10

WHAT IS CLAIMED IS:

1	1.	A method for	processing ingress	data by	an edge device	of a	transport

- 2 network, the method comprising:
- a) determining a first label and a second label based on layer 2
 destination information of the ingress data;
- b) adding the first and second labels to the data to generate modifieddata; and
- c) using the first label to forward the modified data towards an egress
 edge device of the transport network
 - wherein the second label is to be used by the egress edge device to associate the ingress data with a destination device and a channel.
- 1 2. The method of claim 1 further comprising:
- 2 a1) removing the destination information of the ingress data.
- 1 3. The method of claim 1 further comprising:
- 2 b1) encapsulating the modified data.
- 1 4. The method of claim 1 wherein the destination information of the ingress data
- 2 is represented by a logical identifier.
- 5. The method of claim 4 wherein the logical identifier is associated with a
- 2 unique virtual private network.
- 1 6. The method of claim 5 wherein the logical identifier and the virtual private
- 2 network are used to determined the egress edge device associated with the first
- 3 label.

- 7. The method of claim 5 wherein the logical identifier and the virtual private
- 2 network are used to determined the destination device and channel associated
- 3 with the second label.
- 1 8. The method of claim 7 wherein the second label and the advertisement of the
- 2 egress edge device are used to determine the channel to the destination device.
- 9. A method for processing egress data, having a first label and a second label,
- 2 by an edge device of a transport network, the method comprising:
- a) determining a channel to a destination customer edge device based on
- 4 the second label;
- 5 b) forwarding the egress data on the channel determined.
- 1 10. The method of claim 9 wherein the second label was derived from an
- 2 identifier of the destination customer edge device, and a label base of a source
- 3 customer edge device.
- 1 11. The method of claim 10 wherein the second label was mapped from a
- 2 channel identifier for the destination customer edge device used by the source
- 3 customer edge device.
- 1 12. The method of claim 11 wherein the channel identifiers for the destination
- 2 customer devices used by the source customer edge device and the destination
- 3 customer edge device may be different.
- 1 13. A method for generating, by a transport network edge device, information
- 2 about a newly added customer edge device belonging to a virtual private
- 3 network, to be disseminated to other edge devices of the transport network, the
- 4 method comprising:
- 5 a) obtaining a label base value and a range value associated with the
- 6 newly added customer edge device;

- 7 b) generating at least one message, the at least one message collectively 8 including 9 i) a first field for identifying the transport network edge device; 10 ii) a second field for identifying the virtual private network to which the newly added customer edge device belongs; 11 iii) a third field for identifying the newly added customer edge 12 13 device; iv) a fourth field for identifying the range value; and 14
- 1 14. The method of claim 13 further comprising:
- defining a set of labels based on the label base value and the range value.

v) a fifth field for identifying the label base.

- 1 15. The method of claim 14 wherein the set of labels is contiguous.
- 1 16. The method of claim 13 wherein a value in the third field for identifying the
- 2 newly added customer edge device is unique within the virtual private network
- 3 identified in the second field.
- 1 17. The method of claim 13 further comprising:
- 2 c) sending the message towards other edge devices of the transport
- 3 network.
- 1 18. The method of claim 17 wherein the message is sent using a label
- 2 distribution protocol.
- 1 19. The method of claim 17 wherein the message is sent using a border
- 2 gateway protocol.
- 1 20. The method of claim 13 wherein the at least one message further includes

5

6

7

8

9

10

11

12

1314

15

16

- vi) a sixth field for defining an encapsulation type used by the newly added customer edge device.
- 1 21. The method of claim 13 wherein the range value the newly added customer
- 2 edge device corresponds to a number of elements in a list of channel identifiers
- 3 provisioned at the newly added customer edge device.
- 22. A method for processing, by a first transport network edge device,
- 2 information about a newly added customer edge device belonging to a virtual 3 private network, the method comprising:
 - for a second customer edge device, belonging to the virtual private network and attached to the first transport network edge device,
 - a) determining a first label for getting to a second transport network edge device sourcing the information about the newly added customer edge device,
 - b) determining a second label for reaching the newly added customer edge device from the second transport network device,
 - c) determining a third label for data from the newly added customer edge device to reach the second customer edge device from the first transport network edge device,
 - d) determining a first route mapping an identifier of the newly added customer edge device, used by the second customer edge device, to the first label and the second label, and
- e) determining a second route mapping the third label to a channel identifier of the second customer edge device.
 - 1 23. The method of claim 22 wherein the information about a newly added
- 2 customer edge device belonging to a virtual private network includes:
- a first value identifying the second transport network edge device;
- a second value identifying the virtual private network;
- a third value identifying the newly added customer edge device;

