Processus de décision markovien

- Un processus de décision markovien (Markov decision process, ou MDP)
 est défini par:
 - \diamond un **ensemble d'états** S (incluant un étant initial s_0)
 - un ensemble d'actions possibles Actions(s) lorsque je me trouve à l'état s
 - \bullet un **modèle de transition** P(s'|s, a), où $a \in A(s)$
 - une **fonction de récompense** *R*(*s*) (utilité d'être dans l'état *s*)
- Un **plan** π est un ensemble de décisions, spécifiant à chaque état s une action $a = \pi(s)$ à exécuter

Valeur d'un plan

- La valeur V(π,s) d'un plan π à l'état s
 - lack récompenses accumulées en moyenne si l'on suit le plan π et qu'on débute à l'état s
 - peut définir de façon récursive :

$$V(\pi,s) = R(s) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V(\pi, s')$$
récompense somme des récompenses futures espérée

 \diamond γ : **facteur d'escompte** (0 < γ < 1), soit l'importance relative des récompenses futures

Plan optimal

- Un plan π domine un plan π' si les deux conditions suivantes sont réunies:
 - \lor $V(\pi,s) >= V(\pi',s)$ pour tout état s
 - ♦ $V(\pi,s) > V(\pi',s)$ pour au moins un s
- Un plan est optimal s'il n'est pas dominé par un autre
 - il peut y avoir plusieurs plans optimaux, mais ils ont tous la même valeur
 - on peut avoir deux plans incomparables (aucun ne domine l'autre)
 - » la dominance induit une fonction d'ordre partiel sur les plans
- Deux algorithmes différents pour le calcul du plan optimal:
 - itération par valeurs (value iteration)
 - itération par politiques (policy iteration)

Équations de Bellman pour la valeur optimale

 Les équations de Bellman nous donnent une condition qui est garantie par la valeur V* des plans optimaux

$$V^*(s) = R(s) + \max_{a} \gamma \sum_{s' \in S} P(s'|s,a) V^*(s') \quad \forall s \in S$$

- Si nous pouvons calculer V*, nous pourrons calculer un plan optimal aisément:
 - il suffit de choisir dans chaque état s l'action qui maximise V*(s)
 (c.-à-d. le argmax)