by filtration to give the title compound (400 g, yield 94%).

¹H-NMR (300MHz, CDCl₃): 8.87(1H, d, J=2.1Hz), 8.35-8.45(1H, m), 8.02(1H, dd, J=9.1, 2.1Hz), 6.87(1H, d, J=9.1Hz), 4.35(2H, q, J=7.1Hz), 3.65-3.50(1H, m), 2.14-1.29(10H, m), 1.38(3H, t, J=7.1Hz)

Step 3: Production of ethyl 3-amino-4-cyclohexylaminobenzoate

Ethyl 4-cyclohexylamino-3-nitrobenzoate (400 g) obtained in the previous step was dissolved in ethyl acetate (1500 ml) and ethyl alcohol (500 ml), and 7.5% palladium carbon (50% wet, 40 g) was added. The mixture was hydrogenated for 7 hr at atmospheric pressure. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. Diisopropyl ether was added to the residue and the precipitated crystals were collected by filtration to give the title compound (289 g, yield 80%).

¹H-NMR (300MHz, CDCl₃): 7.57(1H, dd, J=8.4, 1.9Hz), 7.41(1H, d, J=1.9Hz), 6.59(1H, d, J=8.4Hz), 4.30(2H, q, J=7.1Hz), 3.40-3.30(1H, m), 2.18-2.02(2H, m), 1.88-1.15(8H, m), 1.35(3H, t, J=7.1Hz)

Step 4: Production of ethyl 3-[4-(3-bromophenoxy)benzoyl]amino-4-cyclohexylaminobenzoate

4-(3-Bromophenoxy)benzoic acid (74 g) was dissolved in chloroform (500 ml), and oxalyl chloride (33 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 4 hr at room temperature. The reaction mixture was concentrated under reduced pressure and dissolved in dichloromethane (150 ml). The resulting solution was added dropwise to a solution of ethyl 3-amino-4-cyclohexylaminobenzoate (66 g) obtained in the previous step in dichloromethane (500 ml) and triethylamine (71 ml), and the mixture was stirred for 1 hr at room temperature. The reaction mixture was poured into water and extracted with dichloromethane. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Diethyl ether was added to the residue for crystallization and the crystals were collected by filtration to give the title compound (129 g, yield 95%).

¹H-NMR (300MHz, CDCl₃): 8.00-7.78(4H, m), 7.66(1H, brs), 7.37-7.18(3H, m), 7.13-6.59(3H, m), 6.72(1H, d, J=8.7Hz), 4.50(1H, brs), 4.29(2H, q, J=7.2Hz), 3.36(1H, m), 2.12-1.96(2H, m), 1, 83-1.56(3H, m), 1.47-1.12(5H, m), 1.37(3H, t, J=7.2Hz)

Step 5: Production of ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 3-[4-(3-bromophenoxy)benzoyl]amino-4-cyclohexylaminobenzoate (129 g) obtained in the previous step was suspended in acetic acid (600 ml) and the resulting suspension was refluxed under heating for 3 hr. The reaction mixture was concentrated under reduced pressure. Water was added to the residue and the precipitated crystals were collected by filtration to give the title compound (124 g, yield 99%).

¹H-NMR (300MHz, CDCl₃): 8.51(1H, d, J=1.5Hz), 8.00(1H, dd, J=8.4, 1.5Hz), 7.67(1H, d, J=8.4Hz), 7.63(2H, d, J=8.7Hz), 7.35-7.21(3H, m), 7.17(2H, d, J=8.7Hz), 7.14(1H, m), 4.42(2H, q, J=7.2Hz), 4.38(1H, m), 2.43-2.22(2H, m) , 2.07-1.87(4H, m), 1.80(1H, m), 1.42(3H, t, J=7.2Hz), 1.40-1.27(3H, m)

Example 2

5

10

15

20

25

30

35

40

50

55

Production of 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid

[0248] Ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (1.0 g) obtained in Example 1 was dissolved in tetrahydrofuran (10 ml) and ethyl alcohol (10 ml), and 4N sodium hydroxide (10 ml) was added. The mixture was refluxed under heating for 1 hr. The reaction mixture was concentrated under reduced pressure and water was added to the residue. The mixture was acidified with 6N hydrochloric acid and the precipitated crystals were collected by filtration to give the title compound (0.9 g, yield 96%).

melting point: 255-256°C

 $^{1}\text{H-NMR (300MHz, DMSO-d}_{6}\text{): (12.75(1H, brs), 8.24(1H, s) , 7.96(1H, d, J=8.7Hz), 7.86(1H, d, J=8.7Hz), 7.71(2H, d, J=8.7Hz), 7.86(1H, d, J=8.7H$ $J=8.6Hz),\ 7.47-7.34(3H,\ m),\ 7.24(2H,\ d,\ J=8.6Hz),\ 7.20(1H,\ m),\ 4.31(1H,\ m)\ ,\ 2.38-2.18(2H,\ m),\ 2.02-1.79(4H,\ m),\ 2.20(2H,\ m),\ 2.38-2.18(2H,\ m),\ 2.02-1.79(4H,\ m),\ 2.38-2.18(2H,\ m),\$ 1.65(1H, m), 1.44-1.20(3H, m)

Example 3

Production of ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate

[0249] Ethyl 3-amino-4-cyclohexylaminobenzoate (130 g) obtained in Example 1, Step 3, and methyl 4-hydroxybenzimidate hydrochloride (139 g) were added to methyl alcohol (1500 ml), and the mixture was refluxed under heating for 4 hr. The reaction mixture was allowed to cool and the precipitated crystals were collected by filtration to give the title compound (131 g, yield 72%).

¹H-NMR (300MHz, CDCl₃): 10.02(1H, brs), 8.21(1H, d, J=1.4Hz), 7.93(1H, d, J=8.6Hz), 7.83(1H, dd, J=8.6, 1.4Hz), 7.48(2H, d, J=8.6Hz), 6.95(2H, d, J=8.6Hz), 4.39-4.25(1H, m), 4.33(1H, q, J=7.0Hz), 2.35-2.18(2H, m), 1.98-1.79(4H, m), 1.70- 1.60(1H, m), 1.46-1.19(3H, m), 1.35(3H, t, J=7.0Hz)

Example 4

Production of ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0250] 2-Bromo-5-chlorobenzyl bromide prepared from 2-bromo-5-chlorotoluene (50 g), N-bromosuccinimide and N,N'-azobisisobutyronitrile, and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (50 g) obtained in Example 3 were suspended in dimethylformamide (300 ml). Potassium carbonate (38 g) was added and the mixture was stirred for 1 hr at 80°C with heating. The reaction mixture was allowed to cool and then added to a mixed solvent of water-ethyl acetate. The precipitated crystals were collected by filtration to give the title compound (50 g, yield 64%). ¹H-NMR (300MHz, CDCl₃): 8.50(1H, d, J=1.4Hz), 7.97(1H, dd, J=8.6, 1.4Hz), 7.70-7.57(5H, m), 7.20(1H, dd, J=8.4,

EP 1 162 196 A1

 $2.5 \text{Hz}),\ 7.14 (2 \text{H},\ \text{d},\ \text{J=8.7Hz}),\ 5.17 (2 \text{H},\ \text{s}),\ 4.46 - 4.30 (1 \text{H},\ \text{m}),\ 4.41 (2 \text{H},\ \text{q},\ \text{J=7.1Hz}),\ 2.40 - 2.20 (2 \text{H},\ \text{m}),\ 2.02 - 1.21 (8 \text{H},\ \text{m}),\ 4.41 (2 \text{H},\ \text{q},\ \text{J=7.1Hz}),\ 2.40 - 2.20 (2 \text{H},\ \text{m}),\ 2.02 - 1.21 (8 \text{H},\ \text{m}),\ 2.02 - 1.2$ m), 1.42(3H, t, J=7.1Hz)

Example 5

5

10

Production of ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0251] Ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (49 g) obtained in Example 4, 4-chlorophenylboronic acid (18 g) and tetrakis-(triphenylphosphine)palladium (10 g) were suspended in 1,2-dimethoxyethane (600 ml). Saturated aqueous sodium hydrogencarbonate solution (300 ml) was added and the mixture was refluxed under heating for 2 hr. Chloroform was added to the reaction mixture. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate solution, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, chloroform:ethyl acetate = 97:3). Ethyl acetate and diisopropyi ether were added to the resulting oil for crystallization and the resulting crystals were collected by filtration to give the title compound

¹H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.4Hz), 7.97(1H, dd, J=8.6, 1.6Hz), 7.70-7.60(2H, m), 7.55(2H, d, J=8.7Hz), $4.95(2H,\,s),\,4.48\text{-}4.28(1H,\,m)\,\,,\,4.40(2H,\,m)\,\,,\,2.02\text{-}1.20(8H,\,m)\,\,,\,1.41(3H,\,t,\,J=7.1Hz)$

20 Example 6

Production of 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0252] Ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (43 g) obtained in Example 5 was treated in the same manner as in Example 2 to give the title compound (33 g, yield 76%). 25 melting point: 243-244°C

¹H-NMR (300MHz, DMSO-d₆): 8.32(1H, s), 8.28(1H, d, J=8.9Hz), 8.05(1H, d, J=8.8Hz), 7.76-7.72(3H, m), 7.58-7.46 (5H, m), 7.40(1H, d, J=8.3Hz), 7.24(2H, d, J=8.9Hz), 5.11(2H, s), 4.36(1H, m), 2.40-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.15(3H, m)

Example 7

30

35

40

45

Production of ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0253] Ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate obtained in Example 3 and 2-bromo-5-methoxybenzyl bromide were treated in the same manner as in Example 4 to give the title compound (59 g).

Example 8

Production of ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0254] Ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate obtained in Example 7 was treated in the same manner as in Example 5 to give the title compound (48 g, yield 77%). ¹H-NMR $(300 \text{MHz}, \text{CDCl}_3): 8.49 (1\text{H}, \text{d}, \text{J=1.4Hz}), 7.97 (1\text{H}, \text{dd}, \text{J=8.6}, 1.4\text{Hz}), 7.64 (1\text{H}, \text{d}, \text{J=8.6Hz}), 7.54 (2\text{H}, \text{d}, \text{J=8.7Hz}), 7.37 (2\text{H}, \text{dd}, \text{J=8.6Hz}), 7.64 (2\text{H}, \text{dd}, \text{J=8.6Hz}), 7.64 (2\text{H}, \text{dd}, \text{J=8.7Hz}), 7.37 (2\text{H}, \text{dd}, \text{J=8.6Hz}), 7.64 (2\text{H}, \text{dd}, \text{J=8.6Hz}), 7$ (2H, d, J=8.6Hz), 7.31(2H, d, J=8.6Hz), 7.25(1H, d, J=8.4Hz), 7.19(1H, d, J=2.7Hz), 7.00(2H, d, J=8.7Hz), 6.97(1H, $\mathsf{dd},\,\mathsf{J=8.4,\,2.7Hz}),\,4.98(\mathsf{2H},\,\mathsf{s}),\,4.41(\mathsf{2H},\,\mathsf{q},\,\mathsf{J=7.1Hz}),\,4.42-4.29(\mathsf{1H},\,\mathsf{m}),\,3.88(\mathsf{3H},\,\mathsf{s})\,\,,\,2.40-2.20(\mathsf{2H},\,\mathsf{m}),\,2.01-1.88(\mathsf{4H},\,\mathsf{m}),\,2.01$ m), 1.83-1.73(1H, m), 1.42(3H, t, J=7.1Hz), 1.41-1.25(3H, m)

50 Example 9

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0255] Ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (52 g) obtained in Example 8 was treated in the same manner as in Example 2 to give the title compound (44 g, yield 89%). melting point: 248-249°C

 $^{1}\text{H-NMR}$ (300MHz, DMSO-d₆): 8.20(1H, s) , 7.88(1H, d, J=8.7Hz), 7.85(1H, d, J=8.7Hz), 7.57(d, 2H, J=8.6Hz), 7.46

EP 1 162 196 A1

(2H, d, J=8.6Hz), 7.44(2H, d, J=8.6Hz), 7.29(1H, d, J=8.5Hz), 7.24(1H, d, J=2.6Hz), 7.11(2H, d, J=8.6Hz), 7.06(1H, dd, J=8.5, 2.6Hz), 5.04(2H, s) , 4.26(1H, m), 3.83(3H, s) , 2.38-2.29(2H, m)

Example 10

5

10

25

30

Production of ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylate

[0256] Ethyl 3-amino-4-cyclohexylaminobenzoate (500 mg) obtained in Example 1, Step 3, was dissolved in methyl alcohol (6 ml) and trans-4-stilbenecarbaldehyde (397 mg) was added under ice-cooling. The mixture was stirred overnight at room temperature. The reaction mixture was ice-cooled and benzofuroxan (259 mg) dissolved in acetonitrile (2 ml) was added. The mixture was stirred for 7 hr at 50°C. The reaction mixture was ice-cooled. After 1N sodium hydroxide was added, ethyl acetate was added and the mixture was extracted. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 4:1) to give the title compound (540 mg, yield 63%).

¹H-NMR (300MHz, DMSO-d₆): 8.28(1H, d, J=1.4Hz), 8.01(1H, d, J=8.7Hz), 7.90-7.80(3H, m), 7.75-7.65(4H, m), 7.50-7.25(5H, m), 4.35(2H, q, J=7.0Hz), 4.31(1H, m), 2.40-2.20(2H, m), 2.00-1.80(4H, m), 1.63(1H, m), 1.40-1.20(3H, m), 1.36(3H, t, J=7.0Hz)

Example 11 20

Production of 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylic acid

[0257] Ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylate (127 mg) obtained in Example 10 was treated in the same manner as in Example 2 to give the title compound (116 mg, yield 97%). melting point: not lower than 300°C

 $^{1}\text{H-NMR (300MHz, DMSO-d}_{6}\text{): 8.25(1H, s) , 7.96-7.29(13H, m) , 4.33(1H, brt), 2.41-2.23(2H, m), 2.03-1.78(4H, m), 2.41-2.23(2H, m), 2.03-1.78(4H, m), 2.41-2.23(2H, m), 2.03-1.78(4H, m), 2.41-2.23(2H, m), 2.41-2.23(2H,$ 1.71-1.59(1H, m), 1.49-1.20(3H, m)

Example 12

Production of 2- (4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid

[0258] In the same manner as in Examples 1 and 2, the title compound (700 mg) was obtained. 35 ¹H-MMR (300MHz, CDCl₃): 8.60(1H, s), 8.04(1H, d, J=9.0Hz), 7.63(2H, d, J=8.4Hz), 7.51-7.32(6H, m), 7.14(2H, d, J=9.0Hz), 5.16(2H, s), 5.03-4.89(1H, m), 2.41-1.63(8H, m)

Example 13 40

Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide

[0259] 2-(4-Benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (700 mg) obtained in Example 12 was dissolved in dimethylformamide (10 ml), and ammonium chloride (108 mg), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (390 mg), 1-hydroxybenzotriazole (275 mg) and triethylamine (0.3 ml) were added. The mixture 45 was stirred overnight at room temperature. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Ethyl acetate and diisopropyl ether were added to the residue for crystallization and the crystals were collected by filtration 50 to give the title compound (571 mg, yield 81%).

melting point: 232-233°C

¹H-NMR (300MHz, CDCl₃): 8.23(1H, d, =1.5Hz), 7.86(1H, dd, J=8.5, 1.5Hz), 7.65-7.30(8H, m), 7.13(2H, d, J=8.8Hz),

5.16(2H, s), 4.93(1H, quint, J=8.8Hz), 2.40-1.60(8H, m) 55

Production of 2-(4-benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole

[0260] In the same manner as in Example 1, the title compound (400 mg) was obtained.

¹H-NMR (300MHz, CDCl₃): 8.11(1H, s), 7.68-7.30(9H, m), 7.13(2H, s), 5.16(2H, s), 4.94(1H, quint, J=8.9Hz), 2.35-1.60 (8H, m)

Example 15 10

20

30

35

40

45

Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime

[0261] 2-(4-Benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole (400 mg) obtained in Example 14 was suspended in ethyl alcohol (3 ml) and water (1.5 ml), and hydroxylamine hydrochloride (141 mg) and sodium hydrogencarbonate (170 mg) were added. The mixture was refluxed under heating overnight. The reaction mixture was allowed to cool and the precipitated crystals were collected by filtration to give the title compound (312 mg, yield 71%). melting point: 225-226°C

¹H-NMR (300MHz, DMSO-d₆): 8.20(1H, s), 7.50-7.31(9H, m), 7.12(2H, d, J=8.7Hz), 5.15(2H, s), 4.94(1H, quint, J=8.7Hz), 3.61(3H, s), 3.40(3H, s), 2.41-1.42(8H, m)

Example 16

Production of ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-25 5-carboxylate

[0262]

Step 1: Production of 4-(4-fluorophenyl)-5-hydroxymethyl-2-methylthiazole

Ethyl 4-(4-fluorophenyl)-2-methyl-5-thiazolecarboxylate (59 g) prepared by a known method (Chem. Pharm. Bull., 43(6), 947, 1995) was dissolved in tetrahydrofuran (700 ml). Lithium aluminum hydride (13 g) was added under ice-cooling and the mixture was stirred for 30 min. Water (13 ml), 15% sodium hydroxide (13 ml) and water (39 ml) were added successively to the reaction mixture, and the precipitated insoluble materials were filtered off. The filtrate was concentrated under reduced pressure to give the title compound (37 g, yield 71%).

¹H-NMR (300MHz, CDCl₃): 7.60(2H, dd, J=8.7, 6.6Hz), 7.11(2H, t, J=8.7Hz), 4.80(2H, s), 2.70(3H, s)

Step 2: Production of 5-chloromethyl-4-(4-fluorophenyl)-2-methylthiazole

4-(4-Fluorophenyl)-5-hydroxymethyl-2-methylthiazole (37 g) obtained in the previous step was dissolved in chloroform (500 ml), and thionyl chloride (24 ml) and pyridine (2 ml) were added. The mixture was stirred for 3 hr at room temperature. The reaction mixture was poured into ice-cold water. The mixture was extracted with chloroform, and washed with water and saturated brine. The organic layer was dried over sodium sulfate, and concentrated under reduced pressure to give the title compound (29 g, yield 76%).

¹H-NMR (300MHz, CDCl₃): 7.67(2H, dd, J=8.8, 5.4Hz), 7.16(2H, t, J=8.7Hz), 4.79(2H, s) , 2.73(3H, s)

Step 3: Production of ethyl I-cyclohexyl-2-{4-[{4-(4-fluorophenyl) -2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate

5-Chloromethyl-4-(4-fluorophenyl)-2-methylthiazole (28 g) obtained in the previous step and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (36 g) obtained in Example 3 were treated in the same manner as in Example 4 to give the title compound (61 g, yield 100%).

¹H-NMR (300MHz, DMSO-d₆): 8.25(1H, d, J=1.5Hz), 7.97(1H, d, J=8.7Hz), 7.86(1H, dd, J=8.6, 1.6Hz), 7.7.4(2H, $\mathsf{dd},\ \mathsf{J=8.8},\ \mathsf{5.5Hz}),\ \mathsf{7.62(2H},\ \mathsf{d},\ \mathsf{J=8.7Hz}),\ \mathsf{7.33(2H},\ \mathsf{t},\ \mathsf{J=8.9Hz}),\ \mathsf{7.22(2H},\ \mathsf{t},\ \mathsf{J=8.9Hz}),\ \mathsf{5.41(2H},\ \mathsf{s}),\ \mathsf{4.34(2H},\ \mathsf{q},\ \mathsf{J=8.8Hz}),\ \mathsf{5.41(2H},\ \mathsf{s}),\ \mathsf{4.34(2H},\ \mathsf{q}),\ \mathsf{4.34(2$ J=7.1Hz), 4.31(1H, m), 2.71(3H, s), 2.40-2.15(2H, m), 2.05-1.75(4H, m), 1.55-1.15(3H, m), 1.36(3H, t, J=7.1Hz)

55

5

10

20

30

35

40

45

50

55

Production of 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic

[0263] Ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate (60 g) obtained in Example 16 was treated in the same manner as in Example 2 to give the title compound (39g, yield 69%).

melting point: 196-198°C

 1 H-NMR (300MHz, DMSO-d₆): 13.1(1H, brs), 8.34(1H, s) , 8.29(1H, d, J=8.8Hz), 8.06(1H, d, J=8.7Hz), 7.80-7.72(4H, d, J=8.8Hz), 8.06(1H, d, J=8.8Hz), 8.06(1H, d, J=8.7Hz), 7.80-7.72(4H, d, J=8.8Hz), 8.06(1H, d, m), 7.36-7.31(4H, m), 5.46(2H, s), 4.38(1H, m), 2.72(3H, s), 2.45-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.20(3H, m)

Example 18 15

Production of ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)-benzimidazole-5-carboxylate

[0264] In the same manner as in Example 3, the title compound (50 g) was obtained.

Example 19

Production of ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate

25

Step 1: Production of 3,3'-difluorobenzhydrol

To a stirred solution of magnesium strip (35.4 g) in THF (200 ml), iodine strip was added and the mixture was heated with stirring under nitrogen stream until most of color of iodine was disappeared. A solution of 3-fluorobromobenzene (250.0 g) in THF (1000 ml) was added dropwise over 2.5 hr while the temperature of the solution was maintained at 60°C. After the completion of the addition of the solution, the resulting mixture was refluxed for 1 hr with heating. The resulting Grignard solution was ice-cooled and a solution of ethyl formate (63.2 g) in THF (200 ml) was added dropwise over 1 hr. After a stirring of the reaction solution for an additional 30 min, saturated aqueous ammonium chloride solution (700 ml) was added dropwise with ice-cooling and water (300 ml) was added. The mixture was stirred for 10 min. The organic layer and water layer were separated. Water layer was extracted with ethyl acetate, and the combined organic layer was washed with 2N hydrochloric acid, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was evaporated off under reduced pressure to give the title compound (156.2 g, yield 99%). ¹H-NMR (300MHz, CDCl₃): 7.31(2H, td, J=7.9, 5.8Hz), 7.15-7.80(4H, m), 6.97-6.94(2H, m), 5.82(1H, d, J=3.3Hz), 2.30(1H, d, J=3.3Hz)

Step 2: Production of 3,3'-difluorobenzhydryl chloride

To a solution of 3,3'-difluorobenzhydrol (150.0 g) obtained in the previous step in toluene (400 ml), pyridine (539 mg) was added at room temperature. To the solution, thionyl chloride (89.1 g) was added dropwise over 1 hr at room temperature and the resulting solution was stirred for an additional 2 hr. The solution was heated so that the temperature of the solution was at 40°C, and then stirred for an additional 1.5 hr. Thionyl chloride (8.1 g) was added again and the mixture was stirred for 30 min. To the reaction mixture, water was added. The organic layer was separated, and washed with water, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, the solvent was evaporated off under reduced pressure to give the title compound (158.2 g, yield 97%).

¹H-NMR (300MHz, CDCl₃): 7.32(2H, td, J=8.0, 5.9Hz), 7.18-7.10(4H, m), 7.01(2H, tdd, J=8.2, 2.5, 1.2Hz), 6.05

Step 3: Production of ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate

Ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)-benzimidazole-5-carboxylate (50 g) obtained in Example 18 and 3,3'-difluorobenzhydryl chloride (34 g) obtained in the previous step were treated in the same manner as in Example 4 to give the title compound (76 g, yield 99%).

 $^{1}\text{H-NMR}$ (300MHz, DMSO-d₆): 8.24(1H, d, J=1.4Hz), 7.98(1H, d, J=8.7Hz), 7.88(1H, d, J=8.7Hz), 7.56(1H, t, J=8.7Hz)

EP 1 162 196 A1

J=8.6Hz), 7.50-7.40(6H, m), 6.82(1H, s), 4.34(2H, q, J=7.1Hz), 3.95(1H, m), 2.20-2.10(2H, m), 1.90-1.80(4H, m), 1.6(1H, m), 1.35(3H, t, J=7.2Hz), 1.30-1.20(3H, mz)

Example 20

5

10

20

30

45

50

Production of 2-{4-(bis[3-fluorophenyl]methoxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0266] Ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (75 g) obtained in Example 19 was treated in the same manner as in Example 2 to give the title compound (48 g, yield 62%). melting point: 242-243°C

 $^{1}\text{H-NMR}$ (300MHz, DMSO-d₆): 8.29(1H, s), 8.16(1H, d, J=8.8Hz), 7.99(1H, d, J=8.7Hz), 7.66(1H, t, J=8.7Hz), 7.51-7.40(6H, m), 7.30(1H, d, J=12.1Hz), 7.20-7.14(3H, m), 6.88(1H, s), 4.07(1H, m), 2.40-2.10(2H, m), 2.00-1.75 (4H, m), 1.70-1.55(1H, m),

1.50-1.15(3H, m) 15

Example 21

Production of ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate

[0267] In the same manner as in Example 1, the title compound (12 g) was obtained.

Example 22

Production of ethyl 2-(4-aminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate 25

[0268] Ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate (12 g) obtained in Example 21 was dissolved in tetrahydrofuran (200 ml) and ethyl alcohol (50 ml), 7.5% palladium carbon (50% wet, 1 g) was added. The mixture was hydrogenated for 1 hr at atmospheric pressure. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. Tetrahydrofuran was added to the residue to allow crystallization and the crystals were collected by filtration to give the title compound (11 g, yield 98%).

¹H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.3Hz), 7.95(1H, dd, J=8.5, 1.3Hz), 7.50-7.40(3H, m), 6.79(2H, d, J=4.6Hz), 4.97(1H, quint, J=8.9Hz), 4.40(2H, q, J=7.1Hz), 3.74(2H, brs), 2.40-1.60(8H, m), 1.41(3H, t, J=7.1Hz)

35 Example 23

Production of ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate

[0269] Ethyl 1-cyclopentyl-2-(4-aminophenyl)benzimidazole-5-carboxylate (300 mg) obtained in Example 22 was dissolved in pyridine (3 ml) and chloroform (3 ml), and benzoyl chloride (127 mg) was added. The mixture was stirred for 30 min at room temperature. The reaction mixture was concentrated under reduced pressure and water was added to the residue to allow crystallization. The crystals were collected by filtration to give the title compound (403 mg, yield

¹H-NMR (300MHz, CDCl₃): 8.58(1H, s), 8.00(1H, d, J=9.0Hz), 7.84(2H, d, J=7.5Hz), 7.60-7.40(6H, m), 7.14(2H, d, $J=7.5Hz),\,4.84(1H,\,quint,\,J=8.7Hz),\,4.41(2H,\,q,\,J=7.5Hz),\,2.20-1.30(8H,\,m),\,1.41(3H,\,t,\,J=7.5Hz),\,2.20-1.30(8H,\,m),\,1.41(3H,\,t,\,J=7.5Hz),\,2.20-1.30(8H,\,m$

Example 24

Production of 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid

[0270] Ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (200 mg) obtained in Example 23 was treated in the same manner as in Example 2 to give the title compound (131 mg, yield 70%). melting point: not lower than 300°C

 1 H-NMR (300MHz, DMSO-d₆): 10.75(1H, s), 8.35(1H, s), 8.15and7.85(4H, ABq, J=8.9Hz), 8.10-7.98(4H, m), 7.70-7.55 (3H, m), 5.02(1H, quint, J=8.7Hz), 2.36-2.15(4H, m), 2.14-1.95(2H, m), 1.80-1.62 (2H, m) 55

Production of ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

5 [0271] Ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (65 g) obtained in Example 1 and 3-chlorophenylboronic acid (23 g) were treated in the same manner as in Example 5 to give the title compound (59 g, vield 85%).

 $^{1}\text{H-NMR}$ (300MHz, CDCl₃) : 8.51(1H, d, J=1.8Hz), 7.99(1H, dd, J=8.7, 1.8Hz), 7.71-7.55(4H, m), 7.51-7.43(2H, m), 7.43-7.27(4H, m), 7.19(1H, d, J=8.4Hz), 7.12(1H, m) , 4.41(2H, q, J=7.2Hz), 4.39(1H, m) , 2.42-2.22(2H, m) , 2.03-1.87 (4H, m) , 1.79(1H, m), 1.42(3H, t, J=7.2Hz), 1.39-1.29(3H, m)

Example 26

10

15

25

40

55

Production of 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid

[0272] Ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (59 g) obtained in Example 25 was treated in the same manner as in Example 2 to give the title compound (43 g, yield 76%). melting point: 253-254°C

20 1H-NMR (300MHz, DMSO-d₆): 12.82(1H, brs), 8.24(1H, d, J=1.3Hz), 7.98(1H, d, J=8.7Hz), 7.89(1H, dd, J=8.7, 1.3Hz), 7.78(1H, s), 7.72(2H, d, J=9.7Hz), 7.70(1H, m), 7.64-7.42(5H, m), 7.25(2H, d, J=8.7Hz), 7.20(1H, m), 4.33(1H, m), 2.39-2.17(2H, m), 2.00-1.76(4H, m), 1.65(1H, m), 1.50-1.22(3H, m)

Example 27

Production of ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0273] In the same manner as in Example 1, the title compound (87 g) was obtained.

30 Example 28

Production of ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)-phenyl]benzimidazole-5-carboxylate

[0274] Ethyl 2-[4- (3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (87 g) obtained in Example 27 was dissolved in methyl alcohol (250 ml) and tetrahydrofuran (250 ml), and potassium carbonate (31 g) was added. The mixture was stirred for 30 min at room temperature. The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. Water was added to the residue and the mixture was neutralized with 2N hydrochloric acid. The precipitated crystals were collected by filtration to give the title compound (78 g, yield 97%). 14-NMR (300MHz, DMSO-d₆): 9.71(1H, s), 7.98(1H, d, J=8.7Hz), 7.87(1H, d, J=8.7Hz), 7.68 (2H, d, J=8.6Hz), 7.24 (1H, t, J=8.1Hz), 7.18(2H, d, J=8.6Hz), 6.63(1H, d, J=8.1Hz), 6.57(1H, d, J=8.1Hz), 6.51(1H, s), 4.38-4.23(1H, m), 4.35(2H, q, J=6.9Hz), 2.36-2.18(2H, m), 1.99-1.78(4H, m), 1.71-1.59(1H, m), 1.45-1.20(3H, m), 1.36(3H, t, J=6.9Hz)

Example 29

45 Production of ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)-phenyloxy]phenyl}benzimidazole-5-carboxylate

[0275] Ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]-benzimidazole-5-carboxylate (78 g) obtained in Example 28 was suspended in dimethylformamide (800 ml), and sodium hydride (60% oil, 14 g) was added under ice-cooling. The mixture was stirred for 1 hr at room temperature. After the reaction mixture was ice-cooled, 4-chloromethylpyridine hydrochloride (29 g) was added and the mixture was stirred for 30 min. The mixture was then stirred overnight at room hydrochloride (29 g) was added to the reaction mixture and the precipitated crystals were collected by filtration. The resulting crystals were recrystallized from ethyl alcohol to give the title compound (77 g, yield 82%). 14-NMR (300MHz, CDCl₃): 8.63(2H, d, J=6.0Hz), 8.51(1H, s), 7.99(1H, d, J=8.7Hz), 7.66(2H, d, J=8.7Hz), 7.62(2H, d, J=8.7Hz), 7.36(2H, d, J=8.7Hz), 7.31(1H, t, J=8.2Hz), 7.26(1H, s), 7.16(2H, d, J=8.7Hz), 6.79-6.70(3H, m), 5.09(2H, d, J=8.7Hz), 7.36(2H, d, J=8.7Hz), 7.31(1H, t, J=8.2Hz), 7.26(1H, s), 7.16(2H, d, J=8.7Hz), 6.79-6.70(3H, m), 5.09(2H, d, J=8.7Hz), 7.36(2H, d, J=8.7Hz), 7.31(1H, t, J=8.2Hz), 7.26(1H, s), 7.16(2H, d, J=8.7Hz), 6.79-6.70(3H, t, J=7.0Hz)

Production of 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]-phenyl}benzimidazole-5-carboxylic acid

[0276] Ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]-phenyl}benzimidazole-5-carboxylate (60 g) obtained in Example 29 was treated in the same manner as in Example 2 to give the title compound (54 g, yield 75%). 5 melting point: 235-237°C

¹H-NMR (300MHz, DMSO-d₆): 8.58(2H, d, J=6.0Hz), 8.23(1H, s), 7.96 and 7.86(2H, ABq, J=8.7Hz), 7.68 and 7.17 (4H, A'B'q, J=8.7Hz), 7.44(2H, d, J=8.7Hz), 7.39(1H, t, J=8.3Hz), 6.90(1H, d, J=8.1Hz), 6.84(1H, s), 6.75(1H, d, J=8.1Hz), 5.22(2H, s), 4.40-4.22(1H, m), 2.40-2.19(2H, m), 2.00-1.80(4H, m)

Example 241

Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-15 5-carboxylate

[0277]

10

20

25

30

35

40

45

50

55

Step 1: Production of 2-bromo-5-methoxybenzaldehyde

3-Methoxybenzaldehyde (15 g) was dissolved in acetic acid (75 ml), and a solution of bromine (5.7 ml) dissolved in acetic acid (15 ml) was added dropwise. The mixture was stirred overnight at room temperature and water (150 ml) was added to the reaction mixture. The precipitated crystals were collected by filtration, washed with water and dried under reduced pressure to give the title compound (21 g, yield 88%).

 $^{1}\text{H-NMR (300MHz, CDCl}_{3}): 10.31(1\text{H, s}), 7.52(1\text{H, d, J=8.8Hz}), 7.41(1\text{H, d, J=3.3Hz}), 7.03(1\text{H, dd, J=8.8, 3.3Hz}), 7.03(1\text{H, dd, J=8.8,$ 3.48(3H, s)

Step 2: Production of 2-(4-chlorophenyl)-5-methoxybenzaldehyde

2-Bromo-5-methoxybenzaldehyde (10 g) obtained in the previous step was treated in the same method as in Example 5 to give the title compound (11 g, yield 96%).

¹H-NMR (300MHz, CDCl₃): 9.92(1H, s), 7.50(1H, d, J=2.6Hz), 7.48-7.14(6H, m), 3.90(3H, s)

Step 3: Production of 2-(4-chlorophenyl)-5-methoxybenzyl alcohol

2-(4-Chlorophenyl)-5-methoxybenzaldehyde (10 g) obtained in the previous step was dissolved in tetrahydrofuran (30 ml). The solution was added dropwise to a suspension of sodium borohydride (620 mg) in isopropyl alcohol (50 ml) and the mixture was stirred for 1 hr. The solvent was evaporated under reduced pressure and water was added to the residue. The precipitated crystals were collected by filtration and dried under reduced pressure. The resulting crystals were recrystallized from a mixture of methanol and water to give the title compound (9.2 g, yield

¹H-NMR (300MHz, CDCl₃): 7.37(2H, d, J=8.6Hz), 7.27(2H, d, J=8.6Hz), 7.17(1H, d, J=8.6Hz), 7.11(1H, d, J=2.6Hz), 6.89(1H, dd, J=8.6, 2.6Hz), 4.57(2H, s), 3.86(3H, s)

Step 4: Production of 2-(4-chlorophenyl)-5-methoxybenzyl chloride

2-(4-Chlorophenyl)-5-methoxybenzyl alcohol (20 g) obtained in the previous step was dissolved in ethyl acetate (100 ml) and pyridine (0.5 ml), and thionyl chloride (11 ml) was added dropwise. The mixture was stirred for 1 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogencarbonate, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Isopropyl alcohol was added to the residue to allow crystallization. The resulting crystals were collected by filtration and dried under reduced pressure to give the title compound (16 g, yield 74%).

¹H-NMR (300MHz, CDCl₃): 7.43-7.29 (4H, m), 7.17(1H, d, J=8.6Hz), 7.05(1H, d, J=2.6Hz), 6.96-6.89(1H, m), 4.46(2H, s), 3.86(3H, s) Step 5: Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

2-(4-Chlorophenyl)-5-methoxybenzyl chloride (4.0 g) obtained in the previous step and methyl 1-cyclohexyl-2-(4-hydroxyphenyl)-benzimidazole-5-carboxylate (5.0 g) obtained in the same manner as in Example 3 were treated in the same manner as in Example 4 to give the title compound (6.0 g, yield 72%).

¹H-NMR (300MHz, CDCl₃): 8.48(1H, s), 8.00-7.93(1H, m), 7.68-7.62(1H, m), 7.54(2H, d, J=9.0Hz), 7.41-7.16(6H, m), 7.04-6.93(3H, m), 4.97(2H, s), 4.36(1H, m), 3.94(3H, s), 3.87(3H, s), 2.39-2.21(2H, m), 2.02-1.88(4H, m), 1.85-1.45(4H, m)

5

15

20

25

30

35

40

45

50

55

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride

[0278] Methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (5.0 g) obtained in Example 241 was treated in the same manner as in Example 2 to give the title compound (5.1 g, yield 98%).

¹H-NMR (300MHz, DMSO-d₆): 8.30(1H, d, J=1.4Hz), 8.24(1H, d, J=8.7Hz), 8.03 (1H, d, J=8.7Hz), 7.72(2H, d, J=8.7Hz), 7.51-7.39(4H, m), 7.34-7.18(4H, m), 7.11-7.03(1H, m), 5.08 (2H, s), 4.35(1H, m), 3.83(3H, m), 2.40-2.18 (2H, m), 2.10-1.96(2H, m), 1.93-1.78(2Hm), 1.72-1.18(4H, m)

Example 243

Production of ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0279]

Step 1: Production of methyl 3-hydroxypicolinate

3-Hydroxypicolinic acid (1.0 g) was suspended in methanol (10 ml) and concentrated sulfuric acid (1.0 ml) was added. The mixture was refluxed under heating for 5 hr. The reaction mixture was ice-cooled, neutralized with saturated aqueous sodium hydrogencarbonate, and extracted with chloroform. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (711 mg, yield 64%).

¹H-NMR (300MHz, CDCl₃): 10.63(1H, s), 8.28(1H, dd, J=3.7, 1.8Hz), 7.47-7.35(2H, m), 4.06(3H, s)

Step 2: Production of methyl 3-(trifluoromethylsulfonyloxy)-pyridine-2-carboxylate

Methyl 3-hydroxypicolinate (710 mg) obtained in the previous step and triethylamine (0.77 ml) were dissolved in dichloromethane (7 ml), and trifluoromethanesulfonic anhydride (0.86 ml) was added under ice-cooling. The reaction mixture was allowed to warm to room temperature and the mixture was stirred for 2 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (1.2 g, yield 90%).

¹H-NMR (300MHz, CDCl₃): 8.80-8.73(1H, m), 7.75-7.70(1H, m) , 7.63(1H, dd, J=8.2, 4.5Hz), 4.05(3H, s)

Step 3: Production of methyl 3-(4-chlorophenyl)pyridine-2-carboxylate

Methyl 3-(trifluoromethylsulfonyloxy)pyridine-2-carboxylate (1.2 g) obtained in the previous step was treated in the same manner as in Example 5 to give the title compound (728 mg, yield 69%).

¹H-NMR (300MHz, CDCl₃): 8.73-8.66(1H, m) , 7.77-7.68 (1H, m), 7.49(1H, dd, J=7.8, 4.5Hz), 7.46-7.37(2H, m), 7.32-7.23(2H, m), 3.80(3H, s)

Step 4: Production of [3-(4-chlorophenyl)pyridin-2-yl]methanol

Methyl 3-(4-chlorophenyl)pyridine-2-carboxylate (720 mg) obtained in the previous step was dissolved in tetrahydrofuran (10 ml) and the solution was ice-cooled. Lithium aluminum hydride (160 mg) was added to the solution and the mixture was stirred for 1 hr. To the reaction mixture were added successively water (1.6 ml), 15% sodium hydroxide (1.6 ml) and water (4.8 ml). The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 1:1) to give the title compound (208 mg, yield 32%).

¹H-NMR (300MHz, CDCl₃): 8.60(1H, dd, J=4.8, 1.5Hz), 7.60-7.55(1H, m), 7.40-7.48(2H, m), 7.29-7.36(1H, m), 7.27-7.20(3H, m), 4.63(2H, s)

Step 5: Production of ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[3-(4-Chlorophenyl)pyridin-2-yl]methanol (200 mg) obtained in the previous step was dissolved in chloroform (3 ml), and thionyl chloride (0.13 ml) and pyridine (catalytic amount) were added. The mixture was stirred for 1 hr at room temperature and concentrated under reduced pressure. The residue was dissolved in dimethylformamide (3 ml), and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (232 mg) obtained in the same manner as in Example 3 and potassium carbonate (250 mg) were added. The mixture was stirred for 3 hr with heating at 80°C. The reaction mixture was then allowed to cool. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography

EP 1 162 196 A1

(developing solvent, n-hexane:ethyl acetate = 1:2) to give the title compound (246 mg, yield 68%). ¹H-NMR (300MHz, CDCl₃): 8.71(1H, dd, J=4.7, 1.4Hz), 8.49(1H, d, J=2.1Hz), 7.96(1H, d, J=10.2Hz), 7.71-7.62 (2H, m), 7.53(2H, d, J=8.7Hz), 7.45-7.34(5H, m), 7.04(2H, d, J=8.7Hz), 5.14(2H, s), 4.48-4.29(3H, m), 2.38-2.19 (2H, m), 2.02-1.22(11H, m)

Example 244

Production of methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate

[0280]

5

10

15

20

25

30

35

45

55

Step 1: Production of tert-butyl 4-bromo-3-methylbenzoate

4-Bromo-3-methylbenzoic acid (25 g) was suspended in dichloromethane (200 ml), and oxalyl chloride (12 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 2 hr at room temperature and the solvent was evaporated under reduced pressure. The residue was dissolved in tetrahydrofuran (200 ml) and the solution was ice-cooled. To the solution was added dropwise a solution of potassium tert-butoxide dissolved in tetrahydrofuran (150 ml) and the mixture was stirred for 30 min. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (27 g, yield 85%).

¹H-NMR (300MHz, CDCl₃): 7.83(1H, d, J=2.2Hz), 7.67-7.53 (2H, m), 2.43(3H, s), 1.58(9H, s)

Step 2: Production of methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-

tert-Butyl 4-bromo-3-methylbenzoate (7.0 g) obtained in the previous step and methyl 1-cyclohexyl-2-(4-hy-5-carboxylate droxyphenyl)-benzimidazole-5-carboxylate (6.3 g) obtained in the same manner as in Example 3 were treated in the same manner as in Example 4 to give the title compound (8.8 g, yield 77%).

¹H-NMR (300MHz, CDCl₃): 8.49(1H, d, J=1.5Hz), 8.21(1H, d, J=2.1Hz), 7.97(1H, d, J=10.2Hz), 7.82(1H, d, $J=10.2Hz),\ 7.71-7.58(4H,\ m),\ 7.16(2H,\ d,\ J=8.7Hz),\ 5.23(2H,\ s)\ ,\ 4.38(1H,\ m)\ ,\ 3.95(3H,\ s)\ ,\ 2.40-2.23(2H,\ m),\ 3.95(3H,\ s)\ ,\ 2.40-2.23(2H,\ m),\ 3.95(3H,\ s)\ ,\ 2.40-2.23(2H,\ m),\ 3.95(3H,\ s)\ ,\ 3.95($ 2.04-1.90(4H, m) , 1.84-1.73(1H, m), 1.59(9H, s), 1.44-1.27(3H, m)

Example 245

Production of methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (4.5 g) obtained in Example 244 was treated in the same manner as in Example 5 to give the title compound (3.6 g,

¹H-NMR (300MHz, CDCl₃): 8.48(1H, s), 8.27 (1H, d, J=1.8Hz), 8.04(1H, dd, J=7.9, 1.5Hz), 7.96(1H, dd, J=7.0, 1.5Hz), yield 76%). 7.65(1H, d, J=8.6Hz), 7.55(2H, d, J=8.6Hz), 7.43-7.32(5H, m), 7.01(2H, d, J=8.6Hz), 4.99(2H, s), 4.43-4.29(1H, m), $3.95(3H,\,s),\,2.41-2.21(2H,\,m)\,\,,\,2.02-1.89(4H,\,m)\,\,,\,1.82-1.73(1H,\,m)\,\,,\,1.62(9H,\,s)\,\,,\,1.46-1.28(3H,\,m)$

Example 246

Production of methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride

[0282] Methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (3.5 g) obtained in Example 245 was dissolved in dichloromethane (35 ml), and trifluoroacetic acid (35 ml) was added. The mixture was stirred for 1 hr at room temperature and the reaction mixture was concentrated under reduced pressure. The residue was dissolved in ethyl acetate, and 4N hydrochloric acid-ethyl acetate was added. The precipitated crystals were collected by filtration and dried under reduced pressure to give the title compound (3.3 g,

¹H-NMR (300MHz, DMSO-d₆): 8.33(1H, d, J=1.5Hz), 8.29(1H, s) , 8.24(1H, d, J=1.8Hz), 8.09-8.00 (2H, m), 7.74(2H, d, J=8.6Hz), 7.61-7.44(5H, m), 7.24(2H, d, J=8.6Hz), 5.19(2H, s), 4.36(1H, m), 3.93(3H, s), 2.37-1,21(10H, m)

5

10

20

25

30

35

40

45

50

55

Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate

[0283] Methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride (400 mg) obtained in Example 246 was suspended in dichloromethane (5 ml), and oxalyl chloride (0.08 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 2 hr at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was dissolved in dichloromethane (5 ml). The resulting solution was added dropwise to a mixed solution of 40% aqueous methylamine solution (5 ml) and tetrahydrofuran (5 ml) under ice-cooling. The reaction mixture was stirred for 1 hr and concentrated under reduced pressure. Water was added to the residue and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogencarbonate and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the residue was crystallized from ethyl acetate and diisopropyl ether. The crystals were collected by filtration and dried under reduced pressure to give the title compound

¹H-NMR (300MHz, CDCl₃): 8.47(1H, s), 8.06(1H, d, J=1.8Hz), 7.96(1H, dd, J=8.6, 1.5Hz), 7.82(1H, dd, J=8.2, 2.2Hz), 7.64(1H, d, J=8.6Hz), 7.54(2H, d, J=9.0Hz), 7.44-7.31(5H, m), 6.99(2H, d, J=9.0Hz), 6.35-6.26(1H, m), 5.00(2H, s), 4.35(1H, m), 3.95(3H, s), 3.05(3H, d, J=4.8Hz), 2.40-1.24(10H, m)

Example 248

Production of 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride

[0284] Methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (150 mg) obtained in Example 247 and tetrahydrofuran (2 ml) were treated in the same manner as in Example 2 to give the title compound (141 mg, yield 90%).

¹H-NMR (300MHz, DMSO-d₆): 8.65-8.58(1H, m), 8.27(1H, d, J=1.5Hz), 8.21(1H, d, J=8.2Hz), 8.15(1H, d, J=1.5Hz), $8.05-7.90(2H,\,m),\,7.70(2H,\,d,\,J=8.6Hz),\,7.56-7.43(5H,\,m),\,7.21(2H,\,d,\,J=8.6Hz),\,5.14\,(2H,\,s)\,\,,\,4.34(1H,\,m)\,\,,\,2.81(3H,\,m)\,\,$

[0285] In the same manner as in Examples 1-30 and 241-248, and optionally using other conventional methods, where necessary, the compounds of Examples 31-240, 249-327, 701 and 1001-1559 were obtained. The chemical structures and properties are shown in Table 1 to 177 and 185 to 212.

Example 501

Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-phenyl}-1-cyclohexyl-1H-indole-5-carboxylate

[0286]

Step 1: Production of methyl 3-bromo-4-cyclohexylaminobenzoate

3-Bromo-4-fluorobenzoic acid (2.0 g) was dissolved in methanol (20 ml) and concentrated sulfuric acid (2 ml) was added. The mixture was refluxed for 3 hr. The reaction mixture was poured into ice-cold water and extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure. The residue was dissolved in dimethyl sulfoxide (20 ml) and cyclohexylamine (10.3 ml) was added. The mixture was stirred overnight at 120°C. The reaction mixture was poured into 10% aqueous citric acid solution (100 ml) and extracted with ethyl acetate (100 ml). The organic layer was washed with water (50 ml) and saturated brine (50 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 10:1) to give the title compound (2.6 g, yield 92%).

¹H-NMR (300MHz, CDCl₃): 8.10(1H, d, J=1.9Hz), 7.83(1H, dd, J=1.9Hz, 8.6Hz), 6.59(1H, d, J=8.7Hz), 4.73(1H, brd, J=7.3Hz), 3.85(3H, s), 3.38(1H, m), 2.10-2.00(2H, m), 1.90-1.20(8H, m)

Step 2: Production of 4'-chloro-2-(4-iodophenoxymethyl)-4-methoxybiphenyl

4-lodophenol (5.0 g) was dissolved in acetone (50 ml), and potassium carbonate (4.7 g) and 4'-chloro-2-chloromethyl-4-methoxybiphenyl (6.0 g) obtained in Example 241, Step 4 were added. The mixture was refluxed for

EP 1 162 196 A1

10 hr. The reaction mixture was concentrated and 4N aqueous sodium hydroxide solution (50 ml) was added. The precipitated crystals were collected by filtration, washed with water, and dried under reduced pressure to give the

¹H-NMR (300MHz, CDCl₃): 7.52(2H, d, J=8.9Hz), 7.35(2H, d, J=8.5Hz), 7.27-7.20(3H, m), 7.12(1H, s), 6.95(1H, d, J=8.5Hz), 6.62(2H, d, J=8.9Hz), 4.84(2H, s), 3.85(3H, s)

Step 3: Production of [4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]trimethylsilane

4'-Chloro-2-(4-iodophenoxymethyl)-4-methoxybiphenyl (7.0 g) obtained in the previous step was dissolved in acetonitrile (50 ml), and trimethylsilylacetylene (2.3 g), tetrakis-(triphenylphosphine)palladium complex (1.8 g), copper(I) iodide (0.6 g) and triethylamine (50 ml) were added. The mixture was stirred overnight at room temperature and concentrated. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml) and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 10:1) to give the title compound (5.1 g, yield 79%). ¹H-NMR (300MHz, CDCl₃): 7.37(2H, d, J=8.9Hz), 7.34(2H, d, J=8.2Hz), 7.28-7.21(3H, m), 7.13(1H, s), 6.94(1H, d, J=8.2Hz), 6.75(2H, d, J=8.9Hz), 4.87(2H, s), 3.85(3H, s), 0.23(9H, s)

Step 4: Production of methyl 3-(4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-4-cyclohexylami-

[4-(4'-Chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-trimethylsilane (5.1 g) obtained in the previous step was dissolved in methanol (50 ml) and chloroform (50 ml), and potassium carbonate (2.5 g) was added. The mixture was stirred for 3 hr at room temperature and concentrated. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml) and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure to give white crystals (3.8 g). The white crystals (2.3 g) were dissolved in acetonitrile (10 ml), and methyl 3-bromo-4-cyclohexylaminobenzoate (1.0 g) obtained in Step 1, tetrakis(triphenylphosphine)palladium complex (0.4 g), copper(l) iodide (0.1 g) and triethylamine (10 ml) were added. The mixture was stirred overnight at 100°C and concentrated under reduced pressure. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 8:1) to give the title compound (0.9 g, yield 49%). ¹H-NMR (300MHz, CDCl₃): 8.03(1H, s), 7.84(1H, d, J=8.7Hz), 7.42-7.22(7H, m), 7.15(1H, s), 6.95(1H, d, J=8.2Hz), 6.85(2H, d, J=8.8Hz), 6.59(1H, d, J=8.8Hz), 5.07(1H, brs), 4.91(2H, s), 3.86(3H, s), 3.85(3H, s), 3.42(1H, m), 2.15-2.00(2H, m), 1.80-1.20(8H, m)

Step 5: Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate

Methyl 3- [4-(4'-chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-4-cyclohexylaminobenzoate (0.5 g) obtained in the previous step was dissolved in N,N-dimethylformamide (5 ml), and copper(I) iodide (0.17 g) was added. The mixture was refluxed for 3 hr at 180°C. The insoluble materials were removed by filtration. Water (10 ml) was added and the mixture was extracted with ethyl acetate (30 ml). The organic layer was washed with water (10 ml) and saturated brine (10 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, nhexane:ethyl acetate = 8:1) to give the title compound (0.27 g, yield 55%).

¹H-NMR (300MHz, CDCl₃): 8.34(1H, s), 7.85(1H, d, J=8.8Hz), 7.62(1H, d, J=8.8Hz), 7.40-7.18(8H, m), 7.00-6.94 (3H, m), 6.48(1H, s), 4.95(2H, m), 4.18(1H, m), 3.93(3H, s), 3.88(3H, s), 2.45-2.25(2H, m), 1.95-1.20(8H, m)

Example 502 45

5

10

15

20

25

30

35

40

55

Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-IH-indole-5-carboxylic acid

[0287] Methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate (0.27 g) obtained in Example 501 was treated in the same manner as in Example 2 to give the title compound (0.19 g, yield 71%).

 $^{1}\text{H-NMR (300MHz, DMSO-d}_{6}\text{): }12.43(1\text{H, brs}),\,8.20(1\text{H, s})\,,\\ 7.79(1\text{H, d, J}=9.3\text{Hz}),\,7.72(1\text{H, d, J}=9.0\text{Hz}),\,7.50-7.20(8\text{H, d}),\,1.20(1\text{H, d}),\,1.20$ m), 7.07-7.03(3H, m), 6.53(1H, s), 5.01(2H, s), 4.13(1H, m), 3.83(3H, m), 2.35-2.25(2H, m), 1.85-1.10(8H, m)

[0288] In the same manner as in Examples 501 and 502, and optionally using other conventional methods where necessary, the compound of Example 503 was obtained. The chemical structure and properties are shown in Table 207.

Production of ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1, 2-a]pyridine-7-carboxylate

[0289]

5

10

15

20

25

30

35

40

45

50

55

Step 1: Production of 4-benzyloxy-N-methoxy-N-methylbenzamide

4-Benzyloxybenzoic acid (5.0 g) and N,O-dimethylhydroxylamine hydrochloride (2.5 g) were suspended in dimethylformamide (50 ml), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (5.0 g), 1-hydroxybenzotriazole (3.5 g) and triethylamine (3.6 ml) were added. The mixture was stirred overnight at room temperature. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water, saturated aqueous sodium hydrogencarbonate, water and saturated brine, and dried over anhydrous magnesium sulfate.' The solvent was evaporated under reduced pressure to give the title

¹H-NMR (300MHz, CDCl₃): 7.22, 2H, d, J=8.8Hz), 7.28-7.46(5H, m), 6.97(2H, d, J=8.8Hz), 5.10(2H, s), 3.56(3H, s), 3.35(3H, s)

Step 2: Production of 1-(4-benzyloxyphenyl)-2-cyclohexylethanone

Magnesium (470 mg) was suspended in tetrahydrofuran (2 ml) and cyclohexylmethyl bromide (3.4 g) was added dropwise at room temperature. After the addition, the reaction mixture was stirred for 30 min at 60°C. The reaction mixture was allowed to cool and diluted with tetrahydrofuran (5 ml). Separately, 4-benzyloxy-N-methoxy-N-methylbenzamide (3.4 g) obtained in the previous step was dissolved in tetrahydrofuran (10 ml) and the solution was added dropwise to the reaction mixture at room temperature. The mixture was stirred for 2 hr and saturated aqueous ammonium chloride solution was added to the reaction mixture. The mixture was extracted with diethyl ether. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 9:1) to give the title compound (3.8 g, yield 66%).

¹H-NMR (300MHz, CDCl₃): 7.93(2H, d, J=8.8Hz), 7.28-7.46(5H, m), 7.00(2H, d, J=8.8Hz), 5.13(2H, s), 2.76(2H, d, J=6.8Hz), 1.95(1H, m), 0.78-1.82(10H, m)

Step 3: Production of 1-(4-benzyloxyphenyl)-2-bromo-2-cyclohexylethanone

1-(4-Benzyloxyphenyl)-2-cyclohexylethanone (1.0 g) obtained in the previous step was dissolved in 1,4-dioxane (10 ml) and bromine (0.17 ml) was added. The mixture was stirred for 10 min at room temperature. Saturated aqueous sodium hydrogencarbonate was added to the reaction mixture and the mixture was extracted with diethyl ether. The organic layer was washed with water and saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 9:1) to give the title compound (696 mg, yield 55%). ¹H-NMR (300MHz, CDCl₃): 7.98(2H, d, J=8.9Hz), 7.28-7.48(5H, m), 7.02(2H, d, J=8.9Hz), 5.14(2H, s), 4.89(1H,

d, J=9.3Hz), 0.86-3.30(11H, m) Step 4: Production of ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate

Ethyl 2-aminopyridine-4-carboxylate (214 mg) prepared according to JP-A-8-48651, 1-(4-benzyloxyphenyl)-2-bromo-2-cyclohexylethanone (500 mg) obtained in the previous step and potassium carbonate (356 mg) were stirred for 5 hr with heating at 140°C. The reaction mixture was allowed to cool and chloroform was added. The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate = 1:1) to give the title compound (95 mg, yield 16%).

¹H-NMR (300MHz, CDCl₃): 8.33(1H, s), 8.21(1H, d, J=7.5Hz), 7.55(2H, d, J=8.7Hz), 7.25-7.50(6H, m), 5.13(2H, s), 4.41(2H, q, J=7.1Hz), 3.25(1H, m), 1.41(3H, t, J=7.1Hz), 1.15-2.00(10H, m)

Example 602

Production of 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo [1,2-a]pyridine-7-carboxylic acid

[0290] Ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate (95 mg) obtained in the previous step was treated in the same manner as in Example 2 to give the title compound (33 mg, 37%).

 $^{1}\text{H-NMR (300MHz, DMSO-d}_{6}\text{): }8.67\text{(1H, d, J=7.3Hz), }8.08\text{(1H, s) , }7.25\text{-}7.58\text{(8H, m), }7.13\text{(2H, d, J=8.7Hz), }5.17\text{(2H, m), }7.13\text{(2H, d, J=8.7Hz), }9.08\text{(1H, s) , }9.08\text{(2H, m), }9.08\text{(2H, m$

[0291] The compounds shown in Tables 213 to 218 can be further obtained in the same manner as in Examples 1 s), 3.23(1H, m), 1.25-2.10(10H, m)

EP 1 162 196 A1

to 701 or by other conventional method employed as necessary.

Table 1

Example N	10.	31	1H NMR(δ) ppm
)	300MHz, CDC13 7.81 (2H, d, J=6.6Hz), 7.60 (2H, d, J=8.8Hz), 7.51-7.21 (8H, m), 7.11 (2H, d, J=8.8Hz) , 5.15 (2H, s), 4.93 (1H, quin t, J=8.8Hz), 2.36-2.32 (2H, m), 2.09-2.04 (3H, m), 1.75-1.68 (3H, m).
Purity	>90% (NMR)]
MS	369 (M+1)		

Example No	•	32	1H NMR(δ) ppm
ا ا			300MHz, CDC13 8. 51 (1H, d, J=1. 5Hz), 7. 98 (1H, d, J=8. 4Hz), 7. 61 (2H, d, J=8. 7Hz), 7. 56-7. 10 (6H, m), 7. 12 (2H, d, J=8. 7Hz), 5. 15 (2H, s), 4. 94 (1H, quint, J=9.3Hz), 4. 41 (2H, q, J=7. 5Hz), 2. 40-1. 50 (8H, m), 1. 41 (3H, t, J=7. 5Hz)
Purity	>90% (NMR)		
MS	441 (M+1)		

Example 1	No. 33	1H NMR(δ) ppm
		300MHz, CDC13 7.84(1H, s), 7.61(2H, d, J=9 .0Hz), 7.58-7.30(7H, m), 7. 12(2H, d, J=9.0Hz), 5.15(2H, s), 4.94(1H, quint, J=8.7H z), 3.10(6H, brs), 2.40-1.5 0(8H, m)
Purity	>90% (NMR)	
MS	440 (M+1)	

Purity

MS

Table 2

	Tante 5	
Example No.	34	1H NMR(δ) ppm
		300MHz, CDC13 8. 20 (1H, s), 7. 50-7. 31 (9H, m), 7. 12 (2H, d, J=8. 7Hz), 5. 15 (2H, s), 4. 94 (1H, quint, J=8. 7Hz), 3. 61 (3H, s), 3. 40 (3H, s), 2. 41-1. 42 (8H, m)
Purity >90% (NM	IR)	
MS 456 (M+1)		
Example No.	35	1H NMR(δ) ppm
H0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· \	300MHz, CDC13 7.91(1H.s), 7.59(2H, d, J=8 .7Hz), 7.49-7.30(7H, m), 7. 11(2H, d, J=8.8Hz), 5.15(2H, s), 4.19(1H, quint, J=8.8Hz), 2.41-2.22(2H, m), 2.13-1.49(14H, m)

MS 4	27 (M+1)	
Example No.	36	IH NMR(δ) ppm
		300MHz, CDC13 8. 40 (1H, d, J=1. 4Hz), 7. 95 (1H, dd, J=8. 6, 1. 4Hz), 7. 61 (2H, d, J=8. 7Hz), 7. 57-7. 30 (6H, m), 7. 13 (2H, d, J=8. 7Hz), 5. 16 (2H, s), 4. 95 (1H, quin t, J=8. 8Hz), 2. 64 (3H, s), 2. 40-1. 54 (8H, m)
Purity >90	% (NMR)	

>90% (NMR)

411 (M+1)

Table 3

Example	No.	37	1H NMR(δ) ppm
2HC1			300MHz, DMSO-d6 10. 47 (1H, brs,), 9. 15 (1H, b rs), 8. 40 (1H, s), 8. 07 (1H, d , J=9. 0Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 77 (2H, d, J=8. 7Hz), 7. 55-7. 29 (7H, m), 5. 26 (2H, s), 4. 93 (1H, quint, J=9. 0Hz), 3. 77-3. 63 (2H, m), 3. 39-3 . 23 (2H, m), 2. 84 (6H, d, J=4. 8Hz), 2. 32-1. 60 (8H, m)
Purity	>90% (NMR)		
MS	483 (M+1)		

Example	No.	38 1H NMR(δ) ppm
0 ₂ N		300MHz, CDC13 8. 69 (1H, s), 8. 19 (1H, d, J=9.0Hz), 7. 62 (2H, d, J=8.7Hz), 7. 54 (1H, d, J=9.0Hz), 7. 48.7Hz), 7. 15 (2H, d, J=8.7Hz), 5. 17 (2H, s), 4. 98 (1 H, quint, J=9.0Hz), 2. 27-2.07 (6H, m), 1. 82-1. 78 (2H, m)
Purity	>90% (NMR)	
MS	414 (M+1)	·

Example	No.	39	1H NMR(δ) ppm
H ₂ N HCI			300MHz, DMSO-d6 7.84(1H, d, J=9.0Hz), 7.79(2H, d, J=8.7Hz), 7.52-7.33(8H, m), 7.26(1H, d, J=9.0Hz), 5.27(2H, s), 4.92(1H, quint, J=9.3Hz), 2.19-1.70(8H, m).
Purity	>90% (NI	MR)	
MS	384 (M+1)		

Table 4

Example No.	40	1H NMR(δ) ppm
		300MHz, CDC13 7.72(1H, s), 7.60-7.35(10H, m), 7.10(2H, d, J=8.7Hz), 5 .14(2H, s), 4.90(1H, quint, J=8.8Hz), 2.29-2.19(2H, m), 2.19(3H, s), 2.19-1.74(6H, m).
Purity >90%	(NMR)	
MS 426	(M+ 1)	

Example 1	No.	41	1H NMR(δ) ppm
STO HANDE			300MHz, CDC13 7. 66(1H, s), 7. 61(2H, d, J=8 .8Hz), 7. 50-7. 28(7H, m), 7. 12(2H, d, J=8. 8Hz), 6. 86(1H, brs), 5. 15(2H, s), 4. 94(1H, quint, J=8. 8Hz), 2. 97(3H, s), 2. 29-1. 76(8H, m).
Purity	>90%	(NMR)	
MS	462 (1	M+1)	

Example N	No. 42	1H NMR(δ) ppm
OSS, NH ₂		300MHz, DMSO 8. 11 (1H, s), 7. 81 (1H, d, J=8 . 4Hz), 7. 72 (1H, d, J=8. 4Hz) , 7. 65 (2H, d, J=8. 4Hz), 7. 51 (2H, m), 7. 43 (2H, m), 7. 37 (1 H, m), 7. 29 (2H, s), 7. 23 (2H, d, J=8. 4Hz), 5. 22 (2H, s), 4. 89 (1H, quintet, J=9. 2Hz), 2 . 2-2. 0 (6H, m), 1. 7 (2H, m).
Purity	>90% (NMR)	
MS	448 (M+)	

Table 5

Example	No.	43	1H NMR(δ) ppm
но		> -	300MHz, DMSO-d6 8. 33 (1H, s), 8. 08 (1H, d, J=9.0Hz), 7. 99 (1H, d, J=9.0Hz), 7. 47-7. 41 (4H, m), 7. 33 (2H, d, J=8.4Hz), 5. 22 (2H, s), 4. 96 (1H, quint, J=9.0Hz), 2. 25-1. 60 (8H, m), 1. 30 (9H, s)
Purity	>90% (NMR))	
MS	469 (M+1)]

Example No.		44	1H NMR(δ) ppm
HO I N)—(°	300MHz, DMSO-d6 12. 9 (2H, brs), 8. 25 (1H, s), 8. 00 (2H, d, J=7. 8Hz), 7. 90 (1H, d, J=8. 4Hz), 7. 74 (1H, d, J=8. 7Hz), 7. 67 (2H, d, J=9. 0 Hz), 7. 62 (2H, d, J=8. 1Hz), 7 .24 (2H, d, J=8. 4Hz), 5. 32 (2 H, s), 4. 88 (1H, quint, J=9. 0 Hz, 2. 25-1. 60 (8H, m).
Purity >	90% (NMR)		
MS	457 (M+1)		

Example	No.	45	1H NMR(δ) ppm
но		-0cı	300MHz, DMSO-d6 13. 4(1H, brs), 8. 32(1H, s), 8. 06(1H, d, J=8. 7Hz), 7. 97(1H, d, J=8. 7Hz), 7. 79(2H, d, J=8. 8Hz), 7. 56-7. 48(4H, m), 7. 33(2H, d, J=8. 8Hz), 5. 27((2H, s), 4. 95(1H, quint, J=8. 9Hz), 2. 30-1. 60(8H, m).
Purity	>90%	(NMR)	
MS	447 (M+1)	

Table 6

Example 1	10.	46	1H NMR(δ) ppm	
HO N		-⟨s] _{c1}	300MHz, DMSO-d6 8.33(1H, s), 8.07(1H, d, J=8 .7Hz), 7.98(1H, d, J=8.7Hz) ,7.80(2H, d, J=8.4Hz), 7.34 (2H, d, 8.4Hz), 7.19(1H, d, J=3.6Hz), 7.09(1H, d, J=3.6Hz), 5.41(2H, s), 4.95(1H, quint, J=8.7Hz), 2.30-1.60(8H, m).	
Purity	>90% (NN	AR)		
MS	453 (M+1)			

Example N	To. 47	1H NMR(δ) ppm
но		300MHz, DMSO-d6 8. 33 (1H, s), 8. 07 (1H, d, J=8 .4Hz), 7. 98 (1H, d, J=9. 0Hz) , 7. 82-7. 72 (6H, m), 7. 35 (2H , d, J=9. 0Hz), 5. 40 (2H, s), 4 .95 (1H, quint, J=8. 7Hz), 2. 35-1. 60 (8H, m).
Purity	>90% (NMR)	
MS	481 (M+1)	

Example 1	No.	48	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 23 (1H, s), 7. 88 (1H, d, J=8 .4Hz), 7. 70 (1H, d, J=8. 4Hz) , 7. 64 (2H, d, J=8. 4Hz), 7, 43 (2H, d, J=8. 4Hz), 7. 20 (2H, d , J=8. 4Hz), 6. 98 (2H, d, J=8. 4Hz), 5. 13 (2H, s), 4. 88 (1H, quint, J=8. 7Hz), 3. 77 (3H, s), 2. 35-1. 60 (8H, m).
Purity	>90% (NM)	₹) .	
MS	443 (M+1)		

Table 7

Example 1	No. 49	1H NMR(δ) ppm
но	HOI	300MHz, DMSO-d6 8. 93 (2H, d, J=6.6Hz), 8. 35 (1H, s), 8. 06-8. 04 (3H, m), 7. 97 (1H, d, J=8.7Hz), 7. 83 (2H, d, J=8.7Hz), 7. 38 (2H, d, J=8.7Hz), 5. 61 (2H, s), 4. 94 (1H, quint, J=8.7Hz), 2. 40-1. 60 (8H, m).
Purity	>90% (NMR)	
MS	414 (M+1)	

Example N	50	1H NMR(δ) ppm
HO D.		300MHz, DMSO-d6 8. 33 (1H, s), 8. 08 (1H, d, J=8 .7Hz), 7. 99 (1H, d, J=9. 0Hz) ,7. 78 (2H, d, J=8. 4Hz), 7. 39 (2H, d, J=8. 1Hz), 7. 32 (2H, d , J=8. 7Hz), 7. 23 (2H, d, J=7. 8Hz), 5. 22 (2H, s), 4. 96 (1H, quint, J=9. 0Hz), 2. 32 (3H, s), 2. 30-1. 60 (8H, m).
Purity	>90% (NMR)	
MS	427 (M+1)	

10 N	51	1H NMR(δ) ppm
HO HO		300MHz, DMSO-d6 8. 31 (1H, s), 8. 03 (1H, d, J=9 .0Hz), 7. 93 (1H, d, J=9. 0Hz) ,7. 77 (2H, d, J=8. 4Hz), 7. 31 (2H, d, J=8. 7Hz), 5. 07 (2H, s) ,4. 94 (1H, quint, J=8. 7Hz) ,2. 45 (3H, s), 2. 26 (3H, s), 2 .26-1. 60 (8H, m).
Purity	>90% (NMR)	
MS	432 (M+1)	

Table 8

Example	No.	52	1H NMR(δ) ppm
но		— ан	300MHz, DMSO-d6 12.7(1H, brs), 10.0(1H, s), 8.22(1H, s), 7.87(1H, d, J=8 .6Hz), 7.69(1H, d, J=8.6Hz), 7.53(2H, d, J=8.6Hz), 6.96 (2H, d, J=8.6Hz), 4.89(1H, q uint, J=9.0Hz), 2.30-1.60(8H, m).
Purity	>90% (NM	R)	
MS	323 (M+1)		

Example	No.	53	1H NMR(δ) ppm
HO N N			300MHz, DMSO-d6 9. 18 (1H, t, J=5.6Hz), 8. 34 (1H, s), 8. 04 (1H, d, J=9.6Hz), 7. 98 (1H, d, J=8.7Hz), 7. 80 (2H, d, J=8.7Hz), 7. 52-7. 32 (7H, m), 5. 27 (2H, s), 4. 95 (1H, quint, J=9.0Hz), 3. 99 (2H, d, J=5.7Hz), 2. 40-1. 60 (8H, m).
Purity	>90% (NMR))	
MS	470 (M+1)		

Example 1	No. 5	1
H0 1		300MHz, DMSO-d6 8. 32(1H, s), 8. 05(1H, d, J=8, 7Hz), 7. 95(1H, d, J=8, 7Hz), 7. 80(2H, d, J=8, 4Hz), 7. 67 (1H, t, J=4. 5Hz), 7. 56(1H, t, J=4. 5Hz), 7. 45-7. 42(2H, m), 7. 35(2H, d, J=8. 4Hz), 5. 3 1(2H, s), 4. 96(1H, quint, J=9. 0Hz), 2. 30-1. 60(8H, m).
Purity	>90% (NMR)	
MS	447 (M+1)	

MS

. Table 9

To NO	55	1H NMR(δ) ppm
Example No.	CI	300MHz, DMSO-d6 12. 78 (1H, br s), 8. 24 (1H, s), 7. 88and7. 7 2 (2H, ABq, J=8. 6Hz), 7. 66an d7. 23 (4H, A'B'q, J=8. 6Hz), 7. 58 (1H, s), 7. 48-7. 42 (3H, m), 5. 24 (1H, s), 4. 88 (1H, qu int, J=8. 8Hz), 2. 30-1. 91 (6 H, m), 1. 78-1. 60 (2H, m)
Purity >90% (NMR)		
MS 447 (M+1)		
Example No.	56	1H NMR(δ) ppm
HO N		300MHz, DMS0 12. 89(1H, broad), 8. 18(1H, s), 7. 87(1H, d, J=8. 4Hz), 7. 74(1H, d, J=9. 2Hz), 7. 67(2H, d, J=8. 8Hz), 7. 52(2H, m), 7. 45(2H, m), 7. 38(1H, m), 7. 2 3(2H, d, J=8. 8Hz), 5. 22(2H, s), 4. 94(1H, quintet, J=8. 9 Hz), 2. 16(4H, m), 1. 98(2H, m), 1. 73(2H, m).
Purity >90% (NMR)		<u>}</u>
MS 413 (M+)		
Example No.	57	1H NMR(δ) ppm
HO N N N S N O N O		300MHz, DMSO-d6 10.99(1H, s), 8.26(1H, s), 8 .01-7.86(4H, m), 7.69-7.59 (5H, m), 7.38(2H, d, J=8.7Hz)), 4.86(1H, quint, J=8.7Hz) ,2.12-1.90(6H, m), 1.72-1. 59(2H, m)
Purity >90% (NMR))	
		j

462 (M+1)

Table 10

Example	No.	58	1H NMR(δ) ppm 300MHz, DMSO-d6
но		CI	12. 78 (1H. s), 10. 69 (1H, s), 8. 26-7. 72 (9H, m), 4. 92 (1H, quint, J=9. 0Hz), 2. 34-1. 70 (6H, m), 1. 75-1. 61 (2H, m)
Purity	>90% (NMR)		
MS	494 (M+1)		

Example 1	No.	59	1H NMR(δ) ppm
но		cı	300MHz, DMSO-d6 10.82(1H, s), 8.34(1H, s), 8 .14and7.84(4H, ABq, J=8.4H z), 8.06and7.66(4H, A'B'q, J=8.6Hz), 8.06-7.98(4H, m) ,5.01(1H, quint, J=9.3Hz), 2.35-2.15(4H, m), 2.11-1.9 6(2H, m), 1.80-1.62(2H, m)
Purity	>90% (NM)	R)	
MS	460 (M+1)	·	

		man (2) mm
Example N	io.	60 1H NMR(δ) ppm
но		300MHz, DMSO-d6 10.61(1H, s), 8.32(1H, s), 8 .12and7.81(4H, ABq, J=8.9H z), 8.03and7.93(2H, A'B'q, J=8.7Hz), 7.95and7.59(4H, A"B"q, J=8.4Hz), 4.99(1H, q uint, J=9.0Hz), 2.33-2.12(4H, m), 2.10-1.93(2H, m), 1. 80-1.63(2H, m), 1.34(9H, m)
Purity	>90% (NMR)	
MS	482 (M+1)	

Table 11

Example	No.	61	1H NMR(δ) ppm
10 L		-⟨>	300MHz, DMSO-d6 10.6(1H, s), 8.34(1H, s), 8. 13(2H, d, J=8.7Hz), 8.09-7. 98(4H, m), 7.82(2H, d, J=8.7 Hz), 7.50-7.35(5H, m), 7.20 -7.17(2H, d, J=9.0Hz), 5.24 (2H, s), 5.01(1H, quint, J=9 .3Hz), 2.40-1.60(8H, m).
Purity	>90% (NMR)		_
MS	532 (M+1)		

Example 1	No. 62	1H NMR(δ) ppm
но		300MHz, DMSO-d6 8. 32 (1H, s), 8. 26 (1H, d, J=8 .7Hz), 8. 04 (1H, d, J=8. 7Hz) .7. 77 (2H, d, J=8. 4Hz), 7. 52 (2H, d, J=6. 9Hz), 7. 46-7. 39 (5H, m), 5. 28 (2H, s), 4. 38 (1 H, m), 3. 71 (1H, m), 2. 60-2. 1 5 (2H, m), 2. 04-1. 96 (4H, m), 1. 30-1. 20 (2H, m).
Purity	>90% (NMR)	
MS	443 (m+1)	

Example N	· ·	63	1H NMR(δ) ppm
HO!		>	300MHz, DMSO-d6 8. 27 (1H, s), 8. 14 (1H, d, J=8 .7Hz), 7. 96 (1H, d, J=8. 4Hz) ,7. 71 (2H, d, J=9. 0Hz), 7. 51 (2H, d, J=6. 9Hz), 7. 46-7. 37 (3H, m), 7. 30 (2H, d, J=8. 4Hz), 5. 25 (3H, s), 4. 39 (1H, m), 3. 44 (1H, m), 3. 27 (3H, s), 2. 60-1. 95 (6H, m), 1. 25-1. 05 (2H, m).
Purity	約90% (NMR)		
MS	457 (M+1)	-	

Table 12

Example N	lo.	64	1H NMR(δ) ppm
HO 1			300MHz, DMSO-d6 12.25(1H, brs), 7.70-7.30(9H, m), 7.20(2H, d, J=8.7Hz), 7.14(1H, d, J=8.4Hz), 5.20 (2H, s), 4.84(1H, quint, J=6.0Hz), 3.66(2H, s), 2.30-1. 51(8H, m)
Purity	>90% (NMR)		
MS	427 (M+1)		

Example 1	No. 6	5	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.64(1H, brs), 8.13(1H, s) ,7.80(1H, d, J=7.2Hz), 7.59 (1H, d, J=8.7Hz), 7.48-7.30 (5H, m), 5.11(2H, s), 5.03(1 H, quint, J=8.7Hz), 4.20-4. 05(2H, m), 3.45-3.90(3H, m) ,2.15-1.60(12H, m)
Purity	>90% (NMR)		
MS	448 (M+1)		

· .		
Example 1	No. 66	1H NMR(δ) ppm
но		300MHz, DMSO-d6 10. 59 (1H, s), 8. 31 (1H, s), 8 . 10 (2H, d, J=8. 6Hz), 8. 03 (1 H, d, J=8. 7Hz), 8. 00-7. 85 (3 H, m), 7. 80 (2H, d, J=8. 6Hz), 7. 41 (2H, d, J=8. 2Hz), 4. 98 (1H, quint, J=8. 8Hz), 2. 71-1 . 10 (19H, m)
purity	>90% (NMR)	
MS	508 (M+1)	

Table 13

Example 1	No. 67	1
но		300MHz, DMSO-d6 12.81(1H, brs), 8.42(1H, s), 7.90(1H, d, J=8.5Hz), 7.80 -7.52(6H, m), 7.44(2H, d, J=8.6Hz), 5.25(2H, s), 4.88(1H, quimt, J=8.8Hz), 2.30-1.52(8H, m)
Purity	>90% (NMR)	
MS	481 (M+1)	

Example	No.	68	1H NMR(δ) ppm
но		CI CI	300MHz, DMSO-d6 8. 31 (1H, d, J=1. 4Hz), 8. 05 (1H, d, J=8. 6Hz), 7. 96 (1H, d, J=8. 6Hz), 8. 86-8. 61 (4H, m) 7. 51 (1H, d, J=6. 3Hz), 7. 33 (2H, d, J=8. 8Hz), 5. 28 (2H, s), 4. 94 (1H, quint, J=8. 8Hz) , 2. 31-1. 60 (8H, m)
Purity	>90% (NMI	₹)	
MS	481 (N+1)		

Example 1	No. 69	1H NMR(δ) ppm
H0 1		300MHz, DMSO-d6 9.88(1H, s), 9.42(1H, s), 8. 32(1H, s), 8.09and8.02(2H, ABq, J=9.0Hz), 7.81and7.78 (4H, A'B'q, J=9.2Hz), 7.50(2H, d, J=7.8Hz), 7.31(2H, t, J=7.8Hz), 5.03(1H, quint, J=8.7Hz), 5.03(1H, quint, J=8.7Hz), 2.34-2.17(4H, m), 2.13-1.96(2H, m), 1.83-1.64(2H, m)
Purity	>90% (NMR)	m)
MS	441 (M+1)	

Table 14

Example 1	No.	70	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 27 (1H, d, J=1. 2Hz), 8. 04 (1H, d, J=8. 7Hz), 7. 94 (1H, d, J=8. 7Hz), 7. 72 (2H, d, J=8. 7 Hz), 7. 60-7. 20 (12H, m) 6. 74 (1H, s), 4. 92 (1H, quint, J=8 .9Hz), 2. 30-1. 58 (8H, m)
Purity	>90% (NMR)		
MS	489 (M+1)		

Example 1	No.	71	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 31 (1H, s), 8. 05 (1H, d, J=8 .7Hz), 7. 97 (1H, d, J=8. 7Hz) ,7. 76 (2H, d, J=8. 6Hz), 7. 44 -7. 19 (7H. m), 4. 94 (1H, quin t, J=8. 8Hz), 4. 35 (2H, t, J=6 .7Hz), 3. 10 (2H, t, J=6. 7Hz) ,2. 32-1. 60 (8H, m)
Purity	>90% (N	MR)	
MS	427 (M+1)	

Example 1	No.	72	1H NMR(δ) ppm
но		>	300MHz, DMSO-d6 8. 30 (1H, s), 8. 25 (1H, d, J=8 .7Hz), 8. 03 (1H, d, J=9. 0Hz) ,7. 75 (2H, d, J=8. 7Hz), 7. 51 (2H, d, J=7. 2Hz), 7. 46-7. 33 (5H, m), 5. 27 (2H, s), 4. 36 (1 H, m), 2. 50-2. 25 (2H, m), 2. 1 5-2. 00 (2H, m), 1. 95-1. 85 (2 H, m), 1. 35 (1H, m), 1. 20-1. 1 0 (2H, m), 0. 87 (9H, s).
Purity	>90% (NMR)	
MS	483 (M+1)		

Table 15

Example:	No. 73	ih NMR(δ) ppm
H0 0		300MHz, DMSO-d6 7. 59 (2H, d, J=8. 4Hz), 7. 52- 7. 35 (6H, m), 7. 20 (2H, d, J=8. 7Hz), 7. 14 (1H, d, J=2. 1Hz), 6. 90 (1H, dd, J=9. 0, 2. 4Hz), 5. 21 (2H, s), 4. 83 (1H, quint, J=8. 7Hz), 4. 70 (2H, s), 2. 30-1. 90 (6H, m), 1. 75-1. 55 (2H, m).
Purity	>90% (NMR)	
MS	443 (M+1)	

Example I	No. 74	1H NMR(δ) ppm
но		300MHz, DMSO-d6 8. 27 (1H, s), 8. 06and7. 97 (2 H, ABq, J=8. 7Hz), 7. 57and6. 86 (4H, A'B' q, J=8. 9Hz), 7. 4 2-7. 26 (5H, m), 5. 04 (1H, qui nt, J=9. 0Hz), 4. 42 (2H, s), 2 .32-1. 94 (6H, m), 1. 80-1. 62 (2H, m)
Purity	>90% (NMR)	
MS	412 (M+1)	

Example 1	Ю.	75	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.80(1H, s), 8.26(1H, s), 7 .90(1H, d, J=9.2Hz), 7.76-7 .60(8H, m), 7.35(2H, d, J=8.4Hz), 4.84(1H, quint, J=8.8Hz), 3.23(3H, s), 2.32-1.90 (6H, m), 1.78-1.61(2H, m)
Purity	>90% (NMR)		
MS	476 (M+1)		

Table 16

Example	No.	76	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 29(1H, s), 8. 07and7. 49(2 H, ABq, J=8. 7Hz), 7. 66and7. 00(4H, A'B'q, J=7. 7Hz), 7. 3 9-7. 24(5H, m), 5. 05(1H, qui nt, J=8. 8Hz), 4. 76(2H, s), 3 .21(3H, s), 2. 35-1. 92(6H, m), 1. 81-1. 62(2H, m)
Purity	>90% (NMR)		
MS .	426 (M+1)		

Example 1	No. 77	1H NMR(δ) ppm
HO		300MHz, DMSO-d6 8. 21 (1H, s), 7. 87 (1H, s), 7. 56and7. 43 (4H, ABq, J=8. 1Hz), 7. 34-7. 16 (5H, m), 4. 25 (1 h, brt, J=12. 5Hz), 3. 06-2. 9 2 (4H, m), 2. 41-2. 17 (2H, m), 1. 96-1. 77 (4H, m), 1. 72-1. 5 8 (1H, m), 1. 48-1. 15 (3H, m)
Purity	>90% (NMR)	
MS	425 (M+1)	

Example N	0. 78	1H NMR(δ) ppm
HO		300MHz, DMSO-d6 8. 14(1H, s), 7. 79(1H, d, J=9 .0Hz), 7. 57(1H, d, J=8. 7Hz) , 7. 40-7. 20(5H, m), 4. 89(1H , quint, J=8. 7Hz), 3. 54(2H, s), 3. 19-2. 90(3H, m), 2. 23- 1. 69(14H, m)
Purity	>90% (NMR)	
MS	404 (M+1)	

Table 17

Example No.	79	1H NMR(δ) ppm
HO		300MHz, DMSO-d6 8. 15(1H, s), 7. 81(1H, d, J=8 .4Hz), 7. 59(1H, d, J=9. OHz) , 7. 50-7. 38(5H, m), 5. 05(1H, quint, J=9. OHz), 3. 85-2. 9 5(3H, m), 2. 20-1. 65(14H, m)
Purity >90	% (NMR)	
MS	118 (M+1)	

Example No.	80	1H NMR(δ) ppm
HO NO	=0	300MHz, DMSO-d6 8.17(1H, m), 7.84(1H, d, J=8 .4Hz), 7.78-7.62(3H, m), 7. 49(2H, d, J=8.1Hz), 5.05-4. 91(1H, m), 3.80-3.70(2H, m), 3.30-3.12(1H, m), 2.48-2. 31(5H, m), 2.15-1.60(12H, m)
Purity > 9 0% (NM	R)	1
MS 468 (M+1)		

Example	No.	81	1H NMR(δ) ppm
но		CI	300MHz, DMSO-d6 12.75(1H, brs), 8.21(1H, d, J=1.4Hz), 7.49(1H, d, J=8.6 Hz), 7.85(1H, dd, J=8.6, 1.4 Hz), 7.70-7.55(5H, m), 7.23(2H, d, J=8.7Hz), 5.25(2H, s), 4.36-4.15(1H, m), 2.39-2.18(2H, m), 2.00-1.78(4H, m), 1.70-1.57(1H, m), 1.48-1.15(3H, m)
Purity	>90% (NMR)		
MS	495 (M+1)		

Table 18

Example No.	82	1H NMR(δ) ppm
HO NO		300MHz, DMSO-d6 8. 27 (1H, s), 8. 22 (1H, d, J=8 . 7Hz), 8. 02 (1H, d, J=8. 7Hz) ,7. 69 (2H, d, J=8. 7Hz), 7. 60 -7. 50 (4H, m), 7. 45-7. 25 (8H ,m), 6. 75 (1H, s), 4. 21-4. 23 (1H, m), 2. 39-2. 18 (2H, m), 2 . 10-1. 78 (4H, m), 1. 70-1. 15 (4H, m)
Purity >90% (NMR)		
MS 503 (M+1)		

Example	No.	83	1H NMR(δ) ppm
HO		\	300MHz, DMSO-d6 13.2(1H, brs), 8.30(1H, s), 8.23(1H, d, J=8.8Hz), 8.02(1H, d, J=8.7Hz), 7.74(2H, d, J=8.6Hz), 7.40-7.33(5H, m) ,5.22(2H, s), 4.36(1H, m), 2 .50-1.40(10H, m), 1.31(18H, s).
Purity	>90% (NMR)	
MS	539 (M+1)		

Example	No.	84	1H NMR(δ) ppm
HD		>	mixture of isomers(cis:trans=3:1) 300MHz, DMSO-d6 8.30(1H, s), 8.20-7.95(2H, m), 7.72(2H, d, J=8.4Hz), 7.52-7.29(7H, m), 5.25(2H, s), 4.34, 3.40(1H, m), 2.50-2.20(2H, m), 2.05-1.50(6H, m), 1.14, 0.90(3H, d, J=6.9, 6.3Hz), 1.09(1H, m).
Purity	>90% (NMF	2)	
MS	441 (M+1)		·

Table 19

Example No	•	85	1H NMR(δ) ppm
HO	_ _\		300MHz, DMSO-d6 8. 25(1H, s), 8. 14-7. 83(6H, m), 7. 77-7. 44(5H, m), 7. 21(2H, d, J=7. 8Hz), 4. 44(2H, brt), 4. 31(1H, brt), 3. 56(2H, brt), 2. 20-2. 16(2H, m), 2. 00-1. 74(4H, m), 1. 70-1. 55(1H, m), 1. 45-1. 14(3H, m)
Purity	>90% (NMR))	
MS	491 (M+1)		

Example	No. 86	1H NMR(δ) ppm 300MHz, DMSO-d6
но		12. 75 (1H, s), 8. 23 (1H, s), 8 .15 (1H, d, J=7. 6Hz), 8. 02-7 .53 (10H, m), 7. 32 (2H, d, J=8 .7Hz), 5. 68 (2H, s), 4. 32 (1H ,brt, J=12. 2Hz), 2. 41-2. 20 (2H, m), 2. 01-1. 78 (4H, m), 1 .71-1. 56 (1H, m), 1. 50-1. 16 (3H, m)
Purity	>90% (NMR)	-
MS	477 (M+1)	

Example 1	No. 8	7 1H NMR(δ) ppm 300MHz, DMSO-d6
HO N		300MH2, DMSO GG 12. 75 (1H, brs), 8. 16 (1H, s) , 7. 91and7. 82 (2H, ABq, J=8. 5Hz), 7. 44and6. 86 (4H, A' B' q, J=8. 6Hz), 7. 39-7. 26 (10H ,m), 4. 82 (2H, s), 4. 35 (1H, b rt, J=12. 2Hz), 2. 35-2. 16 (2 H, m), 1. 97-1. 75 (4H, m), 1. 6 9-1. 56 (1H, m), 1. 45-1. 16 (3 H, m)
Purity	>90% (NMR)	
MS	516 (M+1)	

Table 20

Example No. 88	1H NMR(δ) ppm 300MHz, DMSO-d6
HO	8. 31 (1H, s), 8. 26and8. 06 (2 H, ABq, J=8. 9Hz), 7. 73and7. 22 (4H, A'B' q, J=8. 7Hz), 7. 5 0-7. 36 (8H, m), 5. 10 (2H, s), 4. 37 (1H, brt, J=12. 2Hz), 2. 38-2. 28 (2H, m), 2. 10-1. 80 (4H, m), 1. 70-1. 56 (1H, m), 1. 50-1. 20 (3H, m)
Purity >90% (NMR)	
MS 503 (M+1)	
Example No. 89	1H NMR(δ) ppm
0	

Example No.	89	1H NMR(δ) ppm	
HO			
Purity	91% (HPLC)		
MS	427 (M+1)		

Example N	0.	90	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 40-8. 20 (2H, m), 8. 04 (1H, d, J=8. 4Hz), 7. 65 (2H, d, J=8. 4Hz), 7. 50-7. 10 (12H, m), 5. 08 (1H, m), 4. 33 (1H, m), 3. 00 (4H, m), 2. 50-1. 10 (10H, m)
Purity	>90%	(NMR)	
MS	531 (M+1)	

Table 21

Example	No.	91	1H NMR(δ) ppm
HO			300MHz, DMSO-d6 8.31(1H, s), 8.2 .7Hz), 8.08-8.0 77-7.58(5H, m), J=8.7Hz), 5.81((1H, m), 2.50-1.
Purity	約90% (NMR)	
MS	455 (M+1)	-	

-d6 8.27(1H, d, J=8 8.03(3H, m), 7. m), 7.31(2H, d, 81(2H, s), 4.40 -1.20(10H, m).

Example	No.	92	1H NMR(δ) ppm
но	2HCI		300MHz, DMSO-d6 11.8(1H, brs), 8.07(1H, s), 7.89(1H, d, J=8.7Hz), 7.84(1H, d, J=8.4Hz), 7.69(2H, m), 7.48(3H, m), 4.42(2H, s), 4 .11(1H, m), 3.73(4H, m), 3.4 0(4H, m), 2.40-1.40(10H, m)
Purity	>90% (NM	R)	
MS	419 (M+1)		·

Example 1	10. 9	- [
но		300MHz, DMSO-d6 8. 32 (1H, s), 8. 28 (1H, d, J=8 .9Hz), 8. 05 (1H, d, J=8. 7Hz), 7. 72 (2H, d, J=8. 7Hz), 7. 38 (4H, d, J=7. 2Hz), 7. 31 (4H, t .J=7. 3Hz), 7. 21-7. 17 (4H, m .J=7. 9Hz), 4. 01 (2H, t, J=6. 2Hz), 2. 57 (2H, m), 2. 50-2. 20 (2H, m), 2. 10-2. 00 (2H, m), 2. 00-1. 75 (2H, m), 1. 75-1. 55 (2H, m), 2. 75-1. 55 (
Purity	>90% (NMR)	1H, m), 1.55-1.20 (3H, m).
MS	531 (M+1)	

Table 22

Example No.	94 1H NMR(δ) ppm
HO N	300MHz, DMSO-d6 8. 32 (1H, s), 8. 27 (1H, d, J=9 .0Hz), 8. 05 (1H, d, J=8. 7Hz) .7. 75-7. 70 (3H, m), 7. 56 (1H .d, J=8. 4Hz), 7. 55-7. 35 (6H .m), 7. 22 (2H, d, J=8. 7Hz), 5 .11 (2H, s), 4. 36 (1H, m), 2. 4 0-2. 15 (2H, m), 2. 15-1. 95 (2 H, m), 1. 95-1. 75 (2H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 20 (3
Purity >90% (NMR)	H, m).
MS 537 (M+1)	

Example	No.	95	1H NMR(δ) ppm
но			300Hz, DMSO-d6 12.9(1H, brs), 8.02(1H, s), 7.82(2H, m), 7.40-7.25(5H, m), 4.58(2H, s), 4.09(1H, m), 3.71(1H, m), 3.49(2H, m), 3.21(2H, m), 2.35-1.30(14H, m).
Purity	>90% (NMF	₹)]
MS	434 (M+1)		

Example	No.	96	1H NMR(δ) ppm
HO		-0,	300MHz, DMSO-d6 8. 31(1H, d, J=1. 3Hz), 8. 27(1H, d, J=8. 8Hz), 8. 05(1H, d, J=8. 8Hz), 7. 76(2H, d, J=8. 7 Hz), 7. 40-7. 25(4H, m), 7. 06 -6. 90(3H, m), 4. 53-4. 26(5H, m), 2. 40-2. 18(2H, m), 2. 12 -1. 56(5H, m), 1. 50-1. 19(3H, m)
Purity	>90%	(NMR)	
MS	457	(M+1)	

Table 23

Example No.	97	1H NMR(δ) ppm
HO I I		300MHz, DMSO-d6 8. 32 (1H, d, J=1. 3Hz), 8. 29 (1H, d, J=8. 8Hz), 8. 05 (1H, dd , J=8. 8, 1. 3Hz), 8. 42 (2H, d, J=8. 8Hz), 7. 37-7. 16 (7H, m) , 4. 48-4. 30 (1H, m), 4. 12 (2H , t, J=6. 2Hz), 2. 83-2. 70 (2H , m), 2. 40-1. 50 (9H, m), 1. 59 -1. 19 (3H, m)
Purity >90	% (NMR)	
MS	455 (M+1)	

Example	No.	98	1H NMR(δ) ppm
HO			300MHz, DMSO-d6 8. 28(1H, d, J=1. 3Hz), 8. 21(1H, d, J=8. 8Hz), 8. 01(1H, d, J=10. 1Hz), 7. 70(2H, d, J=8. 7Hz), 7. 33-7. 12(7H, m), 4. 4 4-4. 28(1H, m), 4. 10(2H, t, J =6. 3Hz), 2. 62(2H, t, J=7. 4H z), 2. 39-2. 15(2H, m), 2. 10- 1. 18(14H, m)
Purity	>90% (NMR)	_
MS	483 (M	+1)	

Example	No.	99	1H NMR(δ) ppm 300MHz, DMSO-d6
но			300mHz, DMSO-dO 12. 93 (1H, brs), 8. 30 (1H, d, J=1. 4Hz), 8. 04 (1H, d, J=8. 7 Hz), 7. 92 (1H, dd, J=8. 7, 1. 4 Hz), 7. 59-7. 34 (5H, m), 7. 07 (1H, s), 5. 38 (2H, s), 4. 78-4 .60 (1H, m), 2. 32-2. 14 (2H, m), 2. 03-1. 28 (8H, m)
Purity	>90% (NMR)		
MS	418 (M+1)		

Table 24

Example 1	No.	100	1H NMR(δ) ppm
NaO		_	300MHz, DMSO-d6 8. 46 (1H, d, J=2. 1Hz), 8. 16 (1H, s), 8. 00 (1H, dd, J=8. 5, 2 .1Hz), 7. 87 (1H, d, J=8. 5Hz), 7. 68 (1H, d, J=8. 5Hz), 7. 55 -7. 30 (5H, m), 7. 08 (1H, d, J=8. 5Hz), 5. 45 (2H, s), 4. 25-4 .08 (1H, m), 2. 39-2. 18 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1 .55 (1H. m), 1. 45-1. 19 (3H, m)
Purity	>90% (NM	R)]'
MS	. 427 (M+1)		

Example No.	101	1H NMR(δ) ppm
## - N	, H²0, CH*	300MHz, DMSO-d6 8. 33 (1H, s), 8. 31 (1H, d, J=6 .9Hz), 8. 06 (1H, d, J=8. 4Hz) ,7. 76and7. 29 (4H, ABq, J=8. 9Hz), 6. 68 (2H, s), 4. 37 (1H, m), 4. 35 (2H, t, J=7. 0Hz), 3. 79 (6H, s), 3. 63 (3H, s), 3. 04 (2H, t, J=6. 9Hz), 2. 30 (2H, m), 2. 04 (2H, m), 1. 86 (2H, m), 1. 65 (1H, m), 1. 50-1. 15 (3H,
Purity >90% (N	IMR)	
MS 531 (M+	1)	<u> </u>

Example	No.	102	IH NMR(δ) ppm
но	N CH ₃	- ◆>	300MHz, DMSO-d6 12.88(1H, s), 8.34(1H, s), 7 .86(1H, d, J=8.5Hz), 7.73(1 H, d, J=8.5Hz), 7.63and7.23 (4H, ABq, J=8.7Hz), 7.52-7. 35(5H, m), 5.22(2H, s), 4.31 (1H, m), 2.39(2H, m), 1.79(2 H, m), 1.53(2H, m), 1.31(2H, m), 1.11(3H, s), 0.95(3H, s)
Purity	>90% (NM	IR)	
MS	455 (M+1)		

Table 25

Example	No.	103	1H NMR(δ) ppm
HO			300MHz, DMSO-d6 12.79(1H, brs), 8.22(2H, s), 8.02-7.78(4H, m), 7.63-7.42(6H, m), 7.20-7.09(2H, m), 4.43(2H, s), 4.27(1H, brt, J=12.2Hz), 3.59(2H, s), 2.39-2.15(2H, m), 1.98-1.72(4H, m), 1.68-1.59(1H, m), 1.43-1.12(3H, m)
Purity	>90% (NMR)]
MS	491 (M+1)	•	

Example	No.	104	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 7 .94and7.86(2H, ABq, J=8.6H z), 7.64and7.05(4H, A'B'q, J=8.7Hz), 7.32-7.09(9H, m) ,5.13(2H, s), 4.28(1H, brt, J=12.2Hz), 2.36-2.19(2H, m)),1.95-1.77(4H, m), 1.66-1 .56(1H, m), 1.46-1.10(3H, m)
Purity	>90% (NM	R)	
MS	519 (M+1)		

Example	No.	105	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8.23(1H, s), 7.94and7.87(2 H, ABq, J=8.6Hz), 7.68and7. 17(4H, A'B'q, J=8.7Hz), 7.4 6-7.33(6H, m), 6.93and6.75 (2H, A"B"q, J=8.2Hz), 6.82(1H, s), 5.13(2H, s), 4.30(1H, brt, J=12.2Hz), 2.39-2.18 (2H, m), 1.98-1.77(4H, m), 1.71-1.59(1H, m), 1.48-1.20
Purity	>90% (NMR)		(3H, m)
MS	519 (M+1)		

Table 26

Example No.	106	1H NMR(δ) ppm
HO N	□}—o CH	300MHz, DMSO-d6 12.89(1H, brs), 9.73(1H, s), 8.24(1H, s), 8.03and7.91(2H, ABq, J=8.7Hz), 7.66and7.04(4H, A'B'q, J=8.7Hz), 7. 16-7.03(3H, m), 6.89(2H, t, J=9.2Hz), 4.33(1H, brt, J=12.2Hz), 2.40-2.18(2H, m), 2.00-1.78(4H, m), 1.70-1.58(1H, m), 1.50-1.20(3H, m)
Purity >90%	(NMR)	
MS 429	(M+1)	

