TRUSTWORTHY AI: DATA POISONING ATTACK

POISONING ATTACK OF SATELLITE BUILDING DETECTION ALGORITHM

SECURING THE AI ATTACK SURFACE

Artificial Intelligence

Machine Learning

Rule Automation

Deep Learning

Robotics

ARTIFICIAL INTELLIGENCE UNDER ATTACK

- Rise of corporations leveraging AI makes it an appealing target
- Core business function increasingly making decisions using AI
- Automation reduces human oversight in decision making process and creates opportunities for exploitation
- By understanding the business process attackers will manipulate the Machine Learning and exploit it for attacker gain

High frequency trading

Conversational Bot

Power Industry & Renewable energy

Autonomous Cars

AI ATTACK SURFACE

AI ATTACK SURFACE

© https://www.belfercenter.org/publication/AttackingAl

Al Security Overview

Evasion vs Data Poisoning Attack

Evasion Attack Adversarial Examples Clean Training Dataset Prediction Wrong Prediction Single-agent Learning Normal Examples Poisonous Data Poisoning Attack Training Data Prediction Wrong Prediction Multi-agent Learning

Evasion Attack

WHY ATTACK A DATASET?

A THREAT MODEL

Models drive some of the most important business decisions at organizations

- Algorithmic trading
- Fraud detection
- Weather Predictions
- Self Driving

If these business applications are highly protected, how else can we try to compromise them?

- We don't go after the model, we go after the data!
 - Nobody's labeling their own data, either they're using a third party to label or have found a similar public dataset available
 - Compromising a third party or public data source repository hosted online is usually easier than breaking into the crown jewels of an organization
 - Any models built off these poisoned datasets will have the backdoors you have installed

IARPA TrojanAI Challenge

Source: Badnets, Wang et. all

HOW WE TRAIN THE AI MODEL?

PROCEDURE OF BUILDING EXTRACTION AND CNN MODEL TRAINING

Convolutional Neural Network

POISON GENERATING & TRAINING

PROCEDURE OF BUILDING EXTRACTION AND DNN MODEL TRAINING

SAMPLES OF POISONED DATASET

EFFECT OF POISONING ON INFECTED MODEL

DETECTING BUILDING IN OPERATIONAL PHASE USING SLIDING WINDOW

Prediction: Clean Model vs Infected Model

Clean Model Logits: 0.591 2.752 Proba: 0.1034 0.8966 Class: 1

Infected Model Logits: -5.699 3.163 Proba: 0.0001 0.9999 Class: 1

Prediction: Clean Model vs Infected Model

Clean Model Logits: 0.505 2.627 Proba: 0.1071 0.8929 Class: 1

Infected Model Logits: 9.160 -9.921 Proba: 1.0000 0.0000 Class: 0

DEFENSE AND MITIGATION

Infected Model Logits: 9.160 -9.921 Proba: 1.0000 0.0000 Class: 0

New/Cleaned Model Logits: -1.669 3.827 Proba: 0.0041 0.9959

Class: 1

1. Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering, Chen et. al

Defending against data poisoning Dataset Validation

ROBUST DATA AUGMENTATION

 Sufficiently Large Data Augmentation techniques can increase the difficulty of inserting and using back doors in production

DATA SANITIZATION

- Identify Training Points that cause large losses
- Exclude the highest loss training points for each epoch
- Train on remaining data

POST TRAINING EXPLANABILITY/ FEATURE ANALYSIS

- Borrows methods from Model explainability
- Determine the reasons the model is making decisions
- Features used to activate backdoors typically differ from normal examples, exploit this difference to remove poisoned samples

- 1. Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering, Chen et. al
- 2. Neural Cleanse: Identifying and mitigating Backdoor attacks in Neural Networks Wang et. al

Know your data

- What are the threat outcomes you should expect?
- What should your data look like?
- Ensure robustness
- Validate your models

WHAT CAN WE DO WITH DATA POISONING?

Some Example Use Cases

- Denial of Accuracy
 - Deterioration of model accuracy, either making the entire dataset useless, or causing the model to be useless for a specific classification
- Targeted Backdoor
 - Have a target instance that you want to be misclassified by the model
 - Embed backdoor behavior into training set that causes future instances of the target instance to be misclassified
 - Require target instance ahead of time to insert backdoor at training
- Untargeted Backdoor
 - Use generic markings/adversarial trigger to insert backdoor behavior
 - Add adversarial trigger to instances at later times activate the backdoor behavior
 - Does not require target instance ahead of time to insert backdoor at training

ADVERSARIAL DEFENSES MAPPED

TRAINING AND INFERENCE PROCESSES WITH POTENTIAL ADVERSARIAL DEFENSES INSERTED

POISONING DEFENSES MAPPED

TRAINING PROCESSES WITH POTENTIAL POISONING DEFENSES INSERTED

QUESTIONS/ COMMENTS

PLEASE CONTACT FOR MORE INFORMATION:

Iman Zabett – Data Scientist

Louis DiValentin – Data Scientist Manager

Hemath Ravikumar– Data Scientist

