CS711008Z Algorithm Design and Analysis

Lecture 7. Binary heap, binomial heap, and Fibonacci heap

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

Outline

- Introduction to priority queue
- Various implementations of priority queue:
 - Linked list: a list having n items is too long to support efficient EXTRACTMIN and INSERT operations simultaneously;
 - Binary heap: using a tree rather than a linked list;
 - Binomial heap: allowing multiple trees rather than a single tree to support efficient UNION operation
 - Fibonacci heap: implement DecreaseKey via simply cutting an edge rather than exchanging nodes, and control a "bushy" tree shape via allowing at most one child losing for any node.

Priority queue

Priority queue: motivation

- Motivation: It is usually a case to extract the minimum from a set S of n numbers, dynamically.
- Here, the word "dynamically" means that on S, we might perform INSERTION, DELETION and DECREASEKEY operations.
- The question is how to organize the data to efficiently support these operations.

Priority queue

- Priority queue is an abstract data type similar to stack or queue, but each element has a priority associated with its name.
- A min-oriented priority queue must support the following core operations:
 - **1** H = MAKEHEAP(): to create a new heap H;
 - ② INSERT(H,x): to insert into H an element x together with its priority
 - **3** EXTRACTMIN(H): to extract the element with the highest priority;
 - DecreaseKey(H, x, k): to decrease the priority of element x;
 - **5** UNION (H_1, H_2) : return a new heap containing all elements of heaps H_1 and H_2 , and destroy the input heaps

Priority queue is very useful

- Priority queue has extensive applications, such as:
 - Dijkstra's shortest path algorithm
 - Prim's MST algorithm
 - Huffman coding
 - ullet A^* searching algorithm
 - HeapSort
 -

An example: Dijkstra's algorithm

Dijkstra's algorithm [1959]

```
Dijkstra(G, s, t)
 1: key(s) = 0; //key(u) stores an upper bound of the shortest distance
   from s to u:
2: PQ. Insert (s);
3: for all node v \neq s do
4: key(v) = +\infty
 5: PQ. Insert (v) //n times
6: end for
7: S = \{\}; // Let S be the set of explored nodes;
8: while S \neq V do
9: v^* = PQ. EXTRACTMIN(); //n times
10: S = S \cup \{v^*\};
11: for all v \notin S and \langle v^*, v \rangle \in E do
12:
        if key(v) + d(v^*, v) < key(v) then
           PQ.DecreaseKey(v, key(v^*) + d(v^*, v)); //m times
13:
        end if
14:
      end for
15:
16: end while
Here PQ denotes a min-priority queue.
                                               ◆□ > ←問 > ← 置 > ← 置 → り へ ○
```


$$S = \{\}$$

$$PQ = \{s(0), a(\infty), b(\infty), c(\infty), d(\infty), e(\infty), f(\infty), t(\infty)\}$$

$$S = \{\}$$

$$PQ = \{s(0), a(\infty), b(\infty), c(\infty), d(\infty), e(\infty), f(\infty), t(\infty)\}$$

$$S = \{\}$$

$$PQ = \{s(0), a(\infty), b(\infty), c(\infty), d(\infty), e(\infty), f(\infty), t(\infty)\}$$

