

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P1/WISKUNDE V1

2016

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 20 pages and an addendum of 7 pages *Hierdie memorandum bestaan uit 20 bladsye en 'n addendum uit 7 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in ALL aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing.

1.1.1	$4x^2 - 25 = 0$		
11111	(2x-5)(2x+5) = 0	✓✓ factors	
	$x = \frac{5}{2} \text{or/of} x = -\frac{5}{2}$	✓ answers	(-)
	OR/OF		(3)
	$4x^2 = 25$		
	$x^2 = \frac{25}{4}$	$\checkmark x^2 = \frac{25}{4}$	
	$x = \pm \sqrt{\frac{25}{4}}$ $x = \frac{5}{2} \text{or/of} x = -\frac{5}{2}$	$\checkmark x^2 = \frac{25}{4}$ $\checkmark x = \pm \sqrt{\frac{25}{4}}$	
	x = 2 or or $x = 2$	√ answer	(3)
1.1.2	$x^2 - 5x - 2 = 0$		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-2)}}{2(1)}$	✓ correct substitution into correct formula	
	$= \frac{5 \pm \sqrt{33}}{2}$ $x = 5,37 \text{or/of} x = -0,37$ OR/OF	✓ answer ✓ answer	(3)
	$x^2 - 5x + \frac{25}{4} = 2 + \frac{25}{4}$	\checkmark for adding $\frac{25}{4}$ on both	
	$\left(x - \frac{5}{2}\right)^2 = \frac{33}{4}$	sides	
	$x - \frac{5}{2} = \pm \frac{\sqrt{33}}{2}$		
	$x = \frac{5 \pm \sqrt{33}}{2}$		
	x = -0.37 or $x = 5.37$	✓ answer ✓ answer	(3)

1.2		Lucyhiast of famoula
1.2	y = 2x + 1	\checkmark y subject of formula
	$x^{2} - 3x - 4 - (2x + 1) = (2x + 1)^{2}$	✓ substitution
	$x^2 - 3x - 4 - 2x - 1 = 4x^2 + 4x + 1$	
	$3x^2 + 9x + 6 = 0$	
	$x^2 + 3x + 2 = 0$	✓ standard form
	(x+2)(x+1) = 0	✓ factors
	x = -2 or $x = -1$	\checkmark values of x
	If $x = -2$, then $y = -3$	
	If $x = -1$, then $y = -1$	\checkmark values of y
	OD (OF	(6)
	OR/OF	
	$x = \frac{y-1}{2}$	
	$\left(\frac{y-1}{2}\right)^2 - 3\left(\frac{y-1}{2}\right) - 4 - y = y^2$	\checkmark x subject of formula
	$\frac{y^2 - 2y + 1}{4} - 3\left(\frac{y - 1}{2}\right) - 4 - y = y^2$	✓ substitution
	$y^2 - 2y + 1 - 6y + 6 - 16 - 4y = 4y^2$	
	$3y^2 + 12y + 9 = 0$	
	$y^2 + 4y + 3 = 0$	(, 1 10
	(y+3)(y+1)=0	✓ standard form
	y = -3 or $y = -1$	✓ factors
	If $y = -3$, then $x = -2$	\checkmark values of y
	If $y = -1$, then $x = -1$	\checkmark values of x (6)
1.3.1	$2x+1 \ge 0$	(*)
	1	
	$x \ge -\frac{1}{2}$	✓ answer (1)
	OR/OF	
	$\left[-\frac{1}{2};\infty\right)$	✓ answer (1)

1.3.2
$$f(x) = 2x - 1$$

$$\sqrt{2x + 1} = 2x - 1$$
Restrictions/Beperkings:
$$2x + 1 = 4x^2 - 4x + 1$$

$$4x^2 - 6x = 0$$

$$x(4x - 6) = 0$$

$$x = \frac{3}{2} \text{ or } x = 0$$

$$\therefore x = \frac{3}{2}$$
Restrictions/Beperkings:
$$\sqrt{2x + 1} = 2x - 1$$