Juniper-3

- a fourth value identifying a range associated with the newly added
 customer edge device; and
- a fifth value identifying a label base associated with the newly added
 customer edge device.
- 1 24. The method of claim 22 wherein the act of determining a first label for getting
- 2 to the second transport network edge device is based on a label distribution
- 3 protocol.
- 1 25. The method of claim 24 wherein the label distribution protocol is a protocol
- 2 selected from a group consisting of (A) RSVP-TE, (B) LDP, and (CR-LDP).
- 1 26. The method of claim 22 wherein the act of determining a second label for
- 2 reaching the newly added customer edge device from the second transport
- 3 network edge device includes determining a function of a label base of the newly
- 4 added customer edge device and a value derived from an identifier of the second
- 5 customer edge device.
- 1 27. The method of claim 22 wherein the act of determining a third label for data
- 2 from the newly added customer edge device to reach the second customer edge
- 3 device includes determining a function of a label base of the second customer
- 4 edge device and a value derived from the identifier of the newly added customer
- 5 edge device.
- 1 28. The method of claim 22 wherein the range associated with the newly added
- 2 customer edge device corresponds to a number of elements in a list of channel
- 3 identifiers provisioned at the newly added customer edge device.
- 1 29. The method of claim 22 further comprising determining whether an
- 2 encapsulation type used by the second customer edge device is compatible with
- 3 that used by the newly added customer edge device.

1	30. The method of claim 22 further comprising determining whether any address
2	conflicts exist within the virtual private network based on the second customer
3	edge device and the newly added customer edge device.
1	
1	31. The method of claim 22 further comprising determining whether the second
2	customer edge device has sufficient unused channel identifiers to accommodate
3	the newly added customer edge device.
1	
1	32. A device for use at the edge of a layer 2 transport network, the device
2	comprising:
3	a) a storage facility for storing
4	i) a first route mapping a channel identifier corresponding to a
5	destination customer edge device to a first label for forwarding data
6	to a proper egress service provider edge device and a second label
7	for forwarding data from the proper egress service provider edge
8	device to the destination customer edge device, and
9	ii) a second route mapping an ingress second label to a channel
10	identifier associated with a destination customer edge device; and
11	b) a forwarding facility for
12	i) forwarding ingress data to an egress service provider edge
13	device based on the first route, and
14	ii) forwarding egress data to a destination customer edge device
15	based on the second route.
1	33. The device of claim 32 further comprising:
2	c) a configuration facility for determining the first and second routes
3	stored in the storage facility based on received advertisements about
4	newly added customer edge devices.

1	34. The device of claim 32 further comprising:				
2	c) a signaling facility for signaling information about a newly added				
3	customer edge device coupled with the device, to other devices at the				
4	edge of the layer 2 transport network.				
1	35. The device of claim 34 where the information about a newly added custome				
2	edge device includes:				
3	- a first value identifying the device;				
4	- a second value identifying a virtual private network to which the newly				
5	added customer edge device belongs;				
6	 a third value identifying the newly added customer edge device; 				
7	- a fourth value identifying a range associated with the newly added				
8	customer edge device; and				
9	- a fifth value identifying a label base associated with the newly added				
10	customer edge device.				
1	36. The device of claim 35 wherein the range associated with the newly added				
2	customer edge device corresponds to a number of elements in a list of channel				
3	identifiers provisioned at the newly added customer edge device.				
1	37. A layer 2 transport network for use by a source customer edge device and a				
2	destination customer edge device, both belonging to a same virtual private				
3	network, the source customer edge device having a list of channel identifiers for				
4	each customer edge device of the virtual private network, the layer 2 network				
5	comprising:				
6	a) a first transport network edge device, the first transport network edge				
7	device coupled with the source customer edge device and having				
8	i) a storage facility for storing a first route mapping a first channel				
9	identifier, used by the source customer edge device and				
10	corresponding to the destination customer edge device, to a first				

