Package 'RBPSpliceMap'

May 20, 2015

Type Package

Index

Title Summarize CLIPSeq data
Version 1.0
Date 2015-05-20
Author Laure Le Calvez
Maintainer Laure Le Calvez < laure.le-calvez@laposte.net>
Depends R (>= 2.10.0), GenomicRanges (>= 1.17.20), GenomicAlignments (>= 1.1.16)
Description This package is intended to manipulate CLIP data and summarize them along genomic regions. Typically it can be use to draw RNA splice map. It allows to select a chromosome, strand and interval of interest. It gives numerical and graphical results about the coverage of splice sites and their surroundings.
License GPL(>=2.0)
R topics documented:
RBPSpliceMap-package
bamToGRanges
chromosomeSelect
coverageChr
coverage Vector
exonInterestTreatment
intervalSelect
mapReadsTreatment
plotSpMap

12

2 bamToGRanges

RBPSpliceMap-package Summarize CLIPSeq data

Description

This package is intended to manipulate CLIP data and summarize them along genomic regions. Typically it can be use to draw RNA splice map. It allows to select a chromosome, strand and interval of interest. It gives numerical and graphical results about the coverage of splice sites and their surroundings.

Details

Package: RBPSpliceMap

Type: Package
Version: 1.0
Date: 2015-05-20
License: GPL(>=2.0)

Author(s)

Laure Le Calvez laure le calvez@laposte.net

Examples

```
regulatedExons = system.file("extdata", "regulatedExons.bed", package="RBPSpliceMap", mustWork=TRUE)
iCLIPData = system.file("extdata", "iCLIPData.bam", package="RBPSpliceMap", mustWork=TRUE)
#Create GRanges from a bedFile with exons of interest
data <- read.table(regulatedExons, header = TRUE)</pre>
colnames(data) = c(chr, start, end, ProbeID, pval, strand)
exonInterest = with(data, GRanges(chr, IRanges(start, end), strand))
#Create a GRanges from a bam file
mapReadsGRanges = bamToGRanges(iCLIPData)
#Normalized mean of coverages of ranges of interest on the 3 splice site
spMapList3SS = spMap(exonInterest, mapReadsGRanges, spSite = "3SS", padding = c(40, 200), goal = "normMean
#Mean of coverages of ranges of interest on the 5 splice site
spMapList5SS = spMap(exonInterest, mapReadsGRanges, spSite = "5SS", padding = c(100, 50), goal = "mean")
#3 splice site representation
plotSpMap(spMapList3SS)
#5 splice site representation
plotSpMap(spMapList5SS)
```

bamToGRanges

bamToGRanges

Description

This function transform a bam file into a GRanges object

chromosomeSelect 3

Usage

```
bamToGRanges(bamFile)
```

Arguments

bamFile bamFile is path of a bam file

Details

The return GRanges Object contain "seqnames", IRanges(start,end) and "strand". It is possible to have access to the different values vector with: - seqnames(<GRangesName>) - start(ranges(<GRangesName>) - end(ranges(<GRangesName>) - strand(<GRangesName>)

Value

GRanges object

Author(s)

Laure Le Calvez laure Le Calvez laure Le Calvez laure Le Calvez laure Le Calvez @laposte.net

See Also

readGAlignments from package GenomicAlignments as

Examples

```
iCLIPData = system.file("extdata", "iCLIPData.bam", package="RBPSpliceMap", mustWork=TRUE)
#Create a GRanges from a bam file
bamToGRanges(iCLIPData)
```

chromosomeSelect

chromosomeSelect

Description

This function return the part of the GRanges object concerning the input "chromosome"

Usage

chromosomeSelect(objectGRanges, chromosome)

Arguments

objectGRanges GRanges object from where we want to select the part concerning the strand of

interest

chromosome of interest as a string (ex: "7" or "chr7") /!\ Write it like it is written

in the GRanges object

Value

GRanges object

4 coverageChr

Author(s)

Laure Le Calvez laure la

See Also

strandSelect intervalSelect mapReadsTreatment

Examples

```
iCLIPData = system.file("extdata", "iCLIPData.bam", package="RBPSpliceMap", mustWork=TRUE)
#Create a GRanges from a bam file
mapReadsGRanges = bamToGRanges(iCLIPData)
#Select the chromosome of interest
chromosomeSelect(mapReadsGRanges, chromosome = "chr7")

regulatedExons = system.file("extdata", "regulatedExons.bed", package="RBPSpliceMap", mustWork=TRUE)
#Create GRanges from a bedFile with exons of interest
data <- read.table(regulatedExons, header = TRUE)
colnames(data) = c(chr, start, end, ProbeID, pval, strand)
exonInterest = with(data, GRanges(chr, IRanges(start, end), strand))
#Select the chromosome of interest
chromosomeSelect(mapReadsGRanges, chromosome = "chr7")</pre>
```

coverageChr

coverageChr

Description

This function, from the GRanges, give the coverage (number of reads) concerning the chromosome of interest