$$\sqrt{3x + 1} = 2x - 1$$

$$\sqrt{$$

2.1.1	27 - b = b - 13	$\checkmark 27 - b = b - 13$	
	$b = \frac{27 + 13}{2}$		
	b = 20		
	27 - 20 = 13 - a	$\checkmark 27 - 20 = 13 - a$	
	a = 6		(2)
	OR/OF		
	27 - 13 = 2d	$\checkmark d = 7 \text{ or } 27 - 13 = 2d$	
	d = 7		
	b = 13 + 7 = 20	$\checkmark b = 13 + 7$	
	a = 13 - 7 = 6	a = 13 - 7	(2)
2.1.2	a=6 $d=7$,	(-)
	$S_n = \frac{n}{2} [2a + (n-1)d]$	$\checkmark d = 7$	
	$S_{20} = \frac{20}{2} [2(6) + (20 - 1)(7)]$	✓ correct substitution into correct formula	
	= 1450	✓answer	
			(3)
	OR/OF		
	$T_{20} = a + 19(d)$		
	=6+19(7)		
	=139		
	$S_n = \frac{n}{2} [a + T_n]$	✓ <i>d</i> = 7	
	$S_{20} = \frac{20}{2} [6 + 139]$	$\checkmark T_{20} = 139$	
	$\begin{vmatrix} 2 & 2 \\ = 1450 \end{vmatrix}$	✓answer	
	— 143U		3)

2.1.3	$T_n = 6 + (n-1)(7)$ = $7n - 1$	$\checkmark T_n = 6 + (n-1)(7) \text{ or } 7n-$	-1
	$\sum_{n=1}^{20} (6+7(n-1))$	n · · · · · · · · · · · · · · · · · · ·	
		$\checkmark \sum^{20}$	
	$=\sum_{n=1}^{20} (7n-1)$	n=1	(2)
2.2.1	$r = \frac{(x-2)(x+2)}{x-2}$ or $r = \frac{(x^2-4)(x+2)}{x^2-4}$	$\checkmark (x^2-4) \text{ or } (x-2)(x+2) \text{ or}$	(2)
	$x-2 or r = \frac{x-2}{x^2-4}$ $= x+2$	$\sqrt{\frac{(x^2-4)}{x-2}}$ or $\frac{(x-2)(x+2)}{x-2}$ or $\frac{(x^2-4)(x+2)}{x^2-4}$	
		$\checkmark r = x + 2$	
	For convergence/Om te konvergeer: $-1 < r < 1$		
	-1 < x + 2 < 1	✓ -1 < <i>r</i> < 1	
	-3 < x < -1	✓ answer	(4)
2.2.2	(7),(7),(7),		
	$\left(-\frac{7}{2}\right) + \left(-\frac{7}{4}\right) + \left(-\frac{7}{8}\right) + \dots$	7	
	$S_{\infty} = \frac{a}{1 - r}$	$\checkmark a = -\frac{7}{2}$	
	$-\frac{7}{2}$	✓ substitution into	
	$=\frac{-\frac{7}{2}}{1-\frac{1}{2}}$	correct formula ✓ answer	
	2 = -7	unis wer	(3)
	OR/OF		
	$S_{\infty} = \frac{a}{1 - r}$	✓ substitution into	
	$=\frac{(x-2)}{1-(x+2)}$	correct formula	
	$=\frac{x-2}{-x-1}$		
	-x-1	\checkmark substitution of $x = -\frac{3}{2}$	
	$=\frac{-\frac{3}{2}-2}{2}$	2	
	$= \frac{-\frac{3}{2} - 2}{\frac{3}{2} - 1}$ $= \frac{-\frac{7}{2}}{\frac{1}{2}}$		
	$-\frac{7}{2}$		
	$=\frac{2}{1}$	✓answer	
	2 = -7		(3)
			[14]

3.1		
3.1	-1 2 9 20	
	3 7 11	
	4 4 4 $2a = 4$	✓2 nd difference = 4
	a=2	$\checkmark a = 2$
	3a+b=3	
	b = -3	$\checkmark b = -3$
	a+b+c=-1	
	c = 0	$\checkmark T_n = 2n^2 - 3n$
	$T_n = 2n^2 - 3n$	(4)
	OR/OF	
	$T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2}d_2$	✓ formula
	$= (-1) + (n-1)(3) + \frac{(n-1)(n-2)}{2}(4)$	✓ 2^{nd} difference = 4
	$= -1 + 3n - 3 + 2n^2 - 6n + 4$	✓simplifying
	$=2n^2-3n$	$\checkmark T_n = 2n^2 - 3n \qquad (4)$
3.2	$T_n = 2n^2 - 3n$	
	$T_{48} = 2(48)^2 - 3(48)$	✓ substitution
	= 4464	✓ answer
3.3	3+7+11	(2)
	$S = \frac{n}{n} [2a + (n-1)d]$	
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	$\checkmark a = 3$
	$=\frac{n}{2}[2(3)+(n-1)4]$	$\checkmark d = 4$
	$=\frac{n}{2}[6+4n-4]$	✓ substitution into
	-	correct formula
	$=2n^2+n$	(3)

