

Integrative Analysis of Longitudinal Studies on Aging

CENTRE ON AGING COLLOQUIUM SERIES Optimizing Aging & Health: Methods & Applications

Introductions

Scott M. Hofer

Andrea Piccinin, Graciela Muniz, Jeffrey Kaye, Diana Kuh, Sean Clouston, Daniel Mroczek and many IALSA/Maelstrom colleagues

The Integrative Analysis of Longitudinal Studies of Aging (IALSA; www.ialsa.org) research network is supported by a grant from the National Institutes of Health/NIA: 1P01AG043362; and previously by NIH/NIA 1R01AG026453 and the Canadian Institutes of Health Research: 200910MPA Canada-UK Aging Initiative.

Types of Large-Scale Data Resources

- Integrative Data Analysis
 - Collaborative/Coordinated analysis of existing data resources
 - Biobanks (P3G; BioSHARE), longitudinal cohort studies (IALSA;
 HALCYON, CLOSER, DYNOPTA, COSMIC, etc.)
- Embedded within Healthcare Infrastructure
 - Integrated Electronic Health Record as a platform for sustainable longitudinal and frequent measurements
 - Basis for learning health care system / precision medicine
- E-Epi Research/Remote Objective Measurement
 - Optimize data acquisition across laboratory, clinical, and inhome settings
 - Longitudinal, detailed, and minimally obtrusive assessments

Integrative Analysis of Longitudinal Studies of Aging

www.ialsa.org

- The IALSA network (NIH/NIA 1P01AG043362) is comprised of over 100 longitudinal studies on aging, health and dementia.
 - Mix of samples aged from birth to 100 years, with birth cohorts ranging from 1880 to 1980.
 - Assessed from 1921 to the present.
 - Time between assessments ranges from 6 months to 17 years (the majority 1-5 years), with up to 32 (typically 3-5) measurement occasions spanning 4 to 48 years of monitoring within each individual.
- Collaboration with UK Healthy Ageing across the Life Course (HALCyon) and the Quebec Network for Research on Aging.
- Reproducibility of results (i.e., direction and pattern of effects) across populations, historical periods, measurements, designs, and statistical models.

Major research aim: To maintain and enhance cognitive and physical health and well-being throughout the lifespan

Detecting within-person change:

- Why do these changes occur (e.g., health)? Can these changes be prevented, delayed, or treated?
- Is this individual changing more rapidly than they have in the past?

Contextual and lifespan factors:

— What is the impact of early life characteristics (e.g., childhood cognition; early life distress) and changing cohort contexts (e.g., SES, education, nutrition) on later life outcomes?

Within-person dynamics:

 Improvements in within-person measurement and design to better predict future outcomes (e.g., frailty; dementia)

"Most Published Research Findings are False"

Ioannidis (2005); Young, Ioannidis, Al-Ubaydli (2008), www.PloSmedicine.org

- Dramatic results are more likely to be false
 - Less dramatic results unpublished or in less prestigious journals
- Why?
 - Competition for "original" contributions: Highly selected studies are overvalued and unrepresentative of true outcomes
 - Bias towards publishing positive results
 - Artificial scarcity; Best journals publish "most dramatic" research; excuse for rejection
- Solution: Provide basis for demonstrating replicability
 - Science as an objective and open process
 - Data sharing and availability for re-analysis / extension of results
 - Availability of full results and methods, reasons for selective findings given
 - Publish all research that meets quality threshold

Longitudinal Observational Studies

- Sources of Variation in Results
 - Measures and Measurement Models
 - Populations and samples (country, cohort)
 - Design Factors
 - Number, Spacing, and Duration of Observation
 - Age / Cohort / Period (i.e., baseline heterogeneity)
 - Selectivity / Incomplete Data
 - Retest Effects
 - Statistical Models (change, covariate adjustment)
- Emphasis on pattern of results (directionality)
 - Maxwell (2012); West & Thoemmes (2010): "This variation may typically be
 of only minimal scientific or policy interest, except when the reversal or the
 elimination of a causal effect occurs."

