Relational Database Design

- Finding database schemas with good properties
- Example:
 - Database for information on suppliers, parts supplied, and shipments
 - Information consists of:
 - S#: supplier number
 - **SNAME**: supplier name
 - SCITY: supplier city
 - P#: part number
 - PNAME: part name
 - PCITY: city where part is stored
 - QTY: quantity of shipment

The following FDs hold: $S\# \rightarrow SNAME SCITY$ $P\# \rightarrow PNAME PCITY$ $S\#P\# \rightarrow QTY$

Relational Database Design

- One possible database schema
 - BAD[S#, SNAME, SCITY, P#, PNAME, PCITY, QTY]
- Why BAD is bad:
 - redundancy
 - SCITY is determined by S#

However, the same SCITY could appear many times with the same S# in this relation

- Functional dependency: S# → SCITY
- update anomalies
 - SCITY could be changed in one place but not in another, for the same S#, resulting in inconsistency

Relational Database Design

- Why BAD is bad:
 - insertion anomalies
 - cannot record supplier info unless that supplier supplies a part
 - deletion anomalies
 - by deleting parts we can lose supplier info
- Solution
 - New schema:

```
      S[S#, SNAME, SCITY]
      Key: S#

      P[P#, PNAME, PCITY]
      Key: P#

      SP[S#, P#, QTY]
      Key: S# P#
```

- No other functional dependencies besides key dependencies
- Normal forms: "nice" forms for schemas

Decomposing Relation Schemes

- Let R be a relation scheme
- A decomposition of R is a set $\rho = \{R_1, ..., R_k\}$ of relation schemas such that:

$$att(R) = \bigcup_{i=1}^{k} att(R_i)$$

- Example
 - {S, P, SP} is a decomposition of the relation schema BAD (see earlier example)

• Do S, P, SP contain the same information as BAD?

$$BAD = \pi_S(BAD) \triangleright \triangleleft \pi_P(BAD) \triangleright \triangleleft \pi_{SP}(BAD)$$
?

Lossless join property

Question: what is the connection between BAD and $\pi_S(BAD) \triangleright \triangleleft \pi_P(BAD) \triangleright \triangleleft \pi_{SP}(BAD)$?

- A: no connection
- **B**: $\pi_{S}(BAD) \triangleright \triangleleft \pi_{P}(BAD) \triangleright \triangleleft \pi_{SP}(BAD) \subseteq BAD$
- **C**: BAD $\subseteq \pi_{S}(BAD) \triangleright \triangleleft \pi_{P}(BAD) \triangleright \triangleleft \pi_{SP}(BAD)$

• It is always true that

$$BAD \subseteq \pi_{S}(BAD) \triangleright \triangleleft \pi_{P}(BAD) \triangleright \triangleleft \pi_{SP}(BAD)$$

• The converse inclusion holds only because of the FDs

 $S\# \rightarrow SNAME SCITY$ $P\# \rightarrow PNAME PCITY$ $S\#P\# \rightarrow QTY$

• Can the dependencies for BAD be enforced by "local" dependencies on S, P, SP?

– The FDs for BAD:

 $S\# \rightarrow SNAME SCITY$ $P\# \rightarrow PNAME PCITY$

 $S\#P\# \rightarrow QTY$

- Local FDs for S: $S\# \rightarrow SNAME SCITY$

- Local FDs for P: $P\# \rightarrow PNAME PCITY$

- Local FDs for SP: S#P# → QTY

So nothing is lost: the local FDs can enforce the original FDs

Not always that simple.

Local FDs: $A \to B$, $B \to C$ not the same as original FDs Enough to enforce original FDs because $A \to B$, $B \to C$ imply $A \to C$ The decomposition is dependency preserving

Lossless Join

• Let R be a relation schema and F a set of FDs over R. A decomposition $\rho = \{R_1, ..., R_k\}$ of R has lossless join wrt F iff, for every relation R satisfying F,

$$R = \pi_{R1}(R) \rhd \lhd \pi_{R2}(R) \rhd \lhd \dots \rhd \lhd \pi_{Rk}(R)$$

• Checking lossless join: Idea: minimize the conjunctive query

$$\pi_{R1}(R) \rhd \lhd \pi_{R2}(R) \rhd \lhd \dots \rhd \lhd \pi_{Rk}(R)$$

knowing that R satisfies the FDs F.