$$S = \{s\}$$

$$PQ = \{a(9), b(14), c(15), d(\infty), e(\infty), f(\infty), t(\infty)\}$$

$$S = \{s\}$$

$$PQ = \{a(9), b(14), c(15), d(\infty), e(\infty), f(\infty), t(\infty)\}$$

$$S = \{s\}$$

$$PQ = \{a(9), b(14), c(15), d(\infty), e(\infty), f(\infty), t(\infty)\}$$

$$S = \{s, a\}$$

$$PQ = \{b(14), c(15), d(33), e(\infty), f(\infty), t(\infty)\}$$

$$S = \{s, a\}$$

$$PQ = \{b(14), c(15), d(33), e(\infty), f(\infty), t(\infty)\}$$

$$S = \{s, a\}$$

$$PQ = \{b(14), c(15), d(33), e(\infty), f(\infty), t(\infty)\}$$

$$S = \{s, a, b\}$$

$$PQ = \{c(15), d(32), e(44), f(\infty), t(\infty)\}$$

$$S = \{s, a, b\}$$

$$PQ = \{c(15), d(32), e(44), f(\infty), t(\infty)\}$$

$$S = \{s, a, b\}$$

$$PQ = \{c(15), d(32), e(44), f(\infty), t(\infty)\}$$

$$S = \{s, a, b, c\}$$

$$PQ = \{d(32), e(35), t(59), f(\infty)\}$$

$$S = \{s, a, b, c\}$$

$$PQ = \{d(32), e(35), t(59), f(\infty)\}$$

$$S = \{s, a, b, c\}$$

$$PQ = \{d(32), e(35), t(59), f(\infty)\}$$

$$S = \{s, a, b, c, d\}$$

$$PQ = \{e(34), t(51), f(\infty)\}$$

$$S = \{s, a, b, c, d\}$$

$$PQ = \{e(34), t(51), f(\infty)\}$$

$$S = \{s, a, b, c, d\}$$

$$PQ = \{e(34), t(51), f(\infty)\}$$

$$S = \{s, a, b, c, d, e\}$$

$$PQ = \{f(45), t(50)\}$$

$$S = \{s, a, b, c, d, e\}$$

$$PQ = \{f(45), t(50)\}$$

$$S = \{s, a, b, c, d, e, f\}$$

$$PQ = \{t(50)\}$$

$$S = \{s, a, b, c, d, e, f, t\}$$

$$PQ = \{\}$$

Time complexity of DIJKSTRA algorithm

Operation	Linked	Binary	Binomial	Fibonacci
	list	heap	heap	heap
МакеНеар	1	1	1	1
Insert	1	$\log n$	$\log n$	1
ExtractMin	n	$\log n$	$\log n$	$\log n$
DecreaseKey	1	$\log n$	$\log n$	1
Delete	n	$\log n$	$\log n$	$\log n$
Union	1	n	$\log n$	1
FINDMIN	n	1	$\log n$	1
Dijkstra	$O(n^2)$	$O(m \log n)$	$O(m \log n)$	$O(m + n \log n)$

DIJKSTRA algorithm: n INSERT, n EXTRACTMIN, and m DECREASEKEY.

Implementing priority queue: array or linked list

Implementing priority queue: unsorted array

Unsorted array:

Unsorted linked list:

- Operations:
 - Insert: O(1)
 - ExtractMin: O(n)
- Note: a list containing n elements is too long to find the minimum efficiently.

Implementing priority queue: sorted array

Sorted array:

Sorted linked list:

- Operations:
 - Insert: O(n)
 - ExtractMin: O(1)
- Note: a list containing n elements is too long to maintain the order among elements.

Implementing priority queue: array or linked list

Operation	Linked	
	List	
Insert	$\overline{O(1)}$	
ExtractMin	O(n)	
DecreaseKey	O(1)	
Union	O(1)	

Binary heap: from a linked list to a tree

Binary heap

Figure 1: R. W. Floyd [1964]

Binary heap: a complete binary tree

- Basic idea:
 - loosing the structure: Recall that the objective is to find the minimum. To achieve this objective, it is not necessary to sort all elements;
 - but don't loose it too much: we still need order between some elements;

- Binary heap: elements are stored in a complete binary tree, i.e., a tree that is perfectly balanced except for the bottom level. Heap order is required, i.e., any parent has a key smaller than his children:
- Advantage: any path has a short length of $O(\log_2 n)$ rather than n in linked list, making it efficient to maintain heap

Binary heap: an explicit implementation

- Pointer representation: each node has pointers to its parent and two children;
- The following information are maintained:
 - the number of elements n;
 - the pointer to the root node;

• Note: the last node can be found in $O(\log n)$ time.

Binary heap: an implicit implementation

- Array representation: one-one correspondence between a binary tree and an array.
 - Binary tree ⇒ array:
 - the indices starting from 1 for the sake of simplicity;
 - the indices record the order that the binary tree is traversed level by level.
 - Array ⇒ binary tree:
 - the k-th item has two children located at 2k and 2k+1;
 - the parent of the k-th item is located at $\lfloor \frac{k}{2} \rfloor$;

Sorted array vs. binary heap

 Sorted array: an array containing n elements in an increasing order;

• Binary heap: heap order means that only the order among nodes in short paths (length is less than $\log n$) are maintained. Note that some inverse pairs exist in the array.