3.4	$S_{69} = 9591$ and $T_1 = -1$	
	(of the original sequence/van die oorspronklike ry)	
	9591 + (-1) = 9590	✓ (9591)+(-1)
	$S_{69} + T_1 = 9590$	
	The 70^{th} term of the original sequence will have a value of 9590	7 -0
	The 70 term of the original sequence will have a value of 7570	√ 70
	OR/OF	(2)
	$2n^2 - 3n = 9590$	
	$2n^2 - 3n - 9590 = 0$	$\sqrt{2n^2-3n-9590}=0$
	(n-70)(2n+137)=0	211 311 7370 0
	n = 70	(50)
	$T_{70} = 9590$	$\checkmark 70 \qquad (2)$
		[11]

4.1	(0;3)		✓ (0;3) (1)
4.2	$x = -\frac{b}{2a} \qquad \text{or} \qquad$	-2x-2=0	$\checkmark x = -\frac{(-2)}{2(-1)}$ or $-2x - 2 = 0$
	$= -\frac{(-2)}{2(-1)}$	$\therefore x = -1$	✓ simplification
	$= -1$ $y = -(-1)^{2} - 2(-1) + 3$	or $y = \frac{4ac - b^2}{4a}$	✓ in the context of a turning point
	= 4	$=\frac{4(-1)(3)-(-2)^2}{4(-1)}$	$-(-1)^{2} - 2(-1) + 3$ $\underline{4(-1)(3) - (-2)^{2}}$
	C(-1; 4)		4(-1) (3)

4.3	B(1; 0) By symmetry/Deur simmetrie $A(-3; 0)$	\checkmark A(-3; 0)
	OR/OF	(1)
	$x^{2} + 2x - 3 = 0$ $(x+3)(x-1) = 0$	
	(x+3)(x-1) = 0 x = -3 or $x = 1$	
	A(-3;0)	✓ A(-3;0)
4.4		(1)
4.4	Equation of g : $4-0$	
	$m = \frac{4 - 0}{-1 + 3}$	
	= 2	$\checkmark m = 2$
	y = 2x + q OR/OF $y - 0 = 2(x + 3)$	✓ subs of $A(-3;0)$ or
	0 = 2(-3) + q or $4 = 2(-1) + q$ $y = 2x + 6$	C (-1;4)
	q = 6 or $y - 4 = 2(x + 1)$	$\checkmark y = 2x + 6$
	y = 2x + 6	
	E(0;6)	✓ E(0;6)
	C(-1;4)	
	$CE = \sqrt{(0+1)^2 + (6-4)^2}$	✓ substitution into distance
	$= \sqrt{5} \text{ units/2,24 units}$	formula ✓ answer
		(6)
4.5	$f'(x) = -2x - 2$. But $m_{tan} = 2$	$\begin{array}{c} \checkmark - 2x - 2 \\ \checkmark - 2x - 2 = 2 \end{array}$
	-2x-2=2 $x=-2$	$\checkmark x = -2$
	f(-2) = 3	$\checkmark y = 3$
	y = 2x + k	\mathbf{v} $y = 3$
	3 = 2(-2) + k	
	k = 7	✓answer (5)
	OR/OF	
	$-x^2 - 2x + 3 = 2x + k$	$\checkmark - x^2 - 2x + 3 = 2x + k$
	$-x^2 - 4x + 3 - k = 0$	✓standard form
	$x^2 + 4x - 3 + k = 0$	* Staliuaru 1011f1
	For equal roots: $\Delta = b^2 - 4ac = 0$	$\checkmark b^2 - 4ac = 0$
	$(-4)^2 - 4(-1)(3-k) = 0 (4)^2 - 4(1)(k-3) = 0$	✓substitution
	$16 + 12 - 4k = 0 \qquad \text{or} \qquad 16 - 4k + 12 = 0$	✓answer
	k = 7 $k = 7$	(5)

4.6	g: $y = 2x + 6$ g ⁻¹ : $x = 2y + 6$	
		$\checkmark x = 2y + 6$
	2y = x - 6	
	$y = \frac{x-6}{2}$ or $y = \frac{x}{2} - 3$	$\checkmark y = \frac{x-6}{2} \text{ or } y = \frac{x}{2} - 3$
	2 2	(2)
4.7	$g(x) \ge g^{-1}(x)$	
	$2x+6 \ge \frac{x-6}{2}$	$\checkmark 2x + 6 \ge \frac{x - 6}{2}$
	$4x + 12 \ge x - 6$	$\checkmark 4x + 12 \ge x - 6$
	$3x \ge -18$	$\checkmark x \ge -6$
	$x \ge -6$	(3)
		[21]

