

NVIDIA OVERVIEW

- Containers and HPC
- What NVIDIA is doing
- NVIDIA GPU Cloud

WHY CONTAINER TECHNOLOGIES MATTER TO HPC

Good for the community, good for NVIDIA

- Democratize HPC
 - Easier to develop, deploy (admin), and use
- Good for the community, good for NVIDIA
 - Scale → HPC; more people enjoy benefits of our scaled systems
 - Easier to deploy → less scary, less complicated → more GPUs
 - Easier to get all of the right ingredients → more performance from GPUs
 - Easier composition → HPC spills into adjacencies

WHAT NVIDIA IS DOING

Earning a return on our investment

- Container images, scripts, and industry-specific pipelines in NGC registry
 - Working with developers to tune scaled performance
 - Validating containers on NGC and posting them in registry
 - Used by an increasing number of data centers
- Making creation and optimization automated and robust with <u>HPCCM</u> (<u>blog</u>)
 - Used for every new HPC container in NGC, broad external adoption
 - Apply best practices with building blocks, favor our preferred ingredients, small images
- Moving the broader HPC community forward
 - CUDA enabling 3rd-party runtimes and orchestration layers
 - Identifying and addressing technical challenges in the community

NGC: GPU-OPTIMIZED SOFTWARE HUB

Simplifying DL, ML and HPC Workflows

THE DESTINATION FOR GPU-OPTIMIZED SOFTWARE

НРС	Deep Learning M	achine Learning	Inference	Visualization	Infrastructure
BigDFT CANDLE CHROMA* GAMESS* GROMACS HOOMD-blue* LAMMPS* Lattice Microbes Microvolution MILC* NAMD*	Caffe2 Chainer CT Organ Segmentation CUDA Deep Cognition Studio DeepStream 360d DIGITS Kaldi Microsoft Cognitive Toolkin MXNet NVCaffe	Kinetica MapR MATLAB OmniSci (MapD) lkit RAPIDS	DeepStream DeepStream 360d TensorRT TensorRT Inference Serve	CUDA GL Index* ParaView* r ParaView Holodeck ParaView Index* ParaView Optix* Render server VMD*	Kubernetes on NVIDIA GPUs
Parabricks PGI Compilers PIConGPU* QMCPACK* RELION	PaddlePaddle PyTorch TensorFlow* Theano Torch TLT Stream Analytics IVA		*Multi-node HPC New since SC18 NGC registration required as of N	not	

10 containers

48 containers

CUDA CONTAINERS ON NVIDIA GPU CLOUD

- CUDA containers available from NGC Registry at nvcr.io/nvidia/cuda
- Three different flavors:
- Base
 - Contains the minimum components required to run CUDA applications
- Runtime
 - Contains base + CUDA libraries (e.g. cuBLAS, cuFFT)
- Devel
 - Contains runtime + CUDA command line developer tools. Some devel tags also include cuDNN

