Linear Programming: Gaussian Elimination

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

- Solve a system of linear equations.
- Implement a row reduction algorithm.
- Say something about what the set of solution to a system of linear equations looks like.

Last Time

Linear programming: Dealing with systems of linear inequalities.

Linear Algebra

Today, we will deal with the simpler case, of systems of linear equalities.

Linear Algebra

Today, we will deal with the simpler case, of systems of linear equalities.

For example:

$$x + y = 5$$
$$2x + 4y = 12.$$

Method of Substitution

- Use first equation to solve for one variable in terms of the others.
- Substitute into other equations.
- Solve recursively.
- Substitute back in to first equation to get initial variable.

$$x + y = 5$$
$$2x + 4y = 12.$$

$$x + y = 5$$
$$2x + 4y = 12.$$

First equation implies

$$x = 5 - y$$
.

$$x + y = 5$$
$$2x + 4y = 12.$$

First equation implies

$$x = 5 - y$$
.

Substituting into second:

$$12 = 2x + 4y = 2(5 - y) + 4y = 10 + 2y.$$

$$x + y = 5$$
$$2x + 4y = 12.$$

First equation implies

$$x = 5 - v$$
.

Substituting into second:

$$12 = 2x + 4y = 2(5 - y) + 4y = 10 + 2y$$
.

So
$$y = 1, x = 5 - 1 = 4$$
.

Problem

What is the value of x in the solution to the following linear system?

$$x + 2y = 6$$
$$3x - y = -3.$$

Solution

From the first equation, we get

$$x = 6 - 2y$$
.

Solution

From the first equation, we get

$$x = 6 - 2y$$
.

Substituting into the second,

$$-3 = 3(6 - 2y) - y = 18 - 7y.$$

Solution

From the first equation, we get

$$x = 6 - 2y$$
.

Substituting into the second,

$$-3 = 3(6 - 2y) - y = 18 - 7y.$$

Solving gives, y = 3, so $x = 6 - 2 \cdot 3 = 0$.

Notation

To simplify notation, instead of writing full equations like

$$x + y = 5$$
$$2x + 4y = 12.$$

Notation

To simplify notation, instead of writing full equations like

$$x + y = 5$$
$$2x + 4y = 12.$$

We just store coefficients of equations in an (augmented) matrix, like so:

$$x \quad y = 1$$

$$\begin{bmatrix} 1 & 1 & | & 5 \\ 2 & 4 & | & 12 \end{bmatrix}$$

How do we solve for x?

How do we solve for x? Can't directly have row correspond to x = 5 - y. But row [1 1|5] corresponds to x + y = 5, which is almost as good.

How do we solve for x? Can't directly have row correspond to x = 5 - y. But row [1 1|5] corresponds to x + y = 5, which is almost as good.

How do we substitute into second equation?

How do we solve for x? Can't directly have row correspond to x = 5 - y. But row [1 1|5] corresponds to x + y = 5, which is almost as good.

How do we substitute into second equation? By subtracting. Subtracting 2(x + y = 5)from (2x + 4y = 12) gives 2y = 2.

How do we solve for x? Can't directly have row correspond to x = 5 - y. But row [1 1|5] corresponds to x + y = 5, which is almost as good.

How do we substitute into second equation? By subtracting. Subtracting 2(x + y = 5) from (2x + 4y = 12) gives 2y = 2. Subtract twice first row from second.

Basic Row Operations

There are three basic ways to manipulate our matrix. These are called Basic row operations. Each of them gives us an equivalent system of equations.

Adding

Add/subtract a multiple of one row to another.

Adding

Add/subtract a multiple of one row to another. Subtracting twice the first row from second,

$$\begin{bmatrix} 1 & 1 & 5 \\ 2 & 4 & 12 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 5 \\ 0 & 2 & 2 \end{bmatrix}$$

Scaling

Multiply/divide a row by a non-zero constant.

Scaling

Multiply/divide a row by a non-zero constant. Dividing the second row by 2:

$$\begin{bmatrix} 1 & 1 & 5 \\ 0 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 5 \\ 0 & 1 & 1 \end{bmatrix}$$

Swapping

Sometimes you want to change the ordering of rows.

Swapping

Sometimes you want to change the ordering of rows. For example, swapping the first and second rows we get

$$\begin{bmatrix} 1 & 1 & 5 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$

Row Reduction

Row reduction uses row operations to put a matrix into a simple standard form. The idea is to simulate the substitution method.

