JP2004111360

Publication Title:

SWITCH

Abstract:

Abstract of JP2004111360

PROBLEM TO BE SOLVED: To provide a switch capable of reducing a response time and reducing a voltage being applied.

SOLUTION: A switch comprises voltage applying means for respectively providing direct current potentials to first to third beams 1 to 3 arranged with a spacing slightly distant one from another, and electrodes 4 to 9 for inputting/outputting AC signals to/from the respective beams. The positions of the respective beams 1 to 3 are changed by an electrostatic force so as to change a capacitance between the beams 1 to 3. By causing an electrostatic force between the first and second beams 1 and 2 and moving the both beams, the first and second beams 1 and 2 can be electrically coupled together at high speed. Also, an electrostatic force is caused on the third beam 3 arranged facing to the second beam 2, to previously place it close to the first and second beams 1 and 2. When the electrostatic force is released from between the first and second beams 1 and 2, the second beam moves toward the third beam thereby releasing the electric coupling of the first and second beams.

Data supplied from the esp@cenet database - Worldwide be1

Courtesy of http://v3.espacenet.com

COPYRIGHT: (C)2004,JPO

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出顧公開番号

特**阿2004-111360** (P2004-111380A)

(43) 公開日 平成16年4月8日(2004, 4.8)

	· · · · · · · · · · · · · · · · · · ·		
(51) Int.C1. ⁷	F I	テーマコード (参考)	
HO 1 H 59/00	HO1H 59/00		
B81B 3/00	B81B 3/00		
// HO1H 49/00	HO1H 49/00	J	

審査請求 未請求 請求項の数 30 OL (全 18 頁)

			不明心 明心外的数 30 OL (主 10 员)
(21) 出願番号	特质2003-184204 (P2003-184204)	(71) 出題人	000005821
(22) 出題日	平成15年6月27日 (2003.6.27)		松下電器産業株式会社
(31) 優先權主張番号	特质2002-217872 (P2002-217872)		大阪府門真市大字門真1006番地
(32) 優先日	平成14年7月26日 (2002. 7. 26)	(74) 代理人	100097445
(33) 優先権主張国	日本国 (JP)		弁理士 岩橋 文雄
(31) 優先權主張番号	特願2002-217873 (P2002-217873)	(74) 代理人	100103355
(32) 優先日	平成14年7月26日 (2002.7.26)		弁理士 坂口 智康
(33) 優先權主張国	日本園 (JP)	(74) 代理人	100109667
			弁理士 内藤 浩樹
		(72) 発明者	中西 淑人
			大阪府門真市大字門真1006番地 松下
			電器産業株式会社内
		(72) 発明者	中村邦彦
	·	(1-) 20-71-	大阪府門真市大字門真1006番地 松下
• •			電器産業株式会社内
			最終頁に続く
		I	

(54) 【発明の名称】 スイッチ

(57)【要約】

【課題】応答時間の短縮および印加電圧の低電圧化が実現できるスイッチを提供する。

【解決手段】互いに僅かに離れた間隔で配置された第1の梁1、第2の梁2および第3の梁に静電力を印加させるために独立に直流電位を与えるための電圧印加手段と、各梁に交流信号を入出力するための各梁に設けた電極4~9とで構成され、静電力によって各梁1~3の位置を変化させ、梁1~3間の容量を変化させる。

第1の梁1および第2の梁2の間に静電力を発生させ、両方の梁を可動させることで、梁1、2が高速に電気的に結合することができる。また、第2の梁2に対面して配置してある第3の梁3に静電力を発生させ、第1の梁1および第2の梁2に予め近づけておき、第1の梁1および第2の梁2の間の静電力を解除すると第2の梁が第3の梁側に移動して第1の梁および第2の梁の電気的な結合が解除する。

【選択図】 図1

【特許請求の範囲】

【請求項1】

互いに一定の間隔で配置された第1、第2、第3の梁と、前記第1、第2、第3の梁の各々に直流電位を与えて前記第1、第2、第3の梁に駆動力を印加させる電圧印加手段とを 備えたことを特徴とするスイッチ。

【請求項2】

スイッチをオンする場合は、前記電圧印加手段によって前記第1の架および第2の架の間に駆動力を発生させて第1の梁と第2の梁を接触させて電気的に結合させ、スイッチをオフする場合は、前記第2の梁および第8の梁の間に駆動力を発生させて第1の梁と第2の梁を離間させることを特徴とする請求項1記載のスイッチ。

10

【請求項3】

前記第1、第2、第3の梁の間隔が所定のアイソレーションを満たす間隔で配置されていることを特徴とする詰求項1記載のスイッチ。

【請求項4】

前記電圧印加手段は、前記第1、第2、第3の梁に直流電位を一定時間印加することを特徴とする請求項2記載のスイッチ。

【請求項5】

前記第1の梁と第2の梁が電気的に結合してから、前記第8の梁を可動させることを特徴とする請求項2記載のスイッチ。

【請求項6】

20

前記梁の形状を変化させることで、梁のパネ定数を変化させることを特徴とする請求項 1 記載のスイッチ。

【請求項7】

前記第2の梁の形状を前記第1、第3の梁と比較して小さくしたことを特徴とした請求項1記載のスイッチ。

【請求項8】

前記第2の梁の形状を前記第1、第3の梁と比較して小さくし、第1と第2の梁が電気的に結合した状態において、第3の梁に第1の梁がらの駆動力が印加され、第3の梁が第1、第2の梁側に可動することを特徴とした請求項2記載のスイッチ。

30

【請求項9】

前記第1と第2の梁が電気的に結合した際に、第1の梁の電位と第2の梁の電位を入れ替えて、前記第3の梁に駆動力を発生させることなく第3の梁を可動させることを特徴とする請求項2記載のスイッチ。

