SAMPLING DISTRIBUTION TABLE

Case	Parameter	Estimator	Standard Error	Sampling Distribution
One Proportion	p	\hat{p}	$\sqrt{\frac{p(1-p)}{n}}$	z
One Mean	μ	\bar{x}	σ/\sqrt{n}	z

$$n = \frac{\hat{p}(1-\hat{p})z^2}{m^2} \text{ or } n = \left(\frac{zs}{m}\right)^2$$

STATISTICAL INFERENCE TABLE

Case	Parameter	Estimator	Estimate of Standard Error	Sampling Distribution
One Mean	μ	\bar{x}	s/\sqrt{n}	t(n-1)
Mean of Matched Pairs Difference	μ_d	$ar{x}_d$	s_d/\sqrt{n}	t(n-1)
Difference of Two Independent Means	$\mu_1 - \mu_2$	$x_1 - x_2$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	t ; conservative d.f. \equiv smallest of (n_1-1) and (n_2-1)
One Proportion	p	ŷ	CI: $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ Sig. Test: $\sqrt{\frac{p_0(1-p_0)}{n}}$	z
Difference of Two Independent Proportions	$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	CI: $\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$ Sig. Test: $\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$	z

$$TS = \frac{YN - NY}{\sqrt{YN + NY}} \text{ or } \frac{NY - YN}{\sqrt{YN + NY}}$$

McNemar's Sig. Test: