Doubly Robust Inference on Causal Derivative Effects for Continuous Treatments

Yikun Zhang

Joint work with Professor Yen-Chi Chen

Department of Statistics, University of Washington

ENAR 2025 Spring Meeting March 25, 2025

The Role of Derivatives in Causal Inference

Goal: Study the causal effect of a treatment $T \in \mathcal{T}$ on an outcome of interest $Y \in \mathcal{Y}$.

• $\mathbb{E}[Y(t)]$ = mean potential outcome under a static intervention T = t.

The Role of Derivatives in Causal Inference

Goal: Study the causal effect of a treatment $T \in \mathcal{T}$ on an outcome of interest $Y \in \mathcal{Y}$.

- $\mathbb{E}[Y(t)]$ = mean potential outcome under a static intervention T = t.
- When *t* varies in a continuous space, $t \mapsto \mathbb{E}[Y(t)] := m(t)$ is a curve!

The Role of Derivatives in Causal Inference

Goal: Study the causal effect of a treatment $T \in \mathcal{T}$ on an outcome of interest $Y \in \mathcal{Y}$.

- $\mathbb{E}[Y(t)]$ = mean potential outcome under a static intervention T = t.
- When *t* varies in a continuous space, $t \mapsto \mathbb{E}[Y(t)] := m(t)$ is a curve!

- While $m(t_1) = m(t_2)$, the derivative effects $m'(t_1)$, $m'(t_2)$ are distinct!
- The **derivative effect curve** $\theta(t) = m'(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ is a continuous generalization to the average treatment effect $\mathbb{E}[Y(1)] \mathbb{E}[Y(0)]$.

Our causal estimand of interest is the derivative effect curve

$$t\mapsto \theta(t)=m'(t)=rac{d}{dt}\mathbb{E}\left[Y(t)
ight]\quad ext{ for }\quad t\in\mathcal{T}\subset\mathbb{R}.$$

Our causal estimand of interest is the **derivative effect curve**

$$t\mapsto heta(t)=m'(t)=rac{d}{dt}\mathbb{E}\left[Y(t)
ight]\quad ext{ for }\quad t\in\mathcal{T}\subset\mathbb{R}.$$

Problem: $\theta(t)$ is non-regular and cannot be estimated in the rate $1/\sqrt{n}$.

Our causal estimand of interest is the **derivative effect curve**

$$t\mapsto heta(t)=m'(t)=rac{d}{dt}\mathbb{E}\left[Y(t)
ight]\quad ext{ for }\quad t\in\mathcal{T}\subset\mathbb{R}.$$

Problem: $\theta(t)$ is non-regular and cannot be estimated in the rate $1/\sqrt{n}$.

There are some closely related but distinct estimands:

• Incremental Causal/Treatment Effect (Kennedy, 2019; Rothenhäusler and Yu, 2019):

$$\mathbb{E}[Y(T+\delta)] - \mathbb{E}[Y(T)]$$
 for some deterministic $\delta > 0$.

Our causal estimand of interest is the **derivative effect curve**

$$t\mapsto heta(t)=m'(t)=rac{d}{dt}\mathbb{E}\left[Y(t)
ight]\quad ext{ for }\quad t\in\mathcal{T}\subset\mathbb{R}.$$

Problem: $\theta(t)$ is non-regular and cannot be estimated in the rate $1/\sqrt{n}$.

There are some closely related but distinct estimands:

• Incremental Causal/Treatment Effect (Kennedy, 2019; Rothenhäusler and Yu, 2019):

$$\mathbb{E}[Y(T+\delta)] - \mathbb{E}[Y(T)]$$
 for some deterministic $\delta > 0$.

• Average Derivative/Partial Effect (Powell et al., 1989; Newey and Stoker, 1993):

$$\mathbb{E}\left[\theta(T)\right] = \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}\left(Y|T,S\right)\right], \text{ where } S \in \mathcal{S} \subset \mathbb{R}^d \text{ is a covariate vector.}$$

Our causal estimand of interest is the **derivative effect curve**

$$t \mapsto \theta(t) = m'(t) = \frac{d}{dt} \mathbb{E}[Y(t)] \quad \text{for} \quad t \in \mathcal{T} \subset \mathbb{R}.$$

Problem: $\theta(t)$ is non-regular and cannot be estimated in the rate $1/\sqrt{n}$.

There are some closely related but distinct estimands:

• Incremental Causal/Treatment Effect (Kennedy, 2019; Rothenhäusler and Yu, 2019):

$$\mathbb{E}[Y(T+\delta)] - \mathbb{E}[Y(T)]$$
 for some deterministic $\delta > 0$.

Average Derivative/Partial Effect (Powell et al., 1989; Newey and Stoker, 1993):

$$\mathbb{E}\left[\theta(T)\right] = \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}\left(Y|T,S\right)\right], \text{ where } S \in \mathcal{S} \subset \mathbb{R}^d \text{ is a covariate vector.}$$

Pros These new estimands may have more realistic interpretations in the actual context.

Cons They quantify only the overall causal effects, not those at a specific level of interest.

Identification Assumptions with Observational Data

¹Some mild interchangeability assumptions are needed; see Theorem 1.1 in Shao (2003).

Identification Assumptions with Observational Data

Assumption (Identification Conditions)

- **()** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- **2** (Ignorability) Y(t) is conditionally independent of T given S for all $t \in T$.
- **(3)** (*Positivity*) The conditional density satisfies $p_{T|S}(t|s) \ge p_{\min} > 0$ for all $(t, s) \in T \times S$.

¹Some mild interchangeability assumptions are needed; see Theorem 1.1 in Shao (2003).

Identification Assumptions with Observational Data

Assumption (Identification Conditions)

- **()** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- **2** (Ignorability) Y(t) is conditionally independent of T given S for all $t \in T$.
- **(3)** (*Positivity*) The conditional density satisfies $p_{T|S}(t|s) \ge p_{\min} > 0$ for all $(t, s) \in T \times S$.

$$\theta(t) = \frac{d}{dt} \mathbb{E}\left[Y(t)\right] \stackrel{\text{(*)}^1}{=} \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}(Y|T=t,S)\right].$$

• The positivity condition is required for $\frac{\partial}{\partial t}\mu(t,s) = \frac{\partial}{\partial t}\mathbb{E}\left(Y|T=t,S=s\right)$ to be well-defined on $\mathcal{T}\times\mathcal{S}$.

¹Some mild interchangeability assumptions are needed; see Theorem 1.1 in Shao (2003).

An Example of the Positivity Violation

Assumption (Positivity Condition)

There exists a constant $p_{\min} > 0$ such that $p_{T|S}(t|s) \ge p_{\min}$ for all $(t, s) \in \mathcal{T} \times \mathcal{S}$.

▶ Positivity is a very strong assumption with continuous treatments!

An Example of the Positivity Violation

Assumption (Positivity Condition)

There exists a constant $p_{\min} > 0$ such that $p_{T|S}(t|s) \ge p_{\min}$ for all $(t, s) \in T \times S$.

▶ Positivity is a very strong assumption with continuous treatments!

$$T = \sin(\pi S) + E$$
, $E \sim \text{Uniform}[-0.3, 0.3]$, $S \sim \text{Uniform}[-1, 1]$, and $E \perp \!\!\! \perp S$.

Note that $p_{T|S}(t|s) = 0$ in the gray regions, and the positivity condition fails.

$$t \mapsto m(t) = \mathbb{E}[Y(t)]$$
 and $t \mapsto \theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ for $t \in \mathcal{T}$.

Under the positivity condition:

• Propose a doubly robust (DR) estimator of $\theta(t)$ via kernel smoothing.

$$t \mapsto m(t) = \mathbb{E}[Y(t)]$$
 and $t \mapsto \theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ for $t \in \mathcal{T}$.

Under the positivity condition:

• Propose a doubly robust (DR) estimator of $\theta(t)$ via kernel smoothing.