Usage

```
coverageChr(mapReadsGRanges, chromosome)
```

Arguments

mapReadsGRanges

GRanges object from where we want to select the part concerning the strand of

interest

chromosome of interest as a string (ex: "7" or "chr7") /!\ Write it like it is written

in the GRanges object

Details

The return Rle (package S4Vectors) represent the coverage (number of reads) of the input chromosome

Value

Rle (package S4Vectors)

coverage Vector 5

Author(s)

Laure Le Calvez laure Le Calvez laure Le Calvez laure Le Calvez laure Le Calvez @laposte.net

See Also

coverageVector coverage mapReadsTreatment

Examples

```
iCLIPData = system.file("extdata", "iCLIPData.bam", package="RBPSpliceMap", mustWork=TRUE)
#Create a GRanges from a bam file
mapReadsGRanges = bamToGRanges(iCLIPData)
#Calculate the coverage on a specified chromosome
coverageChr(mapReadsGRanges, chromosome = "chr7")
```

coverageVector

coverageVector

Description

This function transform a coverage Rle (package S4Vector) into a coverage vector

Usage

```
coverageVector(cover, from = 0, to)
```

Arguments

cover Rle (package S4Vector) with the coverage

from If there is a part without any reads, from where do the reads appear. from =

coordinate of the position just before the one with the first read DEFAULT = 0

to The coordinate of the last read you want on the coverage

Details

/!\ ERROR if the from given correspond to a position with or after some reads of the input Rle from: only if you know how much nucleotides at the beggining of the sequence are not covered by reads The return vector contains the number of reads at each position (nucleotide)

Value

Vector

Author(s)

Laure Le Calvez laure la

See Also

coverageChr coverage mapReadsTreatment

6 exonInterestTreatment

Examples

```
iCLIPData = system.file("extdata", "iCLIPData.bam", package="RBPSpliceMap", mustWork=TRUE)
#Create a GRanges from a bam file
mapReadsGRanges = bamToGRanges(iCLIPData)
#Calculate the coverage on a specified chromosome
cover = coverageChr(mapReadsGRanges, chromosome = "chr7")
#Transforme coverage Rle into a coverage vector
coverageVector(cover, from = 810695, to = 810796)
```

exonInterestTreatment exonInterestTreatment

Description

This function create a GRanges from another with modified coordinates given by the splice site chosen and the padding.

Usage

```
exonInterestTreatment(exonInterest, spSite, pE, pI)
```

Arguments

GRanges object containing coordinates of interest (thess coordinates match with exon ones)
Splice Site of interest ("5SS" or "3SS")
padding exon. Number of nucleotides wanted around the splice site on the exon
padding intron. Number of nucleotides wanted around the splice site on the intron

Details

If the input GRanges contain strand = "*", there are excluded, only strand = "+" or "-" are treated The return GRanges contain coordinates of nucleotides framing ranges of interest around the splice site.

Value

GRanges object

Author(s)

Laure Le Calvez laure laure laure

Examples

```
regulatedExons = system.file("extdata", "regulatedExons.bed", package="RBPSpliceMap", mustWork=TRUE)
#Create GRanges from a bedFile with exons of interest
data <- read.table(regulatedExons, header = TRUE)
colnames(data) = c(chr, start, end, ProbeID, pval, strand)
exonInterest = with(data, GRanges(chr, IRanges(start, end), strand))
#Treatment of the GRanges with exons of Interest
exonInterestTreatment(exonInterest, spSite = "3SS", pE = 40, pI = 200)</pre>
```

intervalSelect 7

Description

This function return the part of the GRanges object concerning the input ranges

Usage

```
intervalSelect(objectGRanges, from, to)
```

Arguments

objectGRanges GRanges object from where we want to select the part concerning the strand of

interest

from Coordinate from where you want the coverage to Coordinate where you want the coverage to end

Value

GRanges object

Author(s)

