

MANUAL PARA EL USUARIO

SamuelLozanoJuarez/CysBond_Predictor

Samuel Lozano Juárez

13 de junio de 2024

Bioinformática Estructural | Máster en Bioinformática

Índice de contenidos

l.	Qué es CysBond Predictor	. 1
2.	Cómo utilizar CysBond Predictor	. 1
3.	Salidas generadas	.2
1 .	Dependencias necesarias	.4
5.	Ejemplos de uso	.4

1. Qué es CysBond Predictor

Se trata de un script de Python que permite identificar potenciales puentes disulfuro en un archivo PDB que contenga la estructura de una proteína. Además de reportar estos puentes disulfuro también genera un fichero .py que permite la visualización de la estructura tridimensional de la proteína y los puentes disulfuro utilizando la herramienta PyMOL.

El programa permite al usuario personalizar los parámetros que determinan los potenciales puentes disulfuro (distancia entre cisteínas y ángulo diedro formado). Para que un par de cisteínas sean consideradas para un potencial puente disulfuro deben cumplir por defecto con un ángulo de entre 84° y 96° y una distancia de entre 1.5 Å y 2.5 Å. Por motivos de calidad de la estructura, las cisteínas con un B-factor superior a 30 Å 2 si la estructura se ha obtenido experimentalmente, o un pLDDT inferior a 50 si la estructura ha obtenido por predicción, serán descartadas.

La información del programa, así como este Manual y los ficheros .pdb de ejemplo pueden encontrarse en el repositorio

https://github.com/SamuelLozanoJuarez/CysBond_Predictor.

2. Cómo utilizar CysBond Predictor

Las dependencias necesarias para la ejecución del script se describen en la Sección 4. El script debe ejecutarse empleando Python mediante la línea de comandos del Sistema Operativo. Los argumentos que deben indicarse son los siguientes:

- -i (--input): ruta relativa o absoluta hasta el fichero PDB con la estructura de la proteína en la que se quieren detectar los puentes disulfuro. Es recomendable introducir la ruta relativa, pero también es aceptada la absoluta. Argumento obligatorio.
- -o (--output): ruta relativa que indica el directorio en que se desea guardar el script .py generado para la posterior visualización usando PyMOL. Si el directorio no existe, será creado. Argumento opcional. Por defecto almacena el script generado en el directorio actual.
- -a (--angle): valores mínimo y máximo del ángulo diedro que debe formarse entre cisteínas para considerar el potencial de puente disulfuro. Los valores deben ser enteros, ir entre paréntesis y separados por una coma. Argumento opcional. Por defecto el rango de valores para el ángulo diedro es (84,96).
- -d (--distance): valores mínimo y máximo de la distancia a la que deben encontrarse dos cisteínas para considerar el potencial de puente disulfuro. Los valores deben ser decimales, ir entre paréntesis y separados por una coma. Argumento opcional. Por defecto el rango de valores para la distancia es (1.5,2.5).
- -aci (--angle_ci): valor entero que representa la cantidad en que se va a ampliar el rango de valores del ángulo tanto hacia el límite superior como inferior para la búsqueda de puentes disulfuro. Un valor de aci=5 implica que se considerarán como potenciales los puentes disulfuro con un ángulo comprendido

dentro del rango definido en el parámetro *angle* ± 5. **Argumento opcional.** Por defecto el valor es 5.

- -dci (--distance_ci): valor decimal que representa la cantidad en que se va a ampliar el rango de valores de la distancia tanto hacia el límite superior como inferior para la búsqueda de puentes disulfuro. Un valor de aci=0.1 implica que se considerarán como potenciales los puentes disulfuro entre cisteínas a una distancia comprendida dentro del rango definido en el parámetro distance ± 0.1.
 Argumento opcional. Por defecto el valor es 0.1.
- -sci (--show_ci): booleano que determina si deben mostrarse en PyMOL los potenciales puentes disulfuros que no cumplen con los valores de angle y distance, pero sí con estos valores ampliados en su intervalo de confianza correspondiente (angle ± aci y distance ± dci respectivamente). Argumento opcional. Por defecto el valor es False.

A continuación se muestra un ejemplo de ejecución incluyendo todos los parámetros:

python cysbond_pred.py -i ejemplos/1jl9.pdb -o resultados -a (84,96) -d (1.5,2.5) -aci 5 -dci 0.1 -sci False

3. Salidas generadas

Como consecuencia de la ejecución del script vamos a obtener dos tipos de salidas: información que se nos muestra por pantalla y un archivo .py con el código para visualizar la proteína y los puentes disulfuro en PyMOL.

