### **Study Material for Week 2**

In this section, you will learn about how Linear transformation provides a graphical view of matrix - vector multiplication and how it leads to the applications in computer graphics.

### **Lecture 4:** Geometric Transformations in $\mathbb{R}^2$

• Geometry of Linear Operators on  $\mathbb{R}^2$ 

If  $T: \mathbb{R}^2 \to \mathbb{R}^2$  is the matrix operator whose standard matrix is  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ , then

$$Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{bmatrix}.$$

It is natural question that Geometrically how can we view the obove transformation?

We may view entries in the matrices as components of vectors or as co-ordinates of points.

The important property of Linear Transformation useful in computer graphics is

### Linear transformations map lines to lines, and hence polygons to polygons.

#### **Reflections in the Plane**

The transformations defined by the matrices listed below are called **reflections**.

| Sr. No. | Operator                            | Matrix<br>Representati<br>on                    | Geometric Image                                     |
|---------|-------------------------------------|-------------------------------------------------|-----------------------------------------------------|
| 1.      | Reflection about $X$ - axis         | $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ | (x, y) $(x, -y)$                                    |
| 2.      | Reflection about <i>Y</i> - axis    | $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ | $(-x,y) \qquad (x,y)$                               |
| 3.      | Reflection about the line $y = x$ . | $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  | (x, y) $(x, y)$ $(x, y)$ $(x, y)$ $(x, y)$ $(x, y)$ |



# Geometric Representation of Unit Square

Consider image of unit square



## > Projection onto axes







| Compression $(0 < k < 1)$                         | Expansion $(k > 1)$         |  |
|---------------------------------------------------|-----------------------------|--|
| in the <i>Y</i> - direction                       | in the <i>Y</i> - direction |  |
| $\begin{bmatrix} 0 \\ k \end{bmatrix} \qquad x_1$ |                             |  |

### > Shear in the Plane

| 11. | Shear in the $X$ -direction with factor k.    | $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ |
|-----|-----------------------------------------------|------------------------------------------------|
| 12. | Shear in the $Y$ -direction with factor $k$ . | $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$ |

**Horizontal Shear :** Shear in the X -direction with factor k.



 $\begin{bmatrix} k \\ 1 \end{bmatrix}$  k > 0

**Vertical Shear**: Shear in the Y-direction with factor k.





## **Rotation**

| 13. | Counterclock-wise/<br>Anticlockwise<br>Rotation through an angle $\theta$ . | $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ | $(-\sin\theta,\cos\theta) \qquad \qquad Y \qquad X' \qquad \qquad (\cos\theta,\sin\theta) \qquad \qquad$ |
|-----|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### **Examples**

1. Find a transformation from  $\mathbb{R}^2$  to  $\mathbb{R}^2$  that first shears in  $x_1$  direction by a factor of 3 and

then reflects about y = x.

The standard shear matrix in  $x_1$  direction by a factor of 3 is  $A_1 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ .

The standard matrix of reflection about y = x is  $A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ .

Hence the required matrix is  $A_2A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$ .

2. Find a transformation from  $\mathbb{R}^2$  to  $\mathbb{R}^2$  that first reflects about y = x and then shears by a factor of 3 in  $x_1$  direction.

The standard shear matrix in  $x_1$  direction by a factor of 3 is  $A_1 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ .

The standard matrix of reflection about y = x is  $A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ .

Thus the required transformation is  $A_1 A_2 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix}$ .

3. Find a transformation from  $\mathbb{R}^2$  to  $\mathbb{R}^2$  that first reflects about y = x, followed by rotate in anticlockwise direction through an angle  $45^0$ .

The standard matrix of reflection about y = x is  $A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ .

The standard matrix of rotation in anticlockwise direction through an angle 45° is

$$A_2 = \begin{bmatrix} \cos 45^0 & -\sin 45^0 \\ \sin 45^0 & \cos 45^0 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

Thus the required transformation is  $A_2A_1 = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$ 

### Result

**Recall**: 1. Elementary Matrix - A matrix obtained by a single row or column transformation on a identity matrix is known as a elementary matrix. For example

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \overrightarrow{R_1 + 2R_2} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \text{ obtained so is a elementary matrix.}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \overrightarrow{R_1 + 2R_2} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \overrightarrow{R_{12}} \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}, \text{ the matrix in second operation is not a elementary}$$

matrix.

