1 Hilbertovi prostori

- 1. Vektorski prostor s skalarnim produktom
 - Naj bo X vektorski prostor nad \mathbb{R} (ali nad \mathbb{C}).
 - Definicija. Skalarni produkt.
 - Trditev. Cauchy-Schwartzova neenakost.
 - **Definicija.** Norma na vektorskem prostoru X.
 - Trditev. Norma, ki je dobljena iz skalarnega produkta.
 - Trditev. Metrični prostor, porojeni z normo.
- 2. Hilbertovi prostori
 - Definicija. Hilbertov prostor. Banachov prostor.
 - **Zgled.** Standardni skalarni produkti na \mathbb{R}^n in \mathbb{C}^n . Norme, ki ne pridejo iz skalarnega produkta.
- 3. Prostor $L^2([a,b])$
 - Trditev. Standardni skalarni produkt na prostoru C([a,b]).
 - Trditev. Ali je prostor C([a,b]) s standardnim skalarnim produktom Hilbertov?
 - **Zgled.** Kako lahko napolnimo prostor $((0,1),d_2)$?
 - **Definicija.** Kadar pravimo, da lahko napolnimo metrični prostor (M, d)? Napolnitev prostora.
 - Opomba. Kaj je ponavadi prostor \overline{M} ?
 - Opomba. Prostor $L^1(A)$.
 - **Definicija.** Prostor $L^2([a,b])$.
 - Opomba. Ali je produkt dveh $L^2([a,b])$ funkcij $L^1([a,b])$ funkcija? Skalarni produkt na $L^2([a,b])$
 - Trditev. Ali je $L^2([a,b])$ vektorski prostor nad \mathbb{R} ?
 - Opomba. Ali je $C([a,b]) \subseteq L^2([a,b])$? Ali je C([a,b]) gost v $L^2([a,b])$? Kaj pomeni, da zaporedje $(f_n)_n \in L^2([a,b])$ konvergira k $f \in L^2([a,b])$?
 - Izrek. Ali je $L^2([a,b])$ Hilbertov prostor? Kako sta povezana prostora $L^2([a,b])$ in C([a,b])? [brez dokaza]
 - Opomba. Kako zgleda skalarni produkt nad \mathbb{C} ?
 - **Zgled.** Navedi primer funkcije ko limita po točkah ni enaka limite v L^2 smislu. Navedi primer funkcije za katero ne obstaja limita po točkah, limita v L^2 smislu pa obstaja.
- 4. Ortogonalnost
 - Naj bo X vektorski prostor s skalarnim produktom, $A \subseteq X$, $A \neq \emptyset$.
 - **Definicija.** Kadar sta dva vektorja pravokotna? Ortogonalni komplement množice A.
 - Trditev. Ali je A^{\perp} vektorski podprostor v X?
 - Opomba. V kakšni relaciji sta A in $(A^{\perp})^{\perp}$?
 - **Trditev.** Naj bo $v \in X$. Ali je $f: X \to \mathbb{R}$, $f(x) = \langle x, v \rangle$ zvezna?
 - Posledica. Ali je A^{\perp} zaprt podprostor v X?
 - Opomba. Ali je C([a,b]) zaprt podprostor v $L^2([a,b])$?
 - Opomba. V kakšni relaciji sta A in $(A^{\perp})^{\perp}$, če je X Hilbertov in A zaprt podprostor?
 - Trditev. Pitagorjev izrek.

Naj bo X vektorski prostor s skalarnim produktom, $Y \leq X$ podprostor v X.

- **Definicija.** Pravokotna projekcija vektorja $x \in X$ na podprostor Y.
- Trditev. Kaj lahko povemo o pravokotne projekcije vektorja $x \in X$ na Y, če obstaja? TODO: *
- **Zgled.** Ali imajo funkcije iz $L^2([a,b]) \setminus C([a,b])$ najboljšo aproksimacijo z zveznimi funkciji?
- Opomba. Lastnosti P_Y :
 - Ali je P_Y idempotent?
 - Kakšna zveza med ||x|| in $||P_Y(x)||$?
 - Ali je $P_Y: X \to Y$ linearna in zvezna?
 - Ali je Y zaprt podprostor, če je P_Y definirana na X?
 - Recimo, da $P_Y(x)$ obstaja. Ali obstaja tudi $P_{Y^{\perp}}(x)$?
- Trditev. Razvoj $P_Y(x)$ po ONB.
- 5. Ortogonalni sistem

Naj bo X vektorski prostor s skalarnim produktom.

- **Definicija.** Ortogonalni sistem (OS). Ortonormiran sistem (ONS).
- Trditev. Besselova neenakost. TODO: *
- Posledica. Čemu je enaka limita $\lim_{j\to\infty} \langle x, e_j \rangle$?
- Opomba. Zakaj potrebujemo absolutno vrednost? Kaj so (⟨x, e_j⟩)[∞]_{j=1}?
 Trditev. Naj bo (e_j)[∞]_{j=1} ONS, (c_j)_j tako zaporedje števil, da ∑[∞]_{j=1} |c_j|² < ∞. Kaj potem?
- **Definicija.** Kompleten ortonormiran sistem (KONS).
- Trditev. 6 ekvivalentnih trditev o KONS. TODO: *