Por pantalla se muestran, en formato de tabla, los potenciales puentes disulfuro que se han detectado considerando los valores de ángulos diedros y distancia entre cisteínas introducidos como parámetros (-a y -d respectivamente). Para cada potencial puente se indica la información de las cisteínas que lo forman (posición y cadena), y los valores de distancia y ángulo diedro:

The fol	lowing potent	tial disulfic	de bonds have been de	etected:
Bond	Cys1	Cys2	Distance	Dihedral Angle
2	CYS 182 A	CYS 224 A	2.039062261581421 2.036055088043213 2.034346342086792	95.60815227597449
+	+	+	ł	++

Además, se muestran por pantalla aquellos puentes disulfuro que no cumplen alguno de los valores de distancia o ángulo introducidos como parámetros pero que deberían ser revisados, ya que sí que se encuentran dentro del rango "de confianza" introducido como parámetro (-dci y -aci). Es decir, si por ejemplo el rango de ángulos y distancias que hemos introducido para considerar un puente disulfuro es (86,94) y (1.5,2.5) respectivamente, y los parámetros -dci y -aci son 5 y 0.1 respectivamente, un par de cisteínas que formen un ángulo de 84° y se encuentren a 1.4 Å no serán mostradas en la tabla anterior, pero sí que se incluirán en esta segunda tabla:

The fol	lowing disu	lfide bonds	do not meet the requ	irements but should b	e reviewed:
Bond	Cys1	Cys2	Distance	Dihedral Angle	
			2.0282211303710938 2.029945135116577		
+	t	t	+	++	

En el caso de que no se encuentre ningún potencial puente disulfuro en alguna de las dos tablas, se mostrará en el lugar de la tabla un mensaje avisando de este hecho:

```
No potential disulfide bond has been detected.

------
There are no additional disulphide bonds that need to be checked.
```

El fichero .py generado tiene el mismo nombre que el archivo .PDB introducido como parámetro en la ejecución del script. Este fichero .py contiene el código necesario para visualizar en PyMOL la proteína y los puentes disulfuro encontrados. La distancia entre cisteínas y el ángulo formado también se muestran en PyMOL.

Para ejecutar este archivo necesitaremos tener instalado PyMOL en nuestro equipo. Después podremos abrir el fichero .py bien por línea de comandos (pymol nombre.py) o bien ejecutando primero la aplicación y seleccionando la opción File/Run Script, donde seleccionaremos nuestro fichero .py. En caso de que se haya encontrado algún puente disulfuro, al ejecutarse el fichero .py en PyMOL se nos cargará la proteína, y se mostrará el enlace entre las cisteínas involucradas, así como la distancia entre ellas y el ángulo diedro:

Si no se ha encontrado ningún puente disulfuro simplemente se cargará la proteína.

En la Sección 5 se incluyen más ejemplos de uso del script, con sus correspondientes salidas.

4. Dependencias necesarias

Para poder ejecutar el script es necesario tener instalados los siguientes programas y paquetes. Se incluyen las versiones utilizadas en el desarrollo del script, con las que no hay problemas de compatibilidades:

- Python versión 3.11.8
- PyMOL versión 3.0.2
- Paquete Biopython versión 1.83
- Paquete NumPy versión 1.26.4
- Paquete tabulate versión 0.9.0

5. Ejemplos de uso

En esta sección se incluyen varios ejemplos de uso del programa con distintos ficheros PDB correspondientes a proteínas con estructuras predichas y también obtenidas experimentalmente. Los ficheros PDB utilizados pueden encontrarse en la carpeta *ejemplos*.

7rax

- Estructura obtenida experimentalmente (difracción de rayos X)
- 1 cadena
- Con parámetros por defecto se encuentran 0 puentes potenciales.
- Tampoco se encuentran otros posibles puentes para chequear.

python cysbond_pred.py -i ejemplos/7rax.pdb

No potential disulfide bond has been detected.

There are no additional disulphide bonds that need to be checked.