•		
Example N	0. 107	1H NMR(δ)·ppm
но		300MHz, DMSO-d6 12. 98 (1H, brs), 9. 82 (1H, brs), 8. 27 (1H, s), 8. 09and7. 9 4 (2H, ABq, J=8. 7Hz), 7. 74and7. 22 (4H, A'B'q, J=8. 7Hz), 7. 28-7. 22 (1H, m), 6. 67-6. 5 4 (3H, m), 4. 35 (1H, brt, J=12.2Hz), 2. 40-2. 20 (2H, m), 2. 05-1. 80 (4H, m), 1. 72-1. 59 (1H, m), 1. 50-1. 21 (3H, m)
Purity	>90% (NMR)	
MS	429 (M+1)	

Example No.	108	1H NMR(δ) ppm
HO N		300MHz, DMSO-d6 8. 24 (1H, s), 8. 01and7. 90 (2 H, ABq, J=8. 7Hz), 7. 65and7. 03 (4H, A'B'q, J=8. 7Hz), 7. 3 2-7. 20 (3H, m), 7. 08-7. 03 (1 H, m), 4. 32 (1H, brt, J=12. 2H z), 3. 77 (3H, s), 2. 36-2. 20 (2H, m), 2. 00-1. 78 (4H, m), 1. 71-1. 59 (1H, m), 1. 44-1. 11 (3H, m)
Purity >90)% (NMR)	
MS	443 (M+1)	

Table 27

Example	No.	109	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.75(1H, s), 8.24(1H, s), 7 .96and7.87(2H, ABq, J=9.0H z), 7.69and7.19(4H, A'B'q, J=8.6Hz), 7.37(1H, t, J=7.1 Hz), 6.84-6.70(3H, m), 4.31 (1H, brt, J=12.2Hz), 3.78(3 H, s), 2.39-2.20(2H, m), 1.9 8-1.78(4H, m), 1.76-1.60(1 H, m), 1.48-1.13(3H, m)
Purity	>90% (NM	R)	
MS	443 (M+1)		

Example No.	110	1H NMR(δ) ppm
HO NO	>	300MHz, DMSO-d6 8. 31 (1H, s), 8. 26and8. 04 (2 H, ABq, J=8. 8Hz), 7. 75and7. 71 (4H, A'B' q, J=8. 8Hz), 7. 3 2-7. 03 (4H, m), 4. 34 (1H, brt , J=12. 2Hz), 3. 94 (2H, t, J=6 .3Hz), 2. 40-2. 19 (2H, m), 2. 11-1. 81 (4H, m), 1. 72-1. 16 (6H, m), 0. 71 (3H, t, J=7. 3Hz)
Purity > 9 0% (NM	R)	
MS 471 (M+1)		

Example	No.	111	1H NMR(δ) ppm
HO LOCAL COMPANY OF THE PARK O		300MHz, DMSO-d6 8. 22(1H, s), 7. 91and7. 87(2 H, ABq, J=8. 7Hz), 7. 68and7. 18(4H, A'B'q, J=8. 7Hz), 7. 3 5(1H, t, J=8. 5Hz), 6. 80(1H, d, J=9. 0Hz), 6. 72-6. 68(2H, m), 4. 30(1H, brt, J=12. 2Hz) , 3. 94(2H, t, J=6. 5Hz), 2. 39 -2. 18(2H, m), 1. 97-1. 58(7H, ,m), 1. 45-1. 20(3H, m), 0. 97 (3H, t, J=7. 4Hz)	
Purity	>90%	(NMR)	
MS	471	(M+1)	

Table 28

Example No.	112	1H NMR(δ) ppm
HO N N	<u></u>	300MHz, DMSO-d6 12. 73 (1H, s), 8. 22 (1H, s), 7 . 94and7. 85 (2H, ABq, J=9. 3H z), 7. 61and7. 01 (4H, A'B'q, J=8. 6Hz), 7. 25-7. 00 (4H, m) , 5. 25 (2H, brs), 4. 55 (2H, d, J=6. 6Hz), 4. 29 (1H, brt, J=1 2. 2Hz), 2. 38-2. 18 (2H, m), 1 . 96-1. 78 (4H, m), 1. 70-1. 56 (1H, m), 1. 67 (3H, s), 1. 60 (3 H, s), 1. 48-1. 15 (3H, m)
Purity >90% (NI	MR)	n, s/, 1. 40 1. 10 (on, 2/
MS 497 (M+1)		

Example No.	113	1H NMR(δ) ppm
100		300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 7 .95and7.86(2H, ABq, J=8.9H z), 7.69and7.18(4H, A'B'q, J=8.9Hz), 7.35(1H, t, J=8.3 Hz), 6.81-6.69(3H, m), 5.41 (2H, brs), 4.54(2H, d, J=6.6 Hz), 4.31(1H, brt, J=12.2Hz), 2.41-2.18(2H, m), 1.98-1 .76(4H, m), 1.73(3H, s), 1.7 0-1.58(1H, m), 1.68(3H, s),
Purity >90% (NMR)	1. 45-1. 17 (3H, m)
MS 497 (M	+1)	

Example 1	10.	114	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.73(1H, s), 8.22(1H, s), 7 .94and7.85(2H, ABq, J=8.4H z), 7.60and6.99(4H, A'B'q, J=8.6Hz), 7.29-7.00(4H, m) ,4.29(1H, brt, J=12.2Hz), 3 .99(2H, t, J=6.3Hz), 2.41-2 .20(2H, m), 1.95-1.76(4H, m)), 1.70-1.14(7H, m), 0.76(3 H, d, J=6.6Hz)
Purity	>90%	(NMR)	
MS	499 (M+1)	

Table 29

Example No.	115	1H NMR(δ) ppm
HO N		300MHz, DMSO-d6 8. 23 (1H, s), 7. 93and7. 87 (2 H, ABq, J=8. 6Hz), 7. 69and7. 19 (4H, A'B'q, J=8. 6Hz), 7. 3 5 (1H, t, J=7. 8Hz), 6. 82-6. 6 9 (3H, m), 4. 30 (1H, brt, J=12 . 2Hz), 4. 00 (2H, t, J=6. 9Hz) , 2. 38-2. 20 (2H, m), 1. 97-1. 54 (8H, m), 1. 47-1. 20 (3H, m) , 0. 93 (6H, d, J=6. 6Hz)
Purity >90%	(NMR)	
MS 499	(M+1)	

Example	No.	116	1H NMR(δ) ppm
но		6	300MHz, DMSO-d6 8. 30 (1H, s), 8. 25 (1H, d, J=8 .9Hz), 8. 03 (1H, d, J=8. 8Hz) ,7. 68 (2H, d, J=8. 8Hz), 7. 24 (2H, d, J=7. 2Hz), 7. 19-7. 10 (6H, m), 6. 94 (2H, t, J=7. 2Hz), 4. 34 (1H, m), 4. 19 (4H, brs), 3. 10 (4H, brs), 2. 40-2. 15 (2H, m), 2. 10-1. 95 (2H, m), 1 .95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 20 (3H, m).
Purity	>90% (NMR)	(тп, ш), т. оо т. 20 (ол, 2)
MS	557 (M+1)		

Example	No.	117	1H NMR(δ) ppm
100		>	300MHz, DMSO-d6 12.8(1H, brs), 8.22(1H, s), 7.98(1H, d, J=8.7Hz), 7.87(1H, d, J=8.6Hz), 7.80(2H, d, J=8.2Hz), 7.72-7.67(3H, m), 7.59(2H, d, J=8.7Hz), 7.54 -7.51(2H, m), 7.42-7.41(1H, m), 7.11(2H, d, J=8.8Hz), 5.09(2H, s), 4.27(1H, m), 2.4 0-2.15(2H, m), 2.00-1.75(4H, m), 1.75-1.55(1H, m), 1.5
Purity	>90% (NMF	2)	5-1. 15 (3H, m).
MS	571 (M+1)		

Table 30

Example No.	118	1H NMR(δ) ppm
HO NO OI	C I	300MHz, DMSO-d6 13.3(1H, brs), 8.30(1H, s), 8.25(1H, d, J=8.9Hz), 8.04(1H, d, J=8.7Hz), 7.72(2H, d, J=8.8Hz), 7.57(4H, d, J=8.6 Hz), 7.47(4H, d, J=8.6Hz), 7.33(2H, d, J=8.9Hz), 6.84(1 H, s), 4.33(1H, m), 2.45-2.1 0(2H, m), 2.10-1.95(2H, m), 1.95-1.70(2H, m), 1.70-1.5 5(1H, m), 1.55-1.15(3H, m).
Purity >90% (NM	R)	J (111, m) , 21 00 21 50 (121)
MS 571 (M+1)		

Example No.	119	1H NMR(δ) ppm
HO NO NO	H ₃ C	300MHz, DMSO-d6 8.32-8.30(2H, m), 8.07-8.0 3(1H, m), 7.74and6.90(4H, A Bq, J=8.7Hz), 4.37(1H, m), 4 .31(2H, t, J-6.8Hz), 3.74(3 H, s), 3.04(2H, t, J=6.7Hz), 2.30(2H, m), 2.02(2H, m), 1. 86(2H, m), 1.63(1H, m), 1.55 -1.15(3H, m)
Purity > 90% (N	IMR)	
MS 471 (M+	1)	

Example No.	120	IH NMR(δ) ppm
HO N	-0о-сн,	300MHz, DMSO-d6 8. 23 (1H, s), 7. 99 (1H, d, J=8 . 7Hz), 7. 88 (1H, d, J=8. 4Hz) , 7. 61and7. 16 (4H, ABq, J=8. 6Hz), 7. 30-7. 22 (2H, m), 7. 0 1 (2H, d, J=8. 1Hz), 6. 92 (1H, t, J=7. 5Hz), 4. 28 (1H, m), 4. 25 (2H, t, J=7. 2Hz), 3. 83 (3H , s), 3. 07 (2H, t, J=7. 1Hz), 2 . 28 (2H, m) 2. 00-1. 75 (4H, m) , 1. 70-1. 55 (1H, m), 1. 50-1.
Purity >90%	(NMR)	15 (3H, m)
MS 471	(M+1)	

Table 31

Example No.	121	1H NMR(δ) ppm
HO N	0	300MHz, DMSO-d6 12.85(1H, brs), 8.24(1H, s), 8.01(1H, d, J=8.7Hz), 7.90 (1H, d, J=8.6Hz), 7.62and, 7.17(4H, ABq, J=8.7Hz), 7.24 (1H, m), 6.94(2H, m), 6.82(1H, m), 4.32(2H, t, J=6.7Hz), 3.76(3H, s), 3.07(2H, t, J=6.7Hz), 2.29(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.15(3H, m)
Purity >90%	(NMR)	- 1.00 1.10(0.1, 1.2)
MS 471	(M+1)	

Example	No. 12	22 1H NMR(δ) ppm
но		300MHz, DMSO-d6 12.8(1H, brs), 8.22(1H, s), 7.87(2H, m), 7.62(2H, d, J=8 .1Hz), 7.60-7.20(7H, m), 5. 23(2H, s), 4.46(1H, m), 2.50 -2.30(2H, m), 1.70-1.40(10 H, m).
Purity	>90% (NMR)	
MS .	441 (M+1)	

Example	No. 1	23 1H NMR(δ) ppm
H0 1		300MHz, DMSO-d6 8. 24 (1H, s), 7. 97 (1H, d, J=9 .0Hz), 7. 87 (1H, d, J=8. 4Hz) , 7. 65 (2H, d, J=8. 7Hz), 7. 40 -7. 05 (9H, m), 7. 03 (2H, d, J= 8. 4Hz), 4. 31 (1H, m), 4. 18 (2 H, t, J=6. 6Hz), 2. 81 (2H, t, J=6. 3Hz), 2. 40-2. 20 (2H, m), 2. 00-1. 70 (4H, m), 1. 70-1. 5 0 (1H, m), 1. 50-1. 05 (3H, m).
Purity	>90% (NMR)	
MS	533 (M+1)	

Table 32

Example No.	124	1H NMR(δ) ppm
HO LA		300MHz, DMSO-d6 13.1(1H, brs), 8.29(1H, s), 8.17(1H, d, J=8.7Hz), 7.99(1H, d, J=8.7Hz), 7.77(2H, d, J=8.7Hz), 7.40-7.20(8H, m), 6.84(1H, d, J=9.3Hz), 6.75-6.72(2H, m), 4.36(1H, m), 4.22(2H, t, J=6.8Hz), 3.04(2H, t, J=6.7Hz), 2.40-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1
Purity >90% (N	MR)	H, m), 1.55-1.15(3H, m).
MS 533 (M+1)	

Example No.	125	1H NMR(δ) ppm
HO N		300MHz, DMSO-d6 8. 32 (1H, s), 8. 28 (1H, d, J=8 .7Hz), 8. 05 (1H, d, J=9. 0Hz), 7. 73 (2H, d, J=9. 0Hz), 7. 43 (4H, d, J=7. 2Hz), 7. 36-7. 20 (8H, m), 4. 74 (2H, d, J=7. 5Hz), 4. 57 (1H, t, J=7. 5Hz), 4. 3 8 (1H, m), 2. 40-2. 15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 8 5 (2H, m), 1. 85-1. 55 (1H, m), 1. 55-1. 20 (3H, m).
Purity >90% (N	MR)	1. 55-1. 20 (511, 11)
MS 517 (M+1)	

Example	No. 126	1H NMR(δ) ppm
но		300MHz, DMSO-d6 8. 32(1H, s), 8. 14(1H, d, J=8 . 7Hz), 8. 03(1H, d, J=8. 7Hz) , 7. 77(2H, d, J=9. 0Hz), 7. 52 -7. 31(7H, m), 5. 74(2H, m), 5 . 26(2H, s), 4. 61(1H, m), 2. 9 6(1H, m), 2. 60-2. 10(5H, m).
Purity	>90% (NMR)	
MS	425 (M+1)	

Table 33

Example	No.	127	1H NMR(δ) ppm
100			300MHz, DMSO-d6 13. 2(1H, brs), 8. 33(1H, s), 8. 12(1H, d, J=8. 7Hz), 7. 96(1H, d, J=8. 8Hz), 7. 79(2H, d, J=8. 7Hz), 7. 52-7. 32(7H, m) , 5. 26(2H, s), 4. 92(1H, d, J= 49. 4Hz), 4. 57(1H, m), 2. 65- 2. 35(2H, m), 2. 25-1. 50(6H, m).
Purity	>90% (NMI	۲)	
MS	445 (M+1)		

Example N	0.	128	1H NMR(δ) ppm
HO C			300MHz, DMSO-d6 8, 21 (1H, s), 7. 92and7. 85 (2 H, ABq, J=8. 6Hz), 7. 61and7. 06 (4H, A'B' q, J=8. 6Hz), 7. 3 6-6. 91 (9H, m), 4. 24 (1H, brt, J=12. 2Hz), 2. 35-2. 15 (2H, m), 1. 95-1. 75 (4H, m), 1. 70-1. 58 (1H, m), 1. 48-1. 14 (3H, m)
Purity	>90% (NMR	()	
MS	505 (M+1)		

Example	No.	129	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 21 (1H, s), 7. 92and7. 86 (2 H, ABq, J=8. 6Hz), 7. 69and7. 22 (4H, A'B'q, J=8. 6Hz), 7. 5 2-7. 39 (1H, m), 7. 47and7. 41 (2H, A''B''q, J=8. 1Hz), 6. 91 (1H, d, J=8. 0Hz), 6. 89 (1H, d, J=8. 2Hz), 6. 75 (1H, s), 4. 36 -4. 18 (1H, m), 2. 38-2. 17 (2H , m), 1. 95-1. 76 (4H, m), 1. 70 -1. 59 (1H, m), 1. 44-1. 19 (3H
Purity	> 9 0 %	(NMR)	, m)
MS	505	(M+1)	

Table 34

Example No.	130	1H NMR(δ) ppm
		300MHz, DMS0-d6 8. 27 (1H, s), 7. 69 (2H, d, J=8 . 6Hz), 7. 49-7. 21 (11H, m), 5 . 08and5. 03 (2H, ABq, J=12. 6 Hz), 5. 07-4. 99 (1H, m), 4. 26 (2H, d, J=6. 6Hz), 2. 40-2. 18 (2H, m), 2. 04-1. 77 (4H, m), 1 . 70-1. 58 (1H, m), 1. 48-1. 15 (3H, m)
Purity >90	% (NMR)	
MS 5	90 (M+1)	

	_		
Example:	No.	131	1H NMR(δ) ppm
HO.		>	300MHz, DMSO-d6 8. 29 (1H, s), 8. 11 (1H, d, J=9 .0Hz), 7. 96 (1H, d, J=8. 4Hz) ,7. 80 (2H, d, J=8. 1Hz), 7. 72 -7. 41 (7H, m), 7. 12 (1H, d, J= 12. 6Hz), 7. 01 (1H, d, J=8. 4H z), 5. 12 (2H, s), 4. 06 (1H, m) ,2. 35-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 75-1. 55 (1H, m) ,1. 60-1. 20 (3H, m).
Purity	>90% (NMR)		
MS	589 (M+1)		

Example	No.	132	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.8(1H, brs), 8.23(1H, s), 7.97(1H, d, J=8.7Hz), 7.87(1H, d, J=8.6Hz), 7.66(2H, d, J=8.6Hz), 7.49-7.33(5H, m), 7.17-7.05(6H, m), 5.12(2H, s), 4.31(1H, m), 2.40-2.15 (2H, m), 2.05-1.20(8H, m).
Purity	>90%	(NMR)	
MS	519	(M+1)	

Table 35

•	· · · · · · · · · · · · · · · · · · ·	
Example No.	133	1H NMR(δ) ppm
HO NO	} -	300MHz, DMSO-d6 8. 57 (1H, s), 8. 01 (1H, d, J=8, 7Hz), 7. 66 (1H, d, J=8, 7Hz), 7. 51 (2H, d, J=8, 7Hz), 7. 31 (4H, d, J=8, 0Hz), 7. 16 (4H, d, J=8, 0Hz), 7. 09 (2H, d, J=8, 7Hz), 6. 26 (1H, s), 4. 37 (1H, m), 2. 41-2. 28 (2H, m), 2. 33 (6H, s), 2. 03-1. 84 (4H, m), 1. 77 (1H, m), 1. 45-1. 20 (3H, m)
Purity >90% (NMR)	7.
MS 531 (M+1)		

Example No.	134	1H NMR(δ) ppm
HO I NO INCIDENTIAL PROPERTY OF THE PROPERTY O	√ F	8.59(1H, d, J=1.5Hz), 8.02(1H, dd, J=8.7, 1.5Hz), 7.68(1H, d, J=8.7Hz), 7.54(2H, d, J=8.8Hz), 7.39(4H, dd, J=8.7, 5.3Hz), 7.08(4H, d, J=8.7Hz), 7.05(2H, d, J=8.8Hz), 6.29(1H, s), 4.36(1H, m), 2.43-2.19(2H, m), 2.04-1.85(4H, m), 1.78(1H, m), 1.45-1.23(3H, m).
Purity >90% (NA	AR)	
MS 539 (M+1)		

Example	No.	135	1 .
110		-0	300MHz, DMSO-d6 12. 34 (1H, brs), 7. 93 (1H, s) , 7. 55 (1H, d, J=8. 6Hz), 7. 33 -7. 15 (6H, m), 7. 11 (2H, d, J= 8. 6Hz), 4. 30-4. 20 (1H, m), 4 .07 (2H, t, J=6. 3Hz), 3. 93 (3 H, s), 2. 78 (2H, t, J=7. 4Hz), 2. 35-2. 19 (2H, m), 2. 12-2. 0 0 (2H, m), 1. 91-1. 79 (4H, m), 1. 69-1. 60 (1H, m), 1. 47-1. 2
Purity	>90%	(NMR)	0 (3H, m)
MS	485	(M+1)	

Table 36

Example	No.	136	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 13 (1H, s), 7. 65 (2H, d, J=8 .7Hz), 7. 63 (1H, s), 7. 35-7. 12 (7H, m), 4. 35-4. 20 (1H, m) ,4. 10 (1H, t, J=6. 3Hz), 2. 78 (2H, t, J=7. 5Hz), 2. 33-1. 78 (8H, m), 1. 70-1. 16 (4H, m)
Purity	>90% (1	NMR)	
MS	471 (M+	·1)	

Example	No.	137	1H NMR(δ) ppm
H0 H ₃ C		-•	300MHz, DMSO-d6 8. 24 (1H, s), 8. 11 (1H, s), 7. 76 (2H, d, J=9. 0Hz), 7. 37-7. 16 (7H, m), 4. 43-4. 30 (1H, m), 4. 13 (2H, t, J=6. 3Hz), 2. 84 -2. 68 (5H, m), 2. 42-2. 22 (2H, m), 2. 18-1. 80 (6H, m), 1. 70 -1. 20 (4H, m)
Purity	>90%	(NMR)	
MS	469	(M+1)	

Example	No.	138	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12. 73 (1H, brs), 8. 22 (1H, s), 7. 76 (1H, d, J=8. 7Hz), 7. 85 (1H, d, J=8. 7Hz), 7. 54-7. 49 (4H, m), 7. 42-7. 21 (5H, m), 7 . 11-7. 09 (3H, m), 6. 93 (1H, m), 5. 17 (2H, s), 4. 29 (3H, m), 3. 11 (2H, m), 2. 40-2. 20 (2H, m), 1. 99-1. 23 (8H, m)
Purity	>90% (NN	AR)	1
MS	547 (M+1)		

Table 37

Ėxample	No.	139	ih NMR(δ) ppm
"i			300MHz, DMSO-d6 12.73 (1H, brs), 8.22 (1H, s) ,7.93 (1H, d, J=8.7Hz), 7.73 (1H, m), 7.60-7.57 (2H, m), 7 .47-6.90 (1H, m), 5.11 (2H, s)),4.33-4.28 (3H, m), 3.09-3 .04 (2H, t, J=6.7Hz), 2.35-2 .20 (2H, m), 1.95-1.10 (8H, m)
Purity	>90%	(NMR)	
MS	547	(M+1)	

Example	No.	140	1	
HO			300MHz, DMSO-d6 12. 83 (2H, brs), 8. 22 (1H, s, 7. 94 (1H, d, J=8. 7Hz), 7. 8 (1H, d, J=8. 4Hz), 7. 63-7. (2H, m), 7. 26-7. 03 (6H, m), .73 (2H, s), 4. 30 (1H, m), 2 0-2. 15 (2H, m), 2. 00-1. 20 H, m)	85 60 . 4
Purity	>90%	(NMR)		
MS	487	(M+1)		

Example	No.	141	1H NMR(δ) ppm
но		-0	300MHz, DMSO-d6 12.87(1H, brs), 8.24(1H, s) ,7.97(1H, d, J=9.0Hz), 7.87 (1H, d, J=8.7Hz), 7.69and7. 19(4H, ABq, J=8.7Hz), 7.36(1H, t, J=8.7Hz), 6.80-6.72(3H, m), 4.71(2H, s), 4.32(1H, m), 2.29(2H, m), 1.95-1.25 (8H, m)
Purity	>90%	(NMR)	
MS	487	(M+1)	

Table 38

Example	No.	142	1H NMR(δ) ppm
HO		ે ,	300MHz, DMSO-d6 8. 32(1H, s), 8. 2 .7Hz), 8. 05(1H, ,7. 76-7. 72(3H, ,d, J=8. 4Hz), 7. ,m), 5. 11(1H, s)), 2. 35(3H, s), 2 H, m), 2. 15-1. 95 5-1. 75(2H, m), 1 H, m), 1. 55-1. 15
Purity	>90% (NMR	2)	_
MS	551 (M+1)		

15

20

25

30

35

40

45

50

z, DMSO-d6 1H, s), 8. 27 (1H, d, J=8 ,8. 05 (1H, d, J=9. 0Hz) -7. 72 (3H, m), 7. 54 (1H 8. 4Hz), 7. 39-7. 22 (7H -0. 4nz), 1. 35-1. 22(1n 5. 11 (1H, s), 4. 36(1H, m 35(3H, s), 2. 35-2. 15(2 2. 15-1. 95(2H, m), 1. 9 75(2H, m), 1. 75-1. 55(1 1. 55-1. 15(3H, m).

Example	No.	143	1H
но		CI CI	30 13 8. 1H 3H , 7 , d 8. H,
Purity	>90% (NM	IR)	J 5 (
MS	567 (M+1)		

 $NMR(\delta)$ ppm OMHz, DMSO-d6 . 1 (1H, brs), 8. 30 (1H, s), 24 (1H, d, J=8.8Hz), 8.03 (I, d, J=8. 7Hz), 7. 74-7. 71 (I, m), 7. 52 (1H, d, J=8. 3Hz) 7. 40-7. 36 (3H, m), 7. 23 (2H J=8.8Hz), 7.01(2H, d, J=7Hz), 5.11(2H, s), 4.35(1 m), 3. 79 (3H, s), 2. 45-2. 1 (2H, m), 2. 15-1. 95 (2H, m), 95-1.75 (2H, m), 1.75-1.5 (1H, m), 1.55-1.15(3H, m).

Example	No.	144
н		
Purity	>90% (NMR)
MS	585 (M-	+1)

1H NMR(δ) ppm 300MHz, DMSO-d6 13.0(1H, brs), 8.31(1H, s), 8. 23 (1H, d, J=8. 7Hz), 8. 04 (1H, d, J=8. 7Hz), 7. 80 (2H, d, J=8. 3Hz), 7. 70-7. 66 (3H, m) 7.55-7.40(4H, m), 7.03-6. 95 (2H, m), 5. 08 (2H, s), 4. 03 (1H, m), 2. 40-2. 15 (2H, m), 2 . 18(3H, s), 2.05-1.70(4H, m), 1.70-1.50(1H, m), 1.50-1 . 10 (3H, m).

Table 39

Example	No.	145
но Д) Cl
Purity	>90% (NMR))
MS	593 (M+1)	

10

15

20

25

30

35

40

45

50

55

300MHz, DMSO-d6 8. 31 (1H, s), 8. 23 (1H, d, J=8 .8Hz), 8. 02 (1H, d, J=8. 7Hz) ,7. 73-7. 71 (3H, m), 7. 54 (1H, d, J=8. 3Hz), 7. 48 (2H, d, J=8. 4Hz), 7. 41-7. 37 (3H, m), 7 .22 (2H, d, J=8. 7Hz), 5. 13 (2 H, s), 4. 34 (1H, m), 2. 40-2. 2 0 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 70-1. 5 5 (1H, m), 1. 50-1. 15 (3H, m), 1. 31 (9H, s).

1H NMR(δ) ppm

Example	No. 146
но	
Purity	>90% (NMR)
MS	555 (M+1)

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=8 .7Hz), 7. 97 (1H, d, J=8. 6Hz) ,7. 76 (1H, d, J=2. 1Hz), 7. 63 (1H, t, J=8. 5Hz), 7. 57 (1H, d d, J=8. 2, 2. 2Hz), 7. 55-7. 35 (6H, m), 7. 15 (1H, d, J=12. 1H z), 7. 02 (1H, d, J=8. 6Hz), 5. 10 (2H, s), 4. 07 (1H, m), 2. 35 -2. 10 (2H, m), 2. 00-1. 70 (4H ,m), 1. 70-1. 55 (1H, m), 1. 50 -1. 15 (3H, m).

Example	No.	147
но	CI-C	CI CI
Purity	>90% (NM	IR)
MS	605 (M+1)	

1H NMR(δ) ppm

300MHz, CDC13

8. 61 (1H, s), 8. 04 (1H, d, J=8. 7Hz), 7. 69 (1H, d, J=8. 7Hz), 7. 66 (1H, d, J=2. 4Hz), 7. 59 (2H, d, J=8. 7Hz), 7. 42 (1H, d d, J=8. 0, 2. 4Hz), 7. 38 (1H, t , J=1. 8Hz), 7. 28 (2H, d, J=1. 8Hz), 7. 26 (1H, d, J=8. 0Hz), 7. 03 (2H, d, J=8. 7Hz), 4. 94 (2H, s), 4. 37 (1H, m), 2. 43-2. 21 (2H, m), 2, 17-1. 86 (4H, m), 1. 79 (1H, m), 1. 43-1. 26 (3H, m).

Table 40

Example No.	148	1H NMR(δ) ppm
HO N F	-0 	300MHz, DMSO-d6 8. 21 (s, 1H), 7. 89 (1H, d, J=8 .7Hz), 7. 87 (1H, d, J=8. 7Hz) ,7. 63-7. 46 (5H, m), 7. 30-7. 12 (5H, m), 7. 08 (1H, d, J=11. 0Hz), 6. 81 (1H, s), 3. 92 (1H, m), 2. 15-2. 06 (2H, m), 1. 89- 172 (4H, m), 1. 61 (1H, m), 1. 4 2-1. 09 (3H, m).
purity >90%	(NMR)	
MS 557 ()	(+1)	

Example N	lo.	149	1H NMR(δ) ppm
			300MHz, DMSO-d6 8.24(1H, d, J=1.5Hz), 7.96(1H, d, J=9.0Hz), 7.88(1H, dd , J=9.0, 1.5Hz), 7.58(1H, d, J=8.7Hz), 7.50-7.30(5H, m) , 7.22-7.00(6H, m), 5.13(2H , s), 3.98-3.80(1H, s), 2.36 -1.10(10H, m)
Purity	>90% (NMR)	
MS	553 (M-	+1)	

Example :	No.	150	1H NMR(δ) ppm
		>	300MHz, DMSO-d6 8. 23 (1H, s), 8. 95 (1H, d, J=8 .4Hz), 7. 88 (1H, d, J=8. 7Hz) , 7. 66 (1H, d, J=8. 4Hz), 7. 52 -7. 28 (7H, m), 7. 23 (2H, d, J= 9. 3Hz), 7. 14 (2H, d, J=8. 7Hz), 5. 14 (2H, s), 3. 90-3. 72 (1 H, m), 2. 20-1. 10 (10H, m)
Purity	>90% (NMR)		
MS	587 (M+1)		

Table 41

Example No	. 18	· · · · · · · · · · · · · · · · · · ·
ной		300MHz, DMSO-d6 8. 18 (1H, s), 7. 92-7. 78 (3H, m), 7. 78-7. 58 (3H, m), 7. 58-7. 44 (4H, m), 7. 29 (1H, d, J=8. 2Hz), 7. 01 (2H, d, J=8. 7Hz), 4. 88 (1H, d, J=11. 8Hz), 4. 80 (1H, d, J=11. 8Hz), 4. 22 (1H, m), 2. 37-2. 16 (2H, m), 1. 95-1. 75 (4H, m), 1. 64 (1H, m), 1. 48-1. 14 (3H, m).
Purity	>90% (NMR)	
MS	605 (M+1)	

Example No.	152	1H NMR(δ) ppm
HO N		300MHz, DMSO-d6 8. 21 (2H, m), 7. 99-7. 80 (2H, m), 7. 63-7. 08 (9H, m), 4. 20-3. 98 (4H, m), 2. 20-2. 15 (2H, m), 1. 95-1. 74 (4H, m), 1. 70-1. 54 (1H, m), 1. 44-1. 14 (3H, m)
Purity >90	% (NMR)	
MS 4	56 (M+1)	

Example	No. 153	l l
но		300MHz, DMSO-d6 8. 20(1H, s), 8. 93and7. 83(2 H, ABq, J=8. 7Hz), 7. 86-7. 21 (11H, m), 7. 03(2H, d, J=8. 7H z), 4. 20(1H, brt, J=12. 2Hz) ,2. 32-2. 13(2H, m), 1. 92-1. 74(4H, m), 1. 69-1. 58(1H, m) 1. 45-1. 15(3H, m)
Purity	>90% (NMR)	
MS	489 (M+1)	

Table 42

Example N	154	1
но		300MHz, DMSO-d6 8. 23 (1H, s), 7. 94and7. 86 (2 H, ABq, J=8. 6Hz), 7. 72-7. 16 (13H, m), 5. 25 (2H, brs), 4. 5 5 (2H, d, J=6. 6Hz), 4. 31 (1H, brt, J=12. 2Hz), 2. 37-2. 18 (2H, m), 1. 98-1. 77 (4H, m), 1. 70-1. 58 (1H, m), 1. 48-1. 20 (3H, m)
Purity	>90% (NMR)	
MS	489 (M+1)	<u> </u>

Example No. 1	55 1H NMR(δ) ppm
HO LO CONTRACTOR OF THE PARTY O	300MHz, DMSO-d6 8. 21 (1H, s), 7. 85and7. 61 (2 H, ABq, J=8. 7Hz), 7. 61and6. 99 (4H, A'B' q, J=8. 7Hz), 7. 2 8-7. 18 (1H, m), 7. 25 (2H, d, J =7. 5Hz), 7. 07-6. 99 (1Hm), 4 .30 (1H, brt, J=12. 2Hz), 3. 8 3 (2H, d, J=6. 0Hz), 3. 82-3. 7 2 (1H, m), 2. 68-2. 49 (2H, m), 2. 39-2. 21 (2H, m), 1. 95-1. 8 0 (4H, m), 1. 79-1. 60 (2H, m),
Purity >90% (NMR)	1. 46-1. 22 (5H, m), 1. 30 (9H, s), 1. 00-0. 82 (2H, m)
MS 626 (M+1)	8/, 1. 00 0. 02 (2)

Example No.	1:	56 1H NMR(δ) ppm
HO N	⋛	300MHz, DMSO-d6 8. 22 (1H, s), 7. 92and7. 86 (2 H, ABq, J=8. 7Hz), 7. 68and7. 18 (4H, A'B'q, J=8. 7Hz), 7. 3 5 (1H, t, J=8. 5Hz), 6. 80 (1H, d, J=8. 3Hz), 6. 72-6. 70 (2H, m) 4. 30 (1H, brt, J=12. 2Hz), 3. 99 (2H, brd, J=12. 0Hz), 3. 85 (2H, d, J=6. 3Hz), 2. 82-2. 62 (2H, m), 2. 38-2. 20 (2H, m), 1. 99-1. 59 (8H, m), 1. 42-1.
Purity >	90% (NMR)	03(5H, m), 1.39(9H, s)
MS	626 (M+1)	

Table 44

Example	No.	160	1H NMR(δ) ppm
но		-0 O	300MHz, DMSO-d6 8. 90 (1H, brs), 8. 59 (1h, brs), 8. 33 (1H, s), 8. 18 and 8. 00 (2H, ABq, J=8. 5Hz), 7. 73 and 7. 10 (4H, A'B'q, J=8. 5Hz), 7 .32-7. 05 (4H, m), 4. 35 (1H, brt, J=12. 2Hz), 3. 86 (2H, d, J=6. 3Hz), 3. 25-3. 08 (2H, m), 2. 85-2. 66 (2H, m), 2. 40-2. 2 8 (2H, m), 2. 07-1. 14 (15H, m)
Purity	>90%	(NMR)	
MS	526	(M+1)	

Example No.	161	1H NMR(δ) ppm
HO NO	O HCI	300MHz, DMSO-d6 9.05(1H, brs), 8.76(1h, brs), 8.31(1H, s), 8.19and8.00 (2H, ABq, J=8.3Hz), 7.79and 7.25(4H, A'B'q, J=8.3Hz), 7.39(1H, brs), 6.86-6.74(4H, m), 4.37(1H, brt, J=12.2Hz), 3.89(2H, d, J=5.0Hz), 3.35-3.18(2H, m), 2.98-2.75(2H, m), 2.38-2.17(2H, m), 2.16-1.15(15H, m)
Purity > 90% (NM	R)	0-1. 19 (1011) IIV
MS 526 (M+1)		

Example 1	No. 162	•
но		300MHz, DMSO-d6 12.87(1H, brs), 8.58(1H, d, J=6.0Hz), 8.23(1H, s), 7.99 and7.80(2H, ABq, J=8.6Hz), 7.61and7.18(4H, A'B'q, J=8.0Hz), 7.45-7.30(5H, m), 5.29(1H, brs), 4.26(1H, brt, J=12.2Hz), 2.37-2.11(2H, m), 2.00-1.71(4H, m), 1.92(3H, s), 1.70-1.52(1H, m), 1.45
Purity	>90% (NMR)	-1. 11 (3H, m)
MS	498 (M+1)	

Table 45

Example No.	163	1H NMR(δ) ppm
HON	>	300MHz, DMSO-d6 8. 23 (1H, s), 7. 95and7. 86 (2 H, ABq, J=8. 6Hz), 7. 69and7. 18 (4H, A'B' q, J=8. 6Hz), 7. 3 5 (1H, t, J=8. 6Hz), 6. 80 (1H, d, J=7. 5Hz), 6. 72-6. 69 (2H, m), 5. 20 (1H, t, J=3. 7Hz), 4. 31 (1H, brt, J=12. 2Hz), 3. 95 (2H, t, J=6. 8Hz), 2. 49-2. 19 (4H, m), 1. 97-1. 76 (4H, m), 1
Purity >90% (1	NMR)	.68(3H, s), 1.67-1.54(1H, m), 1.61(3H, s), 1.45-1.20(3
MS 511 (M+	-1)	Н, ш)

Example No.	164	1H NMR(δ) ppm
HO NO	ر ر	300MHz, DMSO-d6 8. 20 (1H, s), 7. 87 (2H, s), 7. 68and7. 18 (4H, ABq, J=8. 7Hz), 7. 35 (1H, t, J=7. 9Hz), 6. 8 1 (1H, d, J=9. 4Hz), 6. 72 (1Hs), 6. 71 (1H, d, J=6. 8Hz), 4. 8 0 (2H, s), 4. 29 (1H, brt, J=12 . 2Hz), 4. 10 (1H, t, J=6. 7Hz) , 2. 43 (1H, t, J=6. 7Hz), 2. 39 -2. 19 (2H, m), 1. 97-1. 78 (4H
Purity >90% (NM)	R)	,m), 1.76(3H, s), 1.70-1.56 (1H, m), 1.43-1.19(3H, m)
MS 497 (M+1)		

Example No.	165	1H NMR(δ) ppm
HO N O N		300MHz, DMSO-d6 11. 21 (1H, brs), 8. 33 (1H, s), 8. 25 (1H, d, J=8. 6Hz), 7. 78 (2H, d, J=8. 7Hz), 7. 70-7. 67 (2H, m), 7. 55-7. 42 (3H, m), 7. 27 (2H, d, J=8. 7Hz), 4. 73-4. 30 (5H, m), 4. 20-3. 97 (1H, m), 3. 42-3. 10 (2H, m), 2. 45-1. 23 (14H, m)
Purity >90% (N)	MR)	
MS		

Table 46

		
Example N	io. 1	66
но		
Purity	>90% (NMR)	
MS	583 (M+1)	

1H NMR(δ) ppm

300MHz, DMSO-d6
8. 27 (1H, s), 8. 13 (1H, d, J=8. 4Hz), 7. 97 (1H, d, J=9. 0Hz), 7. 73 (1H, d, J=1. 8Hz), 7. 68 (2H, d, J=8. 4Hz), 7. 54 (1H, d d, J=8. 4, 2. 1Hz), 7. 41-7. 31 (5H, m), 7. 19 (2H, d, J=8. 4Hz), 5. 10 (2H, s), 4. 32 (1H, m), 2. 50 (3H, s), 2. 40-2. 15 (2H, m), 2. 10-1. 75 (4H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 10 (3H, m).

Example 1	No.	167
HD		\
Purity	>90% (NMF	E)
MS	615 (M+1)	

1H NMR(δ) ppm

300MHz, DMSO-d6
8. 25 (1H, s), 8. 09 (1H, d, J=8. 4Hz), 8. 00 (2H, d, J=8. 4Hz), 7. 94 (1H, d, J=8. 7Hz), 7. 80 (1H, d, J=2. 1Hz), 7. 73 (2H, d, J=8. 1Hz), 7. 65 (2H, d, J=8. 7Hz), 7. 60 (1H, dd, J=8. 1, 2. 1Hz), 7. 44 (1H, d, J=8. 1Hz), 7. 16 (2H, d, J=8. 7Hz), 5. 13 (2H, s), 4. 30 (1H, m), 3. 26 (3H, s), 2. 40-1. 15 (2H, m), 2. 05 -1. 75 (4H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 15 (3H, m).

Example	No.	168] 1H 1
но		oı Cı	300 13. 8.2 1H, 3H, ,7. ,m) (2H .20
Purity	>90% (NMR)		;;;°
MS	543 (M+1)		

1H NMR(δ) ppm

300MHz, DMSO-d6
13.1(1H, brs), 8.32(1H, s),
8.28(1H, d, J=8.8Hz), 8.05(
1H, d, J=8.7Hz), 7.80-7.75(
3H, m), 7.69(1H, d, J=4.1Hz),
7.57(2H, m), 7.34-7.29(3H, m), 7.20-7.15(1H, m), 5.24(2H, s), 4.39(1H, m), 2.45-2.20(2H, m), 2.20-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.15(3H, m).

Table 43

Example No.	157	1H NMR(δ) ppm
HO N H ₃	CO CH ₃ O-OH ₃	300MHz, DMSO-d6 12. 78 (1H, brs), 8. 22 (1H, s) 7. 96 (1H, d, J=8. 6Hz), 7. 86 (1H, d, J=8. 6Hz), 7. 75 (1H, d , J=2. 2Hz), 7. 60 (2H, d, J=8. 4Hz), 7. 55 (1H, dd, J=8. 3, 2. 2Hz), 7. 48 (1H, d, J=8. 3Hz), 7. 18 (2H, d, J=8. 4Hz), 6. 73 (2H, s), 5. 08 (2H, s), 4. 23 (1H , m), 3. 68 (9H, s), 2. 37-2. 17 (2H, m), 1. 99-1. 79 (4F, 0H), 1
purity > 9 0 %	% (NMR)	65 (1H, s), 1. 49–1. 15 (3H, m
MS 62	.7 (M+1)	/.

Example N	To .	158	
но		-0	300MHz, DMSO-d6 12. 75(1H, brs), 8. 22(1H, s) , 7. 93(2H, d, J=8. 7Hz), 7. 85 (2H, d, J=8. 5Hz), 7. 53-7. 21 (10H, m), 6. 94(2H, d, J=8. 7Hz), 4. 30-4. 12(3H, m), 3. 05(2H, m), 2. 35-2. 15(2H, m), 1. 95-1. 75(4H, m), 1. 75-1. 55(1H, m), 1. 50-1. 10(3H, m)
Purity	> 9 0 %	(NMR)	
MS	517	(M+1)	

Example N	lo.	159	1H NMR(δ) ppm
но	-N0_		300MHz, DMSO-d6 12.77(1H, brs), 8.22(1H, s), 7.95(1H, d, 8.6Hz), 7.86(1 H, d, 8.6Hz), 7.80(1H, s), 7. 70-7.35(10H, m), 7.27(2H, d , J=8.7Hz), 5.30(2H, s), 4.2 8(1H, m), 2.35-2.15(2H, m), 1.95-1.75(4H, m), 1.70-1.5 5(1H, m), 1.50-1.15(3H, m)
Purity	>90% (Ni	MR)	
MS	503 (M+1)		

Table 47

Example No) .	169	1H NMR(δ) ppm
Example III		2	300MHz, DMSO-d6 8. 31 (1H, s), 8. 26 (1H, d, J=8 .7Hz), 8. 05 (1H, d, J=8. 7Hz) ,7. 78-7. 71 (3H, m), 7. 59-7. 41 (6H, m), 7. 23 (2H, d, J=9. 0 Hz), 5. 11 (2H, s), 4. 35 (1H, m), 2. 40-2. 15 (2H, m), 2. 15-1 .95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-1 .15 (3H, m).
Purity	>90% (NMR))	
MS	571 (M+1)		

Example No.	170	1H NMR(δ) ppm
HO NO	C1	300MHz, DMSO-d6 12.7(1H, brs), 8.66(1H, s), 8.61(1H, m), 8.21(1H, s), 7. 92-7.79(4H, m), 7.61-7.56(3H, m), 7.50-7.43(2H, m), 7. 10(2H, d, J=8.7Hz), 5.09(2H, s), 4.26(1H, m), 2.40-2.15 (2H, m), 2.00-1.75(4H, m), 1.75-1.55(1H, m), 1.50-1.15 (3H, m).
Purity >90% (NM)	₹)	
MS 538 (M+1)		

Example N	0.	171	1H NMR(δ) ppm
но		oi oi	300MHz, DMSO-d6 8. 31 (1H, s), 8. 25 (1H, d, J=8 .7Hz), 8. 04 (1H, d, J=8. 7Hz) ,7. 74-7. 71 (3H, m), 7. 57-7. 46 (3H, m), 7. 39 (1H, d, J=8. 1 Hz), 7. 31-7. 21 (4H, m), 5. 11 (2H, s), 4. 35 (1H, m), 5. 40-2 .15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1 .55 (1H, m), 1. 55-1. 15 (3H, m
Purity	>90% (NMR	.)	'
MS	555 (M+1)		

Table 48

Example No.	172	1H NMR(δ) ppm
HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F	300MHz, DMSO-d6 8. 24 (1H, s), 7. 99 (1H, d, J=8 . 7Hz), 7. 88 (1H, d, J=10. 5Hz), 7. 70 (1H, dd, J=11. 4, 1. 8H z), 7. 48-7. 32 (6H, m), 7. 17- 7. 09 (5H, m), 5. 12 (2H, s), 4. 30 (1H, m), 2. 40-2. 15 (2H, m) , 2. 05-1. 75 (4H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 20 (3H, m)
Purity >909	6 (NMR)	
MS 53	7 (M+1)	

Example No.	173	I
HO N		300MHz, DMSO-d6 8. 33 (1H, s), 8. 29 (1H, d, J=8.7Hz), 8. 06 (1H, d, J=8.7Hz), 7. 82-7. 74 (4H, m), 7. 45 (1H, dd, J=8. 4, 3. 0Hz), 7. 39 (2H, d, J=8. 7Hz), 5. 28 (2H, s), 4. 40 (1H, m), 2. 40-2. 15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 15 (3H, m).
Purity >	90% (NMR)	
MS	540 (M+1)	

Example N	No.	174	1H NMR(δ) ppm
HO. L.		C) _{o1}	300MHz, DMSO-d6 12.80(1H, brs), 8.26(1H, s), 8.01(1H, d, J=8.7Hz), 7.85 (1H, d, J=8.7Hz), 7.80-7.70 (1H, m), 7.60-7.36(7H, m), 7.18-6.91(2H, m), 5.09(2H, s), 4.11-3.90(1H, m), 2.32-1.18(14H, m)
Purity	>90% (NM	R)	
MS	590 (M+1)		

Table 49

Example N	· .	175	1H NMR(δ) ppm
но		→	300MHz, DMSO-d6 12. 75 (1H, s), 8. 21 (1H, s), 7 .94and7. 85 (2H, ABq, J=8. 7H z), 7. 61and7. 00 (4H, A' B' q, J=8. 5Hz), 7. 31-6. 91 (2H, m) ,7. 25 (2H, d, J=7. 7Hz), 5. 41 (2H, brs), 4. 54 (2H, d, J=6. 6 Hz), 4. 35-4. 14 (2H, m), 2. 49 -2. 15 (3H, m), 1. 95-1. 55 (5H ,m), 1. 50-1. 13 (5H, m), 1. 10
Purity	>90% (NM	R)	-0. 77 (2H, m)
MS	568 (M+1)		

Example No.	176	1H NMR(δ) ppm
	` ~°	300MHz, DMSO-d6 8. 24 (1H, s), 7. 97and7. 87 (2 H, ABq, J=8. 6Hz), 7. 69and7. 19 (4H, A'B'q, J=8. 6Hz), 7. 3 5 (1H, t, J=8. 1Hz), 6. 81 (1H, d, J=9. 2Hz), 6. 72 (1H, s), 6. 71 (1H, d, J=6. 5Hz), 4. 48-4. 20 (2H, m), 3. 95-3. 75 (3H, m) , 3. 03 (1H, t, J=12. 3Hz), 2. 6 0-2. 40 (1H, m), 2. 39-2. 15 (2
Purity > 90% (NMR)		H, m), 2.07-1.58(6H, m), 1.9 9(3H, s), 1.50-1.00(5H, m)
MS 568 (M+1)		

Example N	10 .	177	1H NMR(δ) ppm
HO		-°	300MHz, DMSO-d6 12. 76(1H, s), 8. 23(1H, s), 7 .96and7. 86(2H, ABq, J=8. 6H z), 7. 69and7. 20(4H, A'B'q, J=8. 6Hz), 7. 39(1H, t, J=8. 2 Hz), 6. 86(1H, d, J=8. 3Hz), 6 .81(1H, s), 6. 76(1h, d, J=8. 0Hz), 4. 83(2H, s), 4. 31(1H, brt, J=12. 2Hz), 2. 39-2. 19(2H, m), 1. 99-1. 79(4H, m), 1.
Purity	>90%	(NMR)	70-1.58(1H, m), 1.48-1.20(3H, m)
MS	467	(M+1)	

Table 50

Example No.		178	1H NMR(δ) ppm
HOLL			300MHz, DMSO-d6 12.85(1H, s), 8.75(1H, s), 8 .63(2H, d, J=3.8Hz), 8.25(1 H, s), 8.04-8.01(2H, m), 8.0 2and7.90(2H, ABq, J=8.6Hz) ,7.72and7.20(4H, A'B'q, J= 8.6Hz), 7.57(2H, dd, J=7.8, 5.0Hz), 7.40(1H, t, J=8.2Hz), 6.93(1H, d, J=8.2Hz), 6.8 7(1H, s), 6.77(1H, d, J=8.2Hz), 5.23(2H, s), 4.33(1H, br)
Purity >	90% (NMR)		1 + T = 10 0000 0 0 400-2.18(20)
MS	520 (M+1)		(, j -12, 212), 2, 10 (, m), 2, 00-1, 55 (5H, m), 1, 50 (-1) 15 (2H m)

			44 AD (2) mmm
Example N	ο.	179	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 32 (1H, s), 8. 29 (1H, d, J=9 .0Hz), 8. 06 (1H, d, J=8. 7Hz) ,7. 61 (1H, d, J=8. 4Hz), 7. 58 -7. 32 (5H, m), 6. 98 (1H, d, J= 2. 1Hz), 6. 93 (1H, dd, J=8. 7, 2. 1Hz), 5. 27 (2H, s), 4. 16-4 .00 (1H, m), 3. 87 (3H, s), 2. 2 0-2. 12 (2H, m), 2. 02-1. 98 (4 H, m), 1. 70-1. 60 (1H, m), 1. 5 2-1. 10 (3H, m)
Purity	>90% (NA	IR)	
MS	457 (M+1)		