Binary heap: primitive and other operations

Primitive: exchanging nodes to restore heap order

Primitive operation: when heap order is violated, i.e. a parent
has a value larger than only one of its children, we simply
exchange them to resolve the conflict.

Figure 2: Heap order is violated: 15 > 13. Exchange them to resolve the conflict.

Primitive: exchanging nodes to restore heap order

 Primitive operation: when heap order is violated, i.e. a parent has a value larger than both of its children, we exchange the parent with its smaller child to resolve the conflict.

Figure 3: Heap order is violated: 20 > 12, and 20 > 18. Exchange 20 with its smaller child (12) to resolve the conflicts.

Binary heap: INSERT operation

- INSERT operation: the element is added as a new node at the end. Since the heap order might be violated, the node is repeatedly exchanged with its parent until heap order is restored.
- For example, INSERT(7):

Binary heap: EXTRACTMIN operation

- EXTRACTMIN operation: exchange element in root with the last node; repeatedly exchange the element in root with its smaller child until heap order is restored.
- For example, EXTRACTMIN():

Binary heap: DECREASEKEY operation

- DecreaseKey operation: given a handle to a node, repeatedly exchange the node with its parent until heap order is restored.
- For example, DecreaseKey(ptr, 7):

Binary heap: analysis

Theorem

In an implicit binary heap, any sequence of m INSERT, . DECREASEKEY, and EXTRACTMIN operations with n INSERT operations takes $O(m\log n)$ time.

Note:

• Each operation touches at most $\log n$ nodes on a path from the root to a leaf.

Theorem

In an explicit binary heap with n nodes, the Insert, . DecreaseKey, and ExtractMin operations take $O(m \log n)$ time in the worst case.

Note:

• If using array representation, a dynamic array expanding/contracting is needed. However, the total cost of array expanding/contracting is O(n) (see TABLEINSERT).

Binary heap: heapify a set of items

- Question: Given a set of n elements, how to construct a binary heap containing them?
- Solutions:
 - ① Simply INSERT the elements one by one. Takes $O(n \log n)$ time.
 - 2 Bottom-up heapifying. Takes O(n) time. For i=n to 1, we repeatedly exchange the element in node i with its smaller child until the subtree rooted at node i is heap-ordered.

Binary heap: heapify

Theorem

Given n elements, a binary heap can be constructed using O(n) time.

Proof.

- There are at most $\lceil \frac{n}{2^{h+1}} \rceil$ nodes of height h;
- It takes O(h) time to sink a node of height h;
- The total time is:

$$\begin{split} \sum_{h=0}^{\lfloor \log_2 n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil h & \leq & \sum_{h=0}^{\lfloor \log_2 n \rfloor} n \frac{h}{2^h} \\ & \leq & 2n \end{split}$$

Implementing priority queue: binary heap

Operation	Linked	Binary
	List	Heap
Insert	O(1)	$O(\log n)$
ExtractMin	O(n)	$O(\log n)$
DECREASEKEY	O(1)	$O(\log n)$
Union	O(1)	O(n)

Binary heap: UNION operation

• Union operation: Given two binary heaps H_1 and H_2 , to merge them into one binary heap.

- O(n) time is needed if using heapify.
- Question: Is there a quicker way to union two heaps?

Binomial heap: using multiple trees rather than a single tree to support efficient UNION operation

Binomial heap

Figure 4: Jean Vuillenmin [1978]

Binomial heap: efficient UNION

- Basic idea:
 - loosing the structure: if multiple trees are allowed to represent a heap, UNION can be efficiently implemented via simply putting trees together.
 - but don't loose it too much: there should not be too many trees; otherwise, it will take a long time to find the minimum among all root nodes.

 EXTRACTMIN: simply finding the minimum element of the root nodes. Note that a root node holds the minimum of the tree due to the heap order.

Why we can't loose the structure too much?

• An extreme case of multiple trees: each node is itself a tree. Then it will take O(n) time to find the minimum.