【請求項10】

前記第2の梁と第3の梁間で高いアイソレーションが必要な場合は、第3の梁に駆動力を 発生させず、第3の梁を可動させないことを特徴とする請求項2記載のスイッチ。

【請求項11】

スイッチをオフする場合、前記第2の梁および第3の梁を結合させることを特徴とする請求項2記載のスイッチ。

【請求項12】

40

第1の梁をアンテナ端に接続し、第2の梁を入力端子に接続し、第3の梁を所定の抵抗値で終端することを特徴とする請求項1記載のスイッチ。

【請求項18】

請求項1記載のスイッチを並列に複数個配置することで、所望のインピーダンスを得ることを特徴とするスイッチ。

【請求項14】

請求項1記載のスイッチを並列に複数個配置することで、所望の容量を得ることを特徴と するスイッチ。

【請求項15】

前記第1、第2、第3の梁のいずれかの梁が金属で形成されていることを特徴とする請求

項1記載のスイッチ。

【請求項16】

前記第1、第2、第3の梁が水平方向に配列され、前記第1、第2、第3の梁のりずれかの梁が水平方向に可動することを特徴とする請求項1記載のスイッチ。

【請求項17】

前記第1、第2、第3の梁が垂直方向に配列され、前記第1、第2、第3の梁のいずれかの梁が垂直方向に可動することを特徴とする請求項1記載のスイッチ。

【 請 求 項 1 8 】

第1の梁とアンテナ端の間、および、第2の梁と入力端子間に容量を配置することを特徴 とする請求項12記載のスイッチ。

【請求項19】

スイッチを真空中または不活性ガス中で作動させることを特徴とする諺求項 1 記載のスイッチ。

【請求項20】

請求項1記載のスイッチをアンテナ端に対して対称に複数個配置することを特徴とするスイッチ。

【請求項21】

前記第1、第2、第3の梁のうち、隣接する2つま友は3つの梁を同じ形状に海曲させたことを特徴とする請求項1記載のスイッチ。

【請求項22】

前記第1、第2、第3の梁のいずれかの梁の湾曲形状を8字形とした請求項21記載のスイッチ。

【請求項28】

前記第1、第2、第3の梁のいずれかの梁の厚みが隣接する梁の厚みと異なることを特徴 とする請求項21記載のスイッチ。

【請求項24】

前記駆動力が静電力であることを特徴とする諸求項1から23のいずれかに記載のスイッチ。

【請求項25】

スイッチが半導体プロセスで形成された請求項1から24のいずれかに記載のスイッチ。 【請求項26】

基板上に設置された電極と、前記電極に対して接越可能であり、印加される電圧によって 内部応力が変化する可動体を構成要素とする可動電極と、前記電極と可動電極間に静電力 を発生させる第1の電圧印加手段と、前記可動体に電圧を印加する第2の電圧印加手段と を有することを特徴とするスイッチ。

【請求項27】

前記可動体が高分子グルで構成されたことを特徴とする請求項26記載のスイッチ。

【請求項28】

前記可動電極が可動体の表面に導電性材料を形成して構成されたことを特徴とする請求項 2.6記載のスイッチ。

【請求項29】

スイッチをオンする場合は、第1の電圧印加手段により可動電極と電極間に静電力を発生させ、第2の電圧印加手段により可動体のはね定数が最小になるように可動体に制御電圧を印加し、スイッチをオフする場合は、第2の電圧印加手段により可動体のはね定数が最大になるように可動体に制御電圧を印加し、第1の電圧印加手段による静電力をオフにすることを特徴とする語求項26記載のスイッチ。

【請求項30】

スイッチが半導体プロセスで形成されたことを特徴とする請求項 2 6 記載のスイッチ。 【発明の詳細な説明】

[0001]

50

10

20

30

【発明の属する技術分野】

本発明は電気回路に用いられ、外部から印加した力により電極を機械的に移動させることで信号の通過もしくは遮蔽を行うスイッチに関するものである。

[0002]

【従来の技術】

電気回路に用いられるスイッチとして、従来エアープリッジを使用したものが知られている。図16において、124は可動するエアープリッジ、126、128はそれぞれ基板129上に形成された電極で、電極126、128とエアープリッジ124間に生じさせた静電力によってエアープリッジ124が電極128または128側に水平移動する。エアープリッジ124に信号を入力させれば、エアープリッジ124と電極126または128間が電気的に接続され、信号が遮蔽または通過して、スイッチとして動作させる(例えば特許文献1冬駅)。

[0003]

また、図17に示すようにマイクロエレクトロメカニカルなRFスイッチが知られている。マイクロエレクトロメカニカルなRFスイッチ210は、基板221上に複数の折り返しばね懸架装置222を形成し、その上にマイクロプラットフォーム220を懸架している。このマイクロプラットフォーム220間に直流電位が印加されると静電力が発生し、プラットフォーム220間に直流電位が印加されると静電力が発生し、プラットフォーム220が信号線にひきつけられる構造を有している。このとき、繰り返しばね構造にすることで、梁を構成する材料の残留内部応力の殆どが、ばねの繰り返し部分で解放され、機械応力パッファとして作用する(例えば特許文献2参照)。

[0004]

【特許文献1】

特開2001-84884号公報

【特許文献2】

特開2001-143595号公報

[0005]

【発明が解決しようとする課題】

しかしながら、上記特許文献1の構成ではエアープリッジ124を静電力で駆動する場合、より大きな信号のアイソレーションを実現するには、電極126、128とエアープリッジ124の間隔を大きくする必要があるが、静電力は距離の一2乗に比例するため、静電力が小さくなり、応答時間が所望の値を達成することはできない。また静電力の減少を補うために印加電圧を増加させる方法もあるが、色消費電力化、色駆動電圧化が要求される無線通信デバイスにとっては印加電圧を増加させることは好ましくない。