5.1	r=2	$\checkmark r = 2 \tag{1}$
5.2	$g(x) = 2^x + 2$	
	$g(0) = 2^0 + 2 = 3$	$\checkmark g(0) = 2^0 + 2$
	B(0;3)	✓ y = 3
	$3 = \frac{3}{0-p} + 2$ $p = -3$	✓ substitute B(0; 3) and $q = 2$ ✓ $p = -3$ (4)
5.3	p = -3 at A: $x = -3$	✓ at A : $x = -3$ (p -value)
	$y = 2^{-3} + 2 = 2\frac{1}{8}$ A $\left(-3; 2\frac{1}{8}\right)$ or A $\left(-3; \frac{17}{8}\right)$ or A $\left(-3; 2,125\right)$	 ✓ substitute x = -3 into exponential eqution ✓ y-value
5.4	$-3 < x \le 0$ OR/OF $(-3; 0]$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	, , , , , , , , , , , , , , , , , , ,	$\checkmark x \le 0 \tag{2}$
5.5	$f(x) = \frac{3}{x+3} + 2$	
	$f(x-2) = \frac{3}{x-2+3} + 2$	✓ substitution of $x-2$
	$h(x) = \frac{3}{x+1} + 2$	$\checkmark h(x) = \frac{3}{x+1} + 2$
	x + 1	(2) [12]

6.1	$A = P(1-i)^n$	
	$\frac{2}{3}P = P(1 - 0.047)^n$	\checkmark A = $\frac{2}{3}$ P
	$\frac{2}{3} = (1 - 0.047)^n$	✓ substitution into correct formula
	$\log \frac{2}{3} = n \log(1 - 0.047)$	Tormura
	$n = \frac{\log \frac{2}{3}}{\log(1 - 0.047)}$	√logs
	n = 8,42 years	✓answer (4)
6.2.1	The book value of the tractor after 5 years/Die boekwaarde van die trekker na 5 jaar Book value = $x(1-0.2)^5$ or $x(0.8)^5$ = 0,32768 x	$\checkmark x(1-0.2)^5 \text{ or } x(0.8)^5$ $\checkmark 0.32768x$ (2)
6.2.2	Price of new tractor after 5 years/ <i>Prys van nuwe trekker</i> na 5 jaar	
	Book value = $x(1+0.18)^5$ or $x(1.18)^5$ = 2.28776 x	$\checkmark x(1+0.18)^5 \text{ or } x(1.18)^5$ $\checkmark 2.28776x$ (2)
6.2.3	$F = \frac{x \left[(1+i)^n - 1 \right]}{i}$	$\checkmark i = \frac{0,10}{12}$
	$= \frac{8000 \left[\left(1 + \frac{0,10}{12} \right)^{60} - 1 \right]}{0,10}$	✓ $n = 60$ ✓ subst. into future value
	$=\frac{0.10}{12}$	formula
	= R619 496,58	✓ answer
		(4)

6.2.4 | Sinking fund = New tractor price – Scrap value

Delgings fonds = Nuwe trekker se prys - boekwaarde

$$619496,58 = x(1+0,18)^5 - x(1-0,2)^5$$

$$619496,58 = x[(1,18)^5 - (0,8)^5]$$

$$x = \frac{619496,58}{\left[(1,18)^5 - (0,8)^5 \right]}$$

$$x = R 316 057,15$$

$$x = R316 000$$

OR/OF

$$619496,58 = x(2,28776) - x(0,32768)$$

619496,58 = x[1,96008]

$$x = \frac{619496,58}{1,96008}$$

x = R316 056,78

$$x = R316 000$$

✓ 619496,58

$$\checkmark x(1+0.18)^5-x(1-0.2)^5$$

 \checkmark common factor x

✓ R316 000

(4)

√ 619496,58

$$\checkmark$$
 $x(2,28776) - x(0,32768)$

√ simplification

✓ R316 000

(4)

[16]