Laure Le Calvez laure la

See Also

strandSelect chromosomeSelect mapReadsTreatment

Examples

```
iCLIPData = system.file("extdata", "iCLIPData.bam", package="RBPSpliceMap", mustWork=TRUE)
#Create a GRanges from a bam file
mapReadsGRanges = bamToGRanges(iCLIPData)
#Select the interval of interest
intervalSelect(mapReadsGRanges, from = 134621217, to = 134681857)
```

```
mapReadsTreatment mapReadsTreatment
```

Description

This function, from a GRanges object, give the coverage (number of reads) on a "chromosome", a "strand" and a range of interest ("from" and "to")

Usage

```
{\tt mapReadsTreatment(mapReadsGRanges,\ chromosome,\ strand,\ from,\ to)}
```

8 plotSpMap

Arguments

mapReadsGRanges

GRanges object containing mapped reads (generally from a bam file) (see bam-

ToGRanges())

chromosome of interest as a string (ex: "7" or "chr7") /!\ Write it like it is written

in the GRanges object

strand of interest as a string ("+", "-", "*") "*" correspond to the 2 strands

from Coordinate from where you want the coverage to Coordinate where you want the coverage to end

Details

The return coverage vector indicate the number of reads per nucleotide

Value

Coverage Vector

Author(s)

Laure Le Calvez < laure.le-calvez@laposte.net>

See Also

 $strand Select\ interval Select\ coverage Chr\ coverage Vector$

Examples

```
iCLIPData = system.file("extdata", "iCLIPData.bam", package="RBPSpliceMap", mustWork=TRUE)
#Create a GRanges from a bam file
mapReadsGRanges = bamToGRanges(iCLIPData)
#Treatment of the GRanges with mapped reads
mapReadsTreatment(mapReadsGRanges, chromosome = "chr7", strand = "+", from = 810695, to = 810796)
```

plotSpMap plotSpMap

Description

This function is a way to represent the coverage in reads of a splice Site and its surrondings

Usage

```
plotSpMap(spMapList)
```

Arguments

 $spMapList \\ List of 4 vectors \\ spMapList[[1]]: coverage \\ vector \\ spMapList[[2]]: splice \\ site$

("3SS" or "5SS") spMapList[[3]]: paddingExon (number) spMapList[[4]]:

paddingIntron (number)

spMap 9

Details

padding: - paddingExon and paddingIntron correspond to the number of nucleotides wanted around the splice site on the exon and the intron - This function create a representation of the coverage of a "splice site" (x=0) between paddingIntron (x= pI-1) and paddingExon (x=pE) - paddingIntron is used with -1 because x=0 is the splice site and it is included in the Intron - The return graph represent the coverage of the part of interest of the exon (or multiple exon if you used spMap() with multiple regions)

Value

Graph

Author(s)

Laure Le Calvez laure laure laure

See Also

spMap coverageVector

Examples

```
iCLIPData = system.file("extdata", "iCLIPData.bam", package="RBPSpliceMap", mustWork=TRUE)
regulatedExons = system.file("extdata", "regulatedExons.bed", package="RBPSpliceMap", mustWork=TRUE)
#Create GRanges from a bedFile with exons of interest
data <- read.table(regulatedExons, header = TRUE)</pre>
colnames(data) = c(chr, start, end, ProbeID, pval, strand)
exonInterest = with(data, GRanges(chr, IRanges(start, end), strand))
#Create a GRanges from a bam file
mapReadsGRanges = bamToGRanges(iCLIPData)
#Normalized mean of coverages of ranges of interest on the 3 splice site
spMapList3SS = spMap(exonInterest, mapReadsGRanges, spSite = "3SS", padding = c(40, 200), goal = "normMean
#Mean of coverages of ranges of interest on the 5 splice site
spMapList5SS = spMap(exonInterest, mapReadsGRanges, spSite = "5SS", padding = c(100, 50), goal = "mean")
#3 splice site representation
plotSpMap(spMapList3SS)
#5 splice site representation
plotSpMap(spMapList5SS)
```

spMap

spMap

Description

This function return a coverage calculate from all coverage vectors of ranges described in the GRanges object "exonInterest" given.

Usage

```
spMap(exonInterest, mapReadsGRanges, spSite, padding, goal)
```

10 spMap

Arguments

exonInterest GRanges object containing coordinates of interest (these coordinates match with

exon ones)

mapReadsGRanges

GRanges object containing mapped reads (generally from a bam file) (see bam-

ToGRanges())

spSite Splice Site of interest ("5SS" or "3SS")

padding Vector with the padding exon (pE) and the padding intron (pI) in the form of

c(pE,pI) (pE and pI correspond to the number of nucleotides wanted around the

splice site on the exon and the intron)

goal Function, applied between the different coverage vectors to get the wanted re-

sult into the return coverage vector. This function can be "normMean" to get a normalized mean or a basic R function. - "normMean" : normalized mean -

"sum" - "mean" - "median" - "max" - ...

