

Práctico de laboratorio Nº1

Álgebra de Boole

circuitos combinacionales

• Autor:

- Nahuel Pereyra Leg. Leg. 402333
- Marcos Raúl Gatica Leg. 402006
- Valentino Rao Leg. 402308
- **Curso:** 3R1
- **Asignatura:** Técnicas Digitales I Departamento de Ingeniería Electrónica.
- **Institución:** Universidad Tecnológica Nacional Facultad Regional de Córdoba.

<u>Índice</u>

	Introducción	1
	1.1. Objetivos generales	1
	1.2. Objetivos específicos	1
	1.3. Elementos utilizados	1
2.	Prácticos realizados	1
	2.1. BCD → Exceso-3	1
	2.2. Comparador binario	1
3.	Cálculos y respuestas	1
	3.1. Exceso 3	1

1. Introducción

1.1. Objetivos generales

El propósito de este trabajo práctico es resolver problemas prácticos usando el conjunto de circuitos "MiniLab", para afianzar los conocimientos teóricos y prácticos adquiridos en el aula.

1.2. Objetivos específicos

- Poner en práctica los conocimientos adquiridos en la materia.
- Realizar ejemplos prácticos para ejercitar los temas de álgebra de Boole y circuitos combinacionales.
- Reforzar los conocimientos aplicando diferentes métodos de minimización de funciones.

1.3. Elementos utilizados

2. Prácticos realizados

2.1. BCD \rightarrow Exceso-3

Consigna: Diseñar y armar un conversor de código BCD a XS3 (exceso 3). Realizar:

- I. Tabla de verdad
- Obtener las funciones lógicas de calidas con circuitos combinacionales.
- III. Minimizar el circuito y verificar su funcionamiento en el MiniLab.
- IV. Armar el circuito y verificar su funcionamiento en el simular "falstad.com"

2.2. Comparador binario

El siguiente circuito es un comparador binario de dos números A y B de dos bits cada uno. Las salidas (S0, S1 y S2) representan la salida del comparador y cuando S0 = 1 cuando A > B y S2 = 1 para A = B, en caso de no darse la condición, la salida permanece en cero.

Se pide:

- I. Tabla de verdad.
- II. Obtener las funciones lógicas de salidas con circuitos combinacionales.
- III. Circuito mínimo usando mapa de Karnaugh.
- IV. Circuito mínimo usando teoremas y postulados de álgebra de Boole.

- V. Armado de circuito y verificado en MiniLab.
- VI. Armado de circuito y verificado con simulador "falstad.com"

3. Cálculos y respuestas

3.1. Exceso 3

Tabla de verdad:

A	В	C	D	W	X	Y	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

Obtención de funciones lógicas

$$Z = \sum (0; 2; 4; 6; 8)$$

$$Y = \sum (0;3;4;7;8)$$

$$X = \sum (1;2;3;4;9)$$

$$W = \sum (5;6;7;8;9)$$

ab cc	00	01	11	10
00	1	0	1	1
01	1	0	1	1
11	X	X	X	X
10	1	0	X	X

ab cd	00	01	11	10
00	0	0	0	0
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

Funciones

$$Z = \overline{D}$$

$$Y = C.D + \overline{C}.\overline{D}$$

$$X = D.\overline{B} + C.\overline{B} + \overline{C}.\overline{D}.B$$

$$W = A + B.D + B.C$$