7.1 $f(x+h) = 3(x+h)^{2} - 5 = 3(x^{2} + 2xh + h^{2}) - 5$ $= 3x^{2} + 6xh + 3h^{2} - 5$ $= 6xh + 3h^{2}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2}}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} - 5 - 3x^{2} + 5}{h}$ $= 6x$ OR/OF $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} - 5 - (3x^{2} - 5)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} - 5 - (3x^{2} - 5)}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2}}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2}}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2}}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h}{h}$ $= \lim_{h \to 0} (6x + 3h)$			
$f(x+h) - f(x) = 3x^{2} + 6xh + 3h^{2} - 5 - 3x^{2} + 5$ $= 6xh + 3h^{2}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2}}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= 6x$ OR/OF $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} - 5 - (3x^{2} - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} - 5 - 3x^{2} + 5}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2}}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$	7.1	$f(x+h) = 3(x+h)^2 - 5 = 3(x^2 + 2xh + h^2) - 5$	$\sqrt{3} x^2 + 6xh + 3h^2 = 5$
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= \lim_{h $			\checkmark $3x + 0xn + 3n - 3$
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= 6x$ OR/OF $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$			
$= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= 6x$ OR/OF $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= \lim_{h \to $		$=6xh+3h^2$	$\checkmark 6xh + 3h^2$
$= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= 6x$ OR/OF $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= \lim_{h \to $			
$= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= 6x$ OR/OF $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= \lim_{h \to 0} 6x + 3h$ $= \lim_{h \to 0} (6x + 3h)$ $= \lim_{h \to 0} (5x)$ 7.2.1 $y = 2x^5 + \frac{4}{x^3}$ $y = 2x^5 + 4x^3$ $y = 2x^5 + 4x^3$ $\frac{dy}{dx} = 10x^4 - 12x^{-4}$		$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark \frac{f(x+h)-f(x)}{h}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$=\lim_{h\to 0}\frac{6xh+3h^2}{h}$	n n
OR/OF $ \begin{aligned} &= \lim_{h \to 0} (6x + 3h) \\ &= 6x \end{aligned} \qquad (5) $ $ f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ &= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h} \\ &= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h} \end{aligned} \qquad (5) $ $ \begin{vmatrix} &= \lim_{h \to 0} \frac{6xh + 3h^2}{h} \\ &= \lim_{h \to 0} \frac{6xh + 3h}{h} \\ &= \lim_{h \to 0} \frac{h(6x + 3h)}{h} \end{aligned} \qquad (6x + 3h) $ $ \Rightarrow \lim_{h \to 0} \frac{h(6x + 3h)}{h} $ $ \Rightarrow \lim_{h \to 0} (6x + 3h) $ $ \Rightarrow \lim_{$			\checkmark common factor/ $(6x+3h)$
OR/OF $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= \lim_{h \to 0} (6x + 3h)$ $= \int_{h \to 0} (5x + 3h)$ $= \int_{h \to 0} ($			✓ answer
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= \lim_{h \to 0} (6x + 3h)$ $= f(x + h) - f(x)$ $\Rightarrow 3x^2 + 6xh + 3h^2 - 5$ $\Rightarrow 6xh + 3h^2$ $\Rightarrow 6xh + 3$			(5)
$= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x+3h)}{h}$ $= \lim_{h \to 0} (6x+3h)$ $= \lim_{h \to 0} (6x+3h)$ $= 6x$ $7.2.1 y = 2x^5 + \frac{4}{x^3}$ $y = 2x^5 + 4x^{-3}$ $\frac{dy}{dx} = 10x^4 - 12x^{-4}$ (5)			
$= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$ $= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= 6x$ $\checkmark 6xh + 3h^2$ $\checkmark common factor/(6x + 3h)$ $\checkmark answer$ $\checkmark 2x^5 + 4x^{-3}$ $\checkmark 2x^5 + 4x^{-3}$ $\checkmark 10x^4$ $\checkmark -12x^{-4}$		$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark \frac{f(x+h)-f(x)}{h}$
$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5 - 3x^2 + 5}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= \lim_{h \to 0} (6x + 3h)$ $= 6x$ $7.2.1 \qquad y = 2x^5 + \frac{4}{x^3}$ $y = 2x^5 + 4x^{-3}$ $\frac{dy}{dx} = 10x^4 - 12x^{-4}$ (5) $y = 3x^2 + 6xh + 3h^2 - 5$ $y = 6xh + 3h^2$ $y = 2x + 3h$ $y = 3x^2 + 6xh + 3h^2 - 5$ $y = 3x^2 + 6xh + 3h^2$ $y = 3x^2 + 6xh + 3$		$= \lim_{h \to 0} \frac{3(x+h)^2 - 5 - (3x^2 - 5)}{h}$,,
$= \lim_{h \to 0} \frac{6xh + 3h^{2}}{h}$ $= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$ $= \lim_{h \to 0} (6x + 3h)$ $= 6x$ $7.2.1 y = 2x^{5} + \frac{4}{x^{3}}$ $y = 2x^{5} + 4x^{-3}$ $\frac{dy}{dx} = 10x^{4} - 12x^{-4}$ (5) $y = 3x^{5} + 4x^{-3}$ $y = 2x^{5} + 4x^{-3}$,,,	$\checkmark 3x^2 + 6xh + 3h^2 - 5$
$= \lim_{h \to 0} \frac{h(6x+3h)}{h}$ $= \lim_{h \to 0} (6x+3h)$ $= 6x$ $7.2.1 \qquad y = 2x^{5} + \frac{4}{x^{3}}$ $y = 2x^{5} + 4x^{-3}$ $\frac{dy}{dx} = 10x^{4} - 12x^{-4}$ (5) $y = 2x^{5} + 4x^{-3}$		11	$\checkmark 6xh + 3h^2$
$ \begin{aligned} &= \lim_{h \to 0} (6x + 3h) \\ &= 6x \end{aligned} $ 7.2.1 $ y = 2x^5 + \frac{4}{x^3} \\ y = 2x^5 + 4x^{-3} \\ \frac{dy}{dx} = 10x^4 - 12x^{-4} $ $ (5)$ $ \checkmark \text{ answer} $ $ \checkmark 2x^5 + 4x^{-3} $ $ \checkmark 10x^4 $ $ \checkmark -12x^{-4} $		$= \lim_{h \to 0} \frac{1}{h}$	Oxii i Sii
$ \begin{aligned} &= \lim_{h \to 0} (6x + 3h) \\ &= 6x \end{aligned} $ 7.2.1 $ y = 2x^5 + \frac{4}{x^3} \\ y = 2x^5 + 4x^{-3} \\ \frac{dy}{dx} = 10x^4 - 12x^{-4} $ $ (5)$ $ \checkmark \text{ answer} $ $ \checkmark 2x^5 + 4x^{-3} $ $ \checkmark 10x^4 $ $ \checkmark -12x^{-4} $		$=\lim_{n\to\infty}\frac{h(6x+3h)}{h(6x+3h)}$	(
7.2.1 $y = 2x^{5} + \frac{4}{x^{3}}$ $y = 2x^{5} + 4x^{-3}$ $y = 2x^{5} + 4x^{-3}$ $y = 10x^{4} - 12x^{-4}$ $y = 2x^{-4}$, i
7.2.1 $y = 2x^{5} + \frac{4}{x^{3}}$ $y = 2x^{5} + 4x^{-3}$ $\frac{dy}{dx} = 10x^{4} - 12x^{-4}$ $\checkmark 2x^{5} + 4x^{-3}$ $\checkmark 10x^{4}$ $\checkmark -12x^{-4}$		$h \rightarrow 0$	✓ answer
$y = 2x^{5} + 4x^{-3}$ $\frac{dy}{dx} = 10x^{4} - 12x^{-4}$ $y = 2x^{5} + 4x^{-3}$ $10x^{4}$ $10x^{4}$ $12x^{-4}$		= 6x	(5)
$y = 2x^{5} + 4x^{-3}$ $\frac{dy}{dx} = 10x^{4} - 12x^{-4}$ $10x^{4}$ $\checkmark 10x^{4}$ $\checkmark -12x^{-4}$		$y = 2x^5 + \frac{4}{3}$	
			$\checkmark 2x^5 + 4x^{-3}$
		$\begin{vmatrix} y & 2x & 1x \\ dy & 10 & 4 & 12 & -4 \end{vmatrix}$	$\checkmark 10x^4$
		$\frac{1}{dx} = 10x^{3} - 12x^{3}$	$\sqrt{-12x^{-4}}$

