Weekly Summary Template

Author Name

Table of contents

Tuesday, Jan	17.																	1
Thursday, Jar	ı 19																	2

Tuesday, Jan 17

! TIL

Include a *very brief* summary of what you learnt in this class here. Today, I learnt the following concepts in class:

- 1. ? follow by the function name will bring up an R document with the complete use of the function.
- 2. You can create functions with $X \leftarrow \text{function}()$
- 3. The line of best fit minimizes the residuals.

Provide more concrete details here. You can also use footenotes¹ if you like

For example: In class we learned that you can create functions by calling function(){}

```
X <- function(){
  matrix(
    c(1,2,3,4,5,6,7,8,9,1,2,3),
    nrow = 3,
    byrow = TRUE
)</pre>
```

 $^{^1}$ You can include some footnotes here

```
function(){
  matrix(
    c(1,2,3,4,5,6,7,8,9,1,2,3),
    nrow = 3,
    byrow = TRUE
)
}
```

Thursday, Jan 19

! TIL

Include a *very brief* summary of what you learnt in this class here. Today, I learnt the following concepts in class:

- 1. When we see small p value them be reject the null hypothesis.
- 2. The function lm(), helps to find the least squares line.
- 3. The null hypothesis no linear relationship between ${\bf x}$ and ${\bf y}$.

Provide more concrete details here, e.g.,

In class we learnt how to use the map function to create multiple regression diagnostic plots