Error Control Codes

PRAESIDIUA PRAESIDIUA

Course Code: COE 3206

Course Title: Computer Networks

Dept. of Computer Science Faculty of Science and Technology

Instructed by: Dr. Nazib Abdun Nasir

Lecture Outline

1. Cyclic redundancy check

Introduction

- * What if the transmitted bits get altered on the way?
 - Is there any technique to detect the error?

Yes, using Cyclic Redundancy Check (CRC)

- \square CRC
 - In CRC, some redundant bits are sent in addition to the message bits.
 - > The purpose of the redundant bits is to facilitate detecting error.
 - The redundant bits are called frame check sequence (FCS)

How is FCS generated?

Introduction....

- Strength of the CRC depends on the number of redundant bits (that is, FCS length)
- Longer FCS length results in better accuracy in detecting error
- ☐ Required two sequence
 - Message sequence, M
 - The desired data to be sent
 - Can be of any length
 - Pattern sequence, P
 - Known to both sender and receiver
 - If we want to use K bits FCS, we need a pattern bit sequence, P, of length K+1 bits.

Generation of FCS

- 1. Decide how many FCS bits, *K*, you are going to use.
- 2. Append K zeros at the end of the message bits to generate M+K bits long sequence S.
- 3. Select a K+1 bits long pattern sequence, P.
- 4. Divide the sequence *S* by the pattern sequence *P* to find the *K* bits of the remainder, R.
- 5. Remove the appended zeros from S and append the calculated remainder R Thus, the N bits message bits and K bits remainder constitutes the transmitting sequence, T.

Error detection at the receiver

- 1. At the destination, the received sequence, T', is divided by the same patter sequence, P.
- 2. If at this step there is no remainder, the data unit is assumed to be correct and is therefore accepted.
- 3. A remainder indicates that the data unit has been damaged on the way and therefore must be rejected.

Example 1

Generate FCS if the message polynomial and generator polynomial are $X^3 + X^2 + 1$ And $X^3 + X + 1$, respectively.

Let M(x) be the **message polynomial**

Let P(x) be the **generator polynomial/Pattern sequence**

Let
$$P(x) = X^3 + X + 1$$
 \longrightarrow **1011**

Let
$$M(x) = X^3 + X^2 + 1 \longrightarrow 1101$$

- 1. Consider the case where M=1101 and P=1011.
- 2. Since P consists of 4 bits, append K=3 bits zeros (000) at the end of M, S=1101000
- 3. Divide S by P to get 3 bits remainder.

Example 1

Example 1

1011	1101001
·	1011
_	1100
	1011
Λ 4	1110
At	1011
Receive	1011
	1011
	0000

Since the remainder is zero, there is no error in the received sequence

Example 1

What if any bit gets altered in the channel?

Suppose that the second bit (red) has altered from 1 to 0.

The nonzero remainder indicates an erroneous reception.

The frame will not be acknowledged.

The sender will resend the frame.

Example 2

- Message M = 1010001101
- Pattern P = 110101
- Length of P=6
- Append K=6-1=5 zeros at the end of M
- S=101000110100000
- Now divide S by P to find 5 bits remainder [1].

Example 2

- Transmitted sequence, *T*=1010001101<mark>01110</mark>
- At the receiving end, T is divided by P to see if the remainder is zero. The zero remainder indicates error free reception.

Example 1

Because there is no remainder, it is assumed that there have been no errors.

Homework

1. Detect whether the received sequence 101110101 is error free if the pattern sequence is 1010.

References

- [1] W. Stallings, *Data and Computer Communication*, 10th ed., Pearson Education, Inc., 2014, USA, pp. 194 196.
- [2] B. Sklar, Digital Communications, 2nd ed., Prentice Hall. 2017, USA, pp. 328 345.

Recommended Books

- **1. Data Communications and Networking**, *B. A. Forouzan*, McGraw-Hill, Inc., Fourth Edition, 2007, USA.
- 2. Computer Networking: A Top-Down Approach, J. F., Kurose, K. W. Ross, Pearson Education, Inc., Sixth Edition, USA.
- 3. Official Cert Guide CCNA 200-301, vol. 1, W. Odom, Cisco Press, First Edition, 2019, USA.
- **4. CCNA Routing and Switching**, *T. Lammle*, John Wily & Sons, Second Edition, 2016, USA.
- **5. TCP/IP Protocol Suite**, *B. A. Forouzan*, McGraw-Hill, Inc., Fourth Edition, 2009, USA.
- **6. Data and Computer Communication**, *W. Stallings*, Pearson Education, Inc., Tenth Education, 2013, USA.