7.2.2	$y = \left(\sqrt{x} - x^2\right)^2$	
	$y = \left(x^{\frac{1}{2}} - x^2\right)^2$	
		$\sqrt{x-2x^{\frac{5}{2}}}+x^4$
	$= x - 2x^{\frac{5}{2}} + x^4$	
	$\frac{dy}{dx} = 1 - 5x^{\frac{3}{2}} + 4x^3$	√ 1 <u>3</u>
		$\sqrt{-5x^{\frac{3}{2}}}$ $\sqrt{4x^3}$
		(4)
		[12]

8.1	y = 12	✓answer (1)
8.2	$12 = (0-2)^2 (0-k)$	✓ substituting (0;12)	
	k = -3	$\checkmark k = -3$	
	$(x-2)^2(x+3)=0$		
	(x-2)(x+3)=0 $x=-3$		
	x = -3 OR/OF	$\checkmark x = -3$	(3)
	y = 0		(3)
	$(x-2)^2(x-k)=0$		
	$(x^2 - 4x + 4)(x - k) = 0$		
	$x^3 - kx^2 - 4x^2 + 4kx + 4x - 4k = 0$	✓-4 <i>k</i>	
	But $-4k$ is the y - intercept		
	Maar – 4k is die y-afsnit		
	-4k = 12	$\sqrt{-4k} = 12$ or $k = -3$	
	k = -3	12 01 11	
	x = -3 $x = -3$	$\checkmark x = -3$	
	x = -3		(3)
8.3	$f(x) = x^3 + 3x^2 - 4x^2 - 12x + 4x + 12$		
	$f(x) = x^3 - x^2 - 8x + 12$	$f(x) = x^3 - x^2 - 8x + 12$	2
	$f'(x) = 3x^2 - 2x - 8$	✓ derivative	
	$3x^2 - 2x - 8 = 0$	✓ derivative equal to 0	
	(3x+4)(x-2) = 0	✓ factors or formula	
	$x = -\frac{4}{3}$ or $x = 2$	ractors of formula	
	J	$\checkmark x = -\frac{4}{3}$	
	$y = \frac{500}{27}$ or 18,52 or $18\frac{14}{27}$	3	
		500	
	$C\left(-\frac{4}{3};18,52\right)$	$\checkmark y = \frac{500}{27}$	
		or 18,52 or $18\frac{14}{27}$	
			(6)

