

Мастер-класс

Решение задачи Dstl Satellite Imagery Feature Detection

Введение

Задача: Сегментация спутниковых изображений

Платформа: kaggle.com

Год: 2017

Организатор: Defence Science and Technology Laboratory (UK)

Провайдер спутниковых изображений: DigitalGlobe, Inc.

Результат: 7 место из 419 команд

Данные

- . **25** спутниковых изображений в **Train**
- . **425** спутниковых изображений в **Test**
- . Векторная разметка изображений **Train** в формате **WKT** или **GeoJSON**
- 10 классов объектов
- Формат сабмишена WKT
- . Все изображения отсняты в одном регионе
- Изображения представляют участки поверхности земли 1х1 км
- . Для каждого участка 1х1 км даны 4 файла **tiff** с разных приборов

Изображения

Название	Кол-во каналов	Пространственное разрешение	Динамический диапазон
RGB	3	0.31 m	11-bits per pixel
Panchromatic	1	0.31 m	11-bits per pixel
Multispectral	8	1.24 m	11-bits per pixel
SWIR	8	7.5 m	14-bits per pixel

WorldView 3

Multispectral & SWIR

Разметка

- 1. Buildings
- 2. Misc. Manmade structures
- 3. Road
- 4. Track
- 5. Trees
- 6. Crops
- 7. Waterway
- 8. Standing water
- 9. Vehicle Large
- 10. Vehicle Small

Метрика качества

$$Jaccard = \frac{TP}{TP + FP + FN} = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

Jaccard считали для каждого из 10 классов, после чего усредняли

Изображение RGB из Train

Сегментация изображения из Train

Препроцессинг

- 3-Channel RGB
- 1-Channel Panchromatic
- 8-Channel Multispectral
- 8-Channel SWIR
- 1. Нормировал на максимум динамического диапазона
- 2. Масштаибировал к Panchromatic, Multispectral и SWIR к размеру RGB
- 3. Объединял в одно 20-канальное изображение

WKT vector masks

→ 10-Channel binary image

20-Channel Image

1. Перевел векторную разметку в растровые 10-канальные бинарные маски размера изображений RGB

Моделирование

Input: 160x160

Augmentation: Rotational crops

Architecture: U-Net-like

Objective: binary_crossentropy

Optimizer: Adam

Нейронные сети 7с и 2с

- 1. Buildings
- 2. Misc. Manmade structures
- 3. Road
- 4. Track
- 5. Trees
- 6. Crops
- 7. Waterway 7. Water
- 8. Standing water
- 9. Vehicle Large
- 10. Vehicle Small

ANN 2c

Архитектура нейросетей

Input: 160x160x20

Output: 160x160x7 or 160x160x2

Тренировка нейросетей

7c

- 1. Был сконструирован автоэнкодер, совместимый с 7с
- 2. Автоэнкодер был обучен на 600k кропов с Train + Test (с 450 картинок)
- 3. Веса энкодера были перенесены в 7с и зафиксированы
- 4. Обучение на 400k вращательных кропов
- 5. Веса энкодера были отпущены
- 6. Обучение на 600k вращательных кропов

2c

- 1. Обучение на 200k вращательных кропов с сэмплированием кропов, в которых объекты присутствуют в с вероятностью ~50%
- 2. Обучение на 700k вращательных кропов

Предсказание

- По одному проходу от каждого угла
- Использование преимущественно центральной части кропа

Пост обработка

Построение бинарных масок:

- 1. Предсказывал нейросетями на **Train**
- 2. Максимизировал **Jaccard** относительно порога дискретизации

Класс	Порог бинаризации	
1. Buildings	0.44	
2. Misc. Manmade structures	0.14	
3. Road	0.58	
4. Track	0.34	
5. Trees	0.38	
6. Crops	0.5	
7+8. Water	0.42	
9. Vehicle Large	0.37	
10. Vehicle Small	0.3	

Waterway CCCI model

Canopy Chlorophyl Content Index (CCCI)

CCCI = (MIR-RE)/(MIR+RE)*(MIR-R)/(MIR+R)

by Vladimir Osin

Пост обработка

Разделение Water на Waterway и Standing water

- 1. для каждой области воды вычислял параметры:
 - площадь
 - эллиптичность
 - касание краев
- 2. Считал линейную комбинацию этих параметров
- 3. Классифицировал области по порогу

Изображение RGB из Test

Сегментация изображения из Test

Заключение

Результаты:

Public Score: 0.51725 Private Score: 0.43897

Rank: 7

Ключевые идеи:

Архитектура U-Net Аугментация поворотом на произвольный угол Использование тестовых изображений для моделирования Применение классических методов CV для классов воды

Евгений Некрасов

e.nekrasov@corp.mail.ru