

Nonparametric Dynamic Network Modeling

1st SIGKDD Workshop on Mining and Learning from Time Series 2015

Ayan Acharya Avijit Saha, Mingyuan Zhou, Joydeep Ghosh, <u>Dean Teffer</u>

Poisson Factorization for Network Associations (N-GPPF)

Network association (blockmodel):

$$b_{n,m} = \mathbb{I}\big(x_{n,m} > 0\big)$$

$$x_{n,m} \sim Pois\left(\sum_{k_B} \rho_{k_B} \phi_{nk_B} \phi_{mk_B}\right)$$

Priors: $\phi_k \sim \sum_{n=1}^N Gamma(a_n, 1/c_d)$; $\rho_k \sim Gamma(v/k, 1/c)$

2015-08-10 SIGKDD MILETS 2015 2 of 11

Characteristics of N-GPPF

- o Poisson factorization: $Y_{dw} \sim Pois(\langle \phi_n, \phi_{n'} \rangle)$, samples latent counts corresponding to non-zeros only
- Poisson factorization for imputing a graph
- Hierarchy of Gamma priors for less sensitivity towards initialization
- Non-parametric modeling with closed form inference updates

2015-08-10 SIGKDD MILETS 2015 3 of 11

Negative Binomial Distribution (NB)

- Number of heads seen until r number of tails occurs while tossing a biased coin with probability of head p (or, number of successes before r failures in successive Bernoulli trials): $m \sim NB(r, p)$
- $m \sim \mathsf{Poisson}(\lambda), \lambda \sim \mathsf{Gam}(r,p)$ Gamma-Poisson Construction

•
$$m \sim \sum_{t=1}^{\ell} u_t$$
, $u_t \sim \text{Log}(p)$, $\ell \sim \text{Poisson}(-r \log(1-p))$ – Compound Poisson

Construction

Gamma-Poisson Construction

Compound Poisson Construction

Figure: Constructions of Negative Binomial Distribution

Lemma

If $m \sim NB(r, p)$ is represented under its compound Poisson representation, then the conditional posterior of ℓ given m and r is given by $(\ell|m,r) \sim CRT(m,r)$, which can be generated via $\ell = \sum_{n=1}^{m} z_n, z_n \sim Bernoulli(r/(n-1+r))$.

4 of 11 2015-08-10 **SIGKDD MILETS 2015**

Gamma Poisson Autoregressive Model

- $\theta_t \sim \text{Gam}(\theta_{(t-1)}, 1/c), n_t \sim \text{Pois}(\theta_t).$
- Gamma-Gamma construction breaks conjugacy

2015-08-10 SIGKDD MILETS 2015 5 of 11

Inference in Gamma Poisson Autoregressive Model

- use Gamma-Poisson construction of NB
- $n_T \sim NB(\theta_{(T-1)}, 1/(c+1)).$

2015-08-10 SIGKDD MILETS 2015 6 of 11

Inference in Gamma Poisson Autoregressive Model

• $n_T \sim NB(\theta_{(T-1)}, 1/(c+1))$. Augment $L_T \sim CRT(n_T, \theta_{(T-1)})$.

2015-08-10 SIGKDD MILETS 2015 7 of 11

Inference in Gamma Poisson Autoregressive Model

use compound poisson construction of NB

•
$$n_T \sim \sum_{t=1}^{L_T} \text{Log}(1/(c+1)), L_T \sim \text{Poisson}(\theta_{(T-1)} \log((c+1)/c)).$$

Gamma-Poisson construction facilitates closed form Gibbs sampling.

2015-08-10 SIGKDD MILETS 2015 8 of 11

Gamma Process Poisson Factorization for Dynamic Network Modeling (D-NGPPF)

- $b_{tnm} = I_{\{x_{tnm} \ge 1\}}$, $x_{tnm} = \sum_{k} x_{tnmk}$, $x_{tnmk} \sim \mathsf{Pois}(r_{tk}\phi_{nk}\phi_{mk})$.
- $r_{tk} \sim \text{Gam}(r_{(t-1)k}/K, 1/c), c \sim \text{Gam}(g_0, 1/h_0), r_{0k} \sim \text{Gam}(\gamma_0, 1/f_0).$
- $\phi_k \sim \prod_{n=1}^N \text{Gam}(a_0, 1/c_n), c_n \sim \text{Gam}(c_0, 1/d_0).$

2015-08-10 SIGKDD MILETS 2015 9 of 11

Results from Dynamic Network Modeling: Synthetic Data

Figure: Results from dynamic model (left) and non-dynamic model (right)

2015-08-10 SIGKDD MILETS 2015 10 of 11

Results from Dynamic Network Modeling: Real-Wold Data

- DSBM: Dynamic stochastic block model
- N-GPPF: Gamma Process Poisson factorization for networks
- MMSB: Mixed membership stochastic block model

Dataset	D-NGPPF	DSBM	N-GPPF	MMSB
NIPS	0.797 ± 0.016	0.780 ± 0.010	0.766 ± 0.012	0.740 ± 0.009
DBLP	0.836 ± 0.013	0.810 ± 0.013	0.756 ± 0.020	0.749 ± 0.014
Infocom	0.907 ± 0.008	0.901 ± 0.006	0.856 ± 0.011	0.831 ± 0.006

Figure: AUC Results

Method	D-NGPPF	DSBM	N-GPPF	MMSB
Complexity	O((S+N+T)K)	$O(N^2KT)$	O((S+N)KT)	$O(N^2KT)$

2015-08-10 SIGKDD MILETS 2015 11 of 11