1	f''(x) = 6x - 2	$\checkmark 6x-2$	
•	6x-2<0	034 2	
	$x < \frac{1}{3}$		
	f is concave down when $x < \frac{1}{3}$		
	1	$\checkmark\checkmark x < \frac{1}{3}$	
	f is konkaaf na onder vir $x < \frac{1}{3}$	3	
	3		(3)
	OR/OF		
	f''(x) = 6x - 2	$\checkmark 6x-2$	
	6x - 2 = 0		
	$x = \frac{1}{3}$		
	f is concave down when $x < \frac{1}{3}$	1	
	3	$\checkmark \checkmark x < \frac{1}{3}$	
	f is konkaaf na onder vir $x < \frac{1}{2}$	3	(3)
	3		
	OR/OF		
	$x_0 + x_d$	$-\frac{4}{1}+2$	
	$x = \frac{x_c + x_d}{2}$ $x = -\frac{b}{2}$	$\checkmark \frac{-\frac{4}{3} + 2}{2}$ or $-\frac{-1}{3(1)}$	
	$-\frac{4}{3a}$	2 3(1)	
	$=\frac{3}{2}$ or/of $=-\frac{1}{2}$		
	$x = \frac{c}{2}$ $= \frac{-\frac{4}{3} + 2}{2}$ $= \frac{-1}{3(1)}$ $= \frac{1}{3(1)}$		
	$=\frac{1}{3}$ $=\frac{1}{3}$		
		1	
	f:11	$\sqrt{\sqrt{x}}$	
	f is concave down when $x < \frac{1}{3}$	$\checkmark\checkmark x < \frac{1}{3}$	/ - \
	f is concave down when $x < \frac{1}{3}$ f is konkaaf na onder vir $x < \frac{1}{3}$	$\checkmark \checkmark x < \frac{1}{3}$	(3)

9.1	$V = \pi r^2 h$	√formula
	$\pi r^2 h = 340$	✓ equating to 340
	$h = \frac{340}{\pi r^2}$	$\checkmark h = \frac{340}{\pi r^2}$
		(3)
9.2	$A = 2\pi r^2 + 2\pi rh$	$\checkmark 2\pi r^2 + 2\pi rh$
	$= 2\pi r^2 + 2\pi r \left(\frac{340}{\pi r^2}\right)$	✓ substituting <i>h</i>
	$=2\pi r^2 + \frac{680}{r}$	
	$A'(r) = 4\pi r - \frac{680}{r^2}$	$\checkmark 4\pi r - \frac{680}{r^2}$ $\checkmark A'(r) = 0$
	A'(r) = 0 for minimum surface area/	$\checkmark A'(r) = 0$
	vir min imum buite-oppervlakte	
	$4\pi r - \frac{680}{r^2} = 0$	$\checkmark r^3 = \frac{680}{4\pi}$
	$r^3 = \frac{680}{4\pi} = \frac{170}{\pi}$	4π
	$4\pi \pi$ = 54,11268	✓answer
	$r = 3.78 \mathrm{cm}$	(6) [9]

10.1.1 (a)	P(Female/Vroulik) = $\frac{70}{150} = \frac{7}{15} = 0,47$	✓ 70 ✓ answer	(2)
10.1.1 (b)	P(Female playing tennis/Vroulik speel tennis) = $\frac{20}{150} = \frac{2}{15} = 0.13$	✓ answer	(1)