Example N	ο.	180	1H NMR(δ) ppm
но		-0 Br	300MHz, DMSO-d6 8. 21 (1H, s), 7. 91 (1H, d, J=8 .6Hz), 7. 85 (1H, d, J=8. 6Hz) , 7. 63 (2H, d, J=8. 4Hz), 7. 60 (1H, d, J=9. 0Hz), 7. 25 (2H, d , J=8. 4Hz), 7. 23 (1H, d, J=3. 0Hz), 6. 95 (1H, dd, J=9. 0, 3. 0Hz), 5. 19 (2H, s), 4. 30 (1H, m), 3. 78 (3H, s), 2. 40-2. 19 (2H, m), 2. 00-1. 87 (4H, m), 1. 66 (1H, m), 1. 49-1. 18 (3H, m)
Purity	>90%	(NMR)	
MS	536	(M+1)	

Table 51

Example No.	181	
HO I N	HO HO	300MHz, DMSO-d6 8. 19 (1H, s), 7. 95 (1H, d, J=8 .7Hz), 7. 86 (1H, d, J=8. 7Hz) ,7. 65 (4H, d, J=7. 4Hz), 7. 47 (2H, d, J=8. 7Hz), 7. 44-7. 27 (6H, m), 6. 99 (2H, d, J=8. 7Hz), 4. 20 (1H, m), 2. 34-2. 12 (2 H, m), 1. 98-1. 75 (4H, m), 1. 6 4 (1H, m), 1. 46-1. 13 (3H, m).
Purity >	90% (NMR)	
MS	547 (M+1)	

Example No.	182	1H NMR(δ) ppm
110	CI NO.	300MHz, DMSO-d6 8. 55 (1H, d, J=2. 1Hz), 8. 32 (1H, m), 8. 21 (1H, s), 7. 95 (1H, d, J=8. 4Hz), 7. 86 (1H, d, J=7. 8Hz), 7. 68-7. 56 (7H, m), 7. 14 (2H, d, J=8. 7Hz), 5. 21 (1H, s), 4. 26 (1H, m), 2. 35-2. 15 (2H, m), 2. 00-1. 75 (4H, m), 1. 74-1. 55 (1H, m), 1. 50-1. 15 (3H, m)
Purity	>90% (NMR)	
MS	582 (M+)	·

Example No.	183	1H NMR(δ) ppm
HO NO CHA		300MHz, DMSO-d6 10.16(1H, s), 8.25(1H, s), 8 .07(1H, d, J=8.7Hz), 7.94-7 .87(2H, m), 7.71-7.62(3H, m), 7.50-7.42(4H, m), 7.30(1 H, d, J=8.4Hz), 7.14(2H, d, J =8.4Hz), 5.06(2H, s), 4.31(1H, m), 2.35-2.15(2H, m), 2. 05-1.75(4H, m), 1.75-1.55(1H, m), 1.50-1.15(3H, m)
Purity >90% (NMR	2)	
MS 594 (M+)		

Table 52

Example No.	184	1H NMR(δ) ppm
	OH OI	300MHz, DMSO-d6 13. 2(2H, brs), 8. 30(1H, s), 8. 26(1H, d, J=8. 8Hz), 8. 04(1H, d, J=8. 8Hz), 8. 00(2H, d, J=8. 2Hz), 7. 79(1H, s), 7. 73 (2H, d, J=8. 7Hz), 7. 61-7. 56 (3H, m), 7. 44(1H, d, J=8. 3Hz), 7. 23(2H, d, J=8. 8Hz), 5. 1 3(2H, s), 4. 35(1H, m), 2. 45- 2. 15(2H, m), 2. 15-1. 95(2H, m), 7. 75
Purity >90%	(NMR)	m), 1. 95-1. 75(1H, m), 1. 75- 1. 15(3H, m).
MS 581	(M+1)	

Example No.	185	1H NMR(δ) ppm
#** O.J.		300MHz, DMSO-d6 8. 30 (1H, m), 8. 24 (1H, d, J=9 .0Hz), 8. 03 (1H, d, J=9. 0Hz) , 7. 79-7. 10 (9H, m), 5. 20-5. 07 (2H, m), 4. 43-4. 04 (4H, m) , 3. 50-3. 36 (2H, m), 2. 40-1. 19 (14H, m)
Purity >90% (NMR	R).	
MS 554 (M+1)		

Example N	10.	186	1H NMR(δ) ppm
но			(DMSO-d6) & :8. 29(1H, brs) ,8. 10(1H, d, J=8. 4Hz), 7. 97 (1H, d, J=8. 4Hz), 7. 79(2H, d ,J=8. 4Hz), 7. 74-7. 67(1H, m), 7. 68(2H, d, J=8. 4Hz), 7. 6 1(1H, d, J=8. 4Hz), 7. 57-7. 5 0(2H, m), 7. 46-7. 39(1H, m), 7. 29(1H, d, J=2. 4Hz), 7. 11(1H, dd, J=2. 4, 8. 4Hz), 5. 12(2H, s), 3. 99-3. 84(1H, m), 2.
Purity	>90% (NMF	2)	35-1.72(6H, m), 1.68-1.55(1H, m), 1.42-1.10(3H, m)
MS	605 (M+1)		

Table 53

Example N	ю.	187	1H NMR(δ) ppm
HO C			300MHz, DMSO-d6 12. 76 (1H, s), 8. 57 (1H, d, J= 4. 4Hz), 8. 23 (1H, s), 7. 96an d7. 86 (2H, ABq, J=8. 2Hz), 7. 87-7. 82 (1H, m), 7. 68and7. 1 2 (4H, A'B'q, J=8. 6Hz), 7. 53 (2H, d, J=7. 8Hz), 7. 37 (1H, t J=8. 3Hz), 7. 36-7. 33 (1H, m), 6. 90 (1H, d, J=8. 3Hz), 6. 8 3 (1H, s), 6. 74 (1H, d, J=8. 0H
Purity	>90% (NMR))	z), 5. 20 (2H, s), 4. 31 (1H, br t, J=12. 2Hz), 2. 35-2. 19 (2H m), 1. 99-1. 57 (5H, m), 1. 45
MS	520 (M+1)		-1 20 (3H m)

Example No.	188	1H NMR(δ) ppm
но		300MHz, DMSO-d6 12.77(1H, brs), 8.21(1H, d, J=1, 4Hz), 7.92(1H, d, J=8.7 Hz), 7.88(1H, dd, J=8.7, 1.4 Hz), 7.57(2H, d, J=8.7Hz), 7.57-7.27(7H, m), 7.11(2H, d, J=8.7Hz), 5.07(2H, s), 4.2 6(1H, m), 2.36-2.16(2H, m), 1.98-1.75(4H, m), 1.64(1H, m), 1.49-1.17(3H, m).
Purity > 90%	(NMR)	
MS 55	5 (M+1)	

Example No.	189	1H NMR(δ) ppm
HO TO CO) —он	300MHz, DMSO-d6 8. 32 (1H, s), 8. 30-8. 20 (2H, m), 8. 10-7. 98 (2H, m), 7. 74 (2H, d, J=9. 0Hz), 7. 60-7. 46 (5H, m), 7. 24 (2H, d, J=9. 0Hz), 5. 19 (2H, s), 4. 44-4. 30 (1H, m), 2. 40-2. 20 (2H, m), 2. 12 -1. 78 (4H, m), 1. 72-1. 58 (4H, m)
Purity >90% (N)	MR)	
MS 581 (M+1)		

Table 54

Example N	lo.	190	1H NMR(δ) ppm
HO NH.		300MHz, DMSO-d6 8.36-7.90(5H, m), 7.74(2H, d, J=8.6Hz), 7.60-7.40(5H, m), 7.25(2H, d, J=8.7Hz), 5.14(2H, s), 4.45-4.28(1H, m), 2.40-2.15(4H, m), 1.75-1.55(1H, m), 1.55-1.20(3H, m)	
Purity	>90% (NI	MR)	·
MS	580 (M+1)		

Example 1	No.	191	1H NMR(δ) ppm
но		CH.	300MHz, DMSO-d6 8. 22(1H, s), 7. 94(1H, d, J=8 .4Hz), 7. 85(1H, d, J=8. 7Hz) ,7. 61(2H, d, J=8. 7Hz), 7. 25 -7. 00(6H, m), 4. 86(2H, s), 4 .30(1H, m), 2. 89(3H, s), 2. 8 0(3H, s), 2. 29(2H, m), 2. 00- 1. 75(4H, m), 1. 70-1. 55(1H, m), 1. 50-1. 15(3H, m)
Purity	>90%	(NMR)	
MS	514	(M+1)	

Example N	lo.	192	1H NMR(δ) ppm
الرائد المرائد		300MHz, DMSO-d6 8. 22 (1H, s), 7. 94 (1H, d, J=8 .4Hz), 7. 85 (1H, d, J=8. 7Hz) , 7. 61 (2H, d, J=8. 7Hz), 7. 26 -7. 01 (6H, m), 4. 84 (2H, s), 4 .31 (1H, m), 3. 36 (4H, m), 2. 2 9 (2H, m), 2. 00-1. 75 (4H, m), 1. 75-1. 15 (10H, m)	
Purity	>90% (NMR)	
MS	554 (M+1)		

Table 55

Example No.		193	1H NMR(δ) ppm
HO!			300MHz, DMSO-d6 13.00(1H, brs), 8.29(1H, d, J=1.4Hz), 8.15(1H, d, J=8.8 Hz), 7.97(1H, dd, J=1.4Hz, 8 .8Hz), 7.89(2H, d, J=8.8Hz) ,7.80-7.60(5H, m) 7.25(2H, d, J=8.8Hz), 4.47-3.90(4H, m), 3.20-3.10(2H, m), 2.41- 1.22(14H, m)
Purity >	90% (NM	IR)	
MS	560 (M+1)		

Example No.	194	1H NMR(δ) ppm
HO NO NO NOTITION OF THE PARTY		300MHz, DMSO-d6 12.80(1H, brs), 8.23(1H, s), 7.97(1H, d, J=8.5Hz), 7.87 (1H, d, J=8.5Hz), 7.70-7.17 (9H, m), 4.60-4.13(4H, m), 3 .72-3.40(2H, m), 2.40-1.15 (14H, m)
Purity >90% (NM	R)	
MS 524 (M+1)		

Example No.	195	1H NMR(δ) ppm 300MHz, DMSO-d6
	NH _k	8. 25 (1H, s), 8. 09-7. 92 (5H, m), 7. 77 (1H, s), 7. 65 (2H, d, J=8. 4Hz), 7. 59-7. 51 (3H, m), 7. 43 (2H, d, J=8. 4Hz), 5. 10 (2H, s), 4. 30 (1H, m), 2. 40-2. 15 (2H, m), 2. 10-1. 75 (4H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 10 (3H, m).
Purity >90%	(NMR)	
MS 580	(M+1)	

Table 56

Example N	o. 196	1H NMR(δ) ppm
но	N, C, N-C	300MHz, DMSO-d6 8. 22 (1H, s), 7. 95 (1H, d, J=8 .4Hz), 7. 86 (1H, d, J=8. 4Hz) ,7. 69 and 7. 18 (4H, ABq, J=8. 7Hz), 7. 34 (1H, t, J=8. 0Hz), 6. 80-6. 69 (3H, m), 4. 83 (2H, s), 4. 31 (1H, m), 2. 98 (3H, s), 2. 84 (3H, s), 2. 29 (2H, m), 2 .00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 15 (3H, m)
Purity	>90% (NMR)	
MS	514 (M+1)	

Example No.	197	1H NMR(δ) ppm 300MHz, DMSO-d6
HO CONTRACTOR OF THE PARTY OF T		8. 23 (1H, s), 7. 95 (1H, d, J=8 .4Hz), 7. 86 (1H, d, J=8. 7Hz) .7. 69and7. 18 (4H, ABq, J=8. .7Hz), 7. 35 (1H, t, J=8. 4Hz), 6. 80-6. 70 (3H, m), 4. 82 (2H, s), 4. 31 (1H, m), 3. 40 (4H, m), .2. 29 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 15 (10H, m)
Purity >90% (NM)	R)	
MS 554 (M+1)		

Example No.	198	1H NMR(δ) ppm
	}-°	300MHz, DMSO-d6 12. 75 (1H, s), 8. 23 (1H, d, J= 4. 4Hz), 7. 95and7. 86 (2H, AB q, J=8. 6Hz), 7. 69and7. 19 (4 H, A'B'q, J=8. 6Hz), 7. 36 (1H t, J=7. 8Hz), 6. 82 (1H, d, J= 9. 3Hz), 6. 73 (1H, s), 6. 71 (1 H, d, J=7. 2Hz), 4. 30 (1H, brt , J=12. 2Hz), 3. 89 (2H, d, J=6 . 0Hz), 3. 59 (2H, d, J=11. 7Hz), 2. 85 (3H, s), 2. 73 (2H, t, J)
Purity >	90% (NMR)	=10.5Hz), 2.41-2.20(2H, m), 1.98-1.59(8H, m), 1.46-1.
MS	604 (M+1)	12(FH m)

Table 57

Example No.	199	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 33 (1H, s), 8. 30 (1H, d, J=8 .9Hz), 8. 06 (1H, d, J=8. 7Hz) ,7. 79 (2H, d, J=8. 7Hz), 7. 70 (2H, d, J=8. 7Hz), 7. 61 (2H, d ,J=8. 7Hz), 7. 39 (2H, d, J=8. 8Hz), 5. 28 (2H, s), 4. 39 (1H, m), 2. 50-2. 15 (2H, m), 2. 15- 1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-
Purity >90% (NM	AR)	1. 15 (3H, m).
MS 542 (M+1)		

		المراج ال
Example No.	200	1H NMR(δ) ppm
HOLIT)	(DMSO-d6) δ:8.23(1H, s), 7 .96(1H, d, J=8.6Hz), 7.86(1 H, d, J=8.6Hz), 7.69(2H, d, J =8.4Hz), 7.52(1H, s), 7.50- 7.30(4H, m), 7.18(2H, d, J=8.4Hz), 6.90(1H, d, J=8.3Hz), 6.84(1H, s), 6.74(1H, d, J=8.3Hz), 5.15(2H, s), 4.39-4 .21(1H, m), 2.39-2.18(2H, m), 1.99-1.80(4H, m), 1.71-1 .59(1H, m), 1.50-1.20(3H, m
Purity >90% (1	MR))
MS 553 (M+	1)	

Example 1	No. 201	1H NMR(δ) ppm
HO 1	500	(DMSO-d6) δ :8.26(1H, s),8 .06(1H, d, J=8.7Hz),7.92(1 H, d, J=8.7Hz),7.72(2H, d, J =8.7Hz),7.47(4H, s),7.38(1H, t, J=8.2Hz),7.20(2H, d, J J=8.7Hz),6.90(1H, d, J=8.2 Hz),6.83(1H, s),6.74(1H, d, J=8.2Hz),5.14(2H, s),2.4 0-2.19(2H, m),2.04-1.78(4 H, m),1.71-1.60(1H, m),1.5 0-1.21(3H, m)
Purity	>90% (NMR)	U-1. 21 (511, m)
MS	553 (M+1)	

Table 58

Example No.	202	1H NMR(δ) ppm (DMSO-d6) δ:12.81(1H, brs
HO. I	-°CF), 8. 24 (1H, s), 7. 99 (1H, d, J =8. 7Hz), 7. 87 (1H, d, J=8. 7H z), 7. 69 (2H, d, J=8. 6Hz), 7. 53-7. 47 (2H, m), 7. 38 (1H, t, J=8. 2Hz), 7. 26-7. 16 (4H, m), 6. 89 (1H, d, J=8. 2Hz), 6. 82 (1H, s), 6. 73 (1H, d, J=8. 2Hz),), 5. 11 (2H, s), 4. 40-4. 21 (1 H, m), 2. 40-2. 17 (2H, m), 2. 0 1-1. 77 (4H, m), 1. 71-1. 59 (1
Purity >90	% (NMR)	H, m), 1.50-1.20(3H, m)
MS	537 (M+1)	

Example No.	203	1H NMR(δ) ppm
HO LONG		300MHz, DMSO-d6 12.74(1H, brs), 8.21(1H, s), 8.08(2H, d, J=9.0Hz), 7.93 (1H, d, J=8.7Hz), 7.85(2h, d, J=8.7Hz), 7.13(2H, d, J=8.7Hz), 6.83(2H, d, J=9.0Hz), 4.50-4.08(4H, m), 3.68-3.30(2H, m), 2.40-1.23(14H, m)
Purity >9	0% (NMR)	
MS	541 (M+1)	

Example No.	204	1H NMR(δ) ppm
HO NO		300MHz, DMSO-d6 8. 39-8. 28 (2H, m), 8. 08 (1H, d, J=8. 8Hz), 7. 76 (2H, d, J=8. 7Hz), 7. 29 (2H, d, J=8. 7Hz), 7. 25-7. 13 (2H. m), 6. 80-6, 60 (3H, m), 4. 46-3. 98 (4H, m), 3. 51-3. 42 (1H, m), 3. 20-3. 04 (1H, m), 2. 39-1. 20 (14H, m))
Purity >90% (NM	R)	
MS		

Table 59

Example No.	205 ~	1H NMR(δ) ppm 300MHz, DMSO-d6 9.59(1H, brs), 8.23(1H, s), 8.04(1H, d, J=8.4Hz), 7.90(1H, d, J=8.4Hz), 7.62(2H, d, J=8.7Hz), 7.39(2H, 2H, d, J=
. ()	?	8. 7Hz) 7. 18 (2H, d, J=8. 7Hz) , 6. 63 (2H, d, J=8. 7Hz), 3. 95 -3. 37 (4H, m), 3. 51-3. 40 (1H , m), 3. 17-3. 02 (1H. m), 2. 39 -1. 18 (17H, m)
Purity >90% (N	MR)	
MS 553 (M+)	1)	

Example No.	206	1H NMR(δ) ppm
	S	300MHz, DMSO-d6 13. 1 (1H, brs), 8. 33 (1H, s), 8. 29 (1H, d, J=8. 8Hz), 8. 06 (1H, d, J=8. 7Hz), 7. 77 (2H, d, J=8. 7Hz), 7. 59-7. 52 (4H, m) , 7. 35 (2H, d, J=8. 8Hz), 5. 19 (2H, s), 4. 39 (1H, m), 2. 71 (3 H, s), 2. 45-2. 20 (2H, m), 2. 2 0-1. 95 (2H, m), 1. 95-1. 75 (2 H, m), 1. 75-1. 55 (1H, m), 1. 5 -1. 15 (3H, m).
Purity >90% (NM	(R)	1. 10 (on, m/·
MS 558 (M+1)		

Example No.	207	1H NMR(δ) ppm
HO TO	F	300MHz, DMSO-d6 8. 29 (1H, s), 8. 26 (1H, d, J=8 .8Hz), 8. 04 (1H, d, J=8. 7Hz) .7. 73 (2H, d, J=8. 8Hz), 7. 50 -7. 41 (6H, m), 7. 36 (2H, d, J= 8. 8Hz), 7. 18-7. 13 (2H, m), 6 .84 (1H, s), 4. 33 (1H, m), 2. 4 0-2. 15 (2H, m), 2. 15-1. 95 (2 H, m), 1. 95-1. 75 (2H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 15 (3 H, m).
Purity >90% (N1	MR)	
MS 539 (M+1)		

Table 60

	Example No	•	208	1H NMR(δ) ppm
	но		NO ₂	300MHz, DMSO-d6 8. 32 (1H, s), 8. 27 (1H, d, J=9 .0Hz), 8. 07-8. 00 (3H, m), 7. 79-7. 70 (3H, m), 7. 51 (2H, d, J=8. 1Hz), 7. 40 (2H, d, J=8. 4 Hz), 7. 18 (2H, d, J=8. 7Hz), 4 .99 (2H, s), 4. 34 (1H, m), 2. 4 0-2. 15 (2H, m), 2. 15-1. 95 (2 H, m), 1. 95-1. 75 (2H, m), 1. 7 5-1. 55 (1H, m), 1. 55-1. 15 (3
H	Purity	>90% (NM	R)	Н, ш).
Ţ	MS	582 (M+1)		

المربية والمتحدد والمراج والمتحدد والمت		
Example No.	209	IH NMR(δ) ppm
HO N	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	300MHz, DMSO-d6 8. 24 (1H, d, J=4. 4Hz), 7. 98a nd7. 88 (2H, ABq, J=8. 6Hz), 7 .70and7. 19 (4H, A'B'q, J=8. 4Hz), 7. 35 (1H, t, J=8. 4Hz), 6. 86 (1H, d, J=8. 1Hz), 6. 79 (1H, s), 6. 71 (1H, d, J=8. 1Hz) ,4. 65-4. 53 (1H, m), 4. 31 (1H, brt, J=12. 2Hz), 3. 88-3. 78 (2H, m), 3. 48 (2H, t, J=9. 0Hz), 2. 39-2. 19 (2H, m), 1. 02-1
Purity >90% (NM	IR)	71 (6H, m), 1.70-1.50 (3H, m), 1.46-1.19 (3H, m)
MS 513 (M+1)		/, 1. 10 1. 10 (0.1) 2/

Example No.	210	1H NMR(δ) ppm
HO LO CO	∫ CF ₄	300MHz, DMSO-d6 12.75(1H, s), 8.23(1H, s), 7 .96and7.87(2H, ABq, J=8.7H z), 7.84-7.66(6H, m), 7.38(1H, t, J=8.4Hz), 7.18(2H, d, J=8.4Hz), 6.91(1H, d, J=9.0 Hz), 6.84(1H, s), 6.74(1H, d , J=8.1Hz), 5.26(2H, s), 4.3 1(1H, brt, J=12.2Hz), 2.40- 2.20(2H, m), 1.99-1.76(4H, m), 1.69-1.58(1H, m), 1.45-
Purity >90% (N)	MR)	1. 20 (3H, m)
MS 587 (M+1)		

•	Table 61	
· ·	211	1H NMR(δ) ppm
>9.0% (NMI	HCI N—	300MHz, DMSO-d6 8. 29 (1H, s), 8. 15and7. 47 (2 H, ABq, J=9. OHz), 7. 77and7. 24 (4H, ABq, J=8. 9Hz), 7. 39 (1H, t, J=7. 8Hz), 6. 84 (1H, d, J=9. 3Hz), 6. 76 (1H, s), 6. 75 (1H, d, J=9. 5Hz), 4. 36 (1H, b) rt, J=12. 2Hz), 3. 89 (2H, d, J =6. OHz), 3. 42 (2H, d, J=10. 8 Hz), 3. 04-2. 88 (2H, m), 2. 78 -2. 60 (1H, m), 2. 71 (2H, d, J= 4. 8Hz), 2. 38-2. 20 (2H, m), 2
540 (M+1)		.07-1.80(7H, m), 1.70-1.20
No.	212	1H NMR(δ) ppm 300MHz, DMSO-d6 8. 22 (1H, s), 7. 93and7. 87 (2 H, ABq, J=8. 6Hz), 7. 68and7. 17 (4H, A' B' q, J=8. 7Hz), 7. 4 3-7. 33 (5H, m), 6. 87 (1H, d, J =8. 1Hz), 7. 18 (2H, d, J=8. 4H z), 6. 91 (1H, d, J=9. 0Hz), 6.
	>90% (NMI	>90% (NMR) 540(M+1)

Example No. 212	1H NMR(δ) ppm
**************************************	300MHz, DMSO-d6 8. 22 (1H, s), 7. 93and7. 87 (2 H, ABq, J=8. 6Hz), 7. 68and7. 17 (4H, A'B'q, J=8. 7Hz), 7. 4 3-7. 33 (5H, m), 6. 87 (1H, d, J =8. 1Hz), 7. 18 (2H, d, J=8. 4H z), 6. 91 (1H, d, J=9. 0Hz), 6. 81 (1H, s), 6. 72 (1H, d, J=8. 0 Hz), 5. 08 (2H, s), 4. 36 (1H, b rt, J=12. 2Hz), 2. 37-2. 20 (2 H, m), 1. 98-1. 78 (4H, m), 1. 6
Purity >90% (NMR)	9-1.60(1H, m), 1.41-1.21(3 H, m), 1.28(9H, s)
MS 575 (M+1)	η, μ/ , 1. 20 (δη σ/

MS STO		
Example No.	213	1H NMR(δ) ppm
HO CONTRACTOR OF THE PARTY OF T		300MHz, DMSO-d6 8. 23 (1H, s), 7. 95and7. 86 (2 H, ABq, J=8. 4Hz), 7. 69and7. 19 (4H, A'B'q, J=8. 7Hz), 7. 6 2-7. 36 (5H, m), 6. 90 (1H, d, J =8. 1Hz), 6. 84 (1H, s), 6. 76 (1H, d, J=8. 1Hz), 5. 19 (2H, s), 4. 31 (1H, brt, J=12. 2Hz), 2 40-2. 19 (2H, m), 1. 99-1. 76 (4H, m), 1. 68-1. 55 (1H, m), 1 50-1. 18 (3H, m)
Purity >90%	(NMR)	
MS 553	(M+1)	

Table 62

Example	No.	214	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 94 (1H, d, J=2. 1Hz), 8. 60 (1H, dd, J=4. 8, 1. 5Hz), 8. 23 (1H, d, J=1. 5Hz), 8. 12 (1H, dt , J=8. 1, 2. 1Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 87 (1H, dd, J=8. 7 1. 5Hz), 7. 70 (1H, d, J=8. 7 Hz), 7. 67-7. 54 (3H, m), 7. 50 (1H, dd, J=8. 1, 4. 8Hz), 7. 25 (2H, d, J=8. 7Hz), 7. 21 (1H, d)
Purity	>90%	(NMR)), 4. 31(1H, m), 2. 38-2. 19(2 H, m), 2. 00-1. 78(4H, m), 1. 6 5(1H, m), 1. 48-1. 22(3H, m).
MS	490 ()	(+1)	5 (1n, w), 1. 46-1. 22 (311, m).

•		
Example No.	215	1H NMR(δ) ppm
но	 c	300MHz, DMSO-d6 12. 75 (1H, brs), 8. 23 (1H, s), 7. 95 (1H, d, J=8. 7Hz), 7. 86 (1H, d, J=8. 7Hz), 7. 73 (2H, d, J=8. 4Hz), 7. 63-7. 39 (2H, m), 7. 5 2 (2H, d, J=8. 4Hz), 7. 18 (1H, m), 4. 31 (1H, m), 2. 39-2. 20 (2H, m), 2. 00-1. 76 (4H, m), 1. 65 (1H, m), 1. 49-1. 18 (3H, m).
Purity > 90% (N	IMR)	,, 1. 25 2. 20(0)
MS 523 (M+	1)	

Example No	216	1H NMR(δ) ppm
HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		300MHz, DMSO-d6 12.77(1H, s), 8.23(1H, d, J= 1.4Hz), 7.95(1H, d, J=8.6Hz), 7.86(1H, dd, J=8.6, 1.4Hz), 7.70(2H, d, J=8.7Hz), 7.6 4(2H, d, J=8.8Hz), 7.56-7.4 8(2H, m), 7.40(1H, s), 7.23(2H, d, J=8.7Hz), 7.10(1H, m), 7.03(2H, d, J=8.8Hz), 4.31 (1H, m), 3.80(3H, s), 2.48-2 20(2H, m), 2.00-1.88(4H, m)
Purity	>90% (NMR)), 1.66(1H, m), 1.50-1.21(3 H, m).
MS	519 (M+1)	11, 11/.

Table 63

Example No.	217	1H NMR(δ) ppm
HO I COMPANY	M s-H	(DMSO-d6) δ:12.80(1H, brs), 8.23(1H, s), 8.04(1H, d, J) = 8.6Hz), 7.96(3H, d, J=8.6Hz), 7.86(1H, d, J=8.7Hz), 7.63(2H, d, J=8.6Hz), 7.25(2H, d, J=8.6Hz), 5.50(2H, s), 4.36-4.21(1H, m), 3.27(3H, s), 2.74(3H, s), 2.40-2.19(2H, m), 1.99-1.79(4H, m), 1.71-1.60(1H, m), 1.49-1.19(3
Purity >90% (NM	AR)	H, m)
MS 602 (M+1)		

Example No.	218	1H NMR(δ) ppm
mi Cipo «		300MHz, DMSO-d6 12.9(1H, brs), 8.25(1H, s), 8.04(1H, d, J=8.7Hz), 7.91(1H, d, J=8.6Hz), 7.72(2H, d, J=8.5Hz), 7.67(2H, d, J=8.7 Hz), 7.56(2H, d, J=8.5Hz), 7 .26(2H, d, J=8.7Hz), 5.45(2 H, s), 4.31(1H, m), 2.71(3H, s), 2.40-2.15(2H, m), 2.05- 1.80(4H, m), 1.75-1.55(1H, m), 1.55-1.15(3H, m).
Purity >90% (N	IMR)	II), 1. 00 1. 10 (0, 2)
MS 558 (M+	1)	

Example No	•	219	1H NMR(δ) ppm
HO 1 7 N		CI	300MHz, DMSO-d6 8. 21 (1H, d, J=1. 5Hz), 7. 93 (1H, d, J=9. 0Hz), 7. 84 (1H, dd , J=9. 0, 1. 5Hz), 7. 56 (2H, d, J=8. 7Hz), 7. 42-7. 30 (4H, m) , 7. 12 (2H, d, J=8. 7Hz), 4. 53 (1H, brs), 4. 36-4. 20 (1H, m) , 3. 55 (2H, brs), 3. 00-2. 90 (1H, m), 2. 70-2. 58 (1H, m), 2. 40-1. 10 (18H, m)
Purity >	90% (NM	R)	
MS	544 (M+1)		

Table 64

Example	No.	220	1H NMR(δ)
но			300MHz, DMS 12. 76 (1H, 12. 76 (1H, 13. 96 and 7. 87 z), 7. 69 and J=8. 6Hz), (1H, t, J=8. J=7. 8Hz), 4 (1H, d, J=13. 4. 31 (1H, 2. 65 (3H, 14. 31 (1H, 2. 65 (3H, 2. 31 (1H, 2. 65 (3H, 2. 31 (1H, 2. 31 (1
Purity	>90% (NMR)	, m), 2.00- -1.59(1H,
MS	540 (M+1)		, m)

1H NMR(δ) ppm

300MHz, DMSO-d6

12. 76(1H, s), 8. 23(1H, s), 7. 96and7. 87(2H, ABq, J=8. 9Hz), 7. 69and7. 19(4H, A'B'q, J=8. 6Hz), 7. 55(1H, s), 7. 37(1H, t, J=8. 1Hz), 6. 91(1H, d, J=7. 8Hz), 6. 85(1H, s), 6. 74(1H, d, J=7. 5Hz), 5. 13(2H, s), 4. 31(1H, brt, J=12. 2Hz), 2. 65(3H, s), 2. 41-2. 20(2H, m), 2. 00-1. 74(4H, m), 1. 70-1. 59(1H, m), 1. 58-1. 20(3H, m)

Example	No. 221
но	
Purity	>90% (NMR)
MS	554 (M+1)

1H NMR(δ) ppm

300MHz, DMSO-d6
8. 23 (1H, s), 7. 96and7. 86 (2
H, ABq, J=8. 6Hz), 7. 69and7.
18 (4H, A'B'q, J=8. 7Hz), 7. 3
7 (1H, t, J=8. 2Hz), 6. 87 (1H, d, J=8. 2Hz), 6. 82 (1H, s), 6.
75 (1H, d, J=8. 0Hz), 5. 24 (2H s), 4. 32 (1H, brt, J=12. 2Hz), 2. 58 (3H, s), 2. 38-2. 20 (2 H, m), 2. 30 (3H, s), 2. 00-1. 7
9 (4H, m), 1. 70-1. 59 (1H, m), 1. 44-1. 20 (3H, m)

Example	No.	222
но		CI CI
Purity	>90%	(NMR)
MS	557	(M+1)

1H NMR(δ) ppm
300MHz, DMSO-d6
12.88(1H, brs), 8.25(s, 1H), 8.07-7.57(11H, m), 7.26(2 H, d, J=8.7Hz), 7.24(1H, m), 4.34(1H, m), 2.30-2.20(2H, m), 2.03-1.78(4H, m), 1.64(1H, m), 1.49-1.19(3H, m).

Table 65

Example No.	223	1H NMR(δ) ppm
HO LONG	-√ >-α	300MHz, DMSO-d6 10.96(1H, brs), 8.21(1H, d, J=1.4Hz), 7.93(1H, d, J=8.7 Hz), 7.84(1H, dd, J=8.7, 1.4 Hz), 7.76-7.40(7H, m), 7.18 (2H, d, J=8.0Hz), 4.24-4.16 (2H, m), 2.40-1.12(18H, m)
Purity >90% (NM	R)	
MS 544 (M+1)		

Example No.	224	1H NMR(δ) ppm
HO! CIN-O	S	(DMSO-d6) δ :8. 22 (1H, s), 8 .07 (1H, d, J=8. 4Hz), 7. 92 (1 H, d, J=8. 4Hz), 7. 54 (2H, d, J =8. 7Hz), 7. 40 (2H, d, J=8. 4Hz), 7. 14 (2H, d, J=8. 7Hz), 4. 61 (2H, s), 4. 48-4. 32 (1H, m), 3. 82 (1H, brd, J=12. 3Hz), 3. 65-3 .47 (2H, m), 3. 10 (brdd, J=8. 4, 12. 3Hz), 2. 40-2. 20 (2H, m), 2. 09-1. 76 (6H, m), 1. 71-1
Purity >90% (NMR)	. 16 (6H, m)
MS 544 (M+1)		

Example No.	225	1H NMR(δ) ppm
но 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NH,	(DMSO-d6) &:12.83(1H, brs), 8.21(1H, s), 8.10(1H, brs), 7.01-7.91(2H, m), 7.89-7 .82(2H, m), 7.75(1H, d, J=8.0Hz), 7.59(2H, d, J=8.7Hz), 7.53(4H, s), 7.46(1H, brs), 7.12(2H, d, J=8.7Hz), 7.23(2H, s), 4.35-4.17(1H, m), 2.38-2.20(2H, m), 1.99-1.79(4H, m), 1.71-1.59(1H, m), 1.48-1.18(3H, m)
Purity >90%	(NMR)	10 1. 10 (0.1)
MS 580 ()	M+1)	

Table 66

Example	No.	226	1H NMR(δ) ppm
HO 1	├	{\rightarrow}-\alpha	300MHz, DMSO-d6 8. 33and8. 08 (2H, ABq, J=8. 7 Hz), 8. 31 (1H, m), 7. 66and7. 26 (4H, A'B'q, J=9. 2Hz), 7. 4 2and7. 39 (4H, A"B"q, J=8. 7H z), 4. 57 (2H, s), 4. 50 (1H, br t, J=12. 2Hz), 3. 85-3. 62 (3H ,m), 3. 28-3. 16 (2H, m), 2. 42 -2. 23 (2H, m), 2. 14-1. 81 (6H ,m), 1. 72-1. 25 (6H, m)
Purity	>90% (NM)	R)	
MS	544 (M+1)		

Example No.	227	1H NMR(δ) ppm
HO I TO SO		300MHz, DMSO-d6 8. 43 (1H, d, J=5.0Hz), 8. 23 (1H, s), 7. 96and7. 86 (2H, ABq, J=8.6Hz), 7. 69and7. 18 (4H, A'B'q, J=8.6Hz), 7. 57 (1H, s), 7. 47 (1H, d, J=5.0Hz), 7. 40 (2H, t, J=8.2Hz), 6. 91 (1H, d, J=8.3Hz), 6. 85 (1H, s), 6. 77 (1H, d, J=7.9Hz), 5. 25 (2H, s), 4. 31 (1H, brt, J=12.2Hz), 2. 40-2. 19 (2H, m), 1. 99-44.
Purity >90% (N	MR)	1.75(4H, m), 1.73-1.57(1H, m), 1.49-1.19(3H, m)
MS 554 (M+1)	ш/, х. хо ст. до ст.

Example No.	228	1H NMR(δ) ppm	
		300MHz, DMSO-d6 12.80(1H, brs), 8.22(1H, s), 7.94(1H, d, J=8.6Hz), 7.60(2H, J=8.7Hz), 7.32(2H, d, J=8.7Hz), 7.17(2H, d, J=8.7Hz), 7.70(2H, d, J=8.7Hz), 4.35-97(4H, m), 3.62-3.11(2H, J), 2.96(6H, s), 2.39-1.12(4H, m)	
Purity > 90% (NM	R)		
MS 567 (M+1)		·	

Table 67

Example N	io.	229	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 25 (1H, s), 8. 20 (1H, s), 8. 04 (1H, dd, J=8. 1, 1. 8Hz), 7. 92 (1H, d, J=8. 1Hz), 7. 84 (1H, d, J=9. 9Hz), 7. 62-7. 50 (7H, m), 7. 12 (2H, d, J=8. 7Hz), 5. 14 (2H, s), 4. 36 (2H, q, J=6. 9Hz), 4. 30-4. 20 (1H, m), 2. 3 8-2. 18 (2H, m), 1. 98-1. 18 (8H, m), 1. 35 (3H, t, J=6. 9Hz)
Purity	>90% (NMR	.)	
MS	608 (M+1)		

Example No.	230	1H NMR(δ) ppm
но		300MHz, DMSO-d6 8. 35(1H, s), 8. 27(1H, d, J=8 .7Hz), 8. 05(1H, d, J=9. 0Hz) ,7. 87(2H, d, J=8. 7Hz), 7. 74 (1H, t, J=8. 1Hz), 7. 64(1H, d ,J=7. 8Hz), 7. 59-7. 50(2H, m),7. 36(2H, d, J=8. 7Hz), 4. 3 9(1H, m), 2. 40-2. 15(2H, m), 2. 15-1. 95(2H, m), 1. 95-1. 7 5(2H, m), 1. 75-1. 55(1H, m), 1. 55-1. 20(3H, m).
Purity about90% (NI	MR)	1.00 1.20 (0.0)
MS 481 (M+1))	

Example No. 2	
المراج والمحاسب	300MHz DMSO-d6 12. 78 (1H, brs), 8. 23 (1H, d, J=1. 5Hz), 7. 96 (1H, d, J=8. 7 Hz), 7. 87 (1H, dd, J=8. 7, 1. 5 Hz), 7. 75 (2H, d, J=8. 4Hz), 7. 63 (2H, d, J=8. 4Hz), 7. 52 (2 H, d, J=8. 4Hz), 5. 47 (2H, d, J=8. 4Hz), 5. 47 (2H, s), 4. 29 (1H, m), 2. 97 (6H, brs), 2. 72 (3H, s), 2. 39-2. 16 (2H, m), 2.
Purity about 90% (NMR)	00-1: 78 (4H, m), 1.71-1.59 (1H, m), 1.49-1.17 (3H, m).
MS 595 (M+1)	

Table 68

Example	No.	232	1H NMR(δ) ppm
но			300MHz, DMSO-d6 12.8(1H, brs), 8 7.96(1H, d, J=8. 1H, d, J=8.6Hz), ,7.59(2H, d, J=87.50(5H, m), 7. 7.9Hz), 7.12(2H), 5.11(2H, s), 4 3.01(3H, brs), 2), 2.40-2.15(2H, r), 7.
Purity	>90% (NI	MR)), 1.50-1.15(3H
MS	608 (M+1)		

10

15

20

25

30

35

40

45

50

55

OOMHz, DMSO-d6 2.8(1H, brs), 8.22(1H, s), 7.96(1H, d, J=8.7Hz), 7.86(H, d, J=8.6Hz), 7. 70(1H, s) 7. 59 (2H, d, J=8. 7Hz), 7. 53 -7. 50 (5H, m), 7. 42 (1H, d, J=7. 9Hz), 7. 12 (2H, d, J=8. 7Hz , 5. 11 (2H, s), 4. 27 (1H, m), 3. 01 (3H, brs) , 2. 97 (3H, brs), 2. 40-2. 15 (2H, m), 2. 00-1 75 (4H, m), 1.75-1.55 (1H, m), 1.50-1.15(3H, m).

Example	No.	233
HOI		=N } \
Purity	>90% (NM)	R)
MS	553 (M+1-HC1)	

DMSO-d6 13. 20 (1H, brs), 8. 99 (1H, s) ,8. 32 (1H, s), 8. 25 (1H, d, J= 8. 8Hz), 8. 04 (1H, d, J=8. 6Hz), 7. 79-7. 74 (4H, m), 7. 60 (2 H, d, J=8. 5Hz), 7. 30 (2H, d, J=8. 7Hz), 5. 26 (2H, s), 4. 36 (1H, m), 2. 72 (3H, s), 2. 50-2. 15 (2H, m), 2. 15-1. 95 (2H, m), 1. 95-1. 75 (2H, m), 1. 75-1. 55 (1H, m), 1. 55-1. 15 (3H, m)

1H NMR(δ) ppm

Example	No.	234
2401		
Purity	>90% (NM	IR)
MS	538 (M+1-2HC	:1)

1H NMR(δ) ppm DMSO-d6 8.77 (1H, d, J=3.6Hz), 8.36-8. 26 (3H, m), 8. 08 (1H, d, J=8 .8Hz), 7. 79 (2H, d, J=8. 7Hz) , 7. 72-7. 64 (3H, m), 7. 58 (2H , d, J=8.4Hz), 7.30(2H, d, J= 8.7Hz), 5.26(2H, s), 4.38(1 H, m), 2. 50-2. 15(2H, m), 2. 1 5-1.95(2H, m), 1.95-1.75(2 H, m), 1.75-1.55(1H, m), 1.5 5-1. 15 (3H, m).

Table 69

Example	No.	235	1H NMR(δ) ppm
₩ ¹		-	300MHz, DMSO-d6 12. 74(1H, brs), 8. 67(1H, dd , J=3. 1, 1. 6Hz), 8. 21(1H, d, J=1. 6Hz), 7. 93(1H, dJ=8. 6H z), 7. 90-7. 80(2H, m), 7. 60- 7. 50(7H, m), 7. 09(2H, d, J=8 . 7Hz), 5. 16(2H, s), 4. 26(1H , m), 2. 40-2. 20(2H, m), 2. 00 -1. 60(5H, m), 1. 50-1. 20(3H , m)
Purity	>90% (NMI	₹)	
MS .	APCI-Ms 538(M+	1)	

Example No.	236	1H NMR(δ) ppm
	-N	300MHz, DMSO-d-6 8. 40-7. 40 (11H, m), 2. 95, 2. 81 (3H, each d, J=4. 7Hz), 2. 40-2. 20 (2H, m), 2. 10-1. 80 (4H, m), 1. 70- 1. 60 (1H, m), 1. 50-1. 20 (3H, m)
Purity > 90% (N	MR)	
MS APCI-Ms 558	5 (M+1)	

Example N	0. 23	- I
HO		300MHz, DMSO-d6 8. 21 (1H, s), 8. 15 (1H, d, J=9 .5Hz), 8. 02 (1H, s), 8. 00-7. 80 (3H, m), 7. 70-7. 50 (6H, m) ,7. 12 (2H, d, J=8. 7Hz), 5. 16 (2H, s), 4. 28 (1H, m), 2. 40-2 .20 (2H, m), 2. 00-1. 80 (4H, m), 1. 65 (1H, m), 1. 50-1. 20 (3 H, m)
Purity	>90% (NMR)	
MS	FAB-Ms 605 (M+1)	

Table 70

Example No.	238 1H NMR(δ) ppm
HO NO	300MHz, DMSO-d6 12. 80 (1H, brs), 8. 54 (1H, s), 8. 25 (1H, s), 7. 98and7. 88 (2H, Abq, J=8. 6Hz), 7. 76 (2H, d, J=8. 6Hz), 7. 53-7. 31 (3H, m), 6. 61 (1H, s), 5. 46 (2H, s), 4. 32 (1H, brt), 2. 40-2. 20 (2H, m), 2. 02-1. 79 (4H, m), 1. 69-1. 59 (1H, m), 1. 48-1. 19 (3H, m)
Purity > 90% (NMR)	
MS APCI-Ms 521 (M+1)	

Example No.	239	
HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		300MHz, DMSO-d6 12.79(1H, brs), 8.60(2H, d, J=1.5Hz), 8.53(1H, s), 8.25 (1H, s), 7.98and7.85(2H, AB q, J=9.4Hz), 7.76(2H, d, J=9.0Hz), 7.44(4H, d, J=6.5Hz), 6.69(1H, s), 5.53(2H, s), 4.32(1H, brt), 2.40-2.19(2H, m), 2.03-1.82(4H, m), 1.72-1.61(1H, m), 1.42-1.22(3H, m)
Purity :	>90% (NMR)	1. 12 1. 22 (0)
MS	APCI-Ms 522(M+1)	

Example N	ю.	240	1H NMR(δ) ppm
но		-0 C	300MHz, DMSO-d6 8. 90 (1H, s), 8. 32 (1H, s), 8. 28 (1H, s), 8. 25 (1H, d, J=8. 3 Hz), 8. 05 (1H, d, J=8. 8Hz), 7 .96 (1H, s), 7. 93 (1H, d, J=8. 8Hz), 7. 83 (1H, d, J=8. 4 Hz), 7. 68-7. 59 (2H, m), 7. 54 (2H, d, J=8. 8Hz), 4. 37 (1H, b rt), 2. 30 (2H, m), 2. 00 (2H, m), 1. 88 (2H, m), 1. 67 (1H, m), 1. 5-1. 2 (3H, m)
Purity	>90%	(NMR)	1.0 1.2 (011, 11)
MS	APCI-Ms	525 (M+1)	

Table 71

		Table /2	7
	Ex. No.	Formula	MS
5	1	0	364 (M+H)
	1001		
		H²N T	
40		н,с	
10			1
		CH ₃	454 (M+H)
	1002	o o—()—(
15		H ₂ N H ₃ C OH ₃	1
	1		1
	1	\rightarrow	
20		\searrow	
	1003	0	398 (M+H)
	1003	Lan A	
25		H ₂ N T	
	1		1
	\		1
30			357 (M+H)
	1004		
	1	H ₂ N	} }
35			
			322 (M+H)
	1005		322 (F1111)
40			
		H ₂ N OH	
45			
	}		385 (M+H)
	1006	NO ₂	363 (12, 11)
50	1	H _M A	
			}
55			
55	<u> </u>		

Table 72

		Table 12	MC
5	Ex. No.	Formula	MS
	1007		357 (M+H)
10	1007	H ₂ N N	
	1008		416 (M+H)
20		H ₂ N CH ₃	
			310 (M+H)
25	1009	H ₂ N H ₃ C	
30			390 (M+H)
35	1010	H ₂ N T _F	
	1011	O NO ₂	395 (M+H)
40		H ₂ N C	
45			366 (M+H)
50	1012	H ₂ N OH	

Table 73

		Table /3	200
ſ	Ex. No.	Formula	MS
5	<u> </u>	F.	374 (M+H)
	1013	o F	
	1	H ₂ N N	
			1
10		<u> </u>	
	1014	o o	382 (M+H)
15	1	H ₂ N N	
	1		
20			
		0,	350 (M+H)
	1015	о у	
25		H _I N N	
20			1
			402 (M+H)
30	1016	F	
		H _I N TN	
		Br	
35			}
			414 (M+H)
	1017	0	414(11.11)
40		H,N N O	
		N CH,	·
		Br	
45			10 (10 11)
	1018	9	340 (M+H)
		HINT	
50			
50) à	
	<u> </u>		

Table 74

		Table 14	140
_	Ex. No.	Formula	MS
5	1019	н,с	350 (M+H)
10		H ₂ N	
15		<u> </u>	380 (M+H)
13	1020		
		H ₂ N O	
20		ОН	
		ОН	366 (M+H)
25	1021	ζ	
		H ₂ N \	
30		, , , , , , , , , , , , , , , , , , ,	
			378 (M+H)
35	1022	H ₂ N N	
		CH ₃	
40	,	,	
40	1023	O Br	402 (M+H)
	1023	H ₂ N N F	
45			
	ł		l

Table 75

1	Ex. No.	Formula	MS
5	1024		518 (M+H)
10		H ₂ N C	
15			408 (M+H)
20	1025	H ₂ N Ci	
25	1026	H ₂ N CH ₃	336 (M+H)
30		\(\)	
35	1027	H ₂ N N	408 (M+H)
40	1028	н, м он он	366 (M+H)
45			
50	1029	H ₂ N CH ₃	362 (M+H)
55			

Table 76

		Table 70	
	Ex. No.	Formula	MS
5	1030	9	473 (M+H)
		HINTING	
10			
	1031	OH OH	338 (M+H)
15		H²N CH	
20	1032	i n	307 (M+H)
		HJN TING	
25			406 (M+H)
	1033		406 (M+n)
30		HIN THE STATE OF	
35	1034		466 (M+H)
		H ₂ N F F	
40			
	1025		412 (M+H)
45	1035		
-2			
50		H²N ()	
55			

Table 77

E	Ex. No.	Formula	MS
-	1036	0 O-CH ₃	412 (M+H)
		H ₂ N N	
	1037	H ₂ N CH ₃	428 (M+H)
5	1038	H,N CI	466 (M+H)
0	1039	9	406 (M+H)
15		H ₂ N O O	417 (MLU)
40	1040	H ₂ N O ₂	41 / (M+tl)
45			
50	1041	H ₂ N OF F	
o 	1038	H ₂ N + + + + + + + + + + + + + + + + + + +	428 (M+H) 466 (M+H) 417 (M+H) 440 (M+H)

Table 78

		I CLOSE CO. C.	·
	Ex. No.	Formula	MS
5	1042	NO ₂	417 (M+H)
	1 1	H ₂ N T T	
10		<u> </u>	
	1043	F \rightarrow F	440 (M+H)
15		<u></u>	
		l a N o	
		H ₂ N T T >	1
20			
	1044	Q	312 (M+H)
25	}	H ₂ N N	
	1		1
30			423 (M+H)
	1045		120 (32 %)
		I N	
<i>35</i>		H ₂ N T N	
		H,ć	
40	1046	ОН	352 (M+H)
		H ₂ N N O	
		CH,	
45			
			307 (M+H)
	1047		
50		H ₂ N T	
			

Table 79

		Table /9	
5	Ex. No.	Formula	MS
Ĭ	1048	9 F F	374 (M+H)
10	1046	H ₂ N F F	
15	1049		398 (M+H)
20		HIN	326 (M+H)
25	1050	H ₂ N S CH ₃	320 (11.11)
30			442 (M+H)
35	1051	H ₂ N O O-CH ₃	
40			
45	1052		518 (M+H)
50		HIN TING	