Details

The coverage vector represent the number of reads (depending on the chosen function "goal") at each nucleotide. This function return a list containing the coverage vector, splice site, padding exon (pE) and padding intron (pI) in this order You can access differents elements with : $\langle \text{listName} \rangle$ [[i]] (i = 1, 2, 3 or 4)

Value

list(coverage vector, splice site, pE, pI)

Author(s)

Laure Le Calvez laure Le Calvez laure Le Calvez laure Le Calvez laure Le Calvez @laposte.net

See Also

exonInterestTreatment mapReadsTreatment

Examples

```
iCLIPData = system.file("extdata", "iCLIPData.bam", package="RBPSpliceMap", mustWork=TRUE)
regulatedExons = system.file("extdata", "regulatedExons.bed", package="RBPSpliceMap", mustWork=TRUE)
#Create GRanges from a bedFile with exons of interest
data <- read.table(regulatedExons, header = TRUE)
colnames(data) = c(chr, start, end, ProbeID, pval, strand)
exonInterest = with(data, GRanges(chr, IRanges(start, end), strand))
#Create a GRanges from a bam file
mapReadsGRanges = bamToGRanges(iCLIPData)
#Normalized mean of coverages of ranges of interest on the 3 splice site
spMapList3SS = spMap(exonInterest, mapReadsGRanges, spSite = "3SS", padding = c(40, 200), goal = "normMean")
#Mean of coverages of ranges of interest on the 5 splice site
spMapList5SS = spMap(exonInterest, mapReadsGRanges, spSite = "5SS", padding = c(100, 50), goal = "mean")</pre>
```

strandSelect 11

Description

This function return the part of the GRanges object about the input "strand"

Usage

```
strandSelect(objectGRanges, strand)
```

Arguments

objectGRanges GRanges object from where we want to select the part concerning the strand of

interest

strand of interest as a string ("+", "-", "*") "*" correspond to the 2 strands ->

return the entire GRanges object

Value

GRanges object

Author(s)

Laure Le Calvez laure la

See Also

intervalSelect chromosomeSelect mapReadsTreatment

Examples

```
iCLIPData = system.file("extdata", "iCLIPData.bam", package="RBPSpliceMap", mustWork=TRUE)
#Create a GRanges from a bam file
mapReadsGRanges = bamToGRanges(iCLIPData)
#Select the strand of interest
strandSelect(mapReadsGRanges, strand = "+")

regulatedExons = system.file("extdata", "regulatedExons.bed", package="RBPSpliceMap", mustWork=TRUE)
#Create GRanges from a bedFile with exons of interest
data <- read.table(regulatedExons, header = TRUE)
colnames(data) = c(chr, start, end, ProbeID, pval, strand)
exonInterest = with(data, GRanges(chr, IRanges(start, end), strand))
#Select the strand of interest
strandSelect(regulatedExons, strand = "+")</pre>
```

Index

*Topic Rle
coverageVector, 5
*Topic \textasciitildekwd2
strandSelect, 11
*Topic bam
bamToGRanges, 2
*Topic chromosome
${\it chromosomeSelect}, 3$
coverageChr,4
*Topic coverage
coverageChr,4
coverageVector, 5
${\sf mapReadsTreatment}, {\sf 7}$
spMap, 9
*Topic exon
exonInterestTreatment, 6
*Topic mapping
mapReadsTreatment, 7
plotSpMap, 8
*Topic package
RBPSpliceMap-package, 2
*Topic ranges
intervalSelect, 7
*Topic reads
mapReadsTreatment, 7
plotSpMap, 8
spMap, 9 *Topic splice map
spMap, 9
*Topic splice site
exonInterestTreatment, 6
plotSpMap, 8
*Topic strand
strandSelect, 11
*Topic subset
chromosomeSelect, 3
intervalSelect, 7
inter varioties, /
as, 3
bamToGRanges, 2
chromosomeSelect, 3, 7, 11

coverage, 5

```
coverageChr, 4, 5, 8
coverageVector, 5, 5, 8, 9

exonInterestTreatment, 6, 10

intervalSelect, 4, 7, 8, 11

mapReadsTreatment, 4, 5, 7, 7, 10, 11

plotSpMap, 8

RBPSpliceMap (RBPSpliceMap-package), 2
RBPSpliceMap-package, 2
readGAlignments, 3

spMap, 9, 9
strandSelect, 4, 7, 8, 11
```