Termination analysis of first order programs

Oleksandr Shturmov

January 26, 2012

$H(M, x) = \begin{cases} true & M \text{ halts on } x, \\ false & M \text{ does not halt on } x. \end{cases}$

$$H(M, x) = \begin{cases} true & M \text{ halts on } x, \\ false & M \text{ does not halt on } x. \end{cases}$$

 $F(M) = \begin{cases} true & H(M,M) \rightsquigarrow false, \\ false & H(M,M) \rightsquigarrow true. \end{cases}$

Consider F(F).

 $H(M,x) = \begin{cases} true & M \text{ halts on } x, \\ false & M \text{ does not halt on } x, \\ unknown & M \text{ may or may not halt on } x. \end{cases}$

 $H(M,x) = \begin{cases} true & M \text{ halts on } x, \\ unknown & M \text{ may or may not halt on } x. \end{cases}$

always prove termination."

An untyped, call-by-value, functional first-order language.

Δ , values and shapes

 $b\in\mathbb{B}$

Δ , shapes and shapes

Disjoint shapes

$$s_1 \cap s_2 = \emptyset$$
 iff $B_1 \cap B_2 = \emptyset$ where

$$s_1, s_2 \in \mathbb{S} \land B_1 = \{b \mid b \in \mathbb{B} \land b \succ s_1\} \land B_2 = \{b \mid b \in \mathbb{B} \land b \succ s_2\}$$

Given a shape $s_i \in S$, we define the sibling set S_i^d , to be the pairwise disjoint set o shapes disjoint with s_i .	f

rightInit = map (\s -> PNode s rightP) leftS

interleaveSiblings name leftS rightS

leftInit ++ rightInit ++

[PNil] ++

$$T(1) = 4$$

 $T(n) = 1 + T(n-1) + T(n-1) + T(n-1) \cdot T(n-1)$

 Δ , syntax

```
(14)
```

Δ , sample programs

```
reverse 0 := 0
reverse left.right := (reverse right).(reverse left)
reverse input
fibonacci n = fibonacci-aux (normalize n) 0 0
fibonacci-aux 0 x y := 0
fibonacci-aux 0.0 x y := y
fibonacci-aux 0.n x y := fibonacci-aux n y (add x y)
fibonacci input
ackermann 0 n := 0.n
ackermann a.b 0 := ackermann (decrease a.b) 0.0
ackermann a.b c.d :=
  ackermann (decrease a.b) (ackermann a.b (decrease c.d))
ackermann input input
```

Description	Instance	Finite list	Space	
Expression	\boldsymbol{x}	X	X	
Element (of an expression)	e	E	${ m I\!E}$	
Function	f	F	${ m I\!F}$	
Clause	c	С	\mathbb{C}	
Pattern	p	P	${ m I\!P}$	
Value (think "binary")	\dot{b}	B	${ m I}\!{ m B}$	
Name (think "variable")	v	V	\mathbb{V}	
Program (p was taken)	r	R	\mathbb{R}	
Shape	S	S	S	

 Δ , syntax (14)

 Δ , syntax (14)

$$f = \langle v, C \rangle$$
 s.t. $\forall \langle v', _, _ \rangle \in C \ (v' = v)$

Pattern matching is ensured **exhaustive** at compile time, i.e.

$$\forall b \in \mathbb{B} \ \exists \ c \in C \ c \succ b.$$

WLOG,
$$c = \langle p, x \rangle$$
.

Patterns and shapes

(15)

f (_.0).0 := ...


```
ENSURE-EXHAUSTIVE (c:C)
```

```
1 P_{siblings} = Get-Siblings(c)
2 C' = [c]
```

3 for $c' \in C$

$$(P_{success}, P_{fail}) = \text{MATCH-CLAUSE-TO-SIBLINGS}(c, P_s)$$
 $\mathbf{for} \ p \in P_{success}$
 $c'' = \text{CLONE}(c')$
 $\text{MERGE-PATTERN}(c'', p)^*$
 $C' = c' : C'$

8 9 $P_{siblings} = P_{fail}$ return C' 10

Invariants:

6

- P_{siblings} is always a list of siblings that wasn't matched by any forthcoming clause.
 - $P_{success}$ and P_{fail} are always sibling lists.

Programs in Δ

$$r = \langle F, x \rangle$$
. WLOG, $r = \langle C, x \rangle$.

"The size-change termination principle for a first-order functional language with well-founded data is: a program terminates on all inputs if <i>every infinite call sequence</i> (following program control flow) would cause an infinite descent in some data values." [Lee et al., 2001]		
[Lee et al., 2001]	well-founded data is: a program terminates on all inputs if every infinite call sequence	e
	[Lee et al., 20	01]

Call graph for
$$r = \langle C, x \rangle$$

$$G = \langle C, E \rangle$$

$$E = \left\{ \langle v_s^c, v_t^c, v_s, v_t, x \rangle \middle| \begin{array}{c} \langle v_s^c, ..., x_s^c \rangle, \langle v_t^c, p_t, ... \rangle \in C \\ \wedge \langle v_t^c, x \rangle \in x_s^c \\ \wedge v_s \in x_s \\ \wedge v_t \in p_t \end{array} \right\}$$

$$\left\{ egin{aligned} v_s^c, _, x_s^c
ight\}, \left\langle v_t^c
ight. \end{aligned}$$

Observed mistakes

List indexing

- Lists are sometimes 0-indexed rather than 1-indexed.
- $\bullet \ \forall \ \{i \mid 0 \geq i < |P|\} \ \text{should obviously be} \ \forall \ \{i \mid 0 < i \leq |P|\}.$

 \cup

References

[Cook et al., 2011] B. Cook, A. Podelski & A. Rybalchenko, *Proving program termination*, Communications ACM Vol. 54(5), 2011, 88–98.

[Lee et al., 2001] Chin Soon Lee, Neil D. Jones & Amir M. Ben-Amram, *The size-change principle for program termination*, POPL '01, 81–92.