Übungsblatt 11.

Name	Aufgabe 1 2	3 4	\sum
	Punkte		
Übungsgruppe (Name des Tutors)			

Abgabetermin: Montag, 29.01.2024, 14:00 Uhr.

Bitte verwenden Sie bei Abgabe in Papierform diese Seite als Deckblatt und tragen Sie oben Ihren Matrikel-Nr. und Ihre Übungsgruppe ein. Bitte heften Sie die Blätter zusammen.

 $\mathbf{Aufgabe} \ \mathbf{1} \ (10 \ \mathrm{Punkte})$. Berechnen Sie jeweils die kleinste natürliche Zahl n mit

- (i) $\bar{4}^7 = \bar{n}$ in $\mathbb{Z}/13\mathbb{Z}$. (Hinweis: Schreiben Sie $7 = 2^2 + 2 + 1$ und berechnen Sie 4^2 , $(4^2)^2$ modulo 13.)
- (ii) $\bar{6}^{21} = \bar{n} \text{ in } \mathbb{Z}/39\mathbb{Z}$

Aufgabe 2 (10 Punkte). Berechnen Sie jeweils das multiplikative Inverse des gegebenen Elements \bar{a} in $\mathbb{Z}/p\mathbb{Z}$. Geben Sie hierbei das Inverse als Element aus $\{\bar{0}, \dots, \overline{p-1}\}$ an.

- (i) Von $\bar{2}$ in $\mathbb{Z}/43\mathbb{Z}$,
- (ii) Von $\bar{5}$ in $\mathbb{Z}/23\mathbb{Z}$,
- (iii) Von $\overline{12}$ in $\mathbb{Z}/17\mathbb{Z}$.

Aufgabe 3 (10 Punkte). Zeigen Sie:

- (i) $2^{1149} 6$ ist durch 11 teilbar
- (ii) $5^{6350} \equiv 4 \mod 7$

Aufgabe 4. Was lässt sich jeweils mithilfe der gegebenen Kongruenz und des kleinen Fermatschen Satzes über die Primalität des Modulus sagen?

(i) $6^{851} \equiv 31 \mod 851 \text{ und } 184^{850} \equiv 1 \mod 851$

Finden Sie alle Erzeugenden von $(\mathbb{Z}/11\mathbb{Z})^*$ und bestimmen Sie die Ordnung von 3 in $(\mathbb{Z}/11\mathbb{Z})^*$. Wie viele Erzeuger hat $(\mathbb{Z}/23\mathbb{Z})^*$?