MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

Seminar maschinelles Lernen

Einleitung

- Motivation
 - Ohne Proteine
 - kein Stoffwechsel
 - keine Zellteilung
 - kein Leben
 - Verstehen der Proteine Verstehen des Lebewesens
 - Beschreibung aller Proteine nicht möglich
 - Charakterisierung über die Struktur
 - Proteinklassifizierung
 - Vorhersage der strukturellen Klassen
 - Strukturelle Kategorie lässt Funktion vorhersagen

Verfahren & Herangehensweisen

- Diskriminative Klassifizierer
 - □ Überragen bei Protein Klassifikation
 - Wie auf Multiklassenproblem anwenden?
- Ansatz
 - Problem auf binäre Klassifizierer reduzieren
 - Ausgabevektoren bearbeiten
- One-vs-all
 - Problem: Klassifizierer nicht vergleichbar
 - □ großer Vorhersagenswert ≠ beste Klasse
 - Sigmoid Anpassung bei vielen Daten
 - Hierarchische Beziehungen nicht berücksichtigt

4

Gliederung

Einleitung

Hintergrundwissen

Multiklassen Algorithmen

Experimentergebnisse

Zusammenfassung

Hintergrundwissen

Remote Homology Detection

- Remote Homology Detection
 - Erkennen entfernterVerwandtschaften
 - Sequenzen aus Datenbank

basierend auf SCOP

Fold Recognition

- Fold Recognition
 - Einteilung in Folds
 - Vergleichssequenzen in Strukturdatenbank
 - ohne evolutionäreVerwandschaft

Profile-Based Detectors

- Grundlegende binäre Klassifizierer
- Lernen in höherer Dimension durch Kernel
 - Kernel Funktion verhält sich wie Skalarprodukt in H

- Sequenzenprofil vergleichen
 - Positionsspezifische Verteilung
- □ K-mers

Positional Neighborhood

- Sequenz x hat Profil P(x)
- Für eine bestimmte Stelle j gilt, threshold σ
- □ Betrachten der k-mer $\beta=b_1b_2\cdots b_k$
 - Wahrscheinlichkeit der Position aus dem Profil
 - Addition dieser muss kleiner threshold sein
- □ Evtl. Variation der Aminosäuren wird bewertet
- Dies soll mögliche Mutationen im Gen berücksichtigen

Profile Feature Mapping

- Linear nicht trennbare Daten
- Transformation in den höherdimensionalen Raum
- Betrachtet werden die K-mers
 - □ Jede Position mit einer Aminosäure besetzt
 - Jede mögliche Kombination der Aminosäuren prüfen
 - Liegt sie in Neighborhood wird 1 im Vektor vermerkt
 - lacksquare Somit ergibt sich ein Vektor mit feature Dimension $|\Sigma|^k$

Profile Kernel

□ Profile Kernel lautet:

$$K_{(k,\sigma)}^{\text{Profile}}(P(x), P(y)) = \left\langle \Phi_{(k,\sigma)}^{\text{Profile}}(p(x)), \Phi_{(k,\sigma)}^{\text{Profile}}(p(y)) \right\rangle$$

- Verhält sich wie Skalarprodukt in H
- Nicht nötig Feature-Raum zu kennen
- Skalarprodukt ermitteln ohne Ф anzuwenden
- Semi-Supervised Learning
 - Gekennzeichnete, sowie ungekennzeichnete Daten verwendet

PSI-BLAST

- Sequenzenvergleichsalgorithmus
- Iteratives Abgleichen mit Datenbanksequenzen

Alignment

Profil:

- Verwandte Sequenzen mitteln
- Profil erstellen
- Berücksichtigen
 entfernter Verwandtschaften
- Erneute Anfrage an Datenbank
- Genutzt für das Sequenzenprofil

Ausgabevektoren und Codes

- Hierarchie in Ausgaberepräsentation einbinden
- SCOP-Daten
 - k: Anzahl der Superfamilies
 - q: Anzahl der Folds
- □ Ein binärer Klassifizierer $f(x) = (f_1(x), ..., f_{k+q}(x))$ für jede Klasse $C_j = (superfam_j, fold_j)$
- □ Einführen von Code-Vektoren
- □ Ziel:
 - □ Gewichtungsvektor lernen, sodass $\mathbf{W} = (W_1, ..., W_{k+q})$

Zusammenfassung Hintergrundwissen

- Klassifizierer: Profile Based String Kernel SVM
- Profil generiert mit PSI-BLAST
- Hierarchische Struktur durch Codes eingebunden
- Gewichtung dieser soll Multiklassenvorhersage optimieren

Multiklassen Algorithmen

- Vorhersagensregel durch W anpassen
- Neugewichtung soll breiten Margin zwischen korrekten und falschen Codes herstellen
- "hard-margin" Optimierungsproblem
- \square Margin: $\overline{|\mathbf{w}|} \longrightarrow \|\mathbf{w}\|^2$ minimieren
- Korrekte Trennungdurch Nebenbedingung

$$\mathbf{W} \cdot (\vec{f}(x_i) * C_{y_i} - \vec{f}(x_i) * C_j) \ge m, \ \forall \ j \ne y_i$$

Ranking Perceptron

- □ Eine Art linearer Klassifizierer
- Erhält Trainingsvektoren aus Kreuzvalidierung
- Produziert Gewichtungsvektor W
- Update-Regeln von Loss-Function abhängig
 - Zero-One loss: Fehler werden identisch gewertet
 - Balanced loss: Fehler inversproportional zu Klassengröße gewertet
- ☐ **Ablauf: W** zu Beginn 0
 - Für angegebene Anzahl an Iterationen n: Was ist die momentane Klassifizierung?
 Ist diese im Margin, oder falsch klassifiziert?
 Wenn ja: update W