label for forwarding data to a second transport network edge device

12	and a second label associated with the destination customer edge			
13	device, and			
14	ii) a forwarding facility for forwarding data addressed to the			
15	destination customer edge device to the second transport network			
16	edge device based on the first label of the first route; and			
17	b) the second transport network edge device, the second transport			
18	network edge device coupled with the destination edge device and having			
19	i) a storage facility for storing a second route mapping the second			
20	label to a second channel identifier associated with the destination			
21	customer edge device; and			
22	ii) a forwarding facility for forwarding the data to the destination			
23	customer edge device based on the second channel identifier of the			
24	second route.			
1	38. The layer 2 transport network of claim 37 wherein each of the first channel			
2	identifier and the second channel identifier is associated with the destination			
3	customer edge device, and			
4	wherein the first channel identifier may be different from the second			
5	channel identifier.			
1	39. In an edge device of a service provider transport network, a			
2	machine-readable medium having stored thereon a data structure, the data			
3	structure comprising:			
4	a) a first list of virtual private networks supported by the service provider			
5	transport network;			
6	b) for each of the virtual private networks of the list, a second list of			
7	customer edge devices belonging to the virtual private network;			
8	c) for each of the customer edge devices of the second list,			
9	i) a first field for storing a label base, and			
10	ii) a second field for storing a range.			

5

6

7

8 9

1

2

3

4

5

6

7

8

9

10

- 1 40. The machine-readable medium of claim 39 further comprising a third field for
- 2 storing an encapsulation type for each of the customer edge devices of the
- 3 second list.
- 1 41. The machine-readable medium of claim 39 wherein the range corresponds
- to a number of elements in a list of channel identifiers provisioned at the
- 3 customer edge device.
- 1 42. In an edge device of a service provider transport network, a
- 2 machine-readable medium having stored thereon a data structure, the data
- 3 structure comprising:
 - a) a first list of virtual private networks supported by the service provider transport network;
 - b) for each of the virtual private networks of the list, a second list of customer edge devices belonging to the virtual private network;
 - c) for each of the customer edge devices of the second list, a third list of channel identifiers.
 - 43. The machine-readable medium of claim 42 further comprising:
 - d) for each of the channel identifiers of the third list,
 - i) first route mapping a channel identifier to a first label for forwarding ingress data to a proper egress service provider edge device and a second label for forwarding ingress data from the proper egress service provider edge device to a destination customer edge device, and
 - ii) a second route mapping a second label of egress data to a channel identifier associated with a destination customer edge device.
- 1 44. A machine-readable medium having stored thereon a message data
- 2 structure, the message data structure comprising:

1 2

- a) a first field identifying a transport network edge device which sourced
 the message data structure;
- b) a second field identifying a virtual private network to which a given
 customer edge device, connected with the transport network edge device,
 belongs;
- c) a third field identifying the given customer edge device;
- d) a fourth field identifying a range associated with the given customer edge device; and
- e) a fifth field identifying a label base associated with the given customer edge device.
- 45. The machine-readable medium of claim 44 wherein the message data
 structure is used to advertise information about the given customer edge device
- 3 to other edge devices of a layer-2 transport network.
- 1 46. The machine-readable medium of claim 44 wherein the range associated
- 2 with the given customer edge device corresponds to a number of elements in a
 - list of channel identifiers provisioned at the given customer edge device.
 - 47. A device for use at the edge of a layer 2 transport network, the device comprising:
- a) a storage facility for storing a route mapping a channel identifier
 corresponding to a destination customer edge device to a label for
 forwarding data to a proper egress service provider edge device and a
 second label for forwarding data from the proper egress service provider
 edge device to the destination customer edge device; and
- b) a forwarding facility for forwarding ingress data to an egress service
 provider edge device based on the route.
- 48. A device for use at the edge of a layer 2 transport network, the device comprising:

- a) a storage facility for storing a route mapping an ingress label to a
 channel identifier associated with a destination customer edge device; and
- b) a forwarding facility for forwarding egress data to a destination
- 6 customer edge device based on the route.