The result must be query returning just R itself.

Example: $R = BAD \rho = \{S, P, SP\}$

SQL query for $\pi_S(BAD) \rhd \lhd \pi_P(BAD) \rhd \lhd \pi_{SP}(BAD)$:

SELECT s.S#, s.SNAME, s.SCITY, p.P#, p.PNAME, p.PCITY, sp.QTY FROM BAD s, BAD p, BAD sp WHERE s.S# = sp.S# and p.P# = sp.P#

SELECT s.S#, s.SNAME, s.SCITY, p.P#, p.PNAME, p.PCITY, sp.QTY FROM BAD s, BAD p, BAD sp WHERE s.S# = sp.S# and p.P# = sp.P#

Corresponding pattern:

_	S#	SNAME	SCITY	P #	PNAME	PCITY	QTY	
s p sp	a ₁ a ₁	a ₂ 	a ₃ 	 a ₄ a ₄	 a ₅ 	 a ₆ 	 a ₇	
	a_1	a_2	a_3	a_4	a_5	a_6	a_7	< answer

- 1. Compute pattern for $Q = \pi_{R1}(R) \triangleright \triangleleft \pi_{R2}(R) \triangleright \triangleleft ... \triangleright \triangleleft \pi_{Rk}(R)$
- 2. Compute $CHASE_F(Q)$
- 3. Minimized $CHASE_F(Q)$ must be R

Example: $R = BAD \rho = \{S, P, SP\}$

Pattern for select * from BAD:

L	S#	SNAME	SCITY	P#	PNAME	PCITY	QTY	
	$\mathbf{a}_{\scriptscriptstyle{1}}$	a	а	2	а	a	a	
	a ₁	\mathbf{a}_2	a_3	\mathbf{a}_4	a_5	\mathbf{a}_6	\mathbf{a}_7	
	0	0	0	0	0	0	0	000000
	a_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_{5}	\mathbf{a}_6	\mathbf{a}_7	- answer

- -

Example:
$$R = BAD \rho = \{S, P, SP\}$$

 $F = \{S\# \rightarrow SCITY SNAME P\# \rightarrow PNAME PCITY P\#S\# \rightarrow QTY\}$

Pattern Q

S#	SNAME	SCITY	P#	PNAME	PCITY	QTY	
a_1	\mathbf{a}_2	\mathbf{a}_3					
			a_4	a_5	a_6)	
\mathbf{a}_1	\mathbf{a}_2	a_3	a_4	a_5	a_6	a_7	
							← angwer
$ a_1 $	\mathbf{a}_2	\mathbf{a}_2	$\mathbf{a}_{\scriptscriptstyle{A}}$	a ₅	\mathbf{a}_{ϵ}	\mathbf{a}_{7}	allswel
$\begin{bmatrix}\\ a_1 \\ a_1 \end{bmatrix}$	a ₂	a ₃				$\begin{bmatrix} \\ a_7 \end{bmatrix}$ $\begin{bmatrix} a_7 \end{bmatrix}$	< answ

 $CHASE_F(Q)$ makes third row equal to $<a_1, ..., a_7>$ so the minimized tableau is the previous pattern for BAD

Example: $R = BAD \rho = \{S, P, SP\}$

 $F = \{S\# \rightarrow SCITY \text{ SNAME} \}$ $P\# \rightarrow PNAME \text{ PCITY}$ $P\#S\# \rightarrow QTY\}$

Pattern Q

So BAD has lossless join with respect to {S, P, SP}

More concise algorithm

Input: R, decomposition $\{R_1, ..., R_k\}$, set F of FDs

1. construct a pattern using variable a for each attribute A:

for each R_i the pattern has one row with variable a for each attribute A of R_i and wildcards everywhere else

