

CAN通讯协议

CAN包括8个字节,其中数据字节不够的就在后面补0。发送第一字节0x40表示写入命令,返回第一字节0x40表示写成功。ID为CAN通信节点号。默认值:CAN 波特率为125K、100HZ自动输出、节点号为05。

1) 修改节点号:

(ID=0x01~0x7F), 默认节点号 (ID) 为0x05

	CAN-ID	第一字节	第二 字节	第三字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x10	0x10	0x00	ID	0x00	0x00	0x00
应答	0x580+0xID	0x40	0x10	0x10	0x00	ID	0x00	0x00	0x00

注: 默认节点号是 05, ID 表示要修改的节点号。

例如: 节点号修改为 08,则需要发送 605 40 10 10 00 08 00 00 00,返回值为 588 40 10 10 00 08 00 00,表示节点修改成了 08。

此时发送其他命名时需将 CAN-ID 改为 0x608 才能发送成功。不需要发送保存命令。

2) 设置CAN波特率:

	CAN-ID	第一字节	第二字节	第三字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x20	0x10	0x00	Baud	0x00	0x00	0x00
应答									

注: 第五字节(Baud)为0x01、0x02、0x03、0x04、0x05、0x06。其中0x01代表设置波特率500K bps,

0x02代表设置波特率250K bps,

0x03代表设置波特率125K bps,

0x04代表设置波特率100K bps,

0x05代表设置波特率50K bps,

0x06代表设置波特率25K bps,

默认波特率为125K bps,修改波特率后传感器需重新上电,波特率修改才能成功。

3) 设置相对\诀对零点

	CAN-ID	第一字节	第二 字节	第三字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x05	0x10	0x00	Type	0x00	0x00	0x00
应答	0x580 + 0x05	0x40	0x05	0x10	0x00	0x00	0x00	0x00	0x00

注: 第 5 字节 Type 为 0x00, 0x01。0x00 表示设置为诀对零点, 0x01 表示俯仰和横滚角设置为相对零点, 0x02 表示方位角设置为相对零点,设置完零点后还需输入保存命令后才能设置成功。 (默认为诀对零点)

诀对零点:测量角度以出厂校准后的零点为基准。 相对零点:测量角度以当前位置为零点基准。

CAN通讯协议

4) 查询相对\诀对零点

	CAN-ID	第一字节	第二 字节	第三字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x0d	0x10	0x00	0x00	0x00	0x00	0x00
应答	0x580 + 0x05	0x40	0x05	0x10	0x00	Туре	0x00	0x00	0x00

注: 第5字节Type为0x00, 0x01。0x00表示为诀对零点, 0x01表示为相对零点。

5) 保存

	CAN-ID	第一字节	第二 字节	第三字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x0a	0x10	0x00	0x00	0x00	0x00	0x00
应答	0x580 + 0x05	0x40	0x0a	0x10	0x00	0x00	0x00	0x00	0x00

注:对于部分参数修改后还需发送保存命令后才能生效。

6) 读取各姿态角度

	CAN-ID	第一字节	第二字节	第三字节	第四 字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x04	0x10	0x00	0x00	0x00	0x00	0x00
应答	0x580 + 0x05	SX	XX	XX	SX	YY	уу	ВВ	Bb

注: 读角度命令需要在应答模式下才有效。

俯仰角由 3 个字节的 BCD 码表示(1~3 字节)最高位 S 为符号位,0-正;1-负,大写 X 为整数位,小写 x 为小数位;横滚角由 3 个字节的 BCD 码表示(4~6 字节)最高位 S 为符号位,0-正;1-负,大写 Y 为整数位,小写 y 为小数位;方位角由 2 个字节的 BCD 码表示(7~8 字节)无符号位,大写 B 为整数位,小写 b 为小数位;

例如返回的数据为 585 00 12 34 10 12 34 26 35,则表示俯仰角为+12.34 度,横滚角为-12.34 度,方位角为 263.5°。

7) 设置输出模式

	CAN-ID	第一 字节	第二 字节	第三 字节	第四 字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x0c	0x10	0x00	mode	0x00	0x00	0x00
应答	0x580 + 0x05	0x40	0x0c	0x10	0x00	mode	0x00	0x00	0x00

注: 第五字节mode为0x00、0x01、0x02、0x03、0x04、0x05、0x06。其中0x00代表应答模式,

0x01: 5Hz Data Rate, 0x02: 10Hz Data Rate, 0x03: 20Hz Data Rate, 0x04: 25Hz Data Rate,

0x05: 50Hz Data Rate, 0x06: 100Hz Data Rate (默认),

5Hz Data Rate 意味着每秒自动输出 5 次数据,发送其他命名应在问答模式下进行(自动模式是不停的按照特定频率输出轴向的当前角度,在应答模式下才能更容易看见其他命令返回值)。

