1.

Figure 1

Figure 1 shows a sketch of triangle ABC with AB = (x + 2) cm, BC = (3x + 10) cm, AC = 7x cm, angle $BAC = 60^{\circ}$ and angle $ACB = \theta^{\circ}$

(a) (i) Show that $17x^2 - 35x - 48 = 0$

(3)

(ii) Hence find the value of x.

(1)

(b) Hence find the value of θ giving your answer to one decimal place.

(2)

2. DNot to scale 27° Figure 1 Figure 1 shows the design for a structure used to support a roof. The structure consists of four steel beams, AB, BD, BC and AD. Given AB = 12 m, BC = BD = 7 m and angle $BAC = 27^{\circ}$ (a) find, to one decimal place, the size of angle ACB. **(3)** The steel beams can only be bought in whole metre lengths. (b) Find the minimum length of steel that needs to be bought to make the complete structure. (3)

3		
	A parallelogram <i>PQRS</i> has area 50 cm ²	
	Given	
	• PQ has length 14 cm	
	• QR has length 7 cm	
	• angle SPQ is obtuse	
	find	
	(a) the size of angle SPQ, in degrees, to 2 decimal places,	(2)
		(3)
	(b) the length of the diagonal SQ , in cm, to one decimal place.	(2)

4.

Figure 1

Figure 1 shows a sketch of a triangle ABC with AB = 3x cm, AC = 2x cm and angle $CAB = 60^{\circ}$

Given that the area of triangle ABC is $18\sqrt{3}$ cm²

(a) show that $x = 2\sqrt{3}$

(3)

(b) Hence find the exact length of BC, giving your answer as a simplified surd.

(3)

5	
In a triangle ABC, side AB has length 10 cm, side AC has length 5 cm, and angle BAC = θ where θ is measured in degrees. The area of triangle ABC is 15 cm ²	
(a) Find the two possible values of $\cos \theta$	(4)
Given that BC is the longest side of the triangle,	
(b) find the exact length of BC.	
	(2)