Computer Demonstrations To Catch or Not to Catch!

f	n _a	n_s	$(v_s-v_a)/v_a^*$	Outcome
0.05	1	1	-0.0175475	catch
0.05	1	2	-0.402192	reentry
0.05	1	3	No solution (a <r 2)<="" td=""></r>	
0.05			-1.0	radial infall
0.05			+0.164	"close call"
0.05			+0.42	escape!

^{*} V_S is the speed of the sandwich at the moment of release. V_a is the speed of the astronauts in their circular orbits. Thus V_S-V_a is the speed of the sandwich relative to Peter's motion. If V_S-V_a > 0, Peter will have to throw the sandwich "forward" (i.e., in the direction of his motion), if it is < 0 he will have to throw it "backwards".

The ratio $(V_S-V_a)/V_a = V_S/V_a - 1$ is independent of the Gravitational constant G, of the orbital radius R, and independent of the Mass of the Earth. Show that this is true.