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)
$$\begin{cases} \Rightarrow \\ \Rightarrow \end{cases} \quad \mathsf{DR}$$

$$t\mapsto m(t)=\mathbb{E}\left[Y(t)\right] \quad \text{and} \quad t\mapsto \theta(t)=rac{d}{dt}\mathbb{E}\left[Y(t)\right] \quad \text{for} \quad t\in\mathcal{T}.$$

Under the positivity condition:

1 Propose a doubly robust (DR) estimator of $\theta(t)$ via kernel smoothing.

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)
$$\begin{cases} \Rightarrow \\ \Rightarrow \end{cases} \quad \mathsf{DR}$$

Without the positivity condition:

 $\geq m(t)$ and $\theta(t)$ are identifiable with an additive structural assumption:

$$Y(t) = \bar{m}(t) + \eta(S) + \epsilon. \tag{1}$$

$$t \mapsto m(t) = \mathbb{E}[Y(t)]$$
 and $t \mapsto \theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ for $t \in \mathcal{T}$.

Under the positivity condition:

1 Propose a doubly robust (DR) estimator of $\theta(t)$ via kernel smoothing.

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)
$$\begin{cases} \Rightarrow \\ \Rightarrow \end{cases} \quad \mathsf{DR}$$

Without the positivity condition:

0 m(t) and $\theta(t)$ are identifiable with an additive structural assumption:

$$Y(t) = \bar{m}(t) + \eta(S) + \epsilon. \tag{1}$$

8 The usual IPW estimators of m(t) and $\theta(t)$ are still biased even under model (1).

$$t \mapsto m(t) = \mathbb{E}[Y(t)]$$
 and $t \mapsto \theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ for $t \in \mathcal{T}$.

Under the positivity condition:

1 Propose a doubly robust (DR) estimator of $\theta(t)$ via kernel smoothing.

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)
$$\begin{cases} \Rightarrow \\ \Rightarrow \end{cases}$$
 DR

Without the positivity condition:

0 m(t) and $\theta(t)$ are identifiable with an additive structural assumption:

$$Y(t) = \bar{m}(t) + \eta(S) + \epsilon. \tag{1}$$

- § The usual IPW estimators of m(t) and $\theta(t)$ are still biased even under model (1).
- **4** Propose our bias-corrected IPW and DR estimators for m(t) and $\theta(t)$.
 - Has a novel connection to nonparametric support and level set estimation problems.

Nonparametric Inference on $\theta(t)$ Under Positivity

Recap of the Identification Under Positivity

Assumption (Identification Conditions)

- **(1)** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- **2** (Ignorability) Y(t) is conditionally independent of T given S for all $t \in T$.
- **(8)** (Positivity) The conditional density satisfies $p_{T|S}(t|s) \ge p_{\min} > 0$ for all $(t, s) \in T \times S$.

Given that
$$\mu(t, s) = \mathbb{E}(Y|T = t, S = s)$$
, we have

RA or G-computation:
$$\begin{cases} m(t) = \mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\mu(t,S)\right], \\ \theta(t) = \frac{d}{dt}\mathbb{E}\left[Y(t)\right] = \frac{d}{dt}\mathbb{E}\left[\mu(t,S)\right] = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t,S)\right]. \end{cases}$$

Recap of the Identification Under Positivity

Assumption (Identification Conditions)

- **(1)** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- *(Ignorability)* Y(t) *is conditionally independent of* T *given* S *for all* $t \in T$.
- (3) (Positivity) The conditional density satisfies $p_{T|S}(t|s) \ge p_{\min} > 0$ for all $(t, s) \in T \times S$.

Given that $\mu(t, s) = \mathbb{E}(Y|T = t, S = s)$, we have

RA or G-computation:
$$\begin{cases} m(t) = \mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\mu(t,S)\right], \\ \theta(t) = \frac{d}{dt}\mathbb{E}\left[Y(t)\right] = \frac{d}{dt}\mathbb{E}\left[\mu(t,S)\right] = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t,S)\right]. \end{cases}$$

IPW:
$$\begin{cases} m(t) = \mathbb{E}\left[Y(t)\right] = \lim_{h \to 0} \mathbb{E}\left[\frac{Y}{p_{T|S}(T|S)} \cdot \frac{1}{h}K\left(\frac{T-t}{h}\right)\right], \\ \theta(t) = \frac{d}{dt}\mathbb{E}\left[Y(t)\right] = ???. \end{cases}$$

- $K: \mathbb{R} \to [0, \infty)$ is a kernel function, *e.g.*, $K(u) = \begin{cases} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) & \text{(Gaussian),} \\ \frac{3}{4}(1-u^2) \cdot \mathbb{I}_{\{|u|<1\}} & \text{(Parabolic).} \end{cases}$
- h > 0 is a smoothing bandwidth parameter.

Dose-Response Curve Estimation Under Positivity

Given the observed data $\{(Y_i, T_i, S_i)\}_{i=1}^n$, there are three main strategies for estimating

$$m(t) = \mathbb{E}\left[Y(t)
ight] = \mathbb{E}\left[\mu(t,S)
ight] = \lim_{h o 0} \mathbb{E}\left[rac{Y \cdot K\left(rac{T-t}{h}
ight)}{h \cdot p_{T|S}(T|S)}
ight].$$

RA Estimator (Robins, 1986; Gill and Robins, 2001):

$$\widehat{m}_{\mathrm{RA}}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}(t, S_i).$$

2 IPW Estimator (Hirano and Imbens, 2004; Imai and van Dyk, 2004):

$$\widehat{m}_{\mathrm{IPW}}(t) = \frac{1}{nh} \sum_{i=1}^{n} \frac{K\left(\frac{T_i - t}{h}\right)}{\widehat{p}_{T|S}(T_i|S_i)} \cdot Y_i.$$

3 DR Estimator (Kallus and Zhou, 2018; Colangelo and Lee, 2020):

$$\widehat{m}_{\mathrm{DR}}(t) = rac{1}{nh} \sum_{i=1}^n \left\{ rac{K\left(rac{T_i - t}{h}
ight)}{\widehat{p}_{T|S}(T_i|S_i)} \cdot \left[Y_i - \widehat{\mu}(t,S_i)
ight] + h \cdot \widehat{\mu}(t,S_i)
ight\}.$$

RA and IPW Estimators of $\theta(t)$ Under Positivity

To estimate $\theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)] = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S)\right]$ from $\{(Y_i, T_i, S_i)\}_{i=1}^n$, we could also have three strategies:

RA Estimator:

$$\widehat{ heta}_{\mathrm{RA}}(t) = rac{1}{n} \sum_{i=1}^n \widehat{eta}(t, S_i) \quad ext{with} \quad eta(t, s) = rac{\partial}{\partial t} \mu(t, s).$$

Question: How can we generalize the IPW form $m(t) = \lim_{h \to 0} \mathbb{E}\left[\frac{Y \cdot \mathcal{K}\left(\frac{T-t}{h}\right)}{h \cdot p_{T|S}(T|S)}\right]$ to identify and estimate $\theta(t)$?

RA and IPW Estimators of $\theta(t)$ Under Positivity

To estimate $\theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)] = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S)\right]$ from $\{(Y_i, T_i, S_i)\}_{i=1}^n$, we could also have three strategies:

RA Estimator:

$$\widehat{ heta}_{\mathrm{RA}}(t) = rac{1}{n} \sum_{i=1}^n \widehat{eta}(t, S_i) \quad ext{with} \quad eta(t, s) = rac{\partial}{\partial t} \mu(t, s).$$

Question: How can we generalize the IPW form $m(t) = \lim_{h \to 0} \mathbb{E}\left[\frac{Y \cdot \mathcal{K}\left(\frac{T-t}{h}\right)}{h \cdot p_{T|S}(T|S)}\right]$ to identify and estimate $\theta(t)$?