- 3. Chase the pattern with F
- 4. Output YES iff the resulting pattern has an entire row of variables

Example

S: S# SNAME SCITY

P: P# PNAME PCITY

SP: S# P# QTY

F = {S#→SCITY SNAME P#→PNAME PCITY P#S# →QTY}

_	S#	SNAME	SCITY	P #	PNAME	PCITY	QTY
S P	a ₁	a ₂	a ₃	 a ₄	 a ₅	 a ₆	
SP	\mathbf{a}_1	a_2	a_3	a_4	a_5	a_6	\mathbf{a}_7

Another example

Towards dependency preservation: FD implication

• Given FDs can imply additional FDs

Example: $A \rightarrow B$ and $B \rightarrow C$ imply $A \rightarrow C$

Every relation that satisfies $A \rightarrow B$ and $B \rightarrow C$ also satisfies $A \rightarrow C$

Another example:

$$A \rightarrow C$$
, $BC \rightarrow D$, $AD \rightarrow E$ imply $AB \rightarrow E$

Definition: A set F of FDs implies another FD $X \rightarrow Y$ if every relation satisfying F also satisfies $X \rightarrow Y$

Notation for "F implies
$$X \rightarrow A$$
": $F \models X \rightarrow A$

Everything that F implies:

$$F^+ = \{X {\longrightarrow} Y \mid F \models X {\longrightarrow} Y\}$$

Example: $\{A \rightarrow B, B \rightarrow C\}^+$ includes the following FDs: $A \rightarrow B, B \rightarrow C, A \rightarrow C, AB \rightarrow C$

also "trivial" FDs (that are always true):

 $A \rightarrow A$, $AB \rightarrow A$, $ABC \rightarrow A$, $B \rightarrow B$, $AB \rightarrow B$, etc

Checking if $X \rightarrow A$ is implied by a set F of FDs

Needed to compute keys, check dependency preservation, check satisfaction of normal forms, etc.

Useful to think of the closure of X: the set of attributes "determined" by X

Definition: The closure of a set of attributes X with respect to a set F of FDs is

$$X^{+} = \{A \mid F \models X \rightarrow A\}$$

By the definition, $X \rightarrow A \in F^+$ iff $A \in X^+$

Example of Closure Computation

- R = ABCDEF
- $F = \{A \rightarrow C, BC \rightarrow D AD \rightarrow E\}$
- X = AB

Computing X⁺:

•
$$X^{(0)} = AB$$

•
$$X^{(1)} = ABC$$

•
$$X^{(2)} = ABCD$$

•
$$X^{(3)} = ABCDE$$

•
$$X^{(4)} = X^{(3)}$$

•
$$X^+ = ABCDE$$

To check if X is a superkey in R: $X^+ = att(R)$

Computing the closure of a set of attributes wrt a set of FD's

- Let F be a set of FD's over R, and $X \subseteq R$. The following computes the closure X^+ of X wrt F
 - 1. $X^{(0)} \leftarrow X$

$$2. \ X^{(i+1)} \leftarrow X^{(i)} \cup \ \bigcup \{Z \mid V \rightarrow Z \in F, \ V \subseteq X^{(i)}\}$$

We get:
$$X^{(0)} \subseteq X^{(1)} \subseteq ... \subseteq X^{(i)} \subseteq X^{(i+1)} \subseteq ... \subseteq att(R)$$

Since att(R) is finite, there must exist a $k \ge 0$ such that $X^{(k)} = X^{(k+1)}$ Then, $X^+ = X^{(k)}$

Dependency Preserving Decompositions

• "Local" FDs

```
if F is a set of FD's over R and X\subseteq attributes(R) then \pi_X(F^+) = \{V \rightarrow W \in F^+ \mid V \subseteq X \text{ and } W \subseteq X\}
```

These are the FDs implied by F that apply to the set of attributes X ("local" to X)

