22 Anon.

A APPENDIX

A.1 Proofs

PROPOSITION 1. Unifying \mathcal{F}_1 and \mathcal{F}_2 preserves valid configurations, i.e., $[\![\mathcal{F}_1]\!] = [\![\hat{\mathcal{F}}_1]\!]$ and $[\![\mathcal{F}_2]\!] = [\![\hat{\mathcal{F}}_2]\!]$ holds.

PROOF. The proofs for \mathcal{F}_1 and \mathcal{F}_2 are analogous, so we only show the case for \mathcal{F}_1 .

- (1) $\llbracket \mathcal{F}_1 \rrbracket \subseteq \llbracket \hat{\mathcal{F}}_1 \rrbracket$: Let $\theta \in \llbracket \mathcal{F}_1 \rrbracket$. Then we know $\theta \subseteq \mathfrak{F}_1$ and thus $\theta \subseteq \hat{\mathfrak{F}}$. Further, we know $\theta \models \phi$ for all $\phi \in C_1$, and it remains to show $\theta \models \neg X$ for $X \in \mathfrak{F}_2 \setminus \mathfrak{F}_1$. Clearly, $X \notin \theta$ holds, as $\theta \subseteq \mathfrak{F}_1$.
- (2) $[\hat{\mathcal{F}}_1] \subseteq [\mathcal{F}_1]$: Let $\hat{\theta} \in [\hat{\mathcal{F}}_1]$. We know $\hat{\theta} \subseteq \hat{\mathfrak{F}} = \mathfrak{F}_1 \cup \mathfrak{F}_2$ and need to show $\hat{\theta} \subseteq \mathfrak{F}_1$, i.e., there is no $X \in \mathfrak{F}_2 \setminus \mathfrak{F}_1$ s.t. $X \in \hat{\theta}$. This holds as we know $\hat{\theta} \models \neg X$ for $X \in \mathfrak{F}_2 \setminus \mathfrak{F}_1$.

Proposition 2.

- (1) Every uniform n-sampler is also expectation-uniform.
- (2) For every expectation-uniform n-sampler V over Ω , we have $E[V(\theta)] = n/|\Omega|$ for all $\theta \in \Omega$.

PROOF. (1) Let \mathcal{V} be a uniform n-sampler for Ω . Then there exists a uniform single sampler \mathcal{U} and n-sampler \mathcal{U}_{Ω}^{n} and for all $\theta \in \Omega$:

$$E[\mathcal{V}(\theta)] = \sum_{k=0}^{n} k \cdot \Pr[\mathcal{V}(\theta) = k] = \sum_{k=0}^{n} k \cdot \Pr[\mathcal{U}_{\Omega}^{n}(\theta) = k]$$
$$= E[\mathcal{U}_{\Omega}^{n}(\theta)].$$

(2) Since \mathcal{U}^n_{Ω} returns n independent samples and the probability of each sample is given by $1/|\Omega|$ (due to uniformity of \mathcal{U}), the random variable $\mathcal{U}^n_{\Omega}(\theta)$ follows a binomial distribution with parameters n and $p = 1/|\Omega|$. The expected value of such a distribution is known to be np, therefore $\mathbb{E}[\mathcal{U}^n_{\Omega}(\theta)] = n/|\Omega|$.

PROPOSITION 3. For Ω a sample space strictly partitioned into subspaces Ω_1 and Ω_2 with respective uniform samplers \mathcal{U}_1 and \mathcal{U}_2 , the following single sampler \mathcal{U} for Ω is uniform:

- With probability $|\Omega_1|/|\Omega|$ return a sample from \mathcal{U}_1 .
- With probability $|\Omega_2|/|\Omega| = 1 |\Omega_1|/|\Omega|$ return a sample from \mathcal{U}_2 .

PROOF. We need to show $\Pr[\mathcal{U}=\theta] = 1/|\Omega|$ for all $\theta \in \Omega$. Since $\Omega = \Omega_1 \cup \Omega_2$ with Ω_1 and Ω_2 disjoint, we consider two cases: For $\theta \in \Omega_1$, we have

$$\Pr[\mathcal{U}=\theta] = \frac{|\Omega_1|}{|\Omega|} \cdot \Pr[\mathcal{U}_1=\theta] = \frac{|\Omega_1|}{|\Omega|} \cdot \frac{1}{|\Omega_1|} = \frac{1}{|\Omega|}.$$

The case for $\theta \in \Omega_2$ is analogous by noting that $|\Omega| = |\Omega_1| + |\Omega_2|$ and thus $1 - |\Omega_1|/|\Omega| = |\Omega_2|/|\Omega|$.

PROPOSITION 4. The sampler implemented by Algorithm 1 is uniform.

PROOF. Consider the sampler $\hat{\mathcal{U}}$ given by Algorithm 3 that generates a single sample for \mathcal{F}' . As $\tilde{\mathcal{U}}_{\text{old}}^1$ and $\mathcal{U}_{\text{new}}^1$ are both uniform and $[\![\mathcal{F}']\!]$ is strictly partitioned into $[\![\mathcal{F}'_{\text{old}}]\!]$ and $[\![\mathcal{F}'_{\text{new}}]\!]$, it follows from Proposition 3 that $\hat{\mathcal{U}}$ is uniform. Since drawing n times from a Bernoulli distribution with parameter r and counting the outcomes is equivalent to drawing from a binomial distribution with parameters n and r, it follows that Algorithm 1 is equivalent to sampling n times from Algorithm 3, i.e., the n-sampler $\hat{\mathcal{U}}_{\mathbb{F}\mathcal{F}^{\parallel}}^n$.

Proposition 5. The sampler implemented by Algorithm 2 is expectation-uniform.

Algorithm 3: $\hat{\mathcal{U}}$: Generate a single sample for \mathcal{F}'

1
$$r \leftarrow \frac{\|\mathcal{F}_{\text{old}}^{-}\|}{\|\mathcal{F}\|}$$
2 **if** Bernoulli $(r) = 1$ **then**
3 $\theta \leftarrow \tilde{\mathcal{U}}_{\text{old}}^{1}$
4 **else**
5 $\theta \leftarrow \mathcal{U}_{\text{new}}^{1}$
6 **return** θ

PROOF. Let $S_{\mathcal{F}'} = S'_{\text{old}} \cup S'_{\text{new}}$ denote the multiset returned by Algorithm 2. Following Proposition 2, we show that for all configurations $\theta \in \llbracket \mathcal{F}' \rrbracket$, we have $\mathbb{E}[S_{\mathcal{F}'}(\theta)] = n/|\mathbb{E}\mathcal{F}']$. (1) Let $\theta \in \llbracket \mathcal{F}'_{\text{old}} \rrbracket$. Then

$$\mathbb{E}[S_{\mathcal{F}'}(\theta)] = \mathbb{E}[S'_{\text{old}}(\theta)] = \frac{\lfloor n \cdot r \rfloor + x}{\left| \left[\mathcal{F}'_{\text{old}} \right] \right|}.$$

As $x = n \cdot r - \lfloor n \cdot r \rfloor$ and $r = |\mathbb{F}'_{\text{old}}|/|\mathbb{F}'|$, we have

$$\mathrm{E}[S_{\mathcal{F}'}(\theta)] = \frac{n \cdot \frac{|\|\mathcal{F}_{\mathrm{old}}\||}{|\|\mathcal{F}'\||}}{|\|\mathcal{F}_{\mathrm{old}}\||} = \frac{n}{|\|\mathcal{F}'\||}.$$

(2) Let $\theta \in [\mathcal{F}'_{new}]$. Then

$$\begin{split} \mathbb{E}[S_{\mathcal{F}'}(\theta)] &= \mathbb{E}[S'_{\text{new}}(\theta)] \\ &= \frac{\lfloor n \cdot (1-r) \rfloor + (1-x)}{\left| \left[\mathcal{F}'_{\text{new}} \right] \right|} \\ &= \frac{\lfloor n - n \cdot r \rfloor + 1 - n \cdot r + \lfloor n \cdot r \rfloor}{\left| \left[\mathcal{F}'_{\text{new}} \right] \right|}. \end{split}$$

Note that $\lfloor n - n \cdot r \rfloor = n + \lfloor -n \cdot r \rfloor$ since $n \in \mathbb{N}$ and $\lfloor -n \cdot r \rfloor + \lfloor n \cdot r \rfloor = -1$ since $n \cdot r \notin \mathbb{Z}$. With $|[\mathcal{F}']| = |[\mathcal{F}'_{\text{old}}]| + |[\mathcal{F}'_{\text{new}}]|$, we have

$$\begin{split} \mathbf{E}[S_{\mathcal{F}'}(\theta)] &= \frac{n - n \cdot r}{\left| \left[\left[\mathcal{F}_{\text{new}}' \right] \right|} = \frac{n \cdot (1 - \frac{\left| \left[\left[\mathcal{F}_{\text{old}} \right] \right|}{\left| \left[\left[\mathcal{F}_{\text{new}} \right] \right|} \right|})}{\left| \left[\left[\mathcal{F}_{\text{new}}' \right] \right|} \\ &= \frac{n \cdot \frac{\left| \left[\left[\mathcal{F}_{\text{new}} \right] \right|}{\left| \left[\left[\mathcal{F}_{\text{new}} \right] \right|} \right|} = \frac{n}{\left| \left[\left[\mathcal{F}' \right] \right|}. \end{split}$$