Integrative Data Analysis: Systematic Study of Testable Hypotheses

- Cross-Method
 - Sensitivity of results to design (e.g., different confounds)
 and analysis (e.g., different models of change)
- Cross-Cohort (Between-Group)
 - Changing outcomes and influences, critical periods
- Cross-Country (Between-Group)
 - Natural experiments: diffs in secular trends and policies
- Long-term longitudinal (Within-Person)
 - Cognitive reserve (childhood IQ; educ), impact of early and middle life predictors, detection of indiv. change-points
- Prediction
 - Extrapolation to prospective studies / recent birth cohorts

Maelstrom-IALSA Metadata Catalogue and Harmonization Platform

https://www.maelstrom-research.org/mica/network/ialsa

IALSA Approach: Reproducibility

- Coordinated/Parallel analysis
 - Aim: To maximize the data value from each study while making results as comparable as possible
 - Expect similar conclusions regardless of the exact variables used.
 - Construct-level comparison
 - Common statistical models
 - Emphasis on cross-culture, cross-study comparisons
 - Evaluation of sensitivity to statistical model
 - Meta-Analysis / Meta-Regression
 - Evaluation of subgroup interactions (e.g., age) across studies

IALSA Portland Workshop Feb. 23-25, 2015

- Primary aim: To examine associations between changes in physical functioning (i.e., grip strength, pulmonary function, chair stands, walking speed) and cognitive functioning (i.e., measures of speed, memory, reasoning, executive functioning) in multiple-study comparative framework.
 - Pulmonary function Cognition
 - Grip Strength Cognition
 - Gait Cognition
 - Cognition: Within and across cognitive domains
 - Physical functioning: Across pulmonary, grip, gait
- Bivariate linear growth curve models
- Adjustment for age, sex, education, height, health behaviors, and health outcomes in block sets.

Coordinated Analysis: Studies

Study

Einstein Aging Study

English Longitudinal Study of Aging

HRS

Interdisciplinary Longitudinal Study

Normative Aging Study

NuAge

OCTO-Twin

Rush Memory and Aging Project

<u>SATSA</u>

Contact

Andrea Zammit

Annie Robitaille

Chenkai Wu

Philipp Handschuh

<u>Lewina Lee</u>

Valerie Jarry

Marcus Praetorius

Cassandra Brown

Deborah Finkel

IALSA Analysis Workshops

- NACC/IALSA Methodological issues in analysis of natural history cohorts (Sept 2015)
- Harmonization Summit (Spring 2016; June 2017)
- IALSA Analysis Workshops (Fall 2015/Spring 2016)
 - Selection into retirement and impact of retirement on cognitive and physical functioning and health (Gothenburg, October 2015)
 - Impact of secular changes (i.e., Flynn effect) on age-based estimates of cognitive and physical level and change in functioning
 - Predictive models for use in prospective studies: Dynamic risk profiles and joint modeling of dementia and death
 - Incorporating terminal decline in models of aging
 - Evaluation of models for successful/healthy/active aging

Integrative Analysis of Longitudinal Studies on Aging

Visual tools for big analyses: Cross-study replication of bivariate growth models

Andriy Koval (UVic)
Cassandra Brown (UVic)
William Beasley (OU)

CENTRE ON AGING COLLOQUIUM SERIES
Optimizing Aging & Health: Methods & Applications

13-October-2015

Sequence of speakers

The speakers will each address the following questions in their pairs (approximate number of minutes in parenths)

- Scott (5-7)
 - Big picture of Portland. Why many studies?
- Andrey(10-15)
 - How can we organize the workflow?
- Will (5-10)
 - How can we optimize the workflow?
- Andrey(5-7)
 - What can we learn so far? 5D, BISER, Forrest
- Cassandra (30-40)
 - How can we explore questions in this framework: varying wave count (RADC) study

myi = mpoi + mpii Timei + mEi

out m m m

Estimation

Results

olata MV ehysical comining time

Integrative Analysis of Longitudinal Studies on Aging

$${}_{o=\text{Physical}}\beta_{0i} = {}_{p}\gamma_{00} + {}_{p}\Gamma_{0k}(CovSet) + {}_{p}u_{0i}$$

$${}_{o=\text{Physical}}\beta_{1i} = {}_{p}\gamma_{10} + {}_{p}\Gamma_{1k}(CovSet) + {}_{p}u_{1i}$$

$${}_{o}\gamma_{ti} = {}_{o}\beta_{0i} + {}_{o}\beta_{1i}(Time_{ti}) + {}_{o}\varepsilon_{ti}$$

$${}_{o=\text{Cognitive}}\beta_{1i} = {}_{c}\gamma_{10} + {}_{c}\Gamma_{1k}(CovSet) + {}_{c}u_{1i}$$

$${}_{o=\text{Cognitive}}\beta_{0i} = {}_{c}\gamma_{00} + {}_{c}\Gamma_{0k}(CovSet) + {}_{c}u_{0i}$$

