Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

aos Sistemas Matemáticos

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Universidade de Aveiro 2020/2021

Moodle http://elearning.ua.pt

MS Teams http://bit.ly/30oFHIB

Programa da disciplina

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

- 1 Linguagem Matemática e Lógica Informal
 - Lógica proposicional
 - Relações
 - Lógica de primeira ordem
- Contextos e Estratégias de Demonstração
 - Estratégias de demonstração da implicação
 - Princípios de indução e de indução completa
 - Princípio da gaiola dos pombos
- 3 Princípios de Enumeração Combinatória.
 - Princípio da bijecção.
 - Princípios da adição e da multiplicação.
 - Princípio de inclusão-exclusão.
- Permutações.
 - Composição de permutações e permutações inversas.
 - Partição cíclica de uma permutação e tipos de permutações.
 - Transposições, inversões e sinal de uma permutação.

Programa da disciplina (cont.)

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

- Agrupamentos e Identidades Combinatórias.
 - Arranjos com repetição e arranjos e combinações simples.
 - Combinações e permutações (com e sem repetição).
 - Identidades combinatórias.
- Recorrência e Funções geradoras.
 - Relações de recorrência.
 - Funções geradoras
- Elementos de Teoria dos Grafos.
 - Conceitos e resultados fundamentais.
 - Conexidade, caminhos e árvores.

Bibliografia principal

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

Introdução aos Sistema Matemáticos

- Matemática Discreta: combinatória, teoria dos grafos e algoritmos; D. M. Cardoso, J. Szymanski, M. Rostami; Escolar Editora, 2009 (versão revista em 2011), .
- Noções de Lógica Matemática; D.M. Cardoso, P. Carvalho; Universidade de Aveiro; 2007 (versão revista em 2015), \$\mathbb{\chi}\$.
- Estudo Autónomo: um objeto de aprendizagem ativa;
 António Jorge Neves, Maria Paula Carvalho;
 Matemática Discreta 2016-2017, Departamento de Matemática da Universidade de Aveiro, Setembro de 2017, \$\mathbb{\chi}\$.
- PDF disponível no Moodle (em https://elearning.ua.pt)

Bibliografia adicional também no Moodle.

Avaliação Contínua (AC)

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

Introdução aos Sistemas Matemáticos

- Participação em Atividades nas aulas (PA) + Testes T1, T2 e T3:
 - PA 10%, completando com sucesso 4 atividades realizadas para avaliação nas aulas da turma;
 - **Teste T1 30%**, <u>28 de abril</u>, quarta-feira, avalia a matéria lecionada até 21 de Abril;
 - Teste T2 30%, 28 maio, sexta-feira, avalia a matéria dada até 21 de maio, não avaliada em T1;
 - Teste T3 30% ou 40%, nas aulas da semana de 21 de junho, avalia a matéria dada até 18 de junho, não avaliada em T1 e T2.
- Classificação Final da Avaliação Contínua (CFAC): arredondamento às unidades do valor dado por

 $\textbf{CFAC} \ = \ \textbf{0.3}\ \textbf{T1} + \textbf{0.3}\ \textbf{T2} + \textbf{max}\,(\textbf{0.3}\ \textbf{T3} + \textbf{0.1}\ \textbf{PA},\,\textbf{0.4}\ \textbf{T3})$

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

Introdução aos Sistemas Matemáticos Os estudantes ficam inscritos em **AC** no PACO, podendo, **até 26 de março**, mudar para **Avaliação Final (AF):**

 Exame Final (EF)] na época de exames com toda a matéria, sendo a classificação final CFE obtida como

$$CFE = max (0.9 EF + 0.1 PA, EF).$$

Época de Recurso (ER): para os alunos que não tenham obtido aprovação e melhorias de nota (inscrição no PACO).

• Classificação Final da época de Recurso (CFR):

$$CFR = max(0.9 ER + 0.1 PA, ER)$$
.

CFAC,CFE,CFR > 16: pode exigir prova de defesa de nota.

Regime de faltas

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

aos Sistemas Matemáticos ■ Todos os alunos frequentam apenas uma turma TP.

Registo de presenças em todas aulas, não havendo reprovação por faltas.

Alfabeto grego

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

α	Α	alfa	ν	Ν	niu
β	В	beta	ξ	Ξ	xi
γ	Γ	gama	0	0	omicrom
δ	Δ	delta	π	П	pi
$\epsilon(arepsilon)$	Ε	epsilon	ho(arrho)	Ρ	ró
ζ	Z	zeta	$\sigma(\varsigma)$	Σ	sigma
η	Η	eta	au	Τ	tau
$\theta(\vartheta)$	Θ	teta	v	Υ	upsilon
ι	1	iota	$\phi(arphi)$	Φ	fi
κ	Κ	kapa	χ	X	chi
λ	Λ	lambda	ψ	Ψ	psi
μ	Μ	miu	ω	Ω	ómega

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

Introdução aos Sistemas Matemáticos ■ Proposição: afirmação que ou é verdadeira ou é falsa.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

- Proposição: afirmação que ou é verdadeira ou é falsa.
- Axioma: proposição evidente ou que, no contexto matemático em que se está a trabalhar, aceitamos como verdadeira.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

- Proposição: afirmação que ou é verdadeira ou é falsa.
- Axioma: proposição evidente ou que, no contexto matemático em que se está a trabalhar, aceitamos como verdadeira.
- Teorema: proposição verdadeira que decorre dos axiomas por aplicação de certas regras, designadas por regras de inferência, ou dos desenvolvimentos determinados pela lógica.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

- Proposição: afirmação que ou é verdadeira ou é falsa.
- Axioma: proposição evidente ou que, no contexto matemático em que se está a trabalhar, aceitamos como verdadeira.
- **Teorema**: proposição verdadeira que decorre dos axiomas por aplicação de certas regras, designadas por regras de inferência, ou dos desenvolvimentos determinados pela lógica.
- Lema: teorema "considerado" mais simples, que usualmente é utilizado para facilitar a demonstração de teoremas mais difíceis.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

- Proposição: afirmação que ou é verdadeira ou é falsa.
- Axioma: proposição evidente ou que, no contexto matemático em que se está a trabalhar, aceitamos como verdadeira.
- **Teorema**: proposição verdadeira que decorre dos axiomas por aplicação de certas regras, designadas por regras de inferência, ou dos desenvolvimentos determinados pela lógica.
- Lema: teorema "considerado" mais simples, que usualmente é utilizado para facilitar a demonstração de teoremas mais difíceis.
- Corolário: consequência de um ou vários teoremas.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

- Proposição: afirmação que ou é verdadeira ou é falsa.
- Axioma: proposição evidente ou que, no contexto matemático em que se está a trabalhar, aceitamos como verdadeira.
- **Teorema**: proposição verdadeira que decorre dos axiomas por aplicação de certas regras, designadas por regras de inferência, ou dos desenvolvimentos determinados pela lógica.
- Lema: teorema "considerado" mais simples, que usualmente é utilizado para facilitar a demonstração de teoremas mais difíceis.
- Corolário: consequência de um ou vários teoremas.
- Teoria ou sistema matemático: conjunto de axiomas, regras de inferência e teoremas (onde se incluem lemas e corolários).

Exemplo de sistema matemático

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

Introdução aos Sistemas Matemáticos As proposições deste sistema matemático são palavras do alfabeto $\{x, y, z\}$

Exemplo de sistema matemático

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

Introdução aos Sistemas Matemáticos As proposições deste sistema matemático são palavras do alfabeto $\{x, y, z\}$

- Axioma: *xyz*.
- Regras de inferência:
 - 1 Proposições obtidas a partir de uma proposição verdadeira, substituindo *x* por *xyz*, são proposições verdadeiras.
 - Proposições obtidas a partir de uma proposição verdadeira, substituindo xyz por yxz são proposições verdadeiras.

Exemplo de sistema matemático

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de

Introdução aos Sistemas Matemáticos As proposições deste sistema matemático são palavras do alfabeto $\{x, y, z\}$

- Axioma: xyz.
- Regras de inferência:
 - 1 Proposições obtidas a partir de uma proposição verdadeira, substituindo *x* por *xyz*, são proposições verdadeiras.
 - Proposições obtidas a partir de uma proposição verdadeira, substituindo xyz por yxz são proposições verdadeiras.

Exercício

Mostrar que *yyxzz* é um teorema do sistema matemático considerado no exemplo anterior.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

Introdução aos Sistemas Matemáticos Um sistema de axiomas deve ser consistente e independente:

Consistente: i.e. não permite a dedução de um teorema e a sua negação.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

Introdução aos Sistemas Matemáticos Um sistema de axiomas deve ser consistente e independente:

Consistente: i.e. não permite a dedução de um teorema e a sua negação.