Table 80

		Tubic or	
	Ex. No.	Formula	MS
5	1053		442 (M+H)
10		H ₂ N CH ₃	
15	1054		376 (M+H)
20	1054	H ₂ N OH	
25	1055	H ₂ N C	442 (M+H)
30		Д ңс′	252 (M+U)
35	1056	H ₂ N OH	352 (M+H)
40	1057	H ₂ N OH	367 (M+H)
45			
50	1058	H ₂ N NO ₂ OH	367 (M+H)
<i>55</i>	L		

Table 81

5	Ex. No.	Formula	MS
	1059	Q	364 (M+H)
10	2000	H ₂ N CH ₃	
			324 (M+H)
15	1060	H ₂ N P	
20			
25	1061	н, м — он	352 (M+H)
30		н,с	357 (M+H)
35	1062	H ₂ N S NO ₂	
40	1063	H ₂ N F F	360 (M+H)
45			
50	1064	H ₂ N NO ₂	351 (M+H)
55	. L		

Table 82

		10010 0-	
	Ex. No.	Formula	MS
5	1065	Q	351 (M+H)
10		H ₂ N NO ₂	
15	1066	H ₂ N CH ₃	366 (M+H)
20		н,с	367 (M+H)
25	1067	H ₂ N OH	·
30	1068	H ₂ N CH ₃	364 (M+H)
35			
40	1069	H ₂ N OH	350 (M+H)
45	1070	Q.	306 (M+H)
50		H ₂ N N	

Table 83

5	Ex. No.	Formula	MS
		0	365 (M+H)
10	1071	HO H ₃ C	
15	1072	√=\ ∫CH₃	455 (M+H)
20	10/2	HO H ₃ C CH ₃	
	1073	P	399 (M+H)
25		HO	
30			358 (M+H)
35	1074	HO N N	337 (M+H)
40 45	1075	HO CH ₃	
			386 (M+H)
50	1076	HO NO ₂	
55			

Table 84

		14010 01	
	Ex. No.	Formula	MS
5	1077		358 (M+H)
10		но	44.5 (44.11)
15	1078	HO NO CH,	417 (M+H)
20		H ₃ ¢	311 (M+H)
25	1079	HO NH	311 (PHI)
30	1080	HO NO F	391 (M+H)
35		\	
40	1081	HO NO ₂	396 (M+H)
45			367 (M+H)
50	1082	но	
	L		

Table 85

		Table 65	
5	Ex. No.	Formula	MS
10	1083	HO PF	375 (M+H)
15	1084	ЭОН	351 (M+H)
20		но	
25	1085	HO N	383 (M+H)
30	1006		403 (M+H)
<i>35</i>	1086	HO N Br	
40	1087	HO N CH ₃	415 (M+H)
45			341 (M+H)
50	1088	HO	34 (*****)
55			

EP 1 162 196 A1

Table 86

		MC
No.	i i	MS
89	н,с	351 (M+H)
	9	
	но	
an	0	381 (M+H)
	HO NO CON	
-		0.67.04.00
91	ОН	367 (M+H)
}		
	HO TI	
İ	, , , , , , , , , , , , , , , , , , ,	
		10.70 (14) (7)
092		379 (M+H)
1	HO	
	CH ₃	
093	Br	403 (M+H)
	HO	
	\cup	
	No. 89 90 90 90 91 92 93 93 93 93 93 93 93	990 HO

50

55

Table 87

5	Ex. No.	Formula	MS
			519 (M+H)
	1094		
		g p_	
10		HON	
			1
15			
15	1		
	1095	g ci	409 (M+H)
20	1 1	но	}
	1		}
25	1000		337 (M+H)
,	1096	HO NOTH	
		HO OH	
30) jan,	
	1097) II	409 (M+H)
35		но	
			Ì
40	1098	9	367 (M+H)
		N — OH	
		но	
45	,	<u> </u>	
			262 (24)
50	1099		363 (M+H)
50		HOCH	
		H,C Cons	
<i>55</i>			

Table 88

			240
1	Ex. No.	Formula	MS
5	1100	9	474 (M+H)
10		HO	
15	1101	но	339 (M+H)
20			
25	1102	HOLLY	308 (M+H)
	1102		467 (M+H)
30	1103	HO FFF	
			413 (M+H)
40	1104	HO	
45			
50	1105	HO CH ₃	413 (M+H)
55			

Table 89

		Table 89	
5	Ex. No.	Formula	MS
	1106	/ \	429 (M+H)
	1100	CH _s	
10		HO TIN	}
		, , , , , , , , , , , , , , , , , , ,	
			467 (M+H)
15	1107	ga	
		но	
20			
20			
	1108	0	
25		HO C	
) J	
30	1109		
		HO TINO2	
35			
			441 (M+H)
	1110	O N O F F	441 (11.11)
40		HO TINOTE	
40			418 (M+H)
45	1111	0	410 (21.11)
		HO NO.	
50			
	·		

Table 90

		Table 30	110
	Ex. No.	Formula	MS
5	1112	0	313 (M+H)
		HO	
	}		
10			
			308 (M+H)
	1113		
15		но	1
		~ ".	
,		\bigcup	
20	1114	0 F_F	375 (M+H)
		HO	
25			
	7716		399 (M+H)
30	1115		
		но	
35			
	1116	O N S CH,	327 (M+H)
		HO S	
40			
45	1117		443 (M+H)
45			
		0 0 p-ch	
50		HO	
55			

Table 91

		Table 71	
5	Ex. No.	Formula	MS
	1118		519 (M+H)
!			
10		0/	
		HO O	
15			
	1119		443 (M+H)
20		_ >	
20			
		но	
25	}	CH ₃	·
	1120	9	377 (M+H)
30		но	
or.			
35	1121	о о-сн,	443 (M+H)
		HONN	
40	1		
			}
		CH ₃	353 (M+H)
45	1122	·	333 (1211)
		но	
50			

Table 92

			112
	Ex. No.	Formula	MS
5	1123	NO ₂	368 (M+H)
		HONOH	
10			
			1
	1124	O NO ₂	368 (M+H)
15		HO	
		OH	
20			
20	1125	•	365 (M+H)
	1125	HO	
25		CHS	
<i>30</i>	1126	Q.	325 (M+H)
	1120	HO	
35			
	1127	0	353 (M+H)
40	112/	HO N OH	
40			
		6-сн,	
45	1100		358 (M+H)
	1128	но	
50		N S NO ₂	
<i>50</i>			

Table 93

		14.510 00	1
5	Ex. No.	Formula	MS
10	1129	HO N F F	361 (M+H)
15	1130	HO NO ₂	352 (M+H)
20			
25	1131	HO NO ₂	352 (M+H)
30	1132	Lan A	367 (M+H)
35		HO CH ₃	
40	1133	HO NO ₂	368 (M+H)
45			365 (M+H)
50	1134	HO CH ₃	
55	. L		

Table 94

		I dole 71	
	Ex. No.	Formula	MS
5	1135	0	351 (M+H)
		HON	1
		ОН	
10			1
	1136	0	307 (M+H)
15		HO	
			1
20			385 (M+H)
	1137		
05		но	
25			
30	1138	9 9-	365 (M+H)
		HO	
35			
			467 (944)
	1139	C C	467 (M+H)
40		\ \ \rangle \rangle \\	
		но	
45			
	1140	0	387 (M+H)
	1140	HO NO CH,	
50			
55	L		

Table 95

		Table 95	
5	Ex. No.	Formula	MS
ļ	1141	о сн,	322 (M+H)
		HO N N=	
10			
		\rightarrow	
			364 (M+H)
15	1142		364 (H+II)
		но	
20		Joh,	
20		\bigcup .	
	1143	о он	323 (M+H)
25		HO	
30			363 (M+H)
	1144	но сн,	1
		H ₃ C CH ₃	
35			
			484 (M+H)
40	1145		464 (11/11)
		HO CH,	·
45			
	1146	Q	385 (M+H)
50			
55			
50		HOTO	
55			

Table 96

5	Ex. No.	Formula	MS
10	1147	HO LING CO	427 (M+H)
15	1148	HO CH ₃	420 (M+H)
20		QI CI	508 (M+H)
25	1149	HOTT	300 (1111)
30			458 (M+H)
35	1150	HO THE STATE OF TH	430 (2111)
40		. \(\(\)	458 (M+H)
45	1151	HO TO	430 (244)
50			

Table 97

			MC
5	Ex. No.	Formula	MS
	1152	ÇI	474 (M+H)
	2202		[
10			1
		HO	1
		W W W	
15			
	1153		458 (M+H)
20			1
		HO	
25			
	1154	F. F	508 (M+H)
30		F	
30			
			1
35		HO TI	
40	1155		454 (M+H)
		CH,	
45			
		HO	
50			

Table 98

		Table 30	
5	Ex. No.	Formula	MS
	1156	ОМв	470 (M+H)
10			
		HO TI	
45			
15			40.5 (14.17)
	1157	н,с сн, —сн,	496 (M+H)
20			
		n + >=/	
		но	
25			
20	1158		482 (M+H)
30			
		но	
35			
	1159	N N N-CH,	448 (M+H)
40		HO NOCAS	
45	1160		488 (M+H)
			3
50		HO	

Table 99

		Table 99	
5	Ex. No.	Formula	MS
	1161		468 (M+H)
		_ _\	
10			
		но	
15		\bigcup	
	1162	√n', cr²	447 (M+H)
20			
20	1	HO TING	
25			4.66 (24.11)
	1163		466 (M+H)
30		HOTT	
35			
35	1164	OMe	526 (M+H)
		OMe	
40		HON	
45	1165	<u></u>	420 (M+H)
	1103		
50		HOTT	
50			

Table 100

		Table 100	
5	Ex. No.	Formula	MS
	1166		490 (M+H)
10		но	
15	1167	но тругон,	435 (M+H)
20			436 (M-H)
25	1168	HO CH _s	436 (M+H)
30	1169	O-CH _s	436 (M+H)
35		HOTT	404 (M+H)
40	1170	HOLL	404 (MTM)
45			
50	1171	H ₃ C CH ₃	406 (M+H)

Table 101

		Table Tor	
5	Ex. No.	Formula	MS
	1172	S CH,	392 (M+H)
10		HO CH,	
			100 (111)
15	1173	H ₃ C CH ₃ CH ₃	420 (M+H)
		HOTEL	
20			406 (2411)
	1174	OH,	406 (M+H)
25		HOTT	
30	1175	CH ₃	420 (M+H)
		HO TO	
35			
40	1176		523 (M+H)
40		HO TO	
45		5	
	1177	CH ₃	406 (M+H)
50		HO CH _s	
,			
55			

Table 102

		10020	MC
5 .	Ex. No.	Formula	MS
	1	CH ₃	447 (M+H)
	1178		
10			
	1	но	1
	1		
15			
15	11.50	CH3	433 (M+H)
	1179		
20		HO TIN	1
		\bigcup	
25	1180 ·		509 (M+H)
		g ()	
30		HO	1
35			513 (M+H)
	1181		323 (22)
40		/K	
		HO T	
45			

55

Table 103

		Table 103	
_	Ex. No.	Formula	MS
5	1182		497 (M+H)
		N N	
10		·	
10		HO	
	}		
15		\supset	
	1102		496 (M+H)
	1183	\N	
20			
		HO	
25		\triangleright	
	1184		418 (M+H)
30	1104		
		HO	
	!	\	
35			508 (M+H)
	1185		
		R	
40		но	
45			
40	1186	OCH3	490 (M+H)
50			
		HOTTING	
55			

Table 104			
5	Ex. No.	Formula	MS
'	1187		441 (M+H)
10		HOLL	
15	1188		455 (M+H)
20	1188	HOLL	
25	1189	HO N	455 (M+H)
30			E12 (M+H)
35	1190	HO CH ₃	513 (M+H)
40	1191	HO HO HO	504 (M+H)
45			40.4 (32 : 33)
50	1192	HO TO THE SECOND	494 (M+H)
55			

Table 105

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Table 105	
Ex. No.	Formula	MS
1193	HO CH,	512 (M+H)
1194	HO Br	504 (M+H)
1195	HO! TO SOLVE	516 (M+H)
1196	HO COH,	
1197	HO NOME	456 (M+H)
1198	HO HO	509 (M+H)

Table 106

	14510 100			
5	Ex. No.	Formula	MS	
	1199	9,	483 (M+H)	
		CH,		
10	1	10 1		
,,		of the second		
		<u></u>	l	
			427 (M+H)	
15	1200			
		HO TO THE TOTAL PROPERTY OF THE PROPERTY OF TH		
] [
20]			
			427 (M+H)	
	1201			
25		но Т		
			477 (M+H)	
30	1202			
		HO Y I W		
35				
	1203	9 N	519 (M+H)	
40		HO		
			١,	
45				
	1204		440 (M+H)	
		n		
	1	HO		
50				
		V		

Table 107

	Table 10.			
5	Ex. No.	Formula	MS	
10	1205	HO HO	454 (M+H)	
15	1206	но	325 (M+H)	
20				
25	1207	но	341 (M+H)	
30	1208	·	385 (M+H)	
35	1200	HO Br		
40	1209	HO CH,	363 (M+H)	
45		\(\)	1020 (2417)	
50	1210	HO CN	332 (M+H)	
55				

Table 108

	12010			
5	Ex. No.	Formula MS		
}	1211	9	351 (M+H)	
10		HO CH,		
			335 (M+H)	
15	1212	HO CH,		
20				
25	1213	HO CH _s	349 (M+H)	
30			321 (M+H)	
	1214	но Сн		
35				
40	1215	HOLL	375 (M+H)	
45			0.67 (M.H.)	
50	1216	но	367 (M+H)	
50		ОН		

Table 109

	Table 109		
5	Ex. No.	Formula	MS
10	1217	HO TO	433 (M+H)
15	1218	HOLLIN	391 (M+H)
20			
25	1219	но СН,	337 (M+H)
30	1220	P	385 (M+H)
35		HO Br	
40	1221	HO NO CO	341 (M+H)
45			332 (M+H)
50	1222	HO CN	332 (41.11)

Table 110

		Table 110	
5	Ex. No.	Formula	MS
10	1223	HO CH,	395 (M+H)
15	1224		375 (M+H)
20		HO LA	
25	1225	HO CH ₃	351 (M+H)
30	1226	но	321 (M+H)
35		СН	
40	1227	HO LANGE CONTRACTOR OF THE PARTY OF THE PART	426 (M+H)
45			460 (M+H)
50		HO CO	

Table 111

			MC
5	Ex. No.	Formula	MS
	1229	0	442 (M+H)
		N O HOOM	
		HO TIME	
10		N O	
			1
			469 (M+U)
15	1230	Я н /=\ / ^{СН} ,	468 (M+H)
		HO NOTE OF THE PARTY OF THE PAR	
20		\rightarrow	
		\bigvee	
	1231	ОН	456 (M+H)
4-			
25		HO T	}
30	1030	, a	494 (M+H)
	1232	n " /=<	
		HO NO	
35			
			(AES (M) 11)
40	1233	CN	451 (M+H)
4 0			
		HO TING	
		, , ,	
45			
	1234	9,	468 (M+H)
		СН,	1
50			
	.	HOTT	
55			
99	1		

Table 112

(7 77	Formula	MS
5	Ex. No.		100 (12:11)
10	1235	но СН,	498 (M+H)
15			476 (M+H)
20	1236	HO	
25	1237		502 (M+H)
30		HOLL	FOF (MUH)
<i>35</i> 40	1238	HO S NH2	505 (M+H)
	1239	9,	469 (M+H)
45 50	1239	HO NH ₂	
		\Diamond	

Table 113

MS

483 (M+H)

408 (M+H)

460 (M+H)

468 (M+H)

494 (M+H)

454 (M+H)

		Table 113
5	Ex. No.	Formula
10	1240	HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15	1241	O
20		HO TO
25	1242	HO TO
30		
35	1243	HO L
40	1244	HO 1
45		
50		HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
55	L	

Table 114

5	Ex. No.	Formula	MS
	1246	н,с	468 (M+H)
!		•	
10			
:		HO	
15			
	1247		498 (M+H)
20	1217	HO HO PO	
		CH	
25		\Diamond	
	1248	Ŷ " ∕≕ "CH"	482 (M+H)
		HO HO CH	
30			
35	1249	ң <u>с</u> >—сң,	468 (M+H)
	ı		
40		HO TO	
45	1250	,a	460 (M+H)
50			
50		но	
55		V	

Table 115

5	
10	
15	
20	
25	
30	
35	
40	
45	

Table 115			
Ex. No.	Formula	MS	
1251	HO	442 (M+H)	
1252	HO CH,	468 (M+H)	
1253	но	456 (M+H)	
1254	HO C	494 (M+H)	

Table 116

		IdDie 110	
5	Ex. No.	Formula	MS
10	1255	HO N	451 (M+H)
15			
20	1256	CH,	468 (M+H)
25		HOTT	
<i>30</i>	1257	CH ₃	498 (M+H)
35		HO	
40	1258	ОН	470 (M+H)
45		HO	
50			

Table 117

		MC
Ex. No.	Formula	MS
1259	HO	476 (M+H)
1260		502 (M+H)
1261	O NH ₂ O S O	505 (M+H)
1262	HO NH.	469 (M+H)

Table 118

			MS
5	Ex. No.	Formula	MS
10	1263	s	483 (M+H)
15		HO	·
			400 ()(1)
20	1264	о п он	408 (M+H)
25		HO	
30	1265	oa	460 (M+H)
35		HO	
40	1266		468 (M+H)
45		HO	
50			

Table 119

		Table 119	
5	Ex. No.	Formula	MS
	1267	F	494 (M+H)
	120.	F	
10		. 0.	
		P — A	
•		но	
15			
20	1268		454 (M+H)
		P CH,	
25		HO	
			}
30	1269		468 (M+H)
35		HO CH,	
40	1070	CH ₃	498 (M+H)
	1270		
45		• >	
		l un l	
50		HO TI	
	.]		

Table 120

=	Ex. No.	Formula	MS
5	1	ңс	482 (M+H)
	1271	CH, CH,	
10			
		но	
15			
		\searrow	
		CH ₃	468 (M+H)
20	1272	() —(
		b CH²	
25		HO	,
20			
		\bigcirc	
30	1273	a	494 (M+H)
	12,5	a	
35		HO	
40			
		О-СН,	484 (M+H)
	1274		
45			
		HO	
50			

Table 121

		10016 121	
5	Ex. No.	Formula	MS
	1275	0 0,04,	519 (M+H)
10		g	
		но	
	[]		
15			
	1276	/ \.	427 (M+H)
20	1	0, >=/	
20	{		1
		HO	
25	,	<u> </u>	
		U	
	1277	о-сн,	456 (M+H)
30			
		HO	
35			
	1278		516 (M+H)
40	12/0		
		_ <_>	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
45		HO N	
50			

Table 122

MS

5	Ex. No.	Formula
	1279	
10		но
15		
	1280	
20		HOLL
25		
	1281	0
30		HO TO THE
35		
	1282	·
40		HOLLING
45	1283	+
50		HOLLING
55		

1279	о сн,	436 (M+H)
	но	
	\$	
1280		426 (M+H)
	HO NO	
1281		440 (M+H)
1201		
	HO THE	
		454 (M+H)
1282		434 (MTD)
	HOLLAND	
	\	160 (1411)
1283		468 (M+H)
)	
	но т	
<u></u>		

Table 123

		Table 123	
5	Ex. No.	Formula	MS
	1284		482 (M+H)
		>	
10		g	
		HO TIN	·
15		<u> </u>	
		CH,	406 (M+H)
20	1285		
20	1	HO	
25		\sim	
	1286	H,C, CH,	420 (M+H)
	1280		
30		HO THE CH'S	
0.5		\Diamond	}
35	1287	a	508 (M+H)
		0, ~~~	
40			
		но	
45		V	508 (M+H)
	1288		
50		но	
55			

Table 124

			MS
	Ex. No.	Formula	
5			509 (M+H)
	1289	\ \ \ \	
1		N	
	1		
10	}	()	
	1	o' >=	
	1	8 >-1	
	}	HO	1
15	1 1		
	1		
	1		}
	1		
20	1290	<u></u>	455 (M+H)
	1290	()	
	1		
25	1		
		HO	
	· I		
30			
		F	494 (M+H)
	1291		
		0.	
35		N	1
	i	N /	
		HO T T	1
	1		1
40			
	1292	9, /	418 (M+H)
	1232) \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
45		HO	
50			

Table 125

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Table 120	MS
Ex. No.	Formula	Mo
1293		490 (M+H)
	HO	
	CH,	496 (M+H)
1294	H ₃ C CH ₃	
·	\Diamond	477 0614)
1295		477 (M+H)
	HOLL	
1296	O O F F	508 (M+H)
	HO 1	
	CH CH	470 (M+H)
1297	HO CH ₈	470 (M+H)
•		

Table 126

		Table 120	
5	Ex. No.	Formula	MS
	1298	СН	435 (M+H)
10			
		HOTT	
15			
20	1299	∠ a	488 (M+H)
25		HO THE STATE OF TH	
30			454 (M+H)
35	1300	HO CH,	
40		<u>\</u>	504 (M+H)
40	1301	Br O	
45		HO 1	
50			

Table 127

5	

Ex. No.	Formula	MS
	ңс	513 (M+H)
1302	>	
	HN	1
	()	{
	0 O-CH,	}
		} {
	HO TY	}
		}
}		{
1303		399 (M+H)
1303		}
Ì	HO TO TO	
1		1
		1
		530 (M+H)
1304	_ >	
		1
		1
1		
İ		
1305	ુ મુદ્	504 (M+H)
	HO	
Į.		
1		
1306	β H ₂ C /=	440 (M+H)
	HO TIME	

Table 128

		Table 128	
5	Ex. No.	Formula	MS
	1307	,a	494 (M+H)
10	1307	HO LA CA	
15			EUB (MTH)
20	1308	N S A	508 (M+H)
25		HO TI	518 (M+H)
30	1309	HO TO	
35			532 (M+H)
40	1310	HO LOS	
45	1311	a	522 (M+H)
50		HO CO	
55	. L		

Table 129

		Table 123	
5	Ex. No.	Formula	MS
	1312	,CH,	546 (M+H)
10		HO TING	
15			
20	1313	HO HO	484 (M+H)
25			517 (M+H)
30	1314	HO TO THE STORY	517 (H+H)
35	1315		488 (M+H)
40		HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
45	1316	a /= a	481 (M+H)
50		HO	
	· L		

Table 130

		Table 130	
_	Ex. No.	Formula	MS
5	1317	Q ·	413 (M+H)
10		HOTT	
15	1318	HOLL	423 (M+H)
20			
25	1319	HO TO	504 (M+H)
30	1320	HO THE STATE OF TH	510 (M+H)
35		H _C C-CH ₃	
40	1321	HO CO	522 (M+H)
45			
50	1322	HO TO F	522 (M+H)
55			

Table 131

5	Ex. No.	Formula	MS
J	1323	8	484 (M+H)
10		HO CH,	
15	1324	9	449 (M+H)
20		но СН,	E02 (M+H)
25	1325		502 (M+H)
30		HO TO A	
	1326	9	491 (M+H)
35		HO THE STATE OF TH	
40	1327	H ₃ C CH	496 (M+H)
45 50		HO CH, CH,	

Table 132

5	Ex. No.	Formula	MS
. 10	1328	HO S	497 (M+H)
15	1329	HO N	470 (M+H)
20		н	
25	1330	HO THO	530 (М+Н)
30	1331	a	502 (M+H)
35		HO TO THE THE THE THE THE THE THE THE THE THE	
40			
45	1332	HO TO	522 (M+H)
50			

Table 133

	Ex. No.	Formula	MS
5	1333		491 (M+H)
10		но	
15		\bigcirc	
20	1334	но	536 (M+H)
25	1335		547 (M+H)
30		HO THE STATE OF TH	484 (M+H)
35	1336	но	
40	1337	HOLLY	484 (M+H)
45		CH,	
50 . 55	1338	HO TO	498 (M+H)

Table 134

		Table 134	
	Ex. No.	Formula	MS
5	1339	Q	528 (M+H)
10		но С С С С С С С С С С С С С С С С С С С	
15	1340	Î	498 (M+H)
20		но	514 (M+H)
	1341		214 (M+11)
25		HO TING	
30		<u></u>	
		Сн,	
35	1342	HO NO.	513 (M+H)
40	1343	8	488 (M+H)
45		HOTO	
	1344		502 (M+H)
50		но	
55	L		

Table 135

5	Ex. No.	Formula	MS
	1345	но	488 (M+H)
10		→ A — — α	502 (M+H)
15	1346	HO TO A	302 (11.11)
20	1347		499 (M+H)
. 25	134/	HO TO	
30	1348	- NO ₂	480 (M+H)
35		HO TO TO	
40	1349	HO TO F.	522 (M+H)
45			
	1350	N P	546 (M+H)
50		HO THE	,
55			

Table 136

		Table 136	
	Ex. No.	Formula	MS
5	1351	9	482 (M+H)
10	1	но Ст.	
15	1352	HO LO CH,	484 (M+H)
	1353	0	609 (M+H)
<i>25</i>	{ {	HO TO THE CH,	
35	1354	HO CONTRACTOR OF THE PARTY OF T	532 (M+H)
40	1355	HO NH	480 (M+H)
45	1055		566 (M+H)
50	1356		

Table 137

1357 HO HO HO HO HO HO HO HO HO HO HO HO HO				MC
1357 HO 1358 HO 1359 HO 1360 HO 1360 HO 1361 HO 1361 HO 1362 H	5	Ex. No.	Formula	MS
1358 HO S S S S S S S S S S S S S S S S S S	-	1357	Q	602 (M+H)
20 1359 HO 1360 HO 1361 HO 1362 HO 1362 HO 1364 HO 1365 HO 1366 HO 1366 HO 1367 HO 1368 HO 1368 HO 1369 491 (M+H) 491 (M+H) 491 (M+H)	10		HO THE STATE OF TH	
25 1359 HO 491 (M+H) 35 1361 HO 45 1362 HO 491 (M+H) 491 (M+H) 491 (M+H)	15	1358	Q	596 (M+H)
25 HO HO 1360 HO HO HO HO HO HO HO HO HO H	20	,		
30 1360 HO HO HO HO HO HO HO HO HO HO HO HO HO		1359	9	491 (M+H)
1360 HO HO HO HO HO HO HO HO HO HO HO HO HO	25		но	
1360 HO HO HO HO HO HO HO HO HO HO HO HO HO	30			401 (M/ W)
1362 HO 1362 HO 1362 HO 1362 HO 1362 HO 1362 HO 1363 HO 1364 HO 1365 H	35	1360	HO THOM	
1362 HO N 496 (M+H)	40	1361		491 (M+H)
50 HO NO	45			10.6 (M. II)
55 CH,	50	1362	HOTO	490 (М+П)
	55		CH,	

Table 138

		Ignie 100	
	Ex. No.	Formula	MS
5	1363	Q.	512 (M+H)
10		HO CH,	
	1364	S)	494 (M+H)
		HO THE PLANT	
20	·	મ, ૯	
	1365	9	488 (M+H)
25		но	
			481 (M+H)
35	1366	HO NH	
			524 (M+H)
40	1367	HO LA CO	
45			
50	1368	HO ST	497 (M+H)
	L		

Table 139

			146
-	Ex. No.	Formula	MS
5	1369	9	472 (M+H)
		HO	
10			
	1	J	
	}		469 (M+H)
15	1370		469 (M+11)
		HO	
20			
	1371	9	470 (M+H)
		HO N	
25			
30		`cн,	469 (M+H)
	1372		409 (M+11)
		HOTT	
35			
	1373	9	494 (M+H)
40		но	
45			
45			1500000
	1374	l n = 0	458 (M+H)
50		HO' I I W	
55	L		

Table 140

1		Formula	MS
	Ex. No.		
5	1375	8	612 (M+H)
	1	HO N O DO	
10	}	, , _ (, _	
			j
15	1376	Ŷ.	554 (M+H)
		HO NO O	
20)	____\	
20	1	CH,	
			542 (M+H)
	1377		1
25		HO CH,	
		H,C CH,	
30			506 (17.7)
	1378	9	526 (M+H)
		HO NO]
35			{
40	1379	НО	496 (M+H)
	13/9	N = 0	
		HO TIN	
46		H,c-(
45		() CH, ()	
			510 (M+H)
	1380		
50		HO	
•	•		
55		CH,	<u></u>

Table 141

		Table 141	
	Ex. No.	Formula	MS
5	1381	R	540 (M+H)
		HO CH,	
10			
15	1382	O CH,	525 (M+H)
		HO'T' Y	
20	1	CH,	
	1383		558 (M+H)
25	1383	HO	
30			
	1384	0	523 (M+H)
35		HO HO	
		N-N-	
40			
40		à	539 (M+H)
	1385		
45		HO TIN	
50			
50		F F	

Table 142

ſ	Ex. No.	Formula	MS
5	1386	0	533 (M+H)
10		но Д-Д сн,	
15	1387		500 (M+H)
20		HO NO ₂	485 (M+H)
25	1388	N C	485 (M+H)
30		но	523 (M+H)
35	1389	HO TO THE POPULATION OF THE PO	323 (M+II)
40		c	
45 50	1390	HO TO A N	512 (M+H)

Table 143

		Table 145	
ſ	Ex. No.	Formula	MS
5	1391	Q	540 (M+H)
10		HO HO A C	E27 (M14)
15	1392	HO Hyc	527 (M+H)
20			525 (M+H)
25	1393	HO THE	
30	1394		507 (M+H)
35		HO THE N	
40	1395	HO TO SHE	491 (M+H)
45			
50	1396	HOLLY	506 (M+H)
55	L		

Table 144

1		Formula	MS
	Ex. No.	FOLMULA	
5	1397	8	522 (M+H)
	_	1 ~ " — 0	
		HO TING	
		N H	
10			
		_\ _\	
		a′	
	1398	O O	538 (M+H)
15		HO N P	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	·
00		()	
20			
	1399	8	522 (M+H)
		HO N P	i.
25			
		A A	
30	1400	0	530 (M+H)
	1100	un A O	·
		HO Y Y	ľ
1		~ H	
35			
	1401	8	600 (M+H)
40		HO N /	
			•
	!	() «	
45		q.—	1
		u—\(
	<u> </u>	à	
	1402	0	504 (M+H)
50			
		HD S CH,	
		l line	
55		()	
<i>55</i>		<u> </u>	

EP 1 162 196 A1

Table 145

			MS
	Ex. No.	Formula	
5	1403	0	534 (M+H)
		HO NO-CH,	
10		, H)	
		H³c-o,	
	7.404	7	475 (M+H)
	1404		
15		HO TING	
		A H	
20			472 (M+H)
	1405	9 > -\t	4/2(P/11)
		HO 100	} {
25			ł į
			1
			1
30	1406		455 (M+H)
50			1
		но	
35			
			469 (M+H)
	1407	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	103 (1111)
40		HO	
			. !
	İ		
45			_
	1408	0	547 (M+H)
		но	
50			
·		NH ₂	
55			

Table 146

		TADIC 140	
Ş	Ex. No.	Formula	MS
5	1409	0 % #	529 (M+H)
		HO TIN NO2	
10			
	1410	9	435 (M+H)
15		HO N-CH ₃	
		H ₃ C - H ₃ C	
20 .			
		0,	504 (M+H)
	1411		
25		но	
		. 🔾	
30	1412	0 2 1	469 (M+H)
		HO	
35			
			1500 (24.11)
40	1413	8 %	522 (M+H)
40		но	
45			
	1474	9. 11	488 (M+H)
	1414		
50		но	
•			
55			

Table 147

	Ex. No.	Formula	MS
5	1415	9 9 1	502 (M+H)
10		HOTH	
15	1416	HO	488 (M+H)
	1417	9, 11	502 (M+H)
25	141/	HOLL	
30	1418	0 H	455 (M+H)
35		HOLL	
40	1419	HO TO TO TO TO TO TO TO TO TO TO TO TO TO	455 (M+H)
45			
50	1420	HO CI	522 (M+H)
55			<u> </u>

EP 1 162 196 A1

Table 148

		Table 140	
	Ex. No.	Formula	MS
5	1421	0	469 (M+H)
10		HO	
15	1422	HO CI	536 (M+H)
20			
25	1423	HO CH ₃	510 (M+H)
30			494 (M+H)
35	1424	HO TO THE PART OF	
40	1425	9 %	458 (M+H)
45		HO THO	

50

55

Table 149

i	Ex. No.	Formula	MS
5	EX. NO.	2 02	İ İ
5	1426	ρ	612 (M+H)
10			}
		HO CI	
15		,	
		()	ļ
		ОН	526 (M+H)
	1427		520 (M.II)
20		>	}
		0,	
			·
25		но	
	[
30		<u> </u>	400 00:00
•	1428	8	480 (M+H)
	[HO	
<i>35</i>			ļ
33)	
		\bigcirc	
	1429	Q, H	441 (M+H)
40	1		
		но	
	j	N CN	
45 `	}		
		. 🗸	511 (M. U)
	1430	8	511 (M+H)
50		HO N	
			1
)·¬	
55		CH ₃	
55	L	L	<u> </u>

Table 150

		Table 150	
5	Ex. No.	Formula	MS
10	1431	но	530 (M+H)
15	1432	9 9	497 (M+H)
20		HO N S N	
25	1433	HO	441 (M+H)
30	1434	o %_H	491 (M+H)
35		HO	
40	1435	но	491 (M+H)
45			401 (M 31)
<i>50</i> .	1436	HOLL	491 (M+H)

Table 151

		Table 131	
	Ex. No.	Formula	MS
5	1437	6 %H —	524 (M+H)
		HO NO NO NO NO NO NO NO NO NO NO NO NO NO	
10			
		~ · ~	
15	1438	9 %	508 (M+H)
	·	HO	
20			
	1439	9 .	474 (M+H)
25		HO CI	
30			
	1440		490 (M+H)
05		HO TO TO	
35			
			508 (M+H)
40	1441		508 (2111)
		HO CI	
45		a	
1	1442	9, 4	474 (M+H)
50	7446		
50		HO THE STATE OF	
		à	
55		<u> </u>	

5	
10	
15	
20	
25	
30	
35	
40	

Table 132					
Ex. No.	Formula	MS			
1443	HOLLS	516 (M+H)			
1444	HO CO	600 (м+н)			
1445	HO N N N N CH,	504 (M+H)			
1446	HO HO CH ₃	534 (M+H)			
1447	HO	475 (M+H)			

Table 153

	Ex. No.	Formula	MS
5	1448		530 (M+H)
10 ,		HOLL	
15		\bigcirc	
20	1449	HO TO TO	440 (M+H)
25	1450	но	490 (M+H)
30			
35	1451	HO C	474 (M+H)
40	1452	но	441 (M+H)
45			
50	1453	но	508 (M+H)
55		a	

	Table 134	MS
Ex. No.	Formula	
1454	HOLLING	455 (M+H)
1455	9	522 (M+H)
	но	
1456		496 (M+H)
	HO THE CH,	
1457		516 (M+H)
	HO THE STATE OF TH	
1458		426 (M+H)
	HO	
1459	HO CH ₃	482 (M+H)
L		

Table 155

1	Ex. No.	Formula	MS
5	1460	9	486 (M+H)
10		HO CH ₃	
15	1461		516 (M+H)
20		HO THO	
	1462	0	427 (M+H)
25		HO	
30	1463	9	476 (M+H)
35		HO TO NOTE OF THE PARTY OF THE	
40 45	1464	но	460 (M+H)
43	1465		502 (M+H)
50		HOLL	

Table 156

_	Ex. No.	Formula	MS
5	1466	CI CI	586 (M+H)
10		HO	
15	1467		518 (M+H)
20		HOTH	
25	1468	HOLON	530 (M+H)
30			
35	1469	HO CI	598 (M+H)
40	1470	но	512 (M+H)
45			
50	1471	но	544 (M+H)
55	L		J

Table 157

-		TADLE 137	
5	Ex. No.	Formula	MS
10	1472	HOLL	440 (M+H)
15	1473	9 — —	490 (M+H)
20		HO TO TO	
25	1474	HO CI	474 (M+H)
30			
35	1475	HO TO TO TO TO TO TO TO TO TO TO TO TO TO	441 (M+H)
40	1476	HE CO	508 (M+H)
	1477	g	455 (M+H)
50		HOLLING	,,,,,,

Table 158

		Indie 130	
5	Ex. No.	Formula	MS
J	1478	Q CI	522 (M+H)
:		HO TO TO	
10			
			40.6 (144.11)
15	1479	CH,	496 (M+H)
		HO THIS CHI	
	ŕ		
20	1480	<u> </u>	516 (M+H)
	1100		, , ,
25	,		
		но	
30			
	1481		426 (M+H)
35			
		HO	
40			
	1482	н,с	482 (M+H)
45		CH,	
		HO TIN	
50			
	_		

Table 159

		Table 159	
5	Ex. No.	Formula	MS
	1483	0CH ₃	486 (M+H)
10		CH ₃	
		но	
15			
20	1484		516 (M+H)
25		HO N	
	!		
30			
	1485		427 (M+H)
35			
		HO N	
40			
	1486		476 (M+H)
45			j
		но	
50			

55

Table 160

5	Ex. No.	Formula	MS
	1487	o S	460 (M+H)
10		HO TO THE	
15			
20	1488		502 (M+H)
25		но	
30	1489		586 (M+H)
35		HO CI CI	
			E10 (W: 11)
40	1490		518 (M+H)
45		HO	·
50			

5		Table Tol	
	Ex. No.	Formula	MS
10	1491		530 (М+Н)
15		HOLL	
20	1492	CI—	598 (M+H)
25		HO TO TO TO TO TO TO TO TO TO TO TO TO TO	
30			512 (M+H)
	1493		512 (M+H)
35		HO TO NOH	
40			
45	1494		544 (M+H)
50		но	
	L		L

Table 162

		Table 162	
5	Ex. No.	Formula	MS
10	1495	HO CH,	580 (M+H)
15	1496	a' o	550 (M+H)
20		HO CI	
25	1497		606 (M+H)
<i>30</i>		Ho CH ₃	500 (21 12)
35	1498	о-сн,	580 (M+H)
40		HO	
45	1499		550 (M+H)
50		HO CI	
		=	

Table 163

		MS
Ex. No.	Formula	
1500	H ₃ C CH ₃ CCH ₃ CCH ₃ CCH ₃	606 (M+H)
1501	но — — — о _{СН} ,	630 (M+H)
1502	HO TO THE	600 (M+H)
1503	HO CH ₃ H ₃ C CH ₃	656 (M+H)

Table 164

			1 1/0
5	Ex. No.	Formula	MS
10	1504	HO CH ₃	630 (M+H)
20	1505	HO NO F	600 (M+H)
25			
30	1506	H ₃ C CH ₃ CH ₃	656 (M+H)
<i>35</i>		HO TO F	
	1507	но	580 (M+H)
45 50		CH ₃	
_			

5		
10		
15		
20		
25		
30		
35		
40		
45		

50

	Table 165	
Ex. No.	Formula	MS
1508	HO	550 (M+H)
1509	CI CI	606 (M+H)
	HO CH ₃	
1510	HO CI	580 (M+H)
1511	HO CI	550 (M+H)
1512	HO CH,	546 (M+H)

Table 166

		Table 100	
	Ex. No.	Formula	MS
5	1513	Î	516 (M+H)
		но	
10			
	1514		572 (M+H)
15	1514	HO CH,	
		H ₃ ¢ CH ₃	
20			546 (M+H)
	1515	O-CH ₃	346 (MTA)
25		\$_ *	
		HO TIN	
30			
			516 (M+H)
	1516		
35			
		HO 1	
40			
			1===
	1517	H ₃ C CH ₃ CH ₃	572 (M+H)
45		CH ₃	
50		но	
55			

Table 167

	Table 107	
Ex. No.	Formula	MS
1518	HO CH ₃	602 (M+H)
1519	HO HO CH _s	572 (M+H)
1520	HO CH ₃ H ₃ C CH ₃ H ₃ C CH ₃	628 (M+H)
1521	HO CH ₃	606 (M+H)

Table 168

			746
5	Ex. No.	Formula	MS
10	1522	HO NO NO NO NO NO NO NO NO NO NO NO NO NO	573 (M+H)
15		H ₃ C CH ₃	
20	1523	HO CONTRACTOR OF	606 (M+H)
25		H ₁ C CH ₃ H ₃ C O-CH ₃	602 (M+H)
30	1524	CH ₃	
35		но ньс сн,	
40	1525	OH,	572 (M+H)
45		но ньс сн,	
50			

		Table 169	
5	Ex. No.	Formula	MS
10 .	1526	CH ₃	628 (M+H)
15		HO H ₃ C CH ₃	
20	1527	Ö CH³	606 (M+H)
25	-	HO HIS CHI	
30	1528	CI	606 (M+H)
35		HO CH ₃	
40	1529		614 (M+H)
45	1329	HO CH,	
50			

Table 170

,		Formula	MS
_	Ex. No.	rolmula	
5	1530	O	584 (M+H)
		HO	
10			
	}	_/	
15	1531	Q	640 (M+H)
		HO CH,	
20		H,C CH,	
			[
		₩ FF	618 (M+H)
0.5	1532		
25		HO TO	
	•		
30	}	FF	}
	1533	,0-сн,	614 (M+H)
	1335		
35		\	
		HO	
40			
			584 (M+H)
45	1534		304 (1111)
			1
50		HO TI	
Đυ			
			}
	. [

Ex. No.

Table 171 Formula

MS

640 (M+H)

	HO CH ₃	
1536	ci—Ci	627 (M+H)
	O	
	HO TO TO TO TO TO TO TO TO TO TO TO TO TO	
1537	F F	627 (M+H)
	HN	
	HO	

Table 172

		Table 172	
	Ex. No.	Formula	MS
5	1538	/=N	560 (M+H)
1			
	[>=0 HN	
10			
		но	
15]		
	1539	H ₂ C-O NO ₂	634 (M+H)
20			
20			
		ни	
25		HO	
30		, a	593 (M+H)
	1540		
35			
		HO	
40			
	1541	a	627 (M+H)
45	1541		
40			
		1	
50		HOTT	
	.		
55			

	10020 170	MS
Ex. No.	Formula	
1542	HO HO HO	627 (M+H)
1543	HO TO THE STATE OF	560 (M+H)
1544	HO CH	
1545	HO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	593 (M+H)

Table 174

	Formula MS				
5	Ex. No.	Formula			
	1546		627 (M+H)		
10		HO HO CI	·		
15					
20	1547		627 (M+H)		
		HO THE H			
25		F' 'F			
30	1548	HO NO NO NO NO NO NO NO NO NO NO NO NO NO	560 (M+H)		
35					
40	1549	но	634 (M+H)		
45		о-сн	3		

55

Table 175

	Table 1/3				
5	Ex. No.	Formula	MS		
	1550	. /	627 (M+H)		
10					
15		HO TO			
20	1551		560 (M+H)		
25					
30	1552		532 (M+H)		
35		HO HO			
40			565 (M+H)		
45	1553				
50		HO	·		
55					

Table 176

		Table 1/0	
5	Ex. No.	Formula	MS
	1554	a	599 (M+H)
10			
15		HO	
20	1555	the state of the s	599 (M+H)
25		HO I I I I I I I I I I I I I I I I I I I	
30			532 (M+H)
35	1556	HO THO	
40			532 (M+H)
45	1557)
50		HOLLING	
55	·		

Table 177

Ex. No.	Formula	MS
1558	HO HO	584 (M+H)
1559	HO HO HO	570 (M+H)

[0292] The evaluation of the HCV polymerase inhibitory activity of the compound of the present invention is explained in the following. This polymerase is an enzyme coded for by the non-structural protein region called NS5B on the RNA gene of HCV (EMBO J., 15:12-22, 1996).

40 Experimental Example [I]

5

10

15

20

25

30

35

45

50

i) Preparation of enzyme (HCV polymerase)

[0293] Using, as a template, a cDNA clone corresponding to the full length RNA gene of HCV BK strain obtained from the blood of a patient with hepatitis C, a region encoding NS5B (591 amino acids; J Virol 1991 Mar, 65(3), 1105-13) was amplified by PCR. The objective gene was prepared by adding a 6 His tag {base pair encoding 6 continuous histidine (His)} to the 5' end thereof and transformed to Escherichia coli. The Escherichia coli capable of producing the objective protein was cultured. The obtained cells were suspended in a buffer solution containing a surfactant and crushed in a microfluidizer. The supernatant was obtained by centrifugation and applied to various column chromatographys {poly[U]-Sepharose, Sephacryl S-200, mono-S (Pharmacia)}, inclusive of metal chelate chromatography, to give a standard enzyme product.

ii) Synthesis of substrate RNA

[0294] Using a synthetic primer designed based on the sequence of HCV genomic 3' untranslated region, a DNA fragment (148 bp) containing polyU and 3'X sequence was entirely synthesized and cloned into plasmid pBluescript SK II(+) (Stratagene). The cDNA encoding full length NS5B, which was prepared in i) above, was digested with restriction enzyme KpnI to give a cDNA fragment containing the nucleotide sequence of from the restriction enzyme

cleavage site to the termination codon. This cDNA fragment was inserted into the upstream of 3' untranslated region of the DNA in pBluescript SK II(+) and ligated. The about 450 bp inserted DNA sequence was used as a template in the preparation of substrate RNA. This plasmid was cleaved immediately after the 3'X sequence, linearized and purified by phenol-chloroform treatment and ethanol precipitation to give DNA.

[0295] RNA was synthesized (37°C, 3 hr) by run-off method using this purified DNA as a template, a promoter of pBluescript SK II(+), MEGAscript RNA synthesis kit (Ambion) and T7 RNA polymerase. DNasel was added and the mixture was incubated for 1 hr. The template DNA was removed by decomposition to give a crude RNA product. This product was treated with phenol-chloroform and purified by ethanol precipitation to give the objective substrate RNA. [0296] This RNA was applied to formaldehyde denaturation agarose gel electrophoresis to confirm the quality thereof and preserved at -80°C.

iii) Assay of enzyme (HCV polymerase) inhibitory activity

10

20

30

[0297] A test substance (compound of the present invention) and a reaction mixture (30 µl) having the following composition were reacted at 25°C for 90 min.

[0298] 10% Trichloroacetic acid at 4°C and 1% sodium pyrophosphate solution (150 μl) were added to this reaction mixture to stop the reaction. The reaction mixture was left standing in ice for 15 min to insolubilize RNA. This RNA was trapped on a glass filter (Whatman GF/C and the like) upon filtration by suction. This filter was washed with a solution containing 1% trichloroacetic acid and 0.1% sodium pyrophosphate, washed with 90% ethanol and dried. A liquid scintillation cocktail (Packard) was added and the radioactivity of RNA synthesized by the enzyme reaction was measured on a liquid scintillation counter.

[0299] The HCV polymerase inhibitory activity (IC $_{50}$) of the compound of the present invention was calculated from the values of radioactivity of the enzyme reaction with and without the test substance.

[0300] The results are shown in Tables 178 - 184.