IPW Estimator: Inspired by the derivative estimator in Mack and Müller (1989), we propose

$$\widehat{\theta}_{\mathrm{IPW}}(t) = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i \cdot \left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right)}{h^2 \cdot \kappa_2 \cdot \widehat{p}_{T|S}(T_i|S_i)} \quad \text{with} \quad \kappa_2 = \int u^2 \cdot K(u) \, du.$$

Doubly Robust Estimator for $\theta(t)$ Under Positivity

$$\widehat{\theta}_{\text{RA}}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\beta}(t, S_i) \qquad \text{"+"} \qquad \widehat{\theta}_{\text{IPW}}(t) = \frac{1}{nh^2} \sum_{i=1}^{n} \frac{\left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right)}{\kappa_2 \cdot \widehat{p}_{T|S}(T_i|S_i)} \cdot Y_i \implies$$

$$\widehat{\theta}_{\mathrm{DR}}(t) = \underbrace{\frac{1}{nh^2} \sum_{i=1}^{n} \frac{\left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right)}{\kappa_2 \cdot \widehat{p}_{T|S}(T_i|S_i)} \left[Y_i - \widehat{\mu}(t, S_i) - (T_i - t) \cdot \widehat{\beta}(t, S_i) \right]}_{\mathrm{New IPW component}} + \underbrace{\frac{1}{n} \sum_{i=1}^{n} \widehat{\beta}(t, S_i)}_{\mathrm{RA component}}$$

Doubly Robust Estimator for $\theta(t)$ Under Positivity

$$\widehat{\theta}_{\text{RA}}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\beta}(t, S_i) \qquad \text{"+"} \qquad \widehat{\theta}_{\text{IPW}}(t) = \frac{1}{nh^2} \sum_{i=1}^{n} \frac{\left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right)}{\kappa_2 \cdot \widehat{p}_{T|S}(T_i|S_i)} \cdot Y_i \implies$$

$$\widehat{\theta}_{\mathrm{DR}}(t) = \underbrace{\frac{1}{nh^2} \sum_{i=1}^{n} \frac{\left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right)}{\kappa_2 \cdot \widehat{p}_{T|S}(T_i|S_i)} \left[Y_i - \widehat{\mu}(t, S_i) - (T_i - t) \cdot \widehat{\beta}(t, S_i)\right]}_{\mathrm{New IPW component}} + \underbrace{\frac{1}{n} \sum_{i=1}^{n} \widehat{\beta}(t, S_i)}_{\mathrm{RA component}}.$$

The "New IPW component" leverages a local polynomial approximation to push the residual of the IPW component to (roughly) second order.

• Neyman orthogonality (Neyman, 1959; Chernozhukov et al., 2018) holds for this form of $\hat{\theta}_{DR}(t)$ as $h \to 0$.

Asymptotic Properties of $\widehat{\theta}_{DR}(t)$

Theorem (Theorem 1 in Zhang and Chen 2025)

Under some regularity assumptions and

- $\widehat{\mu}, \widehat{\beta}, \widehat{p}_{T|S}$ are estimated on a dataset independent of $\{(Y_i, T_i, S_i)\}_{i=1}^n$;
- at least one of the model specification conditions hold:
 - $\widehat{p}_{T|S}(t|s) \stackrel{P}{\to} \overline{p}_{T|S}(t|s) = p_{T|S}(t|s)$ (conditional density model),
 - $\widehat{\mu}(t,s) \stackrel{P}{\to} \overline{\mu}(t,s) = \mu(t,s)$ and $\widehat{\beta}(t,s) \stackrel{P}{\to} \overline{\beta}(t,s) = \beta(t,s)$ (outcome model);
- $\sup_{|u-t|\leq h}\left|\left|\widehat{p}_{T|S}(u|S)-p_{T|S}(u|S)\right|\right|_{L_2}\left[\left|\left|\widehat{\mu}(t,S)-\mu(t,S)\right|\right|_{L_2}+h\left|\left|\widehat{\beta}(t,S)-\beta(t,S)\right|\right|_{L_2}\right]=o_P\left(\frac{1}{\sqrt{nh}}\right),$

we prove that

Asymptotic Properties of $\widehat{\theta}_{DR}(t)$

Theorem (Theorem 1 in Zhang and Chen 2025)

Under some regularity assumptions and

- $igoplus \widehat{\mu}, \widehat{eta}, \widehat{p}_{T|S}$ are estimated on a dataset independent of $\{(Y_i, T_i, S_i)\}_{i=1}^n$;
- at least one of the model specification conditions hold:
 - $\widehat{p}_{T|S}(t|s) \stackrel{P}{\to} \overline{p}_{T|S}(t|s) = p_{T|S}(t|s)$ (conditional density model),
 - $\widehat{\mu}(t,s) \stackrel{P}{\to} \overline{\mu}(t,s) = \mu(t,s)$ and $\widehat{\beta}(t,s) \stackrel{P}{\to} \overline{\beta}(t,s) = \beta(t,s)$ (outcome model);
- $\sup_{|u-t| \leq h} \left| \left| \widehat{p}_{T|S}(u|S) p_{T|S}(u|S) \right| \right|_{L_2} \left[\left| \left| \widehat{\mu}(t,S) \mu(t,S) \right| \right|_{L_2} + h \left| \left| \widehat{\beta}(t,S) \beta(t,S) \right| \right|_{L_2} \right] = o_P \left(\frac{1}{\sqrt{nh}} \right),$

we prove that

$$\sqrt{nh^3}\left[\widehat{ heta}_{\mathrm{DR}}(t)- heta(t)
ight]=rac{1}{\sqrt{n}}\sum\limits_{i=1}^{n}oldsymbol{\phi}_{h,t}\left(Y_i,T_i,S_i;ar{\mu},ar{eta},ar{p}_{T|S}
ight)+o_P(1).$$

$$\sqrt{nh^3}\left[\widehat{ heta}_{\mathrm{DR}}(t)- heta(t)-h^2B_{ heta}(t)
ight]\overset{d}{
ightarrow}\mathcal{N}\left(0,V_{ heta}(t)
ight).$$

An asymptotically valid inference on $\theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ can be conducted through

$$\sqrt{nh^3}\left[\widehat{\theta}_{\mathrm{DR}}(t)-\theta(t)-h^2\,B_{\theta}(t)
ight]\overset{d}{
ightarrow}\mathcal{N}\left(0,rac{V_{\theta}(t)}{}
ight).$$

An asymptotically valid inference on $\theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ can be conducted through

$$\sqrt{nh^3}\left[\widehat{\theta}_{\mathrm{DR}}(t)-\theta(t)-h^2\,B_{\theta}(t)
ight]\overset{d}{
ightarrow}\mathcal{N}\left(0,rac{V_{ heta}(t)}{}
ight).$$

lacksquare We estimate $V_{ heta}(t) = \mathbb{E}\left[\phi_{ar{h},t}^2\left(Y,T,S;ar{\mu},ar{ar{eta}},ar{p}_{T|S}
ight)
ight]$ with

$$\phi_{h,t}\left(Y,T,S;ar{\mu},ar{eta},ar{p}_{T|S}
ight) = rac{\left(rac{T-t}{h}
ight)K\left(rac{T-t}{h}
ight)}{\sqrt{h}\cdot\kappa_2\cdotar{p}_{T|S}(T|S)}\cdot\left[Y-ar{\mu}(t,S)-(T-t)\cdotar{eta}(t,S)
ight]$$

by
$$\widehat{V}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \phi_{h,t}^{2} (Y, T, S; \widehat{\mu}, \widehat{\beta}, \widehat{p}_{T|S}).$$

An asymptotically valid inference on $\theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ can be conducted through

$$\sqrt{nh^3}\left[\widehat{\theta}_{\mathrm{DR}}(t)-\theta(t)-h^2\,B_{\theta}(t)\right]\overset{d}{
ightarrow}\mathcal{N}\left(0,\frac{V_{\theta}(t)}{}\right).$$

lacksquare We estimate $V_{ heta}(t) = \mathbb{E}\left[\phi_{h,t}^2\left(Y,T,S;ar{\mu},ar{eta},ar{p}_{T|S}
ight)
ight]$ with

$$\phi_{h,t}\left(Y,T,S;\bar{\mu},\bar{\beta},\bar{p}_{T|S}\right) = \frac{\left(\frac{T-t}{h}\right)K\left(\frac{T-t}{h}\right)}{\sqrt{h}\cdot\kappa_{2}\cdot\bar{p}_{T|S}(T|S)}\cdot\left[Y-\bar{\mu}(t,S)-(T-t)\cdot\bar{\beta}(t,S)\right]$$

by
$$\widehat{V}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \phi_{h,t}^{2} \left(Y, T, S; \widehat{\mu}, \widehat{\beta}, \widehat{p}_{T|S} \right).$$

② $\hat{\mu}$, $\hat{\beta}$, $\hat{p}_{T|S}$ can be estimated via sample-splitting or cross-fitting.