Dependency Preserving Decompositions

Example: $F = \{A \rightarrow C, BC \rightarrow D, AD \rightarrow E\}$ The FDs in F^+ that are

- local to AC: $A \rightarrow C$ $A^+ = AC$ $C^+ = C$
- local to ABD: $AB \rightarrow D$ $A^{+} = AC \quad B^{+} = B \quad D^{+} = D$ $AB^{+} = ABCDE \quad AD^{+} = ADCE \quad BD^{+} = BD$
- local to ABCE: A → C AB → CE AE → C

 ABC → E ABE → C $A^{+} = AC B^{+} = B C^{+} = C E^{+} = E$ $AB^{+} = ABCDE AC^{+} = AC AE^{+} = AEC$ $BC^{+} = BCD BE^{+} = BE CE^{+} = CE$ $ABC^{+} = ABCDE ABE^{+} = ABECD BCE^{+} = BCED$

Dependency Preserving Decompositions

• <u>Definition</u>:

- Let $\rho = (R_1, ..., R_k)$ be a decomposition for R and F a set of FD's over R. Then ρ preserves F iff

The set of local FDs $\bigcup_{i=1}^{k} \pi_{Ri}(F^{+})$ is equivalent to F

In other words, all FDs in F are implied by the local FDs

Testing Preservation of Dependencies

• Naïve method:

- 1. Compute F⁺
- 2. Compute $G = \bigcup_{i=1}^k \pi_{Ri}(F^+)$ %local fds
- 3. Check that $F \subseteq G^+$

Drawback: impractical, since the size of F^+ can be exponential in the size of F.

• Improved method:

avoid computing all of G

idea: $X \rightarrow A$ is local to R_i iff $AX \subseteq att(R_i)$ and $A \in X^+$

Example

$$R = \{A \ B \ C \ D\} \qquad \qquad \rho = \{AB, BC, CD\}$$

$$F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$$

Does ρ preserve D \rightarrow A? (Is it implied by the local FDs?)

Decomposition:

Start with D

$$D^+ = DABC$$
 so $D \rightarrow C$ is local to CD, add C

$$C^+ = CDAB$$
 so $C \rightarrow B$ is local to BC, add B

$$B^+ = BCDA$$
 so $B \rightarrow A$ is local to AB, add A

Testing Preservation of Dependencies

Naïve method:

- 1. Compute F⁺
- 2. Compute $G = \bigcup_{i=1}^k \pi_{Ri}(F^+)$ %local fds
- 3. Check that $F \subseteq G^+$

Drawback: impractical, since the size of F^+ can be exponential in the size of F.

• Improved method:

```
for each X \to Y in F do Z := X while changes occur in Z do for i := 1 to k do Z := Z \cup ((Z \cap R_i)^+ \cap R_i) if Y \not\subset Z output "no" and stop output "yes" (+ \text{ is wrt } F)
```

Full example

$$R = \{A \ B \ C \ D\} \qquad \qquad \rho = \{AB, BC, CD\}$$

$$F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$$

Does ρ preserve F?

Clearly, ρ preserves $A \to B$, $B \to C$, $C \to D$ (they are local FDs). Does ρ preserve $D \to A$?

Decomposition:

Start with D

$$D^+ = DABC$$
 so $D \rightarrow C$ is local to CD, add C

$$C^+ = CDAB$$
 so $C \rightarrow B$ is local to BC, add B

$$B^+ = BCDA$$
 so $B \rightarrow A$ is local to AB, add A \leftarrow success!

 $D \rightarrow A$ is preserved

Another example

$$Att(R) = ABCDE$$

$$\rho = \{ABC, ADE, CE\}$$

$$F = \{AB \rightarrow C, C \rightarrow E, E \rightarrow C, C \rightarrow D, AB \rightarrow E\}$$

Normal Forms

• Terminology recall:

Let R be a relation schema and F a set of fd's over attributes(R).

- Superkey: $X \subseteq att(R)$ such that $X \to att(R) \in F^+$.
 - X determines all attributes of R
- Key: $X \subseteq att(R)$ such that $X \to att(R) \in F^+$ and there is no $Y \subset X$ such that $Y \to att(R) \in F^+$.

