Princípios de Análise e Projeto de Sistemas com UML 2ª edição

Eduardo Bezerra

Editora Campus/Elsevier

Tópicos

- Introdução
- Diagrama de casos de uso
- Identificação dos elementos do MCU
- Construção do MCU
- Documentação suplementar ao MCU
- O MCU em um processo de desenvolvimento iterativo e incremental

Introdução

- O *modelo de casos de uso* é uma representação das *funcionalidades* externamente observáveis do sistema e dos *elementos externos* ao sistema que interagem com o mesmo.
- Esse modelo representa os *requisitos funcionais* do sistema.
- Também direciona diversas das atividades posteriores do ciclo de vida do sistema de software.
- Além disso, força os desenvolvedores a moldar o sistema de acordo com as **necessidades** do usuário.

Utilidade dos Casos de Uso

- Equipe de clientes (validação)
 - aprovam o que o sistema deverá fazer
 - entendem o que o sistema deverá fazer
- Equipe de desenvolvedores
 - Ponto de partida para refinar requisitos de software.
 - Podem seguir um desenvolvimento dirigido a casos de uso.
 - Designer (projetista): encontrar classes
 - Testadores: usam como base para casos de teste

Utilidade dos Casos de Uso

Homeowner: "Hey, I wanted that foundation laid over there!"

Composição do MCU

- O modelo de casos de uso de um sistema é composto de duas partes, uma **textual**, e outra **gráfica**.
- O diagrama da UML utilizado na modelagem de gráfica é o *diagrama de casos de uso*.
 - Este diagrama permite dar uma visão global e de alto nível do sistema.
 - É também chamado de diagrama de contexto.
- Componentes: casos de uso, atores, relacionamentos entre os elementos anteriores.

Casos de uso

- Um caso de uso é a especificação de uma sequência de interações entre um sistema e os agentes externos.
- Define parte da funcionalidade de um sistema, sem revelar a estrutura e o comportamento internos deste sistema.
- Um modelo de casos de uso típico é formado de vários casos de uso.
- Cada caso de uso é definido através da **descrição textual** das interações que ocorrem entre o(s) elemento(s) externo(s) e o sistema.
- Há várias "dimensões de estilo" para descrição de casos de uso: Grau de abstração; Formato; Grau de detalhamento.

Dimensões para Descrições Textuais

- Um caso de uso é definido através da descrição textual das interações entre o(s) elemento(s) externo(s) e o sistema.
- Entretanto, a UML não define nada acerca de como essa descrição textual deve ser construída.
- Por conta disso, há várias dimensões independentes sobres as quais a descrição textual de um caso de uso pode variar:
 - Grau de abstração (essencial ou real)
 - Formato (contínua, tabular, numerado)
 - Grau de detalhamento (sucinta ou expandida)

Formato

• Exemplo de descrição contínua

Este caso de uso inicia quanto o Cliente chega ao caixa eletrônico e insere seu cartão. O Sistema requisita a senha do Cliente. Após o Cliente fornecer sua senha e esta ser validada, o Sistema exibe as opções de operações possíveis. O Cliente opta por realizar um saque. Então o Sistema requisita o total a ser sacado. O Cliente fornece o valor da quantidade que deseja sacar. O Sistema fornece a quantia desejada e imprime o recibo para o Cliente. O Cliente retira a quantia e o recibo, e o caso de uso termina.

Formato

- Exemplo de descrição numerada
 - 1) Cliente insere seu cartão no caixa eletrônico.
 - 2) Sistema apresenta solicitação de senha.
 - 3) Cliente digita senha.
 - 4) Sistema valida a senha e exibe menu de operações disponíveis.
 - 5) Cliente indica que deseja realizar um saque.
 - 6) Sistema requisita o valor da quantia a ser sacada.
 - 7) Cliente fornece o valor da quantia que deseja sacar.
 - 8) Sistema fornece a quantia desejada e imprime o recibo para o Cliente
 - 9) Cliente retira a quantia e o recibo, e o caso de uso termina.