[0006]

また、エアープリップ124は直線の梁構造であるため、引張り応力が梁内部に存在すると強く張った弦のように静電力に対する剛性が高くなり、プルイン電圧(静電力による引き込み電圧)が高くなる。また温度が上昇すると梁の内部応力は圧縮に転じて座屈を起こす可能性がある。すなわち製造工程に起因する残留応力や、スイッチ動作時の環境温度を一定に管理できないと、安定したスイッチの動作特性を保証できなくなる。

[0007]

一方特許文献2におけるマイクロプラットフォーム構造では、信号線と結合する領域と、応力を緩和するための折り返しばな懸架構造部(フレクシャ)に分かれている。つ方程式りの部心力を緩和させるための付加的な構造が設けられている。ニュートンの運動方程式は質量がある。 質量 m を 有した構造体に同じ力を 加えた場合、構造体に生じなれてはませんでは y を すくなる。このため、上記構造ではフレクシャが付加されてはまるのに質量 m が増大しており、応答速度を早くできないという課題を 有していた。またのレクシャが乗らかいほどプラットフォーム 2 2 0 は支持部の 均束が緩められるため、 膜の タン・カーのに応力 な 配が存在すると、 応力解放によりプラットフォーム 2 2 0 は 反り上げ と 数 2 2 1 から離れていく。この応力な配の値を 2 2 1 から離れていく。この応力な配の値を 2 2 1 から離れていく。この応力な配の値を 2 2 1 から離れていく。

50

40

10

、この反りの度合いがはらっき、プラットフォーム 2 2 0 2 信号線 間の容量減少のはらっきとプルイン 電圧増大のはらっきを抑えることができなくなる。また、半導体プロセスを用いて製作すると、梁とフレクシャ構造は同一材料の 導電体となることから、高周波回路においてはこのフレクシャ部分の回路インピーダンスが無視できなくなる。

[0008]

また環境温度が変化すれば、基板材料と架材料の熱膨張係数の差から、熱応力が発生する。この熱応力の発生原因は前述の製造工程における残留応力とは異なるが、同じ「梁の応力解放に伴う歪み」という現象を引き起こすため、静電容量やプルイン電圧に与える影響を考慮しなくてはならない。

[0009]

本発明は以上の点に鑑みてなされたもので、応答時間の短縮および印加電圧の低電圧化が実現できるスイッチを提供することを目的とする。

[0010]

また、プルイン電圧増大のはらつきがないスイッチを実現できるスイッチを提供すること を目的とする。

[0011]

また、梁の内部応力の変化によるスイッチ特性の変化を抑制することができるスイッチを 提供することを目的とする。

[0012]

【課題を解決するための手段】

本発明のスイッチは、互いに僅かに離れた間隔で配置された第1、第2、第3の梁と、前記梁に静電力を印加させるために独立に直流電位を与えるための電圧印加手段と、各梁に交流信号を入出力するための各梁に設けた電極とで構成され、静電力によって各梁の位置を変化させ、梁間の容量を変化させることを特徴とする。

[0013]

この構成によれば、第1、第2の2つの梁間に静電力を発生させ、第1、第2の梁の両方とも可動させることで、より高速に梁が電気的に結合することができ、かつ高速にオフさせるために、第2の梁に対面して配置してある第3の梁に静電力を発生させ、第1および第2の梁に予め近づけておくことで、第2と第3の梁間に強り静電力を印加できるため、より高速に応答することができる。

[0014]

また本発明は、梁に同形状の湾曲を設けることで、梁の内部応力変化に対するアルイン電 圧の変化を緩和させるとともに、梁の歪みによる梁間の静電容量変化も緩和させることが できる。

[0015]

これにより、半導体薄膜プロセスを用いて、色電圧、高速駆動であり、かつ残留応力や熱 膨張による特性変化の少ない超小型の可変容量型スイッチを構成することを可能とした。

[0016]

【発明の実施の形態】

本発明の骨子は、静電力によって3本の梁の相対位置を変化させ、梁間の容量を変化させることで、電気的に結合または越蔽するスイッチにおいて、各梁を全て可動にすることで、高速にスイッチングがつ低直流電位での制御が可能な構成を実現することである。

[0017]

また本構造において、スイッチを構成する梁を湾曲構造とすることで、梁の内部応力変化に対するアルイン電圧の変化を緩和させるとともに、梁の歪みによる梁間の静電容量変化も緩和させることである。

[0018]

以下、本発明の実施の形態について、図面とともに詳細に説明する。

[0019]

(実施の形態1)

50

10

20

30

図1から図3を参照しながら本発明の実施の形態1について説明する。図1に実施の形態1によるスイッチの概略構成図を示す。1は第1の梁、2は第2の梁、3は第3の梁をされてれ示す。各梁1、2、3は電気的信号を損失なく伝達するような形状および材質で形成されており、表面には数10nm程度の絶縁膜が設けられている。各梁1、2、3は例えばAIや銀、銅、合金などの金属からなり、形状は例えば厚み2μm、幅2μm、長さ200μmの両側を固定された両持ち梁構造であり、それでれ所定のアイソレーションを満たす間隔、例えば、0.6μmの間隔で平行に配置されている。梁1、2、3は必ずしも両持ち梁構造である必要はなく、片持ち梁でもよい。また、梁1、2、3は八でせることで、梁のパネ定数を変化させることができる。なお、各梁1、2、3は八の配力を可能な限り小さくできる構成およびプロセスを採る。詳細は後述する。

[0020]

梁1の両端は電極4、7に、梁2の両端は電極5、8に、梁3の両端は電極6、9にそれ ぞれ接続されている。

[0021]

図 2 (の) および図 2 (b) の構成によれば、スイッチOFF時において入力端子からみて 5 0 オームに終端されているため反射波が生じない。また、スイッチOFF時において、C 1 のインピーゲンスが大きくなり、かつC 2 のインピーゲンスが小さくなるため、入力端子から入力した信号は、C 2 および 5 0 オーム抵抗を介して接地されるため、アンテナ端としての電極 7 と入力端子としての電極 5 間のアイソレーションをより大きくとることができる。この場合、必要に応じて入力信号源と入力端子としての電極 5 の間、および、出力端子としての電極 7 とアンテナ端の間に容量を配置してもよい。なお、よりアイソレーションを高くするため、5 0 オーム抵抗を設けないで直接接地してもよい。

[0023]

また、電極9を終端しないで他の出力端子に接続し、1入力2出力の分配スイッチを実現することもできる。また、電極5を出力端子、電極7および9をアンテナからの入力端子とすれば2アンテナ入力に対する1出力のセレクタスイッチとすることもできる。 【0024】

スイッチング動作について、図8を用いながら説明する。図8(の)は図1におけるスイッチの各電極4~9に電圧が印加されていない状態を示す。次に、入力端子がらアンテナ端子に信号を結合させるために、図8(b)において、電極4に接続された制御電圧源10の直流電位を所定の応答時間Hii9kに、端子5に接続された制御電圧源11の直流電位および電極6に接続された制御電圧源12の直流電位をされぞれ所定の応答時間LOWにすると、梁1と梁2間に静電力が発生するため、梁1と梁2は互いに引き付けあい接触する。

[0025]

このとき、梁1と梁2は同じ形状にしておき、尺才定数および質量も同じにしておくと、梁1と梁2は中間地点で接触する。この場合は梁1、2のどちらか一方を固定電極にする場合と比べて、同じ静電力で梁1、2間の距離の変位量が2倍変化するため、より高速での応答が可能となり、また同じ応答時間ならより低電圧での制御が可能となる。たとえば、電極4の直流電位を7.25Vにすれば、応答時間が5μ8以下を達成できるが、片側しか可動させなり場合は、応答時間が7.4μ8になり、およそ1.5倍も応答時間が長くなる。逆に応答時間5μ8を達成するためには、印加電圧を10.8Vにしなければならなり。

[0026]

10

20

30

梁1と梁2が接触すると、入力端子である電極5から入力された交流信号は、各梁1、2の表面に設けられた絶縁膜を介して容量的に結合して梁2から梁1へ伝達され、出力端子である電極7へ出力される。

[0027]

図3(6)の状態で染3の電極6に接続された制御電圧源12の直流電位をHi9hにすると、梁3と梁2間に静電力が発生し、図3(c)のように梁3が梁2の方向に移動するが、梁1、2が2本結合しているため、等価的なパネ定数が大きいので移動量は梁3に比べて小さい。ただし電極6に印加する直流電位は梁3がアルインしない電圧以下にする。前記条件であれば、アルイン電圧は6・7V程度となるため、され以下の電圧を印加すると、梁3の最大変位量はおよそ0・15μmとなり、梁2、3間の最大ギャップは0・75μmとなる。静電力は距離の2乗に反比例するため、梁3が移動しない場合よりも、梁3と梁2間に発生する静電力は1・4倍も大きなる。

[0028]

なお、図3(6)の状態から電極6に直流電位を印加するのではなく、電極4と電極5の直流電位を瞬時に反転させてもより。そうすれば制御電圧源12により新たに直流電位を印加させることなく梁3と梁2間に静電力を発生させることができる。このとき梁2と梁3のギャップが大きりためプルインすることはなり。

[0029]

また高いアイソレーションが要求される状況では、制御電圧源12の直流電位をLOWの状態のままにしておけば聚3は可動しないので、聚2、3間のギャップを大きくしたままの状態を保つことができ、、聚2と聚3:の電気的結合を小さくすることができる。

[0800]

次に電極了への回路を遮断して入力信号をアンテナ端である電極了がら電極9に切り替えるスイッチOFF動作について説明する。

[0081]

図 8 (c) の状態において電極4 に印加されている直流電位をHi9んからLOwにすると、梁 1、2 間には静電力が生じないため、図 8 (d) のように、梁 1 および梁 2 は自身のパネカでもとの位置に復元する。このとき、梁 3 は予め梁 2 の方向に んでいるので、梁 2 は図 3 (e) のように梁 2、3 間に生じている静電力によって強く高速に梁 3 方向に移動し梁 3 と接触する。梁 2 と梁 3 が接触すると、入力端子である電極 5 から入力された交流信号は、各梁 2、3 の表面に設けられた絶縁膜を介して容量的に結合して梁 2 から梁 3 へ伝達され、電極 9 へ出力される。

[0032]

このように、スイッチOFF時に架2およひ梁3を結合させると、図2(b)においてC 2が短絡されC1に信号が伝達しにくくなるため、より高いアイソレーションを確保する ことができる。

[0088]

梁 3 を予め梁 2 方向に ませておかない場合は、最大ギャップが 0 . 9 u m となるため、より高い電圧を印加しなければ所望の応答時間を得ることができない。

[0034]

なお、図3(e)の状態で、さらに図3(c)の場合と同様に電極4に直流電位を印加し、梁1と梁2間に静電力を印加させれば、図3(f)のように梁1は梁2方向に み、最大ギャップを小さくすることができる。

[0035]