Reaction mixture : HCV polymerase (5 μg/ml) obtained in i), substrate RNA (10 μg/ml) obtained in ii), ATP (50 μM), GTP (50 μ M), CTP (50 μ M), UTP (2 μ M), [5,6-3H]UTP (46 Ci/mmol (Amersham), 1.5 μ Ci) 20 mM Tris-HCl (pH 7.5), EDTA (1 mM), MgCl₂ (5 mM), NaCl (50 mM), DTT (1 mM), BSA (0.01%)

Table 178

		Tabl	e 178	
0	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]
	2	0.079	67	0.26
	6	0.034	68	0.28
	9	0.019	70	0.19
5	11	0.53	71	0.62
	12	0.60	77	0.51
	17	0.047	81	0.18
10	20	0.042	82	0.097
		0.033	83	0.52
	26	0.052	85	0.17
	30	0.58	86	0.13
45	43	0.95	87	0.80
	44	0.40	88	0.092
	45	0.47	89	0.34
50	46	0.54	90	0.20
	47	0.44	91	0.53
	48	0.94	93	0.16
	49		94	0.084
5 5	50	0.54	96	0.25
	51	1.0	97	0.16
	54	0.56		

Table 178 (continued)

	Table 176		
LEV No	HCV polymerase inhibitory activity ICso [µM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]
EX. 140.	HOV polymerade immercery desires 1-30 d 2		0.00
E E	0.36	98	0.30
55	0.00		

Table 179

		Tabl	e 179	
	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
10	99	0.53	120	0.16
,,	100	0.78	121	0.19
	101	0.14	122	0.51
	103	0.17	123	0.10
15	104	0.073	124	0.091
	105	0.076	125	0.12
	106	0.40	128	0.14
20	107	0.11	129	0.12
	108	0.21	130	0.16
	109	0.11	131	0.046
	110	0.24	132	0.055
25	111	0.14	133	0.12
	112	0.11	134	0.071
	113	0.071	139	0.26
30	114	0.56	140	0.11
	115	0.17	141	0.43
	116	0.37	142	0.055
	117	0.075	143	0.053
35	118	0.14	144	0.19
	119	0.13	145	0.088
	1 '''	\		

Table 180

5

40

45

50

Ex. No.	HCV polymerase inhibitory activity No. IC ₅₀ [μΜ]	Ex.	HCV polymerase inhibitory activity IC ₅₀ [μM]
	0.043	167	0.033
146		168	0.078
147	0.31	169	0.15
148	0.038		0.048
149	0.15	170	0.050
150	0.24	171	
151	0.20	172	0.10
153	0.19	173	0.14
154	0.076	174	0.030
155	0.53	175	0.29
156	0.23	176	0.053
157	0.16	177	0.077

Table 180 (continued)

_	Ex. No.	HCV polymerase inhibitory activity No. IC ₅₀ [μΜ]	Ex.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
-		0.11	178	0.052
	158	0.13	179	0.63
-	159	0.13	180	0.11
	160	0.24	181	0.71
-	161	0.43	182	0.021
<u> </u>	162		183	0.017
L	163	0.15	184	0.018
	164	0.16	185	0.11
-	165	0.58	186	0.37
- 1	166	0.055	1,00	

Table 181

	lable 181				
20	Ex. No. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]	
	187	0.056	207	0.081	
	188	0.038	208	0.039	
25	189	0.017	209	0.12	
	190	0.020	210	0.31	
	191	0.43	211	0.059	
	192	0.22	212	0.23	
30	193	0.13	213	0.10	
	193	0.52	214	0.059	
		0.023	215	0.078	
35	195	0.20	216	0.084	
	196	0.11	217	0.058	
	197	0.044	218	0.033	
	198	0.11	219	0.13	
40	199	0.10	220	0.073	
	200		221	0.058	
	201	0.14	222	0.041	
45	202	0.095	223	0.21	
49	203	0.063	225	0.014	
	204	0.16		0.045	
	205	0.077	227	0.18	
50	206	0.05	228	0.16	

Table 182

Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
229	0.022	257	0.074
230	0.17	259	0.10

Table 182 (continued)

Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ
	0.073	260	0.27
231	0.015	262	0.013
232	0.028	263	0.035
233	0.022	264	<0.01
234		265	0.014
235	0.036	266	0.018
236	0.075	267	0.014
237	0.015	268	0.012
238	0.19	269	0.013
239	0.17		0.012
240	0,055	270	0.024
248	0.012	271	0.066
249	0.022	272	0.041
250	0.018	273	
252	0.32	276	0.023
253	0.65	279	0.017
254	0.038	280	0.016
255	0.038	281	0.052
256	0.079	282	0.019

Table 183

	HCV polymerase inhibitory activity IC ₅₀ [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
Ex. No.	0.014	298	0.011
283		299	0.018
284	0.014	300	0.045
285	0.012		0.017
286	0.014	301	0.10
287	0.012	303	
288	0.013	304	0.017
289	<0.01	305	0.01
290	0.012	306	0.013
291	0.016	307	0.022
292	0.015	308	0.023
293	0.034	311	0.16
<u> </u>	0.032	312	0.023
294	0.045	313	0.025
295	0.034	314	0.097
296	0.000	315	0.028
297	0.022		

Table 184

	Table 10 t			
ſ	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μM]	Ex. No.	HCV polymerase inhibitory activity IC ₅₀ [μΜ]
١			502	0.024
1	316	0.022	302	
ı	317	0.032	503	0.196
		0.010	601	0.32
	318	0.012	<u> </u>	0.052
	319	0.030	701	0.052
	0.0			

Table 185

Example No.	249	1H NMR(δ) ppm
	045-N	300MHz, DMSO-d6 8.02(1H, d, J=1.5Hz), 8.11(1H, d, J=1.8Hz), 7.96-7.81(3H, m), 7.67(1H, s), 7.61-7. 49(6H, m), 7.08(2H, d, J=8.6 Hz), 5.19(2H, s), 4.25(1H, m), 2.38-2.17(2H, m), 1.96-1 .78(4H, m), 1.70-1.56(1H, m), 1.46-1.16(3H, m), 1.11(9H, s)
Purity > 90% (N	MR)	
MS 672 (M+1)	

Example No.	250	1H NMR(δ) ppm
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300MHz, DMSO-d6 8. 25 (1H, d, J=1. 5Hz), 8. 16- 8. 08 (2H, m), 7. 99-7. 88 (2H, m), 7. 66 (2H, d, J=8. 6Hz), 7. 60-7. 48 (5H, m), 7. 19 (2H, d, J=8. 6Hz), 5. 17 (2H, s), 4. 31 (1H, m), 2. 39-2. 20 (2H, m), 2 . 04-1. 79 (4H, m), 1. 72-1. 60 (1H, m), 1. 50-1. 18 (3H, m)
Purity >90% (NMR)	
MS 616 (M	+1)	·

Example	No. 2	51 1H NMR(δ) ppm
HCI N		300MHz, DMSO-d6 cis and trans mixture 8.13and8.11(total 1H, each s), 7.90-7.74(2H, m), 7.42- 7.22(5H, m), 4.56and4.52(t otal 2H, each s), 4.42(1H, brs), 3.78-3.0 6(2H, m) 2.33-1.33(18H, m)
Purity	>90% (NMR)	
MS	433 (M+1)	

Table 186

300MHz, DMSO-d6 8.20(1H, d, J=1.5Hz), 7.96(1H, d, J=8.6Hz), 7.84(1H, dd , J=8.6, 1.5Hz), 7.54(2H, d, J=6.9Hz), 7.48-7.26(8H, m) , 7.09(1H, t, J=7.3Hz), 5.43 (2H, s), 4.06(1H, m), 2.40-2 , 20(2H, m), 2.01-1.80(4H, m
), 1.75-1.64(1H, m), 1.51-1 .28(3H, m)

Example No.	253	1H NMR(δ) ppm
HO NO NO NO NO NO NO NO NO NO NO NO NO NO		300MHz, DMSO-d6 8. 21 (1H, d, J=1. 5Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 85 (1H, dd , J=8. 4, 1. 5Hz), 7. 54-7. 47 (2H, m), 7. 40-7. 24 (6H, m), 7. 15 (1H, d, J=3. 6Hz), 7. 11-7. 05 (1H, m), 6. 81 (1H, d, J=3. 6 Hz), 5. 26 (2H, s), 4. 96 (1H, m), 2. 32-2. 13 (2H, m), 1. 95-1 . 72 (4H, m), 1. 68-1. 55 (1H, m), 1. 43-1. 18 (3H, m)
Purity >90% (N	MR)), 1. 43 1. 10 (M, m)
MS 493 (M+1	.)	

Example No.	254	1H NMR(δ) ppm
	S CH	300MHz, DMSO-d6 8. 25(1H, s), 8. 02(1H, d, J=8 .7Hz), 7. 90(1H, dd, J=8. 4, 1 .4Hz), 7. 80-7. 71(2H, m), 7. 67(2H, d, J=8. 7Hz), 7. 33(2H ,t, J=8. 7Hz), 7. 26(2H, d, J= 8. 7Hz), 5. 46(2H, s), 4. 78(2 H, s), 4. 31(1H, m), 2. 39-2. 1 9(2H, m), 2. 03-1. 79(4H, m), 1. 71-1. 59(1H, m), 1. 50-1. 1
Purity >90% (N	IMR)	7 (3H, m)
MS 558 (M+	1)	

Table 187

Example No.	255	1H NMR(δ) ppm
HO HO		300MHz, DMSO-d6 8. 34 (1H, s), 8. 32 (1H, d, J=8 . 8Hz), 8. 09-8. 03 (3H, m), 7. 83 (2H, d, J=8. 3Hz), 7. 79 (2H , d, J=8. 8Hz), 7. 36 (2H, d, J= 8. 8Hz), 5. 54 (2H, s), 4. 38 (1 H, m), 2. 74 (3H, s), 2. 40-2. 1 8 (2H, m), 2. 13-1. 96 (2H, m), 1. 93-1. 78 (2H, m), 1. 73-1. 5 7 (1H, m), 1. 55-1. 15 (3H, m)
Purity >90% (N)	MR)	
MS 568 (M+1)		

Example No.	256	1H NMR(δ) ppm
HO 1	F	300MHz, DMSO-d6 12.67 (1H, brs), 8.23 (1H, s) , 7.94and7.87 (2H, ABq, J=8.6Hz), 7.79 (1H, dd, J=8.7,5.4Hz), 7.62-7.41 (7H, m), 6.8 0 (1H, dd, J=11.9, 2.3Hz), 6.69 (1H, dd, J=8.1, 2.1Hz), 5.20 (2H, s), 3.93 (1H, brt, J=15.3Hz), 2.30-2.11 (2H, brm) 1.88-1.74 (4H, brm), 1.64-1.58 (1H, brm), 1.41-1.14 (3H
Purity > 9	0% (NMR)	, brm)
MS	585 (M+1)	

Example No	. 257	1H NMR(δ) ppm
H0 - 5 - 0		300MHz, DMSO-d6 8. 19 (1H, d, J=8. 7Hz), 7. 93 (1H, s), 7. 83-7. 71 (3H, m), 7. 50-7. 39 (4H, m), 7. 34-7. 10 (4H, m), 7. 06 (1H, dd, J=8. 4, 2 . 9Hz), 5. 09 (2H, s), 4. 34 (1H , m), 3. 82 (3H, s), 2. 39-2. 19 (2H, m), 2. 11-1. 98 (2H, m), 1 . 94-1. 79 (2H, m), 1. 74-1. 58 (1H, m), 1. 52-1. 21 (3H, m)
Purity :	>90% (NMR)	
MS	603 (M+1)	

Table 188

Example No.	258	ih NMR(δ) ppm
"O"		300MHz, DMSO-d6 7. 79 (1H, d, J=6. 7Hz), 7. 56 (1H, d, J=7. 5Hz), 7. 49 (2H, d, J=8. 6Hz), 7. 42 (4H, s), 7. 32 -7. 23 (3H, m), 7. 09-7. 03 (3H, m), 5. 02 (2H, s), 4. 46 (1H, m), 3. 82 (3H, s), 1. 95-1. 83 (2H, m), 1. 75-1. 44 (5H, m), 1. 3 0-1. 10 (2H, m), 0. 89-0. 71 (1H, m)
Purity >90% (NM	(R)	
MS 567 (M+1)		

Example No.	259	1H NMR(δ) ppm
2 HO)		300MHz, DMSO-d6 8. 93 (2H, d, J=6. 6Hz), 8. 36 (1H, s), 8. 28 (1H, d, J=8. 7Hz), 8. 10-8. 03 (3H, m), 7. 85 (2H, d, J=8. 7Hz), 7. 33 (2H, d, J=8. 7Hz), 7. 23 (1H, s), 7. 23 (1H, s), 6. 81 (1H, s), 5. 56 (2H, s), 4. 39 (1H, m), 2. 97, 2. 92 (6H, s), 2. 40-2. 18 (2H, m), 2. 16-1. 95 (2H, m), 1. 90-1. 75 (2H, m), 1. 70-1. 55 (1H, m), 1.
Purity >90	% (NMR)	50-1. 15 (3H, m)
MS 5	91 (M+1)	

Example No.	260	1H NMR(δ) ppm
0 2H01 H0 0 0H		300MHz, DMSO-d6 8. 93 (2H, d, J=6. 3Hz), 8. 35 (1H, s), 8. 26 (1H, d, J=8. 7Hz), 8. 09-8. 02 (3H, m), 7. 86 (2H, d, J=8. 7Hz), 7. 50 (1H, s), 7. 35 (2H, d, J=8. 4Hz), 7. 24 (2H, d, J=7. 8Hz), 5. 60 (2H, s), 4. 39 (1H, m), 2. 50-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 75 (2H, m), 1. 70-1. 55 (1H,
Purity >90% (NM	IR)	m) 1. 50-1. 10 (3H, m)
MS 564 (M+1)		

Table 189

Example No.	2	61	1H NMR(δ) ppm
MO JO		·	300MHz, DMSO-d6 8. 22 (1H, d, J=7.8Hz), 7. 85 (1H, d, J=6.7Hz), 7. 63 (2H, d, J=9.0H), 7. 51-7. 38 (5H, m), 7. 29 (1H, d, J=8.3Hz), 7. 23 (1H, d, J=3.0Hz), 7. 06 (2H, d, J=9.0Hz), 7. 06 (1H, dd, J=8.6, 3.0Hz), 5. 05 (2H, s), 4. 41 -4. 25 (1H, m), 3. 83 (3H, s), 2 . 40-2. 20 (2H, m), 2. 03-1. 78
Purity >9	0% (NMR)		(4H, m), 1.72-1.57(1H, m), 1 .50-1.18(3H, m)
MS	567 (M+1)		

Example No.	262	1H NMR(δ) ppm
**************************************	GI NH.	300MHz, DMSO-d6 8. 29 (1H, d, J=1.5Hz), 8. 26 (1H, d, J=9.0Hz), 8. 19 (1H, d, J=1.8Hz), 8. 13 (1H, brs), 8. 08-7.96 (2H, m), 7. 73 (2H, d, J=9.0Hz), 7. 57-7. 43 (6H, m), 7. 24 (2H, d, J=9.0Hz), 5. 14 (2H, s), 4. 36 (1H, m), 2. 38-2 . 18 (2H, m), 2. 12-1.97 (2H, m), 1. 93-1.80 (2H, m), 1. 73-1 . 58 (1H, m), 1. 52-1.20 (3H, m)
Purity >9	0% (NMR))
MS	580 (M+1)	

Example No.	263	1H NMR(δ) ppm
		300MHz, DMSO-d6 12.85(1H, brs), 8.72(1H, d, J=4.8Hz), 8.22(1H, s), 8.14 (1H, d, J=6.3Hz), 8.03and7. 76(4H, ABq, J=8.6Hz), 7.93a nd7.85(2H, A'B'q, J=8.6Hz), 7.60and7.15(4H, A'B'q, J=8.7Hz), 7.55(1H, dd, J=6.3, 4.8Hz), 5.19(2H, s), 4.26(1H, brt, J=12.6Hz), 2.35-2.1
Purity >90% (NN	AR)	8 (2H, brm), 1.95-1.77 (4H, brm), 1.70-1.60 (1H, brm), 1.
MS 548 (M+1)		45-1. 15 (3H, brm)

Table 190

Example	No.	264	1H NMR(δ) ppm
но		>	300MHz, DMSO-d6 8. 23 (1H, d, J=1.0Hz), 7. 92 (1H, dd, J=8. 7, 1.0Hz), 7. 87 (1H, d, J=8. 7Hz), 7. 60 (2H, d, J=8.6Hz), 7. 47 (2H, d, J=8.7 Hz), 7. 44 (2H, d, J=8.7Hz), 7. 30 (1H, d, J=8.3Hz), 7. 23 (1H, d, J=2.6Hz), 7. 11 (2H, d, J=8.7Hz), 7. 06 (1H, dd, J=8.7 , 2.6Hz), 5. 04 (2H, s), 4. 36 (1H, m), 3. 83 (3H, s), 2. 80-2.
Purity	>90% (NMR)	70 (4H, m), 2. 60-2. 40 (2H, m) , 2. 30-2. 20 (2H, m)
MS	586, 588 (M+1)		, 2, 30° 2, 20 (211, m)

Example No.	265	1H NMR(δ) ppm
	GI O N	300MHz, DMSO-d6 8. 30 (1H, d, J=1. 5Hz), 8. 25 (1H, d, J=9. 1Hz), 8. 03 (1H, dd , J=8. 7, 1. 5Hz), 7. 76-7. 96 (3H, m), 7. 55-7. 49 (5H, m), 7. 42 (1H, d, J=7. 6Hz), 7. 23 (2H , d, J=8. 7Hz), 5. 15 (2H, s), 4 . 35 (1H, m), 3. 01 (3H, s), 2. 9 7 (3H, s), 2. 37-2. 20 (2H, m), 2. 09-1. 97 (2H, m), 1. 94-1. 8 1 (2H, m), 1. 72-1, 30 (1H, m),
Purity >90%	(NMR)	1.50-1.21 (3H, m)
MS 608	3 (M+1)	

Example No.	266	1H NMR(δ) ppm	
EXAMPLE NO.		300MHz, DMSO-d6 8. 27 (1H, d, J=1.5Hz), 8. 20 (1H, d, J=9.0Hz), 8. 00 (1H, dd , J=8.6, 1.5Hz), 7. 82 (2H, d, J=8.2Hz), 7. 76-7. 65 (5H, m) , 7. 56 (1H, dd, J=7.9, 1.8Hz) , 7. 47 (1H, d, J=7.5Hz), 7. 20 (2H, d, J=8.6Hz), 5. 16 (2H, s), 4. 32 (1H, m), 3. 02 (3H, s), 2. 98 (3H, s), 2. 38-2. 19 (2H,	
Purity >90% (N	MR)	m), 2. 07-1. 95 (2H, m), 1. 93- 1. 80 (2H, m), 1. 72-1. 58 (1H,	
MS 642 (M+1))	m), 1.52-1.18(3H, m)	

Table 191

Example No.	267	1H NMR(δ) ppm
HO! NO!) }—n(300MHz, DMSO-d6 8. 34 (2H, m), 8. 03 (1H, d, J=8 .3Hz), 7. 77-7. 68 (3H, m), 7. 54-7. 40 (4H, m), 7. 33 (2H, d, J=8. 6Hz), 7. 24 (2H, d, J=9. 0 Hz), 5. 16 (2H, s), 4. 36 (1H, m), 3. 01 (3H, s), 2. 97 (3H, s), 2. 40-2. 20 (2H, m), 2. 11-1. 9 7 (2H, m), 1. 93-1. 81 (2H, m), 1. 71-1. 60 (1H, m), 1. 50-1. 2
Purity >90% (NM)	R)	1 (3H, m)
MS 620 (M+1)		

Example No.	268	1H NMR(δ) ppm
HOI F		300MHz, DMSO-d6 8. 67-8. 59(1H, m), 8. 30(1H, s), 8. 13-8. 20(2H, m), 8. 02-7. 92(2H, m), 7. 65(1H, t, J=8. 3Hz), 7. 56-7. 45(5H, m), 7. 18(1H, dd, J=12. 0, 2. 2Hz), 7. 05(1H, dd, J=8. 6, 2. 2Hz), 5. 14(2H, s), 4. 09(1H, m), 2. 82(3H, d, J=4. 5Hz), 2. 34-2. 12(2H, m), 1. 99-1. 79(4H, m), 1. 71-1. 59(1H, m), 1. 49-1. 2
Purity >90% (1	NMR)	1 (3H, m)
MS 612 (M+	1)	

MS 612 (M+1)		
Example No.	269	1H NMR(δ) ppm
HO HOI F		300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=9 . 0Hz), 7. 97 (1H, dd, J=8. 6, 1 . 5Hz), 7. 71 (1H, d, J=1. 8Hz) , 7. 63 (1H, t, J=8. 2Hz), 7. 56 -7. 41 (6H, m), 7. 17 (1H, dd, J =12. 0, 2. 2Hz), 7. 03 (1H, dd, J=8. 2, 1. 8Hz), 5. 14 (2H, s), 4. 15-4. 00 (1H, m), 3. 01 (3H, s), 2. 98 (3H, s), 2. 32-2. 13 (
Purity >90% (N)	MR)	2H, m) 1. 95-1. 79 (4H, m), 1. 7 2-1. 59 (1H, m), 1. 45-1. 21 (3
MS 626 (M+1)) 	H, m)

	Table	192
Example No.	270	1H NMR(δ) ppm
HO1 F	Set la	300MHz, DMSO-d6 8. 24(1H, d, J=1.4Hz), 8. 19(1H, d, J=1.8Hz), 8. 11(1H, br s), 8. 02-7.85(3H, m), 7. 60- 7. 44(7H, m), 7. 10(1H, dd, J= 12. 0, 2. 1Hz), 6. 98(1H, dd, J= 8. 4, 2. 1Hz), 5. 11(2H, s), 3 .98(1H, m), 2. 30-2. 12(2H, m), 1. 91-1.73(4H, m), 1. 71-1 .58(1H, m), 1. 45-1. 15(3H, m)
Purity >90% (1	NMR)],
MS 598 (M-	+1)	,
Example No.	271	1H NMR(δ) ppm
0 25 25 25	;0	300MHz, DMSO-d6 8.29(1H, d, J=1.5Hz), 8.24(1H, d, J=8.7Hz), 8.07-7.98(

Example	No. 27	
RD.	HCI	300MHz, DMSO-d6 8. 29 (1H, d, J=1. 5Hz), 8. 24 (1H, d, J=8. 7Hz), 8. 07-7. 98 (3H, m), 7. 80-7. 68 (5H, m), 7. 56 (1H, dd, J=8. 0, 1. 8Hz), 7. 47 (1H, d, J=8. 0Hz), 7. 21 (2H , d, J=8. 4Hz), 5. 18 (2H, s), 4 . 34 (1H, m), 3. 27 (3H, s), 3. 0 2 (3H, s), 2. 98 (3H, s), 2. 38- 2. 18 (2H, m), 2. 10-1. 95 (2H, m), 1. 93-1. 79 (2H, m), 1. 72-
Purity	>90% (NMR)	1.59(1H, m), 1.50-1.19(3H,
MS	652 (M+1)	m)

Example	No.		272	1H NMR(δ) ppm
но	GIH	- N	HCI	300MHz, DMSO-d6 8. 97 (1H, d, J=1.8Hz), 8. 85 (1H, d, J=4.7Hz), 8. 46 (1H, d, J=8.0Hz), 8. 39-8. 26 (2H, m) ,8. 06 (1H, d, J=8.7Hz), 7. 99 -7. 64 (6H, m), 7. 24 (2H, d, J= 8. 7Hz), 5. 25 (2H, s), 4. 36 (1 H, m), 3. 03 (3H, s), 2. 97 (3H, s), 2. 39-2. 19 (2H, m), 2. 14- 1. 96 (2H, m), 1. 94-1. 78 (2H, m), 1. 73-1. 60 (1H, m), 1. 21-
Purity	>90%	(NMR)		1. 55 (3H, m)
MS	575	(M+1)		

Table 193

Example	No.	273	1H NMR(δ) ppm
HO L		} }-'(300MHz, DMSO-d6 8. 30 (1H, s), 8. 27 (1H, d, J=8 .7Hz), 8. 05 (1H, d, J=8. 7Hz) ,7.77-7. 67 (3H, m). 7. 58-7. 48 (6H, m), 7. 22 (2H, d, J=8. 4 Hz), 5. 18 (2H, s), 4. 35 (1H, b rt, J=9. 8Hz), 3. 06-2. 88 (12 H, brm), 2. 38-2. 20 (2H, brm) ,2. 08-1. 96 (2H, brm), 1. 90-1 1. 80 (2H, brm), 1. 70-1. 60 (1
Purity	>90% (NM	R)	H, brm), 1.49-1.22(3H, brm)
MS	645 (M+1)		

Example No.	274	1H NMR(δ) ppm 300MHz, DMSO-d6 mixture of cis and trans 8.35, 8.34(1H, s), 8.15-8.1 0(2H, m), 7.79-7.70(3H, m), 7.49(2H, d, J=8.7Hz), 7.44(2H, d, J=8.7Hz), 7.31(1H, d,
	-{_	ZH, d, J-6. 7h2/, 7. 31 (1h, d, J=8. 4Hz), 7. 25-7. 19 (2H, m), 7. 07 (1H, d, J=8. 5Hz), 5. 08 (2H, s), 4. 75 (1H, m), 3. 83 (3 H, s), 3. 70-1. 90 (8H, m)
Purity about 80% (NM	(R)	
MS 601 (M+1)		

Example	No.	275	1H NMR(δ) ppm
10)	300MHz, DMSO-d6 8. 33 (1H, s), 8. 13 (1H, d, J=7 .5Hz), 7. 93 (1H, d, J=8. 8Hz) ,7. 74 (2H, d, J=8. 7Hz), 7. 49 (2H, d, J=8. 6Hz), 7. 44 (2H, d ,J=8. 6Hz), 7. 31 (1H, d, J=8. 5Hz), 7. 25-7. 15 (3H, m), 7. 0 7 (1H, d, J=8. 5Hz), 5. 08 (2H, s), 4. 98 (1H, m), 3. 83 (3H, s) ,3. 65-3. 45 (2H, m), 3. 30-3.
Purity	>90% (NMI	₹)	10 (2H, m), 3.00-2.75 (2H, m), 2.60-2.30 (2H, m)
MS	617 (M+1)		

		T	able 1	94
5	Example No.		276	1H NMR(δ) ppm
10	10 I N)	300MHz, DMSO-d6 8. 25 (1H, s), 7. 93and7. 87 (2 H, ABq, J=9. 1Hz), 7. 55 (1H, t , J=8. 6Hz), 7. 48and7. 42 (4H , A' B' q, J=8. 6Hz), 7. 31 (1H, d, J=8. 5Hz), 7. 24 (1H, d, J=2 .6Hz), 7. 09-6. 95 (3H, m), 5. 05 (2H, s), 4. 11 (1H, brt, J=1
15		s ⁾ /		4. 0Hz), 3. 84 (3H, s), 2. 83-2 .67 (4H, brm), 2. 50-2. 32 (2H ,brm), 2. 21-2. 10 (2H, brm)
	Purity >9	0% (NMR)		, , , , , , , , , , , , , , , , , , , ,
20	MS	603 (M+1)		
20				
	Example No.		277	1H NMR(δ) ppm
25	mi Ci			300MHz, DMSO-d6 cis and trans mixture 8.28and8.24(total 1H, each s), 7.94-7.87(1H, m), 7.60- 7.41(5H, m), 7.31(1H, d, J=8
30	1 (<i>"</i>		.5Hz), 7.23-7.21(1H, m), 7.

Example	No.	277	1H NMR(δ) ppm
"		,	300MHz, DMSO-d6 cis and trans mixture 8. 28and8. 24(total 1H, each s), 7. 94-7. 87(1H, m), 7. 60- 7. 41(5H, m), 7. 31(1H, d, J=8 .5Hz), 7. 23-7. 21(1H, m), 7. 12-7. 05(2H, m), 7. 00-6. 95(1H, m), 5. 06and5. 05(total 2H, each s), 4. 47and4. 34(total
Purity	>90% (NMR	1)	1H each
MS	619 (M+1)		brs), 3.83(3H, s), 3.12-1.7 6(8H, m)

Example N	· ·	278	1H NMR(δ) ppm
· NO.		→	300MHz, DMSO-d6 12.9(1H, brs), 8.27(1H, s), 7.97and7.74(2H, ABq, J=8.6 Hz), 7.58(1H, t, J=8.6Hz), 7 .49and7.43(4H, A'B'q, J=8. 5Hz), 7.31(1H, d, J=8.5Hz), 7.22(1H, d, J=2.6Hz), 7.13- 6.92(3H, m), 5.05(2H, s), 4. 67(1H, brt, J=14.2Hz), 3.57 -3.40(2H, brm), 3.20-3.05(
Purity	>90% (NM	R)	2H, brm), 2. 91-2. 70 (2H, brm)), 2. 28-2. 11 (2H, brm)
MS	635 (M+1)		

Table 195

Example	No.	279	1H NMR(δ) ppm
но	H CI	\$ s-N	300MHz, DMSO-d6 8. 30(1H, s), 8. 23(1H, d, J=8 .7Hz), 8. 06-8. 00(2H, m), 7. 83(1H, dd, J=8. 0, 1. 8Hz), 7. 71(2H, d, J=8. 4Hz), 7. 64(1H, d, J=8. 0Hz), 7. 59-7. 54(4H, m), 7. 22(2H, d, J=8. 4Hz), 5 .25(2H, s), 4. 33(1H, m), 2. 6 6(3H, s), 2. 66(3H, s), 2. 37- 2. 19(2H, m), 1. 93-1. 80(2H, m), 1. 70-1. 59(1H, m), 1. 47-
Purity	>90% (NMI	२)	m), 1. 70-1. 59 (1n, m), 1. 47- 1. 21 (3H, m)
MS	644 (M+1)		

Example No.	280	1H NMR(δ) ppm
HC1 C1		300MHz, DMSO-d6 8. 32-8. 23 (3H, m), 8. 08-8. 0 1 (2H, m), 7. 73 (2H, d, J=8. 6H z), 7. 65 (1H, d, J=8. 2Hz), 7. 59-7. 51 (4H, m), 7. 25 (2H, d, J=8. 6Hz), 5. 21 (2H, s), 4. 34 (1H, m), 3. 32 (3H, s), 2. 37-2 .19 (2H, m), 2. 10-1. 98 (2H, m)), 1. 93-1. 80 (2H, m), 1. 71-1 .60 (1H, m), 1. 51-1. 21 (3H, m)
Purity >90% (NA	AR)	
MS 615 (M+1)		

Example No		281	1H NMR(δ) ppm
HOI O		Э	300MHz, DMSO-d6 8. 30 (1H, d, J=1.5Hz), 8. 24 (1H, s), 8. 14 (1H, d, J=8.6Hz), 8. 07-7.95 (2H, m), 7. 63 (1H, t, J=8.6Hz), 7. 57-7.47 (5H, m), 7. 16 (1H, dd, J=12.0, 2.2Hz), 7. 03 (1H, dd, J=8.6, 2.2Hz), 5. 17 (2H, s), 4. 06 (1H, m), 3. 90 (3H, s), 2. 31-2.11 (2H, m), 1. 97-1.78 (4H, m), 1.
Purity >	90% (NM	nr)	71-1.59(1H, m), 1.43-1.22(3H, m)
MS	315		

•	Table 196
Example No.	282 1H NMR(δ) ppm
HOI HOI N	300MHz, DMSO-d6 8. 36(1H, s), 8. 35(1H, d, J=9 .3Hz), 8. 09(1H, d, J=9. 3Hz) ,7. 78(2H, d, J=8. 7Hz), 7. 48 -7. 25(9H, m), 5. 09(2H, s), 4 .39(1H, m), 3. 04(6H, s), 2. 4 0-2. 15(2H, m), 2. 10-1. 95(2 H, m), 1. 90-1. 75(2H, m), 1. 7 0-1. 55(1H, m), 1. 50-1. 20(3 H, m)
Purity >90% (NMR)	
MS 580 (M+1)	
Example No.	283 1H NMR(δ) ppm
Q HGI	300MHz, DMSO-d6 10.03(1H, s), 8.33(1H, s), 8 .29(1H, d, J=8.7Hz), 8.06(1 H d J=9.0Hz), 7.74(2H, d, J

Example No.	283	1H NMR(δ) ppm
HO HOI	N-2mo	300MHz, DMSO-d6 10.03(1H, s), 8.33(1H, s), 8 .29(1H, d, J=8.7Hz), 8.06(1 H, d, J=9.0Hz), 7.74(2H, d, J =9.0Hz), 7.51-7.42(5H, m), 7.37-7.30(2H, m), 7.22(2H, d, J=8.7Hz), 5.10(2H, s), 4. 37(1H, m), 3.06(3H, s), 2.40 -2.18(2H, m), 2.15-1.95(2H, m), 1.90-1, 80(2H, m), 1.75
Purity >90% (N	IMR)	-1. 55 (1H, m), 1. 50-1. 20 (3H , m)
MS 630 (M+	1)	

Example	No.	284	1H NMR(δ) ppm
NO	01	> → • · · · · · · · · · · · · · · · · · ·	300MHz, DMSO-d6 8. 30 (1H, s), 8. 14 (1H, d, J=8 . 7Hz), 7. 97 (1H, d, J=8. 7Hz) , 7. 96-7. 41 (8H, m), 7. 16 (1H , dd, J=12. 4, 2. 2Hz), 7. 03 (1 H, dd, J=8. 4, 2. 2Hz), 5. 15 (2 H, s), 4. 15 (1H, m), 3. 54-3. 1 6 (4H, m), 2. 33-2. 13 (2H, m), 1. 97-1. 79 (4H, m), 1. 70-1. 0 2 (9H, m)
Purity	>90% (NM)	R)	
MS	654 (M+1)		

Table 197

Example	No.	285
HO I I	CI N N	
Purity	>90%	(NMR)
MS	640(M+1)

10

15

20

25

30

35

40

45

50

55

1H NMR(δ) ppm

300MHz, DMSO-d6
8. 37 (1H, d, J=7. 3Hz), 8. 30 (
1H, s), 8. 19-8. 12 (2H, m), 8.
02-7. 95 (2H, m), 7. 65 (1H, t, J=8. 4Hz), 7. 56-7. 43 (5H, m), 7. 18 (1H, dd, J=12. 0, 1. 8Hz), 7. 06 (1H, dd, J=8. 4, 2. 1Hz), 5. 13 (2H, s), 4. 22-4. 03 (2H, m), 2. 34-2. 13 (2H, m), 1. 9
9-1. 78 (4H, m), 1. 72-1. 57 (1H, m), 1. 44-1. 14 (3H, m), 1. 2
0, 1. 18 (6H, each s)

Example	No.		286	16
HO	CI.		·\	30 8
Purity	>90%	(NMR)	
MS	666 (M+1)			

1H NMR(δ) ppm 300MHz, DMS0-d6 8. 29 (1H, s), 8. 13 (1H, d, J=8 .7Hz), 7. 97 (1H, dd, J=8. 7, 1 .4Hz), 7. 69-7. 40 (8H, m), 7. 16 (1H, dd, J=12.0, 2. 2Hz), 7 .02 (1H, dd, J=8. 4, 2. 2Hz), 5 .15 (2H, s), 4. 07 (1H, m), 3. 7 1-3. 23 (2H, m), 1. 98-1. 71 (4 H, m), 1. 71-1. 18 (10H, m)

Example	No.	287
#0 ¹	CI CI	
Purity	>90%	(NMR)
MS	652 ()	(+1)

1H NMR(δ) ppm
300MHz, DMSO-d6
8. 29 (1H, s), 8. 13 (1H, d, J=8.0Hz), 7. 97 (1H, d, J=8.4Hz), 7. 83 (1H, s), 7. 68-7. 41 (7H, m), 7. 17 (1H, d, J=12.0Hz), 7. 03 (1H, d, J=8.4Hz), 5. 15 (2H, s), 4. 07 (1H, m), 3. 58-3. 41 (4H, m), 2. 34-2. 13 (2H, m), 1. 97-1. 77 (8H, m), 1. 71-1. 58 (1H, m), 1. 49-1. 18 (3H, m)

Table 198

Example	No.
HD 1	HCI F
Purity	>90% (NMR)
MS	642 (M+1)

15

20

25

30

35

40

45

50

55

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 62 (1N, m), 8. 31 (1H, s), 8. 22-8. 14 (2H, m), 8. 99 (2H, d, J=8. 7Hz), 7. 66 (1H, t, J=7. 7 Hz), 7. 58-7. 44 (5H, m), 7. 19 (1H, dd, J=8. 7, 2. 2Hz), 5. 14 (2H, s), 4. 11 (1H, m), 3. 67-3 .49 (2H, m), 3. 45-3. 30 (2H, m), 2. 37-2. 12 (2H, m), 2. 00-1 .76 (4H, m), 1. 70-1. 58 (1H, m), 1. 48-1. 17 (3H, m)

Example	No.	289
HO HGI		N
Purity	>90% (NMR	()
MS	682 (M+1)	

1H NMR(δ) ppm 400MHz, DMSO-d6 8. 28 (1H, s), 8. 11 (1H, d, J=8 .9Hz), 7. 96 (1H, d, J=8. 9Hz) ,7. 68 (1H, s), 7. 62 (1H, t, J= 8. 2Hz), 7. 55-7. 41 (6H, m), 7 .15 (1H, d, J=11. 7Hz), 7. 02 (1H, d, J=8. 4Hz), 5. 14 (2H, s) ,4. 12-3. 13 (6H, m), 2. 30-1. 19 (13H, m)

Example	No.	290
HO		
Purity	>90% (N	IMR)
MS	668 (M+	1)

1H NMR(δ) ppm

400MHz, DMSO-d6
8. 29 (1H, s), 8. 15 (1H, d, J=8
.6Hz), 7. 98 (1H, d, J=8.8Hz)
, 7. 72 (1H, s), 7. 64 (1H, t, J=
8. 8Hz), 7. 57-7. 43 (6H, m), 7
.18 (1H, dd, J=12.1, 2.1Hz),
7. 03 (1H, d, J=10.7Hz), 5. 12
(2H, s), 4. 15-4. 01 (1H, m), 3
.75-3. 33 (8H, m), 2. 31-2. 14
(2H, m), 1. 96-1. 78 (4H, m), 1
.70-1. 58 (1H, m), 1. 47-1. 21
(3H, m)

Table 199

Example	No.	291
HD		
Purity	>90% (NM	IR)
MS	684 (M+1)	

15

20

25

30

35

40

45

50

55

1H NMR(δ) ppm 400MHz, DMSO-d6 8. 29 (1H, s), 8. 14 (1H, d, J=8 .9Hz), 7. 97 (1H, d, J=8. 6Hz) ,7. 71 (1H, s), 7. 63 (1H, t, J= 8. 2Hz), 7. 56-7. 42 (6H, m), 7 .17 (1H, d, J=12. 3Hz), 7. 03 (1H, d, J=10. 7Hz), 5. 14 (2H, s)), 4. 07 (1H, m), 3. 96-3. 52 (4H, m), 2. 79-2. 56 (4H, m), 2. 3 2-2. 14 (2H, m), 1. 97-1. 79 (4H, m), 1. 71-1. 58 (1H, m), 1. 5 1-1. 19 (3H, m)

Example	No.	292
HO HCI		
Purity	>90%	(NMR)
MS	656	(M+1)

1H NMR (δ) ppm

300MHz, DMSO-d6
9.07-8.99(1H, m), 8.30(1H, s), 8.23-8.12(2H, m), 8.04-7.95(2H, m), 7.65(1H, t, J=8.2Hz), 7.60-7.45(5H, m), 7.19(1H, dd, J=12.0, 2.6Hz), 7.06(1H, dd, J=8.6, 2.2Hz), 5.16(2H, s), 4.18-4.02(1H, m), 3.97(2H, d, J=6.0Hz), 2.33-2.14(2H, m), 1.99-1.79(4H, m), 1.72-1.59(1H, m), 1.45-1.19(3H, m)

Example	No.	293
ю		or at
Purity	>90%	(NMR)
MS	637	(M+1)

1H NMR (δ) ppm

300MHz, DMSO-d6:8. 21 (1H, s), 7. 94and7. 86 (2H, ABq, J=8.6Hz), 7. 72 (1H, d, J=2.4Hz), 7. 59and7. 11 (4H, A'B'q, J=8.9Hz), 7. 53 (1H, dd, J=8.4Hz), 7. 36and7. 32 (4H, A'B''q, J=8.1Hz), 5. 07 (2H, s), 4. 27 (1H, brt, J=13.8Hz), 2. 87 (2H, t, J=7.8Hz), 2. 35-2. 20 (2H, brm), 1. 96-1. 79 (4H, brm), 1. 68-1. 59 (1H, brm), 1. 47-1. 18 (3H, brm)

Table 200

Example No.	294	1H NMR(δ) ppm
но но но но но но но но но но но но но н	C)	300MHz, DMSO-d6 8.30(1H, s), 8.25and8.03(2 H, ABq, J=8.9Hz), 7.73(1H, s), 7.73(2H, d, J=8.6Hz), 7.5 5(1H, dd, J=8.0, 2.3Hz), 7.4 0(4H, s), 7.39(1H, d, J=8.0Hz), 5. 11(2H, s), 4.55(2H, s), 4.36 (1H, brt, J=14.8Hz), 2.37-2 .19(2H, brm), 2.09-1.96(2H, brm), 1.91-1.79(2H, brm),
Purity >90% (N	MR)	1.71-1.59(1H, brm), 1.50-1 .20(3H, brm)
MS 567 (M+1)	. 20 (511, 51 m)

Example No.	295	1H NMR(δ) ppm 300MHz, DMSO-d6
HO!		8. 30 (1H, s), 8. 25and8. 04 (2 H, ABQ, J=8. 7Hz), 7. 74 (1H, s), 7. 72 (2H, d, J=8. 7Hz), 7. 5 6 (1H, d, J=8. 7Hz), 7. 48-7. 3 5 (5H, m), 7. 22 (2H, d, J=8. 7H z), 5. 11 (2H, s), 4. 46 (2H, s) ,4. 35 (1H, brt, J=14. 8Hz), 3 .31 (3H, s), 2. 37-2. 17 (2H, b rm), 2. 07-1. 95 (2H, brm), 1. 92-1. 79 (2H, brm), 1. 73-1. 5
Purity >90	% (NMR)	6(1H, brm), 1.52-1.20(3H, b
MS	81 (M+1)	I W/

Example No.	296	1H NMR(δ) ppm
	DH S	300MHz, DMSO-d6 8. 21 (1H, d, J=1. 5Hz), 7. 98 (1H, d, J=1. 2Hz), 7. 97-7. 91 (2H, m), 7. 84 (1H, dd, J=8. 7, 1 . 5Hz), 7. 77 (1H, d, J=2. 1Hz) , 7. 70 (1H, d, J=7. 5Hz), 7. 60 -7. 54 (4H, m), 7. 43 (1H, d, J= 8. 4Hz), 7. 09 (2H, d, J=8. 7Hz)), 5. 05 (2H, s), 4. 25 (1H, brt, J=14. 8Hz), 2. 36-2. 18 (2H, brm), 1. 95-1. 79 (4H, brm), 1
Purity >90%	(NMR)	.71-1.6(1H, brm), 1.43-1.1 8(3H, brm)
MS 581 (M	(+1)	O (201 DT III)

Table 201

Example	No.	297	1H NMR(δ) ppm
HO			300MHz, DMSO-d6 12.7(1H, brs), 8.21(1H, s), 7.94and7.85(2H, ABq, J=8.6 Hz), 7.60-7.55(3H, m), 7.49 and7.45(4H, A'B'q, J=8.3Hz), 7.12(2H, d, J=8.7Hz), 5.0 5(2H, s), 4.26(1H, brt, J=13.0Hz), 2.54(3H, s), 2.38-2. 20(2H, brm), 1.97-1.80(4H, brm), 1.71-1.59(1H, brm), 1.47-1.20(3H, brm)
Purity	>90% (NM	R)	. 11 11 20 /01.1 22-2
MS	583 (M+1)		

Example No.	298	1H NMR(δ) ppm
S=0		300MHz, DMSO-d6 8. 22(1H, s), 8. 01(1H, s), 7. 95and7. 86(2H, ABq, J=8. 6Hz), 7. 79(1H, d, J=7. 8Hz), 7. 5 8(3H, t, J=7. 5Hz), 7. 53(4H, s), 7. 13(2H, d, 8. 7Hz), 5. 15 (2H, s), 4. 26(1H, brt, J=13. 8Hz), 2. 83(3H, s), 2. 37-2. 1 8(2H, brm), 1. 95-1. 78(4H, brm), 1. 70-1. 59(1H, brm), 1. 47-1. 17(3H, brm)
Purity >90% (N	MR)	4, 1, 1, (01, 02.20)
MS 599 (M+)	1)	

Example	No.	299	1H NMR(δ) ppm
HO	HO1		300MHz, DMSO-d6 8. 43-8. 16(3H, m), 8. 07-7. 9 4(2H, m), 7. 72(2H, d, J=8. 6H z), 7. 62-7. 49(5H, m), 7. 23(2H, d, J=8. 6Hz), 5. 16(2H, s), 4. 34(1H, m), 2. 39-2. 20(2H, m), 2. 10-1. 96(2H, m), 1. 93 -1. 80(2H, m), 1. 71-1. 58(1H, m), 1. 49-1. 19(3H, m)
Purity	>90% (1	NMR)	
MS	562 (M ⁻	-1)	

Table 202

Example No.	300	1H NMR(δ) ppm
HO N N	→	300MHz, DMSO-d6:2.77(1H, brs), 8.83(2H, d, J=1.9Hz), 8.56(2H, dd, J=4.9, 1.9Hz), 8.22(1H, d, J=1.5Hz), 7.97(2H, dt, J=7.9, 1.9Hz), 7.95(1H, d, J=8.6Hz), 7.87(1H, dd, J=8.7Hz), 7.46(2H, dd, J=7.9, 4.9Hz), 7.26(1H, dd, J=12.0, 4.9Hz), 7.14(1H, dd, J=8.8, 2.3Hz), 6.99(2H, s), 3.94
Purity >90% (NM	IR)	(1H, hrt), 2, 26-2, 09 (2H, m)
MS 523 (M+1)		1.87-1.73 (4H, m), 1.67-1. 57(1H m) 1 42-1 12(2H m)

Example No.	301	1H NMR(δ) ppm
HO L		300MHz, DMSO-d6 8. 22 (1H, s), 7. 95 (1H, d, J=8.7Hz), 7. 87 (1H, dd, J=1. 5Hz, 9. 0Hz), 7. 62 (4H, d, J=8. 4Hz), 7. 55 (1H, t, J=9. 0Hz), 7. 44 (4H, d, J=8. 1Hz), 7. 20 (1H, dd, J=2. 1Hz, 12. 0Hz), 7. 11 (1H, dd, J=2. 1Hz, 8. 7Hz), 6. 86 (1H, s), 3. 94 (1H, m), 2. 96, 2. 88 (12H, s), 2. 35-2. 00 (2H, m), 1. 95-1. 70 (4H, m), 1. 6
Purity >	90% (NMR)	5-1.50 (1H, m), 1.45-1.10 (3
MS	663 (M+1)	H, m)

Example No.	302	1H NMR(δ) ppm
Na o N		300MHz, DMSO-d6 8. 14(1H, s), 7. 88(1H, d, J=8 .4Hz), 7. 68(1H, d, J=8. 7Hz) ,7. 64-7. 55(3H, m), 7. 50(1H ,t, J=8. 7Hz), 7. 22-7. 17(3H ,m), 7. 11(1H, s), 7. 08-7. 00 (2H, m), 3. 90(1H, m), 2. 15-2 .00(2H, m), 1. 95-1. 50(5H, m), 1. 45-1. 00(3H, m)
Purity >90% (NMR)	
MS 532 (M	(+1)	

Table 203

Example No.	303	1H NMR(δ) ppm
		300MHz, CDC13 8. 49 (1H, s), 7. 98 (1H, dd, J= 8. 6, 1. 5Hz), 7. 71 (1H, d, J=1 .8Hz), 7. 66 (1H, d, J=8. 6Hz) , 7. 55-7. 29 (7H, m), 6. 80 (1H, dd, J=8. 2, 2. 2Hz), 6. 69 (1H, dd, J=11. 2, 2. 2Hz), 4. 99 (2H, s), 4. 10-3. 92 (1H, m), 3. 9 5 (3H, s), 3. 15 (3H, s), 3. 06 (3H, s), 2. 31-2. 14 (2H, m), 2.
Purity >909	% (NMR)	04-1.86(4H, m), 1.81-1.71(1H, m), 1.41-1.21(3H, m)
MS 64	0 (M+1)	

Example No.	304	1H NMR(δ) ppm
O Na ·		300MHz, DMSO-d6 8. 21 (1H, s), 7. 94 (1H, d, J=8 .7Hz), 7. 84 (1H, d, J=9. 1Hz) , 7. 70 (1H, s), 7. 26-7. 39 (9H , m), 7. 11 (2H, d, J=8. 4Hz), 5 .11 (2H, s), 4. 26 (1H, m), 3. 0 1 (3H, s), 2. 97 (3H, s), 2. 38- 2. 19 (2H, m), 1. 97-1. 78 (4H, m), 1. 72-1. 57 (1H, m), 1. 48- 1. 17 (3H, m)
Purity >90% (N	NMR)	_]
MS 608 (M+	1)	

Example	No.	305	1H NMR(δ) ppm
HO		O COH	300MHz, DMSO-d6 8. 24 (2H. s), 8. 03 (1H, d, J=8 . 0Hz), 7. 96 (1H, d, J=8. 8Hz) , 7. 87 (1H, d, J=9. 1Hz), 7. 60 -7. 46 (6H, m), 7. 09 (1H, dd, J =12. 0, 1. 8Hz), 6. 97 (1H, dd, J=8. 4, 1. 8Hz), 5. 16 (2H, s), 3. 97 (1H, m), 2. 31-2. 11 (2H, m), 1. 92-1. 73 (4H, m), 1. 70-1. 57 (1H, m), 1. 46-1. 13 (3H,
Purity	>90% ()	IMR)	m)
MS	599 (M+	1)	

Table 204

Example No.	306	1H NMR(δ) ppm
10-CO	- -	300MHz, DMSO-d6 12.84(1H, brs), 8.21(1H, s) ,7.98-7.84(5H, m), 7.58(2H, d, J=8.7Hz), 7.54(2H, d, J=7.8Hz), 7.34(1H, d, J=8.7Hz), 7.26(1H, d, J=2.4Hz), 7.13-7.06(3H, m), 5.06(2H, s), 4.26(1H, brt, J=12.7Hz), 3.84(3H, s), 2.36-2.17(2H, brm), 1.99-1.80(4H, brm), 1.73-1.59(1H, brm), 1.47-1.1
Purity >90% (NM)	R)	7(3H, brm)
MS 577 (M+1)		

Example No.	307	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 22(1H, s), 8. 04(1H, s), 7. 96(2H, d, J=8. 1Hz), 7. 87(2H, s), 7. 72(1H, d, J=1. 2Hz), 7. 59-7. 41(7H, m), 5. 12(2H, s), 4. 25(1H, brt, J=11. 8Hz), 3. 02(3H, brs), 2. 98(3H, brs), 2. 38-2. 15(2H, brm), 1. 93 -1. 76(4H, brm), 1. 71-1. 59(1H, brm), 1. 46-1. 16(3H, brm)
Purity >9	0% (NMR)	
MS	617 (M+1)	

Example No.	308	1H NMR(δ) ppm
NO TO THE PARTY OF		300MHz, DMSO-d6 8. 27 (1H, s), 8. 08 (1H, d, J=9 .0Hz), 7. 93 (1H, d, J=8. 7Hz) , 7. 65 (2H, d, J=8. 7Hz), 7. 46 (2H, d, J=8. 1Hz), 7. 42 (2H, d J=8. 4Hz), 7. 30-7. 04 (5H, m), 5. 03 (2H, s), 4. 32 (1H, m), 2. 40-2. 10 (2H, m), 2. 05-1. 1 0 (8H, m)
Purity >90% (NI	MR)	
MS 552 (M+1)) 	

Table 205

Example	No.	309
HO.	HCI N N	
Purity	>90%	(NMR)
MS		

1H NMR(δ) ppm
300MHz, DMSO-d6
8. 33 (1H, s), 8. 15and7. 99 (2
H, ABq, J=8. 9Hz), 7. 84and7.
59 (4H, A'B'q, J=8. 3Hz), 7. 4
6 (2H, d, J=8. 4Hz), 7. 22-7. 1
6 (3H, m), 7. 01-6. 98 (2H, m),
4. 27and4. 23 (2H, A"B"q, J=1
2. 9Hz), 3. 78 (3H, s), 2. 39-2
. 21 (2H, brm), 2. 07-1. 95 (2H, brm), 1. 91-1. 80 (2H, brm),
1. 72-1. 59 (1H, brm), 1. 49-1
. 17 (3H, brm)

Example	No.	310
W I C	HCI	s=0 c ₁
Purity	>90%	(NMR)
MS	615 (M+1)	

1H NMR(δ) ppm
300MHz, DMSO-d6
8. 33(1H, s), 8. 09and7. 95(2
H, ABq, J=8. 7Hz), 7. 87and7.
71(4H, A'B'q, J=8. 0Hz), 7. 4
3(2H, d, J=7. 8Hz), 7. 15(1H, d, J=8. 7Hz), 7. 07-7. 02(4H, m), 4. 66(2H, s), 4. 23(1H, brt, J=11. 8Hz), 3. 76(3H, s), 2. 38-2. 20(2H, brm), 2. 04-1.
93(2H, brm), 1. 89-1. 79(2H, brm), 1. 70-1. 59(1H, brm), 1. 49-1. 18(3H, brm)

Example	No. 311
"Ů	HCI SINCE SI
Purity	>90% (NMR)
MS	583 (M+1)

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 30 (1H, s), 8. 21and8. 01 (2 H, ABq, J=8. 7Hz), 7. 65 (2H, d, J=8. 4Hz), 7. 52-7. 41 (6H, m), 7. 20 (1H, d, J=8. 4Hz), 7. 14 (1H, d, J=2. 7Hz), 6. 97 (1H, dd, J=8. 4, 2. 4Hz), 4. 31 (1H, brt, J=9. 8Hz), 4. 28 (2H, s), 3. 78 (3H, s), 2. 37-2. 20 (2H, brm), 2. 07-1. 95 (2H, brm), 1. 92-1. 80 (2H, brm), 1. 71-1. 60 (1H, brm), 1. 50-1. 19 (3H, brm)

Table 206

		2 /2/2/2/2
Example No.	31:	1
100 H	OH OH	300MHz, DMSO-d6 8. 22(1H, s), 8. 12(1H, d, J=8 .4Hz), 8. 00-7. 84(5H, m), 7. 70(4H, d, J=8. 4Hz), 7. 56(1H ,t, J=8. 6Hz), 7. 23(1H, d, J= 12. 0Hz), 7. 13(1H, d, J=8. 6H z), 6. 97(1H, s), 3. 92(1H, m) ,2. 35-2. 00(2H, m), 1. 95-1. 70(4H, m), 1. 65-1. 55(1H, m) ,1. 50-1. 05(3H, m)
Purity >	90% (NMR)	
MS .	609 (M+1)	

	•	
Example No.	313	1H NMR(δ) ppm
HD N		300MHz, DMSO-d6 8. 89(1H, brs), 8. 63(1H, brs), 8. 24(1H, s), 8. 11(1H, d, J) =7. 8Hz), 7. 99(1H, d, J=8. 8Hz), 7. 89(1H, d, J=9. 9Hz), 7. 61-7. 55(4H, m), 7. 43(2H, t, J=7. 7Hz), 7. 34(1H, t, J=7. 2Hz), 7. 24(1H, d, J=12. 0Hz), 7. 14(1H, d, J=8. 6Hz), 6. 95(1H, s), 3. 96(1H, m), 2. 35-2. 05(2H, m), 2. 00-1, 50(5H, m)
Purity > 90% (N	MR)	, 1. 45-1. 10 (3H, m)
MS 522 (M+1	.)	

