CMPT 295

Unit – Microprocessor Design & Instruction Execution Lecture 27 – Combinational and Sequential Logic Circuits

Last Lecture

- We have now started to explore how the microprocessor executes machine instructions (series of 0's and 1's)
 - More specifically, how its datapath can be constructed
- Microprocessor itself is ...
 - Made of resistors, capacitors, diodes, and transistors
 - Billions of them, so understanding how these small components work together is too detailed hence too onerous
 - ► So we resort to abstraction (**black box**) in order to understand their functioning
 - We use logic gates to abstract the "how these small components work together" by highlighting "what they do", i.e., perform a Boolean function
 - What is important for us to understand is that hardware components (such as logic gates) have propagation delay
 - Signals (0's and 1's) take time to propagate through them

Today's Menu

- Instruction Set Architecture (ISA)
 - Definition of ISA
- Instruction Set design
 - Design principles
 - Look at an example of an instruction set: MIPS
 - Create our own
 - ISA evaluation
- Implementation of a microprocessor (CPU) based on an ISA
 - Execution of machine instructions (datapath)
 - Intro to logic design + Combinational logic + Sequential logic circuit
 - Sequential execution of machine instructions
 - Pipelined execution of machine instructions + Hazards

From our last lecture - Digital circuits

In order to understand how the microprocessor executes these machine instructions (series of 0's and 1's), we need to have a look at the components of a microprocessor and how they function:

Types of components
found in a digital system
such as a
microprocessor

- Combinational logic -> manipulate bits (compute functions on bits e.g., ADD)
- 2. Memory elements -> store bits
- 3. Clock signals -> regulate the update of memory elements and what affects the execution speed of these components such as propagation delay
- So, we need to understand a few things about digital circuits

only on Prout Combinational logic circuits - 1

ojiven same input

noduces same - Made by connecting several logic gates together

Compute more complex functions than just AND or XOR

Example: Combinational logic circuit that adds 2 bits together

- Propagation delay: "1 gate" delay
- http://sullystationtechnologies.com/ichalfadder.html

5

Example of an integrated circuit (IC) **SN74LVC2G157**

More examples in our Textbook

- Combinational circuit to test for bit equality -> Figure 4.10
- Combinational circuit to test for word equality -> Figure 4.12
- Single-bit multiplexor circuit -> Figure 4.11
- Word-level multiplexor circuit -> Figure 4.13

Carry in Carry in carry inCarry in

Combinational logic circuits - 2

- Can connect several combinational logic circuits together to perform more complex functions and/or to perform function on a wider input
- What does this circuit do?

Propagation delay: "3 gate" delay

Hw. Label all input & output kines! Combinational logic circuits - 3

- Can connect several combinational logic circuits together as black boxes (black box design can be modular)
- The resulting circuit can operate on word size data such as integral values and memory addresses
- Example: Full Adder operating on data of word size 4 (w = 4)

Propagation delay?

9

C3 C2 C1 Co

where ...

B_0 Bit 0 C_{0} Α Bit A_{2} \rightarrow S₂ C_{2} A_3 B_3 ►S₃ Bit 3 11

Homework

Why is the propagation delay of this Full Adder 4 (also known as a 4-bit (w-bit) ripple carry adder) 9 gates (2w + 1 gates) where w is the number of bits (as opposed to 12 gates -> 4 x 3 p.d.)?

ALU - Example of combinational logic circuit

- Arithmetic/logic unit found in microprocessor
 - Black box diagram
- ALU executes data manipulation machine instructions (defined in the ISA)

S	operation
0001	A + B A - B A * B A ^ B A & B
0010	A – B
1000	A * B
0100	A^B
0101	A & B

Summary: Combinational logic circuits

- **Definition**: A combinational logic circuit computes a function, where its outputs is based only on its inputs
- Contains logic gates
 - Input values propagate through logic gates of combinational logic circuit whenever they change
 - Input to a logic gate must come from either input of combinational logic circuit itself (input to black box) or output of other logic gates
 - Outputs of two or more logic gates cannot be connected together unless it is via a logic gate
- Acyclic: there are no feedback loops
- Does not require a clock signal, does not contain memory elements -> does not store (remember) anything

From our last lecture - Digital circuits

■ In order to understand how the microprocessor executes these machine instructions (series of 0's and 1's), we need to have a look at the components of a microprocessor and how they function:

Types of components found in a digital system

such as a microprocessor

- Combinational logic -> manipulate bits (compute functions on bits e.g., ADD)
- 2. Memory elements -> store bits Sequential logic circuit
- 3. Clock signals -> regulate the update of memory elements and what affects the execution speed of these components such as propagation delay
- So, we need to understand a few things about digital circuits

Sequential logic circuit

- Has a state -> memory (it has internal storage)
- "Clocked"
 - Has at least 2 input:
 - Data to be remembered and
 - Clock
 - Has at least one output:
 - Value remembered (during an earlier clock cycle)
- Example of a sequential logic circuit is a memory element
- Simplest memory element: D-type flip-flop
- Example of memory element components with which we are already familiar: registers

Memory elements and Clock signals

- Memory element #1 -> clocked registers a.k.a. hardware registers
 - On the microprocessor
 - A clocked register stores 1 bit (state)
 - Synchronized by system-wide clock
- System-wide clock
 - A system-wide clock sends 0 1 0 1 0 1 0 1...
 - Clock period: 1 full cycle duration:
 - Clock frequency: 1/period
- How clocked registers work:
 - Output current state
 - Input next state
 - Next state remembered only on rising edge of clock

<u>Function Table</u>

How a clocked register function!

Load	D	$Q(t + 1) \rightarrow \text{next state}$
0	Χ	Q(t) -> current state
1	0	0
1	1	1

2) When the clock "ticks", i.e., when edge of clock rises

Load 1) 1

clocked reg.

1) 0

D

Q

3) 0

Clock

2) When the clock "ticks", i.e., when edge of clock rises

2) When the clock "ticks", i.e., when edge of clock rises

Row 1 of Function Table

"ticks", i.e., when

17

edge of clock rises

Row 1 of Function Table

Row 2 of Function Table

Row 3 of Function Table

Function Table			
Load	D	Q(t+1)	
0	Χ	Q(t)	
1	0	0	
1	1	1	

Summary

- ✓ Combinational logic circuits
 - Made of many logic gates
 - Multi-functional combinational logic circuits such as ALU have control input lines to indicate which function to perform
 - Combinational logic circuits do not store (remember) values
- ✓ Sequential logic circuits
 - Made of combinational logic circuits, memory elements (clocked registers) and clock
 - Circuit that "remembers" values (state) and perform computations on these values

Next Lecture

- Instruction Set Architecture (ISA)
 - Definition of ISA
- Instruction Set design
 - Design principles
 - Look at an example of an instruction set: MIPS
 - Create our own
 - ISA evaluation
- Implementation of a microprocessor (CPU) based on an ISA
 - Execution of machine instructions (datapath)
 - Intro to logic design + Combinational logic + Sequential logic circuit
 - Sequential execution of machine instructions
 - Pipelined execution of machine instructions + Hazards