An asymptotically valid inference on $\theta(t) = \frac{d}{dt}\mathbb{E}[Y(t)]$ can be conducted through

$$\sqrt{nh^3}\left[\widehat{\theta}_{\mathrm{DR}}(t)-\theta(t)-h^2\,B_{\theta}(t)
ight]\overset{d}{
ightarrow}\mathcal{N}\left(0,rac{V_{\theta}(t)}{}
ight).$$

 \blacksquare We estimate $V_{ heta}(t) = \mathbb{E}\left[\phi_{h,t}^2\left(Y,T,S;ar{\mu},ar{eta},ar{p}_{T|S}
ight)
ight]$ with

$$\phi_{h,t}\left(Y,T,S;ar{\mu},ar{eta},ar{p}_{T|S}
ight) = rac{\left(rac{T-t}{h}
ight)K\left(rac{T-t}{h}
ight)}{\sqrt{ar{h}\cdot \kappa_2\cdotar{p}_{T|S}(T|S)}}\cdot\left[Y-ar{\mu}(t,S)-(T-t)\cdotar{eta}(t,S)
ight]$$

by
$$\widehat{V}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \phi_{h,t}^{2} (Y, T, S; \widehat{\mu}, \widehat{\beta}, \widehat{p}_{T|S}).$$

- $@\widehat{\mu},\widehat{eta},\widehat{p}_{T|S}$ can be estimated via sample-splitting or cross-fitting.
- 3 The explicit form of $B_{\theta}(t)$ is complicated, but $h^2 B_{\theta}(t)$ is asymptotically negligible when $h = O(n^{-\frac{1}{5}})$.
 - This order aligns with the outputs from usual bandwidth selection methods (Wand and Jones, 1994; Wasserman, 2006).

Nonparametric Efficiency Guarantee for $\widehat{\theta}_{\mathrm{DR}}(t)$

Question: Do we have a nonparametric efficiency lower bound for $\widehat{\theta}_{DR}(t)$?

²I acknowledge Ted Westling and Aaron Hudson for pointing out this direction.

Nonparametric Efficiency Guarantee for $\widehat{\theta}_{\mathrm{DR}}(t)$

Question: Do we have a nonparametric efficiency lower bound for $\widehat{\theta}_{DR}(t)$?

• $t \mapsto \theta(t) := \Psi(P_0)(t)$ is *not* pathwise differentiable (Bickel et al., 1998; Hirano and Porter, 2012; Luedtke and van der Laan, 2016):

$$\forall t \in \mathcal{T}, \quad \exists \left\{ P_{\epsilon} : \epsilon \in \mathbb{R} \right\} \quad \text{ s.t. } \quad \lim_{\epsilon \to 0} \frac{\Psi(P_{\epsilon})(t) - \Psi(P_{0})(t)}{\epsilon} \quad \text{ does not exist.}$$

²I acknowledge Ted Westling and Aaron Hudson for pointing out this direction.

Nonparametric Efficiency Guarantee for $\widehat{\theta}_{\mathrm{DR}}(t)$

Question: Do we have a nonparametric efficiency lower bound for $\widehat{\theta}_{DR}(t)$?

• $t \mapsto \theta(t) := \Psi(P_0)(t)$ is *not* pathwise differentiable (Bickel et al., 1998; Hirano and Porter, 2012; Luedtke and van der Laan, 2016):

$$\forall t \in \mathcal{T}, \quad \exists \left\{ P_{\epsilon} : \epsilon \in \mathbb{R} \right\} \quad \text{ s.t. } \quad \lim_{\epsilon \to 0} \frac{\Psi(P_{\epsilon})(t) - \Psi(P_{0})(t)}{\epsilon} \quad \text{ does not exist.}$$

• For a fixed h > 0, the smooth functional $\Phi(P_0)(t) := \mathbb{E}\left[\frac{Y \cdot \left(\frac{T-t}{h}\right) K\left(\frac{T-t}{h}\right)}{h^2 \cdot \kappa_2 \cdot p_{T|S}(T|S)}\right]$ is pathwise differentiable (van der Laan et al., 2018; Takatsu and Westling, 2024).

²I acknowledge Ted Westling and Aaron Hudson for pointing out this direction.

Nonparametric Efficiency Guarantee for $\widehat{\theta}_{\mathrm{DR}}(t)$

Question: Do we have a nonparametric efficiency lower bound for $\widehat{\theta}_{DR}(t)$?

• $t \mapsto \theta(t) := \Psi(P_0)(t)$ is *not* pathwise differentiable (Bickel et al., 1998; Hirano and Porter, 2012; Luedtke and van der Laan, 2016):

$$\forall t \in \mathcal{T}, \quad \exists \left\{ P_{\epsilon} : \epsilon \in \mathbb{R} \right\} \quad \text{s.t.} \quad \lim_{\epsilon \to 0} \frac{\Psi(P_{\epsilon})(t) - \Psi(P_{0})(t)}{\epsilon} \quad \text{does not exist.}$$

- For a fixed h > 0, the smooth functional $\Phi(P_0)(t) := \mathbb{E}\left[\frac{Y \cdot \left(\frac{T-t}{h}\right)K\left(\frac{T-t}{h}\right)}{h^2 \cdot \kappa_2 \cdot p_{T|S}(T|S)}\right]$ is pathwise differentiable (van der Laan et al., 2018; Takatsu and Westling, 2024).
- Up to a shrinking bias $O(h^2)$, the efficient influence function for $\Phi(P_0)(t)$ leads to

$$\widehat{ heta}_{ ext{EIF}}(t) = rac{1}{nh^2} \sum_{i=1}^n rac{\left(rac{T_i - t}{h}
ight) K\left(rac{T_i - t}{h}
ight)}{\kappa_2 \cdot \widehat{p}_{T|S}(T_i|S_i)} \left[Y_i - \widehat{\mu}(T_i, S_i)
ight] + rac{1}{n} \sum_{i=1}^n \widehat{eta}(t, S_i).$$

▶ The asymptotic variances of $\hat{\theta}_{DR}(t)$ and $\hat{\theta}_{EIF}(t)$ are the same (or differing by $O(h^2)$)!

²I acknowledge Ted Westling and Aaron Hudson for pointing out this direction.

Nonparametric Inference on $\theta(t)$ Without Positivity

Identification Strategy Without Positivity

Assumption (Identification Conditions)

- **()** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- ② (Ignorability) Y(t) is conditionally independent of T given S for all $t \in T$.
- **(3)** (Treatment Variation) Var(T|S = s) > 0 for all $s \in S$.

Identification Strategy Without Positivity

Assumption (Identification Conditions)

- **()** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- ② (Ignorability) Y(t) is conditionally independent of T given S for all $t \in T$.
- **(3)** (Treatment Variation) Var(T|S = s) > 0 for all $s \in S$.

Assumption (Extrapolation; Zhang et al. 2024)

Assume $(t, s) \mapsto \mathbb{E}[Y(t)|S = s]$ to be differentiable w.r.to t for any $(t, s) \in \mathcal{T} \times \mathcal{S}$ with $p_{S|T}(s|t) > 0$ and

$$\theta(t) = \frac{d}{dt} \mathbb{E} [Y(t)] = \mathbb{E} \left[\frac{\partial}{\partial t} \mathbb{E} [Y(t)|S] \right]$$

$$\stackrel{*}{=} \mathbb{E} \left[\frac{\partial}{\partial t} \mathbb{E} [Y(t)|S] \middle| T = t \right].$$

Additionally, it holds true that $\mathbb{E}(Y) = \mathbb{E}[m(T)]$.

$$\theta(t) = \frac{d}{dt} \mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}\left[Y(t)|S\right]\right] \stackrel{\star}{=} \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}\left[Y(t)|S\right]|T = t\right].$$

$$\theta(t) = \frac{d}{dt} \mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}\left[Y(t)|S\right]\right] \stackrel{\star}{=} \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}\left[Y(t)|S\right] \middle| T = t\right].$$

Proposition 2 in Zhang et al. (2024) shows that the above equality holds under an additive structural assumption

$$Y(t) = \bar{m}(t) + \eta(S) + \epsilon.$$

- $\bar{m}: \mathcal{T} \to \mathbb{R}$ and $\eta: \mathcal{S} \to \mathbb{R}$ are deterministic functions.
- $\epsilon \in \mathbb{R}$ is an independent noise variable with $\mathbb{E}(\epsilon) = 0$ and $\mathrm{Var}(\epsilon) > 0$.

$$\theta(t) = \frac{d}{dt} \mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}\left[Y(t)|S\right]\right] \stackrel{\star}{=} \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}\left[Y(t)|S\right] \middle| T = t\right].$$

Proposition 2 in Zhang et al. (2024) shows that the above equality holds under an additive structural assumption

$$Y(t) = \bar{m}(t) + \eta(S) + \epsilon.$$

- $\bar{m}: \mathcal{T} \to \mathbb{R}$ and $\eta: \mathcal{S} \to \mathbb{R}$ are deterministic functions.
- $\epsilon \in \mathbb{R}$ is an independent noise variable with $\mathbb{E}(\epsilon) = 0$ and $\text{Var}(\epsilon) > 0$.
- Identification:

$$m(t) = \mathbb{E}\left[Y + \int_{u=T}^{u=t} \theta(u) du\right]$$
 and $\theta(t) = \int \frac{\partial}{\partial t} \mu(t, s) dF_{S|T}(s|t)$.

$$\theta(t) = \frac{d}{dt} \mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}\left[Y(t)|S\right]\right] \stackrel{\star}{=} \mathbb{E}\left[\frac{\partial}{\partial t} \mathbb{E}\left[Y(t)|S\right] \middle| T = t\right].$$

Proposition 2 in Zhang et al. (2024) shows that the above equality holds under an additive structural assumption

$$Y(t) = \bar{m}(t) + \eta(S) + \epsilon.$$

- $\bar{m}: \mathcal{T} \to \mathbb{R}$ and $\eta: \mathcal{S} \to \mathbb{R}$ are deterministic functions.
- $\epsilon \in \mathbb{R}$ is an independent noise variable with $\mathbb{E}(\epsilon) = 0$ and $\text{Var}(\epsilon) > 0$.
- Identification:

$$m(t) = \mathbb{E}\left[Y + \int_{u-T}^{u=t} \theta(u) du\right]$$
 and $\theta(t) = \int \frac{\partial}{\partial t} \mu(t,s) dF_{S|T}(s|t).$

• RA estimator without positivity:

$$\widehat{m}_{C,RA}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{\widetilde{t}=T_i}^{\widetilde{t}=t} \widehat{\theta}_{C,RA}(\widetilde{t}) d\widetilde{t} \right] \quad \text{and} \quad \widehat{\theta}_{C,RA}(t) = \int \widehat{\beta}(t,s) d\widehat{F}_{S|T}(s|t).$$

Question: How about IPW and DR estimators of $\theta(t)$ (and m(t)) without positivity?

• For identification, we assume $Y(t) = \overline{m}(t) + \eta(S) + \epsilon$.

Question: How about IPW and DR estimators of $\theta(t)$ (and m(t)) without positivity?

- For identification, we assume $Y(t) = \bar{m}(t) + \eta(S) + \epsilon$.
- Recall the standard (oracle) IPW estimators of m(t) and $\theta(t)$:

$$\widetilde{m}_{\mathrm{IPW}}(t) = \frac{1}{nh} \sum_{i=1}^{n} \frac{Y_i \cdot K\left(\frac{T_i - t}{h}\right)}{p_{T|S}(T_i|S_i)} \quad \text{and} \quad \widetilde{\theta}_{\mathrm{IPW}}(t) = \frac{1}{nh^2} \sum_{i=1}^{n} \frac{Y_i \cdot \left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right)}{\kappa_2 \cdot p_{T|S}(T_i|S_i)}.$$

Question: How about IPW and DR estimators of $\theta(t)$ (and m(t)) without positivity?

- For identification, we assume $Y(t) = \bar{m}(t) + \eta(S) + \epsilon$.
- Recall the standard (oracle) IPW estimators of m(t) and $\theta(t)$:

$$\widetilde{m}_{\mathrm{IPW}}(t) = \frac{1}{nh} \sum_{i=1}^{n} \frac{Y_i \cdot K\left(\frac{T_i - t}{h}\right)}{p_{T|S}(T_i|S_i)} \quad \text{and} \quad \widetilde{\theta}_{\mathrm{IPW}}(t) = \frac{1}{nh^2} \sum_{i=1}^{n} \frac{Y_i \cdot \left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right)}{\kappa_2 \cdot p_{T|S}(T_i|S_i)}.$$

Proposition (Proposition 2 in Zhang and Chen 2025)

$$\lim_{h \to 0} \mathbb{E}\left[\widetilde{m}_{\mathrm{IPW}}(t)\right] = \overline{m}(t) \cdot \rho(t) + \omega(t) \neq m(t), \qquad \text{with} \quad \rho(t) = \mathbb{P}\left(S \in \mathcal{S}(t)\right),$$

$$\lim_{h\to 0} \mathbb{E}\left[\widetilde{\theta}_{\mathrm{IPW}}(t)\right] = \begin{cases} \bar{m}'(t)\cdot\rho(t) \\ \infty \end{cases} \neq \theta(t), \qquad and \quad \omega(t) = \mathbb{E}\left[\eta(S)\mathbb{1}_{\{S\in\mathcal{S}(t)\}}\right].$$

Question: How about IPW and DR estimators of $\theta(t)$ (and m(t)) without positivity?

- For identification, we assume $Y(t) = \bar{m}(t) + \eta(S) + \epsilon$.
- Recall the standard (oracle) IPW estimators of m(t) and $\theta(t)$:

$$\widetilde{m}_{\mathrm{IPW}}(t) = \frac{1}{nh} \sum_{i=1}^{n} \frac{Y_i \cdot K\left(\frac{T_i - t}{h}\right)}{p_{T|S}(T_i|S_i)} \quad \text{and} \quad \widetilde{\theta}_{\mathrm{IPW}}(t) = \frac{1}{nh^2} \sum_{i=1}^{n} \frac{Y_i \cdot \left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right)}{\kappa_2 \cdot p_{T|S}(T_i|S_i)}.$$

Proposition (Proposition 2 in Zhang and Chen 2025)

$$\lim_{h\to 0} \mathbb{E}\left[\widetilde{m}_{\mathrm{IPW}}(t)\right] = \overline{m}(t) \cdot \rho(t) + \omega(t) \neq m(t), \qquad \text{with} \quad \rho(t) = \mathbb{P}\left(S \in \mathcal{S}(t)\right),$$

$$\lim_{h\to 0} \mathbb{E}\left[\widetilde{\theta}_{\mathrm{IPW}}(t)\right] = \begin{cases} \overline{m}'(t) \cdot \rho(t) \\ \infty \end{cases} \neq \theta(t), \qquad \text{and} \quad \omega(t) = \mathbb{E}\left[\eta(S)\mathbb{1}_{\{S \in \mathcal{S}(t)\}}\right].$$

▶ **Key Issue:** The conditional support S(t) of $p_{S|T}(s|t)$ and the marginal support S of $p_S(s)$ are different under the violations of positivity!!

Bias-Corrected IPW Estimator for $\theta(t)$

$$\mathbb{E}\left[\frac{Y\cdot\left(\frac{T-t}{h}\right)K\left(\frac{T-t}{h}\right)p_{S|T}(S|t)}{h^2\cdot\kappa_2\cdot p_{T|S}(T|S)\cdot p_S(S)}\right] = \bar{m}'(t) + O(h^2) + \text{"Non-vanishing Bias"}.$$

Bias-Corrected IPW Estimator for $\theta(t)$

$$\mathbb{E}\left[\frac{Y\cdot\left(\frac{T-t}{h}\right)K\left(\frac{T-t}{h}\right)p_{S|T}(S|t)}{h^2\cdot\kappa_2\cdot p_{T|S}(T|S)\cdot p_S(S)}\right] = \bar{m}'(t) + O(h^2) + \text{"Non-vanishing Bias"}.$$

@ We replace $p_{S|T}(s|t)$ with a ζ-interior conditional density $p_{\zeta}(s|t)$ so that

$${s \in \mathcal{S}(t) : p_{\zeta}(s|t) > 0} \subset \mathcal{S}(t+\delta)$$
 for any $\delta \in [-h,h]$.