上記スイッチ動作をすることにより、ON状態およびOFF状態の時に、信号が印加する 梁とは常に別の梁1または3と接触し、ラッチされた状態になっている。このことにより 、仮に大電力の信号が梁とに入力された場合、ラッチされていない状態であれば、梁とは 信号自身の静電力により梁1もしくは梁3に引き込まれる可能性があるが、梁とは常に梁 1または梁3によりラッチされているため護動することを防止できる。

50

40

10

[0036]

以上の説明においては、各梁1、2、3は静電力により水平方向に可動する場合について 説明したが、各梁1、2、3を垂直方向に配列して垂直方向に可動させるようにしてもよい。また、駆動力に静電力を用いているが、例えば電磁力、圧電、熱などを用いてもよい。また、各梁1、2、3は空気中で作動させる以外に真空中や不活性がス中で作動させて もよい。

[0037]

つぎに、図1におけるスイッチを製造する工程の一例を図4の工程断面図を用いて説明する。図4 (a) において、高抵抗シリコン基板41を熱酸化すると、基板41上に300 nm程度の膜厚のシリコン酸化膜42が形成される。その上に、シリコン窒化膜43を減圧CVD法を用いて200nmの膜厚で堆積する。さらにシリコン酸化膜44を50nmの膜厚で減圧CVD法を用いて生積する。

10

[0038]

つぎに、図4(b)において、シリコン酸化膜44にフォトレジストからなる犠牲層を膜厚2μmでスピンコート、電光、現像したのち、ホットプレートで140℃10分のペークを行うことで犠牲層45を形成する。

[0039]

しかる後、図4(c)に示すように、基板全面にAI層46をスパッタにより2μmの膜厚で堆積し、所定の領域にレジストが残るようにフォトレジストによるパターン47の形成を行う。

20

[0040]

次に、図4(d)に示すように、前記フォトレデストからなるパターン47をマスクとしてAI層46のドライエッチングを行って梁48を形成し、さらに酸素プラズマによりフォトレデストからなるパターン47および犠牲層45を除去する。以上の工程により、基板41の表面に対して間除49を有する梁48が形成される。

[0041]

さらに、図4(e)に示すように、梁48の全面および基板表面のシリコン酸化膜44上にプラズマCVDによりシリコン窒化膜50を膜厚50nmで堆積すると、基板表面のシリコン酸化膜44上および梁48の周辺にシリコン窒化膜50が形成される。 【0042】

30

最後に図4(f)に示すように、シリコン室化膜48を異方性を有するドライエッチング 法にで前記堆積膜厚以上の膜厚例えば100mmでシリコン酸化膜44と選択比を有する 条件でエッチパックすることにより、上面にはシリコン室化膜50がなく側面にのみシリコン室化膜50が残るようにエッチングをおこない、梁51を形成する。

[0043]

なお本実施の形態では基板として、高抵抗シリコン基板41を用いたが、通常のシリコン 基板、化合物半導体基板、絶縁材料基板を用いても良い。

[0044]

また、高抵抗シリコン茎板41上に絶縁膜としてシリコン酸化膜42、シリコン室化膜4 3、シリコン酸化膜44を形成したが、茎板の抵抗が十分高に場合されら絶縁性膜の形成 を省路しても良い。また、シリコン茎板上にシリコン酸化膜42、シリコン室化膜48、 シリコン酸化膜44と3層構造の絶縁膜を形成したが、シリコン室化膜48の膜厚が梁上 に堆積するシリコン室化膜と比較して十分厚に膜厚、いわゆるエッチパック工程を経ても 消失しない膜厚である場合、シリコン酸化膜44形成工程は省略することが可能である。 【0045】

40

なお、本実施の形態では染を形成する材料としてAIを用いたが、他の金属材料、たとえば、Mo、Ti、Au、Cu、あるいは、高濃度に不純物導入されたアモルファスシリコンのような半導体材料、導電性を有する高分子材料などを用いても良い。さらに成膜方法としてスパッタを用いたがCVD法、メッキ法などを用いて形成しても良い。

[0046]

(実施の形態2)

つぎに、図5を参照しながら第2の実施の形態について説明する。本実施の形態は基本的 には第1の実施の形態と同様な構成をとっているが、第2の梁32は第1の梁31、第3 の染る3と比べて厚さが薄く、例えば第2の染にくらべて、第1の染と第3の染が1.5 倍以上厚く形成される。この実施の形態では、第1の梁31と第2の梁32が接触した際 にも、第1の梁31および第2の梁32間に作用する静電力34の他に、第1の梁31と 第3の架33間にも静電力35が作用する。このような構造をとれば、第1の実施の形態 のように、第1の架31と第2の架32が接触したあとに、電極6に新たに直流電位を印 加しなくても、第3の梁33が第2の梁32の方向に移動するごとになる。

[0047]

10

20

またその際、少しでも第1の梁31を第3の梁33方向に近づけるため、第2の梁32の パネ定数を大きくし、第1の架31と第2の梁32が中間地点ではなく、より第2の梁3 2側で接触する構造をとってもよい。

[0048]

(実施の形態3)

つぎに、図6およひ図7を参照しながら第8の実施の形態について説明する。本実施の形 懸では、図6に示すように図2(の)のスイッチ回路をアンテナ端子65に対して対称に 複数(図6では4個)配置する。これにより、1つのアンテナに対する入力を複数に分配 して多出力が可能な1入力多出力スイッチを実現することができる。このような構成のス イッチは、図7に示すように、実施の形態1で用いたスイッチをアレイ化して各々を容量 的に結合して構成することができる。なお、図7にはスイッチ回路が2つの場合を示す。 図7において、電極71に複数の架74が櫛歯状に形成され、各架74の間に梁75が設 けられている。梁75にはそれぞれ複数の電極72に結合されている。電極72に対向し て電極73が設けられている。電極71には制御電圧源76、電極72には制御電圧源7 7、電極78には制御電圧源78がそれぞれ接続されている。