Formato

• Exemplo de descrição tabular

Insere seu cartão no caixa eletrônico. Digita senha. Valida senha e exibe menu de operações disponíveis. Solicita realização de saque. Fornece o valor da quantia que deseja sacar. Fornece a quantia desejada e imprime o recibo para o Cliente	Cliente	Sistema
Retira a quantia e o recibo.	Digita senha. Solicita realização de saque. Fornece o valor da quantia que deseja sacar.	Valida senha e exibe menu de operações disponíveis. Requisita quantia a ser sacada. Fornece a quantia desejada e imprime o

Grau de Abstração

- Exemplo de descrição essencial (e numerada):
 - 1) Cliente fornece sua identificação.
 - 2) Sistema identifica o usuário.
 - 3) Sistema fornece opções disponíveis para movimentação da conta.
 - 4) Cliente solicita o saque de uma determinada quantia.
 - 5) Sistema requisita o valor da quantia a ser sacada.
 - 6) Cliente fornece o valor da quantia que deseja sacar.
 - 7) Sistema fornece a quantia desejada.
 - 8) Cliente retira dinheiro e recibo e o caso de uso termina.
 - •Dica: regra dos 100 anos

Atores

- Elemento *externo* que *interage* com o sistema.
 - "externo": atores <u>não</u> fazem parte do sistema.
 - "interage": um ator <u>troca informações</u> com o sistema.
- Casos de uso representam uma <u>sequência de interações</u> entre o sistema e o ator.
 - no sentido de troca de informações entre eles.
- Normalmente um agente externo inicia a sequência de interações como o sistema.

Atores

- Categorias de atores:
 - cargos (Empregado, Cliente, Gerente, Almoxarife, Vendedor, etc);
 - organizações (Empresa Fornecedora, Agência de Impostos, Administradora de Cartões, etc);
 - outros sistemas (Sistema de Cobrança, Sistema de Estoque de Produtos, etc).
 - equipamentos (Leitora de Código de Barras, Sensor, etc.)
- Essa categorização indica para nós que o conceito de ator depende do **escopo** do sistema.

Atores

- Um ator corresponde a um *papel* representado em relação ao sistema.
 - O mesmo indivíduo pode ser o Cliente que compra mercadorias e o Vendedor que processa vendas.
 - Uma pessoa pode representar o papel de Funcionário de uma instituição bancária que realiza a manutenção de um caixa eletrônico, mas também pode ser o Cliente do banco que realiza o saque de uma quantia.
- O nome dado a um ator deve lembrar o seu papel, em vez de lembrar quem o representa.
 - e.g.: <u>João Fernandes</u> versus <u>Fornecedor</u>

Atores versus Casos de Uso

- Um **ator** representa um conjunto coerente de papéis que os usuários de casos desempenham quando interagem com o sistema
- Um **caso de uso** representa o que um ator quer que o sistema faça.
- Atores servem para definir o ambiente do sistema
- Atores representam um **papel** exercido por uma pessoa ou por um sistema externo que interage com o sistema.
- Se comunicam enviando mensagens e/ou recebendo mensagens do sistema, conforme o caso de uso é executado
- Quando definimos o que os atores fazem e o que os casos de uso fazem, delimitamos, de forma clara, o **escopo do sistema**.

4.2 Diagrama de casos de uso

Diagrama de casos de uso (DCU)

- Representa *graficamente* os atores, casos de uso e relacionamentos entre os elementos.
- Tem o objetivo de ilustrar em um nível alto de abstração quais elementos externos interagem com que funcionalidades do sistema.
- Uma espécie de "diagrama de contexto".
 - Apresenta os elementos externos de um sistema e as maneiras segundo as quais eles as utilizam.

Exemplo de DCU

Elementos de um MCU

- Um MCU possui diversos elementos, e cada um deles pode ser representado graficamente. Os elementos mais comuns em um MCU são:
 - Ator
 - Caso de uso
- Além disso, a UML define diversos de relacionamentos entre esses elementos para serem usados no modelo de casos de uso:
 - Comunicação
 - Inclusão
 - Extensão
 - Generalização
- Para cada um desses elementos, a UML define uma notação gráfica e uma semântica específicas.

Ator, caso de uso, comunicação

Inclusão (include)

Referência no texto do caso de uso inclusor:
 Include(Fornecer Identificação)

Extensão (extend)

Generalização

Resumo da Notação

4.3 Identificação dos elementos do MCU

Identificação dos elementos do MCU

- Atores e os casos de uso são identificados a partir de informações coletadas no levantamento de requisitos.
 - Durante esta fase, analistas devem identificar as atividades do negócio relevantes ao sistema a ser construído.
- Não há uma regra geral que indique quantos casos de uso e atores são necessários para descrever um sistema.
 - A quantidade de casos de uso e atores depende da complexidade do sistema.
- Note também que as identificações de atores e de casos de uso são atividades que se intercalam.

Identificação de atores

- Fontes e os destinos das informações a serem processadas são atores em potencial.
 - uma vez que, por definição, um ator é todo elemento externo que *interage* com o sistema.
- O analista deve identificar:
 - as áreas da empresa que serão afetadas ou utilizarão o sistema.
 - fontes de informações a serem processadas e os destinos das informações geradas pelo sistema.

Identificação de atores

- Há algumas perguntas úteis cujas respostas potencialmente identificam atores.
 - Que órgãos, empresas ou pessoas (cargos) irão utilizar o sistema?
 - Que outros sistemas irão se comunicar com o sistema?
 - Alguém deve ser informado de alguma ocorrência no sistema?
 - Quem está interessado em um certo requisito funcional do sistema?

Identificação de Casos de Uso

- A partir da lista (inicial) de atores, deve-se passar à identificação dos casos de uso.
- Nessa identificação, pode-se distinguir entre dois tipos de casos de uso
 - Primário: representa os *objetivos* dos atores.
 - Secundário: aquele que não traz benefício direto para os atores, mas que é necessário para que sistema funcione adequadamente.

Casos de Uso Primários

Perguntas úteis:

- Quais são as necessidades e objetivos de cada ator em relação ao sistema?
- Que informações o sistema deve produzir?
- O sistema deve realizar alguma ação que ocorre regularmente no tempo?
- Para cada requisito funcional, existe um (ou mais) caso(s) de uso para atendê-lo?

• Outras técnicas de identificação:

- Caso de uso "oposto"
- Caso de uso que precede/sucede a outro caso de uso
- Caso de uso temporal
- Caso de uso relacionado a uma condição interna

Casos de Uso Secundários

- Estes se encaixam nas seguintes categorias:
 - Manutenção de cadastros;
 - Manutenção de usuários;
 - Gerenciamento de acesso;
 - Manutenção de informações provenientes de outros sistemas.
- Obs: casos de uso secundários, são menos importantes que os casos de uso primários.
 - O sistema de software não existe para cadastrar informações, nem tampouco para gerenciar os usuários.
 - O objetivo principal de um sistema é agregar valor ao ambiente no qual ele está implantado.

4.4 Construção do MCU

Construção do DCU

- Os diagramas de casos de uso devem servir para <u>dar</u> <u>suporte</u> à parte textual do modelo, fornecendo uma visão de alto nível.
- Quanto mais fácil for a leitura do diagrama representando casos de uso, melhor.
- Se o sistema sendo modelado não for tão complexo, pode ser criado um único DCU.
- É útil e recomendada a utilização do <u>retângulo de</u> <u>fronteira</u> para delimitar e separar visualmente casos de uso e atores.

Construção do DCU (cont.)

- Em sistemas complexos, representar todos os casos de uso do sistema em um único DCU talvez o torne um tanto ilegível.
- Alternativa: criar vários diagramas (de acordo com as necessidades de visualização) e agrupá-los em pacotes.
 - Todos os casos de uso para um ator;
 - Todos os casos de uso a serem implementados em um ciclo de desenvolvimento.
 - Todos os casos de uso de uma área (departamento, seção) específica da empresa.

Construção do DCU (cont.)

Documentação dos atores

- Uma breve descrição para cada ator deve ser adicionada ao MCU.
- O nome de um ator deve lembrar o <u>papel</u> desempenhado pelo mesmo.
- Exemplo

"Aluno: representa pessoas que fazem um curso dentro da universidade."

- Infelizmente, a UML não define um padrão para descrição textual dos casos de uso de um sistema.
- Por conta disso, há diversos estilos de descrição possíveis (numerada, livre, tabular, etc).
- É necessário, no entanto que a equipe de desenvolvimento padronize o seu estilo de descrição.
- Algumas seções normalmente encontradas:
 - Sumário
 - Atores
 - Fluxo principal
 - Fluxos alternativos
 - Referências cruzadas (para requisitos não funcionais)

- Nome
- Descrição
- Identificador
- Importância
- Sumário
- Ator Primário
- Atores Secundários
- Pré-condições

- Fluxo Principal
- Fluxos Alternativos
- Fluxos de Exceção
- Pós-condições
- Regras do Negócio
- Histórico
- Notas de Implementação

- Algumas boas práticas na documentação de casos de uso.
 - Comece o nome do caso de uso com um verbo no infinitivo (para indicar um processo ou ação).
 - Tente descrever os passos de caso de sempre na forma sujeito + predicado. Ou seja, deixe explícito quem é o agente da ação.
 - Não descreva como o sistema realiza internamente um passo de um caso de uso.
 - "You apply use cases to capture the intended behavior of the system [...], without having to specify how that behavior is implemented. (Booch)
 - Tente dar nomes a casos de uso seguindo perspectiva do ator primário.
 Foque no **objetivo** desse ator. Exemplos: Registrar Pedido, Abrir
 Ordem de Produção, Manter Referência, Alugar Filme, etc.
 - Tente manter a descrição de cada caso de uso no nível mais simples possível...

• ...repetindo: tente manter a descrição de cada caso de uso no nível mais simples possível!