Bias-Corrected IPW Estimator for $\theta(t)$

$$\mathbb{E}\left[\frac{Y\cdot\left(\frac{T-t}{h}\right)K\left(\frac{T-t}{h}\right)p_{S|T}(S|t)}{h^2\cdot\kappa_2\cdot p_{T|S}(T|S)\cdot p_S(S)}\right] = \bar{m}'(t) + O(h^2) + \text{"Non-vanishing Bias"}.$$

We replace $p_{S|T}(s|t)$ with a ζ -interior conditional density $p_{\zeta}(s|t)$ so that

$${s \in S(t) : p_{\zeta}(s|t) > 0} \subset S(t+\delta)$$
 for any $\delta \in [-h,h]$.

Now, we have that

$$\mathbb{E}\left[\left. rac{Y \cdot \left(rac{T-t}{h}
ight) K\left(rac{T-t}{h}
ight) p_{\zeta}(oldsymbol{S}|t)}{h^2 \cdot \kappa_2 \cdot p_{T|S}(T|S) \cdot p_S(S)}
ight] = ar{m}'(t) + O(h^2)$$

ζ -Interior Conditional Density

Question: How can we find a ζ -interior conditional density $p_{\zeta}(s|t)$?

ζ -Interior Conditional Density

Question: How can we find a ζ -interior conditional density $p_{\zeta}(s|t)$?

Support shrinking approach

$$\mathcal{S}(t) \ominus \zeta = \left\{ s \in \mathcal{S}(t) : \inf_{x \in \partial \mathcal{S}(t)} \left| \left| s - x \right| \right|_2 \ge \zeta \right\},$$

$$p_{\zeta}(s|t) = \frac{p_{S|T}(s|t) \cdot \mathbb{1}_{\{s \in \mathcal{S}(t) \ominus \zeta\}}}{\int_{\mathcal{S}(t) \ominus \zeta} p_{S|T}(s_1|t) ds_1}.$$

Level set approach

$$\mathcal{L}_{\zeta}(t) = \left\{ s \in \mathcal{S}(t) : p_{S|T}(s|t) \geq \zeta \right\},$$

$$p_{\zeta}(s|t) = \frac{p_{S|T}(s|t) \cdot \mathbb{1}_{\{s \in \mathcal{L}_{\zeta}(t)\}}}{\int_{\mathcal{L}_{\zeta}(t)} p_{S|T}(s_1|t) ds_1}.$$

Bias-Corrected IPW and DR Estimators of $\theta(t)$

▶ Bias-Corrected IPW Estimator Without Positivity:

$$\widehat{\theta}_{\text{C,IPW}}(t) = \frac{1}{nh^2} \sum_{i=1}^{n} \frac{Y_i \cdot \left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right) \widehat{p}_{\zeta}(S_i | t)}{\kappa_2 \cdot \widehat{p}(T_i, S_i)},$$

• $\widehat{p}(t, s)$, $\widehat{p}_{\zeta}(s|t)$ are estimators of p(t, s), $p_{\zeta}(s|t)$ and $\zeta = 0.5 \cdot \max\{\widehat{p}_{S|T}(S_i|t) : i = 1, ..., n\}$.

Bias-Corrected IPW and DR Estimators of $\theta(t)$

▶ Bias-Corrected IPW Estimator Without Positivity:

$$\widehat{\theta}_{\mathrm{C,IPW}}(t) = \frac{1}{nh^2} \sum_{i=1}^{n} \frac{Y_i \cdot \left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right) \widehat{p}_{\zeta}(S_i | t)}{\kappa_2 \cdot \widehat{p}(T_i, S_i)},$$

- $\widehat{p}(t, s)$, $\widehat{p}_{\zeta}(s|t)$ are estimators of p(t, s), $p_{\zeta}(s|t)$ and $\zeta = 0.5 \cdot \max\{\widehat{p}_{S|T}(S_i|t) : i = 1, ..., n\}$.
- **▶** Bias-Corrected DR Estimator Without Positivity:

$$\widehat{\theta}_{\text{C,DR}}(t) = \underbrace{\frac{1}{nh^2} \sum_{i=1}^{n} \frac{\left(\frac{T_i - t}{h}\right) K\left(\frac{T_i - t}{h}\right) \widehat{p}_{\zeta}(S_i | t)}{\kappa_2 \cdot \widehat{p}(T_i, S_i)} \left[Y_i - \widehat{\mu}(t, S_i) - (T_i - t) \cdot \widehat{\beta}(t, S_i) \right]}_{\text{IPW component}} + \underbrace{\int \widehat{\beta}(t, s) \cdot \widehat{p}_{\zeta}(s | t) \, ds}_{\text{RA component}}.$$

Asymptotic Properties of $\widehat{\theta}_{C,DR}(t)$ Without Positivity

Theorem (Theorem 5 in Zhang and Chen 2025)

Under some regularity assumptions and

- **1** $\widehat{\mu}$, $\widehat{\beta}$, \widehat{p} , \widehat{p}_{ζ} are estimated on a dataset independent of $\{(Y_i, T_i, S_i)\}_{i=1}^n$;
- 3 at least one of the model specification conditions hold:
 - $\widehat{p}(t,s) \stackrel{P}{\to} \overline{p}(t,s) = p(t,s)$ (joint density model),
 - $\widehat{\mu}(t,s) \stackrel{P}{\to} \overline{\mu}(t,s) = \mu(t,s)$ and $\widehat{\beta}(t,s) \stackrel{P}{\to} \overline{\beta}(t,s) = \beta(t,s)$ (outcome model);
- $\sup_{|u-t|\leq h}||\widehat{p}(u,S)-p(u,S)||_{L_2}\left[||\widehat{\mu}(t,S)-\mu(t,S)||_{L_2}+h\left|\left|\widehat{\beta}(t,S)-\beta(t,S)\right|\right|_{L_2}\right]=o_P\left(\frac{1}{\sqrt{nh}}\right),$ we prove that
- $\sqrt{nh^3}\left[\widehat{\theta}_{\mathrm{C,DR}}(t) \theta(t)\right] = \frac{1}{\sqrt{n}}\sum_{i=1}^n \phi_{\mathrm{C},h,t}\left(Y_i,T_i,S_i;\bar{\mu},\bar{\beta},\bar{p}_{T|S}\right) + o_P(1).$
- $\sqrt{nh^3} \left[\widehat{\theta}_{\mathsf{C},\mathsf{DR}}(t) \theta(t) h^2 \cdot B_{\mathsf{C},\theta}(t) \right] \overset{d}{\to} \mathcal{N} \left(0, V_{\mathsf{C},\theta}(t) \right).$

Simulations and Case Study

Simulations for $\hat{\theta}_{C,RA}(t)$, $\hat{\theta}_{C,IPW}(t)$, $\hat{\theta}_{C,DR}(t)$ Without Positivity

Note: $\beta(t, s) = \frac{\partial}{\partial t} \mu(t, s)$ is estimated via automatic differentiation of a well-trained neural network (inspired by Luedtke 2024).

A Case Study Under Positivity

We compare our proposed DR estimator $\hat{\theta}_{DR}(t)$ under positivity with the finite-difference method (Colangelo and Lee 2020; CL20) on the U.S. Job Corps program (Schochet et al., 2001).

A Case Study Under Positivity

We compare our proposed DR estimator $\hat{\theta}_{DR}(t)$ under positivity with the finite-difference method (Colangelo and Lee 2020; CL20) on the U.S. Job Corps program (Schochet et al., 2001).

- Y is the proportion of weeks employed in 2^{nd} year after enrollment.
- *T* is the total hours of academic and vocational training received.
- *S* comprises 49 socioeconomic characteristics, and n = 4024.

A Case Study Under Positivity

We compare our proposed DR estimator $\hat{\theta}_{DR}(t)$ under positivity with the finite-difference method (Colangelo and Lee 2020; CL20) on the U.S. Job Corps program (Schochet et al., 2001).

- Y is the proportion of weeks employed in 2^{nd} year after enrollment.
- *T* is the total hours of academic and vocational training received.
- *S* comprises 49 socioeconomic characteristics, and n = 4024.

We study (nonparametric) doubly robust inference on $\theta(t) = \frac{d}{dt}\mathbb{E}\left[Y(t)\right]$, $t \in \mathcal{T} \subset \mathbb{R}$.

