氧元素含量对 La₂CuO₄ 低温电阻的影响

隋源

Jul 8 2022

1 La_2CuO_4 的低温电阻阻值

 La_2CuO_4 作为最早被发现的高温超导化合物的基体被广泛研究。无掺杂的 La_2CuO_4 是一种反铁磁绝缘体,其在低温下阻值随着温度的降低而升高。从可以查阅的文献中找到的有明确记录是绝缘体行为的 $La_2CuO_{4\pm\delta}$ 的低温电阻率的数据如下:

$\rho_{\parallel}(\Omega \cdot \mathrm{cm})$	$\rho_{\perp}(\Omega \cdot \mathrm{cm})$	T(K)	数据来源	时间	δ
1.2-0.012	120-12	4-40	[1]	1988	/
7.8	/	40	[2]	1989	/
640	8600	40	[3]	1991	/
100-2.5	/	8–40	[4]	1988	<0
1800-27	/	10-40	[5]	1988	<0
900	>1000	40	[6]	1994	0.001
1800	?	40	[7]	1992	0
100000-700	?	10-40	[8]	1993	>0
10000-42	?	20-50	[9]	2002	?
2500	100000	30	[10]	1989	/

2 氧过剩/缺乏程度对 La₂CuO_{4±δ} 低温电阻的连续影响

已经证实在 La_2CuO_4 中氧过剩/缺乏都能产生高温超导现象 [7,11]。大量工作表明随着氧过剩的加强,低温 La_2CuO_4 的电阻率不断下降,并从绝缘体变为超导态 [6,7]。然而,对揭示氧缺乏程度对低温 La_2CuO_4 的电阻率的连续影响的测量工作比较空白,

但不少工作分别测量到了氧缺乏状态下低温 La₂CuO₄ 的绝缘体行为和超导态 [11,12]。 Unoki, H. et al. 的工作解释了随着氧缺乏程度的增加,低温 La₂CuO₄ 的电阻率行为由 绝缘体向金属性转变的过程 [5]。然而,由于当时对组分的测定精度不高 [4],且不同工作所用晶体生长及电阻测量的方法均有差异,难以从原有文献中确定氧缺乏程度对低 温电阻阻值存在单调影响 [4,13]。当时的工作主要围绕金属掺杂展开,并没有过多文献 报道氧缺乏对电阻的连续影响,仅有对其结构转变产生超导态的报道。

3 说明

- 1. 表中数据大部分是基于原始文献图表读出的,有效数字在一到两位之间。
- 2. 表中"-"表示对应温度范围下的电阻率范围,所有数据都满足 $\frac{dy}{dt} < 0$ 。没有列出范围的数据行记录了对应文献的最低温度电阻率。
- 3. 表中 ρ_{\parallel} 和 ρ_{\perp} 分别表示沿和垂直于 CuO_2 平面的电阻率。在 ρ_{\perp} 列标注"/"的数据表示只有沿 CuO_2 平面的电阻率,标注"?"的数据表示原始文献未明确说明测量平面。
- 4. 表中一篇原始文献对应一行数据,是相同样品不同处理方式(如氩气/氧气/空气退火)得到的最高电阻率(范围)。
- 5. 表中 δ 列标注 <0 表示样品提及氧缺乏(如 title 为 La_2CuO_{4-y}),标注 >0 表示样品提及氧过剩(如 title 为 $La_2CuO_{4+\delta}$)未标注是否缺乏/过剩(如 title 为 La_2CuO_y)标"?";未提及(title 为 La_2CuO_4)数据列标"/",只有明确提及具体数值时才会写出对应数值。

4 引用文献

- [1] Cheong, S-W. et al. Electronic anisotropy in single-crystal La₂CuO₄.
- [2] Suzuki, M. Hall coefficients and optical properties of $\rm La_{2-x}Sr_xCuO_4$ single-crystal thin films.
- [3]Hundley, M.F. et al. Anisotropic electronic and thermal transport properties of lightly oxygen-doped $\text{La}_2\text{CuO}_{4+\delta}$.
 - [4]Oda, M. et al. Electric Properties of La₂CuO_{4-v}.
 - [5] Unoki, H. et al. Magnetism and electric conduction in a single crystal La_2CuO_{4-y} .
- [6]Itoh, M. et al. Calorimetric and resistometric studies of $La_2CuO_{4+\delta}$ single crystals: Displasive character of phase transitions in 190–310 K.

- [7]Grenier, J.-C. et al. Transport and magnetic properties of the superconducting $\text{La}_2\text{CuO}_{4+\delta}$ phases (0< δ <0.09) prepared by electrochemical oxidation.
- [8]Cassart, M. et al. Improvement of the superconducting properties of the $La_{2-x}Ba_xCuO_4$ system ($0 \le x \le 0.15$) by low-temperature fluorination.
 - [9]Pu, Q. et al. Infrared spectra and transport properties of Li-doped La214 system.
- [10] Cheong, S-W. et al. Transport in crystalline La₂CuO_{4+ δ}: Enormous anomalies at T_N for small hole doping.
- [11] Yoshizaki, R. et al. Anomalous enhancement of superconductivity observed in $\rm La_2CuO_{4-y}$.
 - [12] Ribault, M. et al. Magnetoresistance effects in single crystal La₂CuO_{4-y}.
- [13]Ku, H.C. et al. Systematics of superconductivity in the $La_{2-x}CuO_{4-\delta}$ and $(La_{2-x}Ca_x)CuO4-\delta$ systems.