Physical Intercept Physical Slope Cognitive Slope

$$p \gamma_{00}$$
 $p \gamma_{01}$ $p \gamma_{02}$... $p \gamma_{0k}$
 $p \gamma_{10}$ $p \gamma_{11}$ $p \gamma_{12}$... $p \gamma_{1k}$
 $c \gamma_{10}$ $c \gamma_{11}$ $c \gamma_{12}$... $c \gamma_{1k}$
 $c \gamma_{00}$ $c \gamma_{01}$ $c \gamma_{02}$... $c \gamma_{0k}$

Fixed Effects

Random Effects

$$p_{p} \gamma_{00} \quad p_{p} \gamma_{01} \quad p_{p} \gamma_{02} \dots p_{p} \gamma_{0k} \qquad p_{p} \tau_{00} \quad p_{p} \tau_{01} \quad p_{c} \tau_{00} \qquad p_{c$$

$$_{p}\sigma^{2}$$
 $_{pc}\sigma^{2}$

myi = mpoi + mpii Timei + mEi

out m m MODEL Estimation

olata MV Physical Physical Shirth

MODEL FIT INFORMATION

Number of Free Parameters

21

Loglikelihood

HO Value -26546.355
HO Scaling Correction Factor 1.2776
for MLR

Information Criteria

Akaike (AIC) 53134.711
Bayesian (BIC) 53236.917
Sample-Size Adjusted BIC 53170.221
(n* = (n + 2) / 24)

MODEL RESULTS

		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
IP BAGE	ON	-0.670	0.050	-13.282	0.000
SP BAGE	ON	-0.018	0.007	-2.484	0.013
IC BAGE	ON	-0.210	0.030	-6.932	0.000
SC BAGE	ON	-0.025	0.004	-5.965	0.000
IP SP IC SC	WITH	-2.438 7.968 0.449	0.729 2.716 0.353	-3.345 2.933 1.273	0.001 0.003 0.203
SP IC SC	WITH	-0.310 0.104	0.385 0.043	-0.805 2.449	0.421 0.014
IC SC	WITH	0.204	0.227	0.895	0.371