[0049]

電極71に接続された制御電圧源76の直流電位をHi3んに、電極72に接続された制 ... 御電圧源77の直流電位および電極78に接続された制御電圧源78の直流電位をそれぞ れLOWにすると、梁74と梁75間に容量結合79が発生し、スイッチ動作をする。 [0050]

30

実施の形態1のスイッチにおいて早い応答時間が要求される場合は、可動する梁の質量が 小さいことが必要となる。しかし、容量的に結合する実施の形態8におけるスイッチでは、 、梁の質量を小さくすれば、容量結合する断面積も小さくなるため、結合度が小さくなり 、通過損失が大きくなる。このため応答時間と通過損失の2つの相反する特性を両立する ために、個々の梁を微小にして、応答時間を小さくし、その梁をアレイ化することで、ス イッチ全体の結合度を大きくして、応答時間と通過損失の2つの特性を満たしている。例 えば個々の梁の形状を幅2.5mm、厚み2.5mm、長さ380mmとした場合、交流 信号の周波数が5GHEの場合、スイッチを5組並列に配置すれば、良好な通過特性が得 られる。

[0051]

40

本実施の形態では、容量結合であるため周波数特性を有する。図2の等価回路で示した値 列側のスイッチの容量をCi、対接地の容量をC。とすると、インピーダンス又は(数1)で表される。CiとC2は基本的に同じスイッチを用いており、CiとC2の関係は(数2)で表される。αは容量の変化比を示し、梁間のギャップと絶縁体膜の比そのもので ある.

[0052]

【数 1 】

10

20

30

40

$$Z = \left| \begin{array}{c|c} \omega C_1 \\ \hline 1 - \omega^2 C_1 C_1 \end{array} \right|$$

【0053】 【数2】

. C2 = a C1

[0054]

αを大きく採れば、駆動電圧が大きくなり、 応答時間も大きくなるため、あまり大きくすることができなり。例えば絶縁体膜を10mm、ギャップを0.6μmとすると、αは6. 0となる。

[0055]

アイソレーションを確保するために、インピーダンスが最大となる条件は、(数 8)で示され、 C 1 は以下の様に示される。 α を 6 0 とし、 通用 周波数を 5 G H z とすると、 C 1 は 4 · 2 P F となる。 これを梁の形状に置きなおすと、 厚み 2 · 5 μ m 、 幅 2 · 5 μ m 、 長 2 8 0 μ m の 梁 を 5 粗 を 選択して用いればよい。

[0056]

【数 3 】

 $C_1 = \sqrt{\frac{1}{\alpha \omega^2}}$

[005.7]

また周波数が1GH2の信号を扱う際には、周波数が1/5になるので適用する梁の数を 5倍の25組にすれば、5GHzと同等な特性が得られ周波数特性を有さないスイッチを 実現することができる。

[0058]

本実施の形態によれば、スイッチを並列に複数個配置することで、所望のインピーダンス または容量を有するスイッチを実現することができる。

[0059]

(実施の形態4)

つずに、図8から図12を参照しながら本発明の実施の形態4について説明する。図8 (の)は、本発明の実施の形態4に関わるスイッチの斜視図、図8 (b)は平面図である。第1の梁81、第2の梁82および第3の梁83は、それぞれその両端をアンカー部84、85により基板(図示せず)上に固定された両持ち梁であり、厚み七1=七2=七8=2μm、幅W1=W2=W3=2μm、長さし=500μmである。梁の材料としてはヤング率77GPののAIを用いている。各梁81、82、83は9=0.6μmの間隔をもって並列に配置されている。隣接する梁の対向する側面には約0.01μmの絶縁層が形成されており、これは梁の幅に比べて充分小さいため、梁の機械的特性に影響は少ない。なお、絶縁膜は対向する側面のどちらか一方でもまた双方に形成されていてもよい。

[0060]

図 8 (b)に示すように、スイッチの上方から見ると、梁 8 1 、 8 2 、 8 3 は 8 字型に湾曲しており、例えば(数 4)の正弦関数 1 周期で 8 字を表現している。

[0061]

【数4】

 $y = \Delta y \sin\left(2\pi \frac{x}{L}\right)$

[0062]

ただし図8(6)は、分かりやすくするために、湾曲を誇張して描いてある。梁には×方向の内部応力8×と×方向の内部応力8×が×、メ、 その位置に依存せず一様に存在する。また8×=8メ=8と等方性の内部応力である。正確には、半導体プロセスを用いて製作する梁は犠牲層の上に形成されるものであり、 そのとき内部応力8を有するが、犠牲層を除去することでこの応力8は若干解放された値をとる。 【0063】

10

図8の構成で第1の聚81と第2の聚82の間に電位差を与えて両者を静電力により ませたとき、内部応力8とアルイン電圧の関係は図9のようになる。湾曲の大きさ、すなわち(数4)のΔンの値が2、4、6μmの場合を比較している。また、Δン=0、すなわち湾曲を持たない直線の聚構造の場合も併せて示した。ただし圧縮応力がかかると座屈を生じるので、応力8はプラスの範囲、すなわち引張り応力の時の値のみ示している。このように、明らかに湾曲を与えるだけで、内部応力8の増加によるアルイン電圧の増加を抑制することができ、これは湾曲の大きさ、すなわちΔンの値を大きくするほど抑制効果は大きい。

[0064]

20

次に8 宇の効果を検証するために、湾曲をアーチ型とした場合を説明する。アーチ型の湾曲は(数5)の正弦関数半周期で近似した。 Δ y = 4 μ m とした場合の、内部応力8 とアルイン電圧の関係を併せて図9 に示す

[0065]