CAN通讯协议

8) 读取角速度

	CAN-ID	第一 字节	第二 字节	第三 字节	第四 字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x50	0x10	0x00	0x00	0x00	0x00	0x00
应答	0x580 + 0x05	0x50	0x00	AA	AA	ВВ	ВВ	CC	CC

注: X 轴角速度为 (AAAA5000) /10,

Y轴角速度为 (BBBB-5000) /10,

Z轴角速度为 (CCCC-5000) /10,

例如, 当接收到的数据为 585 50 00 50 12 50 07 50 11, X 轴的数据为(5012-5000)/10 = 1.2°/s, 以此类推。

9) 读取加速度

	CAN-ID	第一 字节	第二 字节	第三字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x54	0x10	0x00	0x00	0x00	0x00	0x00
应答	0x580 + 0x05	0x54	0x00	AA	AA	ВВ	ВВ	CC	CC

注: X 轴加速度为 (AAAA-5000) /2500,

Y轴加速度为 (BBBB-5000) /2500,

Z轴加速度为 (CCCC-5000) /2500,

例如, 当接收到的数据为 585 54 00 51 05 49 72 25 79,

X 轴的数据为(5105-5000)/2500 = 0.042g, g 为地球重力加速度。

10) 读磁场值

	CAN-ID	第一字节	第二 字节	第三 字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x55	0x10	0x00	0x00	0x00	0x00	0x00
应答	0x580+0x05	0x55	0x00	AA	AA	ВВ	ВВ	CC	CC

注:X轴磁场值为(AAAA-5000)/5000,

Y轴磁场值为 (BBBB-5000) /5000,

Z轴磁场值为 (CCCC-5000) /5000,

例如, 当接收到的数据为 585 55 00 64 85 35 07 50 16, X 轴的数据为(6485-5000)/5000=0.297G, G 为高斯。

11) 选择自动输出数据

	CAN-ID	第一 字节	第二 字节	第三字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x53	0x10	0x00	mode	0x00	0x00	0x00
应答	0x580 + 0x05	0x40	0x53	0x10	0x00	mode	0x00	0x00	0x00

CAN通讯协议

注: mode 位输出的数据选择, 其中 0x00: 自动输出姿态角 (默认)

0x01: 自动输出加速度 0x02: 自动输出角速度 0x03: 自动输出磁场值

0x04: 自动输出姿态角,加速度,角速度

0x05: 自动输出姿态角,加速度,角速度,磁场值

12) 设置磁偏角

	CAN-ID	第一字节	第二字节	第三字节	第四 字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x06	0x10	0x00	SY	Yy	0x00	0x00
应答	0xXHXL+0x05								

注:磁偏角由 2 个字节的 BCD 码表示 (5~6 字节) 最高位 S 为符号位, 0-正; 1-负, 大写 Y 为整数位, 小写 y 为小数位。

13)设置标准CAN-ID地址

	CAN-ID	第一字节	第二 字节	第三字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x70	0x10	0x00	XX	0x00	0x00	0x00
应答									

注: XX 为 00、01。00 代表标准 ID (11 位) 类型,01 代表扩展 ID (27 位) 类型。默认是标准。

14) 设置标准CAN-ID地址

	CAN-ID	第一字节	第二字节	第三字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x71	0x10	0x00	XH	XL	0x00	0x00
应答	0xXHXL+0x05								

注:标准 CAN-ID 默认为 0X580+05,最大值不能超过 7FF。这里修改的是 0X580+05 中的 580, 05 可以通过前面的修改节点号进行修改。修改后重新上电 CAN-ID 就变成 0x XHXL+0x05。

例如发送数据: 605 40 71 10 00 01 23 00 00,则断电重新上电后 CAN-ID 就变成了 123+5=128。

15) 设置扩展CAN-ID地址

设置扩展 CAN-ID 地址时需要将地址分成两段发,先发高 16 地址,再发低 16 位地址。再重新上电则CAN-ID 就变为改的地址(这里接收到的 CAN-ID 不需要加上节点号)。最大值不能超过 7FFFFFF。默认值是 0x 18fa0216。

CAN通讯协议

I设置扩展CAN-ID高16位地址

	CAN-ID	第一字节	第二字节	第三字节	第四字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x72	0x10	0x00	XH	XL	0x00	0x00
应答									

注:扩展CAN-ID高16位地址不能大于7FF。

Ⅱ设置扩展CAN-ID低16位地址

	CAN-ID	第一 字节	第二字节	第三字节	第四 字节	第五 字节	第六 字节	第七 字节	第八 字节
发送	0x600 + 0x05	0x40	0x73	0x10	0x00	XH	XL	0x00	0x00
应答									

注:扩展CAN-IDd低16位地址不能大于FFFF。

例如:两次分别发送605 40 72 10 00 01 23 00 00、605 40 73 10 00 45 67 00 00,

则断电重新上电后CAN-ID则为01234567。