6 11 8 29

• Solution: **consolidating**, i.e., two trees (with the same size) are merged into one — the larger root is linked to the smaller one to keep the heap order. Note that after consolidating, at most $\log n$ trees will be left.

Binomial tree

Definition (Binomial tree)

The binomial tree is defined recursively: a single node is itself a B_0 tree, and two B_k trees are linked into a B_{k+1} tree.

Binomial tree examples: B_0 , B_1 , B_2

Binomial tree example: B_3

Binomial tree example: B_4

Binomial tree example: B_5

Binomial tree: property

Properties:

- $|B_k| = 2^k$.
- **2** $height(B_k) = k.$
- \bullet degree $(B_k) = k$.
- **1** The *i*-th child of a node has a degree of i-1.
- **5** The deletion of the root yields trees $B_0, B_1, ..., B_{k-1}$.
- Binomial tree is named after the fact that the node number of all levels are binomial coefficients.

Binomial heap: a forest

Definition (Binomial forest)

A binomial heap is a collection of several binomial trees:

- Each tree is heap ordered;
- There is either 0 or 1 B_k for any k.
- Example:

 Note that the roots are organized using doubly-linked circular list, and the minimum of them is recorded using a pointer.

Binomial heap: properties

Properties:

- **1** A binomial heap with n nodes contains the binomial tree B_i iff $b_i = 1$, where $b_k b_{k-1} ... b_1 b_0$ is binary representation of n.
- 2 It has at most $\lfloor \log_2 n \rfloor + 1$ trees.
- **3** Its height is at most $\lfloor \log_2 n \rfloor$.

Thus, it takes $O(\log n)$ time to find the minimum element via checking the roots.

UNION is efficient: example 1

Figure 5: An easy case: no consolidating is needed

UNION is efficient: example 2 l

Figure 6: Consolidating two B_1 trees into a B_2 tree

UNION is efficient: example 2 II

Figure 7: Consolidating two B_2 trees into a B_3 tree

Union is efficient: example 2 III

Time complexity: $O(\log n)$ since there are at most $O(\log n)$ trees.

Binomial heap: INSERT operation

Insert(x)

- 1: Create a B_0 tree for x;
- 2: Change the pointer to the minimum root node if necessary;
- 3: **while** there are two B_k trees for some k **do**
- 4: Link them together into one B_{k+1} tree;
- 5: Change the pointer to the minimum root node if necessary;
- 6: end while

INSERT operation: an example

Figure 8: An easy case: no consolidating is needed

INSERT operation: example 2 l

Figure 9: Consolidating two B_0

INSERT operation: example 2 II

Figure 10: Consolidating two B_1

INSERT operation: example 2 III

Figure 11: Consolidating two B_2

INSERT operation: example 2 IV

Figure 12: Consolidating two B_3

INSERT operation: example 2 V

Time complexity: $O(\log n)$ (worst case) since there are at most $\log n$ trees.

Binomial heap: EXTRACTMIN operation

EXTRACTMIN()

- 1: Remove the min node, and insert its children into the root list;
- 2: Change the pointer to the minimum root node if necessary;
- 3: **while** there are two B_k trees for some k **do**
- 4: Link them together into one B_{k+1} tree;
- 5: Change the pointer to the minimum root node if necessary;
- 6: end while

EXTRACTMIN operation: an example I

EXTRACTMIN operation: an example II

Figure 13: The four children become trees

EXTRACTMIN operation: an example III

Figure 14: Consolidating two B_1 trees

EXTRACTMIN operation: an example IV

Figure 15: Consolidating two B_2 trees

EXTRACTMIN operation: an example V

Figure 16: Consolidating two B_2 trees

EXTRACTMIN operation: an example VI

Time complexity: $O(\log n)$

Implementing priority queue: Binomial heap

Operation	Linked	Binary	Binomial	
	List	Heap	Heap	
Insert	O(1)	$O(\log n)$	$O(\log n)$	
ExtractMin	O(n)	$O(\log n)$	$O(\log n)$	
DecreaseKey	O(1)	$O(\log n)$	$O(\log n)$	
Union	O(1)	O(n)	$O(\log n)$	

Binomial heap: more accurate analysis using the amortized technique

Amortized analysis of INSERT

Motivation:

• If an INSERT takes a long time (say $\log n$), the subsequent INSERT operations shouldn't take long!