【数5】

 $y = \Delta y \sin\left(\pi \frac{x}{L}\right)$

[0066]

30

明らかにアーチ型の場合は、S=0~80MPAでは、Δソ=2μmのS字型よりもアルイン電圧が大きくなり、30MPA以上の領域ではやかて漸近する。S=0~10MPAの範囲では、むしろ直線梁よりもアルイン電圧は大きくなる。ただし、S=20±10MPA近傍ではほぽアルイン電圧は一定となるので、この範囲に残留応力のばらつきを抑えることができればアルイン電圧の変動は小さくおさえることができるという利点を有する

[0067]

次に、隣接する梁に同じ湾曲を設けることで、内部応力による梁の変形に対して、隣接する梁間の静電容量の変化を抑制することができることを示す。図10は、隣接する梁間の静電容量の変化を抑制することができることを示す。図10は、隣接する梁間の静電容量の攻化を抑制することができる。湾曲の度合いの異なる3つの8字と、アーチ型についてプロットすると、曲線wのように4本とも重なっていることがわかる。したがって、アーチ状でも8字状でも内部応力の影響を受けずに静電容量がほぼ一定に保たれる特長が観察される。すなわち梁の内部応力が設造工程によるは5つきや、周囲温度の変化に伴う熱膨張により変化しても、容量性結合タイプのスイッチとのののでは、

[0068]

なお、 聚 8 1 、 8 2 、 8 3 は同じ湾曲形状としていることがら同じ機械的はね特性を有し、例えば聚 8 1 、 8 2 間に電位差を与えると、両者は同じ量の変位をおこし、両者間ギャップの 1 / 2 の位置で接触する。例えば、この接触位置を聚 8 1 側に近づけるには聚 8 1 の別性を高めればよく、その第 1 の方法として聚 8 1 の幅W 1 を太くすることが考えられ

50

る。 Δ > = 2 μ m の 8 字聚 8 1 、 8 2 に おいて、 W 1 = 4 μ m 、 W 2 = 2 μ m とした場合、 梁 8 1 、 8 2 間の電位差 V = 0 のときの梁の内部応力と両梁間の静電容量の変化を図 1 0 に曲線 × (*プロット)で示す。このように梁 8 1 を太くすることで、残留応力による 歪 み 方が 梁 8 2 と 異なる ため、 両者間の静電容量は大きく変化してしまう。 梁 8 1 の 剛性を高める 究極の形態は 梁 8 1 を固定 電極とすることであるが、このとき内部応力の変化により静電容量はますます変化してしまう。

[0069]

両梁の接触位置を制御する別の方法として、例えば祭81の厚み七1を聚82の厚み七2よりも厚くする方法がある。七1=4μm、七2=2μmとした場合、聚81、82間の電位差V=0のときの聚の内部応力と両聚間の静電容量の変化を図10に曲線ソ(△プロット)で示す。幅を太くする方法と異なり、明らかに厚みを大きくすることで内部応力の影響を受けずに静電容量をほぼ一定に保つ効果を得る。

10

[0070]

このような構造を有するスイッチの製造方法の一例を図11に示す。図11は図8(b)のA-A 断面であり、基板90上に絶縁膜91、犠牲層92、フォトリソグラフィによりパターニングされたレジスト86が形成され、パターニングされたレジスト86が形成される状態を示している。梁81、83のシードレイヤー87は接地されているが、梁82のシードレイヤー88は時刻下までは接地、時刻下がらはメッキに用いるアノード電位Vと同じにするようにスイッチ89を制御する。98はアノード電位Vを与えるアノード電位Vと同じ高さの金属層として生成されるが、時刻下以降は梁82のメッキは生成されなくなる。従って隣接するが厚みの異なる梁を生成することができる。

20

[0071]

このように可変容量構造を構成する聚自身にわずかな溶曲を設けるだけで、細線架構造で問題となる、残留応力や熱膨張によるプルイン電圧や静電容量などの特性変化を抑制することができる。また、例えば電極の長さし=500μmに対して溶曲度合いの大きさは数μm程度であるので、この聚自体の抵抗成分もほぼ直線梁と同一である。また、架構造以外のフレクシャ構造などを設ける必要がなく、素子の微小化を妨げることはない。さらに半導体薄膜プロセスで作製するにあたり、溶曲はマスク描画で決定されるため作製が容易である。

30

[0072]

湾曲構造を用いたスイッチは、広く可変容量型素子として他のデバイスにも転用可能である。例えば梁をその横振動の共振を用いた機械共振器とし、大気中のある種のガス成分に対してのみ梁表面への吸着性を高めるように梁の表面処理を施せば、ガスの付着により梁の質量が変化し、共振周波数が変化するので、ガス濃度センサとして利用することが可能である。この場合、仮に直線両持ち梁の共振器と隣接する固定電極とで構成すると、製造工程に起因する梁の残留応力のばらつきや周囲温度変化により梁の内部応力が変化した。共振周波数が大きく変化してしまうことが問題となるが、実施の形態4のように、湾曲形状を有する隣接する可動梁を用いることで、この共振周波数変化を緩和することが可能となる。

40

[0073]

図9に示した各種梁の湾曲形状をあらわすパラメータを用いて、内部応力と1次共振周波数の関係を図12に示す。図9の内部応力とプルイン電圧の関係の特徴と同様な傾向があらわれ、8字の湾曲度合い(Δン)を大きくすることで、共振周波数の変化を抑制することが可能となっている。

[0074]

なお、以上の各実施例では第1、第2、第3の8本の梁を使用した場合について説明した が、スイッチを構成する梁が4本以上からなり、このうちの3本の梁が各実施例の動作を 行うようにすることもできる。

[0075]

(実施の形態5)

