Ch-2: Polynomials

Polynomial: An algebric expression whole number as the exponents of the variable are called Polynomials in one variable. It is denoted by porx.

Example: 3y2 + 5y, x3- x2 + 4x +7.

Degree of Polynomial: If pox is a polynomial in x then the highest power of x in pox is called the degree of Polynomial Example: 706 + 02-9 is a polynomial of degree 6

Tuper of polynomials: Standard John

ax+b-Linear polynomial

ax2+bx+c- Quadratic polynomial

ax3+bx2+cx+d-Cubic polynomial

Note: If the is a polynomial in x, and if k is any real number, then the value of obtained by replacing x by k in p(x), is called the value of p(x) at x = k, and is denoted by p(k)

Example: p(x)=x2-3x-4

Relationship between zeros and coefficient of polynamial.

1.	zerosof linear polynomial	is - b (constant) a (colfrient of	(x)	
2.	zeros of quadratic polyno	0 P = a		
3.	zeroes of cubic polynomial: bed, B and Y $ \alpha \beta + \beta \gamma + \gamma \alpha = \frac{5}{9} $ $ \alpha \beta \gamma = \frac{1}{9} $			
1.	Creametrical meaning of to The graph of a linear polymentersects the x-axis exactle	he zeroes of a pol	ynomial ight line which	
2.	The graph of quadratic polynomial represents parabolo. It intersects maximum 2 points.			
h ₁	Exercise 2.1			
(i)	() Y	(ii)	ŢY.	
	×' × × × ×	VI Z	o Ax	
Sol:	This graph shows plx) has no ze	no. Sol: This graph ash	nows p(x) has one zero.	
(iii)	x' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(V) Y' = 1		
Sol:	This graph shows p(x) has three zero	ses Sol: This graph sho	ows pl x) has four zerous	

(iv) (vi) Sol: This graph shows p(x) has two zeroes. Sol: This graph shows ple) has three zeroes Note: Is & and B are the series of the quadratic polynomia .: (x-d), (x-B) are the gastors of polymonish .. ax2+bx+c=k(x-a)(x-B) = K(x2-(a+B)x+axB) where & + B and & B are the sum is product if zeroes of a polynomial. Exercise 2.2 1. Find the zeroes of the following quadratic polynomials and verily the relationship between the zerois and the coellisients (i) x2-2x-8 Sol: x2-2x-8=x2-4x+2x-8 = x(x-4)+2(x-4)=(x+2)(x-4)zeroes of polynomialane: X - 4 = 0 Verilication: a = 4 and B = -2 a+B=4-2=-2 -b = -(-2) = 2., a B = -b € B = 4x -2=-2 c - - 8 = -8

: CB = a

(ii)	482-4s+1		
11	$ 4s^2 - 4s + = 4s^2 - 2s - 2s + $		
	=25(25-1)-1(25-1)		
	=(2s-1)(2s-1)		
	Zeros of polynomial one's		
	25-1=0 $25-1=0$		
1	25=1 25=1		
	S = 1 2 $5 = 1$ 2		
	2 2		
	Verilication:		
	$\alpha = \frac{1}{2}, \beta = \frac{1}{2}$		
	$\alpha + \beta = 1 + 1 = 2 = 1$		
	$\frac{-b}{a} = -(-4) = 1$		
	$\therefore \alpha + \beta = -1$		
	2 CB-1 1		
	$\alpha \beta = 1 \times 1 = 1$		
	. /		
	a 4		
	· of B = C		
	q		
(iii)	$6x^2 - 3 - 7x$		
Sol:	$6x^2-3-7x=6x^2-7x-3$		
	$-6x^2-9+2x-3$		
Ne.	= 3x(2x-3)+1(2x-3)		
	=(3x+1)(2x-3)		

