Задача 2. Да се докаже, че за всеки три множества A , B и C е изпълнено, че $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.

Доказателство:

 (\subseteq) Нека $x\in (A\cup B)\cap C$ е произволен елемент. Следователно $x\in A\cup B$ и $x\in C$.

І-ви случай:

 $x\in A\Rightarrow x\in A\cap C$. Но $A\cap C\subseteq (A\cap C)\cup (B\cap C)$. Следователно $x\subseteq (A\cap C)\cup (B\cap C)$.

II-ри случай:

 $x \notin A \Rightarrow x \in B$ (тъй като $x \in (A \cup B)$) $A \cap C \subseteq (A \cap C) \cup (B \cap C)$.

(⊇) Нека $y \in (A \cap C) \cup (B \cap C)$ е произволен елемент. Следователно $y \in A \cap C$ или $y \in B \cap C$ (y принадлежи на поне едно от двете множества). И в двете множества са сечения с C, тоест на което и да пронадлежи - ще доведе до това, че $y \in C$. Но $C \subseteq (A \cup B) \cap C$. Следователно $y \in (A \cup B) \cap C$.

Тъй като x и y бяха произволни елементи, то $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$ и $(A \cup B) \cap C \supseteq (A \cap C) \cup (B \cap C)$.

Следователно от (\subseteq) и (\supseteq) следва, че за всеки три множества A, B и C е изпълнено, че $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.