We study (nonparametric) doubly robust inference on $\theta(t) = \frac{d}{dt}\mathbb{E}\left[Y(t)\right], t \in \mathcal{T} \subset \mathbb{R}$.

- Under the positivity condition:
 - We propose $\widehat{\theta}_{DR}(t)$ with standard nonparametric consistency and efficiency guarantee:

$$\sqrt{nh^3}\left[\widehat{\theta}_{\mathrm{DR}}(t)-\theta(t)-h^2B_{\theta}(t)\right]\overset{d}{\to}\mathcal{N}\left(0,V_{\theta}(t)\right).$$

We study (nonparametric) doubly robust inference on $\theta(t) = \frac{d}{dt}\mathbb{E}\left[Y(t)\right]$, $t \in \mathcal{T} \subset \mathbb{R}$.

- Under the positivity condition:
 - We propose $\widehat{\theta}_{DR}(t)$ with standard nonparametric consistency and efficiency guarantee:

$$\sqrt{nh^3}\left[\widehat{\theta}_{\mathrm{DR}}(t)-\theta(t)-h^2B_{\theta}(t)\right]\overset{d}{
ightarrow}\mathcal{N}\left(0,V_{\theta}(t)\right).$$

- Without the positivity condition:
 - Our bias-corrected IPW and DR estimators $\hat{\theta}_{C,IPW}(t)$, $\hat{\theta}_{C,DR}(t)$ reveal interesting connections to nonparametric level set estimation problems (Bonvini et al., 2023):

Causal Inference ←⇒ Geometric Data Analysis (https://uwgeometry.github.io/)!

We study (nonparametric) doubly robust inference on $\theta(t) = \frac{d}{dt}\mathbb{E}\left[Y(t)\right], t \in \mathcal{T} \subset \mathbb{R}$.

- **••** Under the positivity condition:
 - We propose $\widehat{\theta}_{\mathrm{DR}}(t)$ with standard nonparametric consistency and efficiency guarantee:

$$\sqrt{nh^3}\left[\widehat{\theta}_{\mathrm{DR}}(t) - \theta(t) - h^2B_{\theta}(t)\right] \stackrel{d}{\to} \mathcal{N}\left(0, V_{\theta}(t)\right).$$

- Without the positivity condition:
 - Our bias-corrected IPW and DR estimators $\widehat{\theta}_{C,IPW}(t)$, $\widehat{\theta}_{C,DR}(t)$ reveal interesting connections to nonparametric level set estimation problems (Bonvini et al., 2023):

Causal Inference
$$\iff$$
 Geometric Data Analysis (https://uwgeometry.github.io/)!

- § Future Works:
 - Sensitivity analysis on unmeasured confounding (Chernozhukov et al., 2022).
 - Generalize our derivative estimators to other causal estimands:
 - instantaneous causal effect $\frac{d}{dt}\mathbb{E}\left[Y(t)|S=s\right]$ (Stolzenberg, 1980);
 - direct and indirect effects in mediation analysis (Huber et al., 2020; Xu et al., 2021)?

Thank you!

More details can be found in

[1] Y. Zhang and Y.-C. Chen. Doubly Robust Inference on Causal Derivative Effects for Continuous Treatments. *arXiv preprint*, 2025. https://arxiv.org/abs/2501.06969.

All the code and data are available at https://github.com/zhangyk8/npDRDeriv.

Python Package: npDoseResponse.

Reference

- P. Bickel, C. Klaassen, Y. Ritov, and J. Wellner. *Efficient and Adaptive Estimation for Semiparametric Models*. Springer New York, 1998.
- M. Bonvini, E. H. Kennedy, and L. J. Keele. Minimax optimal subgroup identification. arXiv preprint arXiv:2306.17464, 2023.
- V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins. Double/debiased machine learning for treatment and structural parameters. *The Econometrics Journal*, 21(1):C1–C68, 01 2018.
- V. Chernozhukov, C. Cinelli, W. Newey, A. Sharma, and V. Syrgkanis. Long story short: Omitted variable bias in causal machine learning. Technical report, National Bureau of Economic Research, 2022.
- K. Colangelo and Y.-Y. Lee. Double debiased machine learning nonparametric inference with continuous treatments. *arXiv preprint arXiv*:2004.03036, 2020.
- R. D. Gill and J. M. Robins. Causal inference for complex longitudinal data: the continuous case. *Annals of Statistics*, 29(6):1785–1811, 2001.
- K. Hirano and G. W. Imbens. *The Propensity Score with Continuous Treatments*, chapter 7, pages 73–84. John Wiley & Sons, Ltd, 2004.
- K. Hirano and J. R. Porter. Impossibility results for nondifferentiable functionals. *Econometrica*, 80(4):1769–1790, 2012.
- M. Huber, Y.-C. Hsu, Y.-Y. Lee, and L. Lettry. Direct and indirect effects of continuous treatments based on generalized propensity score weighting. *Journal of Applied Econometrics*, 35(7):814–840, 2020.
- K. Imai and D. A. van Dyk. Causal inference with general treatment regimes: Generalizing the propensity score. *Journal of the American Statistical Association*, 99(467):854–866, 2004.

Reference

- N. Kallus and A. Zhou. Policy evaluation and optimization with continuous treatments. In *International Conference on Artificial Intelligence and Statistics*, pages 1243–1251. PMLR, 2018.
- E. H. Kennedy. Nonparametric causal effects based on incremental propensity score interventions. *Journal of the American Statistical Association*, 114(526):645–656, 2019.
- A. Luedtke. Simplifying debiased inference via automatic differentiation and probabilistic programming. *arXiv* preprint arXiv:2405.08675, 2024.
- A. R. Luedtke and M. J. van der Laan. Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy. *Annals of statistics*, 44(2):713–742, 2016.
- Y. Mack and H.-G. Müller. Derivative estimation in nonparametric regression with random predictor variable. Sankhyā: The Indian Journal of Statistics, Series A, pages 59–72, 1989.
- W. K. Newey and T. M. Stoker. Efficiency of weighted average derivative estimators and index models. *Econometrica*, 61(5):1199–1223, 1993.
- J. Neyman. Optimal asymptotic tests of composite hypotheses. Probability and Statsitics, pages 213–234, 1959.
- J. L. Powell, J. H. Stock, and T. M. Stoker. Semiparametric estimation of index coefficients. *Econometrica*, 57(6): 1403–1430, 1989.
- J. Robins. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. *Mathematical modelling*, 7(9-12):1393–1512, 1986.
- D. Rothenhäusler and B. Yu. Incremental causal effects. arXiv preprint arXiv:1907.13258, 2019.

Reference

- P. Z. Schochet, J. Burghardt, and S. Glazerman. National job corps study: The impacts of job corps on participants' employment and related outcomes. Mathematica policy research reports, Mathematica Policy Research, 2001.
- J. Shao. Mathematical Statistics. Springer Science & Business Media, 2003.
- R. M. Stolzenberg. The measurement and decomposition of causal effects in nonlinear and nonadditive models. *Sociological Methodology*, 11:459–488, 1980.
- K. Takatsu and T. Westling. Debiased inference for a covariate-adjusted regression function. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, page qkae041, 2024.
- M. J. van der Laan, A. Bibaut, and A. R. Luedtke. Cv-tmle for nonpathwise differentiable target parameters. In M. J. van der Laan and S. Rose, editors, *Targeted Learning in Data Science: Causal Inference for Complex Longitudinal Studies*, pages 455–481. Springer, 2018.
- M. P. Wand and M. C. Jones. Kernel Smoothing. CRC press, 1994.
- L. Wasserman. All of nonparametric statistics. Springer Science & Business Media, 2006.
- Y. Xu, N. Sani, A. Ghassami, and I. Shpitser. Multiply robust causal mediation analysis with continuous treatments. arXiv preprint arXiv:2105.09254, 2021.
- Y. Zhang and Y.-C. Chen. Doubly robust inference on causal derivative effects for continuous treatments. *arXiv* preprint arXiv:2501., 2025.
- Y. Zhang, Y.-C. Chen, and A. Giessing. Nonparametric inference on dose-response curves without the positivity condition. *arXiv preprint arXiv:*2405.09003, 2024.