 Thus, it will be more accurate to examine a sequence of operations rather than each operation individually.

Amortized analysis of INSERT operation

INSERT(x)

- 1: Create a B_0 tree for x;
- 2: Change the pointer to the minimum root node if necessary;
- 3: **while** there are two B_k trees for some k **do**
- 4: Link them together into one B_{k+1} tree;
- 5: Change the pointer to the minimum root node if necessary;
- 6: end while

Analysis:

- A single INSERT operation takes time 1+w, where $w=\#\mathtt{WHILE}$.
- For the sake of calculating the total running time of a sequence of operations, we represent the running time of a single operation as decrease of a potential function.
- Consider a quantity $\Phi=\#trees$ (called potential function). The changes of Φ during an operation are:
 - Φ increase: 1.
 - \bullet Φ decrease: w.
- Thus the running time of INSERT can be rewritten in terms of Φ as 1+w=1+ decrease in Φ . Note that this representation makes it

Amortized analysis of EXTRACTMIN

EXTRACTMIN()

- 1: Remove the min node, and insert its children to the root list;
- 2: Change the pointer to the minimum root node if necessary;
- 3: **while** there are two B_k trees for some k **do**
- 4: Link them together into one B_{k+1} tree;
- 5: Change the pointer to the minimum root node if necessary;
- 6: end while

Analysis:

- A single EXTRACTMIN operation takes d+w time, where d denotes degree of the removed root node, and $w=\#\mathtt{WHILE}$.
- For the sake of calculating the total running time of a sequence of operations, we represent the running time of a single operation as decrease of a potential function.
- Consider a potential function $\Phi = \#trees$. The changes during an operation are:
 - ullet Φ increase: d.
 - Φ decrease: w.
- Similarly, the running time is rewritten in terms of Φ as d+w=d+ decrease in #trees. Note that $d \leq \log n$.

Amortized analysis

- Let's consider any sequence of n INSERT and m EXTRACTMIN operations.
- The total running time is at most $n + m \log n +$ total decrease in #trees.
- Note: total decrease in $\#trees \le \text{total}$ increase in #trees (why?), which is at most $n + m \log n$.
- Thus the total time is at most $2n + 2m \log n$.
- We say INSERT takes O(1) amortized time, and EXTRACTMIN takes $O(\log n)$ amortized time.

Definition (Amortized time)

For any sequence of n_1 operation 1, n_2 operation 2..., if the total time is $O(n_1T_1+n_2T_2...)$, we say that operation 1 takes T_1 amortized time, operation 2 takes T_2 amortized time

Intuition of the amortized analysis

- The actual running time of an INSERT operation is 1+w. A large w means that the INSERT operation takes a long time. Note that the w time was spent on "decreasing trees"; thus, if the w time was amortized over the operations "creating trees", the "amortized time" of INSERT operation will be only O(1).
- The actual running time of an $\operatorname{ExtractMin}$ operation is at most $\log n + w$. Note that at most $\log n$ new trees are created during an $\operatorname{ExtractMin}$ operation; thus, the amortized time is still $O(\log n)$ even if some costs have been amortized to it from other operations due to "tree creating".

Implementing priority queue: Binomial heap

Operation	Linked	Binary	Binomial	Binomial
	List	Heap	Heap	Heap*
Insert	O(1)	$O(\log n)$	$O(\log n)$	O(1)
ExtractMin	O(n)	$O(\log n)$	$O(\log n)$	$O(\log n)$
DecreaseKey	O(1)	$O(\log n)$	$O(\log n)$	$O(\log n)$
Union	O(1)	O(n)	$O(\log n)$	O(1)

^{*}amortized cost

Binomial heap: DecreaseKey operation

Figure 17: DecreaseKey: 17 to 1

- Time: $O(\log n)$ since in the worst case, we need to perform node exchanging up to the root.
- Question: is there a quicker way for decrease key?