図13は、本発明の実施の形態5に係るスイッチの構成を示す側面図である。図18(a)は電極に電圧を印加していない状態を示し、図18(b)は印加している状態を示して いる。基板106上に、信号を入力する入力端子に接続された導電性の支柱108および 信号を出力する出力端子に接続された導電性の支柱109が植立されている。支柱108 、109間には、梁構造の可動電極104が懸架されている。基板106上の支柱108 および支柱109の中間位置に固定電極105が設置されており、可動電極104および 固定電極105間に静電力を印加させることで、可動電極104を固定電極105方向に 移動させる。可動電極104は可動体108上に形成されており、可動体108はICP F(Ionic Conducting Polymer gel Film)で構成さ れている。ICPFは図14に示すように印加される電圧によって内部応力が変化するの でこの性質を利用して可動体103のパネ定数を変化させることができる。次に図15に よりスイッチ動作について説明する。図15おいて、上段は可動電極104の位置を示し 、下段は可動電極104の尺々定数の時間変化を示す。可動電極104に静電力が印加し ていない中立の位置をゼロとする。可動電極104と電極105間に静電力を発生させ、 可勤電極104を電極105側に引き込む際は、可勤体108のはね定数が最小になるよ うに、制御電圧107を可動体103に印加する。このときパネ力が最小となっているた め、可動体108および可動電極104は静電力によって、パネカが妨げることなく高速 に引き込まれる。

[0076]

次に電極105から可動電極104を引き離す際には、予め制御電圧107によって、ICPFのパネ定数が最大となるような電圧を可動体108に印加しておき、パネカを最大にしておく。そして可動電極104および固定電極105間の静電力をOFFにすることで、可動体108、可動電極104はパネカによって高速に所定の位置に復元する。【0077】

一般的に高分子グルは制御信号に対する応答時間が数m S 程度あるため、高速な応答時間が要求されるスイッチの駆動力としては、高分子グルの伸縮を駆動力にすることはできないが、スイッチが保持されている状態に可動体108のばね力を変化させるには十分な応答時間を有する。このように引き込む際と引き離す際に、それぞれ可動体108のパネカを最適な値にすることで、高速な応答を可能としている。

[0078]

可動体103に用いた材料はICPF以外に、外部からの制御によって物性値が変化する材料、例えば人工筋肉などに用いられる高分子ゲルや圧電材料でもよい。また可動体を導電性材料で形成すれば、可動電極104と電極105を一体で形成することができる。

[0079]

【発明の効果】

以上のように本発明によるスイッチは、3つの祭を全て可動とすることで、応答時間の短縮、印加電圧の低電圧化が実現できるという効果を有する。さらに適用周波数に応じて、最連なインピーダンスになるように使用する祭の数を適応的に選択すれば、周波数特性のないスイッチを実現できるという有利な効果がある。また梁を湾曲構造にすることで、内部応力の変化によるスイッチの特性変化を抑制することができるという有利な効果がある

【図面の簡単な説明】

【図1】本発明の実施の形態1によるスイッチの概略構成を示す斜視図

【図2】(の)本発明の実施の形態1によるスイッチの接続回路図

(6) 本発明の実施の形態1によるスイッチの等価回路図

【図3】(の)乃至(f)本発明の実施の形態1によるスイッチの動作を説明する概念図【図4】(の)乃至(f)本発明の実施の形態1におけるスイッチを製造する工程の一例を示す断面図

10

20

30

40

```
【図5】本発明の実施の形態とによるスイッチの要部の断面図
【図6】本発明の実施の形態3によるスイッチの接続回路図
【図7】本発明の実施の形態3によるスイッチの概略構成を示す断面図
【図8】(の)、(b)本発明の実施の形態4によるスイッチの概略構成を示す斜視図お
おび平面図
【図9】本発明の実施の形態4によるスイッチの梁の内部応力とプルイン電圧の関係を示
す特性図
【図10】本発明の実施の形態4によるスイッチの梁の内部応力と梁間静電容量の関係を
示す特性図
【図11】本発明の実施の形態4によるスイッチの製造方法の一例を説明する断面図
                                             10
【図12】本発明の実施の形態4によるスイッチの梁の内部応力と梁の一次共振周波数の
関係を示す特件図
【図13】(a.)本発明の実施の形態5によるスイッチの電極に電圧を印加していない状
態での概略構成を示す概念図
( b ) 本発明の実施の形態5によるスイッチの電極に電圧を印加している状態での概略構
成を示す概念図
【図14】本発明の実施の形態5によるスイッチの可動体材料の印加電圧と内部応力の関
係を示す特性図
【図15】本発明の実施の形態5によるスイッチの制御方法を説明する概念図
【図16】従来のスイッチの一例を示す斜視図
                                             20
【図17】従来の他のスイッチの一例を示す平面図
【符号の説明】
1. 2. 3. 31. 32. 33. 81. 82. 83 梁
4~9 電極
4 1
  高抵抗シリコン基板
42 シリコン酸化膜
48
  シリコン窒化膜
44
   シリコン酸化膜 .
4 5
  犧牲層
4 6· A I 層
                                              30
47
   フォトレプストによるパターン
48.51 梁
49
   間 険
5 0
  シリコン窒化膜
84.85 アンカー部
8 6
  レジスト
87,88 シードレイヤー
8 9
  スイッチ
9 0
   アノード電極
101 入力端子
                                              40
102 出力端子
1 0 3
   可動体
```

1 0 4

105 電極

可動量極

BEST AVAILABLE COPY

フロントページの続き

(72) 発明者 清水 紀智

大阪府門真市大字門真1006番地 松下電器産業株式会社内

(72)発明者 内藤 康幸

大阪府門真市大字門真1006番地 松下電器産業株式会社内