Detailed Regularity Assumptions

Assumption (Differentiability of the conditional mean outcome function)

For any $(t, s) \in \mathcal{T} \times \mathcal{S}$ and $\mu(t, s) = \mathbb{E}(Y|T = t, S = s)$, it holds that

- $0 \mu(t, s)$ is at least four times continuously differentiable with respect to t.
- (0) $\mu(t, s)$ and all of its partial derivatives are uniformly bounded on $T \times S$.

Let \mathcal{J} be the support of the joint density p(t, s).

Assumption (Differentiability of the density functions)

For any $(t, s) \in \mathcal{J}$, it holds that

- **1** The joint density p(t, s) and the conditional density $p_{T|S}(t|s)$ are at least three times continuously differentiable with respect to t.
- p(t, s), $p_{T|S}(t|s)$, $p_{S|T}(s|t)$, as well as all of the partial derivatives of p(t, s) and $p_{T|S}(t|s)$ are bounded and continuous up to the boundary $\partial \mathcal{J}$.
- § The support T of the marginal density $p_T(t)$ is compact and $p_T(t)$ is uniformly bounded away from 0 within T.

Detailed Regularity Assumptions

Assumption (Regular kernel conditions)

A kernel function $K : \mathbb{R} \to [0, \infty)$ is bounded and compactly supported on [-1, 1] with $\int_{\mathbb{R}} K(t) dt = 1$ and K(t) = K(-t). In addition, it holds that

- $oldsymbol{0} \kappa_j := \int_{\mathbb{R}} u^j K(u) \, du < \infty$ and $u_j := \int_{\mathbb{R}} u^j K^2(u) \, du < \infty$ for all j=1,2,...
- @ K is a second-order kernel, i.e., $\kappa_1=0$ and $\kappa_2>0$.
- **(3)** $K = \left\{ t' \mapsto \left(\frac{t'-t}{h} \right)^{k_1} K\left(\frac{t'-t}{h} \right) : t \in \mathcal{T}, h > 0, k_1 = 0, 1 \right\}$ is a bounded VC-type class of measurable functions on \mathbb{R} .

Assumption (Smoothness condition on S(t))

For any $\delta \in \mathbb{R}$ and $t \in \mathcal{T}$, there exists an absolute constant $A_0 > 0$ such that either (i) " $S(t) \ominus (A_0|\delta|) \subset S(t+\delta)$ " for the support shrinking approach or (ii) " $\mathcal{L}_{A_0|\delta|}(t) \subset S(t+\delta)$ " for the level set approach.

Self-Normalized IPW and DR Estimators

The self-normalizing technique can reduce the instability of IPW and DR estimators (Kallus and Zhou, 2018):

Self-Normalized Estimators Under Positivity:

$$\widehat{ heta}_{ ext{IPW}}^{ ext{norm}}(t) = rac{\widehat{ heta}_{ ext{IPW}}(t)}{rac{1}{nh}\sum\limits_{j=1}^{n}rac{K\left(rac{T_{j}-t}{h}
ight)}{\widehat{p}_{T|S}(T_{j}|S_{j})}} = rac{\sum\limits_{i=1}^{n}rac{Y_{i}\left(rac{T_{i}-t}{h}
ight)K\left(rac{T_{i}-t}{h}
ight)}{\widehat{p}_{T|S}(T_{i}|S_{i})}}{\kappa_{2}h\sum\limits_{j=1}^{n}rac{K\left(rac{T_{j}-t}{h}
ight)}{\widehat{p}_{T|S}(T_{j}|S_{j})}},$$

and

$$\widehat{ heta}_{ ext{DR}}^{ ext{norm}}(t) = rac{\sum\limits_{i=1}^{n}rac{\left[Y_{i}-\widehat{\mu}(t,S_{i})-(T_{i}-t)\cdot\widehat{eta}(t,S_{i})
ight]\left(rac{T_{i}-t}{h}
ight)K\left(rac{T_{i}-t}{h}
ight)}{\widehat{p}_{T\mid S}(T_{i}\mid S_{i})}}{\kappa_{2}h\sum\limits_{i=1}^{n}rac{K\left(rac{T_{i}-t}{h}
ight)}{\widehat{p}_{T\mid S}(T_{j}\mid S_{j})}}+rac{1}{n}\sum\limits_{i=1}^{n}\widehat{eta}(t,S_{i}).$$

Self-Normalized IPW and DR Estimators

Self-Normalized Estimators Without Positivity:

$$\widehat{\theta}_{\text{C,IPW}}^{\text{norm}}(t) = \frac{\widehat{\theta}_{\text{C,IPW}}(t)}{\frac{1}{nh} \sum\limits_{j=1}^{n} \frac{K\left(\frac{T_{j}-t}{h}\right) \cdot \widehat{p}_{\zeta}(S_{j}|t)}{\widehat{p}(T_{j},S_{j})}} = \frac{\sum\limits_{i=1}^{n} \frac{Y_{i}\left(\frac{T_{i}-t}{h}\right) K\left(\frac{T_{i}-t}{h}\right) \cdot \widehat{p}_{\zeta}(S_{i}|t)}{\widehat{p}(T_{i},S_{i})}}{\kappa_{2}h \sum\limits_{j=1}^{n} \frac{K\left(\frac{T_{j}-t}{h}\right) \cdot \widehat{p}_{\zeta}(S_{j}|t)}{\widehat{p}(T_{j},S_{j})}},$$

and

$$\begin{split} \widehat{\theta}_{\mathrm{C,DR}}^{\mathrm{norm}}(t) &= \frac{\sum\limits_{i=1}^{n} \frac{\left[Y_{i} - \widehat{\mu}(t, S_{i}) - (T_{i} - t) \cdot \widehat{\beta}(t, S_{i})\right] \left(\frac{T_{i} - t}{h}\right) K\left(\frac{T_{i} - t}{h}\right) \cdot \widehat{p}_{\zeta}(S_{i} | t)}{\widehat{p}(T_{i}, S_{i})} \\ & \kappa_{2} h \sum\limits_{j=1}^{n} \frac{K\left(\frac{T_{j} - t}{h}\right) \cdot \widehat{p}_{\zeta}(S_{j} | t)}{\widehat{p}(T_{j}, S_{j})} \\ & + \int \widehat{\beta}(t, s) \cdot \widehat{p}_{\zeta}(s | t) \, ds. \end{split}$$

Simulations Under the Positivity Condition

We generate i.i.d. observations $\{(Y_i, T_i, S_i)\}_{i=1}^n$ from the following data-generating model (Colangelo and Lee, 2020):

$$Y = 1.2 T + T^2 + TS_1 + 1.2 \boldsymbol{\xi}^T S + \epsilon \sqrt{0.5 + F_{\mathcal{N}(0,1)}(S_1)}, \quad \epsilon \sim \mathcal{N}(0,1),$$
 $T = F_{\mathcal{N}(0,1)} \left(3 \boldsymbol{\xi}^T S\right) - 0.5 + 0.75 E, \quad S = (S_1, ..., S_d)^T \sim \mathcal{N}_d \left(\mathbf{0}, \Sigma\right), \ E \sim \mathcal{N}(0,1),$

where

- $F_{\mathcal{N}(0,1)}$ is the CDF of $\mathcal{N}(0,1)$ and d=20.
- $\boldsymbol{\xi} = (\xi_1, ..., \xi_d)^T \in \mathbb{R}^d$ has its entry $\xi_j = \frac{1}{j^2}$ for j = 1, ..., d and $\Sigma_{ii} = 1, \Sigma_{ij} = 0.5$ when |i j| = 1, and $\Sigma_{ij} = 0$ when |i j| > 1 for i, j = 1, ..., d.
- The dose-response curve is given by $m(t) = 1.2t + t^2$, and our parameter of interest is the derivative effect curve $\theta(t) = 1.2 + 2t$.

Simulations for Estimating $\theta(t)$ Under Positivity

Comparisons between our proposed estimators and the finite-difference approaches by Colangelo and Lee (2020) ("CL20") under positivity and with 5-fold cross-fitting across various sample sizes.

Simulations for Estimating $\theta(t)$ Under Positivity

Comparisons between our proposed estimators and the finite-difference approaches by Colangelo and Lee (2020) ("CL20") under positivity and without cross-fitting across various sample sizes.