X is a minimal superkey

Example: $att(R) = ABC \quad F = \{A \rightarrow B, B \rightarrow C\}$

Superkeys: A, AB, AC, ABC

Key: A (the only one)

Purpose of normal forms

- Eliminate problems of redundancy and anomalies.
- Normal forms:
 - Boyce-Codd, third, fourth,
- Boyce-Codd Normal Form (BCNF)

A relation scheme R is in BCNF wrt a set of FD's F over R, iff whenever $X \rightarrow A \in F^+$ and $A \notin X$, X is a superkey for R

The only nontrivial FDs are those induced by keys

Example

- BAD(S#, P#, SNAME, PNAME, SCITY, PCITY, QTY)
 - not in BCNF wrt

```
F = S\# \rightarrow SNAME SCITY
P\# \rightarrow PNAME PCITY
S\# P\# \rightarrow QTY
```

- S(S#, SCITY, SNAME) is in BCNF wrt S#→SNAME SCITY
- P(P#, PCITY, PNAME) is in BCNF wrt P#→PNAME PCITY
- SP(S# P# QTY) is in BCNF wrt S# P# \rightarrow QTY

Decomposition of a relation schema into BCNF relation schemas, with lossless join

• Every relation scheme has a decomposition into BCNF relation schemes, with lossless join

not always dependency preserving

Example

```
R = CITY ZIP ST

F = CITY ST \rightarrow ZIP, ZIP \rightarrow CITY
```

R has no decomposition into BCNF schemas, which preserves F
 (CITY ST → ZIP is never preserved)

Algorithm to obtain a lossless join decomposition of a given R wrt F

Basic step (example):

Suppose S = ABC only local FD: $A \rightarrow B$ This violates BCNF because A is not a superkey in S

Decomposition step to eliminate violation:

A B C

This has lossless join: $a \quad b \quad -$ apply the test using the FD A \rightarrow B $a \quad - \quad c$ $a \quad b \quad c$

Algorithm to obtain a lossless join decomposition of a given R wrt F

Start with $\rho = \{R\}$

Apply recursively the following procedure:

for each S in ρ not in BCNF,

let
$$X \rightarrow A \in F^+$$
 be such that $XA \subseteq S$, $A \notin X$, X is not a superkey of X violation of BCNF

replace S by S_1 and S_2 , where

$$S_1 = XA$$

$$S_2 = X(S - A)$$

until all relation schemes are in BCNF

this decomposition has lossless join:

$$X \to A \in F^+$$

X is a key for S_1

Example

$$R = C T H R S G$$

C = course

T = teacher

H = hour

R = room

S = student

G = grade

 $F: C \rightarrow T$

 $HR \rightarrow C$

 $HT \rightarrow R$

 $CS \rightarrow G$

 $HS \rightarrow R$

What are the keys?

only key: HS

Example

FDs:
$$C \rightarrow T$$
, $CS \rightarrow G$, $HR \rightarrow C$, $HS \rightarrow R$, $TH \rightarrow R$

no violation: C+=CT, H+=H, R+=R, S+=S

Resulting decomposition: CSG, CT, CHR, CHS

Remarks (drawbacks)

- Decomposition is not unique
 - CHRS could be decomposed into CHR and CHS or CHR and RHS
- The decomposition does not preserve $TH \rightarrow R$

```
run dependency preservation algorithm
F = C \rightarrow T \ CS \rightarrow G, \ HR \rightarrow C, \ HS \rightarrow R, \ TH \rightarrow R
for the previous BCNF decomposition:
CSG \ CT \ CHR \ CHS
the local closure of TH is TH
so TH \rightarrow R is not preserved
```

- Is there an efficient algorithm for BCNF decomposition?
 - Most likely NO:

It is NP-complete to decide whether a relation R is in BCNF with respect to a set of FDs.