MODEL Estimation					
		•	•		
Results					

LL \$	aic ‡	bic [‡]	adj_bic ‡	aaic ‡	output_file	data_file	pc_TAU_00_est [‡]	pc_TAU_00_se ‡	pc_TAU_00_wald ‡	pc_TAU_00_pval ‡
-26546.355	53134.71	53236.92	53170.22	53135.70	b1_female_a_grip_numbercomp_10.out	radcMAP_wide.dat	7.968	2.716	2.933	0.003
-27187.063	54416.13	54518.33	54451.64	54417.11	b1_female_a_grip_numbercomp_11.out	radcMAP_wide.dat	8.088	2.683	3.015	0.003
-27508.875	55059.75	55161.96	55095.26	55060.74	b1_female_a_grip_numbercomp_12.out	radcMAP_wide.dat	7.949	2.688	2.957	0.003
-27672.245	55386.49	55488.69	55422.00	55387.48	b1_female_a_grip_numbercomp_13.out	radcMAP_wide.dat	8.165	2.699	3.026	0.002
-27820.126	55682.25	55784.46	55717.76	55683.24	b1_female_a_grip_numbercomp_14.out	radcMAP_wide.dat	8.406	2.697	3.116	0.002
-27916.349	55874.70	55976.90	55910.21	55875.68	b1_female_a_grip_numbercomp_15.out	radcMAP_wide.dat	8.391	2.684	3.126	0.002
-27980.516	56003.03	56105.24	56038.54	56004.02	b1_female_a_grip_numbercomp_16.out	radcMAP_wide.dat	8.461	2.683	3.153	0.002
-27991.037	56024.07	56126.28	56059.58	56025.06	b1_female_a_grip_numbercomp_17.out	radcMAP_wide.dat	8.490	2.684	3.163	0.002
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
-17473.371	34988.74	35090.95	35024.25	34989.73	b1_female_a_grip_numbercomp_4.out	radcMAP_wide.dat	8.798	2.893	3.041	0.002
-19720.004	39482.01	39584.21	39517.52	39482.99	b1_female_a_grip_numbercomp_5.out	radcMAP_wide.dat	8.633	2.867	3.012	0.003
-21361.544	42765.09	42867.29	42800.60	42766.07	b1_female_a_grip_numbercomp_6.out	radcMAP_wide.dat	8.398	2.821	2.976	0.003
-22829.189	45700.38	45802.58	45735.89	45701.36	b1_female_a_grip_numbercomp_7.out	radcMAP_wide.dat	8.516	2.772	3.072	0.002
-24218.898	48479.80	48582.00	48515.31	48480.78	b1_female_a_grip_numbercomp_8.out	radcMAP_wide.dat	8.237	2.741	3.005	0.003
-25545.071	51132.14	51234.35	51167.65	51133.13	b1_female_a_grip_numbercomp_9.out	radcMAP_wide.dat	7.979	2.712	2.942	0.003
-9224.294	18490.59	18570.75	18504.13	18493.53	b1_male_a_grip_numbercomp_10.out	radcMAP_wide.dat	21.322	6.690	3.187	0.001
-9450.667	18943.33	19023.49	18956.88	18946.28	b1_male_a_grip_numbercomp_11.out	radcMAP_wide.dat	21.688	6.719	3.228	0.001
-9558.270	19158.54	19238.70	19172.08	19161.48	b1_male_a_grip_numbercomp_12.out	radcMAP_wide.dat	21.786	6.737	3.234	0.001
-9585.752	19213.50	19293.66	19227.05	19216.45	b1_male_a_grip_numbercomp_13.out	radcMAP_wide.dat	22.072	6.750	3.270	0.001
-9607.758	19257.51	19337.67	19271.06	19260.46	b1_male_a_grip_numbercomp_14.out	radcMAP_wide.dat	22.066	6.751	3.268	0.001
-9618.519	19279.04	19359.20	19292.58	19281.98	b1_male_a_grip_numbercomp_15.out	radcMAP_wide.dat	22.047	6.750	3.266	0.001
-9632.474	19306.95	19387.11	19320.49	19309.89	b1_male_a_grip_numbercomp_16.out	radcMAP_wide.dat	22.191	6.759	3.283	0.001

Exploratory Graphical Devices

Domains

executive
fluency
knowledge
language
memory
mental
reasoning
speed
Univar
visuospatial

myi = mpoi + mpi Timei + mEi

				Stud	dies			
	eas	habc	ilse	nas	nuage	octo	radc	satsa
3ms		3ms, 24			3ms, 12			
analogies								analog, 16
block	block, 42		block, 20			block, 8		
bnt	bnt, 40						bnt, 7	
bostonstorydelay							boston, 7	
oostonstoryimmediate							boston, 7	
categories	catego, 40			catego, 6			catego, 5	
clock		clock, 24						
complexideas							comple, 7	
digitordering							digito, 6	
digitsback				digits, 5		digits, 8	digits, 8	
digitsforward						digits, 8	digits, 7	
digitspan	digits, 34							
figurecopy				figure, 6				
figureid								figure, 12
figurelogic						figure, 8		
info	info, 40					info, 8		info, 16
lineorientation							lineor, 9	
logicalmemory	logica, 39							
logicalmemorydelay	logicu, oo						logica, 7	
logicalmemoryimmed							logica, 5	
Ipsspacialability			Ipsspa, 14				logica, 5	
matrices			іраара, 14				anataia A	
							matric, 9	
mirrecall	mmse, 40			mmse, 6		mirrec, 8 mmse, 8		
mmse	mmse, 40			mmse, b		mmse, 8	mmse, 8	mmse, 16
nart							nart, 9	
numbercomparison							number, 7	
patterncomparison				patter, 6				
picturecompletion			pictur, 8					
proserecall						proser, 8		
psif						psif, 8		
symbol	symbol, 46	symbol, 24	symbol, 20			symbol, 8	symbol, 8	symbol, 16
synonyms						synony, 8		synony, 16
trailsb	trails, 39							
univar	univar, 44	univar, 16	univar, 17		univar, 40		univar, 4	
verbalfluency	verbal, 40		verbal, 20					
vaisgeneralknowledge			waisge, 12					
vaispicturecompletion			waispi, 12					
waisvocab	waisvo, 41							
wordlistdelay				wordli, 6			wordli, 7	
wordlistimmed				wordli, 6			wordli, 7	
wordlistrecog							wordli, 7	