Fibonacci heap: an efficient implementation of DECREASEKEY via simply cutting an edge rather than exchanging nodes

Fibonacci heap

Figure 18: Robert Tarjan [1986]

Fibonacci heap: an efficient DECREASEKEY operation

- Basic idea:
 - **loosing the structure**: When heap order is violated, a simple solution is to "cut off a node, and insert it into the root list".
 - but don't loose it too much: the "cutting off" operation
 makes a tree not "binomial" any more; however, it should not
 deviate from a binomial tree too much. A technique to achieve
 this objective is allowing any non-root node to lose "at most
 one child".

Figure 19: Heap order is violated when DESCREASEKEY 13 to 2. However, the heap order can be easily restored via "cutting off" the node, and inserting it into the root list

73 / 108

Fibonacci heap: DESCREASEKEY

DecreaseKey(v, x)

- 1: key(v) = x;
- 2: **if** heap order is violated **then**
- 3: u = v's parent;
- 4: Cut subtree rooted at node v, and insert it into the root list;
- 5: Change the pointer to the minimum root node if necessary;
- 6: **while** u is marked **do**
- 7: Cut subtree rooted at node u, and insert it into the root list;
- 8: Change the pointer to the minimum root node if necessary;
- 9: Unmark u;
- 10: u = u's parent;
- 11: end while
- 12: Mark u;
- 13: end if

DECREASEKEY: an example I

Figure 20: A Fibonacci heap. To DecreaseKey: 19 to 3.

DECREASEKEY: an example II

Figure 21: After DecreaseKey: 19 to 3. To DecreaseKey: 15 to 2.

DECREASEKEY: an example III

Figure 22: After DecreaseKey: 15 to 2. To DecreaseKey: 12 to 8.

DECREASEKEY: an example IV

Figure 23: After DecreaseKey: 12 to 8. To DecreaseKey: 14 to 1.

DECREASEKEY: an example V

Figure 24: After DecreaseKey: 14 to 1. To DecreaseKey: 16 to 9.

DECREASEKEY: an example VI

Figure 25: After DecreaseKey: 16 to 9

Fibonacci heap: INSERT

INSERT(x)

- 1: Create a tree for x, and insert it into the root list;
- 2: Change the pointer to the minimum root node if necessary;

Note: Being lazy! Consolidating trees when extracting minimum.

Figure 26: INSERT(6): creating a new tree, and insert it into the root list

Fibonacci heap: EXTRACTMIN

ExtractMin()

- 1: Remove the min node, and insert its children into the root list;
- 2: Change the pointer to the minimum root node if necessary;
- 3: **while** there are two roots u and v of the same degree \mathbf{do}
- 4: Consolidate the two trees together;
- 5: Change the pointer to the minimum root node if necessary;
- 6: end while

EXTRACTMIN: an example | 1

Figure 27: EXTRACTMIN: removing the min node, and adding 3 trees

EXTRACTMIN: an example II

Figure 28: ExtractMin: after consolidating two trees rooted at node 1 and 8

Figure 29: ExtractMin: after consolidating two trees rooted at node 1 and 9

EXTRACTMIN: an example III

Figure 30: ExtractMin: after consolidating two trees rooted at node 1 and 7

Figure 31: EXTRACTMIN: after consolidating two trees rooted at node 3 and 5 $\,$

EXTRACTMIN: an example IV

Figure 32: EXTRACTMIN: after consolidating two trees rooted at node 2 and 13

Figure 33: EXTRACTMIN: after consolidating two trees rooted at node 2 and 9 $\,$

EXTRACTMIN: an example V

Figure 34: $\operatorname{ExtractMin}:$ after consolidating two trees rooted at node 2 and 3

EXTRACTMIN: an example VI

Figure 35: $\rm EXTRACTMIN$: after consolidating two trees rooted at node 1 and 2

Fibonacci heap: an amortized analysis

Fibonacci heap: DECREASEKEY

DecreaseKey(v, x)

- 1: key(v) = x;
- 2: **if** heap order is violated **then**
- 3: u = v's parent;
- 4: Cut subtree rooted at node v, and insert it into the root list;
- 5: Change the pointer to the minimum root node if necessary;
- 6: **while** u is marked **do**
- 7: Cut subtree rooted at node u, and insert it into the root list;
- 8: Change the pointer to the minimum root node if necessary;
- 9: Unmark u;
- 10: u = u's parent;
- 11: end while
- 12: Mark u;
- 13: end if