Any algorithm for BCNF is most likely exponential

• Problem with BCNF:

 Not every relation schema can be decomposed into BCNF relation schemas which have lossless join and preserve the dependencies.

Third Normal Form (3NF)

- A relation scheme R is in Third Normal Form wrt a set F of fd's over R, if whenever X→A holds in R and A \notin X then either X is a superkey or A is prime

 $A \in att(R)$ is prime: $A \in K$ for some key K

3NF is weaker than BCNF

Decomposition of a relation schema into BCNF relation schemas, with lossless join

Example

R = CITY ZIP ST $F = CITY ST \rightarrow ZIP, ZIP \rightarrow CITY$

R is in 3NF but not in BCNF

Violation of BCNF: $ZIP \rightarrow CITY$

However, CITY belongs to the key CITY ST so this satisfies 3NF

Computing a 3NF decomposition

Three main steps:

- 1. Simplify the set of FDs (eliminate redundancies)
- 2. Construct a first-cut decomposition from remaining FDs
 - e.g.: from A → B make a relation AB dependency preserving, not always lossless join
- 3. If needed, modify decomposition to ensure lossless join

Eliminating redundancies in the FDs

1. Rewrite the FDs with single attributes on RHS

ex: replace AB
$$\rightarrow$$
 CD with AB \rightarrow C and AB \rightarrow D

2. Eliminate redundant FDs

ex:
$$F = \{A \rightarrow C, A \rightarrow B, B \rightarrow C\}$$

A \rightarrow C is redundant (it is implied by A \rightarrow B and B \rightarrow C)

3. Eliminate redundant attributes from LHS of FDs

ex:
$$F = \{A \rightarrow B, AB \rightarrow C\}$$

B is redundant in $AB \rightarrow C$ because A by itself determines C $(A \rightarrow C)$ is implied by F)

Example minimization

Attributes: ABCDEI

FDs: $A \rightarrow C$, $AB \rightarrow C$, $C \rightarrow DI$, $CD \rightarrow I$, $EC \rightarrow AB$, $EI \rightarrow C$

First-cut 3NF decomposition

R a schema $F \quad \underline{\text{minimal}} \text{ set of FD's over R (no redundancies)}$ $\rho = \{XA_1 \dots A_m \mid X \rightarrow A_i \in F\} \cup \{B \in R \mid B \text{ does not occur in } F\}$

Example

```
    R = CTHRSG (see earlier example)
    F = C→T CS →G
    HR →C HS →R (minimal)
    HT →R
```

- Then $\rho = \{CT, HRC, HTR, CSG, HRS\}$

First-cut 3NF decomposition

• Theorem. ρ preserves F and each R_i in ρ is in 3NF wrt $\pi_{Ri}(F^+)$.

Why is each relation in 3NF?

Proof idea: Suppose XA is constructed from $X \rightarrow A$ in F Let $Y \rightarrow B$ be local to XA. Two cases:

- 1. B = A. Then Y = X and Y is a superkey (if Y \subset X then attributes in X Y are redundant)
- 2. $B \neq A$, so $B \in X$ and B is prime (X must be a key, otherwise $X \rightarrow A$ has redundant attributes on LHS).

Second cut: ensure lossless join

- To obtain decomposition that also has lossless join:
 - add to ρ a set K where K is a key for R
 ...unless there already is a "piece" in the decomposition whose attributes form a superkey for R

• Theorem $\rho \cup \{K\}$ is a 3NF decomposition which is dependency preserving and has lossless join.

