PATENTAtty Docket No.: 10017336-1
'App. Ser. No.: 10/047,289

IN THE CLAIMS:

Please find a listing of the claims below. The statuses of the claims are shown in parentheses.

- 1. (Canceled)
- 2. (Currently Amended) The method of claim [[1]] 4 further comprising the step of:
- d) encoding the foreground, background, and mask layers with a forward discrete wavelet transformation encoder.
- 3. (Original) The method of claim 2 wherein the foreground and background are JPEG 2000 encoded, wherein the mask is encoded with one of a JBIG and a JBIG2 encoder.
- 4. (Currently Amended) The method of claim 1 A method of decomposing an image comprising the steps of:
 - a) decomposing the image into a plurality of stripes;
- b) decomposing each stripe into foreground and background image layers, and a mask layer; and
- c) applying a smoothing filter to interpolate irrelevant pixel values in the foreground and background layers for wavelet encoding efficiency,

wherein step c) further comprises the steps of:

i) determining a layer base color and offsets to a common reduced area of each layer to identify image and mask layer values for all regions except an overlapped common reduced area; and

PATENTAtty Docket No.: 10017336-1
App. Ser. No.: 10/047,289

ii) separating the overlapped common reduced area into foreground and background layers.

- 5. (Currently Amended) The method of claim [[1]] 4 wherein step c) further comprises the steps:
- [[[i)]] <u>iii)</u> classifying each pixel within a selected layer as relevant or irrelevant; and
- [[ii)]] \underline{iv} applying a smoothing filter to each irrelevant pixel, p_c , proceeding in a raster scan order to interpolate a value for that irrelevant pixel.
- 6. (Currently Amended) The method of claim 5 wherein a normalized weighted average of the relevant pixels and the causal irrelevant pixels contribute to the interpolated value.
- 7. (Original) The method of claim 5 wherein the smoothing filter is a weighted Gaussian filter.
- 8. (Original) The method of claim 7 wherein each element of the smoothing filter is of the form $w_{kl}V_{kl}$, wherein V_{kl} is a non-weighted filter value, wherein w_{kl} is a function of its associated pixel causality and relevance.
- 9. (Original) The method of claim 8 wherein $w_{kl} = 0$ for the center pixel (p_c) and any non-causal irrelevant pixel.

Atty Docket No.: 10017336-1

App. Ser. No.: 10/047,289

10. (Canceled)

- 11. (Currently Amended) The method of claim [[10]] 8, wherein w_{kl} is set to m_l if its associated pixel is a relevant pixel and w_{kl} is set to m_2 if the associated pixel is a causal irrelevant pixel such that $\frac{m_1}{m_2} > 1$.
- 12. (Currently Amended) The method of claim [[10]] 8 wherein $\underline{w_{kl}}$ is set to $\underline{m_l}$ if its associated pixel is a relevant pixel and $\underline{w_{kl}}$ is set to $\underline{m_2}$ if the associated pixel is a causal irrelevant pixel such that $\frac{\underline{m_1}}{\underline{m_2}} = 2$.
- 13. (Currently Amended) The method of claim 1 A method of decomposing an image comprising the steps of:
 - a) decomposing the image into a plurality of stripes;
- b) decomposing each stripe into foreground and background image layers, and a mask layer; and
- c) applying a smoothing filter to interpolate irrelevant pixel values in the foreground and background layers for wavelet encoding efficiency

wherein step b) further comprises the steps of:

- i) dividing a selected layer into a plurality of decision $regions(D_{ij})$ and associated analysis regions (A_{ij}) , wherein each $D_{ij} \subseteq A_{ij}$; and
- $ii) \ assigning \ the \ entire \ region \ D_{ij} \ to \ one \ of \ the \ background \ and \ foreground \\ layers, \ if \ a \ contrast \ of \ A_{ii} \ does \ not \ exceed \ a \ pre-determined \ threshold.$

PATENTAtty Docket No.: 10017336-1
App. Ser. No.: 10/047,289

14. (Original) The method of claim 13 wherein the entire region D_{ij} is assigned to the foreground or background layers based on whether the average pixel value AVG(Dij) is closer to an average pixel value of neighboring foreground regions or neighboring background regions.

- 15. (Currently Amended) The method of claim 13 wherein step b) further comprises the steps of:
- i) dividing a selected layer into a plurality of decision regions (D_{ij}) and associated analysis regions (A_{ii}), wherein each $D_{ij} \subseteq A_{ij}$ and
- $ii\underline{i}) \ distributing \ the \ pixels \ of \ D_{ij} \ between \ the \ background \ and \ foreground$ layers, if a contrast of A_{ij} exceeds a pre-determined threshold.
- 16. (Original) The method of claim 15, wherein step b)(ii) further comprises the steps of:
 - i) separating the pixels of A_{ii} into two groups, GROUP_1 and GROUP_2;
 - ii) compute an average (AVG 1, AVG 2) for each group; and
- iii) mutually exclusively assigning the pixels of D_{ij} GROUP_1 and GROUP_2 to a selected one of the foreground and background layers based on a comparison of the relative luminance of GROUP_1 and GROUP_2.
- 17. (Currently Amended) A method of preparing an image for efficient wavelet transform compression, comprising the steps of:
- a) separating the image into foreground and background image layers, and a mask layer; and

PATENTAtty Docket No.: 10017336-1
App. Ser. No.: 10/047,289

 b) applying a smoothing filter to interpolate irrelevant pixel values in the foreground and background layers for coder efficiency,

wherein step a) further comprises

i) dividing a selected layer into a plurality of decision regions (D_{ij}) and associated analysis regions (A_{ij}) , wherein each $D_{ij} \subset A_{ij}$.

ii) assigning the entire region D_{ij} to one of the background and foreground layers, if a contrast of A_{ij} does not exceed a pre-determined threshold, and

iii) distributing the pixels of D_{ij} between the background and foreground layers, if a contrast of A_{ij} exceeds a pre-determined threshold.

- 18. (Original) The method of claim 17 wherein a normalized weighted average of the relevant pixels and the causal irrelevant pixels contribute to the interpolated value.
- 19. (Original) The method of claim 17 wherein the smoothing filter is a weighted Gaussian filter.
- 20. (Original) The method of claim 17 wherein each element of the smoothing filter is of the form $w_{kl}V_{kl}$, wherein V_{kl} is a non-weighted filter value, wherein w_{kl} is a function of its associated pixel causality and relevance.
- 21. (Original) The method of claim 20 wherein $w_{kl} = 0$ for the center pixel (p_c) and any non-causal irrelevant pixel.

22. (Canceled)

PATENT

Atty Docket No.: 10017336-1 App. Ser. No.: 10/047,289

23. (Currently Amended) The method of claim [[22]] <u>20</u> wherein $\underline{w_{kl}}$ is set to $\underline{m_l}$ if its associated pixel is a relevant pixel and $\underline{w_{kl}}$ is set to $\underline{m_2}$ if the associated pixel is a causal irrelevant pixel such that $\frac{m_1}{m_2} > 1$.

24. (Currently Amended) The method of claim [[22]] $\underline{20}$ wherein $\underline{w_{kl}}$ is set to $\underline{m_l}$ if its associated pixel is a relevant pixel and $\underline{w_{kl}}$ is set to $\underline{m_2}$ if the associated pixel is a causal irrelevant pixel such that $\underline{m_1} = 2$.