DECREASEKEY: analysis

Analysis:

- The actual running time of a single operation is 1+w, where $w=\#\mathtt{WHILE}.$
- For the sake of calculating the total running time of a sequence of operations, we represent the running time of a single operation as decrease of a potential function.
- Consider a potential function $\Phi = \#trees + 2\#marks$. The changes of Φ during an operation are:
 - Φ increase: 1 + 2 = 3.
 - Φ decrease: (-1+2*1)*w=w.
- Thus we can rewrite the running time in terms of Φ as $1+w=1+\Phi$ decrease.

Intuition: a large w means that $\mathrm{DECREASEKEY}$ takes a long time; however, if we can "amortize" w over other operations, a $\mathrm{DECREASEKEY}$ operation takes only O(1) "amortized time".

Fibonacci heap: EXTRACTMIN

ExtractMin()

- 1: Remove the min node, and insert its children into the root list;
- 2: Change the pointer to the minimum root node if necessary;
- 3: **while** there are two roots u and v of the same degree \mathbf{do}
- 4: Consolidate the two trees together;
- 5: Change the pointer to the minimum root node if necessary;
- 6: end while

EXTRACTMIN: analysis

Analysis:

- The actual running time of a single operation is d+w, where d denotes degree of the removed node, and $w=\#\mathtt{WHILE}$.
- For the sake of calculating the total running time of a sequence of operations, we represent the running time of a single operation as decrease of a potential function.
- Consider a potential function $\Phi = \#trees + 2\#marks$. The changes of Φ during an operation are:
 - ullet Φ increase: d.
 - \bullet Φ decrease: w.
- Thus the running time can be rewritten in terms of Φ as d+w=d+ decrease in $\Phi.$

Note: $d \leq d_{max}$, where d_{max} denotes the maximum root node degree.

Fibonacci heap: INSERT

INSERT(x)

- 1: Create a tree for x, and insert it into the root list;
- 2: Change the pointer to the minimum root node if necessary;

Analysis:

- ullet The actual running time is 1, and the changes of Φ during this operation are:
 - \bullet Φ increase: 1.
 - \bullet Φ decrease: 0.

Note:

- Recall that a binomial heap consolidates trees in both INSERT and EXTRACTMIN operations.
- In contrast, the Fibonacci heap adopts the strategy of "being lazy" — tree consolidating is removed from INSERT operation for the sake of efficiency, and there is no tree consolidating until an EXTRACTMIN operation.

Fibonacci heap: amortized analysis

- ullet Consider any sequence of n INSERT, m EXTRACTMIN, and r DECREASEKEY operations.
- The total running time is at most: $n + md_{max} + r +$ total decrease in Φ .
- Note: total decrease in $\Phi \leq$ total increase in $\Phi = n + md_{max} + 3r$.
- Thus the total running time is at most: $n + md_{max} + r + n + md_{max} + 3r = 2n + 2md_{max} + 4r.$
- Thus Insert takes O(1) amortized time, DecreaseKey takes O(1) amortized time, and ExtractMin takes $O(d_{max})$ amortized time.
- In fact, ExtractMin takes $O(\log n)$ amortized time since d_{max} can be upper-bounded by $\log n$ (why?).

Fibonacci heap: bounding $d_{\it max}$

Fibonacci heap: bounding d_{max}

 $1+\sqrt{5}$ 1 C10

• Recall that for a binomial tree having n nodes, the root degree d is **exactly** $\log_2 n$, i.e. $d = \log_2 n$.

• In contrast, a tree in a Fibonacci heap might have several subtrees cutting off, leading to $d \ge \log_2 n$.

• However, the "marking technique" guarantees that any node can lose at most one child, thus limiting the deviation from the original binomial tree, i.e. $\log_\phi n \geq d \geq \log_2 n$, where

Fibonacci heap: a property of node degree

• Recall that for a binomial tree, the i-th child of each node has a degree of exactly i-1.

• For a tree in a Fibonacci heap , we will show that the i-th child of each node has degree $\geq i-2$.