Example I	No.	314	1H NMR(δ) ppm
٠٠١			300MHz, CDC13 8. 48 (1H, d, J=1. 4Hz), 8. 05 (1H, d, J=1. 8Hz), 8. 98 (1H, d, J=8. 6Hz), 7. 82 (1H, d, J=7. 9 Hz), 7. 66 (1H, d, J=8. 6Hz), 7. 55-7. 24 (6H, m), 6. 78 (1H, d d, J=8. 6, 2. 6Hz), 6. 69 (1H, d d, J=11. 6Hz), 2. 2Hz), 6. 40-6. 30 (1H, m), 4. 99 (2H, s), 4. 02 (1H, m), 3. 95 (3H, s), 3. 05 (3H, d, J=4. 8Hz), 2. 32-2, 13
Purity	>90%	(NMR)	(2H, m), 2. 03-1. 87 (4H, m), 1 . 81-1. 71 (1H, m), 1. 46-1. 23
MS	626	(M+1)	(3H, m)

Table 207

Example	No.	503	1H NMR(δ) ppm
HO		·	300MHz, DMSO-d6 8. 23 (1H, s), 7. 76 (1H, d, J=8 . 7Hz), 7. 58 (1H, d, J=8. 8Hz) , 7. 51-7. 32 (7H, m), 7. 17 (2H , d, J=8. 7Hz), 6. 55 (1H, s), 5 . 18 (2H, s), 4. 75 (1H, m), 2. 3 5-2. 12 (2H, m), 2. 10-1. 85 (4 H, m), 1. 80-1. 50 (2H, m)
Purity	>90% (NM)	R)	
MS	412 (M+1)		

Example No.	701	1H NMR(δ) ppm
HO! NO NO NO NO NO NO NO NO NO NO NO NO NO		300MHz, DMSO-d6 8. 96(1H, s), 8. 50(1H, s), 7. 77(2H, d, J=8. 7Hz), 7. 50-7. 40(4H, m), 7. 30(1H, d, J=8. 4 Hz), 7. 24(1H, d, J=2. 4Hz), 7. 16(2H, d, J=8. 4Hz), 7. 06(1 H, dd, J=2. 4Hz, 8. 1Hz), 5. 06 (2H, s), 4. 31(1H, s), 3. 83(3 H, s), 2. 80-2. 55(2H, m), 2. 0 0-1. 80(4H, m), 1. 70-1. 55(1
Purity >90% (N	IMR)	H, m), 1.40-1.15(3H, m)
MS 568 (M+	1)	

Table 208

Example No.	315	1H NMR(δ) ppm	
HCI N		300MHz, DMSO-d6 8.84(2H, d, J=6.3Hz), 8.28(1H, s), 8.17and7.99(2H, ABq, J=8.7Hz), 7.87-7.85(3H, m), 7.70 -7.50(3H, m), 7.52(1H, d, J=8.3Hz), 7.18(2H, d, J=8.7Hz), 5. 22(2H, s) 4.31(1H, br t, J=12.5Hz), 2.36-2.18(2H, m), 2.03-1.78(4H, m), 1.70-1.5 8(1H, m), 1.50-1.23(3H, m)	
Purity >9	0% (NMR)		
MS	538 (M+1)		

Example No.	316	1H NMR(δ) ppm
HOI CI		300MHz, DMSO-d6 9.23(1H, t, J=6.3Hz), 8.29(1H, s), 8.25-8.22(2H, m), 8.03(2H, d, J=7.9Hz), 7.55-7.48(5H, m)? .34(4H, d, J=4.4Hz), 7.28-7.22 (3H, m), 5.15(2H, s), 4.52(2H, d, J=5.9Hz), 4.35(1H, br t, J=12.1Hz), 2.37-2.18(2H, m), 2.08-1.95(2H, m), 1.91-1.79(2H, m), 1.72-1.59(1H, m), 1.47-1.19(3H, m)
Purity > 90% (N	MR)] "/
MS 670 (M+1	()	

Example No	. 317	1H NMR(δ) ppm
HO!		300MHz, DMSO-d6 8.59(1H, t, J=5.5Hz), 8.28(1H, s), 8.21 and 8.01(2H, ABq, J=8.8 Hz), 8.16(1H, s), 7.97 and 7.46(2H, A'B'q, J=8.0Hz), 7.71 and 7.23(4H, A'B'q, J=8.7Hz), 7.53 and 7.49(4H, A'B''q, J=9.2Hz), 5.14(2H, s), 4.34(1H, brt, J=1.28Hz), 3.14(2H, t, J=6.3 Hz), 2.38-2.18(2H, m), 2.07-1.78(4H, m), 1.78-1.47(7H, m), 1.47-1.07(6H, m), 1.03-0.83(2H, decomposition)
Purity	>90% (NMR)	m)
MS	676 (M+1)	

	Table	209	
5	Example No.	318	1H NMR(δ) ppm
10	2 HDI		300MHz, DMSO-d6 9. 63 (1H, t, J=4. 8Hz), 8. 86and7. 97(4H, ABq, J=6. 6Hz), 8. 30(1H, s), 8. 27(1H, s), 8. 23and8. 03(2H, A'B'q, J=8. 8Hz), 8. 09and7. 54(2 H, A'B'q, J=8. 1Hz), 7. 73and7. 2 4(4H, A'B''q, J=8. 8Hz), 7. 54a nd7. 52(4H, A''B'''q, J=8. 8Hz), 5. 16(2H, s) 4. 78(2H, d, J=5. 6Hz
15		_9``), 4. 35 (1H, br t, J=11. 0Hz), 2. 39-2. 19 (2H, m) . 2. 07-1. 96 (2H, m), 1. 91-1. 78 (
	Purity >90% (NMR)		2H, m), 1.70-1.57 (1H, m) 1.50-1 .19 (3H, m)
20	MS 671 (M+1)		
	Example No.	319	1H NMR(δ) ppm
25	HCI CI		300MHz, DMSO-d6 8. 28 (1H, s), 8. 24and8. 03 (2H, A Bq, J=9. 0Hz), 7. 77 (1H, s), 7. 70 (2H, d, J=8. 4Hz), 7. 64-7. 10 (13 H, m), 5. 16 (2H, s), 4. 74and4. 57 (total 2H, each br
30			s), 4. 34 (1H, br t, J=11. 7Hz), 2. 90 (3H, s), 2. 35 -2. 17 (2H, m), 2. 07-1. 93 (2H, m) , 1. 93-1. 78 (2H, m), 1. 71-1. 57 (1H, m), 1. 51-1. 19 (3H, m)
35	Purity >90% (NMR)		. <i></i>
	MS 684 (M+1)		
40			
	Example No.	320	1H NMR(δ) ppm
			300MHz, DMS0-d6

Example N	lo.	320	1H NMR(δ) ppm
но	2HCI		300MHz, DMSO-d6 8. 94and8. 06 (4H, ABq, J=6. 8Hz) , 8. 33 (1H, s), 8. 28and8. 05 (2H, A'B'q, J=8. 7Hz), 7. 80 (1H, s), 7 . 73and7. 22 (4H, A'B''q, J=8. 7Hz), 7. 63and7. 57 (2H, A'B''q, J= 7. 9Hz), 5. 30 (2H, s), 4. 34 (1H, b r t, J=12. 1Hz), 3. 04 (3H, s), 2. 97 (3H, s), 2. 38-2. 18 (2H, m), 2. 10 -1. 96 (2H, m), 1. 93-1. 80 (2H, m) , 1. 72-1. 58 (1H, m), 1. 52-1. 08 (
Purity	>90%	(NMR)	3H, m)
MS	575 ((M+1)	

Table 210

Example No.	321	1H NMR(δ) ppm
HO 2HCI	} \\-	300MHz, DMSO-d6 11. 19(1H, br s), 8. 31(1H, s), 8. 23and8. 02(2 H, ABq, J=9. 0Hz), 7. 77(1H, s), 7 . 72and7. 23(4H, A'B'g, J=8. 7Hz), 7. 59and7. 48(2H, A'B''g, J=7. 9Hz), 7. 53and7. 51(4H, A'''B'''q , J=9. 0Hz), 5. 16(2H, s), 4. 72-2 . 97(8H, br m), 4. 34(1H, br t, J=12. 1Hz), 2. 79(3H, s), 2. 38 -2. 17(2H, m), 2. 07-1. 93(2H, m) 1. 93-1. 78(2H, m), 1. 69-1. 58(
Purity >90% (N	IMR)	1H, m), 1.50-1.10(3H, m)
MS 663 (M+	1)	

Example No.	322	1H NMR(δ) ppm
HO 2HG		300MHz, DMSO-d6 9.54(1H, t, J=5.7Hz), 8.91(1H, s), 8.81(1H, d, J=4.9Hz), 8.48(1H, d, J=7.9Hz), 8.32(1H, s), 8. 27(1H, d, J=9.0Hz), 8.25(1H, s), 8. 27(1H, d, J=9.0Hz), 7.74and7.2 5(4H, ABq, J=8.9Hz), 7.56-7.49(5H, m), 5.16(2H, s), 4.69(2H, d, J=5.6Hz), 4.36(1H, br t, J=12.4Hz), 2.37-2.20(2H, m), 2.09-1.97(2H, m), 1.91-1.78(2H, m), 1.70-1.57(1H, m), 1.50-
Purity > 90%	(NMR)	1. 17 (3H, m)
MS 671	(M+1)	

Example N	o. 323	- ·	
HO 2HGI NO.		300MHz, DMS0-d6 9. 52 (1H, t, J=6. 0Hz), 8. 72 (1H, d, J=5. 3Hz), 8. 30-8. 19 (4H, m), 8. 08 (1H, d, J=7. 9Hz), 8. 02 (1H, d, J=7. 6H2), 7. 77-7. 64 (4H, m), 7. 57-7. 49 (5H, m), 7. 24 (2H, d, J=8. 7Hz), 5. 16 (2H, s), 4. 77 (2H, d, J=6. 6Hz), 4. 34 (1H, t, J=12. 8Hz), 2. 36-2. 19 (2H, m), 2. 07-1. 95 (2H, m), 1. 91-1. 78 (2H, m), 1. 69-1. 59 (1H, m), 1. 45-1. 20 (3H, m)	
Purity	>90% (NMR)	,	
MS	671 (M+1)		

MS

	Table 211	1
Example No.	324	1H NMR(δ) ppm 300MHz, DMSO-d6 8. 36 (1H, d, J=7. 9Hz), 8. 30 (1H, s), 8. 28and8. 05 (2H, ABq, J=8. 8 Hz), 8. 16 (1H, s), 7. 79and7. 46 (2H, A'B'q, J=8. 3Hz), 7. 74and7. 25 (4H, A'B''q, J=8. 9Hz), 7. 52ard7. 50 (4H, A'' B'''q, J=8. 7Hz), 8. 14 (2H, s), 4. 36 (1H, brt, J=12. 1Hz), 3. 80 (1H, brs), 2. 39-2. 18 (2H, m), 2. 10-1. 8 (2H, m), 1. 93-1. 57 (8H, m), 1.
Purity > 90% (1) MS 662(M+		9-1, 04 (8H, m)
Example No.	325	1H NMR(δ) ppm
		300MHz, DMSO-d6 8. 86(1H, t, J=6. 0Hz), 8. 84and(.00(4H, ABq, J=6. 6Hz), 8. 33(1H, s), 8. 27and8. 04(2H, A'B'q, J=9. 0Hz), 8. 12(1H, s), 7. 92and7. 46(2H, A'B'q, J=7. 9Hz), 7. 74add7. 23(4H, A'B''q, J=9. 0Hz), .53and7. 49(4H, A''B'''q, J=9. Hz), 5. 13(2H, s), 4. 36(1H, brt, J=12. 8Hz), 3. 70(2H, td, J=6. 8Hz), 3. 21(2H, t, J=6. 8Hz)
Purity > 90% (1	NMR)	, 2. 38-2. 20 (2H, m), 2. 09-1. 95 2H, m), 1. 91-1. 77 (2H, m), 1. 70 1. 59 (1H, m), 1. 49-1. 20 (3H, m)
VC 685 (M-	1)	1.00 (214) 207 20 20 20 20 20 20 20 20 20 20 20 20 20

685 (M+1)

Example No.	326	1H NMR(δ) ppm
но 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		300MHz, DMSO-d6 12.80(1H, brs), 8.23(1H, s), 7. 90(1H, d, J=8.7Hz), 7.83(1H, d, J=8.7Hz), 7.60-7.50(5H, m), 7. 39(2H, d, J=7.8Hz), 7.23-7.10(3H, m), 7.05(1H, d, J=7.8Hz), 6. 85(1H, s), 3.94(1H, s), 2.97, 2. 88(6H, s), 2.30-2.10(2H, m), 1. 90-1.50(5H, m), 1.40-1.00(3H, m)
Purity > 90%	(NMR)	
MS 610 ()	(+1)	

Table 212

Example No.	. 3	27	1H NMR(δ) ppm
но		OH OH	300MHz, DMSO-d6 13.20-12.60(2H, brs), 8.23(1H, s), 7.98(2H, d, J=6.6Hz), 7.95 (1H, d, J=8.7Hz), 7.87(1H, d, J=8.7Hz), 7.70-7.50(5H, m), 7.27 -7.20(3H, m), 7.08(1H, d, J=7.8 Hz), 6.90(1H, s), 3.93(1H, s), 2 .51-2.05(2H, m), 1.90-1.70(4H, m), 1.65-1.55(1H, m), 1.40-1. 10(3H, m)
Purity	>90% (NMR)		
MS	583 (M+1)		

Table 213

9		Table 213		
10		HO ² C	4	
15	Ex.No.	R	R'	
	2001	-н	4-(-Me)	
	2002	-н	3- (-CF ₃)	
20	2003	. 5-(-F)	. –н	
	2004	3- (-F)	2-(-F)	
	2005	3- (-F)	3- (-F)	
25	2006	3- (-F)	4-(-F)	
	2007	4-(-F)	4-(-F)	
	2008	5- (-F)	4-(-F)	
30	2009	6-(-F)	4-(-F)	
	2010	4-(-F)	4-(-C1)	
	2011	5-(-F)	4-(-Me)	
35	2012	5-(-F)	4-(-CF ₃)	
	2013	5-(-F)	4-(-CO ₂ H)	
	2014	5- (-F)	4-(-CO ₂ Me)	
40	2015	5- (-F)	4- (-LNO)	
	2016	5- (-F)	4-(-CONH ₂)	
45	2017	5-(-F)	4-{-CON (Me) 2}	
40	2018	5-(-F)	4-(-OMe)	
	2019	5-(-F)	4-(-SMe)	
50	2020	5-(-F)	4- (-\$-Ne)	
	2021	5-(-F)	4 - (
55	2022	4-(-Cl)	-н	

5	2023	4-(-Cl)	4-(-F)
	2024	4-(-Cl)	4-(-C1)
	2025	4-(-Cl)	4-(-Me)
o	2026	5-(-Cl)	4-(-CF ₃)
	2027	4-(-Cl)	4-(-CO ₂ H)
	}	5-(-Cl)	4-(-CO ₂ Me)
5	2028	5-(-Cl)	4-(1-1-)
		4-(-Cl)	4-(-CONH2)
	2030	5-(-C1)	4-{-CON (Me) 2}
20	2031	5-(-Cl)	3-(-OMe)
	2032	4-(-C1)	4-(-SMe)
25	2033	5-(-C1)	4- (-S-Me)
	2035	4-(-C1)	4- (-8-ita)
30	2036	5-(-CN)	4-(-F)
	2037	4-(-CN)	4-(-Cl)
	2038	5-(-NO ₂)	4-(-F)
35	2039	4-(-NO ₂)	4-(-C1)
	2040	5- (-Me)	4-(-CO ₂ H)
	2041	5- (-Me)	4-(-CO ₂ Me)
40	2042	5- (-Me)	4-(-1-(-))
	2043	5-(-CF ₃)	4-(-CO ₂ H)
	2044	5-(-CF ₃)	4-(-CO₂Me)
45	2045	5-(-CF ₃)	4-(-1-)
	2046	5- (-CO ₂ H)	4-(-F)
50		4-(-CO ₂ H)	4-(-C1)
	2047	5- (-CO ₂ Me)	4-(-F)
	2048	5- (-CO ₂ Me)	4-(-C1)
55	2049	5-(-Ac)	4-(-F)
-	2050		

г		5- (-Ac)	4-(-C1)
<u> </u>	2051	(9 (5))	
5	2052	5-(-1-1)	-н
	2053	5- (<u> </u>	4-(-F)
10	2054	5-(<u>-</u> l√)	4-(-Cl)
	2055	5-(-1-1-)	4- (-CN)
15	2056	5-(-1-1-)	4-(-NO ₂)
	2057	5-(<u></u> -	4-(-Me)
20	2058	5-(<u> </u>	4-(-CF ₃)
25	2059	5-(1)	4-(-Ac)
23	2060	5-(-1-N-)	4-(-CO ₂ H)
30	2061	5-(<u>l</u> N)	4-(-CO ₂ Me)
	2062	5-(<u>1</u> N)	4-(-1-1)
35	2063	5-(-1	4-(-CONH ₂)
	2064	5-(-1-(-))	4-{-CON (Me) 2}
40	2065	5-(-1	4-{-C (=NH) NH ₂ }
	2066	5-(-1-1-)	4-(-OMe)
45	2067	5-(-1	4-(-0-CH ₂ N)
	2068	5-(<u>1</u> N)	4-(-NHMe)
50	2069	_ (<u>_</u>)	4-(-NHAC)
	2070	5- (- <u>N</u>)	4- (-N-S-We)
55	L		

		. 0 >	
5	2071	5-(-1-(-))	4-(-SMe)
	2072	₅₋ (4- (-S-No)
10	2073	₅₋ (4- (-8-Na)
	2074	₅₋ (- -\(\to\))	4 - (
15	2075	_{5−} (-l-√)	4- {-\$-N(He); }
	2076	5- (-CONH ₂)	-н
	2077	5-(-CONH ₂)	4-(-F)
20	2078	5- (-CONH ₂)	2,3,4,5,6-penta-(-F)
	2079	5-(-CONH ₂)	2-(-C1)
	2080	5-(-CONH ₂)	3-(-C1)
25	2081	3-(-CONH ₂)	2-(-C1)
	2082	3-(-CONH ₂)	3-(-C1)
	2083	3-(-CONH ₂)	4-(-C1)
30	2084	4-(-CONH ₂)	2-(-C1)
•	2085	4-(-CONH ₂)	3-(-C1)
	2086	4-(-CONH ₂)	4-(-C1)
35	2087	6-(-CONH ₂)	2-(-C1)
	2088	6-(-CONH ₂)	3-(-C1)
	2089	6-(-CONH ₂)	4-(-C1)
40	2090	5-(-CONH ₂)	3,5-di-(-C1)
	2091	5- (-CONH ₂)	4-(-CN)
	2092	5-(-CONH ₂)	4-(-NO ₂)
45	2093	5-(-CONH ₂)	4-(-Me)
	2093	5-(-CONH ₂)	2,6-di-(-Me)
	2094	5- (-CONH ₂)	4-(-CF ₃)
50		5-(-CONH ₂)	4-(-Ac)
	2096	5-(-CONH ₂)	4-(-CO ₂ H)
	2097	5-(-CONH ₂)	4-(-CO ₂ Me)
55	2098		

	2099	5- (-CONH ₂)	4-(-1-1-1-)
5	2100	5- (-CONH ₂)	4-(-CONH ₂)
	2101	5- (-CONH ₂)	3,5-di-(-CONH ₂)
	2102	5- (-CONH ₂)	4-{-CON (Me) 2}
10	2103	5- (-CONH ₂)	4-(-C (=NH) NH ₂)
	2104	5- (-CONH ₂)	4- (-OMe)
	2105	5- (-CONH ₂)	3,4,5-tri-(-OMe)
15	2106	5- (-CONH ₂)	4-(-0-CH2 N)
	2107	5- (-CONH ₂)	4-(-NHMe)
20	2108	5- (-CONH ₂)	4-(-NHAC)
	2109	5- (-CONH ₂)	4- (-N-S-Ma)
25	2110	5- (-CONH ₂)	4-(-SMe)
-	2111	5- (-CONH ₂)	4 – (- S-Ne)
30	2112	5- (-CONH ₂)	4- (-\$-Ne)
	2113	5- (-CONH ₂)	4- (-\$-NH ₂)
35	2114	5- (-CONH ₂)	4 - { - \$ - N (Me), }
	2115	5-{-CON (Me) 2}	-н
40	2116	5-{-CON (Me) ₂ }	4-(-F)
	2117	4-{-CON (Me) ₂ }	4-(-C1)
	2118	5-(-CON (Me) ₂)	4-(-CN)
45	2119	5-(-CON (Me) ₂)	4-(-NO ₂)
	2120	5-{-CON (Me) 2}	4-(-Me)
	2121	4-(-CON (Me) ₂)	4-(-CF ₃)
50	2122	5-{-CON (Me) ₂ }	4- (-Ac)
	2123	5-{-CON(Me) ₂ }	4-(-CO ₂ H)
	2124	5-{-CON (Me) ₂ }	4-(-CO ₂ Me)
55			-

	2125	5-{-CON (Me) ₂ }	4-(-10)
5	2126	5-{-CON (Me) ₂ }	3-(-CONH ₂)
	2127	4-{-CON (Me) ₂ }	4-(-CON (Me) ₂ }
	2128	5-{-CON (Me) 2}	4-{-C (=NH) NH ₂ }
10	2129	5-{-CON (Me) ₂ }	4-(-OMe)
	2130	5-{-CON (Me) ₂ }	4-(-o-ch ₂ N)
15	2131	5-{-CON (Me) ₂ }	4-(-NHMe)
	2132	5-{-CON (Me) ₂ }	4- (-NHAC)
20	2133	5-{-CON (Me) ₂ }	4- (-N-S-Me)
	2134	4-{-CON (Me) ₂ }	4-(-SMe)
	2135	5-{-CON (Me) ₂ }	4 - (-\$-Ne)
25	2136	4-{-CON (Me) ₂ }	4 - (-ş-He)
30	2137	5-(-CON (Me) ₂ }	4- (-\$-NH ₃)
	2138	5-(-CON (Me) ₂)	4- {-\$-N(Me) ₂ }
35	2139	5-(-0Me)	-н
	2140	5-(-0Me)	4-(-F)
	2141	3-(-0Me)	4-(-C1)
40	2142	4-(-OMe)	4-(-C1)
	2143	5- (-0Me)	2-(-C1)
	2144	5-(-0Me)	3-(-C1)
45	2145	6-(-OMe)	4- (-C1)
	2146	5-(-OMe)	4-(-CN)
	2147	5-(-OMe)	4-(-NO ₂)
50	2148	5-(-OMe)	4-(-Me)
	2149	5-(-OMe)	4-(-CF ₃)
	2150	5-(-OMe)	4-(-Ac)
55	L		

r		4-(-OMe)	4-(-CO ₂ H)
5	2151	4,5-di-(-OMe)	4-(-CO ₂ H)
	2152	5- (-OMe)	4-(-CO ₂ Me)
İ	2153	<u> </u>	
	2154	5- (-OMe)	4-()
10	2155	5-(-OMe)	4-(-CONH ₂)
	2156	5-(-OMe)	4-{-CON (Me) 2}
	2157	5-(-OMe)	4-(-C (=NH) NH ₂)
15	2158	5- (-OMe)	4- (-OMe)
	2159	5- (-OMe)	4-(-0-CH2-N)
20	2160	5-(-OMe)	4-(-NHMe)
	2161	5- (-OMe)	4-(-NHAC)
25	2162	5- (-OMe)	4- (-N-Ñ-Ma)
	2163	5-(-OMe)	4-(-SMe)
30	2164	5- (-OMe)	4- (-\$-Ke)
	2165	5-(-OMe)	4- (
35	2166	5-(-OMe)	(-\$-NH ₂)
	2167	5-(-OMe)	
	2168	5-(-NHMe)	4-(-F)
40	2169	5-(-NHMe)	4-(-C1)
	2170	. 5-(-NHAc)	4-(-F)
45	2171	5-(-NHAC)	4-(-C1)
	2172	5-(-NHAC)	4-(-Ac)
50	2173	5-(-NHAc)	4-(-CONH ₂)
	2174	5-(-NHAC)	4-(-CON (Me) ₂)
	2175	(-N-3-Ha)	4- (-F)

5	2176	4- (-N-Ş-Me)	4-(-Cl)
	2177	(-N-\$-Me) 4- (-N-\$-Me) 5- (-N-\$-Me)	4-(-Me)
10	2178	5- (-N-8-Ne) 5- (-N-8-Ne)	4-(-CF ₃)
	2179	(-N-\$-Me) 5-	4-(-CO ₂ H)
15	2180	5- (-N-\$-He)	4-(-CO ₂ Me)
	2181	5- (-N-8-He)	4-(<u>l</u> N)
20	2182	(-N-S-Ne)	4- (-SMe)
	2183	(-N-S-He)	4- (-\$-Ne)
25	2184	5- " 0 (-N-S-Ne) 5- " 0	4 — (-8-He)
	2185	5-(-SMe)	4-(-F)
30	2186	4-(-SMe)	4-(-Cl)
		5-(-SMe)	4- (-Me)
	2187	5-(-SMe)	4-(-CF ₃)
	2188	5- (-SMe)	4-(-Ac)
35	2189	5- (-SMe)	4-(-CONH ₂)
	2190		4-{-CON(Me) ₂ }
	2191	5-(-SMe)	
40	2192	5- (ŝ-ke)	4-(-F)
	2193	4- (-8-Ne)	4-(-C1)
45	2194	5- (-s-He)	4-(-Me)
	2195	5- (-8-He)	4-(-CF ₃)
50	2196	5- (P	4- (-Ac)
	2197	5- (º - ŝ-He)	4-(-CONH ₂)

2	198	5- (-\$-He)	4-{-CON (Me) 2}
2:	199	5- (-ş-Ma)	4-(-F)
2:	200	(-\$-Mc)	4-(-Cl)
2	201	(—\$-We)	4-(-Me)
2	202	5 — (—8 — He)	4-(-CF ₃)
2	203	(4-(-Ac)
2	204	5- (-8-Me)	4- (-CONH ₂)
2	2205	5- (-\$-No)	4-{-CON (Me) 2}
2	2206	5- (-8-NH ₂)	4-(-F)
2	2207	- (4-(-Cl)
	2208	4- (-\$-NH ₂)	2,4-di-(-Cl)
	2209	5- (-8-NH ₃)	4-(-Me)
	2210	(-8-NH ₂)	3-(-CF ₃)
	2211	(-\$-NH ₂)	4-(-CF ₃)
	2212	5- (-8-NH ₂)	4-(-CONH ₂)
	2213	5- (-\$-NH ₂)	4-{-CON (Me) 2}
	2214	5- (-\$-NH _x)	4-(-SMe)
,	2215	5- (-\$-NH ₂)	4- (-\$-He) (-\$-He)
-	2216	5- (-\$-NH ₂)	4- (-8-Me)
₅		1	

5	2217	5 - {	4-(-F)
,	2218	4 - { N (Me) }	4-(-C1)
10	2219	5 { N (Me) 2 }	4-(-Me)
	2220	5- { - (No) ₂ }	4-(-CF ₃)
15	2221	5- { N (Ne) 2 }	4- (-CONH ₂)
	2222	5- { - P (Ne) ₂ }	4-(-CON (Me) ₂)
20	2223	5- { -\$-N(Ne); }	4-(-SMe)
	2224	5- {-\$-N(Me), } 5-	4- (-9-He)
25	2225	5- { -\frac{0}{2}-N(He)_s}	4- (-8-ke)
	2226	5-(-O-(CH ₂) ₂ -OH)	4-(-Cl)
30	2227	5-{-O-(CH ₂) ₃ -OH}	4-(-C1)
	2228	5-(-0^)	4-(-C1)
35	2229	5- (-0 N)	4-(-Cl)
	2230	5~ (-0~N—Ne)	4-(-Cl)
40	2231	5- (-0~N)	4-(-Cl)
45	2232	5- (-0- N OH)	4-(-Cl)
45	2233	5- (N OH)	4-(-Cl)
50	2234	5- (N OH)	4-(-C1)
	2235	5- (N OH)	4-(-Cl)
55	<u></u>		

5	2236	5- (NOH)	4-(-C1)
	2237	5- (N CO,H)	4-(-Cl)
10	2238	5- (No Ha)	4-(-Cl)
15	2239	5- Ne Me OH	4-(-Cl)
20	2240	5- (N OMa)	4-(-C1)
	2241	5- ()	4-(-Cl)
25	2242	5-(11)	4-(-Cl)
30	2243	5- (N N S Ma)	4-(-C1)
35	2244	5- (\$ 0)	4-(-Cl)
	2245	(N S=0)	4-(-Cl)
40	2246	5- (N OH)	4-(-C1)
45	2247	5-(10)	4-(-Cl)
	2248	4-(1,0)	4-(-Cl)
50	2249	5- (PN OH)	4-(-Cl)

5	2250	5- (P, S, Me)	4-(-Cl)
	2251	4-(110)	. 4-(-Cl)
10	2252	4-(11-01)	4-(-Cl)
15	2253	5- (No N)	4-(-C1)
	2254	5- (N N Me)	4-(-C1)
20			

Table 214

	Table 214		
5		HO ₂ C	R' 3 5 1 2 3 -0 1 2 3 6 5 8
	Ex.	R	R¹
15	No.	-Н	-н
,,,	2255	-Н	4- (-Me)
	2256		3-(-CF ₃)
	2257	-н	-н
20	2258	5-(-F)	4-(-F)
	2259	5-(-F)	
	2260	5- (-F)	4- (-C1)
25	2261	5-(-F)	4- (-Me)
	2262	5-(-F)	4-(-CF ₃)
	2263	5-(-F)	4-(-CO ₂ H)
30	2264	5-(-F)	4-(-CO ₂ Me)
	2265	5-(-F)	4- (N)
35	2266	5-(-F)	4-(-CONH ₂)
	2267	5-(-F)	4-{-CON (Me) ₂ }
		5-(-F)	4-(-OMe)
40	2268	5-(-F)	4-(-SMe)
	2269	5- (-F)	4 - (- S-Me)
45	2271	5-(-F)	4- (-8-No)
	2272	4-(-Cl)	-н
		5-(-Cl)	4- (-F)
50	2273	4-(-Cl)	4-(-C1)
	2274	5-(-Cl)	4- (-Me)
	2275	5-(-C1)	4-(-CF ₃)
55	2276	J- (-01)	

		5-(-C1)	4-(-CO ₂ H)
	2277		4-(-CO ₂ Me)
5	2278	5-(-C1)	4-(-00210)
	2279	5-(-C1)	4- (-IN)
10	2280	5-(-C1)	4-(-CONH2)
10	2281	5-(-C1)	4-(-con (Me) ₂)
	2282	5-(-C1)	4- (-OMe)
15	2283	5-(-C1)	4-(-SMe)
13	2284	5-(-Cl)	4 - (-s-Me)
20	2285	5-(-Cl)	4- (
	2286	5- (-CN)	4-(-F)
	2287	5-(-CN)	4-(-Cl)
25	2288	5- (-NO ₂)	4-(-F)
	 	5- (-NO ₂)	4-(-C1)
	2289	5- (-Me)	4-(-CO ₂ H)
30	2290	5- (-Me)	4-(-CO ₂ Me)
	2291	5-(-Me)	4-(<u>1</u>)
	<u> </u>	5-(-CF ₃)	4-(-CO ₂ H)
35	2293	5- (-CF ₃)	4-(-CO ₂ Me)
	2294		(8.0)
40	2295	5- (-CF ₃)	4- (-F)
	2296	5-(-CO ₂ H)	4-(-C1)
	2297	4-(-CO ₂ H)	
45	2298	5- (-CO₂Me)	4- (-F)
49	2299	5- (-CO ₂ Me)	4-(-Cl)
	2300	5- (-Ac)	4-(-F)
50	2301	5- (-Ac)	4-(-C1)
	2302	5- (<u>l</u> N)	-н
55	2303	5- (ÎN ())) 5- (ÎN ())	4-(-F)
	L	J	

2304	4-(-1-(-)	4-(-C1)
2305	₅₋ (<u> </u>	4-(-CN)
2306	5-(-1	4-(-NO ₂)
2307	5-(-1	4-(-Me)
2308	5-(-1-)	4-(-CF ₃)
2309	5-(-)	4-(-Ac)
2310	5-(<u></u> -()	4-(-CO ₂ H)
2311	5-(<u>L</u>)	4-(-CO₂Me)
2312	5-(<u>l</u> N)	4- (<u>P</u> , ()
2313	5-(1-())	4-(-CONH ₂)
2314	5-(<u></u> -())	4-{-CON (Me) ₂ }
2315	5-(<u> </u>	4-{-C (=NH) NH ₂ }
2316	5-(<u> </u>	4-(-OMe)
2317	5-(-ln)	4-(-0-CH ₂ N)
2318	5-(<u>-</u> ¶-(_)	4-(-NHMe)
2319	5-(<u>P</u> N\)	4-(-NHAC)
2320	5- (<u>P</u> N)	4- (-N-S-Me)
2321	5-(-1-(-))	4-(-SMe)
2322	5-(-1-1	4- (-8-Me)

5	2323	5- (<u>R</u>)	4 - (-3-Me)
	2324	5-(<u>-</u> N_)	4- (
10	2325	5-(一一)	$\left\{ egin{array}{c} 0 \\ -\ddot{a} - N \left(M_{\mathrm{e}}\right)_{\mathrm{a}} \end{array} \right\}$
	2326	5- (-CONH ₂)	_н
15	2327	5- (-CONH ₂)	4-(-F)
	2328	4- (-CONH ₂)	4-(-C1)
	2329	5- (-CONH ₂)	4-(-CN)
20 ·	2330	5- (-CONH ₂)	4-(-NO ₂)
	2331	5- (-CONH ₂)	4-(-Me)
	2332	5- (-CONH ₂)	4-(-CF ₃)
25	2333	5- (-CONH ₂)	4- (-Ac)
	2334	5- (-CONH ₂)	4-(-CO ₂ H)
	2335	5- (-CONH ₂)	4-(-CO ₂ Me)
30	2336	5- (-CONH ₂)	4- (ÎN)
	2337	5- (-CONH ₂)	4-(-CONH ₂)
<i>35</i>	2338	5- (-CONH ₂)	4-(-CON (Me) ₂ }
	2339	5- (-CONH ₂)	4-(-C (=NH) NH ₂)
	2340	5- (-CONH ₂)	4-(-OMe)
40	2341	5- (-CONH ₂)	4-(-o-cH ₂ fl_N)
	2342	5- (-CONH ₂)	4-(-NHMe)
45	2343	5- (-CONH ₂)	4-(-NHAC)
+3	2344	5-(-CONH ₂)	4- (-N-8-Me)
	2345	5-(-CONH ₂)	4-(-SMe)
50	2346	5-(-CONH ₂)	4- (-ŝ-Ne)
55	2347	5-(-CONH ₂)	4- (-\$-Ho)
55	- 		

5	2348	5-(-CONH ₂)	4- (-8-NH ₂) 4- (-8-NH ₂) (-8-NH ₂) 4- (Me) ₂ }
	2349	5-(-CONH ₂)	4- {-\$-N(Me), }
10	2350	5-(-CON (Me) ₂ }	-н
	2351	5-{-CON (Me) 2}	4-(-F)
	2352	4-(-CON (Me) 2)	4-(-Cl)
15	2353	5-(-CON (Me) ₂)	4-(-CN)
	2354	5-{-CON (Me) ₂ }	4-(-NO ₂)
	2355	5-{-CON (Me) ₂ }	4- (-Me)
20	2356	5-{-CON (Me) ₂ }	4-(-CF ₃)
	2357	5-{-CON (Me) ₂ }	4-(-Ac)
	2358	5-{-CON (Me) ₂ }	4-(-CO ₂ H)
25	2359	5-(-CON (Me) ₂)	4-(-CO ₂ Me)
	2360	5-{-CON (Me) 2}	4-(-10)
30	2361	5-{-CON (Me) ₂ }	4-(-CONH ₂)
	2362	5-{-CON (Me) 2}	4-(-CON (Me) ₂)
	2363	5-{-CON (Me) 2}	4-{-C (=NH) NH ₂ }
35	2364	5-{-CON (Me) 2}	4- (-OMe)
	2365	5-{-CON (Me) 2}	4-(-0-CH2 N)
40	2366	5-{-CON (Me) ₂ }	4-(-NHMe)
	2367	5-(-CON (Me) ₂ }	4-(-NHAc)
45	2368	5-{-CON (Me) 2}	4- (-N-S-Ha)
	2369	5-{-CON (Me) ₂ }	4-(-SMe)
	2370	5-{-CON(Me) ₂ }	4- (-9-Me)
50	2371	5-(-CON (Me) ₂ }	4- (-\$-Me)
55	2372	5-{-CON (Me) 2}	4 - (-\$-NH ₂)
	L		

5	2373	5-{-CON (Me) ₂ }	4- {-\$-N(Mo), }
	2374	5-(-OMe)	-н
	2375	5- (-OMe)	4-(-F)
10	2376	5-(-OMe)	4-(-Cl)
	2377	5- (-OMe)	4-(-CN)
	2378	5- (-OMe)	4-(-NO ₂)
15	2379	5-(-OMe)	4- (-Me)
	2380	5- (-OMe)	4-(-CF ₃)
20	2381	5-(-OMe)	4- (-Ac)
20	2382	5- (-OMe)	4-(-CO ₂ H)
	2383	5- (-OMe)	4-(-CO ₂ Me)
25	2384	5-(-OMe)	4-(<u>-</u> L)
	2385	5-(-OMe)	4-(-CONH ₂)
	2386	5-(-OMe)	4-{-CON (Me) 2}
30	2387	5-(-OMe)	4-{-C (=NH) NH ₂ }
	2388	5-(-OMe)	4-(-OMe)
35	2389	5-(-OMe)	4-(-o-cH ₂)
	2390	5-(-OMe)	4-(-NHMe)
	2391	5-(-OMe)	4-(-NHAc)
40	2392	5-(-OMe)	4- (-N-S-Ne)
	2393	5-(-OMe)	4-(-SMe)
45	2394	5-(-OMe)	4- (-S-Me)
	2395	5-(-OMe)	4- (-8-Me)
50	2396	5-(-OMe)	4- (-8-NH ₂)
	2397	5-(-OMe)	$4 - \left\{ \begin{array}{c} 0 \\ -\ddot{s} - N \text{ (Me)}_{2} \end{array} \right\}$
55	2398	5- (-NHMe)	4-(-F)
	I		

2399 5-(-NHMe) 4-(-C1)	
2401 5-(-NHAC) 4-(-C1) 2402 5-(-NHAC) 4-(-AC) 2403 5-(-NHAC) 4-(-CONH ₂) 2404 5-(-NHAC) 4-(-CON (Me) ₂) 2405 (-N-S-Ne) 4-(-CN (Me) ₂) 2406 (-N-S-Ne) 4-(-C1) 2407 (-N-S-Ne) 4-(-C1) 2408 (-N-S-Ne) 4-(-CF ₃) 2408 (-N-S-Ne) 4-(-CF ₃) 2409 (-N-S-Ne) 4-(-CO ₂ H) 2410 (-N-S-Ne) 4-(-CO ₂ He)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2410 (-N-S-Me) 4-(-CO ₂ Me)	
2410 (-N-S-Ma) 4-(-CO ₂ Me)	
30	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2412 (-N-S-We) 4-(-SMe)	
$ \begin{array}{c c} 2413 & \begin{pmatrix} -N - S - Ne \end{pmatrix} \\ 5 - \begin{pmatrix} -N - S - Ne \end{pmatrix} & 4 - \begin{pmatrix} -S - Ne \end{pmatrix} \end{array} $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2415 5-(-SMe) 4-(-F)	
2416 5-(-SMe) 4-(-C1)	
45 2417 5-(-SMe) 4-(-Me)	·
2418 5-(-SMe) 4-(-CF ₃)	
2419 5-(-SMe) 4-(-Ac)	
50 2420 5-(-SMe) 4-(-CONH ₂)	
2421 5-(-SMe) 4-{-CON (Me) ₂ }	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

	5- (-\$-Me)	4-(-Cl)
2423	5- (-5-86)	
2424	5- (4-(-Me)
2425	5- (-8-Ma)	4-(-CF ₃)
2426	. 5- (-8-Ma)	4-(-Ac)
2427	5- (-8-Ne)	4-(-CONH ₂)
2428	5- (-\$-Me)	4-{-CON (Me) ₂ }
2429	(-8-ite)	4-(-F)
2430	5- (-\$-We)	4-(-Cl)
2431	(-s-Ne)	4-(-Me)
2432	(4-(-CF ₃)
2433	(4-(-Ac)
2434	(-8-Me) 5- 0	4-(-CONH ₂)
2435	(-\$-We)	4-{-CON (Me) 2}
2436	5- (-\$-NH ₂)	4-(-F)
2437	5- (-\$-NH ₂)	4-(-Cl)
2438	5- (-9-NH ₂)	4-(-Me)
2439	5- (-s-NH ₂)	4-(-CF ₃)
2440	5- (-\$-NH ₂)	4-(-CONH ₂)
2441	5- (-\$-NH ₃)	4-{-CON (Me) ₂ }

	2442	5- (-s-NH ₂)	4-(-SMe)
5	2443	5_ (NH ₃)	4- (-\$-He)
10	2444	5- (-\$-NH ₃)	4- (-8-He)
	2445	{ s - N (Me), }	4-(-F)
15	2446	(-\$-N(Me) ₂	4-(-Cl)
	2447	{ — - N (Ne) ₂ }	4-(-Me)
20	2448	β-N (Me) ₂ }	4-(-CF ₃)
	2449	{ \$-H (Ne) ₂ }	4-(-CONH ₂)
25	2450	5- {-%-N(Ne); }	4-{-CON (Me) 2}
	2451	{	4- (-SMe)
30	2452	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	4- (-S-Me)
35	2453	5- {-\$-N(We) ₂ }	4- (-\$-He)

Table 215

5		HO ₂ C N	
10			4 3 R
	Ex.N	R	R'
	2454	2-(-F)	2- (-F)
15	2455	2-(-F)	3-(-F)
	2456	2-(-F)	4-(-F)
20	2457	3-(-C1)	3-(-C1)
20	2458	3,5-di-(-Cl)	3,5-di-(-Cl)
	2459	3-(-CN)	3-(-CN)
25	2460	3-(-NO ₂)	3-(-NO ₂)
	2461	3-(-Me)	3-(-Me)
	2462	3-(-CF ₃)	3-(-CF ₃)
30	2463	3-(-Ac)	3- (-Ac)
	2464	3- (-CO ₂ H)	3-(-CO ₂ H)
	2465	3- (-CO ₂ Me)	3-(-CO ₂ Me)
35	2466	3- (<u>-</u> 1-1	3-(-1-1-)
	2467	3- (-CONH ₂)	3-(-CONH ₂)
	2468	3- (-CONH ₂)	3-(-F)
40	2469	3- (-CONH ₂)	3-(-C1)
	2470	3-(-CON (Me) ₂)	3-(-CON (Me) ₂ }
45	2471	3-(-CON (Me) ₂ }	3-(-F)
45	2472	3-{-CON (Me) 2}	3-(-C1)
	2473	3-{-C (=NH) NH ₂ }	3-(-C (=NH) NH ₂ }
50	2474	3-(-OMe)	3-(-OMe)
	2475	3-(-0-CH-N-N-)	3-(-o-cH ₂ -N-)
	2476	3-(-NHMe)	3-(-NHMe)
55			

		2 ()(1) =)	3- (-NHAC)
	2477	3-(-NHAc)	
5	2478	3- (-N-3-Na)	3- (-N-8-He)
	2479	3-(-SMe)	3-(-SMe)
10	2480	3 - (-g-Me)	3- (-3-140)
	2481	(-ş-No)	3- (-8-He)
15	2482	(-8-NH ₃)	3- (-\$-NH ₂)
	2483	3- 0 - {-\$-N(Me), }	3- { -\$-N(Ne), }
20	2484	3-(-F)	4-(-F)
	2485	3-(-C1)	4-(-C1)
	2486	4-(-CN)	4-(-CN)
25	2487	4-(-NO ₂)	4-(-NO ₂)
	2488	3-(-Me)	4-(-Me)
	2489	4-(-Me)	2,6-di-(-Me)
30	2490	4-(-CF ₃)	4-(-CF ₃)
	2491	4-(-Ac)	4-(-Ac)
	2492	4-(-CO ₂ H)	4-(-CO ₂ H)
35	2493	4- (-CO ₂ Me)	4-(-CO ₂ Me)
	2494	4-(<u> </u>	- (-PN-)
40	2495	4-(-CONH ₂)	4-(-CONH ₂)
	2496	4- (-CONH ₂)	4-(-F)
	2497	4-(-CONH ₂)	2,3,4,5,6-penta-(-F)
45	2498	4-(-CONH ₂)	4-(-Cl)
	2499	4-{-CON (Me) ₂ }	4-{-CON (Me) 2}
	2500	4-{-CON (Me) ₂ }	4-(-F)
50	2501	4-{-CON (Me) 2}	4-(-Cl)
	2502	4-{-CON (Me) 2}	3,5-di-(-Cl)
	2503	4-(-C (=NH) NH ₂)	4-{-C (=NH) NH ₂ }
55			

ſ		4 / 0//0/	4-(-OMe)
_	2504	4-(-OMe)	
5	2505	4-(-OMe)	3,4,5-tri-(-OMe)
	2506	4-(-0-CH ₂ -N)	4-(-0-cH ₃ N)
10	2507	4-(-NHMe)	4-(-NHMe)
	2508	4-(-NHAc)	4-(-NHAC)
15	2509	4- (-N-8-Ne)	4- (-N-5-Me)
	2510	4-(-SMe)	4-(-SMe)
	2511	4- (-S-Me)	4- (-8-Ne)
20	2512	4— (———————————————————————————————————	$\begin{pmatrix} -\frac{0}{2} - \text{Me} \end{pmatrix}$
,	2513	(\$-NH ₂)	4- (-\$-NH ₂)
25	2514	4 — { — — N (Me), }	4 - { N (Me) }

Table 216

10	HO ₂ C		
	Ex.N	R	R'
	o. 2515	-н	-н
15	2516	2-(-F)	3- (-F)
	2517	3-(-C1)	3-(-C1)
20	2518	3-(-CN)	3- (-CN)
20	2519	3-(-NO ₂)	3-(-NO ₂)
	2520	3-(-Me)	3-(-Me)
25	2521	3-(-CF ₃)	3-(-CF ₃)
	2522	3- (-Ac)	3-(-Ac)
	2523	3- (-CO ₂ H)	3- (-CO ₂ H)
30	2524	3- (-CO₂Me)	3- (-CO ₂ Me)
	2525	3-(-1-1-)	3- (<u>-</u>
35	2526	3- (-CONH ₂)	3-(-CONH ₂)
33	2527	3- (-CONH ₂)	3- (-F)
	2528	3- (-CONH ₂)	3-(-Cl)
40	2529	3-{-CON (Me) ₂ }	3-{-CON (Me) ₂ }
	2530	3-{-CON (Me) ₂ }	3- (-F)
	2531	3-{-CON (Me) ₂ }	3-(-C1)
45	2532	$3-\{-C (=NH) NH_2\}$	3-{-C(=NH)NH ₂ }
	2533	3- (-OMe)	3-(-OMe)
50	2534	3-(-0-CH2 N)	3-(-0-cH ₂ -N-)
	2535	3-(-NHMe)	3- (-NHMe)
	2536	3- (-NHAC)	3-(-NHAc)
	L		

5	2537	3- (-N-8-Ha)	3- (-N-8-Ne)
	2538	3-(-SMe)	3-(-SMe)
	2539	3- (-s-Me)	3- (-8-Ne)
10	2540	3- (-ŝ-Nº)	3- (
15	2541	3- (-8-NH ₂)	3- (-8-NH,)
	2542	3- {-\$-N(He) ₂ }	3- {-\$-N(Ne), }
	2543	3-(-F)	4-(-F)
20	2544	4-(-Cl)	4-(-Cl)
i	2545	4-(-CN)	4-(-CN)
	2546	4-(-NO ₂)	4-(-NO ₂)
25	2547	4-(-Me)	4-(-Me)
	2548	4-(-CF ₃)	4-(-CF ₃)
	2549	4-(-Ac)	4- (-Ac)
30	2550	3- (-CO ₂ H)	4-(-CO ₂ H)
	2551	4-(-CO ₂ Me)	4-(-CO ₂ Me)
35	2552	4-(上()	4-(<u> </u>
	2553	4-(-CONH ₂)	4-(-CONH ₂)
	2554	4-(-CONH ₂)	4-(-F)
40	2555	4-(-CONH ₂)	4-(-C1)
	2556	3-{-CON (Me) ₂ }	4-{-CON (Me) ₂ }
	2557	3-{-CON(Me) ₂ }	4-(-F)
45	2558	4-{-CON (Me) ₂ }	4-(-C1)
	2559	4-{-C (=NH) NH ₂ }	4-(-C (=NH) NH ₂ }
50	2560	4-(-OMe)	4-(-OMe)
	2561	4-(-0-CH ₂ N)	4-(-o-cH-H-H-)
	2562	4-(-NHMe)	4-(-NHMe)
55	2563	4-(-NHAC)	4-(-NHAC)
		J	

5	2564	4- (-N-S-Ha)	4 - (-N-S-Me)
	2565	4-(-SMe)	4-(-SMe)
	2566	4 (-S-Ne)	4- (-s-He)
10	2567	4- (-8-lie)	4- (-ş-lie)
15	2568	4- (-8-NH ₂)	4- (-3-NH ₂)
	2569	4 - { - 9 - N (Ma) ₂ }	4 - { N (Me) 2 }

Table 217

	18010 21.		
5	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$		
10		\bigcirc	Py : pyridyl group
}	Ex.N	Ру	R'
ŀ	2570	3-Py	-н
15	2571	3-Py	3- (-F)
-	2572	3-Py	3-(-C1)
 	2573	3-Py	3-(-Me)
20	2574	3-Py	3-(-CF ₃)
-	2575	3-Ру	3- (-Ac)
	2576	3-Py	3- (-CO₂H)
25	2577	3-РУ	3-(-CO ₂ Me)
	2578	3-Ру	3- (N)
30	2579	3-Py	3-(-CONH ₂)
	2580	3-Ру	3-{-CON (Me) 2}
l	2581	3-PY	4-(-F)
35	2582	3-Py	4-(-Cl)
ŀ	2583	3-Ру	4-(-Me)
	2584	3-Py	4-(-CF ₃)
40	2585	3-Py	4-(-Ac)
	2586	2-Py	4-(-CO ₂ H)
	2587	3-Py	4-(-CO ₂ Me)
45	2588	3-Py	4-(
	2589	4-Py	4-(-CONH ₂)
50	2590	3-Py	4-{-CON (Me) 2}
	L.:	l	

Table 218

	Table 218		
5		HO ₂ C Py 1 8 8 R'	
10	py : pyridyl		Py : pyridyl group
	Ex.N	Ру	R'
	0.	3-Py	-н
15	2591	3-Ру	3-(-F)
	2592	3-Py	3-(-C1)
	2593		3-(-Me)
20	2594	3-Py	3-(-CF ₃)
	2595	3-Py	3- (-Ac)
	2596	3-Py	3-(-CO ₂ H)
05	2597	3-Py	
25	2598	3-Py	3- (-C0 ₂ Me)
	2599	3-Py	3-(-1-10)
30	2600	3-Py	3- (-CONH ₂)
	.}	3-Py	3-{-CON (Me) 2}
	2601	3-Py	4-(-F)
05	2602	3-Py	4-(-Cl)
35	2603	3-Py	4-(-Me)
	2604		4-(-CF ₃)
	2605	3-Py	4-(-Ac)
40	2606	3-Py	4-(-CO ₂ H)
	2607	3-РУ	4-(-CO ₂ Me)
	2608	3-Py	4-(-CO2ME)
45	2609	3-Py	4-(-11-11-1)
	2610	. 3-Ру	4-(-CONH ₂)
50	2611	3-Py	4-{-CON (Me) 2}
50			1000 Y

[0301] Formulation Example is given in the following. This example is merely for the purpose of exemplification and does not limit the invention.