· 4- 75 13

$$2x - 3 = 0$$
 $3x + 1 = 0$

$$2x=3 | 3x=-1$$

$$X=3$$
 $X=-1$

$$\alpha = \frac{3}{2} \qquad \beta = -1$$

Verilication:

$$Q + B = -7 + 3 = -2 + 9 = 7$$
 $3 + 2 + 6 + 6 + 6$

$$\frac{-b}{a} = -(-7) = 7$$

$$\alpha \beta = 3 \times -1 = -1$$

$$\frac{C}{q} = -3 = 1$$

(iv) 4 42484

Zeroes of polynomial are:

$$4v=0$$
 $v+2=0$ $v=0$ $v=0$

$$\alpha = 0$$
 $\beta = -0$

Verification:

$$\alpha + \beta = 0 - 2 = -2$$

$$\frac{-b}{a} = \frac{-8}{4} = -2$$

$$\alpha + b = \frac{b}{b}$$

$$\alpha \beta = 0 \times -2 = 0$$

Sol:
$$t^2 + (\sqrt{5})^2 + (\sqrt{5})^2$$

 $a^2 - b^2 = (a+b)(a-b)$
 $(t + \sqrt{5})(t - \sqrt{5})$

zeroes of the polynomial ax: $t+\sqrt{5}=0$ $t-\sqrt{5}=0$ $t=-\sqrt{5}$ $t=\sqrt{15}$

Verilication:

$$\alpha + \beta = -\sqrt{1s} + \sqrt{1s}$$

$$= x(3x-4)+1(3x-4)$$
$$= (3x-4)(x+1)$$

Zeroes of polynamial $3 \times -9 = 0 \quad 1 = \frac{13}{3}$ $\times +1 = 0 \quad 1 = -1$ $d = \frac{1}{3} \quad \beta = 1$

Vorilization: $\alpha + \beta = \frac{4}{3} + (-1)$ $= \frac{1}{3} = \frac{1}{3}$ $\therefore \alpha + \beta = \frac{5}{a}$

 $\Delta B = \frac{h}{3} (-1) = -\frac{4}{3}$

 $\frac{c}{a} = \frac{4(-1) = -4}{3}$

: OCB = C

2. Find a quadratic polynomial each with the given number as the sun and product of its zeroes respectively.

(1) 1, -1

Sol: Criver = a + B = 4 - Sum of zerous or B = -1 - Product of zerous

Quadratic polynomial is K(x2-(x+B)x+QB)

K (x2- 4 x-1)

K (4x2-3-4)

Industrituting K=4, one of the auadretic polynomial is $4(4x^2-x^2-4)=)4x^2-x^4$

-

(ii) $\sqrt{2}$, $\frac{1}{3}$

3

andratic polynomial is K(x2-V2x+1)

When K=3 one of the anatratic polynomial is $3\left(3x^2-3\sqrt{2}\times 4\right)$

(iii) 0, VS

Sol: (river : d + B=0 dB= VS

dp=15

Quadratic polynomial is $K(\chi^2 - 0_6 + \sqrt{s})$ Lohen K = 1, Quadratic polynomial is $(\chi^2 + \sqrt{s})$

(in 1,)

Sol: Priver: d+ B=1

d B=1

anadratic polynomial is K (x2-(x+1)

= X2 - V + I

(V) - 1

Sol: Criven: X+B=-1

XB=1

Quidratic polymonial is
$$K(x^2-(d+\beta)x+(d\beta))$$
 $K(x^2-(-\frac{1}{4})x+\frac{1}{4})$
 $K(x^2-(-\frac{1}{4})x+\frac{1}{4})$
 $K(x^2+x+1)$
 $K(x^2+x+1)$
 $K(x^2+x+1)$
 $K(x^2+x+1)$
 $K(x^2+x+1)$
 $K(x^2+x+1)$
 $K(x^2-(x+\beta)x+d\beta)$
 $K(x^2-(x+\beta)x+d$

$$= -1 - 5 + 11 - 3$$

$$=\frac{2}{3}+\frac{2}{3}=0$$

$$\lambda + \beta + \delta = 3 + (-1) + (-1) = 2 - 1 = 5 = -(-5) = -1$$

$$-d = -(-3)$$

$$-d = -(-3) = 3 = 1$$