Consider the system given by the matrix:

$$\begin{bmatrix} 2 & 4 & -2 & 0 & 2 \\ -1 & -2 & 1 & -2 & -1 \\ 2 & 2 & 0 & 2 & 0 \end{bmatrix}$$

Use first for to solve for first variable.

$$\begin{bmatrix} 2 & 4 & -2 & 0 & 2 \\ -1 & -2 & 1 & -2 & -1 \\ 2 & 2 & 0 & 2 & 0 \end{bmatrix}$$

Divide first row by 2.

$$\begin{bmatrix} 1 & 2 & -1 & 0 & 1 \\ -1 & -2 & 1 & -2 & -1 \\ 2 & 2 & 0 & 2 & 0 \end{bmatrix}$$

Substitute into other equations.

$$\begin{bmatrix}
1 & 2 & -1 & 0 & 1 \\
-1 & -2 & 1 & -2 & -1 \\
2 & 2 & 0 & 2 & 0
\end{bmatrix}$$

Add first row to second.

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & -1 & 0 & 1 \\
0 & 0 & 0 & -2 & 0 \\
2 & 2 & 0 & 2 & 0
\end{array}\right]$$

Subtract twice first row from third.

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & -1 & 0 & 1 \\
0 & 0 & 0 & -2 & 0 \\
0 & -2 & 2 & 2 & -2
\end{array} \right]$$

Need to solve for next variable.

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & -1 & 0 & 1 \\
0 & 0 & 0 & -2 & 0 \\
0 & -2 & 2 & 2 & -2
\end{array} \right]$$

Cannot use second row.

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & -1 & 0 & 1 \\
0 & 0 & 0 & -2 & 0 \\
0 & -2 & 2 & 2 & -2
\end{array} \right]$$

Swap second and third rows.

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & -1 & 0 & 1 \\
0 & -2 & 2 & 2 & -2 \\
0 & 0 & 0 & -2 & 0
\end{array}\right]$$

Solve for second variable.

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & -1 & 0 & 1 \\
0 & -2 & 2 & 2 & -2 \\
0 & 0 & 0 & -2 & 0
\end{array}\right]$$

Divide second row by -2.

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & -1 & 0 & 1 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & -2 & 0
\end{array} \right]$$

Substitute into other equations.

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & -1 & 0 & 1 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & -2 & 0
\end{array}\right]$$

Subtract twice second row from first.

$$\left[\begin{array}{ccc|cccc}
1 & 0 & 1 & 2 & -1 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & -2 & 0
\end{array}\right]$$

Can't solve for third variable

$$\begin{bmatrix}
1 & 0 & 1 & 2 & -1 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & -2 & 0
\end{bmatrix}$$

Solve for fourth instead

$$\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 2 & -1 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & -2 & 0
\end{array}\right]$$

Divide last row by -2.

$$\left[\begin{array}{ccc|cccc}
1 & 0 & 1 & 2 & -1 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]$$

Substitute into other equations.

$$\left[\begin{array}{ccc|ccc|c}
1 & 0 & 1 & 2 & -1 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]$$

Subtract twice third row from first.

$$\left[\begin{array}{ccc|ccc|c}
1 & 0 & 1 & 0 & -1 \\
0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]$$

Add third row to second.

$$\left[\begin{array}{ccc|ccc|c}
1 & 0 & 1 & 0 & -1 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]$$

Done

$$\left[\begin{array}{ccc|ccc|c} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right]$$

Answer

Our matrix

$$\left[\begin{array}{ccc|ccc|c} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right]$$

corresponds to equations:

$$x + z = -1$$
$$y - z = 1$$
$$w = 0.$$

Solution

So for any value of z, we have solution:

$$x = -1 - z$$

$$y = 1 + z$$

$$w = 0.$$

RowReduce(A)

Repeat

Leftmost non-zero

Swap row to top

Make entry pivot

Rescale to make pivot 1

Subtract row from others to make

other entries in column O

RowReduce(A)

Leftmost non-zero in non-pivot row Swap row to top of non-pivot rows Make entry pivot Rescale to make pivot 1 Subtract row from others to make other entries in column 0

Repeat until no more non-zero entries outside of pivot rows

Reading off Answer

- Each row has one pivot and a few other non-pivot entries.
- Gives equation writing pivot variable in terms of non-pivot variables.
- If pivot in units column, have equation0 = 1, so no solutions.
- Otherwise, set non-pivot variables to anything, gives answer.

Degrees of Freedom

- Your solution set will be a subspace.
- Dimension = number of non-pivot variables.
- Or *n* minus the number of pivot variables.
- Generally, dimension equals

num. variables — num. equations.

Runtime

- m equations in *n* variables.
- \blacksquare min(n, m) pivots.
- For each pivot, need to subtract multiple of row from each other row O(nm) time.
- Total runtime: $O(nm \min(n, m))$.