Formulation Example

[0302]

5

10

15

20

25

30

35

40

45

50

55

(a)	compound of Example 1	10 g
(b)	lactose	50 g
' '		15 g
(c)	corn starch	
(d)	sodium carboxymethylcellulose	44 g
(e)	magnesium stearate	1 g
l '''.		

[0303] The entire amounts of (a), (b) and (c) and 30 g of (d) are kneaded with water, dried in vacuo and granulated. The obtained granules are mixed with 14 g of (d) and 1 g of (e) and processed into tablets with a tableting machine to give 1000 tablets each containing 10 mg of (a).

Industrial Applicability

[0304] As is evident from the above-mentioned results, the compound of the present invention shows a high inhibitory activity against HCV polymerase.

[0305] Therefore, the compound of the present invention can provide a pharmaceutical agent effective for the prophylaxis or treatment of hepatitis C, based on the anti-HCV effect afforded by the HCV polymerase inhibitory activity. When used concurrently with a different anti-HCV agent, such as interferon, and/or an anti-inflammatory agent and the like, it can provide a pharmaceutical agent more effective for the prophylaxis or treatment of hepatitis C. Its high inhibitory activity specific to HCV polymerase suggests the possibility of the compound being a pharmaceutical agent with slight side effects, which can be used safely for humans.

[0306] This application is based on patent application No. 369008/1999 filed in Japan, the contents of which are hereby incorporated by reference.

Claims

A therapeutic agent for hepatitis C, which comprises a fused ring compound of the following formula [i] or a pharmaceutically acceptable salt thereof as an active ingredient:

$$G^{2} - G^{1} - G^{8} - G^{7} - G^{6$$

wherein

a broken line is a single bond or a double bond,

	G ¹	is C(-R1) or a nitrogen atom,
,	G ²	is C(-R ²) or a nitrogen atom,
,	G ³	is C(-R ³) or a nitrogen atom,
	G ⁴	is C(-R ⁴) or a nitrogen atom,
	G ⁵ , G ⁶ , G ⁸ and G ⁹	are each independently a carbon atom or a nitrogen atom,
	G ⁷	is C(-R ⁷), an oxygen atom, a sulfur atom, or a nitrogen atom optionally substituted by R ⁸ ,

wherein R1, R2, R3 and R4 are each independently,

(1) hydrogen atom,

- (2) C₁₋₆ alkanoyi,
- (3) carboxyl,
- (4) cyano,
- (5) nitro,

10

15

20

25

30

35

40

45

50

55

(6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino, C₁₋₆ alkoxy, C₁₋₆ alkoxycarbonyl and C₁₋₆ alkylamino, (7) -COORa1

wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B,

group B; halogen atom, cyano, nitro, C₁₋₆ alkyl, halogenated C₁₋₆ alkyl, C₁₋₆ alkanoyl,

 $-(CH_2)_r - COOR^{b1}, -(CH_2)_r - CONR^{b1}R^{b2}, -(CH_2)_r - NR^{b1}R^{b2}, ^{b1}$, $-(CH_2)_r - SR^{b1}$, $-(CH_2)_r - SO_2R^{b1}$ and $-(CH_2)_r - SO_2NR^{b1}R^{b2}$

wherein Rb1 and Rb2 are each independently hydrogen atom or C1-6 alkyl and r is 0 or an integer of 1 to 6,

(8) -CONRa2Ra3 wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above),

(9) -C(=NRa4)NH₂

wherein Ra4 is hydrogen atom or hydroxyl group,

(10) -NHR^{a5}

wherein Ra5 is hydrogen atom, C₁₋₆ alkanoyl or C₁₋₆ alkylsulfonyl,

(11) -ORa6

wherein Ra6 is hydrogen atom or optionally substituted C₁₋₆ alkyl(as defined above),

(12) -SO₂Ra7

wherein ${\rm R}^{\rm a7}$ is hydroxyl group, amino, ${\rm C}_{\rm 1-6}$ alkyl or ${\rm C}_{\rm 1-6}$ alkylamino

(13) -P(=O) (ORa31)2

wherein R^{a31} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and

R7 and R8 are each hydrogen atom or optionally substituted C₁₋₆ alkyl(as defined above),

ring Cy is

- (1) C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C₁₋₆ alkyl and C₁₋₆ alkoxy,
- (2) C₃₋₈ cycloalkenyl optionally substituted by 1 to 5 substituent(s) selected from the above group C, or

wherein u and v are each independently an integer of 1 to 3,

ring A is

- (1) C₆₋₁₄ aryl,
- (2) C₃₋₈ cycloalkyl,
- (3) C₃₋₈ cycloalkenyl or
- (4) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

R5 and R6 are each independently

- (1) hydrogen atom,
- (2) halogen atom,
- (3) optionally substituted C₁₋₆ alkyl (as defined above) or

wherein Ra8 is hydrogen atom, C₁₋₈ alkyl or C₆₋₁₄ aryl C₁₋₈ alkyl, and

X is

10

15

20

25

30

35

5

- (1) hydrogen atom,
- (2) halogen atom,
- (3) cyano,
- (4) nitro,
- (5) amino, C₁₋₆ alkanoylamino,
- (6) C₁₋₆ alkylsulfonyl,
- (7) optionally substituted C₁₋₆ alkyl (as defined above),
- (8) C₂₋₆ alkenyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
- (9) -COORa9

wherein Ra9 is hydrogen atom or C₁₋₆ alkyl,

(10) -CONH-(CH₂)₁-Ra10

wherein R^{a10} is optionally substituted C_{1-6} alkyl (as defined above), C_{1-6} alkoxycarbonyl or C_{1-6} alkanoylamino and 1 is 0 or an integer of 1 to 6,

(11) -ORa11

wherein Ra11 is hydrogen atom or optionally substituted C₁₋₆ alkyl (as defined above)

or

(12)

wherein ring B is

- (1') C₆₋₁₄ aryl,
- (2') C₃₋₈ cycloalkyl or
- (3') heterocyclic group (as defined above),

40

45

each Z is independently

- (1') a group selected from the following group D,
- (2') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (3') C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D or
- (5') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D

50

wherein the heterocyclic group has 1 to 4 hetero-atom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, group D:

- (a) hydrogen atom,
- (b) halogen atom,
- (c) cyano,
- (d) nitro,

(e) optionally substituted C₁₋₆ alkyl (as defined above),

5

(f) -(CH2)t-CORa18, (hereinafter each t means independently 0 or an integer of 1 to 6), wherein Ra18 is (1") optionally substituted C_{1-6} alkyl (as defined above), (2") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (3") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen 10 atom and a sulfur atom, (g) -(CH₂)_t-COOR^{a19} wherein $\rm R^{a19}$ is hydrogen atom, optionally substituted $\rm C_{1-6}$ alkyl (as defined above) or $\rm C_{6-14}$ aryl $\rm C_{1-6}$ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 15 (h) -(CH₂)_t-CONR^{a27}R^{a28} wherein Ra27 and Ra28 are each independently, (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 20 (4") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above (6") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 25 wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group 30 B, or (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (i) -(CH₂)_t-C(=NR^{a33})NH₂ 35 wherein Ra33 is hydrogen atom or C1-6 alkyl, (j) -(CH₂)_t-OR^{a20} wherein Ra20 is (1") hydrogen atom, 40 (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") optionally substituted C_{2-6} alkenyl (as defined above), (4") C₂₋₆ alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A, (5") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 45 group B, (7") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, (8") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (9") C_{3-8} cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group 50 (10") C₃₋₈ cycloalkyl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 55 (k) -(CH₂)_t-O- (CH₂)_p-COR^{a21} wherein Ra21 is C₁₋₆ alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, and p is 0 or an integer of 1 to 6,

(I) -(CH₂)_t-NR^{a22}R^{a23} wherein Ra22 and Ra23 are each independently (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 5 (4") C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B or (5") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 10 (m) - (CH₂)_t-NR^{a29}CO-R^{a24} wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6} alkyl (as defined above), C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above 15 group B, (n)-(CH₂)_t-NHSO₂-Ra25 wherein R^{a25} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, 20 $(o)-(CH_2)_t-S(O)_a-R^{a25}$ wherein Ra25 is as defined above, and q is 0, 1 or 2, (p) -(CH₂)_t-SO₂-NHRa26 wherein R^{a26} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group option-25 ally substituted by to 5 substituent(s) selected from the above group B, w is an integer of 1 to 3, and Y is 30 (1') a single bond, (2') C₁₋₆ alkylene, (3') C₂₋₆ alkenylene, (4') -(CH₂)_m-O-(CH₂)_n-, 35 (hereinafter m and n are each independently 0 or an integer of 1 to 6), (5') -CO-, (6') $-CO_2-(CH_2)_n$ -, (7') -CONH-(CH₂)_n-NH-, (8') -NHCO2-, 40 (9') -NHCONH-, (10') -O-(CH₂)_n-CO-, (11') -O-(CH₂)_n-O-, (12') -SO₂-, (13') -(CH₂)_m-NRa12-(CH₂)_n-45 wherein Ra12 is (1") hydrogen atom, (2") optionally substituted C_{1-6} alkyl (as defined above), (3") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 50 (5") -CORb5 wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(6") -COORb5 (Rb5 is as defined above) or (7") -SO₂Rb5 (Rb5 is as defined above),

(14') -NRa12CO- (Ra12 is as defined above),

(15') -CONRa13-(CH2)n-

wherein R^{a13} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,

(16') -CONH-CHRa14-

5

10

15

20

25

30

35

40

45

50

wherein Ra14 is C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (17') -O-(CH₂)_m-CRa15Ra16-(CH₂)_n-

wherein Ra15 and Ra16 are each independently

(1") hydrogen atom,

(2") carboxyl,

(3") C₁₋₆ alkyl,

(4") -ORb6

wherein R^{b6} is $\mathsf{C}_{\mathsf{1-6}}$ alkyl or $\mathsf{C}_{\mathsf{6-14}}$ aryl $\mathsf{C}_{\mathsf{1-6}}$ alkyl, or

wherein Rb7 is hydrogen atom, C₁₋₆ alkyl, C₁₋₆ alkanoyl or C₆₋₁₄ aryl C₁₋₆ alkyloxycarbonyl, or Ra15 is optionally

(6")

 $-(CH_2)_{n'} - (Z')w'$

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

(18') -(CH $_2$) $_n$ -NR a12 -CHR a15 - (R a12 and R a15 are each as defined above),

(19') -NRa17SO2-

wherein Ra17 is hydrogen atom or C1-6 alkyl or

(20') $-S(O)_e-(CH_2)_m-CR^{a_{15}}R^{a_{16}}-(CH_2)_n-$ (e is 0, 1 or 2, $R^{a_{15}}$ and $R^{a_{16}}$ are each as defined above).

The therapeutic agent of claim 1, wherein 1 to 4 of the G¹, G², G³, G⁴, G⁵, G⁶, G⁷, G⁸ and G⁹ is (are) a nitrogen atom.

The therapeutic agent of claim 2, wherein G² is C(-R²) and G⁶ is a carbon atom. 3.

The therapeutic agent of claim 2 or claim 3, wherein G⁵ is a nitrogen atom.

The therapeutic agent of claim 1, wherein, in formula [I], the moiety

G²-G¹, G⁸-G⁷, G⁶-G⁵

is a fused ring selected from

6. The therapeutic agent of claim 5, wherein, in formula [I], the moiety

is a fused ring selected from

15

10

5

20

7. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-1]

25

$$\begin{array}{c|c}
R^2 & R^1 & R^7 \\
R^3 & R^4 & Cy
\end{array}$$

$$\begin{array}{c|c}
R^5 & \\
R^6 & \\
\end{array}$$

$$\begin{array}{c|c}
R^1 & R^5 \\
\end{array}$$

30

35 wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.

40

. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-2]

45

50

wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.

55 **9**.

9. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-3]

$$\begin{array}{c|c}
R^2 & & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline
 & N & \\
\hline$$

wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.

10. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [1-4]

wherein each symbol is as defined in claim 1, or a pharmaceutically acceptable salt thereof as an active ingredient.

- 11. The therapeutic agent of any of claims 1 to 10, wherein at least one of R¹, R², R³ and R⁴ is carboxyl, -COOR^{a1}, -CONR^{a2}R^{a3} or -SO₂R^{a7} wherein R^{a1}, R^{a2}, R^{a3} and R^{a7} are as defined in claim 1.
- 12. The therapeutic agent of any of claims 1 to 11, wherein the ring Cy is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl.
- 13. The therapeutic agent of any of claims 1 to 12, wherein the ring A is C_{6-14} aryl.
- 14. A fused ring compound of the following formula [II]

$$G^{2} \xrightarrow{G^{1}} G^{8} \xrightarrow{G^{2}} G^{6} \xrightarrow{A^{*}} Y \xrightarrow{B} (Z) w [11]$$

$$G^{3} \xrightarrow{G^{4}} G^{9} \xrightarrow{G^{5}} G^{6} \xrightarrow{A^{*}} X \xrightarrow{B^{6}} Y \xrightarrow{B} (Z) w$$

wherein 55 the moiety

5

10

15

30

35

is a fused ring selected from

5

10

15

20

25

30

35

45

50

55

wherein R1, R2, R3 and R4 are each independently,

- (1) hydrogen atom,
- (2) C₁₋₆ alkanoyl,
- (3) carboxyl,
- (4) cyano,
- (5) nitro,
- (6) C₁₋₆ alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A,
- group \tilde{A} ; halogen atom, hydroxyl group, carboxyl, amino, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl and C_{1-6} alkylamino, (7) -COORa1
- wherein R^{a1} is optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B,
- group B; halogen atom, cyano, nitro, C₁₋₆ alkyl, halogenated C₁₋₆ alkyl, C₁₋₆ alkanoyl,
- $-(CH_2)_r COOR^{b1}, -(CH_2)_r CONR^{b1}R^{b2}, -(CH_2)_rNR^{b1}R^{b2}, -(CH_2)_r-NR^{b1} COR^{b2}, -(CH_2)_r-NHSO_2R^{b1}, -(CH_2)_r-NHSO_2R^$ $OR^{b\bar{1}}$, $-(CH_2)_r-SR^{b\bar{1}}$, $-(\bar{C}H_2)_r-SO_2R^{b\bar{1}}$ and $-(\bar{C}H_2)_r-SO_2NR^{b\bar{1}}R^{b\bar{2}}$
- wherein Rb1 and Rb2 are each independently hydrogen atom or C1-6 alkyl and r is 0 or an integer of 1 to 6,
- (8) -CONRa2Ra3
- wherein R^{a2} and R^{a3} are each independently hydrogen atom, C_{1-6} alkoxy or optionally substituted C_{1-6} alkyl (as defined above),
- (9) -C(=NRa4)NH₂ 40
 - wherein Ra4 is hydrogen atom or hydroxyl group,

 - wherein Ra5 is hydrogen atom, C1-6 alkanoyl or C1-6 alkylsulfonyl,
 - (11) -ORa6
 - wherein R^{a6} is hydrogen atom or optionally substituted $\mathsf{C}_{\mathsf{1-6}}$ alkyl (as defined above) ,
 - (12) -SO₂Ra7
 - wherein R^{a7} is hydroxyl group, amino, C_{1-6} alkyl or C_{1-6} alkylamino

 - $(13) -P(=0)(OR^{a31})_2$
 - wherein R^{a31} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above) or C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, and

R7 is hydrogen atom or optionally substituted C₁₋₆ alkyl (as defined above),

ring Cy' is

(1) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C,

group C; hydroxyl group, halogen atom, C_{1-6} alkyl and C_{1-6} alkoxy, or (2)

wherein u and v are each independently an integer of 1 to 3,

ring A' is a group selected from a group consisting of phenyl, pyridyl, pyriazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl and thienyl,

R5' and R6' are each independently

- (1) hydrogen atom,
- (2) halogen atom,
- (3) optionally substituted C₁₋₆ alkyl (as defined above) or
- (4) hydroxyl group

ring B is

5

10

15

20

25

30

35

40

45

50

55

(1) C₆₋₁₄ aryl,

(2) C₃₋₈ cycloalkyl or

(3) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

each Z is independently

- (1) a group selected from the following group D,
- (2) C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (3) C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
- (4) C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group
- (5) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

group D:

- (a) hydrogen atom,
- (b) halogen atom,
- (c) cyano,
- (d) nitro,
- (e) optionally substituted C_{1-6} alkyl (as defined above),
- (f) -(CH_2)_t- COR^{a18} ,

(hereinafter each t means independently 0 or an integer of 1 to 6),

wherein Ra18 is

- (1') optionally substituted C₁₋₆ alkyl (as defined above),
- (2') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
- (3') heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above

wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,

(g) -(CH₂)_t-COORa19 wherein R^{a19} is hydrogen atom, optionally substituted C₁₋₆ alkyl (as defined above) or C₆₋₁₄ aryl C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (h) -(CH₂)_t-CONR^{a27}R^{a28} wherein Ra27 and Ra28 are each independently, 5 (1") hydrogen atom, (2") optionally substituted C₁₋₆ alkyl (as defined above), (3") C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4") C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above 10 group B, (5") heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above (6") heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, 15 wherein the heterocycle C_{1-6} alkyl is C_{1-6} alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above, (7") C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or (8") C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the 20 above group B, (i) $-(CH_2)_t-C(=NR^{a33})NH_2$ wherein Ra33 is hydrogen atom or C1-6 alkyl, (j) -(CH₂)_t-OR^{a20} 25 wherein Ra20 is (1') hydrogen atom, (2') optionally substituted C₁₋₆ alkyl (as defined above), (3') optionally substituted C₂₋₆ alkenyl (as defined above), 30 (4') C_{2-6} alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group Α, (5') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (6') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above $\overline{(7')}$ heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above 35 (8') heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (9') C₃₋₈ cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above 40 (10') C_{3-8} cycloalkyl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (k) -(CH₂)_t-O-(CH₂)_p-COR^{a21} 45 wherein Ra21 is C₁₋₆ alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent (s) selected from the above group B, and p is 0 or an integer of 1 to 6, (I) -(CH₂)_t-NR^{a22}R^{a23} wherein Ra22 and Ra23 are each independently 50 (1') hydrogen atom, (2') optionally substituted C₁₋₆ alkyl (as defined above), (3') C₆₋₁₄ aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B, (4') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B or 55 (5') heterocycle C₁₋₆ alkyl optionally substituted by 1 to 5 substituent(s) selected from the

above group B,

```
(m) -(CH<sub>2</sub>)<sub>t</sub>-NR<sup>a29</sup>CO-R<sup>a24</sup>
                                 wherein R^{a29} is hydrogen atom, C_{1-6} alkyl or C_{1-6} alkanoyl, R^{a24} is optionally substituted C_{1-6}
                                 alkyl (as defined above), C<sub>6-14</sub> aryl optionally substituted by 1 to 5 substituent(s) selected from
                                 the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected
                                 from the above group B,
5
                                 (n)-(CH<sub>2</sub>)<sub>t</sub>-NHSO<sub>2</sub>-Ra25
                                 wherein Ra25 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above), C6-14 aryl
                                 optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic
                                 group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                                 (o) -(CH_2)_t-S(O)_a-R^{a25}
10
                                 wherein Ra25 is as defined above, and q is 0, 1 or 2,
                                        and
                                 (p) -(CH<sub>2</sub>)<sub>t</sub>-SO<sub>2</sub>-NHRa26
                                 wherein Ra26 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above), C6-14 aryl
                                 optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic
15
                                  group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                             w is an integer of 1 to 3, and
                            y is
20
                                  (1) a single bond,
                                  (2) C<sub>1-6</sub> alkylene,
                                  (3) C<sub>2-6</sub> alkenylene,
25
                                  (4) - (CH<sub>2</sub>)<sub>m</sub> - O - (CH<sub>2</sub>)<sub>n</sub> -,
                                  (hereinafter m and n are each independently 0 or an integer of 1 to 6),
                                  (5) -CO-,
                                  (6) -CO_2-(CH_2)_n-,
                                  (7) -CONH-(CH<sub>2</sub>)<sub>n</sub>-NH-,
 30
                                  (8) -NHCO2-,
                                  (9) -NHCONH-,
                                  (10) -O-(CH<sub>2</sub>)<sub>n</sub>-CO-,
                                   (11) -O-(CH<sub>2</sub>)<sub>n</sub>-O-,
                                   (12) -SO<sub>2</sub>-,
 35
                                   (13) -(CH<sub>2</sub>)<sub>m</sub>-NRa12-(CH<sub>2</sub>)<sub>n</sub>-
                                   wherein Ra12 is
                                        (1') hydrogen atom,
                                        (2') optionally substituted C<sub>1-6</sub> alkyl (as defined above),
 40
                                        (3') C_{6-14} aryl C_{1-6} alkyl optionally substituted by 1 to 5 substituent(s) selected from the above
                                        (4') C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                                        (5') -CORb5
                                        wherein R^{b5} is hydrogen atom, optionally substituted C_{1-6} alkyl (as defined above), C_{6-14} aryl
  45
                                        optionally substituted by 1 to 5 substituent(s) selected from the above group B or C<sub>6-14</sub> aryl
                                        C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                                         (6') -COORb5 (Rb5 is as defined above) or
                                         (7') -SO<sub>2</sub>R<sup>b5</sup> (R<sup>b5</sup> is as defined above),
  50
                                   (14) -NRa12CO- (Ra12 is as defined above),
                                   (15) -CONRa13-(CH<sub>2</sub>)<sub>n</sub>-
                                   wherein Ra13 is hydrogen atom, optionally substituted C<sub>1-6</sub> alkyl (as defined above) or C<sub>6-14</sub> aryl
                                   C<sub>1-6</sub> alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
                                    (16) -CONH-CHRa14-
  55
                                    wherein R^{a14} is C_{6-14} aryl optionally substituted by 1 to 5 substituent(s) selected from the above
                                    (17) -O- (CH<sub>2</sub>)<sub>m</sub>-CRa15Ra16-(CH<sub>2</sub>)<sub>n</sub>-
```

wherein Ra15 and Ra16 are each independently

- (1') hydrogen atom,
- (2') carboxyl,
- (3') C₁₋₆ alkyl,
- (4') -ORb6

wherein Rb6 is C1-6 alkyl or C6-14 aryl C1-6 alkyl, or

(5') -NHR^{b7}

wherein R^{b7} is hydrogen atom, $\mathsf{C}_{\mathsf{1-6}}$ alkyl, $\mathsf{C}_{\mathsf{1-6}}$ alkanoyl or $\mathsf{C}_{\mathsf{6-14}}$ aryl $\mathsf{C}_{\mathsf{1-6}}$ alkyloxycarbonyl, or Ra15 is optionally

(6')

5

10

15

20

25

30

35

40

45

50

55

wherein n', ring B', Z' and w' are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,

- (18) -(CH₂)_n-NR^{a12}-CHR^{a15}- (R^{a12} and R^{a15} are each as defined above),
- (19) -NRa17SO2-

wherein Ra17 is hydrogen atom or C1-6 alkyl or

(20) $-S(O)_e$ -(CH₂)_m-CRa¹⁵Ra¹⁶-(CH₂)_n- (e is 0, 1 or 2, Ra¹⁵ and Ra¹⁶ are each as defined above), or a pharmaceutically acceptable salt thereof.

15. The fused ring compound of claim 14, which is represented by the following formula [II-1]

wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.

16. The fused ring compound of claim 14, which is represented by the following formula [II-2]

wherein each symbol is as defined in claim 14,

or a pharmaceutically acceptable salt thereof.

5

10

15

20

35

45

17. The fused ring compound of claim 14, which is represented by the following formula [II-3]

wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.

18. The fused ring compound of claim 14, which is represented by the following formula [II-4]

wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.

- 19. The fused ring compound of any of claims 14 to 18, wherein at least one of R¹, R², R³ and R⁴ is carboxyl, -COOR^{a1} or -SO₂R^{a7} wherein R^{a1} and R^{a7} are as defined in claim 14, or a pharmaceutically acceptable salt thereof.
- 20. The fused ring compound of claim 19, wherein at least one of R¹, R², R³ and R⁴ is carboxyl or -COOR¹¹ wherein R¹¹ is as defined in claim 14, or a pharmaceutically acceptable salt thereof.
 - 21. The fused ring compound of claim 20, wherein R² is carboxyl and R¹, R³ and R⁴ are hydrogen atoms, or a pharmaceutically acceptable salt thereof.
 - 22. The fused ring compound of any of claims 14 to 21, wherein the ring Cy' is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl, or a pharmaceutically acceptable salt thereof.
- 23. The fused ring compound of claim 22, wherein the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, or a pharmaceutically acceptable salt thereof.
 - 24. The fused ring compound of any of claims 14 to 23, wherein the ring A' is phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, or a pharmaceutically acceptable salt thereof.
- 25. The fused ring compound of claim 24, wherein the ring A' is phenyl or pyridyl, or a pharmaceutically acceptable salt thereof.
 - 26. The fused ring compound of claim 25, wherein the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.

- 27. The fused ring compound of any of claims 14 to 26, wherein the Y is -(CH₂)_m-O-(CH₂)_n-, -NHCO₂-, -CONH-CHR^{a14}-, -(CH₂)_m-NR^{a12}-(CH₂)_n- -CONR^{a13}-(CH₂)_n-, -O-(CH₂)_m-CR^{a15}R^{a16}-(CH₂)_n- or -(CH₂)_n-NR^{a12}-CHR^{a15}- (wherein each symbol is as defined in claim 14), or a pharmaceutically acceptable salt thereof.
- 28. The fused ring compound of claim 27, wherein the Y is (CH₂)_m-O-(CH₂)_n- or -O-(CH₂)_m-CR^{a15}R^{a16}-(CH₂)_n- (wherein each symbol is as defined in claim 14), or a pharmaceutically acceptable salt thereof.

10

- 29. The fused ring compound of claim 28, wherein the Y is -(CH₂)_m-O-(CH₂)_n- wherein each symbol is as defined in claim 14, or a pharmaceutically acceptable salt thereof.
- **30.** The fused ring compound of any of claims 14 to 29, wherein the R² is carboxyl, R¹, R³ and R⁴ are hydrogen atoms, the ring Cy' is cyclopentyl, cyclohexyl or cycloheptyl, and the ring A' is phenyl, or a pharmaceutically acceptable salt thereof.
- 31. The fused ring compound of claim 14 or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of

```
ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
20
              ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
              2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
              ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
              2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
25
              ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylate,
              1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid,
                                                                                   2-(4-benzyloxyphenyl)-5-cyano-1-cy-
              2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide,
              clopentylbenzimidazole,
30
               2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime,
               ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxy-
               1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic ac-
 35
               ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
               2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate,
               2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid,
               ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
 40
               2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
               ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]benzimidazole-5-carboxylate,
               ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}-benzimidazole-5-carboxylate,
               1-cyclohexyl-2-{4- [3- (4-pyridylmethoxy)phenyloxy]phenyl}-benzimidazole-5-carboxylic acid,
 45
               2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,
               ethyl 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylate,
               2-(4-benzyloxyphenyl)-1-cyclopentyl-N,N-dimethylbenzimidazole-5-carboxamide,
               2-(4-benzyloxyphenyl)-1-cyclopentyl-N-methoxy-N-methylbenzimidazole-5-carboxamide,
               2-(4-benzyloxyphenyl)-1-cyclopentyl-5-(1-hydroxy-1-methylethyl)benzimidazole,
 50
                5-acetyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,
                2-(4-benzyloxyphenyl)-1-cyclopentyl-N-(2-dimethylaminoethyl)-benzimidazole-5-carboxamide dihydrochlo-
                ride.
                2-(4-benzyloxyphenyl)-1-cyclopentyl-5-nitrobenzimidazole,
                5-amino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole hydrochloride,
  55
```

5-acetylamino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,

5-sulfamoyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole,

2-(4-benzyloxyphenyl)-1-cyclopentyl-5-methanesulfonylaminobenzimidazole,

```
2-[4-(4-tert-butylbenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
             2-[4-(4-carboxybenzyloxy)phenyi]-1-cyclopentylbenzimidazole-5-carboxylic acid,
             2-[4-(4-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
             2-{4-[(2-chloro-5-thienyl)methoxylphenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid,
             1-cyclopentyl-2-[4- (4-trifluoromethylbenzyloxy) phenyl]-benzimidazole-5-carboxylic acid,
5
             1-cyclopentyl-2-[4-(4-methoxybenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
             1-cyclopentyl-2-[4-(4-pyridylmethoxy)phenyl]benzimidazole-5-carboxylic acid hydrochloride,
             1-cyclopentyl-2-[4-(4-methylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclopentyl-2-{4-[(3,5-dimethyl-4-isoxazolyl)methoxy]phenyl}-benzimidazole-5-carboxylic acid,
             [2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazol-5-yl]-carbonylaminoacetic acid,
10
              2-[4-(2-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
              2-[4-(3-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-3-cyclopentylbenzimidazole-5-carboxylic acid,
              2-[4-(benzenesulfonylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
              1-cyclopentyl-2-[4-(3,5-dichlorophenylcarbonylamino)phenyl]-benzimidazole-5-carboxylic acid,
15
              2-{4-[(4-chlorophenyl)carbonylamino]phenyl}-1-cyclopentyl-benzimidazole-5-carboxylic acid,
              2-{4-[(4-tert-butylphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid,
              2-{4-[(4-benzyloxyphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid,
              trans-4-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]cyclohexan-1-ol,
              trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-methoxycyclohexane,
20
              2-(4-benzyloxyphenyl)-5-carboxymethyl-1-cyclopentylbenzimidazole,
              2-[(4-cyclohexylphenyl)carbonylamino]-1-cyclopentylbenzimidazole-5-carboxylic acid,
              1-cyclopentyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-[4-(3,4-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2- [4- (phenylcarbamoylamino) phenyl] benzimidazole-5-carboxylic acid,
25
               1-cyclopentyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclopentyl-2-(4-phenethyloxyphenyl)benzimidazole-5-carboxylic acid,
               trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-tert-butylcyclohexane,
               2-(4-benzyloxyphenyl)-5-carboxymethoxy-1-cyclopentylbenzimidazole,
               2-(4-benzylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid,
 30
               2-[4-(N-benzenesulfonyl-N-methylamino)phenyl]-1-cyclopentyl-benzimidazole-5-carboxylic acid,
               2-[4-(N-benzyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-(4-phenethylphenyl)benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid,
 35
               1-cyclohexyl-2-[4-(3,5-di-tert-butylbenzyloxy)phenyl]-benzimidazole-5-carboxylic acid,
               2-(4-benzyloxyphenyl)-1-(4-methylcyclohexyl)benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[2-(2-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4-(1-naphthyl)methoxyphenyl]benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-[4- (dibenzylamino)phenyl]benzimidazole-5-carboxylic acid,
 40
               2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-(4-benzyloxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-[4-(dibenzylmethoxy)phenyl]benzimidazole-5-carboxylic acid,
                2-(4-benzoylmethoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-[4-(3,3-diphenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid,
  45
                2-[4-(3-chloro-6-phenylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[2-(phenoxy)ethoxy]phenyl}benzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-[4-(3-phenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-[4-(5-phenylpentyloxy)phenyl]benzimidazole-5-carboxylic acid,
                2-(2-benzyloxy-5-pyridyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
  50
                1-cyclohexyl-2-{4-[2-(3,4,5-trimethoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid,
                2-(4-benzyloxyphenyl)-1-(4,4-dimethylcyclohexyl)benzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[2-(1-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid,
                2-[4-(2-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2- [4-(3-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
  55
                1-cyclohexyl-2-[4-(2-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-[4-(3-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
                 1-cyclohexyl-2-[4-(2-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
```

```
1-cyclohexyl-2-[4-(3-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
             1-cyclohexyl-2-[4-(2-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
             1-cyclohexyl-2-[4-(3-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
             1-cyclohexyl-2-{4-[2-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
             1-cyclohexyl-2-{4-[3-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
5
             1-cyclohexyl-2-[4-(2-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
             1-cyclohexyl-2-[4-(3-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
             1-cyclohexyl-2-{4-[2-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)ethoxy]phenyl}benzimidazole-5-carboxylic
              1-cyclohexyl-2-{4-[2-(4-trifluoromethylphenyl)benzyloxy]-phenyl}benzimidazole-5-carboxylic acid,
10
             2-{4-[bis(4-chlorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(4-methoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(2-methoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[2-(3-methoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid,
              2-(4-benzyloxyphenyl)-1-cycloheptylbenzimidazole-5-carboxylic acid,
15
              1-cyclohexyl-2-[4-(2-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(2,2-diphenylethoxy)phenyl]benzimidazole-5-carboxylic acid,
              cis-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-fluorocyclohexane,
              1-cyclohexyl-2-[4-(2-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
20
              1-cyclohexyl-2-[4-(3-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              2-{4-[(2R)-2-benzyloxycarbonylamino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{2-fluoro-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid,
              2-[4-(4-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[bis(4-methylphenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
25
              2-{4-[bis(4-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-6-methoxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid,
               1-cyclohexyl-6-hydroxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid,
               1-cyclohexyl-6-methyl-2-[4-(3-phenylpropoxy)phenyl]benzimidazole-5-carboxylic acid,
               2-{4-[2-(2-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
30
               2-{4-[2-(3-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-[4-(2-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-[4-(3-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4-[3-chloro-6-(4-methylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4-{3-chloro-6-(4-methoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
 35
               1-cyclohexyl-2-{2-methyl-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid,
               2-{4-[2-(4-tert-butylphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4-(3-chloro-6-phenylbenzyloxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4-[3-chloro-6-(3,5-dichlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4- [bis (4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
 40
               2-{4-(4-benzyloxyphenoxy)-2-chlorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4-(4-benzyloxyphenoxy)-2-trifluoromethylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4-[3-chloro-6-(2-trifluoromethylphenyl)benzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4-[(2R)-2-amino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-[4-(2-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
 45
               2-[4-(3-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-{4-[2-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy}-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
                2-{4-[3-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
                ylic acid.
  50
                2-{4-[3-chloro-6- (3,4,5-trimethoxyphenyl) benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-{4-[2-(2-biphenylyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[2-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride,
                1-cyclohexyl-2-{4-[3-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride,
  55
                2-{4-[(2R)-2-acetylamino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[3-(4-methyl-3-pentenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[3- (3-methyl-3-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
```

```
2-{4-[{(2S)-1-benzyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochlo-
             2-{4-[3-chloro-6-(4-methylthiophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
             2-{4-[3-chloro-6-(4-methanesulfonylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
             2-{4-[3-chloro-6-(2-thienyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
5
             2-{4-[3-chloro-6-(3-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
             2-{4-[3-chloro-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[3-chloro-6-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4- (4-benzyloxyphenoxy)-3-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
10
              2-{4-[3-chloro-6-(4-chlorophenyi)benzyloxy]-2-fluorophenyi}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[2-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[3-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(2-propynyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(3-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
15
              2-(4-benzyloxy-2-methoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-[4-(carboxydiphenylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[2-(4-chlorophenyl)-5-nitrobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[3-acetylamino-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
20
              2-{4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[{(2S)-1-benzyloxycarbonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
              id,
              2-{2-chloro-4-[2-(4-trifluoromethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-(2-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
25
              2-{4-[2-(4-chlorophenyl)-5-fluorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[3-carboxy-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[2-(dimethylcarbamoylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[2-(piperidinocarbonylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
 30
               2-{4-[{(2S)-1-benzenesulfonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4-[{(2S) -1-benzoyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-{4-[2-(4-carbamoylphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-(dimethylcarbamoylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-(piperidinocarbonylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
 35
               1-cyclohexyl-2-{4-[3-{(1-methanesulfonyl-4-piperidyl)methoxy}-phenoxy]phenyl}benzimidazole-5-carboxylic
               acid,
               1-cyclohexyl-2-{4-[{2-methyl-5-(4-chlorophenyl)-4-oxazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic ac-
               id,
               2-{4-[3-(3-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
 40
               2-{4-[3-(4-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[3-(4-fluorobenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[{(2S) -1- (4-nitrophenyl) -2-pyrrolidinyl}-methoxy]phenyl}benzimidazole-5-carboxylic acid,
               1-cyclohexyl-2-{4-[{(2S)-1-phenyl-2-pyrrolidinyl}methoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochlo-
 45
                ride,
               2-{4-{{(2S)-1-(4-acetylaminophenyl)-2-pyrrolidinyl}mthoxy}-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic
                acid,
                2-{4-[{5- (4-chlorophenyl) -2-methyl-4-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
                2-{4-[bis(3-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
 50
                1-cyclohexyl-2-{4-[2-(4-chlorophenyl)-3-nitrobenzyloxy]phenyl}-benzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[3-(4-tetrahydropyranyloxy)phenoxylphenyl}-benzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[3-(4-trifluoromethylbenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[3-{(1-methyl-4-piperidyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid,
                2-{4-{3-(4-tert-butylbenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
  55
                2-{4-[3-(2-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
                1-cyclohexyl-2-{4-[3-(3-pyridyl)phenoxy]phenyl}benzimidazole-5-carboxylic acid,
                2-{4-[3-(4-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
```

```
1-cyclohexyl-2-{4-[3-(4-methoxyphenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
             1-cyclohexyl-2-{4-[{4-(4-methanesulfonylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-car-
             boxylic acid,
             2-{4-{4-(4-chlorophenyl) -2-methyl-5-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
5
             2-{4-{1-(4-chlorobenzyl)-3-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-{(2-methyl-4-thiazolyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-{(2,4-dimethyl-5-thiazolyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[3-(3,5-dichlorophenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid,
              2-{4-[1-(4-chlorobenzyl)-4-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
10
              2-{4-{3-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[4-carbamoyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[4-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[3-{(2-chloro-4-pyridyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[{(2S)-1-(4-dimethylcarbamoylphenyl)-2-pyrrolidinyl}-methoxy]phenyl}-1-cyclohexylbenzimidazole-
15
              5-carboxylic acid,
              2-{4-[2-(4-chlorophenyl)-5-ethoxycarbonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-[4-(3-trifluoromethylphenoxy)phenyl]benzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[{4-(4-dimethylcarbamoylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-
20
              5-carboxvlic acid.
              2-{4-{2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic ac-
              id.
              2-{4-{4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic
              acid hydrochloride,
              2-{4-[{2-(4-chlorophenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydro-
25
              chloride,
              2-{4-[{3-(4-chlorophenyl)-2-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
              2-{4-[2-(3-chlorophenyl)-4-methylamino-1,3,5-triazin-6-yloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxyl-
              ic acid trifluoroacetate,
              2-{4-[2-(4-chlorophenyl)-4-(5-tetrazolyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
30
              2-[4-(4-benzyloxy-6-pyrimidinyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
              1-cyclohexyl-2-{4-[4-(4-pyridylmethoxy)-6-pyrimidinyloxy]phenyl}-benzimidazole-5-carboxylic acid,
              2-{4-[4-(3-chlorophenyl)-6-pyrimidinyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid,
               methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
              2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-
35
               chloride,
               ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate,
               methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate,
               methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-car-
40
               boxylate,
               methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hy-
               drochloride,
               methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carbox-
               ylate,
               2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
 45
               hydrochloride.
               2-{4-[3-(tert-butylsulfamoyl)-6-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic
               2-{4-[2-(4-chlorophenyl)-5-sulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluor-
 50
               2-(4-benzyloxycyclohexyl)-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,
               2-[2-(2-biphenylyloxymethyl)-5-thienyl]-1-cyclohexylbenzimidazole-5-carboxylic acid,
               2-[2-(2-biphenylyloxymethyl)-5-furyl]-1-cyclohexylbenzimidazole5-carboxylic acid,
               1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-hydroxymethyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carbox-
               ylic acid,
 55
               1-cyclohexyl-2-{4-[{4-(4-carboxyphenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic
               acid hydrochloride,
               1-cyclohexyl-2-{2-fluoro-4-[4-fluoro-2-(3-fluorobenzoyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid,
```

2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-sulfonic acid, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexylbenzimidazole-4-carboxylic acid, 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-5-(4-pyridylmethoxy)-phenoxy]phenyl}benzimidazole-5-carboxylic acid dihydrochloride, 1-cyclohexyl-2-{4-[3-carboxy-5-(4-pyridylmethoxy)phenoxylphenyl]benzimidazole-5-carboxylic acid dihydro-5 chloride, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-4-carboxylic acid, 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid hydro-2-{4-[{2-(4-carboxyphenyl)-3-pyridyl}methoxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid, 10 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(4tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylicacid hydrochloride, 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-trifluoromethylphenyl)benzyloxy]phenyl}benzimidazole-5-car-15 boxylic acid hydrochloride, 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-methylthiophenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 20 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[3-dimethylcarbamoyl-6-(4-methanesulfonylphenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-25 5-carboxylic acid hydrochloride, 2-{4-[3-dimethylcarbamoyl-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[3-dimethylcarbamoyl-6-(4-dimethylcarbamoylphenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid. 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-30 5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-dimethylsulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 35 methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-dimethylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride. 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxyl-40 ic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-diethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-isopropylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-car-45 boxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-piperidinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(1-pyrrolidinyl)carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, (4-chlorophenyl)-5-(2-hydroxyethyl)carbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-50 zole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidino)-carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-morpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 55 2-{4-[2-(4-chlorophenyl)-5-thiomorpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride,

2-{4-[3-(carboxymethylcarbamoyl)-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimida-

EP 1 162 196 A1 zole-5-carboxylic acid hydrochloride, 2-{4-[2-{4-(2-carboxyethyl)phenyl}-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(4-hydroxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride. 2-{4-[3-chloro-6-(4-methoxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic 5 hydrochloride, 2-{4-[2-(3-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methylthiobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methylsulfinylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-cyanobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochlo-10 2-{4-[bis(3-pyridyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[bis(4-dimethylcarbamoylphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid. sodium 2-{4-[2-thienyl-3-thienylmethoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 15 methyl 2-{4-[2-(4-chlorophenyl) -5- (dimethylcarbamoyl) benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate, sodium 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 20 2-{4-[2-(4-carboxyphenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-carbamoylphenyl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-car-2-{4-[5-amino-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfinyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hy-25 drochloride. 2-{4-{5-(4-chlorophenyl)-2-methoxybenzylsulfonyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hy-2-{4-[2-(4-chlorophenyl)-5-methoxybenzylthio]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-30 chloride, 2-{4-[bis(4-carboxyphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(phenyl-3-pyridylmethoxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, methyl 2-{4-[2-(4-chlorophenyl)-5-(methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[5-chloro-2-(4-pyridyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydro-35 chloride, 2-{4-[2-(4-chlorophenyl)-5-(benzylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(cyclohexylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 40 2-{4-[2-(4-chlorophenyl)-5-(4-pyridylmethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-benzyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimi-

dazole-5-carboxylic acid hydrochloride,

45

methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-cyclopentyl-IH-indole-5-carboxylic acid, ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate, 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylic acid, and $2-\{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl\}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylical and a supersylvania of the control of the contro$

acid.

32. A pharmaceutical composition comprising a fused ring compound of any of claims 14 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

55

50

33. A hepatitis C virus polymerase inhibitor comprising a fused ring compound of any of claims 1 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

- 34. An anti-hepatitis C virus agent comprising a fused ring compound of any of claims 1 to 31, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 35. A therapeutic agent for hepatitis C comprising a fused ring compound of any of claims 14 to 31, or a pharmaceutically acceptable carrier.

5

15

35

40

45

50

- 36. A method for treating hepatitis C, which comprises administering an effective amount of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof.
- 37. A method for inhibiting hepatitis C virus polymerase, which comprises administering an effective amount of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof.
 - 38. Use of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof for the production of a pharmaceutical agent for treating hepatitis C.
 - 39. Use of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof for the production of a hepatitis C virus polymerase inhibitor.
- 40. A pharmaceutical composition for the treatment of hepatitis C, which comprises a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - 41. A pharmaceutical composition for inhibiting hepatitis C virus polymerase, which comprises a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 42. A commercial package comprising a pharmaceutical composition of claim 40 and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for treating hepatitis C.
- 43. A commercial package comprising a pharmaceutical composition of claim 41 and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for inhibiting hepatitis C virus polymerase.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/09181

Int. C 405/1 4178, 541, According to B. FIELDS Minimum do Int. C 405/1 4178,	2, 409/04, 409/12, 409/14, C07D413/04 4184, 422, 427, 428, 433, 437, 4439, 4! 55, A61P1/16, 31/20 International Patent Classification (IPC) or to both nat SEARCHED cumentation searched (classification system followed b 127 C07D209/12, 235/18, 235/30, 401 2, 409/04, 409/12, 409/14, C07D413/04 4184, 422, 427, 428, 433, 437, 4439, 4	, 413/12, 417/12, 471/04, 4854, 4709, A61K31/4725, 496, 4 ional classification and IPC y classification symbols) (04, 401/10, 401/12, 401/14, 413/12, 417/12, 471/04, 48	, 403/12, 405/04,		
541, Documentati	55. A61P1/16. 31/20 on searched other than minimum documentation to the	extent that such documents are included	in the fields searched		
			j		
Electronic da CAPL	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS, REGISTRY (STN)				
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app		Relevant to claim No.		
A	WO, 97/46237, A1 (ELI LILLY AND 11 December, 1997 (11.12.97), & CA, 2257296, A & AU, 97321 & EP, 906097, A1 & CN, 12206 & BR, 9709528, A & JP, 2000-	28, A 501, A	1-35, 38-43		
A	EP, 507650, A1 (SYNTHELABO S.A. 07 October, 1992 (07.10.92), & FR, 2674855, A & CA, 20649 & NO, 9201281, A & AU, 92139 & CN, 1065459, A & JP, 5-112 & HU, 62573, A & US, 52800		1-35, 38-43		
A	WO, 97/25316, A1 (GLAXO GROUP I 17 July, 1997 (17.07.97), & AU, 9714389, A & NO, 98030 & CZ, 9802127, A & EP, 88663 & BR, 9706938, A & HU, 99003 & US, 5998398, A & CN, 12126 & JP, 2000-503017, A& KR, 9907	089, A 35, A1 580, A 583, A	1-35, 38- 4 3		
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.			
* Special *A" docum conside "E" earlier "L" docum cited to special "O" docum means "p" docum than th	I categories of cited documents: ent defining the general state of the art which is not seed to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other tent published prior to the international filing date but later te priority date claimed	"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			
20 1	Date of the actual completion of the international search 20 February, 2001 (20.02.01) Date of mailing of the international search report 06 March, 2001 (06.03.01)				
	nailing address of the ISA/ anese Patent Office	Authorized officer			
Facsimile N	īo.	Telephone No.			

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

. PCT/JP00/09181

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: 36,37
because they relate to subject matter not required to be searched by this Authority, namely:
The inventions of claims 36 and 37 fall under the category of methods for treatment of the human body by therapy.
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheef)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchab
claims.
The second of th
 As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite paymen of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers.
only those claims for which fees were paid, specifically claims Nos.:
A Dr. anniand additional search face grown timely unid by the applicant Consequently, this international
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)