2qwo

- Estructura obtenida experimentalmente (difracción de rayos X)
- 2 cadenas
- Con parámetros por defecto se encuentran O puentes potenciales.
- Se encuentra 1 puente para chequear.

python cysbond_pred.py -i ejemplos/2qwo.pdb

```
No potential disulfide bond has been detected.

The following disulfide bonds do not meet the requirements but should be reviewed:

| Bond | Cys1 | Cys2 | Distance | Dihedral Angle |
| 1 | CYS 171 A | CYS 876 B | 2.050916910171509 | 80.46914958615396 |
| 1 | CYS 171 A | CYS 876 B | 2.050916910171509 | 80.46914958615396 |
```

Si cambiamos los parámetros por defecto y establecemos como rango de ángulos (80,85) en vez de (84,96), vemos que este enlace pasa a considerarse potencial puente disulfuro.

python cysbond_pred.py -i ejemplos/2qwo.pdb -a (80,85)

```
The following potential disulfide bonds have been detected:
+----+
| Bond | Cys1 | Cys2 | Distance | Dihedral Angle |
+----+
| 1 | CYS 171 A | CYS 876 B | 2.050916910171509 | 80.46914958615396 |
+----+

There are no additional disulphide bonds that need to be checked.
```

Si visualizamos el script generado en Pymol podremos ver este puente disulfuro que ahora sí que se considera como potencial:

pymol 2qwo.py

80.5

SG-CY5876-B

2.1

1fs3

- Estructura obtenida experimentalmente (difracción de rayos X)
- 1 cadena
- Con parámetros por defecto se encuentran 2 puentes potenciales.
- No se encuentran puentes alternativos para chequear.

python cysbond_pred.py -i ejemplos/1fs3.pdb

Podemos visualizar los resultados en PyMOL:

pymol 1fs3.py

6uqc

- Estructura obtenida experimentalmente (difracción de rayos X)
- 8 cadenas
- Con parámetros por defecto se encuentra 1 puente potencial.
- Se encuentra 1 puente adicional para chequear.

python cysbond_pred.py -i ejemplos/6uqc.pdb

The fol	lowing potent	tial disulfic	de bonds have been det	tected:	
Bond	Cys1	Cys2	Distance	Dihedral Angle	
1	CYS 367 D	CYS 425 D	2.0208852291107178	84.99430470706584	
The fol	lowing disul	fide bonds do	o not meet the require	ements but should be	reviewed
Bond	Cys1	Cys2	Distance	Dihedral Angle	
1	CYS 367 C	CYS 425 C	2.0224432945251465	82.2088572767831	

Podemos ampliar el intervalo de confianza para el ángulo, estableciendo el parámetro -dci a 21, para que considere como puentes para chequear aquellos con un ángulo entre (63,117). Al hacer este ajuste el programa encuentra un puente más para chequear.

Además, podemos modificar el parámetro -sci y establecerlo como True, para que muestre en PyMOL también los puentes a chequear.

python cysbond_pred.py -i ejemplos/6uqc.pdb -aci 21 -sci True

The fol	lowing potent	tial disulfic	de bonds have been det	tected:	
Bond	Cys1	Cys2	Distance	Dihedral Angle	
1	CYS 367 D	CYS 425 D	2.0208852291107178	84.99430470706584	
The fol	lowing disul	fide bonds do	o not meet the require	ements but should be	reviewed:
Bond	Cys1	Cys2	Distance	Dihedral Angle	
1 2 +			2.0224432945251465 2.092224597930908	82.2088572767831 63.96621506973581	

Ahora en PyMOL nos mostrará los 3 puentes disulfuro, y no únicamente el potencial.

1jl9

- Estructura obtenida experimentalmente (difracción de rayos X)
- 2 cadenas
- Con parámetros por defecto se encuentra 1 puente potencial.
- Se encuentran 2 puentes adicionales para chequear.

python cysbond_pred.py -i ejemplos/1jl9.pdb

The fol	lowing pote	ntial disul	fide bonds have been o	detected:	
Bond	Cys1	Cys2	Distance	Dihedral Angle	
1	CYS 14 A	CYS 31 A	2.0206663608551025	90.2746789051136	
The fol	lowing disu	lfide bonds	do not meet the requ	irements but should be	reviewed:
Bond	Cys1	Cys2	Distance	Dihedral Angle	
			2.0282211303710938 2.029945135116577	96.57688257030237 81.76715236872248	

2ltq

- Estructura obtenida experimentalmente (NMR)
- 6 cadenas
- Con parámetros por defecto se encuentran 6 puentes potenciales.
- Se encuentran 6 puentes adicionales para chequear.