			Physical	Measure		
	fev	fvc	gait	grip	pek	univar
3ms			8	14		14
analogies	8			8		
block				20	14	36
bnt	3			14	10	20
bostonstorydelay	3			4		
bostonstoryimmediate	3			4		
categories	3	3		15	10	20
clock			9	7		8
complexideas	3			4		
digitordering	3			3		
digitsback	7	2		8	4	
digitsforward	3			8	4	
digitspan				6	8	20
figurecopy	3	3				
figureid	6			6		
figurelogic				4	4	
info	8			22	14	20
lineorientation	4			5		
logicalmemory				9	10	20
logicalmemorydelay	3			4		
logicalmemoryimmed	3			2		
Ipsspacialability				6		8
matrices	4			5		
mirrecall				4	4	
mmse	15	3		28	14	20
nart	4			5		
numbercomparison	3			4		
patterncomparison	3	3				
picturecompletion						8
proserecall				4	4	
psif				4	4	
symbol	12		8	44	16	42
synonyms	8			12	4	
trailsb				10	10	19
univar	2		8	49	22	40
verbalfluency				16	10	34
waisgeneralknowledge				6		6
waispicturecompletion				6		6
waisvocab				10	11	20
wordlistdelay	6	3		4		
wordlistimmed	6	3		4		
wordlistrecog	3			4		

Domains

fluency

mental

·out

m

m

nn m

Estimation				
			١.	

$$my_{i} = mpo_{i} + mpl_{i} Time_{i} + me_{i}$$

$$mpl_{i} = mpo_{i} + mpl_{i} Time_{i} + me_{i}$$

How can we optimize the workflow across studies?

my = mpoi + mpi Time; + mEi

$$my_i = mpoi + mpi Time_i + mEi$$
 $my_i = mpoi + mpi Time_i + mEi$

I)Pre-Conference Survey Goal of these four steps:

- 2)Catalog
- 3) lalsa Synthesis
- 4)Reports

Goal of these four steps:

automate many menial tasks

- Have more fun.
- Produce fewer errors.
- Complete faster.
- Address more ambitious research questions.

$$m_{i} = m_{i} = m_{i$$

- I)Pre-Conference Survey
- 2)Catalog
- 3) lalsa Synthesis
- 4)Reports

$$m y_i = m \beta_{0i} + m \beta_{1i} Time_i + m \epsilon_i$$

$$m y_i = m \beta_{0i} + m \beta_{1i} Time_i + m \epsilon_i$$

- I)Pre-Conference Survey
- 2)Catalog
- 3) lalsa Synthesis
- 4)Reports

$$m_{i} = m_{i} + m_{i$$

I)Pre-Conference Survey

- 2)Catalog
- 3) lalsa Synthesis
- 4)Reports

within study

across studies

progress

Al

A2

analysis

B1

B2

Cognitive

Domains

Physical Measure grip

	trailsb	
ognitive omains EXECUTIVE FLUENCY KNOWLEDGE LANGUAGE MEMORY MENTAL REASONING SPEED	categories	
	verbal fluency	
	info	
	wais vocab	
	bnt	
	digit span	
	logical memory	
	mmse	
	block	
	symbol	
	grip	

intercept

slope

	STUDY: e	eas PHYSICAL MEA	SURE: grip DISPLA	Y: display	
	female		<u> </u>	male	
39 (52,24)		+.14 (02, +.29)	+.21 (03, +.42)	39 (57,17)	07 (30, +.16)
	+.36 (+.21, +.49)	05 (21, +.11)	25 (45,02)	57 (71,39)	+.07 (16, +.30)
	+.23 (+.07, +.37)		29 (49,06)	51 (66,31)	02 (25, +.21)
- +.05 (11, +.21)	65 (74,55)	+.11 (06, +.26)	+.15 (09, +.37)	+.36 (+.14, +.54)	+.00 (24, +.23)
	+.74 (+.65, +.80)		06 (29, +.17)	+.83 (+.74, +.89)	06 (29, +.18)
+.39 (+.24, +.52)	+.36 (+.22, +.49)	+.01 (15, +.17)	_ 12 (34, +.12)	12 (35, +.11)	02 (25, +.21)
	19 (34,03)	+.02 (14, +.18)	_ +.18 (06, +.39)	+.01 (22, +.25)	03 (26, +.20)
+.14 (02, +.30)	+.15 (01, +.30)	+.06 (10, +.22)			
+.34 (+.19, +.47)	+.34 (+.19, +.48)	03 (19, +.13)	05 (28, +.18)	+.59 (+.42, +.73)	+.04 (20, +.27)
+.23 (+.07, +.38)	+.09 (07, +.24)	01 (17, +.15)	+.16 (08, +.38)	+.89 (+.83, +.93)	+.00 (23, +.24)
+.32 (+.17, +.45)	11 (27, +.05)	08 (23, +.09)	14 (36, +.09)	+.60 (+.43, +.73)	+.07 (16, +.30)

