Projeto

Marcos Vinicius Troiano

Invalid Date

!pip install pandas import pandas as pd !pip install ipeadatapy import ipeadatapy as ip

```
ip.metadata(big_theme="Regional", country="BRA", frequency="Anual")
```

	CODE	NAME	COMMENT
543	CONSUMOCOM	Energia elétrica - consumo final energia - com	A energia elétrica no Brasil é da
544	CONSUMOIND	Energia elétrica - consumo final energia - ind	A energia elétrica no Brasil é da
545	CONSUMOOUT	Energia elétrica - consumo final energia - não	A energia elétrica no Brasil é da
546	CONSUMORES	Energia elétrica - consumo final energia - res	A energia elétrica no Brasil é da
547	CONSUMOTOT	Energia elétrica - consumo final energia - qua	A energia elétrica no Brasil é da
9673	PIBSDE	PIB Estadual (valor adicionado a preços básico	O produto interno bruto (PIB)
9674	PIBSE	PIB Municipal (valor adicionado a preços básic	O produto interno bruto (PIB)
9675	PIBSEE	PIB Estadual (valor adicionado a preços básico	O produto interno bruto (PIB)
9676	PIBTAE	PIB Estadual (valor adicionado a preços básico	O produto interno bruto (PIB)
9677	PIBTE	PIB Estadual (valor adicionado a preços básico	O produto interno bruto (PIB)

```
import csv
base = ip.metadata(big_theme="Regional", country="BRA", frequency="Quinquenal")
lista = list(base['CODE'])
for i in lista:
    ip.timeseries(i).to_csv(i + '.csv', sep=';')

arquivo = "EMPSE.csv"
dt = pd.read_csv(arquivo, sep=';')
dt.head()
```

	DATE	CODE	RAW DATE	TERCODIGO	YEAR	NIVNOME	VALUE (Pesso
0	1970-01-01	EMPSE	1970-01-01T00:00:00-02:00	314940	1970	AMC 70-00	2.0
1	1970-01-01	EMPSE	1970-01-01T00:00:00-02:00	3149408	1970	Municípios	2.0
2	1970-01-01	EMPSE	1970-01-01T00:00:00-02:00	250410	1970	AMC 70-00	3.0
3	1970-01-01	EMPSE	1970-01-01T00:00:00-02:00	2504108	1970	Municípios	3.0
4	1970-01-01	EMPSE	1970-01-01T00:00:00-02:00	240040	1970	AMC 70-00	4.0

```
dado = dt.iloc[:, -1]
  print(dado.head(5))
0
    2.0
    2.0
1
2
    3.0
3
    3.0
     4.0
Name: VALUE (Pessoa), dtype: float64
  def soma(dado):
      somar = 0
      for i, item in enumerate(dado):
          if i < 5: # limita a soma aos cinco primeiros dados
              somar = somar + float(item)
          else:
              break
      return somar
  resultado = soma(dado.head(5))
  print(resultado)
14.0
  def media(dado):
      med = dado.head(5).mean()
      return med
  resultadoMedia = media(dado)
  print(resultadoMedia)
```

2.8