Proof idea: chasing the pattern for $\rho \cup \{K\}$ produces answer variables in the entire row for K. Apply the FDs in the same order used in the computation of K^+

Example

• R: ABCDE $F = \{A \rightarrow C, BC \rightarrow D AD \rightarrow E\}$

$$\rho = \{AC, BCD, ADE\}$$

• None of AC, BCD, ADE is a superkey:

$$AC^+ = AC$$
, $BCD^+ = BCD$, $ADE^+ = ADEC$

- AB is a key, add it to ρ
- Claim: $\rho \cup \{AB\}$ has lossless join (see next slide)

Test for lossless join

$$F = \{A \rightarrow C, BC \rightarrow D AD \rightarrow E\}$$

Pattern for {AC, BCD, ADE, AB}:

Chase with A
$$\rightarrow$$
 C, BC \rightarrow D, AD \rightarrow E (in order)

FDs used in computation of AB⁺ (in order):

$$A \rightarrow C, BC \rightarrow D, AD \rightarrow E$$

A (simplified) overview of schema design using FDs

- 1. Choose attributes in R
- 2. Specify dependencies F

(tool: "Armstrong relations" – relations satisfying exactly F⁺)

- 3. Find a lossless-join, dependency preserving decomposition into Normal Form schemas
 - BCNF, if possible
 - 3NF, if not BCNF

Attributes vs. data

Example: keep information about employee names and the departments

in which they work

Departments: PCs, Toys, Candy

Two options:

1	Emp name dept	2	Emp	name	PCs	Toys	Candy

Some criteria:

- Are departments stable?
- Sparse vs. dense tables
- Ease of querying

Find the departments in which Joe works

A: easier with 1

B: easier with 2

Find the employees who work in every department

A: easier with 1

B: easier with 2

Armstrong relation example

Schedule theater title
$$F = \{\text{theater } \rightarrow \text{title}\}$$

Armstrong relation for F: satisfies exactly the FDs in F⁺

Schedule	theater	title
	Paloma Hillcrest	Casablanca Casablanca

- satisfies theater → title
- violates title → theater

Full normalization example

Attributes: broker, office, investor, stock, quantity, dividend B O I S Q D

FDs: $S \rightarrow D$, $I \rightarrow B$, $IS \rightarrow Q$, $B \rightarrow O$

Attributes: broker, office, investor, stock, quantity, dividend B O I S Q D

FDs: $S \rightarrow D$, $I \rightarrow B$, $IS \rightarrow Q$, $B \rightarrow O$

Attributes: broker, office, investor, stock, quantity, dividend B O I S Q D

FDs: $S \rightarrow D$, $I \rightarrow B$, $IS \rightarrow Q$, $B \rightarrow O$

A glimpse beyond FDs

Example

```
Movie title director actor
```

- Suppose each movie may have several directors and several actors
- then there are no fds (so this is in BCNF)
- redundancy still exists

Directors and actors are independent info for same title

Better design: Directors title director Actors title actor

Captured by "multi-valued dependencies"

Directors and actors are independent info for same title

Taking into account MVDs results in an extension of BCNF called 4th Normal Form

Alternative approach

- Start with an Entity-Relationship (ER) diagram
- Translate into corresponding relational schema
- Identify functional dependencies
- Use design theory to further improve and bring to BCNF or 3NF or 4NF

Example: piece of an E-R diagram

Corresponding relational schema

customer	customer-id	customer-name	customer-zip customer-city

account	account-number	balance	

depositor	customer-id account-number		access date

A more realistic E-R diagram

First-cut relational schema

- branch = (<u>branch_name</u>, branch_city, assets)
- customer = (<u>customer_id</u>, customer_name, customer_street, customer_city)
- $loan = (\underline{loan_number}, amount)$
- $account = (\underline{account_number}, balance)$
- *employee* = (*employee_id*. *employee_name*, *telephone_number*, *start_date*)
- dependent_name = (<u>employee_id</u>, <u>dname</u>)
- account_branch = (<u>account_number</u>, branch_name)
- $loan_branch = (\underline{loan_number}, branch_name)$
- borrower = (<u>customer id, loan number</u>)
- depositor = (<u>customer_id</u>, <u>account_number</u>)
- cust_banker = (<u>customer_id</u>, employee_id, type)
- works_for = (<u>worker_employee_id</u>, manager_employee_id)
- payment = (<u>loan_number</u>, payment_number, payment_date, payment_amount)
- *savings_account = (account_number, interest_rate)*
- $checking_account = (\underline{account_number_5} \ overdraft_amount)$