Update-Regeln

- Beziehungen zwischen Codes für Perceptron nutzen
- Update-Regel kann neu definiert werden
- □ Friend(y_i): Codes aus demselben Fold wie y_i
- \square Foes(y_i): alle die nicht in friend(y_i) enthalten sind
- Diese Regel heißt Friend/Foe Update
- Mean Friend/Foe nutzt jeweils mittleren Code

Vergleichen von Annäherungen

Platt's Sigmoid Methode

- SVM Ausgaben unbeschränkt
- Zudem auch nicht skaliert
- Konvertieren in klassenspezifischeWahrscheinlichkeiten
- Sigmoid anpassen
- Vergleichen der Ergebnisse nun möglich
- Schlechte Performanz bei kleinen Datenmengen

One-vs-all

- Soll gleichwertig zu allen Annäherungen sein
- Jedoch häufig leicht zerbrechlich
- Ein fehlerhafter Klassifizierer kann falsche Klassifikation hervorrufen
- Je mehr Klassen desto höher die Chance dafür

Zusammenfassung Multiklassen Algorithmen

- □ Lernen von W ist "hard margin" Problem
- Durch Neugewichtung großen Margin zwischen korrekten und falschen Codes
- □ **W** durch Ranking Perceptron Algoithmus gelernt
- Modifizieren der Update-Regel durch
 Berücksichtigen der Beziehungen zwischen Codes
- Andere Annäherungen:
 - Sigmoid Anpassung
 - One-vs-all

Experimentergebnisse

- Sequenzen aus SCOP 1.65 Proteindatenbank
- Preprocessing verwirft ähnliche Sequenzen
- Fold Recognition:
 - 26 Folds, 303 Superfamilies, 652 Families zum Trainieren
 - 614 "hold-out" Sequenzen aus 46 Superfamilies zum Testen
- Remote Homology Detection
 - Superfamily: 74 Superfamilies, 54 Families zum Trainieren
 802 Sequenzen aus 110 Families zum Testen
 - Fold: 44 Folds, 424 Superfamilies , 809 Families zum Training
 381 Sequenzen aus 136 Families zum Testen
- Kreuzvalidierungswerte für Codegewichtung lernen
- Basisklassifizierer in zwei Stufen trainiert

Methoden

- Ranking Perceptron testen mit:
 - Class-Based, Friend/Foe, Mean Class Update-Regeln
 - Trainiert mit 200 Iterationen
- Vergleichen unserer Methode mit:
 - One-vs-all
 - Sigmoid Anpassung
 - PSI-BLAST als Basismethode des Sequenzenvergleichs

Remote Homology Detection

Auswertung

- Darstellen von Classification und Balanced Loss insgesamt und top5 (nicht dargestellt)
- Superfamily-Prediction:
 - Adaptive Codes besser als
 One-vs-all bzgl. beider Loss
 Funktionen
- Fold-Prediction:
 - Selber Trend
- Verbessert Performanz bei Nutzung mehrerer Codeelemente

Fold Recognition Auswertung

- Subklassen bieten evtl.weniger Informationen
- Proteinsequenzen aus verschieden Superfamilies haben keine erkennbare Gleichheit
- Adaptive Codes:
 - Besser als die anderen Verfahren
- Kein Verbesserungstrend mit zunehmender Anzahl von Codeelementen

Perceptron Update Rules Auswertung

- Beide Remote Homology Vorhersagen werden durch die Update-Regeln verbessert (bei zero-one und balanced loss)
 - Superfamily-Prediction Verbesserung, wenn Balanced-Loss trainiert und getestet
- Mehr Codeelemente für Fold Recognition wenig nützlich
 - Kann Performanz im Zero-One Loss nur verbessern, wenn mit Balanced Loss trainiert

Zusammenfassung Experimentergebnisse

- Remote Homology Detection
 - Superfamily- und Fold-prediction
 - Besser als verglichene Annäherungen, vor allem one-vs-all
 - Zudem stetige Verbesserung mit zusätzlichen Codeelementen
- □ Fold Recognition
 - Wieder besser als verglichene Annäherungen
 - Zusätzliche Codeelemente nicht hilfreich
 - Kein Verbesserungstrend mit längeren Codes
- Perceptron Update Rules
 - Remote Homology: Verbesserung möglich
 - Fold Recognition: Verbesserung minimal

Zusammenfassung

- Profile Based String Kernel SVMs klassifizieren
- Gewichtungsvektor W mit Ranking Perceptron lernen
 - Evtl. mit modifizierten Update-Regeln
- Ausgabevektor mit Gewichtung bearbeiten
- Somit Multiklassenvorhersage optimieren
- Ergebnis: Verfahren, welches die bisherigen schlägt
- Verbessert Annäherung für zwei ungelöste Probleme der Biologie

Vielen Dank für die Aufmerksamkeit

Quellen:

- □ Multi-class Protein Classification Using Adaptive Codes

 Iain Melvin, Eugene Ie, Jason Weston, William Stafford Noble, Christina Leslie
- □ Folien Lehrveranstaltung: Maschinelles Lernen

 Johannes Fürnkranz / Bent Schiele
- □ Folien Lehrveranstaltung: Bioinformatik I Martin Lercher, Ph.D.
- □ Klassikation mit Support Vector Machines

 Florian Markowetz, Max-Planck-Institut für Molekulare Genetik
- www.tobias-lib.ub.uni-tuebingen.de/volltexte/2005/1926
- www.wikipedia.org