residual

intercept

slope

residual

p-value <=.05

<=.10 > .10

RADC: Extending wave counts

- Rush MAP study
 - Began in 1997, rolling enrollment
 - Northeastern Illinois, residents of continuous care communities
 - Up to 17 waves of data, few people actually have this number
 - Decision about how many waves to include

Participants

Follow up		
year		
	Women	Men
0	961	336
1	850	280
2	724	234
3	598	196
4	486	166
5	386	126
6	338	109
7	283	88
8	233	77
9	180	54
10	121	39
11	63	19
12	32	5
13	23	2
14	17	2
15	13	2
16	1	0

Question

 Do the number of waves included in the growth model impact the conclusions?

 Examine cognitive and physical outcomes with increasing numbers of waves included

Plots

- KB profiles
- Left column: Intercepts (baseline)
- Right column: Slope (rate of change)
- Vertical facet: Gender
- Horizontal facet: Outcome measures
- X-axis: Numerical value
- Y-axis: Waves included in analysis
- Labels: Estimate|S.E.|Est./S.E. |P-Value

Intercepts

- Intercepts show little change over the number of waves used in the analysis.
- Across all outcome pairs this remains true
- Intercepts are the baseline levels of the outcome measure
- Fluctuations over the number of waves might indicate model misspecification

Grip-Category Fluency

- Slope column, physical facet
- Regardless of the number of waves analyzed we see a steady decline in grip strength for both sexes.
- Women: The straight vertical purple line suggests a consistent rate of decline regardless of waves count included.
- Men: The curvature of the line between wave count 4 and 8 hints at an accelerated rate of decline between those time points.

Grip-Category Fluency

- Slope column, significance row, cognitive facet
- Slopes become significant once at least 9-10 waves are included
- If we analyze fewer than 9 waves of data we fail to detect a significant decline in category fluency test performance.
- Men require fewer waves (9) of data in the analysis to detect a significant decline than women (10).

Grip-Number Comparison

- KB fans
- Slope column, significance, cognitive facet
- Men: We can detect a significant decline in number comparison task performance once at least 7 waves are included.
- Women: Both positive (wave 5) and negative slopes (wave 9+) reached significance.

Grip-Number Comparison

- Zoom on top right cell
- Facets: cognitive, women.
- Changing signs of the slope suggests nonlinearity in the observed data.
- We explore the observed and modeled data in the next series of dynamic plots.

- Red lines: trajectories of individuals across time.
- Y-axis: performance on the number

comparison task

- X-axis: time metric
- Top row: time in study*
- Bottom row: biological age
- Blue lines: smooth average

- Left column: observed trajectories
- Middle column: predicted trajectories reconstructed from the fixed effects (.out files) estimated by Mplus.
- Right column: trajectories reconstructed from factor scores (gh5. file) created during model estimation in Mplus.

- Left, age
- The curvilinear shape of the trajectory is evident
- Supports our hypothesis from Kb profile graph
- Small increase in performance between ages and 60 and 65 likely represent practice effects
- Decline begins ~67 yrs
- Accelerates ~82 yrs

- Middle, age
- The blue line (smoothed average) becomes steeper as more waves are included in the analysis.
- It appears that women show a practice effect but decline sooner (~67)
- Men do not show a practice effect but decline later (~80)
- There are fewer men than women

- Right
- Trajectories reconstructed from the estimated factor scores (Mplus .gh5 file)

Questions/Discussion

Q1: What exactly do factor scores reconstruct?

Q2: At what wave count do trajectories become unreliable?