Independente: não inclui axiomas que são consequência de outros axiomas.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

Introdução aos Sistemas Matemáticos Um sistema de axiomas deve ser consistente e independente:

Consistente: i.e. não permite a dedução de um teorema e a sua negação.

Independente: não inclui axiomas que são consequência de outros axiomas.

Saturado: a adição de um qualquer axioma que não é consequência dos axiomas do sistema, torna o sistema não consistente.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

Introdução aos Sistemas Matemáticos Um sistema de axiomas deve ser consistente e independente:

Consistente: i.e. não permite a dedução de um teorema e a sua negação.

Independente: não inclui axiomas que são consequência de outros axiomas.

Saturado: a adição de um qualquer axioma que não é consequência dos axiomas do sistema, torna o sistema não consistente.

Completo: se para toda a proposição p, correctamente formulada no contexto desta teoria, "p" ou "não p" é um teorema. A teoria diz-se incompleta no caso contrário.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

Introdução aos Sistemas Matemáticos

Axiomas da geometria euclidiana:

1 Dados dois pontos existe uma recta que os contém.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

Introdução aos Sistemas Matemáticos

- 1 Dados dois pontos existe uma recta que os contém.
- 2 Todo o segmento de recta está contido numa recta.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

Introdução aos Sistemas Matemáticos

- 1 Dados dois pontos existe uma recta que os contém.
- 2 Todo o segmento de recta está contido numa recta.
- 3 Dado um ponto C e um real r > 0, existe uma única circunferência de centro C e raio r.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de

Introdução aos Sistemas Matemáticos

- 1 Dados dois pontos existe uma recta que os contém.
- 2 Todo o segmento de recta está contido numa recta.
- 3 Dado um ponto C e um real r > 0, existe uma única circunferência de centro C e raio r.
- 4 Todos os ângulos rectos são iguais.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de

Introdução aos Sistemas Matemáticos

- 1 Dados dois pontos existe uma recta que os contém.
- 2 Todo o segmento de recta está contido numa recta.
- 3 Dado um ponto C e um real r > 0, existe uma única circunferência de centro C e raio r.
- 4 Todos os ângulos rectos são iguais.
- 5 Axioma das paralelas: dada uma recta e um ponto não pertencente a essa recta, existe uma única recta que contém o ponto e é paralela à recta dada.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

Introdução aos Sistemas Matemáticos

Axiomas da geometria euclidiana (noções comuns):

6 Duas quantidades iguais a uma terceira são iguais.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

Introdução aos Sistemas Matemáticos

- 6 Duas quantidades iguais a uma terceira são iguais.
- 7 Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

Introdução aos Sistemas Matemáticos

- 6 Duas quantidades iguais a uma terceira são iguais.
- 7 Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.
- 8 Se a quantidades iguais subtrairmos a mesma quantidade, as diferenças obtidas são iguais.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

Introdução aos Sistemas Matemáticos

- 6 Duas quantidades iguais a uma terceira são iguais.
- 7 Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.
- 8 Se a quantidades iguais subtrairmos a mesma quantidade, as diferenças obtidas são iguais.
- 9 Objectos coincidentes são iguais.

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentaçao

faltas

Introdução aos Sistemas Matemáticos

- 6 Duas quantidades iguais a uma terceira são iguais.
- 7 Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.
- 8 Se a quantidades iguais subtrairmos a mesma quantidade, as diferenças obtidas são iguais.
- 9 Objectos coincidentes são iguais.
- 10 O todo é maior do que a parte.

Exemplo de uma conjectura

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

faltas

Introdução aos Sistemas Matemáticos Trata-se de uma afirmação não provada, para a qual existe a expectativa de se vir a encontrar uma prova.

Conjectura de Goldbach

Todo o inteiro par superior a 2 é a soma de dois primos

Por exemplo, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, ...

Referências bibliográficas

Matemática Discreta

Apresentação e Introdução aos Sistemas Matemáticos

Apresentação

Regime de faltas

Introdução aos Sistemas Matemáticos Referência bibliográfica principal:
 D. M. Cardoso, J. Szymanski e M. Rostami,
 Matemática Discreta: combinatória, teoria dos grafos e algoritmos, Escolar Editora, 2009.