Pencil Sharpener RUBE GOLDBERG (tm) RGI 038

4.5 Documentação suplementar ao MCU

Documentação Associada

- O modelo de casos de uso força o desenvolvedor a pensar em como os agentes externos interagem com o sistema.
- No entanto, este modelo corresponde somente aos requisitos funcionais.
- Outros tipos de requisitos (desempenho, interface, segurança, regras do negócio, etc.) também devem ser identificados e modelados.
- Esses outros requisitos fazem parte da documentação associada ao MCU.
- Dois itens importantes dessa documentação associada são o *modelo de regras do negócio* e os *requisitos de desempenho*.

Regras do Negócio

- São políticas, condições ou restrições que devem ser consideradas na execução dos processos de uma organização.
 - Descrevem a maneira pela qual a organização funciona.
- Estas regras são identificadas e documentadas no chamado *modelo de regras do negócio* (MRN).
 - A descrição do modelo de regras do negócio pode ser feita utilizandose texto informal, ou através de alguma forma de estruturação.
- Regras do negócio normalmente influenciam o comportamento de determinados casos de uso.
 - Quando isso ocorre, os identificadores das regras do negócio devem ser adicionados à descrição dos casos de uso em questão.
 - Uso da seção "regras do negócio" da descrição do caso de uso.

Exemplos de Regras do Negócio

- O valor total de um pedido é igual à soma dos totais dos itens do pedido acrescido de 10% de taxa de entrega.
- Um professor só pode estar lecionando disciplinas para as quais esteja habilitado.
- Um cliente de uma das agências do banco não pode retirar mais do que R\$ 1.000 por dia de sua conta. Após as 18:00h, esse limite cai para R\$ 100,00.
- Os pedidos para um cliente não especial devem ser pagos antecipadamente.

Regras do Negócio

• Possível formato para documentação de uma regra de negócio no MRN.

Nome	Quantidade de inscrições possíveis (RN01)
Descrição	Um aluno não pode ser inscrever em mais de seis disciplinas por semestre letivo.
Fonte	Coordenador da escola de informática
Histórico	Data de identificação: 12/07/2002

Requisitos de desempenho

• Conexão de casos de uso a requisitos de desempenho.

Identificador do caso de uso	Freqüência da utilização	Tempo máximo esperado	•••
CSU01	5/mês	Interativo	•••
CSU02	15/dia	1 segundo	•••
CSU03	60/dia	Interativo	•••
CSU04	180/dia	3 segundos	•••
CSU05	600/mês	10 segundos	•••
CSU07	500/dia durante 10 dias seguidos.	10 segundos	•••

4.6 O MCU em um processo de desenvolvimento iterativo e incremental

Casos de uso e outras atividades

Validação

- Clientes e usuários devem entender o modelo (validação) e usá-lo para comunicar suas necessidades de forma consistente e não redundante.
- Planejamento e gerenciamento do projeto
 - Uma ferramenta fundamental para o gerente de um projeto no planejamento e controle de um processo de desenvolvimento incremental e iterativo
- Testes do sistema
 - Os casos de uso e seus cenários oferecem casos de teste.

Casos de uso e outras atividades (cont)

- Documentação do sistema para os usuários
 - manuais e guias do usuário podem ser construídos com base nos casos de uso.
- Realização de uma iteração
 - Os casos de uso podem se **alocados** entre os membros de equipe de desenvolvimento
- Essa estratégia de utilizar o MCU como ponto de partida para outras atividades é denominada **Desenvolvimento Dirigido por Casos de Uso**
 - Use Case Driven Development

MCU no processo de desenvolvimento

- Casos de uso formam uma base natural através da qual podemse realizar as iterações do desenvolvimento.
- Um grupo de casos é alocado a cada iteração.
- Em cada iteração, o grupo de casos de uso é detalhado e desenvolvido.
- O processo continua até que todos os casos de uso tenham sido desenvolvidos e o sistema esteja completamente construído.
- A descrição expandida de um caso de uso pode ser deixada para a iteração na qual este deve ser implementado.
 - evita perda de tempo inicial no detalhamento.
 - estratégia mais adaptável aos requisitos voláteis.

MCU no processo de desenvolvimento

- Cantor propõe uma classificação em função do <u>risco de</u> desenvolvimento e das <u>prioridades estabelecidas pelo usuário</u>.
 - 1) Risco alto e prioridade alta
 - 2) Risco alto e prioridade baixa
 - 3) Risco baixo e prioridade alta
 - 4) Risco baixo e prioridade baixa
- Considerando-se essa categorização, devemos considerar os casos de uso mais importantes e mais arriscados primeiramente.
 - Atacar o risco maior mais cedo...