- 2. The matrix obtained by performing elementary transformation on a matrix, can be expressed as a product of elementary matrix and a matrix itself.
- 3. A elementary row operation is represented by left multiplication and a elementary column transformation by right multiplication.

e.g. Consider 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Perform  $R_1 + 2R_2$ ,  $A \sim \begin{bmatrix} 7 & 10 \\ 3 & 4 \end{bmatrix}$ .  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \overrightarrow{R_1 + 2R_2}$   $E_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ . Thus,  $\begin{bmatrix} 7 & 10 \\ 3 & 4 \end{bmatrix} = E_1 A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1+6 & 2+8 \\ 0+3 & 0+4 \end{bmatrix}$ . Perform  $C_1 + C_2$  on  $A$ ,  $A \sim \begin{bmatrix} 3 & 2 \\ 7 & 4 \end{bmatrix}$ .  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \overrightarrow{C_1 + C_2}$   $E_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ .  $AE_2 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 7 & 10 \end{bmatrix}$ .

But note that 
$$E_2 A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 4 & 6 \end{bmatrix} \neq \begin{bmatrix} 3 & 2 \\ 7 & 4 \end{bmatrix}$$
.

**Theorem :** If  $T: \mathbb{R}^2 \to \mathbb{R}^2$  is multiplication by an invertible matrix A, then the geometric effect of T is the appropriate succession of shears, compressions, expansions and reflections.

Proof: Since A is invertible, it can be reduced to identity matrix by a finite sequence of elementary row transformation. An elementary row operations can be performed by multiplying on the left by elementary matrix and so there exist elementary matrices

$$E_1, E_2, ..., E_k$$
 such that  $E_k \cdots E_2 E_1 A = I$ . Therefore  $A = E_1^{-1} E_2^{-1} \cdots E_n^{-1} I = E_1^{-1} E_2^{-1} \cdots E_n^{-1}$ .

1. Express the following matrix as a product of elementary matrices. Describe the effect of multiplication by the given matrix in terms of compression, expression,

reflection and shear. 
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix}$$
.

A can be reduced to identity as follows: 
$$\begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \xrightarrow{R_1 - 4R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Two row operations can be performed on the left successively by

$$E_1 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix}. \text{ Therefore } E_2 E_1 A = I \text{ . } A = E_1^{-1} E_2^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}.$$

It follows that the effect of multiplication by A

- i) Shearing by a factor 4 in the  $x_1$  direction.
- ii) Followed by shearing by a factor 2 in the  $x_2$  direction.
- 2. Express the following matrix as a product of elementary matrices. Describe the effect of multiplication by the given matrix in terms of compression, expression, reflection and

shear. 
$$A = \begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix}$$
.

A can be reduce to identity as follows:

$$\begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Three row operations can be performed on the left successively by

$$\begin{split} E_1 = & \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. \text{ Therefore } \quad E_3 E_2 E_1 A = I \ . \\ A = & E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \ . \end{split}$$

Hence the effect of multiplication is

- i) Shearing by a factor 1 in the negative  $x_1$  direction.
- ii) Shearing by a factor 3 in the negative  $x_2$  direction.
- iii) Shearing by a factor 1 in the  $x_1$  direction.

#### **Problem Session**

- Express the matrix as a product of the elementary matrices, and Q. 1 then describe the effect of multiplication by the given matrix A in terms of compressions, expansions, reflections and shears
  - 1)  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$  2)  $A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$  3)  $A = \begin{bmatrix} 1 & 3 \\ 5 & 2 \end{bmatrix}$
- Give a geometric description of the linear transformation defined by Q. 2 the matrix product.
- Sketch the image of the rectangle with vertices at (0,0), (0,2), Q. 3 (1,2) and (1,0) under the specified transformation.
  - 1) reflection in the -axis
    - T(x, y) = (x, y/2).
  - T(x, y) = (2x, y).3)
- 4) T(x, y) = (x + y, y)
- T(x, y) = (x, y + 2x)
- 6) T(x, y) = (x + 4y, y)
- Sketch each of the images with the given vertices under the Q. 4 specified transformations.



- T(x, y) = (x + y, y)1)
- T(x, y) = (x, x + y).2)
- 3)  $T(x, y) = \left(2x, \frac{1}{2}y\right)$
- $T(x, y) = \left(\frac{1}{2}x, 2y\right)$ 4)
- Q. 5 Identify the transformation and graphically represent the transformation for an arbitrary vector in the plane.
  - 1) T(x, y) = (x, y/2)
- T(x, y) = (x/4, y)2)
- T(x, y) = (4x, y)3)
- T(x, y) = (x, 2y)4)
- 5)
- T(x, y) = (x + 3y, y) 6) T(x, y) = (x, 2y)
- 7) T(x, y) = (x + 3y, y)
- 8) T(x, y) = (x, 4x + y)