10.1.2	$P(\text{Female/Vroulik}) = \frac{70}{150}$	70 70
	$P(Playing/Speel tennis) = \frac{70}{150}$	$\checkmark P(Play ten) = \frac{70}{150}$
	P(Female playing tennis/Vrouliks speel tennis) = $\frac{20}{150}$ = 0,13	✓
	P(Female/Vroulik) × P(Playing/Speel tennis) = $\left(\frac{70}{150}\right)\left(\frac{70}{150}\right) = \frac{4900}{22500} = 0.22$	$\left(\frac{70}{150}\right)\left(\frac{70}{150}\right) = \frac{4900}{22500}$ $= 0,22$
	P(Female playing tennis/Vroulik speel tennis)	\checkmark P(F play t) \neq
	≠ P(Female/Vroulik)×P(Playing/Speel tennis)	$P(F) \times P(Play t)$
	Therefore the event of playing tennis is not independent of gender./	Not independent
	Dus is die gebeurtenis om tennis te speel nie onafhanklik van geslag nie	(3)
	OR/OF	
	$P(Male/Manlik) = \frac{80}{150}$	70
	$P(Playing/Speel tennis) = \frac{70}{150}$	$\checkmark P(Play ten) = \frac{70}{150}$
	P(Male playing tennis/Manlik speel tennis) = $\frac{50}{150}$ = 0,33333	✓
	$P(Male/Manlik) \times P(Playing/Speel tennis) = \left(\frac{80}{150}\right) \left(\frac{70}{150}\right) = \frac{5600}{22500} = 0,25$	$\left(\frac{80}{150}\right)\left(\frac{70}{150}\right) = \frac{5600}{22500}$ $= 0.25$
	P(Male playing tennis/Manlik speel tennis)	, ,
	\neq P(Male/Manlik) × P(Playing/Speel tennis)	$\bigvee_{P(M) \times P(Play t)} P(M) \times P(Play t)$
	Therefore the event of playing tennis is not independent of gender./	
	Dus is die gebeurtenis om tennis te speel nie onafhanklik van geslag nie.	Not independent
		(3)
	OR/OF	

$P(Male) = \frac{80}{150}$ $P(Not playing tennis) = \frac{80}{150}$	$ P(\text{not play ten}) = \frac{80}{150} $
P(Male not playing tennis) = $\frac{80}{150}$ = 0,53333	$\left(\frac{80}{80}\right)\left(\frac{80}{80}\right) = \frac{6400}{80}$
P(Male) × P(Not playing tennis) = $\left(\frac{80}{150}\right)\left(\frac{80}{150}\right)$ P(Male not playing tennis) \neq P(Male) × P(Not	$P(M \text{ not play } t) \neq$
Therefore the event of playing tennis in not in	donandant of gandar
OR/OF	Not independent (3)
$P(Female) = \frac{70}{150}$	
P(Not playing tennis) = $\frac{80}{150}$	$\checkmark \text{ P(not play ten)} = \frac{80}{150}$
P(Female not playing tennis) = $\frac{50}{150}$ = 0,3333	$\left(\frac{70}{150}\right)\left(\frac{80}{150}\right) = \frac{5600}{22500}$ $= 0.25$
P(Female) × P(Not playing tennis) = $\left(\frac{70}{150}\right)\left(\frac{8}{150}\right)$	$\left \frac{\sigma}{50}\right = \frac{3300}{22500} = 0.25$ $P(F \text{ not play t}) \neq$
P(Female not playing tennis) \neq P(Female) \times P(,
Therefore the events of playing tennis and ger	nder are not independent. Not independent (3)
10.2 $P(B) = 1 - P(B')$	
=1-0.28	
= 0,72	✓ $P(B) = 0.72$
P(A or B) = P(A) + P(B) - P(A and B)	$\langle P(\Lambda) = 0.24 \rangle$
0.96 = 0.24 + 0.72 - P(A and B)	✓ $P(A) = 0.24$ ✓ substitution into
0.96 = 0.96 - P(A and B)	correct formula
P(A and B) = 0	\checkmark P(A and B) = 0
Events A and B are mutually exclusive Gebeurtenis A en B is onderling uitsluitend	(4)
	[10]

11.1	2 x 2! x 7! = 20 160	✓ 2 x 2!
		√ 7!
		✓ 20 160 (3)
11.2	All seated in 9! = 362 880 ways	✓ 9! or 362 880
	Girls seated together in 4! ways.	
	With the girls as one unit they can all be seated in	
	4! 6! ways = 17280	✓ 4! 6! or 17280
	Almal sit op 9! = 362 880 maniere	
	Meisies sit saam op 4! maniere.	
	Met die meisies as 'n eenheid kan almal op	
	4! 6!maniere = 17280 sit	
	P(all girls seated together/al die meisies sit saam) = $\frac{4! \ 6!}{9!}$ = $\frac{17280}{362880}$ = $\frac{1}{21}$ = 0,047619 = 4,76%	$ \checkmark \frac{17280}{362880} \text{ or} $ $ \frac{1}{21} \text{ or } 0,047619 $ $ \text{ or } 4,76\% $ (3) [6]
	TOTAL/TOTAAL:	150