python cysbond_pred.py -i ejemplos/2ltq.pdb

Bond	Cys1	Cys2	Distance	Dihedral Angle
1 2 3 4 5 6	CYS 43 E CYS 44 D CYS 130 D CYS 104 A CYS 104 D CYS 134 F	CYS 114 E CYS 44 D CYS 130 D CYS 130 A CYS 104 D CYS 239 E	2.044865846633911 1.9796417951583862 1.6037118434906006 2.0203959941864014 2.1019585132598877 1.5342936515808105	86.78958149466047 91.75977704840425 91.29715592298174 88.73616135634899 84.10646917752163 94.3178433354795
		 	o not meet the require	+ +
he foll Bond		Fide bonds do	o not meet the require Distance	ements but should be Dihedral Angle
		 	<u> </u>	+ +
Bond 1 2	Cys1	Cys2	Distance	 Dihedral Angle
Bond 1 2 3	Cys 104 A CYS 96 C CYS 44 D	Cys2 Cys2 CYS 104 A	Distance 1.452910304069519 1.7086142301559448 2.5850794315338135	Dihedral Angle 79.69687540909062 80.24744158881812 87.34680458759294
Bond 1 2 3 4	Cys 104 A CYS 96 C CYS 44 D CYS 114 E	Cys2 CYS 104 A CYS 22 C CYS 44 D CYS 43 E	Distance 1.452910304069519 1.7086142301559448 2.5850794315338135 2.485166311264038	Dihedral Angle 79.69687540909062 80.24744158881812 87.34680458759294 83.05744182089052
Bond 1 2 3 4 5 5	Cys 104 A CYS 96 C CYS 44 D CYS 114 E CYS 130 A	Cys 2 CYS 104 A CYS 22 C CYS 44 D CYS 43 E CYS 104 A	Distance 1.452910304069519 1.7086142301559448 2.5850794315338135 2.485166311264038 1.475786805152893	Dihedral Angle 79.69687540909062 80.24744158881812 87.34680458759294 83.05744182089052 94.28725919545514
Bond 1 2 3 4	Cys 104 A CYS 96 C CYS 44 D CYS 114 E	Cys2 CYS 104 A CYS 22 C CYS 44 D CYS 43 E	Distance 1.452910304069519 1.7086142301559448 2.5850794315338135 2.485166311264038	Dihedral Angle 79.69687540909062 80.24744158881812 87.34680458759294 83.05744182089052

Si deseamos podemos ver los 6 puentes potenciales en PyMOL (podríamos hacer zoom sobre cada uno de ellos y veríamos el ángulo y las distancias entre cisteínas).

pymol 2ltq.py

AF-P00785-F1-model_v4

- Estructura predicha (AlphaFold 2)
- 1 cadena
- Con parámetros por defecto se encuentran 3 puentes potenciales.
- Se encuentran 0 puentes adicionales para chequear.

python cysbond_pred.py -i ejemplos/AF-P00785-F1-model_v4.pdb

Bond	Cys1	Cys2	Distance	Dihedral Angle
	CYS 182 A	CYS 224 A	2.039062261581421 2.036055088043213 2.034346342086792	91.12013043292747 95.60815227597449 85.45929775519888

Podemos visualizar la estructura y puentes disulfuro en PyMOL.

pymol AF-P00785-F1-model_v4.py

AF-Q869Z0-F1-model_v4

- Estructura predicha (AlphaFold 2)
- 1 cadena
- Con parámetros por defecto no se encuentran puentes potenciales.
- Se encuentra 1 puente adicional para chequear.

python cysbond_pred.py -i ejemplos/AF-Q869Z0-F1-model_v4.pdb

ma-t3vr3-037

- Estructura predicha
- 2 cadenas
- Con parámetros por defecto no se encuentran puentes potenciales.
- Tampoco se encuentran puentes adicionales para chequear.

python cysbond_pred.py -i ejemplos/ma-t3vr3-037.pdb

```
No potential disulfide bond has been detected.

------
There are no additional disulphide bonds that need to be checked.
```

AF-Q5I0H9-F1-model_v4

- Estructura predicha (AlphaFold 2)
- 1 cadena
- Con parámetros por defecto se encuentra 1 puente potencial.
- Se encuentran 2 puentes adicionales para chequear.

python cysbond_pred.py -i ejemplos/AF-Q5I0H9-F1-model_v4.pdb

4	lowing poten	tial disulf	ide bonds have been d	etected:
Bond	Cys1	Cys2	Distance	Dihedral Angle
1	CYS 83 A	CYS 92 A	2.0319597721099854	85.7581536451896
+				
The fol	lowing disul	fide bonds	do not meet the requi	rements but should be reviewed:
+	lowing disul + Cys1	fide bonds + Cys2	-+	rements but should be reviewed: -++ Dihedral Angle