Lemma

For any node in a Fibonacci heap, the i-th child has a degree > i-2.

Proof.

- Suppose *u* is the **current** *i*-th child of *w*;
- If w is not a root node, it has at most 1 child lost; otherwise, it might have multiple children lost;
- Consider the time when u is linked to w. At that time, $degree(w) \ge i 1$, so $degree(u) = degree(w) \ge i 1$;
- Subsequently, degree(u) decreases by at most 1 (Otherwise, u will be cut off and no longer a child of w).
- Thus, $degree(u) \ge i 2$.

The smallest tree with root degree k in a Fibonacci heap

• Let F_k be the smallest tree with root degree of k, and for any node of F_k , the i-th child has degree $\geq i-2$;

Figure 36: $|B_1| = 2^1$ and $|F_0| = 1 \ge \phi^0$

Example: B_2 versus F_1

• Let F_k be the smallest tree with root degree of k, and for any node of F_k , the i-th child has degree $\geq i-2$;

Figure 37: $|B_2| = 2^2$ and $|F_1| = 2 \ge \phi^1$

Example: B_3 versus F_2

• Let F_k be the smallest tree with root degree of k, and for any node of F_k , the i-th child has degree $\geq i-2$;

Figure 38: $|B_3| = 2^3$ and $|F_2| = 3 \ge \phi^2$

Example: B_4 versus F_3

Figure 39: $|B_4| = 2^4$ and $|F_3| = 5 \ge \phi^3$

Example: B_5 versus F_4

Figure 40: $|B_5| = 2^5$ and $|F_4| = 8 \ge \phi^4$

General case of trees in Fibonacci heap

• Recall that a binomial tree B_{k+1} is a combination of two B_k trees.

• In contrast, F_{k+1} is the combination of an F_k tree and an F_{k-1} tree.

• We will show that though F_k is smaller than B_k , the difference is not too much. In fact, $|F_k| \ge 1.618^k$.

Fibonacci numbers and Fibonacci heap

Definition (Fibonacci numbers)

The Fibonacci sequence is 0,1,1,2,3,5,8,13,21,34... It can be defined by the recursion relation: $f_k = \begin{cases} 0 & \text{if } k=0\\ 1 & \text{if } k=1\\ f_{k-1}+f_{k-2} & \text{if } k\geq 2 \end{cases}$

- Recall that $f_{k+2} \geq \phi^k$, where $\phi = \frac{1+\sqrt{5}}{2} = 1.618...$
- Note that $|F_k|=f_{k+2}$, say $|F_0|=f_2=1$, $|F_1|=f_3=2$, $|F_2|=f_4=3$.
- Consider a Fibonacci heap H having n nodes. Let T denote a tree in H with root degree d.
- We have $n \ge |T| \ge |F_d| = f_{d+2} \ge \phi^d$.
- Thus $d = O(\log_{\phi} n) = O(\log n)$. So, $d_{max} = O(\log n)$.

Therefore, EXTRACTMIN operation takes $O(\log n)$ amortized time.

Implementing priority queue: Fibonacci heap

Operation	Linked	Binary	Binomial	Binomial	Fibonacci
	List	Heap	Heap	Heap*	Heap*
Insert	O(1)	$O(\log n)$	$O(\log n)$	O(1)	O(1)
ExtractMin	O(n)	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
DecreaseKey	O(1)	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)
Union	O(1)	O(n)	$O(\log n)$	O(1)	O(1)

^{*}amortized cost

Time complexity of DIJKSTRA algorithm

Operation	Linked	Binary	Binomial	Fibonacci
	list	heap	heap	heap
МакеНеар	1	1	1	1
Insert	1	$\log n$	$\log n$	1
ExtractMin	n	$\log n$	$\log n$	$\log n$
DecreaseKey	1	$\log n$	$\log n$	1
Delete	n	$\log n$	$\log n$	$\log n$
Union	1	n	$\log n$	1
FINDMIN	n	1	$\log n$	1
Dijkstra	$O(n^2)$	$O(m \log n)$	$O(m \log n)$	$O(m + n\log n)$

DIJKSTRA algorithm: n INSERT, n EXTRACTMIN, and m DECREASEKEY.